### Модуль 2

14. Способы задания множеств. Универсальное, конечное, пустое, равные множества. Включения и подмножества. Диаграмма Эйлера–Венна. Мощность конечного множества.

#### Способы задания множества:

• Перечисление элементов:

$$A = \{1, 2, a, c\}$$
  
 $B = \{a_1, a_2, \dots, a_n\}$ 

• Указание общего характеристического свойства:

$$A=\{x:x\in\mathbb{R}$$
 и  $\sqrt{x^2+1}<3\}$ 

**Опр.** Множества, состоящие из конечного числа элементов, называются **конечными**. Конечно множество такое, у которого нет равномощного ему собственного подмножества.

**Опр.** Множества, состоящие из бесконечного числа элементов, называются **бесконечными**.

**Опр.** Множества, не содержащие ни одного элемента, называются **пустыми**. ( $\varnothing$ )

**Опр.** Множества, состоящие из элементов, образующие все возможные множества данной задачи, называются **универсальными** (℧)

Опр. Множества, состоящие из одинаковых элементов, называются равными.

**Опр.** Множество В называется **подмножеством** множества A, если каждый элемент B является элементом A.  $B \subseteq A$ . (Говорят, что A включает B).

Если  $B \subset A$  , то множество B называется **собственным** подмножеством множества A.

#### Свойства включений:

- $\bullet$   $A\subseteq A$
- $A \subseteq B, B \subseteq C \Rightarrow A \subseteq C$

**Мощность множества (первичное понимание)**: Мощностью конечного множества А называется количество элементов этого множества.

Мощность объединения множеств:

$$\mid A \cup B \mid = \mid A \mid + \mid B \mid - \mid A \cap B \mid$$

$$\begin{aligned} |A \cup B \cup C| &= |A| + |B| + |C| - |A \cap B| - |B \cap C| - |A \cap C| + |A \cup B \cup C| \\ |A_1 \cup A_2 \cup \dots \cup A_n| &= |A_1| + \dots + |A_n| - (|A_1 \cap A_2| + |A_1 \cap A_2| + \dots + |A_{n-1} \cap A_n|) + \\ + (|A_1 \cap A_2 \cap A_3| + \dots + |A_{n-2} \cap A_{n-1} \cap A_n|) - \dots + (-1)^{n-1} |A_1 \cap A_2 \cap \dots \cap A_n| \end{aligned}$$

Для изображения операций над множествами используются диаграммы Эйлера-Венна.



### 15. Операции над множествами. Свойства операций над множествами.

Над множествами определены следующие операции:

- Объединение:  $A \cup B = \{x : (x \in A) \lor (x \in B)\}$
- Пересечение:  $A \cup B = \{x : (x \in A) \land (x \in B)\}$
- Дополнение:  $\overline{A} = \{x : x \notin A\}$
- Разность:  $A \setminus B = \{x : (x \in A) \land (x \not\in B)\}$
- Симметрическая разность:  $A \oplus B = \{x: \Big((x \in A) \land (x \notin B)\Big) \lor \Big((x \notin A) \land (x \in B)\Big)\}$  (Не на пересечении двух множеств).

Свойства операций над множествами:

- Коммутативность:
  - $A \cup B = B \cup A$
  - $A \cap B = B \cap A$
- Ассоциативность:
  - $\bullet \ \ (A \cup B) \cup C = A \cup (B \cup C)$
  - $(A \cap B) \cap C = A \cap (B \cap C)$
- Дистрибутивность:
  - $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
  - $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- Идемпотентность:
  - $A \cup A = A$
  - ullet  $A\cap A=A$
- Поглощение:
  - $A \cup (A \cap B) = A$
  - $A \cap (A \cup B) = A$
- Законы де Моргана:
  - $\overline{A \cup B} = \overline{A} \cap \overline{B}$
  - $\bullet \ \ \overline{A\cap B}=\overline{A}\cup \overline{B}$
- Законы нуля и единицы:
  - $\bullet \ \ A \cup \varnothing = A$
  - $A \cap \varnothing = \varnothing$
  - $\bullet \ \ A \cup U = U$
  - ullet  $A\cap U=A$
- Дополнительные свойства:

• 
$$A \cup \varnothing = A$$

• 
$$A \cap \varnothing = \varnothing$$

• 
$$A \cup \mho = \mho$$

• 
$$A \cap \mho = A$$

• 
$$\overline{\overline{\overline{A}}} = A$$

$$ullet$$
  $A\cup\overline{A}=U$ 

• 
$$A \cap \overline{A} = \emptyset$$

• 
$$A \oplus B = B \oplus A$$

• 
$$(A \oplus B) \oplus C = A \oplus (B \oplus C)$$

• 
$$A \oplus A = \emptyset$$

• 
$$A \oplus A \oplus A = A$$

#### • Частные случаи:

• 
$$A \oplus \varnothing = A$$

• 
$$A \oplus \mho = \overline{A}$$

• 
$$A\oplus \overline{A}=\mho$$

• 
$$\overline{A \oplus B} = A \oplus B \oplus \mho$$

# 16. Упорядоченные пары и кортежи. Прямое (декартово) произведение множеств, его свойства и геометрическая интерпретация.

Пусть есть множества A и B ( $A \neq B$ ).  $a \in A, b \in B$ 

Тогда:

- $\{a,b\} = \{b,a\}$  неупорядоченные пары (порядок элементов не важен).
- $(a,b) \neq (b,a)$  упорядоченные пары (важен порядок элементов).

**Опр.** Если  $(a_1,a_2,\ldots,a_n):\{a_1\in A_1,a_2\in A_2,\ldots,a_n\in A_n\}$ , то такое упорядоченное множество называется **кортежем**.

**Опр.** Множество все кортежей длины n на множествах  $A_1, A_2, \ldots, A_n$  называется прямым или **декартовым произведением** множеств  $A_1, A_2, \ldots, A_n$ .

Обозначение. 
$$A_1 imes A_2 imes \ldots imes A_n=\left\{(x_1,x_2,\ldots,x_n):x_1\in A_1,x_2\in A_2,\ldots,x_n\in A_n
ight\}$$

#### Свойства декартового произведения:

- Дистрибутивность относительно объединения:
  - $A \times (B \cup C) = (A \times B) \cup (A \times C)$
  - $(A \cup B) \times C = (A \times C) \cup (B \times C)$
- Дистрибутивность относительно пересечения:
  - $A \times (B \cap C) = (A \times B) \cap (A \times C)$
  - $(A \cap B) \times C = (A \times C) \cap (B \times C)$
- Свойства пустого множества:
  - $A \times \emptyset = \emptyset$
  - $\varnothing \times B = \varnothing$
- Декартово произведение с самим собой:
  - $A \times A \times \ldots \times A = A^n$  (n pas)

#### Геометрический смысл.

Пусть  $A = [a_1, a_2], B = [b_1, b_2]$  - отрезки.

Геометрический смысл декартового произведения  $A \times B$  заключается в том, что  $A \times B$  - множество координат всех точек заштрихованного прямоугольника, таких, что абсциссы являются элементами множества A, а ординаты - элементы множества B.

Пример:\

**Пример 1.9.** Изобразить на координатной плоскости  $Oxy \ A \times B$ , если:

a) 
$$A = \{3, 5, 7\}, B = \{2, 4\};$$

$$6) A = \{3, 5, 7\}, B = [2; 4];$$

B) 
$$A = [3, 7], B = [2, 4].$$

Решение.



Мощность декартово произведения равна произведению мощностей множеств, входящих в декартово произведения.

$$|A_1 imes A_2 imes \ldots imes A_n| = |A_1| * |A_2| * \cdots * |A_n|$$

# 17. Отображения и соответствия. Инъективное, сюръективное, биективное отображения. Обратное соответствие. Сечение соответствия.

**Опр. Отображение** f из множества A во множество B задано, если каждому  $x \in A$  соответствует единственный элемент  $y \in B$ .

Обозначение. f:A o B

Каждое отображение однозначно задаёт множество упорядоченных пар:

$$\{(x,y):x\in A,y=f(x)\in B\}\subseteq A imes B$$

**Опр.** В общем случае, когда для отображения f могут  $\exists$  несколько различных элементов из множества A, имеющих один и тот же образ  $y_0$ , такие элементы x называются **прообразами** элемента  $y_0$  при отображении f.

Пример прообразов.  $y = \cos(x), 0 \le y_0 \le 1.$ 

Тогда прообразы  $\{x: x=rccos y_0\pm 2\pi n, n\in \mathbb{N}\}$ 

#### Виды отображений:

• Отображение  $f:A\to B$  называется **инъективным**, если  $\forall y\in$  область значения отображения f  $\exists !$  прообраз.

**Пример.**  $y_1 = f(x_1), y_2 = f(x_2)$ . Тогда верно:  $(y_1 = y_2) \Rightarrow (x_1 = x_2)$ .

• Отображение  $f: A \to B$  называется **сюръективным**, если область значения отображения f полностью совпадает со множеством B.

**Пример.** 
$$y = x^2$$
 на  $A = [-3, 3]$  и  $B = [0, 9]$ 

• Отображение  $f: A \to B$  называется **биективным**, если оно одновременно инъективно и сюръективно.

**Пример.** y = artcg(x) - биекция на  $(-\frac{\pi}{2}; \frac{\pi}{2})$ 



**Опр.** Если отображение не однозначно, то есть некоторым элементам  $x \in A$  соответствует не по одному элементу  $y \in B$ , то есть несколько образов, то имеет место **соответствие** из множества A во множество B.

- $ho \subseteq A \times B$  задание соответствия из A в B.
- $\rho = \varnothing$  частый случай.
- ho = A imes B универсальное соответствие



#### Опр. Для соответствия определена область определения:

•  $Def(\varphi)$  - множество всех первых компонент упорядоченных пар, составляющих  $\varphi$ .  $Def(\varphi)=\{x: (\exists y\in B), (x,y)\in \varphi\}$ 

Опр. Для соответствия определена область значения:

•  $Res(\varphi)$  - множество всех вторых компонент упорядоченных пар, составляющих  $\varphi$ .  $Res(\varphi)=\{y: (\exists x\in A), (x,y)\in \varphi\}$ 

**Опр. Сечением соответствия**  $\varphi$  **по элементу**  $x_0 \in A$  называется множество  $\varphi(x_0) = \{y: (x_0,y) \in \varphi\}$  всех вторых компонентов пар соответствия  $\varphi$  таких, что первым компонентом является  $x_0$ .

**Опр. Сечением соответствия**  $\rho$  **по множеству**  $E\subseteq A$  называется множество  $\varphi(E)=\{y:(x,y)\in\varphi,x\in E\}$  всех вторых компонентов пар соответствия  $\varphi$  таких, что первым компонентом является элемент множества E.

**Опр. Обратным соответствием**  $\varphi^{-1}\subseteq B\times A$  называется соответствие, определенное как множество пар (y,x) таких, что  $(x,y)\in \varphi.$ 

**Обозначение.** 
$$arphi^{-1}=\{(y,x):(x,y)\inarphi\}$$
  $(arphi^{-1})^{-1}=arphi$  - инволюция.

Если задано отображение  $f:A\to B$ , то оно является соответствием Обратное ему отображение  $f^{-1}:B\to A$  в общем случае соответствием не является

# 18. Способы задания соответствий. Бинарные отношения. Способы задания бинарных отношений.

**Опр. Отображение** f из множества A во множество B задано, если каждому  $x \in A$  соответствует единственный элемент  $y \in B$ .

Обозначение. f:A o B

Каждое отображение однозначно задаёт множество упорядоченных пар:

$$\{(x,y):x\in A,y=f(x)\in B\}\subseteq A imes B$$

**Опр.** Если отображение не однозначно, то есть некоторым элементам  $x \in A$  соответствует не по одному элементу  $y \in B$ , то есть несколько образов, то имеет место **соответствие** из множества A во множество B.

- $ho \subseteq A \times B$  задание соответствия из A в B.
- $\rho = \varnothing$  частый случай.
- ho = A imes B универсальное соответствие

Пусть дано соответствие  $ho \subseteq A \times B$ .

#### Способы его задания:

• Перечисление пар.

$$A = \{a_1, a_2, a_3\}, B = \{b_1, b_2\} \ 
ho = \Big\{(a_1, b_1), (a_1, b_2), (a_2, b_2), (a_3, b_2)\Big\}$$

• Табличный. (каждому элементу в таблице записываем его сечение)

| Def( ho)                  | $a_1$         | $a_2$     | $a_3$     |
|---------------------------|---------------|-----------|-----------|
| $\rho\big(Def(\rho)\big)$ | $\{b_1,b_2\}$ | $\{b_2\}$ | $\{b_2\}$ |

• Матричный. Если малая мощность, то меняем матрицу на сетку.

| A\B   | $b_1$ | $b_2$ |
|-------|-------|-------|
| $a_1$ | 1     | 1     |
| $a_2$ |       | 1     |
| $a_3$ |       | 1     |

• Двудольным орграфом.

**Опр.** Соответствие  $R\subseteq A\times A$  называется бинарным отношением на множестве A. Обозначение.  $R\subseteq A^2$  Пример.

- $x,y \in \mathbb{N}$
- $x \le y$  бинарное отношение (инфиксная запись).
- $(x,y) \in \le$  имя бинарного выражения. (постфиксная запись)
- $x,y \in R$  или xRy в общем виде.

**Опр.** Бинарное отношение R, в каждой паре которого компоненты совпадают, равномощное множеству A, называется диагональю множества A.

Обозначение.  $id_A$ 

#### Способы задания бинарных отношений:

• Перечисление пар.

$$A = \{a_1, a_2, a_3\}$$
  
 $R = \{(a_1, a_1), (a_1, a_2), (a_1, a_3), (a_2, a_3)\}$ 

• Табличный.

| R(Def(R)) | $a_1$             | $a_2$     |
|-----------|-------------------|-----------|
| R(Res(R)) | $\{a_1,a_2,a_3\}$ | $\{a_3\}$ |

• Матрицей бинарного отношения.

|       | $a_1$ | $a_2$ | $a_3$ |
|-------|-------|-------|-------|
| $a_1$ | 1     | 1     | 1     |
| $a_2$ |       |       | 1     |
| $a_3$ |       |       |       |

• **Двудольным орграфом**. Можно использовать не двудольный, а обычный ориентированный.

# 19. Свойства бинарных отношений: рефлексивность, иррефлексивность, симметричность, антисимметричность, транзитивность, плотность. График отношения.

**Свойства бинарных отношений.** Стоит приводить примеры к каждому пункту. Пусть дано множество A с  $n = \mid A \mid$  и бинарное отношение на этом множестве $R \subseteq A^2$ 

#### 1. Рефлексивность.

- ullet БО R называется **рефлексивным**, если  $\forall x \in A: xRx$ , то есть  $(x,x) \in R \iff id_A \in R$
- Если диагональ множества A ( $id_A$ ) полностью отсутствует в БО R, то есть (x, x)  $\notin R$ , то такое БО называется **иррефлексивным**.
- Если часть элементов диагонали присутствует в БО, а часть отсутствует, то такое БО называется **нерефлексивным**.

**Пример.** БО "=" - рефлексивно, а БО " $\neq$ "- иррефлексивно.

#### 2. Симметричность.

- БО R называется **симметричным**, если  $\forall (x,y) \in R: (y,x) \in R$ , то есть  $xRy \Rightarrow yRx$
- Если хотя бы для одной пары условие симметричности не выполняется, то БО R называется **несимметричным.**
- Матрица симметричного БО симметрична относительно  $id_A$ .
- $R = R^{-1}$

Пример. = или параллельность прямых.

#### 3. Антисимметричность.

- БО R называется **антисимметричным**, если:  $(xRy \text{ и } yRx) \Rightarrow x = y$ .
- Антисимметричность совместима с любыми вариантами рефлексии.
   Пример. > или >.

#### 4. Транзитивность.

- БО R называется **транзитивным**, если:  $\forall x, y, z \in A : (xRy \cup yRz) \Rightarrow xRz$
- Если хотя бы для одного набора  $x,y,z\in A:(xRy$  и  $yRx) \Rightarrow xRz$ , то БО R называется **нетранзитивным**.

Пример: равенство или отношения порядка.

#### 5. Плотность.

• БО R называется **плотным**, если  $\forall x,y \in A: xRy, x \neq y \ \exists z \in A: xRz$  и zRy, то есть для любых различных элементов множества A можно указать третий элемент из A, который "встраивается" между первыми двумя.

**Пример.** Отношение строгого неравенства на  $\mathbb{R}$  "<" является плотным (на  $\mathbb{N}$  не является).

**График БО** - график соответствия R, абсциссой и ординатой которого являются элементы множества A.

# 20. Классы отношений: эквивалентность, толерантность. Отношения порядка.

**Опр.** Пусть A - некоторое множество. Семейство попарно непересекающихся множеств  $C_i, i = \overline{1,n}$  называется **разбиением** множества A, если их объединение даёт A:  $\bigcup_{i=1}^n C_i = A$  и  $\bigcap_{i=1}^n C_i = \varnothing$ .

**Опр.** Пусть R - отношение эквивалентности на множестве A и  $x \in A$ . **Классом эквивалентности**  $[x]_R$  по отношению R называется множество всех вторых компонентов пар отношения R, у которых первым компонентом является x. (Сечение отношения эквивалентности по элементу x).

**Теорема.** Для любого отношения эквивалентности на множестве A, множество классов эквивалентности образует разбиение множества A. Обратная теорема также верна.

**Опр.** Множества заданного отношения порядка называются упорядоченными множествами.

**Обозначение.**  $(A, \leq)$  (не больше)

Каждому отношению порядка на A можно сопоставить следующие БО:

• Отношения строго порядка (<) (строго меньше) Получено путем удаления из классического  $id_A$ . Записывается так:

 $\forall x,y \in A: \{x < y \Leftrightarrow x \leq y$  и  $x \neq y\}$ 

- Отношение, двойственное к классическому порядку ( $\geq$ ) (не меньше)  $\forall x,y\in A:\{x\geq y\Leftrightarrow y\leq x\}$
- Отношение, двойственное к строгому (>) (строго больше)  $\forall x,y\in A:\{x>y\Leftrightarrow x\geq y\ \mathrm{if}\ x\neq y\}$
- Доминированное отношение ( $\leqslant$  )  $x \leqslant y$ , если x < y и  $\nexists z \in A : x < z < y$ , то есть не существует элемента между x и y.

| Отношение\Свойства    | Ирреф-<br>ть | Рефл-<br>ть | Симметр-<br>ть | Антисимм-<br>ть | Транз-<br>ть |
|-----------------------|--------------|-------------|----------------|-----------------|--------------|
| Эквивалентность       |              | +           | +              |                 | +            |
| Толерантность         |              | +           | +              |                 |              |
| Частичный порядок     |              | +           |                | +               | +            |
| Предварительный       |              | +           |                |                 | +            |
| порядок(квазипорядок) |              |             |                |                 |              |
| Строгий порядок       | +            |             |                | +               | +            |

| Отношение\Свойства     | Ирреф- | Рефл- | Симметр- | Антисимм- | Транз- |
|------------------------|--------|-------|----------|-----------|--------|
|                        | ть     | ть    | ть       | ть        | ть     |
| Строгий<br>предпорядок | +      |       |          |           | +      |

Про толерантность: любой объект неразличим сам с собой (свойство рефлексивности), а сходство двух объектов не зависит от того, в каком порядке они сравниваются (свойство симметричности). Однако, если один объект сходен с другим, а этот другой — с третьим, то это вовсе не значит, что все три объекта схожи между собой (таким образом, свойство транзитивности может не выполняться).

Пример толерантности: если дружишь с двумя друзьями, то это не значит, что они дружат между собой. Т.е. отношение дружбы на множестве людей.

Пример квазипорядка: одно слово имеет не меньше букв, чем другое. (сравниваем сложные объекты по одному признаку)

Пример строго квазипорядка: одно слово имеет больше букв, чем другое.

Дальше про эти классы в 21 и 22 вопросах.

### 21. Разбиение множества. Классы эквивалентности. Фактормножество. Связь понятий отображения, разбиения, эквивалентности.

**Опр.** Пусть A - некоторое множество. Семейство попарно непересекающихся множеств  $C_i, i = \overline{1,n}$  называется **разбиением** множества A, если их объединение даёт A:  $\bigcup_{i=1}^n C_i = A$  и  $\bigcap_{i=1}^n C_i = \varnothing$ .

**Опр.** Пусть R - отношение эквивалентности на множестве A и  $x \in A$ . **Классом эквивалентности**  $[x]_R$  по отношению R называется множество всех вторых компонентов пар отношения R, у которых первым компонентом является x. (Сечение отношения эквивалентности по элементу x).

**Теорема.** Для любого отношения эквивалентности на множестве A, множество классов эквивалентности образует разбиение множества A. Обратная теорема также верна.

**Опр.** Множество всех классов эквивалентности по данному отношению эквивалентности R на множестве A называется фактор-множеством множества A по отношению R. **Обозначение.** A/R

#### Пример.

$$A = \{a, b, c, d, e\}$$

Зададим БО с помощью матрицы:

|   | а | b | С | d | е |
|---|---|---|---|---|---|
| а | 1 | 1 |   |   |   |
| b | 1 | 1 |   |   |   |
| С |   |   | 1 |   |   |
| d |   |   |   | 1 | 1 |
| е |   |   |   | 1 | 1 |

$$[a]_R = \{a,b\}$$

$$[b]_R = \{a,b\}$$

$$[c]_R = \{c\}$$

$$[d]_R = \{d,e\}$$

$$[e]_R = \{d,e\}$$

$$C_1 = \{a, b\}$$

$$C_2 = \{c\}$$

$$C_3 = \{d, e\}$$

Тогда 
$$A=C_1\cup C_2\cup C_3$$
 $A/R=\{C_1,C_2,C_3\}$ 

#### Существует связь между эквивалентностью, разбиением и отображением.

 $\forall R\subseteq A^2\ \exists f:A\to A/R$ , то есть для любого БО на множестве A можно задать отображение множества A в его фактор-множество A/R.

Если считать  $x \in A, f(x) = [x]_R$  , то получим, что каждому элементу  $x \in A$  отображение f сопоставляет единственный класс эквивалентности, содержащий этот элемент. Заметим, что отображение f - сюръективное.

Любое отображение однозначно определяет некоторое отношение эквивалентности.

- Связь между разбиением и эквивалентностью:
  - Каждое отношение эквивалентности на множестве A порождает разбиение множества A на классы эквивалентности.
- Связь между отображением и эквивалентностью:
  - **Теорема.** Пусть f произвольное отображение, отношение R на множестве A, для которого  $(x,y) \in R$  возможно тогда и только тогда, когда f(x) = f(y), является отношение эквивалентности. Причём существует биекция фактормножества A/R на множество f(A) ( $A/R \leftrightarrow f(A)$ ) Из теоремы **не следует**, что между f и R существует взаимно однозначное соответствие, два разных отображения могут задавать одно и то же разбиение множества A
  - $f_1:A\to B_1$
  - $ullet f_2:A o B_2$

### 22. Отношения порядка и сопоставленные им отношения. Упорядоченные множества.

**Опр.** Множество с заданным на нём отношением порядка называется упорядоченным **Обоз.** (A,R)

Пример:  $(A, \leq)$ 

Каждому отношению порядка на множестве A можно сопоставить следующие отношения:

• Отношения строго порядка (<) (строго меньше) Получено путем удаления из классического  $id_A$ . Записывается так:

 $\forall x,y \in A: \{x < y \Leftrightarrow x \leq y \text{ if } x \neq y\}$ 

- Отношение, двойственное к классическому порядку ( $\geq$ ) (не меньше)  $\forall x,y\in A:\{x\geq y\Leftrightarrow y\leq x\}$
- Отношение, двойственное к строгому (>) (строго больше)

$$orall x,y\in A:\{x>y\Leftrightarrow x\geq y$$
 и  $x
eq y\}$ 

- Доминированное отношение (< )
  - ullet x < y, если x < y и  $et Z \in A : x < z < y$
  - Не существует элемента, который можно встроить между x и y по отношению строго меньше
  - Доминирование иррефлексивно, антисимметрично и нетранзитивно

23. Наибольший, максимальный, наименьший, минимальный элементы упорядоченного множества. Верхние и нижние грани множества. Точные верхняя и нижняя грани. Принцип двойственности для упорядоченных множеств.

**Опр.** Элемент  $a \in A$  называется **наибольшим** элементом множества A, если  $\forall x \in A : x \leq a$ .

**Опр.** Элемент  $b \in A$  называется **максимальным** элементом множества A, если  $\forall x \in A : x \leq b$  или x и b несравнимы.

**Теорема.** Наибольший (наименьший) элемент упорядоченного множества, если он существует, является единственным

**Доказательство.** Пусть  $(A, \leq)$ . Предположим, что в нём 2 максимальных элемента  $a_1, a_2$ . Тогда  $\forall x \in A \ x \leq a_1, x \leq a_2$ 

Так как  $a_1,a_2\in A$ , то  $a_1\leq a_2$  и  $a_2\leq a_1\Rightarrow a_1=a_2\Rightarrow$  наибольший элемент единственный lacktriangle

Аналогично вводятся понятия наименьшего и минимального элемента.

Опр. Пусть  $(A, \leq)$  и  $B \subseteq A$ . Элемент  $a \in A$  называется верхней (нижней) гранью множества B, если  $\forall x \in B: x \leq a \ (x \geq a)$ .

Грани образуют множества, значит среди них можно выделить наибольший и наименьший элемент.

**Опр.** Наименьший элемент всех верхних граней множества B называется **точной верхней гранью** множества B ( $\sup B$ ).

**Опр.** Наибольший элемент всех нижних граней множества B называется **точной нижней гранью** множества B ( $\inf B$ ).

**Примечание.** Точная грань может не принадлежать самому множеству, и может даже не существовать.

Можно считать, что для упорядоченных множеств работает **принцип двойственности**: Если есть  $(A, \leq)$  и есть свойство, доказанное для этого порядка, то это свойство будет справедливо для двойственного порядка, если:

- Заменить ≤ на ≥ и наоборот.
- Максимальный элемент заменить на минимальный.
- inf заменить на sup и наоборот.

### 24. Вполне упорядоченное множество. Индуктивное упорядоченное множество. Теорема о неподвижной точке.

**Опр.**  $(A, \leq)$  называется **вполне упорядоченным**, если его любое непустое подмножество имеет наименьший элемент.

**Опр.** Упорядоченное множество  $(A, \leq)$  называется **индуктивным**, если:

- Оно содержит наименьший элемент
- Всякая неубывающая последовательность этого множества имеет точную верхнюю грань.

Пример. [0;1] на  $\mathbb{R}$ 

При ≤ наименьший элемент 0 и всегда есть верхняя грань

**Опр.** Пусть имеются 2 индуктивных упорядоченных множества  $(A_1, \leq)$  и  $(A_2, \leq)$ . Отображение  $f:A_1 o A_2$  называется **непрерывным**, если  $\forall$  неубывающей последовательности элементов множества  $A_1 \, a_1, a_2, \ldots, a_n, \ldots$  образ её точной верхней грани равен точной верхней грани последовательности  $f(a_1), f(a_2), \ldots, f(a_n), \ldots$ To есть:  $f(\sup\{a_n\}) = \sup\{f(a_n)\}.$ 

**Опр.** Элемент  $a \in A, (A, \leq)$  называется **неподвижной точкой** отображения  $f: A \to A$ , если f(a) = a.

#### Теорема о неподвижной точке.

Любое непрерывное отображение f:A o A индуктивного упорядоченного множества A в себя имеет наименьшую неподвижную точку

Уравнение f(x)=x имеет решение  $x_0\in A$   $x_0=f(x_0)$ Множество всех решений уравнения образует множество всех неподвижных точек и оно

#### Пример:

имеет наименьший элемент.

Пример: Множество 
$$(A,\leq)$$
:  $A=[0,1]$  - индуктивно Отображение:  $f:A\to A$   $f(x)=\frac{1}{2}x+\frac{1}{4}$   $x_0=f(x_0),\,x_0=0$   $f^0(0)\neq 0$   $f^1(0)=\frac{1}{4}$   $f^2\left(\frac{1}{4}\right)=\frac{3}{8}$   $f^3\left(\frac{3}{8}\right)=\frac{7}{16}$   $f^4\left(\frac{7}{16}\right)=\frac{15}{32}$   $0\leq \frac{1}{4}\leq \frac{3}{8}\leq \frac{7}{16}\leq \frac{15}{32}$ 

Путём бесконечного числа итераций получается неубывающая последовательность

$$\lim_{n o\infty}rac{2^n-1}{2^{n+1}}=rac{1}{2}=x_{{\scriptscriptstyle HAUM}}$$

$$x_{{ t Haum}}=f(x_{{ t Haum}})$$
  $rac{1}{2}=f\left(rac{1}{2}
ight)=rac{1}{2}rac{1}{2}+rac{1}{4}=rac{1}{2}$  - верно Наименьшая неподвижная точка -  $rac{1}{2}$ 

| Не будет. |  |  |
|-----------|--|--|
|           |  |  |
|           |  |  |
|           |  |  |
|           |  |  |
|           |  |  |
|           |  |  |
|           |  |  |
|           |  |  |
|           |  |  |
|           |  |  |
|           |  |  |
|           |  |  |
|           |  |  |
|           |  |  |
|           |  |  |
|           |  |  |
|           |  |  |
|           |  |  |
|           |  |  |
|           |  |  |
|           |  |  |
|           |  |  |
|           |  |  |
|           |  |  |
|           |  |  |
|           |  |  |

25. Диаграммы Хассе для конечных упорядоченных множеств.

# 26. Мощность множеств. Отношение равномощности. Счетные множества. Нумерации.

**Опр.** Множество A равномощно  $(\sim)$  множеству B, если существует биекция  $f:A\leftrightarrow B$  или  $f^{-1}:B\leftrightarrow A$  (т.е.  $B\sim A$ )

- Отношение равномощности относится к классу эквивалентности.
- Если  $\mid A \mid$  обозначение класса эквивалентности по отношению равномощности, то получим мощность множества A.

Опр. Мощность множества - класс эквивалентности по отношению равномощности.

**Опр.** Любое множество, равномощное множеству  $\mathbb N$  называется **счетным**.

**Опр.** Биекцию множества M со множеством  $\mathbb N$  называют нумерацией  $\varphi: M \leftrightarrow \mathbb N$  (присваивание элементам любого множества числовые значения.)

Пусть даны бесконечные множества A и B. Считается, что  $\mid A \mid \leq \mid B \mid$ , если A равномощно некоторому подмножеству множества B.

Тогда имеем:  $\mid A \mid \leq \mid B \mid$  и  $\mid B \mid \leq \mid A \mid \Rightarrow \mid A \mid = \mid B \mid$  ( $A \sim B$ ).

#### 27. Свойства счетных множеств. Равномощные множества.

Свойства счетных множеств:

- Любое бесконечное множество содержит счетное подмножество.
- Для любого бесконечного множества можно выделить 2 непересекающихся между собой счетных подмножества.
- Любое подмножество счетного множества конечно, либо счетно.
- Объединение любого конечного или счетного семейства счетных множеств является счетным.
- Объединение конечного и счетного множества счетно.

 $2^N$  - булеан.

$$|2^{\mathbb{N}}|=\mathfrak{C}$$
 - континуум $|\mathbb{N}|=leph_0$  - алеф-нуль

**Опр.** Множество A равномощно  $(\sim)$  множеству B, если существует биекция  $f:A\leftrightarrow B$  или  $f^{-1}:B\leftrightarrow A$  (т.е.  $B\sim A$ ).

Пусть даны бесконечные множества A и B. Считается, что  $\mid A \mid \leq \mid B \mid$ , если A равномощно некоторому подмножеству множества B.

Тогда имеем:  $\mid A \mid \leq \mid B \mid$  и  $\mid B \mid \leq \mid A \mid \Rightarrow \mid A \mid = \mid B \mid$  ( $A \sim B$ ).

- Следующие множества равномощны:
  - a)  $[0;1]\in\mathbb{R}$
  - б)  $(0;1)\in\mathbb{R}$
  - в)  $[a;b]\in\mathbb{R}$
  - г)  $(a;b)\in\mathbb{R}$
  - д) ℝ
  - е)  $2^{\mathbb{N}}$  (все подмножества множества  $\mathbb{N}$ )
- Теорема о квадрате:

Для произвольного счётного множества A верно:  $\mid A \mid = \mid A^2 \mid$  (т.е.  $A \sim A^2$ )

• Теорема Кантора-Бернштейна:

Для любых двух множеств A и B верно одно из трех:

- 1. |A| < |B|
- $2.\mid B\mid <\mid A\mid$
- 3.  $A \sim B$
- Для любого множества A верно неравенство:  $\mid 2^A \mid > \mid A \mid$  То есть мощность любого счетного множества ограничена, в частности, мощностью булеана.

Следствие из теоремы о квадрате. Множество рациональных чисел  $\mathbb Q$  счетно. Доказательство:

- Каждому рациональному числу  $\frac{a}{b}$  однозначно соответствует упорядоченная пара (a,b).
- Следовательно, множество  $\mathbb Q$  эквивалентно некоторому бесконечному подмножеству декартового квадрата  $\mathbb Z^2$ .
- Согласно теореме о квадрате:  $\mathbb{Z} \sim \mathbb{Z}^2$
- Т.к. множества  $\mathbb Z$  и  $\mathbb Z^2$  счетны, а любое подмножество счетного множества конечно или счетно, то множество  $\mathbb Q$  счетно.  $\triangle$

# 28. Свойства счетных множеств при сравнении их мощностей. Теорема Кантора– Бернштейна. Теорема о квадрате.

Свойства счетных множеств:

- Любое бесконечное множество содержит счетное подмножество.
- Для любого бесконечного множества можно выделить 2 непересекающихся между собой счетных подмножества.
- Любое подмножество счетного множества конечно, либо счетно.
- Объединение любого конечного или счетного семейства счетных множеств является счетным.
- Объединение конечного и счетного множества счетно.  $2^N$  булеан.

$$|2^{\mathbb{N}}|=\mathfrak{C}$$
 - континуум $|\mathbb{N}|=leph_0$  - алеф-нуль

**Опр.** Множество A равномощно  $(\sim)$  множеству B, если существует биекция  $f:A\leftrightarrow B$  или  $f^{-1}:B\leftrightarrow A$  (т.е.  $B\sim A$ ).

Пусть даны бесконечные множества A и B. Считается, что  $\mid A \mid \leq \mid B \mid$ , если A равномощно некоторому подмножеству множества B.

Тогда имеем:  $\mid A \mid \leq \mid B \mid$  и  $\mid B \mid \leq \mid A \mid \Rightarrow \mid A \mid = \mid B \mid$  ( $A \sim B$ ).

- Следующие множества равномощны:
  - a)  $[0;1]\in\mathbb{R}$
  - б)  $(0;1)\in\mathbb{R}$
  - в)  $[a;b]\in\mathbb{R}$
  - г)  $(a;b)\in \mathbb{R}$
  - д) ℝ
  - е)  $2^{\mathbb{N}}$  (все подмножества множества  $\mathbb{N}$ )
- Теорема о квадрате:

Для произвольного счётного множества A верно:  $\mid A \mid = \mid A^2 \mid$  (т.е.  $A \sim A^2$ )

• Теорема Кантора-Бернштейна:

Для любых двух множеств A и B верно одно из трех:

- 1. |A| < |B|
- $2.\mid B\mid <\mid A\mid$
- 3.  $A \sim B$
- Для любого множества A верно неравенство:  $\mid 2^A \mid > \mid A \mid$  То есть мощность любого счетного множества ограничена, в частности, мощностью

#### булеана.

Следствие из теоремы о квадрате.
 Множество рациональных чисел ℚ счетно.
 Доказательство:

- Каждому рациональному числу  $\frac{a}{b}$  однозначно соответствует упорядоченная пара (a,b).
- Следовательно, множество  $\mathbb Q$  эквивалентно некоторому бесконечному подмножеству декартового квадрата  $\mathbb Z^2$ .
- Согласно теореме о квадрате:  $\mathbb{Z} \sim \mathbb{Z}^2$
- Т.к. множества  $\mathbb Z$  и  $\mathbb Z^2$  счетны, а любое подмножество счетного множества конечно или счетно, то множество  $\mathbb Q$  счетно.  $\triangle$

### 29. Композиция соответствий: понятие и порядок построения.

**Опр.** Пусть у нас есть два соответствия  $R \subseteq A \times B$  и  $S \subseteq B \times C$ .

Композиция соответствия:  $S\circ R=\Big\{(x,y): (\exists z\in B), \big((x,z)\in R \text{ и } (z,y)\in S\big)\Big\}$ , то есть пара (x,y)принадлежит композиции  $S\circ R$ , если существует такой элемент  $z\in B$ , что x связан с z через R и z связано с y через S.

#### Пример построения:

Пусть у нас есть три множества  $A=\{a_1,a_2\},\,B=\{b_1,b_2\},\,C=\{c_1,c_2\}.$  Определим соответствие  $R\subseteq A\times B: R=\{(a_1,b_1),(a_2,b_2)\}.$  Определим соответствие  $S\subseteq B\times C: R=\{(b_1,c_1),(b_2,c_2)\}.$ 

Теперь найдём сечение соответствия R по элементам из A:

```
1. R(a_1)=\{b_1\} После этого ищем сечение соответствия S по элементам сечения из 1): S(b_1)=\{c_1\} Нашли пару (a_1,c_1), то есть: R\circ S(a_1)=\{c_1\}. Дальше аналогично. 2. R(a_2)=\{b_2\} S(b_2)=\{c_2\} Нашли пару (a_2,c_2), то есть: R\circ S(a_2)=\{c_2\}.
```

Тогда композиция соответствия  $R \circ S = \{(a_1, c_1), (a_2, c_2)\}.$ 

Другой пример был представлен на семинаре.

# 30. Обобщенная композиция соответствий. Свойства композиции соответствий. Композиция бинарных отношений.

Обобщенная композиция соответствий - это композиция соответствий  $R\subseteq A\times B$  и  $S\subseteq C\times D$ , где множества B и C не обязательно равны.

В этом случае ищем  $B\cap C$  и работаем также, как и с обычной композицией соответствий. Если  $B\cap C=\varnothing$ , то  $R\circ S=\varnothing$ .

Пусть также определено соответствие  $G\subseteq E imes F$ , тогда свойства композиции соответствий:

- $(R \circ S) \circ G = R \circ (S \circ G)$
- $R \circ \varnothing = \varnothing \circ R = \varnothing$
- $R \circ (S \cup G) = (R \circ S) \cup (R \circ G)$

**Опр(возможно). Композицией бинарных отношений**  $R\subseteq A^2$  и  $S\subseteq A^2$  называется такое отношение  $(R\circ S)\subseteq A^2$ , что:  $\forall a,c\in A:a(R\circ S)c\Leftrightarrow \exists b\in A:(aRb)\land (bSc).$