Value Chain Dynamics: Business and Supply Chain Strategy in a Fast-Clockspeed World

Professor Charles Fine
Massachusetts Institute of Technology
Sloan School of Management
Cambridge, Massachusetts 02142

September 2010

Supply Chains and Value Chains

Supply Chain Management

Order fulfillment

Reaction & Anticipation

- -Inventory
- -Quality, cost & service
- -Flexibility
- -Response times
- -Logistics
- -Distribution
- -Procurement
- -Forecasting
- -Transportation

"The Physics of Flow"

Value Chain Design System Design Static

- -Core competences
- -Make/Buy
- -Relationship Design
- -Strategic Intent

Dynamic

- -Fast Clockspeed
- -External Forces
- -Disintegration
- -Dependence
- -Capability development
- -Disintermediation

"The Biology of Evolution"

The Three Chains of Enterprise Design: Fulfillment, Development, & Capability Chains

Fulfillment Supply Chain

3-D Concurrent Engineering & the imperative of concurrency

Product (or Service)

Process (for production & delivery)

Value Chain (Partners/Suppliers)

Detailed Design

Specs Materials **Functions** Product/ **System** Architecture Modular/

Integral Life Cycles Unit

Processes

Technology Equipment

Production System

Objectives Systems

People Capacity Value Chain Architecture

Sourcing Selection Relationship

Logistics & Coord **System**

Information **Inventory** Integration

Development & Capab. Chains Supply Chain

Fulfillment

Architecture

Technology

Fulfillment

"Gear Model" to support Roadmapping of Value Chain Dynamics (VCD)

MANUFACTURING STRATEGY FORMULATION

- 1. DRAFT MISSION STATEMENT (ADVISED BY BENCHMARKS)
- 2. SET OPERATING OBJECTIVES
 - --QUALITY
 - --COST
 - --LEAD TIMES
 - --FLEXIBILITY
 - --CUSTOMER SATISFACTION
 - --INNOVATIVENESS

3. DEVELOP POLICIES & INVESTMENTS

VERTICAL INTEG.

<u>STRUCTURAL</u> <u>INFRASTRUCTURAL</u>

CAPACITY ACQUIS. HUMAN RESOURCES

FACILITIES QUALITY ASSUR.

EQUIPMENT/TECH. PDTN. PLAN/CONT.

PRODUCT DEVELOP.

PERF. MEAS/EVAL

CAPITAL ALLOC.

ORG. STRUCTURES.

Major Manufacturing Decision Categories

- 1. FACILITIES
 - size
 - location
 - focus
- 2. CAPACITY
 - amount
 - timing
 - type
- 3. VERTICAL INTEGRATION AND SUPPLIER MANAGEMENT
 - direction
 - extent
 - interfaces
 - collaboration
- 4. PRODUCTION TECHNOLOGIES AND PROCESSES
 - equipment
 - automation
 - interconnectedness
 - scale
 - flexibility
- 5. WORK FORCE AND MANAGEMENT
 - wage policies
 - security
 - skill levels

- 6. INFORMATION TECHNOLOGIES
 - use and level of investment
 - parity or differentiation
- 7. SUPPLY CHAIN AND MATERIALS
 - logistics facilities and methods
 - inventory policies
 - vendor relations
 - production planning
- 8. ORGANIZATION AND INCENTIVES
 - structure
 - reporting levels
 - degree of centralization
 - role of staff
 - control/reward systems
 - costing systems
- 9. BUSINESS PROCESSES
 - product generation
 - interfaces
 - responsibilities
 - vendor development
 - order fulfillment
 - service and support
 - quality management, flexibility, and other cross-cutting capabilities

SAMPLE MANUFACTURING STRATEGY TEXT

MANUFACTURING VISION

MANUFACTURE WORLD-CLASS QUALITY AUTO COMPONENTS IN THE PRESCRIBED VOLUMES, ON SCHEDULE, AT THE LOWEST COST

MANUFACTURING MISSION

ACHIEVE WORLD-CLASS STATUS (BY THE YEAR 20xx) IN QUALITY COST, TIME, AND FLEXIBILITY WITH PEOPLE WHO HAVE A SHARED VISION AND OBJECTIVES THAT ARE BASED ON A CULTURE OF CONTINUOUS PROCESS IMPROVEMENT

PERFORMANCE METRICS

- 1. QUALITY: PRODUCT& PROCESS
- 2. COST/PRODUCTIVITY
- 3. TIME
- 4. FLEXIBILITY

SAMPLE MANUFACTURING STRATEGY FRAMEWORK (CONTINUED)

PROCESSES

-TECHNOLOGY

-CAPABILITY

-CONTROL

-FLEXIBILITY

-STD. OPER. PROCS.

PEOPLE

-SKILLS, TRAINING, HIRING PRACTICES

-KNOWLEDGE, EXPERTISE, EMPOWERMENT

-PARTNERSHIP W/ ACCOUNTABILITY

-FLEXIBILITY

-ENVIRONMENT

VALUE CHAIN

INTERNAL

-PROCUREMENT/SUPPLY

-ENGINEERING

-MARKETING/SALES

-DESIGN OFFICE

-FINANCE

-LABOR RELATIONS

EXTERNAL

-WORLD-CLASS BENCHMARKS

-CUSTOMERS & DEALERS

-SUPPLIERS

-GOVERNMENT

-UNIVERSITIES

Value Chain Dynamics as an Operations Strategy Lens

"Gear Model" to support Roadmapping of Value Chain Dynamics (VCD)

The Strategic Impact of Value Chain Design: (Who let Intel Inside?)

1980: IBM designs a product, a process, & a value chain

The Outcome:

A phenomenally successful product design A disastrous value chain design (for IBM)

LESSONS FROM A FRUIT FLY: THE PERSONAL COMPUTER

- 1. BEWARE OF *INTEL INSIDE*. (Regardless of your industry)
- 2. TACTICAL MAKE/BUY:
 IT MAY BE A LITTLE BIT CHEAPER OR FASTER
 TO OUTSOURCE VERSUS INSOURCE.
- 3. STRATEGIC SOURCING:
 VALUE CHAIN DESIGN CAN DETERMINE
 THE FATE OF COMPANIES AND INDUSTRIES,
 AND OF PROFIT AND POWER.
- 4. THE LOCUS OF *VALUE CHAIN CONTROL* CAN SHIFT IN UNPREDICTABLE WAYS.

Vertical Industry Structure with *Integral* Product/System Architecture

Computer Industry Structure, 1975-85

Microprocessors

Operating Systems

Peripherals

Applications Software

Network Services

Assembled Hardware

IBM

II Products

DEC

All Products

BUNCH

\II Products

(A. Grove, Intel; and Farrell, Hunter & Saloner, Stanford)

Horizontal Industry Structure with *Modular* Product/System Architecture

Computer Industry Structure, 1985-95

Microprocessors

Operating Systems

Peripherals

Applications Software

Network Services

Assembled Hardware

(A. Grove, Intel; and Farrell, Hunter & Saloner, Stanford)

THE DYNAMICS OF PRODUCT ARCHITECTURE, STANDARDS, AND VALUE CHAIN STRUCTURE: "THE DOUBLE HELIX"

Examples: IBM, Autos, Embraer/Boeing, Nokia, Small Firms

Fine & Whitney, "Is the Make/Buy Decision Process a Core Competence?"

What Drives Clockspeeds?

technology/innovation push, customer pull, system complexity, and regulation

Consumer

Handset or PC Applications

Handset or PC Platforms

Communications
Equipment
and Networks

Semiconductor Components

Semiconductor
Manufacturing
Equipment

ALL COMPETITIVE ADVANTAGE IS TEMPORARY

Autos:

Ford in 1920, GM in 1955, Toyota in 2000

Computing:

IBM in 1970, **Wintel** in 1990, **Apple** in 2010

World Dominion:

Greece in 500 BC, **Rome** in 100AD, **G.B.** in 1800

Sports:

Red Sox in 2007, Celtics in 2008, Yankees in 2009

The faster the clockspeed, the shorter the reign

Value Chain Evolution in a Fast-Clockspeed World: Study the Industry Fruitflies

Evolution in the natural world:

FRUITFLIES

evolve faster than

MAMMALS

evolve faster than

REPTILES

THE KEY TOOL:

Cross-SPECIES
Benchmarking
of Dynamic Forces

Evolution in the industrial world:

INFOTAINMENT is faster than MICROCHIPS is faster than AUTOS evolve faster than AIRCRAFT evolve faster than

MINERAL EXTRACTION

THE KEY TOOL:

Cross-INDUSTRY
Benchmarking
of Dynamic Forces

"Gear Model" to support Roadmapping of Value Chain Dynamics (VCD)

Innovation along the Value Chain: How (& why) do Autos & Electronics Differ?

Innovation Dynamics can be

RADICAL (disruptive) or INCREMENTAL (sustaining)

Disruptive *Process* Innovation in Autos vs. Disruptive *Product* Innovation in Electronics

What makes an innovation disruptive?

Performance Push

an overwhelmingly superior technology/process (penicillin, mass production)

Customer Pull

new customers care about different measures of performance

(wireless phones, personal computers)

Organizational Competencies

incumbents cannot do what the innovators can (Dell supply chain, Southwest Air)

"Gear Model" to support Roadmapping of Value Chain Dynamics (VCD)

CUSTOMER PREFERENCE DYNAMICS:

P&G Value Proposition: Premium Products at Premium Prices

Controlling the Channel Through Closeness to Customers: consumer research, pricing, promotion, product development

What is the role of brand names vs. product features? Laundry Detergent; Mobile Phones; Motorcycles

CUSTOMER PREFERENCE DYNAMICS:

Walmart Value Proposition: Large Selection of Products at Very Low Prices

Controlling the Channel Through Closeness to Customers: Chain Proximity

Vertical Growth on the Double Helix

Brand vs. Brand vs. Channel vs Channel: Competing on fast-clockspeed retail

"Gear Model" to support Roadmapping of Value Chain Dynamics (VCD)

Cisco's End-to-End Integration for its Fulfillment Supply Chain

Cisco's Strategy for Technology Supply Chain Design (I.e., Capabilities)

- 1. Integrate, echnology around the router to be a communications network provider.
- 2. Leverage acquired technology with
 - sales muscle and reach
 - end-to-end IT
 - outsourced manufacturing
 - market growth
- 3. Leverage venture capital to supply R&D Basic Design Principle: Acquisition Relationship with Technology Chain Partners

Volatility Amplification in the Supply Chain: "The Bullwhip Effect"

Supply Chain Volatility Amplification: Machine Tools at the tip of the Bullwhip

% Chg. GDP % Chg. Vehicle Production Index • • % Chg. Net New Orders Machine Tool Industry

"We are experiencing a 100-year flood." J. Chambers, 4/16/01

Volatility in the Electronics & Semiconductors Supply Chain

LESSONS FROM A FRUIT FLY: CISCO SYSTEMS

- 1. KNOW YOUR LOCATION IN THE VALUE CHAIN
- 2. UNDERSTAND THE DYNAMICS
 OF VALUE CHAIN FLUCTUATIONS
- 3. THINK CAREFULLY ABOUT THE ROLE
 OF VERTICAL COLLABORATIVE RELATIONSHIPS
- 4. INFORMATION AND LOGISTICS SPEED DO NOT REPEAL BUSINESS CYCLES OR THE BULLWHIP.

Bonus Question:

How does clockspeed impact volatility?

INDUSTRY CLOCKSPEED IS A COMPOSITE: OF PRODUCT, PROCESS, AND ORGANIZATIONAL CLOCKSPEEDS

Mobile Phone INDUSTRY CLOCKSPEED

THE
Mobile Phone
product technology
THE
Mobile Phone
PRODUCTION
PROCESS

process technology

Mobile Phone
MANUFACTURING
COMPANY

organization

Mobile Phone System CLOCKSPEED is a mix of Transmission Standards, Software and Handsets

ISSUE: THE FIRMS THAT ARE FORCED TO RUN AT THE FASTEST CLOCKSPEED ARE THE MOST LIKELY TO STAY AHEAD OF THE GAME.

Automobile CLOCKSPEED IS A MIX OF ENGINE, BODY & ELECTRONICS

ISSUE: MOST AUTO FIRMS OPERATE AT **ENGINE OR BODY CLOCKSPEEDS**; IN THE FUTURE THEY WILL NEED TO RUN AT **ELECTRONICS CLOCKSPEED**.

"Gear Model" to support Roadmapping of Value Chain Dynamics (VCD)

Projects, Strategy, and Value Chains Clockspeed drives Business Strategy Cadence

CAPABILITIES enable & constrain PROJECTS;
PROJECTS build CAPABILITIES

CORE
CAPABILITIES

PROJECT
DESIGN
(New projects, new processes, new suppliers)

Leonard-Barton, Wellsprings of Knowledge

Projects Serve Three Masters: Capabilities, Customers, & Corporate Profit

VALUE CHAIN DESIGN: Three Components

- 1. Insourcing/OutSourcing (The Make/Buy or Vertical Integration Decision)
- 2. Partner Selection (Choice of suppliers and partners for the chain)
- 3. The Contractual Relationship (Arm's length, joint venture, long-term contract, strategic alliance, equity participation, etc.)

3-D Concurrent Engineering & the imperative of concurrency

Product (or Service) Process (for production & delivery)

Value Chain (Partners/Suppliers)

Detailed Design

Specs Materials Functions Product/ System Architecture

Modular/ Integral Life Cycles Unit Processes

Technology Equipment Production System

Objectives
Systems
People
Capacity

Value Chain Architecture

Sourcing Selection Relationship Information Inventory Integration

Logistics

& Coord

System

Development & Capab. Chains

Fulfillment Supply Chain

Fulfillment

Architecture

Technology

IMPLEMENTATION OF *PROJECT DESIGN:*FRAME IT AS 3-D CONCURRENT ENGINEERING

Do you have to think strategically about every project?

ARCHITECTURES IN 3-D INTEGRALITY VS. MODULARITY

Integral product architectures feature close coupling among the elements

- Elements perform many functions
- Elements are in close spacial proximity
- Elements are tightly synchronized
- Ex: jet engine, airplane wing, microprocessor

Modular product architectures feature separation among the elements

- Elements are interchangeable
- Elements are individually upgradeable
- Element interfaces are standardized
- System failures can be localized

Ex: stereo system, desktop PC, bicycle

VALUE CHAIN ARCHITECTURE

Integral value-chain architecture features close proximity among its elements

- Proximity metrics: Geographic, Organizational Cultural, Electronic
 - Example: Toyota city
 - Example: Ma Bell (AT&T in New Jersey)
 - Example: IBM mainframes & Hudson River Valley

Modular value-chain architecture features multiple, interchangeable supplier and standard interfaces

- Example: Garment industry
- Example: PC industry
- Example: General Motors' global sourcing
- Example: Telephones and telephone service

ALIGN ARCHITECTURES ACROSS SYSTEMS AND VALUE CHAINS

TPS Dynamics between Continuous Improvement & Respect for People (Stakeholders)

Motivated People Drive faster Improvement Respect **Continuous** For *Improvement* **People Profits get shared** to reward and incentivize alignment

The Evolution of Business Ecosystems Operations (or "quantity") Loop Ted Piepenbrock, MIT

Dell Supply Chain

Modular Product Architecture enables Modular Supply Chain

HP/Flextronics vs. Dell Supply Chain

Modular Product Architecture enables Modular Supply Chain

Demand-Supply Chain Management @ Dell

- Demand Management:
- Forecast = Buy = Sell
- Buy to Plan, but Build to Order
- Inventory Velocity is a wonderful thing ...
 - <u>Customers</u> have immediate access to the latest technology.
 - Suppliers get their products to market quickly
 - Quality is improved with fewer touches.
 - Cash is generated through negative cash cycle.
 - Model efficiencies drive <u>Market Share</u> gain.

Can "Dell Direct" Work for Autos?

- Appealing to OEM's on Many Dimensions
 - -Satisfy customer need for Speed
 - Reduce Supply Line Inventories
 - Reduce mismatches and discounting
 - Direct OEM-Customer Relationships (& Data!)
 - Information Transparency

BUT, A Car is not a Computer!!

- Personal Computer
- ~50 components
- 8-10 key parts
- 40 key suppliers
- 24 hour burn-in
- 100 design
- variations
- Modular
- Architecture

<u>Car</u>

- ~ 4000 components
- 100 key subsystems
- 300 key suppliers
- 12 month validation
- 1,000,000
- variations
- Integral
- Architecture

In/Outsourcing: Sowing the Seeds of Competence Development to develop dependence for knowledge or dependence for capacity

Technology Dynamics in the Aircraft Industry: LEARNING FROM THE DINOSAURS

SOURCEABLE ELEMENTS

Strategic Make/Buy Decisions: Assess Critical Knowledge & Product Architecture

TEM IS INTEGRAL ITEM IS MODULAR	DEPENDENT FOR KNOWLEDGE & CAPACITY	INDEPENDENT FOR KNOWLEDGE & DEPENDENT FOR CAPACITY	INDEPENDENT FOR KNOWLEDGE & CAPACITY
	A POTENTIAL OUTSOURCING TRAP	BEST OUTSOURCING OPPORTUNITY	OVERKILL IN VERTICAL INTEGRATION
	WORST OUTSOURCING SITUATION	CAN LIVE WITH OUTSOURCING	BEST INSOURCING SITUATION

Adapted from Fine & Whitney, "Is the Make/Buy Decision Process a Core Competence?"

Strategic Make/Buy Decisions: Also consider Clockspeed & Supply Base Capability

Adapted from C. Fine, Clockspeed, Chap. 9

Qualitative analysis of strategic importance uses five key criteria

Every decision requires qualitative and quantitative analysis to reach a conclusion

Model developed by GM Powertrain, PRTM, & Clockspeed, Inc.

Value Chain Mapping

Organizational Supply Chain

Chrysler

Eaton

casting supplier

clay supplier

Technology Supply Chain

engines

valve lifters

casting manufacturing process

clay chemistry

Capability Chain

Supply Chain Management

Quality assurance

NVH engineering

R&D

Underlying Assumption: You have to draw the maps before you can assess their dynamics.

VALUE CHAIN DESIGN IS THE ULTIMATE CORE COMPETENCY

Since all advantages are temporary, the only lasting competency is to continuously build and assemble capabilities chains.

KEY SUB-COMPETENCIES:

- 1. Forecasting the dynamic evolution of market power and market opportunities
- 2. Anticipating Windows of Opportunity
- 3. 3-D Concurrent Engineering: Product, Process, Value Chain

Fortune Favors the Prepared Firm

CAPABILITIES

PROJECTS

PROJECTS

CAPABILITIES

PROCESS FOR VALUE CHAIN DESIGN

- Benchmark the Fruit Flies
 Map your Value Chain

 Organizational Value Chain
 Technology Value Chain
 Competence Chain

 Dynamic Chain Analysis
- 4. Identify Windows of Opportunity
- 5. Exploit Competency Development Dynamics with 3-D Concurrent Engineering

at each node of each chain map

In-depth Exercise 2: Value Chain Analysis

Consider these five industries or an industry of your choice:

- -Food
- -Defense aircraft
- -Automobiles
- -Handheld electronic organizers/communicators
- -Music

At each table, pick ONE industry:

What are the key dependency relationships in the value chain?

What are the opportunities for outsourcing?

What are the windows of opportunity in the chain?

"Takeaways" from the day

- 1. Value Chains are dynamic
 - -industry structure dynamics
 - -technology & innovation dynamics
 - -customer and channel dynamics
- 2. Innovation happens along the value chain and in the value chain model itself.
- 3. All advantage is Temporary
- 4. Strategic Sourcing is a key leverage point for supply chain design.
- 5. Supply Chain organizations have multiple strategic roles to play.

All Conclusions are *Temporary*

Clockspeeds are increasing almost everywhere Value Chains are changing rapidly

BACKUP SLIDES

"Gear Model" to support Roadmapping of Value Chain Dynamics (VCD)

A long, long time a go in an industry far away . . .

Freight Railroads vs. Trucks
The Dynamics of Industry
Economics
and the Optimal Timing of
Deregulation

Regulation reins in "monopoly"

Share of Revenue

Shocks happen; Environment changes; Substitutes mayarise Regulation constrains response; deregulation timing is critical

If deregulation is SLOW, LATE, & PIECEMEAL; then Economic Dislocation; Incumbent Collapse

Histories: Dynamics of Regulation

	Regulation Reins in "Monopoly"	Shocks Happen	Environment Changes; Substitutes arise	Regulation Constrains response	Deregulation timing is Critical	Mistakes harm incumbents, consumers & taxpayers
RailRoads	Rockefellar & Morgan "Robber Barons"	Autos & Highways	Trucking arises	Prices, Exit, Innovation	1958 vs. 1980	Weak rail capabilities; Trucking dominant
Natural Gas	"Natural" Monopoly	Oil Embargo; Fall of Iran	Gas Demand Explodes	Low prices inhibit new supply	Long lag for new sources (1978 v 1989)	Shortages; price swings; LT consumer costs of take or pay contracts
Banking	Bank size limited to limit power	Inflation in the 1970's	Money Market Funds	Deposits Shrink; Riskier investments	1978 vs. 1989	S&L's died; \$160B+ Bailout
Telecom	AT&T "natural" monopoly	Internet & Moore's Law	Wireless Broadband VOIP	TELRIC pricing; entry & exit; access fees	Wireless, BB, & VOIP less constrained than ILECs	Wireless success; wireline TBD

Conceptual Model: *The Dynamics of Regulation and Deregulation Processes*

Collapse of the railroads

- number of Class I railroads dropped from 230 → 7 between 1907-1999
- railroad mileage declined from 254,000 → 99,000 between 1916-1999
- by the 1970s, every major Northeast railroad filed for bankruptcy
- By the 1970s, 21% of track-miles were operated by bankrupt railroads
- deferred maintenance and delayed capital expenditures amounted to billions of dollars
- rate of accidents due to track or structure defects quadrupled from 1966 to 1976
- BY 1976, 15% of track (50,000 miles) was operated at reduced speeds (as slow as 10 miles per hour)
- standing derailments (when a train falls over when not moving) became prevalent
- terminal facilities deteriorated

Deregulation improved performance

- Inflation-adjusted rail rates have plunged 60% from 1981-2001
- By 1999, railroads were generating 58% more ton miles than in 1979
- In the 1990s, railroads stopped the erosion of market share. From 1996 through 1998, the railroad's market share actually exceeded 40%

Image by MIT OpenCourseWare.

"Gear Model" to support Roadmapping of Value Chain Dynamics (VCD)

	Business cycles	Industry/ Organization Structure	Regulatory 1 Policy	Technology	Consumer Preferences	Corporate Strategy	Clockspeed
Business Cycles							
Industry/ Organizatio Structure	n						
Regulatory Policy							
Technology							
Consumer Preferences							
Corporate Strategy							
Clockspeed							

	Business cycles	Industry/ Organization Structure	Regulatory 1 Policy	Technology	Consumer Preferences	Corporate Strategy	Clockspeed
Business Cycles		Downturns trigger dis-integration		downturns stifle R&D investment		Downturn triggers outsourcing; Search for smoothness	
Industry/ Organizatio Structure	Integration nbuffers downturns	Integration/ Disintegration		regulation	Wrap services around commodities		integrality slows clockspeed
Regulatory Policy				slows incumbent innovation			deregulation speeds innovation
Technology		innovation Attacks incumbent & supports integration	innovation can obsolete regulations	Integration/ Disintegration	innovation slowdowns drive brand investment		technology innov drives clockspeed
Consumer Preferences							branding slows disintegration
Corporate Strategy		branding slows disintegrati	on				project frequency drives Capab. life
Clockspeed	faster innovation moderates downturns			customer power drives clockspeed		Capability life drives project frequency	J.

Mother Nature strikes The Cell Phone Supply Chain

8:00 pm, Friday 17 March 2000: Lightning Strikes an ASIC semiconductor plant of Philips in Albuquerque, New Mexico, USA 8:10 pm: Fire is extinguished. Plant will be down for months.

LESSON: RESPONSE SPEED

Mother Nature strikes The Cell Phone Supply Chain

NOKIA

Shipment discrepancies noticed within 3 days. Philips is pushed hard. New supply sources. New chip design. Global capacity grab.

Philips
Chip Factory

ERICSSON

Problem undiscovered for weeks.

Slow chain of command.

Slow response.

Capacity already taken.

\$400M revenue loss.

Exits phone manufacture.

Image by MIT OpenCourseWare.

LESSON: RESPONSE SPEED

RFID tags push the boundaries of the Edge

(Research Assistant: Natalie Klym)

- 1. DoD wartime needs will *prime the pump* for RFID technology and applications.
- 2. Walmart will add to this effect: box & pallet.
- 3. Pharmacies will do the same for item tagging.

RFID tag 5¢ 10B/yr

Mobile phone chip \$20 1B/yr

Microprocessor \$800 40M/yr

What *disruptions* will be driven by the explosion of the edge?

VALUE CHAIN MAPPING Exercise

For each business:

Key elements in the chain?
Who has power in the chain?
Who makes the profits
in the chain?
Sources of power & profits
(technology, brand, etc.)?
Key dynamic processes
influencing chain power?
Locus of innovations?
Clockspeed Drivers?

Energy

Automotive

Consumer Products

Telecoms

Financial Services

Construction

Health Care

Food

Chemicals

Moore's Law

Transistors per chip

Source: Joel Birnbaum, HP, Lecture at APS Centennial, Atlanta, 1999

Roadmap for Electronic Devices

Number of chip components

The Outsourcing Trap: A Novel of Four Families

- Navy Pilot: Crash, Investigation, SC education, "Columbo"
 - Visits, Toyota, Dell, Zara & aircraft supply chain
- Pilot's sister: MIT grad; laid off; discovers entrepreneurship
- Pilot's wife: Policy analyst for Senator;
- Pilot's son: outsources homework; outsource capacity, not knowledge
- Pilot's daughter: business student; Zara shopper
- Chinese Entrepreneur: (e.g., Morris Chang/Terry Gou)
 - "Benevolent Father:" Chinese coexistence; Henry Ford; HongSing
 Ultimately brokers cooperation
- Warrior Daughter: Chinese domination; aggressive growth
- Defense contractor: Three Generations
 - Grandfather (England), Father (USA), Grandson (affair w/Chinese daughter)
 - Makes avionics systems; lobbies senator; Outsource to HongSing
 - losing commercial business to Chinese
- U.S. Senator: Loses son in crash, orders investigation
 - Pork to military contractors; but cost pressures as well
 - How to keep good jobs in USA?
 - Campaign contributions from Americans & Chinese
 - "Caused" the death of his son
 - Ultimately works on collaboration with Chinese CEO & Gov't
- 3rd tier supplier: illegal outsourcing of circuit board
 - Tells senators: "you made me do this"

All Conclusions are *Temporary*

Clockspeeds are increasing almost everywhere Value Chains are changing rapidly

