Algebra liniowa 2R wersja beta

Tomasz Rzepecki

23 lutego 2024

Spis treści

1	Pod	stawowe pojęcia algebry liniowej	5	
	1.1	Ciała	5	
	1.2	Przestrzenie i podprzestrzenie liniowe	7	
	1.3	Kombinacje liniowe	11	
2	Bazy i wymiary			
	2.1	Liniowa niezależność, baza przestrzeni liniowej	14	
	2.2	Konstrukcja bazy	18	
	2.3	Lemat Steinitza	19	
		Wymiar a izomorfizmy liniowe	22	
3	Przekształcenia liniowe			
	3.1	Przekształcenia liniowe	25	
	3.2	Jądro i obraz odwzorowania liniowego	27	
	3.3	Twierdzenia o rzędzie i o indeksie	30	
4	Konstrukcje przestrzeni liniowych			
	4.1	Suma prosta	33	
	4.2	Przestrzeń dualna	34	
		Przestrzeń ilorazowa	37	
		Przestrzeń bidualna	40	
5	Macierze i układy równań			
	5.1	Macierze układów równań	42	
	5.2	Operacje wierszowe i kolumnowe a rząd macierzy	44	
	5.3		48	
	5.4	Macierze przekształceń liniowych	56	
	5.5	Odwracalność macierzy	60	

SPIS TREŚCI 3

6	Wyz	nacznik	63
	6.1	Permutacje i definicja wyznacznika	63
	6.2	Podstawowe własności wyznacznika	72
	6.3	Wzory Cramera	79
	6.4	Wyznacznik i wielomian charakterystyczny odwzorowania liniowego	82
		milowego	02
7	Rozkłady przestrzeni i ich endomorfizmów		
	7.1	Wewnętrzne sumy proste	85
	7.2	Liniowa niezależność podprzestrzeni	86
	7.3	Podprzestrzenie niezmiennicze	89
	7.4	Przestrzenie własne	92
	7.5	Diagonalizowalność	95
	7.6	Twierdzenie Jordana	97
	7.7	Kompleksyfikacja i rzeczywiste tw. Jordana	108
8	Formy dwuliniowe i kwadratowe		
	8.1	Formy dwuliniowe	120
	8.2	Iloczyny skalarne	124
	8.3	Ortogonalność	128
	8.4	Formy kwadratowe	137
9	Przestrzenie z iloczynem skalarnym		
	9.1	Przestrzenie euklidesowe	142
	9.2	Formy hermitowskie	146
	9.3	Przestrzenie unitarne	154
10	Rozl	dad spektralny i singularny	156
	10.1	Rozkład singularny i rozkład biegunowy	164
11	Izon	netrie i objętości	171
	11.1	Reprezentacje przekształceń ortogonalnych i unitarnych	171
	11.2	Izometrie	174
	11.3	Diagonalizacja form kwadratowych a hiperpowierzchnie kwadratowe	177
	11 4	Macierz Grama i objetość	170

4	4	SPIS TREŚCI

A	Przestrzenie nieskończenie wymiarowe A.1 Twierdzenie o wymiarze dla przestrzeni nieskończenie wy-		
	miarowych	•	
	A.2 Lemat Steinitza o wymianie	186	
В	Rzeczywiste twierdzenie Jordana	188	
C	Twierdzenie spektralne dla endomorfizmów n	ormalnych 189	
Indeks			
Indeks symboli i oznaczeń			

Rozdział 1

Podstawowe pojęcia algebry liniowej

1.1 Ciała

Definicja 1.1. *Ciałem* nazywamy zbiór K^1 wraz z działaniami +, · (formalnie: funkcjami $K \times K \to K$) oraz wyróżnionymi elementami 0 i 1 (formalnie: czwórkę $(K, +, \cdot, 0, 1)$), spełniającą warunki (*aksjomaty ciała*):

1. +, · są dwuargumentowymi działaniami, które są łączne i przemienne, a · jest rozdzielne względem +, tzn. dla każdych $x, y, z \in K$:

•
$$x + y = y + x$$
,

•
$$x \cdot (y \cdot z) = (x \cdot y) \cdot z$$
,

•
$$x \cdot y = y \cdot x$$
,

•
$$x \cdot (y+z) = x \cdot y + x \cdot z$$
.

•
$$x + (y + z) = (x + y) + z$$
,

- 2. 0 jest elementem neutralnym dodawania, a 1 jest elementem neutralnym mnożenia, tzn. dla każdego $x \in K$ zachodzi $x + 0 = x \cdot 1 = x$.
- 3. dla każdego elementu $x \in K$, istnieje element przeciwny -x względem +, tzn. taki że x + (-x) = 0,
- 4. dla każdego *niezerowego* elementu $x \in K$, istnieje element odwrotny $x^{-1} \in K$, tzn. taki że $x \cdot x^{-1} = 1$,

 $^{^{1}}$ Ciała oznaczamy najczęściej literami K, k, F, L. Na tym wykładzie będziemy używać głównie litery K.

5. $0 \neq 1$.

Uwaga 1.2. 0, 1 ∈ *K* są po prostu wyróżnionymi elementami zbioru *K*, nie muszą być liczbami. Innymi słowy, dla *K* jako zbioru może być tak, że $K \cap \mathbf{C} = \emptyset$.

Ćwiczenie 1.3. Oznaczenia -x, x^{-1} są sensowne, tzn. jednoznacznie określają elementy K.

Przykłady 1.4. (a) Q, R, C są ciałami,

- (b) **Z** nie jest ciałem, bo 2 nie ma elementu odwrotnego,
- (c) każdy podzbiór $\bf C$ (ogólniej: dowolnego ciała) zawierający 0 i 1, zamknięty na +, -, \cdot i $^{-1}$ (z wyjątkiem 0) jest ciałem,
- (d) zbiór $\{0,1,2,3,4\}$ z dodawaniem i mnożeniem modulo 5 jest ciałem, gdzie $1^{-1} = 1$, $2^{-1} = 3$, $3^{-1} = 2$, $4^{-1} = 4$.
- (e) ogólnie, jeżeli p jest liczbą pierwszą, to zbiór $\mathbf{F}_p = \{0, 1, 2, 3, \dots, p-1\}$ z dodawaniem i mnożeniem modulo p jest ciałem²,
- (f) zbiór $\{0, 1, 2, 3\}$ z dodawaniem i mnożeniem modulo 4 nie jest ciałem, bo 2 nie ma elementu odwrotnego: gdyby k było odwrotne do 2, to by znaczyło że $k \cdot 2 \cdot 2 = 1 \cdot 0 = 2$, ale $k \cdot 2 \cdot 2 = 4k \equiv 0 \pmod{4}$.
- (g) podobny argument pokazuje, że ciało nie może mieć dzielników zera, to znaczy takich elementów $a, b \neq 0$, że ab = 0.
- (h) Dla $d \in \mathbf{Q}$ definiujemy $\mathbf{Q}[\sqrt{d}] = \{a + b\sqrt{d} \mid a, b \in \mathbf{Q}\}^3$. Dla każdego d ten zbiór jest ciałem.
- (i) Jeżeli K jest ciałem, to zbiór K[X] wielomianów zmiennej X, ze współczynnikami z K, nigdy nie jest ciałem (X nie ma elementu odwrotnego), ale jest nim *ciało funkcji wymiernych* K(X), składające się z formalnych ilorazów $\frac{P(X)}{O(X)}$, gdzie $P,Q \in K[X]$ i $Q \neq 0$.⁴

 $^{^2}$ jeszcze bardziej ogólnie, choć to trudniej zobaczyć: dla każdej liczby postaci $p^k>1$, gdzie p jest pierwsza, istnieje (w zasadzie jedyne) ciało o p^k elementach (i nie ma innych skończonych ciał)

³dla d < 0 przyjmujemy $\sqrt{d} = i\sqrt{-d}$

⁴Więcej o ciałach: trochę może na konwersatorium, ale zasadniczo to końcówka wykładu z Algebry 1 R i przede wszystkim — dla chętnych — Algebra 2 R.

Lemat 1.5. *Jeżeli K jest ciałem, to dla każdego a* \in *K zachodzi* $0 \cdot a = 0$.

Dowód.

$$0 \cdot a = (0+0) \cdot a$$

$$0 \cdot a = 0 \cdot a + 0 \cdot a$$

$$0 \cdot a + -(0 \cdot a) = 0 \cdot a + 0 \cdot a + -(0 \cdot a)$$

$$0 = 0 \cdot a$$

1.2 Przestrzenie i podprzestrzenie liniowe

Definicja 1.6. Ustalmy ciało $K = (K, +_K, \cdot_K, 0_K, 1_K)$. Przestrzenią liniową (lub wektorową) nad K nazywamy zbiór V z wyróżnionym elementem $\vec{0} \in V$ (wektorem zerowym), oraz z działaniami $+_V: V \times V \to V$ oraz $\cdot_V: K \times V \to V$, spełniającymi warunki (aksjomaty przestrzeni liniowej):

- 1. $+_{V}$ jest przemienne, łączne, $\vec{0}$ jest jego elementem neutralnym, ma elementy przeciwne (aksjomaty grupy abelowej):
 - $v_1 +_V v_2 = v_2 +_V v_1$, $v +_V \vec{0} = v$,
- - $v_1 +_V (v_2 +_V v_3) = (v_1 +_V v_2) +_V$ $v +_V (-v) = 0$
- 2. · spełnia łączność mieszaną: dla $\alpha, \beta \in K$, $\nu \in V$ mamy $\alpha \cdot_{\nu} (\beta \cdot_{\nu} \nu) =$ $(\alpha \cdot_K \beta) \cdot_V \nu$ (uwaga na indeksy przy kropkach!);
- 3. · jest rozdzielne względem + (uwaga na indeksy przy plusach!):
 - $\alpha \cdot_{V} (v +_{V} w) = \alpha \cdot_{V} v +_{V} \alpha \cdot_{V} w$
 - $(\alpha +_{\nu} \beta) \cdot_{\nu} \nu = \alpha \cdot_{\nu} \nu +_{\nu} \beta \cdot_{\nu} \nu$;
- 4. mnożenie przez jedynkę to funkcja identycznościowa: $1 \cdot_{V} v = v$. (Bez tego moglibyśmy zdefiniować \cdot_{V} stale równe $\vec{0}$, a tego nie chcemy.)

(Uwaga: zwykle zamiast $\vec{0}$, $+_{V}$, \cdot_{V} piszemy po prostu 0, + i \cdot , a \cdot często nie piszemy w ogóle).)

Dla danej przestrzeni liniowej V nad K, elementy V nazywamy wektorami, a elementy K nazywamy skalarami.

Uwaga~1.7. Podobnie jak dla ciał, elementy przeciwne są jedyne. Tak naprawdę ich istnienie, podobnie jak istnienie $\vec{0}$, jest konsekwencją pozostałych aksjomatów.

Przykłady 1.8.

- (a) \mathbf{R}^2 , \mathbf{R}^3 , \mathbf{C}^2 , \mathbf{C}^3 są przestrzeniami liniowymi nad \mathbf{R} i \mathbf{C} odpowiednio.
- (b) Ogólnie, jeżeli K jest dowolnym ciałem, to K^n (z oczywistymi działaniami) jest przestrzenią liniową nad K.
- (c) Jeszcze bardziej ogólnie (?) jeżeli A jest dowolnym zbiorem, to zbiór K^A wszystkich funkcji $A \to K$ z działaniami zdefiniowanymi przez $(f_1 + f_2)(a) := f_1(a) + f_2(a)$, $(\alpha \cdot f)(a) := \alpha \cdot (f(a))$ jest przestrzenią liniową nad K.
- (d) Jeżeli K jest dowolnym ciałem, to zbiór K[X] wszystkich wielomianów zmiennej X, o współczynnikach z K, jest przestrzenią liniową nad K, podobnie jak zbiory $K_n[X]$ wielomianów stopnia co najwyżej n.5
- (e) Przestrzeń $C(\mathbf{R})$ wszystkich funkcji ciągłych $\mathbf{R} \to \mathbf{R}$ jest przestrzenią liniową nad \mathbf{R} .

Stwierdzenie 1.9. • $0 \cdot v = \vec{0}$.

• Dla każdego wektora w i skalaru $a \neq 0$ istnieje jedyny wektor v taki że av + w = 0.

Dowód. Część pierwsza jak dla ciał: $0 \cdot v = (0+0) \cdot v = 0 \cdot v + 0 \cdot v$, następnie odejmujemy stronami $0 \cdot v$.

Część druga: zauważmy że $(-a^{-1}) \cdot w$ działa: istotnie,

$$a \cdot ((-a^{-1}) \cdot w) + w = (a \cdot (-a)^{-1})w + w$$
$$= (-1) \cdot w + 1 \cdot w$$
$$= (-1+1) \cdot w$$
$$= 0 \cdot w$$
$$= 0.$$

⁵Nie mylić ze zbiorem wszystkich funkcji wielomianowych $K \to K$, np. są tylko cztery funkcje wielomianowe $\mathbf{F}_2 \to \mathbf{F}_2$ (wszystkie zadane wielomianami stopnia co najwyżej 1), ale $(\mathbf{F}_2)_n[X]$ ma 2^n elementów, zaś $\mathbf{F}_2[X]$ jest nieskończony.

Dowód jedyności jest podobny jak dowód jedyności elementu przeciwnego dla ciał.

Zauważmy że mamy w szczególności $(-1) \cdot w = -w$, czego przyjemną konsekwencją jest to, że -(v+w) = -v + -w (ale to wynika też z przemienności $+_V$).

Lemat 1.10. Załóżmy że V jest przestrzenią liniową nad K, a $W \subseteq V$ jest podzbiorem, takim że:

- 1. $W \neq \emptyset$ (w praktyce sprawdzamy zwykle $\dot{z}e \ \vec{0} \in W$),
- 2. dla każdego $a \in K$ i $w \in W$ mamy $a \cdot_V w \in W$,
- 3. dla każdych $w_1, w_2 \in W$ mamy $w_1 +_V w_2 \in W$.

Wtedy W z tym samym $\vec{0}$ i z obcięciami $+_{V}$, \cdot_{V} jest przestrzenią liniową.

- *Dowód.* Z założeń wynika, że obcięcia $+_V$, \cdot_V faktycznie są takimi działaniami, jak w definicji przestrzeni liniowej (to znaczy: przyjmują wartości w W)
 - Przemienność, łączność, łączność mieszana i rozdzielność są oczywiste.
 - Pozostaje sprawdzić że $\vec{0} \in W$ i że W jest zamknięte na branie elementów przeciwnych.
 - Skoro W jest niepuste, to ma pewien element $w \in W$. Ponieważ pokazaliśmy, że $0 \cdot w = \vec{0}$, wynika z tego (i z drugiego założenia), że $\vec{0} \in W$.
 - Podobnie, jeżeli $w \in W$ jest dowolny, to $-w = (-1) \cdot w \in W$ (też z drugiego założenia).

Definicja 1.11. Podzbiór $W \subseteq V$ spełniający warunki Lematu powyżej nazywamy *podprzestrzenią (liniową)* V, oznaczamy $W \leq V$ (lub czasami W < V).

- **Przykłady 1.12.** (a) proste przechodzące prez 0 w K^2 są podprzestrzeniami (rysunek: proste w $\mathbf{F}_2^2, \mathbf{F}_3^2$),
 - (b) naturalnie włożone K^n w K^m (przez dopisanie (m-n) zer na końcu), n < m, jest podprzestrzenią

- (c) zbiór funkcji różniczkowalnych jest podprzestrzenią w $C(\mathbf{R})$ (przestrzeni funkcji ciągłych $\mathbf{R} \to \mathbf{R}$),
- (d) zbiór funkcji ciągłych jest podprzestrzenią R^R,
- (e) zbiór funkcji takich że $\lim_{x\to x_0} f(x) = 0$ (gdzie x_0 jest ustalony) jest podprzestrzenią $\mathbb{R}^{\mathbb{R}}$,
- (f) przekrój powyższych jest podprzestrzenią $C(\mathbf{R})$ (złożoną z tych funkcji ciągłych, dla których $f(x_0) = 0$),
- (g) zbiór wszystkich ciągów o wyrazach rzeczywistych spełniających rekurencję $a_{n+2} = a_n + a_{n+1}$ jest podprzestrzenią $\mathbb{R}^{\mathbb{N}}$.

Lemat 1.13. *Jeżeli* $W_1, W_2 \leq V$, to:

- $W_1 \cap W_2 \leq V$,
- $W_1 + W_2 = \{ w_1 + w_2 \mid w_1 \in W_1, w_2 \in W_2 \} \le V$ (suma kompleksowa)

Dowód. Pierwszy punkt — ćwiczenie.

Dowód drugiego punktu.

- Ponieważ W_1,W_2 są niepuste, to istnieje pewien $w_1\in W_1$, $w_2\in W_2$ i wtedy $w_1+w_2\in W_1+W_2$, więc $W_1+W_2\neq\emptyset$.
- Dla dowolnych $a \in K, w_1 \in W_1, w_2 \in W_2$ mamy z założenia $aw_1 \in W_1, aw_2 \in W_2$, więc z definicji $W_1 + W_2 \ni (aw_1 + aw_2)$ i z rozdzielności $aw_1 + aw_2 = a(w_1 + w_2)$, więc drugi aksjomat jest spełniony.
- Dla dowolnych $w_1, w_1' \in W_1, w_2, w_2' \in W_2$, mamy z założenia $w_1 + w_1' \in W_1, w_2 + w_2' \in W_2$, więc z definicji $W_1 + W_2$ i z przemienności i łączności $+_V$ mamy $W_1 + W_2 \ni ((w_1 + w_1') + (w_2 + w_2')) = w_1 + w_1' + w_2 + w_2' = (w_1 + w_2) + (w_1' + w_2')$, co kończy dowód.

Stwierdzenie 1.14. *Jeżeli* $W_1, W_2 \subseteq V$, to:

- jeżeli $W_2 \le V$ i $W_1 \le W_2$, to $W_1 \le V$, (uwaga: bez założenia $W_2 \le V$ to drugie \le nie ma sensu);
- $je\dot{z}eli\ W_1, W_2 \leq V\ i\ W_1 \subseteq W_2$, to $W_1 \leq W_2$.

Dowód. Ćwiczenie. □

11

1.3 Kombinacje liniowe

Definicja 1.15. Niech V będzie przestrzenią liniową, a $A \subseteq V$ — dowolnym podzbiorem.

Otoczką liniową (lub liniowym domknięciem) A w V nazywamy najmniejszą podprzestrzeń V zawierającą A, i oznaczamy ją Lin(A) (lub inaczej, np. Span(A)).

Stwierdzenie 1.16. Lin(A) to dokładnie zbiór (wszystkich) wektorów postaci $\sum_{k=1}^{n} \alpha_k v_k$, gdzie $\alpha_k \in K$, a $v_k \in A$, lub równoważnie, wektorów postaci $\sum_{a \in A} \alpha_a a$, gdzie prawie wszystkie α_a są zerowe (to znaczy: wszystkie z wyjątkiem skończenie wielu; formalnie element który taka suma opisuje to suma wszystkich wyrazów, przy których współczynniki są niezerowe).

Dowód. Jest jasne, że Lin(A) zawiera wszystkie wektory podanej postaci.

Z drugiej strony
$$\sum_{k=1}^{n} \alpha_k v_k + \sum_{k=1}^{m} \beta_k w_k = \sum_{k=1}^{n+m} \gamma_k u_k$$
, gdzie $\gamma_k = \begin{cases} \alpha_k & k \le n \\ \beta_{k-n} & k > n \end{cases}$ i $u_k = \begin{cases} v_k & k \le n \\ w_{k-n} & k > n \end{cases}$, a także $\alpha \cdot \sum_{k=1}^{n} \alpha_k v_k = \sum_{k=1}^{n} (\alpha \alpha_k) v_k$. \square

dokładniejszy dowód. Oznaczmy przez W zbiór wszystkich sum postaci $\sum_{k=1}^{n} \alpha_k v_k$, gdzie $v_k \in A$. Chcemy pokazać, że W = Lin(A).

Jest jasne, że $A \subseteq W$, łatwo też zauważyć, że W zawiera się w każdej podprzestrzeni V zawierającej A (bo każdy element jest sumą skalarnych wielokrotności elementów A). Wystarczy zatem pokazać, że W jest podprzestrzenią V.

Zauważmy że

$$\sum_{k=1}^{n} \alpha_k v_k + \sum_{k=1}^{m} \beta_k w_k = \sum_{k=1}^{n+m} \gamma_k u_k,$$

$$\text{gdzie } \gamma_k = \begin{cases} \alpha_k & k \leq n \\ \beta_{k-n} & k > n \end{cases} \text{i } u_k = \begin{cases} v_k & k \leq n \\ w_{k-n} & k > n \end{cases}, \text{a także}$$

$$\alpha \cdot \sum_{k=1}^{n} \alpha_k v_k = \sum_{k=1}^{n} (\alpha \alpha_k) v_k.$$

Ponadto W jest niepusty (bo należy do niego $\vec{0}$, jako pusta suma). Stąd W jest podprzestrzenią W, co kończy dowód.

Inaczej: niech W będzie zbiorem wektorów postaci $\sum_{a \in A} \alpha_a a$ (gdzie tylko skończenie wiele $\alpha_a \neq 0$).

Chcemy pokazać, że W=Lin(A). Istotnie, W oczywiście zawiera A, jest zamknięty na mnożenie przez skalary: $\beta \cdot \sum_{a \in A} \alpha_a a = \sum_{a \in A} (\beta \alpha_a) a$ wciąż ma prawie wszystkie współczynniki 0, podobnie jako $\sum_{a \in A} \alpha_a a + \sum_{a \in A} \beta_a a = \sum_{a \in A} (\alpha_a + \beta_a) a$. (Uwaga: ponieważ te sumy tak naprawdę są skończone — mają tylko skończenie wiele niezerowych wyrazów — możemy zmieniać kolejność sumowania i korzystać z praw rozdzielności tak jak to tutaj robimy!).

W jest więc podprzestrzenią V zawierającą A, a ponadto W zawiera się w każdej podprzestrzeni zawierającej A, bo każdy element jest sumą skalarnych wielokrotności elementów A, więc z definicji W = Lin(A).

Wniosek 1.17.
$$Lin(A) = \bigcap \{ W \leq V \mid A \subseteq W \}$$

Dowód. Z definicji Lin(A) ⊆ W dla każdego $W \in \{W \le V \mid A \subseteq W\}$, więc Lin(A) ⊆ $\bigcap \{W \le V \mid A \subseteq W\}$. Z drugiej strony Lin(A) ∈ $\{W \le V \mid A \subseteq W\}$, więc Lin(A) ⊇ $\bigcap \{W \le V \mid A \subseteq W\}$.

Definicja 1.18. Kombinacja liniowa wektorów v_1, \ldots, v_n to element $\text{Lin}(v_1, \ldots v_n)$ (czyli wektor postaci $\sum_{k=1}^n \alpha_k v_k$).

Przykłady 1.19. (a) $Lin(\emptyset) = {\vec{0}}.$

(b) $\operatorname{Lin}(v) = \{ \alpha v \mid \alpha \in K \}.$

(c)
$$\operatorname{Lin}\left(\left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2 \mid xy = 1 \right\} \right) = \mathbb{R}^2$$

(d)
$$\operatorname{Lin}\left(\left\{\begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbf{R}^3 \mid x+y+z=1 \right\}\right) = \mathbf{R}^3$$

Uwaga 1.20. • $A \subseteq B$ implikuje $Lin(A) \subseteq Lin(B)$,

- Lin(Lin(A)) = Lin(A),
- $b \in \text{Lin}(A)$ wtedy i tylko wtedy gdy $\text{Lin}(A) = \text{Lin}(A \cup \{b\})$.

Dowód. Pierwszy punkt: Lin(B) jest podprzestrzenią V zawierającą B, a więc zawierającą A. Zawiera zatem z definicji najmniejszą podprzestrzeń V zawierającą A.

Drugi punkt: Lin(A) jest podprzestrzenią V, więc najmniejsza podprzestrzeń zawierająca go to ona sama.

Trzeci punkt: jeżeli $b \in \text{Lin}(A)$, to $\text{Lin}(A \cup \{b\}) \subseteq \text{Lin}(\text{Lin}(A)) = \text{Lin}(A)$ (z pierwszego i drugiego punktu), i oczywiście $\text{Lin}(A) \subseteq \text{Lin}(A \cup \{b\})$, więc $\text{Lin}(A) = \text{Lin}(A \cup \{b\})$.

W drugą stronę, jeżeli $\text{Lin}(A) = \text{Lin}(A \cup \{b\})$, to (ponieważ z definicji $b \in \text{Lin}(A \cup \{b\})$), natychmiast $b \in \text{Lin}(A)$.

Rozdział 2

Bazy i wymiary

2.1 Liniowa niezależność, baza przestrzeni liniowej

Definicja 2.1. Układ wektorów v_1, \ldots, v_n nazywamy *liniowo niezależnym* (w skrócie lnz), jeżeli $\sum_{k=1}^{n} \alpha_k v_k = 0$ zachodzi tylko gdy $\alpha_1 = \ldots = \alpha_n = 0$. W przeciwnym wypadku nazywamy go *liniowo zależnym* (w skrócie lz).

Mówimy że zbiór A wektorów jest liniowo niezależny, jeżeli każdy skończony układ różnych wektorów z A jest lnz, lub równoważnie, jeżeli dla każdego $a \in A$ zachodzi $Lin(A) \neq Lin(A \setminus \{a\})$ (żaden element A nie jest kombinacją liniowa pozostałych). W przeciwnym wypadu mówimy że jest liniowo zależny

Uwaga 2.2. Jeżeli ν jest niezerowym wektorem, to zbiór $\{\nu, \nu, \nu\} = \{\nu\}$ jest liniowo niezależny, ale ciąg ν, ν, ν jest liniowo zależny!

Ogólnie v_1, \ldots, v_n jest liniowo niezależny jeżeli v_k są parami różne i zbiór $\{v_1, \ldots, v_n\}$ jest liniowo niezależny.

Ćwiczenie 2.3. Jeżeli $v \in \text{Lin}(A) \setminus A$, to $A \cup \{v\}$ jest liniowo zależny.

Uwaga 2.4. Jeżeli zbiór *A* jest liniowo niezależny, to każdy jego podzbiór również liniowo niezależny. Podobnie dla układów wektorów.

Twierdzenie 2.5. *Niech* $B \subseteq V$. *Następujące warunki są równoważne:*

- 1. B jest lnz i Lin(B) = V,
- 2. a. B jest lnz i dla każdego $v \in V \setminus B$ zbiór $B \cup \{v\}$ jest lz,

- b. B jest maksymalnym zbiorem liniowo niezależnym,
- 3. każdy element V zapisuje się jednoznacznie jako kombinacja liniowa elementów B.

Dowód. (1)⇒(2a): wiemy że B jest liniowo niezależny. Weźmy dowolny $v \notin$ B. Wtedy też (z założenia) $\nu \in \text{Lin}(B)$, więc z z Ćwiczenia 2.3 dostajemy tezę.

 $(2a) \Rightarrow (2b)$ wynika natychmiast z Uwagi 2.4.

(2b)⇒(3): ustalmy dowolny element $v \in V$.

Pokażemy najpierw, że v zapisuje się jako kombinacja liniowa elementów B. Istotnie, jeżeli $v \in B$, to jest to oczywiście prawda. Jeżeli $v \notin B$, to z założenia zbiór $B \cup \{v\}$ jest liniowo zależny, mamy więc kombinację liniowa actorica zarozania postania p

$$v-v=0=\sum_{b}(\alpha_{b}-\beta_{b})b,$$

więc (z liniowej niezależności) wszystkie $\alpha_b - \beta_b$ są zerowe, a więc $\alpha_b = \beta_b$. (3)⇒(1): "zapisuje się" w oczywisty sposób implikuje Lin(B) = V; jeżeli $\sum_{b} \alpha_{b} b = 0$, to z jednoznaczności zapisu $\vec{0}$ jako kombinacji liniowej elementów B wynika, że $\alpha_b = 0$, czyli B jest lnz.

Definicja 2.6. Baza przestrzeni liniowej V to taki $B \subseteq V$ który spełnia warunki z powyższego twierdzenia.

Przykłady 2.7. (a) Bazą K^n jest $\{e_1, \ldots, e_n\}$.

(b) Jeżeli A jest skończony, to bazą K^A jest zbiór funkcji postaci $\delta_a(x) =$ $\begin{cases} 1 & x = a \\ 0 & x \neq a \end{cases}.$

Uzasadnienie:

• liniowa niezależność: $\sum_a \alpha_a \delta_a(b) = \alpha_b$, więc jeżeli $\sum_a \alpha_a \delta_a = \vec{0}$ (czyli jest funkcją stale równą 0), to wszystkie α_a są zerowe,

- dla dowolnej $f \in K^A$ mamy $f = \sum_{a \in A} f(a) \delta_a$, bo $\sum_a f(a) \delta_a(b) = f(b)$.
- (c) Jeżeli *A* jest nieskończony, to taki zbiór nie jest bazą, bo np. funkcja stale równa 1 nie jest w jego liniowym domknięciu.
 - Żeby to zobaczyć, zauważmy że dla dowolnego $f = \sum_{k=1}^{n} \alpha_k \delta_{a_k}$ możemy wziąć $b \neq a_1, \dots, a_k$ i wtedy wszystkie $\delta_{a_k}(b) = 0$, czyli f(k) = 0, a więc f nie jest stale równa 1.
- (d) W przestrzeni K[X] (wielomianów zmiennej X o współczynnikach z K) jednomiany X^n tworzą bazę.

Przypomnienie z WDM:

Twierdzenie 2.8 (Lemat Kuratowskiego-Zorna). *Jeżeli* (P, \leq) *jest zbiorem częściowo uporządkowanym, który:*

- jest niepusty,
- ma ograniczenie górne każdego łańcucha, tzn. dla każdego łańcucha
 L ⊆ P istnieje l̄ ∈ P takie że l̄ ≥ l dla każdego l ∈ L.

Wtedy P ma element maksymalny.

Dowód. Wstęp do matematyki.

Twierdzenie 2.9 (Twierdzenie o istnieniu bazy). *Każda przestrzeń liniowa ma bazę*. ¹

Dowód. Ustalmy dowolną przestrzeń liniową V nad ciałem K. Rozważmy zbiór częściowo uporządkowany (P,⊆), którego elementami są liniowo niezależne podzbiory V. Zauważmy że spełnia on założenia lematu Kuratowskiego-Zorna:

• jest niepusty, bo $\emptyset \in P$,

¹Blass pokazał w 1984, że to twierdzenie (dla przestrzeni nieskończenie wymiarowych) jest równoważne (w ZF) pewnikowi wyboru. Niestety dowód wymaga znajomości algebry abstrakcyjnej wykraczającej za daleko poza zakres kursu z algebry liniowej, żeby umieścić go w tym skrypcie.

każdy łańcuch w P ma ograniczenie górne: jeżeli L ⊆ P jest łańcuchem, to l* = ∪L (zbiór takich v ∈ V, które należą do pewnego l ∈ L) jest jego ograniczeniem górnym; żeby sprawdzić liniową niezależność wystarczy zauważyć, że jeżeli v₁,...,vn ∈ ∪L, to należą one też do pewnego l ∈ L.

Dokładniej:

- chcemy pokazać, że l* jest lnz; w tym celu wystarczy pokazać, że każda n-ka różnych elementów l* jest lnz;
- ustalmy dowolną taką n-kę $v_1, \ldots, v_n \in l^*$ (parami różnych elementów);
- ponieważ $l^* = \bigcup L$, to dla każdego v_k możemy wybrać pewne $l_k \in L$ takie ze $v_k \in l_k$;
- ponieważ L jest łańcuchem, pewien z l_k , powiedzmy l_m , jest największy z nich, czyli $l_m \supseteq l_1, \ldots, l_n$,
- ponieważ $v_k \in l_k \subseteq l_m$, mamy $v_1, \dots, v_n \in l_m$;
- z tego i z liniowej niezależności l_m (a także z tego że v_1, \ldots, v_n są parami różne) wynika, że v_1, \ldots, v_n są liniowo niezależne.

Zatem z LKZ wynika, że istnieje maksymalny zbiór liniowo niezależny B, czyli baza V.

Twierdzenie 2.10. Niech V będzie przestrzenią liniową, a $N \subseteq G \subseteq V$ będą takie że:

- N jest liniowo niezależny,
- Lin(G) = V.

Wtedy istnieje baza B taka że $N \subseteq B \subseteq G$.

Dowód. Podobny jak powyżej: rozważamy częściowy porządek (P, ⊆), gdzie $P = \{A \subseteq G \mid N \subseteq A, A \text{ jest liniowo niezależny}\}.$

Pspełnia założenia Lematu Kuratowskiego-Zorna: niepustość wynika z tego, że $N \in P.$

Niech B będzie maksymalnym elementem P. Wtedy oczywiście $N \subseteq B \subseteq G$ i N jest liniowo niezależny. Zostaje pokazać, że Lin(B) = V.

Pokażemy najpierw, że $G \subseteq \text{Lin}(B)$. Weźmy dowolny $v \in G$. Jeżeli $v \notin B$, to z maksymalności B, Lin $(B \cup \{v\})$ jest liniowo zależny, a więc $\alpha v + \sum_{b \in B} \alpha_b b = 0$

dla pewnych α, α_b nie wszystkich równych 0. Argumentując jak wcześniej wnioskujemy, że $\alpha \neq 0$, czyli $\alpha \nu = -\sum_{b \in B} \alpha_b b$, czyli $\nu = \sum (-\alpha \alpha_b) b$, a więc $\nu \in \text{Lin}(B)$.

Mamy zatem $G \subseteq \text{Lin}(B)$. Kończymy stosując Uwagę 1.20: skoro $G \subseteq \text{Lin}(B)$, to $\text{Lin} G \subseteq \text{Lin} \text{Lin} B = \text{Lin} B$, ale z założenia Lin G = V. Z drugiej strony oczywiście $\text{Lin} B \subseteq V$, co kończy dowód.

Wniosek 2.11. Niech V będzie przestrzenią liniową.

- Jeżeli $N \subseteq V$ jest liniowo niezależny, to N można rozszerzyć do bazy V. (Zastosuj poprzednie twierdzenie dla G = V.)
- Jeżeli $G \subseteq V$ rozpina V (tzn. V = Lin(G)), to G zawiera pewną bazę V. (Zastosuj poprzednie twierdzenie dla $N = \emptyset$.)

2.2 Konstrukcja bazy

Ćwiczenie 2.12. Jeżeli układ v_1, \ldots, v_k są lnz i v_{k+1} nie jest ich kombinacją liniową, to układ $v_1, \ldots, v_k, v_{k+1}$ też jest lnz.

Poniższe stwierdzenie pozwala nam praktycznie uzyskać bazę ze skończonego zbioru rozpinającego przestrzeń liniową.

Stwierdzenie 2.13. Załóżmy że $V = \text{Lin}(v_1, ..., v_n)$. definiujmy rekurencyjnie ciąg podzbiorów V:

- $B_0 = \emptyset$,
- $B_{k+1} = \begin{cases} B_k \cup \{v_{k+1}\} & v_{k+1} \notin \text{Lin}(B_k) \\ B_k & w \text{ przeciwnym wypadku} \end{cases}$

Wtedy B_n jest bazą V. (Uwaga: $Lin(\emptyset) = \{0\}$.)

Dowód. Najpierw przez łatwą indukcję pokazujemy że $v_k \in Lin(B_k) \subseteq Lin(B_n)$ (bo $B_k \subseteq B_n$.) Stąd $Lin(B_n) \supseteq Lin(v_1, \dots, v_n) = V$. Odwrotna inkluzja jest oczywista, bo $B_n \subseteq \{v_1, \dots, v_n\}$, pozostaje więc pokazać, że B_n jest liniowo niezależny.

Dowód tego też jest indukcyjny. B_0 oczywiście jest liniowo niezależny. Załóżmy teraz, że B_k jest liniowo niezależny. Jeżeli $B_{k+1} = B_k$, to oczywiście też jest liniowo niezależny. W przeciwnym wypadku $v_{k+1} \notin \text{Lin}(B_k)$, więc z ćwiczenia łatwo wynika, że B_{k+1} jest lnz.

Uwaga 2.14. Ze Stwierdzenia i jego dowodu wynika, że w sformułowaniu Stwierdzenia warunek " $v_{k+1} \notin \text{Lin}(B_k)$ " można zastąpić warunkiem " $\text{Lin}(B_k \cup v_{k+1})$ jest lnz" lub warunkiem " $v_{k+1} \notin \text{Lin}(v_1, \dots, v_k)$ ".

Uwaga 2.15. Stwierdzenie powyżej prowadzi do bardziej konstruktywnego dowodu twierdzenia o istnieniu bazy dla przestrzeni rozpinanej przez skończony układ wektorów (bez wykorzystania lematu Kuratowskiego-Zorna).

Przykład 2.16. Wybieramy bazę w $V = \text{Lin}(X^2, (1+X)^2, 2+4X, X^3, X^3+X) \le \mathbf{R}[X]$

- $B_0 = \emptyset$,
- $B_1 = \{X^2\}$, bo $X^2 \neq 0$,
- $B_2 = \{X^2, (1+X)^2\}$, bo $(1+X)^2$ nie jest wielokrotnością X^2 ,
- $B_3 = B_2$, bo $2 + 4X = 2(1 + X)^2 2X^2$,
- $B_4 = \{X^2, (1+X)^2, X^3\}$, bo kombinacje liniowe X^2 i $(1+X)^2$ mają stopień co najwyżej 2,
- $B_5 = \{X^2, (1+X)^2, X^3, X^3 + X\}$, bo współczynniki przy X i 1 w $aX^2 + b(1+X)^2 + cX^3$ są równe 2b i b (odpowiednio), a w $X^3 + X$ to 1 i 0, a $1 \neq 2 \cdot 0$.

2.3 Lemat Steinitza

Twierdzenie 2.17 (Lemat Steinitza o wymianie). 2 *Załóżmy że B jest bazą* V, a a_1, \ldots, a_n jest liniowo niezależnym ciągiem wektorów. Wtedy:

- B ma co najmniej n elementów,
- możemy wybrać parami różne elementy $c_1, \ldots, c_n \in B$ takie że $(B \setminus \{c_1, \ldots c_n\}) \cup \{a_1, \ldots, a_n\}$ wciąż jest bazą V.

²Prawdziwy jest również wariant lematu Steinitza dla nieskończonych zbiorów, patrz Twierdzenie A.4, ale dowód wymaga nieco silniejszych narzędzi

Wniosek 2.18 (twierdzenie o wymiarze). *Każde dwie bazy ustalonej przestrzeni liniowej mają tyle samo elementów.*

Dowód. Dowód dla przypadku gdy bazy są skończone.³

Jeżeli B_1, B_2 są bazami V, to B_2 jest liniowo niezależny, więc z lematu Steinitza zastosowanego dla $B=B_1$ mamy $|B_1|\geq |B_2|$. Podobnie $|B_2|\geq |B_1|$, czyli $|B_1|=|B_2|$.

Definicja 2.19. *Wymiar* przestrzeni liniowej V nad K, oznaczany $\dim_K V$ (lub $\dim V$, kiedy K wynika z kontekstu) to moc jej bazy.

Przykłady 2.20. (a) W Przykładzie 2.16: pokazaliśmy, że $V = \text{Lin}(X^2, (1 + X)^2, 2 + 4X, X^3, X^3 + X) \le \mathbf{R}[X]$ ma bazę $B_5 = \{X^2, (1 + X)^2, X^3, X^3 + X\}$, więc dim V = 4.

- (b) K^n jest wymiaru n nad K.
- (c) \mathbf{C}^n jest wymiaru 2n nad \mathbf{R} .
- (d) K[X] jest nieskończonego (ale przeliczalnego) wymiaru nad K.
- (e) C i R sa nieprzeliczalnego wymiaru (continuum) nad Q.

Stwierdzenie 2.21. *Jeżeli B jest bazą V,* $a = \sum_{b \in B} \alpha_b b$ i $c \in B$ *jest taki że* α_c *jest niezerowy, to* $(B \setminus \{c\}) \cup \{a\}$ *jest bazą V.*

Dowód. Z założenia łatwo wynika, że $c = \alpha_c^{-1} a - \sum_{b \in B \setminus \{c\}} \alpha_c^{-1} \alpha_b b$, więc $c \in \text{Lin}((B \setminus \{c\}) \cup \{a\})$. To pokazuje, że $B \subseteq \text{Lin}((B \setminus \{c\}) \cup \{a\})$, więc $\text{Lin}((B \setminus \{c\}) \cup \{a\}) = V$.

Pozostaje pokazać, że $(B \setminus \{c\}) \cup \{a\}$ jest liniowo niezależny. Załóżmy więc, że $\beta_a a + \sum_{b \in B \setminus \{c\}} \beta_b b = 0$. Podstawiając $a = \sum_{b \in B} \alpha_b b$ i zmieniając kolejność

³Twierdzenie to ma też inny dowód, korzystający z tzw. twierdzenia Halla o kojarzeniu małżeństw. Ten drugi dowód działa również w przypadku nieskończonych baz; patrz Wniosek A.2.

21

sumowania dostajemy

$$0 = \beta_a a + \sum_{b \in B \setminus \{c\}} \beta_b b$$

$$= \beta_a \sum_{b \in B} \alpha_b b + \sum_{b \in B \setminus \{c\}} \beta_b b$$

$$= \beta_a \alpha_c c + \sum_{b \in B \setminus \{c\}} (\beta_a \alpha_b + \beta_b) b$$

(Uwaga: możemy tu zmieniać kolejność sumowania, bo te sumy są tak naprawdę skończone, nawet jeżeli *B* nie jest!)

W tej ostatniej sumie mamy już kombinację liniową elementów B, więc współczynnik $\beta_a \alpha_c = 0$. Ponieważ założyliśmy, że $\alpha_c \neq 0$, to musi być $\beta_a = 0$ $\alpha_c^{-1} = 0$, a stąd

$$0 = \beta_a \alpha_c c + \sum_{b \in B \setminus \{c\}} (\beta_a \alpha_b + \beta_b) b$$
$$= 0 \alpha_c c + \sum_{b \in B \setminus \{c\}} (0 \alpha_b + \beta_b) b$$
$$= 0 c + \sum_{b \in B \setminus \{c\}} \beta_b b$$

a to wprost z liniowej niezależności B implikuje, że wszystkie β_b są równe 0, czyli $(B \setminus \{c\}) \cup \{a\}$ jest liniowo niezależny, jest więc bazą B.

dowód Lematu Steinitza. Weźmy teraz dowolny liniowo niezależny układ a_1, \ldots, a_n . Skonstruujemy rekurencyjnie ciąg c_1, \ldots, c_n elementów B, takich że $(B \setminus \{c_1, \ldots, c_k\}) \cup \{a_1, \ldots, a_k\}$ jest bazą.

- Skoro B jest bazą V i $a_1 \in V$, to możemy zapisać $a_1 = \sum_{b \in B} \alpha_b b$. Ponieważ a_1 jest niezerowy (a jest, bo a_1, \ldots, a_n jest lnz), pewien α_c jest niezerowy, możemy więc wziąć $c_1 = c$.
- Wtedy B₁ = (B \ {c₁}) ∪ {a₁} jest znowu bazą, moglibyśmy więc analogicznie wybrać c₂ ∈ B₁ taki że (B₁ \ {c₂}) ∪ {a₂} jest bazą, ale... to nie jest do końca dobrze: może się zdarzyć, że weźmiemy c₂ = a₁, a wtedy dostalibyśmy być może c₂ ∉ B!

- Musimy wobec tego rozumować nieco sprytniej; zapisując $a_2 = \sum_{b \in B_1} \alpha_b b$ możemy wyłączyć wyraz z a_1 , otrzymując $a_2 = \alpha_{a_1} a_1 + \sum_{b \in B_1 \setminus \{c_1\}} \alpha_b b$. Wtedy któryś ze współczynników α_b musi być niezerowy (bo inaczej a_1, a_2 byłyby współliniowe!), możemy więc wybrać $c_2 \in B_1 \setminus \{c_1\} (= B \setminus \{b_1\})$.
- Powiedzmy, że mamy już c_1, \ldots, c_k . Oznaczmy $B'_k = B \setminus \{c_1, \ldots, c_k\}$, $B_k = B'_k \cup \{a_1, \ldots, a_k\}$. Wiemy że B_k jest bazą, możemy więc zapisać

$$a_{k+1} = \sum_{b \in B_k} \alpha_b b$$

$$= \sum_{m=1}^k \alpha_{a_m} a_m + \sum_{b \in B'_k} \alpha_b b.$$

Zauważmy że ta druga suma nie może być zerowa, ponieważ a_1, \ldots, a_{k+1} jest liniowo niezależny, więc dla pewnego $c_{k+1} \in B'_k$ mamy $\alpha_{c_{k+1}} \neq 0$. Ze stwierdzenia wynika, że to c_{k+1} działa.

To daje nam c_1, \ldots, c_n jak w drugiej części Twierdzenia — zauważmy, że są one faktycznie różne, bo c_{k+1} jest za każdym razem brany z B'_k , który jest rozłączny z $\{c_1, \ldots, c_k\}$.

Pierwsza część wynika z drugiej, bo zbiór $\{c_1,\ldots,c_n\}\subseteq B$ jest n-elementowy. \square

2.4 Wymiar a izomorfizmy liniowe

Stwierdzenie 2.22. (a) $je\dot{z}eli\ W \leq V$, to $\dim W \leq \dim V$,

- (b) jeżeli $B \subseteq V$ jest n-elementowy i liniowo niezależny, a dim $V = n < \infty$, to B jest bazą V,
- (c) $je\dot{z}eli\ W \leq V\ i\ dim\ W = \dim V < \infty$, to W = V.⁴

Dowód. Pierwsza część: każda baza W jest lnz w V, więc rozszerza się do bazy V.

⁴Ten punkt i poprzedni nie zachodzą przypadku nieskończenie wymiarowym. Np. $\dim K[X^2] = \dim K[X]$.

Druga część: ustalmy bazę C przestrzeni V. Z lematu Steinitza wynika, że dla pewnych n różnych $c_1, \ldots, c_n \in C$, zbiór $C \setminus \{c_1, \ldots, c_n\} \cup B$ jest bazą V. Ale C ma dokładnie n elementów (bo dim V = n), więc $(C \setminus \{c_1, \ldots, c_n\}) \cup B = B$, czyli Lin B = Lin C = V.

Trzecia część: weź bazę B przestrzeni W i zastosuj drugą część.

Definicja 2.23. Niech V, W będą przestrzeniami liniowymi. Funkcję $F: V \to W$ nazywamy *izomorfizmem (liniowym)* jeżeli:

- *F* jest addytywne i jednorodne:
 - $F(v_1 + v_2) = F(v_1) + F(v_2)$,
 - $F(\alpha v) = \alpha F(v)$;
- F jest bijekcją.

Mówimy że $V \cong W$ (słownie: V i W są izomorficzne) jeżeli istnieje izomorfizm liniowy $V \to W$.

Stwierdzenie 2.24. *Relacja* \cong *jest relacją równoważności.*

Twierdzenie 2.25. Załóżmy że V,W to przestrzenie liniowe nad K, a n to liczba naturalna.

- Jeżeli dim V = n, to $V \cong K^n$, ⁵
- $V \cong W$ wtedy i tylko wtedy gdy dim $V = \dim W$.

 $Dow \acute{o}d.$ Załóżmy że $\dim V=n.$ Niech $B=\{v_1,\ldots,v_n\}$ będzie bazą V. Chcemy

zdefiniować
$$F: V \to K^n$$
 wzorem $F(v) = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{pmatrix} \in K^n$, gdy $v = \sum_{k=1}^n \alpha_k v_k$. Co

trzeba sprawdzić:

• F jest dobrze określona: to wynika z tego, że każdy element V przedstawia się jednoznacznie w postaci $\sum_{k=1}^{n} \alpha_k \nu_k$ (czyli z tego, że ν_1, \ldots, ν_n stanowią bazę).

⁵To jest prawdą też gdy n jest potencjalnie nieskończoną liczbą kardynalną, jeżeli po prawej stronie napiszemy $K^{\oplus n}$. K^n dla nieskończonego n ma wymiar ostro większy.

• F jest addytywna: to wynika z tego, że

$$\sum_{k=1}^{n} \alpha_k \nu_k + \sum_{k=1}^{n} \beta_k \nu_k = \sum_{k=1}^{n} (\alpha_k + \beta_k) \nu_k.$$

(Formalnie: z przemienności + i rozdzielności · względem +.)

- F jest jednorodna: wynika z $\alpha \sum_{k=1}^{n} \alpha_k v_k = \sum_{k=1}^{n} (\alpha \alpha_k) v_k$ (formalnie: z rozdzielności tej drugiej).
- F jest różnowartościowa: jeżeli $F(v) = (\alpha_1 \ \alpha_2 \ \cdots \ \alpha_n)^{\top} = F(w)$, to znaczy że $v = \sum_{k=1}^{n} \alpha_k v_k = w$.
- F jest "na": dla dowolnego $y = (\alpha_1 \ \alpha_2 \ \cdots \ \alpha_n)^{\top} \in K^n$ mamy y = F(v), gdzie $v = \sum_{k=1}^n \alpha_k v_k$.

To pokazuje pierwszą część.

Druga część (przypadek skończenie wymiarowy): ⁶ jeżeli dim $V = \dim W$, to z pierwszej części mamy $V \cong K^n$ i $W \cong K^n$. Ponieważ \cong jest relacją równoważności, to kończy dowód \Leftarrow .

Załóżmy że $F: V \to W$ jest izomorfizmem i ustalmy bazę v_1, \ldots, v_n przestrzeni V. Wtedy $F(v_1), \ldots, F(v_n)$ jest bazą W (ćwiczenie), co kończy dowód.

Izomorfizm $V \to K^n$ z poprzedniego zadania zapisujemy czasami w nawiasach kwadratowych $[v]_B$ (czytamy: współrzędne (wektora) v w (bazie) B (lub względem bazy B)).

Przykład 2.26. Przestrzeń $V = \mathbf{R}^2$ ma bazę $B = ((1,1)^{\top}, (1,-1)^{\top})$ i mamy np. $[(1,0)^{\top}]_B = (\frac{1}{2}, \frac{1}{2})^{\top}$.

Przykład 2.27. Przestrzeń $V = \{ P \in \mathbf{R}_3[X] \mid P'(-1) = 0 \}$ ma bazę $1, (x+1)^2, (x+1)^3$. To nam zadaje izomorfizm $V \to \mathbf{R}^3$, np. dla

$$2x^3 + 3x^2 = 2(x+1)^3 - 3(x+1)^2 + 1 \cdot 1$$

mamy
$$[2x^3 + 3x^2]_B = \begin{pmatrix} 1 \\ -3 \\ 2 \end{pmatrix}$$
.

⁶Tak naprawdę to działa prawie tak samo w przypadku nieskończenie wymiarowym.

Rozdział 3

Przekształcenia liniowe

3.1 Przekształcenia liniowe

Definicja 3.1. Jeżeli V, W są przestrzeniami liniowymi nad ciałem K, to przekształceniem liniowym (lub funkcją liniową¹) z V w W nazywamy funkcję $F: V \to W$, która jest jednocześnie:

- addytywna: $F(v_1 + v_2) = F(v_1) + F(v_2)$, oraz
- jednorodna: $F(\alpha v) = \alpha F(v)$.

Ćwiczenie 3.2. Złożenie funkcji liniowych jest liniowe.

Ćwiczenie 3.3. Funkcja $F: V \to W$ jest liniowa wtedy i tylko wtedy gdy spełnia $F(\alpha v_1 + v_2) = \alpha F(v_1) + F(v_2)$.

Ćwiczenie 3.4. Jeżeli F jest liniowe, to $F(\vec{0}) = \vec{0}$ i $F(\sum_{k=1}^{n} \alpha_k v_k) = \sum_{k=1}^{n} \alpha_k F(v_k)$.

Przykłady 3.5. 1. funkcje liniowe $F: \mathbb{R}^n \to \mathbb{R}^k$ to dokładnie funkcje postaci F_A , zadane wzorem:

$$F_A(X) = AX = \left(\sum_{j=1}^n a_{ij} x_j\right)_{i=1}^k = \begin{pmatrix} \sum_{j=1}^n a_{1j} x_j \\ \vdots \\ \sum_{j=1}^n a_{kj} x_j \end{pmatrix},$$

¹nie mylić z funkcjami postaci f(x) = ax + b

gdzie

$$A = (a_{ij})_{\substack{i=1,\dots,k\\j=1,\dots,n}} \in M_{k \times n}(\mathbf{R}), \quad x = (x_j)_{j=1}^n = \begin{pmatrix} x_1\\ \vdots\\ x_n \end{pmatrix}$$

- 2. Analogicznie wyglądają funkcje liniowe $K^n \to K^k$ dla dowolnego ciała K.
- 3. $F: \mathbf{R}[X] \to \mathbf{R}[X]$, F(P) = P', a także takie same funkcje $F: K[X] \to K[X]$ zadane analogicznym wzorem.

4.
$$F: \mathbf{R}_3[X] \to \mathbf{R}_3[X], F(P) = 3P - X^2 \cdot P'.$$

5.
$$F: \mathbf{R}_3[X] \to \mathbf{R}^2$$
, $F(P) = \binom{P(1)}{P'(0) + \pi P(e)}$.

6.
$$F: C(\mathbf{R}) \to \mathbf{R}, F(f) = \int_0^1 f(t) dt$$
.

7.
$$F: \mathbb{R}^{\mathbb{N}} \to \mathbb{R}^{\mathbb{N}}, F(a_0, a_1, \dots) = (a_1, a_2, \dots)$$
 (lewy szift),

8.
$$F: \mathbb{R}^{\mathbb{N}} \to \mathbb{R}^{\mathbb{N}}, F(a_0, a_1, ...) = (0, a_0, a_1, ...)$$
 (prawy szift),

9.
$$F: C([0,2\pi]) \to \mathbf{C}^{\mathbf{Z}}, F(f)(k) = \int_0^{2\pi} f(x)e^{-ikx} dx.$$

Sprawdzenie. Ustalmy dowolne dwie funkcje $f_1, f_2 \in C[0, 2\pi]$. Wtedy dla każdego k, z addytywności całki, mamy

$$F(f_1 + f_2)(k) = \int_0^{2\pi} (f_1 + f_2)(x)e^{-ikx} dx$$

$$= \int_0^{2\pi} f_1(x)e^{-ikx} dx + \int_0^{2\pi} f_2(x)e^{-ikx} dx$$

$$= F(f_1)(k) + F(f_2)(k)$$

$$= (F(f_1) + F(f_2))(k)$$

Skoro jest tak dla każdego k, to znaczy że $F(f_1 + f_2) = F(f_1) + F(f_2)$.

Podobnie dla dowolnego $f \in C[0, 2\pi]$, $\alpha \in \mathbb{R}$ i $k \in \mathbb{Z}$ mamy

$$F(\alpha f)(k) = \int_0^{2\pi} (\alpha f)(x)e^{-ikx} dx$$
$$= \alpha \int_0^{2\pi} f(x)e^{-ikx} d$$
$$= \alpha F(f)(k),$$

wiec $F(\alpha f) = \alpha F(f)$.

Uwaga 3.6. Jeżeli V, W są dowolnymi przestrzeniami liniowymi (nad tym samym ciałem), to zbiór Hom(V, W) wszystkich przekształceń liniowych $V \rightarrow W$ jest przestrzenią liniową. Jeżeli V, W są skończenie wymiarowe, to wymiar Hom(V, W) to iloczyn wymiarów V i W^2 .

Jeżeli V jest przestrzenią liniową, to *endomorfizm* V to odwzorowanie liniowe $V \rightarrow V$.

Zbiór Hom(V, V) endomorfizmów V oznaczamy End(V).

3.2 Jądro i obraz odwzorowania liniowego

Definicja 3.7. Ustalmy liniowe $F: V \rightarrow W$.

- *Jądro F* to ker $F := \{ v \in V \mid F(v) = \vec{0} \} = F^{-1}[\{\vec{0}\}],$
- *Obraz F* to im $F := \{F(v) \mid v \in V\} = F[V] = \{w \in W \mid \exists v \in V \ F(v) = w\}$ (czasami oznaczany też rng F)

(Rysunek.)

Ćwiczenie 3.8. Złożenie przekształceń liniowych jest liniowe, tzn. jeżeli $F: V_1 \to V_2$ i $G: V_2 \to V_3$ są liniowe, to $G \circ F: V_1 \to V_3$ jest liniowe.

Fakt 3.9. *Jeżeli F* : $V \rightarrow W$ *jest przekształceniem liniowym, to:*

- a) $\ker F \leq V$,
- b) im $F \leq W$.

 $^{^2}$ Ogólnie wymiar $\operatorname{Hom}(V,W)$ to iloczyn wymiarów Wi przestrzeni dualnej $V^*,$ o której będzie mowa później

Dowód.

a) $0 \in \ker F$, wiec $\ker F \neq \emptyset$.

Z liniowości jeżeli $F(v_1) = F(v_2) = \vec{0}$, to $F(v_1 + v_2) = F(v_1) + F(v_2) = \vec{0} + \vec{0} = \vec{0}$, więc ker F jest zamknięte na +.

Podobnie jeżeli $F(v) = \vec{0}$, to $F(\alpha v) = \alpha F(v) = \alpha \vec{0} = \vec{0}$, więc ker F jest zamknięte na mnożenie przez skalary.

b) $\vec{0} = F(\vec{0}) \in \text{im } F$, wiec im $F \neq \emptyset$.

Jeżeli $w_1, w_2 \in \operatorname{im} F$, to dla pewnych v_1, v_2 mamy $F(v_k) = w_k$ i wtedy $F(v_1 + v_2) = F(v_1) + F(v_2) = w_1 + w_2$, więc im F jest zamknięty na sumy.

Jeżeli $w \in \operatorname{im} F$ i F(v) = w, to $F(\alpha v) = \alpha F(v) = \alpha w$, więc im F jest zamknięty na mnożenie przez skalary.

Uwaga 3.10. Podobnie, że jeżeli $V' \le V$, $W' \le V$ i $F: V \to W$ jest liniowe, to $F[V'] \le W$ i $F^{-1}[W'] \le V$.

Fakt 3.11. *Załóżmy że F* : $V \rightarrow W$ *jest liniowe. Wtedy:*

- F jest ".na" \iff im F = W,
- $F \text{ jest } 1\text{-}1 \iff \ker F = 0 (:= \{\vec{0}\}).$

(Jeżeli $\ker F = 0$, to mówimy że jądro F jest trywialne lub zerowe.)

Dowód. Pierwsza część jest oczywista.

Załóżmy że F jest 1-1. Wtedy $F(\vec{0}) = \vec{0}$, więc $\vec{0} \in \ker F$ i z różnowartościowości, dla $v \neq \vec{0}$ mamy $F(v) \neq F(\vec{0}) = \vec{0}$, czyli $v \notin \ker F$. Stąd $\ker F = \{\vec{0}\}$.

Z drugiej strony, jeżeli ker $F=\{\vec{0}\}$, to dla dowolnych $v_1 \neq v_2$ mamy

$$F(v_1) - F(v_2) = F(v_1 - v_2) \neq \vec{0}$$

(bo $v_1 - v_2 \neq \vec{0}$, wiec $v_1 - v_2 \notin \ker F$). Stąd $F(v_1) \neq \vec{0} + F(v_2) = F(v_2)$.

Przykłady 3.12. a) Niech $A = \begin{pmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{pmatrix}$, $F_1 = F_A \in \text{End}(\mathbb{R}^3)$.

$$\operatorname{im} F_A = \operatorname{Lin} \left\{ \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}, \begin{pmatrix} 7 \\ 8 \\ 9 \end{pmatrix} \right\} = \operatorname{Lin} \left(\begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right),$$

$$\ker F_A \text{ składa się z} \begin{pmatrix} x \\ y \\ z \end{pmatrix} \text{ spełniających } \begin{cases} x+4y+7z=0 \\ 2x+5y+8z=0 \\ 3x+6y+9z=0 \end{cases}. \text{ Trzecie}$$

równanie jest równoważne x + 2y + 3z = 0, czyli odejmując stronami

równoważnie
$$\begin{cases} 2y + 4z = 0 \\ y + 2z = 0 \end{cases}$$
. Pierwsze równanie wynika z dru-
$$\begin{cases} x + 2y + 3z = 0 \\ x + 2y + 3z = 0 \end{cases}$$
.

giego, skąd widać że
$$\ker F_A = \operatorname{Lin} \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} \times \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \operatorname{Lin} \begin{pmatrix} -1 \\ 2 \\ -1 \end{pmatrix}.$$

b)
$$F_2: \mathbf{R}_3[X] \to \mathbf{R}^2$$
, $F(P) = \begin{pmatrix} P'(2) \\ P(-1) \end{pmatrix}$
 $\ker F_2 = \{ P \in \mathbf{R}_3 \mid P'(2) = P(-1) = 0 \}$
 $\operatorname{im} F_2 = \mathbf{R}^2$, $\operatorname{bo} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = F(X), \begin{pmatrix} 0 \\ 1 \end{pmatrix} = F(1) \in \operatorname{im} F_2 \le \mathbf{R}^2$.

c)
$$F_3: \mathbf{R}_{100}[X] \to \mathbf{R}, F_3(P) = \int_{-1}^1 P(t) dt.$$

 $\operatorname{im} F_3 = \mathbf{R}, \text{ bo } 0 = \vec{0} \neq F_3(X^2) \in \operatorname{im} F_3 \leq \mathbf{R}$
 $\ker F_3 = \{ P \in \mathbf{R}_{100}[X] \mid \int_{-1}^1 P(t) dt = 0 \}.$

d) Analogicznie jak wyżej możemy zdefiniować $F_4: C(\mathbf{R}) \to \mathbf{R}, F_4(f) = \int_{-1}^1 f(t) \, \mathrm{d}t$, obraz jest ten sam, a jądro ma podobny opis.

e)
$$F_5: \mathbf{R}^{\mathbf{N}} \to \mathbf{R}^{\mathbf{N}}, F_5(a_0, \dots, a_n, \dots) = (a_1, \dots, a_n, \dots).$$

 $\operatorname{im} F_5 = \mathbf{R}^{\mathbf{N}}, \ker F_5 = \{(a, 0, 0, 0, \dots) \mid a \in \mathbf{R}\}$

f)
$$F_6: \mathbf{R}^{\mathbf{N}} \to \mathbf{R}^{\mathbf{N}}, F_6(a_0, \dots, a_n, \dots) = (0, a_0, a_1, \dots, a_n, \dots).$$

$$\ker F_6 = \{\vec{0}\}, \operatorname{im} F_6 = \{(a_n)_{n \in \mathbf{N}} \in \mathbf{R}^{\mathbf{N}} \mid a_0 = 0\}$$

3.3 Twierdzenia o rzędzie i o indeksie

Stwierdzenie 3.13. Załóżmy że V jest dowolną przestrzenią liniową, a $A, B \subseteq V$ są rozłączne i $A \cup B$ jest liniowo niezależny. Wtedy $Lin(A) \cap Lin(B) = \{\vec{0}\}$

Definicja 3.14. Rzqd przekształcenia liniowego F to rk F := dim im F.

Twierdzenie 3.15 (twierdzenie o rzędzie). Jeżeli $F: V \to W$ jest liniowe, to

$$\dim V = \dim \ker F + \dim \operatorname{im} F = \dim \ker F + \operatorname{rk} F$$
.

Wniosek 3.16 (twierdzenie o indeksie). *Jeżeli* dim $V < \infty$, to odejmując stronami dostajemy stąd:

$$\dim \ker F = \dim V - \dim \operatorname{im} F$$
 $\dim \operatorname{im} F = \dim V - \dim \ker F$.

Przykład 3.17. Chcemy wyznaczyć wymiar $V = \{ P \in \mathbf{R}_{50}[X] \mid \int_{-1}^{1} e^{-t^2} P(t) dt = 0 \}$

Weźmy $G: \mathbf{R}_{50}[X] \to \mathbf{R}$, zadane wzorem $G(P) = \int_{-1}^{1} e^{-t^2} P(t) dt$. Wtedy $\ker G = V$.

$$G(1) = \int_{-1}^{1} e^{-t^2} dt > 0$$
, wiec im $G(G) = \mathbb{R}$, zatem dim $V = \dim \ker G = \dim R_{50}[X] - \dim \mathbb{R} = 51 - 1 = 50$.

dowód twierdzenia o rzędzie. Wybierzmy dowolną bazę A przestrzeni ker $F \le V$. Wtedy A jest lnz w V, więc rozszerza się do pewnej bazy C przestrzeni V. Oznaczmy $B := C \setminus A$.

Pokażemy że F jest 1-1 na B i F[B] jest bazą im F. To skończy dowód, ponieważ wtedy

$$\dim V = |C| = |A| + |B| = |A| + |F[B]| = \dim \ker F + \dim \operatorname{im} F.$$

Istotnie, dla dowolnego $v \in V$ mamy (dla pewnych α_b)

$$v = \sum_{a \in A} \alpha_a a + \sum_{b \in B} \beta_b b,$$

więc

$$F(v) = \sum_{a \in A} \alpha_a F(a) + \sum_{b \in B} \beta_b F(b),$$

przy czym pierwsza z sum powyżej jest zerowa (bo dla $a \in A$ mamy $F(a) = \vec{0}$), więc $F(v) = \sum_{b \in B} \beta_b F(b)$, czyli F[B] rozpina im F.

Zauważmy teraz, że ze stwierdzenia mamy $\operatorname{Lin} B \cap \operatorname{Lin} A = \operatorname{Lin} B \cap \ker F = \{0\}$. W szczególności $\ker F \upharpoonright_{\operatorname{Lin} B} = \{0\}$. Stąd F jest 1-1 na $\operatorname{Lin} B$ (a więc i na B).

Pokażemy liniową niezależność F[B]. Niech $\sum_{b\in B}\beta_bF(b)=0$. Wtedy $F(\sum_b\beta_bb)=0$, czyli z różnowartościowości $\sum_b\beta_bb=0$, a więc wszystkie $\beta_b=0$.

Wniosek 3.18. Załóżmy że $F: V \to W$ jest przekształceniem liniowym i $\dim V = \dim W < \infty$. Wtedy następujące warunki są równoważne:

• $\ker F = 0$.

F jest "na",

• F jest 1-1,

• F jest izomorfizmem.

Dowód. $\ker F = 0 \iff F \text{ jest 1-1: było.}$

Jeżeli $\ker F = 0$, to $\dim \ker F = 0$, czyli $\dim \operatorname{im} F = \dim V - 0 = \dim W$. Ale $\operatorname{im} F \leq W$, więc wtedy $\operatorname{im} F = W$.

Jeżeli F jest "na", to im F = W, czyli dim im $F = \dim W = \dim V$, więc dim ker $F = \dim V - \dim m = \dim V - \dim V = 0$, więc ker $F = \{\vec{0}\}$.

Stąd F jest "na" wtedy i tylko wtedy gdy jest 1-1, więc wówczas jest też izomorfizmem. \Box

Wniosek 3.19. Jeżeli V jest skończenie wymiarowa³ i $F \in \text{End}(V)$ (tzn. jest endomorfizmem V, czyli liniowym odwzorowaniem $V \to V$) to następujące warunki są równoważne:

- F jest różnowartościowa,
- F jest "na",
- F jest izomorfizmem.

Definicja 3.20. Takie odwzorowanie, tzn. izomorfizm, który jest jednocześnie endomorfizmem, nazywamy *automorfizmem*. Zbiór automorfizmów przestrzeni liniowej oznaczamy $\operatorname{Aut}(V)$ lub (częściej) $\operatorname{GL}(V)$.

³Założenie skończonego wymiaru jest istotne: lewy i prawy szift na R^N pokazują, że przekształcenie liniowe przestrzeni nieskończenie wymiarowej w siebie samą może być "na", nie będąc 1-1 (lewy szift), może też być 1-1, nie będąc "na" (prawy szift).

Wniosek 3.21. Jeżeli mamy "krótki ciąg dokładny (przestrzeni liniowych)" ⁴

$$V_1 \rightarrow V_2 \rightarrow V_3$$
,

to znaczy przekształcenia liniowe $F_1: V_1 \to V_2$ i $F_2: V_2 \to V_3$, takie że F_1 jest 1-1, F_2 jest "na" i im $F_1 = \ker F_2$, to dim $V_2 = \dim V_1 + \dim V_3$.

Dowód. Skoro F_1 jest 1-1 i im $F_1 = \ker F_2$, to F_1 zadaje izomorfizm V_1 i im $F_1 = \ker F_2$, czyli dim $V_1 = \dim \ker F_2$.

Z twierdzenia o rzędzie dla F2 dostajemy więc

$$\dim V_2 = \dim \ker F_2 + \dim \operatorname{im} F_2 = \dim V_1 + \dim V_3. \qquad \Box$$

 $^{^4}$ Ogólnie ciąg dokładny to taki ciąg przekształceń ... $V_{-1} \rightarrow V_0 \rightarrow V_1 \rightarrow V_2 \rightarrow V_3 \rightarrow V_4 \rightarrow \ldots$, że jądro każdej strzałki jest obrazem poprzedniej. Krótki ciąg dokładny $V_1 \rightarrow V_2 \rightarrow V_3$ można zapisać jako taki ciąg dokładny, że $V_k = 0$ dla k < 1 i dla k > 3, tzn. ... $\rightarrow 0 \rightarrow 0 \ldots 0 \rightarrow V_1 \rightarrow V_2 \rightarrow V_3 \rightarrow 0 \rightarrow 0 \ldots \rightarrow 0 \rightarrow \ldots$: w zapisie pomijamy zera.

Rozdział 4

Konstrukcje przestrzeni liniowych

4.1 Suma prosta

Definicja 4.1. Niech V, W będą przestrzeniami liniowymi. Na zbiorze $V \times W$ określamy działania:

- $(v_1, w_1) + (v_2, w_2) = (v_1 + v_2, w_1 + w_2),$
- $\alpha(v, w) = (\alpha v, \alpha w)$.

Powstałą przestrzeń liniową nazywamy produktem lub sumą prostą V i W, oznaczamy $V \times W$ lub $V \oplus W$.

Przykłady 4.2. 1. $K \times K = K^2$,

- 2. $K \times (K \times K) = K \times K^2 = K^3$,²
- 3. jeżeli $F \subseteq V \times W$ jest funkcją $V \to W$, to F jest liniowe wtedy i tylko wtedy gdy $F \le V \times W$ (ćwiczenie).

Fakt 4.3. $\dim(V \oplus W) = \dim V + \dim W$

Dowód. Mamy krótki ciąg dokładny:

$$V \to V \oplus W \to W$$
,

¹Możemy rozważać też nieskończone produkty i sumy proste przestrzeni liniowych. Wtedy te dwa pojęcia się rozjeżdząją (o tym więcej może być na konwersatorium).

²Teoriomnogościowo są to trochę inne obiekty, ale w algebrze liniowej zwykle je utożsamiamy.

więc $\dim V \oplus W = \dim V + \dim W$.

Nieco bardziej szczegółowo: mamy naturalne odwzorowanie $\pi_W \colon V \oplus W \to W$ (rzut), tzn. $\pi(v, w) = w$.

Łatwo sprawdzić, że π_W jest liniowe i im $\pi_W = W$, więc dim $(V \oplus W) = \dim \ker \pi_W + \dim \operatorname{im} \pi_W = \dim \ker \pi_W + \dim W$.

Z drugiej strony ker π_W jest izomorficzne z V przez odwzorowanie $V \to \ker \pi_W$, $v \mapsto (v, 0)$, więc dim ker $\pi_W = \dim V$, co daje tezę.

inny dowód. Niech v_1, \ldots, v_n będzie bazą V, a w_1, \ldots, w_m będzie bazą W. Wtedy $(v_1, 0), (v_2, 0), \ldots, (v_n, 0), (0, w_1), \ldots, (0, w_m)$ jest bazą $V \oplus W$ (ćwiczenie).

Fakt 4.4 (/definicja). *Jeżeli mamy liniowe* $F_1: V_1 \rightarrow W_1$, $F_2: V_2 \rightarrow W_2$, to nam daje liniowe $F_1 \oplus F_2: V_1 \oplus V_2 \rightarrow W_1 \oplus W_2$, zadane wzorem $(F_1 \oplus F_2)(v_1, v_2) = (F_1(v_1), F_2(v_2))$.

Dowód. Ćwiczenie.

Fakt 4.5. Dla dowolnych $F_1: V_1 \rightarrow W_1$, $F_2: V_2 \rightarrow W_2$, $G_1: W_1 \rightarrow U_1$, $G_2: W_2 \rightarrow U_2$ (w skrócie: $V_1 \stackrel{F_1}{\rightarrow} W_1 \stackrel{G_1}{\rightarrow} U_1$, $V_2 \stackrel{F_2}{\rightarrow} W_2 \stackrel{G_2}{\rightarrow} U_2$) zachodzi

$$(G_1 \oplus G_2) \circ (F_1 \oplus F_2) = ((G_1 \circ F_1) \oplus (G_2 \circ F_2)).$$

Dowód. Ćwiczenie (wystarczy rozpisać lewą i prawą stronę na dowolnym $(v_1, v_2) \in V_1 \oplus V_2$). □

Ćwiczenie 4.6. Jeżeli $V_1 \cong V_2$ i $W_1 \cong W_2$, to $V_1 \oplus W_1 \cong V_2 \oplus W_2$.

Ćwiczenie 4.7 (/definicja). Jeżeli $W, U \le V$ są podprzestrzeniami takimi że $W \cap U = \{\vec{0}\}$, to $W \oplus U \cong W + U$. Jeżeli ponadto V = W + U, to mówimy że V jest sumą prostą W i U (i utożsamiamy $V = W \oplus U$).

4.2 Przestrzeń dualna

Definicja 4.8. Jeżeli *V* jest przestrzenią liniową nad *K*, to definiujemy *przestrzeń dualną do V* jako

$$V^* = V' = \operatorname{Hom}(V, K) := \{ f : V \to K \mid f \text{ jest liniowe } \}.$$

Elementy V^* nazywamy funkcjonałami na V.

³O tym będzie więcej w rozdziale 7.

35

Lemat 4.9. V^* jest przestrzenią liniową, podprzestrzenią K^V (przestrzeni wszystkich funkcji $V \rightarrow K$).

Dowód. Funkcja zerowa jest liniowa, więc V^* jest niepuste. Niech $f_1, f_2 \in V^*$. Pokażemy że $f_1 + f_2 \in V^*$.

• $f_1 + f_2$ jest addytywne: jeżeli $v_1, v_2 \in V$, to:

$$(f_1 + f_2)(\nu_1 + \nu_2) = f_1(\nu_1 + \nu_2) + f_2(\nu_1 + \nu_2)$$

$$= f_1(\nu_1) + f_1(\nu_2) + f_2(\nu_1) + f_2(\nu_2)$$

$$= f_1(\nu_1) + f_2(\nu_1) + f_1(\nu_2) + f_2(\nu_2)$$

$$= (f_1 + f_2)(\nu_1) + (f_1 + f_2)(\nu_2).$$

• $f_1 + f_2$ jest jednorodne: jeżeli $v \in V$ i $\alpha \in K$, to:

$$(f_1 + f_2)(\alpha \nu) = f_1(\alpha \nu) + f_2(\alpha \nu)$$

$$= \alpha f_1(\nu) + \alpha f_2(\nu)$$

$$= \alpha (f_1(\nu) + f_2(\nu))$$

$$= \alpha ((f_1 + f_2)(\nu))$$

Zamkniętość V^* na mnożenie przez skalary — ćwiczenie.

Fakt 4.10. *Jeżeli* dim $V < \infty$, to dim $V = \dim V^*$.

Dowód. Niech b_1, \ldots, b_n będzie bazą V. Dla $k=1,\ldots,n$ definiujemy $b_k^*(v) \coloneqq$ α_k , gdzie $\nu = \sum_{j=1}^n \alpha_j b_j$.

Ponieważ b_k tworzą bazę, łatwo sprawdzić że b_k^* są dobrze określone i liniowe. Układ b_1^*, \ldots, b_n^* nazywamy bazą dualną do b_1, \ldots, b_n . Sprawdźmy, że faktycznie jest to baza.

Zauważmy że każde b_k^* spełnia $b_k^*(b_j) = \begin{cases} 1 & k=j \\ 0 & k \neq j \end{cases}$. Stąd dla każdego j

zachodzi:

$$\sum_{k} \alpha_k b_k^*(b_j) = \alpha_j. \tag{*}$$

Jeżeli $v^* = \sum_k \alpha_k b_k^* = 0$, to z (*) dostajemy dla kazdego k, $\alpha_k = v^*(b_k) =$ 0, czyli b_k^* są liniowo niezależne.

⁴Przy założeniu pewnika wyboru dla nieskończenie wymiarowych przestrzeni zachodzi $\dim V < \dim V^*$. Bez niego moga istnieć nieskończenie wymiarowe V takie że $V^* = \{0\}$.

Z drugiej strony jeżeli $v^* \in V^*$, to dla $\alpha_k = v^*(b_k)$ mamy $v^* = \sum_k \alpha_k b_k^*$. Istotnie, dla dowolnego $v = \sum_j \beta_j b_j$ mamy

$$\left(\sum_{k} \alpha_{k} b_{k}^{*}\right)(v) = \sum_{k} \alpha_{k} b_{k}^{*} \left(\sum_{j} \beta_{j} b_{j}\right)$$

$$= \sum_{k} \sum_{j} \alpha_{k} \beta_{j} b_{k}^{*}(b_{j})$$

$$= \sum_{k} \alpha_{k} \beta_{k}$$

$$= \sum_{k} v^{*}(b_{k}) \beta_{k}$$

$$= \sum_{k} v^{*}(\beta_{k} b_{k})$$

$$= v^{*} \left(\sum_{k} \beta_{k} b_{k}\right)$$

$$= v^{*}(v).$$

Ćwiczenie 4.11. Jeżeli dim V > 1 i $v \in V$, to nie istnieje "funkcjonał dualny" do v. (Vide zadanie 20 z listy 2.)

Uwaga 4.12. W analizie funkcjonalnej V^* definiuje się jako przestrzeń liniową złożoną tylko z tych funkcjonałów, które są ciągłe (względem ustalonych topologii na V i K). Wtedy V^* może mieć nawet mniejszy wymiar niż V, a nawet są nieskończenie wymiarowe V takie że dim $V^* = 0$. (O tym możemy porozmawiać trochę na konwersatorium.)

Fakt 4.13 (/definicja). *Jeżeli F*: $V \to W$ *jest liniowe, to odwzorowanie* $F^* \colon W^* \to V^*$ *zadane wzorem* $F^*(f)(v) = f(F(v))$ *jest liniowe. Nazywamy je* przekształceniem dualnym do F

Fakt 4.14. Jeżeli $F_1: V_1 \to V_2$ i $F_2: V_2 \to V_3$ są liniowe, to $(F_2 \circ F_1)^* = F_1^* \circ F_2^*$.

$$V_1 \xrightarrow{F_1} V_2 \xrightarrow{F_2} V_3$$

$$V_1^* \leftarrow V_1^* \leftarrow V_2^* \leftarrow V_3^*$$

⁵Kiedy dim *V* jest nieskończony, prawa strona ostatniego równania zwykle nie ma sensu.

Dowód. $F_2 \circ F_1$ jest odwzorowaniem $V_1 \to V_3$, a więc $(F_2 \circ F_1)^*$ jest odwzorowaniem $V_3^* \to V_1^*$. Weźmy dowolny $f \in V_3^*$. Sprawdzimy że $(F_2 \circ F_1)^*(f) = F_1^* \circ F_2^*(f)$. Ustalmy dowolny $v \in V_1$. Wtedy:

$$(F_2 \circ F_1)^*(f)(v) = f(F_2 \circ F_1(v))$$

$$= f(F_2(F_1(v)))$$

$$= F_2^*(f)(F_1(v))$$

$$= F_1^*(F_2^*(f))(v)$$

$$= F_1^* \circ F_2^*(f)(v).$$

Ponieważ $v \in V_1$ był dowolny, istotnie zachodzi $(F_2 \circ F_1)^*(f) = F_1^* \circ F_2^*(f)$, co należało dowieść.

Ćwiczenie 4.15. Jeżeli $F: V \to W$ jest izomorfizmem, to F^* też nim jest. W szczególności jeżeli $V \cong W$, to $V^* \cong W^*$.

4.3 Przestrzeń ilorazowa

Definicja 4.16. Jeżeli $W \le V$ są przestrzeniami liniowymi i $v \in V$, warstwą v względem W nazywamy zbiór:

$$v + W = \{ v + w \mid w \in W \}.$$

Zbiór wszystkich warstw W oznaczamy przez V/W.

Fakt 4.17.
$$v_1 + W = v_2 + W \iff v_1 - v_2 \in W$$

Dowód. Załóżmy że $v_1+W=v_2+W$. Wtedy z definicji $v_1+0 \in v_2+W$, czyli dla pewnego $w \in W$ mamy $v_1+0=v_2+w$, czyli $v_1-v_2=w \in W$.

Z drugiej strony, jeżeli $v_1 - v_2 \in W$, to dla każdego w mamy

$$v_1 + w = (v_2 + (v_1 - v_2)) + w = v_2 + ((v_1 - v_2) + w) \in v_2 + W,$$

czyli $v_1+W\subseteq v_2+W$. Podobnie $v_2+W\subseteq v_1+W$, czyli te dwie warstwy są równe. \Box

Wniosek 4.18. Zbiór V/W warstw W w V to zbiór ilorazowy V/∼, gdzie

$$\nu_1 \sim \nu_2 \iff \nu_1 - \nu_2 \in W.$$

Przykłady 4.19. 1. Jeżeli $V = \mathbb{R}^2$ i $W = \text{Lin}(1,1)^{\top}$, to elementy V/W to proste równoległe do W.

2. Podobnie jeżeli $V = \mathbb{R}^3$ i W jest prostą lub płaszczyzną przechodzącą przez 0, to elementy V/W to proste lub płaszczyzny (odpowiednio) równoległe do W.

Definicja 4.20. Jeżeli $W \le V$ są przestrzeniami liniowymi, to zbiór warstw V/W nazywamy *przestrzenią ilorazową* (V nad W lub V przez W) z działaniami zadanymi następująco:

- $\vec{0}_{V/W} = \vec{0}_V + W$,
- $(v_1 + W) +_{V/W} (v_2 + W) = (v_1 +_V v_2) + W$,
- $\alpha \cdot_{V/W} (v + W) = (\alpha \cdot_{V} v) + W$.

Przykład 4.21. Jeżeli $V = \mathbb{R}^2$ i $W = \text{Lin}(1,1)^{\top}$, zaś $\ell_1 \in V/W$ jest prostą zadaną równaniem $X = t(1,1)^{\top} + (2,3)^{\top}$ i $\ell_2 \in V/W$ jest zadana równaniem $X = t(1,1)^{\top} + (-3,0)^{\top}$, to w V/W $\ell_1 + \ell_2$ jest prostą zadaną równaniem $X = t(1,1)^{\top} + (-1,3)^{\top}$.

Uwaga 4.22. Wyłączając mnożenie przez 0, definicje $+_{V/W}$ i $\cdot_{V/W}$ to dokładnie suma kompleksowa i mnożenie zbioru przez skalar, tzn. dla dowolnych warstw $\pi_1, \pi_2 \in V/W$ mamy

- $\bullet \ \pi_1 + \pi_2 = \{ v_1 + v_2 \mid v_1 \in \pi_1, v_2 \in \pi_2 \},$
- $\alpha \pi = \{ \alpha v \mid v \in \pi \}.$

Wyjątkowo $0 \cdot \pi = W \neq \{0\} = \{0 \cdot v' \mid v' \in \pi\}$ (chyba że $W = \{0\}$).

Fakt 4.23. *Powyższe działania są dobrze określone i to jest struktura prze- strzeni liniowej.*

Dowód. +_{V/W} jest dobrze określone: weźmy $v_1 + W = v_1' + W$ i $v_2 + W = v_2' + W$. Wtedy $v_1 - v_1', v_2 - v_2' \in W$, więc dodając stronami $(v_1 + v_2) - (v_1' + v_2') \in W + W = W$, czyli $(v_1 + v_2) + W = (v_1' + v_2') + W$, więc +_{V/W} jest dobrze określone. •_{V/W} dobrze określone — podobnie.

$$0 + W + v + W = v + W$$
, $(v + W) + ((-v) + W) = 0 + W$ — oczywiste.

Przemienność, łączność i rozdzielność w V/W wynikają łatwo z tych samych własności w V. Na przykład:

$$\alpha(\nu_{1} + W + \nu_{2} + W) = \alpha((\nu_{1} + \nu_{2}) + W)$$

$$= (\alpha(\nu_{1} + \nu_{2})) + W$$

$$= (\alpha\nu_{1} + \alpha\nu_{2}) + W$$

$$= (\alpha\nu_{1}) + W + (\alpha\nu_{2}) + W$$

$$= \alpha(\nu_{1} + W) + \alpha(\nu_{2} + W)$$

Definicja 4.24. Odwzorowanie liniowe nazywamy *epimorfizmem* jeżeli jest "na", a *monomorfizmem* jeżeli jest 1-1.

(W szczególności izomorfizm = epimorifzm i monomorfizm.)

Stwierdzenie 4.25. $\dim V = \dim V/W + \dim W$, $\operatorname{czyli} \dim V/W = \dim V - \dim W$, o ile $\dim V < \infty$.

Dowód. Zdefiniujmy F(v) = v + W. Cel: F jest liniowe, $\ker V = W$, $\operatorname{im} F = V/W$. Wtedy będziemy mieli krótki ciąg dokładny $W \to V \to V/W$, skąd wyniknie teza.

- F jest "na" V/W: oczywiste
- $\ker F = W$: jeżeli $v \in V$ jest takie że v + W = 0 + W, to z Faktu wcześniej wiemy, że $v 0 = v \in W$.
- F jest addytywne: $F(v_1 + v_2) = (v_1 + v_2) + W$, co z definicji równa się $(v_1 + W) + (v_2 + W)$.
- Jednorodność podobnie.

Stwierdzenie 4.26 (Twierdzenie o izomorfizmie). Jeżeli $F: V \to W$ jest

odwzorowaniem liniowym, to $\operatorname{im} F \cong V / \ker F$.

Dowód. Zadajmy odwzorowanie $\bar{F}: V/\ker F \to \operatorname{im} F$ wzorem $\bar{F}(v+W) = F(v)$.

• \bar{F} jest dobrze określone: jeżeli $v_1 + \ker F = v_2 + \ker F$, to $v_1 - v_2 \in \ker F$, więc $F(v_1) = F(v_2) + F(v_1 - v_2) = F(v_2 + v_1 - v_2) = F(v_1)$.

- liniowość \bar{F} wynika łatwo z liniowości F.
- \bar{F} jest 1-1: jeżeli $v + \ker F \neq 0 + \ker F$, to $v \notin \ker F$, więc $\bar{F}(v + \ker F) = F(v) \neq 0$, czyli $\ker \bar{F}$ jest trywialne.
- \bar{F} jest "na": jeżeli $w \in \operatorname{im} F$, to w = F(v) i wtedy $w = \bar{F}(v + \ker F)$. \square

4.4 Przestrzeń bidualna

Stwierdzenie 4.27. Dla dowolnej przestrzeni liniowej V mamy odwzorowanie liniowe $\Phi: V \to V^{**}$ (przestrzeń dualna do V^* , przestrzeń bidualna), zadane wzorem $\Phi(v)(f) = f(v)$ (dla $f \in V^*$).

Dowód. Trzeba sprawdzić że $\Phi(v)$ ∈ V^{**} , tzn. że jest addytywne i jednorodne.

Istotnie, jeżeli $\Phi(v)(f_1 + f_2) = (f_1 + f_2)(v)$, co z definicji dodawania w V^* równa się $f_1(v) + f_2(v) = \Phi(v)(f_1) + \Phi(v)(f_2)$.

Podobnie $\Phi(v)(\alpha f) = (\alpha f)(v) = \alpha(f(v)) = \alpha \Phi(v)(f)$.

Następnie musimy sprawdzić, że Φ jest liniowe.

$$\Phi(\nu_1 + \nu_2)(f) = f(\nu_1 + \nu_2) = f(\nu_1) + f(\nu_2) = \Phi(\nu_1)(f) + \Phi(\nu_2)(f)
\Phi(\alpha \nu)(f) = f(\alpha \nu) = \alpha(f(\nu)) = \alpha(\Phi(\nu)f).$$

Stwierdzenie 4.28. *Jeżeli* dim $V < \infty$, to Φ zadaje izomorfizm $V \cong V^{**}$.

Dowód. Różnowartościowość: ustalmy niezerowy $v \in V$. Wtedy v jest liniowo niezależny, rozszerza się więc do bazy $b_1 = v, b_2, \ldots, b_n$ przestrzeni V. Weźmy bazę dualną $b_1^*, \ldots, b_n^* \in V^*$.

Wtedy $\Phi(v)(b_1^*) = \Phi(b_1)(b_1^*) = b_1^*(b_1) = 1$, więc $\Phi(b_1) \neq \vec{0}$. Stąd ker $\Phi = \{0\}$, czyli Φ jest 1-1.

Skoro dim $V < \infty$, to z wcześniejszego faktu wiemy że dim $V = \dim V^*$, więc analogicznie dim $V = \dim V^* = \dim V^{**}$.

Skoro $\Phi: V \to V^{**}$ jest liniowe i 1-1 i dim $V = \dim V^{**}$, to z wniosku z twierdzenia o rzędzie wynika, że Φ jest izomorfizmem.

 $^{^6}$ Ten sam dowód pokazuje, że Φ zawsze jest różnowartościowe, ale w przypadku nieskończenie wymiarowym wymiar V^{**} jest dużo większy niż wymiar $V.^7$

 $^{^7}$ Zakładając pewnik wyboru: gdy V nie ma bazy, to Φ może nie być 1-1 i V^{**} może nie mieć tak dużego wymiaru.

Uwaga 4.29. Kiedy dim $V < \infty$, to mamy $V \cong V^*$, ale ten izomorfizm nie jest "naturalny" — intuicyjnie: zależy od wyboru bazy, a zazwyczaj nie mamy naturalnego wyboru bazy. Φ natomiast jest naturalny⁸: dla dowolnego $F: V \to W$, pamiętając że F^{**} to odwzorowanie dualne do F^* , czyli zadane wzorem $F^{**}(v^{**})(f) = v^{**}(F^*(f))$, mamy przemienny diagram:

$$V \xrightarrow{F} W$$
 $\downarrow \phi_V \qquad \downarrow \phi_W$
 $V^{**} \xrightarrow{F^{**}} W^{**},$

to znaczy dla każdego $v \in V$ mamy $\Phi_W(F(v)) = F^{**}(\Phi_V(v))$, dla dowolnego $f \in W^*$ mamy:

$$F^{**}(\Phi_V(v))(f) = \Phi_V(v)(F^*(f))$$

$$= F^*(f)(v)$$

$$= f(F(v))$$

$$= \Phi_W(F(v))(f)$$

(o tym może być więcej na konwersatorium).

⁸Nawet gdy nie jest izomorfizmem!

Rozdział 5

Macierze i układy równań

5.1 Macierze układów równań

Konwencja:

- *i j*-ty współczynnik (współrzędna) macierzy to współczynnik w *j*-tej kolumnie, w *i*-tym wierszu,
- przez I oznaczamy macierz identycznościową (rozmiaru wynikającego z kontekstu),
- a przez E_{ij} oznaczamy macierz kwadratową, ij-ta współrzędna jest równa 1, a pozostałe współrzędne są zerowe,
- mnożenie macierzy $M \in M_{n \times m}(K), N \in M_{m \times p}(K)$ odbywa się zgodnie ze wzorem podanym w ubiegłym semestrze, tzn. MN jest macierzą $n \times p$, której ij-ty współczynnik to $\sum_{k=1}^m m_{ik} n_{kj}$.
- Transpozycja macierzy $A \in M_{m \times n}(K)$ o współczynnikach (a_{ij}) to macierz $A^{\top} \in M_{n \times m}(K)$ o współczynnikach $b_{ij} = b_{ji}$. Innymi słowy transpozycja zamienia kolumny z wierszami.

Ćwiczenie 5.1. Jeżeli M jest dowolną macierzą, to $e_i^\top M e_j$ to ij-ty wyraz M. W szczególności jeżeli macierze $M, N \in M_{n \times m}(K)$ spełniają $v^\top M w = v^\top N w$ dla każdych $v \in K^m, w \in K^n$, to M = N.

Rozważamy układy równań

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n &= y_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n &= y_2 \\ \vdots a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n &= y_m \end{cases}$$
 (1)

5.1. MACIERZE UKŁADÓW RÓWNAŃ

Definicja 5.2. • a_{ij} — współczynniki,

- y_1, \ldots, y_m dane,
- $x_1, ..., x_n$ niewiadome/szukane.

Ten sam układ równań inaczej (w postaci wektorowej):

$$x_{1} \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{pmatrix} + x_{2} \begin{pmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{pmatrix} + \dots + x_{n} \begin{pmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{pmatrix} = \begin{pmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{m} \end{pmatrix}$$

$$x_{1}A_{1} + x_{2}A_{2} + \dots + x_{n}A_{n} = Y$$

$$(2)$$

Stąd widać, że rozwiązanie układu = przedstawienie Y jako kombinacji liniowej A_1, \ldots, A_n . W postaci macierzowej:

$$\overbrace{\left(A_1 \quad A_2 \quad \cdots \quad A_n\right)}^{A} \overbrace{\left(\begin{matrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{matrix}\right)}^{X} = Y,$$

w skrócie

$$AX = Y \tag{3}$$

43

Definicja 5.3. • *A* — macierz główna układu (1)

• (A|Y) — macierz rozszerzona układu (1)

Definicja 5.4. Mówimy że układ jest *jednorodny* jeżeli Y = 0.

Uwaga 5.5. Następujące warunki są równoważne:

- Układ (1) ma rozwiązanie,
- $Y \in \operatorname{Lin}(A_1, \ldots, A_n)$,
- $Lin(A_1, ..., A_n) = Lin(A_1, ..., A_n, Y),$

• $\dim \operatorname{Lin}(A_1, \dots, A_n) = \dim \operatorname{Lin}(A_1, \dots, A_n, Y).$

Definicja 5.6. RzqdA to $rkA = dim Lin(A_1, ..., A_n) = maksymalna liczba lnz układu kolumn <math>A$. $(Lin(A_1, ..., A_n)$ to $im F_A$, więc $rkA = rk F_A$.)

Z uwagi powyżej łatwo wynika następujące twierdzenie.

Twierdzenie 5.7 (Kroneckera-Capelliego). *Układ* (3) ma rozwiązanie \iff rkA = rk(A|Y)

5.2 Operacje wierszowe i kolumnowe a rząd macierzy

Definicja 5.8. *Operacje kolumnowe* na macierzach:

- (K1) Dodaj skalarną wielokrotność kolumny do innej kolumny.
- (K2) Pomnóż kolumnę przez niezerowy skalar.
- (K3) Zamień miejscami dwie kolumny.

Analogicznie definiujemy operacje wierszowe W1-3 na macierzach.

Przykład 5.9.

$$\begin{pmatrix} 3 & 5 & 1 \\ -2 & 3 & 3 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & -2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 3 & 5 - 2 \cdot 3 & 1 \\ -2 & 3 - 2 \cdot (-2) & 3 \\ 1 & 1 - 2 \cdot 1 & 0 \end{pmatrix}$$

- **Ćwiczenie 5.10.** 1. Operacja (K1) odpowiada pomnożeniu macierzy z prawej przez macierz postaci $I + \alpha E_{ij}$ (gdzie i to numer kolumny, której wielokrotność dodajemy do j-tej kolumny),
 - 2. Operacje K2-3 też odpowiadają pomnożeniu z prawej przez pewne macierze.

Operacje W1-3 odpowiadają mnożeniu przez te same macierze, tylko z lewej.

Fakt 5.11. Operacje kolumnowe K1-3 nie zmieniają obrazu $F_A: K^n \to K^m$.

Dowód. K1: Chcemy pokazać, że

im
$$F_A = V = \operatorname{Lin}(A_1, \dots, A_n) = \operatorname{Lin}(A_1, \dots, A_{i-1}, A_i + \alpha A_j, A_{i+1}, \dots, A_n) = V'.$$
Latwo zauważyć, że $V \supseteq \operatorname{Lin}(A_i, A_j) = \operatorname{Lin}(A_i + \alpha A_j, A_j) \subseteq V'.$
Stąd $A_1, \dots, A_i, \dots, A_n \in V'$, więc $V \subseteq V'$ i podobnie $V' \subseteq V$.
Dla K2 — analogicznie (ale łatwiej), dla K3 — oczywiste.

Fakt 5.12. Operacje wierszowe W1-W3 nie zmieniają jądra $F_A: K^n \to K^m$.

Dowód. W1: Niech
$$A \xrightarrow{W_1} A'$$
. Pokażemy że $\ker F_A = \ker F_{A'}$. Weźmy $X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \in K^n$ (dziedzina F_A i $F_{A'}$).

$$X \in \ker F_{A}$$

$$\updownarrow$$

$$AX = 0$$

$$\updownarrow$$

$$\begin{cases} \vdots \\ \sum_{j=1}^{n} a_{ij} x_{j} = 0 \\ \vdots \\ \sum_{j=1}^{n} a_{lj} x_{j} = 0 \end{cases}$$

$$\vdots$$

$$\vdots$$

$$\sum_{j=1}^{n} a_{lj} x_{j} = 0$$

$$\vdots$$

$$\vdots$$

$$\sum_{j=1}^{n} a_{lj} x_{j} = 0$$

$$\vdots$$

Dla W2 i W3 rozumujemy analogicznie (raczej łatwiej).

Wniosek 5.13. *Operacje wierszowe i kolumnowe nie zmieniają rzędu macierzy.*

Dowód. Ustalmy macierz $A \in M_{m \times n}(K)$.

 $\operatorname{rk} A = \operatorname{rk} F_A = \dim \operatorname{im} F_A$, więc K1-K3 oczywiście nie zmieniają $\operatorname{rk} A$, bo nie zmieniają im F_A .

Z drugiej strony dim im $F_A = \dim K^n - \dim \ker F_A = n - \dim \ker F_A$, więc jeżeli $A \xrightarrow{W1-3} A'$, to $\ker F_A = \ker F_{A'}$, czyli

$$\operatorname{rk} A = n - \dim \ker F_A = n - \dim \ker F_{A'} = \operatorname{rk} A'.$$

Przykład 5.14.

$$\begin{pmatrix}
1 & 1 & 2 & 1 \\
2 & 0 & 2 & -2 \\
3 & -1 & 2 & -5
\end{pmatrix}_{-3[1]}$$

$$\begin{pmatrix}
1 & 1 & 2 & 1 \\
0 & -2 & -2 & -4 \\
0 & -4 & -4 & -8
\end{pmatrix}_{-2[2]}$$

$$\begin{pmatrix} 1 & 1 & 2 & 1 \\ 0 & -2 & -2 & -4 \\ 0 & 0 & 0 & 0 \end{pmatrix} \cdot \left(-\frac{1}{2}\right)$$

$$\begin{pmatrix} 1 & 1 & 2 & 1 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Czyli rząd = 2

Pokażemy teraz

Twierdzenie 5.15. *Jeżeli A jest dowolną macierzą, to* rk*A jest równy maksy-malnej liczbie liniowo niezależnych* wierszy *A, czyli* rk A^{T} .

Oznaczmy roboczo:

Definicja 5.16. $\operatorname{rk}_W A = \operatorname{maksymalna} \operatorname{liczba} \operatorname{lnz} \operatorname{wierszy} A = \operatorname{rk} A^{\top}$

Ponieważ transpozycja zamienia operacje W1-3 na operacje K1-3 i vice versa, natychmiast mamy

Wniosek 5.17. $\operatorname{rk}_W A$ nie zmienia się przy W1-3 i K1-3.

Lemat 5.18. Każdą macierz można ciągiem operacji K1-3 i W1-3 sprowadzić

do macierzy postaci

Dowód. 1. Jeżeli macierz jest zerowa, to nie ma co robić.

- 2. W przeciwnym wypadku pewne $a_{i,j} \neq 0$.
- 3. Zamieniając i-ty wiersz z pierwszym i j-tą kolumnę z pierwszą, dostajemy nową macierz w której $a_{1,1} \neq 0$.
- 4. Wymnażając pierwszy wiersz przez $a_{1,1}^{-1}$ dostajemy nową macierz, w której $a_{1,1}=1$.
- 5. Odejmując od j-tego wiersza $a_{1,j}$ -wielokrotność pierwszego (dla $j=2,3,\ldots$) "czyścimy" pierwszą kolumnę.
- 6. Odejmując od i-tej kolumny $a_{i,1}$ -wielokrotność pierwszej (dla $i=2,3,\ldots$) "czyścimy" pierwszy wiersz.
- 7. To daje nam macierz następującej postaci

$$\begin{pmatrix} 1 & 0 \cdot \cdot \cdot \cdot \cdot \cdot 0 \\ 0 & & & \\ \vdots & B & \\ 0 & & & \end{pmatrix}$$

Powtarzamy procedurę dla macierzy B.

dowód twierdzenia. Weźmy dowolną macierz A, niech A' będzie macierzą uzyskaną z A jak w lemacie. Wtedy oczywiście $\operatorname{rk} A' = \operatorname{rk}_W A'$ jest liczbą jedynek na przekątnej. Z drugiej strony z Faktów wiemy, że $\operatorname{rk} A = \operatorname{rk} A'$ i $\operatorname{rk}_W A = \operatorname{rk}_W A'$, więc to kończy dowód.

5.3 Eliminacja Gaussa

Twierdzenie 5.19 (Eliminacja Gaussa). *Każdą macierz można operacjami W1, W3 sprowadzić do macierzy w* postaci schodkowej, to znaczy macierzy postaci:

$$\begin{pmatrix} 0 & & & & & \\ 0 & \cdots & & & & & \\ 0 & \cdots & & & & & \\ 0 & \cdots & \\ 0 & \cdots & & \\ 0 & \cdots &$$

Wyrazy " \neq 0" (pierwsze niezerowe w wierszach) nazywamy wyrazami wiodącymi.

Dowód. Przesuwamy się w prawo:

- 1. Zamieniając być może pierwszy wiersz z innym, możemy zagwarantować że najbardziej wysunięty na lewo niezerowy wyraz jest w pierwszym wierszu (ale jeszcze mogą być inne, równie daleko wysunięte).
- 2. Odejmując wielokrotność pierwszego wiersza od pozostałych, czyścimy odpowiednią kolumnę, tak że w żadnym innym wierszu nie ma równie daleko na lewo wysuniętego niezerowego wyrazu.
- 3. Powtarzamy procedurę w dół i na prawo od wiodącego wyrazu pierwszego wiersza.

Wniosek 5.20. Korzystając z operacji W1, W2, W3 można sprowadzić każdą macierz do zredukowanej postaci schodkowej, tzn. postaci schodkowej z wyrazami wiodącymi 1.

 $\it Dow\'od$. Oczywiste — wystarczy podzielić każdy niezerowy wiersz przez odwrotność wyrazu wiodącego. $\hfill\Box$

Jak to prowadzi do rozwiązania równania? Załóżmy że za pomocą eliminacji Gaussa sprowadziliśmy macierz rozszerzoną układu do zredukowanej postaci schodkowej. To daje macierz rozszerzoną układu równań, równoważnego wyjściowemu:

$$\begin{cases} x_{n_1} + b_{1(n_1+1)} x_{n_1+1} + \dots = y_1 \\ x_{n_2} + b_{2(n_2+1)} x_{n_2+1} + \dots = y_2 \\ & \vdots \\ x_{n_k} + b_{m(n_k+1)} x_{n_k+1} + \dots = y_k \\ 0 = y_{k+1} \\ \vdots \\ 0 = y_m \end{cases}$$

$$(4)$$

gdzie $n_1 < n_2 < ... < n_k$

Wtedy z twierdzenia Kroneckera-Capelliego (albo prosto z obserwacji powstałego układu równań) wynika, że ten układ równań (a więc i wyjściowy układ równań) ma rozwiązanie wtedy i tylko wtedy, gdy $y_{k+1} = y_{k+2} = \dots = y_m = 0$.

Zakładając że tak jest możemy uzyskać postać ogólną rozwiązań. Zmienne x_{n_j} traktujemy jako zmienne związane, a pozostałe jako zmienne wolne. Wartość zmiennych związanych wyliczamy przenosząc zmienne wolne na drugą stronę:

$$\begin{cases} x_{n_1} = y_1 - b_{1(n_1+1)} x_{n_1+1} - \dots \\ x_{n_2} = y_2 - b_{2(n_2+1)} x_{n_2+1} - \dots \\ \vdots \\ x_{n_k} = y_k - b_{m(n_m+1)} x_{n_k+1} - \dots \end{cases}$$

a następnie podstawiając za x_{n_k} w pierwszych k-1 równaniach prawą stronę ostatniego równania, za $x_{n_{k-1}}$ w pierwszych k-2 równaniach prawą stronę przedostatniego równania itd., co ostatecznie prowadzi do układu postaci jak powyżej, z tym że po prawej stronie nie występują już zmienne związane x_{n_1},\ldots,x_{n_k} .

$$\begin{cases} x_{n_1} = y_1' + c_{1(n_1+1)}x_{n_1+1} + \dots \\ x_{n_2} = y_2' + c_{2(n_2+1)}x_{n_2+1} + \dots \\ \vdots \\ x_{n_k} = y_k' + c_{m(n_m+1)}x_{n_k+1} + \dots \end{cases}$$

Przykład 5.21. Pewien układ równań zmiennych $x_1, x_2, ..., x_9$ sprowadziliśmy do zredukowanej postaci schodkowej, uzyskując układ:

$$\begin{cases} x_4 + 7x_5 - 3x_6 = 1 \\ x_6 + 2x_7 + 3x_8 = 2 \\ x_7 + 3x_8 + 4x_9 = 3 \\ 0 = 0 \end{cases}$$
 (*)

Przenosząc zmienne związane na jedną stronę:

$$\begin{cases} x_4 = 1 - 7x_5 + 3x_6 \\ x_6 = 2 - 2x_7 - 3x_8 , \\ x_7 = 3 - 3x_8 - 4x_9 \end{cases}$$

Podstawiając za x_7 , a następnie x_6 i x_4 uzyskujemy równoważny układ

$$\begin{cases} x_7 = 3 - 3x_8 - 4x_9 \\ x_6 = 2 - 2(3 - 3x_8 - 4x_9) - 3x_8 \\ = 2 - 6 + 6x_8 + 8x_9 - 3x_8 \\ = -4 + 3x_8 + 8x_9 \\ x_4 = 1 - 7x_5 + 3(-4 + 3x_8 + 8x_9) \\ = 1 - 7x_5 - 12 + 9x_8 + 24x_9 \\ = -11 - 7x_5 + 9x_8 + 24x_9 \end{cases}$$

i to jest postać ogólna rozwiązania układu (zmienne wolne $x_1, x_2, x_3, x_5, x_8, x_9$ mogą przyjmować dowolne wartości). W postaci wektorowej rozwiązanie

jest więc postaci:

Wektory
$$X_1 = e_1, X_2 = e_2, X_3 = e_3, X_4 = \begin{pmatrix} 0 \\ 0 \\ 0 \\ -7 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, X_5 = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 9 \\ 0 \\ 3 \\ -3 \\ 1 \\ 0 \end{pmatrix}, X_6 = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 24 \\ 0 \\ 8 \\ -4 \\ 0 \\ 1 \end{pmatrix}$$

stanowią fundamentalny układ rozwiązań układu jednorodnego (UJ) stowa-

rzyszonego z układem (*), a wektor
$$X_0 = \begin{pmatrix} 0 \\ 0 \\ -11 \\ 0 \\ -4 \\ 3 \\ 0 \\ 0 \end{pmatrix}$$
 jest szczególnym rozwią-

zaniem (*). Rozwiązania (*) to wszystkie sumy rozwiązania szczególnego i dowolnej kombinacji liniowej fundamentalnego układu rozwiązań:

$$X = X_0 + aX_1 + bX_2 + cX_3 + dX_4 + eX_5 + fX_6$$

gdzie a, b, c, d, e, f to dowolne skalary.

Przykład 5.22. Jak wyznaczyć obraz odwzorowania F_A zadanego macierzą A, lub innymi słowy wyznaczyć wektory $Y = (y_1, \dots, y_m)^{\top}$, dla których równanie

$$AX = Y$$

ma rozwiązanie? Patrzymy na macierz rozszerzoną (A|Y) układu powyżej z parametrami y_1, \ldots, y_m . Eliminacja Gaussa prowadzi nas do macierzy w postaci schodkowej:

$ \begin{pmatrix} 0 \cdot \cdots \cdot [\neq 0] \cdot \cdots \cdot \\ 0 \cdot \cdots \cdot [\neq 0] \cdot \cdots \cdot \end{pmatrix} $	(pewna kombinacja liniowa $y_1,, y_m$) (pewna kombinacja liniowa $y_1,, y_m$)
$ \begin{vmatrix} \vdots \\ 0 \cdots \cdots \\ 0 \cdots \cdots \\ \vdots \end{vmatrix} $	(pewna kombinacja liniowa $y_1,, y_m$) (pewna kombinacja liniowa $y_1,, y_m$)
(a	(pewna kombinacja liniowa y_1, \ldots, y_m)

W świetle twierdzenia Kroneckera-Capelliego, dla danych y_1, \ldots, y_m ten układ ma rozwiązanie dokładnie wtedy gdy ich kombinacje w wierszach, które mają zerowe współczynniki w części głównej, są zerowe. To daje nam układ równań opisujący obraz F_A .

Na przykład jeżeli dostalibyśmy macierz postaci

$$\begin{pmatrix} 0 & \cdots & \pi & \cdots & \cdots & \cdots & \\ 0 & \cdots & \sqrt{3} - \sqrt{\pi} & \cdots & \cdots & \\ 0 & \cdots & \cdots & 8 & \cdots & (\text{pewna kombinacja liniowa } y_1, \dots, y_m) \\ 0 & \cdots & \cdots & 8 & \cdots & (\text{pewna kombinacja liniowa } y_1, \dots, y_m) \\ 0 & \cdots & \cdots & \cdots & y_4 + \pi y_6 - \sqrt{7}y_23 \\ 0 & \cdots & \cdots & y_9 \end{pmatrix}$$

to układ ma rozwiązanie dokładnie wtedy gdy $y_4 + \pi y_6 - \sqrt{7}y_2 = 0 = y_9$ (i te równania opisują obraz F_A).

Słowniczek:

X jest rozwiązaniem UJ $AX=0 \iff X \in \ker F_A$ AX=Y ma rozwiązanie $\iff Y \in \operatorname{im} F_A$ Fundamentalny układ rozwiązań UJ $AX=0 = \operatorname{baza} \ker F_A$ rozwiązanie szczególne X_0 równania $AX=Y = X_0 \in F_A^{-1}\{Y\}$

Przykład 5.23. Mając dane liniowo niezależne wektory $X_1, X_2, \ldots, X_k \in K^n$, jak znaleźć układ równań, którego to jest fundamentalny układ rozwiązań? Szukamy macierzy A takiej że $AX_1, AX_2, \ldots, AX_k = 0$. Jeżeli wiersze A to A_1, A_2, \ldots, A_m , to znaczy że $A_i X_j = 0$ dla $i = 1, \ldots, m$ i $j = 1, \ldots, k$. Transponując, dostajemy równania $X_j^{\top} A_i^{\top}$, a więc A_i^{\top} mają być rozwiązaniami jednorodnego układu równań

$$BY = 0$$
.

gdzie $B = (X_1 X_2 X_3 \dots X_k)^{\top}$. Rząd B to k (bo X_1, \dots, X_k są liniowo niezależne). Macierz B ma szerokość n (więc to jest wymiar dziedziny F_B), więc z twierdzenia o rzędzie dim ker $F_B = n - k$.

Fundamentalny układ rozwiązań BY=0 składa się z liniowo niezależnych wektorów Y_1,\ldots,Y_{n-k} . Macierz $A=(Y_1\ldots Y_{n-k})^{\top}$ spełnia $AX_j=0$ dla każdego j. Ponadto jej rząd to n-k (bo wiersze są liniowo niezależne), a szerokość to n (bo szerokość = długość $Y_i=$ szerokość B), więc dim ker $F_A=n-(n-k)=k$, więc X_1,\ldots,X_k jest bazą ker F_A , czyli fundamentalnym układem rozwiązań AX=0.

Przykład 5.24. Weźmy liniowo niezależne wektory $(1,1,0,0)^{T}$, $(3,1,-1,1)^{T} \in \mathbb{R}^{4}$. Szukamy układu równań, którego to jest fundamentalny układ rozwiązań. Rozważamy więc równanie jednorodne

$$\begin{pmatrix} 1 & 1 & 0 & 0 \\ 3 & 1 & -1 & 1 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{pmatrix} = 0.$$

Eliminacja Gaussa macierzy powyższego układu daje macierz

$$\begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & \frac{1}{2} & -\frac{1}{2} \end{pmatrix}$$

Stąd równoważnie mamy $y_2 = \frac{y_4 - y_3}{2}$, $y_1 = -y_2 = \frac{y_3 - y_4}{2}$, więc rozwiązania są zadane równaniem $y_3(\frac{1}{2}, -\frac{1}{2}, 1, 0)^{\top} + y_4(-\frac{1}{2}, \frac{1}{2}, 0, 1)^{\top}$ i wektory $(\frac{1}{2}, -\frac{1}{2}, 1, 0)^{\top}, (-\frac{1}{2}, \frac{1}{2}, 0, 1)^{\top}$ stanowią fundamentalny układ rozwiązań.

Stąd szukany układ jednorodny ma macierz główną $\begin{pmatrix} \frac{1}{2} & -\frac{1}{2} & 1 & 0 \\ -\frac{1}{2} & \frac{1}{2} & 0 & 1 \end{pmatrix}$, czyli jest układem

$$\begin{cases} \frac{1}{2}x_1 - \frac{1}{2}x_2 + x_3 = 0\\ -\frac{1}{2}x_2 + \frac{1}{2}x_2 + x_4 = 0. \end{cases}$$

Podsumowanie

Uwaga 5.25. Metoda eliminacji Gaussa daje, dla danego układu równań liniowych postaci AX = Y:

paramateryzację zbioru rozwiązań postaci

$$X = X_0 + t_1 X_1 + \ldots + t_l X_l$$

z minimalną liczbą parametrów,

• opis obrazu F_A przy użyciu minimalnej możliwej liczby równań liniowych.

Dowód. Załóżmy że A jest wysokości m, szerokości n. Eliminacja Gaussa (A|Y) prowadzi do (S|Y'), gdzie S jest macierzą schodkową o s schodkach. Wtedy rk $A = \operatorname{rk} S = s$.

- Jest *n* zmiennych, z których *s* zmiennych jest związanych.
- Jest n-s zmiennych wolnych, czyli l=n-s parametrów w rozwiązaniu ogólnym. Ale (z twierdzenia o indeksie) dim $\ker F_A=\dim n-\dim \operatorname{im} F_A=n-s=l$; stąd więc zbiór rozwiązań jest warstwą l-wymiarowej podprzestrzeni K^m , skąd wynika pierwszy punkt.

• $\operatorname{im} F_A = \{ Y \in K^m \mid BY = 0 \}$. Ile wierszy może mieć *B*?

$$F_B: K^m \to K^k \quad k = ?$$

 $s=\dim \operatorname{im} F_A=\dim \ker F_B=m-\dim \operatorname{im} F_B\geq m-k$, czyli $k\geq m-s$. Ale eliminacja Gaussa dostarcza dokładnie m-s równań opisujących im F_A .

Uwaga 5.26. Jeżeli zobaczymy co eliminacja Gaussa robi z układem równań liniowych (zadanym daną macierzą), to łatwo zobaczyć, że jest to w istocie (tylko nieco usystematyzowana) zupełnie szkolna metoda — wyliczamy kolejne zmienne z pozostałych, korzystając z kolejnych równań.

Uwaga 5.27. W szczególności jeżeli $X_1, X_2, ..., X_s$ są dowolnymi liniowo niezależnymi wektorami, to biorąc macierz $C = (X_1, X_2, ..., X_s)$ otrzymujemy opis $\text{Lin}(X_1, X_2, ..., X_s) = \text{im } F_C$ za pomocą (minimalnego) układu równań (równoważnie, jako zbioru rozwiązań równania postaci AX = 0).

Uwaga 5.28. Mamy też konkurencyjny sposób znalezienia tego układu równań: dla danego układu $X_1, X_2, \dots, X_s \in K^n$ lnz wektorów, możemy rozważyć macierz $B = (X_1, X_2, \dots, X_s)^\top = C^\top$. Ma ona wysokość i rząd s (bo jej wiersze są lnz) i szerokość n.

Postępując jak powyżej, znajdujemy liniowo niezależne wektory $Y_1, Y_2, ..., Y_{n-s}$ rozpinające $\ker F_B$ (bo $\dim \ker F_B = n - \operatorname{rk} B = n - s$). Zauważmy że wektory Y_i spełniają $X_i^{\top}Y_i = 0$ (dla każdych i, j).

Łatwo sprawdzić, że $A = (Y_1, Y_2, ..., Y_{n-s})^{\top}$ jest macierzą szerokości n, wysokości i rzędu n-s i spełnia $AX_i = 0$ dla każdego i (ponieważ $X_i^{\top}Y_j = 0$), czyli $X_i \in \ker F_A$.

Ponieważ rkA = n - s, dim ker $F_A = n - s$, czyli wektory X_1, \dots, X_s są fundamentalnym układem rozwiązań AX = 0, tj. bazą ker F_A .

Gdyby A' była macierzą $n \times m$, gdzie m < n - s, to dim im $A' \le m < n - s$, a więc dim ker $A' \ge n - m > n - (n - s) = s$, a więc Lin (X_1, \ldots, X_n) nie mógłby być zbiorem rozwiązań A'X = 0. Stąd A faktycznie daje minimalny układ równań o zadanej własności.

Ćwiczenie 5.29. Używając uwag powyżej, dla dowolnego wektora X_0 i lnz układu $X_1, X_2, \ldots, X_s \in K^n$, możemy wyprodukować podobnie optymalny opis warstwy $X_0 + \text{Lin}(X_1, X_2, \ldots, X_n)$ jako zbioru rozwiązań równania AX = Y/niejednorodnego układu równań.

Uwaga 5.30. Powyższe konstrukcje działają też wtedy, gdy wektory X_1, \ldots, X_s nie są liniowo niezależne — jednak wtedy macierz A ma wysokość n — $\dim \text{Lin}(X_1, \ldots, X_s) > n - s$. Wynika to np. z tego, ze macierz B będzie miała odpowiednio mniejszy rząd.

5.4 Macierze przekształceń liniowych

Metody które mamy pozwalają nam wyznaczyć obraz i jądro odwzorowania $K^n \to K^m$ zadanego macierzą A, jak również przeciwobraz wektora $Y \in K^m$ przez takie odwzorowanie.

Ale co gdy mamy dowolne (skończenie wymiarowe) V i W oraz odwzorowanie liniowe $F: V \rightarrow W$?

Możemy wybrać bazy V i W i utożsamić V i W z $K^{\dim V}$ i $K^{\dim W}$.

Przykład 5.31. $V = \{P \in \mathbf{R}_2[X] \mid P'(-1) = 0\}, W = \mathbf{R}_1[X], F(P) = P' + P(1)X.$

Czym jest $F^{-1}{X + 1}$ (czyli zbiór rozwiązań równania niejednorodnego F(P) = X + 1)?

 $\dim V = 2 = \dim W$, przykładowa baza $V\colon 1, X^2 + 2X.$ Przykładowa baza $W\colon 1, X.$

$$V \xrightarrow{F} W$$

$$a+b(X^{2}+2X)\mapsto(a,b) \downarrow \qquad \downarrow c+dX\mapsto(c,d)$$

$$\mathbf{R}^{2} \xrightarrow{\left(\begin{array}{c} ? & ? \\ ? & ? \end{array}\right)} \mathbf{R}^{2}$$

Szukamy macierzy pasującej do diagramu.

 $F(a+b(X^2+2X)) = F(bX^2+2bX+a) = 2bX+2b+(b+2b+a)X = 2b+(a+5b)X$, czyli mamy

$$V \xrightarrow{F} W$$

$$a+b(X^{2}+2X)\mapsto (a,b) \downarrow \qquad \downarrow c+dX\mapsto (c,d)$$

$$\mathbf{R}^{2} \xrightarrow{\begin{pmatrix} 0 & 2 \\ 1 & 5 \end{pmatrix}} \mathbf{R}^{2}$$

Szukamy rozwiązania F(P) = X + 1, czyli w naszym tłumaczeniu

$$\begin{pmatrix} 0 & 2 \\ 1 & 5 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = [X+1](1,X) = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

to znaczy:

$$\begin{cases} 2b = 1\\ a + 5b = 1 \end{cases}$$

czyli $b=\frac{1}{2},~a=1-5b=-\frac{3}{2},$ a więc jedyne rozwiązanie to $P=a+b(X^2+2X)=\frac{1}{2}X^2+X-\frac{3}{2}.$

Ogólnie: jeżeli $B = (b_1, ..., b_n)$ to baza V, a $C = (c_1, ..., c_m)$ to baza W, a $F: V \to W$ jest odwzorowaniem liniowym, to mamy

Dla $v = \sum_i \beta_i b_i$ mamy $F(v) = \sum_i \beta_i F(b_i)$. Zapisujemy $F(b_i) = \sum_j a_{ji} c_j$. Wtedy

$$F(v) = \sum_{i} \beta_{i} F(b_{i}) = \sum_{i} \beta_{i} \sum_{j} a_{ji} c_{j} = \sum_{j} \left(\sum_{i} a_{ji} \beta_{i} \right) c_{j}$$

(Na końcu zmieniona kolejność sumowania!) Mamy więc

$$\begin{array}{ccc}
\nu & \longmapsto & F(\nu) \\
\uparrow & & \uparrow \\
\begin{pmatrix} \beta_1 \\ \vdots \\ \beta_n \end{pmatrix} & \longmapsto \begin{pmatrix} \sum_i a_{1i} \beta_i \\ \vdots \\ \sum_i a_{mi} \beta_i \end{pmatrix} = \underbrace{\qquad} A \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_n \end{pmatrix},$$

gdzie $A = (a_{ii})$. Zauważmy że *i*-ta kolumna macierzy A to dokładnie $[F(b_i)]_C$.

Definicja 5.32. Macierz A jak powyżej nazywamy macierzą przekształcenia F względem baz B i C, oznaczamy $m_C^B(F)$ (ale czasami też niestety $m_{BC}(F)$, $m_{CB}(F),...?).$

(i-ta kolumna $m_C^B(F)$ to $[F(b_i)]_C$.)

Innymi słowy, $m_C^B(F)$ to taka macierz, że poniższy diagram jest przemienny (komutuje)

$$V \xrightarrow{F} W$$

$$\downarrow^{[\cdot]_B} \qquad \downarrow^{[\cdot]_C}$$

$$K^n \xrightarrow{m_C^B(F)} K^m,$$

to znaczy $[F(v)]_C = m_C^B(F)[v]_B$ (mnemotechnika: B się "skraca"). Jeszcze inaczej, $m_C^B(F)$ oznacza takie przekształcenie $K^n \to K^m$: weź współrzędne $[v]_B$ dla pewnego v, policz F(v), a następnie odczytaj jego współrzędne $[F(v)]_C$.

Uwaga 5.33. Jeżeli B, C są bazami V i W i A jest macierzą odpowiedniego rozmiaru, to istnieje (jedyne) takie $F: V \to W$, że $A = m_C^B(F)$: z diagramu powyżej widzimy, że musi być $F = [\cdot]_C^{-1} \circ F_A \circ [\cdot]_B$.

Innymi słowy, dana macierz zadaje jedyne przekształcenie $V \rightarrow W$ (względem ustalonych baz V,W), czyli dla każdego wyboru baz B,C, funkcja $F \mapsto m_C^B(F)$ jest bijekcją:

$$m_C^B: \operatorname{Hom}(V, W) \to \operatorname{M}_{\dim W \times \dim V}(K).$$

(A nawet izomorfizmem liniowym!)

Przykład 5.34. Jeszcze raz ten sam przykład.

$$m_C^B(F) = \begin{pmatrix} 0 & 2 \\ 1 & 5 \end{pmatrix}$$
. $F(b_1) = F(1) = 0 + 1 \cdot X = X = 0 \cdot 0 + 1 \cdot X$, $F(b_2) = F(X^2 + 2X) = 2X + 2 + 3 \cdot X = 5X + 2 = 2 \cdot 1 + 5 \cdot X$: więc faktycznie, kolumny $m_C^B(F)$ to współrzędne w bazie C obrazów wektorów z bazy B .

A co, gdy chcemy zamiast B wziąć inna bazę, np.: $B' = (X^2 + 2X + 3, 1)$ (czyli chcemy policzyć $m_C^{B'}(F)$)?

Twierdzenie 5.35. Załóżmy że mamy

$$Z \leftarrow_G W \leftarrow_F V$$

$$D \qquad C \qquad B \qquad (bazy)$$

Wtedy $m_D^B(G \circ F) = m_D^C(G) \cdot m_C^B(F)$. (Mnemotechnika: C się skraca!)

Dowód. i-ta kolumna $m_D^B(G \circ F)$ to

$$[(G \circ F)(b_i)]_D = [G(F(b_i))]_D = m_D^C(G)[F(b_i)]_C,$$

a $[F(b_i)]_C$ to i-ta kolumna $m_C^B(F)$. Ale to daje tezę (narysuj schemat mnożenia $m_D^C(G)$ i $m_C^B(F)$ żeby się przekonać!).

Przykład 5.36. Ciąg dalszy.

$$W \leftarrow_F V \leftarrow_{\mathrm{id}_V} V$$

B

B'

C

Znamy $m_C^B(F) = \begin{pmatrix} 0 & 2 \\ 1 & 5 \end{pmatrix}$. Czym jest $m_B^{B'}(\mathrm{id}_V)$? Kolumny=wektory bazy B' w bazie B, czyli $X^2 + 2X + 3 = 3 \cdot 1 + 1 \cdot (X^2 + 2X)$, $1 = 1 \cdot 1 + 0 \cdot (X^2 + 2X)$, więc $m_B^{B'}(\mathrm{id}_V) = \begin{pmatrix} 3 & 1 \\ 1 & 0 \end{pmatrix}$, czyli

$$m_C^{B'}(F) = m_C^B(F) \cdot m_B^{B'}(id_V) = \begin{pmatrix} 0 & 2 \\ 1 & 5 \end{pmatrix} \begin{pmatrix} 3 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 8 & 1 \end{pmatrix}.$$

Definicja 5.37. Dla $F: V \to V$ (czyli endomorfizmu V) oznaczamy $m_B(F) := m_B^B(F)$.

Przykład 5.38. Mamy $F: V \to V$ i bazy B, C przestrzeni V. Jak policzyć $m_C(F)$, znając $m_B(F)$? Ponieważ $F = \operatorname{id}_V \circ F \circ \operatorname{id}_V$, mamy:

$$m_C(F) = m_C^C(F) = m_C^B(\mathrm{id}_V) \cdot m_B^B(F) \cdot m_B^C(\mathrm{id}_V) = m_C^B(\mathrm{id}_V) \cdot m_B(F) \cdot m_B^C(\mathrm{id}_V).$$

Uwaga 5.39. Jeżeli B, C są bazami V i $v \in V$, to $[v]_C = m_C^B(\mathrm{id}_V)[v]_B$. (B się skraca!)

5.5 Odwracalność macierzy

Definicja 5.40. Mówimy że $A \in M_{m \times n}(K)$ jest *odwracalna* jeżeli istnieje $B \in M_{n \times m}(K)$ (*macierz odwrotna do A*) taka że $AB = I_m$ i $BA = I_n$.

Taka macierz, o ile istnieje, jest jedyna, i oznaczamy ją przez A^{-1} . (Dowód: jeżeli B, B' są takie, to $B' = B'I_m = B'AB = I_nB = B$.)

Fakt 5.41. $m_B^C(id)^{-1} = m_C^B(id)$.

Dowód. $m_R^C(\mathrm{id}) \cdot m_C^B(\mathrm{id}) = m_R^B(\mathrm{id} \circ \mathrm{id}) = m_R^B(\mathrm{id}) = \mathrm{I}$ i podobnie odwrotnie. \square

Wniosek 5.42. *Jeżeli F* \in End(*V*) *i B, C są bazami V, to zachodzi wzór:*

$$m_C(F) = m_C^B(\text{id}) m_B(F) m_C^B(\text{id})^{-1}$$

= $P m_B(F) P^{-1}$
= $m_B^C(\text{id})^{-1} m_B(F) m_B^C(\text{id})$,

gdzie $P = m_C^B(id)$ (macierz przejścia z bazy B do bazy C, macierz wektorów "starej" bazy B w "nowej" bazie C).

Jak liczyć A^{-1} ?

Pierwszy sposób¹: eliminacja Gaussa. Zauważmy że $AX = Y \iff X = A^{-1}Y$.

Wychodząc od (A|I) przez operacje W1–W3 uzyskujemy $(I|A^{-1})$, co w języku układów równań oznacza przejście między równoważnymi układami równań:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n &= y_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n &= y_2 \\ \vdots & & & \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n &= y_n \end{cases} \begin{cases} x_1 &= a_{11}^{-1}y_1 + \dots \\ x_2 &= -a_{11}^{-1}a_{21}y_1 + \dots \\ \vdots & & \\ x_n &= \dots \end{cases}$$

Jeżeli to się nie uda, to dojdziemy do postaci schodkowej o liczbie schodków po lewej stronie mniejszej niż liczba wierszy (lub kolumn), to znaczy że rkA jest mniejszy niż liczba jej wierszy (lub kolumn). Przekonamy się wkrótce, że wtedy A^{-1} nie istnieje.

¹Drugi sposób będzie trochę później.

Przykład 5.43. • $\begin{pmatrix} 1 & 2 & 1 & 0 \\ 2 & 4 & 0 & 1 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & 2 & 1 & 0 \\ 0 & 0 & -2 & 1 \end{pmatrix}$: nie ma macierzy odwrotnej

•
$$\begin{pmatrix} 1 & 2 & 1 & 0 \\ 3 & 4 & 0 & 1 \end{pmatrix}$$
 \longrightarrow $\begin{pmatrix} 1 & 2 & 1 & 0 \\ 0 & -2 & -3 & 1 \end{pmatrix}$ \longrightarrow $\begin{pmatrix} 1 & 0 & -2 & 1 \\ 0 & -2 & -3 & 1 \end{pmatrix}$ \longrightarrow $\begin{pmatrix} 1 & 0 & -2 & 1 \\ 0 & 1 & \frac{3}{2} & -\frac{1}{2} \end{pmatrix}$

Przykład 5.44. $E = (e_1, e_2), B = \left(\binom{1}{3}, \binom{2}{4} \right)$ — bazy \mathbb{R}^2 . $F : \mathbb{R}^2 \to \mathbb{R}^2$,

$$m_E(F) = \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}.$$

Wtedy

$$m_B(F) = m_B^E(\mathrm{id}) m_E(F) m_E^B(\mathrm{id}).$$

Oczywiście $m_E^B(\mathrm{id}) = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ i $m_E^B(\mathrm{id}) = m_E^B(\mathrm{id})^{-1} = \begin{pmatrix} -2 & 1 \\ \frac{3}{2} & -\frac{1}{2} \end{pmatrix}$, czyli

$$m_B(F) = \begin{pmatrix} -2 & 1 \\ \frac{3}{2} & -\frac{1}{2} \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \dots$$

Definicja 5.45. $F: V \to W$ nazywamy odwracalnym jeżeli istnieje takie liniowe $G: W \to V$, że $F \circ G = \mathrm{id}_W$ i $G \circ F = \mathrm{id}_V$.

Takie G (gdy istnieje) jest jedyne i oznaczamy je F^{-1} (dowód jak dla macierzy).

Ćwiczenie 5.46. F jest odwracalne \iff F izomorfizmem. (To wiemy z ćwiczeń.)

Wniosek 5.47. *Jeżeli F* : $V \rightarrow W$ *jest odwracalne, to* dim $V = \dim W$.

Fakt 5.48. Niech $F: V \to W$ — liniowe, a B, C to bazy V i W. Wtedy F jest odwracalne $\iff m_C^B(F)$ jest odwracalna.

Dowód. Jeżeli F jest odwracalne i $G=F^{-1}$, to $m_B^C(G)$ jest odwrotna do $m_C^B(F)$:

$$I = m_B^B(\mathrm{id}_V) = m_B^B(G \circ F) = m_B^C(G)m_B^C(F)$$

i podobnie w odwrotnej kolejności.

Jeżeli $m_C^B(F)$ jest odwracalna, to weźmy $G: W \to V$ takie że $m_B^C(G) = m_C^B(F)^{-1}$. Dalej rachunek jak wyżej (tylko czytany od końca).

Z tego faktu i z twierdzenia o indeksie otrzymujemy:

Wniosek 5.49. Macierz A jest odwracalna \iff A jest kwadratowa i rkA równa się liczbie jej kolumn/wierszy.

Fakt 5.50. *1.* $rk(AB) \le rkA$,

- 2. $\operatorname{rk}(AB) \leq \operatorname{rk} B$,
- 3. jeżeli A jest odwracalna, to rk(AB) = rk B,
- 4. jeżeli B jest odwracalna, to rk(AB) = rkA.

Dowód. Rząd = wymiar obrazu.

- 1. $\operatorname{im}(F_A \circ F_B) \subseteq \operatorname{im} F_A$,
- 2. $\operatorname{rk}(AB) = \operatorname{rk}(AB)^{\top} = \operatorname{rk}(B^{\top}A^{\top}) \le \operatorname{rk}B^{\top} = \operatorname{rk}B$
- 3. wiemy że $\operatorname{rk}(AB) \le \operatorname{rk} B$. $\operatorname{rk} B = \operatorname{rk} A^{-1} AB = \operatorname{rk} (A^{-1} (AB)) \le \operatorname{rk} (AB).$
- 4. $\operatorname{rk} A = \operatorname{rk}((AB)B^{-1}) \le \operatorname{rk}(AB)$

Rozdział 6

Wyznacznik

6.1 Permutacje i definicja wyznacznika

Przykład 6.1. Wyznacznik det: $\mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ jest funkcją

- dwuliniową, tzn. przy ustalonym X_2 , funkcja $det(X_1, X_2)$ jest liniowa w X_1 i podobnie przy ustalonym X_1 ;
- antysymetryczną, tzn. $det(X_1, X_2) = -det(X_2, X_1)$

Przykład 6.2. Podobnie wyznacznik det: $(R^3)^3 \rightarrow R$ jest:

- trójliniowy (gdy ustalimy dwa z X_1, X_2, X_3 , to det (X_1, X_2, X_3) jest liniowy jako funkcja trzeciego wektora),
- antysymetryczny: jeżeli zamienimy ze sobą miejscami dwa argumenty, to znak $det(X_1, X_2, X_3)$ się zmieni.

Uwaga 6.3. Obydwa wyznaczniki są *alternujące*, tzn. zerują się, jeżeli któreś dwa argumenty są równe (a nawet wtedy, kiedy argumenty są tylko liniowo zależne).

Chcemy uogólnić pojęcie wyznacznika na dowolne $(K^n)^n$. Problem: wyznaczyć wszystkie funkcje $d: (K^n)^n \to K$, które są:

- n-liniowe: przy jeżeli ustalimy dowolne n-1 argumentów funkcji $d(X_1, X_2, ..., X_n)$, to uzyskana funkcja $K^n \to K$ jest liniowa.
- alternujące: jeżeli $X_i = X_j$ dla pewnych $i \neq j$, to $d(X_1, X_2, \dots, X_n) = 0$.

Uwaga 6.4. Jeżeli char $K \neq 2$ (tzn. $1+1 \neq 0$ w K), to n-liniowe d jest alternujące \iff jest antysymetryczne (zmienia znak, jeżeli zamienimy miejscami dwa argumenty). 1

Dowód. Załóżmy że d jest n-liniowa i alternująca. Pokażemy że $d(X_1, X_2, X_3, ...) = -d(X_2, X_1, X_3, ...)$.

To jest równoważne $d(X_1, X_2, X_3, ...) + d(X_2, X_1, X_3, ...) = 0$. Z alternowania wiemy, że $d(X_1, X_1, X_3, ...) = d(X_2, X_2, X_3, ...) = 0$, możemy więc dodać to do lewej strony, co daje równoważną nierówność

$$0 = d(X_1, X_2, X_3, ...) + + d(X_2, X_1, X_3, ...) + + d(X_1, X_1, X_3, ...) + + d(X_2, X_2, X_3, ...) = d(X_1 + X_2, X_2, X_3, ...) + + d(X_1 + X_2, X_1, X_3, ...) = d(X_1 + X_2, X_1 + X_2, X_3, ...).$$

Ta ostatnia wartość jest zerowa z alternowania.

W drugą stronę, równość $d(X_1,X_1,X_3,\ldots)=-d(X_1,X_1,X_3,\ldots)$ (wynikająca z antysymetryczności) implikuje $2d(X_1,X_1,X_3,\ldots)=0$ i (gdy char $K\neq 2$) możemy podzielić stronami przez 2. 2

 $^{^{1}}$ Jeżeli char K=2, to alternowanie implikuje antysymetryczność (równoważnie: symetryczność, bo jeżeli 1+1=0, to -1=1, czyli $-\alpha=(-1)\alpha=1\alpha=\alpha$), ale nie odwrotnie.

²Dla $K = \mathbb{F}_2 = \{0, 1\}$ i n = 2 funkcja $f\left(\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}\right) = x_1y_1 + x_2y_2$ jest antysymetryczna, ale nie alternująca.

Wracamy do problemu. Weźmy $A_1, A_2, ..., A_n \in K^n$. Wtedy

$$\begin{split} d(A_1,A_2,\ldots) &= d\left(\sum_{i_1=1}^n a_{i_11}e_{i_1},\sum_{i_2=1}^n a_{i_22}e_{i_2},\ldots,\sum_{i_n=1}^n a_{i_nn}e_{i_n}\right) \\ &= \sum_{i_1=1}^n a_{i_1i}d\left(e_{i_1},\sum_{i_2=1}^n a_{i_22}e_{i_2},\ldots,\sum_{i_n=1}^n a_{i_nn}e_{i_n}\right) \\ &= \sum_{i_1,i_2,\ldots,i_n=1}^n a_{i_11}a_{i_22}\cdots a_{i_nn}d(e_{i_1},e_{i_2},\ldots,e_{i_n}) \\ &= \sum_{i_1,i_2,\ldots,i_n \text{ parami rożne}} a_{i_11}a_{i_22}\cdots a_{i_nn}d(e_{i_1},e_{i_2},\ldots,e_{i_n}) \\ &= \sum_{\sigma \text{ permutacja } C\{1,\ldots,n\}} a_{\sigma(1)1}\cdots a_{\sigma(n)n}d(e_{\sigma(1)},\ldots,e_{\sigma(n)}) \end{split}$$

Ciąg i_1, i_2, \ldots, i_n odpowiada permutacji $\{1, 2, \ldots, n\}$ zadanej przez $\sigma(j) = i_j$.

Zbiór permutacji (bijekcji w siebie) zbioru $\{1, ..., n\}$ oznaczamy S_n , ma on oczywiście n! elementów.

Z antysymetryczności wynika że $d(e_{\sigma(1)},\ldots,e_{\sigma(n)})=\pm d(e_1,\ldots,e_n)$. Od czego zależy znak?

Przykład 6.5.

$$\begin{split} d(e_3,e_4,e_2,e_1) &= -d(e_3,e_4,e_1,e_2) \\ &= d(e_3,e_1,e_4,e_2) \\ &= -d(e_1,e_3,e_4,e_2) \\ &= d(e_1,e_3,e_2,e_4) \\ &= -d(e_1,e_2,e_3,e_4) \end{split}$$

Notacja: permutacje $\sigma \in S_n$ (=bijekcje $\{1, 2, ..., n\} \cap$) można reprezentować w postaci tabelki, tj. następujący sposób:

$$\begin{pmatrix} 1 & 2 & \dots & n \\ \sigma(1) & \sigma(2) & \dots & \sigma(n) \end{pmatrix}$$

Ponadto dla $i \neq j \in \{1,...,n\}$ oznaczamy przez (i,j) *transpozycję* i i j, tzn. permutację zamieniającą i i j miejscami (i nie ruszającą innych punktów),

tzn. następującą permutację:

$$(i,j)(k) = \begin{cases} j & k=i\\ i & k=j\\ k & k \neq i, j \end{cases}$$

Podobnie dla parami różnych $i_1, i_2, ..., i_k$ przez $(i_1, i_2, i_3, ..., i_k)$ oznaczamy cykl, tj. permutację przekształcającą i_1 na i_2 , i_2 na i_3 itd., aż do i_k , które jest przekształcane na i_1 (pozostałe liczby nie są ruszane).

Składanie permutacji zapisujemy pisząc funkcje obok siebie (nie piszemy °).

Przykład 6.6.

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 5 & 1 & 3 & 4 \end{pmatrix} = (1, 2, 5, 4, 3) = (1, 3)(1, 4)(1, 5)(1, 2)$$

Istotnie,

$$(1,3)(1,4)(1,5)(1,2)(1) = (1,3)(1,4)(1,5)(2) = 2$$

 $(1,3)(1,4)(1,5)(1,2)(2) = (1,3)(1,4)(1,5)(1) = (1,3)(1,4)(5) = 5$
 $(1,3)(1,4)(1,5)(1,2)(3) = (1,3)(3) = 1$
 $(1,3)(1,4)(1,5)(1,2)(4) = (1,3)(1,4)(4) = (1,3)(1) = 3$
 $(1,3)(1,4)(1,5)(1,2)(5) = (1,3)(1,4)(1,5)(5) = (1,3)(1,4)(1) = (1,3)(4) = 4$

Ćwiczenie 6.7. Każda permutację można przedstawić w każdej z postaci:

- 1. iloczynu transpozycji postaci (i, i + 1),
- 2. iloczynu rozłącznych cykli.

Definicja 6.8. 1. Liczba inwersji (nieporządków) permutacji $\sigma \in S_n$ to:

liczba liczb >1 występujących przed 1+ +liczba liczb >2 występujących przed 2+

. . .

+liczba liczb > n występujących przed n = liczba par (i, j)takich że i < j ale $\sigma(i) > \sigma(j)$.

(Równoważnie: "liczba skrzyżowań" — patrz przykład poniżej.)

- 2. parę (i, j) (lub $\{i, j\}$) taką jak po ostatniej równości powyżej nazywamy nieporządkiem lub inwersją permutacji σ .
- 3. znak permutacji σ to $sgn(\sigma) = (-1)^{liczba \text{ inwersji } \sigma}$.

Przykład 6.9. Chcemy policzyć znak i liczbę inwersji permutacji $\sigma = (1,2,3)(2,3)(6,1)(7,8,9) \in S_9$.

Chcemy przedstawić najpierw σ w postaci tabelkowej:

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ ? & ? & ? & ? & ? & ? & ? & ? \end{pmatrix}$$

Wyliczając wartości na kolejnych liczbach łatwo dochodzimy do tego, że

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 6 & 1 & 3 & 4 & 5 & 2 & 8 & 9 & 7 \end{pmatrix}.$$

Następnie łączymy ze sobą liniami wystąpienia każdej liczby na dole i na górze:

Każda inwersja jest reprezentowana przez skrzyżowanie linii (uwaga: skrzyżowania na rysunkach mogą się pokrywać, trzeba je liczyć dla każdej pary linii osobno).

Widać, że mamy 10 inwersji i $sgn(\sigma) = (-1)^{10} = 1$.

Wniosek 6.10.
$$d(e_{\sigma(1)},\ldots,e_{\sigma(n)}) = \operatorname{sgn}(\sigma)d(e_1,\ldots,e_n)$$
, więc

$$d(A_1, A_2, \ldots) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) a_{\sigma(1)1} \cdots a_{\sigma(n)n} d(e_1, \ldots, e_n).$$

Dowód. Z rachunku wykonanego wcześniej wynika, że druga część łatwo wynika z pierwszej.

Załóżmy że $\sigma(i) = 1$. Wtedy i-1 to liczba liczb > 1 występujących przed 1.

$$\begin{split} d(e_{\sigma(1)},\dots,e_{\sigma(n)}) &= d(e_{\sigma(1)},\dots,e_{\sigma(i-1)},e_1,e_{\sigma(i+1)},\dots,e_{\sigma(n)}) \\ &= -d(e_{\sigma(1)},\dots,e_{\sigma(i-2)},e_1,e_{\sigma(i-1)},e_{\sigma(i+1)}\dots,e_{\sigma(n)}) \\ &\vdots \\ &= (-1)^{i-1}d(e_1,e_{\sigma(1)},\dots,e_{\sigma(i-1)},e_{\sigma(i+1)},\dots,e_{\sigma(n)}) \end{split}$$

Następnie postępujemy indukcyjnie: przesuwamy 2 w lewo, następnie 3 itd. Łączna liczba kroków (zmian znaku) jest równa liczbie inwersji w σ , co daje wzór, który chcieliśmy uzyskać.

Definicja 6.11. *Wyznacznik* wektorów $A_1, ..., A_n \in K^n$ to

$$\det(A_1, A_2, \dots, A_n) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) a_{\sigma(1)1} \cdots a_{\sigma(n)n},$$

gdzie $A_i = \sum_{j=1}^n a_{ji} e_j$ (Tzn. jak wyżej, dla $\det(e_1,\dots,e_n) = 1.)$

Wniosek 6.12. Każda alternująca, n-liniowa funkcja $d: K^n \to K$ jest postaci $c \cdot \det (gdzie \ c = d(e_1, e_2, \dots, e_n)).$

Pozostaje sprawdzić, że det zadany powyższym wzorem jest n-liniowy i alternujący. (Gdyby nie był, to by znaczyło, że jedyna n-liniowa funkcja alternująca na $(K^n)^n$ to funkcja zerowa). Wpierw udowodnimy lemat.

Lemat 6.13. Ustalmy permutację $\sigma = (\sigma(1), ..., \sigma(n))$ i $j < k \le n$. Niech $\bar{\sigma}$ będzie permutacją powstałą $z \sigma$ przez zamianę $\sigma(j)$ i $\sigma(k)$, tzn.

$$\bar{\sigma}(i) = \begin{cases} \sigma(i) & i \neq j, k \\ \sigma(j) & i = k \\ \sigma(k) & i = j. \end{cases}$$

(Innymi słowy, $\bar{\sigma} = \sigma(j, k)$.) Wtedy $sgn(\sigma) = -sgn(\bar{\sigma})$.

Dowód. Weźmy dowolną parę indeksów $i_1 < i_2 \le n$. Badamy, czy jest ona inwersją σ i $\bar{\sigma}$.

• jeżeli $i_1 = j, i_2 = k$, to

(ubywa lub przybywa 1 inwersja, parzystość liczby inwersji się *zmienia*),

• jeżeli $i_1, i_2 \neq j, k$, to

$$(i_1,i_2)$$
 jest inwersją $\bar{\sigma} \iff \bar{\sigma}(i_1) > \bar{\sigma}(i_2)$
 $\parallel \quad \parallel$
 $\sigma(i_1) \quad \sigma(i_2)$
 $\iff (i_1,i_2)$ jest inwersją σ

(liczba inwersji jest ta sama)

• jeżeli $i_1 < j$, to

$$(i_1, j)$$
 jest inwersją $\bar{\sigma} \iff \bar{\sigma}(i_1) > \bar{\sigma}(j)$
 $\parallel \qquad \parallel$
 $\sigma(i_1) \qquad \sigma(k)$
 $\iff (i_1, k)$ jest inwersją σ ,

i podobnie (i_1,k) jest inwersja $\bar{\sigma}\iff (i_1,j)$ jest inwersją σ (liczba inwersji jest ta sama)

- podobnie jeżeli $i_2 > k$, to (j, i_2) jest inwersją $\bar{\sigma} \iff (k, i_2)$ jest inwersją σ (liczba się nie zmienia),
- jeżeli j < i < k, to

i analogicznie (i,k) jest inwersją $\bar{\sigma} \iff (j,i)$ nie jest inwersją σ . Parzystość liczby inwersji zmienia się dwa razy, a więc pozostaje ta sama. Łącznie zatem parzystość liczby inwersji się zmienia, a więc znak zmienia się na przeciwny.

Ćwiczenie 6.14. Ogólnie jeżeli σ , τ są permutacjami, to $sgn(\sigma \circ \tau) = sgn(\sigma) \cdot sgn(\tau)$.

Ćwiczenie 6.15. Jeżeli $\sigma = (a_1, a_2, a_3, \dots, a_n)$ jest cyklem, to $sgn(\sigma) = (-1)^{n-1}$.

Przykład 6.16. Znak permutacji (1,2,3)(2,3)(6,1)(7,8,9) to $(-1)^2 \cdot (-1)^1 \cdot (-1)^1 \cdot (-1)^2 = 1$ (tak jak wyliczyliśmy wcześniej).

Wniosek 6.17. det jest n-liniowy i alternujący.

Dowód. n-liniowość:

• zauważmy że jeżeli $A_i = \sum_{j=1}^n a_{ij} e_j$, to $\alpha A_i = \sum_{j=1}^n (\alpha a_{ij}) e_j$ (współrzędne αA_i to współrzędne A_i pomnożone przez α). Stąd:

$$\det(A_1, A_2, \dots, \alpha A_i, \dots) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) a_{\sigma(1)1} \cdots (\alpha a_{\sigma(i)i}) \cdots a_{\sigma(n)n}$$

$$= \alpha \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) a_{\sigma(1)1} \cdots a_{\sigma(i)i} \cdots a_{\sigma(n)n}$$

$$= \alpha \det(A_1, \dots, A_i, \dots, A_n)$$

• jeżeli $A_i = \sum_{j=1}^n a_{ji} e_j$, a $B_i = \sum_{j=1}^n b_{ji} e_j$, to $A_i + B_i = \sum_{j=1}^n (a_j i + b_{ji}) e_j$, stad:

$$\det(A_1, A_2, \dots, A_i + B_i, \dots) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) a_{1\sigma(1)} \cdots (a_{\sigma(i)i} + b_{\sigma(i)i}) \cdots a_{\sigma(n)n}$$

$$= \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \begin{pmatrix} a_{\sigma(1)1} \cdots a_{\sigma(i)i} \cdots a_{\sigma(n)n} + \\ + a_{\sigma(1)1} \cdots b_{\sigma(i)i} \cdots a_{\sigma(n)n} \end{pmatrix}$$

$$= \left(\sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) a_{\sigma(1)1} \cdots a_{\sigma(i)i} \cdots a_{\sigma(n)n} \right) +$$

$$+ \left(\sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) a_{\sigma(1)1} \cdots b_{\sigma(i)i} \cdots a_{\sigma(n)n} \right)$$

$$= \det(A_1, \dots, A_i, \dots, A_n) +$$

$$+ \det(A_1, \dots, A_i, \dots, A_n)$$

Alternowanie: załóżmy że n > 1 (przypadek n = 0, 1 jest trywialny). Chcemy pokazać, że dla j < k mamy:

$$\det(A_1,\ldots,A_{i-1},B,A_{i+1},\ldots,A_{k-1},B,A_{k+1},\ldots,A_n)=0.$$

Istotnie, powiedzmy że $B = \sum_j b_j e_j$ i $A_i = \sum_j a_{ji} e_j$. Oznaczmy $d_{\sigma} \coloneqq \operatorname{sgn}(\sigma) a_{\sigma(1)1} \cdots a_{\sigma(j-1)(j-1)} b_{\sigma(j)} \cdots a_{\sigma(k-1)(k-1)} b_{\sigma(k)} \cdots a_{n\sigma(n)}$, tak że

$$\det(A_1, \dots, A_{j-1}, B, A_{j+1}, \dots, A_{k-1}, B, A_{k+1}, \dots, A_n) = \sum_{\sigma \in S_n} d_{\sigma}.$$

to dla każdej $\sigma \in S_n$ mamy (biorąc $\bar{\sigma} = \sigma(j, k)$ jak w lemacie):

$$\begin{split} d_{\sigma} &= \operatorname{sgn}(\sigma) a_{\sigma(1)1} \cdots a_{\sigma(j-1)(j-1)} b_{\sigma(j)} \cdots a_{\sigma(k-1)(k-1)} b_{\sigma(k)} \cdots a_{n\sigma(n)} = \\ &= -\operatorname{sgn}(\bar{\sigma}) a_{\sigma(1)1} \cdots a_{\sigma(j-1)(j-1)} b_{\sigma(j)} \cdots a_{\sigma(k-1)(k-1)} b_{\sigma(k)} \cdots a_{\sigma(n)n} \\ &= -\operatorname{sgn}(\bar{\sigma}) a_{\bar{\sigma}(1)1} \cdots a_{\bar{\sigma}(j-1)(j-1)} b_{\bar{\sigma}(k)} \cdots a_{\bar{\sigma}(k-1)(k-1)} b_{\bar{\sigma}(j)} \cdots a_{\bar{\sigma}(n)n} \\ &= -\operatorname{sgn}(\bar{\sigma}) a_{\bar{\sigma}(1)1} \cdots a_{\bar{\sigma}(j-1)(j-1)} b_{\bar{\sigma}(j)} \cdots a_{\bar{\sigma}(k-1)(k-1)} b_{\bar{\sigma}(k)} \cdots a_{\bar{\sigma}(n)n} \\ &= -d_{\bar{\sigma}}. \end{split}$$

W szczególności $d_{\sigma} + d_{\bar{\sigma}} = 0$.

Stad nietrudno wywnioskować, że

$$\det(A_1, \dots, A_{j-1}, B, A_{j+1}, \dots, A_{k-1}, B, A_{k+1}, \dots, A_n) = \sum_{\sigma \in S_n} d_{\sigma} = 0.$$

Dokładniej, jeżeli przez \sim oznaczymy relację na S_n zadaną przez $\sigma \sim \sigma'$ gdy $\sigma' = \sigma$ lub $\sigma' = \bar{\sigma}$, to \sim jest relacją równoważności na S_n o klasach $[\sigma] = {\sigma, \bar{\sigma}}$ (przy czym $\sigma \neq \bar{\sigma}$) i mamy:

$$\sum_{\sigma \in S_n} d_{\sigma} = \sum_{[\sigma] \in S_n/\sim} \left(\sum_{\tau \in [\sigma]} d_{\tau} \right)$$

$$= \sum_{[\sigma] \in S_n/\sim} (d_{\sigma} + d_{\bar{\sigma}})$$

$$= \sum_{[\sigma] \in S_n/\sim} 0$$

$$= 0.$$

Definicja 6.18. Jeżeli $A \in M_{n \times n}(K)$ ma kolumny A_1, \dots, A_n , to

$$\det A := \det(A_1, \dots, A_n)$$

6.2 Podstawowe własności wyznacznika

Lemat 6.19. Jeżeli σ^{-1} jest permutacją odwrotną do $\sigma \in S_n$ (tzn. jest funkcją odwrotną, czyli $\sigma^{-1}(i) = j$ wtedy i tylko wtedy gdy $\sigma(j) = i$), to $\operatorname{sgn}(\sigma^{-1}) = \operatorname{sgn}(\sigma)$, a nawet mają one tyle samo inwersji.

 $Dow \acute{o}d.$ Rysunkowo oczywiste — σ^{-1} jest lustrzanym odbiciem $\sigma,$ więc ma tyle samo skrzyżowań.

Ustalmy $i < j \le n$. Jeżeli (i, j) jest inwersją σ , to $\sigma(i) > \sigma(j)$ i $(\sigma(j), \sigma(i))$ jest inwersją σ^{-1} : istotnie, $\sigma^{-1}(\sigma(j)) = j > i = \sigma^{-1}(\sigma(i))$. Podobnie jeżeli i, j nie jest inwersją, to $\sigma(i) < \sigma(j)$ i $(\sigma(i), \sigma(j))$ nie jest inwersją σ^{-1} .

Twierdzenie 6.20. *Niech* $A \in M_{n \times n}(K)$,

- 1) $\det(A_1, A_2, \dots, A_n) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) a_{1\sigma(1)} \cdots a_{n\sigma(n)}$ (σ na innym indeksie!)
- 2) $det(A) = det(A^{\top})$.
- 3) $\det(AB) = \det A \cdot \det B$.
- 4) dla każdego $j \in \{1, ..., n\}$:

$$\det A = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} A_{ij},$$

gdzie A_{ij} jest wyznacznikiem macierzy powstałej z A przez wykreślenie kolumny i wiersza w którym jest a_{ij} (rozwinięcie Laplace'a względem j-tej kolumny).

(Mówimy że A_{ij} , lub macierz którego jest wyznacznikiem, jest minorem macierzy A. A ma też inne minory, o tym później.)

4') dla każdego $i \in \{1, ..., n\}$:

$$\det A = \sum_{j=1}^{n} (-1)^{i+j} a_{ij} A_{ij}.$$

(rozwinięcie Laplace'a względem i-tego wiersza)

• det A nie zmienia się, gdy do dowolnego wiersza [kolumny] dodamy skalarną wielokrotność dowolnego innego wiersza [kolumny],

- jeżeli pomnożymy dowolny wiersz [kolumnę] A przez skalar, to det A pomnoży się przez ten sam skalar,
- zamiana wierszy [kolumn] A miejscami zmienia znak det A.
- 6) Jeżeli A jest macierzą (górno- lub dolno-)trójkątną (np. diagonalną), to det A to iloczyn wyrazów na przekątnej.
- 7) $\det A = 0$ wtedy i tylko wtedy gdy kolumny [wiersze] A są liniowo zależne.

Dowód. 1)

$$\begin{split} \det A &= \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) a_{\sigma(1)1} \cdots a_{\sigma(n)n} & \text{(definicja det)} \\ &= \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma^{-1}) a_{\sigma(1)1} \cdots a_{\sigma(n)n} & \text{(lemat)} \\ &= \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma^{-1}) a_{\sigma(1)\sigma^{-1}(\sigma(1))} \cdots a_{\sigma(n)\sigma^{-1}(\sigma(n))} & \text{(definicja } \sigma^{-1}) \\ &= \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma^{-1}) a_{1\sigma^{-1}(1)} \cdots a_{n\sigma^{-1}(n)} & \text{(zmiana kolejności czynników)} \\ &= \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) a_{1\sigma(1)} \cdots a_{n\sigma(n)} & \text{(przeindeksowanie)} \end{split}$$

2) Niech $A^{\top} = (b_{ij})$. Wtedy $b_{ij} = a_{ji}$.

$$\det A^{\top} = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) b_{\sigma(1)1} \cdots b_{\sigma(n)n} \\ \parallel & \parallel \\ a_{1\sigma(1)} & \parallel \\ a_{n\sigma(n)} \\ \end{pmatrix}$$

więc teza wynika z 1.

3) Ustalmy dowolne *A*. Funkcja $d(B_1, ..., B_n) = \det(AB) = \det(AB_1, ..., AB_n)$ jest *n*-liniowa i alternująca, co łatwo sprawdzić, np.:

$$d(B_1 + B_1', B_2, ..., B_n) = \det(A(B_1 + B_1'), B_2, ..., B_n)$$

$$= \det(AB_1 + AB_1', AB_2, ..., AB_n)$$

$$= \det(AB_1, AB_2, ..., AB_n) + \det(AB_1', AB_2, ..., AB_n).$$

Stąd $d = c \cdot \det$ dla pewnej stałej c. Ale $d(I) = \det(AI) = \det(A) = \det(A) \cdot 1 = \det(A) \cdot \det(I)$, więc $c = \det A$, czyli dla każdej macierzy B zachodzi

$$\det(AB) = d(B) = c \det(B) = \det(A) \det(B).$$

Ponieważ *A* było dowolne, to kończy dowód 3.

4) Z 2. wnioskujemy że 4 i 4' są równoważne (transpozycja zamienia wiersze na kolumny i vice versa).

Pokażemy 4'. Ustalmy *i*. Niech $d(A) = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} A_{ij}$. Chcemy pokazać, że $d = \det$. Pokażemy najpierw, że d jest n-liniowe i alternujące.

n-liniowość: A_{ij} zależy liniowo od kolumn różnych od j-tej, ale zupełnie nie zależy od j-tej kolumny, zaś a a_{ij} zależy liniowo tylko od j-tej kolumny (od pozostałych nie zależy). Stąd każde $a_{ij}A_{ij}$ zależy liniowo od wszystkich kolumn.

Alternowanie: załóżmy że kolumny A: j_1 -ta i j_2 -ta (gdzie $j_1 < j_2$), są równe. Wtedy $A_{ij} = 0$ dla $j \neq j_1, j_2$, bo w odpowiednim minorze są dwie takie same kolumny. Stąd $d(A) = (-1)^{i+j_1} a_{ij_1} A_{ij_1} + (-1)^{i+j_2} a_{ij_2} A_{ij_2} = 0$. Chcemy pokazać, że d(A) = 0. Ponieważ z założenia $a_{ij_1} = a_{ij_2}$, wystarczy pokazać że:

$$A_{ij_1} = (-1)^{j_2-j_1-1} A_{ij_2}.$$

Tak jest faktycznie, co wynika z antysymetryczności det: macierze których wyznacznikami są A_{ij_1} , A_{ij_2} różnią się tylko pozycją, na której znajduje się kolumna pochodząca od j_1 -szej = j_2 -giej kolumny A. Można jedną uzyskać z drugiej przesuwając tę kolumnę j_2-j_1-1 razy w prawo, a więc tyleż razy zmieniając znak wyznacznika, co daje żądaną równość.

Stąd $d = c \cdot \det$, a łatwo sprawdzić, że $d(I) = 1 = 1 \cdot \det(I)$, więc $d = 1 \cdot \det = \det$.

- 5) dla kolumn wynika wprost z *n*-liniowości i antysymetryczności det, dla wierszy zaś z tego oraz z 2.
- 6) Indukcja względem n: niech A będzie macierzą górnotrójkątną; z rozwinięcia Laplace'a względem pierwszej kolumny wynika, że det A jest iloczynem wyrazu w lewym górnym rogu oraz minora A_{11} . Ten ostatni z założenia indukcyjnego jest iloczynem wyrazów na przekątnej, co łatwo daje tezę. Przypadek dolnotrójkątny jest analogiczny (albo wynika z 2.).
- 7) Jeżeli kolumny *A* są liniowo zależne, to pewna kolumna jest kombinacją liniową innych kolumn. To oznacza, że odejmując od tej kolumny

wielokrotności pozostałych kolumn możemy dostać macierz A' o kolumnie złożonej z samych zer. Biorąc rozwinięcie Laplace'a A' względem tej kolumny wnioskujemy że $\det A = \det A' = 0$.

Jeżeli kolumny A są liniowo niezależne, to rkA = n i stosując operacje W1, W3 (a więc nie zmieniając rzędu i zmieniając co najwyżej znak wyznacznika) możemy sprowadzić A do macierzy diagonalnej A'. Ponieważ rkA' = n, wyrazy na jej przekątnej są niezerowe, więc z 6. $\det A = \pm \det A' \neq 0$.

Przykład 6.21.

$$\begin{vmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 1 & 1 \\ 2 & 1 & 2 & 0 \\ 3 & -1 & 0 & 3 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 2 & 1 & 4 & 0 \\ 3 & -1 & 3 & 3 \end{vmatrix} = (-1)^{1+1} \cdot 1 \cdot \begin{vmatrix} 1 & 1 & 1 \\ 1 & 4 & 0 \\ -1 & 3 & 3 \end{vmatrix} =$$

$$= \begin{vmatrix} 1 & 1 & 1 \\ 0 & 3 & -1 \\ 0 & 4 & 4 \end{vmatrix} = 1 \cdot \begin{vmatrix} 3 & -1 \\ 4 & 4 \end{vmatrix} = 12 + 4 = 16$$

$$\begin{vmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 1 & 1 & 1 \\ 1 & 1 & 3 & 1 & 1 \\ 1 & 1 & 1 & 4 & 1 \\ 1 & 1 & 1 & 1 & 5 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 4 \end{vmatrix} = 1 \cdot 2 \cdot 3 \cdot 4 = 24.$$

Przykład 6.22 (wyznacznik Vandermonde'a).

Przykład 6.23. Rozważmy wektory postaci $\begin{pmatrix} 1 \\ t \\ t^2 \end{pmatrix} \in \mathbb{R}^3$. Trzy takie wektory

(dla t_1, t_2, t_3) są liniowo niezależne wtedy i tylko wtedy gdy

$$\det\left(\begin{pmatrix} 1\\t_1\\t_1^2\\t_1^2 \end{pmatrix} + \begin{pmatrix} 1\\t_2\\t_2^2 \end{pmatrix} + \begin{pmatrix} 1\\t_3\\t_3^2\\t_3^2 \end{pmatrix}\right) = (t_2 - t_1)(t_3 - t_1)(t_3 - t_2) \neq 0$$

Wniosek 6.24. Jeżeli dim $V=n<\infty$ i B jest bazą V, to dla każdych $v_1,\ldots,v_n\in V$ zachodzi

$$v_1, v_2, \dots, v_n \text{ sq } lnz \iff \det([v_1]_B, \dots, [v_n]_B) \neq 0.$$

Dowód. $[\cdot]_B$ jest izomorfizmem między V i K^n , więc v_1, \ldots, v_n są lnz wtedy i tylko wtedy gdy $[v_1]_B, \ldots, [v_n]_B$ są lnz, a te są lnz wtedy i tylko wtedy gdy ich wyznacznik jest niezerowy (z twierdzenia). □

Przykład 6.25. Chcemy sprawdzić, że funkcje $f(x) = \sin(x) + \cos(x)$, $g(x) = 6\sin(x) - 7\cos(x)$ są lnz w $V = \text{Lin}(\sin,\cos) \le \mathbb{R}^{\mathbb{R}}$ (wiedząc, że sin i cos są liniowo niezależne).

Biorąc bazę $B = (\sin, \cos)$ widzimy, że $[f]_B = (1, 1)^{\top}$, $[g]_B = (6, -7)^{\top}$ i $\det \begin{pmatrix} 1 & 6 \\ 1 & -7 \end{pmatrix} = -7 - 6 = -13 \neq 0$, więc f i g faktycznie są liniowo niezależne.

Definicja 6.26. Mówimy że macierz A jest osobliwa, jeżeli det A = 0. W przeciwnym wypadku mówimy, że jest nieosobliwa.

Wniosek 6.27. *Macierz* $A \in M_{n \times n}(K)$ *jest odwracalna* \iff A *jest nieosobliwa. Dowód.*

A jest odwracalna
$$\iff F_A \colon K^n \to K^n$$
 jest izomorfizmem $\iff F_A \text{ jest ,,na"}$ $\iff \text{im } F_A = K^n$ $\iff \text{dim im } F_A = n$ $\iff \text{rk} A = n$ $\iff \text{kolumny } A \text{ sq lnz}$ $\iff \text{det} A \neq 0$

Definicja 6.28. *Minor* macierzy *A* (niekoniecznie kwadratowej) to macierz kwadratowa powstała z *A* przez wykreślenie pewnej liczby wierszy lub kolumn, lub wyznacznik takiej macierzy. *Rozmiar* minora to liczba pozostałych wierszy/kolumn.

Przykład 6.29. Przykładowe minory macierzy
$$A = \begin{pmatrix} 1 & 5 & 1 & -2 \\ 3 & 3 & 3 & 1 \\ 2 & 1 & 2 & -5 \end{pmatrix}$$
:

$$\bullet \quad \begin{pmatrix} 1 & 5 & -2 \\ 3 & 3 & 1 \\ 2 & 1 & -5 \end{pmatrix} = \begin{pmatrix} 1 & 5 & 1 & -2 \\ 3 & 3 & 3 & 1 \\ 2 & 1 & 2 & -5 \end{pmatrix},$$

$$\bullet \ \begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 5 & 1 & -|2 \\ 3 & 3 & 3 & 1 \\ 2 & 1 & 2 & -|5 \end{pmatrix},$$

•
$$(-5) = \begin{pmatrix} \frac{1}{3} & \frac{5}{3} & \frac{1}{3} & -2\\ \frac{3}{3} & \frac{3}{3} & \frac{1}{3} & 1\\ 2 & 1 & 2 & -5 \end{pmatrix}$$

Uwaga 6.30. Jeżeli macierz *A* jest minorem macierzy *B*, która jest minorem macierzy *C*, to *A* jest również minorem *C*.

Stwierdzenie 6.31. *Niech A będzie dowolną macierzą (niekoniecznie kwadratową). Wtedy* rkA = maksymalny rozmiar niezerowego minora (wyznacznika).

Dowód. ≥: załóżmy że pewien minor $k \times k$ jest niezerowy. Niech $j_1, \ldots j_k$ będą indeksami kolumn, które w nim występują (nie są wykreślone). Wtedy te same kolumny są liniowo niezależne (nawet pomijając część współrzędnych), więc rk $A \ge k$.

 \leq : załóżmy że kolumny o indeksach j_1, \ldots, j_k są liniowo niezależne. Skreślamy pozostałe kolumny, a następnie stosujemy kolumnową eliminację Gaussa (operacje kolumnowe K1, K3) do powstałej macierzy A'.

To daje nam macierz schodkową szerokości k, o k wyrazach wiodących. Skreślając wszystkie wiersze prócz tych, w których są wyrazy wiodące, otrzymujemy macierz trójkątną $k \times k$ o niezerowych wyrazach na przekątnej, a więc niezerowym wyznaczniku. Skreślając odpowiednie wiersze z A' otrzymujemy minor $k \times k$ (który jest też minorem A!) o tym samym, niezerowym wyznaczniku.

Uwaga 6.32. Stwierdzenie 6.31 można zinterpretować następująco: jeżeli $F: K^n \to K^m$ jest dowolnym odwzorowaniem liniowym, to dla pewnych $i_1 < i_2 < \ldots < i_k \le n$ i $j_1 < j_2 < \ldots < j_k \le m$, gdzie $k = \operatorname{rk} F$, odwzorowanie

$$\pi_{\bar{j}}\circ F|_{\bar{i}}$$

jest izomorfizmem, gdzie $F|_{\bar{i}}$ to obcięcie F do podprzestrzeni K^n rozpiętej przez wektory e_{i_1},\ldots,e_{i_k} , a $\pi_{\bar{j}}$ to rzut "prostokątny" na współrzędne $j_1,j_2\ldots,j_k$.

W szczególności jeżeli $V \le K^n$ jest k-wymiarową podprzestrzenią, to rzut V na pewne k współrzędnych jest izomorfizmem.

X

Przykład 6.33. Chcemy wyznaczyć wymiar przestrzeni rozwiązań UJ

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 0 \\ x_1 - x_2 + x_3 - x_4 = 0 \\ x_2 - x_3 + x_4 = 0 \end{cases}$$

Szukamy wymiaru jądra odwzorowania opisanego przez macierz A =

$$\begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \\ 0 & 1 & -1 & 1 \end{pmatrix}$$
, czyli 4 – rk*A*. Mamy

$$\begin{vmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 0 & 1 & -1 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 \\ 0 & -2 & 0 \\ 0 & 0 & -1 \end{vmatrix} = 2 \neq 0,$$

więc rkA = 3, a dim ker $F_A = 4 - 3 = 1$.

Stwierdzenie 6.34. *Każdy niezerowy minor można rozszerzyć do niezerowego minora maksymalnego wymiaru.*

Dowód. Weźmy niezerowy minor $k \times k$ macierzy A o rkA > k. Występujące w nim kolumny są liniowo niezależnymi wektorami w obrazie F_A . Możemy do nich dobrać inne kolumny A, otrzymując bazę im F_A . Wykreślamy pozostałe kolumny, a następnie transponujemy A, otrzymując macierz B której wiersze są liniowo niezależne.

Kolumny B odpowiadające wierszom wyjściowego minora są liniowo niezależne, więc można do nich dobrać inne kolumny B, otrzymując

6.3 Wzory Cramera

Rozważamy równanie

$$AX = Y, \tag{*}$$

gdzie $A=(A_1,\ldots,A_n)\in M_{n\times n}(K)$ jest *nieosobliwa*, tzn. det $A\neq 0$. Wtedy oczywiście (*) ma jedyne rozwiązanie $X=A^{-1}Y$.

Twierdzenie 6.35 (Wzory Cramera). Dla A, Y jak powyżej, rozwiązaniem (*) jest $X = (x_1, ..., x_n)^T$, gdzie

$$x_k = \frac{\det(A_1, \dots, A_{k-1}, Y, A_{k+1}, \dots, A_n)}{\det A}.$$

Dowód. Sprawdzimy że AX = Y.

$$(AX)_{i} = \sum_{j=1}^{n} a_{ij} x_{j}$$

$$= \sum_{j=1}^{n} a_{ij} \frac{1}{\det A} \cdot \sum_{l=1}^{n} (-1)^{l+j} y_{l} A_{l,j} \quad \text{(rozwinięcie Laplace'a w j-tej kolumnie)}$$

$$= \sum_{l=1}^{n} \frac{y_{l}}{\det A} \sum_{j=1}^{n} (-1)^{l+j} a_{ij} A_{lj} \quad \text{(zmiana kolejności sumowania)}$$

$$\begin{cases} 0 & l \neq i \\ \det A & l = i \end{cases}$$

$$= \sum_{l=1}^{n} \begin{cases} \frac{y_{l}}{\det A} \cdot \det A & l = i \\ \frac{y_{1}}{\det A} \cdot 0 & l \neq i \end{cases}$$

$$= y_{i}.$$

Wyjaśnienie "klamerki":

$$\sum_{j=1}^{n} (-1)^{l+j} a_{ij} A_{lj} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & & & & \\ a_{(l-1)1} & a_{(l-1)2} & \cdots & a_{(l-1)n} \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ a_{(l+1)1} & a_{(l+1)2} & \cdots & a_{(l+1)n} \\ \vdots & & & & \vdots \end{vmatrix} = \begin{vmatrix} A^{(1)} \\ A^{(2)} \\ \vdots \\ A^{(l-1)} \\ A^{(i)} \\ A^{(l+1)} \\ \vdots \end{vmatrix}$$

to rozwinięcie Laplace'a względem l-tego wiersza wyznacznika macierzy powstałej z A przez zastąpienie l-tego wiersza przez i-ty wiersz A (pozostałe wiersze, w tym i-ty, pozostają bez zmian).

• Jeżeli i = l, to to wciąż A.

Jeżeli *i* ≠ *l*, to jest to macierz o dwóch takich samych wierszach, więc jej wyznacznik jest zerowy.

Definicja 6.36. Dla macierzy $A = (a_{ij})$, iloczyn $(-1)^{i+j}A_{ij}$ (gdzie A_{ij} to ij-ty minor A) nazywamy *dopełnieniem algebraicznym* wyrazu a_{ij} macierzy A.

Macierz dołączona do A to macierz *transponowana* do macierzy dopełnień algebraicznych A, tzn. adj $(A) = A^{\vee} = (b_{ij})_{i,j}$, gdzie $b_{ij} = (-1)^{i+j}A_{ji}$.

$$A^{\vee} = \operatorname{adj}(A) = ((-1)^{i+j} A_{ij})_{i,j}^{\top} = ((-1)^{i+j} A_{ji})_{i,j}$$

$$= \begin{pmatrix} +A_{11} & -A_{21} & +A_{31} & \cdots & (-1)^{n+1} A_{n1} \\ -A_{12} & +A_{22} & -A_{32} & \cdots \\ \vdots & & & & \\ (-1)^{n+1} A_{1n} & (-1)^{n+2} A_{2n} & (-1)^{n+3} A_{3n} & \cdots & +A_{nn} \end{pmatrix}$$

(Uwaga na znaki i na transpozycję!)

Wniosek 6.37. *Niech* $A \in M_{n \times n}(K)$ *. Wtedy:*

- $A \cdot \operatorname{adj}(A) = \operatorname{adj}(A) \cdot A = \det A \cdot I$.
- $Je\dot{z}eli\ \det A \neq 0$, to $A^{-1} = \frac{1}{\det A} \operatorname{adj} A$.

Dowód. Druga część wynika natychmiast z pierwszej. Pierwsza część: oznaczmy $C = (c_{ij}) = A \cdot \operatorname{adj}(A)$, $\operatorname{adj}(A) = B = (b_{ij})$. Wtedy

$$\begin{split} c_{ij} &= \sum_{l=1}^n a_{il} b_{lj} \\ &= \sum_{l=1}^n a_{il} (-1)^{j+l} A_{jl} & \text{(definicja } B = \operatorname{adj}(A)) \\ & \begin{vmatrix} A^{(1)} \\ A^{(2)} \\ \vdots \\ A^{(j-1)} \\ A^{(i)} \\ A^{(j+1)} \\ \vdots \\ &= \begin{cases} \det A & j=i \\ 0 & j \neq i, \end{cases} \end{split}$$
 (rozwinięcie Laplace'a względem j -tego wiersza)

stąd $C = \det A \cdot I$. Podobnie dla adj $(A) \cdot A$ (z tym że tam pojawia się rozwinięcie kolumnowe zamiast wierszowego).

Wniosek 6.38. Odwracanie macierzy wyraża się wielomianem. W szczególności np. gdy $K = \mathbf{R}$ lub $K = \mathbf{C}$, to funkcja $A \mapsto A^{-1}$ jest funkcją ciągłą (a nawet C^{∞}) na zbiorze macierzy odwracalnych (jako otwartym podbziorze K^{n^2}).

Przykład 6.39.

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \cdot \operatorname{adj} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = 0 \cdot I$$

$$\begin{pmatrix}
1 & 2 & 3 \\
0 & 2 & 1 \\
0 & 0 & 1
\end{pmatrix}^{-1} = \frac{1}{\begin{vmatrix} 1 & 2 & 3 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{vmatrix}} \cdot \operatorname{adj} \begin{pmatrix} 1 & 2 & 3 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} \begin{vmatrix} 2 & 1 \\ 0 & 1 \end{vmatrix} & -\begin{vmatrix} 0 & 1 \\ 0 & 1 \end{vmatrix} & \begin{vmatrix} 0 & 2 \\ 0 & 0 \end{vmatrix} \\ -\begin{vmatrix} 2 & 3 \\ 0 & 1 \end{vmatrix} & \begin{vmatrix} 1 & 3 \\ 0 & 1 \end{vmatrix} & -\begin{vmatrix} 1 & 2 \\ 0 & 0 \end{vmatrix} \\ \begin{vmatrix} 2 & 3 \\ 2 & 1 \end{vmatrix} & -\begin{vmatrix} 1 & 3 \\ 0 & 1 \end{vmatrix} & \begin{vmatrix} 1 & 2 \\ 0 & 0 \end{vmatrix} \\ = \frac{1}{2} \begin{pmatrix} 2 & 0 & 0 \\ -2 & 1 & 0 \\ -4 & -1 & 2 \end{pmatrix}^{\mathsf{T}} = \frac{1}{2} \begin{pmatrix} 2 & -2 & -4 \\ 0 & 1 & -1 \\ 0 & 0 & 2 \end{pmatrix} = \begin{pmatrix} 1 & -1 & -2 \\ 0 & \frac{1}{2} & -\frac{1}{2} \\ 0 & 0 & 1 \end{pmatrix}$$

6.4 Wyznacznik i wielomian charakterystyczny odwzorowania liniowego

Definicja 6.40. Niech V, W będą przestrzeniami liniowymi. Wtedy $\operatorname{Hom}(V, W)$ to zbiór odwzorowań liniowych $V \to W$.

Fakt 6.41. Hom(V, W) jest przestrzenią liniową. (Podobnie jak Hom $(V, K) = V^*$.)

Fakt 6.42. Zbiór $M_{k\times n}(K)$ jest przestrzenią liniową (ze zwykłym dodawaniem macierzy i mnożeniem przez skalary), izomorficzną z K^{kn} .

6.4. WYZNACZNIK I WIELOMIAN CHARAKTERYSTYCZNY ODWZOROWANIA LINIOWEGO83

Fakt 6.43. *Jeżeli B jest bazą V, a C jest bazą W i V, W są skończenie wymiarowe, to odwzorowanie*

$$\operatorname{Hom}(V, W) \ni F \mapsto m_C^B(F) \in M_{\dim W \times \dim V}(K)$$

jest izomorfizmem.

Dowód. Bijekcja — było. Addytywność:

$$\underbrace{[(F+G)(b_i)]_C}_{\text{II}} = [F(b_i)+G(b_i)]_C = \underbrace{[F(b_i)]_C}_{\text{II}} + \underbrace{[G(b_i)]_C}_{\text{II}}.$$

$$\underbrace{[G(b_i)]_C}_{\text{I-ta kolumna } m_C^B(F+G)} + \underbrace{[G(b_i)]_C}_{\text{I-ta kolumna } m_C^B(G)}.$$

Jednorodność podobnie.

Wniosek 6.44. *Jeżeli V,W są skończenie wymiarowe, to* dim $Hom(V,W) = \dim V \cdot \dim W$.

Przykład 6.45. Rozważmy $F: V \rightarrow V$ (V: skończenie wymiarowa).

Wtedy

$$(F - \alpha \operatorname{id}_{V})(v) = F(v) - \alpha \operatorname{id}_{V}(v) = F(v) - \alpha v.$$

Dla dowolnej B — bazy V mamy:

$$m_R^B(F - \alpha \operatorname{id}_V) = m_R^B(F) - \alpha m_R^B(\operatorname{id}_V) = m_R^B(F) - \alpha I.$$

Stwierdzenie 6.46. *Jeżeli* $F \in \text{Hom}(V, V)$, to $\det m_B^B(F)$ nie zależy od wyboru $B \longrightarrow bazy V$.

Dowód. Weźmy dowolne bazy *B*, *C* przestrzeni *V*. Wtedy:

$$\det m_C^C(F) = \det(m_C^B(\mathrm{id}) \cdot m_B^B(F) \cdot m_B^C(\mathrm{id}))$$

$$= \det m_C^B(\mathrm{id}) \cdot \det m_B^B(F) \cdot \det m_B^C(\mathrm{id})$$

$$= \det m_B^B(F) \cdot (\det m_C^B(\mathrm{id}) \cdot \det(m_B^C(\mathrm{id})))$$

$$= \det m_B^B(F) \cdot \det(m_C^B(\mathrm{id}) \cdot m_B^C(\mathrm{id}))$$

$$= \det m_B^B(F) \cdot \det m_C^C(\mathrm{id})$$

$$= \det m_B^B(F) \cdot \det I$$

$$= \det m_B^B(F) \cdot 1$$

$$= \det m_B^B(F) \cdot 1$$

 $^{^3}$ Ogólnie dim Hom(V, W) = dim W · dim V*. Można to wywnioskować z izomorfizmu Hom(V, W) \cong V* \otimes W — patrz konwersatorium.

Definicja 6.47. Jeżeli $F: V \to V$ i dim $V < \infty$, definiujemy

$$\det F := \det m_{\scriptscriptstyle B}^{\scriptscriptstyle B}(F),$$

gdzie B jest dowolną bazą V.

Definiujemy też wielomian charakterystyczny F jako

$$\chi_F(x) := \det(F - x \cdot \mathrm{id}_V) = \det(m_R^B(F) - x\mathrm{I}).^4$$

Ślad F to suma wyrazów na przekątnej w $m_B(F)$, a równoważnie

$$tr(F) = (-1)^{n-1} \cdot (współczynnik przy x w \chi_F(x)).$$

(Z tego wynika, że ślad nie zależy od wyboru bazy B! Dla macierzy $A = (a_{ij}) \in M_{n \times n}(K)$ podobnie definiujemy:

$$\chi_{A}(x) := \chi_{F_{A}}(x) = \det(A - x \cdot I) = \begin{vmatrix}
a_{11} - x & a_{12} & a_{13} & \cdots & a_{1n} \\
a_{21} & a_{22} - x & a_{23} & \cdots & a_{2n} \\
a_{31} & a_{32} & a_{33} - x & \cdots & a_{3n} \\
\vdots & & & & \\
a_{nn} & a_{n2} & a_{n3} & \cdots & a_{nn} - x
\end{vmatrix} = \\
= \det A + \dots + (-1)^{n-1} (a_{11} + a_{22} + \dots + a_{nn}) x^{n-1} + (-1)^{n} x^{n},$$

oraz tr(A) = suma wyrazów na przekątnej w A.

Ćwiczenie 6.48. Dla dowolnych macierzy $A \in M_{n \times m}(K)$, $B \in M_{m \times n}(K)$ zachodzi tr(AB) = tr(BA).

 $^{^4}$ Tu jest małe oszustwo: tak naprawdę nie pokazaliśmy do końca, że taka definicja nie zależy od B, bo x jest zmienną, a nie skalarem.

Rozdział 7

Rozkłady przestrzeni i ich endomorfizmów

7.1 Wewnętrzne sumy proste

Fakt 7.1. *Jeżeli A, B* \subseteq *V są liniowo niezależne, to*

$$Lin(A) \cap Lin(B) = \{0\} \iff AB \text{ jest liniowo niezależny.}$$

 $Dow \acute{o}d$. \Leftarrow było na ćwiczeniach. \Rightarrow : weźmy dowolne skalary α_a, β_b takie że $0 = \sum_{a \in A} \alpha_a a + \sum_{b \in B} \beta_b b$. Wtedy $\nu := \sum_{a \in A} \alpha_a a$ równa się $\sum_{b \in B} (-\beta_b) b$, więc z założenia $\nu = 0$, a więc z liniowej niezależności A i B wnioskujemy, że wszystkie $\alpha_a = \beta_b = 0$, czyli AB jest lnz.

Definicja 7.2. Niech $V_1, V_2, \ldots, V_n \leq V$. Mówimy że V jest (wewnętrzną) sumą prostą $V_1, \ldots, V_n, V = V_1 \oplus V_2 \oplus \ldots \oplus V_n$, jeżeli każdy $v \in V$ przedstawia się jednoznacznie w postaci

$$v = v_1 + v_2 + \ldots + v_n$$

gdzie $v_k \in V_k$.

Przykład 7.3. 1. $\mathbf{R}^2 = \left\{ \begin{pmatrix} x \\ 0 \end{pmatrix} \middle| x \in \mathbf{R} \right\} \oplus \left\{ \begin{pmatrix} 0 \\ y \end{pmatrix} \middle| y \in \mathbf{R} \right\}$ (Porównaj to ze stwierdzeniem, że $\mathbf{R}^2 \cong \mathbf{R} \times \mathbf{R} = \mathbf{R} \oplus \mathbf{R}$, tzn. \mathbf{R}^2 jest izomorficzne z (zewnętrzną!) sumą prostą/produktem dwóch kopii \mathbf{R} ; zewnętrzna suma prosta to *operacja* na przestrzeniach liniowych, wewnętrzna to *relacja* pomiędzy przestrzenią a ciągiem jej podprzestrzeni!)

2. Jeżeli V jest dowolną przestrzenią liniową o bazie B i $B = B_1 \sqcup B_2 \sqcup \ldots \sqcup B_n$ (tzn. B_k są parami rozłączne i sumują się do B), to

$$V = \operatorname{Lin}(B_1) \oplus \operatorname{Lin}(B_2) \oplus \operatorname{Lin}(B_3) \dots \oplus \operatorname{Lin}(B_n).$$

Dla n=2: ponieważ $V=\operatorname{Lin}(B_1\cup B_2)$, mamy $V=\operatorname{Lin}(B_1)+\operatorname{Lin}(B_2)$, co daje "zapisywanie się". Jednoznaczność: załóżmy że $v=v_1+v_2=v_1'+v_2'$. Wtedy $v_1-v_1'=v_2-v_2'\in\operatorname{Lin}(B_1)\cap\operatorname{Lin}(B_2)$, więc z faktu $v_1-v_1'=v_2-v_2'=0$. Dla n>2 dowodzimy indukcyjnie (lub analogicznie).

3.

$$\mathbf{R}_{8}[X] = \{ a + bX^{2} + cX^{4} + dX^{6} + ex^{8} \mid a, b, c, d, e \in \mathbf{R} \} \oplus \{ aX + bX^{3} + cX^{5} + dX^{7} \mid a, b, c, d \in \mathbf{R} \} \oplus \{ aX + bX^{3} + cX^{5} + dX^{7} \mid a, b, c, d \in \mathbf{R} \} \oplus \{ P \in \mathbf{R}_{8}[X] \mid P(X) = -P(-X) \}$$

4.
$$V = \mathbb{R}^2$$
, $V_1 = OX$, $V_2 = OY$,

$$\mathbf{R}^2 \neq V_1 \oplus V_2 \oplus V_2$$
:

istotnie, dowolny $v = \begin{pmatrix} x \\ y \end{pmatrix}$ zapisuje się w postaci

a więc niejednoznacznie.

7.2 Liniowa niezależność podprzestrzeni

Definicja 7.4. Niech $V_1, \ldots, V_k \leq V$. Mówimy że V_1, \ldots, V_k są liniowo niezależne, jeżeli dla $v_i \in V_i$ mamy

$$\sum_{i=1}^{k} \nu_i = 0 \iff \nu_1 = \nu_2 = \dots = \nu_k = 0.$$

Uwaga 7.5. Jeżeli $u_1, \ldots, u_k \in V$ są niezerowe, to układ u_1, u_2, \ldots, u_k jest lnz wtedy i tylko wtedy gdy $\text{Lin}(u_1), \text{Lin}(u_2), \ldots, \text{Lin}(u_k)$ są lnz.

Dowód. Załóżmy że u_1, \ldots, u_k są lnz. Weźmy $v_i \in \text{Lin}(u_i)$ takie że $\sum_{i=1}^k v_i = 0$. Wtedy $v_i = \alpha_i u_i$, czyli $\sum_i \alpha_i u_i = 0$, więc z lnz wektorów u_i wnioskujemy $\alpha_i = 0$, czyli $v_i = 0$.

W drugą stronę, załóżmy że $\operatorname{Lin}(u_i)$ są lnz i weźmy dowolne α_1,\ldots,α_k takie że $\sum_i \alpha_i u_i = 0$. Wtedy $v_i \coloneqq \alpha_i u_i \in \operatorname{Lin}(u_i)$, więc z założenia $v_i = 0$, więc (ponieważ $u_i \neq 0$), $\alpha_i = 0$, czyli u_i są lnz.

Lemat 7.6. V_1, \ldots, V_n są lnz wtedy i tylko wtedy gdy dla każdego i zachodzi $V_i \cap \sum_{i \neq i} V_j = \{0\}.$

Dowód. Załóżmy że V_1, \ldots, V_n są lnz. Niech $v \in V_i \cap \sum_{j \neq i} V_j$ (dla pewnego i). Wtedy z definicji $\sum_j V_j$ mamy $v = \sum_{j \neq i} v_j$ dla pewnych $v_j \in V_j$ i dla $v_i = -v$ mamy $0 = \sum_i v_i$, czyli (z lnz) $v_i = 0$, więc $v = -v_i = 0$.

mamy $0 = \sum_i \nu_i$, czyli (z lnz) $\nu_i = 0$, więc $\nu = -\nu_i = 0$. Załóżmy że V_1, \dots, V_n są lz, czyli $0 = \sum_j \nu_j$ dla pewnych $\nu_j \in V_j$, takich że pewien $\nu_i \neq 0$. Wtedy $0 \neq -\nu_i = \sum_{j \neq i} \nu_j \in V_i \cap \sum_{j \neq i} V_j$.

Wniosek 7.7. $V_1, V_2 \le V \text{ sq } lnz \iff V_1 \cap V_2 = \{0\}.$

Fakt 7.8. *Niech* $V_1, \ldots, V_n \leq V$. *Wtedy NWSR:*

- 1. $V = V_1 \oplus V_2 \ldots \oplus V_n$.
- 2. $\Phi: V_1 \times V_2 \times ... \times V_n \to V$ zadana wzorem $\Phi(v_1, ..., v_n) = v_1 + ... + v_n$ jest izomorfizmem.
- 3. V_1, \ldots, V_n są liniowo niezależne i $V_1 + V_2 + \ldots + V_n = V$.
- 4. (Dla dim $V < \infty$.) V_1, \dots, V_n sq $\ln z$ i dim $V = \dim V_1 + \dots + \dim V_n$.
- 5. (Dla dim $V < \infty$.) $V_1 + ... + V_n = V i \dim V = \dim V_1 + ... + \dim V_n$.

Dowód. 1 \iff 2: łatwo sprawdzić że Φ jest zawsze liniowe i

- Φ jest "na" \iff każdy $v \in V$ przedstawia się jako suma wektorów z V_i ,
- Φ jest "1-1" \iff każdy $v \in V$ przedstawia się na co najwyżej jeden sposób jako suma wektorów z V_i .
- $2 \iff 3$:
- Φ jest 1-1 \iff ker $\Phi = \{0\} \iff V_1, \dots, V_n$ są lnz

• Φ jest "na" $\iff V = \operatorname{im} \Phi = V_1 + \ldots + V_n$.

 $2+3 \implies 4,5$ łatwe, bo $\dim(V_1 \times ... \times V_n) = \dim V_1 + ... + \dim V_n$ i Φ zachowuje wymiar (jako izomorfizm).

 $4 \implies 2$: skoro V_1, \ldots, V_n są lnz, to Φ jest 1-1, a z równości wymiarów wynika, że wymiar dziedziny i przeciwdziedziny Φ są równe, więc z twierdzenia o rzędzie dim im $\Phi = \dim \Phi = 0 = \dim V - 0 = \dim V$. Skoro dim V jest skończony, to im $\Phi = V$.

 $5 \implies 2$: skoro $V_1 + \ldots + V_n = V$, to Φ jest "na", i podobnie z równości wymiarów i twierdzenia o indeksie wynika że dim $\ker \Phi = 0$, czyli Φ jest 1-1.

Wniosek 7.9. $(n = 2, \dim V < \infty)$ *NWSR:*

- 1. $V = V_1 \oplus V_2$,
- 2. $V_1 \cap V_2 = \{0\} i V_1 + V_2 = V$
- 3. $V_1 \cap V_2 = \{0\} \ i \ \dim V = \dim V_1 + \dim V_2$
- 4. $V_1 + V_2 = V i \dim V = \dim V_1 + \dim V_2$.

Definicja 7.10. Jeżeli $W \le V$, to mówimy że przestrzeń $W' \le V$ jest *dopełnicza* do W w V jeżeli $V = W \oplus W'$.[rysunek]

Lemat 7.11. Jeżeli $W_1, W_2 \leq V$ są liniowo niezależne i $W_2'' \supseteq W_2$ jest taka że $W_1 + W_2'' = V$, to istnieje W_2' dopełnicza do W_1 , taka że $W_2 \subseteq W_2' \subseteq W_2''$

Dowód. Niech B_1 będzie bazą W_1 , a B_2 będzie bazą W_2 . Z Faktu 7.1 wiemy, że $B_1 \cup B_2$ jest lnz i oczywiście $B_1 \cup B_2 \cup W_2'' = B_1 \cup W_2''$ rozpina V, można więc znaleźć bazę C taką że $B_1 \cup B_2 \subseteq C \subseteq B_1 \cup W_2''$. Wtedy $B_2' = C \setminus B_1 \subseteq W_2''$ i $B_2' \supseteq B_2$, więc

$$Lin(B_2) = W_2 \le W_2' \le W_2'',$$

 $W_1 + W_2' = \text{Lin}(C) = V$, oraz W_1, W_2' są liniowo niezależne (bo suma ich baz jest liniowo niezależna), więc $V = W_1 \oplus W_2'$.

Biorąc $W_2 = \{0\}$ i $W_2'' = V$ dostajemy wniosek.

Wniosek 7.12. *Jeżeli V jest przestrzenią liniową i W* \leq *V, to W jest dopełnialna w V, tzn. V ma podprzestrzeń W' dopełniczą do V.* ¹

Ćwiczenie 7.13. Jeżeli $V = V_1 \oplus V_2$, to mamy odwzorowania liniowe $\pi_1 \colon V \to V_1$, $\pi_2 \colon V \to V_2$ takie że każdy $v \in V$ zapisuje się jako $v = \pi_1(v) + \pi_2(v)$. Podobnie dla większej liczby składników prostych. W szczególności z poprzedniego wniosku wynika, że jeżeli $V' \leq V$ jest dowolna, to istnieje rzut na V', tzn. liniowe $\pi \colon V \to V'$ takie że $\pi \upharpoonright_{V'} = \mathrm{id}_{V'}$.

7.3 Podprzestrzenie niezmiennicze

Definicja 7.14. Niech $W \le V$, a F będzie endomorfizmem V. Mówimy że W jest [F-]niezmiennicza, jeżeli $F[W] \subseteq W$ (innymi słowy, $(\forall w \in W)F(w) \in W$).

Uwaga 7.15. W = V i $W = \{0\}$ zawsze są niezmiennicze.

Przykład 7.16. 0. Jeżeli $F(v) = \lambda v$, to Lin(v) jest F-niezmiennicza (bo dla $w \in \text{Lin}(v)$ mamy $w = \alpha v$, więc $F(w) = \alpha \lambda v \in \text{Lin}(v)$).

Uwaga 7.17. Ogólnie, jeżeli $F \in \text{End}(V)$, to 1-wymiarowe przestrzenie F-niezmiennicze to dokładnie przestrzenie powyższej postaci (tzn. proste rozpinane przez wektory własne).

- 1. Rozważmy $A = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix} \in M_{2\times 2}(\mathbf{R})$. Jakie są F_A -niezmiennicze podprzestrzenie \mathbf{R}^2 ?
 - {0},
 - \mathbb{R}^2 .
 - $\operatorname{Lin}\left(\begin{pmatrix}1\\0\end{pmatrix}\right)$ (wektor własny).

 $^{^1}$ Jeżeli rozważamy przestrzenie liniowo-topologiczne (TVS), tzn. przestrzenie liniowe z kompatybilną topologią, to powyższy lemat nie jest prawdziwy, tzn. jeżeli V jest (nieskończenie wymiarową) TVS i $W \leq V$ jest domkniętą podprzestrzenią, to zazwyczaj nie ma domkniętej $W' \leq V$ dopełniczej do W (intuicyjnie: przestrzenie dopełnicze są na ogół bardzo dziwne i trudno je zrozumieć). Wtedy pytanie o to, które domknięte podprzestrzenie są dopełnialne (mają domknięte dopełnienie) jest dużo ciekawsze.

- Jeżeli W = Lin(v) dla $v = \begin{pmatrix} x \\ y \end{pmatrix}$ przy $y \neq 0$, to $F_A(v) = \begin{pmatrix} 2x + y \\ 2y \end{pmatrix}$ nie jest równoległy do v, więc W nie jest niezmiennicza, więc powyższe 3 to wszystkie.
- 2. Jeżeli $A = \begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix} \in M_{2\times 2}(\mathbf{R}), \mu \neq \lambda$, to przestrzenie F_A -niezmiennicze to $\{0\}, \mathbf{R}^2$ oraz osie: jeżeli $v = \begin{pmatrix} x \\ y \end{pmatrix}$, gdzie $x \neq 0 \neq y$, to v nie jest współliniowy z $F(v) = \begin{pmatrix} \lambda x \\ \mu y \end{pmatrix}$, więc Lin(v) nie jest F_A -niezmiennicza.
- 3. Jeżeli F, k są dowolne, to im F^k jest zawsze F-niezmiennicze, bo $F(F^k(v)) = F^k(F(v))$.
- 4. Podobnie $\ker F^k$ jest zawsze F-niezmiennicze: jeżeli $v \in \ker F^k$, to $F^k(F(v)) = F(F^k(v)) = F(0) = 0$.

Fakt 7.18. *Jeżeli W* \leq *V jest F-niezmiennicze, to mamy dobrze określone odwzorowanie liniowe* $\bar{F}: V/W \rightarrow V/W$ *zadane wzorem* $\bar{F}(v+W) = F(v)+W$.

Dowód. Jeżeli $v_1+W=v_2+W$, to $v_2=v_1+w$ dla pewnego $w\in W$, czyli $F(v_2)+W=F(v_1)+F(w)+W=F(v_1)+W$. Stąd \bar{F} jest dobrze określone. Liniowość jest oczywista. □

Lemat 7.19. *Niech* $F \in \text{End}(V)$.

1. Jeżeli $V=V_1\oplus V_2\oplus \ldots \oplus V_n$, gdzie V_i są F-niezmiennicze i B_1,\ldots,B_n są bazami odpowiednich V_i , to $B=B_1B_2\ldots B_n$ jest bazą V i

$$m_B(F) = \begin{pmatrix} m_{B_1}(F \upharpoonright_{V_1}) & 0 & 0 & 0 \\ \hline 0 & m_{B_2}(F \upharpoonright_{V_2}) & 0 & 0 \\ \hline 0 & 0 & \ddots & \vdots \\ \hline 0 & 0 & \cdots & m_{B_n}(F \upharpoonright_{V_n}). \end{pmatrix}$$

2. Niech $W \le V$ będzie F-niezmiennicza, niech $B_1 = (b_1, \ldots, b_k)$ będzie bazą W, a $B = (b_1, b_2, \ldots, b_n)$ dowolnym rozszerzeniem B_1 do bazy V.

Połóżmy $B_2 = (b_{k+1} + W, \dots, b_n + W).$

Wtedy B_2 jest bazą V/W oraz

$$m_B(F) = \left(\begin{array}{c|c} m_{B_1}(F \upharpoonright_W) & * \\ \hline 0 & m_{B_2}(\bar{F}) \end{array}\right).$$

Dowód. 1. *B* jest bazą, dla n=2: jeśli mamy $0=\sum_{k=1}^{m_1}\beta_{k,1}b_{k,1}+\sum_{k=1}^{m_2}\beta_{k,2}b_{k,2}$, to z liniowej niezależności $\sum_{k=1}^{m_1}\beta_{k,1}b_{k,1}=0$, więc wszystkie $\beta_{k,1}$ są zerowe (z lnz B_1) i podobnie dla drugiej sumy. Dla n>2 dowód jest analogiczny.

Ustalmy i. Z niezmienniczości V_i , dla dowolnego $b_0 \in B_i$ mamy $F(b_0) \in V_i$, czyli

$$F(b_0) = \sum_{b \in B_i} \beta_b b = \sum_{b \in B} \gamma_b b,$$

gdzie $\gamma_b=0$ dla $b\notin B_i$ i $\gamma_b=\beta_b$ dla $b\in B_i$. Wobec tego kolumna odpowiadająca b_0 po lewej i prawej stronie jest taka sama. Z dowolności b_0 , i wynika więc teza.

2. B_2 jest bazą: $\dim V/W=n-k=|B_2|$, wystarczy więc pokazać, że B_2 rozpina V/W. Istotnie, jeżeli $v=\sum_{j=1}^n\beta_jb_j$ jest dowolny, to

$$v + W = \left(\sum_{j=1}^{n} \beta_{j} b_{j}\right) + W = \sum_{j=1}^{n} (\beta_{j} b_{j} + W),$$

i wyrazy z $j \le k$ po prawej stronie są równe W, co daje tezę.

Rozumowanie jak wyżej pokazuje, że kolumny odpowiadające wektorom z B_1 po lewej i prawej stronie się zgadzają. Dla kolumn odpowiadających wektorom $B \setminus B_1$: jeżeli weźmiemy pewne b_j , j > k, to $F(b_j) = \sum_{i=1}^n \beta_i b_i$. Stąd

$$[\bar{F}(b_j+W)]_{B_2} = \left[\underbrace{\left(\sum_{i=1}^k \beta_i b_i + W\right)}_{\parallel} + \sum_{i=k+1}^m \beta_i b_i + W\right]_{B_2} = \begin{pmatrix} \beta_{k+1} \\ \beta_{k+2} \\ \vdots \\ \beta_n \end{pmatrix},$$

a więc

$$[F(b_j)]_B = egin{pmatrix} eta_1 \ arphi_k \ eta_{k+1} \ draingledown \ eta_n \end{pmatrix} = egin{pmatrix} * \ [ar{F}(b_j + W)]_{B_2} \end{pmatrix},$$

więc pozostałe kolumny też się zgadzają.

Ćwiczenie 7.20. Jeżeli A, B są macierzami kwadratowymi, to

$$\left| \begin{array}{c|c} A & * \\ \hline 0 & B \end{array} \right| = \det A \cdot \det B,$$

skąd łatwo indukcyjnie wynika ogólny wzór

$$\begin{vmatrix} A_1 & * & * & * \\ \hline 0 & A_2 & * & * \\ \hline 0 & 0 & \ddots & \vdots \\ \hline 0 & 0 & \cdots & A_n \end{vmatrix} = \prod_{k=1}^n \det(A_k)$$

Wniosek 7.21. *W sytuacji jak w lemacie mamy:*

1.
$$\chi_F(x) = \chi_{F \upharpoonright_{V_1}}(x) \cdot \chi_{F \upharpoonright_{V_2}}(x) \cdots \chi_{F \upharpoonright_{V_n}}(x)$$

2.
$$\chi_F(x) = \chi_{F \upharpoonright_W}(x) \cdot \chi_{\bar{F}}(x)$$
.

Przykład 7.22. Dla $A = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}$, W = OX mamy $m_{e_1}(F_A \upharpoonright_W) = (2)$ i $m_{e_2+W}(\bar{F}) = (2)$, więc $\chi_A(x) = (2-x) \cdot (2-x)$.

7.4 Przestrzenie własne

Definicja 7.23. Niech F będzie endomorfizmem V, a λ będzie skalarem. Wtedy przestrzeń własna F dla λ to

$$V_{\lambda} = V_{\lambda}(F) = \{ v \in V \mid F(v) = \lambda v \}.$$

Jeżeli $V_{\lambda} \neq \{0\}$, to λ nazywamy wartością własną F, a elementy V_{λ} nazywamy wektorami własnymi F (odpowiadającymi lub dla λ).

Zbiór $\sigma(F) = \sigma_p(F) = \operatorname{Spec}(F) := \{ \lambda \in K \mid V_{\lambda} \neq \{0\} \}$ nazywamy *spektrum* [punktowym] (lub widmem) F.²

Przykład 7.24. Niech
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$
. Wtedy $\sigma(F_A) = \{1, 2, 3\}$ i V_1, V_2, V_3 to osie układu współrzednych.

²Dla nieskończenie wymiarowych przestrzeni do spektrum (nie punktowego) włącza się czasami też inne skalary.

Niech $V = \ell^2 = \{(a_n)_{n \in \mathbb{N}} \mid \sum_n |a_n|^2 < \infty \}$, a $F : \ell^2 \to \ell^2$ będzie prawym sziftem (dopisaniem zera na początku). Wtedy F nie ma wartości własnych, nawet zespolonych: $\sigma_n(F) = \emptyset$.

Definicja 7.25. Oznaczenie: dla dowolnego $F \in \text{End}(V)$ i $\lambda \in K$ będziemy oznaczać $F - \lambda := F - \lambda \operatorname{id}_V$. Podobnie definiujemy $F + \lambda$ oraz $A \pm \lambda$ dla macierzy kwadratowej A.

Uwaga 7.26. Dla F, λ jak wyżej, jeżeli dim $V < \infty$ i B jest dowolną bazą V, to mamy $m_B(F \pm \lambda) = m_B(F) \pm \lambda$.

Uwaga 7.27. • Każda V_{λ} jest niezmienniczą podprzestrzenią V.

• $\lambda \in \sigma(F) \iff \chi_F(\lambda) = 0$ (wartości własne F to dokładnie pierwiastki wielomianu charakterystycznego).

Dowód. Pierwszy punkt: $V_{\lambda} = \ker(F - \lambda)$, więc jest podprzestrzenią. Niezmienniczość wynika łatwo z definicji.

Drugi punkt:

$$\lambda \in \sigma(F) \iff \ker(F - \lambda) \neq \{0\}$$
 $\iff F - \lambda \text{ nie jest odwracalne}$
 $\iff \det(F - \lambda) = 0$

Wniosek 7.28. $F: V \rightarrow V$ ma co najwyżej dim V wartości własnych.

Dowód. $\chi_F(x)$ jest wielomianem stopnia dim V, więc ma co najwyżej n pierwiastków (z twierdzenia Bézout). □

Fakt 7.29. Załóżmy że $\lambda_1, \lambda_2, \ldots, \lambda_n \in K$ są parami różne. Wtedy przestrzenie $V_{\lambda_1}, \ldots, V_{\lambda_n}$ są liniowo niezależne.

Dowód. Indukcja względem n. Dla n=0,1 teza jest oczywista. Załóżmy że n>1 i teza zachodzi dla mniejszej liczby λ_i .

Weźmy $v_i \in V_{\lambda_i}$ takie że $\sum_{i=1}^n v_i = 0$. Wymnażając przez λ_1 dostajemy $\sum_{i=1}^n \lambda_1 v_i = 0$. Nakładając F dostajemy $\sum_{i=1}^n \lambda_i v_i = 0$. Po odjęciu stronami otrzymujemy

$$\sum_{i=1}^{n} (\lambda_i - \lambda_1) v_i = \sum_{i=2}^{n} (\lambda_i - \lambda_1) v_i = 0 - 0 = 0.$$

³Ale na analizie funkcjonalnej można się dowiedzieć, że $\sigma(F) = [-1, 1]$.

Ponieważ $V_{\lambda_2}, \dots V_{\lambda_n}$ są lnz z założenia indukcyjnego, wnioskujemy stąd że wszystkie $(\lambda_i - \lambda_1)v_i = 0$. Ale ponieważ $\lambda_i \neq \lambda_1$ dla i > 1, wynika stąd że $v_i = 0$ dla i > 1. Stąd $0 = \sum_{i=1}^n v_i = v_1$.

alternatywny dowód. Załóżmy że $0 = \sum_{i=1}^{n} v_i$, gdzie $v_i \in V_{\lambda_i}$. Wtedy

$$\begin{cases}
0 = v_1 + v_2 + \dots + v_n \\
F(0) = 0 = \lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_n v_n \\
F^2(0) = 0 = \lambda_1^2 v_1 + \lambda_2^2 v_2 + \dots + \lambda_n^2 v_n \\
\vdots \\
F^{n-1}(0) = 0 = \lambda_1^{n-1} v_1 + \lambda_2^{n-1} v_2 + \dots + \lambda_n^{n-1} v_n
\end{cases}$$

Z powyższego wynika

$$\begin{pmatrix} \mathbf{I} & \mathbf{I} & \cdots & \mathbf{I} \\ \lambda_1 \cdot \mathbf{I} & \lambda_2 \cdot \mathbf{I} & \cdots & \lambda_n \cdot \mathbf{I} \\ \vdots & & \ddots & \vdots \\ \lambda_1^{n-1} \mathbf{I} & \lambda_2^{n-1} \mathbf{I} & \cdots & \lambda_n^{n-1} \mathbf{I} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \vdots \\ \nu_n \end{pmatrix} = 0,$$

a wyznacznik dużej macierzy po lewej to wyznacznik Vandermonde'a podniesiony do potęgi dim V, czyli $v_i=0$.

alternatywny alternatywny dowód. Zaczynając jak w poprzednim sposobie,

kolumny
$$w_i = \begin{pmatrix} 1 \\ \lambda_i \\ \vdots \\ \lambda_i^{n-1} \end{pmatrix} \in K^n$$
 są liniowo niezależne (wyznacznik Vander-

monde'a), więc są bazą K^n . Istnieje zatem baza dualna $\varphi_1,\ldots,\varphi_n$, czyli

$$\varphi_i(w_j) = \begin{cases} 1 & i=j\\ 0 & i\neq j \end{cases}. \text{ Niech } \varphi_i \begin{pmatrix} x_0\\ \vdots\\ x_{n-1} \end{pmatrix} = \sum_{k=0}^{n-1} a_{ik} x_k. \text{ Wtedy dla każdego } i$$
 mamy

$$\vec{0} = \sum_{k=0}^{n-1} a_{ik} \underbrace{\sum_{j=1}^{n} \lambda_j^k \nu_j}_{||} = \sum_{j=1}^{n} \left(\underbrace{\sum_{k=0}^{n-1} (a_{ik} \lambda_j^k)}_{||} \right) \nu_j = \nu_i.$$

7.5 Diagonalizowalność

Definicja 7.30. Mówimy że $F: V \to V$ jest diagonalizowalne jeżeli $V = \bigoplus_{\lambda \in \sigma(F)} V_{\lambda}$.

(Wystarczy sprawdzić, że $V=\sum_{\lambda\in\sigma(F)}V_{\lambda}$, lub równoważnie, $\sum_{\lambda\in\sigma(\lambda)}\dim V_{\lambda}=\dim V$.)

Stwierdzenie 7.31. *Następujące warunki są równoważne dla F* : $V \rightarrow V$:

- F jest diagonalizowalne,
- istnieje baza B przestrzeni V taka że $m_B(F)$ jest diagonalna (wtedy mówimy że F diagonalizuje się w bazie B lub baza B diagonalizuje F),
- istnieje baza B przestrzeni V złożona z wektorów własnych dla F.

Dowód. Dwa ostatnie punkty są równoważne z definicji $m_B(F)$: $m_B(F)$ jest diagonalna \iff (dla każdego i) w i-tej kolumnie tylko i-ty wyraz może być niezerowy \iff $F(b_i) = \alpha_i b_i$ dla pewnego $\alpha_i \iff$ b_i jest wektorem własnym.

Załóżmy że F jest diagonalizowalne. Zauważmy że $F \upharpoonright_{V_{\lambda}} = \lambda \cdot \mathrm{id}_{V_{\lambda}}$ ma w każdej bazie V_{λ} macierz $\lambda \cdot \mathrm{I}_{\dim V_{\lambda}}$. Jeżeli wartości własne to $\lambda_1, \ldots, \lambda_k$, to biorąc (dowolne) bazy B_1, \ldots, B_k dla $V_{\lambda_1}, \ldots, V_{\lambda_k}$ widzimy z Lematu 7.19, że $B = B_1 B_2 \ldots B_k$ jest bazą V i $m_B(F)$ spełnia

W drugą stronę, załóżmy że V ma bazę B wektorów własnych dla F. Wtedy

$$\sum_{\lambda \in \sigma(F)} V_{\lambda} \supseteq \sum_{\lambda \in \sigma(F)} \operatorname{Lin} \underbrace{\{b \in B \mid \operatorname{warto\acute{s\acute{c}} własna} b \text{ to } \lambda\}}_{B} = \operatorname{Lin} (\bigcup_{\lambda \in \sigma(F)} B_{\lambda}) = \operatorname{Lin}(B) = V,$$

więc F jest diagonalizowalna.

Uwaga 7.32. • Jeżeli $m_B(F)$ jest diagonalna, to dla dowolnej bazy C istnieje odwracalna macierz $P(=m_C^B(\mathrm{id}))$ taka że $m_C(F)=Pm_B(F)P^{-1}$.

- Mówimy że macierz $A \in M_{n \times n}(K)$ jest diagonalizowalna, jeżeli F_A jest diagonalizowalne, lub równoważnie, jeżeli istnieje taka odwracalna P że PAP^{-1} jest diagonalna (wtedy mówimy że P diagonalizuje A).
- Podobnie mówimy że baza B diagonalizuje przekształcenie F jeżeli $m_B(F)$ jest diagonalna.

Przykład 7.33.
$$A = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix} \chi_A(x) = (2-x)^2(3-x)^2, \ \sigma(F_A) = \{2,3\},$$

$$V_{3} = \left\{ \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} \in K^{4} \middle| \begin{cases} 2x + y = 2x \\ 2y = 2y \\ 3z = 2z \\ 3t = 2t \end{cases} \right\} = \operatorname{Lin} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$V_{2} = \left\{ \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} \in K^{4} \middle| \begin{cases} 2x + y = 3x \\ 2y = 3y \\ 3z = 3z \\ 3t = 3t \end{cases} \right\} = \operatorname{Lin} \left(\begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} \right)$$

 $\dim V_2 + \dim V_3 = 1 + 2 < 4 = \dim V$, więc A nie jest diagonalizowalna.

7.6 Twierdzenie Jordana

Definicja 7.34. Klatkq Jordana dla λ rozmiaru m nazywamy następującą macierz kwadratową:

$$J_{\lambda,m} := \underbrace{\begin{pmatrix} \lambda & 1 & & & \mathbf{0} \\ & \lambda & 1 & & \\ & & \lambda & 1 & \\ & & & \ddots & \ddots \\ & & & & \ddots & \ddots \\ \mathbf{0} & & & & \lambda \end{pmatrix}}_{\substack{m \text{ kolumn}}}$$

Uwaga 7.35. Jeżeli macierz F w bazie $B=(b_1,b_2,\ldots,b_n)$ jest równa $J_{0,n}$, to znaczy że $F(b_1)=0$ i $F(b_j)=b_{j-1}$ dla j>1. Podobnie, jeżeli $m_B(F)=J_{\lambda,n}$, to znaczy że $F(b_1)=\lambda b_1$ i $F(b_j)=b_{j-1}+\lambda b_j$ dl j>1.

Uwaga 7.36. Łatwo indukcyjnie udowodnić, że dla $\lambda=0$ mamy $J_{0,m}^m=0$ i $J_{0,m}^{m-1}\neq 0$, a dla $\lambda\neq 0$ macierz $J_{\lambda,m}$ jest odwracalna (o wyznaczniku λ^m).

Ćwiczenie 7.37. Wyznaczyć jawne wzory na $J_{\lambda,m}^k$ (wskazówka: można to zrobić najpierw dla $\lambda=0$, a następnie skorzystać z wzoru dwumianowego na $J_{\lambda,m}^k=(J_{0,m}+\lambda)^k$).

Cel: udowodnić następujące twierdzenie Jordana.

Twierdzenie 7.38 (Rozkład Jordana). *Jeżeli V jest skończenie wymiarową* przestrzenią liniową nad <math>C i $F \in End(V)$, to istnieje baza B dla V taka że

gdzie $\lambda_1, \ldots, \lambda_k$ są wartościami własnymi F (być może z powtórzeniami).

Definicja 7.39. Bazę taką jak w Twierdzeniu (również nad ciałami innymi niż **C**) nazywamy *bazą jordanowską* dla *F*, a postać macierzy, którą otrzymujemy (tzn. blokową, z klatkami Jordana na przekątnej i zerami poza przekątną), nazywamy *postacią Jordana*.

Analogicznie definiujemy postać Jordana macierzy kwadratowej.

Przykład 7.40. Szukamy postaci Jordana $A = \begin{pmatrix} 3 & -1 & 2 \\ 2 & 0 & 3 \\ -2 & 1 & 0 \end{pmatrix}$. Łatwo policzyć, że $\chi_A(x) = (1-x)^3$. Z drugiej strony $(A-I)^2 \neq 0$, więc postać Jordana A to musi być $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$ (w pozostałych przypadkach $(A-I)^2 = 0$). Aby znaleźć bazę Jordana, musimy znaleźć wektor v taki że $(A-I)^2 v \neq 0$

Aby znaleźć bazę Jordana, musimy znaleźć wektor v taki że $(A-I)^2v \neq 0$. Sprawdzimy, czy $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ działa (uwaga: $\ker(A-I)^2$ jest płaszczyzną, więc

wystarczy że strzelimy wektor spoza tej płaszczyzny, wiec jest spora szansa, że losowo wybrany wektor zadziała).

$$(A-I)^2 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 & -1 & 2 \\ 2 & -1 & 3 \\ -2 & 1 & -1 \end{pmatrix}^2 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 & -1 & 2 \\ 2 & -1 & 3 \\ -2 & 1 & -1 \end{pmatrix} \begin{pmatrix} 2 \\ 2 \\ -2 \end{pmatrix} = \begin{pmatrix} -2 \\ -4 \\ 0 \end{pmatrix} \neq \vec{0}.$$

Udało się! Stąd baza jordanowska to np. $\begin{pmatrix} -2 \\ -4 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 2 \\ 2 \\ -2 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$.

Uwaga 7.41. Ogólnie jeżeli wiemy, że macierz ma tylko jedną klatkę w postaci Jordana, to łatwo zgadnąć jej bazę jordanowską postępując jak wyżej.

- Uwaga 7.42. Macierz w postaci Jordana jest macierzą górnotrójkątną, stąd wartości na przekątnej to dokładnie wartości własne i liczba wystąpień to dokładnie krotność pierwiastka wielomianu charakterystycznego.
 - Innymi słowy, krotność pierwiastka wielomianu charakterystycznego
 suma rozmiarów klatek Jordana odpowiadających danej wartości własnej.

- Patrząc się na postać Jordana macierzy przekształcenia F widzimy, że jądro F jest rozpinane przez wektory bazowe odpowiadające "początkom" klatek Jordana odpowiadającym wartości własnej 0 (bo obrazy pozostałych wektorów z bazy Jordana są liniowo niezależne — to wynika z odwracalności klatek Jordana). Stąd dimker F = liczba klatek Jordana z 0 na przekątnej.
- Podobnie, dla dowolnego skalaru λ zachodzi dim ker $(F \lambda)$ = liczba klatek Jordana z λ na przekątnej.
- Oznaczając przez $j_{\geq k}(\lambda)$ liczbę klatek rozmiaru co najmniej k z λ na przekątnej, to $j_{\geq k}(\lambda) = \dim \ker(F \lambda)^k \dim \ker(F \lambda)^{k-1}$. Stąd łatwo wyliczyć liczbę klatek rozmiaru k. (Szczegóły na ćwiczeniach.)

Przykład 7.43. Załóżmy że F ma wartość własną λ i dim ker $(F - \lambda)^k = 5,7,8,8$ dla k = 1,2,3,4. Stąd wnioskujemy że w części postaci Jordana odpowiadającej λ jest 5 klatek, z czego 2 = 7 - 5 rozmiaru ≥ 2 i 1 = 8 - 7 rozmiaru ≥ 3 i 0 = 8 - 8 klatek rozmiaru ≥ 4 , czyli są 3 klatki 1×1 i po jednej 2×2 i 3×3 . Stąd odpowiedni fragment macierzy F w postaci Jordana ma postać

$$\begin{pmatrix} \lambda & & & & & \\ & \lambda & & & & \\ & & \lambda & & & \\ & & \lambda & 1 & & \\ & & & \lambda & 1 & \\ & & & \lambda & 1 & \\ & & & & \lambda & 1 \\ & & & & \lambda \end{pmatrix}$$

Od teraz do końca dowodu twierdzenia Jordana V jest przestrzenią liniową skończonego wymiaru nad K, a $F \in \text{End}(V)$.

Definicja 7.44. Dla $\lambda \in K$ przestrzeń pierwiastkową dla λ definiujemy jako

$$V^{\lambda} := \{ v \in V \mid \exists k(F - \lambda)^k(v) = 0 \}.$$

Mówimy że elementy V^{λ} są uogólnionymi wektorami własnymi dla $\lambda.$

Uwaga 7.45. Nietrudno zobaczyć, że w bazie jordanowskiej wektory odpowiadające klatkom z λ na przekątnej stanowią bazę przestrzeni pierwiastkowej V^{λ} .

Uwaga 7.46. Zauważmy że V^{λ} dla $F = V^{0}$ dla $G = F - \lambda$.

Ćwiczenie 7.47. Jeżeli $\lambda, \mu \in K$, to potęgi $(F-\lambda)$ i $(F-\mu)$ są przemienne, tzn. dla każdych n, m zachodzi $(F-\lambda)^n (F-\mu)^m = (F-\mu)^m (F-\lambda)^n$. (Wskazówka: dla m=n=1 teza jest łatwa do sprawdzenia, dla większych m, n możemy rozumować indukcyjnie.)

Ćwiczenie 7.48. Jeżeli F, G są przemienne, to zachowują wzajemnie swoje przestrzenie własne i pierwiastkowe.

Wniosek 7.49. Przestrzenie V^{λ} są F-niezmiennicze.

Dowód. Ponieważ F jest przemienne z F, wynika to wprost z ćwiczenia. \square

Ćwiczenie 7.50. Jeżeli $F^k(v) \neq F^{k+1}(v) = 0$, to układ $v, F(v), \dots, F^k(v)$ jest liniowo niezależny.

Wniosek 7.51. Niech $v \in V$. Wtedy $V^{\lambda} = \ker(F - \lambda)^{\dim V} = \ker(F - \lambda)^{\dim V^{\lambda}}$.

Dowód. Obydwie \supseteq są jasne. Wystarczy pokazać, że $V^{\lambda} \subseteq \ker(F - \lambda)^{\dim V^{\lambda}}$

Weźmy dowolny $v \in V^{\lambda}$. Wtedy dla pewnego d zachodzi $(F - \lambda)^{d}(v) = 0$. Niech d będzie najmniejsze możliwe. Wtedy z ćwiczenia układ $v, (F - \lambda)(v), \dots, (F - \lambda)^{d-1}(v)$ jest liniowo niezależny, zawiera się w V^{λ} i składa się z d wektorów, więc $d \leq \dim V^{\lambda}$.

Uwaga 7.52. Z twierdzenia Jordana można wywnioskować, że V^{λ} jest równe $\ker(F-\lambda)^k$, gdzie k to maksymalny rozmiar klatki Jordana odpowiadającej λ .

Fakt 7.53 (Rozkład Fittinga). $V = V^0 \oplus V'$, $gdzie\ V' = \operatorname{im} F^{\dim V^0}$; $ponadto\ F \upharpoonright_{V'}$ jest odwracalne.

Dowód. Oznaczmy $k = \dim V^0$. Z poprzedniego wniosku wiemy, że $V^0 = \ker F^k$. Weźmy dowolny $v \in \ker F^k \cap \operatorname{im} F^k$ oraz $w \in V$ taki że $F^k(w) = v$. Wtedy z poprzedniego wniosku $F^{2k}(w) = F^k(v) = 0$, więc $w \in V^0$, a więc (znów z poprzedniego wniosku) $v = F^k(w) = 0$. Stąd $V^0 = \ker F^k$ i im F^k są liniowo niezależne. Wobec tego tym bardziej $\ker F \cap \operatorname{im} F^k = \{0\}$, a więc $F \upharpoonright_{\operatorname{im} F^k}$ jest 1-1.

Ponieważ im F^k oczywiście jest F-niezmiennicze (i skończenie wymiarowe), wynika stąd że $F \upharpoonright_{\operatorname{im} F^k}$ jest też "na" im F^k , jest więc odwracalne (jako element End(im F^k)).

Z drugiej strony z twierdzenia o rzędzie dim $\ker F^k + \dim \operatorname{im} F^k = \dim V$, więc stąd $V' = \ker F^k \oplus \operatorname{im} F^k$.

Uwaga 7.54. Nietrudno zobaczyć, że w poprzednim fakcie mamy $V' = \operatorname{im} F^l$ dla każdego l > k, czyli $V' = \bigcap_i \operatorname{im} F^j$.

Wniosek 7.55. Jeżeli $\lambda \neq 0$, to $V^{\lambda} \subseteq \operatorname{im} F^{k}$ dla każdego k (a więc też $V^{\lambda} \subseteq V'$, gdzie V' jest jak w rozkładzie Fittinga).

Dowód. Ponieważ V^{λ} jest skończenie wymiarowa i F-niezmiennicza, wystarczy pokazać, że $F \upharpoonright_{V^{\lambda}}$ jest 1-1, czyli $V^{\lambda} \cap \ker F = \{0\}$.

Weźmy dowolne $v \in \ker F \cap V^{\lambda}$ i najmniejsze d takie że $(F - \lambda)^{d}(v) = 0$. Jeżeli d = 0, to v = 0 i teza jest spełniona. W przeciwnym razie mamy

$$0 = (F - \lambda)^{d}(\nu) = (F - \lambda)^{d-1}(F - \lambda)(\nu)$$

= $(F - \lambda)^{d-1}(F(\nu) - \lambda\nu) = (F - \lambda)^{d-1}(0 - \lambda\nu) = -\lambda(F - \lambda)^{d-1}(\nu),$

czyli (ponieważ $\lambda \neq 0$) $(F - \lambda)^{d-1}(\nu) = 0$, przecząc minimalności d.

Wniosek 7.56. Przestrzenie pierwiastkowe dla różnych wartości własnych są liniowo niezależne. Dokładniej, jeżeli $\lambda_1, \ldots, \lambda_k$ są parami różne, to $V^{\lambda_1}, \ldots, V^{\lambda_k}$ są lnz.

Dowód. Z Lematu 7.6 wystarczy pokazać, że dla każdego j_0 zachodzi $V^{\lambda_{j_0}} \cap \sum_{j \neq j_0} V^{\lambda_j} = \{0\}$. Bez zmniejszania ogólności możemy założyć, że $j_0 = 1$. Ponadto zastępując F przez $G = F - \lambda_1$ możemy założyć, że $\lambda_1 = 0$.

Wówczas chcemy pokazać, że $V^0 \cap \sum_{j>1} V^{\lambda_j} = \{0\}$ (przy czym $\lambda_j \neq 0$ dla j>1). Ale biorąc rozkłąd Fittinga $V=V^0 \oplus V'$ wiemy, że każda $V^{\lambda_j} \subseteq V'$, a więc też $\sum_{j>1} V^{\lambda_j} \subseteq V'$, co daje tezę.

Stwierdzenie 7.57. *Ustalmy* $F \in \text{End}(V)$, dim $V < \infty$. *Wtedy* dim $V^{\lambda} = krotność \lambda$ jako pierwiastka $\chi_F(x)$ (czyli największa potęga $(x - \lambda)$ dzieląca $\chi_F(x)$).

Dowód. Rozważmy przypadek $\lambda = 0$. Weźmy rozkład Fittinga $V = V^0 \oplus V'$ dla F. Ponieważ $F \upharpoonright_{V'}$ jest odwracalne, 0 nie jest jego wartością własną, a więc nie jest też pierwiastkiem jego wielomianu charakterystycznego.

Z drugiej strony $F \upharpoonright_{V^0}$ nie ma niezerowych wartości własnych: gdyby ν było wektorem własnym dla niezerowej λ , to $F^k(\nu) = \lambda^k \nu \neq 0$. Stąd jego wielomian charakterystyczny to $(-x)^{\dim V^0}$.

Ponieważ $V = V^0 \oplus V'$ i obydwie przestrzenie są niezmiennicze, z Lematu 7.21 wiemy, że $\chi_F = \chi_{F \upharpoonright_{V^0}} \cdot \chi_{F \upharpoonright_{V'}}$, przy czym $\chi_{F \upharpoonright_{V'}}(0) \neq 0$, skąd łatwo wynika teza.

Dla $\lambda \neq 0$ wystarczy rozważyć $G = F - \lambda$. Wtedy z rozumowania powyżej widzimy, że krotność 0 jako pierwiastka $\chi_G(x) = \chi_F(x+\lambda)$ to dim V^{λ} , tzn. $\chi_F(x+\lambda) = (-x)^{\dim V^{\lambda}} P(x)$, gdzie $P(0) \neq 0$. Podstawiając $y = x + \lambda$ mamy $\chi_F(y) = (\lambda - y)^{\dim V^{\lambda}} P(y - \lambda)$, skąd wynika teza.

Definicja 7.58. Mówimy że niestały wielomian $P \in K[x]$ rozszczepia się nad K, jeżeli jest iloczynem jednomianów z K[x], tzn. istnieją $a, x_1, \ldots, x_n \in K$ takie że

$$P(x) = a(x - x_1)(x - x_2)(x - x_3) \cdots (x - x_n).$$

Wniosek 7.59. *Jeżeli wielomian charakterystyczny* $F \in \text{End}(V)$ *rozszczepia się nad* K, to

$$V=\bigoplus V^{\lambda},$$

gdzie λ przebiega różne pierwiastki $\chi_F(x)$.

Dowód. Niech $\lambda_1, \ldots, \lambda_k$ będą pierwiastkami $\chi_F(x)$. Z Wniosku 7.56 wiemy, że $V^{\lambda_1}, \ldots, V^{\lambda_k}$ są liniowo niezależne. Z drugiej strony z założenia i ze stwierdzenia mamy:

$$\dim V = \deg \chi_F(x) = \deg \left(\prod_{j=1}^k (x - \lambda_j)^{\dim V^{\lambda_j}} \right) = \sum_{j=1}^k \dim V^{\lambda_j}$$

Stąd wynika teza.

Definicja 7.60. Endomorfizm $F \in \text{End}(V)$ nazywamy *nilpotentnym* (stopnia d) jeżeli $F^d = 0$ (przy dim $V < \infty$, F jest nilpotentny gdy $V = V^0$).5

Definicja 7.61. Mówimy że podprzestrzeń $W \le V$ jest *cykliczna* gdy jest postaci $K[F] \cdot v := \text{Lin}(v, F(v), F^2(v), \ldots)$. (Taka podprzestrzeń zawsze jest F-niezmiennicza.)

Uwaga 7.62. Weźmy nilpotentny F, dowolne $v \in V$ i najmniejsze d takie że $F^d(v) = 0$.

Wtedy $B = (F^{d-1}(v), \dots, F(v), v)$ jest bazą $W = K[F] \cdot v$ i $m_B(F \upharpoonright_W) = J_{0,d}$. W szczególności istnieje baza, w której macierz $F \upharpoonright_W$ jest tej postaci.

Lemat 7.63. Załóżmy że F jest nilpotentny, $d \in \mathbf{N}_+$ jest minimalne takie że $F^d = 0$, zaś $v_0 \in V \setminus \ker F^{d-1}$. Wtedy istnieje niezmiennicza podprzestrzeń $V' \leq V$ dopełnicza do $K[F] \cdot v_0$.

Dowód. Indukcja ze względu na d. Jeżeli d=1, to teza jest oczywista: F=0, więc każda podprzestrzeń jest niezmiennicza, w szczególności dowolna V' dopełnicza do $K[F] \cdot v_0 = \operatorname{Lin}(v_0)$ spełnia założenia.

Załóżmy że d>1 i weźmy takie v_0 . Oznaczmy $W=\operatorname{im} F,\ G=F\!\upharpoonright_W. W$ jest F-niezmiennicza, więc $G\in\operatorname{End}(W)$. Ponadto $G^{d-1}=0$ i $w_0=F(v)\in W$ spełnia $G^{d-2}(w_0)\neq 0$. Stąd z założenia indukcyjnego $W=K[G]\cdot w_0\oplus W'$ dla pewnej G-niezmienniczej $W'\leq W$.

Weźmy $V'' = F^{-1}[W']$. Wtedy $V'' \supseteq W'$: biorąc dowolne $w \in W'$ mamy (z G-niezmienniczości W') $F(w) = G(w) \in W'$, więc $w \in F^{-1}[W']$.

Zauważmy że $K[G] \cdot w_0 = F[K[F] \cdot v_0] = (K[F] \cdot v_0) \cap \operatorname{im} F$: pierwsza równość jest oczywista, w drugiej \subseteq jest oczywiste (z niezmienniczości $K[F] \cdot v_0$), \supseteq zaś wynika z obserwacji, że wymiar prawej strony jest ostro mniejszy niż $d = \dim K[F] \cdot v_0$ (bo v_0 do niej nie należy), a wymiar lewej strony to d-1 (bo $w_0, F(w_0), \ldots, F^{d-2}(w_0)$ jest bazą).

Stąd $(K[F] \cdot v_0) \cap W' = \{0\}$: jeżeli v jest wektorem w przekroju, to w szczególności $v \in \operatorname{im} F$, czyli $v \in K[G] \cdot w_0 \cap W' = \{0\}$. Stąd $K[F] \cdot v_0, W'$ są liniowo niezależne.

Ponadto ponieważ im $F = K[G] \cdot w_0 \oplus W'$, to dla każdego $v \in V$ mamy $F(v) = w_1 + w_2$, gdzie $w_1 \in K[G] \cdot w_0$ i $w_2 \in W'$. Biorąc $v_1 \in K[F] \cdot v_0$ taki że $F(v_1) = w_1$ widzimy, że $F(v - v_1) = w_2 \in W'$, więc $v - v_1 \in V''$. Stąd $v \in K[F] \cdot v_0 + V''$, więc $V = K[F] \cdot v_0 + V''$.

W związku z tym założenia Lematu 7.11 są spełnione i możemy rozszerzyć W' do $V' \subseteq V''$ dopełniczej do $K[F] \cdot v_0$. Ponadto V' jest F-niezmiennicza, bo $F[V'] \subseteq F[V''] \subseteq W' \subseteq V'$.

Wniosek 7.64. Załóżmy że F jest nilpotentny. Wtedy V jest sumą prostą cyklicznych podprzestrzeni.

Dowód. Indukcja ze względu na dim V. Jeżeli dim V=0, to teza jest oczywista. W przeciwnym razie z poprzedniego lematu mamy $V=V_1\oplus V_2$, gdzie $V_1\neq\{0\}$ jest cykliczna, a V_2 jest F-niezmiennicza. Wtedy dim $V_2<\dim V$, więc z założenia indukcyjnego V_2 jest sumą prostą cyklicznych podprzestrzeni. Biorąc te przestrzenie wraz z V_1 otrzymujemy rozkład V na cykliczne podprzestrzenie. □

Wniosek 7.65. F jest nilpotentny wtedy i tylko wtedy gdy istnieje baza B taka

104 ROZDZIAŁ 7. ROZKŁADY PRZESTRZENI I ICH ENDOMORFIZMÓW

że dla pewnych m_i zachodzi:

Ogólnie, $F-\lambda$ jest nilpotentny (tzn. $V=V^{\lambda}$) wtedy i tylko wtedy gdy istnieje taka baza B, że dla pewnych m_i zachodzi:

$$m_B(F) = egin{pmatrix} J_{\lambda,m_1} & & & \mathbf{0} \\ & J_{\lambda,m_2} & & & \\ & & J_{\lambda,m_3} & & \\ & & & \ddots & \\ & & & \ddots & \\ & & & & J_{\lambda,m_k} \end{pmatrix}$$

Dowód. Niech $V=\bigoplus_{j=1}^k V_j$, gdzie V_j są cykliczne. Wtedy z Uwagi dla każdego j mamy możemy wybrać bazę B_j dla V_j taką że $m_{B_j}(F\upharpoonright_{V_j})=J_{0,\dim V_j}$. Biorąc $B=B_1B_2\ldots B_k$ dostajemy:

Aby wywnioskować "ogólnie" wystarczy rozważyć $G=F-\lambda$ i zauwazyć, że

$$m_B(F) = m_B(G + \lambda) = m_B(G) + m_B(\lambda \operatorname{id}_V) = m_B(G) + \lambda I.$$

Twierdzenie 7.66. Niech V będzie przestrzenią liniową skończonego wymiaru nad K, a $F \in \text{End}(V)$. Wtedy następujące warunki są równoważne:

• $\chi_F(x)$ rozszczepia się nad K,

• istnieje baza jordanowska dla F,

tzn. istnieje baza B dla V taka że (dla pewnych λ_i , m_i)

Dowód. Macierz jordanowska jest trójkątna, co łatwo implikuje, że wielomian charakterystyczny się rozszczepia (wartości na przekątnej są pierwiastkami wielomianu charakterystycznego). Załóżmy teraz, że $\chi_F(x)$ się rozszczepia.

Niech $\lambda_1, \ldots, \lambda_k$ będą różnymi pierwiastkami $\chi_F(x)$. Wtedy $V = \bigoplus_j V^{\lambda_j}$ i dla każdego j, $F \upharpoonright_{V^{\lambda_j}} - \lambda_j$ jest nilpotentny, więc z poprzedniego Wniosku otrzymujemy bazę B_j przestrzeni V^{λ_j} , taką ze

Ponieważ $V=\bigoplus_j V^{\lambda_j}$, wnioskujemy stąd, że $B=B_1B_2\ldots,B_k$ jest bazą V i wtedy:

skąd łatwo wynika teza.

Definicja 7.67. Mówimy że ciało K jest *algebraicznie domknięte* jeżeli każdy niestały wielomian o współczynnikach z K ma pierwiastek w K.

Przykład 7.68. Ciało liczb rzeczywistych (ani żadne podciało, jak np. ciało liczb wymiernych) nie jest algebraicznie domknięte, bo wielomian $x^2 + 1$ nie ma pierwiastków.

Przykład 7.69. Ciało \mathbf{F}_p nie jest algebraicznie domknięte, bo wielomian x^p-x+1 nie ma pierwiastków.⁴

- *Uwaga* 7.70. Ciało **C** jest algebraicznie domknięte (to tzw. zasadnicze twierdzenie algebry⁵, nietrywialne, ma wiele pięknych dowodów, można je poznać np. na wykładzie z funkcji analitycznych, topologii algebraicznej, lub topologii różniczkowej).
 - Z twierdzenia Bézout wynika, że K jest algebraicznie domknięte \iff każdy wielomian w K[x] się rozszczepia.
 - Każde ciało można rozszerzyć do ciała algebraicznie domkniętego (dowód można zobaczyć np. na wykładzie Algebra 2R).

Wniosek 7.71 (Twierdzenie Jordana). *Jeżeli K* = \mathbf{C} (*lub ogólniej, jeżeli K jest ciałem algebraicznie domkniętym*) i $F \in \operatorname{End}(V)$, to istnieje baza jordanowska dla F.

Przykład 7.72. Przekształcenie $\mathbf{Q}^2 \to \mathbf{Q}^2$ zadane macierzą $\begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix}$ ma wielomian charakterystyczny x^2-2 , który nie ma pierwiastków w \mathbf{Q} , więc nie ma wymiernych wartości własnych, a więc i wymiernej postaci Jordana. Natomiast przekształcenie $\mathbf{R}^2 \to \mathbf{R}^2$ zadane tą samą macierzą się diagonalizuje:

$$\begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ \sqrt{2} \end{pmatrix} = \begin{pmatrix} \sqrt{2} \\ 2 \end{pmatrix} = \sqrt{2} \begin{pmatrix} 1 \\ \sqrt{2} \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ -\sqrt{2} \end{pmatrix} = \begin{pmatrix} -\sqrt{2} \\ 2 \end{pmatrix} = -\sqrt{2} \begin{pmatrix} 1 \\ -\sqrt{2} \end{pmatrix},$$

Przykład 7.73. Rozważmy przekształcenie $F_A \colon \mathbb{R}^3 \to \mathbb{R}^3$ zadane macierzą

$$A = \begin{pmatrix} 2 & 0 & 0 \\ -1 & 1 & 1 \\ -1 & -1 & 3 \end{pmatrix}.$$

 $^{^4}$ Ogólnie żadne ciało skończone nie jest algebraicznie domknięte: z zasady szufladkowej można wywnioskować, że w ciele o q elementach wielomian x^q-x+1 nie ma pierwiastków.

⁵wbrew nazwie to twierdzenie nie jest specjalnie zasadnicze, a na pewno nie dla algebry (ani w ogóle nie jest twierdzeniem algebry)

Mamy
$$\chi_A(x) = (2-x) \cdot \begin{vmatrix} 1-x & 1 \\ -1 & 3-x \end{vmatrix} = (2-x) \cdot (4-4x+x^2) = (2-x)^3$$
. Mamy $V_2 = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \middle| \begin{cases} x = 2x \\ -x + y + z = 2y \\ -x - y + 3z = 2z \end{cases} \right\} = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \middle| z = x + y \right\},$

więc dim $V_2 = 3 - 1 = 2$. Szukamy bazy jordanowskiej b_1, b_2, b_3 . Dwa z tych wektorów muszą być w ker(F-2), a trzeci jest przeprowadzany przez (F-2) na jeden z nich. Z tego wynika że $(F-2)^2 = 0$ (bo zeruje każdy wektor z bazy). Szukamy wektora b_3 takiego że $(F-2)b_3 \neq 0$, czyli $b_3 \notin V_2$; wystarczy

rozwiązanie
$$z \neq x + y$$
, np. $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$. Wtedy musimy wziąć $b_2 = (A - 2I) \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ -1 \\ -1 \end{pmatrix}$, zaś $b_1 \in V_2$ musi być lnz z b_2 , na przykład $b_1 = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$.

Przykład 7.74. Załóżmy że mamy macierz 8×8 , o której wiemy, że ma następującą postać Jordana:

$$\begin{pmatrix} \lambda & & & & & \\ & \lambda & & & & \\ & & \lambda & & & \\ & & \lambda & 1 & & \\ & & & \lambda & 1 & \\ & & & \lambda & 1 & \\ & & & & \lambda & 1 \\ & & & & \lambda \end{pmatrix}.$$

Szukanie bazy jordanowskiej zaczynamy od ostatniego wektora. Jest to dowolny $b_8 \in \ker(F - \lambda)^3 \setminus \ker(F - \lambda)^2$.

Znalazłszy b_8 łatwo wyznaczamy $b_7 = (F-\lambda)b_8$, $b_6 = (F-\lambda)b_7$. Następnie wyznaczamy $b_5 \in \ker(F-\lambda)^2 \setminus \ker(F-\lambda)$, tak żeby b_5 i $(F-\lambda)b_5$) tworzyły układ lnz z b_6 i b_7 (o b_8 nie musimy się martwić — dlaczego?). Wtedy $b_4 = (F-\lambda)b_5$ jest liniowo niezależny z b_5 , b_6 , b_7 , b_8 i $b_4 \in \ker(F-\lambda)$. Następnie wybieramy b_1 , b_2 , $b_3 \in \ker(F-\lambda)$, liniowo niezależne z b_4 , b_6 .

7.7 Kompleksyfikacja i rzeczywiste tw. Jordana

Od teraz do końca rozdziału 7. V jest skończenie wymiarową przestrzenią liniową nad \mathbf{R} , a $F \in \mathrm{End}(V)$.

Definicja 7.75. Niech *V* będzie rzeczywistą przestrzenią liniową. *Kompleksyfikacją V* nazywamy zespoloną przestrzeń liniową:

$$V_{\mathbf{C}} := V \oplus V = V \oplus iV$$
,

ze zwykłym dodawaniem oraz z mnożeniem przez skalary zadanym wzorem

$$(a+bi)\cdot(v,w) = (a+bi)\cdot(v+iw) = (av-bw)+i(bv+aw) = (av-bw,bv+aw).$$

Intuicyjnie: kompleksyfikacja V to "rozszerzenie skalarów" V z ${\bf R}$ do ${\bf C}$. 6

Przykład 7.76. • Kompleksyfikację $(\mathbf{R}^n)_{\mathbf{C}} = \mathbf{C}^n$.

- $(\mathbf{R}_n[X])_{\mathbf{C}} = \mathbf{C}_n[X].$
- Dla $V = C(\mathbf{R})_{\mathbf{C}} = C(\mathbf{R}, \mathbf{C})$ (przestrzeń funkcji ciągłych $\mathbf{R} \to \mathbf{C}$).

Uwaga 7.77. Zgodnie z notacją powyżej, utożsamiamy V z rzeczywistą podprzestrzenią $V_{\rm C}$ (V nie jest zespoloną podprzestrzenią, bo nie jest zespoloną przestrzenią liniową!).

Mnożenie przez rzeczywiste skalary w $V_{\rm C}$ działa tak jak powinno (czyli tak jak w $V \oplus V$). W szczególności dla dowolnego $v \in V$ (a nawet $v \in V_{\rm C}$) i $r \in \mathbf{R}$ mamy riv = irv i nad \mathbf{R} zachodzi istotnie $V_{\rm C} = V \oplus_{\mathbf{R}} iV$ (to wynika wprost z definicji).

Definicja 7.78. Dla $v = v_1 + iv_2 \in V_{\mathbb{C}}$ $(v_1, v_2 \in V)$ definiujemy *sprzężenie* $\bar{v} := v_1 - iv_2$.

(Uwaga: jest to R-liniowe odwzorowanie.)

Fakt 7.79. *Jeżeli* $A \subseteq V$, to

$$\operatorname{Lin}_{\mathbf{R}}(A) = V \cap \operatorname{Lin}_{\mathbf{C}}(A).$$

⁶ Za pomocą tzw. iloczynu tensorowego, kompleksyfikację można zdefiniować też jako $V_{\mathbf{C}} := V \otimes_{\mathbf{R}} \mathbf{C}$. W podobny sposób można rozszerzać skalary z \mathbf{Q} do \mathbf{R} , z \mathbf{F}_2 do \mathbf{F}_4 itp. O tym może być więcej na konwersatorium.

Dowód. Inkluzja ⊆ jest oczywista. Pokażemy ⊇.

Niech $v_j \in A$, $\alpha_j \in \mathbf{C}$ będą takie że $v = \sum_{j=1}^k \alpha_j v_j \in V$. Wtedy $v = \bar{v}$ i $\bar{v}_i = v_i$, więc:

$$v = \frac{1}{2}v + \frac{1}{2}\bar{v} = \frac{1}{2}\sum_{j=1}^{k}\alpha_j + \frac{1}{2}\sum_{j=1}^{k}\bar{\alpha}_jv_j = \sum_{j=1}^{k}\frac{\alpha_j + \bar{\alpha}_j}{2}v_j = \sum_{j=1}^{k}\operatorname{Re}(\alpha_j)v_j \in \operatorname{Lin}_{\mathbf{R}}(A). \square$$

Fakt 7.80. Niech V będzie przestrzenią liniową nad R. Wtedy $\dim_R V = \dim_C V_C$; dokładniej, dla $B \subseteq V$ mamy:

- B rozpina $V \iff B$ rozpina V_C
- B jest $lnz \ w \ V \iff B jest \ lnz \ w \ V_{C}$
- B jest bazą $V \iff B$ jest bazą V_C .

Dowód. Jeżeli *B* jest lnz nad **C**, to oczywiście *B* jest też lnz nad **R**. W drugą stronę, jeżeli *B* jest lz nad **C**, to znaczy, że dla pewnego $b \in B$ mamy $b \in \text{Lin}_{\mathbf{C}}(B \setminus \{b\})$. Ale $b \in V$, więc z poprzedniego faktu wnioskujemy, że $b \in \text{Lin}_{\mathbf{R}}(B \setminus \{b\})$, czyli *B* jest lz nad **R**.

Jeżeli B rozpina V nad \mathbf{R} , to nad \mathbf{C} rozpina $V+iV=\mathbf{C}$. Z drugiej strony jeżeli $\mathrm{Lin}_{\mathbf{C}}(B)=V_{\mathbf{C}}$, to z poprzedniego faktu $\mathrm{Lin}_{\mathbf{R}}(B)=V_{\mathbf{C}}\cap V=V$.

Trzeci punkt wynika z pierwszych dwóch.

Definicja 7.81. Dla przekształcenia **R**-liniowego $F: V \to W$, jego kompleksyfikacja to **C**-liniowe $F_C: V_C \to W_C$ zadane oczywistym wzorem $F_C(v + iv') = F(v) + iF(v')$.

Uwaga 7.82. Jeżeli $F: V \to W$ jest **R**-liniowe i B, C to bazy V, W, to zachodzi $m_C^B(F) = m_C^B(F_C)$ (odczytane nad **C**; to wynika wprost z definicji m_C^B).

W szczególności $F_{\rm C}$ ma w pewnej (ale być może nie w każdej) bazie macierz o współczynnikach rzeczywistych.

- **Przykład 7.83.** $v \mapsto \bar{v}$ jest **R**-liniowe $V_{\rm C} \to V_{\rm C}$, nie jest jednak **C**-liniowe (bo $i\bar{v} = -i\bar{v} \neq i\bar{v}$ gdy $v \neq 0$), a więc nie jest też kompleksyfikacją żadnego endomorfizmu V.
 - Odwzorowanie $F: V_C \to V_C$, $v \mapsto iv$ również nie jest kompleksyfikacją żadnego rzeczywistego przekształcenia liniowego, np. dlatego że jeżeli B jest (rzeczywistą) bazą V, to macierz $m_B(F) = i$ I nie jest rzeczywistą macierzą.

110 ROZDZIAŁ 7. ROZKŁADY PRZESTRZENI I ICH ENDOMORFIZMÓW

- Mamy R-liniowe odwzorowania Re, Im: $V_C \rightarrow V$, Re(v+iw) = v, Im(v+iw) = w. Nie są one oczywiście C-liniowe (V nie jest przestrzenią liniową nad C).
- Odwzorowanie $F: \mathbf{R}^2 \to \mathbf{R}^2$ zadane macierzą $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ w standardowej bazie nie diagonalizuje się, ale w bazie $B = (e_1 + ie_2, e_1 ie_2)$ mamy $m_B(F_{\mathbf{C}}) = \begin{pmatrix} -i & 0 \\ 0 & i \end{pmatrix}$.

Wniosek 7.84. Jeżeli $F \in \text{End}(V)$, gdzie V jest rzeczywista, to $\chi_F(x) = \chi_{F_C}(x)$, a więc ten drugi jest wielomianem o współczynnikach rzeczywistych i F, F_C mają te same rzeczywiste wartości własne.

Fakt 7.85. *Jeżeli F*: $V \to W$ (gdzie V, W są rzeczywiste), to $(\ker F)_{\mathbb{C}} = \ker(F_{\mathbb{C}})$. *Dowód.* Weźmy $v = v_1 + iv_2 \in V_{\mathbb{C}}$. Wtedy z definicji $F_{\mathbb{C}}$:

$$v \in \ker F_{\mathbf{C}} \iff 0 = F_{\mathbf{C}}(v_1 + iv_2) = F(v_1) + iF(v_2) \iff \begin{cases} F(v_1) = 0 \\ F(v_2) = 0 \end{cases}$$

$$\iff \begin{cases} v_1 \in \ker F \\ v_2 \in \ker F \end{cases} \iff v = v_1 + iv_2 \in (\ker F)_{\mathbf{C}}. \quad \Box$$

Wniosek 7.86. Załóżmy że $r \in \mathbb{R}$. Wtedy $(V_{\mathbb{C}})_r = (V_r)_{\mathbb{C}} i (V_{\mathbb{C}})^r = (V^r)_{\mathbb{C}}$.

Dowód. Z poprzedniego faktu dla
$$G = F - r$$
 dostajemy $(V_C)_r = (V_r)_C$, a dla $G = (F - r)^{\dim V} (V_C)^r = (V^r)_C$.

Definicja 7.87. Przez $V_{C,\lambda}$ i V_C^{λ} będziemy oznaczać przestrzenie własne i pierwiastkowe dla F_C (z poprzedniego wniosku widzimy, że nie ma tu dwuznaczności gdy $\lambda \in \mathbf{R}$).

Uwaga 7.88. •
$$F_{C}(\bar{v}) = F_{C}(v_{1} - iv_{2}) = F(v_{1}) - iF(v_{2}) = \overline{F(v_{1}) + iF(v_{2})} = F(v_{1}) - iF(v_{2}) = F(v_{1}) -$$

- $F(\text{Re}(v)) = F_{\mathbf{C}}(\frac{v+\bar{v}}{2}) = \frac{F_{\mathbf{C}}(v)+F_{\mathbf{C}}(\bar{v})}{2} = \text{Re}(F_{\mathbf{C}}(v)),$
- $F(\operatorname{Im}(v)) = F_{\mathbf{C}}(\frac{v \bar{v}}{2i}) = \operatorname{Im}(F_{\mathbf{C}}(v)).$

Fakt 7.89. Jeżeli $F \in \text{End}(V)$ i λ jest wartością własną $F_{\mathbf{C}}$, to $\bar{\lambda}$ też nią jest, a ponadto $V_{\mathbf{C},\bar{\lambda}} = \overline{V_{\mathbf{C},\lambda}}$ i $V_{\mathbf{C}}^{\bar{\lambda}} = \overline{V_{\mathbf{C}}^{\lambda}}$.

Dowód. Z poprzedniej uwagi dla dowolnych v, λ mamy $F_{\rm C}(v) = \lambda v \iff F_{\rm C}(\bar{v}) = \bar{k}\bar{v}$, co daje $V_{{\rm C},\bar{\lambda}} = \overline{V_{{\rm C},\lambda}}$ (w szczególności zerowość tych dwóch przestrzeni jest równoważna).

Podobnym rachunkiem $\overline{(F_{\mathbf{C}}-\lambda)^k(\nu)}=(F-\bar{\lambda})^k(\bar{\nu}),$ do daje $V_{\mathbf{C}}^{\bar{\lambda}}=\overline{V_{\mathbf{C}}^{\lambda}}.$ \square **Lemat 7.90.** *Jeżeli W* $\leq V_{\mathbf{C}}$ (zespolona podprzestrzeń!) i $B=(b_1,\ldots,b_n)$ jest bazą W, to, oznaczając $W_{\mathbf{R}}=(W+\bar{W})\cap V$ mamy:

- $W_{\mathbf{R}} = \operatorname{Re}[W] = \operatorname{Im}[W]$,
- $(W_{\rm R})_{\rm C} = W + \bar{W}$,
- $je\dot{z}eli\ W \cap \bar{W} = \{0\}$, to $B_{\mathbf{R}} = (\operatorname{Re}(b_1), \operatorname{Im}(b_1), \operatorname{Re}(b_2), \dots, \operatorname{Im}(b_n))$ jest bazą $W_{\mathbf{R}}$ (nad \mathbf{R}) i $W + \bar{W}$ (nad \mathbf{C}).

Dowód. Dla każdego $w \in W$ mamy $\text{Re}(w) = \frac{w + \bar{w}}{2} \in W_R$, co pokazuje $W_R \supseteq \text{Re}[W]$. Z drugiej strony jeżeli $w_1 \in W, w_2 \in \bar{W}$ spełniają $w = w_1 + w_2 \in V$, to $w = \text{Re}(w_1 + w_2) = \text{Re}(w_1 + \bar{w}_2) \in \text{Re}[W]$. Ponadto dla każdego $w \in W$ mamy Im(w) = Re(iw), więc Re[W] = Im[W].

Drugi punkt łatwo wynika z pierwszego: z jego pomocą łatwo zobaczyć, że obydwie strony są równe Re[W] + i Im[W].

Trzeci punkt: jeżeli $W \cap \bar{W} = \{0\}$, to dim $(W + \bar{W}) = 2n$. Ponieważ B_R ma 2n elementów i oczywiście rozpina (nad C) $Re[W] + i Im[W] = W + \bar{W}$, to B_R jest bazą $W + \bar{W}$, a więc (z drugiego punktu) jest też bazą W_R .

Definicja 7.91. Dla $\lambda \in \mathbf{C}$, oznaczmy przez R_{λ} rzeczywistą macierz 2×2 postaci

$$\begin{pmatrix} \operatorname{Re}(\lambda) & \operatorname{Im}(\lambda) \\ -\operatorname{Im}(\lambda) & \operatorname{Re}(\lambda) \end{pmatrix}.$$

(W szczególności jeżeli $\lambda = e^{i\theta}$, to R_{λ} jest macierzą *zegarowego* obrotu o θ względem standardowej bazy \mathbf{R}^2 .)

Stwierdzenie 7.92. *Jeżeli* $F \in \text{End}(V)$ *jest taka, że* F_C *się diagonalizuje, to w pewnej (rzeczywistej) bazie* B_0 *przestrzeni* V *mamy*

gdzie r_j są rzeczywistymi, a λ_j nierzeczywistymi wartościami własnymi F (z dokładnością do sprzężenia; można przyjąć dla ustalenia uwagi, że $\text{Im}(\lambda_j) > 0$). Wszystkie wartości występują z takimi krotnościami, jak ich krotności w $\chi_F(x)$.

Uwaga 7.93. Nietrudno pokazać, że (zmieniając bazę przez zamianę miejscami dwóch wektorów bazowych) można każde R_{λ_i} zamienić na $R_{\bar{\lambda}_i}$.

Przykład 7.94. Jeżeli $F: \mathbb{R}^3 \to \mathbb{R}^3$ jest nietrywialnym obrotem wokół prostej. Wtedy 1 jest wartością własną i det F=1, więc $\chi_F(x)$ ma 3 pierwiastki: λ i $\bar{\lambda}$, gdzie $|\lambda|=1$. Stąd $\lambda=\cos\theta+i\sin\theta$ dla pewnego $\theta\in[0,2\pi)$. Powyższe stwierdzenie mówi, że istnieje baza B \mathbb{R}^3 taka że

$$m_B(F) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & \sin \theta \\ 0 & -\sin \theta & \cos \theta \end{pmatrix}$$

Dowód. Ustalmy nierzeczywistą λ.

Niech $B_{\lambda} = (b_1, \dots, b_n)$ będzie bazą $V_{C\lambda}$. Wtedy

$$B_{\lambda \mathbf{R}} = (\text{Re}(b_1), \text{Im}(b_1), \text{Re}(b_2), \dots, \text{Im}(b_n))$$

(jak w lemacie) jest bazą $V_{\lambda,R} := \text{Re}[V_{C,\lambda}]$ i $V_{C,\lambda} + V_{C,\bar{\lambda}}$ (bo $V_{C,\lambda}$ i $V_{C,\bar{\lambda}}$ są lnz!) i korzystając z uwagi widzimy, że

$$F(\operatorname{Re}(b_i)) = \operatorname{Re}(F_{\mathbf{C}}(b_i)) = \operatorname{Re}(\lambda b_i) = \operatorname{Re}(\lambda) \operatorname{Re}(b_i) - \operatorname{Im}(\lambda) \operatorname{Im}(b_i),$$

i podobnie $F(\operatorname{Im}(b_j)) = \operatorname{Im}(\lambda)\operatorname{Re}(b_j) + \operatorname{Re}(\lambda)\operatorname{Im}(b_j)$. Stąd

$$m_{B_{\lambda,\mathbf{R}}}(F_{\mathbf{C}} \upharpoonright_{V_{\mathbf{C},\lambda}+V_{\mathbf{C},\bar{\lambda}}}) = m_{B_{\lambda,\mathbf{R}}}(F \upharpoonright_{V_{\lambda,\mathbf{R}}}) = \begin{pmatrix} R_{\lambda} & & & \\ & R_{\lambda} & & \\ & & \ddots & \\ & & & \ddots \\ & & & & R_{\lambda} \end{pmatrix}$$

Dla rzeczywistej wartości własnej r wiemy że $V_{\mathsf{C},r} = (V_r)_{\mathsf{C}}$, więc możemy znaleźć rzeczywista bazę $B_r \subseteq V_r$ dla $V_{\mathsf{C},r}$ i w niej macierz $m_{B_r}(F_{\mathsf{C}} \upharpoonright_{V_{\mathsf{C},r}})$ jest diagonalna (z r na przekątnej).

Powtarzamy tę procedurę dla wszystkich zespolonych pierwiastków $\chi_F(x)$ (czyli wartości własnych $F_{\rm c}$), dbając przy tym, żeby wziąć dokładnie jedną z każdej pary $\lambda, \bar{\lambda}$.

Sklejając uzyskane bazy do $B=B_{r_1}B_{r_2}\dots B_{r_M}B_{\lambda_1}\dots B_{\lambda_N}$ zauważamy, że z liniowej niezależności $V_{\mathbf{C},\lambda}$ wynika, że B jest (rzeczywistą!) bazą V i $V_{\mathbf{C}}$ i wtedy $m_B(F) = m_B(F_C)$ równa się

$$\begin{pmatrix} m_{B_{r_1}}(F_{\mathsf{C}} \upharpoonright_{V_{\mathsf{C},r_1}}) & & & \\ & m_{B_{r_l}}(F_{\mathsf{C}} \upharpoonright_{V_{\mathsf{C},r_l}}) & & & \\ & & m_{B_{\lambda_1,\mathsf{R}}}(F_{\mathsf{C}} \upharpoonright_{V_{\mathsf{C},\lambda_1} + V_{\mathsf{C},\lambda_1}}) & & & \\ & & & m_{B_{\lambda_1,\mathsf{R}}}(F_{\mathsf{C}} \upharpoonright_{V_{\mathsf{C},\lambda_1} + V_{\mathsf{C},\lambda_1}}) & & \\ & & & & m_{B_{\lambda_k,\mathsf{R}}}(F_{\mathsf{C}} \upharpoonright_{V_{\mathsf{C},\lambda_k} + V_{\mathsf{C},\lambda_k}}) \end{pmatrix}$$
 i macierze w blokach na przekatnej sa zadanej postaci, co daje teze.

i macierze w blokach na przekątnej są zadanej postaci, co daje tezę.

Co gdy F_C się nie diagonalizuje? Dla rzeczywistych $r \in \sigma(F_C)$ możemy wybrać bazy Jordana dla V^r . Dla nierzeczywistych λ potrzebujemy pomocniczej definicji.

Definicja 7.95. Rzeczywista klatka Jordana rozmiaru 2m odpowiadająca $\lambda \in \mathbb{C} \setminus \mathbb{R}$ (nierzeczywistej!) to macierz blokowa postaci

gdzie $R_{\lambda} = \begin{pmatrix} \text{Re}(\lambda) & \text{Im}(\lambda) \\ -\text{Im}(\lambda) & \text{Re}(\lambda) \end{pmatrix}$ a I nad przekątną to macierze identycznościowe 2×2 .

Następnie postępujemy podobnie jak powyżej: dla rzeczywistych wartości własnych r postępujemy jak w zwykłym dowodzie twierdzenia Jordana znajdując bazy V^r , a dla nierzeczywistej λ wybieramy bazę B_{λ} Jordana dla V_c^{λ} , tworzymy z niej (rzeczywistą!) bazę $B_{\lambda,\mathbf{R}}$ dla $V_{\mathbf{C}}^{\lambda}+V_{\mathbf{C}}^{\bar{\lambda}}$. Wtedy $m_{B_{\lambda,\mathbf{R}}}(F_{\mathbf{C}}|_{V_{\mathbf{C}}^{\lambda}+V_{\mathbf{C}}^{\bar{\lambda}}})$ ma postać Jordana. Powtarzamy te procedure dla wszystkich wartości własnych (z dokładnością do sprzeżenia) i sklejamy powstałe bazy.

Ten tok rozumowania prowadzi nas do

114 ROZDZIAŁ 7. ROZKŁADY PRZESTRZENI I ICH ENDOMORFIZMÓW

Twierdzenie 7.96 (Rzeczywiste twierdzenie Jordana). *Jeżeli F* \in End(V) i V jest skończenie wymiarową przestrzenią liniową nad \mathbf{R} , to V ma bazę B taką $\dot{z}e$

gdzie λ_j są (wszystkimi, z dokładnością do sprzężenia) zespolonymi pierwiastkami $\chi_F(x)$.

Ponadto rozmiary klatek odpowiadają dokładnie rozmiarom klatek w rozkładzie Jordana dla F_C (tzn. są takie same w przypadku rzeczywistych λ , podwojone w przypadku nierzeczywistych λ).

Szczegóły: Dodatek B do skryptu (kiedyś).

Definicja 7.97. Powyższą postać macierzy nazywamy rzeczywistą postacią *Jordana*.

Przykład 7.98. Chcemy znaleźć zespoloną i rzeczywistą postać Jordana macierzy

$$A = \begin{pmatrix} 3 & 1 & 1 & -4 & 0 & 0 \\ 0 & 6 & 0 & -10 & 0 & 0 \\ -1 & 3 & 3 & -10 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 5 & -1 \\ 0 & 0 & 0 & 0 & 10 & -1 \end{pmatrix}$$

Wielomian charakterystyczny to iloczyn wyznaczników

$$\begin{vmatrix} 3-x & 1 & 1 & -4 \\ 0 & 6-x & 0 & -10 \\ -1 & 3 & 3-x & -10 \\ 0 & 1 & 0 & -x \end{vmatrix} \begin{vmatrix} 5-x & -1 \\ 10 & -1-x \end{vmatrix},$$

Drugi wyznacznik to x^2-4x+5 , jego pierwiastki to $\frac{4\pm\sqrt{16-20}}{2}=\frac{4\pm2i}{2}=2\pm i$. Biorąc rozwinięcie Laplace'a względem ostatniego wiersza, pierwszy z

wyznaczników to

$$\begin{vmatrix} 3-x & 1 & -4 \\ 0 & 0 & -10 \\ -1 & 3-x & -10 \end{vmatrix} - x \begin{vmatrix} 3-x & 1 & 1 \\ 0 & 6-x & 0 \\ -1 & 3 & 3-x \end{vmatrix} =$$

$$= 10 \begin{vmatrix} 3-x & 1 \\ -1 & 3-x \end{vmatrix} - x(6-x) \begin{vmatrix} 3-x & 1 \\ -1 & 3-x \end{vmatrix} =$$

$$= (10-x(6-x))((3-x)^2 + 1)$$

$$= (x^2 - 6x + 10)(x^2 - 6x + 10),$$

jego pierwiastki (obydwa podwójne) to $\frac{6\pm\sqrt{36-40}}{2} = \frac{6\pm2i}{2} = 3\pm i$.

Ze struktury blokowej wynika, że wektor własny dla 2 + i będzie miał niezerowe tylko dwie ostatnie współrzędne. Musi spełniać $5x_5 - x_6 = (2+i)x_5$,

czyli
$$x_6=(3-i)x_5$$
, czyli przykładowo $c_5=\begin{pmatrix}0\\0\\0\\1\\3-i\end{pmatrix}$ działa, a ponieważ

macierz jest rzeczywista,
$$c_6=\bar{c}_5=\begin{pmatrix}0\\0\\0\\1\\3+i\end{pmatrix}$$
 jest wektorem własnym dla $2-i$.

Szukamy teraz uogólnionych wektorów własnych dla 3+i. Podobnie, wystarczy rozważać pierwsze 4 współrzędne szukamy więc elementów

$$\ker \begin{pmatrix} -i & 1 & 1 & -4 \\ 0 & 3-i & 0 & -10 \\ -1 & 3 & -i & -10 \\ 0 & 1 & 0 & -3-i \end{pmatrix}^{2} = \ker \begin{pmatrix} -2 & 2-2i & -2i & -8+8i \\ 0 & -2-6i & 0 & 20i \\ 2i & -2-6i & -2 & 4+20i \\ 0 & -2i & 0 & -2+6i \end{pmatrix}$$

Stosując metodę Gaussa, odejmujemy drugi wiersz od trzeciego, a następnie czwarty od pierwszego i trzy razy czwarty od drugiego, co daje nam

116 ROZDZIAŁ 7. ROZKŁADY PRZESTRZENI I ICH ENDOMORFIZMÓW

$$\begin{pmatrix} -2 & 2 & -2i & -6+2i \\ 0 & -2 & 0 & 6+2i \\ 2i & 0 & -2 & 4 \\ 0 & -2i & 0 & -2+6i \end{pmatrix}$$

teraz dodajemy drugi wiersz do pierwszego i odejmujemy *i* razy drugi od czwartego, co daje

$$\begin{pmatrix} -2 & 0 & -2i & 4i \\ 0 & -2 & 0 & 6+2i \\ 2i & 0 & -2 & 4 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Łatwo zobaczyć, że pierwszy i trzeci wiersz są współliniowe. Szukane wektory to są więc rozwązania $x_2 = (3+i)x_4$, $x_1 = -ix_3 + 2ix_4$. Przykładowo

$$\begin{pmatrix} 2i \\ 3+i \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}.$$

Nakładając (
$$A$$
— $3-i$) otrzymujemy wektor $\begin{pmatrix} 1+i\\0\\-1+i\\0\\0\\0\\0 \end{pmatrix}$. Znów, zważywszy że

A jest rzeczywistą macierzą, wektory sprzężone są uogólnionymi wektorami własnymi dla sprzężonych wartości własnych, tak więc

$$A = P \begin{pmatrix} 3+i & 1 & & & & & \\ & 3+i & & & & & \\ & & 3-i & 1 & & & \\ & & & 3-i & & & \\ & & & & 2+i & & \\ & & & & & 2-i \end{pmatrix} P^{-1}$$

dla

$$P = \begin{pmatrix} 1+i & 2i & 1-i & -2i & 0 & 0\\ 0 & 3+i & 0 & 3-i & 0 & 0\\ -1+i & 0 & -1-i & 0 & 0 & 0\\ 0 & 1 & 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 0 & 1 & 1\\ 0 & 0 & 0 & 0 & 3-i & 3+i \end{pmatrix}$$

oraz

$$A = Q \begin{pmatrix} 3 & -1 & 1 & 0 & & \\ 1 & 3 & 0 & 1 & & & \\ & & 3 & -1 & & & \\ & & 1 & 3 & & & \\ & & & & 2 & 1 \\ & & & & -1 & 2 \end{pmatrix} Q^{-1}$$

dla

$$Q = \begin{pmatrix} 1 & 1 & 0 & 2 & 0 & 0 \\ 0 & 0 & 3 & 1 & 0 & 0 \\ -1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 3 & -1 \end{pmatrix}$$

Uwaga 7.99. Można sformułować też wersję tw. Jordana dla dowolnych ciał, z tym że w ogólności rozmiary "podklatek" mogą być dowolnie duże — zależą od stopni nierozkładalnych wielomianów, na które rozkłada się $\gamma_F(x)$.

Wszystkie wersje twierdzenia Jordana uogólniają się na tzw. zasadnicze twierdzenie o skończenie generowanych modułach nad pierścieniami ideałów głównych. (O którym można usłyszeć np. na wykładzie z algebry przemiennej, na raczej \geq 3 roku...⁷)

Przykład 7.100. Chcemy rozwiązać równanie różniczkowe (liniowe, jednorodne) postaci

$$f^{(n)} = a_{n-1}f^{(n)} + \ldots + a_1f' + a_0f,$$

gdzie a_k są pewnymi rzeczywistymi (lub zespolonymi!) współczynnikami.

⁷W wersji dla odważnych, można już teraz zapytać o to np. Gala.

118 ROZDZIAŁ 7. ROZKŁADY PRZESTRZENI I ICH ENDOMORFIZMÓW

Zauważmy że jest ono równoważne równaniu

$$\begin{pmatrix} f' \\ \vdots \\ f^{(n)} \end{pmatrix} = \underbrace{\begin{pmatrix} 0 & 1 & 0 & \cdots & \cdots & 0 \\ 0 & 0 & 1 & & \vdots \\ \vdots & & \ddots & \ddots & \vdots \\ 0 & \cdots & \cdots & 0 & \ddots & 1 \\ a_0 & a_1 & \cdots & a_{n-2} & a_{n-1} \end{pmatrix}}_{A} \begin{pmatrix} f \\ \vdots \\ f^{(n-1)} \end{pmatrix}.$$

W skrócie
$$v'(t) = Av(t)$$
, gdzie $v(t) = (f(t), f'(t), \dots, f^{(n-1)}(t))^{\top}$.
Szukamy rozwiązań postaci $v(t) = \begin{pmatrix} f(t) \\ \vdots \\ f^{(n-1)}(t) \end{pmatrix} = e^{tB}v_0$ dla pewnej ma-

cierzy B i wektora (warunku początkowego) v_0 gdzie $e^{tB} = \sum_{k=0}^{\infty} \frac{(tA)^k}{k!} =$ $\sum_{k=1}^{\infty} \frac{t^k}{k!} A^k$ (ten szereg zawsze jest bezwzględnie zbieżny), czyli rozwiązań równania

$$(e^{tB}v_0)' = Ae^{tB}v_0.$$

Różniczkując $e^{tB}v_0$ względem t dostajemy

$$\frac{d}{dt}(e^{tB}v_0) = Be^{tB}v_0,$$

chcemy zatem mieć

$$Ae^{tB}v_0 = Be^{tB}v_0,$$

skąd widać, że rozwiązaniami są wszystkie funkcje postaci $v(t) = e^{tA}v_0$, czyli f(t) jest pierwszą współrzędną tegoż.

Jak wyznaczać efektywnie rozwiązania tego równania? Na przykład wyznaczamy postać Jordana $A = PJP^{-1}$. Wtedy $e^{tA} = Pe^{tJ}P^{-1}$. Korzystając z jawnych wzorów na potęgi klatek Jordana nietrudno wyznaczyć jawne wzory na exponensy klatek Jordana (także pomnożone przez t).

Na przykład dla
$$f'' = 4f' - 4f$$
 mamy $A = \begin{pmatrix} 0 & 1 \\ -4 & 4 \end{pmatrix}$, $A = PJP^{-1}$, gdzie $P = \begin{pmatrix} -2 & 1 \\ -4 & 0 \end{pmatrix}$ i $J = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}$. $\frac{t^k J^k}{k!} = \begin{pmatrix} \frac{(2t)^k}{k!} & \frac{k \cdot t^k 2^{k-1}}{k!} \\ 0 & \frac{(2t)^k}{k!} \end{pmatrix}$. Wtedy
$$e^{tJ} = \sum_{k=0}^{\infty} \begin{pmatrix} \frac{(2t)^k}{k!} & kt \frac{(2t)^{k-1}}{k!} \\ 0 & \frac{(2t)^k}{k!} \end{pmatrix} = \begin{pmatrix} e^{2t} & te^{2t} \\ 0 & e^{2t} \end{pmatrix},$$

skąd $e^{tA}=Pe^{tJ}P^{-1}=\begin{pmatrix} -2te^{2t}+e^{2t} & te^{2t} \\ -4te^{2t} & 2te^{2t}+e^{2t} \end{pmatrix}$, więc rozwiązanie ogólne jest postaci $f(t)=a(1-2t)e^{2t}+bte^{2t}$ gdzie a=f(0),b=f'(0) są dowolnymi stałymi; grupując wyrazy otrzymujemy wzór ogólny $f(t)=ce^{2t}+dte^{2t}$). Bezpośrednim rachunkiem można sprawdzić, że to faktycznie są rozwiązania równania f''=4f'-4f.

(Szczegóły: wykład równania różniczkowe 1/1 R)

Rozdział 8

Formy dwuliniowe i kwadratowe

Od teraz przez jakiś czas znów wracamy do dowolnego ciała *K*.

8.1 Formy dwuliniowe

Przykład 8.1. Rozważmy iloczyn skalarny na $\mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$, zadany wzorem

$$\left\langle \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \right\rangle = \sum_{k=1}^n x_i y_i$$

Ma on następujące własności:

- jest dwuliniowy, tzn. liniowy w obydwu argumentach,
- jest symetryczny, tzn. spełnia $\langle v, w \rangle = \langle w, v \rangle$,
- jest dodatnio określony, tzn. spełnia $\langle v, v \rangle > 0$, gdy $v \neq \vec{0}$.

Będziemy badać inne podobne funkcje na przestrzeniach liniowych nad różnymi ciałami.

Definicja 8.2. *Forma dwuliniowa* na V (p. lin. nad K) to odwzorowanie $\varphi: V \times V \to K$ liniowe w każdym argumencie.

Mówimy że φ jest symetryczna, jeżeli spełnia $\varphi(v, w) = \varphi(w, v)$, a antysymetryczna (lub skośnie symetryczna), jeżeli $\varphi(v, w) = -\varphi(w, v)$.

Przykłady 8.3. • na
$$K^n$$
 mamy symetryczną formę dwuliniową $\varphi\left(\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}\right) = \sum_{k=1}^n x_i y_i$

- det na K^2 jest forma dwuliniowa
- jeżeli ustalimy wektory $c_1, c_2, \ldots, c_{n-2} \in K^n$, to $\varphi(v, w) = \det(c_1, c_2, \ldots, c_{n-2}, v, w)$ jest dwuliniowe
- na C([0,1]) (przestrzeń funkcji ciągłych na kwadracie jednostkowym) mamy symetryczną formę dwuliniową $\varphi(f,g) = \int_0^1 e^t f(t)g(t) dt$.
- dla każdej $A=(a_{kj})_{kj}\in M_{n\times n}(K)$ mamy formę dwuliniową na K^n zadaną wzorem

$$\varphi_{A}(v,w) = v^{\top} \cdot A \cdot w = \sum_{k=1}^{n} \sum_{j=1}^{n} \underbrace{v_{k}}_{k-\text{ta współrzędna } v} a_{kj} \underbrace{w_{j}}_{j-\text{ta współrzędna } w}$$

Np. dla A = I i $K = \mathbf{R}$ dostajemy zwykły iloczyn skalarny.

Uwaga 8.4. Zbiór wszystkich form dwuliniowych jest zamknięty na dodawanie i mnożenie przez skalary, stanowi więc przestrzeń liniową. Podobnie zbiory form symetrycznych i antysymetrycznych.

Można to sprawdzić bezpośrednim rachunkiem, bądź zauważając, że zbiór form dwuliniowych na V ma naturalną bijekcję z $\operatorname{Hom}(V,V^*), \varphi \mapsto (v \mapsto \varphi(v,-)).$

Uwaga 8.5. Jeżeli φ jest formą dwuliniową na V o bazie $B=(b_1,\ldots,b_n)$, to dla $v=\sum_k \alpha_k b_k$, $w=\sum_j \beta_j b_j$ mamy

$$\varphi(v, w) = \varphi\left(\sum_{k} \alpha_{k} b_{k}, \sum_{j} \beta_{j} b_{j}\right) = \sum_{k} \sum_{j} \alpha_{k} \varphi(b_{k}, b_{j}) \beta_{j}$$

Definicja 8.6. Niech $B=(b_1,\ldots,b_n)$ będzie bazą V, a φ — formą dwuliniową na V.

Macierz V względem bazy B to

$$m^{B}(\varphi) = m^{BB}(\varphi) = \begin{pmatrix} \varphi(b_{1}, b_{1}) & \varphi(b_{1}, b_{2}) \cdots \cdots \varphi(b_{1}, b_{n}) \\ \varphi(b_{2}, b_{1}) & \varphi(b_{2}, b_{2}) & \vdots \\ \vdots & \ddots & \vdots \\ \varphi(b_{n}, b_{1}) \cdots \cdots \cdots \varphi(b_{n}, b_{n}) \end{pmatrix}$$

Wniosek 8.7.

$$\varphi(v,w) = [v]_B^{\mathsf{T}} m^{BB}(\varphi)[w]_B$$

(Jeżeli B jest standardową bazą K^n , to $\varphi = \varphi_{m^{BB}(\varphi)}$.)

Dowód. Jeżeli
$$v = \sum_k \alpha_k b_k$$
, $w = \sum_j \beta_j b_j$, to $[v]_B = \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} [w]_B = \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_n \end{pmatrix}$ i mamy:

$$\begin{pmatrix} \alpha_{1} \\ \vdots \\ \alpha_{n} \end{pmatrix}^{\top} \begin{pmatrix} \varphi(b_{1}, b_{1}) & \varphi(b_{1}, b_{2}) \cdots \cdots \varphi(b_{1}, b_{n}) \\ \varphi(b_{2}, b_{1}) & \varphi(b_{2}, b_{2}) & \vdots \\ \vdots & \ddots & \vdots \\ \varphi(b_{n}, b_{1}) \cdots \cdots \cdots \varphi(b_{n}, b_{n}) \end{pmatrix} \begin{pmatrix} \beta_{1} \\ \vdots \\ \beta_{n} \end{pmatrix} =$$

$$= \begin{pmatrix} \alpha_{1} & \cdots & \alpha_{n} \end{pmatrix} \begin{pmatrix} \sum_{j} \varphi(b_{1}, b_{j}) \beta_{j} \\ \vdots \\ \sum_{j} \varphi(b_{n}, b_{j}) \beta_{j} \end{pmatrix} = \sum_{k} \sum_{j} \alpha_{k} \varphi(b_{k}, b_{j}) \beta_{j} \quad \square$$

Przykład 8.8. Rozważmy formę dwuliniową $\varphi(P,Q) = P(1)Q(2)$ na $\mathbf{R}_2[X]$. W

bazie
$$B = (X(X-1), (X-1)(X-2), X(X-2))$$
 mamy $m^{BB}(\varphi) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ -2 & 0 & 0 \end{pmatrix}$.

Z drugiej strony w bazie
$$C = (1, X, X^2)$$
 mamy $m^{CC}(\varphi) = \begin{pmatrix} 1 & 2 & 4 \\ 1 & 2 & 4 \\ 1 & 2 & 4 \end{pmatrix}$.

Uwaga 8.9. Jeżeli *B* jest bazą przestrzeni *n*-wymiarowej *V*, to $\varphi \mapsto m^{BB}(\varphi)$ zadaje bijekcję między zbiorem wszystkich form dwuliniowych na *V*, a $M_{n\times n}(K)$.

Definicja 8.10. Mówimy że macierz *A* jest *symetryczna* jeżeli $A^{T} = A$.

Fakt 8.11. Następujące warunki są równoważne:

- φ jest symetryczna,
- macierz φ w (każdej \iff pewnej) bazie jest symetryczna.

Dowód. Załóżmy że $m^{BB}(\varphi)$ jest symetryczna. Wtedy

$$\varphi(v, w) = \varphi(v, w)^{\top} = ([v]_{B}^{\top} m^{BB}(\varphi)[w]_{B})^{\top} = [w]_{B}^{\top} m^{BB}(\varphi)^{\top} [v]_{B}^{\top\top} = [w]_{B}^{\top} m^{BB}(\varphi)[v]_{B} = \varphi(w, v),$$

więc φ jest symetryczna.

Z drugiej strony wprost z definicji wynika, że jeżeli φ jest symetryczna, to jej macierze są symetryczne.

Załóżmy teraz, że mamy bazy B,C przestrzeni V i znamy $m^{BB}(\varphi)$. Jak wyznaczyć $m^{CC}(\varphi)$?

Wniosek 8.12.
$$m^{CC}(\varphi) = m_R^C(\mathrm{id})^\top \cdot m^{BB}(\varphi) \cdot m_R^C(\mathrm{id})$$

Dowód. Z uwagi wynika, że wystarczy sprawdzić, że $m^{CC}(\varphi)$ zadaje φ (zgodnie ze wzorem z Wniosku 8.7). Weźmy dowolne $v, w \in V$. Przypomnijmy sobie, że $[v]_B = m_B^C(\mathrm{id}) \cdot [v]_C$. Stąd łatwo wynika:

$$\varphi(v, w) = [v]_B^{\top} m^{BB}(\varphi)[w]_B$$

$$= (m_B^C(\mathrm{id}) \cdot [v]_C)^{\top} m^{BB}(\varphi)(m_B^C(\mathrm{id}) \cdot [w]_C)$$

$$= [v]_C^{\top} \cdot m_B^C(\mathrm{id})^{\top} m^{BB}(\varphi) m_B^C(\mathrm{id}) \cdot [w]_C$$

Ponieważ v, w były dowolne, to kończy dowód.

Uwaga 8.13. Z powyższego wzoru widać, że w ogólności nie działa wzór $m^{CC}(\varphi) = (m_R^C(\mathrm{id}))^{-1} \cdot m^{BB}(\varphi) \cdot m_R^C(\mathrm{id})$, chyba że $m_R^C(\mathrm{id})^{-1} = m_R^C(\mathrm{id})^{\top}$.

Definicja 8.14.

równoważność form dwuliniowych Mówimy że dwie formy dwuliniowe na V są równoważne jeżeli mają te same macierze (niekoniecznie względem tych samych baz).

Wniosek 8.15. Macierze $A, B \in M_{n \times n}(K)$ zadają równoważne formy dwuliniowe wtedy i tylko wtedy gdy istnieje taka odwracalna P, że $B = PAP^{\top}$.

8.2 Iloczyny skalarne

Od teraz do odwołania pracujemy nad R (chyba że podano inaczej).

Przykład 8.16. $A = m^{BB}(\langle -, - \rangle)$ (tu $\langle -, - \rangle$ jest standardowym iloczynem skalarnym na \mathbf{R}^n) dla pewnej bazy B wtedy i tylko wtedy gdy spełnia $A = P^{\top}IP = P^{\top}P$, gdzie P jest odwracalna. Co więcej, $P = m_E^B(\mathrm{id})$ jest macierzą której kolumny to wektory z bazy B.

• Jeżeli P jest ortogonalna, to znaczy $P^{\top} = P^{-1}$, to A = I, czyli w nowych współrzednych zachodzi

$$\langle x, y \rangle = \sum_{j=1}^{n} x'_{j} y'_{j}$$

(tu x'_j, y'_j to współrzędne x, y względem nowej bazy).

• w ogólności tak nie jest; np. dla nowej bazy $B = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ mamy $P = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$, więc $A = P^T P = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$, czyli we współrzędnych pochodzących od B mamy $\langle x, y \rangle = 2x_1'y_1' + x_1'y_2' + x_2'y_1' + x_2'y_2'$.

To daje nam teoretyczny opis wszystkich możliwych form dwuliniowych równoważnych ze standardowym iloczynem skalarnym: są to wszystkie formy, których macierze są postaci $A = P^T P$ dla pewnej odwracalnej P. Niestety nie wiemy jeszcze, jak stwierdzić, czy dana A jest tej postaci, albo jak wyznaczyć P, znając A...

Zauważmy że każda forma dwuliniowa równoważna z iloczynem skalarnym musi być symetryczna i dodatnio określona (bo te własności nie zależą od wyboru bazy). Z tego wynika, że jeżeli A reprezentuje iloczyn skalarny, to musi być macierzą symetryczną, a ponadto dla każdego niezerowego wektora v musi spełniać $v^T A v > 0$.

Definicja 8.17. Mówimy że macierz symetryczna $A \in M_{n \times n}(\mathbf{R})$ jest dodatnio określona jeżeli dla każdego $v \in \mathbf{R}^n$, $v \neq 0$ mamy

$$v^T A v > 0.$$

Ogólniej:

Definicja 8.18. Mówimy że forma symetryczna φ na V (nad \mathbf{R}) jest *dodatnio określona*, jeżeli $\varphi(v,v)>0$ dla $v\neq 0$ (gdy dim(V) $<\infty$, równoważnie: jej macierz względem pewnej/każdej bazy jest dodatnio określona).

Mówimy wtedy że φ jest iloczynem skalarnym.

Przykład 8.19. Na przestrzeni C([0,1]) forma $\varphi(f,g) = \int_0^1 f(t)g(t) dt$ jest iloczynem skalarnym.

Pokażemy następujące twierdzenie.

Twierdzenie 8.20. *Następujące warunki są równoważne dla* $A \in M_{n \times n}(\mathbf{R})$.

- 1. A reprezentuje standardowy iloczyn skalarny na \mathbf{R}^n (względem pewnej bazy),
- 2. istnieje macierz odwracalna P taka że $A = P^{\top}P$,
- 3. A jest symetryczna i dodatnio określona.

Równoważność pierwszych dwóch warunków została już pokazana, podobnie jak fakt, że implikują trzeci. Brakującą implikację będzie wynikała z bardziej ogólnego twierdzenia.

Definicja 8.21. Mówimy że para wektorów $v, w \in V$ jest *ortogonalna* względem formy symetrycznej dwuliniowej φ jeżeli $\varphi(v, w) = 0$. Piszemy $v \perp w$.

Mówimy że wektor v jest *unormowany* (lub *jednostkowy*) względem φ jeżeli $\varphi(v,v)=1$.

Mówimy że układ $(v_1, ..., v_n)$ wektorów w przestrzeni V jest *ortogonalny* (względem φ) jeżeli jego elementy są parami ortogonalne, a *ortonormalny*, jeżeli są ponadto unormowane, tzn. dla dowolnych i, j mamy:

$$\varphi(\nu_i, \nu_j) = \begin{cases} 0 & i \neq j \\ 1 & i = j. \end{cases}$$

Uwaga 8.22. Każdy ortonormalny układ wektorów jest liniowo niezależny. Ogólnie, każdy ortogonalny układ wektorów nieizotropowych (takich że $\varphi(v,v) \neq 0$) jest liniowo niezależny.

Dowód. Ćwiczenie □

Twierdzenie 8.23 (Ortogonalizacja Grama-Schmidta). Załóżmy że φ jest dodatnio określoną, symetryczną formą dwuliniową na skończenie wymiarowej przestrzeni liniowej V nad R. Wtedy istnieje baza ortonormalna wzgledem φ.

Dowód. Niech $B = (b_1, b_2, ..., b_n)$ będzie dowolną bazą V. Zdefiniujemy rekurencyjnie bazę $B' = (b'_1, \dots, b'_n)$ ortonormalną względem φ , tak że $b'_k \in$ $Lin(b_1,...,b_k)$ i $Lin(b_1,...,b_k) = Lin(b'_1,...,b'_k)$.

Będziemy oznaczać $\varphi(v, w)$ w skrócie przez [v, w]. Niech $b_1' = \frac{b_1}{\sqrt{[b_1, b_1]}}$. Wtedy

$$[b_1', b_1'] = \left[\frac{b_1}{\sqrt{\varphi(b_1, b_1)}}, \frac{b_1}{\sqrt{\varphi(b_1, b_1)}}\right] = \frac{[b_1, b_1]}{\sqrt{[b_1, b_1]^2}} = 1.$$

Chcemy wyznaczyć $b_2'\in \mathrm{Lin}(b_1,b_2)=\mathrm{Lin}(b_1',b_2),$ ortogonalny do $b_1'.$ Rozważmy wektor postaci $v = \alpha_1 b_1' + b_2$. Wtedy

$$[b'_1, v] = [b'_1, \alpha_1 b'_1 + b_2] = [b'_1, \alpha_1 b'_1] + [b'_1, b_2] = \alpha_1 + [b'_1, b_2].$$

Stąd wektor $b_2''=b_2-[b_1',b_2]b_1'$ jest ortogonalny do b_1' i jest niezerowy (bo b_1',b_2 są liniowo niezależne), więc z dodatniej określoności $[b_2'',b_2'']>0$ i wektor $b_2' = \frac{b_2''}{\sqrt{\lceil b_2'', b_2'' \rceil}}$ jest unormowany, ortogonalny do b_1'

Załóżmy że k < n i mamy już ortonormalny układ b'_1, \ldots, b'_k wektorów z $\text{Lin}(b_1,\ldots,b_k). \text{ Weźmy } b_{k+1}''=b_{k+1}-\sum_{j=1}^k [\,b_{k+1},b_j'\,]b_j'. \text{ Wtedy dla } l\leq k \text{ mamy:}$

$$\begin{split} [b_{k+1}'',b_l'] &= [b_{k+1} - \sum_{j=1}^k [b_{k+1},b_j']b_j',b_l'] \\ &= [b_{k+1},b_l'] - \sum_{j=1}^k [b_{k+1},b_j'] \underbrace{\begin{bmatrix} b_j',b_l' \end{bmatrix}}_{\begin{cases} 1 & j=l \\ 0 & j \neq l \end{cases}} \\ &= [b_{k+1},b_l'] - [b_{k+1},b_l'] \\ &= 0. \end{split}$$

Z liniowej niezależność wyjściowej bazy widzimy że $b_{k+1}^{\prime\prime}$ jest niezerowy, możemy więc go unormować, uzyskując $b'_{k+1} = \frac{b''_{k+1}}{\sqrt{[b''_{k+1}, b''_{k+1}]}}$.

Uzyskany układ b'_1, \dots, b'_n jest ortonormalny, więc jest liniowo niezależny,

jest więc bazą V.

Definicja 8.24. Mówimy że baza *B diagonalizuje* formę dwuliniową φ gdy $m^{BB}(\varphi)$ jest diagonalna.

Wniosek 8.25. Jeżeli φ jest iloczynem skalarnym (tzn. jest dwuliniowa, dodatnio określona i symetryczna) \iff istnieje baza B spełniająca $m^{BB}(\varphi) = I$. W szczególności każdy iloczyn skalarny diagonalizuje się w pewnej bazie.

Dowód. ⇒: dowolna baza ortonormalna działa: istotnie, jeżeli b_1, \ldots, b_n jest bazą ortonormalną, to z definicji ij-ta współrzedna $m^{BB}(\varphi)$ to

$$\varphi(b_i, b_j) = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases},$$

więc $m^{BB}(\varphi) = I$. \Leftarrow : ćwiczenie.

To daje nam brakującą implikację z poprzedniego Twierdzenia.

Wniosek 8.26. Jeżeli $A \in M_{n \times n}(\mathbf{R})$ jest symetryczna i dodatnio określona, to forma $\varphi_A(v, w) = v^{\top} A w$ jest równoważna ze standardowym iloczymem skalarnym na \mathbf{R}^n .

Dowód. Z symetryczności i dodatniej określoności wynika łatwo, że $φ_A$ jest iloczynem skalarnym, więc teza wynika natychmiast z poprzedniego wniosku.

Wiemy zatem, że macierze iloczynu skalarnego to dokładnie dodatnio określone, symetryczne macierze. Symetryczność łatwo sprawdzić, ale co z dodatnią określonością?

Można to sprawdzić "brutalnie": spróbować zastosować proces Grama-Schmidta. Jeżeli się uda, to znaczy że forma (a więc macierz) jest iloczynem skalarnym, a więc w szczególności jest dodatnio określona. Jeżeli nie, to znaczy że nie jest.

Kryterium nie jest takie proste.

Definicja 8.27. Dla macierzy kwadratowej *A minor główny* to minor w którym występują wiersze o tych samych indeksach, co występujące w nim kolumny ("symetryczny").

k-ty *wiodący minor główny* to minor złożony z pierwszych *k* kolumn pierwszych *k* wierszy.

Twierdzenie 8.28 (Kryterium Sylvestera). *Załóżmy że* $A \in M_{n \times n}(\mathbb{R})$. *Niech*

$$A_k$$
 oznacza k-ty wiodący minor główny A_k tj. $A_k = \begin{pmatrix} a_{11} & \cdots & a_{1k} \\ \vdots & \ddots & \\ a_{k1} & \cdots & a_{kk} \end{pmatrix}$, gdzie

$$A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \\ a_{n1} & \cdots & a_{nn} \end{pmatrix}.$$

Wtedy A jest dodatnio określona wtedy i tylko wtedy gdy $det(A_k) > 0$ (dla wszystkich k = 1, 2, ..., n).

Twierdzenie to udowodnimy później.

8.3 Ortogonalność

Przykład 8.29. W szczególnej teorii względności ważną rolę odgrywa tzw. forma Lorentza (czasami definiowana z przeciwnymi znakami):

$$\varphi((x,t),(y,s)) = x_1y_1 + x_2y_2 + x_3y_3 - c^2ts,$$

gdzie c to stała reprezentująca prędkość światła. Normalizując, możemy wybrać bazę B czasoprzestrzeni ${\bf R}^4={\bf R}^{3+1}$ taką że

$$m^{BB}(\varphi) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix},$$

ma ona więc bardzo prosty opis (względem odpowiednio dobranej bazy).

Cel: znaleźć podobnie prosty opis *każdej* symetrycznej formy dwuliniowej (np. w postaci macierzy diagonalnej). W szczególności chcemy znaleźć ortogonalną bazę dla dowolnej takiej formy.

W tej części wykładu φ jest ustaloną (ale dowolną) symetryczną formą dwuliniową na rzeczywistej przestrzeni V.

Zauważmy że jeżeli forma φ nie jest dodatnio określona, to mogą istnieć wektory ν ortogonalne do siebie, tzn. spełniające $\varphi(\nu,\nu)=0$, np. wektor ((c,0,0),1) jest taki względem formy Lorentza.

Definicja 8.30. Niezerowy wektor ortogonalny do siebie nazywamy *izotro-powym*.

To wydaje się istotną przeszkodą, gdybyśmy chcieli zastosować argument podobny do procesu Grama-Schmidta.

Na szczęście nie jest tak całkiem źle.

Stwierdzenie 8.31. Załóżmy żę φ jest niezerową formą symetryczną. Wtedy istnieje niezerowy i nieizotropowy wektor.

Dowód. Ćwiczenie. □

 $\it Uwaga$ 8.32. Dla form niesymetrycznych to nie musi być prawdą, co pokazuje np. det na ${\bf R}^2$.

Definicja 8.33. Jeżeli $A \subseteq V$ (wyposażonej w ustaloną formę symetryczną φ), to jego *dopełnienie ortogonalne* A^{\perp} to zbiór wektorów prostopadłych do wszystkich elementów A:

$$A^{\perp} = \{ v \in V \mid (\forall a \in A) \varphi(a, v) = 0 \}.$$

Przykłady 8.34. • dopełnienie ortogonalne prostej w R³ (względem standardowego iloczynu skalarnego) to płaszczyzna ortogonalna do niej (i vice versa);

- ogólnie dopełnienie ortogonalne k-wymiarowej podprzestrzeni \mathbb{R}^n względem standardowego iloczynu skalarnego to n-k-wymiarowa podprzestrzeń dopełnicza;
- dopełnienie ortogonalne $1^{\perp} \subseteq C([0,1])$ względem $\varphi(f,g) = \int_0^1 f(t)g(t) dt$ składa się z funkcji spełniających $\int_0^1 f(t) dt = 0$.
- jeżeli V jest dowolną przestrzenią liniową i φ jest formą zerową, to dla każdego $A\subseteq V$ mamy $A^{\perp}=V$.

Uwaga 8.35. Dla dowolnych $A, B \subseteq V$:

- $A^{\perp} \leq V$,
- $A^{\perp} = (\operatorname{Lin} A)^{\perp}$,
- $(A \cup B)^{\perp} = A^{\perp} \cap B^{\perp}$

Dowód. Ćwiczenie □

Fakt 8.36. Niech v_0 będzie dowolnym nieizotropowym wektorem. Wtedy dla $W = \text{Lin}(v_0)$ zachodzi $V = W \oplus W^{\perp}$.

Dowód. Z uwagi wynika że $W^{\perp} = \{v_0\}^{\perp}$.

Z tego że v_0 nie jest izotropowy łatwo wynika, że $W \cap W^{\perp} = \{0\}$, więc W, W^{\perp} są liniowo niezależne. Wystarczy więc pokazać, że $W + W^{\perp} = V$.

Weźmy dowolny wektor $v \in V$. Niech $w = \frac{\varphi(v,v_0)}{\varphi(v_0,v_0)}v_0$. Wtedy mamy:

$$\varphi(v - w, v_0) = \varphi(v, v_0) - \varphi(\frac{\varphi(v, v_0)}{\varphi(v_0, v_0)}v_0, v_0) = \varphi(v, v_0) - \underbrace{\frac{\varphi(v, v_0)}{\varphi(v_0, v_0)}\varphi(v_0, v_0)}_{\varphi(v, v_0)} = 0,$$

więc

$$v = \underbrace{w}_{\in W} + \underbrace{v - w}_{\in W^{\perp}},$$

co daje tezę.

Twierdzenie 8.37 (twierdzenie Lagrange'a). • Niech φ będzie formą symetryczną na rzeczywistej przestrzeni liniowej V. Wtedy istnieje baza ortogonalna dla φ (a więc diagonalizująca ją); dokładniej, istnieje taka baza $B = (b_1, \ldots, b_n)$ przestrzeni V, że dla $i \neq j$ zachodzi $\varphi(b_i, b_j) = 0$, a przy tym $\varphi(b_i, b_i) \in \{-1, 0, 1\}$; w szczególności w tej bazie

$$\varphi(v,w) = \sum_{i=1}^n d_i v_i w_i,$$

gdzie d_i to wartości na przekątnej, a v_i , w_i to współrzędne v, w w bazie B.

• Niech A będzie rzeczywistą macierzą symetryczną; wtedy istnieje taka macierz odwracalna Q że QAQ^{\top} jest macierzą diagonalną

Dowód. Część druga łatwo wynika z pierwszej.

Dowód części pierwszej: indukcja względem dim V. Jeżeli dim V=0 lub jeżeli $\varphi=0$, to teza jest oczywiście prawdziwa.

W przeciwnym wypadku istnieje nie
izotropowy $\nu_0\in V$ różny od 0. Wtedy wektor $b_1=\frac{\nu_0}{\sqrt{|\varphi(\nu_0,\nu_0)|}}$ speł
nia

$$\begin{split} \varphi(b_1, b_1) &= \varphi(\frac{v_0}{\sqrt{|\varphi(v_0, v_0)|}}, \frac{v_0}{\sqrt{|\varphi(v_0, v_0)|}}) \\ &= \frac{\varphi(v_0, v_0)}{\sqrt{|\varphi(v_0, v_0)|^2}} \\ &= \frac{\varphi(v_0, v_0)}{|\varphi(v_0, v_0)|} \\ &= \pm 1 \end{split}$$

Rozważmy obcięcie φ do $W = b_1^{\perp}$.

Ponieważ $V = \text{Lin}(b_1) \oplus b_1^{\perp}$, wiemy że $\dim W = \dim V - 1$. Z założenia indukcyjnego możemy więc znaleźć b_2, b_3, \ldots, b_n — bazę W taką że $\varphi(b_i, b_i) = 0$ dla $i \neq j$ i $\varphi(b_i, b_i) \in \{-1, 0, 1\}$.

Z drugiej strony oczywiście $\varphi(b_1, b_i) = 0$ dla $i \neq 1$, a ponieważ $V = \text{Lin}(b_1) \oplus W$, $B = (b_1, \dots, b_n)$ jest bazą.

Przykład 8.38. Chcemy zdiagonalizować formę symetryczną $\varphi(v, w) = v_x w_y + v_y w_x + 2v_z w_z + 2v_z w_x$ na \mathbb{R}^4 . Jej macierz (w standardowej bazie) to

$$\begin{pmatrix}
0 & 1 & 2 & 0 \\
1 & 0 & 0 & 0 \\
2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

Wybieramy dowolny $v \in \mathbb{R}^4$ taki że $\varphi(v,v) \neq 0$, np. $v \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}$. Mamy

 $\varphi(v, v) = 2$, więc bierzemy $v_1 = \frac{v}{\sqrt{2}}$.

Wśród wektorów v takich że $\varphi(v_1, v) = 0$ szukamy v takiego że $\varphi(v, v) \neq$

0.
$$\varphi(v_1, v) = 0$$
 oznacza $v_x + v_y + 2v_z = 0$. Na przykład $v = \begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \end{pmatrix}$ działa: $\varphi(v, v) = -2$, stąd $v_2 = \frac{v}{\sqrt{2}}$.

Wśród ν takich że $\varphi(\nu_1, \nu) = \varphi(\nu_2, \nu) = 0$ szukamy ν takiego żę $\varphi(\nu, \nu) \neq 0$. Mamy więc układ równań:

$$\begin{cases} v_x + v_y + 2v_z = 0 \\ -v_x + v_y + 2v_z = 0 \end{cases}$$

stąd $v_x = 0$ (przez odjęcie stronami). Dla każdego takiego wektora zachodzi $\varphi(v,v) = 0$, więc nie znajdziemy rozwiązania: forma obcięta do tej podprzestrzeni jest zerowa.

Stąd możemy za v_3 , v_4 wziąć dowolne liniowo niezależne wektory speł-

niające ten układ równań, np.
$$v_3 = \begin{pmatrix} 0 \\ 2 \\ -1 \\ 0 \end{pmatrix}, v_4 = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}.$$

Stąd macierz φ w bazie $B = (v_1, v_2, v_3, v_4)$ to

i we współrzędnych $[v]_B = \begin{pmatrix} v_x' \\ v_y' \\ v_z' \\ v_z' \end{pmatrix}$ mamy

$$\varphi(v,w) = v_x' w_x' - v_y' w_y'.$$

Uwaga 8.39. Nad dowolnym ciałem takim że $1 + 1 \neq 0$ można w ten sam sposób pokazać, że dla symetrycznej φ zawsze istnieje baza B taka że $m^{BB}(\varphi)$ jest diagonalna, więc w pewnej bazie

$$\varphi(v,w) = \sum_{i=1}^n d_i v_i w_i,$$

(z tym że d_i mogą być różne od -1,0,1).

Uwaga 8.40. Z twierdzenia powyżej wynika łatwo (przez permutację bazy), że dla każdej symetrycznej φ (nad **R**) mamy bazę B w której φ ma strukturę blokową:

$$m^{BB}(arphi) = egin{pmatrix} ext{I}_p & & \ & - ext{I}_q & \ & & 0_r \end{pmatrix}.$$

pokażemy następujące twierdzenie:

Twierdzenie 8.41 (prawo bezwładności Sylvestera). Liczby p,q,r występujące powyżej nie zależą od wyboru bazy B (względem której φ ma macierz tej postaci).

Definicja 8.42. Trójkę (p,q,r) (lub czasami parę (p,q)) nazywamy *sygnaturą* formy symetrycznej φ .

Przykłady 8.43. • Standardowy iloczyn skalarny na \mathbb{R}^n ma sygnaturę (n,0,0); podobnie, każdy iloczyn skalarny na n-wymiarowej przestrzeni ma sygnaturę (n,0,0) (to wynika np. z istnienia bazy ortonormalnej).

- Forma z przykładu powyżej ma sygnaturę (1, 1, 2).
- Forma Lorentza $x_1y_1 + x_2y_2 + x_3y_3 c(ts)$ ma sygnature (3, -1, 0).
- Forma na $\mathbf{R}_3[X]$ zadana wzorem $\varphi(P,Q) = P(1)Q'(-1) + P'(-1)Q(1)$ ma sygnaturę (1,1,2): jej macierz w bazie $B = (\frac{X}{\sqrt{2}}, \frac{-X+2}{\sqrt{2}}, X^2 + 2X -$

wartości tych wielomianów w 1 to odpowiednio $\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0, 0$, a wartości ich pochodnych w -1 to $\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0, 0$.)

Definicja 8.44. *Podprzestrzeń zerowa* dla formy symetrycznej φ to zbiór wektorów zerujących φ , tzn.:

$$N = N_{\infty} = \{ v \in V \mid v^{\perp} = V \} = \{ v \in V \mid (\forall w \in V) \varphi(v, w) = 0 \}$$

Mówimy że φ jest niezdegenerowana jeżeli jej przestrzeń zerowa jest trywialna, tzn. $N_{\omega}=\{0\}$.

Stwierdzenie 8.45. *Niech* $A = m^{BB}(\varphi)$ *dla pewnej symetrycznej formy* φ *i bazy* B. *Wtedy:*

- 1. N_{φ} składa się z rozwiązań równania jednorodnego $A[v]_B = 0$ (tzn. jest jądrem $F \in \text{End}(V)$ takiego że $m_B(F) = A$),
- 2. φ jest niezdegenerowana wtedy i tylko wtedy gdy A jest odwracalna.

Dowód. Druga część natychmiast wynika z pierwszej. Pierwsza część: załóżmy że $A[v]_{\rm B}=0.$ Wtedy dla każdego w mamy

$$\varphi(v, w) = \varphi(w, v) = [w]_{B}^{\mathsf{T}} A[v]_{B} = [w]_{B}^{\mathsf{T}} 0 = 0.$$

Z drugiej strony jeżeli $v \in N_{\omega}$, to dla wektora bazowego $b_i \in B$ mamy:

$$\varphi(b_i, v) = [b_i]_B^{\mathsf{T}} A[v]_B = e_i^{\mathsf{T}} A[v]_B,$$

ale ta ostatnia liczba to *i*-ta współrzędna $A[v]_B$, więc wtedy $A[v]_B = 0$.

Uwaga 8.46. Załóżmy że φ jest formą dwuliniową na przestrzeni V i $W \leq V$. Wtedy $\varphi \upharpoonright_W$, obcięcie φ do $W \times W$ jest formą dwuliniową na W. Ponadto symetryczność i dodatnia określoność (ale już nie niezdegenerowanie) φ pociąga to samo dla obcięcia.

Fakt 8.36 ma następujące uogólnienie.

Stwierdzenie 8.47. Niech $W \leq V$ (dim $V < \infty$), a φ będzie formą symetryczną. Jeżeli $\varphi \upharpoonright_W$ jest niezdegenerowana, to $V = W \oplus W^{\perp}$.

Załóżmy że obcięcie $\phi \upharpoonright_W$ jest niezdegenerowane (jako symetryczna forma dwuliniowa na W). Wtedy $V = W \oplus W^{\perp}$.

Dowód. Rozważmy odwzorowanie α: $W \to W^*$ zadane wzorem $\alpha(w_1)(w) = \varphi(w_1, w)$. α jest oczywiście liniowe i ker $\alpha = W \cap W^{\perp} = \{0\}$, więc α jest 1-1, a więc jest izomorfizmem (bo dim $W < \infty$).

W szczególności dla każdego $v \in V$ istnieje taki $w_1 \in W$ że funkcjonały $\varphi(v,-)$ i $\varphi(w_1,-)$ na W są równe, czyli $\varphi(v,w) = \varphi(w_1,w)$, a więc $\varphi(v-w_1,w) = 0$ dla $w \in W$, co znaczy że $w_2 = v - w_1 \in W^{\perp}$.

Przedstawiliśmy tym samym ν jako sumę $w_1 + w_2$, pokazując tym samym że $V = W + W^{\perp}$. Ponieważ oczywiście $W \cap W^{\perp} = \{0\}$, to pokazuje tezę. \square

dowód prawa bezwładności Sylvestera. Załóżmy że $B=(b_1,\ldots,b_n)$ oraz $B=(b'_1,\ldots,b'_n)$ są bazami jak w Uwadze 8.40, dającymi liczby p,q,r,p',q',r'.

Zauważmy że r jest wymiarem jądra odwzorowania zadanego przez $m^{BB}(\varphi)$ w bazie B, czyli przestrzeni zerowej N_{φ} . Ta zaś nie zależy od wyboru bazy, więc r=r'

Ponieważ p+q+r=n, to wynika z tego natychmiast, że p+q=p'+q'. Pokażemy że układ $C=b_1,b_2,\ldots,b_p,b'_{p'+1},b'_{p'+2}\ldots,b'_n$ jest liniowo niezależny. To wystarczy, bo z tego będzie wynikało że $p\leq p'$, a więc (z symetrii) również $p'\leq p$, czyli p=p'

Załóżmy że $\alpha_1, \ldots, \alpha_p, \beta_{p'+1}, \ldots, \beta_n$ są takie że

$$v = \sum_{k=1}^{p} \alpha_k b_k = \sum_{j=p'+1}^{n} \beta_j b'_j.$$

Policzymy $\varphi(v, v)$ na dwa sposoby. Z lewej strony wynika że

$$\varphi(v,v) = \sum_{k=1}^{p} \alpha_k^2 \varphi(b_k, b_k) = \alpha_1^2 + \alpha_2^2 + \ldots + \alpha_p^2.$$

Z prawej zaś

$$\varphi(v,v) = \sum_{j=p'+1}^{n} \beta_{j} \underbrace{\varphi(b'_{j}, b'_{j})}_{\left\{ -1 \quad j \leq p' + q' \\ 0 \quad j > p' + q' \right\}} = -\beta_{p'+1}^{2} - \beta_{p'+2}^{2} - \dots - \beta_{p'+q'}^{2}.$$

Ponieważ α_k i β_j są liczbami rzeczywistymi, równość zachodzi tylko wtedy gdy wszystkie α_k i wszystkie β_j dla $j \leq p' + q'$ są zerowe. Podstawiając dostajemy:

$$v = 0 = \sum_{j=p'+q'+1}^{n} \beta_j b'_j,$$

więc z liniowej niezależności pozostałe β_j też są zerowe, co kończy dowód.

dowód kryterium Sylvestera. Załóżmy że macierz symetryczna A jest dodatnio określona. Chcemy pokazać że wiodące minory główne A są dodatnie. Oznaczmy przez $\varphi = \varphi_A$ stowarzyszoną z nią formę symetryczną.

Skoro A jest dodatnio określona, to istnieje baza B taka że $m^{BB}(\varphi) = I$, więc istnieje odwracalna Q taka że $QAQ^{\top} = I$, czyli $A = Q^{-1}Q^{-\top}$. Stąd $\det A = (\det Q)^{-2}$, więc $\det A > 0$.

k-ty minor główny A to macierz obcięcia $\varphi \upharpoonright_{V_k}$ dla $V_k = \text{Lin}(e_1, e_2, \dots, e_k)$. Ponieważ $\varphi \upharpoonright_{V_k}$ jest dodatnio określona (jako obcięcie dodatnio określonej formy), odpowiedni wyznacznik jest dodatni jak wyżej.

Załóżmy że macierz A jest taka że wiodące minory główne są dodatnie. Chcemy pokazać, że A jest dodatnio określona. Dowodzimy przez indukcję. Gdy A jest macierzą 1×1 , teza jest oczywista.

Załóżmy że teza zachodzi dla macierzy rozmiarów mniejszych niż n. To implikuje że obcięcie $\varphi = \varphi_A$ do V_{n-1} jest dodatnio określone i istnieje odwracalna $Q' \in M_{(n-1)\times(n-1)}(\mathbf{R})$ taka że $Q'A_{n-1}(Q')^{\top} = I_{n-1}$. Biorąc macierz

blokową $Q = \begin{pmatrix} Q' & 0 \\ 0 & 1 \end{pmatrix}$ dostajemy

$$QAQ^{\top} = \begin{pmatrix} Q' & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} A_{n-1} & * \\ * & * \end{pmatrix} \begin{pmatrix} (Q')^{\top} & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} I_{n-1} & \nu \\ \nu^{\top} & c \end{pmatrix} = A'$$

dla pewnej $c \in \mathbf{R}$ i $v = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_{n-1} \end{pmatrix} \in \mathbf{R}^{n-1}$ (bo macierz QAQ^{\top} jest symetryczna!).

Przez elementarne operacje wierszowe możemy macierz A' sprowadzić do macierzy postaci $\begin{pmatrix} I & * \\ 0 & c' \end{pmatrix}$. Dokładniej, weźmy $E = \begin{pmatrix} I_{n-1} & 0 \\ -v^\top & 1 \end{pmatrix}$.

Wtedy

$$EA' = \begin{pmatrix} I_{n-1} & 0 \\ -\nu^\top & 1 \end{pmatrix} \begin{pmatrix} I_{n-1} & \nu \\ \nu^\top & c \end{pmatrix} = \begin{pmatrix} I_{n-1} & \nu \\ 0 & c' \end{pmatrix} :$$

dla wszystkich wierszy prócz ostatniego jest to zupełnie oczywiste. Wyliczmy i-tą współrzędną w ostatnim wierszu, gdzie i < n.

$$\begin{pmatrix} -v^{\top} & 1 \end{pmatrix} \underbrace{\begin{pmatrix} e_i \\ v_i \end{pmatrix}}_{e_i \in \mathbb{R}^{n-1}} = -v_i + v_i = 0.$$

Podobnie

$$EA'E^{\top} = \begin{pmatrix} I_{n-1} & \nu \\ 0 & c' \end{pmatrix} \begin{pmatrix} I_{n-1} & -\nu \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} I_{n-1} & 0 \\ 0 & c'' \end{pmatrix}$$

Łącznie dla P = EQ mamy

$$PAP^{\top} = EQAQ^{\top}E^{\top} = \begin{pmatrix} I_{n-1} & 0 \\ 0 & c'' \end{pmatrix},$$

przy czym $c'' = \det(PAP^\top) = \det A \det P^2 > 0$ (bo P jest odwracalna). Stąd łatwo wynika że PAP^\top jest dodatnio określona, a więc A też.

8.4 Formy kwadratowe

Teraz *K* jest dowolnym ciałem.

Definicja 8.48. Funkcję $Q: V \to K$ nazywamy formą kwadratową jeżeli:

- jest jednorodna stopnia 2, to znaczy spełnia $Q(\alpha v) = \alpha^2 Q(v)$,
- funkcja Q(v+w)-Q(v)-Q(w) jest formą dwuliniową na V

Przykłady 8.49. • $Q(x) = x^2$ jest formą kwadratową na V = K: jednorodność jest łatwa, funkcja $\varphi(x,y) = (x+y)^2 - x^2 - y^2 = xy$ jest dwuliniowa.

- $Q \binom{x_1}{x_2} = x_1 x_2$ jest formą kwadratową na $V = K^2$: łatwo sprawdzić, że jest jednorodna, a funkcja $\varphi(x,y) = (x_1 + y_1)(x_2 + y_2) x_1 x_2 y_1 y_2 = x_1 y_2 + y_1 x_2$ jest dwuliniowa.
- Ogólnie: wielomian kwadratowy n zmiennych, bez wyrazów liniowych i wolnych, zadaje formę kwadratową na K^n .

Uwaga 8.50. Załóżmy że $\varphi(v, w)$ jest formą dwuliniową. Wtedy łatwo sprawdzić, że $Q_{\omega}(v) = \varphi(v, v)$ jest formą kwadratową.

Mówimy że char $K \neq 2$ jeżeli w K jest prawdziwe $1 + 1 \neq 0$, tzn. 2^{-1} jest dobrze określone. Od teraz zakładamy, że tak jest.

Definicja 8.51. Jeżeli char $K \neq 2$, to dla formy kwadratowej Q definiujemy $\tilde{Q}(\nu, w) = \frac{Q(\nu+w)-Q(\nu)-Q(w)}{2}$.

Uwaga 8.52. \tilde{Q} zawsze jest symetryczną formą dwuliniową.

Uwaga 8.53. Mając dany wzór na Q w bazie $B = (b_1, ..., b_n)$ łatwo wyznaczyć wzór \tilde{Q} : jeżeli

$$Q(v) = \sum_{i \leq j} \alpha_{ij} \nu_i \nu_j,$$

gdzie v_i to współrzędne v w bazie B, to współczynnik $\tilde{Q}(v,w)$ przy $v_i w_j$ (dla $i \neq j$) to $\frac{\alpha_{ij}}{2}$, a współczynnik przy $v_i w_i$ to α_{ii} . Istotnie:

$$\alpha_{ij}(v_i + w_i)(v_j + w_j) - \alpha_{ij}v_iv_j - \alpha_{ij}w_iw_j = = \alpha_{ij}(v_iv_j + v_iw_j + w_iv_j + w_iw_j - v_iv_j - w_iw_j) = \alpha_{ij}(v_iw_j + v_jw_i);$$

jeżeli i=j, to dzieląc przez 2 otrzymujemy $\alpha_{ii}v_iw_i$, a jeżeli $i\neq j-\frac{\alpha_{ij}}{2}v_iw_j+\frac{\alpha_{ij}}{2}v_iw_i$.

Wniosek 8.54 (wzór polaryzacyjny). Jeżeli char $K \neq 2$, to $Q \mapsto \tilde{Q}$, $\varphi \mapsto Q_{\varphi}$ zadają wzajemnie odwrotne bijekcje miedzy formami kwadratowymi, a symetrycznymi formami dwuliniowymi.

W szczególności jeżeli φ jest symetryczną formą dwuliniową, to mamy wzór:

$$\varphi(v,w) = \frac{1}{2}(\varphi(v+w,v+w) - \varphi(v,v) - \varphi(w,w)).$$

Dowód. Ćwiczenie (było).

Uwaga 8.55. Czasami utożsamiamy formę kwadratową z \tilde{Q} i piszemy po prostu Q(v,w)

Przez utożsamienie form kwadratowych i symetrycznych dostajemy łatwo następujące fakty i definicje.

Definicja 8.56. (char $K \neq 2$) Macierz formy kwadratowej Q względem bazy B to $m^{BB}(Q) = m^{BB}(\tilde{Q})$.

 $(K = \mathbf{R}) \ Q$ jest dodatnio określona gdy Q(v) > 0 dla $v \neq 0$ ($\iff m^{BB}(Q)$ jest dodatnio określona $\iff \tilde{Q}$ jest dodatnio określona).

Uwaga 8.57. Jeżeli $Q: V \to K$ jest formą kwadratową, to jej macierz względem każdej bazy jest symetryczna (bo \tilde{Q} jest, a macierze symetrycznych form dwuliniowych są symetryczne).

Wniosek 8.58. Jeżeli Q jest formą kwadratową nad K (charakterystyki \neq 2), to istnieje baza B taka że $m^{BB}(Q)$ jest macierzą diagonalną, tzn. w pewnej bazie Q przedstawia się jako

$$Q(v) = \sum_{i=1}^{n} \alpha_i v_i^2,$$

$$gdzie \ [v]_B = \begin{pmatrix} v_1 \\ v_2 \\ \dots \\ v_n \end{pmatrix}.$$

Jeżeli $K = \mathbf{R}$, to można ponadto założyć, że wartości $m^{BB}(\varphi)$ na przekątnej (czyli α_i) to -1,0,1. Liczba -1,0 i 1 na przekątnej nie zależy od B.

Definicja 8.59. *Sygnatura* formy kwadratowej nad **R** to trójka liczb jedynek, minus jedynek i zer na przekątnej w postaci z poprzedniego wniosku (jak dla form symetrycznych). (Jest dobrze określona z prawa Sylvestera.)

Przykład 8.60. Forma kwadratowa $Q(v) = 2v_x v_y + 4v_x v_z$ na \mathbb{R}^4 jest stowarzyszona z formą dwuliniową $\tilde{Q}(v, w) = v_x w_y + v_y w_x + 2v_x w_z + 2v_z w_x$ z wcze-

śniejszego przykładu. W bazie B o macierzy przejścia $\begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 & 0\\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 2 & 0\\ 0 & 0 & -1 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}$

jej $m^{BB}(Q)$ jest diagonalna z 1, -1 i dwoma zerami na przekątnej, więc w tej bazie ma wzór

$$Q(v) = (v_1')^2 - (v_2')^2$$

a jej sygnatura to 1, 1, 2.

Przykład 8.61. (Algorytm Lagrange'a.) Formy kwadratowe można diagonalizować tak jak w dowodzie twierdzenia Lagrange'a. Można też postępować w następujący sposób.

1. Weźmy $Q(v) = 3v_x^2 + 2v_xv_y + 4v_xv_z$ na \mathbb{R}^3 . Chcemy ją zdiagonalizować.

Korzystając z dodatniego współczynnika przy v_x^2 , piszemy

$$Q(v) = 3(v_x^2 + \frac{2}{3}v_xv_y) + 4v_xv_z$$

$$= 3\underbrace{(v_x + \frac{v_y}{3})^2 - \frac{1}{3}v_y^2 + 4v_xv_z}_{v_x' - \frac{v_y}{3}}$$

$$= 3(v_x')^2 - \frac{1}{3}v_y^2 + 4v_x'v_z - \frac{4}{3}v_yv_z$$

$$= 3((v_x')^2 + \frac{4}{3}v_x'v_z) - \frac{1}{3}(v_y^2 + 4v_yv_z)$$

$$= 3v_x'' - \frac{4}{3}v_z^2 - \frac{1}{3}(v_y')^2 + \frac{4}{3}v_z^2 = 3(v_x'')^2 - \frac{1}{3}(v_y')^2,$$

gdzie
$$v_x'' = v_x' + \frac{2}{3}v_z = v_x + \frac{1}{3}v_y + \frac{2}{3}v_z$$
 i $v_y' = v_y + 2v_z$.

Stąd dla bazy
$$B$$
 takiej że $m_B^E(\mathrm{id})=\begin{pmatrix} 1 & 0 & 0\\ \frac{1}{3} & 1 & 0\\ \frac{2}{3} & 2 & 1 \end{pmatrix}$ mamy $m^{BB}(Q)=\begin{pmatrix} 3 & 0 & 0\\ 0 & -\frac{1}{3} & 0\\ 0 & 0 & 0 \end{pmatrix}$, czyli

$$\begin{pmatrix} 3 & 1 & 2 \\ 1 & 0 & 0 \\ 2 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ \frac{1}{3} & 1 & 0 \\ \frac{2}{3} & 2 & 1 \end{pmatrix} \begin{pmatrix} 3 & 0 & 0 \\ 0 & -\frac{1}{3} & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ \frac{1}{3} & 1 & 0 \\ \frac{2}{3} & 2 & 1 \end{pmatrix}^{\mathsf{T}}$$

rówoważnie:

$$\begin{pmatrix} 3 & 0 & 0 \\ 0 & -\frac{1}{3} & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ \frac{1}{3} & 1 & 0 \\ \frac{2}{3} & 2 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 3 & 1 & 2 \\ 1 & 0 & 0 \\ 2 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ \frac{1}{3} & 1 & 0 \\ \frac{2}{3} & 2 & 1 \end{pmatrix}^{-T}$$

2. Co gdy nie ma kwadratów? Weźmy $Q(v) = 2v_x v_y + 4v_x v_z$. Podstawmy

$$\begin{aligned} v_x' &= \frac{v_x + v_y}{2}, v_y' = \frac{v_x - v_y}{2}. \text{ Wtedy } v_x v_y = (v_x')^2 - (v_y')^2 \text{ i } v_x = v_x' + v_y', \text{ stad} \\ Q(v) &= 2v_x v_y + 4v_x v_z \\ &= 2(v_x')^2 - 2(v_y')^2 + 4v_x' v_z + 4v_y' v_z \\ &= 2((v_x')^2 + 2v_x' v_z) - 2((v_y')^2 - 2v_y' v_z) \\ &= 2(v_x'')^2 - v_z^2 - 2(v_y'')^2 + v_z^2 = 2(v_x'')^2 - 2(v_y'')^2, \end{aligned}$$

czyli

$$\begin{pmatrix} 0 & 1 & 2 \\ 1 & 0 & 0 \\ 2 & 0 & 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & -\frac{1}{2} & 0 \\ 1 & -1 & 1 \end{pmatrix} \begin{pmatrix} 2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & -\frac{1}{2} & 0 \\ 1 & -1 & 1 \end{pmatrix}^{\mathsf{T}}$$

3. ogólny algorytm:

- (a) tak długo jak jest jakiś kwadrat, któremu towarzyszy czynnik mieszany, zwijamy je razem do kwadratu;
- (b) jeżeli nie ma, a są jakieś wyrazy mieszane typu xy (bez x^2 ani y^2), to podstawiamy $x'=\frac{x+y}{2}$, $y'=\frac{x-y}{2}$, po czym wracamy do poprzedniego punktu;
- (c) jeżeli nie ma wyrazów mieszanych, to kończymy algorytm.

(To działa dla dowolnego ciała charakterystyki różnej od 2.1)

 $^{^{1}}$ W charakterystyce 2 np. Q(x, y) = xy się nie diagonalizuje.

Rozdział 9

Przestrzenie z iloczynem skalarnym

9.1 Przestrzenie euklidesowe

Uwaga 9.1. Forma dwuliniowa na **R** jest dodatnio określona wtedy i tylko wtedy, gdy dopuszcza bazę ON.

Dowód. W jedną stronę: proces Grama-Schmidta. W drugą stronę wniosek jest oczywisty: dla bazy ON B mamy $\varphi(v, v) = [v]_B^T[v]_B > 0$ dla $v \neq 0$.

Definicja 9.2. *Przestrzeń euklidesowa* to skończenie wymiarowa przestrzeń liniowa *V* nad **R** wraz z iloczynem skalarnym (tzn. dodatnio określoną, symetryczną formą dwuliniową).

W tej części wykładu (do odwołania) *V* jest przestrzenią euklidesową. (Ale większość faktów stosunkowo łatwo uogólnia się na rzeczywiste przestrzenie nieskończenie wymiarowe z iloczynem skalarnym.)

Iloczyn skalarny w przestrzeni euklidesowej oznaczamy $\langle -, - \rangle$ (tak samo jak standardowy iloczyn skalarny).

Definicja 9.3. *Długość* wektora v w przestrzeni euklidesowej to

$$|v| = \sqrt{\langle v, v \rangle}.$$

Uwaga 9.4. Z dodatniej określoności wynika, że $|v| = 0 \iff v = 0$.

Uwaga 9.5. |-| spełnia $|\alpha v| = |\alpha||v|$.

Uwaga 9.6. Z istnienia bazy ortonormalnej wynika, że n-wymiarowa przestrzeń euklidesowa zachowuje się pod każdym względem jak \mathbf{R}^n ze standardowym iloczynem skalarnym.

Dokładniej, jeżeli B jest bazą ortonormalną przestrzeni euklidesowej V, to dla każdych wektorów $v_1, v_2 \in V$ mamy

$$\langle v_1, v_2 \rangle = [v_1]_R^\top m^{BB} (\langle -, - \rangle) [v_2]_B = [v_1]_R^\top [v_2]_B = [v_1]_R^\top [v_2]_B,$$

czyli $[-]_R$ jest izomorfizmem $V \to \mathbb{R}^n$ zachowującym iloczyn skalarny.

Uwaga 9.7. Obcięcie iloczynu skalarnego do podprzestrzeni jest iloczynem skalarnym, więc liniowa podprzestrzeń przestrzeni euklidesowej jest przestrzenią euklidesową.

Za pomocą tej obserwacji możemy zdefiniować *nieskierowany* kąt między wektorami w dowolnej przestrzeni euklidesowej (a nawet nieskończenie wymiarowej przestrzeni z iloczynem skalarnym!): mając dane wektory $u_1, u_2,$ mówimy że kąt między nimi jest równy 0 jeżeli są liniowo zależne, a w przeciwnym wypadku (za pomocą obcięcia iloczynu skalarnego) możemy utożsamić $W = \text{Lin}(u_1, u_2)$ z \mathbf{R}^2 i tak zmierzyć kąt pomiędzy nimi.

Dokładniej, jeżeli w_1, w_2 jest bazą ortonormalną $\text{Lin}(u_2, u_2)$, to proste $\text{Lin}(w_1)$, $\text{Lin}(w_2)$ utożsamiamy z osiami OX, OY, a kąt θ między wektorami u_1, u_2 można wyliczyć korzystając ze wzoru

$$\langle u_1, u_2 \rangle = |u_1||u_2|\cos\theta.$$

(uwaga: kąt skierowany ogólnie nie ma sensu, nawet w ${\bf R}^3$ — wymagałby on wybrania orientacji ${\rm Lin}(u_1,u_2))$

Definicja 9.8. Kąt między wektorami v, w w przestrzeni euklidesowej to

$$\angle(v, w) = \arccos \frac{\langle v, w \rangle}{|v||w|}.$$

Ćwiczenie 9.9. Przez ograniczenie się do dwuwymiarowych podprzestrzeni sprawdzamy, że dla dowolnych wektorów v, w zachodzą:

- nierówność Cauchy'ego-Schwarza: $\langle v, w \rangle \leq |v||w|$,
- nierówność trójkata: $|v + w| \le |v| + |w|$.

Zauważmy że jeżeli $W \le V$ jest dowolną podprzestrzenią, to, ponieważ iloczyn skalarny jest niezdegenerowany (bo jest dodatnio określony!), mamy $V = W \oplus W^{\perp}$. Stąd każdy $v \in V$ zapisuje się jednoznacznie w postaci w + w', gdzie $w \in W$, $w' \in W^{\perp}$.

Definicja 9.10. Jeżeli $W \le V$ jest podprzestrzenią, to *rzut ortogonalny* na W to funkcja $\pi = \pi_W =: V \to W$, $\pi(v) = w$, (w zdefiniowane jak wyżej).

Stwierdzenie 9.11. Załóżmy że $b_1, b_2, ..., b_k$ jest bazą ON $W \le V$. Wtedy π_W jest zadane wzorem

$$\pi_W(v) = \sum_{j=1}^k \langle b_j, v \rangle b_j.$$

Uwaga 9.12. W szczególności to znaczy że $v - \pi_W(v)$ (zadane prawą stroną równania powyżej) jest ortogonalne do b_1, b_2, \ldots, b_k . To tłumaczy sens geometryczny procesu Grama-Schmidta: konstruując bazę ON, odejmujemy od kolejnego wektora rzut na podprzestrzeń rozpiętą przez poprzednie.

 $Dow \acute{o}d.$ Ustalmy v,oznaczmy prawą stronę przez $\bar{w}.$ Wtedy dla każdego l mamy

$$\langle b_l, \bar{w} \rangle = \sum_{j=1}^n \langle b_l, \langle b_j, v \rangle b_j \rangle = \langle b_l, v \rangle.$$

Odejmując stronami dostajemy $\langle b_l, \bar{w} - v \rangle = 0$. Stąd

$$w-v \in b_1^{\perp} \cap b_2^{\perp} \cap \ldots \cap b_k^{\perp} = \operatorname{Lin}(b_1,\ldots,b_k)^{\perp} = W^{\perp}.$$

Z drugiej strony $\bar{w} \in W$, więc istotnie $\bar{w} = \pi_W(v)$.

Biorac W = V dostajemy:

Wniosek 9.13. Jeżeli b_1, \ldots, b_n jest bazą ortonormalną V, to dla każdego $v \in V$ zachodzi

$$v = \sum_{j=1}^{n} \langle b_j, v \rangle b_j.$$

Przykład 9.14. Chcemy wyznaczyć wzór na rzut wektora $v \in \mathbb{R}^3$ na płasz-

czyznę
$$W = \operatorname{Lin}\left(\begin{pmatrix} 1\\2\\3 \end{pmatrix}, \begin{pmatrix} 1\\-1\\1 \end{pmatrix}\right).$$

Najpierw wyznaczamy bazę ON W, np. przez proces Grama-Schmidta:

$$\begin{vmatrix} 1 \\ 2 \\ 3 \end{vmatrix} = \sqrt{1+4+9} = \sqrt{14}, \text{ wiec } b_1 = \frac{1}{\sqrt{14}} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}.$$

$$b_2' = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} - \left\langle b_1, \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \right\rangle b_1$$

$$= \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} - \underbrace{\frac{1-2+3}{14}}_{\frac{1}{7}} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

$$= \frac{1}{7} \begin{pmatrix} 6 \\ -9 \\ 4 \end{pmatrix},$$

więc
$$|b_2'| = \frac{\sqrt{36+81+16}}{7} = \frac{\sqrt{133}}{7}, b_2 = \frac{1}{\sqrt{133}} \begin{pmatrix} 6 \\ -9 \\ 4 \end{pmatrix}.$$

Stąd dla
$$v = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
 mamy

$$\begin{split} \pi_W(v) &= \langle b_1, v \rangle b_1 + \langle b_2, v \rangle b_2 \\ &= \frac{x + 2y + 3z}{14} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + \frac{6x - 9y + 4z}{133} \begin{pmatrix} 6 \\ -9 \\ 4 \end{pmatrix} \\ &= \frac{1}{266} \begin{pmatrix} 19(x + 2y + 3z) + 12(6x - 9y + 4z) \\ 38(x + 2y + 3z) - 18(6x - 9y + 4z) \\ 57(x + 2y + 3z) + 8(6x - 9y + 4z) \end{pmatrix} \\ &= \frac{1}{266} \begin{pmatrix} 91x - 70y + 105z \\ -70x + 238y + 42z \\ 105x + 42y + 203z \end{pmatrix} \end{split}$$

Mamy też następujący wzór (uogólniający twierdzenie Pitagorasa).

Wniosek 9.15 (tożsamość Parsevala). Jeżeli b_1, \ldots, b_n jest bazą ortonormalną V, to dla każdego $v \in V$ zachodzi

$$|\nu|^2 = \sum_{j=1}^n \langle b_j, \nu \rangle^2$$

Dowód.

$$|\nu|^2 = \langle \nu, \nu \rangle = \left\langle \sum_{j=1}^n \langle b_j, \nu \rangle b_j, \sum_{k=1}^n \langle b_k, \nu \rangle b_k \right\rangle = \sum_{j,k} \langle b_j, \nu \rangle \langle b_k, \nu \rangle \underbrace{\langle b_j, b_k \rangle}_{\{j = k\}} = \sum_k \langle b_j, \nu \rangle^2.$$

Wniosek 9.16 (nierówność Bessela). *Jeżeli* $b_1, b_2, ..., b_k$ *jest układem ON* (niekoniecznie bazą), to dla każdego $v \in V$ zachodzi nierówność:

$$|v|^2 \ge \sum_{j=1}^k \langle b_j, v \rangle^2$$

Ćwiczenie 9.17. Każdy układ ON w prestrzeni euklidesowej rozszerza się do bazy ON.

Wniosek 9.18. Dla każdego $W \le V$ i $v \in V$ zachodzi $|\pi_W(v)| \le |v|$ (równość zachodzi tylko gdy $v \in W$).

Wniosek 9.19. *Jeżeli W* \leq *V*, *i v* \in *V*, to punkt $\pi_W(v)$ jest najbliższy v spośród punktów w W.

9.2 Formy hermitowskie

Od teraz pracujemy nad $K = \mathbf{C}$.

Chcielibyśmy w tej sytuacji również mieć pojęcie długości wektora. Zwykły wzór na iloczyn skalarny niestety nie jest dobry, bo nie jest dodatnio określony, np. dla $v = i \in \mathbf{C}^1$ mamy $v^{\top}v = ii = -1$.

Przestrzeń \mathbf{C}^n możemy oczywiście utożsamić z \mathbf{R}^{2n} i wtedy długość ze-

spolonego wektora $\begin{pmatrix} z_1 \\ z_2 \\ \vdots \\ z_n \end{pmatrix}$, gdzie $z_j = a_j + ib_j$ to (z twierdzenia Pitagorasa

albo tożsamości Parsevala):

$$\sqrt{a_1^2 + b_1^2 + a_2^2 \dots + a_n^2 + b_n^2} = \sqrt{\bar{z_1}z_1 + \bar{z}_2}z_2 + \dots + \bar{z}_n}z_n.$$

To sugeruje, że zamiast $v^{\top}w$, dla wektorów w \mathbf{C}^n lepszy byłby wzór:

$$\langle v, w \rangle = \bar{v}^{\top} w.$$

Funkcja określona tym wzorem jest dodatnio określona:

$$\langle v, v \rangle > 0$$
, gdy $v \neq 0$.

Ponadto wzór ten zgadza się ze zwykłym iloczynem skalarnym dla rzeczywistych wektorów.

 $\langle -, - \rangle$ zadany powyższym wzorem nazywamy *standardowym (hermitow-skim) iloczynem skalarnym* na \mathbf{C}^n . Oprócz dodatniej określoności ma on nastepujące własności:

• liniowość w drugiej zmiennej:

$$\langle v, w_1 + w_2 \rangle = \langle v, w_1 \rangle + \langle v, w_2 \rangle \qquad \qquad \langle v, \alpha w \rangle = \alpha \langle v, w \rangle.$$

• antyliniowość w pierwszej zmiennej:¹

$$\langle v_1 + v_2, w \rangle = \langle v_1, w \rangle + \langle v_2, w \rangle$$
 $\langle \alpha v, w \rangle = \bar{\alpha} \langle v, w \rangle.$

• hermitowska symetryczność:

$$\langle v, w \rangle = \overline{\langle w, v \rangle}.$$

Możemy więc odzyskać dodatnią określoność kosztem lekkiego osłabienia liniowości i symetryczności; hermitowski iloczyn skalarny jest właściwy, jeżeli chcemy rozważać długości wektorów nad **C**.

¹Czasami przyjmuje się odwrotnie — liniowo w pierwszej, antyliniowo w drugiej.

Definicja 9.20. *Forma hermitowska* na V nad \mathbf{C} to funkcja $\varphi \colon V \times V \to \mathbf{C}$ która jest półtoraliniowa (liniowa w drugim, a antyliniowa w pierwszym argumencie) i hermitowsko symetryczna.

Uwaga 9.21. $\varphi: V \times V \to \mathbf{C}$ jest formą hermitowską wtedy i tylko wtedy gdy jest hermitowsko symetryczna i liniowa w drugim argumencie:

$$\varphi(\alpha v, w) = \overline{\varphi(w, \alpha v)} = \bar{\alpha}\overline{\varphi(w, v)} = \bar{\alpha}\varphi(v, w).$$

Formy hermitowskie nad C odpowiadają formom symetrycznym nad R.²

Przykład 9.22. Jeżeli φ jest formą symetryczną na rzeczywistej przestrzeni liniowej V, to mamy formę hermitowską $\varphi_{\rm C}$ na $V_{\rm C}$ (kompleksyfikację φ) zadaną wzorem (dla rzeczywistych $v_1, v_2, w_1, w_2 \in V$)

$$\varphi_{\mathbf{C}}(v_1 + iv_2, w_1 + iw_2) = \varphi(v_1, w_1) + i\varphi(v_1, w_2) - i\varphi(v_2, w_1) + \varphi(v_2, w_2) :$$

hermitowska symetryczność jest oczywista; liniowość w drugim argumencie:

$$\varphi_{\mathbf{C}}(v_{1}+iv_{2},\underbrace{(a+bi)(w_{1}+iw_{2})}) = \underbrace{\varphi(v_{1},aw_{1}-bw_{2}+i(bw_{1}+aw_{2})}_{aw_{1}-bw_{2}+i(bw_{1}+aw_{2})} = \underbrace{\varphi(v_{1},aw_{1}-bw_{2})+i\varphi(v_{1},bw_{1}+aw_{2})-i\varphi(v_{2},aw_{1}-bw_{2})+\varphi(v_{2},bw_{1}+aw_{2})}_{i(a+bi)} = \underbrace{\varphi(v_{1},w_{1})(a+ib)+\varphi(v_{1},w_{2})(-b+ai)+\varphi(v_{2},w_{1})(-ia+b)+\varphi(v_{2},w_{2})(ib+a)}_{i(a+bi)} = \underbrace{(a+bi)\varphi_{\mathbf{C}}(v_{1}+iv_{2},w_{1}+iw_{2})}$$

Jeżeli $\varphi=\langle -,-\rangle$ jest dodatnio określona, to łatwo sprawdzić, że $\langle -,-\rangle_{\rm C}$ też:

$$\langle \nu_1+i\nu_2,\nu_1+i\nu_2\rangle_{\mathbf{C}}=\langle \nu_1,\nu_1\rangle+i\langle \nu_1,\nu_2\rangle-i\langle \nu_2,\nu_1\rangle+\langle \nu_2,\nu_2\rangle=\langle \nu_1,\nu_1\rangle+\langle \nu_2,\nu_2\rangle.$$

Przykłady 9.23. • $\varphi(z, w) = zw$ nie jest formą hermitowską na **C**, bo nie jest półtoraliniowa; ogólnie żadna niezerowa forma dwuliniowa nie jest hermitowska, bo nie jest półtoraliniowa: jeżeli $\varphi(v, w) \neq 0$, to

$$\varphi(iv, w) = i\varphi(v, w) \neq -i\varphi(v, w).$$

²Rozważa się też prawdziwe formy symetryczne na zespolonych przestrzeniach liniowych, jak również niekoniecznie hermitowskie formy półtoraliniowe, ale nie będziemy się tym zajmować na tym wykladzie.

- 149
- $\varphi(z, w) = i\bar{z}w$ nie jest formą hermitowską na **C**, bo $\varphi(1, 1) = i \neq \overline{\varphi(1, 1)}$.
- $\varphi(x_1 + ix_2, y_2 + iy_2) = x_1y_1$ nie jest formą hermitowską na **C**, bo nie jest półtoraliniowa: $\varphi(1, i) = 0 \neq i = i\varphi(1, 1)$.
- $\varphi\left(\begin{pmatrix} z_1 \\ z_2 \end{pmatrix}, \begin{pmatrix} w_1 \\ w_2 \end{pmatrix}\right) = i\bar{z}_2w_1 i\bar{z}_1w_2$ jest formą hermitowską na \mathbf{C}^2 : półtoraliniowość jest łatwa, hermitowska symetryczność:

$$\overline{i\bar{z}_2w_1 - i\bar{z}_1w_2} = -iz_2\bar{w}_1 + iz_1\bar{w}_2 = i\bar{w}_2, z_1 - i\bar{w}_1z_2.$$

Uwaga 9.24. Ogólnie, jeżeli φ jest formą hermitowską, to dla każdego ν liczba $\varphi(\nu, \nu)$ jest rzeczywista, bo z hermitowskiej symetrii $\varphi(\nu, \nu) = \overline{\varphi(\nu, \nu)}$.

Definicja 9.25. Jeżeli φ jest formą hermitowską, a $B = (b_1, ..., b_n)$ jest bazą V, to macierz φ względem B definiujemy analogicznie, jak dla form dwuliniowych: ij-ty współczynnik $m^{BB}(\varphi)$ to $\varphi(b_i, b_i)$.

Przykład 9.26. Jeżeli φ jest formą symetryczną na rzeczywistej V i B jest bazą V, to $m^{BB}(\varphi) = m^{BB}(\varphi_{\mathbf{C}})$ (przypomnienie: B jest bazą $V_{\mathbf{C}}$!).

Przykład 9.27. Forma hermitowska $\varphi\left(\begin{pmatrix} z_1\\z_2\end{pmatrix},\begin{pmatrix} w_1\\w_2\end{pmatrix}\right)=i\bar{z}_2w_1-i\bar{z}_1w_2$ na \mathbf{C}^2 ma w standardowej bazie macierz $m^{EE}(\varphi)=\begin{pmatrix} 0&-i\\i&0\end{pmatrix}$, więc nie jest kompleksyfikacją żadnej rzeczywistej formy symetrycznej.

Fakt 9.28. *Jeżeli* φ *jest formą hermitowską na V o bazie B, to zachodzi wzór:*

$$\varphi(v,w) = \overline{[v]_B}^{\mathsf{T}} m^{BB}(\varphi)[w]_B.$$

(Dowód analogiczny jak dla form dwuliniowych.)

Fakt 9.29. Dla dowolnej φ i B macierz $A = m^{BB}(\varphi)$ spełnia wzór $A = \bar{A}^{T}$.

Dowód. ij-ta współrzędna \bar{A}^{\top} to $\overline{\varphi(b_j,b_i)}$, a ij-ta współrzędna A to $\varphi(b_i,b_j)$. Teza wynika z hermitowskiej symetrii φ .

Definicja 9.30. Jeżeli $A \in M_{n \times n}(\mathbf{C})$, to macierz sprzężona do A to $A^* := \bar{A}^{\top}$. Mówimy że A jest samosprzężona lub hermitowska jeżeli $A = A^*$.

Uwaga 9.31. Tu jest pozorny konflikt oznaczeń między sprzężeniem a odwzorowaniem dualnym. Okazuje się jednak, że w pewnym sensie macierz A^* to macierz F_A^* (odwzorowania dualnego do F_A).

Powyższy wzór przyjmuje zatem postać

$$\varphi(v,w) = [v]_{\scriptscriptstyle B}^* m^{BB}(\varphi)[w]_{\scriptscriptstyle B}.$$

Hermitowskość macierzy implikuje, że współczynniki na przekątnej są rzeczywiste! Macierz hermitowska ma zatem postać:

$$\begin{pmatrix} r_1 & a_{12} & a_{13} \cdot \cdot \cdot \cdot \cdot a_{1n} \\ \bar{a}_{12} & r_2 & a_{23} \\ \bar{a}_{13} & \bar{a}_{23} & r_3 \\ \vdots & & & \ddots \\ \bar{a}_{1n} & & & & r_n \end{pmatrix}$$

gdzie r_i są rzeczywiste, a a_{ki} są zespolone.

Przykład 9.32. Hermitowskie macierze diagonalne to dokładnie te, które mają rzeczywiste wyrazy na przekątnej. Ogólnie: zespolona macierz symetryczna jest hermitowska wtedy i tylko wtedy gdy jest rzeczywista.

Uwaga 9.33. Łatwo sprawdzić tożsamości:

- $(A+B)^* = A^* + B^*$,
- $(AB)^* = B^*A^*$,
- $(A^*)^{-1} = (A^{-1})^*$ (w szczególności sprzężenie macierzy odwracalnej jest odwracalne),
- $A^{**} = A$.

Uwaga 9.34. Jeżeli $B=(b_1,\ldots,b_n)$ jest bazą V, to $\varphi\mapsto m^{BB}(\varphi)$ zadaje bijekcję między formami hermitowskimi na V a macierzami hermitowskimi $n\times n$.

Uwaga 9.35. Rzeczywista macierz jest samosprzężona wtedy i tylko wtedy gdy jest symetryczna.

Jeżeli B, C są różnymi bazami, to ponieważ mamy $[v]_C = m_C^B(\mathrm{id})[v]_B$, podobnie jak w przypadku form symetrycznych, dostajemy wzór na zmianę bazy.

Fakt 9.36. $m^{CC}(\varphi) = m_B^C(\text{id})^* m^{BB}(\varphi) m_B^C(\text{id}).$

Dowód.

$$\varphi(v, w) = [v]_{B}^{*} m^{BB}(\varphi)[w]_{B}
= (m_{B}^{C}(id)[v]_{C})^{*} m^{BB}(\varphi)(m_{B}^{C}(id)[w]_{C})
= [v]_{C}^{*} m_{B}^{C}(id)^{*} m^{BB}(\varphi) m_{B}^{C}(id)[w]_{C}. \qquad \Box$$

Przykład 9.37. Forma $\varphi(v,w)=i\bar{v}_2w_1-i\bar{v}_1w_2$ w bazie $B=\begin{pmatrix}i\\0\end{pmatrix},\begin{pmatrix}1\\i\end{pmatrix}$ ma macierz

$$m^{BB}(\varphi) = m_E^B(\mathrm{id})^* m^{EE}(\varphi) m_E^B(\mathrm{id}) = \begin{pmatrix} -i & 0 \\ 1 & -i \end{pmatrix} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \begin{pmatrix} i & 1 \\ 0 & i \end{pmatrix} =$$

$$= \begin{pmatrix} -i & 0 \\ 1 & -i \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & i \end{pmatrix} = \begin{pmatrix} 0 & -i \\ i & 2 \end{pmatrix}.$$

Faktycznie, na przykład $\varphi(\binom{1}{i},\binom{1}{i})=i\cdot(-i)\cdot 1-i\cdot 1\cdot i=1+1=2.$

Wniosek 9.38. Hermitowskie $A_1, A_2 \in M_{n \times n}(\mathbf{C})$ zadają tę samą formę hermitowską (może w różnych bazach) wtedy i tylko wtedy gdy istnieje odwracalna $P \in M_{n \times n}(\mathbf{C})$ taka że

$$A_1 = P^*A_2P.$$

Definicja 9.39. Mówimy że $A \in M_{n \times n}(\mathbf{C})$ jest *unitarna* jeżeli $AA^* = I$ (czyli A jest odwracalna i $A^{-1} = A^*$).

Jeżeli $A \in M_{n \times n}(\mathbf{R})$ jest unitarna (równoważnie: spełnia $AA^{\top} = I$), to mówimy że jest *ortogonalna*.

Uwaga 9.40. *A* jest unitarna/ortogonalna wtedy i tylko wtedy gdy A^*/A^{\top} jest unitarna/ortogonalna. (Bo $A^{**} = A$.)

Ćwiczenie 9.41. Dla dowolnej zespolonej/rzeczywistej macierzy kwadratowej A następujące warunki są równoważne:

- A jest unitarna/ortogonalna,
- wiersze A tworzą układ ON (względem standardowego iloczynu skalarnego),

• kolumny *A* tworzą układ ON.

Ze wzoru na zmianę bazy dostajemy też następujacy wniosek:

Wniosek 9.42. *Jeżeli B jest bazą* \mathbb{C}^n , $a \langle -, - \rangle$ *jest standardowym iloczynem skalarnym, to zachodzi równoważność:*

$$m^{BB}(\langle -, - \rangle) = I \iff m_E^B(id) \text{ jest unitarna.}$$

Uwaga 9.43. Za jakiś czas sprawdzimy, że macierze unitarne/ortogonalne to dokładnie macierze liniowych izometrii. W szczególności moduły ich wartości własnych są zawsze równe 1.

Ortogonalność, znormalizowanie i ortonormalność względem form hermitowskich definiujemy tak samo jak dla form symetrycznych.

Definicja 9.44. Niech φ będzie formą hermitowską.

- v, w są ortogonalne, $v \perp w$ (względem φ) gdy $\varphi(v, w) = 0$ (to jest symetryczna relacja, z hermitowskiej symetrii),
- ν jest znormalizowany/jednostkowy (względem φ) gdy $\varphi(\nu, \nu) = 1$,
- układ wektorów jest ortogonalny gdy jego wektory są parami ortogonalne, a ortonormalny gdy są też znormalizowane,
- φ jest dodatnio określona gdy $\varphi(v, v) > 0$ dla $v \neq 0$,
- φ jest niezdegenerowana, gdy nie istnieje $v \neq 0$ taki że dla każdego w mamy $\varphi(v, w) = 0$,
- $W^{\perp} = \{ v \in V \mid (\forall w \in W) v \perp w \}.$
- itd.

Ćwiczenie 9.45. Ortogonalny układ wektorów jest liniowo niezależny.

Twierdzenie 9.46. V ma bazę ON względem φ wtedy i tylko wtedy gdy φ jest dodatnio określona.

Dowód. Ćwiczenie (proces Grama-Schmidta działa). □

Stwierdzenie 9.47. *Jeżeli* φ *jest formą hermitowską i jej obcięcie do* $W \leq V$ *jest niezdegenerowane, to* $V = W \oplus W^{\perp}$.

Dowód. Ćwiczenie (dowód jak dla form symetrycznych).

Stwierdzenie 9.48 (wzór polaryzacyjny dla form hermitowskich). *Załóżmy* $\dot{z}e\ \varphi\ jest\ forma\ hermitowską.\ Oznaczmy\ Q(v)=Q_{\varphi}(v)\coloneqq \varphi(v,v).\ Wtedy\ za$ chodzi wzór:

$$\varphi(v, w) = \frac{Q(v + w) - iQ(v + iw) - (1 - i)(Q(v) + Q(w))}{2}.$$

Dowód. Zauważmy że

$$\varphi(v+w,v+w) = \varphi(v+w,v) + \varphi(v+w,w)$$

$$= \varphi(v,v) + \varphi(w,w) + \varphi(v,w) + \underbrace{\varphi(w,v)}_{\varphi(v,w)}$$

$$= \varphi(v,v) + \varphi(w,w) + 2\operatorname{Re}\varphi(v,w)$$

Stąd Re $(\varphi(v, w)) = \frac{Q(v+w)-Q(v)-Q(w)}{2}$. Z drugiej strony, podstawiając w = iw otrzymujemy:

$$\operatorname{Im}(\varphi(v,w)) = -\operatorname{Re}(i\varphi(v,w)) = -\operatorname{Re}(\varphi(v,iw)) = \frac{Q(v+iw) - Q(v) - Q(iw)}{2}.$$

Stad

$$\varphi(v, w) = \text{Re}(\varphi(v, w)) + i \text{Im}(\varphi(v, w)) = \frac{Q(v + w) - iQ(v + iw) - (1 - i)(Q(v) + Q(w))}{2}.$$

Ćwiczenie 9.49 (inna postać wzoru polaryzacyjnego). Dla form symetrycznych zachodzi następujący wzór (gdy $1+1 \neq 0$):

$$\varphi(v,w) = \frac{Q(v+w) - Q(v-w)}{4}.$$

Dla form hermitowskich zachodzi zaś wzór:

$$\varphi(v,w) = \frac{Q(v+w) + iQ(v+iw) - Q(v-w) - iQ(v-iw)}{4} = \frac{\sum_{k=0}^{3} i^k Q(v+i^k w)}{4}$$

Wskazówka: zauważ że $\varphi(v, w) = \frac{\varphi(v, w) - \varphi(v, -w)}{2} i Q(w) = Q(-w)$, skorzystaj z uzyskanych wcześniej wzorów.

9.3 Przestrzenie unitarne

Definicja 9.50. *Iloczyn skalarny* na zespolonej przestrzeni liniowej to dodatnio określona forma hermitowska.

Przestrzeń unitarna to skończenie wymiarowa przestrzeń liniowa nad **C** wyposażona w iloczyn skalarny.

Uwaga 9.51. Dla przestrzeni unitarnych zachodzą podobne fakty jak dla przestrzeni euklidesowych, z analogicznymi dowodami. Na przykład:

• rzut ortogonalny na $W = \text{Lin}(b_1, ..., b_k)$ jest zadany wzorem

$$\pi_W(v) = \sum_{j=1}^k \langle b_j, v \rangle b_j,$$

(Uwaga: tu kolejność argumentów w $\langle b_j, v \rangle$ jest ważna, aby to było liniowe względem v!)

• zachodzi tożsamość Parsevala

$$\langle v, v \rangle = \sum_{i=1}^{n} |\langle b_j, v \rangle|^2$$

(uwaga na moduły po prawej stronie!)

- zachodzi nierówność Bessela (też z modułami)
- zachodzą nierówność trójkąta i nierówność Cauchy'ego-Schwarza (też z modułem)

Uwaga 9.52. Kompleksyfikacja $V_{\rm C}$ przestrzeni euklidesowej V zawsze jest przestrzenią unitarną (ze skompleksyfikowanym iloczynem skalarnym) i bazy ON V są bazami ON $V_{\rm C}$.

Wszystkie fakty mają zazwyczaj zupełnie analogiczne dowody w przypadku rzeczywistym euklidesowym i zespolonym unitarnym, większość będzie miała dowody pisane pod ten drugi.

Ćwiczenie 9.53. Każdy ON układ wektorów w V rozszerza się do bazy ON.

Uwaga 9.54. Jeżeli V jest przestrzenią euklidesową, to mamy naturalny izomorfizm $V \cong V^*$ zadany przez $\varphi \colon v \mapsto (w \mapsto \langle v, w \rangle)$. Podobnie każda *niezdegenerowana* forma dwuliniowa zadaje izomorfizm $V \to V^*$.

Podobnie, jeżeli V jest przestrzenią unitarną, to mamy naturalny *anty-izomorfizm* $V \cong V^*$ zadany tym samym wzorem: odwzorowanie to nie jest już liniowe: spełnia za to warunek $\varphi(\alpha v) = \bar{\alpha} \varphi(v)$.

Rozdział 10

Rozkład spektralny i singularny

Od teraz (do końca semestru) V to przestrzeń unitarna/euklidesowa, a jej iloczyn skalarny oznaczamy przez $\langle -, - \rangle$. (Można myśleć, że $V = \mathbf{C}^n/\mathbf{R}^n$ ze standardowym zespolonym/rzeczywistym iloczynem skalarnym.)

Co więcej, będziemy pracowali w zasadzie wyłącznie z bazami ortonormalnymi.

Uwaga 10.1. Baza *B* jest ortonormalna wtedy i tylko wtedy gdy $m^{BB}(\langle -, - \rangle) = 1$

Stąd (i wzoru na zmianę bazy) łatwo wynika, że jeżeli B jest bazą ortonormalną, to baza C jest ON \iff macierz m_C^B (id) jest unitarna/ortogonalna.

Z drugiej strony jeżeli U jest macierzą unitarną/ortogonalną, to jest odwracalna, więc istnieje taka baza C że $m_C^B(\mathrm{id}) = U$ i z powyższego wnioskujemy, że C musi być ortonormalna.

Rozważamy endomorfizm $F: V \to V$. Jeżeli B, C są bazami ortonormalnymi, to z powyższej uwagi dla $P = m_B^C(\mathrm{id})$ mamy $P^{-1} = P^*$, więc wzór na zmianę bazy przybiera następującą postać:

$$m_C(F) = P^{-1}m_B(F)P = P^*m_B(F)P.$$

(Czyli taką samą, jak wzór na zmianę bazy formy hermitowskiej/rzeczywistej symetrycznej!)

Stwierdzenie 10.2. *Jeżeli F* \in End(*V*) *jest dowolny, to dla G* \in End(*V*) *następujące warunki są równoważne:*

1.
$$(\forall v, w) \langle v, F(w) \rangle = \langle G(v), w \rangle$$

- 2. $(\forall v, w) \langle F(v), w \rangle = \langle v, G(w) \rangle$
- 3. dla pewnej (równoważnie: każdej) bazy ON B zachodzi $m_B(G) = m_B(F)^*$.

Dowód. Jeżeli B, C są różnymi bazami ON i $m_B(G) = m_B(F)^*$, to $m_C(G) = Pm_B(G)P^* = Pm_B(F)^*P^* = (Pm_B(F)P^*)^*$ dla $P = m_C^B(id)$, stąd warunek (3) nie zależy od wyboru bazy.

Ustalmy dowolną bazę ON B. Wtedy dla każdych v i w mamy $\langle v, w \rangle = [v]_{R}^{*}[w]_{B}$, więc

$$\langle v, F(w) \rangle = \lceil v \rceil_{\scriptscriptstyle P}^* (m_{\scriptscriptstyle R}(F) \lceil w \rceil_{\scriptscriptstyle R}) = (m_{\scriptscriptstyle R}(F)^* \lceil v \rceil_{\scriptscriptstyle R})^* \lceil w \rceil_{\scriptscriptstyle R}$$

i

$$\langle F(v), w \rangle = (m_B(F)[v]_B)^*[w]_B = [v]_B^*(m_B(F)^*[w]_B).$$

Stąd łatwo wynika implikacja (3) do (1,2). Z drugiej strony jeżeli $m_B(G) \neq m_B(F)^*$, to podobny rachunek pokazuje, że G nie może spełniać żadnego z warunków (1) i (2).

Definicja 10.3. G jak powyżej mówimy że jest *sprzężony* do F i oznaczamy F^* .

- *Uwaga* 10.4. to tylko pozornie kłóci z definicją odwzorowania dualnego $F^*: V^* \to V^*$, bo iloczyn skalarny pozwala utożsamić V i V^* (szczegóły: ćwiczenie na liście 13)
 - ze stwierdzenia powyżej F^* istnieje i jest jedyny (wystarczy wybrać bazę ON B i wziąć przekształcenie o macierzy $m_B(F)^*$).

Stwierdzenie 10.5. *Niech* $F \in \text{End}(V)$ *i niech* $A = m_B(F)$ *dla pewnej ON bazy* B.

1. A jest hermitowska/symetryczna wtedy i tylko wtedy gdy zachodzi wzór:

$$\langle F(v), w \rangle = \langle v, F(w) \rangle$$

2. A jest unitarna/ortogonalna wtedy i tylko wtedy gdy zachodzi wzór:

$$\langle v, w \rangle = \langle F(v), F(w) \rangle.$$

Definicja 10.6. Mówimy że $F \in \text{End}(V)$ jest samosprzężony (czasami: hermitowski lub symetryczny) gdy spełnia $F = F^*$, lub równoważnie $\langle Fv, w \rangle =$ $\langle v, Fw \rangle$.

Mówimy że *F* jest *unitarny* (w przypadku zespolonym) lub *ortogonalny* (w przypadku rzeczywistym), gdy spełnia $F^* = F^{-1}$, lub równoważnie $\langle v, w \rangle = \langle Fv, Fw \rangle.$

Dowód. Pierwsza część wynika łatwo z poprzedniego stwierdzenia: podany warunek oznacza, że $F = F^*$, czyli $m_B(F) = m_B(F^*) = m_B(F)^*$.

Drugi punkt dowodzimy podobnie: równość $\langle v, w \rangle = \langle F(v), F(w) \rangle$ jest równoważna tożsamości $[v]_B^*A^*A[w]_B = [v]_B^*[w]_B$, co łatwo daje $A^*A = I$. \square

Przykład 10.7. Jeżeli P jest rzutem ortogonalnym na $\text{Lin}(\overline{b_1,\ldots,b_k})$, to jest samosprzężony (ale prawie nigdy nie jest ortogonalny, chyba że P = id...): weźmy dowolne $v, w \in V$. Wtedy

$$\langle P(v), w \rangle = \langle \sum_{j=1}^{k} \langle b_j, v \rangle b_j, w \rangle = \sum_{j=1}^{k} \overline{\langle b_j, v \rangle} \langle b_j, w \rangle = \sum_{j=1}^{k} \langle v, b_j \rangle \langle b_j, w \rangle =$$

$$= \langle v, \sum_{j=1}^{k} \langle b_j, w \rangle b_j \rangle = \langle v, P(w) \rangle$$

Można powiedzieć więcej: jeżeli $P \in \text{End}(V)$ jest rzutem (tzn. spełnia $P = P \circ P$), to P jest rzutem ortogonalnym (na swój obraz) wtedy i tylko wtedy gdy jest samosprzężony.

Stwierdzenie 10.8. *Jeżeli F jest nieujemnie określony na przestrzeni* unitarnej, tzn. $\langle v, F(v) \rangle \geq 0$ dla każdego v (w szczególności to jest rzeczywiste!), to jest samosprzężony. (W przypadku rzeczywistym to nie jest prawda, co pokazuje np. obrót o kat nie większy niż $\pi/2$.)

Dowód. Załóżmy że F jest nieujemnie określony, weźmy dowolne v, w. Rozważmy $\alpha v + w$. Wtedy:

$$0 \le \langle \alpha v + w, F(\alpha v + w) \rangle = \bar{\alpha} \alpha \langle v, F(v) \rangle + \langle w, F(w) \rangle + \bar{\alpha} \langle v, F(w) \rangle + \alpha \langle w, F(v) \rangle$$
$$= |\alpha|^2 \langle v, F(w) \rangle + \langle w, F(w) \rangle + \bar{\alpha} \langle F(w), v \rangle + \alpha \langle w, F(v) \rangle.$$

Stad $\overline{\alpha(F(w), v)} + \alpha(w, F(v))$ jest liczbą rzeczywistą. Dla $\alpha = 1$ wnioskujemy że części urojone $\langle F(w), v \rangle$ i $\langle w, F(v) \rangle$ są równe, a dla $\alpha = i$, że części rzeczywiste są równe. Stąd $\langle F(w), v \rangle = \langle w, F(v) \rangle$, a z dowolności v, w mamy $T = T^*$.

Uwaga 10.9. Z dowodu widzimy, że wystarczy założyć, że $(\forall v)\langle v, T(v)\rangle \in \mathbf{R}$.

Przykłady 10.10. • Rzeczywista wielokrotność przekształcenia samosprzężonego jest samosprzężona.

- Rzeczywista kombinacja liniowa przekształceń samosprzężonych jest samosprzężona.
- W szczególności rzeczywiste kombinacje liniowe rzutów ortogonalnych są samosprzężone

Zobaczymy wkrótce, że ostatni przykład powyżej opisuje *wszystkie* przekształcenia samosprzężone: są to dokładnie rzeczywiste kombinacje liniowe rzutów ortogonalnych!

Lemat 10.11. Wartości własne zespolonych samosprzężonych endomorfizmów/macierzy są rzeczywiste.

	,		
Dowód	Ćwiczenie.		
Dowou.	CWICZEIIIE.		

Wniosek 10.12. *Jeżeli F jest rzeczywistym samosprzężonym endomorfizmem, jego wielomian charakterystyczny rozkłada się na czynniki liniowe nad* **R**.

Dowód. $F_{\rm C}$ też jest samosprzężony (np. dlatego że ma tę samą macierz). Stąd wszystkie zespolone pierwiastki $\chi_F(x)=\chi_{F_{\rm C}}(x)$ są rzeczywiste, a stąd łatwo wynika teza.

- **Twierdzenie 10.13** (Twierdzenie spektralne). *Załóżmy że V jest przestrzenią unitarną/euklidesową i F* \in End(V) *jest samosprzężony. Wtedy F diagonalizuje się w bazie ON.*
 - Załóżmy że $A \in M_{n \times n}(\mathbf{C})/M_{n \times n}(\mathbf{R})$ jest macierzą hermitowską/symetryczną. Wtedy istnieje macierz unitarna/ortogonalna P taka że $A = PDP^*/PDP^\top$, gdzie D jest macierzą diagonalną (rzeczywistą, z poprzedniego wniosku).

Uwaga 10.14. Z twierdzenia spektralnego łatwo wynika, że samosprzężony $F \in \text{End}(V)$ jest nieujemnie określony $\iff \sigma(F) \subseteq [0, +\infty)$ (ćwiczenie), a dodatnio określony $\iff \sigma(F) \subseteq (0, +\infty)$.

W szczególności nieujemnie określony F jest dodatnio określony \iff jest odwracalny.

Uwaga 10.15. Wariant twierdzenia spektralnego jest prawdziwy również dla nieskończenie wymiarowych przestrzeni (nad **R** lub **C**) z iloczynem skalarnym.

Uwaga 10.16. Łatwo pokazać twierdzenie odwrotne do twierdzenia spektralnego: jeżeli *F* diagonalizuje się w bazie ON i ma rzeczywiste wartości własne, to jest samosprzężony (bo macierz w tej samej bazie jest rzeczywista i diagonalna, więc hermitowska).

Dowód. Druga część łatwo wynika z pierwszej.

Udowodnijmy pierwszą cześć przez indukcję ze względu na dim V.

Jeżeli dim V=1, to teza jest oczywista. Załóżmy że dim V=n>1. Weźmy dowolne $\lambda\in\sigma(F)$ (w przypadku euklidesowym λ istnieje z poprzedniego wniosku) i wektor własny $v_1\in V_\lambda$ dla F. Możemy założyć bez zmniejszania ogólności, że $|v_1|=1$. Wtedy v_1 rozszerza się do bazy ON $B'=v_1,v_2',\ldots,v_n'$. Ponieważ v_1 jest wektorem własnym dla λ , mamy

$$m_B(F) = M = \begin{pmatrix} \lambda & * \\ 0 & N \end{pmatrix}$$

dla pewnej macierzy $N \in M_{(n-1)\times(n-1)}(\mathbf{C})$. Ponieważ F jest samosprzężony, $M = M^*$, więc $M = \begin{pmatrix} \lambda & 0 \\ 0 & N \end{pmatrix}$, gdzie $N = N^*$.

Rozważmy $W = \text{Lin}(\nu_2', \dots, \nu_n')$. Z postaci $m_B(F)$ widzimy, że W jest F-niezmiennicze, więc $F \upharpoonright_W \in \text{End}(W)$. Wtedy dla $B_0' = (\nu_2', \dots, \nu_n')$ mamy $m_{B'}(F \upharpoonright_W) = N = N^*$, więc $F \upharpoonright_W$ jest samosprzężone. Stąd z założenia indukcyjnego istnieje baza ON $B_0 = \nu_2, \nu_3, \dots, \nu_n$ przestrzeni W składająca się z wektorów własnych F. Stąd $B = (\nu_1, \nu_2, \dots, \nu_n)$ jest bazą ON wektorów własnych F.

Przykład 10.17. Weźmy macierz hermitowską $M = \begin{pmatrix} 2 & i \\ -i & 2 \end{pmatrix}$. Jej wielomian charakterystyczny do $x^2 - 4x + 3 = (x - 3)(x - 1)$, wartości własne to 3 i 1, a odpowiadające im wektory własne to np. $\begin{pmatrix} 1 \\ -i \end{pmatrix}$ i $\begin{pmatrix} 1 \\ i \end{pmatrix}$.

Obydwa są długości $\sqrt{2}$, więc to daje nam bazę ON $B = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -i \end{pmatrix}, \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ i \end{pmatrix}$, czyli $m_E^B(\mathrm{id}) = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -i & i \end{pmatrix}$, więc $m_E^E(\mathrm{id}) = m_E^B(\mathrm{id})^{-1} = m_E^B(\mathrm{id})^* = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & i \\ 1 & -i \end{pmatrix}$,

czyli

$$m_B(F_M) = \begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & i \\ 1 & -i \end{pmatrix} \begin{pmatrix} 2 & i \\ -i & 2 \end{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -i & i \end{pmatrix}$$

Przykład 10.18. Jeżeli $M \in M_{2\times 2}(\mathbf{C})$ jest hermitowska i $\chi_M(x)$ ma podwójny pierwiastek λ , to z twierdzenia spektralnego M się diagonalizuje, czyli $M = P(\lambda I)P^* = \lambda I$ i $\lambda \in \mathbf{R}$. Faktycznie, jeżeli M jest hermitowska, to jest postaci

$$\begin{pmatrix} a & b \\ \bar{b} & d \end{pmatrix}$$
,

gdzie $a, b \in \mathbb{R}$, a jej wielomian charakterystyczny to $x^2 - (a+d)x + ad - |b|^2$ i ma podwójny pierwiastek dokładnie gdy

$$0 = \Delta = (a+d)^2 - 4(ad - |b|^2) = (a-d)^2 + 4|b|^2,$$

co (dla $a, d \in \mathbb{R}$) zachodzi tylko gdy a = d i b = 0.

Uwaga 10.19. Jeżeli $F \in \text{End}(V)$ jest samosprzężony, to $\varphi(v, w) = \langle v, F(w) \rangle = \langle F(v), w \rangle$ jest formą hermitowską/symetryczną i dla dowolnej bazy ON B mamy $m_B(\varphi) = m^{BB}(\varphi)$.

Z drugiej strony jeżeli B jest bazą ON i φ jest formą hermitowską/symetryczną, to istnieje (jedyny!) taki samosprzężony $F = F_{\varphi} \in \operatorname{End}(V)$, że $\varphi(v,w) = \langle v, F(w) \rangle = \langle F(v), w \rangle$ (taki że $m_B(F) = m^{BB}(\varphi)$ dla pewnej bazy ON B).

Wtedy $m_C(F_{\varphi}) = m^{CC}(\varphi)$ dla każdej bazy ON C:

$$m_{C}(F) = m_{C}^{B}(\mathrm{id})m_{B}(F_{\varphi})m_{B}^{C}(\mathrm{id})$$

$$= m_{B}^{C}(\mathrm{id})^{-1}m^{BB}(\varphi)m_{B}^{C}(\mathrm{id})$$

$$= m_{B}^{C}(\mathrm{id})^{*}m^{BB}(\varphi)m_{B}^{C}(\mathrm{id})$$

$$= m^{CC}(\varphi)$$

Stąd i z twierdzenia spektralnego wnioskujemy wzmocnienie twierdzenia Lagrange'a.

Wniosek 10.20. • Każda forma hermitowska/rzeczywista symetryczna diagonalizuje się w bazie ON (tzn. istnieje taka baza ON B że $m^{BB}(\varphi)$ jest diagonalna).

• Jeżeli V jest przestrzenią liniową nad \mathbf{C}/\mathbf{R} i φ_1, φ_2 są hermitowskie/symetryczne, a ponadto φ_1 jest dodatnio określona, to istnieje taka baza B że $m^{BB}(\varphi_1) = \mathbf{I}$ i $m^{BB}(\varphi_2)$ jest diagonalna. W szczególności φ_1, φ_2 diagonalizują się we wspólnej bazie.

Dowód. Ćwiczenie. Wskazówki:

- Pierwsza część: skorzystaj z poprzedniej uwagi i zastosuj twierdzenie spektralne do F_{φ} .
- Druga część: φ_1 jest dodatnio określona, rozważ V jako przestrzeń unitarną/euklidesową z iloczynem skalarnym $\langle -, \rangle = \varphi_1$.

Wniosek 10.21. Jeżeli φ jest formą hermitowską, to istnieje taka baza B (niekoniecznie ON), że $m^{BB}(\varphi)$ jest diagonalna z 1,—1 i 0 na przekątnej.

Jeżeli A jest macierzą hermitowską, to istnieje taka macierz odwracalna P że PAP^* jest diagonalna z 1,-1 i 0 na przekątnej.

Dowód. Dowód dla pierwszej części (druga część jest łatwo równoważna). Weźmy bazę ON $C = c_1, \ldots, c_n$ taką że $m^{CC}(\varphi)$ jest diagonalna. Weźmy

$$b_j = \begin{cases} \frac{c_j}{\sqrt{\varphi(c_j, c_j)}} & \varphi(c_j, c_j) \neq 0 \\ c_j & \varphi(c_j, c_j) = 0. \end{cases}$$

Wtedy $B=(b_1,\ldots,b_n)$ działa: z dwuliniowości $\varphi(b_j,b_j)=\frac{1}{\sqrt{\varphi(c_j,c_j)}}\cdot\frac{1}{\sqrt{\varphi(c_j,c_j)}}\varphi(c_j,c_j)=\frac{1}{|\varphi(c_j,c_j)|^2}\varphi(c_j,c_j)=\mathrm{sgn}(\varphi(c_j,c_j)).$

Fakt 10.22 (Prawo bezwładności Sylvestera dla form hermitowskich). *Liczba* 1,-1 i 0 na przekątnej $m^{BB}(\varphi)$ z poprzedniego wniosku nie zależy od wyboru B.

Dowód. Analogiczny jak dla form symetrycznych nad **R**. □

Definicja 10.23. *Sygnatura* formy hermitowskiej zdefiniowana jest tak samo jak dla form symetrycznych rzeczywistych: to trójka (p,q,r) liczb 1, -1 i zer na przekątnej $m^{BB}(\varphi)$ z wniosku powyżej.

Wniosek 10.24. Jeżeli φ jest formą hermitowską/rzeczywistą symetryczną sygnatury (p,q,r), a A jest macierzą φ względem dowolnej bazy, to p= liczba

dodatnich pierwiastków $\chi_A(x)$ (z krotnościami), q = liczba ujemnych pierwiastków $\chi_A(x)$ (z krotnościami), r = liczba zerowych pierwiastków $\chi_A(x)$.

W szczególności φ jest dodatnio określona wtedy i tylko wtedy gdy $\chi_A(x)$ ma tylko dodatnie pierwiastki.

Dowód. Z twierdzenia spektralnego $A = PDP^* = PDP^{-1}$ dla pewnej unitarnej P i wartości na przekątnej D to pierwiastki $\chi_A(x)$. Stąd i z dowodu poprzedniego Wniosku 10.21 wynika teza. □

Przykład 10.25. Dla formy hermitowskiej $\varphi(v,w) = 2v_1w_1 + iv_1w_2 - iv_2w_1 + 2v_2w_2$ (o macierzy w standardowej bazie $\begin{pmatrix} 2 & i \\ -i & 2 \end{pmatrix}$) znaleźliśmy bazę ON w której macierz to $\begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix}$. Wszystkie znaki na przekątnej są dodatnie, więc φ ma sygnaturę (2,0,0) i jest dodatnio określona.

Ćwiczenie 10.26. Jeżeli F jest samosprzężone i v, w są wektorami własnymi odpowiadającymi różnym wartościom własnym, to $v \perp w$. (To oczywiście nie jest prawda, gdy v, w odpowiadają tej samej wartości własnej!)

Wniosek 10.27 (Rozkład spektralny). *Jeżeli F* \in End(V) *jest samosprzężony, to zachodzi wzór*:

$$F = \sum_{\lambda \in \sigma(F)} \lambda P_{\lambda},$$

gdzie P_{λ} jest rzutem ortogonalnym na przestrzeń własną V_{λ} dla F, ponadto $\sum_{\lambda \in \sigma(F)} P_{\lambda} = \operatorname{id} i \; P_{\lambda} P_{\mu} = 0 \; dla \; \lambda \neq \mu.$

Dowód. Weźmy dowolny $v \in V$. Ponieważ F się diagonalizuje, $V = \bigoplus_{\lambda} V_{\lambda}$, $v = \sum_{\lambda \in \sigma(F)} v_{\lambda}$, gdzie $F(v_{\lambda}) = \lambda v_{\lambda}$. Z poprzedniego wniosku widzimy, że

$$P_{\lambda}(\nu_{\mu}) = \begin{cases} \nu_{\mu} & \mu = \lambda \\ 0 & \mu \neq \lambda \end{cases}, \text{ więc } \nu_{\lambda} = P_{\lambda}(\nu). \text{ Stąd łatwo wynika teza.}$$

Przykład 10.28. Mamy

$$\begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & i \\ 1 & -i \end{pmatrix} \begin{pmatrix} 2 & i \\ -i & 2 \end{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -i & i \end{pmatrix},$$

czyli

Uwaga 10.29. Twierdzenie spektralne i rozkład spektralny mają też wariant dla tzw. normalnych endomorfizmów i macierzy, tzn. takich, które spełniają $AA^* = A^*A$. Konkluzja (w przypadku zespolonym) jest taka sama, poza tym że wartości własne nie muszą być rzeczywiste. W przypadku rzeczywistym wymaga modyfikacji podobnej jak w tw. Jordana.

10.1 Rozkład singularny i rozkład biegunowy

Ćwiczenie 10.30. Załóżmy że $A \in M_{n \times m}(\mathbf{C})$ jest dowolną macierzą. Wtedy dla dowolnego $v \in \mathbf{C}^n$, $w \in \mathbf{C}^m$ mamy

$$\langle v, Aw \rangle = \langle A^*v, w \rangle.$$

(Gdzie po lewej i prawej stronie mamy standardowe iloczyny skalarne dla \mathbf{C}^n i \mathbf{C}^m .)

Niech $A \in M_{n \times m}(\mathbf{C})$ będzie dowolną macierzą. Rozważmy wartość $R(\nu) = \frac{|A\nu|}{|\nu|}$ dla $\nu \in \mathbf{C}^m \setminus \{0\}$. Zauważmy że zastąpienie ν przez $\frac{\nu}{|\nu|}$ nie zmienia wartości $R(\nu)$ i wtedy

$$R(\nu) = |A\nu| = \sqrt{\langle A\nu, A\nu \rangle} = \sqrt{\langle \nu, A^*A\nu \rangle}.$$

Macierz A^*A jest oczywiście hermitowska, diagonalizuje się więc w bazie ON $B=b_1,\ldots,b_m$ i możemy rozpisać $\nu=\sum_{j=1}^m\alpha_jb_j$, gdzie $A^*Ab_j=\lambda_jb_j$. Wtedy

$$R(\nu)^2 = \langle \nu, A^*A\nu \rangle = \sum_{j=1}^n \alpha_j^2 \langle b_j, \lambda_j b_j \rangle = \sum_{j=1}^n \alpha_j^2 \lambda_j.$$

Ponieważ ta liczba jest zawsze nieujemna, widzimy że $\lambda_i \ge 0$.

Wniosek 10.31. Jeżeli $A \in M_{n \times m}(\mathbf{C})$ jest dowolną macierzą, to A^*A jest nieujemnie określona. Możemy zmienić kolejność b_j tak że $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_m$. Niech $k = \operatorname{rk} A^*A$. Wtedy $\lambda_1, \ldots \lambda_k > 0$ i $A^*Ab_j \neq 0$ dla $j \leq k$, a więc też $Ab_j \neq 0$. Ponadto wektory te są ortogonalne: jeżeli $j < l \leq k$, to

$$\langle Ab_j, Ab_l \rangle = \langle b_j, A^*Ab_l \rangle = \lambda_l \langle b_j, b_l \rangle = 0,$$

Połóżmy dla $j \le k$:

$$c_j = \frac{Ab_j}{|Ab_j|} = \frac{Ab_j}{R(b_j)} = \frac{Ab_j}{\sqrt{\lambda_i}}.$$

Wtedy układ $c_1, \ldots, c_k \in \mathbf{C}^n$ jest ON, możemy więc rozszerzyć go do bazy ON $C = c_1, \ldots, c_n$ przestrzeni \mathbf{C}^n .

Twierdzenie 10.32 (rozkład singularny). *Jeżeli* $A \in M_{n \times m}(\mathbf{C})$ *jest dowolna, to istnieją macierze unitarne* $U_1 \in M_{n \times n}(\mathbf{C})$, $U_2 \in M_{m \times m}(\mathbf{C})$ *i diagonalna* $D \in M_{n \times m}(\mathbf{R}_{>0})$ *taka że*

$$A=U_1DU_2^*,$$

przy czym

$$D = \begin{pmatrix} \sqrt{\lambda_1} & & & & \\ & \sqrt{\lambda_2} & & 0 & \\ & & \ddots & & \\ & & & \sqrt{\lambda_k} & \\ & 0 & & & 0 \end{pmatrix}$$
 n wierszy,

gdzie $\lambda_1 \ge \lambda_2 \ge ... \ge \lambda_k$ to dodatnie (równoważnie, niezerowe) wartości własne A^*A .

Ponadto jeżeli A jest rzeczywista, to możemy wybrać U_1, U_2 rzeczywiste.

Dowód. Macierze $U_1=(c_1,\ldots,c_n),\ U_2=(b_1,\ldots,b_m)$ działają. Istotnie, $U_2^*=U_2^{-1}$, więc dla każdego b_j mamy:

$$U_1DU_2^*b_j=U_1De_j=\begin{cases} U_1\sqrt{\lambda_j}e_j=\sqrt{\lambda_j}U_1e_j=\sqrt{\lambda_j}c_j=Ab_j & j\leq k\\ U_10=0=Ab_j & j>k. \end{cases}$$

Ponieważ $B=b_1,\ldots,b_m$ jest bazą ${\bf C}^m$, wynika z tego że $A=U_1DU_2^*$.

Uwaga 10.33. Jeżeli $A = U_1 D U_2^*$, to $A^* = U_2 D^{\top} U_1^*$.

Przykład 10.34. Weźmy macierz $A = \begin{pmatrix} 1 & 2 & 1 \\ -1 & 0 & 1 \end{pmatrix}$. Szukamy jej rozkładu singularnego. Wyznaczmy najpierw rozkład singularny $A^* = A^{\mathsf{T}}$: to będzie łatwiejsze, bo $A^{**}A^* = AA^*$ jest macierzą 2x2, a A^*A macierzą 3x3.

$$AA^* = AA^\top = \begin{pmatrix} 1 & 2 & 1 \\ -1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 2 & 0 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 6 & 0 \\ 0 & 2 \end{pmatrix}.$$

Widzimy że AA^* jest już w postaci diagonalnej i wartości na przekątnej są uporządkowane malejąco, więc możemy wziąć $b_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $b_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$. Wtedy

$$c_1 = \frac{A^{\mathsf{T}}b_1}{|A^{\mathsf{T}}b_1|} = \frac{1}{\sqrt{2}} \begin{pmatrix} -1\\0\\1 \end{pmatrix}, c_2 = \frac{A^{\mathsf{T}}b_2}{|A^{\mathsf{T}}b_2|} = \frac{1}{\sqrt{6}} \begin{pmatrix} 1\\2\\1 \end{pmatrix}$$
. Dopełniamy c_1, c_2 do bazy ON,

na przykład przez $c_3 = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$. Stąd mamy

$$A^{\mathsf{T}} = \begin{pmatrix} \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \\ \frac{2}{\sqrt{6}} & 0 & -\frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \end{pmatrix} \begin{pmatrix} \sqrt{6} & 0 \\ 0 & \sqrt{2} \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}^{\mathsf{T}},$$

więc szukany rozkład singularny to:

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \sqrt{6} & 0 & 0 \\ 0 & \sqrt{2} & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \\ \frac{2}{\sqrt{6}} & 0 & -\frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \end{pmatrix}^{\top}$$

Wniosek 10.35. Jeżeli $F: V \to W$ jest odwzorowaniem między przestrzeniami unitarnymi/euklidesowymi, to istnieją takie bazy ON B dla V i C dla W, że $m_C^B(F)$ jest macierzą diagonalną z nieujemnymi rzeczywistymi wyrazami na przekątnej. Możemy ponadto założyć, że są one uporządkowane nierosnąco.

Dowód. Weźmy dowolne bazy ON B',C'dla V,W odpowiednio. Z poprzedniego twierdzenia możemy wybrać macierze unitarne U_1,U_2 oraz diagonalną Dtaką że

$$m_{C'}^{B'}(F) = U_1 D U_2^*.$$

Wtedy możemy wziąć bazy ON B,C dla V,W takie że $U_2=m_{B'}^B(\mathrm{id}_W),U_1=m_{C'}^C(\mathrm{id}_V)$ i wtedy

$$m_C^B(F) = m_C^{C'}(\mathrm{id}) m_{C'}^{B'}(F) m_{B'}^B(\mathrm{id}) = U_1^* U_1 D U_2^* U_2 = D.$$

Definicja 10.36. Wartości $\sigma_j = \sqrt{\lambda_j}$ na przekątnej w D powyżej nazywamy wartościami singularnymi F (lub macierzy A).

Uwaga 10.37. Przypomnijmy sobie wzór dla v jednostkowych:

$$\frac{|Av|^2}{|v|^2} = R(v)^2 = \langle v, A^*Av \rangle = \sum_{j=1}^n \alpha_j^2 \langle b_j, \lambda_j b_j \rangle = \sum_{j=1}^n \alpha_j^2 \lambda_j = \sum_{j=1}^k \alpha_j^2 \lambda_j = \sum_{j=1}^k \alpha_j^2 \sigma_j^2.$$

Zauważmy że stąd:

- σ_1 to maksymalna wartość |R(v)| dla $v \neq 0$ (np. z nierówności między średnimi),
- b_1 to wektor jednostkowy dla którego ta wartość jest osiągana, a c_1 to wektor jednostkowy w kierunku Ab_1 .
- σ_2 to maksymalna wartość R(v) dla niezerowych v ortogonalnych do b_1 ,
- b_2 to wektor jednostkowy na którym jest ona osiągana, c_2 to wektor jednostkowy w kierunku Ab_2 ,
- σ_3 to maksymalna wartość R(v) dla $v \perp b_1, b_2...$
- itd.

Ponadto dla $j \le k$ zachodzą wzory:

$$Ab_j = \sigma_j c_j \qquad \qquad A^* c_j = \sigma_j b_j.$$

(Dla j > k mamy $Ab_j = 0$ i $A^*c_j = 0$, o ile te napisy mają sens.) Drugi wzór wynika z obserwacji, że

$$A^*c_j = A^*\sigma_i^{-1}Ab_j = \sigma_i^{-1}A^*Ab_j = \sigma_i^{-1}\sigma_i^2b_j = \sigma_jb_j.$$

Stąd bierze się interpretacja geometryczna rozkładu singularnego (rysunek 1).

Rysunek 10.1: Interpretacja geometryczna rozkładu singularnego odwzorowania $\mathbf{R}^3 \to \mathbf{R}^2$.

Definicja 10.38. Wektor b_j nazywamy prawym wektorem singularnym (odpowiadającym σ_j), a wektor c_j lewym wektorem singularnym. (Mnemotechnika: w $\sigma_j = \langle c_j, Ab_j \rangle = c_j^* Ab_j$ wektor b_j jest po prawej, c_j po lewej od A.)

Uwaga: wektory singularne *nie* są jedyne, nawet z dokładnością do znaku (np. dla id każdy wektor jest lewy i prawy singularny dla $\sigma_1 = \ldots = \sigma_n = 1$).

Przykład 10.39 (metoda najmniejszych kwadratów). Załóżmy że mamy N punktów $P_1 = \binom{x_1}{y_1}, P_2, \ldots, P_N$ na płaszczyźnie $V = \mathbf{R}^2$ (lub \mathbf{C}^2). Chcemy znaleźć prostą $W \leq V$ najlepiej przybliżającą te punkty w tym sensie, że minimalizuje sumę kwadratów odległości:

$$\sum_{j=1}^{N} d(P_j, W)^2$$

Biorąc wektor jednostkowy ν w kierunku W, mamy

$$\begin{split} d(P_{j},W)^{2} &= \langle P_{j} - \langle v, P_{j} \rangle v, P_{j} - \langle v, P_{j} \rangle v \rangle \\ &= \langle P_{j}, P_{j} - \langle v, P_{j} \rangle v_{j} \rangle - \langle \langle v, P_{j} \rangle v, P_{j} - \langle v, P_{j} \rangle v \rangle \\ &= |P_{j}|^{2} - \langle P_{j}, v \rangle \langle v, P_{j} \rangle - \overline{\langle v, P_{j} \rangle} \langle v, P_{j} - \langle v, P_{j} \rangle v \rangle \\ &= |P_{j}|^{2} - |\langle v, P_{j} \rangle|^{2} - \langle P_{j}, v \rangle \langle v, P_{j} - \langle v, P_{j} \rangle v \rangle \\ &= |P_{j}|^{2} - |\langle v, P_{j} \rangle|^{2} - \langle P_{j}, v \rangle (\langle v, P_{j} \rangle - \langle v, P_{j} \rangle \langle v, v \rangle) \\ &= |P_{j}|^{2} - |\langle v, P_{j} \rangle|^{2}. \end{split}$$

Stąd szukana prosta jest rozpinana przez jednostkowy v maksymalizujący $\sum_{j=1}^N |\langle v, P_j \rangle|^2.$

Rozważmy macierz $A = \overline{\begin{pmatrix} x_1 & y_1 \\ \vdots & \vdots \\ x_N & y_N \end{pmatrix}}$. Zauważmy że:

$$Av = \begin{pmatrix} \langle P_1, \nu \rangle \\ \vdots \\ \langle P_N, \nu \rangle \end{pmatrix},$$

czyli $|A\nu| = \sqrt{\sum_{j=1}^{n} |\langle P_j, \nu \rangle|^2} = \sqrt{\sum_{j=1}^{n} |\langle \nu, P_j \rangle|^2}$. Szukamy więc wektora jednostkowego maksymalizującego $|A\nu|$ — ale to jest z definicji pierwszy wektor singularny A, tzn. pierwsza kolumna V dla rozkładu singularnego $A = UDV^*$.

Podobnie dla ciągu N punktów w \mathbf{R}^n również możemy wyznaczyć prostą (lub ogólniej k-wymiarową podprzestrzeń dla pewnego k < n) najlepiej je przybliżającą (minimalizującą sumę kwadratów odległości) — będzie ona rozpięta przez pierwszy wektor singularny/pierwsze k wektorów singularnych macierzy $A \in \mathbf{M}_{N \times n}(\mathbf{R})$, której wiersze to współrzędne danych punktów (w przypadku zespolonym: ich sprzężenia; można też wziąć lewe wektory singularne macierzy której kolumny to współrzędne danych punktów — wtedy nie trzeba sprzęgać).

Wniosek 10.40 (rozkład biegunowy). • Jeżeli $F \in End(V)$ i B jest dowolną bazą ON, to istnieje taka baza ON C że $m_C^B(F)$ jest nieujemnie określona.

• Jeżeli $A \in M_{n \times n}(\mathbf{C})$ jest dowolną macierzą, to istnieje macierz unitarna U i dodatnio określona P taka że A = UP. Jeżeli A jest rzeczywista, to U, P też można wybrać takie.

 $Dowód.\;$ Druga część: wychodząc z rozkładu singularnego $A=U_1DU_2,$ weźmy $P=U_2^*DU_2,\,U=U_1U_2.\;$

Pierwsza część wynika z drugiej: wychodząc z $A = m_B(F)$ musimy wybrać za C taką bazę V, że $m_C^B(\mathrm{id}) = U$. Taka baza zawsze istnieje i jest ON, bo macierz U jest unitarna.

Rozdział 11

Izometrie i objętości

11.1 Reprezentacje przekształceń ortogonalnych i unitarnych

Stwierdzenie 11.1. *Jeżeli F jest unitarne/ortogonalne, to wartości własne F (również nierzeczywiste) są co do modułu równe 1.*

Ponadto jeżeli v, w są wektorami własnymi odpowiadającymi wartościom własnym $\lambda \neq \mu$, to $v_1 \perp v_2$.

Dowód. Niech v będzie wektorem własnym odpowiadającej wartości własnej λ. Wtedy:

$$|\nu|^2 = \langle \nu, \nu \rangle = \langle F(\nu), F(\nu) \rangle = \langle \lambda \nu, \lambda \nu \rangle = \bar{\lambda} \lambda \langle \nu, \nu \rangle = |\lambda|^2 |\nu|^2.$$

Stąd $|\lambda| = 1$.

Teraz niech w będzie jak w stwierdzeniu. Wtedy podobnie:

$$\langle v, w \rangle = \langle \lambda v, \mu w \rangle = \bar{\lambda} \mu \langle v, w \rangle.$$

Ponieważ $|\mu|=1, \ \mu^{-1}=\bar{\mu}\neq\bar{\lambda}$ (bo z założenia $\mu\neq\lambda$), więc $\bar{\lambda}\mu\neq1$, czyli $\langle \nu,w\rangle=0$.

Stwierdzenie 11.2. (V nad dowolnym ciałem, być może nieskończenie wymiarowa.) Jeżeli $F \in \operatorname{End}(V)$ jest odwracalny i $W \leq V$ jest skończenie wymiarowa i F-niezmiennicza, to W jest F^{-1} -niezmiennicza.

Dowód. Niech $W' = F[W] \le W$. Wtedy F zadaje izomorfizm $W \to W'$, więc dim $W = \dim W'$. Stąd W = W', czyli każdy $w' \in W$ jest postaci F(w) dla pewnego $w \in W$, zatem $F^{-1}(w') = w \in W$. □

Uwaga 11.3. Jeżeli $F \in \text{End}(V)$ i $W \leq V$ jest F-niezmiennicza, to W^{\perp} jest F^* -niezmiennicza: dla każdego $v \in W^{\perp}$ i $w \in W$ mamy:

$$\langle F^*(v), w \rangle = \langle v, F(w) \rangle = 0.$$

Wniosek 11.4. *Jeżeli F jest unitarne i W jest F-niezmiennicza, to W* $^{\perp}$ *też jest F-niezmiennicza.*

Dowód. Z poprzedniego stwierdzenia W^{\perp} jest $F^* = F^{-1}$ -niezmiennicza, a więc też F-niezmiennicza (bo jest skończenie wymiarowa). □

Stwierdzenie 11.5. (V unitarna.) Jeżeli F jest unitarne, to diagonalizuje się w bazie ON.

pierwszy dowód. Wynika z Twierdzenia C.6 (spektralnego dla normalnych endomorfizmów).

drugi dowód. Indukcja względem dim V. Gdy dim V=1, to teza jest oczywista. W przeciwnym wypadku weźmy jednostkowy wektor własny b_1 . Wtedy Lin(b_1) jest F-niezmiennicze, więc $W=b_1^{\perp}$ też i $F \upharpoonright_W$ jest oczywiście unitarne. Z założenia indukcyjnego W ma bazę B' ON wektorów własnych dla $F \upharpoonright_W$. Wtedy $B=b_1B'$ działa. □

Twierdzenie 11.6 (twierdzenie spektralne dla przekształceń unitarnych). (V unitarna.) $F \in \text{End}(V)$ jest unitarny wtedy i tylko wtedy gdy istnieje baza ON B taka że $m_B(F)$ jest diagonalna i ma na przekątnej wartości o module 1.

Dowód. Implikacja z lewej do prawej to poprzednie stwierdzenie. Implikacja w prawej do lewej:

$$m_B(F)m_B(F)^* = egin{pmatrix} \lambda_1 & & & & \\ & \lambda_2 & & & \\ & & \ddots & & \\ & & & \lambda_n \end{pmatrix} egin{pmatrix} ar{\lambda}_1 & & & & \\ & ar{\lambda}_2 & & & \\ & & & \ddots & \\ & & & ar{\lambda}_n \end{pmatrix} = egin{pmatrix} |\lambda_1| & & & & \\ & |\lambda_2| & & & \\ & & & \ddots & \\ & & & |\lambda_n| \end{pmatrix} = I,$$

więc $m_B(F)$ jest unitarna, czyli F jest unitarne.

Uwaga 11.7. Jeżeli F jest przekształceniem ortogonalnym przestrzeni euklidesowej V, to $F_{\rm C}$ jest przekształceniem unitarnym $V_{\rm C}$: istotnie, wystarczy wziąć bazę ON B dla V i wtedy B jest też bazą ON dla $V_{\rm C}$ i macierz $m_B(F)=m_B(F_{\rm C})$ jest ortogonalna i rzeczywista, a więc unitarna.

11.1. REPREZENTACJE PRZEKSZTAŁCEŃ ORTOGONALNYCH I UNITARNYCH173

Uwaga 11.8 (przypomnienie). Jeżeli $F \in \operatorname{End}(V)$ dla rzeczywistej przestrzeni liniowej V i λ jest nierzeczywistą wartością własną $F_{\rm C}$ i $F_{\rm C}(\nu) = \lambda \nu$ dla pewnego niezerowego $\nu \in V_{\rm C}$, to:

- $\operatorname{Lin}_{\mathbf{R}}(\operatorname{Re}(\nu), \operatorname{Im}(\nu)) = V \cap \operatorname{Lin}_{\mathbf{C}}(\nu, \bar{\nu})$ jest dwuwymiarową F-niezmienniczą podprzestrzenią V,
- $F(\text{Re}(\nu)) = F_{\text{C}}((\nu + \bar{\nu})/2) = \frac{1}{2}(\lambda \nu + \bar{\lambda}\bar{\nu}) = \text{Re}(\lambda \nu) = \text{Re}(\lambda)\text{Re}(\nu) \text{Im}(\lambda)\text{Im}(\nu)\text{ i podobnie } F(\text{Im}(\nu)) = \text{Im}(\lambda\nu) = \text{Im}(\lambda)\text{Re}(\nu) + \text{Re}(\lambda)\text{Im}(\nu),$
- w szczególności macierz F obciętego do tej podprzestrzeni w bazie $\text{Re}(\nu), \text{Im}(\nu)$ to $\begin{pmatrix} \text{Re}(\lambda) & \text{Im}(\lambda) \\ -\text{Im}(\lambda) & \text{Re}(\lambda) \end{pmatrix}$,
- w szczególności gdy $|\lambda| = 1$, to $\lambda = \cos \theta + i \sin \theta$, więc macierz to $\begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$.

Twierdzenie 11.9 (twierdzenie spektralne dla przekształceń ortogonalnych). (V euklidesowa.) $F \in \operatorname{End}(V)$ jest ortogonalne \iff istnieje baza ON B taka $\dot{z}e$

Definicja 11.10. Wyrażenie z konkluzji twierdzenia spektralnego powyżej nazywamy *postacią kanoniczną F*.

Dowód. Implikacja z prawej do lewej jest oczywista (macierz zadanej postaci jest ortogonalna). Udowodnimy implikację z lewej do prawej.

Dowodzimy przez indukcję względem $\dim V$. Gdy $\dim V = 1$, teza jest oczywista, a gdy $\dim V = 2$, to jest znana z ubiegłego semestru (bo wtedy V jest płaszczyzną euklidesową).

Jeżeli F ma (rzeczywistą) wartość własną, to jest ona równa ± 1 (bo jej moduł to 1) i jak w przypadku unitarnym, wybieramy jednostkowy wektor własny b_1 . Wtedy $W=b_1^{\perp}$ jest F-niezmiennicza i z założenia indukcyjnego mamy bazę ON B' dla W w której $F \upharpoonright_W$ ma żądaną postać i $B=b_1B'$ działa.

Jeżeli F nie ma rzeczywistej wartości własnej, to weźmy wektor własny $v \in V_{\mathbb{C}}$ dla $F_{\mathbb{C}}$ odpowiadający nierzeczywistej wartości własnej λ . Wtedy $\mathrm{Lin}_{\mathbb{C}}(v,\bar{v})$ jest $F_{\mathbb{C}}$ -niezmienniczy, więc $W_1=\mathrm{Lin}_{\mathbb{C}}(v,\bar{v})\cap V$ jest $F_{\mathbb{C}}$ -niezmienniczy. Z ćwiczenia wiemy że dim $W_1=2$, więc z założenia indukcyjnego W_1 i $W_2=W_1^{\perp}$ mają bazy ON B_1 , B_2 takie że $m_{B_j}(F_{W_j})$ są jak w tezie (z tym że bez wartości ± 1 , bo inaczej $F_{\mathbb{C}}$ miałoby wartość własną!). Stąd $F_{\mathbb{C}}$ 0 działa.

11.2 Izometrie

Definicja 11.11. Mówimy że odwzorowanie $F: V \to V$ (niekoniecznie liniowe) jest *izometrią* jeżeli zachowuje odległości, tzn. dla każdych $v_1, v_2 \in V$ zachodzi $|v_1 - v_2| = |F(v_1) - F(v_2)|$.

Przykłady 11.12. • translacje $T_{\nu_0}(\nu) = \nu + \nu_0$ są izometriami,

- obroty R² wokół punktów, R³ wokół prostych są izometriami,
- sprzężenie w **C**ⁿ jest izometrią (również sprzężenie tylko niektórych współrzędnych),
- przekształcenie $\mathbf{R}^n/\mathbf{C}^n$ zadane (w standardowej bazie) macierzą diago-

11.2. IZOMETRIE 175

nalną postaci

$$\begin{pmatrix} 1 & & & & & \\ & \ddots & & & & \\ & & 1 & & \\ & & -1 & \leftarrow i\text{-te miejsce} \\ & & 1 & \\ & & \ddots & \\ & & & 1 \end{pmatrix}$$

(symetria w hiperpłaszczyźnie $\text{Lin}(e_1,\ldots,e_{i-1},e_{i+1}\ldots,e_n)$) jest izometrią,

- symetrie w dowolnej hiperpłaszczyźnie $W\ni 0$: $S_W=2\pi_W-\mathrm{id},$
- przekształcenie $\mathbb{R}^n/\mathbb{C}^n$ zadane (w standardowej bazie) macierzą postaci

$$\begin{pmatrix} 1 & & & & & \\ & \ddots & & & & \\ & & 1 & & \\ & & R_{\theta} & \leftarrow i\text{-te i } (i+1)\text{-sze miejsce} \\ & & 1 & & \\ & & \ddots & & \\ & & & 1 \end{pmatrix}$$

(obrót wokół "hiperprostej" $\text{Lin}(e_1, \dots, e_{i-1}, e_{i+2}, \dots, e_n)$) jest izometrią, ¹

• podobnie symetrie w innych hiperpłaszczyznach/obroty wokół innych hiperprostych (niekoniecznie przechodzących przez 0).

Wniosek 11.13. Odwzorowanie liniowe $F: V \rightarrow V$ jest izometrią wtedy i tylko wtedy gdy jest unitarne/ortogonalne.

 $Dow \acute{o}d.$ Załóżmy że F jest unitarne/ortogonalne i weźmy dowolne $v_1,v_2\in V.$

 $^{^1}$ Podobnie jak w wymiarze 3, ustalenie hiperprostej nie wystarczy do wyznaczenia obrotu — aby odróżnić obrót o kąt θ od obrotu o kąt $-\theta$, trzeba ustalić jeszcze jej orientację (w przypadku n=3 orientacja odpowiadała zwrotowi wektora kierunkowego).

Wtedy mamy

$$\begin{aligned} |v_1 - v_2|^2 &= \langle v_1 - v_2, v_1 - v_2 \rangle \\ &= \langle F(v_1 - v_2), F(v_1 - v_2) \rangle \\ &= \langle F(v_1) - F(v_2), F(v_1) - F(v_2) \rangle \\ &= |F(v_1) - F(v_2)|^2. \end{aligned}$$

Z drugiej strony załóżmy, że *F* jest liniową izometrią.

Dowód w przypadku euklidesowym.

Wtedy z wzoru polaryzacyjnego (i liniowości F) dla dowolnych v, w mamy

$$\langle v, w \rangle = \frac{|v + w|^2 - |v|^2 - |w|^2}{2}$$

$$= \frac{|F(v + w)| - |F(v)|^2 - |F(w)|^2}{2}$$

$$= \frac{|F(v) + F(w)| - |F(v)|^2 - |F(w)|^2}{2}$$

$$= \langle F(v), F(w) \rangle.$$

Dowód w przypadku unitarnym: ćwiczenie (przebiega analogicznie, tylko trzeba użyć wzoru polaryzacyjnego dla form hermitowskich).

Do następnego stwierdzenia będzie potrzebna jeszcze inna postać wzoru polaryzacyjnego dla form symetrycznych.

Uwaga 11.14. Jeżeli $\varphi(v,w)$ jest formą symetryczną i $Q(v)=\varphi(v,v)$, to mamy

$$\varphi(v,w) = -\varphi(v,-w) = -\frac{Q(v+(-w)) - Q(v) - Q(w)}{2} = \frac{Q(v) + Q(w) - Q(v-w)}{2}.$$

Stwierdzenie 11.15. (V euklidesowa.) Jeżeli F jest izometrią V i F(0) = 0, to F jest liniowe.

Dowód. Z założenia łatwo wynika, że dla każdego v ∈ V mamy |F(v)| = |v|. Stąd i z poprzedniej uwagi wnioskujemy, że F zachowuje iloczyn skalarny:

$$\langle F(v), F(w) \rangle = \frac{1}{2} (|F(v)|^2 + |F(w)|^2 - |F(v) - F(w)|^2) = \frac{1}{2} (|v|^2 + |w|^2 - |v - w|^2) = \langle v, w \rangle.$$

11.3. DIAGONALIZACJA FORM KWADRATOWYCH A HIPERPOWIERZCHNIE KWADRATOWE177

Weźmy bazę ON $B=(b_1,\ldots,b_n)$. Oznaczmy $b_j':=F(b_j)$. Wtedy $B'=b_1',\ldots,b_n'$ też jest ON i dla każdego $v=\sum_j\alpha_jb_j\in V$ mamy

$$\langle b_i', F(v) \rangle = \langle b_i, v \rangle = \alpha_i,$$

a więc (ponieważ B' jest bazą ON) $F(v) = \sum_{j=1}^{n} \alpha_j b'_j$, więc F jest liniowe. \square

Uwaga 11.16. Ten sam dowód pokazuje, że przekształcenie przestrzeni unitarnej zachowujące iloczyn skalarny musi być liniowe.

Wniosek 11.17. Każda izometria przestrzeni euklidesowej jest złożeniem translacji i izometrii liniowej.

Dowód. Jeżeli F jest izometrią, to F - F(0) też jest izometrią i zachowuje 0, więc jest liniową izometrią. Stąd $F = F(0) + (F - F(0)) = T_{F(0)} \circ (F - F(0))$. □

Wniosek 11.18. Każda izometria n-wymiarowej przestrzeni euklidesowej jest złożeniem ≤ 1 translacji, k obrotów i m symetrii w hiperpłaszczyznach, przy czym $2k + m \leq n$.

Dowód. Wynika natychmiast z poprzedniego wniosku z Twierdzenia 11.9 (spektralnego dla ortogonalnych endomorfizmów). □

Ćwiczenie 11.19. Każda izometria n-wymiarowej przestrzeni euklidesowej jest złożeniem $\leq n+1$ symetrii w hiperpłaszczyznach (w tym najwyżej jednej nieliniowej/w hiperpłaszczyźnie nie zawierającej 0).

11.3 Diagonalizacja form kwadratowych a hiperpowierzchnie kwadratowe

Widzieliśmy już (z twierdzenia spektralnego), że symetryczne formy dwuliniowe nad **R** diagonalizują się w bazie ON. To pociąga za sobą oczywiście analogiczne stwierdzenie o formach kwadratowych.

Oznacza to że jeżeli Q jest formą kwadratową na \mathbb{R}^n , tzn. wyrażeniem postaci

$$Q(v) = \sum_{i=1}^{n} a_{ii} v_i^2 + \sum_{i < i} 2a_{ij} v_i v_j,$$

to istnieje taka baza ON B, że

$$Q(v) = \sum_{i=1}^{n} b_{ii}(v'_i)^2,$$

gdzie $\begin{pmatrix} v_1' \\ v_2' \\ \vdots \\ v_n' \end{pmatrix}$ = $[v]_B$. Ponadto wartości b_{ii} to dokładnie wartości własne macierzy (a_{ij}) .

W szczególności oznacza to że każda "kwadryka" lub "hiperpowierzchnia kwadratowa" w \mathbb{R}^n , tzn. zbiór rozwiązań równania postaci

$$\sum_{i=1}^{n} a_{ii} v_i^2 + \sum_{i < j} 2a_{ij} v_i v_j = c,$$

ma w pewnym prostokątnym układzie współrzędnych postać kanoniczną

$$\sum_{i=1}^{n} b_{ii}(v_i')^2 = c,$$

przy czym można założyć, że $c \in \{0, 1\}$.

Ponieważ ortogonalna zmiana współrzędnych odpowiada nałożeniu macierzy ortogonalnej, a to są dokładnie macierze izometrii, wnioskujemy stąd, że każda hiperpowierzchnia kwadratowa jest izometryczna z hiperpowierzchnią w postaci kanonicznej. Dzięki temu nietrudno zbudować pełną klasyfikację kwadryk (z dokładnością do izometrii), analogiczną do klasyfikacji krzywych stożkowych na płaszczyźnie i powierzchni kwadratowych w \mathbf{R}^3 .

Jeżeli ponadto zaniedbamy skalowanie osi, to "kształt" kwadryki jest całkowicie zdeterminowany przez sygnaturę odpowiadającej jej formy kwadratowej oraz znak drugiej strony równania. W szczególności z tego punktu widzenia każda kwadryka "wygląda jak" kwadryka w przestrzeni n=(p+q+r)-wymiarowej zadana równaniem postaci

$$\sum_{i=1}^{p} x_i^2 - \sum_{i=p+1}^{p+q} x_i^2 = 1$$

lub takim samym, ale z prawą stroną równą 0.

Przykład 11.20. Niepusta kwadryka zadana równaniem $Q(\nu) = 1$ jest ograniczona wtedy i tylko wtedy gdy Q jest dodatnio określona — przykład widzieliśmy na ćwiczeniach. (W przeciwnym razie zawiera prostą w kierunku wektora z przestrzeni zerowej lub hiperbolę zawartą w płaszczyźnie rozpiętej przez wektory ν_1 , ν_2 takie że $Q(\nu_1) > 0 > Q(\nu_2)$.)

W tym wypadku z postaci kanonicznej widzimy, że mamy do czynienia z (wielowymiarową) elipsoidą, liniowym obrazem sfery.

11.4 Macierz Grama i objętość

Definicja 11.21. *Macierz Grama* (lub *Gramian*) $G(v_1, ..., v_k)$ układu $v_1, v_2, ..., v_k$ w przestrzeni unitarnej/euklidesowej to macierz której ij-ty wyraz to $\langle v_i, v_i \rangle$.

Uwaga 11.22. W szczególności jeżeli $B = v_1, \dots, v_k$ jest bazą, to jej macierz Grama to po prostu macierz standardowego iloczynu skalarnego względem tej bazy.

Uwaga 11.23. Jeżeli $v_1, \ldots, v_k \in \mathbb{R}^n/\mathbb{C}^n$, to $G(v_1, \ldots, v_k) = A^*A$, gdzie A to macierz o kolumnach v_i .

Ogólnie, dla dowolnej przestrzeni unitarnej/euklidesowej V i bazy ON B, $G(v_1, ..., v_k) = A^*A$, gdzie A to macierz o kolumnach $[v_i]_B$.

Sprawdziliśmy wcześniej, że macierze postaci A^*A są nieujemnie określone. Stąd:

Wniosek 11.24. *Macierz Grama jest hermitowska/symetryczna i nieujemnie określona.*

Stwierdzenie 11.25. *Jeżeli* $A \in M_{n \times m}(\mathbf{C})$ *jest dowolną macierzą, to* $\mathrm{rk}A = \mathrm{rk}(A^*A) = \mathrm{rk}(AA^*)$.

Dowód. Pokażmy że rk $A = \text{rk}A^*A$. Wystarczy pokazać, że ker $F_A = \text{ker}F_{A^*A}$ (bo F_A i F_{A^*A} mają tę samą dziedzinę). Weźmy dowolny $v \in \mathbf{C}^m$. Wtedy

$$\underline{Av = 0} \implies \underline{A^*Av = 0} \implies \langle v, A^*Av \rangle = 0 \iff \langle Av, Av \rangle = 0 \iff \underline{Av = 0}.$$

czyli
$$Av = 0 \implies A^*Av = 0 \implies Av = 0$$
.

Wniosek 11.26. Układ $v_1, ..., v_k$ jest liniowo niezależny wtedy i tylko wtedy gdy $\det G(v_1, ..., v_k) \neq 0$. Dokładniej, rząd macierzy Grama jest równy wymiarowi $\operatorname{Lin}(v_1, ..., v_k)$.

Dowód. Wystarczy zastosować poprzednie stwierdzenie dla $A = ([v_1]_B, ..., [v_k]_B)$, gdzie B jest bazą ON V. □

Chcemy za pomocą macierzy Grama zdefiniować objętość równoległościanu rozpiętego przez wektory v_1, \ldots, v_k .

Stwierdzenie 11.27. *Weźmy dowolne wektory* liniowo niezależne v_1, \ldots, v_k *w* przestrzeni euklidesowej V i bazę ON B dla Lin (v_1, \ldots, v_k) . Wtedy następujące liczby są równe:

- 1. $V_k(v_1,...,v_k) = |\det([v_1]_B, [v_2]_B,..., [v_k]_B)|$
- 2. $V'_k(v_1, \ldots, v_k) = V'_{k-1}(v_1, \ldots, v_{k-1}) \cdot d(v_k, \text{Lin}(v_1, \ldots, v_{k-1})), \ gdzie \ V'_1(v_1) = |v_1|,$
- 3. $\sqrt{\det(G(v_1,\ldots,v_k))}$.

Dowód. Oznaczmy przez A macierz z (1).

(1) i (3): Rozumując jak powyżej widzimy, że $G(v_1, ..., v_k) = A^*A$, skąd:

$$\det G(\nu_1, \dots, \nu_k) = \det(A^*A) = \det(A^*) \det(A) = \overline{\det A} \det A = |\det A|^2.$$

(1) i (2): Dowodzimy przez indukcję względem k. Dla k=1 teza jest oczywista. Załóżmy że teza zachodzi dla k-1, tzn. $V'_{k-1}(\nu_1,\ldots,\nu_{k-1})=V_{k-1}(\nu_1,\ldots,\nu_{k-1}).$

Z równości (1) i (3) wynika, że wartość w (1) nie zależy od wyboru bazy ON. Możemy założyć więc, że $B' = (b_1, ..., b_{k-1})$ jest bazą ON $W := \text{Lin}(v_1, ..., v_{k-1})$ (a b_k dopełnia B' do bazy ON $\text{Lin}(v_1, ..., v_k)$). Wtedy:

$$d(v_k, W) = |v - \pi_W(v)| = |\langle b_k, v_k \rangle b_k| = |\langle b_k, v_k \rangle|.$$

Oznaczmy $c := \langle b_k, v_k \rangle$ i $A' := ([v_1]_{B'}, \dots, [v_{k-1}]_{B'})$. Wtedy:

$$\det A = \det([v_1]_B, \dots, [v_{k-1}]_B, [v_k]_B) = \det([v_1]_B, \dots, [v_{k-1}]_B, [v_k - \pi_W(v_k)]_B) = \begin{vmatrix} A' & 0 \\ * & c \end{vmatrix}.$$

Z eliminacji Gaussa łatwo wnioskujemy, że ten ostatni wyznacznik to $c \cdot \det A'$. Ponieważ $|\det A'|$ to z definicji $V_{k-1}(v_1, \ldots, v_{k-1})$ i $|c| = d(v_k, W)$, stąd łatwo wynika teza.

181

Uwaga 11.28. Liczby w (2) i (3) są równe nawet wtedy, gdy v_1, \ldots, v_k są lz (wtedy obydwie są równe 0). Liczba (1) nie ma wtedy sensu, bo macierz po prawej stronie nie jest kwadratowa.

Definicja 11.29. Liczbę $V_k(v_1,...,v_k) = \sqrt{\det G(v_1,...,v_k)}$ nazywamy (*k*-wymiarową) *objętością* równoległościanu rozpiętego przez $v_1,...,v_k$ (nawet wtedy, gdy są one lz).

(Wzór (2) pokazuje, że ta definicja faktycznie ma intuicyjny sens geometryczny.)

Przykład 11.30. Chcemy policzyć odległość od płaszczyzny Lin
$$\begin{pmatrix} v_1 = \begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \end{pmatrix}, v_2 = \begin{pmatrix} 1 \\ 2 \\ 1 \\ 1 \end{pmatrix} \end{pmatrix}$$

wektora $v_3 \begin{pmatrix} 1 \\ 3 \\ 0 \\ 1 \end{pmatrix}$. Policzmy iloczyny skalarne:

$$\left\langle \begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \end{pmatrix} \right\rangle = 2 \quad \left\langle \begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 1 \\ 1 \end{pmatrix} \right\rangle = -1 \quad \left\langle \begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 3 \\ 0 \\ 1 \end{pmatrix} \right\rangle = -2$$

$$\left\langle \begin{pmatrix} 1 \\ 2 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 1 \\ 1 \end{pmatrix} \right\rangle = 7 \quad \left\langle \begin{pmatrix} 1 \\ 2 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 3 \\ 0 \\ 1 \end{pmatrix} \right\rangle = 8 \quad \left\langle \begin{pmatrix} 1 \\ 3 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 3 \\ 0 \\ 1 \end{pmatrix} \right\rangle = 11$$

Stad mamy macierz Grama:

$$G(v_1, v_2, v_3) = \begin{pmatrix} 2 & -1 & -2 \\ -1 & 7 & 8 \\ -2 & 8 & 11 \end{pmatrix}$$

i możemy wyliczyć odległość

$$d(v_3, \operatorname{Lin}(v_1, v_2)) = \frac{V_3(v_1, v_2, v_3)}{V_2(v_1, v_2)} = \sqrt{\frac{\begin{vmatrix} 2 & -1 & -2 \\ -1 & 7 & 8 \\ -2 & 8 & 11 \end{vmatrix}}{\begin{vmatrix} 2 & -1 \\ -1 & 7 \end{vmatrix}} = \sqrt{\frac{14 \cdot 11 + 16 + 16 - 8 \cdot 16 - 11 - 2 \cdot 14}{13}} = \sqrt{\frac{9 \cdot 14 - 6 \cdot 16 - 11}{13}} = \sqrt{\frac{19}{13}}$$

Przykład 11.31. Chcemy policzyć wartość

$$\inf_{a,b\in\mathbb{R}} \int_{0}^{1} |t^{2} - at - b|^{2} dt.$$

Zauważmy że ta liczba to kwadrat odległości x^2 od $\text{Lin}(x,1) \leq V = \mathbf{R}_2[x]$ z iloczynem skalarnym $\langle P,Q \rangle = \int_0^1 P(t)Q(t)\,\mathrm{d}t$.

Łatwo policzyć, że $\langle x^i, x^j \rangle = \int_0^1 t^{i+j} dt = \frac{1}{i+j+1}$. Stąd

$$V_2(1,x)^2 = \begin{vmatrix} 1 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{3} \end{vmatrix} = \frac{1}{3} - \frac{1}{4} = \frac{1}{12},$$

oraz

$$V_3(1,x,x^2)^2 = \begin{vmatrix} 1 & \frac{1}{2} & \frac{1}{3} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\ \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \end{vmatrix} = \frac{1}{2160},$$

czyli odległość to

$$d(x^2, \operatorname{Lin}(1, x)) = \frac{V_3(1, x, x^2)}{V_2(1, x)} = \sqrt{\frac{12}{2160}} = \sqrt{\frac{1}{180}} = \frac{1}{6\sqrt{5}}.$$

W szczególności wynika stąd:

$$\inf_{a,b\in\mathbb{R}} \int_0^1 |t^2 - at - b|^2 dt = \frac{1}{180}$$

183

Ćwiczenie 11.32. Jeżeli macierz kwadratowa $A \in M_{n \times n}(\mathbf{C})$ jest dodatnio półokreślona, to jest macierzą Grama.

Wniosek 11.33. Niech $A \in M_{n \times n}(\mathbf{C})$ będzie hermitowska/rzeczywista symetryczna. Wtedy:

- 1. A jest macierzą Grama (pewnego układu n wektorów) ← jest dodatnio półokreślona,
- 2. A jest macierzą Grama pewnego liniowo niezależnego układu wektorów ⇔ jest dodatnio określona.

Dowód. Wiemy, że jeżeli A jest macierzą Grama, to jest dodatnio półokreślona, więc (1) wynika z ćwiczenia.

Załóżmy że A jest dodatnio określona. Wtedy z (1) mamy $A = G(v_1, ..., v_n)$. Wiemy, że odwracalność A jest równoważna z liniową niezależnością $v_1, ..., v_n$, a dla dodatnio półokreślonej macierzy jest równoważna z dodatnią określonością (z tym że 0 nie jest wartością własną).

Wniosek 11.34. *Jeżeli F* \in End(V), $gdzie\ V$ jest euklidesowa lub unitarna i $\dim V = n$, to dla każdych wektorów v_1, \ldots, v_n mamy

$$V_n(F(\nu_1),\ldots,F(\nu_n))=|\det F|V_n(\nu_1,\ldots,\nu_n).$$

Dowód. Jeżeli v_1, \ldots, v_n są lz, to obydwie strony są zerowe i teza zachodzi. Załóżmy więc że są lnz.

Oznaczmy przez $A := ([v_1]_B, \dots, [v_n]_B), A' := ([F(v_1)]_B, \dots, [F(v_n)]_B),$ $M := m_B(F)$. Wtedy A' = MA, skąd

$$V_n(F(v_1), \dots, F(v_n)) = |\det A'|$$

$$= |\det(MA)|$$

$$= |\det M \det A|$$

$$= |\det M||\det A|$$

$$= |\det F|V_n(v_1, \dots, v_n).$$

Przykład 11.35 (całkowanie przez podstawienie). Mamy odwracalne przekształcenie liniowe $F: \mathbb{R}^n \to \mathbb{R}^n$, funkcję ciągłą $f: \mathbb{R}^n \to \mathbb{R}$, a także podzbiór $V \subseteq \mathbb{R}^n$ który jest sumą równoległościanów.

184

Wtedy

$$\int_{F[V]} f(v) dv = \lim_{\mathcal{P} \text{ podział } F[V]} \sum_{P \in \mathcal{P}} V_n(P) f(v_P)$$

$$= \lim_{\mathcal{P} \text{ podział } V} \sum_{P \in \mathcal{P}} V_n(F[P]) f(F(v_P))$$

$$= \lim_{\mathcal{P} \text{ podział } V} \sum_{P \in \mathcal{P}} |\det F| V_n(P) f(F(v_P))$$

$$= \int_{V} |\det F| f(F(v)) dv.$$

gdzie $\lim_{\mathscr{P} \text{ podział } F[V]}$ przebiega skończone zbiory \mathscr{P} n-wymiarowych prostopadłościanów o coraz mniejszych średnicach wypełniających F[V], a v_P jest dowolnym wektorem z P.

Następnie możemy ten wzór poprawić:

- *V* nie musi być zbiorem, który jest sumą prostopadłościanów, ale tylko dobrze się takimi sumami przybliża (np. jest jordanowsko mierzalny),
- f nie musi być ciągła, a tylko (na przykład) riemannowsko całkowalna,
- F nie musi być liniowa, a tylko dobrze przybliżać się przez złożenie odwracalnej funkcji liniowej i translacji (np. F może być klasy C¹ z odwracalną pochodną) wtedy det F należy zastąpić jakobianem F. V należy ponadto wybrać tak, by F \(\)_V była 1-1.

(Szczegóły: wykład analiza matematyczna/geometria różniczkowa.)

Dodatek A

Przestrzenie nieskończenie wymiarowe

A.1 Twierdzenie o wymiarze dla przestrzeni nieskończenie wymiarowych

Do udowodnienia w ogólności twierdzenia o wymiarze potrzebujemy następującego twierdzenia (pozostawiamy je bez dowodu; wynika on stosunkowo łatwo z twierdzenia Tichonowa z topologii oraz ze skończonego twierdzenia Halla o kojarzeniu małżeństw — o tym samym sformułowaniu, z tym że z założeniem, że zbiór *A* jest skończony).

Twierdzenie A.1 (Halla o kojarzeniu małżeństw). Załóżmy że A jest zbiorem i dla każdego $a \in A$ mamy dany skończony zbiór B_a , taki że dla każdego skończonego $A_0 \subseteq A$ zachodzi $|A_0| \le \bigcup_{a \in A_0} B_a$.

Wtedy istnieje funkcja różnowartościowa przekształcająca każdy element $a \in A$ na pewien element odpowiadającego mu B_a .¹

Wniosek A.2 (Twierdzenie Löwiga o wymiarze). *Jeżeli V jest dowolną przestrzenią liniową i A, B są bazami V, to A i B są równoliczne.*

Dowód. Wystarczy pokazać, że $|A| \le |B|$, tzn. że istnieje funkcja różnowartościowa z $A \to B$: z symetrii wynikać będzie, że też $|B| \le |A|$, a więc z twierdzenia Cantora-Bernsteina |A| = |B|.

¹Twierdzenie Halla w tej formie nie jest twierdzeniem ZF, ale jest istotnie słabsze od pewnika wyboru.

Ponieważ B jest bazą, każdy element $a \in A$ przedstawia się jednoznacznie jako kombinacja liniowa (skończenie wielu) elementów B. Niech $B_a \subseteq B$ składa się dokładnie z tych elementów, które występują w niej z niezerowymi współczynnikami.

Pokażemy że spełniają one założenia twierdzenia Halla. Istotnie, każdy B_a jest skończony, i jeżeli $A_0 \subseteq A$ jest skończony, to $B_0 = \bigcup_{a \in A_0} B_a$ spełnia $A_0 \subseteq \text{Lin}(B_0)$. Ponieważ A_0 i B_0 są liniowo niezależne, B_0 jest (skończoną) bazą $V = \text{Lin}\,B_0$, a A_0 jego liniowo niezależnym podzbiorem, więc na mocy Twierdzenia 2.17, $|A_0| \leq |B_0|$.

Stąd na mocy twierdzenia Halla istnieje funkcja różnowartościowa $A \to \bigcup_{a \in A} B_a \subseteq B$, co należało dowieść.

Wniosek A.3. Izomorfizm zachowuje wymiar przestrzeni liniowej. Jeżeli $V_1 \cong V_2$, i B_1 , B_2 są bazami B_1 i B_2 odpowiednio, to mają tyle samo elementów.

Dowód. Izomorfizm przekształca bazy na bazy (bo zachowuje kombinacje liniowe i liniową niezależność), więc jeżeli $F: V_1 \rightarrow V_2$ jest izomorfizmem, to $F[B_1]$ ma tyle samo elementów co B_1 (bo F jest 1-1) i jest bazą. Stąd łatwo wynika teza. □

A.2 Lemat Steinitza o wymianie

Dowód twierdzenia o wymiarze (Wniosku A.2) korzystał z lematu Steinitza dla skończonych baz. Aby uzyskać lemat Steinitza dla nieskończonych baz, postąpimy odwrotnie: wykorzystamy twierdzenie o wymiarze (oraz lemat Kuratowskiego-Zorna).

Twierdzenie A.4 (Lemat Steinitza o wymianie). *Załóżmy że V jest przestrzenią liniową o bazie B, zaś* $A \subseteq V$ *jest liniowo niezależny.*

Wtedy istnieje $C \subseteq B$ równoliczny z A taki że $A \cup (B \setminus C)$ jest bazą V.

Dowód. Rozważmy porządek częściowy złożony z pozdbiorów $B_0 \subseteq B$ takich że $B_0 \cap A = \emptyset$ i $B_0 \cup A$ jest liniowo niezależny, uporządkowanych przez ⊆.

Podobnie jak w dowodzie Twierdzenia 2.9, pokazujemy że porządek ten spełnia założenia lematu Kuratowskiego-Zorna, ma więc element maksymalny $B' \subseteq B$.

Z maksymalności B' wynika, że $B \subseteq \text{Lin}(A \cup B')$ i oczywiście $A \cup B'$ jest liniowo niezależny, więc jest on bazą. Pozostaje pokazać, że $C = B \setminus B'$ jest równoliczny z A.

Rozważmy $W=\operatorname{Lin}(B'), W_1=\operatorname{Lin}(A), W_2=\operatorname{Lin}(C)\leq V$ i rozważmy odwzorowanie $F\colon V\to V/W$. Z założeń łatwo wynika że $W\cap W_1=W\cap W_2=\{0\},$ a ponadto $F[W_1]=F[W_1+W]=F[V]=F[W_2+W]=F[W_2]=V/W$, więc $F\upharpoonright_{W_1}$ i $F\upharpoonright_{W_2}$ są liniowymi bijekcjami, a więc są izomorfizmami.

Stąd W_1 i W_2 są izomorficzne, więc ich bazy mają tyle samo elementów. Ale A jest bazą W_1 i C jest bazą W_2 , czyli A i C są równoliczne, co należało dowieść.

Dodatek B Rzeczywiste twierdzenie Jordana

Dodatek C

Twierdzenie spektralne dla endomorfizmów normalnych

W tym dodatku V jest przestrzenią unitarną lub euklidesową.

Definicja C.1. Mówimy że macierz kwadratowa $A \in M_{n \times n}(\mathbf{C})$ jest normalna, jeżeli $AA^* = A^*A$.

Mówimy że $F \in \text{End}(V)$ jest normalny, jeżeli $F^* \circ F = F \circ F^*$.

Przykłady C.2. • Endomorfizmy/operatory unitarne są normalne: $U^*U = I = UU^*$.

- Endomorfizmy/macierze samosprzężone są normalne: $AA^* = AA = A^*A$.
- Zespolone wielokrotności normalnych endomorfizmów/macierzy są normalne: $(zA)^*(zA) = |z|^2 A^* A = |z|^2 AA^* = (zA)(zA)^*$.
- Suma dwóch normalnych endomorfizmów/macierzy ogólnie *nie* jest normalna: np. $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ i $\begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$ są normalne, ale

$$\begin{pmatrix} 0 & i \\ i & 1 \end{pmatrix}^* \begin{pmatrix} 0 & i \\ i & 1 \end{pmatrix} = \begin{pmatrix} 1 & -i \\ i & 2 \end{pmatrix}$$

podczas gdy

$$\begin{pmatrix} 0 & i \\ i & 1 \end{pmatrix} \begin{pmatrix} 0 & i \\ i & 1 \end{pmatrix}^* = \begin{pmatrix} 1 & i \\ -i & 2 \end{pmatrix}$$

(ale nietrudno pokazać, że A + B jest normalna, gdy A, B są normalne i $AB^* = A^*B$).

Uwaga C.3. Można pokazać, że macierz *A* jest normalna wtedy i tylko wtedy gdy istnieją samosprzężone $A_1 = A_1^*, A_2 = A_2^*$ takie że $A = A_1 + iA_2$ i $A_1A_2 = A_2A_1$. Podobnie dla endomorfizmów.

Uwaga C.4. F ∈ End(V) jest normalny wtedy i tylko wtedy gdy dla pewnej/każdej bazy ON B macierz $m_B(F)$ jest normalna:

$$FF^* = F^*F \iff m_B(FF^*) = m_B(F^*F) \iff m_B(F)m_B(F) = m_B(F)m_B(F) \iff m_B(F)m_B(F) = m_B(F)m_B(F).$$

Wniosek C.5. Jeżeli U jest unitarna, to dla każdej macierzy A mamy równoważność: A jest normalna ← UAU* jest normalna.

(To łatwo też sprawdzić bezpośrednim rachunkiem.)

Twierdzenie C.6 (Twierdzenie spektralne dla endomorfizmów normalnych). *(wersja unitarna)*

- $F \in \text{End}(V)$ jest normalny \iff diagonalizuje się w bazie ON.
- $A \in M_{n \times n}(\mathbf{C})$ jest normalna \iff istnieją unitarna macierz U i diagonalna macierz D, takie że $A = UDU^*$.

Dowód. Druga część łatwo wynika z pierwszej.

Pierwsza część: implikacja z prawej do lewej jest łatwa: jeżeli F diagonalizuje się w bazie ON, tj. $m_B(F)=D$ dla pewnej bazy ON B i macierzy diagonalnej D, to $m_B(F^*)=D^*=\bar{D}$, więc F^* diagonalizuje się w tej samej bazie, a macierze diagonalne są przemienne.

Implikacja w przeciwną stronę: indukcja względem $\dim V$. Przypadek $\dim V=1$ jest oczywisty. Załóżmy więc że $\dim V>1$.

Niech $b_1 \in V$ będzie jednostkowym wektorem własnym dla F odpowiadający wartości własnej λ_1 . Uzupełnijmy go dowolnie do bazy ON $B' = (b_1, b_2', \ldots, b_n')$.

Wtedy mamy

$$A := m_{B'}(F) = \begin{pmatrix} \lambda_1 & \nu^\top \\ 0 & N \end{pmatrix}$$

dla pewnego wektora $v \in \mathbf{C}^{n-1}$ i macierzy $N \in \mathrm{M}_{(n-1)\times(n-1)}(\mathbf{C})$ i macierz A jest normalna. Zbadajmy wyraz w lewym górnym rogu macierzy:

$$A^*A = \begin{pmatrix} \bar{\lambda}_1 & 0 \\ \bar{\nu} & N^* \end{pmatrix} \begin{pmatrix} \lambda_1 & \nu^\top \\ 0 & N \end{pmatrix} = \begin{pmatrix} \lambda_1 & \nu^\top \\ 0 & N \end{pmatrix} \begin{pmatrix} \bar{\lambda}_1 & 0 \\ \bar{\nu} & N^* \end{pmatrix} = AA^*.$$

Z wyrażenia po lewej jest on równy $\bar{\lambda}_1\lambda_1=|\lambda_1|^2$, zaś z wyrażenia po prawej $-\bar{\lambda}_1\lambda_1+\nu^\top\bar{\nu}=|\lambda_1|^2+|\bar{\nu}|^2$. Stąd $|\bar{\nu}|=|\nu|=0$, czyli $\nu=0$.

Z powyższego łatwo wynika że $A = \begin{pmatrix} \lambda_1 & 0 \\ 0 & N \end{pmatrix}$, więc też

$$A^*A = \begin{pmatrix} |\lambda_1|^2 & 0 \\ 0 & N^*N \end{pmatrix} = \begin{pmatrix} |\lambda_1|^2 & 0 \\ 0 & NN^* \end{pmatrix} = AA^*,$$

więc macierz N jest normalna, a ponadto $W = \text{Lin}(b'_2, \ldots, b'_n)$ jest F-niezmiennicze, czyli $F \upharpoonright_W \in \text{End}(W)$ jest normalny (bo N jest jego macierzą). Teza wynika wtedy wprost z założenia indukcyjnego.

Powiedzmy że macierz rzeczywista $A \in M_{n \times n}(\mathbf{R})$ jest *prawie diagonalna*, jeżeli jest blokowo diagonalna, przy czym bloki na przekątnej są albo macierzami 1×1 , albo macierzami 2×2 , postaci skalar pomnożony przez macierz obrotu.

Wniosek C.7 (twierdzenie spektralne dla endomorfizmow normalnych, wersja euklidesowa). *Niech V będzie przestrzenią euklidesową. Wtedy:*

- $F \in \text{End}(V)$ jest normalny \iff istnieje baza ON B taka że $m_B(F)$ jest prawie diagonalna,
- macierz $A \in M_{n \times n}(\mathbf{R})$ jest normalna (spełnia $AA^{\top} = A^{\top}A$) \iff istnieje ortogonalna macierz U i prawie diagonalna macierz D, takie $\dot{z}e$ $A = UDU^{\top}$.

Zasadnicze twierdzenie algebry

Twierdzenie Cayleya-Hamiltona i twierdzenie Jordana nad dowolnymi ciałami

Indeks

algorytm	endomorfizmu, 95
Grama-Schmidta, zob.	macierzy, <mark>96</mark>
ortogonalizacja	dodatnia określoność
Grama-Schmidta	formy hermitowskiej, 152
Lagrange'a, <mark>139</mark>	formy kwadratowej, 138
alternowanie, 63	macierzy rzeczywistej, 124
antyliniowość, 147	rzeczywistej formy
antysymetryczność	symetrycznej, <mark>125</mark>
formy dwuliniowej, zob. forma	dopełnialność, <mark>89</mark>
antysymetryczna	dopełniczość, zob. podprzestrzeń
funkcji, <mark>64</mark>	dopełnicza
automorfizm, 31	dopełnienie
baza	algebraiczne, 81
	ortogonalne, 129, 152
przestrzeni liniowej, 15	długość wektora, 142
całkowanie przez podstawienie,	
183	eliminacja Gaussa, 48, 54
ciało, 5	endomorfizm, 27
algebraicznie domknięte, 106	nieujemnie określony, 158
skończone, <mark>6</mark>	normalny, 189
ciąg dokładny, <mark>32</mark>	ortogonalny, 158
cykl, 66	samosprzężony, 158
1. 1	sprzężony, 157
diagonalizacja	unitarny, 158
endomorfizmu, 95	epimorfizm, 39
formy dwuliniowej, 127	Camma
macierzy, 96	forma
diagonalizowalność	antysymetryczna, 120

dwuliniowa, 120	przekształcenia liniowego, 109
hermitowska, <mark>148</mark> kwadratowa, 137	przestrzeni liniowej, 108
Lorentza, 128	rzeczywistej formy
•	3 3
skośnie symetryczna, zob.	symetrycznej, 148
forma antysymetryczna	kryterium Syvlestera, 128
symetryczna, 120	krótki ciąg dokładny, 32
zadana przez macierz, 121	kąt nieskierowany między
funkcja liniowa, <i>zob</i> .	wektorami, 143
przekształcenie liniowe	lemat
Gramian, zob. macierz Grama	Kuratowskiego-Zorna, 16 Steinitza o wymianie, 19
hermitowska symetryczność, 147	liczba inwersji, 66
homomorfizm (przestrzeni	liniowa
liniowych), zob.	niezależność
przekształcenie liniowe	podprzestrzeni, <mark>86</mark>
1	wektorów, 14
iloczyn	zależność, 14
skalarny, 125, 154	liniowe domknięcie, zob. otoczka
standardowy, 120, 147	liniowa
tensorowy, 108	
inwersja, 67	macierz
izometria, 174	dołączona, 81
izomorfizm, 23	formy dwuliniowej, 121
	formy hermitowskiej, 149
Jordana	formy kwadratowej, 138
baza, 97	Grama, 179
klatka, 97	hermitowska, 149
postać, 97	nieosobliwa, 77
rzeczywista, 114	normalna, 189
twierdzenie, 97	odwrotna, 60
jordana	ortogonalna, 151
klatka	osobliwa, <mark>77</mark>
rzeczywista, 113	przekształcenia liniowego, 58
jądro, <mark>27</mark>	samosprzężona, <i>zob</i> . macierz hermitowska
kombinacia linioura 12	
kombinacja liniowa, 12	schodkowa, zob. postać
kompleksyfikacja	schodkowa macierzy

sprzężona, 149	macierzy, 124
unitarna, 151	pary wektorów, 125, 152
metoda najmniejszych kwadratów,	układu wektorów, 125, 152
168	ortonormalność
minor, 77	układu wektorów, 125, 152
główny, 127	otoczka liniowa, 11
wiodący, 127	
monomorfizm, 39	permutacja, <mark>65</mark>
morfizm (przestrzeni liniowych),	podprzestrzeń
zob. przekształcenie	dopełnicza, 88
liniowe	liniowa, 9
	niezmiennicza, 89
n-liniowość, 63	zerowa, 133
nieporządek, zob. inwersja	postać
nierówność	kanoniczna
Bessela, 146, 154	endomorfizmu
Cauchy'ego-Schwarza, 143,	ortogonalnego, 174
154	formy kwadratowej, <mark>178</mark>
trójkąta, 143, 154	schodkowa macierzy, 48
niezdegenerowana	schodkowa zredukowana
forma hermitowska, 152	macierzy, 48
forma symetryczna, 133	prawo bezwładności Sylvestera,
	133, 162
objętość, 181	proces Grama-Schmidta, zob.
obraz, 27	ortogonalizacja
obrót (wokół hiperprostej), 175	Grama-Schmidta
odbicie (w hiperpłaszczyźnie),	produkt, <mark>33</mark>
174	przekształcenie
odwracalność	dualne, <mark>36</mark>
macierzy, 60	przestrzeń
przekształcenia liniowego, 61	bidualna, 40
operacje	dualna, 34
kolumnowe, 44	euklidesowa, 142
wierszowe, 44	funkcji, <mark>8</mark>
ortogonalizacja	funkcji ciągłych, 8
Grama-Schmidta, 126	ilorazowa, 38
Lagrange'a, 130	liniowa, 7
ortogonalność	macierzy, 82

pierwiastkowa, 99	tożsamość Parsevala, 146, 154
unitarna, <mark>154</mark>	translacja, 174
wektorowa, 7	transpozycja, <mark>65</mark>
wielomianów, <mark>8</mark>	twierdzenie
własna, <mark>92</mark>	Jordana, <mark>104, 106</mark>
przeszktałcenie	rzeczywiste, 114
liniowe, 25	Kroneckera-Capelliego, 44
półtoraliniowość, 148	Lagrange'a, 130
	o indeksie, <mark>30</mark>
rozkład	o istnieniu bazy, 16
biegunowy, 169	o izomorfizmie, 39
singularny, 165	o rzędzie, <mark>30</mark>
spektralny, <mark>163</mark>	spektralne, 159
rzut ortogonalny, 144, 154	wariant normalny, 190
rząd	wariant ortogonalny, 173
macierzy, 44	wariant unitarny, <mark>172</mark>
przekształcenia liniowego, 30	zasadnicze algebry, 106
równanie różniczkowe, 117	
	warstwa, 37
skalar, 7	wartość singularna, 167
spektrum, 92	wartość własna, <mark>92</mark>
sprzężenie, 108	wektor, 7
suma	izotropowy, <mark>129</mark>
kompleksowa, 10	jednostkowy, 125
prosta	singularny, <mark>168</mark>
wewnętrzna, <mark>85</mark>	unormowany, 125
zewnętrzna, <mark>33</mark>	własny, <mark>92</mark>
sygnatura	znormalizowany, 152
formy hermitowskiej, 162	widmo, <i>zob</i> . spektrum
rzeczywistej formy	wieloliniowość, zob. n-liniowość
kwadratowej, 139	wielomian charakterystyczny, 84
rzeczywistej formy	współrzędne wektora w bazie, 24
symetrycznej, 133	wymiar (przestrzeni liniowej), 20
symetryczność	wyznacznik
formy dwuliniowej, zob. forma	endomorfizmu, 84
symetryczna	macierzy, 71
macierzy, 123	Vandermonde'a, 75
szift, 26	wektorów, 68

wzór	dla formy hermitowskiej,
Cramera, <mark>80</mark>	151
na odwrócenie macierzy, 81	na zmianę bazy dla
na rzut ortogonalny, 144	endomorfizmu
na wyliczenie wartości formy	dla baz ON, 156
w ustalonej bazie, 122	polaryzacyjny, 138, 153, 176
na zmianę bazy	znak permutacji, 67
dla formy dwuliniowej, 123	Znak permutaeji, 07
dla endomorfizmu, 59	ślad, 84

Indeks symboli i oznaczeń

```
<, zob. podprzestrzeń liniowa
                                                 \varphi_A, 121
≤, zob. podprzestrzeń liniowa
                                                 \varphi_{\rm C}, 148
⊕, 33
                                                 \mathbf{F}_p, 6
\perp, 125, 152
                                                 Hom(V, W), 27
×, 33
                                                 Hom(V, W), 82
\langle -, - \rangle, 120
\cong, zob. izomorfizm
                                                 im, 27
[v]_B, zob. współrzędne wektora w
                                                 K1-3, 44
         bazie
                                                 K[X], 8
                                                K^{A}, 8
A^*, 149
A^{-1}, 60
                                                 ker, 27
                                                 K_n[X], 8
adj(A), 81
A^{\vee}, 81
                                                 Lin, zob. otoczka liniowa
C(\mathbf{R}), 8
                                                 M_{k\times n}(K), 82
\chi_F(x), zob. wielomian
                                                 m_B(F), 59
         charakterystyczny
                                                m^{BB}(\varphi), zob. macierz formy
                                                          dwuliniowej
\delta_a, 15
                                                m_C^B(F), 58
det, 68, 71, zob. wyznacznik
         endomorfizmu
                                                 perp, zob. dopełnienie
dim, zob. wymiar
                                                         ortogonalne
End(V), 27
                                                 \mathbf{Q}[\sqrt{d}], \mathbf{6}
F^*, zob. przeształcenie dualne,
                                                 rk, zob. rząd przekształcenia
                                                         liniowego, zob. rząd
F_{\rm C}, zob. kompleksyfikacja
                                                          macierzy
         przekształcenia liniowego
                                                rng, 27
```

sgn, zob. znak permutacji $\sigma(F)$, 92 S_n , 65 Span, zob. otoczka liniowa

tr, 84

 V^* , zob. przestrzeń dualna V^{**} , zob. przestrzeń bidualna

v+W, 37 V/W, zob. przestrzeń ilorazowa $V_{\rm C}$, zob. kompleksyfikacja V^{λ} , 99 V_{λ} , 92

 $W_1 + W_2$, zob. suma kompleksowa W1-3, 44