Здесь будет титульник, листай ниже

СОДЕРЖАНИЕ

1 ПОСТАНОВКА ЗАДАЧИ	5
1.1 Описание входных данных	7
1.2 Описание выходных данных	8
2 МЕТОД РЕШЕНИЯ	10
3 ОПИСАНИЕ АЛГОРИТМОВ	11
3.1 Алгоритм метода ReturnPtr класса Class	11
3.2 Алгоритм метода SetPtr класса Class	11
3.3 Алгоритм функции func	12
3.4 Алгоритм функции main	12
4 БЛОК-СХЕМЫ АЛГОРИТМОВ	15
5 КОД ПРОГРАММЫ	17
5.1 Файл Class.cpp	17
5.2 Файл Class.h	19
5.3 Файл main.cpp	19
6 ТЕСТИРОВАНИЕ	21
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	22

1 ПОСТАНОВКА ЗАДАЧИ

Дан объект следующей конструкции:

В закрытом доступе имеется массив целого типа и поле его длины. Количество элементов массива четное и больше двух. Объект имеет функциональность:

- конструктор по умолчанию, вначале работы выдает сообщение;
- параметризированный конструктор, передается целочисленный параметр. Параметр должен иметь значение больше 2 и быть четным. Вначале работы выдает сообщение;
- конструктор копии, обеспечивает создание копии объекта в новой области памяти. Вначале работы выдает сообщение;
- метод деструктор, который в начале работы выдает сообщение;
- метод который создает целочисленный массив в закрытой области, согласно ранее заданной размерности.
- метод ввода значений элементов созданного массива;
- метод 1, который суммирует значения очередной пары элементов и сумму присваивает первому элементу пары. Например, пусть массив состоит из элементов {1,2,3,4}. В результате суммирования пар получим массив {3,2,7,4};
- метод 2, который умножает значения очередной пары элементов и результат присваивает первому элементу пары. Например, пусть массив состоит из элементов {1,2,3,4}. В результате умножения пар получим массив {2,2,12,4};
- метод, который суммирует значения элементов массива и возвращает это значение;
- метод последовательного вывода содержимого элементов массива,

которые разделены двумя пробелами;

- метод, который возвращает значение указателя на массив из закрытой области;
- метод, который присваивает значение указателя массива из закрытой области.

Назовём класс описания данного объекта cl_obj (для примера, у вас он может называться иначе).

Разработать функцию func, которая имеет один целочисленный параметр, содержащий размерность массива. В функции должен быть реализован алгоритм:

- 1. Инициализация указателя на объект класса cl_obj адресом объекта, созданного с использованием параметризированного конструктора.
- 2. С использованием указателя на объект класса cl_obj вызов метода создания массива.
- 3. С использованием указателя на объект класса cl_obj вызов метода ввода значений элементов массива.
- 4. С использованием указателя на объект класса cl_obj вызов метода 2.
- 5. Возврат указателя на объект класса cl_obj.

В основной функции реализовать алгоритм:

- 1. Ввод размерности массива.
- 2. Если размерность массива некорректная, вывод сообщения и завершить работу алгоритма.
- 3. Вывод значения размерности массива.
- 4. Объявить первый указатель на объект класса cl_obj.
- 5. Присвоение первому указателю результата работы функции func с аргументом, содержащим значение размерности массива.
- 6. С использованием первого указателя вызов метода 1.
- 7. Инициализация второго указателя на объект класса cl_obj адресом

объекта, созданного с использованием конструктора копии с аргументом первого объекта.

- 8. С использованием второго указателя вызов метода 2.
- 9. Вывод содержимого массива первого объекта.
- 10. Вывод суммы элементов массива первого объекта.
- 11. Вывод содержимого массива второго объекта.
- 12. Вывод суммы элементов массива второго объекта.
- 13. Второму объекту присвоить первый объект.
- 14. С использованием первого указателя вызов метода 1.
- 15. Вывод содержимого массива второго объекта.
- 16. Вывод суммы элементов массива второго объекта.
- 17. Удалит первый объект.
- 18. Удалить второй объект.

Добавить в этот алгоритм пункты, которые обеспечат корректное завершение работы программы.

1.1 Описание входных данных

```
Первая строка:

«целое число»
Вторая строка:

«целое число» «целое число» . . .

Пример:

4
3 5 1 2
```

1.2 Описание выходных данных

Если введенная размерность массива допустима, то в первой строке выводится это значение:

«Целое число»

Если введенная размерность массива не больше двух или нечетная, то в первой строке выводится некорректное значение и вопросительный знак:

«Целое число»?

Конструктор по умолчанию в начале работы с новой строки выдает сообщение:

Default constructor

Параметризированный конструктор в начале работы с новой строки выдает сообщение:

Constructor set

Конструктор копии в начале работы с новой строки выдает сообщение:

Copy constructor

Деструктор в начале работы с новой строки выдает сообщение:

Destructor

Метод последовательного вывода содержимого элементов массива, с новой строки выдает:

```
«Целое число» «Целое число» «Целое число» . . .
```

Пример вывода:

```
4
Constructor set
Copy constructor
20 5 4 2
31
100 5 8 2
```

115 100 5 8 2 115 Destructor Destructor

2 МЕТОД РЕШЕНИЯ

Для решения задачи используется:

• функция func(int size) для инициализация указателя на объект класса cl_obj адресом объекта, созданного с использованием параметризированного конструктора, вызов метода создания массива, вызов метода ввода значений элементов массива, возврат указателя на объект класса.

Класс Class:

- функционал:
 - о метод ReturnPtr() возвращение значения указателя на массива из закрытой области;
 - о метод SetPtr(int* p) присваивание значения указателя массива из закрытой области.

3 ОПИСАНИЕ АЛГОРИТМОВ

Согласно этапам разработки, после определения необходимого инструментария в разделе «Метод», составляются подробные описания алгоритмов для методов классов и функций.

3.1 Алгоритм метода ReturnPtr класса Class

Функционал: возвращение значения указателя на массива из закрытой области.

Параметры: none.

Возвращаемое значение: int*.

Алгоритм метода представлен в таблице 1.

Таблица 1 – Алгоритм метода ReturnPtr класса Class

N₂	Предикат	Действия	N₂
			перехода
1		возврат значения указателя на массив mas	Ø

3.2 Алгоритм метода SetPtr класса Class

Функционал: присваивание значения указателя массива из закрытой области.

Параметры: int* p.

Возвращаемое значение: void.

Алгоритм метода представлен в таблице 2.

Таблица 2 – Алгоритм метода SetPtr класса Class

N₂	Предикат	Действия	No
			перехода
1		mas=p	Ø

3.3 Алгоритм функции func

Функционал: инициализация указателя на объект класса cl_obj адресом объекта, созданного с использованием параметризированного конструктора, вызов метода создания массива, вызов метода ввода значений элементов массива, возврат указателя на объект класса.

Параметры: int size.

Возвращаемое значение: Class*.

Алгоритм функции представлен в таблице 3.

Таблица 3 – Алгоритм функции func

N₂	Предикат	Действия		
			перехода	
1		инициализация указателя на объект класса cl_obj адресом объекта	2	
		адресом объекта loc, созданного с использованием		
		параметризированного конструктора с параметром size		
2		вызов метода Create() объекта loc объекта loc		
3		вызов метода Input() объекта loc объекта loc		
4		вызов метода Prod() объекта loc объекта loc		
5		возврат указателя на объект loc класса cl_obj		

3.4 Алгоритм функции main

Функционал: запуск программы.

Параметры: none.

Возвращаемое значение: int - код ошибки.

Алгоритм функции представлен в таблице 4.

Таблица 4 – Алгоритм функции таіп

1	№ Предикат		Действия	N₂
				перехода
1	1 иници		инициализация переменной size типа int	2

Nº	Предикат	Действия	№ перехода
2		ввод значения переменной size	
3	size<=2 или size - нечтное	вывод значения переменной size со знаком вопроса	
		вывод значения переменной size	4
4		вывод переноса на новую строку	5
5		объявление указателя obj1 на объект класса Class	6
6		присвоение указателю obj1 результата работы функции func c аргументом size	7
7		вывод переноса на новую строку	8
8		вызов метода SumPara() объекта obj1	9
9		инициализация указателя obj2 на объект класса Class адресом объекта, созданного с использованием конструктора копии с аргументом объекта obj1	
10		вызов метода Prod() объекта obj2	11
11		вызов метода Print() объекта obj1	
12		вывод переноса на новую строку	
13		вывод значения результата вызова метода Sum() объекта obj1	
14		вывод переноса на новую строку	15
15		вызов метода Print() объекта obj2	
16		вывод переноса на новую строку	
17		вывод значения результата вызова метода Sum() объекта obj2	18
18		вывод переноса на новую строку	
19		инициализация указателя р значением результата дработы метода ReturnPtr объекта obj2	
20		*obj2=*obj1 21	
21		вызов метода SumPara() объекта obj1	22

N₂	Предикат	Действия 1	
22		вызов метода SetPtr(p) объекта obj1	23
23		вызов метода Print() объекта obj2	24
24		вывод переноса на новую строку	25
25		вывод значение результата вызова метода Sum()	26
		объекта obj2	
26		удаление объекта по адресу указателя obj1 при	
		помощи оператора функции delete	
27		удаление объекта по адресу указателя obj2 при	Ø
		помощи оператора функции delete	

4 БЛОК-СХЕМЫ АЛГОРИТМОВ

Представим описание алгоритмов в графическом виде на рисунках 1-2.

Рисунок 1 – Блок-схема алгоритма

Рисунок 2 – Блок-схема алгоритма

5 КОД ПРОГРАММЫ

Программная реализация алгоритмов для решения задачи представлена ниже.

5.1 Файл Class.cpp

Листинг 1 – Class.cpp

```
#include <iostream>
#include <string>
#include "Class.h"
using namespace std;
Class::Class()
  cout << "Default constructor" << endl;</pre>
  mas = nullptr;
Class::Class(int n)
  cout << "Constructor set";</pre>
  mas = new int[n];
  this->n = n;
Class::Class(const Class& obj)
  cout << "Copy constructor" << endl;</pre>
  n = obj.n;
  mas = new int[n];
  for (int i = 0; i < n; i++)
     mas[i] = obj.mas[i];
Class::~Class()
  cout << endl << "Destructor";</pre>
  if (mas != nullptr)
      delete[] mas;
  }
void Class::Create()
  mas = new int[n];
}
```

```
void Class::Input()
  int x;
  for (int i = 0; i < n; i++)
     cin >> x;
     mas[i] = x;
void Class::SumPara()
  for (int i = 0; i < n; i += 2)
     mas[i] = mas[i] + mas[i + 1];
void Class::Prod()
  for (int i = 0; i < n; i += 2)
     mas[i] = mas[i] * mas[i + 1];
  }
int Class::Sum()
  int s = 0;
  for (int i = 0; i < n; i++)
     s += mas[i];
  return s;
}
void Class::Print()
  for (int i = 0; i < n; i++)
     cout << mas[i];</pre>
     if (i != n - 1)
        cout << " ";
     }
  }
int* Class::ReturnPtr()
  return mas;
void Class::SetPtr(int* p)
  mas = p;
}
```

5.2 Файл Class.h

Листинг 2 – Class.h

```
#ifndef __CLASS__H
#define __CLASS__H
#include <iostream>
using namespace std;
class Class
  public:
     Class();
     Class(int n);
     Class(const Class& obj);
     ~Class();
     void Create();
     void Input();
     void SumPara();
     void Prod();
     int Sum();
     void Print();
     int* ReturnPtr();
     void SetPtr(int* p);
  private:
     int n;
     int *mas;
};
#endif
```

5.3 Файл таіп.срр

Листинг 3 – таіп.срр

```
#include "Class.h"

using namespace std;

Class* func(int size)
{
    Class* loc = new Class(size);
    loc->Create();
    loc->Input();
    loc->Prod();
    return loc;
    delete loc;
}
```

```
int main()
{
  int size;
  cin >> size;
  if (size <= 2 || size % 2 != 0)
     cout << size << "?";
     return 0;
  }
  cout << size;</pre>
  cout << endl;
  Class* obj1;
  obj1 = func(size);
  cout << endl;
  obj1->SumPara();
  Class* obj2 = new Class(*obj1);
  obj2->Prod();
  obj1->Print();
  cout << endl;</pre>
  cout << obj1->Sum();
  cout << endl;</pre>
  obj2->Print();
  cout << endl;</pre>
  cout << obj2->Sum();
  cout << endl;</pre>
  int* p = obj2->ReturnPtr();
   *obj2 = *obj1;
  obj1->SumPara();
  obj2->SetPtr(p);
  obj2->Print();
  cout << endl;</pre>
  cout << obj2->Sum();
  delete obj1;
  delete obj2;
}
```

6 ТЕСТИРОВАНИЕ

Результат тестирования программы представлен в таблице 5.

Таблица 5 – Результат тестирования программы

Входные данные	Ожидаемые выходные данные	Фактические выходные данные
0	0?	0?
4 3 5 1 2	4 Constructor set Copy constructor 20 5 4 2 31 100 5 8 2 115 100 5 8 2 115 Destructor Destructor	4 Constructor set Copy constructor 20 5 4 2 31 100 5 8 2 115 100 5 8 2 115 Destructor Destructor

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. ГОСТ 19 Единая система программной документации.
- 2. Методическое пособие студента для выполнения практических заданий, контрольных и курсовых работ по дисциплине «Объектно-ориентированное программирование» [Электронный ресурс] URL: https://mirea.aco-avrora.ru/student/files/methodichescoe_posobie_dlya_laboratornyh_ra bot_3.pdf (дата обращения 05.05.2021).
- 3. Приложение к методическому пособию студента по выполнению заданий в рамках курса «Объектно-ориентированное программирование» [Электронный ресурс]. URL: https://mirea.aco-avrora.ru/student/files/Prilozheniye_k_methodichke.pdf (дата обращения 05.05.2021).
- 4. Шилдт Г. С++: базовый курс. 3-е изд. Пер. с англ.. М.: Вильямс, 2019. 624 с.
- 5. Видео лекции по курсу «Объектно-ориентированное программирование» [Электронный ресурс]. ACO «Аврора».
- 6. Антик М.И. Дискретная математика [Электронный ресурс]: Учебное пособие /Антик М.И., Казанцева Л.В. М.: МИРЭА Российский технологический университет, 2018 1 электрон. опт. диск (CD-ROM).