FINDING DUAL SOLUTION FROM DICTIONARY

Linear Programming Problem

From Two Weeks Ago.

Goal: Solve LP using Simplex and visualize!

Final Dictionary

$$x_3 = 9 + x_4 -3x_6$$
 $x_1 = 6 -x_6$
 $x_2 = 11 -x_4 +0x_6$
 $x_5 = 8 -x_4 +x_6$
 $z = 28 -2x_4 -x_6$

How to read off the dual solution

x_3	=	9	$+x_4$	$-3x_{6}$
x_1	=	6		$-x_6$
x_2	=	11	$-x_4$	$+0x_{6}$
x_5	=	8	$-x_4$	$+x_6$
z	=	28	$-2x_{4}$	$\overline{-x_6}$

x_1	x_2	x_3	x_4	x_5	x_6
y_5	y_6	y_1	y_2	y_3	y_4

Reading off the dual from the final dictionary

$$\begin{array}{c|ccc} \mathbf{x_I}^c & -\mathbf{c} & -A^{\mathsf{T}} \mathbf{x_B}^c \\ \hline d & -z_0 & -\mathbf{b}^{\mathsf{T}} \mathbf{x_B}^c \end{array}$$