Evaluating Classifiers

and the Class Imbalance Problem

Our First Metrics

•
$$Accuracy = \frac{Number\ of\ correct\ predictions}{Total\ number\ of\ predictions}$$

•
$$Error\ rate = \frac{Number\ of\ wrong\ predictions}{Total\ number\ of\ predictions} = 1 - Accuracy$$

• In a binary classification we use a confusion Matrix:

		True condition				
	Total population	Condition positive	Condition negative			
Predicted condition	Predicted condition positive	True positive	False positive, Type I error			
	Predicted condition negative	False negative, Type II error	True negative			

Error and Accuracy

- Error rate = fraction of incorrect predictions on the testing set
 - Probability of misclassification
- Accuracy = fraction of correct predictions on the testing set $(1 error \ rate)$
 - Probability of correct prediction
- Example: A classifier misclassifies 8 out of 30 test cases:
 - Error rate = 8/30 = 0.267
 - Accuracy = 22/30 = 0.733

Class Imbalance Problem

Test set:

Location	Retailer	Amount	Class
Austin	HEB	\$50	legitimate
Austin	UT Co-op	\$300	legitimate
San Antonio	Mi Tierra	\$25	legitimate
Austin	Freebirds	\$7	legitimate
Austin	НЕВ	\$75	legitimate
Austin	Target	\$150	legitimate
Moscow	Tsum	\$5000	fraudulent
Austin	Taco Cabana	\$5	legitimate
San Antonio	Target	\$25	legitimate
Austin	Trader Joe's	\$55	legitimate
Austin	Alamo Drafthouse	\$20	legitimate
		•••	
(1000 total records)			(1 of the 1000 is fraudulent)

Run it through a classifier that Classifies everything as legitimate...

Accuracy = 999/1000 = 99.9% Error Rate = 1/1000 = 0.1%

Confusion Matrix (Binary Classification)

		Predicte	ed Class
		+	-
Actual	+	F++ (TP)	F+- (FN)
Class	-	F-+ (FP)	F (TN)

Error rate: fraction of mistakes $Error \ rate = (FP + FN) / n$

Accuracy: fraction of correct predictions Accuracy = (TP + TN)/n

True positive rate (TPR), or **sensitivity**: fraction of positive examples correctly predicted TPR = TP / (TP + FN)

True negative rate (TNR), or **specificity**: fraction of negative examples correctly predicted TNR = TN / (FP + TN)

False positive rate (FPR): fraction of negative examples predicted as positive FPR = FP / (FP + TN)

False negative rate (FNR): fraction of positive examples predicted as negative FNR = FN / (TP + FN)

		Predicte	ed Class
		+	-
Actual	+	2	8
Class	-	1	989

Error rate: fraction of mistakes Error rate = (1 + 8) / 1000 = 0.009 = 0.9%

Accuracy: fraction of correct predictions Accuracy = (2 + 989) / 1000 = 0.991 = 99.1%

True positive rate (TPR), or **sensitivity**: fraction of positive examples correctly predicted TPR = 2/10 = 0.2 = 20%

True negative rate (TNR), or **specificity**: fraction of negative examples correctly predicted TNR = 989 / 990 = 0.999 = 99.9%

False positive rate (FPR): fraction of negative examples predicted as positive FPR = 1/990 = 0.001 = 0.1%

False negative rate (FNR): fraction of positive examples predicted as negative FNR = 8 / 10 = 0.8 = 80%

Confusion Matrix with Cross Validation

• Use the SUM

Fold 1: 20 train / 10 test

		Predicted Class	
		+	-
Actual	+	4	2
Class	ı	1	3

Fold 2: 20 train / 10 test

			icted ass
		+	-
Actual Class	+	5	3
	-	0	2

Fold 3: 20 train / 10 test

		Predi Cla	
		+	1
Actual	+	1	8
Class	-	0	1

Final Confusion Matrix: All 30 records

		Predi Cla	
		+	-
Actual	+	10	13
Class	-	1	6

Precision and Recall

		Predicted Class	
		+	-
Actual	+	2	8
Class	-	1	989

Precision, or Positive Predictive Value (PPV) addresses the question: "Given a positive prediction from the classifier, how likely is it to be correct?"

Recall, or True Positive Rate (TPR) addresses the question: "Given a positive example, will the classifier detect it?"

Class-specific **precision/PPV**: fraction of records that actually are of class C, out of records predicted to be of class C Prec(+) = TP/(TP+FP) = 2/3 = 0.667 = 66.7% Prec(-) = 989/997 = 0.991 = 99.1%

Class-specific **recall/coverage/sensitivity/TPR**: fraction of correct predictions of class C, over all points in class C Rec(+) = TP/(TP+FN) = 2/10 = 0.2 = 20% Rec(-) = 989/990 = 0.999 = 99.9%

Typically, we're only concerned with the precision and recall of the positive (rare) class.

Multi Class Confusion Matrix

			Predicted Class	
		Iris-setosa	Iris-versicolor	Iris-virginica
Actual Class	Iris-setosa	10	0	0
	Iris-versicolor	0	7	5
	Iris-virginica	0	3	6

Error rate: fraction of mistakes $Error \ rate = 8/31 = 0.258 = 25.8\%$

Accuracy: fraction of correct predictions Accuracy = 23/31 = 0.742 = 74.2%

Class-specific **precision/PPV**: fraction of records that actually are of class \overline{C} , out of records predicted to be of class C

$$Prec(setosa) = 10 / 10 = 1 = 100\%$$

$$Prec(versicolor) = 7/10 = 0.7 = 70\%$$

$$Prec(virginica) = 6 / 11 = 0.545 = 54.5\%$$

Class Confusion

Class-specific **recall/coverage/TPR**: fraction of correct predictions of class C, over all points in class C

$$Rec(setosa) = 10 / 10 = 1 = 100\%$$

$$Rec(versicolor) = 7/12 = 0.583 = 58.83\%$$

$$Rec(virginica) = 6 / 9 = 0.667 = 66.7\%$$

Precision/Recall Tradeoff

		Predicte	ed Class
		+	-
Actual	+	10	0
Class	-	990	0

Class-specific **precision/PPV**: fraction of records that actually are of class C, out of records predicted to be of class C Prec(+) = 10/1000 = 0.01 = 1%

Class-specific **coverage/recall/TPR**: fraction of correct predictions of class C, over all points in class C Rec(+) = 10/10 = 1 = 100%

Precision/Recall Tradeoff

		Predicte	ed Class
		+	-
Actual	+	1	9
Class	-	0	990

Class-specific **precision/PPV**: fraction of records that actually are of class C, out of records predicted to be of class C Prec(+) = 1/1 = 1 = 100%

Class-specific **recall/coverage/TPR**: fraction of correct predictions of class C, over all points in class C Rec(+) = 1/10 = 0.1 = 10%

F-measure

 F-measure summarizes both precision and recall into one metric

$$F = \frac{2 \times precision \times recall}{precision + recall}$$

- The overall F-measure of the classifier is the mean of the classspecific F-measures
- Or you could consider the F-measure of only the positive class

ROC Curves (Receiver Operating Characteristic)

To draw ROC curve, classifier must produce continuous-valued output

Outputs are used to rank test records, from the most likely positive class record to the least likely positive class record

ID	Actual Class	Probability YES	Probability NO
1	Υ	0.35	0.65
2	N	0.23	0.77
3	N	0.55	0.45
4	Υ	0.32	0.68
5	Υ	0.54	0.46
6	N	0.47	0.53

ID	Actual Class	Probability YES	Probability NO
1	Υ	0.35	0.65
2	N	0.23	0.77
3	Υ	0.55	0.45
4	N	0.32	0.68
5	Υ	0.54	0.46
6	N	0.47	0.53

Sort data by Probability YES

ID	Actual Class	Probability YES	Probability NO
3	Υ	0.55	0.45
5	Υ	0.54	0.46
6	N	0.47	0.53
1	Υ	0.35	0.65
4	N	0.32	0.68
2	N	0.23	0.77

Sort data by Probability YES

ID	Actual Class	Probability YES	Probability NO
3	Υ	0.55	0.45
5	Υ	0.54	0.46
6	N	0.47	0.53
1	Υ	0.35	0.65
4	N	0.32	0.68
2	N	0.23	0.77

Select a cutoff threshold for the YES class = 0.5

Sort data by Probability YES

ID	Actual Class	Probability YES	Probability NO
3	Υ	0.55	0.45
5	Υ	0.54	0.46
6	N	0.47	0.53
1	Υ	0.35	0.65
4	N	0.32	0.68
2	N	0.23	0.77

Select a cutoff threshold for the YES class = 0.5

Calculate TPR (sensitivity) and FPR (1-specificity):

		Predicte	d Class
		+	-
Actual	+	2	1
Class	-	0	3

TPR =
$$2/3 = 0.67$$

FPR = $0/3 = 0$

This becomes a point on our ROC curve

Sort data by Probability YES

ID	Actual Class	Probability YES	Probability NO
3	Υ	0.55	0.45
5	Υ	0.54	0.46
6	N	0.47	0.53
1	Υ	0.35	0.65
4	N	0.32	0.68
2	N	0.23	0.77

Now adjust the threshold for the YES class = 0.4

Sort data by Probability YES

ID	Actual Class	Probability YES	Probability NO
3	Υ	0.55	0.45
5	Υ	0.54	0.46
6	N	0.47	0.53
1	Υ	0.35	0.65
4	N	0.32	0.68
2	N	0.23	0.77

Now adjust the threshold for the YES class = 0.4

Calculate TPR (sensitivity) and FPR (1-specificity):

		Predicte	d Class
		+	-
Actual	+	2	1
Class	-	1	2

This becomes a point on our ROC curve

How to Construct an ROC curve

Instance	Score	True Class
1	0.95	+
2	0.93	+
3	0.87	-
4	4 0.85	
5	0.85	-
6	0.85	+
7	0.76	-
8	0.53	+
9	0.43	-
10	0.25	+

- Use a classifier that produces a continuous-valued score for each instance
 - The more likely it is for the instance to be in the + class, the higher the score
- Sort the instances in decreasing order according to the score
- Apply a threshold at each unique value of the score
- Count the number of TP, FP, TN, FN at each threshold
 - TPR = TP/(TP+FN)
 - FPR = FP/(FP + TN)

How to construct an ROC curve

	Class	+	-	+	-	-	-	+	-	+	+	
Threshold >=		0.25	0.43	0.53	0.76	8.0	0.82	0.85	0.87	0.93	0.95	1.00
	TP	5	4	4	3	3	3	3	2	2	1	0
	FP	5	5	4	4	3	2	1	1	0	0	0
	TN	0	0	1	1	2	3	4	4	5	5	5
	FN	0	1	1	2	2	2	2	3	3	4	5
\longrightarrow	TPR	1	0.8	0.8	0.6	0.6	0.6	0.6	0.4	0.4	0.2	0
→	FPR	1	1	0.8	0.8	0.6	0.4	0.2	0.2	0	0	0

Every point on the ROC curve was generated by a single threshold – the threshold selected for run time is called the operating point

Area Under the Curve (AUC) can be used to compare classifiers

1 >= AUC >= 0.9 : excellent (A)

0.9 > AUC >= 0.8 : good (B)

0.8 > AUC >= 0.7 : fair (C)

0.7 > AUC >= 0.6 : poor (D)

0.6 > AUC >= 0.5 : fail (F)

ROC Curves: https://machinelearningmastery.com/assessing-comparing-classifier-performance-roc-curves-2/

Mitigating Class Imbalances

- Sampling based approaches
 - Undersampling: remove some of the majority class

• Oversampling: duplicate the minority class records

Sampling Algorithms

- SMOTE: Synthetic Minority Over-Sampling Technique
 - For each minority instance C, find it's nearest neighbor N
 - Create a new minority class instance R, using C's features and the difference between C and N's features, multiplied by a random variable
 - R.features = C.features + (C.features N.features) * rand(0,1)

Cost Matrix

A cost matrix can encode a penalty for misclassification errors

		Predicted Class		
		+	-	
Actual	+	-1	100	
Class	1	1	0	

A negative entry in a cost matrix indicates a reward for making a correct prediction

Can be used for evaluation

Model 1		Predicted Class	
		+	-
Actual Class	+	175	25
	-	50	250

$$F$$
-measure = 0.84

$$Cost = -1(175) + 100(25) + 1(50) + 0(250) = 2375$$

$$Error = 55 / 500 = 0.11$$

$$F$$
-measure = 0.89

$$Cost = -1(170) + 100(30) + 1(25) + 0(275) = 2855$$

Lower error,
Better F-score,
But higher cost

Using Cost Matrix to Evaluate Risk

For a new record, the probability that it is positive is 20% and the probability that it is negative is 80%:

$$P(+) = 0.2$$

$$P(-) = 0.8$$

Cost Matrix		Predicted Class	
		+	-
Actual Class	+	-1	10
	-	1	0

If I classify this record as negative, there is a 20% chance that I'm classifying it wrong and that I'm making a false negative (FN) error. (I would be predicting it as negative, but it is actually positive.) If I'm making that type of error, that is a cost of 10.

There is a 20% chance I'm making an error that costs 10. So the **risk** of classifying this record as negative is: Risk(-) = (0.2)(10) = 2

Similarly, I can calculate the risk of classifying this record as positive. There would be an 80% chance I'm making an error that costs 1:

$$Risk(+) = (0.8)(1) = 0.8$$

Choose to classify as the class that has the lowest risk.