Homework 1 Due Time Sep 15, 2017 CU identity key: chch4713

1 K-nearest Neighbor (40pts)

I. What is the role of the number of training instances to accuracy (hint: try different "--limit" and plot accuracy vs. number of training instances)?

The larger the number of training instances are, the higher accuracy can be . When the number of training instances are 500, the accuracy is 83.11%. And when the training instances up to 5000, the accuracy increases to 94.01%. Furthermore, if you use all training set to train the model, the accuracy will be 97.27%. (All data based on k=3)

II. What numbers get confused with each other most easily?

chenqis-MacBook-Pro:hwl chenchi\$ python knn.py <mainnumbers 0x110734f60="" at="" object=""> Done loading data</mainnumbers>										
	0	1	2	3	4	5	6	7	8	9
0:	984	0	2	0	0	0	2	0	1	2
1:	0	1060	1	0	1	0	1	1	0	0
2:	4	8	953	2	1	1	1	19	1	0
3:	0	0	7	1002	0	8	1	3	6	3
4:	0	11	0	0	951	0	0	2	0	19
5:	2	0	2	20	1	869	15	2	1	3
6:	1	1	0	0	0	1	964	0	0	0
7:	0	10	0	0	3	0	0	1071	0	6
8:	6	8	3	10	4	16	4	4	947	7
9:	3	3	1	10	14	3	0	6	2	919
Accuracy: 0.972000										

Based on the result above, the most easily numbers to get confused are set (2,7) and set (4,9).

III. What is the role of k to training accuracy?

	Limit = 500	Limit = 5000
k = 1	84.58%	93.88%
k = 3	83.11%	94.01%
k = 5	79.95%	93.29%
k = 7	79.63%	93.03%

Since the difference of size of data set, the best k will be different too. It's hard to say the large k will be better or the smaller k will be better in this set. But when the

data set is getting bigger, the best k will be a little bit larger too. The small k will cause the overfitting.

IV. In general, does a small value for k cause "overfitting" or "underfitting"?

In general, if the data set is large enough, a small k will cause "overfitting", because it took only one nearest data as itself's label. The bias will be low but the variance will be high.

2 Cross Validation (30pts)

I. What is the best k chosen from 5-fold cross validation with "--limit 500"?

The best k chosen from 5-fold cross validation with "—limit 500" is 3.

II. What is the best k chosen from 5-fold cross validation "--limit 5000"?

The best k chosen from 5-fold cross validation with "—limit 5000" is 1.

III. Is the best k consistent with the best performance k in problem 1?

No, the best k didn't consistent with the best performance k with only KNN. The best k for "—limit 500" with only KNN is 1 but the best k with KNN and CV is 3. And The best k for "—limit 5000" with only KNN is 3 but the best k with KNN and CV is 1.

3 Bias-variance tradeoff (20pts)

Derive the bias-variance decomposition for k-NN regression in class. Specifically, assuming the training set is fixed $S = \{(x_1, y_1), \dots, (x_n, y_n)\}$, where the data are generated from the following process $y = f(x) + \epsilon$, $E(\epsilon) = 0$, $Var(\epsilon) = \sigma_{\epsilon}^2$. k-NN regression algorithm predict the value for x_0 as $h_S(x_0) = \frac{1}{k} \sum_{l=1}^k y_{(l)}$, where $x_{(l)}$ is the l-th nearest neighbor to x_0 . $Err(x_0)$ is defined as $E((y_0 - h_S(x_0))^2)$.

Prove that

$$\operatorname{Err}(x_0) = \sigma_{\epsilon}^2 + \left[f(x_0) - \frac{1}{k} \sum_{l=1}^k f(x_{(l)}) \right]^2 + \frac{\sigma_{\epsilon}^2}{k}.$$

$$Err(x_{0}) = E((y_{0} - h_{\varepsilon}(x_{0}))^{2})$$

$$= \sigma_{\varepsilon}^{2} + [Eh(x_{0}) - f(x_{0})]^{2} + E[h(x_{0}) - Eh(x_{0})]^{2}$$

$$= \sigma_{\varepsilon}^{2} + [f(x_{0}) - Eh(x_{0})]^{2} + Var(h(x_{0}))$$

$$= \sigma_{\varepsilon}^{2} + [f(x_{0}) - E\frac{1}{k}\sum_{l}^{k}y(l)]^{2} + Var(\frac{1}{k}\sum_{l}^{k}y(l))$$

$$= \sigma_{\varepsilon}^{2} + [f(x_{0}) - E\frac{1}{k}\sum_{l}^{k}(f(x_{(l)}) + \varepsilon)]^{2} + Var(\frac{1}{k}\sum_{l}^{k}(f(x_{(l)}) + \varepsilon))$$

$$= \sigma_{\varepsilon}^{2} + [f(x_{0}) - E\frac{1}{k}\sum_{l}^{k}(f(x_{(l)})) + E\frac{1}{k}\sum_{l}^{k}(\varepsilon)]^{2} + Var(\frac{1}{k}\sum_{l}^{k}(f(x_{(l)})) + \frac{1}{k}\sum_{l}^{k}(\varepsilon))$$

$$= \sigma_{\varepsilon}^{2} + [f(x_{0}) - E\frac{1}{k}\sum_{l}^{k}(f(x_{(l)})) + 0]^{2} + Var(0 + \frac{1}{k}\sum_{l}^{k}(\varepsilon))$$

$$= \sigma_{\varepsilon}^{2} + [f(x_{0}) - \frac{1}{k}\sum_{l}^{k}E(f(x_{(l)}))]^{2} + \frac{1}{k^{2}}\sum_{l}^{k}Var(\varepsilon)$$

$$= \sigma_{\varepsilon}^{2} + [f(x_{0}) - \frac{1}{k}\sum_{l}^{k}(f(x_{(l)}))]^{2} + \frac{1}{k}\sigma_{\varepsilon}^{2}$$