Introduction to Analysis Homework 1

September, 5, 2024

1. Show that the Euclidean space \mathbb{R}^k is a metric space with each of the following metric:

$$d_p(\mathbf{x}, \mathbf{y}) = (\sum_{i=1}^k |x_i - y_i|^p)^{\frac{1}{p}},$$

for all $p \in \mathbb{N}$.

- 2. Let $S \subset \mathbb{R}^k$. Show that S is open \iff for any $\mathbf{x} \in S$, there exists r > 0 such that $B_r(\mathbf{x}) \subset S$.
- 3. Show that the union of any collection of open sets is open.
- 4. Show that the union of finitely many closed sets is closed.
- 5. Show that if S and T are two subsets of \mathbb{R}^k such that $S \cap T = \emptyset$ and T is open, then $\overline{S} \cap T = \emptyset$.