Metody Probabilistyczne i Statystyka - Wykład 2

Prawdopodobieństwo warunkowe Niezależność zdarzeń

Ewa Frankiewicz

10 października 2022

Przykład 1

W urnie jest 5 kul białych i 7 czarnych. Wyjmujemy losowo jedną kulę po drugiej, bez zwracania. Ile wynosi prawdopodobieństwo, że druga wylosowana kula będzie biała, jeśli wiadomo, że pierwsza jest czarna?

Definicja

Niech (Ω, \mathcal{F}, P) będzie ustaloną przestrzenią probabilistyczną. **Prawdopodobieństwo warunkowe zdarzenia** $A \subset \Omega$ **pod warunkiem zdarzenia** $B \subset \Omega$ takiego, że P(B) > 0, definiujemy jako

$$P(A|B) = \frac{P(A \cap B)}{P(B)}.$$

Wniosek

Jeśli B jest zdarzeniem takim, że P(B)>0, to dla każdego innego zdarzenia losowego A zachodzi równość

$$P(A \cap B) = P(A|B) \cdot P(B)$$
.

Przykład 1 c.d.

W urnie jest 5 kul białych i 7 czarnych. Wyjmujemy losowo jedną kulę po drugiej, bez zwracania. W urnie jest 5 kul białych i 7 czarnych. Wyjmujemy losowo jedną kulę po drugiej, bez zwracania. Niech:

B_i - w i-tym losowaniu wybrano kulę białą

 C_i - w i-tym losowaniu wybrano kulę czarną.

lle wynosi $P(C_1 \cap B_2 \cap C_3 \cap B_4 \cap B_5)$?

Wzór łańcuchowy

Niech A_1, A_2, \ldots, A_n , gdzie $n \in \mathbb{N}, n \geqslant 2$, będą zdarzeniami z tej samej przestrzeni probabilistycznej takimi, że $P(A_1 \cap \ldots \cap A_{n-1}) > 0$. Wtedy

$$P(A_1 \cap \ldots \cap A_n) = P(A_1) \cdot P(A_2|A_1) \cdot P(A_3|A_1 \cap A_2) \cdot \ldots \cdot P(A_n|A_1 \cap \ldots \cap A_{n-1}).$$

Uwaga

Jeśli P(B) > 0, to dla dowolnego zdarzenia A

$$P(A|B) + P(A'|B) = 1.$$

Twierdzenie o prawdopodobieństwie całkowitym

Przykład 1 c.d.

W urnie jest 5 kul białych i 7 czarnych. Wyjmujemy losowo jedną kulę po drugiej, bez zwracania. Ile wynosi prawdopodobieństwo, że w drugim losowaniu wyciągniemy kulę białą?

Twierdzenie o prawdopodobieństwie całkowitym

Definicja

Niech (Ω, \mathcal{F}, P) będzie daną przestrzenią probabilistyczną. Przeliczalną rodzinę zdarzeń $(A_n)_{n\in I},\ I\subset \mathbb{N},\ takich,\ że\ A_n\subset \Omega$ dla każdego $n\in I$, nazywamy **rozbiciem** Ω , jeśli

- $A_i \cap A_j = \emptyset$ dla $i \neq j$;
- $\bullet \bigcup_{n\in I} A_n = \Omega.$

Twierdzenie

Niech $(A_n)_{n\in I}$, gdzie $I\subset \mathbb{N}$, będzie rozbiciem Ω na zdarzenia o dodatnim prawdopodobieństwie. Wtedy dla dowolnego zdarzenia $A\subset \Omega$

$$P(A) = \sum_{n \in I} P(A|A_n) \cdot P(A_n).$$

Twierdzenie Bayesa

Przykład 1 c.d.

W urnie jest 5 kul białych i 7 czarnych. Wyjmujemy losowo jedną kulę po drugiej, bez zwracania. Ile wynosi prawdopodobieństwo, że w pierwszym losowaniu wyciągnęliśmy kulę czarną, jeśli wiadomo, że w drugim losowaniu wyciągnęliśmy kulę białą?

Wzór Bayesa

Twierdzenie

Jeżeli $(A_n)_{n\in I}$, $I\subset \mathbb{N}$, jest rozbiciem Ω na zdarzenia o dodatnim prawdopodobieństwie, to dla każdego zdarzenia $A\subset \Omega$ takiego, że P(A)>0, zachodzi równość

$$P(A_k|A) = \frac{P(A|A_k) \cdot P(A_k)}{P(A)},$$

gdzie

$$P(A) = \sum_{n \in I} P(A|A_n) \cdot P(A_n)$$

oraz A_k jest ustalonym zdarzeniem z rodziny $(A_n)_{n\in I}$.

Niezależność zdarzeń

Definicja

Zdarzenia $A\subset\Omega$ i $B\subset\Omega$ nazywamy niezależnymi, jeśli

$$P(A \cap B) = P(A) \cdot P(B).$$

W przeciwnym wypadku mówimy, że zdarzenia A i B są zależne.

Twierdzenie

Jeśli P(B) > 0, to zdarzenia A i B są niezależne wtedy i tylko wtedy, gdy

$$P(A|B) = P(A)$$
.

Niezależność zdarzeń

Definicja

• Zdarzenia A_1, A_2, \ldots, A_n , gdzie $n \ge 2$, są niezależne zespołowo, jeśli dla każdego skończonego ciągu liczb naturalnych i_1, \ldots, i_k , dla którego $1 \le i_1 < \cdots < i_k \le n$, $2 \le k \le n$, zachodzi równość

$$P(A_{i_1} \cap \cdots \cap A_{i_k}) = P(A_{i_1}) \cdot \ldots \cdot P(A_{i_k}).$$

• Zdarzenia $A_1, ..., A_n$ są niezależne parami, jeśli każde dwa z nich są niezależne.

Przykład 2

Na poniższym schemacie przekaźniki działają niezależnie od siebie. Prawdopodobieństwo działania każdego z przekaźników wynosi $p \in (0;1)$.

Obliczyć prawdopodobieństwo, że sygnał zostanie przekazany.

Schemat Bernoulliego

Definicja

Schematem Bernoulliego nazywamy ciąg niezależnych powtórzeń tego samego doświadczenia o dwu możliwych wynikach nazywanych umownie sukcesem i porażką. Poszczególne doświadczenia nazywamy próbami.

Schemat Bernoulliego

Twierdzenie

Rozważmy schemat Bernoulliego, gdzie p oznacza prawdopodobieństwo sukcesu w jednej próbie. Wtedy:

 Prawdopodobieństwo, że w n próbach zajdzie dokładnie k sukcesów jest równe

$$\binom{n}{k} \cdot p^k \cdot (1-p)^{n-k} \ dla \ k = 0, \dots, n.$$

2 Prawdopodobieństwo, że pierwszy sukces pojawi się w k-tej próbie jest równe

$$(1-p)^{k-1} \cdot p \ dla \ k = 1, 2 \dots$$

