이미지 처리를 위한 모든 것

03. Advanced CNN, 다양한 CNN 구조

카이스트

김현우

본인 소개

김 현 우

카이스트, 산업및시스템공학과 대학원생

TEAM-EDA 블로그, 페이스북 페이지 운영

Recommender System KR 페이스북 그룹 운영진

깃허브: https://github.com/choco9966/

VGG는 3X3의 Convolution filters만을 이용해서 층을 깊게 쌓아서 좋은 성능을 보인 모델입니다. 실제로 ImageNet Challenge2014와 localization and classification tracks에서 상위권에 랭크했습니다.

< 개요</p>

- CNN은 이미지, 비디오 분석에서 좋은 성능을 보여왔고 관련 연구들이 많이 존재함
- 2. 관련 연구들의 내용을 살펴보면,
 - Smaller Stride, receptive window size
 - the networks densely over the whole image and over multiple scales
- 3. VGG에서는 depths 측면에서, small filter인 3x3 convolution filters 만을 이용해서 안정적으로 층을 깊게 쌓는 것을 다룸
- 4. 결과적으로, 많은 대회에서 상위권 점수를 받았음

모델의 아키텍처

✓ 모델 아키텍처 – 전처리

```
VGG_MEAN = [123.68, 116.78, 103.94] # This is R-G-B for Imagenet
image = tf.random_crop(image, [224, 224, 3])
means = tf.reshape(tf.constant(VGG_MEAN), [1, 1, 3])
image = image - means
```

- 1. 인풋 데이터 전체의 Mean RGB를 계산해서 각 픽셀에서 뺌
 - Subtract the mean per channel calculated over all images (e.g. VGG_ILSVRC_16_layers)
 - Subtract by <u>pixel/channel</u> calculated over all images (e.g. <u>CNN_S</u>, also see <u>Caffe's reference network</u>)

2. 해당 전처리가 가지는 장점

- 계산량에서의 장점 : Gradient가 안정감있게 되기 위해서 Small norm을 가지게 함
- 데이터셋의 편향 : 평균이 0이 아닌 경우 특정 방향으로 계속해서 Gradient가 진행 될 수 있음
- 데이터의 정규화 : 입력 변수간의 영향도 차이를 줄여줌 (한 변수에 치우치지 않도록 조절)

3. 평균만 빼주는 이유

- 정확도 감소: xi가 모두 가깝다면 편차는 매우 작음. 이 값을 나눠주게 되면 정확도의 감소를 유발
- 데이터의 특성: 이미지는 (0, 255)에 분포

모델 아키텍처 − Convolutional layers

- 1. 3 x 3 convolution filters
 - Small receptive filed: left/right, up/down, center를 가장 작은 크기로 잡아냄
- 2. 1 x 1 convolution filters
 - linear transformation of the input channels (followed by non-linearity)
- 3. stride, padding size 1
 - the spatial resolution을 보존
- 4. Max-pooling size 2 x 3 (stride 2)
- 5. Dense Layer
 - 3개의 FC layer로 구성
 - 처음 두 개는 각 4096개의 채널로 구성, 마지막은 1000개의 target으로 분류
- 6. 모든 층에는 ReLU를 사용, 정규화 과정은 포함하지 않음
 - 이유: 성능면에서는 향상 x, 메모리 소비 및 계산 시간만 향상

♥ 모델 아키텍처 – Configurations

ConvNet Configuration						
A	A-LRN	В	С	D	Е	
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight	
layers	layers	layers	layers	layers	layers	
	input (224×224 RGB image)					
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	
	LRN	conv3-64	conv3-64	conv3-64	conv3-64	
			pool			
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	
		conv3-128	conv3-128	conv3-128	conv3-128	
			pool			
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	
			conv1-256	conv3-256	conv3-256	
					conv3-256	
			pool		_	
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	
			conv1-512	conv3-512	conv3-512	
					conv3-512	
maxpool						
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	
			conv1-512	conv3-512	conv3-512	
					conv3-512	
maxpool						
FC-4096						
FC-4096						
FC-1000						
soft-max						

Table 2: Number of parameters (in millions).

Network	A,A-LRN	В	C	D	E
Number of parameters	133	133	134	138	144

층이 깊음에도 불구하고 파라미터들의 수가 적은 것을 볼 수 있음

✓ 모델 아키텍처 – Discussion

- 1. $7 \times 7 \rightarrow 3 \times 3$ convolution filters
 - 3 x 3의 layers가 2개이면 5 x 5의 효과를 냄
 - 3 x 3의 layers가 3개이면 7 x 7의 효과를 냄
 - 층을 여러개 쌓으면서 ReLU를 추가하면, 결정 함수가 보다 차별적임 (Discriminative) 비선형성
 - 파라미터의 수가 더 적음 (3x3 3개 vs 7x7) : 3*(3*3*C*C) < (7*7*C*C)
 - kernel * kernel * in_channel * out_channel
- 2. 1 x 1 convolution filters
 - convolution의 receptive fields 없이 의사 결정 함수의 비선형성을 증가
 - 계산량 감소

논문에서는 19개의 weight layers를 쌓으면서 깊은 convolutional networks에 대해서 실험을 했음

- 이것은 모델을 깊게 쌓는 것이 정확도에 도움을 준다는 것을 의미
- 3x3의 convolutions를 단순하게 깊게 쌓는 것만으로도 좋은 성능을 낼 수 있음

Method	VOC-2007	VOC-2012	Caltech-101	Caltech-256
Method	(mean AP)	(mean AP)	(mean class recall)	(mean class recall)
Zeiler & Fergus (Zeiler & Fergus, 2013)	-	79.0	86.5 ± 0.5	74.2 ± 0.3
Chatfield et al. (Chatfield et al., 2014)	82.4	83.2	88.4 ± 0.6	77.6 ± 0.1
He et al. (He et al., 2014)	82.4	-	93.4 ± 0.5	-
Wei et al. (Wei et al., 2014)	81.5 (85.2*)	81.7 (90.3*)	-	-
VGG Net-D (16 layers)	89.3	89.0	91.8 ± 1.0	85.0 ± 0.2
VGG Net-E (19 layers)	89.3	89.0	92.3 ± 0.5	85.1 ± 0.3
VGG Net-D & Net-E	89.7	89.3	92.7 ± 0.5	$\textbf{86.2} \pm \textbf{0.3}$

Table 9: Localisation error

sma	ıllest image side	top-5 localisation error (%)		
train(S)	test(Q)	val.	test.	
256	256	29.5		
384	384	28.2	26.7	
384	352,384	27.5	-	
fusion: 25	6/256 and 384/352,384	26.9	25.3	

02 Inception-v3

CNN (Alexnet)

CNN은 이미지가 들어오면 3가지의 과정을 통해서 Output을 생성합니다.

- 1. Convolutions: Feature maps 생성
- 2. Subsampling : 생성된 Feature maps의 차원을 감소
- 3. Full Connection : Output(Fully Connected Layer)을 산출.

03 Resnet

참고 자료

[CNN]

- 1. https://medium.com/@seoilgun/cnn%EC%9D%98-stationarity%EC%99%80-locality-610166700979
- 2. https://www.slideshare.net/agdatalab/deep-learning-convolutional-neural-network
- 3. http://aikorea.org/cs231n/convolutional-networks/
- 4. https://www.researchgate.net/publication/326816043_FAWCA_A_Flexible-greedy_Approach_to_find_Well-tuned_CNN_Architecture_for_Image_Recognition_Problem
- 5. https://www.researchgate.net/figure/Model-architectures-for-the-MNIST-and-CIFAR-10-models_tbl10_324558570
- 6. https://ratsgo.github.io/deep%20learning/2017/04/05/CNNbackprop/
- 7. https://taewan.kim/post/cnn/
- 8. https://zzsza.github.io/data/2018/05/14/cs231n-cnn/
- 9. https://hwiyong.tistory.com/45

참고 자료

[Gradient Vanishing & Exploding]

- 1. https://ayearofai.com/rohan-4-the-vanishing-gradient-problem-ec68f76ffb9b
- 2. http://keunwoochoi.blogspot.com/2018/01/gradients-explode-deep-networks-are.html

[Jaccobian]

- 1. http://t-robotics.blogspot.com/2013/12/jacobian.html#.X00wjcgzaUk
- 2. https://angeloyeo.github.io/2020/07/24/Jacobian.html

감사합니다