

Introdução à geometria espacial

Resumo

Na geometria espacial, trabalhamos em três dimensões.

Postulados de determinação

Determinação da reta:

Dois pontos distintos determinam uma única reta.

Determinação do plano:

- Três pontos não colineares determinam um único plano.
- Uma reta e um ponto fora dela determinam um único plano.
- Duas retas concorrentes determinam um único plano.
- Duas retas paralelas distintas determinam um único plano.

Posições relativas

Entre retas:

Entre reta e plano

Reta paralela ao plano: t Reta contida no plano: r Reta secante ao plano: s

Teorema: Se uma reta possui dois pontos distintos que pertencem a um plano, então ela está contida nesse plano.

Entre planos:

Planos paralelos distintos: μ e β Planos secantes: δ e μ ou δ e β

Quer ver este material pelo Dex? Clique aqui

Exercícios

1. Uma formiga resolveu andar de um vértice a outro do prisma reto de bases triangulares ABC e DEG, seguindo um trajeto especial.

Ela partiu do vértice G, percorreu toda a aresta perpendicular à base ABC, para em seguida caminhar toda a diagonal da face ADGC e, finalmente, completou seu passeio percorrendo a aresta reversa a CG. A formiga chegou ao vértice

- **a)** A
- **b)** B
- **c)** C
- **d)** D
- e) E

2. O galpão da figura a seguir está no prumo e a cumeeira está "bem no meio" da parede.

Das retas assinaladas podemos afirmar que:

- a) t e u são reversas
- **b)** s e u são reversas
- c) t e u são concorrentes
- d) s e r são concorrentes
- e) t e r são perpendiculares

3. As retas r e s foram obtidas prolongando-se duas arestas de um cubo, como está representado na figura a seguir.

Sobre a situação dada, assinale a afirmação INCORRETA.

- a) r e s são retas paralelas.
- b) r e s são retas reversas.
- c) r e s são retas ortogonais.
- d) não existe plano contendo r e s
- e) $r \cap s = \emptyset$

4. Na cadeira representada na figura a seguir, o encosto é perpendicular ao assento e este é paralelo ao chão.

Sendo assim:

- a) Os planos EFN e FGJ são paralelos.
- b) HG é um segmento de reta comum aos planos EFN e EFH.
- c) Os planos HIJ e EGN são paralelos.
- d) EF é um segmento de reta comum aos planos EFN e EHG.

- **5.** Considere uma reta s, contida em um plano α , e uma reta r perpendicular a s. Então, necessariamente:
 - a) r é perpendicular a α.
 - b) r e s são coplanares.
 - c) r é paralela a α.
 - d) r está contida em α.
 - e) Todas as retas paralelas a r interceptam s.
- **6.** Considere o cubo da figura adiante. Das alternativas a seguir, aquela correspondente a pares de vértices que determinam três retas, duas a duas reversas, é:

- **a)** (A,D); (C,G); (E,H).
- **b)** (A,E); (H,G); (B,F).
- **c)** (A,H); (C,F); (F,H).
- **d)** (A,E); (B,C); (D,H).
- **e)** (A,D); (C,G); (E,F).
- 7. Duas retas são reversas quando:
 - a) não existe plano que contém ambas
 - b) existe um único plano que as contém
 - c) não se interceptam
 - d) não são paralelas
 - e) são paralelas, mas pertencem a planos distintos
- **8.** Seja A um ponto pertencente à reta r, contida no plano α . É verdade que:
 - a) existe uma única reta que é perpendicular à reta r no ponto A.
 - **b)** existe uma única reta, não contida no plano α , que é paralela à reta r.
 - c) existem infinitos planos distintos entre si, paralelos ao plano α, que contêm a reta r.
 - d) existem infinitos planos distintos entre si, perpendiculares ao plano α e que contêm a reta r.
 - e) existem infinitas retas distintas entre si, contidas no plano α e que são paralelas à reta r.

- **9.** Entre todas as retas suportes das arestas de um certo cubo, considere duas, r e s, reversas. Seja t a perpendicular comum a r e a s. Então:
 - a) t é a reta suporte de uma das diagonais de uma das faces do cubo.
 - b) t é a reta suporte de uma das diagonais do cubo.
 - c) t é a reta suporte de uma das arestas do cubo.
 - d) t é a reta que passa pelos pontos médios das arestas contidas em r e s.
 - e) t é a reta perpendicular a duas faces do cubo, por seus pontos médios.
- **10.** Dois segmentos dizem-se reversos quando não são coplanares.

Neste caso, o número de pares de arestas reversas num tetraedro, como o da figura, é

- **a)** 6.
- **b)** 3.
- **c)** 2.
- **d)** 1.
- **e)** 0.

Gabarito

1. E

Saiu de G

Percorreu GC. Está agora em C

Partiu de C e percorreu a diagonal CD. Está agora em D

Partiu de D e percorreu DE (DE é reversa com CG)

Chegou, portando no ponto E.

2. A

Retas reversas são aqueles que não estão contidas em um mesmo plano e não têm pontos em comum. Repare que as retas t e u são reversas.

3. A

Por mais que as retas r e s não se toquem, elas não são paralelas, pois não estão no mesmo plano.

4. D

Vamos avaliar cada uma das alternativas:

- a) os planos EFN e FGJ são paralelos. FALSA, porque eles possuem a reta que contém o segmento FN em comum, portanto, são secantes.
- b) HG é um segmento de reta comum aos planos EFN e EFH. FALSA, dois planos possuem apenas uma reta em comum se são secantes, como neste caso, e a reta é a suporte de EF.
- c) os planos HIJ e EGN são paralelos. FALSA, porque eles têm o ponto G em comum, logo, têm uma reta em comum e por isso são secantes.
- d) EF é um segmento de reta comum aos planos EFN e EHG. VERDADEIRA, como vimos na letra "b".

5. B

Se as retas r e s são perpendiculares, elas são concorrentes e, portanto, são coplanares (estão num mesmo plano).

Lembre-se: duas retas coplanares são, necessariamente: coincidentes ou paralelas ou concorrentes. Se forem reversas, não são coplanares.

6. E

Retas reversas são aqueles que necessariamente estão em planos diferentes. Sendo assim, arestas de uma mesma face não reversas, já que estão no mesmo plano, o plano da face em que se encontram. Por isso, o gabarito é letra e.

7. A

Segue a definição de retas reversas: Duas retas distintas são reversas se, e somente se não existe plano que as contenha.

8. E

Essa questão assemelha-se a uma de classificar as assertivas em verdadeiras ou falsas, porém, neste caso, temos apenas uma alternativa verdadeira, logo, precisamos analisar uma a uma as opções. Primeiro Passo: Letra "a": Existe uma única reta perpendicular à reta r no ponto A. FALSA, podemos traçar mais de uma reta, veja o contra exemplo na figura abaixo, na qual tanto s quanto t são perpendiculares à r no ponto A.

Segundo Passo: Letra "b": Existe uma única reta, não contida no plano α , que é paralela à reta r. FALSA, existem infinitas retas não contidas no plano α que são paralelas à r, veja o contra exemplo na figura abaixo na qual a, b, c e d são paralelas à r e não estão contidas em α .

Terceiro Passo: Letra "c": Existem infinitos planos distintos entre si, paralelos ao plano α que contém a reta r. FALSA, para que exista um plano que seja paralelo ao plano α e contenha a reta r, este plano terá que ser coincidente com o plano α . Portanto, não existe nenhum plano distinto de α paralelo a este que contenha r

Quarto Passo: Letra "d": Existem infinitos planos distintos entre si, perpendiculares ao plano α e que contêm a reta r. FALSA, pela unicidade do perpendicularismo entre reta e plano, por um ponto qualquer pode-se conduzir um único plano perpendicular a um reta dada (r).

Quinto Passo: Letra "e": Existem infinitas retas distintas entre si, contidas no plano α e que são paralelas à reta r. VERDADEIRA, pelos primeiro e segundo postulados de Euclides, podemos deduzir que no plano, bem como fora dele, há infinitas retas. Veja a figura ilustrativa abaixo:

9. C

Dadas duas retas reversas, existe uma única reta que é perpendicular a ambas. Note que a aresta AB é perpendicular as arestas AE e BC ou AD e BF. Então t é a reta perpendicular comum às retas r e s. A reta t é a reta suporte de uma das arestas.

10. B

Repare que cada uma das arestas laterais é reversa à uma aresta da base. Assim, AB é reversa à CD, AC à BD e AD à BC.