DIY 微型数字调谐收音机

文/李增茂

回想以前自己做收音机时,采用分立元件做,不仅线路 复杂而且调试困难。要是做数字调谐的收音机,线路更加复 杂、让人望而退步。而现在、使用 Philips 公司生产的 TEA5767HN 单片收音 IC 制作数字调谐收音机,外围线路 简单,几乎免调试,仅需简单地使用单片机控制,即可方便 地 DIY 出一台属于自己的数字调谐收音机。

TEA5767HN 介绍

TEA5767HN 是一款低功耗立体声收音 IC, 广泛应用 于手机、MP3、MP4播放器等便携系统。接收频率76MHz~ 108MHz(日本/美国/欧洲频段选择), 中频频率 225kHz, 采用锁相环调谐系统,带有AGC电路,并可以使用软件进 行静音和消除噪音。主要电性能指标:工作电压:2.5V~5. 0V, 工作电流10mA, 灵敏度15 μ V, 立体声分离度30dB, 信噪比60dB,输出信号电平75 mV。总线通信界面 I2C 和 3 线总线可选, 具有 RF 信号强度 ADC 输出, 软件静音。 TEA5767HN采用HVQFN40封装,业余条件下自己手工焊 接 TEA5767HN 极为困难,所幸市场上有焊接好的模块出 售,价格仅15元左右,使得制作过程较为简单。

模块外形如图1所示。采用全屏蔽 铁壳封装。仅留出10个焊盘。从正面 看,标有圆形凹点的是第一脚,其他 引脚依顺时针方向排列。各引脚功能 见表 1。模块使用的是 32.768kHz 晶 体振荡器,编写软件需注意这点。

表 1 TEA5767HN 收音模块引脚功能

引脚	符号	功能	引脚	符号	功能
1	ANT	RF 信号输入	6	vcc	电源输入
2	MPX	解调信号输出	7	W/R	3线总线时读/写控制
3	R_OUT	右声道输出	8	BUSMOD	总线模式选择
. 4	L_OUT	左声道输出	9	CLK	总线时钟输入
5	GND	电源地	10	SDA	总线数据输入/输出

注: 第7脚为3线总线模式时的读/写控制脚, 第8脚 为总线模式选择引脚, 当接地时选择IPC总线模式, 接VCC 时选择3线总线模式。在我制作的收音机中,由于没有使用 MPX信号, 所以第2脚悬空。模块与单片机通信采用I2C总 线方式以节约I/O口,因此第7脚悬空,第8脚接地。详细

请参看原理图图 2。

TEA5767HN的I²C总线通信介绍如下: TEA5767HN 器件地址 C0H, 最大时钟频率 400kHz。 写入模式总线协议见表 2。

表 2	2								
S	地址(写)	Α	数据位1	Α	数据位2	Α	数据位n	Α	P

读出模式总线协议见表 3。

	表 3	3								
1	S	地址(達)	A	数据位1	Α	数据位2	A	数据位n	Α	P

注:1.S 为启动条件, 2.地址(写)为0C0H, 地址(读)为 0C1H, 3.A 为应答信号, 4.P 为停止条件。

写模式的数据字节格式

写模式下各个数据字节格式参见表4,各符号含义参见 表5。

表 4 写模式数据字节格式

	位7	位6	位5	位4	位3	位2	位1	位の
数据字节1	MUTE	SM	PLL13	PLL12	PLL11	PLL10	PLL9	PLL8
数据字节2	PLL7	PLL6	PLL5	PLL4	PLL3	PLL2	PLL1	PLL0
数据字节3	SUD	SSL1	SSL0	HISI	MS	ML	MR	SWP1
数据字节4	SWP2	STBY	BL	XTAL	SMUTE	HCC	SNC	SI
数据字节5	PLLREF	DTC						

表 5 字节位所	代表含义
符号	1 2
MUTE	静音控制: MUTE=1, 左右声道静音, MUTE=0左右声道正常
SM	搜索模式: SM=1, 处于搜索模式; SM=0, 不处于搜索模式
PLL13-PLL0	设定用于搜索和预设的可编程频率合成器
SUD	搜索方向: SUD=1,向上搜索, SUD=0向下搜索
SSL1-0	设定搜索停止标准。请参考表 4
HISI	高/低边带接收:HISI=1,设定为高边带接收,HISI=0,设定为低边
	带接收
MS	MS=1,设定为单声道接收,MS=0,设定为立体声接收
ML	左声道静音:ML=1,左声道静音并设置为立体声,ML=0左声道正常
MR	右声道静音:MR=1,右声道静音并设置为立体声,MR=0右声道正常
SWP1	软件可编程端口:SWP1=1,端口1高电平,SWP1=0,端口1低电平
SWP2	软件可编程端口:SWP2=1,端口2高电平,SWP2=0,端口2低电平
STBY	待机模式选择: STBY=1, 处于待机模式, STBY=0, 不处于待机模式
BL	波段制式:BL=1,日本调频制式,BL=0,美国/欧洲调频制式
XTAL	振荡器选择:XTAL=1,使用13MHz晶体振荡器;XTAL=0,使用
	32.768kHz 晶体振荡器
SMUTE	软件静音:SMUTE=1, 软件静音打开, SMUTE=0, 软件静音关闭
HCC	高电平切割:HCC=1,高电平切割打开,HCC=0,高电平切割关闭
SNC	立体声噪音去除:SNC=1,立体声噪音去除打开,SNC=0,立体声噪音
	去除关闭
SI	搜索标志位:SI=1,端口1输出准备好信号,SI=0,端口1做软件可
	编程端口用
PLLREF	PLLREF=6.5MHz 锁相环参考频率使用, PLLREF=0, 6.5MHz 锁相
	环参考频率关闭
DTC	去加重时间:DTC=1,去加重时间为75 μs, DTC=0,去加重时间为50 μs

表 6 搜索停止标准设定

68L1	SSLO	接掌停止标准
0	0	搜索模式下禁止
0	1	低:ADC输出大小为5
1	0	中:ADC 输出大小为7
1	1	高:ADC輸出大小为10

1.PLL13-0用于设定 用于搜索和预设的可编程 频率合成器。预设接收频 率与PLL值的换算公式为:

采用高边带接收时换算公式(HISI=1):

 $N_{\text{DEC}} = (4 \times (F_{\text{RF}} + F_{\text{if}})) / F_{\text{REFS}}$

 N_{DEC} =PLL 字的十进制值(这个十进制字可以转换为二进制)

Fp= 想要调谐的频率(Hz)

F.= 中频(Hz)

F_{REFS}= 基准频率(Hz)

2. 采用低边带接收时换算公式(HISI=0):

 $N_{\mathrm{DEC}} = (4 \times (F_{\mathrm{RF}} - F_{\mathrm{if}})) / F_{\mathrm{REFS}}$

各符号含义同上面的公式。

例如:要接收98MHz频率,采用高边带接收,晶体振荡器为32.768kHz,则对应PLL值为(十进制):

 $N_{\rm DEC}$ = $(4 \times 98000000+225000000))/32768=11990$ 换算为十六进制制为 2ED6H。

而如果采用低边带接收,对应PLL值为(十进制):

 $N_{\rm DEC}$ = $(4 \times 98000000-225000000))/32768=11935$ 换算为十六进制为 2E9FH。

如果要接收98MHz 频率,设定为采用高边带接收 (HISI=1),静音关闭,立体声接收,波段选择欧洲/美国制式,TEA5767HN外接的晶体振荡器频率为32.768kHz,去加重时间50 μs,那么按TEA5767HN数据字节格式,写人的数据应该为2EH、D6H、01H、07H、00H。把这些数依次送入TEA5767HN,即可设定TEA5767HN接收98MHz 频率。

读模式下的数据字节格式:

写模式下各个数据字节格式参见表7,各符号含义参见表8。

例如在98MHz处有一个立体声电台,假设TEA5767HN

表7 读模式数据字节格式

1.5	- 67	位6	60 .5	位4	位名	位2	位1	位の
数据字节1	RF	BLF	PLL13	PLL12	PLL11	PLL10	PLL9	PLL8
数据字节2	PLL7	PLL6	PLL5	PLL4	PLL3	PLL2	PLL1	PLL0
数据字节3	STEREO	IF6	IF5	IF4	IF3	IF2	IF1	IF0
数据字节4	LEV3	LEV2	LEVI	LEV0	CI3	CI2	CII	CI0
数据字节5								

表 8 各符号代表含义

传号	and the second of the second o
RF	准备好标志:RF=1,有一个频道被搜到或者已到波段极限,RF=0,没有频道被搜到
BLF	波段极限标志:BLF=1,已经搜索到达波段极限,BLF=0,搜索没有到达波段极限
PLL13-0	当前頻率的 PLL 值
STEREO	立体声标志:STEREO=1,接收到立体声,STEREO=0,接收到单声道
IF6-0	中頻计数器结果,正确调谐时值在 31H-3EH 之间
LEV3-0	RF 信号强度 ADC 輸出
CI3-0	芯片验证号

已经接收到这个电台,采用高边带接收方式(HISI=1),则读出 TEA5767HN 数据字节,RF=1,表示搜到一个电台,BLF=0,表示没有到波段极限,PLL13-0为2ED6,表示接收频率为98MHz,STEREO=1,表示收到的是立体声,IF6-0在31H~3EH之间,ADC在 $0\sim16$ 之间。

硬件构成

单片机本着够用和易购的原则,采用 A t m e l 的 89C2051, 具有 128B的 R AM 和 2KB的 R OM。晶体振荡器选用 8MHz。收音模块使用成品 TEA5767HN 模块,设定为 I²C 通信方式,SDA 接 P3.0,SCL 接 P3.1,都要加 47k Ω上拉电阻。显示频率采用红色 4 位共阳数码管,P1 做段码输出,P3.2~P3.5 做位选输出。按键与数码管共享 P1 口,并另用 P3.7 控制按键。仅设两个按键做向上/向下选台,选台步进设定为 0.1 MHz。功放采用 TDA2822,工作电压 1.8V~9V,在5V供电时可以在8 Ω负载上得到大约 0.25W的功率。由于 TEA5767HN 输出信号为 75mV 左右,而 TDA2822 在 5V 供电时,输入 30mV 即达到最大功率输出,所以,另加了 33k Ω和 15k Ω电阻对 TEA5767HN 输出信号进行衰减以避免输出失真过大。原理图参见图 2。

插入外负内正的 DC 电源后,打开电源开关,系统自动调谐到 104.3MHz,数码管显示当前电台频率,短按向上/向下键可以向上/向下进行频率调整,每按一次调整 0.1MHz。按住不放超过0.5s,则进行向上/向下搜索电台,搜索到电台后自动停止。搜索过程中,数码管显示接收的频率。频率调整到波段极限后,自动转到波段的另一端频率进行接收。

软件设计

软件采用汇编语言编写,分按键扫描子程序、显示子程序、TEA5767HN控制子程序等。

由于单片机 I/O 口数量的限制,因此按键硬件上设计为与数码管共享,另用一个 I/O 口(P3.7)进行按键的控制,以避免按键按住不放时对显示的影响。在每个按键上串接一个二极管,这样即使两个按键同时按下,对显示也没有任何影响。但是这样设计,当 P3.7 设置为低电平,P1 输出 0FFH,有键按下后,按键端口上的电压还是有大约 0.7V 的电压,所幸单片机可以正确识别这个电压为 0。

在按键扫描子程序中,首先把数码管的位选设置为1 以关闭显示,然后把P1口全部设置为1,把按键 控制端口P3.7设置为0,再读取P1口。如果没有

按键按下,读得的数将是 0FFH。如果有按键按下,读得的数会是其它数,在程序中进行判断即可得出按键键值。按键扫描子程序占用 2 个标志位、2 个RAM。采用一个标志位做按键按下标志,

图2 原理图

一个标志位做按键释放标志,一个RAM 做按键去抖动缓冲,一个RAM 做按键按下时间缓冲。详细可以参考程序。按键扫描取得键值后,如果是按键短按,则进行对收音模组进行0.1MHz的频率调整,如果是按键长按,则对收音模组进行向上/向下自动搜索。

显示子程序仅把频率缓冲(十六进制)分离成十进制单位数值,然后依次显示在四位数码管上,比较简单,不做详细介绍,请参考程序。

TEA5767HN 控制子程序由几个功能模块组成。包括 I²C 通信模块,TEA5767HN 向上搜索模块,TEA5767HN 向下搜索模块,频率值转换为 PLL 值模块,PLL 值转换为 频率值模块等。

I²C 通信协议在各电子杂志, 教课书上均有介绍, 不再做详述, 请参考程序或者其他书籍。

在设定接收频率时,需要把频率转换为PLL值,可以直接用C语言写出换算公式,进行反编译得到对应的汇编代码,然后嵌入到程序中使用。但经实际使用发现,这样得到的代码仅进行频率-PLL值转换就需要14ms的时间(晶体振荡器频率11.0592MHz),代码长度在550字节左右、因

此没有使用这种方法,而是使用汇编语言查表方式进行频率-PLL值的转换。即预先把PLL值按87.5MHz~108MHz进行排列,程序中按频率值查出对应的PLL值。采用编查表方式代码长度700字节左右,运行时间大约需要500μs,因此最终还是使用汇编语言查表方式进行频率-PLL值的换算。

PLL值-频率的换算是采用算术进行转换的。把频率值和PLL值列成一张表,可以看出每隔0.1MHz,PLL值大约相差12(十进制值),而接收频率在87.5MHz时对应的PLL值是29D4H,因此,仅需把读出的PLL值减去29D4H,然后除以12,再加上87.5MHz,就是当前的频率。然而实际上,需要考虑到每隔0.1MHz并不完全相差12,因此需要做微小的调整,详细情况可以参考程序。

进行自动搜索时,使用的是TEA5767HN的搜索功能。 需要注意的是SSL设定的值将影响搜索到的电台数量。只 有接收到的电台RF信号ADC值大于设定的SSL值时,才 会停止搜索。SSL设定值大,则弱信号电台有可能无法搜索 到,使得搜索到的电台数量偏少,SSL设定值小,有可能电 台的镜像频率(假台)也会接收到,因此,要选取合适的 SSL值以得到期望的搜台效果。

我实际的程序搜索电台的过程简述如下:

- 1. 首先送入合适的PLL值进行搜索,每隔50ms左右读取一次TEA5767HN的值。如果RF标志位=1表示收到电台,如果RF=0则没有收到,等待50ms后再次读取。直到RF=1。
- 2.RF=1后,再判断BLF是否=1。BLF=1说明是搜索 到波段极限而停止的,需要重新设定搜索频率重新搜索。 BLF=0,表示没有搜索到波段极限。
- 3.BLF=0,再判断STEREO是否等于1。STEREO=0表示收到的不是立体声电台,需要在当前频率值调整0.1MHz后重新搜索,STEREO=1表示搜索到一个立体声电台。
- 4.STEREO=1, 需要再判断IF计数器值是否在31H~3EH之间。如果不在31H~3EH之间,则在读出的频率基础上调整0.1MHz重新搜索,如果IF计数器值在31H~3EH之间,才表示正确的搜索到一个电台。

由此看出,自动搜索时需要判断的标志位比较多。 STEREO 标志和IF 计数器值的检验主要是防止收到假台, 因为假台是立体声的比较少。如果仅用RF和BLF标志,而 不使用STEREO 标志和IF 计数器值,那么将会搜索到很多 假台。但是这样一来,单声道的电台将会被忽略。好在大多 数FM电台都是立体声的,因此对实际使用影响比较小。如 果你所在的地区有单声道发射的电台,请略去检测 STE-REO 标志或者不使用自动搜索而使用手动搜索。

主程序比较简单,仅反复调用按键扫描子程序和显示子程序,并判断按键没有按下的时间是否等于1分钟,如果等于1分钟,将关闭数码管的显示以节约电量。

全部程序参见本期配刊光盘。其中 Radio.asm 为主程序, TEA5767_PLL_FRE.ASM 为频率-PLL表, Radio.h 为RAM定义文件。在Radio.asm 中使用 Include 指令包含TEA5767_PLL_FRE.ASM 和 Radio.h。

在 Keil μ Vision2 中打开 TEA5767HN Radio.Uv2, 进行编译得到 HEX 文件,大约1.5KB左右。将 HEX 文件 用编程器写人 AT89C2051 中,插到板上即可运行。

使用效果

在最终使用中,考虑到收音模块可以工作在2.5~5V,AT89C2051也可以工作在2.7V~5V,所以略去5V稳压部分,直接使用手机锂电池进行供电。为进一步减少整机电流,在数码管供电端串接两个1N4001以降低数码管工作电压。并在软件中设置为无按键按下1分钟后关闭数码管显示,以降低电池的消耗。

实际测试在电池电压为 3.9V 时, 收音模块大约消耗

10mA 电流, AT89C2051 大约消耗 10mA 电流, 数码管大约消耗 12mA 电流。接入一个8 Ω扬声器, 数码管点亮, 整机静态功耗在 50mA 左右。

实际运行时的照片见图 3。

笔者在深圳宝安区福永镇,在7楼房间内使用80cm拉

图3

杆天线,使用自动搜索可以接收到表9所列电台。

表9

频率 (MHz)	电台	∰率 (MHz)	电台
88.8	Happy Radio 快乐 888	90.1	順德广播
92.0	中国人民经济电台经济之声	93.6	广东电台健康频道
93.9	广东电台音乐之声第一台	96.7	中山电台
97.1	深圳飞扬971	97.4	珠江经济台
100.0	惠州电台	100.8	东莞电台新闻综合频道
101.2	中国音乐之声	101.7	番禺电台
104.3	深圳宝安电台	104.9	中央人民广播电台华夏之声
107.1	中国国际广播电台环球资讯	107.5	东莞音乐交通电台

还有一些频率由于没有记录电台名称,不一一列出。 从实际接收效果看,TEA5767HN接收效果尚可接受。

后记

本文仅介绍了TEA5767HN的简单应用,程序中仍有不少值得改善的地方,如未对搜索电台时间加以限制。因此,如果没有接入天线而进行自动搜索时,将可能因为收不到电台而不断进行搜索。如果有兴趣,可以加入搜索时间限制功能。在自动搜索时没有静音,因此,在自动搜索时将有较大的杂音出现,可以在自动搜索前静音,搜索到电台后再取消静音。如果把按键扩展为8个,同时在I²C总线上接人AT24C02 E²PROM,可实现电台的直接存储和读取,使用时更加方便。

在制作此收音机过程中,笔者参考了Philips 公司TEA5767HN的 Datasheet 以及 AN10133 应用笔记,网址为: www.nxp.com/acrobat_download/datasheets/TEA5767HN_5.pdf, returmakeriet.se/twiki/pub/Main/DataSheets/application_note_tea5767-8.pdf。若你对TEA5767HN 相关信息有疑问,请参考原厂资料。②