Plan d'étude et représentation graphique de $y = f(x) = -x^2$

www.cafeplanck.com info@cafeplanck.com

Le domaine de définition de f

$$y = f(x) = -x^2 \Rightarrow D_f = \circ = (-\infty, +\infty)$$

Etudier la fonction au bornes de D_f

A la borne gauche

$$\lim_{x \to -\infty} y = \lim_{x \to -\infty} -x^2 = -\infty$$

Alors la courbe de f tend vers un infini au long de la droite Y = ax + b. On cherche a et b:

$$a = \lim_{x \to -\infty} \frac{y}{x} = \lim_{x \to -\infty} \frac{-x^2}{x} = \lim_{x \to -\infty} -x = +\infty$$

Alors la courbe de f a une branche parabolique au long de l'axe Oy .

A la borne droite

$$\lim_{x \to +\infty} y = \lim_{x \to +\infty} -x^2 = -\infty$$

Alors la courbe de f tend vers un infini au long de la droite Y = ax + b. On cherche a et b:

$$a = \lim_{x \to +\infty} \frac{y}{x} = \lim_{x \to +\infty} \frac{-x^2}{x} = \lim_{x \to +\infty} -x = -\infty$$

Alors la courbe de f a une branche parabolique au long de l'axe $O\!y$.

Le sens de variation de f

$$y' = f'(x) = -2x$$

$$-2x = 0 \Rightarrow x = 0 \Rightarrow y = 0 \Rightarrow \begin{vmatrix} 0 \\ 0 \end{vmatrix}$$

Convexité de *f*

$$y'' = f''(x) = -2$$

Le tableau de variation

х	- ∞		0		+∞
<i>y'</i>		+	0	_	
<i>y</i> "		-		_	
У	- ∞		0		- ∞
	•		Max		

La courbe

