Math 620: Homework 2, Congruence

Due on Friday, September 11, 2015 $Boynton\ 10:00$

Kailee Gray

Exercise 1.3.4 from B&B: Solve the conguence $20x \equiv 12 \pmod{72}$.

Note gcd(20,72) = 4. Note $4 \mid 12$ so there will be 4 distinct solutions modulo 72. If $20x \equiv 12 \pmod{72}$, 20x = 12 + 72k for some integer k. 20, 12, 72 are all divisible by 4, so the previous equation is equivalent to 5x = 3 + 18k. This yields the congruence

$$5x \equiv 3 \pmod{18}. \tag{1}$$

Since gcd(5, 18) = 1 proposition 1.3.4 in B&B implies there exists some integer b such that $5b \equiv 1 \pmod{18}$. Apply the extended Euclidean Algorithm to find this b:

$$18 = 3 \cdot 5 + 3 \Leftrightarrow 3 = 18 - 3 \cdot 5, \qquad 5 = 3 \cdot 1 + 2 \Leftrightarrow 2 = 5 - 3 \cdot 1, \qquad 3 = 2 \cdot 1 + 1 \Leftrightarrow 1 = 3 - 2 \cdot 1.$$

Then, using back substitution we have

$$1 = 3 - (5 - 3 \cdot 1) \cdot 1 = 2 \cdot 3 - 5 = 2 \cdot (18 - 3 \cdot 5) - 5 = 2 \cdot 18 - 6 \cdot 5 - 5 = 2 \cdot 18 - 7 \cdot 5$$

. Thus, b = -7 which is equivalent to 11 mod 18. So, multiply both sides of equation (1) by 11 to obtain

$$11 \cdot 5x \equiv 11 \cdot 3 \pmod{18} \Leftrightarrow 55x \equiv 33 \pmod{18} \Leftrightarrow 1 \cdot x \equiv 15 \pmod{18} \Leftrightarrow x \equiv 15 \pmod{18}$$

Hence, the solutions of the given congruence are 15, 33, 51, 69 mod 72.

Exercise 2

Exercise 1.3.12 of B&B: Show that $4 \cdot (n^2 + 1)$ is never divisible by 11.

Proof. If there was an integer n such that $11 \mid 4 \cdot (n^2 + 1)$, then $4 \cdot (n^2 + 1) \equiv 0 \pmod{11}$. Suppose there is such an n. If $4 \cdot (n^2 + 1) \equiv 0 \pmod{11}$, then $4n^2 + 4 \equiv 0 \pmod{11}$ and $4n^2 \equiv -4 \pmod{11}$. Because $\gcd(4, 11) = 1$, $4n^2 \equiv -4 \pmod{11}$ is equivalent to $n^2 \equiv -1 \pmod{11}$. This is equivalent to $n^2 \equiv 10 \pmod{11}$. By the division algorithm, all integers can be written as $k + 11 \cdot l$, $k \in \mathbb{Z}_{11}$ and $l \in \mathbb{Z}$; thus it suffices to check all $n \in \mathbb{Z}_{11}$ to see if such an n exists:

$$0^2 \equiv 0 \pmod{11}, \quad 1^2 \equiv 1 \pmod{11}, \quad 2^2 \equiv 4 \pmod{11}, \quad 3^2 \equiv 9 \pmod{11}, \quad 4^2 \equiv 5 \pmod{11}, \quad 5^2 \equiv 4 \pmod{11},$$

$$5^2 \equiv 4 \pmod{11}, \quad 6^2 \equiv 3 \pmod{11}, \quad 7^2 \equiv 5 \pmod{11}, \quad 8^2 \equiv 9 \pmod{11}, \quad 9^2 \equiv 4 \pmod{11}, \quad 10^2 \equiv 1 \pmod{11}.$$

Since no $n \in \mathbb{Z}_{11}$ satisfies the congruence $4 \cdot (n^2 + 1) \equiv 0 \pmod{11}$ we know no such integer n exists. Hence, $4 \cdot (n^2 + 1)$ is never divisible by 11.

Page 2 of 10

Exercise 3

Exercise 1.3.14 of B & B: Find the units digit of $3^{29} + 11^{12} + 15$.

Proof. To find the units digit we will reduce $3^{29} + 11^{12} + 15 \mod 10$. Notice,

$$(3^{29} + 11^{12} + 15) \mod 10 = 3^{29} \mod 10 + 11^{12} \mod 10 + 15 \mod 10.$$

Now we will reduce each of these integers mod 10:

$$3^{29} \mod 10 = (3^4)^7 \cdot 3 \mod 10 = (81)^7 \cdot 3 \mod 10 = (1)^7 \cdot 3 \mod 10 = 1 \cdot 3 \mod 10 = 3 \mod 10,$$
 (2)

$$11^{12} \bmod 10 = (1)^{12} \bmod 10 = 1 \bmod 10, \tag{3}$$

and

$$15 \bmod 10 = 5 \bmod 10. \tag{4}$$

Thus,

$$(3^{29} + 11^{12} + 15) \mod 10 = 3 \mod 10 + 1 \mod 10 + 5 \mod 10 = (3 + 1 + 5) \mod 10 = 9 \mod 10.$$

Hence the units digit of $3^{29} + 11^{12} + 15$ is 9.

Exercise 4

Exercise 1.3.20 of B & B: Solve the following system of congruences:

$$2x \equiv 5 \pmod{7}, \qquad 3x \equiv 4 \pmod{8} \tag{5}$$

First we will solve each of the congruences in equation 5 for x. By trial and error, -3 is found to be an inverse of 2 mod 7 and -5 is found to be an inverse of 3 mod 8. Applying these inverses we have:

$$-3 \cdot 2x \equiv -3 \cdot 5 \pmod{7}$$
, $-6x \equiv -15 \pmod{7}$, $1 \cdot x \equiv 6 \pmod{7}$, $x \equiv 6 \pmod{7}$

and

$$-5 \cdot 3x \equiv -5 \cdot 4 \pmod{8}$$
 $-15x \equiv -20 \pmod{8}$ $1 \cdot x \equiv 4 \pmod{8}$ $x \equiv 4 \pmod{8}$.

Now, using the construction within the proof of the Chinese Remainder Theorem, we will solve the system of equations, $x \equiv 6 \pmod{7}$, $x \equiv 4 \pmod{8}$ which we showed is equivalent to the system given in (5). Since $\gcd(7,8) = 1$, theorem 1.3.6 implies the given system has a solution modulo $7 \cdot 8$. The congruence $x \equiv 6 \pmod{7}$ gives us the equation x = 6 + 7k for some integer k. Then, substituting we obtain $6 + 7k \equiv 4 \pmod{8}$, or equivalently, $7k \equiv -2 \pmod{8}$. Multiplying by 7, Since $7 \cdot 7 \equiv 1 \pmod{8}$, gives us $k \equiv -14 \pmod{8}$ or $k \equiv 2 \pmod{8}$. This yields the particular solution $x = 6 + 7 \cdot 2 = 20$. Thus, we write the solution to the given system of equations, $x \equiv 20 \pmod{56}$.

Exercise 1.3.24 of B&B: Show that the remainder of an integer n when divided by 9 is the same as the remainder of the sum of its digits when divided by 9.

Proof. We will show for any integer n written in decimal form as $n = a_k a_{k-1} ... a_1 a_0$ satisfies the following equation:

$$n \equiv (a_k + a_{k-1} + \dots + a_1 + a_0) \mod 9.$$

If n has decimal digits $a_k a_{k-1} ... a_1 a_0$ we can write n in expanded form:

$$n = 10^k \cdot a_k + 10^{k-1} \cdot a_{k-1} + \dots + 10^1 \cdot a_1 + 10^0 \cdot a_0.$$

If this equality holds, it must also be valid mod 9:

$$n \equiv (10^k \cdot a_k + 10^{k-1} \cdot a_{k-1} + \dots + 10^1 \cdot a_1 + 10^0 \cdot a_0) \mod 9.$$

Then, since $10 \equiv 1 \pmod{9}$, we can write

$$n \equiv (1^k \cdot a_k + 1^{k-1} \cdot a_{k-1} + \dots + 1^1 \cdot a_1 + 1^0 \cdot a_0) \mod 9.$$

Any power of 1 is 1, so we have

$$n \equiv (1 \cdot a_k + 1 \cdot a_{k-1} + \dots + 1 \cdot a_1 + 1 \cdot a_0) \mod 9.$$

Because 1 is the multiplicative identity, we have

$$n \equiv (a_k + a_{k-1} + \dots + a_1 + a_0) \mod 9.$$

Therefore, when divided by 9, the remainder of n is be the same as the remainder of the sum of its digits.

Exercise 1.3.26 of B&B: let p be a prime number and let a, b be any integers. Prove that $(a+b)^p \equiv a^p + b^p \pmod{p}$

Proof. Let p be a prime number and let a, b be any integers. Using the binomial formula,

$$(a+b)^p = \sum_{k=0}^p \binom{p}{k} a^{p-k} \cdot b^k$$

Expanding this binomial we have

$$(a+b)^p = \binom{p}{0}a^p \cdot b^0 + \binom{p}{1}a^{p-1} \cdot b^1 + \binom{p}{2}a^{p-2} \cdot b^2 + \dots + \binom{p}{p-2}a^2 \cdot b^{p-2} + \binom{p}{p-1}a^1 \cdot b^{p-1} + \binom{p}{p}a^0 \cdot b^p.$$

Notice

$$\binom{p}{0}a^p \cdot b^0 = a^p \qquad \text{and} \binom{p}{p}a^0 \cdot b^p = b^p$$

Thus our goal is to show that for all $1 \le k \le p-1$,

$$\binom{p}{k} a^{p-k} \cdot b^k \equiv 0 \pmod{p}.$$

Note

$$\binom{p}{k} = \frac{p!}{k!(p-k)!} = \frac{p \cdot (p-1)!}{k!(p-k)!} = p \cdot \frac{(p-1)!}{k!(p-k)!}.$$

The coefficients $\frac{p!}{k!(p-k)!}$ are known to be integers from the binomial theorem. Also, since p is prime, $\frac{p!}{k!(p-k)!}$ has p as a factor because p is a divisor of the numerator but not the denominator. Thus $\frac{(p-1)!}{k!(p-k)!}$ is an integer and $p \mid \binom{p}{k}$ for $1 \le k \le p-1$. Since $\binom{p}{0} = \binom{p}{p} = 1$, the coefficients on a^p and b^p are not divisible by p whereas when $1 \le k \le p-1$, $\binom{p}{k} \equiv 0 \pmod{p}$. This implies $\binom{p}{k}a^{p-k} \cdot b^k \equiv 0 \pmod{p}$ when $1 \le k \le p-1$. Thus,

$$(a+b)^p \equiv \binom{p}{0}a^p \cdot b^0 + 0 + 0 + \dots + 0 + 0 + \binom{p}{p}a^0 \cdot b^p \pmod{p}$$
$$\equiv a^p + b^p \pmod{p}.$$

Exercise 7

Exercise 1.4.1(b): Make addition and multiplication tables for the set \mathbb{Z}_4 .

+	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

	0	1	2	3
0	0	0	0	0
1	0	1	2	3
2	0	2	0	2
3	0	3	2	1

Exercise 1.4.2(a) in B & B: Make multiplication table for \mathbb{Z}_6 .

	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2	4	0	2	4
3	0	3	0	3	0	3
4	0	4	2	0	4	2
5	0	5	4	3	2	1

Exercise 9

Exercise 1.4.3(b) in B & B: Find the multiplicative inverses [38] in \mathbb{Z}_{83} .

Since 83 is prime, [38] has multiplicative inverses (by corollary 1.4.6). To find $[38]_{83}^{-1}$, we can use the matrix form of the Euclidean algorithm:

$$\begin{bmatrix} 1 & 0 & 83 \\ 0 & 1 & 38 \end{bmatrix} \xrightarrow{R_1 - 2R_2} \begin{bmatrix} 1 & -2 & 7 \\ 0 & 1 & 38 \end{bmatrix} \xrightarrow{R_2 + -5R_1} \begin{bmatrix} 1 & -2 & 7 \\ -5 & 11 & 3 \end{bmatrix} \xrightarrow{R_1 - 2R_2} \begin{bmatrix} 11 & -24 & 1 \\ -5 & 11 & 3 \end{bmatrix} \xrightarrow{R_2 + -3R_1} \begin{bmatrix} 11 & -24 & 1 \\ -38 & 83 & 0 \end{bmatrix}$$

Thus, $11 \cdot 83 + -24 \cdot 38 = 1$, which shows that $[38]_{83}^{-1} = [-24]_{83} = [59]_{83}$.

Exercise 10

Exercise 1.4.9(a) in B & B: Let gcd(a, n) = 1. The smallest positive integer k such that $a^k \equiv 1 \pmod{n}$ is called the multiplicative order of [a] in \mathbb{Z}_n^{\times} . Find the multiplicative orders of [2] and [5] in f.

First, note that gcd(5,16) = 1, so we will find the multiplicative order of [5] in \mathbb{Z}_{16}^{\times} using theorem 1.4.11. Since $\varphi(16) = 8$, we know that $5^8 \equiv 1 \pmod{16}$. However, by exercise 1.4.10, the multiplicative order of any element of \mathbb{Z}_{16}^{\times} must divide $\varphi(16) = 8$, so we must test 1, 2, 4, 8:

$$5^1 \equiv 5 \pmod{16}, \qquad 5^2 \equiv 9 \pmod{16}, \qquad 5^4 \equiv (5^2)^2 \equiv 9^2 \equiv 81 \equiv 1 \pmod{16}.$$

Hence the multiplicative order of [5] in \mathbb{Z}_{16}^{\times} is 4.

Next, find the multiplicative order of [7] in \mathbb{Z}_{16}^{\times} by testing 1, 2, 4, 8:

$$7^1 \equiv 7 \pmod{16}, \qquad 7^2 \equiv 49 \equiv 1 \pmod{16}.$$

Hence the multiplicative order of [7] in \mathbb{Z}_{16}^{\times} is 2.

Exercise 11

Exercise 1.4.14 from B & B: If p is a prime number, show that [0] and [1] are the only idempotent elements in \mathbb{Z}_p .

Proof. Note that [0] is trivially idempotent since 0 times any integer in \mathbb{Z}_p must be zero, so $[0]^2 = [0]$. Suppose there exists some $a \in \mathbb{Z}_p$ such that $[a]^2 = [a]$ but a > 1. Since $[a]^2 = [a]$, $a^2 \equiv a \pmod{p}$. Because p is prime, all nonzero elements in \mathbb{Z}_p have a multiplicative inverse. Thus, there exists some integer a^{-1} such that $a^{-1} \cdot a \equiv 1 \pmod{p}$. Multiply both sides of the congruence $a^2 \equiv a \pmod{p}$ by a^{-1} to obtain $a^{-1} \cdot a^2 \equiv a^{-1} \cdot a \pmod{p}$. Equivalently, $a^{-1} \cdot a \cdot a \equiv 1 \pmod{p}$ and $1 \cdot a \equiv 1 \pmod{p}$. Thus, $a \equiv 1 \pmod{p}$ which contradicts our assumption that a is in \mathbb{Z}_p but a > 1. Thus, [0] and [1] are the only idempotent elements in \mathbb{Z}_p .

Exercise 12

Exercise 1.4.15 from B & B: If n is not a prime power, show that \mathbb{Z}_n has an idempotent element different from [0] and [1].

Proof. Assume n is not a prime power. Thus, n must have more than one prime factor so there must exist integers b and c such that $b \mid n$, $c \mid n$, n = bc, and gcd(b, c) = 1. Because gcd(b, c) = 1, the Chinese Remainder Theorem implies a solution, x, exists mod bc to the following system of congruences:

$$x \equiv 1 \pmod{b}, \qquad x \equiv 0 \pmod{c}.$$

Claim 1: $x \not\equiv 0 \pmod{bc}$

Proof. If $x \equiv 0 \pmod{bc}$, $bc \mid x \text{ implies } b \mid x, \text{ but } x \equiv 1 \pmod{b}$.

Claim 2: $x \not\equiv 1 \pmod{bc}$

Proof. If $x \equiv 1 \pmod{bc}$, $bc \mid (x-1)$ implies $c \mid (x-1)$, but $x \equiv 0 \pmod{c}$.

Notice if $x \equiv 1 \pmod{b}$ and $x \equiv 0 \pmod{c}$, x = 1 + bk and x = cm for some integers k, m. If we multiply both sides of the equation x = 1 + bk by x we obtain $x \cdot x = (1 + bk)x$. This implies $x^2 = 1 \cdot x + (bk) \cdot x$. Since x = cm t, $x^2 = x + (bk) \cdot cm$. Thus, $x^2 \equiv x \pmod{bc}$.

Exercise 1.4.16 from B & B: An element [a] of \mathbb{Z}_n is said to be nilpotent if $[a]^k = [0]$ for some k. Show that \mathbb{Z}_n has no nonzero nilpotent elements if and only if n has no factor that is a square (except 1).

Proof. First, assume n has no factor that is a square. Then, write the prime factorization of n:

$$n = \prod_{i=1}^{m} p_i^{\alpha_i}$$
, where p_i are prime, α_i , are in \mathbb{Z}^+ .

But, n has no square factors, so we can conclude that all $\alpha_i = 1$:

$$n = \prod_{i=1}^{m} p_i$$
 where p_i are prime.

We want to show that \mathbb{Z}_n has no nonzero nilpotent elements. Suppose that \mathbb{Z}_n has some nonzero nilpotent element, $[a], [a] \neq [0]$. Then, $a^k \equiv 0 \pmod{n}$. This implies $n \mid a^k$. Equivalently, $\prod_{i=1}^m p_i \mid a^k$. Then, there exists some integer b such that $a^k = b \cdot (\prod_{i=1}^m p_i)$. So, for any $1 \leq j \leq m$,

$$a^k = p_j \cdot b \cdot \prod_{i=1}^{j-1} p_i \cdot \prod_{i=j+1}^m p_i.$$

Thus for all $1 \leq j \leq m$, $p_j \mid a^k$. Equivalently, for all $1 \leq j \leq m$, $p_j \mid a \cdot a^{k-1}$. So by corollary 1.2.6, we can inductively conclude that for all $1 \leq j \leq m$, $p_j \mid a$. Hence, $\prod_{i=1}^m p_i \mid a$. This contradicts our assumption that $[a] \neq [0]$. Therefore, \mathbb{Z}_n has no nonzero nilpotent elements.

Next, assume \mathbb{Z}_n has no nonzero nilpotent elements. Then, there are no $[a] \neq [0]$ such that $a^k \equiv 0 \pmod{n}$. Suppose n has some square factor, $s^2 \neq 1$, so $n = t \cdot s^2$. Note $[st] \in \mathbb{Z}_n$ and $[st] \neq [0]$ since $n \nmid st$; but $(ts)^2 \equiv 0 \pmod{n}$. Thus, if \mathbb{Z}_n has no nonzero nilpotent elements, n has no square factors.

Exercise 14

Exercise 1.4.17 from B & B: Compute $\varphi(27), \varphi(81), \varphi(p^{\alpha})$

Using the formula in proposition 1.4.8, since $27 = 3^3$, $\varphi(27) = 27 \left(1 - \frac{1}{3}\right) = 18$. Similarly, $81 = 3^4$, so $\varphi(81) = 81 \left(1 - \frac{1}{3}\right) = 54$. Finally, $\varphi(p^{\alpha}) = p^{\alpha} \left(1 - \frac{1}{p}\right) = p^{\alpha} \left(\frac{p-1}{p}\right) = p^{\alpha-1}(p-1) = p^{\alpha} - p^{\alpha-1}$.

Give a proof that the formula for $\varphi(n)$ is valid when $n = p^{\alpha}$.

To calculate $\varphi(p^{\alpha})$, we need to count the number of integers from the set $\mathbb{Z}_{p^{\alpha}}$ that are relatively prime to p^{α} . Note $|\mathbb{Z}_{p^{\alpha}}| = p^{\alpha}$. To find $\varphi(p^{\alpha})$, we will first find all integers in $\mathbb{Z}_{p^{\alpha}}$ that are not relatively prime to p^{α} . Consider $m \in \mathbb{Z}_{p^{\alpha}}$ such that $\gcd(m, p^{\alpha}) \neq 1$. To count how many m exist, we will prove the following lemma.

Lemma 0.1. The following statements are equivalent when p is prime, $\alpha \in \mathbb{Z}^+$, $m \in \mathbb{Z}^+$ and $1 \le k < p^{\alpha}$:

$$i. \gcd(k,p) = 1$$
 $ii. \gcd(k,p^{\alpha}) = 1$
 $iii. k \text{ is not a multiple of } p$

Proof. To show these statements are equivalent, it suffices to prove the following conditional statements:

```
(1) If gcd(k,p) = 1, then gcd(k,p<sup>\alpha</sup>) = 1.
(2) If gcd(k,p<sup>\alpha</sup>) = 1, then k is not a multiple of p.
(3) If k is not a multiple of p, then gcd(k,p) = 1.
```

- (1). Assume $\gcd(k,p)=1$. Note if $\alpha=2$, proposition 1.2.3 (d) implies $\gcd(k,p^2)=1$. Now, assume when $\alpha=n$, $\gcd(k,p^n)=1$. If $\gcd(k,p^n)=1$ and $\gcd(k,p)=1$, proposition 1.2.3 (d) implies $\gcd(k,p^{n+1})=1$. Thus, by the principle of induction, $\gcd(k,p^\alpha)=1$ for any $\alpha\in\mathbb{Z}^+$.
- (2). Assume $gcd(k, p^{\alpha}) = 1$. Then, by theorem 1.1.6 there exists integers x, y such that $kx + p^{\alpha}y = 1$. Equivalently, $kx + p(p^{\alpha-1}y) = 1$. Again, by theorem 1.1.6, this implies gcd(k, p) = 1. Then, $p \nmid k$ so k is not a multiple of p.
- (3). Assume k is not a multiple of p. Then, $p \nmid k$. The only divisors of p are 1 and p so if $p \nmid k$, gcd(k, p) = 1.

By lemma 0.1, we know the following statements are equivalent:

i.
$$gcd(k, p) \neq 1$$

ii. $gcd(k, p^{\alpha}) \neq 1$
iii. k is a multiple of p .

Thus, the only $m \in \mathbb{Z}_{p^{\alpha}}$ such that $\gcd(m, p^{\alpha}) \neq 1$, are multiples of $p: 0, p, 2p, 3p, ..., p^{\alpha-1}p$. So every p^{th} integer in $\{0, 1, 2, ..., p^{\alpha} - 1\}$ is a multiple of p. Thus, there are $p^{\alpha}/p = p^{\alpha-1}m \in \mathbb{Z}_{p^{\alpha}}$ such that $\gcd(m, p^{\alpha}) \neq 1$.

Therefore,
$$\varphi(n) = p^{\alpha} - p^{\alpha-1}$$
.

Exercise 15

Exercise 1.4.24 from B & B: Show that if p is a prime number, then the congruence $x^2 \equiv 1 \pmod{p}$ has only the solutions $x \equiv 1 \pmod{p}$ and $x \equiv -1 \pmod{p}$.

Proof. Let p be a prime number and let $x \in \mathbb{Z}_p$ such that $x^2 \equiv 1 \pmod{p}$. Note that $x \equiv 1$ and $x \equiv -1$ satisfy the given congruence since $1^2 \equiv 1 \pmod{p}$ and $(-1)^2 \equiv 1 \pmod{p}$. Now, suppose there exists some other integer a such that $a^2 \equiv 1 \pmod{p}$ but $a \not\equiv 1, -1$. Then, $a^2 - 1 \equiv 0 \pmod{p}$, or equivalently, $(a-1)(a+1) \equiv 0 \pmod{p}$. Thus, $p \mid (a-1)(a+1)$. By corollary 1.2.6 in B & B, if $p \mid (a-1)(a+1)$, then $p \mid (a-1)$ or $p \mid (a+1)$. if $p \mid (a-1)$, then $a-1 \equiv 0 \pmod{p}$ which implies $a \equiv 1 \pmod{p}$ which contradicts our assumption that $a \not\equiv 1$. If $p \mid (a+1)$, $a+1 \equiv 0 \pmod{p}$ which implies $a \equiv -1 \pmod{p}$ which contradicts our assumption that $a \not\equiv -1$. Thus, the congruence $x^2 \equiv 1 \pmod{p}$ has only the solutions $x \equiv 1 \pmod{p}$ and $x \equiv -1 \pmod{p}$.

Exercise 1.4.27 from B & B: Show that if p is a prime number, then $(p-1)! \equiv -1 \pmod{p}$.

Proof. Let p be a prime number. Note that when p=2 and p=3, $(2-1)! \equiv 1! \equiv -1 \pmod 2$ and $(3-1)! \equiv 2! \equiv 2 \equiv -1 \pmod 3$. We have shown the given congruence holds for p=2,3, so we will consider only p>3 and so that p is odd. Consider $[a]_p$. Since every integer $1 \leq a \leq p-1$ is relatively prime to p, all $[a]_p$ have unique multiplicative inverses in \mathbb{Z}_p . Thus, (p-1)! is the product of all elements in \mathbb{Z}_p^{\times} . So for all $[a]_p$ we can find a unique $[a]_p^{-1}$. Note that the only cases when $[a]_p^{-1} = [a]_p$ can be found by applying exercise 24 in section 1.4 of B & B: if the only solutions to $a^2 \equiv 1 \pmod{p}$ are ± 1 , then $a^{-1}a^2 \equiv a^{-1} \pmod{p}$ implies ± 1 are the only solutions to $a \equiv a^{-1} \pmod{p}$. Thus for all $a \neq 1, p-1$ in \mathbb{Z}_p there exists a unique a^{-1} in \mathbb{Z}_p with $a \neq a^{-1}$. Then all $2 \leq a \leq p-2$ must have a multiplicative inverse $2 \leq a^{-1} \leq p-2$. Consider the product $2 \cdot 3 \cdot 4 \cdots (p-3)(p-2)$ then rearrange and group this product so that each element is multiplied by its multiplicative inverse so that $2 \cdot 3 \cdot 4 \cdots (p-3)(p-2) \equiv 1 \pmod{p}$. Then, multiply both sides by p-1 to obtain $2 \cdot 3 \cdot 4 \cdots (p-3)(p-2)(p-1) \equiv 1(p-1) \pmod{p}$, or equivalently, $1 \cdot 2 \cdot 3 \cdot 4 \cdots (p-3)(p-2)(p-1) \equiv -1 \pmod{p}$. Thus, $(p-1)! \equiv -1 \pmod{p}$ when p is prime.