WHAT IS CLAIMED IS:

1	1. A secure passcode authentication system, the system comprising:
2	an Access Control Server (ACS) configured to receive a request for passcode
3	authentication of a Primary Account Number (PAN), and configured to request a passcode
4	corresponding to the PAN;
5	a front end Hardware Security Module (HSM) coupled to the ACS, and
6	configured to receive the passcode and generate an encrypted passcode using a local encryption
7	key; and
8	a back end HSM configured to receive the encrypted passcode from the front end
9	HSM and further configured to recover a clear form of the passcode, generate a back end
10	encrypted passcode, and communicate the back end encrypted passcode to an authentication
11	network.
1	2. The system of Claim 1, wherein the request for passcode authentication
2	comprises a request for a Personal Identification Number (PIN) authentication.
1	3. The system of Claim 1, wherein the ACS is further configured to receive
2	an authentication message from the authentication network.
1	4. The system of Claim 1, wherein the ACS is further configured to generate
2	a unique transaction identification and include the unique transaction identification as a hidden
3	field in the request for the passcode.
1	5. The system of Claim 4, wherein the front end HSM is configured to
2	generate a hash value based in part on the unique transaction identification, and wherein the AC
3	is configured to include the hash value as an additional hidden field in the request for the
4	passcode.
1	6. The system of Claim 1, wherein the request for the passcode includes an
2	instruction to direct the passcode to the front end HSM.
1	7. The system of Claim 1, wherein the front end HSM comprises a software
2	HSM.

1		8.	The system of Claim 1, wherein the front end HSM comprises a hardware
2	HSM.		
1		9.	The system of Claim 1, wherein the front end HSM is configured to
2	receive the no		n a first encrypted format.
2	receive the pas	330000 1	in a first energited format.
1		10.	The system of Claim 9, wherein the first encrypted format comprises a
2	Secure Socket	s Layer	(SSL) encrypted format.
1		11.	The greatern of Claim 1, wherein the front and USM is configured to
1 2	manairra a namdi		The system of Claim 1, wherein the front end HSM is configured to
2	receive a cardi	noider e	ncrypted passcode from the ACS.
1		12.	The system of Claim 1, wherein the front end HSM is configured to
2	receive a cardl	holder e	ncrypted passcode from a cardholder device.
1		13.	The system of Claim 1, wherein the back end HSM is configured to
2	generate the ba	ack end	encrypted passcode by generating a PINBLOCK using the clear form of
3	the passcode a	ind encr	ypting the PINBLOCK using an Acquirer Working Key (AWK).
1		14.	The system of Claim 1, wherein the authentication network comprises an
2	Internet Paym	ent Gate	eway Server (IPGS).
1		1.6	
1		15.	The system of Claim 14, wherein the authentication network further
2	comprises an i	ssuer se	erver coupled to the IPGS.
1		16.	A secure passcode authentication system, the system comprising:
2		an Acc	ess Control Server (ACS) configured to receive a request for Personal
3	Identification	Numbe	r (PIN) authentication of a Primary Account Number (PAN), and
4	configured to	generate	e a request for a PIN corresponding to the PAN, the request for the PIN
5	including hidd	len field	s comprising a unique transaction identifier and a hash value;
6		a front	end Hardware Security Module (HSM) coupled to the ACS, and
7	configured to	generate	e the hash value based in part on the unique transaction identifier, and
8			receive an encrypted PIN, decrypt the PIN to recover a clear form of the
9	PIN, and gene	rate a lo	ocal encrypted PIN using a local encryption key; and

0	a back end HSM configured to receive the local encrypted PIN from the front enc			
1	HSM and further configured to recover a clear form of the PIN from the local encrypted PIN,			
12	generate an Acquirer Working Key (AWK) encrypted PIN, and communicate the AWK			
13	encrypted PIN to an authentication network.			
1	17. The system of Claim 16, wherein the front end HSM generates the local			
2	encrypted key using a triple DES algorithm.			
1	18. A secure passcode authentication system, the system comprising:			
2	an Access Control Server (ACS) configured to receive a request for Personal			
3	Identification Number (PIN) authentication of a Primary Account Number (PAN), and			
4	configured to generate a request for a PIN corresponding to the PAN, the request for the PIN			
5	including an instruction to provide the PIN to a destination address; and			
6	a front end Hardware Security Module (HSM) having said destination address an			
7	coupled to the ACS, and configured to receive an encrypted PIN, decrypt the PIN to recover a			
8	clear form of the PIN, and generate an Acquirer Working Key (AWK) encrypted PIN using an			
9	AWK encryption key, and configured to communicate the AWK encrypted PIN to an			
0	authentication network.			
1	19. A method for providing secure passcode authentication, the method			
2	comprising:			
3	requesting a Personal Identification Number (PIN) corresponding to a Primary			
4	Account Number (PAN);			
5	receiving the PIN in response to the request;			
6	generating a PINBLOCK based in part on the PIN;			
7	encrypting the PINBLOCK using a local key in a front end Hardware Security			
8	Module (HSM) to generate a local key encrypted PINBLOCK;			
9	decrypting the local key encrypted PINBLOCK with a back end HSM;			
10	generating a back end encrypted PIN with the back end HSM;			
1	communicating the back end encrypted PIN to an authentication network; and			
12	receiving an authentication response from the authentication network.			
1	20 The mosthed of Claim 10 and and a second at 1 PDV			
1	20. The method of Claim 19, wherein requesting the PIN comprises:			

_		gener	ating a unique transaction identifier;		
3		gener	ating a hash value with the front end HSM based in part on the unique		
4	transaction identifier;				
5		gener	ating a query having the unique transaction identifier and hash value as		
6	fields in the q	the query; and			
7		comm	nunicating the query.		
1		21.	The method of Claim 19, wherein requesting the PIN comprises:		
2		gener	ating a query having an instruction directing a query response be directed to		
3	a destination	address	corresponding to the front end HSM; and		
4		comm	nunicating the query over an Internet connection to a cardholder device.		
1		22.	The method of Claim 19, wherein receiving the PIN comprises receiving a		
2	Secure Socke	ts Laye	r (SSL) encrypted PIN.		
1		23.	The method of Claim 22, wherein receiving the PIN further comprises		
2	receiving the	SSL en	crypted PIN at an Access Control Server (ACS).		
1		24.	The method of Claim 22, wherein receiving the PIN further comprises		
2	receiving the	SSL en	crypted PIN from a cardholder device at the front end HSM.		
1		25.	The method of Claim 19, wherein the front end HSM comprises a		
2	software HSN	1 imple	ementation within an Access Control Server (ACS).		
1		26.	The method of Claim 19, wherein encrypting the PINBLOCK comprises		
2	encrypting the	e PINB	LOCK using a triple DES encryption algorithm.		
1		27.	The method of Claim 19, wherein generating the back end encrypted PIN		
2	comprises:				
3		genera	ating a back end PINBLOCK from a clear form of the PIN; and		
4		encry	pting the PIN with the back end HSM using an Acquirer Working Key		
5	(AWK).				
1		28.	A method for providing secure passcode authentication, the method		
2	comprising:				

3	receiving an encrypted Personal Identification Number (PIN) corresponding to a			
4	Primary Account Number (PAN);			
5	decrypting the encrypted PIN in a front end Hardware Security Module (HSM) t			
6	generate a clear form of the PIN;			
7	generating a PINBLOCK based in part on the clear form of the PIN;			
8	generating in a back end HSM a back end encrypted PIN based in part on the			
9	PINBLOCK;			
10	communicating the back end encrypted PIN to an authentication network; and			
11	receiving an authentication response from the authentication network.			
1	29. The method of Claim 28, wherein the front end HSM comprises the back			
2	end HSM.			
1	30. The method of Claim 28, wherein receiving the encrypted PIN comprises			
2	receiving a Secure Sockets Layer (SSL) encrypted PIN over an Internet connection from a			
3	cardholder device.			
1	31. The method of Claim 28, wherein generating the back end encrypted PIN			
2	comprises generating an Acquirer Working Key (AWK) encrypted PIN.			
1	32. A method for providing secure passcode authentication, the method			
2	comprising:			
3	generating encryption data;			
4	querying a cardholder for a Personal Identification Number (PIN) corresponding			
5	to a Primary Account Number (PAN);			
6	receiving an encrypted PIN and at least a portion of the encryption data in			
7	response to the query;			
8	generating a clear form of the PIN based in part on the encrypted PIN;			
9	generating a PINBLOCK based in part on the clear form of the PIN;			
10	encrypting the PINBLOCK in a front end Hardware Security Module (HSM)			
11	using triple DES encryption to generate an encrypted PIN (EPIN);			
12	decrypting the EPIN in a back end HSM to recover the clear form of the PIN;			

13	encrypting the clear form of the PIN in the back end HSM using an Acquirer
14	Working Key (AWK) to generate an AWK encrypted PIN;
15	communicating the AWK encrypted PIN to an authentication network; and
16	receiving an authentication response.