UART Interfacing on eYFi-Mega Board

e-Yantra Team

Embedded Real-Time Systems (ERTS) Lab Indian Institute of Technology, Bombay

 Universal Asynchronous Receiver Transmitter (UART) is used to communicate data between micro-controller and PC or other devices.

- Universal Asynchronous Receiver Transmitter (UART) is used to communicate data between micro-controller and PC or other devices.
- UART requires two lines for communication
 - Receive RX
 - 2 Transmit TX

- Universal Asynchronous Receiver Transmitter (UART) is used to communicate data between micro-controller and PC or other devices.
- UART requires two lines for communication
 - Receive RX
 - 2 Transmit TX

• An external clock signal is not required.

- An external clock signal is not required.
- Extra rules or mechanisms are needed to ensure reliable, error-free sending and receiving of data, which are:

- An external clock signal is not required.
- Extra rules or mechanisms are needed to ensure reliable, error-free sending and receiving of data, which are:
 - Data Packet
 - Synchronization Bits
 - Data Bits
 - Parity Bits
 - Baud Rate

- Synchronization Bits
 - Start (1 bit) transition on idle data line from 1 to 0.
 - Stop (1-2 bit/s) transition back to idle state, holding the line at 1.

- Synchronization Bits
 - Start (1 bit) transition on idle data line from 1 to 0.
 - Stop (1-2 bit/s) transition back to idle state, holding the line at 1.
- Oata Bits
 - Number of data bits
 - Endianness of data bits

- Synchronization Bits
 - Start (1 bit) transition on idle data line from 1 to 0.
 - Stop (1-2 bit/s) transition back to idle state, holding the line at 1.
- Oata Bits
 - Number of data bits
 - Endianness of data bits
- Parity Bits
 - · Low-level and simple form of error checking.
 - It can be odd or even.

 It indicates the rate at which data transfer will occur between two or more devices.

- It indicates the rate at which data transfer will occur between two or more devices.
- The unit is bits-per-second (bps).

- It indicates the rate at which data transfer will occur between two or more devices.
- The unit is bits-per-second (bps).
- Baud rates can take any value; but devices must agree to operate on same rate, as communication is asynchronous.

- It indicates the rate at which data transfer will occur between two or more devices.
- The unit is bits-per-second (bps).
- Baud rates can take any value; but devices must agree to operate on same rate, as communication is asynchronous.
- Commonly used baud rates are 1200, 2400, 4800, 9600, 19200, 38400, 57600, and 115200.

- It indicates the rate at which data transfer will occur between two or more devices.
- The unit is bits-per-second (bps).
- Baud rates can take any value; but devices must agree to operate on same rate, as communication is asynchronous.
- Commonly used baud rates are 1200, 2400, 4800, 9600, 19200, 38400, 57600, and 115200.
- These baud rates are achieved in micro-controller by dividing the clock frequency.

Send the data "Hi" with UART configuration 9600-8N1.
 Determine the number of packets transferred per second.

- Send the data "Hi" with UART configuration 9600-8N1.
 Determine the number of packets transferred per second.
 - \bigcirc 9600 \Rightarrow Baud Rate
 - 2 8 \Rightarrow Number of data bits in a frame
 - **⑥** N ⇒ No Parity bits
 - \bigcirc 1 \Rightarrow 1 Stop bit

 - $\mathbf{0}$ "i" \Rightarrow ASCII value $= \mathbf{0b01101001}$
 - **(i)** Endianness ⇒ Little-endian, by default

- Send the data "Hi" with UART configuration 9600-8N1.
 Determine the number of packets transferred per second.
 - \bigcirc 9600 \Rightarrow Baud Rate
 - 8 ⇒ Number of data bits in a frame
 - **⑥** N ⇒ No Parity bits
 - $\mathbf{0} \ \mathbf{1} \Rightarrow 1 \text{ Stop bit}$

 - $\mathbf{0}$ "i" \Rightarrow ASCII value = $\mathbf{0b01101001}$

- **10 bits** per packet (1-Start, 8-Data and 1-Stop)
- With Baud Rate = 9600 bps, 960 packets are sent per sec

- Send the data "Hi" with UART configuration 9600-8N1.
 Determine the number of packets transferred per second.
 - \bigcirc 9600 \Rightarrow Baud Rate
 - 2 8 \Rightarrow Number of data bits in a frame
 - \bullet N \Rightarrow No Parity bits
 - $\mathbf{0} \ \mathbf{1} \Rightarrow 1 \text{ Stop bit}$

 - $\mathbf{0}$ "i" \Rightarrow ASCII value $= \mathbf{0b01101001}$
 - **⑥** Endianness ⇒ Little-endian, by default

- **10 bits** per packet (1-Start, 8-Data and 1-Stop)
- With Baud Rate = 9600 bps, 960 packets are sent per sec

←	Packet 1											Packet 2									
0	0	0	0	1	0	0	1	0	1	0	1	0	0	1	0	1	1	0	1		
Start	b0	b1	b2	b3	b4	b5	b6	b7	Stop	Start	b0	b1	b2	b3	b4	b5	b6	b7	Stop		
	┫			_	н _				`	_				_				<u> </u>			

Connection Diagram

Connection Diagram

- Connection between ATmega2560 and PC
 - \bigcirc TX0 \rightarrow USB
 - \triangle RX0 \rightarrow USB
- Connection between ATmega2560 and ESP32
 - ATmega2560:TX0 → ESP32:RX1
 - 2 ATmega2560:RX0 → ESP32:TX1

UART Header on eYFi-Mega Board

UART Header on eYFi-Mega Board

Thank You!

Post your queries on: helpdesk@e-yantra.org

