第二章 多原子分子

本章主要内容:

水分子的分子轨道法定性处理

Hückel分子轨道法(HMO)

分子性质的自洽场-分子轨道(SCF-MO)

金属配合物的晶体场理论和分子轨道理论

§ 2-1 水分子的分子轨道法定性处理

一、分子轨道理论大意

1、基本近似

非相对论近似、B.-O.近似、轨道近似、LCAO-MO近似

2、成键三原则

能量相近、最大重迭、对称性匹配

3、电子组态构造规则

能量最低、Pauli原理、Hund规则

4、分子轨道的性质

单电子哈密顿算符的本征函数、属于点群的不可约表示、满足正交归一性。

二、水分子的分子轨道法定性处理

1、组成分子轨道的原子轨道集合

氧原子基态电子组态: (1s)² (2s)²(2p)⁴

1s、2s、2p的轨道能分别为: -542.6 eV、-32.4 eV、-15.6 eV

氢原子基态电子组态: (1s)2

1s轨道能为: -13.6 eV

由氧的 1s、2s、2p轨道和两个氢的 1s轨道将组成7个分子轨道。

2、原子轨道的对称分类

C_{2V} 点群的特征标表

$\mathbf{C}_{2\mathcal{V}}$	E	C_2	σ _U (xz)	$\sigma_{\!V}(yz)$	
A_I	1	1	1	1	z
A_2	1	1	-1	-1	
B_{I}	1	-1	1	-1	х
B_2	1	-1	-1	1	у

(i)氧的原子轨道按分子点群不可约表示分类

C	2V	E	C_2	σ _V (xz)	$\sigma_{\!V}{}'\!(yz)$	
5	s	s	s	s	s	A_{I}
p) _z	\mathbf{p}_{z}	\mathbf{p}_{z}	\mathbf{p}_{z}	\mathbf{p}_{z}	A_I
p) y	\mathbf{p}_{y}	-p _y	-p _y	\mathbf{p}_{y}	B 2
p	D _X	p _x	- p _x	\mathbf{p}_{x}	- p _x	B_{I}

$$1s, 2s, 2p_z - --- A_1$$
; $2p_y - --- B_2$; $2p_x - --- B_1$

$$\Gamma_O = 3A_1 \oplus B_1 \oplus B_2$$

(ii) 氢原子的1s原子轨道(h_1 , h_2)按分子点群不可约表示分类

C_{2V}	E	C_2	$\sigma_{V}(xz)$	$\sigma_{V}'(yz)$
h_{1}	h_{1}	h_2	h 2	h_{1}
h_2	h_2	h 1	h 1	h 2
X	2	0	0	2

以(h1, h2) 为基的二维表示可约化为:

$$\Gamma_{h1,h2} = A_1 \oplus B_2$$

水的分子轨道的对称性分类:

$$\Gamma_{MO} = 4A_1 \oplus B_1 \oplus 2B_2$$

$$\Gamma_0 = 3A_1 \oplus B_1 \oplus B_2$$

(iii) 由氢原子的原子轨道(h_1 , h_2)构成的C2v 不可约表示 SALC(群轨道)

$$g_{A1} \propto \hat{p}^{A1} h_1 \propto \frac{1}{4} (\hat{E} + \hat{C}_2 + \hat{\sigma}_V + \hat{\sigma}_V') h_1$$

 $g_{A1} = \frac{1}{\sqrt{2}} (h_1 + h_2)$

$$g_{B_2} \propto \hat{p}^{B_2} h_1 = \frac{1}{4} (\hat{E} - \hat{C}_2 - \hat{\sigma}_V + \hat{\sigma}_V') h_1$$

 $g_{B_2} = \frac{1}{\sqrt{2}} (h_1 - h_2)$

3、 能级图

对称性匹配

能量相近

最大重迭

水的分子轨道图形(界面图)

原子轨道相互作用示意图

三、结果讨论

(1) MO的构成特点

(A) 能量最低的 $MO(1a_1)$ 全部贡献来自氧原子的 1s;

(B) 成键MO为: 2a₁、1b₂、3a₁;

(C) 最高占据轨道 $1b_1$ 是非键性质,来自氧原子的 2px;

(D) $4a_1$ 、 $2b_2$ 是反键MO(空轨道)。

(2) 电子谱项

若分子开壳层电子组态为 $(\psi_I)^1 (\psi_2)^1$,其中 ψ_I 和 ψ_2 分别属于点群的不可约表示 Γ_I 和 Γ_2 ,则电子谱项由直积表示 $\Gamma_I \otimes \Gamma_2$ 约化给出。

闭壳层组态的电子谱项属全对称表示。

基组态: $(1a_1)^2(2a_1)^2(1b_2)^2(3a_1)^2(1b_1)^2$

电子谱项: ¹A₁

第一激发组态: $(1a_1)^2(2a_1)^2(1b_2)^2(3a_1)^2(1b_1)^1(4a_1)^1$

电子谱项: ¹B₁、³B₁

小结(多原子分子定域键的分子轨道法定性处理步骤)

- (1) 分析原子轨道集合在分子对称操作下的变换性质;
- (2) 等价原子的相应AO按对称性组合成群轨道(SALC),即 分子轨道碎片:
- (3) 按对称性匹配和能量相近的原则,将不等价原子的轨道碎 片组合成分子轨道: 同位相组合 ---- 成键(无节面),

反位相组合 ---- 反键(有节面);

(4)能级图、电子组态、电子光谱项。