Introduction:

An ordered pair of real numbers (x,y) connected by an expression x+iy and denoted by 'z' is called a complex number. z=x+iy is a complex number, where $i=\sqrt{-1}$ is called an imaginary unit.

The real numbers x and y are called real and imaginary parts of z and written as R(z) and I(z) respectively.

Then $r=\sqrt{x^2+y^2}$ is called the modulus of z and is denoted by |z|

 $\theta = tan^{-1}(y/x)$ is called the amplitude (or argument) of z and is denoted by amp z (or arg z)

If z=x+iy, then the complex number x-iy is called the conjugate of the complex number z and is denoted by \bar{z} i.e $\bar{z}=x-iy$

In the polar form, $\bar{z} = r(\cos \theta - i \sin \theta)$ or $\bar{z} = r e^{-i \theta}$

Clearly,
$$|z|=|\bar{z}|=r$$
, $|z|^2=z\,\bar{z}$, $amp\,\bar{z}=-tan^{-1}(y/x)=-\theta$
$$x=\frac{z+\bar{z}}{2},\ y=\frac{z-\bar{z}}{2i}$$

Hence, if x and y are real variables, then z = x + i y is called a complex variable.

Definition of a Complex Function:

If by a rule or set of rules we can find one or more complex numbers w for every z(=x+iy) in a given domain, we say that w is a function of z and denote it as w=f(z)

Since, both z and w are complex quantities the function is called a **complex function**.

If for a given z there corresponds one and only one w then the function is called **single valued function**, otherwise function is called **multiple valued function**.

Example: (1) $w = z^2$ is a single valued function. (2) $w = \sqrt[6]{z}$ is a multiple valued function. We shall consider single valued functions only.

Note: Whenever we speak of function we shall, unless otherwise stated, assume single – valued function.

Since, z = x + iy, w = f(z) can be put in the form w = u(x, y) + iv(x, y) where, u and v are functions of x and y. Thus, we can write w = u(x, y) + iv(x, y)

CASOT 1 NANDINI RAI

Example: If
$$w = z^2 + 2z + 3$$
 then $w = (x + iy)^2 + 2(x + iy) + 3$

$$= x^2 + 2ixy - y^2 + 2x + 2iy + 3$$

$$= (x^2 - y^2 + 2x + 3) + i(2xy + 2y)$$

$$= u(x, y) + iv(x, y)$$

Differentiability of a Function f(z):

Definition: Let w=f(z) be a single valued function of z defined in domain D. f(z) is said to be differentiable at any point z if $\lim_{\delta z \to 0} \frac{\delta w}{\delta z} = \lim_{\delta z \to 0} \frac{f(z + \delta z) - f(z)}{\delta z}$ Is unique as $\delta z \to 0$ along any path of the domain D

Analytic Functions:

If a single valued function w = f(z) is defined and differentiable at each point of a domain D then it is called **analytic** or **regular** or **holomorphic** function of z in the domain D.

A function is said to be analytic at a point if it has a derivative at that point and in some neighbourhood of that point. If a function ceases to be analytic at a point of the domain then the point is called a **singular point**.

Cauchy - Riemann Equations in Cartesian Coordinates:

Theorem: The necessary and sufficient conditions for a continuous one valued function

$$w = f(z) = u(x, y) + iv(x, y)$$
 to be analytic in a region R are

- (i) $\frac{\partial u}{\partial x}$, $\frac{\partial u}{\partial y}$, $\frac{\partial v}{\partial x}$, $\frac{\partial v}{\partial x}$ are continuous functions of x and y in a region R and
- (ii) $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$ and $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$ (i. $e \ u_x = v_y \ and \ u_y = -v_x$) at each point of R.

The conditions (ii) are known as Cauchy – Riemann equations or briefly C – R equations.

- **NOTE: (1)** The Cauchy Riemann equations are only necessary conditions for a function to be analytic.

 This means even if Cauchy Riemann equations are satisfied the function need not be analytic at that point
 - (2) When f(z) is analytic, its derivative is given by any one of the following expressions.

(i)
$$f'(z) = u_x + iv_x$$
 (ii) $f'(z) = v_y + iv_x$ (iii) $f'(z) = u_x - iu_y$ (iv) $f'(z) = v_y - iu_y$

(3) If f(z) is analytic then it can be differentiated in usual manner.

e.g (1) If
$$f(z) = z^2$$
 then $f'(z) = 2z$ (2) If $f(z) = \sin z$ then $f'(z) = \cos z$

(4) If f(z) = f(x + iy) = u + iv and f(z) is analytic then the functions u and v of real variables x and y are called **conjugate functions**.

CASOT 2 NANDINI RAI

Derivatives of Elementary Functions:

1.	$\frac{d}{dz}(c) = 0$	2.	$\frac{d}{dz}(z^n) = n z^{n-1}$	3.	$\frac{d}{dz}(e^z) = e^z$
4.	$\frac{d}{dz}(a^z) = a^z \log a$	5.	$\frac{d}{dz}(\sin z) = \cos z$	6.	$\frac{d}{dz}(\cos z) = -\sin z$
7.	$\frac{d}{dz}(\tan z) = \sec^2 z$	8.	$\frac{d}{dz}(\cot z) = -\cos ec^2 z$	9.	$\frac{d}{dz}(\sec z) = \sec z \tan z$
10.	$\frac{d}{dz}(\csc z) = -\csc z \cot z$	11.	$\frac{d}{dz}(\log z) = \frac{1}{z}$	12.	$\frac{d}{dz}(log_a z) = \frac{1}{zlog_e a}$
13.	$\frac{d}{dz}(\sin^{-1}z) = \frac{1}{\sqrt{1-z^2}}$	14.	$\frac{d}{dz}(\cos^{-1}z) = -\frac{1}{\sqrt{1-z^2}}$	15.	$\frac{d}{dz}(tan^{-1}z) = \frac{1}{1+z^2}$
16.	$\frac{d}{dz}(\cot^{-1}z) = -\frac{1}{1+z^2}$	17.	$\frac{d}{dz}(sec^{-1}z) = \frac{1}{z\sqrt{z^2 - 1}}$	18.	$\frac{d}{dz}(cosec^{-1}z) = \frac{-1}{z\sqrt{z^2 - 1}}$
19.	$\frac{d}{dz}(\sin hz) = \cos hz$	20.	$\frac{d}{dz}(\cos hz) = \sin hz$	21.	$\frac{d}{dz}(\tan hz) = sech^2 z$
22.	$\frac{d}{dz}(\cot hz) = -\cos ech^2 z$	23.	$\frac{d}{dz}(\sec hz)$ = - \sec hz \tan hz	24.	$\frac{d}{dz}(cosec\ hz)$ = -cosec\ hz\ cot\ hz
25.	$\frac{d}{dz}(sinh^{-1}z) = \frac{1}{\sqrt{1+z^2}}$	26.	$\frac{d}{dz}(\cos h^{-1}z) = \frac{1}{\sqrt{z^2 - 1}}$	27.	$\frac{d}{dz}(tanh^{-1}z) = \frac{1}{1-z^2}$
28.	$\frac{d}{dz}(\cot h^{-1}z) = \frac{1}{z^2 - 1}$	29.	$\frac{d}{dz}(sech^{-1}z) = \frac{-1}{z\sqrt{1-z^2}}$	30.	$\frac{d}{dz}(\csc h^{-1}z) = \frac{-1}{z\sqrt{z^2 + 1}}$

Cauchy – Riemann Equations In Polar Coordinates:

Let (r, θ) be the polar coordinates of a point whose Cartesian coordinates are (x, y).

$$\therefore x = r\cos\theta, y = r\sin\theta, \quad z = x + iy = r(\cos\theta + i\sin\theta) = re^{i\theta}$$

Let f(z) = u + iv be the given function.

$$\therefore f(z) = u + iv = f(r e^{i\theta}) \dots (i)$$

Differentiating (i) partially w.r.t r,
$$\frac{\partial u}{\partial r} + i \frac{\partial v}{\partial r} = f'(r e^{i\theta}) \cdot e^{i\theta}$$
(ii)

Differentiating (i) partially w.r.t
$$\theta$$
, $\frac{\partial u}{\partial \theta} + i \frac{\partial v}{\partial \theta} = f'(r e^{i\theta}) \cdot r e^{i\theta} \cdot i = i r \left(\frac{\partial u}{\partial r} + i \frac{\partial v}{\partial r} \right)$ by (ii)

$$\frac{\partial u}{\partial \theta} + i \frac{\partial v}{\partial \theta} = -r \frac{\partial v}{\partial r} + ir \frac{\partial u}{\partial r}$$

Equating real and imaginary parts

$$\frac{\partial u}{\partial \theta} = -r \frac{\partial v}{\partial r} and \frac{\partial v}{\partial \theta} = r \frac{\partial u}{\partial r} \quad \text{Or} \quad \frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta} \ and \frac{\partial u}{\partial \theta} = -r \frac{\partial v}{\partial r}$$

i. e
$$u_r = \frac{1}{r}v_\theta$$
 and $v_r = -\frac{1}{r}u_\theta$

Note: From (ii) We get an important result $f'(r e^{i\theta}) = e^{-i\theta} \left(\frac{\partial u}{\partial r} + i \frac{\partial v}{\partial r} \right)$

CASOT 3 NANDINI RAI

$$\therefore f'(z) = e^{-i\theta} \left(\frac{\partial u}{\partial r} + i \frac{\partial v}{\partial r} \right)$$

SOME SOLVED EXAMPLES:

1. If f(z) and $\overline{f(z)}$ are both analytic, prove that f(z) is constant.

Solution: Let
$$f(z) = u + iv$$
 then $\overline{f(z)} = u - iv = u + i(-v)$

Since, f(z) is analytic

$$u_x = v_y$$
 and $u_y = -v_x$, $C - R$ equations

Since,
$$\overline{f(z)}$$
 is analytic

$$u_x = (-v_y)$$
 and $u_y = -(-v_x)$, $C - R$ equations

Adding
$$u_x = v_y$$
 and $u_x = -v_y$, we get, $u_x = 0$

Adding
$$u_v = -v_x$$
 and $u_v = v_x$, we get, $u_v = 0$

Since,
$$u_x = 0$$
 and $u_y = 0$, $u = a$ constant

Similarly by subtraction we can prove that $v_x=0$ and $v_y=0$ $\therefore v=a$ constant

Hence,
$$f(z) = u + iv = a$$
 constant

2. If f(z) is an analytic function, show that $\frac{\partial f}{\partial \bar{z}} = 0$

Solution: Since,
$$z = x + iy$$
, $\bar{z} = x - iy$

$$\therefore x = \frac{1}{2}(z + \bar{z}) \text{ and } y = \frac{1}{2i}(z - \bar{z})$$

Let
$$f(z) = u + iv$$

But, since f(z) is analytic,

$$u_r = v_v$$
 and $u_v = -v_r$

$$\therefore \frac{\partial f}{\partial \bar{z}} = \frac{1}{2}v_y - \frac{i}{2}v_x + \frac{i}{2}v_x - \frac{1}{2}v_y = 0$$

3. If f(z) is an analytic function and |f(z)| is constant, prove that f(z) is constant.

Or A regular function of constant magnitude is constant

Solution: Let
$$f(z) = u + iv$$
 but $|f(z)| = C$

$$\therefore u^2 + v^2 = C^2$$

Differentiating it partially w.r.t. x, $uu_x + vv_x = 0$

Differentiating it partially w.r.t. y, $uu_y + vv_y = 0$

Since, f(z) is analytic $u_x = v_y$ and $u_y = -v_x$

$$\therefore uu_x - vu_y = 0 \text{ and } uu_y + vu_x = 0$$

Eliminating
$$u_y$$
, we get, $(u^2+v^2)u_x=0$

$$\therefore C^2 u_x = 0 \qquad \therefore u_x = 0$$

Similarly, we can show that
$$u_{\gamma}=0$$
, $v_{\chi}=0$, $v_{\gamma}=0$

Since,
$$f(z)$$
 is analytic

$$f'(Z) = u_x + iv_x = 0$$
 $\therefore f(z) = \text{constant}$

4. If f(z) is analytic and if the amplitude of f(z) is constant, prove that f(z) is constant.

Solution: Let f(z) = u + iv. Since its amplitude $= \tan^{-1}(v/u)$ is constant c say, we have

$$\tan^{-1}\frac{v}{u} = c$$
 $\therefore \frac{v}{u} = \tan c$

Differentiating this w.r.t. x and y

$$\frac{uv_x - vu_x}{u^2} = 0 \text{ and } \frac{uv_y - vu_y}{u^2} = 0$$

$$uv_x - vu_x = 0$$
 and $uv_y - vu_y = 0$

Since f(z) is analytic, $u_x = v_y$ and $u_y = -v_x$

and
$$uu_x - vu_y = 0$$
(2)

Multiply the first by u and second by v and add

$$\therefore (-u^2 - v^2)u_v = 0 \qquad \therefore u_v = 0$$

Multiply the first by v and second by v and subtract

$$\therefore (-v^2 - u^2)u_x = 0 \qquad \therefore u_x = 0$$

But
$$u_x = v_y$$
 and $u_y = -v_x$

$$v_v = 0$$
 and $v_x = 0$

Since, all four partial derivatives of u, v are zero, u and v are constants

- f(z) is constant
- **5.** If f(z) = u + iv is an analytic function and u = constant then f(z) is constant.

Solution: If u is constant $u_x = 0$, $u_y = 0$

But
$$f'(z) = u_x + iv_x$$

 $= u_x - iu_y$ (By $C - R$ equations)
 $= 0$ (By data)

- $\therefore f(z)$ is constant
- **6.** Show that the following functions are analytic and find their derivatives.

(i)
$$e^z$$

(ii)
$$z^3$$

(iii)
$$ze^z$$

(iv)
$$\sin z$$

(v)
$$\sin hz$$
.

Solution: (i)

(i)
$$f(z) = e^z = e^{x+iy} = e^x \cdot e^{iy} = e^x (\cos y + i \sin y)$$

$$u = e^x \cos y$$
, $v = e^x \sin y$

$$u_x = e^x \cos y, u_y = -e^x \sin y$$
$$v_x = e^x \sin y, v_y = e^x \cos y$$

$$\therefore u_x = v_y \text{ and } u_y = -v_x$$

Further u_x,u_y,v_x,v_y are continuous and Caunchy-Riemann equations are satisfied

Hence, e^z is analytic

Now,
$$f'(z) = u_x + iv_x$$

$$= e^x \cos y + ie^x \sin y$$

$$= e^x (\cos y + i \sin y) = e^x \cdot e^{iy}$$

$$= e^{x+iy} = e^z$$

(ii)
$$f(z) = z^3 = (x + iy)^3$$

$$f(z) = x^3 + 3ix^2y - 3xy^2 - iy^3$$

$$\therefore u = x^3 - 3xy^2, \ v = 3x^2y - y^3$$

$$\therefore \frac{\partial u}{\partial x} = 3x^2 - 3y^2, \frac{\partial v}{\partial x} = 6xy$$

$$\frac{\partial u}{\partial y} = -6xy, \frac{\partial v}{\partial y} = 3x^2 - 3y^2$$

$$\therefore u_x = v_y \text{ and } u_y = -v_x$$

 $f(z) = z^3$ is analytic and can be differentiated as usual

$$\therefore f'(z) = 3z^2$$

(iii)
$$f(z) = ze^z = (x + iy)e^{x+iy}$$

$$f(z) = (x + iy)e^{x}(\cos y + i\sin y)$$

$$\therefore u = e^x (x\cos y - y\sin y), v = e^x (x\sin y + y\cos y)$$

$$\frac{\partial u}{\partial x} = e^x (x \cos y - y \sin y) + e^x \cos y$$

$$\frac{\partial u}{\partial y} = e^x(-x\sin y - y\cos y - \sin y)$$

$$\frac{\partial v}{\partial x} = e^x (x \sin y + y \cos y) + e^x \sin y$$

$$\frac{\partial v}{\partial y} = e^x (x \cos y + \cos y - y \sin y)$$

$$\therefore u_x = v_y \text{ and } u_y = -v_x$$

 $\therefore f(z) = ze^z$ is analytic and can be differentiated as usual

$$\therefore f(z) = ze^z + e^z = e^z(z+1)$$

(iv)
$$f(z) = \sin z = \sin(x + iy)$$

$$= \sin x \cosh y + i \cos x \sinh y$$

$$\therefore u = \sin x \cosh y, v = \cos x \sinh y$$

$$\frac{\partial u}{\partial x} = \cos x \cosh y$$
, $\frac{\partial v}{\partial x} = -\sin x \sinh y$

$$\frac{\partial u}{\partial y} = \sin x \sinh y$$
, $\frac{\partial v}{\partial y} = \cos x \cosh y$

$$u_x = v_y$$
 and $u_y = -v_x$

$$f(z) = \sin z$$
 is analytic and can be differentiated as usual

$$f(z) = \cos z$$

(v)
$$f(z) = \sin hz = \sinh(x + iy)$$

 $= \sinh x \cosh iy + \cosh x \sinh iy$

 $= \sinh x \cos y + i \cosh x \sinh y$

 $u = \sinh x \cos y$, $v = \cosh x \sin y$

 $u_x = \cosh x \cos y$, $u_y = -\sinh x \sin y$

 $v_x = \sinh x \sin y$, $v_y = \cosh x \cos y$

 $u_x = v_y$ and $u_y = -v_x$

Further u_x, u_y, v_x, v_y are continuous and Caunchy-Riemann equations are satisfied

Hence, $\sin hz$ is analytic

Now,
$$f'(z) = u_x + iv_x$$

$$= \cosh x \cos y + i \sinh x \sin y$$

$$= \cosh x \cosh iy + \sinh x \sinh iy$$

$$= \cosh(x + iy) = \cosh z$$

- 7. If f(z) is equal to (a) \bar{z} (b) $2x + ixy^2$, show that f'(z) does not exist
- Solution: (a) $f(z) = \overline{z} = x iy$ $\therefore u = x, v = -y$

 $u_x = 1, u_y = 0; v_y = -1, v_x = 0$

Since, $u_x \neq v_y$ Cauchy – Riemann equations are not satisfied and f'(z) does not exist

Alternatively

$$f'(z) = \lim_{\delta z \to 0} \frac{\overline{z + \delta z} - \overline{z}}{\delta z}$$

$$\therefore f'(z) = \lim_{\begin{subarray}{c} \delta x \to 0 \\ \delta y \to 0 \end{subarray}} \frac{\overline{(x + \iota y + \delta x + \iota \delta y)} - (\overline{x + \iota y})}{\delta x + \iota \delta y}$$

$$= \lim_{\begin{subarray}{c} \delta x \to 0 \\ \delta y \to 0 \end{subarray}} \frac{x - i y + \delta x - i \delta y - x + i y}{\delta x + i \delta y}$$

$$\therefore f'(z) = \lim_{\substack{\delta x \to 0 \\ \delta y \to 0}} \frac{\delta x - i \delta y}{\delta x + i \delta y}$$

If $\delta y = 0$, the required limit $= \lim_{\delta x \to 0} \frac{\delta x}{\delta x} = 1$

If $\delta x = 0$, the required limit $= \lim_{\delta y \to 0} -\frac{\delta y}{\delta y} = -1$

(b)
$$f(z) = 2x + ixy^2$$
 $\therefore u = 2x, v = xy^2$

$$u_x = 2$$
, $u_y = 0$, $v_x = y^2$, $v_y = 2xy$

Since, $u_x \neq v_y$ and $u_y \neq v_x$,

Cauchy – Riemann equations are not satisfied and hence, f'(z) does not exist

8. Show that $f(z) = z\bar{z} = |z|^2$ satisfies Cauchy – Riemann equations at z = 0 and yet is not analytic anywhere

Solution:
$$f(z) = |z|^2 = x^2 + y^2$$
 : $u = x^2 + y^2$, $v = 0$

$$\therefore \frac{\partial u}{\partial x} = 2x, \frac{\partial u}{\partial y} = 2y, \frac{\partial v}{\partial y} = 0 \text{ and } \frac{\partial v}{\partial y} = 0$$

Hence,
$$u_x = v_y = 0$$
 and $u_y = -v_x = 0$ when $x = 0$ and $y = 0$

The partial derivatives u_x , u_y , v_x , v_y are also continuous everywhere

Thus, $f'(z) = |z|^2$ is differentiable only at z = 0 but no other point. There is no

neighbourhood of z=0 in which the conditions of analyticity are satisfied. Hence, f(z) is not analytic anywhere

9. Show that $w = \frac{x}{x^2 + y^2} - \frac{iy}{x^2 + y^2}$ is an analytic function and find $\frac{dw}{dz}$ in terms of z.

Solution: Since,
$$u = \frac{x}{x^2 + y^2}$$
, $\frac{\partial u}{\partial x} = u_x = \frac{(x^2 + y^2) \cdot 1 - x \cdot 2x}{(x^2 + y^2)^2} = \frac{-x^2 + y^2}{(x^2 + y^2)^2}$

$$\frac{\partial u}{\partial y} = u_y = -\frac{x \cdot 2y}{(x^2 + y^2)^2}$$

$$v = -\frac{y}{x^2 + y^2}$$
 $\therefore \frac{\partial v}{\partial x} = v_x = +\frac{y \cdot 2x}{(x^2 + y^2)^2}$

$$\frac{\partial v}{\partial y} = v_y = -\frac{(x^2 + y^2) \cdot 1 - y \cdot 2y}{(x^2 + y^2)^2} = \frac{-(x^2 - y^2)}{(x^2 + y^2)^2} = \frac{-x^2 + y^2}{(x^2 + y^2)^2}$$

$$u_x = v_y$$
 and $u_y = -v_x$

Further u_x , u_y , v_x and v_y are continuous except at z=x+iy=0 i.e., (x=0,y=0), w is

analytic everywhere except at z=0

(Or to find $\frac{dw}{dz}$ in terms of z, put x=z,y=0 in (i) $\frac{dw}{dz}=-\frac{1}{z^2}$)

10. Find k such that $\frac{1}{2}log(x^2+y^2)+itan^{-1}\frac{kx}{y}$ is analytic.

Solution: Let
$$f(z) = \frac{1}{2}log(x^2 + y^2) + itan^{-1}\frac{kx}{y}$$

$$\therefore u = \frac{1}{2}log(x^2 + y^2), v = tan^{-1}\frac{kx}{y}$$

$$\therefore u_x = \frac{x}{x^2 + y^2}, u_y = \frac{y}{x^2 + y^2}$$

$$v_x = \frac{1}{1 + \frac{k^2 x^2}{y^2}} \cdot \frac{k}{y} = \frac{ky}{k^2 x^2 + y^2}$$

$$v_y = \frac{1}{1 + \frac{k^2 x^2}{v^2}} \cdot \left(-\frac{kx}{y^2} \right) = -\frac{kx}{k^2 x^2 + y^2}$$

Since, the function is analytic C - R equations are satisfied

$$u_x = v_y$$
 and $u_y = -v_x$

$$\therefore \frac{x}{x^2 + y^2} = -\frac{kx}{k^2 x^2 + y^2}, \quad \frac{y}{x^2 + y^2} = \frac{-ky}{k^2 x^2 + y^2}$$

which are satisfied when k = -1

11. Find the constants a, b, c, d if $f(z) = (x^2 + 2axy + by^2) + i(cx^2 + 2dxy + y^2)$ is analytic

Solution: We have f(z) = u + iv

and
$$u = x^2 + 2axy + by^2$$
; $v = cx^2 + 2dxy + y^2$

$$\therefore u_x = 2x + 2ay, u_y = 2ax + 2by$$

$$v_x = 2cx + 2dy, v_y = 2dx + 2y$$

Since, f(z) is analytic, Cauchy – Riemann equations are satisfied

$$u_x = v_y$$
 and $u_y = -v_x$

$$2x + 2ay = 2dx + 2y \text{ and } 2ax + 2by = -2cx - 2dy$$

Equating the coefficient of x and y, we get,

$$a = 1, d = 1$$
 and $a = -c, b = -d$

$$a = 1, b = -1, c = -1, d = 1$$

12. Find the values of *z* for which the following functions are not analytic.

(i)
$$z = e^{-v}(\cos u + i \sin u)$$

(ii)
$$z = \sin hu \cos v + i \cos hu \sin v$$

Solution: (i) We have $z = e^{-v}(\cos u + i \sin u) = e^{-v}e^{iu}$

$$\therefore z = e^{-v + iu} = e^{i^2v + iu} = e^{i(u+iv)} = e^{iw} \text{ where } w = u + iv$$

$$\therefore iw = \log z \qquad \therefore w = \frac{1}{i} \log z$$

$$\therefore \frac{dw}{dz} = \frac{1}{i} \cdot \frac{1}{z}$$

w is not analytic at z = 0

(ii) We have $z = \sinh u \cos v + i \cosh u \sin v$

 $= \sinh u \cosh iv + \cosh u \sinh iv$

 $= \sinh(u + iv)$ [: $\sinh ix = i \sin x$ and $\cosh ix = \cos x$]

$$= \sinh w$$

where
$$w = u + iv$$

$$\therefore w = \sinh^{-1} z = \log(z + \sqrt{z^2 + 1})$$

$$\therefore \frac{dw}{dz} = \frac{1}{z + \sqrt{z^2 + 1}} \left(1 + \frac{z}{\sqrt{z^2 + 1}} \right) = \frac{1}{\sqrt{z^2 + 1}}$$

 \therefore w is not analytic when $\sqrt{z^2+1}=0$ i.e., $z^2=-1$, i.e., $z=\pm i$

13. Find p if $f(z) = r^2 \cos 2\theta + ir^2 \sin p\theta$ is analytic.

Solution: Let $w = f(z) = u + iv = r^2 \cos 2\theta + ir^2 \sin p\theta$

$$\therefore u = r^2 \cos 2\theta, \frac{\partial u}{\partial \theta} = -2r^2 \sin 2\theta, \frac{\partial u}{\partial r} = 2r \cos 2\theta$$

$$v = r^2 \sin p\theta$$
, $\frac{\partial v}{\partial \theta} = pr^2 \cos p\theta$, $\frac{\partial v}{\partial r} = 2r \sin p\theta$

Since, f(z) is analytic

$$\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}$$
 and $\frac{\partial v}{\partial r} = -\frac{1}{r} \frac{\partial u}{\partial \theta}$

The first relation gives, $2r\cos 2\theta = \frac{1}{r} \cdot pr^2 \cos p\theta$ $\therefore p = 2$

And the second relation also gives, $2r\sin p\theta = -\frac{1}{r}(-2r^2\sin 2\theta)$ $\therefore p=2$ Hence p=2

14. If
$$w = z^n$$
 find $\frac{dw}{dz}$

Solution: Let $z = re^{i\theta}$ $\therefore z^n = r^n e^{in\theta}$

$$z^n = r^n(\cos n\theta + i\sin n\theta) = u + iv$$

$$u = r^n \cos n\theta$$
. $v = r^n \sin n\theta$

$$\frac{\partial u}{\partial r} = nr^{n-1}\cos n\theta, \frac{\partial u}{\partial \theta} = -r^n \cdot n \cdot \sin n\theta$$

$$\frac{\partial v}{\partial r} = nr^{n-1}\sin n\theta$$
, $\frac{\partial v}{\partial \theta} = nr^n\cos n\theta$

$$\therefore \frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta} \text{ and } \frac{\partial v}{\partial r} = \frac{-1}{r} \frac{\partial u}{\partial \theta}$$

Also partial derivatives are continuous. Hence, w is analytic

15. Using Cauchy – Riemann equations in polar form prove that $\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = 0$

Solution: We know that Cauchy – Riemann equations in polar form are

and
$$u_{\theta} = -rv_r$$
(ii)

Differentiating (i) w.r.t. r, we get,

$$\frac{\partial^2 u}{\partial r^2} = -\frac{1}{r^2} \frac{\partial v}{\partial \theta} + \frac{1}{r} \frac{\partial^2 v}{\partial \theta \partial r} \qquad(iii)$$

Differentiating (ii) w.r.t. θ , we get,

Now, using (iii) and (iv), we get,

$$\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = \left(-\frac{1}{r^2} \frac{\partial v}{\partial \theta} + \frac{1}{r} \frac{\partial^2 v}{\partial \theta \partial r} \right) + \frac{1}{r} \cdot \frac{1}{r} \frac{\partial v}{\partial \theta} - \frac{1}{r^2} \left(\frac{r \partial^2 v}{\partial \theta \partial r} \right)$$
$$= -\frac{1}{r^2} \frac{\partial v}{\partial \theta} + \frac{1}{r} \frac{\partial^2 v}{\partial \theta \partial r} + \frac{1}{r^2} \frac{\partial v}{\partial \theta} - \frac{1}{r} \frac{\partial^2 v}{\partial \theta \partial r} = 0$$

Note: The equation $\nabla^2 \emptyset = \frac{\partial^2 \emptyset}{\partial x^2} + \frac{\partial^2 \emptyset}{\partial y^2} = 0$ is called Laplace's equation in **Cartesian Form** and the equation

$$\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = 0 \text{ is called Laplace's equation in } \textbf{Polar Form}.$$

Harmonic Functions:

Any function of x, y which has continuous partial derivatives of the first and second order and satisfies Laplace's equation $\nabla^2 \Phi = \frac{\partial^2 \Phi}{\partial x^2} + \frac{\partial^2 \Phi}{\partial y^2} = 0$ is called a **Harmonic Function.**

Theorem: The real and imaginary parts u, v of an analytic function f(z) = u + iv are harmonic functions.

Proof: Since, f(z) is an analytic function in some region of the z – plane

$$u_x = v_y$$
 and $u_y = -v_x$ (i)

Differentiating the first w.r.t x and second w.r.t y, we get

$$\frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 v}{\partial x \, \partial y} \quad and \quad \frac{\partial^2 u}{\partial y^2} = -\frac{\partial^2 v}{\partial y \, \partial x}$$

Assuming
$$\frac{\partial^2 v}{\partial x \, \partial y} = \frac{\partial^2 v}{\partial y \, \partial x}$$
 and adding the above results we get, $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$

Similarly differentiating the equations in (i) with respect to y and x respectively,

we can show that the result $\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = 0$ $\therefore u$, v are harmonic functions.

- **Note:** (1) In other words the above theorem states that if f(z) = u + iv is analytic, then its real and imaginary parts u,v satisfy Laplace equation $\frac{\partial^2 \Phi}{\partial x^2} + \frac{\partial^2 \Phi}{\partial v^2} = 0$
 - (2) The above theorem states that f(z) = u + iv is analytic then u and v satisfy Laplace's equation i.e u and v are harmonic functions.

But, the converse is not true. If u and v are any two functions satisfying Laplace's equation then u+iv need not to be analytic.

FIND ANALYTIC FUNCTION WHOSE REAL OR IMAGINARY PART IS GIVEN

Method 1: Let f(z) = u + iv and let u be given,

since, u is given we can find u_x and u_y

As f(z) is analytic, by C – R equations $u_x = v_y$ and $u_y = -v_x$

$$\therefore f'(z) = u_x + iv_x = u_x - iu_y = \Phi(z) \text{ say}$$

Hence, by mere integration f(z) can be obtained.

Note: The method can be used only when we are able to express $u_x - iu_y$ as a function of z, say $\Phi(z)$

Method 2: Milne – Thompson's Method

Since,
$$z = x + iy$$
, $\bar{z} = x - iy$

$$\therefore x = \frac{z+\bar{z}}{2}, \ y = \frac{z-\bar{z}}{2i}$$

$$\therefore f(z) = u(x,y) + iv(x,y) = u\left[\frac{z+\bar{z}}{2}, \frac{z-\bar{z}}{2i}\right] + iv\left[\frac{z+\bar{z}}{2}, \frac{z-\bar{z}}{2i}\right]$$

This can be regarded as an identity in two independent variables, z and \bar{z} .

We can, therefore, put $\bar{z} = z$ and get f(z) = u(z, 0) + iv(z, 0)

Thus, f(z) can be obtained in terms of z by putting x = z and y = 0 in

$$f(z) = u(x, y) + iv(x, y)$$
 when $f(z)$ is analytic.

Now,
$$f'(z) = u_x + iv_x = u_x - iu_y$$
 [:: C – R equations]

Let
$$u_x = \Phi_1(x, y)$$
 and $u_y = \Phi_2(x, y)$

$$f'(z) = \Phi_1(x, y) - i\Phi_2(x, y) = \Phi_1(z, 0) - i\Phi_2(z, 0)$$

Integrating, we get
$$f(z) = \int \Phi_1(z,0)dz - i \int \Phi_2(z,0)dz + c$$

Similarly if v given arguing on the above lines we can show that

$$f(z) = \int \Psi_1(z,0)dz + i \int \Psi_2(z,0)dz + c$$
 where $v_y = \Psi_1(x,y), v_x = \Psi_2(x,y)$

SOME SOLVED EXAMPLES:

1. Construct an analytic function whose real part is $x^4 - 6x^2y^2 + y^4$

Solution: Method 1:

Let
$$u = x^4 - 6x^2y^2 + y^4$$
 and let $f(z) = u + iv$ be the required function

$$\therefore u_x = 4x^3 - 12xy^2; \ u_y = -12x^2y + 4y^3$$

$$f'(z) = u_x - iu_y$$

$$=4x^3 - 12xy^2 + 12ix^2y - 4iy^3$$

$$= 4[x^3 + 3x(iy)^2 + 3x^2(iy) + (iy)^3]$$

$$=4(x+iy)^3=4z^3$$

$$\therefore f(z) = \int f'(z) dz = \int 4z^3 dz = z^4 + c$$

Method 2: Milne-Thompson Method:

$$\Phi_1 = u_x = 4x^3 - 12xy^2; \ \Phi_2 = u_y = -12x^2y + 4y^3$$

$$f'(z) = \Phi_1(z, 0) - i\Phi_2(z, 0)$$

$$f'(z) = 4z^3 - i(0)$$

[Putting
$$x = z, y = 0$$
 in Φ_1 and Φ_2]

$$\therefore f(z) = \int 4z^3 dz = z^4 + c$$

2. Construct an analytic function whose real part is $(x-1)^3 - 3xy^2 + 3y^2$

Solution: Let $u = (x - 1)^3 - 3xy^2 + 3y^2$

$$\therefore u_x = 3(x-1)^2 - 3y^2, u_y = -6xy + 6y$$

$$\therefore \emptyset_1(x, y) = u_x = 3(x - 1)^2 - 3y^2, \emptyset_2(x, y) = u_y = -6xy + 6y$$

By Milne Thompson Method

$$f'(z) = \emptyset_1(z,0) - i\emptyset_2(z,0) = 3(z-1)^2 - i0 = 3(z-1)^2$$

$$f(z) = \int f'(z) dz = \int 3(z-1)^2 dz = (z-1)^3 + c$$

which is the required analytic function

3. Construct an analytic function whose real part is $x^2 + y^2 - 5x + y + 2$

Solution: Let
$$u = x^2 + y^2 - 5x + y + 2$$

$$u_x = 2x - 5$$
, $u_y = 2y + 1$

By Milne Thompson Method

$$f'(z) = \emptyset_1(z,0) - i\emptyset_2(z,0) = (2z-5) - i[2(0)+1] = 2z-5 - i$$

$$f(z) = \int f'(z) dz = \int (2z - 5 - i) dz + c = z^2 - 5z - iz + c$$
 is the required analytic function

4. Construct an analytic function whose real part is $e^x \cos y$.

Solution: Let
$$u = e^x \cos y$$

$$u_x = e^x \cos y$$
 and $u_y = -e^x \sin y$

$$\therefore \Phi_1 = u_x = e^x \cos y, \Phi_2 = u_y = -e^x \sin y$$

By Milne-Thompson method

$$f'(z) = \Phi_1(z,0) - i\Phi_2(z,0) = e^z - i(0)$$

$$\therefore f(z) = \int e^z dz = e^z + c$$

which is the required analytic function

5. Construct an analytic function whose real part is $e^{-x}(x \sin y - y \cos y)$

Solution: Let $u = e^{-x}(x \sin y - y \cos y)$

$$\therefore u_x = \emptyset_1(x, y) = e^{-x}(\sin y) + (x \sin y - y \cos y)(-e^{-x}) = e^{-x}(\sin y - x \sin y + y \cos y)$$

$$\therefore u_y = \emptyset_2(x, y) = e^{-x}(x \cos y + y \sin y - \cos y)$$

By Milne-Thompson method

$$f(z) = \int f'(z) dz = \int -ie^{-z}(z-1) dz = -i \int e^{-z}(z-1) dz$$

$$= -i[(z-1)(-e^{-z}) - \int (1)(-e^{-z}) dz] = -i[(-ze^{-z} + e^{-z} - e^{-z})]$$

$$= ize^{-z} + c \text{ is the required analytic function}$$

6. Construct an analytic function whose real part is $e^{-x}\{(x^2-y^2)\cos y + 2xy\sin y\}$

Solution: Let $u = e^{-x} \{ (x^2 - y^2) \cos y + 2xy \sin y \}$

$$\therefore u_x = -e^{-x}\{(x^2 - y^2)\cos y + 2xy\sin y\} + e^{-x}\{2x\cos y + 2y\sin y\}$$

$$u_y = e^{-x}[-(x^2 - y^2)\sin y - 2y\cos y + 2x\sin y + 2xy\cos y]$$

$$\therefore \Phi_1 = u_r$$
 and $\Phi_2 = u_v$

By Milne-Thompson method

$$f'(z) = \Phi_1(z, 0) - i\Phi_2(z, 0) = e^{-z}[-z^2 + 2z]$$

$$f(z) = \int e^{-z}(-z^2 + 2z) dz$$

$$= (-z^2 + 2z)(-e^{-z}) - \int (-e^{-z})(-2z + 2) dz$$

$$= e^{-z}(z^2 - 2z) + \int e^{-z}(2 - 2z) dz$$

$$= e^{-z}(z^2 - 2z) + (2 - 2z)(-e^{-z}) - \int (-e^{-z})(-2) dz$$

$$= e^{-z}(z^2 - 2z) - e^{-z}(2 - 2z) + 2e^{-z}$$
$$= z^2e^{-z} + c$$

7. Construct an analytic function whose real part is
$$\frac{\sin 2x}{\cos h 2y + \cos 2x}$$

Solution: Let
$$u = \frac{\sin 2x}{\cos h \, 2y + \cos 2x}$$

$$\therefore \Phi_1 = u_x = \frac{(\cosh 2y + \cos 2x)(2\cos 2x) + \sin 2x \cdot 2\sin 2x}{(\cosh 2y + \cos 2x)^2} = \frac{2\cosh 2y\cos 2x + 2\cos 2x}{(\cosh 2y + \cos 2x)^2}$$

$$\Phi_2 = u_y = \frac{-\sin 2x \cdot 2\sinh(2y)}{(\cosh 2y + \cos 2x)^2}$$

By Milne-Thompson method

$$\therefore f'(z) = \Phi_1(z,0) - i\Phi_2(z,0) = \frac{2\cos 2z + 2}{(1 + \cos 2z)^2} - 0 = \frac{2}{1 + \cos 2z} = \sec^2 z$$

$$\therefore f(z) = \int \sec^2 z \, dz = \tan z + c$$

8. Find an analytic function whose imaginary part is
$$(x^4 - 6x^2y^2 + y^4) + (x^2 - y^2) + 2xy$$

Solution: We have
$$v = (x^4 - 6x^2y^2 + y^4) + (x^2 - y^2) + 2xy$$

$$\therefore v_y = \Psi_1(x, y) = -12x^2y + 4y^3 - 2y + 2x$$

$$v_x = \Psi_2(x, y) = 4x^3 - 12xy^2 + 2x + 2y$$

We use Milne-Thompson method

$$\Psi_1(z,0) = 2z, \Psi_2(z,0) = 4z^3 + 2z$$

Now,
$$f(z) = \int \Psi_1(z, 0) dz + i \int \Psi_2(z, 0) dz$$

= $\int 2z dz + i \int (4z^3 + 2z) dz$
= $z^2 + i(z^4 + z^2) + c$

9. Find an analytic function whose imaginary part is
$$\cos x \cos h y$$

Solution: Let $v = \cos x \cosh y$

$$\therefore v_y = \Psi_1(x, y) = \cos x \sinh y, v_x = \Psi_2(x, y) = -\sin x \cosh y$$

By using Milne-Thompson method

$$\Psi_1(z,0) = 0, \Psi_2(z,0) = -\sin z$$

$$f'(z) = \Psi_1(z,0) + i\Psi_2(z,0) = i(-\sin z)$$

$$f(z) = \int f'(z) dz = \int -i \sin z dz = i \cos z + c$$
 is the required analytic function

10. Find an analytic function whose imaginary part is $\sin h x \sin y$

Solution: Let $v = \sin h x \sin y$

$$\therefore v_y = \Psi_1(x, y) = \sin h \, x \cos y, v_x = \Psi_2(x, y) = \cosh x \sin y$$

By using Milne-Thompson method

$$\Psi_1(z,0) = \sinh z, \Psi_2(z,0) = 0$$

$$f'(z) = \Psi_1(z,0) + i\Psi_2(z,0) = \sinh z$$

$$\therefore f(z) = \int f'(z) \, dz = \int \sinh z \, dz = \cosh z + c \text{ is the required analytic function}$$

11. Find an analytic function whose imaginary part is $e^x(x \sin y + y \cos y)$

Solution: Let
$$v = e^x(x \sin y + y \cos y)$$

$$v_y = \Psi_1(x, y) = e^x(x \cos y - y \sin y + \cos y), v_x = \Psi_2(x, y) = e^x(\sin y + x \sin y + y \cos y)$$

By using Milne-Thompson method

$$\Psi_1(z,0) = e^z(z+1), \Psi_2(z,0) = 0$$

$$f'(z) = \Psi_1(z,0) + i\Psi_2(z,0) = e^z(z+1)$$

$$f(z) = \int f'(z) dz = \int e^z (z+1) dz = (z+1)e^z - \int (1)e^z dz = (z+1)e^z - e^z + c = ze^z + c$$

is the required analytic function

12. Find an analytic function whose imaginary part is $e^{-x}(y\cos y - x\sin y)$

Solution: We have
$$v = e^{-x}(y\cos y - x\sin y)$$

$$v_y = \Psi_1(x, y) = e^{-x}(\cos y - y \sin y - x \cos y)$$
$$v_x = \Psi_2(x, y) = -e^{-x}(y \cos y - x \sin y) + e^{-x}(-\sin y)$$

$$= e^{-x}(-\sin y - y\cos y + x\sin y)$$

We use Milne-Thompson method

$$\Psi_1(z,0) = e^{-z}(1-z), \Psi_2(z,0) = 0$$

Now,
$$f(z) = \int \Psi_1(z,0) dz + i \int \Psi_2(z,0) dz = \int (1-z)e^{-z} dz$$

$$= (1-z)(-e^{-z}) - \int (-e^{-z})(-1) dz$$

$$= -e^{-z} + ze^{-z} + e^{-z} = ze^{-z} + c$$

13. Find an analytic function whose imaginary part is $e^{-x}(y \sin y + x \cos y)$

Solution: We have $v = e^{-x}(y \sin y + x \cos y)$

$$v_y = \Psi_1(x, y) = e^{-x}(\sin y + y \cos y - x \sin y)$$

$$v_x = \Psi_2(x, y) = -e^{-x}(y \sin y + x \cos y) + e^{-x}(\cos y)$$

$$= e^{-x}(\cos y - y \sin y - x \cos y)$$

We use Milne-Thompson method

$$\Psi_1(z,0) = 0, \Psi_2(z,0) = e^{-z}(1-z)$$

Now,
$$f(z) = \int \Psi_1(z,0) dz + i \int \Psi_2(z,0) dz = i \int e^{-z} (1-z) dz$$

$$= i[(1-z)(-e^{-z}) - \int -e^{-z} (-1) dz]$$

$$= i[(1-z)(-e^{-z}) + e^{-z}]$$

$$f(z) = ie^{-z}z + c$$

14. Find an analytic function whose imaginary part is
$$tan^{-1}\frac{y}{x}$$

Solution: We have $v = tan^{-1} \frac{y}{x}$

$$\therefore v_y = \Psi_1(x, y) = \frac{1}{1 + (y^2/x^2)} \cdot \frac{1}{x} = \frac{x}{x^2 + y^2}$$

$$v_x = \Psi_2(x, y) = \frac{1}{1 + (y^2/x^2)} \left(-\frac{y}{x^2} \right) = -\frac{y}{x^2 + y^2}$$

We use Milne-Thompson method

$$\therefore \Psi_1(z,0) = \frac{z}{z^2} = \frac{1}{z}, \Psi_2(z,0) = 0$$

Now,
$$f(z) = \int \Psi_1(z, 0) dz + i \int \Psi_2(z, 0) dz = \int \frac{1}{z} dz = \log z + c$$

15. If the imaginary part of the analytic function w = f(z) is $v = x^2 - y^2 + \frac{x}{x^2 + y^2}$. Show that the real part

$$u = -2xy + \frac{y}{x^2 + y^2} + c$$

Solution: We have $v = x^2 - y^2 + \frac{x}{x^2 + y^2}$

$$\therefore v_y = \Psi_1(x, y) = -2y - \frac{2xy}{(x^2 + y^2)^2}$$

$$v_x = \Psi_2(x, y) = 2x - \frac{x^2 - y^2}{(x^2 + y^2)^2}$$

We use Milne-Thompson method

$$\therefore \Psi_1(z,0) = 0, \Psi_2(z,0) = 2z - \frac{1}{z^2}$$

$$f'(z) = v_y + iv_x = \Psi_1(z, 0) + i \Psi_2(z, 0)$$

Now,
$$f(z) = \int \Psi_1(z, 0) dz + i \int \Psi_2(z, 0) dz$$

$$= i \int \left(2z - \frac{1}{z^2}\right) dz = i \left(z^2 + \frac{1}{z}\right)$$

$$= i(x+iy)^2 + i \cdot \frac{1}{x+iy} \cdot \frac{x-iy}{x-iy}$$

$$= i(x^2 + 2ixy - y^2) + i\frac{(x-iy)}{x^2+y^2}$$

$$\therefore f(z) = \left(-2xy + \frac{y}{x^2 + y^2}\right) + i\left(x^2 - y^2 + \frac{x}{x^2 + y^2}\right) + c$$

$$\therefore u = -2xy + \frac{y}{x^2 + y^2} + c$$

16. Check whether $u = x + e^{xy} + y + e^{-xy}$ is harmonic

Solution: $u = x + e^{xy} + y + e^{-xy}$; for a function to harmonic, it must satisfy Laplace's equation

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$

$$u = x + e^{xy} + y + e^{-xy}$$

$$\therefore \frac{\partial u}{\partial x} = 1 + e^{xy}(y) + e^{-xy}(-y)$$

$$\frac{\partial^2 u}{\partial x^2} = y^2 e^{xy} + y^2 e^{-xy} y^2$$

$$\frac{\partial u}{\partial y} = e^{xy}(x) + 1 + e^{-xy}(-x)$$

$$\frac{\partial^2 u}{\partial y^2} = e^{xy}(x^2) + x^2 e^{-xy}$$

$$\therefore \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = (x^2 + y^2)(e^{xy} + e^{-xy}) \neq 0$$

It does not satisfy Laplace's equations \therefore the function u is not harmonic

17. State true or false with proper justification "There does not exist an analytic function whose real part is

$$x^3 - 3x^2y - y^3$$
"

Solution: We shall use the theorem to check whether $u=x^3-3x^2y-y^3$ is a real part of some analytic function. By the result, $u=x^3-3x^2y-y^3$ must satisfy Laplace's equation

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$
 if it is real part of some analytic function

Now
$$\frac{\partial u}{\partial x} = 3x^2 - 6xy$$
, $\frac{\partial^2 u}{\partial x^2} = 6x - 6y$
 $\frac{\partial u}{\partial y} = -3x^2 - 3y^2$, $\frac{\partial^2 u}{\partial y^2} = -6y$

$$\therefore \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 6x - 12y \neq 0$$

 \div There does not exist an analytic function whose real part is $u=x^3-3x^2y-y^3$

18. If u(x, y) is a harmonic function then prove that $f(z) = u_x - i u_y$ is an analytic function.

Solution: Since u is harmonic

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 \qquad \dots (1)$$

By data
$$f(z) = u_x - i u_y$$

Let
$$u_x = U$$
 and $-u_y = V$, so that $f(z) = U + iV$

We have to show that f(z) is analytic

Now,
$$U_x = \frac{\partial^2 u}{\partial x^2} = -\frac{\partial^2 u}{\partial y^2}$$
 [By (1)]

and
$$U_y = \frac{\partial^2 u}{\partial x \, \partial y}$$

$$V_x = -\frac{\partial^2 u}{\partial y \partial x}$$
 and $V_y = -\frac{\partial^2 u}{\partial y^2}$

$$\therefore U_x = V_y \text{ and } U_y = -V_x$$

$$\therefore f(z) = U + iV$$
 is analytic i.e., $f(z) = u_x - iu_y$ is analytic

19. If u, v are harmonic conjugate functions, show that uv is a harmonic function.

Solution: Let f(z) = u + iv is analytic function

$$\therefore u_x = v_y \text{ and } u_y = -v_x$$

And u, v are harmonic

Now,
$$\frac{\partial}{\partial x}(uv) = u\frac{\partial v}{\partial x} + v\frac{\partial u}{\partial x}$$

Similarly, we can prove that

$$\therefore \frac{\partial^2}{\partial v^2}(uv) = u \frac{\partial^2 v}{\partial v^2} + v \frac{\partial^2 u}{\partial v^2} + 2 \frac{\partial u}{\partial v} \cdot \frac{\partial v}{\partial v}$$

But
$$u_x = v_y$$
 and $u_y = -v_x$

Adding (2) and (3), we get

$$\frac{\partial^2}{\partial x^2}(uv) + \frac{\partial^2}{\partial y^2}(uv) = u\left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2}\right) + v\left(\frac{\partial^2 u}{\partial x^2} + v\frac{\partial^2 u}{\partial y^2}\right) = 0 \text{ [By (1)]}$$

∴ *uv* is harmonic

20. If Φ and ψ are function of x and y satisfying Laplace equation and if $u = \Phi_y - \psi_x$, $v = \Phi_x + \psi_y$ prove that u + iv is analytic (holomorphic)

Solution: Since Φ and ψ satisfy Laplace equation, we have

and
$$\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} = 0$$
(2)

Now,
$$u_x = \Phi_{yx} - \psi_{xx} = \Phi_{xy} + \psi_{yy}$$
 [By (2)]

And
$$u_y = \Phi_{yy} - \psi_{xy} = -(\Phi_{xx} + \psi_{xy})$$
 [By (1)]

Similarly,
$$v_x = \Phi_{xx} + \psi_{xy}$$
 and $v_y = \Phi_{xy} + \psi_{yy}$

Hence,
$$u_x = v_y$$
 and $u_y = -v_x$

Hence, u + iv is analytic

21. If Φ and ψ are functions satisfying Laplace equation, then show that s+it is holomorphic (analytic) where $s=\frac{\partial\Phi}{\partial v}-\frac{\partial\psi}{\partial x}$ and $t=\frac{\partial\Phi}{\partial x}+\frac{\partial\psi}{\partial y}$

Solution: Since Φ and ψ satisfies Laplace's equation

$$\frac{\partial^2 \Phi}{\partial x^2} + \frac{\partial^2 \Phi}{\partial y^2} = 0 \text{ and } \frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial y^2} = 0 \qquad(1)$$

Now,
$$\frac{\partial s}{\partial x} = \frac{\partial^2 \Phi}{\partial y \partial x} - \frac{\partial^2 \Psi}{\partial x^2} = \frac{\partial^2 \Phi}{\partial y \partial x} + \frac{\partial^2 \Psi}{\partial y^2}$$
 [By (1)](2)

$$\frac{\partial s}{\partial y} = \frac{\partial^2 \Phi}{\partial y^2} - \frac{\partial^2 \Psi}{\partial x \partial y} = -\frac{\partial^2 \Phi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial x \partial y}$$
 [By (1)](3)

Also,
$$\frac{\partial t}{\partial x} = \frac{\partial^2 \Phi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial x \partial y}$$
(4)

$$\frac{\partial t}{\partial y} = \frac{\partial^2 \Phi}{\partial x \partial y} + \frac{\partial^2 \Psi}{\partial y^2} \qquad(5)$$

From (2) and (5), we have
$$\frac{\partial s}{\partial x} = \frac{\partial t}{\partial y}$$

From (3) and (4), we have
$$\frac{\partial s}{\partial y} = -\frac{\partial t}{\partial x}$$

Since, s + it satisfies Cauchy-Riemann equations it is analytic

22. Find the imaginary part of the analytic function whose real part is $e^{2x}(x\cos 2y - y\sin 2y)$ also verify that v is harmonic.

Solution: Let
$$u = e^{2x}(x\cos 2y - y\sin 2y)$$

$$\therefore \Phi_1 = u_x = e^{2x} \cdot 2(x\cos 2y - y\sin 2y) + e^{2x}(\cos 2y)$$

$$= e^{2x}(2x\cos 2y - 2y\sin 2y + \cos 2y)$$

$$\Phi_2 = u_y = e^{2x}(-2x\sin 2y - \sin 2y - 2y\cos 2y)$$

By Milne-Thompson method

Now,
$$f(z) = e^{2(x+iy)} \cdot (x+iy) = e^{2x} \cdot e^{2iy}(x+iy) = e^{2x}[\cos 2y + i \sin 2y](x+iy)$$

$$\therefore v = e^{2x}(y\cos 2y + x\sin 2y)$$

$$\therefore \frac{\partial v}{\partial x} = 2e^{2x}(y\cos 2y + x\sin 2y) + e^{2x}(\sin 2y)$$

$$\frac{\partial^2 v}{\partial x^2} = 4e^{2x}(y\cos 2y + x\sin 2y) + 4e^{2x}(\sin 2y)$$

$$\frac{\partial v}{\partial y} = e^{2x} (\cos 2y - 2y \sin 2y + 2x \cos 2y)$$

$$\frac{\partial^2 v}{\partial y^2} = e^{2x} (-2 \sin 2y - 2 \sin 2y - 4y \cos 2y - 4x \sin 2y)$$

$$= e^{2x} (-4 \sin 2y - 4y \cos 2y - 4x \sin 2y)$$

23. Show that the following function is harmonic and find the corresponding analytic function f(z) = u + iv $u = \sin x \cos hy + 2 \cos x \sin hy + x^2 - y^2 + 4xy$

Solution: We have
$$\frac{\partial u}{\partial x} = \cos x \cosh y - 2 \sin x \sinh y + 2x + 4y$$
$$\frac{\partial^2 u}{\partial x^2} = -\sin x \cosh y - 2 \cos x \sinh y + 2$$
$$\frac{\partial u}{\partial y} = \sin x \sinh y + 2 \cos x \cosh y - 2y + 4x$$
$$\frac{\partial^2 u}{\partial y} = \sin x \sinh y + 2 \cos x \cosh y - 2y + 4x$$

$$\frac{\partial^2 u}{\partial y^2} = \sin x \cosh y + 2 \cos x \sinh y - 2$$

$$\therefore \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$

Hence, u satisfies Laplace's equation u is a harmonic function

Now
$$u_x = \Phi_1(x, y) = \cos x \cosh y - 2 \sin x \sinh y + 2x + 4y$$

$$: \Phi_1(z,0) = \cos z + 2z$$

$$u_y = \Phi_2(x, y) = \sin x \sinh y + 2\cos x \cosh y - 2y + 4x$$

$$\Phi_2(z,0) = 2\cos z + 4z$$

Now, Milne-Thompson Method

$$f'(z) = \Phi_1(z, 0) - i\Phi_2(z, 0) = (\cos z + 2z) - i(2\cos z + 4z)$$

$$f(z) = \int [(\cos z + 2z) - i(2\cos z + 4z)] dz = \sin z + z^2 - i(2\sin z + 2z^2) + c$$

24. Show that the following functions are harmonic. Also find the corresponding harmonic conjugate function and analytic function.

CASOT 19 NANDINI RAI

(i)
$$u = y^3 - 3x^2y$$

Solution: Since
$$u = v^3 - 3x^2v$$

$$u_x = -6xy$$
, $u_{xx} = -6y$; $u_y = 3y^2 - 3x^2$, $u_{yy} = 6y$

$$u = x^3 - 3x^2y$$
 is a harmonic function

Since, $u = y^3 - 3x^2y$ by Milne-Thompson method

$$u_x = \Phi_1 = -6xy$$
, $u_y = \Phi_2 = 3y^2 - 3x^2$

$$f'(z) = \Phi_1(z, 0) - i\Phi_2(z, 0) = 0 + 3iz^2$$

$$f(z) = \int 3iz^2 dz = iz^3 + c$$
 as above is required analytic function

Now,
$$f(z) = i(x + iy)^3 = i(x^3 + 3ix^2y - 3xy^2 - iy^3)$$

$$\therefore u + iv = -3x^2y + y^3 + i(x^3 - 3xy^2)$$

$$\therefore v = x^3 - 3xy^2 \text{ is harmonic conjugate}$$

(ii)
$$v = e^x \sin y$$

Solution: We have

$$\frac{\partial v}{\partial x} = e^x \sin y, \quad \frac{\partial^2 v}{\partial x^2} = e^x \sin y$$

$$\frac{\partial v}{\partial y} = e^x \cos y$$
, $\frac{\partial^2 v}{\partial y^2} = -e^x \sin y$

$$\therefore \frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = 0$$

v is a harmonic function

Now, we use, Milne-Thompson Method

$$v_x = e^x \sin y$$
 $\psi_2(z,0) = 0$

$$v_y = e^x \cos y$$
 $\therefore \psi_1(z, 0) = e^z$

$$\therefore f'(z) = \psi_1(z,0) + i \, \psi_2(z,0) = e^z + 0$$

$$\therefore f(z) = e^z + c$$

Now,
$$f(z) = e^z = e^{x+iy} = e^x \cdot e^{iy} = e^x (\cos y + i \sin y)$$

$$\therefore u = e^x \cos y$$

(iii) $u = \cos x \cos hy$

Solution: We have

CASOT

$$\frac{\partial u}{\partial x} = -\sin x \cosh y, \quad \frac{\partial^2 u}{\partial x^2} = -\cos x \cosh y$$

$$\frac{\partial u}{\partial y} = \cos x \sinh y, \qquad \frac{\partial^2 u}{\partial y^2} = \cos x \cosh y$$

$$\therefore \nabla^2 u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = 0$$

$$\therefore u$$
 satisfies Laplace's equation

$$u$$
 is a harmonic function

Now, we use, Milne-Thompson Method

Now,
$$u_x = \Phi_1(x, y) = -\sin x \cosh y$$

$$\therefore \Phi_1(z,0) = -\sin z$$

$$u_y = \Phi_2(x, y) = \cos x \sinh y$$

$$\Phi_2(z,0)=0$$

$$f'(z) = \Phi_1(z,0) - i\Phi_2(z,0) = -\sin z$$

$$\therefore f(z) = \int -\sin z \, dz = \cos z + c \text{ is the required analytic function}$$

Now,
$$f(z) = \cos(x + iy) = \cos x \cos iy - \sin x \sin iy$$

$$u + iv = \cos x \cosh y - \sin x \sinh y$$

 $v = -\sin x \sinh y$ is the required harmonic conjugate

(iv)
$$v = 3x^2y + 6xy - y^3$$

Solution: We have

$$\frac{\partial v}{\partial x} = 6xy + 6y, \quad \frac{\partial^2 v}{\partial x^2} = 6y$$

$$\frac{\partial v}{\partial y} = 3x^2 + 6x - 3y^2$$
, $\frac{\partial^2 v}{\partial y^2} = -6y$

$$\therefore \frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = 6y - 6y = 0$$

 $\therefore v$ satisfies Laplace's equation

v is a harmonic function

Now, we use, Milne-Thompson Method

$$v_x = 6xy + 6y$$
 \therefore $\psi_2(z,0) = 0$

$$v_y = 3x^2 + 6x - 3y^2$$
 $\psi_1(z, 0) = 3z^2 + 6z$

$$f'(z) = \psi_1(z,0) + i \psi_2(z,0) = (3z^2 + 6z) + 0$$

$$\therefore f(z) = \int (3z^2 + 6z) \, dz = (z^3 + 3z^2) + c$$

$$\therefore f(z) = z^3 + 3z^2$$

$$=(x+iy)^3+3(x+iy)^2$$

$$= (x^3 + 3ix^2y - 3xy^2 - iy^3) + 3(x^2 + 2ixy - y^2)$$

$$= (x^3 - 3xy^2 + 3x^2 - 3y^2) + i(3x^2y - y^3 + 6xy)$$

∴ harmonic conjugate

$$u = x^3 - 3xy^2 + 3x^2 - 3y^2$$

(v)
$$u = 2x(1-y)$$

Solution:
$$\frac{\partial u}{\partial x} = 2(1-y)$$
 $\frac{\partial^2 u}{\partial x^2} = 0$

$$\frac{\partial u}{\partial y} = 2x(-1) \qquad \frac{\partial^2 u}{\partial y^2} = 0$$

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$
 it satisfies Laplace equation

 $\therefore u$ is a harmonic function

$$u_x = \emptyset_1(x, y) = 2(1 - y)$$
 $\emptyset_1(z, 0) = 2$

$$\emptyset_{*}(z,0)=2$$

$$u_v = \emptyset_2(x, y) = -2x$$

$$\emptyset_2(z,0) = -2z$$

By Milne-Thompson Method, $f'(z) = \emptyset_1(z, 0) - i\emptyset_2(z, 0) = 2 - i(-2z) = 2 + i(2z)$

$$\therefore f(z) = \int f'(z) dz = \int 2 + i(2z)dz = 2z + iz^2 + c$$

$$f(z) = 2(x+iy) + i(x+iy)^2 + c = 2x + 2iy + i(x^2 + 2ixy - y^2) + c$$
$$= i(2y + x^2 - y^2) + (2x - 2xy) + c$$

imaginary part = $v = 2y + x^2 - y^2$

(vi)
$$u = 3x^2y - y^3$$

Solution:
$$\frac{\partial u}{\partial x} = 6xy$$
 $\frac{\partial^2 u}{\partial x^2} = 6y$

$$\frac{\partial u}{\partial y} = 3x^2 - 3y^2 \qquad \frac{\partial^2 u}{\partial y^2} = -6y$$

$$\therefore \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$
 it satisfies Laplace equation

 $\therefore u$ is a harmonic function

$$\therefore u_x = \emptyset_1(x, y) = 6xy \qquad \qquad \therefore \emptyset_1(z, 0) = 0$$

$$\phi_1(z,0)=0$$

$$u_{\nu} = \emptyset_2(x, y)$$

$$u_y = \emptyset_2(x, y) = 3x^2 - 3y^2$$
 $\emptyset_2(z, 0) = 3z^2$

By Milne-Thompson Method,

$$f'(z) = u_x - iu_y = \emptyset_1(z, 0) - i\emptyset_2(z, 0) = -i(3z^2)$$

$$f(z) = \int f'(z) dz = \int -i(3z^2) dz = -iz^3 + c$$

$$\therefore f(z) = -iz^3 + c$$

$$= -i[x + iv]^3 + c$$

$$= -i[x^3 + 3ix^2y - 3xy^2 - iy^3]$$

$$= (3x^2y - y^3) - i(x^3 - 3xy^2)$$

 \therefore Harmonic conjugate is $v = -x^3 + 3xv^2$

(vii)
$$u = 2a xy + b (y^2 - x^2)$$

Solution:
$$u = 2axy + b(y^2 - x^2)$$

$$\frac{\partial u}{\partial x} = 2ay + b(-2x) \qquad \frac{\partial^2 u}{\partial x^2} = -2b$$

$$\frac{\partial u}{\partial y} = 2ax + 2by \qquad \qquad \frac{\partial^2 u}{\partial y^2} = 2b$$

$$\therefore \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = -2b + 2b = 0$$

it satisfies Laplace equation

 $\therefore u$ is a harmonic function

Now we use Milne Thompson method

$$u_x = 2ay - 2bx \qquad \emptyset_1(z, 0) = -2bz$$

$$\emptyset_1(z,0) = -2bz$$

$$u_{\nu} = 2ax + 2by$$

$$u_{y} = 2ax + 2by \qquad \emptyset_{2}(z,0) = 2az$$

$$f'(z) = \emptyset_1(z, 0) - i\emptyset_2(z, 0) = -2bz - i2az$$

$$f(z) = \int f'(z) dz = \int -2bz dz - \int i2az dz = -bz^2 - iaz^2 + c = -z^2(b + ai) + c$$

$$\therefore f(z) = -(x+iy)^2(b+ai) + c$$

$$= -(x^2 + 2ixy - y^2)(b + ai) + c$$

$$= -(x^2b + aix^2 + 2xybi - 2axy - by^2 - ay^2i) + c$$

$$= (2axy - x^2b + by^2) + (ay^2 - ax^2 - 2xyb)i + c$$

$$\therefore v = ay^2 - ax^2 - 2xyb \text{ is the harmonic conjugate}$$

(viii)
$$u = \frac{1}{2}\log(x^2 + y^2)$$

Solution: We have
$$\frac{\partial u}{\partial x} = \frac{x}{x^2 + y^2}$$

$$\therefore \frac{\partial^2 u}{\partial x^2} = \frac{(x^2 + y^2) \cdot 1 - x \cdot 2x}{(x^2 + y^2)^2} = \frac{-x^2 + y^2}{(x^2 + y^2)^2}$$

Similarly,
$$\frac{\partial u}{\partial y} = \frac{y}{x^2 + y^2}$$

$$\frac{\partial^2 u}{\partial y^2} = \frac{(x^2 + y^2) \cdot 1 - y \cdot 2y}{(x^2 + y^2)^2} = \frac{x^2 - y^2}{(x^2 + y^2)^2}$$

$$\therefore \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \frac{-x^2 + y^2 + x^2 - y^2}{(x^2 + y^2)^2} = 0$$

∴ u satisfies Laplace's equation

 $\therefore u$ is a harmonic function

Now,
$$u_x = \Phi_1(x, y) = \frac{x}{x^2 + y^2}$$
 $\therefore \Phi_1(z, 0) = \frac{z}{z^2 + 0} = \frac{1}{z}$

$$u_y = \Phi_2(x, y) = \frac{y}{x^2 + y^2}$$
 $\therefore \Phi_2(z, 0) = 0$

By Milne-Thompson Method

$$\therefore f'(z) = \Phi_1(z,0) - i\Phi_2(z,0) = \frac{1}{z} - i0 = \frac{1}{z}$$

$$\therefore f(z) = \int_{z}^{1} dz = \log z + c = \log(x + iy) + c$$

$$\therefore u + iv = \frac{1}{2}\log(x^2 + y^2) + i\tan^{-1}\frac{y}{x} + c$$

 $\therefore v = \tan^{-1} \frac{y}{r} + c$ is the corresponding harmonic conjugate

25. Prove that $u = x^2 - y^2$, $v = -\frac{y}{x^2 + y^2}$ both u and v satisfy Laplace's equation, but that u + iv is not an analytic function of z.

Solution:
$$u_x = 2x$$
, $u_{xx} = 2$; $u_y = -2y$, $u_{yy} = -2y$

$$v_x = \frac{2xy}{(x^2+y^2)^2}$$
, $v_{xx} = 2y \left[\frac{(x^2+y^2)^2 \cdot 1 - x \cdot 2(x^2+y^2) \cdot 2x}{(x^2+y^2)^4} \right]$

$$\therefore v_{xx} = \frac{2y(x^2 + y^2)[x^2 + y^2 - 4x^2]}{(x^2 + y^2)^4} = 2y \frac{(y^2 - 3x^2)}{(x^2 + y^2)^3}$$

$$v_y = -\left[\frac{(x^2+y^2)\cdot 1 - y\cdot 2y}{(x^2+y^2)^2}\right] = \frac{y^2 - x^2}{(x^2+y^2)^2}$$

$$v_{yy} = \frac{(x^2+y^2)^2 \cdot 2y - (y^2-x^2) \cdot 2(x^2+y^2) \cdot 2y}{(x^2+y^2)^4}$$
$$= 2y(x^2+y^2) \frac{[x^2+y^2-2y^2+2x^2]}{(x^2+y^2)^4}$$

$$=2y\frac{(3x^2-y^2)}{(x^2+y^2)^3}$$

$$\ \, \dot{\cdot} \,\, u_{xx} + u_{yy} = 0 \text{ and } v_{xx} + v_{yy} = 0 \\$$

Hence, u, v satisfy Laplace's equations

But Cauchy-Riemann equations are not satisfied as $u_x \neq v_y$ and $u_y \neq -v_x$ Hence, u + iv is not analytic

State Laplace's equation in polar form and verity it for $u = r^2 \cos 2\theta$ and also find v and f(z). 26.

Laplace's equation in polar form is $\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = 0$

$$u = r^2 \cos 2\theta$$

$$\therefore \frac{\partial u}{\partial r} = 2r\cos 2\theta , \frac{\partial^2 u}{\partial r^2} = 2\cos 2\theta$$

$$\frac{\partial u}{\partial \theta} = -2r^2 \sin 2\theta \qquad \therefore \frac{\partial^2 u}{\partial \theta^2} = -4r^2 \cos 2\theta$$

$$\therefore \frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2}$$

$$= 2\cos 2\theta + \frac{1}{r}(2r\cos 2\theta) + \frac{1}{r^2}(-4r^2\cos 2\theta) = 4\cos 2\theta - 4\cos 2\theta = 0$$

: Laplace's equation is satisfied

By Cauchy-Riemann equations in polar form

$$u_r = \frac{1}{r}v_\theta$$
 $\therefore \frac{\partial u}{\partial r} = \frac{1}{r}\frac{\partial v}{\partial \theta}$

$$\therefore \frac{\partial v}{\partial \theta} = r(2r\cos 2\theta) = 2r^2\cos 2\theta$$

Integrating w.r.t. θ , $v = r^2 \sin 2\theta + c$

Hence,
$$f(z) = u + iv = r^2 \cos 2\theta + ir^2 \sin 2\theta + c$$

$$= r^2(\cos 2\theta + i \sin 2\theta) + c$$

$$= r^2 e^{i2\theta} = (re^{i\theta})^2 + c = z^2 + c$$

27. Verify Laplace's equation for $u = \left(r + \frac{a^2}{r}\right)\cos\theta$. Also find v and f(z).

Solution:
$$u = \left(r + \frac{a^2}{r}\right)\cos\theta$$

$$\therefore \frac{\partial u}{\partial r} = \left(1 - \frac{a^2}{r^2}\right) \cos \theta, \quad \frac{\partial^2 u}{\partial r^2} = \frac{2a^2}{r^3} \cos \theta$$

$$\frac{\partial u}{\partial \theta} = -\left(r + \frac{a^2}{r}\right)\sin\theta, \frac{\partial^2 u}{\partial \theta^2} = -\left(r + \frac{a^2}{r}\right)\cos\theta$$

$$\therefore \frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2}$$

$$=\frac{2a^2}{r^3}\cos\theta+\frac{1}{r}\cdot\left(1-\frac{a^2}{r^2}\right)\cos\theta-\frac{1}{r^2}\left(r+\frac{a^2}{r}\right)\cos\theta=0$$

: Laplace's equation is satisfied

By Cauchy-Riemann equations in polar form

$$u_r = \frac{1}{r}v_\theta$$
 $\therefore \frac{\partial u}{\partial r} = \frac{1}{r}\frac{\partial v}{\partial \theta}$

$$\therefore \left(1 - \frac{a^2}{r^2}\right) \cos \theta = \frac{1}{r} \cdot \frac{\partial v}{\partial \theta}$$

$$\therefore \frac{\partial v}{\partial \theta} = \left(r - \frac{a^2}{r}\right) \cos \theta$$

Integrating w.r.t. θ ,

CASOT

$$v = \left(r - \frac{a^2}{r}\right)\sin\theta + c$$
Hence, $f(z) = u + iv = \left(r + \frac{a^2}{r}\right)\cos\theta + i\left(r - \frac{a^2}{r}\right)\sin\theta$

$$= r(\cos\theta + i\sin\theta) + \frac{a^2}{r}(\cos\theta - i\sin\theta) + c$$

$$= z + \frac{a^2}{r} + c$$

Alternatively we can express u in terms of x and y and use Cartesian form of Laplace's equation, it may be noted that this method is rather tedius

28. If $u = k(1 + \cos\theta)$, find v so that u + iv is analytical.

Solution: Since,
$$u = k + k cos \theta$$

$$\frac{\partial u}{\partial r} = 0$$
 and $\frac{\partial u}{\partial \theta} = -k \sin \theta$

But by C - R equation in polar coordinates

$$\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}$$
 and $\frac{\partial u}{\partial \theta} = -r \frac{\partial v}{\partial r}$

$$\therefore \frac{\partial v}{\partial \theta} = 0, \frac{\partial v}{\partial r} = -\frac{1}{r}(-k\sin\theta)$$

Integrating the first equation partially w.r.t. θ ,

v = f(r) where f(r) is an arbitrary function

$$\therefore \frac{\partial v}{\partial r} = f'(r) = \frac{k \sin \theta}{r}$$

$$\therefore v = k \sin \theta \log r + c$$

Hence, the analytic function is $f(z) = u + iv = k(1 + \cos\theta) + ik\sin\theta\log r + c$

29. Find the analytic function f(z) whose real part is $-r^3 \sin 3\theta$

Solution: We have
$$\frac{\partial u}{\partial r} = -3r^2 \sin \theta$$
 and $\frac{\partial u}{\partial \theta} = -3r^3 \cos 3\theta$

By Cauchy-Riemann equations $\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}$ and $\frac{\partial v}{\partial r} = -\frac{1}{r} \frac{\partial u}{\partial \theta}$

$$\therefore \frac{\partial v}{\partial \theta} = -3r^3 \sin 3\theta$$

Integrating w.r.t. θ ,

$$v = r^3 \cos 3\theta$$

ORTHOGONAL CURVES:

Theorem: If f(z) = u(x, y) + iv(x, y) is an analytic function then the curves $u = c_1$ and $v = c_2$ intersect orthogonally.

Proof: Let
$$u = f(x, y) = c_1$$
 and $v = \Phi(x, y) = c_2$

Then
$$\left(\frac{dy}{dx}\right)_{u=c_1} = -\frac{\partial f/\partial x}{\partial f/\partial y} = -\frac{\partial u/\partial x}{\partial u/\partial y}$$
 And $\left(\frac{dy}{dx}\right)_{v=c_2} = -\frac{\partial \Phi/\partial x}{\partial \Phi/\partial y} = -\frac{\partial v/\partial x}{\partial v/\partial y}$

Since, f(z) is analytic C – R equations give $u_x = v_y$ and $u_y = -v_x$

$$\therefore \left(\frac{\partial y}{\partial x}\right)_{u=c_1} \times \left(\frac{dy}{dx}\right)_{v=c_2} = \frac{\partial u/\partial x}{\partial u/\partial y} \times \frac{\partial v/\partial x}{\partial v/\partial y} = \frac{v_y}{-v_x} \cdot \frac{v_x}{v_y} = -1$$

Hence, $u = c_1$ and $v = c_2$ intersect orthogonally

ORTHOGONAL TRAJECTORIES:

By orthogonal trajectory of a family of curves we mean a curve which cuts every member of the given family at right angles. For example, consider a family to straight lines passing through the origin given by y=mx, where m is an arbitrary constant.

It is easy to see that these straight lines are cut by a circle with centre at the origin at right angles at every point of intersection. Its equation is of the form $x^2 + y^2 = a^2$ where a is a parameter.

Thus the family of circles $x^2 + y^2 = a^2$ represents the family of orthogonal trajectories to the family of straight lines given by y = mx

Orthogonal trajectories of the family of curves given by u = c.

We have seen that if f(z)=u+iv is an analytic function then the curves $u=c_1$ and $v=c_2$ intersect orthogonally i.e $v=c_2$ is the family of orthogonal trajectories of the family of curves $u=c_1$

Hence, to find the orthogonal trajectory of $u=c_1$ (or $v=c_2$) we find the harmonic conjugate $v=c_2$ (or $u=c_1$) of u (or v)

SOME SOLVED EXAMPLES:

1. Find the orthogonally trajectories of the family of the curve $x^3y - xy^3 = c$

Solution: The orthogonal trajectories of $u=c_1$ are given by $v=c_2$ where v is the harmonic conjugate of u

$$\because u = x^3y - xy^3$$

$$\therefore u_x = 3x^2y - y^3 \text{ and } u_y = x^3 - 3xy^2$$

By Milne-Thompson's method, we put x = z, y = 0

$$f'(z) = -iz^3$$

$$\therefore f(z) = -\int iz^3 dz = -i\frac{z^4}{4} + c$$
$$= -\frac{i}{4}(x+iy)^4 + c$$

CASOT 26 NANDINI RAI

$$= -\frac{i}{4}(x^4 + 4x^3iy - 6x^2y^2 - 4xiy^3 + y^4) + c$$

: Imaginary part
$$v = -\frac{1}{4}(x^4 - 6x^2y^2 + y^4) + c$$

Hence, the required orthogonal trajectories are $x^4 - 6x^2y^2 + y^4 = c'$

2. Find the orthogonally trajectories of the family of the curvs $e^{-x}cosy + xy = \alpha$

Solution: The orthogonal trajectories of $u=c_1$ are given by $v=c_2$ where v is the harmonic conjugate of u

$$u = e^{-x} \cos y + xy$$

$$u_x = -e^{-x}\cos y + y$$
 and $u_y = -e^{-x}\sin y + x$

Also
$$f'(z) = u_x + iv_x = u_x - iu_y$$
 (By $C - R$ equations)

$$= (-e^{-x}\cos y + y) - i(-e^{-x}\sin y + x)$$

By Milne-Thompson's method, we replace x by z and y by zero

$$\therefore f'(z) = -e^{-z} - iz$$

By integrating
$$f(z) = e^{-z} - i\frac{z^2}{2} + c$$

$$f(z) = e^{-(x+iy)} - i\frac{(x+iy)^2}{2} + c = e^{-x}(\cos y - i\sin y) - \frac{i}{2}(x^2 + 2ixy - y^2) + c$$

$$\therefore \text{ Imaginary part, } v = -e^{-x}\sin y - \frac{1}{2}(x^2 - y^2)$$

Hence, the required orthogonal trajectories are $e^{-x} \sin y + \frac{1}{2}(x^2 - y^2) = c_2$

3. Find the orthogonally trajectories of the family of the curvs $2x - x^3 + 3xy^2 = a$

Solution: The orthogonal trajectories of $u=c_1$ are given by $v=c_2$ where v is the harmonic conjugate of u

$$Let u = 2x - x^3 + 3xy^2$$

$$\therefore u_x = 2 - 3x^2 + 3y^2, u_y = 6xy$$

$$\therefore f'(z) = u_x + iv_x$$
$$= u_x - iu_y$$

(By
$$C - R$$
 equations)

$$= 2 - 3x^2 + 3y^2 - i \cdot 6xy$$

By Milne-Thompson's method, we put x = z, y = 0

$$\therefore f'(z) = 2 - 3z^2$$

Integrating w.r.t. z, we get,

$$f(z) = 2z - z^{3} + c$$

$$= 2(x + iy) - (x + iy)^{3} + c$$

$$= 2x + 2iy - x^{3} - 3ix^{2}y + 3xy^{2} + iy^{3} + c$$

$$\therefore$$
 Imaginary part $v = 2y - 3x^2y + y^3 + c$

- \therefore The required orthogonal trajectories are $2y 3x^2y + y^3 = c$
- 4. For the function $f(z)=z^3$, verify that the families of curves $u=c_1$ and $v=c_2$ cut orthogonally where c_1 and c_2 are constant and f(z)=u+iv

Solution:
$$f(z) = (x + iy)^3 = x^3 + 3ix^2y - 3xy^2 - iy^3$$

 $\therefore u = x^3 - 3xy^2, \ v = 3x^2y - y^3$
 $\therefore u_x = 3x^2 - 3y^2, u_y = -6xy$
 $v_x = 6xy, v_y = 3x^2 - 3y^2$
 $\therefore m_1 = \left(\frac{dy}{dx}\right)_{u=c_1} = -\frac{u_x}{u_y} = -\frac{3(x^2 - y^2)}{-6xy}$
 $m_2 = \left(\frac{dy}{dx}\right)_{u=c_2} = -\frac{v_x}{v_y} = -\frac{6xy}{3(x^2 - y^2)}$
 $\therefore m_1 \times m_2 = \frac{3(x^2 - y^2)}{6xy} \cdot \left(-\frac{6xy}{3(x^2 - y^2)}\right) = -1$

Hence, the families cut orthogonally

CASOT 28