Scores	Scores	
1.		
2.		
3.		
4.		
5.		
Total:		

ANA-I Foundations of Analysis 1st Midterm Examination – 13 Nov, 2018

Name _____

General Instructions: Please answer the following, showing all your work and writing neatly. You may have 1 handwritten A4-sized sheet of paper, but no other notes, books, or calculators.

80 total points.

1. (6 points each) Limit calculations. For each real-valued sequence, explain whether it is convergent, divergent to $\pm \infty$, or otherwise divergent (not to $\pm \infty$). If it is convergent, find its limit. If it is divergent, find its lim sup and liminf. You may use any theorems we have proved in class or on homework.

(a)
$$s_n = \frac{n^3 - 3n^2}{2n^2 + 3}$$
.

(b)
$$s_n = \frac{\sqrt{n+1}}{\sqrt{n+1}}$$
.

(c)
$$s_n = (-2)^n - \frac{1}{n}$$
.

(d)
$$s_n = \frac{(-1)^n n - 2}{n \cdot \sqrt{4n + 2}}$$
.

- 2. (6 points each) Examples. Justify briefly why each has the desired properties.
 - (a) Give an example of a bounded monotonic sequence that converges to 2.
 - (b) Give the Dedekind cut for $1 + \sqrt[3]{3}$. (Of course, your answer should not refer to $\sqrt[3]{3}$ or other irrational numbers.)
 - (c) Using our construction of $\mathbb{Q} \supseteq \mathbb{Q}^{\geq 0} \supseteq \mathbb{N}$ via two applications of the method of order pairs, write the rational number $\frac{1}{2}$ as an ordered pair of ordered pairs.
- 3. (8 points) Let f_n be the *n*th Fibonacci number (so $f_0 = 0$, $f_1 = 1$, and $f_n = f_{n-1} + f_{n-2}$ for $n \ge 2$). Find (with proof) an upper bound and a positive lower bound for the sequence of ratios f_{n+1}/f_n .

(-see reverse side-)

- 4. (12 points) Working directly from the definition (without using the Cauchy Completeness Theorem), show that if s_n is a real Cauchy sequence, then also $3s_n$ is Cauchy.
- 5. Given a sequence $(s_n)_{n\in\mathbb{N}}$, define a new sequence $t_n^{(s)}$ (depending on s) by the recursive formula $t_0^{(s)}=s_0$, and $t_n^{(s)}=\max\left\{t_{n-1}^{(s)},s_n\right\}$.
 - (a) (7 points) Show that for any given sequence (s_n) , the new sequence $t_n^{(s)}$ is increasing.
 - (b) (7 points) Show that if s_n is bounded, then $t_n^{(s)}$ is convergent.
 - (c) (4 points) Given an example of a sequence s_n so that $t_n^{(s)}$ does not converge.