TEST REPORT

Reference No. : WTU18S10126240W

FCC ID..... : 2AHCK-E2SW5018

Applicant: ANHUI KONKA ELECTRONIC CO., LTD

Address NO.999, ZhongDu Road, Chu Zhou, An Hui, China

Manufacturer : ANHUI KONKA ELECTRONIC CO., LTD

Address : NO.999, ZhongDu Road, Chu Zhou, An Hui, China

Product Name : LCD TV

Model No. : E2SW5018

Standards.....: FCC CFR47 Part 15 C Section 15.247:2018

Date of Receipt sample.. : 2018-10-15

Date of Test...... 2018-10-16 to 2018-10-24

Date of Issue 2018-10-25

Test Result Pass

Remarks:

The results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company.

The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

Prepared By:

Waltek Services (Shenzhen) Co., Ltd.

Address: 1/F., Fukangtai Building, West Baima Road, Songgang Street, Baoan District, Shenzhen, Guangdong, China

Tel:+86-755-83551033 Fax:+86-755-83552400

Compiled by:

Approved by:

₩ Zhong / Manage

Robin Zhou / Test Engineer

1 Laboratories Introduction

Waltek Services (Shenzhen) Co., Ltd is a professional third-party testing and certification laboratory with multi-year product testing and certification experience, established strictly in accordance with ISO/IEC 17025 requirements, and accredited by ILAC (International Laboratory Accreditation Cooperation) member. A2LA (American Association for Laboratory Accreditation, the certification number is 4243.01) of USA, CNAS (China National Accreditation Service for Conformity Assessment, the registration number is L3110) of China. Meanwhile, Waltek has got recognition as registration and accreditation laboratory from EMSD (Electrical and Mechanical Services Department), and American Energy star, FCC (The Federal Communications Commission), CEC (California energy efficiency), ISED Canada (Innovation, Science and Economic Development Canada). It's the strategic partner and data recognition laboratory of international authoritative organizations, such as Intertek (ETL-SEMKO), TÜV Rheinland, TÜV SÜD, etc.

Waltek Services (Shenzhen) Co., Ltd is one of the largest and the most comprehensive third party testing laboratory in China. Our test capability covered four large fields: safety test. Electro Magnetic Compatibility (EMC), and energy performance, wireless radio. As a professional, comprehensive, justice international test organization, we still keep the scientific and rigorous work attitude to help each client satisfy the international standards and assist their product enter into globe market smoothly.

1.1 Test Facility

A. Accreditations for Conformity Assessment (International)

Country/Region	Scope Covered By	Scope	Note
USA		FCC ID \ SDoC(VOC/DOC)	1
Canada		IC ID \ VOC	2
Japan		MIC-T \ MIC-R	-
Europe		EMCD \ RED	-
Taiwan	100/150 47005	NCC	-
Hong Kong	ISO/IEC 17025	OFCA	-
Australia		RCM	-
India		WPC	-
Thailand		NTC	-
Singapore		IDA	-

Note:

- 1. FCC Designation No.: CN1201. Test Firm Registration No.: 523476.
- 2. ISED Canada Registration No.: 7760A

B.TCBs and Notify Bodies Recognized Testing Laboratory.

Recognized Testing Laboratory of	Notify body number
TUV Rheinland	
Intertek	
TUV SUD	Optional.
SGS	
Phoenix Testlab GmbH	0700
Element Materials Technology Warwick Ltd.	0891
Timco Engineering, Inc.	1177
Eurofins Product Service GmbH	0681

2 Contents

	COVER DAGE	Page
1	COVER PAGELABORATORIES INTRODUCTION	
1		
•	1.1 TEST FACILITY CONTENTS	
2		
3	REVISION HISTORY	
4	GENERAL INFORMATION	
	4.1 GENERAL DESCRIPTION OF E.U.T. 4.2 DETAILS OF E.U.T.	
	4.3 CHANNEL LIST	
	4.4 TEST MODE	8
5	EQUIPMENT USED DURING TEST	9
	5.1 EQUIPMENT'S LIST	
	5.2 MEASUREMENT UNCERTAINTY	
	5.3 TEST EQUIPMENT CALIBRATION	
6	TEST SUMMARY	
7	CONDUCTED EMISSION	
	7.1 E.U.T. OPERATION	
	7.2 EUT SETUP	
	7.4 CONDUCTED EMISSION TEST RESULT	
8	RADIATED EMISSIONS	15
	8.1 EUT OPERATION	15
	8.2 TEST SETUP	
	8.3 SPECTRUM ANALYZER SETUP	
	8.5 CORRECTED AMPLITUDE & MARGIN CALCULATION	
	8.6 SUMMARY OF TEST RESULTS	
9	BAND EDGE MEASUREMENT	37
	9.1 TEST PRODUCE	37
	9.2 TEST SETUP	
40	9.3 TEST RESULT	
10	BANDWIDTH MEASUREMENT	
	10.1 TEST PROCEDURE: 10.2 TEST SETUP	
	10.3 TEST RESULT:	
11	MAXIMUM CONDUCTED (AVERAGE) OUTPUT POWER	
	11.1 Test Procedure:	60
	11.2 TEST SETUP	
	11.3 TEST RESULT:	
12	POWER SPECTRAL DENSITY	
	12.1 TEST PROCEDURE: 12.2 TEST SETUP	
	12.3 TEST SETUP	
13	ANTENNA REQUIREMENT	76
14	FCC ID: 2AHCK-E2SW5018 RF EXPOSURE REPORT	77

Reference No.: WTU18S10126240W Page 5 of 96

	14.1	REQUIREMENTS	
	14.2	THE PROCEDURES / LIMIT	77
	14.3	MPE CALCULATION METHOD	78
15	PHOT	TOGRAPHS – MODEL E2SW5018 TEST SETUP PHOTOS	79
	15.1	RADIATED EMISSION	79
	15.2	CONDUCTED EMISSION	80
16	PHO1	FOGRAPHS - CONSTRUCTIONAL DETAILS	81
	16.1	Model E2SW5018-External Photos	81
	16.2	MODEL E2SW5018-INTERNAL PHOTOS	80

Reference No.: WTU18S10126240W Page 6 of 96

3 Revision History

Test report No.	Date of Receipt sample	Date of Test	Date of Issue	Purpose	Comment	Approved
WTU18S10126240W	2018-10-15	2018-10-16 to 2018-10-24	2018-10-25	original	-	Valid

Reference No.: WTU18S10126240W Page 7 of 96

4 General Information

4.1 General Description of E.U.T.

Product: LCD TV

Model(s): E2SW5018

Operation Frequency: 802.11b/g/n HT20: 2412MHz ~ 2462MHz,

802.11n HT40: 2422MHz~2452MHz

ANT A 2.4GHz Wi-Fi: 2.0 dBi Antenna Gain:

ANT B 2.4GHz Wi-Fi: 2.0 dBi

Type of modulation: IEEE 802.11b: DQPSK/DBPSK/DSSS/CCK

IEEE 802.11g: QPSK/BPSK/16QAM/64QAM/OFDM IEEE 802.11n: QPSK/BPSK/16QAM/64QAM/OFDM

Number of

transmitter chains:

Wi-Fi:2T2R (MIMO)

The device supports MIMO 2T2R, and the MIMO works with STBC(Space-Time Block Coding).

The antenna is omnidirectional, does not support any directional gain in any modes.

TX power for MIMO rate, the Wi-Fi chip has a power/rate table that controls TX power from chipout, it's preset in nvram, FW don't need to calculate it again when MIMO rate is fixed. Of course the real radiation power is also related to antenna efficient.

Two transmitter signals are not correlated with each other.

MIMO is only supported for 802.11 n mode, and not supported for 802.11b and 802.11g mode.

4.2 Details of E.U.T

Ratings: Input Power: AC 120V~ 50/60Hz, 80W

4.3 Channel List

Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)
1	2412	2	2417	3	2422	4	2427
5	2432	6	2437	7	2442	8	2447
9	2452	10	2457	11	2462	12	-

4.4 Test Mode

Table 1 Tests Carried Out Under FCC part 15.247

Test Items	Mode	Data Rate	Channel	TX/RX
	802.11b	1 Mbps	1/7/11	TX
Maximum conducted (average) output power	802.11g	6 Mbps	1/7/11	TX
waximum conducted (average) output power	802.11n HT20	MCS0	1/7/11	TX
	802.11n HT40	MCS0	3/7/9	TX
	802.11b	1 Mbps	1/7/11	TX
Power Spectral Density	802.11g	6 Mbps	1/7/11	TX
Fower Spectral Density	802.11n HT20	MCS0	1/7/11	TX
	802.11n HT40	MCS0	3/7/9	TX
	802.11b	1 Mbps	1/7/11	TX
Bandwidth	802.11g	6 Mbps	1/7/11	TX
Bandwidth	802.11n HT20	MCS0	1/7/11	TX
	802.11n HT40	MCS0	3/7/9	TX
	802.11b	1 Mbps	1/7/11	TX
Band Edge	802.11g	6 Mbps	1/7/11	TX
Balld Edge	802.11n HT20	MCS0	1/7/11	TX
	802.11n HT40	MCS0	3/9	TX
	802.11b	1 Mbps	1/7/11	TX
Transmitter Spurious Emissions	802.11g	6 Mbps	1/7/11	TX
Transmitter Opunous Emissions	802.11n HT20	MCS0	1/7/11	TX
	802.11n HT40	MCS0	3/7/9	TX

Note :Parameters set by test software during channel & power tests, the software provided by the customer was used to set the operating channels as well as the output power level. The RF output power set is the power expected by the manufacturer and is going to be fixed on the firmware of the final product .

5 Equipment Used during Test

5.1 Equipment's List

Condu	icted Emissions Test Sit	e				
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1.	EMI Test Receiver	R&S	ESCI	101155	2018-09-15	2019-09-14
2.	LISN	SCHWARZBECK	NSLK 8128	8128-259	2018-09-15	2019-09-14
3.	Limiter	CYBERTEK	EM5010	261115-001- 0024	2018-09-15	2019-09-14
4	Cable	Laplace	RF300	-	2018-07-18	2019-07-17
3m Se	mi-anechoic Chamber fo	or Radiation Emissi	ons	<u> </u>		
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1	Spectrum Analyzer	R&S	FSP30	100091	2018-04-20	2019-04-19
2	Broad-band Horn Antenna(1-18GHz)	SCHWARZBECK	BBHA 9120 D	667	2018-05-18	2019-05-17
3	Broadband Preamplifier	COMPLIANCE DIRECTION	PAP-1G18	2004	2018-04-07	2019-04-06
4	Coaxial Cable (above 1GHz)	Тор	1GHz-18GHz	EW02014-7	2018-04-07	2019-04-06
5	Spectrum Analyzer	R&S	FSP40	100501	2018-04-20	2019-04-19
6	Broad-band Horn Antenna(18-40GHz)	SCHWARZBECK	BBHA 9170	BBHA917065 1	2017-10-26	2018-10-25
7	Microwave Broadband Preamplifier (18-40GHz)	SCHWARZBECK	BBV 9721	100472	2017-10-26	2018-10-25
8	Cable	Тор	18-40GHz	-	2017-10-26	2018-10-25
3m Se	mi-anechoic Chamber fo	or Radiation Emissi	ons			
Item	Equipment	Manufacturer	Model No.	Serial No	Last Calibration Date	Calibration Due Date
1	Test Receiver	R&S	ESCI	101296	2018.04.20	2019.04.19
2	Trilog Broadband Antenna	SCHWARZBECK	VULB9160	9160-3325	2018.04.19	2019.04.18
3	Active Loop Antenna	Com-power	AL-130R	10160007	2018-04-17	2019-04-16
4	Amplifier	ANRITSU	MH648A	M43381	2018-04-20	2019-04-19
5	Cable	HUBER+SUHNER	CBL2	525178	2018-04-20	2019-04-19
6	Coaxial Cable (below 1GHz)	Тор	TYPE16	-	2018-09-15	2019-09-14
RF Co	RF Conducted Testing					
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1.	Spectrum Analyzer	R&S	FSL6	100959	2018-04-29	2019-04-28

Reference No.: WTU18S10126240W Page 10 of 96

2.	Coaxial Cable	Тор	10Hz-30GHz	-	2018-09-12	2019-09-11
3	Antenna Connector*	Realacc	45RSm	-	2018-09-12	2019-09-11
4	DC Block	Gwave	GDCB-3G-N- SMA	140307001	2018-09-12	2019-09-11

[&]quot;*": The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

5.2 Measurement Uncertainty

Parameter	Uncertainty	
Radio Frequency	± 1 x 10 ⁻⁶	
RF Power	± 1.0 dB	
RF Power Density	± 2.2 dB	
	± 5.03 dB (30M~1000MHz)	
Radiated Spurious Emissions test	± 5.47 dB (1000M~25000MHz)	
Conducted Spurious Emissions test	± 3.64 dB (AC mains 150KHz~30MHz)	

5.3 Test Equipment Calibration

All the test equipments used are valid and calibrated by GUANG ZHOU GRG METROLOGY & TEST CO., LTD. address is No.163, Pingyun Rd. West of Huangpu Ave, Tianhe District, Guangzhou, Guangdong, China.

Reference No.: WTU18S10126240W Page 11 of 96

6 Test Summary

Test Items	Test Requirement	Result		
	15.247(d)			
Radiated Spurious Emissions	15.205(a)	Pass		
	15.209(a)			
Conducted Emissions	15.207(a)	Pass		
Bandwidth	15.247(a)(2)	Pass		
Maximum conducted (average) output power	15.247(b)(3),(4)	Pass		
Power Spectral Density	15.247(e)	Pass		
Band Edge	15.247(d)	Pass		
Antenna Requirement	15.203	Pass		
RF Exposure	1.1307(b)(1)	Pass		
Note: Pass=Compliance; NC=Not Compliance; NT=Not Tested; N/A=Not Applicable.				

Reference No.: WTU18S10126240W Page 12 of 96

7 Conducted Emission

Test Requirement: FCC CFR 47 Part 15 Section 15.207

Test Method: ANSI C63.10:2013

Test Result: PASS

Frequency Range: 150kHz to 30MHz

Class/Severity: Class B

older E

Eroguenov (MHz)	Limit (dBμV)			
Frequency (MHz)	Quasi-peak	Average		
0.15 to 0.5	66 to 56	56 to 46		
0.5 to 5	56	46		
to 30	60	50		

7.1 E.U.T. Operation

Limit:

Operating Environment:

Temperature: 21.5 °C
Humidity: 51.9 % RH
Atmospheric Pressure: 101.2kPa

Test Voltage: AC 120V

EUT Operation:

The test was performed in Wi-Fi Transmitting mode, the worst test data (Wi-Fi b mode low channel for Antenna A) were shown in the report.

7.2 EUT Setup

The conducted emission tests were performed using the setup accordance with the ANSI C63.10:2013.

7.3 Measurement Description

The maximised peak emissions from the EUT was scanned and measured for both the Live and Neutral Lines. Quasi-peak & average measurements were performed if peak emissions were within 6dB of the average limit line.

Waltek Services (Shenzhen) Co.,Ltd. http://www.waltek.com.cn

7.4 Conducted Emission Test Result

An initial pre-scan was performed on the live and neutral lines.

Live line:

Neutral line:

Reference No.: WTU18S10126240W Page 15 of 96

8 Radiated Emissions

Test Requirement: FCC CFR47 Part 15 Section 15.209 & 15.247

Test Method: ANSI C63.10:2013

Test Result: PASS
Measurement Distance: 3m

Limit:

LIIIII.				
_	Field Stren	ngth	Field Strength Limit at	3m Measurement Dist
Frequency (MHz)	uV/m	Distance uV/m		dBuV/m
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾

8.1 EUT Operation

Operating Environment:

Temperature: 23.5 °C
Humidity: 52.1 % RH
Atmospheric Pressure: 101.2kPa

Test Voltage: AC 120V

EUT Operation:

The test was performed in Wi-Fi Transmitting mode, the test data were shown in the report.

8.2 Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site, using the setup accordance with the ANSI C63.10:2013.

The test setup for emission measurement below 30MHz.

The test setup for emission measurement from 30 MHz to 1 GHz.

Reference No.: WTU18S10126240W Page 17 of 96

The test setup for emission measurement above 1 GHz.

8.3 Spectrum Analyzer Setup

-	-	
Below 30MHz		
	Sweep Speed	Auto
	IF Bandwidth	10kHz
	Video Bandwidth	10kHz
	Resolution Bandwidth	10kHz
30MHz ~ 1GH	lz	
	Sweep Speed	Auto
	Detector	PK
	Resolution Bandwidth	100kHz
	Video Bandwidth	300kHz
Above 1GHz		
	Sweep Speed	Auto
	Detector	PK
	Resolution Bandwidth	1MHz
	Video Bandwidth	3MHz
	Detector	Ave.
	Resolution Bandwidth	1MHz
	Video Bandwidth	10Hz

Reference No.: WTU18S10126240W Page 18 of 96

8.4 Test Procedure

1. The EUT is placed on a turntable. For below 1GHz, the EUT is 0.8m above ground plane; For above1GHz, the EUT is 1.5m above ground plane.

- The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is moved from 1m to 4m to find out the maximum emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.
- 7. The radiation measurements are performed in X,Y and Z axis positioning(X denotes lying on the table, Y denotes side stand and Z denotes vertical stand),the worst condition was tested putting the eut in X axis,so the worst data were shown as follow.
- A 2.4GHz high –pass filter is used druing radiated emissions above 1GHz measurement.

8.5 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corr. Ampl. = Indicated Reading + Antenna Factor + Cable Factor - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the maximum limit for Class B. The equation for margin calculation is as follows:

Margin = Corr. Ampl. – Limit

Reference No.: WTU18S10126240W Page 19 of 96

8.6 Summary of Test Results

Test Frequency: 9kHz to 30MHz

The measurements were more than 20 dB below the limit and not reported.

Test Frequency: 30MHz ~ 18GHz

F	Receiver	Datastan	Turn	RX An	tenna	Corrected	Corrected	FCC F 15.247/2	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
		А	NTA 11b:	Low Cha	annel 24	12MHz			
227.69	58.73	QP	94	1.5	Н	-17.38	41.35	46.00	-4.65
227.69	60.23	QP	127	1.2	V	-17.38	42.85	46.00	-3.15
4824.00	59.33	PK	5	1.4	V	-1.06	58.27	74.00	-15.73
4824.00	40.77	Ave	5	1.4	V	-1.06	39.71	54.00	-14.29
7236.00	49.66	PK	57	1.8	Н	1.33	50.99	74.00	-23.01
7236.00	41.96	Ave	57	1.8	Н	1.33	43.29	54.00	-10.71
2316.12	46.95	PK	312	1.4	V	-13.19	33.76	74.00	-40.24
2316.12	37.69	Ave	312	1.4	V	-13.19	24.50	54.00	-29.50
2379.18	42.77	PK	100	1.2	Н	-13.14	29.63	74.00	-44.37
2379.18	37.14	Ave	100	1.2	Н	-13.14	24.00	54.00	-30.00
2485.20	42.18	PK	71	1.1	V	-13.08	29.10	74.00	-44.90
2485.20	38.57	Ave	71	1.1	V	-13.08	25.49	54.00	-28.51

F	Receiver	Datastan	Turn	RX An	tenna	Corrected	0	FCC Part 15.247/209/205	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
		AN	NTA 11b: I	Middle Ch	nannel 2	2442MHz			
227.69	59.40	QP	73	1.8	Н	-17.38	42.02	46.00	-3.98
227.69	60.20	QP	251	1.2	V	-17.38	42.82	46.00	-3.18
4884.00	60.00	PK	262	1.8	V	-0.62	59.38	74.00	-14.62
4884.00	42.20	Ave	262	1.8	V	-0.62	41.58	54.00	-12.42
7326.00	48.50	PK	238	1.5	Н	2.21	50.71	74.00	-23.29
7326.00	42.07	Ave	238	1.5	Н	2.21	44.28	54.00	-9.72
2316.01	45.36	PK	174	1.0	V	-13.19	32.17	74.00	-41.83
2316.01	39.24	Ave	174	1.0	V	-13.19	26.05	54.00	-27.95
2352.32	43.58	PK	323	1.8	Н	-13.14	30.44	74.00	-43.56
2352.32	37.65	Ave	323	1.8	Н	-13.14	24.51	54.00	-29.49
2486.91	43.35	PK	273	1.9	V	-13.08	30.27	74.00	-43.73
2486.91	38.42	Ave	273	1.9	V	-13.08	25.34	54.00	-28.66

	Receiver	Datastan	Turn	RX An	tenna	Corrected	0	FCC F 15.247/2	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
		А	NTA 11b:	High Ch	annel 2	462MHz			
227.69	58.05	QP	337	1.5	Н	-17.38	40.67	46.00	-5.33
227.69	59.27	QP	202	1.9	V	-17.38	41.89	46.00	-4.11
4924.00	58.87	PK	265	1.4	V	-0.24	58.63	74.00	-15.37
4924.00	41.06	Ave	265	1.4	V	-0.24	40.82	54.00	-13.18
7386.00	49.55	PK	310	1.4	Н	2.84	52.39	74.00	-21.61
7386.00	42.36	Ave	310	1.4	Н	2.84	45.20	54.00	-8.80
2341.94	45.27	PK	98	1.4	V	-13.19	32.08	74.00	-41.92
2341.94	38.60	Ave	98	1.4	V	-13.19	25.41	54.00	-28.59
2389.88	43.61	PK	32	1.2	Н	-13.14	30.47	74.00	-43.53
2389.88	38.14	Ave	32	1.2	Н	-13.14	25.00	54.00	-29.00
2486.95	44.31	PK	2	1.5	V	-13.08	31.23	74.00	-42.77
2486.95	36.21	Ave	2	1.5	V	-13.08	23.13	54.00	-30.87

F	Receiver	Detector	Turn	RX An	tenna	Corrected	0	FCC Part 15.247/209/205	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
		А	NTB 11b:	Low Cha	annel 24	12MHz			
227.69	59.55	QP	270	1.7	Н	-17.38	42.17	46.00	-3.83
227.69	58.96	QP	288	1.1	V	-17.38	41.58	46.00	-4.42
4824.00	57.63	PK	262	1.9	V	-1.06	56.57	74.00	-17.43
4824.00	41.72	Ave	262	1.9	V	-1.06	40.66	54.00	-13.34
7236.00	49.93	PK	112	1.2	Н	1.33	51.26	74.00	-22.74
7236.00	41.80	Ave	112	1.2	Н	1.33	43.13	54.00	-10.87
2328.22	46.75	PK	114	1.8	V	-13.19	33.56	74.00	-40.44
2328.22	39.43	Ave	114	1.8	V	-13.19	26.24	54.00	-27.76
2378.41	42.40	PK	338	1.7	Н	-13.14	29.26	74.00	-44.74
2378.41	37.42	Ave	338	1.7	Н	-13.14	24.28	54.00	-29.72
2497.03	44.08	PK	216	1.9	V	-13.08	31.00	74.00	-43.00
2497.03	36.55	Ave	216	1.9	٧	-13.08	23.47	54.00	-30.53

_	Receiver		Turn	RX An	tenna	Corrected		FCC Part 15.247/209/205	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
		AN	NTB 11b: I	Middle Ch	nannel 2	2442MHz			
227.69	57.88	QP	155	2.0	Н	-17.38	40.50	46.00	-5.50
227.69	59.88	QP	9	2.0	V	-17.38	42.50	46.00	-3.50
4884.00	57.68	PK	255	1.2	V	-0.62	57.06	74.00	-16.94
4884.00	40.82	Ave	255	1.2	V	-0.62	40.20	54.00	-13.80
7326.00	49.88	PK	111	1.5	Н	2.21	52.09	74.00	-21.91
7326.00	41.40	Ave	111	1.5	Н	2.21	43.61	54.00	-10.39
2330.05	45.18	PK	193	1.1	V	-13.19	31.99	74.00	-42.01
2330.05	39.00	Ave	193	1.1	V	-13.19	25.81	54.00	-28.19
2369.03	43.10	PK	250	1.2	Н	-13.14	29.96	74.00	-44.04
2369.03	38.61	Ave	250	1.2	Н	-13.14	25.47	54.00	-28.53
2498.08	43.49	PK	111	1.6	V	-13.08	30.41	74.00	-43.59
2498.08	37.21	Ave	111	1.6	V	-13.08	24.13	54.00	-29.87

	Receiver	Detector	Turn	RX An	tenna	Corrected	0	FCC F 15.247/2	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
		А	NTB 11b:	High Ch	annel 2	462MHz			
227.69	57.72	QP	205	1.2	Н	-17.38	40.34	46.00	-5.66
227.69	59.06	QP	203	1.1	V	-17.38	41.68	46.00	-4.32
4924.00	57.75	PK	210	1.5	V	-0.24	57.51	74.00	-16.49
4924.00	40.88	Ave	210	1.5	V	-0.24	40.64	54.00	-13.36
7386.00	51.28	PK	67	1.1	Н	2.84	54.12	74.00	-19.88
7386.00	41.39	Ave	67	1.1	Н	2.84	44.23	54.00	-9.77
2310.69	46.78	PK	150	2.0	V	-13.19	33.59	74.00	-40.41
2310.69	38.10	Ave	150	2.0	V	-13.19	24.91	54.00	-29.09
2352.68	44.45	PK	0	1.5	Н	-13.14	31.31	74.00	-42.69
2352.68	38.73	Ave	0	1.5	Н	-13.14	25.59	54.00	-28.41
2489.78	43.07	PK	134	1.6	V	-13.08	29.99	74.00	-44.01
2489.78	36.93	Ave	134	1.6	V	-13.08	23.85	54.00	-30.15

F	Receiver	Detector	Turn	RX An	tenna	Corrected	0	FCC F 15.247/2			
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin		
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		
	ANTA 11g: Low Channel 2412MHz										
227.69	57.54	QP	336	1.7	Н	-17.38	40.16	46.00	-5.84		
227.69	58.98	QP	164	1.6	V	-17.38	41.60	46.00	-4.40		
4824.00	56.83	PK	216	1.4	V	-1.06	55.77	74.00	-18.23		
4824.00	40.67	Ave	216	1.4	V	-1.06	39.61	54.00	-14.39		
7236.00	51.15	PK	275	1.6	Н	1.33	52.48	74.00	-21.52		
7236.00	42.57	Ave	275	1.6	Н	1.33	43.90	54.00	-10.10		
2323.66	45.32	PK	12	1.6	V	-13.19	32.13	74.00	-41.87		
2323.66	37.79	Ave	12	1.6	V	-13.19	24.60	54.00	-29.40		
2357.94	43.16	PK	247	1.5	Н	-13.14	30.02	74.00	-43.98		
2357.94	37.38	Ave	247	1.5	Н	-13.14	24.24	54.00	-29.76		
2498.11	42.43	PK	223	1.9	V	-13.08	29.35	74.00	-44.65		
2498.11	37.17	Ave	223	1.9	V	-13.08	24.09	54.00	-29.91		

5	Receiver	Detector	Turn	RX An	tenna	Corrected	0	FCC F 15.247/20	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
		AN	NTA 11g: I	Middle Cl	nannel 2	2442MHz			
227.69	58.90	QP	224	1.4	Н	-17.38	41.52	46.00	-4.48
227.69	58.34	QP	168	1.2	V	-17.38	40.96	46.00	-5.04
4884.00	58.26	PK	41	1.9	V	-0.62	57.64	74.00	-16.36
4884.00	40.24	Ave	41	1.9	V	-0.62	39.62	54.00	-14.38
7326.00	51.05	PK	15	1.1	Н	2.21	53.26	74.00	-20.74
7326.00	43.01	Ave	15	1.1	Н	2.21	45.22	54.00	-8.78
2311.18	46.13	PK	251	2.0	V	-13.19	32.94	74.00	-41.06
2311.18	37.29	Ave	251	2.0	V	-13.19	24.10	54.00	-29.90
2378.11	42.42	PK	266	1.1	Н	-13.14	29.28	74.00	-44.72
2378.11	36.77	Ave	266	1.1	Н	-13.14	23.63	54.00	-30.37
2493.10	44.31	PK	18	1.2	V	-13.08	31.23	74.00	-42.77
2493.10	38.68	Ave	18	1.2	V	-13.08	25.60	54.00	-28.40

F	Receiver	Detector	Turn	RX An	tenna	Corrected	0	FCC F 15.247/2	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
		А	NTA 11g:	High Ch	annel 24	162MHz			
227.69	59.63	QP	79	1.9	Н	-17.38	42.25	46.00	-3.75
227.69	58.70	QP	277	1.9	V	-17.38	41.32	46.00	-4.68
4924.00	58.61	PK	225	2.0	V	-0.24	58.37	74.00	-15.63
4924.00	39.01	Ave	225	2.0	V	-0.24	38.77	54.00	-15.23
7386.00	49.73	PK	27	1.2	Н	2.84	52.57	74.00	-21.43
7386.00	43.34	Ave	27	1.2	Н	2.84	46.18	54.00	-7.82
2343.72	45.96	PK	136	2.0	V	-13.19	32.77	74.00	-41.23
2343.72	39.89	Ave	136	2.0	V	-13.19	26.70	54.00	-27.30
2353.36	42.49	PK	140	1.0	Н	-13.14	29.35	74.00	-44.65
2353.36	37.62	Ave	140	1.0	Н	-13.14	24.48	54.00	-29.52
2494.10	43.85	PK	84	1.3	V	-13.08	30.77	74.00	-43.23
2494.10	38.67	Ave	84	1.3	V	-13.08	25.59	54.00	-28.41

	Receiver	Detector	Turn	RX An	tenna	Corrected	0	FCC Part 15.247/209/205	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
		Д	NTB 11g:	Low Cha	annel 24	112MHz			
227.69	57.75	QP	357	1.0	Н	-17.38	40.37	46.00	-5.63
227.69	58.97	QP	40	1.2	V	-17.38	41.59	46.00	-4.41
4824.00	58.67	PK	327	1.3	V	-1.06	57.61	74.00	-16.39
4824.00	42.48	Ave	327	1.3	V	-1.06	41.42	54.00	-12.58
7236.00	48.63	PK	144	1.2	Н	1.33	49.96	74.00	-24.04
7236.00	41.96	Ave	144	1.2	Н	1.33	43.29	54.00	-10.71
2320.39	45.57	PK	257	1.6	V	-13.19	32.38	74.00	-41.62
2320.39	38.17	Ave	257	1.6	V	-13.19	24.98	54.00	-29.02
2389.84	43.25	PK	23	1.8	Н	-13.14	30.11	74.00	-43.89
2389.84	37.89	Ave	23	1.8	Н	-13.14	24.75	54.00	-29.25
2498.16	44.28	PK	199	1.1	V	-13.08	31.20	74.00	-42.80
2498.16	36.01	Ave	199	1.1	V	-13.08	22.93	54.00	-31.07

	Receiver	1)otoctor	Turn table Angle	RX An	tenna	Corrected	Corrected Amplitude	FCC Part 15.247/209/205	
Frequency Read	Reading			Height	Polar	Factor		Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
ANTB 11g: Middle Channel 2442MHz									
227.69	58.10	QP	276	1.5	Н	-17.38	40.72	46.00	-5.28
227.69	60.10	QP	130	1.2	V	-17.38	42.72	46.00	-3.28
4884.00	59.36	PK	181	1.8	V	-0.62	58.74	74.00	-15.26
4884.00	42.76	Ave	181	1.8	V	-0.62	42.14	54.00	-11.86
7326.00	48.09	PK	128	1.6	Н	2.21	50.30	74.00	-23.70
7326.00	42.11	Ave	128	1.6	Н	2.21	44.32	54.00	-9.68
2343.29	46.03	PK	253	1.0	V	-13.19	32.84	74.00	-41.16
2343.29	38.43	Ave	253	1.0	V	-13.19	25.24	54.00	-28.76
2380.34	43.29	PK	27	1.6	Н	-13.14	30.15	74.00	-43.85
2380.34	38.94	Ave	27	1.6	Н	-13.14	25.80	54.00	-28.20
2485.28	43.47	PK	230	1.9	V	-13.08	30.39	74.00	-43.61
2485.28	38.82	Ave	230	1.9	V	-13.08	25.74	54.00	-28.26

Frequency	Receiver	1)otoctor	Turn table Angle	RX An	tenna	Corrected	Corrected Amplitude	FCC Part 15.247/209/205	
	Reading			Height	Polar	Factor		Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
ANTB 11g: High Channel 2462MHz									
227.69	58.77	QP	167	1.3	Н	-17.38	41.39	46.00	-4.61
227.69	59.81	QP	174	1.5	V	-17.38	42.43	46.00	-3.57
4924.00	59.06	PK	133	1.6	V	-0.24	58.82	74.00	-15.18
4924.00	43.90	Ave	133	1.6	V	-0.24	43.66	54.00	-10.34
7386.00	48.12	PK	222	1.4	Н	2.84	50.96	74.00	-23.04
7386.00	41.29	Ave	222	1.4	Н	2.84	44.13	54.00	-9.87
2334.86	45.07	PK	274	1.5	V	-13.19	31.88	74.00	-42.12
2334.86	38.87	Ave	274	1.5	V	-13.19	25.68	54.00	-28.32
2361.72	42.92	PK	190	1.4	Н	-13.14	29.78	74.00	-44.22
2361.72	37.09	Ave	190	1.4	Н	-13.14	23.95	54.00	-30.05
2496.09	42.42	PK	187	1.6	V	-13.08	29.34	74.00	-44.66
2496.09	37.57	Ave	187	1.6	V	-13.08	24.49	54.00	-29.51

Frequency Receiver Reading	Receiver	1)otoctor	Turn	RX An	tenna	Corrected	Corrected	FCC Part 15.247/209/205	
	Reading		table Angle	Height	Polar	Factor	Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
ANTA+ANTB n20: Low Channel 2412MHz									
227.69	58.63	QP	149	1.4	Н	-17.38	41.25	46.00	-4.75
227.69	59.14	QP	49	1.5	V	-17.38	41.76	46.00	-4.24
4824.00	58.07	PK	241	1.6	V	-1.06	57.01	74.00	-16.99
4824.00	42.64	Ave	241	1.6	V	-1.06	41.58	54.00	-12.42
7236.00	47.30	PK	267	1.3	Н	1.33	48.63	74.00	-25.37
7236.00	40.98	Ave	267	1.3	Н	1.33	42.31	54.00	-11.69
2337.80	45.50	PK	308	2.0	V	-13.19	32.31	74.00	-41.69
2337.80	38.33	Ave	308	2.0	V	-13.19	25.14	54.00	-28.86
2387.03	44.15	PK	220	1.5	Н	-13.14	31.01	74.00	-42.99
2387.03	36.86	Ave	220	1.5	Н	-13.14	23.72	54.00	-30.28
2484.34	43.49	PK	69	1.5	V	-13.08	30.41	74.00	-43.59
2484.34	36.67	Ave	69	1.5	V	-13.08	23.59	54.00	-30.41

L regulency	Receiver	Detector	Turn table Angle	RX An	tenna	Corrected	Corrected Amplitude	FCC Part 15.247/209/205	
	Reading	Detector		Height	Polar	Factor		Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
ANTA+ANTB n20: Middle Channel 2442MHz									
227.69	56.86	QP	339	1.5	Н	-17.38	39.48	46.00	-6.52
227.69	59.14	QP	107	1.2	V	-17.38	41.76	46.00	-4.24
4884.00	56.94	PK	282	1.4	V	-0.62	56.32	74.00	-17.68
4884.00	42.88	Ave	282	1.4	V	-0.62	42.26	54.00	-11.74
7326.00	48.30	PK	148	1.9	Н	2.21	50.51	74.00	-23.49
7326.00	41.45	Ave	148	1.9	Н	2.21	43.66	54.00	-10.34
2337.28	46.20	PK	54	1.7	V	-13.19	33.01	74.00	-40.99
2337.28	40.00	Ave	54	1.7	V	-13.19	26.81	54.00	-27.19
2359.20	43.33	PK	262	1.1	Н	-13.14	30.19	74.00	-43.81
2359.20	38.28	Ave	262	1.1	Н	-13.14	25.14	54.00	-28.86
2492.91	43.13	PK	62	1.6	V	-13.08	30.05	74.00	-43.95
2492.91	38.98	Ave	62	1.6	V	-13.08	25.90	54.00	-28.10

Frequency	Receiver	I Detector	Turn table Angle	RX An	ntenna Corrected		Corrected	FCC Part 15.247/209/205	
Frequency	Reading	Detector		Height	Polar	Factor	Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
ANTA+ANTB n20: High Channel 2462MHz									
227.69	55.54	QP	31	1.3	Н	-17.38	38.16	46.00	-7.84
227.69	60.04	QP	70	1.4	V	-17.38	42.66	46.00	-3.34
4924.00	56.47	PK	248	1.1	V	-0.24	56.23	74.00	-17.77
4924.00	42.75	Ave	248	1.1	V	-0.24	42.51	54.00	-11.49
7386.00	47.46	PK	247	1.8	Н	2.84	50.30	74.00	-23.70
7386.00	41.39	Ave	247	1.8	Н	2.84	44.23	54.00	-9.77
2349.14	45.81	PK	69	1.9	V	-13.19	32.62	74.00	-41.38
2349.14	38.82	Ave	69	1.9	V	-13.19	25.63	54.00	-28.37
2372.59	43.04	PK	233	1.8	Н	-13.14	29.90	74.00	-44.10
2372.59	37.64	Ave	233	1.8	Н	-13.14	24.50	54.00	-29.50
2488.16	44.16	PK	204	1.4	V	-13.08	31.08	74.00	-42.92
2488.16	37.74	Ave	204	1.4	V	-13.08	24.66	54.00	-29.34

F	Receiver	1) Atactor	Turn table Angle	RX An	tenna	Corrected	Corrected Amplitude	FCC Part 15.247/209/205	
Frequency	Reading			Height	Polar	Factor		Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
	ANTA+ANTB n40: Low Channel 2422MHz								
227.69	56.06	QP	216	1.2	Н	-17.38	38.68	46.00	-7.32
227.69	59.34	QP	93	1.8	V	-17.38	41.96	46.00	-4.04
4824.00	56.42	PK	189	1.9	V	-1.06	55.36	74.00	-18.64
4824.00	42.83	Ave	189	1.9	V	-1.06	41.77	54.00	-12.23
7236.00	47.71	PK	302	1.2	Н	1.33	49.04	74.00	-24.96
7236.00	41.83	Ave	302	1.2	Н	1.33	43.16	54.00	-10.84
2336.82	46.95	PK	151	1.3	V	-13.19	33.76	74.00	-40.24
2336.82	37.98	Ave	151	1.3	V	-13.19	24.79	54.00	-29.21
2359.75	42.73	PK	245	1.9	Н	-13.14	29.59	74.00	-44.41
2359.75	36.55	Ave	245	1.9	Н	-13.14	23.41	54.00	-30.59
2486.29	44.98	PK	327	1.7	V	-13.08	31.90	74.00	-42.10
2486.29	36.43	Ave	327	1.7	V	-13.08	23.35	54.00	-30.65

Frequency	Receiver	1)atactor	Turn	RX An	RX Antenna		Corrected	FCC Part 15.247/209/205	
Frequency	Reading		table Angle	Height	Polar	Factor	Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
	ANTA+ANTB n40: Middle Channel 2442MHz								
227.69	56.37	QP	184	1.3	Н	-17.38	38.99	46.00	-7.01
227.69	58.67	QP	309	1.3	V	-17.38	41.29	46.00	-4.71
4884.00	55.60	PK	34	1.7	V	-0.62	54.98	74.00	-19.02
4884.00	42.32	Ave	34	1.7	V	-0.62	41.70	54.00	-12.30
7326.00	46.81	PK	113	1.9	Н	2.21	49.02	74.00	-24.98
7326.00	43.05	Ave	113	1.9	Н	2.21	45.26	54.00	-8.74
2327.45	45.69	PK	172	1.3	V	-13.19	32.50	74.00	-41.50
2327.45	37.67	Ave	172	1.3	V	-13.19	24.48	54.00	-29.52
2350.49	43.86	PK	316	2.0	Н	-13.14	30.72	74.00	-43.28
2350.49	37.15	Ave	316	2.0	Н	-13.14	24.01	54.00	-29.99
2496.01	43.91	PK	348	1.2	V	-13.08	30.83	74.00	-43.17
2496.01	37.62	Ave	348	1.2	V	-13.08	24.54	54.00	-29.46

F	Receiver	1)AtActor	Turn	RX An	tenna	Corrected	Corrected Amplitude	FCC Part 15.247/209/205	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor		Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
	ANTA+ANTB n40: High Channel 2452MHz								
227.69	55.33	QP	129	1.6	Н	-17.38	37.95	46.00	-8.05
227.69	57.94	QP	192	1.2	V	-17.38	40.56	46.00	-5.44
4924.00	55.02	PK	119	1.1	V	-0.24	54.78	74.00	-19.22
4924.00	43.54	Ave	119	1.1	V	-0.24	43.30	54.00	-10.70
7386.00	46.09	PK	36	1.4	Н	2.84	48.93	74.00	-25.07
7386.00	42.82	Ave	36	1.4	Н	2.84	45.66	54.00	-8.34
2332.78	45.46	PK	230	1.3	V	-13.19	32.27	74.00	-41.73
2332.78	38.00	Ave	230	1.3	V	-13.19	24.81	54.00	-29.19
2389.45	42.15	PK	305	1.4	Н	-13.14	29.01	74.00	-44.99
2389.45	38.50	Ave	305	1.4	Н	-13.14	25.36	54.00	-28.64
2489.84	42.58	PK	69	1.7	V	-13.08	29.50	74.00	-44.50
2489.84	37.98	Ave	69	1.7	V	-13.08	24.90	54.00	-29.10

Test Frequency: 18GHz~25GHz

The measurements were more than 20 dB below the limit and not reported.

Reference No.: WTU18S10126240W Page 37 of 96

9 Band Edge Measurement

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: 558074 D01 15.247 Meas Guidance v05, August 24, 2018

Test Limit: Regulation 15.247 (d),In any 100 kHz bandwidth outside the

frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Mode: Transmitting

9.1 Test Produce

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

Reference No.: WTU18S10126240W Page 38 of 96

9.2 Test Setup

9.3 Test Result

Test result plots shown as follows:

Reference No.: WTU18S10126240W Page 47 of 96

10 Bandwidth Measurement

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: 558074 D01 15.247 Meas Guidance v05, August 24, 2018

10.1 Test Procedure:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2. Set the spectrum analyzer: RBW = 100kHz, VBW = 300kHz

10.2 Test Setup

10.3 Test Result:

ANT	Operation mode	6dB	Bandwidth (I	MHz)	99%	Bandwidth (MHz)
		Channel 1	Channel 7	Channel 11	Channel 1	Channel 7	Channel 11
	TX 11b	10.060	10.060	10.060	12.519	12.679	12.966
	TV 44	Channel 1	Channel 7	Channel 11	Channel 1	Channel 7	Channel 11
	TX 11g	16.267	16.267	16.267	16.367	16.417	16.467
ANTA	TX 11n	Channel 1	Channel 7	Channel 11	Channel 1	Channel 7	Channel 11
	HT20	17.515	17.515	17.515	17.569	17.569	17.569
	TX 11n	Channel 3	Channel 7	Channel 9	Channel 3	Channel 7	Channel 9
	HT40	35.570	35.570	35.570	35.784	35.784	35.784
	TX 11b	Channel 1	Channel 7	Channel 11	Channel 1	Channel 7	Channel 11
		10.060	10.060	10.060	12.519	12.679	12.998
	TV 44 =	Channel 1	Channel 7	Channel 11	Channel 1	Channel 7	Channel 11
	TX 11g	16.267	16.267	16.267	16.367	16.367	16.417
ANTB	TX 11n	Channel 1	Channel 7	Channel 11	Channel 1	Channel 7	Channel 11
	HT20	17.515	17.515	17.515	17.569	17.569	17.569
	TX 11n	Channel 3	Channel 7	Channel 9	Channel 3	Channel 7	Channel 9
	HT40	35.570	35.570	35.570	35.784	35.784	35.784

Reference No.: WTU18S10126240W Page 48 of 96

Test result plot as follows:

Reference No.: WTU18S10126240W Page 60 of 96

11 Maximum conducted (average) output power

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: 558074 D01 15.247 Meas Guidance v05, August 24, 2018

11.1 Test Procedure:

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.
- 2. Set the spectrum analyzer: RBW = 1 MHz. VBW = 3 MHz. Sweep = auto; Detector Function = RMS, Set the span to fully encompass the DTS bandwidth.
- 3. Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.

11.2 Test Setup

11.3 Test Result:

ANTA

	Test mode :TX 11b			
Maximum conducted (average) output power (dBm)				
Channel 1	Channel 1 Channel 7 Channel 11			
15.22 15.04 15.70				
Limit: 1W/30dBm				

Test mode :TX 11g			
Maximum conducted (average) output power (dBm)			
Channel 1	Channel 7	Channel 11	
13.43 13.30 13.28			
Limit: 1W/30dBm			

Test mode :TX 11n HT20			
Maximum conducted (average) output power (dBm)			
Channel 1 Channel 7 Channel 11			
11.50 11.42 11.36			
Limit: 1W/30dBm			

Reference No.: WTU18S10126240W Page 61 of 96

Test mode : TX 11n HT40			
Maximum conducted (average) output power (dBm)			
Channel 3 Channel 7 Channel 9			
11.73 11.51 11.26			
Limit: 1W/30dBm			

ANTB

Test mode :TX 11b			
Maximum conducted (average) output power (dBm)			
Channel 1	Channel 1 Channel 7 Channel 11		
15.15 15.04 15.79			
Limit: 1W/30dBm			

Test mode :TX 11g			
Maximum conducted (average) output power (dBm)			
Channel 1 Channel 7 Channel 11			
13.26 13.38 13.34			
Limit: 1W/30dBm			

Test mode :TX 11n HT20			
Maximum conducted (average) output power (dBm)			
Channel 1 Channel 7 Channel 11			
11.54	11.36	11.18	
Limit: 1W/30dBm			

Test mode: TX 11n HT40			
Maximum conducted (average) output power (dBm)			
Channel 1 Channel 7 Channel 11			
11.15 11.54 11.31			
Limit: 1W/30dBm			

ANTA+ANTB

Test mode :TX 11n HT20			
Maximum conducted (average) output power (dBm)			
Channel 1 Channel 7 Channel 11			
14.53 14.40 14.28			
Limit: 1W/30dBm			

Test mode : TX 11n HT40			
Maximum conducted (average) output power (dBm)			
Channel 3 Channel 7 Channel 9			
14.46 14.54 14.30			
Limit: 1W/30dBm			

Reference No.: WTU18S10126240W Page 62 of 96

12 Power Spectral density

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: 558074 D01 15.247 Meas Guidance v05, August 24, 2018

12.1 Test Procedure:

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.
- 2. Set the spectrum analyzer: RBW = 3kHz. VBW = 10kHz , Span = 1.5 times the DTS channel bandwidth(6 dB bandwidth). Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

12.2 Test Setup

12.3 Test Result:

ANTA

	Test mode :TX 11b				
Power Spectral (dBm per 3kHz)					
2412MHz 2442MHz 2462MHz					
-9.41 -9.16 -8.06					
Limit: 8dBm per 3kHz					

Test mode :TX 11g		
Power Spectral (dBm per 3kHz)		
2412MHz	2442MHz	2462MHz
-14.20	-14.60	-14.17
Limit: 8dBm per 3kHz		

Test mode :TX 11n HT20			
Power Spectral (dBm per 3kHz)			
2412MHz 2442MHz 2462MHz			
-14.46	-15.97	-16.00	
Limit: 8dBm per 3kHz			

Reference No.: WTU18S10126240W Page 63 of 96

Test mode : TX 11n HT40		
Power Spectral (dBm per 3kHz)		
2422MHz	2442MHz	2452MHz
-18.58	-18.63	-19.28
Limit: 8dBm per 3kHz		

ANTB

1			
Test mode :TX 11b			
Power Spectral (dBm per 3kHz)			
2412MHz 2442MHz 2462MHz			
-8.54	-7.50	-9.55	
Limit: 8dBm per 3kHz			

Test mode :TX 11g		
Power Spectral (dBm per 3kHz)		
2412MHz	2442MHz	2462MHz
-13.70	-12.94	-13.70
Limit: 8dBm per 3kHz		

Test mode :TX 11n HT20		
Power Spectral (dBm per 3kHz)		
2412MHz	2442MHz	2462MHz
-15.81	-16.20	-16.74
Limit: 8dBm per 3kHz		

Test mode: TX 11n HT40		
Power Spectral (dBm per 3kHz)		
2422MHz	2442MHz	2452MHz
-18.06	-18.49	-18.12
Limit: 8dBm per 3kHz		

ANTA+ANTB

Test mode :TX 11n HT20		
Power Spectral (dBm per 3kHz)		
2412MHz	2442MHz	2462MHz
-12.07	-13.07	-13.34
Limit: 8dBm per 3kHz		

Test mode : TX 11n HT40		
Power Spectral (dBm per 3kHz)		
2422MHz	2442MHz	2452MHz
-15.30	-15.55	-15.65
Limit: 8dBm per 3kHz		

13 Antenna Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Result:

The EUT has two Internal Metal Antenna, meets the requirements of FCC 15.203.

Reference No.: WTU18S10126240W Page 77 of 96

14 FCC ID: 2AHCK-E2SW5018 RF Exposure Report

Test Requirement: FCC Part 1.1307

Evaluation Method: FCC Part 2.1091 & KDB 447498 D01 General RF Exposure Guidance v06

14.1 Requirements

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2 m normally can be maintained between the user and the device.

14.2 The procedures / limit

(A) Limits for Occupational / Controlled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm²)	Averaging Time E ², H ²or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842 / f	4.89 / f	(900 / f)*	6
30-300	61.4	0.163	1.0	6
300-1500			F/300	6
1500-100,000			5	6

(B) Limits for General Population / Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm²)	Averaging Time E ², H ² or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500			F/1500	30
1500-100,000			1.0	30

Note: f = frequency in MHz; *Plane-wave equivalent power density

Reference No.: WTU18S10126240W Page 78 of 96

14.3 MPE Calculation Method

$$\mathbf{S} = \frac{P \times G}{4 \times \pi \times R^2}$$

S = power density (in appropriate units, e.g. mW/cm²)

P = output power to the antenna (in appropriate units, e.g., mW).

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain.

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

From the peak EUT RF output power, the minimum mobile separation distance, R=20cm, as well as the gain of the used antenna, the RF power density can be obtained

ANTA

Antenna Gain (dBi)	Antenna Gain (numeric)	Maximum conducted (average) output power (dBm)	Maximum conducted (average) output power (mw)	Power Density (mW/cm2)	Limit of Power Density (mW/cm2)	Result
2.00	1.585	15.70	37.15	0.0117	1	Compliance

ANTB

Antenna Gain (dBi)	Antenna Gain (numeric)	Maximum conducted (average) output power (dBm)	Maximum conducted (average)	Power Density (mW/cm2)	Limit of Power Density (mW/cm2)	Result
		power (dbill)	output power (mw)		(IIIVV/CIIIZ)	
2.00	1.585	15.79	37.93	0.0120	1	Compliance

ANTA+ANTB

Antenna Gain (dBi)	Antenna Gain (numeric)	Maximum conducted (average) output power (dBm)	Maximum conducted (average) output power (mw)	Power Density (mW/cm2)	Limit of Power Density (mW/cm2)	Result
2.00	1.585	14.54	28.44	0.0090	1	Compliance

15 Photographs – Model E2SW5018 Test Setup Photos

15.1 Radiated Emission

Test frequency 9 kHz to 30 MHz

Test frequency from 30 MHz to 1 GHz

Test frequency above 1GHz

15.2 Conducted Emission

16 Photographs - Constructional Details

16.1Model E2SW5018-External Photos

Reference No.: WTU18S10126240W Page 82 of 96

Reference No.: WTU18S10126240W Page 83 of 96

Reference No.: WTU18S10126240W Page 84 of 96

Reference No.: WTU18S10126240W Page 85 of 96

Reference No.: WTU18S10126240W Page 86 of 96

16.2Model E2SW5018-Internal Photos

Reference No.: WTU18S10126240W Page 87 of 96

Reference No.: WTU18S10126240W Page 88 of 96

Reference No.: WTU18S10126240W Page 91 of 96

Reference No.: WTU18S10126240W Page 92 of 96

Reference No.: WTU18S10126240W Page 93 of 96

Reference No.: WTU18S10126240W Page 94 of 96

Reference No.: WTU18S10126240W Page 95 of 96

Reference No.: WTU18S10126240W Page 96 of 96

=====End of Report=====