# Computer Security

Lecture 10: Diffie-Hellman Key Exchange

#### Prof. Dr. Sadeeq Jan

Department of Computer Systems Engineering University of Engineering and Technology Peshawar





## Diffie-Hellman Key Exchange

#### Lecture Outline



Diffie-Hellman Key Exchange

### Diffie-Hellman Key Exchange



- First PKC offered by Diffie and Hellman in 1976
- still in commercial use
- purpose is secure key-exchange
  - actually key "agreement"
  - both parties agree on a session key without releasing this key to a third party
    - to be used for further communication using symmetric crypto
- Security is in the hardness of the discrete logarithm problem
  - given g<sup>x</sup> mod p, g and p, it is computationally infeasible to find out x if p is large enough prime number

## Cappuccino Recipe



#### Easy



#### Hard

### Diffie-Hellman Key exchange



Requires two large numbers, one prime (P), and (G), a primitive root of P

#### **Primitive root**



| 3 is a primitive root of 5:                                          | n | <b>3</b> <sup>n</sup> | 3 <sup>n</sup> mod 5 |
|----------------------------------------------------------------------|---|-----------------------|----------------------|
| If the set of remainders in the third column reproduces the set      | 1 | 3                     | 3                    |
| of integers in the first (the order need not be identical), then 3   | 2 | 9                     | 4                    |
| is a primitive root of 5. It looks like 3 is indeed a primitive root | 3 | 27                    | 2                    |
| of 5.                                                                | 4 | 81                    | 1                    |
|                                                                      | X | <b>4</b> ×            | 4 <sup>x</sup> mod 5 |
| 4 on the other hand is not,                                          | 1 | 4                     | 4                    |
| because we won't get the values 1 through 4 when                     | 2 | 16                    | 1                    |
| we repeat the above process.                                         | 3 | 64                    | 4                    |
|                                                                      | 4 | 256                   | 1                    |

# Implementation



- P and G are both publicly available numbers
  - P is at least 512 bits
- Users pick private values a and b
- Compute public values
  - $A = g^a \mod p$
  - $\blacksquare$  B = g<sup>b</sup> mod p
- Public values A and B are exchanged

#### Implementation



- Both users Compute shared, private key
  - $s = B \land a \mod p$
  - $s = A \wedge b \mod p$

- Algebraically it can be shown that both s are equal.
  - Thus, Users now have a symmetric secret key to encrypt

#### Example



- Alice and Bob agree to use a prime number p=23 and base g=5.
- Alice chooses a secret integer a=6, then sends Bob A =  $g^a \mod p$ 
  - $A = 5^6 \mod 23$
  - $A = 15,625 \mod 23$
  - $\blacksquare \quad A = 8$
- Bob chooses a secret integer b=15, then sends Alice B =  $g^b \mod p$ 
  - $B = 5^{15} \mod 23$
  - $\blacksquare$  B = 30,517,578,125 mod 23
  - $\blacksquare$  B = 19
- Alice computes  $\mathbf{s} = B^a \mod p$ 
  - $s = 19^6 \mod 23$
  - $s = 47,045,881 \mod 23$
  - s = 2

#### Example-contd..



- Bob computes  $\mathbf{s} = A^b \mod p$ 
  - $s = 8^{15} \mod 23$
  - $s = 35,184,372,088,832 \mod 23$
  - $\blacksquare$  S=2
- Alice and Bob now share a secret: s = 2. This is because 6\*15 is the same as 15\*6. So somebody who had known both these private integers might also have calculated s as follows:
  - $s = 5^{6*15} \mod 23$
  - $s = 5^{15*6} \mod 23$
  - $s = 5^{90} \mod 23$
  - **s** = 807,793,566,946,316,088,741,610,050,849,573,099,185,363,389,551,639,556,884,765,625 mod 23
  - $\blacksquare$  s=2



Both Alice and Bob have arrived at the same value, because  $(g^a)^b$  and  $(g^b)^a$  are equal mod p. Note that only a, b and  $g^{ab} = g^{ba} \mod p$  are kept secret. All the other values -p, g,  $g^a \mod p$ , and  $g^b \mod p$  are sent in the clear

## Example - Diffie-Hellman Key exchange



|        | Alice                                                                                                                             | Evil Eve                            | Bob                                                                                                                                    |  |  |  |
|--------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|        | Alice and Bob exchange a Prime (P) and a Generator (G) in clear text, such that P > G and G is Primitive Root of P  G = 7, P = 11 | Evil Eve sees<br>G = 7, P = 11      | Alice and Bob exchange a Prime (P) and a Generator (G) in clear text,<br>such that P > G and G is Primitive Root of P<br>G = 7, P = 11 |  |  |  |
| Step 1 | Alice generates a random number: $X_A$<br>$X_A$ =6 (Secret)                                                                       |                                     | Bob generates a random number: X <sub>B</sub> X <sub>B</sub> =9 (Secret)                                                               |  |  |  |
|        |                                                                                                                                   |                                     |                                                                                                                                        |  |  |  |
|        | $Y_A = G^{X_A} \pmod{P}$                                                                                                          |                                     | $Y_B = G^{X_B} \pmod{P}$                                                                                                               |  |  |  |
| Step 2 | $Y_A = 7^6 \pmod{11}$<br>$Y_A = 4$                                                                                                |                                     | $Y_B = 7^9 \pmod{11}$<br>$Y_B = 8$                                                                                                     |  |  |  |
|        |                                                                                                                                   |                                     |                                                                                                                                        |  |  |  |
| Step 3 | Alice receives Y <sub>B</sub> = 8 in clear-text                                                                                   | Evil Eve sees $Y_A = 4$ , $Y_B = 8$ | Bob receives Y <sub>A</sub> = 4 in clear-text                                                                                          |  |  |  |
|        |                                                                                                                                   |                                     |                                                                                                                                        |  |  |  |
| Step 4 | Secret Key =Y <sub>B</sub> <sup>X</sup> <sub>A</sub> (mod P)<br>Secret Key = 8 <sup>6</sup> (mod 11)<br>Secret Key = 3            |                                     | Secret Key = Y <sub>A</sub> <sup>X<sub>B</sub></sup> (mod P)<br>Secret Key = 4 <sup>9</sup> (mod 11)<br>Secret Key = 3                 |  |  |  |

#### Diffie-Hellman Example



- users Alice & Bob who wish to swap keys:
- agree on prime p=353 and g=3
- select random secret keys:
  - A chooses  $x_A = 97$ , B chooses  $x_B = 233$
- compute public keys:
  - $y_A = 3^{97} \mod 353 = 40$  (Alice)
  - $-y_B=3^{233} \mod 353 = 248$  (Bob)
- compute shared session key as:

$$K_{AB} = y_B^{x_A} \mod 353 = 248^{97} = 160$$
 (Alice)

$$K_{AB} = y_A^{x_B} \mod 353 = 40^{233} = 160$$
 (Bob)

#### D-H Key Exchange – Man in the middle attack







## **END**