SVKM'S NMIMS

School of Technology Management & Engineering, Navi-Mumbai Campus B.Tech. (Sem- I) (CSBS)

Assignment-4

Subject: Principles of Electrical Engineering

Date of Submission: 01/10/2019

Q.1 Determine the current trough 8Ω resistance in the network shown in fig. 1 by Thevenin's theorem.

Fig. 1

Q.2 Determine Thevenin equivalent circuit and hence, find the current trough 30Ω resistor in network shown in fig. 2.

Fig. 2

Q.3 Determine current trough 10Ω resistor in network shown in fig. 3 by Thevenin's theorem.

Fig. 3

Q.4 Calculate the current in 5Ω resistor for the network shown in fig. 4.

Fig. 4

Q.5 Using Norton's equivalent circuit find current I in the given fig. 5.

Fig. 5

Q.6 Find current trough $R_L = 4\Omega$, and also find power dissipated using Norton's theorem for the circuit of fig. 6.

Fig. 6

Q.7 For the circuit shown in fig. 7, find the value of Q. 8 resistance R_L for maximum power transfer and also calculate maximum power.

Fig. 7

Fig. 8

Q.9 For the circuit shown in fig. 9, find the value of the resistance RL for maximum power and calculate the maximum power.

Fig. 9

Q. 10 For the circuit shown in fig. 10, find the value of R_L and calculate $P_{\text{max.}}$

Fig. 10