- 1. Să se rezolve inecuația 3x 1 < 2x + 2. (6 pct.)
 - a) (-1,1); b) (5,11); c) $(10,\infty)$; d) $(-\infty,3)$; e) $(2,\infty)$; f) (1,4).
- 2. Să se calculeze determinantul $\begin{vmatrix} 2 & 0 & 1 \\ 0 & 2 & 3 \\ 1 & 2 & 3 \end{vmatrix}$. **(6 pct.)**
 - a) -11; b) -2; c) -3; d) 9; e) 2; f) 4
- 3. Fie $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^3 + 2x$. Să se calculeze f'(1). (6 pct.) a) 6; b) 7; c) 4; d) -1; e) 3; f) 5.
- 4. Să se rezolve ecuația $3^{2x-1} = 27$. (6 pct.)
 - a) x = 2; b) x = -1; c) x = -2; d) x = 1; e) x = 0; f) x = 4.
- 5. Să se rezolve ecuația $\log_2(x+1) = 3$. (6 pct.)
 - a) x = 2; b) x = 7; c) x = 1; d) x = 4; e) x = 5; f) x = 6.
- 6. Să se rezolve sistemul $\begin{cases} 2x y = 7 \\ x + 2y = 6 \end{cases}$. (6 pct.)
 - a) x = 2, y = 4; b) x = 2, y = 2; c) x = 4, y = 1; d) x = 1, y = 4; e) x = 2, y = 3; f) x = 1, y = 3.
- 7. Să se calculeze suma soluțiilor reale ale ecuației $x^3 + 2x^2 3x = 0$. (6 pct.)
 - a) -3; b) 2; c) 4; d) 3; e) -2; f) -1.
- 8. Multimea soluțiilor inecuației $x^2 3x \le 0$ este: (6 pct.)
 - a) [0,3]; b) $[2,\infty)$; c) $[1,\infty)$; d) [-1,3]; e) (-3,3); f) $(3,\infty)$.
- 9. Să se determine $x \in \mathbb{R}$ astfel încât numerele x, 8, 3x + 2 să fie (în această ordine) în progresie aritmetică. (6 pct.)
 - a) $\frac{1}{6}$; b) $\frac{5}{2}$; c) $\frac{3}{4}$; d) $\frac{7}{2}$; e) $\frac{1}{3}$; f) $\frac{2}{5}$.
- 10. Fie $M = \left\{ X \in M_2(\mathbb{C}) \mid X^2 = \begin{pmatrix} -1 & -2 \\ 4 & -1 \end{pmatrix} \right\}$, unde $M_2(\mathbb{C})$ reprezintă mulțimea matricelor pătratice de ordinul doi, cu elemente în \mathbb{C} . Pentru $X \in M$, notăm cu S(X) suma pătratelor elementelor matricei X. Să se calculeze $S = \sum_{X \in M} S(X)$. (6 pct.)
 - a) S = 3; b) S = 4; c) S = 5; d) S = 11; e) S = 7; f) S = 1.
- 11. Suma soluțiilor reale ale ecuației $\sqrt{2x+1} = x-1$ este: (6 pct.)
 - a) 3; b) 4; c) 1; d) 5; e) 0; f) 2.
- 12. Să se determine $a \in \mathbb{R}$ astfel încât sistemul $\begin{cases} ax y + z = 0 \\ 2x + y z = 0 \end{cases}$ să aibă și soluții nenule. (6 pct.) x + y + 2z = 0
 - a) a = -5; b) a = 4; c) a = -2; d) a = 5; e) a = -4; f) a = 1.
- 13. Considerăm funcția $f: [-1,1] \to \mathbb{R}$, $f(x) = \frac{\pi}{2} 2 \operatorname{arctg} \sqrt{\frac{1-x}{1+x}}$, dacă $x \in (-1,1]$, și $f(-1) = -\frac{\pi}{2}$. Fie $M = \{m \in \mathbb{R} \mid \operatorname{ecuația} f(x) = mx \text{ are trei soluții reale și distincte}\}$. Atunci: (6 pct.)
 - a) $M = (0, \frac{\pi}{4}]$; b) $M = (\frac{\pi}{3}, \frac{\pi}{2}]$; c) $M = [\frac{\pi}{4}, \frac{\pi}{3}]$; d) $M = [0, \frac{\pi}{3}]$; e) $M = [1, \frac{\pi}{4})$; f) $M = (1, \frac{\pi}{2}]$.
- 14. Fie polinoamele $f = X^3 + aX^2 + 18$ şi $g = X^3 + bX + 12$, unde $a, b \in \mathbb{R}$. Să se calculeze S = a + b ştiind că polinoamele f ţi g au două rădăcini comune. (6 pct.)
 - a) S = 0; b) S = 1; c) S = 3; d) S = -2; e) S = 4; f) S = -1.
- 15. Pentru a > 0, considerăm funcția $f: [0, a] \to \mathbb{R}_+, f(x) = \frac{1}{1+x^2}$. Dacă V(a) este volumul corpului obținut prin rotirea graficului funcției f în jurul axei Ox, să se calculeze $\lim_{a \to \infty} V(a)$. (6 pct.)
 - a) $\frac{\pi^2}{3}$; b) π^2 ; c) $\frac{\pi^2}{4}$; d) $\frac{\pi^2}{2}$; e) $\frac{\pi^2}{6}$; f) $\frac{\pi^2}{8}$.