Logistic Regression

COMP 527 Danushka Bollegala

Binary Classification

- Given an instance x we must classify it to either positive (1) or negative (0) class
 - We can use {1,-1} instead of {1,0} but we will use the latter formulation as it simplifies the notation in subsequent derivations
- Binary classification can be seen as learning a function f such that f(x) returns either 1 or 0, indicating the predicted class

Some terms in Machine Learning

- Training dataset with N instances
 - $\{(x_1,t_1), ..., (x_N,t_N)\}$
- Target label (class)
 - t: The class labels in the training dataset
 - Annotated by humans (supervised learning)
- Predicted label
 - Labels predicted by our model f(x)
- P(A|B): conditional probability of observing an event A, given an event B
- P(A): marginal probability of event A
 - We have marginalised out all the variables on which A depends upon (cf. margin of a probability table)
- Prior probability P(B)
- Posterior probability P(B|A)

Logistic Regression

- is not a *regression* model
- is a classification model
- is the basis of many advanced machine learning methods
 - neural networks, deep learning, conditional random fields, ...
- Try to fit a logistic sigmoid function to predict the class labels

Logistic Sigmoid Function

Why do we use logistic sigmoid?

- Reason 1:
 - We must squash the prediction score $\mathbf{w}^{\mathsf{T}}\mathbf{x}$, which is in the range $(-\infty, +\infty)$ to the range [0,1] when performing binary classification
- Reason 2: (Bayes' Rule)

$$P(t=1|x) = \frac{P(x|t=1)P(t=1)}{P(x)}$$

$$= \frac{P(x|t=1)P(t=1)}{P(t=1)P(x|t=1) + P(t=0)P(x|t=0)}$$

$$= \frac{1}{1 + \frac{1}{\frac{P(x|t=1)P(t=1)}{P(t=0)P(x|t=0)}}}$$

$$\exp(a) = \frac{P(x|t=1)P(t=1)}{P(t=0)P(x|t=0)}$$

$$P(t=1|x) = \frac{1}{1 + \exp(-a)} = \sigma(a)$$

Likelihood

- We have a probabilistic model (logistic sigmoid function σ(w^Tx)) that tells us the probability of a particular training instance x being positive (t=1) or negative (t=0)
- We can use this model to predict the probability of the entire training dataset
 - *likelihood* of the training dataset
- However, this dataset is already observed (we have it with us)
- If we want to explain this training dataset, then our model must maximise the likelihood for this training dataset (more than any other labelling of the dataset)
- Maximum Likelihood Estimate/Principle (MLE)

Maximum Likelihood Estimate

$$y_n = \sigma(\boldsymbol{w}^{\top} \boldsymbol{x}_n) = \frac{1}{1 + \exp(-\boldsymbol{w}^{\top} \boldsymbol{x}_n)}$$

$$\boldsymbol{t} = (t_1, \dots, t_n)^{\top}$$

$$p(\boldsymbol{t} | \boldsymbol{w}) = \prod_{n=1}^{N} y_n^{t_n} (1 - y_n)^{(1 - t_n)}$$

By taking the negative of the logarithm of the above product we define the cross-entropy error function

$$E(\mathbf{w}) = -\ln p(\mathbf{t}|\mathbf{w}) = -\sum_{n=1}^{N} \{t_n \ln y_n + (1 - t_n) \ln(1 - y_n)\}$$

By differentiating E(w) w.r.t. w we get $\nabla E(w)$ as follows:

$$\nabla E(\boldsymbol{w}) = \sum_{n=1}^{N} (y_n - t_n) x_n$$

Q1: Derivation of Cross Entropy Error Function

Q2: Derivation of the gradient

Updating the weight vector

Generic update rule

$$\boldsymbol{w}^{(r+1)} = \boldsymbol{w}^{(r)} - \eta \nabla E(\boldsymbol{w})$$

Update rule with cross-entropy error function

$$\boldsymbol{w}^{(r+1)} = \boldsymbol{w}^{(r)} - \eta(y_n - t_n)\boldsymbol{x}_n$$

Logistic Regression Algorithm

- Given a set of training instances $\{(x_1,t_1), ..., (x_N,t_N)\}$, learning rate, η , and iterations T
- Initialise weight vector w = 0
- For j in 1,...,T
 - For n in 1,...,N
 - if $pred(\mathbf{x}_i) \neq t_i \# misclassification$
 - $\mathbf{w}^{(r+1)} = \mathbf{w}^{(r)} \eta(y_n t_n) \mathbf{x}_n$
- Return the final weight vector w

Prediction Function pred

- Given the weight vector w, returns the class label for an instance x
 - if $w^T x > 0$:
 - predicted label = +1 # positive class
 - else:
 - predicted label = 0 # negative class

Online vs. Batch

- Online vs. Batch Logistic Regression
 - The algorithm we discussed in the previous slides is an *online algorithm* because it considers only one instance at a time and updates the weight vector
 - Referred to as the Stochastic Gradient Descent (SGD) update
 - In the batch version, we will compute the cross-entropy error over the *entire* training dataset and then update the weight vector
 - Popular optimisation algorithm for the batch learning of logistic regression is the Limited Memory BFGS (L-BFGS) algorithm
- Batch version is slow compared to the SGD version. But shows slightly improved accuracies in many cases
- SGD version can require multiple iterations over the dataset before it converges (if ever)
- SGD is a technique that is frequently used with large scale machine learning tasks (even when the objective function is non-convex)

Regularisation

- Regularisation
 - Reducing overfitting in a model by constraining it (reducing the complexity/no. of parameters)
 - For classifiers that use a weight vector, regularisation can be done by minimising the norm (length) of the weight vector.
 - Several popular regularisation methods exist
 - L2 regularisation (ridge regression or Tikhonov regularisation)
 - L1 regularisation (Lasso regression)
 - L1+L2 regularisation (mixed regularisation)

L2 regularisation

- Let us denote the Loss of classifying a dataset D using a model represented by a weight vector w by L(D,w) and we would like to impose L2 regularisation on w.
- The overall objective to minimise can then be written as follows (here λ is called the regularisation coefficient and is set via cross-validation)

$$J(D, \boldsymbol{w}) = L(D, \boldsymbol{w}) + \lambda ||\boldsymbol{w}||_2^2$$

 The gradient of the overall objective simply becomes the addition of the loss-gradient and the scaled weight vector w.

$$\frac{\partial J(D, \boldsymbol{w})}{\partial \boldsymbol{w}} = \frac{\partial L(D, \boldsymbol{w})}{\partial \boldsymbol{w}} + 2\lambda \boldsymbol{w}$$

Examples

- Note that SGD update for minimising a loss multiplies the loss gradient by a negative learning rate (η). Therefore, the L2 regularised update rules will have a -2 $\eta\lambda$ **w** term as shown in the following examples
- L2 regularised Perceptron update (for a misclassified instance we do)

$$\boldsymbol{w}^{(k+1)} = \boldsymbol{w}^{(k)} + t\boldsymbol{x} - 2\lambda \boldsymbol{w}^{(k)}$$

L2 regularised logistic regression

$$\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} - \eta((y-t)\mathbf{x} + 2\lambda\mathbf{w}^{(k)})$$
$$= (1 - 2\lambda\eta)\mathbf{w}^{(k)} - \eta(y-t)\mathbf{x}$$

How to set λ

- Split your training dataset into training and validation parts (eg. 80%-20%)
- Try different values for λ (typically in the logarithmic scale). Train a different classification model for each λ and select the value that gives the best performance (eg. accuracy) on the validation data.
 - $\lambda = 10^{-5}$, 10^{-4} , 10^{-3} , 10^{-2} , 10^{-1} , 1, 0, 10^{1} , 10^{2} , 10^{3} , 10^{4} , 10^{5}

References

- Bishop (Pattern Recognition and Machine Learning) Section 4.3.2
- Software
 - scikit-learn (Python)
 - http://scikit-learn.org/stable/modules/ generated/ sklearn.linear_model.LogisticRegression.html
 - Classias (C)
 - http://www.chokkan.org/software/classias/