

Olivier FARGE, Fangkai XUE et Fabio CRUZ

2021-01-17

Contents

In	troduction	5
	Plan du cours	5
	Equipe Pédagogique	5
	Séquences d'enseignement du module	5
	Répartition des séquences d'enseignement	5
1	Application sur la notions de torseur	7
	1.1 Exercise 1	7
	1.2 Exercise 2: Statique	7
	1.3 Exercise 3	8
	1.4 Liaisons mécaniques normalisées	8
2	TD 2?	9
3	TD 3	11
4	TD 4	13
5	TD 5	15
6	TD 6	17
7	TD 7	19
8	TD 8	21
9	Flexion dans le cadre de Navier Bernouilli	23

4 CONTENTS

Introduction

Plan du cours

- 1. Introduction
- Modalités de déroulemen et validation du module RDM
- La Mécanique, la Résistances des Matériaux
- Dimensionnement des structures
- 1. Notions sur les torseurs
- 2. Géometrie des poutres
- 3. Statique
- 4. Expérience fondamentale
- 5. Bilan des hypothèses
- 6. Applications: Sollicitations simples
- Traction compression
- Flexion
- 1. Dimensionnement

Equipe Pédagogique

Séquences d'enseignement du module

- 12 séances de cours
- 11 séances de Travaux dirigés
- 1 Conférence industrielle

Répartition des séquences d'enseignement

6 CONTENTS

Application sur la notions de torseur

1.1 Exercise 1

Soit (O; i, j, k) un repère orthonormé direct. On note (x, y, z) les coordonnés du point P et on considère le champ de vecteurs H(P) suivant:

$$H(P) = \begin{bmatrix} -w[(y-y_0)\cos(\theta) + z\sin(\theta)] \\ -w(x-x_0)\cos(\theta) \\ -w(x-x_0)\sin(\theta) + \frac{v}{\cos(\theta)} \end{bmatrix}$$

où x_0

Questions

- 1. Montrer que le champ de vecteurs $\vec{H(P)}$ est équiprojectif. Conclure
- 2. Déterminer les coordonnées vectorielles $R(\tau)$ et $M(\tau,A)$ au point de réduction A de coordonnées $(x_0,y_0),0$

1.2 Exercise 2: Statique

Une porte blindée est articulée sur le mur au point O par l'intermédiaire de deux gonds renforcés aux points \mathbf{A} et \mathbf{B} , le poids \mathbf{P} de la porte est de 2000N (voir figure 1).

Questions

- 1. Écrire les torseurs de liaison aux point **A**, **B** et **G**, sachant que l'action exercée en **B** par le mur est contenue dans le plan horizontalement passant par le point **B**.
 - On suppose : liaison linéaire annulaire en B et rotule en A.
- 2. Appliquer le principe fondamental de la statique.
- 3. En déduire les réactions de liaison en A et en B.

1.3 Exercise 3

Une enseigne lumineuse d'une librairie a une liaison rotule avec le mur au point A (figure 2).

Elle est soutenue au point ${\bf D}$ par deux câbles ${\bf B}{\bf D}$ et ${\bf C}{\bf D}$ de même longueur.

Le poids ${f P}$ de l'enseigne est égal à 500N.

Questions

- 1. Écrire les torseurs de liaison aux points A, G, D, définissant les actions sur l'enseigne.
- 2. Appliquer le principe fondamental de la statique.
- 3. En déduire la tension dans les câble

1.4 Liaisons mécaniques normalisées

1.4.1 Remarques:

- 1. Un degrés de liberté égal à zéro est un degrés de liberté supprimé.
- 2. Un degrés de liberté de translation supprimée correspond à une inconnue en force dans le torseur de liaison. Un degrés de liberté de rotation supprimée correspond à une inconnue en moment dans le torseur de liaison.
- 3. Exemple : La liaison linéaire annulaire a quatre degrés de liberté : une translation et trois rotations. Elle introduit donc 2 inconnues de liaison (2 forces). Cette liaison est semblable à la liaison rotule, mais l'objet entourant la sphère mobile n'a plus la symétrie sphérique mais devient un demi-cylindre creux ce qui permet de déplacer la sphère en translation.

TD 2?

Flexion dans le cadre de Navier Bernouilli

9.1 Exercise 1

Soit $(A:i_0,j_0,k_0$ un repère orthonormé direct de réference. On considère une poutre de longeur 2L et de section droite de forme rectangulaire de largeur b et de hauteur h. Cette poutre est chargée au point C avec une force concentrée et a les lieaisons suivantes:

- Une articulation au point B.
- Une appui simple au point A

Pour l'application numérique, on donne: - 2L = 1m - F = 1000N