

UNITED STATES AIR FORCE IERA

Lakehurst Naval Air Engineering
Station (NAES) Radiological Baseline
Survey in Support of USAF BOMARC
Missile Accident Site Remediation
Waste Transportation Plan,
New Jersey

Steven E. Rademacher, Major, USAF, BSC Eugene V. Sheely, Captain, USAF, BSC Dale D. Thomas III

20020612 092

May 2002

Approved for public release; distribution is unlimited.

Air Force Institute for Environment, Safety and Occupational Health Risk Analysis Surveillance Directorate Radiation Surveillance Division 2513 Kennedy Circle Brooks Air Force Base TX 78235-5116

NOTICES

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely Government-related procurement, the United States Government incurs no responsibility or any obligation whatsoever. The fact that the Government may have formulated or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication, or otherwise in any manner construed, as licensing the holder or any other person or corporation; or as conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

The mention of trade names or commercial products in this publication is for illustration purposes and does not constitute endorsement or recommendation for use by the United State Air Force.

The Office of Public Affairs has reviewed this report, and it is releasable to the National Technical Information Service, where it will be available to the general public, including foreign nationals.

This report has been reviewed and is approved for publication.

Government agencies and their contractors registered with Defense Technical Information Center (DTIC) should direct requests for copies to: Defense Technical Information Center, 8725 John J. Kingman Rd., STE 0944, Ft. Belvoir, VA 22060-6218.

Non-Government agencies may purchase copies of this report from: National Technical Information Services (NTIS), 5285 Port Royal Road, Springfield, VA 22161-2103.

Prepared by:

EUGENE V. SHEELY, Captain, USAF, BSC

Chief, Environmental Health Physics

DALE D. THOMAS III, GS-13, DAF

Chief, Radioanalytical Branch

Reviewed by:

Approved By:

CRAIG-ALAN C. BIAS, Major, USAF, BSC Chief, Occupational Health Physics Branch

STEVEN E. RADEMACHER, Major, USAF, BSC

Chief, Radiation Surveillance Division

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Hiotopay Suite 1204. Arignopp. VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

Davis Highway, Suite 1204, Arlington, VA 22202		nd Budget, Paperwork Reduction Proj	ect (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY (Leave blank		3. REPORT TYPE AND D	
	8 May 2002		FINAL (2002) FUNDING NUMBERS
4. TITLE AND SUBTITLE Lakehurst Naval Air Engineering	Station (NAES) Padiological E		FUNDING NUMBERS
Support of USAF BOMARC Miss			
Plan, New Jersey	he Accident Site Remediation	waste Transportation	
6. AUTHOR(S)			
Steven E. Rademacher, Major, US	SAF, BSC		
Eugene V. Sheely, Captain, USAI			
Dale D. Thomas III			
7. PERFORMING ORGANIZATION N			PERFORMING ORGANIZATION
Air Force Institute for Environmen	nt, Safety and Occupational He	ealth Risk Analysis	REPORT NUMBER
Surveillance Directorate			
Radiation Surveillance Division			
2315 Kennedy Circle			
Brooks AFB TX 78235-5116 9. SPONSORING/MONITORING AGE	NOV NAME(S) AND ADDRESS/E	9) 10). SPONSORING/MONITORING
HQ AMC/CEV	NCT NAME(S) AND ADDRESSIE	3,	AGENCY REPORT NUMBER
507 Symington Drive			
Scott AFB IL 62225-5022			IERA-SD-BR-SR-2002-0004
02220 0022		j1	
11. SUPPLEMENTARY NOTES			
			•
12a. DISTRIBUTION AVAILABILITY S	TATEMENT	T 12	b. DISTRIBUTION CODE
Approved for public release; distri			
ripprovou for puono resource, essar-			
13. ABSTRACT (Maximum 200 word	s)	rich i i c	1
The BOMARC Missile Site contain	ns weapons grade plutonium (WGP) as the result of a m	iclear weapon accident that
occurred in 1960. This report doc			
rail transfer of radiological waste			
N.J. through Lakehurst Naval Air			
			ERA/SDR, Environmental Division
of Lakehurst NAES, and Navy Ra			
Yorktown, VA. The survey consi			
were analyzed by high-resolution	gamma spectroscopy analysis a	and isotopic plutomum um	nium concentrations ranged from
results of the surveys were unremained.			mum concentrations ranged from
(-7) to 80 femtocuries per gram (f	Cirg), with a mean of 11.0 IC	ı, P.	
		•	
14. SUBJECT TERMS			15. NUMBER OF PAGES
	nericium plutonium	background BOMAR	C 66
	•	pectroscopy	16. PRICE CODE
	8. SECURITY CLASSIFICATION	19. SECURITY CLASSIFICA OF ABSTRACT	ATION 20. LIMITATION OF ABSTRACT
OF REPORT	OF THIS PAGE		215
Unclassified	Unclassified	Unclassified	SAR

(This Page Intentionally Left Blank)

TABLE OF CONTENTS

Report Documentation
Table of Contents
List of Tables iv
List of Figures
1. Introduction
2. Background
3. Methodology
3.1 Transportation Route and Rail Transfer Area Survey
3.2 Soil Sampling
3.3 Global Positioning System Measurements
3.4 Survey Personnel
4. Results and Discussion
4.1 In-Situ Measurement and Soil Sampling Locations
4.2 In-Situ Measurement Data Summary
4.3 In-Situ Measurement Instrument Calibrations and Hot-Spot Calculations
4.4 Laboratory γ-Spectroscopy Analysis Results
4.5 Laboratory Isotopic Plutonium Analysis Results
5. Conclusions
6. Acknowledgements
7. References
8. List of Acronyms
Appendix A – Lakehurst Overall Site and Rail Transfer Map
Appendix B – Baseline Survey Results
Appendix C – Calibration Logs and Hot-Spot Calculations

LIST OF TABLES

1	National Laboratory Estimates and Soil Analyses
2	Major Radiation Emissions of Primary WGP Constituents
3	Survey Personnel
4	Summary Statistics for In-Situ Measurement Data (Transportation Route)
5	Summary Statistics for In-Situ Measurement Data (Rail Transfer Area)
B-1	BOMARC Field Assessment Positional Data
B-2	BOMARC In-Situ Measurement Data
B-3	BOMARC Soil Sample γ-Spectroscopy Analysis
B-4	BOMARC Soil Sample α-Spectroscopy Analysis
С	Hot-Spot Code Efficiency Calculations

LIST OF FIGURES

1	FIDLER Calibration Configuration
2	Histogram of ²⁴¹ Am Minimum Detectable Concentrations
3	Isotopic Plutonium α-Spectral Plot for Sample NAES046
4	Isotopic Plutonium Chemical Recovery Histogram
A-1	January 2002 Lakehurst Radiological Background Study
A-2	January and April 2002 Lakehurst Radiological Background Study

(This Page Intentionally Left Blank)

1. Introduction

This report documents a background radiological survey conducted in support of the truck transport and rail transfer of radiological waste from the Boeing Michigan Aeronautical Research Center (BOMARC), Fort Dix, N.J. through Lakehurst Naval and Engineering Station (NAES), N.J. to rail facilities connecting to the NAES. The purpose of the survey is to establish pre-existing radiological conditions for in-situ measurement instruments and analyses of soil samples, and establish laboratory and field performance expectations for the post-transportation sampling and analysis. In addition, the information contained in this report will be a vital aid to field survey and assessments in the unlikely event that an accidental release of BOMARC contaminated soils occurs during truck transport or rail transfer on NAES.

The survey described in this document was conducted from 9 - 10 January and 8-9 April 2002, with representatives of the Radiation Surveillance Division of the Air Force Institute for Environment, Safety and Occupational Health Risk Analysis (AFIERA), Brooks AFB TX; Environmental Division of Lakehurst Naval Air Engineering Station (NAES), N.J.; and the Navy Radiological Affairs Support Office (RASO), Naval Sea Systems Command Detachment, Yorktown, VA. Instrumentation from both AFIERA and RASO were used in the survey, while only the results from the AFIERA instruments are provided here. Soil samples were analyzed by AFIERA, with split samples sent to RASO and Framatome ANP, Inc. (formerly Duke Engineering & Services).

Between the transportation route and the rail transfer area (railhead), a total of 121 samples were analyzed by AFIERA. The γ -spectroscopy analyses were unremarkable, with positively identified radionuclides being naturally-occurring or from atmospheric nuclear weapons testing fallout. The isotopic plutonium analysis using α -spectroscopy found detectable concentrations of $^{239+240}$ Pu in the samples, but at activity concentrations below 100 femtocuries per gram (fCi g⁻¹). The concentrations of $^{239+240}$ Pu reported were within the range typical for fallout. Portable instrument measurements were typical for uncontaminated areas, with some variability that should be accounted for in field survey work accomplished during support of transportation operations.

2. Background

The BOMARC Missile Site is an inactive Air Force installation located in Plumstead Township, New Jersey. The site was an active nuclear missile defense site from 1958 – 1971. On June 7, 1960, a fire occurred in one of the shelters in which the shelter, missile, and warhead were partially consumed by the fire. The high explosive materials in the weapon ignited but did not detonate. The most intense period of the fire lasted about one hour. Water was applied to the shelter and weapons during the fire by the installation fire department. The fire melted the weapons grade plutonium (WGP) that was contained in the device. Turbulent local atmospheric conditions and the water applied during the fire contributed to scattering of WGP to the environment.

WGP is comprised primarily of ²³⁹Pu, with lesser mass amounts of ²³⁸Pu, ²⁴⁰Pu, ²⁴¹Pu, and ²⁴²Pu. For many nuclear weapons, individual WGP isotopic assay information exists (classified). However, for the warhead on the BOMARC missile and other nuclear weapons produced during the same time, specific assay information is not available (Taschner 1998). Table 1 provides an estimate of the isotopic composition of the BOMARC missile based on information from Los Alamos National Laboratory (Taschner 1998) and soil analyses performed in 1997 (Rademacher 1999).

Table 1. Isotopic Composition (by mass) of WGP in BOMARC Weapon Based on Los Alamos National Laboratory Estimates and Soil Analyses (Rademacher 1999).

Isotope	Mass Percent*	Radiological Half-life (y) **
Pu-238	0.0099	87.74
Pu-239	93.7	24,110
Pu-240	5.6	6,560
Pu-241	0.47	14.35
Pu-242	Negligible	376,000

^{*} Fractions in 1958

The relative isotopic composition of WGP constituents changes over time due to radioactive decay. Shortly after chemical separation during production, the most significant change is due to the radioactive decay of ²⁴¹Pu:

241
Pu $\rightarrow ^{241}$ Am $+ {}_{-1}^{0}\beta$.

The daughter product, 241 Am, is an α -particle emitter with a radiological half-life of 432 y (Walker et al 1984). Table 2 lists the major radiation(s) emitted by the primary constituents of WGP. For 239 Pu and 240 Pu, only infrequent low-energy photons are emitted. Direct assessment of either of

^{**} Walker et al 1984

these isotopes in samples can be accomplished through high-resolution γ -spectroscopy if sample activities are reasonable high. For low activity concentration samples, the most common assessment technique is through chemical dissolution, chemical separation, and α -radiation or mass spectroscopy. Because the α -particle energies of the ²³⁹Pu and ²⁴⁰Pu are very close, α -spectroscopy analysis is incapable of resolving the two isotopes. For radiation protection purposes, however, this does not present a problem because each isotope has the same activity to dose conversion factor (Eckerman 1999). The best estimate of the ²³⁹⁺²⁴⁰Pu to ²⁴¹Am activity concentration ratio for the BOMARC WGP contaminated soils is 5.4 (Rademacher 1999).

Table 2. Major Radiation Emissions of Primary WGP Constituents (Scheien 1992).

	α-Particle Energies	β-Particle Energies	Photon Energies
Radionuclide	(MeV) & Frequency	(MeV) & Frequency	(MeV) & Frequency
	5.155 (0.733)		0.113 (0.0005)
Pu-239	5.143 (0.151)	None	0.014 (0.044)
	5.105 (0.115)		
Pu-240	5.168 (0.735)	None	0.054 (0.0005)
ru-240	5.123 (0.264)	None	0.014 (0.11)
Pu-241	None	0.021 (1.00)	None
	5.486 (0.852)		0.014 (0.427)
Am-241	5.443 (0.128)	None	0.0595 (0.359)
	5.388 (0.014)		0.026 (0.024)

3. Methodology

The survey consisted of in-situ measurements, soil sample collection, and laboratory analysis of soil samples. In-situ γ -measurements were made on soil along the NAES transportation route. Soil samples were taken from these same locations and sent for radioanalysis. Additional in-situ γ - and α -measurements were made on the paved portions of the NAES transportation route. The Air Force agreed to collect measurements and samples at an interval of every one-eight mile. Because an automobile was used for transportation between sampling locations and its odometer was used for sample location spacing, it was more practical to set increments at 0.1 miles. This increment exceeded the one-eight mile increment and provided for more sampling and measurements.

3.1 Transportation Route and Rail Transfer Area Survey

3.1.1 Number of Measurements

The Air Force agreed with the Navy to collect in-situ measurements at every soil sampling location. AFIERA/SDR decided to collect additional background in-situ measurements on asphalt and concrete road surfaces of the transportation route. This additional sampling was performed to assess background measurement conditions in the event contaminated soils were accidentally deposited on these surfaces. Mr. Martin, Navy RASO, and Capt Sheely, AFIERA. agreed that taking one measurement every other paved surfaces measurement location was sufficient to establish background conditions for the paved surfaces. A total of 94 measurement locations were set along the NAES transportation route. Among these, 31 locations had the additional in-situ measurement collected on an asphalt or concrete surface. At the railhead, it was decided to collect 27 soil samples and paired in-situ measurements. The approximate spacing for these measurements and sampling was 10 meters (m). Like the transportation route, additional in-situ measurements were collected on paved areas and the gravel base of the newly constructed rail spur. Figures A-1 and A-2 (Appendix A) contain sample and measurement locations.

3.1.2 In-Situ γ-Measurements

In-situ γ-measurements were performed using a Bicron 12.7 centimeter (cm) diameter x 1.6 millimeter (mm) thick thallium-drifted sodium iodide [NaI(Tl)] detector coupled with a Ludlum model 2221 scalar. The detector in this set-up is commonly referred to as a field instrument for the detection of low energy radiations (FIDLER). The model of detector used was fitted with a thin beryllium entrance window to minimize the attenuation of low energy photons. Prior to field survey work, at the AFIERA Instrument Calibration Facility (ICF), a relatively small energy window was set on the meter pulse height discriminator around the 59.5 keV ²⁴¹Am γ-ray along with instrument reliability checks. At the same time, measurements were collected with an ²⁴¹Am source at a distance of 30 cm from the detector entrance window at lateral distances from the perpendicular of 0, 20, 40, 50, 60, 80, and 100 cm as illustrated in Figure 1. These measurements were used to calculate surface detection efficiencies for use with the "Hot-Spot" computer code produced by Lawrence Livermore National Laboratory (LLNL). In the field, daily instrument reliability was assessed by collecting 15 sequential measurements with an ²⁴¹Am calibration source and the chi-square statistical test. Battery and discriminator checks were made daily. For these tests and field measurements, a

special detector stand was used to retain the detector at a constant detector to ground distance of 30 cm. Additional field measurements were collected with an ²⁴¹Am calibration source at lateral distances from the perpendicular of 0 and 50 cm. These field measurements were collected at a location near the railhead and described later in the report as the QA/QC location.

Detector

30 cm

241 Am Source

Figure 1. FIDLER Calibration Configuration.

3.1.3 \alpha-Measurements

In-situ α -radiation measurements were made at the same locations as the in-situ γ -radiation measurements on the asphalt, concrete, and gravel surfaces. A Ludlum model 43-89 scintillator connected to a Ludlum model 2360 scalar was used for the measurements. Detector calibrations were conducted at the AFIERA ICF prior to the field survey work with a 239 Pu calibration source for the α -radiation channel, and 99 Tc and 90 Sr for the β -radiation channel. In the field, daily instrument battery checks were accomplished and α -radiation response was assessed with a thoriated lantern mantle.

3.2 Soil Sampling

3.2.1 Number of Samples

Soil samples were collected at the 94 measurement locations along the transportation route and at 27 locations around the railhead site. For the samples collected on the transportation route, sampling was conducted at the global positional system (GPS) measurement location. For samples at the rail transfer area, sample collection was split among gravel areas directly below the newly installed rail or at adjacent areas that contained soil. It was determined by discussions with AFIERA and the Navy representative that this approach provided more information about background radiological conditions rather than just the sampling of one media. For measurements along the rail transfer area, GPS measurements were uniformly collected only at soil areas, regardless of whether the sample was collected at the soil location or the gravel beneath the rail. The separation distance between the soil locations and gravel sampling/in-situ measurement locations was about 3 m.

3.2.2 Soil Samples

Soil samples were collected on the surface to a depth of approximately 0.5 cm. To ensure adequate sample mass for γ-spectroscopy analysis, a minimum required sample mass was set at 200 grams (g). Actual sample masses ranged from 275 to over 1212 g. Vegetation, large stones, etc. were rejected from collection in the field. Sampling location was annotated on the plastic sample bag containers in the field. Prior to preparation for packaging and shipment, the samples were enclosed in an additional plastic bag. A chain of custody form was enclosed with the samples prior to shipment. Field sampling tools were cleaned between sampling locations with de-ionized water. At every tenth sampling location, two duplicate samples were collected: one for Framatome ANP, Inc., a private commercial laboratory (also providing quality assurance analysis of soils for Duratek, Inc. during the remediation and final status survey phase of the BOMARC site remediation), and the other for Navy RASO.

3.2.3 Laboratory Analysis

In the laboratory, samples were weighed, dried in an oven at 44 $^{\circ}$ C for 24 hours, sieved to remove stones, blended, and homogenized. One gram (nominal) and 100 g aliquots were pulled from the preparations for α - and γ -spectroscopy analyses, respectively.

The Air Force and Navy agreed to isotopic plutonium analysis for the soils. AFIERA, based on routine procedure for unknown samples, also performed high-resolution γ-spectroscopy prior to the isotopic plutonium analysis procedure. Aliquots prepared for γ-spectroscopy analysis were placed in 250 ml right-cylindrical polyethylene containers and counted for 10,000 seconds (~ 2.8 hours). A peak search was accomplished with Canberra Inc. Genie 2000TM γ-spectroscopy software to identify isotopic content. The analytical results were reviewed for identified radiological constituents. Reported analytical results for ²²⁸Ac, ²⁴¹Am, ¹³⁷Cs, ⁴⁰K, and ²³⁴Th were compiled.

Aliquots prepared for α -spectroscopy analysis were mixed with a highly concentrated mixture of HF, HNO₃, and HCl, and heated to high temperature and pressure in a CEM Corp. microwave digestion system (if necessary for complete dissolution). A ²⁴²Pu tracer was added to every aliquot to assess chemical recovery. Plutonium chemical separations were accomplished with BioRad TM resin. Plutonium was coprecipitated with a cerium fluoride carrier onto Tuffryn TM membrane filters [25 mm diameter, 0.2 μ m pore size]. Passive implanted planer silicon detectors contained in vacuum chambers were used to count sample α -radiation emission by energy. Samples were counted for 20,000 seconds (\sim 5.6 hours), with background counted for 86,400 seconds (24 hours). ²⁴²Pu tracer recovery and ²³⁹⁺²⁴⁰Pu activity concentrations were assessed using Canberra Inc. Genie 2000 TM α -spectroscopy software.

3.3 Global Positional System Measurements

The Environmental Division of Lakehurst NAES provided GPS measurements. The measurements were collected with a TrimbleTM GPS Pathfinder Pro XR satellite positioning system (Trimble 1998). The Environmental Division used post-processing differential correction to achieve accuracy within 1 m. GPS location in New Jersey State Grid Coordinates was downloaded for this report.

3.4 Survey Personnel

Table 3 contains a listing of the survey personnel. Some personnel only participated in one part of the survey. For these individuals, the specific portion of survey participation in annotated.

Table 3. Survey Personnel.

Health Physicist	Steven Rademacher	AFIERA/SDR
Health Physicist	Lary Martin	NAVSEADET RASO
Health Physicist	Eugene Sheely	AFIERA/SDRH
(January Only)		
Health Physics Technician	Donald Carbajal	AFIERA/SDRH
(January Only)		
Health Physics Technician	Kimberly Murchison	AFIERA/SDRH
GIS Technician (January	John Crawford	Environmental Division,
Survey Only)		Lakehurst NAES
GIS Technician (April	Jessica Ditner	Environmental Division,
Survey Only)		Lakehurst NAES

4. Results and Discussion

4.1 In-Situ Measurement and Soil Sampling Locations

Figure A-1, Appendix A, provides a map of Lakehurst NAES with detailed annotation of the soil sampling and in-situ measurement locations from the January 2002 portion of the background survey. For the locations along the transportation route, sample identification (i.e., NAES001, NAES011, etc.) annotation was made for every tenth location. Locations are in sequential order, allowing interpolation for those locations without annotation. During the January 2002 survey, two rail transfer location samples (RH001 and RH002) were collected on grassy areas on the opposite side of the road from the rail spur. As well, the QA/QC location, where background and calibration measurements were made, was on the opposite side of the road, but farther down from the rail transfer area.

Figure A-2 provides a map with detail of the rail transfer area measurement and sampling locations from the April 2002 portion of the survey. This plot contains locations: RH001, RH002, and QA/QC that are also contained on Figure A-1. Sampling locations RH003 - RH027 are in sequential order, with annotations at every fifth location. Locations RH003 - RH025 encompassed the rail spur and had approximate spacing of 10 m between them. Locations RH026 and RH027 did not contain rail, but did have some gravel material along the roadside and greater spacing between locations.

Table B-1, Appendix B, contains the field assessment positional data. The listing has measurement location identifier, GPS collection information and the corresponding New Jersey State Grid Coordinates.

4.2 In-Situ Measurement Data Summary

Table B-2 contains the in-situ measurement data. For measurements along the transportation route, there is a FIDLER measurement for every sampling location and one at every other adjacent pavement location where asphalt or concrete existed. For every pavement FIDLER measurement, an α -radiation measurement was collected at the same location. Many locations along the route were not paved and subsequently the Table contains a "NA" notation where adjacent measurements were not collected. At the rail transfer area, for every location, the Table contains a listing of the soil, gravel, and road measurements. For the measurements, the FIDLER and α -radiation measurements were collected at the same location.

Table 4 contains the summary statistics for the field in-situ measurements of the transportation route, while Table 5 contains the summary statistics for the rail transfer area. For the transportation route FIDLER measurements, the mean of the pavement measurements was lower than that of the soil measurements. Both sets of FIDLER measurements had good agreement between the mean and median values, an indication of symmetrical data distributions. Both data sets had similar standard deviations: 358 and 290 counts. For the measurements on soil, the maximum measurement was 3908 counts, more than double the mean, and six standard deviations higher than the mean of the data set. This observation may have been the result of a non-flat counting geometry, but generally illustrative of the variability that can be encountered in field measurements with FIDLER instruments. For the α -radiation measurements, the data ranged from 2 to 27 counts. The variability

observed is likely attributed to variability in road materials and the influence of naturally occurring radon progeny. An interesting observation from the data is that there is not a direct correlation between the α -radiation and FIDLER measurement data; often the areas of highest α -radiation had relatively low FIDLER response and visa versa.

Table 4. Summary Statistics for In-Situ Measurement Data (Transportation Route)

Summary		Integrated Counts (1-n	ninute)
Statistics	FIDLER I	Measurements	Pavement α-Radiation
Statistics	Soil	Pavement	Measurement
Mean	1765	1495	10.4
Median	1709	1516	9
Standard Deviation	358	290	5.7
Maximum	3908	1962	27
Minimum	1266	1005	2
Observations	94	31	31

Table 5. Summary Statistics for In-Situ Measurement Data (Rail Transfer Area)

Cummory		Ir	itegrated Cou	ınts (1-minut	e)	
Summary Statistics	FIDL	ER Measure	ments	α-Radi	ation Measur	rements
Statistics	Soil	Gravel	Road	Soil	Gravel	Road
Mean	1008	859	1273	1.4	1.1	2.0
Median	985	801	1286	1	1	2
Standard Deviation	87	148	109	1.4	1.1	1.2
Maximum	1204	1244	1378	5	4	4
Minimum	892	682	798	0	0	0
Observations	25	25	25	25	25	25

For the rail transfer area, the FIDLER measurements, the highest mean was observed in the road measurements, with the gravel areas being the lowest, and the mean for the soil measurements between. This observation is opposite of that for the transportation route. Among rail transfer area measurement data sets, the standard deviation of the soil data was lowest and the gravel highest. Overall, for the three FIDLER data sets, variability was lower than those on the transportation route. This observation is logical since the transportation route has greater variability in terrain and surface conditions than the rail transfer area. For the α -radiation measurements, overall among the three measurement areas the results were comparable and did not have as many high measurements as observed on the transportation route.

4.3 In-Situ Measurement Instrument Calibrations and Hot-Spot Calculations

Appendix C contains copies of the in-situ calibration documents for the calibrations completed at the AFIERA ICF. The logs for daily reliability tests conducted in the field at the QA/QC location are contained in Appendix C. The chi-square tests conducted indicated that the instruments passed. Table C contains the Hot-Spot calculations for the FIDLER used in the field. The "K" parameter was calculated using the AFIERA ICF calibration data. The parameters of mean background and instrument response to the ²⁴¹Am source at lateral distance of 0 cm was based on field measurements. These measurements and calculations should be periodically checked with FIDLER instrumentation to assess consistency in response.

The FIDLER instrument is susceptible to temperature fluctuations as are all field portable [NaI(Tl)] detection systems. The in-situ measurements for this background survey were conducted over field conditions that had a significant fluctuation in temperature. The first survey day, 9 Jan 02 was the coldest, with the FIDLER instrument having a mean background of 1804 counts at the QA/QC location. 10 Jan 02 was warmer and had a mean FIDLER background response of 1738 counts, a fairly minor difference. 9 Apr 02 had two sets of measurements: one in the morning when it was relatively cool and one at the end of the survey when it had warmed. The mean FIDLER background response for these sets of measurements was 1450 and 1224 counts, respectively, for the early and later data sets. For routine FIDLER survey work at the rail transfer area during transportation operations should have background and calibration measurements conducted at the same location to ensure consistency and allow for background corrections if necessary. The post transportation FIDLER measurements should use the same QA/QC measurement location as used in this survey.

4.4 Laboratory γ-Spectroscopy Analysis Results

Table B-3 contains the AFIERA/SDRD analytical results for the γ -spectroscopy analysis. One hundred twenty-one samples were analyzed. The results were reviewed for identified radiological constituents. The review did not identify any isotopes besides those that are typical constituents of natural background and sources of worldwide fallout. To document representative concentrations of some typical constituents of background and fallout, data was compiled for ²²⁸Ac, ¹³⁷Cs, ⁴⁰K, and ²³⁴Th. ²⁴¹Am is a constituent of fallout, but normally isn't in concentrations that are traditionally detected by γ -spectroscopy analysis. However, since it is a co-contaminant in the BOMARC WGP, the minimum detectable concentrations (MDCs) are provided here for illustration of typical detection limits for this method.

For 228 Ac, 13 of the 121 samples had a reported concentration above the MDC, with the maximum at 0.62 ± 0.12 picocuries per gram (pCi g⁻¹). For the 137 Cs, 76 samples had a reported concentration above the MDC, with the maximum at 1.79 ± 0.17 pCi g⁻¹. For 40 K, 68 samples had a reported concentration above the MDC, with the maximum at 4.0 ± 1.0 pCi g⁻¹. For 234 Th, only 12 samples had a reported concentration above the MDC, with the maximum at 1.4 + 0.7 pCi g⁻¹. None of the samples had a reported 241 Am concentration above the MDC. Figure 2 is a histogram of the MDCs for the 121 samples. From the plot, there are a significant number of samples with an MDC at or below 0.1 pCi g⁻¹, but due to some samples with high MDC, the mean was 0.13 pCi g⁻¹. The highest

MDC was 0.2 pCi g⁻¹. For the BOMARC WGP and an estimated ²³⁹⁺²⁴⁰Pu to ²⁴¹Am ratio, the surrogate ²³⁹⁺²⁴⁰Pu MDC would be 1.1 pCi g⁻¹, in close proximity to the agreed remediation criterion of 1 pCi g⁻¹ for Lakehurst NAES, in the event that there is an accidental release during transportation operations.

Figure 2. Histogram of ²⁴¹Am Minimum Detectable Concentrations.

4.5 Laboratory Isotopic Plutonium Analysis Results

Table B-4 contains the laboratory isotopic plutonium results. For these samples, the reported result is listed, with the MDC for the sample, and plutonium chemical recovery. In contrast to the γ -spectroscopy results, these results are reported in femtocuries per gram quantities because the concentrations were extremely low (1000 femtocuries is equal to one picocurie). Of the 121 analyses, only 17 had reported results greater than the MDC. The reported results ranged from (-7+8) to (80 ± 50) fCi g⁻¹, with a mean and median of 11.8 and 9 fCi g⁻¹, respectively.

The α -spectral plot from the sample at location NAES046 is provided in Figure 3. The dominant peak in the plot is from 242 Pu, the chemical tracer added to assess chemical recovery. The $^{239+240}$ Pu channel is higher in energy than the 242 Pu peak, as annotated on the plot, but has significantly lower activity. The summed net counts in the $^{239+240}$ Pu channel was 12.7 counts, thus explaining the relatively high level of uncertainty for extremely low activity concentration samples.

Among the 121 samples, the MDC's ranged from 8 to 90 fCi g⁻¹, with a mean and median of 34.4 and 35, respectively. Compared to the mean and maximum surrogate MDCs through use of ²⁴¹Am by γ-spectroscopy, this method is respectively, 20 and 15 times more sensitive. This method is more than adequate for measurements to meet the 1 pCi g⁻¹ remediation criterion on Lakehurst NAES in the event of an accidental release.

Figure 4 contains a histogram of chemical recovery for the isotopic plutonium analyses. Overall, good chemical recoveries were observed. The recovery values ranged from 0.56 to 1.02, with a mean and standard deviation of 0.848 and 0.088, respectively.

Figure 4. Isotopic Plutonium Chemical Recovery Histogram.

For the 10 % AFIERA/SDRR duplicate samples, good agreement was observed in the paired analyses results. As well, for the 10 % duplicate samples sent to Framatome, good agreement was observed.

5. Conclusions

This report documents a radiological baseline survey conducted in support of the truck transport and rail transfer of WGP from the BOMARC site through Lakehurst NAES to rail facilities connecting to the NAES. The survey established pre-existing radiological conditions for both in-situ α -radiation and γ -radiation, and for $^{239+240}$ Pu.

Portable instrument measurements were typical for uncontaminated areas, with some variability that should be accounted for in field survey work accomplished while supporting transportation operations and for the post-remediation survey to be accomplished after transportation has ceased. Detectable concentrations of ²³⁹⁺²⁴⁰Pu were identified in the samples, with a mean and maximum concentrations of 11.8 and 80 fCi g⁻¹, respectively.

6. Acknowledgements

Special thanks to Lary Martin, Navy RASO, and the staff of the Environmental Division of Lakehurst, NAES for valuable support in this project.

Special thanks to the AFIERA/SDRR staff for rush analysis of the samples to support the transportation plan tight timelines.

7. References

- Eckerman, K.F.; Leggett, R.W; Nelson, C.B.; Puskin, J.S.; Richardson, A.C.B.; Cancer Risk Coefficients for Environmental Exposure to Radionuclides, Federal Guidance Report No. 13, Environmental Protection Agency Report No. 402-R-99-001, September 1999.
- Rademacher, S.E., Review of the Pu-239/240 to Am-241 Activity Ratio Analysis for Work Related to Remediation of the BOMARC Missile Accident Site, Air Force Safety Center Technical Report AFSC-TR-1999-0002, November 1999.
- Shleien, B. Editor, The Health Physics and Radiological Health Handbook, Table 8.13, Scinta Inc., 1992.
- Taschner, J.C., Technical Staff Member, Los Alamos National Laboratory, Personal Communication, November 1998.
- Trimble, Pro XR/XRS Receiver Manual, Trimble Navigation Limited, Sunnyvale CA, 1998.
- Walker, F. W.; Miller, D. G.; and Feiner, F.; Chart of Nuclides, 13th Edition, General Electric Company, 1984.

8. LIST OF ACRONYMS

Ac actinium

AFB Air Force Base

AFIERA Air Force Institute for Environmental Safety, and Occupational Health

Risk Analysis

Am americium

BOMARC Boeing Michigan Aeronautical Research Center

cm² centimeters squared cpm counts per minute

Cs cesium fCi femtocurie

FIDLER field instrument for the detection of low energy radiation

ICF Instrument Calibration Facility

K potassium

LANL Los Alamos National Laboratory

LLNL Lawrence Livermore National Laboratory

MARSSIM Multi-Agency Radiation Survey and Site Investigation Manual

MDC minimum detectable concentration

NA not applicable

NAES Naval Air and Engineering Station
NaI(Tl) thallium-drifted sodium iodide

pCi picocurie Pu plutonium

RASO Radiological Affairs Support Office SDR Radiation Surveillance Division

SDRH Health Physics Branch

Th thorium

Appendix A Lakehurst Overall Site and Rail Transfer Area

(This Page Intentionally Left Blank)

Appendix B Baseline Survey Results

(This Page Intentionally Left Blank)

Table B-1. BOMARC Field Assessment Positional Data

Measurement		Positional	GPS	GPS	Positional	Elevation	New Jersey State Grid	State Grid
Location	≥	Correction	Reveiver	Collection	Standard	Above MSL	Coordinates	inates
Identifier	rbor	Type	Type	Date	Deviation	(feet)	Latitude	Longitude
QA/QC	2.0	Differential	Pro XR	9-Jan-02	0.217147	70.4	544000.39050	433066.75300
RH001	2.8	Differential	Pro XR	9-Jan-02	0.298068	69.0	544531.89530	432842.37670
RH002	2.7	Differential	Pro XR	9-Jan-02	0.672914	72.1	544329.87320	432926.28700
NAES001	3.4	Differential	Pro XR	8-Jan-02	1.959445	70.2	544329.01970	433001.81120
NAES002	3.1	Differential	Pro XR	8-Jan-02	0.059551	71.7	544027.46130	433127.01450
NAES003	2.9	Differential	Pro XR	8-Jan-02	0.123147	72.7	543550.49780	433354.98210
NAES004	5.4	Differential	Pro XR	8-Jan-02	0.242941	71.3	543815.61120	432928.99930
NAES005	9.9	Differential	Pro XR	8-Jan-02	0.821663	67.2	544043.71410	432570.71150
NAES006	4.7	Differential	Pro XR	8-Jan-02	0.144862	8.99	544320.56040	432149.22160
NAES007	2.0	Differential	Pro XR	8-Jan-02	0.098085	67.8	544625.67830	431695.15430
NAES008	2.7	Differential	Pro XR	8-Jan-02	0.089626	63.4	544392.67300	431486.83990
NAES009	2.3	Differential	Pro XR	8-Jan-02	0.104213	0.99	544095.65770	431655.43450
NAES010	4.8	Differential	Pro XR	8-Jan-02	0.331690	71.9	543642.88720	431888.11760
NAES011	2.2	Differential	Pro XR	8-Jan-02	0.205083	77.6	543181.48970	432139.62270
NAES012	4.9	Differential	Pro XR	8-Jan-02	1.050083	69.2	542716.99040	432395.27700
NAES013	2.2	Differential	Pro XR	8-Jan-02	0.174734	67.4	542253.49540	432628.44990
NAES014	2.2	Differential	Pro XR	8-Jan-02	0.231405	70.9	541733.42260	432819.65680
NAES015	2.2	Differential	Pro XR	8-Jan-02	0.207858	77.8	541257.40900	432992.70130
NAES016	6.1	Differential	Pro XR	8-Jan-02	0.611370	50.1	540758.56350	433181.13740
NAES017	4.8	Differential	Pro XR	8-Jan-02	0.315812	67.7	540794.38710	433492.08660
NAES018	4.7	Differential	Pro XR	8-Jan-02	0.218504	72.3	541089.41290	433923.71540
NAES019	4.7	Differential	Pro XR	8-Jan-02	0.098761	79.9	541406.81290	434370.91400
NAES020	4.6	Differential	Pro XR	8-Jan-02	0.463387	9.06	541693.07600	434769.61780
NAES021	4.5	Differential	Pro XR	8-Jan-02	0.249792	75.9	541903.88960	435274.77040
NAES022	7.0	Differential	Pro XR	8-Jan-02	0.304238	76.9	541409.51910	435256.61110

Table B-1. BOMARC Field Assessment Positional Data

Measurement	Morimina	Positional	GPS	GPS	Positional	Elevation	New Jersey State Grid	State Grid
Location	שחוואאאו	Correction	Reveiver	Collection	Standard	Above MSL	Coord	Coordinates
Identifier	rDOF	Type	Type	Date	Deviation	(feet)	Latitude	Longitude
NAES023	3.1	Differential	Pro XR	8-Jan-02	0.113300	73.7	540910.58730	435125.18860
NAES024	3.1	Differential	Pro XR	8-Jan-02	0.091612	75.2	540418.50960	435039.69220
NAES025	3.1	Differential	Pro XR	8-Jan-02	0.263503	72.6	539872.69260	434992.94420
NAES026	3.6	Differential	Pro XR	8-Jan-02	0.181170	74.7	539502.13150	434951.45980
NAES027	3.6	Differential	Pro XR	8-Jan-02	0.275182	79.1	539096.23220	435062.67140
NAES028	3.8	Differential	Pro XR	8-Jan-02	0.604030	76.2	539186.21650	435514.93330
NAES029	3.0	Differential	Pro XR	8-Jan-02	0.237093	75.1	539176.18660	436029.70540
NAES030	3.0	Differential	Pro XR	8-Jan-02	0.316161	83.3	539169.78370	436541.23120
NAES031	3.0	Differential	Pro XR	8-Jan-02	0.109355	84.7	539099.32250	437060.81600
NAES032	2.9	Differential	Pro XR	8-Jan-02	0.344142	80.5	538753.32130	437476.47280
NAES033	3.0	Differential	Pro XR	8-Jan-02	0.122257	74.2	538259.84010	437527.04000
NAES034	2.9	Differential	Pro XR	8-Jan-02	0.150532	71.6	537719.56700	437474.12860
NAES035	2.8	Differential	Pro XR	8-Jan-02	0.253252	77.6	537195.37820	437421.96800
NAES036	4.0	Differential	Pro XR	8-Jan-02	1.024771	92.6	536695.14000	437367.38930
NAES037	2.7	Differential	Pro XR	8-Jan-02	0.115574	88.7	536274.37260	437059.71720
NAES038	2.6	Differential	Pro XR	8-Jan-02	0.066249	82.9	536080.22630	436584.49760
NAES039	2.6	Differential	Pro XR	8-Jan-02	0.413644	81.2	535880.05370	436100.77560
NAES040	2.5	Differential	Pro XR	8-Jan-02	0.137640	82.9	535684.81230	435605.70650
NAES041	2.5	Differential	Pro XR	8-Jan-02	0.408373	76.7	535490.67500	435131.98870
NAES042	2.8	Differential	Pro XR	8-Jan-02	0.085098	83.6	535260.99560	434654.68270
NAES043	2.8	Differential	Pro XR	8-Jan-02	0.139155	79.3	534699.58070	434669.65060
NAES044	2.7	Differential	Pro XR	8-Jan-02	0.181712	72.7	534338.73700	435017.19560
NAES045	2.7	Differential	Pro XR	8-Jan-02	0.237699	79.2	533849.34910	435026.92730
NAES046	2.7	Differential	Pro XR	8-Jan-02	0.215336	84.8	533434.94980	434696.87640
NAES047	2.7	Differential	Pro XR	8-Jan-02	0.310199	80.8	533029.59960	434362.15290

Table B-1. BOMARC Field Assessment Positional Data

Measurement		Positional	GPS	GPS	Positional	Elevation	New Jersey State Grid	State Grid
Location	aCda	Correction	Reveiver	Collection	Standard	Above MSL	Coord	Coordinates
Identifier	rDOL	Type	Type	Date	Deviation	(feet)	Latitude	Longitude
NAES048	3.2	Differential	Pro XR	8-Jan-02	0.279655	74.5	532627.02440	434030.16110
NAES049	3.3	Differential	Pro XR	8-Jan-02	0.095398	83.1	532199.83660	433672.47830
NAES050	3.9	Differential	Pro XR	9-Jan-02	0.072296	80.9	531725.16150	433413.12740
NAES051	3.9	Differential	Pro XR	9-Jan-02	0.356958	85.4	531243.15210	433184.45880
NAES052	3.9	Differential	Pro XR	9-Jan-02	0.086588	76.8	530772.90100	432966.45720
NAES053	3.8	Differential	Pro XR	9-Jan-02	0.397199	9.08	530291.49360	432743.35490
NAES054	3.5	Differential	Pro XR	9-Jan-02	0.242468	81.5	529819.74180	432520.46410
NAES055	3.5	Differential	Pro XR	9-Jan-02	0.576269	85.6	529343.81930	432302.07740
NAES056	3.4	Differential	Pro XR	9-Jan-02	0.220797	83.4	528849.34590	432070.93160
NAES057	3.1	Differential	Pro XR	9-Jan-02	0.308921	87.3	528386.05490	431855.83070
NAES058	3.0	Differential	Pro XR	9-Jan-02	0.219139	90.4	527927.80890	431631.33920
NAES059	2.8	Differential	Pro XR	9-Jan-02	0.225763	88.1	527444.00910	431403.56500
NAES060	2.7	Differential	Pro XR	9-Jan-02	0.074766	93.4	527123.79430	431117.83030
NAES061	2.6	Differential	Pro XR	9-Jan-02	0.155350	91.9	526778.69840	430851.31430
NAES062	2.5	Differential	Pro XR	9-Jan-02	0.244033	93.4	526326.04790	430610.94350
NAES063	2.1	Differential	Pro XR	9-Jan-02	0.270338	97.3	525718.37020	430366.08610
NAES064	3.3	Differential	Pro XR	9-Jan-02	0.463817	105.0	525249.88660	430134.26740
NAES065	3.4	Differential	Pro XR	9-Jan-02	0.215743	84.5	524772.26440	429917.71850
NAES066	3.6	Differential	Pro XR	9-Jan-02	0.871048	95.1	524328.90160	429691.04750
NAES067	6.0	Differential	Pro XR	9-Jan-02	0.462114	98.1	523945.30770	429536.27030
NAES068	2.2	Differential	Pro XR	9-Jan-02	0.324723	102.1	523419.28300	429282.25760
NAES069	3.1	Differential	Pro XR	9-Jan-02	0.080513	95.2	522922.26400	429054.79330
NAES070	7.0	Differential	Pro XR	9-Jan-02	0.462707	102.1	522429.84780	428825.45080
NAES071	3.3	Differential	Pro XR	9-Jan-02	0.363548	9.86	521976.05360	428615.14880
NAES072	3.6	Differential	Pro XR	9-Jan-02	0.601645	117.0	521512.47450	428405.49530

Table B-1. BOMARC Field Assessment Positional Data

Measurement Location	Maximum	Positional Correction	GPS Reveiver	GPS Collection	Positional Standard	Elevation Above MSL	New Jersey State Grid Coordinates	State Grid inates
Identifier	rDOF	Type	Type	Date	Deviation	(feet)	Latitude	Longitude
NAES073	7.1	Differential	Pro XR	9-Jan-02	0.983762	8.66	521024.01800	428167.76940
NAES074	6.9	Differential	Pro XR	9-Jan-02	0.987559	95.5	520534.50530	427940.56580
NAES075	4.1	Differential	Pro XR	9-Jan-02	0.127332	107.1	519996.59670	427678.83700
NAES076	4.0	Differential	Pro XR	9-Jan-02	0.297707	108.3	519429.10340	427483.21790
NAES077	4.5	Differential	Pro XR	9-Jan-02	0.291575	110.5	519038.09860	427277.62610
NAES078	3.9	Differential	Pro XR	9-Jan-02	0.624931	115.6	518590.19130	427040.86380
NAES079	3.8	Differential	Pro XR	9-Jan-02	0.480009	112.3	518159.60060	426822.28250
NAES080	3.6	Differential	Pro XR	9-Jan-02	0.214749	112.5	517691.62900	426615.43990
NAES081	3.3	Differential	Pro XR	9-Jan-02	0.591396	117.8	517144.17290	426345.87540
NAES082	2.4	Differential	Pro XR	9-Jan-02	0.255637	123.3	516741.15880	426153.58690
NAES083	4.4	Differential	Pro XR	9-Jan-02	0.258766	121.5	516268.09680	425943.62040
NAES084	6.9	Differential	Pro XR	9-Jan-02	0.798035	142.0	515811.48550	425735.00240
NAES085	3.1	Differential	Pro XR	9-Jan-02	0.154342	133.1	515287.80230	425488.78470
NAES086	4.9	Differential	Pro XR	9-Jan-02	0.670256	140.1	514867.87700	425308.22280
NAES087	5.1	Differential	Pro XR	9-Jan-02	0.595648	157.3	514588.36980	425779.15400
NAES088	5.4	Differential	Pro XR	9-Jan-02	0.502648	183.3	514250.14130	426092.08450
NAES089	5.2	Differential	Pro XR	9-Jan-02	0.472848	178.8	513905.94000	426491.50710
NAES090	4.9	Differential	Pro XR	9-Jan-02	0.553378	179.7	513602.06890	426891.79630
NAES091	8.9	Differential	Pro XR	9-Jan-02	0.507429	176.5	513519.98390	427403.15110
NAES092	7.6	Differential	Pro XR	9-Jan-02	0.997502	181.5	513334.20810	427887.00640
NAES093	2.6	Differential	Pro XR	9-Jan-02	0.321068	175.6	513096.34970	428333.15290
NAES094	9.9	Differential	Pro XR	9-Jan-02	1.239629	184.8	512802.72640	427971.71100

Table B-1. BOMARC Field Assessment Positional Data

Measurement		Positional	GPS	GPS	Positional	Elevation	New Jersey State Grid	State Grid
	≥	Correction	Reveiver	Collection	Standard	Above MSL	Coordinates	inates
Identifier	PDOF	Type	Type	Date	Deviation	(feet)	Latitude	Longitude
RH003	4.6	Differential	Pro XR	9-Apr-02	1.347652	20.79	545370.8214	432619.4515
RH004	4.8	Differential	Pro XR	9-Apr-02	0.255349	76.45	545345.1758	432625.1261
RH005	5.1	Differential	Pro XR	9-Apr-02	0.215781	73.16	545298.9131	432638.4082
RH006	5.3	Differential	Pro XR	9-Apr-02	0.258088	81.67	545272.9103	432645.2623
RH007	5.4	Differential	Pro XR	9-Apr-02	0.169480	69.53	545250.4456	432654.0967
RH008	3.4	Differential	Pro XR	9-Apr-02	0.053118	71.52	545203.0737	432668.1501
RH009	5.8	Differential	Pro XR	9-Apr-02	0.116163	68.74	545177.8281	432675.5061
RH010	5.9	Differential	Pro XR	9-Apr-02	0.170395	72.01	545154.4902	432682.3874
RH011	6.2	Differential	Pro XR	9-Apr-02	0.304184	73.34	545115.7623	432694.843
RH012	6.3	Differential	Pro XR	9-Apr-02	0.136344	67.11	545083.9817	432707.4143
RH013	6.7	Differential	Pro XR	9-Apr-02	0.087434	69.56	545050.7561	432721.9165
RH014	2.9	Differential	Pro XR	9-Apr-02	0.180344	68.57	545016.8992	432737.0143
RH015	2.9	Differential	Pro XR	9-Apr-02	0.170396	69.73	544988.9748	432747.9719
RH016	2.3	Differential	Pro XR	9-Apr-02	0.174758	70.51	544962.0859	432760.416
RH017	2.3		Pro XR	9-Apr-02	0.249294	72.06	544924.7062	432772.762
RH018	3.5	Differential	Pro XR	9-Apr-02	0.197062	70.63	544901.0385	432784.5636
RH019	2.3	Differential	Pro XR	9-Apr-02	0.070284	69.26	544878.2419	432793.8894
RH020	2.3	Differential	Pro XR	9-Apr-02	0.088574	69.59	544832.2501	432812.8255
RH021	3.4	Differential	Pro XR	9-Apr-02	0.087929	68.9	544796.1584	432828.7955
RH022	2.9	Differential	Pro XR	9-Apr-02	0.176876	68.81	544769.472	432840.5083
RH023	3.4	Differential	Pro XR	9-Apr-02	0.262055	71.15	544741.7883	432851.2283
RH024	3.3	Differential	Pro XR	9-Apr-02	0.211449	69.92	544717.7694	432863.6257
RH025	2.3	Differential	Pro XR	9-Apr-02	0.184058	68.45	544693.8583	432877.3912
RH026	2.3	Differential	Pro XR	9-Apr-02	0.071464	9.69	544584.9156	432901.4082
RH027	2.3	Differential	Pro XR	9-Apr-02	0.056418	70.53	544471.2942	432948.1117

Table B-2. BOMARC In-Situ Field Measurement Data

Measurement	FIDLER M	FIDLER Measurement Data (1-minute Integrated Counts)	(1-minute Integra	ed Counts)	Adjacent Pavement
Location	GPS Measurement Location	nent Location	Adjacent Pave	Adjacent Pavement Location	Location 1-Minute
Identifier	Counts	Date	Counts	Date	Alpha Measurement
QA/QC	Every Me	Every Measurement Day (Summarized in Other Tables)	ummarized in Oth	er Tables)	NA
RH001	NC	09-Jan-02	NA	10-Jan-02	NA
RH002	NC	09-Jan-02	NA	10-Jan-02	NA
NAES001	1793	09-Jan-02	NA	10-Jan-02	NA
NAES002	1662	09-Jan-02	1833	10-Jan-02	10
NAES003	3908	09-Jan-02	NA	10-Jan-02	NA
NAES004	2809	09-Jan-02	1395	10-Jan-02	8
NAES005	2191	09-Jan-02	NA	10-Jan-02	NA
NAES006	2013	09-Jan-02	NA	10-Jan-02	NA
NAES007	1539	09-Jan-02	NA	10-Jan-02	NA
NAES008	1488	09-Jan-02	NA	10-Jan-02	NA
NAES009	1389	09-Jan-02	NA	10-Jan-02	NA
NAES010	1499	09-Jan-02	NA	10-Jan-02	NA
NAES011	1482	09-Jan-02	NA	10-Jan-02	NA
NAES012	1489	09-Jan-02	NA	10-Jan-02	NA
NAES013	1291	09-Jan-02	NA	10-Jan-02	NA
NAES014	1468	09-Jan-02	NA	10-Jan-02	NA
NAES015	1314	09-Jan-02	NA	10-Jan-02	NA
NAES016	1747	09-Jan-02	NA	10-Jan-02	NA
NAES017	1513	09-Jan-02	NA	10-Jan-02	NA
NAES018	1502	09-Jan-02	NA	10-Jan-02	NA
NAES019	1382	09-Jan-02	NA	10-Jan-02	NA
NAES020	1519	09-Jan-02	NA	10-Jan-02	NA
NAES021	1613	09-Jan-02	NA	10-Jan-02	NA
NAES022	1732	09-Jan-02	1868	10-Jan-02	10

Table B-2. BOMARC In-Situ Field Measurement Data

GPS Measurement Location Adjacent Pavement Location Counts Date Counts Date 1858 09-Jan-02 NA 10-Jan-02 1858 09-Jan-02 1962 10-Jan-02 1875 09-Jan-02 1962 10-Jan-02 1775 09-Jan-02 1702 10-Jan-02 1731 09-Jan-02 1702 10-Jan-02 1616 09-Jan-02 1736 10-Jan-02 1896 09-Jan-02 1756 10-Jan-02 1896 09-Jan-02 1756 10-Jan-02 1943 09-Jan-02 1756 10-Jan-02 2231 09-Jan-02 1756 10-Jan-02 1942 09-Jan-02 1758 10-Jan-02 2061 09-Jan-02 1749 10-Jan-02 2106 09-Jan-02 1749 10-Jan-02 2181 09-Jan-02 1749 10-Jan-02 1663 09-Jan-02 1749 10-Jan-02 1634 09-Jan-02 1749<	Measurement	FIDLER N	FIDLER Measurement Data (1-minute Integrated Counts)	(1-minute Integrat	ed Counts)	Adjacent Pavement
Counts Date Counts Date 1858 09-Jan-02 NA 10-Jan-02 1835 09-Jan-02 1962 10-Jan-02 1775 09-Jan-02 1702 10-Jan-02 1775 09-Jan-02 1702 10-Jan-02 1775 09-Jan-02 1702 10-Jan-02 1896 09-Jan-02 1734 10-Jan-02 1896 09-Jan-02 1756 10-Jan-02 1896 09-Jan-02 1756 10-Jan-02 1792 09-Jan-02 1756 10-Jan-02 1792 09-Jan-02 1754 10-Jan-02 1942 09-Jan-02 1758 10-Jan-02 1942 09-Jan-02 1749 10-Jan-02 2011 09-Jan-02 1749 10-Jan-02 2106 09-Jan-02 1749 10-Jan-02 1163 09-Jan-02 1749 10-Jan-02 1184 09-Jan-02 1844 10-Jan-02 11786 09-Jan-02	Location	GPS Measure	ment Location	Adjacent Pave	ment Location	Location 1-Minute
1858 09-Jan-02 NA 10-Jan-02 1835 09-Jan-02 1962 10-Jan-02 1775 09-Jan-02 10-Jan-02 10-Jan-02 1731 09-Jan-02 1702 10-Jan-02 1616 09-Jan-02 1702 10-Jan-02 1896 09-Jan-02 1836 10-Jan-02 1896 09-Jan-02 1836 10-Jan-02 1943 09-Jan-02 1458 10-Jan-02 1521 09-Jan-02 1756 10-Jan-02 2011 09-Jan-02 1756 10-Jan-02 1942 09-Jan-02 1754 10-Jan-02 2011 09-Jan-02 1758 10-Jan-02 2061 09-Jan-02 1758 10-Jan-02 2106 09-Jan-02 1749 10-Jan-02 2106 09-Jan-02 1841 10-Jan-02 2181 09-Jan-02 1841 10-Jan-02 2181 09-Jan-02 1494 10-Jan-02 1054 09-Jan-02	Identifier	Counts	Date	Counts	Date	Alpha Measurement
1835 09-Jan-02 1962 10-Jan-02 1775 09-Jan-02 NA 10-Jan-02 1731 09-Jan-02 1702 10-Jan-02 1616 09-Jan-02 1702 10-Jan-02 1896 09-Jan-02 1536 10-Jan-02 1896 09-Jan-02 1536 10-Jan-02 1943 09-Jan-02 1458 10-Jan-02 1521 09-Jan-02 1458 10-Jan-02 1792 09-Jan-02 1756 10-Jan-02 1942 09-Jan-02 1758 10-Jan-02 1942 09-Jan-02 1758 10-Jan-02 2061 09-Jan-02 1758 10-Jan-02 2106 09-Jan-02 1749 10-Jan-02 1663 09-Jan-02 1749 10-Jan-02 1663 09-Jan-02 1841 10-Jan-02 1663 09-Jan-02 1841 10-Jan-02 1663 09-Jan-02 1494 10-Jan-02 1644 09-Jan-02	NAES023	1858	09-Jan-02	NA	10-Jan-02	NA
1775 09-Jan-02 NA 10-Jan-02 1731 09-Jan-02 1702 10-Jan-02 1616 09-Jan-02 1702 10-Jan-02 1896 09-Jan-02 1836 10-Jan-02 1943 09-Jan-02 1856 10-Jan-02 1943 09-Jan-02 1858 10-Jan-02 1792 09-Jan-02 1756 10-Jan-02 1792 09-Jan-02 1756 10-Jan-02 1942 09-Jan-02 1756 10-Jan-02 1942 09-Jan-02 1756 10-Jan-02 2011 09-Jan-02 1758 10-Jan-02 2051 09-Jan-02 1749 10-Jan-02 2106 09-Jan-02 1749 10-Jan-02 1663 09-Jan-02 1841 10-Jan-02 1634 09-Jan-02 1844 10-Jan-02 1634 09-Jan-02 1494 10-Jan-02 1769 09-Jan-02 1494 10-Jan-02 1769 09-Jan-02	NAES024	1835	09-Jan-02	1962	10-Jan-02	6
1731 09-Jan-02 1702 10-Jan-02 1616 09-Jan-02 NA 10-Jan-02 1896 09-Jan-02 1536 10-Jan-02 1943 09-Jan-02 1458 10-Jan-02 1521 09-Jan-02 1458 10-Jan-02 1521 09-Jan-02 1458 10-Jan-02 1792 09-Jan-02 1756 10-Jan-02 1942 09-Jan-02 1754 10-Jan-02 1942 09-Jan-02 1758 10-Jan-02 2061 09-Jan-02 1758 10-Jan-02 2106 09-Jan-02 1749 10-Jan-02 2106 09-Jan-02 1749 10-Jan-02 1663 09-Jan-02 1749 10-Jan-02 1684 09-Jan-02 1841 10-Jan-02 1634 09-Jan-02 1494 10-Jan-02 1769 09-Jan-02 1494 10-Jan-02 1769 09-Jan-02 1494 10-Jan-02 1769 09-Jan-02	NAES025	1775	09-Jan-02	NA	10-Jan-02	NA
1616 09-Jan-02 NA 10-Jan-02 1896 09-Jan-02 1536 10-Jan-02 1943 09-Jan-02 NA 10-Jan-02 1521 09-Jan-02 NA 10-Jan-02 2231 09-Jan-02 NA 10-Jan-02 1792 09-Jan-02 NA 10-Jan-02 1942 09-Jan-02 1756 10-Jan-02 1972 09-Jan-02 1758 10-Jan-02 2061 09-Jan-02 1758 10-Jan-02 2051 09-Jan-02 1749 10-Jan-02 2106 09-Jan-02 1749 10-Jan-02 1663 09-Jan-02 1749 10-Jan-02 1663 09-Jan-02 1841 10-Jan-02 1634 09-Jan-02 1841 10-Jan-02 1634 09-Jan-02 1494 10-Jan-02 1769 09-Jan-02 NA 10-Jan-02 1769 09-Jan-02 NA 10-Jan-02 1769 09-Jan-02 <td< td=""><td>NAES026</td><td>1731</td><td>09-Jan-02</td><td>1702</td><td>10-Jan-02</td><td>6</td></td<>	NAES026	1731	09-Jan-02	1702	10-Jan-02	6
1896 09-Jan-02 1536 10-Jan-02 1943 09-Jan-02 NA 10-Jan-02 1521 09-Jan-02 1458 10-Jan-02 2231 09-Jan-02 NA 10-Jan-02 1792 09-Jan-02 NA 10-Jan-02 1942 09-Jan-02 NA 10-Jan-02 1942 09-Jan-02 NA 10-Jan-02 2061 09-Jan-02 NA 10-Jan-02 2061 09-Jan-02 NA 10-Jan-02 2079 09-Jan-02 NA 10-Jan-02 1663 09-Jan-02 NA 10-Jan-02 1663 09-Jan-02 NA 10-Jan-02 1634 09-Jan-02 NA 10-Jan-02 1634 09-Jan-02 NA 10-Jan-02 1634 09-Jan-02 NA 10-Jan-02 1769 09-Jan-02 NA 10-Jan-02 1769 09-Jan-02 NA 10-Jan-02 1769 09-Jan-02 NA	NAES027	1616	09-Jan-02	NA	10-Jan-02	NA
1943 09-Jan-02 NA 10-Jan-02 1521 09-Jan-02 1458 10-Jan-02 2231 09-Jan-02 NA 10-Jan-02 1792 09-Jan-02 1756 10-Jan-02 2011 09-Jan-02 1756 10-Jan-02 1942 09-Jan-02 1554 10-Jan-02 1972 09-Jan-02 1758 10-Jan-02 2061 09-Jan-02 1749 10-Jan-02 2106 09-Jan-02 1749 10-Jan-02 2106 09-Jan-02 1749 10-Jan-02 1663 09-Jan-02 1841 10-Jan-02 1786 09-Jan-02 1844 10-Jan-02 1786 09-Jan-02 1494 10-Jan-02 1769 09-Jan-02 1494 10-Jan-02 1769 09-Jan-02 1494 10-Jan-02 1769 09-Jan-02 1493 10-Jan-02 1769 09-Jan-02 NA 10-Jan-02 1464 09-Jan-02	NAES028	1896	09-Jan-02	1536	10-Jan-02	11
1521 09-Jan-02 1458 10-Jan-02 2231 09-Jan-02 NA 10-Jan-02 1792 09-Jan-02 1756 10-Jan-02 2011 09-Jan-02 NA 10-Jan-02 1942 09-Jan-02 1554 10-Jan-02 1972 09-Jan-02 NA 10-Jan-02 2061 09-Jan-02 NA 10-Jan-02 2106 09-Jan-02 NA 10-Jan-02 2106 09-Jan-02 NA 10-Jan-02 1663 09-Jan-02 NA 10-Jan-02 1786 09-Jan-02 NA 10-Jan-02 1634 09-Jan-02 NA 10-Jan-02 1634 09-Jan-02 NA 10-Jan-02 1769 09-Jan-02 NA 10-Jan-02 1769 09-Jan-02 NA 10-Jan-02 1769 09-Jan-02 NA 10-Jan-02 1764 09-Jan-02 NA 10-Jan-02 1764 09-Jan-02 NA	NAES029	1943	09-Jan-02	NA	10-Jan-02	NA
2231 09-Jan-02 NA 10-Jan-02 1792 09-Jan-02 1756 10-Jan-02 2011 09-Jan-02 NA 10-Jan-02 1942 09-Jan-02 1554 10-Jan-02 1972 09-Jan-02 NA 10-Jan-02 2061 09-Jan-02 1758 10-Jan-02 2106 09-Jan-02 NA 10-Jan-02 2181 09-Jan-02 NA 10-Jan-02 1643 09-Jan-02 NA 10-Jan-02 1786 09-Jan-02 NA 10-Jan-02 1634 09-Jan-02 NA 10-Jan-02 1786 09-Jan-02 NA 10-Jan-02 1769 09-Jan-02 NA 10-Jan-02 1769 09-Jan-02 NA 10-Jan-02 1769 09-Jan-02 NA 10-Jan-02 1764 09-Jan-02 NA 10-Jan-02 1764 09-Jan-02 NA 10-Jan-02 1764 09-Jan-02 NA	NAES030	1521	09-Jan-02	1458	10-Jan-02	6
1792 09-Jan-02 1756 10-Jan-02 2011 09-Jan-02 NA 10-Jan-02 1942 09-Jan-02 1554 10-Jan-02 1972 09-Jan-02 NA 10-Jan-02 2061 09-Jan-02 1758 10-Jan-02 2106 09-Jan-02 NA 10-Jan-02 2106 09-Jan-02 NA 10-Jan-02 1663 09-Jan-02 NA 10-Jan-02 1786 09-Jan-02 NA 10-Jan-02 1634 09-Jan-02 NA 10-Jan-02 1634 09-Jan-02 NA 10-Jan-02 1769 09-Jan-02 NA 10-Jan-02 1769 09-Jan-02 NA 10-Jan-02 1769 09-Jan-02 NA 10-Jan-02 1769 09-Jan-02 NA 10-Jan-02 1764 09-Jan-02 NA 10-Jan-02 1762 09-Jan-02 NA 10-Jan-02	NAES031	2231	09-Jan-02	NA	10-Jan-02	NA
2011 09-Jan-02 NA 10-Jan-02 1942 09-Jan-02 1554 10-Jan-02 1972 09-Jan-02 NA 10-Jan-02 2061 09-Jan-02 1758 10-Jan-02 2106 09-Jan-02 NA 10-Jan-02 2106 09-Jan-02 NA 10-Jan-02 1663 09-Jan-02 NA 10-Jan-02 1786 09-Jan-02 NA 10-Jan-02 1634 09-Jan-02 NA 10-Jan-02 1634 09-Jan-02 NA 10-Jan-02 1769 09-Jan-02 NA 10-Jan-02 1464 09-Jan-02 NA 10-Jan-02	NAES032	1792	09-Jan-02	1756	10-Jan-02	5
1942 09-Jan-02 1554 10-Jan-02 1972 09-Jan-02 NA 10-Jan-02 2061 09-Jan-02 1758 10-Jan-02 2279 09-Jan-02 NA 10-Jan-02 2106 09-Jan-02 NA 10-Jan-02 1663 09-Jan-02 NA 10-Jan-02 1786 09-Jan-02 NA 10-Jan-02 1634 09-Jan-02 NA 10-Jan-02 1769 09-Jan-02 NA 10-Jan-02 1769 09-Jan-02 NA 10-Jan-02 1769 09-Jan-02 NA 10-Jan-02 1769 09-Jan-02 NA 10-Jan-02 1764 09-Jan-02 NA 10-Jan-02 1464 09-Jan-02 NA 10-Jan-02 1464 09-Jan-02 NA 10-Jan-02	NAES033	2011	09-Jan-02	NA	10-Jan-02	NA
1972 09-Jan-02 NA 10-Jan-02 2061 09-Jan-02 1758 10-Jan-02 2279 09-Jan-02 NA 10-Jan-02 2106 09-Jan-02 1749 10-Jan-02 1663 09-Jan-02 NA 10-Jan-02 1786 09-Jan-02 NA 10-Jan-02 1634 09-Jan-02 NA 10-Jan-02 1769 09-Jan-02 NA 10-Jan-02 1769 09-Jan-02 NA 10-Jan-02 1764 09-Jan-02 NA 10-Jan-02 1464 09-Jan-02 NA 10-Jan-02 1464 09-Jan-02 NA 10-Jan-02 1464 09-Jan-02 NA 10-Jan-02 1464 09-Jan-02 NA 10-Jan-02	NAES034	1942	09-Jan-02	1554	10-Jan-02	5
2061 09-Jan-02 1758 10-Jan-02 2279 09-Jan-02 NA 10-Jan-02 2106 09-Jan-02 1749 10-Jan-02 1663 09-Jan-02 NA 10-Jan-02 1786 09-Jan-02 NA 10-Jan-02 1634 09-Jan-02 NA 10-Jan-02 1814 09-Jan-02 NA 10-Jan-02 1769 09-Jan-02 NA 10-Jan-02 1769 09-Jan-02 NA 10-Jan-02 1464 09-Jan-02 NA 10-Jan-02 1464 09-Jan-02 NA 10-Jan-02 1402 10-Jan-02 10-Jan-02	NAES035	1972	09-Jan-02	NA	10-Jan-02	NA
2279 09-Jan-02 NA 10-Jan-02 2106 09-Jan-02 1749 10-Jan-02 1663 09-Jan-02 NA 10-Jan-02 2181 09-Jan-02 NA 10-Jan-02 1786 09-Jan-02 NA 10-Jan-02 1634 09-Jan-02 NA 10-Jan-02 1769 09-Jan-02 NA 10-Jan-02 1702 09-Jan-02 NA 10-Jan-02 1464 09-Jan-02 NA 10-Jan-02 1464 09-Jan-02 NA 10-Jan-02 1464 09-Jan-02 NA 10-Jan-02	NAES036	2061	09-Jan-02	1758	10-Jan-02	11
2106 09-Jan-02 1749 10-Jan-02 1663 09-Jan-02 NA 10-Jan-02 2181 09-Jan-02 1541 10-Jan-02 1786 09-Jan-02 NA 10-Jan-02 1814 09-Jan-02 NA 10-Jan-02 1769 09-Jan-02 NA 10-Jan-02 1702 09-Jan-02 NA 10-Jan-02 1464 09-Jan-02 NA 10-Jan-02 1402 09-Jan-02 NA 10-Jan-02 1402 09-Jan-02 NA 10-Jan-02	NAES037	2279	09-Jan-02	NA	10-Jan-02	NA
1663 09-Jan-02 NA 10-Jan-02 2181 09-Jan-02 1541 10-Jan-02 1786 09-Jan-02 NA 10-Jan-02 1634 09-Jan-02 NA 10-Jan-02 1769 09-Jan-02 NA 10-Jan-02 1702 09-Jan-02 NA 10-Jan-02 1464 09-Jan-02 NA 10-Jan-02 1402 09-Jan-02 NA 10-Jan-02 1402 09-Jan-02 NA 10-Jan-02	NAES038	2106	09-Jan-02	1749	10-Jan-02	12
2181 09-Jan-02 1541 10-Jan-02 1786 09-Jan-02 NA 10-Jan-02 1634 09-Jan-02 1494 10-Jan-02 1814 09-Jan-02 NA 10-Jan-02 1769 09-Jan-02 NA 10-Jan-02 1702 09-Jan-02 NA 10-Jan-02 1464 09-Jan-02 NA 10-Jan-02 1402 09-Jan-02 NA 10-Jan-02	NAES039	1663	09-Jan-02	NA	10-Jan-02	NA
1786 09-Jan-02 NA 10-Jan-02 1634 09-Jan-02 1494 10-Jan-02 1814 09-Jan-02 NA 10-Jan-02 1769 09-Jan-02 NA 10-Jan-02 1702 09-Jan-02 NA 10-Jan-02 1464 09-Jan-02 NA 10-Jan-02 1402 09-Jan-02 NA 10-Jan-02	NAES040	2181	09-Jan-02	1541	10-Jan-02	6
1634 09-Jan-02 1494 10-Jan-02 1814 09-Jan-02 NA 10-Jan-02 1769 09-Jan-02 1493 10-Jan-02 1702 09-Jan-02 NA 10-Jan-02 1464 09-Jan-02 1022 10-Jan-02 1402 09-Jan-02 NA 10-Jan-02	NAES041	1786	09-Jan-02	NA	10-Jan-02	NA
1814 09-Jan-02 NA 10-Jan-02 1769 09-Jan-02 1493 10-Jan-02 1702 09-Jan-02 NA 10-Jan-02 1464 09-Jan-02 10-Jan-02 10-Jan-02 1402 09-Jan-02 NA 10-Jan-02	NAES042	1634	09-Jan-02	1494	10-Jan-02	16
1769 09-Jan-02 1493 10-Jan-02 1702 09-Jan-02 NA 10-Jan-02 1464 09-Jan-02 1022 10-Jan-02 1402 09-Jan-02 NA 10-Jan-02	NAES043	1814	09-Jan-02	NA	10-Jan-02	NA
1702 09-Jan-02 NA 10-Jan-02 1464 09-Jan-02 1022 10-Jan-02 1402 09-Jan-02 NA 10-Jan-02	NAES044	1769	09-Jan-02	1493	10-Jan-02	5
1464 09-Jan-02 1022 10-Jan-02 1402 09-Jan-02 NA 10-Jan-02	NAES045	1702	09-Jan-02	NA	10-Jan-02	NA
1402 09-Jan-02 NA 10-Jan-02	NAES046	1464	09-Jan-02	1022	10-Jan-02	15
	NAES047	1402	09-Jan-02	NA	10-Jan-02	NA

Table B-2. BOMARC In-Situ Field Measurement Data

Measurement	FIDLER N	FIDLER Measurement Data (1-minute Integrated Counts)	(1-minute Integrat	ed Counts)	Adjacent Pavement
Location	GPS Measure	3PS Measurement Location	Adjacent Pave	Adjacent Pavement Location	Location 1-Minute
Identifier	Counts	Date	Counts	Date	Alpha Measurement
NAES048	1378	09-Jan-02	1005	10-Jan-02	19
NAES049	1456	09-Jan-02	NA	10-Jan-02	NA
NAES050	1989	09-Jan-02	1078	10-Jan-02	27
NAES051	1923	09-Jan-02	NA	10-Jan-02	NA
NAES052	1920	09-Jan-02	1017	10-Jan-02	16
NAES053	1553	09-Jan-02	NA	10-Jan-02	NA
NAES054	1648	09-Jan-02	1053	10-Jan-02	16
NAES055	1715	09-Jan-02	NA	10-Jan-02	NA
NAES056	1626	09-Jan-02	1126	10-Jan-02	20
NAES057	1635	09-Jan-02	NA	10-Jan-02	NA
NAES058	1715	09-Jan-02	1076	10-Jan-02	16
NAES059	1676	09-Jan-02	NA	10-Jan-02	NA
NAES060	1560	09-Jan-02	1800	10-Jan-02	6
NAES061	1801	09-Jan-02	NA	10-Jan-02	NA
NAES062	1376	09-Jan-02	1491	10-Jan-02	14
NAES063	2014	09-Jan-02	NA	10-Jan-02	NA
NAES064	1833	09-Jan-02	1371	10-Jan-02	11
NAES065	1611	09-Jan-02	NA	10-Jan-02	NA
NAES066	1685	09-Jan-02	1305	10-Jan-02	4
NAES067	1532	09-Jan-02	NA	10-Jan-02	NA
NAES068	1641	09-Jan-02	1608	10-Jan-02	2
NAES069	1762	09-Jan-02	NA	10-Jan-02	NA
NAES070	2399	09-Jan-02	1675	10-Jan-02	4
NAES071	1890	09-Jan-02	NA	10-Jan-02	NA
NAES072	2063	09-Jan-02	1798	10-Jan-02	4

Table B-2. BOMARC In-Situ Field Measurement Data

Measurement	FIDLER N	FIDLER Measurement Data (1-minute Integrated Counts)	(1-minute Integrat	ed Counts)	Adjacent Pavement
Location	GPS Measure	GPS Measurement Location	Adjacent Pave	Adjacent Pavement Location	Location 1-Minute
Identifier	Counts	Date	Counts	Date	Alpha Measurement
NAES073	2446	09-Jan-02	NA	10-Jan-02	NA
NAES074	1950	09-Jan-02	1855	10-Jan-02	5
NAES075	1673	09-Jan-02	NA	10-Jan-02	NA
NAES076	1532	09-Jan-02	1441	10-Jan-02	9
NAES077	1592	09-Jan-02	NA	10-Jan-02	NA
NAES078	1810	09-Jan-02	1516	10-Jan-02	9
NAES079	1772	09-Jan-02	NA	10-Jan-02	NA
NAES080	1617	09-Jan-02	NA	10-Jan-02	NA
NAES081	1495	09-Jan-02	NA	10-Jan-02	NA
NAES082	1465	09-Jan-02	NA	10-Jan-02	NA
NAES083	1445	09-Jan-02	NA	10-Jan-02	NA
NAES084	1726	09-Jan-02	NA	10-Jan-02	NA
NAES085	1407	09-Jan-02	NA	10-Jan-02	NA
NAES086	1479	09-Jan-02	NA	10-Jan-02	NA
NAES087	1266	09-Jan-02	NA	10-Jan-02	NA
NAES088	1568	09-Jan-02	NA	10-Jan-02	NA
NAES089	1619	09-Jan-02	NA	10-Jan-02	NA
NAES090	2065	09-Jan-02	NA	10-Jan-02	NA
NAES091	1949	09-Jan-02	NA	10-Jan-02	NA
NAES092	2182	09-Jan-02	NA	10-Jan-02	NA
NAES093	1891	09-Jan-02	NA	10-Jan-02	NA
NAES094	2186	09-Jan-02	NA	10-Jan-02	NA

Table B-2. BOMARC In-Situ Field Measurement Data

Measurement		In-Situ Me	In-Situ Measurement Data (1-minute Integrated Counts)	ta (1-minut	e Integrated	Counts)	
Location	Measurement	FIDL	FIDLER Measurements	ents	Alp	Alpha Measurement	nent
Identifier	Date	Soil*	Gravel	Road	Soil*	Gravel	Road
RH003	9-Apr-02	1095	788	1317	-	0	3
RH004	9-Apr-02	1074	682	1352	0	0	4
RH005	9-Apr-02	1099	292	1264	_	0	2
RH006	9-Apr-02	1062	788	262	0	2	-
RH007	9-Apr-02	826	1082	1303	0	3	3
RH008	9-Apr-02	826	734	1348	0	2	
RH009	9-Apr-02	1020	402	1378	1		4
RH010	9-Apr-02	1126	812	1283	0		3
RH011	9-Apr-02	1042	836	1286	0	0	2
RH012	9-Apr-02	942	941	1342	3		2
RH013	9-Apr-02	985	800	1293	-	-	2
RH014	9-Apr-02	892	877	1336	-	0	-
RH015	9-Apr-02	868	710	1299	2	0	0
RH016	9-Apr-02	914	789	1303	3	2	-
RH017	9-Apr-02	911	883	1219	0	2	_
RH018	9-Apr-02	926	793	1218	3	0	0
RH019	9-Apr-02	959	753	1253	-	-	m
RH020	9-Apr-02	930	883	1360	3	2	4
RH021	9-Apr-02	926	801	1270	2	1	3
RH022	9-Apr-02	994	884	1245	5	1	3
RH023	9-Apr-02	985	748	1256	2	1	0
RH024	9-Apr-02	966	887	1271	0	0	_
RH025	9-Apr-02	1013	1244	1342	2	4	2
RH026	9-Apr-02	1199	1223	1253	3	3	3
RH027	9-Apr-02	1204	1050	1245	2	0	2
*GPS Measur	*GPS Measurement at Soil Location, Gravel	cation, Gra	vel		To Obtain c	To Obtain α-Radiation Activity	Activity
Measurement	Measurement Locations between Rail and Road, Road	en Rail and	Road, Road		Concentrati	Concentration (dpm/100 cm ²)	cm^2
Measurement	Measurements in Center of Road	pad			Multiply Co	Multiply Count Rate by 3.78	3.78

Table B-3. BOMARC Soil Sample γ-Spectroscopy Analysis

Measurement	Soil	Sample Identification	ntification		Gamma Spe	Gamma Spectroscopy Analytical Results	tical Results	
Location	Collection	ŗ	AFIERA		Activity C	Activity Concentration (pCi/g-dried)	Ci/g-dried)	
Identifier	Date	Base	SDRR	Ac-228	Am-241	Cs-137	K-40	Th-234
QA/QC	NA	NA	NA	NA	NA	NA	NA	NA
RH001	8-Jan-02	GS0202393	10100122	< 0.40	< 0.15	1.05 ± 0.12	0.8 ± 0.5	< 1.4
RH002	8-Jan-02	GS0202394	10100123	< 0.30	< 0.12	1.79 ± 0.17	< 1.0	< 1.2
NAES001	8-Jan-02	GS0202299	10100028	< 0.43	< 0.10	< 0.12	1.8 ± 0.6	< 1.2
NAES002	8-Jan-02	GS0202300	10100029	< 0.39	< 0.10	< 0.11	1.3 ± 0.6	< 1.1
NAES003	8-Jan-02	GS0202301	10100030	< 0.43	< 0.09	0.65 ± 0.10	2.0 ± 0.7	< 1.1
NAES004	8-Jan-02	GS0202302	10100031	< 0.35	< 0.11	1.7 ± 0.2	3.5 ± 0.8	0.7 ± 0.5
NAES005	8-Jan-02	GS0202303	10100032	< 0.35	< 0.10	1.4 ± 0.2	3.9 ± 0.9	0.8 ± 0.6
NAES006	8-Jan-02	GS0202304	10100033	< 0.38	< 0.09	0.83 ± 0.11	< 1.4	0.8 ± 0.6
NAES007	8-Jan-02	GS0202305	10100034	< 0.41	< 0.10	0.06 ± 0.05	< 1.3	< 1.1
NAES008	8-Jan-02	GS0202306	10100035	< 0.40	< 0.10	0.46 ± 0.08	1.7 ± 0.6	1.3 ± 0.6
NAES009	8-Jan-02	GS0202307	10100036	< 0.33	< 0.10	0.29 ± 0.07	0.8 ± 0.5	< 1.1
NAES010	8-Jan-02	GS0202308	10100037	< 0.44	< 0.10	< 0.11	1.7 ± 0.7	0.7 ± 0.6
NAES011	8-Jan-02	GS0202309	10100038	0.59 ± 0.14	< 0.10	0.09 ± 0.05	1.2 ± 0.6	< 1.1
NAES012	8-Jan-02	GS0202310	10100039	< 0.49	< 0.19	< 0.15	< 1.3	1.4 ± 0.7
NAES013	8-Jan-02	GS0202311	10100040	< 0.37	< 0.10	1.8 ± 0.5	< 1.1	< 1.1
NAES014	8-Jan-02	GS0202312	10100041	< 0.32	< 0.09	1.3 ± 0.04	< 0.97	< 0.91
NAES015	8-Jan-02	GS0202313	10100042	< 0.32	< 0.09	0.25 ± 0.06	< 1.1	0.7 ± 0.5
NAES016	8-Jan-02	GS0202314	10100043	< 0.36	< 0.10	0.24 ± 0.06	1.2 ± 0.5	< 1.1
NAES017	8-Jan-02	GS0202315	10100044	0.62 ± 0.12	< 0.11	< 0.07	1.6 ± 0.5	< 1.2
NAES018	9-Jan-02	GS0202316	10100045	< 0.35	< 0.10	0.56 ± 0.04	< 1.0	0.8 ± 0.5
NAES019	8-Jan-02	GS0202317	10100046	< 0.31	< 0.10	< 0.05	< 1.0	1.0 ± 0.5
NAES020	8-Jan-02	GS0202318	10100047	0.42 ± 0.09	< 0.10	0.05 ± 0.04	< 1.0	> 0.96
NAES021	8-Jan-02	GS0202319	10100048	< 0.31	< 0.09	< 0.09	< 0.93	< 1.1
NAES022	8-Jan-02	GS0202320	10100049	0.18 ± 0.10	< 0.09	0.12 ± 0.04	0.9 ± 0.4	< 1.0

Table B-3. BOMARC Soil Sample y-Spectroscopy Analysis

Measurement	Soil	Sample Identification	ntification		Gamma Spe	Gamma Spectroscopy Analytical Results	tical Results	
Location	Collection	Base	AFIERA		Activity C	Activity Concentration (pCi/g-dried)	Ci/g-dried)	
Identifier	Date	Dasc	SDRR	Ac-228	Am-241	Cs-137	K-40	Th-234
NAES023	8-Jan-02	GS0202321	10100050	< 0.36	< 0.10	1.1 ± 0.5	2.0 ± 0.5	0.9 ± 0.5
NAES024	8-Jan-02	GS0202322	10100051	< 0.44	< 0.18	< 0.13	1.4 ± 0.6	< 1.5
NAES025	8-Jan-02	GS0202323	10100052	< 0.29	< 0.09	0.24 ± 0.05	1.2 ± 0.5	< 1.0
NAES026	8-Jan-02	GS0202324	10100053	< 0.30	< 0.10	< 0.08	< 1.1	< 1.0
NAES027	8-Jan-02	GS0202325	10100054	< 0.33	< 0.09	0.15 ± 0.05	1.3 ± 0.5	< 1.0
NAES028	8-Jan-02	GS0202326	10100055	< 0.31	< 0.09	0.05 ± 0.04	1.2 ± 0.4	< 1.0
NAES029	8-Jan-02	GS0202327	10100056	< 0.35	< 0.10	0.05 ± 0.04	0.9 ± 0.4	< 1.1
NAES030	8-Jan-02	GS0202328	10100057	< 0.31	< 0.09	0.32 ± 0.06	1.6 ± 0.5	< 1.0
NAES031	8-Jan-02	GS0202329	10100058	0.48 ± 0.12	< 0.11	0.82 ± 0.10	1.4 ± 0.05	1.3 ± 0.6
NAES032	9-Jan-02	GS0202330	10100059	< 0.33	< 0.09	0.22 ± 0.06	> 0.96	<1.1
NAES033	9-Jan-02	GS0202331	10100060	< 0.34	< 0.10	0.29 ± 0.06	< 1.1	<1.1
NAES034	9-Jan-02	GS0202332	10100061	< 0.30	< 0.09	0.09 ± 0.04	1.1 ± 0.5	< 0.98
NAES035	9-Jan-02	GS0202333	10100062	< 0.30	< 0.09	0.09 ± 0.05	1.2 ± 0.4	< 1.0
NAES036	9-Jan-02	GS0202334	.10100063	< 0.47	< 0.19	0.13 ± 0.07	0.7 ± 0.6	< 1.9
NAES037	9-Jan-02	GS0202335	10100064	< 0.39	< 0.09	< 0.12	0.7 ± 0.5	< 1.2
NAES038	10-Jan-02	GS0202336	10100065	< 0.45	< 0.10	0.28 ± 0.07	2.0 ± 0.7	< 1.3
NAES039	9-Jan-02	GS0202337	10100066	< 0.41	< 0.10	0.16 ± 0.06	< 1.4	< 1.3
NAES040	9-Jan-02	GS0202338	10100067	< 0.4	< 0.10	0.34 ± 0.07	1.0 ± 0.6	< 1.3
NAES041	9-Jan-02	GS0202339	10100068	0.59 ± 0.14	< 0.10	< 0.12	< 1.5	< 1.3
NAES042	9-Jan-02	GS0202340	10100069	< 0.4	< 0.09	0.19 ± 0.06	1.5 ± 0.6	0.8 ± 0.6
NAES043	10-Jan-02	GS0202341	10100070	< 0.38	< 0.10	< 0.11	< 1.5	< 1.2
NAES044	9-Jan-02	GS0202342	10100071	0.50 ± 0.13	< 0.11	< 0.11	< 1.4	<1.1
NAES045	9-Jan-02	GS0202343	10100072	< 0.39	< 0.10	0.14 ± 0.05	1.1 ± 0.5	< 1.3
NAES046	9-Jan-02	GS0202344	10100073	< 0.4	< 0.10	0.56 ± 0.09	< 1.3	<1.3
NAES047	9-Jan-02	GS0202345	10100074	< 0.39	< 0.10	0.62 ± 0.10	1.6 ± 0.6	< 1.3

Table B-3. BOMARC Soil Sample γ-Spectroscopy Analysis

Measurement	Soil	Sample Ider	e Identification		Gamma Spe	Gamma Spectroscopy Analytical Results	rical Results	
Location	Collection	Deco	AFIERA		Activity C	Activity Concentration (pCi/g-dried)	Ci/g-dried)	
Identifier	Date	Dasc	SDRR	Ac-228	Am-241	Cs-137	K-40	Th-234
NAES048	9-Jan-02	GS0202346	10100075	< 0.47	< 0.19	0.77 ± 0.11	< 1.4	< 1.9
NAES049	9-Jan-02	GS0202347	10100076	< 0.44	< 0.18	< 0.14	< 1.3	< 1.8
NAES050	9-Jan-02	GS0202348	10100077	< 0.49	< 0.20	0.09 ± 0.07	< 1.6	< 2.0
NAES051	9-Jan-02	GS0202349	10100078	< 0.52	< 0.20	< 0.14	< 1.3	< 2.0
NAES052	9-Jan-02	GS0202350	10100079	< 0.54	< 0.20	0.15 ± 0.06	4.0 ± 1.0	< 2.0
NAES053	9-Jan-02	GS0202351	10100080	< 0.45	< 0.19	1.01 ± 0.12	< 1.4	< 1.9
NAES054	9-Jan-02	GS0202352	10100081	< 0.45	< 0.19	0.79 ± 0.11	< 1.4	< 1.9
NAES055	9-Jan-02	GS0202353	10100082	< 0.48	< 0.20	0.72 ± 0.11	< 1.3	< 1.9
NAES056	9-Jan-02	GS0202354	10100083	< 0.47	< 0.19	0.22 ± 0.07	< 1.4	< 1.9
NAES057	9-Jan-02	GS0202355	10100084	< 0.47	< 0.19	0.79 ± 0.11	< 1.4	< 1.9
NAES058	9-Jan-02	GS0202356	10100085	< 0.39	< 0.14	0.21 ± 0.06	< 1.2	< 1.3
NAES059	9-Jan-02	GS0202357	10100086	< 0.38	< 0.13	0.50 ± 0.08	< 0.94	< 1.3
NAES060	9-Jan-02	GS0202358	10100087	< 0.32	< 0.13	0.07 ± 0.05	1.0 ± 0.5	< 1.2
NAES061	9-Jan-02	GS0202359	10100088	< 0.47	< 0.18	< 0.13	< 1.4	< 1.8
NAES062	9-Jan-02	GS0202360	10100089	< 0.48	< 0.19	< 0.13	< 1.4	< 1.8
NAES063	9-Jan-02	GS0202361	10100090	< 0.46	< 0.19	0.15 ± 0.07	< 1.5	< 1.8
NAES064	9-Jan-02	GS0202362	10100091	< 0.47	< 0.18	< 0.14	< 1.2	< 1.8
NAES065	9-Jan-02	GS0202363	10100092	< 0.45	< 0.19	< 0.13	< 1.5	< 1.9
NAES066	10-Jan-02	GS0202364	10100093	< 0.46	< 0.19	< 0.13	0.7 ± 0.6	< 1.9
NAES067	10-Jan-02	GS0202365	10100094	< 0.47	< 0.19	< 0.14	< 1.3	< 1.8
NAES068	10-Jan-02	GS0202366	10100095	< 0.48	< 0.20	0.08 ± 0.06	0.8 ± 0.6	< 1.9
NAES069	10-Jan-02	GS0202367	10100096	< 0.49	< 0.19	< 0.13	> 1.4	< 1.9
NAES070	10-Jan-02	GS0202368	10100097	< 0.55	< 0.20	0.16 ± 0.07	0.7 ± 0.7	< 2.0
NAES071	10-Jan-02	GS0202369	10100098	< 0.42	< 0.14	0.22 ± 0.06	0.7 ± 0.5	< 1.4
NAES072	10-Jan-02	GS0202370	10100099	< 0.35	< 0.13	0.12 ± 0.05	< 0.11	< 1.2

Table B-3. BOMARC Soil Sample γ-Spectroscopy Analysis

																		- 1						
		Th-234	< 1.1	< 1.0	< 1.1	< 1.1	< 1.1	< 1.1	< 1.1	< 1.1	< 1.0	< 1.0	< 1.1	< 1.3	< 1.3	< 1.3	< 1.2	< 1.3	< 1.5	< 1.2	< 1.3	< 1.3	< 1.2	< 1.3
tical Results	N/g-dried)	K-40	1.6 ± 0.5	1.7 ± 0.5	< 1.0	1.6 ± 0.5	0.8 ± 0.4	1.5 ± 0.5	1.3 ± 0.5	2.2 ± 0.6	0.9 ± 0.4	1.1 ± 0.4	1.1 ± 0.6	0.7 ± 0.6	1.5 ± 0.6	1.4 ± 0.6	1.3 ± 0.5	1.0 ± 0.6	< 1.4	< 1.3	1.6 ± 0.7	1.4 ± 0.6	1.8 ± 0.6	2.9 ± 0.7
Gamma Spectroscopy Analytical Results	Activity Concentration (pCi/g-dried)	Cs-137	0.19 ± 0.05	0.14 ± 0.05	0.11 ± 0.05	0.14 ± 0.05	0.12 ± 0.05	0.22 ± 0.06	< 0.08	0.16 ± 0.05	0.10 ± 0.04	< 0.07	< 0.10	0.13 ± 0.05	< 0.12	0.16 ± 0.06	< 0.11	0.12 ± 0.06	< 0.11	0.06 ± 0.05	0.07 ± 0.05	0.21 ± 0.07	< 0.10	0.22 ± 0.06
Gamma Spec	Activity Co	Am-241	< 0.10	< 0.10	< 0.10	< 0.09	< 0.10	< 0.10	< 0.11	< 0.10	< 0.09	< 0.09	< 0.16	< 0.14	< 0.10	< 0.10	< 0.10	< 0.10	< 0.12	< 0.10	< 0.10	< 0.09	< 0.09	< 0.10
		Ac-228	< 0.35	< 0.33	< 0.33	< 0.32	< 0.31	< 0.33	0.58 ± 0.12	< 0.39	< 0.33	0.30 ± 0.10	< 0.42	< 0.41	< 0.43	< 0.43	< 0.38	< 0.39	< 0.39	< 0.42	< 0.44	< 0.42	< 0.35	< 0.43
ntification	AFIERA	SDRR	10100100	10100101	10100102	10100103	10100104	10100105	10100106	10100107	10100108	10100109	10100110	10100111	10100112	10100113	10100114	10100115	10100116	10100117	10100118	10100119	10100120	10100121
Sample Identification	Bose	Dasc	GS0202371	GS0202372	GS0202373	GS0202374	GS0202375	GS0202376	GS0202377	GS0202378	GS0202379	GS0202380	GS0202381	GS0202382	GS0202383	GS0202384	GS0202385	GS0202386	GS0202387	GS0202388	GS0202389	GS0202390	GS0202391	GS0202392
Soil	Collection	Date	10-Jan-02	10-Jan-02	10-Jan-02	10-Jan-02	10-Jan-02	10-Jan-02	10-Jan-02	10-Jan-02	10-Jan-02	10-Jan-02	10-Jan-02	10-Jan-02	10-Jan-02									
Measurement	Location	Identifier	NAES073	NAES074	NAES075	NAES076	NAES077	NAES078	NAES079	NAES080	NAES081	NAES082	NAES083	NAES084	NAES085	NAES086	NAES087	NAES088	NAES089	NAES090	NAES091	NAES092	NAES093	NAES094

Table B-3. BOMARC Soil Sample γ-Spectroscopy Analysis

Location AFIERA Activity Concentration (pCig-dried) Identifier Location Base SDRR Ac-228 Am-241 GS-137 K-40 RH003 Soil GS0202548 10200530 < 0.03 < 0.09 < 0.08 3.3 ± 0.8 RH004 Gravel GS0202549 10200531 < 0.03 < 0.09 < 0.08 3.3 ± 0.8 RH006 Soil GS0202551 10200532 < 0.03 < 0.09 < 0.08 3.7 ± 0.8 RH007 Gravel GS0202552 10200533 < 0.03 < 0.09 < 0.08 3.7 ± 0.8 RH007 Gravel GS0202552 10200534 0.34 ± 0.11 < 0.09 < 0.08 < 0.09 < 0.08 < 0.09 RH010 Gravel GS0202553 10200535 < 0.03 < 0.09 < 0.08 < 0.09 < 0.09 < 0.08 < 0.09 < 0.09 < 0.08 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.09 < 0.08 <	Measurement	Soil	Sample Ider	e Identification		Gamma Spe	Gamma Spectroscopy Analytical Results	tical Results	
Location Date SDRR Ac-228 Soil GS0202548 10200529 < 0.33	Location	Collection	Dege	AFIERA		Activity C	oncentration (pC	Ci/g-dried)	
Soil GS0202548 10200530 < 0.33 Gravel GS0202549 10200531 < 0.32	Identifier	Location	pase	SDRR	Ac-228	Am-241	Cs-137	K-40	Th-234
Gravel GS0202549 10200530 < 0.32 Gravel GS0202550 10200531 < 0.33	RH003	Soil		10200529	< 0.33	< 0.10	< 0.10	0.6 ± 0.5	< 1.1
Gravel GS0202550 10200531 < 0.33 Soil GS0202551 10200532 < 0.31	RH004	Gravel	GS0202549	10200530	< 0.32	< 0.09	< 0.08	3.3 ± 0.8	< 1.1
Soil GS0202551 10200532 < 0.31 Gravel GS0202552 10200533 < 0.33	RH005	Gravel	GS0202550	10200531	< 0.33	< 0.09	< 0.08	3.7 ± 0.8	< 1.0
Gravel GS0202552 10200534 < 0.34 ± 0.11 Gravel GS0202554 10200534 0.34 ± 0.11 Soil GS0202554 10200535 < 0.32	RH006	Soil	GS0202551	10200532	< 0.31	< 0.09	0.51 ± 0.07	< 0.94	< 1.1
3 Gravel GS0202553 10200534 0.34 ± 0.11 9 Soil GS0202554 10200535 < 0.32	RH007	Gravel	GS0202552	10200533	< 0.33	< 0.09	< 0.08	> 0.86	< 1.0
Soil GS0202554 10200535 < 0.32 Gravel GS0202555 10200536 < 0.31 Gravel GS0202556 10200537 < 0.33 Soil GS0202557 10200538 < 0.29 Gravel GS0202558 10200539 < 0.50 Gravel GS0202559 10200540 < 0.49 Gravel GS0202560 10200541 < 0.49 Gravel GS0202561 10200542 < 0.49 Gravel GS0202563 10200543 0.38 ± 0.15 Gravel GS0202563 10200544 < 0.49 Gravel GS0202564 10200545 < 0.50 Gravel GS0202565 10200546 < 0.50 Gravel GS0202567 10200548 0.55 ± 0.17 Gravel GS0202567 10200548 0.55 ± 0.17 Gravel GS0202567 10200548 0.55 ± 0.17 Gravel GS0202567 10200559 < 0.38 Gravel GS0202570 10200551 0.73 ± 0.14 Soil GS0202571 10200553 < 0.37 Soil GS0202572 10200553 < 0.37 Soil GS0202572 10200553 < 0.36	RH008	Gravel	GS0202553	10200534	0.34 ± 0.11	< 0.10	0.42 ± 0.07	< 0.90	0.7 ± 0.6
Gravel GS0202555 10200536 < 0.31 Gravel GS0202556 10200537 < 0.29	RH009	Soil	GS0202554	10200535	< 0.32	< 0.10	0.43 ± 0.07	< 1.0	< 1.0
Gravel GS0202556 10200537	RH010	Gravel	GS0202555	10200536	< 0.31	< 0.10	< 0.08	3.1 ± 0.7	< 1.0
Soil GS0202557 10200538 < 0.29 Gravel GS0202558 10200540 < 0.49	RH011	Gravel	GS0202556	10200537	< 0.33	< 0.09	< 0.07	3.8 ± 0.8	9.0 ± 6.0
Gravel GS0202558 10200539 < 0.50 Gravel GS0202559 10200540 < 0.49	RH012	Soil	GS0202557	10200538	< 0.29	< 0.08	0.25 ± 0.06	< 1.0	< 1.0
Gravel GS0202559 10200540 < 0.49 Soil GS0202560 10200541 < 0.49	RH013	Gravel	GS0202558	10200539	< 0.50	< 0.19	< 0.12	3.3 ± 0.9	< 1.9
Soil GS0202560 10200541 < 0.49 Gravel GS0202561 10200542 < 0.45	RH014	Gravel	GS0202559	10200540	< 0.49	< 0.19	< 0.13	2.5 ± 0.9	< 1.9
Gravel GS0202561 10200542 < 0.45 Gravel GS0202562 10200543 0.38 ± 0.15 Soil GS0202563 10200544 < 0.49	RH015	Soil	GS0202560	10200541	< 0.49	< 0.20	0.17 ± 0.07	< 1.5	< 1.9
Gravel GS0202562 10200543 0.38 ± 0.15 Soil GS0202563 10200544 < 0.49	RH016	Gravel	GS0202561	10200542	< 0.45	< 0.18	< 0.13	2.6 ± 0.8	< 1.8
Soil GS0202563 10200544 < 0.49 Gravel GS0202564 10200545 < 0.50	RH017	Gravel	GS0202562	10200543	0.38 ± 0.15	< 0.19	< 0.13	2.5 ± 0.9	< 1.8
Gravel GS0202564 10200545 < 0.50 Gravel GS0202565 10200546 < 0.50	RH018	Soil	GS0202563	10200544	< 0.49	< 0.19	< 0.14	<1.3	< 1.9
Gravel GS0202565 10200546 < 0.50 Soil GS0202566 10200547 < 0.49	RH019	Gravel	GS0202564	10200545	< 0.50	< 0.19	< 0.13	1.2 ± 0.8	< 1.9
Soil GS0202566 10200547 < 0.49 Gravel GS0202567 10200548 0.55 ± 0.17 Gravel GS0202568 10200549 < 0.41	RH020	Gravel	GS0202565	10200546	< 0.50	< 0.20	< 0.13	1.6 ± 0.8	1.4 ± 1.1
Gravel GS0202567 10200548 0.55 ± 0.17 Gravel GS0202568 10200549 < 0.41	RH021	Soil	GS0202566	10200547	< 0.49	< 0.20	< 0.13	< 1.5	< 2.0
Gravel GS0202568 10200549 < 0.41 Soil GS0202569 10200550 < 0.38	RH022	Gravel	GS0202567	10200548	0.55 ± 0.17	< 0.20	< 0.13	< 1.7	< 2.0
Soil GS0202569 10200550 < 0.38 Gravel GS0202570 10200551 0.73 ± 0.1 ² Soil GS0202571 10200552 < 0.37	RH023	Gravel	GS0202568	10200549	< 0.41	< 0.10	< 0.09	< 1.9	< 1.1
Gravel GS0202570 10200551 0.73 ± 0.12 Soil GS0202571 10200552 < 0.37	RH024	Soil	GS0202569	10200550	< 0.38	< 0.09	0.48 ± 0.09	0.7 ± 0.6	< 1.1
Soil GS0202571 10200552 < 0.37 Soil GS0202572 10200553 < 0.36	RH025	Gravel	GS0202570	10200551	0.73 ± 0.14	< 0.10	< 0.10	< 1.5	< 1.2
Soil GS0202572 10200553 < 0.36	RH026	Soil	GS0202571	10200552	< 0.37	< 0.10	0.32 ± 0.08	< 1.5	< 1.1
Uncertainty Levels at the 95 % Confic	RH027	Soil	GS0202572	10200553	< 0.36	< 0.10	0.42 ± 0.08	< 1.4	0.7 ± 0.6
					Un	certainty Lev	els at the 95 % C	Sonfidence Le	vel

Table B-4. BOMARC Soil Sample α-Spectroscopy Analysis

Measurement		Sample Identification	Alph	a Spectro	Alpha Spectroscopy Pu-239 + 240 Activity Concentration (fCi/g-dried)	+ 240 Activit	y Concent	ration (fCi/g-d	ried)
Location		AFIERA	P	Primary Sample	nple	AFIERA	VSDRR o	AFIERA/SDRR or Framatome Duplicate	Suplicate Supplicate
Identifier	Dasc	SDRR	Value	MDC	Recovery	Value	MDC	Recovery	Identifier
QA/QC	AN	NA	NA	NA	NA				
RH001	GS0202393	10100122	20 ± 20	20	0.98 ± 0.07				
RH002	GS0202394	10100123	10 ± 17	34	0.91 ± 0.07				
NAES001	GS0202299	10100028	(-6 ± 7)	09	0.88 ± 0.07	(-6 ± 7)	84	0.82 ± 0.06	30200234
NAES002	GS0202300	10100029	(-7 ± 8)	70	0.82 ± 0.06	2 + 3	4	NR	L2523-01
NAES003	GS0202301	10100030	20 ± 30	50	1.00 ± 0.07				
NAES004	GS0202302	10100031	20 ± 40	80	0.79 ± 0.06				
NAES005	GS0202303	10100032	20 ± 30	09	0.93 ± 0.07				
NAES006	GS0202304	10100033	10 ± 30	09	0.86 ± 0.07				
NAES007	GS0202305	10100034	(-6 ± 7)	62	0.84 ± 0.06				
NAES008	GS0202306	10100035	10 ± 20	09	0.84 ± 0.07				
NAES009	GS0202307	10100036	7 ± 18	46	1.00 ± 0.08				
NAES010	GS0202308	10100037	10 ± 30	70	0.82 ± 0.06				
NAES011	GS0202309	10100038	20 ± 40	20	0.75 ± 0.06	(-7 ± 8)	89	0.78 ± 0.06	30200236
NAES012	GS0202310	10100039	(-7 ± 8)	71	0.80 ± 0.06	5 ± 4	4	NR	L2523-02
NAES013	GS0202311	10100040	(-4 ± 6)	09	0.85 ± 0.06				
NAES014	GS0202312	10100041	10 ± 30	06	0.69 ± 0.05				
NAES015	GS0202313	10100042	40 ± 40	70	0.74 ± 0.06				
NAES016	GS0202314	10100043	10 ± 30	09	0.89 ± 0.07				:
NAES017	GS0202315	10100044	(-7 ± 8)	70	0.82 ± 0.07				
NAES018	GS0202316	10100045	(-7 ± 8)	70	0.76 ± 0.06				
NAES019	GS0202317	10100046	7 ± 18	48	0.98 ± 0.08				
NAES020	GS0202318	10100047	10 ± 20	50	0.80 ± 0.06				
NAES021	GS0202319	10100048	0 ± 20	08	0.70 ± 0.06	(-5 ± 7)	99	0.72 ± 0.06	30200238
NAES022	GS0202320	10100049	10 ± 20	50	0.80 ± 0.06 (-0.5 ± 0.4)	(-0.5 ± 0.4)	4.2	NR.	L2523-03
				'					

Table B-4. BOMARC Soil Sample α -Spectroscopy Analysis

Measurement		Sample Identification	Alph	a Spectro	Alpha Spectroscopy Pu-239 + 240 Activity Concentration (fCi/g-dried)	- 240 Activit	y Concent	ration (fCi/g-d	ried)
Location		AFIERA	P	Primary Sample	nple	AFIER4	VSDRR o	AFIERA/SDRR or Framatome Duplicate	Suplicate Supplicate
Identifier	pase	SDRR	Value	MDC	Recovery	Value	MDC	Recovery	Identifier
NAES023	GS0202321	10100050	30 ± 30	30	0.87 ± 0.07				
NAES024	GS0202322	10100051	6 ± 17	43	0.85 ± 0.06				
NAES025	GS0202323	10100052	10 ± 30	09	0.87 ± 0.07				
NAES026	GS0202324	10100053	10 ± 20	30	0.81 ± 0.06				
NAES027	GS0202325	10100054	30 ± 30	50	0.86 ± 0.07				
NAES028	GS0202326	10100055	(-2 ± 4)	42	0.93 ± 0.07				
NAES029	GS0202327	10100056	20 ± 30	30	0.93 ± 0.08				
NAES030	GS0202328	10100057	20 ± 30	20	0.89 ± 0.07				
NAES031	GS0202329	10100058	0 ± 14	90	90.0 ± 98.0	7 ± 17	40	0.89 ± 0.06	30200240
NAES032	GS0202330	10100059	20 ± 20	40	0.87 ± 0.06	5 = 5	4	NR	L2523-04
NAES033	GS0202331	10100060	11 ± 16	15	90.0 ± 96.0				
NAES034	GS0202332	. 10100061	30 ± 30	20	0.72 ± 0.05				
NAES035	GS0202333	10100062	(-4 ± 6)	45	0.84 ± 0.06				
NAES036	GS0202334	10100063	30 ± 30	20	0.87 ± 0.06				
NAES037	GS0202335	10100064	30 ± 30	20	0.67 ± 0.05				
NAES038	GS0202336	10100065	5 ± 16	44	0.67 ± 0.05				
NAES039	GS0202337	10100066	30 ± 30	20	0.94 ± 0.07				
NAES040	GS0202338	10100067	4 ± 13	36	0.97 ± 0.07				
NAES041	GS0202339	10100068	10 ± 20	40	0.72 ± 0.05	0 ± 15	52	0.81 ± 0.06	30200242
NAES042	GS0202340	10100069	11 ± 16	15	0.96 ± 0.06	3 ± 4	9	NR	L2523-05
NAES043	GS0202341	10100070	13 ± 18	18	0.73 ± 0.05				
NAES044	GS0202342	10100071	2 ± 17	57	0.66 ± 0.05				
NAES045	GS0202343	10100072	20 ± 20	20	0.69 ± 0.05				
NAES046	GS0202344	10100073	80 + 50	40	0.80 ± 0.06				
NAES047	GS0202345	10100074	70 ± 50	50	0.56 ± 0.04				

Table B-4. BOMARC Soil Sample α -Spectroscopy Analysis

Measurement	Sample Identification	entification	Alph	a Spectro	Alpha Spectroscopy Pu-239 + 240 Activity Concentration (fCi/g-dried)	+ 240 Activit	y Concent	ration (fCi/g-d	ried)
Location	Bose	AFIERA	P	Primary Sample	nple	AFIERA	/SDRR o	AFIERA/SDRR or Framatome Duplicate	Ouplicate
Identifier	Dasc	SDRR	Value	MDC	Recovery	Value	MDC	Recovery	Identifier
NAES048	GS0202346	10100075	40 ± 30	20	0.91 ± 0.07				
NAES049	GS0202347	10100076	20 ± 30	40	0.78 ± 0.06				
NAES050	GS0202348	10100077	2 ± 14	46	0.82 ± 0.06				
NAES051	GS0202349	10100078	0 ± 15	53	0.80 ± 0.06	2 ± 14	47	0.77 ± 0.05	30200451
NAES052	GS0202350	10100079	20 ± 20	40	0.85 ± 0.06	4 + 5	5	NR	L2523-06
NAES053	GS0202351	10100080	60 ± 40	20	0.82 ± 0.05				
NAES054	GS0202352	10100081	30 ± 30	20	0.79 ± 0.05				
NAES055	GS0202353	10100082	30 ± 30	50	0.84 ± 0.06				
NAES056	GS0202354	10100083	40 ± 30	20	0.91 ± 0.07				
NAES057	GS0202355	10100084	20 ± 20	40	0.87 ± 0.06				
NAES058	GS0202356	10100085	30 ± 30	40	0.77 ± 0.05				
NAES059	GS0202357	10100086	50 ± 40	40	0.93 ± 0.07				
NAES060	GS0202358	10100087	11 ± 16	15	0.91 ± 0.06				
NAES061	GS0202359	10100088	0 ± 14	49	0.88 ± 0.06	7 ± 16	39	0.91 ± 0.06	30200246
NAES062	GS0202360	10100089	4 ± 12	33	0.98 ± 0.07	(-0.3 ± 0.3)	4.4	NR	L2523-07
NAES063	GS0202361	10100090	11 ± 15	15	1.00 ± 0.07				
NAES064	GS0202362	10100091	5 ± 11	15	0.87 ± 0.06				
NAES065	GS0202363	10100092	2 ± 13	41	0.91 ± 0.06				
NAES066	GS0202364	10100093	5 ± 11	15	0.97 ± 0.06				
NAES067	GS0202365	10100094	20 ± 20	30	0.97 ± 0.07				
NAES068	GS0202366	10100095	20 ± 20	40	0.73 ± 0.05				
NAES069	GS0202367	10100096	10 ± 20	20	0.76 ± 0.06				
NAES070	GS0202368	10100097	10 ± 16	34	1.02 ± 0.07				
NAES071	GS0202369	10100098	20 ± 30	20	0.94 ± 0.07	(-4 ± 5)	41	0.88 ± 0.06	30200248
NAES072	GS0202370	10100099	(-2 ± 4)	34	0.96 ± 0.07	1 ± 2	3	NR	L2524-08

Table B-4. BOMARC Soil Sample α-Spectroscopy Analysis

Base AFIERA Primary Sample GS0202371 10100100 20+20 20 0.76+0.05 GS0202372 10100101 6+12 17 0.75+0.05 GS0202373 10100102 (-2+4) 37 0.85+0.06 GS0202373 10100103 (-2+4) 33 0.89+0.06 GS0202374 10100103 (-2+4) 35 0.85+0.06 GS0202375 10100104 4+13 36 0.88+0.06 GS0202376 10100109 (-2+4) 35 0.85+0.06 GS0202377 10100100 (-2+4) 35 0.85+0.06 GS0202378 10100100 (-2+1) 16 0.90+0.06 GS0202381 10100110 10+18 40 0.75+0.05 GS0202382 10100111 20+20 40 0.74+0.06 GS0202382 10100111 20+20 40 0.74+0.06 GS0202382 10100113 10+20 40 0.74+0.05 GS0202386 10100114 20+30	Measurement	Sample Ide	Sample Identification	Alph	a Spectro	scopy Pu-239	+ 240 Activity	Concen	Alpha Spectroscopy Pu-239 + 240 Activity Concentration (fCi/g-dried)	ried)
Dasc SDRR Value MDC Recovery Value GS02002371 10100100 20+20 20 0.76+0.05 value GS02002372 10100101 6+12 17 0.75+0.05 value GS02002373 10100102 (-2+4) 37 0.85+0.06 value GS02002374 10100103 (-2+4) 35 0.89+0.06 value GS02002375 10100104 4+13 36 0.88+0.06 value GS02002376 10100105 (-2+4) 35 0.85+0.06 value GS02002377 10100106 6+11 16 0.90+0.06 value GS02002379 10100109 30+30 20 0.75+0.05 value GS02002381 10100110 10+18 40 0.75+0.05 value GS02002382 10100111 20+20 40 0.74+0.06 value GS02002383 10100114 20+30 40 0.74+0.06 value GS02002386 10100115	Location	1	AFIERA	Pr	imary Sar	nple	AFIERA	/SDRR o	AFIERA/SDRR or Framatome Duplicate	Suplicate .
GS0202371 10100100 20±20 20 0.76±0.05 GS0202372 10100101 6±12 17 0.75±0.05 GS0202373 10100102 (-2±4) 37 0.85±0.06 GS0202374 10100103 (-2±4) 33 0.89±0.06 GS0202375 10100104 4±13 36 0.85±0.06 GS0202376 10100105 (-2±4) 35 0.85±0.06 GS0202377 10100106 6±11 16 0.90±0.06 GS0202378 10100107 12±16 16 0.90±0.06 GS0202379 10100108 30±30 40 0.79±0.06 GS0202379 10100110 10±18 40 0.75±0.05 GS0202381 10100110 20±20 40 0.75±0.05 GS0202382 10100111 20±20 40 0.74±0.06 GS0202383 10100114 20±30 40 0.74±0.05 GS0202384 10100114 20±30 40 0.74±0.05 GS0202387 10100116	Identifier	Dase	SDRR	Value	MDC	Recovery	Value	MDC	Recovery	Identifier
GS0202372 10100101 6±12 17 0.75±0.05 GS0202373 10100102 (-2±4) 37 0.85±0.06 GS0202374 10100103 (-2±4) 33 0.89±0.06 GS0202375 10100104 4±13 36 0.88±0.06 GS0202377 10100106 6±11 16 0.90±0.06 GS0202378 10100107 12±16 16 0.90±0.06 GS0202379 10100108 30±30 40 0.79±0.06 10±20 GS0202379 10100109 30±30 20 0.75±0.05 (-0.4±0.3) GS0202381 10100110 10±18 40 0.75±0.05 (-0.4±0.3) GS0202382 10100111 20±20 40 0.75±0.05 (-0.4±0.3) GS0202383 10100112 7±14 19 0.79±0.06 0 GS0202384 10100113 10±20 40 0.74±0.05 0 GS0202385 10100114 20±30 40 0.74±0.05 0 GS0202386	NAES073	GS0202371		20 ± 20	20	0.76 ± 0.05				
GS0202373 10100102 (-2 ± 4) 37 0.85 ± 0.06 GS0202374 10100103 (-2 ± 4) 33 0.89 ± 0.06 GS0202375 10100104 4 ± 13 36 0.88 ± 0.06 GS0202376 10100105 (-2 ± 4) 35 0.85 ± 0.06 GS0202377 10100106 6 ± 11 16 0.90 ± 0.06 GS0202378 10100107 12 ± 16 16 0.90 ± 0.06 GS0202379 10100109 30 ± 30 40 0.79 ± 0.06 GS0202380 10100110 10 ± 18 40 0.75 ± 0.05 GS0202381 10100111 20 ± 20 40 0.75 ± 0.05 GS0202382 10100111 20 ± 20 40 0.74 ± 0.05 GS0202383 10100112 7 ± 14 19 0.74 ± 0.06 GS0202384 10100114 20 ± 30 40 0.74 ± 0.05 GS0202385 10100114 20 ± 30 40 0.74 ± 0.05 GS0202386 101001116	NAES074	GS0202372	10100101	6 ± 12	17	0.75 ± 0.05				
GS0202374 10100103 (-2 ± 4) 33 0.89 ± 0.06 GS0202375 10100104 4 ± 13 36 0.88 ± 0.06 GS0202376 10100105 (-2 ± 4) 35 0.85 ± 0.06 GS0202377 10100107 12 ± 16 16 0.90 ± 0.06 0.00 ± 0.06 GS0202378 10100109 30 ± 30 40 0.79 ± 0.06 10 ± 20 GS0202379 10100110 10 ± 18 40 0.75 ± 0.05 (-0.4 ± 0.3) GS0202380 10100111 20 ± 20 40 0.75 ± 0.05 (-0.4 ± 0.3) GS0202381 10100111 20 ± 20 40 0.75 ± 0.05 (-0.4 ± 0.3) GS0202382 10100111 20 ± 20 40 0.74 ± 0.05 0.05 ± 0.05 GS0202384 10100114 20 ± 30 40 0.74 ± 0.05 0.05 ± 0.05 GS0202385 10100114 20 ± 30 0.99 ± 0.07 0.05 ± 0.05 0.05 ± 0.05 GS0202387 10100117 30 ± 30 0.09 ± 0.05	NAES075	GS0202373	10100102	(-2 ± 4)	37	0.85 ± 0.06				
GS0202375 10100104 4 ± 13 36 0.88 ± 0.06 GS0202376 10100105 (-2 ± 4) 35 0.85 ± 0.06 GS0202377 10100106 6 ± 11 16 0.90 ± 0.06 0.00 ± 0.06 GS0202378 10100107 12 ± 16 16 0.90 ± 0.06 10 ± 20 GS0202379 10100108 30 ± 30 20 0.79 ± 0.06 10 ± 20 GS0202380 10100110 10 ± 18 40 0.75 ± 0.05 (-0.4 ± 0.3) GS0202381 10100111 20 ± 20 40 0.75 ± 0.06 -0.4 ± 0.05 GS0202382 10100113 10 ± 20 40 0.79 ± 0.06 -0.79 ± 0.06 GS0202383 10100114 20 ± 30 40 0.74 ± 0.05 -0.79 ± 0.05 GS0202384 10100115 12 ± 17 16 0.99 ± 0.07 -0.79 ± 0.05 GS0202385 10100116 10 ± 117 35 0.99 ± 0.07 -0.99 ± 0.07 GS0202387 10100117 0 ± 14 52 0.80 ± 0.05 -0.80 ± 0.05 <td>NAES076</td> <td>GS0202374</td> <td>10100103</td> <td>(-2 ± 4)</td> <td>33</td> <td>0.89 ± 0.06</td> <td></td> <td></td> <td></td> <td></td>	NAES076	GS0202374	10100103	(-2 ± 4)	33	0.89 ± 0.06				
GS0202376 10100105 (-2 ± 4) 35 0.85 ± 0.06 GS0202377 10100106 6 ± 11 16 0.90 ± 0.06 GS0202378 10100107 12 ± 16 16 0.90 ± 0.06 10 ± 20 GS0202379 10100108 30 ± 30 20 0.75 ± 0.05 (-0.4 ± 0.3) GS0202380 10100110 10 ± 18 40 0.76 ± 0.07 -0.40 ± 0.05 GS0202381 10100111 20 ± 20 40 0.76 ± 0.07 -0.40 ± 0.05 GS0202382 10100111 20 ± 20 40 0.74 ± 0.06 -0.74 ± 0.05 GS0202383 10100111 20 ± 30 40 0.74 ± 0.05 -0.74 ± 0.05 GS0202385 10100114 20 ± 30 40 0.74 ± 0.05 -0.74 ± 0.05 GS0202386 10100115 12 ± 17 16 0.99 ± 0.07 -0.99 ± 0.07 GS0202387 10100116 10 ± 17 35 0.99 ± 0.05 -0.99 ± 0.05 GS0202388 10100118 0 ± 14 52 0.80 ± 0.05 $-0.80\pm$	NAES077	GS0202375	10100104	4 ± 13	36	0.88 ± 0.06				
GS0202377 10100106 6 ± 11 16 0.90 ± 0.06 0.90 ± 0.06 GS0202378 10100108 30 ± 3.6 40 0.79 ± 0.06 10 ± 2.0 GS0202380 10100109 30 ± 3.0 20 0.75 ± 0.05 (-0.4 ± 0.3) GS0202381 10100110 10 ± 1.8 40 0.75 ± 0.05 (-0.4 ± 0.3) GS0202382 10100111 20 ± 2.0 40 0.79 ± 0.06 0.79 ± 0.06 GS0202383 10100112 7 ± 14 19 0.79 ± 0.06 0.79 ± 0.06 GS0202384 10100113 10 ± 2.0 40 0.74 ± 0.06 0.79 ± 0.06 GS0202385 10100114 20 ± 30 40 0.74 ± 0.05 0.99 ± 0.07 GS0202386 10100115 12 ± 17 16 0.99 ± 0.07 0.99 ± 0.07 GS0202387 10100116 0.9 ± 10 0.99 ± 0.07 0.99 ± 0.07 GS0202389 10100117 30 ± 30 20 0.80 ± 0.05 0.81 ± 0.06 GS0202389 10100119 (-2 ± 5) 39	NAES078	GS0202376	10100105	(-2 ± 4)	35	0.85 ± 0.06				
GS0202378 10100107 12±16 16 0.90±0.06 10±20 GS0202379 10100108 30±30 40 0.79±0.06 10±20 GS0202380 10100110 10±18 40 0.75±0.07 (-0.4±0.3) GS0202381 10100111 20±20 40 0.75±0.06 0.75±0.06 GS0202382 10100111 20±20 40 0.79±0.06 0.79±0.06 GS0202384 10100113 10±20 40 0.74±0.05 0.79±0.06 GS0202385 10100114 20±30 40 0.74±0.05 0.79±0.06 GS0202386 10100115 12±17 35 0.99±0.07 0.89±0.07 GS0202387 10100116 10±17 35 0.99±0.05 8±18 GS0202388 10100117 30±30 20 0.80±0.05 8±18 GS0202389 10100118 0±14 52 0.82±0.06 3±4 GS0202390 10100120 12±17 17 0.77±0.05	NAES079	GS0202377	10100106	6 ± 11	16	0.90 ± 0.06				
GS0202379 10100108 30 ± 30 40 0.79 ± 0.06 10 ± 20 GS0202380 10100109 30 ± 30 20 0.75 ± 0.05 (-0.4 ± 0.3) GS0202381 10100110 10 ± 18 40 0.76 ± 0.07 -0.40 GS0202382 10100111 20 ± 20 40 0.79 ± 0.06 -0.79 ± 0.06 GS0202383 10100113 10 ± 20 40 0.74 ± 0.05 -0.79 ± 0.06 GS0202385 10100114 20 ± 30 40 0.74 ± 0.05 -0.79 ± 0.05 GS0202386 10100115 12 ± 17 16 0.99 ± 0.07 -0.99 ± 0.07 GS0202387 10100116 10 ± 17 35 0.99 ± 0.07 -0.99 ± 0.07 GS0202388 10100111 30 ± 30 20 0.80 ± 0.05 -0.99 ± 0.07 GS0202389 101001118 0 ± 14 52 0.82 ± 0.06 -0.99 ± 0.07 GS0202390 10100119 (-2 ± 5) -0.99 ± 0.07 -0.99 ± 0.07 -0.99 ± 0.07 GS0202390 10100119 -0.99 ± 0.07	NAES080	GS0202378	10100107	12 ± 16	16	0.90 ± 0.06				
GS0202380 10100109 30 ± 30 20 0.75 ± 0.05 (-0.4 ± 0.3) GS0202381 10100110 10 ± 18 40 0.76 ± 0.07 -0.05 GS0202382 10100111 20 ± 20 40 0.79 ± 0.06 -0.05 GS0202383 10100112 7 ± 14 19 0.79 ± 0.06 -0.05 GS0202384 10100113 10 ± 20 40 0.74 ± 0.05 -0.05 GS0202385 10100114 20 ± 30 40 0.74 ± 0.05 -0.05 GS0202386 10100115 12 ± 17 16 0.99 ± 0.07 -0.05 GS0202387 10100116 10 ± 17 35 0.99 ± 0.07 -0.05 GS0202388 10100117 30 ± 30 20 0.80 ± 0.05 -0.05 GS0202389 10100118 -0.05 -0.05 -0.05 -0.05 GS0202389 10100119 -0.05 -0.05 -0.05 -0.05 GS0202390 10100120 -0.05 -0.05 -0.05	NAES081	GS0202379	10100108	30 ± 30	40	90.0 ± 67.0	10 ± 20	50	0.83 ± 0.06	30200250
GS0202381 10100110 10 ± 18 40 0.76 ± 0.07 GS0202382 10100111 20 ± 20 40 0.92 ± 0.06 GS0202383 10100112 7 ± 14 19 0.79 ± 0.06 GS0202384 10100113 10 ± 20 40 0.74 ± 0.06 0.74 ± 0.06 GS0202385 10100114 20 ± 30 40 0.74 ± 0.05 0.99 ± 0.07 GS0202386 10100115 12 ± 17 16 0.99 ± 0.07 0.99 ± 0.07 GS0202387 10100116 10 ± 17 35 0.99 ± 0.07 0.99 ± 0.07 GS0202388 10100117 30 ± 30 20 0.80 ± 0.05 0.99 ± 0.07 GS0202389 10100118 0 ± 14 52 0.82 ± 0.06 8 ± 18 GS0202389 10100119 (-2 ± 5) 39 0.81 ± 0.06 3 ± 4 GS0202390 10100120 12 ± 17 17 0.77 ± 0.05 0.77 ± 0.05	NAES082	GS0202380	10100109	30 ± 30	20	0.75 ± 0.05	(-0.4 ± 0.3)	3.8	NR	L2524-09
GS0202382 10100111 20 ± 20 40 0.92 ± 0.06 GS0202383 10100112 7 ± 14 19 0.79 ± 0.06 GS0202384 10100113 10 ± 20 40 0.74 ± 0.06 GS0202385 10100114 20 ± 30 40 0.74 ± 0.05 0.99 ± 0.07 GS0202387 10100115 12 ± 17 16 0.99 ± 0.07 0.99 ± 0.07 GS0202387 10100117 30 ± 30 20 0.80 ± 0.05 0.80 ± 0.05 GS0202389 10100118 0 ± 14 52 0.82 ± 0.06 8 ± 18 GS0202389 10100119 (-2 ± 5) 39 0.81 ± 0.06 3 ± 4 GS0202390 10100120 12 ± 17 17 0.77 ± 0.05 0.77 ± 0.05	NAES083	GS0202381	10100110	10 ± 18	40	0.76 ± 0.07				
GS0202383 10100112 7 ± 14 19 0.79 ± 0.06 GS0202384 10100113 10 ± 20 40 0.74 ± 0.06 GS0202385 10100114 20 ± 30 40 0.74 ± 0.05 GS0202386 10100115 12 ± 17 16 0.99 ± 0.07 GS0202387 10100116 10 ± 17 35 0.99 ± 0.07 GS0202388 10100117 30 ± 30 20 0.80 ± 0.05 GS0202389 10100118 0 ± 14 52 0.82 ± 0.06 8 ± 18 GS0202390 10100119 (-2 ± 5) 39 0.81 ± 0.06 3 ± 4 GS0202391 10100120 12 ± 17 17 0.77 ± 0.05 0.77 ± 0.05	NAES084	GS0202382		20 ± 20	40	0.92 ± 0.06				
GS020238410100113 10 ± 20 40 0.74 ± 0.06 GS0202385 10100114 20 ± 30 40 0.74 ± 0.05 GS0202386 10100115 12 ± 17 16 0.99 ± 0.07 GS0202387 10100116 10 ± 17 35 0.99 ± 0.07 GS0202388 10100117 30 ± 30 20 0.80 ± 0.05 GS0202389 10100118 0 ± 14 52 0.82 ± 0.06 8 ± 18 GS0202390 10100119 (-2 ± 5) 39 0.81 ± 0.06 3 ± 4 GS0202391 10100120 12 ± 17 17 0.77 ± 0.05	NAES085	GS0202383	10100112	7 ± 14	19	0.79 ± 0.06				
GS0202385 10100114 20 ± 30 40 0.74 ± 0.05 GS0202386 10100115 12 ± 17 16 0.99 ± 0.07 GS0202387 10100116 10 ± 17 35 0.99 ± 0.07 GS0202388 10100117 30 ± 30 20 0.80 ± 0.05 GS0202389 10100118 0 ± 14 52 0.82 ± 0.06 8 ± 18 GS0202390 10100119 (-2 ± 5) 39 0.81 ± 0.06 3 ± 4 GS0202391 10100120 12 ± 17 17 0.77 ± 0.05 0.77 ± 0.05	NAES086	GS0202384		10 ± 20	40	0.74 ± 0.06				
GS0202386 10100115 12 ± 17 16 0.99 ± 0.07 GS0202387 10100116 10 ± 17 35 0.99 ± 0.07 GS0202388 10100117 30 ± 30 20 0.80 ± 0.05 GS0202389 10100118 0 ± 14 52 0.82 ± 0.06 8 ± 18 GS0202390 10100119 (-2 ± 5) 39 0.81 ± 0.06 3 ± 4 GS0202391 10100120 12 ± 17 17 0.77 ± 0.05 0.77 ± 0.05	NAES087	GS0202385		20 ± 30	40	0.74 ± 0.05				
GS0202387 10100116 10 ± 17 35 0.99 ± 0.07 GS0202388 10100117 30 ± 30 20 0.80 ± 0.05 $=$ GS0202389 10100118 0 ± 14 52 0.82 ± 0.06 8 ± 18 GS0202390 10100119 (-2 ± 5) 39 0.81 ± 0.06 3 ± 4 GS0202391 10100120 12 ± 17 17 0.77 ± 0.05	NAES088	GS0202386		12 ± 17	16	0.99 ± 0.07				
GS0202388 10100117 30 ± 30 20 0.80 ± 0.05 8 ± 18 GS0202389 10100118 0 ± 14 52 0.82 ± 0.06 8 ± 18 GS0202390 10100119 (-2 ± 5) 39 0.81 ± 0.06 3 ± 4 GS0202391 10100120 12 ± 17 17 0.77 ± 0.05 3 ± 4	NAES089	GS0202387		10 ± 17	35	0.99 ± 0.07				
GS020238910100118 0 ± 14 52 0.82 ± 0.06 8 ± 18 GS020239010100119 (-2 ± 5) 39 0.81 ± 0.06 3 ± 4 GS020239110100120 12 ± 17 17 0.77 ± 0.05	NAES090	GS0202388		30 ± 30	20	0.80 ± 0.05				
GS0202390 10100119 (-2 ± 5) 39 0.81 ± 0.06 3 ± 4 GS0202391 10100120 12 ± 17 17 0.77 ± 0.05	NAES091	GS0202389	10100118	0 ± 14	52	0.82 ± 0.06		45	0.81 ± 0.06	30200252
GS0202391 10100120 12 ± 17 17	NAES092	GS0202390	10100119	(-2 ± 5)	39	0.81 ± 0.06	3 ± 4	5	NR	L2524-10
	NAES093	GS0202391	10100120	12 ± 17	17	0.77 ± 0.05				
NAES094 GS0202392 10100121 2±13 41 0.91±0.06	NAES094	GS0202392	10100121	2 ± 13	41	0.91 ± 0.06				

Table B-4. BOMARC Soil Sample α -Spectroscopy Analysis

Measurement	Sample Identificati	ntification	Alpha	Spectro	Alpha Spectroscopy Pu-239 +	- 240 Activit	y Concent	240 Activity Concentration (fCi/g-dried)	ried)
Location	Bose	AFIERA	Pri	Primary Sample	nple	AFIERA	/SDRR o	AFIERA/SDRR or Framatome Duplicate	uplicate
Identifier	Dasc	SDRR	Value	MDC	Recovery	Value	MDC	Recovery	Identifier
RH003	GS0202548	10200529	$(9.0 \pm 9.0 -)$	14.2	0.93 ± 0.07	3 + 6	8	0.89 ± 0.07	30200639
RH004	GS0202549	10200530	2±3	15	0.97 ± 0.07				
RH005	GS0202550	10200531	2±6	14	0.93 ± 0.07				THE REPORT OF THE PERSON NAMED IN COLUMN 1
RH006	GS0202551	10200532	3±3	8	0.78 ± 0.06				
RH007	GS0202552	10200533	0.0 ± 0.4	7.6	0.90 ± 0.07				
RH008	GS0202553	10200534	3 + 3	8	0.95 ± 0.07				
RH009	GS0202554	10200535	0 ± 0.2	7.7	0.91 ± 0.07				
RH010	GS0202555	10200536	6 + 9	6	0.81 ± 0.06			C . The management manner is required to require	
RH011	GS0202556	10200537	3+6	∞	0.94 ± 0.07				
RH012	GS0202557	10200538	2±6	17	0.85 ± 0.07	6.1 ± 1.4	1.7	NR	L2603-01
RH013	GS0202558	10200539	(-0.6 ± 0.6)	14.2	0.95 ± 0.07	0.0 ± 0.3	∞	0.84 ± 0.07	30200641
RH014	GS0202559	10200540	0.0 ± 0.2	8.8	0.87 ± 0.07				
RH015	GS0202560	10200541	2±6	16	90.0 ± 98.0				
RH016	GS0202561	10200542	3+4	19	0.88 ± 0.07				
RH017	GS0202562	10200543	6 + 9	8	0.82 ± 0.06	-			
RH018	GS0202563	10200544	3 + 3	6	0.86 ± 0.07				
RH019	GS0202564	10200545	8 + 9	8	0.86 ± 0.07				
RH020	GS0202565	10200546	3±7	6	0.75 ± 0.06				
RH021	GS0202566	10200547	3 + 6	6	0.87 ± 0.07				
RH022	GS0202567	10200548	(-0.7 ± 1.4)	15.6	0.90 ± 0.07	1.4 ± 1.0	1.9	NR	L2603-02
RH023	GS0202568	10200549	3+3	∞	0.83 ± 0.07	8 + 9	8	0.94 ± 0.07	30200643
RH024	GS0202569	10200550	3±3	6	0.89 ± 0.07				
RH025	GS0202570	10200551	(-0.8 ± 1.6)	18.4	0.72 ± 0.06				
RH026	GS0202571	10200552	2±3	14	0.85 ± 0.06				
RH027	GS0202572	10200553	9 ± 10	8	0.82 ± 0.06				
NR = Not Reported	orted	Unce	rtainty Levels	at the 95	Incertainty Levels at the 95 % Confidence Level	Level	Framato	Framatome Results are Bordered	Bordered

Appendix C Calibration Logs and Hot-Spot Calculations

(This Page Intentionally Left Blank)

Institute for Environment, Safety and Occupational Health Risk Analysis

Calibration Data Sheet

Date

4-Jan-02

Due

4-Jul-02

	Instrumentation Dat	ta		Detector Data	
MFG.	Model	Serial No.	MFG.	Model	Serial No.
Ludlum	2221	169214	Bicron	G-5 FIDLER	B603M
c	alibrated Check Sou	rces		Pulser	
Isotope	Serial #	Cal date	MFG.	Model	Serial No.
Am-241	2Q156	1-Apr-02	Ludium	500	102951

	Sensitivity/Window			Calibration Co	nditions
Emission	Sensitivity	Window	Temperature	Humidity	Location
Gamma	12 mV	22 mV	64.2	28.50%	ICF/Bldg 1193

oua	12 1111	2.2. ///		02	20.0070
		Electronics Package			
Range	Reference	Rate meter Check	Corrected	% error	
Multiplier	Point	As found Response	Response		
X1000	400000	400000	400000	0.00%	•
X1000	100000	100000	100000	0.00%	
X100	40000	40000	40000	0.00%	
X100	10000	10000	10000	0.00%	
X10	4000	4000	4000	0.00%	
X10	1000	1000	1000	0.00%	
X1	400	400	400	0.00%	
X1	100	100	100	0.00%	
		Scaler Check			
Range	Reference		Corrected	% error	
Multiplier	Point	As found Response	Response		
X1000	400000	396343	396343	-0.91%	
X1000	100000	98980	98980	-1.02%	
X100	40000	39644	39644	-0.89%	
X100	10000	9874	9874	-1.26%	
X10	4000	3961	3961	-0.98%	
X10	1000	988	988	-1.20%	
W.4		007	00-	A ====	
X1	400	397	397	-0.75%	
X1	100	98	98	-2.00%	

Calibrated by: Bryan D. Blasy, SSgt Health Physics Technician

CRYSTAL RESOLUTION

FIDLER

60 KeV (Am-241)	Peak Channel	LHM (Channel)	RHM (Channel)
	411	354	470

% FWHM=

28.22%

High Voltage Plateau

FIDLER

		CPM	HV	60 KeV (Am-241)
104208	Max Reading=	104208	900	
900	Final HV=			

Statistical Reliability Check

FIDLER

Source Counts
103580
103803
103552
104512
104207
104270
103639
104308
104103
104390
104036.4
360.3162808
11.23116909

FIDLER Program

Distance (cm)	CPM (60 KeV)
10 Minute Background	5382.00
0	104092
20	57094.00
40	20404
50	12541
60	8090
80	3827
100	2265

Institute for Environment, Safety and Occupational Health Risk Analysis

Calibration Data Sheet

Date

2-Jan-02

Due

1-Jul-02

					Du	e 1-3u1-02
	Instrumentation D	ata			Detector Data	
MFG.	Model	Serial No.		MFG.	Model	Serial No.
Ludlum	2360	145487	•	Ludium	43-89	PR154738
	Calibrated Check So	ources			Pulsar	
Isotope	Serial #	Cal date		MFG.	Model	Serial No.
Pu-239	k-827	2-Mar-99	•	Ludlum	500	48124
Tc-99	514-38-2	2-Jan-96				
Sr-90	221-1-6	6-Jan-88				
	Sensitivity/Windo	ow			Calibration Con	ditions
Isotope	Sensitivity	Window		Temperature	Humidity	Location
Alpha	120 mV	n/a	•	70.9	22.00%	ICF/Bldg 1193
Beta	3.5 mV	30 mV				
Gamma	n/a	n/a		Final Voltage	775	
		ELECTRONICS PA	CKAGE			
Range Multiplier	Reference Point	As found Response	Corrected Response	% error (A)	%error (B)	One minute count @ 40000 CPM
X1000	400Kcpm	400K	400K	0	0	39881
X1000	100Kcpm	100K	100K	0	0	
X100	40Kcpm	40K	40K	0	0	
X100	10Kcpm	10K	10K	0	0	
X10	4Kcpm	4K	4K	0	0	
X10	1Kcpm	1K	1k	0	0	
X1	400cpm	400	400	0	0	
	100cpm	100	100	0	0	
		Efficiency 2pi				
	Pu-239		<u>Tc-99</u>	<u>Sr-90</u>		
Heal	22.26		17.54	46.21		
Center	21.21		15.83	45.84		
Toe	19.35		17.47	48.37		
			40.00			

Calibrated by: SSgt Bryan D. Blasy Health Physics Technician 4/3/2002

20.94

Average

46.81

16.95

High Voltage

HV	Back Ground	
775	0/212	
800	0/247	
825	2/311	

Efficiency

			-
Pu-239	DPM		Alpha
	3.23E+03	Heal	719
		Center	685
		Тое	625
Tc-99	DPM	<u> </u>	Beta
	2.22E+05	Heal	38935
		Center	35139
		Тое	38781
Sr-90	DPM		Beta
	2.26E+04	Heal	10443
		Center	10360
		Toe	10932

Institute for Environment, Safety and Occupational Health Risk Analysis

Calibration Data Sheet

Date

2-Jan-02

Due

1-Jul-02

	,				
	Instrumentation Da	ta		Detector Data	
MFG.	Model	Serial No.	MFG.	Model	Serial No.
Ludlum	2360	145470	Ludlum	43-89	PR153659
С	alibrated Check Sou	rces		Pulsar	
Isotope	Serial #	Cal date	MFG.	Model	Serial No.
Pu-239	k-827	2-Mar-89	Ludlum	500	48124
Tc-99	514-38-1	2-Jan-96			
Sr-90	221-1-6	6-Jan-88			

	Sensitivity/window		
Isotope	Sensitivity	Window	Tempera
Alpha	120 mV	n/a	- 6
Beta	3.5 mV	30 mV	
Gamma	n/a	n/a	Final Vo

	Calibration Cor	nditions	
Temperature	Humidity	Location	
67	28.30%	ICF/Bldg 1193	
Final Voltage	800		

ELECTRONICS PACKAGE

Range Multiplier	Reference Point	As found Response	Corrected Response	% error (A)	%error (B)	One minute count @ 40000 CPM
X1000	400Kcpm	400K	400K	0	0	39903
X1000	100Kcpm	100K	100K	0	0	
X100	40Kcpm	40K	40K	0	0	
X100	10Kcpm	10K	10K	0	0	
X10	4Kcpm	4K	4K	0	0	
X10	1Kcpm	1K	1k	0	0	
X1	400cpm	400	400	0	0	
x1	100cmp	100 Efficiency 2pi	100	0	0	
	<u>Pu-239</u> 35%	<u>Tc-99</u> 20%	<u>Sr-90</u> 35%			
Heal	22.01	16.81	50.00	_		
Center	20.62	15.04	46.92			
Toe	21.61	14.35	45.14			
<u>Average</u>	21.41	15.40	47.35			

Calibrated by: SSgt Bryan D. Blasy Health Physics Technician 4/3/2002

High Voltage

		-
<u>HV</u>	BKG	
775	0/202	
800	0/243	
825	0/341	

Efficiency

Pu-239	DPM		Alpha
	3.23E+03	Heal	711
		Center	666
		Toe	698
Tc-99	DPM		Beta
	2.22E+05	Heal	37312
		Center	33396
		Toe	31852
Sr-90	DPM		Beta
	2.26E+04	Heal	11301
		Center	10604
		Toe	10201

Date 9-Jan-02	Time 0938	Temperature	26 degrees F
Location L	AKEHURST N433068.39	94 E544002.318	
1 1804 2 1866 3 1825		Estimated Standard deviation 42.47	
4 1774 5 1817 6 1711 7 1794			
8 1757 9 1776 10 1775 11 1837	į	Real Standard deviation 43.51	
11 1837 12 1828 13 1814 14 1795		Chi-Square 14.69	
15 1886		Confidence level 0.05	
		Critical Value 25.00	
	,	Data passes Chi-Square test	

Instrument FIDLER B603M / 2221 Meter 169214

Date 10-Jan-02	Time 0905	Temperature	36 degrees F
Location	LAKEHURST N433068	394 E544002.318	
1 1776 2 1769		Estimated Standard deviation	
3 1729 4 1703 5 1737		41.69	
6 1777 7 1812 8 1676		Real	
9 1684 10 1732 11 1738		Standard deviation 43.88	
12 1778 13 1654		Chi-Square 15.50	
14 1765 15 1746		Confidence level 0.05	
		Critical Value 25.00	
		Data passes Chi-Square test	

Instrument FIDLER B603M / 2221 Meter 169214

Date	9-Apr-02	Time	0740	Temperature	60 degrees F
	Location	LAKEHURS	T N433068.394	E544002.318	
1 2 3 4	1428 1454 1452 1433			Estimated Standard deviation 38.08	
5 6 7	1431 1441 1405				
8 9 10	1433 1440 1490		·	Real Standard deviation 27.99	
11 12 13	1514 1485 1433			Chi-Square 7.56	
14 15	1457 1458			Confidence level 0.05	
				Critical Value 25.00	
				Data passes Chi-Square test	

Instrument FIDLER B603M / 2221 Meter 169214

Date	9-Apr-02	Time_	1130	Temperature	75 degrees F
	Location L	AKEHUR	ST N433068.394	E544002.318	
1 2 3 4 5	1266 1193 1198 1232 1168 1252			Estimated Standard deviation 35.01	
7 8 9 10 11 12	1243 1223 1214 1263 1187 1237			Real Standard deviation 29.15 Chi-Square	
13 14 15	1219 1237 1253			9.71 Confidence level 0.05	
				Critical Value 25.00	
				ata passes Chi-Square test	

Instrument FIDLER B603M / 2221 Meter 169214

2205	S ₁ S	Dark Green	3T 382	10.05	4.4	### PRITISH CALIBRATION SERVICE	Page 1 of 2
Œ	, 6H _{toz}	Pick	2W517	23,92	3.0		
	5⁴Mn	Blue	27300	10.20	3.7	4mersham	
	₂₂ Na	Cream	2X169	11.22	3.7	1987	
ı	№	Black	2Y554	12, 18	5.0	1 Apr 1 1 ources e. ory (1985).	
sources	S	Light Green	20340	11.95	4.9	Activity reference time 1200 GMT on f April 1987 this certificate and further details of the sources vided with each set or replacement source. assurance requirements of NRC Regulatory sit NB9 tradeability as defined in NCRP58 (1985). A.G. Tuck	
reference	137Cs	Yellow	25380	11,50	3.7	rence time of and further character replacements of the principle of the p	hamUK
ofgamma	133Ba	White	2R059	10, 18	4.8	Activity reference his certificate ided with each issurance reference to NBS Trages	olc Amers
salibration	241 Am	Red	20156	12,45	5.0	terms used in tata sheet provints the quality a hieving implicit	ternational
Certificate of calibration of gamma reference sources	Nuclide	Colour Code	Source No.	Activity, µCi	Accuracy %	Set No 2089 Activity reference time 1200 GMT on f A Definitions of the terms used in this certificate and further details of the sources are given in the data sheet provided with each set or replacement source. This product meets the quality assurance requirements of NRC Regulatory Guide 4.15 for achieving implicit NB9-trageability as defined in NCRP58 (1985). Approved Signatory	Amersham International plc Amersham UK

55

Table C. Hot-Spot* Code Efficiency Calculations. [α-Activity, Assuming ²³⁹⁺²⁴⁰Pu to ²⁴¹Am of 5.4]

cie	Efficiency	MDC Area MDA Point	MDA Point	Dired	Source	Source	4	,
(a-Activity)	(y)	$(\alpha-Activity)$ $(\alpha-Activity)$	(a-Activity)	DKga	(0 cm)	(50 cm)	4	ь
DT CE	<u>cpm</u> μCi/m²	$\mu C_{\underline{i}}$ m^2	μCi	cpm	cbm	cpm	m^2	%
580	0	0.35	0.14	1804	1804 115775	13739	0.39	1
200	0	0.36	0.14	1450	100463	13719	0.39	1

* Lawrence Livermore National Laboratory, Hot Spot Health Physics Calibration Codes, Version 8.03, April 1999. ^{241}Am Check Source Activity = 12.45 μCi [Amersham, Source Number 2Q156, 1 Apr 87] = 12.15 μCi [Decay Corrected]

To calculate ²³⁹⁺²⁴⁰Pu Activity, Multiple by 0.84.