ENL vs. SENL

Puntos de equilibrio en sistemas mecánicos

$$F_{elástica} = -k.$$
 estiramiento

estiramiento =
$$\sqrt{y^2 + a^2} - L_0$$

$$-2ky\left(1-\frac{L_0}{\sqrt{y^2+a^2}}\right)-mg=0$$
 ENL

 \mathbf{m}_1 \mathbf{k} \mathbf{m}_2 \mathbf{n}_2 \mathbf{n}_2

$$F_{elástica} = -k.est$$

$$est = R\sqrt{2(1 - \cos(\theta_2 - \theta_1))} - L_0$$

$$Ep(\theta_1, \theta_2) = Ep_{GRAV} + Ep_{ELAST}$$

$$\frac{\partial Ep}{\partial \theta_1} = 0 \qquad \qquad \frac{\partial Ep}{\partial \theta_2} = 0$$
SENL

Sistemas de ecuaciones no lineales (SENL)

Objetivo

Hallar raíces o ceros de un sistema de ecuaciones:

$$\vec{F}(\vec{x}) = \vec{0}$$

$$f_1(x_1, x_2, ..., x_n,) = 0$$

$$f_2(x_1, x_2, ..., x_n,) = 0$$

$$f_n(x_1, x_2, ..., x_n,) = 0$$

En principio se pueden aplicar los mismos métodos vistos para una variable

Aplicaciones conocidas?

- Básicas: Extremos locales en 2 variables (o más)

Intersección de funciones

- No básicas: Problemas inversos / Optimización

Regresión No Lineal y Logística / Redes Neuronales

Ejercicio SENL

Calcular la solución del siguiente sistema de ecuaciones por el método de Newton-Raphson.

$$\begin{cases} \frac{x^2}{25} = 1 - \frac{y^2}{4} \\ 2x + 5y = 10 \end{cases} \rightarrow x, y?$$

Sistema de 2 ecuaciones con 2 incógnitas ¿Lineal? ¿Cuántas soluciones tiene?

Aplicamos el mismo concepto que en 1 variable, con un vector incógnita: $\bar{x} = \begin{bmatrix} x \\ y \end{bmatrix}$

$$g(x) = x - \frac{f(x)}{f'(x)} \longrightarrow \bar{G}(\bar{x}) = \bar{x} - \frac{\bar{F}(\bar{x})}{\bar{F}'(\bar{x})} = \bar{x} - \bar{\bar{J}}(\bar{x})^{-1}\bar{F}(\bar{x}) \longrightarrow$$

$$\underset{\text{jacobiana}}{\text{matriz}} J_{ij} = \left[\frac{\partial F_i}{\partial x_j}\right]$$

Forma iterativa para un vector \bar{x} : se debe invertir una matriz distinta en cada iteración (costoso computacionalmente)

$$J(\bar{x}_k) * (\bar{x}_{k+1} - \bar{x}_k) = -\bar{F}(\bar{x}_k)$$

Opción para no invertir una matriz? Resolver un **SEL** en cada iteración

Ejercicio SENL

$$\int \frac{x^2}{25} = 1 - \frac{y^2}{4} \longrightarrow \bar{F}(\bar{x}) \, y \, \bar{\bar{J}}(\bar{x})? \longrightarrow f_1(x, y) = \frac{x^2}{25} + \frac{y^2}{4} - 1$$

$$2x + 5y = 10 \qquad f_2(x, y) = 2x + 5y - 10$$

Queremos encontrar la solución a:
$$\begin{cases} f_1(x,y) = 0 \\ f_2(x,y) = 0 \end{cases}$$

Matriz Jacobiana para un sistema de 2x2:

$$\bar{\bar{J}}(x,y) = \begin{bmatrix} \frac{\partial f_1}{\partial x} & \frac{\partial f_1}{\partial y} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} \end{bmatrix} = \begin{bmatrix} \frac{2}{25}x & \frac{1}{2}y \\ \frac{2}{5} & \frac{1}{5} \end{bmatrix}$$

Semilla? También es un vector: $\bar{x}_0 = \begin{bmatrix} x_0 \\ y_0 \end{bmatrix}$

Ejercicio SENL

Supongamos $\bar{x}_0 = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$

$$\bar{x}_{k+1} = \bar{x}_k - \bar{\bar{f}}(\bar{x}_k)^{-1}\bar{F}(\bar{x}_k) \longrightarrow \begin{bmatrix} x_{k+1} \\ y_{k+1} \end{bmatrix} = \begin{bmatrix} x_k \\ y_k \end{bmatrix} - \begin{bmatrix} 2x_k & y_k \\ 25 & 2 \\ 2 & 5 \end{bmatrix}^{-1} \begin{bmatrix} f_1(x_k, y_k) \\ f_2(x_k, y_k) \end{bmatrix}$$

Resultados luego de iterar con $\bar{x}_0 = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$

k	x_k	y_k	$\Delta x = x_k - x_{k-1} $	$\Delta y = y_k - y_{k-1} $	$\Delta x/x_k$	$\Delta y/y_k$	λ_1	λ_2	p_1	p ₂
0	2	2								
1	-0.66667	2.26667	2.66667	0.26667	38	0.13149				
2	-0.07018	2.02807	0.59649	0.23860	623	0.11928				
3	-0.00096	2.00038	0.06922	0.02769	377222	0.01384	0.143	3.11E+10	1.42	19.36
4	-1.8E-07	2	0.00096	0.00038	1.36271E+11	0.00019	0.193	0.477	1.98	1.98
5	-7E-15	2	1.83E-07	7.34E-08	499138130.5	3.66985E-08	0.199	0.499	1.99	1.99
6	-3.7E-16	2	6.66E-15	2.66E-15	18.12022681	1.33227E-15	0.201	0.505	2.00	2.001
7	-3.7E-16	2	0	0	0	0			65535	65535

¿Cuál fue el criterio de corte? ¿Qué sucede con la columna $\Delta x/x_k$? ¿Qué sucede con la columna y_k ?

Ojo con el criterio de corte relativo si la solución es el "0"

Resultados para la semilla $\bar{x}_0 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$

k	X _k	y_k	$\Delta x = x_k - x_{k-1} $	$\Delta y = y_k - y_{k-1} $	$\Delta x/x_k$	$\Delta y/y_k$	λ_1	λ_2	p_1	p ₂
0	1	2								
1	-0.125	2.05	1.125	0.05	378	0.024985				
2	-0.00298	2.00119	0.122024	0.04881	68962	0.024405				
3	-1.8E-06	2.000001	0.002974	0.00119	4.75E+09	0.000595	0.100	1.6E+199	1.67	154.13
4	-6.3E-13	2	1.77E-06	7.08E-07	5.2E+09	3.54E-07	0.199	0.498	1.99	1.99
5	-3.4E-16	2	6.25E-13	2.5E-13	1838.327	1.25E-13	0.200	0.500	2.00	2.00
6	-3.4E-16	2	0	0	0	0			65535	65535

Se llegó a la misma solución en aproximadamente la misma cantidad de iteraciones

Resultados para la semilla
$$\bar{x}_0 = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$$

k	X _k	$\mathbf{y}_{\mathbf{k}}$	$\Delta x = x_k - x_{k-1} $	$\Delta y = y_k - y_{k-1} $	$\Delta x/x_k$	$\Delta y/y_k$	λ_1	λ_2	p_1	p ₂
0	4	1								
1	7.416667	-0.96667	3.416667	1.966667	0.610781	8.27824				
2	5.593927	-0.23757	1.82274	0.729096	0.360439	31.97417	0.167	0.316	1.945	1.231
3	5.057007	-0.0228	0.53692	0.214768	0.10737	844.9293	0.177	0.384	1.844	1.844
4	5.000635	-0.00025	0.056371	0.022548	0.011274	698167	0.194	0.481	1.990	1.990
5	5	-3.2E-08	0.000635	0.000254	0.000127	3.03E+11	0.199	0.499	1.999	1.999
6	5	-8.4E-16	8.07E-08	3.23E-08	1.61E-08	6.46E+08	0.155	0.305	1.965	1.940
7	5	5E-17	1.78E-15	8.88E-16	3.55E-16	17.76901			65535	65535
8	5	5E-17	0	0	0	0				

Se llegó una solución diferente del [0,2]

Por qué sucede esto?

En SENL puede ocurrir: solución única, más de 1 solución o ninguna (no existencia) ¿Cuál es la explicación geométrica para este ejemplo?

Evolución de cada semilla <u>en el plano xy</u> según la iteración. Convergencia a 2 soluciones diferentes

Método de Punto Fijo

¿Cual podría ser una matriz jacobiana en el método de Punto Fijo?

En Newton-Raphson:

$$\bar{x}_{k+1} = \bar{x}_k - \bar{\bar{J}}(\bar{x}_k)^{-1}\bar{F}(\bar{x}_k)$$
 matriz jacobiana
$$\bar{\bar{J}}(x,y) = \begin{bmatrix} \frac{\partial f_1}{\partial x} & \frac{\partial f_1}{\partial y} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} \end{bmatrix}$$

En Punto Fijo:

matriz jacobiana

$$\bar{\bar{J}}(x,y) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

¿Era la única opción para $\bar{I}(x,y)$?

¿Ventajas y desventajas de uno y otro método?

Resultados PF - Caso A

Aplicamos la forma básica de punto fijo al sistema resuelto anteriormente:

Resultados luego de iterar con: $\bar{x}_0 = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$

k	x_k	$\mathbf{y}_{\mathbf{k}}$	$\Delta x = x_k - x_{k-1} $	$\Delta y = y_k - y_{k-1} $	$\Delta x/x_k$	Δy/y _k	λ_1	λ_2	p_1	p ₂
0	2	2								
1	1.84	-2	0.16	4	0.093865	0.27933				
2	1.7045	14.32	0.135424	16.32	0.002782	0.321962				
3	-48.67	-50.68	50.38182	65.00915	0.064197	0.209632	7.64E-30	4.17	-35.4	0.98
4	-784.8	310.1	736.1265	360.8003	0.014882	1.063796	124	2.03	0.45	1.23
5	-49462.7	339.1	48677.9	29.052	0.000497	0.000298	1.60	166837	1.56	-1.46
6	-9.8E+07	97578	97891125	97239.59	2.55E-07	0.000497	0.305	5.03E+09	1.81	-3.22
7	-3.8E+14	1.95E+08	3.84E+14	1.95E+08	6.52E-14	2.55E-07	0.0431	4136	1.99	0.937

No converge

Resultados PF - Caso B

Aplicamos punto fijo con otro jacobiano:

Jacobiano al azar?

$$\bar{\bar{J}}(x,y) = \begin{bmatrix} -4 & 0.8\\ 1.6 & -0.1 \end{bmatrix}$$

No. Es el Jacobiano evaluado en la **semilla** de NR

Resultados luego de iterar con $[x_0,y_0]=[2,2]$:

k	x_k	y_k	$\Delta x = x_k - x_{k-1} $	$\Delta y = y_k - y_{k-1} $	$\Delta x/x_k$	$\Delta y/y_k$	λ_1	λ_2	p_1	p ₂
0	2	2								
1	-0.56	2.144	2.56	0.144	6.291287	0.078039				
2	0.4069	1.845235	0.966912	0.298765	4.991733	0.143866	0.610	0.151	0.489	-0.349
3	-0.1937	2.076681	0.600615	0.231446	4.688459	0.118761	0.627	3.83	1.31	2.32
	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••
25	-2.7E-06	2.000001	7.14E-06	2.85E-06	4.44445	1.43E-06	0.600	0.600	1.000	1.000
26	1.61E-06	1.999999	4.28E-06	1.71E-06	4.44444	8.56E-07	0.599	0.599	0.999	0.999
27	-9.6E-07	2	2.57E-06	1.03E-06	4.44445	5.14E-07	0.600	0.600	1.000	1.000
28	5.78E-07	2	1.54E-06	6.17E-07	4.44444	3.08E-07	0.599	0.599	0.999	0.999
29	-3.5E-07	2	9.25E-07	3.7E-07	4.44444	1.85E-07				

Converge en 29 iteraciones (con NR se requerían 6)

Resultados PF - Caso B

Evolución de cada semilla según la iteración. Convergencia a la solución [0,2] desde las mismas 4 semillas

Ejercicio 29 – Guía 2

Un proceso industrial depende del funcionamiento de un horno de secado cuyos costos están determinados por 3 variables principales: consumo de gas natural, horas operativas de mano de obra y cantidad de producto procesado. Un estudio técnico caracterizó los costos del proceso y se calcularon sus derivadas parciales respecto de cada variable, obteniendo las siguientes expresiones:

$$3x_1 - \cos(x_2 x_3) - \frac{1}{2} = 0$$

$$x_1^2 - 81(x_2 + 0.1)^2 + \sin(x_3) + 1.06 = 0$$

$$e^{-x_1 x_2} + 20x_3 + \frac{10\pi - 3}{3} = 0$$

Se desea resolver el SENL para hallar los valores óptimos de las variables involucradas con una precisión de 10^{-6} para $|\varepsilon_{k+1}|$ donde ε_{k+1} es el error absoluto entre dos iteraciones consecutivas. Utilizar el método de Newton-Raphson.