

Experiment 1 DC Motor / PID Control

EEM441 SEMESTER I (2025/2026)

Farhan Aizuddin

September 18, 2025

Abstract

This experiment covers the basics of DC motor and PID control. The objectives of this experiment are to understand the working principle of a DC motor, to learn how to control the speed and position of a DC motor using PID control, and to implement a PID controller. The experiment involves setting up a DC motor system, tuning the PID controller parameters, and analyzing the performance of the control system.

Keywords: DC motor, PID control

1. Introduction

This experiment focuses on the study of DC motors and the implementation of PID control to regulate their speed and position. A DC motor is an electromechanical device that converts electrical energy into mechanical energy through the interaction of magnetic fields. PID control is a widely used control strategy that combines proportional, integral, and derivative actions to achieve desired system performance. The experiment aims to provide hands-on experience in setting up a DC motor system, tuning PID controller parameters, and analyzing the system's response to various inputs.

2. Methodology

2.1. Open-Loop Speed Control of a DC Motor

- 1. Switch on supply and measure all constant voltages and calibrate variable voltages in terms of voltages and angles in degrees.
- 2. Disconnect all cable wires from the hardware module.
- 3. Make circuitry as shown in Figure ?? for the implementation of open-loop speed control of a DC motor.
- 4. Connect *Output A* of the motor plant to channel 2 of the oscilloscope.

1	Introduction	1
2	Methodology	1
	Open-Loop Speed Control of	
	a DC Motor	1
A	Appendix	2

Objectives:

- a) To study the Open-Loop Speed Control of a DC Motor.
- b) To study the Closed-Loop Speed Control using:
 - A) P Controller
 - B) PD Controller
 - C) PI Controller
 - D) PID Controller

Apparatus Required:

- 1. Controller kit
- 2. Cathode ray oscilloscope
- 3. BNC connectors with cords
- 4. Multimeter

A. Appendix