Hardware and Input Schemes

Goals

- 1. Tracking technologies
- 2. Hardware types
- 3. Input schemes

Tracking Technologies

Degrees of Freedom (DoF)

- Definition: the extent to which the hardware allows a person to move in 3D
 - Translational and rotational
 - Defines the interactivity of a VR system

3-DoF vs 6-DoF

3 degrees of freedom (3-DoF)

- · "In which direction am I looking"
- · Detect rotational head movement
- · Look around the virtual world from a fixed point

6 degrees of freedom (6-DoF)

- · "Where am I and in which direction am I looking"
- . Detect rotational movement and translational movement
- · Move in the virtual world like you move in the real world

Ŀ

Tracking Technologies

3-DoF

- Inertial Measurement Units (IMUs)
 - Gyroscope
 - Accelerometer
 - Compass

6-DoF:

- Outside-In
 - Lighthouse (HTC Vive)
 - Constellation (Rift)
- Inside-Out
 - Insight (Quest)

Outside-In: relies on fixed external hardware

Inside-Out: sensor hardware internal to headset

Lighthouse (HTC Vive)

- Lighthouse(s) send out sweeping, infrared (IR) lasers
- Sensors on headset & controllers pick up IR at different times
- Computer determines 6-DoF from time delay

Constellation (Rift)

- Headset and controllers flash IR lights
- Sensors detect IR
- Computer uses computer
 vision (CV) to determine 6-DoF

Insight (Oculus Quest + Rift S)

- New direction for stand-alone (and other) headsets
- Camera(s) are distributed across headset
- Headset views surroundings, uses CV to track player in 6-DoF

Hardware Types

Head-Mounted Displays

Microsoft HoloLens

(also Magic Leap One, Sony Smart Eye)

Research Topics in Near-Eye Displays

- Addressing the vergence-accommodation conflict (VAC): varifocal displays, multiplane displays, light field displays
- Addressing the bandwidth bottleneck with foveated rendering
- Vision-correcting near eye displays

- PPI = pixels per inch
 - Perceived resolution depends on viewer's distance
 - "Retina display" -> 300PPI at 10 inches

• PPD = pixels per degree

- Degree of solid angle subtended (#pixels/FOV)
- Distance independent measurement

Angles and Solid Angles

Angle: ratio of subtended arc length on circle to radius

$$\bullet \ \theta = \frac{l}{r}$$

• Circle has 2π radians

Solid angle: ratio of subtended area on sphere to radius squared

•
$$\Omega = \frac{A}{r^2}$$

• Sphere has 4π steradians

Auto-stereoscopic Displays

- stereo 3D viewing without special glasses or HMDs
- Parallax barrier (nintendo 3DS), lenticular displays
- Volumetric displays

Volumetric Displays

Haptic Displays

- Perceptual dimensions
 - tactile cues: vibrations, static relief shapes, direct electrical stimulation
 - kinesthetic cues: force feedback displays, haptic brake displays
- Resolution
 - · spatial resolution
 - temporal resolution (>=1kHz)
- · Ergonomics: safety, comfort

Haptic Display Types

- → ground-referenced
- body-referenced
 - tactile
 - in-air
 - combination
 - · passive

Ground-Referenced Devices

Force Feedback wheels

Force Feedback joystick

Ground-Referenced Devices

SensAble / 3D Systems Phantom

Body-Referenced Devices

Immersion

Body-Referenced Devices

Impacto, Lopes et al. https://youtu.be/k5e4mXQLq54

Body Referenced: Force Jacket

Delazio et al, CHI 2018

Headsets and Degrees of Freedom (DOF)

		3-DoF	6-DoF
ers	0-DoF	Google Cardboard / Gear VR	Oculus DK2
Controllers	3-DoF	Oculus Go	Vive Focus
	6-DoF	Google Daydream	HTC Vive, Oculus Rift

O DoF Controller / 3 DoF Headset

	3-DoF	6-DoF
0-DoF		
3-DoF		
6-DoF		

- Hardware: Google Cardboard, Gear VR
 - Pros: Cheap, highly accessible
 - Cons: Low interactivity & immersion

6 DoF Controller / 6 DoF Headset

Hardware:	Valve	Index	Oculus	Ouest 2	etc
Haluwait.	vaive	IIIUUX,	Oculus	Quest Z.	CIU.

Pros: Best level of interactivity/immersion

Cons: Expensive, heavy setup

	3-DoF	6-DoF
0-DoF		
3-DoF		
6-DoF		

Other Categories

As DoF increases:

- Pros: Functionality, interactivity increases
- Cons: Cost, resources needs increase

POWERED BY VIVE WAVE

CONTENT BY VIVEPORT

	3-DoF	6-DoF
0-DoF		
3-DoF		
6-DoF		

Gaze control

Eye tracking

Clickers

Tracked controllers

Hand tracking

- Track headset position and rotation as input
 - Pros: Works well without additional equipment or technology
 - Cons: Slow & delayed input, limits head movement

Gaze control

Eye tracking

Clickers

Tracked controllers

Hand tracking

- Track eye gazing direction for input
 - Pros: Hands free, enables foveated rendering
 - Cons: Under development, restricts eye movement

Gaze control

Eye tracking

Clickers

Tracked controllers

Hand tracking

Gloves

Point and click

Pros: Easy to use

Cons: Low immersion / interactivity

Gaze control

Eye tracking

Clickers

Tracked controllers

Hand tracking

- Specialized controllers for VR (Rift, Vive, Quest, etc.)
 - Pros: Great immersion / interactivity
 - Cons: High maintenance, dependent on sensors

Gaze control

Eye tracking

Clickers

Tracked controllers

Hand tracking

- Specialized controllers for VR (Rift, Vive, Quest, etc.)
 - Properties:
 - Ergonomics
 - Hand estimation
 - Expressiveness

Gaze control

Eye tracking

Clickers

Tracked controllers

Hand tracking

- Track hand poses/motion for input (Leap Motion)
 - Pros: Very intuitive and natural input system
 - Cons: No haptic or force feedback
 - E.x. pushing a button

Gaze control

Eye tracking

Clickers

Tracked controllers

Hand tracking

- Augmented gloves for pose tracking and movement
 - Pros: Adds "touch" to VR, more robust tracking
 - Cons: Under development, force feedback difficult

Homework and Lab

- HW4 has been officially assigned, due the night of next class
 - Build the classic game of Pong.
 - Find it on the class website!
- Next week will be design principles and VR applications

Find lab 3 at xr.berkeley.edu/decal

Homework Submission Update