IN THE CLAIMS

Under 37 C.F.R. § 1.121(c), please amend the claims as indicated below; a complete listing of the claims is provided pursuant to 37 C.F.R. § 1.121(c)(1):

1. (Currently amended) A compound of the formula:

wherein

Q is oxygen or sulfur;

X is hydrogen and Y is- $\frac{CHR^2R^3}{NHR^2}$, NHOR², or NHNR²R³; or X and Y are taken together to form = $\frac{CR^2R^3}{NHR^2}$; = $\frac{NR^2}{NHR^2}$; or = $\frac{NNR^2R^3}{NHR^2}$;

 R^1 , R^2 , and R^3 are each independently selected from the group consisting of hydrogen and a radical - $(CH_2)_mZ$, where m is an integer from 0-6 and Z is selected from the group consisting of halogen, hydroxy, formyl, C_1 - C_6 alkanoyloxy, optionally substituted benzoyloxy, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_3 - C_8 cycloalkyl, C_3 - C_8 cycloalkoxy, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_1 - C_6 haloalkyl, C_1 - C_6 haloalkoxy, C_3 - C_8 halocycloalkyl, C_3 - C_8 halocycloalkoxy, amino, C_1 - C_6 alkylamino, (C_1 - C_6 alkyl))amino, alkylcarbonylamino, N- $(C_1$ - C_6 alkyl)alkylcarbonylamino, aminoalkyl, C_1 - C_6 alkyl)alkylcarbonylaminoalkyl, (C_1 - C_6 alkyl)alkylcarbonylaminoalkyl, cyano, nitro, C_1 - C_6 alkylsulfonyl, optionally substituted phenyl, optionally substituted phenoxy, and optionally substituted heteroaryl; or Z is selected from the group consisting of N_3 , N_3 , N_4 , N_4 , N_5 , and N_5 , and N_5 , and N_6 are each independently selected in each occurrence from the group consisting of hydrogen, N_4 , N_5 , and N_5 are each independently selected in each occurrence from the group consisting of hydrogen, N_4 , N_5 , and N_5 cycloalkyl, N_4 , N_5 , and N_5 cycloalkyl, N_5 N_5 cycloalkyl, N

when X and Y are taken together to form = NNR^2R^3 , R^2 and R^3 are taken together with the attached nitrogen to form an optionally substituted heterocycle;

providing that Y and R¹ are not both alkyl;

 R^A represents 1-4 substituents each independently selected from the group consisting of hydrogen and a radical - $(CH_2)_{m'}Z'$, where m' is an integer from 0-6 and Z' is selected from the group consisting of halogen, hydroxy, C_1 - C_6 alkanoyloxy, optionally substituted benzoyloxy, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_3 - C_8 cycloalkyl, C_3 - C_8 cycloalkoxy, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_1 - C_6 haloalkoxy, C_3 - C_8 halocycloalkyl, C_3 - C_8 halocycloalkoxy, amino, C_1 - C_6 alkylamino, $(C_1$ - C_6 alkyl)(C_1 - C_6 alkyl)amino, alkylcarbonylamino, N- $(C_1$ - C_6 alkyl)alkylcarbonylamino, aminoalkyl, C_1 - C_6 alkylaminoalkyl, C_1 - C_6 alkyl)aminoalkyl, alkylcarbonylaminoalkyl, C_1 - C_6 alkyl)alkylcarbonylaminoalkyl, cyano, nitro, C_1 - C_6 alkylsulfonyl, optionally substituted phenyl, optionally substituted phenoxy, and optionally substituted heteroaryl; or Z' is selected from the group consisting of - N_3 , - CO_2R^4' , - $CONR^5'R^6'$, - $P(O)(OR^4')_2$, - $P(O)(NR^4'R^5')_2$, and - $P(O)(NR^4'R^5')(OR^4')$, where R^4' , R^5' , and R^6' are each independently selected in each occurrence from the group consisting of hydrogen, C_1 - C_6 alkyl, C_3 - C_8 cycloalkyl, C_1 - C_6 haloalkyl, optionally substituted phenyl, and optionally substituted phenyl- C_1 - C_6 alkyl; or

R^A represents 2-4 substituents where 2 of said substituents are adjacent substituents and are taken together with the attached carbons to form an optionally substituted carbocycle or an optionally substituted heterocycle, and the remaining 2 substituents are each independently selected from the group consisting of hydrogen and a radical -(CH₂)_m/Z', where m' is an integer from 0-6 and Z' is selected from the group consisting of halogen, hydroxy, C₁-C₆ alkanoyloxy, optionally $substituted\ benzoyloxy,\ C_1-C_6\ alkyl,\ C_1-C_6\ alkoxy,\ C_3-C_8\ cycloalkyl,\ C_3-C_8\ cycloalkoxy,\ C_2-C_6\ alkoxy,\ C_3-C_8\ cycloalkyl,\ C_3-C_8\ cycloalkoxy,\ C_3-C_8\ cycloalkyl,\ C_3-C_8\ cycloalkyl,\ C_3-C_8\ cycloalkoxy,\ C_3-C_8\ cycloalkyl,\ C_3-C_8\ cycloalkyl,\ C_3-C_8\ cycloalkoxy,\ C_3-C_8\ cycloalkyl,\ C_3-C_8\ cycloalkoxy,\ C_3-C_8\ cycloalkyl,\ C_$ alkenyl, C2-C6 alkynyl, C1-C6 haloalkyl, C1-C6 haloalkoxy, C3-C8 halocycloalkyl, C3-C8 halocycloalkoxy, amino, C1-C6 alkylamino, (C1-C6 alkyl)(C1-C6 alkyl)amino, alkylcarbonylamino, $N-(C_1-C_6 \ alkyl) alkyl carbonylamino, aminoalkyl, \ C_1-C_6 \ alkylaminoalkyl, \ (C_1-C_6 \ alkyl)(C_1-C_6 \ alkyl) alkyl carbonylamino, aminoalkyl, \ (C_1-C_6 \ alkyl)(C_1-C_6 \ alkyl) alkyl carbonylamino, aminoalkyl, \ (C_1-C_6 \ alkyl)(C_1-C_6 \ alkyl)(C_1-C_6 \ alkyl) alkyl carbonylamino, aminoalkyl, \ (C_1-C_6 \ alkyl)(C_1-C_6 \ alkyl) alkyl carbonylamino, aminoalkyl, \ (C_1-C_6 \ alkyl)(C_1-C_6 \ alk$ alkyl)aminoalkyl, alkylcarbonylaminoalkyl, N-(C1-C6 alkyl)alkylcarbonylaminoalkyl, cyano, nitro, C₁-C₆ alkylsulfonyl, optionally substituted phenyl, optionally substituted phenoxy, and optionally substituted heteroaryl; or Z' is selected from the group consisting of $-N_3$, $-CO_2R^{4'}$, $-CONR^{5'}R^{6'}$, $-P(O)(OR^{4'})_2, -P(O)(NR^{4'}R^{5'})_2, \text{ and } -P(O)(NR^{4'}R^{5'})(OR^{4'}), \text{ where } R^{4'}, R^{5'}, \text{ and } R^{6'} \text{ are each } R^{6'}$ independently selected in each occurrence from the group consisting of hydrogen, C1-C6 alkyl, C3-C8 cycloalkyl, C₁-C₆ haloalkyl, optionally substituted phenyl, and optionally substituted phenyl-C₁-C₆ alkyl; and

 R^B represents 1-4 substituents each independently selected from the group consisting of hydrogen and a radical -(CH₂)_{m''}Z'', where m'' is an integer from 0-6 and Z'' is selected from the group consisting of halogen, hydroxy, C_1 - C_6 alkanoyloxy, optionally substituted benzoyloxy, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_3 - C_8 cycloalkyl, C_3 - C_8 cycloalkoxy, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_1 - C_6 haloalkoxy, C_3 - C_8 halocycloalkyl, C_3 - C_8 halocycloalkoxy, amino, C_1 - C_6 alkylamino, (C_1 - C_6 alkyl)(C_1 - C_6 alkyl)amino, alkylcarbonylamino, N-(C_1 - C_6 alkyl)alkylcarbonylamino, aminoalkyl, C_1 - C_6 alkylaminoalkyl, (C_1 - C_6 alkyl)alkylcarbonylaminoalkyl, alkylcarbonylaminoalkyl, N-(C_1 - C_6 alkyl)alkylcarbonylaminoalkyl, cyano, nitro, C_1 - C_6 alkylsulfonyl, optionally substituted phenyl, optionally substituted phenoxy, and optionally substituted heteroaryl; or Z'' is selected from the group consisting of -N₃, -CO₂R^{4''}, -CONR^{5''}R^{6''}, -P(O)(OR^{4''})₂, -P(O)(NR^{4''}R^{5''})₂, and -P(O)(NR^{4''}R^{5''})(OR^{4''}), where R^{4''}, R^{5''}, and R^{6''} are each independently selected in each occurrence from the group consisting of hydrogen, C_1 - C_6 alkyl, C_3 - C_8 cycloalkyl, C_1 - C_6 haloalkyl, optionally substituted phenyl, and optionally substituted phenyl- C_1 - C_6 alkyl; or

R^B represents 2-4 substituents where 2 of said substituents are adjacent substituents and are taken together with the attached carbons to form an optionally substituted carbocycle or an optionally substituted heterocycle, and the remaining 2 substituents are each independently selected from the group consisting of hydrogen and a radical -(CH₂)_{m''}Z'', where m'' is an integer from 0-6 and Z" is selected from the group consisting of halogen, hydroxy, C₁-C₆ alkanoyloxy, optionally $substituted\ benzoyloxy,\ C_1-C_6\ alkyl,\ C_1-C_6\ alkoxy,\ C_3-C_8\ cycloalkyl,\ C_3-C_8\ cycloalkoxy,\ C_2-C_6\ alkoxy,\ C_3-C_8\ cycloalkyl,\ C_3-C_8\ cycloalkoxy,\ C_3-C_8\ cycloalkyl,\ C_3-C_8\ cycloalkoxy,\ C_3-C_8\ cycloalkyl,\ C_3-C_8\ cycloalkyl,\ C_3-C_8\ cycloalkoxy,\ C_3-C_8\ cycloalkyl,\ C_3-C_8\ cycloalkyl,\ C_3-C_8\ cycloalkoxy,\ C_3-C_8\ cycloalkyl,\ C_3-C_8\ cycloalkoxy,\ C_3-C_8\ cycloalkyl,\ C$ alkenyl, C2-C6 alkynyl, C1-C6 haloalkyl, C1-C6 haloalkoxy, C3-C8 halocycloalkyl, C3-C8 halocycloalkoxy, amino, C1-C6 alkylamino, (C1-C6 alkyl)(C1-C6 alkyl)amino, alkylcarbonylamino, N-(C₁-C₆ alkyl)alkylcarbonylamino, aminoalkyl, C₁-C₆ alkylaminoalkyl, (C₁-C₆ alkyl)(C₁-C₆ alkyl)aminoalkyl, alkylcarbonylaminoalkyl, N-(C1-C6 alkyl)alkylcarbonylaminoalkyl, cyano, nitro, C₁-C₆ alkylsulfonyl, optionally substituted phenyl, optionally substituted phenoxy, and optionally substituted heteroaryl; or Z'' is selected from the group consisting of $-N_3$, $-CO_2R^{4''}$, $-CONR^{5''}R^{6''}$, $-P(O)(OR^{4''})_2$, $-P(O)(NR^{4''}R^{5''})_2$, and $-P(O)(NR^{4''}R^{5''})(OR^{4''})$, where $R^{4''}$, $R^{5''}$, and $R^{6''}$ are each independently selected in each occurrence from the group consisting of hydrogen, C1-C6 alkyl, C3-C8 cycloalkyl, C1-C6 haloalkyl, optionally substituted phenyl, and optionally substituted phenyl-C1-C6 alkyl.-is-described.

- 2. (Original) The compound of claim 1, wherein X and Y are taken together to form $=CR^2R^3$.
- 3. (Original) The compound of claim 1, wherein X and Y are taken together to form $= \mathbb{C}\mathbb{R}^2\mathbb{R}^3$, and the carbon-carbon double bond formed thereby is an E-double bond.
- 4. (Original) The compound of claim 1, wherein Z is selected from the group consisting of hydroxy, amino, C_1 - C_6 alkylamino, and nitro.
- 5. (Original) The compound of claim 1, wherein Z' is selected from the group consisting of C_1 - C_6 alkoxy and nitro.
- 6. (Original) The compound of claim 1, wherein Z'' is selected from the group consisting of C_1 - C_6 alkoxy and nitro.
- 7. (Original) The compound of claim 1, wherein X and Y are taken together to form $=CR^2R^3$; and R^2 is C_1 - C_6 haloalkyl or aminoalkyl; and R^1 is hydrogen.
 - 8. (Canceled)
- 9. (Original) The compound of claim 1, wherein R^B represents 2-4 substituents where 2 of the substituents are adjacent substituents and are taken together with the attached carbons to form an heterocycle selected from the group consisting of dioxolane and dioxane.
- 10. (Original) The compound of claim 1, wherein R^B represents 2-4 substituents where 2 of said substituents are adjacent substituents and are taken together with the attached carbons to form an optionally substituted heterocycle; and Z'' is selected from the group consisting of C_1 - C_6 alkoxy and nitro.
- 11. (Original) The compound of claim 1, wherein Q is oxygen; and R^A is 2,3-bis(C_1 - C_6 alkoxy).
- 12. (Original) The compound of claim 1, wherein Q is oxygen; and R^1 is C_1 - C_6 alkyl, aminoalkyl, or C_1 - C_6 haloalkyl.
- 13. (Original) The compound of claim 1, wherein Q is oxygen, R^A is 2,3-bis(C_1 - C_6 alkoxy), R^B is 8,9-alkylenedioxy, and X and Y are taken together to form = CR^2R^3 , where R^2 is hydrogen.
- 14. (Original) The compound of claim 1, wherein Q is oxygen, R^A is 2,3-bis(C_1 - C_6 alkoxy), R^B is 8,9-alkylenedioxy, X and Y are taken together to form = CR^2R^3 , R^2 is hydrogen, and R^1 is hydrogen, C_1 - C_6 alkyl, C_3 - C_8 cycloalkyl, C_1 - C_6 haloalkyl, C_3 - C_8 halocycloalkyl, amino- C_1 - C_6 alkyl, or (C_1 - C_6 alkyl)(C_1 - C_6 alkyl)amino- C_1 - C_6 alkyl.

15.-23. (Canceled)

24. (Previously presented) A pharmaceutical composition comprising a compound of claim 1 and a pharmaceutically acceptable carrier, excipient, or diluent therefor.

25. (Currently amended) A method for treating a mammal in need of relief from a disease state including cancer, comprising administering to the mammal an effective amount of a compound according to claim 1.

26.-27. (Canceled)

28. (New) A compound of the formula:

$$X \xrightarrow{11} \mathbb{R}^{8} \mathbb{R}^{B}$$

$$\mathbb{R}^{A} \mathbb{Q} \mathbb{R}^{1}$$

wherein

Q is oxygen or sulfur;

X is hydrogen and Y is CHR^2R^3 , NHR^2 , $NHOR^2$, or $NHNR^2R^3$; or X and Y are taken together to form $=CR^2R^3$; $=NR^2$; $=NOR^2$; or $=NNR^2R^3$;

 R^1 , R^2 , and R^3 are each independently selected from the group consisting of hydrogen and a radical -(CH₂)_mZ, where m is an integer from 0-6 and Z is selected from the group consisting of halogen, hydroxy, formyl, C_1 - C_6 alkanoyloxy, optionally substituted benzoyloxy, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_3 - C_8 cycloalkyl, C_3 - C_8 cycloalkoxy, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_1 - C_6 haloalkoxy, C_3 - C_8 halocycloalkyl, C_3 - C_8 halocycloalkoxy, amino, C_1 - C_6 alkylamino, (C_1 - C_6 alkyl)(C_1 - C_6 alkyl)amino, alkylcarbonylamino, N-(C_1 - C_6 alkyl)alkylcarbonylamino, aminoalkyl, C_1 - C_6 alkyl)alkylcarbonylaminoalkyl, (C_1 - C_6 alkyl)alkylcarbonylaminoalkyl, cyano, nitro, C_1 - C_6 alkylsulfonyl, optionally substituted phenyl, optionally substituted phenoxy, and optionally substituted heteroaryl; or Z is selected from the group consisting of - C_1 - C_2 0 alkyl, - C_2 1 - C_3 2, - C_3 3, - C_3 4, - C_3 5, - C_3 6, -C

when X and Y are taken together to form = NNR^2R^3 , R^2 and R^3 are taken together with the attached nitrogen to form an optionally substituted heterocycle;

providing that Y and R¹ are not both alkyl;

 R^A represents 1-4 substituents each independently selected from the group consisting of hydrogen and a radical - $(CH_2)_{m'}Z'$, where m' is an integer from 0-6 and Z' is selected from the group consisting of halogen, hydroxy, C_1 - C_6 alkanoyloxy, optionally substituted benzoyloxy, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_3 - C_8 cycloalkyl, C_3 - C_8 cycloalkoxy, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_1 - C_6 haloalkoxy, C_3 - C_8 halocycloalkyl, C_3 - C_8 halocycloalkoxy, amino, C_1 - C_6 alkylamino, $(C_1$ - C_6 alkyl)(C_1 - C_6 alkyl)amino, alkylcarbonylamino, N-(C_1 - C_6 alkyl)alkylcarbonylamino, aminoalkyl, C_1 - C_6 alkylaminoalkyl, C_1 - C_6 alkyl)alkylcarbonylaminoalkyl, alkylcarbonylaminoalkyl, N-(C_1 - C_6 alkyl)alkylcarbonylaminoalkyl, cyano, nitro, C_1 - C_6 alkylsulfonyl, optionally substituted phenyl, optionally substituted phenoxy, and optionally substituted heteroaryl; or Z' is selected from the group consisting of - N_3 , - CO_2R^4' , - $CONR^5'R^6'$, - $P(O)(OR^4')_2$, - $P(O)(NR^4'R^5')_2$, and - $P(O)(NR^4'R^5')(OR^4')$, where R^4' , R^5' , and R^6' are each independently selected in each occurrence from the group consisting of hydrogen, C_1 - C_6 alkyl, C_3 - C_8 cycloalkyl, C_1 - C_6 haloalkyl, optionally substituted phenyl, and optionally substituted phenyl- C_1 - C_6 alkyl; or

R^A represents 2-4 substituents where 2 of said substituents are adjacent substituents and are taken together with the attached carbons to form an optionally substituted carbocycle or an optionally substituted heterocycle, and the remaining 2 substituents are each independently selected from the group consisting of hydrogen and a radical -(CH₂)_mZ', where m' is an integer from 0-6 and Z' is selected from the group consisting of halogen, hydroxy, C₁-C₆ alkanoyloxy, optionally substituted benzoyloxy, C₁-C₆ alkyl, C₁-C₆ alkoxy, C₃-C₈ cycloalkyl, C₃-C₈ cycloalkoxy, C₂-C₆ alkenyl, C2-C6 alkynyl, C1-C6 haloalkyl, C1-C6 haloalkoxy, C3-C8 halocycloalkyl, C3-C8 halocycloalkoxy, amino, C_1 - C_6 alkylamino, $(C_1$ - C_6 alkyl) $(C_1$ - C_6 alkyl)amino, alkylcarbonylamino, N-(C₁-C₆ alkyl)alkylcarbonylamino, aminoalkyl, C₁-C₆ alkylaminoalkyl, (C₁-C₆ alkyl)(C₁-C₆ alkyl)aminoalkyl, alkylcarbonylaminoalkyl, N-(C1-C6 alkyl)alkylcarbonylaminoalkyl, cyano, nitro, C₁-C₆ alkylsulfonyl, optionally substituted phenyl, optionally substituted phenoxy, and optionally substituted heteroaryl; or Z' is selected from the group consisting of $-N_3$, $-CO_2R^{4'}$, $-CONR^{5'}R^{6'}$, $-P(O)(OR^{4'})_2, -P(O)(NR^{4'}R^{5'})_2, \text{ and } -P(O)(NR^{4'}R^{5'})(OR^{4'}), \text{ where } R^{4'}, \, R^{5'}, \text{ and } R^{6'} \text{ are each } R^{6'}$ independently selected in each occurrence from the group consisting of hydrogen, C1-C6 alkyl, C3-C8 cycloalkyl, C₁-C₆ haloalkyl, optionally substituted phenyl, and optionally substituted phenyl-C₁-C₆ alkyl; and

 R^B represents 2-4 substituents each independently selected from the group consisting of hydrogen and a radical - $(CH_2)_{m''}Z''$, where m'' is an integer from 0-6 and Z'' is selected from the group consisting of halogen, hydroxy, C_1 - C_6 alkanoyloxy, optionally substituted benzoyloxy, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_3 - C_8 cycloalkyl, C_3 - C_8 cycloalkoxy, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_1 - C_6 haloalkoxy, C_3 - C_8 halocycloalkyl, C_3 - C_8 halocycloalkoxy, amino, C_1 - C_6 alkylamino, $(C_1$ - C_6 alkyl)(C_1 - C_6 alkyl)amino, alkylcarbonylamino, N- $(C_1$ - C_6 alkyl)alkylcarbonylamino, aminoalkyl, C_1 - C_6 alkylaminoalkyl, C_1 - C_6 alkylaminoalkyl, alkylcarbonylaminoalkyl, N- $(C_1$ - C_6 alkylalkylcarbonylaminoalkyl, cyano, nitro, C_1 - C_6 alkylsulfonyl, optionally substituted phenyl, optionally substituted phenoxy, and optionally substituted heteroaryl; or Z'' is selected from the group consisting of -N₃, -CO₂ $R^{4''}$, -CONR^{5''} $R^{6''}$, -P(O)(OR^{4''})₂, -P(O)(NR^{4''} $R^{5''}$)₂, and -P(O)(NR^{4''} $R^{5''}$)(OR^{4''}), where $R^{4''}$, $R^{5''}$, and $R^{6''}$ are each independently selected in each occurrence from the group consisting of hydrogen, C_1 - C_6 alkyl, C_3 - C_8 cycloalkyl, C_1 - C_6 haloalkyl, optionally substituted phenyl, and optionally substituted phenyl- C_1 - C_6 alkyl; where 2 of said substituents are adjacent substituents and are taken together with the attached carbons to form an optionally substituted heterocycle.

- 29. (New) The compound of claim 28, wherein the heterocycle is selected from the group consisting of dioxolane and dioxane.
- 30. (New) The compound of claim 28, wherein Z is selected from the group consisting of hydroxy, amino, C₁-C₆ alkylamino, and nitro.
- 31. (New) The compound of claim 28, wherein Z' is selected from the group consisting of C_1 - C_6 alkoxy and nitro.