

Применение сверточных нейронных сетей в задаче распознавания объектов на астрономических изображениях в рентгеновском диапазоне

Васильченко Андрей

Научные руководители:

Герасимов Сергей Валерьевич, инж.

Мещеряков Александр Валерьевич, к.ф.-м.н.

Актуальность

В 2019 году планируется запуск рентгеновского телескопа **eROSITA**. Сам телескоп обладает лучшим на данный момент спектральным разрешением, однако программный комплекс, который будет использоваться для обработки изображений основан на приемах 20 века:

- Метод скользящего окна детектирование объектов
- Разделение смеси близких объектов

Телескоп eROSITA

Обработка данных eSASS

Готовые данные

Flux	Ra	Dec
2.00E-14	0.103	0.125
5.00E-14	0.543	0.423
8.00E-14	0.513	0.410
1.20E-13	0.449	0.835
3.40E-13	0.701	0.770
5.30E-13	0.007	0.380

Актуальность

Сверточные нейронные сети (CNN) уже применялись во многих областях, связанных с анализом изображений. В широком круге задач (детектирование, сегментация, классификация) они превзошли прошлые алгоритмы, а в некоторых задачах достигают лучшей точности, чем человек. Нейронные сети также уже успешно применялись и в астрономии, однако еще ни разу не применялись для детектирования объектов в рентгеновском диапазоне

Нейронные сети могут помочь значительно улучшить качество данных, полученных с помощью нового телескопа и дать ученым возможность провести более полные исследования вселенной

Постановка задачи

• Исследовать возможности применения нейронных сетей в задаче детектирования источников на астрономических изображениях

 Улучшить существующий алгоритм распознавания объектов на рентгеновских изображениях с помощью сверточных нейронных сетей

• Встроить алгоритм в систему поиска источников телескопа eROSITA

Обзор алгоритма поиска источников eSASS

Визуализация данных с телескопа

Каждая точка - фотон

Для каждого фотона известны:

- Положение
- Энергия
- Расстояние до оптической оси телескопа

Цель:

Найти все источники, оценить их яркости и размеры

Обзор алгоритма поиска источников eSASS

0.408

0.347

0.846

1.20E-13

3.40E-13 0.187

Основные недостатки существующего алгоритма

Не использует всю доступную информацию об источниках:

Учитывает только суммарную энергию фотонов в пикселе Не учитывает расстояние до оптической оси телескопа

Не использует современные методы анализа изображений:

Для поиска источников применяется метод максимального правдоподобия Этот метод - оптимальный алгоритм стат. моделирования при условии правильного выбора моделей

Сверточные нейронные сети способны работать, основываясь только на данных симуляций

Планируемая модификация текущего алгоритма

Выбор архитектуры: U-net

Хорошо показала себя в сегментации биомедицинских изображений

Может быть полностью обучена на имеющихся данных т.к. имеет не очень большое количество параметров

Выбор архитектуры: U-net

- 1. Сжимающий путь:
 - 2 сверточных слоя 3x3
 - ReLU
 - Max Pooling 2x2
- 2. Расширяющий путь
 - UpConv
 - конкатенация признаков
 - 2 сверточных слоя 3x3

Адаптация U-net

Изменение размерности входных данных:

32 канала вместо 3

Использование взвешенной функции ошибок:

Увеличенный штраф за ошибку на объекте

Увеличение глубины:

С 5 до 7

chan	noize/obj err	photons in mask	full_E_chan	dist to axis	input compression	loss
16	1:1	70%	<u>.</u>	e -	-	1.05
32	1:1	70%	=	0=	_	0.81
32	2:5	70%	₩. I	e s	-	0.75
32	2:5	85%	=1	n=	-	0.57
32	2:5	85%	+	. -	-	0.48
32	2:5	85%	+	+	_	0.42
32	2:5	85%	+	+	+	0.25

Результаты экспериментов по предобработке данных

Постановка экспериментов

Симуляции астрономических данных:

- Точечные источники
- Протяженные источники
- Астрономический шум

200 изображений 3000x3000. 50% train, 10% test

~ 500к источников

информация о фотонах							
SRC_ID	RA	DEC	X	Y	PHA	OFFSET	
-1	0.1129	0.2092	2588	177	5	1.141104	
116044	0.0483	0.1678	2646	140	2	1.347707	

	Информац	дия об	источ	никах
--	----------	--------	-------	-------

SRC_ID	RA	DEC	X	Y	FLUX
114329	2.889165	0.681896	88	603	6.011738e-15
114330	2.087738	1.647147	810	1472	6.011738e-15

Параметры U-net

Регуляризация: batch normalization и dropout после pooling-слоев

Функция потерь: weighted binary cross entropy

Метод оптимизации: Adam, Ir = 1e-4

Обучение: 700 epochs, batch size = 1, <u>Microsoft Azure ML</u>

Визуализация входных данных

Ground truth map

Предсказание U-net. Карта сегментации

Кроссиндентификация с каталогом

Критерии детектирования источника:

Ошибка по положению центра не более 5 пикселей Ошибка по яркости не более чем в 2 раза

Выбирается самый яркий из подходящих под критерий

Пример итогового каталога

RA	DEC	ML_FLUX	REF_FLUX	D2D	DET_LIKE
0.771021	2.826750	1.500346e-12	1.702158e-12	1.762201	1.000000
1.932794	0.837221	1.117012e-12	1.129796e-12	2.659756	1.000000
1.451686	0.201882	8.028031e-13	7.798301e-13	1.442476	0.999998

Результаты детектирования точечных источников

Эффективность детектирования (recall)

Доля ложных детектирований (false positive rate)

Выводы

Нейронная сеть находит в 5 раз больше объектов на уровне яркости 1e-14 (тусклые объекты), при этом не увеличивается доля ложных детектирований

Для более ярких объектов алгоритмы eSASS и U-net показывают одинаковое качество - более 80% верных детектирований. Однако U-net имеет в среднем на 10% меньше ложных детектирований.

Таким образом, нейронная сеть детектирует точечные источники лучше стандартных алгоритмов в заданных условиях.

Заключение

- Проведен обзор различных архитектур CNN для задачи детектирования астрономических источников. Успешно адаптирована и применена архитектура U-net
- Проведена серия экспериментов с целью найти оптимальные параметры предобработки данных и постобработки результата U-net.
- В результате проделанной работы удалось достигнуть результатов, превосходящих полученные на данный момент, говорящих о конкурентоспособности CNN
- Подготовлен модуль, который можно встроить в существующую систему eSASS. Весь код и воспроизводимые результаты представлены в репозитории: github.com/Hawk1533/Astonomical-Object-Detection
- Представлен доклад на конференции "Ломоносовские чтения 2019"

Спасибо за внимание

Планируемая модификация текущего алгоритма

Обзор алгоритма поиска источников eSASS

