2 Расчет статических характеристик электропривода постоянного тока независимого возбуждения

2.5 Характеристика при использовании схемы шунтирования обмотки якоря

Шунтирование обмотки якоря осуществляется согласно схеме, приведенной на рисунке 1. Таким образом можно затормозить двигатель.

Рисунок 1 – Шунтирование обмотки якоря

Характеристика (рисунок 2) строится по двум точкам:

1 точка:

$$I = -I_{\pi 1} = -2,5I_{\text{H}} = -2,5\cdot59,5 = -148,75$$
 (A), $\omega = \omega_{\text{c}} = 164,95$ (рад/с).

2 точка:

$$I=I_c=19,7129 \; (A),$$

$$\omega=\,\omega_c^*=0,\!2\omega_c=0,\!2\cdot\!164,\!95=32,\!99 \; (\text{рад/c}).$$

После построения синей характеристики шунтирования построил естественную характеристику, проходящую через начало координат, на пересечении этих прямых получил точку A с током I_A . Величины I_A и ω_0^* определил пропорциональным методом.

$$I_A = 61,68 (A),$$

$$\omega_0^* = 49,64$$
 (рад/с).

Находим R_{π} и $R_{\text{ш}}$:

$$R_{_{\rm II}} = \frac{U_{_{\rm H}}}{I_{_{\rm A}}} = \frac{220}{61,68} = 3,57 \text{ (Om)},$$

$$R_{_{\rm III}} = \frac{\omega_{_{0}}^{^{*}}}{\omega_{_{0}} - \omega_{_{0}}^{^{*}}} \cdot R_{_{\rm II}} = \frac{49,64}{168,854 - 49,64} \cdot 3,57 = 1,48 \text{ (Om)}.$$

Рисунок 2 – Характеристика при использовании схемы шунтирования