Project Development Phase Model Performance Test

Date	10 November 2022
Team ID	PNT2022TMIDxxxxxx
Project Name	Project - Falcon
Maximum Marks	10 Marks

Model Performance Testing:

Project team shall fill the following information in model performance testing template.

S.No.	Parameter	Values	Screenshot		
1.	Model Summary	- This project aims to classify data into categories using the KNearest Neighbors (KNN) algorithm. The dataset is first analyzed through Exploratory Data Analysis (EDA) to uncover patterns and relationships among features. Key preprocessing steps include scaling features, handling missing data, and selecting the most relevant features to enhance the model's performance. The KNN classifier is then trained with various values of k (number of neighbors) and different distance metrics (e.g., Euclidean, Manhattan) to find the optimal configuration. Model performance is	In [94]: parameters = {'n_neighbors': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],		

		evaluated using metrics such as accuracy, precision, and recall on a test dataset. The final model achieves high classification accuracy, demonstrating KNN's effectiveness for this particular task.	
2.	Accuracy	Training Accuracy - 0.8482142857142858	In [95]: print("KNN Tuned Hyperparameters (best parameters):",knn_cv.best_params_) print("KNN Train Accuracy:",knn_cv.best_score_) KNN Tuned Hyperparameters (best parameters): {'algorithm': 'auto', 'n_neighbors': 10, 'p': 1} KNN Train Accuracy: 0.8482142857142858
		Validation Accuracy - 0.8333333333333334	In [96]: knn_accuracy = knn_cv.score(X_test, y_test) print("KNN Test Accuracy:",knn_accuracy)
			KNN Test Accuracy: 0.8333333333334
3.	Confidence Score	Class Detected - 1	
	(Only Yolo Projects)	Confidence Score – 80%	