Aspects éthique

Aspects éthique

Véronique Tremblay

Confidentialité

- Anonymisation
- Limiter les détails
- Regrouper les catégories de faibles effectifs
- Ajouter du bruit
- Confidentialité différentielle

Aspects éthique Les implications sociales

Les implications sociales

Aspects éthique ∟L'équité algorithmique

L'équité algorithmique

Aspects éthique L'équité algorithmique

Les mythes

«La machine apprend toute seule.»

«C'est objectif, c'est basé sur des données.»

Les sources de discrimination

- Échantillon biaisé
- Cibles biaisées
- Validité variable
- Classes mal représentées

Aspects éthique ∟L'équité algorithmique

Un autre mythe

«Mon modèle ne peut pas être sexiste car je n'ai pas utilisé le genre pour le construire.»

Qu'est-ce qu'on peut faire?

- Modifier l'échantillon avant l'ajustement du modèle (pre-processing)
- Modifier le modèle *a posteriori* (*post-processing*)
- Modifier la fonction de perte

Mesurer l'équité d'un modèle

Notation

 \hat{Y} : Valeur prédite par le modèle

Y: Vraie valeur

S: est la variable sensible et S=s correspond à la modalité habituellement discriminée

Pour simplifier les explications, nous allons supposer que Y et S ont deux modalités mais ces mesures se généralisent.

Parité démographique

On parle parfois de *equal parity*, *statistical parity* ou d'indépendance.

$$\hat{Y} \perp S$$

$$\mathbb{P}(\hat{Y}=1) = \mathbb{P}(\hat{Y}=1|S=s) = \mathbb{P}(\hat{Y}=1|S\neq s)$$

Avec la librairie fairness, utilisez dem_parity.

Égalité de l'exactitude

$$\mathbb{P}(\hat{Y} = Y | S = s) = \mathbb{P}(\hat{Y} = Y | S \neq s)$$

Avec la librairie fairness, c'est la fonction acc_parity.

Il est préférable d'utiliser le taux de faux négatifs et de faux positifs en complément, avec les fonctions fnr_parity et fpr_parity.

Égalité des chances

On parle parfois de *Positive Rate Parity* ou de séparation.

$$(\hat{Y} = 1|Y = 1) \perp S$$

$$\mathbb{P}(\hat{Y}=1|Y=1,S=s)=\mathbb{P}(\hat{Y}=1|Y=1,S\neq s)$$

Avec la librairie fairness, utilisez equal_odds.

Égalité de la précision

$$(Y=1|\hat{Y}=1) \perp S$$

$$\mathbb{P}(Y=1|\hat{Y}=1,S=s)=\mathbb{P}(Y=1|\hat{Y}=1,S\neq s)$$

Avec la librairie fairness, utilisez pred_rate_parity.

Aspects éthique

En pratique - exemple avec les données de COMPAS

En pratique - exemple avec les données de COMPAS

```
Aspects éthique

En pratique - exemple avec les données de COMPAS
```

Librairies

```
#install.packages("fairness")
library(fairness)
```

```
data("compas")
data("germancredit")
```

Égalité de l'exactitude

```
egal_exact <- acc_parity(data = compas,
    outcome = "Two_yr_Recidivism",
    group = "ethnicity",
    probs = "probability",
    #preds = NULL,
    cutoff = 0.5,
    base = "Caucasian")</pre>
```

Égalité de l'exactitude

American
0.64
0.97

Taux de faux négatif

	Caucasian	African_American	Asian	Hispanic	Native_American	Uther
FNR	0.53	0.25	0.75	0.53	0.40	0.58
FNR Parity	1.00	0.47	1.42	1.01	0.76	1.10

Taux de faux positifs

	Caucasian	African_A	merican	Asian	Hispanic	Native_American	Other
FPR	0.22		0.42	0.09	0.19	0.33	0.15
FPR Parity	1.00		1.87	0.39	0.86	1.50	0.68

