Билеты по алгебре I семестр

Тамарин Вячеслав

8 января 2020 г.

Вопрос 1 Векторное пространство

Def 1. Пусть (V,+) — абелева группа, F — поле, и задана операция (умножение) $V \times F \to V$. Предположим, что $\forall u,v \in V$ и $\alpha,\beta \in F$ выполнены следующие свойства:

- 1. $v(\alpha\beta) (v\alpha)\beta$
- 2. $v(\alpha + \beta) = v\alpha + v\beta$
- 3. $(v+u)\alpha = v\alpha + v\beta$
- 4. $v \cdot 1 = v$

Тогда V называется векторным пространством над F.

Property.

- 1. $v \cdot 0 = 0 \cdot \alpha = 0$
- 2. $v \cdot (-1) = -v$
- 3. $v \cdot (-\alpha) = (-v)\alpha = -(v\alpha)$
- 4. $v \cdot \sum \alpha_i = \sum v \alpha_i$
- 5. $\sum v_i \cdot \alpha = \sum v_i \alpha$

Exs.

- 1. Множество векторов в \mathbb{R}^3
- 2.

$$F^{n} = \left\{ \begin{pmatrix} a_{1} \\ a_{2} \\ \vdots \\ a_{n} \end{pmatrix} \middle| a_{i} \in F \right\}.$$

$$\begin{pmatrix} a_{1} \\ \vdots \\ a_{n} \end{pmatrix} \cdot \alpha = \begin{pmatrix} a_{1}\alpha \\ \vdots \\ a_{n}\alpha \end{pmatrix}, \quad \begin{pmatrix} a_{1} \\ \vdots \\ a_{n} \end{pmatrix} + \begin{pmatrix} b_{1} \\ \vdots \\ b_{n} \end{pmatrix} = \begin{pmatrix} a_{1} + b_{1} \\ \vdots \\ a_{n} + b_{n} \end{pmatrix}.$$

3. X — множество, $F^X = \{f \mid f : X \to F\}$ $f, g : X \to F$ (f+g)(x) = f(x) + g(x)

$$(f\alpha)(x) = f(x)\alpha$$

4. F[t] — многочлены от одной переменной t

Вопрос 2 Подпространство, линейная оболочка

Def 2. Подмножество $U \subseteq V$ называется подпространством, если оно само является векторным пространством относительно тех же операций, которые заданы в V.

Statement 1 (критерий подпространства). Подмножество $U\subseteq V$ является подпространством тогда и только тогда, когда $\forall u,v\in U,\ \alpha\in F: u+v,u\alpha\in U.$

Def 3. Пусть $u_1, \ldots, u_n \in V, \alpha_1, \ldots, \alpha_n \in F$. Сумма

$$\sum_{k=1}^{n} u_k \alpha_k$$

называется линейной комбинацией векторов u_1, \ldots, u_n с коэффициентами $\alpha_1, \ldots, \alpha_n$.

Линейная комбинация называется тривиальной, если все ее коэффициенты равны нулю.

Note. Пусть $S \subseteq V$, и задан набор чисел $\alpha_s \in F$, $s \in S$. Операция бесконечной суммы будет определена только в случае, когда почти все α_s равны нулю.

Def 4. Линейной оболочкой набора S называется подпространство, порожденное S, то есть наименьшее подпространство, содержащее S.

Designation. Линейная оболочка набора S обозначается $\langle S \rangle$.

Statement 2.
$$\langle S \rangle = \left\{ \sum_{k=1}^{n} u_k \alpha_k \middle| u_k \in S, \ \alpha_k \in F \right\}$$

Def 5. Если $\langle S \rangle = V$, то S называется системой образующих пространства V.

Def 6. Кортеж векторов $(u_1, \dots u_n)$ называется линейно независимым, если любая нетривиальная линейная комбинация этих векторов не равна нулю.

Множество $S \subseteq V$ называется линейно независимым, если любой кортеж, составленный из конечного числа различных векторов из S, является линейно независимым.

Def 7. Базис — линейно независимая система образующих.

Вопрос 3 Матрицы

і Конечные матрицы

Def 8. Двумерный массив $m \times n$ элементов поля F называется матрицей размера $m \times n$ над F.

Designation. Множество таких матриц обозначается $M_{m \times n}(F)$. Если m = n, пишут $M_n(f)$. Элемент матрицы A в позиции (i, j) записывается a_{ij} .

Property.

- Для двух матриц одинакового размера определена операция поэлементной суммы: $(A+B)_{ij} = a_{ij} + b_{ij}$.
- Также определено умножение матрицы на число: $(A\alpha)_{ij} = a_{ij}\alpha$.
- Произведением матрицы $A \in M_{m \times n}(F)$ на матрицу $B \in M_{n \times k}$ называется матрица $C = AB \in M_{m \times k}(F)$ элементы которой вычисляются по формуле

$$c_{ij} = \sum_{l=1}^{n} a_{il} b_{lj}.$$

Theorem 1. Множество $M_{m \times n}(F)$ с операциями сложения и умножения на число является векторным пространством над полем F.

Доказательство. Произведение матриц ассоциативно, дистрибутивно и перестановочно с умножением на число:

$$\begin{cases} (AB)C = A(BC) \\ A(B+C) = AB + BC \\ (B+C)A = BA + CA \\ (AB)\alpha = A(B\alpha) = (A\alpha)B \end{cases}$$

Все кроме первого свойства очевидны. Проверим ассоциативность:

$$((AB)C)_{il} = \sum_{k \in K} (AB)_{ik} c_{kl} = \sum_{k \in K} \left(\sum_{j \in J} a_{ij} b_{jk} \right) c_{kl} =$$

$$= \sum_{k \in K} \left(\sum_{j \in J} a_{ij} b_{jk} c_{kl} \right) =$$

$$= \sum_{j \in J} \left(\sum_{k \in K} a_{ij} b_{jk} c_{kl} \right) =$$

$$= \sum_{j \in J} a_{ij} \left(\sum_{k \in K} b_{jk} c_{kl} \right) = \sum_{j \in J} a_{ij} (BC)_{jl} = (A(BC))_{il}$$

 ${f Def 9.}\;{f K}$ вадратная матрица E с 1 на главной диагонали и остальными нулями называется единичной.

Property. Умножение данной матрицы на единичную справа и слева не ее не изменяет.

Матрица E_n является нейтральным элементом в $M_n(F)$.

Обобщение конечных матриц

Пусть даны множества X_{ij}, Y_{jh} , коммутативные моноиды $(Z_{ih}, +)$, где $i=1, \ldots m, \ j=1, \ldots n, \ h=1, \ldots k,$ и функции «умножения» $X_{ij} \times Y_{jh} \to Z_{ih}, \ (x,y) \mapsto xy$. Обозначим через X,Y,Z наборы множеств $X_{ij}, Y_{jh}, Z_{ih},$ соответственно, через M(X) — множество матриц A с элементами $a_{ij} \in X_{ij},$ и аналогично M(Y), M(Z). Тогда можно определить произведение матриц $A \in M(X)$ и $B \in M(Y)$ как матрицу $C = AB \in M(Z)$, где $c_{ih} = \sum_{j=1}^n a_{ij}b_{jh}$.

Если все X_{ij}, Y_{jh} будут коммутативными моноидами, а функция умножения дистрибутивной, умножение матриц тоже будет дистрибутивным и ассоциативным.

іі Произвольные матрицы

Пусть I, J — произвольные множества (возможно бесконечные), элементами которых мы будем индексировать строки и столбцы матриц. Пусть $\forall i \in I \land j \in J$ задано множество X_{ij} , и обозначим набор всех таких множеств через X. Тогда **матрицей размера** $I \times J$ **над** X называется функция $A: I \times J \to \bigcup X_{ij}$ $(i,j) \mapsto a_{ij}$, такая что $a_{ij} \in X_{ij}$.

Designation. Множество матриц размера $I \times J$ над X обозначается $M_{I \times J}(X)$. Если $I = \{1\}$, то матрица размера $I \times J$ будут назваться столбцами длины J, а если $J = \{1\}$, то столбцами высоты I. Множества строк обозначим данной длины ${}^J\!X$, множество столбцов — X^J .

Будем считать, что все X_{ij} — абелевы группы в аддитивной записи. Тогда сумма двух матриц одного размера определяется поэлементно: $(A+B)_{ij}=a_{ij}+b_{ij}$. Если все X_{ij} — векторные пространства над полем F, также можно определить умножение на число: $(A\alpha)_{ij}=a_{ij}\alpha$.

Умножение матриц

Пусть все операции умножения $X_{ij} \times Y_{jh} \to Z_{ih}$ дистрибутивны (для $a \cdot 0 = 0$), и в каждом столбце матрицы Y почти все элементы равны 0.

Designation. Обозначим $M_{J\times H}^{c.f.}(Y)\subset M_{J\times H}(Y)$, состоящее из всех матриц B, у которых для любого фиксированного $h\in H$ почти все элементы b_{jh} равны 0.

Def 10. Пусть $\forall i \in I, j \in J, h \in H$ заданы операции умножения $X_{ij} \times Y_{jh} \to Z_{ih}$, причем $\forall x, x' \in X_{ij}$ и $\forall y, y' \in Y_{jh}$ выполнены равенства

$$(x+x')y = xy + x'y \wedge x(y+y') = xy + xy'.$$

Произведение матриц $A \in M_{i \times J}(X)$ и $B \in <_{J \times H}^{c.f.}(Y)$ как матрицу $AB \in M_{I \times H}(Z)$ с элементами

$$(AB)_{ih} = \sum_{j \in J} a_{ij} b_{jh}.$$

При этом суммы определены, так как почти все слагаемые равны нулю.

Note. Аналогично определяется умножение матриц $A \in M^{r.f.}_{I \times J}(X)$ и $B \in M_{J \times H}(Y).$

Lemma 1. Обычные свойства умножения матриц 1 выполнены, если определены все входящие в формулы операции.

Если $\forall i,j,h \in I$ заданы дистрибутивные операции умножения $X_{ij} \times X_{jh} \to X_{ih}$, то множество $M^{c.f.}_{I \times I}(X)$ является кольцом с единицей.

Designation. Если X_{ij} одно и то же поле F для всех i,j, будем писать $M_{i\times J}(F)$ вместо $M_{I\times J}(X)$. Если I=J, то будем писать $M_I(F)$ вместо $M_{I\times I}(F)$. Если $I=\{1,\ldots m\}, J=\{1,\ldots n\}$, то можем писать $M_{m\times n}(F)$.

Другие характеристики матриц

Def 11. Множество обратимых элементов кольца $M_n(F)$ называется полной линейной группой степени n над F и обозначается $\mathrm{GL}_n(F)$.

Designation. Для множества $M^{c.f.}_{I\times\{1\}}(F)$ введем специальное обозначение F^I_{fin} и будем называть его множеством финитных столбцов высоты I над F. Другим словами, F^I_{fin} — множество финитных (у которых почти все значения равны 0) функций из I в F. Аналогично, ${}^J\!F_{fin} = M^{r.f.}_{\{1\}\times J}(F)$.

Def 12. Пусть $A \in M_{I \times J}(F)$. Матрица $A^T \in M_{J \times I}(F)$ с элементами $(A^T)_{ij} = a_{ji}$ называется транспонированной к A.

Statement 3. $(AB)^T = B^T A^T$

Note. Для обозначения столбца часто используется строка $(a_1, \dots a_n)^T$.

Вопрос 4 Эквивалентные определения базиса

Theorem 2 (Эквивалентные определения базиса). Следующие условия на подмножество v векторного пространства V эквивалентны:

- (1) v линейно независимая система образующих
- (2) v максимальная линейно независимая система
- $(3) \ v$ минимальная система образующих
- (4) любой элемент $x \in V$ представляется в виде линейной комбинации набора v, причем единственным образом

Доказательство.

- $1 \Longrightarrow 2$ Пусть v не максимальная линейно независимая система. Мы знаем, что v система образующих. Тогда любой элемент $a \in V$ представляется в виде линейной комбинации v, а значит любой набор, содержащий v, принадлежит линейной оболочке $\langle v \rangle$, следовательно, набор линейно зависимый.
- $2 \Longrightarrow 1$ Так как v максимальная линейно независимая система, любой элемент $a \in V$ выражается через элементы v. Следовательно, v система образующих.
- $\boxed{1\Longrightarrow 3}$ Пусть из v можно убрать некоторые элементы так, что полученный набор u будет минимальной системой образующих. Тогда любой элемент набора $v\smallsetminus u$ представим в виде линейной комбинации u. Следовательно, v линейно зависим.
- $3 \Longrightarrow 1$ Если v линейно зависим, то во всех линейных комбинациях набора v можно заменить один элемент на линейную комбинацию других. А тогда v не минимален.
- $1 \Longrightarrow 4$ Так как v система образующих $\langle v \rangle = V$. Теперь докажем, что представление единственно. Пусть $x = va = \sum_{y \in v} ya_y$, $a \in F^v_{fin}$. Предположим, что $\exists b \in F^v_{fin} : x = vb$. Тогда $0 = va vb \Longrightarrow 0 = v(a-b)$. Так как v линейно независим, можем сократить: 0 = a-b, значит представление единственно.
- $4 \Longrightarrow 1$ Так как любой элемент представим в виде линейной комбинации набора $v, \langle v \rangle = V$. Так как представление единственно, v линейно независим.

Вопрос 5 Существование базиса

Theorem 3 (О существовании базиса). Пусть $X,Y \subseteq V$, причем набор X линейно независим, а Y — система образующих. Тогда существует базис Z, содержащий X и содержащийся в Y.

Доказательство. Пусть \mathscr{A} — набор всех линейно независимых подмножеств Y, содержащих X. Этот набор не пуст, так как содержит X. Пусть \mathscr{L} — линейно упорядоченный поднабор в \mathscr{A} . Обозначим через S объединение всех множеств из \mathscr{L} . Так как $\forall C \in \mathscr{L}$ лежит между X и Y, S обладает этим свойством. Рассмотрим конечное подмножество $\{v_1, \dots v_n\} \subseteq S$. По определению объединения множеств $\forall i=1,\dots n \ \exists B_i \in \mathscr{L}$, содержащее v_i . Так как \mathscr{L} — лум, среди множеств $B_1,\dots B_n$ найдется наибольшее B_k . Тогда $v_1,\dots v_n \in B_k$. Так как B_k линейно независимо, то и $\{v_1,\dots v_n\}$ линейно независимо. Следовательно, S линейно независимо, значит $S \in \mathscr{A}$. По лемме Цорна получаем, что \mathscr{A} содержит максимальных элемент. Пусть это Z — максимальное из линейно независимых подмножеств Y, содержащих X.

Пусть $y \in Y \setminus Z$. Так как Z линейно независимо, $Z \cup \{y\}$ линейно зависимо, то есть $\exists a \in F_{fin}^Z$, $a_y \in F$: $ya_y + Za = 0$, где $a_y \neq 0$. Следовательно, $y \in \langle Z \rangle$. Тогда $Y \subseteq \langle Z \rangle$. С другой стороны, $V = \langle Y \rangle$ — наименьшее подпространство, содержащее Y. Значит $V \subseteq \langle V \rangle$, то есть Z — система образующих, следовательно, и базис.

Вопрос 6 Лемма о замене

Theorem 4 (лемма о замене). Пусть $u = \{u_1, \dots u_n\}$ — линейно независимый набор из n векторов, v — система образующих пространства V. Тогда:

- 1. $\exists v_1, \dots v_n \in v : v \setminus \{v_1, \dots v_n\} \cup u = w cucmema$ образующих.
- 2. Причем, если u- базиc, то w- базиc.

Доказательство. Индукция по n.

База: n = 0. Утверждение для нуля верно.

Переход: $n-1 \to n$. По предположению индукции $\exists v_1, \dots v_{n_i} \in v$ такие, что $w' = v \setminus \{v_1, \dots v_{n-1}\} \cup \{u_1, \dots u_{n-1}\}$ является системой образующих. Причем, если v был линейно независимым, то w' базис.

 u_n выражается через линейную комбинацию набора w':

$$u_n = \sum_{i=1}^{n-1} u_i \alpha_i + \sum_{j=1}^m w_j \beta_j, \qquad \alpha_i, \beta_j \in F, w_j \in V \setminus \{v_1, \dots v_{n-1}\}.$$

Заметим, что кто-то из $\beta_j \neq 0$ (иначе u линейно зависим). Не умоляя общности, считаем, что $\beta_m \neq 0$. Пусть $v_n = w_m$. Тогда v_n выражается через линейную комбинацию набора $w = w' \setminus \{v_n\} \cup \{u_n\}$. Следовательно, $w' \subseteq \langle w \rangle$, значит w— система образующих.

Пусть набор v (а тогда и w') линейно независим. Рассмотрим $w'' = w' \setminus \{v_n\}$ и линейную комбинацию $w''a + u_n\alpha$ набора w, где $a \in F_{fin}^{w''}$.

$$0 = w''a + u_n\alpha = w''a + \sum_{i=1}^{n-1} u_i\alpha_i\alpha + \sum_{i=1}^m w_i\beta_i\alpha = w''b + v_n\beta_m\alpha, \qquad b \in F_{fin}^{w''}.$$

Если $\alpha \neq 0$, то $w''b + v_n\beta_m\alpha$ является нетривиальной линейной комбинацией набора $w'' \cup \{v_n\} = w''$, равной нулю. Значит, $\alpha = 0$, тогда w''a = 0. Так как $w'' \subseteq w'$, w'' линейно независим, следовательно, a = 0.

Получаем, что w линейно независим.

Вопрос 7 Количество элементов в базисе

Theorem 5 (количество элементов в базисе). Любые два базиса пространства V равномощны.

Доказательство. Пусть $v, u = \{u_1, \dots u_n\}$ — базисы пространства V. Не умоляя общности, считаем, что мощность множества v > n. Перенумеруем элементы базиса u так, что $u_1, \dots u_k \notin v$ и $u_{k+1}, \dots v_n \in v$.

Тогда по лемме о замене ?? существует подмножество $\{v_1, \ldots v_k\} \subseteq v : w = v \setminus \{v_1, \ldots v_k\} \cup \{u_1, \ldots u_k\}$ — базис. $u \subseteq w$ и |v| = |w|. Так как базис — максимальная линейно независимая система, то один базис не может строго содержаться в другом. Следовательно, w = u, откуда |v| = n.

Def 13. Размерность пространства — мощность любого базиса этого пространства. Пространство называется конечномерным, если в нем существует конечный базис.