Modeliranje strojev

električnih

6. LABORATORIJSKA VAJA

Ime in priimek: Jaka Ambruš

Datum in ura: petek ob 14.00 Ocena poročila:

1. Merjenec, vezalni načrt in nazivni podatki

Uporabljen merjenec je bil sinhornski motor s trajnimi magneti.

Vezalni načrt:

-Za merjenje upornosti statorskega navitja:

-Za merjenje induktivnosti z izmeničnim napajanjem:

-za merjenje magnetnega sklepa trajnih magnetov:

Podatki o merjencu:

Nazivna napetost	380/480 V AC	
Nazivni tok	1,4 A	
Nazivna moč	630 W	
Nazivna vrtilna		
hitrost	4800 min ⁻¹	
Število polovih		
parov	3	

2. Rezultati

Pri sobni temperaturi 21,8 °C smo s pomočjo ohm metra smo odčitali upornosti med različnimi priključki sponk:

Nato smo po formuli $R_{\rm S} = \frac{1}{2} \frac{R_{\rm UV} + R_{\rm VW} + R_{\rm UW}}{3}$ izračunali upornost statorskega navitja in dobili Rs=10,055 Ohm.Povprečna med spončna vrednost pa je Rsp = 20,11 Ohm.

Nadaljnje sem izračunal induktivnosti ter izpolnili tabelo:

a) rezultatov meritev induktivnosti Ld z izmenično metodo:

U /V	I/A	P/W	Ln/mH	Ld/mH
2,138	0,1165	0,2106	31,19	20,79
4,279	0,2328	0,839	31,54	21,03
7,41	0,4018	2,501	31,85	21,23
11,19	0,6057	5,68	32,09	21,39
14,94	0,807	10,1	32,18	21,45
18,75	1,009	15,87	32,20	21,47

b) rezultatov meritev induktivnosti Lq z izmenično metodo:

U /V	I/A	P/W	Ln/mH	Lq/mH
2,138	0,1165	0,2106	31,19	20,80
4,279	0,2328	0,839	31,54	21,03
7,41	0,4018	2,501	31,85	21,23
11,19	0,6057	5,68	32,09	21,39
14,94	0,807	10,1	32,18	21,45
18,75	1,009	15,87	32,20	21,47

Uporabljene enačbe:

$$Q = \sqrt{S^2 - P^2} = \sqrt{(U I)^2 - P^2}$$

$$L_{\rm n} = \frac{Q}{I^2 \ 2\pi \ f}$$

$$L = \frac{2}{3}L_n$$

Nato sem še izračunal povprečni vrednosti:

-Ld = 21,23 mH

-Lq = 29,90 mH

Grafi:

-Časovni potek inducirane napetosti:

Iz njega je razvidna amplituda inducirane napetosti in sicer velikosti 136 V. Če upoštevamo še vrtilno hitrost 1000vrtljajev na minuto in število parov polov 3 imamo vse podatke za izračun magnetnega sklepa trajnih magnetov:

$$\Psi_{\rm TM} = \frac{U_{\rm m}}{\sqrt{3}} - \frac{1}{2\pi f} = 0.25 \, \text{Vs}$$

- Časovni potek magnetnega sklepa in inducirane napetosti:

Magnetni pretok prehiteva inducirano napetost za 90°.

-Časovni potek napetosti ob zamenjavi smeri rotorja:

Ob prehodnem pojavu se napetost zelo zmanjša nato pa dvigne nad prvotno amplitudo sinusnega nihanja

2. Domača naloga

