Chapter P.1 Homework

Homework for Chapter P.1:

This file may look wrong if you are not using Obsidian. Please take a look at the <u>PDF export</u> instead.

Q2:

Q11:

Sketch the graph of the equation $y=\sqrt{x}-6$ by point plotting.

\boldsymbol{x}	y
0	-6
4	-4
9	-3

Q24:

Find any intercepts of the equation $y=(x-1)\sqrt{x^2+1}$

1. Evaluate at x = 0:

$$y = (0-1)\sqrt{0^2 + 1}$$

 $y = -\sqrt{1} = -1$

Therefore, the y intercept of the equation is (0,-1).

2. Evaluate at y = 0:

$$(x-1)\sqrt{x^2+1}=0$$

(x-1)=0	$\sqrt{x^2 + 1} = 0$
x = 1	$x^2+1=0$

(x-1)=0	$\sqrt{x^2 + 1} = 0$
	$x^2 = -1$
	$x = \sqrt{-1} $ (undefined)

Therefore, the x intercept of the equation is (1,0).

Here is a graph for reference:

Q28:

Find any intercepts of the equation $y=2x-\sqrt{x^2+1}$

1. Evaluate at x = 0:

$$y = 2(0) - \sqrt{0^2 + 1}$$

 $y = -\sqrt{1} = -1$

Therefore, the y intercept of the equation is 0,-1

2. Evaluate at y = 0:

$$2x-\sqrt{x^2+1}=0$$

$$2x=\sqrt{x^2+1}$$

$$(2x)^2 = \pm (x^2 + 1)$$

$$4x^2 = \pm (x^2 + 1)$$

 $4x^2 \pm (x^2 + 1) = 0$

$4x^2 + (x^2 + 1) = 0$	$4x^2 - (x^2 + 1) = 0$
$4x^2 + x^2 + 1 = 0$	$4x^2 - x^2 - 1 = 0$
$5x^2 + 1 = 0$	$3x^2 - 1 = 0$
$5x^2 = -1$	$3x^2 = 1$
$x = \sqrt{\frac{-1}{5}}$ (undefined)	$x=\sqrt{rac{1}{3}}pprox 0.5773502691896257\dots$

Therefore, the x intercept is $(\sqrt{\frac{1}{3}},0)$.

Here is a graph for reference:

Q56:

Sketch the graph of the equation $y=\frac{10}{x^2+1}.$ Identify any intercepts and test for symmetry.

1. Function Properties:

- Since the function contains no x variable in the numerator, $y \neq 0 \ \forall x \in \mathbb{R}$.
- The domain of the equation is $\{x \in \mathbb{R}\}$, because $x^2 + 1 \neq 0 \ \forall x \in \mathbb{R}$.

2. Symmetries:

x axis symmetry test:

$$y=rac{10}{x^2+1}, \quad ext{substitute} \ (-y) \ ext{for y:} \ (-y)=rac{10}{x^2+1} \ y=-rac{10}{x^2+1} \ \{y=-rac{10}{x^2+1}\}
eq \{y=rac{10}{x^2+1}\}$$

Therefore, this equation is not symmetrical with respect to the x axis.

- y axis symmetry test: $y=\frac{10}{x^2+1}$, substitute (-x) for x: $y=\frac{10}{(-x)^2+1}$ $y=\frac{10}{x^2+1}$ $\{y=\frac{10}{x^2+1}\}=\{y=\frac{10}{x^2+1}\}$ Therefore, this equation is symmetrical with respect to the y axis.
- In fact, it is unnecessary to test for symmetry with respect to the origin now. And this is a proof why:

Let
$$f(x)=y$$
 $f(x)=f(-x)$ as shown previously. $f(x)\neq -f(x)$ as shown previously. $f(-x)\stackrel{?}{=} -f(x)$

Substitute f(x) for f(-x) since they are equal:

$$f(x) \stackrel{?}{=} -f(x)$$

Since it was shown that $f(x) \neq -f(x)$ and since f(x) = f(-x),

$$f(-x)
eq -f(x)$$

Since $f(-x) \neq -f(x)$, the equation is not symmetric with respect to the origin.

3. Graph:

\boldsymbol{x}	y
2	2
-2	2
3	1
-3	1

Q66:

Find the points of intersection of the following equations: $\begin{cases} x=3-y^2 \\ y=x-1 \end{cases}$

1. Solve for y by elimination:

Solve for
$$y$$
 by elimination:
$$\begin{cases} x=3-y^2 & x-3=-y^2 \\ y=x-1 & y=x-1 \end{cases}$$

$$\begin{cases} y^2=-x+3 \\ y=x-1 \\ y^2+y=2 \end{cases}$$

$$y^2+y-2=0$$

$$(y-1)(y+2)=0$$

$$y=1 \text{ and } y=-2$$

2. Substitute y in the equations:

$$x=3-y^2, \quad ext{substitute } y=1$$
 $x=3-(1)^2=2$ $x=3-y^2, \quad ext{substitute } y=-2$ $x=3-(-2)^2=3-4=-1$

Therefore, the points of intersection are (2,1) and (-2,-1).

Here is a graph for reference:

Q68:

Find the points of intersection of the following equations: $\begin{cases} x^2 + y^2 = 25 \\ -3x + y = 15 \end{cases}$

1. Solve for
$$y$$
:

$$-3x + y = 15$$

$$y = 3x + 15$$

2. Solve for x via substitution:

$$x^2 + y^2 = 25$$
, substitute $y = 3x + 15$

$$x^2 + (3x + 15)^2 = 25$$

$$x^2 + 9x^2 + (2)(15)(3)x + 15^2 = 25$$

$$10x^2 + 90x + 225 = 25$$

$$10x^2 + 90x + 200 = 0$$

$$x^2 + 9x + 20 = 0$$

$$x^2 + 4x + 5x + 20 = 0$$

$$x(x+4) + 5(x+4) = 0$$

$$(x+4)(x+5) = 0$$

 $x = -4$ and $x = -5$

3. Back-substitute to solve for y:

$$y = 3x + 15$$
, substitute $x = -4$
 $y = 3(-4) + 15 = -12 + 15 = 3$

$$y = 3x + 15$$
, substitute $x = -5$

$$y = 3(-5) + 15 = -15 + 15 = 0$$

Therefore, the points of intersection are (-4,3) and (-5,0).

Here is a graph for reference:

