Other varsion of GAS

Differential Evolution (DES)

Opposition-Based Learning

Idra- use opposites for better/faster learning/ optimization

what is apposite?

For any given $x \in [a,b]$, the opposite of x, \tilde{x} can be given as $\tilde{x} = (a+b-x)$.

Idea of opposition based learning:

Given unknown function f(x) with an evaluation function g(x), for every x and its apposite \overline{x} , we continue with if $g(x) > g(\overline{x})$.

Ex: $W_i = a + b - w_i$ ANN

Create $W_i = a + b - w_i$

continue working on the network with lowest error.

Problem: memory intensive

Perhaps meaningful at the very beginning.

RL Agent - Tabular implementation

			a_2	a,			,	
	Q	aı	a_2	α_{3}	Q 4			
	91							
	52							
	,							
	s;	(7				
	·							
S;=	s;	ř		Υ				
S¦=	ς S							
	:							

ex: $a_1 = \text{devator up}$ $a_3 = \overline{a_1} = \text{elevator}$ $a_0 = \overline{a_1}$

Evolution ?

What is opposition?

Linear: $\overline{X} = atb-x$, $\alpha \in [a,b]$ it gives lots

non linear: $\overline{X} = \{ x_i \mid y_i = y_{min} + y_{max} - y_i \}$

y∈ [ymin, ymax]

How about random ness?

Scenario $1: X_1$ and X_2 (random gusses)

Scenario 2: x_i and x_i

 $g(x_1, \bar{x}_1) > g(x_1, x_2)$ with 12% higher $(x_1, \bar{x}_1 \text{ negatively correlated})$ probability

GA application on Images

fitness function?
What is the task?
- segment the image

A segmented image is = binary image image with highest contrast

chromosomes?

You need a function with parameters that change the contrast. all pixels values

$$C(I) = \left(\frac{9ij - min}{max - min}\right)^{\alpha} \qquad \alpha \in [0, 1]$$

river image

0 garbage

$$compactness = \frac{asea}{(perimeter)^2}$$

fitness =
$$\left(\frac{g_{ij} - min}{max - min}\right)^{\alpha} + \frac{areq}{(perimeter)^2}$$

compactness

* compactness is very high just for the river.

01011011

Another advantage of GAS Given another image

GA has to be rerun from scratch to optimize the fitness function again for new image.