MÉTODOS NUMÉRICOS I

SEGUNDO DE GRADO EN MATEMÁTICAS, CURSO 2019/2020.

EXAMEN PRÁCTICO

MODELO 1

6 de Febrero de 2020.

1. Se considera la ecuación

$$f(x) = 0, \quad x \in \mathbb{R},$$

siendo

$$f(x) = x^6 - 6x^4 + 12x^2 - 8.$$

La única solución positiva de la ecuación es

$$l=\sqrt{2}$$
.

a) Escriba un programa Python que implemente el método de Newton para dicha ecuación. A partir de una semilla x_0 , el programa ha de ir calculando términos de la sucesión x_n hasta que se verifique

$$e_n = |f(x_n)| < \epsilon$$

o hasta que n > nmax, siendo ϵ la tolerancia de error y nmax el número máximo de iteraciones. Para cada $n \ge 1$, se debe mostrar en pantalla

$$n, x_n, e_n, \frac{e_n}{e_{n-1}}.$$

Para hacer el programa, se puede tomar como base el programa genérico para métodos de punto fijo realizado en las prácticas o escribir uno específico.

- b) Ejecute el programa desarrollado en el apartado anterior con $x_0 = 1.5$, $\epsilon = 10^{-12}$, nmax = 500. A juzgar por los resultados ¿cuál parece ser el orden del método? Y la constante asintótica de error? ¿Es el orden esperado?
- c) Repita los dos apartados anteriores para el método de punto fijo:

$$x_{n+1} = x_n - 3\frac{f(x_n)}{f'(x_n)}.$$

A juzgar por los resultados ¿cuál parece ser el orden del método? Discuta los resultados obtenidos.

2. La siguiente tabla corresponde a un conjunto de puntos de una sección de un ala de avión:

x	0	0.025	0.05	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
y_{sup}	0	0.0250	0.0376	0.0563	0.0812	0.0962	0.1035	0.1033	0.0950	0.0802	0.0597	0.0340	0
y_{inf}	0	-0.0052	-0.0060	-0.0045	-0.0016	0.0010	0.0036	0.0070	0.0121	0.0170	0.0199	0.0178	0

En concreto, las coordenadas de (x, y_{sup}) corresponden a puntos de la parte superior de esa sección, mientras que las coordenadas de (x, y_{sup}) corresponden a puntos de la parte inferior.

- a) Calcule la función lineal a trozos que interpola los datos de (x, y_{sup}) , así como la que interpola los datos de (x, y_{inf}) , y genere una figura en la aparezcan tanto el conjunto de puntos como las gráficas de ambas funciones (use una escala 1:1).
- b) Repita el apartado anterior usando interpolación spline cúbica.
- c) Calcule el polinomio que interpola los datos de (x, y_{sup}) , así como el que interpola los datos de (x, y_{inf}) , y genere una nueva figura en la aparezcan tanto el conjunto de puntos de la tabla como las gráficas de ambos polinomios, usando una escala 1:1. Comente el resultado obtenido: cuál parece ser el mejor resultado?