Esercitazione N.6: Amplificatore operazionale: circuiti lineari

Gruppo BF Andrea Luzio, Gianfranco Cordella, Valerio Lomanto

17 Novembre 2016

1 Scopo e strumentazione

2 Amplificatore invertente

Figura 1: Amplificatore invertente.

Si è montanto il circuito in figura (1) e si è scelto $R_1=2.27\pm0.03\,\mathrm{k}\Omega$ e $R_2=22.1\pm0.3\,\mathrm{k}\Omega$ e la frequenza del generatore in ingresso è $f=1.0343\pm0.0005\,\mathrm{kHz}$. Si è eseguito un fit lineare dei dati $V_{out}=aVin+b$. Si sono considerati solo i dati con $V_{in}<1.1$ V. I risultati del fit in 2 sono : $a=9.8\pm0.1$

 $b = -0.02 \pm 0.04$ $\chi^2 = 4.70 \text{ (4 dof, } p = 0.32)$

Provando a considerare anche i dati con V_{in} superiore al cut-off si ottengono valori del χ^2 con un p-value <0.15. Quindi supponiamo che tale cut-off sia la tensione limite oltre la quale si perde la linearità. Una verifica immediata si è fatta con l'oscilloscopio con $V_{in}=2.76\pm0.02\,\mathrm{V}$. Dalla 3 si osserva un clipping del segnale in uscita chiaro segno della non linearità del circuito. Il valore atteso del guadagno è $A=\frac{R_2}{R_1}=9.7\pm0.2$ che è compatibile con quello ottenuto dal fit.

Si è poi misurata la resistenza di ingresso del'amplificatore inserendo in serie a V_{in} una resistenza $R_s=2.27\pm0.03\,\mathrm{k}\Omega$ dello stesso ordine di grandezza di quella attesa. Poi è stato misurato V_{out} con e senza R_s inserita ottenendo rispettivamente $V_1=5.24\pm0.04\,\mathrm{V}$ e $V_2=10.32\pm0.08\,\mathrm{V}$. Da qui si ricava $R_{ing}=\frac{R_sV_1}{V_2-V_1}=2.34\pm0.07\,\mathrm{k}\Omega$.

Tale valore è compatibile con quello atteso che è R_1 .

Figura 2: Vout in funzione di Vin per l'opamp invertente.

Figura 3: Clipping di V_{out} per l'opamp invertente.

3 2

In questa sezione si vuole misurare la frequenza di taglio e lo slow rate del amplificatore così costruito.

3.1 Risposta in frequenza

Qui si vuole vedere il comportamento del OpAmp come circuito a un polo, dunque se ne vuole misurare la risposta in frequenza trovando una frequenza di taglio e un attenuazione $-20\,\mathrm{dB/decade}$ tipica dei passa-basso. L'ampiezza dell'ingresso, per risparmiare tempo, si è tenuta costante a $1.04\,\mathrm{V}$. Quest'ultima scelta ha impedito di aumentare la frequenza oltre $1\,\mathrm{MHz}$ per mantenere le pendenze massime delle sinusoidi al di sotto della pendenza di slewrate(da datasheet $13MVs^-1$). I dati sono stati fittati con due rette (una retta affine, 2 parametri, una retta costante, 1 parametro), senza considerare gli errori di calibrazione degli strumenti, ne l'errore sulla tensione di ingresso. I cut-off sulle frequenze scelti per separare la regione in cui l'amplificazione è costante e la regione in cui l'amplificazione scende a circa -20dB/decade sono poste a $40\,\mathrm{kHz}$. I dati e i fit sono riassunti in figura 4

Figura 4: Plot di bode di dati e fit

Per la retta si sono ottenuti i seguenti parametri: $q = \chi^2 19.41 \pm 0.02 dB$ $\chi^2 = 2.40$ (9 DoF, p = 0.98)

Questo farebbe pensare a una sovrastima degli errori di lettura. In effetti per molti dati il segnale letto è uguale all'interno dell'errore di lettura. A questi dati grezzi va aggiunto l'errore di calibrazione e l'errore sulla tensione in ingresso. Dati σ_l l'errore su q dato dagli errori di lettura, σ_c l'errore su V_{out} dovuto alla calibrazione dell'oscilloscopio e σ_{in} l'errore totale sulla tensione in ingresso, si ottiene (propagando in quadratura e considerando indipendenti le fonti di errore, utilizzando come errore di calibrazione sulle misure dell'oscilloscopio il 3% del valore misurato): $\sigma_q^2 = \sigma_l^2 + 400(\frac{\sigma_{in}^2}{V_{in}} + \frac{\sigma_c^2}{V_{out}^2})$ Inserendo i dati si ottiene:

$$\sigma_{q} = 0.84$$

Dunque $q = 19.41 \pm 0.84$, compatibile con quanto atteso per il guadagno in continua.

Per la retta obliqua si ottiene invece:

$$m = -18.3255 \pm 0.3690 \, \text{dB/decade}$$

$$q = 116.0 \pm 2.2 dB$$

$$\chi^2 = 2.19 \ (4 \text{ DoF}, p = 0.70)$$

Anche qui vanno aggiunti gli errori di calibrazione sulle tensioni di ingresso e uscita. Per quanto riguarda q la correzione da apportare è la stessa, dunque si ottiene un valore di:

 $q = 116.0 \pm 2.3 dB$

Per quanto riguarda m

4 Circuito integratore

Figura 5: circuito integratore con OpAmp.

Si è montato il circuito in 5 con $R_1=0.981\pm0.009\,\mathrm{k}\Omega,\,R_2=9.87\pm0.09\,\mathrm{k}\Omega,C_1=48\pm2\mathrm{nF}.$ L'ampiezza picco-picco di $V_{in}=2.08\pm0.02\,\mathrm{V}.$ Al variare della frequenza si è misurato V_{out} con l'oscilloscopio. La frequenza è stata misurata con il frequenzimetro dell'oscilloscopio e lo sfasamento tra V_{in} e V_{out} si è ricavato dalla misura dell'intervallo di tempo ΔT tra le due intersezioni delle onde in ingresso e uscita con l'asse delle ascisse ¹. Da questa misura si ricava lo sfasemento: $\Delta \phi=2\Delta T f$.

Per quanto riguarda il guadagno in frequenza sono stati eseguiti due fit(in 6), uno nella parte piatta dei dati cioè a basse frequenze ed un altro ad alte frequenze per studiare i due limiti del circuito integratore, rispettivamente $f << f_t$ e $f >> f_t$. Per f_t si intende la frequenza di taglio del circuito integratore pari a $f_t = \frac{1}{2\pi R_2 C_1} = 335 \pm 16\,\mathrm{Hz}$.

Il fit a basse frequenze $(f < 50\,\mathrm{Hz})$ è stato eseguito con una costante e i risultati sono :

$$A_v = 20.05 \pm 0.02$$

 $\chi^2 = 4.79 \text{ (4 dof, } p = 0.31)$

Il fit ad alte frequenze (f > 2 kHz) è stato eseguito con una funzione lineare $A_v(dB) = a \log_{10} f + b$ e i risultati sono:

$$a = -19.8 \pm 0.2 \frac{\text{dB}}{\text{decade}}$$

 $b = 69.9 \pm 0.4 \text{ dB}$
 $\chi^2 = 3.89 \text{ (5 dof, } p = 0.56)$

Il valore atteso del guadagno a basse frequenze è $A_v = 20 \log_{10} \frac{R_2}{R_1} = SI20.1(2)dB$ compatibile con il valore ottenuto dal fit. Ad alte frequenze la pendenza della retta è compatibile con $-20 \frac{\text{dB}}{\text{decade}}$.

E' stato eseguito anche un fit allo sfasamento() con un modello non lineare $\Delta \phi = \arctan \frac{-f}{f_t}$ e si è ottenuto:

$$f_t = 321 \pm 2 \text{ Hz}$$

 $\chi^2 = 62.21 \ (16 \text{ dof}, \ p = 0)$

Il valore della frequenza di taglio risulta compatibile con quello atteso prima calcolato.

¹Tale asse orizzontale corrispomde per ogni onda ad una tensione costante pari al proprio valor medio

Si è poi verificata la risposta del circuito ad un'onda quadra di frequenza $f=10.6\pm0.1\,\mathrm{kHz}$. Con un'ampiezza di $V_{in}=3.63\pm0.02\,\mathrm{V}$ si è ottenuta un'ampiezza di $V_{out}=1.90\pm0.02\,\mathrm{V}$ quindi $A_v=-5.6\pm0.2\,\mathrm{dB}$. Considerando che $f>>f_t$ si può usare la formula approssimata $A_v=-20\log_{10}f+20\log_{10}\frac{1}{2\pi R_1C_1}=$

Figura 6: plot di bode del guadagno del circuito integratore

Figura 7: fase in unità π del circuito integratore in funzione della frequenza