$$pV = nRT$$

$$pM = \rho RT$$

$$p_{\rm B} = x_B \cdot p_{\rm T} = n_{\rm B} \frac{RT}{V}$$

$$\overline{E_k} = \frac{3}{2}kT$$

$$(p + \frac{an^2}{V^2})(V - nb) = nRT$$
校正压力

$$\sqrt{u^2} = \sqrt{\frac{3RT}{M}}$$

$$\frac{u(A)}{u(B)} = \sqrt{\frac{\rho(B)}{\rho(A)}} = \sqrt{\frac{M(B)}{M(A)}}$$

$$\lg(p) = -\frac{\Delta_{\rm v} H_{\rm m}}{2.303RT} \cdot \frac{1}{T} + B$$

$$\lg(\frac{p_2}{p_1}) = \frac{\Delta_{\rm v} H_{\rm m}}{2.303R} (\frac{1}{T_1} - \frac{1}{T_2})$$

$$v\lambda = c$$

$$\overline{v} = \frac{1}{\lambda} = R_{\rm H} \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$$

$$E = h \nu$$

$$\lambda = \frac{h}{P} = \frac{h}{mv}$$

$$\Delta x \cdot \Delta v \ge \frac{h}{2\pi m}$$

$$E_n = -13.6 \times \frac{Z^2}{n^2} \text{ eV}$$

$$E = -\frac{13.6 \times (Z^*)^2}{n^2} = -\frac{13.6 \times (Z - \sigma)^2}{n^2} \text{ eV}$$

键级 = 成键电子总数-反键电子总数 2

配位数与 r+/r- 之比相关:

$$\mu = \sqrt{n(n+2)}$$

$$CFSE = (-4n_1 + 6n_2)Dq$$

一、单项选择题

1. 27°C 101.0 kPa的O₂(g)恰好和4.0L,127°C 50.5kPa的NO(g)反应生成NO₂(g),则O₂(g)的体积为 (C)

(A) 1.5 L (B) 3.0 L

(C) 0.75 L (D) 0.20L

2. 扩散速率三倍于水蒸气的气体是 (B) H₂ (C) CO₂ (D) CH₄

3. 实际气体在下述哪种情况下接近 理想气体 (B)

(A) 低温和高压 (B) 高温和低压

(C) 低温和低压 (D) 高温和高压

- 4. 多电子原子的能量E由什么决定 **(B)**
 - (A) 量子数n

- (B) 量子数 n和1
- (C) 量子数 n, l, m (D) 量子数1
- 5. 下列哪项用量子数描述的电子亚层可以容纳 的电子数最多 **(B)**
 - (A) n = 3, 1 = 2

(B) n = 4, 1 = 3

(C) n = 5, 1 = 0

- (D) n = 5, 1 = 3, m = +1
- 6. 原子序数为29的元素, 其原子核外电子排布 应是 (C)
 - (A) [Ar]3d⁹4s²

(B) $[Ar]3d^{10}4s^2$

(C) $[Ar] 3d^{10} 4s^{1}$

 $(D) [Kr] 4d^{10} 5s^{1}$

7. 下列量子数中, 合理的是 (D) (A) 3, 0, 1, -1/2 (B) 2, 2, 0, +1/2(C) 4, 3, -4, -1/2 (D) 5, 2, 2, +1/28. 下列原子中,第一电离能最小的是 (C) (A) B (B) C (C) Al (D) Si 9. 下列各种原子序数的元素中,其原子最外层 电子数最多的是 **(B)** (A) 2 (B) 15 (C) 38 (D) 42 10. 下列原子半径的大小,正确的是 (A) $(A) r_{Ga} > r_{Ge}$ (B) $r_{Zn} < r_{Fe}$ (C) $r_V > r_{La}$ $(D) r_{Sb} > r_{Bi}$

11. 一般所说的Be原子半径是指 (**D**) (A) 气态Be原子的半径 (B) 气态Be,分子中Be原子的半径 (C) BeO中Be原子的半径 (D) 金属Be晶体中Be原子的半径 12. 下列分(离)子中,无孤对电子的是 (C) (A) H_2O (B) H_2S (C) NH_4^+ (D) PCl_3 13. 某金属离子形成配合物时,在八面体弱场 中,磁矩为4.98B.M.,而在八面体强场中, 磁矩为零,该金属可能为 **(D)** (A) Cr(III) (B) Mn(II) (C) Mn(III) (D) Fe(II)

- 14. IB族元素的原子半径比相应的VIII族元素的 原子半径大,原因是 (C)
 - (A) d电子越多, 半径越大
 - (B) IB族的金属性比VIII族的强
 - (C) 最外层电子受屏蔽效应大
 - (D) 测定的实验方法不同
- 15. 对于第一、二周期元素所组成的多数同核 双原子分子 (除F,, O,外), 其分子轨道能级 高低比较不正确的是 **(B)**
 - $(A) \sigma_{2s} < \sigma_{2s}^*$
 - (A) $\sigma_{2s} < \sigma_{2s}^*$ (B) $\sigma_{2px} < \pi_{2py}$ (C) $\pi_{2py} = \pi_{2pz}$ (D) $\pi_{2py} < \sigma_{2px}^*$

16. OF₂分子中,中心原子O周围的孤对电子对数目为 (C) (A) 0 (B) 1 (C) 2 (D) 3

17. 下列分子中,表现为顺磁性的是 (B) (A) F₂ (B) O₂ (C) N₂ (D) C₂

18. 既有离子键又有共价键的是 (D) (A) KCl (B) CO (C)NH₄⁺ (D) Na₂SO₄

19. B₂的最低未占分子轨道 (LUMO) 是 (B) (A) π_{2p} (B) σ_{2p} (C) π_{2p}* (D) σ_{2p}*

20. 下列化合物中,既存在离子键和共价键, 又存在配位键的是 (\mathbf{A}) $(A) NH_{4}F$ (B) NaOH $(C) H_2S$ (D) BaCl₂ 21. 下列说法中正确的是 (D)(A) BCl3分子中B-Cl键都是非极性的; (B) BCl、是极性分子, B-Cl键是非极性的; (C) BCl,是极性分子,B-Cl键都是极性的; (D) BCl。是非极性分子, B-Cl键是极性的; 22. 下列分子中键级等于零的是 (\mathbf{B}) (A) O₂ (B) Be₂ (C) N₂ (D) Cl₂

23. H₂O分子的空间构型、中心原子的杂化方 式分别为 (A) 直线形, sp杂化 (B) V形, sp²杂化 (C) 直线形, sp³d杂化 (D) V形, sp³杂化 24. PCl3分子中,P采用的轨道是 (A) p_x、p_y和p_z轨道 (B) 三个sp³杂化轨道 (C) 二个sp杂化轨道与一个p轨道 (D) 三个sp²杂化轨道 25. 氧气分子具有顺磁性,可用哪种化学键理 论解释 (\mathbf{A}) (A) 分子轨道理论 (B) 杂化轨道理论 (C) 价层电子对互斥理论 (D) 现代价键理论

26. 14种晶格中不	存在	(C)
(A) 面心立方	(B) 体心	正交
(C) 面心四方	(D) 底心	单斜
27. 已知物质有两	阿种或两种以上的	的晶体结构,
这种现象称为		(B)
(A) 同晶现象	(B) 多晶	现象
(C) 同构现象	(D) 异构	现象
28. 下列离子中,	何者极化率最大	(\mathbf{B})
$(A) Na^+ \qquad (B)$	I^{-} (C)Rb ⁺	(D) Cl ⁻
29. 下列哪种稀有	气体沸点最低	(A)
(A) He (B)	Rn (C) Ar	(D) Xe

- 30. 下列晶格能大小顺序中正确的是 (D)
 - (A) CaO>KCl>MgO>NaCl
 - (B) NaCl>KCl>RbCl>SrO
 - (C) MgO>RbCl>SrO>BaO
 - (D) MgO>NaCl>KCl>RbCl
- 31. 下列反应热可代表KCl晶格能的是 (A)
 - $(A) K^+(g) + Cl^-(g) == KCl(s)$
 - (B) K(g) + Cl(g) = KCl(s)
 - (C) K(s) + Cl(g) == KCl(s)
 - (D) $K(g) + \frac{1}{2}Cl_2(g) == KCl(s)$

```
32. 都能形成氢键的一组分子是
                                                    (\mathbf{C})
    (A) NH<sub>3</sub>, HNO<sub>3</sub>, H<sub>2</sub>S
    (B) H_2O, C_2H_2, CF_2H_2
    (C) H<sub>3</sub>BO<sub>3</sub>, HNO<sub>3</sub>, HF
    (D) HC1, H_2O, CH_4
33. 下列分子中,偶极矩等于零的是
                                                    (\mathbf{A})
    \overline{\text{(A) CS}_2} \overline{\text{(B) NH}_3} \overline{\text{(C) H}_2S} \overline{\text{(D) SO}_2}
34. 下列固态的物质中,熔化时需要破坏共价
    键的是
                                                    (\mathbf{A})
    (A) SiO_2 (B) HF (C) KF
                                             (D) Pb
```

```
35. 一种离子应具有下列哪一种特征,它的极
  化能力最强
                                  (B)
  (A) 离子电荷高, 离子半径大
  (B) 离子电荷高,离子半径小
  (C) 离子电荷低, 离子半径小
  (D) 离子电荷低, 离子半径大
36. 下列物质中, 共价成分最大的是
                                  (D)
  (A) AlF_3
               (B) FeCl<sub>3</sub>
  (C) FeCl<sub>2</sub>
                 (D) SnCl<sub>4</sub>
37. 在配离子[Co(en)(C<sub>2</sub>O<sub>4</sub>)<sub>2</sub>] 中,
  中心原子的配位数是
                                  (D)
  (A) 3 (B) 4 (C) 5
                         (D) 6
```

- 38. 下列说法哪个总是正确的
 - (A) 色散力存在所有分子之间
 - (B) 在所有含氢化合物中存在氢键
 - (C) 硅酸盐都是巨分子结构
 - (D) 金属氧化物都是绝缘体
- 39. 下列关于[Cu(CN)₄]³-的空间构型及中心离子的杂化方式的叙述中正确的是 (C)

(A)

- (A) 平面正方形, d²sp²杂化
- (B) 变形四面体, sp3d杂化
- (C) 正四面体, sp³杂化
- (D) 平面正方形, sp³d²杂化

```
40. M为中心原子, a、b、d为单齿配体。下列
  各配合物中有顺反异构体的是
                               (\mathbf{A})
  (A) Ma<sub>2</sub>bd (平面四方) (B) Ma<sub>3</sub>b
  (C) Ma, bd (四面体) (D) Ma, b (平面三角形)
41. 根据晶体场理论,在一个八面体强场中,
  中心离子d电子数为多少时,晶体场稳定化
  能最大。
                                  (B)
  (A) 9 (B) 6 (C) 5 (D) 3
42. 下列配体中不能作多齿配体的是 (B)
  (A) PO<sub>4</sub><sup>3</sup>- (B) NH<sub>3</sub> (C) CO<sub>3</sub><sup>2</sup>- (D) 乙二胺
43. 下列物质的颜色不是d-d跃迁产生的 (C)
  (A) Ni^{2+} (B) Cu^{2+} (C) MnO_4^- (D) Co^{2+}
```

```
44. 下列配位数与其它三种不同的是 (B)
    \overline{\text{(A)}} \ \overline{\text{[CrCl(H<sub>2</sub>O)<sub>5</sub>]Cl<sub>2</sub>} \ \overline{\text{(B)}} \ \overline{\text{[Cu(NH<sub>3</sub>)<sub>4</sub>](OH)<sub>2</sub>}
    (C) [Cr(NH_3)_6][Co(CN)_6] (D) K_3[CoF_6]
45. 下列离子生成配合物能力最弱的是 (D)
    (A) Zn^{2+} (B) Cu^{2+} (C) Ag^{+} (D) Pb^{2+}
46. 下列离子形成的配合物一定具有顺磁性的
    是
                                                  (A)
    (A) Cu^{2+} (B) Ni^{2+} (C) Fe^{2+} (D) Co^{3+}
47. 下列各配合物中,有顺磁性的是 (C)
    (A) ZnF<sub>4</sub><sup>2-</sup> (B) Ni(CO)<sub>4</sub>
    (C) [Fe(CN)_6]^{3-} (D) [Fe(CN)_6]^{4-}
```

二、填空题

- 1. 实际气体与理想气体产生偏差的主要原因是:
- ① 分子间作用力 的影响;② 分子体积 的影响。
- 2. 在标准状态下,气体A的密度为0.09g/L,B为1.43g/L,气体A对气体B的相对扩散速率为4:1。
- 3. 在氢原子的激发态中,4s 和 3d 状态的能量高低次序为 $E_{4s} > E_{3d}$; 对于钾原子,能量高低次序为 $E_{4s} < E_{3d}$; 对于钛原子,能量高低次序为 $E_{4s} > E_{3d}$ 。

- 4. 基态氢原子的1s电子在距核53pm附近的 球壳 中出现的 几率 最大,这是因为距核较近时,几率密度 虽大,球壳体积 却较小,因而几率 较小;距核较远时,球壳体积 虽较大,几率密度却很小,因而几率 也较小。
- 5. 在某一周期,其稀有气体最外电子层构型为4s²4p⁶,其中有A、B、C、D四种元素,已知它们的最外层电子数分别为2、2、1、7,A和C的次外层电子数为8,B和D的次外层电子数为18,则A Ca B Zn C K D Br

- 8. 根据价层电子对互斥理论可推知ICl₄-共有 <u>6</u>对价层电子对,离子的空间构型为 平面四方 ,中心原子采用的杂化方式为 sp³d²。

- 9. 价层电子对互斥理论认为,分子或离子的空间构型取决于中心原子周围的价层电子对数,价层电子对指 o 键电子对与 孤对 电子对。
- 10. CO₂、SiO₂、MgO、Ca的晶体类型分别是 分子晶体、原子晶体、离子晶体、金属晶体, 其中熔点最高的是 MgO,熔点最低的是 CO₂。
- 11. 形成配位键具有两个条件: 一是提供共用电子对的原子有<u>孤对电子</u>, 二是接受共用电子对的原子有 空轨道。

- 12. 在配离子[Cu(NH₃)₄]²⁺中,配位原子是 N , NH₃是 配体; 在配离子[Cu(en)₂]²⁺中,配位原子是 N , 乙二胺是 配体 。
- 13. 在碱金属的氢氧化物中,在水中溶解度最小的是_LiOH; 在银的卤化物(AgX, X=F、Cl、Br、I)中,在水中溶解度最小的是_AgI。
- 14. 若不考虑电子的成对能, $[Co(CN)_6]^{4-}$ 的晶体场稳定化能为___-18___Dq, $[Co(H_2O)_6]^{2+}$ 的晶体场稳定化能为___-8___Dq。

三、判断题

- 当温度升高时,理想气体分子的速率分布曲线变宽变高。
- 2. 当温度一定时,液体的饱和蒸气压与外压无 关,为一定值。 (✓)
- 3. H₂O分子中O原子采用的是sp³杂化,NH₃分子中N原子也采用了sp³杂化。 (✓)
- 4. 相同原子间形成的叁键键能的大小,可以通过这两个原子间形成的单键键能大小的3倍来计算。 (**)

- 5. NO₂-分子,由于N原子采用了不等性sp²杂化, 因此使得N-O键之间的夹角大于120°。 (★)
- 6. 按照晶胞参数的差异将晶体分成七大晶系,按照带心的型式七大晶系可以分为14种布拉维格子。

(✓)

- 7. 在Si中掺入一些P,构成p型半导体。(x)

- 9.元素原子序数增加时,原子的有效核电荷呈线性关系依次增加。 (火)
- 10. 同一族从上到下,有效核电荷增加不多,原子半径增大很多,核对外层电子引力依次减弱,电子易于失去,电离能依次减小。 (✓)

四、计算题

1. 试用杂化轨道理论说明SO₂、CS₂分子中: ①中心原子的杂化类型; ②成键情况; ③分子的空间构型; ④分子有无极性。

SO₂: ① sp²杂化; ②1对孤电子对, 2个σ键, 1个π₃⁴键; ③V型; ④极性分子。

CS₂: ① sp杂化; ②2个σ键, 2个π₃⁴键; ③直线型; ④非极性分子。

- 2. 指出下列配离子: ①中心离子形成配离子前的价电子排布情况; ②中心离子采取的杂化类型; ③配合物的类型(外轨型还是内轨型); ④配合物的空间构型; ⑤配合物在水中的相对稳定性大小。
 - (1) $[Co(NH_3)_6]^{2+}$,磁矩 $\mu=3.8$;
 - (2) Fe(CO)₅,磁矩µ=0。

$$\mu = \sqrt{n(n+2)} = 3.8$$

$$n = 2.9 \approx 3$$