Advanced Topics in Concurrent Systems DM869

Mark Jervelund Mark@jervelund.com Doommius.com/notes.php

UNIVERSITY OF SOUTHERN DENMARK

IMADA

February 26, 2019

Contents

notes	1
Introduction to inference systems	1
Conculus of the cumunication system	

notes

w.r.t With regards to s.t. such that

Introduction to inference systems

Rules

Theorem 1. $\frac{\text{fil}}{num(Z)}[Zero]$

Theorem 2. $\frac{num(Z)}{num(Sx)}[Succ]$

$num(\mathbf{Z})$

Num(Z) is derivable iff x encodes a nautral number, if any derivation for number x has exatly height n, then x encodes n proff by induction, on the structure pf the given deviration for num(x) Care Zero The derivation starts with rule[Zero] hence X must be >, the height must be 1 case one Num(Z) is derivable iff x encodes a nautral number, if any derivation for number x has exatly height n+1, then x encodes n proff by induction, on the structure pf the given deviration for num(x) Care Zero The derivation starts with rule[Zero] hence X must be n+1, the height must be n+1

succ

Case Zero

The derivation rulestarts with rule[succ] hence X=Sy for somey, we have a derivation for num(Y), Its height, Say m.

By induction HP, y encodes m-1 thus Sy, encodes m-1

\mathbf{Add}

Theorem 3.
$$\frac{add(w,x,y)}{add(Sw,X,Sy)}[Succ]$$

 $\operatorname{add}(W,\!X,\!Y) \text{ is derivable iff } W\!+\!X = Y$

Prove by induction on the derication of add(W,X,Y)

Case $+\mathbb{Z}$ There is no inductive step

$$W = Z, X = x = Y, O+X=X$$

$$Case +S W=Sw, X=x, Y=Sy,$$

We have a serivation for add(w,x,y) We can apply the inductive hypothesis(ind. HP) w+x=y, W=1+w, Y=1+y, we conclude that 1+w+x=1+y, W+X=Y

sub

Theorem 4.
$$\frac{num(Z)}{num(Sx)}[Succ]$$

sub(w,x,y) def, rules s.t. sub(q,x,y) is derivable iff w-x=y. It can be proved that there is no proof for this.

if then

Theorem 5.
$$\frac{ifx+y=z}{thenw-x=y} \frac{add(x,y,w)}{sub(w,x,y)}$$

Conculus of the cumunication system

C is a channel C = new channel ("IP eg 10.130.10.42") C.open(); connect C.send(42); x: c.recv() P: $Def. a labelled transition sstem is <math>(S, L, \rightarrow)$

- S is a set of steates (processes)
- K us a set of lables (Actions)
- $\rightarrow \subseteq S \times L \times S$ is trasition relation

Natation S \xrightarrow{e} S' means (S,e, S') $\in \rightarrow$

 $\begin{array}{ll} P := \emptyset & // \text{Termination program} \\ \hline{C.P} & // \text{send on channel c and continue as P} \\ \hline{C.P} & // \text{Recieve on channel c and continue as P} \\ \hline{C.P \xrightarrow{c} P} & [\text{Send}] \\ \hline{C.P \xrightarrow{\overline{c}} P} & [\text{Recieve}] \end{array}$

$$\frac{P \xrightarrow{c} P' \qquad Q \xrightarrow{a} Q'}{P|Q \xrightarrow{t} P'|Q'} \text{ [Com]}$$

How can i see that two programs are running at the same time.

P | Q // P and Q urn concurrently

 $c.P|\overline{C}.Q \to P|Q$ //If we have two nodes, c, and \overline{c} and c wants to send to \overline{c} and \overline{c} want's to recieve from c, this is syncronys transmition. eg, a communication can't fail.

Spec R spec 1 Secn Rimpl

R should be an equivalence relation between two processes -transitive: reason about chain refinemnt Reflexivity PRP Symmytry Spec R impl. -> Impl R spec

Def A contact is any term generated $C := [-]|\alpha.C|C + P|(P|C)$

$$P ::= \alpha . P|O|P + P'|(P|P')$$

Def A trace is a sequence $\alpha_1 \dots \alpha_n \in ACT$

(ACT)* is the finite word containing all possible programs

The set of traces of a process P is the set of traces(P) $\{\alpha_1, \ldots, \alpha_n\}$

$$Traces(User) = \{ \in; \overline{P}; \overline{P}.enter; \overline{P}.enter.exit; \dots \} = \{ \in \} \cup \{ \overline{P}t | \in traces(U_1) \}$$
 (1)

Def a Relation R is a visimulation if Whenever two processes PRQ it holds that : We have two conditions if P can proform some transition

if
$$p \xrightarrow{\alpha} P'$$
 then there is $Q \xrightarrow{\alpha} Q' \wedge R'RQ'$ (2)

if
$$Q \xrightarrow{\alpha} Q'$$
 then there is $P \xrightarrow{\alpha} P \wedge' R'RQ'$ (3)

Def P,Q are called Bisimilar (P Q) iff there is a bisimulation r st. PRQ Desiderata for behavioval eq.

-Equvilance relation

-Congruence (w.r.t to the syntax for out programming language)

def. A relation R over CCS processes is a bisimulation if whenever $(P,Q) \in R$ it hold that for any lable α :

Theorem 6. 1) If $p \xrightarrow{\alpha} p'$ then there is q' s.t. $Q \xrightarrow{\alpha} Q'$ and $(P', Q') \in R$

Theorem 7. 2) symmetric of 1)

P and Q are called bisimilar (P Q) if there a bisimulation R. S.t. $(P,Q) \in R$

Lemma: Bisimularirt is an equivilance relation

Proof -Reflexivity $\forall P, P \mid P \stackrel{\alpha}{p} \stackrel{\gamma}{\to} p', p \stackrel{\alpha}{\to} p' - I \subseteq \text{-Prove that I is a bisimulartion: } (P,Q) \in I =>$

$$P=Q => p \xrightarrow{\alpha} p'$$
 then $Q \xrightarrow{\alpha} p'$ $(P', P') \in I$

-Symmetry: P Q => Q P. - By def. of bisimilairty there is a bisimulation R such that $(P,Q) \in R$ Claim R^-1 (The relation where you flip every pair) = $\{(x,y)|(y,z) \in R\}$ is a bisimulatin $(Q,P) \in R^-1$ is bisimular, You can conclude Q P

Given that R is a bisimulation then R^{-1} is a bisimulation for any R. let $(s,t) \in R^{-1}$. 1) For any $S \xrightarrow{\alpha} S'$, let T' be any s.t. $(S',T') \in R$ (There is at least one since R is a Bisiulation). (Since S is in relation with T by our definition, by this point by construction.) It follows that $T \xrightarrow{\alpha} T'$, $(S',T') \in R^{-1}$ by The above formula. this proves the first conditioning of the def. of bisumulation.

2.) Likewise: given $T \xrightarrow{\alpha} T'$, there is a transition $S \xrightarrow{\alpha} S'$ s.t. $(T', S') \in R$ hence $(T', S') \in R^{-1}$

-Transitivity: P Q, Q S => P S, The strategy here is to show that it is similar to what we did before. -From P Q it follows that $\exists R_1$ s.t. R_1 is a bisumulation and $(P,Q) \in R_1$ -From Q S it follows that $\exists R_2$ s.t. R_1 is a bisumulation and $(Q,S) \in R_2$

Define $R=R_1\dot{R}_2=\{(x,<)|\exists y.(x,y)\in R_1\land (y,z)\in R_2\}$ If R is a bisimulation by constrction $(P,S)\in R$ hence P S

 $(T_1,T_2) \in R$ If t1 can preform an action, then t2 can do the same with the same lables. 1) let $T_1 \xrightarrow{\alpha} T_2$, by construction of R. T_3 s.t. $(T_1,T_3) \in R_1$, therefor T_3' s.t. $T_3 \xrightarrow{\alpha} T_3' \wedge (T_1',T_3') \in R_1$

 $(T_3,T_2) \in R_2$, since R_2 is a bimiulation, $T_2 \xrightarrow{\alpha} T_2'$ s.t. $(T_3',T_2') \in R$ Inset picture here

 $T_1'R_1T_3'R_2T_2' => T_1'RT_2'$

2) $T_2 \xrightarrow{\alpha} T_2'$,

Lemma: Is a bisimulartion See notes

<u>Lemma:</u> is a congruence $\forall C, P | Q = C[P] | C[Q]$ The result is a result for a weaker/eqivilant one. Proof: by structual induction Let P Q, Proceed by structual induction on C, <u>Base:</u> C C, (No holes) It follow by reflexivity of if C = [] then C[P] = P | Q = C[Q] induction case:

- $C = \alpha . [\alpha . P \alpha . Q]$
- C = S|[S|P S|Q]
- $C = [1|SS|P \ S|Q$
- C = S + [1]
- C = [1 + S]
- $C = \lceil 1 \backslash L$

Lemma: If P Q then: 1) a.P a.Q 2) $\forall SS|P\ S|Q\ 3)\ \forall S+P\ S+Q$ 1) P Q => a.P A.Q let R be a Bisimulation s.t. $(P,Q)\in R$. Def. $R'=R\cup\{(a.P,a,Q)\}$ The two conditions

• $a.P \xrightarrow{\alpha} p$ the other process can only reply with $a.Q \land a.Q \xrightarrow{\alpha} Q$. $(P,Q) \in R'$,

2) $P Q = \forall S, S|P|S|Q$. Let R be a bisimulation $(P,Q) \in R$. -Def. R as the following relation $R = \{(S|P,S|Q)|P Q, P,Q,S \text{ are CCS Processes }\}$ Assume that $S|P \xrightarrow{\alpha} S'|P'$. Derivations for $S|P \xrightarrow{\alpha} S'|P'$ have thererfo: the first rule applied is 1) Lpar, 2) Rpar, 3, com 1) Lpar

$$\frac{S \xrightarrow{\alpha} S'}{S|P \xrightarrow{\alpha} S'|P} (P = P') \frac{S \xrightarrow{\alpha} S'}{S|q \xrightarrow{\alpha} S'|Q}$$

$$\tag{4}$$

 $(S'|P,S'|Q) \in R$ by def of R

2) Rpar

$$\frac{P \xrightarrow{\alpha} P'}{S|P \xrightarrow{\alpha} S|P'} (S = S') \text{ Since } P \ Q \exists Q \xrightarrow{\alpha} Q'P' \dagger Q'$$
(5)

$$\operatorname{From}(\star) \frac{Q \xrightarrow{\alpha} Q'}{S|Q \xrightarrow{\alpha} S|Q'} \operatorname{And from } (\dagger)(S|PTEST', S|Q') \in R \tag{6}$$

3) com

$$\frac{S \xrightarrow{\alpha} S' P \xrightarrow{\overline{\alpha}} P'}{S|P \xrightarrow{\tau} S'|P'} \text{ Since } P Q, Q \xrightarrow{\overline{\alpha}} Q' P'_{(\dagger)} Q'$$

$$(7)$$

From
$$(\star) \frac{S \xrightarrow{\alpha} S' Q \xrightarrow{\overline{\alpha}} Q'}{S|Q \xrightarrow{\tau} S|Q'}$$
 And from $(\dagger)(S'|P', S'|Q') \in R$. (8)

Likewise $S|Q \xrightarrow{\alpha} S'|Q'....$

PFor S+P S+Q use the relation **Picture from phone**

 $P|Q\ Q|P$ prove that $R=\{\ (P|Q,\,Q|P)\ \}$ is a bisimular

For an LTS (S, ACT, \rightarrow) It's saturation is the LTS S, ACT, \Rightarrow) where \Rightarrow is the least relation s.t. We can ignore internal computation

$$\frac{\text{ffl}}{S \to []\tau S} \frac{S_1 \to []\tau S_1' \ S_1' \xrightarrow{[]\alpha} S_2' \ S_2' \xrightarrow{[]\alpha S_2}}{S_1 \to []\alpha S_2}$$

$$(9)$$