# Práctico 4 - Gramáticas libres de contexto

## Ejercicio 1

Describir el lenguaje aceptado por el siguiente autómata de pila:

APD=<{eo,e1,e2,e3,e4,e5},{e,h,d,a,b},{E,H, Z0},  $\delta$ ,e0, Z0, {e5}>



El lenguaje que acepta el APD es:  $\{e^n h^m d^m a^j b^{n+k} / n, m \ge 0; j, k \ge 1\}$ .

## Ejercicio 2

Para cada uno de los siguientes lenguajes, definidos sobre el alfabeto:

 $A = \{a, b, c, d, e, h, x, y, z, 0, 1, 2, 3, 4\}.$ 

Diseñar y definir formalmente un autómata de pila que lo reconozca:

a) 
$$L_1 = \{ a^{2k} b^{2n} c^k d^j / k, n, j \ge 0 \}.$$

Base: (aa)k (bb)n ck dj

| k | n | j | Cadena |
|---|---|---|--------|
| 0 | 0 | 0 | λ      |
| 0 | 0 | 1 | d      |
| 0 | 1 | 0 | bb     |
| 0 | 1 | 1 | bbd    |
| 1 | 0 | 0 | aac    |
| 1 | 0 | 1 | aacd   |
| 1 | 1 | 0 | aabbc  |
| 1 | 1 | 1 | aabbcd |



b)  $L_2 = \{ x^r y^s z^t / t = r+s; r,s \ge 1 \}.$ 

Base =  $x^r y^s z^s z^r$ Mínimo = xyzz.



c)  $L_3 = \{ x^r y^s z^t / s = r+t; r,s >= 1 \}.$ 

$$s = r + t <==> 1 = 1 + t <=> 1 - 1 = t <==> t = 0.$$
  
Base =  $x^r y^r y^t z^t$   
Minimo =  $xy$ .



d)  $L_4 = \{x / x = a \ Y \ e; \ donde \ Y = b^{3n} \ c \ d^{3n}, \ n >= 1\}.$ 

Base =  $a (bbb)^n c (ddd)^n e$ Mínimo = base.



e)  $L_5 = \{1^n 0^k / n \ge 0, k = 3n\}.$ 

Base = 
$$1^{n} (000)^{n}$$
  
Mínimo =  $\lambda$ .



f)  $L_6 = \{a^{2n} b^i d^k e^{s+k} / s, i, k > 0; n > s\} \cup \{a^{2k} h^j d^{k+1} / k, j > 0\}.$ 

Posibilidad 1:  $(aa)^n (aa)^s b^i d^k e^k e^s / n$ , s, i, k >= 1.

Posibilidad 2:  $(aa)^k h^j d^k d / k$ ,  $j \ge 1$ .



g)  $L_7 = \{ (ab)^j c^{2i} b^{i+1} c^k d^n / i, j, k, n \ge 0; j \ge n \}.$ 

Base =  $(ab)^p (ab)^j (cc)^i b^i b c^k d^j / p >= 1$ ; j, i, k >= 0.

| j | i | k | Cadena     |
|---|---|---|------------|
| 0 | 0 | 0 | abb        |
| 0 | 0 | 1 | abbc       |
| 0 | 1 | 0 | abccbb     |
| 0 | 1 | 1 | abccbbc    |
| 1 | 0 | 0 | ababbd     |
| 1 | 0 | 1 | ababbcd    |
| 1 | 1 | 0 | ababccbbd  |
| 1 | 1 | 1 | ababccbbcd |

Pruebas por error: ababbdd, ababbddd



# Ejercicio 3

Para el siguiente APD llamado A, definir el lenguaje generado por comprensión.

$$A=\mbox{$<$Q=\{0,\,1\}$}$$
 ,  $\Sigma=\{a,\,b,\,c\}$  ,  $\Gamma=\{\,z_0,\,A,\,B,\,C\}$  ,  $\delta,\,0$  ,  $z_0,\,F=\{0\}\mbox{$>$}$  donde:

$$\delta = (0, a, z_0) = (1, Az_0)$$

$$\delta = (0, b, z_0) = (1, Bz_0).$$

 $\delta = (1, a, A) = (1, AC).$ 

 $\delta = (1, c, A) = (1, \lambda)$ 

 $\delta = (1, b, B) = (1, BC).$ 

 $\delta = (1, c, B) = (1, \lambda).$ 

 $\delta = (1, c, C) = (1, \lambda).$ 

 $\delta = (1, \lambda, z_0) = (0, z_0).$ 

#### Estado 0:

Si recibe una a y había  $z_0$ , apila A y va al estado 1. Si recibe una b y había  $z_0$ , apila B y va al estado 1.

### Estado 1:

Si recibe una a y había una A, apila AC y se mantiene en 1 (cuenta aes usando la C)

Si recibe una b y había una B, apila BC y se mantiene en 1 (cuentas bes usando la C).

Si recibe una c y había una A, desapila y queda C en el tope, se mantiene en 1.

Si recibe una c y había una B, desapila y queda C en el tope, se mantiene en 1.

Si recibe una c y había una C, desapila y se mantiene en 1.

Si recibe una c y había una B, desapila y se mantiene en 1.

Si recibe  $\lambda$  y había  $z_0$ , vuelve a estado 0 y finaliza.

# El APD A genera L = $\{a^j c^j b^k c^k / j, k \ge 0\}$ .

