CORROSION

VOLUME 23

JANUARY 1-DECEMBER 31

1967

CONTENTS

Tables of Contents
Alphabetical Subject Index
Alphabetical Index to Authors

JA

Oxida Mi: J.

Relat Me Cra J.

Stres Syn Mil

Anodi Und Aqu J. J. React -A Fra

Capac Act Tec

Errat

FEB

Dissol 1. U Kind

A Con Stre Aus Mag Heir

High T Eva Has and

MA

Use of Proc Boil: L. F

Effect on C Meha J. E

Hot Co

Table of Contents

CORROSION, Vol. 23, 1967

JANUARY	APRIL	JUNE continued
Oxidation of Fe-Ti Alloys in Co-CO ₂ Mixtures, by Gordon H. Geiger and J. Bruce Wagner, Jr	An Extreme-Value Statistical Analysis of Maximum Pit Depths and Time to First Perforation, by Howard F. Finley	Deformation Substructure and Susceptibility to Intergranular Stress Corrosion Cracking in an
Relationships Between Electrochemical Measurements and Stress Corrosion Cracking of Maraging Steel, by J. A. S. Green and E. G. Haney , 5	Factors Affecting Water Content Needed to Passivate Titanium in Chlorine, by E. E. Millaway and M. H. Kleinman	Aluminum Alloy, by H. A. Holl 173 A Precision High Current Potentiostat, by Norman L. Conger and Olen L. Riggs, Jr 181 Errata: 288
Stress Corrosion of Beryllium in Synthetic Sea Water, by R. A. Miller, J. R. Myers and R. K. Saxer 11	Liquidus Curves and Corrosion of Fe, Cr, Ni, Co, V, Cb, Ta, Ti,	JULY
Anodic Disintegration of Metals	and Zr in 500-750 C Mercury, by John R. Weeks 98	
Undergoing Electrolysis in Aqueous Salt Solutions, by William J. James, M. E. Straumanis and J. W. Johnson	A Technical Note-Corrosion Tunnels in Stainless Steels, by J. S. Armijo and B. E. Wilde,	A Technical Note-Oxidation of Iron-Titanium Alloys at 1000 C in Air, by Gordon H. Geiger and J. Bruce Wagner, Jr189
Reaction Rate of Sulfur With Lead -A Technical Note, by Frank Fradin and J. Bruce Wagner, Jr 24	Effect of Halide Additions on Anodic Behavior of Nickel in Sulfuric Acid Solutions, by John Postlethwaite and	Stress-Corrosion Characteristics of a Ti-7Al-2Cb-1Ta Alloy, by H. P. Leckie
Capacitance Measurements During Activation of Passive Nickel -A Technical Note, by R. R. Sayano	Leonard B. Freese	Tunnel Formation in Iron-Nickel- Chromium Alloys, by M. F. Dean, F. H. Beck and R. W. Staehle 19:
and Ken Nobe 27	MAY	A Technical Note-Montage of Processes
Errata	MAI	Operating During Stress Corrosion Cracking, by R. W. Staehle 203
PEBRUARY Dissolution Kinetics of Nuclear Fuels 1. Uranium 2. Thorium, by L. E. Kindlimann and N. D. Greene 29	Role of Slip Step Emergence in the Early Stages of Stress Corrosion Cracking in Face Centered Iron- Nickel-Chromium Alloys, by T. J. Smith and R. W. Staehle 117	Anion Effect on Dissolution of Magnesium Metal in Aqueous Solutions, by J. W. Johnson, C. K. Chi and W. J. James
A Contribution to the Examination of Stress Corrosion Cracking of Austenitic Stainless Steels in Magnesium Chloride Solutions, by Heinz Kohl	Effect of Some Organic Phosphorus Compounds on the Corrosion of Low Carbon Steel in Hydrochloric Acid Solutions, by Z. Szklarska- Smialowska and B. Dus 130	Influence of Sulfur on the Corrosion Resistance of Austenitic Stainless Steel, by B. E. Wilde and J. S. Armijo
High Temperature Corrosion and Evaporation of Haynes 25 and Hastelloy X-280 by L. A. Charlot and R. E. Westerman 50	Stress Corrosion Cracking of High Strength Steels and Titanium Alloys in Chloride Solutions at Ambient Temperature, by M. H. Peterson, B. F. Brown, R. L. Newbegin and R. E. Groover	Hydrogen Permeability of a Stable Austenitic Stainless Steel Under Anodic Polarization, by J. H. Shively, R. F. Hehemann and A. R. Troiano
MARCH	A Technical Note-Compatibility of Two	Effect of Potential and Stress on Time to Failure of Austenitic Stainless
Use of Ammonia to Supress Oxygen Production and Corrosion in Boiling-Water Reactors, by	Ni-Ti Alloys with Mercury, by James Y. N. Wang149	Steels in Magnesium Chloride Solutions, by M. Smialowski and M. Rychcik
L. E. LeSurf, P. E. C. Bryant and M. C. Tanner	JUNE	AUGUST
Effect of Organic Corrosion Inhibitors on Corrosion Fatigue, by Parviz Mehdizadeh, R. L. McGlasson and J. E. Landers	Reference Electrodes in Acid and Base Systems, by Richard L., Every and William P. Banks 151 Sulfide Stress Corrosion of Some	Influence of Long Time Polarization on Anodic Breakdown of Titanium in Concentrated NaCl Solutions, by F. Mazza
Hot Corrosion of Gas Turbine Alloys, by P. A. Bergman 72	Medium and Low Alloy Steels, by E. Snape 154	Errata:

AUGUST continued Oxidation of Series of Dilute Zr Alloys at 500 C in Water Vapor Atmosphere Containing Trace Amounts of Oxygen. by Earl A. Gulbransen and Kenneth F. Andrew 231 Anodic Behavior of Titanium and Commercial Alloys in Sulfuric Acid, by Milton Levy......... 236 Effect of Temperature on Stress-Corrosion Fracture, by W. D. Sylwestrowicz 245 Temperature Coefficient of Corrosion Inhibition, by Olen L. Riggs, Jr, and Ray M. Hurd 252 SEPTEMBER Experience with Alclad Aluminum in Deep Sea Buoyancy Sphere, by Maurice W. Wei 261 Influence of Alternating Current on Corrosion of Mild Steel: Behavior in 1 N Sulfuric Acid, by A. R. Yamuna and N. Subramanyan 264 Anodic Corrosion Characteristics of Aluminum 7075 and 7178, by A. H. Roebuck and J. V. Luhan. . . 268 Destructive Accumulation of Nitrogen in 30 Cr 20 Ni Cast Furnace Tubes in Hydrocarbon Cracking Service at 1100 C, by J. R. Schley and F. W. Bennett. 276

Errata 288

OCTOBER

Effects of Columbium in Steel on Elevated Temperature Hydrogen Attack, by R. E. Bisaro and	
G. H. Geiger 289	
Sulfuric Corrosion of Chromel- Alumel Thermocouples, by E. L. Creamer, I. Rozalsky and	
W. J. Lochmann 297	
Corrosion Resistance of Ti and a Ti-Pd Alloy in Hot, Concentrated Sodium Chloride Solutions, by Akira Takamura 306	
Boiling Temperatures of Mg Cl Solutions - Their Application in Stress Corrosion Studies, by Ina B. Casale	
Effect of Moisture on Decarburization and Fissuring of Steel by Hydrogen at Elevated Temperatures and Pressures, by J. Gutzeit and J. R. Thygeson, Jr	
Anodic Polarization Behavior of Titanium and Titanium Alloys in Sulfuric Acids, by J. M. Peters and J. R. Myers 326	

NOVEMBER

An Assembly for Electrochemical
Corrosion Studies in Aqueous
Environments at High Temperature
and Pressure, by B. E. Wilde 331
Exfoliation and Stress-Corrosion
Characteristics of High Strength,
Heat Treatable Aluminum Alloy
Plate, by B. W. Lifka, D. O. Sprowls
and J. G. Kaufman
and b. G. Kauman
Cathode Effects in Anodic Protection by
J. M. Stammen and C. R. Townsend, 343
J. M. Stammen and C. A. Townsend, 343
Use of Differential Capacitance
Measurements to Predict the
Inhibitive Behavior of Organic
Nitrogen Compounds, by Benjamin
Mosier and Gale B. Farquar 349
DECEMBER
DECEMBER
An Electrochemical Study of
Aluminum Corrosion in Boiling
High Purity Water, by R. A.
Legault and J. E. Draley 365
and the second second second
Simplified Procedure for Constructing
Pourbaix Diagrams - A Technical
Note, by Ellis D. Verink, Jr 371
ander, of marks of the same of
Corresion of Prefilmed Zircalov

Index, Volume 23 385

Alternation steel
Aging, in
Ainswor
Allihn,
Alclad vi

ALUMIN

AIR

ACIDS
Hydroc
chlori
inhib
40 - 8

Compo Hydrof 650 -Nitric

Phosph protect Sulfurio Sulfurio Sulfurio Micro Sulfurio Sulfurio

Sulfurio 6Al-6V Sulfurio 4V, Ti Sulfurio

20 20, 24
2219 vs
7075,717
368
7075,79,
Alclad 7
Dislocat
Exfoliative Indus
Stress to
see mar
slip zone
tempers,

Alternation H 2804 Altimel v Ammonio Anions e Annealin 650-750 Anodes, r NaCl, H 2 Anodic merbanis Amodic cu vs H 2804

Alphabetical Subject Index

CORROSION, Vol. 23, 1967

vs Fe - Ti alloys, 1000C, 185 Ti alloys stressed to SCC in, 189

331

335

343

349

365

371

374

385

Hydrochloric, 0.03 - 5 percent vs Ti with chlorides, 309 inhibition of, Temperature coefficients, 40 - 85C, 252 " vs LC steel, organic phosphorus compounds effect, 130 Hydrofluoric influence on cracking Ta in 650 - 750C Hg, 105 Nitric vs 14Cr - 14Ni - Fe, 209 Phosphoric reference anodes for anodic Phosphoric Ference another for another protection in >115C, 151
Sulfuric vs 14Cr - 14Ni - Fe, 209
Sulfuric, hydrogen penetration of 310, 218
Sulfuric, inhibition of, temperature coefficients, 40-85C, 252 Sulfuric vs mild steel, influence AC 250 micro A - 100 Ma, 264 Sulfuric vs 270 Ni, 27 Sulfuric N/10 vs Ni, chlorides, bromides, Sulfuric vs steels, plus Co2, inhibitors, 65 Sulfuric vs Steels, plus Co2, inhibitors, 65 Sulfuric vs Ti, effect of Fe and Cu additions,

Sulfuric vs Ti 75A, 13V-11Cr-3Al, 6Al-6V-28a at 20C, 236 Sulfuric vs Ti 75A, Ti-5Al-2.58a, Ti-6Al-2V, Ti-8Al-iMo-1V, Ti-13V-11Cr-3Al, 326 Sulfuric vs U 37-90C, 30

Alternating Current cycle frequency influence on steel vs H₂SO₄, 265 Aging, influence SCC Al alloy> 120C, 176 Ainsworth, 50

ALUMINUM AND ALLOYS

1110 vs high purity water, 97C, 365

220,24 vs 5% NaCl, pH₃, 335 2219 vs 5% NaCl, pH₃, 335 7075,7178, electrochemical characteristics, 7075,79,01,7178 vs 5% NaCl, pH₃, 335 Alclad 7072-7172 vs sea water, 261 Dislocations, influence SCC > 120C, 173 Disiocanons, immence SUC > 1.20C, 173
Exciolation so pH₂, 5% NaCl, 336
vs Industrial atmospheres, 336
Stress Corrosion vs pH₃, 5% NaCl, 336
sea marine littoral environment, 336
slip zones at low and high temperatures, 251
tempers, influence on exfoliation, 335

Alternating current vs steel, mild in H 2804 250 micro A to 100 Ma, 264 Altimel vs H₂804, 649-816C, 297 Ammonia vs O₂ in boiling water reactor, 57 Anions effect vs Mg in aqueous solution, 204 Annealing, influence on stress cracking Annealing, intrinsice on stress cracking 650-750C Hg on Cb-12r, 104 Anodes, reference for anodic protection NaCl, H₂PO₄ >115C, 151 Anodic metals in aqueous salt solution, mechanisms. 15 Amodic current, influence NaCl on 310 vs H₂SO₄, 215

vs Ti in NaCl, 80C, 223 Ti and alloys in H₂SO₄ 22C, 326 Measurments at 314C, 105.5 Kg/cm² vs 304 in chlorides, 333

ANODIC POLARIZATION

systems involving NaOH. H2PO4, Anotrol, 6, 27, 188, 269, 344 Araldite, 264
Astrocream Cement, 298
Austenite, influence SCC steels in H₂S, 165
Autoclave Engineers, Ltd., 331

Baker and Adamson, 332
Benzoquinoline inhibitors vs
HCl, H₂SO₂, 256
Bersoryl, 224
Beryllium vs aqueous salt solutions, mechanism, 15 Beryllium in synthetic sea water vs stress >40,000 psi, 11 Bismuth, influence of lead on corrosion 250-300C, 25 Blisters, Alclad 7072 - 7178 vs sea water, 261 Blisters Fe-30Cr 20 Ni tube vs 1100C steam, methane 4700 hrs., 281 Brine acidified with H₂S vs low and medium alloy steels, SCC, 115 Sromide vs Ni in 10/N H₂SO₄, 111 Buoys, Al vs sea water, 261 Burnout of carbon in hydrocarbon cracking furnace tubes, 287

C-ring specimens, Al vs pH₂, 5% NaCl, 340 Calmium and Zinc aqueous salt solutions, mechanisms, 19 Carbon influence SCC of steels vs H₂S, 164 CARBON DIOXIDE

vs chromel-alumel thermocouples vs caromei-aiumei thermocouples 649-816C. 298 vs fatique life steels in NaCl, H₂S, 70 vs Fe with alloy of 0.59-1.06% Ti, 1

CARBON MONOXIDE

Ceramo, 298

vs Fe with alloy of 0.59-1.06% Ti,1 vs chromel-alumel thermocouples 659-816C, 298

Carburization, hydrocarbon cracking furnace tubes, 280 Cathode effects in anodic protection, 343 Cathode location influence in anodic polarization, 343
Cathodic charging, low C and alloy steels in H₂S acidified brine, 155
Cathodic polarization 1100 Al in high purity water, 97C, 365 Cathodic polarization measurments at 289C, 333

Cobalt vs Hg, 500-750C, 98 Cobalt base alloys X40, L605 vs 2000F JP4, sea salt, 73 Columbium vs Hg, 500-750C, 98 Columbium influence on H2attack of Ferrovac 1020 at 510-580C, 1000-1400 psig, 289 Columbium-12r vs Hg. stressed,

650-750C, 103 Contimet, 223 Chloride ion vs Ti in H₂SO₄, 239 Chloride ion vs U, 30 Chlorides NH, CU, Fe, Zn, Ca CHLORINE

Flowing vs Ti, 25-175C, 89 vs Ti, water to inhibit, 88 Ti tested for production of, 223

Chromel-alumel thermocouples vs 649-816C sulfur, 297 Chromel vs sulfur 649-816C, 297

carbide reference anode, anodic prote ion vs sodium hydroxide >115C, 151 vs Hg, 500-750C, 98 Nitrogen, chromium influence solubility of, in 1100C steam, methane, 285 vs sulfidation 2000 F, 80

Conax Corporation, 331 Copper in Alclad diffusion zone, influence in sea water, 263 Corning Glass Works, 332 Cracking, SC of Al vs pH₂, 5% NaCl, 338 Crevice corrosion, Ti, TiPd in chlorides +HCl boiling, 306

Diffusion zone, ZnAl, corrosion in sea water, 262 water, 262
Dislocations, leading to tunnels in SS,
Incoloy, Inconel in MgCl₂₉, 194
Dislocations, influence on SCC Al alloys >120C, 173 Drierite, 188, 320 Du Mont Laboratories, 344, 350 Durite, 149

Electrochemical measurments in water cooled nuclear reactors, 379 Electrochemical tests, Al 7075, 7178, 269 Electrolyte bridge, high pressure, diagrams, 323, 333 Garans, 353, 353
Emilscop, 174
Eriochrome black-T, 205
Exfoliation, Al 7075, 7178, 2024, 2219 etc. in pH₃ 5% NaCl, 335
Exfoliation tests, Al 7075, 7178, 269

Ferric chloride 10 wt/% vs 14Cr-14NI-Fe,

Films effect on Zr 2,4 in 400C water, 374 Films, Mg in acid and neutral electrolytes,

General Radio Co., 350, 381 Geometry, anodic polarization, influence of cathode location, 343 Gold-plated half cells in sodium dichromate dihydrate + 96% H₂SO₄, 153

GRAPHED DATA

304 over potential vs current density 289C high purity water 96 hrs, 382 4340 stressed sa flowing sea water, 144 4340 stressed vs. flowing sea water, 10, 18% NI stressed maraging steel 18Ni maraging steel, electrode potential variation w/time, 0.6N NaCl, 7 Al pipe vs tap water, maxium pit depths, Benzoquinoline vs HCl. carbon steel, 255

, pitting in synthetic sea water, 77F, 13 Carbon steel and 304 in high purity water 289C, corrosion rate vs 500 hrs,

steel potential vs current density in 288C high purity water, 590 hrs, 382 ", steel influence ammonia in BWR, pressurized water, steam/water and separated steam, 61 Cathodic charging, Ti in NaCl, Time vs potential, 190

Cathodic protection potential vs stress 18% Ni marazing steel in 2.5% NaCl, 146 Compositional coordinates, 400O isotherm, Fe-Ni-Cr systems, 199 Contact material and environment, in alip step emergence, importance, 126 Copper-beryllium vs ammonia, time vs plastic prestrain to form 0.1 mm crack, 249 Crack growth rates vs time 4240, H-11 steels, 145 Current density vs apparent valence Cd in sait water, 21 Current density vs time to failure N80, 35-42R_C, 157 Grain size, effect of emergenca, 127 Hastelloy X-280, evaporation vs

Hastelloy X-280, evaporation vs time, 1120C, 54 Haynes 25, evaporation 1120C vs time, 54 Hydrogen absorption vs current density N-90 (R₂ 39), 157 ", attack ratios, Co-*rested vs C steel, 510-580C, 295 ", evolution rate, Mg in H₂80₄, HI, HBr, HCl, 205 , permeation va maxium depth attack, 1000-1400 psig. 510-580, 292

", volume in LC speel vs HCl with organic phosphorus component, 132 Methane fugacity vs wall thickness, 1000-1400 spig, 580C, 293 Nitrate concentration vs apparet valence Cd in salt water, 21
Organic inhibitors vs cilwell fluids,
adsorption isotherms, 360, 361
Oxygen vs Fe-Ti alloys, rates, 3 Hastelloy X-280, 1120C,51 vs Haynes 25, 1120C, 51 I vs time-to-failure, N-80 35 and 42 R_c, 157 Pits, maxium depth distance, 12-in pipe, 12-yr esposure, 84

G continued

GRAPHED DATA

Polarized 1100 Al vs 97C high purity water, 2.5 hrs., 368
Slip-step formation, 125
", activated local dissolution, 126
Stress vs H content N-80, 159
Sulfidation kinetics, 300C lead vs 0.4 at/o Na. 25 Thorium galvanic potential current vs H₂SO₄ 25C, 37 Time-to-tubing leas vs survival probability, 84 Ti alloys in H₂SO_A, temperature effect on polarization, 238 Ti vs Hooker cell chlorine, influence water content, 95, 96, 97 U vs NaOH, effect chlorides on odic potential 25C, 33 ", vs H₂SO₄, anion concentration pH vs anodic polarization, 32 Variation time-to-fracture vs temperature, 43

Zr 2,4 vs 360-454C high purity water time. 376

Green Rot, chromel-alumel thermo-couples, in 649-816C sulfur, 297

Н

Halides vs Ni in H₂SO₄, 109 Hamilton, 88 Hamilton, os Hastelloy X vs 2000F JP4, sea salt, 74 Hastelloy X-280, 50 Haynes 25, 50,51 Heathkit Audio, 350 Honeywell-Brown Pyro-Vane, Honeywell Instrument, 331 Honeywell potentiometer, 381 Humidity, influence SCC Ti alloys in air, 189 Hydrocarbon cracking cervice, Ni vs Fe 30Cr 20Ni furnace tubes, 276 Hydrocarbons vs Hastelloy X-280, Haynes 25, 1120C, 52

HYDROGEN

310, pentration in NaCl, H₂SO₄ under anodic current, 215 Embrittlement 4340, H-11 in 3.5% NaC1, 145 Embrittlement, Ti under cathodic charging, 191 vs Ferrovac 1020, 510-580C, 1000-1400 psig, 289 moisture, influence on attack LC steel, 454-566C, 318 vs Zr and alloys vs O₂ torr in water vapor 500C, 237 hrs., 232

Hydrogen sulfide vs chromel-alumel Hydrogen sulfide vs low and medium alloy steels in acidified brine, SCC, 155 Hypochlorite Ti tested for production of, 223

Impedance bridge, use to test organic Inhibitors, 349 Inco 713, 72 Incoloy, 600, 800, 825, vs MgCl₂, 192 Inconel, 59, 192

INHIBITORS

Amines tested vs oilwell fluids 22-165C, 351 vs HCl, H₂SO₄ temperature coefficient, 40-85C, 252 Imidazoline vs oilwell fluids 22-165C, 351 Napthenic acid vs oilwell fluids 22-165C, Organic vs H2S, CO2, NaCl, 65 Ti in H₂SO₄, passivation of, 239

Instron, 5, 174 Intercrystalline fracture Cu, Be in ammonia, 246 Intergranular SCC of Al alloy >120C, 173 Iodides vs Ni in 10/N ii or es vs Ni in 10/N H₂SO₄, 112

IRON AND ALLOYS

Fe-30Cr-20Ni tubes vs 1100C steam, methanol, 276 vs mercury 500-750C, 98 - Ti alloy vs CO₂, CO, 800-1100C, 1 - Ti 0.51, 0.91, 1.55 w/o vs air, 1000C, 185

JP4, w/ sea salt vs Ni, Co-base

K2, vs JP4, sea salt, 2000F, 73 Kanthal - N vs H₂S, 760C, 299 Keithley, 6, 27, 224, 381

Leeds and Northrup, 350 Lithium sulfate vs gas turbine alloys, 2000F, 81 Long traverse cracking Al alloys in NaCl, 335

Magnaflux, 269 Markal S-R-10, 298

MAGNESIUM

vs aqueous salt solution, mechanism, 16 vs Cl~, Br~, I~, NO3, SO4, vs, 204 Hg, influence vs Cb-1Zr at 650-750C, 105

MAGNESIUM CHLORIDE

vs 302, 304 at 25-125C, 218 vs 304, 309, 310, Incoloy 600, 800, Nionel 825, 192 vs 14Cr-14Ni-Fe, 209 vs 18-9 steels, 123-154C, 39 boiling point determination, 3

MECHANISM Deformation influence SCC, 178

Dislocations effect, Al Alloy SCC >120C, 173 Electrochemistry, Al vs high purity water, 97C, 365
Mg vs acid and neutral electrolytes, 207
Metals vs aqueous salt solution, 15
N vs Fe-30Cr-20Ni tubes, failure in steam, methane, 1100C, 284 Organic inhibitor action, molecule's function, 349, 362
O₂ vs Fe-Ti alloys, 1000C, 185
Pd influence on Ti vs boiling chlorides, 312 nergence in SCC, 120 SIIp step emergence in SCC, 120 SCC CuBe, Al in ammonia, 251 Sulfur 649-816C vs chromel-alumel thermocouples, 305 Ti structure influence on rates in H₂SO₄, 244 "Memory phenomenon" of Zr vs 454C water, stress, 374

MERCURY

vs Fe, Cr, Ni, Co, N, Cb, Ta, Ti, Zr, 500-750C, 98 vs Ni 46.8 and 25.5 Ti, 528C, 149 Hg salts reference anode for anodic protection in MaOH and H₂PO₄ acid >115C, 151 Metal-sheathed ceramics vs sulfur, 649-816C, 305 Methane, with steam vs Fe-30Cr-20Ni tube 1100C, 276
", formation vs time and hydrogen
pressure, 291
Molybdenum-Mo oxide reference anodes

for anodic protection in NaOH and

H₂PO₄ >115C, 151

M continued

Monel 410 vs oxygen, nitrates in boiling

NICKEL AND ALLOYS

54 vs MgCl₂, 117 58 vs MgCl₂, 117 310 vs MgCl₂, 127 12 Ni maraging steel stressed vs 3.5% NaCl. 144 Nacl, 144 18% welded Ni maraging steel stressed vs 3.5% NaCl, 144 Cathodic protection stressed in NaCl, 146 Inconel 600 vs O2, NiO2 in boiling water reactor, 59 2, MG 2 in tolling water reactor, 59 1N-100, 713 vs JP4, sea salt 2000F, 74 600, 800 Incoley vs MgCl₂, 192 Fe-30Cr-20Ni tubes vs steam, methane 1100C, 276 Ni on, SCC steels, influence in H₂S, 164 vs mercury, 500-750C, 98 vs Nitrogen influence on solubility in 1100C vs Nitrogen intende on solutifity in steam, methane, 285 slip-steps' role in SCC. 117 Sodium chloride, bromide, iodide vs deareated N10 H₃SO₄, 109 vs sulfur 649-816C, 303

Nimonic, 304 Nitrides in Fe-30Cr-20Ni tubes vs steam, methane 1100C, 277

NITROGEN

OXYGEN

270, capacitance measurements activation of passivity vs H₂SO₄, 27 vs chromel-alumel thermocouples, 649vs Fe-30Cr-20Ni tubes steam, methane 1100C, 276 vs Haynes 25, Hastelloy X 280, 1120C, 53 vs steels monel Incomel 57

Nuclear reactors boiling water, ammonia vs O₂, 57 ", measurements in water cooled, 379

0

chromel-alumel thermocouples 649-816C, 298

vs Cu Be stressed in ammonia, 245 vs Hastelloy X-280, 1120C, 51 vs Haynes, 25, 1120C, 51 vs Ti in NaCl, 223 vs Ti in 2.5% NaCl + 2.1 mol/1 HCl,

90C, 312 vs Zircaloy 2,4; Zr 1-9Cr-1.3Ni and 5.0V, 500C, 237 hrs., 1-12ppm, 231

Oxide scales, Fe-Ti vs 1000C air, 186

P

Petroleum, testing inhibitors used in oduction, 349 Phillips, 118, 193, 264 Phosphorus-organic compounds vs HCl and LC steel, 25-75C, 130 Phosphorus, role in SCC, 117
Pit depth, statistical analysis, 83
Platinum anodes in polarization tests, 367
Platinum-clad electrodes, anodic protection tests, 344 Polarization measurements, water cooled nuclear reactor environments, 379 Potential, influence on time-to-failure austenitic 302, 304 in MgCl₂ 25-125C, 218 Potentiostat, description precision high current, 181
Pourbaix diagrams, construction of,
Power Eng, and Equipment Co. 331 Power Design, Inc. 381 Pre-cracking, effect on SCC rate, 148

PRESSURE.HIGH

105.5 kg/cm² vs AISI 304 in chlorides,

Pcontinued

304 v 304 v 304 v 310 v 316 v 410 v

ions

Stress

expos

STRES

Al 70' Al 70' NaCl Chror hydre

Coppe -20, Sulfur

MgC: Ti-7A

with: STRES

Al alle 173 Cb 1 2 N-80 a 4340 v CuBe 0.1 m Monta

envir

Steels, brine, Ti allo

Trans

Tunnel

Sulfidat

SULFU

vs 14C

FeCl₃ vs chr 816C, vs lead vs Ni,

80

11

314C, 331 1500 psi high purity water, steam vs Zr 2,4, 375 1000 psi vs 304 high puritywater, 289C, 379 1000 psi vs C steel, high purity water, 289C, 379

Q

Quenching of Al alloy, influence on SCC, 179

R

Regatran, 188

6

Salt, sea, influence in JP4 vs Ni, Cobase alloys 2000F, 73 Sargent Ampot, 350 Sargent, E. H. & Co., 344
Scratching, influence on Ti in chlorine,
25-175C, 88
SEL 15 vs JP4, sea sait, 2000F, 74 Short traverse cracking Al alloys in NaCl, 335
Silicon, role in SCC, 117
Silver, influence SCC Al alloy, 179
Singer Metric Division, 381 Slip steps precedent to tunnels in SS, Incolov. Nionel, 192 Slip steps' role in SCC Fe Ni Cr alloys, 117 Sodium vs lead, influence 250-300C, 24

SODIUM CHLORIDE

vs 310, hydrogen penetration, 215 vs Al 7075,79,01,7178,2020,24,2219, 335 inhibitors tested vs 22-165C, 349 vs Ni in Ni0 $\rm H_2SO_{24}$, 110 vs steels, fatigue w/H₂S, CO $_{22}$ 65 vs Tt-7 Al-2Cb-17a stressed in HCl or NaOH, 188 vs Ti and alloys in H₂SO₄, 20C, 240 Ti anodically polarized in 5.3M, 80C, 223

Sodium hydroxide anodes, reference for anodic protection >115C, 151 Sodium perchlorate in electrolyte, 353 Specimen configurations Al, for exfoliation and stress corrosion tests, 336 Spray test, accelerated acidified, NaCl vs Al, 337 Starrett, 188 Statistical analysis of pit depths, time-tofirst penetration, 83 Steam, with methane vs Fe-30Cr-20Ni tube 1100C, 276 ", vs Zr 2,4 in high purity water, 454C, 374

STEEL

1010 vs O₂ nitrogen, ammonia in boiling water reactors, 57 4340 stressed vs sea water 143 387-64 vs O2 nitrogen, ammonia in boiling water reactor, 59 Carbon vs 289C high purity waterr 1000psi, 379 Ferrovac 1020 vs hydrogen 510-580C 1000-1400 psig 289 vs HCl, phosporus organic compounds f effect, 25-75C, 130 inhibitors vs H₂SO₄ and HCl, temperature coefficient, 40-85C, 254 vs moisture, 100-450ppm influence with hydrogen, 454-566C 318 low, medium alloy vs H₂S, acidified brine, SCC, 115 orine, S.C., 118 mild, influence 259 micro A-100MA vs H₂SO₄, 264 14Cr 14Ni vs H₂SO₄, HNO₃, FeCl₃, MgCl₂, 209
18 Ni maraging vs CO₂-CO, 800-1100C, 1
18-9 vs MgCl₂, 123-154C, 39
302, 304 influence potential and stress on failure vs MgCl₂, 218 304, 309, 310, tunnels in MgCl₂, 192 304 vs chlorides, 314C, 105.5 kg/cm², 331 304 vs O₂, N, NH₃ in boiling water reactor, 59 S continued

304 vs 70% H₂SO₄, 153 304 vs H₂SO₄, HNO₃, FeCl₃, MgCl₃, 213 304 vs high parity water, 289C 1000 psi, 379 310 vs NaCl, H₂SO₄, 215 316 vs H₂SO₄, HNO₃, FeCl₃, MgCl₂, 213 410 vs O₂, N, NH₃ in boiling water reactor, 59

Tunnels in austenitic alloys without Ci-

Stress, influence on time-to-failure austentitic 302, 304 in MgCl₂, 25-125C, 218 Stress, influence on recovery N-80 after exposure to H₂S, 159

STRESS CORROSION

18-9 steels, austentic vs MgCl₂, 39
Al 7075 vs NaCl, 272
Al 7075, 7170, 2024, 2219 etc in pH 3, **5**%
NaCl, 335
Chromel-alumel wires in air, nitrogen,
hydrogen, sulfide 760-816C, 299
Copper-1.8 Be-0.3 Co in ammonia
-20, 30 and 90C, 245
Sulfur influence vs H₂80O₄, HNO₃, FeCl₃,
MgCl₂, 2l3
Ti-7Al-3Cr-1Ta alloy vs 3% NaCl + HCl
with sodium hydroxide, 188

STRESS CORROSION CRACKING

173
Cb 1 2r in Hg 650-750C, 104
N-80 susceptibility vs hardness in H₂S, 159
4340 vs sea water 142
CuBe vs ammonis, time-to-formation
0.1 mm cracks, 247
Montage of processes in metal and
environment, 203
Steels, medium, low alloy in H₂S + acidified
brine, 155
Ti alloys in sea water, 147
Transgranular of Be in synthetic sea water,

Al alloy, influence of dislocations >120C,

Tunnels in austenitic alloys without, 107 Sulfidation gas turbine alloys, 2000F, 80

SULFUR

vs $14\mathrm{Cr}-14\mathrm{Ni-Fe}$ austenitic, $\mathrm{H}_2\mathrm{SO}_4$, HNO_3 , FeCl_3 , MgCl_2 , 209 vs chromel-alumel thermocouples, 649- $816\mathrm{C}$, 297 vs lead , 250, 275, $300\mathrm{C}$, 24 vs Ni , $\mathrm{Co-base}$ alloys, $\mathrm{influence}$ Na , $2000\mathrm{F}$, 80

TABULATED DATA

18 Ni maraging steel, current density, miero A/cm², 0.6N NaCl, 9 Mrydrogen vs LC steel 1000 pat, incubation period activation energies, 323 Inhibitor § protection vs concentration fatigue life, steels in NaCl, HgS, CO₂, 67 Reactor, boiling water rates vs steels, Monel, 404, Inconel 600, influence of ammonia, 60 Steel, LC, vs HCl, rate vs inhibitor concentration, 132, 133 Sulfide cracking resistance low, medium steels vs strength, composition, heat treatment, 160 Ti, breakdown voltages in NaCl, HCl, 225 Ti vs Chlorine, 92 Uranium vs HgSO₄ wt loss at 0.5V, 33 Zr vs 550, 600, 680, 750 F high purity water vs time, 377, 378 Zr vs 92 Corr water 648 torr helium + 112 ppm O₂, 500C, 236 hrs. crystal structures, 255

Tacussel, 131
Tallow diamine inhibitor, 355
Tantalum vs mercury 500-750C, 98
Tantalum, stress cracking in
mercury 650-750C, 105
Teflon. 306, 331

TEMPERATURE

TEMPERATURE:
130C vs stressed CuBe in ammonia, 245
30–80C, stressed CuBe vs ammonia, 245
40–85C, influence inhibitors in H₂80₄,
HCl, 252
100–154C vs time-to-fracture 18–9
steels in MgCl₂₇, 42
steels in MgCl₂₇, 42
vs Cu-1.8 Be-0.3 Co stressed in ammonia, 20; 30–80C, 245
Tl vs chlorine, influence, 88
TEMPERATURE HIGH

165C inhibitors organic oliwell. 359
289C vs C steel, high purity water 1000
psi, 379
289 vs 304 in high purity water 1000 osi,
379
314C (598F) 105.5 kg/cm² vs AISI 304 in
dilute chlorides, 331
445-560C hydrogen vs LC steel, effect
moisture 100-450 ppm, 318
500-750C vs Fe, Cr, Ni, Co, Vi/Cb, Ta, Ti,

Zr, 98 Zr alloys vs 500C, 237 hrs. O₂, 112 ppm, 231 510-580C vs hydrogen 1000-1400 psig, 289 538C mercury vs NI-46.8 and 25.5TI, 149

649-816C sulfur vs chromel-alumei thermocouples, 297 800-1100C, vs Fe-Ti alloys, 1 1000C air vs Fe-Ti alloys, 185 Tcontinued

1093C vs Ni, Co-base alloys, JP4, sea salt, 73 1100C steam, methane vs Fe-30Cr-20Ni tube,

1120C vs Haynes 25, Hastelloy X-289 thermal cycling, O₂, methane, 53 1200C, O₂, CO, CO₂, water vapor, methane vs Haynes 25, Hastelloy X-280, 50

Testing atmosphere, Al alloys vs industrial, 336 Testing, atmosphere, Al vs sea marine, 336

TESTING, LABORATORY

Accelerated, oil well inhibitors, 349
Accelerated, Ai alloys ws pH₃, 5%
Al, alternate immersion, 337
Al, alternate immersion, 337
Polarization, high parity water, 367
Polarization, high purity water, 367
Polarization, high purity water, 289C, 1000 psi, 379
Steel, carbon in 289 C high purity water, 1000 psi, 379
Inhibitors, organic via impedance bridge, 349
Inhibitors, 365C, 349
Pygon, 332

TITANIUM AND ALLOYS

0.51, 0.91, 1.55 w/o vs air, 1000C, 185

-TAl-2CD-1Ts stressed vs 3% NaCl + HCl
and NaCH, 145

48 8 and 25.5 w/Nl vs Hg 538C, 149

75A, Ti-5Al-2.5 %, Ti-6Al-4V, Ti-8Al1Mo-1V, Ti-13V-11Cr-3Al vs H₂SO₄,

23C, 326

Thorium vs acids 25, 90C, 35

Thorium vs acids 25, 90C, 35

Thorium vs akalis, NaCH 37C, 37

"Threshold" stresses for Al, alternate immersion, 340

TIME-TO-FRACTURE

 $\begin{array}{l} {\rm MgCl}_2\ 154-170{\rm C}\ vs\ time,\ 47 \\ {\rm MgCl}_2\ vs\ diameter\ of\ specimen,\ 49 \\ {\rm MgCl}_2\ vs\ specimen\ surface\ condition,\ 47 \\ {\rm Transcrystalline\ fracture\ CuBe\ in\ ammonia,\ 246 } \end{array}$

Tygon Encounter, Nov. 1280
Tubes, Pr.-30Cr-20Ni, rupture in steam methane 1190C, 276
Tungsten, tungsten oxide vs NaOH >115C, 153
Tunnel formation Fe-NiCr alloys vs MgCl₂; 304, 309, 310 and incoloy 690, 800, Nionel 825, 192
Turbines, gas vs Ni, Co-base alloys, Hastelloy X vs JP4, sea salt, 2000F, 72

Tcontinued

75A, 13V-11Cp-3Al, 6Al-6V-2Sn vs H₂SO₄, 236 Alloying element, effect on structure, 242 vs chlorides, CaCl₂, ZnCl₂, NH,Cl, CuCl₂ FeCl₃ + HCl, botting, 398, 311 Chloride ions effect in H₂SO₄, 239 vs chlorine, water for inhibition, 25-175C, 88 Fe, alloys vs CO-CO₂, 800-1100C, 1 Fe and Cu additions effect H₂SO₄ vs Ti and alloys, 20C, 239 vs mercury 500-750C, 98 Pitting in boiling chlorides, 312 vs sodium chloride, anodic breakdown, 223 + TlPd vs 86° ZnCl₂, 308 + TlPd vs MgCl₂ 42%, boiling, 307 + TlPd vs Ric CuCl₂ 308 vs water, sea, stressed, 146

U

U. S. Stoneware, 332 Uranium vs nitric, sulfuric acids, sodium hydroxide, 29

V

Vacuum vs Haynes 25, Hastelloy X-280, evaporation at 1120 C vs O₂, 54 Valdre-tilting stage, 174 Vandium vs Hg, 500-750C. 98 Vycor, 100

w

Wenking, 44 Waring, 151

WATER

Polarization measurement at 289C, 1000 psi, 379 High purity vs 1100 Al, 97C, 16 megohm, 368 Inhibitive effect in chlorine to protect Ti 25-175C, 88 Moisture, 100-450 ppm, influence on hydrogen attack on LC steel, 454-56CC, 318 Salt vs Be, stress >40,000, 11 Sea vs Ti alloys, stressed, 146 Sea vs stressed 4340, 143 Ultra pure, ammonia vs O₂ in, 57 Vapor 92 torr + 648 torr He + 112 ppm O₂ vs Zr and alloys, 231

Z

ZIRCONIUM AND ALLOYS

vs mercury, 500-750C, 98 Zircaloy 2,4 vs water, steam, 400C, 374 Zircaloy 2, 4: Zr-1.0Cr; -1.3Ni; -5.0V, 237 hrs. vs O₂, 112 ppm, 500C, 231 Zircaloy 2,4, effect of prefilming, 374

Alphabetical Author Index

Kleinn See Mi

Kohl, A Cont

Lander See Par

Leckie, stressof a '

Corre

Le Surf Use of

Lifka, I Exfoliat Chara Heat Plate, J. G.

Luhan, See A. I

Mazza, Influence on And in Cor

Mehdiza Effect of Inhibit with R J. E.

Factors Needed Chlori

CORROSION, Vol. 23, 1967

A	D	G continued
Andrew Verneth P	Dean, M. F.	Gulbransen, Earl A.
Andrew, Kenneth F. See Earl A. Gulbransen	Tunnel Formation in Iron-Nickel- Chromium Alloys, with F. H. Beck	Oxidation of Series of Dilute Zr Alloys at 500 C in Water Vapor
Armijo, J. S.	and R. W. Staehle 192	Atmosphere Containing Trace
See B. E. Wilde 208		Amounts of Oxygen with
De Di Di Milator VI V V V V V V V V V V V V V V V V V V	Draley, J. E.	Kenneth F. Andrew 23
Armijo, J. S.	See R. A. Legault 365	
A Technical Note - Corrosion		Gutzeit, J.
Tunnels in Stainless Steels, with	Dus, B.	Effect of Moisture on Decarburization
B. E. Wilde	See Z. Szklarska-Smialowska 130	and Fissuring of Steel by Hydrogen at Elevated Temperatures and Pressures, with J. R. Thygeson, Jr. 3:
D	E	
В		н
Banks, William P.	Errata	Haney, E. G.
See Richard L. Every	n n. 1 . 1 .	See J. A. S. Green,
See Michard I. Every	Every, Richard L.	bee s. A. S. Green,
Pools E H	Reference Electrodes in Acid and Base	Hohomann B F
Beck, F. H. See M. F. Dean	Systems, with William P. Banks 151	Hehemann, R. F.
See M. F. Dean192		See J. H. Shively 21
Bennett, F. W.		Holl, H. A.
See J. R. Schley 276	F	Deformation Substructure and
		Susceptibility to Intergranular
Bergman, P. A.	Farquar, Gale B.	Stress Corrosion Cracking in
Hot Corrosion of Gas Turbine Alloys 72	See Benjamin Mosier 349	an Aluminum Alloy 17
		, , , , , , , , , , , , , , , , , , , ,
Bisaro, R. E.	Finley, Howard F.	Hurd, Ray M.
Effects of Columbium in Steel on	An Extreme-Value Statistical Analysis	See Olen L. Riggs, Jr
Elevated Temperature Hydrogen	of Maximum Pit Depths and Time to	bee ofen is mggs, or
Attack, with G. H. Geiger 289	First Perforation 83	
Brown, B. F.	Fradin, Frank	
See M. H. Peterson 142	Reaction Rate of Sulfur With Lead -	James, William J.
	A Technical Note, with	Anodic Disintegration of Metals
Bryant, P. E. C.	J. Bruce Wagner, Jr 24	Undergoing Electrolysis in
See L. E. LeSurf 57		Aqueous Salt Solutions, with
	Freese, Leonard B.	M. E. Straumanis and J. W.
	See John Postlethwaite 109	Johnson
		See J. W. Johnson 20
•		
C	•	
Casale, Ina B.	G	3
Boiling Temperatures of Mg Cl	Geiger, Gordon H.	Johnson, J. W.
Solutions-Their Application in	Oxidation of Fe-Ti Alloys in	Annion Effect on Dissolution of
Stress Corrosion Studies 314	CO-CO ₂ Mixtures, with	Magnesium Metal in Aqueous
	J. Bruce Wagner, Jr 1	Solutions, with C. K. Chi and
Charlot, L. A.	A Technical Note - Oxidation of	W. J. James 2
High Temperature Corrosion and	Iron-Titanium Alloys at 1000 C	See William J. James
Evaporation of Haynes 25 and	in Air, with J. Bruce Wagner, Jr 185	
Hastelloy X-280, with R. E.		
Westerman 50	See R. E. Bisaro	
		K
Chi, C. K.	Green, J. A. S.	
See J. W. Johnson 204	Relationships Between Electrochemical	Kass, Stanley
	Measurements and Stress Corrosion	Corrosion of Prefilmed Zircaloy 3
Conger, Norman L.	Cracking of Maraging Steel, with	
A Precision High Current Potentiostat,	E. G. Haney 5	Kaufman, J. G.
with Olen L. Riggs, Jr 181		See B. W. Lifka
	Greene, N. D.	
Creamer, E. L.	See L. E. Kindlimann 29	Kindlimann, L. E.
Sulfuric Corrosion of Chromel-Alumel		Dissolution Kinetics of Nuclear Fuels 1.
Thermocouples, with I. Rozalsky and	Groover, R. E.	Uranium 2. Thorium, with

Continued	M continued	S
Kleinman, M. H.	Miller, R. A.	Saxer, R. K.
See Millaway, E. E 88	Stress Corrosion of Beryllium in Synthetic Sea Water, with J. R.	See R. A. Miller 11
Kohl, Heinz	Myers and R. K. Saxer 11	Sayano, R. R.
A Contribution to the Examination of		Capacitance Measurements During
Stress Corrosion Cracking of Aus-	Mosier, Benjamin	Activation of Passive Nickel - A
tenitic Stainless Steels in Magnesium	Use of Differential Capacitance	Technical Note, with Ken Kobe 27
Chloride Solutions 39	Measurements to Predict the	
	Inhibitive Behavior of Organic Nitrogen Compounds, with	
	Gale B. Farquar	
		Schley, J. R.
_	Myers, J. R.	Destructive Accumulation of Nitrogen in 30 Cr 20 Ni Cast Furnace Tubes
Landers, J. E.	See J. M. Peters 326	in Hydrocarbon Cracking Service
See Parviz Mehdizadeh 65	Myers, J. R.	at 1100 C with F. W. Bennett 276
Leckie, H. P.	See R. A. Miller	
Stress-Corrosion Characteristics		Shively, J. H.
of a Ti-7 Al-2Cb-1Ta Alloy 187		Hydrogen Permeability of a Stable Austenitic Stainless Steel Under
	N	Anodic Polarization, with R. F.
Legault, R. A. An Electrochemical study of Al		Hehemann and A. R. Troiano 215
Corrosion in Boiling High-Purity	Neill, William J. Discussion	
Water, with J. E. Draley 365	DIDUXORIUM	Smialowski, M.
	Newbegin, R. L.	Effect of Potential and Stress on Time to Failure of Austenitic Stainless
Le Surf, L. E.	See M. H. Peterson 142	Steels in Magnesium Chloride
Use of Ammonia to Suppress Oxygen Production and Corrosion in	Nobe Ven	Solutions, with M. Rychcik 218
Boiling-Water Reactors, with	Nobe, Ken See R. R. Sayano	
P. E. C. Bryant and M. C.	see R. R. Sayano	Smith, T. J.
Tanner 57		Role of Slip Step Emergence in the Early Stages of Stress Corrosion
		Cracking in Face Centered Iron-
Levy, Milton Anodic Behavior of Titanium and	P	Nickel-Chromium Alloys, with
Commercial Alloys in Sulfuric	Peters, J. M.	R. W. Staehle
Acid	Anodic Polarization Behavior of	2 12
	Titanium and Titanium Alloys in	Snape, E. Sulfide Stress Corrosion of Some
Lifka, B. W.	Sulfuric Acids, with J. R. Myers 326	Medium and Low Alloy Steels 154
Exfoliation and Stress-Corrosion	Peterson, M. H.	
Characteristics of High Strength, Heat Treatable Aluminum Alloy	Stress Corrosion Cracking of High	Sprowls, D. O.
Plate, with D. O. Sprowls and	Strength Steels and Titanium Alloys	See B. W. Lifka
J. G. Kaufman 335	in Chloride Solutions at Ambient Temperatures, with B. F. Brown	Staehle, R. W.
	R. L. Newbegin and R. E.	A Technical Note-Montage of Processes
Lochmann, W. J.	Groover	Operating During Stress Corrosion
See E. L. Creamer 297		Cracking
Luhan, J. V.	Postlethwaite, John	See T. J. Smith
See A. H. Roebuck 268	Effect of Halide Additions on Anodic Behavior of Nickel in Sulfuric	See M. F. Dean 192
	Acid Solutions, with Leonard	
	B. Freese 109	
		Chamman T M
M		Stammen, J. M. Cathode Effects in Anodic Protection
		with C. R. Townsend 348
Mazza, F. Influence of Long Time Polarization	R	
on Anodic Breakdown of Titanium	Riggs, Olen L., Jr.	
in Concentrated NaCl Solutions 223	Temperature Coefficient of	Straumanis, M. E.
	Corrosion Inhibition with Ray	See William J. James 15
McGlasson, R. L.	M. Hurd	Subramanyan, N.
See Parviz Mehdizadeh 65	See Norman L. Conger 181	See A. R. Yamuna 264
Mehdizaden, Parviz	Robuck, A. H.	, , , , , , , , , , , , , , , , , , , ,
Effect of Organic Corrosion	Anodic Corrosion Characteristics	Sylwestrowicz, W. D.
Inhibitors on Corrosion Fatigue,	of Aluminum 7075 and 7178	Effect of Temperature on Stress-
with R. L. McGlasson and	with J. V. Luhan 268	Corrosion Fracture 245
J. E. Landers 65	Deceleles 7	Szklarska-Smialowska, Z.
Millaway, E. E.	Rozalsky, I. See E. L. Creamer 297	Effect of Some Organic Phosphorus
Factors Affecting Water Content	20 20 Di Cicameiro e e e e e e e e e 297	Compounds on the Corrosion of
Needed to Passivate Titanium in	Rychcik, M.	Low Carbon Steel in Hydrochloric
Chlorine, with M. H. Kleinman 88	See M. Smialowski	Acid Solutions, with B. Dus 130

. 29

T	V
Takamura, Akira_	Verink, Ellis D.
Corrosion Resistance of Ti and a Ti-Pd Alloy in Hot, Concentrated Sodium Chloride Solutions 306	Simplified Procedure for Constructing Pourbauix Diagrams-A Technical Note371
Tanner, M. C.	244
See L. E. LeSurf 57	W
Tassinari, S. J.	Wagner, J. Bruce, Jr. See Frank Fradin 24
Thygeson, J. R., Jr.	See Gordon H. Geiger 1,185
See J. Gutzeit	Wang, James Y. N.
Townsend, C. R. See J. M. Stammen	A Technical Note-Compatibility of Two Ni-Ti Alloys with Mercury 149
Troiano, A. R. See J. H. Shively	Weeks, John R. Liquidus Curves and Corrosion of Fe, Cr, Ni, Co, V, Cb, Ta, Ti, and
	Zr in 500-750 C Mercury 98

W	WW Continued
Verink, Ellis D.	Westerman, R. E.
Simplified Procedure for Constructing Pourbauix Diagrams-A Technical	See L. A. Charlot
Note	Wilde, B. E. An Assembly for Electrochemical Corrosion Studies in Aqueous
W	Environments at High Temperature and Pressure
Wagner, J. Bruce, Jr.	
See Frank Fradin 24	Wilde, B. E.
See Gordon H. Geiger 1,185	Influence of Sulfur on the Corrosion Resistance of Austenitic Stainless
Wang, James Y. N.	Steel, with J. S. Armijo 20
A Technical Note-Compatibility of	See J. S. Armijo
Two Ni-Ti Alloys with Mercury 149	
Weeks, John R.	
Liquidus Curves and Corrosion of Fe, Cr, Ni, Co, V, Cb, Ta, Ti, and	Y
Zr in 500-750 C Mercury 98	Yamuna, A. R. Influence of Alternating Current on
Wei, Maurice W.	Corrosion of Mild Steel: Behavior
Experience with Alclad Aluminum in	in 1 N Sulfuric Acid, with N.
Deep Sea Buoyancy Sphere	Subramanyan 26

ADD TO AUTHOR INDEX

WILDE, B. E.

Adaptation of Linear Polarization Techniques for in - Situ Corrosion Measurements in Water Ccoled Nuclear Reactor Environments 379

10

Effect of N Vol

For 1 and cu

Redn.

Figure

Influer Bre Solu 230

On Pa those :

Figure 3

FRRATA

Effect of Halide Solutions on Anodic Behavior of Nickel in Sulfuric Acid Solutions. CORROSION. Vol. 23, No. 4, 109-114 (1967) April

For Figure 9 on Page 113, substitute the figure and cutlines below:

Figure 9 - (A.) Electrolysis curve (B.) Polarization curve for hydrogen evolution (C.) Polarization curve for Nickel dissolution.

Influence of Long Time Polarization on Anodic Breakdown of Titanium in Concentrated NaCl Solutions. CORROSION, Vol. 23, No. 8, 223-230 (1967) August.

On Page 226, substitute the cutlines below for those appearing below Figure 3:

Figure 3 - Anodic behavior and breakdown voltages of titanium in various solutions at 80 C.

- 0.1 M HCl
- 0 0.5 M HCl
- □ 1.0 M HCl
- ▲ 5.3 M NaCl
- △ 5.3 M NaCl + 0.3 M HCl

Anion Effect on Dissolution of Magnesium Metal in Aqueous Solutions. CORROSION, Vol. 23, No. 7, 204-207 (1967) July.

On Page 205 substitute for the cutlines under Figure 1 revised cutlines hereunder. On Page 206. substitute for the cutlines under Figures 2 and 3 the revised cutlines hereunder.

Figure 1 - Hydrogen evolution rate for magnesium dissolving in various acids at 25 C. (4 , H₂SO₄; 0 , HI; A , HBr; . HCl.)

Figure 2 - Apparent valence of magnesium dissolving anodically in various 1 N salt solutions at 25 C. (a , KaSO4; o , KI; ▲ , KBr; • , KCl; □ , KNO₃.)

Figure 3 - Overpotential-current relationships for the magnesium anode in various 1 N salt solutions at 25 C. (A , KaSO4; O , KI; A , KBr; O , KCl; O , KNO3.)

A Precision High Current Potentiostat. By Norman L. Conger and Olen L. Riggs, Jr. CORROSION, Vol. 23, No. 6, 181-184 (1967) June.

To the parts list at the bottom of Figure 3 on Page 182 add the following:

R14 -- 75K

V₁ -- 6DJ8

V₂ -- 6Z67 V₃ -- 6DJ8

V4 -- OBZ

V5 -- 6DJ8

V6 -- 12AX7

Boiling Temperatures of MgCl₂ Solutions -- Their Application in Stress Corrosion Studies. By Ina B. Casale. Vol. 23, No. 10, 314-317 (1967) Oct.

On Page 315, second column, under "References", for Reference 3, substitute the following:

V. K. Pershke and D. Van Rooyen. J. Electrochem. Soc., Vol. 108, No. 3, 222-29 (1961).