Lecture 14: Support Vector Machine (SVM)

Instructor: Prof. Shuai Huang

Industrial and Systems Engineering

University of Washington

What ambiguity the SVM ties to solve

• Which model should we use?

The model with maximum margin

SVM is essentially a preference over models that have maximum margin

Can this idea lead to mathematic tractability?

- The goal is to identify a model, $\mathbf{w}^T \mathbf{x} + b$, using which we can make binary classification: If $\mathbf{w}^T \mathbf{x} + b > 0$, then y = 1; Otherwise, y = -1.
- The final SVM formulation is:

$$\min_{\boldsymbol{w}} \frac{1}{2} \|\boldsymbol{w}\|^2,$$
 Subject to: $y_n(\boldsymbol{w}^T\boldsymbol{x}_n + b) \geq 1$ for $n = 1, 2, ..., N$.

Solve for SVM

• To solve this problem, first, we can use the method of Lagrange multiplier:

$$L(\mathbf{w}, b, \alpha) = \frac{1}{2} ||\mathbf{w}||^2 - \sum_{n=1}^{N} \alpha_n [y_n(\mathbf{w}^T \mathbf{x}_n + b) - 1].$$

This could be rewritten as

$$L(\mathbf{w}, b, \alpha) = \frac{1}{2} \mathbf{w}^T \mathbf{w} - \sum_{n=1}^{N} \alpha_n y_n \mathbf{w}^T x_n - b \sum_{n=1}^{N} \alpha_n y_n + \sum_{n=1}^{N} \alpha_n x_n$$

• Differentiating $L(w, b, \alpha)$ with respect to w and b, and setting to zero yields:

$$\mathbf{w} = \sum_{n=1}^{N} \alpha_n y_n \mathbf{x}_n, \ \sum_{n=1}^{N} \alpha_n y_n = 0.$$

• Then, we can rewrite $L(w, b, \alpha)$ as

$$L(\mathbf{w}, b, \alpha) = \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} \alpha_n \alpha_m y_n y_m \mathbf{x}_n^T \mathbf{x}_m.$$

• This is because that:

$$\frac{1}{2} \mathbf{w}^{T} \mathbf{w} = \frac{1}{2} \mathbf{w}^{T} \sum_{n=1}^{N} \alpha_{n} y_{n} \mathbf{x}_{n} = \frac{1}{2} \sum_{n=1}^{N} \alpha_{n} y_{n} \mathbf{w}^{T} \mathbf{x}_{n} = \frac{1}{2} \sum_{n=1}^{N} \alpha_{n} y_{n} \left(\sum_{n=1}^{N} \alpha_{n} y_{n} \mathbf{x}_{n} \right)^{T} \mathbf{x}_{n} = \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} \alpha_{n} \alpha_{m} y_{n} \mathbf{y}_{m} \mathbf{x}_{n}^{T} \mathbf{x}_{m}.$$

The dual form of SVM

 Finally, we can derive the model of SVM by solving its dual form problem:

$$\max_{\alpha} \sum_{n=1}^{N} \alpha_{n} - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} \alpha_{n} \alpha_{m} y_{n} y_{m} x_{n}^{T} x_{m},$$

Subject to: $\alpha_n \ge 0$ for n = 1, 2, ..., N and $\sum_{n=1}^N \alpha_n y_n = 0$.

• This is a quadratic programming problem that can be solved using many existing packages.

The support points

 The learned model parameters could be represented as:

$$\hat{\pmb{w}} = \sum_{n=1}^N \alpha_n y_n \pmb{x}_n$$
 and $\hat{b} = 1 - \hat{\pmb{w}}^T \pmb{x}_n$ for any \pmb{x}_n whose $\alpha_n > 0$.

 And we know that, based on the KKT condition:

$$\alpha_n[y_n(\mathbf{w}^T\mathbf{x}_n+b)-1]=0 \text{ for } n=1,2,...,N.$$

 Thus, for any data point, e.g., the nth data point, it is either

$$\alpha_n = 0 \text{ or } y_n(\mathbf{w}^T \mathbf{x}_n + b) - 1 = 0.$$

A toy example

```
# For the toy problem
x = matrix(c(5,5,2,2,1,0,0,1,-1,1,-1,0,1,-1),
nrow = 7, ncol = 2)
y = c(1,1,1,1,-1,-1,-1)
linear.train <- data.frame(x,y)</pre>
# Visualize the distribution of data points o
f two classes
require( 'ggplot2' )
p <- qplot( data=linear.train, X1, X2, colour</pre>
=factor(y))
p <- p + labs(title = "Scatterplot of data po</pre>
ints of two classes")
print(p)
```

ID	X_1	X_2	Y
1	5	1	1
2	5	-1	1
3	2	1	1
4	2	-1	1
5	1	0	-1
6	0	1	-1
7	0	-1	-1

Scatterplot of data points of two classes

- We can directly identify three support vectors, which are (ID = 3, 4, 5)
- Then, since

$$f(\mathbf{x}_*) = \widehat{\mathbf{w}}^T \phi(\mathbf{x}_*) + b = \sum_{n=1}^7 \alpha_n y_n \phi(\mathbf{x}_n)^T \phi(\mathbf{x}_*) + b,$$

- and we know that $f(x_3) = 1$, $f(x_4) = 1$, $f(x_5) = -1$.
- We can identify the alpha vector as

$$\alpha_3 y_3 \phi(\mathbf{x}_3)^T \phi(\mathbf{x}_3) + \alpha_4 y_4 \phi(\mathbf{x}_4)^T \phi(\mathbf{x}_3) + \alpha_5 y_5 \phi(\mathbf{x}_5)^T \phi(\mathbf{x}_3) + b = 1,$$

$$\alpha_3 y_3 \phi(\mathbf{x}_3)^T \phi(\mathbf{x}_4) + \alpha_4 y_4 \phi(\mathbf{x}_4)^T \phi(\mathbf{x}_4) + \alpha_5 y_5 \phi(\mathbf{x}_5)^T \phi(\mathbf{x}_4) + b = 1,$$

$$\alpha_3 y_3 \phi(\mathbf{x}_3)^T \phi(\mathbf{x}_5) + \alpha_4 y_4 \phi(\mathbf{x}_4)^T \phi(\mathbf{x}_5) + \alpha_5 y_5 \phi(\mathbf{x}_5)^T \phi(\mathbf{x}_5) + b = -1.$$

• Here, since the data is linearly separable, we use linear kernel, i.e., in other words, $\phi(x) = x$. The equations above can be simplified to

$$5\alpha_3 + 3\alpha_4 - 2\alpha_5 + b = 1,$$

$$3\alpha_3 + 5\alpha_4 - 2\alpha_5 + b = 1,$$

$$2\alpha_3 + 2\alpha_4 - \alpha_5 + b = -1.$$

By solving it, we can get

$$\alpha_3 = 1$$
, $\alpha_4 = 1$, $\alpha_5 = 2$, $b = -3$.

Further, we can know that

$$\widehat{\mathbf{w}} = \alpha_3 y_3 \phi(\mathbf{x}_3) + \alpha_4 y_4 \phi(\mathbf{x}_4) + \alpha_5 y_5 \phi(\mathbf{x}_5) = 1 \binom{2}{1} + 1 \binom{2}{-1} - 2 \binom{1}{0} = \binom{2}{0}.$$

Validate your calculation using R

```
x = matrix(c(5,5,2,2,1,0,0,1,-1,1,-1,0,1,-1), nrow = 7, ncol = 2)
y = c(1,1,1,1,-1,-1,-1)
linear.train <- data.frame(x,y)
require( 'kernlab' )
linear.svm <- ksvm(y ~ ., data=linear.train, type='C-svc', kernel='vanilladot', C=10, scale=c(),scaled = FALSE)
alpha(linear.svm) #scaled alpha vector
b(linear.svm)</pre>
```

Extension to nonlinear cases

- Main idea: transformation from x to z
- An example: $z_1 = x_1^2$, $z_2 = \sqrt{2}x_1x_2$, $z_3 = x_2^2$.
- But not in all times the transformations can be made explicit

A toy example

Consider a dataset:

$$x_1 = (-1, -1), y_1 = -1;$$

 $x_2 = (-1, +1), y_2 = +1;$
 $x_3 = (+1, -1), y_3 = +1;$
 $x_4 = (+1, +1), y_4 = -1.$

Scatterplot of data points of two

Now, consider the polynomial kernel function with degree of order = 2, i.e., $K(x_n, x_m) = (x_n^T x_m + c)^2$, which corresponds to the transformation:

$$\phi(\mathbf{x}_n) = \left[c^2, \sqrt{2c}x_{n,1}, \sqrt{2c}x_{n,2}, \sqrt{2}x_{n,1}x_{n,2}, x_{n,1}^2, x_{n,2}^2\right]^T.$$

We can identify the alpha vector as

$$\alpha_{1}y_{1}\phi(x_{1})^{T}\phi(x_{1}) + \alpha_{2}y_{2}\phi(x_{2})^{T}\phi(x_{1}) + \alpha_{3}y_{3}\phi(x_{3})^{T}\phi(x_{1}) + \alpha_{4}y_{4}\phi(x_{4})^{T}\phi(x_{1}) + b = -1,$$

$$\alpha_{1}y_{1}\phi(x_{1})^{T}\phi(x_{2}) + \alpha_{2}y_{2}\phi(x_{2})^{T}\phi(x_{2}) + \alpha_{3}y_{3}\phi(x_{3})^{T}\phi(x_{2}) + \alpha_{4}y_{4}\phi(x_{4})^{T}\phi(x_{2}) + b = 1,$$

$$\alpha_{1}y_{1}\phi(x_{1})^{T}\phi(x_{3}) + \alpha_{2}y_{2}\phi(x_{2})^{T}\phi(x_{3}) + \alpha_{3}y_{3}\phi(x_{3})^{T}\phi(x_{3}) + \alpha_{4}y_{4}\phi(x_{4})^{T}\phi(x_{3}) + b = -1,$$

$$\alpha_{1}y_{1}\phi(x_{1})^{T}\phi(x_{4}) + \alpha_{2}y_{2}\phi(x_{2})^{T}\phi(x_{4}) + \alpha_{3}y_{3}\phi(x_{3})^{T}\phi(x_{4}) + \alpha_{4}y_{4}\phi(x_{4})^{T}\phi(x_{4}) + b = 1.$$

Since $\phi(x_n)^T \phi(x_m) = K(x_n, x_m) = (x_n^T x_m + c)^2$, here, let's set c = 0, we can calculate the kernel matrix as

$$\mathbf{K} = \begin{bmatrix} 4 & 0 & 0 & 4 \\ 0 & 4 & 4 & 0 \\ 0 & 4 & 4 & 0 \\ 4 & 0 & 0 & 4 \end{bmatrix}.$$

The equations above can be simplified to

$$-4\alpha_{1} - 4\alpha_{4} + b = -1,$$

$$4\alpha_{2} + 4\alpha_{3} + b = 1,$$

$$4\alpha_{2} + 4\alpha_{3} + b = 1,$$

$$-4\alpha_{1} - 4\alpha_{4} + b = -1.$$

You can note that, here, we actually only have two independent equations. We can identify one solution to be:

$$\alpha_1 = 0.125$$
, $\alpha_2 = 0.125$, $\alpha_3 = 0.125$, $\alpha_4 = 0.125$, $b = 0$.

Further, in this particular case, as we can write up the transformation explicitly, we can write up \hat{w} explicitly as:

$$\hat{\mathbf{w}} = \sum_{n=1}^{4} \alpha_n y_n \phi(\mathbf{x}_n) = [0,0,0,1/\sqrt{2},0,0]^T.$$

Then, we can write up the decision function explicitly as:

$$f(\mathbf{x}_*) = \widehat{\mathbf{w}}^T \phi(\mathbf{x}_*) = x_{*,1} x_{*,2}.$$

Validate your calculation using R

```
x = matrix(c(-1,-1,1,1,-1,1,-1,1), nrow = 4, ncol = 2)
y = c(-1,1,1,-1)
linear.train <- data.frame(x,y)
require('kernlab')
linear.svm <- ksvm(y ~ ., data=linear.train, type='C-svc', kernel='polydot',
kpar=list(degree = 2, offset = 1), C = 10, scale = c(), scaled = FALSE)
alpha(linear.svm) #scaled alpha vector
b(linear.svm)
coef(linear.svm)
```

Extension to non-separable cases

Introduce the slack variables:

$$y_n(\mathbf{w}^T \mathbf{x}_n + b) \ge 1 - \xi_n \text{ for } n = 1, 2, ..., N.$$

- The data points that are within the margins will have the corresponding slack variables as $0 \le \xi_n \le 1$
- The data points that are on the wrong side of the decision line have the corresponding slack variables as $\xi_n > 1$.

The revised SVM formulation

• The corresponding formulation of the SVM model becomes:

$$\min_{\mathbf{w}} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{n=1}^{N} \xi_n,$$

Subject to: $y_n(\mathbf{w}^T\mathbf{x}_n + b) \ge 1 - \xi_n$ and $\xi_n \ge 0$, for n = 1, 2, ..., N.

Assume the transformation exists

The dual formulation of SVM on the transformed variables is:

$$\max_{\alpha} \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} \alpha_n \alpha_m y_n y_m \mathbf{z}_n^T \mathbf{z}_m,$$

Subject to: $0 \le \alpha_n \le C$ for n = 1, 2, ..., N and $\sum_{n=1}^N \alpha_n y_n = 0$.

- What matters here is really the inner product of the transformed vectors
- Thus, we can write it up as $\mathbf{z}_n^T \mathbf{z}_m = K(\mathbf{x}_n, \mathbf{x}_m)$. This is called the "**kernel function**". A kernel function is a function that theoretically entails a transformation $\mathbf{z} = \phi(\mathbf{x})$ such that $K(\mathbf{x}_n, \mathbf{x}_m)$ implies that it can be written as an inner product $K(\mathbf{x}_n, \mathbf{x}_m) = \phi(\mathbf{x})^T \phi(\mathbf{x})$.

The revised SVM formulation

 With a given kernel function, SVM learns the model by solving the following optimization problem:

$$\max_{\alpha} \sum_{n=1}^N \alpha_n - \frac{1}{2} \sum_{n=1}^N \sum_{m=1}^N \alpha_n \alpha_m y_n y_m K(\boldsymbol{x}_n, \boldsymbol{x}_m),$$
 Subject to: $0 \leq \alpha_n \leq C$ for $n=1,2,\ldots,N$ and $\sum_{n=1}^N \alpha_n y_n = 0.$

- However, in the kernel space, it will no longer to possible to write up the parameter **w** the same way as in linear models.
- For any new data point, denoted as x_st , the learned SVM model predict on it as

If
$$\sum_{n=1}^{N} \alpha_n y_n K(\mathbf{x}_n, \mathbf{x}_*) + b > 0$$
, then $y = 1$; Otherwise, $y = -1$.

Is SVM a more complex model?

- In statistical learning theory, a more complex model has larger VCdimension. In intuitive language, that means, a more complex model has more mathematical capacity to encode a richer signal. Thus, it could be very flexible and sensitive to data distributions
- However, for SVM ...

SVM is a neural network model

R lab

- Download the markdown code from course website
- Conduct the experiments
- Interpret the results
- Repeat the analysis on other datasets