

EE140 Introduction to Communication Systems Lecture 2

Instructor: Prof. Lixiang LIAN

ShanghaiTech University, Fall 2022

Architecture of a Digital Communication System

Source Information

- Message: generated by source
- Information: the unpredictable part in a message
- Signal: a function that conveys information about the behavior or attributes of some phenomenon

Transducer: convert sensing signal to electric signal Analog signal vs. digital signal

Fig. 12.4 How analogue and digital signals change with time.

Contents

- Deterministic signals
 - Classification of signals
 - Review of Fourier Transform
 - Properties of the Fourier Transform
 - Fourier Transform of Periodic Signals
 - Sampling Theory
 - The Hilbert Transform

What is Signal?

 In communication systems, a signal is any function that carries information. Also called information bearing signal.

- Analog, discrete-time and digital signals
 - Analog signal: both time and value are continuous
 - Discrete-time signal: discrete time and continuous value
 - Digital signal: both time and value are discrete

Periodic and non-periodic signals

$$x(t + T_0) = x(t), \quad -\infty < t < \infty$$

- Random and deterministic
 - Deterministic signal: no uncertainty in value. It can be modeled or expressed by an explicit mathematical function of time.
 - Random (stochastic) signal: its value is uncertain or unpredictable. Probability distribution MUST be used to model it.

$$x(t) = A\cos(\omega_0 t), \quad -\infty < t < \infty$$

Deterministic (sinusoidal) signal

Unit rectangular pulse signal

$$\delta_{\epsilon}(t) = \frac{1}{2\epsilon} \Pi\left(\frac{t}{2\epsilon}\right) = \begin{cases} \frac{1}{2\epsilon}, & |t| < \epsilon \\ 0, & \text{otherwise} \end{cases}$$

Unit impulse function (delta function)

Unit step function

Dirac Delta Function (cont'd)

- Sifting property: $x(t_0) = \int_{-\infty}^{\infty} x(t)\delta(t-t_0)dt$ because $\int_{-\infty}^{\infty} x(t)\delta(t-t_0)dt = x(t_0)\int_{-\infty}^{\infty} \delta(t-t_0)dt = x(t_0)$
 - The impulse function selects a particular value of the function x(t) in the integration process
- Unit step function

$$u(t - t_0) = \begin{cases} 1 & t > t_0 \\ 0 & t < t_0 \end{cases}$$

• Relationship between $\delta(t)$ and u(t)

$$\delta(t - t_0) = \frac{d}{dt}u(t - t_0) \qquad \longleftarrow \qquad u(t - t_0) = \int_{-\infty}^{t} \delta(\tau - t_0) d\tau$$

- Energy and power signals
 - Total Energy of a signal: $E = \int_{-\infty}^{\infty} |x(t)|^2 dt$ joules
 - Signal x(t) is an energy signal if $\int_{-\infty}^{\infty} |x(t)|^2 dt < \infty$
 - Average Power of a signal: $P = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} |x(t)|^2 dt$ watts
 - Signal x(t) is a power signal $0 < \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} |x(t)|^2 dt < \infty$

Exercise: Question

Classify the following signals as energy signals or power signals. Find the normalized energy or normalized power of each.

$$x(t) = \begin{cases} A\cos(2\pi f_0 t) & \text{for } -T_0/2 \le t \le T_0/2, \text{where } T_0 = 1/f_0 \\ 0 & \text{elsewhere} \end{cases}$$

$$x(t) = \begin{cases} A \exp(-at) & \text{for } t > 0, a > 0 \\ 0 & \text{elsewhere} \end{cases}$$

Exercise: Solution

Classify the following signals as energy signals or power signals. Find the normalized energy or normalized power of each.

(1)

$$x(t) = \begin{cases} A\cos(2\pi f_0 t) & \text{for } -T_0/2 \le t \le T_0/2, \text{where } T_0 = 1/f_0 \\ 0 & \text{elsewhere} \end{cases}$$

(2)

$$x(t) = \begin{cases} A \exp(-at) & \text{for } t > 0, a > 0 \\ 0 & \text{elsewhere} \end{cases}$$

Solution 1

- (1) Energy signal. $E_x = \int_{-\infty}^{\infty} x^2(t) dt = \int_{-T_0/2}^{T_0/2} A^2 \cos^2(2\pi f_0 t) dt = \frac{A^2 T_0}{2}$.
- (2) Energy signal. $E_x = \int_{-\infty}^{\infty} x^2(t) dt = \int_0^{\infty} A^2 \exp(-2at) dt = \frac{A^2 \exp(-2at)}{-2a} \Big|_0^{\infty} = \frac{A^2}{2a}$.

Contents

- Deterministic signals
 - Classification of signals
 - Review of Fourier Transform
 - Fourier Transform
 - Discrete-time Fourier Transform (skip)
 - Discrete Fourier Series (skip)
 - Discrete Fourier Transform (skip)
 - Fast Fourier Transform (skip)
 - Properties of the Fourier Transform
 - Fourier Transform of Periodic Signals
 - Sampling Theory
 - The Hilbert Fransformuction to Communication Systems

Fourier Series

FIGURE 4.1 The function at the bottom is the sum of the four functions above it. Fourier's idea in 1807 that periodic functions could be represented as a weighted sum of sines and cosines was met with skepticism.

A periodic function = superposition or linear combination of simple sine and cosine functions

- Jean-Baptiste Joseph Fourier: 1768-1830
- Student of Laplace and Lagrange
- 1807: introduced the Fourier series expansion

Fourier Transform

Fourier Transform of a continuous-time signal

$$X(f) = \mathfrak{F}[x(t)] \longleftrightarrow X(f) = \int_{-\infty}^{\infty} x(\lambda) e^{-j2\pi f \lambda} d\lambda$$

if x(t) is absolutely integrable
$$\int_{-\infty}^{\infty} |x(t)| dt < \infty$$

Inverse Fourier Transform

$$x(t) = \mathfrak{T}^{-1}[X(f)] \iff x(t) = \int_{-\infty}^{\infty} X(f) e^{j2\pi f t} df$$

- Spectrum
 - The Fourier transform of a continuous-time signal is a complex signal

$$X(f) = |X(f)|e^{j \angle X(f)}$$

Parseval's Theorem

Parseval's Theorem

$$\int_{-\infty}^{\infty} x_1(t) x_2^*(t) dt = \int_{-\infty}^{\infty} X_1(f) X_2^*(f) df$$

- When $x_1(t) = x_2(t)$, we have

$$E \neq \int_{-\infty}^{\infty} |x(t)|^2 dt = \int_{-\infty}^{\infty} |X(f)|^2 df$$

Energy

Energy Spectral Density

Energy Spectral Density

$$G(f) = |X(f)|^2$$
 Joules/Hz

Power Spectral Density and Correlation

	Energy Signal	Power Signal
Spectral density	Energy Spectral Density $E = \int_{-\infty}^{\infty} x(t) ^2 dt = \int_{-\infty}^{\infty} X(f) ^2 df$ $G(f) = X(f) ^2$	$P = \int_{-\infty}^{\infty} S(f) df = \left\langle x^2(t) \right\rangle$
Time- average autocorrelati on function	$\phi(\tau) = x(\tau) * x(-\tau) = \int_{-\infty}^{\infty} x(\lambda)x(\lambda + \tau) d\lambda$ $= \lim_{T \to \infty} \int_{-T}^{T} x(\lambda)x(\lambda + \tau) d\lambda \text{ (energy sign)}$	$ \widehat{R(\tau)} = \langle x(t)x(t+\tau) \rangle $ $ \triangleq \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} x(t)x(t+\tau) dt $
Relationship	$\phi(t) = \mathfrak{F}^{-1}(G(f))$ $G(f) = \mathfrak{F}(\phi(t))$	$R(\tau) = \mathfrak{F}^{-1}[S(f)] = \int_{-\infty}^{\infty} S(f)e^{j2\pi f\tau} df$ $S(f) = \mathfrak{F}[R(\tau)] = \int_{-\infty}^{\infty} R(\tau)e^{-j2\pi f\tau} d\tau$

Example: Autocorrelation Function

Energy Signal

$$\tau = 0, \phi(0) = \int_{-1}^{1} x(t)x(t)dt = 2$$

$$-2 < \tau < 0, \phi(\tau) = \int_{-1-\tau}^{1} x(t)x(t+\tau)dt = 2+\tau$$

$$0 < \tau < 2, \phi(\tau) = \int_{-1}^{1-\tau} x(t)x(t+\tau)dt = 2-\tau$$

 $|\tau| \ge 2$, $\phi(\tau) = 0$

- 1. $\phi(\tau)$ is even. 2. $\phi(0) \ge |\phi(\tau)|$.

Example: Rectangular Pulse

$$X(t) = A\Pi\left(\frac{t - t_0}{\tau}\right) \qquad X(f) = \int_{-\infty}^{\infty} A\Pi\left(\frac{t - t_0}{\tau}\right) e^{j2\pi ft} dt$$
$$= A \int_{t_0 - \tau/2}^{t_0 + \tau/2} e^{-j2\pi ft} dt = A\tau \operatorname{sinc}(f\tau) e^{j2\pi ft_0}$$

Amplitude spectrum

$$|X(f)| = A\tau |\operatorname{sinc} (f \tau)|$$

Phase spectrum

$$\theta(f) = \begin{cases} -2\pi t_0 f & \text{if sinc } (f\tau) > 0 \\ -2\pi t_0 f \pm \pi & \text{if sinc } (f\tau) < 0 \end{cases}$$

$$\theta(f)$$

$$2\pi - \frac{1/\tau}{-2/\tau} - \frac{1/\tau}{-1/\tau} = 0$$

$$-\pi - \frac{1/\tau}{-1/\tau} = 0$$

Example: Rectangular Pulse

Energy spectral density

$$G(f) = |X(f)|^2 = A^2 \tau^2 \operatorname{sinc}^2(f\tau)$$

Contents

- Deterministic signals
 - Classification of signals
 - Review of Fourier Transform
 - Properties of the Fourier Transform
 - Fourier Transform of Periodic Signals
 - Sampling Theory
 - The Hilbert Transform

Properties of Fourier Transform

Operation	x(t)	X(f)
1. Superposition	$a_1 x_1(t) + a_2 x_2(t)$	$a_1 X_1(f) + a_2 X_2(f)$
2. Scaling	x(at)	$\frac{1}{ a }X(\frac{f}{a})$
3. Time shifting	$x(t-t_0)$	$X(f) \exp(-j2\pi f t_0)$
4. Frequency shifting	$x(t) \exp(j2\pi f_0 t)$	$X(f-f_0)$
5. Duality theorem	X(t)	x(-f)
6. Modulation Theorem	$x(t)\cos(2\pi f_0 t)$	$\frac{1}{2}X(f - f_0) + \frac{1}{2}X(f + f_0)$
7. Time differentiation	$\frac{d^n x}{dt^n}$	$(j2\pi f)^n X(f)$
8. Frequency differentiation	$(-jt)^n x(t)$	$\frac{d^nX}{df^n}$
9. Time integration	$\int_{-\infty}^{t} x(\tau) d\tau$	$\frac{1}{j2\pi f}X(f) + \frac{1}{2}X(0)\delta(f)$
10. Time convolution	$x_1(t) * x_2(t)$	$X_1(f)X_2(f)$
11. Multiplication	$x_1(t)x_2(t)$	$X_1(f) * X_2(f)$

Example: Dirac Delta Function

Dirac delta function

$$\delta(t) = \begin{cases} \infty & t = 0, \\ 0 & t \neq 0, \end{cases}$$
and
$$\int_{-\infty}^{\infty} \delta(t)dt = 1$$

Fourier transform

$$G(f) = F[\delta(t)] = \int_{-\infty}^{\infty} \delta(t) e^{-j2\pi f t} dt$$
$$= \int_{-\infty}^{\infty} \delta(t) e^{-j2\pi f 0} dt = e^{0} = 1$$

Example: Dirac Delta Function

- Application of the delta function
 - **1.** $A\delta(t) \longleftrightarrow A$
 - 2. $A\delta(t-t_0) \longleftrightarrow Ae^{-j2\pi ft_0}$
 - 3. $A \longleftrightarrow A\delta(f)$
 - **4.** $Ae^{j2\pi f_0 t} \longleftrightarrow A\delta(f-f_0)$

$$\cos(2\pi f_c t) \rightleftharpoons \frac{1}{2} \left[\delta(f - f_c) + \delta(f + f_c) \right]$$

$$\sin(2\pi f_c t) \rightleftharpoons \frac{1}{2j} \left[\delta(f - f_c) - \delta(f + f_c) \right]$$

Definition of delta function

$$\int_{-\infty}^{\infty} \cos(2\pi f t) dt = \delta(f)$$
$$\int_{-\infty}^{\infty} \exp(-j2\pi f t) dt = \delta(f)$$

Contents

Deterministic signals

- Classification of signals
- Review of Fourier Transform
- Properties of the Fourier Transform
- Fourier Transform of Periodic Signals
- Sampling Theory
- The Hilbert Transform

Line Spectra for Periodic Signal

• Periodic signal x(t) with period T_0

$$X(f) = F[x(t)] = \int_{-\infty}^{\infty} x(t) e^{-j2\pi f t} dt$$

$$= \int_{-\infty}^{\infty} \left(\sum_{n=-\infty}^{\infty} X_n e^{j2\pi n f_0 t} \right) e^{-j2\pi f t} dt$$

$$= \sum_{n=-\infty}^{\infty} X_n \int_{-\infty}^{\infty} e^{-j2\pi (f-nf_0)t} dt$$

$$= \sum_{n=-\infty}^{\infty} X_n \delta(f-nf_0)$$
Fourier $X_n = \frac{1}{T_0} \int_{t_0}^{t_0+T_0} x(t) e^{-jn\omega_0 t} dt$
series

Example: The "Comb" Function

The "comb" function:

$$\delta_T(t) = \sum_{m=-\infty}^{\infty} \delta(t - mT)$$

• FT 1:
$$\delta_T(t) = \sum_{m=-\infty}^{\infty} \delta(t - mT) = \sum_{n=-\infty}^{\infty} X_n e^{jn2\pi f_0 t}, f_0 = \frac{1}{T}$$

$$X_n = \frac{1}{T} \int_T \delta(t) e^{-jn2\pi f_0 t} dt = f_0$$

$$\delta_T(t) = \sum_{n=-\infty}^{\infty} f_0 e^{jn2\pi f_0 t} \quad \longleftrightarrow \quad \Im[\delta_T(t)] = \sum_{n=-\infty}^{\infty} f_0 \, \delta(f - nf_0)$$

Example: The "Comb" Function

• The "comb" function:

$$\delta_T(t) = \sum_{m=-\infty}^{\infty} \delta(t - mT)$$

• FT 2:

$$\mathfrak{F}\left[\sum_{m=-\infty}^{\infty} \delta(t - mT)\right] = \int_{-\infty}^{\infty} \left[\sum_{m=-\infty}^{\infty} \delta(t - mT_s)\right] e^{-j2\pi f t} dt$$
$$= \sum_{m=-\infty}^{\infty} \int_{-\infty}^{\infty} \delta(t - mT_s) e^{-j2\pi f t} dt$$
$$= \sum_{m=-\infty}^{\infty} e^{-j2\pi mT_s f}$$

$$\sum_{m=-\infty}^{\infty} e^{j2\pi mTf} = f_0 \sum_{n=-\infty}^{\infty} \delta(f - nf_0)$$

Fourier Series

Contents

Deterministic signals

- Classification of signals
- Review of Fourier Transform
- Properties of the Fourier Transform
- Fourier Transform of Periodic Signals
- Sampling Theory
- The Hilbert Transform

Sampling Theory

Sampling theorem: $f_s \ge 2W$

$$x_{\delta}(t) = \sum_{n = -\infty}^{\infty} x(nT_s)\delta(t - nT_s)$$

$$X_{\delta}(f) = f_{s} \sum_{n=-\infty}^{\infty} X(f - nf_{s})$$

Contents

Deterministic signals

- Classification of signals
- Review of Fourier Transform
- Properties of the Fourier Transform
- Fourier Transform of Periodic Signals
- Sampling Theory
- The Hilbert Transform

Hilbert Transform

Frequency response function

$$H(f) = -j \operatorname{sgn} f \operatorname{sgn}(f) = \begin{cases} 1, & f > 0 \\ 0, & f = 0 \\ -1, & f < 0 \end{cases}$$

 $\frac{j}{\pi t} \longleftrightarrow \operatorname{sgn}(f)$

• Hilbert Transform of x(t): $\hat{x}(t) = \mathfrak{F}^{-1}[-j \operatorname{sgn}(f)X(f)]$

$$= h(t) * x(t)$$

Hilbert Transform

Hilbert Transform of x(t):

$$\widehat{x}(t) = \mathfrak{F}^{-1}[-j \operatorname{sgn}(f)X(f)]$$

$$= h(t) * x(t)$$

$$\widehat{x}(t) = \int_{-\infty}^{\infty} \frac{x(\lambda)}{\pi(t-\lambda)} d\lambda = \int_{-\infty}^{\infty} \frac{x(t-\eta)}{\pi\eta} d\eta$$

Hilbert transform of Hilbert transform

$$(-j \operatorname{sgn} f)^2 = -1$$

$$\hat{x}(t) = -x(t).$$

Hilbert Transform

Hilbert Transform of x(t):

Example

Calculate the Hilbert transform filter of

$$x(t) = \cos\left(2\pi f_0 t\right)$$

Solution:

$$X(f) = \frac{1}{2}\delta(f - f_0) + \frac{1}{2}\delta(f + f_0)$$

$$\hat{X}(f) = \frac{1}{2}\delta(f - f_0)e^{-j\pi/2} + \frac{1}{2}\delta(f + f_0)e^{j\pi/2}$$

$$\hat{x}(t) = \frac{1}{2}e^{j2\pi f_0 t}e^{-j\pi/2} + \frac{1}{2}e^{-j2\pi f_0 t}e^{j\pi/2}$$

$$\widehat{\cos(2\pi f_0 t)} = \sin(2\pi f_0 t)$$

Properties (P84)

1. Energy in a signal and its Hilbert transform are equal.

$$\left|\widehat{X}(f)\right|^2 \triangleq \left|\Im\left[\widehat{x}(t)\right]\right| = |-j \operatorname{sgn}(f)|^2 |X(f)|^2 = |X(f)|^2$$

2. A signal and its Hilbert transform are orthogonal

$$\int_{-\infty}^{\infty} x(t)\hat{x}(t) dt = 0 \text{ (energy signals)}$$

 If c(t) and m(t) are signals with nonoverlapping spectra, where m(t) is lowpass and c(t) is highpass, then

$$\widehat{m(t)c(t)} = m(t)\widehat{c}(t)$$

Analytic Signals

The analytic signal of the real signal x(t) is

$$x_p(t) = x(t) + j\widehat{x}(t)$$

- Envelope: $|x_p(t)| = \sqrt{x(t)^2 + \hat{x}(t)^2}$
- Spectrum:

$$X_p(f) = X(f) \left[1 + \operatorname{sgn} f \right]$$

Complex Envelope

The analytic signal can be written as

$$x_p(t) = \widetilde{x}(t)e^{j2\pi f_0 t}$$

- $\tilde{x}(t)$: complex envelope of x(t)
- f_0 : reference frequency
- Spectrum:

Bandpass signal

lowpass signal

Inphase and Quadrature Components

Since

$$x_p(t) = \widetilde{x}(t)e^{j2\pi f_0 t} \triangleq x(t) + j\widehat{x}(t)$$

Thus

$$x(t) = \operatorname{Re} \left[\widetilde{x}(t) e^{j2\pi f_0 t} \right]$$

$$= \operatorname{Re} \left[\widetilde{x}(t) \right] \cos \left(2\pi f_0 t \right) - \operatorname{Im} \left[\widetilde{x}(t) \right] \sin \left(2\pi f_0 t \right)$$

$$= x_R(t) \cos(2\pi f_0 t) - x_I(t) \sin(2\pi f_0 t)$$
Inphase Quadrature component of x(t)

Example $f_0 = 100Hz$

Example $f_0 = 100Hz$

Thanks for your kind attention!

Questions?