BÀI TẬP THUẬT TOÁN TỐI ƯU LẦN THỨ 1

Bài 1 Cho $\Omega \subseteq \mathbb{R}^n$ là một tập lồi, với $k \in \mathbb{N}^*$, $x_1, x_2, ... x_k \in \Omega$ và $\lambda_1, \lambda_2, ..., \lambda_k \geq 0$ và $\sum_{i=1}^k \lambda_i = 1$, chứng minh rằng $\sum_{i=1}^k \lambda_i x_i \in \Omega$.

Hint: Dùng quy nạp.

- **Bài 2.** Dùng các đặc trưng của hàm lồi, để kiểm tra xem trong các hàm sau đây, hàm số nào là hàm lồi?
 - (a) $f(x) = e^{\alpha x} x$ trên miền \mathbb{R} .
 - (b) $f(x) = x^q$, với q > 1, trên miền \mathbb{R}_+ .
 - (c) $f(x) = -\ln x$ trên miền \mathbb{R}_+ .
 - (d) $f(x) = x \ln x$ trên miền \mathbb{R}_+ .
 - (e) $f(x_1, x_2) = x_1^2 + x_2^2 x_1x_2 + x_1 2x_2$ trên miền \mathbb{R}^2 .
 - (f) $f(x_1, x_2) = x_1 x_2$ trên miền \mathbb{R}^2_{++} .
 - (g) $f(x_1, x_2) = \frac{x_1^2}{x_2}$ trên miền $\mathbb{R} \times \mathbb{R}_{++}$.
 - (h) $f(x_1, x_2) = x_1^{\alpha} x_2^{1-\alpha}$, với $0 \le \alpha \le 1$, trên miền \mathbb{R}^2_{++} .
 - (i) $f(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2 x_1x_2 x_2x_3 x_3x_1$ trên miền \mathbb{R}^3 .

Bài 3. Cho hai ánh xạ $f_1, f_2 : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ là các hàm lồi. Đặt $g(x) = \min\{f_1(x), f_2(x)\} \text{ và } h(x) = \max\{f_1(x), f_2(x)\}\}.$

Hỏi g và h hàm nào là hàm lồi ? Vì sao ? (Nếu là hàm lồi hãy chứng minh, ngược lại hãy cho phản ví dụ)

Bài 4. Cho ánh xạ $f:\mathbb{R}^n\to\mathbb{R}\cup\{+\infty\}$ và α là một số thực bất kỳ, tập mức α được định nghĩa như sau

$$L_{\alpha} := \{ x \in \mathbb{R}^n | f(x) \le \alpha \}.$$

- (a) Chứng minh rằng nếu f là hàm lồi thì với mọi $\alpha \in \mathbb{R}$, tập mức L_{α} là tập lồi.
- (b) Mệnh đề đảo của câu (a) đúng hay sai? Vì sao?

Bài 5. (Jensen's inequality) Cho ánh xạ $f: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ là ánh xạ lồi, với $k \in \mathbb{N}^*$, $x_1, x_2, ...x_k \in \text{dom} f$ và $\lambda_1, \lambda_2, ..., \lambda_k \geq 0$ và $\sum_{i=1}^k \lambda_i = 1$, chứng minh rằng

$$f\left(\sum_{i=1}^{k} \lambda_i x_i\right) \le \sum_{i=1}^{k} \lambda_i f(x_i).$$

Áp dụng: bằng cách vận dụng tính lồi của hàm số $f(x) = -\ln x$.

(a) (Cauchy's inequality). Cho $a_1, a_2, ..., a_m \in \mathbb{R}_+$, ta có

$$\frac{a_1 + a_2 + \dots + a_m}{m} \ge \sqrt[m]{a_1 a_2 \dots a_m}$$

(b) (Hölder's inequality) Cho $x, y \in \mathbb{R}^n$, p > 1 và $\frac{1}{p} + \frac{1}{q} = 1$, ta có

$$\sum_{i=1}^{n} x_i y_i \le \left(\sum_{i=1}^{n} |x_i|^p\right)^{\frac{1}{p}} \left(\sum_{i=1}^{n} |y_i|^q\right)^{\frac{1}{q}}.$$

Bài 6. Sử dụng điều kiện cần cấp 1, để tìm các điểm tới hạn của các hàm số sau.

- (a) $f(x_1, x_2) = x_1^2 + 3x_2^2 4x_1 + 8x_2$.
- (b) $f(x_1, x_2, x_3) = 2x_1^2 + x_1x_2 + x_2^2 + x_2x_3 + x_3^2 6x_1 7x_2 8x_3 + 9$.
- (c) $f(x_1, x_2) = (x_1x_2 x_1 1)^2 + (x_2^2 1)^2$.
- (d) $f(x_1, x_2, x_3) = x_1 x_2 x_3 e^{-x_1 x_2 x_3}$.
- (e) $f(x_1, x_2) = \frac{1}{x_1 x_2} + x_1 + x_2$ trên miền \mathbb{R}^2_{++} .

Bài 7. Cho hàm số $f: \mathbb{R}^n \to \mathbb{R}$ là hàm lồi. Xét bài toán cực tiểu không ràng buộc sau (P) $\operatorname{Min} f(x)$ s.t. $x \in \mathbb{R}^n$.

Chứng minh các tính chất sau

- (a) \bar{x} là cực tiểu địa phương của (P) $\Leftrightarrow \nabla f(\bar{x}) = 0$.
- (b) \bar{x} là cực tiểu địa phương của (P) $\Leftrightarrow \bar{x}$ là cực tiểu toàn cục của (P).
- (c) Tập các điểm cực tiểu của bài toán (P) là tập lồi.
- (d) Nếu f là hàm lồi chặt thì bài toán (P) có duy nhất một cực tiểu.

Bài 8. Biện luận theo tham số m số điểm cực tiểu của bài toán sau

(P) Min
$$\frac{3}{2}(x^2+y^2) + (1+m)xy - x - y + 4$$
 s.t. $(x,y) \in \mathbb{R}^2$.

Bài 9. Cho hàm số $f: \mathbb{R}^n \to \mathbb{R}$ và $\bar{x}, d \in \mathbb{R}^n$.

Chứng minh các tính chất sau

- (a) Nếu $\nabla f(\bar{x})^{\intercal}d < 0$ thì d là hướng giảm của f tại \bar{x} .
- (b) Nếu f là hàm lồi thì: d là hướng giảm của f tại $\bar{x} \Leftrightarrow \nabla f(\bar{x})^{\intercal} d < 0$.

Bài 10. Cho hàm số $f: \mathbb{R}^n \to \mathbb{R}$ và $\bar{x}, d \in \mathbb{R}^n$. Chứng minh rằng nếu d khác 0 và $\|\nabla f(\bar{x}) + d\|^2 \le \|\nabla f(\bar{x})\|^2$ thì d là hướng giảm của f tại \bar{x} .

- **Bài 11.** Cho hàm số $f: \mathbb{R}^n \to \mathbb{R}$ là hàm lồi và $\bar{x}, y \in \mathbb{R}^n$, biết rằng $f(y) < f(\bar{x})$. Chứng minh rằng: $d = y \bar{x}$ là hướng giảm của f tại \bar{x} .
- **Bài 12.** Cho hàm số $f: \mathbb{R}^n \to \mathbb{R}$ và $\bar{x} \in \mathbb{R}^n$, hãy tìm một hướng giảm d của f tại \bar{x} trong các trường hợp sau.

(a)
$$f(x,y) = x^2 + y^2 - xy - x + 2y - 3$$
 và $\bar{x} = (0,0)$.

(b)
$$f(x,y) = 2x^2 + y^2 - 2xy + 2x^3 + x^4$$
 và $\bar{x} = (-1,0)$.

(c)
$$f(x,y) = \frac{1}{2}(x-2y)^2 + x^4 \text{ và } \bar{x} = (2,1).$$

(d) $f(x, y, z) = x^2 + y^2 + z^2 - xy - xz + 2x - 4y - 2z$ và $\bar{x} = (0, 0, 1)$.

GV: TS. Nguyễn Minh Tùng

Email: nmtung@hcmus.edu.vn