Versor Cheat Sheet

versor.mat.ucsb.edu February 4, 2013

Graphic Symbol	Geometric State	Grade(s)	Algebraic Form	Abbr.
lpha	Scalar	0	α	Sca
1	Vector	1	$\boldsymbol{a} = \alpha e_1 + \beta e_2 + \gamma e_3$	Vec
	Bivector	2	$B = a \wedge b$	Biv
	Trivector	3	$I_3 = a \wedge b \wedge c$	Tri
	Point	1	$p = o + \boldsymbol{a} + \frac{1}{2}\boldsymbol{a}^2 \infty$	Pnt
• •	Point Pair	2	$\tau = p_a \wedge p_b$	Par
\bigcirc	Circle	3	$\kappa = p_a \wedge p_b \wedge p_c$	Cir
	Sphere	4	$\Sigma = p_a \wedge p_b \wedge p_c \wedge p_d$	Sph
igotimes	Flat Point	2	$\Phi=p\wedge\infty$	Flp
	Line	3	$\Lambda=p_a\wedge p_b\wedge \infty$	Lin
Ø	Dual Line	2	$\lambda = \mathbf{B} + \mathbf{d}\infty$	D11
	Plane	4	$\Pi = p_a \wedge p_b \wedge p_c \wedge \infty$	Pln
<u>zh</u>	Dual Plane	1	$\pi = \mathbf{n} + \delta \infty$	Dlp
\sim	Minkowski Plane	2	$E = o \wedge \infty$	Mnk
	Direction Vector	2	$t\infty$	Drv
\longrightarrow	Direction Bivector	3	$B\infty$	Drb
$\stackrel{L}{\longrightarrow}$	Direction Trivector	4	$I_3\infty$	Drt
*	Tangent Vector	2	o t	Tnv
4	Tangent Bivector	3	oB	Tnb
	Tangent Trivector	4	oI_3	Tnt
	Rotor	0, 2	$\mathcal{R} = e^{-\frac{\theta}{2}\mathbf{B}} = \cos\frac{\theta}{2} - \sin\frac{\theta}{2}\mathbf{B}$	Rot
	Translator	0, 2	$\mathcal{T} = e^{\frac{\mathbf{d}}{2}\infty} = 1 - \frac{\mathbf{d}}{2}\infty$	Trs
0	Motor	0, 2, 4	$\mathscr{M} = e^{\mathbf{B} + \mathbf{d}\infty}$	Mot
	Dilator	0, 2	$\mathcal{D} = e^{\frac{\lambda}{2}E} = \cosh\frac{\lambda}{2} + \sinh\frac{\lambda}{2}E$	Dil
)(Boost	0, 2	$\mathcal{B} = e^{ot} = 1 + ot$	Trv

Table 1: Basic elements of conformal geometric algebra and their algebraic constructions. The graphic symbols on the left are introduced to help reference the appendix of operations. Bold symbols represent Euclidean elements, with lowercase letters representing 1-blade vectors as is the custom in geometric algebra texts.

Operation	Operator or Method	Expression	Notation
Geometric Product	*	A * B	AB
Inner Product	<=	A <= B	$A\rfloor B$
Outer Product	^	A ^ B	$A \wedge B$
Commutator	%	А % В	$A \times B$
Inverse	!	! A	A^{-1}
Reverse	~	~A	$ ilde{A}$
Conjugate	conjugation()	A.conjugation()	Ā
Involute	<pre>involution()</pre>	A.involution()	Â

Table 2: How to perform basic operations on multivectors in *Versor*

Function	Output	Notation
Op::sp(A,B) or A.sp(B)	Spin A by B	$\mathcal{B}A\mathcal{B}^{-1}$
Op::re(A,B) or A.sp(B)	Reflect A by B	$\mathscr{B}\hat{A}\mathscr{B}^{-1}$
Op::rj(A,B)	Rejection of A from B	$(A \wedge B)B^{-1}$
Op::pj(A,B)	Projection of A onto B	$(A \rfloor B) B^{-1}$
Op::dl(A) or A.dual()	The Dual of A	A^*
Op::ud(A) or A.undual()	The Undual of A	A^{-*}
Op::dle(A) or A.duale()	The Euclidean Dual of A	A^{\star}
Op::ude(A) or A.unduale()	The Euclidean Undual of A	$A^{-\star}$

Table 3: Some useful functions operating on one or two arguments.

Function	Output	Notation
Gen::log(Rot r)	The Bivector Generator of input ${\mathscr R}$	$log(\mathscr{R})$
Gen::log(Mot m)	The Dual Line Generator of input ${\mathcal M}$	$log(\mathcal{M})$
<pre>Gen::mot(Dll d)</pre>	The exponential $\mathcal M$ of input Dual Line $B+d\infty$	$e^{B+d\infty}$
Gen::rot(Biv b)	The exponential ${\mathscr R}$ of input Bivector $\theta {\it I}$	$e^{-\frac{\theta}{2}I}$
Gen:ratio(Vec a, Vec b)	The Rotor ${\mathscr R}$ that takes input Vec ${\pmb a}$ to input Vec ${\pmb b}$	$\frac{(1+\boldsymbol{ba})}{\sqrt{2(1+a\cdot b)}}$
Gen::ratio(Dll da, Dll db)	The Motor $\mathcal M$ that takes input Dll A to input Dll B	
Gen::trs	The exponential ${\mathcal T}$ of input Direction Vector ${\pmb d} \infty$	$e^{-\frac{d}{2}\infty}$
Gen::dil	The exponential ${\mathcal D}$ of input E plane λE	$e^{rac{\lambda}{2}E}$
Gen::trv	The exponential ${\mathcal B}$ of input tangent vector	$e^{\frac{ot}{2}}$
Gen::mat	The 4x4 matrix of input Rotor ${\mathscr R}$	$ \left[\begin{array}{cccc} x_0 & y_0 & z_0 & 0 \\ x_1 & y_1 & z_1 & 0 \\ x_2 & y_2 & z_2 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right] $
Gen::aa	The axis angle rep of input Rotor ${\mathscr R}$	$[\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table 4: Common functions for dealing with versors and their generators.

Function	Output
Ro::null	Point p map of input Vector v
Ro::dls	Dual Sphere from input Vector $\emph{\emph{v}}$ and radius $\emph{\alpha}$
Ro::split1	Point p of input Point Pair $p \land q$
Ro::split2	Point q of input Point Pair $p \wedge q$
Ro::sur	Dual Sphere Surrounding input
Ro::cen	Center point p of input Round
Ro::car	Carrier Plane or Line of Input Circle or Point Pair
Ro::size	Squared Radius (+ or -) of input Round
Ro::wt	Weight $lpha$ of input Round

Table 5: Common functions for creating and querying round elements

Function	Output
Fl::car	Carrier Plane or Line of Input Circle or Point Pair
Fl::loc	Point p on input line or plane closest to input point
Fl::wt	Weight $lpha$ of input Flat
Fl::dir	Direction of input Flat

Table 6: Common functions for creating and querying flat elements

Function	Output	
Ta::at	Tangent to input State at input point <i>p</i>	
Ta::wt	Weight $lpha$ of input Tangent	

Table 7: Common functions for creating and querying tangent elements

Appendix A: List of Operators By Return Type

Operations that Construct a Point

✓ J • • ✓ J ○
Vec J Par Biv J Cir

Operations that Construct a Sphere

 $I_{5} \qquad \qquad \bullet \land \land \qquad \bullet \bullet \land \bullet \qquad \bullet \bullet \land \checkmark \qquad \bigcirc \land \bullet \qquad \bigcirc \land \checkmark$ Pss * Pnt Pnt \land Cir Par \land Par \land Dll Par \land Biv Cir \land Dlp Cir \land Vec

Operations that Construct a Point Pair

 $I_{5}\bigcirc \bullet_{\wedge} \bullet_{\square} \bullet_{\square}\bigcirc \bullet_{\square} \bullet_$

✓
J
Vec J Cir

Operations that Construct a Circle

Dlp | Sph

Operations that Construct a Line

✓ Vec J Pln

Operations that Construct a Dual Line

Dlp \Dlp \Dlp \Vec

Operations that Construct a Plane

 $\underset{\text{Inf} \wedge \text{Cir}}{\text{Cir}} \quad \underset{\text{Pss} * \text{Dlp}}{\text{Plt}} \quad \underset{\text{Pnt} \wedge \text{Drb}}{\bullet} \quad \underset{\text{Pnt} \wedge \text{Lin}}{\bullet} \quad \underset{\text{Par} \wedge \text{Drv}}{\bullet} \quad \underset{\text{Par} \wedge \text{Flp}}{\bullet} \quad \underset{\text{Lin} \wedge \text{Dlp}}{\overset{\bullet}{\text{Dlp}}}$

 \bigwedge \bigwedge \bigotimes \bigwedge \bigotimes \bigwedge \bigvee Lin \bigwedge Vec Flp \bigwedge Dll Flp \bigwedge Biv

Operations that Construct a Dual Plane

Operations that Construct a Flat Point

Operations that Construct a Vector

Operations that Construct a Bivector

O] \(\times \) \(

Operations that Construct a Trivector

Operations that Construct a Direction Vector

Operations that Construct a Direction Bivector

Operations that Construct a Direction Trivector

Operations that Construct a Tangent Vector at Origin

 $O_{\land} \nearrow O \nearrow I_{5} \nearrow \downarrow \searrow \downarrow \searrow \nearrow \downarrow \searrow$ Ori \land Vec Ori \ast Vec Pss \ast Tnb \ast Tri Tnt \ast Biv Vec \downarrow Tnb

Operations that Construct a Tangent Bivector at Origin

 $O_{\wedge \vee}$ O_{\vee} I_{5} I_{\wedge} I_{\wedge} I_{\vee} $I_$

Operations that Construct a Tangent Trivector at Origin

Operations that Construct a Rotor

Tnv | Mot Vec * Vec Biv * Biv Mot | Biv

Operations that Construct a Translator

Mnk*Flp Flp*Flp Dll]Mot Biv]Mot Trv]Drv

Operations that Construct a Dilator

 O_{∞}

Ori * Inf

Operations that Construct a Motor

Lin * Lin Dll * Dll * Biv Dll * Rot Rot ∧ Trs Rot * Trs

Operations that Construct a Transversor

Trs | Tnv

Mot] Tnv

Operations that Construct a Motor Dilator

Cir * Drb Dil ^ Mot Dil * Mot

Operations that Construct a Minkowski Plane

Ori∧Inf

Pss * Tri

Operations that Construct a Pseudoscalar

Operations that Construct an Origin

Operations that Construct an Infinity