

Aufbau und Betrieb einer Private Cloud mit Open Source Software

iX CeBIT Forum – Hannover – 5. März 2010

I Cloud-Computing 2009 + 2010

- Allgemein großes Interesse am Cloud-Computing
- Hype-Thema seit Ende 2008
- Gute Definitionen sind schwer zu finden
- Was steckt dahinter?

SIMPLY EXPLAINED - PART 17: CLOUD COMPUTING

LET THE CLOUDS MAKE YOUR LIFE EASIER

Definition: Cloud-Computing

Definition

- Unter Ausnutzung virtualisierter Rechen- und Speicherressourcen und moderner Web-Technologien stellt Cloud-Computing skalierbare, netzwerk-zentrierte, abstrahierte IT-Infrastrukturen, Plattformen und Anwendungen als on-demand Dienste zur Verfügung. Die Abrechnung dieser Dienste erfolgt nutzungsabhängig.
- Übergang der IT in das Zeitalter der Industrialisierung
 - Ein oder wenige Rechenzentren mit heterogenen oder homogenen Ressourcen unter zentraler Kontrolle
 - Virtualisierte Ressourcen
 - Verbrauchsabhängige Abrechnung
 - Benutzerfreundlich (geringe Einarbeitungszeit notwendig)

mitp

Die Vernetzung der Welt von Edison bis Google

NICHOLAS CARR

Drei organisatorische Typen von Clouds

- Public Cloud (bzw. External Cloud)
 - Anbieter und Nutzer gehören unterschiedlichen Organisationen an
 - Anbieter verfolgen immer kommerzielle Geschäftsinteressen
 - Nutzer haben keine Kosten für Anschaffung, Betrieb und Wartung eigener Hardware
 - Public Cloud Dienste liegen immer vor der eigenen Firewall
 - Theoretisches Risiko des Lock-in
 - Datenschutz und Datensicherheit beachten!

Drei organisatorische Typen von Clouds

- Private Cloud (bzw. Internal Cloud oder Intra Cloud)
 - Anbieter und Benutzer der Cloud Dienste gehören der gleichen Organisation an
 - Dienste der Private Cloud sind im Idealfall kompatibel zu den Public Cloud Diensten etablierter Anbieter
 - Keine Gefahr des Lock-in
 - Datenschutz ist kein Problem
 - Ähnlich hohe Kosten für eigene Hardware, Stellplatz und Administration wie bei einer nicht-Cloud-basierten Architektur
- Hybrid Cloud
 - Dienste aus Public und Private Clouds werden gemeinsam innerhalb einer Infrastruktur verwendet
 - Anwendungsgebiete:
 - Lastspitzen mit den Ressourcen von Public Clouds abfedern
 - Sicherheitskopien von Daten in Public Clouds auslagern

Die vier (wichtigsten) Kategorien von Cloud-Systemen

Humans as a Service (HuaaS)

HuaaS

Amazon Mechanical Turk

(Humans as a Service)

MP's Expenses (Guardian)

- Prinzip des Crowdsourcing
- Ressource Mensch wird zu geringen Kosten oder als Spende Freiwilliger angeboten
- Interessant für...
 - niedrig qualifizierte Tätigkeiten
 - Tätigkeiten, die Computer gar nicht, nur schlecht oder erst nach einer unverhältnismäßig hohen Entwicklungszeit erledigen könnte
- Einsatzmöglichkeiten sind u.a.
 - Bilderkennung
 - subjektive (Produkt)-Bewertungen
 - Übersetzungen
 - (Produkt)-Zuordnungen zu (Produkt)-Kategorien
- Beispiele für Public Cloud HuaaS
 - Untersuchung der Zeitung The Guardian zum britischen Spesenskandal 2009
 - Marktplatz für HuaaS: Amazon Mechanical Turk

Software as a Service (SaaS)

SaaS
Google Apps Clarizen
Gliffy
(Software as a Service)
Gliffy
SlideRocket

- Applikationen werden durch Dienstleister betrieben und als Service zur Verfügung gestellt
- Nutzer kümmern sich nicht um Installationen, Administration, Updates, ...
- Nutzung der Software ist kostenlos oder wird nach Verbrauch abgerechnet
- Lokale Installation der Software ist nicht vorgesehen
- Auf Seite der Nutzer ist lediglich ein Browser notwendig
- Benutzer muss dem Anbieter vertrauen im Bezug auf:
 - eigene Daten
 - Verfügbarkeit der Dienste
- Beispiele für Public Cloud SaaS
 - Google Docs, Salesforce.com, Gliffy, Clarizen, Zoho Writer, SlideRocket, Adobe Photoshop Express, Microsoft Office Live und Apple iWork.com
- Beispiele für Private Cloud SaaS
 - Sugar und Zimbra

Platform as a Service (PaaS)

PaaS

Google App Engine

Microsoft Azure

(Platform as a Service)

Bungee Connect

Zoho Creator

- Skalierbare, integrierte Laufzeitumgebungen
- Häufig auch Entwicklungsumgebungen
- Anbieter unterstützen meistens 1 oder 2 Programmiersprachen
- Erscheint als ein großer Rechner und macht es einfach zu skalieren
- Zielgruppe sind primär Entwickler
- Geringere Flexibilität als bei laaS
- Kein Administrationsaufwand für die Nutzer
 - Anwender kümmern sich nicht um das Betriebssystem, Systemsoftware, ...
- Beispiele für Public Cloud PaaS
 - Google App Engine, Amazon Simple DB, Bungee Connect, Zoho Creator und Windows Azure Services Plattform
- Beispiele für Private Cloud PaaS
 - AppScale und 10gen

Infrastructure as a Service (laaS)

laaS 3tera FlexiScale Joyent Rackspace Cloud
(Infrastructure as a Service) Amazon EC2 GoGrid

- Selten auch Hardware as a Service (HaaS) genannt
- Nutzer betreiben virtuelle Server-Instanzen mit (fast) beliebigen Betriebssystemen und unveränderten Anwendungen auf den Serverfarmen des Anbieters
- Nutzer haben innerhalb ihrer Instanzen Administratorenrechte
- Nutzer haben keinen Kontakt zur physischen Hardware
- Firewall-Regeln können selbst definiert werden
- Welche Betriebssysteme unterstützt werden, hängt vom Dienst-Anbieter ab
- Komplette Rechenzentren können virtuell realisiert werden
- Beispiele für Public Cloud laaS
 - 3tera, Amazon Elastic Compute Cloud (EC2), GoGrid, Joyent, FlexiScale, Rackspace Cloud (vormals Mosso) und Zimory Public Cloud
- Beispiele für Private Cloud laaS
 - Eucalyptus, Enomaly, OpenNebula, Nimbus und abiCloud

Amazon Web Services (AWS)

- Die Amazon Web Services (AWS) sind eine Sammlung verschiedener Cloud-Dienste
- http://aws.amazon.com
- Abrechnung nach Verbrauch
- Bekannte Dienste innerhalb der AWS sind u.a. EC2, S3, EBS...
- **Amazon Elastic Compute Cloud (EC2)**
 - Dienst für virtuelle Server (Instanzen)
- **Amazon Simple Storage Service (S3)**
 - Dienst für Webobjekte
- **Amazon Elastic Block Store (EBS)**
 - Dienst für persistente Datenspeichervolumen
- **Amazon SimpleDB**
 - Verteiltes Datenbankmanagementsystem
- Amazon Simple Queue Service (SQS)
 - Dienst für Nachrichtenwarteschlangen (Message Queues)
- **Amazon Mechanical Turk**
 - Marktplatz für HuaaS/Crowdsourcing

Kommerzielle Cloud Anbieter (kleine Auswahl)

Cloud Computing

Cloudware - Cloud Computing Without Compromise

- Kommerzielle Cloud Angebote sind meist proprietär
 - Nicht alle Aspekte der Architektur einsehbar und beeinflussbar
- Aufbau eigener Cloud-Infrastrukturen (Private Cloud) nicht immer möglich und nicht einfach
 - Aufbau einer Hybrid Cloud ist noch schwieriger

Übersicht über Private Cloud laaS (1)

abiCloud

- http://www.abicloud.org
- Unterstützt VMware, KVM, Xen und Virtual Box
- Open Source (steht unter der GNU Lesser General Public License v3)
- Version 1.0.0 seit 23.2.2010
- Noch sehr neu und unbekannt

OpenNebula

- http://www.opennebula.org
- Unterstützt VMware, KVM und Xen (Virtual Box geplant für Version 1.4.2)
- Bietet Migration von Instanzen
- Möglichkeit zum Aufbau einer Hybrid Cloud mit EC2
- Geringe Verbreitung
- Nur ein kleiner Teil (Stand Version 1.4) der EC2-API wird unterstützt
 - upload, register und describe images
 - run und terminate instances
- Kein S3 und EBS
- Open Source (steht unter der Apache License Version 2.0)

Übersicht über Private Cloud laaS (2)

Nimbus

- http://www.nimbusproject.org
- Alter Name: Virtual Workspace Service (VWS)
- Unterstützt KVM und Xen
- Baut auf der Grid-Middleware Globus 4 auf
- Kleiner Teil (Stand Version 2.3) der EC2-API wird unterstützt
 - describe images
 - describe, run, reboot und terminate instances
 - add und delete keypair
- EC2-kompatible Ressourcen können gesteuert werden
- Open Source (steht unter der Apache License Version 2.0)

Übersicht über Private Cloud laaS (3)

- Enomaly Elastic Compute Cloud (ECP)
 - http://src.enomaly.com
 - Unterstützt VMware, KVM, Xen, Virtual Box und OpenVZ
 - Open Source (steht unter der Affero General Public License v3)
 - Kaum Dokumentation
 - Keine API für die Benutzer
 - Eingeschränkte API zur Administration
 - Skaliert nur bis < 10 Knoten</p>
 - Seit Herbst 2009 ist Enomaly ECP nicht mehr offiziell verfügbar
 - Abkehr des Unternehmens von der Open Source Strategie

OpenECP

- http://www.openecp.org
- Fork von Enomaly ECP
- Open Source (steht unter der Affero General Public License v3)
- Projektstart: Februar 2010
- Noch sehr neu und unbekannt

Eucalyptus

http://open.eucalyptus.com

- Open-Source um eine Private Cloud laaS auf Clustern aufzubauen
 - Ermöglicht Ausführung und Kontrolle virtueller Instanzen (Xen oder KVM) auf verschiedenen physischen Ressourcen
- EUCALYPTUS Elastic Utility Computing Architecture for Linking Your Programs To Useful Systems
- Entwickelt an der UC Santa Barbara
 - Weiterentwicklung durch Eucalyptus Systems, Inc.
- Versuch, die AWS zu emulieren
 - Schnittstelle kompatibel zu Amazon EC2
 - Enthält "Walrus", einen S3-kompatiblen Speicher-Dienst
 - Enthält "Storage Controller", einen EBS-kompatiblen Speicher-Dienst für persistenten Speicher
- Nutzung bekannter Tools für AWS möglich
 - z.B: S3 Curl, Elasticfox, s3cmd, ...
- Schritt hin zur Etablierung von AWS als Standard für Cloud-Infrastrukturen

Eucalyptus (v1.6) — Komponenten

- Meta-Scheduler in der Cloud
- Sammelt Ressourcen-Informationen der CCs
- Enthält standardmäßig die S3 und EBS Dienste
- Cluster Controller (CC)
 - Regelt die Verteilung der virtuellen Maschinen auf die NCs
 - Sammelt Informationen über freie Ressourcen
- Node Controller (NC)
 - Läuft auf jedem Rechenknoten
 - Steuert den Xen-Hypervisor oder KVM
 - Schickt Ressourcen-Informationen an den CC
- Walrus
- **Storage Controller**

In 60 Minuten eine eigene Private Cloud (1)

- 2 Rechner
 - Rechner 1: CLC, CC, Walrus (S3), Storage Controller (EBS)
 - Rechner 2: NC
- Auf beiden Rechnern Ubuntu 9.10 Server installieren
 - Ubuntu Enterprise-Wolke installieren
 - Rechner 1: Cloud installation mode: <u>Cluster</u>
 - IP-Adressraum für die Instanzen festlegen
 - Rechner 2: Cloud installation mode: Node
 - Der CLC/CC (Rechner 1) sollte automatisch gefunden werden

[!!] Select cloud installation mode

There is already a Eucalyptus cluster controller on your network, so this installation will default to installing a new computing node. Select "Cluster" instead if this is a mistake and you already have a node controller in place.

Cloud installation mode:

Ubuntu Server installieren
Ubuntu Enterprise-Wolke installieren
CD/DVD auf Fehler prüfen
Arbeitsspeicher testen
Von der ersten Festplatte starten
Ein beschädigtes System reparieren

In 60 Minuten eine eigene Private Cloud (2)

- Elasticfox oder Hybridfox unter Firefox installieren
 - http://s3.amazonaws.com/ec2-downloads/elasticfox.xpi
 - http://code.google.com/p/hybridfox/
- Zugang zur Private Cloud besorgen
 - https://<Rechner1>:8443
 - Apply for account
- Zugangsdaten besorgen
 - Credentials → Query interface credentials
- Zugangsdaten in Elasticfox/Hybridfox eintragen
 - Regions → Endpoint: URL: http://<Rechner1>:8773/services/Eucalyptus
 - Credentials: AWS Access Key und AWS Secret Access Key eintragen

Fakten zu Eucalyptus

- Installation von Eucalyptus ist schwieriger als kommuniziert
 - Installationsanleitungen lesen sich einfach
 - Deutliche Verbesserung der Situation seit Ubuntu 9.10 Server
 - Aber: Noch viel Raum für Verbesserungen (noch viele kleine Fehler/Bugs)
- Stabiler Betrieb einer Eucalyptus laaS ist möglich
 - Einrichtung ist aber schwierig
 - Einzelne Dienste brauchen gelegentlich einen Neustart
 - Hilfe der Entwickler nicht immer hilfreich
 - Kommerzieller Support verfügbar
 - Teilweise scheinen kommerzielle Interessen dem Community-Gedanken entgegen zu stehen (u.a. Unterstützung von VMware)
- Erweiterungen und Änderungen am Quellcode sind schwierig
 - Quellcode und Komponenten erscheinen undurchsichtig
 - Von Seiten der Entwickler ist hier keine Hilfe zu erwarten

AppScale

http://appscale.cs.ucsb.edu

- Open-Source Reimplementierung der Google App Engine (GAE)
- Entwickelt an der UC Santa Barbara
- GAE ermöglicht es, Web Anwendungen in Python und JAVA in der Google Infrastruktur zu betreiben
- AppScale ermöglicht den Aufbau einer eigenen PaaS, kompatibel zur GAE
- GAE-kompatible Anwendungen für GAE können innerhalb einer Private Cloud (Eucalyptus) und innerhalb einer Public Cloud (EC2) betrieben und getestet werden
- AppScale emuliert auch Google-Infrastruktur-Dienste wie Datastore, Memcache und die Authentifizierung

KOALA

http://koalacloud.appspot.com

 Web-Anwendung zur Steuerung von Public und Private Cloud Infrastrukturen via PaaS (aus der Cloud heraus)

KOALA

http://koalacloud.appspot.com

- Vor- und Nachteile einer Cloud-basierten Steuerung für laaS gegenüber einer lokalen Lösung (z.B. Elasticfox oder Hybridfox)
 - Vorteile:
 - Flexibilität bzgl. des Browsers
 - Unterstützung von EC2/S3/EBS und Eucalyptus
 - Keine lokale Installation notwendig (Ausnahme: Private Schlüssel)
 - Cloud Installation entspricht dem Cloud-Gedanken
 - Nachteile:
 - Vertrauen gegenüber dem Anbieter (Google) bezüglich Datenschutz und Verfügbarkeit ist notwendig
- Vor- und Nachteile von KOALA gegenüber den Amazon-Werkzeugen (insb. AWS Management Console)
 - Vorteile:
 - Unterstützung von EC2/S3/EBS und Eucalyptus
 - KOALA selbst kann in einer Private Cloud (AppScale) betrieben werden
 - Nachteile:
 - Nicht alle EC2/S3/EBS-Features implementiert
 - Kein Support von Amazon

KOALA

http://koalacloud.appspot.com

Jetzt verfügbar!

- Auf dem Markt seit November 2009
- Erstes Buch zum Cloud Computing in deutscher Sprache
- Nur €14,95

Vielen Dank für Ihre Aufmerksamkeit

