Introduction to Machine learning

Vu Tuan Hai

University of Information technology, VNUHCM

About me

Bachelor's degree in Software engineering from 4/2021. Teaching assistant at UIT, VNUHCM.

Email: vutuanhai237@gmail.com

Machine learning

"Learning is any process by which a system improves performance from experience."

"Machine learning is concerned with computer programs that automatically improve their performance through experience."

- Herbert Alexander Simon

From educational perspective

Energy	Food	Computation power
Data	Book	Dataset
Training	•••	•••
Testing	•••	•••

History

Since an early flush of optimism in the 1950s, smaller subsets of artificial intelligence – first machine learning, then deep learning, a subset of machine learning – have created ever larger disruptions.

History

Why machine learning?

Data mining: get new knowledge from big data

Ex: Predict stock prices

A software that can automatically upgrade and adapt to individual users.

Ex: Facebook newfeed

Mimic human which require some intelligence

Ex: Recognize, classification, ...

Why's it hot now?

Computational power: NVIDIA, AMD, Intel, ...

The increasing of big data: from huge of the internet user.

New algorithms and techniques

Support from governments and industries

Its applications

- Computer vision: recognition, human machine interaction, ...
- Natural language processing (NLP): text mining, recommend system, artificial voice, ...
- Other: fin-tech, bioinformation, physis, chemistry, ...

The concept of learning in Machine learning

Learning = Improving the performance P with experience E at task T

Task T: recognize, classify, predict, ...

Experience E: images, texts, time-series, ...

Performance P: accuracy, F1-score, IoU, MAPE, ...

Example: Filter spam email

An email will be classified as a normal email or spam email.

T: classify (or identify)

E: database of email (text) that were labeled by user.

P: accuracy (%) = |correct label| / |total email|

Learning process

In our example

Dataset

The dataset is splitted into train set and test set (or train – val – test)

```
{content1, spam}
{content2, not-spam}
{content2, not-spam}
{content2, not-spam}

{content8, spam}

{content9, spam}

{content10, spam}

{content10}

Train set:
{content1, spam}
{content2, not-spam}

...
{content2, not-spam}

...
{content10, spam}
```

Linear classifier

Linear classifier

Linear classifier – add more parameters

No linear classifier can cover all instances

New model with higher degree

→ Issue of generalization

Which one?

Overfitting and underfitting

Model testing

Confusion matrix

Predict spam

Predict non-spam

Actual spam

Actual

non-spam

True positive 3	False negative 1
False positive 1	True negative 4

Accuray =
$$\frac{TP+TN}{TP+TN+FP+FN}$$
, Recall = $\frac{TP}{TP+FP}$, Precision = $\frac{TP}{TP+FN}$

F1 score =
$$\frac{2*recall*precision}{recall+precision}$$

Model testing

Confusion matrix

Predict spam

Predict non-spam

Actual spam

Actual

non-spam

True positive 3	False negative 1
False positive 1	True negative 4

Accuray =
$$\frac{TP+TN}{TP+TN+FP+FN}$$
, Recall = $\frac{TP}{TP+FP}$, Precision = $\frac{TP}{TP+FN}$

F1 score =
$$\frac{2*recall*precision}{recall+precision}$$

Deep learning – Neural network

Neural network

DNN

Some famous architechtures:

Computer vision:

- Alexnet
- Resnet
- CNN

Natural language processing:

- GRU
- RNN
- LSTM

Generating task:

- Auto-encoder
- VAE
- GAN: WGAN, CycleGAN, Pix2Pix

Other learning task

Supervised learning
Unsupervised learning
Transfer learning
Online learning
Federated learning

...

Software

Framework (Python):

- Tensorflow, Keras
- Pytorch

Computational services:

- Google Colab
- MS Azure
- AWS

Software

HUGGING FACE

Higher-level interface

Python package

Python library

Python framework

ML API

What we need to do?

Thanks for listening

Q&A