X86 架构内存编址及启动过程

1. 几个名词 X86 架构:

Intel, AMD CPU 采用的结构体系.实模式, 16 位模式: X86 体系 CPU 启动是处于此模式. DOS 启动完成也是此模式, 直接使用物理地址保护模式,虚模式,32 位模式: linux,windows 启动后进入此模式. 使用虚拟地址.

2.8086CPU 的限制.

X86 架构是从 8086 发展来的, 所以后来的 CPU 都保留了 8086 的限制. 理解内存编址, 要了解 8086.8086 是 16 为 CPU, 地址总线 20 位.8086 采用分段机制. 寻址方式是段基址+偏移量.8086 中,基本的段寄存器是 CS,DS, SS, ES. 都是 16 位寄存器.寻址时, 段寄存器地址左移 4 位, 加上偏移量. 就是需要的物理地址.所以 8086 最大只能访问 0xfffff 以内的空间(1M).

3.8086 编址

在这种体系结构下, 640K(0xA0000)以下称为基本内存. 这就是系统可用的内存.0xA0000~0xBFFFF 用于显卡缓存. (640K 开始的部分)0xC0000 开始用于 BIOS, 一般显卡 BIOS 从0xC0000 开始.系统 BIOS 放到可访问的 1M 内存最后. 中间是一些其他设备的 BIOS, 都有各自的固定起始地址.

4.8086 启动过程.

系统加电启动的时候, CPU清 0. 然后 CS 寄存器设为 0xFFFF, IP 寄存器设为 0x0000. 对应的物理地址就是 0xFFFF0.可见这是在系统 BIOS 里面. 一般是一条跳转指令, 跳转到真正的 BIOS 处开始执行.BIOS 首先自检, 此时如果发现严重错误, 比如没有内存,直接鸣喇叭,(因为还没用显卡初始化. 如果没有 CPU 呢?没有任何反应).然后执行显卡 BIOS,显示显卡信息.显示系统 BIOS 自己的信息.如果是从硬盘启动,读取 MBR 到 0x7C00 处.如果引导程序是GRUB, MBR 里就包括 GRUB 的 stage1 代码.如果不使用 state1.5,就通过物理扇区直接寻址 stage2(因为没有文件系统).如果是 linux 系统,就加载 kernel image.如果是用"make zImage"编译的内核,就加载到 0x100000 处(64K 位置).如果是用"make bzImage"编译的内核,就加载到 0x100000 处(1M 位置).剩下的就是内核的事情了.