Análisis de Series de Tiempo

Mario J. P. López

Departamento de Matemáticas Universidad El Bosque

2020

Sección 1 Identificación de Modelos

Considerando el modelo ARIMA(p,d,q) general

$$(1 - \phi_1 B - \dots - \phi_p B^p) (1 - B)^d Z_t = \theta_0 + (1 - \theta_1 B - \dots + \theta_q B^q)$$

la metodología de identificación de modelos se refiere a

- identificar las transformaciones requeridas (estabilización de varianza y diferenciación)
- \bullet decidir si se incluye el parámetro determinístico θ_0 cuando d>1
- \bullet los órdenes apropiados de p y q para el modelo.

Pasos para la idetificación

- Graficar la serie de tiempo
- Seleccionar una transformación de potencia apropiada.
- Seleccionar un orden de diferenciación apropiado.
- Calcular y examinar el comportamiento de la ACF y la PACF muestral para la serie transformada y diferenciada para identificar los órdenes p y q en el modelo, teniendo en cuenta las características teóricas.

Pasos para la idetificación

Proceso	ACF	PACF	
AR(p)	Decaimiento	Se corta luego	
	exponencial o	del rezago \boldsymbol{p}	
	como ondas		
	amortiguadas		
MA(q)	Se corta luego	Decaimiento	
	del rezago q	exponencial o	
		como ondas	
		amortiguadas	
ARMA(p,q)	Decae luego del	Decae luego del	
	rezago $(q - p)$	rezago $(p-q)$	

Pasos para la identificación

• Para determinar si el parámetro θ_0 debe estar incluido en el modelo se puede realizar una prueba t dividiendo la media muestral \widehat{W} de la serie diferenciada $W = (1 - B)^d Z_t$ con su error estándar aproximado

$$S_{\bar{W}} = \left[\frac{\hat{\gamma}_0}{n}\left(1+2\hat{\rho}_1+\cdots+2\hat{\rho}_k\right)\right]^{1/2}$$

donde $\hat{\gamma}_0$ es la varianza muestral y $\hat{\rho}_1, \dots, \hat{\rho}_k$ son las primeras k autocorrelaciones muestrales significativas de $\{W_t\}$. Así si la estadística es no significativa entonces no se incluye a θ_0 en el modelo.

Función de autocorrelación muestral extendida

- Dadas las dificultades de identificación de modelos ARMA con p y q distintos de cero, es necesario un método de identificación de modelos mixtos ARMA más allá de la ACF y la PACF. Este es el caso de la función de autocorrelación muestral extendida (EACF).
- Considere el modelo

$$(1 - \phi_1 B - \cdots - \phi_p B^p) Z_t = (1 - \theta_1 B - \cdots - \theta_q B^q) a_t$$

de donde

$$Y_t = (1 - \phi_1 B - \dots - \phi_p B^p) Z_t$$

sigue un modelo MA(q).

Función de autocorrelación muestral extendida

• Suponga que se tienen n observaciones disponibles de un proceso ARMA(p,q), con p conocido y q>0 desconocido, si se ajusta vía mínimos cuadrados un modelo AR(p) a los datos, esto es

$$Z_t = \sum_{i=1}^p \phi_1 Z_{t-i} + e_t, \qquad t = p+1, \dots, n$$

con e_t el término de error, los estimadores de mínimos cuadrados $\hat{\phi}_i^{(0)}$ de ϕ_i , $i=1,\ldots,p$, serán inconsistentes y los residuales estimados

$$\hat{\mathbf{e}}_{t}^{(0)} = Z_{t} - \sum_{i=0}^{p} \hat{\phi}_{i}^{(0)} Z_{t-i}$$

no serán ruido blanco.

Función de autocorrelación muestral extendida

Considere ahora el modelo

$$Z_t = \sum_{i=1}^p \phi_1 Z_{t-i} + \beta_1 \hat{\mathbf{e}}_{t-1}^{(0)} + \mathbf{e}_t, \qquad t = p+2, \dots, n$$

Si q > 1, los estimadores de mínimos cuadrados $\hat{\phi}_i^{(1)}$ de ϕ_i , $i = 1, \ldots, p$, serán inconsistentes y los residuales estimados $\hat{e}_t^{(1)}$ no serán ruido blanco. Este proceso puede continuar hasta que se consigan estimadores consistentes para ϕ_i y los $\hat{e}_t^{(m)}$ sean ruido blanco.

Función de autocorrelación muestral extendida

En la páctica el verdadero valor de p no se conoce, pero un procedimiento sugerido consiste en un conjunto de regresiones iteradas para determinar los órdenes p y q. Así, se define la m-ésima EACF $\rho_j^{(m)}$ de Z_t como la función de autocorrelación muestral de $\hat{e}_t^{(m)}$ del modelo ajustado

$$Z_t = \sum_{i=1}^p \phi_1 Z_{t-i} + \sum_{k=0}^m \beta_{k+1} \hat{\mathbf{e}}_{t-k+1}^{(k)} + e_t, \qquad t = p+m+2, \dots, n$$

Función de autocorrelación muestral extendida

arregladas en una tabla como sigue:

	MA					
AR	0	1	2	3		
0	$\hat{ ho}_1^{(0)}$	$\hat{ ho}_2^{(0)}$	$\hat{ ho}_3^{(0)}$	$\hat{ ho}_4^{(0)}$		
1	$\hat{\rho}_{1}^{(1)}$	$\hat{\rho}_2^{(1)}$	$\hat{\rho}_{3}^{(1)}$	$\hat{ ho}_4^{(1)}$		
2	$\hat{\rho}_{1}^{(2)}$	$\hat{ ho}_{2}^{(2)}$	$\hat{\rho}_{3}^{(2)}$	$\hat{\rho}_{4}^{(2)}$		
3	$\hat{\rho}_{1}^{(3)}$	$\hat{\rho}_{2}^{(3)}$	$\hat{\rho}_{3}^{(3)}$	$\hat{\rho}_{4}^{(3)}$		
:	:	:	:	:		

con

$$\hat{\rho}_{j}^{(m)} \stackrel{P}{\rightarrow} \begin{cases} 0, & 0 \leq m-p < j-q \\ X \neq 0, & \text{e.o.p.} \end{cases}$$