Lower bounds for Sorting (with comparisons)

Sorting algorithms we have seen so five are based on Comparisons $T(n) \cong \# of comparisons$ and as as an to sort

a vestion is $u_i \stackrel{?}{\leq} a_5$

Comparison-based sorting algorithms

Pros: - change the effect by changin comp function
- work for any kind of object where
a comp function can be defined

Cons - design a fuster algorithm without limiting ourself to comparison

Prove that Ω (n log n) time is
the best we can hope for for comparison-basele
porting algorithm

 $A = a_1 u_2 a_3 \dots a_n$

Assume welog that Yis a: # as

Decision-tree model

A decision tree is a fully binuty tree that reppresent the comparisons performed by a fixed comparison-based sorting algorithm on any input of a fixed site n

Decision tree for insection sort on n=3

of size in corresponds to a root to leaf puth on the tree

e.g.
$$A = 7 | 4 | 5$$

 $7 | 2 | 3$
 $A = 7 | 4 | 5$
 $A = 7 | 4 | 5$
 $A = 7 | 4 | 5$
 $A = 7 | 4 | 5$

- · Running time of the algorithm is 2 (length oppula) worst case time = 12 (height of tree)
- Any correct sorting algorithm must be able to produce any permutation why? If not, It is wrong If $\pi = 732$ 13 not in a leaf there exists an input 597 for which the algorithm is incorrect!
- . There are at least n! leaves

Any Sorting algorithm based on comperisons needs $\mathcal{N}(n \log n)$ computisons

- . Worst case time = 52 (height of the tree) 12 (h)
- · $\mathcal{A}(n!)$ leaves
- · Binary tree of height h has no more

$$\frac{2^{h} \ge n!}{=? h \ge log(n!)}$$

$$=? h \ge log(n!)$$

Exercise (***)

Binuxy search tukes $\theta(\log n)$ time (and comparisons) to find a key K in a sorted array A of size n. Is this optimul in the comparison model?

Solution

Decision tree

· Internal nodes contain a index of the away
ony i and the result is the compasson
between ACi) and K

- · Leures contain a Indexilem 7 to n (if k is in position i i.e. Ali]==k) or -1 (if k is not in A)
- · An algorithm connot be correct of there is a where not in the leaves => # of leave is at least n+1
- · Running time of the algorithm is

 1 (height of the tree) in the worst case

- . $2^{h} \ge n+1 = 7 \quad h = \Omega(\log h)$ If the is tennuzy $3^{h} \ge n+1 = 7 \quad h = \Omega(\log h)$
- · You cannot sort, in general, fuster thum

 I (n logh) time with a sorting algorithm
 bosed on compuzisons
- · Assumptions allows you to sort fuster
 - Few distinct elements e.g. binusy army can be sorted in linear time $\Theta(n \log k)$ time to sort a army with k distinct clausts