# Community Detection Methods for the Generalized Random Dot Product Graph Model Dissertation Proposal

John Koo

June 2021

1

# Introduction

## Community Detection for Networks

How can we cluster the nodes of a network?

Statistical inference (parametric approach):

- 1. Define a generative model  $G \mid z_1,...,z_n, \vec{\theta} \sim P(\vec{z},\vec{\theta}).$
- 2. Develop a method for obtaining estimators  $f(G) = \hat{z}_1,...,\hat{z}_n$ .
- Identify asymptotic properties of estimators and prove consistency.

3

### Overview

- 1. Probability Models for Networks
  - Block Models and Community Structure
  - (Generalized) Random Dot Product Graphs
  - Connecting Block Models to the (G)RDPG
- 2. Popularity Adjusted Block Model
  - Connecting the PABM to the GRDPG
  - Subspace Clustering for Community Detection
  - Orthogonal Spectral Clustering
- Community Detection for the (G)RDPG
  - Manifold Clustering
  - Manfolds as (G)RDPG Latent Configurations

4

# Probability Models for Networks

## Bernoulli Graphs

Let G=(V,E) be an undirected and unweighted graph with |V|=n. G is described by adjacency matrix A such that  $A_{ij}= \begin{cases} 1 & \exists \text{ edge between } i \text{ and } j \\ 0 & \text{else} \end{cases}$ 

 $A_{ji} = A_{ij}$  and  $A_{ii} = 0 \ \forall i, j \in [n]$ .  $A \sim BernoulliGraph(P)$  iff:

- 1.  $P \in [0,1]^{n \times n}$  describes edge probabilities between pairs of vertices.
- 2.  $A_{ij} \stackrel{ind}{\sim} Bernoulli(P_{ij})$  for each i < j.

Example: If G is an Erdos-Renyi graph, then  $P_{ij}=\theta$ .



### **Block Models**

Suppose each vertex  $v_1,...,v_n$  has hidden labels  $z_1,...,z_n \in [K]$ , and each  $P_{ij}$  depends on labels  $z_i$  and  $z_j$ .

Then  $A \sim BernoulliGraph(P)$  is a block model.

Example: Stochastic Block Model with two communities

- To make this an assortative SBM, set  $pq > r^2$ .
- In this example, p = 1/2, q = 1/4, and r = 1/8.



.

### **Block Models**

### Erdos-Renyi Model (1959)

- $ightharpoonup P_{ij} = \theta$
- Not a block model

Stochastic Block Model (Lorrain and White, 1971)

- $P_{ij} = \theta_{z_i z_j}$
- ► K(K+1)/2 parameters  $\theta_{kl}$

Degree Corrected Block Model (Karrer and Newman, 2011)

- $P_{ij} = \theta_{z_i z_j} \omega_i \omega_j$
- K(K+1)/2 + n parameters  $\theta_{kl}$ ,  $\omega_i$

Popularity Adjusted Block Model (Sengupta and Chen, 2017)

- $P_{ij} = \lambda_{iz_j} \lambda_{jz_i}$
- ightharpoonup Kn parameters  $\lambda_{ik}$

8

### Hierarchy of Block Models

PABM  $\rightarrow$  DCBM:  $\lambda_{ik} = \sqrt{\theta_{z_i k}} \omega_i$ 

 $DCBM \rightarrow SBM: \omega_i = 1$ 

 $\mathsf{SBM} \to \mathsf{Erdos} ext{-Renyi: } \theta_{kl} = \theta$ 



Figure 2: The hierarchy of block models

Majid Noroozi and Marianna Pensky, 2021

ç

## (Generalized) Random Dot Product Graph Model

Random Dot Product Graph  $A \sim RDPG(X)$  (Young and Scheinerman, 2007)

- Latent vectors  $x_1,...,x_n \in \mathbb{R}^d$  such that  $x_i^{\top}x_j \in [0,1]$
- lacksquare  $A \sim BernoulliGraph(XX^{\top})$  where  $X = \begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix}^{\top}$

Generalized Random Dot Product Graph  $A \sim GRDPG_{p,q}(X)$  (Rubin-Delanchy, Cape, Tang, Priebe, 2020)

- ▶ Latent vectors  $x_1,...,x_n \in \mathbb{R}^{p+q}$  such that  $x_i^{\top}I_{p,q}x_j \in [0,1]$  and  $I_{p,q} = blockdiag(I_p, -I_q)$
- $ightharpoonup A \sim BernoulliGraph(XI_{p,q}X^{\top}) \text{ where } X = \begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix}^{\top}$

If latent vectors  $X_1,...,X_n \stackrel{iid}{\sim} F$ , then we write  $(A,X) \sim RDPG(F,n)$  or  $(A,X) \sim GRDPG_{p,q}(F,n)$ .

10

## (Generalized) Random Dot Product Graph Model

### Recovery/Estimation

Want to estimate X given A, or alternatively, interpoint distances, inner products, or angles.

### Adjacency Spectral Embedding

To embed in  $\mathbb{R}^d$ ,

- 1. Compute  $A \approx \hat{V} \hat{\Lambda} \hat{V}^{\top}$  where  $\hat{\Lambda} \in \mathbb{R}^{d \times d}$  and  $\hat{V} \in \mathbb{R}^{n \times d}$ . For RDPG, use d greatest eigenvalues; for GRDPG, use p most positive and q most negative eigenvalues.
- 2. For RDPG, let  $\hat{X}=\hat{V}\hat{\Lambda}^{1/2}$ ; for GRDPG, let  $\hat{X}=\hat{V}|\hat{\Lambda}|^{1/2}$ .

RDPG:  $\max_i \|\hat{X}_i - W_n X_i\| \overset{a.s.}{\to} 0$  (Athreya et al., 2018) GRDPG:  $\max_i \|\hat{X}_i - Q_n X_i\| \overset{a.s.}{\to} 0$  (Rubin-Delanchy et al., 2020)

# Connecting Block Models to the (G)RDPG Model

All G with  $A \sim BernoulliGraph(P)$  are RDPG (if P is positive semidefinite) or GRDPG (includes all block models).

Example: Assortative SBM

$$X = \begin{bmatrix} \sqrt{p} & 0\\ \vdots & \vdots\\ \sqrt{p} & 0\\ \sqrt{r^2/p} & \sqrt{q - r^2/p}\\ \vdots & \vdots\\ \sqrt{r^2/p} & \sqrt{q - r^2/p} \end{bmatrix}$$

$$P = XX^{\top}$$

# Connecting Block Models to the (G)RDPG Model

Example: SBM (cont'd)

- $ightharpoonup A \sim BernoulliGraph(XX^{\top})$
- $ightharpoonup A pprox \hat{X}\hat{X}^{ op}$ 
  - $\hat{X} = \hat{V}\hat{\Lambda}^{1/2}$
- lacktriangle Apply clustering algorithm (e.g., K-means) on  $\hat{X}$



# Connecting Block Models to the (G)RDPG Model



#### PABM: Orthogonal subspaces



# Popularity Adjusted Block Model

## Popularity Adjusted Block Model

Definition based on Noroozi, Rimal, and Pensky (2020).

$$A \sim PABM(\{\lambda^{(kl)}\}_K)$$
 iff

- 1. w.l.o.g., organize P such that each block  $P^{(kl)} \in [0,1]^{n_k \times n_l}$  contains edge probabilities between communities k and l.
- 2. Organize parameters as vectors such that  $\lambda^{(kl)} \in \mathbb{R}^{n_k}$  are the popularity parameters of members of community k to community l.
  - $\{\lambda^{(kl)}\}_K$  is the set of  $K^2$  popularity vectors.
- 3. Then we can write each block of P as  $P^{(kl)} = \lambda^{(kl)} (\lambda^{(lk)})^{\top}$ .
- 4. Sample  $A \sim BernoulliGraph(P)$ .

# Connecting the PABM to the GRDPG (K=2)

**Theorem** (KTT):  $A \sim PABM(\{\lambda^{(kl)}\}_2)$  is equivalent to  $A \sim GRDPG_{3,1}(XU)$  for block diagonal X constructed from  $\{\lambda^{(kl)}\}_2$  and predetermined  $U \in \mathbb{O}(4)$ .

Proof: Decompose P as follows

$$X = \begin{bmatrix} \lambda^{(11)} & \lambda^{(12)} & 0 & 0\\ 0 & 0 & \lambda^{(21)} & \lambda^{(22)} \end{bmatrix}$$
$$Y = \begin{bmatrix} \lambda^{(11)} & 0 & \lambda^{(12)} & 0\\ 0 & \lambda^{(21)} & 0 & \lambda^{(22)} \end{bmatrix}$$

$$P = XY^{\top} = \begin{bmatrix} \lambda^{(11)}(\lambda^{(11)})^{\top} & \lambda^{(12)}(\lambda^{(21)})^{\top} \\ \lambda^{(21)}(\lambda^{(12)})^{\top} & \lambda^{(22)}(\lambda^{(22)})^{\top} \end{bmatrix}$$

17

# Connecting the PABM to the GRDPG (K=2)

Proof (cont'd):

$$Y = X\Pi$$

$$\Pi = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = UI_{3,1}U^{\top}$$

$$U = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1/\sqrt{2} & 1/\sqrt{2} \\ 0 & 0 & 1/\sqrt{2} & -1/\sqrt{2} \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

$$P = (XU)I_{3,1}(XU)^{\top}$$

## Connecting the PABM to the GRDPG

**Theorem** (KTT):  $A \sim PABM(\{\lambda^{(kl)}\}_K)$  is equivalent to  $A \sim GRDPG_{p,q}(XU)$  such that

- p = K(K+1)/2
- q = K(K-1)/2
- lackbox U is orthogonal and predetermined for each K
- ▶ X is block diagonal and composed of  $\{\lambda^{(kl)}\}_K$   $\implies$  if  $x_i^\top$  and  $x_j^\top$  are two rows of XU corresponding to different communities, then  $x_i^\top x_i = 0$ .

**Remark** (non-uniqueness of the latent configuration):  $A \sim GRDPG_{p,q}(XU) \implies A \sim GRDPG_{p,q}(XUQ)$   $\forall Q \in \mathbb{O}(p,q)$ 

**Corollary**: X is block diagonal by community and U is orthogonal  $\implies$  each community corresponds to a subspace in  $\mathbb{R}^{K^2}$ .

Subspace property holds even with linear transformation  $Q\in \mathbb{O}(p,q).$ 

Sparse Subspace Clustering algorithm:

- 1. Solve n optimization problems  $c_i = \arg\min_c \|c\|_1$  subject to  $x_i = Xc$  and  $c_i^{(i)} = 0$ .
- 2. Compile solutions  $C = \begin{bmatrix} c_1 & \cdots & c_n \end{bmatrix}$ .
- 3. Construct affinity matrix  $B = |C| + |C^{\top}|$ .

If X obeys the Subspace Detection Property, then B is sparse such that  $B_{ij}=0$  if i and j belong to different communities and  $\|c_i\|>0$ .

Step (1) of SSC typically performed via LASSO:  $c_i = \arg\min \frac{1}{2} ||x_i - X_{-i}c||_2^2 + \lambda ||c||_1$ 

Noroozi et al. observed that the rank of P is  $K^2$  and the columns of P belonging to each community has rank K to justify SSC for the PABM.

$$rg \min_{c_i} \|c_i\|_1$$
 subject to  $A_{\cdot,i} = Ac_i$  and  $c_i^{(i)} = 0$ 

They were able to show that this obeys SDP if we replace A with P. GRDPG-based approach: Apply SSC to the ASE of A.

$$\arg\min_{c_i}\|c_i\|_1$$
 subject to  $\hat{x}_i=\hat{X}c_i$  and  $c_i^{(i)}=0$  
$$A\approx \hat{X}I_{p,q}\hat{X}^\top$$

2

Wang and Xu (2016): If data matrix X consists of points lying close to low-dimensional subspaces such that:

- 1. Each point's distance to its subspace is sufficiently small.
- The cosine of the angles between pairs of subspaces is sufficiently small.
- 3. The points corresponding to each subspace cover a sufficient amount of that subspace.

Then SDP holds with probability 1.

**Theorem** (KTT): If  $P = V\Lambda V^{\top}$  and  $B = nVV^{\top}$ , then  $B_{ij} = 0$   $\forall i, j$  in different communities.

### Theorem (KTT):

#### Let

- ▶  $P_n$  describe the edge probability matrix of the PABM with n vertices, and  $A_n \sim BernoulliGraph(P_n)$ .
- $ightharpoonup \hat{V}_n$  be the matrix of eigenvectors of  $A_n$  corresponding to the K(K+1)/2 most positive and K(K-1)/2 most negative eigenvalues.

#### Then

▶  $\exists \lambda > 0$  and  $N < \infty$  such that when n > N,  $\sqrt{n} \hat{V}_n$  obeys the Subspace Detection Property with probability 1.

#### Remarks:

- ▶ For large n, we can identify  $\lambda$  for SDP (Wang and Xu, 2016).
- SDP does not guarantee community detection.

## Orthogonal Spectral Clustering

**Theorem** (KTT): If  $P = V\Lambda V^{\top}$  and  $B = nVV^{\top}$ , then  $B_{ij} = 0$   $\forall i, j$  in different communities.

Orthogonal Spectral Clustering algorithm:

- 1. Let V be the eigenvectors of A corresponding to the K(K+1)/2 most positive and K(K-1)/2 most negative eigenvalues.
- 2. Compute  $B = |nVV^{\top}|$  applying  $|\cdot|$  entry-wise.
- 3. Construct graph G using B as its similarity matrix.
- 4. Partition G into K disconnected subgraphs.

**Theorem** (KTT): Let  $\hat{B}_n$  with entries  $\hat{B}_n^{(ij)}$  be the affinity matrix from OSC. Then  $\forall$  pairs (i,j) belonging to different communities and sparsity factor satisfying  $n\rho_n = \omega\{(\log n)^{4c}\}$ ,

$$\max_{i,j} \hat{B}^{(ij)} = O_P\left(\frac{(\log n)^c}{\sqrt{n\rho_n}}\right)$$

# General Community Detection for the (G)RDPG

### Generative Model

Let  $(A, X) \sim RDPG(F, n)$  such that

- 1. Define functions  $f_1, ..., f_K$  such that  $f_k : [0, 1]^r \mapsto \mathbb{R}^d$  and  $f_k(t) \neq f_l(t) \ \forall k, l \in [K].$
- 2. Sample labels  $Z_1, ..., Z_n \stackrel{iid}{\sim} Categorical(\pi_1, ..., \pi_K)$ .
- 3. Sample  $T_1,...,T_n \stackrel{iid}{\sim} D$  with support  $[0,1]^r$ .
- 4. Set latent positions  $X_i = f_{Z_i}(T_i)$  and  $X = \begin{bmatrix} X_1 & \cdots & X_n \end{bmatrix}^{\top}$ .
- 5.  $A \sim BernoulliGraph(XX^{\top})$

## Community Detection

Athreya et al. and Rubin-Delanchy et al.: we can approximate properties of the latent configurations via ASE.

General community detection method: Given A, K, and d (or p and q),

- 1. Use ASE to approximate the latent configuration.
- 2. Use the appropriate clustering algorithm for the form of the latent configuration (manifolds).

## Parallel Segments

**Example**: Let  $U_1,...,U_{n_1},U_{n_1+1},...,U_n \stackrel{iid}{\sim} Uniform(0,\cos\frac{\pi}{2}a)$ ,  $f_1(t)=(t,0)$ , and  $f_2(t)=(t,a)$ .  $X_i=f_1(U_i)$  for  $i\leq n_1$  and  $X_j=f_2(U_j)$  for  $n_1+1\leq j\leq n$ . If we observe  $X_1,...,X_{n_1},X_{n_1+1},...,X_n$ , what approach will allow us to group the observations by segment?

 $\forall a \in (0,1)$ ,  $\delta \in (0,1)$ , and  $K \geq 2$ ,  $\exists N(a,\delta,K) < \infty$  such that when  $\min_k n_k \geq N$ , with probability at least  $1-\delta$ ,

- 1. Single linkage clustering will produce perfect community detection.
- 2. Any  $\epsilon$ -neighborhood graph with  $\epsilon \leq a$  will consist of at least K disjoint subgraphs such that no subgraph contains members of two different communities.

# Noisy Parallel Segments and One-Dimensional Manifolds

**Example**: Starting with the parallel segments as before, suppose instead of observing  $X_1,...,X_n$ , we have noisy observations  $X_1+\xi_1,...,X_n+\xi_n$  such that  $\max_i \|\xi_i\|=\xi \le a/3$ .



Then  $\forall a \in (0,1)$ ,  $\delta \in (0,1)$ ,  $K \geq 2$ ,  $\xi \leq a/3$ ,  $\exists N(a,\delta,K,\xi) < \infty$  such that when  $\min_k n_k \geq N$ , with probability at least  $1-\delta$ ,

- 1. Single linkage will produce perfect community detection.
- 2. Any  $\epsilon$ -neighborhood graph will consist of at least K sub-graphs with no subgraph containing vertices from multiple communities.

This also holds for noisy points sampled from one-dimensional manifolds such that the manifolds are distance at least a apart.

# Recovery from the Adjacency Matrix



### Future Work

- 1. Show that the ASE of a random graph generated by these latent vectors produces the correct conditions for sufficiently large n.
- 2. Extend results to non-uniform distributions.
- 3. Extend results to multidimensional manifolds.
- 4. Relax condition for the minimum distance between manifolds.
- 5. Explore more robust clustering techniques for these latent configurations.
- 6. Extend results to the GRDPG.

# Additional Slides

### Parameter Estimation

# Indefinite Orthogonal Group

$$\mathbb{O}(p,q) = \{ Q : Q I_{p,q} Q^{\top} = I_{p,q} \}$$

- $ightharpoonup Q^{ op}Q 
  eq I$
- ▶ If  $A \sim GRDPG_{p,q}(X)$ , then  $A \sim GRDPG_{p,q}(XQ)$
- $(Qx)^{\top}(Qy) = x^{\widehat{\top}} Q^{\top} Qy \neq x^{\top} y$
- $||Q|| \neq 1 \implies ||Qx Qy|| \neq ||x y||$

# Community Detection in Block Models

Likelihood

$$L = \prod_{i < j} \prod_{k,l}^{K} \left( p_{k,l,i,j}^{A_{ij}} (1 - p_{k,l,i,j})^{1 - A_{ij}} \right)^{z_{ik} z_{jl}}$$

Example: DCBM  $(p_{k,l,i,j} = \theta_{kl}\omega_i\omega_j)$ 

$$L = \prod_{i < j} \prod_{k,l} \left( (\theta_{kl} \omega_i \omega_j)^{A_{ij}} (1 - \theta_{kl} \omega_i \omega_j)^{1 - A_{ij}} \right)^{z_{ik} z_{jl}}$$

- lackbox ML method for community detection:  $\hat{ec{z}} = rg \max_{ec{z}} L$
- NP-complete
  - Expectation-Maximization
  - ► Bayesian methods
  - Spectral methods

## Expectation Maximization for the PABM

### Full data log-likelihood

$$\log L = \sum_{i < j} \sum_{k,l} z_{ik} z_{jl} (A_{ij} \log \lambda_{il} \lambda_{jk} + (1 - A_{ij}) \log(1 - \lambda_{il} \lambda_{jk}))$$
$$+ \sum_{i} \sum_{k} z_{ik} \log \pi_{k}$$

#### E-step

- $ightharpoonup \gamma_{ik} = P(Z_i = k \mid \{\pi_l\}, \{\lambda_{jl}\})$
- $\log \gamma_{ik} \propto \\ \log \pi_k + \sum_{j \neq i} \sum_l \pi_{jl} (A_{ij} \log \lambda_{il} \lambda_{jk} + (1 A_{ij}) \log (1 \lambda_{il} \lambda_{jk}))$

### M-step

- $\blacktriangleright \ \pi_k = \frac{1}{n} \sum_i \gamma_{ik}$

# MCMC Sampling for the PABM

#### Priors:

- $\triangleright Z_i \stackrel{iid}{\sim} Categorical(\pi_1, ..., \pi_K)$

### Full joint distribution:

$$\log p = constant$$

$$+ \sum_{i < j} \sum_{k} \sum_{l} z_{ik} z_{jl} (A_{ij} \log \lambda_{il} \lambda_{jk} + (1 - A_{ij}) \log(1 - \lambda_{il} \lambda_{jk}))$$

$$+ \sum_{k} \sum_{i} z_{ik} \log \pi_{k}$$

$$+ \sum_{i} \sum_{k} (a_{ik} - 1) \log \lambda_{ik} + (b_{ik} - 1) \log(1 - \lambda_{ik})$$

### Variational Inference for the PABM

#### Mean Field Variational Inference

- ▶ Minimize  $d_{KL}(p||q)$ 
  - ightharpoonup p is the joint distribution
  - ightharpoonup q is a density of some form
- ► Restrict  $q(\vec{z}, \{\lambda_{ik}\}) = \left(\prod_i q_{z_i}(z_i)\right) \left(\prod_{i,k} q_{\lambda_{ik}}(\lambda_{ik})\right)$
- lterative solution:  $q_{\theta_i}^{(t+1)} \propto \exp(E_{\theta_{-i}^{(t)}}[\log p])$
- Approximate solution for the PABM
  - $ightharpoonup Z_i \mid \{a'_{ik}\}, \{b'_{ik}\} \sim Categorical(\pi'_1, ..., \pi'_K)$
  - $\lambda_{ik} \mid \{a'_{-i,-k}\}, \{b'_{-i,-k}\}, \{\pi'_k\} \sim Beta(a'_{ik}, b'_{ik})$
  - Iteratively update  $\{\pi_K'\}, \{a_{ik}'\}, \{b_{ik}'\}$  until convergence