

Biosignature Detectability in Rocky Exoplanet with ELT-HARMONI and ELT-METIS in Different Coronagraph Contrast Levels

DEPARTMENT OF **ASTRONOMY**

University

Introduction

Biosignatures

- Signs of life
- Composed of special gas combinations
- Causes chemical disequilibrium in terrestrial planet atmospheres

Key Question: Are biosignatures detectable directly through METIS and HARMONI?

- Mid-infrared ELT Imager and Spectrograph (ELT/METIS)
- High Angular Resolution Monolithic Optical and Near-infrared Integral field spectrograph (ELT/HARMONI)

We explored the detectability (resolution element SNR) of METIS and HARMONI direct imaging modes for GJ 887 b

- Wavelength: 0.5-2.45 μm for ELT/HARMONI, 3-5.6 μm for ELT/METIS
- Exposure time: one hour with medium spatial resolution (~1000)
- Four cases with coronagraph contrast ranging from 10-3 to 10-6
- A modern Earth atmosphere with biosignatures of CH₄, O₂, H₂O, and CO₂ is assumed for GJ 887 b
- Based on the noise and difference (signal) in the spectrum of modern Earth's atmosphere and biosignature-free atmosphere in the feature wavelengths of biosignatures

Methodology

We perform an end-to-end calculation for the photon count at an ELT instrument.

Simulation Flowchart

Description

Reflected light from GJ 887 b:

- Originates from the host star,
- Reflected by the GJ 887 b,
- Encoded by the GJ 887 b's atmosphere
- Passes through Earth's atmosphere, ELT, and a highcontrast instrument
- Being recorded on a detector.

Thermal Emission from GJ 887 b:

- Originates from the GJ 887 b,
- Encoded by the GJ 887b 's atmosphere
- Passes through Earth's atmosphere, ELT, and a highcontrast instrument
- Being recorded on a detector.

Huihao Zhang, Ji Wang, Michael Plummer

THESELECTION OF PLANETS AND INSTRUMENTS

Selection of Planets

We employ NASA Exoplanet Archive (NEA) and the following selection:

- Angular separation larger than 10.5 mas;
- •Contrast above 10⁻⁷;
- •Planets with radii between 1.0 R_⊕ and 2 R_⊕;
- Equilibrium temperature below or around 450 K

We have identified 14 rocky exoplanets as below:

Based on magnitudes, we selected GJ 887 b from them as the target.

Selection of Instruments

- Both ELT/METIS and ELT/HARMONI are equipped with coronagraph
- Both ELT/METIS and ELT/HARMONI are possess the capability for medium-resolution imaging
- The spatial bands covered by ELT/METIS (3-13 μm)and ELT/HARMONI (0.47-2.45 μm) coincide with our desired range of interest (0.5-5.6 μm).

Conclusion

1.The direct imaging mode in 3-5.6 μ m of ELT/METIS has the capability to detect CH₄, CO₂, and H₂O in the atmosphere of GJ 887 b over the coronagraph contrast range from 10⁻³ to 10⁻⁶.

2.In contrast of 10^{-4} , the direct imaging of ELT/HARMONI has the ability to detect CH_4 , CO_2 , O_2 , and H_2O , but it requires a significant amount of exposure time, especially for O_2 .

3.Once the instrument contrast exceeds 10⁻⁵, improvement in the coronagraph contrast is less helpful for the detection capability of ELT/METIS.

4.From contrast = 10⁻³ to 10⁻⁶, the improvement in performance of the coronagraph greatly aids in the detection capability of ELT/HARMONI.