SUBSET-SUM

and Related Problems

SUBSET-SUM

• Recall, the subset-sum problem is the following language:

$$\{\langle S, t \rangle : S = \{x_1, \dots, x_n\}, \text{ and for some } \{y_1, \dots, y_l\} \subseteq \{x_1, \dots, x_n\}, \sum_{i=1}^t y_i = t\}$$

- Inputs: an integer value (target) t, and a set of integers a_1, \ldots, a_n
- Output: YES if there is a subset that adds up to t, NO otherwise

SUBSET-SUM is in NP

• Proof: Sipser Theorem 7.25

SUBSET-SUM is in NPc

• Proof: Sipser Theorem 7.56

• We show that $3SAT \leq_{p} SUBSET-SUM$

How?

• Given a 3CNF formula \emptyset , we want (within polytime in the length of \emptyset) to create(build) an instance of SUBSET-SUM (dependent on \emptyset): $\langle S_{\emptyset}, t_{\emptyset} \rangle$ such that \emptyset is satisfiable iff S_{\emptyset} has a subset that adds up to t_{\emptyset} .

From \emptyset to $\langle S_{\emptyset}, t_{\emptyset} \rangle$

- Suppose it has variables x_1, \dots, x_l and clauses c_1, \dots, c_k
- $t_\emptyset = \underbrace{11 \dots 1}_{l} \underbrace{33 \dots 3}_{k}$ (decimal number)
- Example: If l=1 and k=1, then t_\emptyset is thirteen

If
$$\emptyset = (x_1 \lor \neg x_2 \lor \neg x_3) \land (x_3 \lor \neg x_4 \lor x_5)$$
, then $t_\emptyset = 1111133$

$$S_{\emptyset} = ??$$

(1) If x_i is a variable in the formula \emptyset and the literal x_i appears in the clauses c_{i_1} , ..., c_{i_r} , then include in S_{\emptyset} the number $Y_i = :$

$$1 \underbrace{00 \dots 0}_{l-i} \underbrace{0 \dots 1 \dots 010 \dots 0}_{k}$$

Where in red, the 1's are in the positions $j_1, ..., j_r$

- (2) Do the exact same for the literal $\neg x_i$. Call the resulting number Z_i
- (3) For each clause c_j , include $D_j = 1 \underbrace{00 \dots 0}_{k-j}$ and $H_j = 2 \underbrace{00 \dots 0}_{k-j}$

This construction works

(1) If \emptyset is satisfiable, we can find a subset T of S_{\emptyset} such that the sum of the elements in T equals t_{\emptyset}

(2) Conversely, if we can find a subset T of S_{\emptyset} such that the sum of the elements in T equals t_{\emptyset} , then \emptyset is satisfiable

(1)

- Suppose that \emptyset is satisfiable (by some assignment); here we build T
- If x_i is assigned TRUE, include Y_i in T
- If x_i is assigned FALSE, include Z_i in T
- With the elements included so far, the sum of the elements in T should be something like $\underbrace{11...1}_{l}\underbrace{23..1..3}_{k}$

(the last k digits are made from 1,2,3)

• If needed, include in T from D_i and H_i what brings up the sum to $\underbrace{11...1}_{l}\underbrace{33...3}_{k}$

(2)

• Suppose we can find a subset T of S_\emptyset such that the sum of the elements in T equals t_\emptyset

We build an assignment which satisfies Ø

• If T contains Y_i , then assign x_i to TRUE

• If T contains Z_i , then assign x_i to FALSE

(2) Clarified

• Note that all we know about T here is that it is a collection of Y_i 's, Z_j 's, D_m 's, and H_n 's

• They all add up to $\underbrace{11 \dots 1}_{l} \underbrace{33 \dots 3}_{k}$

- The 1's at the beginning imply that for each variable x_i , exactly one of Y_i or Z_i is in T
- These Y_i 's (or Z_i 's) contribute at least a 1 to each 3

Related Problems

PARTITION

• PARTITION = $\{S : S \text{ finite subset of } \mathbb{Z} \text{ that can be split into two sets which sum to equal values} \}$

• SUBSET-SUM \leq_p PARTITION

So, PARTITION is NP-complete

KNAPSACK