CompTIA Security + 6.0 Cryptography and PKI

Filename: comptia-secplussy0501-6-1-basic_concepts_of_cryptography

Title: Basic Concepts of Cryptography Subtitle: CompTIA Security+ (SY0-501)

6.1 Basic Concepts of Cryptography

- 6.1 Compare and contrast basic concepts of cryptography
 - o Symmetric algorithms
 - Basic Diagram
 - Modes of operation
 - Basic DiagramAsymmetric algorithms
 - Hashing
 - o Salt, IV, nonce
 - Salts
 - Adds additional bits to a password prior to a hashing operation being performed on it
 - IVs
 - added to plaintext to ensure that identical plaintexts inputs do not produce the same ciphertext outputs
 - http://aesencryption.net/
 - Plaintext This is my secret text
 - Key QF0yS%7#LQD6'7hq]{Z94k/3Y'kAw4
 - Cipher Text uIIXiWX2uowfJwaJV+IBU7bVO5oG6n7ez2VdrpkXrCA=
 - o Elliptic curve
 - Smaller key sizes
 - Stronger Keys in smaller sizes
 - ECC 256 is as strong as thousands of times stronger than a RSA key
 - Weak/deprecated algorithms
 - o Key exchange
 - Mention Diffie-Hellman
 - Will be demonstrated in PFS below
 - o Digital signatures
 - See Diagram
 - o Diffusion
 - A principle in en encryption where a modification of a single bit of plaintext should modify a large number of bits in the ciphertext(goal is about 50%).
 - Confusion
 - Seeks to make the relationship between the key and the ciphertext as complex and involved as much as possible.
 - Collision
 - Steganography
 - Steganography lets you send messages without raising suspicion, but runs the risk of being discovered
 - $\,\blacksquare\,$ Encryption lets you conceal the message but not the fact that the message exists
 - o Obfuscation
 - Code obfuscation makes it harder to reverse engineer, if a company is worried about that
 - If you obfuscate the licensing process of the software it makes is more difficult to reverse engineer that process
 - Stream vs. block
 - Review
 - o Key strength
 - Session keys
 - SSL/TLS
 - Mentioned in PFS below
 - o Ephemeral key
 - A cryptographic key that is generated for each execution of a key establishment process
 - A unique key every time a key is established
 - Ephemeral is lasting a short time, short lifecycle, short lived
 - o Secret algorithm
 - o Data-in-transit
 - Data that is traversing a network
 - Data that is in a buffer waiting to be transmitted/processed
 - Data that is in system memory waiting to be processed
 - Data is protected with ACLs, encryption and hashing
 - o Data-at-rest
 - Data stored on a device or storage media
 - Data that is not being used by applications
 - Data that is not being transfer over network medium
 - Examples
 - Backups
 - Offsite Backups
 - External media

- Data is protected with encryption, hashing and ACLs
- o Data-in-use
 - Data that is actively being processed by applications
 - Data that is being viewed and/or modified by a user
 - Data is protected with ACLs
- o Random/pseudo-random number generation
 - TRNG
 - TRNG produces a random string based on a physical process like static in airwaves, ocean waves, thermal noise
 - PRNG
 - PRNG produce a random string of numbers via a mathematical algorithm
 - Not truly random, however when the number string is compared to a truly random string it APPEARs random
 - Hardware-based
 - a device that generated random number strings
 - ChaosKey http://altusmetrum.org/ChaosKey/
 - Araneus Alea II http://bit.ly/2qemY89
 - PureQuantumTM http://bit.ly/2p3PknC
 - Software-based
 - https://www.random.org/
- Key stretching
- o Implementation vs. algorithm selection
 - Crypto service provider
 - HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Cryptography\Defaults\Provider
 - Software Library with individual modules
 - They implement Microsoft's CryptoAPI
 - The CSPs implement the algorithms and standards
 - CSPs abstract the cryptographic components so application do not have to
 - CSP > CryptoAPI > Application
 - Implementation is in the form of a dll
 - Crypto modules
 - A hardware device or software that performs cryptographic operations within a physical or logical boundary
 - Defined in FIPS 140-2 (Federal Information Processing Standards): Security Requirements for Cryptographic Modules
- o Perfect forward secrecy
 - See slide
- · Security through obscurity
- o Common use cases
 - Low power devices(symmetric)
 - Low latency(symmetric, smaller keys)
 - High resiliency
 - Supporting confidentiality(asymmetric, symmetric)
 - Supporting integrity(digital certificates, hashing)
 - Supporting obfuscation (XOR process, ROT13, substitution ciphers)
 - Supporting authentication (asymmetric encryption, perfect forward secrecy, key stretching)
 - Supporting non-repudiation(digital signatures, asymmetric, Perfect Forward Secrecy)
 - Resource vs. security constraints
 - Security constraints define the level of privileges to a collection of resources
 - Security constraints grant or deny access to a resource