РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫ НАРОДОВ Факультет физико-математических и естественных наук

Реферат по научному программированию на тему:

«Средства построения трехмерных графиков»

Выполнила:

Студент группы НФИбд-01-21

Студенческий билет №: 1032217044

Коняева Марина Александровна

Оглавление

Введение	3
Построение графиков поверхностей Ошибка! Закладка не определ	іена.
Построение графиков поверхностей, заданных параметрически Оши	бка!
Закладка не определена.	
Дополнительные возможности при построении графиковОши	бка!
Закладка не определена.	
Заключение	12
Список литературы	12

Введение

В современном мире научного программирования невозможно обойтись без построения различных графиков. В околонаучных языках таких как Python C/C++ существуют много написанных библиотек, для построения графиков. В данной работе, будет рассмотрено построения графиков в семействе языков МАТLAB, которые уже обладают встроенным функционалом. В частности будет рассмотрена реализация на языке Octave.

Цель данной работы: изучить способы построения трехмерных графиков в Octave

Задачи данной работы:

- 1) Разобрать построение графиков поверхностей
- 2) Разобрать построение графиков поверхностей, заданных параметрически
- 3) Разобрать дополнительные возможности при построении графиков

Построение графиков поверхностей

Дадим определение прямоугольной (или декартовой) системы координат в пространстве. Прямоугольная система координат в пространстве состоит из заданной фиксированной точки О пространства, называемой началом координат, и трех перпендикулярных прямых пространства ОХ, ОУ и ОZ, не лежащих в одной плоскости и пересекающихся в начале координат, их называют координатными осями (ОХ – ось абсцисс, ОУ – ось ординат, ОZ – ось аппликат). Положение точки М в пространственной системе координат определяется значением трех координат и обозначается М(x,y,z). Три плоскости, содержащие пары координатных осей, называются координатными плоскостями ХУ, ХZ и YZ.

Величина z называется функцией двух величин x и y, если каждой паре чисел, которые могут быть значениями переменных x и y, соответствует одно или несколько определенных значений величины z. При этом переменные x и y называют аргументами функции z(x,y). Пары тех чисел, которые могут быть значениями аргументов x, y функции z(x,y), в совокупности составляют область определения этой функции.

Для формирования прямоугольной сетки в Octave есть функция meshgrid. Рассмотрим построение 3-х мерного графика на следующем примере.

$$z(x,y)=3x^2-2\sin^2 y$$

>> [x y]=meshgrid(-2:0.1:2,-3:0.1:3);
>> z=3*x.*x-2*sin(y).^2;
>> mesh(x,y,z);

Для построения поверхностей, кроме функции mesh, есть функция surf, которая строит каркасную поверхность, заливая ее каждую клетку цветом, который зависит от значения функции в узлах сетки.

Построение графики двух поверхностей в одной системе координат (hold on, surf и mesh)

Любой трёхмерный график можно вращать, используя мышку.

Построение графиков поверхностей, заданных параметрически

Построение поверхности однополостного гиперболоида, $x(u,v)=ch(u)cos(v), y(u,v)=ch(u)sin(v), z(u,v)=sh(u), u\in[0,\pi], v\in[0,2\pi]$

Построение поверхности сферы с центром (x0, y0, z0) и радиусом R параметрически (или [X,Y,Z]=sphere(n); surf(X,Y,Z))

Построение поверхности эллипсоида, где a, b, c — полуоси эллипсоида, $x0 \;,\, y0 \;,\, z0 - \text{центр эллипсоида}$

Построение поверхности цилиндра радиуса R=4 и высотой h=1

Построение поверхности усеченного кругового конуса и кругового конуса

Дополнительные возможности при построении графиков

Каждый график изображать с помощью функции plot(x,y), но перед обращением к функциям plot(x2,y2), plot(x3,y3), ..., plot(xn,yn) вызвать команду hold on , которая блокирует режим очистки

Octave представляет дополнительные возможности для оформления графиков:

- команда grid on (grid) наносит сетку на график, grid off убирает сетку с графика;
- функция axis[xmin, xmax, ymin, ymax] выводит только часть графика, определяемую прямоугольной областью xmin≤x≤xmax, ymin≤y≤ymax;
- функция title('Заголовок') предназначена для вывода заголовка графика; функции xlabel('Подпись под осью x'), ylabel('Подпись под осью y') служат для подписей осей x и y соответственно;
- функция text(x,y,'текст') выводит текст левее точки с координатами (x,y);
- функция legend('легенда1', 'легенда2', ..., 'легендап', m) выводит легенды для каждого из графиков, параметр m определяет месторасположение легенды в графическом окне: 1 в правом верхнем углу графика (значение

по умолчанию); 2 – в левом верхнем углу графика; 3 – в левом нижнем углу графика; 4 – в правом нижнем углу графика.

В строке могут участвовать символы, отвечающие за тип линии, маркер, его размер, цвет линии и вывод легенды. Попробуем разобраться с этими символами. За сплошную линию отвечает символ «-». За маркеры отвечают следующие символы (см. табл 1).

Таблица 1. Символы маркеров

Символ маркера	Изображение маркера
	точка
*	*
х	×
+	+
o	0
S	
d	•
v	▼
^	A
<	▽
>	Δ
p	⊡
h	♦

Цвет линии определяется буквой латинского алфавита (см. табл 2), можно использовать и цифры, но на взгляд авторов использование букв более логично (их легче запомнить по английским названиям цветов).

Таблица 2. Цвета линии

Символ	Цвет линии		
y	желтый		
m	розовый		
с	голубой		
r	красный		
g	зеленый		
b	синий		
w	белый		

При выводе текста с помощью функций xlabel, ylabel, title, text можно выводить греческие буквы (см. табл 3), использовать символы верхнего и нижнего индекса.

Таблица 3. Греческие буквы

Команда	Символ	Команда	Символ
\alpha	α	\upsilon	υ
\beta	β	\phi	φ
\gamma	γ	\chi	χ
\delta	δ	\psi	Ψ
\epsilon	3	\omega	ω
\zeta	ζ	\Gamma	Γ
\eta	η	\Delta	Δ
\theta	θ	\Theta	Θ
\iota	ι	\Lambda	Λ
\kappa	κ	\Xi	Ξ
\lambda	λ	\Pi	П
\mu	μ	\Sigma	Σ
\nu	ν	\Upsilon	Y
\xi	ξ	\Phi	Φ
\pi	π	\Psi	Ψ
\rho	ρ	\Omega	Ω
\sigma	σ	\forall	A
\varsigma	ς	\exists	3
\tau	τ	\approx	≈
\int	ſ	\in	П
\wedge	^	\sim	~
\vee	v	\leq	<
\pm	±	\leftrightarrow	\leftrightarrow
\geq	≥	\leftarrow	←
\inftyo	œ	\uparrow	1
\partial	д	\rightarrow	→

Заключение

В данной работе были изучены способы построения графиков в Octave Были выполнены следующие задачи:

- 1) Разобрать построение графиков поверхностей
- 2) Разобрать построение графиков поверхностей, заданных параметрически
- 3) Разобрать дополнительные возможности при построении графиков

Список литературы

- Введение в Остаvе для инженеров и математиков: / Е. Р. Алексеев,
 О. В. Чеснокова М.: ALT Linux, 2012. 368 с.: ил. —
 (Библиотека ALT Linux).
- 2. Программирование на Octave[wiki]//Построение графиков: https://ru.wikibooks.org/wiki/Программирование_на_Octave/Построен ие графиков
- 3. Программирование на Octave[wikibooks: https://ru.abcdef.wiki/wiki/Scientific_programming_language