Artificial Intelligence

Neural Networks

Lesson 8: Sensitivity Analysis

Vincenzo Piuri

Università degli Studi di Milano

Contents

• Sensitivity analysis

Sensitivity Analysis (1)

- Problem of multi-layer perceptrons
 - The knowledge learned by a neural network is encoded in matrices/vectors of real-valued numbers, often difficult to understand or to extract
 - Geometric interpretation are possible only for very simple networks
 - Neural network is often effectively a black box

Sensitivity Analysis (2)

Sensitivity analysis

- Find out to which inputs the output(s) react(s) most sensitively
- Hints about which inputs are not needed and may be discarded

Approach

- Determine change of output relative to change of input

$$\forall u \in U_{\text{in}}: \quad s(u) = \frac{1}{|L_{\text{fixed}}|} \sum_{l \in L_{\text{fixed}}} \sum_{v \in U_{\text{out}}} \frac{\partial \operatorname{out}_v^{(l)}}{\partial \operatorname{ext}_u^{(l)}}.$$