Research on Best Model Via R Score Value

<u>1.MLR</u>

Inference:

Best Model is created with r score Value = **0.9358680970046243**

2.SVMR

r score Value w/o			
HTP= -0.057418393916219834			
kernel	C	r score	
	Value		
linear	1000	0.7802839882154124	
	2000	0.8767721687716041	
	3000	0.895674469433492	
poly	1000	0.26616370931646915	
	2000	0.4810028155606567	
	3000	0.6370064223754037	
rbf	1000	0.0067683444800727965	
	2000	0.06751554270553017	
	3000	0.12322756620227582	
sigmoid	1000	0.18506861974160804	
	2000	0.39706528684272135	
	3000	0.5913630209426107	

<u>Inference</u>:

Model is created with low r score value.

Considerable r score value = 0.895674469433492 is created for the H.T.P --- kernel = linear, c= 3000.

Though there is a chance of improving the model's r score value by increasing C value beyond 3000, the predicted o/p value i.e profit shoots high to 8 figures which is quite not feasible.

3.Decision Tree

	r score Value w/o HTP= 0.8972291974969963			
criterion	splitter	r score (w/o max	max	r score
		features)	features	(with max_
			100000100	features)
				10.00103)
squared_error	best	0.9214306220757318	sqrt	0.09798395941037275
			log2	0.5061408543602336
			_	
	random		sqrt	0.41374230043571725
		0.6372581027214319	log2	0.6836504444368285
absolute error	best		sqrt	0.9262950282088664
		0.9247519252928741	log2	0.7780902559935522
	random		sqrt	0.6013894721694882
		0.6268821377872036	log2	0.20527425924684006
friedman mse	best		sqrt	0.6576345209785339
		0.8994752214576376	log2	0.6287085882321803
	random	0.4088758524566112	sqrt	0.12467585310390261
			log2	0.446231683510638
poisson	best	0.9457927379824442	sqrt	0.35884420644991866
			log2	0.8015887460531157
	random		sqrt	0.4561485309437918
		0.8979430864116503	log2	0.9096872948752499

$\underline{Inference}:$

Best model with high r score Value = **0.9457927379824442** is created for the HTP --- **criterion = poisson & splitter= best** without max features

4.Random Forest

criterion	n estimators	r score (w/o max features)	max_ features	r score (with max_ features)
squared_error	50	0.9419810900432116	sqrt log2	0.6830022367685868
	100	0.9447360977699076	sqrt log2	0.7591504499484151
absolute_error	50	0.9401935247161504	sqrt log2	0.7222351871476136
	100	0.9459097460494243	sqrt log2	0.7870726821715768
friedman_mse	50	0.9396740716717181	sqrt log2	0.6902211615063268
	100	0.9430421895648843	sqrt log2	0.7580139406450639
<i>poisson</i>	<u>50</u>	0.9461748447682533	sqrt log2	0.720862466757838
	100	0.9411213280886008	sqrt log2	0.7717642068103981

<u>Inference</u>:

Best model with high r score Value = 0.9461748447682533 is created for the HTP--- criterion = poisson & n estimators = 50 without max features

Summary

Algorithm	HTP (w/o max features)	Best r score
MLR	-	0.9358680970046243
SVM	kernel = linear, c= 3000	0.895674469433492
DT	criterion = poisson & splitter= best	0.9457927379824442
RF	criterion = poisson & n estimators = 50	0.9461748447682533

Result Analysis:

For the given dataset RF algorithm for HTP criterion = poisson & n estimators = 50 suits the best.

Appendix:

Abbreviations	Expansion
MLR	Multiple Linear Regression
SVM	Support Vector Machine
DT	Decision Tree
RF	Random Forest
HTP	Hyper Tuning Parameters