

Universidad Nacional de Lanús Departamento de Desarrollo Productivo y Tecnológico Licenciatura en Sistemas

Unidad Nº 7:

ADMINISTRACIÓN DE SEGURIDAD, TRANSACCIONES Y FALLOS EN SISTEMAS OPERATIVOS DISTRIBUIDOS

Sistemas Operativos

Conjunto de computadoras que se integran para hacer desaparecer la dualidad local / remoto para ofrecer la visión de un «sistema único»

Objetivos de un Sistema Distribuido:

Distribuir el Trabajo.

Compartir Recursos.

- Logrando:
 - Alto Rendimiento
 - Alta Escalabilidad
 - Alta Disponibilidad

- Cuestiones para implementar un Sistema Distribuido:
 - ¿Cómo distribuir la Carga de Trabajo?
 - ¿Cómo administrar los Recursos Compartidos?
 - ¿Cómo lograr la Sincronización de Procesos?
 - ¿Cómo manejar el Deadlock?
 - ¿Cómo lograr un 'Estado Consistente'?
 - ¿Cómo asegurar la Confiabilidad y Fiabilidad?

- ¿Cómo asegurar la Confiabilidad y Fiabilidad?
 - → Transacciones Distribuidas
 - → Manejo de Fallos en Sistemas Distribuidos
 - Recuperación de Fallos
 - ✓ Tolerancia a Fallos

- → Seguridad en Sistemas Distribuidos
 - √ Tipos de Amenazas y Ataques
 - √ Políticas y Mecanismos

Transacciones Distribuidas:

 Conjunto de operaciones ejecutadas en sistemas distribuidos que garantizan la condición ACID (ACAP):

Transacciones Distribuidas:

 Conjunto de operaciones ejecutadas en sistemas distribuidos que garantizan la condición ACID (ACAP):

Atomicity (Atomicidad):

la transacción se realiza completa o no se realiza nada.

Consistency (Consistencia):

los estados anterior y posterior a la transacción son estados estables.

Isolation (Aislamiento):

los estados intermedios de la transacción son sólo visibles dentro de la propia transacción.

Durability (*Permanencia*):

las modificaciones realizadas por una transacción completada son permanentes.

Transacciones Distribuidas:

Tipos:

■ Transacciones de 1 Fase

(One-Phase Commit)

□ Transacciones de 2 Fases

(Two-Phase Commit o 2PC)

Transacciones Distribuidas:

- Transacciones de 1 Fase:
 - Aplica tres funciones especiales:
 - beginTransaction() : comienza un bloque de operaciones que corresponden a una transacción.
 - commitTransaction(): concluye el bloque de operaciones que conforman la transacción. Todas las operaciones se completan.
 - abortTransaction(): en cualquier punto se aborta la transacción y se regresa al estado anterior al comienzo de transacción.

Transacciones Distribuidas:

■ Transacciones de 1 Fase:

Transacciones Distribuidas:

- Transacciones de 2 Fases:
 - Soporta la posibilidad de ejecutar la transacción en más de un nodo en forma concurrente (se hace en todos o en ninguno).
 - El nodo que ejecuta la transacción actúa como 'Coordinador'.
 - Agrega las siguientes funciones especiales:
 - canCommit?(): el coordinador consulta si se puede completar la transacción.
 - getDecision(rta): se notifica que la operación se puede completar o no.
 - haveCommitted(): se notifica que la operación se ha completado con éxito.

Transacciones Distribuidas:

Transacciones de 2 Fases:

Manejo de Fallos en Sistemas Distribuidos:

- FALLO:
 - Estado o situación en la que se encuentra un elemento cuando deja de cumplir la función para el cual había sido diseñado.
 - Clasificación:
 - Fallo del Sistema
 - Fallo de Almacenamiento
 - Fallo de Comunicación
 - Fallo de Proceso

- Manejo de Fallos en Sistemas Distribuidos:
 - Recuperación de Fallos:
 - Capacidad del sistema para volver a un estado normal ante un fallo.
 - Estrategias:
 - Recuperación hacia Adelante
 - Recuperación hacia Atrás
 - Basado en Operaciones Transaccionales
 - Basado en Estados
 - Mixto

- Manejo de Fallos en Sistemas Distribuidos:
 - Tolerancia a Fallos:
 - Capacidad del sistema para evitar (o reducir) el impacto de un fallo.
 - Estrategias:
 - Enmascaramiento de Fallos
 - Comportamiento bien definido ante Fallos
 - Resiliencia de Procesos ('Process Resilience')

Seguridad en Sistemas Distribuidos:

Tipos de Amenazas y Ataques:

Interrupción

Intercepción

Modificación & Fabricación

Seguridad en Sistemas Distribuidos:

Políticas de Seguridad:

Establecen límites definidos en el manejo de los recursos y son independientes de la tecnología aplicada.

- Confidencialidad
- Integridad
- Mecanismos de Seguridad:

Determina la forman en que se implementan las políticas de seguridad. Se encuentran formados por conjunto de técnicas dependientes de la tecnología.

- Autenticación
- Encriptación de Mensajes
- Matriz de Acceso
- Firewalls

Seguridad en Sistemas Distribuidos:

- Autenticación en Redes de Computadoras: Kerberos
 - Mecanismos de autenticación desarrollado por el MIT en los años 80.
 - Actualmente su uso es muy extendido (DCE, NFS, AFS-3, Windows, FreeBSD, MacOS, RedHat Linux, Solaris, AIX, Z/OS, HP-UX, OpenVMS).
 - Existe versión de código fuente disponible [http://web.mit.edu/kerberos/].
 - Está basado en dos servicios:
 - Servicio de Autenticación (AS)

Autentica a los usuarios en el login y expide tickets para el acceso al TGS

- Servicio de Expedición de Tickets (TGS)

Expide tickets y claves de sesión para el acceso de los usuarios a servicios específicos.

- Seguridad en Sistemas Distribuidos:
 - Autenticación en Redes de Computadoras: Kerberos
 - Autenticación del Usuario:

Seguridad en Sistemas Distribuidos:

- Encriptación de Mensajes:
 - Busca intercambiar mensajes entre 2 o más nodos asegurando la confidencialidad e integridad de la información.

Seguridad en Sistemas Distribuidos:

Encriptación de Mensajes:

¿cómo asegurar la autenticidad del mensaje?

- Busca intercambiar mensajes entre 2 o más nodos asegurando la confidencialidad e integridad de la información.
- Se puede aplica un algoritmo y una clave conocido por ambos nodos.

- Seguridad en Sistemas Distribuidos:
 - Encriptación de Mensajes: Kerberos
 - Acceso a Servicios:

- Seguridad en Sistemas Distribuidos:
 - Encriptación de Mensajes: Digital Envelope

 Mecanismo aplicado para llevar a cabo el intercambio de mensajes y claves por un canal poco seguro.

Se basa en la utilización de

Método de Encriptación Simétrica

Método de Encriptación Asimétrica (RSA)

Algoritmo Hash

- Seguridad en Sistemas Distribuidos:
 - Encriptación de Mensajes: Digital Envelope

Nodo 1

- Seguridad en Sistemas Distribuidos:
 - Encriptación de Mensajes: Digital Envelope

- Seguridad en Sistemas Distribuidos:
 - Encriptación de Mensajes: Digital Envelope

Bibliografía

- Guía de Estudio Nº 6: Seguridad y Transacciones en Sistemas Operativos Distribuidos http://sistemas.unla.edu.ar/sistemas/sls/ls-4-sistemas-operativos/pdf/SO-GE6-Seguridad-en-SOD.pdf
- Singhal, M., & Shivaratri, N. G. (1994). Advanced concepts in Operating Systems. McGraw-Hill, Inc.. Capítulos 12 y 13.
- Stallings, W. (2005). Sistemas Operativos Aspectos Internos y Principios de Diseño, 5^{ta} Edición Prentice Hall. Capítulo 14.
- ➤ Tanenbaum, A.S. (2009). Sistemas Operativos Modernos, 3^{ra} Edición Prentice Hall. Capítulo 13 (sección 13.6.5).

Preguntas

¡¡GRACIAS!!