Subcategory-aware Convolutional Neural Networks for Object Proposals and Detection

Yu Xiang¹, Wongun Choi², Yuanqing Lin³ and Silvio Savarese⁴

¹University of Washington, ²NEC Laboratories America, Inc., ³Baidu, Inc., ⁴Stanford University

Convolutional Neural Networks for Object Detection

Challenges

The image is from the KITTI detection benchmark (Geiger et al. CVPR'12)

Our Work: Subcategory-aware CNNs

Subcategories

• Subcategory is a general concept.

• 3D Voxel Pattern (3DVP, Xiang et al., CVPR'15)

Cluster objects with similar 3D pose, occlusion and truncation.

Subcategory-aware Region Proposal Network

Subcategory-aware Detection Network

Car Detection and Orientation Estimation on KITTI

	Object Detection (AP)			Object Detection and Orientation estimation (AOS)			
Method	Easy	Moderate	Hard	Easy	Moderate	Hard	
ACF [1]	55.89	54.77	42.98	N/A	N/A	N/A	
DPM-VOC+VP [2]	74.95	64.71	48.76	72.28	61.84	46.54	
OC-DPM [3]	74.94	65.95	53.86	73.50	64.42	52.40	
SubCat [4]	84.14	75.46	59.71	83.41	74.42	58.83	
Regionlets [5]	84.75	76.45	59.70	N/A	N/A	N/A	
3DVP [6]	84.81	73.02	63.22	84.31	71.99	62.11	
3DOP [7]	93.04	88.64	79.10	91.44	86.10	76.52	
Mono3D [8]	92.33	88.66	78.96	91.01	86.62	76.84	
SDP+RPN [9]	90.14	88.85	78.38	N/A	N/A	N/A	
MS-CNN [10]	90.03	89.02	76.11	N/A	N/A	N/A	
Ours SubCNN	90.81	89.04	79.27	90.67	88.62	78.68	

^[1] P. Dollar, R. Appel, S. Belongie, and P. Perona. Fast feature pyramids for object detection. TPAMI, 2014.

Detection: Rank 2

Pose: Rank 4

^[2] B. Pepik, M. Stark, P. Gehler, and B. Schiele. Multi-view and 3d deformable part models. TPAMI, 2015.

^[3] B. Pepikj, M. Stark, P. Gehler, and B. Schiele. Occlusion patterns for object class detection. In CVPR, 2013.

^[4] E. Ohn-Bar and M. M. Trivedi. Learning to detect vehicles by clustering appearance patterns. T-ITS, 2015.

^[5] X. Wang, M. Yang, S. Zhu, and Y. Lin. Regionlets for generic object detection. In ICCV, 2013.

^[6] Y. Xiang, W. Choi, Y. Lin, and S. Savarese. Data-driven 3d voxel patterns for object category recognition. In CVPR, 2015.

^[7] X. Chen, K. Kundu, Y. Zhu, A. G. Berneshawi, H. Ma, S. Fidler, and R. Urtasun. 3d object proposals for accurate object class detection. In NIPS, 2015.

^[8] X. Chen, K. Kundu, Z. Zhang, H. Ma, S. Fidler, R. Urtasun. Monocular 3D Object Detection for Autonomous Driving, in CVPR, 2016.

^[9] F. Yang, W. Choi, and Y. Lin. Exploit all the layers: Fast and accurate cnn object detector with scale dependent pooling and cascaded rejection classifiers. In CVPR, 2016.

^[10] Z. Cai, Q. Fan, R. Feris, and N. Vasconcelos. A unified multi-scale deep convolutional neural network for fast object detection. In ECCV, 2016.

Detection and Pose Estimation on PASCAL3D+

Method	Detection (AP)		
DPM [1]	29.6		
R-CNN [2]	56.9		
Ours SubCNN	60.7		

Method	4 Views (AVP)	8 Views (AVP)	16 Views (AVP)	24 Views (AVP)
VDPM [3]	19.5	18.7	15.6	12.1
DPM-VOC+VP [4]	24.5	22.2	17.9	14.4
Ours SubCNN	47.5	31.9	24.5	19.3

^[1] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan. Object detection with discriminatively trained part-based models. TPAMI, 2010. [2] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. arXiv preprint arXiv:1311.2524, 2013.

^[3] Y. Xiang, R. Mottaghi, and S. Savarese. Beyond pascal: A benchmark for 3d object detection in the wild. In WACV, 2014.

^[4] B. Pepik, M. Stark, P. Gehler, and B. Schiele. Multi-view and 3d deformable part models. TPAMI, 2015.

Conclusion

 A new network architecture for object proposal generation using subcategory information

A new network for joint object detection and subcategory classification

• Our method improves over the state-of-the-art methods on both KITTI and PASCAL3D+.

Acknowledgements

Thank you!

