

# Theoretische Grundlagen der Informatik

**Tutorium 12** 



# Pumping-Lemma für kontextfreie Sprachen



#### Lemma

Für jede kontextfreie Sprache L gibt es eine Konstante  $n \in \mathbb{N}$ , so dass sich jedes Wort  $z \in L$  mit  $|z| \geq n$  so als

$$z = uvwxy$$

schreiben lässt, dass

- $|vx| \ge 1$ ,
- $|vwx| \le n$  und
  - für alle  $i \ge 0$  das Wort  $uv^i wx^i y \in L$  ist.

# Ogdens Lemma für kontextfreie Sprachen



#### Lemma

Für jede kontextfreie Sprache L gibt es eine Konstante  $n \in \mathbb{N}$ , so dass für jedes Wort  $z \in L$  mit  $|z| \ge n$  gilt:

Wenn wir in z mindestens n Buchstaben markieren, so lässt sich z so als z = uvwxy schreiben, dass

- von den mindestens n markierten Buchstaben
  - mindestens einer zu vx gehört und
  - höchstens n zu vwx gehören und
- für alle  $i \ge 0$  das Wort  $uv^i wx^i y \in L$  ist.

# **Aufgabe**



1. Zeige, dass die Sprache

$$L = \{ a^{j}b^{k}c^{l}d^{m} \mid j = 0 \lor k = l = m \}$$

die notwendige Bedingung des Pumping-Lemmas für Kontextfreiheit erfüllt.

2. Zeige, dass *L* nicht kontextfrei ist.

### Lösung zu 1.



Setze n := 1, denn für jedes Wort  $z \in L$  mit  $|w| \ge 1$  gilt:

- Fall j=0: Dann ist  $z=b^kc^ld^m$  mit  $k,l,m\in\mathbb{N}_0$ . Zerlege z=uvwxy mit  $u,x,y=\varepsilon,|v|=1$ , denn jedes  $z'=uv^ixy^iz=v^iw$  ist in L, da keine a darin vorkommen (j=0).
- Fall  $j \neq 0$ : Dann ist  $z = a^j b^k c^k d^k$ . Zerlege z = uvwxy mit  $u, w, x = \varepsilon, v = a \Rightarrow y = a^{j-1} b^k c^k d^k$ . Dann ist für alle  $i \in \mathbb{N}_0 \ uv^i wx^i y = a^{j+i} b^k c^k d^k \in L$ .

### Lösung zu 2.



Sei  $L = \{a^i b^j c^k d^l \mid i = 0 \lor j = k = l\}$ . Wir zeigen mit Ogdens Lemma, dass L nicht kontextfrei ist.

Annahme: L sei kontextfrei. Für gegebenes n müsste Ogdens Lemma also für jedes Wort mit n markierten Buchstaben erfüllt sein.

Betrachte aber  $z = ab^n c^n d^n \in L$  und markiere  $b^n$ .

Zu vx muss also immer ein b gehören und in vwx dürfen höchsten n markierte Buchstaben vorkommen. Offensichtlich dürfen in v und x jeweils nur eine Art von Symbol vorkommen. Da aber in v oder x mindestens ein b vorkommen muss, und die Anzahl der b und c und d gleich bleiben muss, ist das Lemma nicht erfüllt. Daher kann d nicht kontextfrei sein.

### Berechnungsmodelle für Grammatiken



- Typ-0-Grammatiken / semientscheidbar: Turingmaschinen
- Typ-1-Grammatiken / kontextsensitiv: linear beschränkte Turingmaschinen (LBA)
- Typ-2-Grammatiken / kontextfrei: ?
- Typ-3-Grammatiken / regulär: Endliche Automaten

## Berechnungsmodelle für Grammatiken



- Typ-0-Grammatiken / semientscheidbar: Turingmaschinen
- Typ-1-Grammatiken / kontextsensitiv: linear beschränkte Turingmaschinen (LBA)
- Typ-2-Grammatiken / kontextfrei: Kellerautomaten!
- Typ-3-Grammatiken / regulär: Endliche Automaten

### Definition



Ein (nichtdeterministischer) Kellerautomat (NPDA bzw PDA, Pushdown Automaton) besteht aus  $(Q, \Sigma, \Gamma, q_0, Z_0, \delta, F)$ , wobei

- Q endliche Zustandsmenge
- $\Sigma$  endliches Eingabealphabet
- Γ endliches Stack-Alphabet
- $q_0 \in Q$  Anfangszustand
- $Z_0 \in \Gamma$  Initialisierung des Stacks
- $\delta: Q \times (\Sigma \cup \{\varepsilon\}) \times \Gamma \to 2^{Q \times \Gamma^*}$ 
  - $\delta(q, a, Z) \subseteq \{(q, \gamma) : q \in Q, \gamma \in \Gamma^*\}$
  - $\delta(q, \varepsilon, Z) \subseteq \{(q, \gamma) : q \in Q, \gamma \in \Gamma^*\}$





#### Zu Kellerautomaten



- Akzeptieren nach Eingabeende, wenn
  - der Stack leer ist oder
  - der Automat in einen akzeptierenden Zustand kommt.
- Sind im Allgemeinen nichtdeterministisch
- Man kann Endzustände auch aus der Definition weglassen und alternativ verlangen, dass der Automat genau bei leerem Keller akzeptiert.
- Man kann sogar alle Zustände bis auf einen weglassen und alles in die Kellerbelegung kodieren

# Beispiel



$$M = (Q, \Sigma, \Gamma, q_0, Z_0, \delta, F)$$

- $Q = \{q_0, q_1, q_2\}$
- $\Sigma = \{a, b\}$
- $\Gamma = \{\#, X\}$
- $Z_0 = \#$
- $F = \{q_2\}$



Welche Sprache akzeptiert dieser Automat?

### **Motivation zur Greibach-Normalform**



- Reguläre Grammatiken:  $A \rightarrow a$  oder  $A \rightarrow aB$
- Passendes Modell: Endliche Automaten
  - Sind in einem Zustand
  - Lesen ein Symbol von der Eingabe
  - Wechseln in den nächsten Zustand

- Kontextfreie Grammatiken:
- Passendes Modell: Kellerautomaten
- Hier: Kellerautomat mit nur einem Zustand
  - Lesen ein Symbol vom Stack
  - Lesen ein Symbol von der Eingabe
  - Schreiben beliebig viele Symbole auf den Stack

⇒ Greibach-Normalform



### **Motivation zur Greibach-Normalform**



- Reguläre Grammatiken:  $A \rightarrow a$  oder  $A \rightarrow aB$
- Passendes Modell: Endliche Automaten
  - Sind in einem Zustand
  - Lesen ein Symbol von der Eingabe
  - Wechseln in den nächsten Zustand

- Kontextfreie Grammatiken:
- Passendes Modell: Kellerautomaten
- Hier: Kellerautomat mit nur einem Zustand
  - Lesen ein Symbol vom Stack
  - Lesen ein Symbol von der Eingabe
  - Schreiben beliebig viele Symbole auf den Stack





### **Motivation zur Greibach-Normalform**



- Reguläre Grammatiken:  $A \rightarrow a$  oder  $A \rightarrow aB$
- Passendes Modell: Endliche Automaten
  - Sind in einem Zustand
  - Lesen ein Symbol von der Eingabe
  - Wechseln in den nächsten Zustand

- Kontextfreie Grammatiken:  $A \rightarrow a\alpha$  mit  $\alpha \in V^*$
- Passendes Modell: Kellerautomaten
- Hier: Kellerautomat mit nur einem Zustand
  - Lesen ein Symbol vom Stack
  - Lesen ein Symbol von der Eingabe
  - Schreiben beliebig viele Symbole auf den Stack

⇒ Greibach-Normalform!



#### **Greibach Normalform**



#### Definition

Eine kontextfreie Grammatik ist in **Greibach-Normalform**, wenn alle Ableitungsregeln von der Form

$$A \rightarrow a\alpha$$
 mit  $A \in V$ ,  $a \in \Sigma$  und  $\alpha \in V^*$ 

sind.



#### **Zur Greibach-Normalform**



- Weitere Normalform für CH-2 Grammatiken, d.h. jede Grammatik kann in Greibach-Normalform gebracht werden
- Zur Konstruktion von Kellerautomaten aus Grammatiken
- Es kann stärker, aber äquivalent, verlangt werden, dass auf der rechten Seite höchstens zwei Variablen vorkommen.

# **Umwandlung in Greibach-Normalform**



### Nebenbemerkung

Im folgenden stehen Kleinbuchstaben für Terminale, Großbuchstaben für einzelne Nichtterminale und griechische Buchstaben für (eventuell) mehrere Nichtterminale

Die Grammatik sei zunächst in Chomsky-Normalform.

# Los geht's!



#### Annahmen

- Wir gehen davon aus, dass die Grammatik G in Chomsky-Normalform ist, mit  $V = \{A_1, \ldots, A_m\}$  und  $\Sigma = \{a_1, \ldots, a_n\}$
- Folglich sind alle Regeln von der Form  $A_i o A_j A_k$  oder  $A_i o a_j$

#### Schritt 1

Ziel: Alle Variablen haben am Beginn der rechten Seite keine Variablen mit gleicher oder niedrigerer Nummer.

- Für alle Variablen V<sub>i</sub>
  - Für alle Variablen  $V_j$  mit j < i
    - Simuliere alle Regeln für  $A_j$  bei Produktionen der Form  $A_i \to A_j \alpha$ .
  - Für Produktionen der Form  $A_i \rightarrow A_i \alpha$  führe eine neue Variable ein (wie: siehe nächste Folie).



$$A_i \rightarrow A_i \alpha$$



### Für Regeln der Form

$$A \rightarrow A\alpha_1 \mid \ldots \mid A\alpha_r$$
  
 $A \rightarrow \beta_1 \mid \ldots \mid \beta_s$ 

(wobei  $\beta_i$  nicht mit A beginnt) führe ein neues Nichtterminal B ein. Ersetze nun die Regeln

$$A \rightarrow A\alpha_1 \mid \ldots \mid A\alpha_r$$

durch

$$A \to \beta_1 B \mid \dots \mid \beta_s B$$
$$B \to \alpha_1 \mid \dots \mid \alpha_r$$
$$B \to \alpha_1 B \mid \dots \mid \alpha_r B$$



### Schritt 2



Gehe nun die Produktionen absteigend nach k sortiert durch und simuliere bei alle Regeln mit  $A_k \to A_j \alpha$  die Produktionen für  $A_j$  auf der rechten Seite.

Da alle Regeln mit einem  $A_i$  als linker Seite der Greibach-Normalform genügen, kann man dieses Verfahren nun bei den neuen Regeln für  $B_1, \ldots$  auch anwenden.

Danach ist die Grammatik in Greibach-Normalform.

# Aufgabe zur Greibach-Normalform



### Sei die Grammatik G gegeben durch

- $\Sigma = \{0, 1\}$
- $V = \{A_1, A_2, A_3\}$
- $S = A_1$
- - $A_2 \rightarrow 1$
  - $A_2 \rightarrow 1$ ,  $A_3 \rightarrow A_1 A_2$ .
  - $A_3 \rightarrow 0$

Bringe G in Greibach-Normalform.

# Lösung



- $V = \{A_1, A_2, A_3, B_3\}$
- $\Sigma = A_1$
- $S = A_1$
- $\begin{array}{l} \blacksquare R = \{A_1 \rightarrow 1A_3, A_1 \rightarrow 0B_3A_1A_3, A_1 \rightarrow 1A_3A_2A_1A_3, A_1 \rightarrow \\ 0A_1A_3, A_1 \rightarrow 1A_3A_2B_3A_1A_3, A_2 \rightarrow 0B_3, A_2 \rightarrow 1A_3A_2A_1, A_2 \rightarrow \\ 0A_1, A_2 \rightarrow 1A_3A_2B_3A_1, A_2 \rightarrow 1, A_3 \rightarrow 0B_3, A_3 \rightarrow 1A_3A_2B_3, A_3 \rightarrow \\ 1A_3A_2, A_3 \rightarrow 0, B_3 \rightarrow 1A_3A_2A_2, B_3 \rightarrow 0B_3A_1A_3A_3A_2, B_3 \rightarrow \\ 1A_3A_2A_1A_3A_3A_2, B_3 \rightarrow 0A_1A_3A_3A_2, B_3 \rightarrow 1A_3A_2B_3A_1A_3A_3A_2, B_3 \rightarrow \\ 1A_3A_3A_2B_3, B_3 \rightarrow 0B_3A_1A_3A_3A_2B_3, B_3 \rightarrow 1A_3A_2A_1A_3A_3A_2B_3B_3 \rightarrow \\ 0A_1A_3A_3A_2B_3, B_3 \rightarrow 1A_3A_2B_3A_1A_3A_3A_2B_3 \} \end{array}$

Die ursprüngliche Grammatik hatte nur fünf Regeln.

# Lösung



- $V = \{A_1, A_2, A_3, B_3\}$
- $\Sigma = A_1$
- $S = A_1$
- $\begin{array}{l} \blacksquare R = \{A_1 \rightarrow 1A_3, A_1 \rightarrow 0B_3A_1A_3, A_1 \rightarrow 1A_3A_2A_1A_3, A_1 \rightarrow \\ 0A_1A_3, A_1 \rightarrow 1A_3A_2B_3A_1A_3, A_2 \rightarrow 0B_3, A_2 \rightarrow 1A_3A_2A_1, A_2 \rightarrow \\ 0A_1, A_2 \rightarrow 1A_3A_2B_3A_1, A_2 \rightarrow 1, A_3 \rightarrow 0B_3, A_3 \rightarrow 1A_3A_2B_3, A_3 \rightarrow \\ 1A_3A_2, A_3 \rightarrow 0, B_3 \rightarrow 1A_3A_2A_2, B_3 \rightarrow 0B_3A_1A_3A_3A_2, B_3 \rightarrow \\ 1A_3A_2A_1A_3A_3A_2, B_3 \rightarrow 0A_1A_3A_3A_2, B_3 \rightarrow 1A_3A_2B_3A_1A_3A_3A_2, B_3 \rightarrow \\ 1A_3A_3A_2B_3, B_3 \rightarrow 0B_3A_1A_3A_3A_2B_3, B_3 \rightarrow 1A_3A_2A_1A_3A_3A_2B_3B_3 \rightarrow \\ 0A_1A_3A_3A_2B_3, B_3 \rightarrow 1A_3A_2B_3A_1A_3A_3A_2B_3 \} \end{array}$

Die ursprüngliche Grammatik hatte nur fünf Regeln.



Erinnerung: Greibach-Normalform

Eine kontextfreie Grammatik ist in **Greibach-Normalform**, wenn alle Ableitungsregeln von der Form

$$A \rightarrow a\alpha$$
 mit  $A \in V, a \in \Sigma$  und  $\alpha \in V^*$ 

sind.

Erinnerung: Ubergangsfunktion des Kellerautomaten Die Eingabe enthält einen Zustand, ein  $a \in \Sigma \cup \{\varepsilon\}$  und ein Zeichen des Stacks.

$$\delta: Q \times (\Sigma \cup \{\varepsilon\}) \times \Gamma \to 2^{Q \times \Gamma}$$

Wie könnte man mit einer Grammatik G in Greibach-Normalform einen Kellerautomaten konstruieren, der L(G) erkennt?



Erinnerung: Greibach-Normalform

Eine kontextfreie Grammatik ist in **Greibach-Normalform**, wenn alle Ableitungsregeln von der Form

$$A \rightarrow a\alpha$$
 mit  $A \in V, a \in \Sigma$  und  $\alpha \in V^*$ 

sind.

Erinnerung: Übergangsfunktion des Kellerautomaten

Die Eingabe enthält einen Zustand, ein  $a \in \Sigma \cup \{\epsilon\}$  und ein Zeichen des Stacks.

$$\delta: \mathbf{Q} \times (\Sigma \cup \{\varepsilon\}) \times \Gamma \to \mathbf{2}^{\mathbf{Q} \times \Gamma^*}$$

Wie könnte man mit einer Grammatik G in Greibach-Normalform einen Kellerautomaten konstruieren, der L(G) erkennt?



Erinnerung: Greibach-Normalform

Eine kontextfreie Grammatik ist in **Greibach-Normalform**, wenn alle Ableitungsregeln von der Form

$$A \rightarrow a\alpha$$
 mit  $A \in V, a \in \Sigma$  und  $\alpha \in V^*$ 

sind.

Erinnerung: Übergangsfunktion des Kellerautomaten

Die Eingabe enthält einen Zustand, ein  $a \in \Sigma \cup \{\varepsilon\}$  und ein Zeichen des Stacks.

$$\delta: \mathbf{Q} \times (\Sigma \cup \{\varepsilon\}) \times \Gamma \to \mathbf{2}^{\mathbf{Q} \times \Gamma^*}$$

Wie könnte man mit einer Grammatik G in Greibach-Normalform einen Kellerautomaten konstruieren, der L(G) erkennt?



#### Konstruktion des Kellerautomaten

Gegeben sei eine kontextfreie Grammatik  $G = (\Sigma, V, S, R)$  in Greibach-Normalform.

Konstruiere einen Kellerautomaten  $PDA = (Q, \Sigma', \Gamma, q_0, Z_0, \delta, F)$  mit:

- $Q := \{q_0\}$
- *F* := Ø
- $\Sigma' := \Sigma$
- $\Gamma := V$
- $Z_0 := S$

Der Automat akzeptiert durch leeren Stack.



#### Konstruktion des Kellerautomaten

Gegeben sei eine kontextfreie Grammatik  $G = (\Sigma, V, S, R)$  in Greibach-Normalform.

Konstruiere einen Kellerautomaten  $PDA = (Q, \Sigma', \Gamma, q_0, Z_0, \delta, F)$  mit:

- $Q := \{q_0\}$
- $\mathbf{F} := \emptyset$
- $\Sigma' := \Sigma$
- $\Gamma := V$
- $Z_0 := S$

Der Automat akzeptiert durch leeren Stack.

### Kellerautomat



 $PDA = (Q, \Sigma', \Gamma, q_0, Z_0, \delta, F)$  mit:

- $Q := \{q_0\}$
- $F := \emptyset$
- $\Sigma' := \Sigma$
- $\Gamma := V$
- $Z_0 := A_1$
- $\bullet$   $\delta$  siehe nächste Folie

### Umwandlung

Aus  $A_1 \to 1A_3$ ,  $A_1 \to 1A_3A_2A_1A_3$ ,  $A_1 \to 1A_3A_2B_3A_1A_3$  wird  $\delta(q_0,A_1,1) = \{(q_0,A_3), (q_0,A_3A_2A_1A_3), (q_0,A_3A_2B_3A_1A_3)\}$ 



- $\delta(q_0, A_1, 0) = \{(q_0, B_3A_1A_3), (q_0, A_1A_3)\}$
- $\delta(q_0, A_1, 1) = \{ (q_0, A_3), (q_0, A_3A_2A_1A_3), (q_0, A_3A_2B_3A_1A_3) \}$
- $\delta(q_0, A_2, 0) = \{(q_0, B_3), (q_0, A_1)\}$
- $\delta(q_0, A_2, 1) = \{ (q_0, A_3 A_2 A_1), (q_0, A_3 A_2 B_3 A_1), (q_0, \varepsilon) \}$
- $\delta(q_0, A_3, 0) = \{(q_0, B_3), (q_0, \varepsilon)\}$
- $\delta(q_0, A_3, 1) = \{ (q_0, A_3 A_2 B_3), (q_0, A_3 A_2, A_3) \}$
- $\delta(q_0, B_3, 0) = \{(q_0, B_3A_1A_3A_3A_2), (q_0, A_1A_3A_3A_2), (q_0, B_3A_1A_3A_3A_2B_3), (q_0, A_1A_3A_3A_2B_3)\}$
- $\delta(q_0, B_3, 1) = \{(q_0, A_3A_2A_2), (q_0, A_3A_2A_1A_3A_3A_2), (q_0, A_3A_2B_3A_1A_3A_3A_2), (q_0, A_3A_3A_2B_3), (q_0, A_3A_2A_1A_3A_3A_2B_3), (q_0, A_3A_2B_3A_1A_3A_3A_2B_3)\}$

# Tripelkonstruktion



- Umkehrung der Konstruktionsrichtung
- Aus einem PDA  $\mathcal{A}=(Q,\Sigma,\Gamma,\delta,q_0,Z_0)$ , der durch leeren Stack akzeptiert, wird eine Grammatik G mit  $L_{\mathcal{A}}=L(G)$  erzeugt.
- $V := \{ [q, X, p] \mid p, q \in Q, X \in \Gamma \} \cup \{S\}$
- R :=
  - $S \rightarrow [q_0, Z_0, q]$  für alle  $q \in Q$
  - $[q, X, q_{m+1}] \rightarrow a[q_1, Y_1, q_2]...[q_m, Y_m, q_{m+1}]$  für alle  $q_2, ..., q_{m+1} \in Q$ , falls  $(q_1, Y_1, ..., Y_m) \in \delta(q, a, X)$

# **Aufgabe**



Über dem Alphabet  $\Sigma = \{(,)\}$  ist die Sprache  $L_{()}$  der korrekten Klammerausdrücke gegeben. Ferner ist die Grammatik  $G_{()}$  gegeben. Dabei ist  $G_{()} = (\{(,)\}, \{S\}, S, R)$  mit

$$R = \{S \to \epsilon |SS|(S)\}$$

- 1. Konstruiere einen Kellerautomaten, der die Sprache  $L_{()}$  durch leeren Stack erkennt. Modifiziere diesen Kellerautomaten so, dass er  $L_{()}$  durch akzeptierenden Endzustand erkennt.
- 2. Dokumentiere eine akzeptierende Berechnung der Wortes (()()).

# **Aufgabe**



Über dem Alphabet  $\Sigma = \{(,)\}$  ist die Sprache  $L_{()}$  der korrekten Klammerausdrücke gegeben. Ferner ist die Grammatik  $G_{()}$  gegeben. Dabei ist  $G_{()} = (\{(,)\}, \{S\}, S, R)$  mit

$$R = \{S \to \epsilon |SS|(S)\}$$

- 3. Zeige, dass  $G_{()}$  genau  $L_{()}$  erzeugt.
- 4. Was ist das maximale k, so dass  $G_{()}$  Chomsky-Typ k hat?
- 5. Gibt es eine Grammatik mit Chomsky-Typ k+1, die  $L_{()}$  erzeugt? Begründe deine Antwort.
- 6. Bestimme eine Grammatik G' für  $L_{()}\setminus\{\varepsilon\}$  in Greibach-Normalform und zeige exemplarisch, wie man daraus einen Kellerautomaten für  $L_{()}$  ableiten kann.





 $u \in V^+$ ,  $v \in (\Sigma \cup V)^*$ ,  $A \in V$ ,  $a \in \Sigma$ .

|     |             |        | Abgeschlossen |        |  |    |        |
|-----|-------------|--------|---------------|--------|--|----|--------|
| Тур | Bezeichnung | Regeln | U             | $\cap$ |  | Lc | Modell |
| 0   |             |        |               |        |  |    |        |
| 1   |             |        |               |        |  |    |        |
| 2   |             |        |               |        |  |    |        |
| 3   |             |        |               |        |  |    |        |



 $u \in V^+$ ,  $v \in (\Sigma \cup V)^*$ ,  $A \in V$ ,  $a \in \Sigma$ .

|     |                  |          | Abgeschlossen |    |    |                |        |
|-----|------------------|----------|---------------|----|----|----------------|--------|
| Тур | Bezeichnung      | Regeln   | U             |    |    | L <sup>c</sup> | Modell |
| 0   | semientscheidbar | beliebig | ja            | ja | ja | nein           | TM     |
| 1   |                  |          |               |    |    |                |        |
| 2   |                  |          |               |    |    |                |        |
| 3   |                  |          |               |    |    |                |        |



 $u \in V^+$ ,  $v \in (\Sigma \cup V)^*$ ,  $A \in V$ ,  $a \in \Sigma$ .

|     |                  |                   | Abgeschlossen |        |    |                |        |
|-----|------------------|-------------------|---------------|--------|----|----------------|--------|
| Тур | Bezeichnung      | Regeln            | $\cup$        | $\cap$ |    | L <sup>c</sup> | Modell |
| 0   | semientscheidbar | beliebig          | ja            | ja     | ja | nein           | TM     |
| 1   | kontextsensitiv  | $u \rightarrow v$ | ja            | ja     | ja | ja             | LBA    |
|     |                  | $ u  \le  v $     |               |        |    |                |        |
| 2   |                  |                   |               |        |    |                |        |
| 3   |                  |                   |               |        |    |                |        |



 $u \in V^+$ ,  $v \in (\Sigma \cup V)^*$ ,  $A \in V$ ,  $a \in \Sigma$ .

|     |                  |                   | Abgeschlossen |        |    |                |        |
|-----|------------------|-------------------|---------------|--------|----|----------------|--------|
| Тур | Bezeichnung      | Regeln            | U             | $\cap$ |    | L <sup>c</sup> | Modell |
| 0   | semientscheidbar | beliebig          | ja            | ja     | ja | nein           | TM     |
| 1   | kontextsensitiv  | $u \rightarrow v$ | ja            | ja     | ja | ja             | LBA    |
|     |                  | $ u  \leq  v $    |               |        |    |                |        |
| 2   | kontextfrei      | $A \rightarrow V$ | ja            | nein   | ja | nein           | PDA    |
| 3   |                  |                   |               |        |    |                |        |



 $u \in V^+$ ,  $v \in (\Sigma \cup V)^*$ ,  $A \in V$ ,  $a \in \Sigma$ .

|     |                  |                   | Abgeschlossen |        |    |                |        |
|-----|------------------|-------------------|---------------|--------|----|----------------|--------|
| Тур | Bezeichnung      | Regeln            | U             | $\cap$ |    | L <sup>c</sup> | Modell |
| 0   | semientscheidbar | beliebig          | ja            | ja     | ja | nein           | TM     |
| 1   | kontextsensitiv  | $u \rightarrow v$ | ja            | ja     | ja | ja             | LBA    |
|     |                  | $ u  \leq  v $    |               |        |    |                |        |
| 2   | kontextfrei      | $A \rightarrow V$ | ja            | nein   | ja | nein           | PDA    |
| 3   | regulär          | $A \rightarrow a$ | ja            | ja     | ja | ja             | NEA    |
|     |                  | A	o aB            |               |        |    |                |        |

### Bis zum nächsten Mal!



















### Lizenzen





Dieses Werk ist unter einem "Creative Commons Namensnennung-Weitergabe unter gleichen Bedingungen 3.0 Deutschland"-Lizenzvertrag lizenziert. Um eine Kopie der Lizenz zu erhalten, gehen Sie bitte zu http://creativecommons.org/licenses/by-sa/3.0/de/ ozterschreiben Sie an Creative Commons, 171 Second Street, Suite 300, San Francisco, California 94105, USA.

Davon ausgenommen sind das Titelbild, welches aus der März-April 2002 Ausgabe von American Scientist erschienen ist und ohne Erlaubnis verwendet wird, sowie das KIT Beamer Theme. Hierfür gelten die Bestimmungen der jeweiligen Urheber.