SUPERFICIES CUÁDRICAS Torres Oropeza, Diego Alberto Grupo: 23				
Superficie	Figura	Ecuación cartesiana	Ecuación paramétrica	
Esfera		x²+y²+z²=r²	$\begin{cases} x = r \cos \phi \cos \theta, & 0 \le \theta < 2\pi \\ y = r \cos \phi \sin \theta, & -\frac{\pi}{2} \le \phi \le \frac{\pi}{2} \\ z = r \sin \phi, \end{cases}$	
Elipsoide	Traza yz Traza yz	$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$	$x = a \cos u \cos v$ $y = b \cos u \sin v$ $z = c \sin u$ $\sqrt{\pi/2} < u < \pi/2$ $0 < v < 2\pi$	
Cono	Traza xy (un punto) Paralelo al plano xy Traza yz	$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0$	$x = au \cos u$ $y = au \sin v$ $z = u$ $-\Phi < u < \Phi$ $0 < v < 2\pi$	
Cilindro		x² + y² = 1	$x = a \cos u$ $y = a \sin v$ $z = u$ $0 < v < 2\pi$	

Paraboloide elíptico	Paralelo al plano ay Traza ay (un punto)	$z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$	$x = au \cos v$ $y = bu \operatorname{sen} v$ $z = u^{2}$ $0 < u < \Phi$ $0 < v < 2\pi$
Paraboloide hiperbólico	Paralelo al plano xy	$z = \frac{y^2}{b^2} - \frac{x^2}{a^2}$	$x = au$ $y = bv$ $z = u^2 - v^2$ $-\Phi < v < \Phi$
Hiperboloide de un manto	Traza sy	$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$	$x = a \cosh u \cos v$ $y = b \cosh u \sec v$ $z = c \operatorname{senh} u$ $0 < v < 2\pi$
Hiperboloide de dos mantos	Paralela al No hay plano xy traza xy	$\frac{z^2}{c^2} - \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	$x = a \operatorname{senh} u \operatorname{cos} v$ $y = b \operatorname{senh} u \operatorname{sen} v$ $z = c \operatorname{cosh} u$ $0 < u < \Phi$ $0 < v < 2\pi$