

Journey to Spaceport

Charlie Nitschelm

My Background

- Senior mechanical engineering major and physics minor at the University of New Hampshire
- Founded UNH SEDS at the end of my freshman year and am the current President and Lead Engineer
- Elected to the board of SEDS USA, the largest studentrun space organization, as the Member at Large

Job Experiences

Summer 2018

Researcher at NIST on the mechanical behavior of Inconel in extreme conditions

2018-2019 School Year

Manufacturing engineering intern at TURBOCAM international focused on the affect tool coatings have on the lifetime of a tool

Summer 2019

Propulsion manufacturing intern at Rocket Lab USA focused on process improvement within printing, machining and welding

The 3-Year Plan

Year 1 – Sophomore Year

Organization Statistics

Committed Members: 14

Majors: 3

Senior Projects: 4

Funding: \$2,250

SEDS Rocketry Competition, May 2018, Maine

Year 1 – Rocket Building

UNH SEDS

Year 1 – Simulating

	Reported Max Thrust	Measured Max Thrust	Reported Total Impulse	Measured Total Impulse
Booster Engine: Cesaroni H399	545.8 N	549.6 N	282.2 N-s	277.1 N-s
Sustainer Engine: Cesaroni I204	356.8 N	329.7 N	347.7 N-s	322.7 N-s

Year 1 – Launching

	Flight Data	OpenRocket Model	MATLAB Model
Sustainer Apogee	1071.1 m	1020.6 m	1154.1 m
Booster Apogee	290.0 m	238.6 m	276.3 m

Year 1 – Optimizing and Repeat

Year 2 – Junior Year

Organization Statistics

Committed Members: 20

Majors: 5

Senior Projects: 9

Funding: \$5,500

Spacevision 2018, November 2018, San Diego

Year 2 – Hybrid Engine Development

Oxidizer Tank

A highly pressurized vessel that contains liquid Nitrous Oxide, acting as our oxidizer within the combustion chamber

Injection Plate

Responsible for providing desired oxidizer flow into the combustion chamber with the assistance of the impinging plate

Combustion Chamber

An enclosed volume where the solid reducer and liquid oxidizer react to produce a superheated, highly pressurized chamber of gas

\Flow Regulator

A motorized valve that monitors flow regulation of the oxidizer into the injection plate controlled by an electric motor and an Arduino.

An interchangeable cylindrical plate responsible for the impingement and atomization of the oxidizer flow streams

\<u>Nozzle</u>

Graphite was machined into a de Laval curve responsible for directing the flow of hot gases outside of the combustion chamber into the environment providing thrust

UNH SEDS

Year 2 – Engine Design

Oxidizer Selection and Flow Regulation

- Needs to be self pressurizing
- Needs to be safe to handle
- Can be refilled within a day
- Nitrous Oxide meets these requirements

- Suitable for ground testing
- Ability to throttle
- Cheap

Injector and Impinging Plate

- Interface with COTS piping from flow regulator
- Quick testing of different impinging geometries
- Transitions the liquid oxidizer to a gas

Year 2 – Engine Design

Combustion Chamber

- Withstand 400 psi internal pressure
- Hold a volume of fuel to support the defined mixture ratio
- Seals with the nozzle and injector

Nozzle

- Accelerate the hot gases within the combustion chamber using converging/diverging design
- Withstand a corrosive, high temperature environment

Year 2 – Manufacture

Combustion chamber chucked on the lathe

Machining and assembly of impinging plate

Assembly of the flow regulator

Molding the rubber into the combustion chamber

Runaway fully assembled with the aluminum chamber, injector and graphite nozzle

UNH SEDS

Year 2 – Test

Rapid impinging plate designs tested for impingement and desired flow rate

Obtain thrust and temperature data during the hot-fire test

Electric spark and igniter assembly

Control bunker for hot-fire tests

Hot-fire test 1 – Ignition

Year 3 – Senior Year

Organization Statistics

Committed Members: 42

Majors: 7

Senior Projects: 14

Funding: \$9,000 and counting

Year 3 – Spaceport Competition

- Rocket competition hosted in New Mexico from June 16th to June 20th
- Requires teams to launch a rocket using COTS or experimental rocket engines to as close to 10,000/30,000 feet with full recovery
- UNH SEDS will be competing in the 10,000-foot experimental hybrid engine category

Year 3 – Rocket Vehicle

Avionics

An electronics module responsible for GPS tracking, engine ignition and flow control, real-time data collection, and recovery triggers

Research Payload

A payload built in-house to collect data throughout flight for use in the future

Throttle Control

A flow regulation system to insert oxidizer flow into the combustion chamber to provide thrust to the rocket

Recovery System

A recovery module that is deployed at apogee to land the rocket safely back on Earth

Oxidizer Storage

A pressurized vessel holding the liquid oxidizer to be pumped into the combustion chamber

\Runaway

New Hampshire's first hybrid rocket engine that utilizes a liquid oxidizer and solid fuel to propel its rocket to 10,000 feet

UNH SEDS

Year 3 – Engine Optimization

Currently the propulsion lead working on optimizing Runaway for integration into the rocket

• Team of 9 students in propulsion

Year 3 – Project Management

Chicken suit

