Problèmes d'optimisation linéaire

Introduction à la recherche opérationnelle

4 février 2020

1	Mise en place Un exemple pour bien comprendre Vocabulaire Formalisation	4 4 6 9
2	Problèmes à deux variables Représentation des contraintes Représentation de l'objectif Cas particuliers Résolution algorithmique	12 12 16 18 23
3	Solutions du système de contrainte Les variables d'écart Forme standard et matricielle Système de contraintes Base Forme canonique par rapport à une base Solution de base	25 25 27 30 33 34 35

4	Interprétation graphique Sur un dessin Tableau des de base Interprétation graphique	38 38 39 40
5	Itération du simplexe Point de départ Choix de la variable entrante Choix de la variable sortante Changement de base Test d'arrêt	41 44 45 47 49 52
6	L'algorithme	54

Un éleveur de vache laitière veut prévoir sa période hivernale.

Il dispose d'une quantité de fourrage qu'il a lui-même produit qui correspond à 60 kg par bête et par jour. Il pense que cela ne va pas suffire et il a les moyens d'acheter jusqu'à 4 kilos par bête et par jour de céréales complémentaires.

Cependant, les normes que chaque bete absorbe moins de 150mg par jour de pesticide.

Le taux de pesticide est de 30mg par kilo de céréales et 1mg par kg de fourrage.

Question:

Sachant que les vaches produisent en moyenne 3 fois plus de lait pour 1kg de céréales que pour 1kg de fourrage, comment cet éleveur doit-il nourrir ses animaux pour maximiser sa production de lait?

Optimisation linéaire

Coralie E-D

Un exemple pour bien comprendre

Problèmes à deux variables

Optimisation linéaire

Coralie E-D

Mise en place

Vocabulaire

Problèmes à deux variables

Solutions du système de contrainte

Pour modéliser un problème, il va falloir :

- Choisir des variables adaptées.
- Exprimer la fonction à optimiser (appelée fonction objectif) en fonction de ces variables.
- Seconda de la contrainte de la contra

Vocabulaire

Définition:

On appelle **variable de décision** toute quantité utile à la résolution du problème et dont le modèle doit déterminer la valeur.

Sur l'exemple

Optimisation linéaire

Coralie E-D

Mise en place
Un exemple pour bien

Vocabulaire

Formalisation

Problèmes à deux variables

Vocabulaire

Optimisation linéaire

Coralie E-D

Mise en place Un exemple pour bien

Vocabulaire

Problèmes à deux variables

Solutions du système de

Définition:

On appelle **fonction objectif** l'expression qui modélise la quantité à optimiser en fonction des variables du problème.

Sur l'exemple

Vocabulaire

Définition:

On appelle **contraintes du problème** toutes les relations limitant le choix de valeurs possibles pour les variables.

Sur l'exemple

Attention

Il arrive souvent que des contraintes « cachées » ne soient pas explicites dans les problèmes.

Sur l'exemple

Optimisation linéaire

Coralie E-D

Un exemple pour bien comprendre

Vocabulaire

Formalisation

Problèmes à deux variables

Formalisation du problème

Problème condensé

Définition:

On appelle problème d'optimisation linéaire, un problème dont l'objectif est

- maximiser une fonction linéaire,
- sous contrainte : un ensemble d'équations ou d'inéquations linéaires.

Optimisation linéaire

Coralie F-D

Un exemple pour bien

deux variables

Formalisation du problème

Forme matricielle.

$$\max z = {}^t \mathbf{C} \mathbf{X}$$
 sous contraintes
$$\left\{ \begin{array}{lcl} \mathbf{A} \mathbf{x} & \leq & \mathbf{b} \\ \mathbf{x} & \geq & \mathbf{0} \end{array} \right.$$

avec **A**: matrice $(m \times n)$, **c**: vecteur $(n \times 1)$, **b**: vecteur $(m \times 1)$, **x**: vecteur $(n \times 1)$ si on a n variables et m contraintes

Attention!

- Toutes les variables sont positives (ce qui est toujours le cas)
- Toutes les contraintes sont des inégalités du type <(on peut toujours)

Optimisation linéaire

Coralie E-D

Mise en place Un exemple pour bien comprendre

Formalisation

Problèmes à deux variables

Sur l'exemple

Optimisation linéaire

Coralie E-D

Mise en place
Un exemple pour bien comprendre
Vocabulaire

Formalisation Problèmes à deux variables

Solutions du système de

Représentation des contraintes

Définitions:

- On appelle solution réalisable un ensemble de valeurs des variables de décision qui satisfont toutes les contraintes.
- On appelle région réalisable l'ensemble des solutions réalisables.

Sur l'exemple

Optimisation linéaire

Coralie E-D

Mise en place

Problèmes à deux variables

Représentation des contraintes

Représentation de l'objectif

Cas particuliers Résolution algorithmiqu

Représentation des contraintes

Optimisation linéaire

Coralie E-D

Mise en place

deux variables Représentation des

Représentation des contraintes

Représentation de

l'objectif Cas particuliers

Résolution algorithmiqu

Solutions du système de contrainte

Détermination graphique d'un demi-plan

La droite D d'équation ax + by + c = 0 partage le plan en deux demi-plans fermés

- P_+ d'équation $ax + by + c \ge 0$
- P_- d'équation $ax + by + c \le 0$
- P_+ contient le vecteur normal $\vec{n} = (a; b)$ de D issu d'un point de D
- P_ correspond évidemment à l'autre demi-plan.

Représentation des contraintes

Optimisation linéaire

Coralie E-D

Mise en place

Problèmes à deux variables

Représentation des contraintes

Représentation de l'objectif Cas particuliers

Cas particuliers
Résolution algorithmiqu

Cas discret

Si on avait eu comme contraintes supplémentaire x et y entiers :

FIGURE – Région réalisable discrète

Optimisation linéaire

Coralie E-D

Mise en place

deux variables
Représentation des

Représentation des contraintes

Représentation de

l'objectif

Cas particuliers
Résolution algorithmiqu

Représentation de l'objectif

Optimisation linéaire

Coralie E-D

Mise en place

deux variables

Représentation des contraintes Représentation de

l'objectif Cas particuliers

Résolution algorithmiqu

Solutions du ystème de ontrainte

Définition:

On appelle **lignes d'isovaleur de la fonction objectif** les droites parallèles D_k d'équations z = k dont les points donnent une même valeur k à la fonction objectif z.

Représentation de l'objectif

FIGURE – Lignes d'isovaleur de l'objectif z = 3x + y

Optimisation linéaire

Coralie E-D

Mise en place

Problèmes à deux variables
Représentation des

contraintes
Représentation de l'objectif

Cas particuliers Résolution algorithmiqu

Cas particulier : quand l'objectif est contraint

Changeons l'expression de la fonction objectif dans notre problème :

$$\max z = 30x + y$$
 sous contraintes
$$\begin{cases} x & \leq 4 \\ 30x + y \leq 150 \\ y \leq 60 \\ x & \geq 0 \\ y > 0 \end{cases}$$

Optimisation linéaire

Coralie E-D

Mise en place

deux variables
Représentation des
contraintes
Représentation de

l'objectif

Cas particuliers

Résolution algorithmique

Solutions du système de

Cas particulier: quand l'objectif est contraint

FIGURE – Tout un segment solution si z = 30x + y.

Optimisation linéaire

Coralie E-D

Mise en place

deux variables
Représentation des contraintes
Représentation de l'objectif

Cas particuliers
Résolution algorithmiqu

Un problème non-borné

Bordeaux INP

Optimisation linéaire

Coralie E-D

Mise en place

Problèmes à deux variables Représentation des contraintes Représentation de

Cas particuliers

Résolution algorithmique

l'obiectif

Solutions du système de

On considère le problème d'optimisation linéaire suivant :

$$\max z = x + y$$

$$\text{sous contraintes} \begin{cases}
-2x + y \leq 3 \\
x - 2y \leq 2 \\
x \geq 0 \\
y \geq 0
\end{cases}$$

Un problème non-borné

FIGURE – Exemple de problème non borné

Optimisation linéaire

Coralie E-D

Mise en place

Problèmes à deux variables
Représentation des contraintes

Représentation de l'objectif Cas particuliers

Résolution algorithmique Solutions du système de

Existence de solution

Problèmes sans solutions :

- Problème non borné
- Problème avec des contraites incompatibles.

Dans tous les autres cas, il existe une solution réelle. Exemple de contraintes incompatibles :

$$\max z = 3x + y$$

$$\text{sous contraintes} \begin{cases} x & \leq 4 \\ 30x + y \leq 150 \\ y \leq 60 \\ x & \geq 6 \\ y \geq 0 \end{cases}$$

Optimisation linéaire

Coralie E-D

Mise en place

Problèmes à deux variables

Représentation des contraintes Représentation de

Cas particuliers
Résolution algorithmique

Solutions du système de

Résolution algorithmique

Méthode algorithmique :

- Se placer sur un sommet S_0 de la région réalisable et calculer la valeur Z_{S_0} de l'objectif correspondant.
- 2 Déterminer un sommet voisin de S_0 : S_1 .
- 3 Calculer Z_{S_1} . Si $Z_{S_1} > Z_{S_0}$. Poser $S_0 := S_1$ et retourner en 2.
- lacktriangle Sinon, déterminer l'autre sommet voisin de S_0 : S_2
- **5** Calculer Z_{S_2} . Si $Z_{S_2} > Z_{S_0}$. Poser $S_0 := S_2$ et retourner en 2.
- Sinon S_0 est la solution optimale (les sommets adjacents donnent des valeurs de la fonction objectif inférieures ou égales à la solution courante).

L'algorithme peut être simplifier en ne testant qu'un seul voisin (l'autre correspondant au sommet précédent).

Optimisation linéaire

Coralie E-D

Mise en place

Problèmes à

contraintes
Représentation de l'objectif
Cas particuliers

Résolution algorithmiqu

système de contrainte

Résolution algorithmique

FIGURE - Suivi de l'algorithme

Optimisation linéaire

Coralie E-D

Mise en place

Problèmes à deux variables
Représentation des contraintes
Représentation de l'objectif

Cas particuliers
Résolution algorithmiqu

Rappel:

- Les solutions potentielles du problème se trouvent sur la frontière de la région réalisable.
- Elles correspondent à des cas d'égalité sur certaines des contraintes.

Première étape : transformer toutes les inégalités en égalités.

Pour cela, on va utiliser des variables d'écart.

Optimisation linéaire

Coralie E-D

Mise en place

deux variables

contrainte

Les variables d'écart

matricielle
Système de contraintes

systeme de contraint Base

Forme canonique par rapport à une base

Définition:

On appelle **variable d'écart** la quantité **positive** qui permet de transformer une contrainte d'inégalité en contrainte d'égalité.

$$a_{i1}x_1 + a_{i2}x_2 + \cdots + a_{in}x_n \leq b_i$$

devient, après ajout de la variable d'écart ei

$$a_{i1}x_1 + a_{i2}x_2 + \cdots + a_{in}x_n + e_i = b_i$$

Remarque:

$$(a_{i1}x_1 + a_{i2}x_2 + \cdots + a_{in}x_n) \le b_i$$

 $\iff e_i := b_i - (a_{i1}x_1 + a_{i2}x_2 + \cdots + a_{in}x_n) \ge 0$

On rajoute donc la condition $e_i \ge 0$ à l'ensemble des containtes.

Optimisation linéaire

Coralie E-D

Mise en place

deux variables

contrainte

Les variables d'écart

matricielle
Système de contraintes

ase

Problème d'optimisation linéaire sous forme standard

$$\max z = c_1 x_1 + c_2 x_2 + \cdots + c_n x_n$$

sous contraintes

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n + x_{n+1} &= b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n + & x_{n+2} &= b_2 \\ \vdots &\vdots &\vdots &\ddots &\vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n + & x_{n+m} = b_m \\ &x_1, \dots, x_n \ge 0 \\ &x_{n+1}, \dots, x_{n+m} \ge 0 \end{cases}$$

Optimisation linéaire

Coralie E-D

Mise en place

deux variables

système de contrainte Les variables d'écart

Forme standard et

Système de contraintes Base

L'exemple sous forme standard

Optimisation linéaire

Coralie E-D

Mise en place

Problèmes à deux variables

système de contrainte Les variables d'écart

Les variables d'écar Forme standard et

matricielle Système de contraintes Base

Écriture matricielle du cas général :

$$\mathbf{A}\mathbf{x} = \mathbf{b}$$

sous forme développée :

$$\begin{pmatrix} a_{11} & \dots & a_{1n} & 1 & 0 & \dots & 0 \\ a_{21} & \dots & a_{2n} & 0 & 1 & \dots & 0 \\ \vdots & & \vdots & & \vdots & & \vdots \\ a_{m1} & \dots & a_{mn} & 0 & 0 & \dots & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \\ x_{n+1} \\ \vdots \\ x_{n+m} \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}$$

Remarque:

A est toujours de rang m!

Optimisation linéaire

Coralie E-D

Mise en place

Problèmes à deux variables

système de contrainte Les variables d'écart

Les variables d'écart Forme standard et matricielle

Système de contraintes Base

Les contraintes sous forme standard

$$\begin{cases}
a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n + x_{n+1} &= b_1 \\
a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n + x_{n+2} &= b_2 \\
\vdots &\vdots &\vdots &\ddots &\vdots \\
a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n + x_{n+m} = b_m
\end{cases}$$

- m équations
- n + m inconnues
- ⇒ une infinité de solutions.

Optimisation linéaire

Coralie E-D

Mise en place

Problèmes à deux variables

contrainte

Les variables d'écart

Forme standard et matricielle

Système de contraintes

Forme canonique par rapport à une base

Optimisation linéaire

Coralie E-D

Mise en place

deux variables

système de contrainte Les variables d'écart

Forme standard et matricielle

Système de contraintes

Forme canonique par rapport à une base

Pour calculer une solution particulière :

- sélectionner m colonnes de A pour obtenir une sous matrice B inversible (A de rang m)
- donner les valeurs correspondant à l'unique solution du système tronqué aux variables sélectionnées
- onner la valeur 0 aux n variables non sélectionnées

Optimisation linéaire

Coralie E-D

Mise en place

Problèmes à deux variables

système de contrainte Les variables d'écart Forme standard et

matricielle

Système de contraintes

Définitions:

On dit que $(x_{i_1}, x_{i_2}, \dots, x_{i_m})$ est une **base** si la sous-matrice construite sur les colonnes (i_1, i_2, \dots, i_m) est inversible.

On dit alors que les m variables $(x_{i_1}, x_{i_2}, \ldots, x_{i_m})$ sont les **variables de base** et que les n variables restantes sont les **variables hors base**.

Remarque:

 Concrètement, on peut exprimer chacune des variables de base en fonction des variables hors-bases.

Optimisation linéaire

Coralie E-D

Mise en place

deux variables

contrainte

Les variables d'écart

Forme standard et matricielle Système de contraintes

systeme de contraint Base

Base Forme canor

Définition:

Lorsqu'un problème écrit sous forme standard vérifie en plus les deux propriétés suivantes :

- Les coefficients de la fonction objectif associés aux variables de base sont nuls,
- La matrice associée aux variables de base est la matrice identité (à une permutation près),
- on dit qu'il est écrit sous **forme canonique par rapport à la base** *B* correspondante.

Optimisation linéaire

Coralie E-D

Mise en place

deux variables

système de contrainte Les variables d'écart

Forme standard et matricielle Système de contraintes

Système de contraintes Base

Définition:

On appelle **solution de base** une solution du système Ax = b s'il existe une base telle que les n variables hors bases sont nulles et les m variables de base forment une solution du système $Bx^* = b$ où les x^* est le vecteur $m \times 1$ contenant les variables de base.

On appelle **solution de base réalisable** une solution de base dont toutes les composantes sont positives ou nulles.

Sur l'exemple

Optimisation linéaire

Coralie E-D

Mise en place

deux variables

système de contrainte Les variables d'écart

Forme standard et matricielle

Système de contraintes Base

Forme canonique par rapport à une base

Astuce:

Si les b_i sont positifs ou nuls, une solution de base réalisable évidente :

• les variables initiales = 0 (hors base)

Par construction la matrice correspondant aux variables d'écart est la matrice identité dont la solution est $\forall i \in [1, m], e_i = b_i \ge 0$.

Optimisation linéaire

Coralie E-D

Mise en place

deux variables

système de contrainte Les variables d'écart

matricielle
Système de contraintes

Système de contrainte Base

Attention

L'hypothèse $B \ge 0$ est importante. Les coefficients b_i peuvent être négatifs, typiquement lorsqu'on transforme une inégalité du type \ge en \le en multipliant par -1.

En pratique

Les variables d'écart forment une base réalisable évidente si

- que des contraintes du type ≤
- o pas de "au moins" dans l'énoncé.

Optimisation linéaire

Coralie E-D

Mise en place

deux variables

contrainte

Les variables d'écart

Forme standard et matricielle Système de contraintes

Base
Forme canonique par

rapport à une base Solution de base

Interprétation graphique

FIGURE - Bases et sommets

Optimisation linéaire

Coralie E-D

nterprétatio

Sur un dessin

Tableau des de base Interprétation graphique

ltération du simplexe

Points	solution	variable	variables	réali-
	de base	hors base	de base	sable?
(0,0)	(0, 0, 4, 150, 60)	(x_1, x_2)	(x_3, x_4, x_5)	Oui
(0,60)	(0,60,4,90,0)	(x_1, x_5)	(x_2, x_3, x_4)	Oui
(0, 150)	(0, 150, 4, 0, -90)	(x_1, x_4)	(x_2, x_3, x_5)	Non
(4,0)	(4,0,0,30,60)	(x_2, x_3)	(x_1, x_4, x_5)	Oui
(5,0)	(5,0,-1,0,60)	(x_2, x_4)	(x_1, x_3, x_5)	Non
(3,60)	(3,60,1,0,0)	(x_4, x_5)	(x_1, x_2, x_3)	Oui
(4, 60)	(4,60,0,-30,0)	(x_3, x_5)	(x_1, x_2, x_4)	Non
(4, 30)	(4, 30, 0, 0, 30)	(x_3, x_4)	(x_1, x_2, x_5)	Oui

TABLE - Solutions de base

Coralie E-D

graphique
Sur un dessin
Tableau des de base
Interprétation graphique

Itération du simplexe

Propositions

- Les solutions de base correspondent à des points d'intersection de contraintes mises à l'égalité.
- Une solution de base réalisable correspond à un sommet de la région réalisable.

Remarque:

À deux sommets adjacents du polygone correspondent deux solutions de base réalisables qui ne diffèrent que d'une variable hors base et une seule.

Définition :

On appelle solutions de base réalisables adjacentes deux solutions de bases réalisables qui ont les mêmes variables hors base sauf une (et par conséquent les mêmes variables de base sauf une).

Optimisation linéaire

Coralie E-D

graphique
Sur un dessin
Tableau des de base
Interprétation graphique

Itération du simplexe

- Se placer sur un sommet S_0 de la région réalisable et calculer la valeur Z_{S_0} de l'objectif correspondant.
- ② Déterminer un sommet voisin de S_0 : S_1 .
- 3 Calculer Z_{S_1} . Si $Z_{S_1} > Z_{S_0}$. Poser $S_0 := S_1$ et retourner en 2.
- lacktriangle Sinon, déterminer l'autre sommet voisin de S_0 : S_2
- **6** Calculer Z_{S_2} . Si $Z_{S_2} > Z_{S_0}$. Poser $S_0 := S_2$ et retourner en 2.
- Sinon S_0 est la solution optimale (les sommets adjacents donnent des valeurs de la fonction objectif inférieures ou égales à la solution courante).

Coralie E-D

Interprétation graphique

Itération du simplexe

Choix de la variable entrante

ortante :hangement de ba

Cas général

Bordeaux INP ENSC

> Optimisation linéaire

Coralie E-D

Interprétation graphique

Itération du simplexe

Point de départ

Choix de la variable entrante

Choix de la variable

sortante Changement de har

est d'arrêt

L'algorithme

 la méthode graphique n'est pas possible en grandes dimensions

Comment passer d'une solution de base réalisable à une solution de base réalisable adjacente?

 en « échangeant » de manière judicieuse une variable de base et une variable hors base.

Coralie E-D

Interprétation graphique

Itération du simplexe

Point de départ

Choix de la variable entrante

Choix de la variable

sortante Changement de ba

lest d'arrêt

L'algorithm

Résolution cas général

- Trouver un sommet de départ (c.à.d une solution de base réalisable de départ)
- Choix de la variable entrant dans la nouvelle base.
- Ohoix de la variable sortant de l'ancienne base.
- Reformulation du problème en fonction de la nouvelle base.
- Test d'arrêt : si le test est positif, on a la solution optimale, si le test est négatif, on reprend à l'étape 2.

Les étapes 2, 3 et 4 permettent de passer d'une solution réalisable à une solution réalisable adjacente.

Point de départ

- cas de deux variables : une solution de base réalisable est un sommet de la région réalisable.
- cas des grandes dimensions : pas de dessin possible.
- **cas** $B \ge 0$: une solution de base $(x_1, \ldots, x_n, x_{n+1}, \ldots, x_{n+m}) = (0, \ldots, 0, b_1, \ldots, b_m)$ est réalisable et donne z = 0.
- cas général: il existe des techniques (basées sur l'algorithme du simplexe) qui permettent d'initialiser le simplexe en fournissant une solution de base réalisable de départ.

Sur l'exemple:

Optimisation linéaire

Coralie E-D

Interprétation graphique

simplexe Point de départ

Choix de la variable entrante

sortante Changement de ba Test d'arrêt

_algorithme

Rappel

Problème sous forme canonique : la fonction objectif ne fait intervenir que les variables hors base

$$\max z = c_1 x_1 + c_2 x_2 + \cdots + c_n x_n$$

- La variable entrante va passer de nulle à strictement positive.
- Le but est d'augmenter la variable objectif.

Proposition:

La variable hors base qui va entrer dans la nouvelle base est celle dont le coefficient est le plus élevé.

Optimisation linéaire

Coralie E-D

Interprétation graphique

simplexe
Point de départ
Choix de la variable

Choix de la variable sortante

Changement de bas Test d'arrêt

Proposition:

La variable qui sort de la base est la première à s'annuler quand la variable entrante augmente.

Un critère simple

La contrainte de la ligne \emph{r} est de la forme suivante :

$$a_{r,s}x_s+x_{i_r}=b_r$$

- Si $a_{r,s} = 0$, x_s n'intervient pas.
- ② Si $a_{r,s} < 0$, x_{i_r} ne s'annulera jamais car $b_r \ge 0$.
- \odot Si tous les $a_{r,s}$.sont ≤ 0 , il s'agit d'un problème non borné
- Si $a_{r,s} > 0$, $\frac{x_{i_r}}{a_{r,s}} = \frac{b_r}{a_{r,s}} x_s$: x_{i_r} s'annule pour $x_s = \frac{b_r}{a_{r,s}}$.

Optimisation linéaire

Coralie E-D

Interprétation graphique

simplexe

Point de départ Choix de la variable

entrante Choix de la variable

Changement de bas

Coralie E-D

Interprétation graphique

simplexe

Choix de la variable entrante

sortante Changement de bas

nangement de ba est d'arrêt

L'algorithme

On en déduit le critère suivant pour déterminer la variable sortante :

Proposition:

Soit s l'indice de la variable entrante. Si il existe un indice r pour lequel le $min\left\{\frac{b_k}{a_{k,s}},a_{k,s}>0\right\}$ est atteint, alors x_{i_r} est la variable sortante. Sinon, le problème est non borné. Il faut donc le reformuler.

- exprimer les nouvelles variables de base en fonction des nouvelles variables hors base
- exprimer la fonction objectif en fonction des nouvelles variables hors base

Pivot de Gauss

- Multiplier une ligne par une constante non nulle
- 2 Ajouter à une ligne un multiple d'une autre ligne.

Optimisation linéaire

Coralie E-D

Interprétation graphique

simplexe

Choix de la variable

Choix de la variable

Changement de base

Dans la pratique

- Identifier la ligne (unique) contenant simultanément la variable entrante et la variable sortante (ligne pivot).
- Faire apparaître un 1 devant la variable entrante dans la ligne pivot.
- Éliminer la variable entrante de toutes les autres lignes en utilisant la ligne pivot.

Optimisation linéaire

Coralie E-D

Interprétation graphique

Itération du simplexe

Point de départ Choix de la variable entrante

Choix de la variable sortante

Changement de base Test d'arrêt

Coralie E-D

Interprétation graphique

simplexe

Point de départ Choix de la variable

entrante Choix de la variable

Changement de base

est d'arrêt

L'algorithme

Si le changement de base s'est bien déroulé :

- Les variables de base forment une sous matrice identité à une permutation près.
- L'objectif est exprimé en fonction des variables hors base seulement.
- Le problème est sous forme canonique par rapport à la nouvelle base.

Si la nouvelle base a été bien choisie

La valeur de la fonction objectif doit avoir augmenté.

- Pour savoir si une base donnée est optimale, il faut vérifier que toute base adjacente est moins bonne que la base courante.
- Pour augmenter la valeur de la fonction objectif il faut faire entrer dans la nouvelle base une variable hors base dont le coefficient est positif.

Proposition:

Si dans l'expression de la fonction objectif $z=c_0+c_{i_1}x_{i_1}+c_{i_2}x_{i_2}+\cdots+c_{i_n}x_{i_n}$ exprimée en fonction des variables hors base, tous les coefficients des variables hors base sont négatifs ou nuls, alors la solution de base réalisable courante est la solution optimale. L'algorithme du simplexe est alors terminé.

Optimisation linéaire

Coralie E-D

Interprétation graphique

simplexe

Point de départ Choix de la variable

entrante
Choix de la variable

sortante Changement de base

Test d'arrêt

Remarque:

Il n'est pas nécessaire de remettre les variables à droite de l'égalité dans la fonction objectif. En effet, dans un système où toutes les variables sont du même côté, il suffit de regarder :

- pour le critère d'arrêt : si tous les coefficients sont positifs, on s'arrête.
- pour le choix de la variable entrante : on cherche le plus petit coefficient et non le plus grand comme décrit dans la méthode puisque les variables sont de l'autre côté de l'égalité.

Optimisation linéaire

Coralie E-D

Interprétation graphique

Itération du

Point de départ Choix de la variable

entrante
Choix de la variable

rtante hangement de base

Test d'arrêt

Récapitulatif

Travail préliminaire

- Mise sous forme canonique du problème.
- Ajout des variables d'écart.
- Ohoix de la base réalisable de départ.

Une fois toutes ces étapes réalisées, on peut démarrer l'algorithme du simplexe pour un problème de maximisation :

$$\max z = c_1 x_1 + c_2 x_2 + \cdots + c_n x_n$$
sous contraintes $\mathbf{A}\mathbf{x} = \mathbf{b}$

Optimisation linéaire

Coralie E-D

Interprétation graphique

tération du simplexe

Coralie E-D

Interprétation graphique

tération du simplexe

L'algorithme

```
L'algorithme
```

tant que il existe s tel que $c_s > 0$ faire choisir une variable x_s telle que $c_s > 0$ (x_s entre dans la base)

si tous les $a_{i,s} \le 0$: STOP (problème non borné) sinon

début

soit r tel que

$$\frac{b_r}{a_{r,s}} = \min\left\{\frac{b_i}{a_{i,s}}, a_{i,s} > 0, i = 1, \dots, m\right\}$$
pivoter(r,s)

fin

fin tant que

Coralie E-D

Interprétation graphique

Itération du simplexe

L'algorithme

La fonction **pivoter(r,s)**

début

diviser la ligne r par $a_{r,s}$. retrancher à la ligne de la fonction objectif c_s fois la ligne

r ;

pour $k = 1, ..., m, k \neq r$ **faire** retrancher à la ligne k $a_{k,s}$ fois la nouvelle ligne

r;

fin pour

fin