AMS 572 Data Analysis I Analysis of Single Factor Experiments

Pei-Fen Kuan

Applied Math and Stats, Stony Brook University

Analysis of Variance Model

- ▶ Objective: To test hypotheses about the mean of more than 2 groups
- ▶ Definition: An analysis of variance model is a linear regression model in which the predictor variables are classification variables. The categories of a variable are called the *levels* of the variable.
- Categorical predictor variables are also called qualitative factors

Analysis of Variance Model

Data structure:

Balanced design: $n_i \equiv n$

Notation

- ▶ Let Y_{ij} be the j^{th} observation in the i^{th} group
- $i = 1, ..., K; j = 1, ..., n_i$
- $\blacktriangleright \text{ Let } N = \sum_{i=1}^K n_i$
- $ar{Y}_{i\cdot} = \sum_{j} Y_{ij}/n_i$ Sample mean from $ar{ au}$ group.

ANOVA Model and Hypotheses

- Assume $Y_{ij} \sim N(\mu_i, \sigma^2)$. That is, equal (unknown) population variances $\sigma_1^2 = \sigma_2^2 = \dots = \sigma_K^2 = \sigma^2$
- Suppose

$$H_0: \mu_1 = \mu_2 = \cdots = \mu_K \simeq M$$

versus

 H_a : these μ_i 's are not all equal

Derivation of the test

sum of squares theatment

▶ The mean square treatment is given by

$$MSA = \hat{\sigma}^2 = \frac{\sum_{i=1}^{K} n_i (\bar{Y}_{i.} - \bar{Y})^2}{K - 1} = \frac{SS}{k - 1}$$

where

$$\bar{Y} = \frac{\sum_{i=1}^{K} \sum_{j=1}^{n_i} Y_{ij}}{N}$$

- \triangleright A large standardized value of MSA indicates that H_0 is false.
 - MSE is standardized using the pooled estimate of σ^2 which

is estimated as:
$$\text{MSE} = s_p^2 = \frac{\sum_{i=1}^K (n_i - 1) s_i^2}{\sum_{i=1}^K (n_i - 1)} \text{ which is estimated as:}$$

Review: F distribution

If X_1 and X_2 are independent rvs with $X_1 \sim \chi_{v_1}^2$ and $X_2 \sim \chi_{v_2}^2$, then

$$\frac{X_1/v_1}{X_2/v_2} \sim F_{v_1, v_2}$$

Note:

- If $F \sim F_{v_1,v_2}$, then $1/F \sim F_{v_1,v_2}$.
- ▶ Thus, if the F-table only gives the upper bound $F_{v_1,v_2,\alpha,U}$, i.e., $P(F \ge F_{v_1,v_2,\alpha,U}) = \alpha$, the lower bound_can be

obtained using the relationship above.
$$P(F \neq F_{V_1, V_2, v_3, u}) = P(F \neq F_{V_1, V_2, v_3, u})$$

=)
$$\frac{1}{F_{y_1,y_2,a,w}} = f_{y_2,y_1,a,z}$$

ANOVA: F test

▶ It can be shown under H_0 :

$$(N-K)$$
MSE $/\sigma^2 \sim \chi^2$
 $(K-1)$ MSA $/\sigma^2 \sim \chi^2$

and MSE and MSA are independent

▶ Therefore, under H_0 ,

$$(k-1) MSA/k/l \Rightarrow F_0 \equiv \frac{MSA}{MSE} \sim f_{k-1}, v-k$$

$$(N-k) MSE/k^2/k$$

ANOVA: F test

▶ It can be shown that $E(MSE) = \sigma^2$ whereas

$$E(MSA) = \sigma^2 + \frac{\sum_{i} n_i (\mu_i - \mu)^2}{K - 1}$$

where $\mu = \frac{\sum_{i=1}^{K} n_i \mu_i}{N}$ is the overall mean

- Under H_0 , $F_0 = 1$ Since $M = M_2 = \cdots = M_K$
- \vdash Under H_a , \vdash
- ▶ Intuitively, we reject H_0 in favor of H_a if $F_0 \ge C$ where

$$P(\text{reject } H_0|H_0) = P(F_0 \ge C|H_0) = \alpha$$
The critical region:
$$Ca = \{F_0 : F_0 > F_{k-1}, N-k, a, u\}$$

• When
$$K = 2$$
, $H_0: \mu_1 = \mu_2$ $H_a: \mu_1 \neq \mu_2$

$$T_0 = \frac{\bar{y}_{1\cdot} - \bar{y}_{2\cdot}}{s\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \stackrel{H_0}{\sim} t_{n_1 + n_2 - 2}$$

Note: If
$$T \sim t_k$$
, $T^2 \sim FI$, K

$$T = \frac{2}{\sqrt{W/K}} \implies T^2 = \frac{2^2}{W/K}$$

$$2 \sim N(0,1) \quad 2 \perp W \quad 2^2 = \chi^2$$

$$W \sim \chi^2$$

ANOVA: Sum of Squares

It can be shown that
$$\sum_{i=1}^{K} \sum_{j=1}^{n_i} (Y_{ij} - \bar{Y})^2 = \sum_{i=1}^{K} \sum_{j=1}^{n_i} (\bar{Y}_{i\cdot} - \bar{Y})^2 + \sum_{i=1}^{K} \sum_{j=1}^{n_i} (Y_{ij} - \bar{Y}_{i\cdot})^2$$

11 55 \ ► That is, SST = SSA + SSE

ANOVA: F Test and ANOVA Table

			' '	
	ANOVA Table			
Source of variation	df	MS	F V	
Among groups	K-1	$MSA = \frac{\sum_{i=1}^{K} n_i (\bar{Y}_{i.} - \bar{Y})^2}{K - 1}$	MSA/MSE	
Within groups	N - K	$MSE = \frac{\sum_{i=1}^{K} (n_i - 1)s_i^2}{N - K}$		
Total	N-1			

$$M9E = \sum_{i=1}^{K} \frac{(hi-1)5i^2}{N-K} = \frac{(99(0.79)^2 \cdot ... + 199(0.82)^2}{(050-6)} = 0.636$$

Example: A study was conducted to compare the lung function of groups of smokers and non-smokers. Test the hypothesis if the lung function differs by smoking status.

Maara (I /goo) ad (I /goo)

	Group	n_i	mean (L/sec)	sa (L/sec)
	Non-smokers	200	3.78 Y i	0.79 S ı
/	Passive smokers	200	3.30	0.77 Sx
	Non-inhalers	50	3.32	0.86
	Light smokers	200	3.23	0.78
	Mod. smokers	200	2.73	0.81
	Heavy smokers	200	2.59	0.82
_	ιλλ ςΔ			

: Roject Ho & cordade that