Module 1: The Nature of Fluids/Pressure Measurement (CIVL 318)

Some useful results:

Table A: Properties of Water

Table B: Properties of Common Liquids (at 101 kPa and 25°C)

Temperature	Specific Weight	Density	Dynamic Viscosity
	γ	ho	η
(°C)	(kN/m^3)	(kg/m^3)	$(Pa \cdot s)$
0	9.81	1000	1.75×10^{-3}
5	9.81	1000	1.52×10^{-3}
10	9.81	1000	1.30×10^{-3}
15	9.81	1000	1.15×10^{-3}
20	9.79	998	1.02×10^{-3}
25	9.78	997	8.91×10^{-4}
30	9.77	996	9.00×10^{-4}
35	9.75	994	7.18×10^{-4}
40	9.73	992	6.51×10^{-4}
45	9.71	990	5.94×10^{-4}
50	9.69	988	5.41×10^{-4}
55	9.67	986	4.98×10^{-4}
60	9.65	984	4.60×10^{-4}
65	9.62	981	4.31×10^{-4}
70	9.59	978	4.02×10^{-4}
75	9.56	975	3.73×10^{-4}
80	9.53	971	3.50×10^{-4}
85	9.50	968	3.30×10^{-4}
90	9.47	965	3.11×10^{-4}
95	9.44	962	2.92×10^{-4}
100	9.40	958	2.82×10^{-4}

	Specific	Specific		Dynamic
Liquid	Gravity	Weight	Density	Viscosity
		γ	ho	η
		(kN/m^3)	(kg/m^3)	(Pa·s)
Acetone	0.787	7.72	787	3.16×10^{-4}
Alcohol, Ethyl	0.787	7.72	787	1.00×10^{-3}
Alcohol, Methyl	0.789	7.74	789	5.60×10^{-4}
Alcohol, Propyl	0.802	7.87	802	1.92×10^{-3}
Benzene	0.876	8.59	876	6.03×10^{-4}
Carbon Tetrachloride	1.590	15.60	1590	9.10×10^{-4}
Castor Oil	0.960	9.42	960	6.51×10^{-1}
Ethylene Glycol	1.100	10.79	1100	1.62×10^{-2}
Gasoline	0.68	6.67	680	2.87×10^{-4}
Glycerine	1.258	12.34	1258	9.60×10^{-1}
Kerosene	0.823	8.07	823	1.64×10^{-3}
Linseed Oil	0.930	9.12	930	3.31×10^{-2}
Mercury	13.54	132.8	13540	1.53×10^{-3}
Propane	0.495	4.86	495	1.10×10^{-4}
Seawater	1.030	10.10	1030	1.03×10^{-3}
Turpentine	0.870	8.53	870	1.37×10^{-3}
Fuel Oil, medium	0.852	8.36	852	2.99×10^{-3}
Fuel Oil, heavy	0.906	8.89	906	1.07×10^{-1}

Example 1:

A piston confines oil in a closed circular cylinder. The maximum operating pressure for the piston is 17.8 MPa. The piston has a diameter of 62.5 mm. What is the maximum load that the piston can support?

Solution:

$$\begin{split} F &= P \times A \\ &= 17.8 \times 10^6 \text{ N/m}^2 \times \frac{\pi (0.0625 \text{ m})^2}{4} \\ &= 54610 \text{ N} \\ &\approx 54.6 \text{ kN} \qquad \text{(3 sig digs)} \end{split}$$

Alternative units:

$$\begin{split} F &= P \times A \\ &= 17.8 \text{ N/mm}^2 \times \frac{\pi (6.25 \text{ mm})^2}{4} \\ &= 54610 \text{ N} \\ &\approx 54.6 \text{ kN} \end{split}$$

Exercise 1:

A press used to produce coins requires a force of $8.20\ kN$.

The hydraulic cylinder has a diameter of 63.5 mm.

What is the oil pressure needed to generate this force?

Solution:

$$P = \frac{F}{A}$$
= $\frac{8.20 \text{ kN}}{\pi (0.0635 \text{ m})^2/4}$
= 2589.3 kN/m²
 $\approx 2.59 \text{ MPa}$

Alternative units:

$$P = \frac{F}{A}$$
= $\frac{8200 \text{ N}}{\pi (6.35 \text{ mm})^2/4}$
= 2.5893 N/mm²
 $\approx 2.59 \text{ MPa}$

Example 2:

An empty barrel with an inside diameter of 900 mm weighs 205 N.

What does the barrel weigh when it is filled to a depth of 750 mm with water at 25° C?

Solution:

The volume of water is the volume of a cylinder with diameter 900 mm and height 750 mm:

$$v = \frac{\pi d^2}{4} \cdot h$$

$$= \frac{\pi (0.900 \text{ m})^2}{4} \cdot (0.75 \text{ m})$$

$$= 0.47713 \text{ m}^3$$

(Use 5 significant digits for interim calculations and 3 significant digits for solutions.)

The specific weight of water at 25° C is 9.78 kN/m^3 (Table A.1) so

$$w = \gamma V$$

= 9.78 kN/m³ × 0.47713 m³
= 4.6663 kN

The combined weight of the barrel and the water is given by:

$$0.205 \text{ kN} + 4.6663 \text{ kN} \approx 4.87 \text{ kN}$$

Example 3:

Calculate the density and the specific weight of benzene if it has a specific gravity of 0.876.

Solution:

$$0.876 = \frac{
ho_b}{
ho_{water@4^{\circ}C}}$$
 $ho_b = 0.876 \times 1000 \text{ kg/m}^3$
 $= 876 \text{ kg/m}^3$
 $0.876 = \frac{\gamma_b}{\gamma_{water@4^{\circ}C}}$
 $\gamma_b = 0.876 \times 9.81 \text{ kN/m}^3$
 $= 8.59 \text{ kN/m}^3$

Example 4:

An open cylindrical tank with diameter $5.75~\mathrm{m}$ and depth $3.30~\mathrm{m}$ is filled to the top with water at $10^{\circ}\mathrm{C}$. The water is heated to $55^{\circ}\mathrm{C}$. Assuming that the tank dimensions remain constant and there are no losses due to evaporation, calculate the mass of water that overflows.

Solution:

Volume of tank:

$$V_{tank} = \frac{\pi (5.75 \text{ m})^2}{4} \times 3.30 \text{ m}$$

= 85.692 m³

Mass of the water in the tank at 10° C:

$$\begin{split} m &= \rho_{10^{\circ}\text{C}} \times V_{10^{\circ}\text{C}} \\ &= 1000 \text{ kg/m}^{3} \times 85.692 \text{ m}^{3} \\ &= 85\,692 \text{ kg} \end{split}$$

Mass of the water in the tank at 70° C:

$$m =
ho_{55^{\circ}\text{C}} imes V_{55^{\circ}\text{C}}$$

= 986 kg/m³ × 85.692 m³
= 84 492 kg

Mass of water that overflows:

$$\begin{split} m_{overflow} &= 85\,692~\mathrm{kg} - 84\,492~\mathrm{kg} \\ &= 1\,200~\mathrm{kg} \end{split}$$

Example 5:

A tank, open to the atmosphere in the centre, contains medium fuel oil. Atmospheric pressure is 102.1 kPa. Calculate the gauge pressure and the absolute pressure for locations A, B, and D.

Solution:

Pressure at *B*: *B* is open to the atmosphere so

$$P_B=0$$
 and $P_{B(abs)}=P_{(atm)}=102.1\,\mathrm{kPa}$

Note that pressure is assumed to be gauge pressure unless otherwise specified.

Also, atmospheric pressure is generally specified to four significant digits if over 100; there is a distinct difference in pressure between $100.5\,\mathrm{kPa}$ and $101.4\,\mathrm{kPa}$ (which are the same to $3\,\mathrm{sig}$ digs).

Pressure at A:

$$P_A = P_B - \Delta p$$

 $= 0 - \gamma h$
 $= -(8.36 \,\mathrm{kN/m^3})(0.30 \,\mathrm{m})$
 $= -2.5080 \,\mathrm{kPa}$
 $\approx -2.51 \,\mathrm{kPa}$
 $P_{A(abs)} = P_{atm} + P_{A(gauge)}$
 $= 102.1 \,\mathrm{kPa} - 2.5080 \,\mathrm{kPa}$
 $= 99.592 \,\mathrm{kPa}$
 $\approx 99.6 \,\mathrm{kPa}$

Pressure at D:

$$P_D = P_B + \Delta p$$

 $= 0 + \gamma h$
 $= (8.36 \text{ kN/m}^3)(1.375 \text{ m})$
 $= 11.495 \text{ kPa}$
 $\approx 11.50 \text{ kPa}$
 $P_{D(abs)} = P_{atm} + P_{D(gauge)}$
 $= 102.1 \text{ kPa} + 11.495 \text{ kPa}$
 $= 113.60 \text{ kPa}$
 $= 113.6 \text{ kPa}$

Exercise 2:

Calculate the gauge pressure and the absolute pressure for locations C and E for the previous example.

Pressure at *C*:

$$P_C = P_C - \Delta p$$

 $= 0 - \gamma h$
 $= -(8.36 \,\mathrm{kN/m^3})(0.950 \,\mathrm{m})$
 $= -7.9420 \,\mathrm{kN/m^2}$
 $\approx -7.94 \,\mathrm{kPa}$
 $P_{C(abs)} = P_{atm} + P_{C(gauge)}$
 $= 102.1 \,\mathrm{kPa} - 7.9420 \,\mathrm{kPa}$
 $= 94.158 \,\mathrm{kPa}$
 $\approx 94.2 \,\mathrm{kPa}$

Pressure at *E*:

$$P_{E} = P_{B} + \Delta p$$

 $= 0 + \gamma h$
 $= (8.36 \,\mathrm{kN/m^{3}})(2.0 \,\mathrm{m})$
 $= 16.720 \,\mathrm{kPa}$
 $P_{E(abs)} = P_{atm} + P_{D(gauge)}$
 $= 102.1 \,\mathrm{kPa} + 16.72 \,\mathrm{kPa}$
 $= 118.82 \,\mathrm{kPa}$
 $\approx 118.8 \,\mathrm{kPa}$

Example 6:

Determine the pressure at A given that the temperature of the water is 25° C.

Solution:

$$P_3 = 0$$

 $P_2 = P_3 + \gamma h$
 $= 0 + (1.258)(9.81 \text{ kN/m}^3)(0.105 \text{ m})$
 $= 1.2958 \text{ kPa}$
 $P_1 = 1.2958 \text{ kPa}$
 $P_A = P_1 - \gamma h$
 $= 1.2958 \text{ kPa} - (9.78)(0.152) \text{ kPa}$
 $= -0.1907 \text{ kPa}$

Note: There is not much difference in pressure for a difference in levels of 0.105 m. For this reason, a gauge fluid with a higher specific gravity, such as mercury, is usually used to measure larger pressure differences.

Example 7:

Find the pressure difference between A and B

Solution:

$$P_1 = P_A + \gamma h$$

 $= P_A + (9.81 \text{ kN/m}^3)(0.195 \text{ m})$
 $= P_A + 1.913 \text{ kPa}$
 $P_2 = P_1 + (13.54)(9.81 \text{ kN/m}^3)(0.15 \text{ m})$
 $= P_A + (1.913 + 19.924) \text{ kPa}$
 $= P_A + 21.837 \text{ kPa}$
 $P_3 = P_A + 21.837 \text{ kPa}$
 $P_B = P_3 - (0.90)(9.81 \text{ kN/m}^3)(0.240 \text{ m})$
 $= P_A + 21.837 \text{ kPa} - 2.119 \text{ kPa}$
 $\Delta p = 19.72 \text{ kPa}$