Linear Algebra cheat sheet

Vectors

$$\begin{array}{l} \text{dot product: } u*v = ||u||*||v||*\cos(\phi) = u_xv_x + u_yv_y \\ \text{cross product: } u\times v = \left(\begin{array}{l} u_yv_z - u_zv_y \\ u_zv_x - u_xv_z \\ u_xv_y - u_yv_x \end{array} \right) \\ \text{norms: } \\ \|x\|_p := \sqrt[p]{\sum_{i=1}^n |x_i|^p} \\ \|x\|_1 := \sum_{i=1}^n |x_i| & \|x\|_\infty = \max_i |x_i| \\ \text{enclosed angle: } \end{array}$$

$$cos\phi = \frac{u*v}{||u||*||v||}$$

$$||u||*||v|| = \sqrt{(u_x^2 + u_y^2)(v_x^2 + v_y^2)}$$

Matrices

basic operations

transpose: $[A^{\mathrm{T}}]_{ij} = [A]_{ji}$: "mirror over main diagonal" conjungate transpose / adjugate: $A^* = (\overline{A})^T = \overline{A^T}$ "transpose and complex conjugate all entries" (same as transpose for real matrices)

multiply:
$$A_{N\times M} * B_{R\times K} = M_{N\times K}$$

invert: $\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{\det(\mathbf{A})} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$

 $||A||_p = \max_{x \neq 0} \frac{||Ax||_p}{||x||_p}$, induced by vector p-norm

$$\begin{aligned} \|A\|_2 &= \sqrt{\lambda_{\max}(A^T A)} \\ \|A\|_1 &= \max_j \sum_{i=1}^m |a_{ij}|, \\ \|A\|_{\infty} &= \max_i \sum_{j=1}^n |a_{ij}|, \\ \text{condition: } & \text{cond}(A) = \|A\| \cdot \|A^{-1}\| \end{aligned}$$

determinants

$$\begin{split} \det(A) &= \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \prod_{i=1}^n A_{i,\sigma_i} \\ \text{For } 3 \times 3 \text{ matrices (Sarrus rule):} \\ & \text{\textbf{arithmetic rules:}} \\ & \det(A \cdot B) = \det(A) \cdot \det(B) \end{split}$$

$$\det(A^{-1}) = \det(A)^{-1}$$

 $\det(rA) = r^n \det A$, for all $A^{n \times n}$ and scalars r

$$\det(rA) = r^n \det A$$
, for all $A^{n \times n}$ and scalars r

eigenvalues, eigenvectors, eigenspace

1. Calculate **eigenvalues** by solving det $(A - \lambda I) = 0$

2. Any vector x that satisfies $(A - \lambda_i I) x = 0$ is **eigenvector** for λ_i .

3. Eig₄(λ_i) = { $x \in \mathbb{C}^n : (A - \lambda_i)x = 0$ } is **eigenspace** for λ_i .

definiteness

defined on $n \times n$ square matrices:

 $\forall \lambda \in \sigma(A)$.

 $\lambda > 0 \iff$ positive-definite $\lambda > 0 \iff$ positive-semidefinite $\lambda < 0 \iff$ negative-definite $\lambda < 0 \iff$ negative-semidefinite

if none true (positive and negative λ exist): indefinite equivalent: eg. $x^T Ax > 0 \iff$ positive-definite

obvious properties

square: $N \times N$ symmetric: $A = A^T$ diagonal: 0 except a_{kk}

⇒ implies triangular (eigenvalues on main diagonale)

orthogonal

$$A^T = A^{-1} \Rightarrow$$
 normal and diagonalizable

unitary

Complex analogy to orthogonal: A complex square matrix is unitary if all column vectors are orthonormal

 \Rightarrow diagonolizable

 $\Rightarrow cond_2(A) = 1$ $\Rightarrow |det(A)| = 1$

nonsingular

A is nonsingular = invertible = regular iff:

There is a matrix $B := A^{-1}$ such that AB = I = BA

TAx = b has exactly one solution for each b The columns of A are linearly independent

 $\Rightarrow det(A)^{-1} = det(A^{-1})$

 $\Rightarrow (A^{-1})^{-1} = A$ $\Rightarrow (A^{T})^{-1} = (A^{-1})^{T}$

diagonalizable

 $A^{N\times N}$ can be diagonalized iff it has n linear independent eigenvectors. Then, there is an invertible T, such that:

$$D := T^{-1}AT = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix}$$

$$A = T^{-1}DT$$
 and $AT = T \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix}$

T can be created with eigenvectors of A.

diagonally dominant matrix

 $\forall i. |a_{ii}| \ge \sum_{j \ne i} |a_{ij}|$ \Rightarrow nonsingular

Hermitian

triangular

A square matrix R is right triangular:

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & 0 & a_{33} \end{pmatrix}$$

⇒ Eigenvalues on main diagonale

idempotent

adjugate

block matrices

Let B, C be submatrices, and A, D square submatrices. Then: $\det\begin{pmatrix} A & 0 \\ C & D \end{pmatrix} = \det\begin{pmatrix} A & B \\ 0 & D \end{pmatrix} = \det(A)\det(D)$

minors

rank

kernel

trace

defined on n×n square matrices: $tr(A) = a_{11} + a_{22} + \cdots + a_{nn}$ (sum of the elements on the main diagonal)

span

spectrum

$$\sigma(A) = \{ \lambda \in \mathbb{C} : \lambda \text{ is eigenvalue of A} \}$$