Semi-Supervised Sequence Modeling With Cross-View Training

집현전 2기 중급반

0. Abstract

- CVT는 labeled + unlabeled data를 사용해 LM의 표현을 향상시키는 semisupervised learning algorithm.
- CVT는 multi-task learning과 결합할 때 특히 효과적!

Introduce

- 딥러닝 모델은 많은 양의 labeled deta로 훈련했을 때 제일 잘 작동하지만, 라벨을 붙이는데는 돈이 많이 든다.
- 그래서 unlabeled example을 활용하는 semi-supervised 학습 기술인 word vector 를 훈련하는 방식을 사용함.

Unsupervised representation learning algorithm

ELMo

많은 양의 unlabeled text를 활용할 수 있음 => supervised NLP Model 정확도 향상!

- 주요 단점: 첫 번째 표현 학습 단계는 라벨 링된 데이터의 장점을 얻을 수가 없다.
- 아무래도 모델은 특정 작업을 목표로 하는 표현 대신, 일반적으로 효과적인 표현을 학습하기 위해 훈련하기 때문.
- self-training 같은 semi-supervised 학 습 알고리즘은 labeled + unlabeled 작업 에 대해 지속적으로 학습함.
- NLP에서도 효과적이나, 보통 neural model에서는 사용을 잘 안한다.

Unsupervised representation learning algorithm

ELMo

- 뉴럴 시퀀스 모델에서 잘 작동하는 새로운 self-training 알고리즘: CVT
- CVT는 기존 self-training이 가지는 고질적인 문제점(student가 이미 모델이 훈련되고 있는 예측을 만들어냄)을 해결한다.

- CVT는 이에 대한 해결책으로, multi-view learning으로부터 영감을 얻어, input의 다른 view들을 걸쳐 일관된 결과를 생성하기 위해 모델을 학습.
- student로서 전체 모델을 학습하는 방법이 아닌, CVT에 vector 표현을 예측으로 바꿔 주는 뉴럴 네트워크인 auxiliary prediction module을 추가하고, student로서 이들을 훈련시킴.
- 각 student 예측 모듈의 input은 전체 input의 제한된 뷰에 해당하는 모델의 중간 표현의 하위집합.

Cross-View Training

2.0 Overview

Learning on a Labeled Example

View whole input

c.f. D_I = 라벨이 붙은 데이터 셋

1. inference를 먼저 수행해 soft target을 만든다.

2. Auxiliary prediction module을 사용. 단 훈련할 때만

3. Primary 모듈과 일치하도록 공동으로(jointly) 훈련.

- 트레이닝하는 동안 primary module의 prediction은 고정됨.
- Auxiliary module을 학습 => 입력으로 받아들이는 표현이 개선되어 모델의 입력 중 일부를 사용할 수 없는 경우에도 예측을 만드는 에 유용하다.
- 따라서 동일한 공유 표현을 기반으로 구축 된 primary prediction module이 개선 된다.

$$\mathcal{L} = \mathcal{L}_{sup} + \mathcal{L}_{CVT}$$

Supervised loss와 cvt loss를 total loss로 결합 후 SGD로 최소화함.

- 대부분의 neural network에서, prediction module들을 더 추가하는 것은 모델이 표현을 만드는 부분(RNN, CNN) 대비 계산 비용이 싸다.
- 따라서 앞서 제안한 방법은 대부분의 작업에 대한 다른 self-training 접근 방식에 비해 훈련 시간에 overhead를 거의 주지 않는다.
- CVT는 inference 시간이나 fully-trained 모델의 파라미터 수를 바꾸지 않는다 => auxiliary prediction module은 훈련할 때만 사용되기 때문!

2.2 Combining CVT with multi-task learning

- CVT는 shared BiLSTM encoder 위에 다른 작업에 대한 prediction module을 추가 해 multi-task learning과 쉽게 결합할 수 있음.
- Supervised learning 동안, 랜덤하게 과제를 선택하고 과제에 대한 labeled data의 미니배치를 사용해 L_sup를 업데이트.
- Unlabeled data: 한 번에 모든 과제에 걸쳐 L_cvt 공동으로 최적화 => primary prediction module inference => auxiliary prediction module로 예측 정보 학습(마 찬가지로 labeled, unlabeled 번갈아서 수행)

2.2 Combining CVT with multi-task learning

- 많은 과제에 걸쳐 labeled된 데이터들은 multi-task 시스템에서 학습하는 데 유용하지 만, 대부분의 데이터 셋에는 하나의 작업만 labeling됨.
- Multi-task cvt의 장점: 모델이 unlabeled data로부터 모든 과제에 대한 labeled data를 만들어냄 => 효율성과 훈련시간 상당히 개선!

Cross-View Training Models

3.1 Bi-LSTM sentence encoder

3.2 CVT for sequence tagging

Input token x_i^t 는 대응되는 라벨인 y_i^t 를 가짐

Primary prediction module encorder의 두 레이어의 출력 h_1^t, h_2^t 를 input으로 받아 하나의 hidden layer로 결과값을 직접 학습

$$p(y^{t}|x_{i}) = \text{NN}(h_{1}^{t} \oplus h_{2}^{t})$$

$$= \text{softmax}(U \cdot \text{ReLU}(W(h_{1}^{t} \oplus h_{2}^{t})) + b)$$

Auxiliary prediction module encorder의 두 레이어의 출력 중 첫 번째 결과인 h_1 만을 사용함.

 h_2 는 h_1 을 input으로 받음 => 전체 문장에 대한 정보를 이미 봐버렸기 때문에 제한된 뷰를 본다고 할 수가 없다!

$$\begin{aligned} p_{\theta}^{\text{fwd}}(y^t|x_i) &= \text{NN}^{\text{fwd}}(\overrightarrow{h}_1^t(x_i)) \\ p_{\theta}^{\text{bwd}}(y^t|x_i) &= \text{NN}^{\text{bwd}}(\overleftarrow{h}_1^t(x_i)) \\ p_{\theta}^{\text{future}}(y^t|x_i) &= \text{NN}^{\text{future}}(\overrightarrow{h}_1^{t-1}(x_i)) \\ p_{\theta}^{\text{past}}(y^t|x_i) &= \text{NN}^{\text{past}}(\overleftarrow{h}_1^{t+1}(x_i)) \end{aligned}$$

3.3 CVT for dependency parsing

문장 안에 있는 단어들은 그래프에서 노드로 취급되며, 각각의 단어는 다른 단어로 가는 정확히 하나의 edge(u, t, r)만을 받는다. u: head(source node), t: dependent(destination node), r: relation(edge type)

- Primary prediction module 1) 인코더로부터 생성된 분석할 head와 dependent에 대한 표현을 각각 분리된 hidden layer에 입력
 - 2) 이 두 노드를 연결할 후보 edge들에 대해 점수를 매기기 위해 bilinear classifier 사용
 - 3) softmax 레이어를 통과해 확률을 만듦.

$$p_{ heta}((u,t,r)|x_i) \propto e^{s(egin{array}{c} h_1^u(x_i)\oplus h_2^u(x_i), h_1^t(x_i)\oplus h_2^t(x_i), r) \end{array}}$$
 모든 관계에서 공유되는 $s(z_1,z_2,r) = ext{ReLU}(W_{ ext{head}}z_1+b_{ ext{head}})$ w_r 가중치 행렬 ReLU $(W_{ ext{dep}}z_2+b_{ ext{dep}})$ 후보 관계에 특화된 가중치 행렬

3.3 CVT for dependency parsing

Auxiliary prediction module Sequence tagging 모델과 유사하게 4개의 auxiliary prediction module을 추가. 인코더의 h1 단방향만 보고 edge 점수를 계산하므로 head, dependent의 일부만 보고 판단하게 된다.

$$p_{\theta}^{\text{fwd-fwd}}((u,t,r)|x_{i}) \propto e^{s^{\text{fwd-fwd}}(\overrightarrow{h}_{1}^{u}(x_{i}),\overrightarrow{h}_{1}^{t}(x_{i}),r)}$$

$$p_{\theta}^{\text{fwd-bwd}}((u,t,r)|x_{i}) \propto e^{s^{\text{fwd-bwd}}(\overrightarrow{h}_{1}^{u}(x_{i}),\overleftarrow{h}_{1}^{t}(x_{i}),r)}$$

$$p_{\theta}^{\text{bwd-fwd}}((u,t,r)|x_{i}) \propto e^{s^{\text{bwd-fwd}}(\overleftarrow{h}_{1}^{u}(x_{i}),\overleftarrow{h}_{1}^{t}(x_{i}),r)}$$

$$p_{\theta}^{\text{bwd-bwd}}((u,t,r)|x_{i}) \propto e^{s^{\text{bwd-bwd}}(\overleftarrow{h}_{1}^{u}(x_{i}),\overleftarrow{h}_{1}^{t}(x_{i}),r)}$$

3.4 CVT for seq2seq learning

Attention을 사용하는 encoder seq2seq모델 사용. input token x_i^t 는 대응되는 라벨인 y_i^t 를 가짐

Primary prediction module Bilinear 어텐션 메커니즘을 사용하는 것 외에는 기본 어텐션 메커니즘과 동일

- Auxiliary prediction module 두 개의 auxiliary decoder를 추가함.
 - auxiliary decoder는 primary decoder와 임베딩, LSTM 파라미터를 공유
 - 어텐션 메커니즘과 softmax layer 파라미터는 다름
 - 첫 번째로 attention dropout 적용해 input view 제한하고, attention weight의 일부를 무작위로 0으로 조정(Knol
 - 두 번째로 현재 단어 대신 target sequence의 다음 단어를 예측하기 위해 훈련.

$$p_{\theta}^{\text{future}}(y_i^t | y_i^{< t}, x_i) = \text{softmax}(W_s^{\text{future}} a_{t-1}^{\text{future}})$$

- 라벨이 붙지 않은 예제에서는 target sequence가 없음 => input sequnce에서 primary decoder로 beam search를 실행해 hard target 생성

Experiments

4.0 Experiments

7가지 task에 대한 strong baseline과 비교

Labeled example

Unlabeled example

1 Billion Word
Language Model
Benchmark

4.1 Model details and baselines

Model details

- Unlabeled example에 대한 soft target을 만들기 위해 primary prediction module이 돌아갈 때를 제 외하고는 dropout을 트레이닝할 때 적 용함.
- Auxiliary prediction module 외에, 하위 집합이 아닌 전체 input을 보는 또 다른 input을 추가하는 것이 결과를 약 간 개선한다는 것을 알게 됨(primary와 는 다르게 해당 표현에 dropout이 적 용됨)

Parameter	Value
r ai ailictei	value
Word Embeddings Initialization	300d GloVe 6B
Character Embedding Size	50
Character CNN Filter Widths	[2, 3, 4]
Character CNN Num Filters	300 (100 per filter width)
Encoder LSTM sizes	1024 for the first layer, 512 for the second one
Encoder LSTM sizes, "Large" model	4096 for the first layer, 2048 for the second one
LSTM projection layer size	512
Hidden layer sizes	512
Dropout	0.5 for labeled examples, 0.8 for unlabeled examples
EMA coefficient	0.998
Learning rate	$0.5/(1+0.005t^{0.5})$ (t is number of SGD updates so far)
Momentum	0.9
Batch size	64 sentences

Table 6: Hyperparameters for the model.

4.1 Model details and baselines

Baselines

Word dropout

Virtual Adversarial Training

ELMo

Method	CCG	Chunk	NER	FGN	POS	Dep.	Parse	Translate
	Acc.	F1	F1	F1	Acc.	UAS	LAS	BLEU
Shortcut LSTM (Wu et al., 2017)	95.1				97.53			
ID-CNN-CRF (Strubell et al., 2017)			90.7	86.8				
JMT [†] (Hashimoto et al., 2017)		95.8			97.55	94.7	92.9	
TagLM* (Peters et al., 2017)		96.4	91.9					
ELMo* (Peters et al., 2018)			92.2					
Biaffine (Dozat and Manning, 2017)						95.7	94.1	
Stack Pointer (Ma et al., 2018)						95.9	94.2	
Stanford (Luong and Manning, 2015)								23.3
Google (Luong et al., 2017)								26.1
Supervised	94.9	95.1	91.2	87.5	97.60	95.1	93.3	28.9
Virtual Adversarial Training*	95.1	95.1	91.8	87.9	97.64	95.4	93.7	_
Word Dropout*	95.2	95.8	92.1	88.1	97.66	95.6	93.8	29.3
ELMo (our implementation)*	95.8	96.5	92.2	88.5	97.72	96.2	94.4	29.3
ELMo + Multi-task*†	95.9	96.8	92.3	88.4	97.79	96.4	94.8	_
CVT*	95.7	96.6	92.3	88.7	97.70	95.9	94.1	29.6
CVT + Multi-task* [†]	96.0	96.9	92.4	88.4	97.76	96.4	94.8	_
CVT + Multi-task + Large*†	96.1	97.0	92.6	88.8	97.74	96.6	95.0	_

CVT + Multi-Task

- 기계번역을 제외한 모든 task를 수행하기 위해 단일 공유 encoder CVT 모델을 훈련.
- Multi-task 학습은 세분화된 NER을 제외한 모든 과제에서 때로는 큰 폭으로 결과를 개선
- Many-task nlp에서 모델이 크고 많은 양의 데이터에 대해 교육된 경우, 파라 미터 공유만으로 효과적인 many-task 학습에 충분할 수 있다는 결과 보여줌.

A Joint Many-Task Model: Growing a Neural Network for Multiple NLP Tasks

Kazuma Hashimoto, Caiming Xiong, Yoshimasa Tsuruoka, and Richard Socher The University of Tokyo

{hassy, tsuruoka}@logos.t.u-tokyo.ac.jp Salesforce Research {cxiong, rsocher}@salesforce.com

Abstract

Transfer and multi-task learning have traditionally focused on either a single source-target pair or very few, similar tasks. Ideally, the linguistic levels of morphology, syntax and semantics would benefit each other by being trained in a single model. We introduce a joint many-task model together with a strategy for successively growing its depth to solve increasingly complex tasks. Higher layers include shortcut connections to lower-level task predictions to reflect linguistic hierarchies. We use a simple regularization term to allow for optimizing all model weights to improve one task's loss without exhibiting catastrophic interference of the other tasks. Our single end-to-end model obtains state-of-the-art or competitive results on five different tasks from tagging, parsing, relatedness, and entailment tasks.

Figure 1: Overview of the joint many-task model predicting different linguistic outputs at successively deeper layers.

different tasks either entirely separately or at the same depth (Collobert et al., 2011).

CVT + Multi-Task

- CVT가 모델이 하나의 과제를 학습하는 동안 다른 과제를 '잊어버리는 것' 에 대한 위험을 경감시킨다고 믿음.
- Multi-task cvt 동안, 모델은 모든 과 제에 걸쳐서 라벨이 붙지 않은 예제를 예측하며, 인공적으로 모든 과제에 labeled data를 만들기 때문에, 모델이 한 번에 하나의 작업만 보지 않는다.
- Without forgetting algorithm 학습 과 유사하다.

Overcoming catastrophic forgetting in neural networks

James Kirkpatrick^a, Razvan Pascanu^a, Neil Rabinowitz^a, Joel Veness^a, Guillaume Desjardins^a, Andrei A. Rusu^a, Kieran Milan^a, John Quan^a, Tiago Ramalho^a, Agnieszka Grabska-Barwinska ^a, Demis Hassabis^a, Claudia Clopath^b, Dharshan Kumaran^a, and Raia Hadsell^a

^aDeepMind, London, N1C 4AG, United Kingdom ^bBioengineering department, Imperial College London, SW7 2AZ, London, United Kingdom

Abstract

The ability to learn tasks in a sequential fashion is crucial to the development of artificial intelligence. Neural networks are not, in general, capable of this and it has been widely thought that *catastrophic forgetting* is an inevitable feature of connectionist models. We show that it is possible to overcome this limitation and train networks that can maintain expertise on tasks which they have not experienced for a long time. Our approach remembers old tasks by selectively slowing down learning on the weights important for those tasks. We demonstrate our approach is scalable and effective by solving a set of classification tasks based on the MNIST hand written digit dataset and by learning several Atari 2600 games sequentially.

Model Generalization

Auxiliary Prediction Module Ablation

Model	CCG	Chnk	NER	FGN	POS
Supervised	94.8	95.5	95.0	86.0	97.59
$\overline{\text{CVT}}$	95.6	97.0	95.9	87.3	97.66
no fwd/bwd	-0.1	-0.2	-0.2	-0.1	-0.01
no future/past	-0.3	-0.4	-0.4	-0.3	-0.04

Sequence tagging task 에서 auxiliary prediction module은 매우 중요함!

Training Models on Small Datasets

CVT가 labeled data를 25%만 사용 > 100% 사용하는 fully supervised model

Training Larger Models

- 이전 작업에서 대부분의 sequence tagger와 dependency parser는 작은 LSTM을 사용 => 대형 모델의 경우 성능 면에서 득이 되지 않음.
- Supervised 접근 또한 모델 사이즈를 키우는 것으로 큰 이득이 없다.
- CVT accuracy를 사용하면 모델 크기에 따라 더 잘 스케일링된다는 것을 발견.
- 적절한 semi-supervised learning 방법은 제한된 양의 labeled data를 사용하는 NLP task에서 더 크고 더욱 정교한 모델 개발을 가능하게 한다는 것을 제안.

Generalizable Representation

- 다섯 가지 태스크에 대한 CVT +
 Multi-task 학습을 진행 => encoder
 freezing => 여섯 번째 과제에서
 prediction module만 학습.
- Prediction module만 학습하는 것은 매우 빠름.
- Multi-task 표현 위에 있는 예측 모듈 만 훈련하는 것은 ELMo 임베딩, 심지 어 바닐라 supervised model을 능가.

Model	CCG	Chnk	NER	FGN	POS	Dep.
Supervised	94.8	95.6	95.0	86.0	97.59	92.9
CVT-MT frozen	95.1	96.6	94.6	83.2	97.66	92.5
ELMo frozen	94.3	92.2	91.3	80.6	97.50	89.4

Conclusion

5. Conclusion

- Semi-supervised 학습을 위한 새로운 방법인 CVT를 제안.
- 모델이 unlabeled data에 대한 자체적인 예측을 효과적으로 활용할 수 있으며, input 중 일부를 사용할 수 없는 경우에도 정확한 예측을 산출해내는 효과적인 표현을 만들 수 있도록 교육이 가능
- CVT가 multi-task learning과 결합했을 때, 7가지 NLP task에서 훌륭한 결과를 달성.