

Sistemas Digitais (SD)

Circuitos combinatórios: somadores, subtractores e comparadores

Aula Anterior

Na aula anterior:

- ► Circuitos combinatórios típicos:
 - Descodificadores
 - Codificadores
 - Multiplexers
 - Demultiplexers

Planeamento

SEMANA	TEÓRICA 1	TEÓRICA 2	PROBLEMAS/LABORATÓRIO
17/Fev a 21/Fev	Introdução	Sistemas de Numeração	
24/Fev a 28/Fev	CARNAVAL	Álgebra de Boole	P0
02/Mar a 06/Mar	Elementos de Tecnologia	Funções Lógicas	VHDL
9/Mar a 13/Mar	Minimização de Funções	Minimização de Funções	LO
16/Mar a 20/Mar	Def. Circuito Combinatório; Análise Temporal	Circuitos Combinatórios	P1
23/Mar a 27/Mar	Circuitos Combinatórios	Circuitos Combinatórios	L1
30/Mar a 03/Abr	Circuitos Sequenciais: Latches	Circuitos Sequenciais: Flip-Flops	P2
06/Abr a 10/Abr	FÉRIAS DA PÁSCOA	FÉRIAS DA PÁSCOA	FÉRIAS DA PÁSCOA
13/Abr a 17/Abr	Caracterização Temporal	Registos	L2
20/Abr a 24/Abr	Contadores	Circuitos Sequenciais Síncronos	P3
27/Abr a 01/Mai	Síntese de Circuitos Sequenciais Síncronos	Síntese de Circuitos Sequenciais Síncronos	L3
04/Mai a 08/Mai	Exercícios Tes	Memórias ste 1	P4
11/Mai a 15/Mai	Máq. Estado Microprogramadas: Circuito de Dados e Circuito de Controlo	Máq. Estado Microprogramadas: Microprograma	L4
18/Mai a 22/Mai	Circuitos de Controlo, Transferência e Processamento de Dados de um Processador	Lógica Programável	P5
25/Mai a 29/Mai	P6	P6	L5

3

Sumário

Tema da aula de hoje:

- ► Circuitos combinatórios típicos:
 - Somadores / Subtractores
 - Comparadores

■ Bibliografia:

- M. Mano, C. Kime: Secções 4.2 a 4.4
- G. Arroz, J. Monteiro, A. Oliveira: Secções 5.1 a 5.3

Circuito para soma aritmética

► Exemplo: Somador de 2 números de 4 bits cada.

► A estrutura mais simples resolve 1 bit de cada vez:

Circuito semi-somador

▶ O circuito semi-somador (em inglês, half-adder) soma 2 bits de entrada (sem transporte anterior) e produz 1 bit da soma e 1 bit de transporte.

► Corresponde p.ex. ao 1º passo do algoritmo de soma: soma os 2 bits de menor peso e obtém 1 bit S0 da soma e o transporte C1 para o passo seguinte.

Circuito semi-somador

A	В	C_{out}	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

$$C_{out} = A \cdot B$$
$$S = A \oplus B$$

Circuito somador completo

 ▶ O circuito somador completo (em inglês, full-adder) soma 3 bits de entrada (incluindo o transporte anterior) e produz 1 bit da soma e 1 bit de transporte.

▶ P.ex. no 2º passo: soma 3 bits A1 e B1 e o transporte C1 do passo anterior, e obtém 1 bit S1 da soma e o transporte C2 para o passo seguinte.

Somador completo

A	В	C_{in}	C_{out}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$C_{out} = A \cdot B + C_{in} \cdot A + C_{in} \cdot B$$
$$= A \cdot B + C_{in} \cdot (A \oplus B)$$

Somador em cascata (ripple carry adder)

- ► A velocidade máxima de execução é limitada pela necessidade de propagar o "Carry" desde a soma do primeiro bit até à soma do bit mais significativo.
- ▶ No pior caso, o tempo de propagação do "Carry" será N x t_{PFA}.

Exemplo:

Somador em cascata (ripple carry adder)

- ▶ O "Ripple Carry Adder" é o somador mais simples possível (que requer menos portas lógicas).
- ► Existem inúmeros circuitos alternativos para diversos compromissos velocidade/área.

Somador de 4 bits

- ► Somador de 4 bits completo:
 - Soma:
 - o 2 números de 4 bits cada
 - o 1 bit de carry-in.
 - Gera:
 - o Resultado da soma, com 4 bits
 - 1 bit de carry-out.

Representação de números negativos

- ▶ Módulo + Sinal
 - O bit mais significativo representa o sinal, e os restantes bits representam o seu valor absoluto.

$$Ex.: -9 = 10001001$$

O valor zero tem duas representações...

	Módulo	
Decimal	+ Sinal	
+7	0111	
+6	0110	
+5	0101	
+4	0100	
+3	0011	
+2	0010	
+1	0001	
+0	0000	4
-0	1000	
-1	1001	
-2	1010	
-3	1011	
-4	1100	
-5	1101	
-6	1110	
-7	1111	
-8	-	

Representação de números negativos

Complemento para 1

- O complemento para 1 de N, em n bits, é definido como (2ⁿ - 1) - N.
- 2ⁿ 1 é um número constituído por n 1's.
- Subtrair de 1 equivale a inverter o bit:

$$1 - 0 = 1$$
 e $1 - 1 = 0$.

 Portanto, complementar para 1 corresponde a inverter todos os bits (0 → 1 e 1 → 0).

Ex.:
$$-9 = 11110110$$

(= $11111111 - 00001001 = 255_{(10)} - 9_{(10)}$).

O valor zero tem duas representações...

Decimal	Complemento
	para 1
+7	0111
+6	0110
+5	0101
+4	0100
+3	0011
+2	0010
+1	0001
+0	0000
-0	1111
-1	1110
-2	1101
-3	1100
-4	1011
-5	1010
-6	1001
-7	1000
-8	-

Representação de números negativos

▶ Complemento para 2

- O complemento para 2 de N, em n bits, é definido como 2ⁿ – N para N ≠ 0, e 0 para N = 0.
- Portanto, complementar para 2 corresponde a complementar para 1 e somar 1.

Ex.:
$$-9 = 11110111$$

(= $100000000 - 00001001 = 256_{(10)} - 9_{(10)}$).

- Na prática, o complemento para 2 pode ser formado do seguinte modo: mantêm-se todos os 0's menos significativos e o primeiro 1, e invertemse todos os outros bits mais significativos.
- Uma única representação para o valor zero.

Decimal		Complemen para 2	to
+7		0111	
	+6	0110	
	+5	0101	
	+4	0100	
	+3	0011	
	+2	0010	
	+1	0001	
	+0	0000	7
	-0	-	•
	-1	1111	
	-2	1110	
-3 110		1101	
-4		1100	
-5		1011	
-6		1010	
-7		1001	
-8		1000	

Números binários com sinal

- As operações usando o sistema de sinal e valor são mais complicadas, devido à necessidade de gerir separadamente o sinal e o valor.
- Por isso, são normalmente utilizadas representações em complemento. A representação em complemento para 2 é habitualmente preferida em sistemas digitais por ter uma única representação para o valor zero, e por as operações envolvidas serem mais simples.

-	Decimal	Complemento para 2	Complement o para 1	Módulo + Sinal	•
	+7	0111	0111	0111	
	+6	0110	0110	0110	
	+5	0101	0101	0101	
	+4	0100	0100	0100	
	+3	0011	0011	0011	
	+2	0010	0010	0010	
	+1	0001	0001	0001	
	+0	0000	0000	0000	4
	-0	-	1111	1000	
	-1	1111	1110	1001	
	-2	1110	1101	1010	
	-3	1101	1100	1011	
	-4	1100	1011	1100	
	-5	1011	1010	1101	
	-6	1010	1001	1110	
	-7	1001	1000	1111	
	-8	1000	-	-	

Extensão do sinal (complemento para 2)

▶ Representação de um número utilizando um determinado número de bits, através da adição/remoção de bits à esquerda iguais ao bit de sinal

Exemplos:

$$0100 = +4 \text{ (4 bits)} \rightarrow 00000100 = +4 \text{ (8 bits)}$$

$$1011 = -5$$
 (4 bits) \rightarrow $11111011 = -5$ (8 bits)

$$0010 = +2 \text{ (4 bits)} \rightarrow 010 = +2 \text{ (3 bits)}$$

$$1010 = -6$$
 (4 bits) \rightarrow ??? = -6 (3 bits)

Soma aritmética de números com sinal usando complemento para 2

► A soma aritmética de dois números binários com sinal, representados em complemento para 2, é obtida pela simples adição dos dois números incluindo os bits de sinal. O último "carry out" não é considerado.

Exemplos:

Subtractores

Subtracção de números com sinal

➤ A subtracção de 2 números binários com sinal, representados em complemento para 2, é realizada de forma idêntica ao que acontece na representação decimal:

Exemplo:

▶ O bit de empréstimo (*borrow*) é um valor que vai ser retirado ao bit de peso seguinte.

Subtractores

Subtracção de números com sinal usando complemento para 2

- ▶ A subtracção de dois números binários com sinal, representados em complemento para 2, é obtida do seguinte modo:
 - forma-se o complemento para 2 do subtractor
 - soma-se ao subtraendo.

Exemplo:

(através de complemento para 2)

(através de complemento para 1)

Subtractores

- Subtracção de números com sinal usando complemento para 2
 - ► Complemento para 2 = (Complemento para 1) + 1
 - A complementação para 1 é realizada invertendo todos os bits do subtractor.
 - A adição de 1 é efectuada pondo o Carry inicial a 1.

Circuito somador/subtractor

Circuito somador/subtractor

- As operações de adição e subtracção são habitualmente combinadas num único somador genérico, através da inclusão de 1 porta ou-exclusivo em cada Full-Adder.
- ▶ Quando o sinal de controlo SUBTRACT = 0, é realizada a adição A + B (os operandos B_i não são invertidos e C_0 = 0).
- ▶ Quando o sinal de controlo SUBTRACT = 1, é realizada a subtracção A B (os operandos B_i são invertidos e C₀ = 1).

Excesso (overflow)

Excesso (overflow)

- ▶ Para se obter um resultado correcto, na adição e na subtracção, é necessário assegurar que o resultado tem um número de bits suficiente. Se somarmos dois números de N bits e o resultado ocupar N+1 bits diz-se que ocorreu um overflow.
- ► As unidades aritméticas digitais usam um número fixo de bits para armazenar os operandos e os resultados, sendo necessário detectar e sinalizar a ocorrência de um **overflow**.
 - Exemplo: um overflow pode ocorrer na adição se os dois operandos são ambos positivos ou se são ambos negativos.

Excesso (overflow)

▶ A condição de overflow pode ser detectada por inspecção dos dois bits de carry mais significativos.

Exemplo:

$Overflow = CarryOut_{N-1} \oplus CarryOut_{N-2}$

Qual a diferença entre os sinais de carry e overflow?

Representação	CO = CO _{N-1} = 1	O = 1
SEM sinal	Excedeu a capacidade de representação	Sem significado
COM sinal	Sem significado	Excedeu a capacidade de representação

Circuito Comparador

Comparador de números de 4 bits

- Este circuito faz a comparação de 2 números binários de 4 bits.
- A comparação é realizada através de uma operação de subtracção e análise do resultado.
- ▶ O circuito pode ser ligado em cascata, para realizar comparações entre números de N > 4 bits, utilizando os 3 bits de entrada suplementares.

Próxima Aula

■ Tema da Próxima Aula:

▶ Unidade Lógica e Aritmética (ULA)

Agradecimentos

Algumas páginas desta apresentação resultam da compilação de várias contribuições produzidas por:

- Nuno Roma
- Guilherme Arroz
- Horácio Neto
- Nuno Horta
- Pedro Tomás