Здравствуйте!

Меня интересуют контурные графики и трехмерные с подграфиками. Еще, подскажите, можно ли вставлять рисунки из Visio ?

1Часть

Необходимо построить контурные карты для распределения энергии ЭМП контактной сети в кабине электровоза (ширина кабины 2,800 м; длина – 1,900 м).

Для этого сначала необходимо провести расчет полей контактной сети: магнитного (рис 1), затем электрического (рис 2), и энергии ЭМП через произведение электрического и магнитного полей.

Для этого приведены рис. 2 и рис 3. и формулы для расчета.

Рис 2. Модель для расчета магнитного поля Рис.3 Модель для расчета электрического поля

Контактная сеть создает магнитное поле, которое можно рассчитать по формуле:

$$H_{KC}(f) = H'_{M}(f) + H''_{M}(f) = \sqrt{((H'_{x1}(f))^{2} + ((H'_{z1}(f))^{2})^{2} + \sqrt{((H'_{x1}(f))^{2} + ((H'_{z1}(f))^{2})^{2}}};$$

Суммарный уровень H'_{x1} (A/м) относительно рельса, расположенного справа от оси пути по оси x, можно определить по выражению

$$H'_{x1}(f) = \frac{I_{\text{KII}}(f)}{4\pi} \left[\frac{-z}{\left(x + x_{p1}\right)^2 + z^2} + \frac{z - h_1}{\left(x + x_{p1}\right)^2 + (h_1 - z)^2} \right]$$

$$+ \frac{I_{\text{HT}}(f)}{4\pi} \left[\frac{-z}{\left(x + x_{p1}\right)^2 + z^2} + \frac{z - h_2}{\left(x + x_{p1}\right)^2 + (h_2 - z)^2} \right]$$

$$+ \frac{I_{\text{yII}}(f)}{4\pi} \left[\frac{-z}{\left(x + x_{p1}\right)^2 + z^2} + \frac{z - h_3}{\left(x + x_{p1}\right)^2 + (h_3 - z)^2} \right]$$

Суммарный уровень H'_{z1} (A/м) относительно рельса, расположенного справа от оси пути по оси z, определяется как

$$\begin{split} H_{Z1}^{'}(f) &= \frac{I_{\text{KII}}(f)}{4\pi} \Big(x + x_{p1} \Big) \bigg[\frac{1}{\left(x + x_{p1} \right)^{2} + z^{2}} - \frac{1}{\left(x + x_{p1} \right)^{2} + (h_{1} - z)^{2}} \bigg] + \frac{I_{\text{HT}}(f)}{4\pi} \Big(x + x_{p1} \Big) \cdot \\ \cdot \bigg[\frac{1}{\left(x + x_{p1} \right)^{2} + z^{2}} - \frac{1}{\left(x + x_{p1} \right)^{2} + (h_{2} - z)^{2}} \bigg] + \frac{I_{\text{yII}}(f)}{4\pi} \Big(x + x_{p1} \Big) \cdot \\ \cdot \bigg[\frac{1}{\left(x + x_{p1} \right)^{2} + z^{2}} - \frac{1}{\left(x + x_{p1} \right)^{2} + (h_{3} - z)^{2}} \bigg] \end{split}$$

Суммарные уровни $H_{x1}^{"}$ (A/м) и $H_{z1}^{"}$ (A/м) в точке M относительно рельса, расположенного слева от оси пути:

$$\begin{split} H_{\chi 1}^{"} &= \frac{I_{\text{KII}}(f)}{4\pi} \left[\frac{-z}{\left(x + x_{p1} + x_{p}\right)^{2} + z^{2}} + \frac{z - h_{1}}{\left(x + x_{p1} + x_{p}\right)^{2} + (h_{1} - z)^{2}} \right] + \frac{I_{\text{HT}}(f)}{4\pi} \left[\frac{-z}{\left(x + 2x_{p1}\right)^{2} + z^{2}} + \frac{z - h_{2}}{\left(x + 2x_{p1}\right)^{2} + (h_{2} - z)^{2}} \right] + \frac{I_{\text{yII}}(f)}{4\pi} \left[\frac{-z}{\left(x + x_{p1} + x_{p2}\right)^{2} + z^{2}} + \frac{z - h_{3}}{\left(x + x_{p1} + x_{p2}\right)^{2} + (h_{3} - z)^{2}} \right]; \end{split}$$

$$H_{z1}^{"} = \frac{l_{\kappa}(f)}{4\pi} \left(x + x_{p1} + x_{p} \right) \left[\frac{1}{\left(x + x_{p1} + x_{p} \right)^{2} + z^{2}} - \frac{1}{\left(x + x_{p1} + x_{p} \right)^{2} + (h_{1} - z)^{2}} \right] + \frac{l_{\text{HT}}(f)}{4\pi} \left(x + 2x_{p1} \right) \cdot \left[\frac{1}{\left(x + 2x_{p1} \right)^{2} + z^{2}} - \frac{1}{\left(x + 2x_{p1} \right)^{2} + (h_{2} - z)^{2}} \right] + \frac{l_{\text{yn}}(f)}{4\pi} \left(x + x_{p1} + x_{p2} \right) \cdot \left[\frac{1}{\left(x + x_{p1} + x_{p2} \right)^{2} + z^{2}} - \frac{1}{\left(x + x_{p1} + x_{p2} \right)^{2} + (h_{3} - z)^{2}} \right].$$

Общий ток = $0.41I_{\text{кп}} + 0.39I_{\text{уп}} + 0.20I_{\text{нт}} = 300 (50 \ \Gamma \text{ц})$ Электрическое поле контактной сети определяется:

Номер	Частота гармоники,	Ток, А	
гармоники	f		
1	50	<mark>От 0 до</mark> 300	% от 1 гармоники
3	150		30,61
5	250		14,69
7	350		6,12
9	450		4,29
11	550		2.82
13	650		1,96
15	750		1,47
17	850		0,98
19	950		0,87
21	1050		0,66
23	1150		0,49

Параметры КС	значения
x	От 0 до 0,7 м
x_{p1}	0,760 м
x_{p2}	От 0,3 до 0,5 м
$Z=_K$	От 0 до 3,5м
a	От 0 до 1,46 м
a_1	1,0 м
d_1 к. n .	12,81 мм (МФ 100)
d_2 н.т.	12,5 мм (ПБСМ-95)
d_3 у.п.	17,5 мм (АС-185)
h_1 к.п.	От 5,750 до 6,8 (<mark>6,0)</mark>

h_2 н.т.	От 6,4 до <mark>7,8</mark>
h_3 у.п.	8,0
k	От 0 до 3,5

Номер	Частота	<i>U (f)</i> , кВ	% om 1
гармоники	гармоники	<i>U</i> (<i>j</i>), k D	гармоники
1	50	От 25 до 29	-
3	150		30,61
5	250		14,69
7	350		6,12
9	450		4,29
11	550		2.82
13	650		1,96
15	750		1,47
17	850		0,98
19	950		0,87
21	1050		0,66
23	1050		0,49

$$E_{\text{KC}}(f) = E_{\text{KII}}(f) + E_{\text{HI}}(f) + E_{\text{yII}}(f)$$

$$= U \quad (f) \frac{\ln\left(1 + \frac{4h_1k}{a^2 + h_1^2 + k^2 - 2h_1k}\right)}{2k\ln\left(\frac{2h_1}{d_1}\right)}$$

$$+ U \quad (f) \frac{\ln\left(1 + \frac{4h_2k}{a^2 + h_2^2 + k^2 - 2h_2k}\right)}{2k\ln\left(\frac{2h_2}{d_2}\right)}$$

$$+ U \quad (f) \frac{\ln\left(1 + \frac{4h_3k}{(a - a_1)^2 + h_3^2 + k^2 - 2h_3k}\right)}{2k\ln\left(\frac{2h_3}{d_3}\right)}$$

Уровень энергетической нагрузки ЭМП (BA/м²) контактной сети переменного тока в электровозе с учетом экрана (экраном является кузов электровоза) определяется по выражению

Экранирование

Рисунок 2.1 – Магнитная индукция тока в кузове электровоза

Размеры кабины ЭПС

При низких частотах явления поверхностных эффектов незначительны и экран ведет себя как короткозамкнутый виток, сопротивление стенок которого можно принять равным сопротивлению постоянному току. При

магнитостатическом экранировании эффективность действия экрана можно определить по уравнению:

$$K_{\scriptscriptstyle \mathcal{H}} = 10 lg \left[1 + \left(\sigma \omega \mu_r rt/2 \right)^2 \right],$$

, μ_r — относительная магнитная проницаемость материала экрана (сталь — от 1000 до 7000 и стекло — 0,99), r —радиус экрана), t- толщина экрана (кузов от 0,0025 м до 0,003 м, стекло 15 мм), ω =2 πf .

Тогда необходимый радиус R для кузова электровоза:

$$R = \sqrt[3]{\frac{V_{\kappa y3}}{\pi} \cdot \frac{3}{4}}$$

Объем всей кабины: 9.464

Лобового стекла: 2.86

Бокового стекла: 0.4 (2 стекла с разных сторон, 0,4*2)

Экранирование, эл поле.

$$K_{\Theta_{E}} = 20lg(60 \cdot \pi \cdot t \cdot \sigma)$$

 $\pi=3,14$, t- толщина экрана (cmanb om 0,0025 м до 0,003 м), cmeкno-0,015 м), $\sigma-$ удельная проводимость стали 10^7 См/м, $cmekno-10^{-12}$ См/м.

2 часть

Если рабочее место имеет электрические и магнитные поля со спектром высших гармонических составляющих переменного тока от 25 Гц до 1 кГц (от двух и более гармонических составляющих), то суммарный уровень энергетической нагрузки ЭМП переменного тока определяется как

$$\mathfrak{I}^{\Sigma}(f_i) = \sum_{i=1}^n \mathfrak{I}_i(f_i),$$

Суточная доза потенциальной энергии облучения ЭМП – это количество падающей энергии излучения ЭМП на площадь тела человека за определенный период (сутки) облучения, определяемая с учетом статистической вероятности ее воздействия, выражается в ВА·ч или Вт·ч:

$$D_{\text{CO}}(f) = \Im(f) \cdot t_i \cdot S \cdot p_i$$

где $D_{\rm CO}(f)$ — уровень суточной дозы потенциальной энергии облучения ЭМП низкочастотного диапазона, ВА·ч Э(f) — уровень энергетической нагрузки ЭМП переменного тока, ВА/м²; t_i — длительность пребывания работника на рабочем месте, ч; S — площадь тела человека, м²; p_i — статистическая вероятность воздействия дозы потенциальной энергии ЭМП на персонал в течение смены.

Статистическая вероятность воздействия дозы потенциальной энергии ЭМП на персонал в течение смены (таблица 3) определяется при идентификации и оценивается как отношение длительности экспозиции за сутки:

$$p_i = \frac{t_i}{t_{\text{cyr}}},$$

где t_i — длительность экспозиции за сутки, ч; $t_{\text{сут}}$ — время (сутки), ч.

Таблица 3 — Статистическая вероятность экспозиционного воздействия дозы потенциальной энергии ЭМП на персонал в течение смены

Время, ч		Статистическая вероятность	
	Длительность	экспозиционного воздействия	
	экспозиции	дозы потенциальной энергии	
	за сутки, ч	ЭМП на персонал в течение	
		смены	
24	0,17 (10 мин)	0,007	
	1	0,04	
	2	0,08	
	4	0,17	
	8	0,33	
	12	0,5	

Площадь тела человека определяется по формуле Мостеллера, м²:

$$S = \sqrt{(\mathbf{a} \cdot \mathbf{B}/3600}),$$

где а - рост человека (от 150 до 200), см; в - вес человека - масса (от 60 до 150), кг.

Удельная суточная доза потенциальной поглощенной энергии ЭМП — величина энергии электромагнитного поля, переданная человеку (тканям организма) за определенный период (сутки), определяемая с учетом

статистической вероятности ее воздействия и массы тела человека, выражается в $BA\cdot ч/кг$ или $B\tau\cdot ч/кг$ и определяется по соотношению:

$$D_{\Pi O}(f) = \frac{D_{CO}(f)}{m}$$

масса (от 60 до 150), кг.