Advanced Engineering Mathematics Complex Analysis by Dennis G. Zill Notes

Chris Doble

February 2024

Contents

	anctions of a Complex Variable 1 Complex Numbers	1
17	Functions of a Complex Variable	
17.1	Complex Numbers	

• A complex number is any number of the form

$$z = a + ib$$

where a and b are real numbers and i is the imaginary unit such that $i^2 = -1$.

- The real number a in the above complex number z is called the **real part** of z and the real number b (not ib) is called the **imaginary part** of z.
- The real and imaginary parts of a complex number z are denoted Re(z) and Im(z), respectively.
- A real constant multiple of the imaginary unit, e.g. 6i is called a **pure** imaginary number.
- Two complex numbers are equal if their real and imaginary parts are equal.
- The addition and subtraction of complex numbers occur between the real and imaginary parts, e.g.

$$(a+bi) + (c+di) = (a+c) + (b+d)i.$$

• The multiplication of complex numbers occurs elementwise as normal, e.g.

$$(a+bi)(c+di) = ac + adi + bci - bd.$$

• The **conjugate** of a complex number z = a + ib is

$$\overline{z} = a - ib$$
.

• The division of complex numbers occurs by multiplying the numerator and denominator by the conjugate of the denominator, e.g.

$$\frac{a+bi}{c+di} = \frac{(a+bi)(c-di)}{(c+di)(c-di)}$$
$$= \frac{ac-adi+bci+bd}{c^2+d^2}$$
$$= \frac{ac+bd}{c^2+d^2} + i\frac{bc-ad}{c^2+d^2}.$$

• Conjugates have several interesting properties:

$$\begin{aligned} \overline{z_1 + z_2} &= \overline{z_1} + \overline{z_2} \\ \overline{z_1 - z_2} &= \overline{z_1} - \overline{z_2} \\ \overline{z_1 z_2} &= \overline{z_1} \overline{z_2} \\ \\ \frac{z_1}{z_2} &= \frac{\overline{z_1}}{\overline{z_2}}. \end{aligned}$$

• The sum and product of a complex number z = x + iy with its conjugate are real numbers

$$z + \overline{z} = 2x$$
$$z\overline{z} = x^2 + y^2$$

while the difference between a complex number and its conjugate is a purre imaginary number

$$z - \overline{z} = 2iy$$
.

• The above properties let us define

$$\operatorname{Re}(z) = \frac{z + \overline{z}}{2}$$
 and $\operatorname{Im}(z) = \frac{z - \overline{z}}{2i}$.

- The **complex plane** or *z*-**plane** is a coordinate system where the horizontal or *x*-axis is called the **real axis** and the vertical or *y*-axis is called the **imaginary axis**. Complex numbers can be plotted in this coordinate system by considering their real and imaginary parts an ordered pair corresponding their position.
- The **modulus** or **absolute value** of a complex number z = x + iy denoted by |z| is the real number

$$|z| = \sqrt{x^2 + y^2} = \sqrt{z\overline{z}}.$$

This is the distance between z and the origin in the complex plane.

• If you consider two numbers in the complex plane as vectors, the length of their sum can't be longer than their individual lengths combined

$$|z_1 + z_2| \le |z_1| + |z_2|.$$

This extends to any finite sum

$$|z_1 + z_2 + \dots + z_n| \le |z_1| + |z_2| + \dots + |z_n|$$

and is known as the **triangle inequality**.