Chapter 10

Two-Sample Tests

Learning Objectives

In this chapter, you learn:

- How to use hypothesis testing for comparing the difference between
 - The means of two independent populations
 - The means of two related populations
 - The proportions of two independent populations
 - The variances of two independent populations

Two-Sample Tests

DCOVA

Two-Sample Tests

Population
Means,
Independent
Samples

Population Means, Related Samples

Population Proportions

Population Variances

Examples:

Group 1 vs. Group 2

Same group before vs. after treatment

Proportion 1 vs. Proportion 2

Variance 1 vs. Variance 2

Difference Between Two Means

DCOVA

Population means, independent samples

 σ_1 and σ_2 unknown, assumed equal

 σ_1 and σ_2 unknown, not assumed equal

Goal: Test hypothesis or form a confidence interval for the difference between two population means, $\mu_1 - \mu_2$

The point estimate for the difference is

$$\overline{X}_1 - \overline{X}_2$$

Difference Between Two Means: Independent Samples DCOVA

Population means, independent samples

Different data sources

- Unrelated
- Independent
 - Sample selected from one population has no effect on the sample selected from the

 σ_1 and σ_2 unknown, assumed equal

 σ_1 and σ_2 unknown, not assumed equal

Use S_p to estimate unknown σ . Use a **Pooled-Variance t** test.

Use S_1 and S_2 to estimate unknown σ_1 and σ_2 . Use a **Separate-variance t test**

Hypothesis Tests for Two Population Means

Two Population Means, Independent Samples

Lower-tail test:

$$H_0: \mu_1 \ge \mu_2$$

 $H_1: \mu_1 < \mu_2$
i.e.,

$$H_0$$
: $\mu_1 - \mu_2 \ge 0$
 H_1 : $\mu_1 - \mu_2 < 0$

Upper-tail test:

$$H_0: \mu_1 \le \mu_2$$

 $H_1: \mu_1 > \mu_2$
i.e.,

$$H_0$$
: $\mu_1 - \mu_2 \le 0$
 H_1 : $\mu_1 - \mu_2 > 0$

Two-tail test:

$$H_0$$
: $\mu_1 = \mu_2$
 H_1 : $\mu_1 \neq \mu_2$
i.e.,

$$H_0$$
: $\mu_1 - \mu_2 = 0$
 H_1 : $\mu_1 - \mu_2 \neq 0$

Hypothesis tests for $\mu_1 - \mu_2$

DCOVA

Two Population Means, Independent Samples

Lower-tail test:

$$H_0: \mu_1 - \mu_2 \ge 0$$

$$H_1$$
: $\mu_1 - \mu_2 < 0$

Upper-tail test:

$$H_0: \mu_1 - \mu_2 \le 0$$

$$H_1$$
: $\mu_1 - \mu_2 > 0$

Two-tail test:

$$H_0$$
: $\mu_1 - \mu_2 = 0$

$$H_1$$
: $\mu_1 - \mu_2 \neq 0$

Reject H_0 if $t_{STAT} < -t_{\alpha}$

Reject H_0 if $t_{STAT} > t_{\alpha}$

Reject H₀ if
$$t_{STAT} < -t_{\alpha/2}$$
 or $t_{STAT} > t_{\alpha/2}$

Hypothesis tests for μ_1 - μ_2 with σ_1 and σ_2 unknown and assumed equal

DCOVA

Population means, independent samples

 σ_1 and σ_2 unknown, assumed equal

 σ_1 and σ_2 unknown, not assumed equal

Assumptions:

- Samples are randomly and independently drawn
- Populations are normally distributed or both sample sizes are at least 30
- Population variances are unknown but assumed equal

Hypothesis tests for μ_1 - μ_2 with σ_1 and σ_2 unknown and assumed equal

(continued)

DCOV

Population means, independent samples

 σ_1 and σ_2 unknown, assumed equal

 σ_1 and σ_2 unknown, not assumed equal

The pooled variance is:

$$S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{(n_1 - 1) + (n_2 - 1)}$$

The test statistic is:

$$t_{STAT} = \frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)}{\sqrt{S_p^2 (\frac{1}{n_1} + \frac{1}{n_2})}}$$

• Where t_{STAT} has d.f. = $(n_1 + n_2 - 2)$

Confidence interval for μ_1 - μ_2 with σ_1 and σ_2 unknown and assumed equal

DCOVA

Population means, independent samples

 σ_1 and σ_2 unknown, assumed equal

 σ_1 and σ_2 unknown, not assumed equal

The confidence interval for

$$\mu_1 - \mu_2$$
 is:

$$\left(\overline{X}_1 - \overline{X}_2\right) \pm t_{\alpha/2} \sqrt{S_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}$$

Where $t_{\alpha/2}$ has d.f. = $n_1 + n_2 - 2$

India Education Services Pvt. Ltd

Pooled-Variance t Test Example

DCOV<u>A</u>

You are a financial analyst for a brokerage firm. Is there a difference in dividend yield between stocks listed on the NYSE & NASDAQ? You collect the following data:

Number Sample mean Sample std dev

NYSE	NASDAQ
21	25
3.27	2.53
1.30	1.16

Assuming both populations are approximately normal with equal variances, is there a difference in mean yield ($\alpha = 0.05$)?

Pooled-Variance t Test Example: Calculating the Test Statistic

(continued)

H0:
$$\mu_1 - \mu_2 = 0$$
 i.e. $(\mu_1 = \mu_2)$
H1: $\mu_1 - \mu_2 \neq 0$ i.e. $(\mu_1 \neq \mu_2)$

OCOV<u>A</u>

The test statistic is:

$$t = \frac{\left(\overline{X}_1 - \overline{X}_2\right) - \left(\mu_1 - \mu_2\right)}{\sqrt{S_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} = \frac{\left(3.27 - 2.53\right) - 0}{\sqrt{1.5021 \left(\frac{1}{21} + \frac{1}{25}\right)}} = 2.040$$

$$S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{(n_1 - 1) + (n_2 - 1)} = \frac{(21 - 1)1.30^2 + (25 - 1)1.16^2}{(21 - 1) + (25 - 1)} = 1.5021$$

Pooled-Variance t Test Example: Hypothesis Test Solution

$$H_0$$
: $\mu_1 - \mu_2 = 0$ i.e. $(\mu_1 = \mu_2)$

$$H_1$$
: $\mu_1 - \mu_2 \neq 0$ i.e. $(\mu_1 \neq \mu_2)$

$$\alpha = 0.05$$

$$df = 21 + 25 - 2 = 44$$

Critical Values: $t = \pm 2.0154$

Reject H₀ Reject H₀ .025 .025 -2.0154 0 2.0154 t 2.040

Test Statistic:

$$t = \frac{3.27 - 2.53}{\sqrt{1.5021 \left(\frac{1}{21} + \frac{1}{25}\right)}}$$

Decision:

Reject H_0 at $\alpha = 0.05$

Conclusion:

There is evidence of a difference in means.

Pooled-Variance t Test Example: Confidence Interval for μ_1 - μ_2

Since we rejected H_0 can we be 95% confident that $\mu_{NYSE} > \mu_{NASDAO}$?

95% Confidence Interval for μ_{NYSE} - μ_{NASDAQ}

$$\left(\overline{X}_1 - \overline{X}_2\right) \pm t_{\alpha/2} \sqrt{S_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)} = 0.74 \pm 2.0154 \times 0.3628 = (0.009, 1.471)$$

Since 0 is less than the entire interval, we can be 95% confident that $\mu_{NYSE} > \mu_{NASDAQ}$

Hypothesis tests for μ_1 - μ_2 with σ_1 and σ₂ unknown, not assumed equal

Population means, independent samples

> σ_1 and σ_2 unknown, assumed equal

> σ_1 and σ_2 unknown, not assumed equal

Assumptions:

- Samples are randomly and independently drawn
- Populations are normally distributed or both sample sizes are at least 30
- Population variances are unknown and cannot be assumed to be equal

Hypothesis tests for μ_1 - μ_2 with σ_1 and σ₂ unknown and not assumed equal (continued)

Population means, independent samples

> σ_1 and σ_2 unknown, assumed equal

 σ_1 and σ_2 unknown, not assumed equal

The test statistic is:

$$t_{STAT} = \frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}}$$

 t_{STAT} has d.f. v =

$$v = \frac{\left(\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}\right)^2}{\frac{\left(\frac{S_1^2}{n_1}\right)^2}{n_1 - 1} + \frac{\left(\frac{S_2^2}{n_2}\right)^2}{n_2 - 1}}$$

Copyright © 2016 Pearson India Education Services

2016 Pearson India Education Services Pvt. Ltd

Copyright ©

Separate-Variance t Test Example

DCOVA

You are a financial analyst for a brokerage firm. Is there a difference in dividend yield between stocks listed on the NYSE & NASDAQ? You collect the following data:

Number Sample mean Sample std dev

NYSE	NASDAQ
21	25
3.27	2.53
1.30	1.16

Assuming both populations are approximately normal with unequal variances, is there a difference in mean yield ($\alpha = 0.05$)?

Separate-Variance t Test Example: Calculating the Test Statistic

(continued)

H0:
$$\mu_1 - \mu_2 = 0$$
 i.e. $(\mu_1 = \mu_2)$
H1: $\mu_1 - \mu_2 \neq 0$ i.e. $(\mu_1 \neq \mu_2)$

DCOVA

The test statistic is:

$$t = \frac{\left(\overline{X}_{1} - \overline{X}_{2}\right) - (\mu_{1} - \mu_{2})}{\sqrt{\left(\frac{S_{1}^{2}}{n_{1}} + \frac{S_{2}^{2}}{n_{2}}\right)}} = \frac{\left(3.27 - 2.53\right) - 0}{\sqrt{\left(\frac{1.30^{2}}{21} + \frac{1.16^{2}}{25}\right)}} = \boxed{2.019}$$

$$v = \frac{\left(\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}\right)^2}{\left(\frac{S_1^2}{n_1}\right)^2 + \left(\frac{S_2^2}{n_2}\right)^2} = \frac{\left(\frac{1.30^2}{21} + \frac{1.16^2}{25}\right)^2}{\left(\frac{1.30^2}{21}\right)^2 + \left(\frac{1.16^2}{25}\right)^2} = 40.57 - \frac{\left(\frac{1.30^2}{n_1} + \frac{1.16^2}{25}\right)^2}{n_1 - 1} + \frac{\left(\frac{1.30^2}{n_2} + \frac{1.16^2}{25}\right)^2}{n_2 - 1}$$

Use degrees of freedom = 40

Separate-Variance t Test Example: Hypothesis Test Solution

$$H_0$$
: $\mu_1 - \mu_2 = 0$ i.e. $(\mu_1 = \mu_2)$

$$H_1$$
: $\mu_1 - \mu_2 \neq 0$ i.e. $(\mu_1 \neq \mu_2)$

$$\alpha = 0.05$$

$$df = 40$$

Critical Values: $t = \pm 2.021$

Test Statistic:

Decision:

Fail To Reject H_0 at α = 0.05

Conclusion:

There is no evidence of a difference in means.

Related Populations The Paired Difference Test

Related samples

Tests Means of 2 Related Populations

- Paired or matched samples
- Repeated measures (before/after)
- Use difference between paired values:

$$D_i = X_{1i} - X_{2i}$$

- Eliminates Variation Among Subjects
- Assumptions:
 - Both Populations Are Normally Distributed
 - Or, if not Normal, use large samples

Related Populations The Paired Difference Test DCOV

(continued)

Related samples

The ith paired difference is D_i, where

$$D_i = X_{1i} - X_{2i}$$

The point estimate for the paired difference population mean μ_D is \overline{D} :

$$\overline{D} = \frac{\sum_{i=1}^{n} D_{i}}{n}$$

The sample standard deviation is S_D

$$S_{D} = \sqrt{\frac{\sum_{i=1}^{n} (D_{i} - \overline{D})^{2}}{n-1}}$$

n is the number of pairs in the paired sample

Copyright © 2016 Pearson India Education Services Pvt. Ltc

The Paired Difference Test: Finding t_{STAT} DCOVA

Paired samples

• The test statistic for μ_D is:

$$t_{\text{STAT}} = \frac{\overline{D} - \mu_D}{\frac{S_D}{\sqrt{n}}}$$

Where t_{STAT} has n - 1 d.f.

The Paired Difference Test: Possible Hypotheses

Paired Samples

Lower-tail test:

 H_0 : $\mu_D \ge 0$

 H_1 : $\mu_D < 0$

Reject H_0 if $t_{STAT} < -t_{\alpha}$

Upper-tail test:

 $H_0: \mu_D \le 0$

 H_1 : $\mu_D > 0$

Reject H_0 if $t_{STAT} > t_{\alpha}$

Where t_{STAT} has n - 1 d.f.

Two-tail test:

 H_0 : $\mu_D = 0$

 H_1 : $\mu_D \neq 0$

Reject H_0 if $t_{STAT} < -t_{\alpha/2}$ or $t_{STAT} > t_{\alpha/2}$

The Paired Difference Confidence Interval DCOVA

Paired samples The confidence interval for μ_D is

$$\overline{D} \pm t_{\alpha/2} \frac{S_{D}}{\sqrt{n}}$$

$$S_{D} = \sqrt{\frac{\sum_{i=1}^{n} (D_{i} - \overline{D})^{2}}{n-1}}$$

Paired Difference Test: Example

DCOVA

• Assume you send your salespeople to a "customer service" training workshop. Has the training made a difference in the number of complaints? You collect the following data:

Salesperson		Complaints: After (2)	(2) - (1) <u>Difference,</u> <u>D</u> _i
C.B.	6	4	- 2
T.F.	20	6	-14
M.H.	3	2	- 1
R.K.	0	0	0
M.O.	4	0	<u>- 4</u> -21

$$\overline{D} = \frac{\sum D_i}{n}$$

$$= -4.2$$

$$S_D = \sqrt{\frac{\sum (D_i - \overline{D})^2}{n-1}}$$

$$= 5.67$$

Paired Difference Test: Solution

DCOV<u>A</u>

Has the training made a difference in the number of

complaints (at the 0.01 level)?

$$H_0$$
: $\mu_D = 0$
 H_1 : $\mu_D \neq 0$

$$\alpha = .01$$
 $\overline{D} = -4.2$

$$t_{0.005} = \pm 4.604$$

Test Statistic:

$$t_{\text{STAT}} = \frac{\overline{D} - \mu_{\text{D}}}{S_{\text{D}} / \sqrt{n}} = \frac{-4.2 - 0}{5.67 / \sqrt{5}} = \boxed{-1.66}$$

Decision: Do not reject H_0 (t_{stat} is not in the reject region)

Conclusion: There is not a significant change in the number of complaints.

Two Population Proportions

DCOVA

Population proportions

Goal: test a hypothesis or form a confidence interval for the difference between two population proportions,

$$\pi_1 - \pi_2$$

Assumptions:

$$n_1 \pi_1 \ge 5$$
 , $n_1(1-\pi_1) \ge 5$

$$n_2 \pi_2 \ge 5$$
 , $n_2(1-\pi_2) \ge 5$

The point estimate for the difference is

$$p_1 - p_2$$

Two Population Proportions

DCOVA

Population proportions

In the null hypothesis we assume the null hypothesis is true, so we assume $\pi_1 = \pi_2$ and pool the two sample estimates

The pooled estimate for the overall proportion is:

$$\frac{-}{p} = \frac{X_1 + X_2}{n_1 + n_2}$$

where X₁ and X₂ are the number of items of interest in samples 1 and 2

(continued)

Copyright © 2016 Pearson India Education Services Pvt. Ltd

DCOVA

Population proportions

The test statistic for

 $\pi_1 - \pi_2$ is a Z statistic:

$$Z_{\text{STAT}} = \frac{\left(p_1 - p_2\right) - \left(\pi_1 - \pi_2\right)}{\sqrt{\frac{-p_1}{p_1(1-p_1)}\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

$$\bar{p} = \frac{X_1 + X_2}{n_1 + n_2}$$
, $p_1 = \frac{X_1}{n_1}$, $p_2 = \frac{X_2}{n_2}$

Hypothesis Tests for Two Population Proportions

Population proportions

Lower-tail test:

H₀:
$$\pi_1 \ge \pi_2$$

H₁: $\pi_1 < \pi_2$
i.e.,

$$H_0$$
: $\pi_1 - \pi_2 \ge 0$
 H_1 : $\pi_1 - \pi_2 < 0$

Upper-tail test:

$$H_0: \pi_1 \le \pi_2$$

 $H_1: \pi_1 > \pi_2$
i.e.,

$$H_0: \pi_1 - \pi_2 \le 0$$

 $H_1: \pi_1 - \pi_2 > 0$

Two-tail test:

$$H_0$$
: $\pi_1 = \pi_2$
 H_1 : $\pi_1 \neq \pi_2$
i.e.,

$$H_0$$
: $\pi_1 - \pi_2 = 0$
 H_1 : $\pi_1 - \pi_2 \neq 0$

(continued)

Population proportions

DCOVA

Lower-tail test:

$$H_0: \pi_1 - \pi_2 \ge 0$$

$$H_1$$
: $\pi_1 - \pi_2 < 0$

Upper-tail test:

$$H_0: \pi_1 - \pi_2 \le 0$$

$$H_1$$
: $\pi_1 - \pi_2 > 0$

Two-tail test:

$$H_0$$
: $\pi_1 - \pi_2 = 0$

$$H_1$$
: $\pi_1 - \pi_2 \neq 0$

Reject H_0 if $Z_{STAT} < -Z_{\alpha}$

Reject
$$H_0$$
 if $Z_{STAT} > Z_{\alpha}$

Reject H₀ if
$$Z_{STAT} < -Z_{\alpha/2}$$
 or $Z_{STAT} > Z_{\alpha/2}$

Hypothesis Test Example: Two population Proportions

Is there a significant difference between the proportion of men and the proportion of women who will vote Yes on Proposition A?

 In a random sample, 36 of 72 men and 35 of 50 women indicated they would vote Yes

Test at the .05 level of significance

Hypothesis Test Example: Two population Proportions

(continued)

DCOVA

The hypothesis test is:

 H_0 : $\pi_1 - \pi_2 = 0$ (the two proportions are equal)

 H_1 : $\pi_1 - \pi_2 \neq 0$ (there is a significant difference between proportions)

The sample proportions are:

• Men: $p_1 = 36/72 = 0.50$

• Women: $p_2 = 35/50 = 0.70$

• The pooled estimate for the overall proportion is:

$$\frac{1}{p} = \frac{X_1 + X_2}{n_1 + n_2} = \frac{36 + 35}{72 + 50} = \frac{71}{122} = .582$$

Hypothesis Test Example: Two population Proportions (continued)

The test statistic for $\pi_1 - \pi_2$ is:

$$z_{\text{STAT}} = \frac{\left(p_1 - p_2\right) - \left(\pi_1 - \pi_2\right)}{\sqrt{p(1-p)\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

$$= \frac{\left(.50 - .70\right) - \left(0\right)}{\sqrt{.582(1 - .582)\left(\frac{1}{72} + \frac{1}{50}\right)}} = -2.20^{\circ}$$

Critical Values = ± 1.96 For $\alpha = .05$

Decision: Do not reject H₀

Conclusion: There is not significant evidence of a difference in proportions who will vote yes between men and women.

Confidence Interval for Two Population Proportions

DCOVA

Population proportions

The confidence interval for

$$\pi_1 - \pi_2$$
 is:

$$(p_1-p_2) \pm Z_{\alpha/2} \sqrt{\frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2}}$$

Testing for the Ratio Of Two Population Variances DCOVA

Tests for Two
Population
Variances

F test statistic

Hypotheses

F_{STAT}

$$H_0$$
: $\sigma_1^2 = \sigma_2^2$
 H_1 : $\sigma_1^2 \neq \sigma_2^2$

$$H_0: \sigma_1^2 \le \sigma_2^2$$

 $H_1: \sigma_1^2 > \sigma_2^2$

 S_1^2 / S_2^2

Where:

 S_1^2 = Variance of sample 1 (the larger sample variance)

 n_1 = sample size of sample 1

 S_2^2 = Variance of sample 2 (the smaller sample variance)

 n_2 = sample size of sample 2

 $n_1 - 1 = numerator degrees of freedom$

 $n_2 - 1$ = denominator degrees of freedom

The F Distribution

- The F critical value is found from the F table
- There are two degrees of freedom required: numerator and denominator
- The larger sample variance is always the numerator

• When
$$|F_{STAT}| = \frac{S_1^2}{S_2^2}$$
 $|df_1| = n_1 - 1$; $|df_2| = n_2 - 1$

- In the F table,
 - numerator degrees of freedom determine the column
 - denominator degrees of freedom determine the row

Finding the Rejection Region

 H_0 : $\sigma_1^2 = \sigma_2^2$ H_1 : $\sigma_1^2 \neq \sigma_2^2$

Reject H_0 if $F_{STAT} > F_{\alpha/2}$

 $H_0: \sigma_1^2 \le \sigma_2^2$ $H_1: \sigma_1^2 > \sigma_2^2$

Reject H_0 if $F_{STAT} > F_{\alpha}$

2016 Pearson India Education Services Pvt.

F Test: An Example

You are a financial analyst for a brokerage firm. You want to compare dividend yields between stocks listed on the NYSE & NASDAQ. You collect the following data:

	<u>NYSE</u>	NASDAQ
Number	21	25
Mean	3.27	2.53
Std dev	1.30	1.16

Is there a difference in the variances between the NYSE & NASDAQ at the $\alpha = 0.05$ level?

F Test: Example Solution

Form the hypothesis test:

$$H_0$$
: $\sigma_1^2 = \sigma_2^2$ (there is no difference between variances)
 H_1 : $\sigma_1^2 \neq \sigma_2^2$ (there is a difference between variances)

- Find the F critical value for $\alpha = 0.05$:
- Numerator d.f. = $n_1 1 = 21 1 = 20$
- Denominator d.f. = $n^2 1 = 25 1 = 24$
- $\mathbf{F}_{\alpha/2} = \mathbf{F}_{.025, 20, 24} = 2.33$

DCOVA (continued)

The test statistic is:

$$F_{STAT} = \frac{S_1^2}{S_2^2} = \frac{1.30^2}{1.16^2} = \boxed{1.256}$$

- $F_{STAT} = 1.256$ is not in the rejection region, so we do not reject H_0
- Conclusion: There is not sufficient evidence of a difference in variances at $\alpha = .05$

Chapter Summary

In this chapter we discussed

- Comparing two independent samples
 - Performed pooled-variance t test for the difference in two means
 - Performed separate-variance t test for difference in two means
 - Formed confidence intervals for the difference between two means
- Comparing two related samples (paired samples)
 - Performed paired t test for the mean difference
 - Formed confidence intervals for the mean difference

Chapter Summary

(continued)

- Comparing two population proportions
 - Performed Z-test for two population proportions
 - Formed confidence intervals for the difference between two population proportions
- Performing an F test for the ratio of two population variances