3.3 Decirations?

Because:
$$nt = cos(t+t/2) = -eui(t)$$

 $y't = ein(t+t/2) = cos(t)$

Definition:

look TB + precie definition

The decivature of $\frac{d}{dn}(ein0) = cas\theta$ and $\frac{d}{dn}(tano) = ele^{2\theta} + denivature$ and decivature of $\frac{d}{dn}(cos\theta) = -ein0$

Enz:
$$f(x) = n^2 \cos(x)$$

 $f(x) = 3n^2 \cos(x) - n^2 \sin(x)$
 $\frac{dy}{dx} = 3n^2 \cos(x) - n^2 \sin(x)$

Ens:
$$\lim_{n\to 0} \frac{\lim n}{n} = 0$$
?

 $\lim_{n\to 0} \frac{f(n)-f(a)}{n-a} = f'(a): f(n)=\min_{n\to 0} f(n)$

then $f'=\cos(0)=0$

Ens:
$$f(x) = town$$

$$\frac{dy}{dn} = \frac{eivn}{cosn} = \frac{cos^2n + eivn}{cos^2n}$$
then $town = su^2n$

Ens:
$$f(x) = \sin^2\theta + \cos^2\theta$$

where $f(x) = 1$ then

 $\frac{\partial y}{\partial n} = 0$ of $1 = 0$ of $1 = 0$

En6:
$$f(t) = 5ein(t) + displace$$

 $N: f(t) = 5cos(t)$ and
 $\hat{a}: f''(t) = -5ein(t)$ mg:

Ent:
$$f'(t) = ein(t) = ?$$

 $f'(t) = -col(t)$

3-4 Chair Rule:

$$f'(n) = \lim_{n \to 0} \frac{\sin(3n) - \sin(3n)}{n - 0} \Rightarrow \lim_{n \to 0} \frac{\sin(3n)}{n \cdot 3} \Rightarrow \lim_{n \to 0} \frac{\sin(3n)}{3n}$$
then $u = 3n$ and $f'(n) = 1$ then $f'(0) = 3$

multiply the factor on the outside at the outside graph is equeezed on the initial

En2: Paintion of care 1: f(t)=(t+1)2 care: f(t)=f(at)

Chair Rule (Sningle)

if F(n) = f(cn), then F'(n) = cf'(cn)

Reflects back on the pointion of the cars.

$$f'=-\bar{e}^{n}$$

$$f(u)$$

$$f(u)=e^{n}$$

$$(u)$$

En4:
$$h(f) = height at t(m)$$

 $T(h) = temp at height(c)$
 $h(60) = 200 m & T(200) = 10 c$

$$\frac{dh}{dt}(60) = 6\frac{m}{5} \frac{dT}{dt}(200) = -0.8\frac{c}{m}$$

$$\frac{d}{dt}(T(h(t))) = \frac{\Delta T}{\Delta t} = \frac{\Delta T}{\Delta h} \cdot \frac{\Delta h}{\Delta t} = \frac{dT}{dt} = 5(-0.3)$$

Chain Rule (Full Neccion):

if
$$F(n) = f(g(n))$$
 then

$$F'(n) = f'(g(n)) \cdot g'(n)$$
In attue woodels, if $y = f(n)$ and $u = g(n)$ then $y = F(n)$

$$F'(n) = \frac{dy}{dn} = \frac{dy}{dn}$$
 where $\frac{dy}{dn} = f' \not\in \frac{dy}{dn} = g'$

$$47: f(t) = (1-u^2)^{\frac{1}{2}}$$

$$f'(t) = \frac{1}{2}(1-u^2)^{\frac{1}{2}}(-\partial u) = \frac{-u}{\sqrt{1-u^2}}$$

Power Rule Combined w/ Chain Rule:

$$\frac{d}{dn}(g(n))^{n} = n(g(n))^{n-1}g'(n) : Same patteen$$

En8:
$$f(t) = (n^2 + 1)^3$$

 $3(n^2 + 1)^2(2n) = 6n(n^2 + 1)^2$

Enq:
$$f(t) = (1+ex)^{-1}$$

 $f'(t) = -1(1+ex)^{2} = \frac{-ex}{(1+ex)^{2}}$

En 10:
$$f(t) = \partial^{x}$$

$$\frac{d}{du}\partial^{x} = \frac{d}{\partial x} = e^{\ln(2)u} = \ln(2)\cdot\partial^{x}$$

Enll: de(ein(cosn2)) = cos(cosn2). du(cos(ne) - Cos (cosn2) Quein (n2) 1

Chain Rule & 3 June:

$$\frac{d}{dn} f(g(h(n))) = f'(gh(n)) \cdot \frac{d}{dn} (g(hn))$$

$$\Rightarrow f'(gh) \cdot g'(h) h'(n)$$

Chain Rule $\forall 3$ functions: if y = f(u); u = g(n); n = h(t) thun y = f(gh) $\frac{dy}{dt} = \frac{dy}{dt} \cdot \frac{dx}{dt} \cdot \frac{du}{dt} = \frac{dy}{dt}$