Lecture 25, Nov. 7

25.1 Theorem (Extreme Value Theorem). If f(x) is continuous on [a, b], then there exists $c, d \in [a, b]$ such that

$$f(c) \le f(x) \le f(d)$$

for all $x \in [a, b]$.

Uniform Continuity

- **25.2 Question.** Assume that f(x) is continuous on some interval I. Let $\epsilon > 0$. Does there exists a single $\delta > 0$ such that for every $a \in I$, we have if $|x a| < \delta$, $x \in I$, then $|f(x) f(a)| < \delta$?
- **25.3 Definition** (Uniform Conitnuity). We say that f(x) is uniformly continuous on $S \subset \mathbb{R}$ if for every ϵ , there exists a $\delta > 0$ such that if $|x y| < \delta$, $x, y \in S$, then $|f(x) f(y)| < \delta$.
- **25.4 Theorem** (Sequential Characterization for Uniform Continuity). Let $f: S \to \mathbb{R}$. Then the followings are equivalent
 - 1. f(x) is continuous on S
 - 2. If $\{x_n\}, \{y_n\} \subset S$ with $\lim_{x\to\infty} |x_n y_n| = 0$, then $\lim_{n\to\infty} |f(x_n) f(y_n)| = 0$.

Proof. Assume that f(x) is uniformly continuous on S. Let $\epsilon > 0$ and let $\{x_n\}$, $\{y_n\} \subset S$ with $|x_n - y_n| \to 0$. Choose $\delta > 0$ so that if $x, y \in S$, $|x - y| < \delta$ then $|f(x) - f(y)| < \epsilon$. We can pick $N_0 \in \mathbb{N}$ so that if $n \ge N_0$, then $|x_n - y_n| < \delta$. It follows that if $n \ge N_0$, then $|f(x_n) - f(y_n)| < \epsilon$. Hence $\lim_{x \to \infty} |f(x_n) - f(y_n)| = 0$.

Conversely, assume that 1 fails (f(x)) is not uniformly continuous on S). Then there exists $\epsilon_0 > 0$ such that for every $\delta > 0$ we can find $x_{\delta}, y_{\delta} \in S$ with $|x_{\delta} - y_{\delta}| < \delta$, but $|f(x_{\delta}) - f(y_{\delta})| \ge \epsilon_0$. Let $\delta = 1/n$, and $x_{\delta} = x_n$, $y_{\delta} = y_n$. This gives us $\{x_n\}$, $\{y_n\} \subset S$, with $|x_n - y_n| < 1/n \to 0$, but $\lim_{x \to \infty} |f(x_n) - f(y_n)| \ne 0$

25.5 Theorem. If f(x) is continuous on [a, b], then f(x) is uniformly continuous on [a, b].

Proof. Assume that f(x) is not uniformly continuous on [a, b], then there exists ϵ_0 and $\{x_n\}$, $\{y_n\} \subset S$ with $|x_n - y_n| \to 0$, but $|f(x_n) - f(y_n)| \ge \epsilon_0$ for all n.

By the BWT $\{x_n\}$ has a sub-sequence $\{x_{n_k}\}$ with $x_{n_k} \to a \in S$. Since $|x_{n_k} - y_{n_k}| \to 0$, then $y_{n_k} \to a$. But then $\lim_{x \to \infty} |f(x_{n_k}) - f(y_{n_k})| = 0$, which is impossible.