

Your service center for information and technical support on the new set of EPB standards

Update of spreadsheets on ISO 52010-1 and ISO 52016-1

Dick van Dijk

dick.vandijk@epb.center

This project is facilitated by the EU-Commission Service Contract ENER/C3/2017-437/SI2.785185

Start: 21 September 2018 for 3

years

November 20, 2019

Spreadsheets

- As part of the Mandate M/480 from EC: for each calculation standard (separately...) a publicly available spreadsheet has been made
 - To demonstrate the correctness of the EPB calculation procedures
 - To enable a check of the list of input and output variables

Disclaimer:

- each spreadsheet was developed in parallel with the corresponding EPB standard: to detect omissions in the standard and mismatches in input-output relations
- Not every detail of the calculation procedures is covered (e.g. no sunspace, only one type of ground-floor, ...)
- → most recently available version of spreadsheet often reflects draft version of the standard (from 2014 or 2015)
 - → not updated to be in line with published version of the standard (summer 2017)
- But some key spreadsheets are being updated during the project (EC contract): e.g. H&C needs, ventilation, heat pumps/chillers

(EN) ISO 52010-1

Energy performance of buildings — External climatic conditions— Part 1: Conversion of climatic data for energy calculations

Description:

- EN ISO 52010-1 specifies a calculation procedure for the conversion of climatic data for energy calculations
- The main element in EN ISO 52010-1 is the calculation of solar irradiance on a surface with arbitrary orientation and tilt, using measured data from weather station (such as solar irradiance on horizontal plane)

(EN) ISO 52016-1

Energy performance of buildings — Energy needs for heating and cooling, internal temperatures and sensible and latent heat loads— Part 1: Calculation procedures

Description:

- EN ISO 52016-1:2017 (replacing EN ISO 13790:2008)
 - Contains (improved) -fully described- hourly calculation method
 - Contains (improved) monthly calculation method
 - NEW! Hourly method has been tailored to the goal: the input data asked from the user are the same for hourly and monthly method

No extra input data needed for hourly calculation!!

EN ISO 52016-1: parallel hourly and monthly calculation methods

Hourly calculation of

- energy needs for heating and cooling
- both sensible and latent heat
- indoor temperatures
- heating and cooling load

Same input data and boundary conditions

Extra output:

- Monthly characteristics
- Can be used as basis for generating or validating correlation factors for monthly method

Demonstrated in Updated spreadsheet

using national correlation factors to take into account dynamic effects

 E.g. solar and internal gains, varying conditions of use (temperature and ventilation settings), ...

Links between ISO 52010-1 & 52016-1 (→ also for spreadsheets)

NEW: macro on spreadsheet for ISO 52010-1 Procedure for

Screenshot config file

	andsheet	
f Excel file with calculation procedures	Demo_ISO_52010-1_Calc_V2019.09 New spreadsheet Demo_ISO_52010-1_Input_DRYCOL (2019)	
ame of Excel file with input climate data	Demo_ISO_52010-1_Calc_V2019.09 Demo_ISO_52010-1_Input_DRYCOL_(2019) DRYCOLD_TMY	xlsx)
Name of the Excel sheet in that file		Expla
		If TRU
		be pr
initialization period (TRUE or FALSE)?	TRUE	reque
Id.	NV	Ident
		Orien
γic		the ge
	180	proje
βic		Tilt a
Pic	90	meas
Id.	EV	As ma
γic	90	
βic	90	
Id.	SV	As ma
Vic	0	

Screenshot output file

Output file for Excel sheet on ISO 52010-1	Date: 2019-05-25 New spreadshee				
Date:	Date: 2019-05-25 New Spread				
Time start -> end:	16:10:31 -> 16:17:07 (2019)				
	XLS_ISO_52010-				
	1_Config_V2.0_DRYCOLD_TMY_2019.05.25.xls				
Configuration file (workbook):	m				
	XLS ISO 52010-				
	1_Input_DRYCOLD_TMY_2019.05.20.xlsx/DRYC				
Climatic input data file (workbook/sheet):	OLD_TMY				
Station data:					
Station name:	DRYCOLD.TMY (Denver (Col, USA))				
Station note(1):	Denver-Stapleton, CO, USA				
Station note(2):	: Winter: MST = UTC - 7				
Station note(3):	Summer: MDT = UTC - 6				
Latitude (degr.):	39,76				
Longitude (degr.):	-104,86				
Elevation (m):	1611				
Timezone (hr):	-7				
Calender details:					
Day/wk Jan.1:	1				
DST?:	Applicable for this station, but disregarded				
Leapday incl.?:	No D				
Specific other info:	None				
Ref.(e.g.applic.):	ASHRAE 140				

Screenshot output file

New spreadsheet (2019)

								Isol = Calc	ulated irradiar
				dentification	of orientat	ion & tilt ->	ld:	NV	NVd
	Azimuth (orient.) angle, degrees, S=0, E=pos, W=neg ->					Gamma:	180	180	
				Tilt angle, degrees from horiz>			Beta:	90	90
	Wind		Air	Air moist.		Solar			
Air temp.	speed	Wind dir.	pressure	content	Solar alt	azim	Grnd refl.	Isol_tot	Isol_dif
Degr. C	m/s	Degrees	Pa	g/kg	degrees	degrees	-	W/m2	W/m2
-1,2	3,5			4,2	0	150,5089	0,2	0	0
-2,6	3,1			3,8	0	122,1064	0,2	0	0
-3.6	3			3.5	0	105 4162	0.2	0	0

Updated spreadsheet publicly available at the EPB Center website since late Nov. 2019

Previous spreadsheet for ISO 52016-1

All input for a specific case is inside the calculation spreadsheet

Consequently:
at each update of
calculation
spreadsheet:
All input for each
case needs to be
copied to new
version...

procedure for previous spreadsheet (< 2019)

ISO 52016-1 spreadsheet

Input properties all constr.elements

Input hourly occupancy schedules

Ground floor properties acc. to ISO 13370

Hourly & monthly calculation gr.floor

All other input (geometry, properties, settings, ...

Climatic data, incl. solar on all constr. elements

Calculation of heating and cooling loads / needs and indoor temperatures
Hourly and monthly calculation

Note: macro used to solve matrix for hourly thermal balance (indoor air + all constr.elements)

NEW: macro on spreadsheet for ISO 52016-1

All input (except clim.data) for a specific case In a separate input Excel data file

Macro used to copy
all input data
(except climatic
data)
into the calculation
file

Tailored climatic data file (as shown before)

ISO 52016-1 spreadsheet

Input properties all constr.elements

Input hourly occupancy schedules

Ground floor properties acc. to ISO 13370

Hourly & monthly calculation gr.floor ISO 13370:2017

All other input (geometry, properties, settings, ...

Climatic data, incl. solar on all constr. elements

Calculation of heating and cooling loads / needs and indoor temperatures
Hourly and monthly calculation

And calc.spreadsheet can still be used as stand alone

Demo spreadsheet ISO 52016-1

- Presentation of the input data file, showing the limited number of data needed, also for the hourly calculation
- Presentation of some of the graphical output:
 - Time series of outdoor and indoor temperatures, heating and cooling loads, etc.
 - Monthly heating and cooling loads from monthly and hourly method side by side
 - Energy signature
 - Monthly correlation factors generated by the hourly calulation method as basis for correlation factors that are needed to construct a simple monthly method
 - Heating and cooling load duration curves

Updated spreadsheet publicly available at the EPB Center website since late Nov. 2019

Solar shading by obstacles

- Solar shading by external obstacles (distant, remote or from own building elements) was covered in previous spreadsheet on EN ISO 52010-1
- Will now be covered in separate spreadsheet (in preparation)
- The updated spreadsheets on ISO 52010-1 and 52016-1 have been prepared for dealing with solar shading
 - E.g.: both total and diffuse hourly solar irradiance is calculated in the spreadsheet on ISO 52010-1 and available as input in the spreadsheet on ISO 52016-1

Thank you!

Your service center for information and technical support on the new set of EPB standards

More information on the set of EPB standards:

www.epb.center

Contact: info@epb.center

Disclaimer: The information and views set out in this document are those of the author(s) and do not necessarily reflect the opinion of the Commission or it's agencies

a) Simplified hourly method in ISO 13790:2008

b) Improved hourly method (and similar for monthly method) in ISO 52016-1

Result:

- No longer loss of information per building element
- Differences in individual building elements are respected