- 1. For one-way ANOVA test,
 - (1) Show that the statistic $(\bar{Y}_{.1}, \ldots, \bar{Y}_{.k}, S_p^2)$ is sufficient for $(\mu_1, \ldots, \mu_k, \sigma^2)$
 - (2) Show that the F test of one-way ANOVA is a GLRT.
- 2. When we do two sample test, usually we would have unequal variances. However, in this case, making inference on means is so difficult, which is famous as Behrens-Fisher Problem. The test is described as

$$H_0: \mu_X = \mu_Y$$
 versus $H_1: \mu_X \neq \mu_Y$

where $X=(X_1,\ldots,X_n)$ and $Y=(Y_1,\ldots,Y_m)$ are independent. And some statisticians discovered several solutions to the problem.

(1) Satterthwhite offers an approximation using t distribution. The test statistic is

$$T=rac{ar{X}-ar{Y}}{\sqrt{rac{S_X^2}{n}+rac{S_Y^2}{m}}}$$

Show that under H_0 is true, $T \sim t_
u$ approximately, where

$$u = rac{(S_X^2/n + S_Y^2/m)^2}{rac{S_X^4}{n^2(n-1)} + rac{S_Y^4}{m^2(m-1)}}$$

(2) Sprott and Farewell notice that if the variance ratio is known, another t statistic can be derived. Suppose $X_i \sim N(\mu_X, \sigma^2) \; Y_j \sim N(\mu_Y, \rho^2 \sigma^2)$ where ρ^2 is known. Show that

$$T = rac{(ar{X} - ar{Y}) - (\mu_X - \mu_Y)}{\sqrt{rac{1}{n} + rac{
ho^2}{m}} \sqrt{rac{(n-1)S_X^2 + (m-1)S_Y^2/
ho^2}{n+m-2}}} \sim t_{n+m-2}$$

and furthermore,

$$rac{S_Y^2}{
ho^2 S_X^2} \sim F_{m-1,n-1}$$

3. Show that for independence testing, when all the parameters are unknown, the observed goodness-of-fit test statistic can be written as

$$d = n(\sum_{i=1}^r \sum_{j=1}^c rac{n_{ij}^2}{n_{i.} n_{.j}} - 1)$$

where $n_{i.} = \sum_{j=1}^{c} n_{ij}$ and $n_{.j} = \sum_{i=1}^{r} n_{ij}$

- 4. X_1,\ldots,X_{n_1} , Y_1,\ldots,Y_{n_2} , Z_1,\ldots,Z_{n_3} are three independent normal samples with the same unknown variance σ^2 . Find a test statistic to test $H_0:\mu_X+\mu_Y=2\mu_Z$ and derive both the rejection region at the significance level α and $(1-\alpha)100\%$ confidence interval for $\mu_X+\mu_Y-2\mu_Z$.
- 5. A survey shows that the color-blindness may be related to gender. A geneticist constructs a model described as

	Normal	Color-blindness
Male	p/2	(1-p)/2
Female	$p^2/2+p(1-p)$	$(1-p)^2/2$

If the collected data is

	Normal	Color-blindness
Male	442	38
Female	514	6

do an appropriate goodness-of-fit test at the significance level lpha=0.05 to test whether the data is consistent with the model.

- 6. X_1, \ldots, X_n , Y_1, \ldots, Y_m , Z_1, \ldots, Z_n are three independent normal samples with sample mean $\bar{x}=16, \bar{y}=14, \bar{z}=21$ and sample standard deviation $s_X=12, s_Y=9, s_Z=14$.
 - (1) If n=8, m=6, do a two-sided test to test $H_0:\sigma_X^2=\sigma_Y^2$ at the significance level lpha=0.05
 - (2) Based on the test result of (1), do a two-sided t test for $H_0: \mu_X = \mu_Y$ at the significance level $\alpha = 0.05$.
 - (3) Suppose the hypothesis in (1) is not rejected, do a one-way ANOVA for $H_0: \mu_X = \mu_Y$ at the significance level $\alpha=0.05$ and figure out the relationship of the test statistic in (3) and that in (2).
 - (4) If n=m=10, do a one-way ANOVA for $H_0: \mu_X=\mu_Y=\mu_Z$ at the significance level $\alpha=0.05$.
 - (5) Based on the test result of (4), find the Tukey's interval for all the comparisons where lpha=0.05.