Exercise Set 5

Saliba, March 20 2019

Exercise 1. Consider a Markov chain with state space $S = \{1, 2\}$ and transition matrix

$$\left(\begin{array}{cc} 1-a & a \\ b & 1-b \end{array}\right)$$

0 < a, b < 1. Use the Markov property to show that

$$\mathbb{P}(X_{n+1} = 1) - \frac{b}{a+b} = (1-a-b)\{\mathbb{P}(X_n = 1) - \frac{b}{a+b}\},\$$

and conclude that

$$\mathbb{P}(X_n = 1) = \frac{b}{a+b} + (1-a-b)^n \{ \mathbb{P}(X_0 = 1) - \frac{b}{a+b} \}.$$

Further show that $\mathbb{P}(X_n=1)$ converges exponentially fast to its limit distribution b/(a+b).

Exercise 2. (Reversible Processes)

a) Let P be an irreducible matrix with stationary distribution π . We assume that $(X_n)_{0 \le n \le N}$ is $Markov(\pi, P)$. The process $Y_n = X_{N-n}$, $0 \le n \le N$ is called the reverse process of $(X_n)_{0 \le n \le N}$. Show that $(Y_n)_{0 \le n \le N}$ is $Markov(\pi, \hat{P})$, where $\hat{P} = (\hat{p}_{ij})$ is given by

$$\pi_i \hat{p}_{ii} = \pi_i p_{ij}$$
, pour tout i, j ,

and \hat{P} is also irreducible with stationary distribution π .

- b) A transition matrix P is said to be *doubly stochastic* if its columns sum also to 1, that is $\sum_{i} p_{ij} = 1$ for all j.
 - Show that the stationary distribution of an irreducible Markov chain on N states is the uniform distribution $(\pi(i) = \frac{1}{N}, \ 1 \le i \le N)$ if and only if its transition matrix is doubly stochastic.
- c) We say that an irreducible Markov chain $X \sim Markov(\lambda, P)$ is reversible if $\hat{P} = P$ (in that case λ should be stationary). Find an irreducible chain on $E = \{1, 2, 3\}$ with a stationary distribution but not reversible.

Exercise 3. Consider two boxes filled with gas molecules and joined by a small gap allowing them to pass from one box to the other. Assume that in total N molecules are in this configuration. We model the system so that at each time only one (randomly chosen) molecule is able to move from one box to the other.

- (1) Show that the number of molecules in a box evolves according to a Markov process.
- (2) Give the transition probabilities.
- (3) What is the stationary distribution (detailed balance equations)?

Figure 1: Configuration of the problem.

Exercise 4. Consider the aging chain on $\{0, 1, 2, \dots\}$ in which for any $n \ge 0$ the individual gets one day older from n to n + 1 with probability p_n but dies and returns to age 0 with probability $1 - p_n$. Find conditions that guarantee that

- (a) 0 is recurrent,
- (b) 0 is positive recurrent.
- (c) Find the stationary distribution of the chain.

Exercise 5. (Random walk on a graph)

An undirected graph \mathcal{G} is a countable collection of states (that we call vertices) along with some edges connecting them. The degree d_i of a vertex i is the number of edges incident to i. We suppose the graph to be locally finite (i.e., each edge is incident to a finite number of edges). We say that a Markov chain on the state space $E = \mathcal{G}$ is a random walk on the graph if the transition probabilities are given by

$$p_{i,j} = \begin{cases} 1/d_i & \text{if } (i,j) \text{ is an edge,} \\ 0 & \text{otherwise,} \end{cases}$$

for $i, j \in \mathcal{G}$.

- a) We assume that \mathcal{G} is connected (implying that P is irreducible) and that $\sum_i d_i < \infty$. Find the stationary distribution of the random walk on \mathcal{G} .

 Hint: Assume that the random walk is reversible and find a stationary distribution verifying the detailed balance equations. Explain why P is reversible.
- b) We assume now that the graph is a chessboard, i.e., the vertices are $\mathcal{G} = \{1, \dots, 8\}^2$ and the edges are the possible moves of a King. We assume that the King starts its random walk in one of the four corners of the chessboard $c \in \mathcal{G}$. Compute the mean return time to the initial state $\mathbb{E}_c(T_c)$ of the King. Compute the same quantity for a Knight instead of a King.