Neue Einsatzmöglichkeit von Hardwarebeschleunigern für nachhaltigere KI-Modelle: Entwicklung und Evaluation der Boltzmann Maschinen auf einem physikinspirierten Hardwarebeschleuniger

	Bacl	helor	arb	eit
--	------	-------	-----	-----

vorgelegt am February 19, 2024

Fakultät Wirtschaft und Gesundheit

Studiengang Wirtschaftsinformatik

 $Kurs\ WWI2021F$

von

SIMON SPITZER

Betreuer in der Ausbildungsstätte:

\(\text{Name des Unternehmens} \) \(\text{Titel, Vorname und Nachname} \) \(\text{der/des wissenschaftlichen Betreuerin/Pr\(\text{pruktion der Betreuerin/des Betreuers} \) \(\text{der/des wissenschaftlichen Betreuerin/Pr\(\text{uferin} \) \(\text{uferin} \)

Unterschrift der Betreuerin/des Betreuers

Contents

Lis	t of	abbreviations	IV
Lis	st of	figures	V
Lis	st of	tables	V
1	1.1 1.2 1.3 1.4 1.5	Motivation	1
2		Ressourcenverbrauch bei KI-Modellen 2.1.1 Ressourcenverbrauch bei KI-Modellen 2.2.1 Konzept und Anwendung des Modells 2.2.2 Energiefunktion 2.2.3 Training von BMs 2.2.4 Aktuelle Probleme mit RBM/BM Hardwarebeschleuniger 2.3.1 Aktuelle Ansätze im Bereich KI und weitere Lösungen 2.3.2 ISING Maschine/ Physikinspirierter Hardwarebeschleuniger Memristor Hopfield Network 2.4.1 Memristor 2.4.2 Hopfield Network 2.4.3 Crossbar 2.4.4 Output Hopfield Networtk 2.4.5 Noisy HNN	
3	3.1 3.2 3.3 3.4	spezifikation und Darlegung der Forschungsmethodik Zielspezifikation (genauer als in Einleitung, Metriken erwähnen, Erfolg meiner Methode bewerten, Welcher Teil der Forschungsfrage wird beantwortet?) Design Science Research Zielsetzung(ohne gneaue Metriken nennen, generell halten) Laborexperiment für die Umsetzung lementierung/Laborexperiment der Simulator Pipeline Zielsetzung und Forschungsmethodik Aufbau der Simulator Pipeline KI-Bibliothek Scikit-Learn	99 99 99 99 10 10 10 10
5	Eval 5.1	luation der BM auf dem physikinspiriertem Hardwarebeschleuniger Zielsetzung und Forschungsmethodik	11 11

	5.2	5.1.1 Prediction Accuracy	11						
6	Krit	cische Reflexion und Ausblick	12						
	6.1	Evaluation der Erkenntnisse in Bezug auf die Zielsetzung der Arbeit	12						
	6.2	Kritische Reflexion der Ergebnisse und Methodik	12						
	6.3	Zielsetzung(ohne gneaue Metriken nennen, generell halten)	12						
	6.4	Ergebnisextration für Theorie und Praxis (evtl. mit 6.4 Zusammenlegen)							
	6.5	Ausblick	12						
ΑĮ	ppend	xib	13						
Li	ist of references								

List of abbreviations

Ein Abkürzungsverzeichnis ist optional. Das Paket acronym kann weit mehr, als hier gezeigt. Beachten Sie allerdings, dass Sie die Einträge selbst in sortierter Reihenfolge angeben müssen.

BM Boltzmann Maschine

RBM Restriced Boltzmann Maschine

Ergänzende Bemerkung: Eine im Text verwendete Abkürzung sollte bei ihrer ersten Verwendung erklärt werden. Falls Sie sich nicht selbst darum kümmern möchten, kann das das Paket acronym übernehmen und auch automatisch Links zum Abkürzungsverzeichnis hinzufügen. Dazu ist an allen Stellen, an denen die Abkürzung vorkommt, \ac{ITIL} zu schreiben.

Das Ergebnis sieht wie folgt aus:

- erstmalige Verwendung von \ac{ITIL} ergibt: ITIL! (ITIL!),
- weitere Verwendung von \ac{ITIL} ergibt: ITIL!

Wo benötigt, kann man mit dem Befehl \acl{ITIL} wieder die Langfassung ausgeben lassen: ITIL!.

Falls man die Abkürzungen durchgängig so handhabt, kann man durch Paket-Optionen (in _dhbw_praeambel.tex) erreichen, dass im Abkürzungsverzeichnis nur die tatsächlich verwendeten Quellen aufgeführt werden (Option: printonlyused) und zu jedem Eintrag die Seite der ersten Verwendung angegeben wird (Option: withpage).

¹siehe http://ctan.org/pkg/acronym

List of Figures

1	Visualization of a general Boltzmann Maschine (BM)	6
2	Visualization of a Restriced Boltzmann Maschine (RBM)	7
3	Mal wieder das DHBW-Logo	14

List of Tables

1 Einleitung

1.1 Motivation

1.2 Problemstellung

In der Forschung und Entwicklung von Generativen KI-Modellen rückt die Rechengeschwindigkeit und Energieeffizienz zunehmend in den Fokus² Die Autor*innen von Open AI bestätigen, dass die Wachstumsrate von Machine-Learning-Modellen die Effizienzrate von Computerchips schon längst übertroffen hat. So verdoppeln sich jede 3-4 Monate der Rechenbedarf dieser Modelle jedoch verdoppeln sich nach Moore's Law die Leistung der Computerchips nur jede 2 Jahre.³ Angesichts der Probleme des steigenden Energieverbrauchs von Rechenzentren und den damit verbundenen Treibhausgasemissionen dieser, ist die Suche nach effizienteren Lösungen essenziell für die Zukunft. Weltweit steigern Datenzentren ihren Energieverbrauch jährlich um 20-40%, wodurch sie 2022 etwa 1,3% des globalen Energieverbrauchs und 1% der energiebedingten globalen Treibhausgasemissionen verursacht haben.⁴ Jedoch ist hier nicht zu erkennen, wie groß dabei der KI-Anteil zur Grundgesamtheit beiträgt.

Ein bereits bekannter Ansatz ist die Benutzung von KI-Beschleunigern basierend auf ASICs (Application-specific Integrated Circuits) - also Schaltungen, die anwendungsspezifisch verwendet werden, wie zum Beispiel Google TPUs (Tensor Processing Unit).⁵ Dies ist auch sinnvoll, da die Verwendung von Mehrzweckmodellen für diskriminierende Aufgaben im Vergleich zu aufgabenspezifischen Modellen energieintensiver ist.⁶ Ein alternatives vielversprechendes Konzept in der Forschung ist die Verwendung von physikinspirierten Hardwarebeschleunigern, die primär bei Optimierungsalgorithmen eingesetzt werden aufgrund ihrer Fähigkeit Probleme schneller und effizienter als GPUs lösen zu können.⁷ Ein skalierbarer physikinspirierter Hardwarebeschleuniger (auch Ising-Maschine genannt), der die Leistung bestehender Standard-Digitalrechner übertrifft, könnte einen großen Einfluss auf praktische Anwendungen für eine Vielzahl von Optimierungsproblemen haben.⁸

Solche physikinspirierten Hardwarebeschleuniger bieten durch ihre besondere Berechnungsweise Potenzial für eine effizientere Verarbeitung von rechenintensiven Aufgaben. Konkret wird die Beschleunigung, anders als es bei digitalen Computern der Fall ist, durch die Berechnung rechenintensiver Aufgaben mit analogen Signalen erreicht. Die Implementierung auf dedizierter Hard-

²Vgl. Luccioni/Jernite/Strubell 2023, p. 1

³Vgl. Dario Amodei/Danny Hernandez 2024, p. 1

⁴Vgl. Hintemann/Hinterholzer 2022, p. 1

⁵Vgl. Wittpahl 2019, p. 39

⁶Vgl. Luccioni/Jernite/Strubell 2023, p. 5

⁷Vgl. Mohseni/McMahon/Byrnes 2022, p. 1

 $^{^8\}mathrm{Vgl.}$ Mohseni/McMahon/Byrnes 2022, p. 1

ware bietet darüber hinaus die Möglichkeit, die Parallelisierung von digitalen Hardwarebeschleunigern und analogem Rechnen auszunutzen.⁹

Interessanterweise zeigen die Energiefunktionen von Hardwarebeschleunigern, die in Ising-Maschinen verwendet werden, große Parallelen zu denen in Boltzmann Maschinen, trotz ihrer unterschiedlichen Anwendungen, daher liegt es nahe, dass Ising Maschinen auch für KI gut funktionieren. 10 Ising-Maschinen zielen darauf ab, ihre Energie zu minimieren, wobei sie Energie als eine paarweise Interaktion von binären Variablen "Spins" definieren. ¹¹ Boltzmann Maschinen hingegen sind energiebasierte neuronale Netzwerke, die Klassifizierungen durchführen, indem sie jeder Konfiguration der Variablen eine skalare Energie zuordnen. Die Netzwerkenergie zu minimieren ist hierbei vergleichbar mit der Lösung des Optimierungsproblems. 12 Aktuelle Probleme mit Boltzmann-Maschinen umfassen die hohe Komplexität und Anforderungen an die All-to-All-Kommunikation zwischen Verarbeitungseinheiten, was ihre Implementierung auf herkömmlichen digitalen Computern ineffizient macht, sowie eine inhärent langsame Konvergenz in bestimmten Prozessen wie Simulated Annealing.¹³ Diese Herausforderungen erschweren das Training und die Anwendung von Boltzmann-Maschinen insbesondere für große Datenmengen und komplexe Optimierungsaufgaben. 14 Nichtsdestotrotz impliziert die Ähnlichkeit der beiden, dass Ising-Maschinen in der Lage sein könnten, dieses spezielle KI-Modell, energieeffizienter und mit höherer Rechengeschwindigkeit auszuführen. Aktuell existieren nur wenige Konzepte eine Implementierung von Boltzmann Maschinen auf Ising-Maschinen zu erreichen. Das Paper der Autoren Mahdi Nazm BojnordiEngin und Engin Ipek ist hier ein vielversprechender Ansatz, jedoch konnte nicht gezeigt werden, wie es auf einem richtigen Beschleunigerchip funktionieren würde.

Vor diesem Hintergrund ergeben sich folgende zentrale Forschungsfragen:

- 1. Können Boltzmann Maschinen auf physikinspiriertenHardwarebeschleunigern durch analoge Rauschinjektion effizient implementiert werden?
 - Wie ist die Genauigkeit des KI-Modells im Hardwarebeschleuniger? Metrik: Prediction Accuracy
 - ergleichen mit anderen Hardwarebeschleuniger, FPGA, GPU oderCPU aus der Literatur (gute und schlechte) in Bezug auf Energieeffizienz und Rechengeschwindigkeit Metriken: Troughput(Samples/Sec), Energieverbrauch (Energy/Operation)

Daher gilt es zu testen, ob dieses generative KI-Modell mit Ising Maschinen kompatibel ist und ob diese Lösung effizient ist oder nicht.

⁹Vgl. Mohseni/McMahon/Byrnes 2022, p. 4

 $^{^{10}\}mathrm{V\ddot{g}l.}$ Cai et al. 2019, p. 10

 $^{^{11}}$ Vgl. Wang/Roychowdhury 2017, p. 1

¹²Vgl. Nazm Bojnordi/Ipek 2016, p. 2

 $^{^{13}}$ Vgl. Nazm Bojnordi/Ipek 2016, p. 1

 $^{^{14}\}mathrm{Vgl.}$ Nazm Bojnordi/Ipek 2016, p. 2

1.3 Zielsetzung(ohne gneaue Metriken nennen, generell halten)

Das primäre Ziel dieser Bachelorarbeit ist die Erforschung und Erweiterung eines bestehenden physikinspirierten Hardwarebeschleunigers (ISING Maschine) zur Implementierung und Evaluation von Boltzmann Maschinen, einem energiebasierten KI-Modell. Dabei sollen die aufgestellten Forschungsfragen beantwortet werden.

Hierzu ist es zu Beginn nötig eine Simulator Pipeline zu konstruieren mit der Boltzmann Maschinen auf dem Hardwarebeschleuniger übersetzt werden. Die Simulator Pipeline besteht dabei aus einer bestehender KI-Bibliothek und bestehenden Hardwarebeschleuniger, die miteinander verbunden werden. Mit der Simulator Pipeline soll gezeigt werden, dass der Hardwaresimulator die Boltzmann Maschinen umsetzen kann. Aus der Simulator Pipeline heraus werden die Aktivierungswahrscheinlichkeiten der einzelnen Neuronen auf der simulierten Hardware gemessen und bei Erfolg bis zu einem vollständigen Neuronalen Netzwerk erweitert. Finaler Schritt ist, dass der Hardwarebeschleuniger für Training und Interferenz genutzt werden kann und dabei vergleichbar mit herkömmlichen MLLibraries ist. Diese Phase umfasst die sorgfältige Anpassung und möglicherweise Erweiterung des bestehenden Beschleunigers, um die spezifischen Anforderungen der Boltzmann Maschinen zu erfüllen.

Wenn die Simulator Pipeline validiert werden kann, wird ein Workload auf ein Standarddatenset zur Handschrifterkennung getestet. Dabei werden die Prediction Accuracy, Troughput (Samples/Sec) und der Energieverbrauch (Energy/Operation) der Boltzmann Maschinen auf dem ISING Hardwarebeschleuniger untersucht und dadurch die aufgestellten Forschungsfragen beantwortet.

1.4 Forschungsmethodik

Design Science Research

- 1. **Problemorientierung:** DSR fokussiert auf die Lösung praktischer Probleme, wie die Forschung zur Steigerung der Effizienz und Rechengeschwindigkeit in KI-Modellen.
- 2. Artefakt Entwicklung: Zentral in DSR ist die Entwicklung innovativer Artefakte. Die Arbeit zielt darauf ab, ein solches Artefakt in Form des physikinspirierten Hardwarebeschleunigers weiterzuentwickeln und für KI-Modelle einzusetzen.
- 3. Iterative Evaluation: Durch die iterative Vorgehensweise in DSR kann die Ausarbeitung der Lösung fortlaufend verbessert und angepasst werden, was für die Entwicklung und Optimierung von KI-Systemen entscheidend ist (ebenfalls das Konzept).
- 4. **Beitrag zur Wissensbasis und Praxisrelevanz:** DSR unterstützt die Generierung neuer Erkenntnisse und stellt sicher, dass Forschungsergebnisse sowohl theoretisch fundiert

als auch praktisch anwendbar sind, was mit den Zielen Ihres Projekts im Einklang steht. Untermethodik könnte hierbei eine Simulation sein. Variabel, je nach Verlauf der Forschung.

1.5 Aufbau der Arbeit

2 Aktueller Stand der Forschung und Praxis (generell auch wiedergeben von aktuell existierenden Lösungsmustern)

2.1 Ressourcenverbrauch bei Kl-Modellen

2.1.1 Ressourcenverbrauch bei KI-Modellen

Nachhaltigkeit

Stromverbrauch

Rechenleistung begrenzt, KI-Modelle wachsen schneller als verfügbare Leistung

2.2 Deep Neural Network - Boltzmann Maschinen (Erstmal DNN erklären generell)

2.2.1 Konzept und Anwendung des Modells

A BM is a symmetrical energy-based network consisting of neurons.¹⁵ The neurons of the network can be split into two functional groups, a set of visible neurons and a set of hidden neurons.¹⁶ Therefore, the BM is a two-layer model and has a visible layer ("v") and a hidden layer ("h").¹⁷ The visible layer is the interface between the network and the environment. It receives data inputs during training and sets the state of a neuron to either 0; 1 which represents activated or not activated. On the other hand, the hidden units are not connected to the environment and can be used to "explain" underlying constraints in the ensemble of input vectors and they cannot be represented by pairwise constraints.¹⁸ The connection between the individual neurons is referred to as bidirectional, as each neuron communicates with each other in both directions.¹⁹ In the following visualization 1, a general BM is depicted, where the upper layer embodies a vector of stochastic binary 'hidden' features, while the lower layer embodies a vector of stochastic binary 'visible' variables.²⁰

¹⁵Vgl. Amari/Kurata/Nagaoka 1992, p. 260

¹⁶Vgl. Ackley/Hinton, G. E./Sejnowski 1985, p. 154

¹⁷Vgl. Salakhutdinov/Hinton, G. 2009, p. 448

¹⁸Vgl. Ackley/Hinton, G. E./Sejnowski 1985, p. 154

 $^{^{19}\}mathrm{Vgl.}$ Ackley/Hinton, G. E./Sejnowski 1985, p. 149

²⁰Vgl. Salakhutdinov/Hinton, G. 2009, p. 449

Abb. 1: Visualization of a general BM

It contains a set of visible units $v \in \{0,1\}^D$, and a set of hidden units $h \in \{0,1\}^P$ (see Fig. 1). The energy of the state $\{v,h\}$ is defined as:

$$E(v, h; \theta) = -\frac{1}{2}v^{T}Lv - \frac{1}{2}h^{T}Jh - v^{T}Wh$$
(2.1)

where $\theta = \{W, L, J\}$ are the model parameters.²¹ W, L, J represent visible-to-hidden, visible-to-visible and hidden-to-hidden weights.

The network can update the weights "W" that exist between the neurons through specific training rules based on the observations that served as input.²²

As early as 1985, one of the founding fathers of artificial intelligence, "Geoffrey Hinton", was aware that an BM is able to learn its underlying features by looking at data from a domain and developing a generative internal model.²³ In the next step, it is possible to generate examples with the same probability distribution as the examples shown.

2.2.2 Energiefunktion

2.2.3 Training von BMs

If the diagonal elements L and J of the general BM introduced earlier, are set to 0 the known model of a RBM establishes shown in fig.2.²⁴

²¹448 Salakhutdinov/Hinton, G. 2009, Vgl.

 $^{^{22}}$ Vgl. Barra et al. 2012, pp. 1–2

 $^{^{23}\}mathrm{Vgl.}$ Ackley/Hinton, G. E./Sejnowski 1985, p. 148

²⁴Vgl. Salakhutdinov/Hinton, G. 2009, p. 449

Abb. 2: Visualization of a RBM

As a result no more visible-to-visible and hidden-to-hidden connections can be found in the network. The configuration of the visible and hidden units (v, h) has an energy (Hopfield, 1982) given by:

$$E(v,h) = -\sum_{i \in \text{visible}} a_i v_i - \sum_{j \in \text{hidden}} b_j h_j - \sum_{i,j} v_i h_j w_{ij}$$
(2.2)

where v_i, h_j are the binary states of visible unit i and hidden unit j, a_i, b_j are their biases and w_{ij} is the weight between them.²⁵

Markov-Chain-Monte-Carlo-Verfahren

Metropolis Hastings, Contrastive Divergence

2.2.4 Aktuelle Probleme mit RBM/BM

Exact maximum likelihood learning in the Boltzmann machine is infeasible due to the exponentially increasing computation time with the number of hidden units. Hinton and Sejnowski's 1983 algorithm approximates this via Gibbs sampling, but it is limited by the significant time needed to reach the stationary distribution in a complex, multimodal energy landscape.

²⁵Vgl. Hinton, G. E. 2012, pp. 3-4

2.3 Hardwarebeschleuniger

2.3.1 Aktuelle Ansätze im Bereich KI und weitere Lösungen

Asics

Quantencomputing

2.3.2 ISING Maschine/ Physikinspirierter Hardwarebeschleuniger

Konzept (mit Energiefunktion), Probleme der Digitalrechner bzw. Unterschied zu Digitalrechner

Aktuelle Anwendung

Potentielle Einsatzgebiete für KI-Modelle

Parallelen Energiefunktion BM und ISING Maschine

2.4 Memristor Hopfield Network

- 2.4.1 Memristor
- 2.4.2 Hopfield Network
- 2.4.3 Crossbar
- 2.4.4 Output Hopfield Networtk
- 2.4.5 Noisy HNN

- 3 Zielspezifikation und Darlegung der Forschungsmethodik
- 3.1 Zielspezifikation (genauer als in Einleitung, Metriken erwähnen, Erfolg meiner Methode bewerten, Welcher Teil der Forschungsfrage wird beantwortet?)
- 3.2 Design Science Research
- 3.3 Zielsetzung(ohne gneaue Metriken nennen, generell halten)
- 3.4 Laborexperiment für die Umsetzung

- 4 Implementierung/Laborexperiment der Simulator Pipeline
- 4.1 Zielsetzung und Forschungsmethodik
- 4.2 Aufbau der Simulator Pipeline
- 4.3 KI-Bibliothek Scikit-Learn

- 5 Evaluation der BM auf dem physikinspiriertem Hardwarebeschleuniger
- 5.1 Zielsetzung und Forschungsmethodik
- 5.1.1 Prediction Accuracy
- 5.1.2 Troughput (Samples/Sec)
- 5.1.3 Energieverbrauch (Energy/Operation)
- 5.2 Vergleichen mit anderen Hardwarebeschleuniger, FPGA, GPU oder CPU aus der Literatur

6 Kritische Reflexion und Ausblick

- 6.1 Evaluation der Erkenntnisse in Bezug auf die Zielsetzung der Arbeit
- 6.2 Kritische Reflexion der Ergebnisse und Methodik
- 6.3 Zielsetzung(ohne gneaue Metriken nennen, generell halten)
- 6.4 Ergebnisextration für Theorie und Praxis (evtl. mit 6.4 Zusammenlegen)
- 6.5 Ausblick

Appendix

List of appendices

Anhang 1	So fun	${ m ktioniert's}$	· .																	14
Anhan	g 1/1	Wieder r	nal	ei	ne	Αb	bi	ldu	ıng							 				14

Appendix 1: So funktioniert's

Um den Anforderungen der Zitierrichtlinien nachzukommen, wird das Paket tocloft verwendet. Jeder Anhang wird mit dem (neu definierten) Befehl \anhang{Bezeichnung} begonnen, der insbesondere dafür sorgt, dass ein Eintrag im Anhangsverzeichnis erzeugt wird. Manchmal ist es wünschenswert, auch einen Anhang noch weiter zu unterteilen. Hierfür wurde der Befehl \anhangteil{Bezeichnung} definiert.

In Anhang 1/1 finden Sie eine bekannte Abbildung und etwas Source Code in ??.

Anhang 1/1: Wieder mal eine Abbildung

Abb. 3: Mal wieder das DHBW-Logo.

List of references

- Ackley, D. H./Hinton, G. E./Sejnowski, T. J. (1985): A Learning Algorithm for Boltzmann Machines. In: *Cognitive Science* 9.1, pp. 147-169. ISSN: 0364-0213. DOI: 10.1016/S0364-0213(85)80012-4. URL: https://www.sciencedirect.com/science/article/pii/S0364021385800124 (retrieval: 02/16/2024).
- Amari, S./Kurata, K./Nagaoka, H. (1992): Information Geometry of Boltzmann Machines. In: *IEEE Transactions on Neural Networks* 3.2, pp. 260-271. ISSN: 1941-0093. DOI: 10.1109/72.125867. URL: https://ieeexplore.ieee.org/abstract/document/125867 (retrieval: 02/16/2024).
- Barra, A./Bernacchia, A./Santucci, E./Contucci, P. (2012): On the Equivalence of Hopfield Networks and Boltzmann Machines. In: *Neural Networks* 34, pp. 1-9. ISSN: 0893-6080. DOI: 10.1016/j.neunet.2012.06.003. URL: https://www.sciencedirect.com/science/article/pii/S0893608012001608 (retrieval: 02/16/2024).
- Cai, F./Kumar, S./Van Vaerenbergh, T./Liu, R./Li, C./Yu, S./Xia, Q./Yang, J. J./Beausoleil, R./Lu, W./Strachan, J. P. (2019): Harnessing Intrinsic Noise in Memristor Hopfield Neural Networks for Combinatorial Optimization. DOI: 10.48550/arXiv.1903.11194. arXiv: 1903.11194 [cs]. URL: http://arxiv.org/abs/1903.11194 (retrieval: 02/15/2024). preprint.
- Dario Amodei/Danny Hernandez (2024): AI and Compute. URL: https://openai.com/research/ai-and-compute (retrieval: 02/15/2024).
- Hintemann, R./Hinterholzer, S. (2022): Data Centers 2021: Data Center Boom in Germany Continues Cloud Computing Drives the Growth of the Data Center Industry and Its Energy Consumption. DOI: 10.13140/RG.2.2.31826.43207.
- Hinton, G. E. (2012): 'A Practical Guide to Training Restricted Boltzmann Machines'. In: Neural Networks: Tricks of the Trade: Second Edition. Ed. by Grégoire Montavon/Geneviève B. Orr/Klaus-Robert Müller. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, pp. 599–619. ISBN: 978-3-642-35289-8. DOI: 10.1007/978-3-642-35289-8_32. URL: https://doi.org/10.1007/978-3-642-35289-8_32 (retrieval: 02/15/2024).
- Luccioni, A. S./Jernite, Y./Strubell, E. (2023): Power Hungry Processing: Watts Driving the Cost of AI Deployment? DOI: 10.48550/arXiv.2311.16863. arXiv: 2311.16863 [cs]. URL: http://arxiv.org/abs/2311.16863 (retrieval: 02/15/2024). preprint.
- Mohseni, N./McMahon, P. L./Byrnes, T. (2022): Ising Machines as Hardware Solvers of Combinatorial Optimization Problems. DOI: 10.48550/arXiv.2204.00276. arXiv: 2204.00276 [physics, physics:quant-ph]. URL: http://arxiv.org/abs/2204.00276 (retrieval: 02/15/2024). preprint.
- Nazm Bojnordi, M./Ipek, E. (2016): Memristive Boltzmann Machine: A Hardware Accelerator for Combinatorial Optimization and Deep Learning, p. 13. 1 p. DOI: 10.1109/HPCA. 2016.7446049.
- Salakhutdinov, R./Hinton, G. (2009): Deep Boltzmann Machines. In: Proceedings of the Twelth International Conference on Artificial Intelligence and Statistics. Artificial Intelligence

- gence and Statistics. PMLR, pp. 448-455. URL: https://proceedings.mlr.press/v5/salakhutdinov09a.html (retrieval: 02/16/2024).
- Wang, T./Roychowdhury, J. (2017): Oscillator-Based Ising Machine. DOI: 10.48550/arXiv. 1709.08102. arXiv: 1709.08102 [physics]. URL: http://arxiv.org/abs/1709.08102 (retrieval: 02/15/2024). preprint.
- Wittpahl, V., ed. (2019): Künstliche Intelligenz: Technologie | Anwendung | Gesellschaft. Berlin, Heidelberg: Springer. ISBN: 978-3-662-58041-7 978-3-662-58042-4. DOI: 10.1007/978-3-662-58042-4. URL: http://link.springer.com/10.1007/978-3-662-58042-4 (retrieval: 02/15/2024).

Erklärung

Ich versichere hiermit, dass ich die vorliegende Arbeit mit dem Thema: Mein Titel selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe. Ich versichere zudem, dass die eingereichte elektronische Fassung mit der gedruckten Fassung übereinstimmt.

(Ort, Datum) (Unterschrift)