Assignment 4

Shuai

March 12, 2023

1 Robust Homography Estimation and Stitching

E1:

Two cameras
$$P_i = [A, t_i]$$
 $P_i = [A - t_i]$ with same camera center. there is a homography H between two .

First, the expression for the camera center.

$$\begin{cases}
P_i \begin{bmatrix} C_i \\ 1 \end{bmatrix} = A_i C_i + t_1 & C_1 = -A_i^{-1}t_1 \\
P_2 \begin{bmatrix} C_2 \\ 1 \end{bmatrix} = A_2 C_2 + t_2 & C_2 = -A_2^{-1}t_2
\end{cases}$$

$$C_1 = C_2 \implies -A_i^{-1}t_i = -A_2^{-1}t_2$$

$$C_1 = C_2 \implies -A_i^{-1}t_i = -A_2^{-1}t_2$$

$$A_1A_1^{-1}t_i = A_2A_1^{-1}t_1$$

$$A_2A_1^{-1}t_i = t_2$$

$$A_1A_1^{-1}t_i = t_1$$

$$A_1A_1^{-1}t_i = t_1$$

$$A_1A_1^{-1}t_i = t_1$$

$$A_1A_1^{-1}t_i = t_1$$
and $A_1A_1^{-1}t_i = t_1$

$$A_1A_1^{-1}t_i = t_1$$

$$A_1A_1^{-1}t_i =$$

Figure 1

E2:

Degrees of freedom is 8.

Minimal number of point correspondences is 4.

Iterations of RANSAC is $(1 - 0.9^4)^n < 1 - 0.98$ $n \ge 3.66$ n = 4

CE1:

The number of SIFT features in a is 947.

The number of SIFT features in b is 865.

The number of matches is 204.

The number of inliers is 149.

Figure 2

2 Robust Essential Matrix Estimation

E3:

Degrees of freedom is 5.

Minimal number of point correspondences is 5.

Iterations of RANSAC is $(1 - 0.9^5)^n < 1 - 0.98$ $n \ge 4.38$ n = 5

CE2:

The number of inliers = 1465

⊞ RMS

0.4119

Figure 3

Figure 4

3 Calibrated Structure from Motion and Local Optimization

CE3:

The final RMS error is 0.3939.

Figure 5

CE4:

The final RMS error is 0.2461.

Figure 6

4 Dynamic Objects and Factorization

E4:

The matrix X can be rewritten as $X = C_k B + t$, where $C = [c1 \ c2 \ ... \ cm]$ is a matrix with the vectors cik as columns, $B = [B1 \ B2 \ ... \ Bn]$ is a matrix with the vectors Bj as rows, and t1 is a vector of all ones. Since the row vectors B1,...,Bn and 1 are linearly independent, the rank of X is n+1.

To minimize $||A - X||^2_F$, we can set the gradient of the objective function with respect to X to zero:

$$\nabla X(\|A - X\|^2_F) = -2(A - X) = 0$$

This yields X = A. Substituting X in the equation for X, we get:

$$A = C_K B + t$$

Multiplying both sides by 1t1, we get:

$$tA = tC_KB + tt$$

Since $tB = [sum(B1) sum(B2) ... sum(Bn)] = nB^-$, where B^- is the mean row vector of B, and (1t1)t1 = n, we have:

$$tA = nC_KB^- + n$$

Dividing both sides by n, we get:

$$A^- = C_K B^- + 1,$$

where A is the row mean vector of A. Solving for ti, we get:

$$t_i = A^-i - c_{ik}B^-_{k},$$

where A_i is the row mean vector of $[a_{i1} \ a_{i2} \dots a_{in}]$ and B_k is the mean row vector of B_k .

To find B_k and c_{ik} when t_i has been eliminated:

Compute the mean row vector B of B.

Subtract B^- from each row vector B_j to get the centered row vectors $B_j^- = B_j$ - B^- .

Compute the centered matrix $C = [c_1 c_2 ... c_m]$, where $c_{ik} = c_{ik} - t_i B_k$.

Solve for the centered matrix C by minimizing the objective function $\|A^{\tilde{}} - \|C^{\tilde{}}B^{\tilde{}}\|_{F}$, where $A^{\tilde{}}$ is the centered matrix of A, and $B^{\tilde{}} = [B_1^{\tilde{}} B_2^{\tilde{}} ... B_n^{\tilde{}}]$ is the matrix with the centered row vectors $B_1^{\tilde{}}$ as rows.

Once C and B have been found, we can compute B_k as $B_k = B_k + B$, and c_{ik} as $c_{ik} = c_{ik} + t_i$.

Note that this method assumes that the noise in the measurements a_{ij} is uncorrelated and has zero mean.