回归分析-第五次上机

南开大学统计与数据科学学院,马东升

2024年11月19日

习题 6.9 1

题目 1.1

表 1 给出某个化学试验在三种浓度(%)、四种温度(摄氏度)下的得率的观测值:

表 1: 化学试验观测值								
浓度\温度	10	24	38	52				
2	14,10	11,11	13,19	10,12				
4	9,7	10,8	7,11	6,10				
6	5,11	13,14	12,13	14,10				

(1) 将数据表成分析模型 (6.2.1) 的模式;

注: 模型 (6.2.1) 为
$$\begin{cases} y_{ij} &= \mu + \alpha_i + \beta_j + e_{ij} \\ e_{ij} &\stackrel{IID}{\sim} N(0, \sigma^2) \end{cases} i = 1, ..., a; j = 1, ..., b$$

- (2) 在显著性水平 $\alpha = 0.05$ 下检验浓度对产品得率的影响有无显著差异?
- (2) 在显著性水平 $\alpha = 0.05$ 下检验温度对产品得率的影响有无显著差异?

1.2 源代码(R)

```
1 # 因素水平
   Temp \leftarrow rep(c("10", "24", "38", "52"), each = 6) # 4 * \mp
    Density \leftarrow \operatorname{rep}(\operatorname{rep}(\mathbf{c}("2", "4", "6"), \operatorname{each} = 2), \operatorname{times} = 4) \# 3 \ \text{\%} \ \text{?}
 4
    # 重复实验的响应变量
 5
 6
    Response \leftarrow \mathbf{c}(14,10,9,7,5,11,11,11,11,10,8,13,14,13,19,7,11,12,13,10,12,6,10,14,10)
 7
   # 组合数据
 8
    data <- data.frame(
9
      Factor1 = factor (Temp),
10
      Factor2 = factor (Density),
11
      Response = Response
12
13
    )
14
    # 查看数据
15
   head (data)
16
17
   #双因素方差分析(不包括交互项)
18
```

- 21 #显示方差分析表
- 22 **summary**(anova_result)

1.3 统计分析结论

1.3.1 第(1)问

$$\begin{cases} 14 &= \mu + \alpha_1 + \beta_1 + e_{111} \\ 10 &= \mu + \alpha_1 + \beta_1 + e_{112} \\ 11 &= \mu + \alpha_2 + \beta_1 + e_{211} \\ 11 &= \mu + \alpha_2 + \beta_1 + e_{212} \\ 13 &= \mu + \alpha_3 + \beta_1 + e_{311} \\ 19 &= \mu + \alpha_3 + \beta_1 + e_{312} \\ 10 &= \mu + \alpha_4 + \beta_1 + e_{411} \\ 12 &= \mu + \alpha_4 + \beta_1 + e_{412} \\ 9 &= \mu + \alpha_1 + \beta_2 + e_{121} \\ 7 &= \mu + \alpha_1 + \beta_2 + e_{122} \\ 10 &= \mu + \alpha_2 + \beta_2 + e_{221} \\ 8 &= \mu + \alpha_2 + \beta_2 + e_{222} \\ 7 &= \mu + \alpha_3 + \beta_2 + e_{322} \\ 6 &= \mu + \alpha_4 + \beta_2 + e_{421} \\ 10 &= \mu + \alpha_4 + \beta_2 + e_{422} \\ 5 &= \mu + \alpha_1 + \beta_3 + e_{131} \\ 11 &= \mu + \alpha_1 + \beta_3 + e_{132} \\ 13 &= \mu + \alpha_2 + \beta_3 + e_{231} \\ 14 &= \mu + \alpha_2 + \beta_3 + e_{232} \\ 12 &= \mu + \alpha_3 + \beta_3 + e_{332} \\ 14 &= \mu + \alpha_4 + \beta_3 + e_{431} \\ 10 &= \mu + \alpha_4 + \beta_3 + e_{431} \\ 10 &= \mu + \alpha_4 + \beta_3 + e_{432} \\ e_{ijk} &\stackrel{IID}{\sim} N(0, \sigma^2), i = 1, 2, 3, 4; j = 1, 2, 3; k = 1, 2 \end{cases}$$

1.3.2 第(2)(3)问

方差分析表如下表 2。

表 2: 双因素方差分析表

方差来源	平方和	自由度	均方	F值	P 值
温度 SSA	32.33	3	10.78	1.707	0.2013
浓度 SSB	69.33	2	34.67	5.490	0.0138
误差 SSE	113.67	18	6.31		
总和 SST	215.33	23			

由于温度对应的 p 值为 0.2013 > 0.05,则不能表明在 $\alpha=0.05$ 下浓度对产品得率有显著性影响。由于浓度对应的 p 值为 0.0138 < 0.05,则表明在 $\alpha=0.05$ 下浓度对产品得率有显著性影响。