Непрерывные распределения

Нормальное распределение: $X \sim N(\mu, \sigma^2)$

Число успехов в серии из бесконечно большого числа испытаний Бернулли.

• Функция плотности:

$$f_X(x) = \frac{1}{\sqrt{2\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

• μ – математическое ожидание X, σ^2 - дисперсия X.

Хи-квадрат распределение: $Y \sim \chi^2(q)$

Распределение суммы квадратов **q** независимых стандартных нормальных случайных величин.

•
$$X_1, X_2, ..., X_q - X_i \sim N(0; 1)$$

•
$$Y = X_1^2 + X_2^2 + ... + X_q^2$$

q – число степеней свободы

•
$$E(Y) = q$$

•
$$Var(Y) = 2q$$

Распределение Стьюдента: $T \sim t(q)$

Искусственно созданное распределение для анализа малых выборок.

•
$$X_0, X_1, ..., X_q - X_i \sim N(0; 1)$$

$$\bullet \ T = \frac{X_0}{\sqrt{\frac{1}{q} \sum_1^q X_i^2}}$$

q – число степеней свободы

•
$$E(T) = 0$$

•
$$E(T) = 0$$

• $Var(T) = \frac{q}{q-2}$, $q > 2$

Распределения в R

Распределение	Обозначение в R
Нормальное	norm
Хи-квадрат	chisq
Стьюдента	t

Определение	Реализация в R	
Медиана		
$x: P(X \le x) \ge 0.5,$ $P(X \ge x) \ge 0.5.$	qname (0,5)	
Mo	ода	
$x: \max f_X(x)$	<pre>optimize(f, c(a, b), maximum</pre>	
	f — функция плотности, а и b — границы поиска максимума	

Нахождение моды с помощью пакета modeest.

Распределение	Команда в R
Нормальное	normMode(mean=0,)
Хи-квадрат	chisqMode(df, ncp=0)
Стьюдента	tMode(df, ncp=0)

По аналогии с одномерной функцией плотности $f_X(x)$ существует функция плотности для двумерного распределения $f_{XY}(x,y)$.

Формула

Реализация в R

Математическое ожидание (непрерывный случай, одномерное распределение)

$$E(X) = \int_{-\infty}^{+\infty} x f_X(x) \, dx$$

```
f <- function(x) {
   x*dname(x)
}
mu <- integrate(f, -Inf,
Inf)</pre>
```

По аналогии с одномерной функцией плотности $f_X(x)$ существует функция плотности для двумерного распределения $f_{XY}(x,y)$.

Формула

Реализация в R

Математическое ожидание (непрерывный случай, двумерное распределение)

$$E(X) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x f_{XY}(x, y) \, dx dy$$

$$f = x f_{XY}(x, y)$$

Числовые характеристики зависимости

Формула Реализация в R

Ковариация двух случайных величин

$$cov(X,Y) = E(XY) - E(X)E(Y)$$

Корреляция двух случайных величин

$$\rho(X,Y) = \frac{cov(X,Y)}{\sqrt{D(X)}\sqrt{D(Y)}} \in [-1;1]$$