Calidad del Aire

Introducción: Fuente de datos

Fuente	Descripción	Registros	Resolución
EWE 980	Sensor Bosch para medir contaminantes en interior.	+2 Millones	Cada 3 segundos
	Datos del Gobierno de las Estaciones de Monitoreo Ambiental.	+2,100	Cada 60 segundos

Introducción: Variables.

		Variable	Rango de Valores	Tipo de Variable
	1000	Temperatura	-40C - 85C	Continua
	1000	Humedad	10 - 95%	Continua
\mathcal{X}	1000	Presion Atmosférica	300 hPa - 1100 hPa	Continua
		Fechas y Hora	12/02/2021 - 24/04/2021	*
		Contaminantes	ppm principalmente.	Discreta
ν	1000	Resistencia del Gas	0 Ohms - 3 Mega Ohms	Continua
<i>y</i>	650	IAQ	0 - 500 IAQ	Continua

Introducción: Exploración de Datos del Sensor

Datos faltantes: ~1%

Introducción: Exploración de Datos SINAICA

Introducción: Exploración de Datos del Gobierno

Solución: Preprocesamiento

Procesamos los datos como una serie de Tiempo: como en el Miniproyecto 4 y en un tutorial de oficial de Tensorflow y Keras.

$$0-0-x-0 \rightarrow$$

Tuvimos que imputar, porque **todos** los datos tenían algún faltante, como se vió anteriormente. Usamos interpolación, aunque exploramos KNN, Métodos Lineales Generalizados (Bayes), Medias, Hot Deck.

Escalamiento: al tener datos en diversas escalas.

Limpieza de Datos: descartar primeras observaciones por el Windowing.

Solución: Arquitectura de Redes Neuronales

Dense:

- Simple y Rápida.
- No entregó tan buenos resultados.
- Imprescindible:
 Es la base del r|esto de los distintas arquitecturas.

Convolutional 1D:

- Desempeño robusto.
 - Demandante en procesamiento.
 - Resultados "ruidosos".

LSTM:

- Desempeño razonable.
- Procesamiento intermedio.
- Resultados estables.

Solución: Propusimos Combinar CNN+LSTM+DNN

Combinación de Redes:

- Esperábamos mejores resultados sustancialmente mejores: no fue el mejor.
- Logramos desempeño estable y razonable.
- El tiempo de entrenamiento fue bastante razonable, aún teniendo una arq compleja.
- Técnicamente fue un reto implementarlo.

	Modelo	Tiempo	# Params	val_mae	mae
	model_conv01	14m3.57s	294,401	62.76	62.73
	model_best03b	8m50.63s	162,115	74.06	61.15
	model_best03a	14m0.58s	485,633	75.94	55.80
	model_lstm03	9m11.55s	183,297	87.76	21.71

Resultados

Conclusiones: Logros y Siguientes Pasos

• Logros:

- Se logró poder predecir, aunque mal, sabemos cuanto (medible).
- Logramos reducir mucho el overfitting.
- Aprendimos mucho sobre la realización de un proyecto, redes neuronales y modelos de series de tiempo; y que son comunes.
- Siguientes Pasos:
 - Hacer modelos más grandes y con más historia.
 - Buscar cómo mejorar el desempeño con hyper parameter tuning y la arquitectura de la red.

Conclusiones: Aprendizajes

- ✓ Cumplir con los principios científicos: reproducibilidad y repetibilidad.
- ✓ Nunca se debe subestimar la necesidad (y el tiempo que toma) de limpiar, explorar, imputar, "corregir" los datos.
- ✓¡Mejorar el desempeño es difícil!
- ✓ No se debe confiar en la disponibilidad de datos externos.
- ✓ Hay muchísimos recursos en Internet: muy buenos y malos.
- ✓ Las APIs cambian: No tener miedo a aprender continuamente.
- ✓ Nos resultó muy útil tener un modelo baseline: nuestra H_0
- ✓ Tener cuidado con los detalles.
- ✓ Es importante "des-escalar" los datos para darse una idea más clara.
- ✓ Construir modelos simples y aumentar paulatinamente la complejidad.

¡Gracias!

¿Preguntas?