Binary Coded Decimal (BCD):

- Decimal numbers are more natural to humans. Binary numbers are natural to computers.
 Quite expensive to convert between the two.
- If little calculation is involved, we can use some *coding schemes* for decimal numbers.
- One such scheme is BCD, also known as the 8421 code.
- Represent each decimal digit as a 4-bit binary code.

Decimal digit	0	1	2	3	4
BCD	0000	0001	0010	0011	0100
Decimal digit	5	6	7	8	9
BCD	0101	0110	0111	1000	1001

Some codes are unused, eg: $(1010)_{BCD}$, $(1011)_{BCD}$, ..., $(1111)_{BCD}$. These codes are considered as errors.

- Easy to convert, but arithmetic operations are more complicated.
- Suitable for interfaces such as keypad inputs and digital readouts.
- Examples:

$$(234)_{10} = (0010\ 0011\ 0100)_{BCD}$$

 $(7093)_{10} = (0111\ 0000\ 1001\ 0011)_{BCD}$

$$(1000\ 0110)_{BCD} = (86)_{10}$$

 $(1001\ 0100\ 0111\ 0010)_{BCD} = (9472)_{10}$

Notes: BCD is not equivalent to binary.

Example: $(234)_{10} = (11101010)_2$

Excess-3:

• Each decimal digit is taken, 3 is added to it and the resulting value is converted to its 4 bit binary value.

Example:

$$(234)_{10} = (0101\ 0110\ 0111)_{\text{excess-3}}$$

Table 1.5Four Different Binary Codes for the Decimal Digits

Decimal Digit	BCD 8421	2421	Excess-3	8, 4, -2, -1
0	0000	0000	0011	0000
1	0001	0001	0100	0111
2	0010	0010	0101	0110
3	0011	0011	0110	0101
4	0100	0100	0111	0100
5	0101	1011	1000	1011
6	0110	1100	1001	1010
7	0111	1101	1010	1001
8	1000	1110	1011	1000
9	1001	1111	1100	1111
	1010	0101	0000	0001
Unused	1011	0110	0001	0010
bit	1100	0111	0010	0011
combi-	1101	1000	1101	1100
nations	1110	1001	1110	1101
	1111	1010	1111	1110

Unsigned number:

- Numbers don't hold any sign
- Range: 0 to 2ⁿ-1 for n bits

Negative Numbers Representation:

- There are three common ways of representing signed numbers (positive and negative numbers) for binary numbers:
 - ❖ Sign-and-Magnitude
 - ❖ 1s Complement
 - ❖ 2s Complement

Sign-and-Magnitude:

- Negative numbers are usually written by writing a minus sign in front.
 - ***** Example:

$$-(12)_{10}$$
, $-(1100)_2$

• In computer memory of fixed width, this sign is usually represented by a bit:

```
0 for +
```

1 for -

Example: an 8-bit number can have 1-bit sign and 7-bits magnitude.

```
1101_2 = 13_{10} (a 4-bit unsigned number)

0 1101 = +13_{10} (a positive number in 5-bit signed magnitude)

1 1101 = -13_{10} (a negative number in 5-bit signed magnitude)
```

```
0100_2 = 4_{10} (a 4-bit unsigned number)

00100 = +4_{10} (a positive number in 5-bit signed&magnitude)

10100 = -4_{10} (a negative number in 5-bit signed

magnitude)
```

1 0100 = -4_{10} (a negative number in 5-bit signed magnitude)

01002

0100 = +4₁₀

- Largest Positive Number: 0 1111111 +(127)₁₀
- Largest Negative Number: 1 1111111 -(127)₁₀
- Zeroes: 0 0000000 +(0)₁₀

- Range: $-(127)_{10}$ to $+(127)_{10}$
- Signed numbers needed for negative numbers.

Range:
$$=-(2^{n-1}-1)$$
 to $+(2^{n-1}-1)$

1s Complement:

■ Given a number x which can be expressed as an *n*-bit binary number (*i.e.* integer part has n digits and fraction has m digit), its negative value can be obtained in 1s-complement representation using:

+7	0111	-7	1000
+6	0110	-6	1001
		-5	1010
		-4	1011
		-3	1100
		-2 -1	1101 1110

```
+5 0101
```

- +4 0100
- +3 0011
- +2 0010
- +1 0001
- +0 0000

-12 in 1's complement:

invert the bits by replacing the 1s with 0s and 0s with 1s

$$(11110011)_2$$

Essential technique: invert all the bits.

Examples: 1s complement of $00000001 = (111111110)_{1s}$

1s complement of $011111111 = (10000000)_{1s}$

- Largest Positive Number: 0 1111111 +(127)₁₀
- Largest Negative Number: 1 0000000 -(127)₁₀
- Zeroes: 0 0000000

1 1111111

- Range: $-(127)_{10}$ to $+(127)_{10}=-(2^{n-1}-1)$ to $+(2^{n-1}-1)$
- The most significant bit still represents the sign:

$$0 = +ve; 1 = -ve.$$

Examples (assuming 8-bit binary numbers):

$$(14)_{10} = (00001110)_2 = (00001110)_{1s}$$

$$-(14)_{10} = -(00001110)_2 = (11110001)_{1s}$$

2s Complement:

• Method 1: Essential technique: invert all the bits and add 1. Examples:

```
2s complement of (0000001)_{2s} = (11111110)_{1s} \text{ (invert i.e 1's complement)}= (11111111)_{2s} \text{ (add 1)}
2s complement of (0111110)_{2s} = (10000001)_{1s} \text{ (invert i.e 1's complement)}= (10000010)_{2s} \text{ (add 1)}
```

• Method 2: Keep unchanged till 1st occurrence of 1 from LSB and invert remaining 1's into 0's and 0's into 1's till MSB

$$(01111110)_{2s} = (10000010)_{2s}$$

■ Largest Positive Number: 0 1111111

+(127)₁₀

■ Largest Negative Number: 1 0000000 -(128)₁₀

- Zero: 0 0000000
- Range: $-(128)_{10}$ to $+(127)_{10}$ = $-(2^{n-1})$ to $+(2^{n-1}-1)$
- The most significant bit still represents the sign:

$$0 = +ve; 1 = -ve.$$

Examples (assuming 8-bit binary numbers):

$$(14)_{10} = (00001110)_2 = (00001110)_{2s}$$

$$-(14)_{10} = -(00001110)_2 = (11110010)_{2s}$$