偏微分方程数值解

孙天阳

中国科学技术大学数学科学学院

tysun@mail.ustc.edu.cn

2024年11月7日

目录

	目录	2				
Ι	一维线性偏微分方程	3				
1	Fourier 级数和三角插值					
2	模型方程-对流方程	5				
	2.1 对流方程的初值问题	5				
	2.2 对流方程的初值问题的有限差分方法——二层/单步格式	6				
	2.2.1 方程的离散格式	6				
	2.3 FTCS 格式	7				
	2.4 人工黏性	9				
	2.5 CTCS 格式	12				
	2.6 带源项的 PDE 初值问题	14				
	2.7 FTBS 格式	15				
	2.8 迎风格式与 CFL 条件	16				
	2.9 BTCS 格式	17				
	2.10 截断误差	19				
	2.11 整体误差	20				
	2.12 基于 PDE 的积分形式的有限差分格式的构造	21				
	2.13 变系数对流方程	23				
3	扩散方程	24				
	3.1 常系数扩散方程初值问题	24				
	3.2 待定系数法构造高阶逼近	25				
	3.3 变系数扩散方程	26				
	3.3.1 非守恒型扩散方程	26				
	3.3.2 守恒型扩散方程	27				
4	偏微分方程初值问题的适定性	28				
	4.1 适定性定义	28				
	4.2 一维常系数标量偏微分方程	29				
	43 一维堂系数一阶偏微分方程组	30				

目录		2
11 1/2		

	4.4	一维常系数抛物型偏微分方程组	31		
	4.5	一般常系数微分方程组	32		
	4.6		33		
5	有限差分方法的基本性质				
	5.1	截断误差与差分方法的精度	34		
	5.2	差分方法的相容性	35		
	5.3	差分方法的收敛性	36		
	5.4	稳定性	37		
	5.5	LAX 定理	38		
	5.6	偏微分方程的耗散性、色散性	39		
	5.7	差分方程的耗散性、色散型	40		
6 书面作业					
	6.1	第一次书面作业	41		
	6.2	第二次书面作业	42		
	6.3	第三次书面作业	43		
	6.4	第四次书面作业	44		
	6.5	第五次书面作业	46		
	6.6	第六次书面作业	47		
	6.7	第七次书面作业	48		
II	_	维线性偏微分方程	51		
7	二维	线性偏微分方程的初值问题	52		
	7.1	二维常系数对流方程的初值问题	52		
	7.2	二维变系数对流方程的初值问题	52		

Part I 一维线性偏微分方程

Chapter 1

Fourier 级数和三角插值

Chapter 2

模型方程-对流方程

2.1 对流方程的初值问题

考虑常系数的对流方程的初值问题

$$\begin{cases} u_t = u_x, & -\infty < x < \infty, t > 0 \\ u(x, 0) = f(x), & -\infty < x < \infty \end{cases}$$

其中 f(x) 是一个光滑的 2π 周期的周期函数.

初值是一个谐波

一般情况的初值

对流方程初值问题的解的特性

解的特征线为直线,并且解沿着这些特征线保持不变,初值沿着特征线以有限速度传播。

2.2 对流方程的初值问题的有限差分方法——二层/单步格式

由于本问题是 2π 周期的, 所以将区域 $[0,2\pi]$ 用 J+1 个节点 x_i 均匀剖分, 即

$$x_j = j \cdot h, \quad j = 0, 1, \dots, J, \quad h = \frac{2\pi}{J}.$$

时间同样均匀剖分, 取时间步长为 Δt , 即

$$t_n = n \cdot \Delta t, \quad n = 0, 1, \dots, N.$$

将解 u(x,t) 在 (x,t) 平面上的格点 $P=(x_j,t_n)$ 处的值记为 $u_j^n=u(x_j,t_n)$,将近似值记为 $v_j^n\simeq u_j^n$. 由于 u 是 2π 周期的,所以我们可以期待 v 也是 2π 周期的,即 $v_j^n=v_{j+J}^n$.

2.2.1 方程的离散格式

显式格式:由己知层的函数值直接得到未知层的函数值、隐式格式、 多步格式

2.3 FTCS 格式

使用前差近似 u_t , 使用中心差近似 u_x , 并对空间使用记号 D_0 , 得到

$$u_t(x_j, t_n) \simeq \frac{v_j^{n+1} - v_j^n}{\Delta t}, \quad u_x(x_j, t_n) \simeq \frac{v_{j+1}^n - v_{j-1}^n}{2h} = D_0 v_j^n$$

代入对流方程并整理得到

$$u_t = u_x \Longrightarrow v_j^{n+1} = v_j^n + \frac{\Delta t}{2h}(v_{j+1}^n - v_{j-1}^n) = v_j^n + \Delta t D_0 v_j^n = (1 + \Delta t D_0) v_j^n =: Q v_j^n$$

此处我们用符号 Q 来记算子 $1 + \Delta t D_0$. 另外边值条件为

$$u(x,0) = f(x) \Longrightarrow v_i^0 = f(x_i) =: f_i, \quad j = 0, \dots, J.$$

初值是一个谐波

设

$$f(x) = \frac{1}{\sqrt{2\pi}}\hat{f}(\omega)e^{i\omega x} \Longrightarrow v_j^0 = f(x_j) = \frac{1}{\sqrt{2\pi}}\hat{f}(\omega)e^{i\omega x_j} =: \frac{1}{\sqrt{2\pi}}\hat{v}^0(\omega)e^{i\omega x_j}.$$

根据 FTCS 格式计算有

$$v_{j}^{1} = v_{j}^{0} + \frac{\Delta t}{2h}(v_{j+1}^{0} - v_{j-1}^{0}) = \frac{1}{\sqrt{2\pi}}\hat{v}^{0}(\omega) \left(e^{i\omega x_{j}} + \frac{\Delta t}{2h}e^{i\omega x_{j+1}} - \frac{\Delta t}{2h}e^{i\omega x_{j-1}}\right)$$
$$= \frac{1}{\sqrt{2\pi}}\hat{v}^{0}(\omega)e^{i\omega x_{j}} \left(1 + \frac{\Delta t}{2h}e^{i\omega h} - \frac{\Delta t}{2h}e^{-i\omega h}\right) = \frac{1}{\sqrt{2\pi}}\hat{v}^{0}(\omega)e^{i\omega x_{j}} \left(1 + ir\sin\xi\right)$$

这里我们使用了记号

$$r := \frac{\Delta t}{h}, \quad \xi := \omega h.$$

根据以上的计算我们可以发现, 如果初值 f 也就是 v^0 是一个频率为 ω 的谐波, 那么根据 FTCS 格式计算出的下一个时间层 v^1 也是一个频率为 ω 的谐波, 并且二者之间的振幅的关系为

$$\hat{v}^{1}(\omega) = \hat{v}^{0}(\omega)(1 + ir\sin \xi).$$

容易看出这个计算对任意 n 都对, 所以我们有关系

$$\hat{v}^{n+1}(\omega) = \hat{Q}\hat{v}^n(\omega) = \dots = \hat{Q}^{n+1}\hat{v}^0(\omega), \quad \hat{Q} := 1 + ir\sin\xi.$$

称复数 \hat{Q} 为算子 Q 的符号, 也称为格式 FTCS 的放大因子. 差分方程的解即为

$$v_j^n = \frac{1}{\sqrt{2\pi}} \hat{v}^n(\omega) e^{i\omega x_j} = \frac{1}{\sqrt{2\pi}} (1 + i\frac{\Delta t}{h} \sin(\omega h))^n \hat{f}(\omega) e^{i\omega x_j}.$$

前面的经验告诉我们解析解是

$$u_j^n = u(x_j, t_n) = f(x_j + t_n) = \frac{1}{\sqrt{2\pi}} \hat{f}(\omega) e^{i\omega x_j} e^{i\omega t_n}.$$

我们自然要研究当 Δt 和 h 趋于 0 时数值解 v_i^n 是否会收敛到解析解 u_i^n .

$$(1+\mathrm{i}\frac{\Delta t}{h}\sin(\omega h))^n = (1+\mathrm{i}\frac{\Delta t}{h}\omega h + \mathrm{i}\frac{\Delta t}{h}O(\omega^3 h^3))^n = (\mathrm{e}^{\mathrm{i}\omega\Delta t} + O(\omega^2\Delta t^2 + \omega^3\Delta t h^2))^n$$

$$= \mathrm{e}^{\mathrm{i}\omega t_n}(1+O(\omega^2\Delta t^2 + \omega^3\Delta t h^2))^n = \mathrm{e}^{\mathrm{i}\omega t_n}(1+nO(\omega^2\Delta t^2 + \omega^3\Delta t h^2)) = \mathrm{e}^{\mathrm{i}\omega t_n}(1+t_nO(\omega^2\Delta t + \omega^3 h^2))$$

小扰动

给定时间区间 [0,T], 给定空间区间 $[0,2\pi]$, 将时间划分为 J+1 份, 将空间划分为 N+1 份, 我们考虑这样一个小扰动

$$\hat{f}(\omega) = \begin{cases} 0, & \omega \neq \frac{N}{4} \\ \varepsilon, & \omega = \frac{N}{4} \end{cases}$$

则由前面的计算知道

$$\hat{v}^{J+1}(\frac{N}{4}) = \hat{Q}^{J+1}\hat{f}(\frac{N}{4}) = \varepsilon \left(1 + \mathrm{i}\frac{T}{J+1}\frac{N+1}{2\pi}\sin\left(\frac{2\pi}{N+1}\frac{N}{4}\right)\right)^{J+1} \sim \varepsilon \left(1 + \mathrm{i}\frac{T}{J+1}\frac{N+1}{2\pi}\right)^{J+1}$$

用我们更熟悉的 Δt 和 h 的记号来写就是

$$|\hat{v}^{J+1}(\frac{N}{4})|^2 \sim \varepsilon^2 |1 + i\frac{\Delta t}{h}|^{2\frac{T}{\Delta t}} = \varepsilon^2 (1 + \frac{\Delta t^2}{h^2})^{\frac{T}{\Delta t}}$$

当 Δt 和 h 趋于零, 且二者的比值为定值时, 上式发散.

稳定性

在实际计算中, 误差是不可避免的.

定义 2.3.1. 考虑一种差分格式, 如果存在依赖于 T 的常数 K(T) 使得

$$\lim_{\Delta t, h \to 0} \sup_{0 \leqslant t_n \leqslant T} |\hat{Q}^n| \leqslant K(T)$$

则称该方法是无条件稳定的.

从上面的例子可以看到 FTCS 格式不是无条件稳定的. 可以选择特定的收敛方式如 $\Delta t = ch^2$ 其中 c>0 是常数, 此时

$$|\hat{Q}^n|^2 = (1 + \frac{\Delta t^2}{h^2} \sin^2 \omega h)^n \leqslant (1 + c\Delta t)^n \leqslant e^{cn\Delta t} = e^{cT}$$

但这种方法并不实用, 因为一方面 Δt 是 h 的二阶小量, 导致时间步长太多, 需要的计算量大; 另一方面增长因子为指数级, 在 T 较大时也会放大一些小的扰动.

2.4 人工黏性

物理上的黏性, 也就是耗散性, 对应于数学上的偶数阶导数, 奇数阶导数对应于物理上的色散.

$$u_t = u_x + \sigma h u_{xx}$$

当 $h \to 0$ 时, 上述方程趋近于 $u_t = u_x$. 对 u_{xx} 用两个一阶的差分算子去近似

$$\frac{v_j^{n+1} - v_j^n}{\Delta t} = \frac{v_{j+1}^n - v_{j-1}^n}{2h} + \sigma h \frac{v_{j+1}^n - 2v_j^n + v_{j-1}^n}{h^2} = D_0 v_j^n + \sigma h D_+ D_- v_j^n$$

$$v_j^{n+1} = v_j^n + \frac{\Delta t}{2h} (v_{j+1}^n - v_{j-1}^n) + \sigma \frac{\Delta t}{h} (v_{j+1}^n - 2v_j^n + v_{j-1}^n) = (1 + \Delta t D_0 + \sigma h \Delta t D_+ D_-) v_j^n$$

初值是一个谐波

前半部分的计算在此前已经熟悉, 只需要类似计算后半部分

$$\begin{aligned} v_{j+1}^0 - 2v_j^0 + v_{j-1}^0 &= v_j^0 (\mathrm{e}^{\mathrm{i}\omega h} - 2 + \mathrm{e}^{-\mathrm{i}\omega h}) = v_j^0 (\cos\omega h + \mathrm{i}\sin\omega h + \cos\omega h - \mathrm{i}\sin\omega h - 2) = -4v_0^j \sin^2\frac{\omega h}{2} \\ v_j^1 &= v_j^0 \left(1 + \mathrm{i}r\sin\xi - 4\sigma r\sin^2\frac{\xi}{2} \right) \Longrightarrow \hat{v}^{n+1} = \hat{Q}\hat{v}^n, \\ \hat{Q} &= 1 + ir\sin\xi - 4\sigma r\sin^2\frac{\xi}{2}, \\ r &= \frac{\Delta t}{h}, \\ \xi &= \omega h \end{aligned}$$

$$\begin{split} |\hat{Q}|^2 &= (1 - 4\sigma r \sin^2 \frac{\xi}{2})^2 + r^2 \sin^2 \xi \\ &= 1 - 8\sigma r \sin^2 \frac{\xi}{2} + 16\sigma^2 r^2 \sin^4 \frac{\xi}{2} + r^2 \sin^2 \xi \\ &= 1 - 8\sigma r \sin^2 \frac{\xi}{2} + 16\sigma^2 r^2 \sin^4 \frac{\xi}{2} + 4r^2 \sin^2 \frac{\xi}{2} (1 - \sin^2 \frac{\xi}{2}) \\ &= \left(16\sigma^2 r^2 - 4r^2\right) \sin^4 \frac{\xi}{2} + \left(4r^2 - 8\sigma r\right) \sin^2 \frac{\xi}{2} + 1 \\ |\hat{Q}|^2 - 1 &= \left(16\sigma^2 r^2 - 4r^2\right) \sin^4 \frac{\xi}{2} + \left(4r^2 - 8\sigma r\right) \sin^2 \frac{\xi}{2} \\ &= 4r \sin^2 \frac{\xi}{2} [(4\sigma^2 r - r) \sin^2 \frac{\xi}{2} + r - 2\sigma] \end{split}$$

如果我们要求 $|\hat{Q}|^2 - 1 \leq 0$, 即要求

$$(4\sigma^2r - r)\sin^2\frac{\xi}{2} + r - 2\sigma \leqslant 0$$

将上式看作关于 $\sin^2\frac{\xi}{2}\in[0,1]$ 的一次函数, 只需要对端点处的值加以限制, 等价于

$$r - 2\sigma \leqslant 0, \quad 4\sigma^2 r - 2\sigma \leqslant 0$$

所以我们得到

$$|\hat{Q}|^2 - 1 \leqslant 0 \iff r \leqslant 2\sigma, \quad 2\sigma r \leqslant 1.$$

下面我们讨论两种特殊情况

- 若 $2\sigma \le 1$ 即要求 $16\sigma^2 \le 4$,则当 $4r^2 8\sigma r \le 0$ 即 $r \le 2\sigma$ 时, $|\hat{Q}|^2 \le 1$ 成立.
- 若 $2\sigma \geqslant 1$, 将 $\sin^4 \frac{\xi}{2}$ 放缩成为 $\sin^2 \frac{\xi}{2}$ 得到此时 $|\hat{Q}|^2 \leqslant 1$ 的一个充分条件是 $2\sigma r \leqslant 1$.

Lax-Friedrich 格式

$$\sigma = \frac{h}{2\Delta t} = \frac{1}{2r}, \quad r = \frac{\Delta t}{h}$$

Lax-Wendroff 格式

假设:

离散方程:

$$v_j^{n+1} = \frac{1}{2}(v_{j-1}^n + v_{j+1}^n) + \Delta t D_0 v_j^0$$

简化后的离散方程可以写为:

$$v_j^{n+1} = \left(\frac{1}{2}\right)(v_{j-1}^n + v_{j+1}^n) + \Delta t D_0 v_j^n + \frac{h^2}{2} D_+ D_- v_j^n$$

这是关于**Lax-Friedrich**数值格式的公式,常用于解决双曲型偏微分方程。如果有更多的补充或问题,请随时告诉我!

FTCS

$$v_i^{n+1} = v_i^n + \Delta t D_0 v_i^n$$

Lax-Friedrich 格式实际上就是将 FTCS 中的 v_i^n 修正为 $\frac{v_{j+1}^n+v_{j-1}^n}{2}$

$$= \frac{2u_j^n + 2\frac{1}{2!}u_{xx}h^2}{2} = u_j^n + \frac{h^2}{2}u_{xx}$$

所以看出来加了一个粘性

这个新的格式的 \hat{Q}

要 $|\hat{Q}| \leqslant 1$

推出来 $r \leq 1$

从第八张图片无法自动提取文字,但我将基于图片中的内容手动整理公式。

图片展示的是 ** 格式 **, 一种二阶精度的有限差分方法, 适用于双曲型偏微分方程。

Lax-Wendroff 格式:

假设:

$$\sigma = \frac{1}{2}\lambda = \frac{\Delta t}{2h}$$

离散方程为:

$$v_j^{n+1} = v_j^n + \Delta t D_0 v_j^n + \frac{\Delta t^2}{2} D_+ D_- v_j^n$$

这是 Lax-Wendroff 格式的主要公式,其中 D_0 和 D_+D_- 分别代表差分算子,能够提供二阶时间精度。

如果你需要进一步的说明或讨论其他内容,请告诉我!

由于第十张图片的文字识别结果不完整,我将根据图片中的内容手动整理。

定理 2.4.1. 在有限时间区域 $0 \le t \le T$, 考虑 $\Delta t, h \to 0$ 时, 差分近似:

$$v_j^{n+1} = Qv_j^n, \quad Q = \sum_{\mu=-r}^s A_{\mu}(\Delta t, h)E^{\mu}, \quad v_j^0 = f_j$$

假设:

- (a) 初值 f 是 (分片连续) 可展开为 Fourier 级数 ($f \in L^2$) 且其三角插值收敛于 f。
- (b) 差分近似是稳定的, 即存在常数 K_s , 使得对于所有的 Δt 和 h 有:

$$\sup_{0 \le t_n \le T} |Q^n| \le K_s$$

(c) 差分近似是相容的,即对于每个固定的 ω ,有:

$$\lim_{\Delta t, h \to 0} \sup_{\xi} |\hat{Q}^n(\xi) - e^{-iwt_n}| = 0$$

则: 差分近似解的三角插值收敛于微分方程的解, 即:

$$\lim_{\Delta t, h \to 0} \sup_{0 < t_n < T} ||u(\cdot, t_n) - \psi_N(\cdot, t_n)|| = 0$$

其中 $u(\cdot,t_n)$ 的表达式为:

$$u(\cdot, t_n) = \frac{1}{\sqrt{2\pi}} \sum_{\omega = -\infty}^{\infty} e^{iwx_j + t_n \hat{v}_n(\omega)} f(\omega)$$

差分近似解的三角插值为:

$$\psi_N = \frac{1}{\sqrt{2\pi}} \sum_{\omega = -\frac{N}{2}}^{\frac{N}{2}} e^{iwx_j} \hat{v}_n(\omega) f(\omega)$$

证明.

证明:设:

$$\sum_{\omega = -\infty}^{\infty} |f(\omega)|^2 = ||f||^2$$

取常数 M, 使得 $0 < M < \frac{N}{2}$, 则证明过程可以从这里展开。

这段内容涉及到了傅里叶级数展开和差分解的逼近分析。如果需要进一步详细解释或扩展内容,请告诉我!

2.5 CTCS 格式

使用中心差近似 u_t , 使用中心差近似 u_x , 得到

$$u_t(x_j, t_n) \simeq \frac{v_j^{n+1} - v_j^{n-1}}{2\Delta t}, \quad u_x(x_j, t_n) \simeq \frac{v_{j+1}^n - v_{j-1}^n}{2h} = D_0 v_j^n$$

代入对流方程并整理得到

$$u_t = u_x \Longrightarrow v_j^{n+1} = v_j^{n-1} + \frac{\Delta t}{h} (v_{j+1}^n - v_{j-1}^n) = v_j^{n-1} + r(v_{j+1}^n - v_{j-1}^n)$$

初值是一个谐波

$$\hat{v}^{n+1}(\omega) = \hat{v}^{n-1}(\omega) + 2ir\sin\xi\hat{v}^n(\omega)$$

这是一个数列的递推公式, 出现了相邻的三项, 系数均为与 n 无关的常数. 考虑特征方程

$$z^2 - 2ir\sin\xi z - 1 = 0$$

当 0 < r < 1 时,有两个不同的解

$$z_1 = ir \sin \xi + \sqrt{1 - r^2 \sin^2 \xi}, \quad z_2 = ir \sin \xi - \sqrt{1 - r^2 \sin^2 \xi}$$

由特征方程的理论知

$$\hat{v}^n(\omega) = \sigma_1 z_1^n + \sigma_2 z_2^n$$

其中 σ_1, σ_2 是与 n 无关的常数, 代入 n=0,1 的初值条件来得到. 但我们发现我们只知道

$$\hat{v}^0(\omega) = \hat{f}(\omega)$$

而 $\hat{v}^1(\omega)$ 的值不能由 CTCS 的递推关系得到. 实践中我们通过单步格式如 FTCS 来得到 $\hat{v}^1(\omega)$ 的值

$$\hat{v}^1(\omega) = (1 + ir\sin\xi)\hat{f}(\omega)$$

这样我们就得到了关于 σ_1, σ_2 的线性方程组

$$\begin{cases} \sigma_1 + \sigma_2 = \hat{f}(\omega) \\ \sigma_1 z_1 + \sigma_2 z_2 = (1 + ir \sin \xi) \hat{f}(\omega) \end{cases}$$

将 $r = \Delta t/h$ 取为常值, 当 $\xi = \omega h \ll 1$ 的时候

$$\mathrm{i} r \sin \xi = \mathrm{i} r \xi + \mathrm{i} r O(\xi^3) = \mathrm{i} \omega \Delta t + O(\omega^3 \Delta t^3).$$

$$\sqrt{1 - r^2 \sin^2 \xi} = 1 - \frac{1}{2} r^2 \sin^2 \xi + O(r^4 \sin^4 \xi) = 1 - \frac{1}{2} r^2 (\xi^2 + O(\xi^4)) + O(r^4 \xi^4)$$

$$z_1 = 1 + \mathrm{i} \omega \Delta t - \frac{1}{2} \omega^2 \Delta t^2 + O(\omega^3 \Delta t^3) = \mathrm{e}^{\mathrm{i} \omega \Delta t (1 + O(\omega^2 \Delta t^2))}, \quad z_2 = -\mathrm{e}^{-\mathrm{i} \omega \Delta t (1 + O(\omega^2 \Delta t^2))}$$

在不近似的情况下直接解线性方程组,得到

$$\begin{cases}
\sigma_1 = \left(\frac{1}{2} + \frac{1}{2\sqrt{1 - r^2 \sin^2 \xi}}\right) \hat{f}(\omega) \\
\sigma_2 = \left(\frac{1}{2} - \frac{1}{2\sqrt{1 - r^2 \sin^2 \xi}}\right) \hat{f}(\omega)
\end{cases}$$

所以只需要估计

$$\frac{1}{\sqrt{1-r^2\sin^2\xi}} = \frac{1}{1-\frac{1}{2}r^2\sin^2\xi + O(r^4\sin^4\xi)} = 1 + \frac{1}{2}r^2\sin^2\xi + O(r^4\sin^4\xi)$$

$$\sigma_1 = (1 + \frac{1}{4}r^2\xi^2 + O(r^2\xi^4))\hat{f}(\omega) = (1 + \frac{1}{4}\omega^2\Delta t^2 + O(\omega^4\Delta t^4))\hat{f}(\omega), \quad \sigma_2 = (-\frac{1}{4}\omega^2\Delta t^2 + O(\omega^4\Delta t^4))\hat{f}(\omega)$$
 这样一来

$$\hat{v}^{n}(\omega) = \hat{f}(\omega)(1 + O(\omega^{2}\Delta t^{2}))e^{i\omega t_{n}(1 + O(\omega^{2}\Delta t^{2}))} + (-1)^{n}\hat{f}(\omega)O(\omega^{2}\Delta t^{2})e^{-i\omega t_{n}(1 + O(\omega^{2}\Delta t^{2}))}$$

可以看到前半部分当 $\Delta t \to 0$ 时收敛于准确解 $\hat{u}^n(\omega) = \hat{f}(\omega) e^{i\omega t_n}$, 后半部分是模长不依赖于 t_n 且随着 Δt 的减小而减小的振荡, 我们称这部分为寄生解.

2.6 带源项的 PDE 初值问题

$$\begin{cases} u_t = u_x - au, & a > 0 \\ u(x,0) = f(x) \end{cases}$$

只考虑
$$\omega=0, a\Delta t << 1$$

$$z_1=-a\Delta t + \sqrt{1+(a\Delta)^2}$$
 然后继续求 σ_1,σ_2

2.7 FTBS 格式

2.8 迎风格式与 CFL 条件

a<0 时 x-at= 常数,a<0 时迎风格式 FTFS 格式

$$v_j^{n+1} = v_j^n - ar(v_{j+1}^n - v_j^n)$$

a>0 时迎风格式 FTBS 格式 写到一起

2.9 BTCS 格式

使用后差近似 u_t , 使用中心差近似 u_x , 得到

$$u_t(x_j, t_n) \simeq \frac{v_j^n - v_j^{n-1}}{\Delta t}, \quad u_x(x_j, t_n) \simeq \frac{v_{j+1}^n - v_{j-1}^n}{2h}$$

代入对流方程并整理得到

$$u_t = u_x \Longrightarrow v_j^n = v_j^{n-1} + \frac{\Delta t}{2h} (v_{j+1}^n - v_{j-1}^n)$$

我们习惯已知层用 n, 未知层用 n+1, 所以改写一下得到

$$v_j^{n+1} = v_j^n + \frac{\Delta t}{2h} (v_{j+1}^{n+1} - v_{j-1}^{n+1})$$

这是一个隐式格式而不是显式格式, 类似于 y = f(x) 与 g(x,y) = 0 所确定的函数关系的区别.

$$-\frac{\Delta t}{2h}v_{j+1}^{n+1} + v_j^{n+1} + \frac{\Delta t}{2h}v_{j-1}^{n+1} = v_j^n$$

每两层之间的求解是一个线性方程组

$$\begin{pmatrix} 1 & -\frac{\Delta t}{2h} & 0 & \cdots & 0 & \frac{\Delta t}{2h} \\ \frac{\Delta t}{2h} & 1 & -\frac{\Delta t}{2h} & 0 & \cdots & 0 \\ \vdots & \ddots & \cdots & \ddots & \vdots \\ 0 & \cdots & 0 & \frac{\Delta t}{2h} & 1 & -\frac{\Delta t}{2h} \\ -\frac{\Delta t}{2h} & 0 & \cdots & 0 & \frac{\Delta t}{2h} & 1 \end{pmatrix} \begin{pmatrix} v_0^{n+1} \\ v_1^{n+1} \\ \vdots \\ v_N^{n+1} \end{pmatrix} = \begin{pmatrix} v_0^n \\ v_1^n \\ \vdots \\ v_N^n \end{pmatrix}$$

下面我们来计算放大因子

$$\hat{v}^{n+1}(\omega) = \hat{v}^{n}(\omega) + \frac{\Delta t}{2h} (e^{i\omega h} - e^{-i\omega h}) \hat{v}^{n+1}(\omega) \Longrightarrow \hat{v}^{n+1}(\omega) = \frac{1}{1 - ir\sin\xi} \hat{v}^{n}(\omega)$$
$$\hat{Q} = \frac{1}{1 - ir\sin\xi} \Longrightarrow |\hat{Q}|^{2} = \frac{1}{1 + r^{2}\sin^{2}\xi} \leqslant 1$$

所以 BTCS 格式是无条件稳定的.

Crank-Nicolson 格式

思想是将方程分成两部分,每部分用不同的格式来近似,这里我们一半用 FTCS 一半用 BTCS

$$\frac{v_j^n - v_j^{n-1}}{\Delta t} \simeq u_t = u_x = \frac{1}{2}u_x + \frac{1}{2}u_x \simeq \frac{1}{2}\frac{v_{j+1}^n - v_{j-1}^n}{2h} + \frac{1}{2}\frac{v_{j+1}^{n+1} - v_{j-1}^{n+1}}{2h}$$

$$\Longrightarrow (I - \frac{\Delta t}{2}D_0)v_j^{n+1} = (I + \frac{\Delta t}{2}D_0)v_j^n \Longrightarrow \hat{Q} = \frac{2 + ir\sin\xi}{2 - ir\sin\xi}, \quad |\hat{Q}| = 1$$

该格式也是无条件稳定的,且对所有的频率 ω ,放大因子 \hat{Q} 的模长不变.

θ -方法

Crank-Nicolson 格式的直接推广, 将系数 $\frac{1}{2}$ 和 $\frac{1}{2}$ 替换为 $1-\theta$ 和 θ , 其中 $0 \le \theta \le 1$.

$$(I - \theta \Delta t D_0) v_j^{n+1} = (I + (1 - \theta) \Delta t D_0) v_j^n, \quad \hat{Q} = \frac{1 + ir(1 - \theta) \sin \xi}{1 - ir\theta \sin \xi}$$

$$\hat{Q} = \frac{1 + ir(1 - \theta) \sin \xi}{1 - ir\theta \sin \xi} = \frac{(1 + ir(1 - \theta) \sin \xi)(1 + ir\theta \sin \xi)}{1 + r^2\theta^2 \sin^2 \xi} = \frac{1 - r^2\theta(1 - \theta) \sin^2 \xi + ir \sin \xi}{1 + r^2\theta^2 \sin^2 \xi}$$

$$|\hat{Q}|^2 = \frac{(1 - r^2\theta(1 - \theta) \sin^2 \xi)^2 + r^2 \sin^2 \xi}{1 + 2r^2\theta^2 \sin^2 \xi + r^4\theta^4 \sin^4 \xi} = \frac{1 - 2r^2\theta(1 - \theta) \sin^2 \xi + r^4\theta^2(1 - \theta)^2 \sin^4 \xi + r^2 \sin^2 \xi}{1 + 2r^2\theta^2 \sin^2 \xi + r^4\theta^4 \sin^4 \xi}$$

$$|\hat{Q}|^2 - 1 = \frac{-2r^2\theta \sin^2 \xi + r^4\theta^2 \sin^4 \xi - 2r^4\theta^3 \sin^4 \xi + r^2 \sin^2 \xi}{1 + 2r^2\theta^2 \sin^2 \xi + r^4\theta^4 \sin^4 \xi}$$

$$|\hat{Q}|^2 - 1 = \frac{r^2 \sin^2 \xi}{(1 + r^2\theta^2 \sin^2 \xi)^2} (-2\theta + r^2\theta^2 \sin^2 \xi - 2r^2\theta^3 \sin^2 \xi + 1)$$

$$|\hat{Q}|^2 - 1 = \frac{r^2 \sin^2 \xi}{(1 + r^2\theta^2 \sin^2 \xi)^2} (1 - 2\theta)(1 + r^2\theta^2 \sin^2 \xi)$$

当 $\theta \ge \frac{1}{2}$, 即隐式格式占据优势时, 格式为无条件稳定的.

2.10 截断误差

以 FTCS 格式为例, 此时截断误差为

$$T(x_j, t_n) = \frac{u_j^{n+1} - u_j^n}{\Delta t} - \frac{u_{j+1}^n - u_{j-1}^n}{2h} - (u_t(x_j, t_n) - u_x(x_j, t_n)) = \frac{u_j^{n+1} - u_j^n}{\Delta t} - \frac{u_{j+1}^n - u_{j-1}^n}{2h}$$

泰勒展开,有

$$u_j^{n+1} = u(x_j, t_{n+1}) = u(x_j, t_n) + u_t(x_j, t_n) \Delta t + \frac{1}{2} u_{tt}(x_j, t_n + \theta \Delta t) \Delta t^2$$

$$u_{j+1}^n = u(x_{j+1}, t_n) = u(x_j, t_n) + u_x(x_j, t_n) h + \frac{1}{2} u_{xx}(x_j, t_n) h^2 + \frac{1}{6} u_{xxx}(x_j + \eta h, t_n) h^3$$

$$u_{j-1}^n = u(x_{j-1}, t_n) = u(x_j, t_n) - u_x(x_j, t_n) h + \frac{1}{2} u_{xx}(x_j, t_n) h^2 - \frac{1}{6} u_{xxx}(x_j + \xi h, t_n) h^3$$

代入得

$$T(x_j, t_n) = u_t(x_j, t_n) + O(\Delta t) - u_x(x_j, t_n) + O(h^2) = O(\Delta t + h^2)$$

定义 2.10.1. 若 $T_j^n = O(h^p + (\Delta t)^q)$, 则称该方法为对空间 p 阶、对时间 q 阶精度.

定义 2.10.2. 若 p > 0 且 q > 0, 则称该格式是相容的.

再以加黏性项修正的 FTCS 格式为例, 此时

$$\begin{split} T_j^n &= \frac{u_j^{n+1} - u_j^n}{\Delta t} - \frac{u_{j+1}^n - u_{j-1}^n}{2h} - \sigma h \frac{u_{j+1}^n - 2u_j^n + u_{j-1}^n}{h^2} \\ u_{j+1}^n - 2u_j^n + u_{j-1}^n &= h^2 u_{xx}(x_j, t_n) + \frac{h^4}{12} u_{xxxx}(x_j, t_n) + O(h^6) \\ u_{j+1}^n - u_{j-1}^n &= 2h u_x(x_j, t_n) + \frac{h^3}{3} u_{xxx}(x_j, t_n) + O(h^5) \\ u_j^{n+1} - u_j^n &= \Delta t u_t(x_j, t_n) + \frac{1}{2} (\Delta t)^2 u_{tt}(x_j, t_n) + O((\Delta t)^3) \\ T_j^n &= \frac{1}{2} \Delta t u_{tt}(x_j, t_n) + O((\Delta t)^2) - \frac{h^2}{6} u_{xxx}(x_j, t_n) + O(h^4) - \sigma h u_{xx}(x_j, t_n) - \frac{\sigma h^3}{12} u_{xxxx}(x_j, t_n) + O(h^5) \\ T_j^n &= \frac{1}{2} \Delta t u_{tt}(x_j, t_n) - \sigma h u_{xx}(x_j, t_n) + O(h^2 + (\Delta t)^2) \end{split}$$

因为

$$u_t = u_x \Longrightarrow u_{tt} = u_{xt} = u_{xx}$$

所以如果 $2\sigma h=\Delta t,$ 则 $T_j^n=O(h^2+(\Delta t)^2),$ 否则 $T_j^n=O(h+\Delta t).$ 再以 FTFS 格式为例, 此时截断误差为

$$T_j^n = \frac{u_j^{n+1} - u_j^n}{\Delta t} - \frac{u_{j+1}^n - u_j^n}{h} = \frac{1}{2}u_{tt}(x_j, t_n)\Delta t + O((\Delta t)^2) - \frac{1}{2}u_{xx}(x_j, t_n)h + O(h^2)$$

所以如果 $\Delta t = h$, 则 $T_j^n = O(h^2 + (\Delta t)^2)$, 否则 $T_j^n = O(h + \Delta t)$.

2.11 整体误差

定义整体误差

$$e_j^n := v_j^n - u_j^n$$

为近似值与真值之间的差. 以 FTFS 格式为例

$$v_j^{n+1} = v_j^n + \frac{\Delta t}{h}(v_{j+1}^n - v_j^n), \quad u_j^{n+1} = u_j^n + \frac{\Delta t}{h}(u_{j+1}^n - u_j^n) + \Delta t T_j^n.$$

两式做差得到

$$e_j^{n+1} = e_j^n + \frac{\Delta t}{h}(e_{j+1}^n - e_j^n) - \Delta t T_j^n = r e_{j+1}^n + (1-r)e_j^n - \Delta t T_j^n, \quad e_j^0 = 0.$$

取 $E^n = \max_j |e_j^n|, \overline{T} = \max_{j,n} |T_j^n|,$ 讨论当 $0 < r \le 1$ 时的情况,

$$|e_j^{n+1}| \leqslant (1-\lambda)E^n + \lambda E^n + \Delta t\overline{T} = E^n + \Delta t\overline{T} \Longrightarrow E^{n+1} \leqslant E^n + \Delta t\overline{T}.$$

递归使用上式,得到

$$E^{n+1} \leqslant E^n + \Delta t \overline{T} \leqslant E^{n-1} + 2\Delta t \overline{T} \leqslant \dots \leqslant E^0 + (n+1)\Delta t \overline{T} = (n+1)\Delta t \overline{T}.$$

2.12 基于 PDE 的积分形式的有限差分格式的构造

用节点

$$0 = x_0 < x_1 < \cdots < x_{J-1} < x_J = 1$$

将 [0,1] 均匀分成 J 个小区域, 用节点

$$0 = t_0 < t_1 < \dots < t_{N-1} < t_N = T$$

将 [0,T] 均匀分成 N 个小区域.

取控制体 $\Omega_j^n = [t_n, t_{n+1}] \times [x_{j-\frac{1}{2}}, x_{j+\frac{1}{2}}]$

在 Ω_i^n 上对函数 $u_t + au_x$ 进行积分, 得到

$$\int_{x_{j-\frac{1}{2}}}^{x_{j+\frac{1}{2}}} u^{n+1}(x) - u^n(x) dx + a \int_{t_n}^{t_{n+1}} u_{j+\frac{1}{2}}(t) - u_{j-\frac{1}{2}}(t) dt = 0$$

到此是精确成立的. 用不同的数值积分公式对上述方程中的积分做近似, 得到不同的有限差分格式. 对于第一个积分, 因为积分区间中有一个整节点, 所以用中点公式

$$\int_{x_{-1}}^{x_{1}} f(x) dx = \Delta x \cdot f(x_{0}) + \frac{(\Delta x)^{3}}{24} f''(\xi), \quad x_{0} = \frac{x_{-1} + x_{1}}{2}, \xi \in (x_{-1}, x_{1})$$

应用到我们这个具体的式子上就是

$$\int_{x_{j-\frac{1}{2}}}^{x_{j+\frac{1}{2}}} u^{n+1}(x) - u^n(x) dx = h(u_j^{n+1} - u_j^n) + \frac{h^3}{24} (u_{xx}^{n+1} - u_{xx}^n)(\xi), \quad \xi \in (x_{j-\frac{1}{2}}, x_{j+\frac{1}{2}})$$

对于第二个积分, 如果希望最后是显式, 就要只包含一个与时间相关的端点, 所以我们使用

$$\int_{a}^{b} f(x)dx = (b-a)f(a) + \frac{1}{4}(b-a)^{2}f'(\xi), \quad \xi \in (a,b)$$

应用到我们这个具体的式子上就是

$$\int_{t_n}^{t_{n+1}} (u_{j+\frac{1}{2}}(t) - u_{j-\frac{1}{2}}(t)) dt = \Delta t (u_{j+\frac{1}{2}}^n - u_{j-\frac{1}{2}}^n) + \frac{1}{4} \Delta t^2 (u_{j+\frac{1}{2}} - u_{j-\frac{1}{2}})_t(\eta), \quad \eta \in (t_n, t_{n+1})$$

将两个式子合并到一起,整理得到

$$\frac{u_j^{n+1} - u_j^n}{\Delta t} + \frac{a}{h} (u_{j+\frac{1}{2}}^n - u_{j-\frac{1}{2}}^n) + \frac{a\Delta t}{4h} (u_{j+\frac{1}{2}} - u_{j-\frac{1}{2}})_t(\eta) + \frac{h^2}{24\Delta t} (u_{xx}^{n+1} - u_{xx}^n)(\xi) = 0$$

上式中还是出现了函数 u 在半格点处的值, 因为我们希望将整格点处的值作为需要求解的量, 所以

$$\begin{split} u_{j}^{n} &= u_{j+\frac{1}{2}}^{n} - \frac{h}{2} u_{x}^{n}(x_{j+\frac{1}{2}}) + \frac{h^{2}}{8} u_{xx}^{n}(x_{j+\frac{1}{2}}) - \frac{h^{3}}{48} u_{xxx}^{n}(x_{j+\frac{1}{2}}) + O(h^{4}), \\ u_{j+1}^{n} &= u_{j+\frac{1}{2}}^{n} + \frac{h}{2} u_{x}^{n}(x_{j+\frac{1}{2}}) + \frac{h^{2}}{8} u_{xx}^{n}(x_{j+\frac{1}{2}}) + \frac{h^{3}}{48} u_{xxx}^{n}(x_{j+\frac{1}{2}}) + O(h^{4}), \\ u_{j+\frac{1}{2}}^{n} &= \frac{1}{2} (u_{j+1}^{n} + u_{j}^{n}) - \frac{h^{2}}{4} u_{xx}^{n}(x_{j+\frac{1}{2}}) + O(h^{4}), \quad u_{j-\frac{1}{2}}^{n} &= \frac{1}{2} (u_{j}^{n} + u_{j-1}^{n}) - \frac{h^{2}}{4} u_{xx}^{n}(x_{j-\frac{1}{2}}) + O(h^{4}) \\ u_{j+\frac{1}{2}}^{n} - u_{j-\frac{1}{2}}^{n} &= \frac{1}{2} (u_{j+1}^{n} - u_{j-1}^{n}) - \frac{h^{2}}{4} u_{xx}^{n}(x_{j+\frac{1}{2}}) + \frac{h^{2}}{4} u_{xx}^{n}(x_{j-\frac{1}{2}}) + O(h^{4}) \\ &= \frac{1}{2} (u_{j+1}^{n} - u_{j-1}^{n}) - \frac{h^{2}}{4} u_{xx}^{n}(x_{j+\frac{1}{2}}) + \frac{h^{2}}{4} u_{xx}^{n}(x_{j-\frac{1}{2}}) + O(h^{4}) \\ &= \frac{1}{2} (u_{j+1}^{n} - u_{j-1}^{n}) - \frac{h^{2}}{4} u_{xx}^{n}(x_{j+\frac{1}{2}}) + \frac{h^{2}}{4} u_{xx}^{n}(x_{j-\frac{1}{2}}) + O(h^{4}) \\ &= \frac{1}{2} (u_{j+1}^{n} - u_{j-1}^{n}) - \frac{h^{2}}{4} u_{xx}^{n}(x_{j+\frac{1}{2}}) + O(h^{4}) \\ &= \frac{1}{2} (u_{j+1}^{n} - u_{j-1}^{n}) - \frac{h^{2}}{4} u_{xx}^{n}(x_{j+\frac{1}{2}}) + O(h^{4}) \\ &= \frac{1}{2} (u_{j+1}^{n} - u_{j-1}^{n}) - \frac{h^{2}}{4} u_{xx}^{n}(x_{j+\frac{1}{2}}) + \frac{h^{2}}{4} u_{xx}^{n}(x_{j+\frac{1}{2}}) + O(h^{4}) \\ &= \frac{1}{2} (u_{j+1}^{n} - u_{j-1}^{n}) - \frac{h^{2}}{4} u_{xx}^{n}(x_{j+\frac{1}{2}}) + \frac{h^{2}}{4} u_{xx}^{n}(x_{j+\frac{1}{2}}) + O(h^{4}) \\ &= \frac{1}{2} (u_{j+1}^{n} - u_{j-1}^{n}) - \frac{h^{2}}{4} u_{xx}^{n}(x_{j+\frac{1}{2}}) + \frac{h^{2}}{4} u_{x$$

代入得

$$\frac{u_j^{n+1} - u_j^n}{\Delta t} + \frac{a}{2h}(u_{j+1}^n - u_{j-1}^n) + O(h^2) + O(\Delta t) + O(h^2) = 0$$

所以我们得到差分方程

$$\frac{v_j^{n+1} - v_j^n}{\Delta t} + \frac{a}{2h}(v_{j+1}^n - v_{j-1}^n) = 0$$

这其实就是 FTCS 格式, 从上面的推导也可以看出该格式的截断误差为 $O(h^2+\Delta t)$ 阶的. 取时空区域 $\Omega_j^n=[t_{n-1},t_{n+1}]\times[x_{j-\frac12},x_{j+\frac12}]$ 为控制区域

$$\int_{x_{j-\frac{1}{2}}}^{x_{j+\frac{1}{2}}} (u^{n+1} - u^{n-1}) \mathrm{d}x$$

2.13 变系数对流方程

$$u_t + a(x,t)u_x = 0$$
$$\frac{\mathrm{d}t}{\mathrm{d}x} = a(x,t) \Longrightarrow \frac{\mathrm{d}}{\mathrm{d}t}u(x(t),t) = 0.$$

Chapter 3

扩散方程

3.1 常系数扩散方程初值问题

$$\begin{cases} u_t = u_{xx}, & -\infty < x < \infty, t > 0 \\ u(x,0) = f(x), & -\infty < x < \infty \end{cases}$$

3.2 待定系数法构造高阶逼近

均匀网格

非均匀网格

3.3 变系数扩散方程

3.3.1 非守恒型扩散方程

FTCS 格式

$$v_j^{n+1} = (I + b_j^n \Delta t D_+ D_-) v_j^n = v_j^n + b_j^n (v_{j+1}^n - 2v_j^n + v_{j-1}^n)$$

算放大因子

算截断误差

$$T_j^n = O(h^2 + \Delta t)$$

算整体误差

假设
$$B=\max_{j,n}b_j^n, \bar{T}=\max_{j,n}T_j^n, E^n=\max_j|e_j^n|$$

$$E^{n+1} \leqslant E^n + T\Delta t \leqslant E^0 + \bar{T}(n+1)\Delta t$$

BTCS 格式

θ 方法

最终的格式应该有相容性、收敛性、稳定性,有效的,先不讲高效哪种方法好其实与 b(x,t) 的行为有关. 截断误差在哪点都一样,主要看好不好算

3.3.2 守恒型扩散方程

物理意义,热流量守恒 考虑方程的守恒性质,使用积分形式构造有限差分格式,取时空区域 Ω_{i}^{n}

Chapter 4

偏微分方程初值问题的适定性

解存在,唯一,稳定 先总结前面的解的特点,再看怎么得到适定性的定义

4.1 适定性定义

4.2 一维常系数标量偏微分方程

4.3 一维常系数一阶偏微分方程组

4.4 一维常系数抛物型偏微分方程组

4.5 一般常系数微分方程组

4.6

Chapter 5

有限差分方法的基本性质

本章主要针对一般的偏微分方程的初值问题

$$\begin{cases} \mathcal{L}u = g, & -\infty < x < \infty, t > 0 \\ u(x, t_0) = f(x), & -\infty < x < \infty, \\ f(x) = f(x + 2\pi), & -\infty < x < \infty \end{cases}$$

其中 $\mathcal L$ 是时空偏微分算子. 考虑其一般的差分格式 $Lv_j^n=g_j^n$ 的相容性、收敛性和稳定性.

5.1 截断误差与差分方法的精度

定义 5.1.1. 对于满足 $\mathcal{L}u=g$ 的任意光滑函数 u(x,t), 称

$$T_j^n = Lu_j^n - g_j^n$$

为差分格式 $Lv_j^n=g_j^n$ 在 (x_j,t_n) 处的局部截断误差. 其反映了差分方程对源方程的近似程度.

定义 5.1.2. 若截断误差

$$T_j^n = Lu_j^n - g_j^n = O((\Delta x)^p + (\Delta t)^q),$$

则称差分格式 $Lv_j^n=g_j^n$ 对空间是 p 阶、对时间是 q 阶精度的.

5.2 差分方法的相容性

5.3 差分方法的收敛性

5.4 稳定性

5.5 LAX 定理

5.6 偏微分方程的耗散性、色散性

我们以方程 $u_t + au_x = 0$ 为例, 设谐波 $u(x,t) = e^{i(kt+\omega x)}$ 是方程的解, 代入得

$$ik + ia\omega = 0 \Longrightarrow k = -a\omega$$

称为 $u_t + au_x = 0$ 的色散关系. 一般情况下 $k = k(\omega) = \alpha + bi$ 是复数, PDE 的谐波解为

$$u(x,t) = e^{-bt}e^{i(at+\omega x)}$$

- 其振幅 e-bt 可能随时间衰减,这种现象称为"耗散".
- 谐波传播的波速为

$$c_e = -\frac{\alpha}{\omega} = -\frac{\operatorname{Re}(k)}{\omega}$$

若 $c_e > 0$, 则谐波从左向右传播, 若 $c_e < 0$, 则谱波从右向左传播. 当 $u_t + au_x = 0$ 时 $c_e = a$.

- 如果色散关系 $k = k(\omega)$ 是 ω 的线性函数,则不同波数的谐波传播的波速是相同的,整体波形保持不变. 若 $k = k(\omega)$ 是 ω 的非线性函数,则不同波数的谐波传播的波速是不同的,整体波形随时间发生变化,相应的物理现象称为"色散".
- 放大因子

$$\lambda_e \triangleq \frac{u(x, t + \Delta t)}{u(x, t)} = e^{ik\Delta t} = e^{-b\Delta t}e^{i\alpha\Delta t} = |\lambda_e|e^{i\varphi_e},$$

称 $|\lambda_e| = e^{-b\Delta t}$ 为 λ_e 的模, 称 $\varphi_e = \alpha \Delta t$ 为 λ_e 的幅角. λ_e 体现了谐波解的随时间变化特征.

不同波数的谐波的传播和振幅特性是 PDE 的解的性质的一个重要组成部分. 若有谐波振幅无限增长,则该 PDE 的解是不稳定的.

定义 5.6.1. 若 PDE 的谐波解的振幅不随时间增长,且至少有一个谱波的振幅是衰减的,则称该 PDE 具有耗散性,其解是稳定的. 若 PDE 的所有谱波解的振幅既不增长,也不衰减,则称该 PDE 是**泛耗散**的,其解是稳定的. 若非上述两种情况,则称该 PDE 是**逆耗散**的,其解不稳定.

定义 5.6.2. 若 PDE 的不同波数的谐波以不同的速度传播, 则称该 PDE 具有色散性. 若谐波的传播速度与波数无关, 则称该 PDE 是无色散的.

例 5.6.3. 讨论 $u_t + au_x = 0$ 的耗散性、色散性, 其中 a 是常数.

解.

例 5.6.4. 讨论 $u_t + cu_{xxx} = 0$ 的耗散性、色散性, 其中 c 是常数.

解.

5.7 差分方程的耗散性、色散型

Chapter 6

书面作业

6.1 第一次书面作业

- **1.1.1.** 证明方程 (1.1.8) 和 (1.1.9) 对于 L_2 内积和范数成立。
- **1.1.2.** 设 f 是具有傅里叶级数的实函数

$$f(x) = \frac{1}{\sqrt{2\pi}} \sum_{\omega = -\infty}^{\infty} \hat{f}(\omega) e^{i\omega x}.$$

证明

$$S_N = \frac{1}{\sqrt{2\pi}} \sum_{\omega = -N}^{N} \hat{f}(\omega) e^{i\omega x}$$

对所有 N 都是实数。

6.2 第二次书面作业

1.2.1. 推导估计

$$\left| \left(D - \frac{\partial^3}{\partial x^3} \right) e^{i\omega x} \right|$$

其中 $D = D_+^3, D_-D_+^2, D_+^2D_-, D_+^3, D_-, D_0D_+D_-$ 。

- **1.2.2.** 差分算子 D_+ 和 D_0 都近似 $\partial/\partial x$,但它们有不同的范数。解释为什么这不构成矛盾。
- 1.5.1. 表述并证明定理 1.3.1 和 1.3.3 在二维空间下的推广形式。
- **1.5.2.** 在一个矩形网格上,计算 $\|D_{+x_j}\|_h$, $\|D_{-x_j}\|_h$, $\|D_{0x_j}\|_h$,其中 j=1,2,网格大小在 x_j 方向为 h_i ,j=1,2。

补充作业: 证明:参考书 1 中 P26 的定理 1.3.3 中公式 (1.3.4); 以及当 N 为奇数时,写出 P26 页相应的定理 1.3.2,并证明之。

6.3 第三次书面作业

- **2.1.1.** 图 2.1.4 和 2.1.5 中解的收敛性较慢。解释原因,并在定理 2.1.1 的证明中找出对于该示例哪一项 I、II 或 III 较大。
- **2.1.2.** 修改格式 (2.1.11) 使其逼近 $u_t = -u_x$ 。证明条件 (2.1.14) 和 (2.1.15) 在该情况下对于稳定性也是必要的。
- **2.1.3.** 在方程 (2.1.11) 中选择 σ 使得 Q 仅使用两个网格点。稳定性条件是什么?

作业—20240926: 针对方程 $u_t + u_x = 0$, 导出其解的依赖区; 其显式格式的数值解的依赖区; 以及 CFL 条件。

6.4 第四次书面作业

2.3.1. 证明当 $\theta \ge \frac{1}{5}$ 时, 如下 θ 格式是无条件稳定的.

$$(I - \theta k D_0) v_i^{n+1} = (I + (1 - \theta)k D_0) v_i^n, \quad j = 0, 1, \dots, N.$$
(2.3.5)

证明.

$$\begin{split} \hat{Q} &= \frac{1 + \mathrm{i} r (1 - \theta) \sin \xi}{1 - \mathrm{i} r \theta \sin \xi} = \frac{(1 + \mathrm{i} r (1 - \theta) \sin \xi) (1 + \mathrm{i} r \theta \sin \xi)}{1 + r^2 \theta^2 \sin^2 \xi} = \frac{1 - r^2 \theta (1 - \theta) \sin^2 \xi + \mathrm{i} r \sin \xi}{1 + r^2 \theta^2 \sin^2 \xi} \\ |\hat{Q}|^2 &= \frac{(1 - r^2 \theta (1 - \theta) \sin^2 \xi)^2 + r^2 \sin^2 \xi}{1 + 2r^2 \theta^2 \sin^2 \xi + r^4 \theta^4 \sin^4 \xi} = \frac{1 - 2r^2 \theta (1 - \theta) \sin^2 \xi + r^4 \theta^2 (1 - \theta)^2 \sin^4 \xi + r^2 \sin^2 \xi}{1 + 2r^2 \theta^2 \sin^2 \xi + r^4 \theta^4 \sin^4 \xi} \\ |\hat{Q}|^2 - 1 &= \frac{-2r^2 \theta \sin^2 \xi + r^4 \theta^2 \sin^4 \xi - 2r^4 \theta^3 \sin^4 \xi + r^2 \sin^2 \xi}{1 + 2r^2 \theta^2 \sin^2 \xi + r^4 \theta^4 \sin^4 \xi} \\ |\hat{Q}|^2 - 1 &= \frac{r^2 \sin^2 \xi}{(1 + r^2 \theta^2 \sin^2 \xi)^2} (-2\theta + r^2 \theta^2 \sin^2 \xi - 2r^2 \theta^3 \sin^2 \xi + 1) \\ |\hat{Q}|^2 - 1 &= \frac{r^2 \sin^2 \xi}{(1 + r^2 \theta^2 \sin^2 \xi)^2} (1 - 2\theta) (1 + r^2 \theta^2 \sin^2 \xi) \end{split}$$

当 $\theta \ge \frac{1}{2}$, 即隐式格式占据优势时, 格式为无条件稳定的.

2.4.1. 在推导精度阶次时,使用了围绕某点 (x_*, t_*) 的泰勒展开。证明 (x_*, t_*) 可以任意选择,特别是,它不必是网格点。

证明. 不妨设在 (x_i, t_n) 展开的局部截断误差为

$$T_j^n = f(x_j, t_n) h^p + g(x_j, t_n) k^q + O(h^{p+1} + k^{q+1}) = O(h^p + k^q)$$

其中 h 和 k 分别为空间步长和时间步长, 另取附近的一点 (x_*, t_*) 满足

$$|x_j - x_*| \le Ch, \quad |t_n - t_*| \le Ck$$

那么

$$f(x_j, t_n) = f(x_*, t_*) + O(h) + O(k)$$
$$g(x_j, t_n) = g(x_*, t_*) + O(h) + O(k)$$

在 (x_*, t_*) 展开的局部截断误差为

$$\begin{split} T_{j_*}^{n_*} &= [f(x_*,t_*) + O(h) + O(k)]h^p + [g(x_*,t_*) + O(h) + O(k)]k^q + O(h^{p+1} + k^{q+1}) \\ &= f(x_*,t_*)h^p + g(x_*,t_*)k^q + O(h^{p+1} + k^{q+1}) = O(h^p + k^q) \end{split}$$

因此,挑选某个具体的点(甚至不要求是格点)进行 Taylor 展开并不影响最终的结果。 □

2.4.2. 证明跳蛙格式 (2.2.1) 和 Crank-Nicholson 格式 (2.3.3) 的精度为 (2,2)。尽管有相同的精度 阶次,但可以预期某一种格式比另一种更精确。为什么会这样?

补充作业 1: 针对 $u_t + au_x = 0$, a 为常数,基于其积分形式构造时间 1 阶、空间 3 阶的有限差分格式。

补充作业 2: 试构造 $U_t + A \cdot U_x = 0$ 的迎风格式; 其中 $U = (u, v)^T$,

$$A = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$$

6.5 第五次书面作业

2.5.2. 证明方程 (2.5.21) 中的 θ 格式在 $\theta \ge \frac{1}{2}$ 时是无条件稳定的。

2.5.3. 推导应用于 $u_t = u_{xx}$ 的后向欧拉法和 Crank-Nicholson 方法的截断误差。证明其分别为 $\mathcal{O}(h^2 + k)$ 和 $\mathcal{O}(h^2 + k^2)$ 。尽管如此,在某些时刻,对于本节中的示例,后向欧拉法更精确。解释这一悖论。

补充作业 1: 针对 $u_t = u_{xx} + f(x,t)$, $(x,t) \in \bar{D} = [0,1] \times [0,T]$ 的积分形式,构造以格点处的函数为未知数的有限差分格式,并导出其截断误差。

补充作业 2: 针对 $u_t = u_{xx}$,基于其在控制体 $\Omega_j^n = [t_{n-1}, t_{n+1}] \times \left[x_{j-\frac{1}{2}}, x_{j+\frac{1}{2}}\right]$ 上的积分形式,构造以函数的网格平均为未知数的有限差分格式,并给出精度。

6.6 第六次书面作业

4.1.1. 假设我们希望在 $0 \le t \le 2$ 的区间内求解问题 (4.1.13),并允许解有 1% 的相对误差。给出允许的舍入误差的界限。

4.2.1. 考虑微分方程

$$\frac{\partial u}{\partial t} = \sum_{j=0}^{4} a_j \frac{\partial^j u}{\partial x^j}.$$

推导与方程 (4.2.2) 对应的良定性条件。如果 Re $a_4 < 0$,该问题是否总是良定的?

4.3.1. 对于哪些矩阵 A, B,系统

$$u_t = Au_x + Bu$$

是能量守恒的 [即, $||u(\cdot,t)|| = ||u(\cdot,0)||$]?

补充作业 1: 试证:(均匀剖分)用 u 在三个点: $x_{j\pm 1}=(j\pm 1)h, x_j=jh$ 处的函数值的线性组合是无法得到 u_{xx} 的 3 阶或高于 3 阶的近似。

补充作业 2: 针对偏微分方程: $u_t = ((0.1 + \sin^2 x)u_x)_x$, 构造 (2,2) 阶精度的有限差分格式。

6.7 第七次书面作业

4.4.1. 证明存在正数常数 δ , K 使得抛物系统 $u_t = Au_{xx}$ 的解满足

$$||u(\cdot,t)||^2 + \delta \int_0^t ||u_x(\cdot,\xi)||^2 d\xi \leqslant K ||u(\cdot,0)||^2.$$
(4.4.9)

证明. 考虑谐波解

$$u(x,t) = \frac{1}{\sqrt{2\pi}} e^{iwx} \hat{u}(w,t), \quad u(x,0) = f(x) = \frac{1}{\sqrt{2\pi}} e^{iwx} \hat{f}(w)$$

代入方程得到

$$\begin{cases} \hat{u}_t = -w^2 A \hat{u}, \\ \hat{u}(w,0) = \hat{f}(w) \end{cases} \Rightarrow \hat{u}(w,t) = e^{-w^2 A t} \hat{f}(w)$$

易得

$$||u(\cdot,t)||^2 = |\hat{u}(w,t)|^2, \quad ||u_x(\cdot,t)||^2 = w^2|\hat{u}(w,t)|^2$$

原式等价于

$$|\hat{u}(w,t)|^2 + \delta w^2 \int_0^t |\hat{u}(w,\xi)|^2 \, d\xi \le K |\hat{u}(w,0)|^2$$

对 $|\hat{u}(w,t)|^2$ 关于时间求导,得到

$$\partial_t |\hat{u}(w,t)|^2 = 2\langle \hat{u}, \hat{u}_t \rangle = \langle \hat{u}, -w^2 A \hat{u} \rangle + \langle -w^2 A \hat{u}, \hat{u} \rangle = \langle \hat{u}, -w^2 (A + A^*) \hat{u} \rangle$$

易知对于抛物方程,存在 $\delta > 0$ 使得 $A + A^* \ge \delta I$,代入得

$$\partial_t |\hat{u}(w,t)|^2 = \langle \hat{u}, -w^2(A+A^*)\hat{u}\rangle \le -\delta w^2 |\hat{u}(w,t)|^2$$

因此

$$0 \ge \int_0^t \left(\partial_t |\hat{u}(w,\xi)|^2 + \delta w^2 |\hat{u}(w,\xi)|^2 \right) d\xi = |\hat{u}(w,t)|^2 - |\hat{u}(w,0)|^2 + \delta w^2 \int_0^t |\hat{u}(w,\xi)|^2 d\xi$$
取 $K = 1$ 即可得证。

4.4.2. 如果系统更改为 $u_t = Au_{xx} + Bu_x + Cu$, 其中 B 是 Hermitian 矩阵, C 是反 Hermitian 矩阵, 那么对于相同的常数 δ , K, 方程 (4.4.9) 是否依然成立?

证明. 考虑谱波解

$$u(x,t) = \frac{1}{\sqrt{2\pi}} e^{iwx} \hat{u}(w,t), \quad u(x,0) = f(x) = \frac{1}{\sqrt{2\pi}} e^{iwx} \hat{f}(w)$$

代入方程得到

$$\begin{cases} \hat{u}_t = -w^2 A \hat{u} + iw B \hat{u} + C \hat{u}, \\ \hat{u}(w,0) = \hat{f}(w) \end{cases} \Rightarrow \hat{u}(w,t) = e^{(-w^2 A + iw B + C)t} \hat{f}(w)$$

易得

$$||u(\cdot,t)||^2 = |\hat{u}(w,t)|^2, \quad ||u_x(\cdot,t)||^2 = w^2|\hat{u}(w,t)|^2$$

原式等价于

$$|\hat{u}(w,t)|^2 + \delta w^2 \int_0^t |\hat{u}(w,\xi)|^2 d\xi \le K |\hat{u}(w,0)|^2$$

对 $|\hat{u}(w,t)|^2$ 关于时间求导,得到

$$\partial_t |\hat{u}(w,t)|^2 = 2\langle \hat{u}, \hat{u}_t \rangle = \langle \hat{u}, (-w^2 A + iwB + C)\hat{u} \rangle + \langle (-w^2 A + iwB + C)\hat{u}, \hat{u} \rangle$$
$$= \langle \hat{u}, -w^2 (A + A^*)\hat{u} \rangle + iw\langle \hat{u}, (B - B^*)\hat{u} \rangle + \langle \hat{u}, (C + C^*)\hat{u} \rangle$$

易知对于抛物方程,存在 $\delta>0$ 使得 $A+A^*\geq \delta I$,再由条件得 $B=B^*$, $C=-C^*$,代入得

$$\partial_t |\hat{u}(w,t)|^2 = \langle \hat{u}, -w^2(A+A^*)\hat{u} \rangle \le -\delta w^2 |\hat{u}(w,t)|^2$$

因此

$$0 \ge \int_0^t \left(\partial_t |\hat{u}(w,\xi)|^2 + \delta w^2 |\hat{u}(w,\xi)|^2 \right) d\xi = |\hat{u}(w,t)|^2 - |\hat{u}(w,0)|^2 + \delta w^2 \int_0^t |\hat{u}(w,\xi)|^2 d\xi$$
 取 $K = 1$ 即可得证。

4.5.1. 考虑一阶系统 $u_t = Au_x$ 。是否可能满足 Petrovskii 条件 (4.5.8) 对于某个常数 $\alpha > 0$ 成立 但对于 $\alpha = 0$ 不成立?

证明. 代入谱波解可以得到 $\hat{P}(i\omega) = i\omega A$ 。假设存在 $\alpha > 0$,对所有的 ω , λ 是 $\hat{P}(i\omega)$ 的特征值,有

$$\operatorname{Re} \lambda \leq \alpha$$

$$\operatorname{Re} \lambda = \operatorname{Re} \lambda(\hat{P}(i\omega)) = \operatorname{Re} \lambda(i\omega A) = -\omega \operatorname{Im} \lambda(A) \le \alpha$$

由于 ω 的任意性知 $\operatorname{Im} \lambda(A) = 0$,因此 $\alpha = 0$ 也成立。

4.5.2. 为系统

$$u_t = \begin{bmatrix} 1 & 10 \\ 0 & 2 \end{bmatrix} u_x$$

导出满足方程 (4.5.14) 和 (4.5.15) 的矩阵 $\hat{H}(\omega)$ 。

证明. 代入谱波解可以得到

$$\hat{P}(i\omega) = i\omega \begin{bmatrix} 1 & 10 \\ 0 & 2 \end{bmatrix}, \quad \hat{P}^*(i\omega) = -i\omega \begin{bmatrix} 1 & 0 \\ 10 & 2 \end{bmatrix}$$

我们假设

$$\hat{H}(\omega) = \begin{bmatrix} a & c \\ \bar{c} & b \end{bmatrix}$$

这样可以得到:

$$\hat{H}(\omega)\hat{P}(i\omega) + \hat{P}^*(i\omega)\hat{H} = \begin{bmatrix} 0 & 10a + c \\ -10a - \bar{c} & 10(\bar{c} - c) \end{bmatrix}$$

我们取 $a=1, c=-10, \alpha=0$ 即可满足 (4.5.15)。取 b=200, K=201 有

$$\hat{H}(\omega) - K^{-1}I = \begin{bmatrix} \frac{200}{201} & -10\\ -10 & \frac{199}{200} \end{bmatrix} > 0, \quad KI - \hat{H}(\omega) = \begin{bmatrix} 200 & 10\\ 10 & 1 \end{bmatrix} > 0$$

这样就满足 (4.5.14),最终得到的 $\hat{H}(\omega)$ 为

$$\hat{H}(\omega) = \begin{bmatrix} 1 & -10 \\ -10 & 200 \end{bmatrix}$$

HW 3.1.2 证明以下用于逼近方程

$$v_t + av_x = \nu v_{xx}$$

解的差分格式是无条件稳定的。

1.
$$u_k^{n+1} + \frac{R}{2}\delta_0 u_k^{n+1} - r\delta^2 u_k^{n+1} = u_k^n$$

2.
$$u_k^{n+1} + \frac{R}{4}\delta_0 u_k^{n+1} - \frac{r}{2}\delta^2 u_k^{n+1} = u_k^n - \frac{R}{4}\delta_0 u_k^n + \frac{r}{2}\delta^2 u_k^n$$

证明. 代入谱波解可以得到 $v_j^n = \frac{1}{\sqrt{2\pi}}\hat{v}^n(w)e^{iwx_j}$, 得到

$$\left[1 + iR\sin(wh) + 4r\sin^2\left(\frac{wh}{2}\right)\right]\hat{v}^{n+1}(w) = \hat{v}^n(w)$$

因此

$$\hat{Q} = \frac{1}{1 + iR\sin(wh) + 4r\sin^2\left(\frac{wh}{2}\right)}$$
$$|\hat{Q}|^2 = \frac{1}{\left(1 + 4r\sin^2\left(\frac{wh}{2}\right)\right)^2 + \left(R\sin(wh)\right)^2} \le 1$$

无条件稳定。

补充作业: 试证: 若对于任意 ω ,存在常数 α ,使得 $\hat{P}(i\omega) + \hat{P}^*(i\omega) \leq 2\alpha I$; 则该偏微分方程组的 初值问题 (1) 是 Well-Posed。

Part II

二维线性偏微分方程

Chapter 7

二维线性偏微分方程的初值问题

7.1 二维常系数对流方程的初值问题

考虑二维常系数对流方程的初值问题

$$\begin{cases} u_t + au_x + bu_y = 0, & (x, y) \in (-\infty, \infty) \times (-\infty, \infty), \ t > 0 \\ u(x, y, 0) = f(x, y), & (x, y) \in (-\infty, \infty) \times (-\infty, \infty) \end{cases}$$

其中 a,b 为常数, u(x,y,t), f(x,y) 对 x,y 分别为 2π 周期的周期函数。

7.1.0方程性质:

• 方程适定性: 代入 $u(x,y,t)=\frac{1}{\sqrt{2\pi}}e^{i(kx+\omega_x t+ly)}$ 得

$$k = -a\omega_x - b\omega_y \quad \Rightarrow \quad u(x, y, t) = \frac{1}{\sqrt{2\pi}} e^{i(-a\omega_x t - b\omega_y t + \omega_x x + \omega_y y)}$$

- 方程适定的条件: $a,b \in \mathbb{R}$.(振幅不随时间增长)
- 准确解为 u(x,y,t)=f(x-at,y-bt), 即初值沿 x 方向以速度 a 传播,沿 y 方向以速度 b 传播。

7.2 二维变系数对流方程的初值问题