CS5322 Database Security

Last Lecture

- Three approaches for statistical databases
 - Query auditing
 - Query set size control
 - Query set overlap control
 - Linear systems for sum queries
 - Attacks based on query denial
 - Data perturbation
 - Generalization
 - Data swapping
 - Synthetic data generation
 - Random perturbation
 - Output perturbation

Data Swapping

- An approach used by the US Census Bureau to protect privacy in their census data release
- Idea: Swap some values among the tuples to make them non-identifying

Name	Age	Gender	Program	Grade
Alice	20	F	CS	70
Bob	21	M	CS	80
Cathy	22	F	IS	90
Daisy	23	M	IS	100

Data Swapping

- Rationale:
 - After data swapping, the tuples are no longer "real"
 - This makes it difficult for an adversary to infer information
- Problem: There is no formal privacy guarantee

Name	Age	Gender	Program	Grade
Alice	20	F	CS	70
Bob	21	M	CS	80
Cathy	22	F	IS	90
Daisy	23	M	IS	100

Synthetic Data Generation

- Another approach used by the US Census Bureau in some of their data release
- Idea:
 - Construct a statistical model of the original data
 - Generate synthetic data from the statistical model
- Rational:
 - All tuples are "synthetic"

Synthetic Data Generation

- Advantage over data swapping:
 - It is possible to provide some formal privacy guarantee
- How?
 - By injecting some noise into the statistical model
- We will not go into the details of this approach
 - Since the statistical models used are often complicated

Random Perturbation

- This is an approach used by Google Chrome and Apple iOS to collect data from users
 - Google Chrome:
 - Which operating system is being used
 - What is the resolution of the monitor
 -
 - Apple:
 - What new words you have typed
 - What emoji you have used
 -

Random Perturbation: Setting

- S
- Each user has a tuple
- They are asked to submit their tuples to a server
- For privacy protection, each user adds noise into her tuple before giving it to the server
- Objective:
 - Protect privacy, but allow the server to learn useful statistics

Random Perturbation: Setting

- s Simplest setting:
 - The server asks each user: "Do you think Xiaokui is stupid?"
 - Each user has a yes-or-no answer
- Solution: Randomized Response [Warner 1965]
 - Each user gives her true answer with p probability
 - With the other 1 p probability, she gives a random answer

Randomized response [Warner 1965]

Randomized response [Warner 1965]

- Privacy: the respondent's real answer is not revealed
- Utility: the perturbed answers can still allow the server to estimate the survey results

- Suppose that 10k people give me noisy answers
 - 5.5k yes, and 4.5k no
- I don't know exactly which answers are fake, but I know some statistics about the fake answers

- Suppose that 10k people give me noisy answers
 - 5.5k yes, and 4.5k no
- I don't know exactly which answers are fake, but I know some statistics about the fake answers

I know that everyone gives a fake answer with 80% probability

- Suppose that 10k people give me noisy answers
 - 5.5k yes, and 4.5k no
- Everyone gives a fake answer with 80% probability
 - So there are around 8k fake answers

- Suppose that 10k people give me noisy answers
 - 5.5k yes, and 4.5k no
- Everyone gives a fake answer with 80% probability
 - So there are around 8k fake answers
 - Among them, roughly 4k yes and 4k no

I know that a fake answer has 50% probability to be yes, and 50% probability to be no

- Suppose that 10k people give me noisy answers
 - 5.5k yes, and 4.5k no
- Everyone gives a fake answer with 80% probability
 - So there are around 8k fake answers
 - Among them, roughly 4k yes and 4k no
- So the real answers are roughly 1.5k yes and 0.5k no
 - i.e., around 75% people's true answers are yes

Extension to More General Questions

- The previous example involves only a yes-or-no question
- But what if the question has more than two possible answers?
- Need to revise the algorithm for perturbation

Extension: Example

- Consider the following question: "Do you think that Xiaokui is stupid (S), very stupid (VS), or extremely stupid (ES)?"
- Suppose that your real answer is ES
- How should you perturb your answer?

Extension: Example

- Consider the following question: "Do you think that Xiaokui is stupid (S), very stupid (VS), or extremely stupid (ES)?"
- Suppose that your real answer is ES
- How should you perturb your answer?

Extension: Example of Estimation

- 12k respondents; p = 0.5
 - □ i.e., with 50% probability, give random answers
- We know that around 6k respondents would give random answers
 - And those answers would be 1/3 S, 1/3 VS, and 1/3 ES

Extension: Example of Estimation

 Therefore, the real answers should be roughly 1/6 S, 1/6 VS, and 2/3 ES

Randomized Response: Rationale

- We know the distribution of noise introduced by randomized response
- So given the noisy distribution of data, we may infer the original distribution
- But we cannot infer much about any particular tuple
 - We can only learn high-level statistics
- So privacy is preserved

Extension to More General Questions

- The previous examples involve questions with a small number of possible answers
- What if the query's answer is numeric?
 - E.g., "What is your CS5322 grade?"
- Solution:
 - Let each user add some zero-mean random noise to their answers
- This allows the server to estimate the mean grade by taking the average of all noise answers
- Rationale:
 - The zero-mean noise tends to cancel each other out

Modern Extensions

- The previous examples showcase relatively simple perturbation techniques
- Practical applications often utilize more sophisticated perturbation methods
 - But they are built upon the simple techniques
- We will not go into the details

Randomized Response: Exercise

- Consider a revised version of randomized response for a yes-or-no survey
- Perturbation algorithm:
 - If the real answer is "no", then give 50% yes and 50% no
 - If the real answer is "yes", then give 60% yes and 40% no
- Suppose that the noisy answers consist of 55% yes and 45% no
- Estimate the percentage of "yes" in the original answer

Coming Next

Inference Analysis

Motivation

- Previously, we discussed a number of data perturbation techniques
 - Generalization, data swapping, synthetic data generation, randomized response
- We mentioned that it is important to evaluate the degree of protection provided by each method
- But how to do that in a rigorous way?
- We can utilize Bayesian inference

Bayesian Inference: General Idea

- The adversary has some prior belief Pr[H] about some hypotheses H
 - E.g., "Cedric has 75% chance to be stupid"
- After observing the perturbed data, the adversary has a posterior belief Pr[H | D]
 - E.g., "After observing Cedric's IQ test result, I believe that he has 99.9% chance to be stupid"
- We want the adversary to learn as little as possible
- So we measure the degree of protection provided by D by comparing Pr[H] with Pr[H | D]

Bayesian Inference: Revisiting the Basics

$$\Pr[H \mid D] = \frac{\Pr[H \land D]}{\Pr[D]}$$

- Example:
 - H: The final is difficult
 - D: The mid-term is difficult
 - Pr[H | D]: Given that the mid-term is difficult, what is the probability that the final is also difficult?
 - Pr[D]: We observe that in the previous semesters, there was 50% chance that the mid-term was difficult
 - Pr[H \Lambda D]: We observe that in the previous semesters, there was 45% chance that the mid-term and final are both difficult
 - □ $Pr[H \mid D] = Pr[H \land D] / Pr[D] = 90\%$
 - So given that the mid-term is difficult, there is 90% chance that the final is also difficult

Bayesian Inference: Revisiting the Basics

$$\Pr[H \mid D] = \frac{\Pr[H \land D]}{\Pr[D]} = \frac{\Pr[D \mid H] \cdot \Pr[H]}{\Pr[D]}$$

- This is because Pr[H Λ D] = Pr[D | H] * Pr[H]
- Example:
 - The probability that both the final and mid-term are difficult equals
 - The probability that the final is difficult multiplied by
 - The conditional probability that, given a difficult final,
 the mid-term would also be difficult

Example: Monty Hall Problem

- Suppose you are on a game show, and you are given the choice of three doors
- Behind one door is a BMW; behind the others, goats.
- You pick a door, say No. 1
- The host, who knows what's behind the doors, opens another door, say No. 3, which has a goat.
- He then asks you, "Do you want to pick door No. 2?"
- Is it to your advantage to switch your choice?

Example: Monty Hall Problem

- You should switch
- Intuition:
 - Suppose that the host did not reveal what is behind Door 3
 - In that case, if we are to switch, we have two choices: Door 2 and Door 3
 - Choosing either one would lead to 1/3 winning probability
 - But now the host eliminates Door 3 for us
 - So when we switch, we have a higher probability to win

Example: Monty Hall Problem

- H: Door 2 has a BMW
- D: Host reveals Door 3 after you pick Door 1
- Pr[H] = 1/3
- Pr[H | D] = Pr[D | H] * Pr[H] / Pr[D] = Pr[D | H] * 1/3 / Pr[D]
- Pr[D | H] = 1
- $Pr[D] = Pr[D \land H] + Pr[D \land (Door 1 has a BMW)] + Pr[D \land (Door 3 has a BMW)]$
- = Pr[D | H] * Pr[H] + Pr[D | Door 1 has a BMW] * Pr[Door 1 has a BMW]
- **=** 1 * 1/3 + 1/2 * 1/3
- **=** 1/2
- So $Pr[H \mid D] = 1 * 1/3 / (1/2) = 2/3$
- In other words, it is beneficial to switch to Door 2

Inference Analysis: *l*-diversity

Name	Age	Gender	ZIP
Alice	20	F	100000
Bob	20	M	100000
Carl	50	M	190000
Dave	50	M	190000

What the adversary knows

Age	Gender	ZIP	Disease
20	*	100000	Flu
20	*	100000	Dyspepsia
50	*	190000	Gastritis
50	*	190000	Flu

Generalized Table D

- Suppose that the adversary knows the Age, Gender, and ZIP of everyone, and has the following prior belief:
 - Everyone has 1/3 chance to have flu, dyspepsia, and gastritis, respectively
 - The disease of everyone is independent
- What is the adversary's posterior belief that Alice has flu and Bob has dyspepsia?

Inference Analysis: *l*-diversity

Name	Age	Gender	ZIP
Alice	20	F	100000
Bob	20	M	100000
Carl	50	M	190000
Dave	50	M	190000

Age	Gender	ZIP	Disease
20	*	100000	Flu
20	*	100000	Dyspepsia
50	*	190000	Gastritis
50	*	190000	Flu

What the adversary knows

Generalized Table D

- H: Alice has flu and Bob has dyspepsia
- D: The first two tuples in the generalized table are as shown
- Pr[H]: 1/3 * 1/3 = 1/9

$$\Pr[H \mid D] = \frac{\Pr[D \mid H] \cdot \Pr[H]}{\Pr[D]} = \frac{\Pr[D \mid H] \cdot 1/9}{\Pr[D]}$$

 Pr[D | H] = 100%, because when Alice has flu and Bob has dyspepsia, the first two tuples in the generalized table are always the same as what we observe

•
$$\Pr[H \mid D] = \frac{\Pr[D \mid H] \cdot \Pr[H]}{\Pr[D]} = \frac{\Pr[D \mid H] \cdot 1/9}{\Pr[D]} = \frac{1/9}{\Pr[D]}$$

Inference Analysis: *l*-diversity

Name	Age	Gender	ZIP
Alice	20	F	100000
Bob	20	M	100000
Carl	50	M	190000
Dave	50	M	190000

What the adversary knows

Age	Gender	ZIP	Disease
20	*	100000	Flu
20	*	100000	Dyspepsia
50	*	190000	Gastritis
50	*	190000	Flu

Generalized Table D

$$Pr[H \mid D] = \frac{1/9}{Pr[D]}$$

- Pr[D] = Pr[Alice has flu and Bob has dyspepsia]
 + Pr[Alice has dyspepsia and Bob has flu]
- **=** 1/9 + 1/9 = 2/9
- So Pr[H | D] = 1/2
- In other words, after observing D, the adversary has 50% confidence that Alice has flu and Bob has dyspepsia

Name	Age	Gender	ZIP
Alice	20	F	100000
Bob	20	M	100000
Carl	50	M	190000
Dave	50	M	190000

What	the	adversary	knows
------	-----	-----------	-------

Age	Gender	ZIP	Disease
20	*	100000	Flu
20	*	100000	Dyspepsia
50	*	190000	Gastritis
50	*	190000	Flu

Generalized Table D

- Suppose that the adversary knows the Age, Gender, and ZIP of every one, and has the following prior belief:
 - Alice has 1/2, 1/4, and 1/4 chances to have flu, dyspepsia, and gastritis, respectively
 - Bob has 1/3, 1/3, and 1/3 chances to have flu, dyspepsia, and gastritis, respectively
 - The disease of everyone is independent
- What is the adversary's posterior belief that Alice has flu and Bob has dyspepsia?

Name	Age	Gender	ZIP
Alice	20	F	100000
Bob	20	M	100000
Carl	50	M	190000
Dave	50	M	190000

Age	Gender	ZIP	Disease
20	*	100000	Flu
20	*	100000	Dyspepsia
50	*	190000	Gastritis
50	*	190000	Flu

What the adversary knows

Generalized Table D

- H: Alice has flu and Bob has dyspepsia
- D: The first two tuples in the generalized table are as shown
- Pr[H]: 1/2 * 1/3 = 1/6

$$\Pr[H \mid D] = \frac{\Pr[D \mid H] \cdot \Pr[H]}{\Pr[D]} = \frac{\Pr[D \mid H] \cdot 1/6}{\Pr[D]}$$

 Pr[D | H] = 100%, because when Alice has flu and Bob has dyspepsia, the first two tuples in the generalized table are always the same as what we observe

$$Pr[H \mid D] = \frac{Pr[D|H] \cdot Pr[H]}{Pr[D]} = \frac{Pr[D|H] \cdot 1/6}{Pr[D]} = \frac{1/6}{Pr[D]}$$

Name	Age	Gender	ZIP
Alice	20	F	100000
Bob	20	M	100000
Carl	50	M	190000
Dave	50	M	190000

What the adversary knows

Age	Gender	ZIP	Disease
20	*	100000	Flu
20	*	100000	Dyspepsia
50	*	190000	Gastritis
50	*	190000	Flu

Generalized Table D

$$Pr[H \mid D] = \frac{1/6}{Pr[D]}$$

- Pr[D] = Pr[Alice has flu and Bob has dyspepsia]+ Pr[Alice has dyspepsia and Bob has flu]
- = 1/2*1/3 + 1/4*1/3 = 1/4
- So Pr[H | D] = 2/3
- In other words, after observing D, the adversary has 2/3 confidence that Alice has flu and Bob has dyspepsia

Name	Age	Gender	ZIP
Alice	20	F	100000
Bob	20	M	100000
Carl	50	M	190000
Dave	50	M	190000

What the	adversary	knows
----------	-----------	-------

Age	Gender	ZIP	Disease
20	*	100000	Flu
20	*	100000	Dyspepsia
50	*	190000	Gastritis
50	*	190000	Flu

Generalized Table D

- Suppose that the adversary knows the Age, Gender, and ZIP of every one, and has the following prior belief:
 - Alice has p1, p2, and 1 p1 p2 probabilities to have flu, dyspepsia, and gastritis, respectively
 - Bob has p3, p4, and 1 p3 p4 probabilities to have flu, dyspepsia, and gastritis, respectively
 - The disease of everyone is independent
- What is the adversary's posterior belief that Alice has flu and Bob has dyspepsia?

Name	Age	Gender	ZIP
Alice	20	F	100000
Bob	20	M	100000
Carl	50	M	190000
Dave	50	M	190000

Age	Gender	ZIP	Disease
20	*	100000	Flu
20	*	100000	Dyspepsia
50	*	190000	Gastritis
50	*	190000	Flu

What the adversary knows

Generalized Table D

- H: Alice has flu and Bob has dyspepsia
- D: The first two tuples in the generalized table are as shown
- Pr[H]: p1 * p4

$$\Pr[H \mid D] = \frac{\Pr[D \mid H] \cdot \Pr[H]}{\Pr[D]} = \frac{\Pr[D \mid H] \cdot p_1 \cdot p_4}{\Pr[D]}$$

 Pr[D | H] = 100%, because when Alice has flu and Bob has dyspepsia, the first two tuples in the generalized table are always the same as what we observe

$$Pr[H \mid D] = \frac{Pr[D\mid H] \cdot Pr[H]}{Pr[D]} = \frac{Pr[D\mid H] \cdot p1 \cdot p4}{Pr[D]} = \frac{p1 \cdot p4}{Pr[D]}$$

Name	Age	Gender	ZIP
Alice	20	F	100000
Bob	20	M	100000
Carl	50	M	190000
Dave	50	M	190000

	Dave		U	1 V I	T ~		,
W	/hat	the	ad	vers	ary	kno	WS

Age	Gender	ZIP	Disease
20	*	100000	Flu
20	*	100000	Dyspepsia
50	*	190000	Gastritis
50	*	190000	Flu

Generalized Table D

$$Pr[H \mid D] = \frac{p1 \cdot p4}{Pr[D]}$$

- Pr[D] = Pr[Alice has flu and Bob has dyspepsia]
 + Pr[Alice has dyspepsia and Bob has flu]
- = p1*p4 + p2*p3
- So $\Pr[H \mid D] = \frac{p_1 \cdot p_4}{p_1 \cdot p_4 + p_2 \cdot p_3}$
- The adversary's belief changes from $p1\cdot p4$ to $\frac{p1\cdot p4}{p1\cdot p4+p2\cdot p3}$ after observing D

Name	Age	Gender	ZIP
Alice	20	F	100000
Bob	20	M	100000
Carl	50	M	190000
Dave	50	M	190000

What the adversary knows

Age	Gender	ZIP	Disease
20	*	100000	Flu
20	*	100000	Dyspepsia
50	*	190000	Gastritis
50	*	190000	Flu

Generalized Table D

- The adversary's belief changes from $p1\cdot p4$ to $rac{p1\cdot p4}{p1\cdot p4+p2\cdot p3}$ after observing D
- How different can $p1 \cdot p4$ and $\frac{p1 \cdot p4}{p1 \cdot p4 + p2 \cdot p3}$ be?
- The difference can be arbitrarily large
 - Unless we make some assumptions about p1, p2, p3, p4
- This explains why we need to take into account the adversary's background knowledge when applying l-diversity

Coming Next

Inference analysis for randomized response

- Suppose that the adversary has the following prior belief:
 - Bob's true answer is yes with 60%, and no with 40% probability
- Assume that
 - The retention probability p = 1/5
 - Bob's perturbed answer is yes
- What is the adversary's posterior belief that Bob's true answer is yes?

- H: Bob's true answer is yes
- D: Bob's perturbed answer is yes
- Pr[H] = 60%

$$\Pr[H \mid D] = \frac{\Pr[D \mid H] \cdot \Pr[H]}{\Pr[D]} = \frac{\Pr[D \mid H] \cdot 60\%}{\Pr[D]}$$

Pr[D | H] =
$$1/5 + 4/5 * 1/2 = 3/5$$

$$Pr[H \mid D] = \frac{Pr[D|H] \cdot Pr[H]}{Pr[D]} = \frac{Pr[D|H] \cdot 60\%}{Pr[D]} = \frac{9/25}{Pr[D]}$$

- H: Bob's true answer is yes
- D: Bob's perturbed answer is yes
- Pr[H] = 60%

$$Pr[H \mid D] = \frac{Pr[D|H] \cdot Pr[H]}{Pr[D]} = \frac{Pr[D|H] \cdot 60\%}{Pr[D]} = \frac{9/25}{Pr[D]}$$

- Pr[D] = Pr[D Λ H] + Pr[D Λ (not H)]
 = Pr[D | H] * Pr [H] + Pr[D | not H] * Pr[not H]
 = 9/25 + (4/5 * 1/2) * 40% = 13/25
- $\Pr[H \mid D] = \frac{\Pr[D|H] \cdot \Pr[H]}{\Pr[D]} = \frac{\Pr[D|H] \cdot 60\%}{\Pr[D]} = \frac{9/25}{\Pr[D]} = \frac{9}{13}$

- H: Bob's true answer is yes
- D: Bob's perturbed answer is yes
- Pr[H] = 60%

$$Pr[H \mid D] = \frac{Pr[D|H] \cdot Pr[H]}{Pr[D]} = \frac{Pr[D|H] \cdot 3/5}{Pr[D]} = \frac{9/25}{Pr[D]} = \frac{9}{13}$$

- In other words, the adversary's belief changes from 60% to 9/13
 - this is an increase of around 15% only

- Suppose that the adversary has the following prior belief:
 - Bob has 75% probability to answer yes, and 25% probability to answer no
- Assume that
 - The retention probability p = 1/4
 - Bob's perturbed answer is no
- What is the adversary's posterior belief that Bob's true answer is yes?

- H: Bob's true answer is yes
- D: Bob's perturbed answer is no
- Pr[H] = 75%

$$\Pr[H \mid D] = \frac{\Pr[D \mid H] \cdot \Pr[H]}{\Pr[D]} = \frac{\Pr[D \mid H] \cdot 75\%}{\Pr[D]}$$

- Pr[D | H] = 3/4 * 1/2 = 3/8
- $\Pr[H \mid D] = \frac{\Pr[D|H] \cdot \Pr[H]}{\Pr[D]} = \frac{\Pr[D|H] \cdot 75\%}{\Pr[D]} = \frac{9/32}{\Pr[D]}$

- H: Bob's true answer is yes
- D: Bob's perturbed answer is no
- Pr[H] = 75%

$$Pr[H \mid D] = \frac{Pr[D|H] \cdot Pr[H]}{Pr[D]} = \frac{Pr[D|H] \cdot 75\%}{Pr[D]} = \frac{9/32}{Pr[D]}$$

- Pr[D] = Pr[D ^ H] + Pr[D ^ (not H)] = Pr[D | H] * Pr [H] + Pr[D | not H] * Pr[not H] = 9/32 + (1/4 + 3/4 * 1/2) * 25% = 14/32
- $Pr[H \mid D] = \frac{Pr[D|H] \cdot Pr[H]}{Pr[D]} = \frac{Pr[D|H] \cdot 3/5}{Pr[D]} = \frac{9/32}{Pr[D]} = \frac{9}{14}$

- H: Bob's true answer is yes
- D: Bob's perturbed answer is no
- Pr[H] = 75%

$$Pr[H \mid D] = \frac{Pr[D|H] \cdot Pr[H]}{Pr[D]} = \frac{Pr[D|H] \cdot 3/5}{Pr[D]} = \frac{9/32}{Pr[D]} = \frac{9}{14}$$

- In other words, the adversary's belief changes from 75% to 9/14
 - this is a decrease of around 14% only

The General Case

- \blacksquare Assume that the retention probability is p
- H: The adversary's prior belief on Bob's answer
- D: Bob's perturbed answer
- How large and small can $\frac{\Pr[H|D]}{\Pr[H]}$ be?

In general, we have

$$\frac{\Pr[H|D]}{\Pr[H]} = \frac{\Pr[D|H] \cdot \Pr[H] / \Pr[D]}{\Pr[H]} = \frac{\Pr[D|H]}{\Pr[D]} = \frac{\Pr[D|H]}{\Pr[D \land H] + \Pr[D \land (not \ H)]}$$

$$= \frac{\Pr[D|H]}{\Pr[D|H] \cdot \Pr[H] + \Pr[D|(not \ H)] \cdot \Pr[not \ H]} = \frac{\Pr[D|H]}{\Pr[D|H] \cdot \Pr[H] + \Pr[D|(not \ H)] \cdot (1 - \Pr[H])}$$

- There are only two possibilities for $Pr[D \mid H]$ and $Pr[D \mid (not \ H)]$:
 - $\Pr[D \mid H] = p + \frac{1-p}{2} \text{ and } \Pr[D \mid (not \ H)] = \frac{1-p}{2}, \text{ or }$
 - $\Pr[D \mid H] = \frac{1-p}{2} \text{ and } \Pr[D \mid (not \ H)] = p + \frac{1-p}{2}$

In general, we have

$$\frac{\Pr[H|D]}{\Pr[H]} = \frac{\Pr[D|H] \cdot \Pr[H] / \Pr[D]}{\Pr[H]} = \frac{\Pr[D|H]}{\Pr[D]} = \frac{\Pr[D|H]}{\Pr[D \land H] + \Pr[D \land (not \ H)]}$$

$$= \frac{\Pr[D|H]}{\Pr[D|H] \cdot \Pr[H] + \Pr[D|(not \ H)] \cdot \Pr[not \ H]} = \frac{\Pr[D|H]}{\Pr[D|H] \cdot \Pr[H] + \Pr[D|(not \ H)] \cdot (1 - \Pr[H])}$$

- There are only two possibilities for $Pr[D \mid H]$ and $Pr[D \mid (not \ H)]$:
 - □ $Pr[D \mid H] = p + \frac{1-p}{2}$ and $Pr[D \mid (not \ H)] = \frac{1-p}{2}$, or
 - $\Pr[D \mid H] = \frac{1-p}{2} \text{ and } \Pr[D \mid (not \ H)] = p + \frac{1-p}{2}$
- Accordingly, $\frac{\Pr[H|D]}{\Pr[H]}$ only has two possibilities:

$$\frac{\Pr[H|D]}{\Pr[H]} = \frac{p + \frac{1-p}{2}}{\left(p + \frac{1-p}{2}\right) \cdot \Pr[H] + \frac{1-p}{2} \cdot (1 - \Pr[H])} = \frac{1+p}{1-p+2p \cdot \Pr[H]} \le \frac{1+p}{1-p}$$

$$\frac{\Pr[H|D]}{\Pr[H]} = \frac{\frac{1-p}{2}}{\left(\frac{1-p}{2}\right) \cdot \Pr[H] + \left(p + \frac{1-p}{2}\right) \cdot (1-\Pr[H])} = \frac{1-p}{1+p-2p \cdot \Pr[H]} \ge \frac{1-p}{1+p}$$

- Conclusion: $\frac{1-p}{1+p} \le \frac{\Pr[H|D]}{\Pr[H]} \le \frac{1+p}{1-p}$
- - Regardless of what the adversary's prior belief is
- This is a much stronger guarantee than what l-diversity offers