Tema 5. Sistema de memoria

Contenidos

- 1.- Jerarquía de memoria
- 2.- Características de la memoria
- 3.- Memoria RAM dinámica
- 4.- Mapa de memoria
- 5.- Memoria caché

Jerarquía de memoria

Jerarquía de memoria

Características de la memoria

Ubicación

- CPU (registros, cache)
- Interna (RAM)
- Externa (HDD)

Capacidad

 Cantidad de bytes que puede almacenar

Unidad de transferencia

Cantidad de bits que se leen o escriben en una operación de L/E

- Palabra (RAM)
- Bloque (HDD)

Método de acceso

- Secuencial (Cintas)
- Directo (HDD)
- Aleatorio (RAM,ROM)
- Asociativo (Caché)

Tiempo de acceso

- •Tiempo que tarda la memoria en suministrar/grabar una palabra desde el momento en que se presenta su dirección (RAM, cache)
- •Tiempo que tarda el disco en situar el mecanismo de L/E en una posición (HDD)

Dispositivo físico

- Semiconductor (RAM,ROM,FLASH)
- Soporte magnético (HDD)
- Soporte óptico (DVD,BlueRay)
- Soporte óptico-magnético (Cintas)

Características físicas

- •No volatil (HDD,ROM) / Volatil (RAM)
- •No borrable (ROM) / Borrable (FLASH)

Memorias semiconductoras

Dinámicas (DRAM)

- Necesita refresco (periodo de mseg.)
- Condensador (ocupa menos espacio que un biestable → mayor densidad)
- Mayor capacidad, más barata
- Memoria Principal

Estáticas (SRAM)

- -NO Necesita refresco
- -Biestable
- -Menor capacidad, más cara
- -Caché

DRAM: características

Organización

- Módulos de memoria (1GB,2GB,...)
- Ranks (1,2,4)
- Chips de memoria (64Mx8, 128Mx8,...)
- Bancos internos de un chip (4, 8)

Prestaciones

- Latencia
- Tiempo de ciclo
- Velocidad de transferencia

Mejoras

•ECC

- Celda: Unidad mínima de almacenamiento (bit, byte)
- Palabra: agrupación de celdas que se leen o escriben a la vez (múltiplo de un byte)

Unidad direccionable

Mínima cantidad de bits a los que le corresponde una dirección física

Byte → Dirección física

Unidad de transferencia

Cantidad de bits que se leen o escriben en una operación de L/E Palabra (64 bits)

DRAM: organización

Organización del módulo

¿Cuántas palabras es capaz de almacenar este modulo?

y ¿Cuántos bytes?

Organización del chip

Cantidad de palabras de un

chip: 128M,256M,512M,1G

Ancho de palabra de un chip:

x1, x4, x8, x16, x32, x64

DRAM: organización en módulos

DRAM: organización en módulos

DRAM: organización dentro del chip

Ejemplo: chip 256Mx8 con 4 bancos internos

Banco = 2^{16} filas x 2^{10} columnas = 2^{26} celdas = 64Mx8 **CHIP** Celda = \square = 8 bits **2**10 registro direcc decodificador Bank 216 65536 x 1024 x 8 bits DIRECCIÓN DATOS **D7-D0** RAS **MULTIPLEXADO** decodificador columna A27-A26 registro direcc. columna DIRECCIÓN DEL BANCO A25-A10 **DIRECCIÓN DE FILA** A9-A0 **CAS DIRECCIÓN DE COLUMNA**

DRAM: organización dentro del chip

DATA SHEET

2GB Unbuffered DDR3 SDRAM DIMM

EBJ20UF8BCF0 (256M words × 64 bits, 1 Rank)

Specifications

- Density: 2GB
- Organization
- 256M words × 64 bits, 1 rank
- Mounting 8 pieces of 2G bits DDR3 SDRAM sealed in FBGA
- Package: 240-pin socket type dual in line memory module (DIMM)
- PCB height: 30.0mm
- Lead pitch: 1.0mm
- Lead-free (RoHS compliant) and Halogen-free
- Power supply: VDD = 1.5V ± 0.075V
- Data rate: 1600Mbps/1333Mbps (max.)
- Eight internal banks for concurrent operation (components)

Features

- Double-data-rate architecture: two data transfers per clock cycle
- The high-speed data transfer is realized by the 8 bits prefetch pipelined architecture
- Bi-directional differential data strobe (DQS and /DQS) is transmitted/received with data for capturing data at the receiver
- DQS is edge-aligned with data for READs; centeraligned with data for WRITEs
- Differential clock inputs (CK and /CK)
- DLL aligns DQ and DQS transitions with CK transitions
- Commands entered on each positive CK edge; data and data mask referenced to both edges of DQS
- Data mask (DM) for write data

DRAM: organización dentro del chip

Figure 2: Functional Block Diagram: 64 Meg x 4

DRAM: prestaciones

Tiempo de ciclo: Tiempo entre dos accesos consecutivos a memoria.

Velocidad de transferencia: es la velocidad a la que la memoria transfiere los datos, expresada en bytes por segundo.

Latencia: Tiempo transcurrido desde que el controlador de memoria solicita un dato hasta que éste está disponible en los pines de salida.

La latencia se produce por los retardos que provocan los accesos a los diferentes componentes de la memoria. Existen varias latencias, la más importante es la latencia CAS (CL) que es el número de ciclos de reloj necesarios para acceder a una columna del banco interno del chip y proporcionar el dato en los pines de salida.

DRAM: prestaciones

Timing SDRAM

SDRAM (Synchronous DRAM): su funcionamiento está sincronizado con una señal de reloj.

DDR (Double Data Rate): dos accesos por cada ciclo de reloj.

Nombre estándar - Frecuencia efectiva	Frecuencia Array (CAS,RAS)	Frecuencia buffer E/S	Palabras transferidas por segundo	Nombre del módulo	Máxima capacidad de transferencia	
DDR2-400	100 MHz	200 MHz	400 millones	PC2 -3200	3200 MB/s	
DDR2-533	133 MHz	266 MHz	533 millones	PC2-4200	4264 MB/s	
DDR2-600	150 MHz	300 MHz	600 millones	PC2-4800	4800 MB/s	
DDR2-667	166 MHz	333 MHz	667 Millones	PC2-5300	5336 MB/s	
DDR2-800	200 MHz	400 MHz	800 Millones	PC2-6400	6400 MB/s	
DDR2-1000	250 MHz	500 MHz	1000 Millones	PC2-8000	8000 MB/s	
DDR2-1066	266 MHz	533 MHz	1066 Millones	PC2-8500	8530 MB/s	
DDR2-1150	286 MHz	575 MHz	1150 Millones	PC2-9200	9200 MB/s	
DDR2-1200	300 MHz	600 MHz	1200 Millones	PC2-9600	9600 MB/s	

x2

Palabras/seg = frecuencia x palabras/ciclo =

= 200 millones ciclos/seg x 2 palabras/ciclo = 400 millones de palabras/seg

Velocidad de Transferencia (MB/seg) = palabras/seg x bytes/palabra =

= 400 Mpalabras/seg x 8 bytes/palabra = 3.200 MB/seg

x4

		7			
Nombre estándar – frecuencia efectiva	Frecuencia Array (CAS,RAS)	Frecuencia buffer E/S	Palabras transferidas por segundo	Nombre del módulo	Máxima capacidad de transferencia
DDR3-1066	133 MHz	533 MHz	1066 Millones	PC3-8500	8530 MB/s
DDR3-1200	150 MHz	600 MHz	1200 Millones	PC3-9600	9600 MB/s
DDR3-1333	166 MHz	667 MHz	1333 Millones	PC3-10667	10664 MB/s
DDR3-1375	170 MHz	688 MHz	1375 Millones	PC3-11000	11000 MB/s
DDR3-1466	183 MHz	733 MHz	1466 Millones	PC3-11700	11700 MB/s
DDR3-1600	200 MHz	800 MHz	1600 Millones	PC3-12800	12800 MB/s
DDR3-1866	233 MHz	933 MHz	1866 Millones	PC3-14900	14930 MB/s
DDR3-2000	250 MHz	1000 MHz	2000 Millones	PC3-16000	16000 MB/s

x2

Nombre estándar	Frec. Array de celdas (CAS,RAS)	Frecuencia buffer E/S	Palabras transferidas por segundo	Nombre del módulo	Máxima capacidad de transferencia (Mbytes/s)
DDR3-1066	133 MHz	533 MHz	1066 Millones	PC3-8500	8530 MB/s
DDR3-1200	150 MHz	600 MHz	1200 Millones	PC3-9600	9600 MB/s

Memoria 1 $f_{array} = 133 \text{ MHz}$, L=6

¿cómo influye la

1) Duración ciclo array = $1/f_{array} = 7.5 \text{ ns}$

latencia?

Duración hasta la salida de la 1º palabra = 6 x 7.5 ns = 45ns

Memoria 2 f_{array} = 133 MHz, L=9

2) Duración ciclo array = $1/f_{array} = 7.5 \text{ ns}$

Duración hasta la salida de la 1^a palabra = 9×7.5 ns = 67.5ns

Memoria 3 f_{array} = 150 MHz, L=7

3) Duración ciclo array = $1/f_{array} = 6.7 \text{ ns}$

Duración hasta la salida de la 1º palabra = 7 x 6.7 ns = 46.9ns

Mapa de memoria

• Mapa de memoria: Todo el espacio direccionable por el computador. bus de direcciones = n bits \rightarrow mapa de memoria = 2^n direcciones

Pentium Dual Core E6000

Bus de direcciones = 36 bits \rightarrow mapa de memoria = 2^{36} direcciones \rightarrow si cada byte de la memoria lleva asociado una dirección \rightarrow se pueden direccionar 64 GB

- •Mapa disponible: subconjunto del mapa para el que existe memoria física (módulos DRAM, ROM BIOS, etc).
- Espacio libre: ampliaciones.

Intel 286 (bus direcciones = 24 bits) con 2 módulos RAM de 1MB

- 1º) mapa de memoria = 2^{24} direcciones \rightarrow si cada byte de la memoria lleva asociado una dirección \rightarrow se pueden direccionar 16 MB max.
- 2º) para direccionar 1MB necesitamos 20 bits del bus de direcciones (utilizamos los menos significativos A19-A0).

A23-A20	A19-A16	A15-A12	A11-A8	A7-A4	A3-A0	Función
0	0	0	0	0	0	Mádula1
0	F	F	F	F	F	Módulo1
1	0	0	0	0	0	Módulo 2
1	F	F	F	F	F	iviodulo 2
2	0	0	0	0	0	Libre
F	F	F	F	F	F	(Bios, I/O,)

Características del ordenador:

- Bus de direcciones = 32 bits
- Palabra = 64 bits
- Módulo RAM = 1GB
- Nº módulos RAM = 2

- 1º) si una palabra tiene 8 bytes (2³)
 necesitamos 3 bits para identificar el byte en la palabra
 utilizaremos las 3 líneas menos significativas del bus de direcciones
- 2º) si un módulo tiene 128 Mpalabras (2²7) necesitamos 27 bits para identificar la palabra en el módulo utilizaremos las 27 líneas siguientes del bus de direcciones (A29-A3)
- 3º) ¿y las líneas que sobran? las utilizaremos para identificar el módulo (A31-A30)

(A2-A0)

	A31 A30 ¿Qué Módulo?	A29-A3 (128 Megapalabras) ¿Qué palabra del módulo?	A2-A0 ¿Qué byte?	Mód	Dirección Hex.
1ªDir.	00	00 0000 0000 0000 0000 0000 0	000	1	00000000
Última	00	11 1111 1111 1111 1111 1111 1111 1	111	1	3FFF FFFF
1ªDir.	01	00 0000 0000 0000 0000 0000 0	000	2	4000000
Última	01	11 1111 1111 1111 1111 1111 1111 1	111	2	7FFF FFFF
1ªDir.	10	00 0000 0000 0000 0000 0000 0	000	Libro	80000000
Última	11	11 1111 1111 1111 1111 1111 1111 1	111	Libre	FFFF FFFF

bus direcciones = 32 bits →

mapa de memoria = 2^{32} direcciones \rightarrow

si cada byte de la memoria lleva asociado una dirección ->

se pueden direccionar 4GB como máximo

Expansión de memoria

- Longitud de palabra
 - Número bits en cada dirección
- Capacidad de palabra
 - Número de direcciones

Expansión de memoria

Incrementar la longitud de palabra

Combinación de dos RAM de 16 x 4 para formar una memoria de 16 x 8

Expansión de memoria

Incrementar el número de palabras de memoria

Combinación de dos RAM de 16 x 4 para formar una memoria de 32 x 4

Intervalos de direcciones

00000 a 01111 – 16 palabras en RAM-0 10000 a 11111 – 16 palabras en RAM-1

Comunicación Procesador-Memoria (DRAM)

Memory Modules

Comunicación Procesador-Memoria (DRAM)

Memoria caché: niveles

- L1: Está dentro del núcleo. (64KB-256KB)
- L2: Está fuera del núcleo y hay una por cada núcleo. (256KB-4MB)
- L3: Solo hay una que comparten todos los núcleos. (8MB)

más lenta

Memoria caché: funcionamiento

- 1 La CPU solicita un dato.
- 2 La caché comprueba si tiene ese dato
- 3 Si la caché tiene ese dato lo entrega a la CPU

Si la caché NO tiene ese dato 5 Lo entrega a la CPU

4 Lo solicita a memoria principal

Memoria caché: funcionamiento

$$T_{m} = P_{ca} * T_{ca} + P_{mp} * T_{mp}$$

$$P_{mp} = 1 - P_{ca}$$

$$T_{medio} = P_{ca} * T_{ca} + (1 - P_{ca}) * (T_{mp} + T_{ca})$$

Memoria caché: funcionamiento

$$T_{\text{medio}} = P_{\text{ca}} * T_{\text{ca}} + (1 - P_{\text{ca}}) * (T_{\text{mp}} + T_{\text{ca}})$$

Ejemplo:

- •Tiempo de acceso a caché igual a 10ns
- •Tiempo de acceso a memoria principal igual a 120ns
- Probabilidad de que el dato/inst. esté en la caché igual a 80%

$$T_{\text{medio}} = 0.80*10 \text{ns} + (1 - 0.80)*(10 \text{ ns} + 120 \text{ns}) = 8 \text{ns} + 26 \text{ns} = 34 \text{ns}$$

