Clustering: k-means

2024-09-02

- M1 MIDS/MFA
- Université Paris Cité
- Année 2024-2025
- Course Homepage
- Moodle

Objectives

message = FALSE,

Setup

```
stopifnot(
  require(DT),
  require(skimr),
  require(GGally),
  require(patchwork),
  require(ggforce),
  require(glue),
  require(ggfortify),
  require(ggvoronoi),
  require(magrittr),
  require(broom),
  require(tidyverse)
tidymodels::tidymodels_prefer(quiet = TRUE)
old_theme <-theme_set(</pre>
  theme_minimal(base_size=9,
                base_family = "Helvetica")
knitr::opts_chunk$set(
```

```
warning = FALSE,
  comment=NA,
  prompt=FALSE,
  cache=FALSE,
  echo=TRUE,
  results='asis'
)

gc <- options(ggplot2.discrete.colour="viridis")
  gc <- options(ggplot2.discrete.fill="viridis")
  gc <- options(ggplot2.continuous.fill="viridis")
  gc <- options(ggplot2.continuous.colour="viridis")</pre>
```

Foreword

This lab is dedicated to the k-means clustering method. In words, k-means takes as input a collection of points in \mathbb{R}^d (a numerical dataset) and a positive integer k. It returns a collection of k points (the centers) from \mathbb{R}^d . The centers define a Voronoï tesselation/partition/diagran of \mathbb{R}^d . The Voronoï cells define a clustering of the original dataset.

Voronoi tesselation/partition/diagram

Wikipedia on Voronoï diagrams

In the next chunk, we generate a Voronoï diagram on \mathbb{R}^2 with 100 cells defined from 100 random points drawn from the uniform distribution on a square. Function **stat_voronoi()** comes from ggvoronoi

Voronoi tesselation

Left: 100 random points Right: Voronoï diagram

- Two adjacent Voronoï cells are separated by a (possibly semi-infinite) line segment
 - Let the so-called *centers* be denoted by c_1, \ldots, c_n . They form the *codebook* \mathcal{C} .
 - The Voronoï cell with center c_i is defined by

$$\left\{x: x \in \mathbb{R}^d, \qquad \|x-c_i\|_2 = \min_{j \leq n} \|x-c_j\|_2\right\}$$

• The center of a Voronoï cell is usually not its barycenter

i k-means objective function

The k-means algorithm aims at building a $codebook \ \mathcal{C}$ that minimizes

$$\mathcal{C} \mapsto \sum_{i=1}^n \min_{c \in \mathcal{C}} \|X_i - c\|_2^2$$

over all codebooks with given cardinality If $c \in \mathcal{C}$ is the closest centroid to $X \in \mathbb{R}^p$,

$$||c - X||^2$$

is the $quantization/reconstruction\ error$ suffered when using codebook $\mathcal C$ to approximate X

A If there are no restrictions on the dimension of the input space, on the number of centroids, or on sample size, computing an optimal codebook is a NP -hard problem

kmeans() is a wrapper for a collection of Algorithms that look like the Lloyd algorithm Initialize by sampling from the data k-Mean++ try to take them as separated as possible.

Iterate the two phases until?

▶ No guarantee to converge to a global optimum!

Proceed by trial and error.

Repeat and keep the best result.

Iris data

Run kmeans () on the projection of the Iris dataset on the Sepal plane. We look for a partition into three cells.

```
data(iris)
kms <- iris %>%
  select(starts_with("Petal")) %>%
 kmeans(3)
```

The result is an object of class kmeans. The class is equiped with broom methods.

Summarizing a clustering

Question

Check the structure of objects of class kmeans and use broom::tidy() to get a summary. Compare with summary()

Visualizing a clustering

Question

Use broom::augment() and broom::tidy() to prepare two dataframes that will allow you to overlay a scatterplot of the dataset and a Voronoï diagram defined by the centers outpu by kmeans().

Compare the result with plot()

i Question

Redo the same operations but choose the Sepal.xxx dimension.

Design a function to avoid repetitive coding.

Playing with k

The number of cells/clusters may not be given a priori.

Question

Perform kmeans clustering with k=2. Use glance, tidy, augment to discuss the result.

i Question

Perform k-means for k = 2, ... 10, plot within sum of squares as function of k. Comment.

Lloyd's iterations

i Initialize Choose k centroids

Iterations: Two phases

Movement Assign each sample point to the closest centroid Assign each sample point to a class in the Voronoi partition defined by the centroids

Update For each class in the current Voronoi partition, update teh centroid so as to minimize the Within Cluster Sum of Squared distances.

References

Vignette k_means from tidyclust