

Scribe

Your Data, Anywhere

The Scribe Team:

John Strunk - jstrunk@redhat.com Ryan Cook - rcook@redhat.com Parul Singh - parsingh@redhat.com Guy Margalit - gmargali@redhat.com Scott Creeley - screeley@redhat.com

Agenda

- Scribe overview
- Demos
 - Replication for disaster recovery
 - Data distribution
 - Integration with RHACM
- Q&A

What about your data?

- Kubernetes + gitops works well for stateless applications
 - Lose a node? ⇒ reschedule the pod
 - Lose a cluster? ⇒ restart app at remote site

Gitops makes moving the application/config easy

- But what about your data?
 - Moving to another cluster is hard!

Scribe overview

Scribe ⇒ Cross-cluster, asynchronous data replication

- Storage system independent
 - Underlying storage doesn't need to support replication
 - Disparate data sources and destinations
- Uses CSI capabilities if available
 - Clone and snapshot provide point-in-time copies of data
 - Scribe can still be used even without snap/clone
- Extensible architecture to support storage optimized replication

Use cases for Scribe

- Disaster recovery
 - Background replication of application persistent data
- Data distribution
 - Distribute data from central site ⇒ object store ⇒ edge sites
- Application and data migration
 - Cross-vendor storage migration
 - Cloud to on-prem
- Off-site analytics
- Development and testing with production data

Benefits & capabilities

- Multiple replication methods behind a single interface
 - Rsync -- 1:1 volume relationships ⇒ Example: async DR
 - Efficient delta transfers directly from source to destination
 - Rclone -- 1:many volume relationships ⇒ Example: data distribution
 - Uses intermediate cloud storage to support wide fan-out
- Supports both in-cluster and cross-cluster replication
- Builds on Kubernetes and CSI primitives
 - Well-positioned to take advantage of upcoming enhancements:
 Volume groups, data populators, container notifier

Status and future work

Current

- Initial release v0.1
 - Rsync ⇒ 1:1 replication
 - Rclone ⇒ 1:many replication
- Install via ArtifactHub.io
 - Kubernetes 1.17+
 - OpenShift 4.6+

Future

- Packaging for OperatorHub
- Restic-based data mover
 - Archive use-cases
- Prometheus metrics
 - Status monitoring
- Replicate in/out of Kubernetes

Where to find us...

• Documentation:

https://scribe-replication.readthedocs.io/

• GitHub:

https://github.com/backube/scribe

Demo time...

DEMO 1

Rsync-based replication for disaster recovery

DEMO 2

Rclone-based wide fan-out replication

DEMO 3

Integration w/ Red Hat Advanced Cluster Management

Rsync replication

Rsync replication - summary

- Replication of wiki application to secondary cluster
- Scribe operator:
 - Replicates a point-in-time copy of application data
 - Latest image is preserved as VolumeSnapshot on secondary
- Application restored on secondary from the snapshot

DEMO 2

Rclone-based wide fan-out replication

Rclone replication

Fan-Out - 1:Many

Rclone replication

Infrastructure

- Kind (version 1.20) cluster with 2 namespaces
- source: Primary site containing "source-of-truth"
- dest: Edge sites that will pull primary data

The application

- MySql DB
- HostPath based PV storage
- hostpath.csi.k8s.io drivers for snapshots

Rclone replication

Rclone replication - Summary

- Replication of MySql database application to a different namespace
- Scribe Operator:
 - Uses an intermediate storage like S3 Object Store
 - Primary site pushes data to the intermediate storage
 - Edge sites pulls data from the intermediate storage

DEMO 3

Integration with Red Hat Advanced Cluster Management

Architecture

Scenario

Red Hat

End-to-end visibility

View system alerts, critical application metrics, and overall system health. Search, identify, and resolve issues that are impacting distributed workloads using an operational dashboard designed for Site Reliability Engineers (SREs).

Go to Overview

Application lifecycle

Define a business application using open standards and deploy the applications using placement policies that are integrated into existing CI/CD pipelines and governance controls.

Go to Applications

Cluster lifecycle

Create, update, scale, and remove clusters reliably, consistently using an open source programming model that supports and encourages Infrastructure as Code best practices and design principles.

Go to Clusters

Governance, Risk, and Compliance

Use policies to automatically configure and maintain consistency of security controls required by industry or other corporate standards. Prevent unintentional or malicious configuration drift that might expose unwanted and unnecessary threat vectors.

Go to Governance and risk

Where to find us...

Documentation:

https://scribe-replication.readthedocs.io/

• GitHub:

https://github.com/backube/scribe

