

Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations

1. Thesis and Dissertation Collection, all items

1968-09

A computer program for the analysis of linearly elastic plane-stress, plane-strain problems.

Malone, John Patrick

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/26940

This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.

Downloaded from NPS Archive: Calhoun

Calhoun is the Naval Postgraduate School's public access digital repository for research materials and institutional publications created by the NPS community. Calhoun is named for Professor of Mathematics Guy K. Calhoun, NPS's first appointed -- and published -- scholarly author.

> Dudley Knox Library / Naval Postgraduate School 411 Dyer Road / 1 University Circle Monterey, California USA 93943

http://www.nps.edu/library

NPS ARCHIVE 1968 MALONE, J.

> A COMPUTER PROGRAM FOR THE ANALYSIS OF LINEARLY ELASTIC PLANE-STRESS, PLANE-STRAIN PROBLEMS

> > by

John Patrick Malone

LIBRARY
MAVAL POSTGRADUATE SCHOOL
MOMENTARY, CALIF. 93940

UNITED STATES NAVAL POSTGRADUATE SCHOOL

THESIS

A COMPUTER PROGRAM FOR THE ANALYSIS OF
LINEARLY ELASTIC PLANE-STRESS, PLANE-STRAIN PROBLEMS

bу

John Patrick Malone

September 1968

This document is subject to special export controls and each transmittal to foreign government or foreign nationals may be made only with prior approval of the U. S. Naval Postgraduate School.

A COMPUTER PROGRAM FOR THE ANALYSIS OF LINEARLY ELASTIC PLANE-STRESS, PLANE-STRAIN PROBLEMS

by

John Patrick Malone Lieutenant, United States Navy B.Me., The Ohio State University, 1960

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL September 1968 SARCHIVE

Phosis Marey C

ABSTRACT

LONE, J.

The computer program for the analysis of linearly elastic planestress or plane-strain problems devised by Felippa in his work on

"Refined Finite Element Analysis of Linear and Nonlinear Two-dimensional
Structures" has been modified to include the use of initial displacement
boundary conditions. In addition the original IBM 7094 computer dependent
program has been adapted for use on the IBM 360/65 computer. In both
programs the FORTRAN IV language has been used.

Problems involving "Poor fit" displacement boundary conditions and refined mesh analysis using coarse mesh analysis input displacements, which could not have been done with the original program, are now possible with the modified version presented herein.

TABLE OF CONTENTS

		Pa	ge			
ABSTRACT			2			
TABLE OF CONTENTS						
LIST OF FIGURES						
LIST OF S	YMBOL	S	9			
ACKNOWLEDGEMENTS						
I	INTRO	ODUCTION	11			
	1.1	Reasons for computer analysis	11			
	1.2	Purpose of presentation	11			
	1.3	Expected uses	12			
	1.4	Scope and objectives	12			
II	GENE	RAL PROGRAM FEATURES	14			
	2.1	Capabilities	14			
	2.2	Analytic results	14			
III	FUNDA	AMENTALS OF THE FINITE ELEMENT PROCEDURE	16			
A	3.1	Basic idealization	16			
	3.2	Displacement fields	17			
	3.3	Convergence requirements	18			
	3.4	Element equilibrium equations and stiffnesses	18			
	3.5	Complete stiffness matrix	20			
	3.6	System equilibrium equations	20			
IV	PROGE	RAM INFORMATION AND STRUCTURE	22			
	4.1	Program identification	22			
	4.2	Purpose	22			
	4.3	Programming information	22			
	4.4	External storage	22			
	4.5	Basic finite element mesh units	23			
	4.6	Capacity	24			

		Pa	age
	4.7	Program structure	25
	4.8	Programming techniques	28
V	USER	INFORMATION	29
	5.1	Typical applications	29
	5.2	General program input and output	29
	5.3	Precautions	32
	5.4	Mesh construction	33
	5.5	Nodal point and element numbering	36
	5.6	Coordinates	38
	5.7	Units	38
	5.8	Materials	40
	5.9	Boundary conditions	40
	5.10	Loading	44
	5.11	Contour graphs	45
	5.12	Error exits	46
	5.13	Displacement solution iterations	46
	5.14	Card punching of displacements and stresses	46
	5.15	Timing	47
	5.16	Accuracy	47
VI	INPUT	DATA PREPARATION	50
	6.1	Structural data	50
	6.2	Loading data	53
	6.3	New problems	57
RECON	MENDA	ATIONS	58
REFER	RENCES	3	59
APPEN	DIX 1		61
		Sample problem: "Flounder" Plate in Tension	

	Page
APPENDIX 2	78
Practical aspects of the computer alogrithm for the	
direct stiffness procedure, boundary condition	
application, and solution of large systems of linear	
equations.	
APPENDIX 3	. 85
Computer program (PSFLST) listing	

LIST OF FIGURES

		Pa	age
3.1	The finite element idealization	•	16
4.1	Basic finite element mesh shapes		23
4.2	Program overlay structure	•	26
4.3	Subroutine flow chart		27
5.1	Typical applications		31
5.2	Symmetry in mesh construction		35
5.3	Nodal point numbering technique		37
5.4	Grading and numbering techniques		39
5.5	Use of initial displacement boundary conditions	•	42
5.6	Boundary conditions		43
5.7	Example: 2:1 Symmetric plate		49
6.1	Element nodal point identification		54
6.2	Conventions for element side loads		54
A1.1	Sample problem structure		62
A1.2	Sample problem input data deck	•	63
A1.3	Sample problem output data	(64
A2.1	Direct stiffness procedure		79
A2.2	Complete stiffness matrix characteristics	. :	80
A2.3	Block structure used for decomposing [K]		82
A2.4	Complete stiffness matrix storage method and		
	boundary condition application	. {	83

LIST OF SYMBOLS

$\sigma_{\mathbf{x}}$	Stress in X-Direction
σ_{y}	Stress in Y-Direction
τ_{xy}	Shearing Stress
$\sigma_{\mathtt{max}}$	Maximum Principal Stress
σ_{\min}	Minimum Principal Stress
Tmax	Maximum Shearing Stress
Х, Ү	Global Coordinate System and Coordinates
u	Displacement in X-Direction
v	Displacement in Y-Direction
E	Modulus of Elasticity
ν	Poisson's Ratio
8	Specific Weight
Ø	Coefficient of Thermal Expansion
φ	Angle of line Boundary Condition
{F}	Nodal Point Force Vector
{8}	Nodal Point Displacement Vector
[k] _e	Element Stiffness Matrix
[K]	Complete Stiffness Matrix
[B]	Strain-Displacement Matrix
[D]	Stress-Strain Matrix
[] ^T	Matrix Transpose

ACKNOWLEDGEMENTS

The computer program described herein was revised and adapted during the author's graduate study for the M. S. degree in Mechanical Engineering at the Naval Postgraduate School.

The author wishes to express his gratitude to Dr. Carlos A. Felippa, currently at Boeing Aircraft, the originator of the program. He is also grateful to Professor Gilles Cantin of the Naval Postgraduate School for having supervised the work and also for his constant encouragements throughout.

The Naval Postgraduate School Computer Center provided facilities for the computer work.

Chapter I Introduction

In this chapter reasons are given for the use of computer structural analysis. The purpose of the presentation is explained, and some expected program uses are listed. The objectives and extent of work completed by the author are presented.

1.1 Reasons for computer analysis

The engineer of the present day is faced with solving structural problems of great complexity. Classical mathematics, despite its ever increasing sophistication, is only capable of solving severely idealized situations while at the same time placing a burden on skilled manpower which could be better used for design and development processes.

Fortunately, the simultaneous development of the digital computer and new general methods of solution for problems in Continuum Mechanics has come to the rescue in many areas of investigation. The modern digital computer coupled with the finite element method is revolutionizing the approach to the process of analysis. Expensive and time consuming experimental models, now often used in the design of important structures, are rapidly becoming displaced by more economical computation.

1.2 Purpose of presentation

This presentation offers a computer program which takes advantage of the modern computer's high computational speed and the versatility of the finite element method. The program is for the general analysis of arbitrary plane-stress or plane-strain structural mechanics problems in linear elasticity. Sufficient background material on both the finite element method and the program structure is given so that those not conversant with these matters may use the program effectively. In addition, information on the practical aspects of the program alogrithm for the direct stiffness procedures, boundary condition application, and solution of large

systems of linear equations are given for those interested in making modifications or additions to the program.

1.3 Expected uses

Two-dimentional elastic analysis by the finite element method is well suited for the development of large scale, production usage computer programs. Expected areas of use for the program presented include:

- (1) Practical working design situations, ranging from one-time preliminary analyses to extensive in-depth studies.
- (2) Design data generation for stress concentration factors or design tables for specific structural shapes.
- (3) Augmentation of other analysis methods. Localized area analysis. Utilization of the thermal stress and body force features. Gross analysis to determine instrument or sensor placement.

1.4 Scope and objectives

The original version of the program was written by Dr. Carlos A. Felippa [3]* during the course of his Ph.D. studies at the University of California. The original program was dependent on the IBM 7094 computer and associated hardware then at the Berkeley Computer Center.

The extent of the author's objectives and work on the program has been: (1) reprogramming modifications necessary for the adaptation of the program to the faster IBM 360/65 computer at the Naval Postgraduate School Computer Center, (2) substituting the use of the more expedient random access disk unit for the original tape storage methods which were used for

 $^{^{\}star}$ Numbers in brackets refer to the list of references on page 59

portions of the external storage requirements, (3) restructuring and modifying the program to allow usage of initial displacement boundary conditions, thus allowing the program to accept all physical boundary conditions for planar problems, (4) creation of a "User's Manual" to facilitate use of the program by persons not familiar with the finite element method or production programming techniques. This presentation is orientated toward this final objective.

Chapter II General Program Features

In this brief chapter the general program capabilities and features are given as background information.

2.1 Capabilities

The program in its current form represents a large scale, high speed general computational processor for the stress analysis of plane elastic bodies. It is one of the few such programs available in the open literature.

The program is capable of analyzing any arbitrary plane structural shape, singly or multiply connected. The body thickness may vary, to a degree. All physical boundary conditions are acceptable. Structural loading types may include surface forces (concentrated and distributed), body forces, and thermal loading effects. Any linearly elastic, homogenous, isotropic material may be analysed. Up to six different materials are allowable for composite material structures.

2.2 Analytic results

The method of analysis is the finite element procedure [2], [16], with the displacement solution method and direct stiffness matrix generation [12], [13]. Displacement compatible finite elements are used. This type of element has the virtue in theory that if finer and finer mesh subdivisions are used and there is no numerical error or round off, convergence to the exact solution is assured [11].

In the analysis the program computes in-plane deflections and stresses at selected sites on the body, resulting from in-plane loading. Stress components \mathcal{O}_{x} , \mathcal{O}_{y} , and \mathcal{O}_{xy} are computed, as well as the principal stresses and directions at every nodal point. Stress contour graphs of

the structure, or a magnified subportion, are generated, wherein the structure outline and constant stress level contour lines are printed.

Chapter III Fundamentals of the Finite Element Method

In this chapter, the fundamentals of the finite element method are given in order to acquaint the user with the procedures and the nomenclature needed to understand the program structure and fully utilize its potentials.

3.1 Basic idealization

The basic concept of the plane finite element method is that any continuous two-dimensional body may be separated by imaginary lines into a finite number of individual elements, i.e., an assemblage of smaller individual plates. Thus an actual continuous structure is replaced by an assemblage of discrete structural elements (Fig. 3.1).

equivalent loads

The elements are assumed to be interconnected only at a discrete number of joints or nodal points through which forces are transmitted, but the structural elements are such that the connectivity of the structural system is preserved along all the common boundries of adjacent elements.

Figure 3.1 The Finite Element Idealization

With these stipulations: (1) continuum approximation by an assemblage of elements and (2) element displacement field restrictions, we

have, in effect, converted a continuous body into a body composed of many structural elements where each element can deform in only a certain number of predictable shapes.

A given point in the continuum has two independent degrees of freedom of displacement. The corresponding point in the idealized structure still has two degrees of freedom, but the displacement field is now restricted to the one selected and imposed on the element. This reduction is basic to any solution. In the finite element method the reduction is made in a physical manner using structural elements that can retain many of the physical properties and behavior characteristics of the original material. In other methods of analysis the reduction is often made in a mathematical procedure, in which many of the desirable properties and characteristics are lost through inability to make adequate or tractable mathematical models.

3.2 Displacement fields

The constraints we have placed on the element take the form of displacement functions, or fields, for which the overall element displacement shapes, and resulting strains and stresses, are functionally related to the nodal point displacements (generalized coordinates). The success of the element in duplicating the performance of the actual continuous body is critically dependent on the choice of the displacement function. Much effort has been given to the determination of successful displacement functions and the fundamental rules governing their generation. For flat elements, general procedures have been developed [3], however as yet there is no such general method for the construction of displacement fields for a curved element [1].

3.3 Convergence requirements

To guarantee that a finite element solution will converge to the true solution, under conditions of increasingly finer element division (finer mesh), the planar displacement function must be able to satisfy three basic conditions:

- (1) Continuity condition: interelement displacement compatability must be satisfied. For plane cases this implies that adjacent element edges must remain together under element deformation.
- (2) Completeness conditions: (a) rigid body modes overall rigid body displacement of the element must not result in element straining; (b) constant strain states nodal displacements that are indicative of constant strain must result in constant strain conditions in an element.
- (3) Invariance element stiffness properties derived through the use of displacement functions must remain the same for all coordinate systems which are used for their derivation.

3.4 Element equilibrium equations and stiffnesses

Knowing element displacement modes as functions of nodal displacements we can now write the equilibrium equations for the element. The relations between nodal displacements and nodal forces (generalized forces) are expressed in compact form by the element stiffness matrix. The resulting element equilibrium equations take the form:

$$\left\{ F \right\}_{e} = \left[k \right]_{e} \left\{ \delta \right\}_{e} \tag{3.1}$$

Where,

$${F}_{e}$$
 = Nodal point force vector for an element, (2N x 1)
 ${\delta}_{e}$ = Nodal point displacement vector for an element, (2N x 1)

 $[k]_{e} = \text{Element stiffness matrix, symmetric, (2N x 2N).}$ (N is the number of nodes per element)

The element stiffness matrix is a function of the geometric and physical properties of the element.

The derivation of element stiffnesses can be approached using the principle of virtual displacement [13], [16]. Here, virtual nodal displacements in a local frame of reference are imposed on the element. The external and internal work done by the various forces and stresses during displacement are equated. The resulting equation can be reduced to the general form:

$$\left\{ F \right\} = \left[\int \left[B \right]^{T} \left[D \right] \left[B \right] d \left(vol. \right) \right] \left\{ \delta \right\}$$
(3.2)

where,

- [B] = Strain-Displacement relationships from elasticity considerations.
- [D] = Stress-Strain relationships from elementary theory.

The element stiffness is developed by performing the indicated matrix integration.

An alternate method of deriving the element stiffness is an energy approach [3], [5]. Here the total potential energy of the element-load system is minimized, an outgrowth of the application of the governing variational principle. This is, in fact, a form of the Ritz technique applied to the network of finite elements. This method is not as direct, nor as physically interpretable as the previous approach. However it is a more powerful technique and leads naturally to the formulation of the consistent mass matrix, consistent stiffness matrix and consistent load vectors. Elements having sophisticated geometries and higher order displacement fields can be handled practically only with the energy method.

Having the element stiffness matrix and the two auxiliary matrices
[B] and [D] we can develop the full stress analysis for a single element
when the nodal displacements resulting from the loading are known.

3.5 Complete stiffness matrix

To permit combining the individual stiffnesses each must first be transformed from its local coordinate system to a common (global) system for the entire node-element mesh. This is done with a conventional tensor transformation relating the two coordinate systems. The formulation of the complete stiffness matrix for the discretized structure can now be accomplished. In the direct stiffness method this is achieved by the direct addition of the element stiffnesses at all the element interface nodal points. This is a technique idealy suited for computer operation (see appendix 2).

3.6 System equilibrium equations

The complete stiffness matrix [K] is the matrix of equilibrium equations for the total idealized structure. The set of overall equilibrium equations is of the same form as equation (3.1), viz.:

$$\left\{ F \right\} = \left[\left[\right] \left\{ \delta \right\} \right] \tag{3.3}$$

The nodal point force vector (load vector) contains the loads to which the body is subjected. The loads are in the form of concentrated nodal point forces directed along the global coordinates axes. Where the body loading is in the form of distributed forces, body force loads or thermal loads, equivalent concentrated forces are applied at the appropriate nodal points.

The nodal point displacement vector (displacement vector) is the unknown in equation (3.3). This is a direct result of the formulation developed and is responsible for the name, "Displacement Solution Method."

Another general method of finite analysis is available, where a stress field is used [5], this procedure is called the "Equilibrium Method."

The overall equilibrium equations must be modified by the boundary conditions of the problem. This involves elimination of stiffness contributions in [K] for constrained nodes. In the case of initial displacement boundary conditions the load vector and displacement vector must be adjusted to reflect equivalent nodal forces and the initial displacement value, respectively, that result from displacing a node a known amount.

The final set of equations (3.3) can attain rather large proportions. The order of the load and displacement vectors and the size of the symmetric overall stiffness matrix are 2 x P, where P is the total number of nodal points in the mesh. Fortunately the stiffness matrix is sparsely populated and banded, which permits specialized solution techniques on a computer. Actually, the displacement solution method and the direct stiffness procedures are used so that these stiffness matrix properties may be exploited (see appendix 2).

The final equations (3.3) are solved for the nodal point displacements. With the known displacements, the matrices [B] and [D] may be applied for each element and the overall nodal stresses evaluated. The stress levels at nodes common to more than one element are usually averaged to obtain a representative value. The end result is the displacements and stress levels at each node of the idealized structure.

Chapter IV Program Information and Structure

This chapter offers information on the program and gives its structure, functional routines and general method of operation.

4.1 Program identification

PSELST - Plane Stress Elastic Analysis using Linear Strain Triangles.

Programmed: Carlos A. Felippa, June 1966

Revised: John P. Malone, July 1968

4.2 Purpose

The purpose of the program is to provide a high speed, production use computational solution of general plane-stress or plane-strain static, linear elastic problems using linear strain triangles in the finite element method. Surface loads, body forces and thermal effects may be considered.

4.3 Programming information

The program is written in FORTRAN IV language [6] for the IBM OS/360 Model 67 computer. An overlay structure [7], [8], under control of the system linkage editor, is utilized to conserve main core storage. The overlay segments are arranged so that only active subroutines and attendant internal storage requirements are in main core at a time.

4.4 External storage

Fortran logical units 1,2,3,7,8, and 9 are used for temporary storage. Logical unit 7 is defined as a data set on one IBM 2311 random access disk storage unit. The remaining logical units are defined as separate data set blocks on a second 2311 disk unit. The input card reader, output printer, and output card punch are defined as units 5,6, and 4 respectively.

4.5 Basic finite element mesh units

The basic mesh element is a quadrilateral composed of four 6-nodal point linear strain triangles (LST), the center point being the centroid, (Fig. 4.1). Internal points 9 to 13 are eliminated by matrix condensation [3], [9] thereby reducing the number of degrees of freedom from 26 to 16.

Single 6-nodal point triangles may also be specified to facilitate fitting of certain shapes.

Figure 4.1 Basic Finite Element Mesh Shapes

4.6 Capacity

The mesh input is subject to the following limitations for an IBM computer with 256 K bytes of main core storage;

Max. number of elements (Quad. and/or triangle) - - 350

Max. number of external (total) nodal points - - - 1050

Max. number of restrained components - - - - - 250

Max. difference of nodal point numbers for

the same element - - - - - - 79

These limits are dictated by storage requirements in the computation of the overall stiffness matrix, and not by the equation solver.

It is estimated that with 512 K bytes of main core storage the program could be modified to accept 1700 external nodes and a half-band-width of 250. This would result in approximately 600 usable elements. Solution times for full scale problems with these modifications may be prohibitive on current computers.

The most commonly encountered limitation of the current program version is the maximum nodal point number difference. Next in order are maximum external nodes (total nodes), maximum number of elements, and maximum number of restrained components.

The maximum number of degrees of freedom is 1050×2 (external nodes) + 350×10 (condensed and recovered nodes) = 5600. The condensation procedure reduces the number of equations to 2100, yet retains the versatility of 5600 degrees of freedom.

The maximum half-bandwidth (2 x Max. node number difference + 2), a measure of the width of the banded area of the overall stiffness matrix, is 160.

4.7 Program structure

The overlay root-segment structure is shown in Figure 4.2, where each rectangle represents a subroutine. The subroutine functions are:

MAIN remains in core and controls calling sequence during execution;

RDDISK- remains in core and provides high-speed deposit and retrieval WRDISK

of data on a random access disk storage unit;

SETUP inputs, prints and checks mesh data, and evaluates element

stiffnesses;

STQUAD assembles and condenses quadrilateral stiffness;

STLST6 computes stiffness of a six nodal point triangle;

LDINPT inputs load cases and reduces surface, body, and thermal loads

to equivalent forces on element external nodal points;

THERLD computes initial thermal forces for a single triangle;

FORMK assembles the complete stiffness matrix;

SOLVE obtains nodal point displacements from BIGSOL;

BIGSOL solves large capacity banded matrix problems;

STRESS evaluates and prints element and nodal stresses;

TRISTR computes stresses for a single triangle;

CNTPLT produces printer plots of stress contour lines.

The subroutine flow chart is presented in Fig. 4.3.

Figure 4.2 Program Overlay Structure

Figure 4.3 Subroutine Flow Chart

4.8 Programming techniques

Three programming techniques that are contained in the original version of the program are noteworthy:

- (1) RDDISK/WRDISK Subroutine used as a data transfer device to external storage. Benefits are: simplified data address accounting in subroutines, fast data transfer, access to large storage areas.
- (2) Matrix Compression (condensation) upper half-band of the overall stiffness matrix is stored, column-wise, by blocks for ease of manipulation and to reduce storage requirements.
- (3) Use of one dimensional array to minimize address calculation time.

Techniques (2) and (3) are described more completely in appendix 2.

Chapter V User Information

In this chapter specific features of the program are explored. Techniques are given to assist in the effective use of the program.

5.1 Typical applications

Representative applications of specific problem types are illustrated in Fig. 5.1. Case (a) is a wing frame where gust loading is simulated by a static load situation. Thermal loading effects at the frame tip might also be considered. Case (b) is a cross-section of a length of pressure The circular perimeters have been distorted during a bending process. The stress levels and patterns at the thin wall section are desired. Case (c) is a comparison study of two welds. The left fillet welds are cheaper to produce in some given process, but the right side full-penetration welds are expected to be significantly stronger. A cost effectiveness study requires information comparing the two welds. Case (d) is a stress concentration factor study. Data for design tables is desired to guide design engineers confronted with this configuration. Loading situations of tension, compression and in-plane bending might be considered. Case (e) is a section of a prefabricated tunnel proposed for underwater installation. The tunnel is partially evacuated as part of a high speed transportation scheme. The optimum tunnel cross section is desired, using a minimum material criterion. Case (f) is a hypothetical plane-strain problem illustrating the versatility of the finite element technique used in conjunction with a high speed computer.

5.2 General program input and output

The versatility of the program is obtained by accepting a penalty of requiring a large amount of input data. The data is in the form of standard punched cards. The number of input cards will be between 25 and 500,

dependent on the number of elements used and the extent of loading.

Input information is divided in two groups, structure data and loading data. The general content of input data follows:

- 1. Structure data.
 - a. Accounting totals number of elements, nodes, etc.
 - b. Mesh configuration.
 - 1. Node-to-element identification.
 - 2. Corner nodes, X-Y coordinates.
 - c. Material physical constants.
 - d. Boundary conditions
- 2. Loading data.
 - a. Accounting totals number and types of loads.
 - b. Load magnitudes and locations.

Once a problem has been set up with the structure data input, repeated load cases may be run. Consecutive problems may also be run.

Program output is divided into three parts: (1) echo check of input data, (2) displacements and stresses, (3) contour maps. The general content of each part follows:

- 1. Echo check.
 - a. Input structure data printed for each problem.
 - b. Input loading data printed for each load case.
- 2. Displacements and stresses.
 - a. Final load vector.
 - b. Nodal point displacements printed (punch option).
 - c. Computed element nodal stresses (optional).
 - d. Averaged nodal stresses, \mathcal{T}_x , \mathcal{T}_y , \mathcal{T}_{xy} , \mathcal{T}_{max} , \mathcal{T}_{min} , and maximum principle stress orientation (punch option).

3. Contour graphs

 a. A contour graph for each averaged stress computed (optional).

Details of input, output and program options will be covered in subsequent sections.

5.3 Precautions

This section is presented here to prevent users from rushing to a card punch machine with this manual in their hand.

The author has found that the following "rules" must not be violated when using the program.

- (1) Know your problem.
- (2) Be patient.
- (3) Be prepared.

An example of the first rule involves how much of the structure to analyze. Many structures have 1-fold symmetry, less frequently 2-fold. If the loading is symmetric about the same axes, partial body analysis may be utilized. This avoids duplication of data and allows more effective use of the elements available.

The rule on patience should be applied during mesh construction, nodal point numbering, and card punching. The program has many error printout exits that determine and illuminate input mistakes, but these exits also terminate program execution.

Being prepared means having a plan to make effective use of the tremendous amount of information that the program produces. A cursory glance at the sigma-max graph to determine if a material is suitable may fail to make adequate use of the wealth of output information available. Other persons may need information from your analysis or some unusual condition may exist that warrents further study.

5.4 Mesh construction

An effective mesh is one that represents a good approximation to the true structure. How effective a mesh is may not be known until one run has been completed and stress patterns are reviewed.

An efficient mesh is one that is formed on the basis of the above requirements, but also allows computation to proceed as rapidly as possible.

This section deals with the construction of efficient meshes.

The mesh idealization of the body may contain 1 to 350 basic mesh units (Fig. 4.1). Due to its superior stiffness properties, use of the quadrilateral is preferred. The use of triangles should be limited to curve fitting difficulties and when changing the fineness (or coarseness) of the mesh; this is termed grading.

The nodes of the basic mesh unit are called corner points or midside points. Mesh units may only be joined with correspondance between corner and midside points. Two adjoining units share one midside point and two corner points. In a mesh, corner points will join three (usually four) or more elements when internal to the body (Fig. 5.2c, points a and b). Midside points are always common to only two elements when within the body interior. Each element and node must be numbered for identification purposes. Element size, shape and location information is determined by listing the X-Y (global) coordinates of all corner points. Midside point coordinates and element local coordinate systems are internally generated in the program. Nodal numbering techniques and coordinate system usage are covered in the following sections.

Three factors should be considered in constructing the mesh:

- (1) Expected or known stress gradients.
- (2) Mesh symmetry.
- (3) Nodal point numbering.

Stress gradients should dictate the degree of fineness of the mesh.

In areas of high stress gradients the mesh should be refined. Portions where stress levels are nearly constant can be represented with large elements in a coarse mesh. In many problems users intuitatively produce meshes that account for stress gradients. However, when complex shapes, boundary conditions and loads are involved, a preliminary coarse mesh analysis should be conducted. The indication of high stress gradients is not always available from the contour graphs, since they are based on averaged values of common nodal stresses. A true indication of the need for element refinement is when element stress levels at shared nodes differ considerably.

Many techniques for grading the mesh during initial construction, or when refining is required, are available. A comparison of two grading methods is shown in Figure 5.4.

Mesh symmetry with respect to some line or curve in the body should be maintained where possible. In complex shapes overall symmetry usually cannot be achieved. In these cases local symmetric areas should be constructed. Figure 5.2 illustrates symmetric mesh construction.

In a completed mesh the one element that has the largest difference between its nodal point numbers influences heavily the computation time required for the problem. The maximum difference in node numbers is an indication of the amount of storage required to house and solve the set of equilibrium equations. In solving the equations the data in storage is transferred, manipulated, and restored many times. The larger the data set, the longer the corresponding computation time. The mesh can be constructed so that it lends itself to optimum nodal point numbering technique, which in turn will reduce the largest nodal point number difference and the computation time.

Figure 5.2 Symmetry in Mesh Construction

In general, the least nodal number difference can be achieved by placing all mesh corner nodes on lines or smooth curves within the body. Figure 5.2c illustrates this procedure.

It is suggested that the physical process of mesh construction be accompolished in the following manner. (1) Sketch initial mesh ideas on a scratch pad until the final version is formed. (2) Check the limitations on maximum numbers of elements, nodes, and constraints and the maximum nodal number difference. (3) Transfer the mesh layout to a large sheet where sufficient space is available to identify corner and midside nodes by number and to exhibit the X-Y coordinates of corner nodal points. Large (2'x3') Ozalid prints from a master drawing of faint ½ inch square grid with a superimposed quadrant of concentric arcs have been found convenient for this last step.

Meshes can be produced where all the elements are of equal size and have the same orientation. In this case all elements have the same stiffness matrix and the program need compute only one. This is a time saving feature that can be used for regular bodies or preliminary gross analyses. Frequently an auxiliary computer program can be written to generate all mesh input data cards in these cases.

5.5 Nodal point and element numbering

The program requires that each element and each nodal point be numbered for identification purposes. The numbering of elements and nodes is independent, but increasing both counts in the same pattern is convenient. Consecutive numbering is not a requirement, but again, it is convenient. If consecutive numbering is not used (occurs when combining two previously independent meshes) an ordered listing of the input sequence should be maintained, since output is identified by consecutive numbering.

The method of nodal point numbering is important for two reasons.

- (1) To keep within the limit on maximum nodal point difference for a single element.
- (2) Efficient numbering can significantly reduce computation time.

The general rule for efficient numbering is to number in a direction where the least number of nodes lie in "line" (not necessarily the smallest figure dimension) and repeat for the next "parallel line." The technique is illustrated in figures 5.3 and 5.4c.

Figure 5.3 Nodal Numbering Technique

Efficient numbering within graded areas is often difficult, Figure 5.4 compares two grading techniques and three numbering methods. Figure 5.4(c) is preferred on both scores.

As discussed previously, the one element in the mesh with the greatest

node number difference controls the solution time. If it is unavoidable that a large nodal number difference exists in some area of the mesh, nothing is to be gained by trying to reduce lower difference values elsewhere in the mesh.

5.6 Coordinates

The global coordinate system for the program is the planar cartesian coordinate system. The X and Y coordinates of each corner point are required input data. This coordinate array data set is usually the largest single block of input data. Two hints are offered that can reduce the time to prepare these data cards. (1) Reduce the significant figures of the coordinate by slight nodal point movement. This procedure may disrupt mesh symmetry, but the effect will be small. (2) The coordinate origin can be placed internal to the figure. Mesh symmetry may be utilized to produce identical coordinate values, except for sign.

The coordinate system is compatible with structure overlapping. This situation has not been explored other than to demonstrate its dreadful influence on the contour graphs, which should not be printed in these cases. Overlapping can also be produced as a result of deformation and the program does not sense the condition.

5.7 Units

A consistent set of units must be used between the linear measure and surface traction load values. Where the inch is used as the unit of boundary and thickness measure, distributed forces and shears must be per square inch (eg. PSI). The modulus of elasticity and specific weight input constants must reflect the same units. The most useful set of units for mechanical design has been the inch and KSI (i.e. Kip per square inch); for large structural problems the foot and KSF.

Figure 5.4 Grading and Numbering Techniques

5.8 Materials

The program is written for homogenous, isotropic, linear elastic materials. The required input data are the Elastic Modulus, E; Poisson's Ratio, $\mathcal V$; Specific Weight, $\mathcal X$; and Coefficient of Thermal Expansion, $\mathcal A$. For plane-strain problems reduced (primed) values must be used:

$$E' = \frac{E}{(1-\nu^2)} \frac{E}{(1-\nu^2)} \qquad \nu' = \frac{\nu}{1-\nu} \qquad \alpha' = \alpha(1+\nu)$$

The ability to utilize multiple materials is one of the advantages of the finite element procedure. In the program up to six different materials may be specified. True difference between materials may be used, or different property values of the same material. Temperature influence on the elastic properties may be approximated by using "different" materials when in the thermal gradient of a single material object. Body force loading, other than the program standard of 1-G, can be simulated by applying suitable multipliers to the value of the specific weight prior to input. This technique is useful in simulating dynamic inertia loading by a static equivalence.

When multi-material problems are analyzed, the element stress print option should be specified. The standard print of averaged nodal point stresses is not adequate at material interfaces. The stress contour graphs should be used only with judgement in these cases, since they do not reflect true stress discontinuities at interfaces.

5.9 Boundary conditions

Boundary conditions are applied at the appropriate nodal points (corner or midside) of the structure. A boundary constraint consists of fixing a node in one direction. A "fixed" boundary point will require two boundary constraints. The program will accept up to 250 constraints.

Constraints are not restricted to nodes on the physical boundary; however, this is the usual situation.

Initial values of boundary displacement may also be used as boundary conditions. This feature has many applications. One is the simulation of "poor fit" conditions in a part or structure. A second is illustrated in Figure 5.5, where actual gear tooth root area deflections were determined; then used as input initial displacements, thus freeing elements for use in a more refined mesh of the structure of interest.

In program input the boundary condition data is designated for the appropriate nodal point with a boundary condition "TAG." A list of TAG values and appropriate boundary conditions follow:

TAG VALUE	BOUNDARY CONDITION
TAG = 0	If the point is fixed in both directions.
	or
	Initial X and Y displacements are specified and
	the point is fixed in both directions.
TAG = 1	If the point is fixed in the X-direction and
	free to move in the Y-direction.
	or
	Initial X-displacement is specified but the point
	is free to move in the Y-direction.
TAG = 2	If the point is free to move along a line forming
	an angle φ with the positive X-axis.
	or
	Initial Y-displacement is specified but the point
	is free to move in the X-direction.

The boundary conditions are illustrated in Figure 5.6.

Figure 5.5 Use of Initial Displacement Boundary Conditions.

Figure 5.6 Boundary Conditions

A single initial displacement can only be specified in the X-direction (TAG=1) or the Y-direction (TAG=2, φ = 0.0°). Initial displacements for points on a slope roller are not available in this version of the program. There is an equivalance between TAG=1 and TAG=2, φ = 90.0°. The first method requires less internal computation.

In multi-load case problems any initial displacements specified will apply only for the first load case. Subsequent load cases will have the same constraint conditions for initially displaced nodes, but with a 0.0 value of initial displacement.

Boundary constraints are a fundamental characteristic of a structure and are known immediately upon the definition of a problem. When the advantages of 2-fold or 4-fold symmetry are utilized, with partial body analysis, the constraints needed are not always obvious. Care should be exercised in these cases to ensure duplication of the actual problem situation. When a complete structure is analyzed that is shape and load symmetric, auxiliary boundary constraints are often helpful to improve the solution. Frequently symmetric centerline nodes can be placed on rollers. This will avoid slight skewing displacements which result from round-off error in the stiffness matrix generation.

5.10 Loading

Three loading types are available with the program: (1) surface loads,

(2) body forces, and (3) thermal loading. The general character of the

input loading data is listed below:

Loading type	Input characteristics
Concentrated force	Magnitude of X and Y components specified. Loaded node identified.
Distributed normal force*	Magnitude and sense of normal pressure. Element side identified.
Distributed shear force*	Magnitude and sense of surface shear. Element side identified.

Gravity (body force) load

Indicated true (T) if applicable. Acts in (-Y) direction.

Thermal load

Indicate temperature increment at element corner nodes.

* - side variation assumed parabolic based on values specified at the nodes of the element side.

The sign convention for concentrated forces is that of the global coordinate system. Distributed forces follow a sign convention based on the element shape. Normal outward traction and counterclockwise shears are positive (Fig. 6.2). Gravity loading acts in the (-Y) direction.

Distributed forces and shears acting on an element side are assumed to have a parabolic variation based on the input values at the corner nodes and midside node involved. The resulting total element side load is represented by equivalent nodal point concentrated forces that are generated internally in the program. When the gravity load option is used, the program generates nodal forces equivalent to body forces to apply at all the mesh nodes. In thermal loading the program computes the forces that would be required to reestablish the size of the thermally expanded elements and applies them at the appropriate nodes. These computations are internal to the program, with no external indication other than the resulting displacements and stresses.

5.11 Contour graphs

The stress contour plots generated by the program are very useful.

The plots are produced on a conventional printer, thus eliminating a requirement for specialized plotting equipment not available at many computer installations. The loss in definition due to printer plotting is compensated for by the short time required to produce the plots (about 9 sec.).

Six plots are available, each shows the body outline and contour lines of constant stress. The lines divide the full range of stresses encountered

into ten equal increments. Plots of the following stresses are available; $\mathcal{T}_{\mathbf{x}}$, $\mathcal{T}_{\mathbf{y}}$, $\mathcal{T}_{\mathbf{xy}}$, \mathcal{T}_{\max} , \mathcal{T}_{\min} , \mathcal{T}_{\max} .

The plotting subroutine allows up to 50 elements to be eliminated from the area considered in determining the stress range for the contour lines. This feature allows (1) the plotting of only a portion of the structure, (2) elimination of high stress gradient areas that bunch the countour lines, (3) a combination of the two.

5.12 Error exits

Program capacity are checked in subroutine SETUP. Error messages printed are self-explanatory and may be complemented by examination of the input data printout. The program does not stop until all error conditions have been tested. If another problem follows after an error detection, the program searches for the next START indicator card at which time execution continues on the new problem.

5.13 Displacement solution iterations

Double precision iterations for improvement of the displacement solution are optionally available in the program. One or two iterations should always be used for large ill-conditioned problems. Each iteration is essentially re-solving the displacement equations to eliminate round-off error, and will take approximately 90% of the original problem solution time.

5.14 Card punching of displacements and stresses

A program option is the punching of nodal displacements and averaged nodal point stresses. These card data sets may be used as input to plotting equipment for the production of more sophisticated plots than produced by the program.

5.15 Timing

Sufficient problems have not been run with the program to develop an accurate empirical relationship giving overall execution time. An estimator currently in use is:

60 nodes, half-bandwidth < 60

1 minute execution time for each: 50 nodes, 60 ≤ half-bandwidth < 120 (no iterations)

40 nodes, 120 ≤ half-bandwidth

For small problems (number of elements < 40) execution times predicted will be low since the subroutine SETUP requires a minimum of 50 sec. regardless of problem size. Timing estimates apply to an IBM OS/360 computer.

5.16 Accuracy

To illustrate the accuracy of this version, a 2:1 symmetric plate under uniform in-plane load on top (Fig. 5.7) and constrained by diaphragms at the ends (X-disp. only) was analyzed by subdividing one-half of the plate into meshes of (n x n) quadrilaterals - square in this case. There is no known analytic solution, but this problem has been used extensively in comparison tests of different types of finite elements because of the diversity of stress conditions and the ease of preparation. Precision is not sought in the analysis, since a "true" solution is guaranteed if the mesh is sufficiently refined. Rapidity of convergence is the desirable characteristic.

A comparison of the typical values reproduced in Figure 5.7 shows that the 8 x 8 mesh provides almost 5 decimal digits for the displacements, 4 for \mathcal{T}_{x} and 3 for \mathcal{T}_{xy} . Actually, the program has capacity for an 18 x 18 mesh (5500 degrees of freedom) if necessary. The consistency of the stress values is reflected by the fact that the maximum discrepancy over

contributing elements nodal points did not exceed 0.004 for $\sigma_{\rm x}$ and $\sigma_{\rm y}$, and 0.006 for $\sigma_{\rm xy}$ in the case of the 8 x 8 mesh.

Mesh of square elements for one-half of plate	2 x 2	4 x 4	8 x 8	Asymptotic Extrapolated Values
Degrees of Freedom:				
unconstrained	42	290	1090	-
after B.C.s	32	272	1056	-
Deflection v _C x 10 ⁵	4.8297	4.8487	4.8515	4.8516
Normal Stress oxB	0.3190	0.3207	0.3214	0.3215
Shear Stress 7 xyA	0.1550	0.1380	0.1333	0.1321

Fig. 5.7 - Example: 2:1 Symmetric Plate

Chapter VI Input Data Preparation

This chapter is written as a self contained unit giving all specific information for the preparation of input data cards. When facility with the use of the program has been attained, this chapter may be duplicated and used as a condensed program user's manual.

FLOATING POINT (F) FORMATS ARE COMPATIBLE WITH ASSIGNED EXPONENT (E) FORMATS
RIGHT JUSTIFY INTEGER AND EXPONENT NUMBERS IN THEIR ASSIGNED FIELDS

6.1 Structure data

- (a) Start Card (A8): With the word START punched in cols. 1-5.

 This card must precede the input data deck of any problem.
- (b) <u>Title Card</u> (20A4): Alphameric information in cols. 1-80 to identify the output.

(c)	Control Card (814, 6L2): Variable	
Columns	Name	Meaning
1-4	NUMEL	Number of elements (\leq 350);
5-8	NUMC P	Number of corner points;
9-12	NUMNP	Number of total nodal points (\leqslant 1050);
13-16	NUMBC	Number of restrained nodal points;
17-20	NUMPB	Number of plot defining boundary points, see item (e);
21-24	NLOAD	Number of load cases; will be set=1 if left blank;
25-28	NMAT	Number of different materials (< 6); will be set=1 if left blank;
29-32	MAXIT	Maximum number of residual iterations in the displacement solution; punch a 1 or 2 for large, ill-conditioned problems.

The next five fields are for logical flags; if a T is punched, in any assigned column, the indicated option takes place. A blank of F implies FALSE.

33-34	T1	All quadrilaterals have the same stiffness matrix (see note 1);
35-36	Т2	Punching of mesh nodal point coordinates and displacements (I4, 2F8.3, 2E14.5);
37-38	Т3	Punching of averaged $\mathcal{O}_{\mathbf{x}}$, $\mathcal{O}_{\mathbf{y}}$, and $\mathcal{T}_{\mathbf{xy}}$ at mesh nodal points and quadrilateral centroids (I4, 3E18.6);
39-40	T 4	Print of element stresses (see note 2);
41-42	Т5	Another complete problem follows.
Notes		

- (1) All quadrilaterals have the same stiffness if they can be superimposed by a translation.
- (2) Element stresses should be printed in problems involving several material types, since averaged stresses and their plots do not display actual interface discontinuities.
- (d) Material Property Table (I4, E10.3, 2F10.3, E10.4): One card per material type (total NMAT cards):

Material type number; Cols. 1-4

> 5-14 Elastic modulus;

15-24 Poisson's ratio;

25-34 Specific weight;

35-44 Coefficient of thermal expansion.

For plane-strain, reduced values must be used;

$$E' = \frac{E}{(1-\nu)^2} \qquad \nu' = \frac{\nu}{(1-\nu)} \qquad \alpha' = \alpha(1+\nu)$$

(e) Plotted figure boundary outline array (2014): For the plotting of stress graphs, NUMPB number of corner nodal points which, when connected outline the structure, or structure subregion, as a series of straight lines must be punched, in cyclic order, 20 node numbers per card. The starting corner node and direction of travel around the structure, or

subregion, boundary are arbitrary. Holes in multiply connected bodies cannot be outlined separately. In subregion plots, the elements (\leq 50) outside the plotted figure boundary (skipped elements) must be listed in item (1) under Loading.

- (f) Element nodal point array (1014, F10.3): One card per element. (total NUMEL cards).
- Cols. 1-4 Element number;
 - 5-36 Nodal point numbers:
 - (I) for quadrilateral: element nodal points in counterclockwise order I-J-K-L-M-O-P (Fig. 6.1a). The starting corner is arbitrary, except when equal stiffnesses are implied (i.e., Tl=T in Control Card). In this case the starting corners must be in the same location for all elements.
 - (II) for single triangles: punch nodes I-J-K-L-M-N, (Fig. 6.1b), leave cols. 29-36 blank.
 - 37-40 Element material type, will be set=1 if left blank.
 - 41-50 Element thickness, will be set=1.0 if left blank.

Note: If a quadrilateral is not convex (not recommended) the entrant corner must be either J or K.

- (g) Corner point coordinate array (I4, 2F8.3): One card per corner point (total NUMCP cards).
- Cols. 1-4 Corner nodal point number;
 - 5-12 X-coordinate
 - 13-20 Y-coordinate
- (h) Boundary condition array (214, 2E15.3): One card per restrained nodal point (total NUMBC cards).

- Cols. 1-4 Nodal point number
 - Tag = 0 if point fixed in both directions or initial
 displacement is specified in both the X and Y
 direction then point is fixed.
 - = 1 if point is fixed in the X-direction and free in the Y-direction or initial displacement is specified in the X-direction and point is free in the Y-direction.
 - = 2 if point is free to move along a line forming angle

 with the X-axis and fixed in a direction normal to that line; or if initial displacement is specified in the Y-direction and the point is free in the X-direction.
 - 9-23 Angle in degrees, positive counterclockwise from X-axis for type TAG=2 boundary condition.

Initial X-displacement value for TAG=0 boundary condition (for both cases will be set=0.0 if left blank)

Initial displacement boundary condition value. Ydisplacement for TAG=0 or 2. X-displacement for TAG=1.

(will be set = 0.0 if left blank)

6.2 Loading data

Each load case must be specified by a data deck initiated by a LOADING card; this package follows the structure data deck. A load deck consists of the following cards;

- (i) Loading Card (A8): With the word LOADING punched in Cols. 1-7.
- (j) <u>Title Card</u> (20A4): Alphameric information in cols. 1-80 to identify the load case.

Figure 6.1 Element Nodal Point Identification

Figure 6.2 Convention for Element Side Loading

(k)	Control card Variable	(314,L2)	
Columns	Name		Meaning
1-4	NPLD		Number of nodal points with concentrated
			forces;
5-8	NELD		Number of element sides loaded with dis-
			tributed forces;
9-12	NTLD		Number of elements undergoing thermal
			increments;
13-14	DENS		Logical flag for gravity loading: If a T
			(implies .TRUE.) is punched, gravity forces
			acting along the (-Y) direction are con-
			sidered.

(1) Stress Contour Graph Indicator Card (7I4): A positive integer punched in any of the first six fields will cause a stress contour plot to be produced, on the printer, for the indicated stress component.

Columns	Graph
1-4	Sigma x
5-8	Sigma y
9-12	Tau xy
13-16	Sigma max
17-20	Sigma min
21-24	Max shear

The last field (cols. 25-28) indicates the number NSK \leq 50 of elements to be skipped from the plots. If NSK > 0, additional cards must follow, specifying the skipped element numbers (2014). Element skipping may be used for two different purposes:

(1) to eliminate small regions of high stress gradients which cannot be accurately described by a printer plot;

- (2) to plot a portion of the structure, which is then amplified.

 In this case the plotted figure outline array (item e) must specify the outline of the subregion.
 - (m) Nodal Point Forces (I4, 2F8.3): One card per nodal point loaded with a concentrated force (no cards if NPLD = 0).
 - Cols. 1-4 Nodal point number;
 - 5-12 X-load;
 - 13-20 Y-load.
- (n) Element Side Loads (214, 6F8.3): One card per element side under surface traction (no cards if NELD = 0). The convention for positive traction and shear is indicated in Figure 6.2. The side variation is assumed to be parabolic and specified by the values at points a, b and c (in counterclockwise sense). For instance, for side 2 of a quadrilateral:

 | A = corner point J, b = midside point N, c = corner point K.
 - Cols. 1-4 Element number;
 - 5-8 Side number (see Fig. 6.2);
 - 9-16 Normal traction at a (T_a);
 - 17-24 Normal traction at b (T_h);
 - 25-32 Normal traction at c (T_c);
 - 33-40 Surface shear at a;
 - 41-48 Surface shear at b;
 - 49-56 Surface shear at c.

These values must be specified per unit of length of the figure and per unit of thickness, (eg., PSI).

(o) Thermal Increments (I4, 4F10.3): One card per element undergoing temperature changes (no cards if NTLD = 0):

Cols.	1-4	Element number;	
	5-14	Temperature variation at corner I;	
	15-24	Temperature variation at corner J;	
	25-34	Temperature variation at corner K;	
	35-44	Temperature variation at corner L (leave blank	for
		a triangle).	

Note: the thermal increment at the centroid of quadrilaterals is assumed to be the mean of the corner values, and a linear variation assumed over each subtriangle.

6.3 New problem

The input of a new problem must follow the last load deck for the previous one. For safety, any number of blank cards may be inserted before the START card.

Recommendations

The most hearty recommendation is to use the program. It represents a powerful engineering tool.

Recommendations for augmentation of the method are:

- (1) Inclusion of an optional bilinear element stiffness subroutine to allow analysis of the ever increasing group of materials that have such characteristics.
- (2) Modification to accept linearly varying element thickness.
- (3) A general orthotropic element stiffness subroutine.

 Recommendations for augmentation of the program are:
- (1) A mesh generation package configured for the NPS Computer Center IBM Optical Display Unit.
- (2) A contour graph plotting package for use on commercial X-Y plotters, and compatible with the program punched card output of displacements and stresses.
- (3) Conversion of tape-disk external storage statements in the program to direct access statements.

References

- 1. Cantin, G., "A Curved Finite Element for Cylindrical Shells,"
 Ph.D. Dissertation, University of California, Berkeley, 1967
- Clough, R. W., "The Finite Element Method in Structural Mechanics," Chapter 7 of "Stress Analysis," edited by O. C.
 Zienkiewicz and G. S. Holister, John Wiley and Sons, 1965
- 3. Felippa, C. A., "Refined Finite Element Analysis of Linear and Non linear Two-dimensional Structures," SEL Report No. 66-22, University of California, Berkeley, 1966
- Fox, L., "An Introduction of Numerical Linear Algebra,"
 Oxford University Press, 1965
- 5. Fraeijis de Veubeke, B. M., "Displacement and Equilibrium Models in the Finite Element Method," Chapter 9 of "Stress Analysis," cited in reference 2.
- 6. IBM System/360, "FORTRAN IV Language," Form C-28-6515-5,
 IBM Corp., Poughkeepsie, N. Y.
- 7. IBM System/360 Operating System, "FORTRAN IV (H) Programmer's Guide," Form C-28-6602-1, IBM Corp., Poughkeepsie, N. Y.
- 8. IBM System/360 Operation System, "Linkage Editor," Form C-28-6538-4, IBM Corp., Poughkeepsie, N. Y.
- 9. Johnson, C. P., "The Analysis of Thin Shells by a Finite Element Procedure," SEL Report No. 67-22, University of California, Berkeley, 1967
- 10. Mc Cormic, C. W., Herbert, K. J., "Solution of Linear Equations with Digital Computers," California Institute of Technology,

 Pasadena, 1965

- 11. Melosh, R. J., "Development of the Stiffness Method to Define
 Bounds on Elastic Behavior of Structures," Ph.D. Dissertation
 University of Washington, 1962
- 12. Turner, M. J., "The Direct Stiffness Method of Structural Analysis," AGARD Meeting, Aachen, Germany, 1959
- 13. Turner, M. J., Clough, R. W., Martin, H. C., and Topp, L. J.,
 "Stiffness and Deflection Analysis of Complex Structures,"

 J. Aeron Sci., Vol. 23, No. 9, 1956
- 14. Turner, M. J., Martin, H. C. and Weikel, R. C., "Further

 Developments and Amplifications of the Stiffness Method,"

 AGARDograph NO. 72, edited by F. de Veubeke, Pergamon Press,
- 15. University of California, "Solution of Linear Equations,"

 Div. of Structural Engineering and Structural Mechanics,

 Report No. CE 290G
 - 16. Zienkiewicz, O. C., "The Finite Element in Structural and Continuum Mechanics," McGraw-Hill Publishing Co. Ltd., London, 1967

APPENDIX 1 Sample Problem - "Flounder" plate in tension

This appendix presents a sample problem analyzed with the program. The structure and loading situation are somewhat hypothetical to allow presentation of a variety of input data and computed results. Actual input data decks and computer output are illustrated.

A "Flounder" plate in the Naval service is any roughly triangular plate, that in its lifetime may inadvertently find itself on the ocean floor. The example problem presented in this appendix is the analysis of one type of flounder plate.

The function of the problem plate is that of an attachment member.

The plate is welded to a "Trolley-Block" apparatus which rides, on cables, between ships at sea conducting underway transfer of supplies. The flounder plate acts as the attachment point for a small fixture, which in turn holds nets or boxes containing the transferred material. The problem is the preliminary coarse mesh analysis of the plate.

Sketches of the complete trolley-block assembly and the loaded flounder plate are presented in Figure Al.1. The figure also illustrates the idealized form of the plate; nodal point numbers; element numbers; nodal coordinates; boundary conditions, and input loading.

The program input data deck is illustrated in Figure Al.12. Data values that are overlined in the figure represent input for which optional default values are available. The size of the data fields for input data are also illustrated.

The computed output data is presented in Figure A1.3, where significant items are annotated on the figure.

FIGURE ALL SAMPLE PROBLEM STRUCTURE

FIGURE A1.2 SAMPLE PROBLEM COMPUTER INPUT DECK

/KIP/KSI	ecution blem was equations 895 sec.			THERMAL EXPANSION COEF	7.0000E-06		
UNITS: INCH/KIP/KSI	Note: The total execution time for this problem was 1.427 min. The 66 equations were solved in 8.895 sec.			DENSITY	0.28630		الم
XAMFLE PKNBLEM - FLCUNDER PLATE	@MMOHELEIO EIMEIH	սևև⊢ս		PGISSON'S RATIC	C.30C.3		27 33 31 23
ш	F CCENER POINTS NODAL POINTS BCUNDARY CCNDITIONS F DCE CASUNDARY PCINTS F CLEFERENT MATERIALS F ESIDUAL ITERATIONS	CH DISPLACEMENTS. CH STRESSES NT ELEMENT STRESSES JCB FOLLOWS	PROPERTIES	ELASTIC MCDULUS	30.CJOCCE 03	DEFINING BOUNCARY POINTS	2 5 7 9 19
MALONE POX-30	SYZZZZZY SYZYZYXX DODDDDA SYZYZYXX DODDDDA SYZYZYXX DODDDDA SYZYZZZZY	FLAG FOUAL FLAG PUNCH FLAG PUNCH FLAG PRINT FLAG NEW JG	MATERIAL	MAT. NO.	1	DEFINING	1

FIGURE A1.3 SAMPLE PROBLEM COMPUTER OUTPUT

	THICKNESS				
	MAT. TYPE	end end end end end end end end		Y-ORD	00000 00000 00000 00000
	۵	112 22 23 24			ပ်ကိုယ်သိုလိ
	0	70 11 20 20 20 20 20 20 20 20 20 20 20 20 20		X-0RD	000000
	Z	00000000000000000000000000000000000000			HUHLMH
	Σ	3227 3227 3227 3227		POINT	2211 229573
	_	1 111100 18046784			
	×	12777		30	00000 00000 00000
	٦	WL 2000W	FS	Y-ORD	C.ninaoow
	I	コロコロンンスコ	PCINT COORDINATE	CRD	000000 000000 000000 000000
۲ΑΥ			T C00	X-CR	Owww.44
ELEMENT ARRAY	ELEMENT	TRIANGLE SUAD: LTERAL SUAD: LTERAL SUAD: LTERAL SUAD: LTERAL TRIANGLE SUAD: LTERAL	CCRNER PCIN	PCINT	

BOUNDARY CONCITIONS

NODAL TAG BOUNDARY ANGLE INIT. BCUNDARY
PCINT VALUE (TAG=0, X-DISP) DISPLACEMENT

1 0 0 0.0
2 0 0.0
3 0 0.0
6 0 0.0
7 0 0.0
8 0 0.0
8 0 0.0
9 0 0.0
9 0 0.0
9 0 0.0
9 0 0.0

	UNITS: INCH/KIP/KSI								
	FLOUNDER PLATE	NUOH						SURF. SHEAR	000
	PROBLEM -	CARDS ELEMENTS	C PLCT)	ES	Y-LCAC	00		N. PRESSURE	000
NO. 1	BOX-30 EXAMFLE	DAL FOINT LOAD CARDS . EMENT LOAD CARDS ERMALLY LOADED ELEMENT GRAVITY LOADING	(1=PLOT 1AG N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	TED NODAL FORCES	X-LOAD	1.00000	SICE FORCES	SIDE NODE	
LOAD CASE	WALONE BO	NO. OF ELL NO. OF TH FLAG FOR	GRAPH SIGMA SIGMA ANGRAA ANGRAA ANGRAA SIGMA SIG	CONCENTRATE	PCINT	29	ELEMENTS	ELEMENT	Φ

Y-L04D	00000 00000	-2.08123E 00 -2.10914E-01 -2.10914E-01	00.0 0.0 0.0 0.0 -2.0000CE 00	
X-L0AD	00000 00000	-1.95312E-07 -1.21353E-01 1.21353E-01 0.0	00.0 00.0 -1.00000E	the Force Vector
POINT	040æ	00448000	777266 49805.	appear in the
Y-LGAC		3.0 3.0 3.0 4.0 84540E-02 4.0 84728E-02 6.0 6.0 6.0 6.0		al Displacement values
VECTOR X-LOAD		-5.36474E-04 -5.36474E-04 -1.18337E-04 -1.18338E-02		Note: Initial Disp
NODAL FCRCE VECTOR POINT X-LO		71892 1011111		Not

Note: Initial Displacement values appear in the role vector at their Node and direction of application. See Y-LOAD column, at Node-5.

	Y-01S	0.0 0.0 0.0 0.0 -2.53046E-06	-4.11C88E-05 -2.53C47E-06 -3.06653E-06 -3.06652E-05 -3.31234E-05	-6.31233E-05 -1.17582E-04 -1.36594E-04 -1.97021E-04	-2.28481E-04	12, 17, 21
	X-01S	0.0 0.0 0.0 0.0 0.0 5.16003E-06	-1.75078E-11 -5.16003E-36 3.28104E-36 -3.28106E-36 1.00769E-05	-1.00770E-05 3.36744E-06 -3.36759E-06 -3.36513E-11	0.0	nts at Nodes 5.
	PCINT	10886	1175 1164 208 208	3254 3086 3086	32	X-direction displacements at Nodes
	Y-01S	0.0 -5.000000-05	-6.16182E-06 -6.16184E-06 -1.30548E-05 -4.3671CE-05 -1.30545E-05	-6.7146CE-05 -1.39917E-04 -9.92751E-05 -1.39917E-04 -1.97021E-C4	-2.37099E-04	skewing X-direct
T CISPLACEMENTS	X-D1S	0.0 -9.43601E-12 0.0	6.18801E-06 -6.18801E-06 9.10618E-06 -4.55316E-11 -9.10620E-06	-6.27551E-11 1.04053E-05 -1.34946E-10 -1.04056E-05 -4.17094E-05	3.51312E-05 -3.51315E-05	- a. The slight skewing
NCCAL PCINT	PCINT	ころびとら	11111111111111111111111111111111111111	22221 24231	33T	NOT P

Note: The slight skewing X-direction displacements at Nodes 5, 12, 17, 21, 25, and 28. This characteristic (due to round-off) was prevented at Node 32 by the application of an auxiliary boundary condition.

ELEMENT STRESSES	ELEMENT	TRIANGLE 1	QUADRILATERAL 2	QUADRILATERAL 3	TRIANGLE 4	QUADRILATERAL 5	QUADRILATERAL 6	TRIANGLE 7	QUADRILATERAL 8	Note: The need fo
	N. POINT	CCRNER 15 CCRNER 3 CCRNER 1	CCRNER 15 CCRNER 17 CCRNER 5 CCRNER 3 CCRNER 3	CCRNER 17 CCRNER 19 CCRNER 7 CCRNER 5 CCRNER 5	CCRNER 19 CCRNER 79 CCRNER 7	CCRNER 23 CCRNER 25 CCRNER 17 CCRNER 15 CCRNER 15	CCRNER 25 CCRNER 27 CCRNER 19 CCRNER 17	CORNER 23 CORNER 27 CORNER 25	CCRNER 31 CCRNER 33 CCRNER 27 CORNER 23 CENTROID	or mesh refinement siderably. Example:
	S16-xx	0.27913 0.11465 -0.02901	0000 0000 0000 0000 0000 0000 0000	00. 00. 00. 00. 00. 00. 00. 00. 00. 00.	-0.27913 -0.62901 0.11465	00000 0 01100 00000 00000 00000 00000 00000	0000 0000 0000 0000 0000 0000 0000 0000 0000	0.07285 0.07284 0.22125		at Nodes where Node-5 in ele
	SIG-YY	0.51925 0.38217 -0.09669	0.6641 0.5001 -0.1807 0.7573 1.1787	0.5001 0.5641 0.7573 -0.1807	-0.51926 -0.09669 0.38217	1.6063 0.6785 0.5944 0.9752	1.6867 1.6063 0.5944 0.6785 0.9751	1.28336	10.775 10.775 10.4426 10.66	e element stres ements 2 and 3,
	TAU-XY	-0.19721 -0.18053 -0.13308	-0.1712 -0.1362 -0.5774 -0.0024	00.17162 00.0224 00.5774	0.19722 0.13308 0.18053		-0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -	-0.00801	- 00.4 + 8820 - 00.1 9444 - 00.1 9444	ss values, where

a complete reversel of shear is indicated.

	ANCLE XI	-37. 8463	34.1440	13.2346	22.0729	0.0001	-22.0730	-13.2346	-36.1640	37.9661	37.6852	23.2474	0.0001	-22.2472	-37.6851	22.4261	17.5734	-0.0001	-17.5735	-25.426r	16.6915	-0.0002	-16.6913	5.0267	1.0135	-0.0001	-1.0136	-5.0247	-0.0001	-6.3809	6.380P	-17.8117	-0.0001	17.8113		-113.5190 -11.2043
	MEX. SHEEK	1.1373	5.1646	0.2052	0.3789	3.1693	C.3789	0.2052	0.1646	0.1373	C.1707	0.1967	0.1704	(.1967	C.1707	0.3298	C.3784	0.2144	0.3784	0.3298	0.5721	0.3710	0.5721	0.7368	0.5510	0.4452	0.5510	C.7368	0.5974	0.8689	C. 4689	0.8275	0.6822	0.8275		00.000 00.000 00.000 00.000 00.000 00.000
	N18-818	¿¿	-1.0716	f.1938	r.1266	-5.1807	0.1260	C.1808	-0.0718	-0.2002	-0.0025	0.1112	-0.1175	0.1112	-0.0325	C.0289	0.0011	C.1604	0.0011	6.0289	0.0042	0.1314	0.3042	-0.01P1	C.1331	0.1820	0.1331	-0.0181	0.0661	-0.5901	-0.5901	-0.7244	-0.419C	-0.7244		00000000000000000000000000000000000000
	SIG-MEX	5.0745	0.2574	0.5913	0.8838	5.1579	J. A. B. 3. P	0.5913	9.2574	0.0745	0 0 m m	0.5047	0.2413	2.5947	0.3349	Q.6386	0.7570	0.5893	0.7579	0.6886	1.1483	0.8735	1.1483	1.4554	1.2352	1.0725	1,2352	1.4554	1.2610	1.1478	1.1478	0.9305	0.9453	0.9315		11.02497
	wfiwlx va Ax	-:-1331	-0.1568	-6.1835	-6.2639	6.5774	0.2439	C.1P55	0.1568	0.1331	-9.1651	-C.1883	0.3595	0.1889	0.1651	-0.3294	-0.2194	C.1P62	C.2184	0.3204	-0.3148	0.0073	C.3148	-0.1944	-0.0350	C.0288	0.0350	0.1944	000000	0.1910	-0.1919	0.4820	000000	-0.4820		\$
	TAU- AVEPASE	-7.1331	-0.1588	-0.0915	-7.2539	00000	0.2639	0.0915	0.1568	0.1331	-3.1451	-1.1427	3.1030	0.1427	0.1651	-3.2326	-3.2178	0.0000	0.2178	0.2326	-3.3148	0.000	3.3148	-0.1286	-0.0195	0000°C	0.0195	0.1286	00000	0.1919	-0.1919	0.4820	0000.0	-2.4820	. ON	00000
	V-YY I WIFT	-0.3967	5-1427	2.7572	0.775a	-0.1897	0.7763	0.7573	0.1427	- 3. 3967	0.2113	0.4527	-2.1175	0.4507	0.2113	0.5641	0.7325	0.6785	0.7325	0.5641	1.0539	0.8735	1.0539	1.6063	1.3065	1.3867	1.3060	1.6063	1.2834	1.1263	1.1263	0.7756	0.3453	0.1757	+ FLEMENT	1787 1787 9752 9751 4026
	SIG4	-5.5947	3.1427	6.5697	3.7768	-0.1907	0.7768	2.5697	0.1427	-3.0967	3.2113	5.4434	-0.1175	0.4434	6.2113	0.5925	2.5889	0.5893	0.6883	0.5926	1.0539	0.8735	1.0539	1.4441	1.2348	1.3725	1.2348	1.4441	1.2610	1.1263	1.1263	0.7756	0.9453	3.7757	NO. = 33	e e e e e e e e e e e e e e e e e e e
	7 X X X Y A D W	-3.0290	32550	0061.0	C.2330	3.1579	C.233C	C. 29CC	3.5428	-0.0290	0.1251	2.1969	9.2413	C. 1969	0.1251	0.2791	0.0832	C. 1844	C. 5832	3.2791	0.0985	C.1314	3.0985	-0.1789	3.1471	5.2213	C. 147C	-0.1789	0.0728	-0.5087	-0.5587	-0.5696	-0.4190	-0.5696	ICS (FOINT	00000000000000000000000000000000000000
STRESSES	AVERAGE	-5.6293	0.0424	0.2023	0.2430	C.1579	0.2330	0.202\$	0.0429	-0.0290	0.1251	0.1725	0.2413	Ů.1725	5.1251	C.1249	0.0761	3.1664	C.0701	0.1249	C.0985	0.1314	0.0985	-0.30€8	6.1334	182 5	0.1334	-0.0C68	0.0661	-0.5647	-0.5687	-0.5696	-0.4193	-0.5696	PAL CENTRC	oranc I
PCINT	INATES	6.333	000.0	6.000	00000	000.9	6.000	6.100	6. COO	4.00c	5.500	5.5CC	5,503	5.500	5.500	5.000	5.000	5.030	5.000	5.330	3.500	4.300	3.50€	2.330	2.500	3.000	2.500	2.000	2.000	1.000	1.000	0.3	0.0	0.0	UAGRILATE	
HED NODAL	OCONDINA	0	0.530	1.000	2.000	3.000	4.000	5000-3	5.530	6.000	0.500	1.000	3.000	5.000	5.500	1.000	2.000	3.603	4.033	0 0 0 0 €	1.500	3.000	4.500	2.000	2.500	3.000	3.5€€	600.4	3.000	1.750	4.250	1.500	3.00€	4.500	ES AT O	000000 00000 00000
AVERAGE	TNIOd	1	2	מז	4	5	9	٢	αυ	0	10	11	12	13	14	15	16	17	18	19	2 C	21	22	23	54	25	97	27	28	53	30		32	en en	STRESS	u:wu:w4. 心ののひせ

APPENDIX 2 Practical Aspects of the Computer Alogrithm

This appendix presents practical aspects of the computer alogrithm for the direct stiffness procedures, equation solver, and the application of boundary conditions.

The direct stiffness procedure is the process whereby the complete structure stiffness matrix is formed from the individual element stiffness matrices. The process is conceptually simple, since it requires only the systematic addition of the stiffnesses of all the elements in the system. Difficulties arise when the concept is transposed to a computer process where storage space is at a premium. A firm understanding of the methods of assembly and storage of the complete stiffness matrix within the program is of importance for those desiring to modify the existing program. These methods control the programming techniques for application of boundary conditions, and the solution of the equilibrium equations.

The superposition of each element stiffness, in the formation of the complete stiffness matrix, is accomplished by adding its individual terms into the complete stiffness matrix according to the nodal point number of the elements. This is illustrated in Figure A2.1.

The program could theoretically construct the complete stiffness matrix in the manner illustrated in Fig. A2.1; a two-dimensional array could be defined and simple indexing methods utilized to superpose the element stiffnesses. The storage requirements for this straightforward approach would be a square array with side dimension of (2 x Maximum Number of Nodes). The resulting array (2100 x 2100) would occupy the total main core storage of 70 computers of the size used for this program. The techniques used to alleviate the storage problem utilizes three characteristics of the complete stiffness matrix.

The complete stiffness matrix is

FIG. A2.1 DIRECT STIFFNESS PROCEDURE

- (1) Symmetric
- (2) Banded
- (3) Sparsely populated

These properties are illustrated in Figure A2.2.

Complete Stiffness Matrix Characteristics Figure A2.2 Symmetry permits a reduction of approximately one-half in the storage required, since only a triangular half of the matrix is required to retain significant data. The banded and sparseness properties allow further savings, since only data between the diagonal and the band limits is non-zero and required in computation. The cross-hatched portion of Fig. A2.2 shows the actual quantity of storage required. The storage space problem is only partially solved, since space approximately equal to an array size dimensioned (Bandwidth x Diagonal Length) is still required. In the program the maximum half-bandwidth is 160 and the maximum diagonal length (equals a side dimension) is 2100. The resulting (160 x 2100) array is small enough to be stored on an external disk storage unit, but cannot be housed completely in main core (5 would be required) where high speed calculations, independent of internal/external storage transfer time, can be performed.

Considerations of the equation solving method and transfer time reduction dictate the final techniques used in the storage and manipulation of the data contained in the complete stiffness matrix. These two considerations will be discussed before proceeding.

The equation solver used in the program employs Cholesky's algorithm [4], [10]. The fundamental concept of the solution process is to perform operations on the complete stiffness matrix to reduce it to triangular form, after which the unknown displacements are found by back substitution procedures. The limited coupling characteristic of the set of equations allows the reduction in form to be accomplished in a manner where a subgrouping of equations can be reduced independently in a process termed triangular decomposition. The decomposition process does not modify the load vector in the equilibrium equations, and once completed, the decomposed form of the complete stiffness matrix may be stored for possible use with additional load cases. This accounts for the greatly reduced running time for additional load cases. The subgroups of equations are handled as individual blocks of equations. Figure A2.3 shows a block structure used for decomposing the complete stiffness matrix. The figure also illustrates two points concerning block structure; (1) element stiffness contributions may enter two different blocks, and (2) in order to maintain equal block size, the first must contain a zero value area.

The transfer time between external and internal core storage is a function of the data address determination time and the physical time required to transfer the data. Where many individual units or small groups of data are being moved from within a larger data set (the situation in our case), the address computation time is usually the largest contributor to the overall time. To reduce address time to a minimum,

Figure A2.3 Block Structure used for decomposing [K] the use of singly dimensioned arrays, with their attendent short address calculations, is required.

Returning to the complete stiffness matrix, with its maximum data storage requirement of a (160 x 2100) array, the considerations of the preceeding paragraphs are applied. The final storage technique for the resulting matrix data calls for data in block form with each block stored individually on an external disk unit. Each block is transferred, as required, to main core storage for the formation, modification, or solution procedures. Each block is stored in a one-dimensional array form. The overall storage method is illustrated in Figure A2.4, where an original complete stiffness matrix is shown, along with a virtual array depicting the actual data that requires storage, and the final one-dimensional array form of one of the stored blocks. Block divisions are indicated in the figure. The rows of the virtual array, and the order of data in the one-dimensional array, are the columns (read bottom to top) of the upper half-bandwidth of the complete stiffness matrix. The first

STORAGE METHOD APPLICATION STIFFNESS MATRIX BOUNDARY CONDITION COMPLETE AND FIG. A2.4

column of the virtual array is the main diagonal of the complete matrix.

The original rows become diagonals in the virtual array.

The application of boundary conditions to the structure equilibrium equations involves adjustment of the complete stiffness matrix to reflect the constrained nodes or initially displaced and constrained nodes. In the case of constrained nodes, the condition is accounted for by striking out the rows and columns corresponding to the degrees of freedom associated with the boundary condition and replacing the corresponding diagonal terms with a non-zero value. If initial displacements are specified the corresponding column of the matrix must be multiplied by the initial displacement value, and the resulting vector subtracted from the load vector before the above constraint procedures are carried out. In addition, the known displacement value must be inserted into the displacement vector. The boundary condition application procedure is illustrated in Figure A2.4, where a 5-element bar, fixed at the ends (nodes 3 and 28); with an initial positive Y-displacement at node 13, is loaded with a negative Y-direction concentrated force, P, at node 16.

The carry over of boundary conditions into the virtual storage array and one block of the final storage form, is also illustrated in Figure A2.4. Since the stiffness data is actually stored in a singly dimensioned array, special indexing and address accounting procedures (see subroutine) FORMK) must be used to allow complete row and column boundary condition procedures to be applied in situations where two data blocks are involved; each block being available for manipulation only when in main core.

```
ALFA(6)
BANGLE(250), DISPBC(250
GRTAG(6), SPACNG(6),
                                                                                         MAXIT, NEG
LNG(6,4),
                                                                                  200
                                                                                                                                             CALL SETUP
CALL LDINPT
IF (NRUN.LE.1) CALL FCRMK
CALL STRESS
CALL STRESS
CALL STRESS
CALL STRESS
IF (PGRAPH) CALL CNTPLT
NRUN.LE.NLOAD) GO TO
IF (TS) GC TC 10C
                                                                                                                                                                                        TO
                                                                 NIV
                                                                                                                                                                300
```

```
WRITE CUT RECORDS FOR COUNTS IN EXCESS OF 46 WORDS.
                                                                                                                                                                               SET UP IC WRITE ON NEXT FREE AREA.
                                                                                                                                                                                                         IF(NTRACK .LT. 0) NTRACK = (LAST+9)/10

N = N*10 + 1

IF (NCT.GT. 46)GO TC 50

MRITE (7'N,1CCO) (A(J),J=1,NCT)

IF (LAST. LT. 1999)LAST=0

IF(LAST.GT. 1999)LAST=0
                                                                                                                                                                                                                                                                                                                                                                                                                          WRITE (7.N,1000) (A(J),J=1,46)
JE (JE GE NCT) GC TO 100
NRITE (7'I,1000) (A(J),J=JI,JE)
JI = JI+46
GO TO 75
O WRITE (7'I,1000) (A(J),J=JI,NCT)
IF(I,GT-LAST) LAST=I
IF(LAST.GT-15959)LAST=0
                                              INTEGER LASI/C/
REAL*8 NAME(2)/'wRDISK','RCDISK'/
DIMENSION A(1)
DEFINE FILE 7(200CO,184,E,1)
SUBROUTINE WRCISK(NTRACK, A,NCT)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        IF(NTRACK .GT. 1959) GC TO 910
N=NTRACK*10 + 1
IF (NCT .GT.46) GC TO 150
READ (7*N,10CC) (8(J), J=1,NCT)
                                                                                                                                              IF(NTRACK .GT. 1959) GC TO 900
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          ENTRY RDDISK(NTRACK, B, NCT)
DIMENSION B(1)
                                                                                                                                                                                                                                                                                                                                               RETURN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           RETURN
                                                                                                                                                                                                                                                                                                                                                                                                              20
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             100
                                                                                                                                                                                                                                                                                                                                                               000
                 \circ\circ
                                                                                                               \circ\circ
                                                                                                                                                               000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            \circ\circ\circ
```

```
150 READ (7'N,1CCC) (B(J),J=1,46)

175 JE = JI + 45

175 JE = JI + 45

READ (7'I,1CCO) (B(J),J=JI,JE)

200 READ (7'I,1CCO) (B(J),J=JI,NCT)
     RETURN
                                                                              RETURN
ပ
```

```
MAX
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    ***
                                                                                                                                                                                                                                                                     NUMNP, NUMBC, NLOAD, MAXIT, NEQ,
NRUN, NTRA, NSKEWB, LNQ(6,4),
T5, THERL

YM(6), PR(6), RHO(6), ALFA(6)

NP(350,8), NEBC(250), BANGLE(250), DISPBC(250)

SI(16,16), S21(10,26), X(5), Y(5), E, XU, THICK
SI(16,16), B(3), A(3), AREA, ET, NU, THIK
NUMPB, NSK, PGRAPH, IGRTAG(6), SPACNG(6),
NPB(50), NELSKP(50)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  SIGMA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    ***
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                ш
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                ANGLEXY
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          *
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          計
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               O)
ERM(
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 ZH TRIA
TAU X
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    S
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           YCENT (35
3,6), IP
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      D(23), GRIITL(
NG(3), DUM(1)
                                                                                                                                                                                                          COMMON.

1 NUMEL, NUMCP, NUMNP, NUMBC, NLO.

2 IBANDW, NECBC, NRUN; NTRA, NSKEY

3 T1, T2, T3, T4, T5, THERL

CCMMON /CELMAR/ YM(6), PR(6), RICCOMMON /CELMAR/ NP(350,8), NEBCCOMMON /STFARG/ SI1(16,16), 821(1600), NCNTARG/ SI1(16,16), RCNTARG/ SI1(16,16), NELSKP(550), NCNTARG/ SI1(16,16), NELSKP(550), NCNTARG/ SI1(16,16), NELSKP(550), NCNTARG/ SICON NECK NCCONT(350), TH(350), TH(
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            000
000
000
000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         NR MAAKEUN MAA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         00
```

```
SX. THDENSITY,
                                                                                                                                                                                                                                                                                                                                                                                  NUMNP, NUMBC, NUMPB, NLOAD, NMAT,
                                                                                                                                                                                                                                                                                                                                                                                        TS NUMNP, NUMBC, NUMPB, NLUAD, N
NUMNP, NUMBC, NUMPB, NLOAD, NMAT
TS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           RATIO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             SSON'S
                                                                                                                                                                                                                                                                                                                                                                                                                                   BER OF CLEMENTS

JER OF CORNER POINTS

LOAD CASES

OF LOAD CASES

OF DIFFERENT MATERIALS

OF TYPE QUADRILATERALS

H STRESSES

ELEMENT STP
                                                                                                                                                                                               CHECK
GG TO 140
                                                                                                                                                                                                                                                                                                                                                                               NUMCP
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     S X O
                                                                                      GRIITL(I,J)
                                                                                                                                                                                              READ(5,9, ERR=1060)
IF (CHECK.NE.FLAG)
READ(5, 10) FEAD
PRINT 11, HEAC
FORMAT (2044)
FCRMAT (111, 2044)
                                                                                                                                                                                                                                                                                       (2044)
(1HI, 2044)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     MATERIAL PRCPERTIES
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     YM(I)
ATERI
MODUL
                                                                                                                                                                                                                                                                                                                                              PARAMETER
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          REAC(5,
PRINT 22
FORMAT (
                                                                                                                                                                                                                                                                                                                                             CCNTROL
                                                                                                                                                                                                                                                                                                                                                                                  ACOON NAME OF THE POOL OF THE 
                                                                                                                                                                                                                                                                                                                                                                                                                                                        r
v
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             ころよららてもりょうろみ
                                                                                      120
                                                                                                                                                                                                 140
                                                                                                                                                                                                                                                                        501
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             22
                                110
                                                                                                                                                                                                                                                                                                                                                                                                                                                           -4-4
                                                                                                                                                                                                                                                                                                                              000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   000
                                                                                                         00000
```

```
5X, 1HJ,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       L=1,NUMEL)
2 6X, 17HDILATATION COEFF. //(19,2P1E2C.5,0P2F19.5,1P1E22.5)
20 FORMAT (14, 4E1C.3)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                          READ(5, 3C) (N, (NP(N,I), I=1,8), MAT(N), TH(N), L=1,NUMEL
DG 150 N = 1,NUMEL
IF (MAT(N), LE.O) MAT(N) = 1

IF (TH(N), LE.O) TH(N) = 1.

GO = NP(N, 7), GT:O

IF (TD)

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    DO 200 N = 1.NUMNP

XORD(N) = TEST

YORD(N) = TEST

PRINT 35

FORMAT(IH1, CORNER PCINT CCORDINATES', //,

3x, 2('PCINT X-ORD Y-ORD', 7x), /

DO 220 M = 1, NUMCF
                                                                                                                                                                                                 REAC(5, 24) (NPB(I), I=1,NUMPB)
PRINT 26 (NPB(I), I=1,NUMPB)
FORMAT (2014)
FORMAT (25H-CEFINING BOUNDARY POINTS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          READ(5, 36) N, XORD(N), YGRD(N) IF(M-(M/2)*2), 210,210,205 MRITE(6,38) N, XGRD(N), YORD(N) GO TO 220 MRITE(6,39) N, XGRD(N), YORD(N) FORMAT (14, 2F8.4)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                NCDAL PCINT CCCRDINATES
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                COORDINATE ARRAY
                                                                                                                    BCUNDRY POINTS
                                                                                                                                                                                                                                                                                                                                                                                                          ELEMENT ARRAY
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           26
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            35
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           200
                                                                                                                                                                                                                                                                                     24
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  205
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            22
220
336
8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               \alpha
                                                                                000
                                                                                                                                                                                                                                                                                                                                                                   000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            \circ\circ\circ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   \circ\circ\circ
```

```
CO 240 N = 1, MaxBC
DISPBC(N) = 0.0
BANGLE(N) = 0.0
NSKEWB = 0
NSKEWB = 0
PRINT 45
FORMAT(1H1; BGUNDARY CGNDITIONS',//; NODAL TAG BOUNDARY AN 1GLE INIT EQUINCARY, /, i POINT ', i x)
DO 250 N = 1, NUMBC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 READ(5, 5C) W. L. ANGLE, DISP

PRINT 52, M. L. ANGLE, DISP

K2 = 2*M

K1 = K2 - 1

IF (L-1) 242,244,246
39 FORMAT(1H+, 14C, 16, 1X, 2F12,4)
                                                                                                                                                                 BCUNDRY CONDITION ARRAY
                     BCUNDARY CCNCITIONS
                                                                                                                                                                                                                                                                                                             J = J + 1
NEBC(J) =
DISPBC(J)
GO TO 250
                                                                                                            45
                                                                                                                                                                                                                                            242
                                                                                                                                                                                                                                                                                                                                                                                                                                                                               260
                                                                240
                                                                                                                                                                                                                                                                                                                                                        246
                                                                                                                                                                                                                                                                                                                                                                                                              250
                                                                                                                                                                                                                                                                                                              244
          \circ\circ\circ
                                                                                                                                                        000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     \circ
```

```
15,
             0F
                                                                                                                                                          E0 400 N = 1, NUMEL

IF (NP(N; 7) - LE 0)

0 340

1 = IPERM4(I)

KI = NP(N; I)

K2 = NP(N; I)

X(I) = YORD(KI)

Y(I) = YORD(KI)

IF (X(I) - EQ - TEST - OR - Y(I) - EQ - TEST)

XCRC(M) = C 5* (YCRD(KI) + YGRD(K2))

XI = X(I)

XI = X(I)

X3 = X(2)

X24 = X(2) + X(4)

X24 = X(2) + X(4)
                                                                                      300
                                                                                                                                                                                                                      340
               28C
\circ\circ\circ
                                                                                                                           000000
```

```
(XCRD(N), N=1, NUMNP), (XCENT(N), N=1, NUMEL), (YORD(N), N=1, NUMNP), (YCENT(N), N=1, NUMEL)
(MAT(N), N=1, NUMEL)
                                                                                                                                                                     -(X(4)-X1)*(Y(2)-Y1)
- (X(2)-X3)*(Y(4)-Y3)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      TO 1040
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      09
X124 = (X1+X24)/3.

X234 = (X1+X24)/3.

Y124 = (Y1+Y24)/3.

Y124 = (Y1+Y24)/3.

Y124 = (X(2)-X1)*(Y(4)-Y1) - (X(4)-X1)*(Y(2)-Y3) - (X(2)-X1)*(Y(2)-Y3) - (X(2)-Y3) - (X(2)-X3) - (X(2)-X3)
                                                                                                                                                                                                                                                                                   09
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    RITE (8)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              NTRACK
DC 450
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             400
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      420
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       360
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      380
```

 $\circ\circ\circ\circ\circ$

```
(TI.ANC.L.GT.C) GO TO 550
                                                                      IF (T1.ANC.L.GT.C) GO TO 550

L = L + 1

DC 520 I = 1,4

K = NP(N,I)

X(I) = XORD(K)

X(S) = XCENT(N)

Y(S) = YCENT(N)

Y(S) = YCENT(N)

Y(S) = YCENT(N)

CALL WRDISK (NTRACK,S11,256)

NTRACK = NTRACK + 1

CALL WRDISK (NTRACK,S21,260)

NTRACK = NTRACK + 1

CALL WRDISK (NTRACK,S21,260)
                               GG TO 600
                                                                                                                                                                                                                                                                                       G CO 620 I = 1,3

L = IPERM(1)

K1 = NP(N,1)

K2 = NP(N,1)

A(L) = XCRC(K2) - XORD(K1)

AREA = A(3)*B(2)-A(2)*B(3)

AREA = A(3)*B(2)-A(2)*B(3)

THIK = TH(N)

CALL WRDISK (NTRACK,ST,256)

NTRACK = NTRACK + 2

O CONTINUE

NTRACK + 1
(I) = 0. 1,NUMEL
MAT(N)
(NP(N,7).LE.C)
                                                    GUACRILATERAL
                                                                                                                                                                                                                                                                     TRIANGLE
450
                                                                                                                                                                                                                                                                                           009
                                                                                                                                                                                                       550
                                                                                                                                                                                                                                                                                                                                                                                                                                                                 800
                                                                                                                              520
                                                                                                                                                                                                                                                                                                                                                         620
                                                                                                                                                                                                                                                                                                                                                                                                                                             700
                                                                                                                                                                                                                                                            \circ\circ\circ
                                          000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                            \circ\circ\circ
```

**						-
***						CARD
****						ART
****					<u> </u>	rs
***)ED)	(Q :			IITIAL
***	EDEDI	XCEEC	CEEDE	11	EMENI	N 9 N
**	EXCE	NTS E	TS EX	POINT	A, EL	READI
****	MENTS	L POI	TRAIN	ATE,	E ARE	N I
****	ELE	NODA	CONS	RDIN	IANGLI	TECTE
***)• Of	CF	QF.) CO(1 K	. DE .
***	ž	NO	NO.	SSING	TIVE	RROF
**	HOMA	O M A X	OM AX.	XOH 1013	CNEG A	13, 16
****	1001	260 1011 (34H)	2 (0 1021 - (33H)	280 1041 = (281	400 1051 (34H)	1061 (1400
***	PRINT FORMAT IFLAG	GO TO FORINT IFLAMAT	PRINT FORMAT	GC TO PRINT FORMAT	GG TG PRINT FORMAT	GC TO 400 1060 PRINT 1061 1061 FCRMAT(1HC, T3, 'ERROR DETECTED IN READING INITIAL ''START'' CARD') STOP
	1000	1010	1020	1040	1050	1060

ان

```
XU, THICK
                                                                                                                                                                                                                                                       SII(16,16), S21(10,26), X(5), Y(5), E, ST(16,16), B(3), A(3), AREA, ET, NU, THIK
                                                                                                                                                                                                                                                                                                                                                                                                                                                     9,10,21,22,19,20,
11,12,23,24,21,22,
13,14,25,26,23,24,
15,16,19,20,25,26,
                                                                                                                                                                                                                                                                                                                                                       LOC(12,4), IPERM4(4), DUM(1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                STIFFNESSES
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  POINTS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                CONDENSATION OF INTERNAL NODAL
                                                                                                                                                                                                                                                                                                                                                                                                                                                   SUBTRIANGLE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           -A(2)*B(3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     COMMON /QUACRG/ SII(16)
COMMON /STFARG/ ST(16)
REAL NU
DIMENSION S (26,26); LC
EQUIVALENCE (CUM,S)
CATA IPERM4/2.3.4.1,
DATA LOC / 3,4.5.6.1
STQUAD
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  = 1,676
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            DC 160 N = 174
A(1) = X(5) N = 174
A(2) = X(5) N = 174
B(2) = X(5) N = 174
B(3) = Y(5) N = 174
B(3) = Y(5) N = 174
CALL STLST6
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                ASSEMBLY OF FOUR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   1,10
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   THICK
SUBROUTINE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Z
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 THIK = TH
NC = XU
DC 100 I =
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      Z I
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 DO 200
K = 26
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 100
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      160
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   \circ\circ\circ
                                 \circ\circ\circ\circ\circ\circ\circ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       ں
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      000
```

```
L = K + 1

PIVCT = S(L,L)

C = S(L,J)/PIVCT

S(L,J) = C

D = 200 I = 1,K

S(1,1) = S(I,J)

S(1,1) = S(I,J)

D = 220 I = 1,16

D = 220 J = 1,16

D = 250 J =
```

```
ELEMENT STIFFNESS SUBROUTINE
LINEARLY VARYING STRAIN TRIANGLE WITH SIX NODAL POINTS
LINEAR ELASTIC ISCTROPIC MATERIAL
CY2(3), CY3(3), M(3)
                                                          A(3), AREA, ET, NU, THIK
                                                                              3,2), IPER
(19),V)
                                                       COMMON /STFARG/ ST(16,16), B(3), A(
REAL NU; NUH
DIMENSICN CX1(3), CX2(3), CX3(3), C
1 U(3,6); V(3,6); UV(3,6,2), BA(3,2)
EQUIVALENCE (BA,B), (UV,U), (UV(19)
DATA IPERM /2,3,1/
NUH = 0.5*(1.-NU)
ER = ET/(1.-NU*NU)
COMM = ER*THIK/(24.*AREA)
                                                                                                                                                             = IPERM([)
= IPERM([]
= L + 3
                                                                                                                                                                                                                Z
                                                                                                                                                                                     150
                                                                                                                                                                                                                                                                                                                                                         200
```

```
X4 = 0.

X = U(K*J)

Y = V(K*J)

X = X2 + CX2(K)*X + CX3(K)*X

X = X3 + CY1(K)*X + CX3(K)*X

X = X3 + CY1(K)*X + CX3(K)*X

X = X4 + CY2(K)*X + CX3(K)*X

X = X3 + CY1(K)*X + CX3(K)*X

X = X3 + CX2(K)*X + CX3(K)*X

X = X3 + CX3(K)*X + CX3(K)*X

X = X3 + CX3(K)*X + CX3(K
```

```
CCMMON

1 NUMEL, NUMCP, NUMNP, NUMBC, NLOAD, MAXIT, NEO,
2 IBANDW, NEGBC, NRUN, NTRA, NSKEWB, LNO(6,4),
3 IBANDW, NEGBC, NRUN, NTRA, NSKEWB, LNO(6,4),
4 COMMON /CCMATPR, YM(6), PR(6), RHO(6), ALFA(6), SPACNG(6),
COMMON /CCMATPR, NP(6), PR(6), RHO(6), BANGLE(250), DISPBC(250),
COMMON /CCMATPR, NP(6), PR(6), NESC(250), BANGLE(250), DISPBC(250),
COMMON /CCMATPR, NP(6), NELSKP (50), NELSKP (50),
COMMON /CCMATPR, NP(6), NELSKP (50), NELSKP (50),
COMMON /CTMARG, NP(6), NELSKP (50), NELSKP (50),
COMMON /CTMARG, NP(6), NELSKP (50), NELSKP (50),
NELGER, NP(6), NP(6
                                                                                                                             REWIND 8
READ (8) (XCRD(N), N=1, NUMNP), (XCENT(N), N=1, NUMEL),
(YORD(N), N=1, NUMNP), (YCENT(N), N=1, NUMEL)
READ (8) (MAT(N), N=1, NUMEL)
READ (8) (TH(N), N=1, NUMEL)
THERL = "FALSE"
DO 110 N = 1,50
NELSKP(N) = 0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  HECK.EQ.EFLAG) GG TG 1000
HECK.NE.FLAG) GG TG 1000
(A8)
LDINP
SUBROUTINE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      INITIALIZE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             100
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     10
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    110
```

```
READ(5, 1C) HEAD, NELD, NTLD, DENS

20 FGRMAT (314,L4)

PRINT 25, NRUN, HEAD, NPLD, NELD, NTLD, DENS

25 FGRMAT (14H1LOAD CASE NO. 18 / 1x, 2044 //

25 FGRMAT (14H1LOAD CASE NO. 18 / 18 /

25 FGRMAT (2010)

25 FGRMAT (2010)

26 FLEMENT LOAD CARDS

27 FLAG FCR GRAVITY LOADING ELEMENTS IS / 18 /

28 FGRMAT (2014)

28 FGRMAT (2014)

29 FGRMAT (2014)

30 FGRMAT (2014)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           ELEMENT SIDE LOADING (NORMAL PRESSURE AND SURFACE SHEAR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            13 FCRMAT (26H-CONCENTRATED NOCAL FORCES //
1 6H POINT, 6X, 6HX-LOAD, 8X, 6HY-LOAD /1X)
DO 180 L = 1,NPLC
                                                                                                                                                         CONTROL CARD AND GRAPH SPECIFICATIONS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      X, XCGAD(N), YCGAD(N)
XCAD(N), YCGAD(N)
2F8,3)
2F14.5)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    IF (NPLD.LE.C) GO TO 200
PRINT 33
                                                                             130
                                                                                                                   140
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            9
9
9
9
9
120
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        15C
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         00000
                                                                                                                                       \circ\circ\circ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      \circ\circ\circ
```

```
20G IF (NELD.LE.C) GO TC 300

4G FCRMAT (20H-ELEMENT SIDE FGRCES // 8H ELEMENT 3X, 4HSIDE,

1 4X, 4HNODE, 3X, 11HN. PRESSURE, 3X, 11HSURF. $HEAR)

CC 280 L = 1,NELC

REAC(5, 45) N, 1; P

45 FORMAT (214 6F8.3)

KI = NP(N, 1] P

KI = NP(N, 1] P

M = NP(N, 1] P

CO TO 230

220 J = IPERM(I)

M = NP(N, 1+3)

230 K2 = NP(N, 1)
                                                                                                                                                                                                                              00 K2 = NP(N, J)

NOD(1) = M

NOD(2) = M

NOD(3) = K2

NOD(3) = K2

NOD(3) = K2

NOD(3) = K2

PRINT 50, N, I, (NOD(J), P(J1), P(J, Z)

X = XGRD(K1) - XORD(K2)

Y = YGRD(K2) - YORD(K1)

DO 250 K = 1, Z

DO 250 K = 1, Z

PC(I, K) = PC(I, K) + CF(I, J) *P(J, K)

COPC(I, K) = PC(I, K) + CF(I, J) *P(J, K)

XLOAD(K) = XLOAD(K) + PN(I) *Y - PT(I)

XLOAD(K) = YLOAD(K) + PN(I) *X + PT(I)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      IF (.NOT.DENS) GO TO 400
DO 380 N = 1,NUMEL
IF (NP(N,7).LE.C) GC TO
NEI(N) = 1
DO 350 I = 1,4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         270
280
                                                                                                                                                                                                                                                                                                                                                                                                                 240
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            300
ںں
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       \circ\circ\circ\circ\circ
```

```
ELEMENT, 6X, 8HCCRNER
8HCORNER L /1X)
                                                                                                                                                                    (DELT(1)+DELT(2)+DELT(3)+DELT(4))/4.
                                                                                                                                                  LFA(M)*YM(M)*TH(N)/(6.*(1.-PR(M)))
                                                                                                                  INCREMENTS // 8H
8HCORNER K, 6X,
                                    ELCAD(N,K) -COMM
                                                                                                                                                             GO TO 450
                                                                                  - COMM
                                                                                                           GO TO 500
                                                                                           I) = DELT(I)
                                                                                                                                                          42C
                                                                                  37C
38C
                                    350
                                           360
                                                                                          \circ\circ\circ\circ\circ
```

```
((CT(N,I),I=1,5),N=1,NUMEL)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             (NTRACK, S21, 260)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    ELCAD(N,K-1)
ELCAD(N,K)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       GG TO 600
                                                                                                                                                                                           DL 1(3) = AVCT | AVCT |
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        CC 6CC N = 1, NUMEL

IF (NEI(N), LE.0) G

NTRACK = 2*N - 1

CALL RDDISK (NTRACK

DO 510 I = 1,26

S23(I) = ELOAD(N,I)

DO 530 II = 1,10
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      440
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               450
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               46C
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    476
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              500
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        510
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   00000
```

```
XLOAD(L) = XLOAD(L)*COS(PHI) + YLOAD(L)*SIN(PHI)
                                                                                                                                                                                                                                                                                                                                                                                                                                                      PRINT 1001
FORMAT (46HCSTART CARD FOUND WHEN LOOKING FOR LOADING CARD)
STOP
END
                                                                                                                                                                                                                                                                                                                                                                                                        (XLOAD(N), YLCAD(N), N=1, NUMNP)
                                                              TRANSFER TO EXTERNAL NODE FCRCE VECTOR
DO 520 I = 1,4

$23(I) = $23(I) - $21(M,I)*$23(L)

$23(L) = $23(L)/$22(M,M)

CALL WRDISK (NTRACK,$21,286)
                                                                                                                                                                                                                                                                                                                                                   L).NE.0.0) GC TC 700
XLQAD(L) = 0.
YLQAD(L) = 0.
                                                                                                                               XLOAD(K) = XLOAD(K) + S23(J-1)
YLOAD(K) = YLOAD(K) + S23(J)
CONTINUE
WRITE (3) (NEI(N),N=1,NUMEL)
                                                                                                                                                                                                                                                     REMIND 2

N = NEBC(M)

N = N+1)/2

PHI = BANGLE(M)

IF (PHI-NE-C.) XLOAD

K = 2*L

K = 2*L

K = 2*L

K = 2*L

K = 60.1) XLOAD(L)

IF (K-EQ.1) YLOAD(L)

K = 60.1) YLOAD(L)
                                                                                                                                                                                                                                                                                                                                                                                                                                                 ERROR EXIT
                                                                                                                                                540
600
                                                                                                                                                                                                                                                                                                                                                                                             700
                                                   000
                                                                                                                                                                                        00000
```

120	**************************************
-----	--

```
NEGBC
DISPBC(250)
                                COPMCN

1 NUMEL, NUMCP, NUMNP, NUMBC, NLCAD, MAXIT, NN, MM, N

COMMON /CELMAR/ NP(350,8), NEBC(250), BANGLE(250),

DIMENSION NE(150,2C), NEB(20), IND(20), ST(16,16),

1 S(17600), R(2100)

EQUIVALENCE (NE,NEL)
                                                                                                                      .LE.1) GC
                                                                                                                                                                                                                           = 1,8
                                                                                                                                                                                                                                                            EB(N) = NE
= NEB(M)
                                                                                                                                                                                                                                 = NP(N, I)
F (K.LE.C)
                                                                                                                                                                                                                                                                              CONTINUE
TF (NB.LF
                                                                                                                                                                                                                                               -
||
                                                                                                                                                                                                                    130
                                                                                                                                                                                                                                                                                       14C
                                                                                                                                                                                                120
```

```
於母於我因其於母於各種於好姓於於其以
                                                                                                                                                                                                                                                                                                                                                                                                                         小女母我不敢好以 女於於於於
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         外井子二
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      IF (M.CT.1) READ (9) LL, (NEL(I),1-1,LL)

N2 = VIL, (NI+NPR_L-1,NLMNP)

NPIB = 2*NJ - 1

NEQ = NEL NV - 1

NV 
                                                                                                                                                                                                                                                                                                                                                                                                                    1 L, (NE(1,N), I=1,L)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   IF (L.L.T.NI) (F.L.GT.N.)

NC = NN'*(L-NI) + 1

N = J | 1 | 1 | 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                BLCCK
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            · M - IH
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   LL = NEP(1)
REWIND 1
DC 4CC M = 1
KEWIND CONTRACT CONTR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       SSEMBLE
                                                                                                                                                                                                       15C
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   16C
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             18C
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               20C
                                                                                                                                                                                                                                                                                                                                                            00000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          000
```

```
CG 360 I = 1.NEGBC

N = NEGCII

NC = NEBCII

IF (NC. LE. 0. CR. NC. GT. NEGB) GO TO 300

LI = MM*(NC-1) + 1

LI = MM*(NC-1) + 1

LI = CI + 1

COS(PHI)

SIN PHISON CON TO 27C

SN = SIN (PHI)

LI = LI + 1

LI = LI + 1

COS(PHI)

SIN PHISON CON TO 27C

SN = SIN (PHI)

LI = LI + 1

COS(PHI)

SIN PHISON CON TO 27C

SN = SIN CHII

CON ECOS(PHI)

SIN PHISON CON TO SON CON TO SON
                                                                                                IMPCSE BCUNDARY CCNDITIONS
22C CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                260270
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             330
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             280
300
                                                    000
```

```
POINT, 8X, 6HX-LOAD, 8X,
                                                                                                                                                                                                                                                                                                                                                                       TE(6,20) II,R(IRI),R(IR2),I2,R(IR3),R(IR4)
TINUE
                                                                                                                                                                                                                                                                                                                                                                                                 (I6,6x,1P2E14.5,112,6x,1P2E14.5)
                                                                                                                                                                                                                         FORCE VECTOR*,//,2(7H
                                                   WRITE BLCCK CF EQUATIONS ONTO TAPE
R(NDPL) = R(NDPL) - S(L)*DISP
S(L) = 0.
CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                           (2) (R(I), I=1,NN)
               350
360
                                                                                                                                               380
40C
                                          \circ\circ\circ
```

```
CGMMON

1 NUMEL, NUMNP, NUMNP, NUMBC, NLOAD, MAXIT, NEQ,

2 IBANDW, NEGBC, NRUN, NTRA, NSKEWB

COMMON / CELMAR/ NP (350,8), NEBC(250), BANGLE(250), DISPBC(250)

COMMON / BANARG/ NN, MM, MAXIR, TOLER, NTR, NITER, WS (15500)

DIMENSION R (2100)

MAXIR = NEQ

MAXIR

TOLER = C.CI

NTR = NTRA

NTR = NTRA
                                                                                                                                                                                                                                                                                                                                             SYSTEM
                                                                                                                                                                                                                                                                                                                                             GLOBAL
                                                                                                                                                                                                                                                                                                                                             >
                                                                                                                                                                                                                                                                                                                                             ×
                                                                                                                                                                                                                                                                                                                                             ANY, TO THE
                                                                                                                                                                                                                                                                                                                                            TRANSFORM SKEW CISPLACEMENTS, IF
                                                                                                                                                                                                                                                                                                                                                                      IF (NSKEMB.LE.C) GC TC 200
DD 150 M = 1,NEQBC
N = NEBC(M)
PHI = BANGLE(M)
IF (PHI.EQ.C.) GO TC 150
L = N - 1
R(N) = R(L)*SIN(PHI)
C CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   PUT DISPLACEMENTS ON TAPE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         REWIND 2
WRITE (2) (R(I),I=1,NN)
RETURN
END
                                                                                                                                                                                                                                                                                                   X
X
X
                                                                                                                                                                                                                                                                                                  IF (NRUN.GT.1) K
CALL BIGSCL (KKK)
SUBROUTINE SOLVE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        150
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                200
```

 $\circ\circ\circ\circ\circ\circ\circ$

 $\circ\circ\circ$

```
= STORAGE CF AN UPPER TRIANGLE OF BAND DURING REDUCTION.
= STORAGE CF AN UPPER TRIANGLE OF BAND DURING REDUCTION.
= DOUBLE PRECISION VECTOR FOR ITERATION ON RESIDUALS.
= SINGLE PRECISION VECTOR, EQUIVALENT TO D.
= STORAGE OF FIST ROW DURING REDUCTION.
= INDEXING ARRAY FOR THE UPPER TRIANGLE IN A.
MATRIX
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         160
                                                                                                                                                  NN = NUMBER CF EQUATIONS.

MAXIT = MAX. NO. CF ITERATIONS ON RESIDUALS.

TOLER = ACCURACY TEST (VALID ONLY IF MAXIT GT O).

TOLER = ACCURACY TEST (VALID ONLY IF MAXIT GT O).

TOLER = ACCURACY TEST (VALID ONLY IF MAXIT GT O).

TOLER = ACCURACY TEST (VALID ONLY IF MAXIT GT O).

TOLER = ACCURACY TEST (VALID ONLY IF MAXIT GT O).

TOLER = ACCURACY TEST (VALID ONLY IF MAXIT GT O).

TOLER = ACCURACY TEST (VALID ONLY IN TERMINATION OF TOLER ONLY IN TOLER OF THE SOLUTION VECTOR.

TOLER HALF BAND OF INPUT MATRIX IS READ COLUMN-WISE FROM INPUT VECTOR IS READ FROM UNIT 1, ONE CCLUMN PER RECORD.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      SPECIFIES THE FOLLOWING OPTIONS
MAIRIX REDUCTION AND SUBSTITUTION OF INPUT VECTOR.
WATRIX REDUCTION ONLY.
SUBSTITUTION OF INPUT VECTOR ONLY.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             II
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   COMMON /BANARG/ NN, MM, MAXIT, TCLER, NTR, NITER, WS(15500 DIMENSION A(1), F(1), NO(1), R(1), R1(1), X(2300)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       SCLUTION VECTOR, STORED IN THE FIRST NN LOCATIONS RETURNS NUMBER OF RESIDUAL ITERATIONS PERFORMED.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      THE LENGTH CF WS HERE CORRESPONDS TO A MAX. BAND WIDTH MM
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             ARGUMENT
KKKK
KKKK = 0
KKKK = 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                        STORAGE
WS = 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              11 11
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             CUTPUT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         R
NITER
                                                                                                              INPUT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       AUKINX
U
```

```
'(WS(4401),D,RI), (WS(12881),F), 13201),X)
                                                                                                                                                                                                                                                                                                                                                           SHIFTED
TO X
                                                                                                                                                                                                                                                                                                                                                           REDUCED AND
TRANSFERRED
                                                                                                                                                                                                                                                ⊲
                                                                                                                                                                                                                                               SET UP FIRST TRIANGULAR BLOCK IN
                                                                                                                                                                                                                                                                                                                                                           TRIANGLE IS SIMULTANEGUSLY PIVOTS AND MULTIPLIERS ARE
                                                                                                                                                                                                                                                                 REWIND 1

LC1 = ND(N) - N + 1

LC2 = LC1 + MM - 1

READ (1) (A(I), I=LC1, LC2)

NX = 0

NTRACK = NTR

DO 200 N = 1,NR
                                                                                        NITER = 0

11 = .FALSE.

NBUFF = 1

NC = (460*NBUFF)/MM

NW = NC*MM

NREC1 = (NN+NC-2)/NC -1

IF (KKK.GE.2) GG TC 210
                                                                                                                                                                                                                                                                                                                                                                                       MR = MINO (MM, NNI-N)

NX = NX + 1

PIVCT = A(1)

X(JJ) = PIVOT

CO 150 J = 2, MR

L = ND(J)

F(J) = A(L)

CO 16C J = 2, MR
                                                                                                                                                                                                                DC 110 J = 1,MM

ND(J) = (J*(J+1))/2
                                                                                                                                                                                                                            110
                                                                                                                                                                                                                                                                                                                                                                                                                                                               150
                                                                                                                                                                                                                                                                                                           130
                                                                                                                                                                                                                                      000
                                         \circ
                                                                                                                                                                00000
                                                                                                                                                                                                                                                                                                                                                  0000
```

```
SUBSTITUTION OF INPUT VECTOR
                                                                                                                                           INC' RECUCED RCWS ARE WRITTEN ON 'NBUFF' DISK TRACKS
                                                                                                                                                                CALL WRDISK (NTRACK, X, NW)

NY = 0

CONTINUE

JJ = NX*MM + 1

X(JJ) = A(1)

CALL WRDISK (NTRACK, X, JJ)

IF (KKK, EQ.1) RETURN
                                                                                                            READ(1) (A(1), I=LC1, LC2)
IF (NX.LT.NC) GO TC 200
                                                                                                                                                                                                                                                                                                              REMIND 2
READ (2) (R(I), I=1,NN)
                                            L1 = L1 - 1

A(L1) = A(L) - C*F(I)

IF (N.GT.NM) GC TO 190
                                                                                      STORE NEXT CCLUMN
                                                                                                                                                                                                                                                                                                                                              FORWARD REDUCTION
L1 = ND(J)
L1 = ND(J-1
                                                                                                                        190
                                                       160
                                                                                                                                                                                                   200
                                                                                                                                                                                                                                                                                                                                                                     220
                                                                                                                                                                                                                                                                                                                                                                                                                                                           230
                                                                                                                                                                                                                                                                                                               21C
                                                                                                                                                                                                                                                                                                                                     000
                                                                                                                                                                                                                                                          00000
```

```
RDDISK (NTRACK, ALAST, 1)
                                                                                                                                                                                                                                                                        CALL WRDISK (NTRES,R,NN)
REWIND 1
READ (1) (X(I),I=1,MM)
D1 = X(1)
D3 = R(1)
D(1) = D1*D3
                                                                                                                                                                                                                 400
RETURN
                                                        BACK SUBSTITUTION
                                                                       NTRACK = NTRACK - CALL RODISK (NTR. NX = NN - NRECI*IN DO 26C L = 2,NN N = NNI - L
240
                                                                                                                                                                                                                                                                          280
                                                                                                                                                                 25C
                                                                                                                                                                                                         260
                                                 \circ\circ\circ
                                                                                                                                                                                                                                  00000
```

```
READ (1) (X(I),I=1,MM)

C3 = R(N)

C(N) = D1*D3

K = N

DG 350 J = 2,MR

K = K - 1

D1 = X(J)

D2 = R(K)

D(K) = D(K) + D1*D3

REWIND 2

REMIND 2

READ (2) (R(I), I=1,NN)

D1 = R(N)

C R(N) = D1 - D(N)

T1 = TRUE

GO TO 220

CALL RDDISK (NTRES,RI,NN)
                                                                                                                                      CHECK ACCURACY OF SCLUTION
                                                                   350
                                                                                                     360
                                                                                                                         400
                                                                                                                                                                                     450
                                                                                                                                000
```

24H ITERATIONS,

```
COMMON

1 NUMEL, NUMCP, NUMNP, NUMBC, NLGAD, MAXII; NEO,

2 IBANDM, NEGEC, NRUN; NERL

2 IBANDM, NEGEC, NRUN; NERL

COMMON /CELMAR/ NP(350,8); NEGC(250); BANGLE(250), DISPBC(250)

COMMON /CELMAR/ NP(350,8); NEGC(250); BANGLE(250), DISPBC(250)

COMMON /CRATPR/ YM(6); PR(6); RHO(6); ALFA(6)

COMMON /CRATPR/ YM(6); PR(6); RHO(6); ALFA(6)

COMMON /CRATPR/ YM(6); PR(6); NECC(250); ACCOMMON /CRATPR/ YM(6); NECC(250); NEC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                // 2(6H POINT,
```

117

```
IF(T2) WRITE(4,3) (N, XCRD(N), YORD(N), DSX(N), OSY(N), N=1, NUMNP FORMAT (14,2F8,3,2E14,5)
                                                                                                                                                                                                                                                                                                      IF (T4) PRINT 20
20 FURMAT (17H1ELEMENT STRESSES // 10H ELEMENT, 13X, 1/)
1 8HN' PCINT SX, 6HSIG-XX, 8X, 6HSIG-YY, 8X, 6HTAU-XY, //)
00 300 N = 1,NUMEL
N = MAT(N)
NU = PR(M)
ER = YM(M)/(1.-NU**2)
G = 0.5*ER*(1.-NU)
IF (NP(N,7).LE.C) GG TG 250
READ (8) (MAI(I) I=1,NUMEL)
IF (THERL) READ (3) ((DI(N,I),I=1,5),N=1,NUMEL)
READ (3) (NEI(N),N=1,NUMEL)
                                                                                                                                                                                                                                                                                                                                                                                                                                                  POINTS
                                                                                                                                                                                                                                                                                                                                                                                                                                                   CF INTERNAL
                                          PUNCH OF DISPLACEMENTS
                                                                                                                                                                                                                                                                                                                                                                                                                                                 ECOVER DISPLACEMENTS
                                                                                                                                                                                                                                                                                                                                                                                                                             QUADRILATERAL ELEMENT
                                                                                                                                                 I = 1,3

I = 0.

I = 0.

I = 1,5

I = 1,5
                                                                                                                                          N = 1 , NUMNP
                                                                                                                                                                                                                                                                                                                                                                                                                                                                        = 17,26
                                                                                                                                         DO 120
CGUNT(N) = C.
SIG (N, I) = C.
SIGM(N, I) = C.
DO 125
DT (N, I) = C.
DO 130 N = I, S
DT (N, I) = C.
SIG (N, I) = C.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            1,8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                       S23(I) = C.
C0 160 I = K
K = NP(N,I)
                                                                                                                                                                                                                                         130
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  150
                                                                          m
                                                                                                                                                                                     120
                                                                                                                                                                                                                   125
                                \circ\circ\circ
                                                                                     00000
                                                                                                                                                                                                                                                     \circ\circ\circ\circ\circ
                                                                                                                                                                                                                                                                                                                                                                                                                   00000
```

```
20C SIGG(1,1) = C.

5 C SIGG(1,1) = C.

6 C SIGG(1,1) = C.

7 C SIGG(1,1) = C.

8 C SI
                                                                                                                                                                                                                                                                                                                                                                                                    SUBTRIANGL
                                                                                                                                                                                                                                                                                                                                                                                                  EACH
                                                                                                                                                                                                                                                                                                                                                                                                    LATE
1,K
- S21(I,J)*D(J)
                                                                                                                                                                                                                                                                                                                                                                                                  EVALUATED
THE CUADRI
                                                                                                                                                                                                                                                                                                                                                                                                  ~ N
00
8 × ¥
                                                                                                                                                                                                                                   - 10

- 233(L)

- 0(L)

- 0(L)
                                                                                                                                                                                                                                                                                                                                                                                                  SSES ARE
AVERAGED
                                                                                                                                                                                                                                                                                                                                                                                                  STRES
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                220
                                                                                                                                                                                                                                                                                                                                               80
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   25
                                                              16C
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   20C
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      210
                                                                                                                                                                                                                                                                                                                                               --
                                                                                                                                                                                                                                                                                                                                                                           0000
```

```
(N) (NP(N,I), (ESIG(I,J), J=1,3), I=1,3)
(LE I4, 9X, 6HCCRNER I4, 3F14.5 /
4, 3F14.5))
                                                                                                                                                                                                    SIGM(K,J) =
SIGM(K,J)
                                                                                                                                                                                                    ABS(X).GT.ABS(SIGM(K,J)))
T. ABS(SIGM(K, J)))
IG(K, J) + X
I, 3
                                                           DD 260 I = 1,3

M = IPERM(I)

KI = NP(N,I)

KZ = NP(N,J)

A(M) = YCRD(KI)

CB(M) = YCRD(KI)

CB(M) = YCRD(KI)
                                                                                                                                                                             CCLNT(K) +
                                                                                                                                                                                                         280 SIG(K,J) = SIG(K
IF (I4) PRINT 2
26 FORMAT (9HOTRIANG
1 (22x, 6HCCRNER
                                             SINGLE TRIANGLE
                                                                                                                                                                                                                                                                                250
                                                                                                                                                                                                                                                                                                       320
        230
                       240
                                                                                                                                                270
                                                                                                                  26C
                                      ပပပ
                                                                                                                                                                                                                                                    \circ\circ\circ\circ\circ
```

```
PRINT 3C

440 N = 1,NLMNP

DO 440 N = 1,NLMNP

1 SIGM(N; 1), SIGM(N; 1), SIGM(N; 1), SIGM(N; 1), SIGM(N; 2),

1 SIGM(N; 2), SIG(N; 3), SIGM(N; 3), (SIG(N; 1), I = 4,7)

PRINT 36, NLMNP

L = N + NUMNP

PRINT 38, L, XCENT(N), YCENT(N), (SIGC(N, I), I = 1,7)

450 CONTINUE

3C FORMAT (30HIAVERAGEC NODAL POINT STRESSES // 6H POINT, 3X, 11 HCOORDINATES, 5X, 8HSIGMA-XX, 13X, 8HSIGMA-YY, 13X, 8H
DIF = $\cap{C_6 \ S^4 (x - \gamma^4)}{\text{RR}} = $\sum_{0} \ \frac{S_1 \ S_1 \ S_1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        32 FORMATS
36 FORMATS
38 FORMATS
                                                                                                                                                                                                                                                                                                             400
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                420
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             00000
```

```
GC TO 520
),N=1,NUMNP), (SIGC(N,I),N=1,NUMEL)
         GC TO 500
V, (SIG(N,I), I=1,3), N=1,NUMNP)
                                             ) L, (SIGC(N,I), I=1,3)
4,3E18.6)
                                                                                                                                                                          IF (.NOT.PGRAFH) GC TO 800
IF (NSK.LE.C) GO TC 600
DO 550 I = 1.NSK
                                                                                                                                                                                                                                                                                 S(SIG(N,I))
5T. SGMAX) SGMAX = GGIO(SGMAX)
                                                                                                                                                                                                                                                                                                                                                                           = 0.1*FMAX(L)/F
PUNCH OF STRESSES
                                                4 8 C
                                                                                                         20C
                                                                                                                                                                  52C
                                                                                                                                                                                                                                                                                                   620
                                                                                                                                                                                                                                                                                                                                                                    630
650
700
S
                                                                00000
```

C 8CC RETURN

```
CNTPLT PRINTS STRESS CONTOUR GRAPHS
                                     CCMMON NUMEL, NUMCP, NUMNP

COMMON /CELMAR/ NP(350,8)

COMMON /CELMARG/ NUMPB, NSK, PGRAPH, IGRTAG(6), SPACNG(6),

1 GRHEAD(3,6), NFB(50), NELSKP(50)

CIMENSION XLAB(11), S(3), NR(2,3), NFT(3), IPERM4(4), P(101,101),

1 XORD(1400), YCRC(1400), F(1400)

1 CGICAL TC, T1, T2, T3

DATA ASTRK, 74+4 / 1, BLANK /4H / 1, BLANK /4H / 2, 3, 4, 1/

DATA IPERM4 /2,3,4,1/

DATA NR /2,3,1,3,1,2/
                                                                                                                                                                                                                                REWIND 8
REWIND 9
NIGIP = NUMNP + NUMEL
READ (8) (XGRD(N), N=1,NIGIP), (YORD(N), N=1,NIGIP)
                                                                                                                                                                                                                                                                                            PREFARE GRAPH PARAMETERS
                                                                                                                                                                                                                                                                                                                                                                                                                                 11 11
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 ΛD
                                                                                                                                                                                                                                                                                                                             SLEROUTINE CNIPLI
                                                                                                                                                                                                                                                                                                                    MIN = XOR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                  100
```

 $\circ\circ\circ$

```
XS = XR - DX/2.

NCCLI = (YEA/2. YS)/CY + 1.

NCCLI = (NCCLI-1)

NCP = 101

NCP = NCP = 101

NCP =
```

ပပပ

```
/, T42, CCNTOUR LINE REFERENCE VALUES ', /)
                                                                                                                                                  10, GRHEAD(1, NG), GRHEAD(2, NG), GRHEAD(3, NG)
                                                                                                                                                               1 NULL, (II = 10, 100, 10)
J = 1, NCP
                        STORE SIGNAL INTO P ARRAY
                                     350
                                = XLAB(NF)
                                                                                                                                          PRINT GRAPH
270
                                                                                                                             40C
                                                                       280
                                                                               300
                                                                                                                                                                                                 16
                    \circ\circ\circ
                                                                                                                                      \circ\circ\circ
```

```
DO 50C I = 1111
W = FLOAT(I-1)*SPACE
WN = - W ((ICC*I)/2)-((I/2)*10C))) 460, 460, 470
IF (25-((ICC*I)/2)-((I/2)*10C))) 460, 460, 470
GO SCO
CONTINUE
IS FORMAT(IH+, TEB'AI), WW WN
IS FORMAT(IH+, TEB'AI), = ',IPIE14.5', GR ',IPIE13.5)
20 FORMAT(IH+, T72, '(*-DENOTES BOUNDRY POINTS)')
                                                                                                                                                                                                                       009
```

INITIAL DISTRIBUTION LIST

		No.	Copies
1.	Defense Documentation Center Cameron Station Alexandria, Virginia 22314		20
2.	Library Naval Postgraduate School Monterey, California 93940		2
3.	Department of Mechanical Engineering Naval Postgraduate School Monterey, California 93940		2
4.	Naval Ship Systems Command (Code 2052) Navy Department Washington, D. C. 20360		1
5.	Professor Gilles Cantin Department of Mechanical Engineering Naval Postgraduate School Monterey, California 93940		10
6.	LT John P. Malone, USN U. S. Navy Ship Repair Facility Box 34 FPO, San Francisco, California 96651		4
7.	Computer Facility Naval Postgraduate School Monterey, California 93940		1
8.	Professor J. E. Brock Department of Mechanical Engineering Naval Postgraduate School Monterey, California 93940		1
9.	Professor P. F. Pucci Department of Mechanical Engineering Naval Postgraduate School Monterey, California 93940		1
10.	Mr. William Welsh Manager, Stress Group Marine Engineering The Westinghouse Electric Corp. Hendy Ave., Sunnyvale, California 94088		1
11.	LCDR Sompong Phasook, Royal Thai Navy 90 Soi Baring (Bangna) Sukumvid Road Bangkok, Thailand		1

Security Classification

DOCUMENT CONT	DOL DATA DED			
	ROL DATA - R & D			
Security classification of title, body of abstract and indexing ORIGINATING ACTIVITY (Corporate author)		RT SECURITY CLASSIFICATION		
Naval Postgraduate School		Unclassified		
Monterey, California 93940				
Monterey, Carriornia 93940	2h. GROUF			
REPORT TITLE				
A Computer Program for the Analysis of L	inearly Elastic Plan	ne-Stress, Plane-		
Strain Problems				
DESCRIPTIVE NOTES (Type of report and inclusive dates)				
None				
AUTHOR(S) (First name, middle initial, last name)				
John Patrick Malone				
REPORT DATE				
September 1968	78. TOTAL NO. OF PAGES	76. NO. OF REFS		
-				
B. CONTRACT OR GRANT NO.	98. ORIGINATOR'S REPORT	NUMBER(S)		
NA		NA		
b. PROJECT NO.				
c.	9b. OTHER REPORT NO(5) (A	ny other numbers that may be assigned		
	this report)			
d.				
0. DISTRIBUTION STATEMENT				
This document is subject to special expo	rt controls and each	transmittal to		
foreign government or foreign nationals				
of the Superintendent, Naval Postgraduat				
1. SUPPLEMENTARY NOTES	12. SPONSORING MILITARY A			
None	Naval Postgraduate School Monterey, California 93940			
	Monterey, Callion	mia 93940		
a transfer		V-2		
3. ABSTRACT				

The computer program for the analysis of linearly elastic plane-stress or plane-strain problems devised by Felippa in his work on "Refined Finite Element Analysis of Linear and Nonlinear Two-dimensional Structures" has been modified to include the use of initial displacement boundary conditions. In addition the original IBM 7094 computer dependent program has been adapted for use on the IBM 360/65 computer. In both programs the FORTRAN IV language has been used.

Problems involving "Poor fit" displacement boundary conditions and refined mesh analysis using coarse mesh analysis input displacements, which could not have been done with the original program, are now possible with the modified version presented herein.

KEY AORDS		LINK A		LINK B		LINK C	
KEY WORDS	ROLE	WΤ	ROLE	wT	ROLE	W F	
n							
Finite Element Computer Program							
Plane-Stress or Plain-Strain Computer Analysis							
Tune belees of raum belazin compacer imalyses							
•							
			1				
		1 - 2					
			11				

DD FORM 1473 (BACK) IN 0101-807-6821

Unclassified

thesM2784
A computer program for the analysis of I

3 2768 002 04234 3
DUDLEY KNOX LIBRARY