PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2000-162176

(43) Date of publication of application: 16.06.2000

(51)Int.Cl.

GO1N 27/416 GO1N 27/327

(21)Application number: 11-253233

(71)Applicant: OMRON CORP

(22)Date of filing:

07.09.1999

(72)Inventor: NAKAJIMA SATOSHI

TOKITA MUNEO ARAI MASATO TAKIZAWA KOICHI KITAWAKI TOMOKI SAKOTA YUSAKU **FUKAO AKIHIRO**

(30)Priority

Priority number: 10285981

Priority date: 22.09.1998

Priority country: JP

(54) MEASURING METHOD AND MEASURING DEVICE USING BIOSENSOR

(57)Abstract:

PROBLEM TO BE SOLVED: To perform a highly precise measurement and to minimize the dispersion between sensors.

SOLUTION: A DC voltage of 0.15 V is applied to the working electrode and reference electrodes of a biosensor, the applied voltage is changed to 0.6 V after a fixed time (t [seconds]) from the detection of supply of a blood sample, and the current carried between the working electrode and reference electrode is detected after 5 seconds from the change to measure the glucose quantity in the blood sample. Otherwise, the measurement may be performed by applying DC voltage of 0.1 V and 0.15 V before the supply of the blood sample and after the detection of the supply, respectively, changing the voltage to 0.6 V after a fixed time from the detection of the supply, and performing the measurement after 5 seconds after the change.

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-162176 (P2000-162176A)

(43)公開日 平成12年6月16日(2000.6.16)

(51) Int.Cl.7

識別記号

 \mathbf{F} I

テーマコート*(参考)

G01N 27/416

27/327

G01N 27/46

336B

27/30

353R

審査請求 未請求 請求項の数21 OL (全 12 頁)

(21)出願番号

特願平11-253233

(22)出願日

平成11年9月7日(1999.9.7)

(31)優先権主張番号 特願平10-285981

(32)優先日

平成10年9月22日(1998.9.22)

(33)優先権主張国

日本 (JP)

(71) 出願人 000002945

オムロン株式会社

京都府京都市右京区花園土堂町10番地

(72)発明者 中嶋 聡

京都府京都市右京区山ノ内山ノ下町24番地

株式会社オムロンライフサイエンス研究

所内

(72)発明者 時田 宗雄

京都府京都市右京区山ノ内山ノ下町24番地

株式会社オムロンライフサイエンス研究

所内

(74)代理人 100085006

弁理士 世良 和信 (外1名)

最終頁に続く

(54) 【発明の名称】 バイオセンサを用いた測定方法及び測定装置

(57)【要約】

【課題】 高精度の測定ができ、センサ間のばらつきも 少ないバイオセンサによる被測定物質濃度の測定方法及 び測定装置を提供する。

【解決手段】 バイオセンサの作用極・参照極間に 0. 15Vの直流電圧を印加しておき、血液試料の供給検知 の一定時間(t [秒])後に、印加電圧を0.6 Vに変 更し、変更から5秒後に作用極・参照極間に流れる電流 を検出して血液試料中のグルコースの量を測定する。血 液試料の供給前に0.1 V、供給検知後に0.15 Vの 直流電圧を印加し、供給検知から一定時間後に0.6 V に変更し、変更から5秒後に測定するようにしてもよ い。

(4

【特許請求の範囲】

【請求項1】 少なくとも作用極と参照極とを含む電極系と、

1

少なくとも酵素を含む反応層とを有するバイオセンサを 用いて、

前記反応層に供給された液体試料と酵素との反応による 電気化学現象を前記電極系で検知して前記液体試料中の 特定成分の濃度を測定する測定方法において、

前記電極系に第一電位として所定の直流電位を印加した状態で前記液体試料を前記反応層に供給し、

前記液体試料の供給の検知及び前記液体試料の供給のいずれか一方から一定時間後に、前記電極系に印加する電位を前記第一電位とは異なる測定電位に変更し、

前記変更後の測定電位を印加した状態で前記電極系によって検出される電流に基づいて前記特定成分の濃度を測定することを特徴とするバイオセンサを用いた測定方法。

【請求項2】 少なくとも作用極と参照極とを含む電極系と、少なくとも酵素と電子伝達物質とを含む反応層とを有するバイオセンサを用いて、

前記反応層に供給された液体試料と酵素との反応による 電気化学現象を前記電極系で検知して前記液体試料中の 特定成分の濃度を測定する測定方法において、

前記電極系に第一電位として所定の電位を印加した状態 で前記液体試料を前記反応層に供給し、

前記液体試料の供給の検知及び前記液体試料の供給のいずれか一方から一定時間後に、前記電極系に印加する電位を前記第一電位とは異なる測定電位に変更し、

前記変更後の測定電位を印加した状態で前記電極系によって検出される電流に基づいて前記特定成分の濃度を測 30 定することを特徴とするバイオセンサを用いた測定方 オ

【請求項3】 少なくとも作用極と参照極とを含む電極 系と、少なくとも酵素と電子伝達物質とを含む反応層と を有し、

前記反応層は該反応層の形成を容易にする保持剤を含む バイオセンサを用いて、

前記反応層に供給された液体試料と酵素との反応による電気化学現象を前記電極系で検知して前記液体試料中の特定成分の濃度を測定する測定方法において、

前記電極系に第一電位として所定の直流電位を印加した状態で前記液体試料を前記反応層に供給し、

前記液体試料の供給の検知及び前記液体試料の供給のいずれか一方から一定時間後に、前記電極系に印加する電位を前記直流電位とは異なる測定電位に変更し、

前記変更後の測定電位を印加した状態で前記電極系によって検出される電流に基づいて前記特定成分の濃度を測定することを特徴とするバイオセンサを用いた測定方法。

【請求項4】 前記保持剤は低分子化合物であることを 50

特徴とする請求項3記載のバイオセンサを用いた測定方 法.

【請求項5】 前記測定電位は、変更前の第一電位より高い電位であることを特徴とする請求項1乃至4記載のバイオセンサを用いた測定方法。

【請求項6】 前記測定電位は、前記反応層に含まれる電子伝達物質の酸化還元電位よりも高い電位であることを特徴とする請求項2乃至4記載のバイオセンサを用いた測定方法。

10 【請求項7】 前記第一電位は、前記反応層に含まれる 電子伝達物質の酸化還元電位よりも低い電位であること を特徴とする請求項2,3,4又は6記載のバイオセン サを用いた測定方法。

【請求項8】 前記第一電位は、0ボルト又は前記作用極の電位が前記参照極の電位よりも低くなるような電位であることを特徴とする請求項7記載のバイオセンサを用いた測定方法。

【請求項9】 前記液体試料には還元性物質が含まれており、前記第一電位は前記還元性物質を酸化可能な電位であることを特徴とする請求項7記載のバイオセンサを用いた測定方法。

【請求項10】 少なくとも作用極と参照極とを含む電極系と、

少なくとも酵素を含む反応層とを有するバイオセンサを 用いて、

前記反応層に供給された液体試料と酵素との反応による 電気化学現象を前記電極系で検知して前記液体試料中の 特定成分の濃度を測定する測定方法において、

前記電極系に第一電位として所定の直流電位を印加した状態で前記液体試料を前記反応層に供給し、

前記液体試料の供給の検知及び前記液体試料の供給のいずれか一方の時点で、前記電極系に印加する電位を該電極系における化学反応を待機するための第二電位としての所定の直流電位に変更し、

前記液体試料の供給の検知及び前記液体試料の供給のいずれか一方の時点から一定時間後に、前記電極系に印加する電位を前記第一電位及び第二電位とは異なる測定電位に変更し、

前記変更後の測定電位を印加した状態で前記電極系によ 40 って検出される電流に基づいて前記特定成分の濃度を測 定することを特徴とするバイオセンサを用いた測定方 法。

【請求項11】 前記測定電位は、変更前の第一電位及び第二電位よりも高い電位であることを特徴とする請求項10記載のバイオセンサを用いた測定方法。

【請求項12】 前記反応層は電子伝達物質を含み、前記第二電位は、前記電子伝達物質の酸化還元電位よりも低い電位であることを特徴とする請求項10記載のバイオセンサを用いた測定方法。

【請求項13】 前記反応層は電子伝達物質を含み、

前記第二電位は、0ボルト又は前記電子伝達物質の酸化 還元電位よりも低い電位であることを特徴とする請求項 10記載のバイオセンサを用いた測定方法。

【請求項14】 前記液体試料には還元性物質が含まれており、

前記第二電位は前記還元性物質を酸化可能な電位である ことを特徴とする請求項12記載のバイオセンサを用い た測定方法。

【請求項15】 少なくとも作用極と参照極とを含む電 するまでは極系と、少なくとも酵素を含む反応層と、を有するバイ 10 に印加し、オセンサを用いて、 前記液体記

前記反応層に供給された液体試料と酵素との反応による電気化学現象を前記電極系で検知して前記液体試料中の特定成分の濃度を測定する測定装置であって、

前記電極系に所定の直流電位を印加する電位印加手段 と、前記電極系に印加する直流電位を変更する電位変更 手段と、を備えた測定装置において、

前記電位印加手段は、前記液体試料を前記反応層に供給する時点では第一電位として所定の直流電位を前記電極系に印加し、

前記液体試料の供給の検知及び前記液体試料の供給のいずれか一方から一定時間後に、前記電位変更手段により前記電極系に印加する電位を前記第一電位とは異なる測定電位に変更し、

前記変更後の測定電位を印加した状態で前記電極系によって検出される電流に基づいて前記特定成分の濃度を測定することを特徴とするバイオセンサを用いた測定装置。

【請求項16】 前記測定電位は、前記第一電位より高い電位であることを特徴とする請求項15記載のバイオ 30センサを用いた測定装置。

【請求項17】 前記反応層は電子伝達物質を含み、前記測定電位は、前記電子伝達物質の酸化還元電位よりも高い電位であることを特徴とする請求項15記載のバイオセンサを用いた測定装置。

【請求項18】 前記反応層は電子伝達物質を含み、前記第一電位は、前記電子伝達物質の酸化還元電位よりも低い電位であることを特徴とする請求項15記載のバイオセンサを用いた測定装置。

【請求項19】 前記第一電位は、0ボルト又は前記作 用極の電位が前記参照極の電位よりも低くなるような電 位であることを特徴とする請求項18記載のバイオセン サを用いた測定装置。

【請求項20】 前記液体試料には還元性物質が含まれており、

前記第一電位は前記還元性物質を酸化可能な電位である ことを特徴とする請求項18記載のバイオセンサを用い た測定装置。

【請求項21】 少なくとも作用極と参照極とを含む電極系と、少なくとも酵素を含む反応層と、を有するバイ 50

オセンサを用いて、

前記反応層に供給された液体試料と酵素との反応による 電気化学現象を前記電極系で検知して前記液体試料中の 特定成分の濃度を測定する測定装置であって、

4

前記電極系に所定の直流電位を印加する電位印加手段 と、前記電極系に印加する直流電位を変更する電位変更 手段と、を備えた測定装置において、

前記電位印加手段は、前記液体試料を前記反応層に供給するまでは第一電位として所定の直流電位を前記電極系に印加し

前記液体試料の供給の検知及び前記液体試料の供給のいずれか一方の時点で、前記電位変更手段により前記電極系に印加する電位を該電極系における化学反応を待機するための第二電位としての所定の直流電位に変更し、前記液体試料の供給の検知及び前記液体試料の供給のいずれか一方の時点から一定時間後に、前記電位変更手段により前記電極系に印加する電位を前記第一電位及び第

前記変更後の測定電位を印加した状態で前記電極系によ 20 って検出される電流に基づいて前記特定成分の濃度を測 定することを特徴とするバイオセンサを用いた測定装 置

二電位とは異なる測定電位に変更し、

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、バイオセンサを用いて、様々な物質が混在する液体試料中の特定成分の濃度を知る測定方法及び測定装置に関する。さらに詳しくは、電位の印加方法を工夫したバイオセンサを用いての被測定物質濃度の測定方法及び測定装置に関するもので、より高精度な測定方法及び測定装置を提供するものである。

[0002]

【従来の技術】従来、血液や尿などの生体の液体試料か ら特定の成分の濃度を測定するためにバイオセンサが採 用され、例えば、血液中のグルコース(以下、「血糖」 という)の濃度測定に利用されてきた。近年では、個人 が自分で血糖値をチェックするために、操作が簡単で高 い測定精度の血糖用バイオセンサが開発され、微量な血 液を希釈等の前処理操作が不要で短時間で測定でき、ラ ンニングコストが安く、測定ごとの使い捨てタイプのバ イオセンサを搭載した血糖計が提供されている。一例と して、特許番号2517151号に開示されているバイ オセンサを紹介する。当該例のバイオセンサは、絶縁性 の基板上に測定極と対極とからなる電極系があり、前記 電極系の表面に、酸化還元酵素と親水性高分子及び電子 受容体とを含有した酵素反応層が積載された構造で、酵 素と電子受容体と液体試料との反応により生成する物質 の濃度変化を電気化学的に電極系で検知して、被測定物 質の濃度を測定するものである。前記バイオセンサで は、電位の印加は次の2方法が提案され、一つは、測定

5

極と対極との間(以下、「両極間」という)に一定の直流電圧を印加しつつ酵素反応層上に液体試料を供給し、流れる電流を測定する方法と、もう一つは、両極間に一定の直流電圧を印加しつつ酵素反応層上に液体試料を供給し、液体試料の供給を検知後一旦電圧の印加を止め、一定時間後に再度電圧を印加し、流れる電流を測定する方法である。

[0003]

【発明が解決しようとする課題】このような従来のバイオセンサの電位印加方法では、以下のような問題点があった。

【0004】まず、両極間に一定の直流電圧を印加しな がら液体試料を供給し、液体試料の供給を検知する方法 は、(バイオセンサによる被測定物質の濃度測定におい ては一般的であり、市販の装置でも採用されている公知 な方法で、上記例は、すでに周知されている測定方法 を、酸化還元酵素と電子伝達物質とを用いるバイオセン サに適用したに過ぎないが、この方法は、)酵素反応と 電気化学現象が同時に進行しているので、酵素反応に伴 い酸化型の電子伝達物質は還元型電子伝達物質に還元さ れるが、電極に電位が印加されているので、前記の還元 型電子伝達物質は生成されても電極上で電解酸化され る。従って、還元型電子伝達物質の蓄積がなく、より高 濃度の還元型電子伝達物質を電極面に供給することがで きないので、得られる電極出力は少なく、S/N比が悪 いだけでなく、測定できる濃度範囲が狭いという問題点 があり、また、被測定物質の濃度がとくに低い場合は測 定不可能であった。さらに、液体試料の供給時点から電 極出力が得られるので、測定時間を短縮できるが、実際 には、血液のような粘度の高い液体試料は、液体試料の 供給状況に違いが生じ、センサによって電極出力の差異 が大きく、測定結果の再現性が悪いという問題点があっ た。加えて、このような電圧印加パターンでは、液体試 料が吸引されるまでの間に反応電圧よりも高い電位が印 加されつづけているので、この印加電圧が電子伝達物質 の酸化還元電位よりも高い場合には、試薬が環境(湿 度)の影響であらかじめ溶け出してしまうような条件の 下では、液体試料吸引前までに生成された還元型電子伝 達物質が電極上で電解酸化されることで、実際の試料の 反応に寄与する試薬の総量が減少してしまうような現象 40 が発生する。この結果、反応に寄与する試薬層が減少し てしまうために、センサ出力が減少してしまう。このよ うな条件の下では、これまでにも測定精度の低下が起こ っていた。

【0005】もう一方の、液体試料の供給を検知した後、両極間への印加電圧を一旦止め、一定時間後に再度電圧を印加し、流れる電流を測定する方法は、両極間の印加電圧を断するので、予め液体試料中に含まれている還元性の物質を電解酸化して取り除くことができない。従って、再度の電圧印加後の測定においては還元性物質50

の干渉があり、高い測定精度が達成できず、センサ間のばらつきも大きかった。また、両極間への電圧の印加を一旦止め、再度印加することは、電極表面の安定化のために好ましくない。すなわち、両極間への電圧印加が始まると電極表面は徐々に安定化された状態になり、エイジング効果があるが、印加が止められると安定化のプロセスは進行せず、さらに一定時間後の再印加によって再安定化が開始されることになり、電極表面の安定化の効率が悪いだけでなく、安定化のセンサ間のばらつきも大きくなるという欠点を有する。

6

【0006】本発明は上記従来技術の課題を解決するためになされたものであって、その目的とするところは、高精度の測定ができ、センサ間のばらつきも少ないバイオセンサによる被測定物質濃度の測定方法及び測定装置を提供することにある。

[0007]

【課題を解決するための手段】上記目的を達成するために、第1の発明は、少なくとも作用極と参照極とを含む電極系と、少なくとも酵素を含む反応層とを有するバイオセンサを用いて、前記反応層に供給された液体試料と酵素との反応による電気化学現象を前記電極系で検知して前記液体試料中の特定成分の濃度を測定する測定方法において、前記電極系に第一電位として所定の直流電位を印加した状態で前記液体試料を前記反応層に供給し、前記液体試料の供給の検知及び前記液体試料の供給のいずれか一方から一定時間後に、前記電極系に印加する電位を前記第一電位とは異なる測定電位に変更し、前記変更後の測定電位を印加した状態で前記電極系によって検出される電流に基づいて前記特定成分の濃度を測定することを特徴とする。

【0008】このように電極系に印加する電位を液体試料の供給時と測定時とで変更して二段階とすることにより、液体試料の供給状況の差異によるセンサ間の測定結果のばらつきを抑えるとともに、測定時には充分な出力の得られる電位を印加することによって高精度の測定を可能とすることができる。また、電極系に対する電位印加を途中で中断させないので、電極系の表面の安定化の効率がよく、安定化のセンサ間のばらつきも抑えることができる。

【0009】第2の発明は、少なくとも作用極と参照極とを含む電極系と、少なくとも酵素と電子伝達物質とを含む反応層とを有するバイオセンサを用いて、前記反応層に供給された液体試料と酵素との反応による電気化学現象を前記電極系で検知して前記液体試料中の特定成分の濃度を測定する測定方法において、前記電極系に第一電位として所定の電位を印加した状態で前記液体試料を前記反応層に供給し、前記液体試料の供給の検知及び前記液体試料の供給のいずれか一方から一定時間後に、前記電極系に印加する電位を前記第一電位とは異なる測定電位に変更し、前記変更後の測定電位を印加した状態で

前記電極系によって検出される電流に基づいて前記特定 成分の濃度を測定することを特徴とする。

7

【0010】このように電極系に印加する電位を液体試 料の供給時と測定時とで変更して二段階とすることによ り、液体試料の供給状況の差異によるセンサ間の測定結 果のばらつきを抑えるとともに、測定時には充分な出力 の得られる電位を印加することによって高精度の測定を 可能とすることができる。また、電極系に対する電位印 加を途中で中断させないので、電極系の表面の安定化の 効率がよく、安定化のセンサ間のばらつきも抑えること 10 ができる。

【0011】電子伝達物質は酵素と液体試料中の特定成 分との酵素反応によって生じる電気化学現象を担う電子 を伝達する物質であり、酵素と液体試料との酵素反応を 促進することができる。

【0012】第3の発明は、少なくとも作用極と参照極 とを含む電極系と、少なくとも酵素と電子伝達物質とを 含む反応層とを有し、前記反応層は該反応層の形成を容 易にする保持剤を含むバイオセンサを用いて、前記反応 層に供給された液体試料と酵素との反応による電気化学 現象を前記電極系で検知して前記液体試料中の特定成分 の濃度を測定する測定方法において、前記電極系に第一 電位として所定の直流電位を印加した状態で前記液体試 料を前記反応層に供給し、前記液体試料の供給の検知及 び前記液体試料の供給のいずれか一方から一定時間後 に、前記電極系に印加する電位を前記直流電位とは異な る測定電位に変更し、前記変更後の測定電位を印加した 状態で前記電極系によって検出される電流に基づいて前 記特定成分の濃度を測定することを特徴とする。

【0013】このように電極系に印加する電位を液体試 料の供給時と測定時とで変更して二段階とすることによ り、液体試料の供給状況の差異によるセンサ間の測定結 果のばらつきを抑えるとともに、測定時には充分な出力 の得られる電位を印加することによって高精度の測定を 可能とすることができる。また、電極系に対する電位印 加を途中で中断させないので、電極系の表面の安定化の 効率がよく、安定化のセンサ間のばらつきも抑えること ができる。

【0014】第4の発明は、第3の発明において、前記 保持剤は低分子化合物であることを特徴とする。

【0015】このように保持剤として低分子化合物を用 いたバイオセンサにおいても、電極系に印加する電位を 液体試料の供給時と測定時とで変更して二段階とするこ とにより同様の効果が得られる。

【0016】低分子化合物としては分子量がほぼ100 0以下の化合物を酵素や液体試料等の性質に応じて適宜 選択することができる。低分子化合物を添加することに より高分子化合物を添加する場合に比べて、反応層を固 化して形成する以前の液体の状態で溶解し易く、反応層 を形成したのちでも血液等の液体試料の溶解が早く、測 50 に供給し、前記液体試料の供給の検知及び前記液体試料

定に要する時間を短縮することができる。

【0017】第5の発明は、第1乃至第4の発明におい て、前記測定電位は、変更前の第一電位より高い電位で あることを特徴とする。

8

【0018】このように測定電位を第一電位よりも高く することにより、測定時にはセンサから測定に充分な出 力を得ることができ、高精度の測定が可能となる。

【0019】第6の発明は、第2乃至第4の発明におい て、前記測定電位は、前記反応層に含まれる電子伝達物 質の酸化還元電位よりも高い電位であることを特徴とす る。

【0020】このように、測定電位を電子伝達物質の酸 化還元電位よりも高くすることにより、電子伝達物質の 酸化又は還元が行われて酵素反応が促進され、液体試料 中の特定成分の量に応じた出力が得られるので、高精度 の測定が可能となる。

【0021】第7の発明は、第2,3,4又は6の発明 において、前記第一電位は、前記反応層に含まれる電子 伝達物質の酸化還元電位よりも低い電位であることを特 20 徴とする。

【0022】このようにすれば、第一電位の印加時にお いては、液体試料が反応部に供給されても、酵素反応に 伴って生じる還元型又は酸化型の電子伝達物質を酸化又 は還元して消費してしまうことなく、蓄積することがで きるので、センサからS/N比のよい、大きな出力を得 ることができ、また、広い濃度範囲にわたって測定する ことができる。

【0023】第8の発明は、第7の発明において、前記 第一電位は、0ボルト又は前記作用極の電位が前記参照 極の電位よりも低くなるような電位であることを特徴と する。

【0024】第一電位は適宜設定してよく、0ボルト又 は前記作用極の電位が前記参照極の電位よりも低くなる ような電位とすることもできる。

【0025】第9の発明は、第7の発明において、前記 液体試料には還元性物質が含まれており、前記第一電位 は前記還元性物質を酸化可能な電位であることを特徴と する。

【0026】このようにすれば、液体試料中に測定に影 響を及ぼす還元性物質が含まれている場合に、第一電位 の印加時にこの還元性物質を酸化して取り除くことがで きるので、高精度の測定が可能となる。

【0027】第10の発明は、少なくとも作用極と参照 極とを含む電極系と、少なくとも酵素を含む反応層とを 有するバイオセンサを用いて、前記反応層に供給された 液体試料と酵素との反応による電気化学現象を前記電極 系で検知して前記液体試料中の特定成分の濃度を測定す る測定方法において、前記電極系に第一電位として所定 の直流電位を印加した状態で前記液体試料を前記反応層

30

の供給のいずれか一方の時点で、前記電極系に印可する 電位を該電極系における化学反応を待機するための第二 電位としての所定の直流電位に変更し、前記液体試料の 供給の検知及び前記液体試料の供給のいずれか一方の時 点から一定時間後に、前記電極系に印加する電位を前記 第一電位及び第二電位とは異なる測定電位に変更し、前 記変更後の測定電位を印加した状態で前記電極系によっ て検出される電流に基づいて前記特定成分の濃度を測定 することを特徴とする。

【0028】このように電極系に印加する電位を液体試料の供給前と供給後と測定時とで変更して三段階とすることにより、液体試料の供給状況の差異によるセンサ間の測定結果のばらつきを抑えるとともに、測定時には充分な出力の得られる電位を印加することによって高精度の測定を可能とすることができる。また、電極系に対する電位印加を途中で中断させないので、電極系の表面の安定化の効率がよく、安定化のセンサ間のばらつきも抑えることができる。反応層に電子伝達物質及び/又は低分子化合物からなる保持剤を含有させるようにしてもよい。

【0029】第11の発明は、第10の発明において、 前記測定電位は、変更前の第一電位及び第二電位よりも 高い電位であることを特徴とする。

【0030】このように測定電位を第一電位及び第二電位よりも高くすることにより、測定時にはセンサから測定に充分な出力を得ることができ、高精度の測定が可能となる

【0031】第12の発明は、第10の発明において、前記反応層は電子伝達物質を含み、前記第二電位は、前記電子伝達物質の酸化還元電位よりも低い電位であることを特徴とする。

【0032】このようにすれば、第二電位の印加時においては、液体試料が反応部に供給され酵素反応に伴って生じる還元型又は酸化型の電子伝達物質を酸化又は還元して消費してしまうことなく、蓄積することができるので、センサからS/N比のよい、大きな出力を得ることができ、また、広い濃度範囲にわたって測定することができる。

【0033】第13の発明は、第10の発明において、前記反応層は電子伝達物質を含み、第二電位は、0ボルト又は前記電子伝達物質の酸化還元電位よりも低い電位であることを特徴とする。

【0034】第14の発明は、第12の発明において、前記液体試料には還元性物質が含まれており、前記第二電位は前記還元性物質を酸化可能な電位であることを特徴とする。

【0035】このようにすれば、液体試料中に測定に影響を及ぼす還元性物質が含まれている場合に、第二電位の印加時にこの還元性物質を酸化して取り除くことができるので、高精度の測定が可能となる。

【0036】第15の発明は、少なくとも作用極と参照極とを含む電極系と、少なくとも酵素を含む反応層と、を有するバイオセンサを用いて、前記反応層に供給された液体試料と酵素との反応による電気化学現象を前記電極系で検知して前記液体試料中の特定成分の濃度を測定する測定装置であって、前記電極系に所定の直流電位を印加する電位印加手段と、前記電極系に印加する直流電位を変更する電位変更手段と、を備えた測定装置において、前記電位印加手段は、前記液体試料を前記反応層に供給する時点では第一電位として所定の直流電位を前記電極系に印加し、前記液体試料の供給の検知及び前記液体試料の供給のいずれか一方から一定時間後に、前記電

位変更手段により前記電極系に印加する電位を前記第一

電位とは異なる測定電位に変更し、前記変更後の測定電

位を印加した状態で前記電極系によって検出される電流

に基づいて前記特定成分の濃度を測定することを特徴と

10

【0037】このように電極系に印加する電位を電位変更手段により液体試料の供給時と測定時とで変更して二20段階とすることにより、液体試料の供給状況の差異によるセンサ間の測定結果のばらつきを抑えるとともに、測定時には充分な出力の得られる電位を印加することによって高精度の測定を可能とすることができる。また、電極系に対する電位印加を途中で中断させないので、電極系の表面の安定化の効率がよく、安定化のセンサ間のばらつきも抑えることができる。

【0038】第16の発明は、第15の発明において、 前記測定電位は、前記第一電位より高い電位であること を特徴とする。

【0039】このように測定電位を第一電位よりも高く することにより、測定時にはセンサから測定に充分な出 力を得ることができ、高精度の測定が可能となる。

【0040】第17の発明は、第15の発明において、前記反応層は電子伝達物質を含み、前記測定電位は、前記反応層に含まれる電子伝達物質の酸化還元電位よりも高い電位であることを特徴とする。

【0041】このように、測定電位を電子伝達物質の酸化還元電位よりも高くすることにより、電子伝達物質の酸化又は還元が行われて酵素反応が促進され、液体試料中の特定成分の量に応じた出力が得られるので、高精度の測定が可能となる。

【0042】第18の発明は、第15の発明において、 前記反応層は電子伝達物質を含み、前記第一電位は、前 記反応層に含まれる電子伝達物質の酸化還元電位よりも 低い電位であることを特徴とする。

【0043】このようにすれば、第一電位の印加時においては、液体試料が反応部に供給されても、酵素反応に伴って生じる還元型又は酸化型の電子伝達物質を酸化又は還元して消費してしまうことなく、蓄積することができるので、センサからS/N比のよい、大きな出力を得

ることができ、また、広い濃度範囲にわたって測定する ことができる。

【0044】第19の発明は、第18の発明において、 前記第一電位は、0ボルト又は前記作用極の電位が前記 参照極の電位よりも低くなるような電位であることを特 徴とする。

【0045】第一電位は適宜設定してよく、0ボルト又 は前記作用極の電位が前記参照極の電位よりも低くなる ような電位とすることもできる。

【0046】第20の発明は、第18の発明において、 前記液体試料には還元性物質が含まれており、前記第一 電位は前記還元性物質を酸化可能な電位であることを特 徴とする。

【0047】このようにすれば、液体試料中に測定に影 響を及ぼす還元性物質が含まれている場合に、第一電位 の印加時にこの還元性物質を酸化して取り除くことがで きるので、高精度の測定が可能となる。

【0048】第21の発明は、少なくとも作用極と参照 極とを含む電極系と、少なくとも酵素を含む反応層と、 を有するバイオセンサを用いて、前記反応層に供給され た液体試料と酵素との反応による電気化学現象を前記電 極系で検知して前記液体試料中の特定成分の濃度を測定 する測定装置であって、前記電極系に所定の直流電位を 印加する電位印加手段と、前記電極系に印加する直流電 位を変更する電位変更手段と、を備えた測定装置におい て、前記電位印加手段は、前記液体試料を前記反応層に 供給するまでは第一電位として所定の直流電位を前記電 極系に印加し、前記液体試料の供給の検知及び前記液体 試料の供給のいずれか一方の時点で、前記電位変更手段 により前記電極系に印加する電位を該電極系における化 学反応を待機するための第二電位としての所定の直流電 位に変更し、前記液体試料の供給の検知及び前記液体試 料の供給のいずれか一方の時点から一定時間後に、前記 電位変更手段により前記電極系に印加する電位を前記第 一電位及び第二電位とは異なる測定電位に変更し、前記 変更後の測定電位を印加した状態で前記電極系によって 検出される電流に基づいて前記特定成分の濃度を測定す ることを特徴とする。

【0049】このように電極系に印加する電位を電位変 更手段により液体試料の供給前と供給後と測定時とで変 更して三段階とすることにより、液体試料の供給状況の 差異によるセンサ間の測定結果のばらつきを抑えるとと もに、測定時には充分な出力の得られる電位を印加する ことによって高精度の測定を可能とすることができる。 また、電極系に対する電位印加を途中で中断させないの で、電極系の表面の安定化の効率がよく、安定化のセン サ間のばらつきも抑えることができる。

[0050]

【発明の実施の形態】以下、図面を参照しながら、本発 明に係るバイオセンサについて実施の形態を説明する。

【0051】(第1の実施形態)図1は、本発明の第1 の実施形態に係るバイオセンサを示したもので、図1

12

(a) は分解斜視図、図1(b) は外観図, 図1(c) は図1(b)のX-X断面図である。

【0052】本発明に係るバイオセンサ10は、実施例 ではポリエチレンテレフタレートを採用している絶縁性 フィルムからなる基板1の片面上に、電極系として作用 極2と参照極3、前記電極系を一部被覆する絶縁膜4及 び試薬層(反応層)5が積層して形成され、スペーサ6 10 とカバー7が装着されている。作用極2と参照極3はい ずれも同じカーボンを主とした材料からなり、絶縁膜4 によりリード部2b、3bが覆われ、各々電極反応部2 a, 3 a と接続端子部2 c, 3 c を露出している。電極 反応部2a, 3a上には、少なくとも酵素を含む溶液を 塗布、乾燥し、試薬層5が形成されている。基板1とカ バー7とでスペーサ6の厚さに該当する隙間10aが形 成されており、当該隙間10 aに試薬層5がある構造に なっている。

【0053】血糖の測定時には、指先などの血液試料に バイオセンサ10の試薬層5,電極反応部2a,3aが 形成された先端部の隙間10aを接すれば、毛管現象に より血液試料は隙間10a内に流入され、試薬層5に導 入される。

【0054】なお、バイオセンサの形状は図示例に限定 されず、絶縁性フィルム、作用極、参照極、絶縁膜、ス ペーサ及びカバーの材料及び形成方法は、公知の材料、 形成方法から適したものを適宜選択することができる。 例えば、基板、スペーサ及びカバーは、ポリエチレンテ レフタレート以外の材料、ポリエチレンナフタレート、 ポリエチレンサルファイド、ポリカーボネート、ポリア リルレート、ポリエーテルサルファイド、ポリイミド等 からなる樹脂シート、さらにはプラスチック、セラミッ クス、ガラス薄板、紙等から選択可能である。作用極、 参照極は量産に適したスクリーン印刷で形成したが、白 金、金、銀、塩化銀、鉄、亜鉛、ニッケル、パラジウム 等の電極材料を蒸着法、スパッタリング法、メッキ法、 イオンプレーティング等の薄膜形成法でも製造できる。 また、電極反応部、リード部、接続端子部をそれぞれ異 なる材料で形成してもよい。試薬層には少なくとも酵素 が含有されるが、当該酵素は被定量物質によって適宜選 択する必要があり、グルコースオキシダーゼ、乳酸オキ シダーゼ、アルコールオキシダーゼ、コレステロールオ キシダーゼ、ウリカーゼ、ピルビン酸オキシダーゼ等が 挙げられる。また、被定量物質によっては試薬層へは酵 素だけでなく、フェリシアン化カリウムやフェロセン化 合物、pーベンゾキノン等の電子伝達物質の添加が必要 な場合もある。さらに、試薬層を容易に層状に形成する ための保持剤が添加されることもあり、前記保持剤は低 分子化合物で、単糖類、二糖類及び三糖類から選ばれる 1種の化合物または2種以上の混合物、あるいは、アミ

ノ酸から選ばれる 1 種の化合物または 2 種以上の混合物である。当該試薬層の形成は、通例、滴下した試薬液の乾燥によって行うが、スクリーン印刷法等が適宜選択可能である。また、スペーサ及びカバーは、本実施例では接着剤にて接着したが、他の接合方法も適宜採用することができる。要するに、本発明では、バイオセンサの各種材料、形状、厚さ等は限定されるものではなく、バイオセンサの使用態様に応じ適宜選定又は選択すればよい。

【0055】図2は、バイオセンサ10を用いて測定を行う測定装置の主要部の概略構成を示すブロック図であるが、測定装置の構成はこれに限られるものではない。【0056】作用極3の接続端子部3cは、出力を抵抗21を介して反転入力端子に帰還させ、非反転入力端子を接地したオペアンプ22からなるI-V変換部23の反転入力端子23aに接続される。作用極によって検出された電流はI-V変換部23によって電圧に変換される。この電圧はA-D変換回路24によってディジタル信号に変換されて、CPU、メモリ等からなる制御回路25に入力される。

【0057】参照極4の接続端子部4cは、出力を反転 入力端子に帰還させたオペアンプ26からなるバッファ 回路27の出力端子27aに接続されており、非反転入 力端子に入力される電圧はスイッチ28において端子2 8aを端子28b又は端子28cに接続することにより 変更できるようになっている。このスイッチ28は制御 回路25からの信号により電圧の切替を行う。本実施形 態では、電位印加手段は、I-V変換部23,A/D変 換回路24,制御回路25,バッファ回路27及び端子 28b, 28cに所定電圧を供給する図示しない電圧供 30 給源からなる。また、電位変更手段は、スイッチ28及 び制御回路25から構成されている。制御回路25に は、バイオセンサ10の測定装置への装着の有無を検出 するセンサ検出部29及び測定結果等の情報を表示する 表示部30が接続されている。測定装置を用いた測定方 法について説明する。

【0058】電圧の印加は2段階で実施される。

【0059】最初のステップでは、スイッチ28は28 b側に接続されて、作用極2,参照極3には第一電位が印加され、酵素反応が主で酵素反応に伴う還元型の電子 40 伝達物質が蓄積される。最初のステップより高い電位である次の段階では、スイッチ28は28c側に切り替えられて、作用極2,参照極3には測定電位が印加され、酵素反応と電気化学反応とがともに進行し、還元型電子伝達物質が酸化される。すなわち、まず比較的低電位

(第一電位)の最初の段階では、試薬層中に含まれる電子伝達物質の酸化還元電位以下の一定電位が、一定時間印加され、液体試料の供給を検知し、液体試料中に予め含まれている還元性物質を電解酸化して取り除き、この最初の電位は電子伝達物質の酸化還元電位以下であるの50

で、液体試料供給後の酵素反応で生成される還元型電子 伝達物質が保存蓄積されることになる。第2段階とし て、両極間の印加電位を切り替えて変更し、変更前の電 位より高く、かつ、試薬層中の電子伝達物質の酸化還元 電位よりも高い電位(測定電位)を印加し、一定時間後 の電極出力より液体試料中の被測定物質の濃度を算出す る。第一電位及び測定電位,液体試料供給から電位変更 までの時間や電位変更から濃度測定のための電極出力の サンプリングまでの時間については、酵素,液体試料や 電極系の種類や特性に応じて適宜設定すればよい。

14

【0060】このようにして、還元性物質の影響とセンサ間のばらつきが少ない高い測定精度を有するバイオセンサによる被測定物質による被測定物質濃度の測定方法が可能である。加えて、電極表面の安定化にも低電位から高電位という印加は好ましく、電極表面は迅速に安定化され、その安定性は高く、センサ間のばらつきも少ないのが特徴である。

【0061】本実施形態では、電極系が作用極及び参照極の2電極からなるが、対極を設けて3電極で構成してもよいし、さらに多くの電極によって構成してもよい。 対極を設ける場合には、オペアンプ26の非反転入力端子側に接続すればよい。

【0062】 (実施例) 実施例として、血糖測定用バイオセンサについて説明する。

【0063】まず、基板1として150mm×150mmのポリエチレンテレフタレート(以下、「PET」という)厚さ188 μ m(図示せず)を準備し、作用極2と参照極3を熱硬化型のフェノール樹脂をバインダとしたポリマー型のカーボンペーストでスクリーン印刷により形成する。さらに、熱硬化型レジストにより絶縁膜4を形成し、作用極2と参照極3の各々のリード部2b,3bを覆い、電極反応部2a,3aと接続端子部2c,3cとを露出する。

【0064】次に、電極反応部2a,3a上に試薬液5 μ 1を滴下し、50°C1時間乾燥させて試薬層5とする。試薬液の組成は、酵素グルコースオキシダーゼ0.1%、電子伝達物質であるフェリシアン化カリウム1.0%、保持材トレハロース1.0%である。

【0065】最後に、長さ10 mm幅5 mmに切断した PET (厚さ 100μ m)を接着剤で絶縁性フィルムの バイオセンサ部分に接着し、この上に、カバーとして PET (厚さ 188μ m, 150 mm×150 mm)を接着剤で接着した後、1 個のバイオセンサあたり長さ20 mm幅6 mmに裁断する。

【0066】このように製造した血糖用バイオセンサ10に、図3に示すように予め参照極3に対して作用極2に0.15ボルトの電圧(第一電位)を印加しておき、指先などの血液にバイオセンサ10の先端部を接すれば、毛管現象により血液試料は隙間10a内に流入され、試薬層5に導入される。電極出力により血液試料の

供給を確認できたら、一定時間(t [秒])後、参照極 3に対して作用極2に0.6ボルトの電圧(測定電位) を印加し、印加5秒後の電極出力により血糖値を算出す る。血液には、還元性物質であるアスコルビン酸、ビリ ルビン、クレアチン、尿酸が干渉物質として含まれる。 上述の0.15ボルトはこれらの還元性物質の酸化可能 な電位であり、電子伝達物質であるフェリシアン化カリ ウムの酸化還元電位より低い電位であるので、還元性物 質を取り除くことができるとともに酵素反応に伴って生 じるフェロシアン化カリウムを蓄積することができる。 【0067】本実施形態及び実施例では、血液試料の供 給を電極出力によって検知しているが、血液試料の供給 をボタン等の入力手段を用いて入力し、供給から一定時 間後に電圧を変更するようにしてもよい(第2の実施形 熊及び実施例についても同様である)。血液試料の供給

【0068】 (第2の実施形態) 以下、第2の実施形態 について説明する。バイオセンサの構成は第1の実施形 態と同様であるので説明を省略する。本実施形態は測定 装置の構成の一部及び測定方法において、第1の実施形 態と異なるので、同様の構成については同様の符号を用 いて説明を省略し、異なる部分について説明する。

を電極出力によって検知する必要がなければ、変更前の

電圧(第一電位)を0 V としてもよい。

【0069】図4は本実施形態に係る測定装置の概略構 成を示すブロック図である。

【0070】本実施形態では、スイッチ31が端子31 aを端子31b, 31c, 31dに接続することによ り、オペアンプ26の非反転入力端子に入力される電圧 を変更できるようになっている。スイッチ28は制御回 路25からの信号により電圧の切替を行う。電位印加手 段が I - V変換部 2 3, A/D変換回路部 2 4,制御回 路25, バッファ回路27及び端子31b, 31c, 3 1 dに所定電圧を供給するする図示しない電圧供給源か らなり、電位変更手段がスイッチ31及び制御回路25 から構成されている点は第1の実施形態と同様である。

【0071】以下、この測定装置を用いた測定方法につ いて説明する。

【0072】電位の印加は3段階で実施される。

【0073】最初のステップでは、スイッチ31は31 b側に接続されて、作用極2、参照極3には予備電位 (第一電位)が印加される。このステップは、センサに 液体試料が吸引されるまでの予備段階であり、液体試料 の吸引をセンサに流れる電流から推定するために、電圧 を印加しつづける必要がある。予備電位は、試薬層に含 まれている電子伝達物質の酸化還元電位よりも低い電位 に設定する。このような電位に設定することにより、試 薬が湿度等の環境要因により予め溶け出したとしても、 試料供給前に生成された還元性の電子伝達物質が電極上 で電解酸化されることはない。従って、実際の反応に寄 与する試薬の総量が減少してしまうのを防止することが 50 化合物を用いたバイオセンサにおいても、電極系に印加

できる。第二のステップでは、スイッチ31は31c側 に接続されて、作用極2,参照極3には待機電位(第二 電位)が印加される。このステップは、酵素反応が主で 酵素反応に伴う還元型の電子伝達物質が蓄積される段階 である。待機電位は、予備電位よりも高く、かつ、電子 伝達物質の酸化還元電位以下に設定する。このような電 位に設定することにより、試料中に含まれている還元性 物質が電解酸化されて取り除かれるとともに、酵素反応 で生成される還元型電子伝達物質が保存蓄積される。第 三のステップでは、スイッチ31は31d側に接続され て、作用極2,参照極3には第二のステップにおける電 位よりも高く、かつ、試薬層中の電子伝達物質の酸化還 元電位よりも高い電位を印加し、一定時間後の電極出力 より試料中の被測定物質の濃度を算出する。このように して、還元性物質の影響とセンサ間のばらつきが少な い、高い測定精度を有するバイオセンサによる被測定物 質の測定方法が可能である。加えて、電極表面の安定化 にも低電位から高電位という印加は好ましく、電極表面 は迅速に安定化されその安定性は高く、センサ間のばら つきも少ないのが特徴である。

16

【0074】(実施例)実施例として、第1の実施形態 の実施例と同様の血糖測定用バイオセンサを使用した場 合について説明する。電圧の印加方法を除いて同様の方 法で測定を行うので、異なる部分についてのみ説明す

【0075】まず血糖用バイオセンサ10に図5に示す ように予め参照極3に対して作用極2に0.1ボルトの 電圧を印加しておき、指先などの血液にバイオセンサ1 0の先端部を接すれば、毛管現象により血液試料は隙間 10a内に流入され、試薬層5に導入される。電極出力 により血液試料の供給を確認できたら0.15ボルトの 電圧を印加し、一定時間 (t [秒]) 後、参照極3に対 して作用極2に0.6ボルトの電圧を印加し、電圧印加 から5秒後の電極出力より血糖値を算出する。

【0076】本実施形態及び実施例では、第二電位を第 一電位よりも高く設定しているが、0ボルトに設定する こともできる。

[0077]

【発明の効果】以上説明したように、第1, 第2又は第 3の発明のように、電極系に印加する電位を液体試料の 供給時と測定時とで変更して二段階とすることにより、 液体試料の供給状況の差異によるセンサ間の測定結果の ばらつきを抑えるとともに、測定時には充分な出力の得 られる電位を印加することによって高精度の測定を可能 とすることができる。また、電極系に対する電位印加を 途中で中断させないので、電極系の表面の安定化の効率 がよく、安定化のセンサ間のばらつきも抑えることがで

【0078】第4の発明によれば、保持剤として低分子

17

する電位を液体試料の供給時と測定時とで変更して二段 階とすることにより第3の発明と同様の効果が得られ る。

【0079】第5の発明のように測定電位を第一電位よ りも高くすることにより、測定時にはセンサから測定に 充分な出力を得ることができ、高精度の測定が可能とな

【0080】第6の発明のように測定電位を電子伝達物 質の酸化還元電位よりも高くすることにより、電子伝達 物質の酸化又は還元が行われて酵素反応が促進され、液 10 体試料中の特定成分の量に応じた出力が得られるので、 高精度の測定が可能となる。

【0081】第7の発明によれば、第一電位の印加時に おいては、液体試料が反応部に供給されても、酵素反応 に伴って生じる還元型又は酸化型の電子伝達物質を酸化 又は還元して消費してしまうことなく、蓄積することが できるので、センサからS/N比のよい、大きな出力を 得ることができ、また、広い濃度範囲にわたって測定す ることができる。

【0082】第8の発明のように第一電位を0ボルト又 20 は前記作用極の電位が前記参照極の電位よりも低くなる ような電位としても第7の発明と同様の効果が得られ る。

【0083】第9の発明によれば、液体試料中に測定に 影響を及ぼす還元性物質が含まれている場合に、第一電 位の印加時にこの還元性物質を酸化して取り除くことが できるので、高精度の測定が可能となる。

【0084】第10の発明のように、電極系に印加する 電位を液体試料の供給前と供給後と測定時とで変更して 三段階とすることにより、液体試料の供給状況の差異に 30 よるセンサ間の測定結果のばらつきを抑えるとともに、 測定時には充分な出力の得られる電位を印加することに よって高精度の測定を可能とすることができる。また、 電極系に対する電位印加を途中で中断させないので、電 極系の表面の安定化の効率がよく、安定化のセンサ間の ばらつきも抑えることができる。

【0085】第11の発明のように測定電位を第一電位 及び第二電位よりも高くすることにより、測定時にはセ ンサから測定に充分な出力を得ることができ、高精度の 測定が可能となる。

【0086】第12の発明によれば、第二電位の印加時 においては、液体試料が反応部に供給され酵素反応に伴 って生じる還元型又は酸化型の電子伝達物質を酸化又は 還元して消費してしまうことなく、蓄積することができ るので、センサからS/N比のよい、大きな出力を得る ことができ、また、広い濃度範囲にわたって測定するこ とができる。

【0087】第13の発明のように、第二電位を0ボル ト又は前記反応層に含まれる電子伝達物質の酸化還元電 得られる。

【0088】第14の発明によれば、液体試料中に測定 に影響を及ぼす還元性物質が含まれている場合に、第二 電位の印加時にこの還元性物質を酸化して取り除くこと ができるので、高精度の測定が可能となる。

【0089】第15の発明のように電極系に印加する電 位を電位変更手段により液体試料の供給時と測定時とで 変更して二段階とすることにより、液体試料の供給状況 の差異によるセンサ間の測定結果のばらつきを抑えると ともに、測定時には充分な出力の得られる電位を印加す ることによって高精度の測定を可能とすることができ る。また、電極系に対する電位印加を途中で中断させな いので、電極系の表面の安定化の効率がよく、安定化の センサ間のばらつきも抑えることができる。

【0090】第16の発明のように測定電位を第一電位 よりも高くすることにより、測定時にはセンサから測定 に充分な出力を得ることができ、高精度の測定が可能と なる。

【0091】第17の発明のように測定電位を電子伝達 物質の酸化還元電位よりも高くすることにより、電子伝 達物質の酸化又は還元が行われて酵素反応が促進され、 液体試料中の特定成分の量に応じた出力が得られるの で、高精度の測定が可能となる。

【0092】第18の発明によれば、第一電位の印加時 においては、液体試料が反応部に供給されても、酵素反 応に伴って生じる還元型又は酸化型の電子伝達物質を酸 化又は還元して消費してしまうことなく、蓄積すること ができるので、センサからS/N比のよい、大きな出力 を得ることができ、また、広い濃度範囲にわたって測定 することができる。

【0093】第19の発明のように第一電位を0ボルト 又は前記作用極の電位が前記参照極の電位よりも低くな るような電位としても第18の発明と同様の効果が得ら れる。

【0094】第20の発明によれば、液体試料中に測定 に影響を及ぼす還元性物質が含まれている場合に、第一 電位の印加時にこの還元性物質を酸化して取り除くこと ができるので、高精度の測定が可能となる。

【0095】第21の発明のように、電極系に印加する 電位を電位変更手段により液体試料の供給前と供給後と 測定時とで変更して三段階とすることにより、液体試料 の供給状況の差異によるセンサ間の測定結果のばらつき を抑えるとともに、測定時には充分な出力の得られる電 位を印加することによって高精度の測定を可能とするこ とができる。また、電極系に対する電位印加を途中で中 断させないので、電極系の表面の安定化の効率がよく、 安定化のセンサ間のばらつきも抑えることができる。

【図面の簡単な説明】

【図1】図1 (a) は本発明の第1の実施の形態に係る 位よりも低い電位としても第10の発明と同様の効果が 50 バイオセンサの分解斜視図である。図1(b)は同バイ

時間(秒)

オセンサの外観を示す斜視図である。図1(c)は図1(b)のX-X断面図である。

19

【図2】図2は本発明の第1の実施の形態に係るバイオセンサを用いた測定装置内部の概略構成を示すブロック図である。

【図3】図3は本発明の第1の実施の形態に係る測定装置によるバイオセンサの印加電圧の変化を示すグラフである。

【図4】図4は本発明の第2の実施形態に係るバイオセンサを用いた測定装置内部の概略構成を示すブロック図である。

【図5】図5は本発明の第2の実施形態に係る測定装置によるバイオセンサの印加電圧の変化を示すグラフである。

*【符号の説明】

- 2 作用極
- 2 a 電極反応部
- 2 b リード部
- 2 c 接続端子部
- 3 参照極
- 3 a 電極反応部
- 3 b リード部
- 3 c 接続端子部
- 5 試薬層
- 10 バイオセンサ
- 25 制御回路
- 28, 31 スイッチ

٥

t秒

5秒

[図2]

【図4】

フロントページの続き

(72)発明者 荒井 真人

京都府京都市右京区山ノ内山ノ下町24番地 株式会社オムロンライフサイエンス研究 所内

(72)発明者 滝沢 耕一

京都府京都市右京区山ノ内山ノ下町24番地 株式会社オムロンライフサイエンス研究 所内 (72)発明者 北脇 知己

京都府京都市右京区山ノ内山ノ下町24番地 株式会社オムロンライフサイエンス研究 所内

(72)発明者 迫田 勇策

京都府京都市右京区山ノ内山ノ下町24番地 株式会社オムロンライフサイエンス研究 所内

(72)発明者 深尾 明広

京都府京都市右京区山ノ内山ノ下町24番地 株式会社オムロンライフサイエンス研究 所内