Uppgift 5

Insertion Sort vs Merge Sort för mindre arrayer

	InsertionSort	MergeSort
10	3600	10500
20	7400	20800
30	10400	18500
40	15900	25000
50	25100	31700
60	30800	33500
70	50800	39800
80	56900	47500
90	72100	53600

• InsertionSort går snabbare för mindre arrays. Men för större arays är det Merge som är snabbare.

Insertion Sort vs Merge Sort i större arrays

	InsertionSort	${\sf MergeSort}$
100	114300	59200
1000	2907600	915600
3000	6774000	1361400
5000	9917800	1870300
7000	13619200	3265500
10000	23602900	3674300
15000	45763600	4215200

Sara Debebe Kebede

För större array är MergeSort alltid snabbare.

Merge Sort: O(*N*log N*)

Insertion Sort: O(n^2) best case O(N)

Space complexity

Uppgift 6

Sara Debebe Kebede

Det tar mindre tid för mindre arrays, så då vi h

6. Det

Efter 20 blir den snabbare

Sara Debebe Kebede

Jag ville få den till att vara en comparable t, så att jag kan använda compareTo metoden.