This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- . BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

AN 1993:147461 HCAPLUS

DN 118:147461

TI N-Phenylsulfonylindole derivatives

IN Hibino, Satoshi; Tanaka, Makoto; Taguchi, Minoru; Ota, Tomoki

PA Taisho Pharmaceutical Co., Ltd., Japan

SO Jpn. Kokai Tokkyo Koho, 5 pp.

CODEN: JKXXAF

PI JP 04273857 A2 920930 Heisei

AI JP 91-115699 910226

DT ***Patent***

LA Japanese

OS MARPAT 118:147461

GI

AB Title derivs. I (R = H, lower alkenyl, formyl, lower alkoxycarbonyl; X = H, lower alkyl, halo, lower alkoxy, NO2, lower alkoxycarbonyl; Y = H, halo; X, Y, and the benzene ring may form a naphthalene ring) and their salts, useful for angiotensin II antagonists, are prepd. Thus, treating 0.50 g 2-methoxycarbonylindole with benzenesulfonyl chloride in DMF in the presence of NaH with ice cooling gave 0.64 g 1-benzenesulfonyl-2-methoxycarbonylindole.

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平4-273857

(43)公開日 平成4年(1992)9月30日

(51) Int.Cl. ⁵ C 0 7 D 209/08 A 6 1 K 31/40 C 0 7 D 209/12	識別記号 ABU	庁内整理番号 7329-4C 7475-4C 7329-4C	F I		技術表示箇所
209/42		7329-4C	審査請求	未請求	請求項の数1(全 5 頁)
(21) 出願番号 特願平3-115699			(71)出願人 000002819 大正製薬株式会社		

(72)発明者 日比野 俐

広島県福山市東村町字三歳985 福山大学

東京都豊島区高田3丁目24番1号

薬学部内

(72)発明者 田中 誠

東京都豊島区高田3丁目24番1号 大正製

薬株式会社内

(72)発明者 田口 稔

東京都豊島区高田3丁目24番1号 大正製

薬株式会社内

(74)代理人 弁理士 北川 富造

最終頁に続く

(54) 【発明の名称】 N-置換フエニルスルホニルインドール誘導体

平成3年(1991)2月26日

(57)【要約】

(22)出願日

して有用である。

【目的】 アンジオテンシン I I 拮抗作用を有するN-置換フェニルスルホニルインドール誘導体を提供すること。

【構成】 式、

(式中、Rは水素原子、低級アルケニル基、ホルミル基または低級アルコキシカルボニル基を示し、Xは水素原子、低級アルキル基、ハロゲン原子、低級アルコキシ基、ニトロ基または低級アルコキシカルボニル基を示し、Yは水素原子またはハロゲン原子を示すか、またはXとYは結合するペンゼン環とともにナフチル基を形成する。)で表わされるNー置換フェニルスルホニルインドール誘導体およびその塩である。本発明化合物はアンジオテンシンII拮抗作用を有し、高血圧症の治療剤と

【特許請求の範囲】 【請求項1】

(化1]

基または低級アルコキシカルポニル基を示し、Xは水素 原子、低級アルキル基、ハロゲン原子、低級アルコキシ 基、ニトロ基または低級アルコキシカルポニル基を示 し、Yは水素原子またはハロゲン原子を示すか、または XとYは結合するペンゼン環とともにナフチル基を形成 する。)で表わされるN-置換フェニルスルホニルイン ドール誘導体およびその塩。

【発明の詳細な説明】

[0001]

拮抗作用を有するインドール誘導体に関する。

[0002]

【従来の技術】従来、アンジオテンシン I I (以下、A IIと略することがある。) の拮抗作用を有するものと してはペプチドタイプのものが研究されてきたが、近年 になってノンペプチドタイプのものが報告されている (特開昭56-71074号, 同63-23868号公 報,欧州特許出願公開324,377号など)。一方、 インドール誘導体は種々の生理活性が知られているが、 N- 置換フェニルスルホニルインドール誘導体にAII 30 拮抗作用を有するという報告はない。

[0003]

【発明が解決しようとする課題】本発明の目的は、アン ジオテンシンII拮抗作用を有するN-置換フェニルス ルホニルインドール誘導体を提供することである。

[0004]

【課題を解決するための手段】本発明者らは、鋭意研究 を進めた結果、ある特定のインドール誘導体が前記目的 を達成できることを見いだし、本発明を完成した。

【0005】すなわち、本発明は、

【化2】

(化2中、Rは水素原子、低級アルケニル基、ホルミル 基または低級アルコキシカルポニル基を示し、Xは水素 原子、低級アルキル基、ハロゲン原子、低級アルコキシ 50 l of Organic Chemistry, 第4

基、ニトロ基または低級アルコキシカルポニル基を示 し、Yは水素原子またはハロゲン原子を示すか、または XとYは結合するペンゼン環とともにナフチル基を形成 する。)で表わされるN-置換フェニルスルホニルイン ドール誘導体およびその塩である。

【0006】本発明において、ハロゲン原子とはフッ素 原子、塩素原子、臭素原子またはヨウ素原子である。低 級アルキル基とは炭素原子1~5個の直鎖状または分枝 鎖状のアルキル基であり、たとえばメチル基、エチル (化1中、Rは水素原子、低級アルケニル基、ホルミル 10 基、プロピル基、イソプロピル基、プチル基、3-ペン チル基などである。低級アルケニル基とは炭素原子数2 ~6個の直鎖状または分枝鎖状のアルケニル基であり、 たとえばピニル基、1-プロペニル基、1-プテニル 基、1-ペンテニル基などである。低級アルコキシ基と は炭素原子数1~5個の直鎖状または分枝鎖状のアルコ キシ基であり、たとえばメトキシ基、エトキシ基、プロ ピルオキシ基、プチルオキシ基、3-ペンチルオキシ基 などである。低級アルコキシカルポニル基とは炭素原子 数2~6個のアルコキシカルポニル基であり、たとえば 【産業上の利用分野】本発明は、アンジオテンシンII 20 メトキシカルポニル基、エトキシカルポニル基、プロビ ルオキシカルボニル基、イソプロピルオキシカルボニル 基、プチルオキシカルボニル基などである。本発明の化 合物のうち、好ましい化合物はRがホルミル基の化合物 である。

> 【0007】本発明の化合物は、たとえば下配の方法に より合成することができる。すなわち、

【化3】

(化3中、Rは前記と同意義である。) で表されるイン ドール誘導体を塩基存在下、

(化4)

(化4中、XおよびYは前記と同意義である。) で表さ 40 れるスルホニルクロライド化合物と反応させることによ り、化2の本発明化合物を製造することができる。

【0008】本反応において、塩基とは水素化ナトリウ ムなどの金属水素化物やn-プチルリチウム、リチウム ジイソプロピルアミドなどの有機金属化合物である。溶 媒としてはジメチルホルムアミド、テトラヒドロフラ ン、ジメチルスルホキシドなどの非プロトン性溶媒を用 いることができる。また、反応温度は、-40℃~室温 であり、反応時間は10分~10時間である。

【0009】また、化2の本発明化合物はJourna

7巻(5号), 第757頁(1982年)に記載の方法 によっても合成される。すなわち、前述の方法によりイ ンドールと前配化4のスルホニルクロライドを反応させ て

【化4】

(化5中、XおよびYは前配と同意義である。)の本発 明化合物(化2においてRが水素原子である化合物)を 得る。

【0010】次いで、これを塩基存在下、低温で式R' -Z (式中、R'は水素原子を除き前記Rと同意義であ り、乙は低級アルコキシ基、ジアルキルアミノ基または ハロゲン原子である。) で表される化合物と反応させる ことにより、本発明化合物(化2においてRが水素原子 以外の化合物)を得ることができる。すなわち、R'- 20 7.25-7.70(4H, m), 7.95-8.05 2で表される化合物として蟻酸メチル、蟻酸エチルなど の蟻酸エステルやジメチルホルムアミドなどの蟻酸アミ ドを用いると化2でRがホルミル基の化合物が得られ、 クロロ蟻酸メチルなどのハロゲノ蟻酸エステルを用いる と化2でRがアルコキシカルポニル基の化合物が得られ る。本反応で塩基とは、n-プチルリチウム、リチウム ジイソプロピルアミドなどの有機金属化合物である。溶 媒としては、ジエチルエーテル、テトラヒドロフランな どのエーテル系溶媒を用いることができる。また、化2 ル基の化合物と相当するアルキリデントリフェニルホス ホランとをウィッティヒ反応させることにより得ること もできる。

[0011]

【実施例】次に、実施例により本発明をさらに詳細に説 明する。

実施例

1-ペンゼンスルホニル-2-メトキシカルポニルイン ドールの製造60%水素化ナトリウム0.13g(1. 1 当量) をヘキサンで洗浄後ジメチルホルムアミド 5 m 40 1を加え、氷冷下2-メトキシカルポニルインドール 0.50g(2.9ミリモル)のジメチルホルムアミド 2m1溶液を滴下した。同温度下20分間撹拌後、ペン ゼンスルホニルクロライド 0. 51g (1当量) のジメ チルホルムアミド3m1溶液を齎下し、同温度下2時間 撹拌した。反応後、水を加え酢酸エチルで抽出、有機層 を水、飽和食塩水で洗浄後硫酸マグネシウムで乾燥し た。溶媒留去後、粗結晶をクロロホルム、ヘキサン混合 溶媒より再結晶し、目的物 0. 64 gを得た。m. p. 128~129℃

【0012】以下の化合物を同様にして製造した。1-(4-ニトロペンゼンスルホニル)-2-メトキシカル ポニルインドール

m. p. 140~141℃

1-(3-ニトロペンゼンスルホニル)-2-メトキシ カルボニルインドール

m. p. 139~140℃

【0013】1-(4-プロモペンゼンスルホニル)-2-メトキシカルポニルインドール

10 m. p. 84~86℃

1-(1-ナフタレンスルホニル)-2-メトキシカル ポニルインドール

m. p. 142~144℃

【0014】1-(2-ナフタレンスルホニル)-2-メトキシカルポニルインドール

m. p. 69~71℃

1- (4-ニトロペンゼンスルホニル) -2-ホルミル インドール

NMR (CDC1₃) δ (ppm);

(2 H, m), 8. 18-8. 30 (3 H, m), 1 0. 39 (1H, s)

【0015】1-(3-ニトロペンゼンスルホニル)-2-ホルミルインドール

NMR (CDC₃) δ (ppm)

7. 32-7. 42 (1H, bt, J=7Hz), 7. 50-7. 75 (4H, m), 8. 08-8. 43 (3 H, m), 8. 65-8. 72 (1H, m), 10. 3 9 (1H, s)

 ${\bf CR}$ が低級アルケニル基の化合物は、化 ${\bf 2CR}$ がホルミ ${\bf 30} {\bf 1} - ({\bf 4} - {\bf 7})$ ルオロベンゼンスルホニル) $- {\bf 2} - {\bf 5}$ ルミ ルインドール

m. p. 95~96℃

【0016】1-(4-クロロペンゼンスルホニル)-2-ホルミルインドール

m. p. 127~128℃

1-(4-プロモペンゼンスルホニル)-2-ホルミル インドール

NMR (CDCl₃) δ (ppm)

7. 33 (1H, bt, J = 8Hz), 7. 47-7. 72 (7 H, m), 8. 21 (1 H, bd, J=8 H)z), 10.46 (1H, s)

【0017】1-(1-ナフタレンスルホニル)-2-ホルミルインドール

m. p. 148~149℃

1-(2-ナフタレンスルホニル)-2-ホルミルイン

m. p. 115~116℃

【0018】1-[4-(2-メトキシカルポニルフェ ニル)フェニルスルホニル]-2-ホルミルインドール

50 m. p. 148~150℃

1-(4-メチルフェニルスルホニル)-2-ホルミル インドール

m. p. 128~129℃

【0019】1-(4-メトキシフェニルスルホニル) -2-ホルミルインドール

m. p. 129~130℃

N- (4-フルオロフェニルスルホニル) インドール m. p. 128~130℃

【0020】N-(4-クロロフェニルスルホニル)イ ンドール

m. p. 98~100℃

N-(2, 5-ジクロロフェニルスルホニル) インドー

m. p. 107~108℃

【0021】N-(4-メチルフェニルスルホニル) イ ンドール

m. p. 77~78℃

N- (4-メトキシフェニルスルホニル) インドール

m. p. 112~114°C

プロペニル) インドール

m. p. 57~59℃

N- (ベンゼンスルホニル) -2- (1-プテニル) イ ンドール

m. p. 77~81℃

【0023】N-(ペンゼンスルホニル)-2-(1-ペンテニル) インドール

m. p. 53~58℃

N- (4-クロロフェニルスルホニル) -2- (1-プ テニル) インドール

m. p. 55~56℃

N- (4-クロロフェニルスルホニル) -2- (1-ペ ンテニル) インドール

m. p. 102~104℃

[0024]

【発明の効果】本発明の化合物は優れたアンジオテンシ ンII受容体拮抗作用を有するので、血圧降下剤として 高血圧症の治療に有用である。

【0025】試験例(アンジオテンシンII受容体結合 反応の測定)受容体標品としてラット副腎粗膜標品を使 40 C;1-(4-フルオロペンゼンスルホニル)-2-ホ 用した。ウィスター系雄性ラット(体重250~300 g) を断頭した後副腎を摘出し、脂肪組織を取り除いた 後20倍量の50mMトリス塩酸緩衝液 (pH7.5) でホモジナイズした。この懸濁液を1、000×gで5 分間遠心し、上清をさらに48,000×gで10分間 超遠心した。沈渣は再度懸濁、超遠心を行うことにより 洗浄し、最終的に得られた沈渣はタンパク質濃度が0. $4 \sim 0$. 6 mg/m1となるように50mMトリス塩酸

緩衝液 (pH7.5) に懸濁した。

armacol. Exp. Ther., 第247卷, 第 (1988年)] の方法に従った。受容体標品 1. 0mlに3nM [3 H] アンジオテンシン I I (6 7. 6 C 1 / ミリモル、アマシャム社)、5 mM塩化マ グネシウム、0.25%ウシ血清アルプミンおよびジメ チルスルホキシドに溶解させた検体10μ1を添加し2 6℃、60分間反応させた。反応終了後ガラスフィルタ ー(GF/B、ワットマン社)で急速濾過し、フィルタ ーを50mMトリス塩酸緩衝液 (pH7.5) 3m1 10 で3回洗浄した。フィルター上の放射活性を10m1の シンチレーター (Aquas 12、NEN社) とともに 液体シンチレーションカウンターで測定した。非特異的 結合は2 μ Mアンジオテンシン I I 存在下で得られる力 ウントとし、これを差し引くことにより特異的結合を求 めた。

【0027】データは検体存在下に得られる特異的結合 のカウントよりコントロールに対する割合を求め、これ より各検体の阻害率を計算した。検体の濃度と阻害率を プロットし、Vax/VMSコンピューターシステムで 【0022】N-(ベンゼンスルホニル)-2-(1-20 RS1プログラムを用いた非線形最小自乗法によるカー プフィッティング (Marquardt-Revenb erg法)から50%阻害濃度を求め、表1に示した。

[0028]

【表1】

化合物	A II受容体結合 5 0 %阻害濃度(μ M)
A	3. 94
В	7.59
С	7. 59 5. 8 B
D	8.39
E	18.5
F	19.1
G	7 4
Н	10.2
1	20.5
J	22.2

【0029】(注)

A;1-(4-メチルフェニルスルホニル)-2-ホル ミルインドール

B;1-(4-クロロペンゼンスルホニル)-2-ホル ミルインドール

ルミルインドール

D;1-(4-メトキシフェニルスルホニル)-2-ホ ルミルインドール

E;1-(4-ニトロペンゼンスルホニル)-2-ホル ミルインドール

F;1-(3-ニトロペンゼンスルホニル)-2-ホル ミルインドール

G;1-(4-プロモベンゼンスルホニル)-2-ホル ミルインドール

【0026】受容体結合反応は、Wongら [J. Ph 50 H;1-(1-ナフタレンスルホニル) -2-メトキシ

特開平4-273857

7

カルボニルインドール I:1-(2-ナフタレンスルホニル)-2-メトキシ カルボニルインドール J;1-[4-(2-メトキシカルボニルフェニル)フェニルスルホニル]-2-ホルミルインドール

フロントページの続き

(72)発明者 太田 知己 東京都豊島区高田3丁目24番1号 大正製 薬株式会社内