## Neural networks

Doc. RNDr. Iveta Mrázová, CSc.

Department of Theoretical Computer Science and Mathematical Logic Faculty of Mathematics and Physics Charles University in Prague

## Neural networks

### Perceptron and linear separability –

Doc. RNDr. Iveta Mrázová, CSc.

Department of Theoretical Computer Science and Mathematical Logic

Faculty of Mathematics and Physics

Charles University in Prague

## Formal neuron



$$y = \begin{cases} 1 & if \sum_{i=1}^{n} w_i x_i + \mathcal{G} \ge \mathbf{0}: \text{ CLASS A} \\ 0 & if \sum_{i=1}^{n} w_i x_i + \mathcal{G} < \mathbf{0}: \text{ CLASS B} \end{cases}$$

## Types of transfer functions

#### **Hard-limiting**

$$y = \begin{cases} 1 & if \sum_{i=1}^{n} w_i x_i + \mathcal{G} \ge \mathbf{0} : \text{ CLASS A} \\ \\ \mathbf{0} & if \sum_{i=1}^{n} w_i x_i + \mathcal{G} < \mathbf{0} : \text{ CLASS B} \end{cases}$$

#### Sigmoidal



### Radial basis (RBF)



#### Wavelet



### Definition of a formal neuronu

A neuron with the weights  $(w_1, ..., w_n) \in \mathbb{R}^n$ , the threshold  $\vartheta \in \mathbb{R}$  and the transfer function  $f: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$  computes for any input  $\mathbf{z} \in \mathbb{R}^n$  its output  $\mathbf{y} \in \mathbb{R}$  as the value of the transfer function in  $\mathbf{z}$ ,  $f[\mathbf{w}, \vartheta](\mathbf{z})$ .

Most often, the so-called sigmoidal transfer function is considered with the values bound by 0 and 1:

$$y = f[\mathbf{w}, \mathcal{G}](\mathbf{z}) = f(\xi) = \frac{1}{1 + e^{-\lambda \xi}}$$

$$\xi = \sum_{i=1}^{n} z_i w_i + \mathcal{G} \text{ denotes the so-called neuron potential, R is the set of real numbers}$$

### **Definition of neuron states**

Let  $f[\mathbf{w}, \vartheta](\mathbf{z})$  denotes the input of a neuron:

- when  $f[\mathbf{w}, \vartheta](\mathbf{z}) = 1$ , we say that the neuron is active;
- when  $f[\mathbf{w}, \vartheta](\mathbf{z}) = \frac{1}{2}$ , we say that the neuron is silent; This fact indicates that the respective input is located on the separating hyperplace given by this neuron.
- when  $f[\mathbf{w}, \vartheta](\mathbf{z}) = 0$ , we say that the neuron is passive.

## Training and recall

### Training:

- Supervised training set of the form [ input / desired output]
- **Self-organization** no desired output
- ⇒ Goal: setting (adaptation) of the synaptic weights
   (e.g., through minimalization of the mean squared error)

Objective function: e.g., 
$$\sum_{p} \sum_{j} (y_{p,j} - d_{p,j})^{2}$$

y is the actual and d is the desired output

### • Recall:

- of newly presented input patterns
- => Goal: get the response (output) of the neural network

## Definition of training patterns

For a BP-network B with n input and m output neurons:

- An input pattern is an input vector  $\mathbf{x} \in \mathbb{R}^n$  being processed by B.
- An output pattern  $\mathbf{d} = (d_1, ..., d_m)$  is formed by desired outputs of neurons lying in the output layer.
- An actual output of B is a vector  $\mathbf{y} = (y_1, ..., y_m)$  formed by actual outputs of neurons lying in the outpt layer.

A training set T is a finite non-empty set of P ordered pairs of input / output patterns:

$$T = \{[x_1, d_1], ..., [x_{1P}, d_{1P}]\}.$$

## Perceptron and linear separability (1)

**D:** A simple perceptron is a computing unit with the threshold  $\mathcal{G}$  which, when receiving the n real inputs  $x_1, x_2, ..., x_n$  through edges with the associated weights  $w_1, ..., w_n$  yields the output 1, if the following inequality holds:

$$\sum_{i=1}^{n} w_{i} x_{i} \geq \mathcal{G} \quad \text{(i.e., if } \vec{w} \cdot \vec{x} \geq \mathcal{G} \text{) and } \boldsymbol{0} \text{ otherwise.}$$

Note: Similarly for the so-called extended weight and input

**vector**: 
$$\vec{w} = (w_1, w_2, ..., w_n, w_{n+1})$$
;  $w_{n+1} = -\theta$   
 $\vec{x} = (x_1, x_2, ..., x_n, 1)$ 

$$\Rightarrow$$
 output 1, if  $\vec{w} \cdot \vec{x} \ge 0$ 

## Perceptron and linear separability (2)

### **Linear separability:**

**D:** Two sets of points A and B are called **linearly** separable in an n-dimensional space, if n+1 real numbers  $w_1, ..., w_n, \vartheta$  exist, such that every point  $(x_1, x_2, ..., x_n) \in A$  satisfies  $\sum_{i=1}^n w_i x_i \ge \vartheta$  and every point  $(x_1, x_2, ..., x_n) \in B$  satisfies  $\sum_{i=1}^n w_i x_i < \vartheta$ 

### Perceptron and linear separability (3)

### **Example:**

- $n=2 \implies 14$  out of 16 possible Boolean functions are ,,linearly separable"
- n=3 = 104 z 256 '' -
- $n=4 \implies 1882 \text{ z } 65536 \text{''}$
- For a general case *n*, there is still no known formula expressing the number of linearly separable functions

### Perceptron and linear separability (4)

### **Absolute linear separability:**

**D:** Two sets A and B are called **absolutely linearly** separable in an n-dimensional space, if n+1 real numbers  $w_1, ..., w_n, 9$  exist, such that every point  $(x_1, x_2, ..., x_n) \in A$  satisfies  $\sum_{i=1}^n w_i x_i > 9$  and every point  $(x_1, x_2, ..., x_n) \in B$  satisfies  $\sum_{i=1}^n w_i x_i < 9$ 

### Perceptron and linear separability (5)

**T:** Two finite sets of points *A* and *B*, that are linearly separable in an *n*-dimensional space, are also absolutely linearly separable.

Proof: Since the two sets, A and B are linearly separable, real numbers  $w_1$ , ...,  $w_n$ ,  $\theta$  exist, such that it holds

$$\sum_{i=1}^{n} w_{i} x_{i} \geq \theta \text{ for all points } (x_{1}, x_{2}, \dots, x_{n}) \in A$$
and 
$$\sum_{i=1}^{n} w_{i} x_{i} < \theta \text{ for all points } (x_{1}, x_{2}, \dots, x_{n}) \in B$$

## Perceptron and linear separability (6)

Further let: 
$$\varepsilon = \max \left\{ \sum_{i=1}^{n} w_i b_i - \vartheta; (b_1, \dots, b_n) \in B \right\}$$
 clearly  $\varepsilon < \varepsilon/2 < 0$ 

Let 
$$\mathscr{G} = \mathscr{G} + \frac{\varepsilon}{2}$$
 (therefore:  $\mathscr{G} = \mathscr{G} - \frac{\varepsilon}{2}$ )

=> For all points in 
$$A$$
 it holds that  $\sum_{i=1}^{n} w_i a_i - \left( \mathcal{G} - \frac{1}{2} \varepsilon \right) \ge 0$ 

This means that 
$$\sum_{i=1}^{n} w_i a_i - \mathcal{G} \ge -\frac{1}{2} \varepsilon > 0$$

$$\Rightarrow \sum_{i=1}^{n} w_i a_i > \mathcal{G}' \qquad (\forall (a_1, \dots, a_n) \in A) \qquad (*)$$

### Perceptron and linear separability (6)

Similarly for all points in B

$$\sum_{i=1}^{n} w_{i} b_{i} - \mathcal{G} = \sum_{i=1}^{n} w_{i} b_{i} - \left( \mathcal{G} - \frac{1}{2} \varepsilon \right) \leq \varepsilon$$

and therefore 
$$\sum_{i=1}^{n} w_i b_i - \mathcal{G} \leq \frac{1}{2} \varepsilon < 0 \quad (**)$$

From (\*) and (\*\*) it follows that the sets A and B are absolutely linearly separable.

QED

## Separating hyperplane – for the extended weight and feature space (1)

**D:** The open (closed) positive half-space associated with the n – dimensional weight vextor  $\vec{w}$  is the set of all points  $\vec{x} \in R^n$  for which  $\vec{w} \cdot \vec{x} > 0$   $(\vec{w} \cdot \vec{x} \ge 0)$ 

The open (closed) negative half-space associated with is the set of all points  $\vec{x} \in R^n$  for which  $\vec{w} \cdot \vec{x} < 0$   $(\vec{w} \cdot \vec{x} \le 0)$ 

## Separating hyperplane — for the extended weight and feature space (2)

**D:** The separating hyperplane associated with the n – dimensional weight vextor  $\vec{w}$  is the set of all points  $\vec{x} \in R^n$  for which  $\vec{w} \cdot \vec{x} = 0$ 

**Problem:** Find such weights and threshold capable of absolutely separating two sets

=> e.g., PERCEPTRON LEARNING ALGORITHM

### **Assumption:**

- $A \dots$  a set of input vectors in n —dimensional space
- $B \dots$  a set of input vectors in n –dimensional space

## Separating hyperplane — for the extended weight and feature space (3)

### SEPARATION of *A* and *B*:

- $\Rightarrow$  Perceptron should realize a binary function  $f_{\vec{w}}$  such that  $f_{\vec{w}}(\vec{x}) = 1 \quad \forall \vec{x} \in A \quad \text{and} \quad f_{\vec{w}}(\vec{x}) = 0 \quad \forall \vec{x} \in B$  (  $f_{\vec{w}}$  depends on the weights and threshold, resp.)
- The error corresponds to the number of incorrectly classified points:  $E(\vec{w}) = \sum (1 f_{\vec{w}}(\vec{x})) + \sum f_{\vec{w}}(\vec{x})$

The goal of learning: minimize  $E(\vec{w})$  in the weight space  $(E(\vec{w}))$  = 0

## Perceptron learning algorithm (1)



We are looking for a weight vector  $\vec{w}$  with a positive scalar product with all the extended vectors represented by the points in P and with a negative product with the extended vectors represented by the points in N

## Perceptron learning algorithm (2)

⇒ IN GENERAL: assume that P and N are sets of n – dimensional vectors and a weight vector  $\vec{w}$  must be found, such that:  $\vec{w} \cdot \vec{x} > 0 \quad \forall \vec{x} \in P$ 

$$\vec{w} \cdot \vec{x} < 0 \quad \forall \vec{x} \in N$$

- The perceptron learning algorithm starts with a randomly chosen vector  $\vec{w}_0$
- If a vector  $\vec{x} \in P$  is found such that  $\vec{w} \cdot \vec{x} < 0$ , this means that the angle between the two vectors is greater than  $90^{\circ}$ 
  - $\rightarrow$  The weight vector must be rotated in the direction of  $\vec{x}$  (to bring this vector into the "positive" half-space defined by  $\vec{w}$ )

## Perceptron learning algorithm (3)

- $\rightarrow$  Rotation in the direction of  $\vec{x}$  can be done by adding  $\vec{w}$  and  $\vec{x}$
- If a vector  $\vec{x} \in N$  is found such that  $\vec{w} \cdot \vec{x} > 0$ , this means that the angle between the two vectors is smaller than  $90^{\circ}$ 
  - $\rightarrow$  The weight vector must be rotated away from  $\vec{x}$  (to bring this vector into the "negative" half-space defined by  $\vec{w}$ )
  - $\rightarrow$  Rotation away from  $\vec{x}$  can be done by subtracting  $\vec{x}$  from  $\vec{w}$
- the vectors from P thus rotate the weight vector in one direction, while the vectors from N do it in the opposite way
- If a solution exists, it can be found in a finite number of steps

## Perceptron learning algorithm (4)

- Step 1: Initialize the weights with small random values  $w_i(0)$   $w_i(0)$  ... the weight of the input i in time 0;  $(1 \le i \le n+1)$
- Step 2: Present a randomly selected training pattern in the form of  $(x_1, ..., x_{n+1})$  ... input pattern and d(t) ..... desired output pattern (for the presented input)
- Step 3: Compute the actual response (network output)

$$y(t) = \operatorname{sgn}\left(\sum_{i=1}^{n+1} w_i(t) x_i(t)\right)$$

Step 4: Adjust the weights according to:

$$w_i(t+1) = w_i(t)$$
 actual output is correct  $w_i(t+1) = w_i(t) + x_i(t)$  actual output is 0 but should be 1  $w_i(t+1) = w_i(t) - x_i(t)$  actual output is 1 but should be 0

Step 5: If the time t is smaller than the pre-set value, go to Step 2

## Perceptron learning algorithm (5)

- Heuristics for weight initialization:
   Start with the averaged "positive" input vector minus the averaged "negative" vector
- Modification learning rates  $\eta$  ( $0 \le \eta \le 1$ )

  (adaptivity level of the weights ~ network plasticity)
  - Weight adjustment according to:

$$w_i(t+1) = w_i(t)$$
 actual output is correct  $w_i(t+1) = w_i(t) + \eta x_i(t)$  actual output is 0 but should be 1  $w_i(t+1) = w_i(t) - \eta x_i(t)$  actual output is 1 but should be 0

# Convergence of perceptron learning (Rosenblatt, 1959)

**T:** If the sets P and N are finite and linearly separable, the perceptron learning algorithm updates the weight vector  $\vec{W}_t$  a finite number of times.

(If the vectors in P and  $N_{\overrightarrow{w}_t}$  are tested cyclically one after the other, a weight vector  $\overrightarrow{w}_t$  is found after a finite number of steps t which can separate the two sets P a N.)

Proof: We will show that the perceptron learning works by bringing the initial vector  $\vec{w}_0$  sufficiently close to the "solution vector"  $\vec{w}^*$ .

# Convergence of perceptron learning (2)

### <u>Three simplifications</u> – without loosing generality:

- a) Instead of P and N we form a single set  $P' = P \cup N^-$  ( $N^-$  consists of ,,negated" elements of N)
- b) The vectors in P' will be normalized (If a weight vector  $\vec{w}$  is found so that  $\vec{w} \cdot \vec{x} > 0$ , then this is also valid for any other vector  $\eta \vec{x}$ ;  $\eta > 0$ .)
- c) The weight vector will be also normalized (The assumed normalized solution of the linear separation problem will be denoted as  $\vec{w}^*$ .)

# Convergence of perceptron learning (3)

- Assume that after t + 1 steps the weight vector  $\vec{w}_{t+1}$  has been computed
  - $\rightarrow$  this means, that at time t a vector  $\vec{p}_i \in P'$  was incorrectly classified (by the weight vector  $\vec{w}_t$ ), and hence  $\vec{w}_{t+1} = \vec{w}_t + \vec{p}_i$
- The cosine of the angle  $\rho$  between  $\vec{w}_{t+1}$  and  $\vec{w}^*$  is:

$$\cos \rho = \frac{\vec{w}^* \cdot \vec{w}_{t+1}}{\|\vec{w}_{t+1}\|} \tag{*}$$

# Convergence of perceptron learning (4)

• For the numerator (\*) we know that:

$$\vec{w}^* \cdot \vec{w}_{t+1} = \vec{w}^* \cdot (\vec{w}_t + \vec{p}_i) = \vec{w}^* \cdot \vec{w}_t + \vec{w}^* \cdot \vec{p}_i \ge \vec{w}^* \cdot \vec{w}_t + \delta$$
where  $\delta = \min \left\{ \vec{w}^* \cdot \vec{p} ; \forall \vec{p} \in P' \right\}$ 

- Since the weight vector  $\vec{w}^*$  defines an absolute linear separation of P and N,  $\delta > 0$ 
  - $\rightarrow$  by induction we obtain:

$$\vec{w}^* \cdot \vec{w}_{t+1} \geq \vec{w}^* \cdot \vec{w}_0 + (t+1) \delta \qquad (**)$$

# Convergence of perceptron learning (5)

• At the same time, it holds for the denominator (\*):

$$\|\vec{w}_{t+1}\|^2 = (\vec{w}_t + \vec{p}_i) \cdot (\vec{w}_t + \vec{p}_i) = \|\vec{w}_t\|^2 + 2\vec{w}_t \cdot \vec{p}_i + \|\vec{p}_i\|^2$$

- Since  $\vec{w}_t \cdot \vec{p}_i \le 0$ 
  - (Otherwise we would have not corrected  $\vec{w}_t$  using  $\vec{p}_i$ .)
- It holds:  $\|\vec{w}_{t+1}\|^2 \le \|\vec{w}_t\|^2 + \|\vec{p}_i\|^2 \le \|\vec{w}_t\|^2 + 1$

(As all vectors in P' have been normalized.)

→ induction then gives us:

$$\|\vec{w}_{t+1}\|^2 \le \|\vec{w}_0\|^2 + (t+1)$$
 (\*\*\*)

# Convergence of perceptron learning (6)

From (\*\*) and (\*\*\*) we get in comparison with (\*) the inequality:

$$\cos \rho \geq \frac{|\vec{w}^* \cdot \vec{w}_0 + (t+1)\delta|}{\sqrt{||\vec{w}_0||^2 + (t+1)}}$$

- $\rightarrow$  the right term grows proportionally to  $\sqrt{t}$  and, since  $\delta > 0$ , it can become arbitrarily large
- × since  $\cos \rho \le 1$ , t must be bounded by a maximum value and number weight adjustments must be finite.

### **QED**

## The pocket algorithm (1) Gallant, 1990

(approximation of the "ideal linear separation")

### **IDEA:**

- Store the best weight vector found so far by perceptron learning in a ,,pocket"
- At the same time, continue updating the weight vector itself
- If a better weight vector is found, it supersedes the one currently stored and the algorithm continues to run

## The pocket algorithm (2)

### **START:**

- Initialize the weight vector  $\vec{w}$  randomly and store the weight vector in the pocket:  $\vec{w}_S = \vec{w}$
- Set the history of the stored weight vector to zero:  $h_S = 0$

### **ITERATION:**

- Adjust  $\vec{w}$  using a single iteration of the perceptron learning algorithm
- Update the number h of consecutively successfully tested vectors
- If  $h > h_S$ , substitute  $\vec{w}_S$  with  $\vec{w}$  and  $h_S$  with h
- Continue iterating

## The pocket algorithm (3)

- Since only information from the last run of selected examples is considered, the algorithm can occasionally exchange a good stored weight vector for an inferior one the probability of this event, however, decreases with the growing number of iterations
- If the training set is finite and the weights and vectors are rational, it can be shown that this algorithm converges to an optimal solution with probability 1