

Rapport d'avancement Comment insérer des équations ?

Document confidentiel

Date	Révision	Rédigé par	Validé par
24 septembre 2018	Rev. A	Auteur	J. COLLOMB

Sommaire

1.1	Équations en ligne	2
1.2	Équations hors ligne	2
1.3	Sous équations	3
1.4	Matrices	3

1.1 Équations en ligne

Sous LaTeX, il est possible d'intégrer des équations en ligne, c'est à dire dans le texte. Ces équations ne sont pas numérotés. Pour exemple, voici une équation en ligne : $a \times b = a.b$.

Pour intégrer une équation en ligne, la commande LATEXest: \$ équation \$.

Cette commande permet d'intégrer :

- des équations $a \times b = a.b$ $\Rightarrow a \times b = a.b;$
- des symboles \$ \Delta \$, \$ \epsilon \$, \$ \phi \$ $\longrightarrow \Delta$, ϵ , ϕ ;
- des indices \$ \Delta T_{maximal} \$ $\longrightarrow \Delta T_{maximal}$;
- des exposants \$ \Delta T^{maximal} \$ $\longrightarrow \Delta T^{maximal}$;
- des fractions \$ \frac{a}{b} \$ $\longrightarrow \frac{a}{b}$;
- des racines carrées \$ \sqrt{abc} \$ $\longrightarrow \sqrt{abc}$;
- des racines $n^{i \in me}$ \$ \sqrt[n]{abc} \$ $\longrightarrow \sqrt[n]{abc}$;
- ...

1.2 Équations hors ligne

Il est également possible d'intégrer des équations hors-ligne, c'est-à-dire séparées du texte. Ces équations sont numérotés. Les équations 1.1 et 1.2 sont des équations hors-ligne.

Pour intégrer une équation hors-ligne, la commande LATEXest :

\begin{equation}

\overrightarrow{\varphi_{conductif}} = -\lambda(T) \times \overrightarrow{grad(T)}
\label{eq_densite_flux_conduction}
\end{equation}

$$\overrightarrow{\varphi_{conductif}} = -\lambda(T) \times \overrightarrow{qrad(T)}$$

$$\tag{1.1}$$

\begin{equation}

\rho (T) \times c_{p} (T) \times \frac{\partial T}{\partial t} =
\frac{\partial }{\partial x} \times (\lambda (T) \times
\frac{\partial T}{\partial x}) + \frac{\partial y} \times
(\lambda (T) \times \frac{\partial T}{\partial y}) +
\frac{\partial }{\partial z} \times (\lambda (T) \times
\frac{\partial T}{\partial z}) + \dot{E}_{\generee}
\label{eq_equatio_chaleur}
\end{equation}

$$\rho(T) \times c_p(T) \times \frac{\partial T}{\partial t} = \frac{\partial}{\partial x} \times (\lambda(T) \times \frac{\partial T}{\partial x}) + \frac{\partial}{\partial y} \times (\lambda(T) \times \frac{\partial T}{\partial y}) + \frac{\partial}{\partial z} \times (\lambda(T) \times \frac{\partial T}{\partial z}) + \dot{E}_{generee} \quad (1.2)$$

SYMME	Rapport d'avancement	Page: 3 / 3
Objet: Comment insérer des équations ?		Date: 24-09-2018

1.3 Sous équations

LATEX permet également la création de sous-équations. Ces équations sont numérotés. Les équations 1.3a à 1.3c.

Pour intégrer des sous-équations, la commande LATEXest :

\begin{subequations}
\begin{align}
A &= 0,9 \times \sin (\delta) & & \text{ pour } {\delta \leq 70^{\circ}}
\label{eq_equation_singularite_A1}
\\
A &= 1 & & \text{ pour } {\delta = 90^{\circ}}
\label{eq_equation_singularite_A2}
\\
A &= 0,7 + 0,35 \times \frac{\delta}{90} & & \text{ pour } {\delta \geq 90^{\circ}}
\label{eq_equation_singularite_A3}
\end{align}
\end{subequations}

$$A = 0, 9 \times \sin(\delta)$$
 pour $\delta \le 70^{\circ}$ (1.3a)

$$A = 1$$
 pour $\delta = 90^{\circ}$ (1.3b)

$$A = 0, 7 + 0, 35 \times \frac{\delta}{90} \qquad \text{pour } \delta \ge 90^{\circ}$$
 (1.3c)

1.4 Matrices

Il est possible sous LATEX d'intégrer des matrices. Par exemple, équation 1.4 et 1.5.

$$\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$
 (1.4)

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \tag{1.5}$$