Student Online Teaching Advice Notice

The materials and content presented within this session are intended solely for use in a context of teaching and learning at Trinity.

Any session recorded for subsequent review is made available solely for the purpose of enhancing student learning.

Students should not edit or modify the recording in any way, nor disseminate it for use outside of a context of teaching and learning at Trinity.

Please be mindful of your physical environment and conscious of what may be captured by the device camera and microphone during videoconferencing calls.

Recorded materials will be handled in compliance with Trinity's statutory duties under the Universities Act, 1997 and in accordance with the University's policies and procedures.

Further information on data protection and best practice when using videoconferencing software is available at https://www.tcd.ie/info_compliance/data-protection/.

© Trinity College Dublin 2020

4.2 Equivalence Relations and Partitions

Task: Understand how equivalence relations divide sets.

Definition: Let A be a set. A <u>partition</u> of A is a collection of non-empty sets, any two of which are disjoint such that their union is A, **i.e.** $\lambda = \{A_{\alpha} \mid \alpha \in I\}$ s.t. $\forall \alpha, \alpha' \in I$ satisfying $\alpha \neq \alpha', A_{\alpha} \cap A_{\alpha'} = \emptyset$ and $\bigcup_{\alpha \in I} A_{\alpha} = A$

Here I is an indexing act (may be infinite). $\bigcup_{\alpha \in I} A_{\alpha}$ is the union of all the A_{α} 's (possibly an infinite union)

Example $\{(n, n+1] \mid n \in \mathbb{Z}\}$ is a partition of \mathbb{R}

$$\bigcup_{n\in\mathbb{Z}}(n,n+1]=\mathbb{R}$$

$$(n,n+1]\cap(m,m+1]=\emptyset \text{ if } n\neq m$$

Definition: If R is an equivalence relation on a set A and $x \in A$, the equivalence class of x denoted $[x]_R$ is the set $\{y \mid xRy\}$. The collection of all equivalence classes is called A modulo R and denoted A/R.

Examples:

1. $A = \mathbb{N}$ $x \equiv y \mod 3$

We have the equivalence classes $[0]_R$, $[1]_R$ and $[2]_R$ given by the three possible remainders under division by 3.

$$[0]_R = \{0, 3, 6, 9, \ldots\}$$

$$[1]_{R}^{R} = \{1, 4, 7, 10, \dots]$$

$$[2]_R^R = \{2, 5, 8, 11, \dots\}$$

possible remainders under division by 6. $[0]_R = \{0,3,6,9,\ldots\}$ $[1]_R = \{1,4,7,10,\ldots\}$ $[2]_R = \{2,5,8,11,\ldots\}$ Clearly $[0]_R \cup [1]_R \cup [2]_R = \mathbb{N}$ and they are mutually disjoint $\Rightarrow R$ gives a partition of $\mathbb{N}.$

2. $ABC \sim A'B'C'$

 $[ABC] = \{ \text{The set of all triangles with angles of magnitude } \angle ABC, \angle BAC, \angle ACB \}$ The union over the set of all [ABC] is the set of all triangles and $\lceil ABC \rceil \cap \lceil A'B'C' \rceil = \emptyset$ if $ABC \nsim A'B'C'$ since it means these triangles have at least one angle that is different.

 $x \sim y \text{ if } |x| = |y|$ 3. $A = \mathbb{C}$ equivalence relation $[x] = \{y \in \mathbb{C} \mid |x| = |y|\} = [r] \text{ for } r \in [0, +\infty) \text{ (meaning } r \ge 0)$

circle of radius |x|

 $\mathop{\cup}_{r \in [0,+\infty)}[r] = \mathbb{C}$

 $[r_1] \cap [r_2] \neq \emptyset$ if $r_1 \neq r_2$ since two distinct circles in $\mathbb{C} \simeq \mathbb{R}^2$ with empty intersection.

