Lab 7, Diode Characteristics

Lab work done by	_Tejas Agarwal			
and	Sean Gordon			
Lab work date: 4-3-2019				
Report submission date: 4-10-20)19			
Lab Section: E				
Lab occiton. L				
Graded by				
Score				

Introduction -

This lab focuses on diodes, introducing several specific models and guiding tests to display their properties. The lab asks first to graph the conduction properties of diodes using the parameter analyzer, and then goes on to provide several testing circuits to demonstrate the properties of diodes in real circuits.

A. Diode I-V characteristics with the parameter analyzer

B. Diode I-V characteristics at the lab bench

1N4006 diode -

Vs(V)	V _D	i _D	Vs(V)	V _D	i _D
-10	-10	≅0	+3	+.646	.0035
-8	-8	≅0	+4	+.662	.0049
-6	-6	≅0	+5	+.674	.0064
-4	-4	≅0	+6	+.683	.0078
-2	-2	≅0	+7	+.691	.0093
0	+.0044	≅0	+8	+.697	.0108
+1	+.568	.0005	+9	+.703	.0123
+2	+.621	.002	+10	+.708	.0138

1N733 Zener -

Vs(V)	V _D	i _D	Vs(V)	V _D	i _D
-10	799	0075	-2	737	≅0
-9	793	0061	-1	699	≅0
-8	788	0046	0	+.0043	≅0
-7	784	0033	+1	+1.0	+.0004
-6	778	0019	+2	+2.0	+.0018
-5	772	0008	+3	+3.0	+.0033
-4	764	0002	+4	+3.8	+.0047
-3	753	000014	+5	+4.4	+.0062

C.

i) V= 1V $i_{D1} = 0.31 \text{ mA}$ $i_{D2} = 0 \text{ mA}$

V=5V $i_{D1}=1.63 \text{ mA}$ $i_{D2}=0.61 \text{ mA}$

ii) V= +5V i_{D1} = 2.22 mA i_{D2} = 0 mA

V = -5V $i_{D1} = 0 \text{ mA}$ $i_{D2} = -0.83 \text{ mA}$

- iii) i_{D1} = 8.02 mA i_{D2} = 0.56 mA i_{R1} = 6.11 mA i_{R2} = 1.69 mA i_{R3} = 1.11 mA
- iv) V= 1V i_{D1} = 0.303 mA i_{D2} = 0.014 mA i_{D3} = 0 mA

V=5V $i_{D1}=4.16 \text{ mA}$ $i_{D2}=1.19 \text{ mA}$ $i_{D3}=0.49 \text{ mA}$

D.

V= 4V i) $i_{D1} = 0.2 \text{ mA}$ $i_{D2} = 0.014 \text{ mA}$ $i_{DZ} = 0 A$ $i_{R1} = 3.2 \text{ mA}$ i_{R2}= 1.5 mA

> V= 8V $i_{D1} = 7.55 \text{ mA}$ $i_{D2} = 2.9 \text{ mA}$

i_{R3}= .38 mA

i_{DZ}= 4.4 mA

 $i_{R1} = 2.8 \text{ mA}$

i_{R2}= 4.3 mA

 $i_{R3} = 3.1 \text{ mA}$

 i_{72} = 4.7 mA

V= 12V

 $i_{R1} = 4.5 \text{ mA}$

 $i_{R2} = 2.5 A$

 $i_{R3} = 1.9 \text{ mA}$

 $i_D = 1.9 \text{ mA}$

 $i_{z_1} = 0 A$

 i_{72} = 4.5 mA

Conclusion -

This lab was focused mainly on the properties and the usage of several different models of diodes. The beginning of the lab centered around voltage/current graphs of diodes using the parameter analyzer, while the last part of the lab introduced several circuits exploiting the various properties of each model of diode.