Correction du TD

I | Transformations

Identifier la nature des transformations suivantes :

1)
$$CH_4 + 2O_2 = CO_2 + 2H_2O$$

5)
$$\operatorname{Fe}_{(s)} = \operatorname{Fe}_{(l)}$$

2)
$$C_{(s)} + OS_{(g)} = CO_{2(g)}$$

6)
$$CH_3COOH + CH_3CH_2OH = CH_3COOCH_2CH_3 + H_2O$$

3)
$${}^{14}_{7}N + {}^{1}_{0}n \rightarrow {}^{14}_{6}C + {}^{1}_{1}p$$

7)
$$Zn + Cu^{+2} = Zn^{+2} + Cu$$

4)
$${}^{14}\text{C} + \text{O}_2 \rightarrow {}^{14}\text{CO}_2$$

8)
$$CH_3COOH + HO^- = H_2O + CH_3COO^-$$

II | Calculs de quantités de matière

Données

$$M(\text{Fe}) = 55.8 \,\text{g} \cdot \text{mol}^{-1}$$
 et $M(\text{Cu}) = 63.5 \,\text{g} \cdot \text{mol}^{-1}$

- 1) On verse dans un bécher une masse $m=350\,\mathrm{mg}$ de poudre de fer métallique. Quelle est la quantité de matière n_{Fe} correspondante?
- 2) On dispose d'un flacon contenant $V_0 = 800 \,\mathrm{mL}$ de solution de sulfate de cuivre contenant les ions Cu^{2+} à la concentration $C = 0.50 \,\mathrm{mol} \cdot \mathrm{L}^{-1}$. Quelle est la quantité de matière correspondante?
- 3) On prélève $V=50\,\mathrm{mL}$ de cette solution. Quelle est la concentration du prélèvement? Quelle est la quantité de matière $n_{\mathrm{Cu}^{2+}}$ prélevée?

Le prélèvement est versé dans le bécher; une transformation chimique a lieu.

- 4) À l'issue de cette transformation, on obtient du cuivre métallique en quantité de matière $n_f = 4.8 \,\mathrm{mmol}$. Quelle est la masse correspondante?
- 5) On obtient également la même quantité de matière n_f d'ions ${\rm Fe}^{2+}$. Quelle est la concentration correspondante?

III Dilution et mélange

On dispose d'une solution de sulfate de cuivre contenant les ions Cu^{2+} et les ions sulfate $\mathrm{SO_4}^{2-}$ à la même concentration $C_0 = 1 \times 10^{-2} \,\mathrm{mol \cdot L^{-1}}$. On en prélève à la pipette jaugée un volume $V_0 = 10 \,\mathrm{mL}$ que l'on verse dans une fiole jaugée de volume $V_1 = 50 \,\mathrm{mL}$. On remplit la fiole d'eau distillée jusqu'au trait de jauge.

1) Quelle est la concentration C_1 en ions Cu^{2+} et en ions SO_4^{2-} dans la fiole?

On verse le contenu de cette fiole dans un bécher. On y ajoute un volume $V_2=20\,\mathrm{mL}$ d'une solution de sulfate de magnésium, contenant les ions Mg^{2+} et les ions $\mathrm{SO_4}^{2-}$ à la même concentration $C_2=2\times 10^{-2}\,\mathrm{mol}\cdot\mathrm{L}^{-1}$.

2) Calculer les concentrations des trois ions après le mélange.

Concentration en soluté apporté

$$M(Mg) = 24.3 \,\mathrm{g \cdot mol^{-1}}$$
 et $M(Cl) = 35.5 \,\mathrm{g \cdot mol^{-1}}$

- 1) Identifier les ions présents dans l'acide sulfurique H₂SO₄. Écrire l'équation de dissolution.
- 2) On ajoute une quantité de matière $n_{\rm app}=2\times 10^{-2}\,{\rm mol}$ en acide sulfurique dans de l'eau distillée. Déterminer les quantités de matière de chaque ion dans la solution formée.
- 3) La solution des questions précédentes a un volume $V=200\,\mathrm{mL}$. Calculer la concentration en soluté approté, puis les concentrations des ions dans la solution après dissolution.
- 4) On considère une solution de chlorure de chrome $CrCl_3$ de concentration en soluté apporté $c = 5 \times 10^{-3} \,\mathrm{mol} \cdot \mathrm{L}^{-1}$. Déterminer les concentrations des ions dans la solution.
- 5) On dissout $m = 6.0 \,\mathrm{g}$ de chlorure de magnésium MgCl₂ dans $200 \,\mathrm{mL}$ d'eau distillée. Calculer la concentration en soluté approté, puis les concentrations des ions dans la solution

Lycée Pothier 2/2 MPSI – 2023/2024