CS245 Tutorial

Oct. 19, 2015

- 1. Express the following English sentences as predicate logic formulas.
 - (a) All second-year students are hardworking.
 - (b) No one can be clever without being hardworking.
 - (c) Clever students work hard.
 - (d) Those who do not work hard are lazy.
 - (e) The lazy students are exactly those who do not work hard.
 - (f) Not being lazy is equivalent to being hardworking.
 - (a) $\forall x \cdot (T(x) \land S(x)) \rightarrow H(x)$
 - (b) $\neg(\exists x \cdot C(x) \land \neg H(x))$
 - (c) $\forall x \cdot (C(x) \land S(x)) \rightarrow H(x)$
 - (d) $\forall x \cdot \neg H(x) \to L(x)$
 - (e) $\forall x \cdot (L(x) \land S(x)) \leftrightarrow \neg H(x)$
 - (f) $\forall x \cdot \neg L(x) \leftrightarrow H(x)$

where

- T(x) is true iff x is in second year
- S(x) is true iff x is a student
- C(x) is true iff x is clever
- H(x) is true iff x is hardworking
- L(x) is true iff x is lazy

- 2. Express the following English sentences as predicate logic formulas.
 - (a) London stores only supply stores outside of London.
 - (b) No store supplies itself.
 - (c) There are no stores in Grimsby but there are some in Halifax.
 - (d) Stores do not supply stores that are supplied by stores which they supply.
 - (e) There is no more than one store in any one city.
 - (f) Stores which supply each other are always in the same city.
 - (a) $\forall x \cdot \forall y \cdot (I(x, \text{London}) \land S(x, y)) \rightarrow \neg I(y, \text{London})$
 - (b) $\neg \exists x \cdot S(x, x)$
 - (c) $(\neg \exists x \cdot I(x, Grimsby)) \land (\exists y \cdot I(y, Halifax))$
 - (d) $\forall x \forall y \cdot \forall z \cdot (S(x, y) \land S(y, z)) \rightarrow \neg S(x, z)$
 - (e) $\neg(\exists x \cdot, y, pI(x, p) \land I(y, p) \land \neg(x = y))$
 - (f) $\forall x \cdot \forall y \cdot S(x,y) \rightarrow \exists p \cdot I(x,p) \land I(y,p)$

where

$$S(x, y)$$
 is true iff store x supplies store y
 $I(x, p)$ is true iff store x is in city p
 $x = y$ is true iff x is equal to y

3. Let φ be the first-order logic formula,

$$\exists x \cdot C(x, \text{fred}) \land R(\text{wilma}, x),$$

where fred and wilma are constant symbols and $C^{(2)}$ and $R^{(2)}$ are binary predicate symbols.

(a) Give an interpretation (a model) \mathcal{M}_1 such that $\mathcal{M}_1 \models \varphi$. Explain why your choice of \mathcal{M}_1 is correct.

Let \mathcal{M}_1 be the interpretation that consists of

- Domain: Let the domain (or universe) $dom(\mathcal{M}_1)$ be {Fred, Wilma, Barney, Betty}.
- Constants: let fred map to Fred and wilma map to Wilma.
- Functions: there are no function symbols.
- Predicates: let C map to the relation $\{\langle Wilma, Fred \rangle\}$ and let R map to the relation $\{\langle Wilma, Fred \rangle, \langle Wilma, Wilma \rangle\}$.

There is a value for x for which the formula is true; i.e., x = wilma.

(b) Give an interpretation (a model) \mathcal{M}_2 such that $\mathcal{M}_2 \not\models \varphi$. Explain why your choice of \mathcal{M}_2 is correct.

Let \mathcal{M}_2 be the interpretation that consists of

- Domain: Let the domain (or universe) $dom(\mathcal{M}_2)$ be {Fred, Wilma, Barney, Betty}.
- Constants: let fred map to Fred and wilma map to Wilma.
- Functions: there are no function symbols.
- Predicates: let C map to the relation $\{\langle \text{Wilma}, \text{Fred} \rangle\}$ and let R map to the relation $\{\langle \text{Wilma}, \text{Fred} \rangle, \langle \text{Fred}, \text{Fred} \rangle, \langle \text{Fred}, \text{Wilma} \rangle\}$.

There is no value for x for which the formula is true.

4. Let φ be the first-order logic formula,

$$\forall x \cdot \forall y \cdot Loves(x, y) \rightarrow Loves(y, x)$$

 $Loves^{(2)}$ is a binary predicate symbol.

(a) Give an interpretation (a model) \mathcal{M}_1 such that $\mathcal{M}_1 \models \varphi$. Explain why your choice of \mathcal{M}_1 is correct.

Let \mathcal{M}_1 be the interpretation that consists of

- Domain: Let the domain (or universe) $dom(\mathcal{M}_1)$ be {Fred, Wilma}.
- Constants: there are no constant symbols.
- Functions: there are no function symbols.
- Predicates: let Loves map to the relation $\{\langle Wilma, Fred \rangle, \langle Wilma, Wilma \rangle, \langle Fred, Wilma \rangle \}.$

For all values of x and y the formula is true.

(b) Give an interpretation (a model) \mathcal{M}_2 such that $\mathcal{M}_2 \not\models \varphi$. Explain why your choice of \mathcal{M}_2 is correct.

Let \mathcal{M}_2 be the interpretation that consists of

- Domain: Let the domain (or universe) $dom(\mathcal{M}_2)$ be {Fred, Wilma}.
- Constants: there are no constant symbols.
- Functions: there are no function symbols.
- Predicates: let *Loves* map to the relation {\langle Wilma, Wilma\rangle, \langle Fred\rangle, \langle Fred, Wilma\rangle \}.

The formula is not true for all values of x and y; i.e., it is false for x = Fred, y = Wilma.

5. Show that $\forall x \cdot P(x) \land M(x), \ \forall x \cdot H(x) \rightarrow P(x) \not\models \exists x \cdot M(x) \land H(x)$. In other words, show that $\exists x \cdot M(x) \land H(x)$ does not logically follow from the premises.

To show that the conclusion does not logically follow from the premises, we must find an interpretation (a model) \mathcal{M} in which the premises are true but the conclusion is false. I.e., we must find a counter example.

It is a good idea when looking for a counter example to start with small domains of discourse.

Let \mathcal{M} be the interpretation that consists of:

- Domain: Let the domain (or universe) $dom(\mathcal{M})$ be $\{A\}$.
- Constants: there are no constant symbols.
- Functions: there are no function symbols.
- Predicates: let M map to the relation $\{A\}$, let H map to the relation $\{\}$, and let P map to the relation $\{A\}$. In other words, the predicates M and P are always true in this interpretation and the predicate H is always false in this interpretation.

We can verify that the premises are true in this interpretation but the conclusion is false.