ECE5554 – Computer Vision Lecture 6c – Region Analysis and Properties

Creed Jones, PhD

Today's Objectives

Labeling Regions by Sequential Labeling ("Blobs")

- Connected components
- blob statistics

Use of region descriptions

Chain code

- Differential chain code and shape number
- Geometric features
- Compactness and Circularity

Statistical Shape Features

- Centroid
- Moments and Central Moments

Moment-based Features

- Orientation and Eccentricity
- Invariant moments Hu's and Zernike moments

The Connected Components or Blobs algorithm is used to locate and quantify connected regions in a binary image

- Assuming that the image is divided into foreground and background
 - or can be binarized using a simple threshold
- Objects are defined as the connected foreground regions
 - objects can contain holes; holes can contain objects, etc...
- This algorithm will give us a whole set of descriptions for each object
- The algorithm examines each pixel to see which object it is in, and then updates
 the statistics for that object to incorporate that pixel
- Sometimes called the "blobs" algorithm

Here is a typical set of data from the blobs algorithm on the sample dot-blot image (binarized)

Blob #0, Area=34.0; BoundingBox=[382, 385; 385, 385]; Perimeter=28; Circularity=26.308484235294117 Blob #1, Area=450.0; BoundingBox=[19, 43; 21, 26]; Perimeter=72; Circularity=12.945228835555556 Blob #2, Area=30.0; BoundingBox=[312, 316; 314, 314]; Perimeter=19; Circularity=11.57171413333333 Blob #3, Area=506.0; BoundingBox=[452, 476; 465, 465]; Perimeter=71; Circularity=11.819875288537547 Blob #4, Area=500.0; BoundingBox=[309, 334; 318, 318]; Perimeter=72; Circularity=12.134327328 Blob #5, Area=581.0; BoundingBox=[164, 191; 173, 173]; Perimeter=78; Circularity=12.250059373493977 Blob #6, Area=519.0; BoundingBox=[94, 119; 105, 119]; Perimeter=73; Circularity=12.336339606936415 Blob #7, Area=477.0; BoundingBox=[455, 478; 465, 465]; Perimeter=69; Circularity=11.931223480083856 Blob #8, Area=569.0; BoundingBox=[382, 408; 393, 393]; Perimeter=78; Circularity=12.508408604569421 Blob #9. Area=522.0; BoundingBox=[311, 337; 325, 325]; Perimeter=73; Circularity=12.265441103448273 Blob #10, Area=688.0; BoundingBox=[238, 268; 250, 250]; Perimeter=86; Circularity=12.71110793023256 Blob #11, Area=590.0; BoundingBox=[168, 195; 180, 193]; Perimeter=76; Circularity=11.969575077966102 Blob #12, Area=619.0; BoundingBox=[96, 123; 106, 106]; Perimeter=79; Circularity=11.65009111470113 Blob #13, Area=538.0; BoundingBox=[25, 52; 35, 35]; Perimeter=74; Circularity=12.30259988104089 Blob #14, Area=330.0; BoundingBox=[460, 479; 469, 469]; Perimeter=59; Circularity=11.960166593939393 Blob #15, Area=517.0; BoundingBox=[314, 339; 322, 322]; Perimeter=72; Circularity=11.972752371373304 Blob #16, Area=315.0; BoundingBox=[388, 407; 394, 394]; Perimeter=57; Circularity=12.09006648888889 Blob #17, Area=674.0; BoundingBox=[170, 198; 180, 180]; Perimeter=82; Circularity=11.736385163204748 Blob #18, Area=703.0; BoundingBox=[97, 127; 109, 109]; Perimeter=83; Circularity=12.000078384068278 Blob #19, Area=58.0; BoundingBox=[249, 259; 255, 255]; Perimeter=37; Circularity=29.243480275862066 Blob #20, Area=486.0; BoundingBox=[28, 53; 38, 38]; Perimeter=71; Circularity=12.058042600823043

Here is a typical set of data from the blobs algorithm on the sample dot-blot image (binarized)

Blob #0, Area=34.0; BoundingBox=[382, 385; 385, 385]; Perimeter=28; Circularity=26.308484235294117 Blob #1, Area=450.0; BoundingBox=[19, 43; 21, 26]; Perimeter=72; Circularity=12.945228835555556 Blob #2, Area=30.0; BoundingBox=[312, 316; 314, 314]; Perimeter=19; Circularity=11.57171413333333 Blob #3, Area=506.0; BoundingBox=[452, 476; 465, 465]; Perimeter=71; Circularity=11.819875288537547 Blob #4, Area=500.0; BoundingBox=[309, 334; 318, 318]; Perimeter=72; Circularity=12.134327328 Blob #5, Area=581.0; BoundingBox=[164, 191; 173, 173]; Perimeter=78; Circularity=12.250059373493977 Blob #6, Area=519.0; BoundingBox=[94, 119; 105, 119]; Perimeter=73; Circularity=12.336339606936415 Blob #7, Area=477.0; BoundingBox=[455, 478; 465, 465]; Perimeter=69; Circularity=11.931223480083856 Blob #8, Area=569.0; BoundingBox=[382, 408; 393, 393]; Perimeter=78; Circularity=12.508408604569421 Blob #9. Area=522.0; BoundingBox=[311, 337; 325, 325]; Perimeter=73; Circularity=12.265441103448273 Blob #10, Area=688.0; BoundingBox=[238, 268; 250, 250]; Perimeter=86; Circularity=12.71110793023256 Blob #11, Area=590.0; BoundingBox=[168, 195; 180, 193]; Perimeter=76; Circularity=11.969575077966102 Blob #12, Area=619.0; BoundingBox=[96, 123; 106, 106]; Perimeter=79; Circularity=11.65009111470113 Blob #13, Area=538.0; BoundingBox=[25, 52; 35, 35]; Perimeter=74; Circularity=12.30259988104089 Blob #14, Area=330.0; BoundingBox=[460, 479; 469, 469]; Perimeter=59; Circularity=11.960166593939393 Blob #15, Area=517.0; BoundingBox=[314, 339; 322, 322]; Perimeter=72; Circularity=11.972752371373304 Blob #16, Area=315.0; BoundingBox=[388, 407; 394, 394]; Perimeter=57; Circularity=12.09006648888889 Blob #17, Area=674.0; BoundingBox=[170, 198; 180, 180]; Perimeter=82; Circularity=11.736385163204748 Blob #18, Area=703.0; BoundingBox=[97, 127; 109, 109]; Perimeter=83; Circularity=12.000078384068278 Blob #19, Area=58.0; BoundingBox=[249, 259; 255, 255]; Perimeter=37; Circularity=29.243480275862066 Blob #20, Area=486.0; BoundingBox=[28, 53; 38, 38]; Perimeter=71; Circularity=12.058042600823043

Common blob features describe the location, size and shape of the object – each image can contain many objects

- center
- "bounding box"
 - xmin, xmax, ymin, ymax
- area total # of pixels
- average gray-level
- perimeter # boundary pixels
- # of holes "Euler number"
- direction of "major axis"
- lots of other things...

Common blob features describe the location, size and shape of the object – each image can contain many objects

- area = 59
- $[x_{min}, x_{max}] = [1, 10]$
- $[y_{min}, y_{max}] = [1, 10]$
 - pct fill = 59/100 = 59%
- sum(x) = 253
 - $x_c = 4.288$
- sum(y) = 571
 - $y_c = 9.677$
- perimeter = 47

Here is a list of the features returned by MATLAB's connected components function

```
'Area'
'BoundingBox'
'Centroid'
'ConvexArea'
'ConvexHull'
'ConvexImage'
'Circularity'
'Eccentricity'
'EquivDiameter'
'EulerNumber'
'Extent'
'Extrema'
'FilledArea'
'FilledImage'
'Image'
```

```
'MaxFeretProperties'
'MinFeretProperties'
'MajorAxisLength'
'MinorAxisLength'
'Orientation'
'Perimeter'
'PixelIdxList'
'PixelList'
'Solidity'
'SubarrayIdx'
'MaxIntensity'
'MeanIntensity'
'MinIntensity'
'PixelValues'
'WeightedCentroid'
```


How does it work?

- The connected components or "blobs" algorithm builds a list of objects in the image
 - all foreground pixels
- If different pieces are connected, then the two objects are linked

hey, they're the same object!

At the end, all of the statistics are totaled

Each pixel is examined to update statistics in a list of image objects and holes

- The image is scanned in raster order
- In the crucial step, each pixel
 p is examined to see if it is
 part of an object above or to
 the left of it
- If so, it may actually combine two objects that had been seen as separate up to now
- Foreground pixels are "colored" with the blob number

 the intensity is replaced by
 the number of the component
 that this pixel is part of
 - Note this may change as further linkages are developed!

If p is the only foreground pixel in the neighborhood, we have found a new object (this pixel is along the top of it.

- We examine a 5-pixel neighborhood, as shown
- If only p is foreground, we assume it is the top of a new object – a blob
- Create a new object to store the blob information
- area = 1
 minx = b
 etc...

If p and a are foreground...

- If a is foreground, then don't create a new blob, just add the pixel p to a's object
- a.area++a.maxy = y of p
- etc...

If p and b are foreground...

- If b is foreground, we have the same situation, just add the pixel p to b's object
- b.area++
 b.maxy = y of p
- etc...

If p, a and c are all foreground, but b is background...

- Well, now we have an interesting situation
- We add p to the blob containing pixel c
- But, we also make a note that what we thought were two separate blobs are actually connected...

If p, d and c are all foreground (but a and b are background)...

- Same thing –
- not only does p have to be added to c's blob
- We also combine the blobs of c and d
- When the whole image is processed, we come back and total up all the stats

When a pixel is examined that links two previously separate blobs, their statistics must be combined

- We also recall that these two blobs are, in fact, the same
 - So that we can recolor the pixels to have the same blob number (typically choose the lowest blob number contained
- These complex connections are the most difficult portion of the algorithm
 - Its not too bad...
- This is an extremely powerful algorithm for extracting some features from an image
- We start with an image, binarize it and find connected components, and we have numeric descriptors of the objects
 - location, size, color, ...
- Of course, if the binarization had problems, we're in trouble...

Graph theory also contains the concept of "connected components" – the two are related

Graphs

- Determine regions of the graph that are connected
- Algorithms exist

Images

 Same, but consider adjacency (4- or 8-connected) as being "connected" in the graph sense

The aggregation (or agglomeration) step is a second pass through the image, to recolor all "first-pass" blobs that are connected to the same color

- In this example, we have been constructing two separate blobs - #1 and #2
- We now find that they are connected
- Add #2 to #1's "equivalency" list
- Mark #2's list as "merged"
- In the second pass, any pixel with color 2 will be recolored to 1
 - Same with any other color in 1's equivalency list

Connected components (or blobs) can contain holes

To characterize these, invert the polarity and trace the hole as if it were a foreground object

Or, maintain two lists while scanning – foreground pixels aggregate into blobs, while background pixels aggregate into holes

Keep track of "nesting" information – which hole is within which blob

One metric of interest is the *Euler* number: the total number of objects in the image minus the total number of holes in those objects.

We have briefly discussed the chain code form of representing an object; if the object has holes, we must trace them as well

- Also called the Freeman Chain Code of Eight Directions – FCCE
- Chain code:
 7, 0, 0, 0, 7, 7, 6, 6, 6, 4, 4,
 4, 5, 4, 2, 2, 3, 2, 2, 2
- The differential chain code encodes the change in direction at any point
- Differential chain code:
 5, 1, 0, 0, 7, 0, 7, 0, 0, 6, 0,
 0, 1, 7, 6, 0, 1, 7, 0, 0, 0

To completely specify a binary image using chain codes, what do we need to record? How can we process the result to derive useful information

- For an absolute chain code, store the following for each object:
 - X and Y of a starting point
 - chain of directions of motion
 - the same for all holes in the object
- For a differential chain code, store the same for each object, as well as the default starting direction
- Some features are available from the chain code representation
 - number and perimeter of objects
 - number and perimeter of holes
 - bounding box

To enable comparison of chain codes in the presence of rotation, we can compute the *shape number*

- 1. Form the differential chain code: 5,1,0,0,7,0,7,0,0,6,0,0,1,7,6,0,1,7,0,0,0
- 2. Form the set of all possible shifts of the code
- 3. Choose the numerically largest
- 4. This is the shape number invariant over rotation

• • •

760170005100707006001

. . .

To enable comparison of chain codes in the presence of rotation, we can compute the *shape number*

- 1. Form the differential chain code
- 2. Form the set of all possible shifts of the code
- 3. Choose the numerically largest
- 4. This is the shape number invariant over rotation

5 1 0 0 7 0 7 0 0 6 0 0 1 7 6 0 1 7 0 0 0 1 0 0 7 0 7 0 0 6 0 0 1 7 6 0 1 7 0 0 0 5 0 0 7 0 7 0 0 6 0 0 1 7 6 0 1 7 0 0 0 5 1

760170005100707006001

An approximate version of the object perimeter is the number of steps in the contour – but we can do better

- We can correct for the diagonal nature of some contour steps
- Add 1 to the perimeter for orthogonal steps, $\sqrt{2}$ for diagonal ones
 - Diagonal ones have odd numbers in the FCCE
 5 1 0 0 7 0 7 0 0 6 0 0 1 7 6 0 1 7 0 0 0

$$Perimeter = \sum orthogonal\ steps + \sqrt{2} \sum diagonal\ steps = 13 + 8\sqrt{2} = 24.313$$

- Even this tends to overestimate the perimeter
- It's common to correct by multiplying by 0.95
- Perimeter = 23.75

Area can be roughly computed from the points of the polygon using the following formula (Gauss' formula) – NOTE: not all contour points need be considered!

This is also known as the *shoelace formula* $pts = \{(10,10), (11,11), (14,11), (16,13), (16,16), (12,17), (11,15), (10,14)\}$

$$A(R) \approx \frac{1}{2} \sum_{i=0}^{M-1} \begin{vmatrix} x_i & x_{i+1} \\ y_i & y_{i+1} \end{vmatrix} = \frac{1}{2} \sum_{i=0}^{M-1} x_i y_{i+1} - y_i x_{i+1}$$

$$= \frac{1}{2} \left(\begin{array}{c} 10 \cdot 11 - 10 \cdot 11 + 11 \cdot 11 - 14 \cdot 11 + 14 \cdot 13 - 16 \cdot 11 + 16 \cdot 16 - 16 \cdot 13 \\ + 16 \cdot 17 - 12 \cdot 16 + 12 \cdot 15 - 11 \cdot 17 + 11 \cdot 14 - 10 \cdot 15 \end{array} \right)$$

$$= \frac{1}{2} \left(0 - 33 + 6 + 48 + 80 - 7 + 4 \right) = 49$$

The actual pixel count is 40 There are adjustments to use Gauss' formula for small objects

The *isoperimetric quotient* is roughly invariant to changes in size; it's often computed relative to a circle with the same perimeter

A circle's area in terms of its perimeter:

$$A = \pi r^2$$
, $P = 2\pi r$, $r = \frac{P}{2\pi}$, $A = \frac{P^2}{4\pi}$

Isoperimetric quotient (ratio of area to the area of a circle with the same perimeter

Longer, thinner objects will have a lower isoperimetric quotient:

$$IQ_a = \frac{A}{\frac{P^2}{4\pi}} = \frac{A4\pi}{P^2} = \frac{48(4\pi)}{32.3^2} = 0.5781$$

$$IQ_b = \frac{A}{\frac{P^2}{4\pi}} = \frac{A4\pi}{P^2} = \frac{121(4\pi)}{36.696^2} = 1.129$$

The IQ for the circle is not exactly 1 because of quantization effects

$$P_a = 0.95(34) = 32.3$$

 $P_b = 0.95(16 + 16\sqrt{2}) = 36.696$

Another name for isoperimetric quotient is *circularity*; the maximum circularity is 1 (for a circle, of course)

Circularity, Sphericity, Perimeter, Diameter HORIBA

Circularity = perimeter of circle / perimeter of particle

Sphericity = Circularity² =
$$\frac{4\pi A}{P^2}$$

 $A_{green} \sim 77 \text{ pixel}$, diameter_{red} = 10 pixel, perimeter_{green} $\sim 38.5 \text{ pixel}$, circularity $\sim 31/38.5 = 0.81$, sphericity = $4 * \pi * 77/(38.5)^2 = 0.81^2 = 0.65$

Explore the future

The centroid of a binary region is the center point calculated as the average of all of the points' coordinates

• centroid =
$$\left[\frac{1}{N}\sum_{i=1}^{N}x_i \quad \frac{1}{N}\sum_{i=1}^{N}y_i\right]$$

 The centroid can be outside the perimeter of the object

• The object need not be connected...

The intensity-weighted centroid also considers the original image intensity when computing the centroid (if the binary image came from a gray-scale image)

- intensity centroid = $\left[\frac{1}{N\sum I(x_i,y_i)}\sum_{i=1}^N x_i I(x_i,y_i) \quad \frac{1}{N\sum I(x_i,y_i)}\sum_{i=1}^N y_i I(x_i,y_i)\right]$
- The intensity centroid will be offset in the direction of brighter pixels
- If the intensity centroid is above and to the left of the centroid, then the object is brighter on the upper left

Image moments are computed by summing pixel intensity values multiplied by powers of the coordinate values

• A family of moments are defined, for different values of p and q

$$M_{pq}(R) = \sum_{i=1}^{N} I(x, y) x^p y^q$$

- For a binary image:
 - $-M_{00}(R)$ is the average intensity
 - $-\frac{1}{M_{00}(R)}[M_{10}(R), M_{01}(R)]$ is the centroid
- Higher order moments are useful, but they are dependent on the location of the object

Central moments are computed around or *centered* on the centroid of the object and are insensitive to location of the object

$$\mu_{pq}(R) = \sum_{i=1}^{N} I(x, y)(x - \bar{x})^{p} (y - \bar{y})^{q}$$

For binary images:

•
$$\mu_{00}(R) = \sum_{i=1}^{N} I(x,y)(x-\bar{x})^{0}(y-\bar{y})^{0} = \sum_{i=1}^{N} I(x,y) = M_{00}(R)$$
 (average intensity)

•
$$\mu_{10}(R) = \sum_{i=1}^{N} I(x, y)(x - \bar{x})^1 = 0$$

•
$$\mu_{01}(R) = \sum_{i=1}^{N} I(x, y) (y - \bar{y})^1 = 0$$

Using central-based moments, we can compute a number of useful geometric features for a shape

- Orientation
- Eccentricity
- Invariant (Hu's) moments

Object orientation – the angle of the major axis – is computed from the central moments

$$\theta = \frac{1}{2} \tan^{-1} \left(\frac{2\mu_{11}(R)}{\mu_{20}(R) - \mu_{02}(R)} \right)$$

• If there is no major axis (if the object is round, for example), the calculation is not possible (the denominator is zero)

The eccentricity ε of an object is related to its aspect ratio; a circle has $\varepsilon = 1$, while other, longer objects have $\varepsilon > 1$

$$\varepsilon(R) = \frac{\mu_{20} + \mu_{02} + \sqrt{(\mu_{20} - \mu_{02})^2 + 4\mu_{11}^2}}{\mu_{20} + \mu_{02} - \sqrt{(\mu_{20} - \mu_{02})^2 + 4\mu_{11}^2}}$$

 Eccentricity is not dependent on the location, orientation or size of an object

There is a full set of object moments that are independent of location, scale and rotation, called *Hu's moments* – they don't all have easy interpretation

Expressed in terms of central moments, they are:

$$\begin{split} H_1 &= \mu_{20} + \mu_{02} \\ H_2 &= (\mu_{20} - \mu_{02})^2 + 4\mu_{11}^2 \\ H_3 &= (\mu_{30} - 3\mu_{12})^2 + (3\mu_{21} - \mu_{03})^2 \\ H_4 &= (\mu_{30} + \mu_{12})^2 + (\mu_{21} + \mu_{03})^2 \\ H_5 &= (\mu_{30} - 3\mu_{12})(\mu_{30} + \mu_{12})[(\mu_{30} + \mu_{12})^2 - 3(\mu_{21} + \mu_{03})^2] + \\ &\quad (3\mu_{21} - \mu_{03})(\mu_{21} + \mu_{03})[3(\mu_{30} + \mu_{12})^2 - (\mu_{21} + \mu_{03})^2] \\ H_6 &= (\mu_{20} - \mu_{02})[(\mu_{30} + \mu_{12})^2 - (\mu_{21} + \mu_{03})^2] + 4\mu_{11}(\mu_{30} + \mu_{12})(\mu_{21} + \mu_{03}) \\ H_7 &= (3\mu_{21} - \mu_{03})(\mu_{30} + \mu_{12})[(\mu_{30} + \mu_{12})^2 - 3(\mu_{21} + \mu_{03})^2] + \\ &\quad (3\mu_{12} - \mu_{30})(\mu_{21} + \mu_{03})[3(\mu_{30} + \mu_{12})^2 - (\mu_{21} + \mu_{03})^2] \end{split}$$

There is a full set of object moments that are independent of location, scale and rotation, called *Hu's moments* – they don't all have easy interpretation

Expressed in terms of central moments, they are:

$$\begin{split} H_1 &= \mu_{20} + \mu_{02} \\ H_2 &= (\mu_{20} - \mu_{02})^2 + 4\mu_{11}^2 \\ H_3 &= (\mu_{30} - 3\mu_{12})^2 + (3\mu_{21} - \mu_{03})^2 \\ H_4 &= (\mu_{30} + \mu_{12})^2 + (\mu_{21} + \mu_{03})^2 \\ H_5 &= (\mu_{30} - 3\mu_{12})(\mu_{30} + \mu_{12})[(\mu_{30} + \mu_{12})^2 - 3(\mu_{21} + \mu_{03})^2] + \\ &\quad (3\mu_{21} - \mu_{03})(\mu_{21} + \mu_{03})[3(\mu_{30} + \mu_{12})^2 - (\mu_{21} + \mu_{03})^2] \\ H_6 &= (\mu_{20} - \mu_{02})[(\mu_{30} + \mu_{12})^2 - (\mu_{21} + \mu_{03})^2] + 4\mu_{11}(\mu_{30} + \mu_{12})(\mu_{21} + \mu_{03}) \\ H_7 &= (3\mu_{21} - \mu_{03})(\mu_{30} + \mu_{12})[(\mu_{30} + \mu_{12})^2 - 3(\mu_{21} + \mu_{03})^2] + \\ &\quad (3\mu_{12} - \mu_{30})(\mu_{21} + \mu_{03})[3(\mu_{30} + \mu_{12})^2 - (\mu_{21} + \mu_{03})^2] \end{split}$$

id	Image	H[0]	H[1]	H[2]	H[3]	H[4]	H[5]	H[6]
K0	K	2.78871	6.50638	9.44249	9.84018	-19.593	-13.1205	19.6797
S0	S	2.67431	5.77446	9.90311	11.0016	-21.4722	-14.1102	22.0012
S 1	S	2.67431	5.77446	9.90311	11.0016	-21.4722	-14.1102	22.0012
S 2	S	2.65884	5.7358	9.66822	10.7427	-20.9914	-13.8694	21.3202
S 3	5	2.66083	5.745	9.80616	10.8859	-21.2468	-13.9653	21.8214
S 4	5	2.66083	5.745	9.80616	10.8859	-21.2468	-13.9653	-21.8214

Hu's moments can be calculated for gray-scale objects or regions in the image as well as binary

	H_1	H_2	H_3	H_4	H_5	H_6	H_7
Original image	0.00178 4213885 98880	3.15834 6955161 06e-07	6.449511 2546570 0e-10	4.44289 7166702 80e-11	- 3.81454 2425062 25e-21	1.447716 2212496 6e-14	6.48161 8192622 87e-21
Half Sized	0.00178 5275372 82729	3.21930 9158352 98e-07	6.48490 7847132 80e-10	4.46081 5419619 50e-11	3.73352 023893 018e-21	1.491559 1954299 4e-14	6.60486 5176986 11e-21
Rotated (45°)	0.00178 6415934 39320	3.103991 246099 50e-07	6.44618 0327196 90e-10	4.48944 767438 045e-11	- 3.87613 2521194 80e-21	1.45895 498993 993e-14	6.58058 875363 834e-21

There are other sets of (partially) invariant object moments – for example, the Zernike moments

ROTATIONAL INVARIANCE

The magnitude of each Zernike moment is invariant under rotation.

Coefficient of variance income example by chocobar vs airplane

Fig. 2. The image of character A and five rotated versions of it. From left to right rotation angles are: 0°, 30°, 60°, 150°, 180°, and 300°.

TABLE II

MAGNITUDES OF SOME OF THE ZERNIKE MOMENTS FOR ROTATED IMAGES
SHOWN IN FIG. 2 AND THEIR CORRESPONDING STATISTICS

	A 20	A 22	A 31	A 33
0"	439.62	41.79	57.97	172.57
30°	436.70	40.20	63.82	171.96
60°	440.63	40.08	66.28	169.41
150°	438.53	41.55	65.47	170.83
180°	439.01	46.85	62.39	168.47
300°	438.43	39.19	65.77	170.84
μ	438.82	41.61	63.62	170.68
σ	1.32	2.74	3.12	1.53
$\sigma/\mu\%$	0.30	6.57	4.90	0.90

Zernike polynomials are a set of orthogonal functions of x and y, defined on the domain $\sqrt{x^2 + y^2} \le 1$

$$Z_{nm}(\rho,\theta) = R_{nm}(\rho)e^{jm\theta}$$
, where

$$R_{nm}(\rho) = \begin{cases} \sum_{i=0}^{(n-m)/2} \frac{(-1)^{i}(n-i)!}{i! \left[\frac{1}{2}(n+m)-i\right]! \left[\frac{1}{2}(n-m)-i\right]!} \rho^{n-2i} & \text{for } n-m \text{ even} \\ 0 & \text{for } n-m \text{ odd} \end{cases}$$

 The Zernike moments are then just projections of an object's intensity surface onto these basis functions

$$A_{mn} = \frac{m+1}{\pi} \int_{x} \int_{y} f(x,y) [Z_{nm}(x,y)]^* dx dy$$

This family of polynomials can be used to efficiently represent a 2D function; the Zernike moments of a centered object are also used for compact object description

- Zernike moments are naturally rotation independent
- If the object is centered, naturally we have translation independence
- The Zernike moments are <u>not</u> scale independent
- Zernike polynomials are also used to describe optical phenomena such as output of lasers and laser diodes

Today's Objectives

Labeling Regions by Sequential Labeling ("Blobs")

- Connected components
- blob statistics

Use of region descriptions

Chain code

- Differential chain code and shape number
- Geometric features
- Compactness and Circularity

Statistical Shape Features

- Centroid
- Moments and Central Moments

Moment-based Features

- Orientation and Eccentricity
- Invariant moments Hu's and Zernike moments

