DATS 6312 Time Series Project

Temperature Forecasting

Author: Yuan Dang

Dataset

- Source:
 - Kaggle(https://www.kaggle.com/datasets/selfishgene/historical-hourly-weather-data/discussion/56293?select=temperature.csv)
- **Timestamp:** Hourly measured from 2012-10-01 12:00 to 2017-11-30 00:00
- Size: 45253 rows x 7 columns
- Features:
 - Temperature(K): target
 - Humidity(%)
 - Pressure(hPa)
 - Weather Description: 37 categories: [clear, light rain, overcast clouds, mist, ...]
 - Wind Direction(°)
 - Wind Speed(m/s)
 - o 36 City: 27 US cities, 3 Canadian cities, 6 Israeli cities.(Vancouver in this case)
- Goal: Forecast temperature for future hours

Missing Values

Mis	ssing values	: :				
		var	number	of	missing	values
0	Vancouver_t	emp				795
1	humic	lity				1826
2	press	ure				4234
3	weat	her				793
4	wind_direct	ion				795
5	wind_sp	eed				795

Impute missing values

Backward linear interpolation

Raw Data

Strong Seasonality

Results of KPSS Test:	
Test Statistic	1.85279
p-value	0.01000
LagsUsed	109.00000
Critical Value (10%)	0.34700
Critical Value (5%)	0.46300
Critical Value (2.5%)	0.57400
Critical Value (1%)	0.73900
dtype: float64	

```
ADF Statistic: -5.510879
p-value: 0.000002
Critical Values:
1%: -3.431
5%: -2.862
10%: -2.567
```

Not stationary

STL Decomposition

Strength of trend: 98.28% Strength of seasonality: 88.06%

Seasonal Differencing

Seasonal period=24


```
Results of KPSS Test:
Test Statistic
                          0.012732
p-value
                          0.100000
LagsUsed
                         98.000000
Critical Value (10%)
                          0.347000
Critical Value (5%)
                          0.463000
Critical Value (2.5%)
                          0.574000
Critical Value (1%)
                          0.739000
dtype: float64
```

```
ADF Statistic: -26.072101
p-value: 0.000000
Critical Values:
1%: -3.431
5%: -2.862
10%: -2.567
```

Stationary

Seasonal Differencing

Holt-Winter Method

Fitted with additive decomposition

Holt-Winter Method Forecast

ARMA Model - order determination

-0.5

-1.0

ARMA Model - parameter estimation

SARIMAX Results									
Dep. Variable: differenced No. Observations: 35545									
Model:		SARIMAX(1, 0,	0) Log	Likelihood		-72548.739			
Date:		Sat, 17 Dec 2	022 AIC			145101.478			
Time:		18:29	2:27 BIC		145118.435				
Sample:		10-02-2	012 HQI	;		145106.875			
		- 10-22-2	016						
Covariance Type: opg									
=========	=====	:=======	:======	:=======	=======	=======			
	coef	std err	z	P> z	[0.025	0.975]			
ar.L1	0.8822	0.001	887.462	0.000	0.880	0.884			
sigma2	3.4700	0.005	661.057	0.000	3.460	3.480			
======== Ljung-Box (L1)	:===== (Q):	========	251.51	======== Jarque-Bera	======= (JB):	7647904.54			
Prob(Q):			0.00	Prob(JB):		0.00			
Heteroskedastic	ity (⊦	1):	1.01	Skew:	-0.2				
Prob(H) (two-si	.ded):		0.45	Kurtosis:		74.86			
=========	=====	==========	=======	========	=======	========			

y(t) - 0.88y(t-1) = e(t)

ARMA Model - 1 step prediction

Non-seasonal Differencing

1st order seasonal differenced data(k=24)

May need a further non-seasonal differencing

SARIMA Model - order determination

1st order seasonal & non-seasonal differenced data

$$Na = 0$$

 $Nb = 1$

SARIMA(1, 1, 0)xSARIMA(0,1,1)24

SARIMA model - parameter estimation

```
SARIMAX Results
Dep. Variable:
                                           original
                                                       No. Observations:
                                                                                        35545
                   SARIMAX(1, 1, 0)x(0, 1, [1], 24)
Model:
                                                      Log Likelihood
                                                                                   -63867.058
                                   Sat, 17 Dec 2022
                                                                                   127740.115
Date:
                                                                                   127765.549
                                           18:49:36
                                                      BIC
Time:
                                         10-02-2012
                                                                                   127748.211
Sample:
                                                       HOIC
                                        - 10-22-2016
Covariance Type:
                                                 opg
                                                  P>|z|
                 coef
                         std err
                                                             [0.025
                                                                         0.9751
ar.L1
              -0.0855
                           0.001
                                    -75.378
                                                 0.000
                                                             -0.088
                                                                         -0.083
ma.S.L24
              -0.9051
                           0.001
                                   -727.451
                                                 0.000
                                                             -0.908
                                                                         -0.903
sigma2
               2.1320
                           0.003
                                     751.346
                                                              2.126
                                                                          2.138
Ljung-Box (L1) (Q):
                                      0.00
                                             Jarque-Bera (JB):
                                                                          8792801.18
Prob(0):
                                      0.96
                                             Prob(JB):
                                                                                0.00
Heteroskedasticity (H):
                                      1.07
                                             Skew:
                                                                                0.24
Prob(H) (two-sided):
                                                                                80.08
```

y(t) + 0.086y(t-1) = e(t) + 0.91e(t-24)

SARIMA Model - 1 step prediction

SARIMA Model - h step prediction

Multiple Linear Regression

Use multiple features

- Humidity
- Pressure
- Weather
- Wind_direction
- Wind_speed

Feature Selection

- Backward Stepwise Selection(p-value<0.05)
- VIF Selection(vif < 3)
- SVD
- PCA

features	humidity	pressure	weather	Wind direction	Wind speed	AIC	BIC	Adjusted R^2
keep or not	1	1	1	1	1	264296.2	264347.1	0.26328

singular values= [48863.87781976, 46010.16482667, 31470.19337718, 27905.09181899, 23475.67215741] condition number= 1.4427296153944535

Multiple Linear Regression - coefficients

OLS Regression Results								
Dep. Variable:		original	R-squared		0.263			
Model:		OLS	Adj. R-sq	uared:	0.263			
Method:	Leas	st Squares	F-statist	ic:	2541.			
Date:	Sat, 1	7 Dec 2022	Prob (F-s	tatistic):	0.00			
Time:		18:29:18	Log-Likel	ihood:	-1.3214e+05			
No. Observation	s:	35545	AIC:		2.643e+05			
Df Residuals:		35539	BIC:		2.643e+05			
Df Model:		5						
Covariance Type		nonrobust						
	coef	std err	======== t 	P> t	[0.025	====== 0.975] 		
const	51.6602	0.053	977.714	0.000	51.557	51.764		
humidity	-4.3742	0.055	-80.235	0.000	-4.481	-4.267		
pressure	-1.8783	0.055	-34.345	0.000	-1.985	-1.771		
weather	-0.3467	0.054	-6.445	0.000	-0.452	-0.241		
wind_direction 2.7896		0.054	51.417	0.000	2.683	2.896		
wind_speed	-0.3501	0.055	-6.330	0.000	-0.458	-0.242		
Omnibus:		2299.996	Durbin-Wa		0.137			
Prob(Omnibus):		0.000	Jarque-Be	ra (JB):	3123.428			
Skew:			Prob(JB):		0.00			
Kurtosis:		3.869	Cond. No.		1.39			

Temp = 51.66 - 4.37humidity - 1.88pressure - 0.35weather + 2.79windDirection - 0.35windSpeed

Multiple Linear Regression - forecast

Conclusion

- For short term forecasting
 - Holt-winter
 - \circ SARIMA(y(t) + 0.086y(t-1) = e(t) + 0.91e(t-24))
- For long term forecasting
 - Multiple Linear Regression with features

Thank You