MATH 2574	(Calculus	III)
Spring 2017		

Name:					
		Wed	15	Mar	2017

Exam 2: Multivariate Derivatives and Multiple Integrals (§12.3-12.9, 10.1-10.3, 13.1-13.5)

Exam Instructions: You have 50 minutes to complete this exam. Justification is required for all problems. No electronic devices (phones, iDevices, computers, etc) except for a **basic scientific calculator**. On story problems, round to one decimal place. If you finish early then you may leave, UNLESS there are less than 5 minutes of class left. To prevent disruption, if you finish with less than 5 minutes of class remaining then please stay seated and quiet.

In addition, please provide the following data
Drill Instructor:
Drill Time:

Your signature below indicates that you have read this page and agree to follow the Academic Honesty Policies of the University of Arkansas.

Signature:	(1 pt)	
0	· • /	

1. (6 pts) The density of a thin circular plate of radius 2 is given by $\rho(x,y) = 4 + xy$. The edge of the plate is described by the parametric equations $x = \cos t$, $y = \sin t$, for $0 \le t \le 2\pi$. Find the rate of change of the density with respect to t on the edge of the plate.

2. Evaluate (or show non-existence of) the following limits:

(a) **(5 pts)**
$$\lim_{(x,y,z)\to(\ln 2,3,1)} (1+x) \ln e^{yz}$$

(b) **(5 pts)** $\lim_{(u,v)\to(0,0)} \frac{|uv|}{uv}$

3. (10 pts) Find the area of the region inside the rose $r=4\cos 2\theta$ and outside the circle r=2. (In case you need it, the half-angle formula is $\cos^2 x=\frac{1+\cos 2x}{2}$.)

4. (12 pts) Find the absolute maximum and minimum values of the function

$$f(x,y) = x^2 + y^2 - 2x - 2y$$

on the closed region R, bounded by the triangle with vertices (0,0), (2,0), (0,2).

5. (8 pts) The following figure shows the level curves for various $z = z_0$ of the function f, along with the constraint curve g(x,y) = 0. Estimate the maximum and minimum values of f subject to the constraint. At each point where an extreme value occurs, indicate the direction of ∇f and the direction of ∇g .

6. (6 pts) Compute the directional derivative of

$$g(x,y) = \sin(\pi(2x - y))$$

at the point P=(-1,-1) in the direction of $\mathbf{u}=\langle \frac{12}{13},-\frac{5}{13}\rangle.$

- 7. Determine whether the following statements are true or false. You must justify your answer.
 - (a) (4 pts) The graphs of r=2 and $\theta=\frac{\pi}{4}$ intersect exactly once.

(b) (4 pts) The point $(3, \frac{\pi}{2})$ lies on the graph of $r = 3\cos 2\theta$.

(c) (4 pts) The graphs of $r = 2 \sec \theta$ and $r = 3 \csc \theta$ are lines.

8. (10 pts) Set up, but do not evaluate, the integral for the volume of material remaining in a hemisphere of radius 4 after a cylindrical hole of radius 2 is drilled through the center of the hemisphere perpendicular to its base.

ExTrA cReDiT (5pts) Evaluate the integral you set up.