CS310 Automata Theory – 2016-2017

Nutan Limaye

Indian Institute of Technology, Bombay nutan@cse.iitb.ac.in

Lecture 20: Turing machines, computability

March 06, 2017

Regular languages, NFA/DFA, Regular expressions, Myhill-Nerode relations.

Regular languages, NFA/DFA, Regular expressions, Myhill-Nerode relations.

2DFA: DFA + two-way head movement.

Regular languages, NFA/DFA, Regular expressions, Myhill-Nerode relations.

2DFA: DFA + two-way head movement. They recognize exactly regular languages.

Regular languages, NFA/DFA, Regular expressions, Myhill-Nerode relations.

2DFA: DFA + two-way head movement. They recognize exactly regular languages.

Pushdown automata: NFA + Stack.

Regular languages, NFA/DFA, Regular expressions, Myhill-Nerode relations.

2DFA: DFA + two-way head movement. They recognize exactly regular languages.

Pushdown automata: NFA + Stack. The class of languages recognized by these is called Context-free languages (CFLs).

Regular languages, NFA/DFA, Regular expressions, Myhill-Nerode relations.

2DFA: DFA + two-way head movement. They recognize exactly regular languages.

Pushdown automata: NFA + Stack. The class of languages recognized by these is called Context-free languages (CFLs).

Context-free grammars: Recursive programs.

Regular languages, NFA/DFA, Regular expressions, Myhill-Nerode relations.

2DFA: DFA + two-way head movement. They recognize exactly regular languages.

Pushdown automata: NFA + Stack. The class of languages recognized by these is called Context-free languages (CFLs).

Context-free grammars: Recursive programs. The class of languages generated by these grammars is CFLs.

What is a Turing machine? (Informal description.)

What is a Turing machine? (Informal description.)

Read and write on the input tape.

What is a Turing machine? (Informal description.)

Read and write on the input tape. Head moves left/right.

What is a Turing machine? (Informal description.)

Read and write on the input tape. Head moves left/right.

The tape is infinite.

What is a Turing machine? (Informal description.)

Read and write on the input tape. Head moves left/right.

The tape is infinite.

A special symbol & to indicate blank cells.

What is a Turing machine? (Informal description.)

Read and write on the input tape. Head moves left/right.

The tape is infinite.

A special symbol & to indicate blank cells.

Initially all cells blank except the part where the input is written.

What is a Turing machine? (Informal description.)

Read and write on the input tape. Head moves left/right.

The tape is infinite.

A special symbol & to indicate blank cells.

Initially all cells blank except the part where the input is written.

Special states for accepting and rejecting.

$$L_{a,b}=\left\{a^nb^n\mid n\geq 0\right\}.$$

Definition

A Turing machine (TM) is given by $M = (Q, \Sigma, \Gamma, \delta, q_0, q_f, q_{rej})$

Q: set of states

Definition

A Turing machine (TM) is given by $M = (Q, \Sigma, \Gamma, \delta, q_0, q_f, q_{rej})$

Q: set of states Σ : input alphabet

Definition

A Turing machine (TM) is given by $M = (Q, \Sigma, \Gamma, \delta, q_0, q_f, q_{rej})$

Q: set of states Σ : input alphabet

 q_0 : start state

Definition

A Turing machine (TM) is given by $M = (Q, \Sigma, \Gamma, \delta, q_0, q_f, q_{rej})$

Q: set of states Σ : input alphabet

 q_0 : start state Γ : tape alphabet

Definition

A Turing machine (TM) is given by $M = (Q, \Sigma, \Gamma, \delta, q_0, q_f, q_{rej})$

Q: set of states Σ : input alphabet

 q_0 : start state Γ : tape alphabet, $\Sigma \subseteq \Gamma$

Definition

A Turing machine (TM) is given by $M = (Q, \Sigma, \Gamma, \delta, q_0, q_f, q_{rej})$

Q: set of states Σ : input alphabet

 q_0 : start state Γ : tape alphabet, $\Sigma \subseteq \Gamma$, & $\in \Gamma$

Definition

A Turing machine (TM) is given by $M = (Q, \Sigma, \Gamma, \delta, q_0, q_f, q_{rej})$

Q: set of states Σ : input alphabet

 q_0 : start state Γ : tape alphabet, $\Sigma \subseteq \Gamma$, & $\in \Gamma$

 q_{acc} : accept state

Definition

A Turing machine (TM) is given by $M = (Q, \Sigma, \Gamma, \delta, q_0, q_f, q_{rej})$

Q: set of states Σ : input alphabet

 q_0 : start state Γ : tape alphabet, $\Sigma \subseteq \Gamma$, & $\in \Gamma$

 q_{acc} : accept state q_{rej} : reject state

Definition

A Turing machine (TM) is given by $M = (Q, \Sigma, \Gamma, \delta, q_0, q_f, q_{rej})$

Q: set of states Σ : input alphabet

 q_0 : start state Γ : tape alphabet, $\Sigma \subseteq \Gamma$, & $\in \Gamma$

 q_{acc} : accept state q_{rej} : reject state

$$\delta \subseteq Q \times \Gamma \times Q \times \Gamma \times \{L, R\}.$$

Definition

A Turing machine (TM) is given by $M = (Q, \Sigma, \Gamma, \delta, q_0, q_f, q_{rej})$

Q: set of states Σ : input alphabet

 q_0 : start state Γ : tape alphabet, $\Sigma \subseteq \Gamma$, & $\in \Gamma$

 q_{acc} : accept state q_{rej} : reject state

$$\delta \subseteq Q \times \Gamma \times Q \times \Gamma \times \{L, R\}.$$

Understanding δ

Definition

A Turing machine (TM) is given by $M = (Q, \Sigma, \Gamma, \delta, q_0, q_f, q_{rej})$

Q: set of states Σ : input alphabet

 q_0 : start state Γ : tape alphabet, $\Sigma \subseteq \Gamma$, & $\in \Gamma$

 q_{acc} : accept state q_{rej} : reject state

$$\delta \subseteq Q \times \Gamma \times Q \times \Gamma \times \{L, R\}.$$

Understanding δ

For a $q \in Q$, $a \in \Gamma$ if $\delta(q, a) = (p, b, L)$

Definition

A Turing machine (TM) is given by $M = (Q, \Sigma, \Gamma, \delta, q_0, q_f, q_{rej})$

Q: set of states Σ : input alphabet

 q_0 : start state Γ : tape alphabet, $\Sigma \subseteq \Gamma$, & $\in \Gamma$

 q_{acc} : accept state q_{rej} : reject state

$$\delta \subseteq Q \times \Gamma \times Q \times \Gamma \times \{L, R\}.$$

Understanding δ

For a $q \in Q$, $a \in \Gamma$ if $\delta(q, a) = (p, b, L)$,

then p is the new state of the machine

Definition

A Turing machine (TM) is given by $M = (Q, \Sigma, \Gamma, \delta, q_0, q_f, q_{rej})$

Q: set of states Σ : input alphabet

 q_0 : start state Γ : tape alphabet, $\Sigma \subseteq \Gamma$, & $\in \Gamma$

 q_{acc} : accept state q_{rej} : reject state

$$\delta \subseteq Q \times \Gamma \times Q \times \Gamma \times \{L, R\}.$$

Understanding δ

For a $q \in Q$, $a \in \Gamma$ if $\delta(q, a) = (p, b, L)$, then p is the new state of the machine,

b is the letter with which a gets overwritten

Definition

A Turing machine (TM) is given by $M = (Q, \Sigma, \Gamma, \delta, q_0, q_f, q_{rej})$

Q: set of states Σ : input alphabet

 q_0 : start state Γ : tape alphabet, $\Sigma \subseteq \Gamma$, & $\in \Gamma$

 q_{acc} : accept state q_{rej} : reject state

$$\delta \subseteq Q \times \Gamma \times Q \times \Gamma \times \{L, R\}.$$

Understanding δ

For a $q \in Q$, $a \in \Gamma$ if $\delta(q, a) = (p, b, L)$,

then p is the new state of the machine,

b is the letter with which a gets overwritten,

the head moves to the left of the current position.

Turing machine for a non-context free language

Turing machine for a non-context free language

$$\mathsf{EQ} = \{ w \cdot \# \cdot w \mid w \in \Sigma^* \}.$$

Turing machine for a non-context free language

Example

$$\mathsf{EQ} = \{ w \cdot \# \cdot w \mid w \in \Sigma^* \}.$$

Give a full description of a Turing machine for the above language.