Local Learning

Hee-il Hahn

Professor

Department of Information and Communications Engineering Hankuk University of Foreign Studies hihahn@hufs.ac.kr

Supervised learning

- Learn a function to predict outputs from (input, output) examples.
 - Classification: $Y \in \{0,1\}$ or $Y \in \{-1,+1\}$ Predicting whether or not a given input belongs to one of two classes, typically in terms of true or false, or positive or negative. (e.g., face *detection*).
 - □ Regression: $Y \in \mathbb{R}$ Predicting a real number. (e.g., predicting gas prices).
 - □ Multi-class classification: $Y \in \{1, \dots, K\}$: Predicting which of K classes an input belongs to. (e.g., face recognition).

Supervised learning – cont.

A critical concept in supervised learning is the training vs. testing data distinction.

Training:

given a set of training data $(x_1, y_1), \dots, (x_n, y_n)$ and allowed to perform computations on the training data to learn an output function h(x).

Testing:

- asked to generate predictions $h(x_1),..., h(x_m)$ for a set of testing data.
- then compute an error metric or loss function to determine quantitatively if the learner correctly predicted the true outputs for the test examples.
- A common metric for classification tasks is the **0–1 loss**, which is just the proportion of incorrect guesses:

$$loss_{01_error} = \frac{1}{m} \sum_{j=1}^{m} 1[h(\mathbf{x}_j) \neq y_j]$$

Supervised learning – cont.

- Important questions about this process:
 - What happens if we use the same data for training and testing?
 - Can we be confident about the algorithm's accuracy on new datasets?
 - How can we train and test a learner if we only have a finite amount of collected data?
 More generally, how do we collect X and define Y for a given problem?

Local learning

- seems less like learning and more like pure memorization.
- also called <u>memory-based learning</u>, <u>instance-based</u>, <u>case-based</u>, or <u>distance-based</u>.
- given a new example x, find the most similar training example(s) and predict a similar output.

Nearest neighbor methods

- The nearest neighbor idea and local learning, in general, are not limited to classification, and many of the ideas can be more easily illustrated for regression.
- Consider the following one-dimensional regression problems:

Clearly, linear models do not capture the data well.

We can add more features, like higher order polynomial terms, or we can use a local approach, like nearest neighbors:

1-Nearest Neighbor Algorithm

- Given training data $D = \{x_i, y_i\}$, distance function $d(\cdot, \cdot)$ and input x,
- Find $j = \arg\min_{i} d(\mathbf{x}, \mathbf{x}_{i})$ and return y_{j} .
- 1-D Examples with $d(\mathbf{x}, \mathbf{x}_i) = |\mathbf{x} \mathbf{x}_i|$

1-Nearest Neighbor Algorithm

2-D Examples with $d(\mathbf{x}, \mathbf{x}_i) = \|\mathbf{x} - \mathbf{x}_i\|_2$

"Voronoi diagram"

More generally, we can use an arbitrary distance function to define a nearest neighbor.

$$\sqrt{x^2 + y^2} = c$$

$$|x| + |y| = c$$

$$|x| + |y| = c \qquad \max(|x|, |y|) = c$$

1-Nearest Neighbor Algorithm

Voronoi diagrams are shaped differently according to the norms.

- one of the simplest examples of a non-parametric method,
 while linear regression or Naive Bayes are parametric.
- the model structure is determined by the training data.
- Non-parametric models are much more flexible and expressive than parametric ones, and thus overfitting is a major concern.

K-Nearest Neighbor Algorithm

- One way to reduce the variance is local averaging: instead of just one neighbor, find K and average their predictions.
- Given training data $D = \{x_i, y_i\}$, distance function $d(\cdot, \cdot)$ and input x,
- Find $\{j_1, \dots, j_K\}$ closest examples w.r.t $d(\mathbf{x}, \cdot)$
 - □ (regression) if $y \in \mathbb{R}$, return average: $\frac{1}{K} \sum_{k=1}^{K} y_{j_k}$.
 - □ (classification) if $y \in \pm 1$, return majority: $sign(\sum_{k=1}^{K} y_{j_k})$

results of using 9 neighbors on our examples

Simulation of knn_1D

```
import numpy as np
import matplotlib.pyplot as plt
import mglearn

X, y = mglearn.datasets.make_wave(n_samples=40)

mglearn.plots.plot_knn_regression(n_neighbors=1)

executed in 277ms, finished 20:24:26 2020-03-27
```


Simulation of knn_1D

Simulation of knn_1D

K-Nearest Neighbor Algorithm

2-D results of using (K = 1 or 3) neighbors on our examples

Achieve a "smoother" decision boundary by increasing K from 1 to 3.

Simulation of knn_2D

```
fig, axes = plt.subplots(1, 3, figsize=(10, 3))

for n_neighbors, ax in zip([1, 3, 9], axes):
    clf = KNeighborsClassifier(n_neighbors = n_neighbors).fit(X, y)
    mglearn.plots.plot_2d_separator(clf, X, fill=True, eps=0.5, ax=ax, alpha=.4)
    mglearn.discrete_scatter(X[:, 0], X[:, 1], y, ax=ax)
    ax.set_title("{} Neighbors".format(n_neighbors))
    ax.set_xlabel("Feature 0")
    ax.set_ylabel("Feature 1")
    axes[0].legend(loc=3)

executed in 2.73s, finished 20:17:57 2020-03-27
```


Kernel regression

Shortcomings of K-Nearest Neighbor Algorithm

- All neighbors receive equal weight.
- The number of neighbors must be chosen globally.

Kernel regression

- Instead of selected nearest neighbors, all neighbors are used.
- Closer neighbors receive higher weight.
- The weighting function is called a kernel and it measures similarity (as opposed to distance) between examples.
- easy to convert from a distance $d(\cdot,\cdot)$ to a kernel $K(\cdot,\cdot)$.
- One of the most common ways is the <u>Gaussian-type kernel</u> (ignoring the normalization):

$$K(\mathbf{x}, \mathbf{x}_i) = exp\left\{\frac{-d(\mathbf{x}, \mathbf{x}_i)}{\sigma^2}\right\}$$

Kernel regression – cont.

Kernel Regression/Classification Algorithm

- Given training data $D = \{x_i, y_i\}$, kernel function $K(\cdot, \cdot)$ and input x,
 - □ (regression) if $y \in \mathbb{R}$, return weighted average: $\frac{\sum_{i=1}^{n} K(\mathbf{x}, \mathbf{x}_i) y_i}{\sum_{i=1}^{n} K(\mathbf{x}, \mathbf{x}_i)}$.
 - □ (classification) if $y \in \pm 1$, return weighted majority: $sign(\sum_{i=1}^{n} K(\mathbf{x}, \mathbf{x}_i) \mathbf{y}_i)$
- In kernel regression/classification, nearby points contribute much more to the prediction.
- A key parameter in defining the Gaussian kernel is σ, also called the width, which determines
 how quickly the influence of neighbors falls off with distance.

Kernel regression – cont.

Results of varying σ from 0.5 to 8

As $\sigma \to \infty$, all the neighbors weigh the same and the prediction is the global average or global majority and as $\sigma \to 0$, the prediction tends to 1-NN.

Kernel regression – cont.

Results of using good kernel width on our examples ($\sigma = 0.5$)

2-D Results of kernel regression

Concluding remarks

- While local learning methods are very flexible and often very effective, they have some disadvantages:
 - Expensive: need to remember (store) and search through all the training data for every prediction.
 - Curse-of-dimensionality: In high dimensions, all points are far.
 - □ Irrelevant features: If x has irrelevant, noisy features, distance function becomes useless.

https://alliance.seas.upenn.edu/~cis520/dynamic/2017/wiki/index.php?n=Lectures.LocalLearning