Практика

Разложение произвольного векторного поля на сумму потенциального и соленоидального полей.

Дифферененциальные операции 1 и 2 порядков

Основные формулы

Разложение произвольного векторного поля на сумму потенциального и соленоидального полей.

Пусть $\bar{a}(M)$ — произвольное векторное поле для любой точки $M \in A \subset R^3$.

Тогда

$$\overline{a}(M) = \overline{a_1}(M) + \overline{a_2}(M),$$
 (**)

где $\overline{a_1}(M)$ — потенциальное поле, $\overline{a_2}(M)$ — соленоидальное поле $\forall M \in A$

И

$$\overline{a_1}(M) = gradf(M) \ \forall \ M \in A$$
,
 $\overline{a_2}(M) = \overline{a}(M) - gradf(M)$.

Гармонические векторные поля

Определение (гармонического поля)

Векторное поле $\bar{a}(M)$ для любой точки $M \in A \subset \mathbb{R}^3$, называется *гармоническим*, если оно одновременно является и потенциальным, и соленоидальным.

$$\begin{cases} \bar{a}(M) = gradf(M), & \forall M \in A. \\ div\bar{a}(M) = 0 \end{cases}$$

Замечание:

Для гармонического поля справедливо равенство:

$$divgradf(M)=0.$$
или
$$\frac{\partial^2 f(M)}{\partial x^2} + \frac{\partial^2 f(M)}{\partial y^2} + \frac{\partial^2 f(M)}{\partial z^2} = 0.$$

Дифферененциальные операции 1 порядка

Оператор Гамильтона (набла):

$$\nabla = \left(\frac{\partial}{\partial x} \cdot \bar{i} + \frac{\partial}{\partial y} \cdot \bar{j} + \frac{\partial}{\partial z} \cdot \bar{k}\right)$$

Тогда:

$$\nabla f(M) = \operatorname{grad} f(M)$$
 - для скалярного поля

$$\nabla \overline{a}(M) = div \overline{a}(M)$$
 - для векторного поля

$$\nabla \times \overline{a}(M) = rot \ \overline{a(M)}$$
 - для векторного поля

Свойства оператора Гамильтона

1)
$$\nabla c = \overline{0}$$
, где $c - \text{const}$

$$2)\nabla \bar{c}=0$$
, где \bar{c} - постоянный вектор

3)
$$\nabla \times \bar{c} = \bar{0}$$
, где \bar{c} - постоянный вектор

4)
$$\nabla (\lambda_1 \bar{a} \pm \lambda_2 \bar{b}) = \lambda_1 \nabla \bar{a} \pm \lambda_2 \nabla \bar{b}$$

5)
$$\nabla \times (\lambda_1 \bar{a} \pm \lambda_2 \bar{b}) = \lambda_1 \nabla \times \bar{a} \pm \lambda_2 \nabla \times \bar{b}$$

Дифференциальные операции 2 порядка:

$$div \ grad \ f(M) = \nabla \Big(\nabla \ f(M) \Big)$$

$$rot \ grad \ f(M) = \nabla \times \nabla \ f(M)$$

$$grad \ div \ \bar{a}(M) = \nabla \Big(\nabla \ \bar{a}(M) \Big)$$

$$div \ rot \ \bar{a}(M) = \nabla \Big(\nabla \times \bar{a}(M) \Big)$$

$$aiv \, rot \, a(M) = \mathbf{v}(\mathbf{v} \times a(M))$$

$$rot \ \overline{a}(M) = \nabla \times \left(\nabla \times \overline{a}(M)\right)$$

Дифференциальные операции 2 порядка, можно представить

в виде таблицы:

grad grad f(M)	grad div a(M)	grad rot a(M)
$div \ grad \ f(M)$	div div a(M)	$\overline{div rot a(M)}$
rot grad $f(M)$	rot div a(M)	$rot rot \overset{-}{a}(M)$

Оператор Лапласа

$$\Delta = \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\right)$$

1) f(M) - скалярное поле:

$$\Delta f(M) = \nabla \nabla f(M) = div \ grad \ f(M)$$

или в кординатной форме

$$\Delta f(M) = \frac{\partial^2 f(M)}{\partial x^2} + \frac{\partial^2 f(M)}{\partial y^2} + \frac{\partial^2 f(M)}{\partial z^2}.$$

Замечание:

Если для скалярного поля f(M) выполняется условие $\Delta f(M) = 0$, то такое поле называтся $\mathit{Лапласовым}$ (или гармоническим).

$$2\underline{\overline{a}}(M) = \{P(M); Q(M); R(M)\} - \underline{\mathbf{векторное}}$$
 поле:

$$\overline{\Delta a}(M) = \Delta P(M)\overline{\iota} + \Delta Q(M)\overline{\jmath} + \Delta R(M)\overline{k}$$

или в координатной форме

$$\overline{\Delta a}(M) = \left(\frac{\partial^2 P}{\partial x^2} + \frac{\partial^2 P}{\partial y^2} + \frac{\partial^2 P}{\partial z^2}\right) \bar{\iota} + \left(\frac{\partial^2 Q}{\partial x^2} + \frac{\partial^2 Q}{\partial y^2} + \frac{\partial^2 Q}{\partial z^2}\right) \bar{\jmath} + \left(\frac{\partial^2 R}{\partial x^2} + \frac{\partial^2 R}{\partial y^2} + \frac{\partial^2 R}{\partial z^2}\right) \bar{k}$$

Свойства оператора Лапласа.

1) $\Delta \overline{c} = 0$, где $\overline{c} -$ постоянный вектор.

2)
$$\Delta(\overline{c} \cdot f(M)) = \overline{c} \cdot \Delta f(M)$$
, где \overline{c} — постоянный вектор.

$$3)\Delta(C \cdot \bar{a}(M)) = C \cdot \Delta \bar{a}(M), C = const.$$

$$4)\Delta(\bar{a}_1(M) + \bar{a}_2(M)) = \Delta \bar{a}_1(M) + \Delta \bar{a}_2(M).$$

5)
$$\Delta(\nabla f(M)) = \nabla(\Delta f(M),$$

6)
$$\Delta(\operatorname{div}\bar{a}(M)) = \operatorname{div}(\Delta\bar{a}(M)),$$

7)
$$\Delta(rot\bar{a}(M)) = rot(\Delta\bar{a}(M))$$

Свойства 3) и 4) означают, что оператор Лапласа - это линейный оператор, преобразующий одну векторную величину в другую векторную величину.

Свойства 5)-7) означают, что оператор Лапласа перестановочен с градиентом, дивергенцией и ротором.

Формулы для дифференциальных операций второго порядка:

1)
$$rotgradf(M) = \overline{0}$$

ИЛИ

$$\nabla\times(\nabla f(M)=\bar{0}.$$

$$\nabla(\nabla \bar{a}(M)) = graddiv\bar{a}(M)$$

или

$$\nabla \left(\nabla \bar{a}(M)\right) = \left(\frac{\partial^2 P}{\partial x^2} + \frac{\partial^2 Q}{\partial x \partial y} + \frac{\partial^2 R}{\partial z \partial x}\right) \bar{\iota} + \left(\frac{\partial^2 P}{\partial x \partial y} + \frac{\partial^2 Q}{\partial y^2} + \frac{\partial^2 R}{\partial z \partial y}\right) \bar{J} + \left(\frac{\partial^2 P}{\partial x \partial z} + \frac{\partial^2 Q}{\partial z \partial y} + \frac{\partial^2 R}{\partial z^2}\right) \bar{k} .$$

3)
$$divrot\bar{a}(M) = \nabla(\nabla \times \bar{a}(M)) = 0$$
.

4)
$$rotrotar{a}(M)=graddivar{a}(M)-\Deltaar{a}(M)$$
 или $\nabla imes(\nabla imesar{a}(M)=graddivar{a}(M)-\Deltaar{a}(M).$

Таблица для дифференциальных операций 2 порядка

	$\bar{a}(M)$	f(M)	
	grad f(M)	div a (M)	$rot \overline{a}(M)$
grad f(M)		$\operatorname{grad}\operatorname{div} \overset{-}{a}(M) = \nabla \left(\nabla \overset{-}{a}(M)\right)$	
div a (M)	$div \ grad \ f(M) = \\ \nabla (\nabla \ f(M)) = \Delta f(M)$		$div rot \overset{-}{a}(M) = \\ \nabla \left(\nabla \times \overset{-}{a}(M) \right) = 0$
rot a (M)	$rot \ grad \ f(M) = \\ \nabla \times \nabla \ f(M) = \bar{0}$		$rot \ rot \ \overline{a}(M) = \nabla \times (\nabla \times \overline{a}(M)) =$ $grad \ div \ \overline{a}(M) - \Delta \overline{a}(M) =$ $\nabla \nabla \overline{a}(M) - \Delta \overline{a}(M)$