Caratteristiche porte logiche e semplici circuiti logici

Francesco Sacco Lorenzo Cavuoti

- **0)** Lo scopo dell'esperienza è misurare le caratteristiche statiche e dinamiche delle porte NOT contenute nell'integrato SN74LS04 (HEX Inverter) e costruire semplici circuiti logici con le porte NAND.
- 1) Si è montato il circuito in figura 1 e si è alimentato con $V_{CC} = 4.7 \pm 0.2$ V usando solo un generatore. Successivamente si è fatta variare la resistenza del potenziometro e si è segnato V_{in} e V_{out} per ciascuna posizione del potenziometro, i dati sono riportati in tabella e nel grafico in figura, le tensioni sono state misurate con i cursori dell'oscilloscopio.

Figura 1:	Circuito	usato	nel	punto	1
-----------	----------	-------	-----	-------	---

$V_{in}[V]$	$V_{out}[V]$
4.6 ± 0.2	0.134 ± 0.006
4.2 ± 0.2	0.134 ± 0.006
3.2 ± 0.1	0.134 ± 0.006
2.5 ± 0.1	0.134 ± 0.006
1.84 ± 0.09	0.134 ± 0.006
1.26 ± 0.05	0.134 ± 0.006
1.16 ± 0.05	0.134 ± 0.006
1.06 ± 0.05	2.5 ± 0.1
1.04 ± 0.05	2.0 ± 0.09
0.74 ± 0.03	4.1 ± 0.2
0.34 ± 0.01	4.2 ± 0.2
0.144 ± 0.006	4.2 ± 0.2

Usando il potenziometro è stato possibile stimare i voltaggi VOH, VOL, VIH, VIL che si possono vedere nella tabella qui sotto.

Di conseguenza le bande d'incertezza misurate d'input è 0.418 ± 0.007 , mentre quella di datasheet è 1.2V; la barra d'incertezza misurata d'output è 3.95 ± 0.02 e quella di datasheet è 3.2V.

Nome	Voltaggi misurati $[V]$	Voltaggi datasheet $[V]$
VOH	4.1 ± 0.2	3.4
VOL	0.134 ± 0.006	0.2
VIH	1.16 ± 0.05	>2
VIL	0.74 ± 0.03	< 0.8

Figura 4: Schema circuitale NAND

2) Per il secondo punto abbiamo montato all'uscita del NOT una resistenza di $3.31 \pm 0.03k\Omega$ verso V_{CC} e abbiamo mandato all'ingresso del NOT un'onda quadra di ampiezza tra 0 e $5.0 \pm 0.2V$ con una frequenza di circa 1kHz. I tempi misurati sono $t_{PHL} \approx 7.2ns$ (quello di datasheet è 10ns), mentre $t_{PLH} \approx 55ns$ (quello di datasheet è 25ns). I dati presentano un'elevata incertezza perchè il segnale era parecchio rumoroso, come si più vedere dalle immagini 2 e 3.

Figura 2: t_{PHL}

Figura 3: t_{PLH}

3)

- **a.** Si è montato il circuito in figura 4 dove i segnali A, B sono dati da uno DIP Switch a 4 interuttori con l'altro estremo collegato a massa.
- **b.** Per verificare velocemente la tabella di verità si è collegato un led all'uscita dei circuiti logici, cosi' da notare il passaggio di corrente senza dover misurare con il multimetro o l'oscilloscopio.

c.

- i. Per costruire la porta AND (figura 5) si sono utilizzate 2 porte NAND. Prima si esegue A NAND B, successivamente si nega il segnale in uscita cosi' da ottenere A AND B
- ii. Per la porta OR (figura 6) si sono utilizzate 3 porte NAND, infatti sfruttando le leggi di De Morgan si ha: A OR B = (!A) NAND (!B)
- iii. Per la porta XOR (figura 7) si sono utilizzate 4 porte NAND, il circuito è sempre stato ricavato dalle leggi di De Morgan
- iv. Per il sommatore ad un bit (figura 8) si sono utilizzate 5 porte NAND, anche se il circuito risulta abbastanza complicato in realtà questo è composto da uno XOR, che da la seconda cifra, e da un AND che da la prima cifra della somma.

Figura 5: Schema circuitale AND

Figura 6: Schema circuitale OR

Figura 7: Schema circuitale XOR Figura 8: Schema circuitale sommatore