

- 6. Para los vectores $\mathbf{v}_1, \ldots, \mathbf{v}_k$, si se forma la matriz $A = [\mathbf{v}_1 \cdots \mathbf{v}_k]$, entonces el comando de MATLAB $\mathbf{B} = \text{orth}(\mathbf{A})$ producirá una matriz B cuyas columnas forman una base ortonormal para el subespacio $H = \text{imagen de } A = \text{gen } \{\mathbf{v}_1, \ldots, \mathbf{v}_k\}$.
 - a) Sea $\{v_1, v_2, v_3\}$ el conjunto de vectores en el problema 1 b) de esta sección de MATLAB. Encuentre A y B según se describió. Verifique que las columnas de B son ortonormales.
 - b) Sea \mathbf{x} un vector aleatorio de 3×1 ; encuentre $A\mathbf{x}$. Explique por qué $A\mathbf{x}$ está en H.

 El teorema 6.1.4 dice que si \mathbf{w} está en H, entonces $\mathbf{w} = (\mathbf{w} \cdot \mathbf{u}_1)\mathbf{u}_1 + \cdots + (\mathbf{w} \cdot \mathbf{u}_k)\mathbf{u}_k$, donde $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ es una base ortonormal para H. Verifique esto para $\mathbf{w} = A\mathbf{x}$ usando el hecho de que \mathbf{u}_i es la i-ésima columna de B.
 - c) Repita las instrucciones de los incisos a) y b) para $\{v_1, v_2, v_3, v_4\}$, donde cada v_i es un vector aleatorio de 6×1 y x es un vector aleatorio de 4×1 .
- 7. Genere cuatro vectores aleatorios en \mathbb{R}^6 , \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 , \mathbf{v}_4 . Sea $H = \text{gen } \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$. Sea $\mathbf{A} = [\mathbf{v}_1 \ \mathbf{v}_2 \ \mathbf{v}_3 \ \mathbf{v}_4]$ y $\mathbf{B} = \text{orth}(\mathbf{A})$. Sea \mathbf{u}_i la *i*-ésima columna de B.
 - a) Sea w un vector aleatorio de 6×1 . Encuentre la proyección de w sobre H, $\mathbf{p} = \text{proy}_H$ w usando la definición 6.1.4.

Calcule
$$\mathbf{z} = \begin{pmatrix} \mathbf{w} \cdot \mathbf{u}_1 \\ \mathbf{w} \cdot \mathbf{u}_2 \\ \mathbf{w} \cdot \mathbf{u}_3 \\ \mathbf{w} \cdot \mathbf{u}_4 \end{pmatrix}$$
, Verifique que $\mathbf{z} = \mathbf{B}^\mathsf{T} \mathbf{w} \, \mathbf{y} \, \mathbf{p} = \mathbf{B} \mathbf{B}^\mathsf{T} \mathbf{w}$. Repita para otro vector \mathbf{w} .

- b) Sea x un vector aleatorio 4 × 1 y forme h = Ax. Entonces h está en H. Compare |w p| y |w h|. Repita para otros tres vectores x. Escriba una interpretación de sus observaciones.
- c) Sea $\mathbf{z} = 2\mathbf{v}_1 3\mathbf{v}_3 + \mathbf{v}_4$. Entonces $H = \text{gen} \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{z}\}$ (aquí H es el subespacio descrito en los incisos anteriores de este problema). ¿Por qué? Sea $C = [\mathbf{v}_1 \ \mathbf{v}_2 \ \mathbf{v}_3 \ \mathbf{z}] \ \mathbf{y} \ \mathsf{D} = \mathsf{orth}(C)$. Entonces las columnas de D serán otra base ortonormal para H.

Sea w un vector aleatorio de 6×1 . Calcule la proyección de w sobre H utilizando B y la proyección de w sobre H usando D. Compare los resultados. Repita para otros dos o más vectores w. Escriba la interpretación de sus observaciones.

- d) (Lápiz y papel) Si $\{\mathbf{u}_1, \dots, \mathbf{u}_k\}$ es una base ortonormal para un subespacio H y B es la matriz $[\mathbf{u}_1, \dots, \mathbf{u}_k]$, pruebe que la proyección de \mathbf{w} sobre H es igual a $BB^{\mathsf{T}}\mathbf{w}$.
- **8.** a) (Lápiz y papel) Si A es una matriz real, explique por qué el espacio nulo de A^{\top} es perpendicular a la imagen de A; es decir, si H = Im(A), entonces el espacio nulo $(A^{\top}) = H^{\perp}$.
 - b) Sea A una matriz aleatoria real de 7×4 . Sea B = orth(A) y sea C = null(A') (entonces las columnas de B forman una base ortonormal para H = Im(A) y las columnas de C forman una base ortonormal para H^{\perp}). Verifique que las columnas de C son ortonormales.