# Clustering

## Classification vs. Clustering

Classification: Supervised learning:
Learns a method for predicting the
instance class from pre-labeled
(classified) instances



### Clustering

Unsupervised learning:
Finds "natural" grouping of
instances given un-labeled data

## Clustering Methods

- Many different method and algorithms:
  - For numeric and/or symbolic data
  - Deterministic vs. probabilistic
  - Exclusive vs. overlapping
  - Hierarchical vs. flat
  - Top-down vs. bottom-up

#### Representing clusters

#### Non-overlapping

#### **Overlapping**





## Representing clusters

#### Probabilistic assignment

|   | 1   | 2   | 3   |
|---|-----|-----|-----|
|   |     |     |     |
| а | 0.4 | 0.1 | 0.5 |
| b | 0.1 | 0.8 | 0.1 |
| С | 0.3 | 0.3 | 0.4 |
| d | 0.1 | 0.1 | 0.8 |
| е | 0.4 | 0.2 | 0.4 |
| f | 0.1 | 0.4 | 0.5 |
| g | 0.7 | 0.2 | 0.1 |
| h | 0.5 | 0.4 | 0.1 |

witten&eibe

#### The distance function

- Several numeric attributes:
  - Distance(X,Y) = Euclidean distance between X,Y
- Nominal attributes: distance is set to 1 if values are different, 0 if they are equal
- Are all attributes equally important?
  - Weighting the attributes might be necessary

#### Simple Clustering: K-means

Works with numeric data only

- 1) Pick a number (K) of cluster centers (at random)
- Assign every item to its nearest cluster center (e.g. using Euclidean distance)
- Move each cluster center to the mean of its assigned items
- 4) Repeat steps 2,3 until convergence (change in cluster assignments less than a threshold)



Assign
each point
to the closest
cluster
center

Y

Y

Move
each cluster
center
to the mean
of each cluster



Reassign
points
closest to a
different new
cluster center

Q: Which points are reassigned?



#### K-means example, step 4 ...





cluster means

re-compute



move cluster centers to cluster means

#### Discussion, 1

What can be the problems with K-means clustering?

#### Discussion, 2

- Result can vary significantly depending on initial choice of seeds (number and position)
- Can get trapped in local minimum
  - Example:



initial cluster centers

• Q: What can be done?

#### Discussion, 3

A: To increase chance of finding global optimum: restart with different random seeds.

## K-means clustering summary

#### Advantages

- Simple, understandable
- items automatically assigned to clusters

#### Disadvantages

- Must pick number of clusters before hand
- All items forced into a cluster
- Too sensitive to outliers

## K-means clustering - outliers ?

What can be done about outliers?

#### K-means variations

- K-medoids instead of mean, use medians of each cluster
  - Mean of 1, 3, 5, 7, 9 is
  - Mean of 1, 3, 5, 7, 1009 is
  - Median of 1, 3, 5, 7, 1009 is
  - Median advantage: not affected by extreme values
- For large databases, use sampling

## Other Clustering Approaches

- EM probability based clustering
- Bayesian clustering
- SOM self-organizing maps

• ...

# **Examples of Clustering Applications**

- Marketing: discover customer groups and use them for targeted marketing and re-organization
- Astronomy: find groups of similar stars and galaxies
- Genomics: finding groups of gene with similar expressions

• ...

### Clustering Summary

- unsupervised
- many approaches
  - K-means simple, sometimes useful
    - K-medoids is less sensitive to outliers
  - Hierarchical clustering works for symbolic attributes
- Evaluation is a problem