Mathematical Analysis (old)
$D(s-AC \text{ Model})$ $\rightarrow x_{D}(t) = x_{D}(1-e^{-\kappa t^{D}}) \text{ Emerbull } f^{H}$
Fransmit wave form of biomagkers
-> YAC, M [U] = POISS (PA * LAC, M [U] + PA MM)
The electived no of biomankens in
$\lambda_{AC_{1}m}[u] = \int_{0}^{n} n^{T_{S}} \int_{0}^{t} h_{m}(t;T) \chi_{A}(T) dy dt$ $(n-1)T_{S} \int_{0}^{t} h_{m}(t;T) \chi_{A}(T) dy dt$
Avg No. of bio-marker molecules received at m+11 A(.
Consequentially,
hm [n, 2] = { Fw, m (n Ts, (Ts) - Fw, m (n Ts, (l-1) Ts)
1 () Lhm
The propogation probability of receiving molecules en not fine slot from transmitted molecules in ne prev. time slot

Fw, m - p (\langle \l $e^{\frac{2-\lambda_{m}(t)}{2\log(t)}} \left(-\sqrt{\frac{\lambda_{m}(t)}{\omega}} \left(\frac{\omega}{M_{m}(t)} + 1\right)\right)$

Citue which is obtained using an additive inverse gaussian (7100) analysis

O(.) - (DF of standard gaanssian Random Variable

me assume that, Vm(t) & Sm(t) and constant once at wast 1 (hm) To seconds

AC:-BC System Model

-> DiAC, m (t) = ZACO e - K'fb' (using meibull

The molecules transmitted by AEs mit AC at a given time.

JBC, m = 5 Poiss (9/4 &BC, m) + 9/9 E

The no. of received molecules at ACS-BC channel.

unite,
TBC It gm (+; T) xAC, m (T) dT dt
Hypothesis Test for Anomaly Detection: Hi, max He, min x Ho, max x Hi, min x Ac, m [n] o JH, max y Ho, max x Hi, min x Ac, m [n]
→ ACs identity amornaly as: Ho: x Ho, min < x > ≤ x Ho, max
H_1 $\begin{cases} H_1^{+} & \chi_{b_0} \leq \chi^{H_1, una'} \\ H_1^{+} & \chi_{b_0} \geq \chi^{H_1, una'} \end{cases}$
Ho : A C, m = A A C, m [u] & A A C, m
Hit DAC, m [n] & DAC, m Hit DAC, m [n] > 20 DAC, m
→ BC, identify anomaly as Wo: \(\frac{\text{\$\infty}}{\text{\$\infty}} \) \(\text{\$\infty}
$W_{l}: \sum_{m=1}^{M} \lambda_{BC_{l}} m \geq k \overline{\lambda}_{BC}$
where $\overline{\lambda}_{BC} = \frac{1}{M} \sum_{m=1}^{M} \lambda_{BC}, m$

a duomaly Defection Performance of AC	
The decision enter of hypothesis with based on CLRT for the mm AC with Nondependent Pousson observation:	
NEMENT ACIM [N] - DACIM [N] + YACIM GO (AMI [N]+ PAQ)	
- YAC, m[n] Log (AAC, m[n] + PAN) > Log r	
where nss- [ts/Ts] → min sampling indet for steady state Yn Ensstl,, nss+N	
El ML estimator of JAGM [n]	
= LAC, m [n] = max (yac, m[n] - Bon)	F
The simplified decision well from bounding LR for the nuth A courth Nindependent Poisson observator Ex limited false alarm probability PROINCE, Math Ho: max (Y1,0) < 1/2 = 128+1 YACIMEN] < YU	
MI SIN SINSH YACIM [N] > YU ON NEMSTH YACIM [N] < MAY (YI, 0)	
where, $\gamma_{c} = \lambda_{AC, m} + P_{M} \overline{\eta} - \gamma'$	
Yu = 2 AC, m + Pay + 8'	

Por min (r (Tmax (Nx, -1, 0) + 17, N (Ac, m + Ponn)),

Tmax (Nx, -1, 0) [] 1- [(LNYu+1]N()AC,m+PMM)) 1 NYu 11 lower bound of detection perobability The decision ende for the BC with Poisson observation where your is decision thrushold at BC, Ho: YBC < YBC HI YOU & YOU The land bound of PD & the upper bound of PF at BC are PD = E Pin (I- [(FYOTHR], MINOC + VINE) Pr = & Pm (1-17 (Type 7, m) be + 9/n E) p'm & p'm - Priorbaability of delecting anomaly at m ACs under HI & Ho nespectively Pm = (M) (I-PAC) M-M (PAC) M Pm = (M) (1-PFAC) M-m (PFAC) M

·como