1.17 1) AB =
$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 1 \\ -1 & 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ -1 & 1 \\ 2 & 1 \end{pmatrix}$$

= $\begin{pmatrix} 1 \cdot 2 + 2 \cdot (-1) + 3 \cdot 2 & 1 \cdot 0 + 2 \cdot 1 + 3 \cdot 1 \\ 2 \cdot 2 + 1 \cdot (-1) + 1 \cdot 2 & 2 \cdot 0 + 1 \cdot 1 + 1 \cdot 1 \\ -1 \cdot 2 + 1 \cdot (-1) + 2 \cdot 2 & -1 \cdot 0 + 1 \cdot 1 + 2 \cdot 1 \end{pmatrix}$
= $\begin{pmatrix} 6 & 5 \\ 5 & 2 \\ 1 & 3 \end{pmatrix}$

2)
$${}^{t}AB = \begin{pmatrix} 1 & 2 & -1 \\ 2 & 1 & 1 \\ 3 & 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ -1 & 1 \\ 2 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 \cdot 2 + 2 \cdot (-1) + (-1) \cdot 2 & 1 \cdot 0 + 2 \cdot 1 + (-1) \cdot 1 \\ 2 \cdot 2 + 1 \cdot (-1) + 1 \cdot 2 & 2 \cdot 0 + 1 \cdot 1 + 1 \cdot 1 \\ 3 \cdot 2 + 1 \cdot (-1) + 2 \cdot 2 & 3 \cdot 0 + 1 \cdot 1 + 2 \cdot 1 \end{pmatrix}$$

$$= \begin{pmatrix} -2 & 1 \\ 5 & 2 \\ 9 & 3 \end{pmatrix}$$

3) Vu la question 1), $^t(AB) = \begin{pmatrix} 6 & 5 & 1 \\ 5 & 2 & 3 \end{pmatrix}$

4)
$${}^{t}B {}^{t}A = \begin{pmatrix} 2 & -1 & 2 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & -1 \\ 2 & 1 & 1 \\ 3 & 1 & 2 \end{pmatrix}$$

$$= \begin{pmatrix} 2 \cdot 1 + (-1) \cdot 2 + 2 \cdot 3 & 2 \cdot 2 + (-1) \cdot 1 + 2 \cdot 1 & 2 \cdot (-1) + (-1) \cdot 1 + 2 \cdot 2 \\ 0 \cdot 1 + 1 \cdot 2 + 1 \cdot 3 & 0 \cdot 2 + 1 \cdot 1 + 1 \cdot 1 & 0 \cdot (-1) + 1 \cdot 1 + 1 \cdot 2 \end{pmatrix}$$

$$= \begin{pmatrix} 6 & 5 & 1 \\ 5 & 2 & 3 \end{pmatrix}$$

5)
$${}^{t}A = \begin{pmatrix} 1 & 2 & -1 \\ 2 & 1 & 1 \\ 3 & 1 & 2 \end{pmatrix}$$
 est de type 3×3 .
 ${}^{t}B = \begin{pmatrix} 2 & -1 & 2 \\ 0 & 1 & 1 \end{pmatrix}$ est de type 2×3 .

L'addition ${}^t\!A + {}^t\!B$ est donc impossible, puisque les matrices ${}^t\!A$ et ${}^t\!B$ ne sont pas du même type.