Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

1 Input Parameters

Modu	ıle		Bea	am Coverplate Connection	
MainMo	odule			Moment Connection	
Moment(kNm)*			50.0		
Shear (I	kN)*			50.0	
Axial (k	(N) *			30.0	
		Section			
	Beam S	ection *		NPB 600x220x122.4	
т Ү	Prefer	rences		Outside	
	Mate	rial *		E 250 (Fe 410 W)A	
	Ultimate stren	ngth, fu (MPa)		410	
Z————————————————————————————————————	Yield Strength , fy (MPa)	250	R1(mm)	2.4	
R ₁	Mass	122.45	R2(mm)	0.0	
R ₂	Area(mm2) -	15600.0	Iz(mm4)	920834000.0	
V	D(mm)	600.0	Iy(mm4)	33828700.0	
	B(mm)	220.0	rz(mm)	243.0	
	t(mm)	12.0	ry(mm)	46.6	
	T(mm)	19.0	Zz(mm3)	3069450.0	
	FlangeSlope	90	Zy(mm3)	307530.0	
		Bolt Details			
Diameter	(mm)*		[12.0,	, 16.0, 20.0, 24.0, 30.0, 36.0]	
Grade	e *		[3.6, 4.6, 4.8	8, 5.6, 5.8, 6.8, 8.8, 9.8, 10.9, 12.9]	
Туре	*			Bearing Bolt	
Bolt hole type			Standard		
Slip factor	r (µ_f)			0.3	
Type of	edges		a - \$	Sheared or hand flame cut	
Gap between beam and	 support (mm)		10.0	
Are the members exposed to	 corrosive	influences		False	

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

2 Design Checks

2.1 Member Capacity

Check	Required	Provided	Remarks
Axial Capacity Member Ac (kN)		$A_c = \frac{A * f_y}{\gamma_{m0} * 10^3}$ $= \frac{15600.0 * 250}{1.1 * 10^3}$ $= 3545.45$	
Shear Capacity Member Sc (kN)		$S_c = \frac{A_v * f_y}{\sqrt{3} * \gamma_{mo} * 10^3}$ $= \frac{562.0 * 12.0 * 250}{\sqrt{3} * 1.1 * 10^3}$ $= 884.92$	
Plastic Moment Capacity Pmc (kNm)		$Pmc = \frac{\beta_b * Z_p * fy}{\gamma_{mo} * 10^6}$ $= \frac{1 * 947532.0 * 250}{1.1 * 10^6}$ $= 215.35$	
Moment Deformation Criteria Mdc (kNm)		$Mdc = \frac{1.5 * Z_e * fy}{1.1 * 10^6}$ $= \frac{1.5 * 3069450.0 * 250}{1.1 * 10^6}$ $= 1046.4$	
Moment Capacity Member Mc (kNm)		$M_c = min(Pmc, Mdc)$ = $min(215.35, 1046.4)$ = 215.35	

	Company Name	LoremIpsum	Project Title	Fossee
	Group/Team Name	LoremIpsum	Subtitle	
	Designer	LoremIpsum	Job Number	123
ĺ	Date	26 /05 /2020	Client	LoremIpsum

2.2 Load Consideration

Check	Required	Provided	Remarks
Applied Axial Load Au (kN)	$Ac_{min} = 0.3 * A_c$ = 0.3 * 3545.45 = 1063.64 $Ac_{max} = Ac$ = 3545.45	$A_u = 1063.64$	Pass
Applied Shear Load Vu (kN)	$Vc_{min} = 0.6 * S_c$ = 0.6 * 884.92 = 530.95 $Vc_{max} = Sc$ = 884.92	$V_u = 530.95$	Pass
Applied Moment Load Mu (kNm)	$Mc_{min} = 0.5 * M_c$ = 0.5 * 215.35 = 107.67 $Mc_{max} = Mc$ = 215.35	$M_u = 107.67$	Pass
Forces Carried by Web		$A_{w} = Axial \ force \ in \ web$ $= \frac{(D - 2 * T) * t * Au}{A}$ $= \frac{(600.0 - 2 * 19.0) * 12.0 * 1063.64}{15600.0}$ $= 459.82 \ kN$ $M_{w} = Moment \ in \ web$ $= \frac{Z_{w} * Mu}{Z}$ $= \frac{947532.0 * 107.67}{3512400.0}$ $= 29.05 \ kNm$	
Forces Carried by Flange		$A_f = Axial \ force \ in \ flange$ $= \frac{Au * B * T}{A}$ $= \frac{1063.64 * 220.0 * 19.0}{15600.0}$ $= 285.0 \ kN$ $M_f = Moment \ in \ flange$ $= Mu - M_w$ $= 107.67 - 29.05$ $= 78.63 \ kNm$ $F_f = flange \ force$ $= \frac{M_f * 10^3}{D - T} + A_f$ $= \frac{78.63 * 10^3}{600.0 - 19.0} + 285.0$ $= 420.33 \ kN$	

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

2.3 Initial Member Check

Check	Required	Provided	Remarks
Flange Tension Yielding Capacity (kN)	$F_f = 420.33$	$T_{dg} = \frac{l * t * f_y}{\gamma_{mo}}$ $= \frac{1 * 220.0 * 19.0 * 250}{1.1}$ $= 950.0$	Pass
Web Tension Yielding Capacity (kN)	$A_w = 459.82$	$T_{dg} = \frac{l * t * f_y}{\gamma_{mo}}$ $= \frac{1 * 562.0 * 12.0 * 250}{1.1}$ $= 1533$	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

2.4 Initial flange plate height check

Check	Required	Provided	Remarks
flange_plate.Height	Outer.b $>= 50$	Outer.b = 220.0	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

2.5 Flange plate thickness

Check	Required	Provided	Remarks
Thickness (mm)*	T = 19.0	$t_f = 20.0$	Pass
Plate Area check (mm2)	$pt.area >=$ $connected\ member\ area * 1.05$ $= 4389.0$	outer.b = B = 220.0 pt.area = 20.0 * 220.0 = 4400.0	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

2.6 Web plate thickness

Check	Required	Provided	Remarks
Thickness	t = 6.0	$t_w = 8.0$	Pass
(mm)*			
		$web \ b = D - (2 * T) - (2 * r_1)$	
	$\mid pt.area>=$	= 600.0 - (2*19.0) - (2*2.4)	
Plate Area	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	=502.0	Pass
check (mm2)	=6325.2	pt.area = 8.0 * 2 * 502.0	
		= 8032.0	

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

2.7 Web Spacing Checks

Check	Required	Provided	Remarks
Min.Diameter (mm)		d = 12.0	
Min. Gauge (mm)	$p/g_{min} = 2.5 d$ $= 2.5 * 12.0 = 30.0$	$g = 50 \ (Row \ Limit \ (r_l) = 2)$	
Min. Edge Distance (mm)	$e/e'_{min} = [1.5 \text{ or } 1.7] * d_0$ = 1.7 * 13.0 = 22.1	40	
Spacing Check	$depth = 2 * e + (r_l - 1) * g$ $= 2 * 40 + (2.0 - 1) * 50$ $= 130.0$	502.0	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

2.8 Flange Spacing Checks

Check	Required	Provided	Remarks
Min.Diameter (mm)		d = 12.0	
Min. Gauge (mm)	$p/g_{min} = 2.5 d$ $= 2.5 * 12.0 = 30.0$	$g = 0.0 (Row \ Limit \ (r_l) = 1)$	
Min. Edge Distance (mm)	$e/e'_{min} = [1.5 \text{ or } 1.7] * d_0$ = 1.7 * 13.0 = 22.1	40	
Spacing Check	$depth = 2 * e + (r_l - 1) * g$ $= 2 * 40 + (1.0 - 1) * 50$ $= 80.0$	101.6	Pass

	Company Name	LoremIpsum	Project Title	Fossee
	Group/Team Name	LoremIpsum	Subtitle	
	Designer	LoremIpsum	Job Number	123
ĺ	Date	26 /05 /2020	Client	LoremIpsum

2.9 Flange Bolt Checks

Check	Required	Provided	Remarks
Diameter (mm)	Bolt Quantity Optimisation	d = 20.0	
Grade	Bolt Grade Optimisation	10.9	
Bolt.fu		1000.0	
Bolt.fy		900.0	
Hole Diameter (mm)		$d_0 = 22.0$	
Shear Capacity (kN)		$V_{dsb} = \frac{f_{ub} \ n_n \ A_{nb}}{\sqrt{3} \ \gamma_{mb}}$ $= \frac{1000.0 * 1 * 245}{\sqrt{3} \ * 1.25}$ $= 113.16$	
Bearing Capacity (kN)		$V_{dpb} = \frac{2.5 \ k_b \ d \ t \ f_u}{\gamma_{mb}}$ $= \frac{2.5 \ * 0.51 * 20.0 * 19.0 * 410}{1.25}$ $= 158.92$	
Bolt Capacity (kN)		$V_{db} = min (V_{dsb}, V_{dpb})$ = $min (113.16, 158.92)$ = 113.16	
No of Bolts	$R_{u} = \sqrt{V_{u}^{2} + A_{u}^{2}}$ $n_{trial} = R_{u}/V_{bolt}$ $R_{u} = \frac{\sqrt{0.0^{2} + 420.33^{2}}}{113.16}$ $= 8$	8	
No of Columns		$n_c = 4$	
No of Rows		$n_r = 2$	
Min. Pitch (mm)	$p/g_{min} = 2.5 d$ $= 2.5 * 20.0 = 50.0$	50	Pass
Max. Pitch (mm)	$p/g_{max} = \min(32 \ t, \ 300 \ mm)$ = $\min(32 * 19.0, \ 300 \ mm)$ = 300) 50	Pass
Min. Gauge (mm)	$p/g_{min} = 2.5 d$ $= 2.5 * 20.0 = 50.0$	0.0	N/A
Max. Gauge (mm)	$p/g_{max} = \min(32 \ t, \ 300 \ mm)$ = $\min(32 * 19.0, \ 300 \ mm)$ = 300	0.0	N/A
Min. End Distance (mm)	$e/e'_{min} = [1.5 \text{ or } 1.7] * d_0$ = 1.7 * 22.0 = 37.4	40	Pass

	Company Name	LoremIpsum	Project Title	Fossee
	Group/Team Name	LoremIpsum	Subtitle	
	Designer	LoremIpsum	Job Number	123
ĺ	Date	26 /05 /2020	Client	LoremIpsum

Check	Required	Provided	Remarks
Max. End Distance (mm)	$e/e'_{max} = 12 \ t \ \varepsilon$ $\varepsilon = \sqrt{\frac{250}{f_y}}$ $e/e'_{max} = 12 \ *20.0 * \sqrt{\frac{250}{250}}$ $= 240.0$	40	Pass
Min. Edge Distance (mm)	$e/e^{\circ}_{min} = [1.5 \text{ or } 1.7] * d_0$ = 1.7 * 22.0 = 37.4	50.8	Pass
Max. Edge Distance (mm)	$e/e'_{max} = 12 \ t \ \varepsilon$ $\varepsilon = \sqrt{\frac{250}{f_y}}$ $e/e'_{max} = 12 \ *20.0 * \sqrt{\frac{250}{250}}$ $= 240.0$	50.8	Pass
Bolt Capacity post Long Joint (kN)	$if \ l \geq 15 * d \ then \ V_{rd} = \beta_{ij} * V_{db}$ $if \ l < 15 * d \ then \ V_{rd} = V_{db}$ $where,$ $l = ((nc \ or \ nr) - 1) * (p \ or \ g)$ $\beta_{ij} = 1.075 - l/(200 * d)$ $but \ 0.75 \leq \beta_{ij} \leq 1.0$	$l = ((nc \ or \ nr) - 1) * (p \ or \ g)$ $lc = 2 * ((\frac{4}{2} - 1) * 50 + 40) + 10.0$ $= 190.0$ $lr = 2 * ((\frac{2}{2} - 1) * 0.0 + 50.8$ $+ 2.4) + 12.0 = 118.399999999999999999999999999999999999$	9
Capacity (kN)	105.08	113.16	Pass

	Company Name	LoremIpsum	Project Title	Fossee
	Group/Team Name	LoremIpsum	Subtitle	
	Designer	LoremIpsum	Job Number	123
ĺ	Date	26 /05 /2020	Client	LoremIpsum

2.10 Web Bolt Checks

Check	Required	Provided	Remarks
Shear Capacity (kN)		$V_{dsb} = \frac{f_{ub} \ n_n \ A_{nb}}{\sqrt{3} \ \gamma_{mb}}$ $= \frac{1000.0 * 2 * 245}{\sqrt{3} \ * 1.25}$ $= 226.32$	
Bearing Capacity (kN)		$V_{dpb} = \frac{2.5 \ k_b \ d \ t \ f_u}{\gamma_{mb}}$ $= \frac{2.5 \ * 0.51 * 20.0 * 12.0 * 410}{1.25}$ $= 100.37$	
Bolt Capacity (kN)		$V_{db} = min (V_{dsb}, V_{dpb})$ = $min (226.32, 100.37)$ = 100.37	
No of Bolts	$R_u = \sqrt{V_u^2 + A_u^2}$ $n_{trial} = R_u/V_{bolt}$ $R_u = \frac{\sqrt{530.95^2 + 459.82^2}}{100.37}$ $= 14$	28	
No of Columns		$n_c = 4$	
No of Rows		$n_r = 7$	
Min. Pitch (mm)	$p/g_{min} = 2.5 d$ =2.5 * 20.0 = 50.0	50	Pass
Max. Pitch (mm)	$p/g_{max} = \min(32 \ t, \ 300 \ mm)$ = $\min(32 * 8.0, \ 300 \ mm)$ = 256.0	50	Pass
Min. Gauge (mm)	$p/g_{min} = 2.5 d$ $= 2.5 * 20.0 = 50.0$	65	Pass
Max. Gauge (mm)	$p/g_{max} = \min(32 \ t, \ 300 \ mm)$ = $\min(32 * \ 8.0, \ 300 \ mm)$ = 256.0	65	Pass
Min. End Distance (mm)	$e/e^{\circ}_{min} = [1.5 \text{ or } 1.7] * d_0$ = 1.7 * 22.0 = 37.4	40	Pass
Max. End Distance (mm)	$e/e'_{max} = 12 t \varepsilon$ $\varepsilon = \sqrt{\frac{250}{f_y}}$ $e/e'_{max} = 12 *8.0 * \sqrt{\frac{250}{250}}$ $= 96.0$	40	Pass
Min. Edge Distance (mm)	$e/e'_{min} = [1.5 \text{ or } 1.7] * d_0$ = 1.7 * 22.0 = 37.4	40	Pass

	Company Name	LoremIpsum	Project Title	Fossee
	Group/Team Name	LoremIpsum	Subtitle	
	Designer	LoremIpsum	Job Number	123
ĺ	Date	26 /05 /2020	Client	LoremIpsum

Check	Required	Provided	Remarks
Max. Edge Distance (mm)	$e/e'_{max} = 12 \ t \ \varepsilon$ $\varepsilon = \sqrt{\frac{250}{f_y}}$ $e/e'_{max} = 12 \ *8.0 * \sqrt{\frac{250}{250}}$ $= 96.0$	40	Pass
Parameters required for bolt force (mm)		$l_n = length \ available$ $l_n = (n_r - 1) * g$ $= (7 - 1) * 65$ $= 390$ $y_{max} = l_n/2$ $= 390/2$ $= 195.0$ $x_{max} = p * (\frac{n_c}{2} - 1)/2$ $= 50 * (\frac{4}{2} + -1)/2$ $= 25.0$ $M_d = (V_u * ecc + M_w)$	
Moment Demand (kNm		$M_d = (V_u * ecc + M_w)$ $= \frac{(530.95 * 10^3 * 70.0 + 29.05 * 1}{10^6}$ $= 66.21$	06)
		$vbv = V_u/(n_r * n_c)$ $= \frac{530.95}{(7 * 4)}$ $= 37.93$ $tmh = \frac{M_d * y_{max}}{\Sigma r_i^2}$ $= \frac{66.21 * 195.0}{245.35}$ $= 52.63$ $tmv = \frac{M_d * x_{max}}{\Sigma r_i^2}$ $= \frac{66.21 * 25.0}{245.35}$ $= 6.75$ $abh = \frac{A_u}{(n_r * n_c)}$ $= \frac{459.82}{(7 * 4)}$ $= 32.84$ $vres = \sqrt{(vbv + tmv)^2 + (tmh + abh)^2}$ $= \sqrt{(37.93 + 6.75)^2 + (52.63 + abh)^2}$ $= 96.44$	

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

Check	Required	Provided	Remarks
Bolt Capacity post Long Joint (kN)	$if \ l \ge 15 * d \ then \ V_{rd} = \beta_{ij} * V_{db}$ $if \ l < 15 * d \ then \ V_{rd} = V_{db}$ $where,$ $l = ((nc \ or \ nr) - 1) * (p \ or \ g)$ $\beta_{ij} = 1.075 - l/(200 * d)$ $but \ 0.75 \le \beta_{ij} \le 1.0$	$l = ((nc \ or \ nr) - 1) * (p \ or \ g)$ $lc = 2 * ((\frac{4}{2} - 1) * 50 + 40) + 10.0$ $= 190.0$ $lr = (7 - 1) * 65 = 390$ $l = 390$ $15 * d = 15 * 20.0 = 300.0$ $since, \ l \ge 15 * d$ $then \ V_{rd} = \beta_{ij} * V_{db}$ $\beta_{ij} = 1.075 - 390/(200 * 20.0)$ $= 0.98$ $V_{rd} = 0.98 * 100.37 = 98.36$	
Capacity (kN)	96.44	98.36	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

2.11 Outer flange plate Checks

Check	Required	Provided	Remarks
Min. Plate Height (mm)		220.0	Pass
Min. Plate Length (mm)	$2[2 * e_{min} + (\frac{bolt \ lines}{2} - 1) * p_{min})] + \frac{gap}{2}]$ $= 2 * [(2 * 37.4 + (\frac{4}{2} - 1) * 50.0]$ $= +\frac{10.0}{2}]$ $= 259.6$	270.0	Pass
Min.Plate Thickness (mm)	$t_w = 19.0$	20.0	Pass

	Company Name	LoremIpsum	Project Title	Fossee
	Group/Team Name	LoremIpsum	Subtitle	
	Designer	LoremIpsum	Job Number	123
ĺ	Date	26 /05 /2020	Client	LoremIpsum

2.12 Member Checks

Check	Required	Provided	Remarks
		$T_{dg} = \frac{l * t * f_y}{\gamma_{mo}}$	
		γ_{mo}	
Flange Tension Yielding		$=\frac{1*220.0*19.0*250}{1.1}$	
Capacity (kN)			
		= 950.0	
		$T_{dn} = \frac{0.9 * A_n * f_u}{\gamma_{m1}}$	
Flange Tension Rupture		$0.0 \times (220.0 - 2 \times 22.0) \times 10.0 \times 1$	410
Capacity (kN)		$= \frac{0.9 * (220.0 - 2 * 22.0) * 19.0 *}{1.25}$	410
Capacity (M11)		= 987.15	
		$A_{va}f_{v} = 0.9A_{tn}f_{v}$	
		$T_{db1} = \frac{A_{vg}f_y}{\sqrt{3}\gamma_{m0}} + \frac{0.9A_{tn}f_u}{\gamma_{m1}}$	
Flange Block Shear Ca-		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
pacity (kN)		$T_{db2} = \frac{0.9 * A_{vn} f_u}{\sqrt{3} \gamma_{m1}} + \frac{A_{tg} f_y}{\gamma_{m0}}$	
		$T_{db} = min(T_{db1}, T_{db2}) = 807.89$ $T_{d} = min(T_{dg}, T_{dn}, T_{db})$	
Flange Tension Capacity	$f_f = 420.33$	= min(950.0, 987.15, 807.89)	Pass
(kN)	$\int f = 120.00$	= 807.89	1 6055
		$T_{dg} = \frac{l * t * f_y}{\gamma_{mo}}$	
Web Tension Yielding Ca-		1*562.0*12.0*250	
pacity (kN)		$=\frac{1*562.0*12.0*250}{1.1}$	
		=1532.73	
		$= 1532.73$ $T_{dn} = \frac{0.9 * A_n * f_u}{\gamma_{m1}}$	
		,	
Web Tension Rupture Ca-		$= \frac{0.9 * (562.0 - 7 * 22.0) * 12.0 *}{1.25}$	410
pacity (kN)		1.25	
		= 1445.3	
		$= 1445.3$ $T_{db1} = \frac{A_{vg}f_y}{\sqrt{3}\gamma_{m0}} + \frac{0.9A_{tn}f_u}{\gamma_{m1}}$	
		$\sqrt{3}\gamma_{m0}$ γ_{m1}	
Web Block Shear Capac-		$T_{db2} = rac{0.9 * A_{vn} f_u}{\sqrt{3} \gamma_{m1}} + rac{A_{tg} f_y}{\gamma_{m0}}$	
ity (kN)		****	
		$T_{db} = min(T_{db1}, T_{db2}) = 1339.06$ $T_d = min(T_{dg}, T_{dn}, T_{db})$	
Web Tension Capacity	$A_w = 459.82$	= min(1532.73, 1445.3, 1339.06)	Pass
(kN)		= 1339.06	

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

2.13 Flange Plate Capacity Checks in Axial-Outside

Check	Required	Provided	Remarks
Tension Yielding Capacity (kN)		$T_{dg} = \frac{l * t * f_y}{\gamma_{mo}}$ $= \frac{1 * 220.0 * 20.0 * 250}{1.1}$ $= 1000.0$	
Tension Rupture Capacity (kN)		$T_{dn} = \frac{0.9 * A_n * f_u}{\gamma_{m1}}$ $= \frac{0.9 * (220.0 - 2 * 22.0) * 20.0 *}{1.25}$ $= 1039.1$	410
Block Shear Capacity (kN)		$T_{db1} = \frac{A_{vg}f_y}{\sqrt{3}\gamma_{m0}} + \frac{0.9A_{tn}f_u}{\gamma_{m1}}$ $T_{db2} = \frac{0.9 * A_{vn}f_u}{\sqrt{3}\gamma_{m1}} + \frac{A_{tg}f_y}{\gamma_{m0}}$ $T_{db} = min(T_{db1}, T_{db2}) = 926.77$	
Plate Tension Capacity (kN)	$f_f = 420.33$	$T_d = min(T_{dg}, T_{dn}, T_{db})$ $= min(1000.0, 1039.1, 926.77)$ $= 926.77$	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

2.14 Web Plate Capacity Checks in Axial

Check	Required	Provided	Remarks
Tension Yielding Capacity (kN)		$T_{dg} = \frac{l * t * f_y}{\gamma_{mo}}$ $= \frac{1 * 470 * 8.0 * 250}{1.1}$ $= 986.74$	
Tension Rupture Capacity (kN)		$T_{dn} = \frac{0.9 * A_n * f_u}{\gamma_{m1}}$ $= \frac{0.9 * (470 - 7 * 22.0) * 8.0 * 10}{1.25}$ $= 1492.53$	00.0
Block Shear Capacity (kN)		$T_{db1} = \frac{A_{vg}f_y}{\sqrt{3}\gamma_{m0}} + \frac{0.9A_{tn}f_u}{\gamma_{m1}}$ $T_{db2} = \frac{0.9 * A_{vn}f_u}{\sqrt{3}\gamma_{m1}} + \frac{A_{tg}f_y}{\gamma_{m0}}$ $T_{db} = min(T_{db1}, T_{db2}) = 1785.42$	
Plate Tension Capacity (kN)	$A_w = 459.82$	$T_d = min(T_{dg}, T_{dn}, T_{db})$ $= min(1709.09, 1492.53, 1785.42)$ $= 1492.53$	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

2.15 Web Plate Capacity Checks in Shear

Check	Required	Provided	Remarks	
		$V_{dy} = \frac{A_v * f_y}{\sqrt{3} * \gamma_{mo}}$		
Shear yielding Capacity (V_dy) (kN)		$=\frac{1*470*8.0*250}{\sqrt{3}*1.1}$		
		= 986.74		
		$V_{dn} = \frac{0.9 * A_{vn} * f_u}{\sqrt{3} * \gamma_{m1}}$		
Shear Rupture Capacity (V_dn) (kN)		$= \frac{0.9 * (470 - (2.0 * 22.0)) * 8.0}{\sqrt{3} * 1.25}$	¥ 410	
(V_dii) (kiV)		= 861.71		
		$T_{db1} = \frac{A_{vg} f_y}{\sqrt{3} \gamma_{m0}} + \frac{0.9 A_{tn} f_u}{\gamma_{m1}}$		
Block Shear Capacity in Shear (V_db) (kN)		$T_{db2} = \frac{0.9 * A_{vn} f_u}{\sqrt{3} \gamma_{m1}} + \frac{A_{tg} f_y}{\gamma_{m0}}$		
		$T_{db} = min(T_{db1}, T_{db2}) = 1109.9$		
		$V_d = min(V_{dy}, V_{dn}, V_{db})$		
Plate Shear Capacity (kN)	$V_u = 530.95$	= min(986.74, 861.71, 1785.42)	Pass	
		= 861.71		

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

3 3D View

Figure 1: 3D View