

Éléments de Physique : Mécanique

CHAPITRE 5: MOUVEMENT CIRCULAIRE

Table des matières

- 1. Accélération et force centripètes
- 2. Mouvement circulaire uniformément accéléré (MCUA)
- 3. Moment d'inertie

Introduction

La mécanique de Newton est déterministe.

Si nous connaissons au temps t:

- les **forces** agissant sur un corps
- > la position initiale
- la vitesse initiale

Alors nous sommes en mesure de déterminer son **mouvement**, c'est-à-dire de prédire où le corps se trouve en $t + \Delta t$.

Ces lois s'appliquent :

- > au mouvement rectiligne
- au mouvement général à deux dimensions
- > au mouvement circulaire
 - voiture sur une trajectoire circulaire
 - > satellite en orbite
 - point d'un corps en rotation

Déplacements sur un cercle

Position

$$x_P = r \cos \theta$$

$$y_P = r \sin \theta$$

Vitesse

$$\boldsymbol{v} = v_{x}\widehat{\boldsymbol{x}} + v_{y}\widehat{\boldsymbol{y}} = -v\sin\theta\,\widehat{\boldsymbol{x}} + v\cos\theta\,\widehat{\boldsymbol{y}}$$
$$= -v\frac{y_{P}}{r}\widehat{\boldsymbol{x}} + v\frac{x_{P}}{r}\widehat{\boldsymbol{y}}$$

Accélération

$$\mathbf{a} = -\frac{v}{r} \frac{dy_P}{dt} \hat{\mathbf{x}} + \frac{v}{r} \frac{dx_P}{dt} \hat{\mathbf{y}}$$
$$= -\frac{v^2}{r} \cos \theta \, \hat{\mathbf{x}} - \frac{v^2}{r} \sin \theta \, \hat{\mathbf{y}}$$

Accélération centripète

$$\boldsymbol{a} = -\frac{v^2}{r}\cos\theta\,\,\widehat{\boldsymbol{x}} - \frac{v^2}{r}\sin\theta\,\,\widehat{\boldsymbol{y}}$$

Module

$$a = \sqrt{a_x^2 + a_y^2} = \frac{v^2}{r} \sqrt{(\cos \theta)^2 + (\sin \theta)^2}$$
$$= \frac{v^2}{r}$$

Direction

$$\tan \phi = \frac{a_y}{a_x} = \frac{-\frac{v^2}{r}\sin\theta}{-\frac{v^2}{r}\cos\theta} = \tan\theta \rightarrow \text{l'accélération est radiale}$$

$$\text{signes } \text{``-" } \text{`` } \rightarrow \text{ dirigée vers le centre}$$

Accélération centripète

$$\boldsymbol{a}_r = -\frac{v^2}{r}\hat{\boldsymbol{r}}$$

Un objet sur une trajectoire circulaire possède une accélération

- \triangleright radiale (perpendiculaire à v)
- centripète (orientée vers le centre)

Force centripète

Un objet sur une **trajectoire circulaire** possède une **accélération radiale centripète** :

$$a_r = -\frac{v^2}{r}\hat{\imath}$$

D'après la $1^{\text{ère}}$ loi de Newton, il existe donc une **force centripète** F_r .

D'après la 2^{ème} loi de Newton :

$$\boldsymbol{F}_r = m\boldsymbol{a}_r = -\frac{mv^2}{r}\hat{\boldsymbol{r}}$$

L'origine de cette force dépend de la situation :

- voiture : forces de frottement
- satellite : force d'attraction gravitationnelle
- électron : force coulombienne

Exemple: voiture sur trajectoire circulaire

La seule force à même de produire une accélération centripète est le frottement statique entre les pneus et la route.

La force centripète nécessaire au maintien sur la trajectoire ne peut être supérieure à $f_s(\max)$:

$$F_r = \frac{mv^2}{r} \le f_s(\max) = \mu_s N = \mu_s mg$$

Vitesse maximale

$$v \leq \sqrt{\mu_s rg}$$

indépendants de la masse!

Rayon minimum

$$r \ge \frac{v^2}{\mu_s g}$$

Dérapage

Si les forces de frottement ne peuvent fournir l'accélération centripète nécessaire au maintien sur la trajectoire circulaire : **dérapage**

Les forces de frottement cinétique étant inférieures aux forces de frottement statique, on dérape d'autant plus ...

Virages relevés

Lorsqu'on relève un virage, une partie de N contribue à fournir a_r .

Selon $y: N\cos\theta = w + f_s\sin\theta$

$$\to N = \frac{mg}{\cos\theta} + f_s \tan\theta$$

Selon $x: ma_r = N \sin \theta + f_s \cos \theta$

$$\rightarrow \frac{mv^2}{r} = mg \tan \theta + f_s \left(\frac{\sin^2 \theta}{\cos \theta} + \cos \theta \right) = mg \tan \theta + \frac{f_s}{\cos \theta}$$

Sans frottements:
$$f_s = 0 \rightarrow \tan \theta = \frac{v^2}{rg}$$
 Exemple: $r = 900 \text{ m}$

Exemple :
$$r = 900 \text{ m}$$

 $v = 30 \text{ m/s}$ $\rightarrow \theta = 6^{\circ}$

Virages relevés avec frottements

Selon
$$y: N\cos\theta = w + \mu_s N\sin\theta$$
 $\rightarrow N = \frac{mg}{\cos\theta - \mu_s\sin\theta}$
Selon $x: ma_r = N\sin\theta + \mu_s N\cos\theta$

$$\rightarrow \frac{mv^2}{r} = \frac{mg\sin\theta}{\cos\theta - \mu_s\sin\theta} + \frac{\mu_s mg\cos\theta}{\cos\theta - \mu_s\sin\theta}$$

$$v^2 = \frac{rg(\sin\theta + \mu_s\cos\theta)}{\cos\theta - \mu_s\sin\theta}$$

$$v^2 = \frac{rg(\tan\theta + \mu_s)}{1 - \mu_s\tan\theta}$$

Exemple :
$$r=900$$
 m et $\theta=6^\circ$ $\mu_s=0.1$ \rightarrow $v=43$ m/s (154 km/h) $\mu_s=0.5$ \rightarrow $v=75$ m/s (270 km/h) $\mu_s=0.8$ \rightarrow $v=93$ m/s (336 km/h)

Poids effectif

- \triangleright Quelle composante de w_e est la plus grande?
- Quelle force résiste à w?

Mouvement circulaire uniformément accéléré

Mouvement dans lequel le **module de la vitesse** est **modifié**.

On peut décomposer le vecteur accélération en

 \triangleright Une composante **tangentielle** ($\parallel v$)

$$\boldsymbol{a}_t = \frac{dv}{dt}\hat{\boldsymbol{t}}$$

responsable de la variation du **module** de v.

 \triangleright Une composante **radiale** ($\perp v$)

$$a_r = -\frac{v^2}{r}\hat{r}$$

responsable de la variation de **direction** de v.

$$a = a_t + a_r$$

Mouvement quelconque

Un mouvement quelconque se décompose en une succession de mouvements circulaires uniformément accélérés (MCUA).

On peut séparer la trajectoire en segments sur lesquels $a = a_r + a_t$ est constante.

Chacun de ces segments correspond à un MCUA particulier.

Position angulaire

Lorsqu'un objet décrit une trajectoire circulaire, il y a une correspondance entre la distance parcourue et l'angle balayé.

360°:
$$s = 2\pi r$$
 $\theta = 2\pi$
180°: $s = \pi r$ $\theta = \pi$
90°: $s = \frac{\pi}{2}r$ $\theta = \frac{\pi}{2}$

Le radian est une unité sans dimension.

Relation entre variables linéaire (s) et angulaire (θ) :

$$s = \theta r$$

Correspondance degré/radian

Angle			
Degrés	Radians	Cosinus	Sinus
0	0	$\frac{\sqrt{4}}{2} = 1$	$\frac{\sqrt{0}}{2} = 0$
30	$\pi/6$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{1}}{2} = \frac{1}{2}$
45	$\pi/4$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$
60	$\pi/3$	$\frac{\sqrt{1}}{2} = \frac{1}{2}$	$\frac{\sqrt{3}}{2}$
90	$\pi/2$	$\frac{\sqrt{0}}{2} = 0$	$\frac{\sqrt{4}}{2} = 1$

Vitesse angulaire

La **vitesse angulaire** est la variation de la position angulaire sur un intervalle de temps donné. Elle est donnée en **rad/s**.

- ightharpoonup Vitesse angulaire moyenne : $\overline{\omega} = \frac{\Delta \theta}{\Delta t}$
- Vitesse angulaire instantanée : $\omega = \lim_{\Delta t \to 0} \frac{\Delta \theta}{\Delta t} = \frac{d\theta}{dt}$

La vitesse angulaire est un vecteur dont

- la direction est donnée par l'axe de rotation
- le sens s'obtient par la règle de la main droite

Relation entre vitesses angulaire (ω) et linéaire (v) :

$$\omega = \frac{d\theta}{dt}$$
 $\stackrel{S = r\theta}{\longrightarrow}$ $\omega = \frac{1}{r}\frac{ds}{dt} = \frac{1}{r}v \rightarrow v = r\omega$

Exemple: rotation des étoiles

Considérons une étoile en rotation : masse M, rayon R, masse volumique ρ

Condition pour que la masse m reste sur l'étoile :

$$F_g \ge ma_r \to \frac{GmM}{R^2} \ge m\omega^2 R$$

 $\omega^2 \le \frac{GM}{R^3} = \frac{4}{3}\pi G\rho \to \omega_c = \sqrt{\frac{4}{3}\pi G\rho}$

Masse volumique et vitesse critique :

- Soleil: $\omega = \frac{1}{27}$ tour/jour < $\omega_c = 8$ tours/jour
- ightharpoonup Pulsar : $\omega = 30$ tours/s \rightarrow $\rho \gtrsim 10^{12} \times \rho_{\rm soleil}$

Accélération angulaire

L'accélération angulaire est la variation de la vitesse angulaire sur un intervalle de temps donné. Elle est donnée en rad/s².

- ightharpoonup Accélération angulaire moyenne : $\bar{\alpha} = \frac{\Delta \omega}{\Delta t}$
- ightharpoonup Accélération angulaire instantanée : $\alpha = \lim_{\Delta t \to 0} \frac{\Delta \omega}{\Delta t} = \frac{d\omega}{dt}$

L'accélération angulaire est un vecteur dont

- la direction est donnée par l'axe de rotation
- le sens s'obtient par la règle de la main droite

Accélération angulaire

Relation entre accélérations angulaire (α) et linéaires (a_t et a_r) :

L'accélération angulaire est reliée à l'accélération tangentielle

$$\alpha = \frac{d\omega}{dt}$$

$$\boldsymbol{a}_{t} = \frac{dv}{dt}\hat{\boldsymbol{t}} = r\frac{d\omega}{dt}\hat{\boldsymbol{t}}$$

$$\rightarrow \boldsymbol{a}_{t} = r\alpha \hat{\boldsymbol{t}}$$

L'accélération radiale est reliée à la vitesse angulaire

$$v = r\omega$$

$$\boldsymbol{a}_r = -\frac{v^2}{r}\hat{\boldsymbol{r}}$$

$$\rightarrow \boldsymbol{a}_r = -\omega^2 r \,\hat{\boldsymbol{r}}$$

Vitesse et accélération angulaires

Attention au sens relatif de ω et α !

Mouvements de translation et de rotation

Grandeur	Translation	Rotation	Relation
Position	χ , s	θ	$s = r\theta$
Vitesse	v	ω	$v = r\omega$
Accélération	a_t a_r	α	$a_t = r\alpha$ $a_r = -\omega^2 r$

Moment de force et accélération angulaire

Moment de force :

$$\tau = rF_a$$

$$= r(ma_t)$$

$$= rm(r\alpha)$$

$$= mr^2\alpha$$

$$\tau = I\alpha$$
 avec $I = mr^2$ le moment d'inertie

Moment d'inertie

Le **moment d'inertie** représente la résistance à une variation de la rotation. Il exprime donc le coefficient de proportionnalité entre

- le moment de force total appliqué
- l'accélération angulaire résultante

$$\sum_{i} \tau_{i} = I\alpha$$

Il s'agit d'une **propriété intrinsèque d'un solide** (masse + forme) (voir liste p. 127 du Kane), pour un **axe de rotation donné**.

Pour un corps complexe :
$$I = \sum_{i} m_i r_i^2$$

Les éléments les plus éloignés de l'axe de rotation fournissent la contribution la plus importante.

Moment d'inertie : exemples

Deux masses ponctuelles (fonction de la position de l'axe) :

$$I_A = m\left(\frac{L}{2}\right)^2 + m\left(\frac{L}{2}\right)^2 = \frac{mL^2}{2}$$

$$I_B = m\left(\frac{L}{3}\right)^2 + m\left(\frac{2L}{3}\right)^2 = \frac{5mL^2}{9}$$

Roue de bicyclette :

$$I = \sum_{i} \Delta m_i R^2 = R^2 \sum_{i} \Delta m_i = mR^2$$

Définition du **rayon de giration** $k: I = mk^2 \rightarrow k = \sqrt{\frac{I}{m}}$

Distance k à laquelle il faut placer un point de même masse que le corps pour qu'il ait le même I.

MRUA et MCUA

Similarité des équations du mouvement rectiligne et circulaire.

Accélération linéaire α constante	Accélération angulaire α constante
$v = v_0 + a\Delta t$	$\omega = \omega_0 + \alpha \Delta t$
$\bar{v} = \frac{\sigma}{2}$ $v = \frac{\sigma}{2}$	$\overline{\omega} = \frac{\omega_0 + \omega}{2}$ $\Delta \theta = \omega_0 \Delta t + \frac{\alpha}{2} \Delta t^2$ $\Delta \theta = \frac{\omega_0 + \omega}{2} \Delta t$ $\omega^2 = \omega_0^2 + 2\alpha \Delta \theta$
F = ma	$\tau = I\alpha$

Remarques

Combinaison rotation-translation:

- > Translation CM : $\sum_i {m F}_i = m{m a}$ > Rotation autour du CM : $\sum_i {m au}_i = I{m lpha}$
- \triangleright Relation $a = r\alpha$

Poulie de masse non-négligeable :

$$T_1 \neq T_2$$

Exercice : Détermination de I

Exemple de détermination expérimentale du moment d'inertie avec une

masse connue m.

 \triangleright Pour la masse m:

$$mg - T = ma$$

Pour la roue :

$$\tau = I\alpha = rT$$

 \triangleright Calcul de I:

$$I = \frac{rT}{\alpha} = \frac{r^2T}{a} = \frac{mr^2(g-a)}{a}$$

On mesure l'accélération pour déterminer le moment d'inertie.

Loi de Kepler

Equation du mouvement du satellite :

$$a_r = G \frac{mM_T}{r^2} = m \frac{v^2}{r}$$

Au cours d'une période, le satellite parcourt une distance $2\pi r$:

$$T = \frac{2\pi r}{v}$$

$$G\frac{mM_T}{r^2} = \frac{m}{r} \left(\frac{2\pi r}{T}\right)^2 \quad \to \quad T^2 = \frac{4\pi^2}{\underbrace{M_T G}_C} r^3$$

Pour un satellite géostationnaire (T=24 h): $r_s=\sqrt[3]{\frac{T^2}{C}}=42000 \text{ km}$

Les marées

Deux marées hautes par jour :

Renflement équatorial opposé à la Lune, à cause de la **rotation du système Terre-Lune** autour du CM

$$F_A < F_B \text{ et } \omega^2 R_A > \omega^2 R_B$$