

Transfer Learning com VGG16 e ResNet50

Gildson Bezerra;

Mateus de Assis;

Micael Balza.

O que é transfer learning?

Por que usar transfer learning?

- Custo (Infraestrutura e energético);
- Velocidade;
- Resolve o problema.

(Fonte: https://raw.githubusercontent.com/ivanovitchm/embedded.ai/main/less-ons/week-10/TransferLearning.pdf acesso em 27/11/2022)

Dataset:

- Dataset com 98,8 MB;
- 5 classes;
 - Bengal;
 - o Boxer;
 - Keeshond;
 - o Pug;
 - o Russian blue.
- 950 Imagens
 - 190 imagens por classe.

Pré-processamento:

Resize() do OpenCV ⇒ 32x32x3

Data Segregation

⇒ Função <u>train_test_split()</u> da biblioteca <u>Scikit Learn</u>

Data Augmentation

Treinamento:

• VGG16

Arquitetura VGG (Wikimedia Commons).

ResNet50

Treinadas com:

- +14 milhões de imagens
- 1000 classes

14,197,122 images, 21841 synsets indexed

Home Download Challenges About

Not logged in. Login | Signup

ImageNet is an image database organized according to the **WordNet** hierarchy (currently only the nouns), in which each node of the hierarchy is depicted by hundreds and thousands of images. The project has been **instrumental** in advancing computer vision and deep learning research. The data is available for free to researchers for non-commercial use.

Mar 11 2021. ImageNet website update.

© 2020 Stanford Vision Lab, Stanford University, Princeton University imagenet.help.desk@gmail.com Copyright infringement

Transfer learning

Feature Extraction X Fine Tunning

Imagens retiradas de: https://github.com/ivanovitchm/embedded.ai/blob/main/lessons/week_10/TransferLearning.ipynb acesso:28/11/2022

VGG16 - Feature Extraction

- Learning rate de 0.0001
- 20 épocas

Matriz de Confusão, modelo VGG — Feature Extraction

VGG16 - Fine Tuning

- Learning rate de 0.0001
- 20 épocas
- + 1 camada FC

- 8

Bengal -

 ${\sf Matriz}\, {\sf de}\, {\sf Confus\~ao}, {\sf modelo}\, {\sf VGG-Fine}\, {\sf Tuning}$

VGG16 - Fine Tuning

- CodeCarbon
- Métricas

CO2_Emissions transfer learning with feature extractor	0.00394
CO2_Emissions transfer learning with fine tuning	0.00324
Count_Params transfer learning with feature extractor	14717253
Count_Params transfer learning with fine tuning	21138757
Energy_CPU transfer learning with feature extractor	0.00285
Energy_CPU transfer learning with fine tuning	0.00219
Energy_Consumed transfer learning with feature extractor	0.00624
Energy_Consumed transfer learning with fine tuning	0.00513
Energy_GPU transfer learning with feature extractor	0.00308
Energy_GPU transfer learning with fine tuning	0.0027
Energy_RAM transfer learning with feature extractor	0.00032
Energy_RAM transfer learning with fine tuning	0.00024
GFLOPs	15.36296
accuracy	0.9934
best_epoch	9
best_val_loss	0.0
epoch	19
loss	0.03178
val_accuracy	1.0
val_loss	0.00054

ResNet50 - Feature Extraction

- Learning rate de 0.0001
- 20 épocas

Loss e Acurácia, modelo ResNet50 — Feature Extraction

Matriz de Confusão, modelo ResNet50 — Feature Extraction

ResNet50 - Fine Tuning

- Learning rate de 0.0001
- 20 épocas
 - ⇒ Mais profunda

ResNet50 - Fine Tuning

- CodeCarbon
- Métricas

CO2_Emissions of the transfer learning with feature extractor	0.00909
CO2_Emissions of the transfer learning with fine tuning	0.00759
CO2_Emissions of the transfer learning with fine tuning (head)	0.00512
Count_Params of the transfer learning with feature extractor	23597957
Count_Params of the transfer learning with fine tuning	49279365
Count_Params of the transfer learning with fine tuning (head)	49279365
Energy_CPU	0.0038
Energy_CPU of the transfer learning with feature extractor	0.00745
Energy_CPU of the transfer learning with fine tuning	0.00519
Energy_Consumed of the transfer learning with feature extractor	0.01441
Energy_Consumed of the transfer learning with fine tuning	0.01204
Energy_Consumed of the transfer learning with fine tuning (head)	0.00811
Energy_GPU of the transfer learning with feature extractor	0.00613
Energy_GPU of the transfer learning with fine tuning	0.00627
Energy_GPU of the transfer learning with fine tuning (head)	0.00388
Energy_RAM of the transfer learning with feature extractor	0.00083
Energy_RAM of the transfer learning with fine tuning	0.00058
Energy_RAM of the transfer learning with fine tuning (head)	0.00042
GFLOPs	3.88789
accuracy	0.99604
best_epoch	16
best_val_loss	0.0
epoch	19
loss	0.01574
val_accuracy	1.0
val_loss	1e-05

Run Summary — ResNet50

Mais informações:

- https://github.com/Gildson/MODEL-CARD-Transfer-learning
- https://medium.com/@mateus.d.assis.silva/transfer-learning-com-vgg16-e-resn et50-39e58c3e84c3

