Week 2 Homework

Qianlang Chen

Math 4400 Spring 2022

Exercise I

Part I

(a)

$$\gcd(1084, 412)$$

$$= \gcd(412, 260)$$

$$= \gcd(260, 152)$$

$$= \gcd(152, 108)$$

$$= \gcd(108, 44)$$

$$= \gcd(44, 20)$$

$$= \gcd(20, 4)$$

$$= \gcd(4, 0)$$

$$= \gcd(4, 0)$$

$$= \gcd(4, 0)$$

$$= \gcd(40, 412)$$

$$= \gcd(40, 0)$$

(b)

$$\gcd(1979, 531)$$

$$= \gcd(531, 386)$$

$$= \gcd(386, 145)$$

$$= \gcd(145, 96)$$

$$= \gcd(96, 49)$$

$$= \gcd(49, 47)$$

$$= \gcd(47, 2)$$

$$= \gcd(2, 1)$$

$$= \gcd(1, 0)$$

$$= \gcd(1979, 531)$$

$$386 = 2 \times 145 + 96$$

$$145 = 1 \times 96 + 49$$

$$96 = 1 \times 49 + 47$$

$$49 = 1 \times 47 + 2$$

$$2 = 2 \times 1 + 0$$

(c)

$$gcd(305, 185)$$
 $305 = 1 \times 185 + 120$ $= gcd(185, 120)$ $185 = 1 \times 120 + 65$ $= gcd(120, 65)$ $120 = 1 \times 65 + 55$ $= gcd(65, 55)$ $65 = 1 \times 55 + 10$ $= gcd(55, 10)$ $55 = 5 \times 10 + 5$ $= gcd(10, 5)$ $10 = 2 \times 5 + 0$ $= gcd(5, 0)$ $= 5$

Part 2

(a)

$$\frac{1084}{412} = [2; 1, 1, 1, 2, 2, 5] = 2 + \frac{1}{1 + \frac{1}{1 + \frac{1}{2 + \frac{1}{5}}}}$$

(b)

$$\frac{1979}{531} = [3; 1, 2, 1, 1, 1, 23, 2] = 3 + \cfrac{1}{1 + \cfrac{1}{2 + \cfrac{1}{1 + \cfrac{1}{1 + \cfrac{1}{23 + \cfrac{1}{2}}}}}}$$

(c)

$$\frac{305}{185} = [1; 1, 1, 1, 5, 2] = 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{5 + \frac{1}{2}}}}}$$

Part 3

(a)

$$\frac{305}{185}$$
 = [1; 1, 1, 1, 5, 2], and [1; 1, 1, 1, 5] = $\frac{28}{17}$. Note that $x = 17, y = -28$ is one solution.

The other integer solutions are in the form of

$$x = 17 + \frac{185}{\gcd(305, 185)}k = \boxed{17 - 37k},$$

$$y = -28 + \frac{305}{\gcd(305, 185)}k = \boxed{-28 + 61k}$$

for $k \in \mathbb{Z}$.

(b)

$$\frac{1979}{531}$$
 = [3; 1, 2, 1, 1, 1, 23, 2], and [3; 1, 2, 1, 1, 1, 23] = $\frac{969}{260}$. Note that $x = 260, y = -969$ is one solution.

The other integer solutions are in the form of

$$x = 260 + \frac{1979}{\gcd(1979, 531)}k = 260 - 531k,$$

$$y = -969 + \frac{531}{\gcd(1979, 531)}k = -969 + 1979k$$

for $k \in \mathbb{Z}$.

(c)

First, let's use the Euclidean Algorithm to find gcd(15750, 9150):

gcd(15750, 9150)	$15750 = 1 \times 9150 + 6600$
= gcd(9150, 6600)	$9150 = 1 \times 6600 + 2550$
$=\gcd(6600,2550)$	$6600 = 2 \times 2550 + 1500$
$=\gcd(2550,1500)$	$2550 = 1 \times 1500 + 1050$
$= \gcd(1500, 1050)$	$1500 = 1 \times 1050 + 450$
$=\gcd(1050,450)$	$1050 = 2 \times 450 + 150$
$= \gcd(450, 150)$	$450 = 3 \times 150 + 0$
$= \gcd(150,0)$	
= 150	

$$\frac{15750}{9150}$$
 = [1; 1, 2, 1, 1, 2, 3], and [1; 1, 2, 1, 1, 2] = $\frac{31}{18}$. Note that $x = -18$, $y = -31$ is one solution.

The other integer solutions are in the form of

$$x = -18 + \frac{9150}{\gcd(15750, 9150)}k = \boxed{-18 - 61k},$$

$$y = 31 + \frac{15750}{\gcd(15750, 9150)}k = \boxed{31 + 105k}$$

for $k \in \mathbb{Z}$.

(d)

First, let's use the Euclidean Algorithm to find $\gcd(427, 259)$:

gcd(427, 259)	$427 = 1 \times 259 + 168$
$= \gcd(259, 168)$	$259 = 1 \times 168 + 91$
$= \gcd(168, 91)$	$168 = 1 \times 91 + 77$
$= \gcd(91, 77)$	$91 = 1 \times 77 + 14$
$=\gcd(77,14)$	$77 = 5 \times 14 + 7$
$= \gcd(14,7)$	$14 = 2 \times 7 + 0$
$=\gcd(7,0)$	
= 7	

Since the right-hand side 13 is not divisible by 7, this equation has no integer solutions.

Exercise 2

Part I

Let's run the Continued Fraction Algorithm to see what $\sqrt{3}$ looks like as a continued fraction. Set $\alpha_0 = \sqrt{3}$.

•
$$a_0 = \lfloor \sqrt{3} \rfloor = 1, \beta_0 = \sqrt{3} - 1, \alpha_1 = \frac{1}{\sqrt{3} - 1} = \frac{\sqrt{3} + 1}{2}$$

•
$$a_1 = \lfloor \frac{\sqrt{3}+1}{2} \rfloor = 1, \beta_1 = \frac{\sqrt{3}+1}{2} - 1 = \frac{\sqrt{3}-1}{2}, \alpha_2 = \frac{2}{\sqrt{3}-1} = \sqrt{3} + 1$$

•
$$a_2 = \lfloor \sqrt{3} + 1 \rfloor = 2, \beta_2 = \sqrt{3} + 1 - 2 = \sqrt{3} - 1$$

We've found a repeat as now $\beta_2 = \beta_0$. Therefore, this algorithm can never finish, meaning that $\sqrt{3}$ does not have a terminating continued fraction. So, $\sqrt{3}$ is not rational.

 $\sqrt{3} \approx 1.732$, and the fourth convergent is $[1; 1, 2, 1] = \frac{7}{4} = 1.75$, which is correct for 2 digits (1 fractional digit).

Part 2

Let's run the Continued Fraction Algorithm to see what $\sqrt{7}$ looks like as a continued fraction. Set $\alpha_0 = \sqrt{7}$.

•
$$a_0 = \lfloor \sqrt{7} \rfloor = 2, \beta_0 = \sqrt{7} - 2, \alpha_1 = \frac{1}{\sqrt{7} - 2} = \frac{\sqrt{7} + 2}{3}$$

•
$$a_1 = \lfloor \frac{\sqrt{7}+2}{3} \rfloor = 1, \beta_1 = \frac{\sqrt{7}+2}{3} - 1 = \frac{\sqrt{7}-1}{3}, \alpha_2 = \frac{3}{\sqrt{7}-1} = \frac{\sqrt{7}+1}{2}$$

•
$$a_2 = \lfloor \frac{\sqrt{7}+1}{2} \rfloor = 1, \beta_2 = \frac{\sqrt{7}+1}{2} - 1 = \frac{\sqrt{7}-1}{2}, \alpha_3 = \frac{2}{\sqrt{7}-1} = \frac{\sqrt{7}+1}{3}$$

•
$$a_3 = \lfloor \frac{\sqrt{7}+1}{3} \rfloor = 1, \beta_3 = \frac{\sqrt{7}+1}{3} - 1 = \frac{\sqrt{7}-2}{3}, \alpha_4 = \frac{3}{\sqrt{7}-2} = \sqrt{7} + 2$$

•
$$a_4 = \lfloor \sqrt{7} + 2 \rfloor = 4, \beta_4 = \sqrt{7} + 2 - 4 = \sqrt{7} - 2$$

We've found a repeat as now $\beta_4 = \beta_0$. Therefore, this algorithm can never finish, meaning that $\sqrt{7}$ does not have a terminating continued fraction. So, $\sqrt{7}$ is not rational.

 $\sqrt{7} \approx 2.646$, and the fourth convergent is $[2; 1, 1, 1] = \frac{8}{3} \approx 2.667$, which is correct for 2 digits (1 fractional digit).

Part 3

The definition of α has a self-containing feature. In other words,

$$\alpha = 1 + \frac{1}{1 + \frac{1}{1 + \cdot \cdot \cdot}} = 1 + \frac{1}{\alpha}$$

By rearranging and solving,

$$\alpha^{2} = \alpha + 1$$

$$\alpha^{2} - \alpha - 1 = 0$$

$$\implies \alpha = \frac{1 \pm \sqrt{5}}{2}$$

However, from the original equation it looks like $\alpha > 0$. Therefore, $\alpha = \frac{1 + \sqrt{5}}{2}$.