Práctica 3. Geometría computacional

Luis María Costero Valero (lcostero@ucm.es)
Jesús Doménech Arellano (jdomenec@ucm.es)
Jennifer Hernández Bécares (jennhern@ucm.es)

Marzo 2015

Demuéstrese que el máximo de los polinomios de Bézier $B_i^n(t)$ con $t \in [0,1]$ se alcanza en $t = \frac{i}{n}$.

Comenzamos escribiendo la definición del polinomio de Bernstein i-ésimo de grado n:

$$B_i^n(t) = \binom{n}{i} t^i (1-t)^{n-i}$$

Dicha ecuación se corresponde con una distribución binomial, que representa la probabilidad de obtener i caras al lanzar una moneda, siendo la probabilidad de cara igual a $t \in [0, 1]$.

Para comprobar que el máximo se alcanza en $t = \frac{i}{n}$, derivamos el polinomio de Bernstein e igualamos a 0, con el objetivo de encontrar los extremos y posteriormente ver si son máximo y alguno de ellos es $\frac{i}{n}$:

$$\frac{\delta B_i^n(t)}{\delta t} = \binom{n}{i} (it^{i-1}(1-t)^{n-i} - t^i(n-i)(1-t)^{n-i-1})
= \binom{n}{i} t^{i-1} (1-t)^{n-i-1} (i(1-t) - t(n-i))
= \binom{n}{i} t^{i-1} (1-t)^{n-i-1} (i-tn)
= n \left(B_{i-1}^{n-1}(t) - B_i^{n-1}(t) \right)
= 0$$

De la ecuación anterior se deduce que se puede tener un máximo en los puntos t=0,

t=1 o si i(1-t)-t(n-i)=0. Esta última igualdad es equivalente a:

$$i(1-t) = t(n-i) \iff i-it = tn-it \iff t = \frac{i}{n}$$

- 1. Si t=0: En este caso, $B_i^n(0)=\binom{n}{i}0^i1^{n-i}$. Tenemos dos casos dentro de este:
 - Si i = 0, entonces $B_0^n(0) = 1$, que es un máximo porque $B_i^n(t) \in [0,1]$ para $t \in (0,1)$. Además se verifica que $t = \frac{i}{n} = \frac{0}{n} = 0$, luego verifica el tercer caso (el máximo coincide con $t = \frac{i}{n}$).
 - Si $i \neq 0$, entonces $B_0^n(0) = 0$, que no es un máximo.
- 2. Si t=1: En este caso, $B_i^n(1)=\binom{n}{i}1^i0^{n-i}$. Volvemos a tener dos casos:
 - Si n = i, se tiene que $B_n^n(1) = \binom{n}{n} 1^n 0^0 = 1$. Se trata de un máximo ya que $B_i^n(t) \in [0,1]$ para $t \in (0,1)$. Además se verifica que $t = \frac{i}{n} = \frac{n}{n} = 1$, luego verifica que el máximo coincide con $t = \frac{i}{n}$.
 - Por otro lado, si $n \neq i$, tenemos que $B_i^n(1) = 0$, que tampoco es máximo.
- 3. Por último, contemplamos el caso $t=\frac{i}{n}$. Sea $i\neq 0, i\neq n$, ya que los otros casos corresponden a los apartados anteriores. Los polinomios de Bernstein verifican que $B_i^n(t)>0, \ \forall t\in [0,1], \ y$ que $B_i^n(0)=0, \ B_i^n(1)=0$. Luego B se anula en los extremos, y no tiene ningún otro punto crítico salvo $t=\frac{i}{n}$, por lo que es necesario que $t=\frac{i}{n}, \ t\neq 0, \ t\neq 1$ sea un máximo.