Sistemas Electrónicos

Capítulo 4: Díodos e Aplicações

Sistemas Electrónicos - 2020/2021

Sumário

- Introdução;
- Fundamentos físicos do díodo;
- Junção pn em equilíbrio, inversamente e directamente polarizada;
- Característica corrente/tensão do díodo;
- Parâmetros mais importantes do díodo valores típicos;
- Modelos simplificados para análise de circuitos;
- Exemplos de aplicação;
- Rectificadores meia onda; onda completa; filtragem;
- Díodo Zener e aplicações;
- Díodo LED e foto-díodo.

Introdução

- O díodo é o componente electrónico (não linear) mais simples;
- Distingue-se por conduzir apenas num sentido: a aplicação mais comum é em circuitos de rectificação.

E. Martins, DETI Universidade de Aveiro

4-3

Sistemas Electrónicos - 2020/2021

Fundamentos físicos do díodo

Semicondutores

- Elementos com 4 electrões de valência, e.g. silício;
- Valores de condutividade entre a dos isoladores e a dos condutores.

E. Martins, DETI Universidade de Aveiro

4-5

Sistemas Electrónicos - 2020/2021

Semicondutores

- A 0 Kelvin o Si não tem electrões livres condutividade é zero;
- Temperatura rompe algumas ligações, gerando electrões livres.

Semicondutores

- Semicondutores distinguem-se dos condutores por terem dois tipos de
- portadores de corrente:
 - Electrões (cargas negativas);
 - > Lacunas (cargas positivas).

Criação de uma lacuna

Sempre que um electrão salta de uma ligação covalente para uma lacuna, deixa uma carga positiva: é como se a lacuna se deslocasse.

E. Martins, DETI Universidade de Aveiro

4-7

Sistemas Electrónicos - 2020/2021

Dopagem

• Para aumentar a condutividade, o silício é *dopado*, ou seja misturado com outros elementos.

Dopagem com elemento com 5 electrões de valência (e.g fósforo - P) gera um electrão livre

Dopagem com elemento com 3 electrões de valência (e.g boro - B)

Semicondutores do tipos n e p

• Um semicondutor do tipo *n* ou *p* tem apenas melhor condutividade que uma semicondutor intrínseco.

• A magia acontece quando os dois tipos de semicondutor entram em contacto, formando um díodo de junção...

E. Martins, DETI Universidade de Aveiro

4-9

Sistemas Electrónicos - 2020/2021

A junção pn

- Os iões próximos da junção deixam de estar electricamente *cobertos*, criando um dipolo eléctrico;
- Este dipolo opõem-se ao movimento de lacunas de $p \rightarrow n$ e electrões de $n \rightarrow p$.

A junção pn em equilíbrio

- A região do dipolo chama-se de depleção porque está vazia de cargas móveis;
- O dipolo estabelece um campo eléctrico, E que trava a difusão de electrões e lacunas através da junção;
- À diferença de potencial do dipolo chamamos potencial de barreira, V_b ;
- No silício o valor do potencial de barreira é tipicamente de *0.7V*.
- A junção pn é um díodo...

4-11

Sistemas Electrónicos – 2020/2021

A junção pn polarizada inversamente

- O + da fonte externa atrai electrões e
 o atrai lacunas, aumentando o
 numero de iões a descoberto;
- A carga total na região de depleção aumenta, ou seja a largura desta aumenta;
- A barreira de potencial aumenta (de V_b para $V_b + V_R$) e os portadores não passam;
- O díodo não conduz!

A junção pn polarizada directamente

- O + da fonte externa repele lacunas em direcção à junção; o – repele electrões também em direcção à junção;
- Se V_D for superior ao potencial de barreira (V_b) a região de depleção quase desaparece;
- Electrões e lacunas conseguem atravessar sem dificuldade a região de depleção;
- O díodo conduz!

E. Martins, DETI Universidade de Aveiro

4-13

Sistemas Electrónicos - 2020/2021

Característica corrente/tensão do díodo

Característica corrente-tensão

- Duas regiões de funcionamento:
 - ► Polarização inversa: v < 0;
 - \triangleright Polarização directa: v > 0.

Sistemas Electrónicos - 2020/2021

Polarização directa

• Nesta região, a corrente cresce *exponencialmente* com a tensão sendo dada aproximadamente por

$$i = I_S \left(e^{v/nV_T} - 1 \right)$$

 I_S – corrente de saturação inversa (para díodos de sinal: $10^{-15}A$);

 V_T – tensão térmica: 25mV a 20°C;

n – coeficiente de emissão: constante empírica de valor entre 1 e 2.

Polarização directa – observações importantes

- Devido à característica exponencial, abaixo de 0.5V o díodo quase não conduz. Esta é a tensão de cut-in;
- Em condução normal, a tensão v varia em apenas 0.12V (n = 2) por cada década (10x) de variação de i;
- Em condução normal, o valor típico de v é entre 0.6 e 0.8V;
- Valores típicos para um díodo de sinal. Díodos de potência exibem valores mais elevados de tensão de condução.

E. Martins, DETI Universidade de Aveiro

4-17

Sistemas Electrónicos - 2020/2021

Polarização inversa

• Para valores negativos de v, bastante inferiores a nV_T , a corrente i é dada por

$$i = I_S \left(e^{\nu/nV_T} - 1 \right) \approx -I_S$$

que é a corrente de saturação inversa da junção, da ordem dos $10^{-15}A$, (bastante insensível a ν)

- I_S é causada pela geração espontânea de pares electrão-lacuna na região de depleção, por efeito térmico.
- Na prática, a corrente inversa é bastante maior (da ordem do nA) por causa das correntes de fuga pela superfície do díodo.

Região de breakdown

- Campo eléctrico elevado na região de depleção causa um aumento súbito da corrente;
- Dois mecanismos de *breakdown*:
- Efeito Zener: acontece para dopagens elevadas; portadores atravessam a região de depleção por efeito de túnel;
- ➤ Avalanche: electrões com elevada energia cinética na região de depleção chocam com átomos, criando mais pares electrão-lacuna num efeito multiplicativo.
- Ocorre em todos os díodos e é, geralmente, de evitar. Mas há díodos especificamente desenhados de forma a funcionar na região de *breakdown*;

E. Martins, DETI Universidade de Aveiro

4-19

Sistemas Electrónicos - 2020/2021

Características mais importantes dos díodos

1N4007 (díodo de potência)

Características		1N4148	1N4007
V_F	Tensão directa		
	@ 10mA	0.7V	0.6V
	@ 1A		1.1V
$I_{F(max)}$	Corrente directa máxima	0.3A	<i>1A</i>
$V_{R(max)}$	Tensão inversa máxima	75V	1000V
$I_{R(max)}$	Corrente inversa máxima @ 25°C	10nA	5μΑ
	@ 100°C		5μA 50μA
P _(max)	Potência máxima dissipada	0.5W	3W

Modelos simplificados do díodo

E. Martins, DETI Universidade de Aveiro

Sistemas Electrónicos – 2020/2021

Modelos do díodo para análise de circuitos

- Exponencial baseado na relação exponencial i(v). É o mais preciso mas também o mais difícil de usar.
- Na prática, os modelos que se usam são:
 - > Linear por segmentos (piecewise linear);
 - > Tensão constante;
 - > Ideal.

4-21

Modelo linear por segmentos

• A curva *i(v)* do díodo é aproximada por duas rectas.

$$i = \begin{cases} 0, & v \le V_D \\ (v - V_D)/r_D, & v \ge V_D \end{cases}$$

 V_D e r_D são escolhidos em função da gama de corrente do díodo;

0.6 \$ 0.8

 V_D

1.0

Neste exemplo temos

$$V_D = 0.65 V \, \mathrm{e} \, r_D = 20 \, \Omega.$$

4-23

Sistemas Electrónicos - 2020/2021

0.4

0.2

0

Modelo de tensão constante

• Curva i(v) do díodo é simplificada para uma linha vertical – despreza-se r_D ;

• Em condução, o díodo apresenta uma tensão V_D constante (0.7V);

 É o modelo mais popular para análise rápida manual.
 É um dos que iremos usar mais.

Modelo ideal

• Considera que o díodo é um interruptor ideal com $V_F = \theta V$;

- Válido só em aplicações com tensões muito maiores que as tensões normais de condução do díodo;
- Útil numa primeira análise de circuitos com vários díodos.

E. Martins, DETI Universidade de Aveiro

4-25

Sistemas Electrónicos - 2020/2021

Modelos do díodo: conclusão

- Exponencial: Resultados precisos; é raramente necessário;
- Linear por segmentos (V_D e r_D): Suficientemente preciso na maior parte das aplicações;
- Tensão constante $(V_D; r_D \text{ é desprezado})$: Quando a resistência do circuito é pelo menos 100x superior a r_D ;
- Ideal (V_D e r_D desprezados): Quando as tensões são maiores que V_D e as resistências pelo menos 100x superiores a r_D .

Exemplos de aplicação dos modelos

E. Martins, DETI Universidade de Aveiro

Sistemas Electrónicos - 2020/2021

Modelo ideal

- Díodo on;
- Tensão no díodo é 0V;
- Corrente é limitada apenas pela resistência.
- $I_{D1} = \frac{10 0}{1K} = 10mA$ $I_{D1} \downarrow \geqslant 1 \text{ k}\Omega$ $V \downarrow V = 0V$

- Díodo off;
- Corrente no díodo é 0A;
- Tensão inversa do díodo é a tensão de alimentação.

4-27

Exemplo 1

- A questão crucial é: qual, ou quais, os díodos que estão on ou off;
- A melhor maneira de começar é aplicar o modelo ideal do díodo.

E. Martins, DETI Universidade de Aveiro

4-29

Sistemas Electrónicos - 2020/2021

Circuitos simples com díodos

Exemplo 1

- 1º hipotese D1 off e D2 off ?
- Com estas tensões directas, D1 e D2 não podem estar ambos off!
- Resultados contradizem premissas. Hipótese impossível!

Exemplo 1

2º hipotese - D1 off e D2 on?

$$V_B = 5I + (-10)$$

$$V_B = \frac{5}{5+10} 20 + (-10) = -3.3V$$

- Resultados contradizem premissas. Hipótese impossível!

E. Martins, DETI Universidade de Aveiro

4-31

Sistemas Electrónicos - 2020/2021

Circuitos simples com díodos

Exemplo 1

3° hipotese - D1 on e D2 off?

- Resultados contradizem premissas. Hipótese impossível!

Exemplo 1

4° hipotese - D1 on e D2 on ?

$$I_{D2} = \frac{10}{10} = 1mA$$

$$I = \frac{10}{5} = 2mA$$

$$I_{D1} = I - I_{D2} = 1mA$$

• Hipótese válida!

E. Martins, DETI Universidade de Aveiro

4-33

Sistemas Electrónicos - 2020/2021

Circuitos simples com díodos

Exemplo 1

4º hipotese — podemos agora refinar a análise usando o modelo de tensão constante.

$$I_{D2} = \frac{10}{10} = 1mA$$

$$I = \frac{-0.7 - (-10)}{5} = 1.86 mA$$

$$I_{D1} = I - I_{D2} = 0.86mA$$

$$V = 0V$$

Exemplo 2 - Determinar o valor de *V*.

1º hipotese - D1 off e D2 off ?

• Impossível porque as tensões de

• Impossível porque teríamos $V_B = \theta V$ obrigando D2 a conduzir também.

E. Martins, DETI Universidade de Aveiro

4-35

Sistemas Electrónicos - 2020/2021

Circuitos simples com díodos

Exemplo 2

- Consideremos então a hipótese.
- 3° hipotese D1 on e D2 on?

$$I_{D2} = \frac{5}{5} = 1mA$$
$$I = \frac{5}{10} = 0.5mA$$

$$I_{D1} = I - I_{D2} = 0.5 - 1 = -0.5 mA$$

- Corrente em D1 não pode ser negativa!
- Resultados contradizem premissas.

Hipótese impossível!

Exemplo 2

4º hipotese - D1 off e D2 on?

$$V_B = V = 5I_{D2} - 5$$

$$V_B = 5\frac{5 - (-5)}{10 + 5} - 5 = -1.67V$$

E. Martins, DETI Universidade de Aveiro

4-37