先建立邊界的值

之後根據以下公式可知當前某點的相鄰係數關係

$$\alpha u_{i,j-1} + u_{i-1,j} - 2(1+\alpha)u_{i,j} + u_{i+1,j} + \alpha u_{i,j+1} = h^2 f_{i,j}$$

且 $F = h^2 f_{i,j}$ 並依據公式做F邊界的修正

Case 1
$$j=1$$
: $u_{i-1,1}-2(1+\alpha)u_{i,1}+u_{i+1,1}+\alpha u_{i,2}=h^2f_{i,1}-\alpha u_{i,0}$

a.
$$i = 1$$
: $-2(1+\alpha)u_{1,1} + u_{2,1} + \alpha u_{1,2} = h^2 f_{1,1} - \alpha u_{i,0} - u_{0,1} \triangleq F_{1,1}$

Case 3
$$j = m$$
: $\alpha u_{i,m-1} + u_{i-1,m} - 2(1+\alpha)u_{i,m} + u_{i+1,m} = h^2 f_{i,m} - \alpha u_{i,m+1}$

a.
$$i = 1$$
: $\alpha u_{1,m-1} - 2(1+\alpha)u_{1,m} + u_{2,m} = h^2 f_{1,m} - \alpha u_{1,m+1} - u_{0,m} = F_{1,m}$

輸出結果:

PS C:\Users\yunyu\Documents\大學\三下\數值方法\Numerical_class\F74114095_numerical_hw12> ./1											
y/x	0	0.314159	0.628319	0.942478	1.25664	1.5708	1.88496	2.19911	2.51327	2.82743	3.14159
1.5708	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
1.2566	0.3090	0.1728	0.0531	-0.0589	-0.1667	-0.2699	-0.3642	-0.4413	-0.4863	-0.4679	-0.3090
0.9425	0.5878	0.3681	0.1763	-0.0050	-0.1823	-0.3539	-0.5116	-0.6420	-0.7244	-0.7255	-0.5878
0.6283	0.8090	0.5646	0.3476	0.1326	-0.0869	-0.3056	-0.5112	-0.6862	-0.8099	-0.8589	-0.8090
0.3142	0.9511	0.7532	0.5559	0.3332	0.0858	-0.1732	-0.4243	-0.6452	-0.8145	-0.9158	-0.9511
0.0000	1.0000	0.9511	0.8090	0.5878	0.3090	0.0000	-0.3090	-0.5878	-0.8090	-0.9511	-1.0000

$$\begin{cases} \frac{\partial u}{\partial t} = \alpha^2 \frac{\partial^2 u}{\partial x^2} + g(x,t), & 0 < x < l, \quad t > 0, \end{cases}$$

$$u(0,t) = q(t)$$
, $u(l,t) = r(t)$ for $t > 0$, and $u(x,0) = f(x)$ for $0 \le x \le l$.

Set
$$x_0 = 0$$
, $x_{n+1} = l$, $h = l/(n+1)$, $x_i = x_0 + ih$, $k = \Delta t$, $t_j = jk$, $u(x_i, t_j) = u_{i,j}$

a. Forward-difference method

$$\begin{bmatrix} u_1 \\ \bullet \\ u_n \end{bmatrix}_{j+1} = \begin{bmatrix} 1-2\lambda & \lambda & 0 & 0 \\ \lambda & \bullet & \bullet & 0 \\ 0 & \bullet & \bullet & \lambda \\ 0 & 0 & \lambda & 1-2\lambda \end{bmatrix} \begin{bmatrix} u_1 \\ \bullet \\ u_n \end{bmatrix}_j + k \begin{bmatrix} g_1 \\ \bullet \\ g_n \end{bmatrix}_j + \lambda \begin{bmatrix} q \\ 0 \\ 0 \\ r \end{bmatrix}_j, \quad \begin{bmatrix} u_1 \\ \bullet \\ u_n \end{bmatrix}_0 = \begin{bmatrix} f(x_1) \\ \bullet \\ f(x_n) \end{bmatrix}.$$

但是他必須要是 $\lambda < \frac{1}{2}$ 才是 Stability condition,而這題的 $\lambda > \frac{1}{2}$ 所以無法收斂

```
PS C:\Users\yunyu\Documents\大學\三下\數值方法\Numerical_class\F74114095_numerical_hw12> ./a
t r=0.50 r=0.60 r=0.70 r=0.80 r=0.90 r=1.00
  9 99
                0.00
                               20.00
                                              40.00
                                                            60.00
                                                                           80.00
                                                                                         100.00
                                              97.14
                               86.67
                                                           110.00
                                                                          124.44
  0.50
                20.00
                                                                                         120.00
                                                           160.00
              -287.47
                            9208.89
                                          -4074.29
                                                         -2290.00
                                                                         3991.11
                                                                                         160.00
                        -224897.78
                                        130173.33
                                                        52760.00
          -219475.93 5867050.07 -3798017.14
                                                      -925523.33 2264746.67
          5735364.51-157613117.51111873916.83 9830693.33-51254838.52
  3.50-154171898.804347639633.30-3364223217.40215496665.561061228317.04 \\ 240.404255136494.01-123139189725.59103648542736.55-21592571231.10-18247809440.99
  4.50-120586107829.193584337074162.87-3271573323712.201111895746124.58154774415769.10\\ 2.6003511985409465.36-107275644084313.39105590162313351.69-48011073581446.536942803846827.93
  5.50-165168452838634.17329938909669934.50-3474416588464328.561914230861566125.00-558678371588144.19 320.00 6.003236287937966754.00-104099655156134528.00116171316538748800.00-73056663199185856.0027630274496321624.00 340.6.50-102157882393354480.003360194540401680896.00-3934471066422361088.002715416208582201344.00-1174367777200647936.00
   440.00
  9.004213683555364034695921664.00-147814658071078712694013952.00195546832678619476572241920.00-162961776083833999230763008.0086087046381283871337480192.00\\9.50-145286447937860293594447872.005124972247562422281037676544.00-6844792902461118663524089856.005775787803320208141167099904.00-3084203001989584333268058112.00
  10.005037800378799706530941763584.00 - 178441110298547882408542208000.00239988402163812913952841531392.00 - 204329189932001513960718204928.00109940193067315034633105571840.00
```

b. Backward-difference method

$$\begin{bmatrix} 1+2\lambda & -\lambda & 0 & 0 \\ -\lambda & \bullet & \bullet & 0 \\ 0 & \bullet & \bullet & -\lambda \\ 0 & 0 & -\lambda & 1+2\lambda \end{bmatrix} \begin{bmatrix} u_1 \\ \bullet \\ u_n \end{bmatrix}_i - k \begin{bmatrix} g_1 \\ \bullet \\ g_n \end{bmatrix}_i - \lambda \begin{bmatrix} q \\ 0 \\ 0 \\ r \end{bmatrix}_i = \begin{bmatrix} u_1 \\ \bullet \\ u_n \end{bmatrix}_{i-1}, \quad \begin{bmatrix} u_1 \\ \bullet \\ u_n \end{bmatrix}_0 = \begin{bmatrix} f(x_1) \\ \bullet \\ f(x_n) \end{bmatrix}$$

c. Crank-Nicolson method

[1+λ	-0.5λ	0	0	[1− <i>λ</i>	0.5λ	0	0	
-0.5λ	•	•	0	$q_{ID}(j+1) = 0.5\lambda$	•	•	0	$\sigma_D(i)$
0	•	•	-0.5λ	$\{U\}^{(j+1)} = \begin{vmatrix} 0.5\lambda \\ 0 \end{vmatrix}$	•	•	0.5λ	{U}
0	0	-0.5λ	$1+\lambda$	0	0	0.5λ	$1-\lambda$	

PS C:\Us	sers\yunyu\Do	ocuments\大學	₹\三下\數值方	法\Numerical	class\F74114	095_numerical_hw12> ./c
t					r=0.90	
0.00	0.00	20.00	40.00	60.00	80.00	100.00
0.50	20.00	63.03	83.70	103.03	121.65	120.00
1.00	75.03	118.87	125.02	130.92	135.57	140.00
1.50	163.89	202.32	189.60	181.86	179.15	160.00
1.50	163.89	202.32	189.60	181.86	179.15	160.00
1.50	163.89	202.32	189.60	181.86	179.15	160.00
2.00	300.66	331.91	286.21	248.13	212.94	180.00
2.50	512.30	524.78	424.26	341.90	275.18	200.00
3.00	832.16	814.08	632.75	480.23	344.54	220.00
3.50	1313.38	1245.29	935.60	675.07	453.22	240.00
4.00	2033.32	1886.09	1387.56	966.53	596.26	260.00
4.50	3106.08	2838.36	2052.01	1385.99	810.06	280.00
5.00	4702.01	4250.04	3037.62	2010.92	1111.86	300.00
5.50	7071.25	6343.52	4493.75	2923.75	1558.11	320.00
6.00	10586.26	9444.50	6649.43	4278.70	2206.06	340.00
6.50	15796.26	14038.33	9839.23	6272.75	3163.00	360.00
7.00	23516.08	20840.62	14559.56	9227.29	4568.27	380.00
7.50	34950.26	30912.93	21546.99	13590.05	6645.04	400.00
8.00	51883.09	45824.83	31887.43	20049.78	9708.90	420.00
8.50	76954.69	67900.90	47194.88	29602.01	14239.90	440.00
9.00	114073.71	100581.22	69849.94	43742.28	20937.26	460.00
9.50	169025.45	148958.22	103386.37	64664.39	30846.06	480.00
10.00	250373.49	220569.86	153023.81	95633.62	45504.24	500.00

b, c 結果差異這麼大我覺得是因為 Crank-Ni colson method 比較容易受 λ 的值影響(阿這題的 λ 又蠻大的),有試過把 Δ t 調小一點,兩個出來的結果差異就沒有這麼大了

和第一題概念類似,只是公式不太一樣

$$\alpha u_{i,j-1} + (r_i^2 - \frac{h}{2}r_i)u_{i-1,j} - 2(\alpha + r_i^2)u_{i,j} + (r_i^2 + \frac{h}{2}r_i)u_{i+1,j} + \alpha u_{i,j+1} = r_i^2 h^2 f_{i,j}$$

Case 1.
$$j=1$$
: $(r_i^2 - \frac{h}{2}r_i)u_{i-1,1} - 2(\alpha + r_i^2)u_{i,1} + (r_i^2 + \frac{h}{2}r_i)u_{i+1,1} + \alpha u_{i,2} = r_i^2 h^2 f_{i,1} - \alpha u_{i,0}$

a.
$$i = 1$$
: $-2(\alpha + r_1^2)u_{1,1} + (r_1^2 + \frac{h}{2}r_1)u_{2,1} + \alpha u_{1,2} = r_1^2 h^2 f_{1,1} - \alpha u_{1,0} - (r_1^2 - \frac{h}{2}r_1)u_{0,1} \triangleq F_{1,1}$

Case 3 j = m:

$$\alpha u_{i,m-1} + (r_i^2 - \frac{h}{2}r_i)u_{i-1,m} - 2(\alpha + r_i^2)u_{i,m} + (r_i^2 + \frac{h}{2}r_i)u_{i+1,m} = r_i^2 h^2 f_{i,m} - \alpha u_{i,m+1}$$

a. i = 1:

$$\alpha u_{1,m-1} - 2(\alpha + r_1^2)u_{1,m} + (r_1^2 + \frac{h}{2}r_1)u_{2,m} = r_1^2 h^2 f_{1,m} - \alpha u_{1,m+1} - (r_1^2 - \frac{h}{2}r_1)u_{0,m} \triangleq F_{1,m}$$

但是這題比較有問題的是他的邊界條件在四個交點的地方會有衝突,我是依照他邊界條件給的順序依序做的,所以那四個點會是50或100而非0

•				•			
PS C:\Use	ers\yunyu\Do	cuments\大學\	(三下\數值方)	法\Numerical_	class\F7411	4095_numerical_h	v12> ./3
t/r	0.5	0.6	0.7	0.8	0.9	1	
1.0472	50.0000	0.0000	0.0000	0.0000	0.0000	100.0000	
0.8727	50.0000	32.2567	32.9444	43.1044	63.5365	100.0000	
0.6981	50.0000	45.8602	50.5938	62.4550	79.7182	100.0000	
0.5236	50.0000	49.6786	55.8351	67.7253	83.3054	100.0000	
0.3491	50.0000	45.8602	50.5938	62.4550	79.7182	100.0000	
0.1745	50.0000	32.2567	32.9444	43.1044	63.5365	100.0000	
0.0000	50.0000	0.0000	0.0000	0.0000	0.0000	100.0000	

4.

我覺得這題比較符合講義這段的內容,但是邊界 $p(0, t) \neq p(1, t) \neq 0$

$$\begin{cases} \frac{\partial^2 u}{\partial t^2} = \alpha^2 \frac{\partial^2 u}{\partial x^2}, & 0 < x < l, \quad t > 0, \quad u(0,t) = u(l,t) = 0, \quad u(x,0) = f(x), \quad \frac{\partial u}{\partial t} = g(x) \end{cases}$$

$$\frac{1}{k^2} (u_{i,j+1} - 2u_{i,j} + u_{i,j-1}) = \alpha^2 \frac{1}{h^2} (u_{i+1,j} - 2u_{i,j} + u_{i-1,j}),$$

$$u_{i,j+1} = \lambda^2 u_{i-1,j} + 2(1 - \lambda^2) u_{i,j} + \lambda^2 u_{i+1,j} - u_{i,j-1}, \quad \lambda^2 = \alpha^2 \frac{k^2}{h^2},$$

$$u_{1,j+1} = 2(1 - \lambda^2) u_{1,j} + \lambda^2 u_{2,j} - u_{1,j-1},$$

$$u_{i,j+1} = \lambda^2 u_{i-1,j} + 2(1 - \lambda^2) u_{i,j} + \lambda^2 u_{i+1,j} - u_{i,j-1},$$

$$u_{n,j+1} = \lambda^2 u_{n-1,j} + 2(1-\lambda^2)u_{n,j} - u_{n,j-1}$$

$$\begin{bmatrix} u_1 \\ \bullet \\ u_n \end{bmatrix}_{j+1} = \begin{bmatrix} 2(1-\lambda^2) & \lambda^2 & 0 & 0 \\ \lambda^2 & 2(1-\lambda^2) & \lambda^2 & 0 \\ 0 & \lambda^2 & 2(1-\lambda^2) & \lambda^2 \\ 0 & 0 & \lambda^2 & 2(1-\lambda^2) \end{bmatrix} \begin{bmatrix} u_1 \\ \bullet \\ u_n \end{bmatrix}_{j} - \begin{bmatrix} u_1 \\ \bullet \\ u_n \end{bmatrix}_{j-1}$$

教授上課沒有特別說這種問題怎麼處理,所以我只能仿造 forward-difference 的方式做邊界修正不知道這樣對不對 ouo

$$\begin{cases} u_1 \\ \bullet \\ u_n \end{cases}_{j+1} = \begin{bmatrix} 1 - 2\lambda & \lambda & 0 & 0 \\ \lambda & \bullet & \bullet & 0 \\ 0 & \bullet & \bullet & \lambda \\ 0 & 0 & \lambda & 1 - 2\lambda \end{bmatrix} \begin{bmatrix} u_1 \\ \bullet \\ u_n \end{bmatrix}_j + k \begin{bmatrix} g_1 \\ \bullet \\ g_n \end{bmatrix}_j + \lambda \begin{bmatrix} q \\ 0 \\ 0 \\ r \end{bmatrix}$$

然後它的 t 只說≥0, 沒說到多少所以我先假設跟 x 一樣

PS C:\Use	ers\yunyu\	Documents	大學\三	下\數值方	法\Numeri	cal class	\F7411409	5 numeric	al hw12>	./4	
t\x	0.00	0.10	0.20	0.30	0.40	0.50	0.60	0.70	0.80	0.90	1.00
0.00	1.00	0.81	0.31	-0.31	-0.81	-1.00	-0.81	-0.31	0.31	0.81	2.00
0.10	1.00	1.02	0.85	0.35	-0.29	-0.81	-1.02	-0.85	-0.35	0.29	2.00
0.20	1.00	1.04	1.06	0.87	0.35	-0.31	-0.85	-1.06	-0.87	0.84	2.00
0.30	1.00	1.04	1.06	1.06	0.85	0.31	-0.35	-0.87	0.13	0.84	2.00
0.40	1.00	1.02	1.04	1.04	1.02	0.81	0.29	0.84	0.84	1.29	2.00
0.50	1.00	1.00	1.00	1.00	1.00	1.00	2.00	2.00	2.00	2.00	2.00
0.60	1.00	0.98	0.96	0.96	0.98	2.19	2.71	3.16	3.16	2.71	2.00
0.70	1.00	0.96	0.94	0.94	2.15	2.69	3.35	3.87	3.87	3.16	2.00
0.80	1.00	0.96	0.94	2.13	2.65	3.31	3.85	4.06	3.87	3.16	2.00
0.90	1.00	0.98	2.15	2.65	3.29	3.81	4.02	3.85	3.35	2.71	2.00
1.00	1.00	2.19	2.69	3.31	3.81	4.00	3.81	3.31	2.69	2.19	2.00