1. $f(x) = Ts + (Ti - Ts) * erf(x / (2 * np.sqrt(alpha * exposure_time_seconds)))$ f'(x) found using finite differences Code pushed to Git

- b. Depth = 0.6769618544819389 meters
- c. Depth = 0.6769618544819407 meters

If you use $x0 = x_bar$, Newton's method diverges because the initial guess isn't close enough to the root.

2, a. A post at multiplicity m can be defined as ((x) = (x-x)^m. g(x)
6. Ym = Xm (Xm) = Q - ff = 300 m 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
Thus, if filed is not finite and f (a) is nonzero, lemil & len) soft converges linearly.
C. Cn+1 = (xn-mf(xn))-x en+1 = (xn-m(f(x)+(xp-a)(+'(a))+))-a en+1 = (1-mf'(a)) e ² Thus, st 11-mf'(a)) is finite and nonzero, fixed point converges quadratically because the equation is of the form en+1 = Ken
d. Near voots with m >1. Newton's method may converge linearly, unlike fixed point
3. A sequence converges when 1xxx1-x16 (1xx-x) 10g (1xxx-x1) 5 log(C) + plog(1xx-x1) 10g(C) is constaint, so the order p vopresents the score of log(1xxx1-x1) relative to log(1xx-x1)
the score of log (1x min - a) relative to log (1x m - a)

4. Newton's method encounters a divide by 0 error. Both of the modified methods find the root but I prefer the modified method from problem 2 because it does so in the fewest iterations.

Newton's Error	Secant Error
0.31937172774869116	0.016129032258064502
0.24988928401224642	0.17444873641857295
0.175768032129626	0.07292193773508582
0.09343252333612329	0.014875719274581423
0.02518515860280779	0.0022852577887197967
0.0016227458268762707	9.316205614795514e-05
6.389843407950124e-06	4.92342510982624e-07
9.870171346904044e-11	1.1030376612097825e-10
	0.31937172774869116 0.24988928401224642 0.175768032129626 0.09343252333612329 0.02518515860280779 0.0016227458268762707 6.389843407950124e-06

b.

Since the slope of the Newton's method line on a log-log scale is approximately 2, it has quadratic convergence. The slope of the secant method on a log-log scale is closer to 1 thus it has superlinear convergence.