# M-Estimation, I: Introduction and Asymptotic Properties

Jesper Riis-Vestergaard Sørensen

University of Copenhagen, Department of Economics

#### Outline

#### Introduction

Nonlinear Regression Identification Estimation

#### M-Estimation

Asymptotic Properties of M-Estimators

Consistency

Normality

## Introduction

# Nonlinear Estimation Chapters

- ▶ W. Chapters 12–13: Abstract and technical.
- ▶ But generality can be useful!
- ▶ Unified framework for estimation.
  - **Ex:** OLS, Nonlinear LS, Maximum likelihood...
- ▶ There will be no exam questions in Ch. 12–13 specifically.
- ▶ But important—and required—background knowledge.

# Steps in Econometric Analysis

1. Identification: Given distribution of observables, (how) can we uniquely recover parameters?

2. Estimation: Given sample, how to construct parameter estimates?

(onition, rates of unegote

3. Inference: Confidence intervals, prediction intervals, hypothesis testing, etc.

# Steps in Econometrics Analysis

- ▶ Identification: Has nothing to do with sample.
- **Estimation**: What formula(e)/algorithm to follow?
- ▶ Inference: Requires (asymptotic) distribution theory.

#### Steps highly interdependent.

- ▶ Identification method may suggest estimator.
- ▶ Inference method hinges on estimation method.

# Nonlinear Regression

# Nonlinear Regression Model

- $\triangleright$  y: scalar outcome.
- **x**: *K*-vector of explanatory variables.

candidate estimators

- $ightharpoonup m(\mathbf{x}, \boldsymbol{\theta})$  parametric model for  $E(y|\mathbf{x})$ .
- ▶  $\Theta \subseteq \mathbb{R}^P$  parameter space. Fixed dim P.
- ► Mean model correctly specified if

expected value of y given x is exactly given by our model thereof at  $\text{theta}_{0} \rightarrow \text{for all past realisations of x}$   $E\left(y \mid \mathbf{x}\right) = m\left(\mathbf{x}, \boldsymbol{\theta}_{o}\right) \tag{1}$ 

ındidate paramteter

holds for some  $\theta_o \in \Theta$ .

 $\triangleright$   $\theta_o$  often called "true value of theta."

# Examples of Functional Form Ex. $n(x, 0) = x\theta$

**Ex.** If y nonnegative, may take

like income

$$m(\mathbf{x}, \boldsymbol{\theta}) = \exp(\mathbf{x}\boldsymbol{\theta}).$$
 (exponential regression)

 $\triangleright$  Ex. If  $y \in \{0, 1\}$ , may take

$$m(\mathbf{x}, \boldsymbol{\theta}) = \frac{1}{1 + \exp(-\mathbf{x}\boldsymbol{\theta})}.$$
 (logistic regression)

▶ Here: K = P. But  $K \ge P$  allowed.

no of explanatory variables (K) = no of candidate parameters (P)

#### Error Formulation

- ► Assume correct specification (NLS.1).
- ▶ Defining  $u := y m(\mathbf{x}, \theta_o)$ , may write

$$y = m(\mathbf{x}, \boldsymbol{\theta}_o) + u, \quad E(u|\mathbf{x}) = 0.$$

- $ightharpoonup E(u|\mathbf{x}) = 0$  a consequence of model.
  - ▶ Not an additional assumption.
- ► Error formulation useful for abbreviations.

#### Discussion

- $ightharpoonup E(u|\mathbf{x}) = 0$  does *not* imply u and  $\mathbf{x}$  independent.
- ▶ ... only cond'l *mean* independence.

heteroskedasticity

- ▶ May have var (u|x) nonconstant (in x).
- ▶ If  $y \ge 0$ , must have  $u \ge -m(\mathbf{x}, \theta_0)$ ...
- $\triangleright$  Error formulation yields *semi*parametric model for  $y|\mathbf{x}$ .
  - ▶ Parametric model for  $E(y|\mathbf{x})$ .
  - ▶ But haven't specified parametric distribution for  $u|\mathbf{x}$ .



We'll show:  $\theta_o$  solves population problem (PP)

$$\min_{\boldsymbol{\theta} \in \Theta} E\{ [y - m(\mathbf{x}, \boldsymbol{\theta})]^2 \}.$$

▶ Model m + parameter space  $\Theta$  known quantities.

▶ Hence, **IF** given distribution of (y, x), PP problem known.

 $\triangleright$   $\theta_o$  identified if PP solution unique.

 $\pm m(\mathbf{x}, \boldsymbol{\theta}_o)$  and expanding square,

$$[y - m(\mathbf{x}, \boldsymbol{\theta})]^{2} = \{[y - m(\mathbf{x}, \boldsymbol{\theta}_{o})] - [m(\mathbf{x}, \boldsymbol{\theta}) - m(\mathbf{x}, \boldsymbol{\theta}_{o})]\}^{2}$$

$$= [y - m(\mathbf{x}, \boldsymbol{\theta}_{o})]^{2} + [m(\mathbf{x}, \boldsymbol{\theta}) - m(\mathbf{x}, \boldsymbol{\theta}_{o})]^{2}$$

$$- 2u[m(\mathbf{x}, \boldsymbol{\theta}) - m(\mathbf{x}, \boldsymbol{\theta}_{o})].$$
Taking expectations,

**♦**€ ®

Taking expectations

$$E\{[y - m(\mathbf{x}, \boldsymbol{\theta})]^2\} = E\{[y - m(\mathbf{x}, \boldsymbol{\theta}_o)]^2\}$$

 $+ E\{ [m(\mathbf{x}, \boldsymbol{\theta}) - m(\mathbf{x}, \boldsymbol{\theta}_o)]^2 \}.$ 

#### Have shown

"Population criterion function"
$$E\{[y-m(\mathbf{x},\boldsymbol{\theta})]^2\} = E\{[y-m(\mathbf{x},\boldsymbol{\theta}_o)]^2\} + E\{[m(\mathbf{x},\boldsymbol{\theta})-m(\mathbf{x},\boldsymbol{\theta}_o)]^2\}.$$

It follows that

$$E\{[y-m(\mathbf{x},\boldsymbol{\theta})]^2\} \geqslant E\{[y-m(\mathbf{x},\boldsymbol{\theta}_o)]^2\} \text{ for all } \boldsymbol{\theta} \in \Theta.$$

 $\Rightarrow \theta_0$  solves PP.

Bo eargin they-nexally

does not yield uniqueness Q: Uniqueness?



#### Identification Condition

#### Have shown

shown
$$E\{[y-m(\mathbf{x},\boldsymbol{\theta})]^2\} = E\{[y-m(\mathbf{x},\boldsymbol{\theta}_o)]^2\} + E\{[m(\mathbf{x},\boldsymbol{\theta}_o)]^2\}.$$

cond.mean for candidate regressors, no 2 is the 'true' cond.mean)

 $\theta_{0}$  uniquely solves PP if and only if

$$E\{[m(\mathbf{x}, \boldsymbol{\theta}) - m(\mathbf{x}, \boldsymbol{\theta}_o)]^2\} > 0 \text{ for all } \boldsymbol{\theta} \in \Theta \setminus \{\boldsymbol{\theta}_o\}.$$

**Q:** When will identification fail?

# Identification Failures / (wccuses

**Example:** Linear regression,  $m(\mathbf{x}, \boldsymbol{\theta}) = \mathbf{x}\boldsymbol{\theta}$  with  $\boldsymbol{\Theta} = \mathbb{R}^K$ .

Here

$$E\{ [m(\mathbf{x}, \boldsymbol{\theta}) - m(\mathbf{x}, \boldsymbol{\theta}_o)]^2 \} = E\{ [\mathbf{x}(\boldsymbol{\theta} - \boldsymbol{\theta}_o)]^2 \}$$

$$= (\boldsymbol{\theta} - \boldsymbol{\theta}_o)' E(\mathbf{x}'\mathbf{x})(\boldsymbol{\theta} - \boldsymbol{\theta}_o) .$$
for all \text{\text{theta} diff than \text{\text{theta}\_0}}

- $\gt$  > 0 if  $E(\mathbf{x}'\mathbf{x})$  positive definite.
  - umns must be linearly independent
- ► Just usual (population) rank condition.

If 
$$E(x,x)$$
 singular = 0.  $\theta = \theta_0 + t$   
 $\exists v \neq 0$  sh  $= (x,x)v = 0$ .

#### Identification Failures

= multiple solution to the population problem!

#### Example: Nonlinear regression with

$$m(\mathbf{x},\boldsymbol{\theta}) = \theta_1 + \theta_2 x_2 + \theta_3 x_3^{\theta_4}.$$

- ▶ Suppose  $\theta_{o3} = 0$ . (Truth linear.)
- ▶ At  $\theta$  with  $\theta_3 = 0$  (=  $\theta_{o3}$ )...
- ightharpoonup ... criterion function independent of  $\theta_4$ .
- For this  $\theta_o$ , identification fails.
- ► Example of poorly identified model.

"\theta\_4 disappears"

## Estimation

#### Estimation

 $\theta_o$  solves PP,

$$\theta_o \in \underset{\theta \in \Theta}{\operatorname{argmin}} E\{[y - m(\mathbf{x}, \theta)]^2\}.$$

Analogy principle suggests,

$$\widehat{\mathbf{b}} = \widehat{\theta}_{\mathbf{N}} \in \underset{\theta \in \Theta}{\operatorname{argmin}} \frac{1}{N} \sum_{i=1}^{N} \left[ y_i - m(\mathbf{x}_i, \boldsymbol{\theta}) \right]^2.$$

Nonlinear least squares (NLS) estimator.

For now, assume existence (but not uniqueness) of solution.

# Consistency? 2,400.



Q: Does NLS consistently estimate  $\theta_o$ ?

It turns out answer is "yes," provided (roughly)

- 1.  $\theta_0$  is identified.
- 2. Criterion function convergence

$$\frac{1}{N} \sum_{i=1}^{N} \left[ y_i - m(\mathbf{x}_i, \boldsymbol{\theta}) \right]^2 \xrightarrow{"} E \left\{ \left[ y - m(\mathbf{x}, \boldsymbol{\theta}) \right]^2 \right\}$$

... in suitable sense.

'a heuristic convergence' = in a calculated-quess kind of sense

Next: More detail in general setting.

## M-Estimation

#### M-Estimand "Target estimation"

We now consider more abstract setting.

Let  $q(\mathbf{w}, \boldsymbol{\theta})$  denote function of

- 1. random vector  $\mathbf{w}$  [observables, e.g.  $\mathbf{w} = (\mathbf{y}, \mathbf{x})$ ],
- 2. parameters  $\theta$ .

True parameter  $\theta_o$  assumed unique solution to PP

$$\theta_o = \underset{\theta \in \Theta}{\operatorname{argmin}} E\left[q\left(\mathbf{w}, \theta\right)\right].$$

"M" short for "minimization."

- ► Or "maximization" (sign change).
- q sometimes called loss function.

#### M-Estimator

Given random (as in i.i.d.) sample  $\{\mathbf{w}_i\}_1^N$ .

Analogy principle suggests sample problem (SP)

$$\min_{\boldsymbol{\theta}\in\Theta}\frac{1}{N}\sum_{i=1}^{N}q\left(\mathbf{w}_{i},\boldsymbol{\theta}\right).$$

**Definition:** Any SP solution is an M-estimator of  $\theta_o$ .

# Example M-Estimators

- $NLS: q(\mathbf{w}, \boldsymbol{\theta}) = [y m(\mathbf{x}, \boldsymbol{\theta})]^2.$
- ► Maximum likelihood:  $q(\mathbf{w}, \boldsymbol{\theta}) = -\ln f(y|\mathbf{x}; \boldsymbol{\theta})$ .
- ▶ Least absolute deviations (LAD):  $q(\mathbf{w}, \theta) = |y \mathbf{x}\theta|$ .
- ...and many, many more.

# Scope of Framework

Observables  $\mathbf{w}_i$  allow scalar/vector outcome.

- ▶ One equation, one cross section  $\Rightarrow$  scalar  $y_i$ .
- ▶ Multiple equations, one cross section  $\Rightarrow$  vector  $\mathbf{y}_i$ .
  - **Ex:** Joint labor supply decision (wife/husband),

$$y_i^{\text{w}} = \text{labor supply, wife, family } i,$$
  
 $y_i^{\text{h}} = \text{labor supply, husband, family } i.$ 

- ▶ One equation, panel data  $\Rightarrow$  vector  $\mathbf{y}_i = (y_{i1}, \dots, y_{iT})'$ .
  - FE:  $q(\mathbf{w}_i, \theta) = \sum_{t=1}^{T} (\ddot{y}_{it} \ddot{\mathbf{x}}_{it}\theta)^2$

Formulation very general!

Asymptotic Properties of M-Estimators

# Recap: Setting

M-estimand solves population problem (PP),

$$\theta_{o} \in \operatorname*{argmin}_{\boldsymbol{\theta} \in \Theta} E\left[q\left(\mathbf{w}, \boldsymbol{\theta}\right)\right].$$

M-estimator solves sample problem (SP),

$$\widehat{\boldsymbol{\theta}} \in \operatorname*{argmin}_{\boldsymbol{\theta} \in \Theta} \frac{1}{N} \sum_{i=1}^{N} q\left(\mathbf{w}_{i}, \boldsymbol{\theta}\right).$$

**Q:** Properties?

# Consistency

Criterion functions (minimands) and minimizers:

$$N^{-1}\sum_{i=1}^N q(\mathbf{w}_i, \boldsymbol{\theta})$$

$$E[q(\mathbf{w}, \boldsymbol{\theta})]$$

$$\widehat{m{ heta}}$$

$$heta_o$$

**Q:** Relationships?

By definition of M-estimand and M-estimator:



By (weak) law of large numbers,

$$N^{-1}\sum_{i=1}^N q(\mathbf{w}_i, \boldsymbol{\theta}) \stackrel{P}{\longrightarrow} E\left[q(\mathbf{w}, \boldsymbol{\theta})\right]$$

$$\vdots \\ \vdots \\ \vdots \\ \widehat{\boldsymbol{\theta}} \\ \boldsymbol{\theta}_o$$

Seems reasonable...

**Q:** When does minimand convergence imply minimizer convergence (in prob).

**Q:** When is  $\widehat{\boldsymbol{\theta}}$  consistent for  $\boldsymbol{\theta}_o$ ?

Suffices (essentially) following two conditions hold:

- 1. Identification:  $\theta_o$  is identified.
- 2. Uniform Law of Large Numbers: S minimand converges to P equivalent uniformly in probability,

$$\max_{\boldsymbol{\theta} \in \Theta} \left| \frac{1}{N} \sum_{i=1}^{N} q(\mathbf{w}_{i}, \boldsymbol{\theta}) - E[q(\mathbf{w}, \boldsymbol{\theta})] \right| \stackrel{p}{\to} 0.$$

# Identification Assumption

At this level of abstractness, assume identification, i.e.

any theta different than the true one

$$E\left[q\left(\mathbf{w},\boldsymbol{\theta}\right)\right] > E\left[q\left(\mathbf{w},\boldsymbol{\theta}_{o}\right)\right] \text{ for all } \boldsymbol{\theta} \in \Theta \backslash \left\{\boldsymbol{\theta}_{o}\right\}.$$

In words:  $\theta_o$  unique solution to PP.

▶ May make less abstract in applications (later).

# Uniform Law of Large Numbers

May deduce minimand convergence using:

#### Theorem (W. Theorem 12.1)

If

- 1.  $\Theta \subseteq \mathbb{R}^P$  compact (i.e. closed + bounded),
- 2.  $q(\mathbf{w}, \cdot)$  continuous (in  $\boldsymbol{\theta}$ ),

and additional technical conditions hold, then

$$\max_{\boldsymbol{\theta} \in \Theta} \left| \frac{1}{N} \sum_{i=1}^{N} q(\mathbf{w}_{i}, \boldsymbol{\theta}) - E[q(\mathbf{w}, \boldsymbol{\theta})] \right| \stackrel{p}{\rightarrow} 0.$$

sample criterion function converges in probability to its population equivalent

Uniform law of large numbers (ULLN).

### Consistency Theorem

### Theorem (W. Theorem 12.2)

Under the assumptions of W. Theorem 12.1 (ULLN) and assuming identification of  $\theta_o$ ,

- 1.  $\widehat{\boldsymbol{\theta}}$  solves SP, and
- 2.  $\widehat{\boldsymbol{\theta}}$  is consistent for  $\boldsymbol{\theta}_o$ ,  $\widehat{\boldsymbol{\theta}} \to_{\rho} \boldsymbol{\theta}_o$ .

## More Formal Consistency Argument

#### Proof Sketch:

- 1. Compact  $\Theta + q(\mathbf{w}, \cdot)$  continuous  $\Rightarrow$  SP solution exists.
  - Why? Cont's fetn actived on compact space attains its
- 2. ULLN  $\Rightarrow$  in limit, S/P minimands coincide (in prob).
- 3. Identification implies unique PP solution, so must have  $\widehat{\boldsymbol{\theta}} \rightarrow_{n} \boldsymbol{\theta}_{o}$ .

## Graphical Illustration of Consistency



## Graphical Illustration of Consistency

When minimand difference  $\leq \varepsilon$ , S minimand in "sleeve"



## Graphical Illustration of Consistency





## Role of Uniform Convergence

Consider (deterministic) functions

$$f_n(\theta) := egin{cases} rac{1}{2}, & \theta = 0, \\ 0, & \theta = n, \\ 1, & ext{otherwise.} \end{cases} \implies \operatorname{argmin} f_n = \underline{\qquad \qquad \qquad }$$

For each  $\theta$ ,  $f_n(\theta) \to f(\theta)$  where

$$f(\theta) := \begin{cases} \frac{1}{2}, & \theta = 0, \\ 1, & \theta \neq 0. \end{cases} \implies \operatorname{argmin} f = \underline{\hspace{1cm}}$$

▶ Minimizer?\_\_\_\_escaping to the horizon. The sequence of minimizers grows without bound









### Role of Uniform Convergence

**Problem?** why don't we see minimzer convergence? Convergence is not sufficiently uniform.

$$\max_{\theta \in \mathbb{R}} |f_n(\theta) - f(\theta)| = \underbrace{\int_{\mathbf{h}} (\mathbf{h}) - f(\mathbf{h})}_{\text{they coincide at every point, except at a single point}} = \mathbf{1}$$

 $\triangleright$  Similar problem with  $f_n$  stochastic.

bound

- Example ruled out by compactness.
  - $\Theta = \mathbb{R}$  unbounded.

    since it is unbounded, it is not compact in other words, it is not continous?

## Necessity of Uniform Convergence

- ▶ Uniform convergence sufficient but not necessary.
- ► Think: Linear model + squared loss

$$q(\mathbf{w},\boldsymbol{\theta}) = (y - \mathbf{x}\boldsymbol{\theta})^2.$$

- Natural parameter space entire  $\mathbb{R}^{P}$ .
- Estimator in closed form.
- ▶ Uniform convergence/compactness not needed.
- ▶ Here: We use it to *deduce* minimizer convergence.

# Normality

## Additional Assumptions

#### Have for consistency invoked:

- $m{ heta}_o$  identified unique solution/minimizer of the population objective function
- $m{
  ho}$  compact A compact set is for example [0,1], but not (0,1) -> we have closed endpoints
- $ightharpoonup q(\mathbf{w},\cdot)$  continuous
- ► (+ technical...)

Asymptotic normality requires stronger assumptions.

## Additional Assumptions

For asymptotic normality, add:

- ▶  $\theta_o$  interior to  $\Theta$ . [Draw]
- ▶  $q(\mathbf{w}, \cdot)$  twice continuously differentiable on int  $\Theta$

#### Remarks:

- ightharpoonup Interiority requires int  $\Theta$  nonempty
- $\triangleright$  ... used to expand around  $\theta_o$
- ► Twice cont' diff' facilitates second-order expansion.

## Additional Assumptions

#### Abbreviate

Score: 
$$\mathbf{s}(\mathbf{w}, \boldsymbol{\theta}) := \frac{\partial}{\partial \boldsymbol{\theta}} q(\mathbf{w}, \boldsymbol{\theta}),$$
 of  $\mathbf{q} \mathbf{w}, \mathbf{r}, \mathbf{t}$  theta  $(P \times 1)$  essian:  $\mathbf{H}(\mathbf{w}, \boldsymbol{\theta}) := \frac{\partial^2}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}'} q(\mathbf{w}, \boldsymbol{\theta}).$   $(P \times P)$  dd:

- Further add:
  - $E\left[ \mathbf{s}\left(\mathbf{w}, \frac{\boldsymbol{\theta}_{o}}{\boldsymbol{\theta}_{o}} \right) \right] = \mathbf{0},$ score func evaluated at the true value of \theta is zero
  - $\triangleright$   $E[H(\mathbf{w}, \frac{\boldsymbol{\theta}_o}{\boldsymbol{\theta}_o})]$  positive definite.

Full rank condition No linearly dependent columns

Essentially follow from FOC/SOC of minimization.

Let **A** be an  $(n \times K)$  matrix with  $rank(\mathbf{A}) = K$ : **A**'**A** is always positive definite and therefore nonsingular.



implies we are looking at the transposed derivative

# Asymptotic Normality of M-Estimators

### Theorem (W. Thm 12.3)

Provided

- $\blacktriangleright$   $(\theta_o identified + interior to \Theta compact,$
- ▶  $q(\mathbf{w}, \cdot)$  cont' + twice cont' diff' on int  $\Theta$ ,
- $ightharpoonup E[s(w, \theta_o)] = 0$ , and  $E[H(w, \theta_o)]$  positive definite, ightharpoonup 
  ighth
- ightharpoonup (+ technical),

$$\sqrt{N}(\widehat{\theta} - \theta_o) \stackrel{d}{\to} N\left(\mathbf{0}, \mathbf{A}_o^{-1} \mathbf{B}_o \mathbf{A}_o^{-1}\right),$$

$$\mathbf{A}_o := E\left[\mathbf{H}\left(\mathbf{w}, \theta_o\right)\right],$$

$$\mathbf{B}_o := E\left[\mathbf{s}\left(\mathbf{w}, \theta_o\right) \mathbf{s}\left(\mathbf{w}, \theta_o\right)'\right].$$

### Mean Value Theorem

- ▶ Normality proof relies on mean value theorem.
- ▶ Consider scalar case (P = 1).

#### Mean Value Theorem (MVT):

- ▶ Let  $f : [a, b] \to \mathbb{R}$  continuous + differentiable on (a, b).
- ▶ Then for some  $c \in (a, b)$ ,

$$f(b) - f(a) = f'(c)(b - a)$$
.

▶ Slope of secant attained somewhere in between. [Draw]



▶ In scalar (P = 1) case,

$$s(\mathbf{w}, \theta) = \frac{\partial}{\partial \theta} q(\mathbf{w}, \theta), \quad H(\mathbf{w}, \theta) = \frac{\partial^2}{\partial^2 \theta} q(\mathbf{w}, \theta).$$

▶ Twice cont' diff' + MVT with f = score average,

$$\frac{1}{N}\sum_{i=1}^{N}s(\mathbf{w}_{i},\widehat{\theta})-\frac{1}{N}\sum_{i=1}^{N}s(\mathbf{w}_{i},\theta_{o})=\frac{1}{N}\sum_{i=1}^{N}H\left(\mathbf{w}_{i},\overline{\theta}\right)(\widehat{\theta}-\theta_{o}).$$

- $\widehat{\theta} \in \text{int } \Theta \text{ w.p.a.1. (consistency)}$
- ▶ .... solves SP, so LHS vanishes. (FOC.)



Have argued:

$$-\frac{1}{N}\sum_{i=1}^{N}s\left(\mathbf{w}_{i},\theta_{o}\right)=\frac{1}{N}\sum_{i=1}^{N}H\left(\mathbf{w}_{i},\overline{\theta}\right)(\widehat{\theta}-\theta_{o}).$$

Isolate  $\widehat{\theta} - \theta_o$  and  $\times \sqrt{N}$ :

$$\sqrt{N}(\widehat{\theta} - \theta_o) = \left[ -\frac{1}{\sqrt{N}} \sum_{i=1}^{N} s(\mathbf{w}_i, \theta_o) \right] / \left[ \frac{1}{N} \sum_{i=1}^{N} H(\mathbf{w}_i, \overline{\theta}) \right].$$

Analyze each RHS factor in turn.

$$\sqrt{N}(\widehat{\theta} - \theta_o) = \left[ -\frac{1}{\sqrt{N}} \sum_{i=1}^{N} s(\mathbf{w}_i, \theta_o) \right] / \left[ \frac{1}{N} \sum_{i=1}^{N} H(\mathbf{w}_i, \overline{\theta}) \right].$$

- ▶  $\overline{\theta}$  trapped between  $\widehat{\theta}$  and  $\theta_o \Rightarrow \overline{\theta} \to_{\rho} \theta_o$ .
- ▶ So  $N^{-1} \sum_{i=1}^{N} H(\mathbf{w}_i, \overline{\theta}) \approx N^{-1} \sum_{i=1}^{N} H(\mathbf{w}_i, \theta_o)$  (ULLN).

$$\Rightarrow 1 / \frac{1}{N} \sum_{i=1}^{N} H\left(\mathbf{w}_{i}, \overline{\theta}\right) \stackrel{p}{\rightarrow} 1/A_{o}. \qquad (CMT/Slutsky)$$



$$\sqrt{N}(\widehat{\theta} - \theta_o) = \left[ -\frac{1}{\sqrt{N}} \sum_{i=1}^{N} s(\mathbf{w}_i, \theta_o) \right] / \left[ \frac{1}{N} \sum_{i=1}^{N} H(\mathbf{w}_i, \overline{\theta}) \right].$$

► Mean zero scores + CLT ensure

$$\frac{1}{\sqrt{N}}\sum_{i=1}^{N}s(\mathbf{w}_{i},\theta_{o})\stackrel{d}{\to}\mathrm{N}\left(0,B_{o}\right),\quad B_{o}=E[s(\mathbf{w},\theta_{o})^{2}].$$

Harvesting our results,

$$\sqrt{N}(\widehat{\theta} - \theta_o) = \underbrace{\left[ -\frac{1}{\sqrt{N}} \sum_{i=1}^{N} s(\mathbf{w}_i, \theta_o) \right]}_{\rightarrow_d N(0, B_o)} / \underbrace{\left[ \frac{1}{N} \sum_{i=1}^{N} H(\mathbf{w}_i, \overline{\theta}) \right]}_{\rightarrow_\rho 1/A_o} \\
\stackrel{d}{\rightarrow} N(0, B_o) / A_o \qquad \text{(product rule/Slutsky)} \\
\stackrel{d}{=} N(0, B_o/A_o^2) .$$

- ► Vector-case proof follows similarly:
  - 1. Linear approximation (MVT)
  - 2. Convergence of inverse Hessian term (ULLN+CMT)
  - 3. CLT + Product rule.



### Discussion

- ► Thm. gives conditions for *any* M-estimator to be asymptotically normal.
- ► Implies sandwich form

$$\operatorname{Avar}(\widehat{\boldsymbol{\theta}}) = \mathbf{A}_o^{-1} \mathbf{B}_o \mathbf{A}_o^{-1} / N.$$

- ▶ Akin to earlier results (with estimators in closed form).
- Note: Avar $(\widehat{\theta})$  depends on q.
- ► We prefer low variance.

### Discussion

Q: A\_0 must be invertible? How does this work in a HD-setting?

▶  $\mathbf{A}_o = E[\mathbf{H}(\mathbf{w}, \boldsymbol{\theta}_o)]$  assumed positive definite.

▶ Zero on diagonal  $\approx$  infinite variance (through  $\mathbf{A}_o^{-1}$ )

▶ Failure of p.d ≈ P minimand flat around  $\theta_o$ 

 $\triangleright \approx$  Identification failure.

## Role of Interiority

We used  $\theta_o \in \operatorname{int} \Theta$  for differentiation

**Q:** What if  $\theta_o$  on boundary of parameter space?

**A:** No reason to expect  $\sqrt{N}$ -asymptotic normality.

# Example: Parameter on Boundary

Let  $y_i \sim \text{i.i.d.}(\theta_o, 1)$  with  $\theta_o \text{ known } \geqslant 0$ .

Nonnegativity enforced

$$\widehat{\theta} = \underset{\theta \geqslant 0}{\operatorname{argmin}} \frac{1}{N} \sum_{i=1}^{N} (y_i - \theta)^2 = \max(0, \overline{y}),$$

If 
$$\theta_o = 0$$
 (boundary case), then  $\sqrt{N}(\hat{\theta} - 0) \ge 0$ .

$$\sqrt{N}(\widehat{\theta}-0)$$
 does  $\rightarrow_d$ ... but not to normal. [Whiteboard]