Exercise 20

Given Information:

- 1. no draws
 - (a) no loops where the loosing player can go in, in order to prevent the loose and loops the winning player can go in can be ignored (why go in a loop in case you can win the game?).
 - (b) the game structure can be represented by a graph which has the form of a tree
- 2. finite
 - (a) the graph structure is finite
- 3. perfect information
 - (a) both player know the graph

Let V be the set of different game position in the graph G = (V, E), $V_0 \subseteq V$ the positions where player 0 has to move, analogous V_1 and $V_1 = V \setminus V_0$. Let T_{σ} be all the leaves of the tree where $T_{\sigma_0} \subseteq T_{\sigma}$ are the game positions player 0 wins and $T_{\sigma_1} = T_{\sigma} \setminus T_{\sigma_0}$ are the game positions player 1 wins,

Base Case:

 $\forall v \in T_{\sigma}$ a player has a winning strategy. So for every leave there exists a winning strategy for a player.

Induction Step:

 $\circ, \star \in \{\Box, \bigcirc\}$, where \Box means that player 0 has a winning strategy and \bigcirc means that player 1 has a winning strategy. If $\circ = \Box$, player 0 has a winning strategy in \star , if $\circ = \bigcirc$ the choosing player has a winning strategy in \star .

By induction every node $v \in V$ has a winning strategy for one player.