LISTA 4

ALUNO: Caio Gomes Alcântara Glória

MATRICULA: 763989

PROFESSORA: Cristiane Neri

QUESTÃO 1

1. Algoritmo de Busca em Largura

- o Nós visitados: A B C D E F G H I
- o Solução: $A \rightarrow B \rightarrow D \rightarrow I$
- Heurística admissível? Sim, pois nunca superestima o custo real até o objetivo.

2. Algoritmo de Busca em Profundidade

- o Nós visitados: A B D I
- o Solução: $A \rightarrow B \rightarrow D \rightarrow I$
- o Heurística admissível? Não aplicável, já que não utiliza heurísticas.

3. Custo Uniforme

- o Nós visitados: A B C D E F G I
- o Solução: $A \rightarrow B \rightarrow D \rightarrow I$
- Heurística admissível? Sim, é sempre ótima, pois expande os nós de menor custo.

4. Algoritmo de Busca Gulosa

- Nós visitados: A B C D I
- \circ Solução: A \rightarrow B \rightarrow D \rightarrow I
- o Heurística admissível? Sim, ela guia eficientemente a busca ao objetivo.

5. Algoritmo A*

- o Nós visitados: A B D I
- o Solução: $A \rightarrow B \rightarrow D \rightarrow I$
- o Heurística admissível? Sim, pois nunca superestima o custo real.

QUESTÃO 2

- 1. A heurística é admissível, pois nunca superestima o número de movimentos restantes no Puzzle de 8.
- 2. A contagem de peças fora do lugar também é admissível, já que não superestima o custo para alcançar o objetivo.

QUESTÃO 3

A resposta correta é **(B)** I e III, porque tanto a busca em largura quanto o algoritmo A* garantem a solução ótima, desde que a heurística de A* seja admissível.

QUESTÃO 4

A resposta é **(B)** A B D C E F. Na busca em largura, exploramos os vizinhos de um nó antes de passar para níveis mais profundos. A sequência correta reflete essa ordem.

QUESTÃO 5

A resposta é (E) I, IV e V.

- II: A busca em profundidade não necessariamente explora menos nós que a busca em largura.
- III: A busca heurística só garante solução ótima se a heurística for admissível.

QUESTÃO 6

A resposta é (A) A busca gulosa minimiza h(n), pois escolhe sempre o nó com o menor valor de h(n).

QUESTÃO 7

A resposta é (B) \forall n h(n) \leq h *(n). A heurística é admissível quando não supera o custo real para alcançar o objetivo em todos os nós.

QUESTÃO 8

A resposta correta é (**C**) **a b e i**, pois esses são os nós visitados na ordem correta pela busca em largura.

QUESTÃO 9

A função f(n) = (2 - w) * g(n) + w * h(n) gera diferentes algoritmos dependendo de w:

- w = 0: Busca de custo uniforme (considera apenas g(n)).
- w = 1: A* (equilibrando g(n) e h(n)).
- w = 2: Busca gulosa (prioriza h(n)).

QUESTÃO 10

- 1. A com heurísticas h1, h2 e h3*
 - o Nós expandidos: A ordem muda conforme a heurística.

- o Solução: O caminho que minimiza o custo g(n) + h(n).
- o Admissibilidade: Sim, se a heurística nunca superestimar o custo real.

2. Busca Gulosa

- o Expande nós com menor valor de h(n).
- o A solução pode não ser a mais curta.

3. Busca em Profundidade

- o Expande até uma folha.
- A solução pode não ser ótima, dependendo de quando o objetivo é encontrado.

4. Busca em Largura

- o Expande nós conforme foram descobertos.
- o A solução é o caminho mais curto em termos de número de nós.

QUESTÃO 11

A resposta é (**A**). Ambas as afirmações são verdadeiras e a segunda justifica a primeira corretamente, pois a admissibilidade da heurística é fundamental para uma solução ótima no A*.

QUESTÃO 12

a) A árvore binária pode ser representada assim:

b) Busca em Largura: $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 7 \rightarrow 8 \rightarrow 9 \rightarrow 10 \rightarrow 11$. Busca em Profundidade Limitada (limite 3): $1 \rightarrow 2 \rightarrow 4 \rightarrow 8 \rightarrow 9 \rightarrow 5 \rightarrow 10 \rightarrow 11$. Busca por Aprofundamento Iterativo:

Limite 1: 1. Limite 2: $1 \rightarrow 2 \rightarrow 3$. Limite 3: $1 \rightarrow 2 \rightarrow 4 \rightarrow 5 \rightarrow 3 \rightarrow 6 \rightarrow 7$. Limite 4: $1 \rightarrow 2 \rightarrow 4 \rightarrow 8 \rightarrow 9 \rightarrow 5 \rightarrow 10 \rightarrow 11$.

QUESTÃO 13

Vantagens do A*:

- Garante solução ótima com heurística admissível.
- Mais eficiente que buscas cegas.

Desvantagens:

• Exige muita memória ao manter todos os nós expandidos.

QUESTÃO 14

Algoritmos como IDA* e D* aprimoram o A* ao usar menos memória, mantendo a admissibilidade e qualidade da solução.

QUESTÃO 15

MAX pode garantir vitória retirando 1 ou 2 palitos no primeiro turno, pois isso força MIN a perder. A estratégia do MINIMAX é crucial para garantir que MAX vença.

QUESTÃO 16

A resposta é (D) 10.