中国科学院大学

试题专用纸

课程编号: <u>B11001Y-B02</u>

课程名称: 线性代数 I-B

任课老师: 李子明

注意事项:

1. 考试时间为_180_ 分钟, 考试方式 闭 卷;

- 2. 全部答案写在答题纸上;
- 3. 考试结束后, 请将本试卷和答题纸、草稿纸一并交回.
 - 1. .(10) 设 5×5 阶实矩阵

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

计算: A^k , k = 2, 3, 4, 5, 6.

2. .(10 分) 计算 3×3 阶实矩阵

$$M = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 0 & 3 \\ 4 & -3 & 8 \end{pmatrix}$$

的逆矩阵.

- 3. .(10 分) 设 A 和 B 是 4×4 阶矩阵, det(A) = 2 且 det(B) = -1. 计算下列行列式:
 (i) det(AB); (ii)det(3A); (iii) det(B^tB), 其中 B^t 是 B 的转置矩阵;
 (iv)det(B⁻¹AB); (v)det(A*B), 其中 A* 是 A 的伴随矩阵.
- 4. .(10 分) 设有限域 $\mathbb{Z}_5 = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \}$, 记方程组

$$\begin{pmatrix} \overline{1} & \overline{2} & \overline{3} & \overline{0} \\ \overline{4} & \overline{2} & \overline{\alpha} & \overline{2} \\ \overline{2} & \overline{0} & \overline{1} & \overline{3} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} \overline{0} \\ \overline{0} \\ \overline{0} \\ \overline{0} \end{pmatrix}, \not \sharp \, \dot P \, \alpha \in \mathbb{Z}_5$$

的解空间为 V, 讨论当 α 取什么值时 V 的维数等于 1? 当 α 取什么值时 V 的维数等于 2?

.(10 分) 设 ℝ 是实数域,GL_n(ℝ) 是 n×n 阶可逆矩阵构成的乘法群,

$$G = \{A \in GL_n(\mathbb{R}) | det(A) > 0\} \quad \text{fo} \quad H = \{A \in GL_n(\mathbb{R}) | det(A) \ge 1\}.$$

证明: $G \stackrel{\cdot}{=} GL_n(\mathbb{R})$ 的子群, 但 H 不是 $GL_n(\mathbb{R})$ 的子群.

6. .(10 分) 设:

$$R = \left\{ \begin{pmatrix} a & b \\ 2b & a \end{pmatrix} \middle| a, b \in \mathbb{R} \right\}$$

- (i) 证明: R 对于矩阵加法和乘法构成交换环.
- (ii) 设 $A \in \mathbb{R}$. 证明: $A \neq \mathbb{R}$ 中的可逆元 $\iff rank(a) = 2$.
- (iii)R 是不是整环?并证明你的结论.
- 7. .(10 分) 设 (G, \cdot, e) 和 $(H, *, \epsilon)$ 是两个群, $\phi: G \to H$ 是群同态.
 - (i) 证明: im(φ) 是 H 的子群.
 - (ii) 设 G 是有限阶循环群. 证明: $im(\phi)$ 也是循环群, 且它的阶数整除 G 的阶.
- 8. (10 分) 设 $A = (a_{ij})_{n \times n}$, 其中 $a_{ij} = max(i, j), i, j \in \{1, 2, ..., n\}$. 计算 det(A) 的值.
- 9. (15 分) 设 $\phi: \mathbb{R}^n \to \mathbb{R}^n$ 是线性映射. 记 $\phi^2 = \phi \circ \phi$. 证明:
 - (i) ker(φ) ⊂ker(φ²) 和 im(φ²) ⊂ im(φ).
 - (ii) $\ker(\phi) = \ker(\phi^2)$ 当且仅当 $\operatorname{im}(\phi^2) = (\phi)$.
 - (iii) $\dim(\ker(\phi^2)) \le 2\dim(\ker(\phi))$.
- 10. (5 分) 设 A 是 $m \times n$ 阶实矩阵, 且 $\operatorname{rank}(A) = r > 0$. 设 A 的前 r 行 $\overrightarrow{A_1}, \ldots, \overrightarrow{A_r}$. 线性无关, 且 A 的 前 r 列 $\overrightarrow{A^{(1)}}, \ldots, \overrightarrow{A^{(r)}}$ 线性无关. 证明:A 的前 r 行和前 r 列交叉处的元素组成的子式

$$M\begin{pmatrix} 1 & 2 & \dots & r \\ 1 & 2 & \dots & r \end{pmatrix} \neq 0.$$

www.docin.com