风控指标

WOE & IV

WOE(Weight of Evidence)常用于特征变换,IV(Information Value)则用来衡量特征的预测能力

- 1. WOE describes the **relationship** between a predictive variable and a binary target variable.
- 2. IV measures the **strength** of that relationship.

$$WOE_i = \ln\!\left(rac{Bad_i}{Bad_T}/rac{Good_i}{Good_T}
ight) = \ln\!\left(rac{Bad_i}{Bad_T}
ight) - \ln\!\left(rac{Good_i}{Good_T}
ight)$$

Ⅳ 可认为是WOE的加权和

$$egin{aligned} IV_i &= \left(rac{Bad_i}{Bad_T} - rac{Good_i}{Good_T}
ight) *WOE_i \ &= \left(rac{Bad_i}{Bad_T} - rac{Good_i}{Good_T}
ight) *\ln\!\left(rac{Bad_i}{Bad_T} / rac{Good_i}{Good_T}
ight) \ IV &= \sum_{i=1}^n IV_i \end{aligned}$$

WOE和IV的计算步骤

- **step 1**. 对于连续型变量,进行分箱(binning),可以选择等频、等距,或者自定义间隔;对于 离散型变量,如果分箱太多,则进行分箱合并。
- step 2. 统计每个分箱里的好人数(bin_goods)和坏人数(bin_bads)。
- **step 3**. 分别除以总的好人数(total_goods)和坏人数(total_bads),得到每个分箱内的边际好人占比(margin_good_rate)和边际坏人占比(margin_bad_rate)。
- step 4. 计算每个分箱里的 $WOE = \ln\left(\frac{\text{margin}_{badrate}}{\text{margin}_{goodrate}}\right)$
- step 5. 检查每个分箱(除null分箱外)里woe值是否满足单调性,若不满足,返回step1。注意
 null分箱由于有明确的业务解释,因此不需要考虑满足单调性。
- **step 6**. 计算每个分箱里的IV,最终求和,即得到最终的IV。 备注:好人 = 正常用户,坏人 = 逾期用户

buckect	min_score	max_score	obs	bad	good	bad_rate	good_rate	margin_bad_rat	margin_good_r	odds(bad/good)	woe	iv
1	0	18	1390	70	1320	5.0%	95.0%	39.8%	15.1%	0.053	0.9692	0.2392
2	18	23	1070	33	1037	3.1%	96.9%	18.8%	11.9%	0.032	0.4585	0.0316
3	23	28	1162	20	1142	1.7%	98.3%	11.4%	13.1%	0.018	-0.1387	0.0023
4	28	34	1162	15	1147	1.3%	98.7%	8.5%	13.1%	0.013	-0.4308	0.0198
5	34	44	1212	12	1200	1.0%	99.0%	6.8%	13.7%	0.010	-0.6991	0.0482
6	44	100	1153	9	1144	0.8%	99.2%	5.1%	13.1%	0.008	-0.9390	0.0748
7	null	null	1775	17	1758	1.0%	99.0%	9.7%	20.1%	9.610	0.7326	0.0765
总计	0	100	8924	176	8748	2.0%	98.0%	100.0%	100.0%	于 (出)公人 万	0.00(0	0.4924

从相对熵角度理解IV

我们把PSI、IV的计算公式放在一起进行对比

$$IV = \sum_{i=1}^{n} \left(\frac{Bad_i}{Bad_T} - \frac{Good_i}{Good_T} \right) * \ln \left(\frac{Bad_i}{Bad_T} / \frac{Good_i}{Good_T} \right)$$

$$PSI = \sum_{i=1}^{n} \left(\frac{Actual_i}{Actual_T} - \frac{Expect_i}{Expect_T} \right) * \ln \left(\frac{Actual_i}{Actual_T} / \frac{Expect_i}{Expect_T} \right)$$

我们会发现两者形式上是完全一致的,这主要是因为它们背后的**支撑理论都是相对熵**。我们可以归纳 为:

PSI衡量预期分布和实际分布之间的**差异性**,IV把这两个分布具体化为好人分布和坏人分布。IV指标是在**从信息熵上比较好人分布和坏人分布之间的差异性**。

IV 越大越好, PSI 越小越好。

KS

KS统计量是基于经验累积分布函数(Empirical Cumulative Distribution Function, ECDF) 建立的, 一般定义为:

$$ks = \max\{|cum(bad_{-}rate) - cum(good_{-}rate)|\}$$

KS的计算过程及业务分析

- step 1. 对变量进行分箱(binning),可以选择等频、等距,或者自定义距离。
- step 2. 计算每个分箱区间的好账户数(goods)和坏账户数(bads)。
- **step 3**. 计算每个分箱区间的累计好账户数占总好账户数比率(cum_good_rate)和累计坏账户数占总坏账户数比率(cum_bad_rate)。
- **step 4**. 计算每个分箱区间累计坏账户占比与累计好账户占比差的**绝对值**,得到KS曲线。也就是: $ks = |\text{cum_goodrate} \text{cum_badrate}|$
- **step 5**. 在这些绝对值中**取最大值**,得到此变量最终的KS值。

bucket	min_score	max_score	total	total_rate	goods	bads	bad_rate	cum_bad_rate	cum_good_rate	ks (%)	max_ks
	0.03	0.23	90	10.1%	2	88	97.78%	25.73%	0.36%	25.4	
2	0.23	0.39	89	10.0%	24	65	73.03%	44.74%	4.74%	40.0	
3	0.39	0.53	89	10.0%	40	49	55.06%	59.06%	12.02%	47.0	
4	0.53	0.60	90	10.1%	45	45	50.00%	72.22%	20.22%	52.0	
5	0.60	0.65	88	9.9%	52	36	40.91%	82.75%	29.69%	53.1	<<<<<<
6	0.65	0.71	89	10.0%	63	26	29.21%	90.35%	41.17%	49.2	
7	0.71	0.79	89	10.0%	67	22	24.72%	96.78%	53.37%	43.4	
8	0.79	0.85	106	11.9%	97	9	8.49%	99.42%	71/9%	28,4-	20 L
9	0.85	0.90	85	9.5%	83	2	2.35%	100.00%	86.15%	E 42.8	1221
10	0.90	0.98	76	8.5%	76	0	0.00%	100.00%	100.00%	0.0	

在风控中,**稳定性压倒一切**。原因在于,一套风控模型正式上线运行后往往需要很久(通常一年以上) 才会被替换下线。如果模型不稳定,意味着模型不可控,对于业务本身而言就是一种不确定性风险,直 接影响决策的合理性,这是不可接受的。

稳定性是有参照的,因此需要有两个分布——实际分布(actual)和预期分布(expected)。其中,在建模时通常以训练样本(In the Sample, INS)作为预期分布,而验证样本通常作为实际分布。验证样本一般包括样本外(Out of Sample, OOS)和跨时间样本(Out of Time, OOT)。

$$psi = \sum_{i=1}^n \left(A_i - E_i
ight) * \ln(A_i/E_i)$$

PSI = SUM((实际占比 - 预期占比) * In(实际占比 / 预期占比))

PSI 的计算过程

- step 2. 按相同分箱区间,对实际分布 (actual) 统计各分箱内的样本占比。
- step 3. 计算各分箱内的A E和Ln(A / E), 计算index = (实际占比 预期占比) * In(实际占比 / 预期占比)。
- **step4**. 将各分箱的index进行求和,即得到最终的PSI。

Score Range	Actucal %	Expected %	A - E	A/E	Ln(A / E)	Index
000-169	7%	8%	-1%	0.8750	-0.13353	0.0013
170-179	8%	10%	-2%	0.8000	-0.22314	0.0045
180-189	7%	9%	-2%	0.7778	-0.25131	0.0050
190-199	9%	13%	-4%	0.6923	-0.36772	0.0147
200-209	11%	11%	0%	1.0000	0.00000	0.0000
210-219	11%	10%	1%	1.1000	0.09531	0.0010
220-229	10%	9%	1%	1.1111	0.10536	0.0011
230-239	12%	10%	2%	1.2000	0.18232	0.0036
240-249	11%	11%	0%	1.0000	0.00000	0.0000
250+	14%	9%	5%	1.5556	0.44193	0.0221
					Stability Index =	0.0533

在计算得到PSI指标后,这个数字又代表什么业务含义呢? **PSI数值越小,两个分布之间的差异就越小,** 代表越稳定。

PSI范围	稳定性	建议事项
0~0.1	好	没有变化或者很少变化
0.1~0.25	略不稳定	有变化,继续监控后续变化
大于0.25	不稳定	发生大变化,进行特征项分析

相对熵与PSI之间的关系

接下来,我们从数学上来分析相对熵和PSI之间的关系。

$$egin{aligned} psi &= \sum_{i=1}^n \left(A_i - E_i
ight) * \ln(A_i/E_i) \ &= \sum_{i=1}^n A_i * \ln(A_i/E_i) + \sum_{i=1}^n E_i * \ln(E_i/A_i) \end{aligned}$$

将PSI计算公式变形后可以分解为2项,其中:

第1项:实际分布(A)与预期分布(E)之间的KL散度——KL(A||E)

第2项: 预期分布(E)与实际分布(A)之间的KL散度——KL(E||A)

因此,**PSI本质上是实际分布(A)与预期分布(E)的KL散度的一个对称化操作**。其**双向**计算相对熵,并把两部分相对熵相加,从而更为全面地描述两个分布的差异。

CSI

评分卡中从WOE分箱到区间赋分

已知:

$$Odds = rac{p(Y=Bad|X)}{p(Y={
m Good}\,|X)} = rac{p}{1-p}$$

then:

$$\operatorname{credit_score} = A - B * \ln(Odds)$$
 $= A - B * [\beta_0 + \beta_1 * WOE(x)]$
 $= \underbrace{(A - B * \beta_0)}_{\operatorname{base_score}} + \underbrace{(-B * \beta_1 * \begin{cases} woe_1, x \in bin_1 \\ woe_2, x \in bin_2 \\ \cdots \\ woe_m, x \in bin_m \end{cases}}_{\operatorname{partial score}}$

特征稳定性指标(CSI)计算方法

 $CSI = \sum_{i=1}^{n} (Distr_{-}A_{i} - Distr_{-}E_{i}) *partial_score_{i}$

含义为: CSI = SUM((每个分箱内实际占比-每个分箱内预期占比)*分箱分值)

现以实际数据为例展示上述公式。如下图所示,最终CSI的计算结果为0.36,我们可以得到哪些信息呢?

- 1. 符号为正:表示当前样本相对于开发样本往高分段偏移。反之,说明往低分段偏移。
- 2. 绝对值大小:表示该特征维度的稳定性,数值越大,特征稳定性越差。

#1	#2	#3	#4	#5	#6	#7	#8	#9	
Characteristic	Attribute	Develop Sample		Current	Sample	Delta Ratio %	Partial Score	Shift Score	
Characteristic	Attribute	cnt	ratio %	cnt	ratio %	#6 - #4	Partial Score	#7 * #8	
var	al	5298	24.4%	4265	21.1%	-3.3%	17	-0.56	
var	a2	5308	24.5%	4853	24.0%	-0.5%	19	-0.09	
var	a3	3410	15.7%	3287	16.3%	0.5%	26	0.14	
var	a4	3665	16.9%	4272	21.1%	4.2%	30	1.27	
var	a5	4000	18.4%	3522	17.4%	-1@0\ID	(a) :	75:41 L	
var	Total	21681	100.0%	20199	100.0%	0.0%	0 0000	0.36	

PSI 和 CSI 的比较

- 1. PSI 是一个广泛应用的变量稳定性指标,可用来计算连续性、离散性变量。但其**无法反映很多细节原因,比如分布是右偏还是左偏,从而引起psi过大**。(即 PSI >=0, 而 CSI 有正负)
- 2. CSI 目前是出现在评分卡中,主要是为了衡量分数往高分偏移还是低分偏移,这个是 PSI 无法体现的。
- 3. 实际模型监控中, 优先参考 PSI 看宏观。当不稳定性时, 再参考 CSI 看细节。