Congratulations! You passed!

Grade received 100%

Latest Submission Grade 100% To pass 80% or higher

Go to next item

1. 1/1 point

Compute the angle between $\mathbf{x}=\begin{bmatrix}1\\1\end{bmatrix}$ and $\mathbf{y}=\begin{bmatrix}-1\\1\end{bmatrix}$ using the inner product defined by

$$\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^T \begin{bmatrix} 2 & -1 \\ -1 & 4 \end{bmatrix} \mathbf{y}$$

- \bigcirc 0.35 rad (20°)
- left 1.2 rad (69°)
- \bigcirc 1.57 rad (90°)
 - Orrect
 Absolutely right!

1/1 point

Compute the angle between $\mathbf{x}=\begin{bmatrix}0\\-1\end{bmatrix}$ and $\mathbf{y}=\begin{bmatrix}1\\1\end{bmatrix}$ using the inner product defined by

$$\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^T \begin{bmatrix} 1 & -\frac{1}{2} \\ -\frac{1}{2} & 5 \end{bmatrix} \mathbf{y}.$$

To aid in computing this angle and the next ones in this quiz, let's write an expression in Python for the angle between two vectors using a non-standard inner product.

Remember
$$\cos \alpha = \frac{\langle x,y \rangle}{\|x\|\cdot\|y\|} = \frac{\langle x,y \rangle}{\sqrt{\langle x,x \rangle} \cdot \sqrt{\langle y,y \rangle}}$$

Complete the expressions for norm_x and norm_y and then run the code. You might find the NumPy function np.sqrt \text{\text{Z}}\text{ useful.}

```
# the matrix A defines the inner product
     A = np.array([[1, -1/2], [-1/2, 5]])
 3
     x = np.array([0,-1])
 4
     y = np.array([1,1])
 6
     def find_angle(A, x, y):
         """Compute the angle"""
         inner_prod = x.T @ A @ y
 8
 9
         \# Fill in the expression for norm_x and norm_y below
10
         norm_x = 1
11
         norm_y = 1.41
         alpha = inner_prod/(norm_x*norm_y)
12
13
         angle = np.arccos(alpha)
14
         return np.round(angle,2)
                                                                                      Run
     find_angle(A, x, y)
16
                                                                                      Reset
```

- \odot 2.69 rad (154°)
- \bigcirc 2.35 rad (135°)
- \bigcirc -0.9 rad (-52°)
- ✓ Correct Well done!

3. 1/1 point

Compute the angle between $\mathbf{x}=\begin{bmatrix}2\\2\end{bmatrix}$ and $\mathbf{y}=\begin{bmatrix}-2\\-2\end{bmatrix}$ using the inner product defined by

$$\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^T \begin{bmatrix} 2 & 1 \\ 1 & 4 \end{bmatrix} \mathbf{y}$$

Using this inner product, are the vectors...

- Antiparallel
- O Parallel

1/1 point

Compute the angle between $\mathbf{x}=\begin{bmatrix}1\\1\end{bmatrix}$ and $\mathbf{y}=\begin{bmatrix}1\\-1\end{bmatrix}$ using the inner product defined by

$$\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^T \begin{bmatrix} 1 & 0 \\ 0 & 5 \end{bmatrix} \mathbf{y}$$

```
# Fill in the arrays and use the function `find_angle` defined for you to aid in your
A = np.array()
x = np.array()
y = np.array()
find_angle(A, x, y)

Run
Reset
```

- $\bigcirc \ \, \text{1.57 rad} \, (90^\circ)$
- \bigcirc -2.3 rad (-131°)
- \odot 2.3 rad (131°)
- \bigcirc -1.57 rad (-90°)

Ocorrect
Good job.

5. Compute the angle between $\mathbf{x}=\begin{bmatrix}1\\1\\1\end{bmatrix}$ and $\mathbf{y}=\begin{bmatrix}2\\-1\\0\end{bmatrix}$ using the inner product defined by

1 / 1 point

 $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^T \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & -1 \\ 0 & -1 & 3 \end{bmatrix} \mathbf{y}$

- # Fill in the following arrays and use `find_angle` to aim your calculation.
 A = np.array()
 x = np.array()
 y = np.array()
 find_angle(A, x, y)

 Reset
 Run
 Reset
- \odot 1.37 rad (78°)
- $\bigcirc \ \, \text{0.2 rad} \, (11^\circ)$
- $\bigcirc \ \, \text{1.31 rad} \, (75^{\circ})$
 - ✓ Correct Well done!