Gaussian Random Vectors, Gaussian Discriminant Analysis

Submit a PDF of your answers to Canvas

1. If a random vector $\mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ is a Gaussian random vector, then the marginals are Gaussian, i.e, $p(x_j) \sim \mathcal{N}(\mu_j, \sigma_j)$. In this problem, we consider the converse. Let $X_1 \sim \mathcal{N}(0, 1)$ and define the random variable

- c) Is $[X_1 \ X_2]^T$ a Gaussian random vector? **No**
- **2.** For binary classification the MAP classification rule can be expressed using the log-likelihood ratio: if

$$\log\left(\frac{p(\mathbf{x}|y=0)}{p(\mathbf{x}|y=1)}\right) > 0 \tag{1}$$

then $\hat{y} = 0$, else $\hat{y} = 1$.

In Gaussian discriminant analysis, we assume that the class conditional distributions are Gaussian:

$$p(\mathbf{x}|y=0) = \frac{1}{(2\pi)^{\frac{n}{2}} |\mathbf{\Sigma}_0|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_0)^T \mathbf{\Sigma}_0^{-1} (\mathbf{x} - \boldsymbol{\mu}_0)\right)$$

and

$$p(\mathbf{x}|y=1) = \frac{1}{(2\pi)^{\frac{n}{2}} |\mathbf{\Sigma}_1|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_1)^T \mathbf{\Sigma}_1^{-1} (\mathbf{x} - \boldsymbol{\mu}_1)\right).$$

a) In linear discriminant analysis, $\Sigma_0 = \Sigma_1$, and (1) is equivalent to the following linear classification rule: if

$$\mathbf{w}^T \mathbf{x} > c$$

then $\hat{y} = 0$, else $\hat{y} = 1$. Find \boldsymbol{w} and c in terms of Σ_0 , $\boldsymbol{\mu}_0$ and $\boldsymbol{\mu}_1$.

b) In quadratic discriminant analysis, $\Sigma_0 \neq \Sigma_1$, and (1) is equivalent to the following quadratic rule: if

$$\mathbf{x}^T \mathbf{B} \mathbf{x} + \mathbf{w}^T \mathbf{x} > c$$

then $\hat{y} = 0$, else $\hat{y} = 1$. Find an expression for **B**, **w** and c in terms of Σ_0 , Σ_1 , μ_0 and μ_1 .

On) Gissume
$$\xi_0 = \xi_1$$
 then $|\xi_0|^{1/2} = |\xi_1|^{1/2}$ product $A = \xi_0^{-1}$
 $|\xi_0| = (x_1 y_0 = 0)$ $|\xi_0| = (x_1 y_0 =$