۱۰ پاسخ تمرین ۳۱

 $M\subseteq N\models T$ مدلِ M از تئوریِ T را بستهی وجودی بخوانید هرگاه برای هر M از تئوریِ M از تئوریِ M از $\bar{m}\in M$ و \bar{m} مدرِ نسورِ بدون سورِ \bar{m} و هر فرمولِ بدون سورِ \bar{m} و \bar{m} و \bar{m} از \bar{m} و \bar{m} نتیجه شود \bar{m} \bar{m} . \bar{m}

نشان دهید هر تئوریِ دارای اصلبندیِ به فرم $\exists \forall \exists$ دارای مدلی بسته ی وجودی است. (تحقیق کنید که اگر $M \models T$ آنگاه مدلی بسته ی وجودی چون $M \models T$ موجود است به طوری که $|N| = |M| + |L| + \aleph$.

اثبات. نخست یادآوری میکنم که بنا به تمرین

تئوری T تنها و تنها اگر دارای اصلبندی به صورت $\exists \forall$ است که اجتماع هر زنجیر از مدلهای آن مدلی از آن شود.

فرض کنید $M\models T$. نخست نشان خواهم داد که مدلی چون $M\subseteq M$ چنان موجود است که $N\models\exists ar x\quad \phi(ar x,ar m)$ و $M\supseteq M$ و نسبت به $M\models\exists ar x\quad \phi(ar x,ar m)$ قرمولها بسته و وجودی است؛ بدین معنی که اگر M و M آنگاه $m\in M$ آنگاه $m\in M$

شمارش $_{\alpha<\kappa}$ را از تمام فرمولهای به فرم $_{\alpha<\kappa}$ که در آن $m\in M$ در نظر گرفته مدل مورد نظر را به شرح زیر، از زنجیری از مدلها به طول $_{\alpha}$ حاصل خواهیم آورد. قرار می دهیم مدل مورد نظر را به شرح زیر، از زنجیری از مدلها به طول $_{\alpha}$ حاصل خواهیم آورد. قرار می دهیم $_{\alpha}$. N هرگاه که مدل N_{α} ساخته شده باشد، برای ساخت $_{\alpha+1}$ به فرمول $_{\alpha}$ مراجعه می کنیم: اگر این فرمول در توسیعی از $_{\alpha}$ برقرار باشد، $_{\alpha+1}$ را همان توسیع می گیریم، وگرنه قرار می دهیم $_{\alpha+1}$ اگر این فرمول در توسیعی از $_{\alpha}$ برقرار باشد، $_{\alpha+1}$ و قرار می دهیم $_{\alpha+1}$ تحقیق کنید که $_{\alpha+1}$ در این مورد انتظار را داراست، و قرار دهید $_{\alpha+1}$ $_{\alpha+1}$ $_{\alpha+1}$

همین کار را با شروع از M_1 تکرار میکنیم و بدین ترتیب به زنجیری از طول ω میرسیم از مدلهایی چون M_i با این ویژگی که هر M_i نسبت به فرمولهای وجودی با پارامتر در M_{i-1} بستهی وجودی باشد. اجتماع همه ی اینها مدلی است بسته ی وجودی. \square