

第5章 实用的网络安全协议

第5章 内容概要

- 5.1 密码算法在网络各层中的部署
- 5.2 公钥密码基础设施
- 5.3 IPSec协议: 网络层的安全协议
- 5.4 SSL/TLS协议: 传输层的安全协议
- 5.5 PGP and S/MIME: 电子邮件安全协议
- 5.6 Kerberos: 认证协议
- 5.7 SSH: 远程登录安全协议

- 加密和认证算法是构造网络安全协议的基本模块
- 在不同的层次实施密码算法具有不同的效果
- 我们应该在网络体系的哪一个层次部署实施安全协议?

《计算机网络安全的理论与实践(第2版)》.【美】王杰,高等教育出版社,2011年.

TCP/IP 协议层

逻辑的(软件)

- 应用层
 - □ 网页, 电子邮件
- 传输层
 - □ TCP, UDP
- 网络层
 - IP

物理的(硬件)

- 数据链路层
 - □ 以太网,802.11
- 物理层

TCP/IP 包生成

《计算机网络安全的理论与实践(第2版)》.【美】王杰,高等教育出版社,2011年.

不同层次实施的优缺点?

- 应用层
 - □ 提供端对端安全保护; 数据在这一层加密和认证
 - □ 不需要解密数据或验证签名(在其他层)
 - □ 攻击者能够分析流量以及修改报头(TCP/IP包头没有加密或认证)

传输层

- □ 提供TCP包的安全保护(TCP载荷或整个包可以被加密或认证)
- □ 不需要修改应用程序(不影响接收应用层的数据)
- □ 攻击者可以通过IP包头分析网络流量(IP包头没有加密)

• 网络层

- □ 提供链对链的安全保护
 - 传输模式: 只加密载荷
 - 隧道模式: 加密包头和载荷,需要网关
- □不需要修改任何应用程序
- 数据链路层
 - □ 提供数据帧的安全保护(帧的载荷被加密或认证)
 - □不需要修改任何应用程序
 - □ 流量分析不会泄露太多信息

第5章 内容概要

- 5.1 密码算法在网络各层中的部署
- 5.2 公钥密码基础设施
- 5.3 IPSec协议: 网络层的安全协议
- 5.4 SSL/TLS协议: 传输层的安全协议
- 5.5 PGP and S/MIME: 电子邮件安全协议
- 5.6 Kerberos: 认证协议
- 5.7 SSH: 远程登录安全协议

PKI公钥密码基础设施

- PKI 是使用公钥密码体系的机制
- PKI 负责签发、管理公钥证书:
 - □ 确定用户的合法性
 - □ 根据用户的需求颁发公钥证书
 - □ 根据用户的需求延长证书的有效期
 - □ 根据用户的需求或当私钥泄露时,撤销证书
 - □ 存储和管理公钥证书
 - □ 防止签名者抵赖自己的签名
 - □ 支持CA 中心之间实现互相认证

X.509 PKI体系 (PKIX)

- IETF (Internet Engineering Task Force) 推荐
- 四个基本的组成:
 - 1. 终端实体(end entity)
 - 2. 证书机构(CA)
 - 3. 登记机构(RA)
 - 4. 证书库(repository)

X.509 PKI体系 (PKIX)

- 主要功能:
 - □ CA 负责签发和撤销公钥证书
 - □ RA负责验证公钥证书所有者的身份
 - □ 证书库负责存储和管理公钥证书和证书撤销列表 (CRLs)

PKIX 架构

《计算机网络安全的理论与实践(第2版)》.【美】王杰, 高等教育出版社, 2011年.

X.509 证书格式

- 版本: 证书使用的版本
- 序列号: 证书唯一的编号
- 算法: 密码散列函数和公钥密码算法的名称
- 签发者: 签发者的名称
- 有效期: 证书有效的时间段
- 用户名: 证书拥有者的名字
- 公钥: 用户的公钥和参数信息
- 扩展项: 其它信息(版本3中使用)
- 数字签名: 证书机构对证书散列值的签名

第5章 内容概要

- 5.1 密码算法在网络各层中的部署
- 5.2 公钥密码基础设施
- 5.3 IPSec协议: 网络层的安全协议
- 5.4 SSL/TLS协议: 传输层的安全协议
- 5.5 PGP and S/MIME: 电子邮件安全协议
- 5.6 Kerberos: 认证协议
- 5.7 SSH: 远程登录安全协议

IPsec: 网络层协议

- IPsec 实现对IP包的加密和认证
- 包括3个协议:
 - □ 首部协议(AH)
 - 认证IP包的来源和完整性(同时认证IP包的首部和载荷)
 - 用滑动窗口防御消息重放攻击
 - □ 载荷安全封装协议(ESP)
 - 规定加密格式,用于加密和认证IP包
 - □ 互联网密钥交换协议(IKE)
 - 规定密钥交换格式,用于通信双方协商密钥
- 两种运行模式:
 - □ 传输模式
 - □ 隧道模式(需要网关)

IPsec 安全联盟(SA)

- 当 Alice 要与Bob 建立 IPsec 连接, 双方首先需要协商使用的算法 和密钥
- 安全联盟就是为实现以上目的
- 一个安全联盟(SA)在通信的发起者和响应者之间建立,在一个会话阶段内有效
- 一个安全联盟(SA) 可以用于加密或者认证,但不能同时用于两者
- 如果一个连接既需要加密又需要认证,则需要建立两个安全联结 (SA),一个用于加密,另一个用于认证

安全联盟(SA) 组成

- 三个参数:
 - □ 安全参数索引(SPI):出现在IPsec包头里,索引SADB中的SA
 - □ 目标IP 地址
 - □ 安全协议标识符:标明是为AH还是为ESP而设立的
- 安全联盟数据库(SAD)
 - □ 在本地主机上存储安全联盟
- 安全策略数据库(SPD)
 - □ 一组对IP包进行加密或认证的策略
- SA 选择器(SAS)
 - □ 指定每个安全联盟用于哪些IP包的规则

IPsec 包的组成

Normal IP Packet

IP Header Payload

IPsec in Transport Mode

IP Header | IPsec Header Payload

IPsec in Tunnel Mode

Single tunnel

Nested tunnel

Gateway IP Header IPsec Header IP Header Payload

IPSec包头

认证和加密使用不同的安全联盟(SA)

认证头

0 8 16

next header	payload length	RESERVED			
security parameters index (SPI)					
sequence number					
integrity check value (variable length)					

抵御消息重放攻击

滑动窗口和序列号机制用于抵御消息重放攻击

给定一个序列号为#s的IP包,有3种情况:

- s在A中 此IP包已经过时,应丢弃
- s在B中-此IP包在窗口中,检查其是否已经接收过
- s在C中-移动窗口后,类似上面的窗口B的方法进行处理

《计算机网络安全的理论与实践(第2版)》.【美】王杰, 高等教育出版社, 2011年.

封装安全载荷

trailer

authentication data (variable length)

密钥确定和分发

- Oakley 密钥确定协议(KDP)
 - □ Diffie-Hellman 密钥交换+认证 & cookies
 - □认证用于抵御中间人攻击
 - □ Cookies用于抵御阻塞攻击
 - □ Nonce(现时数技术)用于抵御消息重放攻击

阻塞攻击

- 一种拒绝服务攻击
- 攻击者在欺诈的IP包中发送大量的公钥 Y_i , 使得被攻击主机忙于进行大量的计算秘密密钥的运算 $K_i = Y_i^X \mod p$
 - □ Diffie-Hellman密钥交换协议中的模幂运算是非常耗时的
- Cookies技术
 - □ 在计算之前,接收方向发起方发送一个cookie (随机数),并等待发起方发回包含此cookie的确认信息
 - □ 这可以防止攻击者通过修改源IP地址来伪造大量的DH请求包

ISAKMP

- ISAKMP: 互联网安全联结和密钥管理协议
 - □ 确定密钥交换的格式
 - □ 每一种载荷具有相同的载荷头的格式

64-bit initiator's cookie						
64-bit responder's cookie						
8-bit next payload	4-bit major ver	4-bit minor ver	8-bit exchange type	8-bit flags		
32-bit message ID						
32-bit length						

ISAKMP 头

ISAKMP载荷类型

- 提议: 用于协商安全联盟的参数和算法等
- 传递: 确定加密和认证的算法
- 密钥交换: 确定密钥交换算法
- 身份认证: 识别通信对方的身份
- · *证书请求*:请求公钥证书
- 证书:包含公钥证书
- 散列: 包含散列值
- 签名: 包含签名值
- Nonce (现时数型):包含随机数(现时数)
- 通知: 通知其它类型负载的状态
- *删除*:通知接收端,发送端已删除一个或几个SA

8-bit	8-bit	16-bit
下一载荷	保留	载荷长度

第5章 实用的网络安全协议 Part II

第5章 内容概要

- 5.1 密码算法在网络各层中的部署
- 5.2 公钥密码基础设施
- 5.3 IPSec协议: 网络层的安全协议
- 5.4 SSL/TLS协议: 传输层的安全协议
- 5.5 PGP and S/MIME: 电子邮件安全协议
- 5.6 Kerberos: 认证协议
- 5.7 SSH: 远程登录安全协议

SSL/TLS协议

- Secure Socket Layer Protocol (SSL)
 - □ 1994年由Netscape公司设计
 - □ 用于保护 WWW 应用和电子交易
 - Transport layer security protocol (TLS)
 - SSLv3修订版本
 - □ 两个主要组成部分:
 - 记录协议: 在传输层协议的上方
 - 握手协议、密码更换协议、提醒协议:位于应用层协议和记录 协议之间

- SSL上的HTTP协议 (https)
 - □ 在OSI模型的应用层
 - □ 用SSL实现
 - 加密HTTP包
 - 实现服务器与客户端之间的认证

SSL结构

- Cryptographic algorithms
- A compression algorithm
- Parameters during exchange

Allow communicating parties to change algorithms or parameters during a communication session

- A management protocol
- Notify communicating parties when problems occur

SSL handshake SSL change cipher SSL alert Protocols spec protocol protocol

SSL record protocol

TCP

IP

- Divide M into blocks
- Compress each block
- Authenticate, encrypt, add a record header to each block
- Transmit the resulting blocks

SSL握手协议

- 客户端和服务器协商将使用的密码算法,并进行密钥协商
- 实现相互的身份认证
- 四个阶段:
 - □ 选择密码算法
 - 客户端问候消息
 - 服务端问候消息
 - □ 服务器认证和密钥交换
 - □ 客户端认证和密钥交换
 - □ 完成握手

第1阶段(a): 客户端问候消息

包括以下信息:

- 1. 版本号, VC:
 - □ 在客户端主机安装的SSL的最高版 本号
 - □ 例如V_c = 3
- 2. 伪随机串, r_c
 - □ 32字节字符串 ,包括
 - 4字节时间戳
 - 28 字节现时数
- 3. 会话ID, S_C
 - □ 如果S_c=0,则是新会话的新SSL连 接
 - 如果S_c不等于0,则是一个存在的会话的新SSL连接或是更新当前SSL连接的参数

- 4. 密码组: (公钥算法, 对称算法, 散列 算法)
 - 回 例如 <RSA, ECC, Elgamal,AES-128, 3DES, Whirlpool, SHA-384, SHA-1>
 - □ 客户端支持的公钥密码算法、对称 密码算法和密码散列函数的列表
- 5. 压缩算法
 - □ 例如 <WINZIP, ZIP, PKZIP>
 - □ 客户端支持的压缩算法的列表

第1阶段(b): 服务器问候消息

包括以下信息:

- 版本号, V_s:
 - $V_{S} = \min \{V_{Client}, V\}$
 - 服务器安装的SSL的最高版本
- 伪随机串, r_s
 - 32字节字符串
 - 4字节时间戳
 - 28 字节nonce

- 会话ID, S_s
 - 如果 $S_c=0$,则 $S_s=$ 新会话 ID
 - 如果 S_c!= 0,则 S_s=S_c
- 密码组: (公钥算法, 对称算法, 散列 算法)
 - 例如<RSA,AES-128,Whirpool>
 - 服务器支持的公钥密码算法、对称 密码算法和密码散列函数的列表
- 压缩算法
 - 例如 <WINZIP>
 - 服务器从客户端的压缩算法列表中 选择的压缩算法

《计算机网络安全的理论与实践(第2版)》.【美】王杰,高等教育出版社,2011年.

第2阶段(服务器认证和密钥交换)

服务器发送下面的信息给客户端:

- 1. 服务器的公钥证书
- 2. 服务器的密钥交换信息
- 3. 服务器对客户端证书的请求
- 4. 完成服务器问候

注意: 认证部分通常不实现(即第3步)

第3阶段

- 客户端回复以下信息给服务器:
 - □ 客户端的公钥证书
 - □ 客户端的密钥交换信息
 - □ 客户端的公钥证书的验证值
- 密钥交换信息用于生成主密钥
- 例如,在第1阶段中,服务器选择RSA作为密钥交换手段,则客户端按下面方法进行密钥交换:
 - □ 验证服务器的公钥证书的签名
 - □ 获得服务器的公钥**K**s^u
 - □ 生成一个48字节的伪随机串 s_{pm} (预主秘密, pre-master secret)
 - □ 用K_su加密 s_{pm},并发送密文作为*密钥交换信息*给服务器

第3阶段(继续)

• 第3阶段完成后,双方拥有 \mathbf{r}_c , \mathbf{r}_s , \mathbf{s}_{pm} , 则服务器和客户端可以计算预主秘密 \mathbf{s}_m :

$$s_{m} = H_{1}(s_{pm} \parallel H_{2} ('A' \parallel s_{pm} \parallel r_{c} \parallel r_{s})) \parallel$$

$$H_{1}(s_{pm} \parallel H_{2} ('BB' \parallel s_{pm} \parallel r_{c} \parallel r_{s})) \parallel$$

$$H_{1}(s_{pm} \parallel H_{2} ('CCC' \parallel s_{pm} \parallel r_{c} \parallel r_{s}))$$

第4阶段

- 客户端和服务器完成了握手协议.
- 双方用类似的方法计算秘密密钥块 K_b

$$\begin{split} \mathsf{K}_{\mathsf{b}} &= \mathsf{H}_{\mathsf{1}}(\mathsf{S}_{\mathsf{m}} \parallel \mathsf{H}_{\mathsf{2}} \; (\text{`A'} \parallel \mathsf{S}_{\mathsf{m}} \parallel \mathsf{R}_{\mathsf{c}} \parallel \mathsf{R}_{\mathsf{s}})) \; \| \\ &\quad \mathsf{H}_{\mathsf{1}}(\mathsf{S}_{\mathsf{m}} \parallel \mathsf{H}_{\mathsf{2}} \; (\text{`BB'} \parallel \mathsf{S}_{\mathsf{m}} \parallel \mathsf{R}_{\mathsf{c}} \parallel \mathsf{R}_{\mathsf{s}})) \; \| \\ &\quad \mathsf{H}_{\mathsf{1}}(\mathsf{S}_{\mathsf{m}} \parallel \mathsf{H}_{\mathsf{2}} \; (\text{`CCC'} \parallel \mathsf{S}_{\mathsf{m}} \parallel \mathsf{R}_{\mathsf{c}} \parallel \mathsf{R}_{\mathsf{s}})) \; \| \\ &\quad \ldots \quad \text{`DDDD'} \quad \ldots \end{split}$$

. . .

• K_b 被分成6段, 每一段形成一个秘密密钥 $K_b = K_{c1} \parallel K_{c2} \parallel K_{c3} \parallel K_{s1} \parallel K_{s2} \parallel K_{s3} \parallel Z$ (其中Z是剩余的字符串)

• 将秘密密钥分成两组:

Group I: $(K_{c1}, K_{c2}, K_{c3}) = (K_{c,HMAC}, K_{c,E}, IV_c)$ (保护从客户端到服务器的通信) Group II: $(K_{s1}, K_{s2}, K_{s3}) = (K_{s,HMAC}, K_{s,E}, IV_s)$ (保护从服务器到客户端的通信)

SSL记录协议-客户端

- 当建立了一个安全的通信会话后,服务器和客户端将用 SSL记录协议来保护通信
- 客户端进行以下步骤:
 - □ 将消息M 分成一系列数据块 $M_1, M_2, ..., M_k$
 - □ 对 M_i 进行压缩,得到 M_i ' = $CX(M_i)$
 - □ 对 M_i '进行认证,得到 M_i " = M_i ' || $H_{\text{Kc,HMAC}}(M_i$ ')
 - □ 加密 M_i ",得到 $C_i = E_{\text{Kc,HMAC}}(M_i$ ")
 - □ 封装 C_i ,得到 P_i = [SSL record header] $\parallel C_i$
 - \Box 发送 P_i 给服务器

- 服务器进行以下步骤:
 - □ 从 P_i 中得到 C_i
 - □ 解密 C_i 得到 M_i "
 - □ 得到 M_i '和 $H_{\text{Kc,HMAC}}(M_i$ ')
 - □ 验证认证码
 - \square 解压 M_i '得到 M_i

SSL记录协议示意图

SSL记录协议

《计算机网络安全的理论与实践(第2版)》.【美】王杰, 高等教育出版社, 2011年.

第5章 内容概要

- 5.1 密码算法在网络各层中的部署
- 5.2 公钥密码基础设施
- 5.3 IPSec协议: 网络层的安全协议
- 5.4 SSL/TLS协议: 传输层的安全协议
- 5.5 PGP and S/MIME: 电子邮件安全协议
- 5.6 Kerberos: 认证协议
- 5.7 SSH: 远程登录安全协议

基本的电子邮件安全机制

- Alice应向Bob证明消息M 是她发送的
 - □ 发送 $M \parallel \hat{E}_{K_A^r}(H(M)) \parallel \operatorname{CA}\langle K_A^u \rangle$ 给Bob用于认证, 其中 \hat{E} 表示公钥加密
- Alice应保证消息M 在传输过程中是保密的
 - \square 发送 $E_{K_A}(M) \parallel \hat{E}_{K_B^u}(K_A)$ 给**Bob**
 - \square 接收到消息后, Bob首先解密 $\hat{E}_{K_B^u}(K_A)$ 得到 K_A
 - □ 然后,用 K_A 解密 $E_{K_A}(M)$ 得到 M

PGP

- PGP (Pretty Good Privacy)
 - □ 实现了主要的密码算法、ZIP压缩算法和Base64 编码算法
 - □可以用于认证和加密
 - □ 一般形式:
 - 认证
 - ZIP压缩
 - 加密
 - Base64 编码 (用于 SMTP传输)

PGP消息格式

发送方: Alice; 接收方: Bob

《计算机网络安全的理论与实践(第2版)》.【美】王杰, 高等教育出版社, 2011年.

S/MIME

- Secure Multipurpose Internet Mail Extension
- 解决了PGP的不足
 - □ 支持多种格式的消息,不只是ASCII码文本
 - □ 支持IMAP协议 (Internet Mail Access Protocol)
 - □ 支持多媒体
- 类似于PGP, 可以进行认证和加密;但要求签名者必须持有公钥证书
- 使用X.509 PKI 和公钥证书
- 支持标准的对称密码算法、公钥密码算法、数字签名算法、密码散列 算法和压缩算法

第5章 内容概要

- 5.1 密码算法在网络各层中的部署
- 5.2 公钥密码基础设施
- 5.3 IPSec协议: 网络层的安全协议
- 5.4 SSL/TLS协议: 传输层的安全协议
- 5.5 PGP and S/MIME: 电子邮件安全协议
- 5.6 Kerberos: 认证协议
- 5.7 SSH: 远程登录安全协议

Kerberos基础

- 目标:
 - □不使用PKI的方式,实现局域网中的用户认证
 - □ 允许用户访问服务,而不必每次都重新输入登录密码
- 使用对称加密和电子通行证,又称为票据(tickets)
- 使用两种类型的票据:
 - □ TGS票据: 由AS颁发给用户
 - □ V-票据 (服务器票据): 由TGS颁发给用户

Kerberos服务器

- 需要两个特殊的服务器向用户发放票据:
 - □ AS: 认证服务器,用于管理用户和用户认证.
 - □ TGS: 票据授予服务器,用于管理服务器.
- 两个Kerberos协议(单网络 vs. 多网络)
 - □ 単域Kerberos
 - □ 多域Kerberos

Kerberos如何工作?

- □ 登录时,用户向认证服务器AS提供用户名和密码
- □ AS对用户进行认证,并提供一个TGS票据给用户
- □ 当用户要访问服务器V提供的某种服务时,用户向TGS 服务器提供他的TGS票据
- □ TGS服务器对用户的TGS票据进行认证,然后向用户发放一个V票据 (服务器票据) 给用户
- □ 用户向服务器提供V票据,通过后访问服务器提供的服务

Kerberos协议的符号定义

Notation	Meaning
U	User
V	Server
IDu	U's ID
ID _{TGS}	TGS's ID
† _i	Time stamp
E_K	Symmetric-key encryption with secret key K
K_{U}	The secret key derived from user U's password
K _{U,T65}	The session key generated by AS to be used by U and TGS
K _{T65}	The master key shared by AS and TGS
K_{V}	The master key shared by TGS and V
$K_{U,V}$	The session key generated by TGS to be used by U and V
LT _i	Expiration time
Ticket _{T65}	TGS-ticket issued to U by AS
Ticket _v	Server ticket for using server V issued to U by TGS
AD_U	U's MAC address
$Auth_{U,T65}$	Authentication code generated using secret key K _{U,T65}
Auth _{U,V}	Authentication code generated using secret key K _{U,V}

单域 Kerberos

《计算机网络安全的理论与实践(第2版)》.【美】王杰, 高等教育出版社, 2011年.

单域Kerberos的三个步骤

- Phase 1: AS 颁发一个TGS票据给用户
 - 1. U \rightarrow AS: $ID_U \parallel ID_{TGS} \parallel t_1$
 - 2. AS \rightarrow U: $E_{KU}(K_{U,TGS} \parallel ID_{TGS} \parallel t_2 \parallel LT_2 \parallel Ticket_{TGS})$ $Ticket_{TGS} = E_{KTGS}(K_{U,TGS} \parallel ID_U \parallel AD_U \parallel ID_{TGS} \parallel t_2 \parallel LT_2)$
- Phase 2: TGS 颁发一个服务器票据给用户
 - 3. U → TGS: $ID_{V} || Ticket_{TGS} || Auth_{U,TGS}$ $Auth_{U,TGS} = E_{KU,TGS} (ID_{U} || AD_{U} || t_{3})$ 4.TGS → U: $E_{KU,TGS} (K_{U,V} || ID_{V} || t_{4} || Ticket_{V})$ $Ticket_{V} = E_{KV} (K_{U,V} || ID_{U} || AD_{U} || ID_{V} || t_{4} || LT_{4})$
- Phase 3: 用户获得请求的服务
 - 5. U \rightarrow V: Ticket_V || Auth_{U,V} Auth_{U,V} = $E_{KU,V}(ID_U || AD_U || t_5)$ 6. V \rightarrow $E_{KU,V}(t_5+1)$

《计算机网络安全的理论与实践(第2版)》.【美】王杰, 高等教育出版社, 2011年.

多域 Kerberos

《计算机网络安全的理论与实践(第2版)》.【美】王杰,高等教育出版社,2011年.

多域Kerberos的四个步骤

- Phase 1: 本域AS 颁发一个本域 的TGS票据给用户
 - 1. U \rightarrow AS: $ID_{IJ} \parallel ID_{TGS} \parallel t_1$
 - 2. AS → U:

$$\begin{split} \mathsf{EK}_{\mathsf{U}}(\mathsf{K}_{\mathsf{U},\mathsf{TGS}} \parallel \mathsf{ID}_{\mathsf{TGS}} \parallel \mathsf{t}_2 \parallel \mathsf{LT}_2 \parallel \mathsf{Ticket}_{\mathsf{TGS}}) \\ \mathsf{Ticket}_{\mathsf{TGS}} &= \mathsf{E}_{\mathsf{KTGS}}(\mathsf{K}_{\mathsf{U},\mathsf{TGS}} \parallel \mathsf{ID}_{\mathsf{U}} \parallel \mathsf{AD}_{\mathsf{U}} \parallel \mathsf{ID}_{\mathsf{TGS}} \\ &\parallel \mathsf{t}_2 \; \mathsf{LT}_2) \end{split}$$

Phase 2: 本域TGS 颁发一个邻域 TGS票据给用户

3. U \rightarrow TGS: $ID_V \parallel Ticket_{TGS} \parallel Auth_{U,TGS}$ $Auth_{U,TGS} = E_{KU,TGS}(ID_U \parallel AD_U \parallel t_3)$ 4.TGS \rightarrow U:

$$\begin{split} \mathsf{E}_{\mathsf{KU},\mathsf{TGS}}(\mathsf{K}_{\mathsf{U},\mathsf{TGS'}} \parallel \mathsf{ID}_{\mathsf{TGS'}} \parallel \mathsf{t_4} \parallel \mathsf{Ticket}_{\mathsf{TGS'}}) \\ \mathsf{Ticket}_{\mathsf{TGS'}} &= \mathsf{E}_{\mathsf{KTGS'}}(\mathsf{K}_{\mathsf{U},\mathsf{TGS'}} \parallel \mathsf{ID}_{\mathsf{U}} \parallel \mathsf{AD}_{\mathsf{U}} \parallel \mathsf{ID}_{\mathsf{TGS'}} \parallel \mathsf{t_4} \parallel \mathsf{LT_4}) \end{split}$$

Phase 3: 邻域TGS颁发一个服务 器票据给用户

5. U → TGS':

ID_V || Ticket_{TGS'} || Auth_{U,TGS'}

 $\mathsf{Auth}_{\mathsf{U},\mathsf{TGS'}} = \mathsf{E}_{\mathsf{KU},\mathsf{TGS'}}(\mathsf{ID}_\mathsf{U} \parallel \mathsf{AD}_\mathsf{U} \parallel \mathsf{t}_{5})$

6. TGS' → U:

 $\mathsf{E}_{\mathsf{KU},\mathsf{TGS'}}(\mathsf{K}_{\mathsf{U},\mathsf{V}} \parallel \mathsf{ID}_{\mathsf{V}} \parallel \mathsf{t}_{\mathsf{6}} \parallel \mathsf{Ticket}_{\mathsf{V}})$

 $Ticket_{V} = E_{KV}(K_{U,V} \parallel ID_{U} \parallel AD_{U} \parallel ID_{V} \parallel t_{6} \parallel LT_{6})$

Phase 4: 用户从邻域服务器请求 服务

7. U \rightarrow V:

Tickey_V || Auth_{U,V}

 $Auth_{U,V} = E_{KU,V}(ID_U \parallel AD_U \parallel t_7)$

8. V \rightarrow U: $E_{KU,V}(t_7 + 1)$

第5章 内容概要

- 5.1 密码算法在网络各层中的部署
- 5.2 公钥密码基础设施
- 5.3 IPSec协议: 网络层的安全协议
- 5.4 SSL/TLS协议: 传输层的安全协议
- 5.5 PGP and S/MIME: 电子邮件安全协议
- 5.6 Kerberos: 认证协议
- 5.7 SSH: 远程登录安全协议

SSH简介

- SSH: 安全外壳(Secure Shell)
- 用于替代不安全的登录工具,例如 RCP, FTP, RSH, Telnet, rlogin等
- 用认证和加密算法在两台计算机之间建立安全连接
- 支持数据压缩
- 为文件传输(SFTP)和文件拷贝(SCP)提供安全保护
- SSH协议包括3个部分

SSH的3层

• SSH连接:

- □ 在一个SSH连接中为不同的应 用建立多个通道
- SSH用户认证:
 - □ 认证用户的身份
 - □ 用登录口令或公钥密码体系
- SSH传输
 - □ 处理初始化建立,服务器认证 和密钥交换
 - □ 设定加密算法和压缩算法

SSH 架构

《计算机网络安全的理论与实践(第2版)》.【美】王杰,高等教育出版社,2011年.