1.

SELECT THE CORRECT ALTERNATIVE (ONLY ONE CORRECT ANSWER) The atom having the valence shell electronic configuration $4s^2\ 4p^2$ would be in:-

	(A) Group II A and period 3		(B) Group II B and period 4						
	(C) Group IV A and 1	period 4	(D) Group IV A and period 3						
2 .	An element with ato	mic number 106 has bee	en discovered recently. W	hich of the following electronic					
	configuration will it posses :-								
	(A) [Rn] $5f^{14} 6d^5 7s^1$	(B) [Rn] $5f^{14} 6d^5 7s^2$	(C) [Rn] $5f^{14} 6d^6 7s^0$	(D) [Rn] $5f^{14}$ $6d^1$ $7s^2$ $7p^3$					
3 .	The electronic config	uration of transition elem	ents is exhibited by :-						
	(A) $ns^{1-2}(n-1)d^{1-10}$	(B) ns^2 (n - 1) d^{10}	(C) $(n - 1)d^{10}s^2$	(D) ns^2np^5					
4.	Which of the followin	g electronic configuration	s in the outermost shell is	characteristic of alkali metals :-					
	(A) $(n-1) s^2p^6 ns^2p^1$	(B) $(n-1)$ $s^2p^6d^{10}$ ns^1	(C) $(n-1) s^2p^6 ns^1$	(D) $ns^2np^6 (n-1)d^{10}$					
5.	The chemistry of lithiu	ım is very similar to that o	f magnesium even though th	ney are placed in different groups.					
	Its reason is :-								
	(A) Both are found to	ogether in nature	(B) Both have nearly the	same size					
	(C) Both have similar	(C) Both have similar electronic configurations (D) The ratio of their charge to size is nearly the same							
6.	Configuration of Br ⁻ i	$s: [Ar] 3d^{10} 4s^24p^6$. The	electronic configuration of	Br^{+2} would be identical with the					
	element :-								
	(A) Se	(B) As	(C) Ga	(D) Ge					
7 .	$4d^35s^2$ configuration	belongs to which group :	-						
	(A) IIA	(B) IIB	(C) V B	(D) III B					
8.	The ionic radii of N^{3-}	$^{-}$, O^{2-} and F^{-} are respecti	ively given by :-						
	(A) 1.36, 1.40, 1.71	(B) 1.36, 1.71, 1.40	(C) 1.71, 1.40, 1.36	(D) 1.71, 1.36, 1.40					
9.	From the given set o	f species, point out the s	pecies from each set havin	g least atomic radius:-					
	(a) O^{-2} , F^{-} , Na^{+}	(b) Ni, Cu, Zn	(c) Li, Be, Mg	(d) He, Li ⁺ , H ⁻					
	correct answer is -								
	(A) O ⁻² ,Cu, Li, H ⁻	(B) Na ⁺ Ni, Be, Li ⁺	(C) F ⁻ , Zn, Mg, He	(D) Na ⁺ , Cu, Be, He					
10.	$K^{\scriptscriptstyle +},~Ar,~Ca^{\scriptscriptstyle 2^{\scriptscriptstyle +}}$ and $S^{\scriptscriptstyle 2^{\scriptscriptstyle -}}$	contains -							
	(A) Same electronic configuration and atomic volume								
	(B) Different electroni	ic configuration but same	IP.						
	(C) Same electronic o	configuration but different	atomic volume						
	(D) None								
11.	Which of the followin	g is not isoelectronic serie	es :-						
	(A) Cl ⁻ , P ³⁻ , Ar	(B) N ³⁻ , Ne, Mg ⁺²	(C) B ⁺³ , He, Li ⁺	(D) N^{3-} , S^{2-} , Cl^{-}					
12 .	Atomic radii of Fluori	ine and Neon in Angstror	n units are given by :-						
	(A) 0.72, 1.60		(B) 1.60, 1.60						
	(C) 0.72, 0.72		(D) None of these						
13.	In the isoelectronic sp	pecies the ionic radii (Å)	of N^{3-} , Ne and Al^{+3} are res	spectively given by:-					
	(A) 1.36, 1.40, 1.71		(B) 1.36, 1.71, 1.40						
	(C) 1.71, 1.40, 1.36		(D) 1.71, 1.36, 1.40						
14.	S ⁻² is not isoelectroni	c with :-							
	(A) Ar	(B) Cl ⁻	(C) HS ⁻	(D) Ti ⁺³					
15 .	The $\mathrm{IP}_{\scriptscriptstyle 1},\ \mathrm{IP}_{\scriptscriptstyle 2},\ \mathrm{IP}_{\scriptscriptstyle 3},\ \mathrm{IP}_{\scriptscriptstyle 4}$	and $\mathrm{IP}_{\scriptscriptstyle{5}}$ of an element are	7.1, 14.3, 34.5, 46.8, 16	2.2 eV respectively. The element					
	is likely to be:-								
	(A) Na	(B) Si	(C) F	(D) Ca					

16.	In which case the en	ergy released is minim	um:-	
	(A) $Cl \rightarrow Cl^{-}$	(B) $P \rightarrow P^{-}$	(C) N \rightarrow N	(D) C \rightarrow C ⁻
17.	The electron affinity	values for the halogens	s shows the following trer	nd :-
	(A) $F < Cl > Br > I$		(B) $F < Cl < Br < I$	
	(C) $F > Cl > Br > I$		(D) $F < Cl > Br < I$	
18.	The process requirin	g the absorption of en	ergy is.	
	(A) $F \rightarrow F^-$	(B) $Cl \rightarrow Cl^-$	(C) $O \rightarrow O^{2-}$	(D) $H \rightarrow H^-$
19 .	The X – X bond leng	th is $1.00~\textrm{Å}$ and C – C	bond length is 1.54 Å. I	f electronegativities of $'X'$ and $'C'$ are
	3.0 and 2.0 respecti	vely, the C – X bond l	ength is likely to be :-	
	(A) 1.27 Å	(B) 1.18 Å	(C) 1.08 Å	(D) 1.28 Å
20.	Correct order of elec	etronegativity of N, P,	C and Si is :-	
	(A) $N < P < C < Si$		(B) $N > C > S_i > P$	
	(C) $N = P > C = S_i$		(D) $N > C > P > Si$	
21.	Mulliken scale of ele	ctronegativity uses the	concept of :-	
	(A) E. A. and EN of	pauling	(B) E. A. and atomic	size
	(C) E.A. and I.P.		(D) E.A. and bond e	nergy
22.	Which of the following	ng general electronic co	onfiguration for transition	elements is not correct :-
	(A) $(n + 1) s^{1-2} nd^{1-1}$)	(B) $ns^{1-2} (n - 1)d^{1-1}$	⁰ (Where n = 2, 3, 4)
	(C) $ns^{0,1,2}$ (n -1)s ² p ⁶	d^{1-10}	(D) $(n - 1)d^{1-10} ns^{0-2}$	
23.	Be and Mg have zer	o value of electron affi	nity, because :-	
	(A) Be and Mg have	[He] $2s^2$ and [Ne] $3s^2$ c	onfiguration respectively.	
	(B) 2s and 3s orbital	s are filled to their cap	pacity	
	(C) Be and Mg are u	inable to accept electro	on.	
	(D) All the above are	e correct.		
24.	The pair with minim	um difference in electr	onegativity is :-	
	(A) F, Cl	(B) C,H	(C) P, H	(D) Na, Cs
25.	In the following elect	ronic configuration :		
	ns^2 (n - 1) d^{0-1} (n -	2)f ¹⁻¹⁴		
	If value of $(n - 1) =$	6 the configuration wil	l be of :-	
	(A) Lanthanides	(B) d - block	(C) Actinides	(D) s - block
26.	Which of the following	ng match is correct :-		
	(A) Base of mendele	ef periodic table - Nu	mber of protons	
	(B) Doberenier's triad			
		rule is obeyed by H,		
		rve plotted between -	Atomic number V/S Atom	mic weight
27.	True statement is :-			
		ic elements are synthet		
		group are called brid	=	
		onfiguration is placed in		
		ration of elements of a		
28.		of s orbital electron is		
		ut lesser than d and f	electrons	
	(B) Less than p, d as			
	(C) Greater than p, o			
	(D) Is equal to p , d	and t electrons		

29.	In the first 100 elem	ents, number of s-block e	elements are :-	
	(A) 88	(B) 12	(C) 14	(D) 22
30.	The radius of isoelect	tronic series :-		
	(A) Decreases with d	ecreasing nuclear charge		
	(B) Decreases with in	creasing effective nuclear	charge	
	(C) Same for all			
	(D) First increases that	an decreases		
31.	In a period , the eler	nents having least melting	point are :-	
	(A) Noble gas	(B) Alkali metals	(C) Chalcogens	(D) Pnicogens
32.	Which set of element	s has strong tendency to	form cations :-	
	(A) N, O, P	(B) F, Cl, Br	(C) Be, He, Mg	(D) Cs, Ba, K
33.	A neutral atom (Ar) is	s converted to (Ar ⁺³) by th	ne following process	
	$Ar \xrightarrow{E_1} Ar^+ \xrightarrow{E_2}$	$\rightarrow Ar^{+2} \xrightarrow{E_3} Ar^{+3}$		
	The correct order of	$\rm E_1, \ E_2$ and $\rm E_3$ energies is	:-	
			(C) $E_1 = E_2 = E_3$	(D) $E_1 > E_2 < E_3$
34.	The maximum energy	y will be released in the f	ollowing process :-	
	$(A) B + e^{-} \longrightarrow B^{-}$	(B) C + $e^- \longrightarrow C^-$	(C) N + $e^- \longrightarrow N^-$	(D) O + $e^- \longrightarrow O^-$
35.	Which of the following	ng represents a correct se	quence of electronegativity	values :-
	(A) $F > N > O > C$		(B) $F > N < O > C$	
	(C) $F > N > C > O$		(D) $F < N < O < C$	
36.	An element with the	electronic configuration [>	Ke] $4f^75d^16s^2$ lies in the :-	
	(A) s-block II-A grou	p	(B) d-block III-B group	
	(C) f-block III-B grou	p(D) d-block VIII group		
37.	In which of the follow	ving compounds cation an	d anion ratio is minimum :	-
	(A) CsF	(B) LiI	(C) LiF	(D) CsI
38.	In which of the follow	ving the energy change co	orresponds to first ionisation	n potential :-
	(A) $X_{(g)} \rightarrow X^{+}_{(g)} + e$		(B) $2X_{(g)} \rightarrow 2X_{(g)}^{+} + 2e$	
	(C) $X_{(s)} \rightarrow X^{+}_{(g)} + e$		(D) $X_{(aq)} \rightarrow X_{(aq)}^+ + e$	
39.	Set of elements having	ng one electron in their v	alence shell are :-	
	(A) Cl, Br, I		(B) Na, Mg, Al	
	(C) B, Al, Ga		(D) K, Rb, Cs	
40.	The covalent and var	nder Waal's radii of hydro	gen respectively are :-	
	(A) 0.37 Å, 0.8 Å	(B) 0.37 Å, 0.37 Å	(C) 0.8 Å, 0.8 Å	(D) 0.8 Å, 0.37 Å
41.	The electronic config	uration of two neutral ele	ments A and B are	
	$A = 1s^2 2s^2 2p^6 3s^1$	and B = $1s^2 2s^2 2p^5$		
	(A) $A^{+} B^{-}$	(B) A- B+	(C) A - B	(D) A^{2+} (B ⁻) ₂
42.	If the ionic radii of K^{ϵ}	$^{ extstyle extstyle extstyle }$ and $ extstyle ext$	me (i.e. 1.34 Å) then the ato	omic radii of K and F respectively
	are :-		0 0	
		(B) 0.72 Å, 1.96 Å		(D) 1.96 Å, 1.34 Å
43.			H, O, F, S and Cl increase	e in the order:-
	(A) $H < O < F < S < S < S < S < S < S < S < S < S$		(B) S < H < Cl < O < F	
	(C) H < S < O < Cl		(D) H < S < Cl < O < F	
44.		size for iodine, species I,		(D) Y Y Y
	(A) $I > I^- > I^+$	(B) $I > I^+ > I^-$	(C) $I_{+} > I_{-} > I$	(D) $I_{-} > I > I_{+}$

- 45. In the periodic table, the metallic character of element :
 - (A) Decreases from left to right across a period and on descending a group
 - (B) Decreases from left to right across a period and increases on descending a group
 - (C) Increases from left to right across a period and on descending a group
 - (D) Increases from left to right across a period and decreases on descending a group
- 46. Fluorine is the most reactive among all the halogens, because of it's :
 - (A) small size

(B) low dissociation energy of F - F bond

(C) large size

(D) high dissociation energy of F - F bond

CHECK	CHECK YOUR GRASP ANSWER KEY EXERCISE -1														
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	С	Α	Α	С	D	В	С	С	В	С	D	Α	С	D	В
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	С	Α	С	В	D	С	В	D	С	С	С	Α	С	С	В
Que.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
Ans.	Α	D	Α	D	В	С	В	Α	D	Α	Α	С	D	D	В
Que.	46														
Ans.	В														

1. If the difference in atomic size of :

SELECT THE CORRECT ALTERNATIVES (ONE OR MORE THEN ONE CORRECT ANSWERS)

	Na - Li = x	•	Fr - Cs = z					
	Then correct order w							
		(B) $x > y > z$		(D) $x < y << z$				
2.		and Cl- the increasing orde						
	(A) Cl^{-} , S^{2-} , P^{3-}	(B) P^{3-} , S^{2-} , Cl^{-}	(C) S^{2-} , Cl^{-} , P^{3-}	(D) S ²⁻ , P ³⁻ , Cl ⁻				
3.		g order of atomic/ionic ra						
	(A) $I_{-} > I > I_{+}$	(B) $Mg^{+2} > Na^{+} > F^{-}$	(C) $P^{+5} < P^{+3}$	(D) Li > Be > B				
4.	Ionic radii of :-							
	(A) $Ti^{4+} < Mn^{7+}$	(B) $^{37}\text{Cl}^- < ^{35}\text{Cl}^-$	(C) $K^+ > Cl^-$	(D) $P^{3+} > P^{5+}$				
5.	The best reason to a	ccount for the general tend	lency of atomic diameters to	decrease as the atomic numbers				
	increase within a peri	iod of the periodic table is	the fact that					
	(A) Outer electrons r	epel inner electrons						
	(B) Closer packing ar	mong the nuclear particles	is achieved					
	(C) The number of n	eutrons increases						
	(D) The increasing nu	uclear charge exerts a gre	ater attractive force on the	electrons				
6.	Correct orders of Ist	Ionisation Potential are :-						
	(a) Li < B < Be < C	(b) $O < N < F$	(c) Be < N < Ne					
	(A) a, b	(B) b, c	(C) a, c	(D) a, b, c				
7.	The second ionisatio	n potentials in electron v	olts of oxygen and fluorine	atoms are respectively given by				
	:-							
	(A) 35.1, 38.3	(B) 38.3, 38.3	(C) 38.3, 35.1	(D) 35.1, 35.1				
8.	In which of the following	ng pairs, the ionisation energ	y of the first species is less th	an that of the second :-				
	(A) O^{-} , O^{2-}	(B) S, P	(C) N, P	(D) Be ⁺ , Be				
9.		stability of Al+, Al+2, Al+3 i						
	(A) $Al^{+3} > Al^{+2} > Al^{+}$	(B) $Al^{+2} > Al^{+3} > Al^{+}$	(C) $Al^{+2} < Al^{+} > Al^{+3}$	(D) $Al^{+3} > Al^{+} > Al^{+2}$				
10.	Mg forms Mg(II) becar	use of :-						
	(A) The oxidation state of Mg is $+2$							
	(B) Difference betwee	(B) Difference between $I.P_1$ and $I.P_2$ is greater than $16.0~{\rm eV}$						
	(C) There are only two electrons in the outermost energy level of Mg							
		n $\operatorname{I.P}_1$ and $\operatorname{I.P}_2$ is less than						
11.	${\rm IP}_1$ and ${\rm IP}_2$ of Mg are	e 178 and 348 K. cal mo	${\sf I}^{-1}.$ The enthalpy required for	or the reaction				
	${ m Mg} ightarrow { m Mg}^{2\scriptscriptstyle +}$ + $2{ m e}^{\scriptscriptstyle -}$ is	:-						
	(A) + 170 K.cal	(B) + 526 K.cal	(C) - 170 K.cal	(D) - 526 K.cal				
12.	Which of the followin	ng decreases in going down	n the halogen group :-					
	(A) Ionic radius	(B) Atomic radius	(C) Ionisation potential	(D) Boiling point				
13.	Sucessive ionisation e	energies of an element 'X' a	re given below (in K. Cal)					
	IP_1	${\rm IP}_2$	IP_3	IP_4				
	165	195	556	595				
	Electronic configuration	on of the element 'X' is:-						
	(A) $1s^2$, $2s^22p^6$, $3s^23$	Sp^2	(B) $1s^2$, $2s^1$					
	(C) $1s^2$, $2s^22p^2$		(D) $1s^2$, $2s^22p^6$, $3s^2$					
14.	The energy needed to	remove one electron fron	n unipositive ion is abbrevia	ted as :-				
	(A) I st I.P.	(B) 3 rd I.P.	(C) 2 nd I.P.	(D) 1 st E.A.				

15 .	Which of the following	g has 2 nd IP < I st IP						
	(A) Mg	(B) Ne	(C) C	(D) None				
16.	The correct order of	decreasing first ionization en	ergy is :-					
	(A) $Si > Al > Mg > Na$	à	(B) $Si > Mg > Al > Na$					
	(C) $Al > Si > Mg > Na$	à	(D) $Mg > Li > Al > Si$					
17.	Which of the followin	g transitions involves maxim	um amount of energy.					
	$(A)\ M^{-}_{(g)} {\longrightarrow} M_{(g)}$	$(B) M_{(g)} \rightarrow M^{+}_{(g)}$	(C) $M^{+}_{(g)} \to M^{2+}_{(g)}$	(D) $M^{2+}_{(g)} \rightarrow M^{3+}_{(g)}$				
18.	Out of Na ⁺ , Mg ⁺² , O ⁻	2 and N $^{-3}$, the pair of specie	s showing minimum and ma	aximum IP would be.				
	(A) Na ⁺ , Mg ⁺²	(B) Mg^{+2} , N^{-3}	(C) N^{-3} , Mg^{+2}	(D) O^{-2} , N^{-3}				
19.	In the formation of	a chloride ion, from an isc	olated gaseous chlorine at	om, 3.8 eV energy is released,				
	which would be eq	ual to :-						
	(A) Electron affinity	of Cl ⁻	(B) Ionisation potential of Cl					
	(C) Electronegativity	of Cl	(D) Ionisation potential of	of Cl-				
20.	The correct order o	f electron affinity is :-						
	(A) Be < B < C <		(B) Be < N < B < C					
	(C) N < Be < C <	В	(D) N < C < B < Be					
21.	Electron addition wou	ıld be easier in :-						
	(A) O	(B) O ⁺	(C) O ⁻	(D) O^{+2}				
22.	Process Na ⁺ \xrightarrow{I}	$Na_{(g)} \xrightarrow{\Pi} Na_{(s)}$						
	(A) In (I) energy relea	sed, (II) energy absorbed	(B) In both (I) and (II) ene	rgy is absorbed				
	(C) In both (I) and (II)	energy is released	(D) In (I) energy absorbed	l, (II) energy released				
23.	In the process $Cl_{(g)}$ +	$e^- \xrightarrow{\Delta H} Cl^-(g), \Delta H$ is						
	(A) Positive	(B) Negative	(C) Zero	(D) None				
24.	$O_{(g)} + 2e^{-} \rightarrow O^{2-}_{(g)}$	Δ Heg = 744.7 KJ/mole.	The positive value of ΔH	eg is due to :-				
	(A) Energy is release	ed to add on $1 e^-$ to O^{-1}						
	(B) Energy is require	ed to add on $1 e^-$ to O^{-1}						
	(C) Energy is needed	d to add on 1e ⁻ to O						
	(D) None of the abo	ove is correct						
25.	Second electron affin	ity of an element is :-						
	(A) Always exotherm	ic	(B) Endothermic for few elements					
	(C) Exothermic for fe	ew elements	(D) Always endothermic					
26.	The electron affinity							
	(A) Of carbon is grea	iter than oxygen	(B) Of fluorine is less than	n iodine				
	(C) Of Cl ⁻ is less than		(D) Of S is less than oxyg	gen				
27.		ing statement is false :-						
		np ⁶ electronic configuration	lies in 1^{st} to 6^{th} period					
	(B) Typical elements	•						
	- · ·	iod will accommodate thirt	y two elements					
		on are diagonally related						
28.	In boron atom scree							
	(A) Electrons of K s		(B) All the electrons of					
0.0	(C) Two electrons of		(D) Only by electrons of					
29.		e maximum value of electr	ron attinity O ^x , O ^y and C	O^{z} [x, y and z respectively are				
	0, -1 and -2] :-	(D) OV	(C) O7	(D) A11 1 1				
	(A) O ^x	(B) O ^y	(C) O ^z	(D) All have equal				

- 43. Which are correct match :-
 - (A) O > F > N > C IInd I.P.
 - (B) $S^{-2} > Cl^{-} > K^{+} > Ca^{+2}$ Ionic radius
 - (C) N > C > P > Si E. N.
 - (D) $F > Na > Ne I^{st} I.P.$
- 44. In the third period Na to Cl seven element is/are called:-
 - (A) Lanthanides

(B) Typical elements

(C) Halogen elements

- (D) Metalloids
- 45. Which of the following statement is/are not correct:-
 - (A) I.P. increases down the group
 - (B) IP of s-block elements is less than corresponding d- block elements
 - (C) If $\Delta IP > 16$ eV higher oxidation state is more stable
 - (D) IP of halogen elements is maximum in their respective period
- 46. Out of the following statements which is/are correct :-
 - (A) H is an element of minimum atomic radius
- (B) He is an element of highest I.P.
- (C) Cl is an element of highest EA
- (D) Li is an element of lowest I.P.

Triad - I $[N^{3-}, O^-, Na^+]$ 47.

Triad - II [
$$N^+$$
 , C^+ , O^+]

Choose the species of lowest IP from triad-I and highest IP from triad-II respectively

- (A) N^{3-} , O^{+}
- (B) Na^+ , C^+
- (C) N^{3-} , N^{+}
- (D) O-, C+
- 48. The correct values of ionization energies (in kJ mol⁻¹) of Be, Ne, He and N respectively are
 - (A) 899, 2080, 1403, 2372

(B) 2080, 899, 1403, 2372

(C) 899, 2080, 2372, 1403

- (D) 899, 1403, 2080, 2372
- 49. Which of the following processes involve absorption of energy:
 - (A) S (g) + $e^- \rightarrow S^-$ (g)

(B) $O^{-}(g) + e^{-} \rightarrow O^{2-}(g)$

(C) Cl (g) + $e^- \rightarrow Cl^-$ (g)

- (D) O (g) + $e^{-} \rightarrow O^{-}$ (g)
- 50. Following graph shows variation of I.P. with atomic number in second period (Li - Ne). Value of I.P. of
 - Na (11) will be :-
 - (A) Above Ne
 - (B) Below Ne but above O
 - (C) Below Li
 - (D) Between N and O

- $M(g) \rightarrow M^{+} \ (g) \ + \ e^{-}, \ \Delta H \ = \ 100 \ eV, \ M(g) \ \rightarrow M^{2+}(g) \ + \ 2e^{-}, \ \Delta H \ = \ 250 \ eV \ which \ is/are \ incorrect \ statement(s) :- \ (g) \ + \ (g) \$ 51.
 - (A) IP_1 of M(g) is 100 eV

(B) IP_1 of M^+ (g) is 150 eV

(C) IP_2 of M(g) is 250 eV

- (D) IP_2 of M(g) is 150 eV
- 52. AB is predominantly ionic as A^+B^- if :-
 - (A) $(IP)_A < (IP)_B$ (B) $(EA)_A < (EA)_B$
- $(C) (EN)_A < (EN)_B$
- (D) Size of A < size of B

- Which is correct order of size of O, O2-, F- and F:-53.
 - (A) $O^{2-} > O > F^{-} > F$

(B) $O > O^{2-} > F > F^{-}$

(C) $O^{2-} > F^{-} > F > O$

- (D) $O^{2-} > F^{-} > O > F$
- Both metals and non-metals are found among.....elements in the periodic table :-54.
 - (A) p-block
- (B) d-block
- (C) Transition
- (D) Inner transition

81.	Consider the fol	lowing ionization steps :								
01.	Consider the for	$M(g) \longrightarrow M^+(g) + e$	- · ΛH =	= 100 eV						
		$M(g) \longrightarrow M^{2+}(g) +$								
	select correct st		,							
	(A) I.E. ₁ of M(g)		(B) I.	E_{1} of M^{+} (g) is 1	150 eV					
	(C) I.E. ₂ of M(g)			E_{2} of M (g) is 1						
82.		e electronic configurations of the gnificance) are as follows :	elements	s, U, V, W, X and	d Y (these symbols do not have					
	U 1s ² 2s ²		V	1s ² 2s ² 2p ⁶ 3s ¹						
		$^{2} 2p^{6} 3s^{2} 3p^{2}$		$1s^2 2s^2 2p^6 3s^2$	$3p^6 3d^5 4s^2$					
		$s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6$		1						
		h sequence of elements satisfy the	he follow	ing statements :						
		s a carbonate which is not deco								
		ost likely to form coloured ionic								
		largest atomic radius	•							
		ns only acidic oxide								
	(A) V W Y U	(B) V X Y W	(C) V	WYX	(D) V X W U					
83.	Consider the fol	lowing chages :								
	$M(s) \longrightarrow$		M(s)	\longrightarrow $M^{2+}(g)$	+ 2e ⁻					
	$M(g) \longrightarrow$	$M^{+}(g) + e^{-}$		$M^{2+}(g)$						
	$M(g) \longrightarrow$	$M(g) \longrightarrow M^{2+}(g) + 2e^-$								
	The second ioni	zation energy of M could be cal	culated fr	om the energy v	alues associated with :					
	(A) $1 + 3 + 4$		(C) 1		(D) 5 – 3					
84.	Which of the fo	llowing statements are correct :								
		st electronegative and Cs is the	most ele	ctropositive elem	ent.					
	(B) The electron	(B) The electronegativity of halogens decreases from F to I								
	(C) The electron affinity of Cl is higher than that of F though their electronegativities are in the reverse order									
	(D) The electron	affinity of noble gases is almos	t zero.							
85.	Diagonal relation	nships are shown by :								
	(A) Be and Al	(B) Li and Mg	(C) N	Mg and Al	(D) B and P					
86.	Match List I with	h List II and select the correct a	nswer usi	ng the codes give	en below :					
	List	I	List 1	II						
	A. $1s^2$, $2s^2 2p^6$,	• '	1. In	ı						
		$3s^2 3p^6 3p^6 3d^{10}, 4s^1$	2. P	d						
		3s ² 3p ⁶ 3d ¹⁰ , 4s ² 4p ⁶ 4d ¹⁰	3. C							
		$3d^{10}$, $4s^2 4p^6 4d^{10}$, $5s^2 5p^1$	4. Cu							
	Code : A	В	С		D					
	(A) 1	2	3		4					
	(B) 1 (C) 3	3 4	2 2		4 1					
	(C) 3 (D) 1	4	3		2					
	\- , -	-	_		_					

(D)

87. Match List I (Atomic Number of Element) with List II (Block to which the Element Belongs) and select the correct answer using the codes given below :

Li	st I		List II			
(Atom	nic Numb	er of Element)	(Block to which	the element belongs)		
A. 24	ļ		1. p			
B. 38	3		2. f			
C. 49)		3. s			
D. 59)		4. d			
Code	: A	В	С	D		
(A)	2	1	3	4		
(B)	4	3	1	2		
(C)	2	3	1	4		
(D)	4	1	3	2		

88. Match List I (Element) with List II (Electronegativity on Pauling Scale) and select the correct answer using the codes given below :

List I			List II			
(Elemer	nt)		(Electronegativity on Pauling scale)			
A. Carl	oon		1. 0.8			
B. Nitr	ogen		2. 1.6			
C. Alur	ninium		3. 2.5			
D. Ces	ium		4. 3.0			
			5. 4.0			
Code :	Α	В	С	D		
(A)	2	4	5	1		
(B)	3	1	2	4		
(C)	2	1	5	4		
(D)	3	4	2	1		

BRAIN	TEAS	ERS				P	NSW	ER I	KEY				I	EXERCIS	SE -2
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	В	Α	В	D	D	D	С	В	D	D	В	С	D	С	D
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	В	D	С	D	В	D	С	В	В	D	С	Α	С	Α	С
Que.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
Ans.	Α	С	В	С	С	С	Α	D	Α	D	Α	A,B	A, B, C	В	A, C, D
Que.	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans.	A, B, C	Α	С	В	С	С	A,B,C	D	А	Α	С	D	В	В	D
Que.	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75
Ans.	В	Α	Α	С	Α	С	D	D	В	D	В	В	С	A, C, D	B, C
Que.	76	77	78	79	80	81	82	83	84	85	86	87	88		
Ans.	A,B,C,D	A, B, D	A, B	A, C	A, C,D	A, B, D	В	D	A,B,C,D	A, B	С	В	D		

TRUE / FALSE

- 1. Al_9O_3 is an amphoteric oxide.
- 2. Third group of periodic table accommodates maximum number of elements.
- 3. First ionisation potential of Mg is higher than that of Al.
- **4.** The ionic radii of trivalent lanthanides (La³⁺, Ce³⁺, Pr³⁺....) decreases with the increasing atomic number.
- **5.** Successive ionisation potentials are lower.
- **6.** The alkali metals show increasing electronegativities from Li to Cs.
- 7. In group I of alkali metals, the ionization potential decreases down the group. Therefore lithium is a poor reducing agent in gaseous state.
- 8. The decreasing order of electron affinity of F, Cl, Br is F > Cl > Br

[IIT-1993]

9. The basic nature of the hydroxides of Group 13 (Gr. III B) decreases progressively down the group.

[IIT-1992]

FILL IN THE BLANKS

- 1. Most electropositive elements belong to group.
- 2. Most electronegative elements belong to group.
- 3. Transition elements are characterised by valency.
- **4.** The second ionisation energy of calcium is than the ionisation energy of calcium.
- 5. The electronegativity of the elements C, N. Si and P increases in the order of
- 6. Total number of inner transition elements are
- 7. Two elements of equal electronegative values they form bond.
- 8. Among Na, Mg, Al & Si elements element has zero electron affinity.
- 9. Elements of group have greater tendency to form positive ions than elements of group IIA.
- 10. In aqueous solution is the best reducing agent among the alkali metals.

MATCH THE COLUMN

1. Match Column-I (atomic number of elements) with Column-II (position of element in periodic table) and select the correct answer using the codes given below:

	Column-I	Column-II		
(A)	19	(p)	p-block	
(B)	22	(q)	f-block	
(C)	32	(r)	d-block	
(D)	64	(s)	s-block	
1				

2. Match Column-I (Elements) with Column-II (configuration of elements) and select the correct answer using the codes given below:

	<u>Column-I</u>	Column-II			
(A)	The third alkali metal	(p)	$1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^5$		
(B)	The second transition element	(q)	$1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^6 \ 3d^{10} \ 4s^2 \ 4p^6$		
(C)	The fourth noble gas element	(r)	1s² 2s² 2p6 3s² 3p6 3d² 4s²		
(D)	The second helogen element	(s)	$1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^6\ 4s^1$		

3.		<u>Column-I</u>	Column-II					
	(A)	Increasing ionisation potential	(p)	N > O > F				
	(B)	Increasing electronegativity	(q)	N < O < F				
	(C)	Decreasing Zeff	(r)	O < N < F				
	(D)	Decreasing electron affinity	(s)	O > C > N				

4.		Column-I	Column-II					
	(A)	Metalloid	(p)	Selenium				
	(B)	Radioactive	(q)	Silver				
	(C)	Transition	(r)	Arsenic				
	(D)	Chalcogen	(s)	Uranium				

5.		Column-I	Column-II					
	(A)	Increasing atomic size	(p)	Cl < O < F				
	(B)	Decreasing atomic radius	(q)	Li < Be < B				
	(C)	Increasing electronegativity	(r)	Si < Al < Mg				
	(D)	Increasing effective	(s)	N > O > F				
		nuclear charge						

ASSERTION & REASON QUESTIONS

These questions contains, Statement I (assertion) and Statement II (reason).

- (A) Statement-I is true, Statement-II is true; Statement-II is correct explanation for Statement-I.
- (B) Statement-I is true, Statement-II is true; Statement-II is NOT a correct explanation for statement-I
- (C) Statement-I is true, Statement-II is false
- (D) Statement-I is false, Statement-II is true
- 1. Statement -1 : Two successive ionisation energies of Argon are 56.8 eV and 36.8 eV respectively. because
 - **Statement -2** : Zeff of Ar $(3s^23p^6)$ is greater than Ar⁺ $(3s^23p^5)$.
- 2. Statement -1 : Electron affinity of fluorine is greater than chlorine.

because

- **Statement -2**: Ionisation potential of fluorine is less than chlorine.
- $\textbf{3.} \qquad \textbf{Statement -1} \quad : \ \, \text{Size of anion is larger than their parent atom}.$

because

- **Statement -2**: Zeff of anion is greater than that of their parent atom.
- 4. Statement -1 : Atomic radius of inert gases is largest in the period

because

- Statement -2 : Effective nuclear charge of inert gases is minimum
- 5. Statement -1 : 2^{nd} IP of alkali metals is maximum in the period.

because

- **Statement -2**: Alkali metals has smallest atomic size in the period.
- 6. Statement -1: First ionization energy of nitrogen is lower than oxygen.

because

because

- **Statement -2**: Across the period effective nuclear charge decreases.
- 7. Statement -1 : The third period contains only 8 elements and not 18 like 4th period.
 - Statement -2 : In III period filling starts from $3s^1$ and complete at $3p^6$ whereas in IV period it starts from $4s^1$ and complete after $3d^{10}$ and $4s^2$.

COMPREHENSION BASED QUESTIONS

Comprehension # 1

Ionization energies of five elements in kcal/mol are given below :

Atom	I	II	III
P	300	549	920
Q	99	734	1100
R	118	1091	1652
S	176	347	1848
T	497	947	1500

- 1. Which element is a noble gas?
 - (A) P (B) T
- (C) R
- (D) S

- 2. Which element form stable unipositive ion:
- (B) Q

(C) R

(D) S

- The element having most stable oxidation state +2 is : 3.
- (B) R

(C) S

(D) T

- 4. Which is a non-metal (excluding noble gas):
 - (A) P
- (B) Q

(C) R

- (D) S
- If Q reacts with fluorine and oxygen, the molecular formula of fluoride and oxide will be respectively: 5.
 - (A) QF_3 , Q_2O_3
- (B) QF, Q₂O
- (C) QF₂, QO
- (D) None of these
- 6. Which of the following pair represents elements of same group:
 - (A) Q, R
- (B) P, Q
- (C) P, S
- (D) Q, S

Comprehension # 2

Four elements P,Q,R & S have ground state electronic configuration as :

 $P \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^3$

- $Q \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^1$
- $R \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^3$
- $S \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^1$
- 1. Which of the following option represent the correct order of true (T) and False (F) Statement:
 - I. size of P< size of Q

- II. size of $R \le size$ of S
- III. size of P < size of R (appreciable difference) IV. size of Q < size of S (appreciable difference)

- (A) TTTT
- (B) TTTF
- (C) FFTT
- (D) TTFF

- 2. Order of IE_1 values among the following is :

 - (A) P > R > S > Q (B) P < R < S < Q
- (C) R > S > P > Q
- (D) P > S > R > Q

MISCELLANEOUS TYPE QUESTION ANSWER KEY EXERCISE -3 True / False **1**. T **2**. T **4**. T **5**. F **6**. F **7**. T **3**. T **8**. F 9. T Fill in the Blanks **1**. IA group /1 **2**. VIIA/17 3. Variable 4. higher, first **6**. 28 5. Si, P, C, N 7. (non polar) covalent 8. Mg **9**. IA 11. Higher effective nuclear charge **10.** Lithium **12**. Iner pair effect Match the Column **1.** (A)-s (B)-r (C)-p (D)-q **2.** (A)-s (B)-r (C)-q (d)-p **3.** (A)-r (B)-q (C)-p (D)-s **4.** (A)-r (B)-s (C)-q (D)-p **5.** (A)-r (B)-s (C)-p (D)-q Assertion - Reason Questions **1**. D **2**. D **3**. C **4**. C **5**. C **6**. D **7**. A Comprehension Based Quesions Comprehension #1: 1. B 2. B,C 3. C 4.A 5.B 6.A Comprehension #2: 1. B 2. A

- 1. Can an element with atomic number 126, if discovered, be accommodated in the present long from of periodic table ?
- 2. Third period of the periodic table contains 8 and not18 elements. Justify.
- 3. If scientist succeed in obtaining element with atomic number 114, which well known element would you expect it to resemble?
- **4.** Ist and 2^{nd} IE of few elements have been given below –

 IE_1 (KJ/mole)
 IE_2 (KJ/mole)

 (A) 520
 7300

 (B) 1680
 3380

 (C) 2370
 5250

 (D) 900
 1760

- (i) Which is reactive metal?
- (ii) Which is reactive non metal?
- (iii) Which is inert gas?
- (iv) A metal that form a stable binary halide of formulae AX_2 (X = Halogen)
- 5. Among the elements B, Al, C and Si,
 - (a) which has the highest first ionization enthalpy?
 - (b) which has the most negative electron gain enthalpy?
 - (c) which has the largest atomic radius?
 - (d) which has the most metallic character?
- 6. Which of the elements Na, Mg, Si and P would have the greatest difference between the first and second ionization enthalpies. Briefly explain your answer.
- 7. The diagram below shows part of the skeleton of the periodic table in which element are indicated by letters which are not their usual symbols:

Answer the following on the basis of periodic table :

- (I) Alkali metal(s)
- (II) An elements with the outer configuration of d^8s^2
- (III) Lanthanoids
- (IV) Representative elements(s)
- (V) Elements with incomplete f-subshell
- (VI) Halogen(s)
- (VII) s-block element(s)

- (VIII) Transition element (s)
- (IX) Noble gase (s)
- (X) Non-transition element (s)
- **8.** The diagram below shows part of the skeleton of the periodic table in which element are indicated by letter which are not their usual symbols :

		_									
										Q	
Н	L								R		
						J					T

Answer the following on the basis of modern periodic table

- (I) Element havining greatest ionic character in its compound with non-metals
- (II) Metal cation which is coloured in its aqueous solution
- (III) Element (s) of which carbonate salt is/are water soluble
- (IV) Which element is monoatomic gas at room temperature
- 9. Electronegativity of F on Pauling scale is 4.0. Calculate its value on Mulliken scale :
- 10. Calculate the electronegativity of fluorine from the following data :

$$\begin{split} &E_{H-H} = 104.2 \text{ kcal mol}^{-1} \text{ ;} \\ &E_{F-F} = 36.6 \text{ kcal mol}^{-1} \text{ ;} \\ &E_{H-F} = 134.6 \text{ kcal mol}^{-1} \text{ ;} \end{split}$$

Electronegativity of hydrogen = 2.1

- 11. Ionisation potential and electron affinity of fluorine are 17.42 and 3.45 eV respectively. Calculate the electronegativity of fluorine on Mulliken scale and Pauling scale:
- 12. Addition of an electron to $Na_{(g)}$ is slightly exothermic process, whereas addition of electron to $Mg_{(g)}$ is strongly endothermic. Explain.

CONCEPTUAL SUBJECTIVE EXERCISE

ANSWER KEY

EXERCISE -4(A)

- No. because there no provision for filling of g-block element in periodic table.
- **3.** 14th group, carbon family
- 4. (i) Most reactive metal will be an alkali metal of 1st group with its $IE_2 > IE_1$. Thus most reactive metal is (a).
 - (ii) Most reactive non-metal will be a halogen of 17th group. Its IE_1 will be quite high. Thus most reactive non-metal is (b).
 - (iii) A noble gas will have very, very high IE₁. Thus (c) is a noble gas.
 - (iv) A metal that forms a stable binary halide will be an alkaline earth metal of 2nd group. Its $\rm IE_2$ will not be much higher than $\rm IE_1$. Thus (d) is such a metal that forms a stable binary halide of formula $\rm AX_2$.
- **5**. (a) C

(b) Si

(c) Al

- (d) Al
- **6.** Na, because during IP_2 electron is removed from stable octet configuration (ns² np⁶).
- 7. (i) B, (ii) H, (iii) A, (iv) B, C, F, J, I, (v) A, (vi) I (vii) B, J (viii) E, H, K (ix) G (x) L
- 8. (i) H,
- (ii) J²⁺,
- (iii) H
- (iv) T

9. 11.2

- **10.** 3.87
- **11.** 10.435, 3.726

EXERCISE-04 [B]

BRAIN STORMING SUBJECTIVE EXERCISE

- 1. Arrange the following ions in increasing order of their radius ? $V^{+5},\ K^+$, S^{2-} , $Mn^{+7},\ Ca^{+2},\ Cl^-,\ P^{3-}$
- 2. The ionic radii of S^{2-} and Te^{2-} are 1.84 and 2.2 Å respectively. What would you predict for the ionic radius of Se^{2-} .
- 3. Out of Li^+ , Be^{+2} and B^{+3} ions, which has the smallest ionic radius and why?
- 4. A student reported the radii of Cu, Cu^+ and Cu^{2+} as 122 pm, 96 pm and 72 pm. Do you agree with the reported values. Justify the answer. Explain why?
- 5. How many chlorine atoms will be ionised (Cl \rightarrow Cl⁺ + e⁻) by the energy released from the process Cl + e⁻ \rightarrow Cl⁻ for 6.023 10^{23} atom (IP for Cl = 1250 kj mole⁻¹ and EA = 350 KJ mole⁻¹)
- 6. Na and Mg^+ have same number of electrons. But removal of electron from Mg^+ requires more energy. Explain.
- 7. The first ionisation energy of beryllium is greater than that of lithium but reverse is true for the second ionisation energy.
- 8 Based on location in P.T., which of the following would you expect to be acidic & which basic.
 - (A) CsOH
- (B) IOH
- (C) $Sr(OH_2)$
- (D) Se(OH)₂

- (E) FrOH
- (F) BrOH
- 9. From among the elements, choose the following: Cl, Br, F, Al, C, Li, Cs & Xe.
 - (i) The element with highest electron affinity.
 - (ii) The element with lowest ionisation potential.
 - (iii) The element whose oxide is amphoteric.
 - (iv) The element which has smallest radii.
 - (v) The element whose atom has 8 electrons in the outermost shell.
- 10. For the gaseous reaction,
 - $K + F \longrightarrow K^+ F^-$, ΔH was calculated to be 19 kcal under conditions where the cations and anions were prevented by electrostatic separation from combining with each other. The ionisation potential of K is 4.3 eV atom. What is the electron affinity of F?
- 11. The ionisation potentials of atoms A and B are 400 and 300 kcal mol⁻¹ respectively. The electron affinities of these atoms are 80.0 and 85.0 kcal mol⁻¹ respectively. Prove that which of the atoms has higher electronegativity.
- 12. (a) If internuclear distance between Cl atoms in Cl_2 is 10 Å & between H atoms in H_2 is 2 Å, then calculate internuclear distance between H & Cl (Electronegativity of H = 2.1 & Cl = 3.0)
 - (b) Compare the following giving reasons

Acidic nature of oxides: CaO, CO, CO2, N2O5, SO3

13. With the help of EN values $[EN_A = 1.8, EN_B = 2.6, EN_C = 1.6, EN_D = 2.8]$ answer the following questions for the compounds

HAO, HBO, HCO, HDO

- (a) Compounds whose aqueous solution is acidic and order of their acidic strength
- (b) Compounds whose agueous solution is basic and order of their basic strength
- (c) Comment on the chances of being coloured on the basis of percent ionic character for the compounds CD & AB.

- 1. $Mn^{+7} < V^{+5} < Ca^{+2} < K^{+} < Cl^{-} < S^{2-} < P^{3-}$
- 2. Ionic radius of Se^{2-} is expected to be in between the ionic radii of S^{2-} and Te^{2-} . Thus

Ionic radius of
$$Se^{2-} = \frac{1.84 + 2.21}{2} = 2.025 A^0$$

- 3. B^{+3} due to more zeff.
- 4. Cu, Cu^+ and Cu^{2+} have same number of protons but different number of electrons. In moving from Cu to Cu^+ to Cu^{2+} , the number of electrons decreases thus effective nucelar charge and force of attraction between the nucleus and valence electron increases and hence size decreases. Thus the correct order is cu (0.122 nm) > Cu^+ (0.096 nm)> Cu^{+2} (0.072 nm).
- 5. Since $1250 \text{ kJ mole}^{-1}$ energy is required to ionise $6.023 \quad 10^{23}$ atoms. But 350 kJ mol^{-1} energy is released hence the no. of ionised atoms –

$$= \frac{6.023 \times 10^{23} \times 350 \text{ kJ mole}^{-1}}{1250 \text{ kJ mole}^{-1}} = 1.686 \quad 10^{23}$$

- **6.** Mg⁺ has more Zeff.
- 7. The electronic configuration of Li and Be are 1s² 2s¹ and 1s² 2s² respectively.

Since in beryllium 2s orbital is complete while in lithium it is incomplete, it requires more energy to pull out an electron from beryllium than from lithium. Moreever beryllium has higher nuclear charge.

After removal of one electron, Li^+ and Be^+ ions have electronic configuration $1s^2$ and $1s^2$ $2s^1$ respectively. Now it will be easier to remove $2s^1$ electron rather than $1s^2$. Thus IE_2 of Li higher.

- 8. (A) Basic, (B) Acidic, (C), Basic, (D) Acidic, (E) Basic, (F) Acidic.
- 9. (i) Cl, (ii) Cs, (iii) Al, (iv) F, (v) Xe.
- **10.** 3.476 ev.
- **11**. $EN_1 > EN_2$
- **12.** (a) 5.919 Å (b) $CaO < CO < CO_2 < N_2O_5 < SO_3$
- 13. (a) Acidic HBO, HDO

acidic strength - HDO > HBO

(b) Basic - HAO, HCO

Basic strength - HCO > HAO

(c) % Ionic character = 16
$$|X_A - X_B| + 3.5 (X_A - X_B)^2$$

for CD =
$$16 (1.2) + 3.5 (1.2)2$$

: Colourless.

EXERCISE - 05 [A] JEE-[MAIN] : PREVIOUS YEAR QUESTIONS

1.	According to the Period their :-	dic law of elements, t	he variation in properties	s of eleme	nts is related to [AIEEE-2003]					
	(1) Nuclear masses		(2) Atomic numbers							
	(3) Nuclear neutron-proto	n number ratio	(4) Atomic masses							
2.	The reduction in atomic s	size with increase in ator	mic number is a characteris	tic of eleme	ents of :-					
					[AIEEE-2003]					
	(1) d-block	(2) f-block	(3) Radioactive series	(4) High a	atomic masses					
3.	Which of the following gr	oupings represent a coll	ection of isoelectronic speci	es ?						
	(At. no. $Cs = 55$, $Br = 3$	35)			[AIEEE-2003]					
	(1) N ³⁻ , F ⁻ , Na ⁺	(2) Be, Al ³⁺ , Cl ⁻	(3) Ca ²⁺ , Cs ⁺ , Br	(4) Na ⁺ , C	Ca^{2+}, Mg^{2+}					
4.			(Cr), manganese (Mn) and							
			ected to have the highest s		-					
	(1) Cr	(2) Mn	(3) Fe	(4) V	[AIEEE-2003]					
5.	Which one of the followir	ng sets of ions represents	s the collection of isoelectro	nic species	?					
					[AIEEE-2004]					
	(1) K ⁺ , Cl ⁻ , Mg ²⁺ , Sc ³⁺	(2) Na ⁺ , Ca ²⁺ , Sc ³⁺ , F ⁻	(3) K^+ , Ca^{2+} , Sc^{3+} , Cl^-	(4) Na ⁺ , N	/lg ²⁺ , Al ³⁺ , Cl ⁻					
6.	Which of the following io				[AIEEE-2004]					
	(1) O ²⁻	(2) B ³⁺	(3) Li ⁺	(4) F-						
7.	Among Al ₂ O ₃ , SiO ₂ , P ₂ O ₃	$_{3}$ and SO $_{2}$, the correct of	order of acid strength is :-		[AIEEE-2004]					
		(1) $Al_2O_3 < SiO_2 < SO_2 < P_2O_3$ (2) $SiO_2 < SO_2 < Al_2O_3 < P_2O_3$								
		(3) $SO_2 < P_2O_3 < SiO_2 < Al_2O_3$ (4) $Al_2O_3 < SiO_2 < P_2O_3 < SO_2$								
8.			at an exothermic and then a		nic step as shown					
	below :-				[AIEEE-2004]					
	$O(g) + e^{-} = O^{-}(g), \Delta H =$	- 142 kJ mol ⁻¹								
	$O^{-}(g) + e^{-} = O^{2-}(g), \Delta H$	$= 844 \text{ kJ mol}^{-1}$								
	This is because :-									
	(1) O^- ion will tend to res	sist the addition of anoth	ner electron							
	(2) Oxygen has high elect	tron affinity								
	(3) Oxygen is more electr	ronegative								
	(4) O ion has comparitiv				_					
9.	In which of the following	arrangements the order	is NOT according to the p	roperty indi						
	(1) $Al^{3+} < Mg^{2+} < Na^{+} <$	F increasing ionic size	20		[AIEEE-2005]					
	(2) B $<$ C $<$ N $<$ O - inc									
			thalpy (with negative sign)							
	(4) Li < Na < K < Rb -									
10.	Which of the following ox				[AIEEE-2005]					
	(1) SnO ₂	(2) SiO ₂	(3) CO ₂	(4) CaO						
11.	Pick out the isoelectronic		-	. ,	[AIEEE-2005]					
	I. +CH ₃	II. H ₃ O ⁺	III. NH ₃	IV. CH ₃ -						
	(1) I and II	(2) III and IV	(3) I and III	(4) II, III a	and IV					
12.	The lanthanide contraction			. , , -	[AIEEE-2005]					
	(1) Zr and Y have about th	-	(2) Zr and Nb have simila	r oxidation :						
	(3) Zr and Hf have about t		(4) Zr and Zn have the same oxidation state							

13. Which of the following factors may be regarded as the main cause of lanthanide contraction? (1) poor shielding of one of 4f electron by another in the subshell [AIEEE-2005] (2) effective shielding of one of 4f electrons by another in the subshell (3) poorer shielding of 5d electrons by 4f electrons (4) greater shielding of 5d electrons by 4f electrons The increasing order of the first ionization enthalpies of the elements B, P, S and F (lowest first) is :-[AIEEE-2006] (1) F < S < P < B(2) P < S < B < F (3) B < P < S < F(4) B < S < P < FWhich one of the following sets of ions represents a collection of isoelectronic species? [AIEEE-06] (2) $LI^+, Na^+, Mg^{+2}, Ca^{+2}$ (3) $K^+, Cl^-, Ca^{+2}, Sc^{+3}$ (1)N³⁻.O²⁻. F⁻. S²⁻ (4) Ba^{+2} , Sr^{+2} , K^{+2} , Ca^{+2} 16. Following statements regarding the periodic trends of chemical reactivity of the alkali metals and the halogens are given. Which of these statements gives the correct picture? [AIEEE-2006] (1) In both the alkali metals and the halogens the chemical reactivity decreases with increase in atomic number down the group (2) Chemical reactivity increases with increase in atomic number down the group in both the alkali metals and halogens (3) In alkali metals the reactivity increases but in the halogen it decreases with increase in atomic number down the group (4) The reactivity decreases in the alkali metals but increases in the halogens with increase in atomic number down the group 17. The set representing the correct order of ionic radius is :-[AIEEE- 2009] (1) $Li^+ > Na^+ > Mg^{2+} > Be^{2+}$ (2) $Mg^{2+} > Be^{2+} > Li^+ > Na^+$ (4) $Na^+ > Li^+ > Mq^{2+} > Be^{2+}$ (3) $Li^+ > Be^{2+} > Na^+ > Mg^{2+}$ The correct sequence which shows decreasing order of the ionic radii of the elements is:-[AIEEE- 2010] (2) $Al^{3+} > Mg^{2+} > Na^{+} > F^{-} > O^{2-}$ (1) $O^{2-} > F^{-} > Na^{+} > Mg^{2+} > Al^{3+}$ (3) $Na^+ > Mg^{2+} > Al^{3+} > O^{2-} > F^-$ (4) $Na^+ > F^- > Mg^{2+} > O^{2-} > Al^{3+}$ Which one of the following orders presents the correct sequence of the increasing basic nature of the given [AIEEE- 2011] oxides? (1) $Na_2O < K_2O < MgO < Al_2O_3$ (2) $K_2O < Na_2O < Al_2O_3 < MgO$ (3) $Al_2O_3 < MgO < Na_2O < K_2O$ (4) MgO \leq K₂O \leq Al₂O₃ \leq Na₂O The outer electron configuration of Gd (Atomic No. : 64) is :-20. [AIEEE- 2011] (2) $4f^7 5d^1 6s^2$ (3) $4f^3 5d^5 6s^2$ (4) $4f^8 5d^0 6s^2$ $(1) 4f^4 5d^4 6s^2$ The correct order of electron gain enthalpy with negative sign of F, Cl, Br and I, having atomic number 9, 17, 21. 35 and 53 respectively, is :-[AIEEE- 2011] (2) F > Cl > Br > I (3) Cl > F > Br > I (4) Br > Cl > I > F(1) I > Br > Cl > F22. The increasing order of the ionic radii of the given isoelectronic species is :-[AIEEE- 2012] (1) K^+ , S^{2-} , Ca^{2+} , Cl^- (2) Cl^- , Ca^{2+} , K^+ , S^{2-} (3) S^{2-} , Cl^- , Ca^{2+} , K^+ (4) Ca^{2+} , K^+ , Cl^- , S^{2-}

PRE	VIOU	S YE	AR Q	UES	ΓΙΟΝ	S	PERI	ODIC	TAE	LE		EXERCISE-05(A)				
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
Ans	2	2	1	1	3	1	4	1	2	1	4	3	3	4	3	
Que.	16	17	18	19	20	21	22									
Ans	3	4	1	3	2	3	4									

EXERCISE - 05 [B] JEE-[ADVANCED] : PREVIOUS YEAR QUESTIONS

1.	Moving from right to left	in a periodic table, the ato	omic size is:		[JEE	1995]						
	(A) increased	(B) decreased	(C) remains constant	(D) none of	these							
2.	The increasing order of	electronegativity in the foll	owing elements:		[JEE	1995]						
	(A) C, N, Si, P	(B) N, Si, C, P	(C) Si, P, C, N	(D) P, Si, N,	С							
3.	One element has atomic weight 39. Its electronic configuration is $1s^2$, $2s^2$ $2p^6$, $3s^2$ $3p^6$ $4s^1$. The											
	for that element is:				[JEE	1995]						
	(A) High value of IE		(B) Transition element									
	(C) Isotone with ₁₈ Ar ³⁸		(D) None									
4.		ectrons in oxygen atom is:		(T) 00	[JEE	1995]						
	(A) 6	(B) 16	(C) 8	(D) 32								
5.		$^{+}$, Ca^{2+} , Cl^{-} & S^{2-} follows t			[REE	1995]						
	(A) $K^+ > Ca^{+2} > S^{-2} > Cl$		(B) $K^+ > Ca^{+2} > Cl^- > S^{-1}$									
	(C) $Ca^{+2} > K^{+} > Cl^{-} > S^{-2}$		(D) $S^{-2} > Cl^{-} > K^{+} > Ca^{+}$	2								
6.		nas the maximum number o			[JEE	1996]						
	(A) Mg ²⁺	(B) Ti ³⁺	(C) V ³⁺	(D) Fe ²⁺								
7.	The incorrect statement	among the following is:			[JEE	1997]						
	(A) the first ionisation potential of Al is less then the first ionisation potential of Mg											
	(B) the second ionisation potential of Mg is greater then the second ionisation potential of Na											
	(C) the first ionisation po	tential of Na is less then th	ne first ionisation potential o	of Mg								
	(D) the third ionisation p	otential of Mg is greater th	en the third ionisation pote	ntial of Al								
8.	Li ⁺ , Mg ²⁺ , K ⁺ ,Al ³⁺ (Arrang	ge in increasing order of r	adii)		[JEE	1997]						
9.	Which one of the following statement (s) is (are) correct?											
	(A) The electronic configu	uration of Cr is [Ar] 3d ⁵ 4s	1 .(Atomic No. of Cr = 24)									
	(B) The magnetic quantum number may have a negative value											
	(C) In silver atom, 23 elec	ctrons have a spin of one ty	ppe and 24 of the opposite	type. (Atomic	No. of	Ag = 47						
	(D) The oxidation state o	f nitrogen in HN_3 is -3 .										
10.	The electrons, identified b	oy n & / ;			[JEE	1999]						
	(i) $n = 4$, $l = 1$	(ii) $n = 4$, $l = 0$	(iii) $n = 3$, $l = 2$									
	(iv) $n = 3$, $l = 1$ can	be placed in order of incre	easing energy, from the low	est to highest a	as:							
	(A) (iv) < (ii) < (iii) <	(i)	(B) (iii) $<$ (ii) $<$ (iv) $<$ (i									
	(C) (i) \leq (iii) \leq (iv)		(D) (iii) $<$ (i) $<$ (iv) $<$ (ii)									
11.		_	atom can be represented a			1999]						
	(A) $\uparrow\downarrow\uparrow\uparrow\uparrow\uparrow\uparrow$	(B) $\uparrow\downarrow\uparrow\downarrow\uparrow\downarrow\uparrow$	(C) $\uparrow\downarrow\uparrow\downarrow\uparrow\downarrow\downarrow$	(D) $\uparrow\downarrow\uparrow\downarrow\downarrow$	$\downarrow \downarrow$							
12.	The electronic configurati	on of an element is $1s^2$ 2s	2 $2p^{6}$ $3s^{2}$ $3p^{6}$ $3d^{5}$ $4s^{1}$. Th	is represents its	s :							
	(A) excited state	(B) ground state	(C) cationic form	(D) none	[JEE	2000]						

13. Assertion: F atom has a less negative electron gain enthalpy than Cl atom. [JEE 2000]

Reason: Additional electron is repelled more efficiently by 3p electron in Cl atom than by 2pelectron in F atom.

- (A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
- (B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.
- (C) Statement-1 is true, statement-2 is false.
- (D) Statement-1 is false, statement-2 is true.
- **14.** The correct order of radii is:

[JEE 2000]

- (A) N < Be < B
- (B) $F^- < O^{2-} < N^{3-}$
- (C) Na < Li < K
- (D) $Fe^{3+} \le Fe^{2+} \le Fe^{4+}$

15. The IE_1 of Be is greater than that of B.

[T/F]

[JEE 2001]

16. The set representing correct order of IP_1 is

[JEE 2001]

- (A) K > Na > Li
- (B) Be > Mg > Ca
- (C) B > C > N
- (D) Fe > Si > C

17. Identify the least stable ion amongst the following:

[JEE 2002]

(A) Li-

(B) Be-

(C) B-

- (D) C⁻
- 18. The maximum number of electrons that can have principal quantum number n=3, and spin quantum number, $m_s = -1/2$, is [JEE 2011]

PRE	VIOUS YEARS	S QUE	STIONS		A	NSW	ER	KEY				1	EXERCISE-5	[B]
1.	A	2.	С	3.	С		4.	A		5.	D			
6.	D	7.	В											
8	$Mg^{2+} < Li^+$	< K ⁺	Q.9	A,B,C	10.	A								
11.	A,D	12.	В,С	13.	C		14.	В	15.	True	;	16.	В	
17.	В	18.	9											