Задание (вариант 18):

Даны регулярное выражение в обратной польской записи R и буква x. Найти максимальное k, такое что в языке L есть слова, начинающиеся с x^k . Алфавит: $\{a, b, c, 1, ., +, *\}$

Алгоритм: Для каждого регулярного выражения r, с которым работаем во время перевода регулярного выражения из обратной польской записи в обычную запись, будем хранить два параметра:

$$\begin{cases} max_pref_len \in [0,inf] & \text{ т.е. } max \; k: x^k - \text{префикс } w \in r \\ max_word_len \in [-1,inf] & \text{ т.е. } max \; m: x^m = w' \in r \end{cases}$$

В написанном в этом репозитории алгоритме $inf=10^5$. Очевидно, что всегда верно $max_pref_len \geq max_word_len$. Поянсим границы для каждого из параметров. Для всех примеров положим x=a.

Параметр max pref len принимает значения:

- 1. 0, если r не задает слово, в котором есть префикс, состоящий из буквы x. (Например, r=ba)
- 2. inf, если r задает слово, в котором есть префикс из буквы x, размер которого превышает заранее зафиксированное число. (Например, $r = a^*b$)

Параметр $max \ word \ len$ принимает значения:

- 1. -1, если r не задает слово, полностью состоящее из букв x. (Например, r=ab)
- 2. 0, если r не задает слово, полностью состоящее из букв x, но при этом задает пустое слово, то есть 1. (Например, r=ab+1)
- 3. inf, если r задает слово, полностью состоящее из букв x, размер которого превышает заранее зафиксированное число. (Например, $r=a^*$)

Тогда база будет вот такой (r - однобуквенное выражение, то есть <math>r = letter):

• Если
$$letter=x$$
, то
- $max_pref_len=1$
- $max_word_len=1$
- $max_word_len=1$
• Если $letter \neq x$, то
- $max_pref_len=0$
- $max_word_len=-1$

Теперь разберем, каким образом определяются значения $r_{max_pref_len}$ и $r_{max_word_len}$ для $r = r_1 \# r_2$, где # – это одна из операций $\{+^{(2)}, .^{(2)}, *^{(1)}\}$, а r_1, r_2 – корректные регулярные выражения, для которых уже посчитаны $r_{imax_pref_len}$ и $r_{imax_word_len}$ $i \in [1, 2]$. Будем называть $w \in r$ – слово с максимальным префиксом или максимальное слово, полностью состоящее из букв x.

- 1. Если это операция $+^{(2)}$, то в терминах регулярных выражений для получения слова w выбирается лучшее слово из r_1 или r_2 . Так как параметры независимые, то
 - $r_{max_pref_len} = \max(r_{1 max_pref_len}, r_{2 max_pref_len})$
 - $r_{max_word_len} = \max(r_{1 max_word_len}, r_{2 max_word_len})$
- 2. Если это операция . $^{(2)}$, то в терминах регулярных выражений для получения слова w склеиваются слова из r_1 и r_2 . Тогда, возможны разные случаи:

- Если r_1 задает слово, полностью состоящее из букв $x \Leftrightarrow r_{1 \max_word_len} \neq -1$, то $r_{\max_pref_len}$ высчитывается как максимум из {склеивания всего слова из букв x из r_1 и префикса из r_2 } или {префикса из r_1 }, следовательно формула такая: $r_{\max_pref_len} = \max(r_{1 \max_pref_len}, r_{1 \max_word_len} + r_{2 \max_pref_len})$
- Иначе, префикс r_2 не имеет смысла рассматривать, так как в r_1 после префикса вида $x^{r_1 \max_pref_len}$ идут другие буквы, и тогда $r_{max_pref_len} = r_{1 \max_word_len}$
- Если r_1 и r_2 содержат слова, состоящие только из букв x, то $r_{max_word_len}$ высчитывается как сумма длин длинейших слов, состоящих только из букв x, из обеих регулярных выраженией, то есть $r_{max_word_len} = r_{1\,max_word_len} + r_{2\,max_word_len}$
- Иначе, слов, полностью состоящих из букв x, появиться не может и параметр $r_{max\ word\ len} = -1$
- 3. Если это операция $*^{(1)}$, то в терминах регулярных выражений для получения слова w склеиваются слова из r_1 сами с собой необходимое число раз. Пусть для упрощения обозначения $p = r_{1\,max\ word\ len}$. Тогда, возможны случаи:
 - Если r_1 содержит слово вида x^p (без учета пустого слова, то есть $p \neq 0$), то тогда мы можем получить префикс размера inf, слеивая x^p само с собой кучу раз (для p=0, очевидно это неверно). Следовательно, если $r_{1\,max_word_len}>0$, то $r_{max_pref_len}=r_{max_word_len}=inf$
 - В противном же случае $(p \le 0)$ $r_{max_pref_len} = r_{1\,max_pref_len}$, так как оператором * мы никак не будем разрастать слово (это бессмысленно), а $r_{max_word_len} = 0$, так как оператор * гарантирует наличие пустого слова в r.

В итоге, обрабатывая с помощью стека исходное регулярное выражение в обратной польской записи, мы придем к R в обычной записи и у нас будут посчитаны два параметра $R_{max_pref_len}$ и $R_{max_word_len}$. Логично, что ответом на задачу является максимум из этих двух чисел. Однако, как было замечено в начале алгоритма, $max_pref_len \ge max_word_len$, значит максимум всегда будет возвращать первое число. Таким образом, ответом будет являться $R_{max_pref_len}$.

Корректность: Из алгоритма видно, что задача решается индукцией по увеличению приоритета операций над регулярным выражением. Так как исходное регулярное выражение задается нам в обратной польской нотации, то операции поступают к нам сразу в интересующем нас порядке.

- Очевидно, что база индукции (значения параметров для букв) корректна.
- Предполагаем, что параметры были вычислены корректно на всех шагах.
- Переход: делаем последнюю операцию, после выполнения которой, мы получим требуемое регулярное выражение. Так как при парсинге каждой из трех возможных операциий наш алгоритм максимизирует ответ по очевидной логике, то в итоге мы получаем величину максимального префикса состоящего из букв x.

Асимптотика: Пусть len(R) — это длина задаваемого регулярного выражения в обратной польской нотации. Заметим, что обработку выражения мы делаем с помощью стека, в котором операции push, top и pop работают за O(1). Мы идем поэлементно по R и взаимодействуем со стеком (кладем в него что-то единожды, либо достаем 1-2 эелемента, пересчитываем два параметра за O(1) и кладем это в стек). Значит, один символ из R обробатывается за O(1). Следовательно, итоговая асимптотика O(len(R)).