Untitled

Hiba Majdoubi

2025 - 03 - 24

Boxplot of the returns

The boxplot shows several outliers, which implies that the distribution has heavy tails. The result of the Jarque-Bera test leads us to reject the hypothesis of normality. These results highlight characteristics of non-normality, which motivates the use of conditional volatility models, such as GARCH.

```
## Jarque Bera Test
##
## data: log_returns
## X-squared = 11216, df = 2, p-value < 2.2e-16</pre>
```

ACF des rendements log

ACF des rendements \log^2

Rendements et VaR 1% (RiskMetrics)


```
##
## Call:
## glm(formula = y_target ~ X - 1, family = binomial(link = "logit"))
## Coefficients:
##
      Estimate Std. Error z value Pr(>|z|)
                   0.2495 -14.296 < 2e-16 ***
## X1 -3.5673
## X2
      -0.4986
                   1.0134
                          -0.492 0.62273
        1.1279
                   0.4779
                            2.360 0.01827 *
## X3
## X4
       0.7106
                   0.5991
                            1.186 0.23560
                            3.072 0.00212 **
## X5
        1.3541
                   0.4407
## X6 -13.5207
                           -0.034 0.97315
                 401.7561
## X7 -16.5145
                   8.2305
                           -2.006 0.04480 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
       Null deviance: 7028.51 on 5070 degrees of freedom
## Residual deviance: 915.89 on 5063 degrees of freedom
## AIC: 929.89
##
## Number of Fisher Scoring iterations: 16
```

Coefficient	Interpretation
X1 (Constant)	Highly significant (p $<$ 2e-16) \rightarrow indicates a non-zero average probability of exception.
X2 to X6 (Lags of past exceptions)	Some are not significant (e.g. X2, X4, X6), but others are (X3, X5, X7).
X7 (VaR)	Significant at the 5% level (p = 0.04480) \rightarrow the probability of exception depends on the VaR itself, which is not desirable.