Tema 3 Aritmética de enteros

Aritmética de enteros

Objetivos:

- ✓ Hacer la correspondencia entre los tipos de datos numéricos de alto nivel (p. ej, Java y
 C/C++) y los tipos nativos del procesador
- ✓ Traducir a ensamblador expresiones aritméticas (cálculos y guardas) expresadas en alto nivel
- ✓ Distinguir entre operadores combinacionales y secuenciales y calcular su tiempo de operación y la productividad en casos sencillos a partir de los retardos de los componentes
- ✓ Relacionar manipulación de bits con operaciones de alto nivel (p. ej, operar con los campos del formato de coma flotante)
- ✓ Distinguir las diferentes respuestas del computador ante las operaciones que no se pueden completar (por desbordamiento o por indeterminación)
- ✓ Entender el soporte que da el juego de instrucciones a las singularidades del cálculo (excepciones, indicadores de la norma IEEE)

Índice

- Introducción
- 1. Típos en alto y bajo nível
- 2. Operaciones y operadores
- 3. Operaciones lógicas
- La representación de los enteros
- Suma y resta de enteros
 - 1. Suma y resta en el MIPS R2000
 - 2. Operadores de suma
 - 3. Operadores de resta

- Multiplicación de enteros
 - 1. Fundamentos
 - 2. Multiplicación y división en el MIPS
 - 3. Operadores de desplazamiento
 - 4. Operadores de multiplicación sin signo
 - 5. Operadores de multiplicación con signo

Índice

Introducción

- 1. Típos de datos en alto y bajo nível
- 2. Operaciones y operadores
 - · Los cálculos en los computadores
 - · La unidad aritmética y lógica
 - · Parámetros de una ALU
 - · Prestaciones
- 3. Ejemplos: operaciones lógicas
- 4. La representación de los enteros
 - Notas sobre la representación de los enteros
 - Conversión entre tipos
 - · El salto condicional en el MIPS

I. Tipos en alto y en bajo nivel

• Tipos de datos básicos

	bits	Java	C/C++ (32 bits)	MIPS	x64/IA-64
	8	_	char	byte	byte
carácter	16	char	wchar_t	halfword	word
entero sin signo	8	_	unsigned byte	byte	byte
	16	_	unsigned short	halfword	word
	32	_	unsigned int (long)	word	dword
entero con signo	8	byte	byte	byte	byte
	16	short	short	halfword	word
	32	int	int /long	word	dword
	64	long		_	qword
coma flotante	32	float	float	float	float
	64	double	double	double	double

- Los cálculos en los computadores
 - ✓ Las operaciones lógicas y aritméticas expresadas en alto nivel se traducen en datos y instrucciones de código máquina
 - ✓ Durante el ciclo de instrucción, el procesador aplica operadores para procesar los datos

```
int[] j;
short a;
float x,y;

x = 5*j[a];
if (a>x){
   y=x*1.3e5;
   j=(int)exp(x);
}
```

```
Ibu $t0,0xFF0($0)

Iw $t1,0x1020($2)

add $t0,$t0,$t1

mtc1 $t0,$f1
...
```


La unidad aritmético-lógica

ALU (Arithmetic Logic Unit)

✓ es un elemento funcional del procesador formado por un conjunto de operadores digitales que realizan las operaciones codificadas en las instrucciones

- ✓ Cada operador implementa una o más operaciones que se aplican a los operandos y produce un resultado
- ✓ El control del procesador, dirigido por las instrucciones que se descodifican, selecciona los operadores y encamina operandos y resultados desde y a los registros implicados

- ✓ La ALU puede activar indicadores (*flags*) que dan información del resultado
 - Z=I si R=0,
 - N=I si R<0,
 - V=I si desbordamiento en Ca2,
 - etc.

- Parámetros de una ALU
 - ✓ Funcionales:
 - Operaciones que puede realizar
 - Conversión entre tipos
 - Operaciones de bit (&, |) y desplazamientos
 - · Cálculo elemental: suma, resta, multiplicación y división
 - Comparación (=, ≠, <, ≤, ≥, >)
 - Tipos de operandos que puede manejar
 - ✓ Prestaciones (coste temporal):
 - ¿A qué velocidad opera una ALU?
 - ¿Cuántas operaciones puede hacer por unidad de tiempo?
 - √ Complejidad (coste espacial)
 - · ¿Cuántos recursos físicos hay que dedicar a los operadores?
 - ¿Qué espacio del chip hay que dedicar a los operadores?

- ¿Cómo expresaremos las prestaciones?
 - ✓ Tiempo de respuesta
 - Tiempo necesario para realizar un cálculo. Cuanto más corto, mejor
 - Se mide en unidades de tiempo (ns, tiempo de puerta...)
 - ✓ Productividad
 - · Número de operaciones por unidad de tiempo. Cuanto más grande, mejor
 - Se puede medir con unidades genéricas OPS (operaciones por segundo), KOPS, MOPS, GOPS...
 - · caso de coma flotante: FLOPS, MFLOPS, etc.
- Complejidad (coste espacial)
 - ✓ Número de puertas
 - ✓ Número de transistores
 - ✓ Superficie de xip. Unidades típicas: µm², nm²

3. Ejemplo: operaciones lógicas

En el MIPS

formato R	formato I
OR	ORI
AND	ANDI
XOR	XORI
NOR	

✓ Operación derivada: NOT (Cal)

nor \$t0,\$t0,\$zero

alternativamente:

li \$t1,0xFFFFFFFF
xor \$t0,\$t0,\$t1

3. Ejemplo: operaciones lógicas

• En el MIPS

formato R	formato I
OR	ORI
AND	ANDI
XOR	XORI
NOR	

✓ Productividad de los operadores:

$$\chi = I/t_{Puerta}$$

• Si
$$t_{Puerta} = 50 \text{ ps} = 50 \times 2^{-12} \text{ s}$$

 $\chi = 1000/50 \text{ GOPS} = 20 \text{ GOPS}$

3. Ejemplo: operaciones lógicas

• En Java o C

- Notas sobre la representación de enteros
 - ✓ Los conjuntos matemáticos N y Z son infinitos, pero los tipos de datos básicos de un computador tienen una capacidad de representación finita, exacta pero limitada.
 - Con n bits sólo se pueden representar 2ⁿ palabras diferentes
 - Conjunto N : números naturales, se codifican en código binario natural CBN.
 - Conjunto Z: números enteros con signo, se codifican en complemento a dos:
 - · Los positivos (se incluye el cero): en código binario natural
 - Los negativos : se hace al valor positivo la operación complemento a dos para representarlo.

Por ejemplo supongamos que n = 3

CBN	Sin Signo
0	000
1	001
2	010
3	011
4	100
5	101
6	110
7	111

$$[0 \dots +7]$$

 $[0 \dots +2^{n}-1]$

Ca2	Con Signo
3	011
2	010
1	001
0	000
- Ī	Ш
-2	110
-3	101
-4	100

- \checkmark Rangos de representación con n bits
 - Para N: C.B.N. Rango [0 ... +2ⁿ-1]
 - Para Z: codificación en complemento a 2: $[-2^{n-1} ... + 2^{n-1}-1]$

n	Sin signo	Con signo
8	0 255	−128 +127
16	0 65.535	-32.768 +32.767
32	0 4.294.967.295	-2.147.483.648 +2.147.483.647
64	0 1.84 ·10 ¹⁹ (aprox)	-9.2·10 ¹⁸ +9.2·10 ¹⁸ (aprox)

- Conversión entre tipos enteros en el MIPS R2000
 - ✓ El tipo entero *nativo* es de 32 bits (ALU y registros)
 - ✓ Las instrucciones de acceso a la memoria hacen la conversión si hace falta
 - LBU y LHU añaden ceros por la izquierda (válido para CBN)
 - LB y LH hacen extensión de signo (válido para Ca2)
 - · SB y SH eliminan bits por la izquierda

- Conversión entre tipos enteros en el MIPS R2000
 - ✓ El tipo entero *nativo* es de 32 bits (ALU y registros)
 - ✓ Las instrucciones de acceso a la memoria hacen la conversión si hace falta
 - LBU y LHU añaden ceros por la izquierda (válido para CBN)
 - LB y LH hacen extensión de signo (válido para Ca2)
 - · SB y SH eliminan bits por la izquierda

- Conversión entre tipos enteros en el MIPS R2000
 - ✓ El tipo entero *nativo* es de 32 bits (ALU y registros)
 - ✓ Las instrucciones de acceso a la memoria hacen la conversión si hace falta
 - LBU y LHU añaden ceros por la izquierda (válido para CBN)
 - LB y LH hacen extensión de signo (válido para Ca2)
 - · SB y SH eliminan bits por la izquierda

- Conversión entre tipos enteros en el MIPS R2000
 - ✓ El tipo entero *nativo* es de 32 bits (ALU y registros)
 - ✓ Las instrucciones de acceso a la memoria hacen la conversión si hace falta
 - LBU y LHU añaden ceros por la izquierda (válido para CBN)
 - LB y LH hacen extensión de signo (válido para Ca2)
 - · SB y SH eliminan bits por la izquierda, toman la parte de menor peso para escribir.

4. Representación de los enteros

- El salto condicional en el MIPS
 - ✓ Por comparación entre dos operandos:

(BEQ/BNE
$$r_A$$
, r_B , eti)

Instrucción Condición

BEQ $A = B$

BNE $A \neq B$

Las pseudoinstrucciones
 BEQZ/BNEZ r,eti
 derivan de BEQ y BNE

✓ MIPS: Basadas en el análisis de un operando:

Instrucción Condición			
BGEZ	$A_{31} = 0$		
BGTZ	$A_{31} = 0 \text{ y } A_{30} \dots A_0 \neq 0$		
BLTZ	$A_{31} = 1$		
BLEZ	$A_{31} = 1 \circ A_{31} A_0 = 0$		

Algunos operadores de cálculo de condición de salto

Índice

Introducción

- 1. Típos en alto y bajo nível
- 2. Operaciones y operadores
- 3. Operaciones lógicas
- La representación de los enteros

Suma y resta de enteros

- 1. Suma y resta en el MIPS R2000
- 2. Operadores de suma
- 3. Operadores de resta

- Multiplicación de enteros
 - 1. Fundamentos
 - 2. Multíplicación y división en el MIPS
 - 3. Operadores de desplazamiento
 - 4. Operadores de multiplicación sin signo
 - 5. Operadores de multiplicación con signo

Fundamentos

- Anatomía de la suma
 - ✓ El procedimiento general calcula $R = A + B + c_0$

Acarreos:

- c_0 (de entrada), habitualmente $c_0 = 0$
- c_{n-1}...c₁, forman parte del cálculo
- c_n (de salida)
 útil a veces
- El procedimiento de suma es el mismo para CBN y Ca2

Fundamentos

- El desbordamiento en la suma CBN
 R = A + B
 - ✓ Detección:
 - Desde la circuitería: El acarrero final $c_n = I$
 - Desde software: cuando (R < A) o (R < B)

✓ Ejemplos con n = 4 bits Rango +0 hasta 15

Fundamentos

- El desbordamiento en la suma Ca2 R = A + B
 - Detección:
 - Desde software: sólo puede darse si los signos de los sumandos son iguales. Y se produce cuando es distinto del signo del resultado.
 - Dos maneras de detectarlo desde la circuitería:
 - el signo del resultado generado está invertido (como por software):

$$a_{n-1} = b_{n-1} \neq r_{n-1} \circ /(a_{n-1} \oplus b_{n-1}) * (b_{n-1} \oplus r_{n-1}) = 1$$

- los dos acarreos finales son distintos: $c_n \neq c_{n-1}$ o $c_n \oplus c_{n-1} = I$
- ✓ Ejemplos con n = 4 bits Rango -8 hasta +7

Fundamentos

• Anatomía de la resta R=A-B (en CBN y en Ca2)

puede hacerse como la suma R = A + Ca2(B) = A + Ca1(B) + I

Fundamentos

- El desbordamiento en la resta CBN R = A B
- ✓ Detección: (Los préstamos de la resta aparecen invertidos respecto de los acarreos de la suma)
 - Desde la circuitería: cuando $c_n = 0$
 - Desde software: cuando (A < B) o (R > A)

Fundamentos

• Desbordamiento en la resta en Ca2 R = A - B

- ✓ Detección:
 - Por software: se detecta cuando los signos de los operandos son distintos entre sí, y el signo de A es distinto del signo del resultado R.
 - Desde la circuitería:
 - Acarreos finales distintos (como suma) : $c_n \neq c_{n-1}$ o $c_n \oplus c_{n-1} = I$
 - Comprobando lo mismo que por software:

$$a_{n-1} = -b_{n-1} \neq r_{n-1} \circ (a_{n-1} \oplus b_{n-1}) * (a_{n-1} \oplus r_{n-1}) = 1$$

Fundamentos

- La comparación de dos enteros CBN:
 - ✓ El resultado de una comparación es un bit

$$(I = cierto, 0 = falso)$$

- ✓ La comparación A < B se puede hacer restando (R = A B) y analizando los acarreos y el signo de R
 - el valor concreto de R es irrelevante

Comparación	CBN
A == B	R = 0
A >= B	c _n = I (R es representable)
A < B	c _n = 0 (R no es representable)

Fundamentos

- La comparación de dos enteros en Ca2:
 - ✓ El resultado de una comparación es un bit

$$(I = cierto, 0 = falso)$$

✓ La comparación A < B se puede hacer restando (R = A – B) y viendo si ha habido desbordamiento, bit V y analizando el signo del resultado

Comparación	Ca2		
A == B	R = 0	R = 0	
(V = 0) (R es representable)	R es positivo $A \geq B$	R es negativo A < B	
(V = I) (R no es representable)	R es positivo A < B	R es negativo A > B	

Índice

- Introducción
- 1. Típos en alto y bajo nível
- 2. Operaciones y operadores
- 3. Operaciones lógicas
- La representación de los enteros
- Suma y resta de enteros
 - 1. <u>Suma y resta en el MIPS</u>
 <u>R2000</u>
 - 2. Operadores de suma
 - 3. Operadores de resta

- Multiplicación de enteros
 - 1. Fundamentos
 - 2. Multiplicación y división en el MIPS
 - 3. Operadores de desplazamiento
 - 4. Operadores de multiplicación sin signo
 - 5. Operadores de multiplicación con signo

Suma y resta con el MIPS R2000

Instrucciones

- ✓ Operandos de 32 bits
- ✓ Versiones registro-registro (formato R) o registro-inmediato (formato I)
- ✓ Instrucciones aditivas:

		con	sin
operación	formato	signo	signo
suma	R	ADD	ADDU
suma	1	ADDI	ADDIU
resta	R	SUB	SUBU
comparación	R	SLT	SLTU
comparación	1	SLTI	SLTIU

- ✓ ADD y ADDU (etc...) hacen la misma operación, pero ADD puede producir excepciones
- ✓ Todas las instrucciones de formato I hacen extensión de signo de la constante
- ✓ No hay resta en formato I. Para restar la constante k se suma –k

Suma y resta con el MIPS R2000

- Instrucciones de suma y resta
 - ✓ ADD rdst,rfnt1,rfnt2
 ADDI rdst,rfnt,imm
 - Si hay desbordamiento (con signo), provocan una excepción y el registro rdst
 no se modifica
 - ✓ ADDU rdst,rfnt1,rfnt2
 ADDIU rdst,rfnt,imm
 - · Nunca provocan ninguna excepción, ni detectan situaciones de desbordamiento
 - ✓ SUB rdst,rfnt1,rfnt2
 - Si hay desbordamiento (con signo), provocan una excepción y el registro rdst
 no se modifica
 - ✓ SUBU rdst,rfnt1,rfnt2
 - · Nunca provocan ninguna excepción, ni detectan situaciones de desbordamiento

Suma y resta con el MIPS R2000

- Tratamiento del desbordamiento en alto nivel
 - ✓ En Java y en C la aritmética entera ignora el desbordamiento

```
Java
int a,b,c;
a = 20000000000; // 0x77359400
b = 10000000000; // 0x3B9ACA00
c = a + b;
System.out.println(a + " + " + b + " = " + c);

2 000 000 000 + 1 000 000 000 = -1 294 967 296
```

if ((a^b)>=0 && ((c^b)<0))
 throw new ArithmeticOverflowException; Java</pre>

- ✓ Al generar coulgo para mirs, el compliador escogera ADD en vez de ADD
- ✓ Para detectar el desbordamiento, habrá que añadir al programa:

Suma y resta amb el MIPS R2000

- Tratamiento del desbordamiento en bajo nivel
 - ✓ Detección de la desigualdad de los signos entre operandos

```
int a,b,c;
c = a + b;
```

OK:

```
lw $t0,a
lw $t1,b
addu $t2,$t0,$t1
xor $t3,$t0,$t1
bltz $t3,OK
xor $t3,$t0,$t2
bltz $t3,AritOvException
sw $t2,c
```

Suma de a+b

Detección desbordamiento:

- 1. Signo a vs. signo b
- 2. Signo a (o b) vs. signo c

Salto para tratar el desbordamiento

Escritura del resultado si no ha habido desbordamiento

Suma y resta con el MIPS R2000

- Instrucciones de comparación (Set on Less Than)
 - ✓ SLT rdst,rfnt1,rfnt2 SLTI rdst,rfnt,inm
 - Hace la comparación menor estricto (rfnt1 < rfnt2 o rfnt < inm) entre dos operandos, interpretándolos en Ca2
 - Si la condición se cumple hace rdst=1, en caso contrario rdst=0
 - Nunca generan ninguna excepción
 - ✓ SLTU rdst,rfnt1,rfnt2
 SLTIU rdst,rfnt,inm
 - Hacen la comparación (rfnt l < rfnt2 o rfnt < inm) entre dos operandos, interpretándolos en CBN
 - Si la condición se cumple hace rdst=1, en caso contrario rdst=0
 - Nunca generan ninguna excepción

Índice

Introducción

- 1. Típos en alto y bajo nível
- 2. Operaciones y operadores
- 3. Operaciones lógicas
- La representación de los enteros

Suma y resta de enteros

- 1. Suma y resta en el MIPS R2000
- 2. Operadores de suma
- 3. Operadores de resta

- Multiplicación de enteros
 - 1. Fundamentos
 - 2. Multiplicación y división en el MIPS
 - 3. Operadores de desplazamiento
 - 4. Operadores de multiplicación sin signo
 - 5. Operadores de multiplicación con signo

- La suma en serie
 - ✓ La suma en serie reproduce el procedimiento humano de suma
 - ✓ La suma se hace por orden, desde el LSB hacia el MSB
 - ✓ En cada columna i, hay que sumar los bits de los sumandos a_i , b_i y el acarreo c_i que llega de la columna i–l para obtener el bit del resultado s_i y generar el acarreo c_{i+1} hacia la columna i+l siguiente
 - ✓ Transporte de entrada $c_0 = 0$

- El sumador completo de un bit (Full adder):
 - ✓ Implementa los cálculos de una columna de la suma en serie
 - ✓ Admite 3 entradas de un bit y produce dos salidas:

a _i	b _i	Ci	C _{i+1}	Si
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$s_{i} = \overline{a_{i}} \cdot \overline{b_{i}} \cdot c_{i} + \overline{a_{i}} \cdot b_{i} \cdot \overline{c_{i}} + a_{i} \cdot \overline{b_{i}} \cdot \overline{c_{i}} + a_{i} \cdot b_{i} \cdot c_{i}$$

$$c_{i+1} = a_{i} \cdot b_{i} + a_{i} \cdot c_{i} + b_{i} \cdot c_{i}$$

- El sumador completo de un bit: Implementación
 - ✓ Implementación a partir de las funciones lógicas

Operadores de suma

- El sumador completo de un bit: Prestaciones
 - ✓ Tiempo de retardo:

$$t_S = t_{NOT} + t_{AND} + t_{OR}$$

 $t_C = t_{AND} + t_{OR}$

√ Complejidad: 12 puertas

- ✓ Con tecnología CMOS 0.5 µm
 - tiempo de respuesta: entre I y 2 ns
 - superficie: 1000 µm²

- El sumador serie de n bits
 - ✓ CPA (Carry Propagation Adder)
 - ✓ Par hacer un sumador de dos números de m bits, se conectan m sumadores completos en cascada
 - la salida de acarreo del sumador *i*-ésimo se conecta a la entrada de acarreo del sumador *i*+ *l*-ésimo
 - el operador resultante tiene una entrada y una salida de acarreo globales

- El sumador serie de n bits. Complejidad
 - ✓ El tiempo de cálculo de un sumador serie para operandos de *n* bits se puede expresar en términos de los retardos de un sumador completo:

$$t(n \text{ bits}) = (n-1) t_C + máx\{t_C, t_S\}$$

- ✓ Asintóticamente el tiempo de cálculo es lineal, $t(n \ bits) = O(n)$
- ✓ El coste espacial también es lineal, $coste(n \ bits) = O(n)$
- ✓ La suma serie es poco eficiente para las aplicaciones propias de un procesador convencional, con n=32 o n=64 bits

- Mejoras en la suma
 - ✓ Anticipación del acarreo: CLA, Carry Lookahead Adder
 - Calcula los bits de acarreo c_i antes que los bits de suma s_i
 - El retardo del cálculo de los acarreos es $O(\log(n))$
 - ✓ Selección del acarreo: CSA, Carry Select Adder
 - Divide la suma en dos partes y gestiona la parte alta con los posibles valores del acarreo proveniente de la parte baja

- CSA (Carry Select Adder)
 - ✓ Acelera la operación de suma a base de invertir más circuitos

- Cálculo del desbordamiento en la aritmética en Ca2
 - ✓ Se detecta cuando los bits de acarreo de orden n y n-1 no son iguales
 - ✓ El signo del resultado s_{n-1} es incorrecto

Operadores de resta y comparación

- Diseño del restador a partir del sumador
 - \checkmark R = A-B = A + Ca2(B) = A + not(B) + I
 - ✓ La detección de desbordamiento es igual que con la suma:
 - En CBN: $p_n = I (c_n = 0)$
 - En Ca2: $p_n \neq p_{n-1}$ ($\mathbf{c}_n \times \mathbf{c}_{n-1} = \mathbf{I}$)

Operadores de resta y comparación

Diseño clásico del sumador/restador

Índice

Introducción

- 1. Típos en alto y bajo nível
- 2. Operaciones y operadores
- 3. Operaciones lógicas
- La representación de los enteros
- Suma y resta de enteros
 - 1. Suma y resta en el MIPS R2000
 - 2. Operadores de suma
 - 3. Operadores de resta

Multíplicación de enteros

- 1. Fundamentos
- 2. Multiplicación y división en el MIPS
- Operadores de desplazamiento
- 4. Operadores de multiplicación sin signo
- 5. Operadores de multiplicación con signo

Fundamentos

- Desplazamientos y aritmética entera (I)
 - ✓ Desplazar n bits hacia la izquierda es equivalente a multiplicar por 2^n
 - Entran *n* ceros por la derecha
 - · Operación válida para enteros con y sin signo
 - Nombre de la operación: desplazamiento **lógico** hacia a la izquierda

Fundamentos

- Desplazamientos y aritmética entera (II)
 - ✓ Desplazar n bits hacia la derecha es equivalente a dividir por 2^n
 - Enteros sin signo: entran *n* ceros por la izquierda
 - Enteros con signo: el bit de signo se replica *n* veces

Sin signo: desplazamiento lógico	Con signo: desplazamiento aritmético			
0 1 1 0 0 1 25	0 1 1 0 0 1 +25			
>> 2 / 2²	>> 2 / 22			
0 0 0 1 1 0 6	0 0 0 1 1 0 6			

Fundamentos

 Los compiladores evitan las operaciones de multiplicación siempre que es posible

```
int a,b,c,d;
a = a*2;  // 2=2¹
b = b*8;  // 8=2³
c = c*1024;  // 1024=2¹0
d = d*5  // 5=2²+1
```

lw \$s0, a
lw \$s1, b
lw \$s2, c
lw \$s3, d
add \$s0, \$s0, \$s0
sll \$s1, \$s1, 3
sll \$s2, \$s2, 10
sll \$t0, \$s3, 2
add \$s3, \$s3, \$t0
sw \$s0, a
sw \$s1, b
• • •

Fundamentos

- Anatomía de la multiplicación sin signo
 - \checkmark En general, para representar el producto de dos números de n bits hacen falta 2n bits
 - ✓ El procedimiento humano se basa en sumas y desplazamientos

 (9_{10})

				1	1	0	1
			×	1	0	0	1
				1	1	0	1
			0	0	0	0	0
		0	0	0	0	0	0
	1	1	0	1	0	0	0
0	1	1	1	0	1	0	1
2 ⁷	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	2 ⁰

Pesos

 (13_{10}) Notación

M = Multiplicando; m_i = bit i-ésimo

Q = Multiplicador; q_i = bit i-ésimo

P = Producto; p_i = bit i-ésimo

$$P = M \times Q = \sum_{i=0}^{n-1} Mq_i 2^i$$

$$(117_{10}) = 1101_2 \times (1 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 1 \times 2^0)$$

Fundamentos

- Problemática de la multiplicación con signo
 - ✓ Hay que extender el signo del multiplicando
 - ✓ El peso del bit de signo del multiplicador es de -2^{n-1} (y no 2^{n-1})
 - Conviene buscar codificaciones alternativas

$$(-3_{10})$$

$$(-7_{10})$$

Pesos

$$P = M \times Q = \sum_{i=0}^{n-2} Mq_i 2^i - Mq_{n-1} 2^{n-1}$$

$$(+21_{10}) = 111111101_2 \times (-1 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 1 \times 2^0)$$

Fundamentos

La división

- ✓ Dados un dividendo y un divisor, produce dos resultados: el cociente y el resto (o módulo)
- ✓ Ejemplo sin signo: algoritmo humano de restas y desplazamientos
 - Si no cabe (X): 0 al cociente
 - Si cabe (✓): restar y | al cociente

Con signo: por convención, el resto tiene el mismo signo que el divisor

Fundamentos

- La multiplicación y la división en alto nivel
 - ✓ El módulo

```
int x,y,z,t;
x = 13;
y = 5;
z = x/y;
t = x%y;
System.out.println(x + " = " + y + "*" + z + " + " + t);
```

13 = 5*2 + 3

```
int x,y,z; Java,C

v | x = 0;
y = 1;
z = y/x;
```

Exception in thread "main"
java.lang.ArithmeticException: / by
zero at ...

Índice

- Introducción
- 1. Típos en alto y bajo nível
- 2. Operaciones y operadores
- 3. Operaciones lógicas
- La representación de los enteros
- Suma y resta de enteros
 - 1. Suma y resta en el MIPS R2000
 - 2. Operadores de suma
 - 3. Operadores de resta

- Multiplicación de enteros
 - 1. Fundamentos
 - 2. Multíplicación y división en el MIPS
 - 3. Operadores de desplazamiento
 - 4. Operadores de multiplicación sin signo
 - 5. Operadores de multiplicación con signo

Multiplicación y división en el MIPS

- Instrucciones de desplazamiento
 - ✓ Son de la forma "operación Rr, Ri, Long", donde Long puede ser una constante o un registro
 - ✓ El desplazamiento máximo es de 31 posiciones. Sólo cuentan los 5 bits de menor peso de Long

tipo	formato R				
izquierda	sll rd,rt,inm	sllv rd,rs,rt			
derecha (lógico)	<pre>srl rd,rt,inm</pre>	<pre>srlv rd,rs,rt</pre>			
derecha (aritmética)	<pre>sra rd,rt,inm</pre>	<pre>srav rd,rs,rt</pre>			

Multiplicación y división en el MIPS

- Instrucciones de multiplicación y división generales
 - ✓ Dos registros especiales de 32 bits: HI y LO
 - · Combinados forman un registro de 64 bits
 - ✓ Operaciones

```
mult $2, $3: HI-LO \leftarrow $2*$3; Operandos con signo multu $2, $3: HI-LO \leftarrow $2*$3; Operandos positivos sin signo div $2, $3: LO \leftarrow $2/$3; HI \leftarrow $2 mod $3; Con signo divu $2, $3: LO \leftarrow $2/$3; HI \leftarrow $2 mod $3; Sin signo
```

✓ Transferencia de resultados

- mfhi \$2: \$2 ← HI
- mflo \$2: $2 \leftarrow LO$

Multiplicación y división en el MIPS

- Instrucciones de multiplicación y división generales
 - ✓ Hay pseudoinstrucciones que permiten almacenar el resultado en un registro destinatario de propósito general y multiplicar por constantes
 - ✓ Ninguna de estas instrucciones comprueba desbordamientos o división por cero: hay que hacerlo por software

Índice

- Introducción
- 1. Típos en alto y bajo nível
- 2. Operaciones y operadores
- 3. Operaciones lógicas
- La representación de los enteros
- Suma y resta de enteros
 - 1. Suma y resta en el MIPS R2000
 - 2. Operadores de suma
 - 3. Operadores de resta

- Multiplicación de enteros
 - 1. Fundamentos
 - 2. Multíplicación y división en el MIPS
 - 3. Operadores de desplazamiento
 - 4. Operadores de multiplicación sin signo
 - 5. Operadores de multiplicación con signo

Operadores de desplazamiento

El Barrel Shifter

- ✓ Un Barrel Shifter es un circuito que permite realizar desplazamientos variables sobre datos de n bits
- ✓ Puede implementarse mediante multiplexores
- ✓ Dependiendo del diseño, hace desplazamientos lógicos o aritméticos hacia la derecha, hacia la izquierda o bidireccionales

Operadores de desplazamiento

- Barrel shifter: ejemplo de diseño
 - ✓ Implementación de un operador de desplazamiento lógico hacia la izquierda
 (\$11) para datos de 4 bits

Índice

Introducción

- 1. Típos en alto y bajo nível
- 2. Operaciones y operadores
- 3. Operaciones lógicas
- La representación de los enteros
- Suma y resta de enteros
 - 1. Suma y resta en el MIPS R2000
 - 2. Operadores de suma
 - 3. Operadores de resta

Multiplicación de enteros

- 1. Fundamentos
- 2. Multíplicación y división en el MIPS
- 3. Operadores de desplazamiento
- 4. Operadores de multiplicación sin signo
- 5. Operadores de multiplicación con signo

Operadores de multiplicación sin signo

- Operadores secuenciales aritméticos
 - ✓ Son circuitos secuenciales síncronos que hacen una operación dada
 - ✓ Necesitan un cierto número de ciclos de reloj para hacer la operación
 - ✓ El ciclo de reloj se ajusta para que puedan actuar los circuitos
 - ✓ Si un operador necesita n ciclos de t segundos para una operación,
 - el tiempo de operación será $T = n \times t$
 - la productividad será P = f/n, donde f = I/t es la frecuencia de trabajo del reloj
- Notación:

 \checkmark M = Multiplicando; m_i = bit i-ésimo de M

✓ Q = Multiplicador; q_i = bit i-ésimo de Q

✓ P = Producto; p_i = bit i-ésimo del producto

 \checkmark n = Número de dígitos de los operandos M y Q (de 0 a n-I)

Operadores de multiplicación sin signo

- Operador para el algoritmo de sumas y desplazamientos
 - ✓ M y Q de n bits; P de 2n bits

Operadores de multiplicación sin signo

Algoritmo con que funciona el operador secuencial

- El algoritmo requiere n ciclos
- En cada ciclo hay que hacer hasta una suma y un desplazamiento

Operadores de multiplicación sin signo

Ejemplo: n=4; $M=1011_2$; $Q=0101_2$ $(11_{10}\times5_{10}=55_{10})$

Ciclo	Acción	C-HI-LO
0	Valores iniciales	0 0000 <mark>010<u>1</u></mark>
1	HI ← HI + M	0 1011 0101
	Desplazar C-HI-LO 1 bit a la derecha	0 0101 101 <u>0</u>
2	No sumar	0 0101 1010
	Desplazar C-HI-LO 1 bit a la derecha	0 0010 110 <u>1</u>
3	HI ← HI + M	0 1101 1101
	Desplazar C-HI-LO 1 bit a la derecha	0 0110 111 <u>0</u>
4	No sumar	0 0110 1110
	Desplazar C-HI-LO 1 bit a la derecha	0 0011 0111

Operadores de multiplicación sin signo

• Ejercicio: n=4; $M=1101_2$; $Q=1011_2$ $(13_{10}\times11_{10}=143_{10})$

Ciclo	Acción	C-HI-LO
0	Valores iniciales	0 0000 101 <u>1</u>
1		
2		
3		
4		

Solución: 1000 1111

Índice

- Introducción
- 1. Típos en alto y bajo nível
- 2. Operaciones y operadores
- 3. Operaciones lógicas
- La representación de los enteros
- Suma y resta de enteros
 - 1. Suma y resta en el MIPS R2000
 - 2. Operadores de suma
 - 3. Operadores de resta

- Multiplicación de enteros
 - 1. Fundamentos
 - 2. Multiplicación y división en el MIPS
 - 3. Operadores de desplazamiento
 - 4. Operadores de multiplicación sin signo
 - 5. Operadores de multíplicación con signo

Operadores de multiplicación con signo

- Tratamiento del signo por separado
 - ✓ Se trata de multiplicar los valores absolutos y considerar el signo aparte.
 Considerando que Signo(X) es el bit de signo de X:

```
Signo_Prod \( \times \text{ Signo(M) XOR Signo(Q);}
si M < 0 entonces M \( \times - M; \text{ fin si;}
si Q < 0 entonces Q \( \times - Q; \text{ fin si;}
P \( \times M \times Q;
si Signo_Prod = 1 entonces P \( \times - P; \text{ fin si;} \)</pre>
```

Tratamiento del signo por separado

```
Signo_Prod \( \) Signo(M) XOR Signo(Q);
si M < 0 entonces M \( \lefta \) -M; fin si;
si Q < 0 entonces Q \( \lefta \) -Q; fin si;
P \( \lefta \) M \( \times \) Q;
si Signo_Prod = 1 entonces P \( \lefta \) -P; fin si;</pre>
```

Inconvenientes

- ✓ Requiere cierto hardware adicional para el caso particular de números con signo, a fin de complementar M, Q o P
- Existen otros métodos para tratar uniformemente el producto de números con o sin signo (algoritmo de Booth, más adelante)

Operadores de multiplicación con signo

- Sumas y desplazamientos con extensión de signo
 - ✓ El algoritmo 2 puede funcionar con signo sólo si Q es positivo
 - ✓ Para ello, hay que extender el signo de los productos intermedios
 - ✓ Ejemplo: n = 4; M = -3; Q = 6; Representados en Ca2

Para funcionar en cualquier caso, pueden procesarse los signos de M y Q de antemano:

Aunque es más sencillo que el anterior, también requiere procesar por separado los casos de multiplicación de números con o sin signo y complementar M y Q si Q<0

- Algoritmo de Booth
 - ✓ Consiste en recodificar el multiplicador como una suma de potencias positivas o negativas de la base: usa dígitos 0, +1 y −1
 - ✓ Por ejemplo:
 - El número 30 puede expresarse como (32 2)

•
$$30_{10} = 0011110_2 = 0 + 10000 - 10_{Booth} = -1.2^{1} + 1.2^{5}$$

45 ₁₀)	(45 ₁₀)	1	0	1	1	0	1	0							
30 _{Booth})	(30 _{Boot}	0	-1	0	0	0	+1	0	×						
		0	0	0	0	0	0	0	0	0	0	0	0	0	0
 Ca2 de M (restar M) 	← Ca		1	1	0	0	1	0	1	1	1	1	1	1	1
				0	0	0	0	0	0	0	0	0	0	0	0
					0	0	0	0	0	0	0	0	0	0	0
						0	0	0	0	0	0	0	0	0	0
 Copia de M (sumar l' 	Co				←		1	0	1	1	0	1	0	0	0
								0	0	0	0	0	0	0	0
(1350 ₁₀)	(135	0	1	1	0	0	0	1	0	1	0	1	0	0	0

Operadores de multiplicación con signo

- Algoritmo de Booth
 - ✓ Funciona con números positivos o negativos:
 - Multiplicación sin signo: suponer un bit de signo de M = 0
 - · Multiplicación con signo: extender el MSB de M como signo
 - ✓ Ejemplo: Multiplicar con y sin signo los números IIOI₂ y 0+I0–I_{Booth}

	Sin signo										
(Sigr	no po	sitiv	0							
i	mpl	lícito	\rightarrow	0	1	1	0	1	(13 ₁₀)		
		_		×	0	+1	0	-1	(3 _{Booth})		
	1	1	1	1	0	0	1	1			
	0	0	0	0	0	0	0				
	0	0	1	1	0	1					
	0	0	0	0	0						
	0	0	1	0	0	1	1	1	(39 ₁₀)		

- Recodificación del multiplicador por el método de Booth
 - ✓ Deben considerarse parejas de bits correlativos, de dcha. a izda.
 - ✓ Debe suponerse un bit implícito = 0 a la derecha del LSB
 - ✓ Debe aplicarse la siguiente tabla de conversión:

q _i	q _{i-1}	Dígito Booth
0	0	0
0	1	+1
1	0	-1
1	1	0

Para recordar: Dígito Booth = q_{i-1} – q_i

Operadores de multiplicación con signo

- Recodificación del multiplicador por el método de Booth
- ✓ Ejemplo: Obténgase el código Booth de III0 0111 0011 (-397₁₀)
 - Solución: $0 \ 0 \ -1 \ 0 \ +1 \ 0 \ 0 \ -1 \ 0 \ +1 \ 0 \ -1 =$

$$-1 \times 2^{0} + 1 \times 2^{2} - 1 \times 2^{4} + 1 \times 2^{7} - 1 \times 2^{9} =$$

 $-1 + 4 - 16 + 128 - 512 = -397$

Operadores de multiplicación con signo

• Modificación algoritmo 2 y operador secuencial para Booth

- El algoritmo requiere n ciclos
- En cada ciclo hay que hacer una suma o una resta más un desplazamiento

• Detalle del cálculo del bit de signo adicional

Operadores de multiplicación con signo

✓ Con signo;
$$n = 4$$
; $M = 0010_2$; $Q = 1001_2$ $(2_{10} \times (-7_{10}) = -14_{10})$

Ciclo	Acción	S-HI-LO-X	
0	Valores iniciales	0 0000 100 <u>1 0</u>	Bit extra
1			Extra
2			
3			
4			

Operadores de multiplicación con signo

✓ Con signo;
$$n = 4$$
; $M = 0010_2$; $Q = 1001_2$ $(2_{10} \times (-7_{10}) = -14_{10})$

$$(2_{10} \times (-7_{10}) = -14_{10})$$

Ciclo	Acción	S-HI-LO-X	
0	Valores iniciales	0 0000 100 <u>1 0</u> <	Bit extra
1	Caso 10: HI ← HI – M	1 1110 1001 0	extra
2			
3			
4			

Operadores de multiplicación con signo

✓ Con signo; n = 4; M =
$$\frac{0010}{2}$$
; Q = $\frac{1001}{2}$ $(2_{10} \times (-7_{10}) = -14_{10})$

Ciclo	Acción	S-HI-LO-X	
0	Valores iniciales	0 0000 100 <u>1 0</u> -	Bit extra
1	Caso 10: HI ← HI – M	1 1110 1001 0	extra
	Desplazar S-HI-LO 1 bit a la derecha	1 1111 010 <u>0 1</u>	
2			
3			
4			

Operadores de multiplicación con signo

✓ Con signo;
$$n = 4$$
; $M = 0010_2$; $Q = 1001_2$ $(2_{10} \times (-7_{10}) = -14_{10})$

Ciclo	Acción	S-HI-LO-X	
0	Valores iniciales	0 0000 100 <u>1 0</u> -	Bit extr
1 Caso 10: HI ← HI – M		1 1110 1001 0	exti
	Desplazar S-HI-LO 1 bit a la derecha	1 1111 010 <u>0 1</u>	
2	Caso 01: HI ← HI + M	0 0001 0100 1	
3			
4			

Operadores de multiplicación con signo

Ejemplo: algoritmo de Booth con el operador secuencial

✓ Con signo; n = 4; M =
$$\frac{0010}{2}$$
; Q = $\frac{1001}{2}$ $(2_{10} \times (-7_{10}) = -14_{10})$

Ciclo	Acción	S-HI-LO-X
0	Valores iniciales	0 0000 100 <u>1 0</u> <
1	Caso 10: HI ← HI – M	1 1110 1001 0
	Desplazar S-HI-LO 1 bit a la derecha	1 1111 010 <u>0 1</u>
2	Caso 01: HI ← HI + M	0 0001 0100 1
	Desplazar S-HI-LO 1 bit a la derecha	0 0000 101 <u>0 0</u>
3		
4		

Bit

extra

Ejemplo: algoritmo de Booth con el operador secuencial

✓ Con signo;
$$n = 4$$
; $M = 0010_2$; $Q = 1001_2$ $(2_{10} \times (-7_{10}) = -14_{10})$

Ciclo	Acción	S-HI-LO-X
0	Valores iniciales	0 0000 100 <u>1 0</u> <
1	Caso 10: HI ← HI – M	1 1110 1001 0
	Desplazar S-HI-LO 1 bit a la derecha	1 1111 010 <u>0 1</u>
2	Caso 01: HI ← HI + M	0 0001 0100 1
	Desplazar S-HI-LO 1 bit a la derecha	0 0000 101 <u>0 0</u>
3	Caso 00: No hacer nada	0 0000 1010 0
4		

Bit

Ejemplo: algoritmo de Booth con el operador secuencial

✓ Con signo; n = 4; M =
$$\frac{0010}{2}$$
; Q = $\frac{1001}{2}$ $(2_{10} \times (-7_{10}) = -14_{10})$

Ciclo	Acción	S-HI-LO-X
0	Valores iniciales	0 0000 100 <u>1 0</u> <
1	Caso 10: HI ← HI – M	1 1110 1001 0
	Desplazar S-HI-LO 1 bit a la derecha	1 1111 010 <u>0 1</u>
2	Caso 01: HI ← HI + M	0 0001 0100 1
	Desplazar S-HI-LO 1 bit a la derecha	0 0000 101 <u>0 0</u>
3	Caso 00: No hacer nada	0 0000 1010 0
	Desplazar S-HI-LO 1 bit a la derecha	0 0000 010 <u>1 0</u>
4		

Bit extra

Ejemplo: algoritmo de Booth con el operador secuencial

✓ Con signo; n = 4; M =
$$\frac{0010}{2}$$
; Q = $\frac{1001}{2}$ $(2_{10} \times (-7_{10}) = -14_{10})$

Ciclo	Acción	S-HI-LO-X
0	Valores iniciales	0 0000 100 <u>1 0</u>
1	Caso 10: HI ← HI – M	1 1110 1001 0
	Desplazar S-HI-LO 1 bit a la derecha	1 1111 010 <u>0 1</u>
2	Caso 01: HI ← HI + M	0 0001 0100 1
	Desplazar S-HI-LO 1 bit a la derecha	0 0000 101 <u>0 0</u>
3	Caso 00: No hacer nada	0 0000 1010 0
	Desplazar S-HI-LO 1 bit a la derecha	0 0000 010 <u>1 0</u>
4	Caso 10: HI ← HI – M	1 1110 0101 0

Bit extra

Ejemplo: algoritmo de Booth con el operador secuencial

✓ Con signo;
$$n = 4$$
; $M = 0010_2$; $Q = 1001_2$ $(2_{10} \times (-7_{10}) = -14_{10})$

Ciclo	Acción	S-HI-LO-X
0	Valores iniciales	0 0000 100 <u>1 0</u> <
1	Caso 10: HI ← HI – M	1 1110 1001 0
	Desplazar S-HI-LO 1 bit a la derecha	1 1111 010 <u>0 1</u>
2	Caso 01: HI ← HI + M	0 0001 0100 1
	Desplazar S-HI-LO 1 bit a la derecha	0 0000 101 <u>0 0</u>
3	Caso 00: No hacer nada	0 0000 1010 0
	Desplazar S-HI-LO 1 bit a la derecha	0 0000 010 <u>1 0</u>
4	Caso 10: HI ← HI – M	1 1110 0101 0
	Desplazar S-HI-LO 1 bit a la derecha	1 1111 0010 1

extra

Bit

Operadores de multiplicación con signo

Ejercicio: n=4; $M=1101_2$; $Q=0110_2$ $(-3_{10}\times6_{10}=-18_{10})$

$$(-3_{10} \times 6_{10} = -18_{10})$$

Cicle	Acció	S-HI-LO-X
0	Valores iniciales	0 0000 011 <u>0 0</u>
1		
2		
3		
4		

Solución: 1110 1110

- Recodificación por parejas de bits
 - ✓ Extensión de Booth que reduce a la mitad el número de dígitos de Q, reduciendo así el número de productos intermedios a sumar

		Во	oth	Parejas		
q _{i+1}	q _i	q _{i-1}	q' _{i+1}	q' _i	q" _i	Acción
0	0	0	0	0	0	Nada
0	0	1	0	1	1	Sumar M
0	1	0	1	-1	1	Sumar M
0	1	1	1	0	2	Sumar 2×M
1	0	0	-1	0	-2	Restar 2×M
1	0	1	-1	1	-1	Restar M
1	1	0	0	-1	-1	Restar M
1	1	1	0	0	0	Nada

Operadores de multiplicación con signo

Ejemplo de multiplicación con recodificación por parejas

$$\sqrt{n} = 5$$
; $M = 01101_2 (13_{10})$; $Q = 11010_2 (-6_{10})$

Modificación algoritmo 2 y operador para parejas de bits

Los registros HI y LO deben tener un número par de bits

- El algoritmo requiere n/2 ciclos
- En cada ciclo hay que hacer hasta una suma o resta y dos desplazamientos

Operadores de multiplicación con signo

Ejemplo de multiplicación con recodificación por parejas

Ciclo	Acción	S-HI-LO-X
0	Valores iniciales	0 000000 1110 <u>10 0</u>
1		
2		
3		

Ejemplo de multiplicación con recodificación por parejas

Ciclo	Acción	S-HI-LO-X
0	Valores iniciales	0 000000 1110 <u>10 0</u>
1	Caso 100: HI ← HI – 2M	1 100110 111010 0
2		
3		

Ejemplo de multiplicación con recodificación por parejas

Ciclo	Acción	S-HI-LO-X
0	Valores iniciales	0 000000 1110 <u>10 0</u>
1	Caso 100: HI ← HI – 2M	1 100110 111010 0
	Desplazar S-HI-LO 2 bits a la derecha	1 111001 1011 <u>10 1</u>
2		
3		

Ejemplo de multiplicación con recodificación por parejas

$$\checkmark$$
 n=6 (n ha de ser par); M=001101₂ (13₁₀); Q=111010₂ (-6₁₀)

Ciclo	Acción	S-HI-LO-X
0	Valores iniciales	0 000000 1110 <u>10 0</u>
1	Caso 100: HI ← HI – 2M	1 100110 111010 0
	Desplazar S-HI-LO 2 bits a la derecha	1 111001 1011 <u>10 1</u>
2	Caso 101: HI ← HI – M	1 101100 101110 1
3		

Ejemplo de multiplicación con recodificación por parejas

Ciclo	Acción	S-HI-LO-X
0	Valores iniciales	0 000000 1110 <u>10 0</u>
1	Caso 100: HI ← HI – 2M	1 100110 111010 0
	Desplazar S-HI-LO 2 bits a la derecha	1 111001 1011 <u>10 1</u>
2	Caso 101: HI ← HI – M	1 101100 101110 1
	Desplazar S-HI-LO 2 bits a la derecha	1 111011 0010 <u>11 1</u>
3		

Ejemplo de multiplicación con recodificación por parejas

Ciclo	Acción	S-HI-LO-X
0	Valores iniciales	0 000000 1110 <u>10 0</u>
1	Caso 100: HI ← HI – 2M	1 100110 111010 0
	Desplazar S-HI-LO 2 bits a la derecha	1 111001 1011 <u>10 1</u>
2	Caso 101: HI ← HI – M	1 101100 101110 1
	Desplazar S-HI-LO 2 bits a la derecha	1 111011 0010 <u>11 1</u>
3	Caso 111: No hacer nada	1 111011 001011 1

Ejemplo de multiplicación con recodificación por parejas

$$\checkmark$$
 n=6 (n ha de ser par); M=001101₂ (13₁₀); Q=111010₂ (-6₁₀)

Ciclo	Acción	S-HI-LO-X
0	Valores iniciales	0 000000 1110 <u>10 0</u>
1	Caso 100: HI ← HI – 2M	1 100110 111010 0
	Desplazar S-HI-LO 2 bits a la derecha	1 111001 1011 <u>10 1</u>
2	Caso 101: HI ← HI – M	1 101100 101110 1
	Desplazar S-HI-LO 2 bits a la derecha	1 111011 0010 <u>11 1</u>
3	Caso 111: No hacer nada	1 111011 001011 1
	Desplazar S-HI-LO 2 bits a la derecha	1 111110 110010 1

Operadores de multiplicación con signo

Ejercicio: n = 6; M = 101001_2 (-23₁₀); Q= 001001_2 (9₁₀) $(-23_{10} \times 9_{10} = -207_{10})$

Ciclo	Acción	S-HI-LO-X
0	Valores iniciales	0 000000 <mark>0010<u>01</u> 0</mark>
1		
2		
3		

Solución: 111100 110001

La multiplicación secuencial: resumen

- Implementación del operador:
 - ✓ La multiplicación puede implementarse mediante sumas y desplazamientos. En hardware sólo requiere:
 - registro de desplazamiento
 - sumador o sumador/restador, si es multiplicación con signo
 - · circuito de control, si se utiliza un operador secuencial
- El método de Booth
 - ✓ Permite tratar de manera uniforme la multiplicación con o sin signo
- La recodificación del multiplicador
 - ✓ Permite reducir el número de dígitos del multiplicador y, por tanto, el número de iteraciones del operador
 - ✓ La recodificación por parejas de bits permite reducir a la mitad el número de ciclos requerido para una multiplicación secuencial
 - ✓ Otras recodificaciones permiten reducir aún más el número de iteraciones