Sequencing resume

- 2 strains (WT, △rbp35) x 4 conditions (CM, MM, -N,
 -C) x 3 replicates
- 4751592 11517077 total reads database
- ~62% ~82% successfully mapped reads
- 43 bp mean read length
- ~92% ~98% replicates correlation
- ~100bp mean pair ended distance
- ~400x coverage per poly(A) site*

Workflow

Program and details

Procedure

% of data left

fasta-mcf, adapter trimming

gsnap, default parameters

- Low quality mapping (<30))
- *High A/T content (>90%)*
- *Internal priming*

Assign reads to known features, Including all intergenic space up to 400 bp from gene end

Clustering of most significant poly(A) sites (at least 5 supporting reads and p-value < 0.05 over global gene expression) at 33 bp

Example: Actin, single cut poly(A):

- whole gene expression ~7000 reads
- poly(A) site expression ~3000 reads

Pair ended reads distance

Pair ended distance (WT CM)

~2.5% of poly(A) sites are internal priming

• Some poly(A) sites are just a side effect of poly(A) *genomic* regions

MGG_14904

~8500 genes are expressed, out of a total of 13218 annotated genes (WT)

Number of expressed genes

- 7662 genes are expressed in every condition (WT only)
- 3979 genes are never expressed (WT only)

A gene is considered as expressed when has at least 10 supporting reads in a least 2 replicates

~8500 genes are expressed, out of a total of 13218 annotated genes (Δrbp35)

Number of expressed genes

- 7993 genes are expressed in every condition (*∆rbp35* only)
- 3757 genes are never expressed (*∆rbp35* only)

A gene is considered as expressed when has at least 10 supporting reads in a least 2 replicates

Not every expressed gene has a recognizable poly(A) site

Expressed gene with a recognizable poly(A) site:

Expressed gene without a recognizable poly(A) site:

Only ~85% of genes expressed have a recognizable poly(A) site

Genes with a recognizable poly-A site

~14000 poly(A) site could be assigned to annotated genes

Number of poly(A) sites (WT)

~15000 poly(A) site could be assigned to annotated genes ($\triangle rbp35$)

Number of poly(A) sites (\triangle rbp35)

~30% of genes are alternatively polyadenilated

Number of genes with single cut or APA*

^{*} calculated over the global number of expressed genes with a recognizable poly(A) site

>90% of APA is located in the 3'UTR

>80% of APA is composed of two cleveage sites

>90% of poly(A) sites are located in the 3'UTR

261 highly expressed (>100 reads) poly(A) sites could not be assigned to any annotated gene

Highly expressed poly(A) sites not mapping to any annotated gene

261 orphan poly(A) sites highly expressed in WT (>100 reads)

- 14 hits against other gene copies in *M.oryzae*
- 44 hits against Uniprot nt/nr database
- 4 hits against Rfam(ncRNA) database
- 81 overlapping annotated genes antisense
- 63 matching CPA-sRNA sequences
- 16 matching retrotransposons
- 7 located in telemeric avirulence regions

3165 orphan poly(A) sites expressed in WT (>10 reads)

- 102 hits against other gene copies in *M.oryzae*
- 438 hits against Uniprot nt/nr database
- 10 hits against Rfam(ncRNA) database
- 1098 overlapping annotated genes antisense
- 253 matching CPA-sRNA sequences
- 129 matching retrotransposons
- 57 located in telemeric avirulence regions

Orphans differentially expressed in WT

(>100 reads)	
$CM \rightarrow MM-C$	167
$CM \rightarrow MM$	36
$CM \rightarrow MM-N$	51
$MM \rightarrow MM-C$	129
$MM \rightarrow MM-N$	0
(>10 reads)	
$CM \rightarrow MM-C$	1499
$CM \rightarrow MM$	177
$CM \rightarrow MM-N$	285
$MM \rightarrow MM-C$	1110
$MM \rightarrow MM-N$	0

Antisense poly(A) are usually located in the 3'UTR, most of antisense poly(A) are differentially expressed in any condition

Location of antisense poly(A) sites >100 reads

875 genes expressed in plant are never expressed in vitro

Sage + mosquera = 5715 genes 875 of these last ones. never found in our experiment

The CM \rightarrow -C condition presents the highest number of differentially expressed genes, while MM \rightarrow -N the lowest

DIFFERENTIALLY EXPRESSED GENES IN THE WT				
	DOWN	UP	TOTAL	
$CM \rightarrow MM$	314	559	873	
$CM \rightarrow MM-N$	630	874	1504	
$CM \rightarrow MM-C$	2307	2342	4649	
$MM \rightarrow MM-N$	48	59	107	
$MM \rightarrow MM-C$	1882	1589	3471	

The CM \rightarrow -C condition presents the highest number of differentially expressed genes, while MM \rightarrow -N the lowest

The CM \rightarrow -C condition presents the highest number of differentially expressed genes, while MM \rightarrow -N the lowest

TOP 20 HIGHEST DIFFERENTIALLY EXPRESSED GENES CM ightarrow -C

gene	log2foldChange	description
MGG_09072	8.1538523515	Alcohol oxidase
MGG_00244	8.0070871451	15-hydroxyprostaglandin dehydrogenase
MGG_07210	7.9942521054	Putative uncharacterized protein
MGG_09607	7.4595914704	Maltose permease MAL31
MGG_01367	7.2171221376	Putative uncharacterized protein
MGG_07253	7.1375757829	Putative uncharacterized protein
MGG_11289	7.0894568362	Putative uncharacterized protein
MGG_08937	7.0375631939	Quinate permease
MGG_15267	6.9971932885	Putative uncharacterized protein
MGG_03793	6.8988221238	2,3-dihydroxybenzoic acid decarboxylase
MGG_06828	6.872238681	Putative uncharacterized protein
MGG_05941	6.8217314329	Maltose permease MAL31
MGG_02245	6.7008914884	Endoglucanase type F
MGG_00659	6.6866120353	Glucan 1,3-beta-glucosidase
MGG_10663	6.4805171445	cAMP-regulated D2 protein

gene	log2foldChange	description
MGG_17996	-5.6066608795	no_description
MGG_07973	-5.3026451979	Surface protein 1
MGG_08019	-5.156698481	F-box domain-containing protein
MGG_06234	-5.0149833139	Putative uncharacterized protein
MGG_04258	-4.9786465581	Putative uncharacterized protein
MGG_01952	-4.8319947186	Putative uncharacterized protein
MGG_17706	-4.7704849827	Putative uncharacterized protein
MGG_10456	-4.7234757359	Putative uncharacterized protein
MGG_09015	-4.700976561	Putative uncharacterized protein
MGG_17103	-4.6464513062	Putative uncharacterized protein
MGG_08360	-4.6275010826	Putative uncharacterized protein
MGG_17677	-4.5723814478	Putative uncharacterized protein
MGG_11608	-4.5509909646	Laccase-2
MGG_05344	-4.5356873581	SnodProt1
MGG_07966	-4.5297712533	Phosphate transporter

Up-regulated genes in nitrogen starvation show the typical GATA motif in the promoter region

- None of the known GATA-binding transcription factors is found to be significantly up-regulated in our 12h NS experiment
 - NUT1, the important nitrogen-related TF is found to be generally down-regulated in Carbon-starvation
 - 30 of the 51 top up-regulated genes listed in www.ncbi.nlm.nih.gov/pubmed/16731015 are confirmed in our experiment
 - Only two Transcription factors, MGG_05829 and MGG_01486 , probably related with purine Regulation, are found to be up-regulated in $MM \rightarrow -N$, MGG_05829 is down-regulated in the mutant

Up-regulated genes between conditions

Down-regulated genes between conditions

RBP35 shows different polyadenilation in each medium, with strong differencies in MM-C

RBP35 shows an alternative polyadenylated 5'UTR, putatively enconding a small peptide

HRP1 shows an up-regulated intronic poly(A) site in MM-C

MM-C affects a great number of poly(A) sites

Medium dependent poly(A) sites and genes

MM-C affects poly(A) sites usage, preferring distal cuts - percentages

Poly(A) site usage alteration - MM-C dependent genes

MM-C affects poly(A) sites usage, preferring distal cuts - foldChange

Carbon-starvation poly(A) site usage change

MM-C dependent genes are usually differentially expressed

MM-C dependance vs differential expression

Differentially expressed gene are equally distributed between up & down regulated (data not shown)

△rbp35 affects poly(A) sites number

△rbp35 affects number of cut sites per gene

MM is the most affected condition in $\Delta rbp35$, MM-C the least affected

	down regulated genes	up regulated gene	total
WT → Δrbp35 CM	224	201	425
WT → Δrbp35 MM	529	369	898
WT→ <i>∆rbp35</i> MM-N	272	135	407
WT→ <i>Δrbp35</i> MM-C	136	92	228

Up-regulated genes WT $\rightarrow \Delta rbp35$

Down-regulated genes WT $\rightarrow \Delta rbp35$

∆rbp35 appears to inhibit medium recognition in MM-N

DIFFERENTIALLY EXPRESSED GENES IN Δrbp35			
	DOWN	UP	TOTAL
$CM \to MM$	508	405	913
$CM \rightarrow MM-N$	461	404	865
$CM \rightarrow MM-C$	1241	1136	2377
$MM \rightarrow MM-N$	0	0	0
$MM \rightarrow MM-C$	475	493	968

∆rbp35 appears to inhibit medium recognition in MM-N

Terminology

- **pRBP35dep:** poly(A) sites that show a differential expression between wild-type and Δ rbp35. We call it "RBP35 dependent poly(A) sites"
- **pRBP35dep_down**: a down-regulated RBP35 dependent poly(A):

• **pRBP35dep_up**: an up-regulated RBP35 dependent poly(A):

• A gene is defined "RBP35 dependent gene" (or simply **RBP35dep**) when one or more of its poly(A) belong to the previous groups

26%-28% of poly(A) sites are dependent from RBP35 in all media

~25% of genes are dependent from RBP35 in all media

RBP35 dependant genes

There is no correlation between RBP35 dependance and differential expression

RBP35 dependance vs differential expression

∆rbp35 affects poly(A) sites usage, preferring proximal cuts - percentages

Poly(A) site usage change - RBP35 dependent genes

△rbp35 affects poly(A) sites usage, preferring proximal cuts

RBP35-dependent genes poly(A) site usage change

△rbp35 affects 3'UTR length

3'UTR length (all genes)

3'UTR length (RBP-dependent genes)

Nucleotides profile of poly(A) sites slighty differs from *S.cerevisae*

Poly-A site nucleotide profile - S. cerevisae

Poly-A site nucleotide profile - M. Oryzae

Nucleotides profile of poly(A) sites resembles N. crassa

Poly-A site nucleotide profile - M. Oryzae

Poly-A site nucleotide profile - N. Crassa

0.7 0.6 percentage of occurrences 0.5 0.4 0.3 0.1 -100 -75 75 -50 25 -25 50 100 distance from poly(A) site

Poly-A site nucleotide profile - P. Infestans

Nucleotides profile of poly(A) of ncRNA and CDS poly(A) is different

Poly-A site nucleotide profile - M. Oryzae

ncRNA poly(A) nucleotide profile

CDS poly(A) sites nucleotide profile

The A-RICH region is located -30 -10 bp upstream

Best motif in A-rich region

The A-RICH region is located -30 -10 bp upstream

TOP 10 MOST SIGNIFICANT HEXAMERS in A-RICH REGION

UAGA & UGUA motifs

UGUA & UAGA motifs - all genes single cut

Polyadenilation signals in common genes

MPG1 ...GGUAGAGAAGUCUCUUCUCGUUCCACUCAUUUAAUAAAACCCCUUCCAGACCUA... PMK1 ...CGUUUAGAAUGUGCAGGAGACACGAGUGGGAAAAAUGAAUACAUGGAUGCCAGCA... MST12 ...CAGUGGCAUAAAAUCACAAAAUCUUUAGAAAAGAUCACAGAAAAACCUUUUGUCCA...

poly(A) sites dependent from *RBP35* are low in the canonical AATAAA signal

TOP 10 MOST SIGNIFICANT HEXAMERS in A-RICH REGION

UGUAH motif is enriched in poly(A) sites dependent from *RBP35* down-regulated in $\Delta rbp35$, in the region -100 -30

- Output of DREME, pRBP35dep as positive sequences list versus not-pRBP35dep negative list

UGUAH motif – pRBP35dep vs not pRBP35dep

• In the first graph, we want to show how poly(A) sites dependent from *RBP35* display a different profile for the UGUAH motif in the respect to "regular" poly(A) sites

• We therefore plot down-regulated RBP35 dependent poly(A) sites against two groups of poly(A) not dependent from RBP35 of the same size, one group of poly(A) sites belonging to the same genes and one group of poly(A) sites belonging to other genes

UGUAH is enriched at -45 in poly(A) sites dependent from *RBP35*

UGUAH motif - down-regulated RBP35 dependent poly(A) sites

UGUAH motif – RBP35 dependent poly(A) sites (up vs down regulated)

UGUAH motif - up&down-regulated RBP35 dependent poly(A) sites

UAGH is impoverished at -35 in poly(A) sites dependent from *RBP35*

UAGH motif - RBP35 dep vs notRBP35 dep poly(A) sites

M. oryzae prefers SA as cutting-site instead of YA

TOP CLEAVAGE SITES - M. oryzae vs S. cerevisiae

The HRP1 binding motif TAYRTA from *S.cerevisae* in not found in *M.oryzae*

M.oryzae vs S.cerevisae TAYRTA motif

Maybe in M.oryzae CFIm binds to UGUA and Hrp1 binds to UAGA?

The polyadenylation site region has a defined structure - 1

The polyadenylation site region has a defined structure - 2

Different A-rich motifs results in different degrees of conformation, with AAUAAA the most unstructured

The polyadenylation site region has a defined structure – 3

Different cutsites have different base pais probabilites, with TG and CG the most structured. The most common poly(A) site CA has a average conformation

The polyadenylation site region has a defined structure – 4

In S.cerevisiae, the poly(A) site is not clearly structured