Latex Example

VE281 - Data Structures and Algorithms, Xiaofeng Gao, Autumn 2019

* Please upload your assignment to website. Contact webmaster for any questions.

* Name:_____ Student ID:_____ Email: _____

Please see the following samples for Latex applications.

1. We use "enumerate" to list questions. E.g., see this question: use minimal counterexample principle to prove that for every integer n > 7, there exist integers $i_n \ge 0$ and $j_n \ge 0$, such that $n = i_n \times 3 + j_n \times 5$.

Proof. We use "proof" environment to answer questions asking for PROOF. \Box

2. Show that the equation $f(m,n) = 2^m(2n+1) - 1$ defines a one-to-one correspondence between $\omega \times \omega$ and ω .

Solution. We use "solution" environment to answer other questions.

- 3. Check how to write in Latex, like:
 - Symbols, like $a, b, c, \alpha, \beta, \gamma, A, B, C, \mathbb{R}, \mathbb{S}, \mathbb{T}, \mathcal{U}, \mathcal{V}, \mathcal{W}, \mathcal{X}, \mathcal{Y}, \mathcal{Z}$.
 - Functions, like $\sin \theta$, $\max x$, $\lg n$, $\arg \max_i \exp i$.
 - Formulae, like in-line style formula $a^2 + b^2 = c^2$, and display style formula

$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}.$$

- Environments, like "enumerate", "itemize", "definition", etc.
- 4. Learn Tables and Figures, E.g., fill in the blanks with either true or false:

f(n)	g(n)	f = O(g)	$f = \Omega(g)$	$f = \Theta(g)$
$100n^3 + 3n$	$100n^2 + 2n + 100$			
$50n + \log n$	$10n + \log \log n$			
$50n\log^2 n$	$n \log \log n$			
n^5	3^n			
n!	5^n			

5. Learn how to use **algorithm2e** package, like Alg. 1.

Algorithm 1: BUBBLESORT

input: An array A[1...n] of n elements. **output**: A[1...n] in nondecreasing order.

 $\mathbf{1} \ i \leftarrow 1; sorted \leftarrow false;$

2 while $i \leq n-1$ and not sorted do

3 |
$$sorted \leftarrow true;$$

4 | $for j \leftarrow n \ downto \ i + 1 \ do$
5 | $if A[j] < A[j-1] \ then$
6 | $interchange A[j] \ and A[j-1];$
7 | $interchange A[j] \ and A[j-1];$
8 | $i \leftarrow i + 1;$

Figure 1: Graph G_1

Figure 2: Graph G_2

- (a) What is the minimum number of element comparisons? When is this minimum achieved?

 Solution. If having multiple sub-questions, put "solution" environment inside each sub-question.
- (b) What is the maximum number of element comparisons? When is this maximum achieved?
- (c) Express the running time of Alg. 1 in terms of the O and Ω notations.
- (d) Can the running time of the algorithm be expressed in terms of the Θ notation? Explain.

More examples about algorithm2e (Left \rightarrow source code; Right \rightarrow display in PDF):

1. **If** block:

```
\begin{algorithm}[H]
\KwIn{$x$, $y$}
\KwOut{$sign$}
\BlankLine
\caption{$div(x,y)$} \label{Alg-div}
\If{$rm(x,y)=0$}{
    $sign=1$\;
}
\Else{
    $sign=0$\;
}
\Return{$sign$}\;
\end{algorithm}
```

```
Algorithm 2: div(x,y)

Input: x, y

Output: sign

1 if rm(x,y) = 0 then

2 | sign \leftarrow 1;
3 else
4 | sign \leftarrow 0;
5 return sign;
```

2. **If-ElseIf-Else** block:

```
\begin{algorithm}[H]
\KwIn{$score$}
\KwOut{Letter Grade}
\BlankLine
\caption{LetterGrade($score$)}
\label{Alg-Score}
\uIf{$score \ge 90$}{
   \textbf{output} $A$\;
}
\uElseIf{$80 \le score < 90$}{
   \textbf{output} $B$\;
}
\Else{
   \textbf{output} $P$\;
}
\end{algorithm}</pre>
```

3. While block:

```
\begin{algorithm}[H]
\KwIn{$x$, $y$}
\KwOut{$x$}
\BlankLine
\While{$x \ge y$}{
$x-=y$\;
}
\textbf{output} $x$\;
\end{algorithm}
```

4. For block:

```
Algorithm 3: LetterGrade(score)
```

```
Input: score
Output: Letter Grade

1 if score \geq 90 then
2 | output A;
3 else if 80 \leq score < 90 then
4 | output B;
5 else
6 | output P;
```

```
Algorithm 4: rm(x, y)
```

Algorithm 5: Sum(n)

```
Input: n \in \mathbb{N}

Output: The sum from 1 to n

1 sum \leftarrow 0;

2 for temp = 0 to n do

3 \lfloor sum \leftarrow sum + temp;

4 output sum;
```

5. Repeat-Until block:

Algorithm 6: GCD(a, b)

Input: $a, b \in \mathbb{N}$ Output: Greatest common divisor of a, b

```
1 repeat
2 | gcd \leftarrow a \mod b;
3 | a \leftarrow b;
4 | b \leftarrow gcd;
5 until gcd = 0;
```

6 output gcd;

6. Case block:

```
\begin{algorithm}[H]
\KwIn{$person$}
\KwOut{$person$'s gender}
\BlankLine
\caption{Gender} \label{Alg-Gender}
\Switch{$person$}{
\uCase{$person.gender=male$}{
\textbf{output} Male\;
}
\uCase{$person.gender=female$}{
\textbf{output} Female\;
}
\Other{
\textbf{output} Unknown\;
}
\end{algorithm}
```

Algorithm 7: Gender

```
Input: person
 Output: person's gender
1 switch person do
    case person.gender = male
     do
     output Male;
3
    case
4
     person.gender = female
       output Female;
5
    otherwise do
6
       output Unknown;
7
```