	CS 330: Homework 2
	1) Use the product rule to show that there are 22"
	1) Use the product rule to show that there are 22" truth tables for propositions in n variables.
	From product rule of counting: 2" different types of
	1 0,2 4 7,2
·	In a Boolin function, a O @ 1 is assigned to each
	of these 2" Functions
	1
	Each function has a truth table
	1: 22h truth tables for n variables
	2) 40 7F questions, 17 are true
	How many possible answer keys?
	40 C 17 = 401 = 887 32378,800 answerkeys 17!(40-17)!
	17!(40-17)!
	2) (/ ((((((((((((((((((
	3) (n-1 CK-1 (n CK+1) (n+1 CK) = n-1 CK (n CK-1) (n+1 CK+1) LMS: (n-1)!
n _i e	$\frac{(n-1)-(k-1)!(k-1)!(n-(k+1))!(k+1)!(n+1)-R!k!}{(n-1)-(k-1)!(k-1)!(n-(k+1))!(k+1)!(n+1)-R!k!}$
	= (n-D) n'(n+D)
	(n-1)(k-1)!(n-1-k)!(k+1)!(n+1-k)!(k)
	$= (n-1)! \qquad n! \qquad (n+1)!$
	$= \frac{(n-1)!}{((n-1)-k)!} \frac{(n!)!}{((n-(k+1))!} \frac{(n+1)!}{((n+1)-(k+1))!} \frac{(n+1)!}{((n+1)-(k+1))!} \frac{(n+1)!}{((n+1)-(k+1))!}$
	=/n-1 CK(n CK-2)(n+1 CK+1) = RMS
	The hexagon identity is a proporty of Pascal's tolangle
	The hexagon identity is a proposts of Pascal's tolangle that states that any 6 numbers forming a hexagon
	will have a constant product of non-adjacent virticles,
	and the GCD of these verticies is also constant.

	5 Deal 50 carled 4 at 11 11 11 11 11 11 11 11 11 11 11 11 11
	5) Deal 52 cards to 4 players. How many ways?
	= 521 C13:39 C13:26 C13:13 C13
/	- 521013:39013:2603:1303 = (52)! = 53,644,737,715,437,92839,237,440,000
	(13 1)H
· A	
	6) How many ways to sort 5 balls into Flower if each
	6) How many ways to sort 5 balls into 7 boxes if each box can only have one ball?
	Each ball could correspond to my box, so
	Each ball could correspond to my box, so
	put each of 5 balls in its correspondingly labelled
	pox.
	Each ball can correspond to ANY box, so there are ways to sort the balls.
	Each ball can correspond to ANY box, so
	there are ways to sort the balls.
	7(5)

Prove (kc2)
$$C_2 = 3(k+1)(4)$$

a) Algebraically

 $k!$
 $C_2 = 3(k+1)!$
 $(k-2)! \cdot 2!$
 $(k-3)! \cdot 4!$
 $(k-3)!$

	7) Prove combinatorially that kc2 (2 = 3(k+1 C4)
5	1) Suppose you want to choose two colors of paint. Your options are KC2 possibilities, where K= humber of paint choices.
	But you must choose two options and allow your sponse to have a say. So to choose 2 of the KC2 options leaves you with KC2C2 ways to pick 2 combinations of colors.
	2) There are k possible paints. So consider the k+1th paint color- if only one of the k are chosen and not the k+1th, there are 3 pairs of paint combos that could be chosen. WHELLER 4 total paints must be chosen of the k+1, so by the
	must be chosen of the k+1, so by the rule of product, 3(k+1) ways to choose a paint combo pair.