P, NP, NP-completeness 2

Reductions

Thu, March 28th, April 2nd

Overview of the next 2 Lectures

First: A bit of history on SAT

The First NP-Complete Problem

SAT: The First NP-Complete Problem

```
Input: A boolean formula \varphi consisting of:

n boolean variables x_1, x_2, ..., x_n

m boolean connectives: \wedge (AND), \vee (OR), \neg (NOT), \leftrightarrow (iff),

\rightarrow (implication), ... (can be others)
```

and parantheses

Output: Is φ satisfiable?

I.e., are there true/false values to x_i that make φ true?

Example SAT Formulas

$$\varphi = (x_1 \rightarrow x_2) \land \neg x_2$$

Q: Is this satisfiable?

X ₁	X ₂	$(x_1 \rightarrow x_2) \land \neg x_2$
0	0	1
0	1	0
1	0	0
1	1	0

Example SAT Formulas

$$\varphi = (x_1 \rightarrow x_2) \land \neg x_2$$

Q: Is this satisfiable?

X ₁	X ₂	$(x_1 \rightarrow x_2) \land \neg x_2$
0	0	1
0	1	0
1	0	0
1	1	0

Example SAT Formulas

$$\varphi = (x_1 \rightarrow \neg x_2) \land \neg x_2$$

Q: Is this satisfiable?

X ₁	X ₂	$(x_1 \rightarrow \neg x_2) \land \neg x_2$
0	0	1
0	1	0
1	0	1
1	1	0

Example SAT Formula

$$\varphi = (x_1 \rightarrow \neg x_2) \land \neg x_2$$

Q: Is this satisfiable?

X ₁	X ₂	$(x_1 \rightarrow \neg x_2) \land \neg x_2$
0	0	1
0	1	0
1	0	0
1	1	0

Example SAT Formula

$$\varphi = ((x_1 \land x_2 \land x_3) \longleftrightarrow (\neg x_1 \land x_3))$$

Q: Is this satisfiable?

A: No

X ₁	X_2	X ₃	φ
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

Recall 2 Criteria For NP-Completeness

- 1. C* has to be in NP.
- 2. Every other NP problem has to reduce to C*.

Criterion 1: Why is SAT in NP?

Can verify a solution $X^* = (x_1 = 0/1,, x_n = 0/1)$ is linear time!

Just check if X* makes φ true!

Criterion 2: Why does every NP problem reduce to SAT?

Method 1: Cook-Levin Theorem (1971)

(Won't show in class)

Method 2: Or you can show another known NP-

Complete problem, e.g., CIRCUIT-SAT,

reduces to SAT

(Also won't show in class)

Instead will show some reductions across another set of problems (all NP-Complete)

Reductions Tree

Recall Reductions: Showing C₂ is as hard as C₁

What does it mean for problem C_2 to be as hard as C_1 ?

Definition: C_1 reduces to C_2 , $(C_1 \le_p C_2)$, if given a polytime algorithm for C_2 , we can solve C_1 in poly-time.

If C_1 reduces to $C_2 => C_2$ is "as hard as" C_1

An NP-complete C₁ reducing to C₂

B/c reductions are transitive => All NP problems reduce to C₂

Therefore C₂ is also NP-complete!

Reductions Tree

Independent Set (IS)

Input: undirected graph G=(V, E) & an integer kOutput: "yes" iff \exists subset $S \subseteq V$ of size $\geq k$ s.t.

no pair of vertices in S have an edge, i.e., $\nexists (u, v) \in E$ s.t. $u \in S$ and $v \in S$

Recall: We solved this in linear time on line graphs!

Vertex Cover (VC)

Input: undirected graph G=(V, E) & an integer k

Output: "yes" iff \exists subset $S \subseteq V$ of size $\leq k$ s.t.

 $\forall (u, v) \in E$, either $u \in S$ or $v \in S$

(each edge is "covered" by at least one vertex \subseteq S)

VC Example

Q: \exists a VS with size \leq 1?

VC Example

Q: \exists a VS with size \leq 1?

IS ≤_D VC Proof Idea

∃ an IS S with size = k

iff∃ an VC with size = n-k

Just take S^C = V-S!

IS ≤_D VC Proof by Picture

IS ≤_D VC Proof by Picture

IS ≤_D VC Proof by Picture

IS ≤_D VC Proof by Picture (Reverse)

∃a VS with size 1

IS ≤_D VC Proof by Picture (Reverse)

∃a VS with size 1

IS ≤_p VC Proof Idea

In general:

 \exists an IS S with size \geq k

iff∃ an VC with size ≤ n-k

Just take S^C = V-S!

Q: Runtime of our converter from IS to VC?

0(1)

Input to IS: G(V, E), k

Input to VC: G(V, E), n-k

Converter only replaces k with n-k

IS ≤_D VC

Let $X=\{G(V, E), k\}$ be an instance of IS.

Then convert it to $X = \{G(V, E), n-k\}.$

Claim: \exists an IS of size k in G(V, E) iff

 \exists a VC of size n-k in G(V, E)

Proof: \rightarrow let S be an IS s.t. |S| = k

Consider cut (S, $S^c=V-S$). Since S is an IS

 \forall (u, v) \in E, at least one of u, v both \in V-S or

Therefore S^C is a VC of size n-k

← Is similar (exercise)

Reductions Tree

CLIQUE

Input: undirected graph G=(V, E) & an integer k

Output: "yes" iff \exists subset $S \subseteq V$ of size $\ge k$ s.t.

 $\forall u, v \text{ s.t } u \text{ \& } v \text{ both } \subseteq S: (u, v) \subseteq E \text{ i.e.}$

S is a "clique" (all possible edges exist in S)

CLIQUE Example

Q: \exists an CLIQUE of size \geq 4?

CLIQUE Example

Q: \exists an CLIQUE of size \geq 4?

A: Yes

IS ≤_D CLIQUE Proof Idea

 \exists an IS S with size = k in G=(V, E)

iff \exists an CLIQUE with size = k in G^{c}

 $(G^{C}=(V, E^{C}), contains missing edges of E)$

Just take S in G^C!

∃an IS with size 5 in G

 \exists an IS with size 5 in G So \exists a CLIQUE of size 5 in G^{C}

IS ≤_D CLIQUE Proof Idea

In general

 \exists an IS S with size \geq k in G=(V, E)

iff \exists an CLIQUE with size \geq k in G^{C}

Q: Runtime of IS to CLIQUE converter?

 $O(n^2)$

Input to IS: G(V, E), k

Input to CLIQUE: G^C(V, E^C), k

Converter constructs E^C by adding missing edges

(there may be at most O(n²) of it)

IS ≤_D CLIQUE

Let $X=\{G(V, E), k\}$ be an instance of IS.

Then convert it to $X = \{G^{C}(V, E^{C}), k\}$

where E^C is the complement of E

Claim: \exists an IS of size k in G(V, E) iff

 \exists a CLIQUE of size k in $G^{C}(V, E^{C})$

Proof: \rightarrow let S be an IS s.t. |S| = k

 $\Rightarrow \forall u, v \in S, (u, v) \notin E$

 $=> \forall u, v \in S, (u, v) \in E^{C} => S \text{ is a clique in } G^{C}$

← is similar (exercise) Important! The reverse argument has to be done!

Reductions Tree

3-CNFSAT

```
Input: A boolean formula φ consisting of:
```

```
n boolean variables x_1, x_2, ..., x_n
m clauses connectives: \land (AND), \lor (OR), \neg (NOT)
and parantheses s.t.
```

- (1) each clause has 3 distinct literals; AND
- (2) φ is in Conjunctive Normal Form

Output: Is φ satisfiable?

Conjunctive Normal Form

- φ is in CNF: if (1) each clause is an OR of literals or their negations &
 - (2) φ is an AND of clauses
- φ is in 3-CNF: if (1) φ is in CNF &
 - (2) clauses have 3 distinct literals

3-CNFSAT ≤_D IS

Goal: Convert a 3CNFSAT formula φ into an IS instance (G,k) s.t.

- 1. Conversion is poly-time; AND
- 2. IS solution to (G, k) tells us whether ϕ is satisfiable or not

Ex:
$$\varphi = (x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4) \land (\neg x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor \neg x_4)$$

How to convert φ into a graph?

3-CNFSAT to IS Converter Step 1

Ex:
$$\varphi = (x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4) \land (\neg x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor \neg x_4)$$

For each clause add 3 vertices with the literals as labels; AND Add each edge between these labels (called "clause gadget")

3-CNFSAT to IS Converter Step 2

Ex:
$$\varphi = (x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4) \land (\neg x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor \neg x_4)$$

For any two vertices with labels x_i and $\neg x_i$: add another edge

Claim about relation of G and ϕ

Let m be the # clauses in φ

φ is satisfiable

iff∃ an IS with size = m in G

Q: Can there be an IS of size > m in G?

A: No, b/c there are m clause gadgets in G

Q: Runtime of 3-CNFSAT to IS converter?

O(poly(m))

Constructing clause gadgets takes O(m) time.

Adding $(x_i, \neg x_i)$ is also poly-time O(mn).

Ex:
$$\varphi = (x_1 \lor x_2 \lor x_3) \land \neg x_1 \lor x_2 \lor x_4) \land (\neg x_2 \lor x_3) \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor \neg x_4)$$

Ex:
$$\varphi = (x_1 \lor x_2 \lor x_3) \land \neg x_1 \lor x_2 \lor x_4) \land (\neg x_2 \lor x_3) \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor \neg x_4)$$

For c_1 pick x_3

Ex:
$$\varphi = (x_1 \lor x_2 \lor x_3) \land \neg x_1 \lor x_2 \lor x_4) \land (\neg x_2 \lor x_3) \lor (\neg x_1 \lor \neg x_3 \lor \neg x_4)$$

For c₁ pick x₃

Left Direction: if φ is sat -> \exists m-size IS

If φ is satisfiable, i.e., \exists assignment A satisfying φ for each clause: \exists at least one True literal $(x_i \text{ or } \neg x_i)$ Pick one of those literals arbitrarily in each clause. Claim: vertices in G of these literals are independent B/c we picked 1 from each gadget and we cannot have picked an x_i and $\neg x_i$ at the same time

Right Dir: IS = $\{x_2 \in c_1, x_4 \in c_2, x_4 \in c_3, \neg x_3 \in c_4\}$

Ex:
$$\varphi = (x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4) \land (\neg x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor \neg x_4)$$

 $A=x_1=t/f$; $x_2=t$; $x_3=f$; $x_4=t$;

60

Right Direction: if \exists m-size IS -> φ is sat

If ∃ m-size IS S in G

- => Each x_i (or $\neg x_i$) \subseteq S is in separate clause gadget
- (b/c within each gadget all vertices are connected)
- \Rightarrow Let **A** be s.t. we set each x_i (or $\neg x_i$) \subseteq S to True
- Note we cannot set x_i and $\neg x_i$ to True simultaneously
- → Assign non-assigned literals v. (or ¬v.) arbitrarily

b/c in G, there is an edge between each $(x_i, \neg x_i)$.

- \Rightarrow Assign non-assigned literals x_i (or $\neg x_i$) arbitrarily
- \Rightarrow Claim: A satisfies φ b/c by construction there is

at least one literal in each clause that's T

Reductions Tree

Subset Sum

Input: A set of X: $\{x_1, x_2, ..., x_n\}$ of integers and a target t

Output: YES if $\exists S \subseteq X$ s.t sum of S's elements equals exactly t

Example:

```
X = {1, 4, 16, 64, 256, 1040, 1041, 1093, 1284, 1344}
t = 3754
```

YES: S = {1, 16, 64, 1040, 1093, 1284}

Subset Sum ≤_D 0-1 Knapsack

Goal: Take Subset Sum instance $\{x_1, ..., x_n\}$, t Turn into a 0-1 Knapsack Instance:

$$A=\{v_1, ..., v_n\}, B=\{w_1, ..., w_n\}, W$$

Note: 0-1 Knapsack-DECISION: n items, W, V

∃a set of items with weight ≤ W

and value ≥ V

Idea: $A=\{x_1, ..., x_n\}, B=\{x_1, ..., x_n\}, W=t, V=t\}$

Make each item s.t 1 weight always equal 1 value.

Ask if we can pack into a knapsack of size t, value at least t

Note value can't be > t because each weight has 1 value

Reductions Tree

Recall Vertex Cover (VC)

Input: undirected graph G=(V, E) & an integer k

Output: "yes" iff \exists subset $S \subseteq V$ of size $\leq k$ s.t.

 $\forall (u, v) \in E$, either $u \in S$ or $v \in S$

(each edge is "covered" by at least one vertex \subseteq S)

VC Example

Q: \exists a VS with size \leq 1?

A: Yes

Vertex Cover ≤_D Subset Sum

Goal: Take VC instance G, k

Turn into a Subset Sum Instance:

$$X = \{x_1, ..., x_n\}, t s.t$$

 \exists a VC of size \leq k \leftrightarrow \exists S \subseteq X s.t. sum of S equal exactly t

Vertex Cover ≤_D Subset Sum

Interpretations:

v_i are vertices
y_i will be "place holders"

		e ₁	e_2	e_3	e_4	e_5	e_6	decimal
V ₁	1	1	0	1	0	0	0	5184
v ₂	1	0	1	0	0	1	0	4356
V ₃	1	0	0	0	1	1	0	4116
V_4	1	0	0	1	0	0	1	4161
V ₅	1	1	1	0	1	0	1	5393
y ₁	0	1	0	0	0	0	0	1024
y ₂	0	0	1	0	0	0	0	256
y ₃	0	0	0	1	0	0	0	64
y ₄	0	0	0	0	1	0	0	16
y ₅	0	0	0	0	0	1	0	4
y ₆	0	0	0	0	0	0	1	1
t	3	2	2	2	2	2	2	15018

Vertex Cover ≤_D Subset Sum

Interpretations:

v_i are vertices
y_i will be "place holders"
1st Clmn: will force to
select exactly k items

		e ₁	e_2	e_3	e_4	e_5	e_6	decimal
v ₁	1	1	0	1	0	0	0	5184
v ₂	1	0	1	0	0	1	0	4356
V ₃	1	0	0	0	1	1	0	4116
V ₄	1	0	0	1	0	0	1	4161
V ₅	1	1	1	0	1	0	1	5393
y ₁	0	1	0	0	0	0	0	1024
y ₂	0	0	1	0	0	0	0	256
y ₃	0	0	0	1	0	0	0	64
y ₄	0	0	0	0	1	0	0	16
y ₅	0	0	0	0	0	1	0	4
y ₆	0	0	0	0	0	0	1	1
t	3	2	2	2	2	2	2	15018

Vertex Cover ≤_n Subset Sum

Interpretations:

v_i are vertices
y_i will be "place holders"
1st Clmn: will force to
select exactly k items
each v_i row: adjacent
edges of v_i

Interpret numbers as base k+1 (in example = 4)

		e_1	e_2	e_3	e_4	e ₅	e_6	decimal
V_1	1	1	0	1	0	0	0	5184
v ₂	1	0	1	0	0	1	0	4356
V ₃	1	0	0	0	1	1	0	4116
V_4	1	0	0	1	0	0	1	4161
V ₅	1	1	1	0	1	0	1	5393
y ₁	0	1	0	0	0	0	0	1024
y ₂	0	0	1	0	0	0	0	256
y ₃	0	0	0	1	0	0	0	64
y ₄	0	0	0	0	1	0	0	16
y ₅	0	0	0	0	0	1	0	4
y ₆	0	0	0	0	0	0	1	1
t	3	2	2	2	2	2	2	15018

Claim

 $\exists \ VC \ C \ of \ size \le k \leftrightarrow \exists \ S \subseteq X \ with \ sum \ 15018$

\exists VC C of size \leq k \rightarrow \exists S \subseteq X with sum 15018

- 1) Complete C to size exactly k by adding any k-|C| vertices.
- 2) Fix missing digits by adding Y rows

{4356, 4161, 5393, 1024, 64, 16, 4} add up to 15018

\exists VC C of size \leq k \leftarrow \exists S \subseteq X with sum 15018

Suppose S sums to t. Let $C = S \cap V$ (red rows) 1) each e_i has 3 1's, so no carry overs 2) |C| = k (b/c the first digit is k 3) C is a VC b/c at least one $v_i \in C$ must contribute a 1 to each "column" e_i, i.e., covers e_i.

Previous Reductions Tree

Your Problem is NP-complete. Now What?

- Option 1: Focus to special-case inputs.
 - Ex: Independent Set is NP-complete.
 - Focusing on line graphs, had a O(n) DP alg.
- Option 2: Find an approximate answer.
 - Will show a very simple algorithm for 0-1 Knapsack.
- Option 3: Be exponential time but better than bruteforce search.
 - 0-1 Knapscak O(nW) runtime DP algorihm.
- Option 4: Heuristics: fast algorithms that are not always correct (or even approximate)
- Option 5: Mix some of these options

Dealing With NP-complete Problems

For NP-complete Problems

the algorithmic tools in our toolbox can

be used as is.

But we have to give up something:

(1) generality, (2) exactness, or

(3) efficiency.