Technische Mechanik II, TM II Formeln

1 Zug und Druck in Stäben

1.1 Spannung

Normalspannung in einem Schnitt Senkrecht zur Stabachse
$$\sigma = \frac{\sigma_0 = F/A}{2} (1 + \cos 2\varphi), \tau = \frac{\sigma_0}{2} (\sin 2\varphi)$$
 (1.3)

$$(1.4)$$

$$x) = \frac{N(x)}{A(x)}$$

$$A_{
m erf} = rac{|N|}{\sigma_{
m zul}}$$

1.2 Dehnung

$$\underbrace{\varepsilon}_{\text{Dehnung[1]}} = \underbrace{\frac{\Delta \ell}{\ell_0}}_{\text{Ursprüngliche}} = \frac{\ell - \ell_0}{\ell_0}$$
Ursprüngliche
Länge [m]

Örtliche (lokale Dehnung)

$$\varepsilon(x) = \frac{\mathrm{d}u}{\mathrm{d}x}$$

1.3 Stoffgesetz

Hooke'sches Gesetz

$$\underbrace{E}_{\text{Elastizitätsmodul}} = \underbrace{\frac{N}{\sigma}}_{\text{Dehnung}[1]}$$

Umgestellt nach Sigma, übliche Form:

$$\sigma = E\varepsilon = \frac{\Delta \ell}{\ell_0} E$$

$$\frac{\varepsilon}{\text{ehnung}[1]} = \frac{6}{E}$$

$$\underbrace{\varepsilon_{T}}_{\text{Wärmedehnung[1]}} = \underbrace{\alpha}_{\text{C}} \cdot \underbrace{\Delta T}_{\text{Temperaturänderung[°C]}} \\
\underbrace{\text{dehnungskoeffizient}}_{\text{(Wärmeausdehnugnskoeffizient)}}$$

$$\underbrace{[1/°C]}$$

$$(1.10)$$

$$\varepsilon = \frac{\sigma}{E} + \alpha_T \Delta T$$

$$\sigma = E \left(\varepsilon - \alpha_T \Delta T\right)$$
(1.11)

1.4 Einzelstab

(1.1)

(1.5)

(1.7)

(1.8)

(1.9)

$$\frac{\mathrm{d}N}{\mathrm{d}x} + \underbrace{n}_{\text{Linienkraft}} = 0 \tag{1.13}$$

$$\frac{\mathrm{d}u}{\mathrm{d}x} = \frac{N}{EA} + \alpha_T \Delta T \tag{1.14}$$

$$\Delta \ell = u(l) - u(0) = \int_0^\ell \varepsilon dx$$
 (1.15)

$$\Delta \ell = \int_0^\ell \left(\frac{N}{EA} + \alpha_T \Delta T \right) dx \tag{1.16}$$

$$\ell = \frac{F\ell}{EA} + \alpha_T \Delta T \ell \tag{1.17}$$

Für
$$\Delta T = 0$$

$$\Delta \ell = \frac{F\ell}{EA} \tag{1.18}$$

Oder F = 0

$$\Delta \ell = \alpha_T \Delta T \ell \tag{1.19}$$

$$(EAu')' = -n + (EA\alpha_t \Delta T)'$$
(1.20a)

(1.6) Sei in 1.20a EA = const und $\Delta T = const$

$$EAu'' = -n \tag{1.20b}$$

1.5 Statisch bestimmte Stabsysteme

$$u = |\Delta \ell_1| = \frac{F\ell}{EA} \frac{1}{\tan \alpha},$$

$$v = \frac{\Delta \ell_2}{\sin \alpha} + \frac{u}{\tan \alpha} = \frac{F\ell}{EA} \frac{1 + \cos^3 \alpha}{\sin^2 \alpha \cos \alpha}$$
(1.21)

1.6 Statisch unbestimmte Stabsysteme

1.7 Zusammenfassung

2 Spannungszustand

2.1 Spannungvektor und Spannungtensor

$$t = \lim_{\Delta A \to 0} \frac{\Delta F}{\Delta A} = \frac{\mathrm{d}F}{\mathrm{d}A}$$
 (2.1)

$$t = \tau_{yx} e_x + \sigma_y e_y + \tau_{yz} e_z$$

$$\tau_{xy} = \tau_{yx}, \tau_{xz} = \tau_{zx}, \tau_{yz} = \tau_{zy}$$

$$\mathbf{\sigma} = \begin{bmatrix} \sigma_{x} & \tau_{xy} & \tau_{xz} \\ \tau_{yx} & \sigma_{y} & \tau_{yz} \\ \tau_{zx} & \tau_{zy} & \sigma_{z} \end{bmatrix} = \begin{bmatrix} \sigma_{x} & \tau_{xy} & \tau_{xz} \\ \tau_{xy} & \sigma_{y} & \tau_{yz} \\ \tau_{xz} & \tau_{yz} & \sigma_{z} \end{bmatrix}$$
(2.4)

2.2 Ebener Spannungszustand

2.2.1 Koordinatentransformation

$$\sigma_{\xi} = \sigma_{x} \cos^{2} \varphi + \sigma_{y} \sin^{2} \varphi + 2\tau_{xy} \sin \varphi \cos \varphi$$

$$\tau_{\xi\eta} = -(\sigma_{x} - \sigma_{y}) \sin \varphi \cos \varphi + \tau_{xy} (\cos^{2} \varphi - \sin^{2} \varphi)$$
(2.5a)

$$\sigma_{\eta} = \sigma_x \sin^2 \varphi + \sigma_y \cos^2 \varphi - 2\tau_{xy} \cos \varphi \sin \varphi$$
 (2.5b)

$$bar\sigma_{\xi} = \frac{1}{2}(\sigma_{x} + \sigma_{y}) + \frac{1}{2}(\sigma_{x} - \sigma_{y})\cos 2\varphi + \tau_{xy}\sin 2\varphi,$$

$$\sigma_{\eta} = \frac{1}{2}(\sigma_{x} + \sigma_{y}) - \frac{1}{2}(\sigma_{x} - \sigma_{y})\cos 2\varphi + \tau_{xy}\sin 2\varphi,$$

$$\tau_{\xi\eta} = - \frac{1}{2}(\sigma_{x} - \sigma_{y})\sin 2\varphi + \tau_{xy}\cos 2\varphi,$$
(green)

$$\sigma_{\xi} = \frac{1}{2}(\sigma_{x} + \sigma_{y}) + \frac{1}{2}(\sigma_{x} - \sigma_{y})\cos 2\varphi + \tau_{xy}\sin 2\varphi,$$

$$\sigma_{\eta} = \frac{1}{2}(\sigma_{x} + \sigma_{y}) - \frac{1}{2}(\sigma_{x} - \sigma_{y})\cos 2\varphi + \tau_{xy}\sin 2\varphi,$$

$$\tau_{\xi\eta} = - \frac{1}{2}(\sigma_{x} - \sigma_{y})\sin 2\varphi + \tau_{xy}\cos 2\varphi,$$
(2.6)

$$\sigma_{\xi} + \sigma_{\eta} = \sigma_{x} + \sigma_{y} \tag{2.7}$$

2.2.2 Hauptspannungen

$$\tan 2\varphi^* = \frac{2\tau_{xy}}{\sigma_x - \sigma_y} \tag{2.8}$$

$$\cos 2\varphi^* = \frac{1}{\sqrt{1 + \tan^2 2\varphi^*}} = \frac{\sigma_x - \sigma_y}{\sqrt{(\sigma_x - \sigma_y)^2 + 4\tau_{xy}^2}}$$

$$\sin 2\varphi^* = \frac{\tan 2\varphi^*}{\sqrt{1 + \tan^2 2\varphi^*}} = \frac{2\tau_{xy}}{\sqrt{(\sigma_x - \sigma_y)^2 + 4\tau_{xy}^2}}$$
(2.9)

$$\sigma_{1,2} = \frac{\sigma_x + \sigma_y}{2} \pm \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$$
 (2.10)

$$\tan 2\varphi^{**} = -\frac{\sigma_x - \sigma_y}{2\tau_{xy}} \tag{2.11}$$

$$\tau_{\text{max}} = \pm \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$$
 (2.12a)

$$\tau_{\text{max}} = \pm \frac{1}{2} (\sigma_1 - \sigma_2) \tag{2.12b}$$

$$\sigma_M = \frac{1}{2}(\sigma_x + \sigma_y) = \frac{1}{2}(\sigma_1 + \sigma_2)$$
 (2.13)

2.3 Mohrscher Spannungkreis

(2.2)

(2.3)

$$\sigma_{\xi} - \frac{1}{2}(\sigma_x + \sigma_y) = \frac{1}{2}(\sigma_x - \sigma_y)\cos 2\varphi + \tau_{xy}\cos 2\varphi$$

$$\tau_{\xi\eta} = -\frac{1}{2}(\sigma_x - \sigma_y)\sin 2\varphi + \tau_{xy}\cos 2\varphi$$
(2.14)

Technische Mechanik II, TM II Formeln Seite 2 von 4

 ε_{y} $\varepsilon_{\mathrm{yz}}$

 ε_{zv}

$$\left[\sigma_{\xi} - \frac{1}{2}(\sigma_x + \sigma_y)\right]^2 + \tau_{\xi\eta}^2 = \left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2$$
(2.15)

$$(2.16)$$

$$[(\sigma - \sigma_M)^2 + \tau^2 = r^2]$$

$$r^2 = \frac{1}{4} [(\sigma_x + \sigma_y)^2 - 4(\sigma_x \sigma_y - \tau_{xy}^2)]$$

(2.17)

2.3.1 Dünnwandiger Kessel

$$\sigma_{x} = \frac{1}{2} p \frac{r}{t} \tag{2.18}$$

$$\sigma_{\varphi} = p \frac{r}{t} \tag{2.19}$$

$$\sigma_t = \sigma_\varphi = \frac{1}{2} p \frac{r}{t} \tag{2.20}$$

Gleichgewichtsbedingungen

$$\left[\frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{yx}}{\partial y} + f_x = 0\right] \tag{2.21a}$$

$$\frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \sigma_y}{\partial y} + f_y = 0$$
 (2.21b)

$$\frac{\partial \sigma_{x}}{\partial x} + \frac{\partial \tau_{yx}}{\partial y} + \frac{\partial \tau_{zx}}{\partial z} + f_{x} = 0$$

$$\frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \sigma_{y}}{\partial y} + \frac{\partial \tau_{zy}}{\partial z} + f_{y} = 0$$

$$\frac{\partial \tau_{xz}}{\partial x} + \frac{\partial \tau_{yz}}{\partial y} + \frac{\partial \sigma_{z}}{\partial z} + f_{z} = 0$$
(2.22)

Zusammenfassung

Verzerrungszustand, Elastizitätsgesetze

Verzerrungszustand

$$= \frac{\partial u}{\partial x}, \quad \varepsilon_y = \frac{\partial v}{\partial y}$$
 (3.1)

$$y = \frac{\partial u}{\partial v} + \frac{\partial v}{\partial x}$$
 (3.2)

$$(3.3)$$

$$\tan 2\varphi^* = \frac{\gamma_{xy}}{\varepsilon_x - \varepsilon_y} \tag{3.4}$$

$$\varepsilon_{1,2} = \frac{\varepsilon_x + \varepsilon_y}{2} \pm \sqrt{\left(\frac{\varepsilon_x - \varepsilon_y}{2}\right) + \left(\frac{1}{2}\gamma_{xy}\right)}$$

$$\varepsilon_x = \frac{\partial u}{\partial x}, \quad \varepsilon_y = \frac{\partial v}{\partial y}, \quad \varepsilon_z = \frac{\partial w}{\partial z},$$

$$\gamma_{xy} = \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}, \quad \gamma_{xz} = \frac{\partial u}{\partial z} + \frac{\partial w}{\partial x}, \quad \gamma_{yz} = \frac{\partial v}{\partial z} + \frac{\partial w}{\partial y},$$

$$\varepsilon_x = \frac{1}{E} (\sigma_x - \nu \sigma_y), \varepsilon_y = \frac{1}{E} (\sigma_y - \nu \sigma_x)$$

 $\frac{1}{2}\gamma_{xy}$

 $\varepsilon_{\scriptscriptstyle \mathcal{X}}$

 $\frac{1}{2}\gamma_{yz}$

$$\tau_{xy} = G\gamma_{xy}$$

$$G = \frac{E}{2\left(1 + \eta\right)}$$

$$\varepsilon_{x} = \frac{1}{E} (\sigma_{x} - \nu \sigma_{y})$$

$$\varepsilon_{y} = \frac{1}{E} (\sigma_{y} - \nu \sigma_{x})$$

$$\gamma_{xy} = \frac{1}{G} \tau_{xy}$$

$$= \frac{E}{1 - v^2} (\varepsilon_x + v\varepsilon_y)$$

$$= \frac{E}{1 - v^2} (\varepsilon_y - v\varepsilon_x)$$

$$= Gv_{xx}$$

$$\varepsilon_1 = \frac{1}{E}(\sigma_1 - \nu \sigma_2), \quad \varepsilon_2 = \frac{1}{E}(\sigma_2 - \nu \sigma_1)$$

$$\varepsilon_{x} = \frac{1}{E} \left[\sigma_{x} - \nu \left(\sigma_{y} + \sigma_{z} \right) \right] + \alpha_{T} \Delta T$$

$$\varepsilon_{y} = \frac{1}{E} \left[\sigma_{y} - \nu \left(\sigma_{z} + \sigma_{x} \right) \right] + \alpha_{T} \Delta T$$

$$\varepsilon_{z} = \frac{1}{E} \left[\sigma_{z} - \nu \left(\sigma_{x} + \sigma_{y} \right) \right] + \alpha_{T} \Delta T$$

$$\gamma_{xy} = \frac{1}{G} \tau_{xy}, \quad \gamma_{xz} = \frac{1}{G} \tau_{xz}, \quad \gamma_{yz} = \frac{1}{G} \tau_{yz}$$

3.3 Festigkeitshypothesen

$$\overline{\sigma_V \le \sigma_{zul}} \tag{3.15}$$

$$\sigma_1$$
 (3.16)

$$=\sqrt{\left(\sigma_x - \sigma_y\right)^2 + 4\tau_{xy}^2} \tag{3.17}$$

$$\sigma_V = \sqrt{\sigma_x^2 + \sigma_y^2 - \sigma_x \sigma_y + 3\tau_{xy}^2}$$
 (3.18)

$$(3.5)$$
 3.4 Zusammenfassung

Balkenbiegung

4.1 Einführung

(3.6a)

(3.6b)

$$\sigma(z) = cz$$

$$M = \int z\sigma \, \mathrm{d}A \tag{4.2}$$

$$I = \int z^2 \, \mathrm{d}A \tag{4.3}$$

$$\sigma = \frac{M}{I}z\tag{4.4}$$

4.2 Flächenträgheitsmomente

4.2.1 Definition

(3.7)

(3.8)

(3.9)

(3.12a)

(3.12b)

(3.13)

(3.14)

(4.1)

(3.10)Das statische Moment ist quasi Fläche × Hebelarm bezogen auf den Schwerpunkt der Fläche:

(3.11) punkt der Flache:
$$S_{v} = \int z dA, \quad S_{z} = \int y dA$$
 (4.5)

$$y = \int z^2 dA, \quad I_z = \int y^2 dA \tag{4.6a}$$

$$I_{yz} = I_{zy} = -\int yz \, \mathrm{d}A \tag{4.6b}$$

$$I_p = \int r^2 dA = \int (z^2 + y^2) dA = I_y + I_z$$
 (4.6c)

$$i = seltsameWurzel; \times$$
 (4.7)

4.2.2 Parallelverschiebung der Bezugsachsen

$$\begin{vmatrix}
I_{\bar{y}} = I_y + \bar{z}_s^2 A \\
I_{\bar{z}} = I_z + \bar{y}_s^2 A \\
I_{\bar{y}\bar{z}} = I_{yz} - \bar{y}_s \bar{z}_s A
\end{vmatrix}$$
(4.13)

4.2.3 Drehung des Bezugssystems, Hauptträgheitsmomente

$$I_{\eta} = \frac{1}{2} (I_{y} + I_{z}) + \frac{1}{2} (I_{y} - I_{z}) \cos 2\varphi + I_{yz} \sin 2\varphi$$

$$I_{\zeta} = \frac{1}{2} (I_{y} - I_{z}) - \frac{1}{2} (I_{y} - I_{z}) \cos 2\varphi - I_{yz} \sin 2\varphi$$

$$I_{\eta\zeta} = -\frac{1}{2} (I_{y} - I_{z}) \sin 2\varphi + I_{yz} \cos 2\varphi$$

$$(4.14)$$

$$I_{\eta} + I_{\zeta} = I_{y} + I_{z} = I_{p} \tag{4.15}$$

$$\tan 2\varphi^* = \frac{2I_{yz}}{I_y - I_z} \tag{4.16}$$

$$I_{1,2} = \frac{I_y + I_z}{2} \pm \sqrt{\left(\frac{I_y - I_z}{2}\right)^2 + I_{yz}^2}$$
 (4.17)

4.3 Grundgleichungen der geraden Biegung

$$\frac{\mathrm{d}Q}{\mathrm{d}x} = -q, \quad \frac{\mathrm{d}M}{\mathrm{d}x} = Q \tag{4.18}$$

$$M = \int z\sigma \,\mathrm{d}A \tag{4.19a}$$

2020 - 01 - 25

Technische Mechanik II, TM II Formeln Seite 3 von 4

$Q = \int \tau \mathrm{d}A$ $N = \int \sigma \mathrm{d}A$
$\varepsilon = \frac{\partial u}{\partial x}$
$\sigma = E \varepsilon, \tau = G \gamma$
w = w(x)
$u(x,z) = \psi(x)z$
$\sigma = E \frac{\partial u}{\partial x} = E \psi' z$
$\tau = G\left(\frac{\partial w}{\partial x} + \frac{\partial u}{\partial z}\right) = G(w' + \psi)$
$M = EI\psi'$

 $Q = \varkappa GA(w' + \psi)$

4.4 Normalspannungen

Aber hier mit subscript, also $W_{\text{Achse}} = \frac{I_{\text{Achse}}}{|\text{andere Achse}|_{\text{max}}}$

4.5 Biegelinie

2020 - 01 - 25

4.5.1 Differentialgleichung der Biegelinie

$$w' + \psi = 0$$

$$Q' = -q, \quad M' = Q, \quad \psi' = \frac{M}{EI}, \quad w' = -\psi$$

$$w'' = -\frac{M}{EI}$$

$$\varkappa_B = \frac{w''}{(1 + w'^2)^{3/2}}$$

$$\varkappa_B \approx w''$$

$$Q = -(EIw'')'$$

(EIw'')'' = q

4.5.2 Einfeldbalken (4.19b)

(4.20)

(4.21)

(4.22a)

(4.23a)

(4.23b)

(4.24)

(4.25)

(4.27)

(4.28)

(4.29)

(4.30)

(4.31)

(4.32a)

(4.32b)

(4.33)

(4.34a)

4.5.3 Balken mit mehreren Feldern

(4.19c) Balken mit zwei Feldern. Eingespannt rechts und links, krafteinwirkung dazwischen, bei a.

M(x) = -	$\int F \frac{b}{\ell} x$	$f \ddot{\mathbf{u}} \mathbf{r} 0 \le x \le a$	
M(x) = 1	$F\frac{a}{\ell}\left(\ell-x\right)$	$f \ddot{\mathbf{u}} \mathbf{r} a \leq x \leq l$	

(Momentenverlauf)

4.8 Biegung und Zug/Druck

X (4.54a)

X

$$\boxtimes$$
 (4.54b)

(4.51)

(4.52)

(4.53a)

(4.53b)

(4.56)

(4.58)

(4.59)

$$\frac{\left|\frac{\partial}{\partial x}\right| = \frac{\mathcal{Z}}{I}\zeta}{S(z)} = \int_{A^*} \zeta \, \mathrm{d}A$$

$$A \tag{4.36}$$

$$\frac{\tau(z)}{V_{mm^2}} = \frac{Q}{I} \underbrace{S(z)}_{mm^4} \tag{4.37}$$

$$\times$$
 (4.55)

$$\bowtie$$
 (4.57)

4.10 Temperaturbelastung

(4.40)	(4.60)

×

$$(4.41) \tag{4.61}$$

$$(4.42) \tag{4.62}$$

$$(4.43) \tag{4.63}$$

$$\times$$
 (4.65)

$$\begin{bmatrix} \sigma = \frac{1}{I_y} z - \frac{1}{I_z} y \\ w'' = \frac{M_y}{EI_y}, \quad v'' = \frac{M_z}{EI_z} \end{bmatrix}$$

$$\begin{bmatrix} \frac{dQ_z}{dx} = -q_z, & \frac{dQ_y}{dx} = -q_y \\ \frac{dM_y}{dx} & \frac{dM_z}{dx} & \frac{dQ_z}{dx} \end{bmatrix}$$

$$\frac{dQ_z}{dx} = -q_z, \quad \frac{dQ_y}{dx} = -q_y$$

$$\frac{dM_y}{dx} = Q_z, \quad \frac{dM_z}{dx} = -Q_y$$

(4.49)

(4.50)

4.11 Zusammenfassung

Torsion

(4.46) **5.1** Einführung

 $r d\vartheta = \gamma dx \rightarrow \gamma = r \frac{d\vartheta}{dx}$ (5.1)Man nennt die Verdrehung pro Längeneinheit $d\theta = dx$ manchmal auch Ver-

Man nennt die Verdrehung pro Längeneinheit d
$$\vartheta = dx$$
 manchmal auch Verwindung \varkappa_T .

$$\tau = Gr \frac{d\theta}{dx} = Gr \theta'$$
 (5.2)

$$M_T = \int r \vartheta \, \mathrm{d}A \tag{5.3}$$

$$M(x) = \begin{cases} F \frac{b}{\ell} x & \text{für } 0 \le x \le a \\ F \frac{a}{\ell} (\ell - x) & \text{für } a \le x \le l \end{cases}$$
 (Momenter

4.5.4 Superposition

4.6 Einfluss des Schubes (4.22b)

4.6.1 Schubspannungen

$$\frac{\partial \mathbf{G}}{\partial x} = \frac{Q}{I} \zeta$$

$$S(z) = \int_{A^*} \zeta \, dA$$

$$\underline{\tau(z)} = \underbrace{\frac{Q}{I}}_{N/mm^2} \underbrace{\frac{S(z)}{Ib(z)}}_{(4.3)}$$

(4.26) 4.6.2 Durchbiegung infolge Schub

$$w' + \psi = \frac{Q}{GA_S}$$

$$w' = \frac{Q}{GA_S}$$
(4.4)

$$=\frac{Q}{GA_S} \tag{4.}$$

$$w_B' + w_S' \tag{4.4}$$

$$\frac{w_B + w_S}{F} \tag{4.}$$

$$\sigma = \frac{1}{I_y} z - \frac{1}{I_z} y$$

$$w'' = \frac{M_y}{EI_y}, \quad v'' = \frac{M_z}{EI_z}$$

$$\frac{dQ_z}{dx} = -q_z, \quad \frac{dQ_y}{dx} = -q_y$$

$$\frac{dM_y}{dx} = Q_z, \quad \frac{dM_z}{dx} = -Q_y$$

$$\frac{dy}{dx} = Q_z, \quad \frac{dy}{dx} = -Q_y$$
$$\varepsilon = -(w''z + v''y)$$

$$\sigma = -E(w''z + v''y)$$

$$\frac{\sigma = -E (w^2 z + v^2 y)}{\int z\sigma \, dA, \quad M_z = -\int y\sigma \, dA}$$

 $EIw^{IV} = q$ (4.34b)

Joshua

Technische Mechanik II, TM II Formeln Seite 4 von 4

X

$$GI_T\vartheta' = M_T \tag{5.5}$$

Die Größe GI_T heißt Torsionssteifigkeit.

$$\boxed{M_T = M_x} \tag{5.6}$$

$$\vartheta_{\ell} = \frac{M_T \ell}{GI_T} \tag{5.7}$$

$$\tau = \frac{M_T}{I_T} r \tag{5.8}$$

Der Größtwert tritt am Rand r=R auf: $\tau_{\rm max}=(M_T/I_T)\,R.$ Um die Analogie zur Biegung herzustellen, führen wir ein $Torsionswiderstandsmoment W_T$ ein:

$$T_{\text{max}} = \frac{M_T}{W_T} \tag{5.9}$$

$$I_t = I_P = \frac{\pi}{2}R^4, \quad W_T = \frac{\pi}{2}R^3$$
 (5.10)

$$I_T = \frac{\pi}{2} \left(R_a^4 - R_i^4 \right), \quad W_T = \frac{\pi}{2} \frac{R_a^4 - R_i^4}{R_a}$$
 (5.11)

$$I_T \approx 2\pi R_m^3 t \quad W_T \approx 2\pi R_m^2 t \tag{5.12}$$

$$\frac{\mathrm{d}M_T}{\mathrm{d}x} = M_T' = -m_T \tag{5.13}$$

$$\overline{(GI_T\vartheta')' = -m_T} \tag{5.14}$$

5.3 Dünnwandige geschlossene Profile

$$T = \tau t \tag{5.15}$$

$$T = \tau t = \text{const}$$
 (5.16)

$$M_T = \oint dM_T = T \oint r \perp ds \tag{5.17}$$

$$M_T = 2A_m T \tag{5.19}$$

$$\tau = \frac{T}{4} = \frac{M_T}{2A_{-4}} \tag{5.20}$$

$$\tau_{\text{max}} = \frac{M_T}{W_T} \quad \text{mit} \quad W_T = 2A_m t_{\text{min}}$$
 (5.21)

$$\frac{T}{Gt} = r \perp \vartheta' + \frac{\partial u}{\partial s} \tag{5.23}$$

$$\vartheta' = \frac{M_T}{GI_T} \tag{5.24}$$

$$I_T = \frac{(2A_m)^2}{\oint \frac{\mathrm{d}s}{t}} \tag{5.25}$$

(5.27)

(5.28)

(5.5) 5.4 Dünnwandige offene Profile

(5.34)

(5.32)

(5.33)

5.5 Zusammenfassung

Knickung

7.1 Verzweigung einer Gleichgewichtslage

$$\Pi' = \frac{\mathrm{d}\Pi}{\mathrm{d}\varphi} = 0 \to -F\ell \sin \varphi + c_T \varphi = 0 \tag{7.1}$$

$$\varphi_1 = 0 \tag{7.2}$$

$$\frac{\varphi_2}{\sin \varphi_2} = \frac{F\ell}{c_T} \tag{7.3}$$

$$\Pi'' = \frac{\mathrm{d}^2 \Pi}{\mathrm{d} \omega^2} = -F\ell \cos \varphi + c_T \tag{7.4}$$

$$F_{\text{krit}} = \frac{c_T}{\ell} \tag{7.5}$$

7.2 Der Euler-Stab

$$M = Fw \tag{7.6}$$

$$EIw'' + Fw = 0 \tag{7.7a}$$

$$\overline{\lambda^2 = F/EI}$$
 (abkürzung)

$$w'' + \lambda^2 w = 0 \tag{7.7b}$$

$$w = A\cos\lambda x + B\sin\lambda x \tag{7.8}$$

$$\sin \lambda \ell = 0 \to \lambda_n \ell = n\pi \quad \text{mit} \quad n = 1, 2, 3, \dots$$
 (7.9)

$$F_{\text{krit}} = \lambda_1^2 E I = \pi^2 \frac{EI}{\ell^2} \tag{7.10}$$

$$N = const = -F \tag{7.11}$$

$$(EIw'')'' + Fw'' = 0 (7.12)$$

$$w^{IV} + \lambda^2 w^{\prime\prime} = 0 \tag{7.13}$$

 $w = A\cos\lambda x + B\sin\lambda x + C\lambda x + D$ (7.14)

> × (7.15)

> × (7.17)

(7.16)

(7.18)

(7.19)

7.3 Zusammenfassung

2020 - 01 - 25