Feedback — Problem Set #3

Help Center

You submitted this quiz on **Mon 20 Apr 2015 11:26 AM IST**. You got a score of **5.00** out of **5.00**.

Question 1

Which of the following is true for our dynamic programming algorithm for computing a maximum-weight independent set of a path graph? (Assume there are no ties.)

Your Answer	Score	Explanation
If a vertex is excluded from the optimal solution of a subproblem, then it is excluded from the optimal solutions of all bigger subproblems.		
If a vertex is excluded from the optimal solution of two consecutive subproblems, then it is excluded from the optimal solutions of all bigger subproblems.	✓ 1.00	By induction, since the optimal solution to a subproblem depends only on the solutions of the previous two subproblems.
The algorithm always selects the maximum-weight vertex.		
As long as the input graph has at least two vertices, the algorithm never selects the minimum-weight vertex.		
Total	1.00 / 1.00	

Question 2

Consider a variation of the Knapsack problem where we have two knapsacks, with integer capacities W_1 and W_2 . As usual, we are given n items with positive values and positive integer weights. We want to pick subsets S_1, S_2 with maximum total value (i.e., $\sum_{i \in S_1} v_i + \sum_{i \in S_2} v_i$) such that the total weights of S_1 and S_2 are at most W_1 and W_2 , respectively. Assume that every item fits in either knapsack (i.e., $w_i \leq \min\{W_1, W_2\}$ for every item i). Consider the following two algorithmic approaches. (1) Use the algorithm from lecture to pick a max-value feasible solution S_1 for the first knapsack, and then run it again on the remaining items to pick a max-value feasible solution S_2 for the second knapsack. (2) Use the algorithm from lecture to pick a max-value feasible solution for a knapsack with capacity $W_1 + W_2$, and then split the chosen items into two sets S_1, S_2 that have size at most W_1 and W_2 , respectively. Which of the following statements is true?

Your Answer	Score	Explanation
Algorithm (2) is guaranteed to produce an optimal feasible solution to the original problem but algorithm (1) is not.		
Neither algorithm is guaranteed to produce an optimal feasible solution to the original problem.	✓ 1.00	Indeed. Can you devise from scratch a dynamic programming algorithm that correctly solves the problem?
Algorithm (1) is guaranteed to produce an optimal feasible solution to the original problem provided $W_1=W_2$.		
Algorithm (1) is guaranteed to produce an optimal feasible solution to the original problem but algorithm (2) is not.		
Total	1.00 / 1.00	

Question 3

Recall our dynamic programming algorithm for computing the maximum-weight independent set of a path graph. Consider the following proposed extension to more general graphs. Consider an undirected graph with positive vertex weights. For a vertex v, obtain the graph G'(v) by deleting v and its incident edges from G, and obtain the graph G''(v) from G by deleting v, its neighbors, and all of the corresponding incident edges from G. Let OPT(H) denote the value of a maximum-weight independent set of a graph H. Consider the formula

 $OPT(G) = \max\{OPT(G'(v)), w_v + OPT(G''(v))\}$, where v is an arbitrary vertex of G of weight w_v . Which of the following statements is true?

Score	Explanation
✓ 1.00	Indeed. What running time can you get?
1.00 / 1.00	
	✓ 1.00

Question 4

Recall the dynamic programming algorithms from lecture for the Knapsack and sequence alignment problems. Both fill in a two-dimensional table using a double-for loop. Suppose we reverse the order of the two for loops. (I.e., cut and paste the second for loop in front of the first for

loop, without otherwise changing the text in any way.) Are the resulting algorithms still well defined and correct?				
Your Answer	Score	Explanation		
Neither algorithm remains well defined and correct after reversing the order of the for loops.				
The Knapsack algorithm remains well defined and correct after reversing the order of the for loops, but the sequence alignment algorithm does not.				
Both algorithms remain well defined and correct after reversing the order of the for loops.	1 .00	The necessary subproblem solutions are still available for constant-time lookup.		
The sequence alignment algorithm remains well defined and				

Question 5

does not.

Total

correct after reversing the order of the for loops, but the Knapsack algorithm

Consider an instance of the optimal binary search tree problem with 7 keys (say 1,2,3,4,5,6,7 in sorted order) and frequencies

1.00 /

 $w_1=.05, w_2=.4, w_3=.08, w_4=.04, w_5=.1, w_6=.1, w_7=.23$. What is the minimum-possible average search time of a binary search tree with these keys?

Your Answer	Score	Explanation
2.08		
2.9		

