# Fundamentals of Machine Learning

Il-Chul Moon Dept. of Industrial and Systems Engineering KAIST

icmoon@kaist.ac.kr

## Weekly Objectives

- Learn the most classical methods of machine learning
  - Rule based approach
  - Classical statistics approach
  - Information theory appraoch
- Rule based machine learning
  - How to find the specialized and the generalized rules
  - Why the rules are easily broken
- Decision Tree
  - How to create a decision tree given a training dataset
  - Why the tree becomes a weak learner with a new dataset
- Linear Regression
  - How to infer a parameter set from a training dataset
  - Why the feature engineering has its limit

## Find-S Algorithm

- Find-S Algorithm
  - Initialize h to the most specific in H
  - For instance x in D
    - if x is positive
      - For feature f in O
        - If  $f_i$  in  $h == f_i$  in x
          - Do nothing
        - Else
          - $f_i$  in  $h = f_i$  in  $h \cup f_i$  in x
  - Return h
- Instances
  - x<sub>1</sub>: <Sunny, Warm, Normal, Strong, Warm, Same>
  - x<sub>2</sub>: <Sunny, Warm, Normal, Light, Warm, Same>
  - x<sub>4</sub>: <Sunny, Warm, Normal, Strong, Warm, Change>
- Hypotheses
  - h<sub>0</sub>=<Ø, Ø, Ø, Ø, Ø, Ø>
  - h<sub>1</sub>=<Sunny, Warm, Normal, Strong, Warm, Same>
  - h<sub>1,2,3</sub>=<Sunny, Warm, Normal, ?, Warm, Same>
  - h<sub>1,2,3,4</sub>=<Sunny, Warm, Normal, ?, Warm, ?>
- Any problems?
  - Many possible hs, and can't determine the converge

#### Instances X



## Version Space

- Many hypotheses possible, and No way to find the convergence
- Need to setup the perimeter of the possible hypothesis
- The set of the possible hypotheses == Version Space, VS
  - General Boundary, G
    - Is the set of the maximally general hypotheses of the version space
  - Specific Boundary, S
    - Is the set of the maximally specific hypotheses of the version space
  - Every hypothesis, h, satisifies
    - $VS_{H,D} = \{h \in H | \exists s \in S, \exists g \in G, g \ge h \ge s\}$ where  $x \ge y$  means x is more general or equal to y



| Sky   | Temp | Humid  | Wind   | Water | Forecst | EnjoySpt |
|-------|------|--------|--------|-------|---------|----------|
| Sunny | Warm | Normal | Strong | Warm  | Same    | Yes      |
| Sunny | Warm | High   | Strong | Warm  | Same    | Yes      |
| Rainy | Cold | High   | Strong | Warm  | Change  | No       |
| Sunny | Warm | High   | Strong | Cool  | Change  | Yes      |

## Candidate Elimination Algorithm

- Candidate Elimination Algorithm
  - Initialize S to maximally specific h in H
  - Initialize G to maximally general h in H
  - For instance x in D
    - If y of x is positive
      - Generalize S as much as needed to cover o in x
      - Remove any h in G, for which h(o)≠y
    - If y of x is negative
      - Specialize G as much as needed to exclude o in x
      - Remove any h in S, for which h(o)=y
  - Generate h that satisfies  $\exists s \in S, \exists g \in G, g \geq h \geq s$

S0: {<Ø, Ø, Ø, Ø, Ø, Ø>}

G0: {<?,?,?,?,?,?}

### Progress of Candidate Elimination Algorithm

| Sky   | Temp | Humid  | Wind   | Water | Forecst | EnjoySpt |
|-------|------|--------|--------|-------|---------|----------|
| Sunny | Warm | Normal | Strong | Warm  | Same    | Yes      |
| Sunny | Warm | High   | Strong | Warm  | Same    | Yes      |
| Rainy | Cold | High   | Strong | Warm  | Change  | No       |
| Sunny | Warm | High   | Strong | Cool  | Change  | Yes      |

S0: {<Ø, Ø, Ø, Ø, Ø, Ø>}

S1: {<Sunny, Warm, Normal, Strong, Warm, Same>}

S2: {<Sunny, Warm, ?, Strong, Warm, Same>}

G0, G1, G2: {<?,?,?,?,?,>}

### Progress of Candidate Elimination Algorithm

| Sky   | Temp | Humid  | Wind   | Water | Forecst | EnjoySpt |
|-------|------|--------|--------|-------|---------|----------|
| Sunny | Warm | Normal | Strong | Warm  | Same    | Yes      |
| Sunny | Warm | High   | Strong | Warm  | Same    | Yes      |
| Rainy | Cold | High   | Strong | Warm  | Change  | No       |
| Sunny | Warm | High   | Strong | Cool  | Change  | Yes      |

S0: {<Ø, Ø, Ø, Ø, Ø, Ø>}

S1: {<Sunny, Warm, Normal, Strong, Warm, Same>}

S2, S3: {<Sunny, Warm, ?, Strong, Warm, Same>}

G3: {<Sunny,?,?,?,?,>, <?,Warm,?,?,?,>, <?,?,?,?,Same>}

G0, G1, G2: {<?,?,?,?,?,?}

## Progress of Candidate Elimination Algorithm

| Sky   | Temp | Humid  | Wind   | Water | Forecst | EnjoySpt |
|-------|------|--------|--------|-------|---------|----------|
| Sunny | Warm | Normal | Strong | Warm  | Same    | Yes      |
| Sunny | Warm | High   | Strong | Warm  | Same    | Yes      |
| Rainy | Cold | High   | Strong | Warm  | Change  | No       |
| Sunny | Warm | High   | Strong | Cool  | Change  | Yes      |



S0: {<Ø, Ø, Ø, Ø, Ø, Ø>}

S1: {<Sunny, Warm, Normal, Strong, Warm, Same>}

S2, S3: {<Sunny, Warm, ?, Strong, Warm, Same>}

S4: {<Sunny, Warm, ?, Strong, ?, ?>}

#### Still many **h**s

G4: {<Sunny,?,?,?,?,>, <?,Warm,?,?,?,?>}

G3: {<Sunny,?,?,?,?,>, <?,Warm,?,?,?,>, <?,?,?,?,Same>}

# How to classify the next instance?

| Sky   | Temp | Humid  | Wind   | Water | Forecst | EnjoySpt |
|-------|------|--------|--------|-------|---------|----------|
| Sunny | Warm | Normal | Strong | Warm  | Same    | Yes      |
| Sunny | Warm | High   | Strong | Warm  | Same    | Yes      |
| Rainy | Cold | High   | Strong | Warm  | Change  | No       |
| Sunny | Warm | High   | Strong | Cool  | Change  | Yes      |



- Somehow, we come up with the version space
  - A subset of *H* that satisfies the training data, *D*
- Imagine a new instance kicks in
  - Sunny, Warm, Normal, Strong, Cool, Change>
  - <Rainy, Cold, Normal, Light, Warm, Same>
  - <Sunny, Warm, Normal, Light, Warm, Same>
- How to classify these?
  - Which h to apply from the subset?
  - Or, a classification by all of hs in the subset
  - How many are hs satisfied?

## Is this working?

- Will the candidate-elimination algorithm converge to the correct hypothesis?
  - Converge? → Able to select a hypothesis
  - Correct? → The hypothesis is true in the observed system
- Given the assumption, yes and yes Training data is error-free, noise-free
  - No observation errors, No inconsistent observations
  - No stochastic elements in the system we observe

Target function is deterministic

- Full information in the observations to regenerate the system
- However, we don't live in the perfect world
  - Any noise in o of x in D
  - Decision factor other than o of x
  - → a correct h can be removed by the noise
  - → Cannot say yes and no

Target function is contained in hypotheses set