Simulation and evaluation of exemplar theoretic -t/-d deletion

Josef Fruehwald University of Pennsylvania NWAV 37, November 8, 2008

Outline

- -t/-d deletion is the well known phenomenon of consonant cluster simplification
 - \bigcirc C{t,d} -> C
- This talk is about possible representation and implementation of grammatical conditioning on -t/-d deletion
 - Exponential Model (Guy 1991a, 1991b)
 - Exemplar Model (Bybee 2002)

Grammatically Conditioned Variability

- Contextual Conditioning
 - Preceding segment
 - Following Segment
 - V < C</p>
- Grammatical Conditioning
 - Past < Irregular Past < Monomorphemes</p>
- Etc.

Grammatically Conditioned Variability

- Representation:
 - Decreasing functional load
 - Past > Irregular Past > Monomorphemes
 - Highly informed phonology
 - Variable Factor Weights
 - Past = .3; Irregular Past = .5; Momomorphemes = .7
 - Potentially arbitrary ranking
 - Connection to morphological structure
 - Exponential Model

Exponential Model (Guy 1991a, b)

- Single Variable Rule: Input p
- Cyclic application based on morphological structure

Variation is based in phonological mechanics

Exponential Model

Produces an exponential relationship across classes

Level	Past	Irreg	Mono
Stem			50% td
Word		50% td	25% td
Post Lex	50% td	25% td	12.5% td
	р	p ²	p ³

Exponential Model

Philadelphia Corpus; N = 1,555

	Past	Irreg	Mono
Retention	p = 76.6%	55.6%	43.5%
Predicted	p = 76.6%	$p^2 = 56.6\%$	$p^3 = 44.9\%$
CI	2.4%	6.7%	1.7%

Buckeye Corpus; N = 13,414

	Past	Irreg	Mono
Retention	p = 76.8%	58.8%	46.7%
Predicted	p = 76.8%	$p^2 = 58.9\%$	$p^3 = 45.3\%$
CI	1%	2.5%	0.6%

Exponential Model

- Delivers:
 - A <u>relationship</u> between retention rates across classes
 - No need for direct morphological information in variable rule
- Dependant upon
 - Cyclicity
 - Lexical Phonology / Stratal OT (Bermuzez-Otero 2003)
 - Morphological composition

Exemplar Model

- Words are represented in phonetic detail
- Phonemic / Morphological categories are emergent (Pierrehumbert 2002, 2007).
- Variability is in the lexical representation (Bybee 2002).

Exemplar Model

 Variation could be introduced by the Production-Representation loop

Exemplar Model

- Reduction is possible in production
- Over time, representations will "accrue more exemplars that are reduced" (Bybee 2002)
- More frequent words will go through this cycle more often, and will have more reduction

Exemplar Model: Contextual Effects

- Effects of Preceding and Following
 Segment can be grounded in saliency
 - _V: Audible burst, Formant Transitions
 - _C: Obscured burst, Competing closures
- Differential contextual effect should affect words that vary in their distributions across contexts

 Correlation between grammatical class' _V distribution and overall deletion (Bybee 2002)

- The relationship between _V and overall deletion between corpora not the same
 - Possibly due to differences in nasal flap formation

n -- n't contraction

d -- Irregular Past tense

m -- Monomorphemes

p -- Past tense

Frequency Before Vowels and Pause

- This model assumes that variable -t/-d deletion is a case of change.
 - Impossible to talk about accumulation of online reduction without this assumption
- Most formulations will produce rapid, complete reduction

Exemplar vs. Exponential

- Apparent exponential relationship between grammatical classes is coincidental
 - Emergent from variable contextual distributions
- Variation is located primarily in the representations, fed by the productionperception loop.

- 3 Factors of -t/-d deletion in Bybee 2002:
 - -t/-d representation (proportion of t's in the cloud)
 - Contextual Retention (probability of retaining t)
 - Distribution across contexts
- Model
 - Representation feeds contextual retention
 - Contextual retention weighted by frequency
 - Exemplar cloud updated by experience

$$T_{G'} = \sum_{i=1}^{\infty} T_G F_{Gi} C_i$$

$$T_{G'} = \sum_{i=1}^{n} T_G F_{Gi} C_i$$

t's in cloud:

 T_{G} Prob of drawing t:

Contextual Retention:

 $(T_G * C_A)$ Contextual (* F_{GA})

frequency:

$$F_{GA} + F_{GB} + F_{GC} = 1$$

Exemplar Simulation--Assumptions

- Probability of t = Proportion of /t/ exemplars in the cloud
- Proportion of t exemplars begins at 100%
- New proportion of T exemplars = Output of production

$$T_{G'} = \sum_{i=1}^{n} T_G F_{Gi} C_i$$

Exemplar Simulation--Data

- Contextual frequency can be determined from a corpus
- Contextual retention can be estimated
 - \bigcirc Retention_A = (T_G * C_A)
 - Olf $T_G \approx 1$; $Ret_A \approx C_A$
 - Grammatical class with least deletion will have
 T_G closest to 1
 - Contextual retention for past tense taken to be C_i

$$T_{G'} = \sum_{i=1}^{n} T_G F_{Gi} C_i$$

Exemplar Simulation -- Corpora

- Buckeye Corpus (Pitt et al 2007)
 - Total N = 12273

Past Tense	Irregular	Mono
1696	351	7172

- Differences between grammatical classes are rather small
- Quantal jumps between iterations are an idealization
 - Actual retention rates appear to be quantally separated
 - Past tense near first iteration, irregular past near second iteration, monomorphemes near third

Exemplar Simulation -- Corpora

- The Philadelphia Corpus
 - Sociolinguistic interviews with 7 Philadelphians coded for TD features
 - Total N = 1555

Past Tense	Irregular	Mono
316	54	773

Philadelphia Corpus

• Why this relationship between the simulation and actual rates?

- By taking contextual retention to be retention for past tense
 - $OT^0 = 1$
 - T¹ ≈ Retention for past tense
- Model is basically one of exponential decay
 - Retention = (1-Online Reduction)^{Time}
- Rates of online reduction across grammatical classes are basically equivalent
- Reproduces exponential relationship

Exponential Change

Exponential Change

- Factors like frequency, phonological neighborhood density and lexical competitors will bias rate of decay
- Language change is typically described as taking place over an sshaped curve (Labov 2001)

Exponential Change

- No countervailing force against reduction
 - Contextual Retention not included in speaker knowledge
 - Perceived forms not checked against expectations

Conclusions

- Lexical distribution across phonetic contexts is insufficient to produce sufficient variability to explain grammatical effect.
- The quantal, exponential relationship between grammatical classes remains to be explained
- To prevent rapid, complete reduction, deletion should be controlled by abstract phonological forms.

References

- Bermudez-Otero, R. 2003. "The acquisition of phonological opacity". In Variation within Optimality
 Theory: proceedings of the Stockholm Workshop in Variation within Optimality Theory ed.
 J. Spenader, A. Eriksson, and O. Dahl, pages 25–36, 2003.
- Bybee, J. 2002. "Word frequency and context of use in the lexical diffusion of phonetically conditioned sound change". Language Variation and Change, 14:261-290.
- Guy, G.R 1991a. "Explanation in variable phonology: An exponential model of morphological constraints". Language Variation and Change, 3(1):1-22.
- Guy, G.R., 1991b. "Contextual conditioning in variable lexical phonology". Language Variation and Change, 3(2):223–239.
- Labov ,W. 1994 Principles of linguistic change. Volume 1: Internal Factors. Language in Society.
 Blackwell, Oxford, 1994.
- Labov ,W. 2001 Principles of linguistic change. Volume 2: Social Factors. Language in Society.
 Blackwell, Oxford, 2001.
- Pierrehumbert, J.B. 2002. "Word-specific phonetics". In Laboratory Phonology VII, pages 101-139. Mouton de Gruyter
- Pitt, M.A., Dilley, L., Johnson, K., Kiesling, S., Raymond, W., Hume, E. and Fosler-Lussier, E. (2007) Buckeye Corpus of Conversational Speech (2nd release)
 [www.buckeyecorpus.osu.edu] Columbus, OH: Department of Psychology, Ohio State University (Distributor).