

Major Task

Program: communication

Group Names:

Mohamed Ashraf Aboutaleb(19P7766)

Mostafa Mahmoud Lotfy(19P3024)

Mohamed Hussein (19P2570)

Youssef Ayman Ali(19P2643)

Course name:Optical

Communications

Couse code: ECE334

a) The absorption and emission cross section

b) Pp and Psout vs position in the fiber (z) at certain wavelength: 1550nm.

c) Gain vs fiber length at different pump powers: calculate the optimum length at 0.5W pump power.

Optimum length at 19 m because it provides maximum gain

$$\Gamma P_p \approx ANh \upsilon_p L_p / \tau_{\rm sp}$$

gamma=0.4 Pp=0.5W A=7.85*10^-11 vp=2.026*10^14 tsp=10*10^-3

Calculating it theoretically using this equation yields 18.97m which is approximately 19m

d) Psout vs Psin on a log scale figure at the optimum fiber length

e) Gain vs Psin on a log scale figure at the optimum fiber length, compare the saturation input power to theoretical.

Saturation input power at 25 db

f) Gain vs λ at certain pump power and input power at all wavelengths.

g) *Psout* with ASE noise vs wavelength on a log scale figure with input power at 1550nm.

