

Você deverá criar, preferencialmente a seguinte estrutura de pastas:

/home/seu_user/nklabs/lab01

/home/seu_user/nklabs/lab02

Onde lab01 é a pasta que conterá o lab01 e assim por diante.

Um virtual lab é composto de arquivos de configuração, principalmente lab.conf e lab.dep e das pastas que representam cada host. Nenhum deles é obrigatório no netkit. É possível não ter as pastas ou não ter os arquivos de configuração. A consequencia é que ele pode criar um lab estranho se você estiver na pasta errada e gerar vários arquivos que deverão ser apagados manualmente.

EXECUÇÃO DO LABORATÓRIO

- **1.** [real] Salve o arquivo netkit_lab01.tar.gz na sua pasta de labs. (/home/seu_nome/nklabs).
- **2.** [real] Use o comando:

[seu_nome@suamaquina ~]\$ tar -xf netkit_lab01.tar.gz

Ele irá criar a pasta lab01 dentro da sua pasta nklabs.

3. [real] Use o comando a seguir:

[seu_nome@suamaquina ~]\$ lstart -d /home/seu_nome/nklabs/lab01

4. [real] Use o comando vlist para listar as máquinas virtuais. Você terá como saída algo assim:

```
[seu_nome@sua_maquina lab01]$ vlist
USER VHOST PID SIZE INTERFACES
seu_nome HOST4 1813 11604 eth0 @ HUB1
seu_nome HOST3 2004 11604 eth0 @ HUB1
seu_nome HOST1 32696 11604 eth0 @ HUB1
seu_nome HOST2 32705 11604 eth0 @ HUB1

Total virtual machines: 4 (you), 4 (all users).
Total consumed memory: 46416 KB (you),
46416 KB (all users).
```

Agora você irá executar uma série de comandos, observe os resultados mostrados na tela e formule uma hipótese antes de ser apresentado à explicação exata. Alguns comandos aparentemente podem não fazer nada, travarem ou exibir mensagens de erros. Isso é normal e deve acontecer se a sequencia de passos for executada corretamente.

- **5.** Use o comando ifconfig em cada uma das máquinas. Você perceberá que duas das máquinas estão com as interfaces eth0 (as placas de rede) configuradas, enquanto duas das outras máquinas não estão.
- **6.** Execute o comando arp no HOST1 (é normal não acontecer nada!).
- **7.** Execute, no HOST3, o comando ifconfig eth0 192.168.1.3 netmask 255.255.255.0 up.
- **8.** Nos hosts2, 3 e 4, use o comando cd /hosthome.
- **9.** Nos hosts2, 3 e 4, use o comando tcpdump -i eth0 -w lab1_hostX.pcap (onde X é o número do host).
- **10.** Na tela do host1, execute o comando ping 192.168.1.2, aguarde o resultado de alguns pings e use Ctrl + C para interromper o ping.
- **11.** Tente executar o comando ping 192.168.1.51 e ao receber algumas respostas cancele o comando novamente com Ctrl + C.
- **12.** Nos hosts2 e 3, use o comando Ctrl + C para interromper o tcpdump.
- **13.** Use o comando arp em cada um dos 4 hosts e veja a saída. (se demorar para executar essa instrução a saída poderá ser diferente, deverá ter duas entradas na tabela arp da host1).
- **14.** [real] Em sua pasta home (/home/seu_nome/) deverá existir os arquivos lab1_host2.pcap e lab1_host3.pcap. Inicie o software wireshark e abra estes arquivos. Estude seu conteúdo.

EXPERIMENTE

- **1.** Levante a interface eth0 do host4, com o ip 192.168.2.51 e máscara de sub-rede 255.255.255.0. Levante o tcpdump nessa máquina e tente a partir de qualquer outro host, "pingar" este endereço e veja se responde.
- **2.** Use o comando ifconfig para trocar o ip do host3 para 192.168.2.50 (basta levantar a interface novamente com o novo ip). Tente verificar com o ping a comunicação das máquinas de cada host para os demais

REFERÊNCIA

P. Gurgel, K. R. L. C. Branco, L. H. C. Branco, F. E. Barbosa, and M. M. Teixeira. Redes de Computadores Da teoria à prática com Netkit. Elsevier, 1ed, 2015.