Oefeningen talen en automaten - Reeks 4 Oefeningen bij 2.5.

1. Beschouw volgende ε -NFA.

	3	a	b	c
→ p	Ø	{p}	{q}	{r}
q	{p}	{q}	{r}	Ø
*r	{q}	{r}	Ø	{p}

a. Teken het overeenkomstige diagram.

Oplossing:

b. Bereken de ϵ -closure van elke staat.

$$\epsilon$$
-closure(p) = {p}
 ϵ -closure(q) = {p,q}
 ϵ -closure(r0) = {p,q,r}

c. Zet de automaat om in een DFA.

Oplossing:

2. Zet onderstaande ε -NFA om in een DFA.

Oplossing:

3. Ontwerp een ε-NFA voor de taal die alle strings bevat bestaande uit 0 of meer a's, gevolgd door 0 of meer b's, gevolgd door 0 of meer c's. Gebruik hierbij ε-transities om het ontwerp van de automaat zo eenvoudig mogelijk te houden.

toestand	a	b	c	3
q0	{q0}	Ø	Ø	{q1}
q1	Ø	{q1}	Ø	{q2}
q2	Ø	Ø	{q2}	Ø

4. Zet de ϵ -NFA uit vorige oefening om in een DFA.

toestand	a	b	c
{q0,q1,q2}	{q0,q1,q2}	{q1,q2}	{q2}
{q1,q2}	Ø	{q1,q2}	{q2}
{q2}	Ø	Ø	{q2}
Ø	Ø	Ø	Ø