The Evolution of Cooperation

Cardiff University

@NikoletaGlyn

Software Sustainability Institute

CLASSICAL GAME THEORY

EVOLUTIONARY GAME THEORY

$$\left(\begin{array}{cccc} (0,0) & (-1,1) & (1,-1) \\ \vdots & \vdots & \vdots \\ \end{array}\right)$$

$$\begin{pmatrix} (0,0) & (3,1) \\ (1,3) & (2,2) \end{pmatrix}$$

• • •

Understanding responses to environments for the Prisoner's Dilemma: A meta analysis, multidimensional optimisation and machine learning approach

Nikoleta E. Glynatsi

Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy.

June 2020

Oh no

Replicator Dynamics

$$\chi = (x_1, x_2)$$

$$f_1(\chi) = 0 \times x_1 + 3 \times x_2$$

$$f_2(\chi) = 1 \times x_1 + 2 \times x_2$$

$$\phi = x_1 f_1(\chi) + x_2 f_2(\chi)$$
$$\frac{dx_1}{dt} = x_1 (f_1(\chi) - \phi)$$

$$f_{1i} = \frac{0 \times (i-1) + 3 \times (N-i)}{N-1}$$
$$f_{2i} = \frac{1 \times i + 2 \times (N-i-1)}{N-1}$$

$$p_{i,i+1} = \frac{if_{1i}}{if_{1i} + (N-i)f_{2i}} \frac{N-i}{N}$$
$$p_{i,i-1} = \frac{(N-i)f_{2i}}{if_{1i} + (N-i)f_{2i}} \frac{i}{N}$$

$$\varphi = \frac{1}{1 + \sum_{i=1}^{N-1} \prod_{k=1}^{i} \frac{p_{i,i-1}}{p_{i,i+1}}}.$$

EVOLUTION OF COOPERATION?

$$\begin{pmatrix} (1,1) & (5,0) \\ (5,0) & (1,1) \end{pmatrix}$$

GROUP DYNAMICS OF SOCIAL BEHAVIOUR

