Lois de probabilité (2/3)

Anita Burgun

Contenu des cours

- Loi binomiale
- Loi de Poisson
- Loi hypergéométrique
- Loi normale
- Loi du chi2
- Loi de Student

Loi hypergéométrique

- La loi du tirage exhaustif
- Puce à ADN avec des gènes annotés fonctionnellement
- Annotations les plus représentatives

Définition

- Soit une population de N individus parmi lesquels une proportion p (donc Np individus) possède un caractère. On prélève un échantillon de n individus parmi cette population (le tirage pouvant s'effectuer d'un seul coup ou au fur et à mesure mais sans remise). Soit X le nombre aléatoire d'individus de l'échantillon possédant la propriété considérée.
- X suit une loi hypergéométrique

Définition

• X suit une loi hypergéométrique

Nb de groupes de k individus possédant la propriété \

Nb de groupes de (n-k) individus ne possédant pas la propriété

$$P(X = k) = \frac{C_{Np}^k C_{N-Np}^{n-k}}{C_N^n}$$

Nb d'échantillons possibles

$$X \sim \mathcal{H}(N, n, p)$$

Calcul de p(X=k) cas possibles C_N^n

on a tiré k boules gagnantes parmi $Np \ C_{Np}^k$

on a tiré (n-k) boules perdantes parmi N(1-p) $C_{N(1-p)}^{n-k}$

$$P(X=k) = \frac{C_{Np}^k C_{N-Np}^{n-k}}{C_N^n}$$

Espérance

L'espérance d'une v.a. suivant une loi hypergéométrique est la même que dans le cas d'une loi binomiale

$$E(X) = np$$

Variance

$$V(X) = \frac{N-n}{N-1}np(1-p)$$

• Dans une urne de 20 boules comprenant des boules rouges et des boules blanches, on effectue un tirage sans remise de 8 boules. La probabilité, à 10⁻⁴ près de tirer 3 boules rouges est de 35,76% et celle de tirer 4 boules rouges est de 19,87%. Quel est le nombre de boules rouges dans l'urne?

- Dans une urne de 20 boules comprenant des boules rouges et des boules blanches, on effectue un tirage sans remise de 8 boules. La probabilité, à 10⁻⁴ près de tirer 3 boules rouges est de 35,76% et celle de tirer 4 boules rouges est de 19,87%. Quel est le nombre de boules rouges dans l'urne?
- Tirage sans remise de n=8 boules dans une urne de N=20 boules.
- Soit R le nombre de boules rouges, et p=R/N leur proportion
- Soit X le nb de boules rouges parmi les n qui sont tirées
- X suit une loi hypergéométrique de paramètres N=20, n=8 et p

- X suit une loi hypergéométrique de paramètres N=20, n=8 et p = R/N

$$P(X=k) = \frac{C_{Np}^k C_{N-Np}^{n-k}}{C_N^n}$$

• On connait p(X=3) et p(X=4)
$$P(X = k) = \frac{C_{Np}^{k} C_{N-Np}^{n-k}}{C_{N}^{n}}$$

$$P(X = k) = \frac{C_{Np}^{k} C_{N-Np}^{n-k}}{C_{N}^{n}}$$

$$P(X=4) = \frac{C_R^4 C_{20-R}^4}{C_{20}^8}$$

- X suit une loi hypergéométrique de paramètres N=20, n=8 et p = R/N
- p = R/N • On a p(X=3) et p(X=4) $P(X = k) = \frac{C_{Np}^{k} C_{N-Np}^{n-k}}{C_{N}^{n}}$

$$\frac{p(X=3)}{p(X=4)} = \frac{4!(R-4)!}{3!(R-3)!} \frac{4!(16-R)!}{5!(15-R)!} = \frac{4(16-R)!}{5(R-3)!}$$

$$R = \frac{15p_3 + 64p_4}{5p_3 + 4p_4} = 7$$

- On a une boîte de N comprimés constituée de N₁=Np comprimés défectueux et N₂=N(1-p)= Nq comprimés corrects.
- Donc $p=N_1/N$
- On veut vérifier le taux de comprimés défectueux. On prélève un échantillon de taille n sans remise.
- Soit X la variable aléatoire discrète « nombre de comprimés défectueux » dans l'échantillon.
- X suit une loi hypergéométrique de paramètres N, n, p
- La probabilité de succès est modifiée d'un tirage à l'autre
- Cf 2e tirage
 - Np cp défectueux et Nq-1 corrects si on a tiré un correct avant
 - Np-1 défectueux et Nq corrects si on a tiré un cp défectueux avant

- On fait un sondage dans une population de 1 million de personnes pour rechercher la caractère C. On fait un tirage au sort de 100 personnes
- Dans la population on considère que la répartition de C est de 20%.
- Quelle est la probabilité qu'on ait dans le sondage 10 individus ayant C

$$P(X = k) = \frac{C_{Np}^{k} C_{N-Np}^{n-k}}{C_{N}^{n}}$$

$$P(X = 10) = \frac{C_{200.000}^{10} C_{1.000.000-200.000}^{90}}{C_{1.000.000}^{100}}$$

Hypergéométrique -> binomiale

```
quand N \to \infty, \{X \sim \mathcal{H}(N, n, p)\} peut être approximée par \{X \sim \mathcal{B}(n, p)\}
```

- On ignore le fait que le sondage soit un tirage sans remise
- En pratique quand n/N < 1/10 (d'après Saporta, Schwartz)

Approximation binomiale de le loi hypergéometrique:

						_	
		N		n		Rapport des	
			200		20	variances	
		S		Р		VH/VB	
			185		0,93		
×		P(X=x)		P(X=x)		H-B	
	_	Hyperge	ometrique	Binomia		Différence	
	0		0,00000E+000		3,17121E-023		
	1		0,00000E+000		7,82232E-021		
	2		0,00000E+000		9,16515E-019		
	3		0,00000E+000		6,78221E-017		
	4		0,00000E+000		3,55501E-015		
	5		1,05978E-018		1,40304E-013	-,	
	6 7		4,76902E-016		4,32605E-012		
	7		8,53655E-014		1,06709E-010		
	8		8,23066E-012		2,13863E-009		
	9		4,85609E-010		3,51686E-008		
	10		1,88028E-008		4,77121E-007		
	11		4,98558E-007		5,34954E-006		
	12		9,29455E-006		4,94832E-005		
	13		1,23689E-004		3,75565E-004		
	14		1,18192E-003		2,31598E-003	_,	
	15		8,08431E-003		1,14255E-002		
	16		3,90436E-002		4,40359E-002	,	
	17		1,29380E-001		1,27790E-001		
	18		2,78664E-001		2,62680E-001	-,	
	19		3,49901E-001		3,41023E-001		
	20		1,93612E-001		2,10298E-001		
	21		0,00000E+000		0,00000E+000		
	22		0,00000E+000		0,00000E+000		
	23		0,00000E+000		0,00000E+000		
	24		0,00000E+000		0,00000E+000		
	. 25		0,00000E+000		0,00000E+000		
Différence maximale en valeur absolue 1,66858E-0							

$$N=200, n=20$$

p= 0.93

Tiré de:

http://www-timc.imag.fr/Cecile.Amblard/ Enseignement/STA230/sortieTP3.pdf

Contenu des cours

- Loi binomiale
- Loi hypergéométrique
- Loi de Poisson
- Loi normale
- Loi du chi2
- Loi de Student

Loi de Poisson

- La loi des évènements rares
- Survenue d'un accident lors des examens radiologiques
- Effets secondaires des médicaments (pharmacovigilance)

Notion de processus de Poisson

- Evènements rares
- Proba qu'accident sur un intervalle de temps dt proportionnel à durée
 - λ = nb moyen d'accidents par unité de temps
- Proba d'observer 2 accidents au cours de dt est très faible par rapport à celle d'en observer 1
- Le nombre d'accidents survenant dans un intervalle de temps donné est indépendant du fait qu'on ait observé beaucoup, ou peu d'accidents dans un autre intervalle de temps précédent.

Loi de Poisson

• Une v.a. X suit une loi de Poisson de paramètre réel positif λ , notée $X \sim \mathcal{P}(\lambda)$ si elle suit:

$$P(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}$$

C'est une loi de probabilité

• Rappel
$$e^{u} = 1 + u + \frac{u^{2}}{2!} + \frac{u^{3}}{3!} + \dots + \frac{u^{n}}{n!} + \dots = \sum_{k=0}^{+\infty} \frac{u^{k}}{k!}$$

• Loi de probabilité $\sum p_k = 1$

$$\sum_{k=0}^{+\infty} p_k = 1$$

$$\sum_{k=0}^{+\infty} p_k = e^{-\lambda} \sum_{k=0}^{+\infty} \frac{\lambda^k}{k!} = e^{-\lambda} e^{\lambda} = 1$$

Représentation graphique

Espérance, variance

$$E(X) = \lambda$$

$$V(X) = \lambda$$

Montrons que $E(X) = \lambda$

Rappel:
$$e^{\lambda} = \sum_{k=0}^{+\infty} \frac{\lambda^k}{k!}$$

$$E(X) = \sum_{k=0}^{+\infty} k \ e^{-\lambda} \ \frac{\lambda^k}{k!} = e^{-\lambda} \sum_{k=0}^{+\infty} k \frac{\lambda^k}{k!} = e^{-\lambda} \sum_{k=1}^{+\infty} \frac{\lambda^k}{(k-1)!}$$

$$E(X) = e^{-\lambda} \sum_{k=1}^{+\infty} \lambda \frac{\lambda^{k-1}}{(k-1)!} = \lambda e^{-\lambda} \sum_{k=1}^{+\infty} \frac{\lambda^{k-1}}{(k-1)!}$$

Si on pose m = k-1, on a:
$$\sum_{k=1}^{+\infty} \frac{\lambda^{k-1}}{(k-1)!} = \sum_{m=0}^{+\infty} \frac{\lambda^m}{m!} = e^{\lambda}$$

Donc:
$$E(X) = \lambda e^{-\lambda} e^{\lambda} = \lambda$$

Remarques utiles

• Lorsque la v.a. X suit une loi de Poisson

$$p_0 = P(X = 0) = e^{-\lambda}$$
 (probabilité qu'il n'y ait aucun accident)

$$p_{1+} = P(X > 0) = 1 - e^{-\lambda}$$
 (probabilité qu'il y ait au moins un accident)

Remarques utiles (2)

- Si $X_1 \sim \mathcal{P}(\lambda_1)$ et $X_2 \sim \mathcal{P}(\lambda_2)$ avec X_1 et X_2 deux v.a. indépendantes alors X, somme de X_1 et X_2 suit une loi de Poisson $X \sim \mathcal{P}(\lambda_1 + \lambda_2)$
- Un traitement produit 2 types d'accidents, les accidents cutanés et les accidents digestifs

- Un liquide contient 10⁵ bactéries par litre. On en prélève 1 mm³. Quelle est la probabilité que ce prélèvement ne contienne aucune bactérie? Contienne 1, 2, 3 bactéries?
- Quelle loi régit le nombre de bactéries par mm³?

- Un liquide contient 10⁵ bactéries par litre. On en prélève 1 mm³. Quelle est la probabilité que ce prélèvement ne contienne aucune bactérie? Contienne 1, 2, 3 bactéries?
- La probabilité pour qu'une bactérie donnée présente dans le liquide soit dans le mm³ prélevé est, si les bactéries sont réparties au hasard dans le liquide, c'est à dire si elles ont autant de chances d'être dans chacun des 10⁶ mm³ du litre,

$$\frac{1}{10^6}$$

- Un liquide contient 10⁵ bactéries par litre. On en prélève 1 mm³. Quelle est la probabilité que ce prélèvement ne contienne aucune bactérie? Contienne 1, 2, 3 bactéries?
- La probabilité pour qu'une bactérie donnée soit dans le mm³ prélevé est 1/106
- Nous avons 10⁵ bactéries au total
- Donc le nombre de bactéries contenues dans le prélèvement est régi par une <u>loi binomiale de paramètres</u>

$$p = 10^{-6} \qquad n = 10^5$$

• La probabilité pour qu'une bactérie donnée soit dans le mm³ prélevé est $1/10^6$. Nous avons 10^5 bactéries au total. Donc le nombre de bactéries contenues dans le prélèvement est régi par une <u>loi binomiale</u> de paramètres $p = 10^{-6}$ $n = 10^5$

$$P_0 = (1 - p)^n = (1 - 10^{-6})^{10^5} = 0.90$$

$$P_1 = 10^{-6} \frac{10^5}{1} P_0 = 0.09$$

$$P_2 = 0.0045$$

$$P_3 = 0.00015$$

Par récurrence, en confondant 1-10⁻⁶ avec 1 et en négligeant 1 ou 2 devant 10⁵

• La probabilité pour qu'une bactérie donnée soit dans le mm³ prélevé est $1/10^6$. Nous avons 10^5 bactéries au total. Donc le nombre de bactéries contenues dans le prélèvement est régi par une <u>loi binomiale</u> <u>de paramètres</u> $p = 10^{-6}$ $n = 10^5$

P_k décroit très vite quand k augmente

L'espérance du nb de bactéries contenues dans le prélèvement est np= 0.1

La variance np(1-p) est pratiquement égale à np (donc E).

Approximation binomiale-> Poisson

- La loi binomiale $\mathcal{B}(n; p)$ se confond quand n grand et p petit avec une loi de Poisson de paramètre $\lambda = np$.
- Elle modélise donc les expériences de Bernoulli avec une très faible probabilité de succès, mais avec un grand nombre d'essais (np quasiment constant).
- Si p est proche de 0, alors (1-p) proche de 1, donc np=npq. On vérifie bien E(X)=V(X)
- On considère p<0.1 <u>et</u> n>50 (source: Lazar, Schwartz)

- A- La probabilité pour que sur un an, on n'observe aucun enfant atteint de la maladie M est $(0,99999)^{100000}$
- P(aucun enfant atteint)= q^{100000}
- A est vrai

- B- La loi de Poisson permet d'évaluer que la probabilité pour que, sur 100 000 naissances, on n'observe aucun enfant atteint de la maladie M est environ de 0,9
- Loi de Poisson applicable: la loi binomiale $\mathcal{B}(n; p)$ se confond quand n grand et p petit avec une loi de Poisson de paramètre $\lambda = np$.
- $\lambda = 0.1$
- B vrai

$$p_0 = P(X = 0) = e^{-\lambda}$$

- C La loi de Poisson permet d'évaluer que la probabilité pour qu'il y ait, sur 100 000 naissances, exactement un enfant atteint de la maladie M est de 0,09
- k=1
- C vrai

$$P(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}$$

- D La loi de Poisson permet d'évaluer que la probabilité pour qu'il y ait, sur 100 000 naissances, au moins un enfant atteint de la maladie M est de 0,1
- D vrai

$$p_{1+} = P(X > 0) = 1 - e^{-\lambda}$$

• A, B, C, D vrai

Sachant que l'incidence du diabète dans la population générale est de 2%, quelle est, dans une école de 200 élèves, la probabilité pour qu'aucun élève ne soit diabétique

$$n=200$$

$$p=0,02$$

On peut utiliser une loi de Poisson quand p<0,1 et n>50

$$p(X=0) = e^{-\lambda}$$
$$p = 0.018$$

$$p = 0.018$$

Sachant que l'incidence du diabète dans la population générale est de 2%, quelle est, dans une école de 200 élèves, la probabilité pour qu'un élève soit diabétique

Loi de Poisson

$$p(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}$$

$$p(X=1) = e^{-4} \frac{4}{1!}$$

$$p(X = 1) = 0.073$$

Sachant que l'incidence du diabète dans la population générale est de 2%, quelle est, dans une école de 200 élèves, la probabilité pour que plus de 2 élèves soient diabétiques

Loi de Poisson

$$p(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}$$

$$p(X > 2) = 1 - p(X \le 2) = 1 - (p(X = 0) + p(X = 1) + p(X = 2))$$

$$p(X = 0) = 0.018$$

$$p(X = 1) = 0.073$$

$$p(X = 2) = 0.144$$

$$p(X > 2) = 0.765$$

Approximation poissonnienne de la loi binomiale:

	N			Rapport des				
		200		variances				
	P		Lambda	VH/VB				
		0,015	3	0,99				
×		(=x)	P(X=x)	P-B				
		sson	Binomiale	Différence				
	0	4,97871E-002	4,86683E-002	1,11878E-003				
	1	1,49361E-001	-,	1,13291E-003				
	2	2,24042E-001	2,24600E-001	-5,57924E-004				
		2,24042E-001	2,25740E-001	-1,69802E-003				
	4	1,68031E-001	1,69305E-001	-1,27352E-003				
	5	1,00819E-001	1,01067E-001	-2,48462E-004				
	6	5,04094E-002	5,00206E-002	3,88801E-004				
	7	2,16040E-002	2,11109E-002	4,93087E-004				
	8	8,10151E-003	7,75586E-003	3,45651E-004				
	9	2,70050E-003	2,51967E-003	1,80833E-004				
	10	8,10151E-004	7,32879E-004	7,72724E-005				
	11	2,20950E-004	1,92774E-004	2,81765E-005				
	12	5,52376E-005	***	9,00121E-006				
	13	1,27471E-005	1,01825E-005	2,56466E-006				
	14	2,73153E-006	2,07120E-006	6,60330E-007				
	15	5,46306E-007	3,91110E-007	1,55196E-007				
	16	1,02432E-007	6,88661E-008	3,35663E-008				
	17	1,80763E-008	1,13509E-008	6,72542E-009				
	18	3,01272E-009	1,75737E-009	1,25535E-009				
	19	4,75692E-010	2,56351E-010	2,19341E-010				
	20	7,13538E-011	3,53296E-011	3,60241E-011				
	21	1,01934E-011	4,61156E-012	5,58184E-012				
	22	1,39001E-012	5,71390E-013	8,18619E-013				
	23	1,81306E-013	6,73411E-014	1,13964E-013				
	24	2,26632E-014	7,56305E-015	1,51001E-014				
	25	2,71958E-015	8,10821E-016	1,90876E-015				
Différence maximale en valeur absolue 1,69802E-00								

$$n = 200$$

 $p = 0.015$
 $\lambda = 3$

Tiré de:

http://www-timc.imag.fr/Cecile.Amblard/ Enseignement/STA230/sortieTP3.pdf