- Suppose we have filled out all the rows up to and including the μ -th row, we fill out the $(\mu + 1)$ -th row as follows:
- (1) If $d_{\mu} = 0$, then we set

$$\sigma^{(\mu+1)}(X) = \sigma^{(\mu)}(X).$$

(2) If $d_{\mu} \neq 0$, we find a row prior to the μ -th row, say the ρ -th row, with partial solution $\sigma^{(\rho)}(X)$ such that $d_{\rho} \neq 0$ and $d_{\rho} = d_{\rho}$ is the largest. Then

$$\sigma^{(\mu+1)}(X) = \sigma^{(\mu)}(X) + d_{\mu}d_{\rho}^{-1}X^{2(\mu-\rho)}\sigma^{(\rho)}(X). \tag{5}$$

(3) Compute the discrepancy

$$d_{\mu+1} = S_{2\mu+3} + \sigma_1^{(\mu+1)} S_{2\mu+2} + \sigma_2^{(\mu+1)} S_{2\mu+1} + \dots + \sigma_{l_{\mu+1}}^{(\mu+1)} S_{2\mu+3-l_{\mu+1}}.$$
(5.38)

where $l_{\mu+1}$ is degree of $\sigma^{(\mu+1)}(X)$.

- If $d_{\mu} \neq 0$, then $\sigma^{(\mu)}(X)$ needs to be adjusted to obtain a new $\mu + 1$ Newton's identities minimum-degree polynomial $\sigma^{(\mu+1)}(X)$ whose coefficients satisfy the first
- **Correction:** Go back to the steps prior the μ -th step and determine a step ρ at which the partial solution is $\sigma^{(\rho)}(X)$ such that $\sigma^{(\rho)}(X)$ is maximal. polynomial $\sigma(X)$ is $(\mu+1)$ -th step of the iteration process for finding the error-location Pargest where l_{ρ} is the degree of $\sigma^{(\rho)}(X)$. Then the solution at the

$$\sigma^{(\mu+1)}(X) = \sigma^{(\mu)}(X) + d_{\mu}d_{\rho}^{-1}X^{(\mu-\rho)}\sigma^{(\rho)}(X), \tag{5.32}$$

where

$$d_{\mu}d_{\rho}^{-1}X^{(\mu-\rho)}\sigma^{(\rho)}(X) \tag{5.33}$$

is the correction term with degree $\mu - (\rho - l_k^2)$.

Since ρ is chosen to maximize $\rho - l_{\mu}$, this choice of ρ is equivalent to minimize the degree A-(p>1) of the correction term

Correction: Go back to the steps prior to the μ -th step and determine a polynomial $\sigma^{(\rho)}(X)$ such that $\alpha \neq 0$ and $\alpha \neq 0$ has the largest value, where l_{ρ} is the degree of $\sigma^{(\rho)}(X)$. Then

$$\sigma^{(\mu+1)}(X) = \sigma^{(\mu)}(X) - d_{\mu}d_{\rho}^{-1}X^{(\mu-\rho)}\sigma^{(\rho)}(X) \tag{6.19}$$

is the solution at the $(\mu + 1)$ -th step of the iteration process

Continue the above iterative process until 2t steps have been completed. At the 2t-th step, we have

$$\sigma(X) = \sigma^{(2t)}(X), \tag{6.20}$$

 $2t - \nu$ generalized Newton's identities given by (6.13). which is the minimum-degree polynomial whose coefficients satisfy the

If $\nu \leq t$ (the designed error-correcting capability), $\sigma^{(2t)}$ is unique and the true error-location polynomial with all its roots in $GF(q^m)$.

P 1s the maximum integer less than In such that l > l.
Section 7.4 Decoding of Nonbinary BCH and RS Codes 245
Pti S

TABLE 7.2: Steps for finding the error-location polynomial of the (15,9) RS code over $GF(2^4)$.

	μ	$\sigma^{(\mu)}(X)$	d_{μ}	l_{μ}	$\mu - l_{\mu}$	
	- 1	1	1	0	-1	
	0	1	α^{12}	0	0	
	1	$1 + \alpha^{12}X$	α^7	1	$0(\text{take }\rho = -1)$	
		$1 + \alpha^3 X$ $1 + \alpha^3 X + \alpha^3 X^2$	1	1	$1(\text{take }\rho=0)$	
	1	1 . 4 12 2	α^{7} α^{10}	2	$1(\text{take } \rho = 0)$	
1.+ dtx+ x3x+ 43x3	5	$1 + \alpha^{4}X + \alpha^{12}X^{2} 1 + \alpha^{7}X + \alpha^{4}X^{2} + \alpha^{6}X^{3}$	Ox!	3 2	$2(\text{take } \rho = 2)$	
	6	$1 + \alpha^7 X + \alpha^4 X^2 + \alpha^6 X^3$	-		$2(\text{take } \rho = 3)$	
-	_					

Step 2. To find the error-location polynomial $\sigma(X)$, we fill out Table 7.1 and obtain Table 7.2. Thus, $\sigma(X) = 1 + \alpha^7 X + \alpha^4 X^2 + \alpha^6 X^3$.

Step 3. By substituting $1, \alpha, \alpha^2, \dots, \alpha^{14}$ into $\sigma(X)$, we find that α^3, α^9 , and α^{12} are roots of $\sigma(X)$. The reciprocals of these roots are α^{12}, α^6 , and α^3 , which are the error-location numbers of the error pattern $\mathbf{e}(X)$. Thus, errors occur at positions X^3, X^6 , and X^{12} .

Next, we need to determine the error values, by finding the error-value evaluator. We define the syndrome polynomial S(X) as follows:

$$\mathbf{S}(X) \stackrel{\triangle}{=} S_1 + S_2 X + \dots + S_{2t} X^{2t-1} + S_{2t+1} X^{2t} + \dots$$

$$= \sum_{j=1}^{\infty} S_j X^{j-1}. \tag{7.21}$$

Note that only the coefficients of the first 2t terms are known. For $1 \le j < \infty$, we also define

$$S_j = \sum_{l=1}^{\nu} \delta_l \beta_l^j \tag{7.22}$$

The first 2t such S_j 's are simply the 2t equalities of (7.13). Combining (7.21) and (7.22), we can put S(X) in the following form:

$$S(X) = \sum_{j=1}^{\infty} X^{j-1} \sum_{l=1}^{\nu} \delta_{l} \beta_{l}^{j}$$

$$= \sum_{l=1}^{\nu} \delta_{l} \beta_{l} \sum_{j=1}^{\infty} (\beta_{l} X)^{j-1}.$$
(7.23)

Note that

$$\frac{1}{(1-\beta_l X)} = \sum_{j=1}^{\infty} (\beta_l X)^{j-1}.$$
 (7.24)

 l_{ρ} is the

(7.20)

ction of

lements

clı.

nerator

 $\alpha^{3}000$

e 2.8):