Orthogonal Complement

Big Idea. The orthogonal complement U^{\perp} of a subspace U is the collection of all vectors which are orthogonal to every vector in U

Orthogonal Vectors

The **inner product** of vectors $ec{x}, ec{y} \in \mathbb{R}^n$ is

$$\langle x,y
angle = \sum_{k=1}^n x_k y_k = x_1 y_1 + \dots + x_n y_n$$

Lets summarize various properties of the inner product:

1. The inner product is symmetric

$$\langle x|y
angle = \langle y|x
angle orall ec{x},ec{y}\in \mathbb{R}^n$$

2. The inner product of column vectors is the same as matrix multiplication

$$\langle oldsymbol{x} | oldsymbol{y}
angle = oldsymbol{x}^T oldsymbol{y}$$

3. The inner product satisfies the usual distributive rule of multiplication

$$\langle \boldsymbol{x}|c\boldsymbol{y}+d\boldsymbol{z}
angle = c\,\langle \boldsymbol{x}|\boldsymbol{y}
angle + d\,\langle \boldsymbol{x}|\boldsymbol{z}
angle$$

4. The square root of the inner product of a vector with itself is equal to the 2-norm

$$\sqrt{\langle oldsymbol{x} | oldsymbol{x}
angle} = \|oldsymbol{x}\|$$

5. We can also write the inner product in terms of the angle between vectors

$$\langle \boldsymbol{x} | \boldsymbol{y} \rangle = \| \boldsymbol{x} \| \boldsymbol{y} \| \| \cos \theta$$

6. Let A be an $m \times n$ matrix, ket $\boldsymbol{u} \in \mathbb{R}^n$ and let $\boldsymbol{v} \in \mathbb{R}^n$. Then

$$\langle A oldsymbol{u} | oldsymbol{v}
angle = \langle oldsymbol{u} | A^T oldsymbol{v}
angle$$

7. Let us have $A=egin{bmatrix} m{u}_1^T \ dots \ m{u}_m^T \end{bmatrix}\in\mathbb{R}^{m imes n}$, where $m{u}_1,\dots,m{u}_m\in\mathbb{R}^n$, that is $m{u}_i^T$ is the i-th row of

A. Then for any $\boldsymbol{x} \in \mathbb{R}^n$, we have

$$egin{aligned} Aoldsymbol{x} = egin{bmatrix} \langle oldsymbol{u}_1 | oldsymbol{x}
angle \ \langle oldsymbol{u}_m | oldsymbol{x}
angle \end{bmatrix} \end{aligned}$$

which follows directly from the definition of the matrix vector product

Vectors are orthogonal if the inner product between them is zero $\langle \boldsymbol{x} | \boldsymbol{y} \rangle = 0$ More generally vectors $\boldsymbol{x}_1, \dots, \boldsymbol{x}_m \in \mathbb{R}^n$ are orthogonal if $\langle \boldsymbol{x}_i | \boldsymbol{x}_j \rangle = 0$ for all $i \neq j$

In other words each vector is orthogonal to every other vector in the set Furthermore the are orthonormal if $\langle \boldsymbol{x}_i | \boldsymbol{x}_i \rangle = 1 = \|\boldsymbol{x}\|$ if each vector is orthogonal to the others and is a unit vector

Vectors x, y are orthogonal iff the acute angle between them is $\pi/2$ radians or 90°

Let the $\sum_n \boldsymbol{x}_n$ form an orthogonal basis, then

$$\|m{x}_1 + \dots + m{x}_m\|^2 = \|m{x}_1\|^2 + \dots + \|m{x}_m\|^2$$

This is called the Pythagorean theorem

Orthogonal subspaces

let $U_1,U_2\subseteq\mathbb{R}^n$ be subspaces. Then U_1 and U_2 are orthogonal if $\langle \boldsymbol{x}_1|\boldsymbol{x}_2\rangle=0$ for all $\boldsymbol{x}_1\in U_1$ and $\boldsymbol{x}_2\in U_2$. If U_1 and U_2 are orthogonal subspaces then we write $U_1\perp U_2$

THEOREM

Let $\{ m{u}_1, \dots, m{u}_2 \}$ be a basis of a subspace $U_1 \subseteq \mathbb{R}^n$ and let $\{ m{v}_1, \dots, m{v}_l \}$ be a basis of a subspace $U_2 \subseteq \mathbb{R}^n$. Then $U_1 \perp U_2 \iff \langle m{u}_i | m{v}_j \rangle = 0 \quad \forall i,j$ In other words, every $m{u}_i$ in the U_1 basis is orthogonal to each $m{v}_j$ in the basis U_2

EXAMPLE

Let $U_1\subset\mathbb{R}^3$ and $U_2\subset\mathbb{R}^3$ be 2-dimensional subspaces, planes. Is it possible that $U_1\perp U_2$?

No!

Orthogonal Complement

Let $U \subseteq \mathbb{R}^n$ be a subspace. The orthogonal complement of U is given by

$$U^{\perp} = \{oldsymbol{x} \in \mathbb{R}^n : \langle oldsymbol{x} | oldsymbol{y}
angle = 0 \, orall \, oldsymbol{y} \in U \}$$

Note

- If $U\subseteq \mathbb{R}^n$ is any subspace then $U=(U^\perp)^\perp$ and also $U\cap U^\perp=\{\vec{0}\}$
- $\{\mathbf{0}\}^{\perp} = \mathbb{R}^n$

Let $U\subseteq R^n$ is a subspace, then $U^\perp\subseteq \mathbb{R}^n$ is a subspace

Let us verify that U^\perp satisfies the properties of a subspace clearly $\langle \vec{0}| {m x} \rangle = 0 \, \forall {m x} \in U$ therefore $\vec{0} \in U^\perp$

Let $oldsymbol{x}_1,oldsymbol{x}_2\in U^\perp.$ Then

$$\langle oldsymbol{x}_1 + oldsymbol{x}_2 | oldsymbol{y}
angle = \langle oldsymbol{x}_1 | oldsymbol{y}
angle + \langle oldsymbol{x}_2 | oldsymbol{y}
angle = 0 + 0 = 0 one {oldsymbol{y}} \in U$$

Therefore $oldsymbol{x}_1 + oldsymbol{x}_2 \in U^\perp$

Let $c \in \mathbb{R}, \quad oldsymbol{u} \in U^{\perp}.$ Then

$$\langle coldsymbol{x}|oldsymbol{y}
angle = c\,\langleoldsymbol{x}|oldsymbol{y}
angle = c(0) = 0\,oralloldsymbol{y}\in U$$

Therefore $c {m x} \in U^\perp$

Therefore U^\perp is a subspace

Fundamental subspaces

DEFINITION

Let A be a $m \times n$ matrix, The fundamental subspaces of A are $N(A),\,R(A)\,,N(A^T)$ and $R(A^T)$

THEOREM

Let A be an m imes n matrix. Then $N(A) = R(A^T)^\perp$ and $R(A) = N(A^T)^\perp$

/ PROOF

The *second* equality follows from the first by replacing A with A^T therefore it is sufficient to prove $N(A)=R(A^T)^\perp$

A general strategy to prove equality of sets is to show that each set contains the other therefore lets prove $N(A) \subseteq R(A^T)^{\perp}$ and then the reverse

Let $\boldsymbol{x}\in N(A)$. Then $A\boldsymbol{x}=0$ and so $\langle A\boldsymbol{x}|\boldsymbol{y}\rangle=0$ for all $\boldsymbol{y}\in\mathbb{R}^m$ Using properties of the inner product we see that $\langle \boldsymbol{x}|A^T\boldsymbol{y}\rangle=0\,\forall \boldsymbol{y}\in\mathbb{R}^m$ $\therefore \boldsymbol{x}\in R(A^T)^\perp$

Let $m{x} \in R(A^T)^{\perp}$. Then $\langle m{x}|A^Tm{y} \rangle = 0$ and so $\langle Am{x}|m{y} \rangle = 0 \ \forall m{y} \in \mathbb{R}^m$. Choose $m{y} = Am{x} \in \mathbb{R}^m$ and then $\langle Am{x}|Am{x} \rangle = 0 \implies \|Am{x}\| = 0 \implies Am{x} = \vec{0}$ and finally $m{x} \in N(A)$

THEOREM

Let $U \subseteq \mathbb{R}^n$ be a subspace. Then

$$\dim(U)+\dim(U^\perp)=n$$

/ PROOF

Let $\dim(U) = m$ and let $\sum_m oldsymbol{u}_m$ be a basis of U and define

$$A = egin{bmatrix} oldsymbol{u}_1^T \ dots \ oldsymbol{u}_m^T \end{bmatrix}$$

Then $U=R(A^T)$ and $U^\perp=R(A^T)^\perp=N(A)$ and we know $\mathrm{rank}(A)=m=\dim(U)$ therefore

$$\dim(U)+\dim(U^{\perp})=\operatorname{rank}(A)+\dim(N(A))=n$$

by the Rank Nullity Theorem

EXAMPLE

Let A be a matrix such that its LU Decomposition is of the form

$$A = LU = egin{bmatrix} 1 & 0 & 0 \ * & 1 & 0 \ * & * & 1 \end{bmatrix} egin{bmatrix} * & * & * & * \ 0 & * & * & * \ 0 & 0 & * & * \end{bmatrix}$$

where \ast denotes a non zero number. Find the dimension of each subspace $N(A), R(A), N(A^T)$ and $R(A^T)$

Clearly $\dim(N(A)) = 1$ and $\dim(R(A)) = 3$ therefore

$$\dim(N(A^T))=\dim(R(A)^\perp)=3-3=0$$

and

$$\dim(R(A^T))=\dim(N(A)^\perp)=4-1=3$$