PROBLEMA 8.3
$$f(x) = \frac{1^{2}}{2} + \cos x$$

$$x \in [-\pi, \pi]$$

- fes PAR: $f(x) = f(-x) \implies Basba estudian f$ para $x \in [0, x]$
- fes CONTINUA: $f([-\pi_1\pi]) = [m_1M]$ The maximo absolute

 minimo absoluto
- · fes DERIVABLE Yz =0: cosx es derivable Yz = 6
- $s; z \in (0, \pi]$: $f(z) = z/\sqrt{2} + \cos z$ $f'(x) = 1/\sqrt{2} - \sin z$
- PUNTOS CRÍTICOS: f'(2) = 0 ⇔ 2 = ± 7/4
 2 = ± 31/4

- PUNTOS $\not\exists f'(z): z=0 \Rightarrow f(0)=1$ $f(\pm \sqrt[4]{4}) > f(0) > f(\pm \frac{34}{4}).$
- · EXTREMOS DE INTERVALO:

$$\Rightarrow f(\pm 8/4) > f(0) > f(\pm 8) > f(\pm 3/4)$$
maximo absoluto

maximo absoluto

m