



# Remote Sensing of Mining



Courtesy of White Pine Public Museum

ED\_000552E\_00011300-00001

# Remote Sensing Imagery

- Identification of mining operations
  - map the extent, changes over time
- Identification of tailings, overburden piles
- Determination of water quality degradation
  - mapping of acid mine drainage sediments
  - coal fines accumulation
  - watercourse diversions

# Determining Water Quality in Mine-Impacted Areas using Hyperspectral Data



# Biogeochemical model



# Imaging Spectroscopy

- These spectra are used to derive information based on the signature of the interaction of matter and energy expressed in the spectrum.



# Imaging Spectroscopy at Copper Basin TN

- Mining of massive sulfide ores (iron and copper) began in 1850
- Two major mining companies
  - Cities Service Company
  - Tennessee Chemical Company (declared bankrupt in 1989)
- 1891 open heap roasting of copper ore began. 15 years later all vegetation was destroyed.



Mine drainage impacted stream at Copper Basin, TN



# Methods

- HyMap sensor flew three flight lines over the area on 9/25/99
  - Sensor characteristics:
    - 126 spectral bands: 0.45 – 2.5 nm
    - 15nm bandwidths
    - Ground sampling distance (pixel size): 5 meter
    - Signal to noise ratio > 500:1



# Copperhill



# Results

- Mine drainage sediments in the North Potato Creek and Davis Mill Creek are comprised of schwertmannite with trace to small amounts of goethite
  - These minerals form in acid sulfate systems
- The pH of these stream reaches can be estimated to be pH 3-4 with moderate to high dissolved sulfate loads

# North Potato Creek

Image processing algorithm output



Bright pixels  
represent mine  
drainage sediments

# Copper Hill



# Future Sensor Systems

- NASA Earth Observing 1 (EO-1) (launch April 13<sup>th</sup>, 2000)
  - Hyperion Sensor
    - 30 meter pixel resolution
- OrbView-4 by ORBIMAGE an affiliate of Orbital Sciences Corp. (launch late 2000)
  - 8 meter pixel resolution
- ARIES-1 Hyperspectral Resource Mapping Satellite (launch ~2001)
  - 30 meter pixel resolution

# Satellite Multispectral Imagery



# Mountain Top Removal



## Method of Mining

Hobet's mountain top removal method employs five basic steps.

### Original Section

A typical cross section represents the stratified overburden overlying the coal seam.

### Upper Seams Removed

The mountain peaks are removed and the electric shovel creates a flat surface for the dragline. The upper-most horizons are placed at the foot of the mountain in a valley fill.

### Beginning Dragline Operation

The dragline cuts the first pit and places the spoil on the valley fill.

### Begin Regrading (Spoil from Cuts 1,2,3 Regraged)

Each pit is cut, one at a time, and placed in spoil piles across the mountain.

### Regraded Section

When all the coal is removed, a bulldozer regrades the land. Revegetating and reclaiming the land are important to environmental protection.