HOMEWORK 11

LEANDRO RIBEIRO

Proposition 9.12. Let A and B be sets. There exists an injection from A to B if and only if there exists a surjection from B to A.

Proof. (\Rightarrow) Suppose there's an injection $f: A \to B$. Fix $a_o \in A$. Observe that for $b \in f(a)$ there's a unique $a_b \in A$ such that $f(a_b) = b$.

Define $g: B \to A$ by $g(b) = \begin{cases} a_o, b \notin f(a) \\ a_b, b \in f(a) \end{cases}$ is surjective by definition.

(\Leftarrow) Suppose $g: B \to A$ is surjective. For each $a \in A$, there is at least one $b \in B$ such that g(b) = a. For each $a \in A$, fix some such $b_a \in B$. Define $f: A \to B$ by $f(a) = b_a$. Let's check if f is injective. Suppose $a_1 \neq a_2$. Then, $g(a_1) \neq g(a_2)$.

Proposition 10.9. Let $x \in \mathbb{R}$ be such that $0 \le x \le 1$, and let $m, n \in \mathbb{N}$ be such that $m \ge n$. Then $x^m \le x^n$.

Proof. Here we have three cases. x = 0, x = 1, and 0 < x < 1.

Case 1. x = 0. $0^m = 0 = 0^n$.

Case 2. x = 1. $1^m = 1 = 1^n$

Case 3. 0 < x < 1. We have two different subcases here, since either m = n or m > n.

Subcase 1. m = n. Here $x^m = x^n$

Subcase 2. m > n. Take y > 1 such that $\frac{1}{y} = x$. Because m > n, we have $y^m > y^n$. By proposition 8.40 (ii), we know $\frac{1}{y^m} < \frac{1}{y^n}$. Thus, $\frac{1}{y^m} = \frac{1^m}{y^m} = (\frac{1}{y})^m = x^m < \frac{1}{y^n} = \frac{1^n}{y^n} = (\frac{1}{y})^n = x^n$.

Proposition 10.16. If the sequence (x_k) converges to L, then

$$\lim_{k \to \infty} x_{k+1} = L.$$

Proof. The sequence (x_k) converging to L means that $\lim_{k\to\infty} x_k = L$. Letting $\epsilon > 0$, this also means ther is some $N' \in \mathbb{N}$ such that $|x_{k'} - L| < \epsilon \ \forall k' \geq N'$. Let N := N' - 1. Then if $k \geq N$ we have $k+1 \geq N'$, and because it's given that $\lim_{k\to\infty} x_k = L$. Applying this to k' = k+1, we have that $|x_{k+1} - L| < \epsilon$. This by definition means that $\lim_{k\to\infty} x_{k+1} = L$. \square

Date: April 18, 2017.

Proposition 10.14. If (x_k) converges to L and to L' then L = L'.

Proof. Suppose towards a contradiction, that $L \neq L'$. Let $\epsilon = \frac{1}{2}|L - L'|$. Because (x_k) converges to L, by definition there's some $N \in \mathbb{N}$ such that $|x_k - L| < \epsilon$ for all $k \geq N$. Also, by definition we have some $N' \in \mathbb{N}$ such that $|x_k - L'| < \epsilon$ for all $k \geq N'$. Let $k > \max\{N, N'\}$. By proposition 10.10(iii), we have $|L - L'| \leq |L - x_k| + |x_k - L'|$. By our assumptions this gives $|L - L'| < 2\epsilon = |L - L'|$. This implies a real number is less than itself, which is absurd.

Sources.

http://users.math.msu.edu/users/duncan42/LimitsHW(Solutions).pdf