人工智能之机器学习

集成学习: 随机森林、GBDT

主讲人: 李老师

课程内容

- 集成算法
- 随机森林
- 提升算法
- GBDT(迭代决策树)
- Adaboost

集成学习(Ensemble Learning)

- 集成学习的思想是将若干个学习器(分类器&回归器)组合之后产生一个新学习器。弱分类器(weak learner)指那些分类准确率只稍微好于随机猜测的分类器(error rate < 0.5);
- 集成算法的成功在于保证弱分类器的多样性(Diversity)。而且集成不稳定的算法也能够得到一个比较明显的性能提升。
- 常见的集成学习思想有:
 - Bagging
 - Boosting
 - Stacking

集成学习(Ensemble Learning)

Figure 1: Combining an ensemble of classifiers for reducing classification error and/or model selection.

Why need Ensemble Learning?

- 1. 弱分类器间存在一定的差异性,这会导致分类的边界不同,也就是说可能存在错误。那么将多个弱分类器合并后,就可以得到更加合理的边界,减少整体的错误率,实现更好的效果;
- 2. 对于数据集过大或者过小,可以分别进行划分和有放回的操作产生不同的数据子 集,然后使用数据子集训练不同的分类器,最终再合并成为一个大的分类器;
- 3. 如果数据的划分边界过于复杂,使用线性模型很难描述情况,那么可以训练多个模型,然后再进行模型的融合;
- 4. 对于多个异构的特征集的时候,很难进行融合,那么可以考虑每个数据集构建一个分类模型,然后将多个模型融合。

Bagging方法

- Bagging方法又叫做自举汇聚法(Bootstrap Aggregating),思想是:在原始数据集上通过**有放回的抽样**的方式,重新选择出S个新数据集来分别训练S个分类器的集成技术。
- Bagging方法训练出来的模型在预测新样本分类/回归的时候,会使用**多数投票**或者**求均 值**的方式来统计最终的分类/回归结果。
- Bagging方法的弱学习器可以是基本的算法模型, eg: Linear、Ridge、Lasso、Logistic、Softmax、ID3、C4.5、CART、SVM、KNN等。
- NOTE: Bagging方式是有放回的抽样,并且每个子集的样本数量必须和原始样本数量一致,所以抽取出来的子集中是存在重复数据的,模型训练的时候允许存在重复数据。
- NOTE: 差不多有1/3的样本数据是不在Bagging的每个子模型的训练数据中的。

$$\lim_{m \to +\infty} \left(1 - \frac{1}{m} \right)^m = \frac{1}{e} \approx 0.368$$

Bagging方法_训练过程

Bagging方法_预测过程

随机森林(Random Forest)

- 在Bagging策略的基础上进行修改后的一种算法
 - 1. 从原始样本集(n个样本)中用Bootstrap采样(有放回重采样)选出n个样本;
 - 2. 使用抽取出来的子数据集(存在重复数据)来训练决策树;从所有属性中随机选择K个属性,从K个属性中选择出最佳分割属性作为当前节点的划分属性,按照这种方式来迭代的创建决策树。
 - 3. 重复以上两步m次,即建立m棵决策树;
 - 4. 这m个决策树形成随机森林,通过投票表决结果决定数据属于那一类

随机森林(Random Forest)

RF的推广算法

- RF算法在实际应用中具有比较好的特性,应用也比较广泛,主要应用在:分类、回归、特征转换、异常点检测等。常见的RF变种算法如下:
 - Extra Tree
 - Totally Random Trees Embedding(TRTE)
 - Isolation Forest

Extra Tree

- Extra Tree是RF的一个变种,原理基本和RF一样,区别如下:
 - 1. RF会随机重采样来作为子决策树的训练集,而Extra Tree每个子决策树采用原始数据集训练;
 - 2. RF在选择划分特征点的时候会和传统决策树一样,会基于信息增益、信息增益率、基尼系数、均方差等原则来选择最优特征值;而Extra Tree会随机的选择一个特征值来划分决策树。
- Extra Tree因为是随机选择特征值的划分点,这样会导致决策树的规模一般大于RF所生成的决策树。也就是说Extra Tree模型的方差相对于RF进一步减少。在某些情况下,Extra Tree的泛化能力比RF的强。

Totally Random Trees Embedding(TRTE)

- TRTE是一种非监督的数据转化方式。将低维的数据集映射到高维,从而让映射到 高维的数据更好的应用于分类回归模型。
- TRTE算法的转换过程类似RF+KDTree算法的方法,建立T个决策树来拟合数据(是 类似KD-Tree一样基于特征属性的方差选择划分特征)。当决策树构建完成后,数据 集里的每个数据在T个决策树中叶子节点的位置就定下来了,将位置信息转换为向 量就完成了特征转换操作。
- 案例:有3棵决策树,各个决策树的叶子节点数目分别为:5,5,4,某个数据x划分到 第一个决策树的第3个叶子节点,第二个决策树的第一个叶子节点,第三个决策树 的第四个叶子节点,那么最终的x映射特征编码为:(0,0,1,0,0, 1,0,0,0,0, 0,0,0,1)

Isolation Forest(IForest)

- IForest是一种异常点检测算法,使用类似RF的方式来检测异常点;IForest算法和RF算法的区别在于:
 - 1. 在随机采样的过程中,一般只需要少量数据即可;
 - 2. 在进行决策树构建过程中,IForest算法会随机选择一个划分特征,并对划分特征随机选择一个划分阈值;
 - 3. IForest算法构建的决策树一般深度max_depth是比较大的。
- 区别原因:目的是异常点检测,所以只要能够区分异常的即可, 不需要大量数据;

Isolation Forest(IForest)

对于异常点的判断,则是将测试样本x拟合到m棵决策树上。计算在每棵树上该样本的叶子节点的深度h_t(x)。从而计算出平均深度h(x);然后就可以使用下列公式计算样本点x的异常概率值,p(s,m)的取值范围为[0,1],越接近于1,则是异常点的概率越大。备注:如果落在的叶子节点为正常样本点,那么当前决策树不考虑,如果所有决策树上都是正常样本点,那么直接认为异常点概率为0.

$$p(x,m) = 2^{-\frac{h(x)}{c(m)}}$$

$$c(m) = 2\ln(m-1) + \xi - 2\frac{m-1}{m}$$
; m为样本个数, *ξ*为欧拉常数

RF随机森林总结

• RF的主要优点:

- 1. 训练可以并行化,对于大规模样本的训练具有速度的优势;
- 2. 由于进行随机选择决策树划分特征列表,这样在样本维度比较高的时候,仍然具有比较高的训练性能;
- 3. 给以给出各个特征的重要性列表;
- 4. 由于存在随机抽样,训练出来的模型方差小,泛化能力强,能够缓解过拟合的情况;
- 5. RF实现简单;
- 6. 对于部分特征的缺失不敏感。

RF的主要缺点:

- 1. 在某些噪音比较大的特征上(数据特别异常情况),RF模型容易陷入过拟合;
- 2. 取值比较多的划分特征对RF的决策会产生更大的影响,从而有可能影响模型的效果。

RF scikit-learn相关参数

参数	RandomForestClassifier	RandomForestRegressor						
criterion	指定划分标准,默认为gini,不支持其它参数	指定划分标准,可选"mse"和"mae"; 默认mse						
loss	不支持	指定误差的计算方式,可选参数"linear", "square", "exponential", 默认为"linear"; 一般不用改动						
n_estimators	最大迭代次数,也就是最多允许的决策树的数目,值过小可能会导致欠拟合,值过大可能会导致过拟合,一 般50~100比较适合,默认10							
max_features	给定在进行最佳特征划分的时候,选择多少个特征进行考虑;默认为auto; max_features=sqrt(n_features); 一般不建议改动,具体参数见官网文档。							
max_depth	给定树的深度,默认为None,表示一致扩展到叶子节点足够纯或者样本数小于min_samples_split							
min_samples_split	给定树构建过程中,叶子节点中最少样本数量,默认为2							
min_samples_leaf	给定每个叶子节点中,最少的样本数目是多少,默认为2							
bootstrap	是否进行有放回的重采样,默认为True							

随机森林的思考

在随机森林的构建过程中,由于各棵树之间是没有关系的,相对独立的;在
 构建的过程中,构建第m棵子树的时候,不会考虑前面的m-1棵树。

• 思考:

- 如果在构建第m棵子树的时候,考虑到前m-1棵子树的结果,会不会对最终结果产生有益的影响?
- 各个决策树组成随机森林后,在形成最终结果的时候能不能给定一种既定的决策顺序呢?(也就是那颗子树先进行决策、那颗子树后进行决策)

Boosting

- 提升学习 (Boosting) 是一种机器学习技术,可以用于回归和分类的问题,它每一步产生弱预测模型(如决策树),并加权累加到总模型中;如果每一步的弱预测模型的生成都是依据损失函数的梯度方式的,那么就称为梯度提升(Gradient boosting);
- 提升技术的意义:如果一个问题存在弱预测模型,那么可以通过提升技术的办法得到一个强预测模型;
- 常见的模型有:
 - Adaboost
 - Gradient Boosting(GBT/GBDT/GBRT)

Boosting

- Adaptive Boosting是一种迭代算法。每轮迭代中会在训练集上产生一 个新的学习器,然后使用该学习器对所有训练样本进行预测,以评估每 个样本的重要性(Informative)。换句话来讲就是,算法/子模型会为每个 样本赋予一个权重,每次用训练好的学习器标注/预测各个样本(训练数 据),如果某个样本点被预测的越正确,则将样本权重降低:否则提高样 本的权重。权重越高的样本在下一个迭代训练中所占的权重就越大,也 就是说越难区分的样本在训练过程中会变得越重要:
- 整个迭代过程直到错误率足够小或者达到一定的迭代次数为止。

样本加权

Adaboost算法

Adaboost算法将基分类器的线性组合作为强分类器,同时给分类误差率较小的基本分类器以大的权值,给分类误差率较大的基分类器以小的权重值;

构建的线性组合为:

$$f(x) = \sum_{m=1}^{M} \alpha_m G_m(x)$$

• 最终分类器是在线性组合的基础上进行Sign函数转换:

$$G(x) = sign(f(x)) = sign\left[\sum_{m=1}^{M} \alpha_m G_m(x)\right]$$

Sign函数

• 最终的强学习器: $G(x) = sign(f(x)) = sign\left[\sum_{m=1}^{M} \alpha_m G_m(x)\right]$

• 损失函数(以错误率作为损失函数):

$$\sum_{i=1}^{n} w_i = 1 \qquad loss = \sum_{i=1}^{n} w_i I(G(x_i) \neq y_i)$$

• 损失函数(上界):

$$loss = \sum_{i=1}^{n} w_i I(G(x_i) \neq y_i) \leq \sum_{i=1}^{n} w_i e^{(-y_i f(x))}$$

$$loss = \sum_{i=1}^{n} w_i e^{(-y_i f(x_i))}$$

• 第k-1轮的强学习器:

$$f_{k-1}(x) = \sum_{j=1}^{k-1} \alpha_j G_j(x)$$

• 第k轮的强学习器:

$$f_k(x) = \sum_{j=1}^k \alpha_j G_j(x)$$
 $f_k(x) = f_{k-1}(x) + \alpha_k G_k(x)$

• 损失函数:

$$loss(\alpha_m, G_m(x)) = \sum_{i=1}^n w_i e^{(-y_i(f_{m-1}(x) + \alpha_m G_m(x)))}$$

$$loss(\alpha_m, G_m(x)) = \sum_{i=1}^n w_i e^{(-y_i(f_{m-1}(x) + \alpha_m G_m(x)))}$$

$$= \sum_{i=1}^{n} w_{i} e^{-y_{i} f_{m-1}(x)} e^{(-y_{i} \alpha_{m} G_{m}(x))}$$

$$\Rightarrow \overline{w}_{mi} = w_i e^{-y_i f_{m-1}(x)}$$

$$=\sum_{i=1}^{n}\overline{w}_{mi}e^{(-y_{i}\alpha_{m}G_{m}(x))}$$

• 使下列公式达到最小值的 α_m 和 G_m 就是AdaBoost算法的最终解

$$loss(\alpha_m, G_m(x)) = \sum_{i=1}^n \overline{w}_{mi} e^{(-y_i \alpha_m G_m(x))}$$

其实就是误差率越小。
$$G_m^*(x) = \min_{G_m(x)} \sum_{i=1}^n \overline{w}_{mi} I(y_i \neq G_m(x_i))$$

$$\varepsilon_m = P(G_m(x) \neq y) = \sum_{i=1}^n \overline{w}_{mi} I(y_i \neq G_m(x_i)) = \sum_{y_i \neq G_m(x_i)} \overline{w}_{mi}$$

• 对于αm而言,通过求导然后令导数为零,可以得到公式(log对象可以以e为

底也可以以2为底):
$$\alpha_{m}^{*} = \frac{1}{2} \ln \left(\frac{1 - \varepsilon_{m}}{\varepsilon_{m}} \right)$$

扩展_AdaBoost算法子模型权重系数求解

$$loss(\alpha_{m}, G_{m}(x)) = \sum_{i=1}^{n} \overline{w}_{mi} e^{(-y_{i}\alpha_{m}G_{m}(x))} \qquad \sum_{i=1}^{n} \overline{w}_{mi} = 1 \qquad \varepsilon_{m} = \sum_{y_{i} \neq G_{m}(x_{i})} \overline{w}_{mi}$$

$$= \sum_{y=G(x)} \overline{w}_{mi} e^{-\alpha_{m}} + \sum_{y \neq G(x)} \overline{w}_{mi} e^{\alpha_{m}}$$

$$= \sum_{y=G(x)} \overline{w}_{mi} e^{-\alpha_{m}} + \varepsilon_{m} e^{\alpha_{m}}$$

$$= \sum_{y=G(x)} \overline{w}_{mi} e^{-\alpha_{m}} + \varepsilon_{m} e^{\alpha_{m}} + \sum_{y \neq G(x)} \overline{w}_{mi} e^{-\alpha_{m}} - \sum_{y \neq G(x)} \overline{w}_{mi} e^{-\alpha_{m}}$$

$$= \sum_{i=1}^{n} \overline{w}_{mi} e^{-\alpha_{m}} + \varepsilon_{m} e^{\alpha_{m}} - \varepsilon_{m} e^{-\alpha_{m}}$$

$$= e^{-\alpha_{m}} + \varepsilon_{m} e^{\alpha_{m}} - \varepsilon_{m} e^{-\alpha_{m}}$$

扩展_AdaBoost算法子模型权重系数求解

$$loss = e^{-\alpha_{m}} + \varepsilon_{m}e^{\alpha_{m}} - \varepsilon_{m}e^{-\alpha_{m}} \quad \frac{\partial loss}{\partial \alpha_{m}} = -e^{-\alpha_{m}} + \varepsilon_{m}e^{\alpha_{m}} + \varepsilon_{m}e^{-\alpha_{m}}$$

$$\Rightarrow \frac{\partial loss}{\partial \alpha_{m}} = 0 \Rightarrow -e^{-\alpha_{m}} + \varepsilon_{m}e^{\alpha_{m}} + \varepsilon_{m}e^{-\alpha_{m}} = 0$$

$$\Rightarrow (\varepsilon_{m} - 1)e^{-\alpha_{m}} + \varepsilon_{m}e^{\alpha_{m}} = 0 \Rightarrow \varepsilon_{m}e^{\alpha_{m}} = (1 - \varepsilon_{m})e^{-\alpha_{m}}$$

$$\Rightarrow \frac{e^{\alpha_{m}}}{e^{-\alpha_{m}}} = \frac{(1 - \varepsilon_{m})}{\varepsilon_{m}} \Rightarrow e^{2\alpha_{m}} = \frac{(1 - \varepsilon_{m})}{\varepsilon_{m}}$$

$$\Rightarrow \ln e^{2\alpha_{m}} = \ln\left(\frac{1 - \varepsilon_{m}}{\varepsilon_{m}}\right) \Rightarrow 2\alpha_{m} = \ln\left(\frac{1 - \varepsilon_{m}}{\varepsilon_{m}}\right)$$

$$\Rightarrow \alpha_{m} = \frac{1}{2}\ln\left(\frac{1 - \varepsilon_{m}}{\varepsilon_{m}}\right)$$

Adaboost算法构建过程一

- 1. 假设训练数据集T={(X₁,Y₁),(X₂,Y₂)....(X_n,Y_n)}
- 2. 初始化训练数据权重分布

$$D_1 = (w_{11}, w_{12}, ..., w_{1i}, ..., w_{1n}), \quad w_{1i} = \frac{1}{n}, \quad i = 1, 2, ..., n$$

• 3. 使用具有权值分布Dm的训练数据集学习,得到基本分类器

$$G_m(x): x \rightarrow \{-1,+1\}$$

• 4. 计算G_m(x)在训练集上的分类误差

$$\varepsilon_m = P(G_m(x) \neq y) = \sum_{i=1}^n \overline{w}_{mi} I(y_i \neq G_m(x_i)) = \sum_{y_i \neq G_m(x_i)} \overline{w}_{mi}$$

• 5. 计算 $G_m(x)$ 模型的权重系数 α_m : $\alpha_m = \frac{1}{2} * \ln \left(\frac{1 - \varepsilon_m}{\varepsilon_m} \right)$

Adaboost算法构建过程二
$$f_{m-1}(x) = \sum_{j=1}^{m-1} \alpha_j G_j(x)$$
 $\overline{w}_{mi} = w_{1,i} e^{-y_i f_{m-1}(x)}$

• 6. 权重训练数据集的权值分布

$$D_{m+1} = \left(w_{m+1,1}, w_{m+1,2}, \dots w_{m+1,i}, \dots, w_{m+1,n} \right) \quad w_{m+1,i} = \frac{w_{m,i}}{Z_m} e^{-\alpha_m y_i G_m(x_i)}$$

• 7. 这里Z_m是规范化因子(归一化)

$$Z_m = \sum_{i=1}^n w_{m,i} e^{-\alpha_m y_i G_m(x_i)}$$

• 8. 构建基本分类器的线性组合 $f(x) = \sum_{m=1}^{\infty} \alpha_{m} G_{m}(x)$

• 9. 得到最终分类器
$$G(x) = sign(f(x)) = sign\left(\sum_{m=1}^{M} \alpha_m G_m(x)\right)$$

• 使用下列样本作为训练数据,试图使用AdaBoost算法学习一个 强分类器

序号	1	2	3	4	5	6	7	8	9	10
X	0	1	2	3	4	5	6	7	8	9
Υ	1	1	1	-1	-1	-1	1	1	1	-1

• 初始化训练数据集的权值分布

$$D_1 = (w_{11}, w_{12}, ..., w_{1i}, ..., w_{1n}), \quad w_{1i} = \frac{1}{N}, \quad i = 1, 2, ..., N$$

 $W_{1i} = 0.1$

X	0	1	2	3	4	5	6	7	8	9
Υ	1	1	1	-1	-1	-1	1	1	1	-1
w1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1

• 在权值分布为D1的训练数据上,阈值v取2.5时误差率最低,

本分类器为:

$$G_1(x) = \begin{cases} 1, x < 2.5 \\ -1, x > 2.5 \end{cases}$$

•G1(x)在训练数据集上的误差率: $\varepsilon_1 = P(G_1(x_i) \neq y_i) = 0.3$

• 计算G1的系数:
$$\alpha_1 = \frac{1}{2} \ln \frac{1 - \varepsilon_1}{\varepsilon_1} = 0.4236$$

• 更新数据集的权值分布

$$D_{m+1} = (w_{m+1,1}, w_{m+1,2}, \dots w_{m+1,i}, \dots, w_{m+1,n}) \quad w_{m+1,i} = \frac{w_{m,i}}{Z_m} e^{-\alpha_m y_i G_m(x_i)}$$

$$D_2 = (w_{21}, w_{22},, w_{2n})$$

= $(0.0714, 0.0714, 0.0714, 0.0714, 0.0714, 0.0714, 0.0714, 0.1667, 0.1667, 0.1667, 0.0714)$

$$f_1(x) = 0.4236G_1(x)$$

· 分类器sign(f1(x))在训练数据集上有3个误分类点

X	0	1	2	3	4	5	6	7	8	9
Υ	1	1	1	-1	-1	-1	1	1	1	-1
w1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
G ₁	1	1	1	-1	-1	-1	-1	-1	-1	-1
G_R1	1	1	1	-1	-1	-1	-1	-1	-1	-1

alpha	value
α_1	0.4236

$$G_1(x) = \begin{cases} 1, x < 2.5 \\ -1, x > 2.5 \end{cases}$$
 $f_1(x) = 0.4236G_1(x)$

Χ	0	1	2	3	4	5	6	7	8	9
Υ	1	1	1	-1	-1	-1	1	1	1	-1
w2	0.0714	0.0714	0.0714	0.0714	0.0714	0.0714	0.1667	0.1667	0.1667	0.0714

• 在权值分布为D2的训练数据上,阈值v取8.5时误差率最低,故基

本分类器为:
$$G_2(x) = \begin{cases} 1, x \le 8.5\\ -1, x > 8.5 \end{cases}$$

• G2(x)在训练数据集上的误差率

$$\varepsilon_2 = P(G_2(x_i) \neq y_i) = 0.0714 * 3 = 0.2142$$

• 计算G2的系数

$$\alpha_2 = \frac{1}{2} \ln \frac{1 - \varepsilon_2}{\varepsilon_2} = 0.6496$$

• 更新数据集的权值分布

Χ	0	1	2	3	4	5	6	7	8	9
Υ	1	1	1	-1	-1	-1	1	1	1	-1
w3	0.0455	0.0455	0.0455	0.1667	0.1667	0.1667	0.1061	0.1061	0.1061	0.0455

$$f_2(x) = 0.4236G_1(x) + 0.6496G_2(x)$$

分类器sign(f2(x))在训练数据集上有3个误分类点

Χ	0	1	2	3	4	5	6	7	8	9
Υ	1	1	1	-1	-1	-1	1	1	1	-1
w1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
G1	1	1	1	-1	-1	-1	-1	-1	-1	-1
w2	0.0714	0.0714	0.0714	0.0714	0.0714	0.0714	0.1667	0.1667	0.1667	0.0714
G2	1	1	1	1	1	1	1	1	1	-1
G_R2	1	1	1	1	1	1	1	1	1	-1

alpha	value
α_1	0.4236
α_2	0.6496

$$G_2(x) = \begin{cases} 1, x \le 8.5 \\ -1, x > 8.5 \end{cases}$$
 $f_2(x) = 0.4236G_1(x) + 0.6496G_2(x)$

Χ	0	1	2	3	4	5	6	7	8	9
Υ	1	1	1	-1	-1	-1	1	1	1	-1
w3	0.0455	0.0455	0.0455	0.1667	0.1667	0.1667	0.1061	0.1061	0.1061	0.0455

• 在权值分布为D3的训练数据上,阈值v取5.5时误差率最低,故基

本分类器为:
$$G_3(x) = \begin{cases} -1, x \le 5.5\\ 1, x > 5.5 \end{cases}$$

• G3(x)在训练数据集上的误差率

$$\varepsilon_3 = P(G_3(x_i) \neq y_i) = 0.0455 * 4 = 0.182$$

• 计算G3的系数

$$\alpha_3 = \frac{1}{2} \ln \frac{1 - \varepsilon_3}{\varepsilon_3} = 0.7520$$

• 更新数据集的权值分布

Χ	0	1	2	3	4	5	6	7	8	9
Υ	1	1	1	-1	-1	-1	1	1	1	-1
w4	0.125	0.125	0.125	0.1019	0.1019	0.1019	0.0648	0.0648	0.0648	0.125

$$f_3(x) = 0.4236G_1(x) + 0.6496G_2(x) + 0.7520G_3(x)$$

· 分类器sign(f3(x))在训练数据集上有0个误分类点

	Χ	0	1	2	3	4	5	6	7	8	9
	Υ	1	1	1	-1	-1	-1	1	1	1	-1
	w1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
	G1	1	1	1	-1	-1	-1	-1	-1	-1	-1
	w2	0.0714	0.0714	0.0714	0.0714	0.0714	0.0714	0.1667	0.1667	0.1667	0.0714
	G2	1	1	1	1	1	1	1	1	1	-1
	w3	0.0455	0.0455	0.0455	0.1667	0.1667	0.1667	0.1061	0.1061	0.1061	0.0455
	G3	-1	-1	-1	-1	-1	-1	1	1	1	1
(G_R3	1	1	1	-1	-1	-1	1	1	1	-1

alpha	value
α_1	0.4236
α_2	0.6496
α_3	0.7520

$$G_{1}(x) = \begin{cases} 1, x < 2.5 \\ -1, x > 2.5 \end{cases} G_{2}(x) = \begin{cases} 1, x \le 8.5 \\ -1, x > 8.5 \end{cases} G_{3}(x) = \begin{cases} -1, x \le 5.5 \\ 1, x > 5.5 \end{cases}$$

$$f_{3}(x) = 0.4236G_{1}(x) + 0.6496G_{2}(x) + 0.7520G_{3}(x)$$

作业

• 推导α求解过程中底数为2的情况下, 该案例的最终参数情况:

X	0	1	2	3	4	5	6	7	8	9
Υ	1	1	1	-1	-1	-1	1	1	1	-1
w1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1

$$\alpha_m = \frac{1}{2} * \log_2 \left(\frac{1 - \varepsilon_m}{\varepsilon_m} \right) \qquad w_{m+1,i} = \frac{w_{m,i}}{Z_m} 2^{-\alpha_m y_i G_m(x_i)}$$

AdaBoost scikit-learn相关参数

参数	AdaBoostClassifier	AdaBoostRegressor
base_estimator	弱分类器对象,默认为CART分类树 DecisionTreeClassifier;	弱回归器对象,默认为CART回归树DecisionTreeRegressor;
algorithm	SAMME和SAMME.R; SAMME表示构建过程中使用样本集分类效果作为弱分类器的权重; SAMME.R使用对样本集分类的预测概率大小作为弱分类器的权重。由于SAMME.R使用了连续的概率度量值,所以一般迭代比SAMME快,默认参数为SAMME.R; 强调:使用SAMME.R必须要求base_estimator指定的弱分类器模型必须支持概率预测,即具有predict_proba方法。	不支持
loss	不支持	指定误差的计算方式,可选参数"linear", "square", "exponential", 默认为"linear";一般不用改动
n_estimators	最大迭代次数,值过小可能会导致欠拟合,何	直过大可能会导致过拟合,一般50~100比较适合,默认50
learning_rate		一般从一个比较小的值开始进行调参;该值越小表示需要更 多的弱分类器
f(x) =	$\sum_{m=1}^{M} \alpha_m G_m(x)$ 添加缩减系数 v	$f(x) = \sum_{m=1}^{M} v \alpha_m G_m(x)$

AdaBoost总结

- AdaBoost的优点如下:
 - 可以处理连续值和离散值;
 - 模型的鲁棒性比较强;
 - 解释强,结构简单。
- AdaBoost的缺点如下:
 - 对异常样本敏感,异常样本可能会在迭代过程中获得较高的权重值,最终影响模型效果。

梯度提升迭代决策树GBDT

- GBDT也是Boosting算法的一种,但是和AdaBoost算法不同;区别如下: AdaBoost算法是利用前一轮的弱学习器的误差来更新样本权重值,然后一轮一轮的迭代;GBDT也是迭代,但是GBDT要求弱学习器必须是回归CART模型,而且 GBDT在模型训练的时候,是要求模型预测的样本损失尽可能的小。
- 备注: 所有GBDT算法中, 底层都是回归树。
- 别名: GBT(Gradient Boosting Tree)、GTB(Gradient Tree Boosting)、GBRT(Gradient Boosting Regression Tree)、GBDT(Gradient Boosting Decison Tree)、MART(Multiple Additive Regression Tree)

GBDT直观理解

GBDT直观理解

· 当给定步长时候,给定一个步长step,在构建下一棵树的时候使用step*残差值作为输入值,这种方式可以减少过拟合的发生

梯度提升迭代决策树GBDT

- GBDT由三部分构成: DT(Regression Decistion Tree)、GB(Gradient Boosting)和Shrinkage(衰减)
- 由多棵决策树组成, 所有树的结果累加起来就是最终结果
- 迭代决策树和随机森林的区别:
 - 随机森林使用抽取不同的样本构建不同的子树,也就是说第m棵树的构建和前m-1
 棵树的结果是没有关系的
 - 迭代决策树在构建子树的时候,使用之前子树构建结果后形成的残差作为输入数据构建下一个子树;然后最终预测的时候按照子树构建的顺序进行预测,并将预测结果相加

GBDT算法原理

- 给定输入向量X和输出变量Y组成的若干训练样本 $(X_1,Y_1),(X_2,Y_2),....,(X_n,Y_n)$,目标是找到近似函数F(X),使得损失函数L(Y,F(X))的损失值最小。
- 损失函数一般采用最小二乘损失函数或者绝对值损失函数。

$$L(y, F(X)) = \frac{1}{2} (y - F(X))^2 \qquad L(y, F(X)) = |y - F(X)|$$

• 最优解为:

$$F^*(X) = \underset{F}{\operatorname{arg\,min}} L(y, F(X))$$

• 假定F(X)是一族最优基函数f_i(X)的加权和:

$$F(X) = \sum_{i=0}^{M} f_i(X) \xrightarrow{\text{Önlehoperation} \\ \text{Onlehoperation} \\ \text{Onlehoperation$$

GBDT算法原理

· 以贪心算法的思想扩展得到Fm(X),求解最优f

$$F_{m}(x) = F_{m-1}(x) + \underset{f}{\operatorname{arg min}} \sum_{i=1}^{n} L(y_{i}, F_{m-1}(X_{i}) + f_{m}(X_{i}))$$

- · 以贪心法在每次选择最优基函数f时仍然困难,使用梯度下降的方法近似计算
- 给定常数函数 $F_0(X)$

$$F_0(X) = \underset{c}{\operatorname{arg\,min}} \sum_{i=1}^{n} L(y_i, c)$$

GBDT算法原理

$$L(y, F(X)) = \frac{1}{2} (y - F(X))^2$$

• 计算损失函数的负梯度值:

$$y_{im} = -\left[\frac{\partial L(y_i, F(x_i))}{\partial F(x_i)}\right]_{F(x) = F_{m-1}(x)}$$

• 使用数据 (x_i, y_{im}) (i=1.....n)计算拟合残差找到一个CART回归 树, 得到第m棵树

$$c_{mj} = \underset{c}{\operatorname{arg}} \min_{x_i \in leaf_j} \sum_{x_i \in leaf_j} L(y_{im}, c) \qquad f_m(x) = \sum_{j=1}^{|leaf|_m} c_{mj} I(x \in leaf_{mj})$$

• 更新模型

$$F_{m}(x) = F_{m-1}(x) + \sum_{j=1}^{|leaf|_{m}} c_{mj} I(x \in leaf_{mj}) \implies F(x) = F_{0}(x) + \sum_{m=1}^{M} \sum_{j=1}^{|leaf|_{m}} c_{mj} I(x \in leaf_{mj})$$

GBDT回归算法和分类算法的区别

- 两者唯一的区别就是选择不同的损失函数、以及对应的负梯度值和模型初值采用不一样的值。
- 回归算法选择的损失函数一般是均方差(最小二乘)和绝对值误差, 分类算法中一般选择对数损失函数来表示。

$$\alpha_{im} = -\left[\frac{\partial L(y_i, F(x_i))}{\partial F(x_i)}\right]_{F(x) = F_{m-1}(x)}$$

GBDT回归算法和分类算法的区别

• 均方差损失函数

- 损失函数: $L(y, F_m(x)) = \frac{1}{2}(y F_m(x))^2$
- 负梯度值: $y_{im} = y_i F_{m-1}(x)$
- 初始值:一般采用均值作为初始值。

• 绝对误差损失函数

- 损失函数: $L(y, F_m(x)) = |y F_m(x)|$
- 负梯度值: $y_{im} = sign(y_i F_{m-1}(x))$
- 初始值:一般采用中值作为初始值。

GBDT回归算法和分类算法的区别

• 对数损失函数(二分类)

• 损失函数:
$$L(y, F_m(x)) = -(y \ln(p_m) + (1-y) \ln(1-p_m)) \quad p_m = \frac{1}{1+e^{-F_m(x)}}$$

- 负梯度值: $y_{im} = y_i p_m$
- 初始值:一般采用In(正样本个数/负样本个数)作为初始值。

• 对数损失函数(多分类K)

的致烦失函数(多分类K)

• 损失函数:
$$L(y, F_{ml}(x)) = -\sum_{k=1}^{K} y_k \ln p_k(x)$$
 $p_k(x) = \exp(f_k(x)) / \sum_{l=1}^{K} \exp(f_l(x))$ • 负梯度值: $y_{iml} = y_{il} - p_{ml}(x)$

• 负梯度值:
$$y_{iml} = y_{il} - p_{ml}(x)$$

• 初始值:一般采用0作为初始值。

GBDT总结

• GBDT的优点如下:

- 可以处理连续值和离散值;
- 在相对少的调参情况下,模型的预测效果也会不错;
- 模型的鲁棒性比较强。

• GBDT的缺点如下:

• 由于弱学习器之间存在关联关系,难以并行训练模型。也就是模型训练的速度慢。

GBDT scikit-learn相关参数

参数	GradientBoostingClassifier	GradientBoostingRegressor					
alpha	不支持	当使用huber或者quantile损失函数的时候,需要给定分位数的值,默认为0.9;如果噪音数据比较多,可以适当的降低该参数值					
loss	给定损失函数,可选对数似然函数deviance和指数损失函数exponential;默认为deviance;不建议修改						
n_estimators	最大迭代次数,值过小可能会导致欠拟合,值	直过大可能会导致过拟合,一般50~100比较适合,默认50					
learning_rate	指定每个弱分类器的权重缩减系数v,默认为1;一般从一个比较小的值开始进行调参;该值越小表示需要更多的弱分类器						
subsample		值范围(0,1], 默认为1,表示不采用子采样;给值小于1表示采 t拟合情况;推荐[0.5,0.8];采样采用的方式是不放回采样					
init	给定初始任	L 的模型,可以不给定					

Bagging、Boosting的区别

- 样本选择: Bagging算法是有放回的随机采样; Boosting算法是每一轮训练集不变,只是训练集中的每个样例在分类器中的权重发生变化或者目标属性y发生变化,而权重&y值都是根据上一轮的预测结果进行调整;
- 样例权重: Bagging使用随机抽样,样例是等权重; Boosting根据错误率不断的调整样例的权重值,错误率越大则权重越大(Adaboost);
- 预测函数: Bagging所有预测模型的权重相等; Boosting算法对于误差小的分类器具有更大的权重 (Adaboost)。
- 并行计算: Bagging算法可以并行生成各个基模型; Boosting理论上只能顺序生产, 因为后一个模型需要 前一个模型的结果;
- Bagging是减少模型的variance(方差); Boosting是减少模型的Bias(偏度)。
- Bagging里每个分类模型都是强分类器,因为降低的是方差,方差过高需要降低是过拟合;Boosting里每个分类模型都是弱分类器,因为降低的是偏度,偏度过高是欠拟合。

Bagging、Boosting的区别

• error = Bias + Variance

7) Bias/Variance Trade-off

High Variance (Overfitting) High Bias (Underfitting)

