36710 - 36752

ADVANCED PROBABILITY OVERVIEW

FALL 2020

LECTURE 8: MON, SEP 28, 2020

NO STNCHRONOUS CLASS ON WED, SEP 30 I WILL RECORD AND POST LECTURE THIS EVENING

LAST TUME:

This (MONDTONE CONVERGENCE THEOREM): {fi} SEQUENCE OF NON-NEG., MEAS.

FUNCTIONS. LET & BE A MEAS. PUNCTION S.T. fa & f AND FA > f

AS n-so de. [M]. THEN

lim Sfrdu = Sfdu = Shafrdu POSSIBLY INFINITY

- USING MCT WE CAN ESTABLISH LINEARTY OF THE INTEGRAL:

Than IF If In and Som ARE DEFINED AND NOT BOTH INFENITE

AND OF OPPOSITE SIGNS THEN

S(frg)du = Sfdu + Sgdu

PF PROOF IS AN EXAMPLE OF STANDARD MACHINERY. IF & AND 9 ARE >0 2. e. [n], THEN WE HAVE SEEN THEY Ift god = Ifdu + Sadu. LET & MOD & BE MEAS, NON-NEG. FUNCTIONS. THEN THERE EXIST SEQUENCES EPAZ AND EQUE NON-NEG. SIMPLE PUNCTONS 5.7. Fr 7 f and gr 7 g a.e. [u]. THEN, (frign) 7 (ftg) AND BY MCT LINEARITY FOR SIMPLE FUNCTIONS S(frg) du = lin S(frgn) du = lin (Sfrdn + Sgrbn) = Sfon + (qdn THIS COULD SE INFINITY IN THE LAST STEP, WE NEED TO VERLEY THAT THIS PROPERTY HOLDS FOR ([+9] = (f+9) - (f+9) WHERE of AND 9 ARE GENERAL. USE THE LOCKTITY (feg) f f + g = (f+g) + f + g+ 30TH SIDES CONSIST OF NON-NEG. FUNCTIONS. SO [(f +9)+dm + [f-sm + sg-dm = [(f+9)++f-+9-dm = SY LINEARITY OF INTEGRALS OF NON-NEG FUNCTIONS = \(\(\int \text{fig} \) \(\text{f t g t du } = \(\int \text{frg} \) \(\du + \int \text{f t du } + \int \text{g t du} \) AGAIN REARRANGE -Sftg du = Sftg) du - Sftg) du = Sfton - Sfon + Sgton - Sgton = Sfdm + Sgdm Z

1) CHANGE OF VARIBLE. LET (1, F, M) BE A MERGURE SPACE AND (S, A) A MEASURABLE SPACE. LET f: 1 -> S BE MEAS AND

v be the innoced measure on (S,A) $[v(A)=u(f^{-1}(A))]$

LET 9: 5 -> R THAT IS A/B' MEAS. THEN

 $\int_{\Omega} g \circ f \, du$ $\omega \in \Omega \iff g(f(\omega)) \in \mathbb{R}$ IF EIGIER INTEGRAL EXISTS.

PA/ ANOTHER APPLICATION OF STANDARD MACHINERY. LET 9 = 1 A AER THEN EQ. (H) BECOMES V(A) = M(A-(A)). THEN WE CAN PROVE THAT (#) FOLOS FOR NON NEG SIMPLE FUNCTIONS THEN PASS TO NON- NEG 9=0 USING A COMOT ARGUMENT AND THE MCT. AND FINALLY EXTEND TO GENERAL 9 = 9+ -9-.

LAW OF THE UNCONSCIOUS STATE STICKEN

IF X 15 A RV. AND F IS A MEAS. FLACTION $\mathbb{E}\left[f(x)\right] = \int f(x) \, d\mu_{x}(x) = \int f\left(\chi(a)\right) \, d\mu(a)$ PRB. DISTR. OF X -1

屋

2) DE	ENSITY PO	2 naron			
				ONA 32498 =	
Me	AS. THE	N THE FUI	veron A e J	~ -> V(A) =	f du
23	ALSO	A MEASURE.			1 Af alu
PP/ T	RE ONLY	TRICKY POINT	IN VERIFUNG T	\ _//_	
ν	I IS A M	VEASURE IS TO	ESTABLISM CON	MASLE ADDITUTE	1 :
(ce)	- A,,	Az, 3E	PARRILLYE DI STOW	T SETS IN S.	WAG TO
	stole the				
S f	JAM =	$v\left(\bigoplus_{n} A_{n} \right)$	= 51 v [An) = 27 Sfa	ha .
LE	fn=	1Anf, 50	THAT THE LA	AST IDENTITY BEE	mes
	5	21 fn du =	51 Sfn den		
BUT	7415	FOLLOWS FROM	MCT: IF	· {fn} 3 is a	requence or
Ne	on - NEG.	FENCTONS THE	^		
		S zi in du	= Z Sfndm	HINT: Z	I for = Im I for answer
· THE E	ENCON !	IS CALLED	ME DENSITY OF	r v	
· IF A	u (s 6-	PINITE, DIE	f is umque	2.e. [u]	
· 16 >	< 15 A	R.V. (SA4	X~ N(0,1))	PIEN WE COMPL	76
	Pr (X 4	(c) = Mx	((- \omega, c]) = - \omega	(φ(2) dλ(2)	MEATURE MEATURE

IP X IS A DISCRETE R.V. DIEN P_{N} ($X \leq c$) = $u \times (C \otimes_{j} c)$ = $\sum_{x \in N} P_{X}(x)$ Pa (X = 2) = S PX dV L> COUMING MEASURE IF X HAR BOTH A DISCRETE AND COVERNUOUS COMPONEM, WE TAKE INTEGRALS UNI CEB. C S COUMING MEASURE · DRAC MEASURE: DEGENERATE RANDOM VARIABLE IF Pr(X==)=1 THEN E[f(x)]=f(c) = SfdSc \(\sqrt{x} = \) DOMENATED CONVERGENCE THEOREM Thin (BCT) LET STAS BE A SEPLENCE OF MEAS. FUNCTIONS AND LET f AND of (MASS.) SUCK THAT fn -> f AND I fn | < g a.e. [m] where Igan < so. THEN In Sfrau = Sin frau = Sfdu PROOF USES MCT AND FATOU'S LEMMA REMARK: THE DOMINATED CONDITION IS NECESSARY: x ∈ (0,1) fn(2) = n 1 (0, /n)(2) THEN fn(x) -> 0 ALL x BC

APPLICATION: CONSIDER THE SEQUENCE $\frac{1}{n}$ for some $\{f_n\}$ a) IF $\{f_n\} \geq 0$ all n the as we saw, the MCT $\int \frac{1}{n} \int_{R}^{R} dm = \frac{1}{n} \int_{R}^{R} \int_{R}^{R} dm$ if $\int_{R}^{R} f_{R} \int_{R}^{R} convences = \frac{1}{n} \int_{R}^{R} \int_{R}^{R} dm$ an) IF $\int_{R}^{R} f_{R} \int_{R}^{R} convences = \frac{1}{n} \int_{R}^{R} \int_{R}^{R} dm$ All n and some integrable g, then gy DCT $\int \frac{1}{n} \int_{R}^{R} f_{R} dm = \frac{1}{n} \int_{R}^{R} f_{R} dm$ 1-1) Same conclusion is true if $\int_{R}^{R} \int_{R}^{R} f_{R} dm \leq \infty$

APPLICATION: INTER CRANCEING DERIVATIVES AND INTEGRALS

SUPPOSE $f(\omega,t)$ is a meas and integrable function

OF FOR EACH $t \in [a,b]$. LET A be the set of ω s.T. f(a,t) has a derivative $f'(\omega,t)$ in (a,b) and $(f'(\omega,t))(\leq g(\omega))$ where g is integrable. Assume $u(A^*)=0$.

Then, Letting $\phi(t)=\int f(\omega,t)\,du(\omega)$

 $\phi'(t) = \int f(\omega,t) du(\omega).$

PA/ ASSUME WEAR BY MEAN VALUE PREPREM

$$f(\omega, t+h) - f(\omega, t) = f(\omega, s)$$

SOME S BETWEEN T AND THE, IN SMALL ENOUGH. AS h->0 THE LHS -> f (w, t) AND IS DOMINATE BY g (w), g INTEGRABLE. SO -> f (cut) du As h->0