iExpand

- ➤ User -> Interesse -> Objekt
- > Erfassung von latenten Interessen
- > Extraktion der Interessen
- > Erlernen der Übergangsmöglichkeiten zwischen Interessen
- ➤ Interessenerweiterung durch personalisiertes Ranking
- ➤ Vorhersage der nächsten möglichen Benutzerinteressen

Extraktion der Interessen

- > Konstruktion des LDA-Modells (Latent Dirichlet Allocation)
- > Extraktion folgender Parameter durch Gibbs sampling
 - Wahrscheinlichkeitsverteilung von Benutzern über Interessen (θ)
 - Wahrscheinlichkeitsverteilung von Interessen über Objekte (Φ)
 - Verteilung der Interessen $(\vec{\vartheta})$

Wahrscheinlichkeitsverteilung Objekt-Interesse:

$$\varphi_{ij} = P(T_j|I_i) = \frac{P(T_j, I_i)}{P(I_i)} = \frac{\varphi_{ij}\overrightarrow{\vartheta_j}}{\sum_{k=1}^K \overrightarrow{\vartheta_k}\varphi_{ik}}$$

- I Objekte (Items) im System
- T Latente Interessen von Benutzern
- K Anzahl der latenten Interessen
- φ Matrix: Wahrscheinlichkeitsverteilung der Objekte über latente Interessen
- Φ Matrix: Wahrscheinlichkeitsverteilung der latenten Interessen über Objekte
- $ec{ec{artheta}}$ Vektor: Verteilung der Interessen

Konstruktion des Interessengraphs

$$> G = < X, E >$$

$$> X = I \cup T$$

- \succ Gewicht der Kante von Interesse T_j nach Objekt $I_i
 ightarrow oldsymbol{\Phi}_{ij}$
- \succ Gewicht der Kante von Objekt I_i nach Interesse $T_j
 ightarrow arphi_{ij}$

Interessen-Korrelation (Projektion aus Graph)

$$\psi_{ij} = P(T_j|T_i) = \sum_{n=1}^{N} P(T_j|I_n)P(I_n|T_i) = \sum_{n=1}^{N} \varphi_{nj} \, \Phi_{ni}$$

- I Objekte (Items) im System
- N Anzahl der Objekte
- T Latente Interessen von Benutzern
- ψ Matrix: Korrelation der Interessen
- ψ_{ij} Korrelationskoeffizient zwischen T_i und T_j
- φ Matrix: Wahrscheinlichkeitsverteilung der Objekte über latente Interessen
- Φ Matrix: Wahrscheinlichkeitsverteilung der latenten Interessen über Objekte

Interessenserweiterung + Vorschläge

- > Personalisierte Reihung der Interessen durch PageRank
- **➤** Wiederholung bis Konvergenz erreicht
- \triangleright Random walk mit Abhängigkeit ψ

$$P(I_j|U_i) = \sum_{k=1}^K P(I_j|t=k) P_s(t=k|U_i) = \sum_{k=1}^K \Phi_{jk} \theta_{ik}^{(s)}$$

- ψ Matrix: Korrelation der Interessen
- I Objekte (Items) im System
- *U* Benutzer (User) im System
- Φ Matrix: Wahrscheinlichkeitsverteilung der latenten Interessen über Objekte
- θ Matrix: Wahrscheinlichkeitsverteilung von Benutzern über Interessen
- $heta_{ik}^{(s)}$ Wahrscheinlichkeit, dass ein random walk, der bei U_i startet, nach s Schritten bei Interesse T_k stehen bleibt