ANALOG NCERT 12.8.11

EE23BTECH11046 - Poluri Hemanth*

an electromagnetic wave in vacuum given as

 $E = \{(3.1N/C)\cos[(1.8 \text{ rad/m})y + (5.4 \times 10^6 \text{rad/s})t]\}e_1$

- (a) What is the direction of propagation?
- (b) What is the wavelength?
- (c) What is the frequency?
- (d) What is the amplitude of the magnetic field part of the wave?
- (e) Write an expression for the magnetic field part of the wave.

Solution:

Symbol	Values	Description
λ	$\frac{2\pi}{k}$	Wave length of E.M wave.
f = 0	$.859 \times 10^{6} H$	z Frequency of E.M wave.
с	$3 \times 10^6 m/s$	Velocity of propagation of E.M wave.
ω	$2\pi f$	Angular frequency of E.M wave.
k	1.8rad/m	Wave number of E.M wave
B_o	$\frac{E_o}{c}$	Amplitude of magnetic part of E.M wave
E_o	3.1 <i>N</i> / <i>C</i>	Amplitude of electric part of E.M wave.
$\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$	N/A	Base vectors
TABLE I		

INPUT PARAMETERS

Question: Suppose that the electric field part of where c is velocity of propagation of wave which is given by

$$c = \frac{\omega}{k} \tag{8}$$

$$=\frac{5.4 \times 10^6}{1.8} \tag{9}$$

1

$$= 3 \times 10^6$$
. (10)

$$B_o = \frac{3.1}{3 \times 10^6} \tag{11}$$

$$= 1.03 \times 10^{-6} \tag{12}$$

(e) Direction of magnetic field is e₃ where,

$$\mathbf{e_3} = \mathbf{e_2} \times \mathbf{e_1} \tag{13}$$

$$\mathbf{B} = B_o \cos(ky + wt)\mathbf{e_3} \tag{14}$$

From (12)

$$\mathbf{B} = 1.03 \times 10^{-6} T \{ \cos[(1.8rad/m)y + (5.4x10^{6}rad/s)t] \} \mathbf{e}_{3}$$
(15)

As the wave is in form of cos(ky+wt) the wave is propagating along -y axis, represented by e2 (b)

$$k = \frac{2\pi}{\lambda} \tag{1}$$

$$k = \frac{2\pi}{\lambda}$$

$$\Rightarrow \lambda = \frac{2\pi}{1.8}$$
(1)

$$\approx 3.5m$$
 (3)

(c)

$$\omega = 2\pi f \tag{4}$$

$$5.4x10^6 = 2.\pi.f$$
 (5)

$$\Rightarrow f = 0.859 \times 10^6 Hz \tag{6}$$

(d) $B_o = \frac{E_o}{c}$ (7)

Fig. 1. Electric field part

Fig. 2. Magnetic field part