강화 학습 Reinforcement Learning

Bellman equation

- Bellman equation for v_{π}
 - $v_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) [r + \gamma v_{\pi}(s')]$
- action-value function
 - $q_{\pi}(s, a) = \sum_{s', r} p(s', r|s, a)[r + \gamma v_{\pi}(s')]$
- state-value와 action-value의 관계는?

Example - Tiny World

- $\pi(a|s) = 1/4$
- p(s', r|s, a) = 1
- Bellman equation

•
$$v_{\pi}(S_1) = \frac{1}{4} \cdot 3 \cdot [-1 + \gamma v_{\pi}(S_1)] + \frac{1}{4} \cdot [5 + \gamma v_{\pi}(S_2)]$$

• $v_{\pi}(S_2) = \frac{1}{4} \cdot [3 + \gamma v_{\pi}(S_1)] + \frac{1}{4} \cdot 3 \cdot [-1 + \gamma v_{\pi}(S_2)]$

•
$$v_{\pi}(S_2) = \frac{1}{4} \cdot [3 + \gamma v_{\pi}(S_1)] + \frac{1}{4} \cdot 3 \cdot [-1 + \gamma v_{\pi}(S_2)]$$

Solution

•
$$v_{\pi}(S_1) = \frac{4-3\gamma}{4(1-\gamma)(2-\gamma)}$$
, $v_{\pi}(S_2) = \frac{\gamma}{4(1-\gamma)(2-\gamma)}$

•
$$\gamma = 0.9 \implies v_{\pi}(S_1) = 2.95, \ v_{\pi}(S_2) = 2.05$$

Bellman Equation

- Bellman equation을 풀어 $v_{\pi}(s)$ 를 모두 구할 수 있다
 - 형태는 Av + b = 0 꼴
 - 시간 문제
 - 메모리 문제

Optimal Policy and Optimal Value Function

- optimal value function
 - 상태의 최대 가치
 - $v_*(s) = \max_{\pi} v_{\pi}(s)$
- optimal policy
 - 가장 우수한 정책 π_*
 - $v_{\pi_*}(s) = v_*(s)$

- 주어진 policy π 에 대하여 최적의 v_{π} 를 찾아라
- Bellman equation 풀기
 - $v_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) [r + \gamma v_{\pi}(s')]$
- algorithm
 - $v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \cdots$
 - v_0 arbitrary
 - $v_{k+1}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) [r + \gamma v_k(s')]$

- 수학적 배경
- solve the linear equation Ax + b = 0
 - $x = (I + \alpha A)x + \alpha b$
 - iteration
 - x_0 arbitrary
 - $x_{k+1} = (I + \alpha A)x_k + \alpha b$
 - $x_n \to A^{-1}b$ if $(I + \alpha A)^n \to 0$

Algorithm

- input π , the policy to be evaluated
- initialize v(s) = 0 for all state s
- repeat
 - $v_{copy} \leftarrow v$
 - for each $s \in S$
 - $v(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) [r + \gamma v_{copy}(s')]$
 - $\Delta \leftarrow \max_{s} |v(s) v_{copy}(s)|$
- until $\Delta < \theta$
- output *v*
- Output $v \approx v_{\pi}$

• Example - 4×4 gridworld

 $R_t = -1$ on all transitions

 v_k for the random policy

0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0

k = 0

k = 1

k = 2

k = 3

0.0 -6.1 -8.4 -9.0 -6.1 -7.7 -8.4 -8.4 -8.4 -8.4 -7.7 -6.1 -9.0 -8.4 -6.1 0.0

-14. -18. -20. -20. -20. -20. -18. -14.

0.0 -14. -20. -22.

k = 10

 $k = \infty$

Policy Improvement

- 주어진 state-value function에 대하여 가장 우수한 정책을 찾아라
- $\pi'(s) = \underset{a}{\operatorname{argmax}} q_{\pi}(s, a)$ = $\underset{a}{\operatorname{argmax}} \mathbb{E}[R_{t+1} + \gamma v_{\pi}(S_{t+1}) | S_t = s, A_t = a]$

0.0	-14.	-20.	-22.			←	←	←
-14.	-18.	-20.	-20.		1	ţ	-	1
-20.	-20.	-18.	-14.		†	L→	₽	ţ
-22.	-20.	-14.	0.0		₽	1	\rightarrow	
$\overline{v_{\pi}}$			π'					

Policy Iteration

• policy evaluation(E)과 policy improvement(I)를 반복

$$\bullet \ \pi_0 \xrightarrow{E} v_{\pi_0} \xrightarrow{I} \pi_1 \xrightarrow{E} v_{\pi_1} \xrightarrow{I} \cdots \xrightarrow{I} \pi_* \xrightarrow{E} v_*$$

Value Iteration

- combination of policy evaluation and policy improvement
- $v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \cdots$ • $v_{k+1}(s) = \max_{a} \sum_{s',r} p(s',r|s,a)[r + \gamma v_k(s')]$
- 이론적 배경???

Value Iteration

• 4 × 4 gridworld

Dynamic Programming

- 최적화 문제를 해결하는 것
 - 가장 우수한 정책(optimal policy) 찾기
 - policy iteration이나 value iteration 사용
- 장점
 - 거의 정확한 값을 계산할 수 있다
- 단점
 - 모든 경우의 수를 생각해야 한다
 - 바둑의 state의 수 ≈ 361!
 - 시간의 한계
 - 메모리의 한계

- problem
 - $q_{\pi}(s, a) = \mathbb{E}_{\pi}[G_t \mid S_t = s, A_t = a]$
 - $G_t = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{T-t-1} R_T$ = $R_{t+1} + \gamma G_{t+1}$
 - γ discount rate
- compute $q_{\pi}(s,a)$?
 - impossible, in general, e.g. 바둑
- approximate $q_{\pi}(s, a)!$
 - sampling
 - Monte Carlo method

- policy π 에 따라 episode를 생성한다
- G_t 를 계산한다
- 각 (s,a)에 대하여 $q_{\pi}(s,a)$ 의 근사값을 구한다
- policy를 다시 설정한다
- episode 복습
 - $S_0 \xrightarrow{A_0} R_1$, $S_1 \xrightarrow{A_1} R_2$, $S_2 \xrightarrow{A_2} \cdots \xrightarrow{A_{T-1}} R_T$, S_T
 - $G_t = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{T-t-1} R_T$

- Monte Carlo ES(exploring starts)
 - initialize, for all $s \in S$, $a \in A(s)$
 - $q(s,a) \leftarrow$ arbitrary
 - $\pi(a|s) \leftarrow \text{arbitrary}$
 - $returns(s, a) \leftarrow empty list$
 - repeat forever
 - choose $S_0 \in S$ and $A_0 \in A(S_0)$
 - generate an episode starting from S_0 , A_0 , following π
 - for each pair s, a in the episode
 - $G \leftarrow$ the return at (s, a)
 - append G to returns(s, a)
 - $q(s,a) \leftarrow average(returns(s,a))$
 - $\pi(s) \leftarrow \arg\max_{a} q(s, a)$

Policy

- greedy policy
 - 각 state s에서 q(s,a)가 가장 큰 action을 선택
 - 처음 선택된 action이 계속 선택될 가능성이 있다
- ϵ -greedy(ϵ -soft greedy) policy
 - q(s,a)가 가장 큰 action을 $1-\epsilon+\frac{\epsilon}{|A(s)|}$ 의 확률로 선택
 - 1ϵ 을 주고 나머지의 $\frac{1}{|A(s)|}$ 을 더 준다
 - 나머지 action을 $\frac{\epsilon}{|A(s)|}$ 의 확률로 선택

- on-policy MC control for ϵ -soft policies
 - initialize, for all $s \in S$, $a \in A(s)$
 - $q(s,a) \leftarrow$ arbitrary
 - $\pi(a|s) \leftarrow \text{arbitrary } \epsilon\text{-soft policy}$
 - $returns(s, a) \leftarrow \text{empty list}$
 - repeat forever
 - generate an episode following π
 - for each pair s, a in the episode
 - $G \leftarrow$ the return at (s, a)
 - append *G* to *returns*(*s*, *a*)
 - $q(s,a) \leftarrow average(returns(s,a))$
 - for each *s* in the episode
 - $A^* \leftarrow \arg\max_{a} q(s, a)$
 - for all $a \in A(s)$
 - $\pi(a|s) = \begin{cases} 1 \epsilon + \epsilon/|A(s)| & \text{if } a = A^* \\ \epsilon/|A(s)| & \text{if } a \neq A^* \end{cases}$

- 단점
 - returns(s,a)를 모두 저장해야 한다
 - 개수를 저장하면 이 문제는 해결 가능하다
 - $q(s,a) \leftarrow \frac{q(s,a) \cdot count + G_t}{count + 1}$
 - $count \leftarrow count + 1$
 - episode가 끝날 때까지 기다려야 한다
 - temporal-difference learning의 출발점이다