Moderne Kausalanalyse Rubin Causal Model und Directed Acyclic Graphs

Simon Ress

Ruhr-Universität Bochum

31.10.2018

Moderne Kausalanalyse

Simon Ress

Inhalt

Moderne Kausalanalyse

Simon Ress

Zweck einer Regression

Lineare Regression

unktionsweise

Annahmen & Voraussetzunge

ogistische

Funktionsweise

Annahmen

Zweck einer Regression

Lineare Regression

Funktionsweise Annahmen & Voraussetzungen Beispiele

Logistische Regression

Funktionsweise Annahmen

- ▶ Die Ausprägungen der unabhängigen Variable [D] sollen auf die Ausprägungen der abhängigen Variable [Y] zurückgeführt werden
- Zusammenhang beider Variablen beschreiben (mit Hilfe von Formeln)
- Postulierte Hypothese(n) testen

Warum eine Regressionsanalyse durchführen

- Die Ausprägungen von zwei Variablen (Y & D) sind für sechs Einheiten dargestellt
- Mit welchem mathematischen Ausdruck können die Werte von Y auf D zurück geführt werden?

Moderne Kausalanalyse

Simon Ress

Zweck einer Regression

Lineare Regression

Funktionsweise

oraussetzungen Beispiele

ogistische legression

Funktionswe Annahmen

Linearer (perfekter) Zusammenhang

- ▶ Die Variable Y ist immer doppelt so groß wie die Variable D
- ► Mathematische Formulierung: y = d * 2 (Kleinschreibung bei realisierten Werten einer Variable)

Moderne Kausalanalyse

Simon Ress

Lineare Regression

Datensatz

	Geburten	Störche	Einwohnerdichte
1	1.8	17.0	185.0
2	1.6	14.0	241.0
3	1.7	17.0	170.0
4	1.1	9.0	291.0
5	1.8	15.0	187.0
6	1.1	13.0	252.0
7	0.7	4.0	358.0
8	0.9	4.0	349.0
9	8.0	8.0	314.0
10	2.2	25.0	89.0
11	0.5	2.0	367.0
12	1.2	9.0	281.0
13	1.3	8.0	301.0
14	1.3	8.0	297.0
15	1.4	9.0	290.0
16	1.1	5.0	326.0
17	2.1	18.0	176.0
18	0.7	1.0	405.0
19	2.2	19.0	151.0
20	1.3	9.0	280.0
21	2.8	33.0	3.0
22	1.7	12.0	259.0
23	1.9	14.0	212.0
24	1.4	10.0	271.0
25	1.1	9.0	284.0

Tabelle: Geburten, Störche und Einwohnerdichte (25 von 100 Beobachtungen)

Moderne Kausalanalyse

Simon Ress

Zweck einer Regression

Lineare Regression

Funktionsweise

Annahmen & Voraussetzungen

omistisch

Regression

Annahmen

Linearer Zusammenhang

- Der Zusammenhang zwischen D (Störche) und Y (Geburten) ist nicht perfekt
- ▶ Wie kann dieser Zusammenhang beschreiben werden?

Moderne Kausalanalyse

Simon Ress

Zweck einer Regression

Lineare Regression

Funktionsweise

Annahmen & /oraussetzungen

ogistische egression

Funktionswei: Annahmen

Y (Geburten pro Frau)

Funktionsweise

- ▶ Welche (lineare) mathematische Funktion beschreibt den Zusammenhang ab besten?
- ▶ Welches Kriterium kann zur Entscheidung herangezogen werden?

D (Anzahl der Störche)

4 D > 4 P > 4 E > 4 E > E

Funktionsweise

Voraussetzunge

Beispiele

egression

Funktionswei: Annahmen

- (dt.) Methode der kleinsten Quadrate
- Idee: Mathematische Funktion bestimmen, welche möglichst gut den Zusammenhang der Daten beschreibt
- Abweichung der Datenpunkte von dem geschätzten Ergebniss: Residuen
- Auswahl der Funktion: Minimale Summe der quadrierten Abweichungen
- ► Für dieses Minimierungsproblem existieren verschiedene Algorithmen

- Annahmen & Voraussetzungen

- Variable Y hat ein metrisches Skalenniveau
- Auch kategoriale Skalenniveaus möglich, die dann als metrisch angenommen werden
- Mindestvoraussetzungen: mindestens fünf Kategorien, ordinales Messniveau, Abstände zwischen Ausprägungen sind gleich groß, Kategorien als Wertintervalle

Beispiel Störche und Geburten

Moderne Kausalanalyse

Simon Ress

weck einer

Lineare Regression

nktionsweise

Annahmen & Voraussetzungen

Beispiele

ogistische legression

Annahmen

Variablen

Für die Berechnung einer Regression kann folgender Befehl in R genutzt werden

lm(data\$Geburten~data\$Störche)

Moderne Kausalanalyse

Simon Ress

Zweck eine Regression

Lineare Regression

unktionsweise

Annanmen & Voraussetzungen

Beispiele

Logistische Regression

unktionswei

##

##

##

##

##

##

##

Call:

Residuals:

Min

```
10
                     Median
                                  30
                                          Max
## -0.49298 -0.14636 0.01052 0.13789
                                      0.49702
## Coefficients:
               Estimate Std. Error t value
## (Intercept) 0.640069 0.045626
                                    14.03
## data$Störche 0.071763 0.003065
                                    23.41
               Pr(>|t|)
  (Intercept) <2e-16 ***
## data$Störche <2e-16 ***
## Signif. codes:
                  1441 0 01 141 0 05 1 1 0 1
## 0 14441 0 001
```

lm(formula = data\$Geburten ~ data\$Störche)

Lineare Regression

```
Moderne
Kausalanalyse
 Simon Ress
```

Beispiele

0.559

Max

0.4438

lm(formula = data\$Geburten ~ data\$Störche + data\$Einwohner ## ## Residuals: ## Min 10 Median ## -0.5057 -0.1191 0.0097 ## ## Coefficients:

Estimate Std. Error 3.304096 0.591504 -0.010859 0.018512 ## data\$Einwohnerdichte -0.006723 0.001489

30

0.1210

t value Pr(>|t|) 5.586 2.12e-07 ***

data\$Störche -0.587## data\$Einwohnerdichte -4.515 1.78e-05 ***

##

##

(Intercept)

data\$Störche

(Intercept)

##

Call:

Datensatz

ID Land GesAnteilGDP leftseat leftcab GDP chronic Australia Austria Belgium Canada Czech Republic Denmark Estonia Finland France

Tabelle: Gesundheitsausgaben und weitere Merkmale in OECD-Ländern

Moderne Kausalanalyse

Simon Ress

Beispiele

Die Werte einzelner Variablen können durch die Eingabe des Datensatzes, gefolgt von einem "\$" und dem Variablennamen abgerufen werden

data\$GesAnteilGDP

```
##
         8.4717 10.1123
                           9.9392 10.5875
                                             6.9435
##
    [6]
        10.4464
                  6.3192
                           8.8801
                                   10.7189
                                            10.9956
##
   Г117
         9.8523
                  7.5679
                           8.8203
                                    7.0087
                                             8.9536
##
   [16]
         9.4921
                  6.4051
                           6.1541
                                    7.1467
                                             6.0200
   [21]
        10.4324
                  9.6589
                           8.9103
                                     6.4201
                                             9.8195
   [26]
         7.8231
                  8.5616
                           9.0136
                                    8.4864 10.4590
   [31]
        16.3918
```

Variablen

Für die Zuordnung der Werte zu dem Länder kann folgender Befehl genutzt werden

```
data[c("Land", "GesAnteilGDP"), digits = 1]
```

	Land	GesAnteilGDP
26	Australia	8.5
57	Austria	10.1
88	Belgium	9.9
119	Canada	10.6
150	Czech Republic	6.9
181	Denmark	10.4
212	Estonia	6.3
243	Finland	8.9
274	France	10.7

Moderne Kausalanalyse

Simon Ress

Zweck einer Regression

Lineare Regression

unktionsweise Innahmen &

Voraussetzunge Beispiele

ogistische

Funktionswe Annahmen

Lineare Regression

Mit dem Befehl "Im()" kann eine lineare Regression berechnet werden.

lm(data\$GesAnteilGDP~data\$chronic +data\$GDP)

Moderne Kausalanalyse

Simon Ress

Beispiele

```
##
## Call:
## lm(formula = data$GesAnteilGDP ~ data$chronic +
##
## Residuals:
                10
##
      Min
                    Median
                                30
                                       Max
## -3.0178 -0.8572 0.0051
                            0.7145
                                    6.9916
##
## Coefficients:
##
                  Estimate Std. Error t value
  (Intercept) 1.275e+01
                            1.274e+00 10.002
  data$chronic -6.199e-03
                            2.049e-03 -3.026
## data$GDP
                -2.736e-09
                            1.448e-09 -1.890
##
                Pr(>|t|)
  (Intercept)
                1.41e-10 ***
## data$chronic
                0.00539 **
## data$GDP
                 0.06952
```

Logistische Regression

Moderne Kausalanalyse

Simon Ress

weck einer egression

Lineare Regression

ınktionsweise

Annahmen & Voraussetzungen

Beispiele

Logistische Regression

Funktionsweise

- ▶ andere Bezeichnung: Logit-Modell
- zumeist ist die binomiale logistische Regression gemeint
- hierbei ist abhängige Variable dichotom (meist Ausprägungen 0 und 1)
- eine weitere Form ist die multinominale logistische Regression (abhängige Variable: multinominal)

Logistische Regression

- Interpretation der Ergebnisse nicht sinnvoll
- Beispiel: Einfluss Einkommen(D) auf Wahl der Partei Die Grünen (Y)
- \triangleright mögliches Ergebniss: y=0,001*D + 0,2
- Interpretation: Jeder zusätzliche Euro an Einkommen erhöht die Wahl der Partei Die Grünen um 0,001 (nicht sinnvoll!)

Weitere Probleme einer linearen Regression

- ▶ für dichotome Merkmale wie die Wahl der Grünen sind nur die Ausprägungen 0 & 1 sinnvoll
- ▶ in diesem Beispiel also Wahl der Gründen ja (y=1) oder nein (y=0)

Moderne Kausalanalyse

Simon Ress

Zweck einer Regression

ineare Regression

unktionsweise

/oraussetzunger

Logistische Regression

Funktionsweis Annahmen

Ziel der logistischen Regression

Moderne Kausalanalyse

Simon Ress

Zweck einer Regression

Lineare Regression

unktionsweise

Annahmen & Voraussetzunge Beispiele

Logistische Regression

Funktionsweise

Annahmen

Schätzung der Eintrittswahrscheinlichkeit eines Ereignisses in Abhänigkeit verschiedener möglicher Einflussgrößen.

Beispielhafte Fragestellungen für logistische Regressionen

erhöht das Einkommen die Wahrscheinlichkeit Die Grünen zu wählen?

- senkt der Schulabbruch ohne Abschluss die Wahrscheinlichkeit wählen zu gehen?
- ► haben Alleinerziehende eine höhere Wahrscheinlichkeit dauerhaft in ALGII zu verbleiben als Familien mit zwei Elternteilen?

Moderne Kausalanalyse

Simon Ress

weck einer egression

Lineare Regression

Annahmen &

Beispiele

Logistische Regression

Funktionsweis

Grundzüge der logistischen Regression

Moderne Kausalanalyse

Simon Ress

Funktionsweise

- abhängige Variable (Y): Wahl der Grünen
- ► Ausprägungen: Nein (y=0) & Ja (y=1)
- ▶ Wahrscheinlichkeiten: p(y=0) + p(y=1) = 1
- Abhängige Variable ist dichotom (meist Ausprägungen 0 und 1)

Logistische Funktion

Abbildung: Vergleich logitischer und linearer Funktion

Moderne Kausalanalyse

Simon Ress

Zweck einer Regression

Lineare Regression

unktionsweise

Annahmen & Voraussetzungen

Beispiele

ogistische Regression

Funktionsweise Annahmen

Funktionsweise

in Statistikprogrammen können verschiede Ausgabeformen für Beta-Koeffizienten eingestellt werden

- die umfangreichsten Interpretationsmöglichkeiten bieten Odds Ratios
- ▶ Odds Ratios(Chancenverhältnis): Verhältnis von Eintrittswahrscheinlichkeit zur Wahrscheinlichkeit das Ereignis nicht Eintritt für verschiedene Ausprägungen der unabhängigen Variable

Funktionsweise

▶ Interpretation: OR=1,2; für ein um einen Euro höheres Einkommen wird eine um durchschittlich (1,2-1=0,2)20% höhere Wahrscheinlichkeit der Wahl der Grünen geschätzt

► Interpretation: OR=0,8; für ein um einen Euro höheres Einkommen wird eine durchschittliche Wahrscheinlichkeit der Wahl der Grünen geschätzt die 80% der vorherigen Wahrscheinlichkeit entspricht

nnahmen &

Voraussetzunge Beispiele

Regressio

Annahmen

 keine Multikollinearität (zwei oder mehr unabhängige Variablen korrelieren sehr stark miteinander)

- pro Ausprägung der abhängigen Variable mindestens 25 Beobachtungen
- aussagekräftige Schätzungen ab 100 Beobachtungen pro Gruppe