# This Page Is Inserted by IFW Operations and is not a part of the Official Record

# **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

# IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

# PATENT ABSTRACTS OF JAPAN

(11)Publication number:

06-191894

(43) Date of publication of application: 12.07.1994

(51)Int.CI.

CO3C 17/34

(21)Application number: 04-357618

(71)Applicant: ASAHI GLASS CO LTD

(22)Date of filing:

24.12.1992

(72)Inventor: SUZUKI SUSUMU

**SEKI KOICHI** 

ANDO HIDEKAZU

### (54) ELECTRIC CONDUCTIVE GLASS AND ITS PRODUCTION

#### (57) Abstract:

PURPOSE: To provide an alkali diffusion preventing film for electric conductive glass having heat resistance, stable even to various environmental conditions and not causing deterioration.

CONSTITUTION: An alkali barrier film inhibiting alkali diffusion from alkali- contg. glass and an electric conductive film are successively laminated on the surface of the alkali-contg. glass to obtain the objective electric conductive glass. The alkali barrier film is a film based on an oxide having 5-95% atomic ratio of Sn to (Sn+Si).

#### LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

## \* NOTICES \*

Japan Patent Office is not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.\*\*\*\* shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

#### **CLAIMS**

#### [Claim]

[Claim 1] It is the electroconductive glass which is an electroconductive glass which carried out the laminating of the alkali barrier layer which suppresses the alkali diffusion from this glass on the front face of alkali inclusion glass, and the conducting film one by one, and is characterized by the above-mentioned alkali barrier layer being an oxide layer which makes tin and silicon a principal component.

[Claim 2] The electroconductive glass of the claim 1 publication to which an alkali barrier layer is characterized by rate Sn/(Sn+Si) of tin and silicon being 5% to 95% in an atomic ratio.

[Claim 3] The manufacture technique of the electroconductive glass characterized by forming in the front face of alkali inclusion glass the oxide layer which makes tin and silicon a principal component as an alkali barrier layer, and subsequently forming a conducting film in it.

[Claim 4] The manufacture technique of the electroconductive glass the claim 3 publication characterized by forming a conducting film by the DC-sputtering method continuously with an alkali barrier layer.

[Translation done.]

#### \* NOTICES \*

Japan Patent Office is not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.\*\*\*\* shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

#### **DETAILED DESCRIPTION**

[Detailed description]

[0001]

[Field of the Invention] this invention relates to the electroconductive glass with an alkali barrier layer which protects carrying out an alkali ionic diffusion from the glass substratum of alkali inclusion glass.
[0002]

[Prior art] Since it is chemically stable and it excels in a surface hardness, and the elevated temperature to about 500-700 degrees C is borne and an electric insulation and optical property are further excellent, of course, the glass plate as a transparent material is used for an optic, electrical-part electronic parts, etc. as the object for construction, the object for vehicles, and a glass-pane material for aircrafts.

[0003] Especially, recently, the electroconductive-glass plate in which the conductive coat was formed to the glass-plate side is used for display devices, amorphous-solar-cell substrates, etc., such as a liquid crystal device, an electrochromic element, and an electroluminescence element. Although there is an inclination that it is most used widely and a soda-lime silica-glass plate cheap also in price is used as a glass substrate of these electroconductive-glasses plate, since this soda-lime silica-glass plate contains alkali components, such as about [ 10-20wt% ] sodium and a potassium, in composition, it produces the fault of causing the performance degradation of the coated conducting film by diffusion of the alkali ion to the front face from a glass substratum by prolonged use.

[0004] For example, and transparency falls, the resistance of a conducting film increases, or chemical physical endurance falls. [ that nebula arises in the conducting film of an electroconductive-glass plate ] That is, with a liquid-crystal-display element, an oxidation-reduction reaction happens on a display electrode front face by the alkali diffused from glass, the indium oxide layer (ITO layer) which is a transparent-electrode material, or a tin-oxide layer (Nesa membrane) is deteriorated, further, the liquid crystal itself causes electrolysis and it deteriorates. An electrode is worn out by the ground with the same said of an electrochromic element, it becomes the cause of a fall of the endurance of the tungstic oxide which is an electrochromic materials, or a molybdenum oxide, and an element is degraded. [0005] Moreover, the alkali which came out from the glass front face by diffusion also in the case of the electroluminescence element penetrates a conducting film, enters into a fluorescent substance material, and is changed also to luminous efficiency or the luminescent color. Furthermore, in the case of an amorphous solar cell, the resistance of a conducting film will increase, a photoelectric conversion efficiency will fall to it remarkably, and the alkali which occasionally penetrated the electrode and came out is supposed that there is also a possibility of it being spread in an amorphous silicon and reducing a conversion efficiency.

[0006] Or again, alkali inclusion glass like a soda-lime silica glass has the inclination alkali ion becomes easy to move at the time of high temperature processing, and also produces the fault that the performance of a conducting film or various coat layers falls, by diffusion of the alkali ion at the time of high temperature processing at the time of a manufacture of an electroconductive glass or various coat glass.

[0007] As solution of such a fault, the technique of forming in a usual soda-lime silica-glass front face the thin film which prevents a certain alkali diffusion is typical, and, generally the silica layer is used. It is based on the transparency of glass not being spoiled by glass to the light of near and a domain usually larger than sheet glass, since it is transparent, although the refractive index of that the same layer as having formed on glass substantially when the ground for using a silicon oxide layer (for example, SiO2 layer) for alkali diffusion prevention had an amorphous layer and it formed another thin film on this, for example, a conducting film etc., can be formed, and a silicon oxide layer is lower than glass a little.

[8000]

[Object of the Invention] As opposed to the conducting film formed on an alkali barrier layer being \*\*\*\*ed in the

uniform layer over a large area by the DC-sputtering method which can be formed at high speed however, a silicon oxide layer If it is going to \*\*\*\* by the DC-sputtering method using Si target Since the front face of Si target was able to oxidize, conductivity was able to fall during a spatter and a spatter was not able to be made to maintain stably, by the DC-sputtering method, it cannot \*\*\*\* but, for this reason, \*\*\*\*ed by the RF sputtering method, CVD, etc. using the oxide target.

[0009] For this reason, since a tuning of RF sputtering, a spatter ambient-atmosphere control, etc. of a silicon-dioxide layer were needed apart from the formation technique of a conducting film or it had to \*\*\*\* by CVD with another equipment, a silicon-dioxide layer could not be continuously formed with a conducting film with in-line, but it had the technical probrem that it was inferior to a productivity.

[0010]

[The means for solving a technical problem] this invention finds out the new alkali barrier layer which can \*\*\*\* by the DC-sputtering method based on an above-mentioned technical probrem, and is made. The alkali barrier layer which suppresses the alkali diffusion from this glass on the front face of alkali inclusion glass. On and the front face of the electroconductive glass characterized by being the electroconductive glass which carried out the laminating of the conducting film one by one, and the above-mentioned alkali barrier layer being an oxide layer which makes tin and silicon a principal component, and alkali inclusion glass The manufacture technique of the electroconductive glass characterized by forming the oxide layer which makes tin and silicon a principal component as an alkali barrier layer, and subsequently forming a conducting film is offered.

[0011] The alkali barrier layer of this invention is an oxide layer which makes tin and silicon a principal component. The occurrence frequency of an arcing is low on the alkali barrier layer of this invention, and it is stabilized, can do DC sputtering, and fits \*\*\*\* to a large area substrate. However, if the content of Si is made [ many ] like [ belowmentioned ], the occurrence frequency of an arcing will increase. Moreover, he becomes quick as \*\*\*\* Leto's content of tin increases. For example, \*\*\*\* Leto of the oxide layer of tin:silicon =1:1 is quick about 2.5 times compared with the silicon-dioxide layer of RF spatter. Therefore, alkali barrier \*\*\*\*\* is made more for a short time. [0012] The adherability with the soda-lime glass of the alkali barrier layer of this invention is equivalent to the

adherability of an ordinary silicon dioxide and soda-lime glass. Since tin contains this in case soda-lime glass is manufactured by the float glass process, it is because it is similar also in after the alkali barrier layer and soda-lime glass of this invention forming.

[0013] It is desirable to contain Si at a rate more than Si pentatomic to metal total quantity 95 atom of tin as composition of the alkali barrier layer of this invention. It is because the parvus and a layer serve as [Si content] a crystalline substance from this rate and alkali barrier ability falls notably. Moreover, it is desirable to contain Si at a rate of 95 or less atoms of Si to the total quantity pentatomic of the metal of tin. If Si content is larger than this rate, by the scaling of a target, an arcing will occur frequently and it will become unable to \*\*\*\* by the DC-sputtering method stably.

[0014] The refractive index of the alkali barrier layer of this invention can be freely adjusted with the composition. The refractive-index change by composition of the alkali barrier layer of this invention is shown in Table 1. [0015]

[Table 1]

| 膜組成<br>ZrとSiの酸化物中の<br>Sn : Si |     | 煮沸テ<br>スト*1 | 屈折率<br>n | 結晶性    | アルカリ<br>パリアー性* <sup>2</sup> |
|-------------------------------|-----|-------------|----------|--------|-----------------------------|
| 9 6                           | 4   | 0           | 2.00     | 結晶質    | ×                           |
| 9 1                           | 9   | 0           | 1.98     | アモルファス | 0                           |
| 8 0                           | 20  | 0           | 1.91     | アモルファス | 0                           |
| 7 0                           | 30  | 0           | 1.82     | アモルファス | 0                           |
| 5 0                           | 5 0 | 0           | 1.70     | アモルファス | 0                           |
| 3 3                           | 6 7 | 0           | 1.65     | アモルファス | 0                           |
| 20                            | 80  | 0           | 1.57     | アモルファス | 0                           |
| 1 0                           | 90  | 0           | 1.50     | アモルファス | 0                           |
| 5                             | 9 5 | 0           | 1.47     | アモルファス | 0                           |

#### 膜厚は全て1000Åである。

- \*1:1気圧下、100℃の水に2時間浸漬した後T、(可視光線透過率)、R、(可視光線反射率)の浸漬前に対する変化率が1%以内のものを○とした。
- \*2: 純水と接触させて90℃に24時間保存した後の純水中へのNa<sup>+</sup> の溶 出量が1.0 µg/c m<sup>2</sup> 以上のものを×、1.0 µg/ c m<sup>2</sup> 未満のものを○とした。

[0016] therefore, in the case of the electroconductive glass as transparent-electrode plates with which transparent electrodes, such as ITO layer (indium oxide layer containing tin), were formed as a conducting film, such as a display device If it is made to become the same refractive index as such a transparent electrode, composition of the alkali barrier layer of this invention Since the difference of the refractive index with the fraction in which only the alkali barrier layer was formed, without forming the fraction and transparent electrode by which the transparent-electrode pattern was formed on the alkali barrier layer does not arise, a transparent-electrode pattern is not conspicuous and the "bone vanity" phenomenon of the so-called transparent-electrode pattern can be prevented. What is necessary is to double with the refractive index 1.9 [ about ] of ITO layer, and just to be about [ Sn:Si=80:20 ] from Table 1 in the electroconductive glass of the configuration of the alkali barrier layer / ITO layer which consists of an oxide containing a glass plate / Sn and Si.

[0017] Or in a manufacture of the element for a display etc., when the direction a transparent-electrode pattern appears is liked in respect of alignment, it is suitable, and considering as the refractive index different from ITO layer can make [many] the rate of Si, and it can also consider as a low refractive index. Thus, composition of the alkali barrier layer of this invention can be suitably chosen according to the refractive index of the conducting film formed on it.

[0018] As for the thickness of the alkali barrier layer of this invention, it is desirable to carry out to more than 50\*\* so that sufficient alkali barrier ability may be demonstrated. Especially, the domain of 100 - 5000\*\* is the most practical.

[0019] moreover, Na and K which are most used widely as glass applicable to the electroconductive glass of this invention -- 10 - 20wt% -- the included soda-lime silica glass -- of course -- in addition, various alkali inclusion glass is mentioned

[0020] As a conducting film formed on an above-mentioned alkali barrier layer in the electroconductive glass of this invention, it is SnO2 by which ITO layer, F, Sb, etc. were doped. It is not limited especially that what is necessary is just the conducting films which may deteriorate by alkali ion, such as conductive metal membranes, such as transparent conductivity oxide layers, such as ZnO layer with which a layer, aluminum, etc. were doped, and Ag, Au. [0021]

#### [Example]

With the detergent, the common-glass plate (soda-lime silica-glass plate) which contains example 110cmx10cmx3mm alkali component R2 O (R: Na, K) 15% was fully washed, and carried out rinsing xeransis. target (Sn:Si=50:50) which

consists of Sn and Si after arranging this glass plate in the vacuum tub of a sputtering system and exhausting the inside of this tub to 1x10-5Torr the inside (argon:oxygen =1:1) of the argon of 2x10-3Torr, and the mixed gas of oxygen -- power density 5W/cm2 DC sputtering -- carrying out -- Sn0.5 Si0.5 O2 a layer -- about -- 1000\*\* formation of was done

[0022] It is SiH4 to the same glass plate as example of comparison 1 example 1. O2 Gas is used and it is SiO2 by CVD. 1000\*\* formation of a layer was done.

[0023] Na+ eluted in the pure water after having contacted one example and one example of a comparison to the pure water, respectively and holding them at 90 degrees C for 24 hours the place example 1 article which measured the amount and investigated alkali barrier nature -- one 0.61microg [/cm ] 2 and the example of a comparison -- 0.61microg/cm2 it was . moreover, Na+ which washed one example and one example of a comparison by NaOH 5%, respectively, was next contacted to the pure water at the room temperature for 24 hours, and was eluted in the pure water the place which measured the amount (amount of Na+ which adsorbed during the above-mentioned washing), and investigated the alkali adsorptivity -- one example -- one 0.13microg [/cm ] 2 and the example of a comparison -- 0.14microg/cm2 it was . From this, one example found that there was a property almost equivalent to the example of a comparison.

[0024] It is Sn0.5 Si0.5 O2 like example 2 example 1. Abbreviation 200\*\* formation of a layer was done. [0025] It is SnSi2 as example 3 target. Others are Zr0.33Si0.66O2 like an example 1 using a target (Sn:Si=1:2). Abbreviation 200\*\* formation of a layer was done.

[0026] It is Sn0.33Si0.66O2 like example 4 example 3. Abbreviation 500\*\* formation of a layer was done. [0027] After having made the pure water contact, respectively and saving at 85 degrees C per 2-4 examples for 24 hours, when alkali barrier nature and the alkali adsorptivity were measured, it became as it is shown in Table 2. [0028]

[Table 2]

| 試 料   | アリカリ<br>パリアー膜                                        | 膜 厚<br>Å | アルカリバリア<br>一性Na* 溶出量<br>(μg/cm²) | アルカリ吸着<br>性Na <sup>*</sup> 吸着量<br>(μg/cm <sup>2</sup> ) |
|-------|------------------------------------------------------|----------|----------------------------------|---------------------------------------------------------|
| 実施例2品 | Sn <sub>0.5</sub> Si <sub>0.5</sub> O <sub>2</sub>   | 200      | 0.63                             | 0.074                                                   |
| 実施例3品 | Sn <sub>0.88</sub> Si <sub>0.66</sub> O <sub>2</sub> | 200      | 0.43                             | 0.031                                                   |
| 実施例4品 | Sno. 23 Sio. 66 O2                                   | 500      | 0.12                             | 0.047                                                   |

[0029] Although it continued by the DC-sputtering method by the DC-sputtering method per 1-4 examples on [ after forming each alkali barrier layer ] such an alkali barrier layer, and ITO layer was formed and being saved at 90 degrees C after that for 24 hours, there was no appearance change of ITO layer.

[0030]

[Operation] In this invention, although Sn exists as an Sn-Si alloy in a target, the oxides produced on a target during a reactant spatter are the oxide of tin, and an oxide of silicon. Among these, since the former has an electric conduction-property, it is considered that occurrence of an arcing is suppressed.

[0031]

[Effect of the invention] Since the alkali barrier layer of the electroconductive glass of this invention can be \*\*\*\*ed by the DC-sputtering method, over a large area, it can form a uniform layer stably at high speed, and can offer it. Since this can \*\*\*\* an alkali barrier layer and a conducting film continuously by the in-line formula when forming the conducting film formed on an alkali barrier layer by the DC-sputtering method, it serves as a big advantage especially on a productivity.

[0032] Especially as an alkali diffusion prevention layer of an electroconductive glass used for display devices, amorphous-solar-cell substrates, etc., such as a liquid crystal device, an electrochromic element, and an electroluminescence element, the electroconductive glass with an alkali barrier layer of this invention is the optimum, it also has thermal resistance, as shown in Table 1, and to manufacture processes, such as such a display device and a solar battery, or subsequent various environmental conditions, is stable and does not deteriorate. Of course, it is applicable to the glass plate for an automobile, the aircraft, other rail car and various objects for traffic vehicles, the object for construction, the various objects for equipment, the object for optics, the object for electrical parts, and

electronic parts other than these useful to the substratum coat at the time of forming a conductive coat, a heat ray acidresisting coat, a reflective coat, a tinction coat, in addition the coat with various functions.

[0033] Moreover, since the alkali barrier layer of this invention can be made into a desired refractive index by changing the metal of Sn, and the rate of Si, it can be broadly used for the various above-mentioned intended use.

[Translation done.]

(19) 日本的特許庁 (JP)

## (12) 公開特許公報(A)

(11)特許出顧公開番母

特開平6-191894

(43)公開日 平成6年(1994)7月12日

(51) Int.Cl.3

識別記号

庁内整理番号

1 50

技術表示箇所

C 0 3 C 17/34

Z 7003-4G

術薬請求 未請求 請求項の数4(全 5 頁)

| (21) 出與番号      | 特別44-357618          | (71) 出版人 | 000000044                                       |
|----------------|----------------------|----------|-------------------------------------------------|
| (22) / 1180 [] | 平成 4 年 (1992) 12月24日 | Į<br>į   | 旭州子株式会社<br>東京都千代田区丸の内2丁目1番2号                    |
| (22) (11404 M  | 1,10,100,000,000     | (72) 発明者 | 約水 ずずむ<br>神奈川県横浜市神奈川区羽沢町1150番地<br>組刷子株式会社中央研究所内 |
|                |                      | (72) 発明者 | 四 宏一<br>神永川県横浜市神宗川区羽沢町1150番地<br>旭硝子株式会社中央研究所内   |
|                |                      | (72) 宛明君 | 安曆 英一<br>神奈川県横浜市神奈川区羽沢町1150番地<br>旭硝子株式金社中央研究所内  |
|                |                      | (74)代理人  | 介理士 泉名 凍治                                       |

(54) 【発明の名称】 は場性ガラス及びその製造方法

#### (57) 【要約】

【構成】アルカリ含有ガラスの表面に、設ガラスからのアルカリ拡散を抑制するアルカリバリア一膜、及び世界膜を触次積層した重選性ガラスであって、上記アルカリバリア一膜は鶴と璀璨の割合Sn/(Sn+Si)が原子比で5%から95%である酸化物を主成分とする膜である。

【効果】耐熱性を有し、種々の環境条件に対しても安定で劣化することがない電響性ガラスのアルカリ拡散防止 膜を提供できる。 Bent Available Copy

#### 【特許請求の範囲】

【謝求項1】アルカリ合有ガラスの表面に、飲ガラスからのアルカリ拡散を抑削するアルカリバリア一膜、及び電導膜を顧次積層した電導性ガラスであって、上記アルカリバリア一膜は強と除案を主成分とする酸化物膜であることを特徴とする電導性ガラス。

【請求項2】アルカリバリア一膜が鰯と珠素の割合S n / (Sn+S1) が原子比で5%から95%であること を特徴とする請求項1記載の電導性ガラス。

【聞求項3】アルカリ含有ガラスの表面に、過と珪素を 10 主成分とする酸化物膜をアルカリバリア一酸として形成し、次いで電導膜を形成することを特徴とする電響性ガラスの製造方法。

【謝求項4】 電導膜を、アルカリバリア一膜と連続して 直流スパッタリング法によって形成することを特徴とす る請求項3記載の電導性ガラスの製造方法。

#### 【発明の詳細な説明】

[0001]

(産業上の利用分野) 本発明は、アルカリ含有ガラスの ガラス下地からアルカリイオン拡散するのを防ぐアルカ リバリア一膜付電導性ガラスに関するものである。

#### [0002]

【従来の技術】透明材料としてのガラス板は、化学的に 安定で表面硬度に優れ、かつ500~700で程度まで の高温に耐え、更に電気絶縁性、光学的性質が優れてい るため、建築用、車両用、航空機用の設ガラス材料とし ては勿論のこと、光学部品、電気部品電子部品等に用い られている。

【0003】特に、最近ではガラス板面に電場性被膜を形成した電導性ガラス板が液晶素子、エレクトロクロミック素子、電場発光素子などの表示素子やアモルファス太陽電池基板等に用いられている。これら電導性ガラス板のガラス基板としては、最も汎用され、価格的にも安価なソーダライムシリカガラス板が使用される傾向があるが、このソーダライムシリカガラス板は組成的に10~20wヒ%程度のナトリウム、カリウム等のアルカリ成分を含んでいるため、長期間の使用によりガラス下地からの表面へのアルカリイオンの拡散によるコーティングされた電導膜の性能劣化を起すという欠点を生ずる。

【0004】例えば、電響性ガラス板の電響膜に自働が 40 生じたり週明度が低下したり、あるいは電響膜の抵抗傾が増大したり、化学的物理的耐久性が低下したりする。すなわち、液晶表示集構表面で酸化、ガラスから拡散してきたアルカリにより表示集構表面で酸化。現元反応が起り透明電極材料である酸化インジウム膜(ITO膜)、または酸化鋁膜(ネサ膜)を変質させ、更には液晶自体も電気分解を起して劣化する。エレクトロクロミック素子でも同様な理由で電極が損耗しエレクトロクロミック材料である酸化タングステンや酸化モリブデンの耐久性の低下の原因となり素子を劣化させる。 50

【0005】また電場犯光素子の場合にも拡散によって ガラス表面から出てきたアルカリは破場膜を貫通して低 光体材料に入りこみ発光効率や発光色までも変化させ る。更にアモルファス太陽電池の場合には、電場膜の抵 抗値が増大し、光電変換効率が苦しく低下してしまう し、時には電腦を関通して出てきたアルカリはアモルファスシリコン中に拡散して変換効率を低下させる恐れも あるとされている。

【0006】あるいはまた、ソーダライムシリカガラスのようなアルカリ合有ガラスは、高温処理時にアルカリイオンが移動しやすくなる傾向があり、電響性ガラス、あるいは各種コートガラスの製造時の高温処理時のアルカリイオンの拡散により、電源膜、あるいは各種コート膜の性能が低下するという欠点も生じる。

[0007] かかる欠点の解決法として代表的なのは、通常のソーダライムシリカガラス表面に何らかのアルカリ拡散を阻止する機能を形成する方法であり、シリカ膜が一般に用いられている。像化ケイ素膜(例えばら10、限)をアルカリ拡散防止に用いる興由は膜がアモルファスで、この上に別の薄膜たとえば電曝膜等を形成する場合、実質的にガラス上に形成したと同じ膜を形成できることと酸化ケイ素膜の屈折率がガラスよりも若干低いがガジスに近く、また通常板ガラスよりも広い範囲の光に対して、透明であるためにガラスの透明性が揺なわれないことによる。

#### [0008]

【発明が解決しようとする課題】しかしながら、アルカリパリア一般の上に形成される運導膜が大面積にわたり均一な膜を高速で形成可能な流流スパッタリング法で成膜されているのに対し、酸化ケイ素酸は、Siターゲットを用いて直流スパッタリング法で成膜しようとすると、スパッタ中にSiターゲットの表面が酸化されて電流性が低下し、スパッタを安定的に特税させることができないため設証スパックリング法では成膜できず、このため酸化物ターゲットを用いたRFスパッタリング法やCVD法等で成蹊されていた。

【0009】このため電導膜の形成方法とは別に二酸化ケイ沸膜のRFスパックリングのチューニングやスパック 別回気制御等が必要とされ、あるいは別の装置でCV D法により成職しなくてはならないため、インラインで、電導膜と連続して二酸化ケイ素膜を形成することができず、生産性に劣るという課題を有していた。

#### [0100]

【課題を解決するための手段】本発明は上述の課題に基 づき直流スパッタリング法で成膜できる新規なアルカリ パリア一膜を見出してなされたものであって、アルカリ 含有ガラスの表面に、該ガラスからのアルカリ拡散を抑 制するアルカリバリア一膜、及び電線膜を風次機構した 電線性ガラスであって、上記アルカリバリア一膜は緩と 500 中電電下成分とする酸化物膜であることを特徴とする種

受計刻 3月 5日 20時05分

導性ガラス及びアルカリ含有ガラスの表面に、鶏と珪素 を主成分とする酸化物膜をアルカリパリア一膜として形 成し、次いで電導膜を形成することを特徴とする電導性 ガラスの製造方法を提供するものである。

[0011] 本発明のアルカリパリア一原は、衛と珪楽 を主成分とする酸化物膜である、本発明のアルカリバリ アー膜はアーキングの発生類度が少なく、安定して直流 スパッタリングができ、大面和悲板への成膜に適してい る。ただし、後述のようにSiの含有量を多くしていく と、アーキングの発生頻度が増加する。また、成膜レイ トは蝎の含有量が増えるにつれ、速くなる。例えば、 錫:珪素=1:1の酸化物膜の成膜レイトはRFスパッ 夕の二酸化珪素膜に比べると約2.5倍速い。従って、 より短時間でアルカリバリア一膜成膜ができる。

【0012】本発明のアルカリバリア一膜のソーダライ ムガラスとの付着性は、普通の二酸化建築とソーダライ ムガラスとの付着性と同等である。これはソーダライム ガラスがフロート法で製造される際に掲が含有されるた\* \*め、木発明のアルカリパリア一膜と、ソーダライムガラ スが紅成の上でも類似しているためである。

【0013】 本発明のアルカリパリア一膜の組成として は、媼の金属合計盤95原子に対してS15原子以上の 割合でSiを含有しているのが好ましい。SI含有量が この割合より小さいと脳が結晶質となりアルカリバリア 一能が顕著に低下するからである。また、鰮の金属の含 計量5原子に対してSI95原子以下の割合でSiを含 有しているのが好ましい。Si含有量がこの割合より大 さいと、クーケットの表面酸化により、アーキングが頻 繁に発生し、安定的に創派スパッタリング法で成膜でき なくなる。

[00]11 本発明のアルカリバリア一膜の風折率はそ の組成により自由に調節することができる。本発明のア ルカリパリアー膜の組成による短折率変化を吸1に示 ٦) ٠

[0015] 【法1】

| 腹組成<br>ZrとSiの酸化物中の |      | 煮沸デ<br>ストリ | 越折率<br>n | 結晶性     | アルカリ<br>パリア <b>ー性*</b> * |
|--------------------|------|------------|----------|---------|--------------------------|
| S n                | : 51 |            |          |         |                          |
| 96                 | 4    | 0          | 2.00     | 特品質     | ×                        |
| 9 1                | 9    | 0          | 1.98     | アモルファス  | 0                        |
| 8 0                | 20   | 0          | 1.91     | アモルファス  | 0                        |
| 70                 | 30   | 0          | 1.82     | アモルファス  | 0 .                      |
| 50                 | 50   | 0          | 1.70     | アモルファス  | 0                        |
| 3 3                | 6 7  | 0          | 1.65     | アモルファス  | 0                        |
| 20                 | 80   | 0          | 1.57     | アモルファス・ | 0                        |
| 10                 | 90   | 0          | 1. 50    | アモルファス  | 0                        |
| 5                  | 9 5  | 0          | 1. 17    | アモルファス  | 0                        |

#### 膜厚は全て1000人である。

- #1:1気圧下、100℃の水に2時間浸漬した投工、(可視光線透過 率)、R、(可視光線反射率)の程度前に対する変化率が1%以 内のものを〇とした。
- #2: 純水と接触させて90℃に24時間保存した後の郷水中へのNet の略 出量が1、0 μg/cm<sup>3</sup> 以上のものを×、1.0 μg/ cm² 未満のものをOとした。

[0016] 従って、電導膜として I T O膜(鍋を含有 する酸化インジウム腴) 等の透明電極が形成された表示 素子等の適明電極板としての電導性ガラスの場合には、 本発明のアルカリバリアー膜の組成をかかる透明電極と 同様の屈折率になるようにすれば、アルカリパリア・一膜 上に透明電極パターンが形成された部分と透明電極が形 成されずにアルカリバリア一阪のみが形成された部分と の屈折率の差が生じないため、透明電極パターンが目立 たず、おわゆる声明戦極パターンの"骨見え"規象を断。50。こともできる。このように、本殖明のアルカリバリアー

止できる。ガラス板/SnとSiを含む酸化物からなる アルカリバリア一般/ITO膜の構成の電導性ガラスに おいては、1 TO膜の屈折串約1.9 に合わせて汲1よ りられ:Si—80:20程度とすればよい。

【0017】あるいはディスプレー用素子等の製造にお いて、位置合せの点で、否明電極バターンが見える方が 好まれるような場合には1TO膜と異なる風折率とする のが適当であり、Siの割合を多くして低風折率とする

膜の組成は、その上に形成される電導膜の屈折率に応じ て適宜選択することができる。

【0018】本発明のアルカリバリア一膜の膜厚は、十 分なアルカリバリアー能が免担されるように、50人以 上とするのが好ましい。中でも、100~5000人の 範囲が最も実用的である。

【0019】また、本発明の電導性ガラスに適用できる ガラスとしては、Qも汎用されているNaやKを10~ 20wt%含むソーダライムシリカガラスは勿論、その 他各種アルカリ含有ガラスが挙げられる。

【0020】本発明の電導性ガラスにおいて、上述のア ルカリパリア一膜上に形成される電導膜としては、JT O膜、FやSb等がドープされたSnOz 膜、AI等が ドープされた2n〇腕等の透明電導作酸化物膜や、A g、Au等の低導性企成膜等、アルカリイオンによって 劣化する可能性のある喧嘩膜であればよく、特に限定さ わない。

[0021]

【奖熵例】

#### 尖施例 1

10cm×10cm×3mmのアルカリ成分R2 O (R:Na、K)を15%含む普通ガラス板(ソーダラ イムシリカガラス板)を洗剤で十分に洗浄し、水洗乾燥 した。このガラス板をスパッタリング装置の真空槽内に 配置して同構内を1×10 Torrまで排気した後、 SnとS1からなるターゲット(Sn:S1m50:5 0) を2×10<sup>-3</sup> Torrのアルゴンと酸素の混合ガス 中 (アルゴン:酸素=1:1) でパワー密度5W/cm \* で直流スパッタリングを行い、Sno.s Slo.z Or 膜を約1000人形成した。

【0022】比較例1

★実施例1と同様のガラス板にSiH。 とO₂ ガスを用い てCVD法によってSIO。膜を1000A形成した。

【0023】契施例1品と比較例1品をそれぞれ純水に 接触させて90℃に24時間保持した後、純水中に溶出 したNat の鼠を測ってアルカリバリア一性を調べたと ころ実施例1品では0. 61μg/cm²、比較例1品 では0.61μg/cm²であった。また、実施例1品 と比较例1品をそれぞれ5%NaOHで洗浄し、次に細 水に室温で24時間接触させて純水中に溶出したNa゚

の無(上記沈浄中に吸着したNa\*の量)を削ってアル カリ吸着性を調べたところ、実施例1品で0.13μg ノcm~、比較例1品で0.14μg/cm~であっ た。このことから、実施例1品は比較例とほぼ同等の特 性があることがわかった。

【0024】 5. 施例2

実施側 1 と同様にして、S no. o S jo. o O: 膜を約2 00人形成した。

【0025】実施例3

ターゲットとしてSnSiュ ターゲット (Sn; SI= 1:2) を用い、他は実施例1と同様にして、 ス ro.aa Sio. 40 Oa 膜を約200人形成した。

(0026) 実施例4

実施例3と同様にして、Sno.siSlo.esO: 膜を約5. 00人形成した。

【0027】実施例2~4品につき、それぞれ孤水に接 触させて、85℃に24時間保存した後、アルカリバリ アー性及びアルカリ吸着体を測定したところ表2のよう になった。

[0028]

【去2】

| 試料    | アリカリ<br>パリア一膜      | 脸 序<br>A | アルカリバリア<br>一性Na" 溶出素<br>(μg/cm²) | アルカリ吸着<br>性Na* 吸 <b>容量</b><br>(μg/cm²) |
|-------|--------------------|----------|----------------------------------|----------------------------------------|
| 尖腕例2品 | Soo. 3 Sio. 3 O3   | 200      | 0, 63                            | 0. 074                                 |
| 尖腕例3品 | Soo. 33 Sio. 04 O3 | 200      | 0, 43                            | 0. 031                                 |
| 尖腕例4品 | Soo. 33 Sio. 64 O3 | 500      | 0, 12                            | 0. 047                                 |

【0 0 2 9】 実施例 1 ~ 4 品につき、直流スパッタリン グ法で各アルカリパリア一膜を形成後、かかるアルカリ パリアー膜上に直流スパッタリング法により運転して1 TO膜を形成し、その後、90℃に24時間保存した が、「TO膜の外限変化はなかった。

[0030]

【作用】本発明において、Snはターゲット中でSnー SI合金として存在するが、反応性スパッタ中にターケ ット上に生ずる酸化物は錫の酸化物と理素の酸化物であ る。このうち前者は運動的性質をもつため、アーキング 50 の発生が抑制されると考えられる。

[発明の効果] 本党明の職簿性ガラスのアルカリバリア 一膜は、道流スパッタリング法により成膜できるので、 大面積にわたり均…な膜を高速で安定的に形成し提供す ることができる。これは、アルカリバリア一膜上に形成 される臨導順を直流スパッタリング法で形成する場合に はインライン式でアルカリバリア一膜と電導膜を連続し て成蹊できるので特に生産性の上で大きな利点となる。

【0032】本発謝のアルカリバリア・膜付職専性ガラ

出力時刻 3月 5日 20時20分

Rest Available Copy

受1時刻 3月 5日 20時05分

S

スは、液晶素子、エレクトロクロミック素子、**組**場総治 素子などの表示表子やアモルファス太陽電池基板等に用 いられる電源性ガラスのアルカリ拡散防止限として特に 最適であり、表 1 からわかるように耐熱性も有してお り、かかる表示素子、太陽电池等の製造過程やその後の 租々の環境条件に対しても安定で劣化することがない。 勿論これらの他にも、自動車、航空機、鉄道車両その他 各種交通車両用、建築用、各種装置用、光字郎品用、環 気部品用、電子部品用のガラス板に電導性被膜、熱線反射防止被膜、反射被膜、滑色被膜、その他各種機能を持った被膜を形成する際の下地コートに対し有用に適用できるものである。

[0033] また、本況明のアルカリパリア一膜はSnの金属とSlの割合を変えることにより所認の配折率と することができるので、上記各種用途に広範囲に利用で

st Available Copy