Combinatorial Solutions for the Yang-Baxter equation

0.10.2

12 December 2022

Leandro Vendramin

Olexandr Konovalov

Leandro Vendramin

Email: Leandro. Vendramin@vub.be

Homepage: https://vendramin.github.io/

Address: Vrije Universiteit Brussel

Faculty of Sciences

Department of Mathematics and Data Science

Pleinlaan 2, B-1050 Brussel, Belgium

Olexandr Konovalov

Email: obk1@st-andrews.ac.uk

Homepage: https://alex-konovalov.github.io/

St Andrews, Fife, KY16 9SX, Scotland

Address: School of Computer Science University of St Andrews Jack Cole Building, North Haugh,

Contents

1 Preliminaries				
	1.1	Definition and examples	3	
2	Algebraic Properties of Braces			
	2.1	Braces and Radical Rings	9	
	2.2	Braces and Yang-Baxter Equation	9	
3	YangBaxter automatic generated documentation			
	3.1	YangBaxter automatic generated documentation of properties	13	
4	Ideals and left ideals			
	4.1	Left ideals	14	
	4.2	Ideals	15	
	4.3	Sequences (left) ideals	16	
	4.4	Mutipermutation skew braces	18	
	4.5	Prime and semiprime ideals	20	
Re	eferen	ces	23	
Index				

Chapter 1

Preliminaries

In this section we define skew braces and list some of their main properties [GV17].

1.1 Definition and examples

A skew brace is a triple $(A,+,\circ)$, where (A,+) and (A,\circ) are two (not necessarily abelian) groups such that the compatibility $a\circ (b+c)=a\circ b-a+a\circ c$ holds for all $a,b,c\in A$. Ones proves that the map $\lambda\colon (A,\circ)\to \operatorname{Aut}(A,+), a\mapsto \lambda_a(b), \lambda_a(b)=-a+a\circ b$, is a group homomorphism. Notation: For $a,b\in A$, we write $a*b=\lambda_a(b)-b$.

1.1.1 IsSkewbrace (for IsAttributeStoringRep)

1.1.2 Skewbrace (for IsList)

```
> Skewbrace(list) (operation)
```

Returns: a skew brace

The argument *list* is a list of pairs of elements in a group. By Proposition 5.11 of [GV17], skew braces over an abelian group A are equivalent to pairs (G,π) , where G is a group and $\pi: G \to A$ is a bijective 1-cocycle, a finite skew brace can be constructed from the set $\{(a_j,g_j): 1 \le j \le n\}$, where $G = \{g_1,\ldots,g_n\}$ and $A = \{a_1,\ldots,a_n\}$ are permutation groups. This function is used to construct skew braces.

1.1.3 SmallSkewbrace (for IsInt, IsInt)

```
▷ SmallSkewbrace(n, k) (operation)
Returns: a skew brace
```

The function returns the k-th skew brace from the database of skew braces of order n.

```
gap> SmallSkewbrace(8,3);
<br/>
<br/
```

1.1.4 TrivialBrace (for IsGroup)

▷ TrivialBrace(abelian_group)

(operation)

Returns: a brace

This function returns the trivial brace over the abelian group abelian_group. Here abelian_group should be an abelian group!

```
gap> TrivialBrace(CyclicGroup(IsPermGroup, 5));
<brace of size 5>
```

1.1.5 TrivialSkewbrace (for IsGroup)

▷ TrivialSkewbrace(group)

(operation)

Returns: a skew brace

This function returns the trivial skew brace over group.

```
gap> TrivialSkewbrace(DihedralGroup(10));
<skew brace of size 10>
```

1.1.6 SmallBrace (for IsInt, IsInt)

 \triangleright SmallBrace(n, k)

(operation)

Returns: a brace of abelian type

The function returns the k-th brace (of abelian type) from the database of braces of order n.

1.1.7 IdSkewbrace (for IsSkewbrace)

▷ IdSkewbrace(obj)

(attribute)

Returns: a list

The function returns [n, k] if the skew brace obj is isomorphic to SmallSkewbrace (n,k).

```
gap> IdSkewbrace(SmallSkewbrace(8,5));
[8,5]
```

1.1.8 AutomorphismGroup (for IsSkewbrace)

▷ AutomorphismGroup(obj)

(attribute)

Returns: a list

The function computes the automorphism group of a skew brace.

```
gap> br := SmallSkewbrace(8,20);;
gap> AutomorphismGroup(br);
<group with 8 generators>
gap> StructureDescription(last);
"D8"
Example
```

```
gap> br := SmallSkewbrace(8,25);;
gap> aut := AutomorphismGroup(br);;
gap> f := Random(aut);;
gap> x := Random(br);;
gap> ImageElm(f, x) in br;
true
```

1.1.9 IdBrace (for IsSkewbrace)

```
    □ IdBrace(obj)
    (attribute)
```

Returns: a list

The function returns [n, k] if the brace of abelian type obj is isomorphic to SmallBrace(n,k).

```
gap> IdBrace(SmallBrace(8,5));
[ 8, 5 ]
```

1.1.10 IsomorphismSkewbraces

▷ IsomorphismSkewbraces(obj1, obj2)

(function)

Returns: an isomorphism of skew braces if *obj1* and *obj2* are isomorphic and *fai1* otherwise. If A and B are skew braces, a skew brace homomorphism is a map $f: A \rightarrow B$ such that

$$f(a+b) = f(a) + f(b)$$
 $f(a \circ b) = f(a) \circ f(b)$

hold for all $a,b \in A$. A skew brace isomorphism is a bijective skew brace homomorphism. IsomorphismSkewbraces first computes all injective homomorphisms from (A,+) to (B,+) and then tries to find one f such that $f(a \circ b) = f(a) \circ f(b)$ for all $a,b \in A$.

1.1.11 DirectProductSkewbraces (for IsSkewbrace, IsSkewbrace)

▷ DirectProductSkewbraces(obj1, obj2)

(operation)

Returns: the direct product of obj1 and obj2

```
gap> br1 := SmallBrace(8,18);;
gap> br2 := SmallBrace(12,2);;
gap> br := DirectProductSkewbraces(br1,br2);;
gap> IsLeftNilpotent(br);
false
gap> IsRightNilpotent(br);
false
gap> IsSolvable(br);
true
```

1.1.12 DirectProductOp (for IsList, IsSkewbrace)

```
▷ DirectProductOp(arg1, arg2)
```

(operation)

1.1.13 IsTwoSided (for IsSkewbrace)

▷ IsTwoSided(obj)

(property)

Returns: true if the skew brace is two sided, false otherwise

A skew brace A is said to be two-sided if $(a+b) \circ c = a \circ c - c + b \circ c$ holds for all $a,b,c \in A$.

```
gap> IsTwoSided(SmallSkewbrace(8,2));
false
gap> IsTwoSided(SmallSkewbrace(8,4));
true
```

1.1.14 IsAutomorphismGroupOfSkewbrace (for IsAutomorphismGroup)

▷ IsAutomorphismGroupOfSkewbrace(obj)

(property)

Returns: true if the group is the automorphism group of a skew braces, false otherwise

```
gap> br := SmallSkewbrace(8,25);;
gap> aut := AutomorphismGroup(br);;
gap> Order(aut);
4
gap> IsAutomorphismGroupOfSkewbrace(aut);
true
```

1.1.15 IsClassical (for IsSkewbrace)

▷ IsClassical(obj)

(property)

Returns: true if the skew brace is of abelian type, false otherwise

Let \mathscr{X} be a property of groups. A skew brace A is said to be of \mathscr{X} -type if its additive group belongs to \mathscr{X} . In particular, skew braces of abelian type are those skew braces with abelian additive group. Such skew braces were introduced by Rump in [Rum07].

1.1.16 IsOfAbelianType (for IsSkewbrace)

```
▷ IsOfAbelianType(arg)
```

(property)

Returns: true or false

1.1.17 IsBiSkewbrace (for IsSkewbrace)

▷ IsBiSkewbrace(obj)

(property)

Returns: true if the skew brace is a bi-skew brace, false otherwise

A skew brace $(A, +, \circ)$ is said to be a bi-skew brace if $(A, \circ, +)$ is a skew brace

```
gap> Number([1..NrSmallSkewbraces(8)], k->IsBiSkewbrace(SmallSkewbrace(8,k)));
39
```

1.1.18 IsOfNilpotentType (for IsSkewbrace)

▷ IsOfNilpotentType(obj)

(property)

Returns: true if the skew brace is of nilpotent type, false otherwise

Let $\mathscr X$ be a property of groups. A skew brace A is said to be of $\mathscr X$ -type if its additive group belongs to $\mathscr X$. In particular, skew braces of nilpotent type are those skew braces with nilpotent additive group.

1.1.19 IsTrivialSkewbrace (for IsSkewbrace)

▷ IsTrivialSkewbrace(obj)

(property)

Returns: true if the skew brace is trivial, false otherwise

The function returns true if the skew brace A is trivial, i.e., $a \circ b = a + b$ for all $a, b \in A$. WARN-ING: The property IsTrivial applied to a skew brace will return true if and only if the skew brace has only one element.

```
gap> br := SmallSkewbrace(9,1);;
gap> IsTrivialSkewbrace(br);
true
gap> IsTrivial(br);
false
```

1.1.20 Skewbrace2YB (for IsSkewbrace)

▷ Skewbrace2YB(obj)

(attribute)

Returns: the set-theoretic solution associated with the skew brace obj

If *A* is a skew brace, the map $r_A: A \times A \rightarrow A \times A$

$$r_A(a,b) = (\lambda_a(b), \lambda_a(b)' \circ a \circ b)$$

is a non-degenerate set-theoretic solution of the Yang–Baxter equation. Furthermore, r_A is involutive if and only if A is of abelian type (i.e., the additive group of A is abelian).

```
gap> Skewbrace2YB(TrivialBrace(CyclicGroup(6)));
<A set-theoretical solution of size 6>
```

1.1.21 Brace2YB (for IsSkewbrace)

▷ Brace2YB(arg) (attribute)

1.1.22 SkewbraceSubset2YB (for IsSkewbrace, IsCollection)

 \triangleright SkewbraceSubset2YB(obj)

(operation)

Returns: the set-theoretic solution associated with a given subset of a skew brace

```
gap> br := TrivialSkewbrace(SymmetricGroup(3));;
gap> AsList(br);
[ <()>, <(2,3)>, <(1,2)>, <(1,2,3)>, <(1,3,2)>, <(1,3)> ]
gap> SkewbraceSubset2YB(br, last{[4,5]});
<A set-theoretical solution of size 2>
```

1.1.23 SemidirectProduct (for IsSkewbrace, IsSkewbrace, IsGeneralMapping)

▷ SemidirectProduct(A, B, s)

(operation)

Returns: the semidirect product of skew braces

Let A and B be two skew braces and σ be a skew brace action of B on A, this is a group homomorphism $\sigma: (B, \circ) \to Aut_{Br}(A)$ from the multiplicative group of B to the skew brace automorphism of A. The semidirect product of A and B with with respect to σ is the skew brace $A \rtimes_{\sigma} B$ with operations

```
(a_1,b_1)+(a_2,b_2)=(a_1+a_2,b_1+b_2), (a_1,b_1)\circ(b_2,b_2)=(a_1\circ\sigma(b_1)(a_2),b_1\circ b_2)
```

```
gap> A := SmallSkewbrace(4,2);;
gap> B := SmallSkewbrace(3,1);;
gap> s := SkewbraceActions(B,A);;
gap> Size(s);
1
gap> IdSkewbrace(SemidirectProduct(A,B,s[1]));
[ 12, 11 ]
gap> IdSkewbrace(DirectProduct(A,B));
[ 12, 11 ]
```

1.1.24 UnderlyingAdditiveGroup (for IsSkewbrace)

▷ UnderlyingAdditiveGroup(A)

(attribute)

Returns: the underlying multiplicative group of the skew brace

```
gap> br := SmallBrace(4,2);;
gap> G:=UnderlyingMultiplicativeGroup(br);;
gap> StructureDescription(G);
"C2 x C2"
```

1.1.25 UnderlyingMultiplicativeGroup (for IsSkewbrace)

▷ UnderlyingMultiplicativeGroup(A)

(attribute)

Returns: the underlying additive group of the skew brace

```
gap> br := SmallSkewbrace(6,2);;
gap> G:=UnderlyingAdditiveGroup(br);;
gap> IsAbelian(G);
false
```

Chapter 2

Algebraic Properties of Braces

2.1 Braces and Radical Rings

2.1.1 AdditiveGroupOfRing (for IsRing)

AdditiveGroupOfRing(ring)

(attribute)

Returns: a group

This function returns a permutation representation of the additive group of the given ring.

```
gap> rg := SmallRing(8,10);;
gap> StructureDescription(AdditiveGroupOfRing(rg));
"C4 x C2"
```

2.1.2 IsJacobsonRadical (for IsRing)

▷ IsJacobsonRadical(ring)

(attribute)

Returns: true if the ring is radical and false otherwise. This function checks whether a ring is Jacobson radical.

```
gap> rg := SmallRing(8,11);;
gap> IsJacobsonRadical(rg);
true
gap> rg := SmallRing(8,20);;
gap> IsJacobsonRadical(rg);
false
Example
```

2.2 Braces and Yang-Baxter Equation

2.2.1 Table2YB (for IsList)

Returns: the solution given by the table

Given the table with r(x, y) in the position (x, y) find the corresponding r

```
gap> 1 := Table(SmallIYB(4,13));;
gap> t := Table2YB(1);;
Example
```

```
gap> IdCycleSet(YB2CycleSet(t));
[ 4, 13 ]
```

2.2.2 Evaluate (for IsYB, IsList)

▷ Evaluate(obj, pair)

(operation)

Returns: a pair of two integers

Given the pair (x, y) this function returns r(x, y).

2.2.3 LyubashenkoYB (for IsInt, IsPerm, IsPerm)

▷ LyubashenkoYB(size, f, g)

(operation)

Returns: a permutation solution to the YBE

Finite Lyubashenko (or permutation) solutions are defined as follows: Let $X = \{1, ..., n\}$ and $f, g: X \to X$ be bijective functions such that fg = gf. Then (X, r), where r(x, y) = (f(y), g(x)), is a set-theoretic solution to the YBE.

```
Example

gap> yb := LyubashenkoYB(4, (1,2),(3,4));

<A set-theoretical solution of size 4>

gap> Permutations(last);

[[(1,2), (1,2), (1,2), (1,2)], [(3,4), (3,4), (3,4), (3,4)]]
```

2.2.4 IsIndecomposable (for IsYB)

▷ IsIndecomposable(X)

(property)

Returns: true if the involutive solutions is indecomposable

2.2.5 Table (for IsYB)

▷ Table(obj)

(attribute)

Returns: a table with the image of the solution The table shows the value of r(x, y) for each (x, y)

```
Example

gap> yb := SmallIYB(3,2);;

gap> Table(yb);

[[[1,1],[2,1],[3,2]],[[1,2],[2,2],[3,1]],[[2,3],[1,3],[3,
```

2.2.6 DehornoyClass (for IsYB)

▷ DehornoyClass(obj)

(attribute)

Returns: The class of an involutive solution

```
gap> cs := SmallCycleSet(4,13);;
gap> yb := CycleSet2YB(cs);;
gap> DehornoyClass(yb);
2
gap> cs := SmallCycleSet(4,19);;
gap> yb := CycleSet2YB(cs);;
gap> DehornoyClass(yb);
4
```

2.2.7 DehornoyRepresentationOfStructureGroup (for IsYB, IsObject)

▷ DehornoyRepresentationOfStructureGroup(obj, variable)

(operation)

Returns: A faithful linear representation of the structure group of obj

```
_ Example _
gap> cs := SmallCycleSet(4,13);;
gap> yb := CycleSet2YB(cs);;
gap> Permutations(yb);
[ [ (3,4), (1,3,2,4), (1,4,2,3), (1,2) ],
  [(2,4), (1,4,3,2), (1,2,3,4), (1,3)]
gap> field := FunctionField(Rationals, 1);;
gap> q := IndeterminatesOfFunctionField(field)[1];;
gap> G := DehornoyRepresentationOfStructureGroup(yb, q);;
gap> x1 := G.1;;
gap> x2 := G.2;;
gap> x3 := G.3;;
gap > x4 := G.4;;
gap> x1*x2=x2*x4;
true
gap > x1*x3=x4*x2;
gap> x1*x4=x3*x3;
true
gap > x2*x1=x3*x4;
gap> x2*x2=x4*x1;
true
gap> x3*x1=x4*x3;
true
```

2.2.8 IdYB (for IsYB)

 \triangleright IdYB(obj) (attribute)

Returns: the identification number of obj

```
gap> cs := SmallCycleSet(5,10);;
gap> IdCycleSet(cs);
```

```
[ 5, 10 ]
gap> cs := SmallCycleSet(4,3);;
gap> yb := CycleSet2YB(cs);;
gap> IdYB(yb);
[ 4, 3 ]
```

2.2.9 LinearRepresentationOfStructureGroup (for IsYB)

▷ LinearRepresentationOfStructureGroup(obj)

(attribute)

Returns: the permutation brace of the involutive solution of *obj* a linear representation of the structure group of a finite involutive solution

```
gap> yb := SmallIYB(5,86);;
gap> IdBrace(IYBBrace(yb));
[ 6, 2 ]
```

Chapter 3

YangBaxter automatic generated documentation

3.1 YangBaxter automatic generated documentation of properties

3.1.1 IsIndecomposable (for IsCycleSet)

▷ IsIndecomposable(arg)

(property)

Returns: true if the cycle set is indecomposable

Let *X* be a cycle set. We say that *X* is indecomposable if the group $\mathscr{G}(X) = \langle \varphi_x : x \in X \rangle$ acts transitively on *X*.

Chapter 4

Ideals and left ideals

In this section we describe several functions related to ideals and left ideals of skew braces. References: [GV17] and [SV18].

4.1 Left ideals

An left ideal I of a skew brace A is a subgroup I of the additive group of A such that $\lambda_a(I) \subseteq I$ for all $a \in A$.

4.1.1 LeftIdeals (for IsSkewbrace)

```
\triangleright LeftIdeals(obj) (attribute)
```

Returns: a list with the left ideals of the skew brace obj

4.1.2 StrongLeftIdeals (for IsSkewbrace)

```
	riangleright{	riangleright{
```

Returns: a list with the left ideals of the skew brace obj that are normal in the additive group of A

4.1.3 IsLeftIdeal (for IsSkewbrace, IsCollection)

```
\triangleright IsLeftIdeal(obj) (operation)
```

Returns: true if the subset is a left ideal of obj

4.2 Ideals

An ideal I of a skew brace A is a normal subgroup I of the additive group of A such that $\lambda_a(I) \subseteq I$ and $a \circ I = I \circ a$ for all $a \in A$.

4.2.1 IsIdeal (for IsSkewbrace, IsCollection)

```
▷ IsIdeal(obj, subset)
```

(operation)

Returns: true if the subset is a left ideal of obj

4.2.2 Ideals (for IsSkewbrace)

▷ Ideals(obj)

(attribute)

Returns: a list with the ideals of the skew brace obj

4.2.3 AsIdeal (for IsSkewbrace, IsCollection)

```
▷ AsIdeal(arg1, arg2)
```

(operation)

4.2.4 IdealGeneratedBy (for IsSkewbrace, IsCollection)

▷ IdealGeneratedBy(obj, subset)

(operation)

Returns: the ideal of obj generated by the given subset

The ideal of a skew brace A generated by a subset X is the intersection of all the ideals of A containing X.

4.2.5 IntersectionOfTwoIdeals (for IsSkewbrace and IsIdealInParent, IsSkewbrace and IsIdealInParent)

▷ IntersectionOfTwoIdeals(ideal1, ideal2)

(operation)

Returns: the intersection of ideal1 and ideal2

```
gap> br := SmallSkewbrace(6,6);;
gap> Ideals(br);;
gap> IntersectionOfTwoIdeals(last[2],last[3]);
<brace of size 1>
```

4.2.6 SumOfTwoIdeals (for IsSkewbrace and IsIdealInParent, IsSkewbrace and IsIdealInParent)

▷ SumOfTwoIdeals(ideal1, ideal2)

(operation)

Returns: the sum of ideal1 and ideal2

```
gap> br := SmallSkewbrace(6,6);;
gap> Ideals(br);;
gap> SumOfTwoIdeals(last[2],last[3]);
<brace of size 6>
```

4.3 Sequences (left) ideals

4.3.1 LeftSeries (for IsSkewbrace)

▷ LeftSeries(obj)

(attribute)

Returns: the left ideals of the left series of obj

The left series of a skew brace A is defined recursively as $A^1 = A$ and $A^{n+1} = A * A^n$ for $n \ge 1$, where $a * b = \lambda_a(b) - b$. Each A^n is a left ideal.

4.3.2 RightSeries (for IsSkewbrace)

▷ RightSeries(obj)

(attribute

Returns: the ideals of the right series of *obj*

The right series of a skew brace 0A is defined recursively as $A^{(1)} = A$ and $A^{(n+1)} = A * A^{(n)}$ for $n \ge 1$, where $a * b = \lambda_a(b) - b$

4.3.3 IsLeftNilpotent (for IsSkewbrace)

▷ IsLeftNilpotent(obj)

(property)

Returns: true if the skew brace obj is left nilpotent.

A skew brace *A* is said to be left nilpotent if there exists $n \ge 1$ such that $A^n = 0$.

```
gap> IsLeftNilpotent(SmallBrace(8,18));
true
gap> IsLeftNilpotent(SmallBrace(12,2));
false
```

4.3.4 IsSimpleSkewbrace (for IsSkewbrace)

▷ IsSimpleSkewbrace(obj)

(property)

Returns: true if the skew brace obj is simple.

A skew brace A is said to be simple if $\{0\}$ and A are its only ideals.

```
gap> IsSimple(SmallSkewbrace(12,22));
true
gap> IsSimple(SmallSkewbrace(12,21));
false
```

4.3.5 IsRightNilpotent (for IsSkewbrace)

▷ IsRightNilpotent(obj)

(property)

Returns: true if the skew brace obj is right nilpotent.

A skew brace A is said to be right nilpotent if there exists $n \ge 1$ such that $A^{(n)} = 0$.

```
gap> IsRightNilpotent(SmallBrace(8,18));
false
gap> IsRightNilpotent(SmallBrace(12,2));
true
```

4.3.6 LeftNilpotentIdeals (for IsSkewbrace)

▷ LeftNilpotentIdeals(obj)

(attribute)

Returns: the list of right or left nilpotent ideals of obj

An ideal *I* of a skew brace *A* is said to be left if it is left nilpotent as a skew brace.

4.3.7 RightNilpotentIdeals (for IsSkewbrace)

▷ RightNilpotentIdeals(obj)

(attribute)

Returns: the list of right or left nilpotent ideals of obj

An ideal *I* of a skew brace *A* is said to be right nilpotent if An ideal *I* of a skew brace *A* is said to be left if it is right nilpotent as a skew brace.

```
gap> br := SmallBrace(8,18);;
gap> IsLeftNilpotent(br);
true
gap> IsRightNilpotent(br);
false
gap> Length(LeftNilpotentIdeals(br));
3
gap> Length(RightNilpotentIdeals(br));
2
```

4.3.8 SmoktunowiczSeries (for IsSkewbrace, IsInt)

▷ SmoktunowiczSeries(obj, bound)

(operation)

Returns: a list of bound left ideals of the Smoktunowicz's series of obj

The Smoktunowicz's series of a skew brace A is defined recursively as $A^{[1]} = A$ and $A^{[n+1]}$ is the additive subgroup of A generated by $A^{[i]} * A^{[n+1-i]}$ for $1 \le i+j \le n+1$, where $a*b = \lambda_a(b)-b$.

4.3.9 Socle (for IsSkewbrace)

▷ Socle(obj) (attribute)

Returns: the socle of obj

The socle of a skew brace *A* is the ideal ker $\lambda \cap Z(A, +)$.

4.3.10 Annihilator (for IsSkewbrace)

▷ Annihilator(obj)

(attribute)

Returns: the annihilator of *obj*

The socle of a skew brace *A* is the ideal $\ker \lambda \cap Z(A, +) \cap Z(A, \circ)$.

4.4 Mutipermutation skew braces

4.4.1 SocieSeries (for IsSkewbrace)

▷ SocleSeries(obj)

(operation)

Returns: the socle series of obj

The socle series of a skew brace A is defined recursively as $A_1 = A$ and $A_{n+1} = A_n/\operatorname{Soc}(A_n)$, see [SV18].

4.4.2 MultipermutationLevel (for IsSkewbrace)

▷ MultipermutationLevel(obj)

(attribute)

Returns: the multipermutation level of the skew brace obj

The multipermutation level of a skew brace A is defined as the smallest positive integer n such that the n-th term A_n of the socle series has only one element, see Definition 5.17 of [SV18].

```
gap> br := SmallBrace(8,20);;
gap> SocleSeries(br);
[ <brace of size 8>, <brace of size 1> ]
gap> MultipermutationLevel(br);
2
```

4.4.3 IsMultipermutation (for IsSkewbrace)

▷ IsMultipermutation(obj)

(property)

Returns: true if the skew brace obj has finite multipermutation level and false otherwise

4.4.4 Fix (for IsSkewbrace)

 \triangleright Fix(obj) (attribute)

Returns: the left ideal $\{x \in A : \lambda_a(x) = x \ \forall a \in A\}$ of the skew brace A.

4.4.5 KernelOfLambda (for IsSkewbrace)

▷ KernelOfLambda(obj)

(attribute)

Returns: the kernel of the map λ as a subset of elements of the skew brace obj.

```
gap> br := SmallBrace(6,1);;
gap> KernelOfLambda(br);
[ <()>, <(1,2,3)(4,5,6)>, <(1,3,2)(4,6,5)> ]
```

4.4.6 Quotient (for IsSkewbrace, IsSkewbrace)

▷ Quotient(obj, ideal)

(operation)

Returns: the quotient obj by ideal

```
gap> br := SmallBrace(8,10);;
gap> ideals := Ideals(br);;
gap> Quotient(br, ideals[3]);
<brace of size 4>
gap> br/ideals[3];
<brace of size 4>
```

4.5 Prime and semiprime ideals

4.5.1 IsPrimeBrace (for IsSkewbrace)

 \triangleright IsPrimeBrace(obj) (property)

Returns: true if the skew brace obj is prime

A skew brace A is said to be prime if for all non-zero ideals I and J one has $I * J \neq 0$

```
gap> IsPrimeBrace(SmallBrace(24,12));
false
gap> IsPrimeBrace(SmallBrace(24,94));
true
```

4.5.2 IsPrimeIdeal (for IsSkewbrace and IsIdealInParent)

 \triangleright IsPrimeIdeal(obj) (property)

Returns: true if the ideal obj is prime

An ideal I of a skew brace A is said to be prime if A/I is a prime skew brace.

4.5.3 PrimeIdeals (for IsSkewbrace)

 \triangleright PrimeIdeals(obj) (attribute)

Returns: the list of prime ideals of the skew brace obj

```
gap> Length(PrimeIdeals(SmallBrace(24,94)));
2
```

4.5.4 IsSemiprime (for IsSkewbrace)

 \triangleright IsSemiprime (obj) (attribute)

Returns: true if the skew brace obj is semiprime

An ideal I of a skew brace A is said to be semiprime if A/I is a semiprime skew brace.

```
gap> br := DirectProductSkewbraces(SmallSkewbrace(12,22),SmallSkewbrace(12,22));;
gap> IsSemiprime(br);
true
```

4.5.5 IsSemiprimeIdeal (for IsSkewbrace and IsIdealInParent)

▷ IsSemiprimeIdeal(obj)

(attribute)

Returns: true if the ideal obj is semiprime

```
gap> SemiprimeIdeals(SmallSkewbrace(12,24));
[ <skew brace of size 12> ]
gap> IsSemiprimeIdeal(last[1]);
true
```

4.5.6 SemiprimeIdeals (for IsSkewbrace)

▷ SemiprimeIdeals(obj)

(attribute)

Returns: the list of semiprime ideals of the skew brace obj

```
gap> SemiprimeIdeals(SmallSkewbrace(12,24));
[ <skew brace of size 12> ]
gap> Length(SemiprimeIdeals(SmallSkewbrace(12,22)));
2
```

4.5.7 BaerRadical (for IsSkewbrace)

▷ BaerRadical(obj)

(attribute)

Returns: the Baer radical of the skew brace obj

```
gap> br := SmallSkewbrace(6,2);;
gap> BaerRadical(br);
<skew brace of size 6>
```

4.5.8 IsBaer (for IsSkewbrace)

▷ IsBaer(obj)

(property)

Returns: true if the skew brace obj is ia Baer radical skew brace.

A skew brace A is said to be Baer radical if A = B(A), where B(A) is the Baer radical of A (i.e., the intersection of all prime ideals of A).

```
gap> br := SmallSkewbrace(6,2);;
gap> IsBaer(br);
true
Example

true
```

4.5.9 WedderburnRadical (for IsSkewbrace)

ightharpoonup WedderburnRadical(obj)

(attribute)

Returns: the Wedderburn radical of the skew brace obj

The Wedderburn radical of a skew brace is the intersection of all its prime ideals

```
gap> br := SmallSkewbrace(6,2);;
gap> WedderburnRadical(br);
<brace of size 3>
```

4.5.10 SolvableSeries (for IsSkewbrace)

```
▷ SolvableSeries(obj)
```

(attribute)

Returns: a list with the solvable series of the skew brace obj

The solvable series of a skew brace A is defined recursively as $A_1 = A$ and $A_{n+1} = A_n * A_n$ for $n \ge 1$, where $a * b = \lambda_a(b) - b$

```
gap> br := SmallSkewbrace(8,20);;
gap> IsSolvable(br);
true
gap> SolvableSeries(br);
[ <skew brace of size 8>, <brace of size 2>, <brace of size 1> ]
gap> br := SmallSkewbrace(12,23);;
gap> IsSolvable(br);
false
```

4.5.11 IsMinimalIdeal (for IsSkewbrace and IsIdealInParent)

```
▷ IsMinimalIdeal(obj, ideal)
```

(property)

Returns: true if ideal is a minimal ideal of obj An ideal I of A is said to be minimal if does not contain any other ideal of A. To check if an ideal I of A is minimal, one computes the ideals of I and keep only those that are simple as a skew brace.

4.5.12 MinimalIdeals (for IsSkewbrace)

▷ MinimalIdeals(obj)

(attribute)

Returns: a list of minimal ideals of the skew brace obj

References

- [GV17] L. Guarnieri and L. Vendramin. Skew braces and the Yang–Baxter equation. *Math. Comp.*, 86(307):2519–2534, 2017. 3, 14
- [Rum07] Wolfgang Rump. Braces, radical rings, and the quantum Yang-Baxter equation. *J. Algebra*, $307(1):153-170,\,2007.$ 6
- [SV18] Agata Smoktunowicz and Leandro Vendramin. On skew braces (with an appendix by N. Byott and L. Vendramin). *J. Comb. Algebra*, 2(1):47–86, 2018. 14, 18, 19

Index

AdditiveGroupOfRing	for IsSkewbrace and IsIdealInParent,
for IsRing, 9	IsSkewbrace and IsIdealInParent, 15
Annihilator	${\tt IsAutomorphismGroupOfSkewbrace}$
for IsSkewbrace, 18	for IsAutomorphismGroup, 6
AsIdeal	IsBaer
for IsSkewbrace, IsCollection, 15	for IsSkewbrace, 21
AutomorphismGroup	IsBiSkewbrace
for IsSkewbrace, 4	for IsSkewbrace, 6
	IsClassical
BaerRadical	for IsSkewbrace, 6
for IsSkewbrace, 21	IsIdeal
Brace2YB	for IsSkewbrace, IsCollection, 15
for IsSkewbrace, 7	IsIndecomposable
DehemovClagg	for IsCycleSet, 13
DehornoyClass for IsYB, 11	for IsYB, 10
·	IsJacobsonRadical
DehornoyRepresentationOfStructureGroup for IsYB, IsObject, 11	for IsRing, 9
DirectProductOp	IsLeftIdeal
for IsList, IsSkewbrace, 6	for IsSkewbrace, IsCollection, 14
DirectProductSkewbraces	IsLeftNilpotent
for IsSkewbrace, IsSkewbrace, 5	for IsSkewbrace, 16
for isskeworace, isskeworace, s	IsMinimalIdeal
Evaluate	for IsSkewbrace and IsIdealInParent, 22
for IsYB, IsList, 10	IsMultipermutation
, ,	for IsSkewbrace, 19
Fix	IsOfAbelianType
for IsSkewbrace, 19	for IsSkewbrace, 6
	<pre>IsOfNilpotentType</pre>
IdBrace	for IsSkewbrace, 7
for IsSkewbrace, 5	IsomorphismSkewbraces, 5
IdealGeneratedBy	IsPrimeBrace
for IsSkewbrace, IsCollection, 15	for IsSkewbrace, 20
Ideals	IsPrimeIdeal
for IsSkewbrace, 15	for IsSkewbrace and IsIdealInParent, 20
IdSkewbrace	IsRightNilpotent
for IsSkewbrace, 4	for IsSkewbrace, 17
IdYB	IsSemiprime
for IsYB, 11	for IsSkewbrace, 20
IntersectionOfTwoIdeals	

IsSemiprimeIdeal	for IsSkewbrace, 7
for IsSkewbrace and IsIdealInParent, 21	SkewbraceSubset2YB
IsSimpleSkewbrace	for IsSkewbrace, IsCollection, 7
for IsSkewbrace, 17	SmallBrace
IsSkewbrace	for IsInt, IsInt, 4
for IsAttributeStoringRep, 3	SmallSkewbrace
IsTrivialSkewbrace	for IsInt, IsInt, 3
for IsSkewbrace, 7	SmoktunowiczSeries
IsTwoSided	for IsSkewbrace, IsInt, 18
for IsSkewbrace, 6	Socle
	for IsSkewbrace, 18
KernelOfLambda	SocleSeries
for IsSkewbrace, 19	for IsSkewbrace, 18
	SolvableSeries
LeftIdeals	for IsSkewbrace, 22
for IsSkewbrace, 14	StrongLeftIdeals
LeftNilpotentIdeals	for IsSkewbrace, 14
for IsSkewbrace, 17	SumOfTwoIdeals
LeftSeries	for IsSkewbrace and IsIdealInParent
for IsSkewbrace, 16	IsSkewbrace and IsIdealInParent, 16
LinearRepresentationOfStructureGroup	isskeworace and isideanin arent, to
for IsYB, 12	Table
LyubashenkoYB	for IsYB, 10
for IsInt, IsPerm, IsPerm, 10	Table2YB
M::1T11-	for IsList, 9
MinimalIdeals	TrivialBrace
for IsSkewbrace, 22	for IsGroup, 4
MultipermutationLevel	TrivialSkewbrace
for IsSkewbrace, 19	for IsGroup, 4
PrimeIdeals	Tol Isoloup, 1
for IsSkewbrace, 20	UnderlyingAdditiveGroup
for isonewordee, 20	for IsSkewbrace, 8
Quotient	UnderlyingMultiplicativeGroup
for IsSkewbrace, IsSkewbrace, 19	for IsSkewbrace, 8
	·
${\tt RightNilpotentIdeals}$	WedderburnRadical
for IsSkewbrace, 17	for IsSkewbrace, 21
RightSeries	
for IsSkewbrace, 16	
a	
SemidirectProduct	
for IsSkewbrace, IsSkewbrace, IsGen-	
eralMapping, 8	
SemiprimeIdeals	
for IsSkewbrace, 21	
Skewbrace	
for IsList, 3	
Skewbrace2YB	