캡스톤 프로젝트 교통 예측 기반 경로 안내 시스템

화석은 그린캠프로

19011481 최우석 19011546 윤태형 19011547 김상원 19011582 강주현

CapStone Project as Medical Project as Medical Project and Medical

Chapter 1

프로젝트 설명

Chapter 1 Chapter 2 Chpater3

Chapter 2

프로젝트 진행상황

Chapter 3 앞으로의 방향성

Chapter 1 - 프로젝트 설명

개요: [1] 도로교통 이력 자료를 활용하여 미래 교통상황을 예측하고, 이를 기반으로 추천 경로를 제공 개요: [2] 다양한 방식의 모델링을 통해 도로 네트워크의 구간별 미래 교통상황 예측 및 활용 개요: [3] 설계 목적에 따라, 통행시간 최단경로 및 예상통행시간(Estimated Time of Arrival, ETA) 변화 최 소경로 등 사용자 목적에 부합하는 추천 경로를 제공

> 인공지능 & 경로 탐색 알고리 즘

> > 실시간 교통경로 안내 시스템

Chapter 1 - 프로젝트 설명

Data 전처리 & Algorithm

- 1. Deep Learning에 필요한 DataSet의 결측치 Imputation
- 2. 최단 경로 탐색을 위한 그래프 탐색 알고리즘

Deep Learning

최단 경로 탐색 결과를 토대로 한 ETA 예측 모델링 탐색

최단 경로 탐색을 통한 실시간 교통경로 안내 시스템

Web Service

카카오MAP API, React, Flask 등을 사용한 Web Serivce 구축

Chapter 1 - 프로젝트 설명 교통 예측 기반 경로 안내 시스템

VDS

차량감지장치(VDS) 차로유형에 따른 교통량, 평균속도를 감지 장치를 통해 데 이터화

콘존

IC(나들목), JC(분기점), TG(요금소) 3개의 도로 유형을 통과하는, 차량수가 일정한 고속도 로 구간

DataSet 전처리

VDS DataSet에 누락된 결측 치 Imputation(머신러닝)

1. DATASET 전처리 범위에 관련된 문제

Scope Type A

전국 고속도로 + 전국 국도

- 1. Scope가 너무 넓어 전처리 해야할 데이터의 양이 너무 방대
- 2. 국도 등 일부 도로에는 교통량에 관련된 DataSet이 존재하지 않음 (탐색 불가능)

Scope Type B

전국 고속도로 + 일부 광역시 (국도 제외)

- 1. 국도가 아닌 고속도로 -> VDS로 측정한 콘존 데이터만 필요
- 2. 콘존 데이터의 속성이 교통량을 예측하기에 적절
- 3. 사용자에게 국도 도로에 관련된 정보를 제공해줄 수 없음

SCOPE Type B 선택

Chapter 2 – 프로젝트 진행 상황 및 의록 이번 경로 안내 시스템

DataSet 소개

Attribute Name	Explanation
SUM_HMIN	도로 정보에 관련된 시각을 분 단위로 표현
CZN_CD	콘존에 대한 NODE 번호
COCT_CD	버스, 승용차 등 교통수단의 종류
TRFFCVLM	VDS가 측정한 교통량
SPD_AVG	VDS가 측정한 평균 속도
PASNG_RUNTM_MINS	통행 시간

0000	0010CZE080	1	18	91.18	674
0000	0010CZE085	1	16	90.74	438
0000	0010CZE090	1	17	88.65	422
0000	0010CZE100	1	20	96.71	453
0000	0010CZE105	1	12	89.25	225
0000	0010CZE110	1	16	91.82	646
0000	0010CZE120	1	20	86.95	384
0000	0010CZE130	1	51	89.6	164
0000	0010CZE140	1	59	92.25	299
0000	0010CZE150	1	58	92.53	213

DataSet 결측치 Imputation 머신러닝 기법 소개

결측치 대응 방법 : 삭제 VS 예측

DataSet의 크기가 클 때, 효과적임 (vs CatBoost, XGBoost)

- 1. 5분 간격 기준 콘존 노드에 대해 교통량, 평균 속도 를 예측
- 2. LightGBM으로 예측한 결과를 토대로 통행 시간 계 산

2. 상황에 따른 다른 결측치 예측 방법

CASE A: 특정 Node에 대해 데이터가 아예 없는 경우

Chapter 2 – 프로젝트 진행 상황 및 매우기만 경로 안내 시스템

2. 상황에 따른 다른 결측치 예측 방법

CASE A: 특정 Node에 대해 데이터가 아예 없는 경우

Α	В	С	D	Е	F	G
SUM_YRM	SUM_HMI	CZN_CD	COCT_CD	TRFFCVLN	SPD_AVG	PASNG_RI
20240212		0010CZE020	1	-1	0	0
20240212		0010CZE020	1	-1	0	0
20240212	0010	0010CZE020	1	-1	0	0
20240212		0010CZE020	1	-1	0	0
20240212	0020	0010CZE020	1	-1	0	0
20240212	0150	0010CZE020	1	-1	0	0
20240212	0155	0010CZE020	1	-1	0	0
20240212	0200	0010CZE020	1	-1	0	0
20240212	0205	0010CZE020	1	-1	0	0
20240212	1140	0010CZE020	1	-1	0	0
20240212	1145	0010CZE020	1	-1	0	0
20240212	1150	0010CZE020	1	-1	0	0
20240212	1155	0010CZE020	1	-1	0	0
20240212	0025	0010CZE020	1	-1	0	0
20240212	0030	0010CZE020	1	-1	0	0
20240212	0035	0010CZE020	1	-1	0	0
20240212	0040	0010CZE020	1	-1	0	0
20240212	0425	0010CZE020	1	-1	0	0
20240212		0010CZE020	1	-1	0	0
20240212	0435	0010CZE020	1	-1	0	0
20240212	0440	0010CZE020	1	-1	0	0
20240212	0445	0010CZE020	1	-1	0	0
20240212	2200	0010CZE020	1	-1	0	0
20240212	2205	0010CZE020	1	-1	0	0
20240212	2210	0010CZE020	1	-1	0	0
20240212	2215	0010CZE020	1	-1	0	0
20240212	2220	0010CZE020	1	-1	0	0
20240212	0105	0010CZE020	1	-1	0	0
20240212	0110	0010CZE020	1	-1	0	0
20240212		0010CZE020	1	-1	0	0
20240212	0120	0010CZE020	1	-1	0	0

CZN_CD 🛒	SUM_HMIN	WEIGHTED_PASNG_RUNTM_MINS	WEIGHTED_SPD_AVG	WEIGHTED_TRFFCVLM
0010CZE020	0	39	98.76	56
0010CZE020	5	39	98.87	55
0010CZE020	10	39	98.87	55
0010CZE020	15	39	99.22	53
0010CZE020	20	39	99.22	53
0010CZE020	25	39	99.06	51
0010CZE020	30	39	99.06	51
0010CZE020	35	39	99.09	49
0010CZE020	40	39	99.09	49
0010CZE020	45	39	99.45	46
0010CZE020	50	39	99.45	46
0010CZE020	55	39	99.46	44
0010CZE020	100	39	99.46	44
0010CZE020	105	39	99.6	43
0010CZE020	110	39	99.6	43
0010CZE020	115	39	99.86	41
0010CZE020	120	39	99.86	41
0010CZE020	125	39	99.82	38
0010CZE020	130	39	99.82	38
0010CZE020	135	38	100.23	36
0010CZE020	140	38	100.23	36
0010CZE020	145	39	99.83	35
0010CZE020	150	39	99.83	35
0010CZE020	155	39	99.92	33
0010CZE020	200	39	99.92	33
0010CZE020	205	39	99.7	31
0010CZE020	210	39	99.7	31
0010CZE020	215	39	99.54	29
0010CZE020	220	39	99.54	29
0010CZE020	225	39	99.28	28
0010CZE020	230	39	99.28	28

전처리 전

전처리 후

Chapter 2 - 프로젝트 진행 상황

2. 상황에 따른 다른 결측치 예측 방법

CASE B: 특정 Node에 대해 데이터가 일부만 결측된 경우

2. 상황에 따른 다른 결측치 예측 방법

CASE B: 특정 Node에 대해 데이터가 일부만 결측된 경우

SUM_YR SUM_H	CZN_CD	COCT_(-	TRFFCV	SPD_AV -	PASNG_~
20240212 0000	0650CZE120	1	2	96.5	101
20240212 0005	0650CZE120	1	2	109	89
20240212 0010	0650CZE120	1	4	98	100
20240212 0015	0650CZE120	1	2	131	74
20240212 0145	0650CZE120	1	2	88	112
20240212 0150	0650CZE120	1	1	109	89
20240212 0155	0650CZE120	1	2	81.5	121
20240212 0200	0650CZE120	1	-1	0	0

전차	2	선
----	---	---

0650CZE120	200		97	99.92	33
0650CZE120	205		99	97.5	2
0650CZE120	210		97	99.7	31
0650CZE120	215	•	98	99.54	29
0650CZE120	220		88	110	1
0650CZE120	225		103	94	1
0650CZE120	230		99	98	2

전처리 후

3. 데이터 활용에 대한 전처리

1) 차로유형이 다를 경우

CZN_CD -	COCT_CD -	TRFFCVLM
0010CZE380	1	502
0010CZE385	1	530
0010CZE390	1	613
0010CZE400	1	534
0010CZE405	1	415
0010CZE410	1	261
0010CZE410	2	-1
0010CZE420	1	337
0010CZE420	2	26
0010CZE430	1	-1
0010CZE430	2	-1
0010CZE440	1	451
0010CZE440	2	34
0010CZE450	1	468
0010CZE450	2	38
0010CZE460	1	423

전처리 전

CZN_CD ÷	CZN_LENGTH ÷	SUM_HMIN ÷	ST_ND_ID ÷	ST_ND_NM
0010CZE010	1820	0		구서IC
0010CZE010	1820	5	4	구서IC
0010CZE010	1820	10	4	구서IC
0010CZE010	1820	15	4	구서IC
0010CZE010	1820	20	4	구서IC
0010CZE010	1820	25		구서IC
0010CZE010	1820	30		구서IC
0010CZE010	1820	35		구서IC
0010CZE010	1820	40		구서IC
0010CZE010	1820	45	4	구서IC
0010CZE010	1820	50	4	구서IC
0010CZE010	1820	55	4	구서IC
0010CZE010	1820	100		구서IC
0010CZE010	1820	105		구서IC
0010CZE010	1820	110		구서IC
0010CZE010	1820	115		구서IC
0010CZE010	1820	120	4	구서IC
0010CZE010	1820	125		구서IC
0010CZE010	1820	130	4	구서IC
0010CZE010	1820	135	4	구서IC
0010CZE010	1820	140	4	구서IC
0010CZE010	1820	145		구서IC
0010CZE010	1820	150		구서IC
0010CZE010	1820	155	4	구서IC

전처리 후

- 3. 데이터 활용에 대한 전처리
- 2) 인공지능 모델링이 활용할 수 있는 데이터셋으로 변환

3. 데이터 활용에 대한 전처리

2) 인공지능 모델링이 활용할 수 있는 데이터셋으로 변환

CZN_CD ÷	CZN_LENGTH ÷	SUM_HMIN ÷	ST_ND_ID ÷	ST_ND_NM
0010CZE010	1820	0		구서IC
0010CZE010	1820	5	4	구서IC
0010CZE010	1820	10	4	구서IC
0010CZE010	1820	15	4	구서IC
0010CZE010	1820	20	4	구서IC
0010CZE010	1820	25	4	구서IC
0010CZE010	1820	30		구서IC
0010CZE010	1820	35	4	구서IC
0010CZE010	1820	40	4	구서IC
0010CZE010	1820	45	4	구서IC
0010CZE010	1820	50	4	구서IC
0010CZE010	1820	55	4	구서IC
0010CZE010	1820	100	4	구서IC
0010CZE010	1820	105	4	구서IC
0010CZE010	1820	110	4	구서IC
0010CZE010	1820	115	4	구서IC
0010CZE010	1820	120	4	구서IC
0010CZE010	1820	125	4	구서IC
0010CZE010	1820	130	4	구서IC
0010CZE010	1820	135	4	구서IC
0010CZE010	1820	140	4	구서IC
0010CZE010	1820	145	4	구서IC
0010CZE010	1820	150	4	구서IC
0010CZE010	1820	155	4	구서IC

SUM_HMIN		2 ‡	3 ÷			7 ÷	8 \$	9 \$
2024/03/07	00:00:00	103.65736842105264	96.324	84.64	94.42	99.63	89.40899999999999	90.72111111111111
2024/03/07	00:05:00	99.5796	95.96220779220778	85.73	94.17	98.77	87.22783783783784	88.8965909090909
2024/03/07	00:10:00	113.69615384615383	94.9366666666668	83.86	94.17	105.9	88.09536585365854	89.53214285714286
2024/03/07	00:15:00	101.35	97.5131506849315	90.72	94.06	104.09	89.72054054054054	94.70702127659574
2024/03/07	00:20:00	106.2248387096774	95.35428571428572	83.52	94.06	101.69	94.414	90.43682926829268
2024/03/07	00:25:00	102.97	93.07661971830986	79.46	93.89	103.32	91.86871794871794	90.99260869565217
2024/03/07	00:30:00	105.23673913043478	95.39983606557377	81.02	93.89	105.81	90.5597435897436	87.73818181818181
2024/03/07	00:35:00	101.76090909090908	94.41714285714286	93.72	93.44	93.24	89.78263157894736	90.47
2024/03/07	00:40:00	100.27	96.5561971830986	81.9	93.44	101.92	88.46176470588235	91.07473684210528
2024/03/07	00:45:00	101.91666666666666	95.93907692307693	93.64	93.08	102.33	94.05235294117648	91.0782978723404
2024/03/07	00:50:00	111.83365853658536	95.72473684210526	85.72	93.08	103.58	97.14	91.312
2024/03/07	00:55:00	108.94212765957448	94.01857142857142	87.27	93.07	99.76	92.3027027027027	93.32244444444444
2024/03/07	01:00:00	100.7154761904762	96.49644067796608	88.57	93.07	107.41	88.63	93.54538461538462
2024/03/07	01:05:00	106.22666666666666	92.895	91.43	92.46	101.88	89.8	90.92969696969698
2024/03/07	01:10:00	101.7678787878788	94.6355172413793	77.64	92.46	91.47	88.71466666666666	87.3855555555556
2024/03/07	01:15:00	97.50411764705882	97.10592592592592	78.97	92.06	91.62	86.55513513513515	86.14272727272727
2024/03/07	01:20:00	96.74727272727272	95.53291666666668	89.42	92.06	92.35	84.20964285714285	88.28387096774193
2024/03/07	01:25:00	100.14478260869564	91.93173913043478	77.5	91.66	97.51	89.184	86.27714285714285
2024/03/07	01:30:00	99.62902439024391	92.23	87.57	91.66	93.53	85.53885714285713	89.3202777777779
2024/03/07	01:35:00	105.97636363636364	93.8	99.31	91.43	98.0	87.87575757575758	91.59
2024/03/07	01:40:00	98.251875	92.4991836734694	81.79	91.43	95.02	95.042	86.81930232558139
2024/03/07	01:45:00	96.046	94.62877551020408	79.61	91.39	96.83	90.01821428571428	87.10106382978725
2024/03/07	01:50:00	98.4846153846154	94.88617021276596	81.94	91.39	93.36	86.76083333333333	88.7309090909091
2024/03/07	01:55:00	96.28896551724138	93.8229268292683	76.6	91.09	94.41	86.38	83.5848275862069

전처리 전 전처리 후

16

Chapter 2 – 프로젝트 진행 상황 및 매우기반경로 안내 시스템

경로 탐색 알고리즘

경로 탐색 알고리즘 선택과 최단 거리, 시간 경로 탐색

최단 경로 탐색 알고리즘 선택

DFS (깊이 우선 탐 색) 탐색할 경로의 길이가 짧은 경우 유리 |

경로가 여러 갈래로 갈라지는 경우 탐색 시간이 오래 걸림 BFS (너비 우선 탐 색)

A*

최적의 경로를 탐색할 때, 전체 경로를 탐색 ↓

탐색 시간이 오래 걸림

Dijkstra

경로 탐색에 있어 최적의 알고리즘 중 하나 국도와 같은 막힘이 있는 도로에서 좋은 알고 리즘

탐색 시간이 오래 걸림

Dijkstra 확장 경로 탐색 알고리 즘

길이 막혀 돌아가는 경우가 생길 경우 성능 저하 고속도로와 같이 길이 뚫려 있는 경우 높은

성능

최단 경로 탐색 알고리즘 선택

거리를 가중치로 두어 경로 계산

출발지부터 목적지까지 도달하는데 거치는 모든 노드를 출력 출발지 ~ 목적지 거리 계산

문제점 : 교통량은 고려하지 않고, 무조건적으로 최단 거리만 보여줌

최단 경로 탐색 알고리즘 선택

가중치 변경 : 거리► 통행 시간

가중치를 통행 시간으로 사용

Peak Time(출퇴근 시간)의 경우, 최단 경로가 아닌, 최단 시간을 추천 가능

5분 간격을 기준, <mark>사용자가 입력하는 시간대를 반영</mark> 통행 시간 가중치 최단거리 알고리즘 탐색(최단 시간 경로 탐색)

Deep Learning 모델 탐색 & 모델링

인공지능 모델 탐색

다수의 이용자를 위한 실시간 서비 스

추론 지연 시 간

ETA 예측에 필요한 시간 최소화

높은 정확도

대한민국 어떤 고속도로에서도 높은 정확도로 ETA 예측 가능한 모델 탐색

비용 대비 성능

상대적으로 적은 학습시간 & 시행착 오 높은 성능의 DL 모델 필요

인공지능 모델 탐 색 **DCRNN** 적합한 모델 선택 **STAWnet**

인공지능 모델 선 택

가까운 미래를 예측 할 때 높은 성능

A Single GTX 1080 Ti Each Epoch takes around 5min(METR-LA dataset)

전이 학습을 위한 모델 가중치 제공

DCRNN 모델 특징

Diffusion Convolution Layer 그래프 기반 Convolution 연산
↓
트래픽 데이터의 공간 의존성 캡쳐

Recurrent Layer 시간적 종속성 포착 이전 시간 단계 기억 (Hidden State) 시간에 따른 교통상황 변화 학습 및 예측

인공지능 모델 선 택

RNN 계열 모델에 비해 빠른 학습, 추론 속도 Gradient Explosion , Vanishing 없음 전체 Sequnece 한번에 입력 받고 동시 예측

STAWnet 모델 특징

STAWnet 모델 특징

Gated TCN (Temporal Convolutional Network) 시간적 종속성 포착 CNN의 수용 필드 계층 깊이 증가 -> 수용 필드 기하급수적 증 가

시계열 데이터 효과적으로 포착 가능

Skip Connection TCN 모델에서 Skip-Connection을 통해 정보 희석 문제 완화 모델의 수렴 속도 높임

STAWnet 모델 특징

Gated TCN & DAN을 통한 효과적인 예측 Non – AutoRegressive Model

학습과 추론 속도가 빠르다

$$b'_{i,t}^l = \sum_{j \leq N} \alpha_{i,j} \cdot b_{j,t}^l,$$

DAN (Dynamic attention network)

공간적 의존성 포착

h -> Hidden State, 각 Node에 대응 Self Attention을 통해 갱신

e -> node ID, 연속적인 숫자 벡터로 Mapping

Web Service - 기술 스택

React

웹 어플리케이션 프레임워크

카카오 지도 API

지도 기능 구현을 위한 API사용

AXIOS

백엔드와의 HTTP 통신

Flask

Flask

백엔드 웹 프레임워크

Docker

애플리케이션 배포 및 관리

Web Service

카카오 지도 API – 키워드로 장소 검색하기

요청

메서드	URL	인증 방식
GET	https://dapi.kakao.com/v2 /local/search/keyword.\${F ORMAT}	REST API 키

응답

이름	타입	설명
id	String	장소 ID
place_name	String	장소명
category_name	String	카테고리 이름
X	String	X 좌표값, 경위도인 경우 longitude (경도)
y	String	Y 좌표값, 경위도인 경우 latitude(위도)
road_address_nam e	String	전체 도로명 주소

수정사항

종점(순천시해룡면성산리) -> 해룡IC 경부고속국도시점 -> 구서IC

Web Service – Marker

경로 예시 [<mark>출발지</mark>, 경유지, 도착지]

['<mark>반포IC'</mark>, '서초IC', '양재IC', '금토JC']

axios.post('/get-node-info')


```
"lat": 37.50307887,
"lng": 127.0185656,
"name": "반포IC"
"lat": 37.48340668,
"lng": 127.0259732,
"name": "서초IC"
"lat": 37.46353369,
"lng": 127.0400098,
"name": "양재IC"
"lat": 37.41542457,
"lng": 127.0849341,
"name": "금토JC"
```

Web Service – Marker

```
"lat": 37.50307887,
"Ing": 127.0185656,
"name": "반포IC"
"lat": 37.48340668.
"Ing": 127.0259732,
"name": "서초IC"
"lat": 37.46353369.
"Ing": 127.0400098,
"name": "양재IC"
"lat": 37.41542457,
"Ing": 127.0849341,
"name": "금토JC"
```

모든 노드에 경위도를 바탕으로 마커를 Marker 생성

마커에 마우스를 올리면 open Info window 마우스가 벗어나면 닫기

Web Service - 경로 표시

API 호출 횟수는 N-1번 (N = 노드 개수)

API 호출 횟수 : 1번

Web Service - 경로 표시

Web Service - 경로 표시

Chapter 3 - 앞으로의 방향성 교통예측기반경로 만내시스템

경로 탐색

통행 시간을 가중치로 한 경로 탐색 구현

인공지능

프로젝트에 적합한 모델 실험을 통해 선정

Web Service

Front : 경로 표시 개선 & UI 개선

Back: Docker -> DB + Flask + Spring

감사합니다

화석은 그린캠프로

19011481 최우석 19011546 윤태형 19011547 김상원 19011582 강주현