Álgebra Linear I - prof. Thales F. V. Paiva

PROVA OPTATIVA - PO

TA T	
Nome:	
TAUTHU.	

Informações importantes:

- A avaliação é individual e sem consulta a qualquer material.
- Apresente as soluções da forma mais clara possível, com escrita legível e organizada.
- Respostas sem justificativa serão desconsideradas.
- Lembre-se de que você será avaliado por aquilo que escreveu, não por aquilo que pensou.

EXERCÍCIOS

Classifique as afirmações abaixo em Verdadeira ou Falsa, justificando cada resposta.

- $a.(\)$ Sejam $f,g:A\to B$ uma funções e $C(f,g)=\{a\in A; f(a)=f(b)\}$ o conjunto das coincidências entre f e g. Então C(f,g) é um espaço vetorial.
- b.() O subconjunto das matrizes quadradas de ordem n, com determinante igual a 1, é um subespaço vetorial de $M_n(\mathbb{R})$.
- $c.(\)$ Seja $F:U\to V$ uma transformação linear sobrejetora. Se u_1,\cdots,u_n são linearmente independentes em U, então $F(u_1),\cdots,F(u_n)$ são linearmente independentes em V.
- d.() São equivalente as afirmações:
 - (i) V é um espaço vetorial finitamente gerado;
 - (ii) existe um conjunto finito e linearmente independente em V.
- $e.(\)$ Sejam $T:U\to V$ uma transformação linear e $K=\ker T\subseteq U.$ A função $\pi:U\to U/K,$ definida por $\pi(u)=u+K,$ é linear.
- $f.(\)$ Seja W um espaço vetorial e Aut(W) o conjunto de todos os automorfismos de W. Se W possui dimensão finita, então Aut(W) também possui dimensão finita.
- $g.(\)$ Seja $B=\{u_1,\cdots,u_m\}$ uma base do espaço vetorial U,V outro espaço vetorial e $f:B\to V$ uma função. Então existe uma única transformação linear $T_f:U\to V$, tal que $T_f(u_i)=f(u_i)$, para cada $u_i\in B$.

- $h.(\)$ Denotando por $V^*=\{T:U\to\mathbb{R}; T\ {\rm \'e\ linear}\ \}$ ao conjunto de todos os funcionais lineares $U\to\mathbb{R}$ e, semelhantemente, U^{**} ao conjunto de todos os funcionais $U^*\to\mathbb{R}$, ${\rm \'e\ }$ verdade que $dimU=dimU^{**}.$
- $i.(\)$ Considere $\sigma:V\to V$ um endomorfismo e sejam $W_1=Im\sigma$ e $W_2=Im(Id-\sigma),$ onde $(Id-\sigma)(v)=v-\sigma(v),$ para cada $v\in V.$ Então $V=W_1+W_2$ e se, além disso, tal soma for direta, então $\sigma^2=\sigma.$
- $j.(\)$ Se f(v)=0, para todo funcional linear $f\in V^*,$ então podemos concluir que v=0.