

DISCLAIMER

Copyright Disclaimer under section 107 of the Copyright Act 1976, allowance is made for "fair use" for purposes such as criticism, comment, news reporting, teaching, scholarship, education and research. Fair use is a use permitted by copyright statute that might otherwise be infringing.

The following content/slides/animations are from YouTube channel named

StatQuest with Josh Starmer

In a **Random Forest**, each time you make a tree, you make a full sized tree.

In contrast, in a **Forest of Trees** made with **AdaBoost**, the trees are usually just a **node** and two **leaves**.

Some trees might be bigger than others, but there is no predetermined maximum depth.

Residual

Residual Learning

Gradient Boost Regression

Height (m)	Favorite Color	Gender	Weight (kg)
1.6	Blue	Male	88
1.6	Green	Female	76
1.5	Blue	Female	56
1.8	Red	Male	73
1.5	Green	Male	77
1.4	Blue	Female	57

Gradient Boost

Height (m)	Favorite Color	Gender	Weight (kg)
1.6	Blue	Male	88
1.6	Green	Female	76
1.5	Blue	Female	56
1.8	Red	Male	73
1.5	Green	Male	77
1.4	Blue	Female	57

Average Weight

71.2

			Weight (kg)
1.6	Blue	Male	88
1.6	Green	Female	76
1.5	Blue	Female	56
1.8	Red	Male	73
1.5	Green	Male	77
1.4	Blue	Female	57

The first thing we do is calculate the average **Weight.**

1.6	Blue	Male	88
1.6	Green	Female	76
1.5	Blue	Female	56
1.8	Red	Male	73
1.5	Green	Male	77
1.4	Blue	Female	57

The next thing we do is build a tree based on the errors from the first tree.

Average Weight 71.2

				Weight (kg)	Residual
1.6	6	Blue	Male	88	16.8
1.6	6	Green	Female	76	
1.5	5	Blue	Female	56	
1.8	3	Red	Male	73	
1.5	5	Green	Male	77	

Female

57

1.4

Blue

NOTE: The term Pseudo Residual is based on Linear Regression, where the difference between the Observed values and the Predicted values results in Residuals.

The "Pseudo" part of Pseudo
Residual is a reminder that we are
doing Gradient Boost, not Linear
Regression, and is something I'll talk
more about in Part 2 of this series
when we go through the math.

Now we will build a **Tree**, using **Height**, **Favorite Color** and **Gender**...

Height (m)	Favorite Color	Gender	Weight (kg)	Residual
1.6	Blue	Male	88	16.8
1.6	Green	Female	76	4.8
1.5	Blue	Female	56	-15.2
1.8	Red	Male	73	1.8
1.5	Green	Male	77	5.8
1.4	Blue	Female	57	-14.2

Height (m)			Residual
1.6	Blue	Male	16.8
1.6	Green	Female	4.8
1.5	Blue	Female	-15.2
1.8	Red	Male	1.8
1.5	Green	Male	5.8
1.4	Blue	Female	-14.2

By restricting the total number of leaves, we get fewer leaves than **Residuals**.

1.6	Blue	Male	16.8
1.6	Green	Female	4.8
1.5	Blue	Female	-15.2
1.8	Red	Male	1.8
1.5	Green	Male	5.8
1.4	Blue	Female	-14.2

Remember, in this example we are only allowing up to four leaves...

...but when using a larger dataset, it is common to allow anywhere from 8 to 32.

Height (m)	Favorite Color	Gender	Weight (kg)	Residual
1.6	Blue	Male		16.8
1.6	Green	Female		4.8
1.5	Blue	Female		-15.2
1.8	Red	Male		1.8
1.5	Green	Male		5.8
1.4	Blue	Female		-14.2

Height (m)	Favorite Color	Gender	Weight (kg)	Residual
1.6	Blue	Male		16.8
1.6	Green	Female		4.8
1.5	Blue	Female		-15.2
1.8	Red	Male		1.8
1.5	Green	Male		5.8
1.4	Blue	Female		-14.2

We start with the initial **Prediction**, **71.2**...

1.6	Blue	Male	88

...so the **Predicted Weight** = 71.2 + 16.8 = 88

1.6	Blue	Male	88

1.6	Blue	Male	88

Gradient Boost deals with this problem by using a Learning Rate to scale the contribution from the new tree.

The **Learning Rate** is a value between **0** and **1**.

Predicted Weight =
$$71.2 + (0.1 \times 16.8) = 72.9$$

			Weight (kg)	
1.6	Blue	Male	88	With the Learning Rate set to 0.1 , the new Prediction
				isn't as good as as it was before

In other words, scaling the tree by the **Learning Rate** results in a small step in the right direction.

> empirical evidence shows that taking lots of small steps in the right direction results in better **Predictions** with a **Testing Dataset**, i.e. lower **Variance**.

Height (m)	Favorite Color	Gender	Weight (kg)	Residual
1.6	Blue	Male	88	15.1
1.6	Green	Female	76	_
1.5	Blue	Female	56	
1.8	Red	Male	73	
1.5	Green	Male	77	
1.4	Blue	Female	57	

Residual = $(88 - (71.2 + 0.1 \times 16.8))$

...and we save that in the column for **Pseudo Residuals**.

1.6	Blue	Male	15.1
1.6	Green	Female	4.3
1.5	Blue	Female	-13.7
1.8	Red	Male	1.4
1.5	Green	Male	5.4
1.4	Blue	Female	-12.7

And here's the new tree!

Which is another small step closer to the **Observed Weight**.

$$71.2 + (0.1 \times 16.8) + (0.1 \times 15.1)$$

...and we keep making trees until we reach the maximum specified, or adding additional trees does not significantly reduce the size of the **Residuals**.

...etc...etc...etc...

Gradient Boost Classification

Likes Popcorn	Age	Favorite Color	Loves Troll 2
Yes	12	Blue	Yes
Yes	87	Green	Yes
No	44	Blue	No
Yes	19	Red	No
No	32	Green	Yes
No	14	Blue	Yes

...and walk through, step-by-step, the most common way that **Gradient Boost** fits a model to this **Training Data**.

Likes Popcorn	Age	Favorite Color	Loves Troll 2
Yes	12	Blue	Yes
Yes	87	Green	Yes
No	44	Blue	No
Yes	19	Red	No
No	32	Green	Yes
No	14	Blue	Yes

Gradient Boost Classification

Likes Popcorn	Age	Favorite Color	Loves Troll 2
Yes	12	Blue	Yes
Yes	87	Green	Yes
No	44	Blue	No
Yes	19	Red	No
No	32	Green	Yes
No	14	Blue	Yes

Odds are the ratio of something happening to something not happening.

$$log(4/2) = 0.7$$

Yes	12	Blue	Yes
Yes	87	Green	Yes
No	44	Blue	No
Yes	19	Red	No
No	32	Green	Yes
No	14	Blue	Yes

...and we do that with a Logistic Function.

log(4/2) = 0.7

Probability of Loving Troll 2 = 0.7 ←

And	let's	save	that	up
\	here	for no	ow.	- G

Yes	12	Blue	Yes
Yes	87	Green	Yes
No	44	Blue	No
Yes	19	Red	No
No	32	Green	Yes
No	14	Blue	Yes

Probability		1
of Loving =	e ^{log(4/2)} :	= 0.7
Troll 2	$1 + e^{\log(4/2)}$	

Likes Popcorn	Age	Favorite Color	Loves Troll 2	Residual
Yes	12	Blue	Yes	0.3
Yes	87	Green	Yes	0.3
No	44	Blue	No	-0.7
Yes	19	Red	No	-0.7
No	32	Green	Yes	0.3
No	14	Blue	Yes	0.3

And here's the tree!

$$0.3 + 0.3 + 0.3$$

 $(0.7 \times (1 - 0.7)) + (0.7 \times (1 - 0.7)) + (0.7 \times (1 - 0.7))$

...and do the math...

Hooray!!! We've calculated Output Values for all three leaves in the tree!

Likes Popcorn	Age	Favorite Color	Loves Troll 2	
Yes	12	Blue	Yes	
Yes	87	Green	Yes	
No	44	Blue	No	
Yes	19	Red	No	
No	32	Green	Yes	
No	14	Blue	Yes	

...and the new log(odds)

Prediction = 1.8.

$$log(odds) Prediction = 0.7 + (0.8 \times 1.4) = 1.8$$

log(4/2) = 0.7

Likes Popcorn	Age	Favorite Color	Loves Troll 2	
Yes	12	Blue	Yes	
Yes	87	Green	Yes	
No	44	Blue	No	
Yes	19	Red	No	
No	32	Green	Yes	
No	14	Blue	Yes	

...so we are taking a small step in the right direction since this person **Loves Troll 2**.

Probability =
$$\frac{e^{1.8}}{1 + e^{1.8}} = 0.9$$

 $log(odds) Prediction = 0.7 + (0.8 \times 1.4) = 1.8$

Likes Popcorn	Age	Favorite Color	Loves Troll 2		Residual
Yes	12	Blue	Yes	0.9	0.1
Yes	87	Green	Yes	0.5	0.5
No	44	Blue	No	0.5	-0.5
Yes	19	Red	No	0.1	-0.1
No	32	Green	Yes	0.9	0.1
No	14	Blue	Yes	0.9	0.1

Then we built another tree based on the new **Residuals**, the difference between the **Observed** values and the values **Predicted** by the leaf **and** the first tree...

...and the **Predicted Probability** that this individual will **Love Troll 2** is **0.9**.

Log(odds) Prediction that someone **Loves** $= 0.7 + (0.8 \times 1.4) + (0.8 \times 0.6) = 2.3$

Troll 2:

Probability =
$$\frac{e^{2.3}}{1 + e^{2.3}} = 0.9$$

Likes	Age	Favorite	Loves
Popcorn		Color	Troll 2
Yes	25	Green	???

Gradient Boosting in Sklearn

- class sklearn.ensemble.GradientBoostingClassifier(*, loss='deviance', learning_rate=0.1, n_estimators=100, subsample=1.0, criterion='friedman_mse', min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_depth=3, min_impurity_decrease=0.0, min_impurity_split=None, init=None, random_state=None, max_features=None, verbose=0, max_leaf_nodes=None, warm_start=False, validation_fraction=0.1, n_iter_no_change=None, tol=0.0001, ccp_alpha=0.0)
- class sklearn.ensemble.GradientBoostingRegressor(*, loss='ls', learning_rate=0.1, n_estimators=100, subsample=1.0, criterion='friedman_mse', min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_depth=3, min_impurity_decrease=0.0, min_impurity_split=None, init=None, random_state=None, max_features=None, alpha=0.9, verbose=0, max_leaf_nodes=None, warm_start=False, validation_fraction=0.1, n_iter_no_change=None, tol=0.0001, ccp_alpha=0.0)

XGBoost initially started as research project by Tianqi Chen but it actually became famous in 2016 Microsoft released first stable version of LightGBM

Yandex, one of Russia's leading tech companies open sources CatBoost

	XGBoost	Light	BGM	CatB	oost
Parameters Used	max_depth: 50 learning_rate: 0.16 min_child_weight: 1 n_estimators: 200	max_depth: 50 learning_rate: 0.1 num_leaves: 900 n_estimators: 300		depth: 10 learning_rate: 0.15 l2_leaf_reg= 9 iterations: 500 one_hot_max_size = 50	
Training AUC Score	0.999	Without passing indices of categorical features	Passing indices of categorical features	Without passing indices of categorical features	Passing indices of categorical features
		0.992	0.999	0.842	0.887
Test AUC Score	0.789	0.785	0.772	0.752	0.816
Training Time	970 secs	153 secs	326 secs	180 secs	390 secs
Prediction Time	184 secs	40 secs	156 secs	2 secs	14 secs
Parameter Tuning Time (for 81 fits, 200 iteration)	500 minutes	200 minutes		120 minutes	

