(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-312220 (P2002-312220A)

(43)公開日 平成14年10月25日(2002.10.25)

(51) Int.Cl. ⁷ G 0 6 F 12/00 17/30		酸別記号 537	FI G06F 12/00	デーマコート*(参考) 537A 5B075
	120	17/30	120B 5B082	
	180		180D	

審査請求 未請求 請求項の数20 OL 外国語出願 (全 45 頁)

(21)出願番号	特願2002-45438(P2002-45438)	(71) 出願人 000005	108
(22)出頭日 (31)優先権主張番号 (32)優先日 (33)優先権主張国 (31)優先権主張番号 (32)優先日 (33)優先権主張国	平成14年1月18日(2002.1.18) 60/263111 平成13年1月18日(2001.1.18) 米国(US) 09/816640 平成13年3月22日(2001.3.22) 米国(US)	東京都 (72)発明者 藤原 : アメリ; 95014、 ッジ・; (72)発明者 ジェー』 アメリ;	カ合衆国、カリフォルニア州 クペルティノ #4300、プルネリ アベニュー 19500
		(74)代理人 1000800 弁理士	
			最終頁に続く

(54) 【発明の名称】 ユーザ定義機能を使用したセルレベルのデータアクセス制御

(57)【要約】

【課題】 アクセス手段に基づいて、柔軟なセルレベル データのアクセス制御技術の必要性が存在する。システ ムコストを低減できるアクセス手段の実行が必要とされ る。

【解決手段】 セルレベルでのアクセス制御がマスク機能1222の使用によって提供される。アクセス手段に従って制御されるアクセスが望まれるセル用のマスク機能1222を含むように、本来の問い合わせ1102が変更される。更に、フィルタ機能1204は、アクセス手段に従って行を削除するために含まれる。

【特許請求の範囲】

【請求項1】 アクセス手段に従って情報記憶装置内の 情報にアクセスする方法であって、

1

第1タイプ情報用のリクエストからなるアクセスリクエ ストを受け取り、それと前記情報記憶装置内に含まれる 第1情報を前記第1タイプ情報用のリクエストが関連づ け、

前記第1タイプ情報用のリクエストを、前記アクセス手 段に基づく第1タイプ情報用の変更リクエストと置き替 え、

前記情報記憶装置にアクセスして、前記アクセスリクエ ストに応答して結果を作成し、前記変更リクエストが、 前記アクセス手段に基づいて、マスクされた値、又は、 前記第1情報を作成することを特徴とするアクセス方 法。

【請求項2】 請求項1記載のアクセス方法において、 前記変更リクエストがマスク機能を備えていることを特 徴とするアクセス方法。

【請求項3】 請求項2記載のアクセス方法において、 前記情報記憶装置にアクセスする工程が、前記マスク機 20 能を実行して前記マスクされた値、又は、前記第1情報 の何れかを作成することを含むことを特徴とするアクセ ス方法。

【請求項4】 請求項1記載のアクセス方法において、 前記アクセスリクエストを変更して、前記アクセス手段 に従って前記結果の一部分を削除するために効果的なフ ィルタ機能を備えることを更に有することを特徴とする アクセス方法。

【請求項5】 請求項1記載のアクセス方法において、 前記情報記憶装置が関係型データベースであり、

前記第1タイプ情報用のリクエストがSELECT文か らなり、

前記SELECT文が一つ以上の列基準からなり、 前記変更リクエストが、前記一つ以上の列基準のうち少 なくとも一つをマスク機能と置き替えることからなるこ とを特徴とするアクセス方法。

【請求項6】 請求項1記載のアクセス方法において、 前記情報記憶装置が関係型データベースであり、

前記アクセスリクエストがWHEREクローズを含み、 前記結果が情報の一つ以上の行からなり、

前記アクセス方法が、前記アクセス手段に基づいて、前 記WHEREクローズの中のフィルタ機能を組み入れて 前記結果内に含まれる幾つかの行を除去することを更に 有することを特徴とするアクセス方法。

【請求項7】 関係型のデータベース内で、アクセス手 段に従って情報にアクセスする方法であって、

一つ以上の列基準からなるSELECT文を有する少な くとも一つの問い合わせを与え、

前記一つ以上の列基準のうち少なくとも一つをマスク機 能と置き替えて変更問い合わせを作成し、

情報の一つ以上の行からなる前記変更問い合わせに応答 して問い合わせ結果を作成し、

前記問い合わせ結果が、前記アクセス手段に基づいて、 前記一つ以上の列基準のうち前記少なくとも一つに対 し、前記関係型データベースからのマスク値又は情報の 何れかを含むことを特徴とするアクセス方法。

【請求項8】 請求項7記載のアクセス方法において、 前記少なくとも一つの問い合わせが更にWHEREクロ ーズからなり、

10 前記アクセス方法が、前記WHEREクローズを変更し てフィルタ機能を含んだ変更WHEREクローズを作成 することを更に有し、

前記フィルタ機能が二つの論理値のうち一方を作成し、 前記変更WHEREクローズが、前記フィルタ機能によ って作成される値に基づく前記問い合わせ結果から行を 削除するために効果的であることを特徴とするアクセス 方法。

【請求項9】 請求項7記載のアクセス方法において、 前記関係型データベースがデータベースサーバー内に設 けられ、

前記少なくとも一つの問い合わせ与える工程が、クライ アントシステムで前記少なくとも一つの問い合わせを受 け取ることを含み、

前記問い合わせ結果を作成する工程が、前記変更問い合 わせを前記データベースサーバーに送ることを含むこと を特徴とするアクセス方法。

【請求項10】 請求項9記載のアクセス方法におい て、

前記少なくとも一つを置き替える工程が前記クライアン トシステムで実行されることを特徴とするアクセス方 30 法。

【請求項11】 請求項9記載のアクセス方法におい て、

前記少なくとも一つを置き換える工程が前記データベー スサーバーで実行されることを特徴とするアクセス方 法。

【請求項12】 アクセス手段に従って情報記憶装置に アクセスするために、内部に含まれたコンピュータ読み 出し自在なプログラムコードを有するコンピュータメモ 40 りを備えたコンピュータによる情報検索システムにおい て、

第1タイプ情報用のアクセスリクエストを受け取るよう に構成され、前記第1タイプ情報用のアクセスリクエス トにより第1情報が関係づけられる第1コードと、

前記第1タイプ情報用のリクエストを、前記アクセス手 段に基づいた第1タイプ情報用の変更リクエストと置き 替えるように構成された第2コードと、

前記情報記憶装置にアクセスして、前記アクセスリクエ ストに応答して結果を作成するように構成された第3コ 50 ードとを備え、

. .

前記変更リクエストが、前記アクセス手段に基づいて、 マクスされた値、又は、前記第1情報の何れか―方を作 成することを特徴とするコンピュータによる情報検索シ ステム。

【請求項13】 請求項12記載のコンピュータによる 情報検索システムにおいて、

前記アクセスリクエストを変更して、前記アクセス手段 に従って前記結果の一部分を削除するのに効果的なフィ ルタ機能を含むように構成された第4コードを更に備え ていることを特徴とするコンピュータによる情報検索シ

【請求項14】 請求項12記載のコンピュータによる 情報検索システムにおいて、

関係型データベースを更に備え、

前記第1タイプ情報用のリクエストが、一つ以上の列基 準からなるSELECT文を有し、

前記変更リクエストが、前記一つ以上の列基準のうち少 なくとも一つをマスク機能と置き替えることを含むこと を特徴とするコンピュータによる情報検索システム。

【請求項15】 請求項12記載のコンピュータによる 20 情報検索システムにおいて、

関係型データベースを更に備え、

前記アクセスリクエストがWHEREクローズを含み、 前記結果が、情報の一つ以上の行からなり、

前記第2コードが、前記アクセス手段に基づいて、前記 WHEREクローズ内にフィルタ機能を組み込んで前記 結果の中に含まれる幾つかの行を削除するように更に構 成されていることを特徴とするコンピュータによる情報 検索システム。

【請求項16】 請求項12記載のコンピュータによる 30 情報検索システムにおいて、

クライアントコンピュータシステムとサーバーコンピュ ータシステムとを更に備え、

前記クライアントコンピュータシステムが、前記第1及 び第2コードを含む前記コンピュータメモリの一部分か

前記サーバーコンピュータシステムが、前記第3コード を含む前記コンピュータメモリの別の一部分からなるこ とを特徴とするコンピュータによる情報検索システム。

【請求項17】 請求項12記載のコンピュータによる 情報検索システムにおいて、

前記データベースサーバーが関係型データベースサーバ 一であり、

前記第1タイプ情報用のリクエストが、一つ以上の列基 準からなるSELECT文を有し、

前記変更リクエストが、前記一つ以上の列基準のうち少 なくとも一つを、マスク機能と置き替えることを備えて いることを特徴とするコンピュータによる情報検索シス テム。

情報検索システムにおいて、

前記第3コードがマスク機能を有することを特徴とする コンピュータによる情報検索システム。

【請求項19】 請求項16記載のコンピュータによる 情報検索システムにおいて、

前記データベースサーバーが関係型データベースサーバ 一であり、

前記アクセスリクエストがWHEREクローズを含み 前記結果が情報の一つ以上の行からなり、

前記第2コードが、前記アクセス手段に基づいて、前記 WHEREクローズの中にフィルタ機能を組み込んで前 記結果に含まれる幾つかの行を削除するように更に構成 されていることを特徴とするコンピュータによる情報検 索システム。

【請求項20】 請求項19記載のコンピュータによる 情報検索システムにおいて、

前記第3コードがマスク機能を有することを特徴とする コンピュータによる情報検索システム。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、データベースのア クセスに関し、特に、データベース内のフィールドへの 制御されたアクセスに関する。

[0002]

【従来の技術】今日の情報技術によって、様々な種類の データソースへのシームレスアクセスが体験可能となっ ている。そのような技術のおかげで、益々増える情報を 手に入れやすくなっている。しかしながら、データソー スには、認可されないアクセスから保護されるべき医療 記録、財務記録、及び他の類似する個人情報のような重 要情報がしばしば含まれ、そのような情報にアクセスし たい人々のアクセス権 (access privilege) が必要とさ れている。データベースシステムが発展すると、ビュー 定義及び認可モデルを使った一組のデータアクセス制御 機能が提供される。

【0003】ビューとは情報対象であり、それによって 通常の表内であるが、異なる方法でデータを見ることが 可能となる。それは、データベースを構成する一定の表 の一部分からなる機能上論理的に定義された表である。

ビューは、データの合成を必要とせずに、基本的な表の データを見る方法を提供する。

【0004】伝統的なビューは、行レベル及び/又は列 レベル方式でデータベース内のデータへのアクセスを制 御できる。図1は病院データINPT_BASE100 の一例を示し、それは入院患者情報と、MD_IDによ って分類され集められた入院患者情報とを含んでいる。 各々の医者は、自己の患者を往診に行くためにだけ、そ のデータを見ることが許可されていると仮定する。図2 は、各々の医者のためのINPT_BASE100にお 【請求項18】 請求項17記載のコンピュータによる 50 ける所望のビューを示している。PT_ID、VST、

P_NM、及び、MD_IDフィールドは、各患者のプライバシーを保護するために選択的に目に見えなくされているので、医者は自分の患者用のデータだけ見ることができる。こうして、IDが2222である医者にとって、自己に利用可能であるべきビューはビュー202となる。IDが3333である医者にとって、ビューはビュー204となる。

【0005】入院患者用のビューは、従来のビュー定義 (又はビュー作成)によって定義され得る。例えば、図 3は、図2で示されるビュー202,204,及び20 6を作成するビュー定義を示している。(なお、オラク ル(Oracle)データベースシステムの場合には、 user idは、最新のuser_idに戻す表現、 即ち、SYS CONTEXT (「userenv」、 「session_user」)と置き替え可能であ る。)しかしながら、図4のSQL文を実行して、MD IDにより分類され集められる入院患者情報を得る場 合には、各々の医者は図5で示されるような異なった結 果を得るだろう。図2で示されるような所望の集約結果 を得るために、図6で示されるビューを定義できる。し かしながら、特別な多重次元分析を許可するために、集 約ビューのあらゆる可能な組合せを定義しなければなら ない。このような物理的な力によるアプローチは、大部 分、ビューメンテナンス費用を著しく増大させる。例え ば、医者が特別なDRG(診断に役立つ関連グループ) の統計、即ちDRG BETWEEN120、129を 見たい場合には、別途、MD_IDによって分類される データの部分集合を集約するビューを定義しなければな らない。各々の医者が、異なる部分集合のデータを見た い場合には、このようなビューを予め準備することは殆 30 ど不可能である。

[0006]

【発明が解決しようとする課題】最近のシステムでは、アプリケーション理論の一部としてアクセス制御手段を実行することによってこの問題が解決されている。しかしながら、一般的なシステムでは多数のアプリケーションが存在する。その結果として、異なるアプリケーションの各々の中で一つのアクセス手段が実行されなければならず、タスクがアクセス手段のメンテナンス費用を著しく増大させる。レガシーソフトウェアを利用し続ける場合には、その努力成果は完全にくじかれるだろう。

【0007】フロー、推論、及び、アクセス制御を含めた様々なセキュリティ手段を通してデータベースを保護することができる。情報システム内のアクセス制御は、保護手段によって決定されるモデル及びルールに従って、システム対象へのあらゆるダイレクトアクセスが排他的に生じることを請け合うことの原因となる。アクセス制御は、データベースシステム用のコンテンツ依存アクセス制御モデルまで高められている。コンテンツ依存アクセス制御モデルに基づく従来のビュー定義では、ア

クセスルールは、(s, o, t, p)の組によって表示され、それは、プリディケイトpが当てはまるオブジェクトのの発生へのアクセスもをサブジェクトsが有することを明記している。そのモデルの強化は、6組の(a, s, o, t, p, f)からなり、aは、sに権利(o, t, p)を与える権限者のサブジェクトであり、そして一方、fは、sが(o, t, p)を他のオブジェクトに更に移す可能性を記述するフラッグのコピーである。

【〇〇〇8】多くのセキュリティモデルは従来技術文献 において提案されている。アクセスマトリックス(Acce ss Matrix)モデル、テイクーグラアント(Take-Gran t)モデル、アクションーエンディティ(Action-Entit y)モデル、及び、ウーデン・エトオール(Wood et a t.)モデルは、任意のセキュリティモデルである。ユー ザの問い合わせが使用許可と照会される。それが許可さ れると、問い合わせが特別なアクセスモード内の対象に アクセスする。さもなければ、そのアクセスは否認され る。

【OOO9】T. F. Lunt、D. Denning、R. R. Schell、M. Heckman、及び、W. R. Shckleyにより、ソフトウェアに関するIEEE会報、第16巻No. 6(1990年6月)593頁~607頁、「シービュー・セキュリティモデル」と表題を付けられた論文には、シービュー・モデルとして公知なセキュリティモデル、即ち、マンデトリー・アクセス・コントロール(Mandatory Access Control, MAC)モデル及びトラスト・コンピューティング・ベース(Trusted Computing Base, TCB)モデルが提案され、二層の使用によって関係型データベースシステムのセキュリティを保護している。シービューは、物理的な単一レベル関係からビジュアル的な多重レベル関係の例を発生させることによって、多重レベルデータアクセスを制御する。

【0010】他のモデルは、多重レベルのセキュリティモデルとして提案されたジェイジョディアーサンドヒュ・モデル(Jajodia-Sandhu's model)とスミスーウィンスレット・モデル(Smith-Winslett's model)とを含んでいる。これらのモデルのセキュリティ手段はビジュアル的な多重レベル関係の例を生成する。これらのモデルは、データベースシステムとアプリケーションとの間に配置されてデータベースのセキュリティを実行する代替フィルタを使用している。

【0011】従来のビューを処理することは、次の一般的な工程を含んでいる。:

- (1) オーセンティケーション (情報にアクセスする資格の有無を検証する。)
- (2) ビュー定義を適用、即ちビュー定義に従って問い合わせを改訂する。
- (3) その問い合わせを最適化する。
- (4)その問い合わせを実行する。

(5)結果をリターンする。

【0012】従来のビューでは、アクセス制御のルールは実行前に問い合わせに適用される。その問い合わせは、プロジェクション列の要素でない列にアクセスできない。更に、列の値をプロジェクションの対象として隠す機能をユーザが定義すると、問い合わせは本来の(オリジナルな)値もアクセスすることができない。

【0013】情報システムセキュリティ会報2.1(1999年2月)、34頁~64頁、「企業イントラネット内での役割に基くアクセス制御モデルと基準方法」と表題を付けられた論文では、David F. Ferraiolo、John F. Barkely、及び、RichardD. Kuhnが、ユーザ役割のコンセプトに基づいて、アクセス権を付与する役割に基くアクセス制御を開示している。

【0014】オラクル8iシステムは、バーチャルなプ ライベートデータベースを使った微粒子アクセスを有 し、それは、オラクルマガジン(1999年7月)、 「オラクル8iを備えたビジュアルなプライベートデー タベースの作成」と表題を付けられ、Mary A. Davidson による公式報告書の中で議論されている。この機能によ って、ユーザが表にアクセスする度に自動的に、データ ベース設計者が選択条件手段を付け足し可能となる。任 意の値、例えば、コンテクスト値やセッション値に基づ いてその条件手段を生成できる。しかしながら、条件 は、その値を満たさない行を除去するので、1行内に列 の小さな一組をマスクする(覆う)ことはできない。 【0015】セキュリティモデルは、ACM会報データ ベースシステム3.1(1978年3月)、92頁~1 04頁、「小さなカウントを備えた問い合わせ用の統計 データベースのセキュリティ」と表題を付けられ、F. Y. Chinによる論文で、統計上の推定を防止する統計デ ータベースシステム用に提案されている。推定保護用の 3つの技術、即ち、概念的な、制約に基づき、且つ、摂 動に基づく技術がある。例えば、アディソン・ウェズリ 一出版社(1994年)、Castano、Silvana、 Fugin i, G. Mariagrazia, Martella, Giancarlo, Samarat i、及びPierangelaによる「データベースセキュリテ ィ」、とACM Computing Surveys、第21巻No. 4(19 89年12月)、515頁~556頁、「統計データベ ース:比較検討」と表題を付けられ、Adam、R. Nabil、 及びJohn C. Worthmannによる論文とを参照。これらの 技術は、統計上の値を抑制し、又は、グループ範囲の組 合せを制限している。しかしながら、その技術は、範囲 の値自体を抑制する機能を提供していない。それ故に、 それらは、図2に示されるような集約結果用のアクセス 手段を定義できない。

【0016】アクセス手段に基づいて、柔軟なセルレベルデータのアクセス制御技術の必要性が存在する。システムコストを低減できるアクセス手段の実行が必要とされる。

[0017]

【課題を解決するための手段】本発明は、それぞれアクセス制御された列のためのマスク機能を使ってセルレベルのアクセス制御を提供する。各々のマスク機能は、アクセス許可を決定する一つ以上のキーパラメータに関連づけられている。マスク機能の中で具体化されるアクセス手段に依存して、マスク機能は、マスクされた列の値、又は、本来の列の値をリターンする。

【0018】本発明の他の態様は、それぞれの行削除手段のためのフィルタ機能を使って、セルレベルのアクセス制御を提供する。各々のフィルタ機能は、一つ以上のキーパラメータに関連づけられている。フィルタ機能は2のカテゴリー(例えばバイナリー)値をリターンする。フィルタ機能のリターン値をチェックする条件は、問い合わせの条件クローズに加えられて、行削除手段に従って行を削除する。

【0019】本発明の更に他の態様は、上述のセルレベルのアクセス制御メカニズムを提供するレポーティングシステムである。

) 【0020】本発明が教えることは、添付図面と共に次 の詳細な説明を検討することによって、容易に理解可能 である。

[0021]

【発明の実施の形態】図7に関して、本発明の一実施の 形態を、ウェブに基づくレポーティングシステムのアー キテクチャ700と共に説明する。アーキテクチャは三 つのサーバー構成要素から成る。即ち、データベースサ ーバー722はデータベース管理システム(DBMS) 702を含んでいる。DBMSは任意の従来データベー スにすることがある。一つの特別な実例の形態では、D 30 BMSは関係型データベースシステムである。レポート サーバー706は、従来の通信設備上でデータベースサ 一バーと繋がり、従来の通信設備の詳細特性は、本発明 の特別な実施の形態に依存する。レポートサーバーは、 複数のレポートテンプレート734を備えてレポート生 成サーバーを提供する機能を促進する。ウェブサーバー 704は、レポートサーバーに繋がり、DBMSへのク ライアント側のアクセスを提供する。ウェブサーバー は、従来の通信設備上でレポートサーバーに繋がり、従 40 来の通信設備の詳細特性は本発明の特別な形態に依存す

【0022】図7は、サーバー構成要素における一般的なソフトウェア及びハードウェアの構成を示している。データベースサーバー722は、自身のコンピュータシステムを有し、大きい容量記憶のサブシステムを備えている。図示されたレポートサーバー706とウェブサーバー704とは、別のコンピュータシステム734に属し、データベースサーバーから分離している。実際には、ウェブサーバーとレポートサーバーとは、所望のス50、ループットを達成するために、ウェブサーバー処理及び

レポートサーバー処理の多数のインスタンシエーション (instantiation)で構成することがある。なお、多く の代替構成が可能である。例えば、単一のコンピュータシステムを使って小さなスケール動作中に三つのサーバー構成要素を全てホストできる。大きな装置の中では、各サーバーが自分自身のコンピュータシステムを占有することがある。更に多くのスループットを提供するために、実際には、各サーバーは、非常に大きなシステム内で多数のサーバーシステムから成る。

【0023】DBMS702へのユーザのアクセスは、クライアントのブラウザ712を介して行われ、更に第3コンピュータシステム726上で実行される。ブラウザは、ハイパーテキスト・トランスポート・プロトコル(HTTP)、又は、SSLプロトコル上のHTTP(HTTPS)を使って、ウェブサーバー704に繋がっている。

【0024】ユーザはブラウザ712を介してウェブサーバー704と交互作用してレポートを得る。最初に、レポートテンプレート734を選択する。次に、テンプレート用の一組のパラメータを与える。ウェブサーバー 20は、ユーザ提供パラメータと一緒に、ユーザ選択レポートテンプレートに対応するユーザ識別子をレポートサーバー706に回す。レポートサーバーは、選択されたレポートテンプレートに関係される一つ以上の問い合わせを、データベースサーバー722に交付する。レポートサーバーとデータベースサーバーとの間での適切な交互作用の後に、その問い合わせ結果がレポートサーバーに戻される。レポートサーバーはその結果を受け取り、その当時にウェブサーバーを介してユーザに送付される体裁の良い形式にその結果をフォーマットする。 30

【0025】図8は、説明目的のためにだけ示された簡単なデータアクセス手段の一例である。この例では、三つのアクセスレベル、即ち実行レベル、医療ドクターレベル、及び財務アナリストレベルが望まれていると仮定する。実行レベルのユーザは、全てのデータにアクセスすることを許可されている。一般的に、これは、行政官全職員とデータベース管理者全職員とのために体系化されている。

【0026】医者は、医療ドクターレベルのユーザのアクセス権を与えられる。医者は、患者往診の処置に関す 40 る患者データと、医者が作成したデータとにアクセスできるべきである。しかしながら、医者は、患者のプライベート情報、例えばクレジットカード情報のうちのいくらかにアクセスすることを許可されていない。更に、医者は、別の医者のデータにアクセスすることを許可されていない。図8に記載された説明のためのアクセス手段によれば、医者は、他の医者によって処置された患者往診のために患者名を見ることができない。その医者が同一患者の他の往診を処置した場合であっても、患者名を見ることができない。例えば、医者2222が、図2に 50

おける第1行の患者名を見ることができない。なぜならば、他の医者333がARENの第1往診を処置しているからである。それ故に、図8で与えられた説明のためのアクセス手段によれば、たとえ医者2222がARENの第2往診を処置したとしても、その医者はARENの第1往診のためにその名前を見ることができない。理解されることは、そのような場合に、データへのアクセスを許可する他のアクセス手段が存在することである。更に理解されることは、本発明はそのようなアクセ

10

【0027】最後に、アクセス制御が、財務全職員に対して提供される。このクラスのユーザは、財務アナリストレベルのユーザアクセスを許される。財務アナリストは、患者の財務情報のうちいくらかを含んだ滞在、費用、及び支払のような財務情報にアクセスできる。しかしながら、財務アナリストは、医者によって必要とされる種類のデータへのアクセスをすることできない。

10 ス手段を提供できることである。

【0028】図9に関して、関係型DBMS702(図7)用のデータスキーム900の説明例が図示されている。ユーザ情報表902(USER_INFO)は、各ユーザ用のユーザ記録(例えば、ユーザ記録912)を含んでいる。それぞれの記録は、ユーザ関連情報926に加えて、ユーザidフィールド922と役割フィールド924とを含んでいる。役割フィールドは、図8のアクセス手段毎に、各ユーザ用のアクセスレベルのアクセス権を識別する。

【0029】入院患者情報表904(INPT_FACT)は、患者に基づいて行われた各往診用の入院患者記録(例えば、入院患者記録914)を保持している。その結果として、患者は、各往診用に一つ、この表の中に多数の入力情報を持つ可能性が非常に高い。患者idフィールド931は患者を識別する。患者往診フィールド932(VST)は、一人の患者の各往診/入院発生を表している。別のフィールドは医療ドクターIDフィールド934であり、それは、処置した医者の識別子を含んでいる。

【0030】患者情報表906(PT_FACT)は、各患者用の患者記録を含んでいる。各記録は、患者idフィールド942(PT_ID)、患者名フィールド944(P_NM)、及び患者性別フィールド946(SEX)を含んでいる。類似の医者情報表908(MD_FACT)は各医者用の情報を含んでいる。これは、例えば、医療ドクターIDフィールド952(MD_ID)、名前フィールド954(D_NM)、及び医療ドクター部門フィールド956(DEPT)を含んでいる。

【0031】図8及び図9に関して、それがデータスキーム900に関係するようなアクセス手段の効果を説明する。例えば、役割IIのユーザを検討する。役割IIのユーザが医者であることが想起される。医者は、自分

12

で処置した患者だけのある情報を眺めることができるだ けである。こうして、理解され得ることは、処置した医 者は、患者年齢フィールド933、DRGフィールド9 35、滞在期間フィールド936、費用フィールド93 7、支払フィールド938、患者性別フィールド94 6、医療ドクター部門フィールド956を眺めることが できる。しかしながら、患者往診が医者によって処置さ れない場合、又は、情報が医者自身のデータ(例えば、 医者が自己の名前を見ることができる)である場合に は、患者idフィールド931,942、患者往診フィ ールド932、患者名フィールド944、医療ドクター IDフィールド934,952、及び医療ドクター名フ ィールド954はその医者に利用可能であるべきない。 従って、スキーム900への問い合わせ結果が、問い合 わせした医者によって処置された患者往診用の全データ と、問い合わせした医者によって処置されなかった患者 往診用の一部分マスクされたデータとを含むべきであ

【0032】図8で示されるような役割 I I のユーザ用 のアクセス手段は、患者往診によって(患者によってで 20 はない) PT_ID、VST NBR、及びP NMの ような患者プライベート情報へのアクセスを制限する。 それ故に、患者プライベート情報をマスクするべきか否 かを決定するためのキー組は列組 {PT_ID、VST _NBR}である。なぜならば、これらの列は、患者往 診の対象にとって主要なキーになるからである。(アク セス手段が患者によってアクセスを制限している場合に は、そのキー組は {PT_ID} になる。) 医療ドクタ 一情報に関して、役割IIのユーザは、自分自身のプラ イベート情報にアクセスするだけである。それ故に、そ れが自分自身のプライベート情報でない場合には、MD **_IDとD_NMとは隠されるだろう。従って、医者の** プライベート情報MD_ID, DNMをマスクするべき か否かを決定するためのキー組は列組 {MD_ID}で ある。

【0033】役割IIのユーザがSELECT*FRO M PT_FACTのような問い合わせを交付すると、 全てのPT_ID及びP_NM列を隠す(マスクする) べきである。なぜならば、役割IIのユーザは病院内で 患者リストを受け取るべきでないからである。役割 I I のユーザは自分自身の患者リストを作成だけできる。自 分自身の患者リストを作成するために、次の問い合わせ を交付するべきである:SELECT DISTINC T a. PT ID, a. P NM, a. SEX FR OM PT_FACT a. INPT_FACT bW HERE a. PT_ID=b. PT_ID、及び、 b. MD_ID=医者のid。この場合には、{PT_ ID, VST_NBR}の値を使うことによって列PT _ID及びP_NMをマスクするべきか否かを決定する ことができる。なぜならば、その問い合わせがPT_F 50 る。他の実施の形態では、デフォールト値は、本来の値

ACTとINPT FACTとを結合するべきであるか らである。要するに、マスクを決定する対象のキー列が その問い合わせ内の表によって覆われていない場合に は、プライベートデータが見られることを許可しないだ ろう。

【0034】上述のアクセス制御手段を実行するため に、本発明は各列にマスク機能を与える。こうして、ア クセス手段が、ある条件の下で列へのアクセスを拒否す る場合には、その列はマスクされる(隠される)べきで ある。それ故に、本発明によれば、マスク機能はその列 に与えられる。なお、列が現在のアクセス手段で隠され ていないが、将来のアクセス手段で隠される場合には、 その列にマスク機能を与えることもできる。

【0035】図10は、患者名列、即ちP_NM用のマ スク機能1000の説明例を示している。本発明の実施 の形態によれば、マスク機能は、時には「格納された手 続き」、「手続きコール」等と呼ばれるユーザ定義機能 コール用の従来のSQLタイプ構文によって定義されて いる。理解されることは、マスク機能の概念は他の方法 で実行されることがある。例えば、マスク機能能力を含 むようにSQL言語を再定義することができる。しかし ながら、ユーザ定義機能を使用することにより、カスタ ムSQL言語に備える必要がなくなる利点がある。

【0036】マスク機能1000は一つ以上のキーパラ メータ1002の関連組を含んでいる。また、マスク機 能は、関連される本来の値のパラメータ1004を有し ている。説明されるように、一つ以上のキーパラメータ は、マスクされた列を表示するか否か、又は、列をマス クするか否かを決定する基礎を形成している。図10で 示された例では、P_NM1000用のマスク機能の中 に、二つのキーパラメータ、即ち、KEY_PT_ID とKEY_VST(1002)とが存在している。なぜ ならば、役割IIのユーザ用のアクセス手段が、患者往 診によって患者プライベート情報を保護するのに必要と されるからである。そして、PT_ID及びVSTが患 者往診対象用のキー列になる。

【0037】マスク機能はIF_THEN_ELSEク ローズ1006を含んでいる。IF条件は、アクセス手 段条件の論理1008を構成し、それは効果の点でアク セス手段に従って定義される。アクセス手段条件の論理 はキーパラメータ1002の関数である。アクセス手段 条件がTRUEと評価する場合には、マスク機能は列の 値として本来の値のパラメータ1004をリターンす る。アクセス手段条件がFALSEと評価する場合に は、デフォールト値が列の値としてリターンされる。 【0038】図10で示される本発明の実施の形態で は、デフォールト値は機能コール1010によって作成 される。この特別な説明例では、デフォールト値は、本 来の値のパラメータ1004における幾つかの関数であ

1

14

のパラメータに限定されない情報に基づくことがある。 本発明の更に別の実施の形態では、デフォールト値は、 一定の入力、例えば、NULL、又は、「許可されない アクセス」等のようなテキスト手段にすることがある。 動作条件やセキュリティ配慮等は、デフォールト値がど のように決定されるのかを決定する。

【0039】一般的な形式では、本発明の一実施の形態によるマスク機能は次の構文を有する:

[0040]

【式1】

 $rv \Leftarrow mask_name(kp_1, kp_2, ... kp_n, op),$

ここに、r vはマスク機能におけるリターンの列値であり、k p1, k p2, · · · , k pnは、マスクが起こる *

*か否かを決定するために利用されるキーパラメータであり、opは、マスクされた列における本来の値である。 【0041】機能コール及びその定義における具体的な構文は、一つのSQL実行から別のSQL実行に変化している。そのような詳細は、データベース技術における通常の技術を有する者にとって公知であり、且つ、理解される。

【0042】以下の表 I は本発明による一般的なマスク機能の一例である。また、本発明によるフィルタ機能が10 示されている。

[0043]

【表1】

```
表I
      /* PACKAGE MASK
      CREATE OR REPLACE PACKAGE FINVIEW.MASK AS
        FUNCTION P_NM(KEY_FT_ID NUMBER, KEY_VST NUMBER, ORG_P_NM
VARCHAR2)
         RETURN VARCHAR2;
        FUNCTION D_NM(KEY_MD_ID NUMBER, ORG_D_NM VARCHAR2)
         RETURN YARCHARZ;
      END MASK:
      CREATE OR REPLACE PACKAGE BODY MASK IS
        FUNCTION P_NM(KEY_PT_ID NUMBER, KEY_VST, ORG_F_NM VARCHAR2)
         RETURN VARCHAR2
        TS
       BEGIN
         IF FILTER.PT (KEY PT ID, KEY VST) = 1 THEN
           RETURN ORG P NM;
         ELSE
           RETURN MASKED . P NM (ORG P NM) ;
         END IF;
       END P_NM;
        FUNCTION D_NM(KEY_ND_ID NUMBER, ORG_D_NM VARCHAR2)
         RETURN VARCHARZ
       BEGIN
         IF FILTER.MD(KEY_MD_ID)=1 THEN
           RETURN ORG_D_NM;
         RLSE
           RETURN MASKED D NM (KEY MD ID, ORG D NM);
         END IF;
       END D_NM;
      END MASK;
      /* PACKAGE FILTER
      /* -------
      CREATE OR REPLACE PACKAGE FILTER AS
       FUNCTION PT(KEY_PT_ID NUMBER, KEY_VST NUMBER)
         RETURN NUMBER;
```

```
FUNCTION MD (KEY_MD_ID NUMBER, KEY_VST NUMBER)
   RETURN NUMBER:
END FILTER:
CREATE OR REPLACE PACKAGE BODY FILTER IS
 FUNCTION PT(KEY_PT_ID NUMBER, KEY_VST NUMBER)
   RETURN NUMBER
 IS
   CNT
             NUMBER;
 BEGIN
   /* FOR USER_ROLE_TYP = 1
   /* -----
   IF SYS_CONTEXT('SECURITY', 'ROLE_1') = 1 THEN
    RETURN 1;
  END IF:
   /* ------
   /* FOR USER_ROLE_TYP = 2
   /* -----
  IF SYS_CONTEXT('SECURITY', 'ROLE_2') = 1 THEN
    EXECUTE IMMEDIATE
    'SELECT COUNT(*)
    FROM | SYS_CONTEXT('userenv',
                        'session_user') | | '.ACCS_PTVET ' | |
    ' WHERE PT_ID = :KEY_PT_ID AND VST=:KEY_VST'
     INTO CUT USING KEY PT ID, KEY VST ;
    IF CMT > 0 THEN
         RETURN 1;
    RLSE RETURN 0;
    END IF;
  END IF;
  /* FOR USER_ROLE_TYP = 3
  /* -----
  IF SYS_CONTEXT('SECURITY', 'ROLE_3') = 1 THEN
   RETURN 1;
  END IF;
END PTVST:
FUNCTION MD (KEY_MD_ID NUMBER)
  RETURN NUMBER
IS
  CNT
            NUMBER:
BEGIN
  /* ---
  /* FOR USER_ROLE_TYP = 1
  IF SYS_CONTEXT('SECURITY', 'ROLE_1') = 1 THEN
   RETURN 1;
  END IF;
  /* ----
  /* FOR USER_ROLE_TYP = 2
  IF SYS_CONTEXT('SECURITY', 'ROLE_2') = 1 THEN
   EXECUTE IMMEDIATE
    'SELECT COUNT(*) '[]
    ' FROM ' | SYS CONTEXT ('userenv',
                        'session_user') | '.ACCS_MD '|
    ' WHERE MD_ID = : KEY_MD_ID' INTO CNT USING KEY_MD_ID;
```

示されたマスク機能は、本発明の一般的な実施の形態を 例示するためだけに提供されている。付加的なマスク機 能は、データベースの複雑性に依存して必要とされるこ とがある。具体的な実行は、使用中のプログラミング言 語に依存するだろう。具体的なアルゴリズムは、効果の 点で、アクセス手段の特定の要件に依存して変化する。 データベース技術における通常の技術を有する者は、特 別なデータベースシステムの具体化におけるコンテキス トの中で本発明を実行する方法を容易に理解するだろ う。

【0044】また、表1は、FILTERパッケージ内で定義されたフィルタ機能を示している。二つの関数、即ち、PTO及びMDOが与えられている。PTO関数は、パラメータKEY_PT_IDとKEY_VSTとを有している。データをマスクするべき場合には、それが0をリターンする。そして、キーパラメータとユーザ役割とに基づいて、データを表示することがある場合には、それが1をリターンする。この実行では、各々の役割IIのユーザは、自分が処置した患者往診の全てに対して{PT_ID_VST}のリストを維持する表PTVSTを有する。

【0045】MD0フィルタ関数は、パラメータKEY _MD_IDを有する。PT関数と同様な方法で、それ は0又は1をリターンする。MASK機能はMASKパッケージ内で定義されている。この例だけが、P_NM 及びD_NM用のマスク機能を有している。最初に、P _NMのマスク機能が、手段関数FILTER.PTを コールする。それから、結果が1である場合には、それ は本来の値ORG_PNMをリターンする。そして、結 果が0である場合には、MASKED.PNM関数によ 40 って生成されたマスク値をリターンする。D_NMはP _NMと同様な方法で生じる。なお、任意のパラメータ を定義してマスク値を作り出すことができる。この例で*

*は、NASKED.P_NMはORG_P_NMだけを 使用し、そして一方、MASKED.D_NMはKEY _MD_IDとORG_DNMとの両方を使用してい る。

【0046】図11及び図12に関して、本発明によるセルレベルのアクセス制御アーキテクチャにおける説明的な実施の形態が示されている。図11は、レポートテンプレート734(図7)の一つの中で一般的に見出される問い合わせ1102を示している。その問い合わせは、従来のSQL構成体を使って書かれている。一般的なSQL問い合わせは、SELECT文を含み、一つ以上の列基準(時には属性やフィールド等と呼ばれる)を具体化し、そのSELECT文はその問い合わせの結果を構成している。

【0047】本発明によれば、翻訳手続き1210は、レポートテンプレートからなる問い合わせに適用されて変更レポートテンプレート734′を作成する。変更レポートテンプレートからなる問い合わせ1202は本来の問い合わせ1102の翻訳であって、ある列基準がマスク機能と置き換えられる。

【0048】翻訳手続き1210は、効果の点でアクセス手段に基づいている(例えば、図8)。理解されるように、本来の問い合わせ1102は、翻訳された問い合わせ1202に非常に類似している。アクセス手段が、マスクされる列基準を要求する場合には、その列基準はマスク機能への適切な機能コールと置き換えられる。【0049】例えば、本来の問い合わせ1102を検討する。ここで、アクセス手段がマスキングするのに必要である列は、PT_ID、VST、P_NM、MD_ID、及び、D_NM(図9)である。以下の表IIは代用スキームを示している。

[0050]

【表2】

表II

列基準	マスク機能の代用
PT_ID	MASK.PT_ID(c.PT_ID, i.VST) PT_ID
VST	MASK_VST(iPT_ID, iVST) VST
P_NM	MASK.P_NM(i.PT_ID, i.VST, p.P_NM) P_NM
MD_ID	MASK.MD_ID(i.MD_ID) MD_ID
D_NM	MASK.D_NM(i.MD_ID, m.D_NM) D_NM

なお、表又はビューIDは、各問い合わせのFROMク ローズに従って、適切な名前に変更されるべきである。 例えば、「c.」、「i.」、「p.」、及び「m.」 が変更されるべきである。理解されるように、翻訳処理 1210は、対応する機能コールによって、マスクされ た列基準における本来の問い合わせの中で、単にテキス ト代用になる。表II内に含まれる情報をテキストエデ ィターと共に使用して、図12で示される翻訳問い合わ せ1202を作成できる。翻訳処理はスタンダードエデ ィターにすることがある。即ち、テキストエディターを 流すユニックスは、特に、利用可能である。翻訳処理 は、カスタムな一つのソフトウェアに、又は、ハードウ ェアとソフトウェアとの何らかの組合せにさえもするこ とがある。本発明によって、要求される翻訳タスクは、 多くの従来技術のうち幾つかを使って提供されることが ある。

【0051】図12を続けると、翻訳処理1210は、本来の問い合わせ1102を翻訳問い合わせ1202に変換する。それから、翻訳された問い合わせは、DBMS702に送られ、その中でその問い合わせが実行される。DBMSは一組のユーザ定義機能1212を含んで30いる。マスク機能定義1222はこのユーザ定義機能内に含まれている。

【0052】また、図12は、ユーザ定義機能内での一組のフィルタ機能1224を示している。フィルタ機能はマスク機能がアクセス手段に従って列をマスクするのに利用できる場合には、フィルタ機能は、行削除手段毎に、行(記録)をマスクするのに利用できる。フィルタ機能は、行が保持されるべきか又は削除されるべきかを決定する一つ以上のキーパラメータを必要としている。本発明の実施の形態では、フィルタ機能はTRUE/FALSEのようなバイナリー値をリターンする。それをSQL問い合わせのWHEREクローズ内で使って、行削除手段に従ってリターンされた行を制限する。フィルタ機能1204の一例が図12に示されている。

【0053】開示された実施の形態は、関係型データベースとSQLタイプの問い合わせ言語とに基づいている。しかしながら、他のデータベースシステム内でマスク及びフィルタ機能処理を提供できることは、データベース技術において通常の技術を有する者によって理解さ*50

10*れ得る。関係型データベースシステムでは、本発明が、 基本的なデータベースエンジンへの影響なく、セルレベ ルデータのアクセス制御を提供できる。

【0054】翻訳処理1210は、既存のレポートテン プレートを変更する退屈で間違えやすいタスクを除去す る。それぞれの問い合わせがデータベースに送られる と、翻訳処理が急いで行われることがある。本発明にお ける別の実施の形態では、全てのテンプレート上で翻訳 処理を一回処理して(例えば、データベース管理者によ って手動で実行される)、マスク及びフィルタ機能を使 う新しい一組のテンプレートを作成できる。レポートテ ンプレートが変更される時だけ翻訳が実行される必要が あるので、この実施の形態はスループットの観点から魅 力的である。本発明における更に別の実施の形態では、 翻訳処理はDBMS702に配置されているので、全て の入ってくる問い合わせをインターセプトし、急いで翻 訳することができる。翻訳処理は、手動で実行されるタ スクにすることがある。具体的な処理は、性能基準、問 題解決能力、データベース使用の特質、レポート数等に 基づいて決定される。

- 1 【0055】マスク機能がDBMS内に格納されているので、アクセス手段の変化は、結果的に、マスク及びフィルタ機能における単純なリライトになる。既存のアプリケーション論理に影響を及ぼす必要がない。どの列がマスクされるべきかをアクセス手段が変える場合には、それに従って翻訳処理1210が更新される。例えば、マスク列としてAGE列を加えたい場合には、図12の本来のSQLが、AGE列をマスク機能1302と取り替えることによって、図13で示されるように変更されることがある。
- 1 (0056】本発明の具体的な実施の形態が説明されたけれども、様々な変更、修正、代替構成、及び相当物もまた本発明の範囲内に包含される。説明された発明は、ある特定のデータ処理環境の範囲内で作動するように制限されないが、複数のデータ処理環境の範囲内で自由に作動することができる。本発明が具体的な実施の形態に関して説明されたけれども、本発明の範囲が上述された具体的な実施の形態に限定されないことは当業者にとって明らかである。

【0057】従って、明細書及び図面は、限定的な意味よりむしろ説明的な意味で考えられるべきである。しか

21

しながら、追加、削除、代用、及び他の変更は、請求項 による本発明の幅広い趣旨及び請求の範囲から逸脱しな い範囲内でなすことができる。

[0058]

【発明の効果】本発明は、それぞれアクセス制御された 列のためのマスク機能を使ってセルレベルのアクセス制 御を提供する。各々のマスク機能は、アクセス許可を決 定する一つ以上のキーパラメータに関連づけられてい る。マスク機能の中で具体化されるアクセス手段に依存 して、マスク機能は、マスクされた列の値、又は、本来 10 の列の値をリターンする。

【0059】また、それぞれの行削除手段のためのフィルタ機能を使って、セルレベルのアクセス制御を提供する。各々のフィルタ機能は、一つ以上のキーパラメータに関連づけられている。フィルタ機能は2のカテゴリー(例えばバイナリー)値をリターンする。フィルタ機能のリターン値をチェックする条件は、問い合わせの条件クローズに加えられて、行削除手段に従って行を削除する。

【0060】更に、上述のセルレベルのアクセス制御メ 20 カニズムを提供する。

【図面の簡単な説明】

【図1】病院関連データ用のデータ構成における一例を 示す図である。

【図2】図1で示され、医者によって一般的に必要とされるデータのビューを示す図である。

【図3】図2で示されたビューを作成するビュー定義を示す図である。

【図4】集約したSQL文を示す図である。

【図5】従来のビュー定義により定義されたビューの集 30 1222 約問い合わせ結果を示す図である。

【図6】集約した従来技術のビュー定義を示す図である。

【図7】本発明と共に採用可能な、ウェブに基づくレポーティングシステムのアーキテクチャを示す図である。

22

【図8】データアクセス手段の一般的な一例を示す図である。

【図9】データベースシステム内における表スキームの 実例を示す図である。

【図10】本発明によるマスク機能の実例テンプレート を示す図である。

【図11】変形前のSQLを示す図である。

【図12】本発明の一実施の形態におけるセルレベルの アクセス制御のアーキテクチャの外観を示す図である。

【図13】アクセス手段への変更がどのように本発明内 に容易に適合され得るかを示す図である。

【符号の説明】

700 ウェブによるレポーティングシステムのア ーキテクチャ

704 ウェbサーバー

706 レポートテンプレート

712 ブラウザ

722 データベースサーバー

726 第3コンピュータシステム

734 レポートテンプレート

734′ 変更テンプレート

1102 本来の問い合わせ

1204 フィルタ機能

1212 ユーザ定義機能

1222 マスク機能

【図1】

Ø 1

TP USH SA	PRES.	971000-241		-	is ing ti		Maga	Appen in Walter	IN CONTRACTOR
12345	1	AREN	54	М	3333	123	7	1000	1200
23456	1	ERIS	25	F	4444	123	2	1200	1500
12345	2	AREN	55	М	2722	127	3	600	500
97531	1	MARY	85	F	3333	234	5	800	700

14 中国 17 日	100 te 1616	SMEAN!	Harry was the same	SIGNATURE OF
2222	1	3	600	500
3333	2	В	900	950
4444	1	2	1200	1500

【図2】

Z 2

ing Æ	22-152-168-52-	nor∙. Le uz Gu∗stan ⊬sin	. american restant	1	. B.		1 12 .19.	is, on	ef Photos eff	1200	De gen egt ag	Marine i	an an an	100 11 .T. 40	想が立
22				54	M		123	7	1000	1200	7272	1	3	600	900
		;		25	F		123	2	1200	1500		2	B	900	950
	12345	2	AREN	55	М	2222	127	3	600	500		+	2		-
			-	65	F		234	5	800	700		<u>'</u>	1 2	1200	1500
								_							
in 5, 5	· B III 19 44	SPL 16	ស្ត្រាស់ ន	J	i en in	i din they was that they say	学气物	E	CQ, "T 177	1200	ip Se es p	\$ 472 m	272. ob	Maria at Au	em de mir. (
33	12345	1274 (A)	AREN	54	N	3333	123	7	1000	1200	海 翻 链 左	i Dan ili	राते अधीर-	学馆	ii ki uri
		ė	ratery	25	F		123	2	1200	1500		1	3	800	500
					<u> </u>			<u> </u>			3333	2	6	900	950
				55	N	٠.	127	3	600	500		1	2	1200	1500
	97531	1	MARY	65	F	3333	234	5	800	700	_	-		1	
				2000											
李 河	Tuk M	. AE 287	1900年 1900	Y. 설	6 3 6	ih (r in iy	்த் ஐ	C Va d	1. 高 编制	· · · · · · · · · · · · · · · · · · ·		In Es:	F 15 18	ling to the c	虚 小道
44				54	М	,	123	7	1000	1200	110 1014 1014 1 <u>1</u> 224	122 (75)			
	23456	1	ERIS	25	F	4444	123	2	1200	1500		<u>'</u>	3	600	500
				55	М			3	600	500		2	8	800	950
											4444	1	2	1200	1500
			- ·	65	F		234	5	800	700					

【図3】

図 3

【図11】

図 11

1102

CREATE VIEW DIPT_FACT AS

SELECT(CASE WHEN MD_ID = user-id THEN PT_ID ELSE NULL END)PT_ID,

(CASE WHEN MD_ID = user-id THEN VST ELSE NULL END) VST,

(CASE WHEN MD_ID = user-id THEN P_NM ELSE NULL END) P_NM,

AGE,SEX,

(CASE WHEN MD_ID = user-id THEN MD_ID ELSE NULL END) MD_ID,

DRG,STAY,COST_PYMT

FROM INPT_BASE;

SELECT c.PT_ID,

1.VST,

p.P_NM,

p.AGE, p.SEX,

i. MD_ID,

m. D_NM,

i. DRG, i. STAY,...

FROM INPT_FACT i, MD_FACT m, PT_FACT p

WHERB i, PT_ID = p. PT_ID AND i. MD_ID = m. MD_ID AND ...;

【図4】

Ø 4

SHLECT MD_D, COUNT(*) VOL,
AVG(STAY) AVG_STAY,AVG(COST) AVG_COST, AVG(FYMT)AVG_FYMT
FROM INPT_FACT
GROUP BY MD_ID ORDER BY AVG_STAY DESC;

【図5】

图 5

PIPE PAR	カンチ 記書	日本はは最	Marker Care Marker	经保存品 化硫
Dis dividism	3	4.67	1000	1133
2222	1	3	600	500

E 11 73	B 10 E	등량 에 센터를 받 보다 소리라는 안	Letter Here	HEL OF THE
3333	2	В	800	B50
- :	2	2.5	900	1000

* 44.44 0 0	48 SR 1 11-H	menaniji G T a to 4	· · · · · · · · · · · · · · · · · · ·	**************************************
	3	5	800	800
4444	1	2	1200	1500

【図6】

図 6

CREATE VIEW INPT_GRP_BY_MD

SBLBCT(CASE WHEN MD_ID = user-id THEN MD_ID ELSE NULL END) MD_ID,

COUNT(*) VOI,

AVG(STAY) AVG_STAY, AVG(COST) AVG_COST, AVG(FYMT) AVG_PYMT

FROM INPT_BASE GROUP BY MD_ID ORDER BY AVG_STAY DESC;

【図7】

【図8】

2 8

アクセス	役割	アクセス手段
I	奥行	全データへのアクセス。
п	医療ドクター	ドクター自身の患者往参データのみへのアクセス。 他の患者往参データの患者プライバシー情報は隠される べきである。他の医療ドクターのプライバシー情報も 隠されるべきである。
101	財務アナリスト	医療ドクター情報以外の財務情報へのアクセス。

【図9】

Ø 9

【図10】

图 10

```
1000
   CREATE OR REPLACE PACKAGE BODY (schema_name) MASK IS
      FUNCTION P_NM(KBY_PT_ID NUMBER, KEY_VST NUMBER, ORG_P_NM VARCHAR2)
        RETURN VARCHAR2
                                                     1002
     IS
     BEGIN
        /* Policy logic to decide whether or not we should mask the P_NM
/* If we should mask the value, then return masked value. Otherwise,
                                                                                                   */
*/
*/
        /* return the original value.
            (policy_condition) 1008

THEN RETURN ORG_P_NM;

/* Original Value */

ELSE RETURN MASKED_P_NM(ORG_P_NM);

/* Masked value defined by default mask value function */
1006
       LENDIF;
                            1010
     END P_NM;
  END MASK;
```

【図13】

図 13

```
SELECT MASK, PT_ID,c PT_ID, i VST) PT_ID,

MASK, VSTG, PT_ID, i VST) VST,

MASK, P, NMi, PT_ID, i VST, p, P, NMi P, NM,

{MASK, AGE/I, PT_ID, i, VST, p, AGE/IAGE,}

p, SIX,

MASK, D, NMi, MD_ID, MD_ID,

MASK, D, NMi, MD_ID, M, D, NM) D, NM,

i, DRG, i, SIAY, ...

FROM INPT_FACT i, MD_FACT m, PT_FACT p

WHERE i, PT_ID = p, PT_ID AND i, MD_ID = m, MD_ID AND ...;
```

【図12】

フロントページの続き

(72)発明者 ミシェル・エル・ケラー アメリカ合衆国、イリノイ州 60544、プ レインフィールド、ビクトリア・ドライブ 4503 Fターム(参考) 5B075 KK62 QT06 5B082 GA11

【外国語明細書】

1. Title of Invention

Cell-Level Data Access Control Using User-Defined Functions

2 Claims

1. A method for accessing information in an information store in accordance with an access policy, said method comprising:

receiving an access request comprising a request for a first type of information, wherein said request for a first type of information has associated therewith first information contained in said information store;

replacing said request for a first type of information with a modified request for a first type of information, said modified request being based on said access policy; and accessing said information store to produce a result in response to said access request, wherein said modified request produces either a masked value or said first information, based on said access policy.

- 2. The method of claim 1 wherein said modified request includes a mask function.
- The method of claim 2 wherein said accessing includes executing said mask function to produce either said masked value or said first information.
- 4. The method of claim 1 further including modifying said access request to include a filter function, said filter function effective for eliminating portions of said result in accordance with said access policy.
- 5. The method of claim 1 wherein said information store is a relational database and said request for a first type of information comprises a SELECT statement, said SELECT statement comprising one or more column references, said modified request comprising a replacement of at least one of said one or more column references with a mask function.

- 6. The method of claim 1 wherein said information store is a relational database and said access request includes a WHERE clause, said result comprising one or more rows of information, said method further including incorporating a filter function in said WHERE clause to remove certain rows contained in said result, based on said access policy.
- 7. In a relational database, a method for accessing information in accordance with an access policy, said method comprising:

providing at least one query comprising a SELECT statement, said SELECT statement comprising one or more column references;

replacing at least one of said one or more column references with a mask function to produce a modified query; and

producing a query result in response to said modified query comprising one or more rows of information:

wherein said query result includes, for said at least one of said one or more column references, either mask values or information from said relational database, based on said access policy.

- 8. The method of claim 7 wherein said at least one query further comprises a WHERE clause, said method further including modifying said WHERE clause to produce a modified WHERE clause which includes a filter function, said filter function producing one of two logical values, said modified WHERE clause effective for deleting a row from said query result based on a value produced by said filter function.
- 9. The method of claim 7 wherein said relational database in provided in a database server; said step of providing includes receiving said at least one query at a client system; and said step of producing includes transmitting said modified query to said database server.
- 10. The method of claim 9 wherein said step of replacing is performed at said client system.
- 11. The method of claim 9 wherein said step of replacing is performed at said database server.

12. A computer-based information retrieval system comprising:

computer memory having computer readable program code embodied therein
for accessing an information store in accordance with an access policy, said computer
readable program code comprising:

first code configured to receive an access request for a first type of information, wherein said request for a first type of information has associated therewith first information;

second code configured to replace said request for a first type of information with a modified request for a first type of information, said modified request being based on said access policy; and

third code configured to access said information store to produce a result in response to said access request, wherein said modified request produces either a masked value or said first information, based on said access policy.

- 13. The system of claim 12 further including fourth code configured to modify said access request to include a filter function, said filter function effective for eliminating portions of said result in accordance with said access policy.
- 14. The system of claim 12 further including a relational database and said request for a first type of information comprises a SELECT statement, said SELECT statement comprising one or more column references, said modified request comprising a replacement of at least one of said one or more column references with a mask function.
- 15. The system of claim 12 further including a relational database and said access request includes a WHERE clause, said result comprising one or more rows of information, said second code further configured to incorporate a filter function in said WHERE clause to remove certain rows contained in said result, based on said access policy.
- 16. The system of claim 12 further including a client computer system and a server computer system, said client computer system comprising a portion of said computer memory embodying said first and second codes, said server computer system comprising another portion of said computer memory embodying said third code.

- 17. The system of claim 12 wherein said database server is a relational database server, said request for a first type of information comprises a SELECT statement, said SELECT statement comprising one or more column references, said modified request comprising a replacement of at least one of said one or more column references with a mask function.
- 18. The system of claim 17 wherein said third code includes mask function.
- 19. The system of claim 16 wherein said database server is a relational database server, said access request includes a WHERE clause, said result comprising one or more rows of information, said second code further configured to incorporate a filter function in said WHERE clause to remove certain rows contained in said result, based on said access policy.
- 20. The system of claim 19 wherein said third code includes mask function.

3 Detailed Description of Invention

BACKGROUND OF THE INVENTION

The present invention relates generally to database access and in particular to controlled access to fields in a database.

Today's information technology enables one to experience seamless access to various kinds of data sources. Such technology makes accessible to people increasingly greater amounts of information. However, data sources often contain critical information such as medical records, financial records, and other similar personal information which should be protected from unauthorized access, requiring access privilege of those who desire to access such information. Database systems have evolved to provide a set of data access control functions using view definitions and authorization models.

A view is an information object that allows you to view data in a normal table, but in a different way. It is a logical dynamically defined table comprised of portions of the fixed tables which constitute the database. Views provide a method for looking at data in the underlying tables without having to duplicate the data.

The traditional view can control access to data in the database on either a row-level and/or a column level basis. Fig. 1 shows an example of hospital data INPT_BASE 100 that contains inpatient information and aggregated inpatient information grouped by MD_ID. Assume that each physician is permitted only to see his/her patient visit. Fig. 2 shows the desired views of INPT_BASE 100 for each physician. The PT_ID, VST, P_NM and MD_ID fields are selectively made invisible to protect the privacy of each patient so physicians can only see data for their own patients. Thus, for the doctor whose ID is 2222, the view that should be available to that doctor is the view 202. For the doctor whose ID is 3333, the view is view 204.

A view for the inpatient table can be defined by a conventional view definition (or view creation). For example, Fig. 3 shows a view definition that produces the views 202, 204, 206 shown in Fig. 2. (Note that user-id can be replaced with an expression that returns the current user-id, e.g., SYS_CONTEXT('userenv', 'session_user'), in the case of an Oracle database system.) However, if we execute the SQL statement in Fig. 4 to get the aggregated inpatient information grouped by MD_ID, each physician will get different results such as shown in Fig. 5.

To get the desired aggregation result shown in Fig. 2, we can define a view shown in Fig. 6. However, we must define all possible combinations of aggregation views to allow ad-hoc multi-dimensional analysis. This brute force approach greatly increases the view maintenance cost significantly. For example, if a physician wants to see the statistics of specific a DRG (Diagnostic Related Group) e.g., DRG BETWEEN 120 and 129, then we must define a view that aggregates the subset of data grouped by MD_ID separately. Since each physician may want to see a different subset of data, it is almost impossible to prepare this view beforehand.

Current systems solve this issue by implementing access-control policies as a part of the application logic. However, there are multiple applications in a typical system. Consequently, an access policy would have to be implemented in each of the different applications, a task which significantly increases the maintenance cost of the access policy. In cases where legacy software is being used, the effort may be completely frustrated.

Database protection can be obtained through a variety of security measures including: flow, inference, and access control. Access controls in information systems

are responsible for ensuring that all direct access to the system object occurs exclusively according to the models and rules fixed by protection policies. Access controls are enhanced to a content-dependent access control model for database systems. In the conventional view definition based on content-dependent access control model, an access rule can be represented by the tuple (s, o, t, p), which specifies that a subject s has access t to those occurrence of object o for which predicate p is true. An enhancement of the model comprises a six tuple (a, s, o, t, p, f), where a is an authorizer subject who granted s the right (o, t, p), while f is a copy of a flag describing the possibility for s to further transfer (o, t, p) to other objects.

Many security models have been proposed in the prior art literature. The Access Matrix model, Take-Grant model, Action-Entity model, and Wood et al. model are discretionary security models. A user query is checked against the authorizations. If it is allowed, the query accesses the object in a specific access mode. Otherwise the access is denied.

In a paper by Lunt, T. F., Denning, D., Schell, R. R., Heckman, M., and W. R. Shockley, entitled "The SeaView Security Model," IEEE Trans. on Software Engineering, Vol. 16, No. 6 (Jun. 1990), pp. 593-607, a security model known as the Sea View model was proposed to protect security of relational database systems by using two layers: Mandatory Access Control (MAC) model and Trusted Computing Base (TCB) model. Sea View controls multilevel data access by generating virtual multi-level relation instances from physical single-level relations.

Other models include Jajodia-Sandhu's model and Smith-Winslett's model which have been proposed as multilevel security models. Security policies for these models generate virtual multi-level relation instances. These models use a commutative filter that is placed between a database system and applications to implement database security.

Processing a conventional view includes the following typical steps:

- 1) Authentication.
- 2) Apply view definitions, i.e., rewrite a query according to view definitions.
- 3) Optimize the query.
- 4) Execute the query.
- 5) Return results.

In the conventional view, access control rules are applied to a query before execution. The query cannot access a column that is not a member of the projection

columns. Furthermore, if a user defines a function that blinds the column value as a projection object, the query cannot access the original value either.

Ferraiolo, David F., Barkley, John F., and Kuhn, D. Richard, in a paper entitled "A Role-Based Access Control Model and Reference Implementation Within a Corporate Intranet," Trans. Inf. Syst. Secur. 2, 1 (Feb. 1999), pp. 34 - 64, describe a role-based access control that gives access privileges based on the concept of user-roles.

The Oracle 8i system has a fine-grain access control using a virtual private database, which is discussed in a white paper by Davidson, Mary A., entitled "Creating Virtual Private Databases with Oracle8i," Oracle Magazine, (July 1999). This function enables a database designer to add a selection condition string automatically whenever a user accesses the table. The condition string can be generated based on any value, e.g., context values and session values. However, the condition eliminates the rows that do not satisfy it, and so we cannot mask a subset of the columns in a row.

A security model has been proposed for statistical database systems to prevent statistical inference, in a paper by Chin, F. Y., entitled "Security in Statistical Databases for Queries with Small Counts," ACM Trans. Database System, 3, I (Mar. 1978), pp. 92-104. There are three techniques for inference protection, i.e., conceptual, restriction-based, and perturbation-based techniques, see for example "Database Security," by Castano, Silvana, Fugini, Mariagrazia G., Martella, Giancarlo, and Samarati, Pierangela, Addison-Wesley Publishing Company, (1994) and a paper by Adam, Nabil R. and Worthmann, John C., entitled "Security-control Methods for Statistical Databases: A Comparative Study," ACM Comp. Surveys, Vol. 21, No. 4, (Dec. 1989), pp. 515-556. These techniques suppress the statistical values or restrict a combination of group dimensions. However, the techniques do not provide a function that suppresses a dimension value itself. Therefore, they cannot define an access policy for aggregation results such as shown in Fig. 2.

There is a need for flexible cell-level data access control technique based on access policy. An access policy implementation is needed which can reduce system costs.

SUMMARY OF THE INVENTION

The present invention provides cell-level access control using mask functions for each access controlled column. Each mask function is associated with one

or more key parameters which determine the access permission. The mask function returns a masked column value or an original column value, depending on the access policy embodied in the mask function.

Another aspect of the present invention provides cell-level access control using filter functions for each row elimination policy. Each filter function is associated with one or more key parameters. The filter function returns a two-category (e.g. binary) value. A condition for checking return value of the filter function is added to a condition clause in a query to eliminate rows in accordance with the row elimination policy.

Still another aspect of the invention is a reporting system which provides the foregoing cell-level access control mechanisms.

BRIEF DESCRIPTION OF THE DRAWINGS

The teachings of the present invention can be readily understood by considering the following detailed description in conjunction with the accompanying drawings:

- Fig. 1 illustrates an example of a data organization for hospital-related data:
- Fig. 2 illustrates the views of the data shown in Fig. 1, typically required by physicians;
 - Fig. 3 shows a view definition which produce the views shown in Fig. 2;
 - Fig. 4 shows a SQL statement with aggregation;
- Fig. 5 shows the result of an aggregation inquiry on a view defined by a conventional view definition;
 - Fig. 6 shows a prior art view definition with aggregation;
- Fig. 7 shows web-based reporting system architecture which can be adapted with the present invention;
 - Fig. 8 illustrates a typical example of a data access policy;
- Fig. 9 shows an illustrative example of a table schema in a database
- Fig. 10 shows an example template of a mask function according to the invention:
 - Fig. 11 illustrates an SQL prior to modification;

system;

Fig. 12 shows an overview of the cell-level access control architecture in an embodiment of the invention; and

Fig.13 illustrates how changes to the access policy can be readily accommodated in the present invention.

DESCRIPTION OF THE SPECIFIC EMBODIMENTS

Referring to Fig. 7, an embodiment of the present invention can be described in connection with a web-based reporting system architecture 700. The architecture comprises three server components: A database server 722 includes a database management system (DBMS) 702. The DBMS can be any conventional database system. In one particular illustrative embodiment, the DBMS is a relational database system. A report server 706 is in communication with the database server over conventional communication facilities, the specifics of which depend on the particular embodiment of the invention. The report server includes a plurality of report templates 734 to facilitate its function of providing report generating services. A web server 704, in communication with the report server, provides client-side access to the DBMS. The web server communicates with the report server over conventional communication facilities, the specifics of which depend on particular embodiment of the invention.

Fig. 7 shows a typical software and hardware configuration of the server components. The database server 722 typically occupies its own computer system, including a high capacity storage subsystem. The report server 706 and the web server 704 are shown residing in another computer system 734, separate from the database server. In practice, the web server and the report server may be comprised of multiple instantiations of web server processes and report server processes to achieve a desired throughput. It is noted that many alternative configurations are possible; e.g., a single computer system can be used to host all three servers components in a small scale operation. In a large installation, each server my occupy its own computer system. Each server may in fact comprise multiple server systems in very large systems in order to provide even greater throughput.

User access to the DMBS 702 is made via a browser client 712, executing on yet a third computer system 726. The browser communicates with the web server 704 using the hypertext transport protocol (HTTP) or HTTP over SSL protocol (HTTPS).

A user will interact with the web server 704 via the browser 712 to obtain

a report. First, a report template 734 is selected. Next, a set of parameters for the template is provided. The web server passes a template identifier corresponding to the user-selected report template along with the user-provided parameters to the report server 706. The report server issues one or more queries associated with the selected report template to the database server 722. After some appropriate interactions between the report server and the database server, the results of the query(ies) are returned to the report server. The report server receives the results and formats them into a presentable form which is then delivered to the user through the web server.

Fig. 8 is an example of a simple data access policy shown merely for illustrative purposes. In this example, assume that three access levels are desired: executive level; medical doctor level, and financial analyst level. An executive level user is allowed to access all of the data. Typically, this system is for administrator personnel and database management personnel.

A physician would be accorded the privileges of a medical doctor-level user. The physician should be able to access patient data relating to treatment of the patient visit, and data that the physician generates. However, the physician is not allowed to access certain of the patient's private information; e.g. credit card information. Furthermore, a physician is not allowed to access the data of another physician. According to the illustrative access policy described in Fig. 8, a physician cannot see the patient name for the patient visits that were treated by the other physician, even if the physician treated the patient's other visit. For example, physician 2222 cannot see the patient name for the first row in Fig. 2, since the other physician 3333 treated AREN's first visit. Therefore, according to the illustrative access policy given in Fig. 8, even though the physician 2222 treated AREN's second visit, that physician cannot see the name for AREN's first visit. It is understood that there are other access policies which allow access to the data in such a case. It is understood that the present invention can provide for such access policies.

Finally, access control is provided for financial personnel. This class of user is given financial analyst level user access. The financial analyst can access financial information such as stay, cost, and payment, including certain of a patient's financial information. However, a financial analyst should not have access the kind of data needed by a physician.

Referring to Fig. 9, a illustrative example of a data schema 900 for the relational DBMS 702 (Fig. 7) is shown. A user information table 902 (USER_INFO) contains a user record (e.g., user record 912) for each user. Each record includes a user-id field 922 and a role field 924, in addition to other user-related information 926. The role field identifies the access level privileges for each user, per the access policy of Fig. 8.

An inpatient information table 904 (INPT_FACT) maintains an inpatient record (e.g. inpatient record 914) for each visit made by a patient. Consequently, a patient is very likely to have multiple entries in this table, one for each visit. A patient-id field 931 identifies the patient. A patient-visit field 932 (VST) indicates each visit/admission occurrence of a patient. Another field is the medical doctor ID field 934, which contains an identifier of the treating physician.

A patient information table 906 (PT_FACT) contains a patient record for each patient. Each record includes a patient-id field 942 (PT_ID), a patient name field 946 (P_NM), and a patient-sex field 946 (SEX). A similar physician information table 908 (MD_FACT) contains information for each physician. This might include, for example, a medical doctor ID field 952 (MD_ID), a name field 954 (D_NM), and a medical doctor department field 956 (DEPT).

Referring now to Figs. 8 and 9, the effect of the access policy as it relates to the data schema 900 will be described. Consider, for example, role II users. Recall that a role II user is a physician. A physician should only be able to view certain information for only those patients treated by that physician. Thus, it can be seen that the patient age field 933, the DRG field 935, the length of stay field 936, the cost field 937, the payment field 938, the patient-sex field 946, and the medical doctor department field 956 can be viewed by the treating physician. However, the patient-id field 931 and 942, the patient-visit field 932, the patient-name field 944, the medical doctor ID field 934 and 952, and the medical doctor name field 954 should not be available to a physician if that patient visit was not treated by that physician or if that information is the physician's own data (e.g., a physician can see his name). Thus, the result of inquiries to the schema 900 should include all data for those patient visits that were treated by the inquiring physician, and partially masked data for those patient visits that were not treated by the inquiring physician.

The access policy for a role II user as shown in Fig. 8 restricts the access

to the patient private information such as PT_ID, VST_NBR, and P_NM by a patient visit (not by a patient). Therefore, the key set to determine whether the patient private information should be masked or not is the column set {PT_ID, VST_NBR}, since these columns are primary keys for the patient visit object. (If the access policy restricts the access by a patient, the key set is {PT_ID}). As for medical doctor information, a role II user can only access his/her own privacy information. Therefore, the MD_ID, and D_NM will be blinded if it is not his/hers. Therefore, the key set to determine whether the physician's private information MD_ID and D_NM should be masked or not is the column set {MD_ID}.

If a role II user issues the query such as: SELECT * FROM PT_FACT; then, all PT_ID, and P_NM columns should be blinded (masked), because a role II user should not get the patient list in the hospital. A role II user can only make his/her own patient list. To make his/her own patient list he should issue the following query:

SELECT DISTINCT a.PT_ID, a.P_NM, a.SEX FROM PT_FACT a, INPT_FACT b

WHERE a.PT_ID = b.PT_ID and b.MD_ID = physician's-id. In this case, we can determine whether the columns PT_ID and P_NM should be masked or not by using the value of {PT_ID, VST_NBR}, since the query joins the PT_FACT and INPT_FACT. In conclusion, we will not allow to be seen the private data if the key columns of the objects to determine the mask are not covered by the tables in the query.

To implement above access control policy, the present invention provides mask functions for each column. Thus, if the access policy denies access to a column under certain conditions, that column should be masked (blinded). In accordance with the invention, a mask function is therefore provided for that column. Note that if a column is not blinded in current access policy but may be blinded in the future access policy, we can also provide a mask function for the column.

Fig. 10 shows an illustrative example of a mask function 1000 for the patient name column, P_NM. In accordance with an embodiment of the invention, mask functions are defined by conventional SQL-type syntax for user-defined function calls, sometimes referred to as "stored procedures", "a procedure call", and so on. It is understood that the idea of a mask function may be implemented in other ways. For example, the SQL language can be redefined to include mask function capability. The use of user-definable functions, however, has the advantage of not having to provide for a custom SQL language.

The mask function 1000 includes an associated set of one or more key parameters 1002. The mask function also has an associated original value parameter 1004. As will be explained, the one or more key parameters form the basis for deciding whether a masked column will be displayed or whether it will be masked. In the example shown in Fig. 10, there are two key parameters: KEY_PT_ID and KEY_VST (1002) in the mask function for P_NM 1000, since the access policy for a role II user requires to protect patient private information by patient visit, and PT_ID and VST is a key column for the patient visit object.

The mask function includes an IF-THEN-ELSE clause 1006. The IF condition constitutes access policy condition logic 1008, which is defined in accordance with the access policy in effect. The access policy condition logic is a function of the key parameters 1002. If the access policy condition evaluates to TRUE, then the mask function returns the original value parameter 1004 as the column value. If the access policy condition evaluates to FALSE, a default value is returned as the column value.

In the embodiment of the invention shown in Fig. 10, the default value is produced by a function call 1010. In this particular illustrative example, the default value is some function of the original value parameter 1004. In another embodiment, the default value may be based on information not limited to the original value parameter. In yet another embodiment of the invention, the default value can be a fixed output; e.g. NULL, or a text string such as "Unauthorized Access", and so on. The operating conditions, security considerations, and the like will determine how the default value would be determined.

In a general form, a mask function according to one embodiment of the invention has the following syntax:

 $rv \leftarrow mask_name(kp_1, kp_2, ... kp_n, op),$

where rv is the return column value of the mask function,

 $kp_1, kp_2, \dots kp_n$ are the key parameters used to determine whether masking occurs, and

op is the original value of the masked column.

The specific syntax of the function call and its definition will vary from one SQL implementation to another. Such details are known and understood by those of ordinary skill in the database art.

Table I below is an example of a typical mask function according to the invention. Also shown is a filter function according to the present invention.

TABLEI

```
/* PACKAGE MASK
      CREATE OR REPLACE PACKAGE FINVIEW. MASK AS
        FUNCTION P_NM(KEY_PT_ID NUMBER, KEY_VST NUMBER, ORG_P_NM
VARCHARZ)
         RETURN VARCHAR2;
        FUNCTION D_NM(KEY_MD_ID NUMBER, ORG_D_NM VARCHAR2)
         RETURN VARCHAR2;
      END MASK;
      CREATE OR REPLACE PACKAGE BODY MASK IS
        function p_nm(key_pt_id number, key_vst, org_p_nm varchar2)
         RETURN VARCHAR2
        IB
         IF FILTER. PT (KEY PT ID, KEY VST) =1 THEN
           RETURN ORG_P_NM;
           RETURN MASKED P NM (ORG P NM);
         END IF;
        END P_NM;
        FUNCTION D_NM(KEY_ND_ID NUMBER, ORG_D_NM VARCHAR2)
         RETURN VARCHARZ
        BEGIN
         IF FILTER.MD(KEY_MD_ID)=1 THEN
           RETURN ORG D_NM;
         else
          RETURN MASKED.D_NM(KEY_MD_ID, ORG_D_NM);
         END IF:
        END D NM;
      END MASK:
       /* PACKAGE FILTER
      CREATE OR REPLACE PACKAGE FILTER AS
        FUNCTION PT(KEY_PT_ID NUMBER, KEY_VST NUMBER)
          RETURN NUMBER;
        FUNCTION MD (KEY_MD_ID NUMBER, KEY_VST NUMBER).
         RETURN NUMBER;
      END FILTER;
```

CREATE OR REPLACE PACKAGE BODY FILTER IS

```
PUNCTION PT (KEY PT ID NUMBER, KEY_VST NUMBER)
 RETURN NUMBER
IS
 CNT
          NUMBER;
BEGIN
 /* ------
 /* FOR USER ROLE_TYP = 1
 IF SYS_CONTEXT('SECURITY', 'ROLE_1') = 1 THEN
 RETURN 1;
 END IF;
 /* _____ */
 /* FOR USER_ROLE_TYP = 2
 /+ ----
 IF SYS_CONTEXT('SECURITY', 'ROLE_2') = 1 THEN
  EXECUTE IMMEDIATE
   'SELECT COUNT(*) '
  ' FROM ' | SYS_CONTEXT('userenv',
                  'session_user') | '.ACCS_PTVST '|
  ' WHERE PT_ID = :KEY_PT_ID AND VST=:KEY_VST'
   INTO CNT USING KEY_PT_ID, KEY_VST ;
  IF CNT > 0 THEN
  RETURN 1;
ELSE RETURN 0;
  END IF;
 END IF;
 /* FOR USER_ROLE_TYP = 3
 IF SYS_CONTEXT('SECURITY', 'ROLE_3') = 1 THEN
  RETURN 1;
 END IF;
END PTVST:
FUNCTION MD (KEY MD ID NUMBER)
 RETURN NUMBER
 CNT
          NUMBER;
BEGIN
 /* -----
 /* FOR USER_ROLE_TYP = 1
 IF SYS_CONTEXT('SECURITY', 'ROLE_1') = 1 THEN
  RETURN 1;
 END IF;
 /* ------
 /* FOR USER_ROLE_TYP = 2
 /* ------
 IF SYS_CONTEXT('SECURITY', 'ROLE_2') = 1 THEN
   EXECUTE IMMEDIATE
   'SELECT COUNT(*) '|
   ' FROM ' | SYS_CONTEXT ('userenv',
                    'session user') | '.ACCS MD '|
   ' WHERE MD_ID = : KEY_MD_ID' INTO CNT USING KEY_MD_ID;
```

The mask function shown is provided merely to illustrate a typical example of an embodiment of the invention. Additional mask functions may be needed depending on the complexity of the database. The specific implementation will depend on the programming language in use. The specific algorithm with vary depending on the specific requirements of the access policy in force. Persons of ordinary skill in the database arts will readily understand how to practice the invention in the context of a particular database system installation.

Table I also shows a filter function which is defined in the FILTER package. Two functions are provided, PT() and MD(). The PT() function has a parameter KEY_PT_ID and KEY_VST. It returns 0 if the data should be masked and returns 1 if the data can be displayed, based on the key parameters and a user role. In this implementation, each role II user has a table PTVST that keeps the list of {PT_ID, VST} for all patient visits that he/she treated.

The MDO filter function has a parameter KEY_MD_ID. It returns 0 or 1 in the same way as PT function. MASK functions are defined in the MASK package. This example only includes the mask function for P_NM and D_NM. P_NM mask function first calls the policy function FILTER.PT. Then, if the result is 1, it returns the original value, ORG_P_NM, and if the result is 0, it returns the masked value that is generated by MASKED.P_NM function. D_NM does in the same way as P_NM. Note that we can define any parameters to create masked values. In this example, MASKED.P_NM uses only ORG_P_NM, while MASKED.D_NM uses both KEY_MD_ID and ORG_D_NM.

Referring now to Figs. 11 and 12, an illustrative embodiment of a celllevel access control architecture in accordance with the present invention is shown. Fig. 11 shows a query 1102 that would typically be found in one of the report templates 734 (Fig. 7). The query is written using conventional SQL constructs. A typical SQL query includes a SELECT statement, specifying one or more column references (sometimes referred to as attributes, fields, etc.), which constitute the result of the query.

In accordance with the invention, a translation procedure 1210 is applied to queries comprising the report templates to produce modified report templates 734'. The queries 1202 comprising the modified report templates are translations of the original queries 1102, wherein certain column references are replaced with mask functions.

The translation procedure 1210 is based on the access policies in effect (e.g., Fig. 8). As can be seen, the original query 1102 is very similar to the translated query 1202. Where the access policy calls for a column reference to be masked, the column reference is replaced with an appropriate function call to a mask function.

Consider the original query 1102, for example. Here, the columns which the access policy requires masking are: PT_ID, VST, P_NM, MD_ID, and D_NM (Fig. 9). Table II below shows the replacement scheme:

TABLE II

Column Reference	Mask Function Replacement
PT_ID	MASK.PT_ID(c.PT_ID, i.VST) PT_ID
VST	MASK_VST(i.PT_ID, i.VST) VST
P_NM ·	MASK.P_NM(i.PT_ID, i.VST, p.P_NM) P_NM
MD_ID	MASK.MD_ID(i.MD_ID) MD_ID
D_NM	MASK.D_NM(i.MD_ID, m.D_NM) D_NM

Note that the table or view ID should be modified to the appropriate name, according to the FROM clause of each query. For example "c.", "i.", "p.", "m.", should be modified. As can be seen the translation process 1210 is simply a textual replacement in the original query of the masked column references by their corresponding function calls. The information contained in Table II can be used in conjunction with a text editor to produce the translated query 1202 shown in Fig. 12. The translation process can be a standard editor, e.g., the Unix streaming text editor is especially applicable. The translation process can be a custom piece of software, or even some combination of hardware and software. The translation task called for by the present invention can be provided using any of a number of conventional techniques.

Continuing with Fig. 12, the translation process 1210 converts an original query 1102 into a translated query 1202. The translated query is then transmitted to the DBMS 702, where the query is executed. The DBMS includes a set of user-defined functions 1212. Included in those user-defined functions are the mask function definitions 1222.

Fig. 12 also shows in the user-defined functions a set of filter functions 1224. The filter functions perform in the same manner as the mask functions. Where the mask functions serve to mask out columns in accordance with the access policy, the filter functions serve to mask out rows (records) per a row elimination policy. Filter functions require one or more key parameters that determine whether a row is to be retained or eliminated. In an embodiment of the invention, the filter function returns a binary value such as TRUE/FALSE. It is used in a WHERE clause of an SQL query to limit the rows that are returned in accordance with the row elimination policy. An example of a filter function 1204 is shown in Fig. 12.

The disclosed embediments are based on relational databases and SQL-type query languages. However, it can be appreciated by a person of ordinary skill in the database art that the mask and filter function approach can be provided in other database systems. In a relational database system, the present invention can provide cell-level data access control with no impact to the underlying database engine.

The translation process 1210 obviates the tedious and error-prone task of modifying existing report templates. The translation process can occur on-the-fiy as each query is sent to the database. In another embodiment of the invention, the translation process can be run once (e.g., manually performed by the database administrator) on all of the templates to produce a new set of templates that use the mask and filter functions. This embodiment is attractive from a throughput point of view, since the translation needs to be performed only when a report template is changed. In yet another embodiment of the invention, the translation process can be located at the DBMS 702, intercepting all incoming queries and making the translations on-the-fly. The translation process could be a manually performed task. The specific approach will be determined based on performance criteria, resources, the nature of the use of the database, the number of reports and so on.

Since the mask functions are stored in the DBMS, a change in the access policy amounts to simple re-writing of the mask and filter functions. There is no need to affect the existing application logic. If the access policy changes which columns are to be

masked, then the translation process 1210 would be updated accordingly. For example, if we want to add AGE column as a mask column, the original SQL in Fig. 2 might be changed as shown in Fig. 13 by the replacement of the AGE column with a mask function 1302.

Although specific embodiments of the invention have been described, various modifications, alterations, alternative constructions, and equivalents are also encompassed within the scope of the invention. The described invention is not restricted to operation within certain specific data processing environments, but is free to operate within a plurality of data processing environments. Although the present invention has been described in terms of specific embodiments, it should be apparent to those skilled in the art that the scope of the present invention is not limited to the described specific embodiments.

The specification and drawings are, accordingly, to be regarded in an illustrative rather than a restrictive sense. It will, however, be evident that additions, subtractions, substitutions, and other modifications may be made without departing from the broader spirit and scope of the invention as set forth in the claims.

4 Brief Description of Drawings

Fig. 1 illustrates an example of a data organization for hospital-related data:

Fig. 2 illustrates the views of the data shown in Fig. 1, typically required by physicians;

Fig. 3 shows a view definition which produce the views shown in Fig. 2;

Fig. 4 shows a SQL statement with aggregation;

Fig. 5 shows the result of an aggregation inquiry on a view defined by a conventional view definition:

Fig. 6 shows a prior art view definition with aggregation;

Fig. 7 shows web-based reporting system architecture which can be adapted with the present invention;

Fig. 8 illustrates a typical example of a data access policy;

Fig. 9 shows an illustrative example of a table schema in a database system;

Fig. 10 shows an example template of a mask function according to the invention;

Fig. 11 illustrates an SQL prior to modification;

Fig. 12 shows an overview of the cell-level access control architecture in an embodiment of the invention; and

Fig.13 illustrates how changes to the access policy can be readily accommodated in the present invention.

D.W	8	909		3		1200		
10 C		က	,	٥	,	Ŋ		
			0	V	•	-		
		2222	5555	2000	1111	4444		
	1200	Ş	3	500	3	ş	3	
COST	1000	1200		GOO !		טטמ	3	
31 (A)	7	~	,	57	,	(e	,	
	123	123	2	197		234		
WD ID	3333	4444	_	2000		3333		
SEX	M	Ц.		2		U.		
AGE	54	25		55		59	ł	
	AREN	ERIS		AREN		MARY		
VOT	-	-		ત	T		7	
	12345	23456		12345		97531		

FIG. 1

900 900 950 1500	500 500 950 1500	500 500 1500
8 600 950 6 900 950 2 1200 1500	1 3 600 500 2 6 900 950 1 2 1200 1500	3 600 6 900 7 1200
2 8 3	3 600 6 900 2 120	22 6 3
- 2 -	- 2 -	- 2 -
2222 1 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1	3333	G 444 4444
1200 1500 500 700	1200 1500 500 700	1200 1500 500 700
1000 1200 600 800	1000 1200 600 800	80 20 100 8
7 1000 2 1200 3 600 5 800	2 2 7	23 7 1000 23 2 1200 27 3 600 34 5 800
22 123 123	23 123 23	22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
MD DRG 123 2222 127 234	12345 1 AREN 64 M 3333 123 7 1000 1200 2345 1 AREN 64 M 3333 123 7 1000 1200 25 F 25 7 1000 1500 26 700 1500 27 800 1500 28 800 700	3456 1 ERIS 25 F 4444 123 55 M F 127 55 M F 27 55 M F 27 55 M F 27 55 F F 2444 123 55 M F 127 55 F F 2444 123
M H M F	N T N T	(8) ⊠
25 25 55 55 55 55 55 55 55 55 55 55 55 5	2 2 3 3	2 2 8 8
AREN	AREN AREN MARY	ERIS
110 VSE 345 2		
12345	12345 12345 97531	23458
2222	3333	4444

CREATE VIEW INPT_FACT AS
SELECT (CASE WHEN MD_ID = user-id THEN PT_ID ELSE NULL END) PT_ID,
(CASE WHEN MD_ID = user-id THEN VST ELSE NULL END) VST,
(CASE WHEN MD_ID = user-id THEN P_NM ELSE NULL END) P_NM,
AGE, SEX,
(CASE WHEN MD_ID = user-id THEN MD_ID ELSE NULL END) MD_ID,
DRG, STAY, COST, PYMT
FROM INPT_BASE;

FIG. 3

SELECT MD_ID, COUNT(*) VOL, AVG(STAY) AVG_STAY, AVG(COST) AVG_COST, AVG(PYMT) AVG_PYMT FROM INPT_FACT GROUP BY MD_ID ORDER BY AVG_STAY DESC;

FIG. 4

AVC) FYVI	800	1200 1500	
000	800	1200	10
2418 300 100 100 100 100 100 100 100 100 100	5	2	
	က	1	
		4444	
2054122	_	\overline{a}	
200	920	1000	
	ا و	9	10
	읋	006	FIG. 5
		2.5	. 9
	9	ભ	4
	-		
100000000000000000000000000000000000000	N	ณ	
	3333		
	8		
	က		
	m	_	
	1133	200	
	_		
50	닭	009	
20	¥	9	
	4.57 1000		
	4	က	
10 TV	1		
	3	-	
		CI.	
	쮋	2222	
		CA	

CREATE VIEW INPT_GRP_BY_MD

SELECT (CASE WHEN MD_ID = user-id THEN MD_ID ELSE NULL END) MD_ID,

COUNT(*) VOL,

AVG(STAY) AVG_STAY, AVG(COST) AVG_COST, AVG(PYMT) AVG_PYMT

FROM INPT_BASE GROUP BY MD_ID ORDER BY AVG_STAY DESC;

FIG. 6

FIG. 7

Access Level	Role	Access Policy
	Executive	Access to all.data.
Н	Medical Doctor	Access to doctor's own patient visit data only. The patient privacy information of the other patient visit data should be blinded. The other medical doctor's privacy information should be also blinded.
J11	Financial Analyst	Access to financial information without any medical doctor's information.

FIG. 8

FIG. 10

FIG. 11

```
SELECT MASK.PT_ID(c.PT_ID, i.VST) PT_ID,

MASK.VST(i.PT_ID, i.VST) VST,

MASK.P_NM(i.PT_ID, i.VST, p.P_NM) P_NM,

[MASK.AGE(I.PT_ID, i.VST, p.AGE) AGE,

p.SEX,

MASK.MD_ID(i.MD_ID) MD_ID,

MASK.D_NM(i.MD_ID, m.D_NM) D_NM,

i.DRG, i.STAY, ...

FROM INPT_FACT i, MD_FACT m, PT_FACT p.

WHERE I.PT_ID=p.PT_ID AND I.MD_ID = m.MD_ID AND ...;
```

FIG. 13

FIG. 12

1 Abstract

Access control at the cell level is provided by the use of mask functions. Original queries are modified to contain mask functions for those cells which controlled access in accordance with an access policy is desired. In addition, filter functions are included to eliminate rows according to the access policy

2 Representative Drawing

FIG. 12

about the second of the second

ti a