

Mathematical Expressions in LaTeX

LaTeX 数学表达

用 JupyterLab markdown 编写常用数学表达

依我看来,世间万物皆数学。

But in my opinion, all things in nature occur mathematically.

—— 勒内·笛卡尔 (René Descartes) | 法国哲学家、数学家、物理学家 | 1596 ~ 1650

- XXXXX
- XXXXX
- ▼ XXXXX
- XXXXX
- ✓ XXXXX
- •

25.1 什么是 LaTeX

LaTeX 是一种用于排版科学和技术文档的系统。根据官网介绍,LaTeX 的正确发音为 Lahtech 或 Lay-tech。

与常见的字处理软件不同,LaTeX 使用纯文本文件作为输入,并通过预定义的命令和语法描述文档结构和格式。LaTeX 可以处理复杂的数学公式、表格、图表和引用,并提供高级功能如自动编号和交叉引用。

LaTeX 是开源的,可在多个操作系统上运行,并有丰富的扩展包和模板可供使用。LaTeX 被广泛应用于学术界和科技领域。通过使用 LaTeX,用户可以轻松创建高质量、规范的学术论文、期刊文章和演示文稿。

本章不会讲怎么用 LaTeX 写论文,仅仅介绍如何在 Jupyter Notebook 的 markdown 中嵌入 Latex 数学符号、各类常用公式,比如图 1、图 2 两个例子。

LaTeX 更像是编程,比如图1中,\begin{bmatrix}代表左侧方括号[, \end{bmatrix}代表右侧方括号。\cdots 代表水平省略号,\vdots 代表竖直省略号,\ddots 代表对角省略号。

再比如图 2 中, -{\frac {1}{2} 为分式, 第 1 个 {} 为分母, 第 2 个 {} 为分子。\left(代表左括号, \right)代表右括号。\sqrt 代表根号。LaTeX语句非常直观, 很容易理解, 本章后文不再逐一讲解 LaTeX 语句。

注意,在 JupyterLab markdown 单元格中,要在文本中 inline 插入一个简单的公式,需要用使用左右 \$ (半角) 将公式括起来,比如 $\$E=mc^2$ \$ 。要让公式单独一行需要用左右 \$ 第公式括起来,比如 $\$\$E=mc^2$ \$ 》。

这一章大家现用现学、千万别死记硬背。

```
$$A_{m\times n} =

\begin{bmatrix}
a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\
a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\
\vdots & \vdots & \vdots \\
a_{mxn} = \begin{bmatrix} a_{1,1} & a_{1,2} & \cdots \\
a_{mxn} & a_{1,1} & a_{1,2} & \cdots \\
a_{mxn} & a_{2,1} & a_{2,2} & \cdots \\
a_{m,1} & a_{m,2} & \cdots
```

图 1. 用 LaTeX 写矩阵

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。 代码及 PDF 文件下载: https://github.com/Visualize-ML 本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466 欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

图 2. 用 LaTeX 写一元高斯概率密度函数

25.2 字母和符号

字母样式

英文中常用字母样式主要有: 正体 aA (regular)、粗体 **Aa** (bold)、斜体 *Aa* (italic)、粗体斜体 **Aa** (bold italic)、无衬线体 (sans-serif)、衬线体 (serif)、花体 (calligraphy) 上标 ^{Aa} (superscript)、下标 _{Aa} (subscript)。

无衬线体是指在字母末端没有装饰性衬线,如图 3 (a) 所示。无衬线体字体的设计更加简洁,直接,没有额外的装饰。无衬线体常常被用于数字屏幕上,比如计算机屏幕、手机、平板电脑等,因为在低分辨率的显示条件下,无衬线体更容易阅读。常用的无衬线体字体有 Arial、Roboto等。本书图片注释文字很多便采用 Roboto。Roboto 是 Google 开源字体。

衬线体是指在字母末端有装饰性衬线的字体,如图 3 (b) 所示。这些图 3 (c) 所示小线条使得衬线体在打印和长段落文字中更易于阅读。它们在印刷物、书籍、报纸等传统媒体中广泛使用。最常见的衬线字体莫过于 Times New Roman。鸢尾花书中大量使用 Times New Roman,特别是在公式中。

注意,ISO 标准推荐向量、矩阵记号采用粗体、斜体、衬线体,比如 a、b、x、A、B、X。 鸢尾花书采用这一样式。

此外,还必须要提到编程中常用的另外一种字体——等宽字体 (monospaced font, Mono)。在 Mono 字体中,每个字符 (包括字母、数字、标点符号、空格等) 都占据相同的水平宽度,这使得每列字符在视觉上都保持对齐,使得排版看起来整齐和规整。

在编程中需要对齐代码,使其易于阅读和维护,因此 Mono 字体在代码编辑器中得到广泛应用。最常见的 Mono 字体为 Courier New。鸢尾花书很多地方也会采用 Courier New。

本书读者顺序读到此处应该非常熟悉本书代码 (图 4) 这种 Mono 字体,它就是 Google 开源字体 Roboto Mono Light。Roboto Mono Light 是无衬线等宽字体。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。 代码及 PDF 文件下载: https://github.com/Visualize-ML 本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466 欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

Aa Bb Cc Aa Bb Cc Aa Bb Cc Aa Bb Cc

图 3. 比较无衬线体、衬线体,图片改编自 Wikipedia

AaBbCc OoXxYy IiLlMmNn 1234567890+>< (){}[]@-#%!/\

图 4. 等宽字体 Roboto Mono Light

表 1. 数学中字母样式

LaTeX	样式	说明	
\$ {AaBbCc} \$	AaBbCc	斜体,大部分数学符号、表达式	
<pre>\$ \mathrm {AaBbCc} \$</pre>	AaBbCc	正体,公式中的单位或文字	
<pre>\$ \mathbf {AaBbCc} \$</pre>	AaBbCc	粗体,向量、矩阵	
<pre>\$ \boldsymbol {AaBbCc} \$</pre>	AaBbCc	粗体、斜体,向量、矩阵	
<pre>\$ \mathtt {AaBbCc} \$</pre>	AaBbCc	等宽字体,常用于代码	
<pre>\$ \mathcal {ABCDEF} \$</pre>	ABCDEF	花体,用于表示数学中的集合、代数结构、算品	
<pre>\$ \mathbb {CRQZN} \$</pre>	CRQZN	黑板粗体 (blackboard bold),常用来表达各种集合	
<pre>\$\text {Aa Bb Cc}\$</pre>	Aa Bb Cc	用来写公式中的文字	
<pre>\$\mathrm{d}x\$</pre>	dx	ISO 规定导数符号 d 为正体	

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

<pre>\$\operatorname{T}\$</pre>	T	运算符

表 2. 各种字母英文读法

英文字母	英文表达
A	capital a, cap a, upper case a
a	small a, lower case a
A	italic capital a, italic cap a
а	italic a
A	boldface capital a, bold cap a
a	boldface a, bold small a
A	bold italic cap a
а	bold italic small a
A	Gothic capital a
a	Gothic a
A	script capital a
a	script a

标记

数学符号、表达式中还常用各种特殊标记 (accent), 表 3 总结常用特殊标记。

表 3. 数学中字母标记

LaTex	数学表达	英文读法
<pre>\$x'\$ \$x^{\prime}\$</pre>	x'	x prime
\$x''\$	x"	x double prime
<pre>\$\overrightarrow{AB}\$</pre>	\overrightarrow{AB}	a vector pointing from A to B
<pre>\$\underline{x}\$</pre>	<u>x</u>	x underline
\$\hat{x}\$	\hat{x}	x hat
\$\bar{x}\$	\overline{x}	x bar
\$\dot{x}\$	ż	x dot
<pre>\$\tilde{x}\$</pre>	\tilde{x}	x tilde
\$x_i\$	x_i	x subscript i, x sub i
\$x^i\$	x^{i}	x to the n, x to the nth, x to the n-th power x raised to the n-th power
<pre>\$\ddot{x}\$</pre>	\ddot{x}	x double dot

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML 本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

\$x^*\$	<i>x</i> *	x star, x super asterisk
\$x\dagger\$	x†	x dagger
<pre>\$x\ddagger\$</pre>	<i>x</i> ‡	x double dagger
<pre>\${\color{red}x}\$</pre>	x	red x

希腊字母

表 4 总结常用大小写希腊字母,表 5 给出常用作变量的希腊字母。比如,鸢尾花书《统计至简》就会用到 9 。

表 4. 希腊字母,大小写

小写	LaTeX	大写	LaTeX	英文拼写	英文发音
α	\$\alpha\$	A	\$A\$	alpha	/ˈælfə/
β	\$\beta\$	В	\$B\$	beta	/'beitə/
γ	\$\gamma\$	Γ	\$\Gamma\$	gamma	/ˈgæmə/
δ	\$\delta\$	Δ	\$\Delta\$	delta	/'deltə/
з	<pre>\$\epsilon\$</pre>	E	\$E\$	epsilon	/'epsɪlɑ:n/
ζ	\$\zeta\$	Z	\$Z\$	zeta	/ˈziːtə/
η	\$\eta\$	Н	\$H\$	eta	/ˈiːtə/
θ	\$\theta\$	Θ	\$\Theta\$	theta	/ˈθiːtə/
ı	\$\iota\$	I	\$1\$	iota	/ar'outə/
κ	\$\kappa\$	K	\$K\$	kappa	/ˈkæpə/
λ	\$\lambda\$	Λ	\$\Lambda\$	lambda	/ˈlæmdə/
μ	\$\mu\$	M	\$M\$	mu	/mju:/
v	\$\nu\$	N	\$N\$	nu	/nju:/
ξ	\$\xi\$	\varXi	\$\Xi\$	xi	/ksaɪ/ 或 /zaɪ/ 或 /gzaɪ/
0	\$\omicron\$	0	\$0\$	omicron	/ˈaːməkraːn/
π	\$\pi\$	П	\$\Pi\$	pi	/paɪ/
ρ	\$\rho\$	P	\$P\$	rho	/rou/
σ	\$\sigma\$	Σ	\$\Sigma\$	sigma	/'sigmə/
τ	\$\tau\$	T	\$T\$	tau	/taʊ/
υ	<pre>\$\upsilon\$</pre>	Y	\$Y\$	upsilon	/'upsila:n/
φ	\$\phi\$	Φ	\$\Phi\$	phi	/faɪ/
χ	\$\chi\$	X	\$X\$	chi	/kaɪ/
Ψ	\$\psi\$	Ψ	\$\Psi\$	psi	/saɪ/
ω	\$\omega\$	Ω	\$\Omega\$	omega	/oʊˈmegə/

表 5. 希腊字母, 变量

LaTeX	样式	LaTeX	样式

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

\$\vartheta\$	9	\$\varrho\$	Q
\$\varkappa\$	ж	\$\varphi\$	φ
\$\varpi\$	σ	<pre>\$\varepsilon\$</pre>	ε
\$\varsigma\$	S		

常用符号

表6总结常用符号。

此外,请大家注意区分: - 不间断连字符 (nonbreaking hyphen)、- 减号 (minus sign)、- 短破折号 (en dash)、— 长破折号 (em dash)、_ 下划线 (underscore)、/ 前斜线 (forward slash)、\ 反斜线 (backward slash, backslash, reverse slash)、| 竖线 (vertical bar, pipe)。

表 6. 常用符号

LaTex	数学表达	英文读法	中文表达
\$\times\$	×	multiplies, times	乘
\$\div\$	÷	divided by	除以
<pre>\$\otimes\$</pre>	8	tensor product	张量积
\$(\$	(open parenthesis, left parenthesis, open round bracket, left round bracket	左圆括号
\$)\$)	close parenthesis, right parenthesis, close round bracket, right round bracket	右圆括号
\$[\$	[open square bracket, left square bracket	左方括号
\$]\$]	close square bracket, right square bracket	右方括号
\$\{\$	{	open brace, left brace, open curly bracket, left curly bracket	左大括号
\$\}\$	}	close brace, right brace, close curly bracket, right curly bracket	右大括号
\$\pm\$	±	plus or minus	正负号
\$\mp\$	Ŧ	Minus or plus	负正号
\$<\$	<	less than	小于
\$\leq\$	S	less than or equal to	小于等于
\$\11\$	«	much less than	远小于
\$>\$	>	greater than	大于号
\$\geq\$	≥	greater than or equal to	大于等于
\$\gg\$	>>	much greater than	远大于
\$=\$	=	equals, is equal to	等于
\$\equiv\$	=	is identical to	完全相等
\$\approx\$	≈	is approximately equal to	约等于
\$\propto\$	œ	proportional to	正比于
<pre>\$\partial\$</pre>	ð	partial derivative	偏导

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套徽课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

\$\nabla\$	∇	del, nabla	梯度算子
\$\infty\$	∞	infinity	无穷
\$\neq\$	≠	does not equal, is not equal to	不等于
\$\parallel\$	ll l	parallel	平行
\$\perp\$	Т	perpendicular to	垂直
\$\angle\$		angle	角度
\$\triangle\$	Δ	triangle	三角形
\$\square\$		square	正方形
\$\sim\$	~	similar	相似
\$\exists\$	3	there exists	存在
\$\forall\$	A	for all	任意
\$\subset\$		is proper subset of	真子集
\$\subseteq\$	⊆	is subset of	子集
\$\varnothing\$	Ø	empty set	空集
\$\supset\$	n	is proper superset of	真超集
\$\supseteq\$	\square	is superset of	超集
\$\cap\$	\cap	intersection	交集
\$\cup\$)	union	并集
\$\in\$	\cup	is member of	属于
<pre>\$\notin\$</pre>	∉	is not member of	不属于
\$\N\$	N	set of natural numbers	自然数集合
\$\Z\$	\mathbb{Z}	set of integers	整数集合
\$\rightarrow\$	\rightarrow	arrow to the right	向右箭头
\$\leftarrow\$	←	arrow to the left	向左箭头
\$\mapsto\$	\mapsto	maps to	映射
<pre>\$\implies\$</pre>	\Rightarrow	implies	推出
\$\uparrow\$	↑	arrow pointing up, upward arrow	向上箭头
\$\Uparrow\$	$\qquad \qquad $	arrow pointing up, upward arrow	向上箭头
\$\downarrow\$	\rightarrow	arrow pointing down, downward arrow	向下箭头
\$\Downarrow\$	\downarrow	arrow pointing down, downward arrow	向下箭头
<pre>\$\therefore\$</pre>	:.	therefore sign	所以
\$\because\$	∵	because sign	因为
\$\star\$	*	asterisk, star, pointer	星号
\$!\$!	exclamation mark, factorial	叹号, 阶乘
\$ x \$	x	absolute value of x	绝对值

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML 本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

<pre>\$\lfloor x \rfloor\$</pre>		the floor of x	向下取整
<pre>\$\lceil x \rceil\$</pre>	$\lceil x \rceil$	the ceiling of x	向上取整
\$x!\$	<i>x</i> !	x factorial	阶乘

25.3 代数

表 7~表 12 总结了一些常用的 LaTeX 代数表达式,请大家自行学习。

表 7. 几个多项式有关的数学表达

LaTeX	数学表达
$x^{2}-y^{2} = \left(x+y\right)\left(x-y\right)$	$x^{2} - y^{2} = (x + y)(x - y)$
$a_{n}x^{n}+a_{n-1}x^{n-1}+\det + a_{2}x^{2} + a_{1}x + a_{0}$	$a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$
\$\sum_{k=0}^{n}a_{k}x^{k}\$	$\sum_{k=0}^{n} a_k x^k$
\$ ax^{2}+bx+c=0\ (a\neq 0) \$	$ax^2 + bx + c = 0 \ (a \neq 0)$

表 8. 几个根式有关的数学表达

LaTeX	数学表达	
\${\sqrt[{n}]{a^{m}}}=(a^{m})^{1/n}=a^{m/n}=(a^{1/n})^{m}=({\sqrt[{n}]{a}})^{m}\$	$\sqrt[n]{a^m} = (a^m)^{1/n} = a^{m/n} = (a^{1/n})^m =$	$(\sqrt[n]{a})^m$
<pre>\$\left({\sqrt {1-x^{2}}}\right)^{2}\$</pre>	$\left(\sqrt{1-x^2}\right)^2$	

表 9. 几个分式有关的数学表达

LaTeX	数学表达
\$\frac {1}{x+1}+{\frac {1}{x-1}}={\frac {2x}{x^{2}-1}}\$	$\frac{1}{x+1} + \frac{1}{x-1} = \frac{2x}{x^2 - 1}$
$x_{1,2}={\frac{-b\pm {\left\{b^{2}-4ac\right\}}}{2a}}$	$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

表 10. 几个和函数有关的数学表达

代码及 PDF 文件下载: https://github.com/Visualize-ML 本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

LaTeX	数学表达
$f(x)=ax^{2}+bx+c\sim{\text{with }}\sim a,b,c\in \mathbb{R}$,\ a\neq 0\$	$f(x) = ax^2 + bx + c$ with $a,b,c \in \mathbb{R}, a \neq 0$
$f(x_1, x_2) = x_1^2 + x_2^2 + 2x_1x_2$	$f(x_1, x_2) = x_1^2 + x_2^2 + 2x_1x_2$
\$\log_{b}(xy)=\log_{b}x+\log_{b}y\$	$\log_b(xy) = \log_b x + \log_b y$
<pre>\$\ln(xy)=\ln x+\ln y{\text{ for }} x>0 {\text{ and }} y>0\$</pre>	ln(xy) = ln x + ln y for x > 0 and y > 0
<pre>\$f(x)=a\exp \left(-{\frac {(x- b)^{2}}{2c^{2}}}\right)\$</pre>	$f(x) = a \exp\left(-\frac{(x-b)^2}{2c^2}\right)$

表 11. 几个三角恒等式

LaTeX	数学表达
\$\sin ^{2}\theta +\cos ^{2}\theta =1\$	$\sin^2\theta + \cos^2\theta = 1$
<pre>\$\sin 2\theta =2\sin \theta \cos \theta\$</pre>	$\sin 2\theta = 2\sin\theta\cos\theta$
<pre>\$\sin(\alpha \pm \beta)=\sin \alpha \cos \beta \pm \cos \alpha \sin \beta\$</pre>	$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$
<pre>\$\tan(\alpha \pm \beta)=\frac {\tan \alpha \pm \tan \beta }{1\mp \tan \alpha \tan \beta }\$</pre>	$\tan(\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta}$

表 12. 几个和微积分有关数学表达

LaTeX	数学表达
<pre>\$\exp(x)=\sum _{k=0}^{\infty }{\frac {x^{k}}{k!}=1+x+{\frac {x^{2}}{2}}+{\frac {x^{3}}{6}}+{\frac {x^{4}}{24}}+\cdots \$</pre>	$\exp(x) = \sum_{k=0}^{\infty} \frac{x^k}{k!} = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24} + \dots$
<pre>\$ \left(\sum _{i=0}^{n}a_{i}\right)\left(\sum _{j=0}^{n}b_{j}\right)=\sum _{i=0}^{n}\sum _{j=0}^{n}a_{i}b_{j}\$</pre>	$\left(\sum_{i=0}^{n} a_i\right) \left(\sum_{j=0}^{n} b_j\right) = \sum_{i=0}^{n} \sum_{j=0}^{n} a_i b_j$
<pre>\$\exp(x) =\lim _{n\to \infty }\left(1+{\frac {x}{n}}\right)^{n}\$</pre>	$\exp(x) = \lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n$
$\frac{mathrm{d}}{mathrm{d}x} \exp(f(x)) = f'(x) \exp(f(x))$	$\frac{\mathrm{d}}{\mathrm{d}x} \exp(f(x)) = f'(x) \exp(f(x))$
$\int_{a}^{a}^{b}f(x) \$	$\int_{a}^{b} f(x) \mathrm{d}x$
<pre>\$\int _{-\infty }^{\infty }\exp(- x^{2})\mathrm{d}x={\sqrt {\mathrm{\pi} }}\$</pre>	$\int_{-\infty}^{\infty} \exp(-x^2) \mathrm{d}x = \sqrt{\pi}$

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

成队归谓于八字面版社所有,谓勿断州,引用谓汪叻面风。 代码及 PDF 文件下载: https://github.com/Visualize-ML 本书配套徽课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466 欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

<pre>\$\int _{-\infty }^{\infty }\int _{- \infty }^{\infty } \exp \left({- \left(x^{2}+y^{2}\right)} \right) {\mathrm{d}x} {\mathrm{d}y} = \pi\$</pre>	$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \exp\left(-\left(x^2 + y^2\right)\right) dx dy = \pi$
	$\frac{\partial^2 f}{\partial x^2} = f_{xx}'' = \partial_{xx} f = \partial_x^2 f$
<pre>\${\frac {\partial ^{2}f}{\partial y \partial x}}={\frac {\partial }{\partial y}}\left({\frac {\partial f}{\partial x}}\right)=f''_{xy}\$</pre>	$\frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = f''_{xy}$

25.5 线性代数

表 13 和表 14 总结了一些常用的 LaTeX 线性代数相关表达式,请大家自行学习。

表 13. 几个和向量有关的表达

LaTeX	数学表达
	$\boldsymbol{a} = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = [a_1 \ a_2 \ a_3]^{\mathrm{T}}$
	$\ \boldsymbol{a}\ = \sqrt{a_1^2 + a_2^2 + a_3^2}$
$\ \$ \\cdot \\mathbf \{b\} = a_{1}b_{1} + a_{2}b_{2} + a_{3}b_{3}\	$\boldsymbol{a} \cdot \boldsymbol{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$
<pre>\$\mathbf {a} \cdot \mathbf {b} =\left\ \mathbf {a} \right\ \left\ \mathbf {b} \right\ \cos \theta \$</pre>	$\boldsymbol{a} \cdot \boldsymbol{b} = \ \boldsymbol{a}\ \ \boldsymbol{b}\ \cos \theta$
	$\parallel \mathbf{x} \parallel_p = \left(\sum_{i=1}^n \left x_i \right ^p \right)^{1/p}$

表 14. 几个和矩阵有关的表达

LaTeX	数学表达
<pre>\$\mathbf {A} = {\begin{bmatrix} 1 & 2\\ 3 & 4 \\ 5 & 6 \end{bmatrix}}\$</pre>	$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$

代码及 PDF 文件下载: https://github.com/Visualize-ML 本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

\mathbf {A} ={\begin{bmatrix}a_{11}&a_{12}&\cdots &a_{1n}\\a_{21}&a_{22}&\cdots &a_{2n}\\\vdots &\vdots &\ddots &\vdots \\a_{m1}&a_{m2}&\cdots &a_{mn}\end{bmatrix}}	$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$
<pre>\$\left(\mathbf {A} +\mathbf {B} \right)^{\operatorname {T} }=\mathbf {A} ^{\operatorname {T} }+\mathbf {B} ^{\operatorname {T} }\$</pre>	$(\boldsymbol{A} + \boldsymbol{B})^{\mathrm{T}} = \boldsymbol{A}^{\mathrm{T}} + \boldsymbol{B}^{\mathrm{T}}$
<pre>\$\left(\mathbf {AB} \right)^{\operatorname {T} }=\mathbf {B} ^{\operatorname {T} }\mathbf {A} ^{\operatorname {T} }\$</pre>	$(AB)^{T} = B^{T}A^{T}$
<pre>\$ \left(\mathbf {A} ^{\operatorname} {T} }\right)^{-1}=\left(\mathbf {A} ^{-1}\right)^{\operatorname} {T} }\$</pre>	$\left(\boldsymbol{A}^{\mathrm{T}}\right)^{-1} = \left(\boldsymbol{A}^{-1}\right)^{\mathrm{T}}$
<pre>\$\mathbf {u} \otimes \mathbf {v} = \mathbf {u} \mathbf {v} ^ {\operatorname} {T}} = {\begin{bmatrix}u_{1} \\ u_{2} \\ u_{3} \\ u_{4} \end{bmatrix}} {\operatorname} {\operatornam</pre>	$\boldsymbol{u} \otimes \boldsymbol{v} = \boldsymbol{u} \boldsymbol{v}^{\mathrm{T}} = \begin{bmatrix} u_{1} \\ u_{2} \\ u_{3} \\ u_{4} \end{bmatrix} \begin{bmatrix} v_{1} & v_{2} & v_{3} \end{bmatrix} = \begin{bmatrix} u_{1}v_{1} & u_{1}v_{2} & u_{1}v_{3} \\ u_{2}v_{1} & u_{2}v_{2} & u_{2}v_{3} \\ u_{3}v_{1} & u_{3}v_{2} & u_{3}v_{3} \\ u_{4}v_{1} & u_{4}v_{2} & u_{4}v_{3} \end{bmatrix}$
<pre>\$\det {\begin{bmatrix} a & b \\ c & d \end{bmatrix}} = ad-bc\$</pre>	$\det\begin{bmatrix} a & b \\ c & d \end{bmatrix} = ad - bc$

25.6 概率统计

表 15 总结了一些常用的 LaTeX 概率统计相关表达式,请大家自行学习。

表 15. 几个和概率统计有关的表达

LaTeX	数学表达
<pre>\$\Pr(A\vert B)={\frac {\Pr(B\vert A)\Pr(A)}{\Pr(B)}}</pre>	$Pr(A \mid B) = \frac{Pr(B \mid A)Pr(A)}{Pr(B)}$
\$ f_{X\vert Y=y}(x)={\frac {f_{X,Y}(x,y)}{f_{Y}(y)}}\$	$f_{X Y=y}(x) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$
	$\operatorname{var}(X) = \operatorname{E}\left[X^{2}\right] - \operatorname{E}[X]^{2}$

代码及 PDF 文件下载: https://github.com/Visualize-ML 本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

[X]^{2}\$	
<pre>\$\operatorname {var} (aX+bY)=a^{2}\operatorname {var} (X) + b^{2}\operatorname {var} (Y) + 2ab \operatorname {cov} (X,Y)</pre>	$var(aX + bY) = a^{2} var(X) + b^{2} var(Y) + 2ab cov(X, Y)$
<pre>\$\operatorname {E} [X]=\int _{- \infty }^{\infty }xf_{X}(x) \operatorname {d}x\$</pre>	$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx$
\$ X\sim N(\mu ,\sigma ^{2})\$	$X \sim N(\mu, \sigma^2)$
<pre>\$\frac \\exp \left(-\\frac {1}{2}\\left(\\mathbf \{x\}\) - \\\boldsymbol \\\mu \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</pre>	$\frac{\exp\left(-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{\mathrm{T}}\boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right)}{\sqrt{(2\pi)^{k} \boldsymbol{\Sigma} }}$