Course 2: Al Coding for Fintech in 60 Minutes

Courses

Al Journey - Beginner to Expert

- Course 1: Al for Everyone in 60 Minutes
- Course 2: Al Coding for Fintech in 60 Minutes
- Course 3: Apply AI in Business in 60 Minutes
- Course 4: Machine Learning Algorithms in 60 Minutes
- ► Course 5: Deep Learning Algorithms in 60 Minutes

Objective

Within 60 minutes, you will:

- Understand AI in Fintech
- Understand popular Deep Learning Frameworks
- Get hands on coding with Keras and TensorFlow

Al Landscape in FinTech

Deep Learning for Financial Services

Deep Learning Frameworks

Popular Deep Learning Frameworks

- ► TensorFlow Google
- Keras TensorFlow, CNTK
- Pytorch Facebook
- MXNet AWS
- CNTK Microsoft

Deep Learning Frameworks Comparison

	Languages	Tutorials and training materials	CNN modeling capability	RNN modeling capability	Architecture: easy-to-use and modular front end	Speed	Multiple GPU support	Keras compatible
Theano	Python, C++	++	++	++	+	++	+	+
Tensor- Flow	Python	+++	+++	++	+++	++	++	+
Torch	Lua, Python (new)	+	+++	++	++	+++	++	
Caffe	C++	+	++		+	+	+	
MXNet	R, Python, Julia, Scala	++	++	+	++	++	+++	
Neon	Python	+	++	+	+	++	+	
CNTK	C++	+	+	+++	+	++	+	

Why TensorFlow

- Python API
- ► Flexible enough for research, yet built with production use in mind
- Portable on heterogeneous systems, from mobile devices to large-scale distributed machines, and on a variety of OS (Android, Windows, iOS, ...).
- TensorBoard visualization has no rival.
- Large community and supported by Google.

TensorFlow Workflow

Why Keras

- Keras is a wrapper that allows you to use either the Theano or the TensorFlow backend
- Keras has beautiful guiding principles: modularity, minimalism, extensibility, and Python-nativeness. In practice, this makes working in Keras simple and enjoyable.
- Keras has out-of-the-box implementations of common network structures. It's fast and easy to get a convolutional neural network up and running.

Neural Network Types

Type	Variants	Network structure	Applications	
BP	RBF GRNN	Input layer Output layer Hidden layer	Data fitting Pattern recognition Classification	
CNN	LeNet, AlexNet VggNet	Input layer Convolution layer Pooling layer Full connected layer	Image processing Speech signal Natural Language Processing	
RNN	LSTM	Input layer Hidden layer Output layer	Time series analysis Emotion analysis Natural Language Processing	
GAN	DCGAN	Discrimination model Generation model	Image generation Video generation	

CNN - Convolutional Neural Network

RNN - Recurrent Neural Network

GAN - Generative Adversarial Network

Keras Workflow

Keras Example

19

```
from keras.models import Sequential
1
      from keras. layers import Dense, Activation
2
3
      # Simple feed-forward architecture
4
      model = Sequential()
5
      model.add(Dense(output_dim=64, input_dim=100))
6
      model.add(Activation("relu"))
7
      model.add(Dense(output_dim=10))
8
      model.add(Activation("softmax"))
9
10
      # Optimize with SGD
11
      model.compile(loss='categorical_crossentropy',
                    optimizer='sgd', metrics=['accuracy'])
13
      # Fit model in batches
14
      model.fit(X_train, Y_train, nb_epoch=5, batch_size
15
      =32)
16
      # Evaluate model
      loss\_and\_metrics = model.evaluate(X_test, Y_test,
18
      batch_size = 32)
```

Google Colab Notebooks

Google Colab Notebooks is a Google research project created to help disseminate machine learning education and research. It's a Jupyter notebook environment that requires no setup to use and runs entirely in the cloud.

- ► Tutorial: ML & DL
- ► Coding: Generating Handwritten Digits with DCGAN

Q & A

Thank You!

Appendix

- ► Google Colab Notebooks https://colab.research.google.com/
- ► Summary of concepts in Deep Learning
 https:
 //github.com/ppant/deeplearning.ai-notes/blob/
 master/Summary_of_Deep_Learning_Concepts.ipynb
- ► Deep Learning Frameworks 2019 (Video) https://youtu.be/SJld00s4vB8
- ► Keras Explained (Video)
 https://youtu.be/j_pJmXJwMLA