

Dario Maio

http://bias.csr.unibo.it/maio/

algebra relazionale

<u> IIIIII Linguaggi di manipolazione per DB</u>

- Un linguaggio di manipolazione, o DML, permette di interrogare e modificare istanze di basi di dati.
- A parte i linguaggi utente, quali SQL, esistono altri linguaggi, formalmente definiti, che rivestono notevole importanza in quanto enfatizzano gli aspetti "essenziali" dell'interazione con un DB relazionale.
- In particulare:
 - calcolo relazionale
 - linguaggio dichiarativo basato sulla logica dei predicati del primo ordine;
 - algebra relazionale
 - linguaggio procedurale di tipo algebrico i cui operandi sono relazioni; sono due linguaggi che si concentrano sugli aspetti d'interrogazione:
 - Calcolo e algebra sono equivalenti in termini di potere espressivo ("ciò che riescono a calcolare").
 - L'algebra relazionale (AR) è la base per comprendere "come le interrogazioni vengano effettivamente elaborate da un RDBMS".

 algebra relazionale

| | Algebra relazionale: premesse (1)

- Le limitazioni espressive dell'algebra (e quindi del calcolo) relazionale sono in parte dettate dall'esigenza di garantire una soluzione efficiente al problema dell'ottimizzazione delle interrogazioni, soluzione che non risulterebbe possibile nel caso di un linguaggio general-purpose.
- La principale limitazione dell'AR è legata all'impossibilita di esprimere interrogazioni ricorsive (il caso paradigmatico è il calcolo della chiusura transitiva di una relazione binaria).
- La relazione (Start,End), chiusura transitiva di (From,To), non è computabile mediante algebra o calcolo relazionale.

From	То
1	2
3	2
2	3
3	4

Start	End
1	2
3	2
2	3
3	4
1	3
1	4
2	4

Jali Algebra relazionale: premesse (2)

- L'algebra relazionale (AR) è costituita da un insieme di operatori che si applicano a una o più relazioni e che producono una relazione:
 - operatori di base unari: selezione, proiezione e ridenominazione;
 - operatori di base binari: join (naturale), unione e differenza;
 - ... più altri derivati da questi.
- La semantica di ogni operatore si definisce specificando:
 - come lo schema (insieme di attributi) del risultato dipende dallo schema degli operandi;
 - come l'istanza risultato dipende dalle istanze in ingresso.
- Gli operatori si possono comporre, dando luogo a espressioni algebriche di complessità arbitraria.
- Gli operandi sono o (nomi di) relazioni del DB o espressioni (ben formate).
- Per iniziare, si assume che non siano presenti valori nulli.

 L'operatore di selezione, σ, permette di selezionare un sottoinsieme delle tuple di una relazione, applicando a ciascuna di esse una formula booleana F.

- F si compone di predicati connessi da AND (\land), OR (\lor) e NOT (\neg).
- Ogni predicato è del tipo $A \theta c$ o $A \theta B$, dove:
 - A e B sono attributi in X;
 - c ∈ dom(A) è una costante;
 - θ è un operatore di confronto, $\theta \in \{=, \neq, <, >, \leq, \geq\}$.

	elezione	: esem	ni (1)		
Esami	Matricola	CodCorso	Voto	Lode	
	29323	483	28	no	
	39654	729	30	sì	
	29323	913	26	no	
	35467	913	30	no	
	31283	729	30	no	
(Voto = 30) AND (Lode		Matricola	CodCorso	Voto	Lode
		35467	913	30	no
		31283	729	30	no
^O (CodCorso = 729) OR (_{Voto = 30)} (Esan	ni)		_	
		Matricola	CodCorso	Voto	Lode
		39654	729	30	sì
		35467	913	30	no
		31283	729	30	no
				algebra r	elazionale 6

IIIIII Proiezione: cardinalità del risultato

- In generale, la cardinalità di $\pi_Y(r)$ è minore o uguale della cardinalità di r (la proiezione "elimina i duplicati").
- L'uguaglianza è garantita se e solo se Y è una superchiave di R(X).

Dimostrazione:

(Se) Se Y è una superchiave di R(X), in ogni istanza legale r di R(X) non esistono due tuple distinte t1 e t2 tali che t1[Y] = t2[Y].

(Solo se) Se Y non è superchiave allora è possibile costruire un'istanza legale r con due tuple distinte t1 e t2 tali che t1[Y] = t2[Y]. Tali tuple "collassano" in una singola tupla a seguito della proiezione.

 Si noti che il risultato ammette la possibilità che "per caso" la cardinalità non vari anche se Y non è superchiave

esempio: $\pi_{CodDocente}(Corsi)$).

algebra relazionale

Jam Join naturale

 L'operatore di join naturale, ⊳⊲, combina le tuple di due relazioni sulla base dell'uguaglianza dei valori degli attributi comuni alle due relazioni.

Esami

Loam			
Matricola	CodCorso	Voto	Lode
29323	483	28	no
39654	729	30	sì
29323	913	26	no
35467	913	30	no

Corsi

CodCorso	Titolo	CodDocente	Anno
483	Analisi	0201	1
729	Analisi	0021	1
913	Sistemi Informativi	0123	2

Esami ⊳⊲ Corsi

Matricola	CodCorso	Voto	Lode	Titolo	CodDocente	Anno
29323	483	28	no	Analisi	0201	1
39654	729	30	sì	Analisi	0021	1
29323	913	26	no	Sistemi Informativi	0123	2
35467	913	30	no	Sistemi Informativi	0123	2

.

algebra relazionale

Join naturale: definizione

- Ogni tupla che compare nel risultato del join naturale di r_1 e r_2 , istanze rispettivamente di $R_1(X_1)$ e $R_2(X_2)$, è ottenuta come combinazione ("match") di una tupla di r_1 con una tupla di r_2 sulla base dell'uguaglianza dei valori degli attributi comuni (cioè quelli in $X_1 \cap X_2$).
- Inoltre, lo schema del risultato è l'unione degli schemi degli operandi.

algebra relazionale

🗐 💵 Join naturale: esempi (2)

Voli ⊳⊲ Prenotazioni

Codice	Data	Comandante	Classe	Cliente
AZ427	21/07/2001	Bianchi	Economy	Anna Bini
AZ427	21/07/2001	Bianchi	Business	Franco Dini
AZ427	23/07/2001	Rossi	Economy	Ada Cini

Linee ⊳⊲ Prenotazioni

Codice	Partenza	Arrivo	Data	Classe	Cliente
AZ427	FCO	JFK	21/07/2001	Economy	Anna Bini
AZ427	FCO	JFK	21/07/2001	Business	Franco Dini
AZ427	FCO	JFK	23/07/2001	Economy	Ada Cini

IIIII Join naturale: osservazioni

- È possibile che una tupla di una delle relazioni (operandi) non faccia match con nessuna tupla dell'altra relazione; in tal caso questa tupla viene detta "dangling".
- Nel caso limite è quindi possibile che il risultato del join sia vuoto; all'altro estremo è possibile che ogni tupla di r_1 si combini con ogni tupla di r_2 .
- Ne segue che:

la cardinalità del join, $|r_1 \triangleright \langle r_2|$, è compresa tra 0 e $|r_1|^* |r_2|$.

- Se il join è eseguito su una superchiave di $R_1(X_1)$, allora ogni tupla di r_2 fa match con al massimo una tupla di r_1 , quindi $|r_1 \triangleright \triangleleft r_2| \le |r_2|$.
- Se $X_1 \cap X_2$ è la chiave primaria di $R_1(X_1)$ e foreign key in $R_2(X_2)$ (e quindi c'è un vincolo di integrità referenziale) allora $|r_1 \triangleright \triangleleft r_2| = |r_2|$.

• Quando le due relazioni hanno lo stesso schema $(X_1 = X_2)$ allora due tuple fanno match se e solo se hanno lo stesso valore per tutti gli attributi, ovvero sono identiche, per cui:

se $X_1 = X_2$ il join naturale equivale all'intersezione delle due relazioni.

VoliCharter	Codice	Data
	XY123	21/07/2001
	SC278	28/07/2001
	XX338	18/08/2001

VoliNoSmoking

Codice	Data
SC278	28/07/2001
SC315	30/07/2001

VoliCharter ⊳⊲ VoliNoSmoking

Codice	Data	
SC278	28/07/2001	

• Viceversa, quando non ci sono attributi in comune $(X_1 \cap X_2 = \emptyset)$, allora due tuple fanno sempre match, per cui:

se $X_1 \cap X_2 = \emptyset$ il join naturale equivale al prodotto Cartesiano.

Si noti che in questo caso, a differenza del caso matematico, il prodotto Cartesiano non è ordinato.

VoliCharter	Codice	Data
	XY123	21/07/2001
	SC278	28/07/2001
	XX338	18/08/2001
VoliNoSmoking	Numero	Giorno
	SC278	28/07/2001

SC315

30/07/2001

VoliCharter ⊳⊲ VoliNoSmoking

Codice	Data	Numero	Giorno
XY123	21/07/2001	SC278	28/07/2001
SC278	28/07/2001	SC278	28/07/2001
XX338	18/08/2001	SC278	28/07/2001
XY123	21/07/2001	SC315	30/07/2001
SC278	28/07/2001	SC315	30/07/2001
XX338	18/08/2001	SC315	30/07/2001

🗐 💵 Operatori derivati: la divisione

- Gli operatori sinora visti definiscono completamente l'AR. Tuttavia, per praticità, è talvolta utile ricorrere ad altri operatori "derivati", quali la divisione e il theta-join.
- La divisione, \div , di r_1 per r_2 , con r_1 su $R_1(X_1X_2)$ e r_2 su $R_2(X_2)$, è (il più grande) insieme di tuple con schema X_1 tale che, facendo il prodotto Cartesiano con r_2 , ciò che si ottiene è una relazione contenuta in r_1 .

La divisione si può esprimere come: $\pi_{X_1}(r_1) - \pi_{X_1}((\pi_{X_1}(r_1) \bowtie r_2) - r_1)$.

bra relazionale

🗐 💵 Operatori derivati: il theta-join

■ Il theta-join è la combinazione di prodotto Cartesiano e selezione:

$$r_1 \triangleright \triangleleft_F r_2 = \sigma_F(r_1 \triangleright \triangleleft r_2)$$

con r_1 e r_2 senza attributi in comune e F composta di "predicati di join", ossia del tipo $A \ \theta \ B$, con $A \in X_1$ e $B \in X_2$.

 Se F è una congiunzione di uguaglianze, si parla più propriamente di equi-join.

- Così come è stato definito, il theta-join richiede in ingresso relazioni con schemi disgiunti.
- In diversi libri di testo e lavori scientifici (e anche nei DBMS), viceversa, il theta-join accetta relazioni con schemi arbitrari e "prende il posto" del join naturale, ossia: tutti i predicati di join sono esplicitati.
- In questo caso, per garantire l'univocità (distinguibilità) degli attributi nello schema risultato, è necessario adottare "alcuni trucchi" (ad es. usare il nome dello schema; DB2 usa un suffisso numerico: 1, 2, ecc.).

Ric	Nome	CodProgetto				
	Rossi	HK27		CodProgetto=Sigla)		
	Bianchi	HK27	(Ric.Nome ≠ Prog.No	ome)	
	Verdi	HK28	Ric.Nome	CodProgetto	Sigla	Prog.Nome
Prog	Sigla	Nome	Rossi	HK27	HK27	Bianchi
	HK27	Bianchi				
	HK28	Verdi				
		Total			alge	bra re

🔟 🎹 Algebra con valori nulli

- La presenza di valori nulli nelle istanze richiede un'estensione della semantica degli operatori.
- Inoltre, è utile considerare un'estensione del join naturale che non scarta le tuple dangling, ma genera valori nulli.
- É opportuno sottolineare che esistono diversi approcci al trattamento dei valori nulli, nessuno dei quali è completamente soddisfacente (per ragioni formali e/o pragmatiche).
- L'approccio che qui si presenta è quello "tradizionale", che ha il pregio di essere molto simile a quello adottato in SQL (e quindi dai DBMS relazionali).

= π , \cup , - con i valori nulli

 Proiezione, unione e differenza continuano a comportarsi usualmente, quindi due tuple sono uguali anche se ci sono dei NULL.

Impiegati

Cod	Nome	Ufficio
123	Rossi	A12
231	Verdi	NULL
373	Verdi	A27
435	Verdi	NULL

 $\pi_{Nome,Ufficio}$ (Impiegati)

Nome	Ufficio
Rossi	A12
Verdi	NULL
Verdi	A27

Responsabili

Cod	Nome	Ufficio
123	Rossi	A12
NULL	NULL	A27
435	Verdi	NULL

Impiegati U Responsabili

		<u> </u>
Cod	Nome	Ufficio
123	Rossi	A12
231	Verdi	NULL
373	Verdi	A27
435	Verdi	NULL
NULL	NULL	A27

algebra relazionale

Jamas on valori nulli

 Per la selezione il problema è stabilire se, in presenza di NULL, un predicato è vero o meno per una data tupla.

m	n	20	atı
ш	v	ᆫ	au
		- 0	

Cod	Nome	Ufficio
123	Rossi	A12
231	Verdi	NULL
373	Verdi	A27

$\sigma_{Ufficio = A12}$ (Impiegati)

- Sicuramente la prima tupla fa parte del risultato e la terza no.
- Ma la seconda? Non si hanno elementi sufficienti per decidere...
- ... e lo stesso vale per σ_{Ufficio ≠ A12}(Impiegati)!

 Il join naturale non combina due tuple se queste hanno entrambe valore nullo su un attributo in comune (e valori uguali sugli eventuali altri attributi comuni).

Responsabili	Ufficio	Cod
	A12	123
	A27	NULL
	NULL	231

Impiegati ⊳⊲ Responsabili Cod Nome Ufficio

Cod	Nome	Ufficio
123	Rossi	A12

- In assenza di valori nulli l'intersezione di r_1 e r_2 si può esprimere:
 - mediante il join naturale, $r_1 \cap r_2 = r_1 \triangleright \triangleleft r_2$, oppure
 - sfruttando l'uguaglianza $r_1 \cap r_2 = r_1 (r_1 r_2)$.
- In presenza di valori nulli, dalle definizioni date si ha che:
 - nel primo caso il risultato non contiene tuple con valori nulli;
 - nel secondo caso, viceversa, tali tuple compaiono nel risultato.

Impiegati	Cod	Nome	Ufficio
. 0	123	Rossi	A12
	231	Verdi	NULL
	373	Verdi	A27
	435	Verdi	NULL
Responsabili	Cod	Nome	Ufficio
Responsabili	Cod 123	Nome Rossi	Ufficio A12
Responsabili			
Responsabili	123	Rossi	A12

Impiegati - Responsabili			
Cod	Nome	Ufficio	
231	Verdi	NULL	
373	Verdi	A27	

Impiegati – (Impiegati – Responsabili)

Cod	Nome	Ufficio
123	Rossi	A12
435	Verdi	NULL

Outer join: mantenere le tuple dangling

- In alcuni casi è utile che anche le tuple dangling di un join compaiano nel risultato.
- A tale scopo si introduce l'outer join (join "esterno") che "completa" con valori nulli le tuple dangling.
- Esistono tre varianti:
 - Left (=▷<): sono incluse solo le tuple dangling dell'operando sinistro, e completate con null.
 - Right (▷<=): sono incluse solo le tuple dangling dell'operando destro, e completate con null.
 - Full (=><=): sono considerate le tuple dangling di entrambi gli operandi, e completate con null.

<u> IIIIII Espressioni e viste</u>

- Gli operatori dell'AR si possono liberamente combinare tra loro, avendo cura di rispettare le regole stabilite per la loro applicabilità.
- Oltre alla rappresentazione "lineare" è anche possibile adottare una rappresentazione grafica in cui l'espressione è rappresentata ad albero.

 Al fine di "semplificare" espressioni complesse è anche possibile fare uso di viste, ovvero espressioni a cui viene assegnato un nome e che è possibile riutilizzare all'interno di altre espressioni.

🗐 💵 Equivalenza di espressioni

- Un'interrogazione su un DB con schema R può a tutti gli effetti essere vista come una funzione che a ogni istanza r di R associa una relazione risultato con un dato schema.
- Un'espressione dell'AR costituisce quindi una modalità specifica per esprimere (rappresentare) tale funzione, e due espressioni sono tra loro equivalenti se rappresentano la stessa funzione:

due espressioni E1 ed E2 espresse su un DB \mathbf{R} si dicono equivalenti rispetto a \mathbf{R} (E1 $\equiv_{\mathbf{R}}$ E2) se e solo se per ogni istanza \mathbf{r} di \mathbf{R} producono lo stesso risultato, E1(\mathbf{r}) = E2(\mathbf{r}).

■ In alcuni casi l'equivalenza non dipende dallo schema R specifico, nel qual caso si scrive E1 = E2 (ossia vale $E1 =_R E2$ per ogni schema R).

Esempio: si ha $\pi_{AB}(\sigma_{A=a}(R)) \equiv \sigma_{A=a}(\pi_{AB}(R))$, come è facile verificare; d'altronde $\pi_{AB}(R_1) \bowtie \pi_{BC}(R_2) \equiv_R \pi_{ABC}(R_1 \bowtie R_2)$, poiché l'equivalenza è garantita solo se anche nel secondo caso il join è solo su B.

<u> IIIII Equivalenze: considerazioni</u>

- Due espressioni equivalenti E1 ed E2 garantiscono lo stesso risultato, ma ciò non significa che la scelta sia indifferente in termini di "risorse" necessarie.
- Considerazioni di questo tipo sono essenziali durante la fase di ottimizzazione delle interrogazioni; infatti la conoscenza delle regole di equivalenza può consentire di eseguire trasformazioni che possono portare a un'espressione valutabile in modo più efficiente rispetto a quella iniziale
- In particolare le regole più interessanti sono quelle che permettono di ridurre la cardinalità degli operandi e quelle che portano a una semplificazione dell'espressione (es.: R ▷
 R ≡ R se non ci sono valori nulli).

🗐 💵 Regole di equivalenza

Tra le regole base di equivalenza, si ricordano qui le seguenti:

Il join naturale è commutativo e associativo:

$$E_1 \triangleright A = E_2 \triangleright A = E_1$$
 $(E_1 \triangleright A = E_2) \triangleright A = E_1 \triangleright A = E_1 \triangleright A = E_2 \triangleright A = E_3$

• Selezione e proiezione si possono raggruppare:

$$\sigma_{F1}(\sigma_{F2}(E)) \equiv \sigma_{F1 \text{ AND } F2}(E)$$
 $\pi_{Y}(\pi_{YZ}(E)) \equiv \pi_{Y}(E)$

 Selezione e proiezione commutano (F si riferisce esclusivamente ad attributi in Y):

$$\pi_{\mathsf{Y}}(\sigma_{\mathsf{F}}(\mathsf{E})) \equiv \sigma_{\mathsf{F}}(\pi_{\mathsf{Y}}(\mathsf{E}))$$

"Push-down" della selezione rispetto al join (F è sullo schema di E₁):

$$\sigma_{\mathsf{F}}(\mathsf{E}_1 \rhd \mathsf{d} \mathsf{E}_2) \equiv \sigma_{\mathsf{F}}(\mathsf{E}_1) \rhd \mathsf{d} \mathsf{E}_2$$

Sommario:

- L'algebra relazionale (AR) è un linguaggio per DB costituito da un insieme di operatori che si applicano a una o più relazioni e che producono una relazione.
- Gli operatori di base sono: selezione, proiezione, ridenominazione (operatori unari), join naturale, unione e differenza (operatori binari).
 Sulla base di questi si possono poi definire altri operatori, quali divisione e theta-join.
- La presenza di valori nulli porta a ridefinire la semantica del join naturale e a fare uso di una logica a tre valori (V,F,?) per calcolare il valore di verità di espressioni booleane con valori nulli.
- L'outer-join (left, right e full) permette di includere nel risultato anche tuple dangling, completandole con valori nulli.
- In generale, una query sul DB può essere rappresentata in AR mediante diverse espressioni, tutte tra loro equivalenti dal punto di vista del risultato, ma non necessariamente dal punto di vista dell'efficienza.

