

Step 5. PRINT REGN-NO. AVG

Towards Making Flowchart Images Machine Interpretable

Shreya Shukla, Prajwal Gatti, Yogesh Kumar, Vikash Yadav, Anand Mishra Vision, Language and Learning Group (VL2G) IIT Jodhpur, India

Data & Code available!

Let's transform visual logic into executable code with FloCo-T5!

GOAL 12 • FLOWCHART AND ALGORITHM BASICS P = int(input("Enter P: ")) $T \leftarrow P*(1+I/100)$ $\Gamma = P * pow((1+I)/100, N)$ The algorithm corresponding to Problem 1.7 is given below: Print T Step 1. INPUT TO P, I, N Step 2. COMPUTE $T \leftarrow P * \left[1 + \frac{1}{T} \right]$ Python code STOP Problem 1.8. Construct a flowchart to show how a student's registration number and grades in 3 subjects, m_1 , m_2 , and m_3 are displayed along with the Flowchart Image Task Analysis. The data supplied as inputs are the registration number and grades obtained in three subjects. The registration number contributes nothing to the process of deriving the desired output; it just identifies the person about whom the total grade and the average grade are obtained. The total grade can be obtained by taking the sum of the marks m_1 , m_2 , and m_3 , and the Convert flowchart images to average can be obtained by dividing the total by 3. The steps are illustrated The algorithm corresponding to the above problem is given below: executable computer programs Step 1. INPUT TO REGN-NO Step 2. INPUT TO M1, M2, M3 (M1, M2, and M3 are for holding the grades in three subjects) Step 3. COMPUTE $T \leftarrow M1 + M2 + M3$ in Python language.

FloCo DATASET

A new dataset for studying our proposed task! Contains 11K+ flowchart-code pairs.

Total Number of Samples	11884
Avg. length of the program (in tokens)	46
Avg. length of the program (in lines)	4.6
Train set size	10102
Test set size	1188
Validation set size	594

FloCo-T5

- Flowchart image encoded using OCR and OpenCV shape detection results.
- Masked Language Modelling objective used to train the pre-trained CodeT5 model on augmented python codes and flowchart image encodings.
- Model fine-tuned with encoding-code samples.

String Encodings	Modified String				
Encodings Types of	Types of	BLEU	CodeBLEU	EM	
		encodings			
, ,,,		Tuple	16.7	37.7	0.2
X,PARALLELOGRA	PARALLELOGRAM	String	50.1	63.4	11.1
M},{y = ((16 + x) - 20),RECTANGLE},	[SEP] y = ((16 + x) - 20), RECTANGLE [SEP]	Modified String	67.4	75.7	20.0
	M_{3}^{2} ,{y = ((16 + x) - 20),RECTANGLE},	{startfun1,OVAL}, start fun1, OVAL [SEP] input: X, PARALLELOGRA M}, {y = ((16 + x) - 20), RECTANGLE}, - 20), RECTANGLE	String Encodings Encodings Types of encodings {startfun1,OVAL}, {input: [SEP] input: X, X,PARALLELOGRA PARALLELOGRAM PARALLELOGRAM [SEP] y = ((16 + x) - 20), RECTANGLE Tuple Modified String	String Encodings Encodings Types of encodings Startfun1,OVAL, start fun1, OVAL [SEP] input: X, X,PARALLELOGRA PARALLELOGRAM [SEP] y = ((16 + x) - 20), RECTANGLE Types of encodings Tuple 16.7 String 50.1 Modified String	String Encodings Encodings Encodings Types of encodings Start fun1, OVAL [SEP] input: X, PARALLELOGRA M}, $\{y = ((16 + x) - 20), RECTANGLE\}$, Encodings Types of encodings String BLEU CodeBLEU encodings Tuple 16.7 37.7 String 50.1 63.4 Modified String St

Experimented with 3 ways of encoding flowcharts

Original Code	Function augmented		
import numpy as np	import numpy as np		
def theta(self, s):	def he9GxMm5QgFn(self, s):		
s = np.where(s < -709, -709, s)	s = np.where(s < -709, -709, s)		
return 1 / (1 + np.exp((-1) * s))	return 1 / (1 + np.exp((-1) * s))		
Variable augmented	Function-variable augmented		
import numpy as np	import numpy as np		
def theta(self, kO9):	def he9GxMm5QgFn(self, Lyv):		
kO9 = np.where(kO9 < -709, -709, kO9)			
return 1 / (1 + np.exp((-1) * kO9))	return 1 / $(1 + np.exp((-1) * Lyv))$		

Logic-preserving code augmentations used during the pre-training of FloCo-T5

RESULTS

Method	BLEU	CodeBLEU	EM
Vanilla Transformer	10.3	26.8	0.0
BART	31.1	40.7	2.2
PLBART	55.7	63.7	19.7
CodeT5	63.8	71.8	17.8
FloCo-T5	67.4	75.7	20.0

CONCLUSION

- A large-scale Testbed for Flowchart Image → Code Task
- Novel FloCo-T5 framework for code generation from flowchart images.
- Our model can be adopted to hand-drawn flowchart images as well.

