Национальный исследовательский университет "Высшая школа экономики" Факультет Физики

ОТЧЁТ ПО ЛАБОРАТОРНОЙ РАБОТЕ "ДИФРАКЦИЯ ФРАУНГОФЕРА НА РЕШЁТКЕ"

по курсу "Оптика"

Выполнила:

Фазлиахметова Олеся Камилевна БФЗ193 2 курс

Проверила:

Готовко С. К.

Москва 12 апреля 2021 г.

Дифракция Фраунгофера на решётке

Содержание

1.	Цель работы	2
2.	Оборудование	2
3.	Теоретическое описание 3.1. Дифракционная решетка	
4.	Выполнение работы	4
	4.1. Определение положения максимумов при различных углах Θ_i 4.1.1. Решетка №1 4.1.2. Решетка №2 4.1.3. Решетка №3 4.2. Определение числа штрихов на единицу длины a 4.2.1. Решетка №1 4.2.2. Решетка №2 4.2.3. Решетка №3 4.3. Определение угла скоса решетки γ . 4.4. Подсчет погрешностей	44 44 55 66 77 88 10
5.	Вывол	11

1. Цель работы

Перед началом выполнения работы были поставлены следующие цели:

- Собрать установку для наблюдения дифракции на отражающей дифракционно решетке, изучить дифракционную картику для различных решёток при различных углах падения света на решетку Ө_i, определить положения максимумов.
- 2) Для каждой решетки определить число штрихов на единицу длины d.
- 3) С помощью фотодиодного измерителя мощности измерить интенсивность света в максимумах для решетки, с помощью которой наблюдается наибольшее количество максимумов. Обработав получнную зависимость, определить угол скоса решётки γ .

2. Оборудование

- 1) Лазеры с длиной волны $\lambda = 520$ нм;
- 2) Отражающие дифракционные решетки с разными постоянными решетки;
- 3) Переносной экран;
- 4) Подставки и крепления для элементов оптической схемы;
- 5) Линейки.

3. Теоретическое описание

3.1. Дифракционная решетка

Дифракционная решётка представляет собой периодическую структуру одинаковых щелей с периодом d. Пусть плоская монороматическая волна (с длиной волны λ) падает на решетку перпендикулярно к ее поверхности. Здесь также точка наблюдения P находится под углом Θ (угол дифракции) к нормали к решетке. Тогда результирующее поле в точке P, излучаемое всеми N щелями:

$$E(\Theta) = E_1(\Theta)e^{i\delta(N/2-1)}\frac{\sin(N\delta/2)}{\sin(\delta/2)}, \quad \delta = kd\sin(\Theta)$$
(1)

$$E_1(\Theta) \propto \frac{\sin(kb/2\sin\Theta)}{(kb/2\sin\Theta)}, \quad b$$
 — ширина щели

Распределение интенсивности по углам описывается следующим соотношением:

$$I \propto \left[\frac{\sin(kb/2(\sin\Theta + \sin\Theta_i))}{(kb/2(\sin\Theta + \sin\Theta_i))} \frac{\sin(Nkd/2(\sin\Theta + \sin\Theta_i))}{\sin(kd/2(\sin\Theta + \sin\Theta_i))} \right]^2$$
(2)

Положения максимумов определяются из условия:

$$d(\sin\Theta + \sin\Theta_i) = m\lambda, \quad m \in \mathbf{Z} - \text{порядок максимума}.$$
 (3)

Рис. 1. Дифракция Фраунгофера на решетке

3.2. Концентрирующая отражающая решетка (blazed grating)

Для практических целей часто используются отражающие решетки с треугольным профилем. Такие решетки позволяют концентрировать дифрагировавшее излучение в ненулевом порядке. Такая решетка характеризуется углом скоса (γ) , определяющием, в каком порядке m будет наблюдаться максимум дифрагировавшего излучения в зависимотси от длины волны (см. Рис. 2).

Рис. 2. Концентрирующая отражающая решетка (blazed grating)

Распределение интенсивности (2) преобразуется следующим образом:

$$I \propto \left[\frac{\sin(kd\cos\gamma/2(\sin(\Theta-\gamma)+\sin(\Theta_i-\gamma)))}{kd\cos\gamma/2(\sin(\Theta-\gamma)+\sin(\Theta_i-\gamma))} \frac{\sin(Nkd/2(\sin\Theta+\sin\Theta_i))}{\sin(kd/2(\sin\Theta+\sin\Theta_i))} \right]^2$$
(4)

4. Выполнение работы

4.1. Определение положения максимумов при различных углах Θ_i

Погрешность измерения рулетки: ± 0.1 см. Примем за погрешность радиус пятна главного максимума ± 0.2 .

4.1.1. Решетка №1

Положение нуля l=100 см, расстрояние от решетки до стены h=119.5 см. $1.\ \Theta_i=0$

m	Расстояние, см	$\sin\Theta$
0.	$100. \pm 0.2$	0.
1.	138.7 ± 0.2	0.31
2.	195. ± 0.2	0.62
-1.	61.2 ± 0.2	-0.31
-2.	6.9 ± 0.2	-0.61

2.
$$\Theta_i = 0.26$$

m	Расстояние, см	$\sin\Theta$
$1.000\mathrm{e}{+00}$	$1.100\mathrm{e}{+02}{\pm0.2}$	8.000e-02
$2.000\mathrm{e}{+00}$	$1.512\mathrm{e}{+02}{\pm0.2}$	3.900e-01
$3.000\mathrm{e}{+00}$	$2.190\mathrm{e}{+02}{\pm0.2}$	7.100e-01
$0.000\mathrm{e}{+00}$	$7.230\mathrm{e}{+01}{\pm0.2}$	-2.300e-01
$-1.000\mathrm{e}{+00}$	$2.480\mathrm{e}{+01} \pm 0.2$	-5.300e-01

4.1.2. Решетка №2

Положение нуля l=143.8 см, расстрояние от решетки до стены h=119.5 см. $1.\ \Theta_i=0$

m	Расстояние, см	$\sin\Theta$
0.	143.8 ± 0.2	0.
1.	$239. \pm 0.2$	0.62
-1.	$49. \pm 0.2$	-0.62

2.
$$\Theta_i = 0.685$$

m	Расстояние, см	$\sin\Theta$
1.	143.8 ± 0.2	0.
$\mid 0.$	48.5 ± 0.2	-0.62

4.1.3. Решетка №3

Положение нуля l=188.5 см, расстрояние от решетки до стены h=122 см. $1.\ \Theta_i=0$

m	Расстояние, см	$\sin\Theta$
-5.000e+00	$3.620e+01 \pm 0.2$	-7.800e-01
$-4.000\mathrm{e}{+00}$	$9.050\mathrm{e}{+01}{\pm0.2}$	-6.300e-01
-3.000e+00	$1.235\mathrm{e}{+02}{\pm0.2}$	-4.700e-01
$-2.000\mathrm{e}{+00}$	$1.483\mathrm{e}{+02}{\pm0.2}$	-3.100e-01
-1.000e+00	$1.693\mathrm{e}{+02}{\pm0.2}$	-1.600e-01
$0.000\mathrm{e}{+00}$	$1.885 \mathrm{e}{+02}{\pm0.2}$	$0.000\mathrm{e}{+00}$
$1.000\mathrm{e}{+00}$	$2.073\mathrm{e}{+02}{\pm0.2}$	1.500 e-01
$2.000\mathrm{e}{+00}$	$2.280\mathrm{e}{+02}{\pm0.2}$	3.100e-01
$3.000\mathrm{e}{+00}$	$2.525\mathrm{e}{+02}{\pm0.2}$	4.600 e-01
$4.000\mathrm{e}{+00}$	$2.851\mathrm{e}{+02}{\pm0.2}$	6.200 e-01
$5.000\mathrm{e}{+00}$	$3.395\mathrm{e}{+02}{\pm0.2}$	7.800e-01

2. $\Theta_i = 0.152$

m	Расстояние, см	$\sin\Theta$
$1.000\mathrm{e}{+00}$	$1.885e+02\pm0.2$	$0.000 \mathrm{e}{+00}$
$2.000\mathrm{e}{+00}$	$2.287e + 02 \pm 0.2$	3.100e-01
$3.000\mathrm{e}{+00}$	$2.533e+02\pm0.2$	4.700e-01
$4.000\mathrm{e}{+00}$	$2.860\mathrm{e}{+02} \pm 0.2$	6.200e-01
$5.000\mathrm{e}{+00}$	$3.405 \mathrm{e}{+02} \pm 0.2$	7.800e-01
$0.000\mathrm{e}{+00}$	$1.695\mathrm{e}{+02}{\pm0.2}$	-1.500e-01
-1.000e+00	$1.243\mathrm{e}{+02}{\pm0.2}$	-4.700e-01
-2.000e+00	$9.130e+01 \pm 0.2$	-6.200e-01
-3.000e+00	$3.750\mathrm{e}{+01}{\pm0.2}$	-7.800e-01

3. $\Theta_i = 0.29$

m	Расстояние, см	$\sin\Theta$
$1.000\mathrm{e}{+00}$	$1.710\mathrm{e}{+02}{\pm0.2}$	-1.400e-01
$2.000\mathrm{e}{+00}$	$1.900\mathrm{e}{+02}{\pm0.2}$	1.000e-02
$3.000\mathrm{e}{+00}$	$2.098\mathrm{e}{+02}{\pm0.2}$	1.700e-01
$4.000\mathrm{e}{+00}$	$2.555\mathrm{e}{+02}{\pm0.2}$	4.800e-01
$5.000\mathrm{e}{+00}$	$2.900\mathrm{e}{+02}{\pm0.2}$	6.400 e - 01
$0.000\mathrm{e}{+00}$	$1.507\mathrm{e}{+02}{\pm0.2}$	-3.000e-01
$-1.000\mathrm{e}{+00}$	$1.267\mathrm{e}{+02}{\pm0.2}$	-4.500e-01
$-2.000\mathrm{e}{+00}$	$9.520\mathrm{e}{+01}{\pm0.2}$	-6.100e-01

4. $\Theta_i = 0.3855$

m	Расстояние, см	$\sin\Theta$
$1.000\mathrm{e}{+00}$	$1.642 \mathrm{e} + 02 \pm 0.2$	-2.000e-01
$2.000\mathrm{e}{+00}$	$1.837 \mathrm{e} + 02 \pm 0.2$	-4.000e-02
$3.000\mathrm{e}{+00}$	$2.230\mathrm{e}{+02}{\pm0.2}$	2.700e-01
$4.000\mathrm{e}{+00}$	$2.763\mathrm{e}{+02}{\pm0.2}$	5.800e-01
$5.000\mathrm{e}{+00}$	$3.230\mathrm{e}{+02}{\pm0.2}$	7.400 e-01
$0.000\mathrm{e}{+00}$	$1.427\mathrm{e}{+02}{\pm0.2}$	-3.500e-01
-1.000e+00	$1.167\mathrm{e}{+02}{\pm0.2}$	-5.100e-01
-2.000e+00	$8.050\mathrm{e}{+01}{\pm0.2}$	-6.600e-01
-3.000e+00	$1.550\mathrm{e}{+01}{\pm0.2}$	-8.200e-01

4.2. Определение числа штрихов на единицу длины а

Для каждой решетки построим зависимость $\sin\Theta(m)$. Она линейна – коэффициент наклона прямой определяет величину λ/d .

4.2.1. Решетка №1

Число штрихов на единицу длины $a=595.5\pm0.5~{\rm mm}^{-1}.$

Рис. 3. $\Theta_i = 0$

Рис. 4. $\Theta_i = 0.26$

4.2.2. Решетка №2

Число штрихов на единицу длины $a=1198\pm1~{\rm mm}^{-1}.$

Рис. 5. $\Theta_i = 0$

Рис. 6. $\Theta_i = 0.685$

4.2.3. Решетка №3

Число штрихов на единицу длины $a=325\pm25~{\rm mm}^{-1}.$

Рис. 7. $\Theta_i = 0$

Рис. 8. $\Theta_i = 0.29$

Рис. 9. $1\Theta_i = 0.45$

4.3. Определение угла скоса решетки γ .

Данные, которые были замерены с помощью фотодиодного измерителя мощности для решетки №3:

Интенсивность, мВт	$\sin\Theta$
7.70e + 01	-7.80e-01
$8.00\mathrm{e}{+01}$	-6.30e-01
$8.40\mathrm{e}{+01}$	-4.70e-01
$1.00\mathrm{e}{+02}$	-3.10e-01
$1.49\mathrm{e}{+02}$	-1.60e-01
$4.94 \mathrm{e}{+02}$	$0.00\mathrm{e}{+00}$
$7.36\mathrm{e}{+03}$	1.50e-01
$7.60\mathrm{e}{+01}$	3.10e-01
$1.30\mathrm{e}{+01}$	4.60e-01
$1.60\mathrm{e}{+01}$	6.20e-01
$1.50\mathrm{e}{+01}$	7.80e-01

Для нахождения угла скоса γ аппроксимируем эти результаты функцией (4) и найдем ее параметры (указаны на Рис. 10):

Рис. 10. Интенсивность излучения

Дифракция Фраунгофера на решётке

Погрешность измерения мощности лазерного излучения фотодиодным измерителем не превышает 5%.

T. о. угол скоса $\gamma = 0.1 \approx \frac{\pi}{30}$.

4.4. Подсчет погрешностей

5. Вывод

В ходе работы мы

- собрали установку для наблюдения дифракции на отражающей дифракционно решетке, изучили дифракционную картику для различных решёток при различных углах падения света на решетку Θ_i , определили положения максимумов,
- для каждой решетки определили число штрихов на единицу длины, эти значения оказались равными:
 - 1) $a_1 = 595.5 \pm 0.5 \text{ MM}$
 - 2) $a_2 = 1198 \pm 1 \text{ MM}$
 - 3) $a_3 = 325 \pm 25 \text{ mm}$
- с помощью фотодиодного измерителя мощности измерили интенсивность света в максимумах для решетки, с помощью которой наблюдается наибольшее количество максимумов. Обработав получнную зависимость, определили угол скоса решётки γ . Он оказался равен $\gamma = 0.1 \approx \frac{\pi}{30}$.