A new Nested Graph Model for Data Integration

Giacomo Bergami 2/10/2017

Introduction

- Graph data are a widely adopted.
- Currently, most of the No-SQL data representation is semistructured (JSON, XML).
- Graph operations allowing to integrate property graphs and semi-structured (nested) data are not provided.
 - An intermediate data representation allowing to represent both structured, semi-structured (nested) and non-structured data is missing.
 - A query language for this generalized data model is required. It should be able to sketch the data integration task and express both semistructured and graph queries.

Related Works: Data Integration

- Schema Oriented, uniform data representation
 - A schema can be always extracted if missing (generalization).
 - Schema alignment allows to find data similarities.
 - All the data source schemas shall be aligned to the final hub schema.
- Query Oriented
 - The schema alignment can be represented as a query rewriting.
 - We can perform each query separately on the original sources first and then integrate the intermediate results (LAV) or translate and align the data first and then perform the query (GAV).
 - In both scenarios, part of the query has to be performed on top of the intermediate representation.

Contributions

- An operation allowing to integrate different graphs was missing.
 Definition of the first class of binary operators for property graphs: graph joins.
 - Its definition pointed out the inefficiency of current graph query plans and data structures.
- Definition of a data model allowing to provide data integration between graph, semistructured and structured data.
 - Future works

Graph Joins: A query example

Consider an on-line service such as ResearchGate where researchers can {follow} each others' work, and a citation graph. Return the paper graph where a paper cites another one iff. the first author of the first paper follows the first author of the second.

- Binary operator returning just one graph.
- Vertex conditions are (θ-)join conditions.
- A way to combine the edges is determined.

Graph Joins: Relational Query Plan

id	src	dst	ℓ_e
5	6	7	$\{{ t WorksWith}\}$
6	6	8	${\tt WorksWith}$
7	7	9	$\{ {\tt WorksWith} \}$
8	9	8	{WorksWith}

 E_{ESN}

			1 / 0 / 0 0 0 0
id	src	dst	ℓ_e
1	1	3	$\{\mathtt{Needs}\}$
2	2	4	$\{\mathtt{Needs}\}$
3	3	4	$\{\mathtt{Needs}\}$
4	4	5	$\{\mathtt{Needs}\}$

 $E_{Projects}$

Figure 1: A relational representation of the graph, where the vertices are θ -joined.

Graph Joins: The query result

Graph Joins: Goals

- 1. The data model must enhance the serialization of both operands and graph result.
- The join definition must be flexible enough to support further extensions (modularity, compositionality and properties preserving).
- 3. The **physical model** must allow a *quick access* to the data structures.

Graph Joins: Physical Model

Figure 3: Representing Graph Operators and Output

Graph Joins: Benchmarks

Opera	nds Size	Res	sult	Joi	n Time (C/C++) (ms)	Join Time	(Java) (ms)
Left (V)	Right ($ V $)	Size (V)	Size (E)	Virtuoso	PostgreSQL	GCEA (C++)	Neo4J	GCEA (Java)
10	10	5	2	4.99	11.29	0.53	211.45	24.97
10^{2}	10^{2}	16	4	4.94	22.82	0.93	222.87	32.70
10^{3}	10^{3}	251	55	4.55	22.92	4.35	448.97	117.58
10^{4}	10^{4}	2734	68o	117 712.00	183.90	40.42	3 149.90	1 150.37
10^{5}	10^{5}	26803	7 368	>4H	7 150.74	411.78	241 026.79	17 178.49
10 ⁶	10 ⁶	151212	99 558	>4H	99 683.91	3 966.72	>4H	178 066.80

Figure 4: Conjunctive join execution on well known graph databases. Similar result were provided on graph database libraries.

Graph Joins: Limitations (1)

Figure 5: A data integration scenario, where the schema is already aligned

Graph Joins: Limitations (2)

Figure 6: A data integration scenario, where the schema is already aligned

Graph Joins: Limitations (3)

- Suppose to generalize the graph join by extending the θ -join (\bowtie_{θ}) to a full θ -join (\bowtie_{θ}) over the vertices.
 - This is possible within the previous definition.
- Suppose to use as a θ some edges that remark the similarity values among the nodes.
 - After the pairwise application of the join, the θ edges must be rewritten.
- In some data cleaning scenarios, we want to preserve the original non-aggregated information, while providing an integrated view as in the previous picture.
 - A new data model is required, generalizing statecharts and hypernodes.

Generalized Semistructured Model and Nested Graphs

$$GSM = (o, O, \ell, \xi, \phi)$$

- *o* is the **reference object**, designing the root of the GSM.
- ϕ is the object id containment function for each expression e $(\phi(o',e))$.
- O is the supset of all the objects contained by $o\left(\bigcup_e \phi(o',e)\right)$
- ℓ is the function associating to each object in O a list of labels.
- ξ is the function associating to each object in O a list of expressions.

GSM, generalizing semistructured data containment

Figure 7: Allowing multiple containments of the same object.

Figure 8: Allowing multiple nesting and nestings with recursions.

GSM, representing (nested) graphs

Figure 9: Representing a nested graph with two vertices and one edge.

GSM, representing semistructured documents

Figure 10: Another graph representation from a JSON document.

GSM, aligning graphs with semistructured schemas (1)

Figure 11: Schema alignment, using the usual techniques.

GSM, aligning graphs with semistructured schemas (2)

Figure 12: Schema alignment, using the nesting information refinement.

GSM, aligning graphs with semistructured schemas (3)

The previous data alignment process provides an interesting perspective for graph grammars:

- The schema (on the right) extracted from the original data defines the matching graph.
 - Given that the schema was extracted from the original data, we already know the result of such match.
- The hub schema (on the left) defines how the data on the right has to be rewritten transformation graph, using the edges as transformations.

Hereby, a generalization of the graph grammars is required. The operations required to do the matching and transformations are non trivial. Thefore, an algebra expressing such operations is required.

paNGRAm Algebra

paNGRAm	COA Algebra	3W Algebra	Graph Languages
Selection, σ_P	Selection, σ_P Projection, π_P	Selection, σ_P	Graph Traversal, P
Map, $\mu_{\ell',\xi',\phi'}$	Embedding, ε_ϕ Projection, π_ϕ	Calc, Calc _f	Transform, Pattern Matching
Creation, $\kappa_{L,E}^{\omega}$	Embedding new elements	Regionize, κ	Transform,
Fold, $fold_{S,f}$	Expression using ς	Loop operator, λ	Reduce (GrAIA)
Disjoint Union, ⊔	$+\mu=$ Set operations	$+\mu={\sf Set}$ operations	Graph Binary Operators

- An operation for creating new elements is required because this algebra manipulates ids (already existing objects).
- All the other operations (such as graph unnesting ν, splicing ς, graph joins ⋈) are expressible through a composition of operators.

Future Works

- In order to acomplish the data integration scenario, the alignment between the source schemas and the hub schema shall be defined.
- Algebraic expressions reproducing the single steps shall be defined.
- Check if the whole algorithmic plan can be implemented more efficiently than the single operators.