Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет Программной Инженерии и Компьютерной Техники

Домашняя работа № 1
По дискретной математике
Вариант 140
Выполнил:
Петров Вячеслав Маркович Р3108

Проверил:

Поляков Владимир Иванович

Начальная таблица:

	_											_
V/V	e1	e2	e3	e4	e5	e6	e7	e8	e9	e10	e11	e12
e1	0				1	1		4	4			5
e2		0				3		5	1		4	5
e3			0					5		2	3	
e4				0	5	2				5	4	2
e5	1			5	0			1				
e6	1	3		2		0	1		2	1	4	
e7						1	0	1	2	3	1	3
e8	4	5	5		1		1	0	1	4		4
e9	4	1				2	2	1	0		4	4
e10			2	5		1	3	4		0		
e11		4	3	4		4	1		4		0	5
e12	5	5		2			3	4	4		5	0

Воспользуемся алгоритмом, использующим упорядочивание вершин.

1. Посчитаем количество ненулевых элементов r_i в матрице R:

V/V	e ₁	e ₂	e ₃	e ₄	e₅	e ₆	e ₇	e ₈	e ₉	e ₁₀	e ₁₁	e ₁₂	r _i
$e_{\scriptscriptstyle 1}$	0				1	1		1	1			1	5
e ₂		0				1		1	1		1	1	4
e ₃			0					1		1	1		3
e ₄				0	1	1				1	1	1	5
e₅	1			1	0			1					3
e_6	1	1		1		0	1		1	1	1		6
e ₇						1	0	1	1	1	1	1	6
e ₈	1	1	1		1		1	0	1	1		1	8
e ₉	1	1				1	1	1	0		1	1	7
e ₁₀		·	1	1		1	1	1		0			5
e ₁₁		1	1	1		1	1		1		0	1	7
e ₁₂	1	1		1			1	1	1		1	0	7

- 2. Упорядочим вершины графа в порядке не возрастания r_i : e_6 , e_8 , e_9 , e_{11} , e_{12} , e_7 , e_1 , e_2 , e_4 , e_{10} , e_3 , e_5
- 3. Красим в цвет j=1 вершины e_6 , e_8
- 4. Удалим из матрицы R строки и столбцы, соответствующие вершинам e_6 , e_8

V/V	e ₁	e ₂	e ₃	e ₄	e₅	e,	e ₉	e ₁₀	e ₁₁	e ₁₂	r _i
$e_{\scriptscriptstyle 1}$	0				1		1			1	3
e ₂		0					1		1	1	3
e ₃			0					1	1		2
e_4				0	1			1	1	1	4
e₅	1			1	0						2
e ₇						0	1	1	1	1	4
e ₉	1	1				1	0		1	1	5
e ₁₀			1	1		1		0			3
e ₁₁		1	1	1		1	1		0	1	6
e ₁₂	1	1		1		1	1		1	0	6

5. Упорядочим вершины графа в порядке не возрастания r_i:

$$e_{11}$$
, e_{12} , e_{9} , e_{4} , e_{7} , e_{1} , e_{2} , e_{10} , e_{3} , e_{5}

- 6. Красим в цвет j=2 вершины e_{11} , e_1 , e_2
- 7. Удалим из матрицы R строки и столбцы, соответствующие вершинам e_{11} , e_{1} , e_{10}

V/V	e ₂	e ₃	e ₄	e ₅	e ₇	e ₉	e ₁₂	r _i
e ₂	0					1	1	2
e ₃		0						0
e ₄			0	1			1	2
e₅			1	0				1
e,					0	1	1	2
e ₉	1				1	0	1	3
e ₁₂	1		1		1	1	0	4

8. Упорядочим вершины графа в порядке не возрастания r_i :

$$e_{12}$$
, e_{9} , e_{2} , e_{4} , e_{7} , e_{5} , e_{3}

- 9. Красим в цвет j=3 вершины e₁₂, e₅, e₃
- 10. Удалим из матрицы R строки и столбцы, соответствующие вершинам e_{12} , e_5 , e_3

V/V	e ₂	e ₄	e ₇	e ₉	r _i
e ₂	0			1	2
e ₄		0			2
e ₇			0	1	2
e ₉	1		1	0	3

11. Упорядочим вершины графа в порядке не возрастания г_і:

- 12. Красим в цвет ј=4 вершины е₉, е₄
- 13. Удалим из матрицы R строки и столбцы, соответствующие вершинам е₉, е₄

V/V e ₂	e ₇	r _i
--------------------	-----------------------	----------------

e ₂	0		2
e ₇		0	2

14. Красим в цвет j=5 вершины e_2 , e_7

Было задействовано 5 цветов