GRE MATHEMATICS TEST V

TIME: 2 hours and 50 minutes

66 Questions

DIRECTIONS: Choose the best answer for each question and mark the letter of your selection on the corresponding answer sheet.

1.
$$\lim_{n \to \infty} \left(\prod_{m=2}^{n} \left(1 - \frac{1}{m} \right) \right)$$
 is equal to

(A) 1

(D) e^{-1}

(B) e

(E) 0

- (C) π
- 2. If $n = 2^{20}$, then what is the sum of all integer divisors d of n, $1 \le d \le n$?
 - (A) $2^{22} + 1$

(D) $2^{21} + 1$

(B) $2^{22}-1$

(E) $2^{20} + 1$

(C) $2^{21}-1$

- If $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ and A^{-1} is the inverse of A, what is the determinant of A^{-1} ?
 - (A) 2

(D) $-\frac{1}{2}$

(B) -5

(E) 2

- (C) $\frac{1}{5}$
- Which of the following complex numbers is equal to $(1+i)^{\frac{2}{3}}$? 4.
 - (A) $2^{\frac{2}{3}} \left(-\frac{1}{2} + i \frac{\sqrt{3}}{2} \right)$ (D) $2^{\frac{2}{3}} \left(\sqrt{\frac{3}{2}} i \frac{1}{2} \right)$

 - (B) $2^{\frac{2}{3}} \left(\frac{1}{2} + i \frac{\sqrt{3}}{2} \right)$ (E) $2^{\frac{2}{3}} \left(\sqrt{\frac{2}{3}} + i \frac{1}{2\sqrt{3}} \right)$
 - (C) $2^{\frac{2}{3}} \left(\sqrt{\frac{3}{2}} + i \frac{1}{2} \right)$
- 5. What is the value of $5 \log_{15} (15x) - \log_{15} x^5$?
 - (A) 5

(D) $5 \log_{15} \frac{15}{r}$

(B) $105x^2$

(E) $5 \log_{15} 4x$

(C) 105

- Find the value of $\lim_{x\to 0} \frac{1}{x} \int_{0}^{x} (1 + \sin t)^{t} dt$. 6.
 - (A) 1

(D) $\frac{2}{3}$

(B) $\frac{3}{2}$

(E) e^{-1}

- (C) e
- What is the value of $\lim_{h \to 0} \frac{\sqrt{3+h} \sqrt{3}}{h}$? 7.
 - (A) 0

(D) $\frac{\sqrt{3}}{6}$

(B) $\frac{\sqrt{3}}{3}$

- (C) Undefined
- 8. How many solutions are there of the equation

$$\cos^2 x = \cos x \text{ if } 0 \le x \le 2\pi?$$

- (A) No solutions
- (D) 3

(B) 1

(E) 4

(C) 2

- 9. Given a set S of strictly negative real numbers, what is the greatest lower bound of the set { x real | x is an upper bound of 5 } ?
 - (A) 0

- (D) ∞
- Infimum of s
- Does not exist
- supremum of s
- The partial derivative $\frac{\partial}{\partial v} \left[\int_{0}^{1} e^{y} dx \right]$ is equal to 10.

 - (A) $\int_{0}^{1} e^{y \sin x} dx$ (D) $\int_{0}^{1} e^{y \sin x} (\sin y) dy$
 - (B) $\int_{1}^{1} \cos x \, e^{y \sin x} \, dx$ (E) $\int_{1}^{1} y \sin x \, e^{y \sin x} \, dx$
 - (C) $\int_{0}^{1} \sin x \, e^{y \sin x} \, dx$
- If $f(x, y) = \frac{2}{r^2} + 3xy$ for $x \ne 0$, and the gradient of f at (r, s)has length r, then which of the following equations is satisfied by r and s?
 - (A) $16 + 24 r^3 s + 9 r^6 s^2 + 8 r^8 = 0$
 - (B) 3 24 + 9 r^{3} s + r^{6} s² + 8 r^{4} = 0
 - (C) $16 r^3s + 9r^4s^2 + 8r^3 = 0$

(D)
$$16 - 24 r^3 s + 9 r^6 s^2 + r^8 = 0$$

(E)
$$16 - 24 r^3 s + 9 r^6 s^2 + 8 r^8 = 0$$

- Given $f(x) = \frac{x}{x-1}$, find an expression of f(3x) in term of 12. f(x).
 - (A) $\frac{3f(x)}{3f(x)-1}$ (D) $\frac{3f(x)}{2f(x)+1}$
 - (B) $\frac{3f(x)}{3f(x)-3}$ (E) $\frac{3f(x)}{2f(x)-1}$

- (C) 3f(x) 1
- 13. Let $S_n = -1 + 2\left(\frac{2}{3}\right) 3\left(\frac{2}{3}\right)^2 + \dots + (-1)^n n\left(\frac{2}{3}\right)^{n-1}$.

What is $\lim_{n\to\infty} S_n$?

- (A) $-\frac{9}{25}$
- (D) $-\frac{25}{9}$
- (B) $\frac{9}{25}$

(C) $\frac{25}{9}$

If the domain of function y = f(x) is [0, 1], then what is the domain of function $f(x + \frac{1}{4}) + f(x - \frac{1}{4})$?

(A) [0, 1]

(D) $[\frac{1}{4}, \frac{3}{4}]$

(B) (0, 1)

(E) $(\frac{1}{4}, \frac{3}{4})$

(C) $[0, \frac{1}{2}]$

$$\left[\sqrt{2}(1-i)\right]^{48} =$$

(A) 2^{24}

(D) -2^{48}

(B) -2^{24}

(E) $2^{2i}(1-i)$

 $(C) 2^{48}$

The solution of differential equation $y dx + \sqrt{x^2 + 1} dy = 0$ is:

(A)
$$y\left(x+\sqrt{x^2+1}\right)=c$$

(B)
$$y(1+\sqrt{x^2+1})=c$$

(C)
$$xy + \sqrt{x^2 + 1} = c$$

(D)
$$yx + \frac{y}{\sqrt{x^2 + 1}} = c$$

(E)
$$yx + \frac{x}{\sqrt{x^2 + 1}} = c$$

- 17. The length of the curve $x(t) = e^t \cos t$, $y(t) = -e^t \sin t$ for $0 \le t \le 1$ is
 - (A) 2(e-1)

- (D) 2e
- (B) $\sqrt{2}(e-1)$
- (E) $\sqrt{2}$

- (C) e
- 18. The normal line to the graph of $3x^2 + 4x^2y + xy^2 = 8$ at (1, 1) intersects the x-axis at x =
 - (A) $\frac{3}{2}$

(D) $-\frac{2}{3}$

(B) $-\frac{3}{2}$

(E) $-\frac{2}{5}$

- (C) $\frac{5}{2}$
- 19. Let F(uv) = uv where u = u(t) and v = v(t). If u(1) = 1, v(1) = 2, v'(1) = 1 and u'(1) = 2, then $\frac{dF}{dt}$ at t = 1 is equal to
 - (A) 0

(D) 4

(B) 1

(E) 5

(C) 3

20. The number of points of discontinuity of the function

$$f(x) = \begin{cases} x + 2 & \text{if } x \le 0 \\ 1 & \text{if } 0 < x \le 2 \\ x - 6 & \text{if } 2 < x \le 5 \end{cases}$$
 is equal to
$$(6 - x)^2 \quad \text{if } 5 < x$$

(A) 5

(B) 4

(E) 1

- (C) 3
- The solution set for the inequality $\frac{1}{x-2} < \frac{1}{x+3}$ is 21.
 - (A) (-3, -2) (D) (-2, 2)

(B) (-3, 2)

(E) (0,2)

- (C) (2,3)
- If $g\left(\frac{3+2x}{4}\right) = 1-x$, for $-\infty < x < \infty$, then $g\left(\frac{7z-8}{4}\right)$
 - (A) $-\frac{13+7z}{4}$ (D) $\frac{7+13z}{2}$
 - (B) $\frac{13}{2} \frac{7z}{2}$ (E) 7z + 13

(C) $\frac{7-13z}{2}$

- If $f'(e^x) = 1 + x$, then f(x) =

 - (A) $1 + e^x + c$ (D) $x + \ln x + c$
 - (B) $1 + \ln x + c$
- (E) $x \ln x + c$

- (C) $\ln x + c$
- The iterated integral $\int_0^1 \int_{\underline{y}}^1 e^{x^2} dx dy$ can be expressed as
 - (A) $\int_{0}^{1} \int_{0}^{2x} e^{x^{2}} dy dx$ (C) $\int_{0}^{1} \int_{0}^{2y} e^{x^{2}} dx dy$
 - (B) $\int_{y}^{1} \int_{0}^{1} e^{x^{2}} dy dx$ (D) $\int_{0}^{1} \int_{0}^{2y} e^{x^{2}} dy dx$

 - (E) $\int_{0}^{1} \int_{0}^{1} e^{x^{2}} dy dx + \int_{0}^{1} \int_{0}^{y} e^{x^{2}} dx dy$
- 25. The series $\sum_{n=0}^{\infty} \frac{3^n}{n} (x-2)^n$ converges for x in the interval
 - (A) $\left(\frac{5}{3}, \frac{7}{3}\right)$ (D) $\left[\frac{5}{3}, \frac{7}{3}\right)$
 - (B) $\left(\frac{5}{3}, \frac{7}{3}\right)$ (E) $\left(0, \frac{7}{3}\right)$

(C) $\left[\frac{5}{3}, \frac{7}{3}\right]$

- 26. In R^3 , an equation of the tangent plane to the surface $xz yz^3 yz^2 = 378$ at (-3, 2, -6) is
 - (A) 2x + 60y + 65z = 516
 - (B) -2x + 60y + 65z + 516 = 0
 - (C) 2x 60y + 65z = 0
 - (D) x 60y + z = 516
 - (E) 2x 60y + 65z + 516 = 0
- 27. If $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$, then $\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2}$ is equal to
 - (A) $\frac{\pi^2}{12}$

(D) $\frac{\pi^2}{7}$

(B) $\frac{\pi^2}{36}$

(E) $\frac{\pi^2}{8}$

- (C) $\frac{2\pi^2}{9}$
- 28. The area of the triangle in R^3 with vertices at A = (2, 1, 5), B = (4, 0, 2) and C = (-1, 0, -1) is
 - (A) $\frac{475}{2}$

(D) $\frac{\sqrt{475}}{2}$

(B) 475

(E) $\sqrt{\frac{475}{2}}$

(C) $\sqrt{475}$

- 29. The order of the permutation $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 2 & 5 & 3 & 1 \end{pmatrix}$ is
 - (A) 1

(D) 4

(B) 2

(E) 5

- (C) 3
- 30. Let T be a linear transformation from R^3 to R^3 . If u and v are two orthogonal vectors in R^3 , which of the following pairs of vectors must be orthogonal to one another?
 - (A) ru and sv for all real r and s
 - (B) u + v and u v
- (D) Tv and v

(C) Tu and u

(E) Tu and Tv

- 31. If $x \in A \cap B$, which of the following is (are) true?
 - I. $x \in A$
 - Π. χεΒ
 - III. $x \in A' \cup B'$, where A' is the complement of A and B' is the complement of B
 - (A) I only

(B) II only

- (C) I, II and III
- (D) I and II only

- (E) III only
- 32. Let R be the set of real numbers. Define a * b = a + b + ab for a, b in R. The solution of 5 * x * 3 = 7 is
 - (A) $\frac{7}{15}$

(B) $\frac{15}{7}$

(E) $-\frac{2}{3}$

- (C) $\frac{2}{3}$
- If $(1 + 2x + 3x^2 + ... + (n+1)x^n ...)^2 = \sum_{k=0}^{\infty} b_k x^k$ for |x| < 133. then b_{i} is
 - (A) k(k+1)(k+2)(k+3)
 - (B) $\frac{k(k+1)(k+2)}{6}$
 - (C) $\frac{(k+1)(k+2)(k+3)}{6}$
 - (D) $\frac{(k+1)(k+2)}{2}$
 - (E) (k+2)(k+3)

- Suppose g'(x) exists for all real x and g(a) = g(b) = g(c) = 034. where a < b < c. The minimum possible number of zeros for g'(x) is
 - (A) 1

(D) 4

(B) 2

(E) 5

- (C) 3
- $35. \qquad \int_{0}^{\frac{\pi}{2}} \left| \sin x \cos x \right| \, dx =$
 - (A) $2\sqrt{2} 2$ (D) $2\sqrt{2}$

(B) 0

(E) $2 - 2\sqrt{2}$

- (C) 1
- 36. Which of the following are groups?
 - I. All integers under subtraction
 - All non-zero real numbers under division
 - All even integers under addition
 - All integers which are multiples of 13 under addition
 - (A) I and II only
- (D) IV only
- (B) II and III only
- (E) III and IV only

(C) III only

37.
$$(1+\sqrt{-1})^{8n}-(1-\sqrt{-1})^{8n}$$
 is equal to

$$(A) 24$$

(B)
$$(-1)^{n+1} 2^{4n}$$
 (E) $-e^{-2}$

(E)
$$-e^{-2}$$

(C)
$$2^{4n+1}$$

Given two vectors
$$\overrightarrow{U} = 2\overrightarrow{i} - 3\overrightarrow{j} + 5\overrightarrow{k}$$
, $\overrightarrow{V} = -\overrightarrow{i} + 4\overrightarrow{j} + 2\overrightarrow{k}$
then their vector product $\overrightarrow{U} \times \overrightarrow{V} =$

(A)
$$\overrightarrow{i} + \overrightarrow{j} + 7\overrightarrow{k}$$

(A)
$$\overrightarrow{i} + \overrightarrow{j} + 7\overrightarrow{k}$$
 (D) $3\overrightarrow{i} + 4\overrightarrow{j} + 5\overrightarrow{k}$

(B)
$$-2\overrightarrow{i}-12\overrightarrow{j}+10\overrightarrow{k}$$
 (E) $3\overrightarrow{i}-4\overrightarrow{j}-5\overrightarrow{k}$

$$(E) \quad \overrightarrow{3i-4j-5k}$$

(C)
$$-26\overrightarrow{i} - 9\overrightarrow{j} + 5\overrightarrow{k}$$

For what value(s) of p does the system of equations

$$px + y = 1$$
$$x + py = 2$$
$$y + pz = 3$$

have no solution?

(D)
$$-2$$

(B)
$$1,-1$$

(E)
$$0, 1, -1$$

(C)
$$-1$$

40. If the determinant of the matrix:

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ x & 2 & 0 & 0 & 0 \\ x^2 & x^3 & 3 & 0 & 0 \\ x^3 & x^4 & x^5 & 4 & 0 \\ x^4 & x^5 & x^6 & x^7 & 0 \end{bmatrix}$$

is zero, how many values of x are possible?

41. The *n*th derivative of $f(x) = \frac{1}{1 - x^2}$ is

(A)
$$\frac{1}{(1-x^2)^{n+1}}$$

(A)
$$\frac{1}{(1-x^2)^{n+1}}$$
 (C) $\frac{(-1)^n n!}{(1-x^2)^{n+1}}$

(B)
$$\frac{x^n}{(1-x^2)^{n+1}}$$
 (D) $\frac{n!}{(1-x^2)^{n+1}}$

(D)
$$\frac{n!}{(1-x^2)^{n+1}}$$

(E)
$$\frac{n!}{2} \left[\frac{1}{(1-x)^{n+1}} + \frac{(-1)^n}{(1+x)^{n+1}} \right]$$

42. How many different partial derivatives of order k are possible for a function $f(x_1, \ldots, x_n)$ of n variables?

(A)
$$2^{n+k}$$

(B)
$$\binom{n+k-1}{n}$$

(C)
$$\binom{n+k-1}{k}$$
 (D) $\binom{n+k}{k}$

(D)
$$\binom{n+k}{k}$$

(E)
$$\binom{n+k}{n-1}$$

- 43. Let $T: C^{\infty}(R) \to C^{\infty}(R)$ be a linear map such that $T(e^{2x}) = \sin x$, $T(e^{3x}) = \cos 4x$ and $T(1) = e^{3x}$, where $C^{-}(R)$ is the vector space infinitely differentiable functions on the real numbers R. Then $T(4e^{2x} + 7e^{3x} - 5)$ is equal to
 - (A) $4 \sin x + 7 \cos 4x 5e^{5x}$ (D) $7 \cos 4x 5e^{5x}$
 - (B) $4 \sin x + 7 \cos 4x 5$ (E) $\sin x + 7 \cos x 5e^{5x}$
 - (C) $4 \sin x + 7 \cos 4x$
- 44. How many ways can 8 teachers be divided among 4 schools if each school must receive 2 teachers?
 - (A) 520

(D) 225

(B) 250

(E) 24

(C) 2520

Let C be the circle |z| = 3, described in counterclockwise 45. orientation, and write

$$g(w) = \int_{C}^{1} \frac{2z^{2} - 2 - z}{z - w} dz$$

Then g(2) is equal to

(A) 1

(D) $4\pi i$

(B) $2\pi i$

(E) $8\pi i$

(C) 0

46. Given that

$$\ln 2 = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \dots$$

then
$$-2 + 1 - \frac{2}{3} + \frac{2}{4} - \frac{2}{5} + \frac{2}{6} - \dots$$

is equal to

(A) $-2 \ln 2$

(D) ln 3

(B) $-\ln 2$

(E) $-3 \ln 3$

(C) 2 ln 2

47. Let

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -2 & 1 & 0 & 0 \\ -3 & -2 & 1 & 0 \\ -4 & -3 & -2 & 2 \end{bmatrix}$$

be a 3 x 3 matrix viewed as a linear transformation from R^4 to R^4 . What is the dimension of the eigenspace corresponding to the eigenvalue $\lambda = 1$?

(A) 4

(D) 1

(B) 3

(E) = 0

(C) 2

48. Let T be a linear transformation from a vector space V of dimension 11 onto a vector space W of dimension 7. What is the dimension of the null space of T?

(A) 0

(D) 4

(B) 2

(E) 5

(C) 3

49. In an x - y plane, if $\overrightarrow{a} = (x, y)$, $\overrightarrow{b} = (x', y')$, then their scalar product $\overrightarrow{a} \cdot \overrightarrow{b} =$

- (A) xx' + yy' (B) xx' yy'

- (C) xy = x'y'
- (D) xy' + x'y

(E) xy' = x'y

What is the mean of the random variable \overline{X} whose distribution 50. function is defined by

$$F(x) = \begin{cases} \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt, & x > 0 \\ 0, & x \le 0 \end{cases}$$

(A) $\frac{2}{\pi}$

(D) 0

(B) $\frac{1}{\sqrt{\pi}}$

(E) Does not exist

(C) $\sqrt{\frac{2}{\pi}}$

51. If $A = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$, a 2 x 2 matrix, which of the following is

- (A) $A^2 3A = 0$
- (D) $A^2 3A + I = 0$

(B) I - 3A = 0

None of the above

(C) $A^2 + I = 0$

- 52. The equation of the tangent line to the graph of the equation $\begin{cases} x = t^3 4 \\ x = 2t^2 + 1 \end{cases}$ at t = 2 is
 - (A) 2x 3y 19 = 0
- (D) 3x 2y + 6 = 0
- (B) 2x 3y + 19 = 0
- (E) 3x + 2y 6 = 0
- (C) 3x-2y-6=0
- 53. If f(0) = 1, f(2) = 3 and f'(2) = 5, then $\int_0^1 x f''(2x) dx =$
 - (A) 0

(D) -1

(B) 1

(E) -2

- (C) 2
- 54. Let P denote the product of any four consecutive integers. Then 1 + P is
 - (A) a multiple of 5
- (D) a complete square
- (B) a multiple of 4
- (E) none of the above
- (C) a prime number

- 55. The solution of the differential equation y'' + 5y' + 6y = 0 satisfying the initial conditions y(0) = 0 and y'(0) = 1 is
 - (A) $e^{2x} + e^{3x}$

(D) $e^{-2x} + e^{-3x}$

(B) $e^{2x} - e^{3x}$

(E) $e^{-2x} - e^{-3x}$

- (C) $e^{-2x} + e^{3x}$
- 56. Which of the following functions is (are) analytic?
 - I. \overline{z}
 - Π . $\overline{z} \sin z$
 - III. $z + \sin z$
 - IV. $z + \overline{z}$
 - V. ze2
 - (A) I only

- (D) IV only
- (B) II and I only
- (E) None of the above
- (C) III and V only
- 57. For any positive integer n, $n^7 n$ is divisible by...
 - (A) 4

(D) 14

(B) 6

(E) 18

(C) 7

Consider the permutation f = (1478) (265) (39) in S_e , $f^{-1} =$

- (A) (1874) (256) (39)
- (D) (1874) (265) (39)
- (B) (1874) (265) (39)
- (E) None of the above
- (1847) (256) (39)

For what value of c is the function

$$f(x) = \begin{cases} cxe^{-x^2}, & 0 < x < \infty \\ 0, & \text{elsewhere} \end{cases}$$

the probability density function of a random variable $\overline{\underline{X}}$?

(A) 1

(D) π

(B) 2

(E) 2π

(C) 3

The negation of $\forall x \exists y (P(x,y) \land \neg Q(x,y))$ is

- A) $\forall x \exists y (P(x,y) \rightarrow Q(x,y))$
- B) $\forall x \exists y (Q(x,y) \rightarrow P(x,y))$
- C) $\exists x \ \forall y \ (P(x,y) \to Q(x,y))$
- D) $\exists x \forall y (Q(x,y) \rightarrow P(x,y))$
- None of the above

- If A is a countable subset of the interval [0, 1], then the 61. Lebesque measure of A is equal to
 - (A) $\frac{1}{2}$

(B) = 0

(E) None of the above

- (C) $\frac{2}{3}$
- 62. What is the interval of convergence of the series

$$\sum_{n=0}^{\infty} (3-x) (6x-7)^n ?$$

- (A) $[1, \frac{4}{3}]$ (D) $(1, \frac{4}{3})$ (B) $(1, \frac{4}{3}]$ (E) $(0, \frac{4}{3})$

- (C) $[1, \frac{4}{3})$
- 63. Given

$$A = \begin{pmatrix} 1 & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \\ \frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} \\ \frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \frac{1}{7} \end{pmatrix}$$

with det $(A) \neq 0$, the system of equations

$$x_1 + \frac{1}{2}x_2 + \frac{1}{3}x_3 + \frac{1}{4}x_4 = 1$$

$$\frac{1}{2}x_1 + \frac{1}{3}x_2 + \frac{1}{4}x_3 + \frac{1}{5}x_4 = 2$$

$$\frac{1}{3}x_1 + \frac{1}{4}x_2 + \frac{1}{5}x_3 + \frac{1}{6}x_4 = 3$$

$$\frac{1}{4}x_1 + \frac{1}{5}x_2 + \frac{1}{6}x_3 + \frac{1}{7}x_4 = 4$$

has

- (A) No solutions
- (D) 3 solutions
- (B) A unique solution
- (E) Infinitely many solutions
- (C) 2 solutions
- Suppose $f(x) = x^4 + x^6 + \sin(x^2) + e^{x^3}$ and $f(x) = f_1(x) + f_2(x)$, where 64. $f_1(x) = f_2(-x)$ and $f_2(-x) = -f_2(x)$. Then $f_2(x)$ is equal to
 - (A) $\frac{1}{2} \left(e^{x^3} e^{-x^3} \right)$ (D) $\sin(x^2)$

 - (B) $\frac{1}{2} \left(e^{x^3} + e^{-x^3} \right)$ (E) $x^4 + x^6 + \sin(x^2) + e^{x^3}$
 - (C) $\frac{1}{2}(x^4+x^6)$

- If w is an n^{th} root of unity other than one, then the sum $w + \kappa^2$ 65. $+ \dots + w^{n-1}$ is equal to
 - (A) 1

(D) 3

(B) 0

(E) - 2

(C) - 1

- 66. If P(A) = 0.7, P(B) = 0.5 and $P([A \cup B]') = 0.1$ then $P(A \mid B)$ is
 - (A) $\frac{3}{7}$

(D) $\frac{7}{9}$

(B) $\frac{3}{5}$

(E) 1

(C) $\frac{5}{7}$

GRE MATHEMATICS TEST V

ANSWER KEY

23. Ε 45. Ε 24. Α 46. 25. D 47. D 26. 48. D 27. 49. 28. D 50. 29. D 51. D 30. 52. В 31. 53. C 32. 54. D 33. 55. E 34. В 56. C 35. Α 57. C 36. Ε 58. Α 37. C 59. В 38. D 60. C 39. E 61. В 40. Ε 62. D 41. 63. В 42. 64. Α 43. 65. Α C 44. C 66. В

GRE MATHEMATICS TEST V

DETAILED EXPLANATIONS OF ANSWERS

1. (E)
$$\operatorname{Let} L = \lim_{n \to \infty} \left(\prod_{m=2}^{n} \left(1 - \frac{1}{m} \right) \right) = \lim_{n \to \infty} \left(\prod_{m=2}^{n} \left(\frac{m-1}{m} \right) \right)$$

Taking the natural logarithm of both sides we have

$$\ln L = \ln \lim_{n \to \infty} \left(\prod_{m=2}^{n} \frac{m-1}{m} \right) = \lim_{n \to \infty} \ln \left(\prod_{m=2}^{n} \left(\frac{m-1}{m} \right) \right)$$

We can interchange limit with \ln because $\ln x$ is continuous. Using $\ln (ab) = \ln a + \ln b$ we get

$$\ln L = \lim_{n \to \infty} \sum_{m=2}^{n} \left[\ln (m-1) - \ln m \right]$$

$$= \lim_{n \to \infty} (\ln 1 - \ln 2) + (\ln 2 - \ln 3) + ... + (\ln (n-1) - \ln n)$$

$$= \lim_{n \to \infty} (\ln 1 - \ln n)$$

$$= \lim_{n \to \infty} (-\ln n)$$

$$= -\infty$$

since $\ln 1 = 0$:

$$\Rightarrow L = \lim_{b \to \infty} e^{-b} = \lim_{b \to \infty} \frac{1}{e^b} = 0$$