Macroeconomía Laboral

Tarea 1

Instrucciones generales: Puede utilizar cualquier procesador de texto (Latex, R Markdown, Jupyter, Microsoft Word) para las respuestas, o puede enviar una foto nítida y completa de sus respuestas escritas a mano. No se otorgarán puntos si la respuesta es ilegible.

Fecha de entrega: Miércoles 27 de abril antes de las 11:59 p.m. Enviar PDF a i2022ucr@gmail.com

1. Considere el problema de una persona trabajadora que recibe un ingreso no laboral R y tiene L_0 horas de tiempo disponibles. El salario es w y sus preferencias pueden ser descritas por la función de utilidad:

$$U(c,l) = c^{\alpha}l$$

Con *l* el ocio y *c* el consumo.

- <u>a</u>) Escriba la restricción presupuestaria del hogar y la restricción de tiempo. Plantee el problema de optimización.
- <u>b</u>) Simplifique el problema de optimización a uno de una sola variable, *h*, y derive la condición de primer orden.
- <u>c</u>) Derive la función de oferta laboral de la persona $h^* = h(w, L_0)$. ¿Cuál es el salario de reserva?
- <u>d</u>) Suponga que $L_0=80$, R=0, $\alpha=1$. ¿Cuántas horas trabaja la persona?
- e) Obtenga la elasticidad salarial no compensada $\left(\eta^M = \frac{\partial h^*}{\partial w} \frac{w}{h}\right)$. Obtenga la elasticidad salarial compensada $\left(\eta^H = \frac{\partial h^c}{\partial w} \frac{w}{h}\right)^1$.
- <u>f</u>) Suponga que la persona ofrece la cantidad de horas deseada, h^* . La empresa quiere que el trabajador provea h' horas adicionales a un salario w' > w sobre las primeras h^* horas remuneradas a un salario w. Obtenga la curva de oferta

 $^{^{1}}$ Considere la ecuación de Slutsky: $\eta^{M}=\eta^{H}+\frac{\partial h^{*}}{\partial R}w$

de horas extras h' (Pista 1: Tome h^* como un parámetro dado y plantee el problema de optimización al igual que en (b) donde la variable de escogencia es h'. Por ejemplo, la restriccción presupuestaria es $c = wh^* + w'h' + R$). Obtenga la elasticidad de la oferta laboral de horas extras $\frac{\partial h'}{\partial w'} \frac{w'}{h^* + h'}$ y evalúe en h' = 0. ¿Cómo se relaciona esta elasticidad a la función de oferta de horas derivada en (a))(Pista 2: Piense en el caso donde w' converge a w)

- g) Usando los parámetros dados en (d), derive el premio salarial w'/w necesario para inducir al trabajador a ofrecer $h' = h^*/4$ horas extra.
- (Costo de cuidado infantil): La presencia de infantes en edad preescolar usualmente complica las decisiones de oferta laboral para las mujeres al forzarlas a considerar los costos de cuidado infantil. Asuma que la mujer es la única persona adulta dentro del hogar)
 - a) Suponga un costo infantil por hora. Ilustre mediante un gráfico cómo cambia las decisiones de oferta laboral. Considere el margen intensivo como el extensivo.
 - Suponga un costo infantil monetario fijo. Ilustre mediante un gráfico cómo cambia las decisiones de oferta laboral. Considere el margen intensivo como el extensivo.
 - c) Suponga un costo infantil de tiempo fijo. Ilustre mediante un gráfico cómo cambia las decisiones de oferta laboral. Considere el margen intensivo como el extensivo.
- 3. (Demanda laboral con poder de mercado): Suponga que la demanda que enfrenta la empresa viene dada por:

$$P = \kappa y^{-\alpha}$$
 con $\alpha \in (0,1), \kappa > 0$

Suponga que la función de producción de la empresa viene dada por:

$$y = F(L) = AL^{\beta}$$
 con $\beta \in (0,1), A > 0$

- <u>a</u>) Muestre que la elasticidad de la demanda $\eta_Y^P = \frac{d \log P}{d \log y}$ es $-\alpha$
- <u>b</u>) Calcule el valor de $\nu = \left(\frac{1}{1+\eta_Y^p}\right)$. Suponga que $\alpha = 0.2$. Sin resolver el problema de optimización de la empresa, ¿cuánto es el margen con respecto al costo marginal?

- c) Resuelva el problema de optimización de la empresa. Obtenga la curva de demanda como función de $w, v, \kappa, A, \beta, \alpha$
- <u>d</u>) Basado en su respuesta en (c), ¿cuál sería la curva de demanda laboral bajo competencia perfecta?
- e) Suponga que $\alpha=0.2$ y $\beta=0.1$. ¿Qué tan diferente es el nivel de empleo óptimo de la empresa con respecto al óptimo bajo competencia perfecta? (Sugerencia: Calcule $\frac{L^*}{L^*_{CP}}-1$ e interprete el valor, con L^* el nivel de demanda sin restricciones y L^*_{CP} el nivel de demanda bajo competencia perfecta).