Determining Factors of Information Spreading Processes

Dashun Wang

How a specific piece of information spreads?

Viral Marketing

Chain Letters

José Luis Iribarren and E. Moro, *Phys. Rev. Lett.* 2009 D. Liben-Nowell and J. Kleinberg, *Proc Natl Acad Sci* 2008

What affects information spreading processes?

Viral Marketing

Chain Letters

Information Spreading in Context

- Prediction models for information flow
- Assisting users to disseminate information more efficiently
- Protect digital information leakage
- Promote strategies to achieve expected coverage

Data

Detailed traces of social interactions

Spreader

Receiver

Initiator

Data

Emails from 8000+ Employees

2000+ Fw threads

Information about the individuals

e.g.: performance, dept, job role

Content of the emails

social network

ensemble of trees

individual characteristics

what the information is about

Research Focus

Microscopic Level

Initiator Spreader Rec

Aug 5, 09:30:12 "data request"

Aug 5, 09:53:00 "Fw: data request"

• To Whom one spreads the Receiver information

Waiting time

Macroscopic Level

- To how many people
- Overall coverage

Microscopic Level

- The Underlying Social Network
- Information Content and Expertise
- Organizational Context
- Individual Characteristics
- $P^{Fw}(q)$ Probability of having q in forwarded emails
- $P^{rand}(q)$ Same probability in normal emails

Probability Ratio:
$$P^{Fw}(q)/P^{rand}(q) \longleftrightarrow 1$$

The Underlying Social Network

Information Content and Expertise

$$\mathcal{S}_{i,l} = \vec{v}_i \cdot \vec{v}_l / (\|\vec{v}_i\| \|\vec{v}_l\|)$$

Information Content and Expertise

$$\mathcal{S}_{i,l} = \vec{v}_i \cdot \vec{v}_l / (\|\vec{v}_i\| \|\vec{v}_l\|)$$

non-expert

expert

Organizational Context

social bottleneck:

information experiences delay in inter-dept flows

R. Gould and R. Fernandez. Structures of mediation: A formal approach to brokerage in transaction networks. *Sociological Methodology*, 19(1989):89–126, 1989.

Individual Characterisitcs

The information waiting time appears to be const. for both initiators and spreaders, independent of individual performance

Macroscopic Level

Structural Properties of the spreading processes
What's the best model for the observed structures

1.To how many people one would forward the information 2.What is the overall coverage

Is there a model that could fit the structures of the spreading process?

Galton-Watson Branching Process

p	(κ)
ľ	/		/

k	$\hat{oldsymbol{ ho}}(oldsymbol{k})$
0	0.0246
1	0.9525
2	0.0217
3	0.0012
≥4	0

each node randomly draw a number of children from a given distribution

Is there a model that could fit the structures of the spreading process?

Galton-Watson Branching Process

 $p(\kappa)$

k	$\hat{p}(k)$
0	0.0246
1	0.9525
2	0.0217
3	0.0012
<u>≥4</u>	0

each node randomly draw a number of children from a given distribution

Tree size, width, and depth

size = 8width = 4 depth = 3

empirical

model

10²

Aug 5, 09:30:12 "data request"

Aug 5, 09:53:00 "Fw: data request"

Aug 6, 14:21:53 "Fw: Fw: data request"

Galton-Watson Branching Process

Tree size, width, and depth

Tree size, width, and depth

Anomaly #1

Ultra Shallow!

Stage Dependence

$$P(\kappa \mid d)$$

Galton-Watson Branching Process

p	(κ)
k	$\hat{\hat{p}}(\hat{k})$
0	
1	\$\$\$0.9525 \$\$\$\$
2	\$\$\$0.021 7
3	0.0012
<u>≥4</u>	0 2000000000000000000000000000000000000
	1000 2 0 0000 000000

Stage Dependence

$$P(\kappa \mid d)$$

Galton-Watson Branching Process

Stage Dependence

$$P(\kappa \mid d)$$

Anomaly #2

d=0

d=3

Aug 5, 09:30:12 "data request" d=1 Aug 5, 09:53:00 "Fw: data request" d=2

Aug 6, 14:21:53 "Fw: Fw: data request"

Stage Dependence

Empirical Observations

Aug 5, 09:53:00 "Fw: data request"

Aug 6, 14:21:53 "Fw: Fw: data request"

Ultra Shallow Stage Dependence

$$\kappa \ vs. \ k$$

$$P(\kappa) = \int P(\kappa \mid k) P(k) dk$$

$$P(\kappa) = P(\kappa \mid k) \ \text{if independent}$$

$$\kappa \ vs. k$$

$$P(\kappa) = \int P(\kappa \mid k) P(k) dk$$

 $P(\kappa) = P(\kappa \mid k)$ if independent

- Modeling: disease vs. information
- Practice: choosing the seeds

$\kappa vs. k$

$$P(\kappa) = \int P(\kappa \mid k) P(k) dk$$

$$P(\kappa) = P(\kappa \mid k) \quad \text{if independent}$$

- Modeling: disease vs. information
- Practice: choosing the seeds

#recipients P_n Forward P_n Do nothing

$$P(\kappa \mid d > 0) = P_n(\kappa)$$

$$P(\kappa \mid d>0) = P_n(\kappa)$$
 when $d=0$
$$P(\kappa \mid d=0) = A\left(1-(1-p)^{\kappa}\right)P_n(\kappa)$$

$$= A\left(1-e^{\kappa \ln(1-p)}\right)P_n(\kappa)$$

$$P(\kappa \mid d>0) = P_n(\kappa)$$
 when $d=0$
$$P(\kappa \mid d=0) = A\left(1-(1-p)^{\kappa}\right)P_n(\kappa)$$

$$= A\left(1-e^{\kappa \ln(1-p)}\right)P_n(\kappa)$$

measured independently from the data

a simple stochastic model captures a great deals of empirical observations

Conclusion

- At the macroscopic level, the structures of spreading processes are largely independent of context.
- At the microscopic level, information spreading is indeed highly dependent on social context as well as individuals' behavioral profiles.

Acknowledgement

Zhen Wen
Hanghang Tong
Ching-Yung Lin

Chaoming Song Albert-László Barabási

Information Spreading in Context.

In Proceedings of the 20th international conference on World Wide Web (WWW '11)