

Ch10.3 Representing Graphs and Graph Isomorphism

Representing Graphs

Adjacency lists

TABLE 1 An Adjacency List for a Simple Graph.		
Vertex	Adjacent Vertices	
а	b, c, e	
b	а	
с	a, d, e	
d	c, e	
е	a, c, d	

A Directed Graph

TABLE 2 An Adjacency List for a Directed Graph.	
Initial Vertex	Terminal Vertices
а	b, c, d, e
b	b, d
c	a, c, e
d	
e	b, c, d

Adjacency Matrices

$$a_{i\; j} = egin{cases} 1 & ext{if } \{v_i, v_j\} ext{ is an edge of G,} \ 0 & ext{otherwise} \end{cases}$$

• Use adjacency lists when the graph is sparse, use adjacency matrix otherwise.

Simple Graph

Pseudograph

$$\begin{bmatrix} 0 & 3 & 0 & 2 \\ 3 & 0 & 1 & 1 \\ 0 & 1 & 1 & 2 \\ 2 & 1 & 2 & 0 \end{bmatrix}$$

Incidence Matrices

$$m_{i\;j} = egin{cases} 1 & ext{when edge } e_j ext{ is incident with } v_i, \ 0 & ext{otherwise} \end{cases}$$

$$\begin{array}{c} v_1 \\ v_2 \\ v_3 \\ v_4 \\ v_5 \\ \end{array} \begin{array}{c} 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ \end{array}$$

itself → loop

1

Isomorephism of Graphs

The simple graphs $G_1=(V_1,E_1)$ and $G_2=(V_2,E_2)$ are isomorphic if there exists a one-to-one and onto function f from V_1 to V_2 with the property that a and b are adjacent in G_1 iff f(a) and f(b) are adjacent in G_2 , for all a and b in V_1 . Such a function f is called an isomorphism. Two simple graphs that are not isomorphic are called nonisomorphic.

Determining whether Two Simple Graphs are Isomorphic

• **graph invariant:** a property preserved by isomorphism

Subgraphs of degree 3

- 1. deg(a)=2 in G, a must correspond to either t,w,x,y in H (degree 2). However, all four of these vertices are adjacent to another vertex of degree 2, which is not true for a.
- 2. The subgraph of G and H made up of vertices of degree 3 and the edges connecting them. They are not isomorphic.

Because $deg(u_1)=2$ + u_1 is not adjacent to other degree 2 \Rightarrow v_4 or v_6

Let
$$f(u_1) = v_6$$
 (arbitrarily)

Because u_2 is adjacent to $u_1 \Rightarrow v_3$ and v_5

Let
$$f(u_2)=v_3$$
 (arbitrarily), $f(u_3)=v_4,\ f(u_4)=v_5,\ f(u_6)=v_2.$

 \Rightarrow Adjacency Matrix G

Adjacency Matrix H labeled by the corresponding vertices in G.

$$\mathbf{A}_{H} = \begin{bmatrix} v_{6} & v_{3} & v_{4} & v_{5} & v_{1} & v_{2} \\ v_{6} & 0 & 1 & 0 & 1 & 0 & 0 \\ v_{3} & 1 & 0 & 1 & 0 & 0 & 1 \\ v_{4} & 0 & 1 & 0 & 1 & 0 & 0 \\ v_{5} & 1 & 0 & 1 & 0 & 1 & 0 \\ v_{1} & 0 & 0 & 0 & 1 & 0 & 1 \end{bmatrix}$$