У шкільній їдальні за кожен стіл можна посадити щонайбільше б учнів. Яка найменша кількість столів має бути в цій їдальні, щоби розсадити в ній 194 учні?

A	Б	В	Γ/	Д
30	31	32	33	34

A	Б	B	Γ	Д
35°	45°	55°	65°	75°

Скоротіть дріб
$$\frac{19ab^{\frac{1}{2}}}{5a^{\frac{1}{2}}b}$$
 $\frac{2}{2}$

A	Б	В	Γ	Д
2 <i>l</i>	$\frac{b^4}{2a^3}$	$50a^3b^4$	$\frac{2b^4}{a^3}$	$\frac{b^2}{2a}$

Укажіть число, що є коренем рівняння $\frac{8}{x} = \frac{2}{5}$

(A)	Б	В	Γ	Д
20	16 5	10	80	1 20

Довжини сторін AB та BC прямокутника ABCD відносяться як 2:5, а його периметр дорівнює 28 см. Визначте довжину більшої сторони цього прямокутника.

A	Б	В	Γ	Д
10 см	20 см	7 см	14 см	8 см

Площа повної поверхні циліндра дорівнює 92π, а площа його бічної поверхні – 56π. Визначте площу основи цього циліндра.

A B		В	Γ	Д
6π	18π	13π	48π	36π

Розв'яжіть рівняння $x^2 = 25x$

A	Б	В	Γ	Д
-5; 5	0; 25	25	-5; 0; 5	-25; 0

$$\frac{\int cn}{x^{2}}$$

$$\frac{1}{x^{2}} = 2i \times |x|$$

$$\frac{1}{x^{2}} = 2i \times |x|$$

$$\frac{1}{x^{2}} = 2i \times |x|$$

$$\frac{Tcm}{X(X-25x=0)}$$

$$\frac{X(X-25x=0)}{X(X-25z=0)}$$

На рисунку зображено графік функції y = f(x), визначеної на проміжку [-3; 3]. На якому з наведених проміжків ця функція зростає?

\mathbf{A}	Б	В	Γ	(д ,
[-3; 3]	[1; 3]	[-2; 4]	[-2; 3]	[-3; 1]

Розв'яжіть рівняння $x^2 - 10 = 5x + 14$.

A	Б	B	Γ	Д
-8; 3	-4; -1	-3; 8	1; 4	0; 5

Із гаманця, у якому лежать 5 монет номіналом по 10 копійок, 12 монет – по 25 копійок, 3 монети – по 1 гривні, беруть навмання одну монету. Обчисліть імовірність того, що її номінал буде менше 50 копійок.

A	Б	В	Γ	Д
17 20	<u>3</u> 5	1 4	<u>3</u> 20	1

Укажіть вираз, тотожно рівний виразу $(2x - 3)^2 + 12x$.

	\mathbf{A}	Б		B	Γ	Д
	$4x^2 + 12x - 9$	$4x^{2} + 9$		$4x^2 - 9$	$4x^2 + 12x + 9$	$4x^2 + 6x + 9$

На координатній осі x вибрано точку з координатою a так, як зображено на рисунку. Установіть відповідність між виразом (1-3) та точкою на осі x (A - Д), координата якої дорівнює значенню цього виразу.

На одному з наведених рисунків зображено ескіз графіка функції $y = \sqrt{x}$. Укажіть його.

Які з наведених тверджень є правильними?

- Навколо довільного ромба завжди можна описати коло.
- II. Навколо довільної трапеції завжди можна описати коло.
- III. Навколо довільного прямокутника завжди можна описати коло.

A	Б	(B)	Γ	Д
лише I та III	лише I	лише III	I, II та III	лише II та III

Укажіть формулу для визначення радіуса R сфери, площа якої дорівнює S.

A	Б	В	Γ	Д
$R = \sqrt{\frac{S}{\pi}}$	$R = \sqrt{\frac{4\pi}{S}}$	$R = \sqrt{4\pi S}$	$R = \sqrt{\frac{S}{4\pi}}$	$R = \sqrt{\frac{4S}{\pi}}$

$$S = 4 + R^{2} - 1:4\pi$$

$$R^{2} = \frac{S}{4\pi}$$

$$R = \sqrt{\frac{S}{4\pi}}$$

Довжина сторони ромба дорівнює 12 см. Визначте довжину більшої діагоналі цього ромба, якщо його тупий кут дорівнює 120°. Б 6√3 см 8√3 см 12 см 24 см B () -56m BD = 12 cm BS ABD: AD= 141-36= A C= 2 JUX = 2 J5.27 = 4 J24 = 10 v3 = 12 J3

Довжина кола основи конуса дорівнює 36π , твірна нахилена до площини основи під кутом 30°. Установіть відповідність між відрізком (1–3) і його довжиною (А – Д).

Відрізок

- 1 радіус основи конуса~
- 2 висота конуса
- з радіус сектора, що є розгорткою бічної поверхні конуса

Довжина відрізка

- A $6\sqrt{3}$
- **5** 18
- $\mathbf{B} \quad 12\sqrt{3}$
- Г 6
- **A** 36

Установіть відповідність між функцією (1-3) та її властивістю (А-Д)

Функція

Властивість функції

-А графік функції симетричний відносно осі у

$$2 y = 2x - 5$$

графік функції розташований лише в першій координатній чверті

3
$$y = \frac{3}{2}$$
 B

функція набуває від'ємного значення в точці x = 2.4

графік функції симетричний відносно початк, координат

Тривалість зеленого сигналу світлофора на 15 с довша за тривалість червоного сигналу й у дванадцять разів довша за тривалість жовтого сигналу. Яка тривалість (у с) червоного сигналу, якщо тривалість зеленого сигналу відноситься до сумарної тривалості червоного й жовтого сигналів як 3 до 2? ☐ Д.

$$3e_{1en} = 3x = 36$$

$$74e + 4 = 2x$$

$$4 = 3x - 15 = 21$$

$$x = 3x = \frac{1}{4}x$$

$$3x - 2x + \frac{x}{4} = 2x$$

$$3x - 2x + \frac{x}{4} = 15$$

$$1 - \frac{1}{2}x = 15$$

$$x = 16$$

$$x = 16$$

$$x = 18$$

Розв'яжіть рівняння |5 - 4x| = 3. Якщо рівняння має єдиний корінь, то запишіть його у відповіді. Якщо рівняння має кілька коренів, то у відповіді запишіть їхню суму.

$$\begin{bmatrix}
5 - 4x & 23 \\
6 - 4x & 23
\end{bmatrix}$$

$$\begin{bmatrix}
-4x & 2 & 3 - 6 \\
-4x & 2 - 3 - 6
\end{bmatrix}$$

$$\begin{bmatrix}
-4x & 2 & 3 - 6 \\
-4x & 2 - 3 - 6
\end{bmatrix}$$

$$\begin{bmatrix}
-4x & 2 & 3 - 6 \\
-4x & 2 - 3 - 6
\end{bmatrix}$$

$$\begin{bmatrix}
-4x & 2 & 3 - 6 \\
-4x & 2 - 3 - 6
\end{bmatrix}$$

$$\begin{bmatrix}
-4x & 2 & 3 - 6 \\
-4x & 2 - 3 - 6
\end{bmatrix}$$

$$\begin{bmatrix}
-4x & 2 & 3 - 6 \\
-4x & 2 - 3 - 6
\end{bmatrix}$$

$$\begin{bmatrix}
-4x & 2 & 3 - 6 \\
-4x & 2 - 3 - 6
\end{bmatrix}$$

$$\begin{bmatrix}
-4x & 2 & 3 - 6 \\
-4x & 2 - 3 - 6
\end{bmatrix}$$

$$\begin{bmatrix}
-4x & 2 & 3 - 6 \\
-4x & 2 - 3 - 6
\end{bmatrix}$$

$$\begin{bmatrix}
-4x & 2 & 3 - 6 \\
-4x & 2 - 3 - 6
\end{bmatrix}$$

$$\begin{bmatrix}
-4x & 2 & 3 - 6 \\
-4x & 2 - 3 - 6
\end{bmatrix}$$

$$\begin{bmatrix}
-4x & 2 & 3 - 6 \\
-4x & 2 - 3 - 6
\end{bmatrix}$$

$$\begin{bmatrix}
-4x & 2 & 3 - 6 \\
-4x & 2 - 3 - 6
\end{bmatrix}$$

$$\begin{bmatrix}
-4x & 2 & 3 - 6 \\
-4x & 2 - 3 - 6
\end{bmatrix}$$

$$\begin{bmatrix}
-4x & 2 & 3 - 6 \\
-4x & 2 - 3 - 6
\end{bmatrix}$$

$$\begin{bmatrix}
-4x & 2 & 3 - 6 \\
-4x & 2 - 3 - 6
\end{bmatrix}$$

$$\begin{bmatrix}
-4x & 2 & 3 - 6 \\
-4x & 2 - 3 - 6
\end{bmatrix}$$

$$\begin{bmatrix}
-4x & 2 & 3 - 6 \\
-4x & 2 - 3 - 6
\end{bmatrix}$$

$$\begin{bmatrix}
-4x & 2 & 3 - 6 \\
-4x & 2 - 3 - 6
\end{bmatrix}$$

$$\begin{bmatrix}
-4x & 2 & 3 - 6 \\
-4x & 2 - 3 - 6
\end{bmatrix}$$

$$\begin{bmatrix}
-4x & 2 & 3 - 6 \\
-4x & 2 - 3 - 6
\end{bmatrix}$$

$$\begin{bmatrix}
-4x & 2 & 3 - 6 \\
-4x & 2 - 3 - 6
\end{bmatrix}$$

$$\begin{bmatrix}
-4x & 2 & 3 - 6 \\
-4x & 2 - 3 - 6
\end{bmatrix}$$

$$\begin{bmatrix}
-4x & 2 & 3 - 6 \\
-4x & 2 - 3 - 6
\end{bmatrix}$$

$$\begin{bmatrix}
-4x & 2 & 3 - 6 \\
-4x & 2 - 3 - 6
\end{bmatrix}$$

$$\begin{bmatrix}
-4x & 2 & 3 - 6 \\
-4x & 2 - 3 - 6
\end{bmatrix}$$

$$\begin{bmatrix}
-4x & 2 & 3 - 6 \\
-4x & 2 - 3 - 6
\end{bmatrix}$$

$$\begin{bmatrix}
-4x & 2 & 3 - 6 \\
-4x & 2 - 3 - 6
\end{bmatrix}$$

$$\begin{bmatrix}
-4x & 2 & 3 - 6 \\
-4x & 2 - 3 - 6
\end{bmatrix}$$

$$\begin{bmatrix}
-4x & 2 & 3 - 6 \\
-4x & 2 - 3 - 6
\end{bmatrix}$$

$$\begin{bmatrix}
-4x & 2 & 3 - 6 \\
-4x & 2 - 3 - 6
\end{bmatrix}$$

$$\begin{bmatrix}
-4x & 2 & 3 - 6 \\
-4x & 2 - 3 - 6
\end{bmatrix}$$

$$\begin{bmatrix}
-4x & 2 & 3 - 6 \\
-4x & 2 - 3 - 6
\end{bmatrix}$$

$$\begin{bmatrix}
-4x & 2 & 3 - 6 \\
-4x & 2 - 3 - 6
\end{bmatrix}$$

$$\begin{bmatrix}
-4x & 2 & 3 - 6 \\
-4x & 2 - 3 - 6
\end{bmatrix}$$

$$\begin{bmatrix}
-4x & 2 & 3 - 6 \\
-4x & 2 - 3 - 6
\end{bmatrix}$$

$$\begin{bmatrix}
-4x & 2 & 3 - 6 \\
-4x & 2 - 3 - 6
\end{bmatrix}$$

$$\begin{bmatrix}
-4x & 2 & 3 - 6 \\
-4x & 2 - 3 - 6
\end{bmatrix}$$

$$\begin{bmatrix}
-4x & 2 & 3 - 6 \\
-4x & 2 - 3 - 6
\end{bmatrix}$$

$$\begin{bmatrix}
-4x & 2 & 3 - 6 \\
-4x & 2 - 3 - 6
\end{bmatrix}$$

$$\begin{bmatrix}
-4x & 2 & 3 - 6 \\
-4x & 2 - 3 - 6
\end{bmatrix}$$

$$\begin{bmatrix}
-4x & 2 & 3 - 6 \\
-4x & 2 - 3 - 6
\end{bmatrix}$$

$$\begin{bmatrix}
-4x & 2 & 3 - 6 \\
-4x & 2 - 3 - 6
\end{bmatrix}$$

$$\begin{bmatrix}
-4x & 2 & 3 - 6 \\
-4x & 2 - 3 - 6
\end{bmatrix}$$

$$\begin{bmatrix}
-4x & 3 - 6 & 3 - 6 \\
-4x & 3 - 6
\end{bmatrix}$$

$$\begin{bmatrix}
-4x & 3 - 6 & 3 - 6 \\
-4x & 3 - 6
\end{bmatrix}$$

$$\begin{bmatrix}
-4x & 3 - 6 & 3 - 6 \\
-4x & 3 - 6
\end{bmatrix}$$

$$\begin{bmatrix}
-4x & 3 - 6 & 3 - 6 \\
-4x & 3 - 6$$

Туристичне бюро запропонувало Ганні відвідати на вихідний три міста. Ганна дізналася з Інтернету, що в кожному з них є 10 цікавих туристичних об'єктів. Дівчина планує вибрати для поїздки лише одне місто і відвідати в ньому чотири цікавих об'єкти. Скільки всього в Ганни є варіантів вибору міста й чотирьох таких об'єктів у ньому? Уважайте, що порядок відвідування об'єктів неважливий. 2 (), 3 - 6 3 0

$$= \frac{510}{3} \left(\frac{10}{10} - \frac{41}{10} \frac{10-40}{10} \right) = \frac{41}{31} - \frac{11}{12342} - \frac{11}{12342}$$