Section 4.3

Quadratic Functions and Their Properties

Quadratic Functions

$$F(x) = 3x^2 - 5x + 1$$
 $g(x) = -6x^2 + 1$ $H(x) = \frac{1}{2}x^2 + \frac{2}{3}x$

DEFINITION

A quadratic function is a function of the form

$$f(x) = ax^2 + bx + c$$

where a, b, and c are real numbers and $a \neq 0$. The domain of a quadratic function consists of all real numbers.

Suppose that Texas Instruments collects the data shown in Table 1, which relate the number of calculators sold at the price p (in dollars) per calculator. Since the price of a product determines the quantity that will be purchased, we treat price as the independent variable. The relationship between the number x of calculators sold and the price p per calculator may be approximated by the linear equation

Then the revenue R derived from selling x calculators at the price p per calculator is equal to the unit selling price p of the product times the number x of units actually sold.

A second situation in which a quadratic function appears involves the motion of a projectile. Based on Newton's second law of motion (force equals mass times acceleration, F = ma), it can be shown that, ignoring air resistance, the path of a projectile propelled upward at an inclination to the horizontal is the graph of a quadratic function. See Figure 2 for an illustration. Later in this section we shall analyze the path of a projectile.

Figure 2
Path of a cannonball

$$f(x) = ax^2$$
, $a > 0$, for $a = 1$, $a = \frac{1}{2}$, and $a = 3$.

$$f(x) = ax^2$$
for $a < 0$.

Graphs of a quadratic function, $f(x) = ax^2 + bx + c$, $a \neq 0$

Vertex is lowest point

(a) Opens up

Vertex is highest point

Axis of symmetry

(b) Opens down

Graphing a Quadratic Function Using Transformations

Graph the function $f(x) = 2x^2 + 8x + 5$.

Find the vertex and axis of symmetry. $f(x) = 2(x^2 + 4x + \underline{\hspace{1cm}}) + 5 - 2(\underline{\hspace{1cm}})$

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall.

$$f(x) = ax^{2} + bx + c$$

$$= a\left(x^{2} + \frac{b}{a}x\right) + c$$

$$= a\left(x^{2} + \frac{b}{a}x + \frac{b^{2}}{4a^{2}}\right) + c - a\left(\frac{b^{2}}{4a^{2}}\right)$$

$$= a\left(x + \frac{b}{2a}\right)^{2} + c - \frac{b^{2}}{4a}$$

$$= a\left(x + \frac{b}{2a}\right)^{2} + \frac{4ac - b^{2}}{4a}$$

Factor out a from $ax^2 + bx$.

Complete the square by adding $\frac{b^2}{4a^2}$. Look closely at this step!

Factor.

$$c - \frac{b^2}{4a} = c \cdot \frac{4a}{4a} - \frac{b^2}{4a} = \frac{4ac - b^2}{4a}$$

If
$$h = -\frac{b}{2a}$$
 and $k = \frac{4ac - b^2}{4a}$, then

$$f(x) = ax^2 + bx + c = a(x - h)^2 + k$$

2 Identify the Vertex and Axis of Symmetry of a Quadratic Function

Properties of the Graph of a Quadratic Function

$$f(x) = ax^2 + bx + c \qquad a \neq 0$$

Vertex =
$$\left(-\frac{b}{2a}, f\left(-\frac{b}{2a}\right)\right)$$
 Axis of symmetry: the line $x = -\frac{b}{2a}$

Parabola opens up if a > 0; the vertex is a minimum point.

Parabola opens down if a < 0; the vertex is a maximum point.

Locating the Vertex without Graphing

Without graphing, locate the vertex and axis of symmetry of the parabola defined by $f(x) = 2x^2 - 3x + 2$. Does it open up or down?

$$-\frac{b}{2a} = \frac{-(-3)}{2(2)} = \frac{3}{4}$$

$$Vertex = \left(-\frac{b}{2a}, f\left(-\frac{b}{2a}\right)\right)$$

$$f\left(\frac{3}{4}\right) = 2\left(\frac{3}{4}\right)^2 - 3\left(\frac{3}{4}\right) + 2 = \frac{7}{8}$$

Vertex is
$$\left(\frac{3}{4}, \frac{7}{8}\right)$$
.

Axis of symmetry is $x = \frac{3}{4}$.

Because a = 2 > 0, the parabola opens up.

The x-Intercepts of a Quadratic Function

- 1. If the discriminant $b^2 4ac > 0$, the graph of $f(x) = ax^2 + bx + c$ has two distinct x-intercepts so it crosses the x-axis in two places.
- 2. If the discriminant $b^2 4ac = 0$, the graph of $f(x) = ax^2 + bx + c$ has one x-intercept so it touches the x-axis at its vertex.
- 3. If the discriminant $b^2 4ac < 0$, the graph of $f(x) = ax^2 + bx + c$ has no x-intercept so it does not cross or touch the x-axis.

$$f(x) = ax^2 + bx + c, a > 0$$

(a) $b^2 - 4ac > 0$

Two x-intercepts

Axis of symmetry $x = -\frac{b}{2a}$

(b) $b^2 - 4ac = 0$

One x-intercept

Axis of symmetry $x = -\frac{b}{2a}$ $\frac{b}{2a}, f(-\frac{b}{2a})$

(c)
$$b^2 - 4ac < 0$$

No x-intercepts

Graphing a Quadratic Function Using Its Vertex, Axis, and Intercepts

(a) Use the information from the previous example and the locations of the intercepts to graph $f(x) = 2x^2 - 3x + 2$.

Vertex is
$$\left(\frac{3}{4}, \frac{7}{8}\right)$$
 Axis of symmetry is $x = \frac{3}{4}$ Since $a = 2 > 0$ the parabola opens up and therefore will

Since a = 2 > 0 the parabola have no *x*-intercepts.

$$f(0) = 2(0)^2 - 3(0) + 2 = 2$$
 so the y-intercept = 2.

By symmetry, since the point (0,2)

is on the graph, so is the point $\left(\frac{3}{2},2\right)$.

Graphing a Quadratic Function Using Its Vertex, Axis, and Intercepts

- (b) Determine the domain and the range of f.
- (c) Determine where f is increasing and decreasing.

The domain of f is the set of all real numbers.

Based on the graph, the range is the interval $\left[\frac{7}{8},\infty\right]$.

The function is

decreasing from
$$\left(-\infty, \frac{3}{4}\right)$$

and

increasing from
$$\left(\frac{3}{4},\infty\right)$$
.

Graphing a Quadratic Function Using Its Vertex, Axis, and Intercepts

(a) Graph $f(x) = 2x^2 + 4x - 1$ by determining whether the graph opens up or down and by finding its vertex, axis of symmetry, and x-intercepts and y-intercept if any.

$$h = -\frac{b}{2a} = -\frac{4}{2(2)} = -1$$

$$Vertex = (-1, -3)$$

$$h = -\frac{b}{2a} = -\frac{4}{2(2)} = -1$$
 $k = f(-1) = 2(-1)^2 + 4(-1) - 1 = -3$

Since a = 2 > 0 the parabola opens up.

$$f(0) = 2(0)^2 + 4(0) - 1 = -1$$
 so the y-intercept = -1.

By symmetry, the point (-2,-1) is also on the graph.

x-intercepts can be found when f(x) = 0.

$$0 = 2x^2 + 4x - 1$$
 Use the quadratic formula to solve.

$$-2x^{2} + 4x^{2} + 3 = 0 \text{ So the quadratic formula to solve}$$

$$-4 + \sqrt{4^{2} - 4(2)(-1)} \qquad -4 + \sqrt{24} \qquad -2 + \sqrt{6}$$

$$x = \frac{-4 \pm \sqrt{4^2 - 4(2)(-1)}}{2(2)} = \frac{-4 \pm \sqrt{24}}{4} = \frac{-2 \pm \sqrt{6}}{2}$$

x-intercepts ≈ 0.22 and -2.22

Graphing a Quadratic Function Using Its Vertex, Axis, and Intercepts

- (b) Determine the domain and the range of f.
- (c) Determine where f is increasing and decreasing.

The domain of f is the set of all real numbers.

Based on the graph, the range is the interval $[-3, \infty)$.

The function is

decreasing from $(-\infty, -1)$

and

increasing from $(-1, \infty)$.

Graphing a Quadratic Function Using Its Vertex, Axis, and Intercepts

(a) Graph $f(x) = -\frac{1}{2}x^2 - 2x - 2$ by determining whether the graph opens up or down and by finding its vertex, axis of symmetry, and x-intercepts and y-intercept if any.

$$h = -\frac{b}{2a} = -\frac{-2}{2\left(-\frac{1}{2}\right)} = -2$$

$$h = -\frac{b}{2a} = -\frac{-2}{2\left(-\frac{1}{2}\right)} = -2 \qquad k = f\left(-2\right) = -\frac{1}{2}\left(-2\right)^2 - 2(-2) - 2 = 0$$

Vertex = (-2, 0)

Since a is negative, the parabola opens down.

 $f(0) = -\frac{1}{2}(0)^2 - 2(0) - 2 = -2$ so the y-intercept = -2.

By symmetry, the point (-4, -2) is also on the graph.

As seen on the graph, the x-intercept is -2.

Graphing a Quadratic Function Using Its Vertex, Axis, and Intercepts

- (b) Determine the domain and the range of f.
- (c) Determine where f is increasing and decreasing.

The domain of f is the set of all real numbers.

Based on the graph, the range is the interval $(-\infty, 0]$.

The function is

increasing from
$$(-\infty, -2)$$

and

decreasing from $(-2, \infty)$.

Given the vertex (h, k) and one additional point on the graph of a quadratic function $f(x) = ax^2 + bx + c$, $a \ne 0$, we can use

$$f(x) = a(x - h)^2 + k \tag{3}$$

to obtain the quadratic function.

Finding the Quadratic Function Given Its Vertex and One Other Point

Determine the quadratic function whose vertex is (-2, 3) and whose y-intercept is 1.

$$f(x) = a(x-h)^2 + k = a(x+2)^2 + 3$$

Using the fact that the y-intercept is 1: $1 = a(0+2)^2 + 3$

$$1 = 4a + 3$$
 $a = -\frac{1}{2}$

$$f(x) = -\frac{1}{2}(x+2)^2 + 3$$

$$f(x) = -\frac{1}{2}x^2 - 2x + 1$$

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall.

Finding the Maximum or Minimum Value of a Quadratic Function

Determine whether the quadratic function

$$f(x) = -x^2 + 4x + 5$$

has a maximum or minimum value.

Then find the maximum or minimum value.

Since a is negative, the graph of f opens down so the function will have a maximum value.

$$x = -\frac{b}{2a} = -\frac{4}{2(-1)} = 2$$

So the maximum value is
$$f(2) = -(2)^2 + 4(2) + 5 = 9$$

SUMMARY Steps for Graphing a Quadratic Function $f(x) = ax^2 + bx + c$, $a \ne 0$

Option 1

STEP 1: Complete the square in x to write the quadratic function in the form $f(x) = a(x - h)^2 + k$.

STEP 2: Graph the function in stages using transformations.

Option 2

STEP 1: Determine whether the parabola opens up (a > 0) or down (a < 0).

STEP 2: Determine the vertex $\left(-\frac{b}{2a}, f\left(-\frac{b}{2a}\right)\right)$.

STEP 3: Determine the axis of symmetry, $x = -\frac{b}{2a}$.

STEP 4: Determine the y-intercept, f(0), and the x-intercepts, if any.

- (a) If $b^2 4ac > 0$, the graph of the quadratic function has two x-intercepts, which are found by solving the equation $ax^2 + bx + c = 0$.
- (b) If $b^2 4ac = 0$, the vertex is the x-intercept.
- (c) If $b^2 4ac < 0$, there are no x-intercepts.

STEP 5: Determine an additional point by using the y-intercept and the axis of symmetry.

STEP 6: Plot the points and draw the graph.