Variable Compleja

I Definición de números complejos @definición, campo	2
la Forma binómica de un complejo @definición, forma binómica	3
Ia1 Potencias de la unidad imaginaria	2
Ib Propiedades de campo @campo, propiedades	5
Ic Norma, conjugado y partes de un complejo @definición, norma, conjugado, parte real, parte imaginaria	ϵ
Ic1 Propiedades de normas, conjugados y partes @propiedades, normas, conjugados, partes	7

Definición de números complejos

definición, campo

Definición 1. En \mathbb{R}^2 se definen las siguientes operaciones de suma y multiplicación

(I)
$$(a,b) + (c,d) = (a+c,b+d),$$

(II)
$$(a,b)(c,d) = (ac - bd, ad + bc)$$
.

Estas operaciones hacen a \mathbb{R}^2 un campo, donde

$$-(a,b) = (-a,-b)$$
 y $(a,b)^{-1} = \left(\frac{a}{a^2 + b^2}, \frac{-b}{a^2 + b^2}\right)$,

la última igualdad definida siempre que $(a, b) \neq (0, 0)$. A este campo se le denotará como \mathbb{C} y a sus elementos se les llamará **números complejos** o **número imaginarios**.

Forma binómica de un complejo

DEFINICIÓN 2. Obsérvese que si $(a, b) \in \mathbb{C}$, entonces (a, b) = (a, 0) + (0, 1)(b, 0) = (a, 0) + i(b, 0), donde i = (0, 1). De ahora en adelante, se hará la convención de escribir x en lugar de $(x, 0), x \in \mathbb{R}$, de tal manera que (a, b) = a + ib. Esta forma de escribir números complejos se llamará **forma binómica**. Se escribirá ia en vez de 0 + ia, a en vez de a + i0 y $a \pm i$ en vez de $a \pm i1$.

1a

definición, forma binómica

Potencias de la unidad imaginaria

Proposición 1. Se pueden efectuar las operaciones con números complejos de forma binómica como si fueran binomios algebráicos, reemplazando i^2 por -1, i^3 por -i, i^4 por 1, i^5 por i, etc. Específicamente, si $n \in \mathbb{N}$, entonces

$$i^{n} = \begin{cases} 1 & si \ n \equiv 0 \pmod{4} \\ i & si \ n \equiv 1 \pmod{4} \\ -1 & si \ n \equiv 2 \pmod{4} \\ -i & si \ n \equiv 3 \pmod{4}. \end{cases}$$

Demostración. Nótese que $i^2 = -1$, $i^3 = -i$ y $i^4 = 1$. Si $n \in \mathbb{N}$, entonces por el algoritmo de la división, existen $k, r \in \mathbb{Z}$ tal que n = 4k + r, $0 \le r \le 3$. Si r = 0, entonces $i^n = i^{4n} = (i^4)^n = 1^n = 1$. Si r = 1 se tiene que $i^n = i^{4k+1} = (i^4)^k i^1 = 1^k i^1 = i$. Si r = 2 se puede escribir $i^n = i^{4k+2} = (i^4)^k i^2 = 1^k - 1 = -1$ y finalmente, si r = 3, se tiene $i^n = i^{4k+3} = (i^4)^k i^3 = 1^k i^3 = -i$.

Más aún, dado que (a,0)(b,0)=(ab,0) para cualesquiera $a,b\in\mathbb{R}$, se pueden utilizar las propiedades de conmutatividad, asociatividad y distributividad del campo \mathbb{C} para operar sus elementos como si fueran binomios algebraicos cuando están en su forma binómica.

Propiedades de campo

1b

Teorema 1. Si $z, w \in \mathbb{C}$ $y n \in \mathbb{N}$, se verifican las siguientes propiedades

campo, propiedades

(I) (Binomio de Newton)

$$(z+w)^n = \sum_{k=0}^n \binom{n}{k} z^k w^{n-k}, \ donde \binom{n}{k} = \frac{n!}{k!(n-k)!},$$

(II) (Factorización de diferencia de potencias)

$$z^{n} - w^{n} = (z - w) \sum_{k=0}^{n-1} z^{k} w^{n-1-k}$$
$$= (z - w)(z^{n-1} + z^{n-2}w + \dots + zw^{n-2} + w^{n-1}).$$

(III) (Suma de cuadrados) $z^2 + w^2 = (z + iw)(z - iw)$.

Demostración. (I) Se verifica en cualquier anillo siempre que zw = wz. (II) Se verifica en cualquier anillo. (III) $(z+iw)(z-iw)=z^2-ziw+iwz-i^2w=z^2+w^2$, pues ziw=iwz y $i^2=-1$.

Norma, conjugado y partes de un complejo

Definición 3. Dado un número complejo $z=a+ib\in\mathbb{C}$, se define

- (I) La **norma** o **valor absoluto** de z como el número real $|z|=(a^2+b^2)^{1/2}$,
- (II) El **conjugado** de z como el número complejo $\overline{z} = a ib$,
- (III) La parte real de z como Re(z) = a y la parte imaginaria de z como Im(z) = b.

1c

definición, norma, conjugado, parte real, parte imaginaria

Propiedades de normas, conjugados y partes

Teorema 2. Si $z, w \in \mathbb{C}$, se verifica lo siguiente

$$(1) z\overline{z} = |z|^2,$$

(II)
$$z^{-1} = \overline{z}/|z|^2$$
, $si z \neq 0$,

(III)
$$\operatorname{Re}(z) = (z + \overline{z})/2 \ y \operatorname{Im}(z) = (z - \overline{z})/2i$$
,

(IV)
$$\overline{z+w} = \overline{z} + \overline{w} y |zw| = |z||w|,$$

(v)
$$|z/w| = |z|/|w| \text{ si } w \neq 0$$
,

(VI)
$$|\overline{z}| = |z|$$
,

(VII)
$$|z + w|^2 = |z|^2 + 2\text{Re}(z\overline{w}) + |w|^2$$
,

(VIII) $|z - w|^2 = |z|^2 - 2\text{Re}(z\overline{w}) + |w|^2$,

(ix) $|z + w|^2 + |z - w|^2 = 2(|z|^2 + |w|^2)$,

(x)
$$\operatorname{Im}(z) = 0$$
 si y sólo si $z = \overline{z}$,

(XI)
$$\overline{\overline{z}} = z$$
,

(XII)
$$|z + w| \le |z| + |w|$$
,

(XIII)
$$||z| - |w|| \le |z - w|$$
,

(XIV)
$$|z+w| = [(z+w)(\overline{z}+\overline{w})]^{1/2}$$
.

Demostración. Pendiente.

1c1

propiedades, normas, conjugados, partes