- **4.** Газообразный углеводород **A** реагирует с галогеноводородом, при этом образуется продукт **B**, молярная масса которого в четыре раза больше молярной массы углеводорода **A**. Если углеводород **A** пропускать в аммиачный раствор оксида серебра, то выпадает белый осадок вещества **C**. При нагревании углеводорода **A** с хлоридом меди(I) в присутствии основания и кислорода образуется жидкий углеводород **D**, имеющий симметричное строение.
- 1) Определите брутто-формулу углеводорода **A** и изобразите все его возможные изомеры.
- 2) Приведите структурные формулы соединений A D.

№ 4

1) Следует отметить, что присоединение фтороводорода к кратным связям протекает очень трудно. К тому же, присоединение легкой молекулы HF не может обеспечить увеличение массы в четыре раза, что требуется по условию. Поэтому будем рассматривать присоединение только HCl, HBr и HI.

Из условия задачи следует: $M(C_xH_y) + n$ M(HHal) = 4 $M(C_xH_y)$, то есть $M(C_xH_y) = n$ M(HHal)/3, где n - количество присоединившихся молекул галогеноводорода.

Подставляя значения M(HHal) и n в формулу, можно рассчитать молярную массу

углеводорода А и по ней брутто-формулу. Получим следующую таблицу:

водорода и и по неи орутто-формулу. Получим еледующую таблицу.							
HHal	М(HHal), г/моль	n	$M(C_xH_y)$,	Формула углеводорода А			
			г/моль				
HCl	36.5	1	12.1	-			
HCl	36.5	2	24.2	-			
HCl	36.5	3	36.3	-			
HBr	81	1	27	-			
HBr	81	2	54	C_4H_6			
HBr	81	3	81	С ₆ Н ₉ (нечетная масса и не газ)			
HI	128	1	42.6	C_3H_6			
HI	128	2	85.3	-			
HI	128	3	128	$C_{10}H_8$, C_9H_{20} (не газы)			

Так как углеводород **A** реагирует с аммиачным раствором оксида серебра с выпадением осадка, то это терминальный алкин (образуется осадок ацетиленида). Из двух возможных разумных формул C_4H_6 и C_3H_6 алкинам соответствует первая – C_4H_6 , тогда углеводород **A** – **бут-1-ин.**

Брутто-формуле С₄Н₆ соответствуют 9 изомеров:

2) Реакции из условия задачи выглядят следующим образом:

$$A_{g}^{+} \stackrel{\overset{\longleftarrow}{C} = C - CH_{2}}{\leftarrow} \underbrace{ \begin{array}{c} (Ag(NH_{3})_{2}]OH \\ C \end{array} } \underbrace{ \begin{array}{c} CH_{3} \\ HC \end{array} } \underbrace{ \begin{array}{c} CH_{3} \\ CH_{2} \end{array} } \underbrace{ \begin{array}{c} HBr \\ HBr \end{array} } \underbrace{ \begin{array}{c} Br \\ Br \end{array} } \underbrace{ \begin{array}{c} CH_{3} \\ Br \end{array} } \underbrace{ \begin{array}{c} CH_{3}$$

Гидробромирование происходит по правилу Марковникова. Последняя реакция — реакция Глазера — окислительная димеризация терминальных алкинов. Прийти к структуре углеводорода \mathbf{D} можно на основе того, что он жидкий (значит произошло увеличение молярной массы) и симметричности структуры.

Рекомендации к оцениванию:

1.	Определение брутто-формулы углеводорода – 2 балла		
2.	Любые 8 изомеров углеводорода C ₄ H ₆ по 0.5 балла	4 балла	
3.	Структуры продуктов А, В, С, D по 1 баллу	4 балла	
	итого:	10 баллов	