Lecture-4 Main Points

- A warm-up Lemma.
 - There exist two irrational real numbers a, b s.t. a^b is rational.
 - There is a (classical logic) proof of this lemma involving only a few lines.
 - The proof does not yield values of a, b (only proves their existence).
- Constructivism
 - Constructivist school of thought in mathematics rejects above proof.
 - Constructivism requires that existence of a mathematical object with property
 P, be proved by concretely exhibiting an object and showing that it has property P.
 - A look at the proof reveals that its non-constructive nature is due to the use of excluded middle principle.
- What is a constructive proof for propositional language?
 - BHK interpretation
 - * Associates a construction to a proposition.
 - c: A (read as "c is a construction for A")
 - * If A is atomic
 - $\cdot p : A$ is a primitive/given notion.
 - $* A \equiv A_1 \vee A_2$
 - $\cdot inl(t) : A$, where $t : A_1$ or
 - $\cdot inr(t) : A$, where $t : A_2$
 - * $A \equiv A_1 \wedge A_2$
 - $\cdot \langle t_1, t_2 \rangle : A$, where $t_1 : A_1$ and $t_2 : A_2$

$$* A \equiv A_1 \rightarrow A_2$$

- · t: A, where t is a function s.t. for any input $c: A_1, t(c): A_2$.
- * There is no construction for \perp .
- Examples of BHK interpretation for some simple propositions.

$$-\ A \to A \lor B, \ A \to \neg \neg A.$$

• Exercise: Why is there no BHK interpretation for $A \vee \neg A$ in general?