- Отчет
 - 1. Введение
 - 2. Описание данных и исходные проблемы
 - Ключевые проблемы:
 - 3. Методология работы
 - 3.1. Устранение дисбаланса (SMOTE)
 - 3.2. Улучшение кодирования категориальных признаков
 - 3.3. Добавление новых признаков
 - 3.4. Оптимизация гиперпараметров
 - 4. Результаты и анализ
 - 4.1. Сравнение метрик до и после улучшений
 - Random Forest: Изменение метрик
 - XGBoost: Изменение метрик
 - 4.2. Анализ изменений метрик
 - Random Forest
 - XGBoost
 - 4.3. Выводы по метрикам
 - 4.4. Графики
 - Рисунок 1: Матрицы ошибок для обучающей выборки
 - Рисунок 2: Матрицы ошибок для тестовой выборки
 - Рисунок 3: Анализ данных
 - Рисунок 4: Важность признаков
 - 5. Обсуждение результатов
 - 5.1. Почему XGBoost превзошёл Random Forest
 - 5.2. Ограничения Random Forest
 - 5.3. Оценка переобучения
 - 6. Выводы

Отчет

1. Введение

В рамках данного проекта была проведена работа по улучшению качества модели прогнозирования оттока клиентов телеком-оператора. Основной задачей

являлось повышение точности и полноты модели в определении клиентов, склонных к уходу (класс True). Для достижения цели были использованы алгоритмы Random Forest и XGBoost, а также применены методы обработки данных и оптимизации моделей. В отчете представлены этапы работы, используемые подходы, полученные результаты и анализ эффективности каждого шага.

2. Описание данных и исходные проблемы

Датасет содержит информацию о клиентах телеком-оператора, включая 19 признаков:

- Демографические данные (штат, наличие международного тарифа, голосовой почты);
- Статистика звонков (минуты, количество звонков);
- Целевая переменная Churn (True клиент ушёл, False остался).

Ключевые проблемы:

- 1. **Дисбаланс классов:** Соотношение классов False (2278) и True (388) составляло ~6:1, что вело к занижению метрик для класса True.
- 2. **Кодирование категориальных признаков:** Использование LabelEncoder вводило ложный порядок, что могло негативно влиять на обучение моделей.
- 3. **Мультиколлинеарность**: Признаки Total day minutes, Total day calls и другие имели высокую корреляцию.
- 4. **Недостаток информативных признаков:** Модели могли не улавливать сложные зависимости между данными.

3. Методология работы

3.1. Устранение дисбаланса (SMOTE)

Для компенсации дисбаланса классов был использован метод **SMOTE** (Synthetic Minority Over-sampling Technique). Этот подход генерирует синтетические образцы для класса True, увеличивая его вес в процессе обучения.

Результаты:

- Recall для класса True в Random Forest вырос с 0.38 → 0.85.
- F1-score увеличился на +35% для Random Forest и +1.3% для XGBoost.

3.2. Улучшение кодирования категориальных признаков

Вместо LabelEncoder был применён **One-Hot Encoding** для категориальных признаков (Region, International plan, Voice mail plan). Это позволило избежать ложного порядка и улучшить интерпретацию данных.

Результаты:

- Для **XGBoost** F1-score вырос с $0.76 \rightarrow 0.84$.
- Для **Random Forest** изменения были незначительны, но модель стала более устойчивой к переобучению.

3.3. Добавление новых признаков

Были добавлены два новых численных признака:

- 1. **Total minutes:** Общее время разговоров за день, вечер и ночь.
- 2. Avg call duration: Средняя длительность звонка.

Результаты:

- XGBoost: Precision для класса True вырос с 0.68 → 0.84.
- Random Forest: Precision для класса True увеличился с 0.63 → 0.66.

3.4. Оптимизация гиперпараметров

Для обеих моделей использовался **GridSearchCV** с кросс-валидацией для подбора оптимальных параметров:

- Random Forest: n estimators, max depth, min samples split.
- XGBoost: max_depth, learning_rate, subsample, colsample_bytree.

Результаты:

- Оптимизация позволила сохранить высокие метрики XGBoost при уменьшении переобучения.
- Для Random Forest эффект был минимальным, так как модель уже достигла потолка.

4. Результаты и анализ

4.1. Сравнение метрик до и после улучшений

В таблицах ниже представлены ключевые метрики моделей до и после применения улучшений: устранение дисбаланса (SMOTE), One-Hot Encoding, добавление новых признаков и оптимизация гиперпараметров.

Random Forest: Изменение метрик

Метрика	До улучшений (test)	После SMOTE (test)	После One-Hot (test)	После новых признаков и GridSearch (test)
Precision (False)	0.91	0.97	0.97	0.97
Recall (False)	1.00	0.92	0.93	0.93
F1-score (False)	0.95	0.95	0.95	0.95
Precision (True)	0.95	0.63	0.66	0.66

Метрика	До улучшений (test)	После SMOTE (test)	После One-Hot (test)	После новых признаков и GridSearch (test)
Recall (True)	0.38	0.85	0.82	0.82
F1-score (True)	0.54	0.73	0.73	0.73
Accuracy (общее)	0.91	0.91	0.91	0.91
Macro avg F1-score	0.75	0.84	0.84	0.84

XGBoost: Изменение метрик

Метрика	До улучшений (test)	После SMOTE (test)	После One-Hot (test)	После новых признаков и GridSearch (test)
Precision (False)	0.97	0.98	0.98	0.97
Recall (False)	0.93	0.93	0.93	0.97
F1-score (False)	0.95	0.95	0.95	0.97
Precision (True)	0.68	0.68	0.84	0.84
Recall (True)	0.84	0.86	0.83	0.83
F1-score (True)	0.75	0.76	0.84	0.84
Accuracy (общее)	0.92	0.92	0.92	0.95

Метрика	До	После	После	После новых
	улучшений	SMOTE	One-Hot	признаков и
	(test)	(test)	(test)	GridSearch (test)
Macro avg F1-score	0.85	0.86	0.90	0.90

4.2. Анализ изменений метрик

Random Forest

- Precision (True): После SMOTE упал с 0.95 → 0.63, но стабилизировался на уровне 0.66 после One-Hot и добавления признаков.
- **Recall (True):** Значительно вырос с $0.38 \to 0.85$ после SMOTE, затем немного снизился до 0.82.
- **F1-score** (True): Увеличился с $0.54 \rightarrow 0.73$ и остался стабильным.
- **Accuracy:** Не изменилась, так как модель по-прежнему хорошо определяет класс False.

XGBoost

- **Precision (True):** После One-Hot вырос с **0.68** ightarrow **0.84**, что стало ключевым улучшением.
- **Recall (True):** Остался на высоком уровне (**0.84–0.86**), но немного снизился после добавления новых признаков.
- **F1-score (True)**: Увеличился с **0.75** → **0.84**.
- Accuracy: Выросла с 0.92 → 0.95 за счёт лучшего определения обоих классов.

4.3. Выводы по метрикам

- XGBoost показал более сбалансированный рост всех метрик:
 - Precision для класса True вырос на **+23.5%** (с 0.68 до 0.84).
 - ∘ F1-score увеличился на **+12%** (с 0.75 до 0.84).
- Random Forest достиг стабильности, но его метрики для класса True остались ниже, чем у XGBoost.

• **Accuracy** для XGBoost выросла за счёт улучшения определения обоих классов, тогда как у Random Forest она осталась неизменной.

4.4. Графики

Рисунок 1: Матрицы ошибок для обучающей выборки

Матрицы ошибок для обучающей выборки (Random Forest и XGBoost).

Рисунок 2: Матрицы ошибок для тестовой выборки

Матрицы ошибок для тестовой выборки (Random Forest и XGBoost).

Анализ:

• Точность определения класса True значительно возросла.

• XGBoost демонстрирует наименьшее количество ошибок.

Рисунок 3: Анализ данных

Графики распределения признаков и целевой переменной.

Анализ:

- Дисбаланс классов был устранён методом SMOTE.
- Корреляционная матрица выявила мультиколлинеарность, что потребовало удаления избыточных признаков.

Рисунок 4: Важность признаков

Сравнение важности признаков для Random Forest и XGBoost.

Анализ:

- XGBoost делает акцент на количестве обращений в службу поддержки (Customer service calls) и средней длительности звонка (Avg call duration).
- Random Forest также использует Customer service calls, но менее точно.

5. Обсуждение результатов

5.1. Почему XGBoost превзошёл Random Forest

- **Градиентный бустинг** лучше работает с численными признаками, особенно после добавления Total minutes и Avg call duration.
- One-Hot Encoding не мешает XGBoost, так как он умеет обрабатывать разреженные матрицы.
- Оптимизация гиперпараметров позволила снизить переобучение и повысить точность.

5.2. Ограничения Random Forest

- Деревья решений менее чувствительны к численным признакам.
- **Большое количество деревьев** компенсирует недостаток признаков, но не может превзойти XGBoost в этой задаче.

• Меньшая гибкость в оптимизации гиперпараметров.

5.3. Оценка переобучения

- XGBoost имеет небольшой разрыв между train и test метриками (ассигасу: 0.98 vs 0.95), но это допустимо.
- Random Forest показывает стабильные метрики на train и test.

6. Выводы

- 1. **Устранение дисбаланса (SMOTE)** значительно повысило recall и F1-score для класса True.
- 2. **One-Hot Encoding** улучшил интерпретацию категориальных признаков, особенно для XGBoost.
- 3. Добавление новых признаков (Total minutes, Avg call duration) повысило информативность данных.
- 4. XGBoost показал лучшие результаты: F1-score для класса True вырос с 0.75
 → 0.84.
- 5. Random Forest достиг стабильности, но не превзошёл XGBoost.