

Lectura I.I: Introducción

Redes Neuronales Informadas por Física

Especialización en Inteligencia Artificial - B52024

Docentes: Benjamin A. Tourn - Carlos G. Massobrio

Outline

- Scientific Machine Learning
- Modelado y simulación en ciencia/ingeniería
- Modelos basados en datos
- Redes neuronales informadas por física (PINN)
- Estrategias de aprendizaje
- Ejemplos

SciML (DOE ASCR Report, Feb 2019)

Scientific machine learning (SciML) es un componente clave de IA y una tecnología computacional que puede ser entrenada con datos científicos, para aumentar/automatizar habilidades humanas

SciML Foundations

Machine Learning for Advanced Scientific Computing Research

Domain-aware

leveraging & respecting scientific domain knowledge

physical principles & symmetries physics-informed priors structure-exploiting models :

Interpretable

explainable & understandable results

model selection
exploiting structure in high-dim data
uncertainty quantification + ML
:

Robust

stable, well-posed & reliable formulations

probabilistic modeling in ML quantifying well-posedness reliable hyperparameter estimation :

¿Que se espera del SciML?

SciML debe alcanzar el mismo nivel de rigor científico esperado de métodos establecidos desplegados en ciencia y matemática aplicada. Los requerimiento básicos incluyen validación y límites en las entradas y el contexto implícito en tales validaciones, como también verificación de los algoritmos básicos para asegurar que son capaces de entregar soluciones prototipo conocidas.

¿Puede SciML alcanzar la robustez?

Modelado y simulación (MyS) en ingeniería

Datos y leyes físicas

La "big science" necesita de SciML

Experimentos y misiones que generan una enorme cantidad de datos

- <u>CERN Open Data</u>: acceso al dataset de los experimentos realizado en el gran colisionador de hadrones del <u>CERN</u>.
- GAIA Dataset Release 3: última versión del dataset de la misión de astrometría
 GAIA, cuyo objetivo es construir el catálogo más grande y preciso de aproximadamente 1.800 millones de objetos astronómicos.
- <u>Solar Orbiter Archive</u>: acceso a los datasets generados por los instrumentos de la sonda Solar Orbiter.
- <u>Base de datos de ALMA</u>: alojamiento información generada por proyectos que trabajaron empleando el radiotelescopio Atacama Large Millimeter Array.

Redes neuronales informadas por física (PINN)

Datos + redes neuronales + física

Physics-informed neural networks (PINN): A Deep Learning framework for solving forward and inverse problems involving nonlinear partial differential equations.

M. Raissi, P. Perdikaris, G. E. Karniadakis. *Journal of Computational Physics* 378, 686-707, 2019.

Redes neuronales informadas por física (PINN)

AI FOR SCIENCE

NVIDIA CEO J. Huang at SC19, the annual supercomputing conference, Nov 19

ANI + MD - Chemistry

ITER - Fusion Energy

SIMULATION

DATA

El aprendizaje supervisado necesita de "Big Data"

¿Donde encontramos "Big Data" para aplicaciones científico-tecnológicas?

- <u>UCI Repository</u>: repositorio de datasets de uso académico de UC Irvine.
- <u>Heart Disease</u>: (4 databases: Cleveland, Hungary, Switzerland, and the VA Long Beach): datasets de diagnósticos de estudios cardíacos.
- <u>Airfoil Self-Noise</u>: conjunto de datos de túnel de viento de la NASA basado en pruebas aerodinámicas y acústicas de secciones de palas de perfil aerodinámico bidimensionales (2D) y tridimensionales (3D).
- <u>Challenger USA Space Shuttle O-Ring</u>: datasets para predecir el número de O-rings que experimentarán estrés térmico.

Estrategias de aprendizaje

- **Supervised Learning:** arroja predicciones basado en un tipo de clase; mapea datos rotulados a salidas conocidas. El feedback es inmediato.
- Unsupervised Learning: descubre patrones subyacentes; explora patrones para predecir la salida. No hay feedback. Por ejemplo: resolver una EDO basado en la condición inicial.
- Reinforcement Learning: sigue un patrón de prueba y error; el agente de aprendizaje trabaja como un sistema de recompensas y acción. El feedback tiene delay.
- Self-supervised Learning: autoencoders y GANs.

Algunos ejemplos de aplicación

Testeo de materiales por ultrasonido (WPAFB Real Data)

□ Shukla K, Di Leoni PC, Blackshire J, Sparkman D, Karniadakis GE. Physics-informed neural network for ultrasound nondestructive quantification of surface breaking cracks. Journal of Nondestructive Evaluation. 2020 Sep;39(3):1-20.

Simulaciones multi-física - Conjugate Heat Transfer

J. Heat Transfer. 2021;143(6). doi:10.1115/1.4050542

- □ Solution of conjugate heat transfer problem on a complex parameterized geometry of a heat sink for NVSwitch in DGX-A100 (SimNet Simulation; now known as Modulus).
- (a) Geometry for a heat sink with fins and heat pipes to dissipate heat from GPU.
- (b) Pressure color-coded flow streamlines and result comparisons between SimNet and CFD commercial code for (c) U-velocity,
- (d) V-velocity, and (e) pressure. (Courtesy of the Nvidia team).

Mecánica de fluidos en aneurisma intracraneal

Science. 2020 Feb 28;367(6481):1026-30.

Inferred Hidden Physics

Aprendizaje por refuerzo para control de flujo en un cilindro

Proceso de soldadura simplificado

B. A. Tourn. "Redes neuronales informadas por física para resolver problemas de conducción de calor en ingeniería". Trabajo final EIA. Agosto 2024.

¿Dudas o preguntas?

