DIFFERENTIAL COHOMOLOGY SEMINAR 4 (DRAFT)

TALK BY ALESSANDRO NANTO

In the last talk we learned the definition of a differential cohomology theory, as a sheaf valued in spectra on the site of manifolds. This talk continues our journey through differential cohomology theories, and focuses on the following three topics:

- (1) We want to learn how to construct non-trivial examples out of sheaves valued in chain complexes.
- (2) We want to understand how we can extend classical cohomology operations to the setting of differential cohomology theories.
- (3) We want to introduce suitable analogues of fiber-wise integration.

1. ABELIAN GROUPS, SPECTRA AND THE HEART

Let us start by reviewing the relation between abelian groups, rings and spectra.

Definition 1.1. Let $n \in \mathbb{Z}$ and X be a spectrum, define $\pi_n(X) := \pi_0(\Omega^{\infty + n}X) = \pi_0(X_{-n})$. We call π_n the n-th homotopy group of X.

Remark 1.2. Note that since $X_n \simeq \Omega^2 X_{n+2}$, for any n, the set $\pi_0(X_n)$ underlies the structure of an abelian group.

The category Sp underlies the structure of a symmetric monoidal ∞ -category ([Lur17, Corollary 4.8.2.19]). Following [Lur17], we denote by \otimes the tensor product on Sp.

Definition 1.3. A commutative algebra object in Sp is called an \mathbb{E}_{∞} -ring spectrum, see [Lur17, Definition 7.1.0.1]. Given an \mathbb{E}_{∞} -ring spectrum R, denote by Mod_R the corresponding category of left R-module spectra, see [Lur17, Definition 7.1.1.2].

Remark 1.4. The sphere spectrum \mathbb{S} acts as the monoidal unit of $\mathbb{S}p$, therefore it is a \mathbb{E}_{∞} -ring spectrum. The category $\mathrm{Mod}_{\mathbb{S}}$ is canonically equivalent to $\mathbb{S}p$.

Definition 1.5. Denote by $\operatorname{Sp}_{\geq 0} \subseteq \operatorname{Sp}$ the full sub-category generated by *connective spectra*, i.e. spectra X such that $\pi_n(X) \simeq 0$, for all n < 0. Denote by $\operatorname{Sp}^{\heartsuit} \subseteq \operatorname{Sp}_{\geq 0}$ the *heart of spectra*, i.e. the full sub-category generated by spectra X such that $\pi_n(X) \simeq 0$, for all n > 0.

We have the following result relating connective spectra and the heart, which follow immediately.

Lemma 1.6. Let X be a connective spectrum. The following are equivalent:

- (1) X is in the heart.
- (2) $\pi_n(\Omega^{\infty}X) = 0$, for all n > 0.
- (3) $\operatorname{Hom}_{S_{\alpha}}(S, \Omega^{\infty}X) \simeq 0$, for all connected, pointed spaces S.
- (4) X is local with respect to the class of maps $\Sigma^{\infty}S \to 0$, for every connected pointed space S.

The category $\mathrm{Sp}_{\geq 0}$ is presentable and π_0 induces an equivalence between the heart and Ab ([Lur17, Proposition 1.4.3.6]). The heart is a sub-category of local objects of connective spectra, therefore the inclusion $\mathrm{Ab} \simeq \mathrm{Sp}^{\heartsuit} \subseteq \mathrm{Sp}_{\geq 0}$ is a right adjoint. The category $\mathrm{Sp}_{\geq 0}$ is closed under \otimes and, given X, Y connective spectra,

(1.7)
$$\pi_0(X \otimes Y) \simeq \pi_0(X) \otimes \pi_0(Y)$$

see [Dav24, Theorem 2.3.28]

Definition 1.8. Given an abelian group A, denote by HA the (unique up to equivalence) spectrum of the heart such that $\pi_0(HA) \simeq A$. We call HA the Eilenberg-Mac Lane spectrum of A.

Date: 03.06.2025 & 17.06.2025

Using Equation (1.7), one can prove H, viewed as a functor $Ab \to Sp$, is lax monoidal. In particular, if R is a commutative ring, then HR is a connective \mathbb{E}_{∞} -ring spectrum. On the other hand, if R is a connective \mathbb{E}_{∞} -ring spectrum and M a connective module, then $\pi_0(M)$ is a $\pi_0(R)$ -module.

Definition 1.9. Given a commutative ring R, denote by $Ch(R) = Ch(Mod_R)$ the ordinary category of unbounded chain complexes. Let $\mathcal{D}(R)$ be the ∞ -localization of Ch(R) at the class of quasi-isomorphisms.

Similar to the heart of spectra, given an \mathbb{E}_{∞} -ring spectrum R, denote by $\operatorname{Mod}_R^{\heartsuit} \subseteq \operatorname{Mod}_R$ the full subcategory generated by R-modules such that the underlying spectrum belongs to the heart of spectra.

Theorem 1.10 (Stable Dold-Kan Correspondence). Let R be a commutative ring.

- (1) $\operatorname{Mod}_R \simeq \operatorname{Mod}_{HR}^{\heartsuit}$ via taking Eilenberg-Mac Lane spectra.
- (2) The equivalence in (1) extends to an equivalence $H: \mathcal{D}(R) \simeq \mathrm{Mod}_{HR}$ of symmetric monoidal ∞ -categories.

Proof. (1) is [Lur17, Proposition 7.1.1.13], while (2) is [Lur17, Theorem 7.1.2.13].
$$\Box$$

An interesting consequence of Theorem 1.10 is the following:

Corollary 1.11. Given $F \in \mathcal{D}(R)$, then $\pi_n(HF) \simeq H_n(F)$, for all $n \in \mathbb{Z}$.

Proof.

$$\pi_n(HF) = \pi_0(\Omega^{\infty+n}HF)$$

$$\stackrel{\textcircled{1}}{\simeq} \pi_0(\operatorname{Hom}_{\mathbb{S}_{\mathcal{P}}}(\Sigma^n\mathbb{S}, HF))$$

$$\stackrel{\textcircled{2}}{\simeq} \pi_0(\operatorname{Hom}_{\operatorname{Mod}_{HR}}(\Sigma^nHR, HF))$$

$$\stackrel{\textcircled{3}}{\simeq} \pi_0(\operatorname{Hom}_{\mathbb{D}(R)}(R[n], F))$$

$$\stackrel{\textcircled{4}}{\simeq} H_n(F)$$

① The functor $\Omega^{\infty+n}$ is corepresented by the shifted sphere spectrum $\Sigma^n \mathbb{S}$. ② The forgetful functor $\operatorname{Mod}_{HR} \to \operatorname{Mod}_{\mathbb{S}} \simeq \operatorname{Sp}$ is right adjoint to tensoring by HR and $HR \otimes (\Sigma^n \mathbb{S}) \simeq \Sigma^n HR$. ③ H is an equivalence of stable categories. ④ π_0 of the mapping space $\operatorname{Hom}_{\mathcal{D}(R)}(R[n], F)$ is equivalent to the mapping space $R[n] \to F$ in the *ordinary* derived category of R, i.e. homotopy classes of maps $R[n] \to F$, which correspond exactly to classes in $H_n(F)$.

2. From Chain Complexes to Spectra via stable Dold-Kan

We now use our newly gained understanding of spectra to construct differential cohomology theories out of sheaves valued in chain complexes, via the stable Dold-Kan correspondence.

Remark 2.1. We identify the category of cochain complexes with Ch(R) by reversing grading. Namely, given a cochain V^* , we are implicitly identifying it with the chain complex $V_n = V^{-n}$.

Definition 2.2 ([BNV16, Definition 7.14]). Given $n \in \mathbb{Z}$, denote by $\sigma^{\geq n}$, resp. $\sigma^{\leq n}$, the naive truncation functors, mapping a cochain complex V^* to

$$\cdots \to 0 \to V^n \to V^{n+1} \to \cdots$$

resp.

$$\cdots \to V^{n-1} \to V^n \to 0 \to \cdots$$

Given $F: \mathcal{M}fd^{op} \to \mathrm{Ch}(\mathbb{Z})$ and $\sharp \in \{\geq n, \leq n\}$, denote by F^{\sharp} the composite $\mathcal{M}fd^{op} \to \mathrm{Ch}(\mathbb{Z}) \xrightarrow{\sigma^{\sharp}} \mathrm{Ch}(\mathbb{Z})$. Notice that if F is a sheaf, then F^{\sharp} is also a sheaf.

Lemma 2.3 ([BNV16, Lemma 7.12]). Let $F : \mathcal{M}fd^{op} \to Ch(\mathbb{Z})$ a sheaf of chain complexes of C^{∞} -modules, then $\mathcal{M}fd^{op} \xrightarrow{F} Ch(\mathbb{Z}) \to \mathcal{D}(\mathbb{Z})$ is a sheaf.

Definition 2.4. Denote by Ω^* the sheaf $\mathcal{M}fd^{op} \to \mathrm{Ch}(\mathbb{Z})$ mapping a manifold to its de Rham complex.

Lemma 2.3 ensures that the sheaf in Definition 2.4 and the corresponding naive truncations remain sheaves after post-composition with the localization functor $Ch(\mathbb{Z}) \to \mathcal{D}(\mathbb{Z})$.

Definition 2.5. Given a sheaf $F: \mathcal{M}fd^{op} \to \mathcal{D}(\mathbb{Z})$, denote by HF the Eilenberg-Mac Lane sheaf of $H\mathbb{Z}$ -module spectra obtained by applying point-wise the equivalence of Theorem 1.10.

3. Deligne Cohomology as a Differential Cohomology Theory

Now equipped with Definition 2.5, we can finally define Deligne cohomology as a differential cohomology theory.

Definition 3.1. Let $k \ge 0$. The *Deligne cohomology sheaf* $\mathcal{E}(k)$ is defined via the following pullback square in $Shv(\mathcal{M}fd; Sp)$:

$$\begin{array}{ccc}
\mathcal{E}(k) & \longrightarrow & H(\Omega_{dR}^{\leq k}) \\
\downarrow & & \downarrow \\
H\mathbb{Z} & \longrightarrow & H\mathbb{R}
\end{array}$$

Here H is the Eilenberg-MacLane sheaf.

Remark 3.2. If we take $k = \infty$, then the Hom $H(\Omega_{dR}) \to H\mathbb{R}$ is an equivalence, meaning $\mathcal{E}(\infty)$ is equivalent to $H\mathbb{Z}$ i.e. singular cohomology. On the other side, the individual $\mathcal{E}(k)$ are highly non-trivial and help classify many geometric invariants of interest (as we saw in the first talk). So, the $\mathcal{E}(k)$ are a non-trivial filtration of $H\mathbb{Z}$ by differential cohomology theories, in the sense that there are Hom $\mathcal{E}(k+1) \to \mathcal{E}(k)$, the limit of which is $H\mathbb{Z}$.

4. Cohomology Operations for Deligne Cohomology

Now that we have a rigorous definition of Deligne cohomology, we can start to think about operations on it. First of all, we need a suitable monoidal structure.

Definition 4.1. Let F, G be two differential cohomology theories. The monoidal product $F \otimes G$ is defined as the sheafification of the presheaf $F \wedge G$, which is the point-wise wedge product of spectra.

Now, recall there is a Hom of differential forms

$$\Omega^{\leq k} \otimes \Omega^{\leq m} \to \Omega^{\leq k+m}$$
,

which induces a Hom of differential cohomology theories

$$\mathcal{E}(k) \otimes \mathcal{E}(m) \to \mathcal{E}(k+m)$$

Ideally, we would like to describe such an operation in a very explicit manner, however, in the realm of spectra this can be very challenging. This suggests an alternative perspective.

Definition 4.2. Let $\mathcal{L}(k)$ be the sheaf of chain complexes defined as the pullback in $Shv(\mathcal{M}fd, D(\mathbb{Z}))$ of the following diagram

$$\begin{array}{ccc}
\mathcal{L}(k) & \longrightarrow & \Omega^{\leq k} \\
\downarrow & & \downarrow_{dR}, \\
\mathbb{Z} & \longrightarrow & \mathbb{R}
\end{array}$$

where \mathbb{Z} is the functor $M \mapsto C^{\bullet}(M, \mathbb{Z})$ and \mathbb{R} is the functor $M \mapsto C^{\bullet}(M, \mathbb{R})$

Remark 4.3. We can explicitly describe the chain complex $\mathcal{L}(k)$ as follows.

$$\mathcal{L}(k)^n = \{(c, \omega, h) \in C^n(-\mathbb{Z}) \oplus \Omega^n(-) \oplus C^{n-1}(-\mathbb{R}) | \omega = 0 \text{ if } n > kandc - dR(\omega) = dh \}$$

Remark 4.4. We expect that $H\mathcal{L}(k)$ in fact recovers $\mathcal{E}(k)$, meaning operations on $\mathcal{L}(k)$ help us understand operations on Deligne cohomology.

This needs to

Using the explicit description from Remark 4.3, we can define an operation on $\mathcal{L}(k)$ as follows:

$$(c_1, \omega_1, h_1) \otimes (c_2, \omega_2, h_2) = (c_1 \cup c_2, \omega_1 \wedge \omega_2, (-1)^{|c_1|} c_1 \cup h_2 + h_1 \cup \omega_2 + B(\omega_1, \omega_2)),$$

where

$$dR(\omega_1) \cup dR(\omega_2) = -dR(\omega_1 \wedge \omega_2) = dB(\omega_1, \omega_2)$$

It is expected that sheafification is necessary, but ex ample is missing. Is there a reasonable way to pick $B(\omega_1, \omega_2)$?

Remark 4.5. Intuitively $B(\omega_1, \omega_2)$ measures the failure of dR taking \wedge to \cup .

Remark 4.6. Ideally we would expect this formula to be well-defined, meaning $(c_1, \omega_1, h_1) \otimes (c_2, \omega_2, h_2)$ should satisfy the conditions in Remark 4.3. In general, this is only true if c_1, ω_2 satisfy $dc_1 = d\omega_2 = 0$. In particular, it is well-defined at the level of cohomology classes, as any element is closed therein.

REFERENCE

- $[BNV16] \ \ Ulrich \ Bunke, \ Thomas \ Nikolaus, \ and \ Michael \ V\"{o}lkl. \ Differential \ cohomology \ theories \ as \ sheaves \ of \ spectra. \ \emph{J. Homotopy Relat. Struct.}, \ 11(1):1–66, \ 2016.$
- [Dav24] Jack Davies. V4d2 Algebraic Topology II So24 (stable and chromatic homotopy theory). Lecture notes, 2024. Unpublished.
- [Lur17] Jacob Lurie. Higher algebra. Available online, September 2017.