Розрахункова Робота

з дискретної математики

студента групи ІСзп 71 Бутузова О. В.

Варіант №4

1.1 Довести тотожність аксіоматично

$$A \cup ((B \triangle (B \triangle A)) \setminus B) = A$$

Спростимо ліву частину завдиння поступово спрощуючи формули за допомогою основних та похідних законів алгебри множин (для кращого розуміння ходу процесу кожна дія обмежена одною-двома операціями):

$$A \cup ((B \triangle (B \triangle A)) \setminus B) = A$$

Операції \ та \triangle розкривати за формулами: $A \backslash B = A \cap B^c$ qquad $A \triangle B = (A \cap B^c) \cup (B \cap A^c)$

Розкриття

```
A = A \cup ((B \triangle (B \triangle A)) \setminus B)
A = A \cup ((B \triangle (((A^{c} \cap B) \cup (A \cap B^{c})))) \setminus B)
A = A \cup (((((A^{c} \cap B) \cup (A \cap B^{c}))^{c} \cap B) \cup (((A^{c} \cap B) \cup (A \cap B^{c})) \cap B^{c})) \setminus B)
A = A \cup (((((A^{c} \cap B) \cup (A \cap B^{c}))^{c} \cap B) \cup (((A^{c} \cap B) \cup (A \cap B^{c})) \cap B^{c})) \cap B^{c})
```

Доведення

Закони	Тотожності
1	$A \cup (B^{c} \cap ((B \cap ((A^{c} \cap B) \cup (A \cap B^{c}))^{c}) \cup (B^{c} \cap ((A^{c} \cap B) \cup (A \cap B^{c})))))$
10, 11, 1	$A \cup (B^{c} \cap ((B \cap ((A^{c} \cup B) \cap (A \cup B^{c}))) \cup (B^{c} \cap ((A^{c} \cap B) \cup (A \cap B^{c})))))$
2	$A \cup (B^{c} \cap (((B \cap (A^{c} \cup B)) \cap (B \cap (A \cup B^{c}))) \cup ((B^{c} \cap (A^{c} \cap B)) \cap (B^{c} \cap (A \cap B^{c})))))$
1	$A \cup (B^{c} \cap (((B \cap (B \cup A^{c})) \cap (B \cap (B^{c} \cup A))) \cup ((B^{c} \cap (B \cap A^{c})) \cap (B^{c} \cap (B^{c} \cap A)))))$
6	$A \cup (B^{c} \cap (((B \cap (B \cup A^{c})) \cap (B \cap (B^{c} \cup A))) \cup ((B^{c} \cap (B \cap A^{c})) \cap (B^{c} \cap (B^{c} \cap A)))))$
12	$A \cup (B^{c} \cap ((B \cap (B \cap (B^{c} \cup A))) \cup ((B^{c} \cap (B \cap A^{c})) \cap (B^{c} \cap (B^{c} \cap A)))))$
8	$A \cup (B^{c} \cap (((B \cap B) \cap A) \cup (((B^{c} \cap B) \cap A^{c}) \cap ((B^{c} \cap B^{c}) \cap A))))$
5, 4, 7	$A \cup (B^{c} \cap ((B \cap A) \cup ((\varnothing \cap A^{c}) \cap (B^{c} \cap A)))$
5	$A \cup (B^{c} \cap ((B \cap A) \cup (\varnothing \cap (B^{c} \cap A)))$
3	$A \cup (B^{c} \cap ((B \cap A) \cup \varnothing))$
8, 4	$A \cup (B^{c} \cap (B \cap A))$
5	$A \cup (\varnothing \cap A)$
5	$A \cup \varnothing$
3	$\mid A \mid$

Тотожність доведено.

1.2 Довести тотожність модельно

$$((A\cap (A^{\mathbf{c}}\cup B))\times (C\bigtriangleup D))\cup (A\times (C\cup D))=(A\times (C\cup D))$$

$$((A\cap (A^{\mathbf{c}}\cup B))\times (C\bigtriangleup D))\cup (A\times (C\cup D))=(A\times (C\cup D))\iff \varepsilon_1\vee\varepsilon_2=\varepsilon_2$$
 де
$$\varepsilon_1=(x,y)\in ((A\cap (A^{\mathbf{c}}\cup B))\times (C\bigtriangleup D))$$

$$\varepsilon_2=(x,y)\in (A\times (C\cup D))$$

$$\varepsilon_2=(x,y)\in (A\times (C\cup D))$$

$$\iff (x\in (A\cap (A^{\mathbf{c}}\cup B))\times (C\bigtriangleup D))$$

$$\iff (x\in (A\cap (A^{\mathbf{c}}\cup B))\wedge (y\in (C\bigtriangleup D))$$

$$\iff (x\in (A\cup B))\wedge (y\in ((C\cap D^{\mathbf{c}})\cup (C^{\mathbf{c}}\cup D)))$$

$$\iff ((x\in A)\vee (x\in B))\wedge (((y\in C)\wedge (y\notin D))\vee ((y\notin C)\wedge (y\in D)))$$

$$\iff ((x\in A)\vee (x\in B))\wedge (((y\in C)\wedge (y\notin D))\vee ((y\notin C)\wedge (y\in D)))$$

$$\iff ((x\in A)\vee (x\in B))\wedge ((y\in C)\vee (y\in D))$$

$$\iff (x,y)\in (A\times (C\cup D))$$

$$\iff (x\in A)\wedge (y\in (C\cup D))$$

$$\iff (x\in A)\wedge (y\in C)\vee (y\in C)$$
 Підставивши наші виразі назад у вираз отримаємо

$$(((x \in A) \lor (x \in B)) \land ((y \in C) \lor (y \in D))) \lor ((x \in A) \land ((y \in D) \lor (y \in C))) = ((x \in A) \land ((y \in D) \lor (y \in C)))$$

$$\iff ((x \in A) \lor (x \in B) \lor (x \in A)) \land ((y \in D) \lor (y \in C)) = (x \in A) \land ((y \in D) \lor (y \in C)) \iff$$

$$\iff ((x \in A) \lor (x \in B)) \lor (x \in A) = (x \in A) \iff (x \in A) \land (x \notin B)$$

2.1 Дослідити відношення $R \subset \mathbb{R}$ на властивості

$$(xRy) \iff (0 < \frac{y}{x} < 1) \Rightarrow x > y$$

(графік лише приблизно відтворє наше відношення)

- Рефлексивність відношення **не є рефлексивним** оскільки порушується умова при заміні у на х.
- Антирефлексивність відношення **не є антирефлексивним** оскільки не виконується умова $\neg(xRx)$
- Симетричність відношення **не є симетричним** оскільки щоб умова виконувась x має бути принамні на одиницю більше y, і якщо їх поміняти місцями результат поміняється діаметрально.
- Антисиметричність відношення ϵ антисиметричним оскільки для x та y оскільки з виконання хRу не слідкує виконання уRх.
- Транзитивність відношення є є транзитивним оскільки виконується умова $xRz \wedge zRy$ (наприклад при x=40, z=20, y=10)

2.2 Обчислити $(R \circ S)^{-1}$ та $(R \circ R^{-1})_{Tr}$

$$R = \{(a_1, b_1), (a_2, b_1), (a_3, b_2)\}, S = \{(b_2, c_1), (b_1, c_2), (b_2, c_3), (b_2, c_4)\}.$$

$$R: A \to B, \quad R = \begin{bmatrix} \begin{array}{c|c} & b_1 & b_2 \\ \hline a_1 & 1 & 0 \\ a_2 & 1 & 0 \\ a_3 & 0 & 1 \\ \end{array} \\ S: B \to C, \quad S = \begin{bmatrix} \begin{array}{c|c} & c_1 & c_2 & c_3 & c_4 \\ \hline b_1 & 0 & 1 & 0 & 0 \\ b_2 & 1 & 0 & 1 & 1 \\ \end{array} \\ \end{bmatrix}$$

a)
$$R \circ S = \begin{bmatrix} c_1 & c_2 & c_3 & c_4 \\ \hline a_1 & 0 & 1 & 0 & 0 \\ a_2 & 0 & 1 & 0 & 0 \\ a_3 & 1 & 0 & 1 & 1 \end{bmatrix} (R \circ S)^{-1} \begin{bmatrix} c_1 & a_2 & a_3 \\ \hline c_1 & 0 & 0 & 1 \\ c_2 & 1 & 1 & 0 \\ c_3 & 0 & 0 & 1 \\ c_4 & 0 & 0 & 1 \end{bmatrix}$$

b)
$$R: A \to B$$
, $R = \begin{bmatrix} \frac{b_1 & b_2}{a_1 & 1 & 0} \\ a_2 & 1 & 0 \\ a_3 & 0 & 1 \end{bmatrix}$ $R^{-1}: B \to A$, $R^{-1} = \begin{bmatrix} \frac{a_1 & a_2 & a_3}{b_1 & 1 & 1 & 0} \\ b_2 & 0 & 0 & 1 \end{bmatrix}$

$$(R \circ R^{-1}) = \begin{bmatrix} & a_1 & a_2 & a_3 \\ \hline a_1 & 1 & 1 & 0 \\ a_2 & 1 & 1 & 0 \\ a_3 & 0 & 0 & 1 \end{bmatrix}$$

$$R_{Tr} = R \cup R^2 \cup R^3$$

3.1 Вибір нумерованих об'єктів

Упосудині знаходиться n_1 білих, n_2 чорних, n_3 червоних кульок (всі кульки нумеровані). Скількома способами можна витягнути k кульок без повернення та без урахування порядку, так щоб у виборці було не менш ніж k_1 білих, k_2 чорних та k_3 червоних кульок?

m білі	$m_{ m 4ophi}$	т червоних	Кількість варіантів		
2	2	2	$C_4^2 C_6^2 C_2^2$	$6 \times 15 \times 1$	= 90
2	3	1	$C_4^2 C_6^3 C_2^1$	$6 \times 20 \times 2$	= 240
2	4	0	$C_4^2 C_6^4 C_2^0$	$6 \times 15 \times 1$	= 90
3	2	1	$C_4^3 C_6^2 C_2^1$	$4\times15\times2$	= 60
3	3	0	$C_4^3 C_6^3 C_2^0$	$4\times20\times1$	= 80
4	2	0	$C_4^4 C_6^2 C_2^0$	$1 \times 15 \times 1$	= 15

Загальна кількість способів, якими можна задовольними умови виборки по колору є сумма усіх можливих комбінацій тобто $575~(90\times2+15+60+240)$.

Закони Логічної Еквіваленції

1. Закон Комутативності / Commutative Laws

$$A \cup B = B \cup A$$
 $A \cap B = B \cap A$

2. Закони Розподільності / Дистрибутивність / Distributive Laws

$$A \cup (B \cap C) = (A \cap B) \cup (A \cap C)$$

3. Закони Нейтральності / Identity Laws / Domination Laws

$$A \cup \varnothing = A$$
 $A \cap U = A$

4. Закони Доповненості / Complement Laws

$$A \cup A^{c} = U \quad A \cap A^{c} = \emptyset$$

5. Закони Універсальних границь / Universal Bounds

$$A \cup U = U$$
 $A \cap \emptyset = \emptyset$

6. Закони Абсорбції / Absorption Laws

$$A \cup (A \cap B) = A \quad A \cap (A \cup B) = A$$

7. Закони Ідемподентості / Idempodent Laws

$$A \cup A = A$$
 $A \cap A = A$

8. Закони Ассоціативності / Associative Laws

$$A \cup (B \cup C) = (A \cup B) \cup C \quad A \cap (B \cap C) = (A \cap B) \cap C$$

9. Закони Єдності доповнення

$$\left\{ \begin{array}{l} A \cup X = U \\ A \cap X = \varnothing \end{array} \right. \Rightarrow (X = A^{\mathsf{c}})$$

10. Інволютивність / Involution

$$(A^{\mathsf{c}})^{\mathsf{c}} = A$$

11. Закон Де Моргана / De Morgan's Law

$$(A \cup B)^{c} = A^{c} \cap B^{c}$$
 $(A \cap B)^{c} = A^{c} \cup B^{c}$

12. Закон Порецького

$$A \cap (A^{c} \cup B) = A \cap B$$
 $A \cup (A^{c} \cap B) = A \cap B$

13. Закон Склеювання

$$(A \cup B) \cap (A \cup B^{c}) = A$$
 $(A \cap B) \cup (A \cap B^{c}) = A$