Whisper Model

Robust Speech Recognition via Large-Scale Weak Supervision

발표자: 이세영

2023. 10. 06

목차

- I. Introduction
- II. Whisper
- III. Experiments
- IV. Conclusion

1. Introduction

Whisper 모델?

- 2022. 09 공개된 모델
- 음성인식 end-to-end 모델
- 다양한 언어 가능 (en, ko, ja, zh 등)
- 다양한 Task 가능 음성 전사, 번역, 언어 감지 등
- 특히, 한국어 가능 모델 중 뛰어난 성 능을 보임.

Github: https://github.com/openai/whisper

1. Introduction

• Return Zero의 한국어 음성인식 리더보드

API \ 데이터셋	Avg. CER(%)	주요 영 역별 회 의	회의	상담	저음 질 전화 망	한국 어 강의	KsponSpeech eval clean	KsponSpeech eval other
OpenAl Whisper	11.39	10.49	10.16	7.51	17.27	10.89	12.06	11.34
Google api v2	11.50	N/A ^[1]	11.62	8.37	14.11	11.48	11.82	11.59
ETRI	10.19	9.95	10.56	8.36	15.46	9.89	9.99	7.15
Naver ClovaSpeech	9.52	7.88	8.53	5.89	9.09	13.71	10.66	10.86
리턴제로	6.18	6.78	7.27	3.56	4.66	7.76	6.61	6.64
리턴제로 Whisper ^[2]	7.79	6.43	8.85	5.44	5.52	8.68	9.74	9.86

- API 이용 가능 모델 평가
- Whisper만 공개 모델
- ETRI 모델의 경우, 상업이용시 라이센스 필요

Github: https://github.com/rtzr/Awesome-Korean-Speech-Recognition

1. Introduction

• 다양한 사이즈의 모델 공개

Size	Parameters	English-only model	Multilingual model	Required VRAM	Relative speed
tiny	39 M	tiny.en	tiny	~1 GB	~32x
base	74 M	base.en	base	~1 GB	~16x
small	244 M	small.en	small	~2 GB	~6x
medium	769 M	medium.en	medium	~5 GB	~2x
large	1550 M	N/A	large	~10 GB	1x

Github: https://github.com/openai/whisper

Whisper: Web-scale Supervised Pretraining for Speech Recognition(WSPSR)에서 따온 방법론 이름

Main Contribution

- simple scaling of weakly supervised pre-training
 - 다국어 데이터셋 117,113 hours, Translation 125,739 hours, 영어 음성인식 438,218 hours
- 68만 시간 labeled audio data 학습
- transcript text standardization 제안

English Text

Non-English Text

- 1. Remove any phrases
- 2. Remove any phrases
- 3. Remove any of the fo
- 4. Remove whitespace of
- 5. Convert standard or i
- 6. Remove commas (,)
- 7. Remove periods (.)
- 8. Remove symbols as

1. Remove any phrases between matching brackets ([,]).

- 2. Remove any phrases between matching parentheses ((,)).
- 3. Replace any markers, symbols, and punctuation characters with a space, i.e. when the Unicode category of each character in the NFKC-normalized string starts with M, S, or P.
- 4. make the text lowercase.
- 5. replace any successive whitespace characters with a space.
- starting with M, S, or P, except period, percent, and currency symbols that may be detected in the next step.
- 9. Detect any numeric expressions of numbers and currencies and replace with a form using Arabic numbers, e.g. "Ten thousand dollars" \rightarrow "\$10000".
- 10. Convert British spellings into American spellings.
- 11. Remove remaining symbols that are not part of any numeric expressions.
- 12. Replace any successive whitespace characters with a space.

Input data: Log-Mel Spectrogram

- Log-Mel Spectrogram
- 음파 데이터를 사람 귀가 듣는 정보와 비슷하게 scaling 하는 과정을 거침 -> Mel spectrogram
- 연산량이 많아 normalization 기법으로 log를 취함 -> Log-Mel Spectrogram
 - Mel spectrogram을 압축하여 표현한 MFCC 형식을 사용하기도 함.
- Whisper 모델은 Log-Mel Spectrogram을 input로 사용함.

Input data: Log-Mel Spectrogram

- sampling rate: 16000(1초에 얼마나 많은 점을 찍을것인가)
- log-magnitude: 80-channel
- windows:25ms
- Stride:10ms

Output data: Multitask training format

Model Architecture

- Transformers Architecture 사용
- Tokenizer: GPT-2 BPE tokenizer 사용
 - Vocab을 refit하여 사용함.

(1) Zero-shot performance

- 2019 SOTA 모델을 사용하여 LibriSpeech를 학습한 모델과 LibriSpeech를 학습하지 않은 Whisper 성능 비교
- Supervised 모델이 인간의 2배 이상의 WER을 보임.
- Zero-shot Whisper 가 인간과 유사한 성능을 보임.

(2) Robustness to Additive Noise

- White noise, pub noise 를 추가한 LibriSpeech test-clean
 데이터셋으로 평가함.
- 낮은 noise 환경에서는 NVIDIA의 STT models가 성능이 좋지 만, noise가 강해질수록 Whisper 모델의 성능이 가장 좋다.

Figure 3. Correlation of pre-training supervision amount with downstream speech recognition performance. The amount of pre-training speech recognition data for a given language is very predictive of zero-shot performance on that language in Fleurs.

Figure 4. Correlation of pre-training supervision amount with downstream translation performance. The amount of pre-training translation data for a given language is only moderately predictive of Whisper's zero-shot performance on that language in Fleurs.

ko

• 타 모델과 번역 성능 비교(Bleu)

$X \rightarrow English$	High	Mid	Low	All
XMEF-X	34.2	20.2	5.9	14.7
XLS-R (2B)	36.1	27.7	15.1	22.1
mSLAM-CTC (2B)	37.8	29.6	18.5	24.8
Maestro	38.2	31.3	18.4	25.2
Zero-Shot Whisper	36.2	32.6	25.2	29.1

Testset: CoVoST2

Github: https://github.com/facebookresearch/covost

(4) Comparison with Human Performance

- Testset: Kincaid46 데이터셋에서 25개의 녹음을 선택
- A-D: 자동음성인식 상용 서비스
- E: 컴퓨터 전사 제공, 작업자가 전사 작성
- F-I: 전문 텍스트 변환 작업자가 작성한 전사
- Whisper는 인간과 유사한 수준을 보임.

4. Conclusion

- ✓ Limitations: 전혀 관련 없는 transcribe 생성, 장문 transcribe의 어려움, 반복 generation 문제 등
- ✓ Weakly supervised pre-training 을 통한 STT 성능 향상
- ✓ 68만 시간의 labeled audio data를 학습
- ✓ Text Standardization 제안
- ✓ 110개 언어지원 및 다양한 Task(번역, 언어감지, 음성전사 등) 가능