

Scaling R in the Cloud

with Azure Batch and Docker

Christoph Bodner

Data Science Post AG | Konzern-IT

1

AGENDA

01

02

03

Topics

Who we are (obligatory marketing stuff...)

Our problems

Our solution

Data Science@Post AG:

- Overview: Post AG
- Our team

Deploying R at scale:

- Scaling compute resources on demand
- Reduce dev-prod disparity

Main components:

- Azure Batch
- Docker
- VSTS

AGENDA

01

02

03

Topics

Who we are (obligatory marketing stuff...)

Our problems

Our solution

Data Science@Post AG:

- Overview: Post AG
- Our team

Deploying R at scale:

- Scaling compute resources on demand
- Reduce dev-prod disparity

Main components:

- Azure Batch
- Docker
- VSTS

OVERVIEW: POST AG COMPANY PERFORMANCE & PARCEL VOLUMES OVER TIME

PARCEL VOLUMES OF AUSTRIAN POST mio parcels

OVERVIEW: POST AG STRONG PRESENCE IN EASTERN EUROPE

GROWTH FOCUS ON PARCEL & LOGISTICS DIVISION

ORGANISATION DATA SCIENCE IS PART OF BI COMPETENCE CENTER

OUR TEAM PEOPLE WHO LIKE $\pi z^2 a$ IN EVERY FORM

Christoph Bodner
Lead Data Scientist

Quantitative Finance (WU) Prev.: KPMG

Thomas LaberSenior Data Scientist

Business Informatics (TU)
Prev.: Accenture

Martin Blöschl
Junior Data Scientist

Computational Intelligence (TU)

Raphael Pesi Junior Data Scientist

Mathematics (TU)

AGENDA

01

02

03

Topics

Who we are (obligatory marketing stuff...)

Our problems

Our solution

Data Science@Post AG:

- Overview: Post AG
- Our team

Deploying R at scale:

- Scaling compute resources on demand
- Reduce dev-prod disparity

Main components:

- Azure Batch
- Docker
- VSTS

PARCEL VOLUME FORECAST HOW MANY PARCELS WILL WE NEED TO DELIVER IN THE FUTURE?

FROM EXPERIMENT TO DEPLOYMENT OUR JOURNEY

- Draft architecture
- Modeling strategy
- Everything seems easy

Experiment phase

- Build model on sample
- Model improves
- Happy Data Scientists

Deadline phase

- Model training takes too long
- Model gets simplified to speed up training
- Performance suffers

Deployment phase

- Dev != Prod
- Server procurement slow
- Server not powerful enough for training
- Server too powerful for scoring

FORECASTING PERFORMANCE 2-DAYS-AHEAD

FORECASTING PERFORMANCE 7-DAYS-AHEAD

Performance

Parcel volumes per day Austria (7 days ahead)

PROBLEMS IN DETAIL SCALING COMPUTE RESOURCES ON DEMAND

Scaling options

horizontal

We want to be able to elastically scale **up** and **out** to meet our needs

PROBLEMS IN DETAIL DEV-PROD DISPARITY

Happy Path Deployments

Keeping Dev and Prod aligned is hard even with best intentions

VPost

HOW CAN WE SOLVE OUR PROBLEMS? WE HAVE A LONG WISH LIST

Our wish list:

deploy automatically scale compute elastically No vendor lock-in uniform S GPUs no dependencies architecture g programming language agnostic Easy scheduling 5 **Job Management Portal**

Solutions we considered:

We have two dominant stacks:

- Microsoft .net + Azure
- SAP

Since we have SAP and .net/Azure support in-house, we looked primarily at these two stacks.

AGENDA

01

02

03

Topics

Who we are (obligatory marketing stuff...)

Data Science@Post AG:

- Overview: Post AG

- Our team

Dep

Deploying R at scale:

Our problems

- Scaling compute resources on demand
- Reduce dev-prod disparity

Our solution

Main components:

- Docker
- Azure Batch
- VSTS

SOLUTIONS WE CONSIDERED COMPARISON

Also take a look at	Cloud vs. On-Premise Solution			
Azure Databricks for Spark workloads	Azure ML Studio	Azure ML Workbench	Azure Batch	SAP HANA (PAL)
Supported Languaç	ges R/Python	Python	All	R (Python)
Supports GPUs	This looks very promising	Yes	Yes	No
Dev-Prod parity	Easy	Easy	Easy	Hardish
R package availabl	e AzureML	-	doAzureParallel	-
Independent upgra	des partially	partially	Yes	partially
Elastic scaling	-	Yes	Yes	No
Scheduling include	d No	No	Yes	Yes 🚗
SCORE				

AZURE BATCH OVERALL WINNER FLEXIBLE, HIGH VALUE/MONEY AND LOW VENDOR LOCK-IN

Scale up and out

Specify node sizes and types, e.g. GPU/CPU, RAM and get large discount on low-prio nodes

Scheduling integrated

Specify job schedule and resize pool based on number of outstanding tasks

Docker support

Dev and Prod parity Fits into CD pipeline

DOCKER BRIEFLY EXPLAINED BUILD ONCE – RUN ANYWHERE

Example Dockerfile

```
## Description: <a href="https://hub.docker.com/r/rocker/tidyverse/">https://hub.docker.com/r/rocker/tidyverse/</a>

# Install your R package
## Copy R package to docker
RUN mkdir -p /usr/r_package
COPY . /usr/r_package

## Install package dependencies
## Roxygenize
RUN r -e 'devtools::install_deps(pkg = "/usr/r_package/", dependencies = T)'
## Roxygenize
RUN r -e 'devtools::document(pkg = "/usr/r_package/")'
## Install package

## Install package

Here we install our package
```

Build Container

Container can be deployed to docker runtime in production: Dev = Prod (mostly©)

AZURE BATCH CONCEPTS

Components overview

Description

Pool Definition of compute resources

- Node number/type
- Container settings
- Autoscaling
- Task number per node

Schedule ... Recurring job for a pool

- Job specification

Job Contains pool and task specs

- Job manager task

Task Work specification

- Command line
- upload options

AZURE BATCH SETUP OVERVIEW

VSTS CONTINUOUS DELIVERY PIPELINE (SIMPLIFIED)

OUR STACK OVERVIEW

OUR STACK WE ARE CURRENTLY BUILDING A HPC ENVIRONMENT

MONITORING BATCH JOBS WITH BATCH EXPLORER

OPEN ISSUES

SECURITY & EVALUATING DIFFERENT REAL-TIME SCORING OPTIONS

Security

- Secret management with KeyVault
- Azure Active Directory integration
- VNET integration of pools
- Docker security best practices audit/check
- Disable public endpoints

What we are currently looking into

Real-time scoring options

- Using AzureML Studio
- Using Azure Model Management
- Kubernetes Cluster
- Azure Functions
- Azure Container Instances + Logic Apps
- ...

A bit of work is still open, but we plan to have everything wrapped up end of September

Thank you for your attention!

Any questions?

Feel free to reach out to me:

christoph.bodner@post.at

in linkedin.com/in/christoph-bodner

