1

SI231 - Matrix Computations, Fall 2020-21

Solution of Homework Set #1

Prof. Yue Qiu and Prof. Ziping Zhao

I. UNDERSTANDING RANK, RANGE SPACE AND NULL SPACE

Problem 1. (4 points \times 5) This problem is graded by **Zhicheng Wang (wangzhch1@)**.

- 1) For matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$, prove that $\mathbb{R}^n = \mathcal{N}(\mathbf{A}) \oplus \mathcal{R}(\mathbf{A}^T)^{-1}$. **Hint:** $\dim(\mathcal{N}(\mathbf{A})) + \dim(\mathcal{R}(\mathbf{A}^T)) = n$.
- 2) For matrices $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{B} \in \mathbb{R}^{m \times n}$, prove that $rank(\mathbf{A} + \mathbf{B}) \leq rank(\mathbf{A}) + rank(\mathbf{B})$.
- 3) For matrices $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{B} \in \mathbb{R}^{n \times p}$, prove that $\operatorname{rank}(\mathbf{AB}) \leq \min\{\operatorname{rank}(\mathbf{A}), \operatorname{rank}(\mathbf{B})\}$ and $\operatorname{rank}(\mathbf{AB}) = n$ only when A has full-column rank and B has full-row rank.
- 4) For matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{B} \in \mathbb{R}^{m \times p}$, prove that $\mathcal{R}(\mathbf{A}|\mathbf{B}) = \mathcal{R}(\mathbf{A}) + \mathcal{R}(\mathbf{B})^2$
- 5) For matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{B} \in \mathbb{R}^{m \times p}$, prove that

$$\mathsf{rank}(\mathbf{A}|\mathbf{B}) = \mathsf{rank}(\mathbf{A}) + \mathsf{rank}(\mathbf{B}) - \mathsf{dim}(\mathcal{R}(\mathbf{A}) \cap \mathcal{R}(\mathbf{B})).$$

Hint: Recall the result in (c).

Solution:

1) For any $\mathbf{x} \in \mathcal{R}(\mathbf{A}^T) \cap \mathcal{N}(\mathbf{A})$, we have that $\mathbf{A}\mathbf{x} = \mathbf{0}$ and $\exists \mathbf{c} \in \mathbb{R}^m$, s.t. $\mathbf{A}^T\mathbf{c} = \mathbf{x}$. Therefore we have $\mathbf{A}\mathbf{A}^T\mathbf{c} = \mathbf{0}$ and consequently,

$$(\mathbf{A}^T \mathbf{c})^T \cdot (\mathbf{A}^T \mathbf{c}) = \mathbf{c}^T \mathbf{A} \mathbf{A}^T \mathbf{c} = \mathbf{0},$$

i.e., $\mathcal{R}(\mathbf{A}^T) \cap \mathcal{N}(\mathbf{A}) = \{\mathbf{0}\}$ 2'. Let $\mathcal{S} = \mathcal{R}(\mathbf{A}^T) \oplus \mathcal{N}(\mathbf{A})$, since $\dim(\mathcal{S}) = \dim(\mathcal{N}(\mathbf{A})) + \dim(\mathcal{R}(\mathbf{A}^T)) - \dim(\mathcal{R}(\mathbf{A}^T) \cap \mathcal{N}(\mathbf{A})) = n - 0 = n$, we must have $\mathcal{S} = \mathbb{R}^n$. To sum up, $\mathbb{R}^n = \mathcal{N}(\mathbf{A}) \oplus \mathcal{R}(\mathbf{A}^T)$ 2'.

2)

$$\begin{split} \mathsf{rank}(\mathbf{A}) + \mathsf{rank}(\mathbf{B}) &= \mathsf{rank}\left(\begin{bmatrix}\mathbf{A} & \mathbf{0} \\ \mathbf{0} & \mathbf{B}\end{bmatrix}\right) = \mathsf{rank}\left(\begin{bmatrix}\mathbf{A} & \mathbf{A} + \mathbf{B} \\ \mathbf{0} & \mathbf{B}\end{bmatrix}\right) \\ &\geq \mathsf{rank}\left(\begin{bmatrix}\mathbf{A} + \mathbf{B} \\ \mathbf{B}\end{bmatrix}\right) \geq \mathsf{rank}(\mathbf{A} + \mathbf{B}) \ \mathbf{4'}. \end{split}$$

 $\dim(\mathbf{A})$ is wrong. $\mathcal{R}(\mathbf{A} + \mathbf{B}) \subset \mathcal{R}(\mathbf{A}) + \mathcal{R}(\mathbf{B})$

- 3) Let $A = [a_1, a_2, \dots, a_p], B = [b_1, b_2, \dots, b_p].$
 - Let $\mathbf{AB} = [A\mathbf{b}_1, A\mathbf{b}_2, \dots, A\mathbf{b}_p]$. $\forall j \in [p], A\mathbf{b}_j$ is a linear combination of $\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n\}$, so $\mathbf{Ab}_j \in \operatorname{span}(\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n)$, i.e., $\{\mathbf{Ab}_1, A\mathbf{b}_2, \dots, A\mathbf{b}_p\} \subset \operatorname{span}(\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n)$, span $(\mathbf{Ab}_1, A\mathbf{b}_2, \dots, A\mathbf{b}_p) \subset \operatorname{span}(\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n)$, we then get $\operatorname{rank}(\mathbf{AB}) \leq \operatorname{rank}(\mathbf{A})$ 1'.

¹Let S_1 and S_2 be two subspaces of \mathbb{R}^n , if $S_1 \cap S_2 = \{0\}$ and $S_1 + S_2 = \mathbb{R}^n$, we define the **direct sum** $\mathbb{R}^n = S_1 \oplus S_2$.

²Here
$$\mathbf{A}|\mathbf{B}$$
 denotes a new matrix combined by \mathbf{A} and \mathbf{B} . For example, $\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$, $\mathbf{B} = \begin{bmatrix} b_{11} \\ b_{21} \end{bmatrix}$, then $\mathbf{A}|\mathbf{B} = \begin{bmatrix} a_{11} & a_{12} & b_{11} \\ a_{21} & a_{22} & b_{21} \end{bmatrix}$.

• Since $rank(\mathbf{AB}) = rank(\mathbf{B}^T \mathbf{A}^T)$, applying the same strategy, we can get $rank(\mathbf{B}^T \mathbf{A}^T) \le rank(\mathbf{B}^T) = rank(\mathbf{B})$ 1'.

Therefore, $rank(\mathbf{AB}) \leq \min\{rank(\mathbf{A}), rank(\mathbf{B})\}$ 1'.

Moreover, if **A** has full-column rank, $rank(\mathbf{AB}) = rank(\mathbf{B})$, and if **B** has full-row rank, $rank(\mathbf{AB}) = rank(\mathbf{A})$, then the second claim is proved 1'.

4) $\forall \ \mathbf{y} \in \mathcal{R}(\mathbf{A}|\mathbf{B}), \exists \ \mathbf{x} \in \mathbb{R}^{n+p} \text{ such that } \mathbf{y} = (\mathbf{A}|\mathbf{B})\mathbf{x} = (\mathbf{A}|\mathbf{B}) \begin{bmatrix} \mathbf{x}_n \\ \mathbf{x}_p \end{bmatrix} = \mathbf{A}\mathbf{x}_n + \mathbf{B}\mathbf{x}_p, \ \mathbf{x}_n \in \mathbb{R}^n \text{ and } \mathbf{x}_p \in \mathbb{R}^p.$ We have $\mathbf{A}\mathbf{x}_n \in \mathcal{R}(\mathbf{A})$ and $\mathbf{B}\mathbf{x}_p \in \mathcal{R}(\mathbf{B}), \ \mathcal{R}(\mathbf{A}|\mathbf{B}) \subset (\mathcal{R}(\mathbf{A}) + \mathcal{R}(\mathbf{B}))$ 2'. $\forall \ \mathbf{y}_n \in \mathcal{R}(\mathbf{A}), \ \mathbf{y}_p \in \mathcal{R}(\mathbf{B}), \ \exists \ \mathbf{x}_n \in \mathbb{R}^n \text{ and } \mathbf{x}_p \in \mathbb{R}^p \text{ such that } \mathbf{y}_n = \mathbf{A}\mathbf{x}_n \text{ and } \mathbf{y}_p = \mathbf{A}\mathbf{x}_p. \text{ We have } \mathbf{y}_n + \mathbf{y}_p = \mathbf{A}\mathbf{x}_n + \mathbf{B}\mathbf{x}_p = (\mathbf{A}|\mathbf{B}) \begin{bmatrix} \mathbf{x}_n \\ \mathbf{x}_p \end{bmatrix}, \ (\mathcal{R}(\mathbf{A}) + \mathcal{R}(\mathbf{B})) \subset \mathcal{R}(\mathbf{A}|\mathbf{B})$ 2'.
Therefore, $(\mathcal{R}(\mathbf{A}) + \mathcal{R}(\mathbf{B})) = \mathcal{R}(\mathbf{A}|\mathbf{B})$.

5)

$$\begin{split} \mathsf{rank}(\mathbf{A}|\mathbf{B}) &= \mathsf{dim}(\mathcal{R}(\mathbf{A}|\mathbf{B})) = \mathsf{dim}(\mathcal{R}(\mathbf{A}) + \mathcal{R}(\mathbf{B})) \\ &= \mathsf{dim}(\mathcal{R}(\mathbf{A})) + \mathsf{dim}(\mathcal{R}(\mathbf{B})) - \mathsf{dim}(\mathcal{R}(\mathbf{A}) \cap \mathcal{R}(\mathbf{B})) \\ &= \mathsf{rank}(\mathbf{A}) + \mathsf{rank}(\mathbf{B}) - \mathsf{dim}(\mathcal{R}(\mathbf{A}) \cap \mathcal{R}(\mathbf{B})) \ \, \mathbf{4'}. \end{split}$$

II. UNDERSTANDING SPAN, SUBSPACE

Problem 1. (10 points) This problem is graded by **Lin Zhu** (**zhulin**@).

For a set of vectors $S = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$, prove that $\operatorname{span}(S)$ is the intersection of all subspaces that contain S, i.e., prove that $\operatorname{span}(S) = \mathcal{M}$ where $\mathcal{M} := \cap_{s \subseteq \mathcal{V}} \mathcal{V}$ is the intersection of all subspaces that contain S and V denotes the subspace containing S.

Hint: Prove that $span(S) \subseteq \mathcal{M}$ and $\mathcal{M} \subseteq span(S)$.

Solution: The proof consists of two parts:

- (5 points) First we prove that $\operatorname{span}(\mathcal{S}) \subset \mathcal{M}$. For any $\mathbf{x} \in \operatorname{span}(\mathcal{S})$, then \mathbf{x} can be linearly represented by \mathcal{S} , i.e., $\mathbf{x} = \sum_i \alpha_i \mathbf{v}_i$. For any subspace \mathcal{V} containing \mathcal{S} , we must have $\mathbf{x} \in \mathcal{V}$ since subspace \mathcal{V} is closed under addition. Therefore, we have $\mathbf{x} \in \cap_{s \subseteq \mathcal{V}} \mathcal{V} = \mathcal{M}$. To sum up, $\forall \mathbf{x} \in \operatorname{span}(\mathcal{S}) \Rightarrow \mathbf{x} \in \mathcal{M} \Rightarrow \operatorname{span}(\mathcal{S}) \subset \mathcal{M}$.
- (5 points) Then we try to prove that M ⊂ span(S). By definition, M is contained in every subspace which contains S. (The intersection of subspaces is also a subspace.) And since span(S) is also a subspace, then we have M ⊂ span(S).

Therefore span(S) = M.

III. BASIS, DIMENSION AND PROJECTION

Problem 1. (2 points \times 2) This problem is graded by **Zhihang Xu** (xuzhh@).

Determine the dimension of each of the following vector spaces:

- 1) The space of polynomials having degree n or less;
- 2) The space of $n \times n$ symmetric matrices.

Solution.

1) (2 points) Let \mathcal{V} be the space of polynomials having degree n or less, then any element $f(x) \in \mathcal{V}$ can be expressed as

$$f(x) = a_0 + a_1 x + \dots + a_n x^n,$$

which can be a linear combination of $\{1, x, \dots, x^n\}$. Therefore the basis of \mathcal{V} can be $\{1, x, \dots, x^n\}$ and the dimension of \mathcal{V} is n+1.

2) (2 points) Let \mathcal{V} be the space of $n \times n$ symmetric matrices and let $\mathbf{I}^{(ij)}$ denotes the symmetric matrix which has value 1 on $\mathbf{I}^{(ij)}_{ij}$ and $\mathbf{I}^{(ij)}_{ji}$ and value 0 on elsewhere, then any element $\mathbf{A} \in \mathcal{V}$ can be expressed as

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{12} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{nn} \end{bmatrix} = a_{11} \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix} + a_{12} \begin{bmatrix} 0 & 1 & \cdots & 0 \\ 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix} + \cdots$$

$$+ a_{1n} \begin{bmatrix} 0 & 0 & \cdots & 1 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & \cdots & 0 \end{bmatrix} + \cdots + a_{nn} \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

$$= \sum_{m=1}^{n} a_{mm} \mathbf{I}^{(mm)} + \sum_{m=2}^{n} a_{1m} \mathbf{I}^{(1m)} + \sum_{m=2}^{n} a_{2m} \mathbf{I}^{(2m)} + \cdots + a_{n-1,n} \mathbf{I}^{(n-1,n)},$$

and therefore the dimension of V is given by

$$\dim(\mathcal{V}) = n + (n-1) + \dots + 1 = \frac{n(n+1)}{2}$$
.

Remarks:

- Deviation for the solution is not required, giving the solutions n+1 and n(n+1)/2 directly earns you full points.
- If the final solution is not right, but you give a right deviation, you will get half of the points.

Problem 2. Some Important linear transformations

(6 points + 8 points) This problem is graded by **Zhihang Xu** (xuzhh@).

- 1) **Rotations.** A rotation matrix $\mathbf{R} \in \mathbb{R}^{n \times n}$ is an orthogonal matrix $(\mathbf{R}\mathbf{R}^T = \mathbf{I})$ such that $\det(\mathbf{R}) = 1$.
 - According to the above definition, find all rotation matrices in $\mathbb{R}^{2\times 2}$.
 - Geometrically, if $\mathbf{R} \in \mathbb{R}^{2 \times 2}$, then $\mathbf{R}\mathbf{x}$ means we rotate the vector $\mathbf{x} \in \mathbb{R}^2$ from some angle $\theta \in [0, 2\pi]$ in anti-clockwise direction. For $\mathbf{x} = [\cos(\pi/4), \sin(\pi/4)]^T$, compute $\mathbf{R}\mathbf{x}$, where \mathbf{R} represents the matrix that rotating \mathbf{x} by $7/12\pi$ in anti-clockwise direction.

Hint: draw a plot of x and Rx.

2) **Reflections.** Let $\mathbf{u} \in \mathbb{R}^n$ be a unit vector, $\|\mathbf{u}\|_2 = 1$. For a given vector $\mathbf{x} \in \mathbb{R}^n$ and a hyperplane $\mathcal{H}_u = \{\mathbf{x} \in \mathbb{R}^n | \mathbf{u}^T \mathbf{x} = 0\}$. Let $\mathbf{Q} = \mathbf{I} - \mathbf{u}\mathbf{u}^T$. Then a vector $\mathbf{y} \in \mathbb{R}^n$ is said to be a *reflection* of \mathbf{x} with respect to \mathcal{H} if their projections onto the hyperplane \mathcal{H} (denoted as $\mathbf{Q}\mathbf{x}$ and $\mathbf{Q}\mathbf{y}$ respectively) satisfy

$$\mathbf{Q}\mathbf{x} = \mathbf{Q}\mathbf{y}$$
, $\|\mathbf{x} - \mathbf{Q}\mathbf{x}\|_2 = \|\mathbf{y} - \mathbf{Q}\mathbf{y}\|_2$.

See Figure.1 for visualization.

Figure 1. Reflection of x

A Householder matrix has the form $\mathbf{H} = \mathbf{I} - 2\mathbf{u}\mathbf{u}^T$. Prove that $\mathbf{H}\mathbf{x}$ is a reflection of \mathbf{x} with respect to \mathcal{H}_u . Solution.

1) (3 points)

Solution #1. In a two-dimensional plane, conside a vector $\mathbf{x} = [x_1, x_2]^T$, what a rotation matrix \mathbf{R} does to \mathbf{x} is to rotate \mathbf{x} by some angle α . Suppose $\mathbf{x} = (r, \theta)$ in polar coordinate system, and $\mathbf{x}' := \mathbf{R}\mathbf{x} = [x_1', x_2']$ is the vector rotated by α in anti-clockwise direction. Then by the definition of rotation, we have

$$\begin{cases} x_1' = r\cos(\theta + \alpha), \\ x_2' = r\sin(\theta + \alpha), \end{cases} \Rightarrow \begin{bmatrix} x_1' \\ x_2' \end{bmatrix} = \begin{bmatrix} \cos\alpha & -\sin\alpha \\ \sin\alpha & \cos\alpha \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix},$$

and therefore the rotation matrix in anti-clockwise direction is given by

$$\mathbf{R} = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}.$$

Similarly, the rotation matrix in clockwise direction can be derived in a similar manner,

$$\mathbf{R} = \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix}.$$

• Solution #2. Let $\mathbf{R} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, then by the definition of the rotation matrix, we have that

$$\begin{cases} \mathbf{R}\mathbf{R}^{T} = \mathbf{I} \\ \det(\mathbf{R}) = 1, \end{cases} \Rightarrow \begin{cases} ad - cb = 1, \\ a^{2} + b^{2} = 1, \\ c^{2} + d^{2} = 1, \\ ac + bd = 0. \end{cases}$$
 (1)

Therefore, we can first assume that $a = \cos \alpha$, $b = \sin \alpha$ and $c = \cos \beta$, $d = \sin \beta$ for some α and β . Substituting a, b, c, and d into (1) gives

$$ad - bc = \sin(\beta - \alpha) = 1$$
,
 $ac + bd = \cos(\beta - \alpha) = 0$,

which implies $\beta = \alpha + 2k\pi + \pi/2$, where k is an integer, thus,

$$\mathbf{R} = \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix} \,, \tag{2}$$

also, assume that $a = \cos \alpha$, $b = -\sin \alpha$ and $c = \cos \beta$, $d = \sin \beta$ for some α and β , then analogously, \mathbf{R} is given by

$$\mathbf{R} = \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix} . \tag{3}$$

And (2) and (3) represent the rotation matrix in clockwise direction and anti-clockwise direction respectively.

(3 points) Take $\alpha = \frac{7\pi}{12}$, we have

$$\mathbf{R}\mathbf{x} = \begin{bmatrix} \cos\frac{7\pi}{12} & -\sin\frac{7\pi}{12} \\ -\sin\frac{7\pi}{12} & \cos\frac{7\pi}{12} \end{bmatrix} \begin{bmatrix} \cos\frac{\pi}{4} \\ \sin\frac{\pi}{4} \end{bmatrix} = \begin{bmatrix} -\cos\frac{\pi}{6} \\ \sin\frac{\pi}{6} \end{bmatrix}.$$

- 2) (8 points) To prove that y := Hx is the reflection of x with respect to \mathcal{H}_u .
 - First, we prove that their projections are the same,

$$\mathbf{Q}\mathbf{y} = \mathbf{Q}\mathbf{H}\mathbf{x} = (\mathbf{I} - \mathbf{u}\mathbf{u}^T)(\mathbf{I} - 2\mathbf{u}\mathbf{u}^T)\mathbf{x},$$
$$= (\mathbf{I} - 2\mathbf{u}\mathbf{u}^T - \mathbf{u}\mathbf{u}^T + 2\mathbf{u}\mathbf{u}^T\mathbf{u}\mathbf{u}^T)\mathbf{x}$$
$$= (\mathbf{I} - \mathbf{u}\mathbf{u}^T)\mathbf{x} = \mathbf{Q}\mathbf{x}.$$

• Next, we prove that $\|\mathbf{x} - \mathbf{Q}\mathbf{x}\|_2 = \|\mathbf{y} - \mathbf{Q}\mathbf{y}\|_2$,

$$\|\mathbf{x} - \mathbf{Q}\mathbf{x}\|_2 = \|\mathbf{x} - (\mathbf{I} - \mathbf{u}\mathbf{u}^T)\mathbf{x}\|_2 = \|\mathbf{u}\mathbf{u}^T\mathbf{x}\|_2$$

and

$$\|\mathbf{y} - \mathbf{Q}\mathbf{y}\|_2 = \|\mathbf{H}\mathbf{x} - \mathbf{Q}\mathbf{x}\|_2 = \|\mathbf{u}\mathbf{u}^T\mathbf{x}\|_2$$

Therefore, by the definition of reflection, the proof completes.

Remarks: This problem consists of 2 sub-problems.

- 1) For the first sub-problem, first you are required to give all rotations matrices in \mathbb{R}^2 , the derivation of rotation matrices and the conclusion are worthy of 2 points and 1 point respectively. Here, we give two ways to find all the rotation matrices, either way is accepted. Second, for a given \mathbf{x} and θ , you are required to compute $\mathbf{R}\mathbf{x}$, this computation takes 3 points. However, since the computation of $\mathbf{R}\mathbf{x}$ is completely based on the derivation of \mathbf{R} , you will get no points if \mathbf{R} you give is not correct.
- 2) For the second sub-problem, you are required to prove that $\mathbf{H}\mathbf{x}$ is a reflection of \mathbf{x} with respect to \mathcal{H}_u . Directly prove $\mathbf{Q}\mathbf{x} = \mathbf{Q}\mathbf{H}\mathbf{x}$ (4 points) and $\|\mathbf{x} \mathbf{Q}\mathbf{x}\|_2 = \|\mathbf{H}\mathbf{x} \mathbf{Q}\mathbf{H}\mathbf{x}\|_2$ (4 points) complete the proof.

IV. DIRECT SUM

Problem 1.(10 points) This problem is graded by **Song Mao (maosong@)**.

Let \mathcal{V} be a vector space, and \mathcal{B} be a basis for \mathcal{V} . Suppose that there exist subsets $\mathcal{B}_1, \mathcal{B}_2$ of \mathcal{B} , such that $\mathcal{B} = \mathcal{B}_1 \cup \mathcal{B}_2$ and $\mathcal{B}_1 \cap \mathcal{B}_2 = \emptyset$. Then show that $\mathcal{V} = \text{span}(\mathcal{B}_1) \oplus \text{span}(\mathcal{B}_2)$.

Solution. Let $\mathcal{B} = \{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_m, \mathbf{y}_1, \dots, \mathbf{y}_n\}$, $\mathcal{B}_1 = \{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_m\}$, and $\mathcal{B}_2 = \{\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_n\}$. Let \mathcal{S} be the subspace spanned by \mathcal{B}_1 and \mathcal{T} be the subspace spanned by \mathcal{B}_2 .

• First, for any $s \in \mathcal{S}$, $t \in \mathcal{T}$,

$$\mathbf{s} + \mathbf{t} = \sum_{i=1}^{m} \alpha_i \mathbf{x}_1 + \sum_{j=1}^{n} \beta_j \mathbf{y}_1,$$

which means that s+t can be represented by basis \mathcal{B} , therefore $s+t\in\mathcal{V}$ and consequently $\mathcal{S}+\mathcal{T}\subseteq\mathcal{V}$. Also, $\mathcal{V}\subseteq\mathcal{S}+\mathcal{T}$. Therefore $\mathcal{V}=\mathcal{S}+\mathcal{T}$.

• Second, for $\mathbf{z} \in \mathcal{S} \cap \mathcal{T}$, there exists some $\{\alpha_i\}_{i=1}^m$ and $\{\beta_i\}_{i=1}^n$ then

$$\mathbf{z} = \sum_{i=1}^{m} \alpha_i \mathbf{x}_1 = \sum_{j=1}^{n} \beta_j \mathbf{y}_1 \Rightarrow \sum_{i=1}^{m} \alpha_i \mathbf{x}_1 - \sum_{j=1}^{n} \beta_j \mathbf{y}_1 = 0.$$

Since $\mathcal{B} = \mathcal{B}_1 \cup \mathcal{B}_2$ is linearly independent, then $\mathbf{z} = \mathbf{0}$ and it implies $\mathcal{S} \cap \mathcal{T} = \{\mathbf{0}\}$.

Consequently, by the definition of direct sum, we have $\mathcal{V} = \operatorname{span}(\mathcal{B}_1) \oplus \operatorname{span}(\mathcal{B}_2)$.

Criterion: Your grade depends on the Policy, and you may lose points because of Wrong cases:

- 1) **Policy**. You are required to provide details for the following two main parts of the proof to the problem.
 - a) (5 points) Prove that $\operatorname{span}(\mathcal{B}_1) \cap \operatorname{span}(\mathcal{B}_2) = \{0\}.$
 - b) (5 points) Prove that $\mathcal{V} = \operatorname{span}(\mathcal{B}_1) + \operatorname{span}(\mathcal{B}_2)$. Precisely, prove that $\mathcal{V} \subseteq \operatorname{span}(\mathcal{B}_1) + \operatorname{span}(\mathcal{B}_2)$ and $\mathcal{V} \supseteq \operatorname{span}(\mathcal{B}_1) + \operatorname{span}(\mathcal{B}_2)$.

You will only gain 5 points if you miss one part of the proof.

- 2) Wrong cases. You may lose points because of following mistakes:
 - a) You will lose 2 points if your proof for $\operatorname{span}(\mathcal{B}_1) \cap \operatorname{span}(\mathcal{B}_2) = \{0\}$ is correct, but you write the result as $\operatorname{span}(\mathcal{B}_1) \cap \operatorname{span}(\mathcal{B}_2) = \emptyset$.
 - b) When you write $\dim(\mathcal{B})$, you get 0 point for this part of proof, since \mathcal{B} is not a subspace, it is totally wrong to use dim for a set. The correct form should be $\dim(\operatorname{span}(\mathcal{B}))$.
 - c) You may lose points if your proof for $\mathcal{V} = \operatorname{span}(\mathcal{B}_1) + \operatorname{span}(\mathcal{B}_2)$ is too simple.
 - d) The following claim:

$$\mathcal{B}_1 \cap \mathcal{B}_2 = \emptyset \Longrightarrow \operatorname{span}(\mathcal{B}) \cap \operatorname{span}(\mathcal{B}) = \{0\}$$

is wrong if you did not mention explicitly that $\mathcal{B}_1 \cup \mathcal{B}_2$ is a list of linear independent vectors or a basis. You will get 0 point for this part of proof.

e) It's wrong to prove

$$\mathcal{V} \subseteq \operatorname{span}(\mathcal{B}_1) \oplus \operatorname{span}(\mathcal{B}_2)$$

and

$$\mathcal{V} \supseteq \text{span}(\mathcal{B}_1) \oplus \text{span}(\mathcal{B}_2)$$

since the direct sum may not be well-defined. You will get 0 point for this problem.

f) Though you gain 5 points if you prove the result that (no proof for the part a))

$$\mathcal{V} = \operatorname{span}(\mathcal{B}_1) \oplus \operatorname{span}(\mathcal{B}_2)$$

you should realize that the direct sum is not well-defined until you prove

$$\operatorname{span}(\mathcal{B}_1) \cap \operatorname{span}(\mathcal{B}_2) = \{0\}$$

Problem 2. (10 points) This problem is graded by **Sihang Xu** (xush@).

Let \mathcal{V} be a real vector space of dimension n. Let \mathcal{S} be a subspace of \mathcal{V} of dimension $d \leq n$. Prove that there exists a subspace \mathcal{T} of \mathcal{V} such that $\mathcal{V} = \mathcal{S} \oplus \mathcal{T}$.

Solution. We prove the claim by induction on d.

- When d = n 0, $V = S = S \oplus \{0\}$, here $T = \{0\}$.
- Assume that when d = n k, the claim holds.
- Next, when d = n (k+1), $\mathcal{S} \subsetneq \mathcal{V}$, we can choose one vector $\mathbf{v} \in \mathcal{V} \setminus \mathcal{S}$, while $\mathcal{S} \oplus \operatorname{span}\{\mathbf{v}\}$ is a subspace of \mathcal{V} of dimension d+1, i.e., $\dim(\mathcal{S} \oplus \operatorname{span}\{\mathbf{v}\}) = n-k$. By the hypothesis, there is a subspace \mathcal{T}' s.t. $\mathcal{V} = (\mathcal{S} \oplus \operatorname{span}\{\mathbf{v}\}) \oplus \mathcal{T}' = \mathcal{S} \oplus (\operatorname{span}\{\mathbf{v}\} \oplus \mathcal{T}')$. Consequently, there exists a subspace $\mathcal{T} = \operatorname{span}\{\mathbf{v}\} \oplus \mathcal{T}'$ of \mathcal{V} s.t. $\mathcal{V} = \mathcal{S} \oplus \mathcal{T}$.

By the principle of mathematical induction, the claim is proved.

Remarks: If you show one of following, then you will get the full credit:

- Prove the claim by induction as solution.
- Show a basis of $\mathcal V$ can be extended by a basis of $\mathcal S$, then using the result of problem 1.
- Let $\mathcal{T} = \mathcal{S}^{\perp}$. (Not recommended)

Common mistake:

• Some students assume $\mathcal{B} = \{v_1, \dots, v_n\}$ is a basis of V, and $\mathcal{B}_1 \subset \mathcal{B}$ is a basis of B. In this case, 0 point will given because this claim is wrong. Consider the following case: $V = \mathbb{R}^2$, $\mathcal{B} = \{(1,0), (0,1)\}$, $\mathcal{S} = \{(x,y) \mid x+y=1\}$. In this case, \mathcal{S} cannot be span of any subset of \mathcal{B} .

V. UNDERSTANDING THE MATRIX NORM

(7 points \times 2) This problem is graded by **Xinyue Zhang** (zhangxy11@).

Matrix norm is induced by vector norm,

$$\|\mathbf{A}\|_p = \max_{\mathbf{x} \neq \mathbf{0}} \frac{\|\mathbf{A}\mathbf{x}\|_p}{\|\mathbf{x}\|_p} = \max_{\|\mathbf{x}\|_p = 1} \|\mathbf{A}\mathbf{x}\|_p, \quad \mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{x} \in \mathbb{R}^{n \times 1},$$

prove that (a)

1) the matrix 1-norm

$$\|\mathbf{A}\|_1 = \max_{\|\mathbf{x}\|_1 = 1} \|\mathbf{A}\mathbf{x}\|_1 = \max_j \sum_i^m |a_{ij}|$$

= the largest absolute column sum.

2) the matrix ∞ -norm

$$\|\mathbf{A}\|_{\infty} = \max_{\|\mathbf{x}\|_{\infty}=1} \|\mathbf{A}\mathbf{x}\|_{\infty} = \max_{i} \sum_{j=1}^{n} |a_{ij}|$$

= the largest absolute row sum.

Solution.

1) (7 points) For all x with $\|\mathbf{x}\|_1 = 1$, the scalar triangle inequality yields

$$\|\mathbf{A}\mathbf{x}\|_{1} = \sum_{i} |\mathbf{A}_{i*}\mathbf{x}| = \sum_{i} |\sum_{j} a_{ij}x_{j}| \leq \sum_{i} \sum_{j} |a_{ij}||x_{j}| = \sum_{j} \left(|x_{j}| \sum_{i} |a_{ij}|\right)$$
$$\leq \left(\sum_{j} |x_{j}|\right) \left(\max_{j} \sum_{i} |a_{ij}|\right) = \max_{j} \sum_{i} |a_{ij}|,$$

where \mathbf{A}_{i*} denotes *i*-th row of matrix \mathbf{A} . 6' Equality can be attained because if \mathbf{A}_{*k} is the column with the largest absolute sum, set $\mathbf{x} = \mathbf{e}_k$, and note that $\|\mathbf{e}_k\|_1 = 1$ and $\|\mathbf{A}\mathbf{e}_k\|_1 = \|\mathbf{A}_{*k}\|_1 = \max_j \sum_i |a_{ij}|$. 1'

2) (7 points) For all \mathbf{x} with $\|\mathbf{x}\|_{\infty} = 1$,

$$\|\mathbf{A}\mathbf{x}\|_{\infty} = \max_{i} \left| \sum_{j} a_{ij} x_{j} \right| \le \max_{i} \sum_{j} |a_{ij}| |x_{j}| \le \max_{i} \sum_{j} |a_{ij}|.$$

6' Equality can be attained because if A_{k*} is the row with the largest absolute sum, and if x is the vector such that

$$x_j = \begin{cases} 1 & \text{if } a_{kj} \geq 0 \,, \\ -1 & \text{if } a_{kj} < 0 \,, \end{cases} \quad \text{then } \begin{cases} |\mathbf{A}_{i*}\mathbf{x}| = |\sum_j a_{ij}x_j| \leq \sum_j |a_{ij}| \text{ for all } i \,, \\ |\mathbf{A}_{k*}\mathbf{x}| = \sum_j |a_{kj}| = \max_i \sum_j |a_{ij}| \,, \end{cases}$$

so $\|\mathbf{x}\|_{\infty}=1$ and $\|\mathbf{A}\mathbf{x}\|_{\infty}=\max_i |\mathbf{A}_{i*}\mathbf{x}|=\max_i \sum_j |a_{ij}|$. 1'

VI. UNDERSTANDING THE HÖLDER INEQUALITY

(6 points \times 3 + 10 points) This problem is graded by **Yijia Chang (changyj@)**.

Hölder inequality:

$$|\mathbf{x}^T \mathbf{y}| \le ||\mathbf{x}||_p ||\mathbf{y}||_q$$

for any p,q such that 1/p + 1/q = 1, $p \ge 1$. Derive this inequality by exexcuting the following steps: (a)

1) Consider the function $f(t) = (1 - \lambda) + \lambda t - t^{\lambda}$ for $0 < \lambda < 1$, establish the inequality

$$\alpha^{\lambda} \beta^{1-\lambda} \le \lambda \alpha + (1-\lambda)\beta$$
,

for nonnegative real numbers α and β .

2) Let $\hat{\mathbf{x}} = \mathbf{x}/\|\mathbf{x}\|_p$ and $\hat{\mathbf{y}} = \mathbf{y}/\|\mathbf{y}\|_q$, and apply the inequality of part (a) to obtain

$$\sum_{i=1}^{n} |\hat{x}_i \hat{y}_i| \le \frac{1}{p} \sum_{i=1}^{n} |\hat{x}_i|^p + \frac{1}{q} \sum_{i=1}^{n} |\hat{y}_i|^q = 1.$$

- 3) Deduce the Hölder inequality with the above results.
- 4) (Bouns question) Prove the general form of triangle inequality

$$\|\mathbf{x} + \mathbf{y}\|_p \le \|\mathbf{x}\|_p + \|\mathbf{y}\|_p.$$

Hint: For p > 1, let q be the number such that 1/q = 1 - 1/p. Verify that for scalars α and β ,

$$|\alpha + \beta|^p = |\alpha + \beta||\alpha + \beta|^{p/q} \le |\alpha||\alpha + \beta|^{p/q} + |\beta||\alpha + \beta|^{p/q}$$

and make use of Hölder's inequality.

Solution.

1) (6 points) By taking the derivative,

$$f'(t) = \lambda - \lambda t^{\lambda - 1}$$
.

then we have that f'(t) < 0 for t < 1 and f'(t) > 0 for t > 1, therefore we can conclude that $f(t) \ge f(1) = 0$. In the case of $\beta > 0$, setting $t = \alpha/\beta$ provides the desired inequality. In the case of $\beta = 0$, the desired inequality is $0 \le \lambda \alpha$, which still holds because $\lambda > 0$ and $\alpha \ge 0$.

2) (6 points) It is easy to verify that the inequality in part (a) still holds in the case of $\lambda = 0$ and $\lambda = 1$. Let

$$\alpha = |\hat{x}_i|^p$$
, $\beta = |\hat{y}_i|^q$, $\lambda = 1/p$, and $(1 - \lambda) = 1/q$,

then we have

$$|\hat{x}_{i}|^{p \times 1/p} |\hat{y}_{i}|^{q \times 1/q} \leq \frac{1}{p} |\hat{x}_{i}|^{p} + \frac{1}{q} |\hat{y}_{i}|^{q}$$

$$\Rightarrow \sum_{i=1}^{n} |\hat{x}_{i} \hat{y}_{i}| \leq \frac{1}{p} \sum_{i=1}^{n} |\hat{x}_{i}|^{p} + \frac{1}{q} \sum_{i=1}^{n} |\hat{y}_{i}|^{q} = \frac{1}{p} + \frac{1}{q} = 1.$$

3) (6 points) Consequently we have,

$$|\mathbf{x}^T \mathbf{y}| = \left| \sum_{i=1}^n x_i y_i \right| = \|\mathbf{x}\|_p \|\mathbf{y}\|_q \left| \sum_{i=1}^n \hat{x}_i \hat{y}_i \right| \le \|\mathbf{x}\|_p \|\mathbf{y}\|_q \sum_{i=1}^n |\hat{x}_i \hat{y}_i| \le \|\mathbf{x}\|_p \|\mathbf{y}\|_q.$$

4) (4 points) The inequality in the hint follows from the fact that p = 1 + p/q together with the scalar triangle inequality, and it implies that

$$\sum_{i=1}^{n} |x_i + y_i|^p = \sum_{i=1}^{n} |x_i + y_i| |x_i + y_i|^{p/q} \le \sum_{i=1}^{n} |x_i| |x_i + y_i|^{p/q} + \sum_{i=1}^{n} |y_i| |x_i + y_i|^{p/q}.$$

(4 points) By Hölder's inequality, we have that

$$\sum_{i=1}^{n} |x_i| |x_i + y_i|^{p/q} \le \left(\sum_{i=1}^{n} |x_i|^p\right)^{1/p} \left(\sum_{i=1}^{n} |x_i + y_i|^{p/q \times q}\right)^{1/q}$$

$$= \left(\sum_{i=1}^{n} |x_i|^p\right)^{1/p} \left(\sum_{i=1}^{n} |x_i + y_i|^p\right)^{p-1/p}$$

$$= \|\mathbf{x}\|_p \|\mathbf{x} + \mathbf{y}\|_p^{p-1}.$$

Similarly, we have that

$$\sum_{i=1}^{n} |y_i| |x_i + y_i|^{p/q} \le ||\mathbf{y}||_p ||\mathbf{x} + \mathbf{y}||_p^{p-1},$$

(2 points) Therefore,

$$\|\mathbf{x} + \mathbf{y}\|_p^p \le (\|\mathbf{x}\|_p + \|\mathbf{y}\|_p)\|\mathbf{x} + \mathbf{y}\|_p^{p-1} \Rightarrow \|\mathbf{x} + \mathbf{y}\|_p \le \|\mathbf{x}\|_p + \|\mathbf{y}\|_p.$$