INSTITUTO NEBRIJA

Reconocimiento de imágenes mediante aprendizaje profundo

Autor: Martín Vilasánchez Freijomil

Tutor: Rubén González Martín

Índice

- 1. Introducción
- 2. Objetivos
- 3. Enfoque y método seguido
- 4. Marco teórico
- 5. Resultados
- 6. Conclusiones

Introducción

Exploraremos el reconocimiento automático de imágenes, cuya finalidad es construir un clasificador que sea capaz de distinguir entre diez mil clases de seres vivos.

- Haremos uso de redes neuronales convolucionales (CNN) para la construcción de nuestro modelo.
- El conjunto de datos que utilizaremos para entrenar y validar nuestro modelo ha sido descargado de "iNat Challenge 2021 FGVC8".

Conjunto de entrenamiento

Conjunto de validación

Objetivos

Implementar un clasificador de imágenes, capaz de reconocer y clasificar imágenes de seres vivos: animales, hongos y plantas.

Desarrollar un clasificador basado en redes neuronales convolucionales.

Comprender el funcionamiento de diferentes modelos de redes neuronales convolucionales y entrenarlos.

Establecer criterios de seleccion del modelo.

Analizar los resultados de los entrenamientos de los diferentes modelos.

Utilizar frameworks y librerías relacionadas con el aprendizaje profundo.

Familiarizarse con el manejo de las herramientas con mayor implantación dentro del aprendizaje profundo.

Hacer una prueba de concepto.

Desarrollar una aplicación web

Enfoque y desarrolla método seguido

- 1. Estudio de las redes CNN y sus diferentes arquitecturas.
- 2. Análisis del conjunto de datos.
- 3. Pre-procesado del conjunto de datos e implementación de los modelos.
- 4. Entrenamiento y selección del modelo.
- 5. Prueba de concepto: desarrollo de una aplicación web.

Marco teórico

Arthur Samuel (1959, IBM): acuñó el término machine learning o aprendizaje automático como el campo de estudio que confiere a los ordenadores la capacidad de aprender sin ser programados explícitamente.

Función de

activación

Suma

ponderada

Resultados

Modelo	Valor de pérdida	porcentaje de precisión
ResNet-50	2,0433	55,66%
EfficientNet B3	2,1402	53,31%
EfficientNet v2 Small	1,7577	59,82%

Conclusiones

Modelo pre-entrenado con ImageNet

Capa de

Capa de

entrada

Con todos los modelos que hemos entrenado, siempre han conseguido mejores resultados con el modelo pre-entrenado con ImageNet.

> Aprendizaje por transferencia

Conclusiones

¿porqué no ha funcionado el aprendizaje por transferencia en nuestro caso?

- ImageNet está formado por 1.000 categorías diferentes, frente a las 10.000 categorías de nuestro modelo.
- La similitud visual entre categorías diferentes

Reconocimiento de imagenes de flora y fauna mediante CNN

Reiniciar herramienta

Seleccione una imagen de su ordenador

Seleccionar archivo Ninguno archivo selec.

Subir imagen

Análisis

Con una precisión del 21.03 '%'

El Nombre comun es: Pearl-bordered Fritillary

El reino es: Animalia

El phylum es: Arthropoda

La clase es: Insecta

El orden es: Lepidoptera

La familia es: Nymphalidae

El genero es: Boloria

La especie es: euphrosyne

Muchas gracias

JUNIO —→ 2023