Class Set: Merge Function

Prototype: Set Merge (Set sDash)

Input: S_k (currentSet), S'

Output: S_{k+1}

Merge function:

Let t_1 represent a pointer to the first element of S_k Let t_2 represent a pointer to the first element of S'

If none of the S_k or S' is traversed completely,

```
If (t_1.weight < t2.weight)
add (t_1)
while (t_1.profit \ge t_2.profit)
t_2++
t_1++
```

```
If (t_1.weight > t2.weight)
add (t_2)
while (t_1.profit \le t_2.profit)
t_1++
t_2++
```

```
If (t_1.weight = t2.weight)

if (t_1.profit \le t_2.profit)

t_2++

else t_1++
```

If S_k is traversed completely, but S' is not. (Similarly for S' traversed completely, S_k is not.)

```
while ( S' is not empty)

if ( item.profit ≥ lastItemProfitS )

add(item)

item++
```

Claim: Output of Merge function is sorted in order of increasing weights

Proof by induction:

```
S_0 = (0,0): Trivially sorted
```

Note that (0,0) will never be purged and is trivially contained in all S_k.

Induction Hypothesis: S_k is sorted

Let
$$S_k = \{ (0,0) (p_1,w_1) (p_1,w_2) \dots (p_n,w_n) \}$$

In worst case, $n = 2^k$

Note : S_k denotes optimal knapsack considering first k elements. Hence, in optimal arrangement, profit must increase with weight.

Hence, By I.H. S_k is sorted in increasing order in both profit and weight.

To show: S_{k+1} is also sorted.

Without loss of generalisation, suppose t_1 is being added to the list. We will show that t_1 has the weight of all the items not traversed yet. Then at each step, the smallest weight is added implying ascending order is preserved.

NOTE: This is the reason that this is a **Greedy Algorithm**.

When t_1 is being added, t_2 .weight is larger (as seen in Code 1). Also, for all items in S' after t_2 , weight is higher than t_2 . Thus, t_1 is less than all unexplored items in S'. In S_k , all items after t_1 have greater weight.

Hence proved by induction that Merge function produce Sorted sets.

Corollary: All sets S₀, S₁ ... S_N are ordered in accordance to increasing weight and profit.

Claim: At each step, S' constructed in sorted in order of weight and profit.

Proof:

Let program Input be of form $\{ (0,0) (P_1,W_1) (P_2,W_2) \dots (P_n,W_n) \}$

By Above Corollary, S_k will be sorted in both weight and profit.

Since S' is constructed by taking sum of S_k with (P_{k+1}, W_{k+1})

```
S' = \{ (P_{k+1}, W_{k+1}) (P_{k+1} + P_1, W_{k+1} + W_1) (P_{k+1} + P_2, W_{k+1} + W_2) \dots (P_{k+1} + P_n, W_{k+1} + W_n) \}
```

Since S_k is sorted and we are only adding constant doublet to each term, hence (as seen above), S' is also sorted.

Hence Proved.

Purge Constraints: In Set Sk,

- For a pair of items p1 and p2:
 p1.weight > p2.weight and p1.profit ≤ p2.profit
- 2. For a pair of items p1 and p2:p1.weight = p2.weight and p1.profit ≤ p2.profit
- For any pair p: p.weight > maximum KnapSack Capacity

Result: Basically, Merge takes a union of two sorted lists while purging appropriate items.

Claim : At each step, Output Set S_{k+1} produced by merge satisfies purge constraints.

Constraint 3

Note that **constraint 3** is handled by extend function of class Set. Hence S' never contains an infeasible term.

Constraint 1 & 2 Proof by Induction

 $S_1 = \{ (0,0), (P_1,W_1) \}$ Satisfies constraint 1

Induction Hypothesis: Sk satisfies constraint 1.

Showing that constraint holds in S_{k+1}

Without loss of generality, consider the instant when t_1 is being added.

We need to show that addition of t_1 would not lead to violation of purge conditions.

When t_1 is added, t_1 .weight < t_2 .weight.

All items from list S_k added before t1 will not lead to violation as S_k satisfies constraint.

For an item from S' is added before (say t_{20}),

Since all S_k are sorted, t_{20} .weight $< t_1$.weight

Constraint will be violated only if t_{20} .profit $\geq t_1$.profit.

However if this was the case, during the addition of t_{20} , all items before t_1 and t_1 itself would have been purged because (t_1 .profit $\leq t_{20}$.profit) holds for items including t_1 and before.

Hence, **contradiction that** t_{20} .profit $\geq t_1$.profit.

Therefore, addition of a new item would not violate constraint.

Hence, the constraint is satisfied by the complete set S_{k+1}

Thus, Merge function produces the next set S_{k+1} which is the optimal arrangement considering first k elements.