LISTE D'EXERCICES POUR LES TRAVAUX DIRIGÉS

1 Rappels sur les tribus, classes monotones

Exercice 1.1. Tribus images

Soient X et Y des ensembles et f une application de X dans Y.

- 1. Montrer que si \mathcal{G} est une tribu sur $Y, f^{-1}(\mathcal{G}) := \{f^{-1}(G), G \in \mathcal{G}\}$ est une tribu sur X.
- 2. Montrer que si \mathcal{F} est une tribu sur $X, \mathcal{G} := \{A \subset Y, f^{-1}(A) \in \mathcal{F}\}$ est une tribu sur Y.
- 3. Montrer que pour toute partie $\mathcal{C} \subset Y$, on a $\sigma(f^{-1}(\mathcal{C})) = f^{-1}(\sigma(\mathcal{C}))$.

Exercice 1.2. Classes monotones et tribus

- 1. Une union de tribus est-elle une tribu? Une union croissante de tribus est-elle une tribu? Si non, donner un/des contre-exemples.
- 2. Montrer qu'une classe monotone \mathcal{M} est une tribu si et seulement si c'est un π -système, i.e. ssi \mathcal{M} est stable par intersection.

Exercice 1.3. Cardinal d'une tribu

Le but de l'exercice est de montrer qu'il n'existe pas de tribu infinie dénombrable. Soit (E, \mathcal{E}) un espace mesurable. Pour tout $x \in E$, on définit l'atome de la tribu \mathcal{E} engendré par x par

$$\dot{x} = \bigcap_{\{A \in \mathcal{E}, x \in A\}} A.$$

- 1. Montrer que les atomes de \mathcal{E} forment une partition de E.
- 2. Montrer que si \mathcal{E} est au plus dénombrable alors \mathcal{E} contient ses atomes et que chaque élément de \mathcal{E} s'écrit comme une réunion au plus dénombrable d'atomes.
- 3. Conclure.

Exercice 1.4. Anticipation sur la notion d'indépendance

Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace de probabilités. On dit que deux événements $A, B \in \mathcal{F}$ sont indépendants si $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$. Plus généralement, on dit que deux familles \mathcal{G} et \mathcal{H} d'événements sont indépendantes si pour tout $A \in \mathcal{G}$ et $B \in \mathcal{H}$, A et B sont indépendants.

- 1. Soit \mathcal{A} est une famille d'ensembles stable par intersection finie et indépendante d'une tribu $\mathcal{G} \subset \mathcal{F}$, montrer que la tribu engendrée $\sigma(\mathcal{A})$ est encore indépendante de la tribu \mathcal{G} .
- 2. Soient \mathcal{G} et \mathcal{H} des familles d'événements stables par intersection. Montrer que les deux familles \mathcal{G} et \mathcal{H} sont indépendantes si et seulement si les tribus $\sigma(\mathcal{G})$ et $\sigma(\mathcal{H})$ qu'elles engendrent sont indépendantes.
- 3. Montrer par un exemple que l'hypothèse de stabilité par intersection est nécessaire.

Exercice 1.5. Version fonctionnelle du lemme de classes monotones

Soit H un espace vectoriel de fonctions réelles bornées sur un ensemble Ω et soit \mathcal{E} un π -système contenant Ω . On suppose que

- 1. $\forall A \in \mathcal{E}, \mathbb{1}_A \in H$,
- 2. Si $(f_n)_{n\geq 0}$ est une suite croissante de fonctions positives de H convergeant vers une fonction f bornée, alors $f \in H$.

Montrer que H contient toutes les fonctions $\sigma(\mathcal{E})$ —mesurables.

2 Probabilités élémentaires

Exercice 2.1. Formule du crible

Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace de probabilités. Montrer que si $(A_k)_{1 \leq k \leq n}$ est une famille d'évènements, alors

$$\mathbb{P}(A_1 \cup A_2 \cup A_3) = \mathbb{P}(A_1) + \mathbb{P}(A_2) + \mathbb{P}(A_3) - \mathbb{P}(A_1 \cap A_2) - \mathbb{P}(A_1 \cap A_3) - \mathbb{P}(A_2 \cap A_3) + \mathbb{P}(A_1 \cap A_2 \cap A_3),$$

et plus généralement

$$\mathbb{P}\left(\bigcup_{k=1}^{n} A_{k}\right) = \sum_{I \subset \{1,\dots,n\}} (-1)^{\#I-1} \mathbb{P}\left(\bigcap_{k \in I} A_{k}\right).$$

Exercice 2.2. Convergence monotone pour les probabilités

Soient un espace mesurable (Ω, \mathcal{F}) et $\mathbb{P}: \mathcal{F} \to [0, +\infty[$ une application additive, autrement dit $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B)$ lorsque $A, B \in \mathcal{F}$ et $A \cap B = \emptyset$, telle que $\mathbb{P}(\Omega) = 1$. Montrer que les quatre affirmations suivantes sont équivalentes :

- 1. \mathbb{P} est une probabilité, i.e. elle est σ -additive.
- 2. \mathbb{P} est continue sur des suites croissantes :

$$(A_n)_{n\in\mathbb{N}}\subset\mathcal{F}, A_n\subset A_{n+1}\Rightarrow\mathbb{P}\left(\bigcup_{n\in\mathbb{N}}A_n\right)=\lim_{n\to+\infty}\mathbb{P}\left(A_n\right).$$

3. \mathbb{P} est continue sur des suites décroissantes :

$$(A_n)_{n\in\mathbb{N}}\subset\mathcal{F}, A_n\supset A_{n+1}\Rightarrow\mathbb{P}\left(\bigcap_{n\in\mathbb{N}}A_n\right)=\lim_{n\to+\infty}\mathbb{P}\left(A_n\right).$$

4. \mathbb{P} est continue sur des suites décroissantes vers \emptyset :

$$(A_n)_{n\in\mathbb{N}}\subset\mathcal{F}, A_n\supset A_{n+1} \text{ et } \bigcap_{n\in\mathbb{N}}A_n=\emptyset\Rightarrow\lim_{n\to+\infty}\mathbb{P}\left(A_n\right)=0.$$

Exercice 2.3. Limites inférieure et supérieure

Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace de probabilité. On considère une suite d'évènements $(A_n)_{n \in \mathbb{N}} \subset \mathcal{F}$ et on note

$$\lim_{n \to +\infty} \inf A_n = \bigcup_{n \in \mathbb{N}} \bigcap_{m \ge n} A_m, \quad \lim_{n \to +\infty} \sup A_n = \bigcap_{n \in \mathbb{N}} \bigcup_{m \ge n} A_m.$$

- 1. Montrer que $\omega \in \liminf_n A_n$ ssi à partir d'un certain rang, ω est dans tous les A_n .
- 2. Montrer que $\omega \in \limsup_n A_n$ ssi ω est dans une infinité de A_n .
- 3. Montrer que $\mathbb{P}(\liminf_n A_n) \leq \liminf_n \mathbb{P}(A_n) \leq \limsup_n \mathbb{P}(A_n) \leq \mathbb{P}(\limsup_n A_n)$.
- 4. On dit que la suite $(A_n)_{n\in\mathbb{N}}$ est convergente si $\liminf_n A_n = \limsup_n A_n$. Montrer que si la suite $(A_n)_{n\in\mathbb{N}}$ est monotone, alors elle est convergente et préciser la limite.
- 5. Montrer que si la suite $(A_n)_{n\in\mathbb{N}}$ est convergente, on a alors la propriété de continuité de la mesure $\mathbb{P}(\lim_n A_n) = \lim_{n \to +\infty} \mathbb{P}(A_n)$.

Exercice 2.4. Limites inférieure et supérieure, suite

Décrire les ensembles $\liminf_n A_n$ et $\limsup_n A_n$ dans les cas suivantes

- 1. $A_n =]-\infty, n];$
- 2. $A_n =]-\infty, -n];$
- 3. $A_{2n} = A$, $A_{2n+1} = B$;
- 4. $A_n =]-\infty, (-1)^n].$

Exercice 2.5. Premier lemme de Borel-Cantelli

On considère un espace de probabilité $(\Omega, \mathcal{F}, \mathbb{P})$ et $(A_n)_{n\geq 0}$ une suite d'événements qui est telle que $\sum_{n\geq 0} \mathbb{P}(A_n) < +\infty$. Montrer que $\mathbb{P}(\limsup_n A_n) = 0$.

Exercice 2.6. Presque sûr

On dit qu'un évènement $A \in \mathcal{F}$ est presque sûr si A est presque surement égal à Ω , c'est-à-dire $\Omega = A \cup N$ avec N un ensemble négligeable, i.e. il existe $B \in \mathcal{F}$ avec $N \subset B$ et $\mathbb{P}(B) = 0$. Soit K un ensemble d'indices au plus dénombrable et $(A_k)_{k \in K}$ une famille d'évènements presque sûrs. Montrer que $\bigcap_{k \in K} A_k$ est presque sûr.

Exercice 2.7. Tribu complétée

Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace de probabilité. Soit la famille d'ensembles suivante :

$$\overline{\mathcal{F}} := \{ C \in \mathcal{P}(\Omega) : \exists A_1, A_2 \in \mathcal{F}, \text{ tels que } A_1 \subset C \subset A_2 \text{ et } \mathbb{P}(A_2 \setminus A_1) = 0 \}.$$

- 1. Montrer que $\overline{\mathcal{F}}$ est une tribu et plus précisément $\overline{\mathcal{F}} = \sigma(\mathcal{F} \cup \mathcal{N})$ où \mathcal{N} est la classe des ensembles \mathbb{P} -négligeables, c'est-à-dire $\mathcal{N} := \{N \subset \Omega : \exists B \in \mathcal{F} : N \subset B, \mathbb{P}(B) = 0\}.$
- 2. On définit une nouvelle mesure $\overline{\mathbb{P}}$ sur $\overline{\mathcal{F}}$ par $\overline{\mathbb{P}}(C) := \mathbb{P}(A_1) = \mathbb{P}(A_2)$. Montrer que $\overline{\mathbb{P}}$ est bien définie, i.e. que sa valeur ne dépend par du choix des encadrants A_1 et A_2 , et que $\overline{\mathbb{P}}$ est l'unique mesure sur la tribu complétée $\overline{\mathcal{F}}$ qui prolonge \mathbb{P} , i.e. qui coincide avec \mathbb{P} sur \mathcal{F} .
- 3. Montrer que pour toute fonction $X: \Omega \to \mathbb{R}$ qui est $\overline{\mathcal{F}}$ -mesurable, il existe des fonctions \mathcal{F} -mesurables $U, V: \Omega \to \mathbb{R}$, telles que $U \le X \le V$ et V U = 0, \mathbb{P} -presque sûrement.

Exercice 2.8. Support d'une mesure

Soit μ une mesure borélienne sur \mathbb{R}^n (ou plus généralement sur un espace métrique séparable localement compact). On définit le support de la mesure μ comme l'ensemble

$$S := \{x \in \mathbb{R}^n; \mu(B(x,r)) > 0, \text{ pour tout } r > 0\}.$$

Montrer que S est fermé, que $\mu(\mathbb{R}^n \setminus S) = 0$, et que $\mu(S \setminus F) = \mu(\mathbb{R}^n \setminus F) > 0$ pour tout fermé F strictement contenu dans S.

3 Variables aléatoires, indépendance

Exercice 3.1. Mesurabilité et tribu triviale

Montrer qu'une application $X : \Omega \mapsto (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ est une variable aléatoire par rapport à la tribu triviale sur Ω si et seulement si elle est constante.

Exercice 3.2. Limsup et liminf, le retour

Soit $(X_n)_{n\in\mathbb{N}}$ une suite de va. réelles définies sur un espace mesurable (Ω,\mathcal{F})

- 1. Comparer les ensembles $\{\limsup_n X_n > 1\}$, $\limsup_n \{X_n > 1\}$, $\{\limsup_n X_n \geq 1\}$ et $\limsup_n \{X_n \geq 1\}$.
- 2. Comparer les ensembles $\{\liminf_n X_n > 1\}$, $\liminf_n \{X_n > 1\}$, $\{\liminf_n X_n \ge 1\}$ et $\liminf_n \{X_n \ge 1\}$.

Exercice 3.3. Copies ordonnées

Soient X, Y deux variables aléatoires réelles sur un espace de probabilité $(\Omega, \mathcal{F}, \mathbb{P})$.

- 1. On suppose que $\mathbb{P}(Y \leq t < X) = 0$, pour tout $t \in \mathbb{R}$, montrer que $\mathbb{P}(Y < X) = 0$.
- 2. On suppose maintenant que X et Y ont même loi. Montrer que si $X \leq Y$ p.s. alors X et Y sont presque sûrement égales.

Exercice 3.4. Min et max de variables indépendantes

Soient X_1, X_2, \ldots, X_n des variables aléatoires réelles indépendantes et de même loi, définies sur un même espace de probabilité $(\Omega, \mathcal{F}, \mathbb{P})$. On désigne par F leur fonction de répartition commune. Déterminer les fonctions de répartitions de $m = \min_{i=1...n} X_i$ et $M = \max_{i=1...n} X_i$.

Exercice 3.5. Parties entières et fractionnaires d'une exponentielle

Soit X une variable exponentielle de paramètre $\lambda > 0$, i.e. X est une variable aléatoire positive telle que $\mathbb{P}(X \ge t) = e^{-\lambda t}$ pour tout $t \in \mathbb{R}$.

- 1. Déterminer la loi de la partie entière |X| et de la partie fractionnaire $\{X\} := X |X|$.
- 2. Les variables |X| et $\{X\}$ sont-elles indépendantes?

Exercice 3.6. Sur les variables uniformes

L'objet de l'exercice est de montrer que la loi uniforme n'est pas "divisible".

1. Montrer qu'il n'existe aucun vecteur $(a, b, c, d, \lambda) \in (0, +\infty)^5$ tel que

$$ab = \lambda$$
, $cd = \lambda$, et $ac + bd < \lambda$.

2. Soit $n \ge 1$. Existe-t-il deux variables aléatoires indépendantes à valeurs dans $\{0, \ldots, n\}$ et chargeant tous les points dont la somme suit une loi uniforme sur $\{0, \ldots, 2n\}$?

Exercice 3.7. Entropie d'une variable discrète

Soit X une variable aléatoire à valeurs dans un ensemble fini $\{x_1, \ldots, x_n\}$, avec $\mathbb{P}(X = x_i) = p_i$ pour $i = 1, \ldots, n$. On définit l'entropie de X par

$$H(X) := -\sum_{i=1}^{n} p_i \ln (p_i)$$

avec la convention $x \ln x = 0$ si x = 0.

- 1. Démontrer que $H(X) \geq 0$.
- 2. Démontrer que H(X) = 0 si et seulement si X est presque surement constante, c'est-à-dire s'il existe $i \in \{1, ..., n\}$ tel que $p_i = 1$.
- 3. Vérifier que, pour tout $k=1,\ldots,n$, on a $(-np_k)\ln{(np_k)} \le 1-np_k$, avec égalité ssi $np_k=1$.
- 4. En déduire que $H(X) \leq \ln n$.
- 5. Démontrer que $H(X) = \ln n$ si et seulement si X est équidistribuée, ie si $p_i = 1/n$ pour tout $i = 1, \ldots, n$.

Exercice 3.8. Produit eulérien

Sur un espace de probabilité $(\Omega, \mathcal{F}, \mathbb{P})$, on considère une variable aléatoire X à valeurs dans \mathbb{N}^* et dont la loi est donnée par

$$\mathbb{P}_X(\{n\}) = \mathbb{P}(X = n) := \frac{1}{n^s \zeta(s)}, \quad \text{avec } s > 1.$$

1. Pour $k \geq 1$, on désigne par E_k l'événement "k divise X". Montrer que

$$\mathbb{P}_X(E_k) = \frac{1}{k^s}.$$

2. Si $(p_i)_{i=1}^n$ sont des nombres premiers distincts, montrer que les événements E_{p_i} sont indépendants :

$$\mathbb{P}_X\left(\bigcap_{i=1}^n E_{p_i}\right) = \prod_{i=1}^n \mathbb{P}\left(E_{p_i}\right).$$

3. En déduire la représentation en produit eulérien de la fonction Zeta

$$\frac{1}{\zeta(s)} = \prod_{p \in \mathcal{P}} \left(1 - \frac{1}{p^s} \right).$$

Exercice 3.9. Pile ou face

On lance une infinité de fois une pièce de monnaie équilibrée. On fixe un entier m arbitrairement grand. Montrer qu'avec probabilité 1, on obtiendra une infinité de fois m piles consécutifs. Généraliser.

4 Lois des variables aléatoires, identification

Exercice 4.1. Pesked ha farz

1. Montrer qu'il existe une variable aléatoire X à valeurs dans $\mathbb N$ telle que

$$\mathbb{P}(X=k) = \frac{e^{-2}}{2} \frac{2^k}{k!} + a \frac{3^k}{k!}, \quad \forall k \in \mathbb{N},$$

pour une unique valeur de a que l'on déterminera.

2. Exprimer X à l'aide de deux variables de Poisson indépendantes.

Exercice 4.2. Une fonction de répartition

1. Montrer qu'il existe une variable aléatoire X dont la fonction de répartition vaut

$$F_X(t) = (1 + e^{-t})^{-1}, \quad \forall t \in \mathbb{R}.$$

- 2. La variable X admet-elle une densité f_X ? Si oui, explicitez cette densité.
- 3. On définit de nouvelles variables en posant $U := e^X$, $V := \mathbb{1}_{\{0 < X < \log(2)\}}$ et $W := X\mathbb{1}_{\{0 < X < 1\}}$. Déterminer les lois des variables U, V et W.

Exercice 4.3. Densités et marginales

Soit (X,Y) un couple de variables aléatoires dont la densité par rapport à la mesure de Lebesgue sur \mathbb{R}^2 est donnée par

$$f_{X,Y}(x,y) = c y \mathbb{1}_{[0,2]}(x) \mathbb{1}_{[0,1]}(y).$$

- 1. Déterminer la valeur de la constante c. Calculer les densités marginales f_X et f_Y . Les variables X et Y sont-elles indépendantes?
- 2. Mêmes questions pour $f(x,y) = cy(x-y) \exp(-(x+y)) \mathbb{1}_{0 \le y \le x}$.

Exercice 4.4. Couple de variables aléatoire

Soit (X,Y) un vecteur aléatoire à valeurs dans \mathbb{R}^2 de densité $(x,y)\mapsto c\,e^{-x}\mathbf{1}_{0<|y|< x}$.

- 1. Quelle est la valeur de c?
- 2. Déterminer les lois marginales de X et Y.
- 3. Quelle est la loi du vecteur $\left(\frac{X-Y}{2}, \frac{X+Y}{2}\right)$?

Exercice 4.5. Somme de variables indépendantes

- 1. Soient X et Y des variables aléatoires indépendantes de loi binomiales $\mathcal{B}(n,p)$ et $\mathcal{B}(m,p)$ respectivement, où $m, n \in \mathbb{N}^*$ et $p \in [0,1]$. Déterminer la loi de X+Y. Interpréter ce résultat en terme de jeu de pile ou face.
- 2. Soient X et Y deux variables aléatoires indépendantes, de loi de Poisson $\mathcal{P}(\lambda)$ et $\mathcal{P}(\mu)$, où $\lambda, \mu > 0$. Déterminer la loi de X + Y.
- 3. Soient X et Y deux variables indépendantes de loi Gamma $\Gamma(n, \lambda)$ et $\Gamma(m, \lambda)$, où $m, n \in \mathbb{N}^*$ et $\lambda > 0$. Particulariser au cas où n = 1.

Exercice 4.6. Extrema de lois usuelles

- 1. Soient X et Y des variables aléatoires indépendantes de loi géométriques $\mathcal{G}(p)$ et $\mathcal{G}(q)$ où $p,q \in]0,1[$. Déterminer les lois de $X \vee Y = \max(X,Y)$ et $X \wedge Y = \min(X,Y)$.
- 2. Même question si X et Y sont des variables indépendantes de lois exponentielles $\mathcal{E}(\lambda)$ et $\mathcal{E}(\mu)$, avec $\lambda, \mu > 0$. Calculer $\mathbb{P}(X < Y)$.
- 3. Soient U_0, \ldots, U_n des variables aléatoires indépendantes de loi uniforme sur [0, 1] et N une variable aléatoire indépendante des $(U_i)_{0 \le i \le n}$ de loi binomiale $\mathcal{B}(n, p)$ avec $n \ge 1$ et $p \in [0, 1]$. Déterminer la loi de $Z := \min_{0 \le i \le N} U_i$.

Exercice 4.7. Propriété d'absence de mémoire

On dit qu'une variable aléatoire X à valeurs dans \mathbb{R}^+ (respectivement \mathbb{N}^*) vérifie la propriété d'absence de mémoire si

$$\mathbb{P}(X > s + t) = \mathbb{P}(X > s)\mathbb{P}(X > t), \quad \forall s, t \ge 0$$

et respectivement

$$\mathbb{P}(X > k + \ell) = \mathbb{P}(X > k)\mathbb{P}(X > \ell), \quad \forall k, \ell \in \mathbb{N}.$$

- 1. Montrer que si X suit la loi exponentielle $\mathcal{E}(\lambda)$ alors X vérifie la propriété d'absence de mémoire. Étudier la réciproque.
- 2. Montrer que si X suit la loi géométrique $\mathcal{G}(p)$ alors X vérifie la propriété d'absence de mémoire. Étudier la réciproque.

Exercice 4.8. Quelques transformations remarquables

- 1. Soit X une variable aléatoire de loi uniforme sur $[-\pi/2,\pi/2]$. Déterminer la loi de $Y = \tan(X)$.
- 2. Soit X une variable aléatoire de loi de Cauchy $\mathcal{C}(1)$. Déterminer la loi de la variable Y = 1/X.
- 3. Soit U une variable aléatoire de loi uniforme sur [0,1] et $\lambda > 0$. Déterminer la loi de la variable $Y = -\frac{1}{\lambda} \log(U)$.
- 4. Soit ε une variable aléatoire de loi de Rademacher i.e $\mathbb{P}(\varepsilon = -1) = \mathbb{P}(\varepsilon = 1) = 1/2$ et X une variable gaussienne $\mathcal{N}(0,1)$ indépendante de ε . Quelle est la loi de $Y = \varepsilon X$. Généraliser.

Exercice 4.9. Fonctions test, lois Gamma et Beta

Soient X_1, \ldots, X_n des variables aléatoires indépendantes de même loi exponentielle $\mathcal{E}(\lambda)$ de paramètre $\lambda > 0$.

- 1. Démontrer que la loi de $X_1 + \cdots + X_n$ est une loi Gamma $\Gamma(n, \lambda)$.
- 2. Démontrer que $\frac{X_1}{X_1+X_2}$ est indépendant de X_1+X_2 , et suit la loi uniforme sur]0,1[.
- 3. Généraliser la question précédente en déterminant, pour $k=1,\ldots,n-1$, la densité loi de la variable aléatoire

$$\frac{X_1 + \dots + X_k}{X_1 + \dots + X_n},$$

dite de loi Beta et notée $\beta(k, n-k)$.

4. En déduire la valeur de $\int_0^1 x^{k-1} (1-x)^{n-k-1} dx$.

Exercice 4.10. Fonctions test, lois Gamma, le retour

Soient $X_1, \ldots, X_n, X_{n+1}$ des variables aléatoires indépendantes de même loi exponentielle $\mathcal{E}(1)$ de paramètre 1; on pose $S_k := X_1 + \cdots + X_k$ pour $k = 1, \ldots, n+1$. Vérifier simultanément que le vecteur

$$\left(\frac{X_1}{S_{n+1}}, \frac{X_2}{S_{n+1}}, \dots, \frac{X_{n+1}}{S_{n+1}}\right)$$

est indépendant de S_{n+1} et que la loi du vecteur aléatoire

$$\left(\frac{X_1}{S_{n+1}}, \frac{X_2}{S_{n+1}}, \dots, \frac{X_n}{S_{n+1}}\right)$$

est uniforme sur le simplexe $\Delta = \{y \in]0, \infty [^n; \sum_{k=1}^n y_k < 1\}.$

5 Conditionnement

Exercice 5.1. Formule de Bayes

Le quart d'une population est vacciné contre le choléra. Au cours d'une épidémie, on constate qu'il y a parmi les malades un vacciné pour 4 non-vaccinés, et qu'il y a un malade sur 12 parmi les vaccinés. Quelle est la probabilité qu'un non-vacciné tombe malade?

Exercice 5.2. Conditionnement de variables discrètes

- 1. Soient X_1 et X_2 deux variables aléatoires indépendantes de lois binomiales, de paramètres respectifs (n_1, p) et (n_2, p) . Déterminer la loi de X_1 sachant $X_1 + X_2 = n$.
- 2. Soient X_1, \ldots, X_p des variables indépendantes de loi de Poisson de paramètres respectifs $\lambda_1, \ldots, \lambda_p$. Déterminer la loi de $X_1 + X_2 + \ldots + X_p$ puis la loi de (X_1, \ldots, X_p) sachant $X_1 + X_2 + \ldots + X_p = n$.

Exercice 5.3. Conditionnement par le maximum

Soit (X_1, \ldots, X_n) un vecteur aléatoire dont les composantes sont indépendantes, intégrables et de densité commune $f_X(x)$. On désigne par $(X_{(1)}, \ldots, X_{(n)})$ sa permutation ordonnée, autrement dit $X_{(1)} \leq \ldots \leq X_{(n)}$ presque sûrement. Déterminer la loi conditionnelle de $X_{(1)}$ sachant $X_{(n)} = x_n$. Particulariser au cas où les variables X_i sont uniformes sur [0,1].

Exercice 5.4. Un calcul de loi et d'espérance conditionnelle

Soit (X,Y) un couple de variables aléatoires réelles admettant la densité suivante par rapport à la mesure de Lebesgue sur \mathbb{R}^2 :

$$f_{X,Y}(x,y) = 4y(x-y) \exp(-(x+y)) \mathbb{1}_{0 \le y \le x}(x,y).$$

Déterminer la loi conditionnelle de X sachant que Y = y et en déduire $\mathbb{E}[X \mid Y = y]$.

6 Moments des variables aléatoires

Exercice 6.1. Partie entière et inverse d'une variable uniforme

Soit U une variable aléatoire de loi uniforme $\mathcal{U}_{[0,1]}$ et $X := \lfloor \frac{1}{U} \rfloor$ la partie entière de son inverse.

- 1. Déterminer la loi de X.
- 2. Calculer la probabilité de l'évenement $\{X \ge 100\}$.
- 3. La variable aléatoire X est-elle intégrable?

Exercice 6.2. Quelques calculs explicites d'espérances

Calculer les espérances $\mathbb{E}[X]$, $\mathbb{E}[|X|]$, $\mathbb{E}[X^2]$ et $\mathbb{E}[e^{itX}]$ dans les cas suivants :

- 1. $X \sim U_{[-1,1]}$ i.e. $\mathbb{P}_X(dx) = \frac{1}{2} \mathbf{1}_{[-1,1]}(x) dx$.
- 2. $Y \sim \mathcal{E}(\lambda)$, i.e. $\mathbb{P}_X(dx) = \lambda e^{-\lambda x} \mathbb{1}_{x \geq 0} dx$, pour $\lambda > 0$.
- 3. $Z \sim \mathcal{P}(\lambda)$, i.e. $\mathbb{P}_X(\{k\}) = e^{-\lambda} \lambda^k / k!$, pour $k \in \mathbb{N}$.

Exercice 6.3. Moments de tout ordre

Soit X une variable aléatoire réelle de densité

$$f_X(x) = c \left(x \mathbf{1}_{[0,1]}(x) + (2-x) \mathbf{1}_{[1,2]}(x) \right).$$

Déterminer c et calculer les moments $\mathbb{E}[X^n]$, pour $n \in \mathbb{N}^*$.

Exercice 6.4. Variable de Cauchy tronquée

Soit X une variable aléatoire de loi de Cauchy. Calculer $\mathbb{E}[\min(|X|, n)]$ pour $n \in \mathbb{N}^*$. Explicitez la limite lorsque n tend vers l'infini.

Exercice 6.5. Moments de la gaussienne

Soit X une variable aléatoire de loi normale $\mathcal{N}(0,1)$, on note $m_k = \mathbb{E}[X^k]$ son $k^{\text{ième}}$ moment.

- 1. Justifier que le moments impairs de X sont nuls.
- 2. Montrer que les moments pairs vérifient la formule de récurrence $m_{2k} = (2k-1)m_{2k-2}$ et conclure que $m_{2k} = \frac{(2k)!}{2^k k!}$.
- 3. Interpréter m_{2k} en terme combinatoire.

Exercice 6.6. Moment et queue d'une loi

Soit X une variable aléatoire positive de fonction de répartition F_X .

1. Soit ϕ une fonction positive strictement croissante de classe C^1 sur $|0, +\infty|$, nulle en 0. Montrer que

$$\mathbb{E}[\phi(X)] = \int_0^{+\infty} \phi'(t) \left(1 - F_X(t)\right) dt.$$

2. On suppose de plus que $\phi(X)$ est intégrable. Montrer que

$$\lim_{t \to +\infty} \phi(t) \mathbb{P}(X > t) = 0.$$

- 3. Expliciter le cas particulier où $\phi(t) = t^n$, $n \in \mathbb{N}^*$.
- 4. On suppose maintenant que pour t assez grand, il existe une constante c>0 telle que

$$\mathbb{P}(X \ge t) \le \frac{c}{t^{\alpha}}.$$

Montrer que X admet un moment d'ordre k pour tout $k \in \mathbb{N}^*$ avec $k < \alpha$.

Exercice 6.7. Contre-exemple au problème des moments sur \mathbb{R}^+

Soit $X \sim \mathcal{N}(0,1)$ une variable aléatoire de loi normale centrée réduite.

- 1. Déterminer tous les moments $\mathbb{E}[X^n]$, $n \geq 1$.
- 2. Déterminer la densité f_Y de $Y=e^X$ et calculer les moments $\mathbb{E}[Y^n]$, pour $n\in\mathbb{N}^*$.
- 3. On considère la famille de variables aléatoires $(Y_a, |a| \le 1)$, dont les densités sont données par

$$f_{Y_a}(x) = f_Y(x)(1 + a\sin(2\pi\ln(x))), \quad x > 0.$$

Calculer les moments $\mathbb{E}[Y_a^n]$, $n \in \mathbb{N}^*$.

4. En déduire une conclusion intéressante.

7 Fonctions caractéristiques

Exercice 7.1. Fonctions caractéristiques et lois symétriques

Soit X une variable aléatoire de fonction caractéristique φ_X . On dit que X est de loi symétrique si la loi de -X est la même que celle de X, i.e. $\mathbb{P}(X \in A) = \mathbb{P}(-X \in A)$ pour tout $A \in \mathcal{B}(\mathbb{R})$.

- 1. Donner un exemple de loi symétrique.
- 2. Montrer que si X est de loi symétrique ssi φ_X est à valeurs réelles.
- 3. Soit Y une variable aléatoire indépendante de X et de même loi que X. Donner, en fonction de φ_X , la fonction caractéristique de X-Y.
- 4. Soit ε une variable indépendante de X et de loi de Rademacher $\mathbb{P}(\varepsilon = 1) = \mathbb{P}(\varepsilon = -1) = 1/2$. Donner, en fonction de φ , la fonction caractéristique de εX .
- 5. Soient φ et ψ deux fonctions caractéristiques et $p \in [0,1]$. Montrer que $p\varphi + (1-p)\psi$ est encore une fonction caractéristique.

Exercice 7.2. Exemples de fonctions caractéristiques

- 1. Montrer que la fonction $\phi(t) = \cos^n(t)$ est une fonction caractéristique d'une variable à expliciter.
- 2. Même question pour la fonction $\phi(t) = \exp(-|t|)\cos(2t)$.
- 3. Calculer la fonction caractéristique de la loi de probabilité de densité $(1-|x|)\mathbf{1}_{|x|<1}$?
- 4. Quelle est la fonction caractéristique de la loi de probabilité de densité $(1-\cos(x))/(\pi x^2)$?

Exercice 7.3. Loi arithmétique

Une variable aléatoire X suit une loi arithmétique s'il existe $a \ge 0$ et b > 0 tels que X prend ses valeurs dans le réseau $a + b\mathbb{Z}$ i.e.

$$\mathbb{P}(X \in \{a + nb, n \in \mathbb{Z}\}) = 1.$$

- 1. On suppose que X suit une loi arithmétique. Montrer qu'il existe $c \neq 0$ tel que $|\varphi_X(c)| = 1$.
- 2. Réciproquement, s'il existe $c \neq 0$ tel que $|\varphi_X(c)| = 1$, on montre que X suit une loi arithmétique.
 - (a) Montrer que si $|\varphi_X(c)| = 1$ alors l'argument de e^{icX} est presque sûrement constant.
 - (b) En déduire que X suit une loi arithmétique.
- 3. S'il existe $c \neq 0$ et $c' \neq 0$ tels que $|\varphi_X(c)| = |\varphi_X(c')| = 1$ avec $c'/c \notin \mathbb{Q}$, montrer que X est presque sûrement constante.

Exercice 7.4. Dérivabilité en 0 et moment

On considère une variable aléatoire X de support $\mathbb{Z}\setminus\{-1,0,1\}$ et de loi donnée par

$$\mathbb{P}(X=n) = \mathbb{P}(X=-n) = \frac{c}{n^2 \ln(n)}, \quad n \in \mathbb{N},$$

où c est une constante de normalisation qu'on ne cherchera pas à préciser.

1. Expliciter la fonction caractéristique φ_X de X et en déduire que pour $t \neq 0$

$$\frac{1-\varphi_X(t)}{t} = \frac{2c}{t} \sum_{k=2}^{+\infty} \frac{1-\cos(kt)}{k^2 \ln(k)}.$$

- 2. En distinguant selon que $2 \le k < 1/t$ et $k \ge 1/t$, montrer que $\frac{1-\varphi_X(t)}{t}$ tend vers zéro lorsque t tend vers 0.
- 3. Formular une remarque pertinente.

Exercice 7.5. Stabilité de la loi par somme indépendante

Soient X,Y deux variables aléatoires réelles indépendantes de même loi. On suppose qu'elles possèdent un moment d'ordre 2 et on note σ^2 leur variance commune. On suppose de plus que $(X+Y)/\sqrt{2}$ a même loi que X.

- 1. Démontrer que X est d'espérance nulle.
- 2. Donner un développement limité à l'ordre 2 de la fonction caractéristique φ_X en zéro.
- 3. Démontrer que pour tout $n \ge 1$ et $t \in \mathbb{R}$, $\varphi_X\left(\frac{t}{2^{n/2}}\right)^{2^n} = \varphi_X(t)$.
- 4. En déduire que X suit une loi normale dont on précisera les paramètres.

Exercice 7.6. Caractérisation gaussienne

On va montrer le théorème suivant attribué à Bernstein : si X et Y sont deux variables \mathbb{L}^2 indépendantes de même loi telle que X-Y et X+Y sont indépendantes, alors X et Y sont des variables gaussiennes.

- 1. Montrer que si X et Y sont deux variables normales centrées réduites alors X+Y et X-Y sont indépendantes.
- 2. Réciproquement, on suppose que X et Y sont deux variables de carré intégrable de même loi, on suppose de plus que X+Y et X-Y sont indépendantes.
 - (a) Montrer qu'on peut supposer que X et Y sont centrées et de variance 1.
 - (b) Montrer que φ , la fonction caractéristique commune de X et de Y satisfait l'égalité : $\varphi(2t) = \varphi(t)^3 \varphi(-t)$.
 - (c) En utilisant la continuité de φ en 0 , en déduire que φ ne s'annule nulle part.
 - (d) On pose $\psi(t) = \varphi(t)/\varphi(-t)$. Montrer que $\psi(2t) = \psi(t)^2$.
 - (e) En étudiant le comportement de φ au voisinage de 0, en déduire que $\psi(t) = 1, \forall t \in \mathbb{R}$.
 - (f) En déduire que $\varphi(t) = e^{-t^2/2}$.

Exercice 7.7. Développement en série

1. On suppose que X admet un moment d'ordre $n \in \mathbb{N}^*$. Montrer que, pour tout $t \in \mathbb{R}$,

$$\phi_X(t) = \sum_{k=0}^{n-1} \frac{(it)^k}{k!} \mathbb{E}\left[X^k\right] + \frac{(it)^n}{(n-1)!} \mathbb{E}\left[X^n \int_0^1 (1-u)^{n-1} \exp(ituX) du\right].$$

2. Montrer que, pour tout $t \in \mathbb{R}$,

$$\phi_X(t) = \sum_{k=0}^n \frac{(it)^k}{k!} \mathbb{E}\left[X^k\right] + \frac{(it)^n}{n!} \varepsilon_n(t),$$

où $|\varepsilon_n(t)| \leq 2\mathbb{E}[|X|^n]$ et $\lim_{t\to 0} \varepsilon_n(t) = 0$

3. On suppose que X admet des moments de tous ordres et que

$$\limsup_{n\to\infty}\frac{\|X\|_n}{n}=\frac{1}{R}<\infty,$$

où $||X||_n := \mathbb{E}[|X|^n]^{1/n}$. Montrer que ϕ_X est alors développable en série entière au voisinage de tout réel, le rayon de convergence étant supérieur ou égal à R/e. En déduire que :

$$\forall t \in \left] -\frac{R}{e}, \frac{R}{e} \right[, \quad \phi_X(t) = \sum_{k=0}^{\infty} \frac{(it)^k}{k!} \mathbb{E}\left[X^k\right].$$

Exercice 7.8. Dérivée seconde d'une fonction caractéristique

Soit X une variable aléatoire réelle telle que $0 < \mathbb{E}[X^2] < +\infty$. On désigne par φ_X sa fonction caractéristique. Montrer que

$$\frac{-1}{\mathbb{E}[X^2]} \frac{d^2}{dt^2} \varphi_X(t)$$

est la fonction caractéristique d'une variable aléatoire que l'on explicitera.

8 Convergence des variables aléatoires

Exercice 8.1. Longue marche aléatoire

On considère une suite $(X_n)_{n>0}$ de variables aléatoires toutes indépendantes et de même loi de Rademacher $\mathbb{P}(X_n=1)=\mathbb{P}(X_n=-1)=1/2$. On définit alors $(S_n)_{n\geq 0}$ par $S_0:=0$ et $S_{n+1}:=S_n+X_{n+1}$ pour $n\geq 0$. Montrer que lorsque n tend vers l'infini, la fonction caractéristique $\varphi_{S_n/\sqrt{n}}$ converge simplement et expliciter sa limite.

Exercice 8.2. Loi des événements rares

Soit $\lambda > 0$ et $(X_n)_{n>0}$ une suite de variables aléatoires de loi binomiale $X_n \sim \mathcal{B}(n, \lambda/n)$. Montrer que lorsque n tend vers l'infini, la fonction caractéristique φ_{X_n} converge simplement et expliciter sa limite.

Exercice 8.3. Uniformes et uniforme

Soit $(X_n)_{n\geq 1}$ une suite suite de variables aléatoires telles que X_n suit la loi uniforme dans $\{1,\ldots,n\}$. Montrer que la suite des fonctions de répartition $F_{X_n/n}$ des variables X_n/n converge et expliciter sa limite. Même question pour la fonction caractéristique $\varphi_{X_n/n}$.

Exercice 8.4. Convergence de variables exponentielles

On considère une suite $(X_n)_{n\geq 1}$ de variables aléatoires indépendantes de loi exponentielle $\mathcal{E}\left(\theta_n\right)$ où la suite de paramètres vérifie $\lim_{n\to+\infty}\theta_n=+\infty$.

- 1. Montrer que la suite $(X_n)_{n\geq 1}$ converge en probabilité et préciser sa limite.
- 2. La suite $(X_n)_{n\geq 1}$ converge-t-elle dans \mathbb{L}^1 ?
- 3. Étudier la convergence presque sûre de la suite $(X_n)_{n\geq 1}$ lorsque $\theta_n=n$ puis $\theta_n=\ln n$.

Exercice 8.5. Convergence de variables aléatoires

- 1. Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace de probabilités. Soient $(A_n)_{n\geq 1}$ une suite d'évènements sur cet espace et $p\geq 1$ un réel. Pour chacun des modes de convergence suivants, déterminer à quelle condition sur la suite $(A_n)_{n\geq 1}$ la convergence a effectivement lieu.
 - (a) La suite $(\mathbb{1}_{A_n})_{n\geq 1}$ converge en probabilité vers 0.
 - (b) La suite $(\mathbb{1}_{A_n})_{n\geq 1}$ converge dans \mathbb{L}^p vers 0.
 - (c) La suite $(\mathbb{1}_{A_n})_{n\geq 1}$ converge presque sûrement vers 0.
- 2. Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires indépendantes. On suppose que $\sum_{n\geq 1} X_n$ converge presque sûrement. Montrer que pour tout réel c>0, on a $\sum_{n\geq 1} \mathbb{P}(|X_n|>c)<+\infty$.
- 3. Construire une suite de variables aléatoires intégrables $(X_n)_{n\geq 1}$ et une variable aléatoire intégrable X telles qu'on ait $X_n \stackrel{loi}{\to} X$ et $\lim_{n\to +\infty} \mathbb{E}[X_n] \neq \mathbb{E}[X]$.
- 4. Montrer que si une suite de variables aléatoires converge en loi et si chaque terme de la suite a une loi exponentielle, alors la loi limite est soit exponentielle, soit la masse de Dirac en 0.
- 5. Soient $\alpha > 0$ et (X_n) une suite de variables aléatoires indépendantes et dont la loi est donnée par

$$\mathbb{P}(X_n = 1) = \frac{1}{n^{\alpha}}, \quad \mathbb{P}(X_n = 0) = 1 - \frac{1}{n^{\alpha}}.$$

Montrer que la suite (X_n) converge dans \mathbb{L}^1 et en probabilité. Converge-t-elle presque sûrement?

Exercice 8.6. Maximum de variables uniformes

Soit $(U_n)_{n\geq 1}$ une suite de variables aléatoires indépendantes suivant toutes la loi uniforme sur [0,1]. On note $M_n := \max(U_1,\ldots,U_n)$ et $X_n := n(1-M_n)$.

- 1. Quelle est la fonction de répartition de X_n ?
- 2. Étudier la convergence en loi de la suite (X_n) .

Exercice 8.7. Maximum d'exponentielles

On considère une suite de variables aléatoires indépendantes $(X_n)_{n\geq 0}$ de loi exponentielle $\mathcal{E}(\lambda)$ avec $\lambda > 0$. On définit alors la suite (Z_n) par

$$Z_n := \frac{1}{\ln(n)} \max_{1 \le k \le n} X_k.$$

- 1. Montrer que la suite (Z_n) converge en probabilité vers $1/\lambda$.
- 2. La convergence a-t-elle lieu presque sûrement?

Exercice 8.8. Définition alternative de l'uniforme intégrabilité

Montrer qu'une famille $(X_i)_{i\in I}$ de variables aléatoires est uniformément intégrable si et seulement si $(X_i)_{i\in I}$ est bornée dans \mathbb{L}^1 et pour tout $\varepsilon > 0$, il existe $\delta > 0$ tel que si A est un événement vérifiant $\mathbb{P}(A) \leq \delta$ alors $\sup_{i\in I} \mathbb{E}[|X_i|\mathbb{1}_A] \leq \varepsilon$.

Exercice 8.9. Uniforme intégrabilité via une fonction test

1. Soit $f: \mathbb{R}^+ \to \mathbb{R}^+$ une fonction décroissante telle que $\lim_{x \to +\infty} f(x) = 0$. Montrez qu'il existe une fonction continue $g: \mathbb{R}^+ \to]0, +\infty[$ telle que

$$\int_0^{+\infty} g(x) = +\infty, \quad \text{mais} \quad \int_0^{+\infty} f(x)g(x) < \infty.$$

Indice : on pourra supposer que f est régulière et considérer sa dérivée logarithmique.

2. Montrer qu'une famille de variables aléatoires \mathcal{X} est uniformément intégrable si et seulement si il existe une fonction mesurable $\phi: \mathbb{R}^+ \to \mathbb{R}^+$ telle que $\lim_{x \to +\infty} \phi(x)/x = +\infty$ et

$$\sup_{X \in \mathcal{X}} \mathbb{E}[\phi(|X|)] < +\infty.$$

Exercice 8.10. Autour de l'uniforme intégrabilité

- 1. On considère l'espace de probabilités $(\Omega, \mathcal{F}, \mathbb{P}) = ([0,1], \mathcal{B}([0,1]), \lambda)$ où λ désigne la mesure de Lebesgue et la famille de variables aléatoires $(X_n)_{n\geq 1}$ définie par $X_n(\omega) := n$ si $\omega \leq \frac{1}{n}$ et 0 sinon. Montrer que $(X_n)_{n\geq 1}$ n'est pas uniformément intégrable.
- 2. Toujours sur l'espace de probabilités $(\Omega, \mathcal{F}, \mathbb{P}) = ([0, 1], \mathcal{B}([0, 1]), \lambda)$, on considère la famille de variables aléatoires

$$\mathcal{X}:=\left\{X_{\alpha},\,\alpha\in[0,1/2]\right\},\ \ \text{où}\ \ X_{\alpha}(\omega)=\frac{1}{\sqrt{\omega-\alpha}}\mathbb{1}_{]\alpha,1]}(\omega).$$

Montrer que la famille \mathcal{X} est uniformément intégrable mais qu'elle n'est pas dominée par une variable intégrable.

3. Soient \mathcal{X} et \mathcal{Y} deux familles de variables aléatoires uniformément intégrables définies sur un même espace de probabilités. Montrer que la famille $\mathcal{Z} := \{Z = X + Y, X \in \mathcal{X}, Y \in \mathcal{Y}\}$ est uniformément intégrable.

Exercice 8.11. Loi de Gumbel

On dit qu'une variable aléatoire X à valeurs dans \mathbb{R} suit une loi de Gumbel si elle admet pour densité $f_X(x) = e^{-x-e^{-x}}$ pour $x \in \mathbb{R}$.

- 1. Vérifier que f_X est bien une densité et calculer la fonction de répartition F_X associée.
- 2. Soit (X_n) une suite de variables aléatoires indépendantes identiquement distribuées de loi exponentielle de paramètre 1. On pose $M_n = \max(X_1, \ldots, X_n)$. Démontrer que la suite $(M_n \ln(n))$ converge en loi lorsque n tend vers l'infini vers une variable aléatoire suivant une loi de Gumbel.

Exercice 8.12. Convergence en loi vers une constante

Soit (X_n) une suite de variables aléatoires qui converge en loi vers une variable aléatoire X constante égale à $a \in \mathbb{R}$. Démontrer que la suite (X_n) converge en probabilité vers X.

Exercice 8.13. Maximum d'exponentielles

Soit $(X_n)_{n\geq 2}$ une suite de variables aléatoires indépendantes, suivant toutes une loi exponentielle de paramètre 1. Pour a>0 et $n\geq 2$, on note

$$A_{n,a} := \left\{ \frac{X_n}{\ln(n)} \ge a \right\}, \qquad A_a := \limsup_{n \to +\infty} A_{n,a}.$$

- 1. Calculer $\mathbb{P}(A_{n,a})$.
- 2. Démontrer que $\mathbb{P}(A_a) = 0$ si a > 1 et que $\mathbb{P}(A_a) = 1$ si $a \leq 1$.
- 3. Justifier que pour tout a > 0 on a les inclusions

$$\left\{\limsup_{n\to+\infty}\frac{X_n}{\ln(n)}>a\right\}\subset A_a\subset \left\{\limsup_{n\to+\infty}\frac{X_n}{\ln(n)}\geq a\right\}.$$

- 4. En déduire que $\limsup_{n \to +\infty} \frac{X_n}{\ln(n)} = 1$ presque sûrement.
- 5. Montrer de même que $\limsup_{n\to +\infty} \frac{\max\{X_1,\dots,X_n\}}{\ln(n)}=1$ presque sûrement.

Exercice 8.14. Série alternée aléatoire

Soit (X_n) une suite de variables aléatoires indépendantes de loi de Rademacher, i.e. vérifiant $\mathbb{P}(X_n=1)=\mathbb{P}(X_n=-1)=1/2$. On pose $S_n=\sum_{k=1}^n \frac{X_k}{\sqrt{k}}$.

- 1. Calculer la fonction caractéristique φ_{S_n} de S_n
- 2. Montrer que pour tout $t \neq 0$, lorsque n tend vers l'infini, $\varphi_{S_n}(t)$ tend vers zéro.
- 3. Montrer que

$$|\varphi_{S_{n+p}-S_n}(t)-1| \le |t|+2\mathbb{P}(|S_{n+p}-S_n| \ge 1).$$

4. En déduire l'existence d'une sous-suite $(n_k)_{k>1}$ telle que, pour tout $k \geq 1$,

$$\mathbb{P}(|S_{n_{k+1}} - S_{n_k}| \ge 1) \ge 1/4.$$

5. Conclure que la suite (S_n) est presque sûrement divergente.

Exercice 8.15. Lemme de Slutzky

Soient $(X_n)_{n\geq 1}$, $(Y_n)_{n\geq 1}$ deux suites de variables aléatoires réelles et X,Y deux variables aléatoires réelles définies sur un espace de probabilité $(\Omega,\mathcal{F},\mathbb{P})$ telles que $X_n\to X$ et $Y_n\to Y$ en loi lorsque n tend vers l'infini.

- 1. On suppose que les variables X_n et Y_n sont indépendantes pour tout $n \ge 1$ et que les variables limites X et Y sont également indépendantes. Montrer alors que $(X_n, Y_n) \to (X, Y)$ en loi.
- 2. Sans hypothèse d'indépendance, est-il toujours vrai que $(X_n, Y_n) \to (X, Y)$ en loi?
- 3. (Lemme de Slutsky) On suppose que la variable limite Y est constante p.s. Montrer que dans ce cas, $(X_n, Y_n) \to (X, Y)$ en loi.

Exercice 8.16. Moyenne de Césaro

Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires réelles indépendantes dont les fonctions de répartition sont données par

$$F_{X_n}(x) = 0 \text{ si } x \le 0, \quad F_{X_n}(x) = 1 - \frac{1}{x+n} \text{ si } x > 0.$$

- 1. Montrer que lorsque n tend vers l'infini, la suite $(X_n)_{n\geq 1}$ converge en probabilité vers 0.
- 2. Montrer qu'en revanche, la suite des moyennes de Césaro $Y_n = \frac{1}{n} \sum_{k=1}^n X_i$ ne converge pas vers 0 en probabilité (on pourra calculer par exemple la fonction caractéristique).

9 Théorèmes limite et variantes

Exercice 9.1. Sortie d'une marche aléatoire

Soient a < b et (X_n) une suite de variables aléatoires réélles i.i.d. de variance finie. Montrer en utilisant la LGN et/ou le TLC que inf $\{n > 1, X_1 + \ldots + X_n \notin [a, b]\}$ est fini presque sûrement.

Exercice 9.2. Somme de Bernoulli indépendantes

Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires mutuellement indépendantes. On suppose que chaque X_n suit une loi de Bernoulli de paramètre p_n . On note $S_n := X_1 + \ldots + X_n$ et $\mu_n := \frac{1}{n} \sum_{k=1}^n p_k$.

- 1. Calculer l'espérance et la variance de S_n .
- 2. En déduire que lorsque n tend vers l'infini $S_n/n \mu_n$ converge en probabilité vers zéro.
- 3. La convergence a-t-elle lieu presque sûrement?

Exercice 9.3. LGN avec dépendance

Soient $(\lambda_n)_{n\geq 1}$ une suite strictement croissante d'entiers et U une variable aléatoire de loi uniforme dans [0,1]. On considére alors les variables aléatoires $X_n := \cos(2\pi\lambda_n U)$ et $S_n := X_1 + \ldots + X_n$.

- 1. Montrer que lorsque n tend vers l'infini S_n/n converge en probabilité vers zéro.
- 2. Montrer que la convergence a en fait lieu presque sûrement.

Exercice 9.4. Sommes poissonniennes

1. Pour tout $x, \lambda > 0$, montrer que

$$\lim_{n \to +\infty} e^{-n\lambda} \sum_{k=0}^{\lfloor nx \rfloor} \frac{(n\lambda)^k}{k!} = \begin{cases} 0 & \text{si } x < \lambda \\ \frac{1}{2} & \text{si } x = \lambda \\ 1 & \text{si } x > \lambda. \end{cases}$$

2. Soit f une fonction continue bornée de \mathbb{R} dans \mathbb{R} , montrer que

$$\lim_{n \to +\infty} e^{-n\lambda} \sum_{k=0}^{+\infty} \frac{(n\lambda)^k}{k!} f\left(\frac{k}{n}\right) = f(\lambda),$$

$$\lim_{n \to +\infty} e^{-n\lambda} \sum_{k=0}^{\infty} f\left(\frac{k-\lambda n}{\sqrt{n}}\right) \frac{(n\lambda)^k}{k!} = \frac{1}{\sqrt{2\pi\lambda}} \int_{-\infty}^{+\infty} f(t) e^{-\frac{t^2}{2\lambda}} dt.$$

Exercice 9.5. Théorème de Stone-Weierstrass

Soit $f:[0,1]\to\mathbb{R}$ une fonction continue. Pour tout entier $n\geq 0$, on considère la fonction polynomiale $b_n:[0,1]\to\mathbb{R}$ définie par la formule

$$\forall x \in [0,1], \quad b_n(x) := \sum_{k=0}^n \binom{n}{k} f\left(\frac{k}{n}\right) x^k (1-x)^{n-k}.$$

1. Montrer que la suite de fonctions $(b_n)_{n>0}$ converge simplement vers f, c'est-à-dire

$$\forall x \in [0,1], \lim_{n \to \infty} b_n(x) = f(x).$$

2. Montrer que la convergence est uniforme, c'est-à-dire que

$$\lim_{n\to\infty} \sup_{x\in[0,1]} |b_n(x) - f(x)| = 0.$$

3. Étendre le résultat ci-dessus à tout intervalle [a, b].

Exercice 9.6. Moyenne géométrique

Soient $(U_n, n \ge 1)$ une suite de variables i.i.d. de loi uniforme dans [0, 1] et $X_n := \left(\prod_{j=1}^n U_j\right)^{1/n}$.

- 1. Montrer que lorsque n tend vers l'infini, X_n converge presque surement et donner sa limite.
- 2. Montrer que $(e.X_n)^{\sqrt{n}}$ converge et déterminer la loi limite.

Exercice 9.7. La formule de Stirling

Soit $(X_n)_{n\geq 0}$ une suite de variables aléatoires indépendantes de loi exponentielle $\mathcal{E}(1)$. On pose $S_n := \sum_{i=0}^n X_i$ et $Z_n = (n-S_n)/\sqrt{n}$.

- 1. Déteminer la loi de S_n .
- 2. En calculant $\mathbb{P}(Z_n \in [0,1])$, retrouver la formule de Stirling $n! \approx e^{-n} n^n \sqrt{2\pi n}$.

Exercice 9.8. Théorème limite central par la méthode de Stein

On propose une preuve alternative du théorème limite central basée sur la méthode de Stein. Par rapport à la preuve vue en cours, cette approche offre l'avantage de fournir une vitesse de convergence.

1. Montrer que l'on peut trouver une constante C>0 telle que pour tout fonction $h\in\mathcal{C}^1(\mathbb{R})$ satisfaisant

$$||h||_{\infty} \le 1$$
, $||h'||_{\infty} \le 1$ et $\int_{\mathbb{R}} e^{-\frac{x^2}{2}} h(x) dx = 0$,

l'équation f' - xf = h(x) admet une solution vérifiant $||f||_{\infty} + ||f'||_{\infty} + ||f''||_{\infty} \le C$.

Indice: on pourra remarquer que $\int_{-\infty}^{x} h(t)e^{-\frac{t^2}{2}}dt = -\int_{x}^{\infty} h(t)e^{-\frac{t^2}{2}}dt$. Faire des changements de variables t = x + u. Enfin, pour borner f''_h , dériver l'équation satisfaite par f_h . On remarquera en effet que f'_h vérifie la même équation que f_h mais le second membre est transformé en $h' + f_h$. Il suffit alors d'utiliser les majorations déjà obtenues.

2. On considère $(X_i)_{i\geq 1}$ une suite de variables aléatoires indépendantes et identiquement distribuées telles que

$$\mathbb{E}[X_1] = 0$$
, $\mathbb{E}[X_1^2] = 1$, $\mathbb{E}[|X_1|^3] < \infty$.

On note $S_n = \sum_{k=1}^n X_k$. Montrer que

$$\sup_{\|\phi\|_{\infty}+\|\phi'\|_{\infty}\leq 1}\left|\mathbb{E}\left[\phi\left(\frac{S_{n}}{\sqrt{n}}\right)\right]-\frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}}\phi(x)e^{-\frac{x^{2}}{2}}dx\right|\leq C\frac{\mathbb{E}\left[\left|X_{1}\right|^{3}+\left|X_{1}\right|\right]}{\sqrt{n}}.$$

Indice : poser $h = \phi - \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \phi(t) e^{-\frac{t^2}{2}} dt$ et considérer f_h la solution de l'équation différentielle correspondante. Ensuite il faut écrire $\mathbb{E}\left[\frac{S_n}{\sqrt{n}}f_h\left(\frac{S_n}{\sqrt{n}}\right)\right]$, développer la première somme puis effectuer des développements de Taylor à l'ordre 2 en chaque point $\frac{\sum_{k \neq i} X_k}{\sqrt{n}}$ qui a le bon gout d'être indépendant de X_i .

10 Variables gaussiennes

Exercice 10.1. Convergence gaussienne

Soit (X_n) une suite de variables gaussiennes $X_n \sim \mathcal{N}(m_n, \sigma_n^2)$. Montrer que X_n converge en loi lorsque n tend vers l'infini si et seulement si les suites (m_n) et (σ_n^2) convergent et auquel cas la limite est une gaussienne $\mathcal{N}(m, \sigma^2)$ avec $m = \lim_{n \to +\infty} m_n$ et $\sigma^2 = \lim_{n \to +\infty} \sigma_n^2$. Généraliser au cas multidimensionnel.

Exercice 10.2. Indépendance et orthogonalité

Soient X, Y, Z trois variables aléatoires indépendantes, de loi commune $\mathcal{N}(0, 1)$. Montrer que les variables aléatoires $(X - Y)^2 + (X - Z)^2 + (Y - Z)^2$ et X + Y + Z sont indépendantes.

Exercice 10.3. Méthode de Box-Muller

Soient (U_1, U_2) une variable uniforme sur $[0, 1] \times [0, 1]$. On pose

$$Y_1 = \sqrt{-2 \log U_1} \cdot \cos(2\pi U_2), \quad Y_2 = \sqrt{-2 \log U_1} \cdot \sin(2\pi U_2).$$

- 1. Quelle est la loi de $Y_1^2 + Y_2^2$? et de Y_2/Y_1 ?
- 2. Montrer que le couple (Y_1, Y_2) est un vecteur gaussien de loi $\mathcal{N}_2(0, \mathrm{Id}_2)$.

Exercice 10.4. Moyennes et variances empiriques

Soient X_1, \ldots, X_n des variables indépendantes et de même loi, de moyenne commune m et de variance commune finie σ^2 . On considère les moyennes et variance empiriques

$$\widehat{m}_n := \frac{1}{n} \sum_{k=1}^n X_k, \quad \widehat{\sigma}_n^2 := \frac{1}{n} \sum_{k=1}^n (X_k - \widehat{m}_n)^2.$$

- 1. Montrer que lorsque n tend vers l'infini, les suites (\widehat{m}_n) et $(\widehat{\sigma_n^2})$ convergent presque sûrement vers m et σ^2 respectivement.
- 2. Déterminer la loi du couple $(\widehat{m}_n, \widehat{\sigma_n^2})$ lorsque les variables X_i suivent la loi $\mathcal{N}(m, \sigma^2)$. En particulier montrer que dans ce cas, les variables \widehat{m}_n et $\widehat{\sigma_n^2}$ sont indépendantes.
- 3. On s'intéresse à la réciproque du point précédent. On note φ la fonction caractéristique commune des X_i que l'on ne suppose plus gaussiennes, en revanche on suppose que les variables associées \widehat{m}_n et $\widehat{\sigma_n^2}$ sont indépendantes.
 - (a) On suppose tout d'abord pour simplifier que $m = \mathbb{E}[X_i] = 0$. Calculer $\mathbb{E}[n\widehat{\sigma_n^2}]$ et montrer que pour tout $t \in \mathbb{R}$

$$\mathbb{E}[n\widehat{\sigma_n^2}e^{int\widehat{m}_n}] = (n-1)\sigma^2\varphi(t)^n.$$

(b) En calculant explicitement $\mathbb{E}[n\widehat{\sigma_n^2}e^{it\widehat{m}_n}]$, montrer que la fonction φ est solution de l'équation différentielle

$$\frac{\varphi''}{\varphi} - \left(\frac{\varphi''}{\varphi}\right)^2 = -\sigma^2, \quad \varphi(0) = 1, \quad \varphi'(0) = 0.$$

(c) Conclure et généraliser au cas où $m \neq 0$.

Exercice 10.5. Caractérisation gaussienne

Soit X et Y deux variables aléatoires réelles. On suppose que X et Y sont indépendantes et que la loi du vecteur aléatoire (X,Y) est invariante par les rotations de centre (0,0).

- 1. Montrer que $X \stackrel{loi}{=} Y$ et $X \stackrel{loi}{=} -X$.
- 2. On note φ la fonction caractéristique de X. Montrer que

$$\varphi(u)\varphi(v) = \varphi\left(\sqrt{u^2 + v^2}\right) \quad \forall u, v \in \mathbb{R}.$$

3. Conclure.

Exercice 10.6. Exemple de calcul gaussien

Soient X, Y, Z trois vecteurs aléatoires indépendants à valeurs dans \mathbb{R}^2 de loi gaussienne standard $\mathcal{N}_2(0, \mathrm{Id}_2)$. Montrer que la probabilité que Z tombe dans le cercle de diamètre Y - X qui passe par X et Y vaut 1/4.

11 Miscellanées

Exercice 11.1. Somme de variables de Cauchy

Soient (X_n) des variables aléatoires indépendantes suivant la loi de Cauchy $\mathcal{C}(1)$. Déterminer la loi de $(X_1 + \ldots + X_n)/n$.

Exercice 11.2. Polynôme aléatoire

Soient X et Y deux variables aléatoires indépendantes de loi uniforme dans [0,1].

- 1. Déterminer la loi de $Z = X^2 Y$.
- 2. On considère le polynôme $P(t) = t^2 2Xt + Y$. Calculer la probabilité que les deux racines de P soient réelles.

Exercice 11.3. QCM et conditionnement

Un examen consiste en un QCM de 15 questions. Pour chaque question, 3 réponses sont possibles. Les étudiant.e.s répondent à chaque question indépendamment. L'enseignant.e estime que 70% étudiant.e.s ont préparé sérieusement l'examen et que ces dernier.e.s répondent une question correctement avec probabilité 0,8. Les autres étudiant.e.s choisissent les réponses au hasard. Il faut au moins 8 bonnes réponses pour réussir l'examen.

- 1. Quelle est la probabilité qu'un e étudiant e, choisi e au hasard, réussisse l'examen?
- 2. Si un e étudiant e échoue, quelle est la probabilité qu'il/elle ait préparé l'examen?

Exercice 11.4. Indépendance et primalité

Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace de probabilité où Ω est un ensemble fini, de cardinal p un nombre premier, \mathcal{F} la tribu des parties et \mathbb{P} la loi uniforme. Montrer que événements A et B non triviaux (i.e. différents de \emptyset et Ω) ne peuvent pas être indépendants.

Exercice 11.5. Queue gausienne

Soit X une variable aléatoire de loi normale centrée réduite, i.e. $X \sim \mathcal{N}(0,1)$. En utilisant une intégration par parties, donner un équivalent lorsque x tend vers l'infini de $\mathbb{P}(X > x)$.

Exercice 11.6. Indépendance et moments

Soient X et Y deux variables aléatoires bornées. Montrer que X et Y sont indépendantes si et seulement pour tous les entiers $k, \ell \ge 1$, on a $\mathbb{E}[X^kY^\ell] = \mathbb{E}[X^k]\mathbb{E}[Y^\ell]$.

Exercice 11.7. Delta-méthode

Soient (X_n) une suite de variables aléatoires et θ un réel tels que lorsque n tend vers l'infini

$$\sqrt{n}(X_n - \theta) \xrightarrow{loi} \mathcal{N}(0, \sigma^2).$$

Soit q une fonction de classe C^1 avec $g'(\theta) \neq 0$, montrer que lorsque n tend vers l'infini, on a alors

$$\sqrt{n} (g(X_n) - g(\theta)) \xrightarrow{loi} \mathcal{N}(0, g'(\theta)^2 \sigma^2).$$

Quelle est l'asymptotique de $\sqrt{n} (g(X_n) - g(\theta))$ lorsque $g'(\theta) = 0$?

Exercice 11.8. Une série aléatoire

Soit $(X_n)_{n\geq 1}$ une suite de v.a. i.i.d. suivant la loi normale centrée réduite. Montrer que la série $\sum_{n\geq 1} X_n n^{-1} \sin(n\pi x)$ converge presque sûrement pour tout réel x.

Exercice 11.9. Somme de produits

Soit (X_n) une suite de variables aléatoires indépendantes de même loi et de carré intégrable. On note m leur espérance commune. Étudier la convergence presque sûre de la suite

$$S_n = \frac{X_1 X_2 + X_2 X_3 + \ldots + X_{n-1} X_n}{n}.$$

Exercice 11.10. Somme de produits, suite

Soit (X_k) une suite de variables aléatoires indépendantes définies sur un espace de probabilité $(\Omega, \mathcal{F}, \mathbb{P})$, suivant une loi uniforme sur [0, 1]. On pose, pour tout $j \geq 1, Z_j = X_j X_{j+1}$.

- 1. Calculer $\operatorname{Var}(Z_i)$ et $\operatorname{Cov}(Z_i, Z_{i+i})$ pour $i \geq 1$.
- 2. En déduire que

$$\frac{1}{n} \sum_{j=1}^{n} Z_j \xrightarrow[n \to +\infty]{L^2(\Omega)} \frac{1}{4}.$$

- 3. Les variables aléatoires $(Z_j)_{j\geq 1}$ sont-elles indépendantes? Et les variables $(Z_{2k})_{k\geq 1}$?
- 4. Déduire de la question précédente que

$$\frac{1}{n} \sum_{j=1}^{n} Z_j \xrightarrow[n \to +\infty]{p.s.} \frac{1}{4}.$$