2º SEMESTRE: CÁLCULO NUMÉRICO CON FORTRAN.

TEMARIO:

- Sistemas lineales. Directos e iterativos.
- 2. Cálculo de autovalores.
- 3. Derivación e integración numérica.
- 4. Solución de ecuaciones y sistemas no lineales.
- 5. Solución numérica de ecuaciones diferenciales.

Motivación: Hallar los puntos x que verifican f(x) = 0

La no-linealidad de la ecuación hace que no sea posible en la mayoría de los casos hallar soluciones analíticas.

$$f(x) \equiv 2x^{2} - 3x + 5 = 0$$

$$f(x) \equiv 4x^{5} - x^{3} - 2x^{2} + 3 = 0$$

$$f(x) \equiv e^{3x} - \cos(x) = 0$$

MÉTODOS NUMÉRICOS

Algoritmia

Los métodos numéricos en este caso se basan en criterios geométricos de aproximación a la solución mediante iteración.

Intervalos

Bisección

Regula Falsi

• • • •

Valor Inicial

Newton

Secante

• • •

MÉTODOS NUMÉRICOS

Algoritmia

Los métodos numéricos en este caso se basan en criterios geométricos de aproximación a la solución mediante iteración.

Intervalos

Bisección

Regula Falsi

• • • •

MÉTODO DE LA BISECCIÓN

- <u>Aplicación del Teorema de Bolzano</u>: funciones continuas en intervalos cerrados, con signo diferente en los extremos del intervalo.
- Vamos dividiendo el intervalo por la mitad, manteniendo siempre la solución x en el intervalo.

MÉTODO DE LA BISECCIÓN

MÉTODO DE LA BISECCIÓN: Algoritmo

1. Establecer el intervalo (a,b) tal que $f(a) \cdot f(b) < 0$ (signo distinto)

MÉTODO DE LA BISECCIÓN: Comentarios

- Siempre converge.
- Muy sencillo de implementar, muy intuitivo geométricamente.
- Como poco, en cada iteración la incertidumbre se divide por dos.
- La convergencia del método es lenta. Si el primer cálculo de la raiz es cercano a la verdadera, el método es extremadamente lento en converger.

MÉTODO DE LA BISECCIÓN: Comentarios

- Siempre converge.
- Muy sencillo de implementar, muy intuitivo geométricamente.
- Como poco, en cada iteración la incertidumbre se divide por dos.
- Sólo es aplicable cuando la curva es secante al eje x (cuando la curva toma valores de signo contrario a un lado y otro de la raiz)

MÉTODO DE LA BISECCIÓN: Comentarios

- Siempre converge.
- Muy sencillo de implementar, muy intuitivo geométricamente.
- Como poco, en cada iteración la incertidumbre se divide por dos.
- En caso de multiples soluciones en el intervalo de definicion solo encuentra una.

MÉTODOS NUMÉRICOS

Algoritmia

Los métodos numéricos en este caso se basan en criterios geométricos de aproximación a la solución mediante iteración.

Valor Inicial

Newton

Secante

• • • •

MÉTODO DE NEWTON (NEWTON-RAPHSON)

• El método de Newton-Raphson se basa en aproximar la función mediante la recta tangente. La función debe ser derivable.

MÉTODO DE NEWTON (NEWTON-RAPHSON)

MÉTODO DE NEWTON: Algoritmo

Tomamos el desarrollo de Taylor de la función

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \dots$$

Si tomamos solo los términos de primer orden, nos queda la ecuación de la recta tangente en el punto x_0 . Para despejar el punto donde la tangente vale cero:

$$0 = f(x_0) + f'(x_0)(x - x_0)$$

Y despejando x

$$x = x_0 - \frac{f(x_0)}{f'(x_0)} \longrightarrow x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

MÉTODO DE NEWTON: Algoritmo

Tomamos el desarrollo de Taylor de la función

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \dots$$

Si tomamos solo los términos de primer orden, nos queda la ecuación de la recta tangente en el punto x_0 . Para despejar el punto donde la tangente vale cero:

$$0 = f(x_0) + f'(x_0)(x - x_0)$$

Y despejando x

$$x = x_0 - \frac{f(x_0)}{f'(x_0)} \longrightarrow x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

MÉTODO DE NEWTON: Algoritmo

Partimos de un punto inicial x_0

subroutine newton(x,f,df,tol,max_iter)

```
real(8),intent(inout) :: x real(8),intent(in) :: tol
```

integer,intent(in) :: max_iter

interface

function f(x)

real(8) :: x real(8) :: f

end function

function df(x)

real(8) :: x real(8) :: df

end function

end interface

MÉTODO DE NEWTON: Comentarios

- La convergencia del método es muy rápida (cuadrática), en pocas iteraciones se obtiene una buena aproximación a la solución.
- Al contrario que el método de la bisección, este es aplicable para encontrar diversos tipos de raices, aunque la velocidad de convergencia puede variar en esos casos.
- La derivada puede conocerse de forma explícita (analítica) o aproximarse numéricamente (derivadas centradas, progresivas, regresivas...)
- Coincide con *Regula Falsi* si se hace:

$$f'(x_{i+1}) = \frac{f(x_{i+1}) - f(x_i)}{x_{i+1} - x_i}$$

MÉTODO DE NEWTON: Comentarios

• NO siempre converge (convergencia local): la condición inicial ha de estar relativamente cerca de la raiz verdadera

MÉTODO DE NEWTON: Comentarios

• NO siempre converge (convergencia local): la condición inicial ha de estar relativamente cerca de la raiz verdadera

Root-finding by Newton-Raphson Method: $5x^3 - 7x^2 - 40x + 100 = 0$

MÉTODO DE NEWTON: Comentarios

• La derivada de la función ha de conocerse explícitamente y no puede anularse en un entorno de la raiz

MÉTODOS NUMÉRICOS: Criterio de parada

- Número máximo de iteraciones.
- Valor suficientemente próximo: Si $\left| f(x_{i+1}) \right| < Tol \rightarrow x^* = x_{i+1}$
- Error relativo:

$$\varepsilon_{rel} = \left| \frac{x - x_{i+1}}{x} \right| < Tol \rightarrow x^* = x_{i+1} \qquad \varepsilon_{rel} = \left| \frac{x_{i+1} - x_i}{x_{i+1}} \right| < Tol \rightarrow x^* = x_{i+1}$$

Complemento 1: MÉTODO DE REGULA FALSI Y MÉTODO DE LA SECANTE

Explicar en clase, con diapositivas, el método de la secante y el método de regula falsi y su relación con otros métodos vistos en clase.

Programar y comparar con el resto de métodos vistos en clase.

https://es.wikipedia.org/wiki/Método_de_la_regla_falsa

https://es.wikipedia.org/wiki/Método_de_la_secante

Complemento 2: MÉTODO DE REGULA FALSI Y MÉTODO DE LA SECANTE

• Método optimizado: usar bisección para las primeras iteraciones (convergencia global pero lenta), y usar Newton una vez estemos cerca de la raiz (convergencia local pero rápida).

Práctica para todos los grupos

- 1- Programad los distintos métodos vistos en clase.
 - Bisección
 - Newton
 - Newton con derivada numérica
- 2.- Encontrar los ceros de la función $g(x) = x^3 + x^2 3x 3$

Vamos a programar algoritmos para:

$$f(x) = x^3 + x^2 - 3x - 3$$
 en [0,10]

• Utilizar ε <10⁻⁶ (error relativo de x)

Vamos a programar algoritmos para:

$$f(x) = x^3 + x^2 - 3x - 3$$

Metodo de la bisección	[a,b]=[0,5	l
------------------------	------	-----	-----	---

Metodo de la disección [a,b]-[0,5]							
lter	X	f(x)	error relativo				
1	2.5000000000	11.3750000000	1.0000000000				
2	1.2500000000	-3.2343750000	1.0000000000				
3	1.8750000000	1.4824218750	0.3333333333				
4	1.5625000000	-1.4313964844	0.2000000000				
5	1.7187500000	-0.1247863770	0.0909090909				
6	1.7968750000	0.6398124695	0.0434782609				
7	1.7578125000	0.2479405403	0.022222222				
8	1.7382812500	0.0592063069	0.0112359551				
9	1.7285156250	-0.0333799347	0.0056497175				
10	1.7333984375	0.0127653619	0.0028169014				
11	1.7309570312	-0.0103441988	0.0014104372				
12	1.7321777344	0.0012013480	0.0007047216				
13	1.7315673828	-0.0045737331	0.0003524850				
14	1.7318725586	-0.0016867696	0.0001762115				
15	1.7320251465	-0.0002428550	0.0000880980				
16	1.7321014404	0.0004792104	0.0000440470				
17	1.7320632935	0.0001181687	0.0000220240				
18	1.7320442200	-0.0000623454	0.0000110121				
19	1.7320537567	0.0000279111	0.0000055060				
20	1.7320489883	-0.0000172173	0.0000027530				
21	1.7320513725	0.0000053468	0.0000013765				
22	1.7320501804	-0.0000059353	0.0000006883				
23	1.7320507765	-0.0000002942	0.0000003441				

Metodo de Newton X0=10

Iter	X	f(x)	error relativo
1	6.6340694006	313.0798797665	0.5073704232
2	4.4339415908	90.5285867685	0.4962013515
3	3.0379166063	25.1519293916	0.4595336757
4	2.2203039049	6.2143796248	0.3682435993
5	1.8374058935	1.0670360452	0.2083905427
6	1.7386336328	0.0625693137	0.0568102784
7	1.7320789950	0.0002667739	0.0037842603
8	1.7320508081	0.0000000049	0.0000162737
9	1.7320508076	0.0000000000	0.000000003

Solucion encontrada 1.73205080756888