Advanced Graphs

Kuan-Yu Chen (陳冠宇)

2018/12/03 @ TR-212, NTUST

Review

- A graph G is defined as an ordered set (V, E), where V(G) represents the set of vertices and E(G) represents the edges
 - For a given undirected graph with $V(G) = \{A, B, C, D, E\}$ and $E(G) = \{(A, B), (B, C), (A, D), (B, D), (D, E), (C, E)\}$
 - Five vertices or nodes and six edges in the graph

 For a given directed graph, the edge (A, B) is said to initiate from node A (also known as initial node) and terminate at node B (terminal node)

Bi-connected Components.

Articulation Point

- A vertex v of G is called an articulation point, if removing v along with the edges incident on v, results in a graph that has at least two connected components

Bi-connected Components...

- A **bi-connected graph** is defined as a connected graph that has no articulation vertices
 - In other words, a bi-connected graph is connected and non-separable in the sense that even if we remove any vertex from the graph, the resultant graph is still connected

Bridge

• An edge in a graph is called a **bridge** if removing that edge results in a disconnected graph

Representation of Graphs

- There are three common ways of storing graphs in the computer's memory
 - **Sequential representation** by using an adjacency matrix
 - Linked representation by using an adjacency list that stores the neighbors of a node using a linked list
 - Adjacency multi-list which is an extension of linked representation

Sequential Representation.

- For any graph G having n nodes, the adjacency matrix will have the dimension of $n \times n$
 - The rows and columns are labelled by graph vertices
 - An entry a_{ij} in the adjacency matrix will contain 1, if vertices v_i and v_j are adjacent to each other; otherwise, a_{ij} will set to 0
 - Since an adjacency matrix contains only 0s and 1s, it is called a bit matrix or a Boolean matrix

Sequential Representation..

- From the original adjacency matrix, denoted by A^1
 - An entry 1 in the i^{th} row and j^{th} column means that there exists a path of length 1 from v_i to v_j
- Let's consider A^2

$$- A^2 = A^1 \times A^1$$

$$- a_{ij}^2 = \sum a_{ik} a_{kj}$$

- If $a_{ij}^2 \ge 1$, $\exists k$ such that $a_{ik} = 1 \land a_{kj} = 1$
- That is, if there is an edge (v_i, v_k) and (v_k, v_j) , then there is a path from v_i to v_j of length 2
- Similarly, every entry in the i^{th} row and j^{th} column of A^n gives the number of paths of length n from node v_i to v_j

Sequential Representation...

$$-A^2 = A^1 \times A^1 = \begin{bmatrix} 0012\\1101\\1100\\0121 \end{bmatrix}$$

$$-A^3 = A^2 \times A^1 = \begin{bmatrix} 2201 \\ 1221 \\ 0121 \\ 1113 \end{bmatrix}$$

Sequential Representation....

– We can further define a matrix $B^n = A^1 + \cdots + A^n$

•
$$B^3 = A^1 + A^2 + A^3 = \begin{bmatrix} 0110 \\ 0011 \\ 1000 \end{bmatrix} + \begin{bmatrix} 0012 \\ 1101 \\ 1100 \end{bmatrix} + \begin{bmatrix} 2201 \\ 1221 \\ 0121 \end{bmatrix} = \begin{bmatrix} 2323 \\ 2333 \\ 1222 \\ 2334 \end{bmatrix}$$

– A path matrix P can be obtained by setting an entry $p_{ij} = 1$, if b_{ij} is non-zero and $p_{ij} = 0$, if otherwise

$$\bullet \ P = \begin{bmatrix} 1111 \\ 1111 \\ 1111 \\ 1111 \end{bmatrix}$$

Linked Representation

- An adjacency list is another way in which graphs can be represented in the computer's memory
 - It is often used for storing graphs that have a small-to-moderate number of edges
 - That is, an adjacency list is preferred for representing **sparse graphs** in the computer's memory; otherwise, an adjacency matrix is a good choice

Adjacency Multi-list.

- Graphs can also be represented using multi-lists which can be said to be modified version of adjacency lists
 - Adjacency multi-list is an edge-based rather than a vertexbased representation of graphs

Edge 1	0	1	Edge 2	Edge 3
Edge 2	0	2	NULL	Edge 4
Edge 3	1	3	NULL	Edge 4
Edge 4	2	3	NULL	Edge 5
Edge 5	3	4	NULL	Edge 6
Edge 6	4	5	Edge 7	NULL
Edge 7	4	6	NULL	NULL

Adjacency Multi-list..

Edge 1		1	Edge 2	Edg	ge 3	
Edge 2		2	NULL	Edg	ge 4	
Edge 3	1	3	NULL	Edg	ge 4	
Edge 4	2	3	NULL	Edg	ge 5	
Edge 5	3	4	NULL	Ed	VERTEX	LIST OF EDGES
Edge 6	4	5	Edge 7	NU	0	Edge 1, Edge 2
Edge 7	4		NULL	NU	1	Edge 1, Edge 3
Luge		<u> </u>	TTOELE	110	2	Edge 2, Edge 4
					3	Edge 3, Edge 4, Edge 5
					4	Edge 5, Edge 6, Edge 7
					5	Edge 6
					6	Edge 7

Traversal Algorithms

- By traversing a graph, we mean the method of examining the nodes and edges of the graph
 - Breadth-first search
 - BFS uses a **queue** as an auxiliary data structure to store nodes for further processing
 - Depth-first search
 - DFS uses a **stack** to store nodes for further processing

Breadth-first Search.

- Breadth-first search (BFS) is a graph search algorithm that begins at the root node and explores all the neighboring nodes
 - Given a directed graph, please find a minimum path from A to I by using BFS

Breadth-first Search..

QUEUE is used to hold the nodes that have to be processed,
ORIG is used to keep track of the origin of each edge

- Step 2:

QUEUE = A	В	С	D
ORIG = \O	А	А	А

- Step 3:

QUEUE = A	А В	С	D	Е
ORIG = \	\0 A	А	А	В

- Step 4:

QUEUE = A	В	С	D	Е	G
ORIG = \0	А	А	А	В	С

Breadth-first Search...

- Step 5:

QUEUE =	А	В	С	D	Е	G
ORIG =	\0	А	А	А	В	С

- Step 6:

QUEUE =	А	В	С	D	Е	G	F
ORIG =	\0	А	А	А	В	С	Е

- Step 7:

QUEUE =	А	В	С	D	Е	G	F	Н	Ι
ORIG =	\0	А	А	А	В	С	Е	G	G

Breadth-first Search....

– Final, by referring to ORIG, the minimum path is $A \rightarrow C \rightarrow G \rightarrow I$

QUEUE = A	В	С	D	Е	G	F	Н	I
ORIG = \0	А	А	А	В	С	Е	G	G

Depth-first Search.

- The depth-first search algorithm progresses by expanding the starting node of *G* and then going deeper and deeper until the goal node is found, or until a node that has no children is encountered
 - Given a graph *G* and its adjacency list, please print all the nodes that can be reached from the node *H* (including *H* itself) by leveraging DFS

Depth-first Search..

- Step 1: Push *H* onto the stack

STACK: H

- Step 2:
 - Pop and print the top element of the stack (i.e., *H*)
 - Push all the neighbors of *H* onto the stack

PRINT: H STACK: E, I

- Step 3:
 - Pop and print the top element of the stack (i.e., *I*)
 - Push all the neighbors of *I* onto the stack

PRINT: I STACK: E, F

Depth-first Search...

- Step 4:
 - Pop and print the top element of the stack (i.e., *F*)
 - Push all the neighbors of *F* onto the stack

PRINT: F STACK: E, C

- Step 5:
 - Pop and print the top element of the stack (i.e., *C*)
 - Push all the neighbors of *C* onto the stack

PRINT: C STACK: E, B, G

- Step 6:
 - Pop and print the top element of the stack (i.e., *G*)
 - Push all the neighbors of *G* onto the stack

PRINT: G STACK: E, B

Depth-first Search....

- Step 7:
 - Pop and print the top element of the stack (i.e., *B*)
 - Push all the neighbors of *B* onto the stack

PRINT: B STACK: E

- Step 8:
 - Pop and print the top element of the stack (i.e., *E*)
 - Push all the neighbors of *E* onto the stack

PRINT: E STACK:

• Since the stack is empty, the depth-first search of *G* starting

at node *H* is complete and the nodes which were printed are

H, I, F, C, G, B, E

BFS & DFS.

• https://www.quora.com/What-are-the-differences-between-DFS-and-BFS

BFS & DFS...

https://slideplayer.com/slide/12046827/

BFS

a,b,c,d,e,f,g,h,i,j,k,l,m,n

DFS

a,b,e,j,f,k,l,h,c,g,d,i,m,n

Questions?

kychen@mail.ntust.edu.tw