Lecture 4 Summary

Linear 2nd order homogeneous ODEs with constant coefficients

$$ay'' + by' + cy = 0$$

Ansatz method:

- 1. Guess $y(t) = e^{rt}$
- 2. Plug guess into the ODE
- 3. Find (up to) 2 values of r

$$y = c_1 e^{r_1 t} + c_2 e^{r_2 t}$$

Some questions:

- 1. Why do we add up the two solutions? Are there more solutions?
- 2. Does this guessing method always work?

Differential Operators

$$L[y(t)] := \frac{d}{dt}y(t)$$
 is a differential operator applied to the function $y(t)$.

Takes a function y(t) and returns it derivative

$$L[y(t)] := ay'' + by' + cy$$
 is also a differential operator...

Operator form of a generic inhomogeneous ODE:

$$L[y(t)] = h(t)$$

Linear Operators

An operator is called **linear** if it has the following propertes for any two function f(t) and g(t) and any constant c.

1.
$$L[f(t) + g(t)] = L[f(t)] + L[g(t)]$$

2.
$$L[cf(t)] = cL[f(t)]$$

Note: Linear ODEs have linear differential operators

Superposition Principle

Suppose the functions $y_1(t)$ and $y_2(t)$ both independently solve a linear homogeneous ODE

$$L[y] = 0$$

then

$$y_h = c_1 y_1 + c_2 y_2$$

is also a solution to the same ODE.

Proof:

$$L \left[c_1 y_1 + c_2 y_2 \right] \stackrel{\text{Linearity } 1}{=} L \left[c_1 y_1 \right] + L \left[c_2 y_2 \right]$$

$$\stackrel{\text{Linearity } 2}{=} c_1 L \left[y_1 \right] + c_2 L \left[y_2 \right]$$

$$= c_1 \cdot 0 + c_2 \cdot 0$$

$$= 0$$

Linear dependence of functions

• Two functions f(t) and g(t) are **linearly dependent** on the interval $t \in I = [\alpha, \beta]$ if there exist a non-zero constant k such that

$$f(t) = kg(t) \quad \forall t \in I$$

Linearly Dependent

Not Linearly Dependent

• If functions are not linearly dependent on I, then we say they are **linearly independent** on 1.

Completeness of solutions

Suppose that $y_1(t)$ and $y_2(t)$ both solve a 2^{nd} order linear homogeneous ODE

$$L[y] = 0$$

If y_1 and y_2 are linearly independent functions, then the general solution to the homogeneous problem is

$$y_g(t) = c_1 y_1(t) + c_2 y_2(t)$$

General Solution: Solution with arbitrary constants that solves ALL possible scenarios where solutions exist.

Proof = long and tedious (linear algebra + method of integrating factors)

Take home message:

 2^{nd} order linear homogeneous $\Rightarrow \exists 2$ linearly independent solutions

Solutions to ay'' + by' + cy = 0

Lets try an ansatz of $y(t) = e^{rt}$... where r is unknown (ansatz method)

$$a\frac{d^2}{dt^2}e^{rt} + b\frac{d}{dt}e^{rt} + ce^{rt} = 0$$

$$ar^2e^{rt} + bre^{rt} + ce^{rt} = 0$$

$$e^{rt}(ar^2 + br + c) = 0$$

Since $e^{rt} \neq 0$, the ODE can only have a solution $y(t) = e^{rt}$ if

$$ar^2 + br + c = 0$$

called the **characteristic equation**.

Possible values of r:

$$r = r_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Roots of the characteristic equation (polynomial)

$$r = r_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Three main cases:

1. Two distinct real roots:
$$b^2 - 4ac > 0$$

2. Repeated real roots: discriminant = 0

3. Complex conjugate roots: discriminant < 0

Case 1: distinct real roots

$$y_h(t) = c_1 e^{r_1 t} + c_2 e^{r_2 t}; \qquad r_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Two major subcases:

1. $ac \ge 0$:

Both roots have the same sign.

 y_1 and y_2 both grow or decay exponentially.

2. ac < 0:

The two roots have opposite sign.

One solution grows exponentially, the other decays exponentially.

Qualitative Behaviour: distinct real roots

Sum of real exponential functions, three subcases:

1. All positive roots, $0 < r_1 < r_2$.

2. Mixed roots, $r_1 < 0 < r_2$.

3. All negative roots, $r_1 < r_2 < 0$.

• Superposition of Homogeneous solutions

$$y_h = c_1 y_1 + c_2 y_2$$

Linear independence of homoegeneous solutions

$$y_g = c_1 y_1 + c_2 y_2 \quad \Rightarrow \quad y_1 \neq k y_2; \quad k = \text{constant}$$

 y_g = general solution, solves ALL scenarios where a solution exists.

•
$$ay'' + by' + cy = 0$$

Try ansatz $y = e^{rt}$
 $\Rightarrow e^{rt} \cdot \underbrace{(ar^2 + br + c)}_{\text{characterisitc polynomial}} = 0$
 $r_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{}$