ADA 058205

Technical Paper 292

AN EMPIRICAL INVESTIGATION OF THE EFFECT OF HETEROSCEDASTICITY AND HETEROGENEITY OF VARIANCE ON THE ANALYSIS OF COVARIANCE AND THE JOHNSON-NEYMAN TECHNIQUE

Joyce Lee Shields

INDIVIDUAL TRAINING & SKILL EVALUATION TECHNICAL AREA

U. S. Army

Research Institute for the Behavioral and Social Sciences

July 1978

Approved for public release; distribution unlimited.

408 ptp

U. S. ARMY RESEARCH INSTITUTE FOR THE BEHAVIORAL AND SOCIAL SCIENCES

A Field Operating Agency under the Jurisdiction of the Deputy Chief of Staff for Personnel

JOSEPH ZEIDNER
Technical Director (Designate)

WILLIAM L. HAUSER Colonel, U S Army Commander

NOTICES

DISTRIBUTION: Primary distribution of this report has been made by ARI. Please address correspondence concerning distribution of reports to: U. S. Army Research Institute for the Behavioral and Social Sciences, ATTN: PERI-P, 5001 Eisenhower Avenue, Alexandria, Virginia 22333.

<u>FINAL DISPOSITION</u>: This report may be destroyed when it is no longer needed. Please do not return it to the U. S. Army Research Institute for the Behavioral and Social Sciences.

<u>NOTE</u>: The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENT		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER 2017 ARI - 7P	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
6. TITLE (and Subtrite)		STYPE OF REPORT & PERIOD COVERED
AN EMPIRICAL INVESTIGATION HETEROSCEDASTICITY AND HET ON THE ANALYSIS OF COVARIAN	EROGENEITY OF VARIANCE	Final Machaigal Paper
Joyce Lee Shields		8. CONTRACT OR GRANT NUMBER(s)
10		(16)
9. PERFORMING ORGANIZATION NAME AND A U.S. Army Research Institut and Social Sciences, 5001 E Alexandria, VA 22333	e for the Behavioral isenhower Avenue,	10. PROGRAM ELEMENT, PROJECT, TASK
Alexandria, VA 22333 11. CONTROLLING OFFICE NAME AND ADDRE Deputy Chief of Staff for P Washington, DC 20310	ersonnel (//)	July 1978 TS. NOMBER OF PAGES 34
14. MONITORING AGENCY NAME & ADDRESS	different from Controlling Office)	15. SECURITY CLASS. (of this report)
- (12) 44p.		Unclassified 15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)	L
Approved for public release		
17. DISTRIBUTION STATEMENT (of the abetrac	t entered in Block 20, if different fro	m Report)
18. SUPPLEMENTARY NOTES This publication is bas in partial fulfillment of t		n submitted by Joyce L. Shield
19. KEY WORDS (Continue on reverse side if nec	essary and identify by block number)
Analysis of Covariance (ANC Johnson-Neyman Technique Monte Carlo Program	Statisti	ogical Statistics ical Models ion Analysis
(ANCOVA) to violations of a variance was tested through study simulated a one-way, one criterion, and one cova	ohnson-Neyman techniquessumptions of homosced the use of Monte Carl fixed-effects analysis riate. Five fixed val unit variance, while	le and analysis of covariance lasticity and homogeneity of computer procedures. The with two treatment groups, tues of the covariate were the values of Y were varied
DD 1 JAN 73 1473 EDITION OF 1 NOV 65	UN	ICLASSIFIED ASSIFICATION OF THIS PAGE (When Data Entere
,	, ,	

20. ABSTRACT (Continued)

of group sizes (10,10;10,20;20,10;20,20), five combinations of group variances (1,1;1,2;2,1;1,5;5,1), and five forms of heteroscedasticity (combined in 18 different pairs), were studied. These conditions were combined to produce 186 different simulated experimental conditions. For each simulated condition 3000 pseudo-random samples were generated and sampling distributions relevant to the Johnson-Neyman technique and ANCOVA were compiled.

Results indicated that ANCOVA is robust to violations of assumptions of homoscedasticity and homogeneity of variance, both singly and in combination, when group sizes were equal. For cases of different group sizes and heterogeneous variances a predictable bias was observed. When the larger variance was combined with the smaller group size the bias was conservative. When the pairings were reversed the bias was nonconservative. The Johnson-Neyman technique was sensitive to violation of the assumption of homoscedasticity for both equal and unequal group sizes. The effect of heteroscedasticity was to order the probability that any fixed value of X would be included in a region of significance in a sequence parallel to the form of heteroscedasticity. That is, in general, as the variance for a fixed value of X increased, the probability of including that value of the covariate in a region of significance increased.

MT13	White Section	
996	Buff Section	10
UNANHOUNCED		a
JUSTIFICATION.		
	AVAILABILITY C	
1		
1		

UNCLASSIFIED

Technical Paper 292

AN EMPIRICAL INVESTIGATION OF THE EFFECT OF HETEROSCEDASTICITY AND HETEROGENEITY OF VARIANCE ON THE ANALYSIS OF COVARIANCE AND THE JOHNSON-NEYMAN TECHNIQUE

Joyce Lee Shields

Submitted by:

Milton S. Katz, Chief
INDIVIDUAL TRAINING & SKILL EVALUATION TECHNICAL AREA

Technical accuracy and completeness certified by:

Milton S. Katz, Technical Area Chief Approved by:

E. Ralph Dusek, Director
INDIVIDUAL TRAINING & PERFORMANCE
RESEARCH LABORATORY

Joseph Zeidner
TECHNICAL DIRECTOR (DESIGNATE)

U.S. ARMY RESEARCH INSTITUTE FOR THE BEHAVIORAL AND SOCIAL SCIENCES 5001 Eisenhower Avenue, Alexandria, Virginia 22333

Office, Deputy Chief of Staff for Personnel Department of the Army

July 1978

Army Project Number 20762722A777

Individual Training Technology

Approved for public release; distribution unlimited.

ARI Research Reports and Technical Papers are intended for sponsors of R&D tasks and other research and military agencies. Any findings ready for implementation at the time of publication are presented in the latter part of the Brief. Upon completion of a major phase of the task, formal recommendations for official action normally are conveyed to appropriate military agencies by briefing or Disposition Form.

In the course of conducting research, the U.S. Army Research Institute for the Behavioral and Social Sciences (ARI) makes use of many statistical models and techniques suited to a wide variety of information gathering and hypothesis testing. The nature of conditions in the field, where the best Army data can be collected, often results in violations of assumptions assumed to be critical for the validity of specific statistical operations or models. The information provided in this Technical Paper is useful, not only in the Individual Training and Skill Evaluation Technical Area but to experimenters and analysts in other areas of behavior science research who need to determine the appropriateness of using Analysis of Covariance (ANCOVA) or the Johnson-Neyman technique.

The entire research is responsive to requirements of RDT&E Project PE62722A777, Individual Training Technology, FY 1978 Work Program, and to special requirements of the Deputy Chief of Staff for Personnel.

Joseph Zengner

Technical Director (Designate)

AN EMPIRICAL INVESTIGATION OF THE EFFECT OF HETEROSCEDASTICITY AND HETEROGENEITY OF VARIANCE ON THE ANALYSIS OF COVARIANCE AND THE JOHNSON-NEYMAN TECHNIQUE.

BRIEF

Requirement:

To determine the effects of violating the assumptions of homoscedasticity and homogeneity of variance on significance tests associated with ANCOVA and the Johnson-Neyman technique.

Procedure:

The robustness of the Johnson-Neyman technique and analysis of covariance (ANCOVA) to violations of assumptions of homoscedasticity and homogeneity of variance was tested through use of Monte Carlo computer procedures. The study simulated a one-way, fixed-effects analysis with two treatment groups, one criterion, Y, and one covariate, X. Five fixed values of the covariate were selected with zero mean and unit variance, while the values of Y were varied randomly with a constant regression coefficient of .75. Four combinations of group sizes (10,10;10,20;20,10;20,20), five combinations of group variances (1,1;1,2;2,1;1,5;5,1), and five forms of heteroscedasticity (combined in 18 different pairs), were studied. These conditions were combined to produce 186 different simulated experimental conditions. For each simulated condition, 3000 pseudo-random samples were generated and sampling distributions relevant to the Johnson-Neyman technique and ANCOVA were compiled.

Findings:

Results indicated that ANCOVA is robust to violations of assumptions of homoscedasticity and homogeneity of variance, both singly and in combination, when group sizes were equal. For cases of different group sizes and heterogeneous variances a predictable bias was observed. When the larger variance was combined with the larger group size the bias was conservative. When the pairings were reversed the bias was non-conservative. The Johnson-Neyman technique was sensitive to violation of the assumption homoscedasticity for both equal and unequal group sizes. The effect of heteroscedasticity was to order the probability that any fixed value of X would be included in a region of significance in a sequence parallel to the form of heteroscedasticity. That is, in general, as the variance for a fixed value of X increased, the probability of including that value of the covariate in a region of significance increased. As observed with ANCOVA, the Johnson-Neyman technique was robust to heterogeneity of variance when group sizes were equal. However, when group sizes were

not equal the empirical probabilities were biased in a non-conservative direction when the larger variance was combined with the smaller group size, and in a conservative direction when the larger variance and larger group size were combined.

Utilization of Findings:

In many empirical situations such as practical field experiments conducted within the Army it is not possible to meet all the assumptions of statistical models. If one or more of the assumptions is violated, the user has the choice of abandoning the model or proceeding with the analysis at some risk. The results of this study may be used by the investigator to estimate the degree of bias in the test of significance associated with either ANCOVA or the Johnson-Neyman technique.

AN EMPIRICAL INVESTIGATION OF THE EFFECT OF HETEROSCEDASTICITY AND HETEROGENEITY OF VARIANCE ON THE ANALYSIS OF COVARIANCE AND THE JOHNSON-NEYMAN TECHNIQUE

CONTENTS

1200		Page					
REVIEW OF RELA	ATED LITERATURE	3					
PROCEDURE		7					
Heterosced The Simula	eity of Variance dasticity ation Procedure of-fit Procedure	7 8 11 11					
RESULTS		12					
The Analysis of Covariance The Johnson-Neyman Technique							
DISCUSSION							
SUMMARY		28					
REFERENCES		30					
TABLES							
S	Comparison of Actual and Nominal Levels of Significance in Simulations of "True" Experiments Obtained by Peckham (1968), Hamilton (1972), and McClaren (1972)	6					
2. V	Values of σ_y^2 and ρ where $\sigma_y^2 = \sigma_y^2 (1-\rho^2)$ and $\sigma_y^2 = 1$, =.75	7					
3. V	Values for $\sigma_{y x_{i}}^{2}$ where $\sigma_{y x}^{2}$ =1,2, or 5, for the Five Forms of Heteroscedasticity for the Five Fixed Values of the Concomitant Variable, X	• 9					
r I	Results of the Kolmogorov-Smirnov Goodness-of-fit Tests of the Empirical to the Theoretical F Distribution for Each of the Simulated Experimental Conditions	13					

AN EMPIRICAL INVESTIGATION OF THE EFFECT OF HETEROSCEDASTICITY AND HETEROGENEITY OF VARIANCE ON THE ANALYSIS OF COVARIANCE AND THE JOHNSON-NEYMAN TECHNIQUE

CONTENTS

FABLES (CONT	INUED)	Page
Table 5.	Empirical Alpha Levels Corresponding to Nominal Alpha Levels of .10, .05, .02, and .01 for Each Simulated Experimental Condition	14
6.	Empirical Probability of Inclusion of Each Fixed X in a Region of Significance at Nominal Alpha Levels of .10, .05, .025, and .01 for Each Experimental Condition	17
7.	Empirical Probability of Obtaining a Johnson- Neyman Region of Significance at Nominal Alpha Equal to .10, .05, .025, and .01 for Each Simulated Experimental Condition	23
8.	Empirical Results Obtained Using Potthoff's Simultaneous Confidence Bounds When All Assumptions Are Met and Group Size Equals 10	28

AN EMPIRICAL INVESTIGATION OF THE EFFECT OF HETEROSCEDASTICITY AND HETEROGENEITY OF VARIANCE ON THE ANALYSIS OF COVARIANCE AND THE JOHNSON-NEYMAN TECHNIQUE

The effect on Type I error rates and power of violations of assumptions of mathematical models underlying statistical analyses has been studied for some time. Although many of the theoretical consequences have been derived, it was only with the advent of high speed computers that the empirical consequences could be determined with facility. As poirted out in a recent review by Glass et al. (1972), "the assumptions of most mathematical models are always false to a greater or lesser degree." The purpose of this study was to compare the empirical results of certain reasonable violations of two of the assumptions underlying the mathematical models associated with the analysis of covariance (Fisher, 1932) and the Johnson-Neyman technique (Johnson and Neyman, 1936).

Although both the analysis of covariance (ANCOVA) and the Johnson-Neyman technique incorporate regression methods in order to increase the precision of an experimental design, ANCOVA assumes homogeneity of regression whereas the Johnson-Neyman technique is not based on this assumption. Furthermore, there are two current areas of great interest in educational psychology research where heterogeneity of regression might be expected (e.g., Aptitude Treatment Interaction (Bracht, 1970) and Moderator Variables (Bartlett et al., 1969; Ghiselli, 1963)). Therefore, the Johnson-Neyman technique becomes an important alternative to ANCOVA.

The Johnson-Neyman technique defines a region along the covariate where significant treatment differences exist between two groups. Unlike ANCOVA, the Johnson-Neyman technique does not test a hypothesis, but yields a confidence interval. The region not included in the confidence interval, or the region of significance, may be a single continuous region or two distinct regions where one group is significantly better on the criterion in one region, and significantly inferior in the other region.

The mathematical model for both ANCOVA and the Johnson-Neyman technique is:

$$Y_{kj} = \alpha_j + \beta_j X_{kj} + e_{kj}$$

where

 $\alpha_{j} = Y$ intercept of the Y-on-X regression line for group j.

 β_{j} = regression slope of the Y-on-X regression line for group j.

ekj = error of estimate for score k in group j.

The e_{kj} are assumed to be independently and normally distributed with 0 mean and homogeneous variance, $\sigma^2 = \sigma_{y_i|x_{ij}}^2$. That is, it is assumed

that errors of estimate are homogeneous for each fixed value of the concomitant variable, X,, both within a treatment group (homoscedasticity), and between treatment groups (homogeneity of variance).

In addition to the assumption of constant error variance, both models assume: a linear relationship between the criterion and concomitant variable and that values of the concomitant variable are fixed and measured without error. ANCOVA makes the additional assumption of homogeneity of regression, i.e., $\beta_1 = \beta_W$ for all groups.

In many empirical situations it is not possible to meet all the assumptions of statistical models. If one or more of the assumptions is violated, the user has the choice of abandoning the model or proceeding with the analysis at some risk. Theoretical discussions of a technique often enable the investigator to determine whether his test is biased in a conservative or liberal direction, while empirical investigations of violations often enable the investigator to estimate the degree of bias.

The purpose of this study was to compare, by Monte Carlo methods, the effects of violating assumptions of homoscedasticity and homogeneity of variance on significance tests associated with ANCOVA and the Johnson-Neyman technique. The research questions asked are:

- 1. Are the Johnson-Neyman technique and ANCOVA robust to the violation of the assumption of homoscedasticity?
- 2. Are the Johnson-Neyman technique and ANCOVA robust to the violation of the assumption of homogeneity of variance?
- 3. Are the Johnson-Neyman technique and ANCOVA robust to the simultaneous violation of the assumptions of homoscedasticity and homogeneity of variance?

REVIEW OF RELATED LITERATURE

ANCOVA is an extension of analysis of variance (ANOVA) and regression analysis. As such, assumptions underlying ANCOVA include all those associated with ANOVA and regression analysis as well as the assumption of homogeneity of regression. Therefore, results from studies of the robustness of ANOVA to violations of some of its assumptions might be expected to extend to ANCOVA. Particularly pertinent to the current study is research on violation of the assumption of homogeneity of variance. The effect of heterogeneous variances on Type I error rates has been investigated theoretically (Box, 1954; Scheffe, 1959) and empirically (Norton, as reported in Lindquist, 1953).

Scheffe (1959) reports the work of Hsu who calculated the exact probability of Type I error rates for a two-tailed \underline{t} test at the .05 level for three different pairs of sample sizes (15,5;5,3 and 7,7) and 9 ratios of population variances σ_1/σ_2 (0,.1,.2,.5,1,2,5,10, ∞). Scheffe (1959) extended Hsu's data to large samples in the two-group case and studied $\frac{1}{4}$ ratios of sample sizes (1,2,5, ∞) and 7 ratios of population variances, σ_1/σ_2 (0,.2,.5,1,2,5, ∞).

Scheffé concluded that inequality of variances has little effect on Type I error rate when sample sizes are equal, but has serious effects when sample sizes are not equal. In general, when the larger variance is associated with the smaller sample size the true probability of Type I error was found to exceed the nominal value, and when the larger variance and sample size were paired the Type I error rate was found to be less than the nominal value.

Box (1954) calculated exact probabilities of Type I errors for fixed-effect ANOVA F tests at a nominal 5 percent level. The results were obtained for 3, 5, and 7 groups, variance ratios of 1:2:3; 1:1:3; 1:1:1:3; and 1:1:1:1:17, and for 11 combinations of equal and unequal group sizes. In general, it was observed that the F test is robust to the violation of homogeneity of variance for equal sample sizes, but not for unequal sample sizes. When the largest variance was associated with the smallest sample size, the actual Type I error rate was greater than the nominal value; when the largest variance was associated with the largest sample size, the value of α was smaller than nominal.

The robustness of the F test to heterogeneous variances in balanced designs reported by Scheffe (1959) and Box (1954) was consistent with an empirical investigation by Norton (as reported in Lindquist, 1953). Using a Monte Carlo simulation technique, he constructed (by hand) populations of 10,000 cases each and sampled from these populations in order to create empirical sampling distributions. In the phase of his study in which he investigated heterogeneity of variance, populations were normal with equal means, but different variances

 $(\sigma_{\mathbf{x}}^2 = 25, 100, \text{ and } 225)$. Marked heterogeneity of variance (1:4:9) resulted in a small but predictable bias in the Type I errors and empirical values were generally greater than nominal values.

Little research on the effect of heterogeneity of variance on robustness of ANCOVA has been conducted. A theoretical paper by Potthoff (1965) showed that the sensitivity of ANCOVA to heterogeneous variances depended on the ratio $n_1 \sigma_x / n_2 \sigma_x$ where n is sample size

and σ is the standard error of the covariate. Three empirical studies have been conducted concerning effects of violating the assumption of homogeneity of variance while simultaneously violating the assumption of homogeneity of regression (Peckham, 1968; Hamilton, 1972; and McClaren, 1972). In all studies, variance of the criterion measure (σ^2) and variance of the covariate (σ^2) were held constant while varying population regression slopes (β), thereby producing a concomitant change in σ^2 (where σ^2) = σ^2 - $\sigma^2\beta^2$). In the model for ANCOVA the assumption of homogeneity of variance applies to the variance error of estimate (σ^2).

Peckham (1968) varied regression slopes (and $\sigma_{\rm V}^2$), number of groups and sample size, although sample size was equal between groups for all of his comparisons. Values of the covariate were fixed and were chosen to conform as closely as possible to a normal distribution. Peckham found that there were very small discrepancies in the actual and empirical significance levels. In general, he observed that as the degree of heterogeneity of the regression slopes (and heterogeneity of variance) increased, the empirical rate of Type I errors was less than the nominal value.

In McClaren's (1972) study, the number of treatment groups were 2, 3, and 5, and the sample sizes were 20, 30, 40, 100, or 200, and regression slopes were .1,.2,.3,.4,.5,.6,.7,.8, and .9. The average slope across treatments was held constant at .5 for 180 out of the 183 simulated conditions. The values of the concomitant variable were fixed, with zero mean and unit variance. For equal group sizes, he found that as degree of heterogeneity of regression increased (and heterogeneity of variance increased), the empirical level of significance became more conservative. For unequal sample sizes, the results parallel the effect of violating the assumption of homogeneity of variance reported by Box (1954) and Scheffe (1959). That is, when the smallest regression coefficient and the largest variance were combined with the smallest sample size, the empirical significance levels were biased in a non-conservative direction and when the pairings were reversed the test was conservative.

Hamilton (1972) restricted the number of groups to two and varied sizes, with distributions of the criterion and the covariate being bivariate normal. Hamilton's results, in general, parallel the results of the effect of violating the assumption of homogeneity of variance

reported by Box (1954) and Scheffe (1959). Hamilton found ANCOVA robust to the violation of homogeneity of regression (and variance) for equal sample sizes, but observed large discrepancies in empirical and nominal alpha levels for unequal sample sizes. When the larger sample size occurred with the larger regression slope, and therefore smaller $\sigma_{\rm v}$, the empirical alpha levels were greater than corresponding nominal alpha levels. When the smaller group size was paired with the larger regression slope (and smaller $\sigma_{\rm v}$), he observed that empirical alpha levels were less than corresponding nominal levels. Hamilton's study appears to present evidence for the generalizability of results from the study of the effect of violating the assumptions associated with ANOVA, as suggested by Cochran (1957) and Winer (1971).

In one condition, Hamilton studied the same combination of equal sample sizes, number of groups, and regression coefficients as Peckham and as McClaren, but failed to replicate their results; a comparison is presented in Table 1. Whereas Hamilton's values were close to nominal alpha, Peckham and McClaren observed a conservative bias in empirical alpha levels where group sizes were equal and regression slopes heterogeneous. It is difficult to resolve the discrepancies in the results of these studies. Although it is impossible to determine simple effects of violating the assumption of homogeneity of regression or variance from the results of Hamilton (1972), McClaren (1972), and Peckham (1968), an analytical study by Atiquallah (1964) suggests that the F test of ANCOVA is robust to the violation of the assumption of homogeneity of regression when sample size is large and the means of the concomitant variable are equal; otherwise, the test is biased in a conservative direction.

There is no study examining the unique effect of heteroscedasticity on the robustness of ANCOVA. For an overview of ANCOVA and the effects of other violations on ANOVA and ANCOVA, comprehensive reviews by Glass et al. (1971) and Elashoff (1969) are available.

The Johnson-Neyman technique has not received as much attention as ANCOVA and little is known concerning the effects of violating assumptions underlying this statistical method. As originally presented, the Johnson-Neyman technique was designed for the case of two predictor variables, two treatment groups, and one criterion (Johnson and Neyman, 1936), and papers on the technique have concerned extension to cases of "n" predictor variables and "k" groups (Abelson, 1953; Potthoff, 1964).

Comparison of Actual and Nominal Levels of Significance in Simulations of "True" Experiments Obtained by Peckham (1968),

Table 1

Hamilton (1972), and McClaren (1972) Group Sizes n,=10,n2=10 n₁=20,n₂=20 Regression Coefficients Nominal Alpha Nominal Alpha .10 .05 .01 .10 .05 .01 Peckham .5,.5 .094 .052 .013 .102 .049 .013 .4,.6 .096 .050 .010 .089 .045 .009 .3,.7 .091 .045 .011 .097 .051 .009 .2,.8 .076 .039 .006 .076 .038 .008 .1,.9 .055 .029 .004 .055 .027 .005 Hamilton .5,.5 .098 .049 .013 .115 .057 .015 .4,.6 .099 .053 .011 .103 .052 .011 .3,.7 .104 .051 .010 .100 .054 .012 .2,.8 .105 .058 .013 .103 .051 .009 .1,.9 .109 .057 .015 .103 .056 .015 McClaren .5,.5 .105 .047 .012 .4..6 .099 .049 .009 .3,.7 .090 .049 .011 .2,.8 .074 .037 .010 .1,.9

.060

.022 .004

PROCEDURE

The effect of violating the following assumptions on F tests associated with ANCOVA, and regions of significance associated with the Johnson-Neyman technique were investigated:

- 1. heteroscedasticity
- 2. heterogeneity of variance
- 3. heterogeneity of variance and heteroscedasticity

The study simulated a simple one-way, fixed-effects analysis with two treatment groups, one criterion, and one covariate. Five fixed values of X, the covariate, assumed to be measured without error, with zero mean and unit variance, were selected. Four combinations of group sizes were used: 10,10;20,20;10,20; and 20,10; with an equal number of cases at each fixed value of X. All assumptions underlying the two methods were met except those under study. The value of the regression coefficient was held constant at β = .75, and the expected values of Υ (Υ = β X + α) for both groups were -0.8485, -0.4243, 0.0000, +0.4243, +0.8485. Nominal significance levels of .01 to .99, increasing in steps of .01, were used for comparison with empirical α levels.

Heterogeneity of Variance

Three values of heterogeneity of variance were studied; $\sigma_y^2|_x$ was set at 3 values: 1, 2, and 5. As $\sigma_y^2|_x$ changes, while β and σ_x^2 are held constant, there is a concomitant change in ρ and σ_y^2 ; resulting values are shown in Table 2. $\sigma_y^2|_x = 1$ was paired with $\sigma_y^2|_x = 1$ (homogeneity of variance), $\sigma_y^2|_x = 2$, and $\sigma_y^2|_x = 5$. These pairs combined with each of the pairs of group sizes produced 11 experimental conditions ($\sigma_y^2|_x = 1$ paired with $\sigma_y^2|_x = 1$ and group size combinations 10,20 and 20,10 are equivalent).

Table 2

Values of σ_y^2 and ρ where $\sigma_y^2 = \sigma_y^2 (1-\rho^2)$ and $\sigma_x^2 = 1, \beta = .75$

σ _y x	$\sigma_{\mathbf{y}}^{2}$	P
1	1.56	0.60
2	2.56	0.47
5	5.56	0.32

Heteroscedasticity

Five forms of heteroscedasticity were studied. The average value of $\sigma_{y|x}^2$ was held constant at 21, 2, or 5, while values of the error variance for each fixed X ($\sigma_{y|x}^2$) were distributed over the

5 fixed values of X so that the following forms were approximated:

- a. Equal $\sigma_y^2 | x_{i,i}$ for all $X_{i,j}$, homoscedasticity (form A).
- b. Greatest $\sigma_{\mathbf{y}|\mathbf{x}_{ij}}^2$ in the center with gradually decreasing

 $\sigma_{y|x_{i,j}}^{2}$ to either end point (form B).

- c. Greatest $\sigma_y^2|_{x_{ij}}$ at the largest value of X and gradually decreasing to the smallest value of X (form C).
- d. Greatest $\sigma_y^2|_{x_{ij}}$ at the smallest value of X and gradually increasing to the largest value of X (form D).
- e. Smallest $\sigma_y^2|_{x_{i,j}}$ in the center gradually increasing to either end point (form E).

Table 3 gives $\sigma_{\mathbf{y}|\mathbf{x}}^2$ at each fixed point of X for the 5 forms where $\sigma_{\mathbf{y}|\mathbf{x}}^2 = 1$, $\sigma_{\mathbf{y}|\mathbf{x}}^2 = 2$, and $\sigma_{\mathbf{y}|\mathbf{x}}^2 = 5$, and a graphic representation of the

forms of heteroscedasticity is presented in Figure 1. When combined in pairs, the 5 forms of heteroscedasticity produce 25 combinations (including the null case). The pairings of form D with forms A, B, C, and E are the reverse repetitions of pairs CA, CB, CD, and CE and, hence, these were not investigated. Thus, there were 18 combinations of heteroscedasticity which were combined with 11 combinations of group sizes and variance ratios. Where group sizes and variances were equal, mirror images of combinations were not investigated. Therefore, the total number of simulated experimental conditions was reduced to 186.

Values for $\sigma_y^2 | x$ where $\sigma_y^2 | x^{=1,2}$, or 5, for the Five Forms of Heteroscedasticity for the Five Fixed Values of the Concomitant Variable, X

K _{ij} Fixed Value		Form of Heteroscedasticity										
of X	A	В	D E									
	σ ² x	= 1										
-1.4142 -0.7071 0.0000 +0.7071 +1.4142	1.00 1.00 1.00 1.00	0.45 0.925 2.25 0.925 0.45	0.35 0.70 1.00 1.20 1.75	1.75 1.20 1.00 0.70 0.35	1.50 0.85 0.30 0.85 1.50							
-1.4142 -0.7071 0.0000 +0.7071 +1.4142	2.00 2.00 2.00 2.00 2.00	0.90 1.85 4.50 1.85 0.90	0.70 1.40 2.00 2.40 3.50	3.50 2.40 2.00 1.40 0.70	3.00 1.70 0.60 1.70 3.00							
	σ ² y x	= 5										
-1.4142 -0.7071 0.0000 +0.7071 +1.4142	5.00 5.00 5.00 5.00 5.00	2.25 4.625 11.25 4.625 2.25	1.75 3.50 5.00 6.00 8.75	8.75 6.00 5.00 3.50 1.75	7.50 4.25 1.50 4.25 7.50							

Fig. 1. Forms of heteroscedasticity studied (form A is homoscedastic). Each vertical line is in standard deviation units, and the average unit is 1.

The Simulation Procedure

For each of the 186 simulated conditions, the following parameters were set:

- 1. The fixed set of values for X, the concomitant variable.
- 2. The number of observations per fixed X for each group.
- 3. The expectation of the dependent variable Y_i for each fixed X_{ij} .
- 4. The standard deviation, $\sigma_{y|x_{ij}}$, of each fixed X_{ij} for each group.
 - 5. The number of samples, which was set equal to 3000.

UNIVAC 1108 Math-Pak (1970) subroutines RANDN and RANDU were used to generate random numbers. RANDU computes uniformly distributed pseudo-random real numbers between 0 and 1, whereas, RANDN produces sets of pseudo-random numbers which are normally distributed with a specified mean and standard deviation. Studies (UNIVAC 1108 Math-Pak Programmer's Reference Manual, UP-7542, section 14.3) have shown that the initialization number for the random number generator is critical for ensuring properties of randomness. Therefore, RANDU was used to supply a new starting number to RANDN for each of the 3000 samples in each run. A check on randomness of the generated sequences was made for each of the 186 initialization numbers. Using each of the initialization numbers an empirical F distribution was created for the case where no assumptions were violated and group sizes were each equal to 10. The Kolmogorov-Smirnov test was used to assess the goodness-of-fit of these empirical F distributions to theoretical F distributions; at $\alpha = .05$, the test failed to reject the hyopthesis of no difference between the nominal and empirical distributions for all initialization numbers used. In addition, checks of the randomness and normality of the samples generated by RANDN have been run and satisfactory results have been reported by Hamilton (1972).

Goodness-of-fit Procedure

A total of 186 different goodness-of-fit testing situations were simulated in this study. Both ANCOVA and the Johnson-Neyman technique were carried out for each experimental condition. Ninetynine F values were computed for each simulation at significance levels ranging from .01 to .99 in steps of .01. The goodness-of-fit of the empirical F distributions for ANCOVA to the theoretical F distributions was tested using the Kolmogorov-Smirnov one-sample goodness-of-fit test at α = .05 (Siegel, 1956). In addition, the number of Type I errors was computed at each of the significance levels.

For the Johnson-Neyman technique, the probability that each fixed X would be included in a region of significance, as well as the total probability of obtaining any region of significance, and probabilities of obtaining central versus tail regions at nominal significance levels of .01, .025, .05, and .10 were computed.

RESULTS

The Analysis of Covariance

The results of the goodness-of-fit tests in each of the 186 simulated conditions are presented in Table 4. The symbol NS means that the Kolmogorov-Smirnov test failed to reject the null hypothesis that there was no difference between the empirical and nominal F distributions; the symbol S means that the Kolmogorov-Smirnov test rejected the null hypothesis. The forms of heteroscedasticity are represented by letters A,B,C,D, and E (see Figure 1, or Table 3). The empirical significance levels corresponding to the nominal levels of .10,.05,.02, and .01 for all experimental combinations are shown in Table 5.

The Johnson-Neyman Technique

The empirical probability of the inclusion of each fixed value of X in a region of significance at nominal alpha levels of .10,.05,.025, and .01 under each of the 186 simulated experimental conditions is reported in Table 6. Table 7 shows empirical probabilities of obtaining any region of significance, when the nominal alpha level was set at .10,.05,.025, and .01.

Table 4

Results of the Kolmogorov-Smirnov Goodness-of-fit Tests of the Empirical to the Theoretical F Distribution for Each of the Simulated Experimental Conditions

	Si Si		NS	NS	NS	S	S	တ	တ	- 1	NS	NS
	CE	NS	NS	NS	NS	S	လ	ß	S	NS	NS	NS
	CD	NS	NS	NS	NS	S	ß	S	ß	NS	NS	NS
	EB	1	NS	NS	NS	တ	S	တ	တ	1	NS	NS
	BE	NS	NS	NS	NS	S	S	တ	w	NS	NS	NS
suo	CB	1	NS	NS	NS	တ	S	တ	တ	1	NS	NS
Heteroscedasticity Combinations	BC	NS	NS	NS	NS	တ	S	S	တ	NS	NS	NS
ombi	EA	1	NS	NS	NS	လ	S	တ	တ	1	NS	NS
ty C	AE	NS	NS	NS	NS	တ	S	S	S	NS	SN	NS
tici	CA	1	NS	NS	NS	တ	S	S	v	1	NS	NS
edas	AC	NS	NS	NS	NS	S	S	ß	S	NS	NS	NS
rosc	BA	1	NS	NS	NS	S	w	တ	S	1	NS	NS
Hete	AB	NS	NS	NS	NS	ຜ	S	ഗ	w	NS	NS	NS.
	EE	NS	NS	SN	NS	တ	ß	S	တ	NS	NS	NS
	DD	NS	NS	NS	NS	တ	S	ß	S	NS	NS	NS
	ည	NS	NS	NS	NS	တ	တ	S	S	NS	NS	NS
	BB	NS	NS	NS	NS	S	ß	S	S	NS	NS	NS
	AA	NS	SN	NS	NS	S	S	ß	တ	NS	NS	NS
ance	G2ª	1	1	-	ч	7	7	7	Ŋ	п	1	-
Varian	Gla	7	7	2	٦	7	S	٦	7	7	7	'n
Group Size Vari	G2ª	10			20					20		
Grou	G1a	10			10					20		

a refers to group.

Table 5

Empirical Alpha Levels Corresponding to Nominal Alpha Levels of .10, .05, .02, and .01 for Each Simulated Experimental Condition

VARIANCE ERROR OF ESTIMATE GROUP ONE = 1 GROUP TWO = 1

PAIRS OF GROUP SIZES

61 = 20, 62 = 20	.10 .05 .02 .01	.098 .040 .017 .008	.047 .019	.047 .018	.043 .021	·046 ·020	.057 .023	,	.111 .057 .025 .012		.102 .047 .018 .009		.089 .044 .018 .006		.094 .045 .021 .010		.108 .055 .021 .010	.048 .018	
10	.01																		
62 =	.02																		
20,	• 05																		
e1 =	.10																		
61 = 10, 62 = 20	.10 .05 .02 .01	.105 .056 .025 .014	.048 .016	.047 .016	.047 .017	.047 .018	.057 .024	.040 .017	.047 .018	.048 .019	.047 .018	.051 .019	.042 .013	.053 .015	.051 .020	.042 .014	.051 .021	.053 .022	.047 .020
10	.01	1 .012	-		-		-		3 .011		600 0		800. 7		4 · 007		0.010		
62 = 10	• 05	. 021							. 023		1 .020		.017		.014		1 .020		
10.	• 05	.056							.052		.050		.052		040.		.051	•	
61 =	ALPHA = .10	.102	960.	860.	.103	160.	060.		.102		.102		260.		260.		.102	.102	
		AA	BB	ပ	20	E	AB	BA	AC	CA	AE	EA	SC	S	BE	Eu	C	CE	U W

Where line is blank the experimental condition was not run due to its similarity to a condition which is reported in the table. Note:

THIS PAGE IS BEST QUALITY PRACTICABLE

Table 5--Continued

VARIANCE ERROR OF ESTIMATE GROUP ONE = 2 GROUP TWO = 1

			**	-	6	-	0	-	6	2	9	0	0	-	0	6	1	2	2	8
	20	.01	•	.011	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	62 =	• 05	.020	.022	. 121	.020	.020	.021	.n16	.025	.n18	.017	.020	.023	.020	.019	.019	.025	.025	•016
	20, 6	02	055	840	050	051	640	840	043	058	840	240	950	057	051	840	945	051	053	045
	11	10	•	. 860	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	61	•		•	0.	7.		•	•		•				.1	•	•	-:	-	0.
			2	3	2	2	t	9	t	2	9	2	t	2	2	t	2	t	2	2
	10	.01	•	.003	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	62 =	.02	.012	600.	.008	.015	600.	.010	.010	600.	.012	.012	.010	.011	.012	.010	900.	600.	.007	•000
	20, 6	90	037	028	022	032	029	026	029	028	031	031	030	028	033	030	028	030	028	030
	11	10	•	. 070	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
SIZES	61	-	•	•	•	•	•	•	•	•	0.	•	•	•	•	•	•	•	•	•
			80	80	6	8	_	7	6	N	6	တ	c	6	ဆ	60	0	8	c	~
GROUP	20	.01	•	.018	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
S OF	62 =	.02	.034	.032	.038	.034	.039	.031	.036	.038	.033	.033	.035	.035	.033	.029	.035	.034	.037	.037
PAIRS	10, 6	90	082	081	080	077	078	075	940	080	081	031	078	075	0.82	078	460	110	031	980
	11	10	45 .	143 .	41 .	47 .	51.	33.	35 .	41.	39.	38 .	41.	. 11	. 84	42 .	47 .	37 .	41.	• • •
	61	•		-	.1			•	.1	•1	•	.1	.1	.1	.1	•1	•	•1	-	•
			-	0	8	8	6	0	9	6	-	0	6	-	7	t	7	0	0	6
	10	•01	•	.010	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	62 =	.02	.020	.020	.018	.023	.020	.021	.016	.019	.021	.021	.019	.022	.016	• 054	.019	. 022	.018	.020
	0.0	90	240	051	24,0	054	057	020	940	020	640	051	940	053	840	052	055	054	940	240
	11		.100	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	61	= .10	.1	0.	0.	• 1	•1	•1	•	0	• 1	-	٠.	•1	• 1	0.	•	•	•	•
		ALPHA.																		
		A.																		
			AA	98	ပ္ပ	O C	EŁ	AB	ВА	VC	Š	AE	EA	BC	ŋ	BE	S E	3	CF	C W

- 15 -

Table 5--Continued

VARIANCE ERROR OF ESTIMATE GROUP ONE = 5 GROUP TWO = 1

20

Note: A,B,C,D,E refer to forms of heteroscedasticity.

Empirical Probability of Inclusion of Each Fixed X in a Region of Significance at Nominal Alpha Levels of .10, .05, .025, and .01 for Each Experimental Condition

- 17 -

	xs	000000000000000000000000000000000000000	022 017 023 018 076 005 026 019	000 001 001 001 000 000 000 000
	ħΧ	000000000000000000000000000000000000000		0000 0000 0000 0000 0000 0000 0000
.01	x3	000 00113 00113 00113		0000 0000 0000 0000 010 010
	x2)	033 033 033 033 013 013 033 033		00000000000000000000000000000000000000
	X1	0026 0027 0036 0031 0032 0033	0020 0020 0020 0011 0020 0020	000 0010 0017 0017 0017 0017 0017
	x 2	000 000 000 000 000 000 000 000	045 061 061 061 075 075 075 075 071	014 029 029 038 077 008 003 017
	*	007 007 008 001 001 000 006 005	033 042 042 031 071 100 015 037	018 022 033 023 041 041 011 002 023
.025	×3	025 025 026 026 027 027 029	026 026 028 024 024 001 025 025	0.19 0.21 0.21 0.83 0.023 0.23 0.23
	xs	057 0059 0079 0071 0071 0060 0060		018 027 027 027 077 010 010 020
	X1	000000000000000000000000000000000000000		020 0023 0035 0035 000 000 000 000 000 000 000
	X 2	.015 .015 .015 .015 .025 .006 .010	• • • • • • • • • • • • • • • • • • • •	.034 .042 .037 .072 .072 .020 .039
	×	.015 .016 .016 .017 .018 .018	.061 .071 .078 .057 .112 .112 .035 .035	.035 .059 .059 .072 .072 .073 .013
.05	×	052 061 061 081 137 033 017 053	050 060 050 050 050 010 050 050 050	056 057 057 057 057 0055 0056 0058
	xs	106 106 106 106 107 107 107 105 105	071 081 071 071 104 086 066	039 050 050 050 068 005 006 004 004 054
	X1	106 100 100 100 100 100 100 100 100	090 098 090 075 176 046 032 093	035 036 055 064 019 019 036 031
		87555667568	8 8 8 8 8 8 8 8 7 8 8	
	XS	0362 0333 0333 0333 0333 0333 0333 0355 0355 0355 0355	7 .136 3 .156 3 .156 3 .152 3 .133 7 .265 9 .091 2 .069 9 .147	2
	×	036 036 036 037 007 007 007 007 007 007 007 007 007	117 1138 1130 1149 179 179 179 179 119 1125	032 111 111 102 103 103 033 093
.10	×	.100 .100 .100 .100 .000 .000 .100 .100	.093 .115 .107 .094 .157 .217 .006 .041	.087 .102 .107 .132 .208 .059 .040 .096
	XZ	177 171 163 163 235 235 223 129 129 160	.133 .134 .132 .117 .176 .235 .084 .055 .121	.074 .003 .106 .123 .123 .050 .050 .053 .093
	X1	170 150 169 232 232 121 121 121 173	.155 .151 .151 .154 .159 .258 .091 .067 .143	00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.
ă II	≅	~		
ALPHA	FIXED X	×		200111111111111111111111111111111111111
	L	S12E 10.1u 10.2u	10,20	10.10
		6 DD 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ម្ព	A B
		_ 1		

- 18 -

		6 SIZE 10:10	10.2J			20,20	10.10			10,20	AC			20.0	03.03		10.10		10,20	CA				2015	
ALPHA =	FIXED X =	L VAR U 2.1 5.1		5.1							2.1	5,1	11.2	115		5.1				2,1	5,1	1,2	1.5		740
11	1 × =	.0.	20	1.0		3.3	÷		•1	-	.1.	.1.	•	0		6(1)	-0.	-05	.0.	0.	.10	.0.	.026		
	1 x2	.059 .083				-				-						760. 6r							28 .026		
.10	x x3	33 .096			-				-	-	•	-	•		•	701. 7			•		•	-	26 .038	-	•
0	×	6 .080			•		•	• •	•	•	•	•	•	1 .092	• •	•	•	•	•	•	•	•	8 .063	•	•
	x5	1.064		• •	•			•	•	•	•	•	•	2 .080	• •	•	•	•	•	•	•	•	3 .065	•	•
	x1	.028	.031	.073	.010	.030	150.	.033	.053	.033	.075	.121	•010	+00.	.037	.048	.026	.025	.017	•034	.058	.016	.011	020.	c10.
	XS	.036		• •	•	• •				•	•	•	•	.007	٠.	•		•	•	•	•	•	.008	-	•
• 05	x3	.045	.075	.118	.019	.049	.053	.051	.056	8 to .	.082	.129	•050	.018	850	.054	.052	.057	.048	.085	.132	.031	.015		*0*
	*	.032	.032	.010	.910	.036	970	190.	• 065	.072	.099	.140	.048	.039	970	.063	.087	.093	.076	.126	.192	.042	.029	1000	.088
	×S	.030	.030	.071	.012	.031	920	.063	.065	.070	.100	.138	.051	.038	920	.063	680	960.	.077	.125	.194	•039	•026	190.	. 195
	x T	.014	.021	.043	.005	.013	110.	.016	.031	.017	.042	•019	900	•001	610	.022	600.	.010	600.	.014	.028	.005	*00.	0000	• 000
	X	018	•	•				• •		•	•	•	•	•	• '	023	_				-		. 400	-	•
.025	, EX	021 .0	• •		•	• •		•	•	•	•	•	•	•	• •	025 • (•	•	•	•	•	•	. 200	•	•
	×	013 .0	• •		•	• •				•	•	•	•	015 .0	•		•	•	•	•	•	•	010 .0	•	•
	XS	010	113	35	0.5	12	77	135	136	38	958	187	127	117	380	037	640	157	143	182	38	120	600	101	90
	x1	. 500	• •	•	•					•		•	•	•	•	. 800	•	•	•	•	-	•	. 100	•	•
	X2)	007	• •	• •	•	• •				•		•	•	•	•	008	•	•	•	•	•	•	000	•	•
.01	X3)	007 • 008	• •		•	•			-	-		••	-	-	•	0110		•	•	•	•	•	001	•	•
	x tx	005 .0		• •	•			• •		•	•	•	•	•	•	016 .0	•	•	,	•	•	•	005 .0	•	•
	XS	900	90	117	101	7 7	20	116	910	117	124	841	115	200	17	014	121	128	121	147	36	100	005	121	121

- 19 **-**

	XS	013	000000000000000000000000000000000000000	019 022 031 007 002 016	010 000 0017 0017 0010 0004 0010
	χ¢	.010	000 000 000 000 000 000 000	.014 .013 .023 .052 .005 .001	.0114 .015 .007 .023 .027 .007 .011
.01	×	0100	000000000000000000000000000000000000000	010 013 020 004 004 009	.009 .013 .006 .013 .005 .005 .007
	X	2015	000 000 000 000 000 000 000 000	.015 .015 .032 .005 .005	0000 0000 0000 0000 0000 0000 0000 0000 0000
	×1	0118	008 0003 0015 015	022 018 018 003 003 002	.003 .003 .000 .000 .000
	x5	.033	00000000000000000000000000000000000000	042 042 052 061 007 007 0040	.031 .024 .018 .018 .034 .017 .013
	*	.028	0042 0087 0086 0027 0029	.033 .027 .027 .054 .054 .018	.032 .029 .029 .027 .015 .015 .035
.025	×3	.027	0.00 0.00 0.00 0.00 0.00 0.00 0.31	027 0024 0074 0077 0013	0026 0027 0019 0042 0013 0013
	X	027	0047 0015 0018 0028 0029	.034 .033 .033 .033 .033 .033	.0009 .015 .0015 .004 .004 .0011
	x1	039	000000000000000000000000000000000000000	.051 .051 .052 .052 .033	.000 .000 .000 .000 .000 .000 .000
	XS	062	0.027 0.037 0.053 0.064 0.064		.057 .046 .040 .044 .051 .055 .055
	*	0000	036 036 020 050 050 051	.064 .056 .091 .091 .036 .060	063 056 051 075 075 078 078 078 058
• 05	×3	.051	031 031 0013 0013 0050 0050	050 050 051 051 031 0150	051 057 077 011 027 018 054
	X2	.065 .058 .058	0.038 128 0.031 0.018 0.052 0.052	068 068 068 1103 1147 035 058	021 027 020 030 050 079 003
	x 1	9000	0001 0000 0000 0000 0000 0000	.080 .0080 .0072 .112 .0172 .0044	0002 0022 0022 0034 0034 0031 0031
	x 2	1111	1443 092 062 1123 111	130 141 132 170 253 055 052 119	003 003 003 003 142 005 005 011 010
	×		• • • • • • •	112 112 112 112 122 075 075 119	115 107 103 1133 1134 119 119 1113
.10	x3			.095 .095 .103 .144 .071 .071 .096	.097 .101 .038 .038 .141 .054 .054 .088
	X2			.125 .125 .126 .120 .076 .076	.053 .055 .076 .076 .049 .049 .016
	×	117	207 207 207 207 207 207 207 207 207 207	142 142 151 151 153 1052 1153	.039 .0547 .0523 .0523 .0510
ALPHA =	FIXED X =	VAR 111 211		5211	22112211111
	FIL	6 SIZE 10:10	20.20	10.10	10.10
			AE	EA	BC

- 20 -

	XS	029 0029 004 001 001 001	.009 .009 .001 .001 .004 .006	013 005 005 005 005 005
	ħΧ	010000000000000000000000000000000000000	010 007 007 007 0012 003 000 010	012 010 029 029 005 001 013
.01	×	000 000 000 000 000 000 000	000 000 000 000 000 000 000 000 000	000 000 000 000 000 000 000 000 000 00
	×2	000000000000000000000000000000000000000	000 000 000 000 000 000 000 000 000 00	000 000 000 000 000 000 000 000 000
	×		.000 .000 .000 .001 .001 .003 .003	.012 .021 .012 .034 .070 .004
	XS	.034 .035 .035 .079 .018 .038	.024 .013 .013 .013 .013 .011	.033 .043 .057 .0034 .005 .005
	×	036 036 036 083 144 0022 008	022 0032 0032 0032 0032 0032	028 038 0028 0028 013 007
.025	×3	023 000 000 000 000 000 000 000 000	029 023 023 078 014 023 025	022 031 004 007 005 005
	XS	0008 0008 0008 0008 0008 0009	00000000000000000000000000000000000000	026 037 0028 0062 010 010 027
	x1	00000000000000000000000000000000000000		
	XS	.062 .097 .095 .036 .036 .073	.051 .000 .000 .000 .000 .000 .000 .000	0058 0075 0059 0059 0056 0012
	×	.068 .068 .068 .206 .0043	044 0044 0044 0044 0044 0044 044	053 055 055 053 053 013 055
.05	X3	050 058 051 086 141 033 051	053 053 053 053 053 053 053 053 053 053	050 050 065 085 0085 0085 0085
	X2	018 019 029 052 009 019	039 049 042 046 064 064 028 028 030	057 071 059 103 025 014 052
	*	.016 .016 .016 .003 .006 .013	0040 0049 0046 0073 0074 0007	.056 .081 .061 .116 .175 .029
	XS	117 165 124 197 275 080 036	.093 .093 .098 .098 .098 .051	.108 .141 .107 .174 .236 .060 .035
	×	127 131 201 277 090 045 145	090 098 098 116 116 056 046 090 090	105 126 104 154 214 060 035 132
•10	×	099 097 097 0008 0008 0040	095 095 095 095 095 095 095 095	.107 .118 .092 .153 .199 .005
	X2	44500000000000000000000000000000000000		115 129 1109 175 175 162 163 113
	x1	0.000 000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.		115 143 121 121 121 125 125
11	11			
ALPHA	FIXED X	V AAR 2011 12	200100111	201120111
	FI.	6 SIZE 10-10 10-20	10.20	10:10
		CB	38	EB

- 21 -

Note: A, B, C, D, E refer to forms of heteroscedasticity

Table 7

Empirical Probability of Obtaining A Johnson-Neyman Region of Significance at Nominal Alpha Equal to .10, .05, .025, and .01 for Each Simulated Experimental Condition

10.		039	.080	.020	.040		.037	066	.011 .037 .046
• 025		.091 .080	.144	.025	.084	0	.077	.086 .123 .205	0.000
• 02	20	.145	.147 .216	.059	.151	8	.149	204	150
•10	9	.254	.331	.127	.252 .252 .266		.253	1,200 1,000	256 266 269 262
10.		014 017 016	014 029 063	2007	012 016 016		052	108 178	063 063 061
• 025		.033 .039 .046	.037	.019 .006	040				115 114 123
• 05	BB	.082	.082	.044	.036 .035	33	.209	1235 1335 135 135 135 135	1994
.10	ì	.158	.169 .243	.111	.163		.332	505 505 518 518 518	316
.01		.035 .038	.037 .063 .125	.017 .007	.032 .039 .035		.039	131	010 0148 047 048
.025		.080	.132	.045	.078 .076	•	.088 .087	151 214 214	00000
•05	AA	.142	.217	050.	.150 .151	DD	.151	2209	.158 .158
.10		.259	347	120	.275 .245		.251 .253	337	2000
ALPHA =	2 . 2 .	221	2 2 2 2	1,5	2 2 2 2		2:1	1111	1844
GROUP	512E 1 2	01.01	10.20		20150		10.10	10.20	20,20

- 23 -

.01		043	139	3885 3885 3885	940	060 092 083 083	.054
.025	63	960. 990.	.087 .087 .053	.093		114 1173 2559 059	.108
• 05	AE	.173	. 153 . 324 . 109	163	EA.	186 181 261 353 060	.178
.10		.286 .268	345	.289 .234 .274	196.	307 375 375 136	.313
.01		.032	.035 .069 .019	0.00	850	045 037 037 017 017	.038
• 025		.081	213 047	. 085 . 085 . 087		.091 .073 .210 .041	.080
• 05	AC	135	.220 .301 .092	1124	CA	1149 1133 1210 1310 1035 1056	.145
.10		.249 .241	342 342 139 185	266	146	250 2449 332 426 175	.252
.01		.030	.035 .052 .013 .013	96 P 98 P 98 C 98 C	710-	016 073 073 006	.021
.025	æ	.051	201 201 033	962		049 049 0134 028	.050
• 05	AB	.098	133	1122	BA	.087 .094 .140 .218	.105
.10		.194 .216	132 132 140	73862 44362	6	178 195 195 345 134	.192
ALPHA =	VAR	221	11254	2112		2,50	2,1 5,1
	GROUP SIZE 1 2	10.10	10.20	20,20	01.01	10.20	20,20

.01		.047 .042 .049 .051	.044 .053	0046 0048 0049 0099 0026 0055
.025		.099 .089 .091 .137	.031 .094 .102	103 103 175 175 102 131
• 05	CE	1570 155 155 154 219	111111111111111111111111111111111111111	EC
•10		. 272 . 272 . 269 . 343	22 272 272	.292 .328 .294 .401 .505 .212 .320
.01		020.020.020.025	.013	050 0050 0050 0054 0054 0056
.025	BE	.066 .067 .052 .064 .093	.034 .058 .058	.086 .089 .170 .255 .039 .015
• 05	Д	125 126 1105 1105 1233	1106	10000000000000000000000000000000000000
.10		. 227 . 221 . 201 . 229 . 356	.147 .233 .218 .218	.271 .321 .324 .483 .172 .100
.01		022 023 025 014 0042	00000000000000000000000000000000000000	022 046 027 138 015 032
.025		058 054 052 046 084		061 085 125 125 208 035 013
• 05	BC	.108 .108 .097 .147	.110	CB 114 118 1197 1295 074 032
.10		.196 .205 .203 .197 .262	110 2007 2007 194	.213 .242 .220 .321 .413 .147
ALPHA =	VAR 1 2		5,11	111112211
	GROUP SIZE 1 2	10,10	20,20	10.10

- 25 - THIS PAGE IS BEST QUALITY PRACTICABLE FROM COPY FURNISHED TO DDC

B, C, D, E refer to forms of heteroscedasticity.

DISCUSSION

ANCOVA appears to be robust to the violation of the assumptions of homoscedasticity and homogeneity of variance both singly and in combination, when group sizes are equal. In every condition where group sizes and variances were heterogeneous the goodness-of-fit hypothesis was rejected. When the larger variance was combined with the larger group size, the empirical significance levels of ANCOVA were conservative, and when the larger variance was combined with the smaller group size, the empirical alpha levels were nonconservative. The effect of the violation of the assumption of homogeneity of variance on the empirical F distribution of ANCOVA parallels the results obtained by Norton (as reported in Lindquist, 1953) and Box (1954) when investigating the effect of heterogeneity of variance on the empirical F distribution of ANOVA. In addition, the results obtained by Hamilton (1972), McClaren (1972), and Peckham (1968), where they investigated the simultaneous violation of the assumptions of homogeneity of variance and regression, are replicated.

The failure to find any condition where heteroscedasticity alone was responsible for the rejection of the goodness-of-fit hypothesis leads one to the conclusion that the assumption of homoscedasticity is not important to ANCOVA. Thus, if variances are homogeneous, the transformation of heteroscedastic data before using ANCOVA, as was suggested by Elashoff (1969), may be unnecessary.

The Johnson-Neyman technique is robust to the violation of the assumption of homogeneity of variance when group sizes are equal. However, when group sizes are unequal heterogeneity of variance biases the probabilities of obtaining regions of significance in the same direction as found with ANCOVA. That is, the larger variance combined with the smaller group size produces a non-conservative bias and the larger variance combined with the larger group size produces a conservative bias.

The probability that a fixed X would be included in a region of significance was consistently determined by the form of heteroscedasticity. If the shapes of the probability distributions shown in Table 6 are compared to the shapes of heteroscedasticity in Figure 1, the following conclusions emerge:

1. When $\sigma_{\mathbf{y}|\mathbf{x}_{ij}}^{2}$ is constant across \mathbf{X}_{ij} , the probability that \mathbf{X}_{ij}

is included in a region of significance is constant and equal to the nominal alpha level.

2. When $\sigma_{y|x_{ij}}^2$ is greatest for the central value of X_{ij} and smallest for the tails, the probability that X_{ij} is included in a region of significance is greatest for the central X_{ij} and smallest for the tails, and in general, the probabilities are conservative.

3. When the $\sigma_{\mathbf{y}|\mathbf{x}_{ij}}^2$ is greatest at either end value and progressively decreases to the opposite end value, the probability that \mathbf{x}_{ij} will be included in a region of significance follows the size of $\sigma_{\mathbf{y}|\mathbf{x}}^2$. The average significance level is close to the nominal level of significance.

4. When $\sigma_{\mathbf{y}\mid\mathbf{x_i}}^2$ is smallest for the center $\mathbf{X_i}$ and largest at either end, the probability that $\mathbf{X_i}$ will be included in a region of significance is greatest at the end values of X and smallest for the central $\mathbf{X_i}$. In general, the empirical probabilities are nonconservative.

The effect of the form of heteroscedasticity when combined with a different form of heteroscedasticity is partially determined by the average variance of the group. The form of heteroscedasticity combined with the larger variance has a greater influence on the form of the probability distribution for fixed values of X.

Although the magnitude of the empirical values of the probabilities are further influenced by the condition of unequal group sizes and heterogeneity of variance, the effects of the form of heteroscedasticity outlined above hold constant. That is, the relative differences in the probabilities associated with each X is fixed by the form of heteroscedasticity, but the size of the probabilities are biased by the combination of unequal group sizes and heterogeneity of variance.

The probability of finding any region of significance greatly exceeded the nominal significance level for all forms of heteroscedasticity. As explicated by Potthoff (1964) the Johnson-Neyman technique may be used to specify the region of significance, but does not set simultaneous confidence bounds. For example, one can say with 95 percent confidence that for any specific point P within the region of significance that there is a true difference between the two groups when nominal alpha equals .05. One cannot say with 95 percent confidence that for all points within the region of significance there is a true difference in performance for the two groups.

Although not directly related to the research questions of the dissertation, it is of interest to inquire how to set a simultaneous confidence bound equal to the nominal alpha level. Potthoff suggests a method for setting simultaneous confidence bounds which is basically identical with the defining inequality for the Johnson-Neyman region of significance with the exception that F_{1,n_1+n_2-4} ; a is replaced by (r+1)F

 $r+1, n_1+n_2-4; \alpha$, where r is the number of concomitant variables. When this procedure was tested for the simulated experimental condition of equal group sizes (10,10) and equal variances $(\sigma_y|x^{=1}, \sigma_y|x^{=1})$ the probability of finding a region of significance matched the nominal α level as shown

- 27 -

Empirical Results Obtained Using Potthoff's Simultaneous Confidence Bounds When All Assumptions Are Met and Group Size Equals 10

	Nominal Alpha				
	.10	.05	.025	.01	
Simultaneous Confidence Coefficient	.099	.047	.025	.011	

Therefore, it is recommended that Potthoff's procedure for obtaining simultaneous confidence bounds for the Johnson-Neyman technique be utilized when one wishes to obtain a region where one can state with 1- α confidence that there is a treatment effect simultaneously for all points within the region.

A second approach to maintaining the experiment-wise Type I error rate at the nominal significance level is to follow the procedure suggested by Johnson and Jackson (1959) and Abelson (1953). First, test for homogeneity of regression; if this hypothesis is rejected proceed with the Johnson-Neyman technique, otherwise, use ANCOVA.

The marked effect of heteroscedasticity on the Johnson-Neyman technique suggests that when heteroscedasticity is observed in the data that the use of the Johnson-Neyman technique is not appropriate if the heteroscedasticity cannot be eliminated or minimized. If forms C and D are present in the data it may be possible to apply a variance-stabilizing transformation (Dayton, 1970). The problem of estimating and testing regression coefficients when $\sigma_{\mathbf{y}}^{\prime}|\mathbf{x}_{i,j}$ is a function of $\mathbf{x}_{i,j}^{\prime}$

has been discussed by Rutemiller and Bowers (1968) and Levenbach (1973). However, the proper way of dealing with heteroscedasticity was a problem presented in the original Johnson and Neyman article (1936) and it has not been solved to date.

SUMMARY

The robustness of the Johnson-Neyman technique and analysis of covariance (ANCOVA) to violations of assumptions of homoscedasticity and homogeneity of variance was tested through use of Monte Carlo computer procedures. The study simulated a one-way, fixed-effects analysis with two treatment groups, one criterion, Y, and one covariate, X. Five fixed values of the covariate were selected with zero mean and unit variance, while the values of Y were varied randomly with a constant regression coefficient of .75. Four combinations of group sizes (10,10; 10,20;20,10;20,20), five combinations of group variances (1,1;1,2;2,1;1,5;5,1), and five forms of heteroscedasticity (combined in 18 different

pairs), were studied. These conditions were combined to produce 186 different simulated experimental conditions. For each simulated condition, 3000 pseudo-random samples were generated and sampling distributions relevant to the Johnson-Neyman technique and ANCOVA were compiled.

Results indicated that ANCOVA is robust to violations of assumptions of homoscedasticity and homogeneity of variance, both singly and in combination, when group sizes were equal. For cases of different group sizes and heterogeneous variances a predictable bias was observed. When the larger variance was combined with the larger group size the bias was conservative. When the pairings were reversed the bias was non-conservative. The Johnson-Neyman technique was sensitive to violation of the assumption of homoscedasticity for both equal and unequal group sizes. The effect of heteroscedasticity was to order the probability that any fixed value of X would be included in a region of significance in a sequence parallel to the form of heteroscedasticity. That is, in general, as the variance for a fixed value of X increased, the probability of including that value of the covariate in a region of significance increased. As observed with ANCOVA, the Johnson-Neyman technique was robust to heterogeneity of variance when group sizes were equal. However, when group sizes were not equal the empirical probabilities were biased in a non-conservative direction when the larger variance was combined with the smaller group size, and in a conservative direction when the larger variance and larger group size were combined.

REFERENCES

- Abelson, R. P. A note on the Neyman-Johnson technique. Psychometrika, 1953, 18, 213-218.
- Atiqullah, M. The robustness of the covariance analysis of a one-way classification. Biometrika, 1964, 51, 365-372.
- Bartlett, C. J., and O'Leary, B. A differential prediction model to moderate the effects of heterogeneous groups in personnel selection and classification. <u>Personnel Psychology</u>, 1969, <u>22</u>, 1-17.
- Box, G. E. P. Some theorems on quadratic forms applied in the study of analysis of variance problems: I. Effect of inequality of variance in the one-way classification. The Annals of Mathematical Statistics, 1954, 25, 290-302.
- Bracht, G. H. Experimental factors related to aptitude-treatment interactions. Review of Educational Research, 1970, 40, 627-645.
- Cochran, W. G. Analysis of covariance: Its nature and uses. <u>Biometrics</u>, 1957, 13, 261-281
- Dayton, C. M. The design of educational experiments. New York: McGraw-Hill, 1970.
- Ghiselli, E. E. Moderating effects and differential reliability and validity. <u>Journal of Applied Psychology</u>, 1963, <u>47</u>, 81-86.
- Glass, G. V., Peckham, P. D., and Sanders, J. R. Consequences of failure to meet assumptions underlying the fixed effects analysis of variance and covariance.

 Review of Educational Research, 1972, 42(3), 237-288.
- Elashoff, J. D. Analysis of covariance: A delicate instrument.

 American Educational Research Journal, 1969, 6, 383-401.
- Hamilton, B. L. A Monte Carlo comparison of parametric and nonparametric uses of a concomitant variable. Unpublished doctoral dissertation, University of Maryland, College Park, Maryland, 1972.
- Johnson, P. O., and Jackson, R. W. B. <u>Modern statistical methods descriptive</u> and inductive. Chicago: Rand-McNally, 1959.
- Johnson, P. O., and Neyman, J. Tests of certain linear hypotheses and their application to some educational problems. In J. Neyman and E. S. Pearson (Eds.), <u>Statistical Research Memoirs</u>, 1936, <u>1</u>, 57-93.
- Levenbach, H. The estimation of heteroscedasticity from a marginal likelihood function. <u>Journal of the American Statistical Association</u>, 1973, 68(342), 436-439.
- Lindquist, E. F. Design and analysis of experiments in psychology and education. Boston: Houghton Mifflin Co., 1953.

- McClaren, V. R. An investigation of the effect of violating the assumption of homogeneity of regression slopes in the analysis of covariance model upon the F-statistic. Unpublished doctoral dissertation, North State Texas University, Denton, Texas, 1972.
- Peckham, P. D. An investigation of the effects of non-homogeneity of regression slopes upon the F-test of analysis of covariance. Laboratory of Educational Research, Report No. 16, University of Colorado, Boulder, Colorado, 1968.
- Potthoff, R. F. On the Johnson-Neyman technique and some extensions thereof. Psychometrika, 1964, 29, 241-256.
- Potthoff, R. F. Some Scheffe-type tests for some Behrens-Fisher type regression problems. <u>Journal of the American Statistical Association</u>, 1965, 60, 1163-1190.
- Rutemiller, H. C., and Bowers, D. A. Estimation in a heteroscedastic regression model. <u>Journal of the American Statistical Association</u>, 1968, 63, 552-557.
- Scheffe, H. The analysis of variance. New York: Wiley, 1959.
- Siegel, S. <u>Nonparametric statistics for the behavioral sciences</u>. New York: McGraw-Hill, 1956.
- University of Maryland UNIVAC 1108 Exec 8 Math-Pak Users Guide. College Park, Md.: Computer Science Center, University of Maryland, 1970.
- Winer, B. J. Statistical principles in experimental design. New York: McGraw-Hill, 1971.

ARI Distribution List

4 OASD (M&RA)	2 HOUSACDEC, Ft Ord, ATTN: Library
2 HQDA (DAMI-CSZ)	1 HQUSACDEC, Ft Ord, ATTN: ATEC-EX-E-Hum Factors
1 HQDA (DAPE-PBR	2 USAEEC, Ft Benjamin Hárrison, ATTN: Library
1 HQDA (DAMA-AR)	1 USAPACDC, Ft Benjamin Harrison, ATTN: ATCP-HR
1 HQDA (DAPE-HRE-PO)	1 USA Comm-Elect Sch, Ft Monmouth, ATTN: ATSN-EA
1 HQDA (SGRD-ID)	1 USAEC, Ft Monmouth, ATTN: AMSEL-CT-HDP
1 HQDA (DAMI-DOT-C)	1 USAEC, Ft Monmouth, ATTN: AMSEL-PA-P
1 HQDA (DAPC-PMZ-A)	1 USAEC, Ft Monmouth, ATTN: AMSEL-SI-CB
1 HQDA (DACH-PPZ-A)	1 USAEC, Ft Monmouth, ATTN: C, Faci Dev Br
1 HQDA (DAPE-HRE)	1 USA Materials Sys Anal Agcy, Aberdeen, ATTN: AMXSY—P
1 HQDA (DAPE-MPO-C)	1 Edgewood Arsenal, Aberdeen, ATTN: SAREA-BL-H
1 HQDA (DAPE-DW)	1 USA Ord Ctr & Sch, Aberdeen, ATTN: ATSL-TEM-C
1 HQDA (DAPE-HRL)	2 USA Hum Engr Lab, Aberdeen, ATTN: Library/Dir
1 HQDA (DAPE-CPS)	1 USA Combat Arms Tng Bd, Ft Benning, ATTN: Ad Supervisor
1 HQDA (DAFD-MFA)	1 USA Infantry Hum Rsch Unit, Ft Benning, ATTN: Chief
1 HQDA (DARD-ARS-P)	1 USA Infantry Bd, Ft Benning, ATTN: STEBC-TE-T
1 HQDA (DAPC-PAS-A)	1 USASMA, Ft Bliss, ATTN: ATSS-LRC
1 HQDA (DUSA-OR)	1 USA Air Def Sch, Ft Bliss, ATTN: ATSACTDME
1 HQDA (DAMO-RQR)	1 USA Air Def Sch, Ft Bliss, ATTN: Tech Lib
1 HQDA (DASG)	1 USA Air Def Bd, Ft Bliss, ATTN: FILES
1 HQDA (DA10-PI)	1 USA Air Def Bd, Ft Bliss, ATTN: STEBD-PO
1 Chief, Consult Div (DA-OTSG), Adelphi, MD	1 USA Cmd & General Stf College, Ft Leavenworth, ATTN: Lib
1 Mil Asst. Hum Res, ODDR&E, OAD (E&LS)	1 USA Cmd & General Stf College, Ft Leavenworth, ATTN: ATSW-SE-L
1 HQ USARAL, APO Seattle, ATTN: ARAGP-R	1 USA Cmd & General Stf College, Ft Leavenworth, ATTN: Ed Advisor
1 HQ First Army, ATTN: AFKA-OI-TI	1 USA Combined Arms Cmbt Dev Act, Ft Leavenworth, ATTN: DepCdr
2 HQ Fifth Army, Ft Sam Houston	1 USA Combined Arms Cmbt Dev Act, Ft Leavenworth, ATTN: CCS
1 Dir, Army Stf Studies Ofc, ATTN: OAVCSA (DSP)	1 USA Combined Arms Cmbt Dev Act, Ft Leavenworth, ATTN: ATCASA
1 Ofc Chief of Stf, Studies Ofc	1 USA Combined Arms Cmbt Dev Act, Ft Leavenworth, ATTN: ATCACO-
1 DCSPER, ATTN: CPS/OCP	1 USA Combined Arms Cmbt Dev Act, Ft Leavenworth, ATTN: ATCACC—
1 The Army Lib, Pentagon, ATTN: RSB Chief	1 USAECOM, Night Vision Lab, Ft Belvoir, ATTN: AMSEL-NV-SD
1 The Army Lib, Pentagon, ATTN: ANRAL	3 USA Computer Sys Cmd, Ft Belvoir, ATTN: Tech Library
1 Ofc, Asst Sect of the Army (R&D)	1 USAMERDC, Ft Belvoir, ATTN: STSFB-DQ
1 Tech Support Ofc, OJCS	1 USA Eng Sch, Ft Belvoir, ATTN: Library
1 USASA, Arlington, ATTN: IARD-T	1 USA Topographic Lab, Ft Belvoir, ATTN: ETL-TD-S
1 USA Rsch Ofc, Durham, ATTN: Life Sciences Dir	1 USA Topographic Lab, Ft Belvoir, ATTN: STINFO Center
2 USARIEM, Natick, ATTN: SGRD-UE-CA	1 USA Topographic Lab, Ft Belvoir, ATTN: ETL-GSL
1 USATTC, Ft Clayton, ATTN: STETC-MO-A	1 USA Intelligence Ctr & Sch, Ft Huachuca, ATTN: CTD-MS
1 USAIMA, Ft Bragg, ATTN: ATSU-CTD-OM	1 USA Intelligence Ctr & Sch, Ft Huachuca, ATTN: ATS-CTD-MS
1 USAIMA, Ft Bragg, ATTN: Marquat Lib	1 USA Intelligence Ctr & Sch, Ft Huachuca, ATTN: ATSI-TE
1 US WAC Ctr & Sch, Ft McClellan, ATTN: Lib	1 USA Intelligence Ctr & Sch, Ft Huachuca, ATTN: ATSI-TEX-GS
1 US WAC Ctr & Sch, Ft McClellan, ATTN: Tng Dir	1 USA Intelligence Ctr & Sch, Ft Huachuca, ATTN: ATSI-CTS-OR
1 USA Quartermaster Sch, Ft Lee, ATTN: ATSM-TE	1 USA Intelligence Ctr & Sch, Ft Huachuca, ATTN: ATSI-CTD-DT
1 Intelligence Material Dev Ofc, EWL, Ft Holabird	1 USA Intelligence Ctr & Sch, Ft Huachuca, ATTN: ATSI-CTD-CS
1 USA SE Signal Sch, Ft Gordon, ATTN: ATSO-EA	1 USA Intelligence Ctr & Sch, Ft Huachuca, ATTN: DAS/SRD
1 USA Chaplain Ctr & Sch, Ft Hamilton, ATTN: ATSC-TE-RD	1 USA Intelligence Ctr & Sch, Ft Huachuca, ATTN: ATSI-TEM
1 USATSCH, Ft Eustis, ATTN: Educ Advisor	1 USA Intelligence Ctr & Sch, Ft Huachuca, ATTN: Library
1 USA War College, Carlisle Barracks, ATTN: Lib	1 CDR, HQ Ft Huachuca, ATTN: Tech Ref Div
2 WRAIR, Neuropsychiatry Div	2 CDR, USA Electronic Prvg Grd, ATTN: STEEP-MT-S
1 DLI, SDA, Monterey	1 CDR, Project MASSTER, ATTN: Tech Info Center
1 USA Concept Anal Agcy, Bethesda, ATTN: MOCA-WGC	1 Hq MASSTER, USATRADOC, LNO
1 USA Concept Anal Agcy, Bethesda, ATTN: MOCA-MR	1 Research Institute, HQ MASSTER, Ft Hood
1 USA Concept Anal Agcy, Bethesda, ATTN: MOCA-JF	1 USA Recruiting Cmd, Ft Sherdian, ATTN: USARCPM-P
1 USA Artic Test Ctr, APO Seattle, ATTN: STEAC-MO-ASL	1 Senior Army Adv., USAFAGOD/TAC, Elgin AF Aux Fld No. 9
1 USA Artic Test Ctr, APO Seattle, ATTN: AMSTE-PL-TS	1 HQ USARPAC, DCSPER, APO SF 96558, ATTN: GPPE-SE
1 USA Armament Cmd, Redstone Arsenal, ATTN: ATSK-TEM	1 Stimson Lib, Academy of Health Sciences, Ft Sam Houston
1 USA Armament Cmd, Rock Island, ATTN: AMSAR-TDC	1 Marine Corps Inst., ATTN: Dean—MCI
1 FAA-NAFEC, Atlantic City, ATTN: Library	1 HQUSMC, Commandant, ATTN: Code MTMT 51
1 FAA-NAFEC, Atlantic City, ATTN: Hum Engr Br	1 HQUSMC, Commandant, ATTN: Code MPI-20
1 FAA Aeronautical Ctr, Oklahoma City, ATTN: AAC-44D	2 USCG Academy, New London, ATTN: Admission
2 USA Fld Arty Sch, Ft Sill, ATTN: Library	2 USCG Academy, New London, ATTN: Library
1 USA Armor Sch, Ft Knox, ATTN: Library	1 USCG Training Ctr, NY, ATTN: CO
USA Armor Sch, Ft Knox, ATTN: ATSB-DI-E	1 USCG Training Ctr, NY, ATTN: Educ Svc Ofc
USA Armor Sch, Ft Knox, ATTN: ATSB-DT-TP	1 USCG, Psychol Res Br, DC, ATTN: GP 1/62 1 HQ Mid-Range Br, MC Det, Quantico, ATTN: P&S Div

- 1 US Marine Corps Liaision Ofc, AMC, Alexandria, ATTN: AMCGS-F
- 1 USATRADOC, Ft Monroe, ATTN: ATRO-ED
- 6 USATRADOC, Ft Monroe, ATTN: ATPR-AD
- 1 USATRADOC, Ft Monroe, ATTN: ATTS-EA
- 1 USA Forces Cmd, Ft McPherson, ATTN: Library
- 2 USA Aviation Test Bd, Ft Rucker, ATTN: STEBG-PO
- 1 USA Agey for Aviation Safety, Ft Rucker, ATTN: Library
- 1 USA Agey for Aviation Safety, Ft Rucker, ATTN: Educ Advisor
- 1 USA Aviation Sch, Ft Rucker, ATTN: PO Drawer O
- 1 HQUSA Aviation Sys Cmd, St Louis, ATTN: AMSAV-ZDR
- 2 USA Aviation Sys Test Act., Edwards AFB, ATTN: SAVTE-T
- 1 USA Air Def Sch, Ft Bliss, ATTN: ATSA TEM
- 1 USA Air Mobility Rsch & Dev Lab, Moffett Fld, ATTN: SAVDL-AS
- 1 USA Aviation Sch, Res Tng Mgt, Ft Rucker, ATTN: ATST-T-RTM
- 1 USA Aviation Sch, CO, Ft Rucker, ATTN: ATST-D-A
- 1 HQ, USAMC, Alexandria, ATTN: AMXCD-TL
- 1 HQ, USAMC, Alexandria, ATTN: CDR
- 1 US Military Academy, West Point, ATTN: Serials Unit
- 1 US Military Academy, West Point, ATTN: Ofc of Milt Ldrshp
- 1 US Military Academy, West Point, ATTN: MAOR
- 1 USA Standardization Gp, UK, FPO NY, ATTN: MASE-GC
- 1 Ofc of Naval Rsch, Arlington, ATTN: Code 452
- 3 Ofc of Naval Rsch, Arlington, ATTN: Code 458
- 1 Ofc of Navai Risch, Arlington, ATTN: Code 450
- Ofc of Naval Rsch, Arlington, ATTN: Code 441
- 1 Naval Aerospc Med Res Lab, Pensacola, ATTN: Acous Sch Div
- Naval Aerospc Med Res Lab, Pensacola, ATTN: Code L51
- Naval Aerospc Med Res Lab, Pensacola, ATTN: Code L5
- Chief of NavPers, ATTN: Pers-OR
- NAVAIRSTA, Norfolk, ATTN: Safety Ctr
- 1 Nav Oceanographic, DC, ATTN: Code 6251, Charts & Tech
- Center of Naval Anal, ATTN: Doc Ctr
- NavAirSysCom, ATTN: AIR-5313C
- Nav BuMed, ATTN: 713
- NavHelicopterSubSqua 2, FPO SF 96601
- 1 AFHRL (FT) William AFB
- 1 AFHRL (TT) LOWRY AFB
- 1 AFHRL (AS) WPAFB, OH
- 2 AFHRL (DOJZ) Brooks AFB
- 1 AFHRL (DOJN) Lackland AFB
- 1 HOUSAF (INYSD)
- 1 HQUSAF (DPXXA)
- 1 AFVTG (RD) Randolph AFB
- 3 AMRL (HE) WPAFB, OH
- 2 AF Inst of Tech, WPAFB, OH, ATTN: ENE/SL
- 1 ATC (XPTD) Randolph AFB
- 1 USAF AeroMed Lib, Brooks AFB (SUL-4), ATTN: DOC SEC
- 1 AFOSR (NL), Arlington
- 1 AF Log Cmd, McClellan AFB, ATTN: ALC/DPCRB
- 1 Air Force Academy, CO, ATTN: Dept of Bel Scn
- 5 NavPers & Dev Ctr, San Diego
- 2 Navy Med Neuropsychiatric Rsch Unit, San Diego
- Nav Electronic Lab, San Diego, ATTN: Res Lab
- 1 Nav TrngCen, San Diego, ATTN: Code 9000-Lib
- NavPostGraSch, Monterey, ATTN: Code 55Aa
- NavPostGraSch, Monterey, ATTN: Code 2124 1 NavTrngEquipCtr, Orlando, ATTN: Tech Lib
- 1 US Dept of Labor, DC, ATTN: Manpower Admin
- 1 US Dept of Justice, DC, ATTN: Drug Enforce Admin 1 Nat Bur of Standards, DC, ATTN: Computer Info Section
- Nat Clearing House for MH-Info, Rockville
- 1 Denver Federal Ctr, Lakewood, ATTN: BLM
- 12 Defense Documentation Center
- 4 Dir Psych, Army Hq, Russell Ofcs, Canberra
- Scientific Advsr, Mil Bd, Army Hq, Russell Ofcs, Canberra
- Mil and Air Attache, Austrian Embassy
- 1 Centre de Recherche Des Facteurs, Humaine de la Defense Nationale, Brussels
- 2 Canadian Joint Staff Washington
- 1 C/Air Staff, Royal Canadian AF, ATTN: Pers Std Anal Br
- 3 Chief, Canadian Def Rsch Staff, ATTN: C/CRDS(W)
- 4 British Def Staff, British Embassy, Washington

- Def & Civil Inst of Enviro Medicine, Canada
- AIR CRESS, Kensington, ATTN: Info Sys Br
- Militaerpsykologisk Tjeneste, Copehagen
- 1 Military Attache, French Embassy, ATTN: Doc Sec
- Medecin Chef, C.E.R.P.A.-Arsenal, Toulon/Naval France
- 1 Prin Scientific Off, Appl Hum Engr Rsch Div, Ministry of Defense, New Delhi
- 1 Pers Rsch Ofc Library, AKA, Israel Defense Forces
- 1 Ministeris van Defensie, DOOP/KL Afd Sociaal Psychologische Zaken, The Hague, Netherlands