Physik Klasse 10 Realschule Bayern

7h3730B

27. Oktober 2020

Inhaltsverzeichnis

$1 ext{ El}$	ektronil	<u>.</u>			
1.3	l Wied ϵ	erholung			
	1.1.1	physikalische Größen			
	1.1.2	Formeln			
1.2	2 Das C	hmische Gesetz			
	1.2.1	Definition			
	1.2.2	Wann gilt das Ohmische Gesetz?			
1.5	Widerstand				
	1.3.1	Modellvorstellung			
	1.3.2	Definition			
	1.3.3	Verhältnis von R zu l (Länge)			
	1.3.4	Verhältnis von R zu A (Fläche)			
	1.3.5	spezifischer Widerstand			
	1.3.6	Bauformen von Widerständen			
1.4	4 Leitwe	ert			
	1.4.1	Definition			
1.5	5 Änder	Änderung des Widerstandes bei Temperaturänderung			
	1.5.1	Erklärung			
	1.5.2	Arten von Leitern			
1.6	3 Supra	Supraleiter			
	1.6.1	Beispiele			
1.	7 Parall	elschaltung			
	1.7.1	Stromstärke			
	1.7.2	Spannung			
	1.7.3	Widerstand			
	1.7.4	Leitwert			
1.8	8 Reihei	nschaltung			
	1.8.1	Stromstärke			
	1.8.2	Spannung			
	1.8.3	Widerstand			
1.9) Innen	widerstand von Spannungswandlern			
1 .		derstand			

1 Elektronik

1.1 Wiederholung

1.1.1 physikalische Größen

physikalische Größe	Formelbuchstabe	Einheit
Stromstärke	I	1A (Ampere)
Ladung	Q	1C (Coulumb)
Spannung	U	1V (Volt)
Leistung	Р	$1W \text{ (Watt) } (\frac{J}{s}) \text{ (V * A)}$
Widerstand	R	$1\Omega \; (\mathrm{Ohm}) \; (\frac{V}{A})$
Siemens	G	1S (Siemens) $(\frac{A}{V})$

1.1.2 Formeln

- $R = \frac{U}{I}$
- G = $\frac{I}{U}$
- P = U * I
- $P = R * I^2$
- $P = \frac{U^2}{R}$

1.2 Das Ohmische Gesetz

1.2.1 Definition

Das Ohmische Gesetz besagt, dass der Widerstand eines Materials, auch bei Anderung der Stromstärke, immer gleich bleibt.

1.2.2 Wann gilt das Ohmische Gesetz?

Das Ohmische Gesetz gilt für ein Material wenn I direkt proportonial zu U ist (I U) Grafisch: - Der Graph zeigt eine Ursprungshalbgerade Rechnerisch: - $\frac{U}{I}$ = konst.

1.3 Widerstand

1.3.1 Modellvorstellung

Die Leiter haben die unterschiedlichen Eigenschaften die Bewegung der freien Elektronen zu bremsen. => Sie haben unterschiedlichen Widerstand.

2

1.3.2 Definition

Widerstand =
$$\frac{Spannung}{Stromstrke}$$

R = $\frac{U}{I}$
[R] = $1\frac{V}{A}$ = 1 Ω (Ohm)

1.3.3 Verhältnis von R zu I (Länge)

Grafisch:

- R und l ergeben eine Ursprungshalbgerade rechnerisch:
- R ist direkt proportional zu l => R l

1.3.4 Verhältnis von R zu A (Fläche)

Grafisch:

- R und A ergeben einen Hyperbelast rechnerisch:
- R ist indirekt proportional zu A => R ist indirekt proportional zu A

1.3.5 spezifischer Widerstand

$$\begin{array}{l} \rho = \mathrm{R} * \frac{A}{l} = \frac{R*A}{l} \\ [\rho] = 1 \; \frac{\Omega m m^2}{m} \end{array}$$

1.3.6 Bauformen von Widerständen

- Drahtwiderstand
- Schichtwiderstand
- SMD-Widerstände
- Schiebewiderstand (Potentiometer)

1.4 Leitwert

1.4.1 Definition

Widerstand =
$$\frac{Stromstrke}{Spannung}$$

G = $\frac{I}{U}$
[G] = $\frac{1}{R} 1\frac{A}{V} = 1$ S (Siemens)

1.5 Änderung des Widerstandes bei Temperaturänderung

1.5.1 Erklärung

Temperatur erhöt sich

- => Eigenbewegung der Gitterionen nimmt zu (schwingen um ihre Eigenlage)
- => freie Elektronen treten häufiger in Wechselwirkungn mit Gitterionen
- => Stromfluss wird gehemt (I sinkt und R steigt auch)

1.5.2 Arten von Leitern

• - Kaltleiter:

Kaltleiter leiten im kalten Zustand besser

- z. B. Eisen
- - Warmleiter:

Warmleiter leiten im heißen Zustand besser

z. B. Graphit

1.6 Supraleiter

- sehr niedrige Temperatur => Widerstand = 0 (Supraleitfähigkeit)
- Der Leiter erreicht eine bestimmte Temperatur T(tiefergestelltes C) sprunghaft Null bzw. unmessbar klein
- Mehrere Tausend Legierungen und Verbindungen bekannt
- Supraleiter, Siedetemperatur > flüssigen Stickstoff (77 K) = Hochtemperatursupraleiter
- Die existierenden Supraleiter unterscheiden sich in ihrer Reaktion auf Magnetfelder

1.6.1 Beispiele

- Verlustfreie elektrische Energie durch supraleitende Kabel
- Magnetschwebetechnik/Magnetschwebebahn
- Magnetkameras für medizinische Untersuchungen (Kernspintomographie)
- Teilchenbeschleuniger

Modellvor

1.7 Parallelschaltung

1.7.1 Stromstärke

Alle Stromstärken addiert ergeben die Gesamtstromstärke. ($I_1 = \frac{U_1}{R_1}$)

1.7.2 Spannung

Die Spannungen sind überall gleich

1.7.3 Widerstand

Der Gesamtwiderstand ist immer kleiner als der kleinste Widerstand $\frac{I_1}{I_2} = \frac{R_2}{R_1}$

$$\frac{1}{R_G} = \frac{1}{R_1} + \frac{1}{R_2} \dots = > (\frac{1}{RG})^{-1} = RG$$

1.7.4 Leitwert

Alle Leitwerte addiert ergeben den Gesamtleitwert

1.8 Reihenschaltung

1.8.1 Stromstärke

Die Stromstärke ist überall gleich. (I = $\frac{U}{R})$

1.8.2 Spannung

Alle Teilspannungen addiert ergeben die Gesamtspannung. (U = R * I)

1.8.3 Widerstand

Alle Widerstände addiert ergeben den Gesamtwiderstand.

Die Spannungen stehen im selben Verhältnis wie die Widerstände $\frac{U_G}{U_1} = \frac{R_G}{R_1}$

1.9 Innenwiderstand von Spannungswandlern

 I_k ist bei U = 0 und U_0 ist bei I = 0

- $R_a = R_i + R_a$
- $\bullet \ U_0 = U_i + U_a$
- $\bullet \ U_a = U_0 U_i$
- $\bullet \ U_a = U_0 R_i * I$

Wenn $R_a=0$ ist, dann entsteht ein Kurzschluss

- $\bullet => U_a=0$
- $\bullet => 0 = U_0 R_i * I$
- $\bullet => R_i = \frac{U_0}{I}$

1.10 Vorwiderstand

- Eine Reihenschaltung mit einem VOrwiderstand R_v begrenzt den Strom beim Anschluss der Glühlampe an eine Spannungsquelle mit zu hoher Spannung.
- Ein Vorwiderstand führt auf jeden Fall zu Energieverlust
- Mit den Gesetzen der Reihenschaltung lässt sich der richtige Vorwiderstand berechnen
- Ein Schiebewiderstand wirkt als reiner Spannungsteiler
- Wenn ein Vorwiderstand im Spiel ist hat man immer einen Energieverlust in thermische Energie (Wärme)

5