Web 3.0 Cryptography

Karim Stekelenburg

What are we going to discuss Index

- History of cryptography
- Polymorphism
- Hashing
- Symmetric cryptography
- Asymmetic cryptography
- Exchanging keys

History of cryptography

First occurrences of cryptography

Ancient cryptography

- Egypt Khnumhotep II 1900 BC Symbol replacement
 - Used to 'enhance it linguistic appeal', not to conceal.
- West Asia Mesopotamia 1500 BC Symbol replacement
 - Used to conceal a pottery glaze formula
- Greece Sparta 900 BC 192 BC Cylinder folding
 - Used to conceal military messages
 - Strokes with text were wrapped around a cylinder with a specific diameter

Cesar cypher Roman empier

ABCDEFGHIJKLMNOPQRSTUVWXY

Left shift of 3 characters

DEFGHIJKLMNOPQRSTUVWXYABC

Cesar cipher Roman empier

ABCDEFGHIJKLMNOPQRSTUVWXY

Left shift of 3 characters

DEFGHIJKLMNOPQRSTUVWXYABC

yilzhzexfk jfklo

blockchain minor

The cipher wheel

AKA Jefferson disk —1795

The enigma machine wwn

The 'big' problem with these techniques?

Once you know the algorithm, you can crack the code

Examples

- Spartan cylinder
 - If I know the cylinder's diameter, I can crack the code
- Cesar cipher
 - If I know the shift, I can crack the code
- Enigma machine
 - If I know the configuration, I can crack the code

Modern cryptography

Polymorphism

- A very mathematical and complex subject.
 - Far beyond the scope of this course.
- In essence: the cipher changes itself with each use.

Almost all modern cryptography is based on polymorphic cryptography

Hashing A 'one way function'

(Input)

01011010001

10010010011

11100111000

(Hash value)

Hashing

Properties

- The same input can produce different outputs (polymorphic)
- Different inputs should never produce the same output
- The hash of an input is quick to calculate
- The input of a hash value is **slow** to calculate
- Hashing is NOT the same as encryption

Single key encryption

The problem

Applications

- Banking Encrypting credit card data or other personally identifiable information
- Data storage Encrypting data on a device (when it's not being transferred)

Properties

- The same key is used to encrypt and decrypt messages
- In order for someone to decrypt a message, they need to know the key
- Transmitting the key is dangerous, because eves-droppers might catch it
- Relatively fast

Asymmetric encryption

AKA public key cryptography

Asymmetric decryption

AKA public key cryptography

Creating signatures

Verifying signatures

Applications

- Digital signatures
- Blockchain (confirming the identity to authorize transactions)
- Public key infrastructure (PKI) (signed certificates)

Properties

- Multiple keys are used to encrypt and decrypt messages
- In order for someone to decrypt a message meant for Bob (encrypted using his public key), key need to know his private key.
- No key or 'shared secret' needs to transmitted, only variables.
- Relatively slow compared to symmetric cryptography

A solution to the performance issues of asymmetric encryption

Diffie-Hellman Key Exchange

Diffie-Hellman key exchange

- Solves the problem of exchanging the symmetric key
- It does so by creating a exchanging mathematical variables, but the key itself.
- These variables are then used to create the same key by both parties
- The result is that:
 - We have the security of asymmetric encryption.
 - We have the speed of symmetric encryption.

Diffie Hellman key exchange

Relevant questions

For the final presentation

- Does the technology use hashing? If so, why?
- Does the technology use encryption?
 - If so:
 - Why?
 - Is it symmetric or asymmetric, or maybe a combination?
 - Why that particular encryption choise?
 - If not:
 - Are there any gains to using encryption? Is there some potential?