Appendix A

Basic String Manipulations in R

In this Appendix we summarize some of the basic string manipulation capabilities of R. For more powerful and complex capabilities, especially regular expressions, consult Chapter 5 in Gentleman [26].

Elementary string manipulations

First, use a simple test string to show the substring function.

```
> ts="abcde"
> substring(ts,1,1) # What is the first character in ts?
[1] "a"
> substring(ts,1,1)="X" # Change the first character to "X"
> ts
[1] "Xbcde"
> substring(ts,1,3) # What are the first three characters in ts?
[1] "Xbc"
```

nchar counts the number of characters in a string, which is different from the length (number of elements) of the string vector.

```
> nchar(ts) # Number of characters in ts
[1] 5
> length(ts) # Length of the vector ts
[1] 1
```

As a more relevant biological example, we examine the beginning of the lambda bacteriophage genome. We start with the first 70 bases.

The related function substr would yield just the first triplet.

[15] "CGG" "TTT" "AAG" "GCG" "TTT" "CCG"

The reverse of substring is paste.

The R base installation has functions toupper and tolower to convert strings between upper and lower case. The function chartr translates specified characters, and is useful to convert from DNA to RNA.

chartr can change more than one character at a time.

```
> chartr("ab","12","aabb")
[1] "1122"
```

We can thus use chartr to obtain the complement of the sequence.

```
> complam60 = chartr("ACGT", "TGCA", lam60)
> paste(rev(unlist(strsplit(complam60, split=""))),
    collapse="")
[1] "CGGAAACGCCTTAAACCGGAAAATTTTCATAAATAGCGAAAACCCGC
    GAGGTCGCCGCCC"
```

By combining chartr to convert the bases to their complements, strsplit to split the complement string into its components (remember to convert the resulting

list into a vector with unlist), rev to reverse the elements of the vector, and paste to recombine the vector elements into a string, one can write a function revcomp to obtain the reverse complement of the original DNA string.

```
> revcomp = function(DNAstr) {
step1 = chartr("ACGT","TGCA",DNAstr)
step2 = unlist(strsplit(step1, split=""))
step3 = rev(step2)
step4 = paste(step3, collapse="")
return(step4)
}
> revcomp(lam60)
[1] "CGGAAACGCCTTAAACCGGAAAATTTTCATAAATAGCGAAAACCCGC
GAGGTCGCCGCCC"
```

Genetic code translation

The Bioconductor package Biostrings contains the genetic code to convert triplets of bases to amino acids.

Biostrings contains the method AMINO_ACID_CODE to translate one-letter to three-letter amino acid codes. It selects the array element corresponding to the one-letter code, and replaces it with the three-letter equivalent. We apply it to the amino acid sequence above.

```
> AMINO_ACID_CODE[strsplit(as.character("GRRPRGFSLFMK
    IFRFKAFP"), NULL)[[1]]]
    G    R    R    P    R    G    F    S    L
"Gly" "Arg" "Arg" "Pro" "Arg" "Gly" "Phe" "Ser" "Leu"
         F     M     K    I    F
"Phe" "Met" "Lys" "Ile" "Phe"
```

Two things should be noted about this code. strspit returns a list, and [[1]] picks out the first (and only) element of the list, which is a vector. The outer square brackets then denote the element of the vector to which AMINO_ACID_CODE is applied.

Biostrings also has functions to reverse or complement nucleic acid sequences: reverse, complement, and reverseComplement operate on DNA and RNA sequences, which must be declared as such. See help(reverse) for details.

References

- Adler, F.: Modeling the Dynamics of Life: Calculus and Probability for Life Scientists, 2nd edn. Brooks/Cole (2005)
- Allman, E., Rhodes, J.: Mathematical Models in Biology: An Introduction. Cambridge University Press (2004)
- Alon, U.: An Introduction to Systems Biology: Design Principles of Biological Circuits. Chapman & Hall/CRC, Boca Raton, FL (2007)
- 4. Altman, D.: Practical Statistics for Medical Research. Chapman & Hall (1991)
- 5. Barkai, N., Leibler, S.: Robustness in simple biochemical networks. Nature **387**, 913–917 (1997)
- Beard, D., Qian, H.: Chemical Biophysics: Quantitative Analysis of Cellular Systems. Cambridge University Press (2008)
- 7. Berg, H.: E. coli in Motion. Springer (2003)
- 8. Bloomfield, V., Crothers, D., Tinoco Jr., I.: Nucleic Acids: Structures, Properties, and Functions. University Science Books (2000)
- 9. Boroujerdi, M.: Pharmacokinetics: Principles and Applications. McGraw-Hill (2002)
- Braun, M.: Differential Equations and Their Applications. An Introduction to Applied Mathematics, 4th edn. Springer (1993)
- 11. Cicirelli, M., Smith, L.: Cyclic amp levels during the maturation of xenopus oocytes. Dev. Biol. **108**, 254–258 (1985)
- 12. Council, N.R.: BIO 2010: Transforming Undergraduate Education for Future Research Biologists. The National Academies Press (2003)
- 13. Crank, J.: The Mathematics of Diffusion, 2nd edn. Oxford University Press (1975)
- 14. Cropper, W.: Mathematica Computer Programs for Physical Chemistry. Springer (1998)
- 15. Dalgaard, P.: Introductory Statistics with R. Springer (2002)
- 16. von Dassow, G., Meir, E., Munro, E., Odell, G.: The segment polarity network is a robust developmental module. Nature **406**, 188–192 (2000)
- 17. von Dassow, G., Odell, G.: Design and constraints of the *Drosophila* segment polarity module: Robust spatial patterning emerges from intertwined cell state switches. J. Exp. Zool. Mol. Dev. Evol. **294**, 179–215 (2002)
- 18. Deonier, R., Tavaré, S., Waterman, M.: Computational Genome Analysis: An Introduction. Springer (2005)
- 19. Diekmann, O., Heesterbeek, J.: Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation. John Wiley & Sons (2000)
- Eldar, A., Dorfman, R., Weiss, D., Ashe, H., Shilo, B.Z., Barkai, N.: Robustness of the bmp morphogen gradient in *Drosophila* embryonic patterning. Nature 419, 304–308 (2002)
- 21. Eldar, A., Rosin, D., Shilo, B.Z., Barkai, N.: Self-enhanced ligand degradation underlies robustness of morphogen gradients. Dev. Cell 5, 635–646 (2003)

314 References

22. Eldar, A., Shilo, B.Z., Barkai, N.: Elucidating mechanisms underlying robustness of morphogen gradients. Curr. Opin. Genet. Dev. **14**, 436–439 (2004)

- Everitt, B., Hothorn, T.: A Handbook of Statistical Analyses Using R. Chapman & Hall/CRC (2006)
- Fall, C., Marland, E., Wagner, J., Tyson, J. (eds.): Computational Cell Biology. Springer (2002)
- 25. Fell, D.: Understanding the Control of Metabolism. Portland Press (1997)
- 26. Gentleman, R.: R Programming for Bioinformatics. Chapman & Hall/CRC (2008)
- 27. Gentleman, R., Carey, V., Huber, W., Irizarry, R., Dudoit, S. (eds.): Bioinformatics and Computational Biology Solutions Using R and Bioconductor. Springer (2005)
- Gillespie, D.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem 81, 2340 (1977)
- Gillespie, D.: Stochastic simulation of chemical kinetics. Annu. Rev. Phys. Chem. 58, 35 (2007)
- Groen, A., Westerhoff, H.: Modern control theories: A consumers' test. In: A. Cornish-Bowden, M. Cardenas (eds.) Control of Metabolic Processes, chap. 6, pp. 101–118. Plenum Press (1990)
- 31. Hahne, F., Huber, W., Gentleman, R., Falcon, S.: Bioconductor Case Studies. Springer (2008)
- 32. Heinrich, R., Rapoport, T.: A linear steady-state treatment of enzymatic chains: general properties, control and effector strength. Eur. J. Biochem. 42, 89–95 (1974)
- 33. Heinrich, R., Schuster, S.: The Regulation of Cellular Systems. Chapman & Hall (1996)
- 34. Holling, C.: The components of predation as revealed by a study of small mammal predation of the european pine sawfly. Can. Entomol. **91**, 293–320 (1959)
- Ingolia, N.: Topology and robustness in the *Drosophila* segment polarity network. PLoS Biol. 2(6), 805–815 (2004)
- 36. Jones, O., Maillardet, R., Robinson, A.: Introduction to Scientific Programming and Simulation Using R. Chapman & Hall/CRC (2009)
- 37. Kacser, H., Burns, J.: The control of flux. Symp. Soc. Exp. Biol. 27, 65–104 (1973)
- 38. Keeling, M., Rohani, P.: Modeling Infectious Diseases in Humans and Animals. Princeton University Press (2008)
- 39. Keen, R., Spain, J.: Computer Simulation in Biology: A BASIC Introduction. Wiley-Liss (1992)
- Kermack, W., McKendrick, A.: A contribution to the mathematical theory of epidemics. Proc. R. Soc. London, Ser. A 115, 700–721 (1927)
- 41. Leslie, P., Gower, J.: Properties of a stochastic model for the predator-prey type of interaction between two species. Biometrika 47, 219–301 (1960)
- 42. Macheras, P., Iliadis, A.: Modeling in Biopharmaceutics, Pharmacokinetics, and Pharmacodynamics: Homogeneous and Heterogeneous Approaches. Springer (2006)
- 43. Maindonald, J., Braun, J.: Data Analysis and Graphics Using R: An Example-Based Approach, 2nd edn. Cambridge University Press (2007)
- 44. Mangan, S., Alon, U.: Structure and function of the feed-forward loop network motif. PNAS **100**(21), 11,980–11,985 (2003)
- 45. Milanese, M., Molino, G.: Structural identifiability of compartmental models and pathophysiological information from the kinetics of drugs. Math. Biosci. 26, 175–190 (1975)
- Molino, G., Milanese, M.: Structured analysis of compartmental models for the hepatic kinetics of drugs. J. Lab. Clin. Med. 85, 865–878 (1975)
- 47. Murrell, P.: R Graphics. Chapman & Hall/CRC (2006)
- 48. Nowak, M., May, R.: Virus Dynamics: Mathematical Principles of Immunology and Virology. Oxford University Press (2000)
- 49. Paradis, E.: Analysis of Phylogenetics and Evolution with R. Springer (2006)
- 50. Pearl, R.: The growth of populations. Q. Rev. Biol. **2**, 532–548 (1927)
- 51. Powers, W., Canale, R.: Some applications of optimization techniques to water quality modeling and control. IEEE Trans. Syst., Man, Cybernetics 5, 312–321 (1975)
- 52. Samuels, M., Witmer, J.: Statistics for the Life Sciences, 3rd edn. Pearson Education (2003)

References 315

53. SantaLucia Jr., J., Allawi, H., Seneviratne, P.: Improved nearest-neighbor parameters for predicting dna duplex stability. Biochemistry **35**, 3555–3562 (1996)

- Savageau, M.: Biochemical Systems Analysis: A Study of Function and Design in Molecular Biology. Addison-Wesley (1976)
- 55. Seefeld, K., Linder, E.: Statistics Using R with Biological Examples. http://cran.r-project.org/doc/contrib/Seefeld_StatsRBio.pdf (2007)
- 56. Simon, R., Korn, E., McShane, L., Radmacher, M., Wright, G., Zhao, Y.: Design and Analysis of DNA Microarray Investigations. Springer (2003)
- 57. Smith, H., Waltman, P.: The Theory of the Chemostat: Dynamics of Microbial Competition. Cambridge University Press (2008)
- Staub, J.F., Brezillon, P., Perault-Staub, A., Milhaud, G.: Nonlinear modeling of calcium metabolism—first attempt in the calcium-deficient rat. Trans. Inst. Measur. Control (London) 3, 89–97 (1981)
- Steinmetz, C., Larter, R.: The quasiperiodic route to chaos in a model of the peroxidaseoxidase reaction. J. Chem. Phys. 94(2), 1388–1396 (1991)
- 60. Stekel, D.: Microarray Bioinformatics. Cambridge University Press (2003)
- 61. Tanner, J.: The stability and intrinsic growth rates of predator and prey populations. Ecology **56**, 855–867 (1975)
- 62. Tinoco Jr., I., Sauer, K., Wang, J., Puglisi, J.: Physical Chemistry: Principles and Applications in Biological Sciences, 4th edn. Prentice-Hall (2002)
- 63. Torres, N., Voit, E.: Pathway Analysis and Optimization in Metabolic Engineering. Cambridge University Press (2002)
- 64. Venables, W., Ripley, B.: Modern Applied Statistics with S, 4th edn. Springer (2002)
- 65. Verzani, J.: Using R for Introductory Statistics. Chapman & Hall/CRC (2005)
- 66. Voit, E.: Computational Analysis of Biochemical Systems: A Practical Guide for Biochemists and Molecular Biologists. Cambridge University Press (2000)
- 67. Wilkinson, D.: Stochastic Modelling for Systems Biology. Chapman & Hall/CRC (2006)
- 68. Wolpert, L.: Positional information and the spatial pattern of cellular differentiation. J. Theor. Biol. 25, 1–47 (1969)
- Xia, T., SantaLucia Jr., J., Burkard, M., Kierzek, R., Schroeder, S., Jiao, X., Cox, C., Turner,
 D.: Thermodynamic parameters for an expanded nearest-neighbor model for formation of rna duplexes with watson-crick base pairs. Biochemistry 37, 14,719–14,735 (1998)

< -, assignment operator, 6	protein, 76
>, prompt symbol, 5	reading from file, 70
#, comment symbol, 5	spreadsheet files, reading and writing, 71
•	tables, reading and writing, 71
abline, 32	writing to file, 70
•	data frame, 19, 73
barplot, 25	decimal places, 5
Bioconductor, 82, 281, see also microarray	demonstrations, 3
Biostrings, 311	diagram, constructing, 37
mass spectrometry	expression, 37
PROcess, 273	plot.new, 37
Brownian motion, 167	plot.window, 37
, , , , , , , , , , , , , , , , , , , ,	plotmath, 37
calculations	segments, 37
arithmetic, 5	differential equations, 113
complex numbers, 5	analytical solution, 113
rounding, 8	limited growth, 117, 141
vector, 8	logistic, 141
cbind, 40, 258	second-order, 133
character vectors, 11	stochastic, 133
Chi-squared statistic, 239	differential equations, systems of
command window, 5	4th order Runge-Kutta, 124
compartmental models, 169	Euler method, 121
calcium metabolism, 172	improved Euler method, 122
liver function	lsoda, 128
multi-compartment, 171	odesolve, 124
two-compartment, 170	stability of, 130
periodic dosage, 170	diffusion, 159
conditional execution	Brownian motion, 167
if, 56	bacterial chemotaxis, 193
constants,built-in	countercurrent, 166
months, letters, pi, 45	Fick's first law, 159
CRAN, 3	Fick's second law, 160
curve, 26	Crank's stability criterion, 164
	numerical solution, 163
data	spherical and cylindrical geometries, 165
attach, 257	directory, changing, 69
	2 2

electrophoresis, 166	arrows, 36
enzyme kinetics, 175	axes, 34
competitive inhibition, 108	axis, 35
Eadie-Hofstee plot, 104, 106	axis labels, 31
Lineweaver-Burk plot, 23, 28, 103, 104	axis limits, 34
Michaelis-Menten mechanism, 23, 30, 31,	barplot
42, 103, 136	cross-hatching, 44
epidemics, 149	boxplot, 286
gonorrhea, 154	colors, 31
SI model of fatal infections, 153	curve, 26
SIR model, 150	data, 23, 25
with births and deaths, 152	with line, 29
SIS model of infection without immunity,	data, superimposing two or more series, 39
153	different sized plots in a figure, 44
equilibrium, chemical, 85	digitizing
equilibrium constant	identify, 45
experimental determination, 96	locator, 45
temperature dependence, 97	error bars, 44
ligand binding, 85	function, 26
cooperative, 90	histogram, 26, 252 stacked, 258
Hill plot, 94	
multiple sites, 89	line thickness, 31
oxygen binding by hemoglobin, 92	line type, 30
Scatchard plot, 87	line width, 30
nucleic acids, 98	math expressions, adding, 36
thermodynamic principles, 98	matplot, 40
exporting data, 69	placing several plots in a figure, 42
	plot characters
factor, 19, 75	size, cex, 29
for loop, 56	plotting points and lines, 40
Fourier transform, 246	setting parameters with par, 35
fft, 246	straight lines with abline, 32
periodogram, 247	superimposing curves, 41
spectrum, 247	text, adding, 35
functions	ticks, 34
built-in, 49	title, 31
Gaussian, 52	graphi
Lorentzian, 65	boxplot, 284
mathematical, 7	
matrix, 19	if, 56
string, see string manipulation	ifelse, 56
user-defined, 52	importing data, 69
vector, 10	isoelectric point, 54
rev, 311	1 ,
unlist, 311	kinetics, 113
	bimolecular reaction, 117
genetic code translation, 311	chemical interconversion, 115
genomics, see microarray	oscillating reaction, 128, 136, 138
graph, 23	stability of, 132
2d	T-jump method, 137
contour, 27	temperature-dependence, 137
image, 27, 284	competiture dependence, 137
3d	loyout 44
persp. 27	layout, 44 least-squares
persp, 47	icasi-suudies

non-linear, 109	probe mismatch correction, 290
LETTERS, 45	summarization, 290
letters, 45	two-color spot, 280
list, 20	Monte Carlo method, 210
logical	month.abb, 45
TRUE, FALSE, 13	month.name, 45
Lotka-Volterra model, 125, 145	
stability of, 131	nls, 109, 267
	residuals, 270
Markov chain, 214	summary, 269
diffusion, 214	nucleic acids
dinucleotide frequencies, 240	helix-coil transition, 98
matrix, 14	calculation of melting temperature, 99
arithmetic operations, 15	parameters for DNA, 99
determinant, 16	parameters for RNA, 99
	•
diagonal, 17	numerical analysis, 58
eigenvalues, 18	differentiation, 64
inverse, 17	integration, 63
multiplication, 16	smoothing noisy data, 67
other functions, 19	numerical differentiation, 64, 67
power, 242	diff, 64
transpose, 17	numerical integration, 63
metabolism, regulation of, 175	rectangular, 66
biochemical systems theory, 184	Simpson's rule, 67
feedback inhibition, 185	trapezoidal, 66
disequilibrium ratio, 178, 180	
metabolic control analysis, 181	optim, 62, 85
connectivity theorem, 184	order, 50
elasticities, 183	
flux control coefficients, 182	package, 72
stability, 186	datasets, 72
steady-state flux, 180	MASS, 82
successive reactions, 175, 178	Package Manager, 82
microarray, 279	seqinr, 76
Affymetrix, 280	par, 35
Bioconductor	compressing space with, 43
affy package, 281	mfrow and mfcol, 42
AffyBatch class, 282	periodogram, 247
ExpressionSet, 284, 291	pH titration curves, 54
exprs, 292	phase plot, 145
importing data in nonstandard form, 284	plot characters, 28
preprocessing with expresso, 291	population dynamics, 141, see also differential
detecting groups of genes, 297	equations, systems of
clustering, 300	epidemics, 149
correlation, 298	logistic, 141
principal component analysis, 302	variable carrying capacity, 143
differential gene expression, 293	Lotka-Volterra model, 145
paired samples, 293	microbial growth, 146
identifying highly expressed genes, 292	batch culture, 147
preprocessing, 280, 284, 286	chemostat, 147
background correction, 288	competition for limiting nutrients, 148
Dilution dataset, 286	Monod model, 147
MAplot, 287	multiple limiting nutrients, 148
normalization, 289	toxic inhibition of, 149
normanzanon, 209	toxic illiliolitoli of, 149

stochastic models, 210	feed-forward loops, 191
population growth, 211	repeat loop, 58
radioactive decay, 213	root-finding, 59
two-species competition, 146	for polynomial, polyroot, 60
population genetics, 228	Newton's method, 65
effect of selection, 229	
Hardy-Weinberg principle, 228	sample, 52
mutation, 230	seginr, 76
selection for heterozygotes, 229	sequence analysis, DNA, 233
sex-linked recessive genes, 230	counting bases, 237
probability, 207	dinucleotide frequencies, 239
basic ideas, 207	Entrez, 233
Bayes' theorem, 209	periodicity, 246
conditional, 208	restriction fragment lengths, 245
law of total probability, 208	restriction sites, 244
probability distribution, 216	simulating distribution of bases, 238
binomial, 222	simulating random sequence, 237
choose, 223	sequences, 11
sample, 223, 237	of random numbers, 12
chi-square, 228	simultaneous equations
exponential, 227	linear, 61
F, 228	nonlinear, 62
geometric, 226	sort, 50
lognormal, 228	spectrum, 247
normal, 219	splines, 51
Poisson, 224, 244	split.screen, 44
Student's t, 228	statistics
uniform, 217	analysis of variance (anova), 296
programming, 55	bootstrapping, 296
proteomics	clustering, 300
mass spectrometry, 272	correlation, 298
	distance measures, 298
quantitative biology	differential gene expression, see microarray
BIO 2010, viii	principal component analysis, 302
	biplot, 303
R	type I and type II errors, 265
advantages, ix	statistics, analysis of noisy spectra, 267
demos, 3	baseline subtraction, 271, 274
downloading, 3	fitting to sum of decaying exponentials, 267
getting help, 4	fitting to sum of Gaussians, 269
installing, 3	mass spectrometry, 272
useful references, ix	peak identification, 275
regulation	residuals, 268
bacterial chemotaxis, 193	statistics, single sample, 251
robust mechanism, 195	bins, 252
metabolism, see metabolism, regulation of	boxplot, 255
morphogenesis, 197	cumulative distribution, 253
exponential morphogen gradient, 198	grouped data, 257
patterning in dorsal region of Drosophila,	histogram, 252
200	mean, 251
robustness, 197	median, 251
self-enhanced morphogen degradation,	power, 306
199 transcription, 191	quantile, 252 quartile, 252
uanochpuon, 171	qual IIIC, 434

standard deviation sd, 251	chartr, 310
summary, 252	collapse, 238
tapply, 258	gsub, 234
test of normal distribution, qqnorm, 254	nchar, 309
variance var, 251	paste, 238, 310, 311
statistics, two-sample comparison, 258	sep, 238
power, 265, 305	strsplit, 234, 311
power.t.test, 265	substr, 310
t statistic, 260	substring, 309
t test, 258	tolower, 310
assumptions for use of, 260	toupper, 310
one-sample, 260	
two-sample, 262, 295	text editing, 4
two-sample paired, 264, 294	
Welch test with unequal variances, 263	unit conversions, 6
Wilcoxon (Mann-Whitney), 264, 294	
steady state, 85	variables, assigning, 6
enzyme kinetics, 103	vectors, 8
stochastic differential equations, 133	character, 11
Gillespie algorithm, 133	logical, 13
stochastic modeling, 210	
string manipulation	which, 58
as.numeric, 234	while loop, 57