

Biológiai terápia az onkológiában

Dr. Benkő Ilona egyetemi docens

Debreceni Egyetem, Általános Orvostudományi Kar Farmakológiai és Farmakoterápiai Intézet A kóros szabályozási zavar befolyásolása biológiai gyógyszerekkel, amelyek nagy molekulasúlyú recombináns DNS technológiával előállított fehérjék vagy oligonukleotidok, nukleinsavak.

Gyógyszercsoportok az onkológiában:

- Monoklonális antitestek
- **≻Citokinek**
- Génterápiára alkalmas gyógyszerek pl. onkogének elleni antiszenz terápia
- Tumorellenes vaccinák

DEBRECENI EGYETEM

Malignus daganatos betegségek komplex kezelése

- A kialakulás gátlása
 Prevenció kemoprevenció
- A tumorsejtek befolyásolása
 Kombinált kezelés
 "Személyre szabott" terápia a biológiai terápia kombinálásával
- 3. Metasztázis képződés gátlása biológiai terápia hatékonyabb
- 4. A szervezet tumorellenes immunreakciójának erősítése Immunterápia
- 5. A betegség szövődményei és a daganatellenes terápia mellékhatás kockázatának csökkentése, kezelése Pl. fertőzések megelőzése, kezelése - antimikróbás szerek cytopeniak kezelése – kolóniastimuláló faktorok
- 6. Életminőség javítása pl. fájdalomcsillapítás terápia mellékhatásainak kezelése, pl. hányáscsillapítók
- 7. Recidívák megelőzése, kezelése Hosszútávú nyomonkövetés – gondozás szakmák közötti együttműködés jelentősége !!

Rang and Dale's Pharmacology, textbook

Daganat kemoterápia

Tumor sejt "kiírtása"

klasszikus cytotoxikus terápia

Tumorsejt "megzabolázása"

biológiai terápia

MONOTERÁPIA IGEN RITKÁN, SPECIÁLIS ESETEKBEN CSAK RÖVID TÁVON EREDMÉNYES

Pl. idősek esetében elég lehet

Tumor sejt "kiírtása"

Tumorsejt "megzabolázása"

klasszikus cytotoxikus terápia

TOXICITÁS NAGY

A tumor gyors eradikálásához szükséges dózisokat a beteg nem éli túl. biológiai terápia

CÉL: Tumorsejtek/tumor eltűnése

Beteg életben maradása

Hogyan ?

1. Antiproliferatív terápia

citotoxikus szerekkel, amelyek elpusztítják a tumorsejtet általában alacsonyabb dózisban apoptosis fokozódás

Adagolási séma: Toxicitásuk miatt csak terápiás ciklusokban alkalmazhatók

2. Biológiai terápia (citosztatikus hatás)

a kóros szabályozási zavar befolyásolása

a tumorsejt életben maradhat, de normál sejtként kezd viselkedni

előfordulhat, hogy újra tumorsejtté alakul

Adagolási séma: folyamatos, hosszantartó terápia

Antiproliferatív + Biológiai terápia KOMBINÁCIÓja -> személyre szabott th.

Monoklonális antitestek előállítása, jellemzői

Monoklonális antitesteket gyakran egerekkel termeltetünk. Kezdetben az egérre jellemző antitesteket alkalmaztuk. Mivel az antitestek fehérjék, a betegben immunválaszt, antitest termelést indukálnak. Minél jobban hasonlít az antitest az emberben termelődő antitest fehérjére, annál kisebb valószínűséggel vált ki immunválaszt a betegben.

Transzgén egereket létrehozva human monoklonális antitesteket nyerhetünk. Human géntranszfer az egérbe, majd az esetek többségében az egér lépének sejtjeit *in vitro* fuzionáltatjuk, pl. myeloma sejtekkel, melyek folyamatosan termelni fogják számunkra a kívánt monoklonális antitestet.

Hatásmechanizmusok mAB kezelés esetében

- 1. tumor-kapcsolt szignál transzdukciós útvonalak gátlása
- 2. Apoptosis
- 3. Angiogenezis gátlása
- 4. Tumor ellenes immunválasz fokozása
 - 1. ADCC
 - 2. Complement függő citotoxicitás

Fc regio mAB IgG1 izotipus a leghatásosabb

5. Célzott szállítás, targeting

(toxinok, cytotoxikus anyagok, radioizotópok számára)

Monoklonális antitestek

növekedési faktor receptorok ellen

Proto-

oncogene

Proto-oncogene

products

Cancer

Anticancer

drugs

Cell cycle transducers Positive regulators of the cell cycle:

- · cyclins
- cyclin-dependent

· Rb protein Kinases (caks) · cak inhibitors

Negative regulators

of the cell cycle:

• p53 protein

nuclear proto-oncogenes... can alter expression of the regulators of the cell cycle, e.g. more than 50% of human tumours have mutations of

the tumour supressor gene that

codes for p53 protein

EGF receptor tirozinkiná gátlása:

erlotinib,

gefitinib (Iressa)

FDA által engedélyezett legfontosabb monoklonális antitestek

Csupasz ab – szolid tumorokra

trastuzumab	Herceptin	humanizált IgG1	HER2
bevacizumab	Avastin	n	VEGF
cetuximab	Erbitux	kiméra egér/human IgG1	EGFR Erb1
panitumab	Vectibix	human IgG2 EG	FR Erb1

Csupasz AB – hematológiai malignus folyamatokra

rituximab	Mabtera	kiméra egér/human	numan CD20	
alemtuzumab	Campath	humanizált IgG1	CD52	
ofatumab	Arzerra	human IgG1	CD20	

Konjugált ab - hematológiai malignus folyamatokra

gemtuzumab ozogamicin	Mylotarg	humanizált IgG4	CD33
90Y-ibritumomab tiuxetan	Zevalin	egér IgG1	CD20
131I-tositumomab	Bexxar	egér IgG2	CD20

Trastuzumab(Herceptin®)

A daganatellenes monoklonális antitest terápia prototípusa "individuális terápiára".

Humanizált IgG1 immunglobulin

Hatása: HER2/neu mutáns EGFR és a kapcsolódó receptor kináz aktivitás blokkolása

gátolja az angiogenezist

Alkalmazása: i.v. infuzióban

<u>Toxicitás:</u> cardiotoxicitás, cardiomyopatia

a betegek 20 %-ában alakul ki akut balkamra elégtelenség!

Klinikai felhasználás:

Előrehaladott emlő carcinoma metasztázis képződéssel, ha a

HER2/neu target kimutatható a tumorsejteken

colon cc metaszázisokkal

cetuximab (Erbitux®), panitumumab (Vectibix)

–cetuximab kiméra egér/human monoklonalis antitest_panitumumab human lgG2

•Hatás:

- EGFR erb1 gátlása
- gátolja a receptor kináz dimerizációját
- antiproliferatív hatás

•Farmakokinetika:

- i.v. infuzió
- kombináció citotoxikus szerekkel, pl. 5-FU

•Toxicitás:

- hyperszenzitív reakciók
- Klinikai felhasználás:
- fej-nyak laphám cc
- metasztatikus colon cc

bevacizumab(Avastin®)

Humanizált IgG1 immunglobulin <u>Hatása:</u> VEGF-A elleni antitestként gátolja az angiogenezist

Tumorellenes + metasztázis képződés elleni hatás

Alkalmazása: infúzióban

Toxicitás:

➤tüdővérzések súlyos életveszélyes 2 %-ban

vérzéshajlam esetén: hemoptysis, agyi metastasis, vérzékenység esetében nem alk.

➤ Hypertensio endotel NO termelés csökkent

➤ Tromboemboliás szövődmények 3-4 %-ban

Klinikai felhasználás: a terápia rezisztens tumorok, metasztázisok esetén is hat !

- ➤ Vese tumor
- Colon carcinoma és emlő tu. metastasis képződéssel
- ➤ Kissejtes tüdőrák

A monoklonális terápia közös mellékhatásai

Az előbbi mellékhatások egy részének hatásmechanizmusa az immunrendszer megzavart működésén alapul:

- Autoantitest képződés
- Keresztreakció saját antigénjeinkkel
- Késői típusú allergiás reakciók

Minden monoklonális antitest terápiánál előfordulhat az idegrendszer sejtjein keresztreakció – ez legtöbbször <u>igen ritka</u>, de súlyos

- Neuritis
- Demyelinizáció akár leukoenkefalitisz

Ha az antigén molekula immunsejteken található:

- Immunszuppresszió infekciók

Rezisztencia malignus betegségek monoklonális antitest kezelése során I.

Ha a target, az antigénként szereplő molekula (a ligand vagy a hibás receptor) jelátviteli útvonalába tartozó fehérjék génjei mutálódnak, újra konstitutív aktiválódás jön létre a proliferációt fenntartó tirozin kináz jelátvitelben.

Lubner et al. J Gastrointest Oncol 2017; 8(3):499-512

Rezisztencia malignus betegségek monoklonális antitest kezelése során II.

Trastuzumab panitumumab:

Változás a target molekulában pl. EGF receptor kötődési helye változik

Gén amplifikáció a the target molecula génjében – ag mennyisége nő pl. HER2 esetében

Upreguláció az alternatív HER3-ben Alternativ útvonalak aktiválódása a proliferációt elősegítő jelátviteli folyamatokban

Bevacizumab:

VEGF alternativ izoformái a génállományban

Upreguláció: HIF-1α (hypoxia inducible factor) elősegíti a tumor vaszkularizációját és oxigen ellátását

Immunterápia új szerei

Első engedélyezett immun checkpoint inhibitor: ipilumumab=anti CTLA4

(anti cytotox T ly - ag 4 gátlás)

nivolumab, pembrolizumab PD-1 checkpoint gátlók

programozott sejthalál gátló receptor ellenes monoclonalis ellenanyagok

Hatásos (<u>FDA engedély</u>): kissejtes tüdőrák

melanoma (nivolumab+ipilumumab)

vesetumorok

A betegek 25-30 %-ában volt kedvező és tartós hatás

Mellékhatások: <u>Súlyos mellékhatások a betegek kb. 20%-ában !</u>

pl. Gl hasmenés, obstructio, perforáció

toxikus megacolon,

leukopenia, lymphopenia, hepatotoxicitas

autoimmun reakciók

változó a megjelenés időpontja

a kezelés után hónapokkal akár 6 hónappal később!

Kísérleti szakban lévő tumorellenes vaccinák

rindopepimut (CDX-110)

hatásosan alkalmazható kiújult glioblastomában

Hatásmechanizmus: A rindopepimut 14 aminosavból álló peptid, ami az

EGFRvIII elleni immunválaszt fokozza.

EGFRvIII az epidermalis growth factor III. mutáns variánsa, ami pl. glioblastomákban mutatható ki.

Preklinikai in vivo vizsgálatokban a tumorellenes antitestek emelkedését lehetett kimutatni egerek, nyulak, makákó majmok esetében.

CITOKINEK

- ➤ Valamennyi szövetünkben a sejtek közötti kommunikációban részt vevő glikoprotein szabályozó molekulák
- ➤A sejtciklust, proliferációt, differenciálódást, apoptosist szabályozzák.

➤ Génjeik, receptoraik génje protoonkogének. Mutációjuk onkogént eredményez, a sejtek kiszakadnak a fiziológiás differenciálódásukat biztosító szabályozási hálózatból, malignus sejtté válnak.

A citokinek csoportjai:

- ➤növekedési faktorok
- ≽kolónia stimuláló faktorok
- **>**interleukinok
- **>** interferonok
- ▶ kemokinek

CITOKINEK a daganatellenes terápiában

1. sejtciklus szabályozás, antiproliferatív hatás, differenciálódás segítése:

alfa-interferon (jól tolerálható)

IL-2 (aldesleukin)

(súlyos mellékhatások a betegek >30 %-ában !)

lokálisan alkalmazva melanoma esetében tolerálható

2. a citotoxikus terápia mellékhatásainak mérséklése:

kolóniastimuláló faktorok

eritropoetin

G-CSF

trombopoetin, IL-11

3. perifériás őssejtmobilizáció

GM-CSF

SCFstem cell factor

Antiproliferatív citokinek a malignus betegségek terápiájában

Interferon – alpha

IFN-α min. 13 altípus

Proteineket leukocyták termelik őket

Fontos szerepük van a nemspecifikus, veleszületett immunválasz során különösen vírus fertőzésekben

Komplex daganat ellenes hatás:

a host-mediated tumorellenes immunválasz stimulálása antiproliferatív hatás

Klinikai felhasználás:

hairy cell leukemia, melanoma, follicularis non-Hodgkin's lymphoma

<u>IL-2</u> (aktivált T sejtek termelik)

Hatás: immunválasz erősítése, cytotoxikus T sejtek aktiválása a tumor sejtek ellen

Toxicitás: Gyakori (betegek >30%-ában) súlyos életveszélyes mellékhatások ! immunszuppresszió Capillary leak sy – súlyos nehézlégzés, tüdőödéma

lokálisan alkalmazva melanoma esetében tolerálható

A citokin terápia közös mellékhatásai:

Akut: capillary leak sy

láz

influenzaszerű tünetegyüttes

csontfájdalom

eosinophilia

Sweet sy: akut, lázzal járó neutrophil dermatosis,

immunkomplex képződésen alapul

magas láz, leukocytosis

Késői szenzitivitás jellegű súlyos kórképek:

exfoliativ epidermolysis, toxikus epidermalis necrolisis Stevens-Johnson sy

GÉN TERÁPIA

1. Antiszenz oligonucleotid terápia: az oncogen vagy produktuma ellen

Target molekulák: DNS

mRNS

Génterápia antiszenzekkel a tirozin kináz útvonal gátlására :

oligonucleotidok a tirozin kináz mRNS ellen CML esetében A Philadelphia kromoszóma a transzlokációs töréspontjában kialakult BCR gén t (9;22) BCR/ABL locus tirozin kináz aktivitással rendelkező enzimet kódol

2. Gén szubsztitúciós terápia: DNS darab, gén bejuttatása

A mutáns nem funkcionáló tumor szuppresszor gént helyettesítjük egy normálisan funkcionáló génnel. A tumor szuppresszor gének fizológiás szerepe fontos a malignus daganatok megelőzésében. Mivel a tumorsejtekben nagyon gyakran találunk mutáns szuppresszor géneket, leggyakrabban a P53-at, ezek funkcionáló génjeit a kromoszómába

bejuttatva gátolhatjuk a tumorsejt proliferációját.

Jelenleg nincs klinikai gyakorlatban használt génterápiás készítmény.

Elnevezés	Kémia szerkezet	Sejtbiológiai hatás	Terápiás indikáció	Klinikai dózis
Filgrastim*	18 kDa fehérje	fokozza a fehérvérsejtek termelését	lázas neutropenia	5-10 μg/kg/nap iv.
Mesna*	nátrium 2-merkapto- etán szulfonát	kötődik a cyclophosphamid, ifosfamid metabolitjaihoz (acrolein)	cyclophosphamid okozta cystitis	400 mg per os
Dexrazoxan*	4,4'-(1-metil-1,2- etandiyl)bis-2,6- piperazindion	megakadályozza a vas ionfüggő aktív radikálok képződését	antraciklin által indukált cardiotoxicitas	500 mg iv.
Eritropoetin alfa•	glikoprotein	serkenti a vérképző sejtek szaporodását	anaemia, (citotoxikus kezelés, krónikus vesebetegség)	50, majd 100 NE/kg sc., iv. hetente 3-szor
Darbepoetin alfa•	glikoprotein (165 aminosavat és 5 oligoszacharid- oldalláncot tartalmaz)	serkenti a vérképző sejtek szaporodását	anaemia, (citotoxikus kezelés, krónikus vesebetegség)	2,25–4,5 µg/kg sc. hetente
Amifostin*	2-(aminopropil)- amino etán-tiofoszfát	citotoxikus gyógyszerek reaktív csoportját semlegesíti	szövetkárosodás kivé- dése cisplatin-, cyclo phosphamid kezeléskor	iv. 200–910 mg/m² 30 perccel a citotoxikus kezelés előtt

Gyires, Fürst, Ferdinándy: Farmakológia