

# Fault Modeling

Jiun-Lang Huang

GIEE/ICDA, National Taiwan University



### Stuck-At Faults

- Circuit model
   An interconnection (called a *netlist*) of Boolean gates.
- Definition
   A stuck-at fault is assumed to affect only the interconnections between gates (functionally correct). The faulty line is permanently set to 0 or 1 (stuck-at-0 or stuck-at-1).
- A circuit with n lines has a total of  $3^n 1$  stuck-at faults!

## Single-Stuck-At Fault

- Properties
  - Only one line is faulty.
  - The faulty line is permanently set to either 0 or 1.
  - The fault can be at an input or output of a gate.
- An *n*-line circuit has at most 2*n* single stuck-at faults.
- The classical fault model the most widely used and studied.





### **CMOS Transistor Stuck-On**

- The effect is a possible conducting path between V<sub>dd</sub> and the ground.
  - The logic state at the output depends on the relative impedance of the transistors.
  - Detected by quiescent current (IDDQ) measurement.
- Example
  - Setting the inverter input to 0 establishes a conducting path from  $V_{DD}$  to the output.
  - In the existence of NMOS stuck-on, there will be a conducting path between VDD and the ground.



## CMOS Transistor Stuck-Open

- The possible effect is a floating output value.
- Detection of stuck-open faults in CMOS circuits requires two-vector tests!
- Example:

With the indicated PMOS stuck-open,  $\beta$ , the path from g to  $V_{DD}$  cannot be established.  $\beta$  can be detected by applying ab = 10 followed by ab = 00.

- Without  $\beta$ , g is 1.
- With  $\beta$ , g is floating and remains 0.









#### **Truth Table for Fault-Free and Faulty NOR**

| AB                         | 00        | 01        | 10        | 11 |
|----------------------------|-----------|-----------|-----------|----|
| Z                          | 1         | 0         | 0         | 0  |
| N <sub>1</sub> stuck-open  | 1         | 0         | last Z    | 0  |
| N <sub>1</sub> stuck-short | $I_{DDQ}$ | 0         | 0         | 0  |
| N <sub>2</sub> stuck-open  | 1         | last Z    | 0         | 0  |
| N <sub>2</sub> stuck-short | $I_{DDQ}$ | 0         | 0         | 0  |
| P <sub>1</sub> stuck-open  | last Z    | 0         | 0         | 0  |
| P <sub>1</sub> stuck-short | 1         | 0         | $I_{DDQ}$ | 0  |
| P <sub>2</sub> stuck-open  | last Z    | 0         | 0         | 0  |
| P <sub>2</sub> stuck-short | 1         | $I_{DDQ}$ | 0         | 0  |
|                            |           |           |           |    |

[L.-T. Wang, C.-W.Wu, and X.Wen, VLSI Test Principles and Architectures, Morgan Kaufmann Publishers, 2006]

## Bridging Faults



Two or more normally distinct points (lines) are shorted together.



• The logic effect is technology-dependent.

- Dominant bridging fault
  - Proposed for CMOS logic.
  - One driver is assumed to dominate the logic value on the two shorted nets.
  - Two faults per fault site.
- Dominant-AND/Dominant-OR bridging fault
  - To complement the dominant bridging fault model.
  - One driver dominates the logic value only for a given logic value.
  - Four faults per fault site.









| $\mathbf{A_S} \mathbf{B_S}$   | 0 0 | 0 | 1 | 1 | 0 | 1 1 |
|-------------------------------|-----|---|---|---|---|-----|
| A <sub>D</sub> B <sub>D</sub> | 0 0 | 0 | 1 | 1 | 0 | 1 1 |
| Wired-AND                     | 0 0 | 0 | 0 | 0 | 0 | 1 1 |
| Wired-OR                      | 0 0 | 1 | 1 | 1 | 1 | 1 1 |
| A dominates B                 | 0 0 | 0 | 0 | 1 | 1 | 1 1 |
| B dominates A                 | 0 0 | 1 | 1 | 0 | 0 | 1 1 |
| A dominant-AND B              | 0 0 | 0 | 0 | 1 | 0 | 1 1 |
| B dominant-AND A              | 0 0 | 0 | 1 | 0 | 0 | 1 1 |
| A dominant-OR B               | 0 0 | 0 | 1 | 1 | 1 | 1 1 |
| B dominant-OR A               | 0 0 | 1 | 1 | 1 | 0 | 1 1 |
|                               |     |   |   |   |   |     |



| Dr. Marie Common |                               |   |   |   |   |   |   |    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---|---|---|---|---|---|----|
| <b>A D</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\mathbf{A_S} \ \mathbf{B_S}$ |   |   |   |   |   |   |    |
| A <sub>D</sub> B <sub>D</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0 0                           | 0 | 1 | 1 | 0 | 1 | 1 |    |
| Fault free                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 0                           | 0 | 1 | 1 | 0 | 1 | 1 |    |
| Wired-AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0 0                           | 0 | 0 | 0 | 0 | 1 | 1 |    |
| Wired-OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 0                           | 1 | 1 | 1 | 1 | 1 | 1 | ű  |
| A dominates B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0 0                           | 0 | 0 | 1 | 1 | 1 | 1 | 9  |
| B dominates A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0 0                           | 1 | 1 | 0 | 0 | 1 | 1 | 1  |
| A dominant-AND B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 0                           | 0 | 0 | 1 | 0 | 1 | 1 | Ţ. |
| B dominant-AND A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 0                           | 0 | 1 | 0 | 0 | 1 | 1 |    |
| A dominant-OR B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 0                           | 0 | 1 | 1 | 1 | 1 | 1 |    |

B dominant-OR A

## Remarks on Bridging Faults

- Many bridging faults can be detected by IDDQ testing.
- N-detect single stuck-at-fault test patterns are also effective.
- Bridging incurred feedback paths may lead to sequential behavior.
- Fault sites: Utilize physical design information to derive a more realistic list of fault sites.

## Wire Open Fault

- Opens occurring in wires interconnecting transistors to form gates behave like transistor stuck-open faults.
- Opens occurring in wires interconnecting gates to form circuits behave like stuck-at faults.
- Wire opens are detected by vectors detecting transistor faults and stuck-at faults.

## Delay Faults

- Cause excessive delay along a path such that the total propagation delay falls outside the specified limit.
- Chips with delay faults may pass DC testing, e.g., stuck-at-fault testing, but fail when tested at speed.
- Delay fault testing has become mandatory.
- Delay fault testing generally requires two-vector tests.



## Causes of Delay Faults

- Manufacturing defects
  - Certain manufacturing defects do not change the logic function but can cause timing violations.

#### **Resistive Bridges**

0-to-1 on A delayed, 1-to-0 on A accelerated



#### **Resistive Opens**

both 0-to-1 & 1-to-0 on A delayed



- Design/manufacturing defects
  - Aggressive place & route



- Abnormal statistical variations in geometry
- Process variations

# Need of Delay Fault Testing



- Hard shorts and opens are testable by stuck-at tests with high confidence.
- Resistive shorts may be testable by stuck-at tests but more likely to be detected by delay tests.
- Resistive opens and coupling faults can only be detected by delay tests.
- Resistive power supply lines cause excessive IR-drop, which can be detected by delay tests.
- Process variations can only be detected by delay tests.

## Path Delay Fault Model

- Assume a distributed delay along a combinational path from FF to FF.
  - A path is a sequence of connected gates from a PI (PPI) to a PO (PPO).
  - A path delay fault is said to have occurred if the delay of a path exceeds the specified clock period.
- Features
  - Models distributed delay defects
  - More likely to detect small delay defects
  - Much more complex than the transition delay model
  - Low fault coverage

- Example
  - Path A-P-Q-R-D is tested for rising transition at pin A.
  - Small delay defects distributed along the path will be tested if the cumulative delay exceeds specification.



# Robust and Non-robust Path Delay Tests



- A robust path delay test guarantees to detect the delay fault on the target path regardless of other delays in the circuit.
- A non-robust path test guarantees to detect the delay fault on the target path only if no other path delay is increased.
  - Many situations exist where a non-robust test is invalidated.

## Limitations of Path Delay Fault Model



- The number of paths in a circuit can grow exponentially with the circuit size.
  - s38584: 3.6x10<sup>4</sup> stuck at faults, 2.2x10<sup>6</sup> path delay faults.
- The number of robustly testable paths in typical circuits is much less than the number of irredundant paths.



## Transition Delay Fault Model

- Assume a large delay defect concentrated at one logical node.
- Any signal transition passing through this node will be delayed past the clock period.
  - Slow-to-rise or slow-to-fall
- Example:Slow-to-fall on A may be observed at C or D.



- Example: slow-to-rise at N
  - In the first time frame, set N to 0.
  - In the second time frame, test N stuck-at-0.





# Pros and Cons of Transition Delay Fault Model

- Advantages
  - May detect delay defects missed by stuck-at tests.
  - Test generation with stuck-at-fault tools with minor modifications.
  - The fault lists and coverage metrics are similar to those of stuck-at faults.
- Disadvantages
  - May miss distributed small delay defects.

## Small Delay Defects

- A type of timing defect that introduces a small amount of extra delay to the design.
- Use a slack-based transition path selection to increase the detection probability.
  - Example: Path A is preferred.





## Fault Equivalence

sal

- Two faults  $\alpha$  and  $\beta$  are equivalent iff  $Z_{\alpha}(x) = Z_{\beta}(x)$ .
  - Equivalent faults are indistinguishable.
- Equivalence of single stuck-at faults
  - n+2 faults, instead of 2(n+1), need to be considered for an n-input primitive gate.
  - Two faults for an inverter.
  - No equivalence between the fanout stem and branches.



## Equivalence Fault Collapsing

- The relation of equivalence partitions all faults into equivalence classes.
- For test generation, keep one fault from each equivalence class.
- For combinational circuits, apply the rules of primitive gates from PI to PO or vice versa.





After equivalence fault collapsing, the number of faults to consider is

 $2 \times (P_O + F_O) + G_i - N_i$  where

- ullet  $P_O$  is the number of primary outputs,
- $\bullet$   $F_O$  is the number of fanout stems,
- *G<sub>i</sub>* is the number of gate inputs, and
- *N<sub>i</sub>* is the number of inverters which is about a 50 to 60% reduction.



• Simple structural analysis may not cover all equivalence relationships.



• Example:

p s-a-1 ( $\alpha$ ) and q s-a-1 ( $\beta$ ) are equivalent, but the equivalence cannot be identified by simple structure analysis.



### Fault Dominance

- If any test that detects fault  $\alpha$  also detects the fault  $\beta$ , then we say fault  $\beta$  dominates fault  $\alpha$ .
- For test generation, we can remove the fault  $\beta$  from the fault list.

patterns detecting  $\beta$ 

patterns detecting  $\alpha$ 









## Dominance Fault Collapsing

- Eliminating dominating faults from the equivalence collapsed set.
- An *n*-input primitive gate requires *n*+1 single stuck-at faults to be modeled.
- No collapsing is possible for a fanout.



## Checkpoint Theorem

- Checkpoints: primary inputs and fanout branches.
- A test set that detects all single stuck-at faults of the checkpoints of a combination circuit detects all single stuck-at faults in that circuit.
  - For fanout-free circuits, we only have to model input faults.





# Challenges

- The SSF (Single-Stuck-At Fault) model alone cannot provide the desired defect coverage for advanced technology nodes.
  - Not all real defects are detected by test patterns that achieve high SSF coverage.
  - Being a *pin fault model*, the SSF model can only describe relatively simple defect behavior.
- Solutions?
  - Leverage the well-studied and mature SSF test technologies N-Detect
  - Develop new fault models that more accurately describe the target defects' behavior.

Cell-Aware Test

#### N-Detect

- Detect each SSF by at least N times.
- Improve the probability of fortuitously detecting unmodeled faults.
- The test generation procedure in [Benware ITC03]:
  - Often results in a severe test set inflation.
- In practice, bias the test generation process to favor the target defects.



- 1. Perform *single-detect* fault simulation with *single-detect* pattern set  $T_1$  for all faults
- 2. Save all faults detected by single-detect fault simulation with pattern set  $T_I$  ( $TF_{MD}$ )
- 3. Set the number of detections N
- 4. For K = 1 to (N-1)
  - Perform *multiple-detect* fault simulation with pattern sets  $T_1$  to  $T_K$  for  $TF_{MD}$  faults
  - Save faults detected K times  $(F_K)$
  - Target faults  $F_K$  and perform single-detect ATPG to increase the number of detections by one
  - Save the patterns to  $T_{(K+1)}$
- Perform multiple-detect fault simulation with pattern sets  $T_1$  to  $T_N$  for all faults to obtain multiple-detect fault coverage profile

Figure 4 Multiple-detect ATPG methodology

Table 2 Experimental Results to Compare N-Detect Pattern Set Size Before and After *ILP* Optimization

|       | Table 2 Experimental Results to Compare N-Detect Pattern Set Size Before and After ILP Optim |          |      |       |                             |            |      |       |          |          | ation   |       |
|-------|----------------------------------------------------------------------------------------------|----------|------|-------|-----------------------------|------------|------|-------|----------|----------|---------|-------|
|       |                                                                                              | N=3      | N=5  |       |                             | N=10       |      |       |          |          |         |       |
|       | #                                                                                            | #        |      |       | #                           | # Patterns |      |       | #        | #        |         | - 4   |
|       | Original                                                                                     | Patterns | Save | CPU   | Original                    | After      | Save | CPU   | Original | Patterns | Save    | CPU   |
|       | Patterns                                                                                     | After    | (%)  | Time  | Patterns                    | Optimize   | (%)  | Time  | Patterns | After    | (%)     | Time  |
|       |                                                                                              | Optimize |      | (s)   | 2 -                         | 9          |      | (s)   | 72-72    | Optimize |         | (s)   |
| B01   | 23                                                                                           | 21       | 8.7  | 5.5   | 50                          | 46         | 8    | 7.2   | 68       | 65       | 4.6     | 8.0   |
| B02   | 18                                                                                           | 17       | 5.6  | 3.1   | 18                          | 18         | 0    | 3.6   | 18       | 18       | 0       | 3.5   |
| B03   | 58                                                                                           | 51       | 12.1 | 43.2  | 81                          | 70         | 13.6 | 125   | 159      | 149      | 6.3     | 317   |
| B04   | 238                                                                                          | 192      | 19.3 | 479   | 323                         | 286        | 11.5 | 618   | 558      | 505      | 9.5     | 1335  |
| B05   | 150                                                                                          | 110      | 26.7 | 356   | 206                         | 167        | 18.9 | 577   | 320      | 285      | 10.9    | 2014  |
| B06   | 25                                                                                           | 20       | 20   | 8.4   | 27                          | 22         | 18.5 | 8.9   | 27       | 26       | 3.7     | 9.3   |
| B07   | 176                                                                                          | 153      | 13.1 | 415   | 265                         | 234        | 11.7 | 932   | 451      | 414      | 8.2     | 2307  |
| B08   | 109                                                                                          | 96       | 11.9 | 378   | 155                         | 140        | 9.7  | 662   | 272      | 259      | 4.8     | 1973  |
| B09   | 66                                                                                           | 54       | 18.2 | 176   | 83                          | 76         | 8.4  | 405   | 140      | 133      | 5       | 1455  |
| B10   | 92                                                                                           | 85       | 7.6  | 308   | 152                         | 139        | 8.5  | 624   | 257      | 249      | 3.1     | 1941  |
| B11   | 165                                                                                          | 149      | 9.7  | 531   | 236                         | 223        | 5.5  | 1798  | 413      | 391      | 5.3     | 3129  |
| B12   | 456                                                                                          | 374      | 18   | 1115  | 621                         | 553        | 11   | 2734  | 943      | 908      | 3.7     | 4009  |
| B13   | 102                                                                                          | 83       | 18.6 | 967   | 147                         | 128        | 12.9 | 1590  | 229      | 211      | 7.9     | 3638  |
| B14   | 753                                                                                          | 605      | 19.7 | 1732  | 1100                        | 988        | 10.2 | 4208  | 1838     | 1704     | 7.3     | 7124  |
| B15   | 1001                                                                                         | 790      | 21.1 | 3773  | Parin ph<br>Hom Moral Marin |            |      | 233   | 2476     | 2244     | 9.4     | 9436  |
| B17   |                                                                                              |          |      |       | 1389                        | 1144       | 17.6 | 7946  | 133      | <u></u>  |         |       |
| CK1   | 220                                                                                          | 179      | 18.6 | 2700  | 384                         | 326        | 15.1 | 4116  | 675      | 605      | 10.4    | 7021  |
| CK2   | 188                                                                                          | 159      | 15.4 | 3172  | 329                         | 282        | 14.3 | 8353  | 1 min    |          | ( ) The |       |
| Total | 3840                                                                                         | 3138     | 18.3 | 16161 | 5566                        | 4842       | 13   | 34708 | 8844     | 8166     | 7.7     | 45720 |

[Huang ISQED06]

#### How does N-Detect work?

Fact:

SSF test patterns fortuitously detect many unmodeled faults.

• The Murphy chip data showed that only about one-third of the defects caused the affected CUT to respond to inputs with the same output responses as if an SSF was present in the CUT [McCluskey ITC96].

#### • Example:

- ASB = 01x detects A sa1 and may detect the A OR B and A OR BN bridges.
- Detecting *A* sa1 multiple times improves the probability of detecting the bridging faults.



# Detecting Bridging Faults w/ N-Detect

• [Benware ITC03]



| <b>-</b> | w | k | OR | AND | D | V <sub>cc</sub> | $\mathbf{V}_{ss}$ |
|----------|---|---|----|-----|---|-----------------|-------------------|
| $w_{@1}$ | 0 | 0 | 0  | 0   | 0 | 1               | 0                 |
| $w_{@1}$ | 0 | 1 |    | 0   | 1 | 1               | 0                 |
| $w_{@0}$ | 1 | 0 | 1  | 0   | 0 | 1               | 0                 |
| $w_{@0}$ | 1 | 1 | 1  | 1   | 1 | 1               | 0                 |

### Cell-Aware Test (CAT)



- Available fault models are still insufficient to deliver acceptable defect coverage.
  - Stuck-at (SA), bridge, transition, N-detect, gate-exhaustive, embedded-multi-detect (EMD), timing-aware, and layout-aware fault models on interconnect lines.
  - Many defects that escape testing are in fact defects within the standard library cells [Hapke TCAD14].
- The CAT fault model is based on a post-layout transistor-level netlist including parasitic objects, resulting in a defect-based ATPG approach, which can be applied to large, state-of-the-art designs.

## **CAT Test Methodoloty**

• CAT test library generation:



CAT test generation:





### Layout and Defect Extraction

- From GDS II, extract the netlist of circuit elements, including transistors and parasitics.
- Layout-aware defect extraction, e.g., cell-internal bridge, open.



Figure 2: MUX31X4 layout



**Figure 3: Extracted Transistor Netlist** 

| LEVERNORE T      | 75              |                  |
|------------------|-----------------|------------------|
| d1 = S0N, gnd    | d17 = D0, gnd   | d33 = net38, D1  |
| d2 = S1N, gnd    | d18 = vdd, gnd  | d34 = net81, D0  |
| d3 = net65, gnd  | d19 = Z, net65  | d35 = net38, D0  |
| d4 = net57, gnd  | d20 = S1, S0N   | d36 = S1, S0     |
| d5 = net19, gnd  | d21 = S1N, S1   | d37 = D2, S1     |
| d6 = net81, gnd  | d22 = net65, S1 | d38 = S0, D1     |
| d7 = net38, gnd  | d23 = S0N, S0   | d39 = vdd, S0N   |
| d8 = net85, gnd  | d24 = net81, S1 | d40 = vdd, S1N   |
| d9 = net35, gnd  | d25 = S1, net38 | d41 = vdd, net65 |
| d10 = net31, gnd | d26 = D2, S1N   | d42 = D0, S0     |
| d11 = net69, gnd | d27 = net81, S0 | d43 = net38, vdd |
| d12 = Z, gnd     | d28 = net65, D2 | d44 = vdd, Z     |
| d13 = S1, gnd    | d29 = net38, S0 | d45 = vdd, S1    |
| d14 = S0, gnd    | d30 = S0N, D1   | d46 = vdd, S0    |
| d15 = D2, gnd    | d31 = net81, D1 | d47 = vdd, D2    |
| d16 = D1, gnd    | d32 = S0N, D0   | d48 = vdd, D1    |

Figure 4: List of Defects of MUX31X4

[Hapke ITC09]



| Design | # Gates<br>[million] | # FFs<br>[thousands] | # Chains | # SA Faults<br>[million] | # CAT Defects<br>[million] |
|--------|----------------------|----------------------|----------|--------------------------|----------------------------|
| # 1    | 1.3                  | 136                  | 300      | 5.0                      | 23.0                       |
| # 2    | 2.1                  | 148                  | 70       | 8.2                      | 30.8                       |
| # 3    | 2.4                  | 222                  | 1250     | 13.9                     | 37.8                       |
| # 4    | 2.1                  | 215                  | 312      | 9.7                      | 38.0                       |
| # 5    | 2.6                  | 271                  | 600      | 10.0                     | 46.1                       |
| # 6    | 2.4                  | 174                  | 114      | 9.6                      | 36.2                       |
| # 7    | 3.2                  | 318                  | 1145     | 22.8                     | 100.4                      |
| # 8    | 3.6                  | 751                  | 408      | 85.3                     | 138.3                      |
| # 9    | 3.9                  | 407                  | 900      | 14.9                     | 69.1                       |
| # 10   | 5.6                  | 458                  | 1020     | 22.4                     | 92.6                       |

[Hapke ITC14]

## Analog Fault Simulation

- An exhaustive analog simulation determines the complete cell-input combinations that detect the defect.
- The resulting defect matrix summarizes the detection results for each cell.
- Derive an optimized set of input assignments required to detect individual cell-internal faults.

| stimuli | d1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | d2     | d3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | d4       | 9     | d41      | d42        | d43     | d44          | d45      | d46  | d47  | d48    |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------|----------|------------|---------|--------------|----------|------|------|--------|
| 00000   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |       | Milb     |            | - CIEBB | D            | n L L    | - 22 | 11/6 |        |
| 00001   | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | D      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |       | D        | D          | D       | <b>5</b> - [ | D        | D    |      |        |
| 00010   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | C) <del>a</del> c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | no Pale  | 100   | Dr. Dr.  | abati ya m | i i     | D            |          | D    |      | j<br>1 |
| 00011   | å.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | D      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | ب ا   | D        | Į,         | D       |              | D        | -    |      | -      |
| 00100   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1      | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -        | (di   |          |            |         | D            | D        | ~    | -    | -7     |
| 00101   | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |       | D        | D          | D       |              | <u> </u> | D    | -    |        |
| 00110   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | Ed L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11       |       | <u> </u> | -          | -       | D            | D        | D    | £.3  | Jø     |
| 00111   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.<br> | 11 TO | 7/10     | 611   | D        |            | D       | m            | -        | -    |      | 47     |
| 01000   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 101    | 899                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u> </u> |       | 1        | 6-6        | -       | D            | -        | -    | - 5  | D      |
| 1110    | H 00 Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | . 7    | 8-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (BH)     | P     |          |            |         |              |          |      |      | 1/4    |
| 11111   | The state of the s | , i    | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          | 1/1/2 | D        | 5          | 1,450   | _            | -        | _    | _    | K-3    |

Figure 5: Defect Matrix

[Hapke ITC09]

#### Cell-Aware Test Generation

- CAT models fault differently from conventional fault models.
- For conventional fault models, ATPG excites the fault and propagates the response according to predefined conditions for primitive gates, e.g., D0 = 0, S0 = 0, S1 = 0.



• For the CAT fault models, the fault effect and the fault excitation condition are placed directly at the cell output and inputs.



# Defect Coverage Gain & Pattern Count



TABLE III

NUMBER OF TEST PATTERNS RELATED TO DEFECT COVERAGE GAIN

|         | Defe            | ect Cover        | Maximum #Pattern |                 |                          |                         |
|---------|-----------------|------------------|------------------|-----------------|--------------------------|-------------------------|
| Design  | + 0%<br>Pattern | + 25%<br>Pattern | + 50%<br>Pattern | +max<br>Pattern | Additional<br>CAT Static | Additional<br>CAT Delay |
| # 1     | 2.5%            | 3.8%             | 4.2%             | 5.0%            | 51%                      | 89%                     |
| # 2     | 2.5%            | 5.0%             | 5.9%             | 6.1%            | 72%                      | 75%                     |
| # 3     | 2.8%            | 3.4%             | 3.5%             | 4.1%            | 14%                      | 50%                     |
| # 4     | 2.7%            | 3.8%             | 4.7%             | 5.5%            | 77%                      | 77%                     |
| # 5     | 2.1%            | 3.5%             | 4.2%             | 5.0%            | 58%                      | 87%                     |
| # 6     | 2.5%            | 3.9%             | 4.6%             | 5.8%            | 13%                      | 85%                     |
| # 7     | 2.2%            | 2.5%             | 3.0%             | 3.5%            | 57%                      | 63%                     |
| # 8     | 2.6%            | 4.5%             | 5.3%             | 5.3%            | 45%                      | 26%                     |
| # 9     | 1.9%            | 3.4%             | 3.9%             | 4.4%            | 56%                      | 71%                     |
| # 10    | 3.5%            | 5.9%             | 6.6%             | 6.8%            | 47%                      | 72%                     |
| Average | 2.5%            | 4.0%             | 4.6%             | 5.1%            | 49%                      | 70%                     |

- +0% pattern: Use the same number of CAT patterns as the SA + TR pattern set.
- The last two columns show the maximum number of CAT patterns compared to SA and TR patterns, respectively.

[Hapke TCAD14]

#### Conclusions

- Fault modeling is the basis of test technologies.
- SSF is a must, and transition delay fault has become mandatory.
- New fault modeling technologies are needed to guarantee acceptable defect coverage.
  - Leverage current fault models (N-detect) or develop new fault models (CAT).
  - Conventional fault models are insufficient to achieve high defect coverage.