Planche nº 22. Dérivation

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

Exercice nº 1 (***)

Soit $f \in C^1([a,b],\mathbb{R})$ telle que $\frac{f(b)-f(a)}{b-a}=\sup\{f'(x),\;x\in[a,b]\}$. Montrer que f est affine.

Exercice nº 2 (***) (Formule de TAYLOR-LAGRANGE)

Soient a et b deux réels tels que a < b et n un entier naturel. Soit f une fonction élément de $C^n([a,b],\mathbb{R}) \cap D^{n+1}(]a,b[,\mathbb{R})$. Montrer qu'il existe $c \in]a,b[$ tel que

$$f(b) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (b-a)^k + \frac{(b-a)^{n+1} f^{(n+1)}(c)}{(n+1)!}.$$

Indication. Appliquer le théorème de Rolle à la fonction $g(x) = f(b) - \sum_{k=0}^{n} \frac{f^{(k)}(x)}{k!} (b-x)^k - A \frac{(b-x)^{n+1}}{(n+1)!}$ où A est intelligemment choisi.

Exercice nº 3 (***) (Formule des trapèzes)

Soit $f \in C^2([a,b],\mathbb{R}) \cap D^3(]a,b[,\mathbb{R})$. Montrer qu'il existe $c \in]a,b[$ tel que

$$f(b) = f(a) + \frac{b-a}{2}(f'(a) + f'(b)) - \frac{f^{(3)}(c)(b-a)^3}{12}.$$

Indication. Appliquer le théorème de Rolle à g puis g' où $g(x) = f(x) - f(a) - \frac{x-a}{2}(f'(x) + f'(a)) - A(x-a)^3$ où A est intelligemment choisi.

Que devient cette formule si on remplace f par F une primitive d'une fonction f de classe C^1 sur [a,b] et deux fois dérivable sur [a,b]? Interprétez géométriquement.

Exercice nº 4 (***T)

Déterminer dans chacun des cas suivants la dérivée n-ème de la fonction proposée :

1)
$$x \mapsto x^{n-1} \ln(1+x)$$
 2) $x \mapsto \cos^3 x \sin(2x)$ 3) $x \mapsto \frac{x^2+1}{(x-1)^3}$ 4) $x \mapsto (x^3+2x-7)e^x$.

Exercice no 5 (***I)

Montrer que la fonction définie sur \mathbb{R} par $f(x) = e^{-1/x^2}$ si $x \neq 0$ et 0 si x = 0 est de classe C^{∞} sur \mathbb{R} .

Exercice nº 6 (**T)

Montrer que pour tout réel strictement positif x, on a : $\left(1 + \frac{1}{x}\right)^x < e < \left(1 + \frac{1}{x}\right)^{x+1}$.

Exercice nº 7 (***I)

Soit f une fonction dérivable sur \mathbb{R} à valeurs dans \mathbb{R} vérifiant f(0) = f(a) = f'(0) = 0 pour un certain a strictement positif. Montrer qu'il existe un point distinct de O de la courbe représentative de f en lequel la tangente passe par l'origine.

Exercice nº 8 (****) (Toute fonction dérivée vérifie le théorème des valeurs intermédiaires)

Soit f une fonction dérivable sur un intervalle ouvert I à valeurs dans \mathbb{R} . Soient \mathfrak{a} et \mathfrak{b} deux points distincts de I vérifiant $f'(\mathfrak{a}) < f'(\mathfrak{b})$ et soit enfin un réel \mathfrak{m} tel que $f'(\mathfrak{a}) < \mathfrak{m} < f'(\mathfrak{b})$.

- 1) Montrer qu'il existe h>0 tel que $\frac{f(\alpha+h)-f(\alpha)}{h} < m < \frac{f(b+h)-f(b)}{h}.$
- $\textbf{2)} \ \text{Montrer qu'il existe y dans } [\mathfrak{a},\mathfrak{b}] \ \text{tel que } \mathfrak{m} = \frac{f(y+h)-f(y)}{h} \ \text{puis qu'il existe } x \ \text{tel que } f'(x) = \mathfrak{m}.$

Exercice nº 9 (*IT)

Etudier la dérivabilité à droite en 0 de la fonction $f: x \mapsto \cos \sqrt{x}$.

Exercice nº 10 (**) (Généralisation du théorème des accroissements finis)

Soient f et q deux fonctions continues sur [a, b] et dérivables sur]a, b[.

- 1) Montrer que Δ est continue sur [a, b], dérivable sur [a, b] et calculer sa dérivée.
- 2) En déduire qu'il existe c dans a, b [tel que (g(b) g(a))f'(c) = (f(b) f(a))g'(c).

Exercice nº 11 (**)

Soit f de classe C^1 sur \mathbb{R}_+^* telle que $\lim_{x \to +\infty} x f'(x) = 1$. Montrer que $\lim_{x \to +\infty} f(x) = +\infty$.

Exercice nº 12 (***)

Soit f de classe C^1 sur \mathbb{R} vérifiant pour tout x réel, $f \circ f(x) = \frac{x}{2} + 3$. En remarquant que $f\left(\frac{x}{2} + 3\right) = \frac{f(x)}{2} + 3$, montrer que f' est constante puis déterminer f.

Exercice nº 13 (***I)

Soit f de classe C^1 sur \mathbb{R} vérifiant $\lim_{x \to +\infty} (f(x) + f'(x)) = 0$. Montrer que $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} f'(x) = 0$. (Indication. Considérer $g(x) = e^x f(x)$.

Exercice nº 14 (***I)

Etudier la suite (u_n) dans chacun des cas suivants :

1)
$$u_0 \geqslant -1$$
 et $\forall n \in \mathbb{N}, \ u_{n+1} = \sqrt{1 + u_n}$

2)
$$u_0 > -1$$
 et $\forall n \in \mathbb{N}, \ u_{n+1} = \ln(1 + u_n)$

3)
$$u_0 \in \mathbb{R}$$
 et $\forall n \in \mathbb{N}$, $u_{n+1} = \sin u_n$

4)
$$u_0 \in \mathbb{R}$$
 et $\forall n \in \mathbb{N}$, $u_{n+1} = \cos(u_n)$

5)
$$u_0 \in \mathbb{R}$$
 et $\forall n \in \mathbb{N}, u_{n+1} = \sin(2u_n)$

$$\begin{array}{lll} \textbf{1)} \ u_0\geqslant -1 \ \mathrm{et} \ \forall n\in \mathbb{N}, \ u_{n+1}=\sqrt{1+u_n} & \textbf{2)} \ u_0>-1 \ \mathrm{et} \ \forall n\in \mathbb{N}, \ u_{n+1}=\ln(1+u_n) \\ \textbf{3)} \ u_0\in \mathbb{R} \ \mathrm{et} \ \forall n\in \mathbb{N}, \ u_{n+1}=\sin u_n & \textbf{4)} \ u_0\in \mathbb{R} \ \mathrm{et} \ \forall n\in \mathbb{N}, \ u_{n+1}=\cos(u_n) \\ \textbf{5)} \ u_0\in \mathbb{R} \ \mathrm{et} \ \forall n\in \mathbb{N}, \ u_{n+1}=u_n^2-2u_n+2. \end{array}$$