manipulação de dados

Sara Mortara, Andrea Sánchez-Tapia, Diogo Rocha

12 fev 2020

1. análise exploratória de dados

- 1. análise exploratória de dados
- 2. estatísticas descritivas

- 1. análise exploratória de dados
- 2. estatísticas descritivas
- 3. gráficos

- 1. análise exploratória de dados
- 2. estatísticas descritivas
- 3. gráficos
- 4. relações entre variáveis

1. análise exploratória de dados (AED)

a vida sem análise exploratória de dados

Explanatory Data Analysis de John Tukey

conheça seus dados!

1. controlar a qualidade dos dados

1. controlar a qualidade dos dados

- 1. controlar a qualidade dos dados
- 2. sugerir hipóteses para os padrões observados

- 1. controlar a qualidade dos dados
- 2. sugerir hipóteses para os padrões observados

- 1. controlar a qualidade dos dados
- 2. sugerir hipóteses para os padrões observados
- apoiar a escolha dos procedimentos estatísticos de testes de hipótese

- 1. controlar a qualidade dos dados
- 2. sugerir hipóteses para os padrões observados
- apoiar a escolha dos procedimentos estatísticos de testes de hipótese

- controlar a qualidade dos dados
- 2. sugerir hipóteses para os padrões observados
- apoiar a escolha dos procedimentos estatísticos de testes de hipótese
- avaliar se os dados atendem às premissas dos procedimentos estatísticos escolhidos

- controlar a qualidade dos dados
- 2. sugerir hipóteses para os padrões observados
- apoiar a escolha dos procedimentos estatísticos de testes de hipótese
- avaliar se os dados atendem às premissas dos procedimentos estatísticos escolhidos

- 1. controlar a qualidade dos dados
- 2. sugerir hipóteses para os padrões observados
- apoiar a escolha dos procedimentos estatísticos de testes de hipótese
- avaliar se os dados atendem às premissas dos procedimentos estatísticos escolhidos
- 5. indicar novos estudos e hipóteses

alerta!

alerta!

análise exploratória não é tortura de dados

"If you don't reveal some insights soon, I'm going to be forced to slice, dice, and drill!"

alerta!

análise exploratória não é tortura de dados

"If you don't reveal some insights soon, I'm going to be forced to slice, dice, and drill!"

assume-se que pesquisador(a) formulou *a priori* **hipóteses** plausíveis amparadas pela **teoria**

pode levar entre 20 e 50% do tempo das análises

- pode levar entre 20 e 50% do tempo das análises
- deve ser iniciada ainda durante a coleta de dados

- pode levar entre 20 e 50% do tempo das análises
- deve ser iniciada ainda durante a coleta de dados
- utiliza-se largamente técnicas visuais

importânica do gráfico e quarteto de Anscombe

- criado pelo matemático Francis Ascombe
- 4 conjuntos de dados com as mesmas estatísticas descritivas, mas muito diferentes graficamente

os dados de Anscombe

```
# claro que o conjunto já existe dentro do R
data("anscombe")
# média dos dados
apply(anscombe, 2, mean)
                x2
                        x3 x4 y1 y2 y3 y4
##
       x1
## 9.000000 9.000000 9.000000 9.000000 7.500909 7.500909 7.500000 7.500909
# variância dos dados
apply(anscombe, 2, var)
##
        x1
                 x2
                          x3 x4
## 11.000000 11.000000 11.000000 11.000000 4.127269 4.127629 4.122620
##
        v4
## 4.123249
```

vamos olhar para os dados

```
##
     x1 x2 x3 x4
                    y1 y2
                               уЗ
                                      y4
               8
      10 10 10
                   8.04 9.14
                            7.46
                                    6.58
## 1
                   6.95 8.14 6.77 5.76
## 2
      8
        8
            8
                8
## 3
      13 13 13
               8
                   7.58 8.74 12.74
                                   7.71
                   8.81 8.77
## 4
          9
             9
                8
                             7.11
                                    8.84
      11 11 11
                8
                   8.33 9.26
                            7.81
                                    8.47
## 5
               8 9.96 8.10 8.84 7.04
##
  6
      14 14 14
      6 6
            6
               8 7.24 6.13 6.08
                                    5.25
## 7
## 8
       4
          4
             4 19
                   4.26 3.10
                              5.39 12.50
                                    5.56
##
      12 12 12
               8 10.84 9.13
                              8.15
            7
## 10
         7
                8 4.82 7.26
                              6.42 7.91
       5
          5
             5
                8
                  5.68 4.74
                              5.73
                                    6.89
```

correlação entre x e y

```
# correlação
cor(anscombe$x1, anscombe$y1)
## [1] 0.8164205
cor(anscombe$x2, anscombe$y2)
## [1] 0.8162365
cor(anscombe$x3, anscombe$y3)
## [1] 0.8162867
cor(anscombe$x4, anscombe$y4)
## [1] 0.8165214
```

coeficientes da regressão linear de x e y

```
# coeficientes da regressão
coef(lm(anscombe$v1 ~ anscombe$x1))
## (Intercept) anscombe$x1
     3.0000909
                0.5000909
##
coef(lm(anscombe$y2 ~ anscombe$x2))
## (Intercept) anscombe$x2
      3.000909
                  0.500000
##
coef(lm(anscombe$y3 ~ anscombe$x3))
## (Intercept) anscombe$x3
     3.0024545
##
                0.4997273
coef(lm(anscombe$y4 ~ anscombe$x4))
  (Intercept) anscombe$x4
     3.0017273
                0.4999091
##
```

agora sim vamos olhar para os dados do Anscombe

perguntas que nos devemos fazer

 Onde os dados estão centrados? Como os dados estão distribuídos? Os dados são simétricos, assimétricos, bimodais?

perguntas que nos devemos fazer

- Onde os dados estão centrados? Como os dados estão distribuídos? Os dados são simétricos, assimétricos, bimodais?
- 2. Existem outliers?

perguntas que nos devemos fazer

- Onde os dados estão centrados? Como os dados estão distribuídos? Os dados são simétricos, assimétricos, bimodais?
- 2. Existem outliers?
- 3. As variáveis seguem uma distribuição normal?

perguntas que nos devemos fazer

- Onde os dados estão centrados? Como os dados estão distribuídos? Os dados são simétricos, assimétricos, bimodais?
- 2. Existem outliers?
- 3. As variáveis seguem uma distribuição normal?
- 4. Existem relações entre as variáveis? As relações entre variáveis são lineares?

perguntas que nos devemos fazer

- Onde os dados estão centrados? Como os dados estão distribuídos? Os dados são simétricos, assimétricos, bimodais?
- 2. Existem outliers?
- 3. As variáveis seguem uma distribuição normal?
- 4. Existem relações entre as variáveis? As relações entre variáveis são lineares?
- 5. As variáveis precisam ser transformadas?

perguntas que nos devemos fazer

- Onde os dados estão centrados? Como os dados estão distribuídos? Os dados são simétricos, assimétricos, bimodais?
- 2. Existem outliers?
- 3. As variáveis seguem uma distribuição normal?
- 4. Existem relações entre as variáveis? As relações entre variáveis são lineares?
- 5. As variáveis precisam ser transformadas?
- 6. O esforço amostral foi o mesmo para cada observação ou variável?

2. estatísticas descritivas

conferência de dados no R

```
# lendo os dados da idade da população que u fraldas <- read.csv("data/idade fraldas.csv")
```

checando os dados

```
# checando os dados
head(fraldas)
```

```
## Indivíduo idade
## 1 1 1 1
## 2 NA
## 3 3 2
## 4 4 0
## 5 5 1
## 6 6 0
```

tail(fraldas)

##		indivíduo	idade
##	95	95	77
##	96	96	79
##	97	97	87
##	98	98	85
##	99	99	91
##	100	100	86

inspecionando os dados

```
str(fraldas)
```

```
## 'data.frame': 100 obs. of 2 variables:
## $ indivíduo: int 1 2 3 4 5 6 7 8 9 10 ...
## $ idade : int 1 NA 2 0 1 0 0 1 0 0 ...
```

summary(fraldas)

```
indivíduo
##
                        idade
##
   Min. : 1.00
                    Min. : 0.00
   1st Qu.: 25.75
                    1st Qu.: 0.00
##
##
   Median : 50.50
                    Median : 1.00
   Mean : 50.50
                    Mean :17.17
##
   3rd Qu.: 75.25
                    3rd Qu.: 3.00
##
##
   Max. :100.00
                    Max. :99.00
```

 existem valores faltantes i.e. (NAs)? Eles são mesmo faltantes?

teste lógico para encontrar NA e zero

is.na(fraldas\$idade)

```
## [1] FALSE TRUE FALSE FALSE
```

onde está NA

```
which(is.na(fraldas$idade))
## [1] 2 17
fraldas[c(2,17),]
##
      indivíduo idade
## 2
                     NΑ
               17
                     NΑ
## 17
vamos substituir NA por 0
fraldas$idade[is.na(fraldas$idade)] <- 0</pre>
```

conferindo se tem NA

[1] O

```
is.na(fraldas$idade)
     [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##
    [12] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
    [23] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##
    [34] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
    [45] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##
    [56] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##
##
    [67] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
    [78] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##
    [89] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [100] FALSE
sum(is.na(fraldas$idade))
```

2. existem muitos zeros?

```
fraldas$idade==0
        FALSE
               TRUE FALSE
                            TRUE FALSE
                                      TRUE
                                              TRUE FALSE
                                                          TRUE
                                                                TRUE
                                                                      TRUE
##
    Γ127
                                       TRUE FALSE FALSE FALSE FALSE
##
         TRUE.
               TRUE FALSE FALSE
                                 TRUE.
                                                                      TRUE.
##
    [23]
         TRUE FALSE TRUE FALSE FALSE FALSE
                                              TRUE
                                                    TRUE FALSE
                                                                TRUE FALSE
##
    [34]
         TRUE FALSE TRUE
                            TRUE FALSE
                                       TRUE FALSE
                                                    TRUE FALSE FALSE
                                                                      TRUE
    Γ451
         TRUE FALSE TRUE FALSE
                                 TRUE FALSE FALSE
##
                                                    TRUE FALSE
                                                                      TRUE.
##
    [56]
        FALSE FALSE
                    TRUE FALSE FALSE TRUE
                                              TRUE FALSE FALSE FALSE FALSE
        FALSE
               TRUE FALSE FALSE FALSE
                                              TRUE FALSE
                                                         TRUE FALSE FALSE
##
##
        FALSE
               TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
    [89] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
   [100] FALSE
```

```
quantos?
```

```
sum(fraldas$idade==0)
```

[1] 36

3. onde os dados estão centrados? como estão espalhados? são simétricos? enviesados, bimodais?

3. onde os dados estão centrados? como estão espalhados? são simétricos? enviesados, bimodais?

- 3. onde os dados estão centrados? como estão espalhados? são simétricos? enviesados, bimodais?
- 4. existem valores extremos (outliers)?

- 3. onde os dados estão centrados? como estão espalhados? são simétricos? enviesados, bimodais?
- 4. existem valores extremos (outliers)?

- 3. onde os dados estão centrados? como estão espalhados? são simétricos? enviesados, bimodais?
- 4. existem valores extremos (outliers)?
- 5. qual a distribuição da variável?

```
summary(fraldas$idade)
```

```
## Min. 1st Qu. Median Mean 3rd Qu.
## 0.00 0.00 1.00 16.83 3.00
```

medidas de tendência central

```
# media
mean(fraldas$idade)
## [1] 16.83
# mediana
median(fraldas$idade)
## [1] 1
# valor mais frequente na amostra
freqf <- sort(table(fraldas$idade), decreasin</pre>
freqf[1]
```

medidas de dispersão # yariancia var(fraldas\$idade) ## [1] 1046.446 # desvio padrão sd(fraldas\$idade) ## [1] 32.34881 # coeficiente de variação

```
sd(fraldas$idade)/mean(fraldas$idade)*100
## [1] 192.2092
```

```
# intervalo
range(fraldas$idade)
```

```
## [1] 0 99
diff(range(fraldas$idade))
```

quantis e intervalo inter-quantil (IIO)

```
# quantis
quantile(fraldas$idade)
## 0% 25% 50% 75% 100%
##
# lembrando da saida do summary
summary(fraldas$idade)
##
     Min. 1st Qu. Median Mean 3rd Qu.
                                           Max.
     0.00 0.00 1.00 16.83 3.00
##
                                          99.00
# mudando os quantis
quantile(fraldas$idade, probs=c(0.05, 0.5, 0.95))
## 5% 50% 95%
   0.0 1.0 87.1
##
# intervalo inter-quantil
IQR(fraldas$idade)
```

3. gráficos

visualizando os dados em um boxplot

boxplot(fraldas\$idade)

visualizando os dados em um histograma

hist(fraldas\$idade)

Histogram of fraldas\$idade

separando bebês e vovxs

```
bb <- fraldas[fraldas$idade<10,]
vv <- fraldas[fraldas$idade>10,]
```

os novos gráficos: boxplot

```
par(mfrow=c(1,2))
boxplot(bb$idade)
boxplot(vv$idade)
```


par(mfrow=c(1,1))

entendendo o boxplot

entendendo o boxplot

```
par(mfrow=c(1,2))
boxplot(bb$idade)
boxplot(vv$idade)
```


os novos gráficos: histograma

```
par(mfrow=c(1,2))
hist(bb$idade)
hist(vv$idade)
```


Histogram of vv\$idade

tipos de histograma

```
par(mfrow=c(1,2))
hist(bb$idade)
hist(bb$idade, probability = TRUE)
```


Histogram of bb\$idade

par(mfrow=c(1,1))

classes do histograma

```
par(mfrow=c(1,3))
hist(bb$idade, breaks=seq(0, max(bb$idade), 1
hist(bb$idade, breaks=seq(0, max(bb$idade),
hist(bb$idade)
```


par(mfrow=c(1,1))

curvas empíricas de densidade probabilística

representa a função que descreve a probabilidade de se encontrar determinado valor

```
hist(bb$idade, probability = TRUE )
```

Histogram of bb\$idade

curvas empíricas de densidade probabilística

plot(density(bb\$idade))

distribuição se ajusta aos dados?

distribuição discreta e assimétrica ightarrow Poisson?

```
# máximo de idade
bb.max <- max(bb$idade)
# lambda
bb.med <- mean(bb$idade)</pre>
```

distribuição Poisson se ajusta aos dados?

```
hist(bb$idade, probability = TRUE)
points(dpois(0:bb.max, bb.med), col=cor[5])
lines(dpois(0:bb.max, bb.med), col=cor[5])
```

Histogram of bb\$idade

(distribuições estatístcas)

distribuição normal ou gaussiana

por que amostragem é importante?

Histogram of a

por que amostragem é importante?

Histogram of a

por que amostragem é importante?

Histogram of a

4. relações entre variáveis

Anderson & Fisher e as espécies de Iris

Iris Versicolor

Iris Setosa

Iris Virginica

Anderson & Fisher e as espécies de Iris

##

##

44

virginica:50

```
# carregando os dados no R
data(iris)
# para saber mais sobre o conjunto de dados consulte
# ?iris
# entendendo iris
summary(iris)
```

```
Sepal.Length Sepal.Width Petal.Length
                                                Petal.Width
##
##
   Min.
          :4.300
                  Min.
                        :2.000
                                 Min.
                                       :1.000
                                               Min.
                                                      :0.10
##
   1st Qu.:5.100 1st Qu.:2.800
                                 1st Qu.:1.600
                                               1st Qu.:0.30
##
   Median :5.800 Median :3.000
                                 Median :4.350
                                               Median:1.30
##
   Mean :5.843
                 Mean :3.057
                                 Mean :3.758
                                               Mean
                                                      :1.19
   3rd Qu.:6.400
##
                  3rd Qu.:3.300
                                 3rd Qu.:5.100
                                               3rd Qu.:1.80
                  Max. :4.400
                                 Max. :6.900
                                                      :2.50
##
   Max. :7.900
                                               Max.
##
         Species
##
   setosa
             :50
##
   versicolor:50
```

gráfico de dispersão

correlação entre as variáveis

```
cor(iris[1:4])
##
               Sepal.Length Sepal.Width Petal.Length Petal.Widt
## Sepal.Length
                  1.0000000
                            -0.1175698
                                         0.8717538
                                                    0.817941
## Sepal.Width
                -0.1175698 1.0000000 -0.4284401
                                                   -0.366125
## Petal.Length
                 0.8717538 -0.4284401
                                         1.0000000
                                                    0.962865
## Petal Width
                 0.8179411 -0.3661259
                                         0.9628654
                                                     1.000000
```

quando uma correlação é alta? 0.7

quando uma correlação é alta? 0.7

GENERAL RULE OF THUMB

correlação entre as variáveis

pairs(iris[1:4], col=iris\$Species)

ou ainda melhor correlação entre as variáveis

pacote GGally com a função ggpairs()

e quais os caminhos para a análise?

sua [HIPÓTESE]

1. entender bem os dados

1. entender bem os dados

- entender bem os dados
- 2. variável resposta é normal? \rightarrow Im e outras análises paramétricas

- entender bem os dados
- 2. variável resposta é normal? \rightarrow Im e outras análises paramétricas

- entender bem os dados
- 2. variável resposta é normal? \rightarrow Im e outras análises paramétricas
- 3. variável resposta tem outra distribuição ightarrow análises não paramétricas, glm

- entender bem os dados
- 2. variável resposta é normal? \rightarrow Im e outras análises paramétricas
- 3. variável resposta tem outra distribuição ightarrow análises não paramétricas, glm

- entender bem os dados
- 2. variável resposta é normal? \rightarrow lm e outras análises paramétricas
- 3. variável resposta tem outra distribuição ightarrow análises não paramétricas, glm
- 4. variáveis preditoras hierarquizadas? \rightarrow (g)lmm

- entender bem os dados
- 2. variável resposta é normal? \rightarrow lm e outras análises paramétricas
- 3. variável resposta tem outra distribuição ightarrow análises não paramétricas, glm
- 4. variáveis preditoras hierarquizadas? \rightarrow (g)lmm

- entender bem os dados
- 2. variável resposta é normal? \rightarrow lm e outras análises paramétricas
- 3. variável resposta tem outra distribuição ightarrow análises não paramétricas, glm
- 4. variáveis preditoras hierarquizadas? \rightarrow (g)lmm
- 5. pseudo-replicação no espaço ou no tempo \rightarrow (g)lmm