Correction de la feuille 8 : diagonalisation

Exercice 1.

(a) Pour tous $P, Q \in \mathbb{R}_n[X]$ et $\lambda \in \mathbb{R}$,

$$f(\lambda P + Q) = X(\lambda P + Q)'(X) = \lambda X P'(X) + X Q'(X) = \lambda f(P) + f(Q).$$

Donc f est linéaire. Et pour tout $P \in \mathbb{R}_n[X]$, P' est de degré au plus n-1, de sorte que XP'(X) est de degré au plus n. Donc f est un endomorphisme de $\mathbb{R}_n[X]$.

(b) Une base de $\mathbb{R}_n[X]$ est $(1, X, \dots, X^n)$. Pour $k = 0, \dots, n$,

$$f(X^k) = XkX^{k-1} = kX^k$$

donc cette base est constituée de vecteurs propres : f est diagonalisable.

Exercice 2.

(a) La matrice de f dans la base (e_1, \ldots, e_n) est

$$A = \begin{pmatrix} 0 & 0 & \dots & 0 & 1 \\ 1 & 0 & \ddots & \ddots & 0 \\ 0 & 1 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 & 0 \\ 0 & 0 & \dots & 1 & 0 \end{pmatrix},$$

de sorte que le polynôme caractéristique est

$$\chi_A(X) = \begin{vmatrix} -X & 0 & \dots & 0 & 1 \\ 1 & -X & \ddots & \ddots & 0 \\ 0 & 1 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & -X & 0 \\ 0 & 0 & \dots & 1 & -X \end{vmatrix},$$

On calcule ce déterminant en développant par rapport à la dernière colonne :

$$\chi_A(X) = (-1)^{n+1} \times 1 + (-X) \times (-X)^{n-1} = (-1)^n (X^n - 1).$$

(b) Ce polynôme a n racines complexes distinctes : les racines n-ièmes de l'unité. Donc f est diagonalisable.

Exercice 3. Le polynôme caractéristique de $A = \begin{pmatrix} 0 & 2 & -1 \\ 3 & -2 & 0 \\ -2 & 2 & 1 \end{pmatrix}$ vaut

$$\chi_A = \begin{vmatrix} -X & 2 & -1 \\ 3 & -2 - X & 0 \\ -2 & 2 & 1 - X \end{vmatrix} = -X^3 - X^2 + 10X - 8.$$

Après avoir remarqué que 1 est racine de ce polynôme, on fait la division euclidienne par X-1 et on trouve $\chi_A=(X-1)(-X^2-2X+8)$. Reste à factoriser le trinôme à droite, de la façon usuelle (discriminant...) :

$$\chi_A = -(X-1)(X-2)(X+4).$$

La matrice $A \in M_3(\mathbb{R})$ admet trois valeurs propres réelles distinctes : 1, 2 et -4. Elle est donc diagonalisable (sur \mathbb{R} donc sur \mathbb{C}) et chaque espace propre est de dimension 1.

(x, y, z) est dans $E_1(A) = \text{Ker}(A - I_3)$ si le système suivant est vérifié :

$$\begin{cases}
-x + 2y - z &= 0 \\
3x - 3y &= 0 \\
-2x + 2y &= 0
\end{cases}$$

Après résolution, on observe que (1, 1, 1) convient.

(x, y, z) est dans $E_2(A) = \text{Ker}(A - 2I_3)$ si le système suivant est vérifié :

$$\begin{cases}
-2x + 2y - z &= 0 \\
3x - 4y &= 0 \\
-2x + 2y - z &= 0
\end{cases}$$

Après résolution, on observe que (4, 3, -2) convient.

(x, y, z) est dans $E_{-4}(A) = \text{Ker}(A + 4I_3)$ si le système suivant est vérifié :

$$\begin{cases}
4x + 2y - z &= 0 \\
3x + 2y &= 0 \\
-2x + 2y + 5z &= 0
\end{cases}$$

Après résolution, on observe que (2, -3, 2) convient.

Finalement, ((1,1,1),(4,3,-2),(2,-3,2)) est une base de vecteurs propres.

Passons à $B = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{pmatrix}$. On calcule χ_B en développant par rapport à

la première colonne

$$\chi_B = \begin{vmatrix} -X & 0 & 0 & 1\\ 0 & -X & -1 & 0\\ 0 & 1 & -X & 0\\ -1 & 0 & 0 & -X \end{vmatrix} = -X \begin{vmatrix} -X & -1 & 0\\ 1 & -X & 0\\ 0 & 0 & -X \end{vmatrix} + \begin{vmatrix} 0 & 0 & 1\\ -X & -1 & 0\\ 1 & -X & 0 \end{vmatrix}$$
$$= X^2(X^2 + 1) + (X^2 + 1) = (X^2 + 1)^2.$$

Ce polynôme ne s'annule pas sur \mathbb{R} , donc B n'a pas de valeur propre réelle : B n'est pas diagonalisable sur \mathbb{R} . Mais il s'écrit aussi $(X-i)^2(X+i)^2$, de sorte que B a 2 valeurs propres complexes, i et -i.

B(a,b,c,d) = i(a,b,c,d) si le système suivant est vérifié :

$$\begin{cases}
d = ia \\
-c = ib \\
b = ic \\
-a = id
\end{cases}$$

On en déduit :

$$E_i(B) = \{(a, b, -ib, ia) \mid a, b \in \mathbb{C}\} = \text{Vect}((1, 0, 0, i), (0, 1, -i, 0)).$$

On trouve de même :

$$E_{-i}(B) = \{(a, b, ib, -ia) \mid a, b \in \mathbb{C}\} = \text{Vect}((1, 0, 0, -i), (0, 1, i, 0)).$$

Ceci montre que ((1,0,0,i),(0,1,-i,0),(1,0,0,-i),(0,1,i,0)) est une base de vecteurs propres de \mathbb{C}^4 pour la matrice B:B est diagonalisable sur \mathbb{C} .

Passons à
$$C = \begin{pmatrix} 1 & 4 & -2 \\ 0 & 6 & -3 \\ -1 & 4 & 0 \end{pmatrix}$$
. Après calcul, on trouve
$$\chi_C = -X^3 + 7X^2 - 16X + 12.$$

On peut voir que 2 est une racine de χ_C . Par division euclidienne puis étude du trinôme restant,

$$\chi_C = (X-2)(-X^2 + 5X - 6) = -(X-2)^2(X-3).$$

Ceci montre que C a 2 racines complexes distinctes, 2 et 3. Comme 2 est une racine de multiplicité 2, il faut que le sous-espace propre E_2 soit de dimension 2 pour que C soit diagonalisable sur \mathbb{C} . Or (x,y,z) est dans $E_2(C)$ si le système suivant est vérifié :

$$\begin{cases}
-x + 4y - 2z &= 0 \\
4y - 3z &= 0 \\
-x + 4y - 2z &= 0
\end{cases}$$

Ainsi, $E_2(C) = \{(4t, 3t, 4t) \mid t \in \mathbb{C}\}$ (on a posé z = 4t, ce qui donne y puis x en fonction de t). Donc $E_2(C)$ est de dimension 1, engendré par (4, 3, 4). Comme 2 est racine double de χ_c , la dimension de $E_2(C)$ n'est pas suffisante pour diagonaliser : C n'est pas diagonalisable sur \mathbb{C} , et donc encore moins sur \mathbb{R} .

Exercice 4.

- (a) $A + I_n$ est la matrice avec des coefficients 1 partout. Son image est donc constituée des vecteurs proportionnels à v = (1, 1, ..., 1). Elle est de dimension 1. Par le théorème du rang, la dimension de $Ker(A + I_n)$ est n 1.
- (b) Cela veut dire que -1 est valeur propre de A, avec un espace propre E_{-1} de dimension n-1. De plus, en regardant (a), on s'aperçoit que $v=(1,1,\ldots,1)$ vérifie Av=(n-1)v, donc n-1 est aussi valeur propre : dim $E_{n-1} \geq 1$. On a trouvé deux sous-espaces propres dont la somme est de dimension au moins n, donc égale à n:A est diagonalisable.
- (c) On vient de voir que $A = PDP^{-1}$, avec P inversible et D diagonale, avec n-1 coefficients -1 et un coefficient n-1 sur la diagonale. Donc

$$\det A = (\det P)(\det D)(\det P)^{-1} = \det D = (-1)^{n-1}(n-1).$$

Exercice 5. La matrice A est

$$A = \begin{pmatrix} 0 & 0 & \dots & 0 & 1 \\ 0 & 0 & \dots & 0 & 2 \\ \vdots & \vdots & \dots & \vdots & \vdots \\ 0 & 0 & \dots & 0 & n-1 \\ 1 & 2 & \dots & n-1 & n \end{pmatrix},$$

Notons e_1, \ldots, e_n les vecteurs colonnes de la base canonique de \mathbb{R}^n . On peut remarquer que, pour $k = 2, \ldots, n-1$, $Ae_k = kAe_1$. Comme Ae_n n'est pas colinéaire

à Ae_1 , on voit que Im $A = \text{Vect}(Ae_1, Ae_n)$ est de dimension 2. Par le théorème du rang, on en déduit que le noyau de A est de dimension n-2. On voit même n-2 vecteurs de Ker $A: e_k - ke_1$, pour $k=2, \ldots, n-1$. La liberté de la base canonique montre que cette famille est une base de Ker A.

Cherchons maintenant un vecteur propre $x = (x_1, \dots, x_n)$ associé à une valeur propre $\lambda \neq 0$. L'équation $Ax = \lambda x$ signifie

$$\forall k = 1, \dots, n - 1, \quad kx_n = \lambda x_k \qquad \text{et} \qquad \sum_{j=1}^n jx_j = \lambda x_n,$$

soit

$$\forall k = 1, \dots, n-1, \quad x_k = \frac{kx_n}{\lambda}$$
 et $\sum_{i=1}^{n-1} \frac{j^2 x_n}{\lambda} + nx_n = \lambda x_n.$

La première relation empêche x_n d'être nul (sinon, x = 0). La seconde, en posant $S = \sum_{j=1}^{n-1} j^2 = \frac{(n-1)n(2n-1)}{6}$, devient $\lambda^2 - n\lambda - S = 0$. On trouve donc deux

nouvelles valeurs propres, $\lambda_{\pm} = \frac{1}{2} \left(n \pm \sqrt{n^2 + 4S} \right)$. Le calcul donne des vecteurs propres associés, en posant $x_n = \lambda_{\pm}$ par exemple : $x_{\pm} = (1, 2, \dots, n-1, \lambda_{\pm})$.

Tout ceci montre que $(e_2 - 2e_1, \dots, e_{n-1} - (n-1)e_1, x_+, x_-)$ est une base de vecteurs propres de A, de sorte que A est diagonalisable. Explicitement, en posant

$$P = \begin{pmatrix} -2 & -3 & \dots & -(n-1) & 1 & 1 \\ 1 & 0 & \ddots & \ddots & 2 & 2 \\ 0 & 1 & \ddots & \ddots & \vdots & \\ \vdots & \ddots & \ddots & 0 & n-2 & n-2 \\ 0 & 0 & \dots & 1 & n-1 & n-1 \\ 0 & 0 & \dots & 0 & \lambda_{+} & \lambda_{-} \end{pmatrix},$$

et D la matrice diagonale avec n-2 coefficients 0, suivis de λ_+ et λ_- sur la diagonale. Alors $A = PDP^{-1}$.

Exercice 6.

(a) Soit v un vecteur propre de s et soit λ la valeur propre associée. Alors

$$v = s \circ s(v) = s(\lambda v) = \lambda s(v) = \lambda^2 v.$$

Comme v n'est pas nul, l'équation $(1-\lambda^2)v=0$ signifie $1-\lambda^2=0$, soit $\lambda=1$ ou $\lambda=-1$.

(b) Procédons par analyse/synthèse. Analyse : si de tels vecteurs x_{\pm} existent, ils vérifient $x = x_{+} + x_{-}$ et $s(x) = x_{+} - x_{-}$; par somme et différence, on trouve

$$x_{+} = \frac{x + s(x)}{2}$$
 et $x_{-} = \frac{x - s(x)}{2}$.

Synthèse : on définit x_{\pm} par ces formules et on vérifie immédiatement que $x_{+} + x_{-} = x$, $s(x_{+}) = \frac{s(x) + x}{2} = x_{+}$ et $s(x_{-}) = \frac{s(x) - x}{2} = -x_{-}$.

(c) Le espaces propres $E_1(s)$ et $E_{-1}(s)$ sont toujours en somme directe et la question précédente donne

$$E = E_1(s) \oplus E_{-1}(s).$$

Comme E est somme de sous-espaces propres de s, s est diagonalisable. On peut noter que cela inclut le cas où l'un est trivial (s = id ou s = -id).

(d)

Exercice 7.

(a) Soit $x \in E$. Si x = 0, f(x) = 0, donc on peut prendre par exemple $\lambda_0 = 1$. Sinon, on peut compléter la famille libre (x) en une base (x, e_2, \ldots, e_n) de E. Si l'on pose F = Vect(x) et $G = \text{Vect}(e_2, \ldots, e_n)$, on a alors $E = F \oplus G$: F+G=E parce que la famille est génératrice; $F \cap G$ est trivial parce que la famille est libre. Soit g la projection sur F parallèlement à G. Comme g est dans g est g donne alors:

$$g(f(x)) = f(g(x)) = f(x).$$

Donc f(x) est dans $E_1(g) = F = \text{Vect}(x)$. Cela veut dire qu'il existe $\lambda_x \in \mathbb{R}$ tel que $f(x) = \lambda_x x$.

(b) Soit (e_1, \ldots, e_n) une base de E. La question précédente montre que la matrice de f dans cette base est diagonale, de coefficients diagonaux $\lambda_{e_1}, \ldots, \lambda_{e_n}$. Reste à voir qu'ils sont égaux.

Pour $i \neq j$, puisque $f(e_i + e_j) = f(e_i) + f(e_j)$, on a

$$\lambda_{e_i + e_j}(e_i + e_j) = \lambda_{e_i}e_i + \lambda_{e_j}e_j.$$

La liberté de (e_i, e_j) donne $\lambda_{e_i} = \lambda_{e_i + e_j} = \lambda_{e_j}$.

Ainsi, tous les coefficients diagonaux sont égaux, donc la matrice de f est du type λI_n et f est bien une homothétie.

Exercice 8.

(a) Si λ est une valeur propre de f et x un vecteur propre associé, on a

$$f^{n}(x) = f^{n-1}(f(x)) = f^{n-1}(\lambda x) = \lambda f^{n-1}(x)$$

et par récurrence immédiate : $f^n(x) = \lambda^n x$. Comme $f^n = 0$ et $x \neq 0$, on en tire $\lambda^n = 0$, donc $\lambda = 0$. Ainsi, la seule valeur propre possible est 0. Si f est diagonalisable, f est donc nulle.

Ainsi, f est diagonalisable si et seulement si f est nulle.

(b) On a $f^{n-1}(x) \neq 0$ et $f^n(x) = 0$. Comme toute application linéaire envoie 0 sur 0, on en déduit que $f^i(x)$ est non nul (resp. est nul) si $i \leq n-1$ (resp. si $i \geq n$).

Soient des scalaires $\lambda_0, \ldots, \lambda_{n-1}$ tels que

$$\lambda_0 x + \lambda_1 f(x) + \dots + \lambda_{n-1} f^{n-1}(x) = 0.$$

En appliquant f^{n-1} à cette équation, on trouve $\lambda_0 f^{n-1}(x) + 0 = 0$, d'où $\lambda_0 = 0$. Ensuite, en appliquant f^{n-2} à cette équation, on trouve $\lambda_1 f^{n-1}(x) + 0 = 0$, d'où $\lambda_1 = 0$. En réitérant ce procédé, on prouve que tous les coefficients λ_i sont nuls.

Cela assure que $(x, f(x), \dots, f^{n-1}(x))$ est une famille libre de E. Comme elle compte n éléments, c'est une base.

(c) La matrice de f dans cette base est

$$\begin{pmatrix} 0 & 0 & \dots & 0 & 0 \\ 1 & 0 & \ddots & \ddots & 0 \\ 0 & 1 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 & 0 \\ 0 & 0 & \dots & 1 & 0 \end{pmatrix},$$

Exercice 9.

(a) La matrice
$$A = \begin{pmatrix} 6 & -11 & 6 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$
 convient.

- (b) Par récurrence immédiate, pour tout indice $n: X_n = A^n X_0$.
- (c) Le polynôme caractéristique de A est

$$\begin{vmatrix} 6 - X & -11 & 6 \\ 1 & -X & 0 \\ 0 & 1 & -X \end{vmatrix} = (6 - X)X^2 - (11X - 6) = -X^3 + 6X^2 - 11X + 6.$$

On vérifie que 1, 2 et 3 sont des racines (distinctes!) de ce polynôme. Donc A est diagonalisable et il existe une matrice inversible P telle que A =

$$P\begin{pmatrix}1&0&0\\0&2&0\\0&0&3\end{pmatrix}P^{-1}.$$
 Alors, pour tout indice $n:$

$$X_n = A^n X_0 = P \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2^n & 0 \\ 0 & 0 & 3^n \end{pmatrix} P^{-1} X_0.$$

Comme P et X_0 ne dépendent pas de n, les composantes de X_n s'écrivent $\alpha 3^n + \beta 2^n + \gamma$ pour certaines constantes $\alpha, \beta, \gamma \in \mathbb{C}$. C'est donc le cas de u_n , en particulier.

Exercice 10.

(a) L'ensemble $\underline{T}_x = \{t \geq 0 \mid tx \leq Ax\}$ est une partie de \mathbb{R} donc $\theta(x)$ est un élément de $\overline{\mathbb{R}}$ bien défini.

Par hypothèse, l'une des composantes de x est strictement positive et tous les coefficients de A sont strictement positifs. Donc les quantités $(Ax)_i = \sum_{i=1}^{d} a_{ii}x_{i}$, $1 \le i \le d$, sont toutes strictement positives. On pose

$$\sum_{j=1}a_{ij}x_j,\,1\leq i\leq d,$$
 sont toutes strictement positives. On pose

$$\tau = \min \left\{ \frac{(Ax)_i}{x_i} \mid 1 \le i \le d \text{ et } x_i > 0 \right\}.$$

Ce nombre τ est le plus petit d'un nombre fini (non nul) de quantités strictement positives : $\tau > 0$. Et par construction, $\tau x_i \leq (Ax)_i$ si $x_i > 0$; et cette inégalité est aussi vrai si $x_i = 0$. Cela montre que τ est dans T_x , d'où $\theta(x) \geq \tau > 0$.

D'autre part, pour $t \in T_x$, on a

$$\forall i = 1, \dots, d, \quad tx_i \le \sum_{j=1}^d a_{ij} x_j.$$

En sommant sur i on trouve

$$t\left(\sum_{i=1}^{d} x_i\right) \le \sum_{j=1}^{d} \left(\sum_{i=1}^{d} a_{ij}\right) x_j \le S\left(\sum_{j=1}^{d} x_j\right).$$

Comme l'un des x_i est strictement positif et les autres positifs, la somme est strictement positive, donc on peut simplifier pour trouver $t \leq S$. On en déduit : $\theta(x) \leq S$.

(b) Les éléments x de C sont positifs et non nuls donc θ est bien définie sur C. Avec la question précédente, λ est un élément de]0,S] bien défini.

La caractérisation séquentielle des bornes supérieures donne une suite de vecteurs x^n de C telle que $(\theta(x^n))$ converge vers λ . Chacun des vecteurs x^n est dans C, donc a des composantes x_i^n comprises entre 0 et 1. On peut appliquer le théorème de Bolzano-Weierstrass à la suite réelle bornée (x_1^n) , afin d'en extraire une sous-suite convergente. Cette extraction donne une nouvelle suite de vecteurs, qu'on appelle de nouveau (x^n) . En réutilisant le théorème de Bolzano-Weierstrass successivement pour chaque composante, on bâtit ainsi une sous-suite dont chaque composante converge. Pour cette nouvelle suite (x^n) , on a encore $(\theta(x^n)) \to \lambda$ (une sous-suite d'une suite convergente converge vers la même limite). Notons x le vecteur limite des vecteurs x^n de C. En faisant $n \to +\infty$ dans

$$\forall i, \quad x_i^n \ge 0 \quad \text{ et } \quad \sum_{j=1}^n x_j^n = 1,$$

on trouve

$$\forall i, \quad x_i \ge 0 \quad \text{ et } \quad \sum_{j=1}^n x_j = 1,$$

donc x est dans C.

(c) Soit $n \in \mathbb{N}$. Par caractérisation séquentielle des sup, il existe une suite d'éléments t_p de T_{x^n} tels que $(t_p) \to \theta(x^n)$. En faisant $p \to +\infty$ dans

$$t_p x^n \le A x^n$$
,

on trouve

$$\theta(x^n)x^n \le Ax^n$$
.

En faisant $n \to +\infty$, il vient

$$\lambda x \leq Ax$$
.

- (d) Supposons que $y = Ax \lambda x$ n'est pas nul.
 - Le vecteur y est positif (question précédente) et non nul (par hypothèse), donc l'une des composantes de y, disons y_k , est strictement positive. Alors pour tout i,

$$(Ay)_i = \sum_{j=1}^d a_{ij} y_j \ge a_{ik} y_k > 0.$$

D'où Ay > 0.

— Comme x est dans C, le même argument donne aussi Ax > 0. On peut donc poser

$$\epsilon = \min \left\{ \frac{(Ay)_i}{(Ax)_i} \mid 1 \le i \le d \right\}.$$

C'est le plus petit d'un nombre fini de nombres strictement positifs : $\epsilon > 0$. Par construction, $\epsilon Ax \leq Ay$.

— Il vient alors:

$$\epsilon Ax \le Ay = A(Ax - \lambda x) = A(Ax) - \lambda Ax,$$

d'où $(\lambda + \epsilon)Ax \leq A(Ax)$. Avec la défintion de θ , cela donne $\lambda + \epsilon \leq \theta(Ax)$. On a bien Ax > 0 mais a priori Ax n'est pas dans C (ce qui semble empêcher de majorer par λ). Posons $N = \sum_{i=1}^{n} (Ax)_i$ et z = Ax/N. Alors

z est un vecteur de C et en divisant l'inégalité ci-dessus par N, on trouve $(\lambda+\epsilon)z\leq Az,$ puis

$$\lambda + \epsilon < \theta(z) < \lambda$$
.

Absurde.

— On a démontré que $Ax = \lambda x$. Ainsi, une matrice à coefficients strictement positifs a toujours au moins une valeur propre strictement positive, associée à un vecteur propre dont toutes les composantes sont positives (et même strictement : la preuve a montré que Ax > 0, donc $x = \frac{1}{\lambda}Ax > 0$).