PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ

FACULTAD DE CIENCIAS E INGENIERÍA

IOP224 INVESTIGACIÓN DE OPERACIONES

Cuarta práctica (tipo a) Primer semestre 2024

Indicaciones generales:

- Duración: 110 minutos.
- Materiales o equipos a utilizar: con apuntes de clase.
- No está permitido el uso de ningún material o equipo electrónico adicional al indicado (no celulares, se aceptan tablets).
- La presentación, la ortografía y la gramática de los trabajos influirán en la calificación.

Puntaje total: 20 puntos.

Cuestionario:

Pregunta 1 (6 puntos)

1.1) Considere una empresa que produce un bien utilizando un conjunto de insumos representados por el vector \mathbf{x} . La función de beneficios de la empresa está dada por $\pi(\mathbf{x}, \mathbf{w}, p) = pf(\mathbf{x}) - \mathbf{w} \cdot \mathbf{x}$, donde $\mathbf{w} \in \mathbb{R}^n_{++}$ representa el vector de precios de los insumos y p > 0 el precio al que se vende el bien que produce. Suponga que f es clase C^1 . Demuestre que, para $\mathbf{x}^* > \mathbf{0}$

$$\frac{\partial \pi^*}{\partial w_i} = -x_i^*, \text{ donde } \pi^* = \pi(\mathbf{x}^*, \overline{\mathbf{w}}, \overline{p}).$$

Nota: a esto se le conoce como el Lema de Hotelling. Use finalmente este resultado para encontrar

$$\frac{\partial \pi^*}{\partial w_2}$$

para el caso en el cual la tecnología de la firma es $x_1^{1/3}x_2^{1/3}$.

1.2) Un individuo consume dos bienes x_1 y x_2 , cuyos precios son $p_1, p_2 > 0$. El individuo minimiza el gasto considerando que quiere una utilidad por lo menos igual a $\overline{u} > 0$. Su función de utilidad es clase $C^2(\mathbb{R}^2)$ y tal que, $u(\mathbf{0}) = 0$, $\frac{\partial u}{\partial x_i} > 0$, $\frac{\partial^2 u}{\partial x_i^2} < 0$ y $\frac{\partial^2 u}{\partial x_i \partial x_j} > 0$. Asuma que no es óptimo $x_i = 0$. Halle mediante estática comparativa los siguientes efectos (si es que son positivos, negativos o no puede concluir) de

$$\frac{\partial x_1}{\partial p_1} \text{ y } \frac{\partial x_1}{\partial p_2}.$$

Interprete.

Pregunta 2 (8 puntos)

- **2.1)** Proponga una relación de preferencias (sobre \mathbb{R}^{L}_{+}) que no sea convexa.
- 2.2) Proponga una relación binaria que no sea transitiva. Puede proponer la relación sobre cualquier conjunto.

1

2.3) Proponga una relación de preferencias (completa y transitiva) que no sea continua.

- **2.4)** Proponga una función de utilidad que represente una relación de preferencias localmente saciada en $X = \mathbb{R}^L_+$.
- 2.5) Provea la definición de óptimo de Pareto en el contexto de una economía de intercambio puro.
- 2.6) Provea la definición de equilibrio Walrasiano en el contexto de una economía de intercambio puro.
- 2.7) Pruebe que si una relación de preferencias es monótona, entonces es localmente no saciada. ¿Vale la conversa?
- 2.8) En una economía de intercambio puro donde todas las preferencias \succeq_i son convexas, demuestre que

$$S = \sum_{i=1}^{I} S_i(\mathbf{x}_i^*), \ S_i(\mathbf{x}_i^*) = \{ \mathbf{z}_i \in \mathbb{R}_+^L : \ \mathbf{z}_i \succ_i \mathbf{x}_i^* \}$$

es un conjunto convexo. ¿En la demostración de qué teorema se usa este conjunto?

Pregunta 3 (6 puntos).

A una solución al problema de minimización del gasto

$$\mathcal{P}_e: egin{cases} \min & \mathbf{p} \cdot \mathbf{x} \\ \mathrm{s.t.} & u(\mathbf{x}) \geq \overline{u} \\ & \mathbf{x} \geq \mathbf{0} \end{cases}$$

se le conoce como demanda Hicksiana $\mathbf{x}^h(\mathbf{p}, \overline{u})$, también denotada $h(\mathbf{p}, \overline{u})$. Suponga que la restricción $u(\mathbf{x}) \geq \overline{u}$ se da con igualdad y que $h(\mathbf{p}, \overline{u}) \in \mathbb{R}_{++}^L$.

a) Demuestre el Lema de Shepard: si $u(\cdot)$ es una función de utilidad continua y diferenciable que representa una relación de preferencia fuertemente monótona y estrictamente convexa \succeq , definida en $X = \mathbb{R}^L_+$, entonces, para todo \mathbf{p} y \overline{u} , la demanda hicksiana $h(\mathbf{p}, \overline{u})$ y la función de gasto $e(\mathbf{p}, \overline{u})$ satisfacen la siguiente relación:

$$h(\mathbf{p}, \overline{u}) = \nabla_{\mathbf{p}} e(\mathbf{p}, \overline{u}).$$

b) Defina la variación equivalente y la variación compensada de la siguiente forma:

$$EV(\mathbf{p}^0, \mathbf{p}^1, w) = e(\mathbf{p}^0, u^1) - e(\mathbf{p}^0, u^0) = e(\mathbf{p}^0, u^1) - w$$

 $CV(\mathbf{p}^0, \mathbf{p}^1, w) = e(\mathbf{p}^1, u^1) - e(\mathbf{p}^1, u^0) = w - e(\mathbf{p}^1, u^0),$

donde w es el ingreso de un individuo, \mathbf{p}^0 los precios en un tiempo t=0, \mathbf{p}^1 los precios en un tiempo $t=1, \overline{u}$ un nivel de utilidad y e la función de gastos. Pruebe, bajo las condiciones del inciso (a), que si únicamente el precio del bien 1, p_1 , cambia, entonces

$$EV(\mathbf{p}^0, \mathbf{p}^1, w) = \int_{p_1^1}^{p_1^0} h_1(p_1, \mathbf{p}_{-1}, u^1) dp_1$$
 (1)

у

$$CV(\mathbf{p}^0, \mathbf{p}^1, w) = \int_{p_1^1}^{p_1^0} h_1(p_1, \mathbf{p}_{-1}, u^0) dp_1.$$
 (2)

 \mathcal{E} Qué representan la variación equivalente EV y la variación compensada VC?

c) Suponga que $u(x_1,...,x_n)$ es cuasi-lineal con respecto a x_1 . Fije $p_1=1$. Demuestre que

$$CV(\mathbf{p}^0, \mathbf{p}^1, w) = EV(\mathbf{p}^0, \mathbf{p}^1, w), \ \forall \ (\mathbf{p}^0, \mathbf{p}^1, w).$$
(3)

Sugerencia: demuestre que cuando las preferencias son cuasi lineales y $p_1 = 1$, se tiene que $e(\mathbf{p}, \overline{u}) = \overline{\hat{e}(p_2, ... p_L)} + \overline{u}$. Use esto para obtener (3).

Profesor del curso: Jorge Chávez.

San Miguel, 21 de junio del 2024