

VIRGINIA COMMONWEALTH UNIVERSITY

PRESCRIPTIVE ANALYSIS

ASSIGNMENT 2 SATYANARAYAN VENKAT NALDIGA V01108247

RE-SUBMITTED TO-PROF.PAUL BROOKS

Date of Submission: 09-29-2024

Building a Financial Portfolio. Blair & Rosen, Inc.

Problem

Blair & Rosen, Inc. is determining the optimal investment amounts for their client this week. The client can invest a maximum of \$35,000 in the Internet Fund and a total of up to \$50,000 across all investment options. The client's risk tolerance allows for a maximum risk rating of 240. The Internet Fund has a risk rating of 6 for every \$1,000 invested, while the Blue-Chip Fund has a risk rating of 4 per \$1,000 invested. The projected annual return is 12% for the Internet Fund and 9% for the Blue-Chip Fund.

	Internet	Blue Chip	Total
	Fund	Fund	
Budget			\$50,000
Annual Return	12%	9%	
Max investment	\$35,000		
	6	4	240
Total Risk Contribution (per \$1000)			

- $F=\{internet, blue chip\}F=\{internet, blue chip\}\}F=\{internet, blue chip\}: The set of investment funds.$
- budget: The total funds available for investment (maximum of \$50,000).
- Max investment_internet: The maximum amount that can be invested in the Internet Fund (at most \$35,000).
- total_risk: The maximum risk contribution allowed for both investments (maximum of 240,000).

- annual_rate i: The projected annual return rates for each fund i, where $i \in F$ Here, 12% for the Internet fund and 9% for the Blue Chip fund.
- Risk *i*: The risk contributions per dollar invested in each fund iii, where $i \in F$. Here, 6 per \$1,000 for the Internet fund and 4 per \$1,000 for the Blue Chip fund.

Objective in Words

Decide the optimal investment amounts for the portfolio, consisting of a combination of the Internet Fund and the Blue Chip Fund, to maximize the total projected annual return. This decision must adhere to the following constraints:

- 1. The total investment must not exceed \$50,000.
- 2. The investment in the Internet Fund is capped at \$35,000.
- 3. The total risk rating for the portfolio must not exceed 240, in line with the client's moderate risk tolerance.
- 4. All investment amounts must be non-negative.

Decision Variables

Let x_i = the types of funds that exist in a portfolio i for $i \in F$.

- x1: Amount invested in the Internet fund.
- x2: Amount invested in the Blue Chip fund.

Algebraic Formulation

$$\sum_{i \in F} \text{annual_rate } * x_i \text{ (maximize total return)}$$

Subject to:

$$\sum_{i \in F} x_i \le \text{total budget (total budget constriants)}$$

 $x_{internetfunds} \le \max investment internet (investment limit constraints)$

$$\sum_{i \in F} x_i * risk_i \le total risk (total risk constraints)$$

 $x_i \ge 0, i \in F (non negativity constriants)$

Implementation

Please refer to the attached drive link, which contains the Google Colab file, 'python assignment 2 .ipynb', for the implementation and solution of the model using Python and AMPL. Additionally, it includes an Excel file with the solution.

https://drive.google.com/drive/folders/15sYUvEyeFnRgD6SbtiYyEbIRh3N5WEVF

Results

The optimal solution is to invest \$20,000 in the Internet fund and \$30,000 in the Blue Chip fund, resulting in a maximum total return of \$5,100 for the entire portfolio.

AI Training

https://chatgpt.com/share/66f59183-9d04-800e-9bd4-f59f63ca68ad