Interrogation de cours nº 4

Lundi 29 septembre 2025

Version de l'année dernière, des questions sont susceptibles de changer!

E, F sont des \mathbb{K} -espaces vectoriels normés, de norme $\|\cdot\|$ (même notation pour les deux espaces), avec $\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$, et $A \subset E$. Durée: 30 min.

Définitions

- **1.** Définition de l'existence d'une limite en $a \in \overline{A}$ pour $f : A \to F$.
- **2.** Définition d'une application uniformément continue sur A.
- **3.** Définition d'une application Lipschitzienne sur A.
- **4.** Définition de la norme d'opérateur sur $\mathcal{L}_c(E, F)$.
- 5. Définition précise d'une partie connexe par arcs de E.

Résultats et propriétés

- a) Montrer que si $f, g : E \to F$ sont continues et coincident sur A, avec A dense dans E, alors f = g.
- **b)** Montrer que si $f: A \to F$ est continue et A compacte, alors f(A) est compacte.
- c) Énoncer le critère fondamental prouvant que $f \in \mathcal{L}(E, F)$ est continue. Démontrer sa validité.