Image Classification Using CNNs

Presented by

BENOUAKLIL Hodhaifa

BOUKACEM Younes

Presentation Plan

- **01** INTRODUCTION
- 02 WHY CNN?
- **03** CNN ARCHITECTURE
- **04** PRACTICAL EXAMPLE

01 INTRODUCTION

"Image classification is a computer vision task where the goal is to categorize an entire image into a specific class or label"

- Identifying whether an image contains a cat or a dog
- Recognizing handwritten digits
- Classifying medical images (e.g., detecting tumors)
- Identifying plant species from leaf images

Example

What are Convolutional Neural Networks (CNNs)?

 \Rightarrow

02

WHY CNN?

Limitations of Traditional Neural Networks

- Spatial information loss
- High computational complexity
- Large number of parameters
- Poor scaling with image size

O3 CNN ARCHITECTURE

Convolution Operation

lma	age p	iece	
5	2	1	
4	3	2	8
0	2	1	
	Х		

$$y = 5x1 + 2x0 + 1x1$$

+ $4x0 + 3x1 + 2x0$
+ $0x1 + 2x0 + 1x1 = 10$

Padding

Valid padding (no padding):

12

Padding

Same padding (output size = input size):

- Step size for filter movement
- Controls output size
- Impact on feature detection:
 - Larger stride → Less detail / faster training
 - Smaller stride → More detail / slower training

Multiple Filters

Multiple Filters

- Each filter detects different features
- Creates multiple feature maps
- Parallel processing
- Feature diversity

Pooling Layers

- 1. Max Pooling
 - Takes maximum value
 - Preserves strong features
- 2. Average Pooling
 - Takes average value
 - Preserves feature distribution

12	20	30	0			
8	12	2	0	2 × 2 Max-Pool	20	30
34	70	37	4	1	112	37
112	100	25	12			

Pooling Layers

- Dimensionality reduction
- Computational efficiency
- Spatial invariance

Activation functions

Fully Connected Layer

Typical CNN Structure

 \Rightarrow

05

PRACTICAL EXAMPLE

MNIST Classification

Notebook available here:

https://www.kaggle.com/code/hodhaifabenouaklil/mnist-classification

THANKS FOR YOUR ATTENTION

Do you have any questions?