Fiche de révision complète – Physique-Chimie Seconde

Introduction

Le programme de physique en classe de Seconde introduit les notions fondamentales pour comprendre les phénomènes physiques autour de nous : mouvement, forces, énergie, ondes et électricité. Ces bases sont essentielles pour aborder les sciences de manière rigoureuse.

1 Mouvement et interactions

1.1 Référentiel et mouvement

Un mouvement est toujours étudié par rapport à un référentiel. Le référentiel peut être terrestre, géocentrique ou héliocentrique.

1.2 Trajectoire

La trajectoire est l'ensemble des positions successives d'un objet dans le temps.

1.3 Vitesse moyenne

La vitesse moyenne est le rapport entre la distance parcourue d et la durée Δt :

$$v = \frac{d}{\Delta t}$$

1.4 Les forces

Une force est une action mécanique caractérisée par sa direction, son sens, son intensité et son point d'application.

Le poids Force exercée par la Terre sur un objet :

$$P = m \times q$$

avec m la masse (kg) et $g \approx 9.8 \text{ N/kg}$.

Force de contact Exemples : poussée, traction, frottement.

2 Énergie et transformations

2.1 Énergie cinétique

L'énergie cinétique d'un objet de masse m en mouvement à la vitesse v est :

$$E_c = \frac{1}{2}mv^2$$

2.2 Énergie potentielle de pesanteur

Un objet situé à une hauteur h par rapport à un niveau de référence possède une énergie potentielle :

$$E_p = mgh$$

2.3 Conservation de l'énergie mécanique

Dans un système isolé et sans frottements, l'énergie mécanique totale $E_m=E_c+E_p$ reste constante.

2.4 Travail d'une force

Le travail W d'une force constante \vec{F} qui déplace un objet sur une distance d selon un angle θ avec la force est :

$$W = F \times d \times \cos \theta$$

3 Électricité

3.1 Courant électrique et tension

Le courant I est le débit de charges électriques :

$$I = \frac{Q}{t}$$

avec Q la charge en coulombs et t le temps en secondes.

La tension U est la différence de potentiel électrique entre deux points, exprimée en volts (V).

3.2 Loi d'Ohm

Pour un conducteur ohmique:

$$U = R \times I$$

avec R la résistance en ohms ().

3.3 Puissance électrique

La puissance électrique consommée ou fournie par un dipôle est :

$$P = U \times I$$

3.4 Énergie électrique

L'énergie électrique consommée sur une durée t est :

$$E = P \times t$$

4 Ondes et signaux

4.1 Propagation de la lumière

La lumière se propage en ligne droite dans un milieu homogène.

4.2 Couleur de la lumière

La couleur dépend de la longueur d'onde λ de la lumière.

4.3 Ondes sonores

Le son est une onde mécanique qui se propage dans l'air à environ 340 m/s.

4.4 Fréquence et période

La fréquence f est le nombre d'oscillations par seconde :

$$f=\frac{1}{T}$$

où T est la période.

5 Changements d'état

5.1 Différents états de la matière

Solide, liquide, gaz.

5.2 Changements d'état

— Fusion : solide \rightarrow liquide,

— Solidification : liquide \rightarrow solide,

— Vaporisation : liquide \rightarrow gaz,

— Condensation : gaz \rightarrow liquide.

5.3 Température et chaleur

La température mesure l'agitation des particules. La chaleur est une énergie échangée lors d'un changement d'état ou d'une variation de température.

6 Mesures et sécurité

6.1 Unités du Système International (SI)

Longueur : m, Masse : kg, Temps : s, Intensité électrique : A

6.2 Conversion des unités

Exemple:

$$1~\mathrm{km/h} = \frac{1000}{3600}~\mathrm{m/s} \approx 0,278~\mathrm{m/s}$$

6.3 Sécurité en laboratoire

Respecter les consignes, porter les protections (lunettes, gants), connaître les symboles de danger (toxique, inflammable, corrosif).