Alpha and Beta in Hypothesis Testing

Notes:

- (1) This PDF is part of YouTube tutorials (https://youtu.be/oDMZ9NOef2Y). This PDF is for individual, personal usage only.
- (2) The author accepts no responsibility for the topicality, correctness, completeness or quality of the information provided.

1. Examples of H0 and H1

H0: Age does not correlate with the frequency of drinking soda.

H1: Age does correlate with the frequency of drinking soda.

2. Definitions of Alpha and Beta

	H0 is True	H0 is False
Correct Action	Should Not Reject H0	Should Reject H0
A Test Rejects H0 (Positive)	α	$1-\beta$
A Test Doesn't Reject H0 (Negative)	$1-\alpha$	β

 α = probability of Type I error, known as a "false positive"

 $\beta=$ probability of Type II error, known as a "false negative"

Accordingly,

 $1-\alpha$ = "true negative", i.e., correctly not rejecting the null hypothesis

 $1 - \beta$ = "true positive", i.e., correctly rejecting the null hypothesis

Note that, $1 - \beta$ has another name, called power, or statistical power.

3. Common Values of Alpha and Beta

Alpha (α): Common choices for α are 0.05, 0.01, or 0.10. A 5% significance level ($\alpha = 0.05$) is frequently used in many fields.

A commonly used power level $(1 - \beta)$ is 0.80, meaning you want an 80% chance of correctly rejecting a false null hypothesis.