МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«Севастопольский государственный университет»

Кафедра «Информационные технологии и компьютерные системы»

ОТЧЕТ ПО ПРАКТИЧЕСКОЙ РАБОТЕ №3

по дисциплине «Проектирование баз данных» Вариант 8

Выполнил:

Донец Н.О.

Проверил:

Волкова Т. В.

Севастополь

2024 г.

Задание

Разработать БД для ежемесячного учета оплаты услуг за теплоснабжение в теплосети района. БД должна содержать следующие данные: адрес (район, улица, номера дома и квартиры), план и площадь квартиры, месячные тарифы за потребленное тепло из расчета за 1 квадратный метр площади, общая плата за услуги, сведения об уплате с указанием дат и сумм, показатели оплаты услуг за отчетное полугодие по домам.

2. Инфологическое проектирование базы данных

2.4. Определение классов принадлежности сущностей предметной области

Для всех сущностей предметной области, участвующих во всех связях, были описаны классы принадлежности на основе диаграмм ER-экземпляров и типов:

1. Связь «Потребитель – Квартира» М:М (Рисунок 1).

Рисунок 1 – Потребитель - Квартира

Сущность Потребитель в данной связи имеет необязательный класс принадлежности. Сущность Квартира в данной связи также имеет необязательный класс принадлежности.

2. Связь «Тариф – Начисление» 1:М (Рисунок 2).

Рисунок 2 – Тариф - Начисление

Сущность Тариф в данной связи имеет необязательный класс принадлежности. Сущность Начисление в данной связи имеет обязательный класс принадлежности.

3. Связь «Потребитель – Начисление» 1:М (Рисунок 3).

Рисунок 3 – Потребитель - Начисление

Сущность Потребитель в данной связи имеет необязательный класс принадлежности. Сущность Начисление в данной связи имеет обязательный класс принадлежности.

4. Связь «Потребитель – Физ. лицо» 1:1 (Рисунок 4).

Рисунок 4 – Потребитель – Физ. лицо

Сущность Потребитель в данной связи имеет необязательный класс принадлежности. Сущность Физ. лицо в данной связи имеет обязательный класс принадлежности.

5. Связь «Потребитель – Юр. лицо» 1:1 (Рисунок 5).

Рисунок 5 – Потребитель – Юр. лицо

Сущность Потребитель в данной связи имеет необязательный класс принадлежности. Сущность Юр. лицо в данной связи имеет обязательный класс принадлежности.

6. Связь «Начисление – Оплата» 1:1 (Рисунок 6).

Рисунок 6 – Начисление - Оплата

Сущность Начисление в данной связи имеет необязательный класс принадлежности. Сущность Оплата в данной связи имеет обязательный класс принадлежности.

2.5. Переход к логической модели базы данных

Для рассмотренных связей обоснован переход от концептуальной к логической модели базы данных – реляционной модели.

1. Связь «Потребитель – Квартира» (Рисунок 7).

Так как тип связи «Потребитель – Квартира» М:М и обе сущности имеют необязательный класс принадлежности, то логическая модель данной связи представляет собой 3 отношения, и одно из них связывает два других с помощью внешних ключей.

Рисунок 7 — Логическая структура для связи «Потребитель — Квартира»

2. Связь «Тариф – Начисление» (Рисунок 8).

Так как тип связи «Тариф — Начисление» 1:М и М-связная сущность имеет обязательный класс принадлежности, то логическая модель данной связи представляет собой 2 отношения, и к отношению М-связной сущности добавляется в качестве атрибута ключ 1-связной сущности.

Рисунок 8 – Логическая структура для связи «Тариф – Начисление»

3. Связь «Потребитель – Начисление» (Рисунок 9).

Так как тип связи «Потребитель — Начисление» 1:М и М-связная сущность имеет обязательный класс принадлежности, то логическая модель данной связи представляет собой 2 отношения, и к отношению М-связной сущности добавляется в качестве атрибута ключ 1-связной сущности.

Рисунок 9 – Логическая структура для связи «Потребитель – Начисление»

4. Связи «Потребитель – Физ. лицо» и «Потребитель – Юр. лицо» (Рисунок 10).

Так как тип связей «Потребитель – Физ. лицо» и «Потребитель – Юр. лицо» 1:1, и класс принадлежности сущности Потребитель необязательный, а Физ. лицо и Юр. лицо – обязательный, то логическая модель данных связей представляет собой 3 отношения, среди которых Физ. лицо и Юр. Лицо являются подтипами для отношения Потребитель.

Рисунок 10 – Логическая структура для связей «Потребитель – Физ. лицо» и «Потребитель – Юр. лицо»

5. Связь «Начисление – Оплата» (Рисунок 11).

Так как тип связей «Начисление – Оплата» 1:1, и класс принадлежности сущности Начисление необязательный, а Оплата – обязательный, то логическая модель данных связей представляет собой 2 отношения, где к отношению, сущность которого имеет обязательный класс принадлежности, добавляется в качестве атрибута ключ сущности с необязательным классом принадлежности.

Рисунок 11 – Логическая структура для связи «Начисление – Оплата»

Вывод

В ходе практической работы был выполнен переход к логической модели базы данных.