CÁLCULO I

Limites de uma Função: Introdução

Seja $f:[a,b] \to \mathbb{R}$ uma função e seja $c \in [a,b]$. Dizemos que o limite de f quando x tende a c é L se, quando x se aproximar de c, os valores de f(x) se aproximarem do valor L.

Seja $f:[a,b] \to \mathbb{R}$ uma função e seja $c \in [a,b]$. Dizemos que o limite de f quando x tende a c é L se, quando x se aproximar de c, os valores de f(x) se aproximarem do valor L.

$$\lim_{x\to c} f(x) = L$$

Intuitivamente:

$$f(x)=x+1$$

$$\lim_{x \to 1} x + 1 = 2 = f(1)$$

Intuitivamente:

$$f(x) = \begin{cases} x + 1, x \neq 1 \\ 3, & x = 1 \end{cases}$$

$$\lim_{x\to 1} f(x) = 3??$$

Intuitivamente:

$$f(x) = \begin{cases} x + 1, x \neq 1 \\ 3, & x = 1 \end{cases}$$

$$\lim_{x\to 1} f(x) = 2 \neq f(1)$$

$$f(x) = \frac{x^2 - 1}{x - 1}$$

• f não está definida em x = 1

$$\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{x^2 - 1}{x - 1}$$

$$f(x) = \frac{x^2 - 1}{x - 1}$$

0,8	1,8
0,9	1,9
0,95	1,95
0,99	1,99
0,999	1,999

$$\lim_{x\to 1}\frac{x^2-1}{x-1}=2???$$

$$\lim_{x\to 1}\frac{x^2-1}{x-1}=2???$$

$$\lim_{x \to 1} \frac{x^{2}-1}{x-1} = \lim_{x \to 1} \frac{(x-1)(x+1)}{x-1} = \lim_{x \to 1} (x+1) = 2$$

$$\lim_{x \to 2} \frac{x^3 - 8}{x - 2} = ?$$

$$\lim_{x \to 2} \frac{x^3 - 8}{x - 2} = ?$$

Divisão de Polinômios
$$x^3 - 8 = (x - 2)(x^2 + 2x + 4)$$

$$\lim_{x \to 2} \frac{x^3 - 8}{x - 2} = ?$$

Divisão de Polinômios
$$x^3 - 8 = (x - 2)(x^2 + 2x + 4)$$

$$\frac{x^3-8}{x-2} = \frac{(x-2)(x^2+2x+4)}{x-2} = x^2 + 2x + 4$$

$$\lim_{x\to 2}\frac{x^3-8}{x-2}=\lim_{x\to 2}(x^2+2x+4)=12$$

Dizemos que uma função f = f(x) é contínua em p se :

•
$$p \in D(f)$$
;

• $\lim_{x\to p} f(x) = f(p)$

Dizemos que uma função f = f(x) é contínua em p se:

- $p \in D(f)$;
- $\lim_{x\to p} f(x) = f(p)$

 $f \in \text{continua em } p \Leftrightarrow \lim_{x \to p} f(x) = f(p)$

$$f(x) = x + 1$$

• f é continua em x = 1

• $\lim_{x \to 1} f(x) = 2 = f(1)$

$$f(x) = \begin{cases} x + 1, x \neq 1 \\ 3, & x = 1 \end{cases}$$

$$\bullet \lim_{x\to 1} f(x) = 2$$

•
$$f(1) = 3$$

• f não é contínua em x = 1

Algumas funções contínuas:

- Polinômios $(a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0)$
- Trigonométricas (sen x, cos x, tg x)
- Exponenciais (a^x)
- Logarítmicas ($log_b(x)$)

Seja
$$f(x) = \begin{cases} \frac{x^2-4}{x-2}, \text{ se } x \neq 2 \\ L, \text{ se } x = 2 \end{cases}$$

Para que valor de L, f é uma função contínua?

$$\lim_{x\to 2} \frac{x^2-4}{x-2} = \lim_{x\to 2} \frac{(x-2)(x+2)}{x-2} =$$

$$\lim_{x\to 2} x+2=4=L$$

São os limites com $x \to \infty$

•
$$\lim_{x\to\infty} 3x = +\infty$$

•
$$\lim_{x \to \infty} -15x^3 = -\infty$$

•
$$\lim_{x\to\infty} \sqrt[3]{x^2} = +\infty$$

São os limites com $x \to \infty$

•
$$\lim_{x\to\infty} 3x = +\infty$$

•
$$\lim_{x\to\infty}-15x^3=-\infty$$

$$\lim_{x\to\infty} \sqrt[3]{x^2} = +\infty$$

São os limites com $x \to \infty$

•
$$\lim_{x\to\infty} 3x = +\infty$$

$$\lim_{x\to\infty} -15x^3 = -\infty$$

•
$$\lim_{x\to\infty} \sqrt[3]{x^2} = +\infty$$

Se
$$\lim_{x\to c} f(x) = \infty$$
, então
$$\lim_{x\to c} \frac{1}{f(x)} = 0.$$

Exemplos:

•
$$\lim_{x\to\infty}\frac{1}{x}=0$$

•
$$\lim_{x\to\infty}\frac{1}{x^n}=0, n>1, n\in\mathbb{N}$$

Exemplos:

Exemplo:

$$\lim_{x \to \infty} \frac{x^5 + x^4 + 1}{3x^5 + x - 1} = \lim_{x \to \infty} \frac{x^5 \left[1 + \frac{1}{x} + \frac{1}{x^5} \right]}{x^5 \left[3 + \frac{1}{x^4} - \frac{1}{x^5} \right]} = \frac{1}{3}$$

CÁLCULO I

Limites de uma Função: Introdução