Another popular instantiation of the online learning problem is the online linear optimization problem, which is characterized by a linear loss function (az) = azz.

 Another popular instantiation of the online learning problem is the online linear optimization problem, which is characterized by a linear loss function (azz) = azzz.

• Let
$$\mathcal{A} = [-1, 1]$$
 and suppose that $z_t = \begin{cases} -\frac{1}{2}, & t = 1, \\ 1, & t \text{ is even,} \\ -1, & t \text{ is odd.} \end{cases}$

 Another popular instantiation of the online learning problem is the online linear optimization problem, which is characterized by a linear loss function (azz) = azz.

• Let
$$\mathcal{A} = [-1, 1]$$
 and suppose that $z_t = \begin{cases} -\frac{1}{2}, & t = 1, \\ 1, & t \text{ is even,} \\ -1, & t \text{ is odd.} \end{cases}$

 Thus, FTL's cumulative regret is at least T - 1, which is linearly growing in T.

$$\begin{split} & \underset{a \in \mathcal{A}}{\text{arg min}} \sum_{s=1}^{t} Z_{s} \\ & \underset{a \in \mathcal{A}}{\text{arg min}} \sum_{s=1}^{t} Z_{s})_{s} + \underset{a \in [-1,1]}{\text{arg min is}} \sum_{s=1}^{t} Z_{s1} | a \sum_{s=1}^{t} Z_{s} \\ & = \begin{cases} -1,1, & \text{if } \sum_{s=1}^{t-1} Z_{s} \geqslant 0,0, \\ 1,1, & \text{if } \sum_{s=1}^{t-1} Z_{s} \geqslant 0,0, \\ a \text{rbitrary,y, if } \sum_{s=1}^{t-1} Z_{s} \geqslant 0,0. \end{cases} \end{split}$$

$$\begin{split} a_{t}^{\text{FTTL}} & \underset{a \in \mathcal{A}}{\text{arg min}} \sum_{s=1}^{t} (a(z_{s})_{s}) + \underset{a \in [-1,1]}{\text{arg min is}} \sum_{s=1}^{t} z_{s1} | a \sum_{s=1}^{t} z_{s} \\ &= \begin{cases} -1,1, & \text{if } \sum_{s=1}^{t-t} z_{s} \ge 0,0, \\ 1,1, & \text{if } \sum_{s=1}^{t-t} z_{s} \ge 0,0, \\ a_{t} \text{ bitrary, y, if } \sum_{s=1}^{t-t} z_{s} \ge 0,0. \end{cases} \end{split}$$

				(damm);); 57853355 510		
				$\sum_{s=1}^{t} (a_s^{PTL}, z_s)$		
1	1	-1/2	-1/2	-1/2	-1/2	

$$\begin{split} a_{1}^{T} a_{1+1}^{TTL} & \text{arg min}_{a \in \mathcal{A}} \sum_{s=1}^{t} (a(z_{s})_{s}) + \underset{a \in [-1,1]}{\text{arg min in}} \sum_{s=1}^{t} z_{s1} | a \sum_{s=1}^{t} z_{s} \\ & = \begin{cases} -1,1, & \text{if } \sum_{s=1}^{t-1} z_{s} \geq 0,0, \\ 1,1, & \text{if } \sum_{s=1}^{t-1} z_{s} \geq 0,0, \\ -1,1, & \text{of } \sum_{s=1}^{t-1} z_{s} \geq 0,0, \end{cases} \\ & = \begin{cases} -1,1, & \text{if } \sum_{s=1}^{t-1} z_{s} \geq 0,0, \\ -1,1, & \text{if } \sum_{s=1}^{t-1} z_{s} \geq 0,0, \end{cases} \\ & = \begin{cases} -1,1, & \text{if } \sum_{s=1}^{t-1} z_{s} \geq 0,0, \\ -1,1, & \text{if } \sum_{s=1}^{t-1} z_{s} \geq 0,0, \end{cases} \\ & = \begin{cases} -1,1, & \text{if } \sum_{s=1}^{t-1} z_{s} \geq 0,0, \\ -1,1, & \text{if } \sum_{s=1}^{t-1} z_{s} \geq 0,0, \end{cases} \\ & = \begin{cases} -1,1, & \text{if } \sum_{s=1}^{t-1} z_{s} \geq 0,0, \\ -1,1, & \text{if } \sum_{s=1}^{t-1} z_{s} \geq 0,0, \end{cases} \\ & = \begin{cases} -1,1, & \text{if } \sum_{s=1}^{t-1} z_{s} \geq 0,0, \\ -1,1, & \text{if } \sum_{s=1}^{t-1} z_{s} \geq 0,0, \end{cases} \\ & = \begin{cases} -1,1, & \text{if } \sum_{s=1}^{t-1} z_{s} \geq 0,0, \\ -1,1, & \text{if } \sum_{s=1}^{t-1} z_{s} \geq 0,0, \end{cases} \\ & = \begin{cases} -1,1, & \text{if } \sum_{s=1}^{t-1} z_{s} \geq 0,0, \\ -1,1, & \text{if } \sum_{s=1}^{t-1} z_{s} \geq 0,0, \end{cases} \\ & = \begin{cases} -1,1, & \text{if } \sum_{s=1}^{t-1} z_{s} \geq 0,0, \\ -1,1, & \text{if } \sum_{s=1}^{t-1} z_{s} \geq 0,0, \end{cases} \\ & = \begin{cases} -1,1, & \text{if } \sum_{s=1}^{t-1} z_{s} \geq 0,0, \\ -1,1, & \text{if } \sum_{s=1}^{t-1} z_{s} \geq 0,0, \end{cases} \\ & = \begin{cases} -1,1, & \text{if } \sum_{s=1}^{t-1} z_{s} \geq 0,0, \\ -1,1, & \text{if } \sum_{s=1}^{t-1} z_{s} \geq 0,0, \end{cases} \\ & = \begin{cases} -1,1, & \text{if } \sum_{s=1}^{t-1} z_{s} \geq 0,0, \\ -1,1, & \text{if } \sum_{s=1}^{t-1} z_{s} \geq 0,0, \end{cases} \\ & = \begin{cases} -1,1, & \text{if } \sum_{s=1}^{t-1} z_{s} \geq 0,0, \\ -1,1, & \text{if } \sum_{s=1}^{t-1} z_{s} \geq 0,0, \end{cases} \\ & = \begin{cases} -1,1, & \text{if } \sum_{s=1}^{t-1} z_{s} \geq 0,0, \\ -1,1, & \text{if } \sum_{s=1}^{t-1} z_{s} \geq 0,0, \end{cases} \\ & = \begin{cases} -1,1, & \text{if } \sum_{s=1}^{t-1} z_{s} \geq 0,0, \\ -1,1, & \text{if } \sum_{s=1}^{t-1} z_{s} \geq 0,0, \end{cases} \\ & = \begin{cases} -1,1, & \text{if } \sum_{s=1}^{t-1} z_{s} \geq 0,0, \\ -1,1, & \text{if } \sum_{s=1}^{t-1} z_{s} \geq 0,0, \end{cases} \\ & = \begin{cases} -1,1, & \text{if } \sum_{s=1}^{t-1} z_{s} \geq 0,0, \\ -1,1, & \text{if } \sum_{s=1}^{t-1} z_{s} \geq 0,0, \end{cases} \\ & = \begin{cases} -1,1, & \text{if } \sum_{s=1}^{t-1} z_{s} \geq 0,0, \\ -1,1, & \text{if } \sum_{s=1}^{t-1} z_{s} \geq 0,0, \end{cases} \\ & = \begin{cases} -1,1, & \text{if } \sum_{s=1}^{t-1} z_{s} \geq 0,0, \\ -1,1, & \text{if } \sum_{s=1}^{t-1} z_{s} \geq 0,0, \end{cases} \\ & = \begin{cases} -1,1, & \text{if } \sum_{s=$$

t	a PTL	Z_{f}	$(a_{t_1}^{\text{EfTL}}, z_t)$	$\sum_{s=1}^{t} (a_s^{PTL}, z_s)$	$\sum_{s=1}^{t} z_s$
1	1	-1/2	-1/2	-1/2	-1/2
2	1	1	1	11/2	1/2

$$\begin{split} a_{1}^{T} a_{1+1}^{TTL} & \text{arg min}_{a \in \mathcal{A}} \sum_{s=1}^{t} (a(z_{s})_{s}) + \underset{a \in [-1,1]}{\text{arg min in}} \sum_{s=1}^{t} z_{s1} | a \sum_{s=1}^{t} z_{s} \\ & = \begin{cases} -1,1, & \text{if } \sum_{s=1}^{t-1} z_{s} \geq 0,0, \\ 1,1, & \text{if } \sum_{s=1}^{t-1} z_{s} \geq 0,0, \\ -1,1, & \text{of } \sum_{s=1}^{t-1} z_{s} \geq 0,0, \end{cases} \\ & = \begin{cases} -1,1, & \text{if } \sum_{s=1}^{t-1} z_{s} \geq 0,0, \\ -1,1, & \text{if } \sum_{s=1}^{t-1} z_{s} \geq 0,0, \end{cases} \\ & = \begin{cases} -1,1, & \text{if } \sum_{s=1}^{t-1} z_{s} \geq 0,0, \\ -1,1, & \text{if } \sum_{s=1}^{t-1} z_{s} \geq 0,0, \end{cases} \\ & = \begin{cases} -1,1, & \text{if } \sum_{s=1}^{t-1} z_{s} \geq 0,0, \\ -1,1, & \text{if } \sum_{s=1}^{t-1} z_{s} \geq 0,0, \end{cases} \\ & = \begin{cases} -1,1, & \text{if } \sum_{s=1}^{t-1} z_{s} \geq 0,0, \\ -1,1, & \text{if } \sum_{s=1}^{t-1} z_{s} \geq 0,0, \end{cases} \\ & = \begin{cases} -1,1, & \text{if } \sum_{s=1}^{t-1} z_{s} \geq 0,0, \\ -1,1, & \text{if } \sum_{s=1}^{t-1} z_{s} \geq 0,0, \end{cases} \\ & = \begin{cases} -1,1, & \text{if } \sum_{s=1}^{t-1} z_{s} \geq 0,0, \\ -1,1, & \text{if } \sum_{s=1}^{t-1} z_{s} \geq 0,0, \end{cases} \\ & = \begin{cases} -1,1, & \text{if } \sum_{s=1}^{t-1} z_{s} \geq 0,0, \\ -1,1, & \text{if } \sum_{s=1}^{t-1} z_{s} \geq 0,0, \end{cases} \\ & = \begin{cases} -1,1, & \text{if } \sum_{s=1}^{t-1} z_{s} \geq 0,0, \\ -1,1, & \text{if } \sum_{s=1}^{t-1} z_{s} \geq 0,0, \end{cases} \\ & = \begin{cases} -1,1, & \text{if } \sum_{s=1}^{t-1} z_{s} \geq 0,0, \\ -1,1, & \text{if } \sum_{s=1}^{t-1} z_{s} \geq 0,0, \end{cases} \\ & = \begin{cases} -1,1, & \text{if } \sum_{s=1}^{t-1} z_{s} \geq 0,0, \\ -1,1, & \text{if } \sum_{s=1}^{t-1} z_{s} \geq 0,0, \end{cases} \\ & = \begin{cases} -1,1, & \text{if } \sum_{s=1}^{t-1} z_{s} \geq 0,0, \\ -1,1, & \text{if } \sum_{s=1}^{t-1} z_{s} \geq 0,0, \end{cases} \\ & = \begin{cases} -1,1, & \text{if } \sum_{s=1}^{t-1} z_{s} \geq 0,0, \\ -1,1, & \text{if } \sum_{s=1}^{t-1} z_{s} \geq 0,0, \end{cases} \\ & = \begin{cases} -1,1, & \text{if } \sum_{s=1}^{t-1} z_{s} \geq 0,0, \\ -1,1, & \text{if } \sum_{s=1}^{t-1} z_{s} \geq 0,0, \end{cases} \\ & = \begin{cases} -1,1, & \text{if } \sum_{s=1}^{t-1} z_{s} \geq 0,0, \\ -1,1, & \text{if } \sum_{s=1}^{t-1} z_{s} \geq 0,0, \end{cases} \\ & = \begin{cases} -1,1, & \text{if } \sum_{s=1}^{t-1} z_{s} \geq 0,0, \\ -1,1, & \text{if } \sum_{s=1}^{t-1} z_{s} \geq 0,0, \end{cases} \\ & = \begin{cases} -1,1, & \text{if } \sum_{s=1}^{t-1} z_{s} \geq 0,0, \\ -1,1, & \text{if } \sum_{s=1}^{t-1} z_{s} \geq 0,0, \end{cases} \\ & = \begin{cases} -1,1, & \text{if } \sum_{s=1}^{t-1} z_{s} \geq 0,0, \\ -1,1, & \text{if } \sum_{s=1}^{t-1} z_{s} \geq 0,0, \end{cases} \\ & = \begin{cases} -1,1, & \text{if } \sum_{s=1}^{t-1} z_{s} \geq 0,0, \\ -1,1, & \text{if } \sum_{s=1}^{t-1} z_{s} \geq 0,0, \end{cases} \\ & = \begin{cases} -1,1, & \text{if } \sum_{s=$$

t	a, PTL	Z_{f}	$(a_{t_1}^{\text{ETL}}, z_t)$	$\sum_{s=1}^{t} (a_s^{PTL}, z_s)$	$\sum_{s=1}^{t} z_s$
1	1	-1/2	-1/2	-1/2	-1/2
2	1	1	1	11/2	1/2
3	-1	-1	1	2 -1/2	-1/2

$$\begin{split} \underset{a \in \mathcal{A}}{\text{aFTTL}} & \underset{a \in \mathcal{A}}{\text{arg min}} \sum_{s=1}^{t} (a(z_s)_s) + \underset{a \in [-1,1]}{\text{arg min is}} \sum_{s=1}^{t} z_{s1} | a \sum_{s=1}^{t} z_s \\ & = \begin{cases} -1,1, & \text{if } \sum_{s=1}^{t-1} z_s \ge 0,0, \\ 1,1, & \text{if } \sum_{s=1}^{t-1} z_s \ge 0,0, \\ \text{arbitrary, y, if } \sum_{s=1}^{t-1} z_s \ge 0,0. \end{cases} \end{split}$$

t	april.	z_{t}	(a_{t+}^{EFFL}, z_t)	$\sum_{s=1}^{r} (a_s^{FTL}, z_s)$	$\sum_{s=1}^{r} z_s$
1	1	-1/2	-1/2	-1/2	-1/2
2	1	1	1	11/2	1/2
3	-1	-1	1	2 -1/2	-1/2
:	:	:	:	:	:
Т	(-1) ⁷	(-1) ⁷	1	T - 1 - 1/2	(-1/2) ^T

Indeed, note that

$$\begin{split} \underset{a \in \mathcal{A}}{\text{arg min is}} \sum_{s=1}^{t} Z_{s+1} & \text{arg min is} \sum_{s=1}^{t} Z_{s+1} \\ & \text{arg min is} \sum_{$$

t	april.	Z_{\uparrow}	(a_t^{FIL}, z_t)	$\sum_{s=1}^{r} (a_s^{FTL}, z_s)$	$\sum_{s=1}^{r} z_s$
1	1	-1/2	-1/2	-1/2	-1/2
2	1	1	1	11/2	1/2
3	-1	-1	1	2 -1/2	-1/2
:	:	:	:	:	:
Т	(-1) ⁷	(-1) ⁷	1	T - 1 - 1/2	$(-1/2)^T$

The best action has cumulative loss

$$\inf_{a \in \mathcal{A}} \sum\nolimits_{s=1}^{T} l(a; z_s) = \inf_{a \in [-1;1]} a \sum\nolimits_{s=-1}^{T} z_s = -1/2.$$

