Energy transformations & energy transfers

By Srujana

LEARNING OBJECTIVES

FORMS OF ENERGY

thermal ←

the vibration of atoms and molecules within substances.

chemical +

Chemical energy is stored in the bonds of atoms and molecules - it is the energy that holds these particles together.

nuclear

Nuclear energy is the energy that holds together the nucleus of atoms

<u>light</u>

Light is electromagnetic radiation that shows properties of both waves and particles

<u>electrical</u>

Electrical energy is the form of energy resulting from the flow of electric charge

<u>sound</u>

A sound wave is a disturbance that travels through some medium.

ENERGY CONVERSIONS

When energy changes from one form to another, we say that it has been converted or transformed.

For example

CHEMICAL ENERGY → k.e. + g.p.e + thermal energy + light energy + sound energy

The two most common types of waste energy are thermal energy and sound energy

CONSERVATION OF ENERGY

- In any energy conversion, the total amount of energy before and after the conversion is constant
 - It tells us that energy can neither be created or destroyed

ENERGY EFFICIENCY

The efficiency of an energy conversion is the fraction of the energy that ends up in the desired form

Typical efficiency

electric heater

washing machine motor

gas-fired power station

ENERGY CALCULATIONS

Gravitational potential energy = weight× height

height and weight of an object are directly proportional to its g.p.e.

Kinetic energy =
$$\frac{1}{2}$$
 × mass× speed²

k.e. =
$$\frac{1}{2}$$
m v^2

speed and mass of an object are directly proportional to its k.e.

Solved example 1

An athlete of mass 50 kg runs up a hill. The foot of the hill is 400 m above sea-level. By how much does the athlete's g.p.e. increase?

STEP 1

Assume that g.p.e is zero at the foot of the hill. Calculate the increase in height.

 $h = 1200 \,\text{m} - 400 \,\text{m} = 800 \,\text{m}$

STEP 2

Write down the equation for g.p.e., substitute values and solve.

```
g.p.e. = weight x height

= mg x h

= 50 kg x 10m/s<sup>2</sup> x 800 m

= 400000J

= 400kJ
```

Solved example 2

A van of mass 2000 kg is travelling at 10m/s. Calculate its kinetic energy. If its speed increases to 20 m/s, by how much does its kinetic energy increase?

STEP 1

Calculate the van's k.e. at 10m/s

k.e. = $\frac{1}{2}$ mv2

 $= \frac{1}{2} \times 2000 \text{ kg x } (10 \text{ m/s})^2$

 $= 100000 \, \text{J} \text{ or } 100 \, \text{kJ}$

STEP 2

Calculate the van's k.e. at 20 m/s

k.e. = $\frac{1}{2}$ mv2

 $= \frac{1}{2} \times 2000 \text{ kg} \times (20 \text{ m/s})^2$

= 400000 J or 400 kJ

STEP 3

Calculate the change in the van's k.e

 $= 400 \, \text{kJ} - 100 \, \text{kJ}$

 $= 300 \, kJ$

