Q.1 Design AND, OR, and NOT gate using NAND and NOR gate.

• AND GATE USING NAND AND NOR GATE

INPUTS		OUTPUT
Α	В	AB
0	0	0
0	1	0
1	0	0
1	1	1

• OR GATE USING NAND AND NOR GATE.

INPUTS		ОUТРUТ	
Α	В	A+B	
0	0	0	
0	1	1	
1	0	1	
1	1	1	

• OR GATE USING NAND AND NOR GATE .

INPUTS	OUTPUT
Α	В
0	1
1	0

Q.2 Design a Half Adder and Full adder using basic gates.

Half Adder using Basic gates.

INPUT		OUTPUT		
A	В	SUM	CARRY	
0	0	0	0	
0	1	1	0	
1	0	1	0	
1	1	0	1	

• FULL ADDER USING BASIC GATES.

INPUTS			OUTPUT	
Α	В	Cin	SUM	CARRY
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Q.3 To Design and set up 2:1 Multiplexer(MUX) using only NAND gates.

SELECT LINE	INPUTS		OUTPUT
S	Α	В	Y
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Q.4 To design and set up 4:1 Multiplexer (MUX) using in the Simulator.

SELEC	Γ LINE	OUTPUT			
S 1	S0	Y3	Y2	Y1	Y0
0	0	х	х	х	1
0	1	х	х	1	х
1	0	х	1	х	х
1	1	1	х	х	х

Q.5 To design and Implement 2 to 4 decoder using NAND gates.

INPL	INPUTS		OUTPUT		
A 1	A0	D3	D2	D1	D0
0	0	0	0	0	1
0	1	0	0	1	0
1	0	0	1	0	0
1	1	1	0	0	0

Q.6 Design the Arithmetic Logical unit using basic gates.

F2	F1	F0	ALU Function	Carry Out
0	0	0	A OR B	0
0	0	1	B'	0
0	1	0	AB	0
0	1	1	A+B	Carry from
				A+B
1	0	0	A XOR B	0
1	0	1	A XNOR B	0
1	1	0	Logic '0'	0
1	1	1	Logic '1'	0