МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ

УНИВЕРСИТЕТ им. Р.Е.АЛЕКСЕЕВА

Институт радиоэлектроники и информационных технологий Кафедра вычислительные системы и технологии

Решение нелинейных уравнений

Отчет

по лабораторной работе №1

по дисциплине

Вычислительная математика

РУКОВОДИТЕЛЬ:	
	Суркова А. С.
СТУДЕНТ:	
	Соляник Д. Р.
	19-ИВТ-2
Работа защищена «»	
С оценкой	

Нижний Новгород 2020

1. Тема лабораторной работы:

Решение нелинейных уравнений

Цель лабораторной работы

Закрепление знаний и умений по нахождению решений нелинейных уравнений различными способами.

2. Вариант задания на лабораторную работу

Вариант № 18

Решить нелинейное уравнение с одним неизвестным с использованием четырех методов (метод бисекций, метод хорд, метод Ньютона, метод простой итерации). ε =0.001

$$x^3 - 3x^2 + 12x - 12 = 0$$

3. Теоретические сведения и описание лабораторной работы

• Метод бисекций

Пусть необходимо решить уравнение f(x) = 0, где функция непрерывна на отрезке [a; b], и единственный корень х заключен в том же интервале:

- 1. Разделим отрезок [a; b] пополам и найдем x = (a + b) / 2.
- 2. Вычислим значение f(x) в этой точке.
- 3. Проверим знак условия $f(x) \cdot f(a)$. Если $f(x) \cdot f(a) > 0$, то корень находится на отрезке [x; b].
- 4. Половина отрезка [а; х] отбрасывается.
- 5. Левая граница интервала перемещается в точку x, a = x.
- 6. Если $f(x) \cdot f(a) < 0$, то корень находится на отрезке [a; x] и отбрасывается [x; b].

При повторном делении интервала производятся те же самые операции: новый отрезок [a; b] делится пополам, вычисляется значение функции в точке деления f(x) и определяется отрезок, содержащий корень. Процесс деления продолжается до тех пор, пока длина отрезка [a; b], содержащего корень, не станет меньше некоторого малого заданного числа ε .

• Метод хорд

Пусть уравнение f(x) = 0 имеет один корень на отрезке [a; b], а первая и вторая производные функции f(x) определены, непрерывны и сохраняют постоянные знаки на этом интервале.

Проводим хорду через точки A и B. B точке пересечения хорды с осью x находим значение функции f(x), получаем точку A1, затем проводим новую хорду через точки A1 и B и T. D.

Уравнение прямой, проходящей через две точки (х1, у1) и (х2, у2), имеет вид:

$$(x-x1)/(x1-x2) = (y-y1)/(y1-y2)$$
 (1)

Из этого уравнения надо определить точку x — точку пересечения хорды с осью x. Значит, в уравнении (1) y = 0. Один из концов отрезка [a;b] является подвижным (в нашем случае a), другой конец — неподвижным. В качестве подвижного конца выбирается точка, для которой выполняется условие $f(x) \cdot f''(x) < 0$.

• Метод Ньютона

Пусть уравнение f(x) = 0 имеет один корень на отрезке [a; b], а первая и вторая производные функции f(x) определены, непрерывны и сохраняют постоянные знаки на этом интервале.

Выберем в качестве первого приближения точку x1 = b. Через точку p1 с координатами [x1; f(x1)] проведем касательную к кривой y = f(x). В качестве второго приближения x2 возьмем абсциссу точки пересечения этой касательной с осью x. Через точку p2 снова проведем касательную, пересечение которой с абсциссой дает следующее приближение x3 и т. д.

Уравнение касательной, проходящей через точку х1, имеет вид

$$y - f(x1) = f'(x1) \cdot (x - x1),$$

уравнение касательной, проходящей через точку x^2 , $x^2 = x^1 - f(x^1)/f'(x^1)$.

В общем случае можно записать рекуррентную формулу:

$$xn+1 = xn - f(xn)/f'(xn)$$
.

Если в качестве первого приближения взять x1 = a и провести касательную к функции f(x) в точке ра, то она пересечет ось x вне отрезка [a;b]. В качестве первого приближения выбирается тот конец интервала [a;b], для которого выполняется условие $f(x) \cdot f''(x) > 0$, где f''(x) — вторая производная. Это условие сходимости метода является достаточным, но не необходимым: если условие выполняется, то итерационный процесс обязательно сойдется, а если не выполняется, то может сойтись, а может и не сойтись

• Метод простой итерации

Использование метода предполагает представление уравнения f(x) = 0 в виде $x = \phi(x)$. Выберем на отрезке [a; b] первое приближение x1 и подставим его в правую часть уравнения, затем $x2 = \phi(x1)$.

В общем виде можно записать:

$$xn+1 = \varphi(xn)$$
.

Геометрически способ простых итераций можно представить следующим образом. Построим графики двух функций: y = x и $y = \phi(x)$. Абсцисса точек пересечения этих двух графиков является корнем уравнения f(x) = 0.

Процесс итераций сходится при условии $|\phi'(x)| < 1$. При $|\phi'(x)| > 1$ процесс может расходиться Для выбора начального приближения вычисляют значения первых производных функции $\phi(x)$ в граничных точках интервала [a; b], содержащего корень, и за начальное приближение принимают тот конец интервала, для которого выполняется условие $|\phi'(x)| < 1$.

Если обе производные по абсолютной величине меньше единицы, то за начальное приближение берут ту границу, для которой значение производной по абсолютной величине меньше, тогда процесс итераций сходится быстрее.

4. Расчетные данные

• Метод бисекций

Α	В	mediana	f(a)	f(c)	f(a)*f(c)	An - Bn	
0	2	1	-12	-2	24	2	
1	2	1,5	-2	2,625	-5,25	1	
1	1,5	1,25	-2	0,265625	-0,53125	0,5	
1	1,25	1,125	-2	-0,87305	1,746094	0,25	
1,125	1,25	1,1875	-0,87305	-0,30591	0,267072	0,125	
1,1875	1,25	1,21875	-0,30591	-0,02078	0,006358	0,0625	
1,21875	1,25	1,234375	-0,02078	0,12225	-0,00254	0,03125	
1,21875	1,234375	1,226563	-0,02078	0,050692	-0,00105	0,015625	
1,21875	1,226563	1,222656	-0,02078	0,014945	-0,00031	0,007813	
1,21875	1,222656	1,220703	-0,02078	-0,00292	6,07E-05	0,003906	
1,220703	1,222656	1,22168	-0,00292	0,006011	-1,8E-05	0,001953	
1,220703	1,22168	1,221191	-0,00292	0,001545	-4,5E-06	0,000977	< 0.001

Memod xopd

Α	В	f(a)	f(b)	x	xi+1 -xi		
0	2	-12	8	1,2			
0	1,2	-12	-0,192	1,219512	0,8		
0	1,219512	-12	-0,01381	1,220918	0,019512		
0	1,220918	-12	-0,00096	1,221015	0,001405	-0,00096	< 0.001

• Метод Ньютона

В	f(b)	f(b)'	x	xi -xi+1		
2	8	12	1,333333			
1,333333	1,037037	9,333333	1,222222	0,666667		
1,222222	0,010974	9,148148	1,221023	0,111111		
1,221023	9,58E-07	9,146553	1,221023	0,0012	9,58E-07	< 0.001

• Метод простой итерации

В	Fi(b)	B-Fi(x)	
2	1,333333	0,666667	
1,333333	1,246914	0,08642	
1,246914	1,227141	0,019773	
1,227141	1,222475	0,004665	
1,222475	1,221368	0,001107	
1,221368	1,221105	0,000263	< 0.001

5. Листинг разработанной программы

• Метод бисекций an = 0 #Левая граница (будем считать известной) bn = 2 #Правая граница (будем считать известной) epsilon = 0.001def function(x): "=====Функция расчета $f(x) = x^3 - 3x^2 + 12x - 12 = 0$ ======"" f = x ** 3 - 3 * x ** 2 + 12 * x - 12return f def border(fab, func): "=====Функция замены границы на посчитанную медиану===== global bn, an if fab > 0 and func == 1: bn = medianreturn bn if fab < 0 and func == 1: an = medianreturn an if fab > 0 and func == 0: an = medianreturn an if fab < 0 and func == 0: bn = medianreturn bn def check(module, epsilon, fab, fbn): "=====Функция проверки конца алгоритма===== if module < epsilon:

print("==

```
module, "< 0.001")
       print("=
               exit()
       if abs(fan) < epsilon:
       print("=
               ргіпт("При границах: a = ", "%.5f" % an, "и b = ", "%.5f" % bn, ", |f(a)| -", "%.5f" %
abs(fan), "< 0.001")
               exit()
       if abs(fbn) < epsilon:
       print("=
               print("При границах: a = ", "%.5f" % an, "и b = ", "%.5f" % bn, ", |f(b)| -", "%.5f" %
abs(fbn), "< 0.001")
       print("=
               exit()
fan = function(an)
fbn = function(bn)
module = abs(an - bn)
#=====Проверка фунции f(x) на возрастанеи(убывание) =======
if (fan < 0) and (fbn > 0):
       func = 1
else:
       func = 0
         ==Шапка таблицы с полученными данными=
```

print("При границах: a = ", "%.5f" % an, "и b = ", "%.5f" % bn, ", |an - bn| -", "%.5f" %

```
print("An
              Bn
                        |f(An)|
                                  |f(Bn)|
                                            ||an - bn|")
while (module > epsilon) and (abs(fan) > epsilon) and (abs(fbn) > epsilon):
       fan = function(an)
       fbn = function(bn)
       module = abs(an - bn)
#=====Таблица с полученными данным======
       print("%.5f" % an, " ", "%.5f" % bn, " ", "%.5f" % fan," ", "%.5f" % fbn," ", "%.5f" %
module)
       check(module,epsilon, fan, fbn)
       median = (an + bn) / 2 # Считаем медиану
       fab = function(median)
       border(fab, func)

    Memod xopd

from sympy import *
import numpy as np
granic = [0,2] #Левая и правая границы (будем считать известными)
epsilon = 0.001
і = 0 # Счетчик для значений подвижного конца отрезка
b = [0] # Значения подвижного конца отрезка
x = symbols('x')
v = x ** 3 - 3 * x ** 2 + 12 * x - 12
def function(z):
       "=====Функция расчета f(x), f(x)' и f(x)" =======
       f = lambdify(x, z, 'numpy')
       return f
def check(module, epsilon, fbn):
           =====Функция проверки конца
алгоритма=====
       if (module < epsilon):
```

```
print("Искомое решение = ", "%.5f" % b[i], ", |bn i+1 - bn i| -", "%.5f" % module, "<
0.001")
                                      exit()
                   if (abs(fbn) < epsilon):
                                      print("Искомое решение = ", "%.5f" % b[i], ", |f(b)| ", "%.5f" % abs(fbn), "< 0.001")
                                      exit()
fz = function(y) \# Bocпoльзoваться функцией при <math>f(x) = x^3 - 3*x^2 + 12*x - 12
f 1 = y.diff(x) # Первая производаня
f 2 = f 1.diff(x) #Вторая производная
fz 1 = function(f 1) # Воспользоваться функцией для <math>f(x)
fz 2 = \text{function}(f \ 2) \# \text{Воспользоваться функцией для } f(x)"
# Определим неподвижный конец отрезка и обозначим его за "а", иной конец отрезка обозначим за
# Для проверки воспользуемся формулой f(x) * f(x)" > 0, тогда конец можно считать
неподвижным
if (fz(granic[0]) * fz_2(granic[0])) > 0:
                   print("Поскольку произведение f(", granic[0], ")", fz(granic[0]), "и f"(", granic[0], ") ", fz(granic[0], ") ", fz(gran
fz 2(granic[0]), ">0, то а неподвижный конец отрезка")
                   a = granic[0]
                   b[i] = granic[1]
else:
                   if (fz(granic[1]) * fz 2(granic[1])) > 0:
                                      print("Поскольку произведение f(", granic[1], ")", fz(granic[1]), "и f"(", granic[1], ")
", fz 2(granic[1]), ">0, то b неподвижный конец отрезка")
                                      a = granic[1]
                                      b[i] = granic[0]
                   else:
                                      print("Не удалось найти неподвижный конец отрезка")
                                      exit()
```

```
fan = fz(a) \# Paccчитаем значение функции f(x) для неподвижного конца отрезка
fbn = fz(b[i]) # Рассчитаем значение функции f(x) для конца отрезка, который будем сдвигать
module = abs(a - b[i])
print("An
               Bn
                        |f(An)|
                                   |f(Bn)|
                                             \|bn i+1 - bn i\|
while (module > epsilon) and (abs(fbn) > epsilon):
       fbn = fz(b[i]) # Рассчитаем значение функции f(x) для конца отрезка, который будем
сдвигать
       if i != 0:
              module = abs(b[i-1] - b[i])
       print("%.5f" % a, " ", "%.5f" % b[i], " ", "%.5f" % fan," ", "%.5f" % fbn," ", "%.5f" %
module)
       check(module, epsilon, fbn)
       # Рассчитаем точку пересечения хорды с осью Х
       b.append(b[i] - (fbn / (fbn - fan)) * (b[i] - a))
       i += 1
    • Метод Ньютона
from sympy import *
import numpy as np
granic = [0,2] #Левая и правая границы (будем считать известными)
epsilon = 0.001
і = 0 # Счетчик для значений подвижного конца отрезка
b = [0] # Значения подвижного конца отрезка
x = symbols('x')
y = x ** 3 - 3 * x ** 2 + 12 * x - 12
def function(z):
       "=====Функция расчета f(x), f(x)' и f(x)" ========
       f = lambdify(x, z, 'numpy')
       return f
def check(module, epsilon, fbn):
```

```
=====Функция проверки конца
алгоритма=====
       if module < epsilon:
               print("Искомое решение = ", "%.5f" % b[i], ", точность -", "%.5f" % module, "<
0.001")
               exit()
       if (abs(fbn) < epsilon):
               print("====
               print("Искомое решение = ", "%.5f" % b[i], ", |f(b)| ", "%.5f" % abs(fbn), "< 0.001")
               exit()
fz = function(y) \# Bocпoльзoваться функцией при <math>f(x) = x^3 - 3*x^2 + 12*x - 12
f 1 = y.diff(x) # Первая производаня
f 2 = f 1.diff(x) # Вторая производная
fz = function(f 1) # Воспользоваться функцией для <math>f(x)'
fz 2 = \text{function}(f \ 2) \# \text{Воспользоваться функцией для } f(x)"
# Определим неподвижный конец отрезка и обозначим его за "а", иной конец отрезка обозначим за
"h"
# Для проверки воспользуемся формулой f(x) * f(x)" > 0, тогда конец можно считать
неподвижным
if (fz(granic[0]) * fz 2(granic[0])) > 0:
       print("Поскольку произведение f(", granic[0], ")", fz(granic[0]), "и f"(", granic[0], ") ",
fz 2(granic[0]), ">0, то а неподвижный конец отрезка")
       a = granic[0]
       b[i] = granic[1]
else:
       if (fz(granic[1]) * fz_2(granic[1])) > 0:
               print("Поскольку произведение f(", granic[1], ")", fz(granic[1]), "и f"(", granic[1], ")
", fz 2(granic[1]), " > 0, то b неподвижный конец отрезка")
               a = granic[1]
```

```
b[i] = granic[0]
       else:
               print("Не удалось найти неподвижный конец отрезка")
               exit()
fan = fz(a) # Рассчитаем значение функции f(x) для неподвижного конца отрезка
fbn = fz(b[i]) \# Paccчитаем значение функции <math>f(x) для конца отрезка, который будем сдвигать
module = abs(a - b[i])
print("An
               Bn
                         |f(An)|
                                    |f(Bn)|
                                              \|bn i+1 - bn i\|
while (module > epsilon) and (abs(fbn) > epsilon):
       fbn = fz(b[i]) # Рассчитаем значение функции f(x) для конца отрезка, который будем
сдвигать
       fdb = fz 1(b[i]) # Рассчитаем значение функции f(x)' для конца отрезка, который будем
сдвигать
       if i!=0:
               module = abs(b[i-1] - b[i])
       print("%.5f" % a, " ", "%.5f" % b[i], " ", "%.5f" % fan," ", "%.5f" % fbn," ", "%.5f" %
module)
       check(module, epsilon, fbn)
       b.append( b[i] - ( fbn / fdb ) )
       i += 1
    • Метод простой итерации
from sympy import *
import numpy as np
# Задаем начальное приближение
a = 2 \# [-1; 3]
а past = 5 # Переменная запоминает предыдущее значение а
epsilon = 0.001
module = abs(a - a past) # Модуль разности а и a past
x = symbols('x')
Fi = (x ** 3 - 3 * x ** 2 - 12) / -12 # x = Fi(x)
# Преобразовали f(x) = x ** 3 - 3 * x ** 2 + 12 * x - 12 в Fi(x) = (x ** 3 - 3 * x ** 2 - 12) / -12
```

```
def fi(z):
        "=====Функция расчета f(x), f(x)' и f(x)" ==============
       f = lambdify(x, z, 'numpy')
       return f
y 1 = fi(Fi)
fi 1 = Fi.diff(x) # Взяли производную от <math>Fi(x)
fi \ 2 = fi(fi \ 1) \# Воспользоваться функцией для <math>f(x)'
module fi = abs( fi 2( a ) ) # Считаем модуль производной |Fi'(a)|
# Проверяем на сходимость итераций, для этого необходимо чтобы |Fi'(a)| < 1
if module fi > 1:
     print("====
       print("Процесс итерации расходится. Попробуйте выбрать другое начальное
приближение")
       exit()
                        ||a(i) - a(i-1)||
print("A
              Fi(a)
while module >= epsilon:
       а past = а # Присваиваем старое значение "a"
       a = y 1(a past) # Высчитываем новое значение Fi(a)
       module = abs(a - a past) # Считаем модуль разности |a(i) - a(i-1)|
       print("%.5f" % a past, " ", "%.5f" % a, " ", "%.5f" % module)
print("Приближенное значение корня равно =", "%.5f" % a, ", |a(i) - a(i-1)|", "%.5f" % module, "<=",
epsilon)
print("====="")
```

6. Результаты работы программы

• Метод бисекций

```
An
           Bn
                       f(An)
                                    f(Bn)
                                               an - bn
0.00000
           2.00000
                        -12.00000
                                     8.00000
                                                 2.00000
1.00000
           2.00000
                       -2.00000
                                    8.00000
                                                1.00000
1.00000
                                    2.62500
           1.50000
                       -2.00000
                                                0.50000
1.00000
           1.25000
                       -2.00000
                                    0.26562
                                                0.25000
1.12500
           1.25000
                       -0.87305
                                    0.26562
                                                0.12500
           1.25000
                       -0.30591
                                    0.26562
1.18750
                                                0.06250
1.21875
           1.25000
                       -0.02078
                                    0.26562
                                                0.03125
1.21875
           1.23438
                       -0.02078
                                    0.12225
                                                0.01562
1.21875
           1.22656
                       -0.02078
                                    0.05069
                                                0.00781
1.21875
           1.22266
                       -0.02078
                                    0.01494
                                                0.00391
                       -0.00292
1.22070
           1.22266
                                    0.01494
                                                0.00195
1.22070
           1.22168
                       -0.00292
                                    0.00601
                                                0.00098
При границах: a = 1.22070 и b = 1.22168 , |an - bn| - 0.00098 < 0.001
[Finished in 0.1s]
```

Метод хорд

```
Поскольку произведение f( 0 ) -12 и f''( 0 ) -6 >0 , то а неподвижный конец отрезка
          Bn
                      f(An)
                                  f(Bn)
                                             ||bn i+1 - bn i|
An
0.00000
           2.00000
                      -12.00000
                                   8.00000
                                              2.00000
0.00000
           1.20000
                      -12.00000
                                   -0.19200
                                               0.80000
0.00000
                      -12.00000
                                   -0.01381
                                               0.01951
           1.21951
                      -12.00000
0.00000
           1.22092
                                   -0.00096
                                               0.00141
______
Искомое решение = 1.22092, |f(b)| 0.00096 < 0.001
_____
[Finished in 0.8s]
```

• Метод Ньютона

```
Поскольку произведение f(0)-12 и f''(0)
                                            > 0 ,
                                        -6
                                                 то а неподвижный конец отрезка
An
           Bn
                        f(An)
                                     f(Bn)
                                                  ||bn i+1 - bn i|
0.00000
            2.00000
                        -12.00000
                                       8.00000
                                                   2.00000
0.00000
            1.33333
                         -12.00000
                                       1.03704
                                                   0.66667
0.00000
            1.22222
                         -12.00000
                                       0.01097
                                                   0.11111
                         -12.00000
                                       0.00000
                                                   0.00120
            1.22102
Искомое решение = 1.22102, |f(b)| 0.00000 < 0.001
______
[Finished in 0.8s]
```

• Метод простой итерации

```
|Fi(a)
                         ||a(i) - a(i-1)|
2.00000
            1.33333
                          0.66667
1.33333
            1.24691
                         0.08642
          1.22714
1.22248
1.24691
                         0.01977
1.22714
                        0.00467
1.22248
          1.22137
                        0.00111
1.22137
           1.22110
                         0.00026
Приближенное значение корня равно = 1.22110 , |a(i) - a(i-1)| 0.00026 <= 0.001
[Finished in 0.8s]
```

7. Вывод

В ходе лабораторной работы были изучены и применены методы: бисекций, хорд, Ньютона и простой итерации при решении нелинейных уравнений.