IGELHAUS BAUANLEITUNG

MATERIALLISTE

Bau Material

- 1x Brett 49 x 36 cm für das Dach
- 2x Bretter 26 x 26 cm für den Boden +

Zwischendecke

- 2x Bretter 30 x 28 bzw. 30 cm für die Seitenwände (abgeschrägt)
- 1x Brett 40 x 28 cm für die Vorderwand
- 1x Brett 40 x 30 cm für die Rückwand
- 1x Brett 17 x 28 bzw. 30 als Trennwand
- 1x Stück Dachpappe circa 50 x 50 cm
- Nägel bzw. Schrauben, Hammer, Säge,

Metermaß, Bohrer

- Ungiftige, umweltfreundliche Lasur
- Heißklebepistole

Technisches Material

- 1x Arduino Uno
- 2x PIR-Sensor
- 1x RTC
- 1x Load Cell Sensor
- 1x DHT-Sensor
- 1x SD-Modul
- 1x SD-Karte
- 1 Powerbank
- Wire
- 1 Plastikbox
- Silikon

EINFACHE IGELBEHAUSUNG¹

Ein Holzhäuschen für den Igel kann man aus Reststücken von zusammensteckbaren Nut- und Federbrettern bauen, aber auch aus Holzbrettern oder Spanplatten.

- 1. Maße einzeichnen
- Bauteile mit Stichsäge aussägen, danach Kanten mit Holzfeile glätten
- 3. Löcher für Holzschrauben markieren und vorbohren
- 4. Bauteile zusammenschrauben
- 5. Für das Dach: Tiefe des Innenraums ausmessen, die Dachlatten entsprechend kürzen und auf das vorher ausgesägte Dach schrauben. Dach mit Dachpappe verkleiden.

6. Igel Haus mit umweltfreundlicher Lasur imprägnieren und eine Woche auslüften

¹ Die Anleitung basiert auf der des NABUs und wurde von uns erweitert: https://www.nabu.de/umwelt-und-ressourcen/oekologisch-leben/mission-gruen/17295.html

TECHNISCHE ANLEITUNG

Um das Igel Haus mit den Sensoren auszustatten sind folgende Erweiterungen nötig.

- 1. Loch (1.5 cm \emptyset) in die Rückwand und die Plastikbox bohren
- 2. Zwei Löcher in die Trennwand bohren (1.5 cm Ø)
- 3. Plastikbox an die Rückwand befestigen
- 4. Doppelten Boden auf der Waage befestigen
- 5. Hinterseite der Sensoren mit durchsichtigem Klarlack vor Wasser schützen
- 6. Die Sensoren wie folgt mit der Heißklebepistole im Igelhaus befestigen:

Oben: Temperatur & Feuchtigkeitssensor Links: Eingangs und Innen Bewegungssensor Mitte: Waage

7. Führen Sie die Verkabelung wie in der Abbildung unten gezeigt durch (Die genaue Pinbelegung kann zusätzlich Code nachgeschlagen werden.)

8. Platzieren Sie den Arduino, das SD-Kartenmodul und die Realtime Clock in der Wasserfesten Plastikbox.

9. Bohren Sie ein Loch für die LED und platzieren Sie diese mithilfe der Heißklebepistole an der Plastikbox

INITIALISIEREN DES ARDUINOS

- 1. Installiere Arduino IDE: https://www.arduino.cc/en/software
- 2. Verbinde den Arduino Uno mit dem PC via USB-Kabel
- 3. Öffne Arduino IDE
- 4. Öffne die Code Datei von GIT-Hub https://github.com/smartesigelhaus
- 5. Klicke den Upload Button in der Arduino IDE um den Code auf den Arduino Uno zu laden.
- 6. Nun ist alles Bereit und das Igelhaus kann ins Freie gesetzt werden.

DIFFERENT STAGES

Das LED light indiziert die folgenden Status.

	Das Haus ist leer.
	Igel ist in dem Haus.
	Igel ist untergewichtig – bitte überprüfen Sie das Wohlbefinden des Igels und kontaktieren
	sie, wenn nötig eine Igelpflegestelle.

SPEICHERÜBERTRAGUNG INS BACK-END

- 1. Python installieren
- 2. Einfache Google-Suche und Installation der Software von der Website
- 3. Pip-Bibliothek installieren
 - a. Die folgenden Bibliotheken müssen über das Terminal installiert werden
 - b. Geben Sie "pip install ...
 - i. boto3
 - ii. pandas
 - iii. psycopg2
- 4. Erstellen Sie einen Ordner
 - a. Python-Skript und SD-Karten-Dateien im .txt-Format sollten dort abgelegt werden
- 5. Laden Sie das Python-Skript vom Projekt-Hub herunter und legen Sie es in den Ordner
 - a. Starten Sie das Skript über das Terminal mit dem Befehl (navigieren Sie zuerst mit dem cd-Befehl in den entsprechenden Ordner):
 - i. Python "Skriptname" und die entsprechende Dateiendung (.py)
- 6. Entfernen Sie die SD-Karte aus dem Arduino und stecken Sie sie in den Laptop
 - a. Ziehen Sie die Textdatei in den erstellten Ordner
- 7. Führen Sie das Python-Skript aus
 - a. Geben Sie den persönlichen Benutzernamen ein, den die Konsoleneingabe im Terminal verlangt (automatisch, sobald das Skript gestartet ist)
 - b. Die Zugangsdaten für die Datenbankverbindung (z. B. Port usw.) müssen möglicherweise entsprechend den eigenen Vorgaben geändert werden (Verfügbarkeit des Ports, Passwort usw.)
- 8. Stecken Sie die SD-Karte wieder in den Arduino

EINE VOLLSTÄNDIGE ANLEITUNG FINDEN SIE HIER:

<u>PROJECT HUB BUILDING INSTRUCTIONS</u>