

UNIVERSITÀ DEGLI STUDI DI TRENTO

DIPARTIMENTO DI INGEGNERIA CIVILE, AMBIENTALE E MECCANICA Corso di Laurea Magistrale in Ingegneria Civile

RELAZIONE COSTRUZIONI IN LEGNO

Rete di drenaggio acque meteoriche Quartiere "Le Albere" – Ex Parco Michelin (Trento)

DOCENTI Alberto Bellin Maria Grazia Zanoni STUDENTI Nicola Meoli 225077 Luca Zorzi 227085

Indice

E	enco	delle	tabelle	3
El	lenco	delle	figure	4
1		oduzio		5
	1.1	Preme	essa	5
2	Ver	ifica de	egli elementi	6
	2.1		ecci	6
		2.1.1	Flessione	7
		2.1.2	Stabilità flesso-torsionale	7
		2.1.3	Taglio	7
		2.1.4	Freccia	7
	2.2	Trave	a doppia rastremazione	8
		2.2.1	Flessione – Sezione D	9
		2.2.2	Trazione perpendicolare – Sezione D	9
		2.2.3	Trazione perpendicolare combinata a taglio – Sezione C	10
		2.2.4	Flessione – Sezione B	11
		2.2.5	Taglio – Sezione A	11
		2.2.6	Compressione perpendicolare – Sezione A	11
		2.2.7	Stabilità flesso-torsionale – Sezione B	12
		2.2.8	Freccia	12
	2.3	Trave	Solaio	13
		2.3.1	Flessione	14
		2.3.2	Stabilità flesso-torsionale	14
		2.3.3	Taglio	14
		2.3.4	Compressione perpendicolare appoggio	15
		2.3.5	Freccia	15
3	Von	ifan d	ei collegamenti	16
J	3.1		nclinate trave a doppia rastremazione e arcarecci	16
	5.1	3.1.1	Resistenze caratteristiche R_k del singolo connettore	16
		3.1.1	Resistenze di progetto R_d del singolo connettore \dots	18
		3.1.2	Resistenza di progetto della connessione e verifica	18
		3.1.4	Distanze minime e distanze effettive	18
		0.1.T		-0

Elenco delle tabelle

2.1	Azioni di progetto SLU nei punti di sezione indicati in figura per gli arcarecci	6
2.2	Valori di progetto SLU la verifica della trave a doppia rastremazione	6
2.3	Azioni di progetto SLU nei punti di sezione indicati in figura per la trave a doppia	
	rastremazione	9
2.4	Valori di progetto per la verifica della trave a doppia rastremazione	9
2.5	Azioni di progetto SLU nei punti di sezione indicati in figura per la trave del solaio	13
2.6	Valori di progetto per la verifica della trave a doppia rastremazione	14
3.1	Valori di progetto della connessione tramite vite inclinate	16

Elenco delle figure

2.1	Indicazione della nomenclatura e dello schema statico adottato per gli arcarecci	6
2.2	Indicazione della nomenclatura adottata per le zone di verifica lungo lo sviluppo della trave	
	e delle condizioni di carico assunte per la trave a doppia rastremazione	8
2.3	Indicazione della nomenclatura e dello schema statico adottato per la trave del solaio	13
3.1	Schematizzazione della connessione tramite viti incrociate tra la trave rastremata e gli	16
	arcarecci	10

Introduzione

1.1 Premessa

Verifica degli elementi

2.1 Arcarecci

Figura 2.1: Indicazione della nomenclatura e dello schema statico adottato per gli arcarecci

Tabella 2.1: Azioni di progetto SLU nei punti di sezione indicati in figura per gli arcarecci

Sezione	x [mm]	$M_d [\mathrm{kNm}]$	V_d [kN]
A	0,0	0,0	7,704
В	2500,0	9,63	0,0

Tabella 2.2: Valori di progetto SLU la verifica della trave a doppia rastremazione

	Valori geomet	trici e coefficienti di esposizione o du	rata del car	rico
\overline{b}	$160\mathrm{mm}$	$h = 200\mathrm{mm}$	l	$5000\mathrm{mm}$
γ_M	1,45	k_{mod} 0,9	k_{def}	0,6
		Valori di resistenza GL28h [MPa]		
$f_{m,k}$	28,0	$f_{m,d}$ 17,379	$E_{0,mean}$	12 600,0
$f_{v,k}$	$3,\!5$	$f_{v,d}$ 2,172	$E_{0,05}$	10500,0
$f_{c,90,k}$	2,5	$f_{c,90,d}$ 1,552	G_{mean}	650,0
$f_{t,90,k}$	0,5	$f_{t,90,d}$ 0,31	G_{05}	540,0

Sezione di verifica: $160 \times 200 \,\mathrm{mm}$ Classe di servizio 2: $k_{mod} = 0.9$ disegno, momento, taglio, sezione, ecc

2.1.1 Flessione

$$\sigma_{m,d} \le f_{m,d} = 17,379 \,\text{MPa}$$
 (2.1)

La sollecitazione massima la si ha in mezzeria, pertanto è pari, avendo sezione rettangolare, a:

$$\sigma_{m,d} = \frac{M_d}{W} = \frac{M_d}{\frac{b \cdot h^2}{6}} = \frac{9,63 \times 10^6 \text{ N} \text{ mm}}{\frac{160 \cdot 200^2}{6} \text{mm}^3} = 9,028 \text{ MPa}$$

2.1.2 Stabilità flesso-torsionale

Sebbene lo sbandamento sia impedito, pur tenendone conto si ha:

$$\sigma_{m,d} \le k_{crit} \cdot f_{m,d} \tag{2.2}$$

dove

$$k_{crit} = \begin{cases} 1 & \text{se } \lambda_{rel,m} \le 0.75\\ 1.56 - 0.75 \cdot \lambda_{rel,m} & \text{se } 0.75 \le \lambda_{rel,m} \le 1.4\\ \frac{1}{\lambda_{rel,m}^2} & \text{se } \lambda_{rel,m} \ge 1.4 \end{cases} = 1$$
 (2.3)

in cui

$$\lambda_{rel,m} = \sqrt{\frac{f_{m,k}}{\sigma_{m,crit}}} = \sqrt{\frac{28.0}{213.9}} = 0.362$$

$$\sigma_{m,crit} = \frac{0.78}{l_{eff}} \frac{b^2}{h} E_{0.05} = \frac{0.78}{4900.0} \frac{160^2}{200} 10500.0 = 213.9 \,\text{MPa}$$

$$l_{eff} = 0.9 \, l + 2 \, h = 0.9 \cdot 5000 + 2 \cdot 200 = 4900.0 \,\text{mm}$$

essendo il carico nel bordo compresso dell'elemento.

Quindi la verifica diventa

$$9,028 \,\mathrm{MPa} < 1 \cdot 17,379 \,\mathrm{MPa} = 17,379 \,\mathrm{MPa}$$

risultando pertanto soddisfatta.

2.1.3 Taglio

Si deve avere

$$\tau_d \le f_{v,d} \tag{2.4}$$

La sollecitazione massima che si ha agli appoggi vale

$$\tau_d = 1.5 \frac{V_d}{b_{eff} \cdot h} = \frac{7,704 \times 10^3 \,\mathrm{N}}{114.3 \cdot 200 \mathrm{mm}^2} = 0,506 \,\mathrm{MPa}$$

in cui da normativa (C.4.4.8.1.9) per il legno lamellare

$$b_{eff} = k_{cr} \cdot b = \frac{2.5}{f_{v.k}} \cdot b = \frac{2.5}{3.5} \cdot 160 = 114,3 \,\text{mm}$$

Essendo $0,\!506\,\mathrm{MPa} < 2,\!172\,\mathrm{MPa}$ la verifica è soddisfatta.

2.1.4 Freccia

La freccia dovuta al contributo del momento flettente e del taglio, nel caso di semplice appoggio vale

$$w(q) = \frac{5}{384} \frac{q \cdot l^4}{E_{0 mean} \cdot J} + \chi \frac{1}{8} \frac{q \cdot l^2}{G_{mean} \cdot b \cdot h}$$
 (2.5)

che, per un carico unitario e per una sezione rettangolare, assume il valore di riferimento

$$w(q = 1 \,\mathrm{kN} \,\mathrm{m}^{-1}) = \frac{5}{384} \frac{1 \cdot 5000^4}{12600.0 \cdot 106.667 \times 10^6} + 1.2 \frac{1}{8} \frac{1 \cdot 5000^2}{650.0 \cdot 160 \cdot 200} = 6,235 \,\mathrm{mm} \tag{2.6}$$

Le deformazioni istantanee per i carichi agli SLE con combinazione rara valgono:

$$w_{inst,G} = w(q = 0.78 \,\mathrm{kN \, m^{-1}}) = 4.83 \,\mathrm{mm}$$
 (2.7)

$$w_{inst,Q1} = w(q = 1.31 \,\mathrm{kN} \,\mathrm{m}^{-1}) = 8.17 \,\mathrm{mm} \implies l/w_{inst,Q1} = 612.1 > 300$$
 (2.8)

$$w_{inst,TOT} = w_{inst,G} + w_{inst,Q1} = 13,0 \,\text{mm}$$
 (2.9)

Con $k_{def} = 0.6$, $\psi_{21} = 0.0$, in assenza di controfreccia iniziale e nelle ipotesi che gli elementi abbiano lo stesso comportamento viscoelastico, le deformazioni finali per i carichi agli SLE con combinazione rara assumono la forma semplificata:

$$w_{fin,G} = w_{inst,G} \cdot (1 + k_{def}) = 7.73 \,\text{mm}$$
 (2.10)

$$w_{fin,Q1} = w_{inst,Q1} \cdot (1 + \psi_{21} k_{def}) = 8,17 \,\text{mm}$$
(2.11)

$$w_{fin,TOT} = w_{fin,G} + w_{fin,Q1} = 15.9 \,\text{mm} \implies l/w_{fin,TOT} = 314.5 > 200$$
 (2.12)

2.2 Trave a doppia rastremazione

Figura 2.2: Indicazione della nomenclatura adottata per le zone di verifica lungo lo sviluppo della trave e delle condizioni di carico assunte per la trave a doppia rastremazione

Tabella 2.3: Azioni di progetto SLU nei punti di sezione indicati in figura per la trave a doppia rastremazione

Sezione	x [mm]	M_d [kN m]	V_d [kN]
A	0,0	0,0	156,48
В	5015,4	538,8	
\mathbf{C}	7350,0	621,788	12,714
D	8000,0	625,92	0,0

Tabella 2.4: Valori di progetto per la verifica della trave a doppia rastremazione

	Valori geom	etrici e coefficienti di esposizione o dur	ata del cario	co
\overline{b}	$240\mathrm{mm}$	h_{ap} 1300 mm	α	3,5°
h_0	$815\mathrm{mm}$	$l=16000\mathrm{mm}$	α_{ap}	3.5°
γ_M	1,45	k_{mod} 0,9	k_{def}	0,6
		Valori di resistenza GL28h [MPa]		
$f_{m,k}$	28,0	$f_{m,d}$ 17,379	$E_{0,mean}$	12600,0
$f_{v,k}$	3,5	$f_{v,d}$ 2,172	$E_{0,05}$	10500,0
$f_{c,90,k}$	2,5	$f_{c,90,d}$ 1,552	G_{mean}	650,0
$f_{t,90,k}$	0,5	$f_{t,90,d} = 0.31$	G_{05}	540,0

In riferimento alla nomenclatura delle sezioni mostrata in figura 2.2 si riportano ora le verifiche svolte.

2.2.1 Flessione – Sezione D

$$\sigma_{m,d} \le k_r \cdot f_{m,d} \tag{2.13}$$

Avendo la trave a doppia rastremazione un raggio $r_{in} = \infty$ si ha

$$k_r = \begin{cases} 1 & \text{se} & \frac{r_{in}}{t} \ge 240\\ 0.76 + 0.001 \frac{r_{in}}{t} & \text{se} & \frac{r_{in}}{t} < 240 \end{cases} = 1 . \tag{2.14}$$

La sollecitazione in mezzeria vale

$$\sigma_{m,d} = k_l \frac{6 \cdot M_{ap,d}}{b \cdot h_{ap}^2} = 1.106 \frac{6 \cdot 625,92 \times 10^6 \,\text{N} \,\text{mm}}{240 \,\text{mm} \cdot (1300 \,\text{mm})^2} = 10,239 \,\text{MPa}$$
(2.15)

dove

$$k_l = k_1 + k_2 \left(\frac{h_{ap}}{r}\right) + k_3 \left(\frac{h_{ap}}{r}\right)^2 + k_4 \left(\frac{h_{ap}}{r}\right)^3 = 1.106$$
 (2.16)

in cui $k_l = k_1$ in quanto: il raggio medio $r = \infty$, per le travi a doppia rastremazione, fa sì che si annullino gli altri termini. Avendo $\alpha_{ap} = 3.5^{\circ}$ si ha

$$k_1 = 1 + 1.4 \tan \alpha_{ap} + 5.4 \tan^2 \alpha_{ap} = 1.106$$

Essendo 10,239 MPa < 1 · 17,379 MPa = 17,379 MPa la verifica a flessione è soddisfatta.

2.2.2 Trazione perpendicolare – Sezione D

Si deve avere

$$\sigma_{t,90,d}^{ap} \le k_{dis} \cdot k_{vol} \cdot f_{t,90,d} \tag{2.17}$$

con

$$k_{dis} = \begin{cases} 1.4 & \text{se travi a doppia rastremazione o curve} \\ 1.7 & \text{se travi centinate} \end{cases} = 1.4 \tag{2.18}$$

е

$$k_{vol} = \begin{cases} 1.0 & \text{se legno massiccio} \\ \left(\frac{V_0}{V}\right)^2 & \text{se legno lamellare incollato LVL a strati paralleli} \end{cases} = 0.478$$
 (2.19)

in cui $V_0=0.01\,\mathrm{m}^3$, mentre V è il volume della zona sollecitata in riferimento alla figura sopra citata ed è limitato a

$$V = \min\left(\frac{2}{3}V_d; V_{colmo}\right) = 0.399 \,\mathrm{m}^3$$

con V_b volume totale della trave pari a 4,061 m³ e V_{colmo} volume reale della zona di colmo pari a 0,399 m³. La sollecitazione vale

$$\sigma_{t,90,d}^{ap} = k_p \frac{6 \cdot M_{ap,d}}{b \cdot h_{ap}^2} = 0.012 \frac{6 \cdot 625,92 \times 10^6 \text{ N mm}}{240 \text{ mm} \cdot (1300 \text{ mm})^2} = 0,113 \text{ MPa}$$
 (2.20)

dove

$$k_p = k_5 + k_6 \left(\frac{h_{ap}}{r}\right) + k_7 \left(\frac{h_{ap}}{r}\right)^2 = 0.012$$
 (2.21)

in cui $k_p=k_5$ in quanto: il raggio medio $r=\infty$, per le travi a doppia rastremazione, fa sì che si annullino gli altri termini. Avendo $\alpha_{ap}=3.5^\circ$ si ha

$$k_5 = 0.2 \tan \alpha_{ap} = 0.012$$

Essendo $0.113\,\mathrm{MPa} < 1.4 \cdot 0.478 \cdot 0.31\,\mathrm{MPa} = 0.208\,\mathrm{MPa}$ la verifica a trazione è soddisfatta.

2.2.3 Trazione perpendicolare combinata a taglio – Sezione C

Si deve avere

$$\frac{\tau_d^{0.5\,ap}}{f_{v,d}} + \frac{\sigma_{t,90,d}^{0.5\,ap}}{k_{dis} \cdot k_{vol} \cdot f_{t,90,d}} \le 1 \tag{2.22}$$

Occorre dapprima calcolare le azioni di progetto nella sezione C partendo dalla quota della sezione $x^C = \frac{l}{2} - 0.5 \cdot h_{ap} = 7350,0 \,\mathrm{mm}$, in quanto il carico e la trave sono simmetriche rispetto la mezzerie. Le azioni a tale x valgono:

$$V_{0.5\,an} = 12,714\,\text{kN}$$
 $M_{0.5\,an} = 621,788\,\text{kN}\,\text{mm}$ (2.23)

Il secondo termine della disequazione di verifica si calcola nello stesso modo di quanto visto nel paragrafo precedente con $M=M_{0.5\,ap}$ e $h=h_{0.5\,ap}=1260,0\,\mathrm{mm}$ variati. Si ha perciò

$$\sigma_{t,90,d}^{0.5\,ap} = 0.12\,\mathrm{MPa}$$

La componente di taglio del primo termine si calcola come:

$$\tau_d^{0.5\,ap} = 1.5\,\frac{V_{0.5\,ap}}{b_{eff}\cdot h_{0.5\,ap}} = 1.5\,\frac{12{,}714\times 10^3\,\mathrm{N}}{171{,}4\,\mathrm{mm}\cdot 1260{,}0\,\mathrm{mm}} = 0{,}088\,\mathrm{MPa}$$

in cui dalle NTC (C.4.4.8.1.9) per il legno lamellare si ha:

$$b_{eff} = k_{cr} \cdot b = \frac{2.5}{f_{v,k}} \cdot b = \frac{2.5}{3.5} \cdot 240 = 171,4 \,\text{mm}$$

In definitiva la verifica risulta soddisfatta:

$$\frac{0,088\,\mathrm{MPa}}{2,172\,\mathrm{MPa}} + \frac{0,12\,\mathrm{MPa}}{1.4\cdot0.478\cdot0,31\,\mathrm{MPa}} = 0,617 \le 1 \tag{2.24}$$

2.2.4 Flessione – Sezione B

Bordo inclinato e compresso Avendo un momento flettendo che tende le fibre inferiori, la formula di verifica nel late di travo con il bordo inclinato compresso è

$$\sigma_{m,\alpha,d} \le k_{m,\alpha,comp.} \cdot f_{m,d} \tag{2.25}$$

Bordo non inclinato e teso La formula di verifica è analoga a quella sopra ma non è presente il coefficiente riduttivo, perciò è automaticamente soddisfatta quando lo è la prima.

Il coefficiente riduttivo vale:

$$k_{m,\alpha,comp.} = \frac{1}{\sqrt{1 + \left(\frac{f_{m,d}}{0.75 f_{v,d} \tan \alpha}\right)^2 + \left(\frac{f_{m,d}}{f_{t,90,d} \tan \alpha}\right)^2}} = 0.95$$
 (2.26)

Si calcolano quindi le tensioni a flessione nella zona maggiormente sollecitata posta ad una quota $x_m ax$. Tale quota vale, nel caso di trave simmetrica e carico distribuito:

$$x^{max} = \frac{l \cdot h_0}{2 \cdot h_{ap}} = 5015,4 \,\text{mm}$$
 (2.27)

In corrispondenza di questa sezione si hanno le seguenti caratteristiche:

$$h_{x^{max}} = h_{ap} - \tan \alpha \cdot (0.5 \, l - x_{max}) = 1117,5 \,\text{mm}$$
 (2.28)

$$M_d^{max} = V_d \cdot x^{max} - \frac{Q \cdot (x^{max})^2}{2} = 538,8 \text{ kN mm}$$
 (2.29)

$$\sigma_{m,d}^{max} = \sigma_{m,\alpha,d} = \frac{6 \cdot M_d^{max}}{b \cdot h_{x^{max}}^2} = 10,787 \,\text{MPa}$$
 (2.30)

Si ha perciò

 $10,787 \,\mathrm{MPa} < 0.95 \cdot 17,379 \,\mathrm{MPa} = 16,509 \,\mathrm{MPa}$

2.2.5 Taglio – Sezione A

La verifica consiste in

$$\tau_{v,d} \le f_{v,d} \tag{2.31}$$

La tensione di taglio vale

$$\tau_d = 1.5 \, \frac{V_d}{b_{eff} \cdot h_0} = 1.5 \, \frac{156,48 \times 10^3 \, \mathrm{N}}{171,4 \, \mathrm{mm} \cdot 815 \, \mathrm{mm}} = 1,68 \, \mathrm{MPa}$$

con b_{eff} uguale a quella calcolata al paragrafo 2.2.3.

Risulta quindi soddisfatta:

$$1,68\,\mathrm{MPa} < 2,172\,\mathrm{MPa}$$

2.2.6 Compressione perpendicolare – Sezione A

Si deve avere

$$\sigma_{c,90,d} \le k_{c,90} \cdot f_{c,90,d} \tag{2.32}$$

in cui $k_{c,90}$ vale 1.75 per il legno lamellare e $f_{c,90,d}$ è pari a 1,552 MPa.

La tensione all'appoggio si calcola come

$$\sigma_{c,90,d} = \frac{V_d}{A_{ef}} = \frac{156,48 \times 10^3 \, \mathrm{N}}{79\,200 \, \mathrm{mm}^2} = 1,976 \, \mathrm{MPa}$$

in cui A_{ef} consiste nell'area di contatto efficace $b \cdot l_{ef}$, calcolata aumentando la lunghezza di appoggio (che vale 300 mm) di 30 mm in un solo lato.

Si ha quindi

$$1,976\,\mathrm{MPa} < 1.75 \cdot 1,552\,\mathrm{MPa} = 2,716\,\mathrm{MPa}$$

2.2.7 Stabilità flesso-torsionale – Sezione B

A favore di sicurezza si utilizza la $\sigma_{m,d}^{max}$ e una altezza h della trave pari alla media tra h_0 e h_{ap} che è minore dell'altezza $h_{x^{max}}$.

Si deve avere:

$$\sigma_{m,d}^{max} \le k_{crit} \cdot f_{m,d} \tag{2.33}$$

dove

$$k_{crit} = \begin{cases} 1 & \text{se } \lambda_{rel,m} \le 0.75\\ 1.56 - 0.75 \cdot \lambda_{rel,m} & \text{se } 0.75 \le \lambda_{rel,m} \le 1.4\\ \frac{1}{\lambda_{rel,m}^2} & \text{se } \lambda_{rel,m} \ge 1.4 \end{cases} = 0.796$$
 (2.34)

in cui

$$\lambda_{rel,m} = \sqrt{\frac{f_{m,k}}{\sigma_{m,crit}}} = \sqrt{\frac{28.0}{27.0}} = 1.018$$

$$\sigma_{m,crit} = \frac{0.78}{l_{eff}} \frac{b^2}{h} E_{0.05} = \frac{0.78}{16515.0} \frac{240^2}{1057.5} 10500.0 = 27,0 \text{ MPa}$$

$$l_{eff} = \{0.9 \ l + 2 \ h \ ; \ 1 \cdot \text{interasse2} \ h\} = \{0.9 \cdot 16000 + 2 \cdot 1057.5 \ ; \ 1 \cdot 900 + 2 \cdot 1057.5\}$$

$$= \{16515,0 \text{ mm} \ ; \ 3015,0 \text{ mm}\} = 16515,0 \text{ mm} \ (condizione \ più \ sfavorevole)$$

Si sono valutate entrambe le possibilità di sbandamento della trave e scelta quella più sfavorevole, ovvero quella che portasse ad un k_{crit} minore. Una considerando una lunghezza libera di inflessione pari a tutta la lunghezza della trave e coefficentata di 0.9; e un'altra nella quale gli arcarecci blocchino la torsione. In questo secondo caso la lunghezza di libera inflessione è pari all'interasse tra gli arcarecci e si ha una via di mezzo tra la condizione con coefficiente 0.9 e 1. Si è scelto 1 per essere a favore di sicurezza. Infine si è sommato 2h essendo il carico applicato nel bordo compresso dell'elemento.

Quindi la verifica diventa

$$10,787 \,\mathrm{MPa} < 0.796 \cdot 17,379 \,\mathrm{MPa} = 13,841 \,\mathrm{MPa}$$

risultando pertanto soddisfatta.

2.2.8 Freccia

La freccia dovuta al contributo del momento flettente e del taglio, nel caso di semplice appoggio vale

$$w(q) = k_m \cdot \frac{5}{384} \frac{q \cdot l^4}{E_{0,mean} \cdot J_0} + k_v \cdot \chi \frac{1}{8} \frac{q \cdot l^2}{G_{mean} \cdot A_0}$$
 (2.35)

Con J_0 e A_0 calcolati nella sezione rettangolare all'appoggio con altezza h_0 . Nel caso di travi a doppia rastremazione i due coefficienti valgono:

$$k_m = \left(\frac{h_0}{h_{ap}}\right)^3 \frac{1}{0.15 + 0.85 \left(\frac{h_0}{h_{ap}}\right)} = 0.361$$
 (2.36)

$$k_v = \frac{2}{1 + \left(\frac{h_0}{h_{ap}}\right)^{2/3}} = 0.846 \tag{2.37}$$

Per un carico unitario assume il valore di riferimento:

$$w(q=1\,\mathrm{kN\,m^{-1}}) = 0.361 \cdot \frac{5}{384} \frac{1 \cdot 16000^4}{12600.0 \cdot 10\,826,868 \times 10^6} + 0.846 \cdot 1.2 \frac{1}{8} \frac{1 \cdot 16000^2}{650.0 \cdot 240 \cdot 815} = 2,512\,\mathrm{mm} \tag{2.38}$$

Le deformazioni istantanee per i carichi agli SLE con combinazione rara valgono:

$$w_{inst,G} = w(q = 8.64 \,\mathrm{kN} \,\mathrm{m}^{-1}) = 21.71 \,\mathrm{mm}$$
 (2.39)

$$w_{inst,Q1} = w(q = 10.92 \,\text{kN m}^{-1}) = 27.43 \,\text{mm} \implies l/w_{inst,Q1} = 583.4 > 300$$
 (2.40)

$$w_{inst,TOT} = w_{inst,G} + w_{inst,Q1} = 49,14 \,\text{mm}$$
 (2.41)

Con $k_{def} = 0.6, \psi_{21} = 0.0$, in assenza di controfreccia iniziale e nelle ipotesi che gli elementi abbiano lo stesso comportamento viscoelastico, le deformazioni finali per i carichi agli SLE con combinazione rara assumono la forma semplificata:

$$w_{fin,G} = w_{inst,G} \cdot (1 + k_{def}) = 34,74 \,\text{mm}$$
 (2.42)

$$w_{fin,Q1} = w_{inst,Q1} \cdot (1 + \psi_{21} k_{def}) = 27,43 \,\text{mm}$$
 (2.43)

$$w_{fin,TOT} = w_{fin,G} + w_{fin,Q1} = 62,17 \,\text{mm} \implies l/w_{fin,TOT} = 257,4 > 200$$
 (2.44)

2.3 Trave Solaio

Figura 2.3: Indicazione della nomenclatura e dello schema statico adottato per la trave del solaio

Tabella 2.5: Azioni di progetto SLU nei punti di sezione indicati in figura per la trave del solaio

Sezione	x [mm]	$M_d [\mathrm{kNm}]$	V_d [kN]
A	0,0	0,0	131,36
В	3817,5	250,734	0,0

Tabella 2.6: Valori di progetto per la verifica della trave a doppia rastremazione

	Valori geome	ata del car	rico	
\overline{b}	$200\mathrm{mm}$	h 700 mm	l	$7635\mathrm{mm}$
γ_M	1,45	k_{mod} 0,9	k_{def}	0,6
		Valori di resistenza GL28h [MPa]		
$f_{m,k}$	28,0	$f_{m,d}$ 17,379	$E_{0,mean}$	12600,0
$f_{v,k}$	$3,\!5$	$f_{v,d}$ 2,172	$E_{0,05}$	10500,0
$f_{c,90,k}$	2,5	$f_{c,90,d}$ 1,552	G_{mean}	650,0
$f_{t,90,k}$	0,5	$f_{t,90,d}$ 0,31	G_{05}	540,0

Sezione di verifica: $200 \times 700 \text{ mm}$ Classe di servizio 2: $k_{mod} = 0.9$ disegno, momento, taglio, sezione, ecc

2.3.1 Flessione

$$\sigma_{m,d} \le f_{m,d} = 17,379 \,\text{MPa}$$
 (2.45)

La sollecitazione massima la si ha in mezzeria, pertanto è pari, avendo sezione rettangolare, a:

$$\sigma_{m,d} = \frac{M_d}{W} = \frac{M_d}{\frac{b \cdot h^2}{6}} = \frac{250,734 \times 10^6 \text{ N} \text{ mm}}{\frac{200 \cdot 700^2}{6} \text{mm}^3} = 15,351 \text{ MPa}$$

2.3.2 Stabilità flesso-torsionale

Si deve avere

$$\sigma_{m,d} \le k_{crit} \cdot f_{m,d} \tag{2.46}$$

dove

$$k_{crit} = \begin{cases} 1 & \text{se } \lambda_{rel,m} \le 0.75 \\ 1.56 - 0.75 \cdot \lambda_{rel,m} & \text{se } 0.75 \le \lambda_{rel,m} \le 1.4 \\ \frac{1}{\lambda_{rel,m}^2} & \text{se } \lambda_{rel,m} \ge 1.4 \end{cases} = 1$$
 (2.47)

in cui

$$\lambda_{rel,m} = \sqrt{\frac{f_{m,k}}{\sigma_{m,crit}}} = \sqrt{\frac{28.0}{56.6}} = 0.703$$

$$\sigma_{m,crit} = \frac{0.78}{l_{eff}} \frac{b^2}{h} E_{0.05} = \frac{0.78}{8271.5} \frac{200^2}{700} 10500.0 = 56,6 \text{ MPa}$$

$$l_{eff} = 0.9 \, l + 2 \, h = 0.9 \cdot 7635 + 2 \cdot 700 = 8271,5 \text{ mm}$$

essendo il carico nel bordo compresso dell'elemento.

Quindi la verifica diventa

$$15,351 \,\mathrm{MPa} < 1 \cdot 17,379 \,\mathrm{MPa} = 17,379 \,\mathrm{MPa}$$

risultando pertanto soddisfatta.

2.3.3 Taglio

Si deve avere

$$\tau_d \le f_{v,d} \tag{2.48}$$

La sollecitazione massima che si ha agli appoggi vale

$$\tau_d = 1.5 \frac{V_d}{b_{eff} \cdot h} = \frac{131,36 \times 10^3 \, \mathrm{N}}{142.9 \cdot 700 \mathrm{mm}^2} = 1,97 \, \mathrm{MPa}$$

in cui da normativa (C.4.4.8.1.9) per il legno lamellare

$$b_{eff} = k_{cr} \cdot b = \frac{2.5}{f_{v,k}} \cdot b = \frac{2.5}{3.5} \cdot 200 = 142.9 \,\text{mm}$$

Essendo 1,97 MPa < 2,172 MPa la verifica è soddisfatta.

2.3.4 Compressione perpendicolare appoggio

Si deve avere

$$\sigma_{c,90,d} \le k_{c,90} \cdot f_{c,90,d} \tag{2.49}$$

in cui $k_{c,90}$ vale 1.75 per il legno lamellare e $f_{c,90,d}$ è pari a 1,552 MPa.

La tensione all'appoggio si calcola come

$$\sigma_{c,90,d} = \frac{V_d}{A_{ef}} = \frac{131{,}36\times10^3~\mathrm{N}}{52\,800~\mathrm{mm}^2} = 2{,}488\,\mathrm{MPa}$$

in cui A_{ef} consiste nell'area di contatto efficace $b \cdot l_{ef}$, calcolata aumentando la lunghezza di appoggio della scarpa mettallica (che vale 234 mm) di 30 mm in un solo lato.

Si ha quindi

$$2,488\,\mathrm{MPa} < 1.75 \cdot 1,552\,\mathrm{MPa} = 2,716\,\mathrm{MPa}$$

2.3.5 Freccia

La freccia dovuta al contributo del momento flettente e del taglio, nel caso di semplice appoggio vale

$$w(q) = \frac{5}{384} \frac{q \cdot l^4}{E_{0 \ mean} \cdot J} + \chi \frac{1}{8} \frac{q \cdot l^2}{G_{mean} \cdot b \cdot h}$$
 (2.50)

che, per un carico unitario e per una sezione rettangolare, assume il valore di riferimento

$$w(q = 1 \text{ kN m}^{-1}) = \frac{5}{384} \frac{1 \cdot 7635^4}{12600.0 \cdot 5716.667 \times 10^6} + 1.2 \frac{1}{8} \frac{1 \cdot 7635^2}{650.0 \cdot 200 \cdot 700} = 0,71 \text{ mm}$$
 (2.51)

Le deformazioni istantanee per i carichi agli SLE con combinazione rara valgono:

$$w_{inst,G} = w(q = 15.6 \text{ kN m}^{-1}) = 11.08 \text{ mm}$$
 (2.52)

$$w_{inst,Q1} = w(q = 8,66 \text{ kN m}^{-1}) = 6.15 \text{ mm} \implies l/w_{inst,Q1} = 1241.1 > 300$$
 (2.53)

$$w_{inst,TOT} = w_{inst,G} + w_{inst,Q1} = 17,23 \,\text{mm}$$
 (2.54)

Con $k_{def} = 0.6$, $\psi_{21} = 0.3$, in assenza di controfreccia iniziale e nelle ipotesi che gli elementi abbiano lo stesso comportamento viscoelastico, le deformazioni finali per i carichi agli SLE con combinazione rara assumono la forma semplificata:

$$w_{fin,G} = w_{inst,G} \cdot (1 + k_{def}) = 17,73 \,\mathrm{mm}$$
 (2.55)

$$w_{fin,Q1} = w_{inst,Q1} \cdot (1 + \psi_{21} k_{def}) = 7,26 \,\text{mm}$$
 (2.56)

$$w_{fin,TOT} = w_{fin,G} + w_{fin,Q1} = 24,99 \,\text{mm} \implies l/w_{fin,TOT} = 305,5 > 200$$
 (2.57)

Verifica dei collegamenti

3.1 Viti inclinate trave a doppia rastremazione e arcarecci

Figura 3.1: Schematizzazione della connessione tramite viti incrociate tra la trave rastremata e gli arcarecci

Tabella 3.1: Valori di progetto della connessione tramite vite inclinate

	Valori di progetto della connessione tramite vite inclinate							
\overline{d}	$6\mathrm{mm}$	d_1	$3.8\mathrm{mm}$	n	2			
$ ho_k^1$	$425{ m kgm^{-3}}\ 425{ m kgm^{-3}}$	l_{ef}^1	$80\mathrm{mm}$	$\alpha_{fibre-vite}^{1}$	90°			
$ ho_k^1 \ ho_k^2$	$425\mathrm{kg}\mathrm{m}^{-3}$	$egin{aligned} l_{ef}^1 \ l_{ef}^2 \end{aligned}$	$80\mathrm{mm}$	$\alpha_{fibre-vite}^{2}$	45°			
γ_M	1,5	k_{mod}	0,9	U				
γ_{M1}	1,05	γ_{M2}	1,25	$f_{u,k}$	$600\mathrm{MPa}$			

La connessione tra la trave a doppia rastremazione e ciascun arcareccio viene eseguita tramite due viti a tutto filetto. Entrambe le viti sono sottoggette a puro sforzo assiale ed essendo inclinate ad $\alpha=45^{\circ}$ gli sforzi valgono

$$F_{traz} = F_{comp} = V^{arcareccio} \cos(\alpha) = 7704 \,\text{N} \cos 45^{\circ} = 5447.6 \,\text{N}$$
 (3.1)

Per la vite sottoposta a sola trazione si tengono conto dei modi di rottura per trazione del materiale acciaio e della rottura per estrazione della vite lato elemento principale 1 e lato elemento secondario 2. Per la vite sottoposta a sola compressione si tiene conto della rottura per estrazione nei due elementi, e della rottura a instabilità per carico di punta a compressione. Infine si tengono conto delle distanze minime dal bordo e dalle estremità.

3.1.1 Resistenze caratteristiche R_k del singolo connettore Rottura acciaio

$$F_{ax,Rk}^{acciaio} = 0.9 A_{res} f_{u,k} = 0.9 \frac{\pi d_1^2}{4} f_{u,k} = \frac{\pi (3.8 \text{ mm})^2}{4} 600 \text{ MPa} = 6124.2 \text{ N}$$
(3.2)

Estrazione elemento 1

$$F_{ax,Rk}^{estr,1} = \frac{f_{ax,k} \cdot d \cdot l_{ef}^{i} \cdot k_{d} \cdot n_{ef}}{1,2\cos^{2}\alpha_{f-v} + \sin^{2}\alpha_{f-v}} = \frac{17,35 \cdot 6 \cdot 80 \cdot 0.75 \cdot 1}{1,2\cos^{2}90 + \sin^{2}90} = 6246,4 \,\text{N}$$
(3.3)

dove

$$\begin{split} f_{ax,k} &= 0.52 \cdot d^{-0.5} \cdot l_{ef}^{-0.1,\,i} \cdot \rho_k^{0.8,\,i} = 0.52 \cdot 6^{-0.5} \cdot 80^{-0.1} \cdot 425^{0.8} = 17,\!35 \, \text{MPa} \\ k_d &= \min\left(\frac{d}{8};1\right) = \min\left(\frac{6}{8};1\right) = 0.75 \\ \alpha_{f-v} &= 90^\circ \quad \text{angolo tra la direzione delle fibre e la vite} \\ n_{ef} &= n^{0.9} = 1 \end{split}$$

Estrazione elemento 2

$$F_{ax,Rk}^{estr,2} = \frac{f_{ax,k} \cdot d \cdot l_{ef}^{i} \cdot k_{d} \cdot n_{ef}}{1,2\cos^{2}\alpha_{f-v} + \sin^{2}\alpha_{f-v}} = \frac{17,35 \cdot 6 \cdot 80 \cdot 0.75 \cdot 1}{1,2\cos^{2}45 + \sin^{2}45} = 5678,6 \,\text{N}$$
 (3.4)

dove

$$\begin{split} f_{ax,k} &= 0.52 \cdot d^{-0.5} \cdot l_{ef}^{-0.1,\,i} \cdot \rho_k^{0.8,\,i} = 0.52 \cdot 6^{-0.5} \cdot 80^{-0.1} \cdot 425^{0.8} = 17,35 \, \text{MPa} \\ k_d &= \min\left(\frac{d}{8};1\right) = \min\left(\frac{6}{8};1\right) = 0.75 \\ \alpha_{f-v} &= 45^\circ \\ n_{ef} &= n^{0.9} = 1 \end{split}$$

Instabilità

$$F_{ax,Rk}^{buck} = k_c \cdot N_{pl,k} = 0,717 \cdot 6804,7 \,\text{N} = 4877,8 \,\text{N}$$
(3.5)

dove

$$k_c = \begin{cases} 1 & \text{se } \overline{\lambda}_k \le 0.2 \\ \frac{1}{k + \sqrt{k^2 - \overline{\lambda}_k^2}} & \text{se } \overline{\lambda}_k > 0.2 \end{cases} = 0,717$$

$$N_{pl,k} = \frac{\pi d_1^2}{4} f_{y,k} = \frac{\pi (3.8 \text{ mm})^2}{4} 600 \text{ MPa} = 6804,7 \text{ N}$$

in cui

$$k = 0.5 \left[1 + 0.49 \left(\overline{\lambda}_k - 0.2 \right) + \overline{\lambda}_k^2 \right] = 0.5 \left[1 + 0.49 \left(0.713 - 0.2 \right) + 0.713^2 \right] = 0,8795$$

$$\overline{\lambda}_k = \sqrt{\frac{N_{pl,k}}{N_{ki,k}}} = \sqrt{\frac{6804,7\,\mathrm{N}}{13\,397,9\,\mathrm{N}}} = 0,713$$

$$N_{ki,k} = \sqrt{c_h E_s I_s} = \sqrt{83,51 \cdot 210\,000 \cdot 10,235} = 13\,397,9\,\mathrm{N}$$

$$c_h = \left(0.19 + 0.012\,d \right) \rho_k^i \frac{90^\circ + \alpha_{f-v}^i}{180^\circ} = \left(0.19 + 0.012\,d \right) 425 \frac{90 + 45}{180} = 83,51$$
in cui si è preso il minore tra le due combinazioni di α_{f-v} e ρ_k

$$E_s = 210\,000\,\mathrm{MPa}$$

$$I_s = \frac{\pi\,d_1^4}{64} = \frac{\pi\,3,8^4}{64} = 10,235\,\mathrm{mm}^4$$

3.1.2 Resistenze di progetto R_d del singolo connettore

$$F_{ax,Rd}^{acciaio} = \frac{F_{ax,Rk}^{acciaio}}{\gamma_{M2}} = \frac{6124,2\,\mathrm{N}}{1.25} = 4899,4\,\mathrm{N} \tag{3.6}$$

$$F_{ax,Rd}^{estr.1} = \frac{k_{mod} \cdot F_{ax,Rk}^{estr.1}}{\gamma_M} = \frac{0.9 \cdot 6246,4 \,\text{N}}{1.5} = 3747,9 \,\text{N}$$

$$\frac{1}{1.5} = 3747,9 \,\text{N}$$
(3.7)

$$F_{ax,Rd}^{estr,2} = \frac{k_{mod} \cdot F_{ax,Rk}^{estr,2}}{\gamma_M} = \frac{0.9 \cdot 5678,6 \, \mathrm{N}}{1.5} = 3407,1 \, \mathrm{N} \tag{3.8}$$

$$F_{ax,Rd}^{buck} = \frac{F_{ax,Rk}^{buck}}{\gamma_{M1}} = \frac{4877.8 \text{ N}}{1.05} = 4645.6 \text{ N}$$
(3.9)

La resistenza di progetto del singolo connettore vale, per la sollecitazione di trazione:

$$F_{ax,Rd,traz}^{\text{connettore}} = \min[\text{eqq.}(3.6), (3.7), (3.8)] = 3407,1 \,\text{N};$$
 (3.10)

mentre per quella di compressione:

$$F_{ax,Rd,comp}^{\text{connettore}} = \min[\text{eqq.}(3.7), (3.8), (3.9)] = 3407,1 \,\text{N}.$$
 (3.11)

3.1.3 Resistenza di progetto della connessione e verifica

Avendo una doppia vite le resistenze di progetto della connessione equivalgolo alle resistenze della singola vite appena calcolate, moltiplicate per il numero efficace $n_{ef} = n^{0.9} = 1.87$.

Per la sollecitazione di trazione si ha

$$F_{ax,Rd,traz}^{\text{connessione}} = 6358,0 \,\text{N} > F_{traz} = 5447,6 \,\text{N};$$
 (3.12)

mentre per quella di compressione:

$$F_{ax,Rd,comp}^{\text{connessione}} = 6358,0 \,\text{N} > F_{comp} = 5447,6 \,\text{N}$$
 (3.13)

Le verifiche sono pertanto soddisfatte

3.1.4 Distanze minime e distanze effettive