SISTEMAS OPERACIONAIS

Professor Fábio Angelo E-mail: fabio.angelo@unisul.br

APRESENTAÇÃO DOS TRABALHOS E AVALIAÇÃO

- Em um contexto geral, atenderam aos objetivos primários;
- Senti falta de gráficos mostrando os impactos na máquina hospedeira em relação às diferentes configurações;
- Descontei a ausência de bibliografia e tempos mínimo do vídeo não respeitado;
- No grupol gostei bastante da presença do gerenciador de tarefas da máquina Hospedeira e dos grupos 2 e 3, a forma completa que validaram a comunicação entre VMs e Hospedeira.

MITOS E FATOS

- A máquina virtualizada não oferece riscos para a hospedeira?
- Os recursos da hospedeira são afetados pelas máquinas virtuais?
- A gestão de aplicativos usando máquinas virtuais fica facilitada nos ambientes corporativos?
- Virtualização viabiliza a criação de contingência com menores custos?

PROCESSOS

- Um programa para estar em execução deve estar associado a um **processo** no sistema operacional;
- A gerência de processos permite aos programas alocar recursos, compartilhar dados, trocar informações e sincronizar suas execuções;
- Nos sistemas multiprogramáveis os processos são executados concorrentemente, compartilhando o uso do processador e memória principal;
- Nos sistemas com múltiplos processadores não só existe a concorrência de processos pelo uso do processador como também a possibilidade de execução simultânea de processos nos diferentes processadores.

PROCESSOS

- O conceito de processo pode ser definido como sendo o conjunto necessário de informações para que o sistema operacional implemente a concorrência de programas;
- Para que a concorrência entre os programas ocorra sem problemas, é necessário que todas as informações do programa interrompido sejam guardadas para que, quando este voltar a ser executado, não lhe falte nenhuma informação necessária à continuação do processamento.

GERÊNCIA DE PROCESSOS

- A figura ilustra a concorrência de três programas (PROG_1, PROG_2, PROG_3) associados aos Processos X, Y e Z;
- O Sistema Operacional intervém no tempo t4, fazendo o salvamento das informações dos registradores e acionando o PROG_2;
- Apenas no tempo t13, o PROG_1 tem seu retorno ao processador, onde o Sistema Operacional restaura suas informações para dar sequência ao processamento.

GERÊNCIA DE PROCESSOS

 A troca de um processo por outro no processador, efetuada pelo Sistema Operacional, é chamada de mudança de contexto;

- O programa execute dentro de um contexto de hardware, ciente das limitações de memória, cpu e disco;
- Cada processo tem seu usuário vinculado pelo Gerenciador de Processos;
- A figura apresentada no canto superior direito mostra os três componentes principais de um processo.

CONTEXTO DE HARDWARE

- Armazena o conteúdo dos registradores gerais da UCP, além dos registradores de uso específico, como program counter (PC), stack pointer (SP) e registrador de status;
- A operação se resume em substituir o contexto de hardware de um processo pelo de outro, conforme mostra a figura ao lado.

CONTEXTO DE SOFTWARE

- Nele é especificado os limites e características dos recursos que podem ser alocados pelo processo, como o número máximo de arquivos abertos simultaneamente, prioridade de execução e tamanho do buffer para operações de E/S;
- Muitos dos recursos são definidos na criação e outros pode ser ajustados/requeridos durante a execução;

para uma prova!

- A maior parte das informações do contexto de software do processo provém de um arquivo do sistema operacional, conhecido como arquivo de usuários;
- O contexto de software é composto por três grupos de informações sobre o processo: identificação, quotas e privilégios.

CONTEXTO DE SOFTWARE - IDENTIFICAÇÃO

- Cada processo criado pelo sistema recebe uma identificação única (PID - process identification) representada por um número;
- Alguns sistemas, além do PID, identificam o processo através de um nome, além da identificação do usuário ou processo que o criou (owner);
- Cada usuário possui uma identificação única no sistema (UID - user identification);
- A UID permite implementar um modelo de segurança, onde apenas os objetos (processos, arquivos, áreas de memória etc.) que possuem a mesma UID do usuário (processo) podem ser acessados.

CONTEXTO DE SOFTWARE - IDENTIFICAÇÃO

Atentar para as informações principais do Gerenciador de Tarefas do Windows (aba detalhes):

- Nome do processo;
- PID
- Status
- Nome do Usuário
- Consumo de CPU/Mem

Arquivo Opções Exibir							
Processos Desempenho	Histórico d	e aplicativos	Inicializar	Usuários	Detalhes	Serviços	
Nome	PID	Status	No	me de usu	ário C	PU Mer	nória (co.
sihost.exe	3164	Em execuç	ão ms	io msi			7.656 k
smartscreen.exe	4112	Em execuç	ão ms	si	(00	6.152 k
smss.exe	652	Em execuç	ão SIS	STEMA	(00	84 k
SnippingTool.exe	9908	Em execuç	ão ms	si	(00	3.028 k
SpeechRuntime.exe	12096	Em execuç	ão ms	si	(00	3.064 k
spoolsv.exe	3544	Em execuç	ão SIS	STEMA	(00	1.104 k
StartMenuExperienceH	. 11296	Em execuç	ão ms	si	(00	18.324 H
svchost.exe	1180	Em execuç	ão SIS	STEMA	(00	204 k
svchost.exe	1244	Em execuç	ão SIS	SISTEMA)2	31.524 H
svchost.exe	1376	Em execuç	ão SE	SERVIÇO DE REDE		00	10.972 H
svchost.exe	1432	Em execuç	ão SIS	SISTEMA		00	972 H
svchost.exe	1568	Em execuç	ão SIS	SISTEMA		00	248 k
svchost.exe	1632	Em execuç	ão SIS	SISTEMA		00	736 k
svchost.exe	1640	Em execuç	ão SE	SERVIÇO LOCAL		00	1.800 k
svchost.exe	1724	Em execuç	ão SE	RVIÇO LOC	AL (00	384 k
svchost.exe	1812	Em execuç	ão SE	RVIÇO LOC	AL (00	548 H
svchost.exe	1860	Em execuç	ão SIS	SISTEMA			92 H
svchost.exe	728	Em execuç	ão SE	SERVIÇO LOCAL			6.344 H
svchost.exe	1100	Em execuç	ão SIS	STEMA	(00	1.448 k

CONTEXTO DE SOFTWARE - QUOTAS

- As quotas são os limites de cada recurso do sistema que um processo pode alocar;
- Caso uma quota seja insuficiente, o processo poderá ser executado lentamente, interrompido durante seu processamento ou mesmo não ser executado;
- Alguns exemplos de quotas presentes na maioria dos sistemas operacionais são:
 - o número máximo de arquivos abertos simultaneamente;
 - tamanho máximo de memória principal e secundária que o processo pode alocar;
 - o número máximo de operações de E/S pendentes;
 - o tamanho máximo do buffer para operações de E/S;
 - número máximo de processos, subprocessos e threads que podem ser criados.

UMA DÚVIDA...

As quotas estão ligadas exclusivamente aos recursos de hardware?

Exemplos:

Um programa pode não executar pelo seu tamanho (muito grande para a memória disponível)

Um programa pode não executar por limitações especificas de um usuário

CONTEXTO DE SOFTWARE - PRIVILÉGIOS

- Os privilégios ou direitos definem as ações que um processo pode fazer em relação a ele mesmo, aos demais processos e ao sistema operacional;
- Privilégios que afetam o sistema são os mais amplos e poderosos, pois estão relacionados à operação e à gerência do ambiente;
- A maioria dos SOs disponibiliza uma conta de acesso com todos estes privilégios disponíveis, com o propósito de o administrador gerenciar o sistema operacional. No sistema Unix existe a conta "root", no Windows a conta "administrator" e no OpenVMS existe a conta "system" com este mesmo perfil.

ESPAÇO DE ENDEREÇAMENTO

- O espaço de endereçamento é a área de memória pertencente ao processo onde instruções e dados do programa são armazenados para execução;
- Cada processo possui seu próprio espaço de endereçamento, que deve ser devidamente protegido do acesso dos demais processos;
- Diversos mecanismos de implementação e administração do espaço de endereçamento podem ser executados (item será discutido mais à frente).

VISÃO GERAL

O fluxo ao lado mostra a visão geral dos componentes de um processo, detalhando a sua vinculação ao Contexto de Software, Hardware ou Espaço de Endereçamento.

BLOCO DE CONTROLE DO PROCESSO

- Também conhecido por Process Control Block- PCB;
- Mantém todas as informações sobre o Contexto de Software, Hardware e Endereçamento;
- OS PCBs de todos os processos ativos residem na memória principal em uma área exclusiva do Sistema Operacional, que define um número máximo de processos simultâneos suportados.

BLOCO DE CONTROLE DE PROCESSOS

- Visão dos processos em execução agora a partir de um sistema Linux;
- As informações de identificação são semelhantes ao apresentados no Sistema Windows;
- Atentar aos identificadores PRI e TIME, que indicam respectivamente a prioridade do processo e o tempo de utilização do processador.

		-1 -A											
F	ps S	UID	PID	PPID	C	PRI	NI	ADDR	SZ	WCHAN	TTY	TIME	CMD
4	S	010	1	0	0		0	-	378	schedu		00:00:04	
1	S	o	2	1	0	75	0	_	0,0	contex	*	00:00:00	
1	S	o	3	1	0	94	19	_	0	ksofti	2		ksoftirgd/0
;	S	0	6	1	0	85	0		0	bdflus	2	00:00:00	
	1990			1			-	-	0				
1	S	0	4	1	0	7.75	0	-	. 0	schedu	?	00:05:35	
1	S	0	5	1	0		0	-	0	schedu	2	00:03:45	
1	S	0	7	1	0	75	0	-	0	schedu	?	00:00:00	kupdated
1	S	0	8	1	0	85	0	-	0	md thr	?	00:00:00	mdrecoveryd
1	S	0	21	1	0	75	0	-	0	end	?	00:05:40	kjournald
1	S	0	253	1	0	75	0	-	0	end	?	00:00:00	kjournald
1	S	0	254	1	0	75	0	-	0	end	?	00:00:00	kjournald
1	S	0	255	1	0	75	0	-	0	end	?	00:55:28	kjournald
1	S	0	579	1	0	75	0	-	399	schedu	?	00:02:00	syslogd
5	S	0	583	1	0	75	0	-	383	do sys	?	00:00:00	klogd
5	S	32	600	1	0	75	0	-	414	schedu	?	00:00:00	portmap
5	S	29	619	1	0	85	0	-	416	schedu	?	00:00:00	rpc.statd
1	S	0	631	1	0	75	0	-	393	schedu	?	00:00:00	
5	S	0	702	1	0	75	0	-	917	schedu	?	00:00:30	sshd
5	S	0	716	1	0	75	0	-	539	schedu	?	00:00:00	xinetd
5	S	0	745	1	0	75	0	-	398	schedu	?	00:00:00	gpm
5	S	0	765	1	0	75	0	-	607	schedu	?	00:00:16	
5 5 5	SSS	0	702 716 745		0 0	75 75 75	0	-	917 539 398	schedu schedu schedu	? ? ?	00:00:30 00:00:00 00:00:00	sshd xinetd gpm

ESTADOS DOS PROCESSOS

- Em um Sistema Multiprogramável, para evitar o uso exclusivo do processador, os processos passam por diferentes estados ao longo do processamento:
 - EXECUÇÃO (running) É dito como em execução quando está sendo processado pela UCP. Se usando uma maquina monoprocessada, apenas um processo por vez é tratado;
 - PRONTO (ready) Os processos neste estado aguardam apenas pela alocação do sistema operacional para entrar em execução, em um mecanismo conhecido como "escalonamento";
 - ESPERA (wait) Quando um processo aguarda, por exemplo, por um recurso de E/S, é colocado no estado de espera. Um evento externo fará a comunicação de que o recurso solicitado foi liberado para seguir o processamento.

ESTADOS DOS PROCESSOS

- Os processos devem estar ordenados pela sua importância, permitindo que processos mais prioritários sejam selecionados primeiramente para execução;
- Em geral, os processos são separados em listas de espera associadas a cada tipo de evento;
- Nesse formato a ocorrência do evento pode colocar em estado de "Pronto" um conjunto de processos.

UMA DÚVIDA...

Respondendo pelo Chat, que tipo de situação pode fazer crescer o encadeamento de uma lista de processos em "espera"?

MUDANÇA DE ESTADO NO PROCESSO

MUDANÇA DE ESTADO NO PROCESSO

- Um processo em estado de pronto ou de espera pode não se encontrar na memória principal;
- Ocorre quando não existe espaço suficiente para todos os processos na memória principal e parte do contexto do processo é levado para memória secundária;
- A técnica é conhecida como swapping.

MUDANÇA DE ESTADO NO PROCESSO

CRIAÇÃO (new)

Processo criado, mas ainda não alocado no lista de "prontos"

TERMINADO (exit)

sistema.

- término normal
de execução;
- eliminação por
um outro processo;
- eliminação
forçada por
ausência de
recursos
disponíveis no

ARTIGO SOBRE VIRTUALIZADORES

Título: Virtualização: Uma análise de desempenho das soluções mais utilizadas do mercado

Objetivo primário: Conhecer ferramentas usadas no mercado e suas potencialidades

Objetivos secundários:

- Verificar algumas estratégias/métricas de comparação
- Inspiração para trabalhos na área de Sistemas Operacionais

O QUE FICOU NA MENTE?

- 1. Defina o conceito de processo.
- 2. Por que o conceito de processo é tão importante no projeto de sistemas multiprogramáveis?
- 3. É possível que um programa execute no contexto de um processo e não execute no contexto de um outro? Por quê?
- 4. Quais partes compõem um processo?

O QUE FICOU NA MENTE?

- 5. O que é o contexto de hardware de um processo e como é a implementação da troca de contexto?
- 6. Qual a função do contexto de software? Exemplifique cada grupo de informação.
- 7. O que é o espaço de endereçamento de um processo?
- 8. Como o sistema operacional implementa o conceito de processo? Qual a estrutura de dados indicada para organizar os diversos processos na memória principal?

1 - Criação de Processos

Execute o simulador SOsim e identifique as quatro janelas que são abertas na inicialização;

Crie dois processos:janela Gerência de Processos / Criar-janela Criação de Processos / Criar;

Na janela Gerência de Processos, observe algumas informações sobre o contexto de software do processo como PID, prioridade, estado do processo e tempo de processador;

Na janela Gerência de Processador, observe o processo transacionando entre estados.

2 - Análise das informações

Clicar no botão PCB e verificar as informações dos processos criados;

No menu da Console SOSim, em Janelas, abrir a opção LOG;

Na janela Gerência do Processador, vamos ajustar a fatia de tempo, aumentando até a metade do marcador; (observar o log e comportamento do processo)

Na janela Gerência do Processador, vamos ajustar o clock da CPU, aumentando até a metade do marcador; (observar o log e comportamento do processo)

Na janela Gerência do Processador, observar que temos uma fila de processos;

3 - Mudança de estados

Crie mais dois processos:janela Gerência de Processos / Criar-janela Criação de Processos / Criar;

Na janela Gerência de Processos, suspender o primeiro processo e observar o comportamento na janela do Processador;

Na janela Gerência de Processos, ajustar a prioridade (para 1) do terceiro processo e observar o comportamento na janela do Processador;

Na janela Gerência de Processos, finalizar o terceiro processo e observar o comportamento na janela do Processador;

3 - Mudança de estados

Na janela Gerência de Processos, finalizar o primeiro processo e observar o comportamento na janela do Processador;

Na janela Gerência de Processos, prosseguir com o primeiro processo e observar o comportamento na janela do Processador;