9. Soit la fonction
$$f$$
 définie par $f(x) = \frac{\alpha x^2}{-hx^2 + 6x + c}$ avec a, b, c des réels et (C) sa courbe représentative. La courbe (C) admet pour asymptotes les équation $x-1=0$; $y+2=0$ et $x-2=0$. Le réel - $a+b+c$ est égal à :

1. 6. 2. 1. 3. -2. 4. -4. 5. -42.

10. On considère dans IR la fonction f définie par $f(x) = \sqrt{\frac{x^2-1}{x^2-4}}$ et f^{-1} sa réciproque. Le réel $f^{-1}(-\frac{1}{2})$ est égal à :

1. 2. 2. $\sqrt{7}$ 3. 3. 3. 4. $\frac{1}{2}$ 5. 1.

11. Soit f la fonction définie dans IR par $f(x) = \frac{x^2+1}{1-x^2}$ et (C) sa courbe représentative. La courbe (C) admet des asymptotes dont les équations sont :

1. $x-3=0$ et $y=2x$.
2. $x=3$ et $y=2x+12$.
3. $x=1$, $x=-1$ et $y=-1$.
4. $x=-1$, $x=2$ et $y=0$.
5. $x=2$, $x=-2$ et $y=1$.

12. Soit donnée la fonction f dans IR définie par $f(x) = \frac{(x+1)^3}{x}$ et (C) sa courbe représentative de f . La courbe (C') présente :

1. minimum au point $(1,0)$.
4. minimum au point $(\frac{1}{2},\frac{27}{4})$.
2. max au point $(-1,0)$.

13. Soit f la fonction définie dans IR par $f(x) = \frac{x^2-6}{x+3}$, f et f sont respectivement les dérivées 1^{4x} et 1^{4x} de la fonction f .

14. La limite de la fonction $f(x) = \frac{x^3-1}{x-1}$ lorsque x tend vers 0 vaut :

15. Une pile de force dicectromotrice égale à 1.45 V, dont la résistance intérieure est de 1.60 , déblie un courant dans un circuit de résistance $R=3$ 0 . La rension aux bornes de la pile vaut :

1. 0.95 V. 2. 0.97 V. 3. 0.93 V. 4. 0.91 V. 5. 0.86 V. 16. Une dynamo dout cere fine de resistance est égale à 1.70 . La puissance de cette dynamo vaut :

1. $1. + 0. + 0.0$ La pius sance de cette dynamo vaut :