

4.) a)
$$|\vec{\mp}(\vec{x}) - \vec{\mp}(\vec{y})| \leq M |\vec{x} - \vec{y}|$$
 for alle \vec{x}, \vec{y} Vis: $\vec{\mp}$ er land.

Beins: La E>0 voete gitt, og la FER. Vil vise at Fer kond. i J. Siden J er en generell velitor, vil dette vise at Fer kont. i hele Df.

Vil vise at det fins $\delta > 0$ s.a. nor \neq er s.a. $|x-y'| < \delta$, så er $|F(x)-F(y)| < \epsilon$.

Da ex:
$$|\vec{F}(\vec{x}) - \vec{F}(\vec{y})| \leq M |\vec{x} - \vec{y}| < M \delta = M \frac{\varepsilon}{M} = \varepsilon$$

$$|\vec{F}(\vec{x}) - \vec{F}(\vec{y})| \leq M |\vec{x} - \vec{y}| < M \delta = M \frac{\varepsilon}{M} = \varepsilon$$

$$|\vec{F}(\vec{x}) - \vec{F}(\vec{y})| \leq M |\vec{x} - \vec{y}| < M \delta = M \frac{\varepsilon}{M} = \varepsilon$$

$$|\vec{F}(\vec{x}) - \vec{F}(\vec{y})| \leq M |\vec{x} - \vec{y}| < M \delta = M \frac{\varepsilon}{M} = \varepsilon$$

$$|\vec{F}(\vec{x}) - \vec{F}(\vec{y})| \leq M |\vec{x} - \vec{y}| < M \delta = M \frac{\varepsilon}{M} = \varepsilon$$

$$|\vec{F}(\vec{x}) - \vec{F}(\vec{y})| \leq M |\vec{x} - \vec{y}| < M \delta = M \frac{\varepsilon}{M} = \varepsilon$$

$$|\vec{F}(\vec{x}) - \vec{F}(\vec{y})| = |\vec{A}\vec{x} - \vec{A}\vec{y}| = |\vec{A}(\vec{x} - \vec{y})| \frac{\varepsilon}{M} = \varepsilon$$

$$|\vec{F}(\vec{x}) - \vec{F}(\vec{y})| = |\vec{A}\vec{x} - \vec{A}\vec{y}| = |\vec{A}(\vec{x} - \vec{y})| \frac{\varepsilon}{M} = \varepsilon$$

$$|\vec{F}(\vec{x}) - \vec{F}(\vec{y})| = |\vec{A}\vec{x} - \vec{A}\vec{y}| \leq |\vec{A}| |\vec{x} - \vec{y}| < M \delta = M \frac{\varepsilon}{M} = \varepsilon$$

$$|\vec{F}(\vec{x}) - \vec{F}(\vec{y})| = |\vec{A}\vec{x} - \vec{A}\vec{y}| \leq |\vec{A}| |\vec{x} - \vec{y}| < M \delta = M \frac{\varepsilon}{M} = \varepsilon$$