Cgmp: A Multi-Physics Multi-Domain Solver User Guide and Reference Manual

Kyle K. Chand William D. Henshaw Centre for Applied Scientific Computing Lawrence Livermore National Laboratory Livermore, CA, 94551. henshaw@llnl.gov http://www.llnl.gov/casc/Overture

January 25, 2014

Abstract:

This document describes **Cgmp**, a solver written using the **Overture** framework to solve multi-physics multi-domain problems. The solver can be used, for example, to solve thermal hydraulics problems where fluid flow in one domain is coupled to heat transfer in another *solid* domain.

Contents

1	Introduction	3				
2	The Equations	3				
3 Time-stepping						
4	Results	5				
5	Convergence results	5				
6	Some interesting examples 6.1 A Hot cylindrical shell separating two incompressible fluids	7 7				
L	ist of Figures					
	1 INS outside, AD inside, TZ	6 7				

1 Introduction

This document is currently under development.

Cgmp solves problems on overlapping grids and is built upon the **Overture** framework [?],[?],[?].

2 The Equations

3 Time-stepping

4 Results

5 Convergence results

This section details the results of various convergence tests. Convergence results are run using the **twilight-zone** option, also known less formally as the **method of analytic solutions**. In this case the equations are forced so the the solution will be a known analytic function.

The tables show the maximum errors in the solution components. The rate shown is estimated convergence rate, σ , assuming error $\propto h^{\sigma}$. The rate is estimated by a least squares fit to the data.

The 2D trigonometric solution used as a twilight zone function is

$$u = \frac{1}{2}\cos(\pi\omega_0 x)\cos(\pi\omega_1 y)\cos(\omega_3 \pi t) + \frac{1}{2}$$
$$v = \frac{1}{2}\sin(\pi\omega_0 x)\sin(\pi\omega_1 y)\cos(\omega_3 \pi t) + \frac{1}{2}$$
$$p = \cos(\pi\omega_0 x)\cos(\pi\omega_1 y)\cos(\omega_3 \pi t) + \frac{1}{2}$$

The 3D trigonometric solution is

$$u = \cos(\pi\omega_0 x)\cos(\pi\omega_1 y)\cos(\pi\omega_2 z)\cos(\omega_3 \pi t)$$

$$v = \frac{1}{2}\sin(\pi\omega_0 x)\sin(\pi\omega_1 y)\cos(\pi\omega_2 z)\cos(\omega_3 \pi t)$$

$$w = \frac{1}{2}\sin(\pi\omega_0 x)\sin(\pi\omega_1 y)\sin(\pi\omega_2 z)\cos(\omega_3 \pi t)$$

$$p = \frac{1}{2}\sin(\pi\omega_0 x)\cos(\pi\omega_1 y)\cos(\pi\omega_2 z)\sin(\omega_3 \pi t)$$

When $\omega_0 = \omega_1 = \omega_2$ it follows that $\nabla \cdot \mathbf{u} = 0$. There are also algebraic polynomial solutions of different orders.

grid	N	p	u	V	T	$ abla \cdot \mathbf{u}$	T_s
innerOuter1	20	1.32e-02	3.69e-03	2.74e-03	8.37e-04	2.68e-02	1.75e-03
innerOuter2	40	2.17e-03	4.03e-04	3.26e-04	1.85e-04	5.01e-03	4.33e-04
innerOuter4	80	4.20e-04	5.31e-05	3.89e-05	4.55e-05	1.71e-03	1.09e-04

Table 1: Inner-outer. Maximum errors, polynomial, $t=1., \nu=.1, k_T=\nu/P_r, k_s=.01$ (?).

Figure 1: INS outside, AD inside, TZ.

Figure 2: INS outside, AD in shell, INS inside.

6 Some interesting examples

Here is a collection of interesting examples computed with Cgmp.

6.1 A Hot cylindrical shell separating two incompressible fluids

Figure 2 shows a solid "hot" shell separating two incompressible (Boussinesq) fluids

References

Index

convergence results INS, 5