Un Prototipo per lo scheduling di funzioni basato su analisi di costo in piattaforme serverless Sviluppo di un interprete per l'analisi di costo di funzioni serverless

Simone Boldrini

Alma Mater Studiorum - Università di Bologna Facoltà di Scienze

14 Marzo 2024

Obiettivo: Sviluppare un prototipo di compilatore per piattaforme serverless che sfrutti tecniche di analisi di costo per ottimizzare l'esecuzione di funzioni.

· Definizione grammatica specifica

Obiettivo: Sviluppare un prototipo di compilatore per piattaforme serverless che sfrutti tecniche di analisi di costo per ottimizzare l'esecuzione di funzioni.

- Definizione grammatica specifica
- · Analisi del programma

Obiettivo: Sviluppare un prototipo di compilatore per piattaforme serverless che sfrutti tecniche di analisi di costo per ottimizzare l'esecuzione di funzioni.

- · Definizione grammatica specifica
- · Analisi del programma
- Generazione equazioni di costo

Obiettivo: Sviluppare un prototipo di compilatore per piattaforme serverless che sfrutti tecniche di analisi di costo per ottimizzare l'esecuzione di funzioni.

- · Definizione grammatica specifica
- · Analisi del programma
- Generazione equazioni di costo
- Generazione del codice WASM

cAPP Scheme

Definizione della grammatica

Abbiamo definito una grammatica specifica *HLCostLan* per la defizione di un linguaggio di alto livello per la definizione di funzioni serverless.

```
struct Params {
          address: array[int],
          payload: any,
          sender: string
4
      }
     service PremiumService : (string) -> void;
6
      service BasicService : (any) -> void;
      (isPremiumUser: bool, par: any) => {
          if ( isPremiumUser ) {
              call PremiumService("test");
          } else {
              call BasicService( par);
```

Analisi del programma

Una volta definito il linguaggio, abbiamo sviluppato un interprete per l'analisi del programma. Quest'analisi prevede:

Analisi lessicale e sintattica(Riconosciuta da ANTLR)

Analisi del programma

Una volta definito il linguaggio, abbiamo sviluppato un interprete per l'analisi del programma. Quest'analisi prevede:

- Analisi lessicale e sintattica(Riconosciuta da ANTLR)
- Analisi semantica

Generazione equazioni di costo

Una volta analizzato il programma, abbiamo sviluppato un interprete per la generazione delle equazioni di costo.

Analisi di costo

Analisi di costo

Come analisi statica dei costi miriamo ad ottenere risultati analitici per un dato programma P, i quali consentono di vinciolare il costo dell'esecuzione di P su qualsiasi input x, senza dover effettivamente eseguire P(x).

PUBS ha l'obiettivo di ottenere automaticamente un upper bound in forma chiusa per i sistemi di equazioni di costo, calcolando i limiti superiri per la relazione di costo indicata come "entry", oltre che per tutte le altre relazioni da cui tale "entry" dipende.

Analisi di costo

Un'analisi di costo è fortemente dipendente dal modello di costo preso in considerazione:

- · Costo di esecuzione: il costo di esecuzione di una funzione
- Costo di allocazione: il costo di allocazione di una variabile nell'heap

I vantaggi delle equazioni di costo:

- Sono indipendenti dal linguaggio di programmazione
- Possono rappresentare diverse classi di complessità
- Possono catturare una varietà di nozioni non banali di risorse.

Analisi di costo

```
eq(main(P,ISPREMIUMUSER0,B),0,[if9(ISPREMIUMUSER0,P,B)],[]).
eq(if9(ISPREMIUMUSER0,P,B),nat(P),[],[ISPREMIUMUSER0=1]).
eq(if9(ISPREMIUMUSER0,P,B),nat(B),[],[ISPREMIUMUSER0=0]).
```

Listing 2: Equazioni di costo per Listing 8

Generazione del codice WASM

Una volta ottenute le equazioni di costo, abbiamo sviluppato un interprete per la generazione del codice WASM.