Data Analysis Practical Test E15: Test Notebook

COMMON: Load Package

Question No. 1

주어진 데이터 파일은 특정 철강사의 제품코드, 불량코드, 그리고 공정 과정에서 발생한 데이터를 담고 있다. 해당 데이터를 이용하여 다음 문제의 답변을 작성하시오.

제공 데이터 파일: E15Q1_data_raw.csv

- 1-24번 컬럼: Analog Data25번 컬럼: 제품코드 (Binary)
- 26번 컬럼: 불량코드 (Integer with range 1 to 7)

① EDA를 실시하여 결과값을 제시하고, 상관분석을 시행하여 변수 선택 및 파생 변수 생성과정을 풀이하시오.

In [3]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

In [4]:

```
raw = pd.read_csv('DataAnalPrac-master/DataAnalPrac-master/E15/data/E15Q1_data_raw.csv', engine = 'g
data = raw.copy()
```

데이터의 기본 정보 확인하기

In [5]:

data.head()

Out[5]:

	X_Minimum	X_Maximum	Y_Minimum	Y_Maximum	Pixels_Areas	X_Perimeter	Y_Perimeter	٤
0	42	50	270900	270944	267	17	44	
1	645	651	2538079	2538108	108	10	30	
2	829	835	1553913	1553931	71	8	19	
3	853	860	369370	369415	176	13	45	
4	1289	1306	498078	498335	2409	60	260	

5 rows × 27 columns

In [6]:

data.describe()

Out[6]:

	X_Minimum	X_Maximum	Y_Minimum	Y_Maximum	Pixels_Areas	X_Perimeter	Υ.
count	1941.000000	1941.000000	1.941000e+03	1.941000e+03	1941.000000	1941.000000	19
mean	571.136012	617.964451	1.650685e+06	1.650739e+06	1893.878413	111.855229	
std	520.690671	497.627410	1.774578e+06	1.774590e+06	5168.459560	301.209187	4
min	0.000000	4.000000	6.712000e+03	6.724000e+03	2.000000	2.000000	
25%	51.000000	192.000000	4.712530e+05	4.712810e+05	84.000000	15.000000	
50%	435.000000	467.000000	1.204128e+06	1.204136e+06	174.000000	26.000000	
75%	1053.000000	1072.000000	2.183073e+06	2.183084e+06	822.000000	84.000000	
max	1705.000000	1713.000000	1.298766e+07	1.298769e+07	152655.000000	10449.000000	181

•

8 rows × 27 columns

In [7]:

data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1941 entries, 0 to 1940
Data columns (total 27 columns):

X_Minimum 1941 non-null int64 X_Maximum 1941 non-null int64 Y_Minimum 1941 non-null int64 Y_Maximum 1941 non-null int64 Pixels_Areas 1941 non-null int64 X_Perimeter 1941 non-null int64 Y_Perimeter 1941 non-null int64 Sum_of_Luminosity 1941 non-null int64 1941 non-null int64 Minimum_of_Luminosity Maximum_of_Luminosity 1941 non-null int64 Length_of_Conveyer 1941 non-null int64 Steel_Plate_Thickness 1941 non-null int64 1941 non-null float64 Edges_Index Empty_Index 1941 non-null float64 Square_Index 1941 non-null float64 Outside_X_Index 1941 non-null float64 Edges_X_Index 1941 non-null float64 Edges_Y_Index 1941 non-null float64 Outside_Global_Index 1941 non-null float64 1941 non-null float64 LogOfAreas 1941 non-null float64 Log_X_Index Log_Y_Index 1941 non-null float64 Orientation_Index 1941 non-null float64 Luminosity_Index 1941 non-null float64 SigmoidOfAreas 1941 non-null float64 SteelType 1941 non-null int64 Fault 1941 non-null int64

dtypes: float64(13), int64(14)

memory usage: 409.5 KB

결측치 확인

In [9]:

data.isnull().sum()

Out[9]:

X_Minimum	0
X_Maximum	0
Y_Minimum	0
Y_Maximum	0
Pixels_Areas	0
X_Perimeter	0
Y_Perimeter	0
Sum_of_Luminosity	0
Minimum_of_Luminosity	0
Maximum_of_Luminosity	0
Length_of_Conveyer	0
Steel_Plate_Thickness	0
Edges_Index	0
Empty_Index	0
Square_Index	0
Outside_X_Index	0
Edges_X_Index	0
Edges_Y_Index	0
Outside_Global_Index	0
Log0fAreas	0
Log_X_Index	0
Log_Y_Index	0
Orientation_Index	0
Luminosity_Index	0
SigmoidOfAreas	0
SteelType	0
Fault	0
dtype: int64	

In [11]:

sns.heatmap(data.isnull())

Out[11]:

<matplotlib.axes._subplots.AxesSubplot at 0x1c7febc12e8>

Boxplot을 통한 outlier

In [18]:

for k, v in data.items():

```
print(k)
X_Minimum
X_Maximum
Y_Minimum
Y_Maximum
Pixels_Areas
X_Perimeter
Y_Perimeter
Sum_of_Luminosity
Minimum_of_Luminosity
Maximum_of_Luminosity
Length_of_Conveyer
Steel_Plate_Thickness
Edges_Index
Empty_Index
Square_Index
Outside_X_Index
Edges_X_Index
Edges_Y_Index
Outside_Global_Index
Log0fAreas
Log_X_Index
Log_Y_Index
Orientation_Index
Luminosity_Index
SigmoidOfAreas
SteelType
Fault
In [24]:
f, ax = plt.subplots(3, 9, figsize = (25, 10))
```

```
f, ax = plt.subplots(3, 9 , figsize = (25,10))
idx = 0
for i in range(0,3):
    for j in range(0,9):
        sns.boxplot(data.iloc[:,idx], orient='v', ax = ax[i][j])
        idx += 1
plt.tight_layout(pad=0.4, w_pad=0.5, h_pad=5.0)
```


In [25]:

```
f,ax = plt.subplots(3, 9, figsize = (35,15))
k = 0
for i in range(0,3):
    for j in range(0,9):
        sns.distplot(data[data.columns[k]], ax = ax[i,j])
        k += 1
```


Check Correalation

In [31]:

```
f, ax = plt.subplots(1,1, figsize = (20,20))
sns.heatmap(data.corr().abs(), cmap = 'coolwarm', annot = True, ax = ax)
```

Out[31]:

<matplotlib.axes._subplots.AxesSubplot at 0x1c78743a0b8>

(X_Maximum, X_Minimum), (Y_Maximum, Y_Minimum), (Pixels_Areas, X_Perimeter, Y_Perimeter, Sum_of_Luminosity), (LogOfAreas, Log_X_Index, Log_Y_Index)에 다중공선성 의심, Fault와 상관계수가 가장 높은 하나씩의 변수를 제외하고 모두제거

In [32]:

data2 = data.drop(['X_Maximum', 'Y_Maximum', 'Pixels_Areas', 'X_Perimeter', 'Y_Perimeter', 'LogOfAre

In [33]:

```
f, ax = plt.subplots(1,1, figsize = (20,20))
sns.heatmap(data2.corr().abs(), cmap = 'coolwarm', annot = True, ax = ax)
```

Out[33]:

<matplotlib.axes._subplots.AxesSubplot at 0x1c785409940>

In [34]:

data2 = data2.drop(['Maximum_of_Luminosity', 'Outside_Global_Index', 'SigmoidOfAreas', 'Edges_X_Index

In [35]:

```
f, ax = plt.subplots(1,1, figsize = (20,20))
sns.heatmap(data2.corr().abs(), cmap = 'coolwarm', annot = True, ax = ax)
```

Out [35]:

<matplotlib.axes._subplots.AxesSubplot at 0x1c78536c668>

-제거된 데이터를 토대로 PCA 수행 및, PCA변수 추출

In [38]:

```
for_pca_data =x data[['Maximum_of_Luminosity', 'Outside_Global_Index', 'SigmoidOfAreas', 'Edges_X_Index']
```

In [41]:

```
from sklearn.preprocessing import StandardScaler
std = StandardScaler()
```

In [43]:

```
for_pca_data = pd.DataFrame(std.fit_transform(for_pca_data))
```

C:\undersignate C:\undersignat

return self.partial_fit(X, y)

C:WanacondaWlibWsite-packagesWsklearnWbase.py:464: DataConversionWarning: Data with input dtype int64, float64 were all converted to float64 by StandardScaler. return self.fit(X, **fit_params).transform(X)

In [52]:

```
from sklearn.decomposition import PCA
pca = PCA(n_components = 6)
pca.fit(for_pca_data)
```

Out [52]:

```
PCA(copy=True, iterated_power='auto', n_components=6, random_state=None, svd_solver='auto', tol=0.0, whiten=False)
```

In [54]:

```
pca.explained_variance_ratio_[0:6].sum()
```

Out [54]:

0.9304411604757159

In [59]:

In [60]:

```
data3 = pd.concat([data2, pca_components], axis = 1)
```

In [64]:

```
f, ax = plt.subplots(1,1, figsize = (15,15))
sns.heatmap(data3.corr().abs(), cmap = 'coolwarm', annot =True, ax= ax)
```

Out [64]:

<matplotlib.axes._subplots.AxesSubplot at 0x1c787251978>

In [66]:

In [67]:

```
f, ax = plt.subplots(1,1, figsize = (15,15))
sns.heatmap(data4.corr().abs(), cmap = 'coolwarm', annot =True, ax= ax)
```

Out [67]:

<matplotlib.axes._subplots.AxesSubplot at 0x1c788f883c8>

이제 공선성이 매우 강한 친구들은 보이지않는다.

② 전체 데이터를 Train, Validataion, Test 용도로 분할하고 시각화하시오. (각 비율: 50%, 30%, 20%)

In [71]:

```
X = data4.drop('Fault', axis = 1)
y = data4['Fault']
```

In [76]:

```
train_X.shape, train_Y.shape, test_X.shape, test_Y.shape
```

Out [76]:

```
((970, 14), (971, 14), (970,), (971,))
```

In [153]:

```
from sklearn.model_selection import train_test_split
train_X, test_X, train_Y, test_Y = train_test_split(X, y, test_size = 0.5, stratify = y)
valid_X, test_X, valid_Y, test_Y = train_test_split(test_X, test_Y, test_size= 0.4, stratify = test_
```

In [82]:

```
print(train_X.shape, valid_X.shape, test_X.shape)
```

```
(970, 14) (582, 14) (389, 14)
```

In [83]:

```
sns.barplot(x = ['train', 'valid', 'test'], y = [970, 582, 389])
```

Out[83]:

<matplotlib.axes._subplots.AxesSubplot at 0x1c786ba55f8>

In [85]:

```
f, ax = plt.subplots(1,3, figsize = (12, 3))
sns.countplot(train_Y, ax = ax[0])
sns.countplot(valid_Y, ax = ax[1])
sns.countplot(test_Y, ax = ax[2])
```

Out[85]:

<matplotlib.axes._subplots.AxesSubplot at 0x1c7892f8438>

③ 불량코드 1에 대하여, Logistic Regression을 활용하여 이항분류 모형을 생성하시오.

생성한 모형에 대한 최적의 Cut-Off Value를 선정 후, Confusion Matrix를 제시하시오. (반드시 시각화와 통계량을 포함시킬 것)

In [101]:

```
train_Y.replace([2,3,4,5,6,7], 0, inplace = True)
valid_Y.replace([2,3,4,5,6,7], 0, inplace = True)
test_Y.replace([2,3,4,5,6,7], 0, inplace = True)
```

In [102]:

```
from sklearn.linear_model import LogisticRegression
Ir = LogisticRegression()
Ir.fit(train_X, train_Y)
```

FutureWarning)

Out[102]:

```
LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True, intercept_scaling=1, max_iter=100, multi_class='warn', n_jobs=None, penalty='l2', random_state=None, solver='warn', tol=0.0001, verbose=0, warm_start=False)
```

In [118]:

from sklearn.metrics import accuracy_score, classification_report, confusion_matrix, roc_auc_score

In [112]:

```
y_pred = Ir.predict(valid_X)
print(accuracy_score(valid_Y, y_pred))
print(classification_report(valid_Y, y_pred))
```

0.9192439862542955

support	f1-score	recall	precision	
535 47	0.96 0.28	0.98 0.19	0.93 0.50	0
582	0.92	0.92	0.92	micro avg
582	0.62	0.59	0.72	macro avg
582	0.90	0.92	0.90	weighted avg

In [115]:

```
sns.heatmap(confusion_matrix(valid_Y, y_pred), annot = True, cmap = 'summer_r')
```

Out[115]:

<matplotlib.axes._subplots.AxesSubplot at 0x1c78b046400>

In [105]:

```
Ir.predict_proba(valid_X)
```

Out[105]:

In [106]:

```
sns.distplot(Ir.predict_proba(valid_X)[:,0])
```

Out[106]:

<matplotlib.axes._subplots.AxesSubplot at 0x1c78a5af898>

In [94]:

```
pred_proba = Ir.predict_proba(valid_X)[:,0]
```

In [122]:

```
ranges = np.arange(0.0, 1.0, 0.01)
accuracy_ls = []
auc_ls = []
for r in ranges:
    y_pred = np.where(pred_proba > r, 1, 0)
    accuracy_ls.append(accuracy_score(valid_Y, y_pred))
    auc_ls.append(roc_auc_score(valid_Y, y_pred))
```

In [123]:

```
print(max(accuracy_Is), accuracy_Is.index(max(accuracy_Is)), ranges[ accuracy_Is.index(max(accuracy_Is))
```

0.9243986254295533 56 0.56

In [125]:

```
print(max(auc_ls), auc_ls.index(max(auc_ls)), ranges[auc_ls.index(max(auc_ls))])
```

0.8695963412209186 11 0.11

In [126]:

```
y_pred = np.where(pred_proba > 0.56, 1, 0)
sns.heatmap(confusion_matrix(valid_Y, y_pred), annot = True, cmap = 'summer_r')
```

Out[126]:

<matplotlib.axes._subplots.AxesSubplot at 0x1c78b1c5a90>

In [127]:

```
y_pred = np.where(pred_proba > 0.11, 1, 0)
sns.heatmap(confusion_matrix(valid_Y, y_pred), annot = True, cmap = 'summer_r')
```

Out[127]:

<matplotlib.axes._subplots.AxesSubplot at 0x1c78b061630>

In [131]:

```
yhat = Ir.predict_proba(valid_X)
# retrieve just the probabilities for the positive class
pos_probs = yhat[:, 1]
```

In [133]:

```
from sklearn.metrics import roc_curve
plt.plot([0, 1], [0, 1], linestyle='--', label='No Skill')
# calculate roc curve for mode!
fpr, tpr, _ = roc_curve(valid_Y, pos_probs)
# plot mode! roc curve
plt.plot(fpr, tpr, marker='.', label='Logistic')
# axis labe!s
plt.xlabe!('False Positive Rate')
plt.ylabe!('True Positive Rate')
# show the legend
plt.legend()
# show the plot
plt.show()
```


In [148]:

```
y_pred = np.where(Ir.predict_proba(test_X)[:,1]>0.11, 1, 0)
print(accuracy_score(test_Y, y_pred), roc_auc_score(test_Y, y_pred))
```

0.8534704370179949 0.89171918767507

In [150]:

```
sns.heatmap(confusion_matrix(test_Y, y_pred), cmap = 'summer_r', annot= True)
```

Out[150]:

<matplotlib.axes._subplots.AxesSubplot at 0x1c78b8c4ac8>

④ Logistic Regression을 제외하고 SVM을 포함하여 3가지 다항 분류 모형을 만들어 Precision과 Sensitivity(TPR)를 제시하시오.

또한 모델향상과정과 최적화 과정을 통해 Confusion Matrix를 도출하시오.

In [154]:

```
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier
from sklearn.neighbors import KNeighborsClassifier
```

In [155]:

```
svc = SVC()
rf = RandomForestClassifier()
knn = KNeighborsClassifier()
```

In [157]:

```
rf.fit(train_X, train_Y)
print(classification_report(valid_Y, rf.predict(valid_X)))
print(accuracy_score(valid_Y, rf.predict(valid_X)))
```

	precision	recall	f1-score	support
1	0.62	0.43	0.51	47
2	0.88	0.88	0.88	57
3	0.95	0.97	0.96	118
4	0.91	0.91	0.91	22
5	1.00	0.75	0.86	16
6	0.66	0.71	0.68	120
7	0.70	0.72	0.71	202
micro avg	0.77	0.77	0.77	582
macro avg	0.82	0.77	0.79	582
weighted avg	0.77	0.77	0.77	582

0.7680412371134021

In [158]:

```
svc.fit(train_X, train_Y)
print(classification_report(valid_Y, svc.predict(valid_X)))
print(accuracy_score(valid_Y, svc.predict(valid_X)))
```

C:WanacondaWlibWsite-packagesWsklearnWsvmWbase.py:196: FutureWarning: The default value of gamma will change from 'auto' to 'scale' in version 0.22 to account better for unscaled features. Set gamma explicitly to 'auto' or 'scale' to avoid this warning.

"avoid this warning.", FutureWarning)

	precision	recall	f1-score	suppor t
1	0.75	0.13	0.22	47
2	0.83	0.79	0.81	57
3	0.99	0.87	0.93	118
4	0.91	0.91	0.91	22
5	0.86	0.75	0.80	16
6	0.80	0.39	0.53	120
7	0.56	0.90	0.69	202
micro avg	0.71	0.71	0.71	582
macro avg	0.81	0.68	0.70	582
weighted avg	0.76	0.71	0.69	582

0.711340206185567

In [160]:

```
knn.fit(train_X, train_Y)
print(classification_report(valid_Y, knn.predict(valid_X)))
print(accuracy_score(valid_Y, knn.predict(valid_X)))
```

	precision	recall	f1-score	suppor t
1	0.30	0.23	0.26	47
2	0.64	0.98	0.77	57
3	0.88	0.97	0.92	118
4	0.78	0.95	0.86	22
5	0.53	1.00	0.70	16
6	0.58	0.53	0.56	120
7	0.64	0.51	0.57	202
micro avg	0.66	0.66	0.66	582
macro avg	0.62	0.74	0.66	582
weighted avg	0.65	0.66	0.65	582

0.6615120274914089

default에 대해 가장 성능이 좋은 randomforetst에 대해서 gridsearch를 수행 하겠습니다.

In [163]:

```
from sklearn.model_selection import GridSearchCV
n_{estimators} = [100, 500, 1000]
max_depth = [5, 10]
min_samples_split = [5, 10]
param_grid = {'n_estimators':n_estimators, 'max_depth': max_depth, 'min_samples_split' :min_samples_
grid = GridSearchCV(rf, param_grid=param_grid, cv = 5, verbose = 1)
```

```
In [165]:
grid.fit(train_X, train_Y)
Fitting 5 folds for each of 12 candidates, totalling 60 fits
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
[Parallel(n_jobs=1)]: Done 60 out of 60 | elapsed: 2.4min finished
Out [165]:
GridSearchCV(cv=5, error_score='raise-deprecating',
       estimator=RandomForestClassifier(bootstrap=True, class_weight=None, criterion
='gini',
            max_depth=None, max_features='auto', max_leaf_nodes=None,
           min_impurity_decrease=0.0, min_impurity_split=None,
            min_samples_leaf=1, min_samples_split=2,
            min_weight_fraction_leaf=0.0, n_estimators=10, n_jobs=None,
            oob_score=False, random_state=None, verbose=0.
            warm_start=False),
       fit_params=None, iid='warn', n_jobs=None,
       param_grid={'n_estimators': [100, 500, 1000], 'max_depth': [5, 10], 'min_samp
les_split': [5, 10]},
       pre_dispatch='2*n_jobs', refit=True, return_train_score='warn',
       scoring=None, verbose=1)
```

In [166]:

grid.best_params_

Out[166]:

{'max_depth': 10, 'min_samples_split': 5, 'n_estimators': 1000}

In [167]:

```
y_pred = grid.best_estimator_.predict(valid_X)
print(classification_report(valid_Y, y_pred))
print(accuracy_score(valid_Y, y_pred))
```

	precision	recall	f1-score	support
1	0.79	0.32	0.45	47
2	0.91	0.89	0.90	57
3	0.98	0.96	0.97	118
4	0.91	0.91	0.91	22
5	1.00	0.88	0.93	16
6	0.72	0.59	0.65	120
7	0.66	0.84	0.74	202
micro avg	0.78	0.78	0.78	582
macro avg	0.85	0.77	0.79	582
weighted avg	0.79	0.78	0.77	582

0.7800687285223368

⑤ 상기 ③번과 ④번 4가지 모형 중 1가지를 선택하여 최적의 클러스터링 개수(단일집단~5개)를 제시하시 오.

또한 군집분석을 이용한 모형성능 향상 과정을 수행하여, 성능향상 전후의 F1 Score와 모형 평가 결과를 제시하시오.

In [171]:

```
from sklearn.cluster import KMeans
```

In [172]:

```
ranges = range(1,6)
```

In [182]:

```
for_scree = []
for r in ranges:
    km = KMeans(n_clusters=r)
    km.fit(X)
    for_scree.append(km.inertia_)
```

In [183]:

```
plt.plot(ranges, for_scree, 'bx-')
plt.xlabel('k')
plt.ylabel('Sum_of_squared_distances')
plt.title('Elbow Method For Optimal k')
plt.show()
```


In [187]:

```
km = KMeans(n_clusters=2)
km.fit(X)
```

Out[187]:

```
KMeans(algorithm='auto', copy_x=True, init='k-means++', max_iter=300, n_clusters=2, n_init=10, n_jobs=None, precompute_distances='auto', random_state=None, tol=0.0001, verbose=0)
```

In [194]:

```
X2 = pd.concat([X,pd.DataFrame(km.labels_, columns = ['clu1'])], axis = 1)
```

In [208]:

```
from sklearn.model_selection import train_test_split
train_X, test_X, train_Y, test_Y = train_test_split(X2, y, test_size = 0.5, stratify = y)
valid_X, test_X, valid_Y, test_Y = train_test_split(test_X, test_Y, test_size= 0.4, stratify = test_
```

In [209]:

```
from sklearn.model_selection import GridSearchCV
n_estimators = [100,500,1000]
max_depth = [5,10]
min_samples_split = [5,10]
param_grid = {'n_estimators':n_estimators, 'max_depth': max_depth, 'min_samples_split':min_samples_grid = GridSearchCV(rf, param_grid=param_grid, cv = 5, verbose = 1)
```

In [210]:

```
grid.fit(train_X, train_Y)
Fitting 5 folds for each of 12 candidates, totalling 60 fits
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
[Parallel(n_jobs=1)]: Done 60 out of 60 | elapsed: 1.3min finished
Out [210]:
GridSearchCV(cv=5, error_score='raise-deprecating',
      estimator=RandomForestClassifier(bootstrap=True, class_weight=None, criterion
='gini',
            max_depth=None, max_features='auto', max_leaf_nodes=None,
            min_impurity_decrease=0.0, min_impurity_split=None,
            min_samples_leaf=1, min_samples_split=2,
            min_weight_fraction_leaf=0.0, n_estimators=10, n_jobs=None,
            oob_score=False, random_state=None, verbose=0,
            warm_start=False),
       fit_params=None, iid='warn', n_jobs=None,
       param_grid={'n_estimators': [100, 500, 1000], 'max_depth': [5, 10], 'min_samp
les_split': [5, 10]},
       pre_dispatch='2*n_jobs', refit=True, return_train_score='warn',
       scoring=None, verbose=1)
```

In [211]:

```
y_pred = grid.best_estimator_.predict(valid_X)
print(classification_report(valid_Y, y_pred))
print(accuracy_score(valid_Y, y_pred))
```

	precision	recall	f1-score	suppor t
1	0.81	0.47	0.59	47
2	0.88	0.91	0.90	57
3	0.97	0.95	0.96	118
4	1.00	0.91	0.95	22
5	1.00	0.62	0.77	16
6	0.72	0.65	0.68	120
7	0.66	0.79	0.72	202
micro avg	0.78	0.78	0.78	582
macro avg	0.86	0.76	0.80	582
weighted avg	0.79	0.78	0.78	582

0.7783505154639175

In [212]:

```
y_pred = grid.best_estimator_.predict(test_X)
print(classification_report(test_Y, y_pred))
print(accuracy_score(test_Y, y_pred))
```

	precision	recall	f1-score	support
1	0.72	0.41	0.52	32
2	0.91	0.79	0.85	38
3	0.97	0.92	0.95	78
4	1.00	0.86	0.92	14
5	1.00	0.73	0.84	11
6	0.72	0.70	0.71	81
7	0.68	0.83	0.75	135
micro avg	0.78	0.78	0.78	389
macro avg	0.86	0.75	0.79	389
weighted avg	0.79	0.78	0.78	389

0.781491002570694

In [213]:

```
sns.heatmap(confusion_matrix(test_Y, y_pred), annot = True, cmap = 'summer_r')
```

Out [213]:

<matplotlib.axes._subplots.AxesSubplot at 0x1c78b807400>

