南京大学大学数学试卷 答案

考试时间 _2018.7.3____ 任课教师_ 考试成绩

一、 简答题(每小题7分,共4题,计28分)

- 1. 设行列式 $D = \begin{bmatrix} 3 & 0 & 4 & 0 \\ 2 & 2 & 2 & 2 \\ 0 & -7 & 0 & 0 \\ 1 & 2 & 2 & 2 \\ 0 & -7 & 0 & 0 \\ 0 & 2 & 2 & 2 \\ 0 & -7 & 0 & 0 \\ 0 & 2 & 2 & 2 \\ 0 & -7 & 0 & 0 \\ 0 & 2 & 2 & 2 \\ 0 & -7 & 0 & 0 \\ 0 & 2 & 2 & 2 \\ 0 & 2 &$
- 解: (1) $M_{41} + M_{42} + M_{43} + M_{44} = -A_{41} + A_{42} A_{43} + A_{44} = \begin{vmatrix} 3 & 0 & 1 & 0 \\ 2 & 2 & 2 & 2 \\ 0 & -7 & 0 & 0 \\ -1 & 1 & -1 & 1 \end{vmatrix} = -28.$

或者
$$M_{41} = -56, M_{42} = 0, M_{43} = 42, M_{44} = -14, M_{41} + M_{42} + M_{43}$$

$$(2) A_{41} + A_{42} + A_{43} + A_{44} = \begin{vmatrix} 3 & 0 & 4 & 0 \\ 2 & 2 & 2 & 2 \\ 0 & -7 & 0 & 0 \\ 1 & 1 & 1 & 1 \end{vmatrix} = 0.$$

- 2. 已知 $\begin{pmatrix} 1 & 1 & -6 & 10 \\ 2 & 5 & k & -1 \\ 1 & 2 & -1 & k \end{pmatrix}$ 的秩为2,求 k 的值.
- 解: 由 $\begin{pmatrix} 1 & 1 & -6 & 10 \\ 2 & 5 & k & -1 \\ 1 & 2 & -1 & k \end{pmatrix}$ \rightarrow $\begin{pmatrix} 1 & 1 & -6 & 10 \\ 0 & 3 & k+12 & -21 \\ 0 & 1 & 5 & k-10 \end{pmatrix}$ \rightarrow $\begin{pmatrix} 1 & 1 & -6 & 10 \\ 0 & 0 & k-3 & -3(k-3) \\ 0 & 1 & 5 & k-10 \end{pmatrix}$
- 3. 设矩阵 A 的各行元素之和都等于2, 求 A 的一个特征值及其对应的一个特征向量,
- 解:将 $|\lambda E A|$ 中的各列元素均加到第一列,由 A 的各行元素之和为2 知 $|\lambda E A|$ 第一列中必有因子 $(\lambda 2)$, 可以提到行列式记号的外面,因此2是矩阵 A 的一个特征值. 又因为 $A(1,1,\dots,1)^{\mathrm{T}}=2(1,1,\dots,1)^{\mathrm{T}}$, 故 $(1,1,\dots,1)^{\mathrm{T}}$ 是从属于特征值2的一个特征向量.
- 4. 设 $V \in \mathbb{R}$ 维向量空间,设 W_1 和 $W_2 \in V$ 的两个不同的 n-1 维子空间,证明: $\dim(W_1 \cap W_2) = n-2$. 证明:因为 $W_1 \neq W_2$,所以 $W_1 + W_2$ 是真包含 W_1 的子空间,故只能是 $W_1 + W_2 = V$. 再由维数公式就得 $\dim(W_1 \cap W_2) = \dim W_1 + \dim W_2 - \dim(W_1 + W_2) = (n-1) + (n-1) - n = n-2$.
- 2E=0,求 X.
- 解:用 A^{-1} 右乘 $A^{-1}XA + XA + 2E = 0$ 两边得: $A^{-1}X + X + 2A^{-1} = 0$. 所以 $A^{-1}X + X = (A^{-1} + E)X = -2A^{-1}$.

又,行列式 $|A|^{3-1}=|A^*|=1$,故 $|A|=\pm 1$,从而 $A^{-1}=\pm A^*$. 但是 $A^{-1}=-A^*$ 时,

$$A^{-1} + E = \begin{pmatrix} 0 & 0 & 0 \\ -1 & 0 & 0 \\ -1 & -1 & 0 \end{pmatrix}$$
 不可逆,不符合题设,所以只能是 $A^{-1} = A^*$,那么

$$A^{-1} + E = \begin{pmatrix} 0 & 0 & 0 \\ -1 & 0 & 0 \\ -1 & -1 & 0 \end{pmatrix}$$
 不可逆,不符合题设,所以只能是 $A^{-1} = A^*$,那么
$$A^{-1} + E = \begin{pmatrix} 2 & 0 & 0 \\ 1 & 2 & 0 \\ 1 & 1 & 2 \end{pmatrix}, -2A^{-1} = \begin{pmatrix} -2 & 0 & 0 \\ -2 & -2 & 0 \\ -2 & -2 & -2 \end{pmatrix}, (A^{-1} + E)^{-1} = \begin{pmatrix} \frac{1}{2} & 0 & 0 \\ -\frac{1}{4} & \frac{1}{4} & 0 \\ -\frac{1}{8} & -\frac{1}{4} & \frac{1}{2} \end{pmatrix},$$

所以
$$X = -2(A^{-1} + E)^{-1}A^{-1} = \begin{pmatrix} -1 & 0 & 0 \\ -\frac{1}{2} & -1 & 0 \\ -\frac{1}{4} & -\frac{1}{2} & -1 \end{pmatrix}$$
.

三. (本题12分) 设 A 为 m 阶实对称矩阵且正定,B 为 $m \times n$ 实矩阵,试证明: $B^{T}AB$ 为正定矩阵的充分必要条件 是 B 的秩 $\mathbf{r}(B) = n$.

证明:必要性:因为 $B^{\mathrm{T}}AB$ 为正定矩阵,所以对任意n维实向量 $x \neq 0$,有 $x^{\mathrm{T}}(B^{\mathrm{T}}AB)x = (Bx)^{\mathrm{T}}A(Bx) > 0$, 由于矩阵 A 为正定矩阵, 故 $Bx \neq 0$, 即齐次线性方程组 Bx = 0 只有零解, 因此 $\mathbf{r}(B) = n$. 充分性: 因为 $A^{T} = A$, 得 $(B^{T}AB)^{T} = B^{T}AB$, 故 $B^{T}AB$ 为实对称矩阵, 因为 r(B) = n, 所以 Bx = 0 只有零解,于是对任意 n 维实向量 $x \neq 0$,都有 $Bx \neq 0$, 又因为 A 为正定矩阵, 故 $(Bx)^T A(Bx) = x^T (B^T AB) x > 0$, 根据定义知: $B^T AB$ 是正定矩阵.

- 四. (本题12分) 若实对称矩阵 A 满足关系式 (A-E)(A-2E)=O,A 是否正定?
- 解: 展开关系式得: $A^2 3A + 2E = O$. 设 $\lambda \in A$ 的特征值, ξ 为属于 λ 的特征向量, 则有 $(A^2-3A+2E)\xi=(\lambda^2-3\lambda+2)\xi=0$,得 $\lambda^2-3\lambda+2=(\lambda-1)(\lambda-2)=0$, 故 A 的特征值是1或是2,均大于零,所有矩阵 A 正定.

五. (本题12分) 设3阶实对称矩阵 A 的特征值是 $\lambda_1=8,\lambda_2=\lambda_3=2$, 矩阵 A 属于特征值 λ_1 的特征向量 $\xi_1 = (1, k, 1)^{\mathrm{T}}$,属于特征值 $\lambda_2 = \lambda_3$ 的一个特征向量 $\xi_2 = (-1, 1, 0)^{\mathrm{T}}$,(1) 求参数 k 及 A 的属于特征值 $\lambda_2 = \lambda_3$ 的 另一个特征向量; (2) 求矩阵 A.

解: (1) 因为 A 是实对称矩阵,则 A 的属于不同特征值的特征向量必正交, 所以 $\xi_1^{\mathrm{T}}\xi_2 = 0$ 即 -1 + k + 0 = 0,所以 k = 1,故 $\xi_1 = (1, 1, 1)^{\mathrm{T}}$. 设矩阵 A 的属于特征值 $\lambda_2 = \lambda_3 = 2$ 的另一个特征向量 $\xi_3 = (x_1, x_2, x_3)^{\mathrm{T}}$,故有 $\xi_1^{\mathrm{T}} \xi_3 = 0$,为使属于同一个特征值 $\lambda_2 = \lambda_3$ 的2个特征向量正交,则设 $\xi_2^{\mathrm{T}} \xi_3 = 0$, 于是有齐次线性方程组 $\begin{cases} x_1+x_2+x_3=0 \\ -x_1+x_2=0 \end{cases}$,解得方程组的基础解系为 $(1,1,-2)^{\mathrm{T}}$. 故矩阵 A 的属于 $\lambda_2=\lambda_3=2$ 的另一个特征向量 $\xi_3=(1,1,-2)^{\mathrm{T}}$.

(注:此处的 ξ_3 并不唯一,我们只是给出了求 ξ_3 的其中一种方法,但是第(2)小题中所要求的A矩阵是唯一确定

$$\begin{array}{l} \text{ (2)} \Leftrightarrow P = \begin{pmatrix} 1 & -1 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & -2 \end{pmatrix}, \quad \text{则} \ P^{-1} = \begin{pmatrix} 1/3 & 1/3 & 1/3 \\ -1/2 & 1/2 & 0 \\ 1/6 & 1/6 & -1/3 \end{pmatrix}, \quad \text{且} \ P^{-1}AP = \begin{pmatrix} 8 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}, \\ \text{所以} \ A = P \begin{pmatrix} 8 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} P^{-1} = \begin{pmatrix} 4 & 2 & 2 \\ 2 & 4 & 2 \\ 2 & 2 & 4 \end{pmatrix}. \end{array}$$

六. (本题12分) 设 $V = \mathbb{R}^3, \varepsilon_1 = (1,0,0)^{\mathrm{T}}, \varepsilon_2 = (0,1,0)^{\mathrm{T}}, \varepsilon_3 = (0,0,1)^{\mathrm{T}}, \alpha_1 = (1,0,0)^{\mathrm{T}}, \alpha_2 = (1,1,0)^{\mathrm{T}}, \alpha_3 = (1,0,0)^{\mathrm{T}}, \alpha_3 = (1,0,0)^{\mathrm{T}}, \alpha_4 = (1,0,0)^{\mathrm{T}}, \alpha_5 = (1,0,0)^{\mathrm{T}}, \alpha_6 = (1,0,0)^{\mathrm$ $(1,1,1)^{\mathrm{T}}$,(1) 求从基底 $(\epsilon_1,\epsilon_2,\epsilon_3)$ 到 $(\alpha_1,\alpha_2,\alpha_3)$ 的过渡矩阵;(2) 求向量 $\alpha=(a_1,a_2,a_3)^{\mathrm{T}}$ 在基底 $(\alpha_1,\alpha_2,\alpha_3)$ 之 下的坐标;(3) 求在两基底之下有相同坐标的向量.

解: (1)
$$((\alpha_1, \alpha_2, \alpha_3) = (\varepsilon_1, \varepsilon_2, \varepsilon_3)P$$
, 故 $P = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$.

(2) α 在基 $\alpha_1, \alpha_2, \alpha_3$ 下的坐标为: $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = P^{-1} \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$.

(3) 令 $\begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$, 解得 $\alpha = k \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $k \in \mathbb{R}$.

七. (本题12分) 设 A 是 n 阶矩阵, $\alpha_1,\alpha_2,\cdots,\alpha_n$ 是 n 维非零列向量,若 $A\alpha_1=\alpha_2,A\alpha_2=\alpha_3,\cdots,A\alpha_{n-1}=$ $\alpha_n, A\alpha_n = 0$,(1) 证明: $\alpha_1, \alpha_2, \dots, \alpha_n$ 线性无关; (2) 求 A 的特征值与特征向量.

解: (1) 由己知条件 $A\alpha_1 = \alpha_2, A^2\alpha_1 = A \cdot A\alpha_1 = A\alpha_2 = \alpha_3, \dots, A^{n-1}\alpha_1 = \alpha_n, A^n\alpha_1 = A \cdot A^{n-1}\alpha_1 = A\alpha_n = 0$, 设 $k_1\alpha_1 + k_2\alpha_2 + \dots + k_n\alpha_n = 0$,即 $k_1\alpha_1 + k_2A\alpha_1 + \dots + k_nA^{n-1}\alpha_1 = 0$ (*)式两边左乘 A^{n-1} 得: $k_1A^{n-1}\alpha_1 + k_2A^n\alpha_1 + k_3A^{n+1}\alpha_1 + \dots + k_nA^{2n-2}\alpha_1 = 0$. 因为: $A^n\alpha_1=0$,所以由上式得: $k_1A^{n-1}\alpha_1=k_1\alpha_n=0$,因为 $\alpha_n\neq 0$,所以由上式得: $k_1=0$.

类似的,依次用 A^{n-2},A^{n-3},\cdots 左乘(*)两边可推得: $k_1=k_2=\cdots=k_n=0$,故 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 线性无关. (2) 对 $A\alpha_1=\alpha_2,A\alpha_2=\alpha_3,\cdots,A\alpha_{n-1}=\alpha_n,A\alpha_n=0$ 用分块矩阵表示有

$$A(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}) = (\alpha_{2}, \alpha_{3}, \cdots, \alpha_{n}, 0) = (\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}) \begin{pmatrix} 0 \\ 1 & 0 \\ & & \ddots & \ddots \\ & & & 1 & 0 \end{pmatrix} = PB,$$

由(1)知 $P=(\alpha_1,\alpha_2,\cdots,\alpha_n)$ 是 n 阶可逆矩阵, 故 $A\sim B$,

所以矩阵 A 和矩阵 B 的特征值相同.

 $|\lambda E - B| = \lambda^n = 0$,故矩阵 B 的特征值为 $\lambda = 0$ (n重),所以 $\lambda = 0$ 是 A 的 n 重特征值.

由 r(A) = r(B) = n - 1 知齐次线性方程组 Ax = 0 的基础解系只含一个解向量.

因为 $A\alpha_n=0, \alpha_n\neq 0$,所以 α_n 是方程组 Ax=0 的基础解系,故矩阵 A 的特征向量是 $k\alpha_n(k\neq 0)$.