Respuestas correctas

Ejercicio	1.1	1.2	2	3	4	5.1	5.2	6.1	6.2	7	8.1	8.2
Versión 1	D	Е	В	A	Е	F	A	F	В	С	Е	D
Versión 2	С	В	Е	F	В	A	F	A	Е	D	В	C

Soluciones

Ejercicio 1

1. Se dispondrán de forma alternada en cualquiera de los dos siguientes casos:

Para contar los casos favorables basta con permutar las H y las M entre ellas. El total de formas posibles de hacerlo es en cada caso $3! \cdot 3!$. Luego la probabilidad es $2 \cdot 3! \cdot 3!/6! = 1/10$.

2. El primero de la fila puede ser hombre o mujer, y ambos casos con igual probabilidad. Luego la probabilidad condicional buscada es 1/2.

Ejercicio 2

Llamemos R_+ al evento "la prueba resulta positiva", E y NE a los eventos "tiene la enfermedad" y "no tiene la enfermedad" respectivamente.

Por la fórmula de Bayes tenemos

$$P(E|R_{+}) = \frac{P(R_{+}|E)P(E)}{P(R_{+}|E)P(E) + P(R_{+}|NE)P(NE)}$$
$$= \frac{(0.99)(0.0005)}{(0.99)(0.0005) + (0.03)(1 - 0.0005)} = 0.0162$$

La probabilidad está entre 1 % y 2 %.

Ejercicio 3

La fda de Z está dada por

$$P(Z \le z) = P(X \le z, Y \le z) = z^2 \quad 0 < z < 1.$$

Luego la densidad de Z es p(z) = 2z para 0 < z < 1.

La esperanza de Z es

$$E(Z) = \int_0^1 2z^2 dz = \frac{2}{3},$$

y

$$E(Z^2) = \int_0^1 2z^3 dz = \frac{1}{2}.$$

Luego la varianza de Z es $Var(Z) = \frac{1}{2} - \frac{4}{9} = \frac{1}{18}$.

Ejercicio 4

La esperanza de S es $E(S) = 16 \cdot 50 = 800$ y la varianza es $Var(S) = 16 \cdot 9 = 144$. Luego, de la desigualdad de Chebyshev resulta

$$P(764 < S < 836) = P(-36 < S - 800 < 36) = 1 - P(|S - 800| \ge 36)$$
$$\ge 1 - \frac{\text{Var}(S)}{36^2} = 1 - (12/36)^2 = 8/9 = 0.89$$

Ejercicio 5

1. La función de verosimilitud es

$$L(\theta) = \prod_{i=1}^n \frac{1}{\theta^2} X_i e^{-X_i/\theta} = \frac{1}{\theta^{2n}} \left(\prod_{i=1}^n X_i \right) e^{-\frac{1}{\theta} \sum_{i=1}^n X_i}.$$

Tomando logaritmos

$$\ell(\theta) = -2n\ln(\theta) - \frac{1}{\theta} \sum_{i=1}^{n} X_i + \text{cte.}$$

Derivando respecto de θ resulta

$$\ell'(\theta) = -\frac{2n}{\theta} + \frac{1}{\theta^2} \sum_{i=1}^n X_i.$$

Al igualar a cero se obtiene $\hat{\theta} = \frac{1}{2}\bar{X}$.

2. La esperanza de $\hat{\theta}$ es igual a la esperanza de X sobre 2. Basta calcular entonces E(X):

$$E(X) = \int_0^\infty \frac{1}{\theta^2} x^2 e^{-x/\theta} dx = \left[-\frac{1}{\theta} e^{-x/\theta} (2\theta^2 + 2\theta x + x^2) \right]_0^\infty$$

= $2\theta - 0 = 2\theta$.

Luego el sesgo de $\hat{\theta} = 0$.

Ejercicio 6

1. El valor de c está dado por la condición

$$P_{H_0}(\bar{X} > c) = 0.05$$

Resolviendo

$$P_{H_0}(\bar{X} \ge c) = P_{H_0}\left(\frac{\bar{X} - 50}{6/\sqrt{n}} \ge \frac{c - 50}{6/\sqrt{n}}\right)$$
$$= 1 - \Phi\left(\frac{c - 50}{6/\sqrt{n}}\right) = 0.05$$

De la tabla deducimos que $\frac{c-50}{6/\sqrt{n}} = 1.645$, de donde $c = 50 + \frac{9.87}{\sqrt{n}}$.

2. La potencia es por definición

$$P_{H_A}(\bar{X} \ge c) = P_{H_A}\left(\frac{\bar{X} - 55}{6/\sqrt{n}} \ge \frac{c - 55}{6/\sqrt{n}}\right)$$

= $1 - \Phi\left(\frac{c - 55}{6/\sqrt{n}}\right) = 0.8$

De aquí deducimos que

$$\frac{c - 55}{6/\sqrt{n}} = -0.8416$$

es decir

$$\frac{-5 + \frac{9.87}{\sqrt{n}}}{6/\sqrt{n}} = -0.8416$$
$$-5 + \frac{9.87}{\sqrt{n}} = -\frac{5.0496}{\sqrt{n}}$$
$$\sqrt{n} = 14.9196/5 = 2.98392$$

De donde n = 9.

Ejercicio 7

Llamemos X al número de caras en 5 lanzamientos de la moneda. Como es un test a una sola cola, el p-valor es

$$P_{H_0}(X \ge X_{obs}) = P_{H_0}(X \ge 3) = 0.132 + 0.028 + 0.002 = 0.162$$

Ejercicio 8

1. Calculamos primero el valor del estadístico de Pearson Q_P :

Luego

$$(Q_P)_{\text{obs}} = \frac{(5-0)^2}{5} + \frac{(10-8)^2}{10} + \frac{(35-42)^2}{35} = 6.8$$

El valor crítico se obtiene de la tabla para k-1=2 grados de libertad y $\alpha=0.05$ es 5.99. Como $(Q_P)_{\rm obs}>5.99$ rechazamos H_0 .

2. De la tabla vemos que 0.025 .