CS1800 Homework 2 Solutions

Problem 1: English to Logic

Given:

- a: The alarm is ringing
- b: The battery is low
- c: The system is on
- i. The alarm is ringing and the system is on

 $a \wedge c$

ii. The alarm is not ringing but the system is on

 $\neg a \wedge c$

iii. The system is not on and the alarm is not ringing

 $\neg c \wedge \neg a$

iv. There is no way that the alarm is ringing

 $\neg a$

v. The alarm is ringing or the battery is low

 $a \vee b$

vi. Despite the fact that the alarm is ringing, the battery is low

 $a \wedge b$

Problem 2: Arithmetic & Logic

i.
$$(7 \ge 7) \land (8 < 5)$$

 $7 \ge 7$ is True

8 < 5 is False

 $\mathrm{True} \wedge \mathrm{False} = \mathrm{False}$

False

ii.
$$(7 \ge 7) \lor (8 < 5)$$

 $7 \ge 7$ is True

8 < 5 is False

 $\mathsf{True} \vee \mathsf{False} = \mathsf{True}$

True

iii.
$$(6 = 3 + 3) \land (10 < 1)$$

6 = 3 + 3 is True

10 < 1 is False

 $True \wedge False = False$

False

iv.
$$\neg (9 = 8)$$

$$9 = 8$$
 is False

$$\neg False = True$$

True

$$\mathbf{v}. \ \neg ((6 = 3 + 3) \lor (10 < 1))$$

6 = 3 + 3 is True

10 < 1 is False

 $\mathsf{True} \vee \mathsf{False} = \mathsf{True}$

 $\neg \text{True} = \text{False}$

False

Problem 3: Tarski World Predicates & Quantifiers

i. $star(c) \land \neg shade(c)$

"c is a star and c is not shaded."

False

ii. $\exists x (\mathbf{circ}(x) \land \mathbf{shade}(x))$

"There exists an x such that x is a circle and x is shaded."

True

iii. $\forall x(\mathbf{square}(x) \to \neg \mathbf{shade}(x))$

"For all x, if x is a square, then x is not shaded."

True

iv. $\forall x \forall y (\mathbf{star}(x) \land \neg \mathbf{shade}(x) \land \mathbf{next} \ \mathbf{to}(x,y)) \rightarrow (\mathbf{shade}(y) \land \mathbf{circ}(y))$

"For all x and y, if x is a star and not shaded, and x is next to y, then y is shaded and is a circle."

False

v. $\exists x \forall y (\mathbf{next} \ \mathbf{to}(x,y))$

"There exists an x such that for all y, x is next to y."

False

vi. $\forall y \exists x (\mathbf{shade}(x) \land \mathbf{next} \ \mathbf{to}(x,y))$

"For all y, there exists an x such that x is shaded and x is next to y."

True

Name: Sean Balbale HW Group: None

Problem 4: Converse, Inverse, Contrapositive

Given the statement:

$$\forall x(\neg \operatorname{shade}(x) \to \operatorname{circle}(x))$$

i. True or False?

The statement is **True**.

ii. Contrapositive:

$$\forall x (\neg \text{circle}(x) \to \text{shade}(x))$$

The contrapositive is **True**.

iii. Converse:

$$\forall x (\operatorname{circle}(x) \to \neg \operatorname{shade}(x))$$

The converse is **False**.

iv. Inverse:

$$\forall x (\operatorname{shade}(x) \to \neg \operatorname{circle}(x))$$

The inverse is **False**.

v. True conditional statement whose converse is False:

"If an object is a rectangle, then it is not shaded." The converse is False if there is an unshaded circle.

vi. True conditional statement whose contrapositive is False:

This situation is not possible. If the conditional is True, the contrapositive must also be True.

Problem 5: Vending Machine

Given:

- \bullet E: The machine is empty.
- \bullet S: The user made a selection.
- \bullet P: The user paid a quarter.
- \bullet V: The machine will vend a soda.
- ullet R: The machine will return the quarter.
- i. Truth Table for V and R:

$\mid E \mid$	S	P	V	R
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	1	1	1	0
1	0	0	0	0
1	0	1	0	1
1	1	0	0	0
1	1	1	0	1

ii. Expression for V:

$$V = \neg E \wedge S \wedge P$$

iii. Expression for R:

$$R = E \wedge P$$

Problem 6: English to Logic (Part 2)

Given:

- \bullet h: They have hamsters.
- w: They have whales.
- d: They have dinosaurs.
- i. The zoo doesn't have any hamsters or whales, but it does have dinosaurs.

$$\neg h \land \neg w \land d$$

ii. The zoo has at least two of the three groups of animals.

$$(h \wedge w) \vee (h \wedge d) \vee (w \wedge d)$$

iii. The zoo has exactly two of the three groups of animals.

$$(h \land w \land \neg d) \lor (h \land d \land \neg w) \lor (w \land d \land \neg h)$$

iv. The zoo has, at most, one of these groups of animals.

$$(\neg h \land \neg w \land d) \lor (\neg h \land w \land \neg d) \lor (h \land \neg w \land \neg d)$$