MATH 242 – Advanced Linear Algebra

Reza Rezvan

rezvan@school.com *April 27, 2025*

Due: April 30, 2025

Prof. Johnson

MATH 242 Rezvan

Part (a): Problem 1

Vector Spaces and Subspaces

Let V be a vector space over a field F. Prove the following properties:

- 1) The zero vector 0_V is unique.
- 2) For each $v \in V$, the additive inverse -v is unique.
- 3) If $a \in F$ and $a \cdot v = 0_V$ for some $v \in V$, then either a = 0 or $v = 0_V$.

1. Uniqueness of the zero vector:

Theorem 1 Uniqueness of Zero Vector. In any vector space V, the zero vector 0_V is unique.

Suppose there exist two zero vectors, 0_V and $0_V'$. By definition of a zero vector: $0_V + 0_V' = 0_V'$ (since 0_V is a zero vector) $0_V + 0_V' = 0_V$ (since $0_V'$ is a zero vector)

Therefore, $0_V = 0_V'$, proving that the zero vector is unique.

2. Uniqueness of the additive inverse:

Lemma 1 Uniqueness of Additive Inverse. For each vector v in a vector space V, the additive inverse -v is unique.

Suppose $v \in V$ has two additive inverses, w and w'. Then: $v + w = 0_V$ and $v + w' = 0_V$

Adding w to both sides of the second equation:

$$w + (v + w') = w + 0_V (w + v) + w' = w 0_V + w' = w w' = w$$

Therefore, the additive inverse is unique.

MATH 242 Rezvan

Part (b): Problem 2

Comparison of Different Vector Space Properties

Compare and contrast the following vector spaces.

Definition 1 Real Vector Spaces. A vector space over the field of real numbers \mathbb{R} .

Properties:

- Contains real-valued vectors
- Operations: addition and scalar multiplication by real numbers
- Examples: \mathbb{R}^n , continuous functions on an interval

Definition 2 Complex Vector Spaces. A vector space over the field of complex numbers \mathbb{C} .

Properties:

- Contains complex-valued vectors
- Operations: addition and scalar multiplication by complex numbers
- Examples: \mathbb{C}^n , analytic functions

MATH 242 Rezvan

Part (c): Problem 3

Linear Transformations

Explore the properties of linear transformations between vector spaces.

Theorem 2 Rank-Nullity Theorem. Let $T:V\to W$ be a linear transformation between finite-dimensional vector spaces. Then:

 $\dim(\ker(T)) + \dim(T)) = \dim(V)$

Let $K = \ker(T)$ and let $\{v_1, v_2, ..., v_k\}$ be a basis for K.

Extend this to a basis $\{v_1,...,v_k,v_{k+1},...,v_n\}$ for V.

We claim that $\{T(v_{k+1}), ..., T(v_n)\}$ is a basis for im(T).

For linear independence, suppose $\sum_{i=k+1}^n a_i T(v_i) = 0$. Then $T\left(\sum_{i=k+1}^n a_i v_i\right) = 0$, which means $\sum_{i=k+1}^n a_i v_i in K$.

This implies $\sum_{i=k+1}^{n} a_i v_i = \sum_{j=1}^{k} b_j v_j$ for some scalars b_j .

By the linear independence of the basis of V, all coefficients must be zero. So $\{T(v_{k+1}),...,T(v_n)\}$ is linearly independent.

For spanning, any $w \in \operatorname{im}(T)$ can be written as w = T(v) for some $v \in V$. We can write $v = \sum_{i=1}^n c_i v_i$. Since $T(v_1) = \dots = T(v_k) = 0$, we have $w = \sum_{i=k+1}^n c_i T(v_i)$.

Thus, $\dim(\operatorname{im}(T)) = n - k = \dim(V) - \dim(\ker(T))$.

Corollary 1 Injective Case. If T is injective, then $ker(T) = \{0\}$, so dim(im(T)) = dim(V).

This means T preserves dimension.

Corollary 2 Surjective Case. If T is surjective, then $\operatorname{im}(T) = W$, so $\operatorname{dim}(\ker(T)) = \operatorname{dim}(V) - \operatorname{dim}(W)$. If $\operatorname{dim}(V) < \operatorname{dim}(W)$, then T cannot be surjective.