Versuch 702

Aktivierung mit Neutronen

Sebastian Pape Jonah Nitschke sepa@gmx.de lejonah@web.de

> Durchführung: 18.07.2017 Abgabe: 25.07.2017

1 Auswertung

Bei der Nullmessung wurde ein Zeitintervall von $\Delta t = 900$ gewählt und es wurden zwei Messungen durchgeführt, deren Mittelwert für weitere Berechnungen verwendet wurde:

$$N_1 = 218$$

$$N_2 = 224$$

$$\bar{N} = 221$$

$$\sigma_{\rm Nullmessung} = 14.87$$

Bei allen Messungen wird eine lineare Regression in der folgenden Form verwendet, um die Zerfallskonstante zu bestimmen:

$$f(x) = A \cdot x + B \tag{1}$$

1.1 Halbwertszeit von Indium

Bei der Messung von Indium wurde ein Zeitintervall von $\Delta t = 240\,\mathrm{s}$ und ein Messzeitraum von $t_{\mathrm{ges}} = 3600\,\mathrm{s}$ gewählt. Die gemessenen Zerfälle sind in Tabelle 2 eingetragen und grafisch in Abbildung 1 dargestellt.

Tabelle 1: Gemessene Zerfälle bei Indium.

$\Delta t in s$	Anz.Zerfaelle	$\Delta t in \mathrm{s}$	Anz.Zerfaelle
240	2995	480	2485
720	2465	960	2346
1200	2345	1440	2268
1680	2076	1920	1943
2160	1894	2400	1827
2640	1686	2880	1555
3120	1525	3360	1512
3600	1417		

Mithilfe einer linearen Regression der Form (1) gemäß Formel ?? werden dabei die Zeitkonstante λ und $N_{0,\mathrm{Indium}}$ bestimmt:

$$A = \lambda_{\text{Indium}} = (0.0002 \pm 9 \cdot 10^{-6}) \frac{1}{\text{s}}$$
$$B = N_{0,\text{Indium}} = (7.96 \pm 0.02)$$

Abbildung 1: logarythmische Darstellung der gemessenen Zerfälle bei Indium.

Mit der Formel ?? kann aus der bestimmten Zeitkonstante nun die Halbwertzeit von Indium bestimmt werden, für die sich der folgende Wert ergibt:

$$T_{\text{Indium}} = (3278 \pm 141) \,\text{s}$$

1.2 Halbwertzeit von Rhodium

Bei der Messung mit Rh $^{103}_{45}$ wurde ein Zeitintervall von $\Delta t=12\,\mathrm{s}$ und ein Messzeitraum von $t_{\mathrm{ges}}=720\,\mathrm{s}$ gewählt. Die gemessenen Zerfälle sind in Tabelle 2 eingetragen sowie grafisch in Abbildung 2 dargestellt.

Tabelle 2: Gemessene	Zerfälle bei	Indium.
----------------------	--------------	---------

$\Delta t in \mathrm{s}$	Anz.Zerfaelle	$\Delta t in \mathrm{s}$	Anz.Zerfaelle	$\Delta t in \mathrm{s}$	Anz.Zerfaelle
15	630	30	517	45	445
60	330	75	265	90	212
105	192	120	176	135	152
150	116	165	99	180	98
195	92	210	64	225	55
240	60	255	55	270	61
285	51	300	51	315	33
330	40	345	48	360	28
375	32	390	35	405	33
420	25	435	22	450	29
465	18	480	27	495	22
510	22	525	25	540	25
555	22	570	20	585	22
600	13	615	24	630	23
645	12	660	21	675	19
690	18	705	15	720	14

Um die Halbwertzeiten der zwei verschiedenen Isotope Rh^{104} sowie Rh^{104i} zu bestimmen, die bei dem Zerfall von Rh^{103}_{45} entstehen, werden für die Unterteilung die Messzeiten $t^*=355\,\mathrm{s}$ und $t_{max}=80\,\mathrm{s}$ gewählt.

Mithilfe einer linearen Regression gemäß Formel (1) können dann mithilfe der Werte für $t < t_{max}$ (Abbildung 3) zuerst die beiden Parameter für Rh¹⁰⁴ bestimmt:

$$\begin{split} A &= \lambda_{\mathrm{Rhodium\,104}} = (0.0147 \pm 0.0009) \, \frac{1}{\mathrm{s}} \\ B &= N_{0,\mathrm{Rhodium\,104}} = (6.68 \pm 0.05) \end{split}$$

Abbildung 2: Gemessene Zerfälle bei Rhodium.

Abbildung 3: logarythmische Darstellung der gemessene Zerfälle für $t < t_{max}$ bei ${\rm Rh}^{104}.$

Mit den Werten ergibt sich für die Halbwertszeit von Rh^{104} folgender Wert:

$$T_{\rm Rhodium\,104} = (47\pm3)\,\mathrm{s}$$

Mithilfe der selben Vorgehensweise kann aus allen Werten für $t > t^*$ (Abbildung 4) auch die Halbwertszeit für Rh¹⁰⁴ⁱ berechnet werden, sodass sich folgende Parameter ergeben:

$$A = \lambda_{\rm Rhodium\,104i} = (0.0023 \pm 0.0004) \frac{1}{\rm s}$$

$$B = N_{\rm 0,Rhodium\,104i} = (4.1 \pm 0.2)$$

$$T_{\rm Rhodium\,104i} = (297 \pm 54) \, \rm s$$

Abbildung 4: logarythmische Darstellung der gemessene Zerfälle für $t>t^*$ bei $\mathrm{Rh}^{104i}.$

Mit den bestimmten Parametern für ${\rm Rh}^{104}$ und ${\rm Rh}^{104i}$ kann nun auch eine Summenkurve nach Formel ?? gezeichnet werden (Abbildung 5).

Abbildung 5: Summenkurve für den Zerfall von $\mathrm{Rh}_{45}^{103}.$

1.3 Diskussion

Wenn man die berechneten Halbwertszeiten für Rh_{45}^{103} und In_{49}^{115} mit den Literaturwerten vergleicht, sieht man eine leichte Abweichung. Jedoch liegen die Literaturwerte bei zweien der drei Isotope im Fehlerintervall des jeweiligen experimentellen Werts und lediglich bei Rh^{104} weicht der Wert stärker ab (siehe Tabelle 3).

Tabelle 3: Halbwertszeiten der verschiedenen Isotope

Isotop	$T_{exp} in { m s}$	$T_{Lit} in s$
$ \text{In}_{49}^{115} \\ \text{Rh}^{104} $	3278 ± 141	3257
	47 ± 3	42.3
Rh^{104i}	297 ± 54	274

Zusammen mit dieser Erkenntnis und den verschiedenen Abbildungen lässt sich darauf schließen, dass die auftretenden Abweichungen lediglich durch statistische Fehler hervorgerufen werden.

Fehlerquellen können hierbei vor allem der Nulleffekt und das Geiger-Müller-Zählrohr sein, da die von der Umgebung abgegebene Radioaktivität im Laufe des Experimentes schwankt und nicht anhand einer vorher ausgeführten Nullmessung komplett eliminiert werden kann.