

SUKKUR IBA UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE

PRECALCULUS

ABET-2000 COURSE BINDER MTS-101 FALL 2022

MTS-101: Pre-Calculus

1. General Information

Course Number	MTS-101
Credit Hours	Non-Credit
Prerequisite	None
Course Coordinator	Not Specified

2. Course Overview

Pre-calculus is a course designed to prepare students for future calculus courses by covering advanced mathematical concepts, functions, and theories that may not be covered in algebra, geometry, and other courses in a student's mathematics curriculum. Pre-calculus will commonly focus on the properties of functions with the study of trigonometric, logarithmic, and exponential functions. Students will learn about sequences, limits, and other concepts essential to the study of calculus.

In this course, you will prepare for calculus by focusing on quantitative reasoning and functions. As you begin the course, you should already have a strong understanding of algebraic skills such as factoring, basic equation solving, and the rules of exponents and radicals. You will concentrate primarily on linear, exponential, logarithmic, polynomial, rational, and trigonometric functions.

3. Catalog Description

MTS-101

4. Course Content

Week	Topics	Quizzes	Suggested
		Assignments	reading
Week	Complex Number:		Pre-
01	What are the imaginary numbers?		Calculus
	What are complex numbers?		Mathematic
	The complex plane:		s for
	Adding and subtracting complex numbers:		Calculus
	Distance and midpoint of complex numbers:		by
	Multiplying complex numbers:		James
	Complex conjugates and dividing complex numbers		Stewart,
	Identities with complex numbers: Complex numbers		Lothar
	Absolute value and angle of complex numbers:		Redlin,
	The polar form of complex numbers:		and Saleem
	Multiplying and dividing complex numbers in polar form		Watson
Week	Algebra and Equations		
02	Real numbers		
	Polynomials		
	Factoring		
	Exponents and Radicals		
	First-degree equations		
	Quadratic Equations		
Week	Graph, Lines, and, Inequalities		
03	Graphs		
	Equations of line		
	Linear inequalities		
	Distance and Midpoint Formula		

Week	Functions and Graphs	Assignment-I	
03-04	Function	Quiz-I	
03 04	Graph of function	Quiz 1	
	Linear, Quadratic, and polynomial functions		
	Exponential and logarithmic functions		
	Applications of function		
Week	Composite functions		Pre-
05	Composing functions		Calculus
0.5	Modeling with composite functions		Mathematic
	Verifying the inverse functions by the composition		s for
	Invertible function		Calculus
Week	Synthetic division		by
06	Polynomial division		James
	Remainder and factor theorem		Stewart,
	Zeros of polynomial functions		Lothar
	The binomial theorem		Redlin,
Week	Trigonometric Functions and Analytical Trigonometry	Assignment-II	and Saleem
07	Fundamental identities and basic formulas of trigonometry	7 Issignment II	Watson
07	Inverse trigonometric functions		
Week	Solving trigonometric equations	Quiz-II	-
08	Problem-solving techniques	Quil II	
00	Practice problems		
Week	Matrices		
09	System of linear equations		
	Applications of the system of linear equations		
	Mid-Term		
Week	Conic Sections	T	Pre-
11-12	Introduction to conic sections		Calculus
11-12	The features of a circle		Mathematic
	Standard equation of a circle		C
	Expanded equation of a circle		S for Calculus
	Center and radii of an ellipse		by
	-		James
Week	Foci of an ellipse	Assignment-III	Stewart,
12-13	Focus and directrix of a parabola		Lothar
	Introduction to hyperbolas		Redlin,
	Foci of a hyperbola		and Saleem
	Identifying conic sections from their equations		Watson
Week	Series	Quiz-III	,, atbon
13-14	Arithmetic sequences		
	Geometric sequences		
	Geometric series		
	Geometric series (with summation notation)		
	Arithmetic series		
Week	Vectors		
15	Vectors introduction		
	Magnitude of vectors		
	Scalar multiplication		
	Vector addition and subtraction		
	1	I	1
	Unit vectors		
	Unit vectors Final-Term		

5. **Text Book**

1. Pre-Calculus Mathematics for Calculus by James Stewart, Lothar Redlin, and Saleem Watson 8th Edition

6. Reference Material

- Pre-Calculus by Michael Sullivan
 Pre-calculus by Robert F. Blitzer.

7.

Component	Weighting
Quizzes (3 Quizzes, count Best of two for grading)	8%
Assignments (3 Assignments)	9%
Class Participation (Board Activities)	3%
Mid-Term	30%
Final Exam	50%

Course Learning Outcomes 8.

	Course Learning Outcomes (CLOs)
1	Students will be able to apply the knowledge of basic mathematics including Algebra, Function, Transcendental function, Trigonometry, Sequence & Series, and Vectors.
2	Students will be able to identify and analyze the mathematical functions for solving the computing problems.

9. PLO-CLO Map

	CLO IDs										
PLO ID	GA1	GA2	GA3	GA4	GA5	GA6	GA7	GA8	GA9	GA10	GA11
1	1	0	0	0	0	0	0	0	0	0	0
2	0	1	0	0	0	0	0	0	0	0	0

Approval

Prepared By	Iftikhar Ahmed Bhutto
Approved By	
Last Update	11/08/2022