Séminaire GreenAI 2

Sujet: Comment intégrer de la binarisation de réseau dans les algorithmes de deep learning?

L'intelligence artificielle

Voitures autonomes

Robots intelligents

Enceintes connectées

Qu'est ce que l'intelligence artificielle?

- Machines ou systèmes visant à imiter l'intelligence humaine
- Objectif:
 - Assister l'Homme dans des tâches de la vie courante

Deep Learning, c'est quoi?

- Apprentissage par couches successives
- Minimiser l'effort d'ingénierie
- Apprentissage des paramètres à partir des données
- Cela demande:
 - Un grand nombre de paramètres
 - De gros moyen de calcul

Problèmes / Motivations

- Algorithme difficile à embarquer
- Empreinte carbone grandissante

Solutions

- Algorithme binaire
- Léger
- Rapide

Plan

- Méthodes
- Expériences
- Gains

K: correspondra au nombre de couches

 a_k : sortie de la couche k

 W_k : paramètre à apprendre

a₀: données d'entrée

L(a_K, a^*): perte entre la prédiction du réseau a_k et la vérité terrain a^* .

- Ir: taux d'apprentissage utilisé pour la mise à jour des poids
- couche_k: couche k paramétrée par des poids W_k à apprendre (linéaire, convolution, ...)
- lacksquare activation_k: non linéarité de la couche k (softmax, sigmoid, ...)

Schéma réseau Deep Learning classique à K couches

Algorithme de Deep Learning général

- Prédiction (passe forward)
- Descente de gradient
 - Calcul du gradient par rétropropagation
 - Mise à jour des poids

1- Prédiction

Pour k allant de 1 à K:

$$x \leftarrow couche_k(W_k, a_{k-1})$$

 $a_k \leftarrow activation_k(x)$

2- Rétropropagation du gradient

Calculer
$$\frac{dL}{da_k}$$
;

Pour k allant de K à 1:

$$\frac{dL}{dW_k} \leftarrow \frac{dL}{da_k} \frac{da_k}{dW_k}$$

Si k > 1:

$$\frac{dL}{da_{k-1}} \leftarrow \frac{dL}{dW_k} \frac{dW_k}{da_{k-1}}$$

3- Mise à jour des poids

Pour k allant de 1 à K:

$$W_k \leftarrow W_k - lr * \frac{dL}{dW_k}$$

BinaryConnect (2016, Courbariaux)

Titre: Training Deep Neural Networks with binary weights during propagations

Binarisation des poids (W^b)

Introduction à l'algorithme de BinaryConnect

- Ajout d'une étape d'initialisation des poids binaires
- Utilisations des poids binaires
- Stockage et binarisation des poids

Initialisation des poids binaires

1- Prédiction

Pour k allant $de 1 \grave{a} K$: $x \leftarrow couche_k(W_k, a_{k-1})$ $a_k \leftarrow activation_k(x)$

2- Rétropropagation du gradient

Calculer
$$\frac{dL}{da_k}$$
;

Pour k allant de K à 1:

$$\frac{dL}{dW_k} \leftarrow \frac{dL}{da_k} \frac{da_k}{dW_k}$$

 $Si \ k > 1$:

$$\frac{dL}{da_{k-1}} \leftarrow \frac{dL}{dW_k} \frac{dW_k}{da_{k-1}}$$

3- Mise à jour des poids

Pour k allant de 1 à K:

$$W_k \leftarrow W_k - lr * \frac{dL}{dW_k}$$

Binarisation des poids

Algorithme de BinaryConnect

Définition de la fonction sign():

$$Sign(x) = \begin{cases} -1 & \text{si } x < 0 \\ +1 & \text{si } x \ge 0 \end{cases}$$

 Utilisations des poids binaires lors de la prédiction

1- Initialisation des poids binaires

Pour k allant de 1 à K:

$$W_k^b = sign(W_k)$$

2- Prédiction

Pour k allant de 1 à K:

$$x \leftarrow couche_k(W_k^b, a_{k-1})$$

 $a_k \leftarrow activation_k(x)$

3- Rétropropagation du gradient

Calculer
$$\frac{dL}{da_k}$$
;

Pour k allant de K à 1:

$$\frac{dL}{dW_k} \leftarrow \frac{dL}{da_k} \frac{da_k}{dW_k}$$

Si k > 1:

$$\frac{dL}{da_{k-1}} \leftarrow \frac{dL}{dW_k} \frac{dW_k}{da_{k-1}}$$

3- Mise à jour des poids

Pour k allant de 1 à K:

$$W_k \leftarrow W_k - lr * \frac{dL}{dW_k}$$

Binarisation des poids

Algorithme de BinaryConnect

- Gradient calculé sur les poids binaires
- Stockage des poids réels pour la mise à jour par descente de gradient
- Mise à jour des poids binaires à partir des nouveaux poids réels

1- Initialisation des poids binaires

Pour k allant de 1 à K:

$$W_k^b = sign(W_k)$$

2- Prédiction

Pour k allant de 1 à K:

$$x \leftarrow couche_k(W_k^b, a_{k-1})$$

 $a_k \leftarrow activation_k(x)$

3- Rétropropagation du gradient

Calculer
$$\frac{dL}{da_k}$$
;

Pour k allant de K à 1:

$$\frac{dL}{dW_k^b} \leftarrow \frac{dL}{da_k} \frac{da_k}{dW_k^b}$$

Si k > 1:

$$\frac{dL}{da_{k-1}} \leftarrow \frac{dL}{dW_k^b} \frac{dW_k^b}{da_{k-1}}$$

4- Mise à jour des poids

Pour k allant de 1 à K:

$$W_k \leftarrow W_k - lr * \frac{dL}{dW_k^b}$$
$$W_k^b = sign(W_k)$$

Etape importante de BinaryConnect

Pourquoi calculer le gradient avec des poids binaires et mettre à jour les poids reels?

1- Initialisation des poids binaires

Pour k allant de 1 à K:

$$W_k^b = sign(W_k)$$

2- Prédiction

Pour k allant de 1 à K:

$$x \leftarrow couche_k(W_k^b, a_{k-1})$$

 $a_k \leftarrow activation_k(x)$

3- Rétropropagation du gradient

Calculer
$$\frac{dL}{da_k}$$
;

Pour k allant de K à 1:

$$\frac{dL}{dW_k^b} \leftarrow \frac{dL}{da_k} \frac{da_k}{dW_k^b}$$

 $Si \ k > 1$:

$$\frac{dL}{da_{k-1}} \leftarrow \frac{dL}{dW_k^b} \frac{dW_k^b}{da_{k-1}}$$

4- Mise à jour des poids

Pour k allant de 1 à K:

$$W_k \leftarrow W_k - lr * \frac{dL}{dW_k^b}$$
$$W_k^b = sign(W_k)$$

BinaryNetwork (2016, Courbariaux)

Titre: Training Deep Neural Networks with Weights and Activations Constrained to +1 or -1

- ightharpoonup Binarisation des poids (W_k^b)
- lacktriangle Binarisation des activations (a_k^b)

Introduction à l'algorithme de BinaryNetwork

- Ajout d'une binarisation des activations (a_k)
- Modification de la descente de gradient

1- Initialisation des poids binaires

Pour k allant de 1 à K:

$$W_k^b = sign(W_k)$$

2- Prédiction

Pour k allant de 1 à K:

$$x \leftarrow couche_k(W_k^b, a_{k-1})$$

 $a_k \leftarrow activation_k(x)$

3- Rétropropagation du gradient

Calculer
$$\frac{dL}{da_k}$$
;

Pour k allant de K à 1:

$$\frac{dL}{dW_k^b} \leftarrow \frac{dL}{da_k} \frac{da_k}{dW_k^b}$$

Si k > 1:

$$\frac{dL}{da_{k-1}} \leftarrow \frac{dL}{dW_k^b} \frac{dW_k^b}{da_{k-1}}$$

4- Mise à jour des poids

Pour k allant de 1 à K:

$$W_k \leftarrow W_k - lr * \frac{dL}{dW_k}$$
$$W_k^b = sign(W_k)$$

Définition de la prédiction de BinaryNetwork

- Ajout d'une binarisation des activations
 - Les données d'entrée a_0 et la dernière couche a_K ne sont pas binarisées

2- Prédiction

```
Pour k allant de 1 \grave{a} K:
Si \ k == 1 :
a_k \leftarrow couche_k \left(W_k^b, a_{k-1}\right)
Sinon :
a_k \leftarrow couche_k \left(W_k^b, a_{k-1}^b\right)
Si \ k == 1 :
a_k^b \leftarrow sign(a_k)
Sinon :
a_k \leftarrow activation_k(x)
```

Définition de la prédiction de BinaryNetwork

- Ajout d'une binarisation des activations
 - Les données d'entrée a_0 et la dernière couche a_K ne sont pas binarisées

2- Prédiction

```
Pour k allant de 1 à K:
Si \ k == 1 :
a_k \leftarrow couche_k \left(W_k^b, a_{k-1}\right)
Sinon:
a_k \leftarrow couche_k \left(W_k^b, a_{k-1}^b\right)
Si \ k == 1 :
a_k^b \leftarrow sign(a_k)
Sinon:
a_k \leftarrow activation_k(x)
```

Problème: la fonction sign() n'est pas derivable

Problème avec la rétropropagation du gradient de BinaryNetwork

Calcul du gradient:

$$\frac{dL}{dW_k^b} = \frac{dL}{da_k^b} \frac{da_k^b}{da_k} \frac{da_k^b}{dW_k^b}$$

Définition d'un straight-through:

$$ST(x) = x * 1_{\{|x| < 1\}}$$

Rédefinition du gradient:

$$\frac{dL}{dW_k^b} \approx \frac{dL}{da_k^b} ST(\frac{da_k}{dW_k^b})$$

Définition de la rétropagation du gradient de BinaryNetwork

 Modification de la descente de gradient

3- Rétropropagation du gradient

Calculer
$$\frac{dL}{da_k}$$
;

Pour k allant de K à 1:

$$\frac{dL}{dW_k{}^b} \leftarrow \frac{dL}{da_k{}^b} ST(\frac{da_k}{dW_k{}^b})$$

Si
$$k > 1$$
:
$$\frac{dL}{da_{k-1}^{b}} \leftarrow \frac{dL}{dW_{k}^{b}} \frac{dW_{k}^{b}}{da_{k-1}^{b}}$$

Jeu de données: Cifar 10

Taille des images: 32x32x3

Nombre de données: 50000

Protocole expérimental

- Taille du batch: 64
- Observation de la perte et de la justesse de prédiction
- Couche cachée à 100 neurones
- Clipping des poids et biais réels entre -1 et 1
- 5 modèles différents

Réseau Deep learning général

- Poids réels
- Activations réelles
- Modèle linéaire et perceptron à une couche cachée

Schéma modèle linéaire poids réels

Schéma perceptron à une couche cachée

BinaryConnect

- Poids binaires
- Modèle linéaire et perceptron à une couche cachée

Schéma modèle linéaire poids binaires

Schéma perceptron à une couche cachée BinaryConnect

BinaryNetwork

- Poids binaires
- Activation binaire
- Architecture du perceptron à une couche cachée
- Modèle linéaire non disponible

Schéma perceptron à une couche cachée BinaryNetwork

Tableau des résultats après 5 itérations

		Modèle linéaire		Perceptron à 1 couche cachée		
	·	Poids réels	Poids binaires	Poids réels	BinaryConnect	BinaryNetwork
/	Moyenne de la précision	39,36	29,66	51,58	31,7	35,2
	Ecart-type	0,65	3,78	0,70	0,68	0,52
	Empreinte mémoire (bytes)	0,12	0,004	1,233	0,04	0,04
	Nb param	30730	30730	308310	308310	318410

Remarque: L'empreinte mémoire est 32 fois plus petite.

Gain énergétique

L'empreinte carbone et la consommation énergétique de nos reseaux binaires sont améliorées à plusieurs niveaux

Ce qu'on a avec notre implémentation de BinaryNetwork

Empreinte mémoire 32 fois plus petite

Consommation énergétique

- Les derniers pourcentages sont durs à atteindre
- A budget énergétique equivalent, il est plus rentable d'entrainer des modèles plus gros
- La difficulté d'entrainer des reseaux binaires et leurs performances inférieures en termes de precision rend leur entrainement plus couteux en terme d'énergie

Gain énergétique

Potentiel du produit matriciel optimisé entre les poids binaires w_k^b et les activations binaires a_k^b

- Vitesse d'exécution
 - x58 sur CPU (ref xnornet, 2016)
 - x7 sur GPU (ref Courbariaux, 2016)
- Suppose une ré-implementation de bas niveau
 - Instructions binaires supportées par l'architecture du processeurs
 - Calcul matriciel optimisé (complexité algorithmique, gestion de la mémoire)

BinaryNetwork (Courbariaux, 2016)

GPU KERNELS'EXECUTION TIMES

Gain sur le produit scalaire

Différence entre les produits scalaires classique et binaire

```
Produit scalaire classique: x.y = \sum_i^N x_i y_i

Produit scalaire binaire: x.y = N - 2 * hamming(x,y)
= N - 2 * popcount(xor(x,y))
Pour x_i \in \{-1,1\} et y_i \in \{-1,1\}
```

Implémentation des opérateurs binaires

- Tester sur le produit scalaire mais peu d'information sur l'accés mémoire et la parallélisation
- Utilisation de la librairie optimisé GMPY2
- Comparaison avec le .dot() de Pytorch car les fonctions bitwise_xor() et torch.sum() sont moins efficace

Graphe du temps de calcul d'un produit scalaire en fonction de la taille des vecteurs en seconde

Implémentation des opérateurs binaires

- Implémentation de multiplications binaires de matrices disponible
 - Larq de Tensorflow
 - Bmxnet de Microsoft

Perspectives

- Packager les "class" implémentées pour leur reutilisation par le personnel du Lmap.
- Test des libraries larq et bmxnet

Conclusion