Recit-12

December 28, 2020

Construct a TM, M in tabular or graphical notation to implement the computation $(s, e \# w) \to^* (h, e \# w')$; where h is the halt state with $w \in \{0,1\}^*$ and w' is the string with the 0's and 1's in w interchanged .

Describe either in graphical or tabular notation a TM M that <u>semi-decides</u> the language $L = \{w \in \{0,1\}^* | w = 1^n.0^{2n}, n \ge 0\}$

> A: R	σ= #	h	7 , 0 (J	
	Q = 0	D			
	T =	# B#.L.B			
В	r=0	#.L.C	, 4		+
C	g ± 0	#.L#.A	0	_	#
-	C# 0	D	45 4 = 1	4 = 1	+

Construct a deterministic $\overline{\text{TM}}$ M in either a graphical or a tabular form that semi-decides the language $L = \{w \in \{a, b\}^* | \text{no. of a's} \}$ no. of b's}.

> A: h _{y#,a1}	0=# T=0	C × L _# .B	
B-R #1.61	υ= b υ=#	×, L+, A	
C;	T= a T= b	#C ###################################	

State the total number of Turing Machines (where for each TM the set H of halt states have 2 elements) in terms of their transition functions that have N states and M alphabet symbols, in terms of N and M.

$$\begin{cases}
\frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) \times \frac{1}{2} \xrightarrow{\text{input}} \\
\frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) \times \frac{1}{2} \xrightarrow{\text{input}} \\
\frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) \times \frac{1}{2} \xrightarrow{\text{input}} \\
\frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) \times \frac{1}{2} \xrightarrow{\text{input}} \\
\frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) \times \frac{1}{2} \xrightarrow{\text{input}} \\
\frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) \times \frac{1}{2} \xrightarrow{\text{input}} \\
\frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) \times \frac{1}{2} \xrightarrow{\text{input}} \\
\frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) \times \frac{1}{2} \xrightarrow{\text{input}} \\
\frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) \times \frac{1}{2} \xrightarrow{\text{input}} \\
\frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) \times \frac{1}{2} \xrightarrow{\text{input}} \\
\frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) \times \frac{1}{2} \xrightarrow{\text{input}} \\
\frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) \times \frac{1}{2} \xrightarrow{\text{input}} \\
\frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) \times \frac{1}{2} \xrightarrow{\text{input}} \\
\frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) \times \frac{1}{2} \xrightarrow{\text{input}} \\
\frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) \times \frac{1}{2} \xrightarrow{\text{input}} \\
\frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) \times \frac{1}{2} \xrightarrow{\text{input}} \\
\frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) \times \frac{1}{2} \xrightarrow{\text{input}} \\
\frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) \times \frac{1}{2} \xrightarrow{\text{input}} \\
\frac{1}{2} \times \frac{1} \times \frac{1}{2} \xrightarrow{\text{input}} \\
\frac{1}{2} \times \frac{1}{2} \xrightarrow{\text{input}} \\
\frac{1}{2} \times \frac{1}{2} \xrightarrow{\text{input}} \\
\frac{$$

Suppose $L = \{w \in \{0,1\}^* | \text{either } \underline{11} \text{ or } 00 \text{ is a sub-string of } w\}$. Compute a NDTM, M that decides L using a graphical or a tabular notation for M.

TM	Condition	Next TM
A · R	r = 1	A
. ((= 1	B What Make
	Q = 0	A #10100
	a = 0	C & B=holf NO
_ B:R	o \	hyes/ c=holf No
· D 11	σ = O	had A rs -holf No
C:h	<u>(-0)</u>	hyes hyo 12 + 12 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2
	Recit-12	December 28, 2020 6/8

Describe a 2-tape non-deterministic TM (NDTM) M with an initial configuration (\underline{s} , $e \# \underline{u}$, $e \# \underline{w}$) where $u, v \in 0, 1^*$ either in graphical or tabular notation that halts at h_{YES} iff w is a sub-string of u.

Recit-12

Q7

Compute using graphical or tabular notation a 2 tape NDTM M that decides the language $L = \{w \in \Sigma^* | w = u.v.u ; u, v \in \Sigma^* \}.$