Sémantique et traduction des langages Interprétation d'un sous-ensemble de Caml : mini-ML

1 Grammaire

$$Expr \qquad \rightarrow \quad Ident \\ \mid \quad Const \\ \mid \quad Expr \quad Binaire \quad Expr \\ \mid \quad Unaire \quad Expr \\ \mid \quad (Expr \) \\ \mid \quad \text{if } Expr \quad \text{then } Expr \quad \text{else } Expr \\ \mid \quad \text{let } Ident = Expr \quad \text{in } Expr \\ \mid \quad \text{fun } Ident \rightarrow Expr \\ \mid \quad (Expr \) \quad Expr \\ \mid \quad \text{letrec } Ident = Expr \quad \text{in } Expr \\ \mid \quad \text{ref } Expr \\ \mid \quad Exp$$

2 Sémantique opérationnelle

Un jugement d'évaluation s'écrit sous la forme $\gamma \vdash [e, m_1] \Rightarrow [v, m_2]$.

Constante

$$\gamma \vdash [entier, m] \Rightarrow [entier, m] \quad \gamma \vdash [booleen, m] \Rightarrow [booleen, m]$$

Accès à l'environnement

$$\frac{x \in \gamma \quad \gamma(x) = \langle \, e \,,\, \gamma_{def} \, \rangle \quad \gamma_{def} \, \vdash \, [e \,,\, m_1] \, \Rightarrow \, [v \,,\, m_2]}{\gamma \, \vdash \, [x \,,\, m_1] \, \Rightarrow \, [v \,,\, m_2]} \quad \frac{x \in \gamma \quad \gamma(x) = v \quad v \neq \langle \, e \,,\, \gamma_{def} \, \rangle}{\gamma \, \vdash \, [x \,,\, m] \, \Rightarrow \, [v \,,\, m]}$$

Opérateur binaire

$$\frac{\gamma \vdash [e_2\,,\,m_1] \,\Rightarrow\, [v_2\,,\,m_2] \quad \gamma \vdash [e_1\,,\,m_2] \,\Rightarrow\, [v_1\,,\,m_3] \quad v_1 \times v_2 \in dom\,op \quad v = v_1\,op\,v_2}{\gamma \vdash [e_1\,op\,e_2\,,\,m_1] \,\Rightarrow\, [v\,,\,m_3]}$$

Opérateur unaire

$$\frac{\gamma \vdash [e, m] \Rightarrow [v, m'] \quad v \in dom \ op \quad v' = op \ v}{\gamma \vdash [op \ e, m] \Rightarrow [v', m']}$$

Conditionnelle

$$\frac{\gamma \vdash [e_1\,,\,m_1] \Rightarrow [\mathtt{true}\,,\,m_2] \quad \gamma \vdash [e_2\,,\,m_2] \Rightarrow [v\,,\,m_3]}{\gamma \vdash [\mathtt{if}\,\,e_1\,\,\mathtt{then}\,\,e_2\,\,\mathtt{else}\,\,e_3\,,\,m_1] \Rightarrow [v\,,\,m_3]} \quad \frac{\gamma \vdash [e_1\,,\,m_1] \Rightarrow [\mathtt{false}\,,\,m_2] \quad \gamma \vdash [e_3\,,\,m_2] \Rightarrow [v\,,\,m_3]}{\gamma \vdash [\mathtt{if}\,\,e_1\,\,\mathtt{then}\,\,e_2\,\,\mathtt{else}\,\,e_3\,,\,m_1] \Rightarrow [v\,,\,m_3]}$$

Définition locale

$$\frac{\gamma \vdash [e_1, m_1] \Rightarrow [v_1, m_2] \quad \gamma :: \{x \mapsto v_1\} \vdash [e_2, m_2] \Rightarrow [v, m_3]}{\gamma \vdash [\texttt{let } x = e_1 \texttt{ in } e_2, m_1] \Rightarrow [v, m_3]}$$

Définition de fonction

$$\gamma \vdash [\text{fun } x \rightarrow e, m] \Rightarrow [\langle \text{fun } x \rightarrow e, \gamma \rangle, m]$$

Appel de fonction

$$\frac{\gamma \vdash [e_2\,,\,m_1] \Rightarrow [v_2\,,\,m_2] \quad \gamma \vdash [e_1\,,\,m_2] \Rightarrow [\langle \operatorname{fun}\,x \, {\color{red} -} {\color{blue} >} \, e_3\,,\,\gamma_{def}\,\rangle\,,\,m_3] \quad \gamma_{def} :: \{x \mapsto v_2\} \vdash [e_3\,,\,m_3] \Rightarrow [v\,,\,m_4]}{\gamma \vdash [(e_1\,\,)\,\,e_2\,,\,m_1] \Rightarrow [v\,,\,m_4]}$$

Définition récursive

$$\frac{\gamma :: \{x \mapsto \langle \texttt{letrec} \; x = e_1 \; \texttt{in} \; e_1 \,,\, \gamma \rangle\} \vdash [e_2 \,,\, m_1] \Rightarrow [v \,,\, m_2]}{\gamma \vdash [\texttt{letrec} \; x = e_1 \; \texttt{in} \; e_2 \,,\, m_1] \Rightarrow [v \,,\, m_2]}$$

Création de référence

$$\frac{\gamma \vdash [e, m_1] \Rightarrow [v, m_2] \quad @add \notin m_2}{\gamma \vdash [\mathsf{ref}\ e, m_1] \Rightarrow [@add, m_2 :: \{@add \mapsto v\}]}$$

Accès en lecture à une référence

$$\frac{\gamma \vdash [e, m_1] \Rightarrow [@add, m_2] \quad @add \in m_2 \quad m_2(@add) = v}{\gamma \vdash [!e, m_1] \Rightarrow [v, m_2]}$$

Accès en écriture à une référence

$$\frac{\gamma \vdash [e_2\,,\,m_1] \,\Rightarrow\, [v\,,\,m_2] \quad \, \gamma \vdash [e_1\,,\,m_2] \,\Rightarrow\, [@add\,,\,m_3] \quad @add \in m_1}{\gamma \vdash [e_1\,:=\,e_2\,,\,m_1] \,\Rightarrow\, [()\,,\,m_3 ::\, \{@add\,\mapsto\,v\}]}$$

Séquence

$$\frac{\gamma \vdash [e_1, m_1] \Rightarrow [(), m_2] \quad \gamma \vdash [e_2, m_2] \Rightarrow [v, m_3]}{\gamma \vdash [e_1 ; e_2, m_1] \Rightarrow [v, m_3]}$$

Gestion des erreurs

Il faut ajouter à ces règles, celles d'apparition et propagation des erreurs.