Let 18(3) be a unit-speed curve in R. For any a EI, we call $T(a) := \dot{r}(a)$ as the unit tangent vector at s = a. Clearly T(s) is a smooth no-where zero function in s. We coll $K(a) := \|T(a)\| = \|\ddot{S}(a)\|$ the curvature of V at S=a. By continuity, the set {xGI |x(x)>0} is open in I and over this set, x is a smooth function in s. Suppose Kar +0. We then call $N(a) := \frac{1}{\kappa(a)} T(a)$, the principal normal vector at s=a. By the above lemma, $T(a) \cdot N(a) = 0$.

on particular, if n=2, then wherever $\chi(a) \neq 0$ (so that NI(a) is defined), $\{T(a), N(a)\}$ form an orthonormal $\{T(a), N(a)\}$ basis of 1R2.

Note that it is intuitively more meaningful to draw T, N at the corresponding point than at, say, the origin.

Examples:

Let 8(8) be a unit-speed line in R', say 7(8) = v+su where u,v ∈ Rn and $\|u\|=1$. Then T(s)=V(s)=u, a constant vector. Thus T(s)=0, i.e. $\kappa(s)=0$. Thus a line has curvature of everywhere and the principal normal vector on it is undefined.

(ii) Conversely, suppose $\mathcal{N}(\mathcal{S})$ is a unit-speed curve with $\chi(\mathcal{S}) \equiv 0$. Then $\dot{T}(\mathcal{S}) \equiv 0$, hence $T(\mathcal{S})$ is constant. Since $\dot{\gamma}(\mathcal{S})$ is a constant, $\gamma(\mathcal{S})$ is a linear function with unit speed (by hypothesis), i.e., $\gamma(\mathcal{S})$ is a line travelled at unit speed.

(iii) Let $\pi(s)$ be a unit-speed circle in \mathbb{R}^2 of radius R > 0 with motion anti-clockwise, say $\pi(s) = \frac{1}{6} + \left(R \cos(\frac{1}{R}), R \sin(\frac{1}{R})\right)$, $v_0 \in \mathbb{R}^2$

Then
$$\dot{\gamma}(s) = (-\sin(\frac{s}{R}), \cos(\frac{s}{R})) = \overline{J}(s)$$

$$\dot{T}(s) = \left(\frac{-1}{R} \cos\left(\frac{s}{R}\right), \frac{-1}{R} \sin\left(\frac{s}{R}\right)\right).$$

Thus,
$$\chi(s) = \frac{1}{R}$$
. Also,

$$N(s) = \frac{1}{K(s)} (s) = (-6s(\frac{s}{R}), -Sin(\frac{s}{R})),$$

ie., IN is a radially inward rector.

(iv) Let $\Upsilon(5)$ be a helix in \mathbb{R}^3 of unit speed, say $\Upsilon(5) = V_0 + \left(a \left(s \left(\frac{5}{c}\right), a \sin\left(\frac{5}{c}\right), b \frac{5}{c}\right)\right)$ where $V_0 \in \mathbb{R}^3$, $a, b \in \mathbb{R}$, $c = \overline{ba^2 + b^2}$. (Though we assume $a \neq 0 \neq b$, we see that as $a \to 0$ we obtain a line (the Z-axis) while as $b \to 0$ we obtain a circle of radius |a| in the X-Y plane.) Then $T(5) = \mathring{\Upsilon}(8) = \left(-\frac{a}{c^2} \cos\left(\frac{5}{c}\right), \frac{a}{c} \cos\left(\frac{5}{c}\right), \frac{b}{c}\right)$ $\therefore T(5) = \left(-\frac{a}{c^2} \cos\left(\frac{5}{c}\right), -\frac{a}{c^2} \sin\left(\frac{5}{c}\right), 0\right).$

Hence $\chi(s) = \| \overline{T}(s) \| = \frac{|a|}{c^2}$. Assume that a > 0, which we are that we travel anti-clockwise as s increases. Then

 $N(s) = \frac{1}{K(s)} \overline{T}(s) = (-6s(\frac{s}{c}), -sin(\frac{s}{c}), 0)$. (compare with circle). Exercise \overline{T} :

Let V(s) be a unit-speed curve in R² such that X(s) is a positive constant. Prove that V(s) is a part of a circle.

Thus, any curve in \mathbb{R}^2 other than a line or a circle, has non-constant curvature. We shall look for formulas which do not rely on unit-speed parametrisations later.

For a curve r(s) in IR2, we give a geometric description of K(s). Recall that T(8) = r(8) is the unit tangent vector. Let Υ(6) = (1, (5), 1, (5)). Then we may write 4, (5) = 65 (θ(5)), 1, (8) = Sin(θ(5)) for some $\theta(s)$ uniquely determined upto translation by 2π . (Indeed P(8) is just the angle formed by it (5) with respect to the positive X-oxis)

Note that we may not be able to define $\theta(s)$ as a continuous function for all s (going around the unit circle increases P by 270) but we can locally define it as a continuous function, which is moreover smooth, by using $\theta(s) = \cos^{-1}(\hat{\gamma}_{\epsilon}(s))$ or $\theta(s) = \sin^{-1}(\hat{\gamma}_{\epsilon}(s))$ with range in a suitable interval of length 27. Finally note that for all these definitions of O(8), the function de is globally continuous (since the different definitions of O(8) only differ by a multiple of 270) and hence globally smooth.

So let $\vec{v}(S) = (los(\theta(S)), Sin(\theta(S)))$. Upon differentiating we get $\vec{v}(S) = \vec{\theta}(S)(-Sin(\theta(S)), los(\theta(S)))$. Thus $\chi(S) = ||\vec{v}(S)|| = |\frac{d\theta}{dS}|$, i.e., $\chi(S)$ is the absolute value of the rate at which the unit tougent vector is turning (or how the curve is turning).

For the plane curve $\mathcal{X}(S)$ as above, we call $\frac{d\theta}{dS}$ as the <u>signed curvature</u> $\mathcal{X}_{S}(S)$ of $\mathcal{X}(S)$ and we call the unit vector $(-\sin(\theta(S)), \cos(\theta(S)))$ as the <u>signed unit normal</u> $N_{S}(S)$ of $\mathcal{X}(S)$. The following facts are readily seen:

- (i) K(s) = |K(s)|.
- (ii) N(s)= ± N_s(s).
- (iii) Y = KN = KsNs.

(iV) N_s is obtained by rotating T= or anticlockwise by T/2.

Example / Exercise:

For a unit-speed circle of radius R, one easily checks that $K = \frac{1}{R}$ and N points inward. For anti-clockwise motion, we have X = X, $N_s = N$, while for clockwise we have X = -X, $N_s = -N$.