## Mecánica Vectorial - Tarea 1 (Ejercicio 7) - Briones Andrade Joshua

## 1) Movimiento Oscilatorio a lo largo de X ( $\omega$ = 1)

```
posic1 = Plot[Sin[\omegax] /. \omega \to 1, {x, 0, 4 Pi}]

veloc1 = Plot[\omega * Cos[\omegax] /. \omega \to 1, {x, 0, 4 Pi}, PlotStyle \to Orange]

acel1 = Plot[\omega^2 * (-Sin[\omegax]) /. \omega \to 1, {x, 0, 4 Pi}, PlotStyle \to Green]

Show[posic, veloc, acel, ImageSize \to Large]
```



Los desfases respectivos de la velocidad y aceleración con respecto a la posición son :

$$d_1 = \frac{\pi}{2}$$
;  $d_2 = \pi$ ; y también  $p_v = p_p = p_a = \frac{1}{2\pi}$ 

## 2) Movimiento Oscilatorio a lo largo de X ( $\omega$ = 5)

posic2 = Plot[Sin[
$$\omega$$
x] /.  $\omega \rightarrow$  5, {x, 0, 4 Pi}, PlotRange  $\rightarrow$  {-25, 25}]  
veloc2 = Plot[ $\omega$  \* Cos[ $\omega$ x] /.  $\omega \rightarrow$  5,  
{x, 0, 4 Pi}, PlotStyle  $\rightarrow$  Orange, PlotRange  $\rightarrow$  {-25, 25}]  
acel2 = Plot[ $\omega$ ^2 \* (-Sin[ $\omega$ x]) /.  $\omega \rightarrow$  5,  
{x, 0, 4 Pi}, PlotStyle  $\rightarrow$  Green, PlotRange  $\rightarrow$  {-25, 25}]





Los desfases respectivos de la velocidad y aceleración con respecto a la posición son:

$$d_1 = \frac{\pi}{10}$$
;  $d_2 = \frac{\pi}{5}$ ; y también  $p_v = p_p = p_a = \frac{1}{10 \pi}$ 

## 3) Movimiento Oscilatorio a lo largo de X ( $\omega$ = 0.2)

posic3 = Plot[Sin[
$$\omega$$
x] /.  $\omega \rightarrow$  .2, {x, 0, 12 Pi}, PlotRange  $\rightarrow$  {-1, 1}] veloc3 = Plot[ $\omega$  \* Cos[ $\omega$ x] /.  $\omega \rightarrow$  .2, {x, 0, 12 Pi}, PlotStyle  $\rightarrow$  Orange, PlotRange  $\rightarrow$  {-1, 1}] acel3 = Plot[ $\omega$ ^2 \* (-Sin[ $\omega$ x]) /.  $\omega \rightarrow$  .2, {x, 0, 12 Pi}, PlotStyle  $\rightarrow$  Green, PlotRange  $\rightarrow$  {-1, 1}]

Show[posic3, veloc3, acel3, ImageSize → Large]



Los desfases respectivos de la velocidad y aceleración con respecto a la posición son :

$$d_1 = \frac{5 \pi}{2}$$
;  $d_2 = 5 \pi$ ; y también  $p_v = p_p = p_a = \frac{5}{2 \pi}$