PROVA 1 - Análise de Sobrevivência - Mestrado (13/05/2024)

NOME:	Matricula:

1. Considere o conjunto de dados abaixo e sua respectiva estimativa de Kaplan-Meier da função de sobrevivência e responda os itens a seguir.

^{+:} censura a direita.

j	time	n.risk	n.event	survival	
0	0	0	0	1	
1	2	10	1	0.90	
2	7	6	1	0.75	
3	10	5	1	0.60	
4	20	3	1	0.40	
5	25	1	1	0	

- i) Qual é a estimativa do tempo médio e mediano? (1 ponto)
- iii) Qual é a estimativa da vida média residual em t = 15? (1 ponto)

2. Seja T uma variável aleatória que representa o tempo (em horas) até que um indivíduo entregue sua prova em um concurso. Considere que esse concurso tem duração máxima de 1 hora, isto é, $T \in [0,1]$. Suponha que a variável T pode ser modelada pela seguinte função de risco:

$$h(t) = \frac{\theta}{(1-t)}, \quad \theta > 0, \ 0 < t < 1,$$

- i) Qual é a função de sobrevivência de T? (1 ponto)
- ii) Qual é o quantil p de T? (1 ponto)

3. Considere uma variável aleatória contínua T que possui a seguinte Função de Sobrevivência:

$$S(t) = \left(\frac{\beta}{t+\beta}\right)^{\alpha}, t \ge 0, \alpha > 0, \beta > 0.$$

- i) Obtenha a função de risco de T. (1 ponto)
- ii) Obtenha v(t) (a Função Vida Média Residual de T), para $\alpha > 1$. (1 ponto)

Bônus) No item (ii), qual é o valor de v(t) quando $\alpha \le 1$? (1 ponto)

Para os itens (iii) e (iv) considere que Y é a variável aleatória discreta análoga à T, considerando $\alpha=2$ e $\beta=1$.

- iii) Encontre a função de risco de Y e responda: h(y) é constante, crescente ou decrescente? (1 ponto)
- iv) Qual é o valor da vida média residual em y=1? (Dica: E(Y) = 0.645) (1 ponto)
- **4.** (Transformação Arco-seno) Se $V(t) = \arcsin[S(t)] = \sin^{-1}[S(t)] \in \hat{V}(t) \approx N(V(t); V \hat{a}r[\hat{V}(t)])$, então um intervalo de $100 \times (1 - \alpha)\%$ de confiança para V(t), é dado por:

$$\underset{100\times(1-\alpha)\%}{I.\,C.[V(t)]:} \left[\hat{V}(t) - z_{\left(1-\alpha/_{2}\right)} \sqrt{V \hat{a} r\left(\hat{V}(t)\right)}; \hat{V}(t) + z_{\left(1-\alpha/_{2}\right)} \sqrt{V \hat{a} r\left(\hat{V}(t)\right)} \right].$$

Com base no intervalo de V(t), apresente um intervalo de $100 \times (1-\alpha)\%$ confiança para S(t). (2 pontos)

Obs1: Apresentar os resultados em ternos de $\hat{S}(t)$ e $V\hat{a}r[\hat{S}(t)]$.
Obs2: $\frac{d}{dx} \operatorname{sen}^{-1}(x) = \frac{1}{\sqrt{1-x^2}}$

$$\underline{\text{Obs2:}} \frac{d}{dx} \text{sen}^{-1}(x) = \frac{1}{\sqrt{1-x^2}}$$

Obs3:
$$sen(a + b) = sen(a)cos(b) + sen(b)cos(a)$$

$$\overline{Obs4:} \operatorname{sen}(a - b) = \operatorname{sen}(a)\cos(b) - \operatorname{sen}(b)\cos(a)$$

Obs5:
$$\cos[\sin^{-1}(x)] = \sqrt{1 - x^2}$$