Scoring rationale: If you pick A, B, C, or D and you are correct, you get +4 points. If you provide a rationale that

pick is you "), you get ble case for your choice, you can receive up to
s leads to London Dispersion Forces (which give
(rather than quite different, as they are in the nt of water? ☐ no idea
rmined by les through van der Waals interactions s it makes nds • no idea
t likely conclusion? with it form H-bonds with anot form H-bonds different from bulk

 5. A water soluble molecule is formed by four identical subunits. Yo □ A. each subunit is uniformly hydrophilic □ B. each subunit is uniformly hydrophobic □ C. each subunit has one hydrophilic and one hydrophobic ✔ D. each subunit has one hydrophilic and two hydrophobic 	region
You may want to draw a sketch to support your suggested answ	er
hydrophobic hydropho	bic
6. If we accept that all cells are homologous, then we would accept the	nat their plasma membranes
 are □ A. depends upon the organism □ B. analogous ✓ C. homologous □ D. functionally unrelated 	□ no idea
 7. You might well classify a molecule as a lipid if □ A. it could aggregate ✓ B. it had distinct H-bonding and non-H-bonding regions □ C. It could make any H-bonds at all □ D. It could not make any H-bonds at all 	□ no idea
 8. In a solution of water and sugar, which is true □ A. only the water molecules are moving □ B. only the sugar molecules are moving □ C. only the diffusing molecules are moving, most molecules ✓ D. all molecules are moving 	s are not moving ☐ no idea

 9. Imagine you are looking at a cellular membrane; [On inside of the cell. We might conclude that the molecule ✓ A. moving into the cell (on average) □ B. only moving into the cell 	
C. are moving faster outside of the cellD. have a lower energy when inside the cell	□ no idea
2 D. Have a lower chergy when histae the cen	
10. Imagine a cell has a contractile vacuole. You place poison its ATP synthesis system, what happens.	the cell in a osmotically neutral solution and
✓ A. nothing	
B. the cell shrinks (water moves out)C. the cell bursts (water moves in)	
☐ D. the vacuole continues to pump.	☐ no idea
11. You are studying a cell; the concentration of Na+ is Glucose flows into the cell and its concentration is high membrane molecule could be responsible for this behave	er inside than outside What type of
✓ A. a symporter□ B. an antiporter	
☐ C a glucose channel	
☐ D. a glucose pump	☐ no idea
 12. A membrane channel acts as a catalyst because a ✓ A. speeds a rate of a reaction but does not alter □ B. changes the force driving the reaction to cor □ C. uses energy from the environment to make □ D. uses membrane gradients to make reactions 	the equilibrium state. npletion unfavorable reactions occur
 13. Think about the steps in the origin of mitochondria outer membrane of both organelles? □ A. the original bacterial membrane □ B. it was generated de novo 	and chloroplasts; what is the source of the
☐ C. derived from the fusion of bacterial and	eukarvotic cell membranes
✓ D . the original eukaryotic cell's plasma membra	3
14. You place a bacterium that normally lives in fresh v happens?	_
 ✓ A. Its membrane shrinks away from the cell w. □ B. Its membrane expands until it presses again □ C. It will use the salt gradient to make ATP 	
☐ D. its membrane swells and the cell explodes	☐ no idea

5. Consider the reactions: relax, read slowly, and take your time)											$A + B + C \Leftrightarrow E$ $E + F \Leftrightarrow G$,		
	A. B. C.	de inc is t de	creas crease uncha creas	es a es a ang es	as les fed	ong or a	g as as l ide	s mong	ore g as	A S	anc is p	d B pres	are presen sent	to the level of C over time?		
						pre	esei	nt o	r n	ot :	IS 11	rrel	evant)			
Mak	e a g	grap	oh (pl	eas	e).											
1.111 1																
40						_										
35 •					1	7										
35						-										
35 •				/		1										
35				(0)	D											
35				(0	D 1											
35 • 30 • 25 •				[0	D											
35 • 30 • 25 • 20 •				[0	D]											
35								10								

16. What <u>must</u> be true of a system of coupled	reactions (more than one choice may be needed)?
☐ A. all forward reactions must be then	modynamically favorable
✓ B. there must be a way (paths) to go:	from reactants to products
✓ C. the reactions must share compone	ents
☐ D. there must be sufficient energy in	the environment to break the bonds involved in
the forward reactions	
T F catalysts must be present	□ no idea

adjusted percentage