Chapitre 3: Calcul littéral (P.2)

Plan du chapitre

I. <u>Développement</u> (P.1)

- 1. Définitions
- 2. Distributivité simple
- 3. Double distributivité
- 4. Identités remarquables

II. <u>Factorisation</u> (P.2)

- 1. Définition
- 2. Factorisation par facteur commun
- 3. Factorisation par les identités remarquables

II/ Factorisation

1/ Définitions

<u>Définition 1</u> Factoriser une expression littérale, c'est transformer une somme en un produit. Autrement dit, il ne faut ni addition ni soustraction hors parenthèses nécessaires.

Exemples:

- 3y(6 + 7y) est bien une expression factorisée.
- 5y + 2y(1 + 4y) n'est pas une expression factorisée car on peut transformer une somme en produit.

II/ Factorisation

2/ Factorisation par facteur commun

Propriété Pour tous nombres relatifs k, a et b on a :

$$k x a + k x b = k x (a + b)$$

Sous forme d'aires

	a	b
k	k x a	k x b

Méthode:

<u>Étape 1</u>: Repérer les additions et soustractions qui déterminent les nombre de facteurs (souvent 2 en 3^{ème}).

Étape 2 : Repérer TOUT ce qui est en commun (y compris d'éventuelles parenthèses et l'opérateur « x »).

Étape 3 : Isoler ce qui est en commun au début de l'expression et écrire TOUT ce qui reste dans des crochets.

Étape 4 : Réduire et ordonner si nécessaire ce qui a dans les crochets.

Exemple: Factoriser A(y) = 3y + 5y(1 - 6y)

Etape 1 : A(y) = 3y + 5y(1 - 6y)Ici, deux facteurs, « 3y » et « 5y(1 - 6y) »

Etape 2 : $A(y) = y \times 3 + 5 \times y \times (1 - 6y)$

<u>Remarque</u>: Ne pas hésiter à ajouter les opérateurs « x » sous-entendus quitte à utiliser la commutativité de la multiplication.

Ici, « y x » est en commun.

Etape 3: A(y) = y x [3 + 5 x (1 - 6y)]
Ici, il reste
$$\ll 3 + 5 x (1 - 6y)$$
 »

Etape 4:
$$A(y) = y \times [3 + 5 \times (1 - 6y)]$$
 (L1)

$$A(y) = y(3 + 5 - 30y)$$
 (L2)

$$A(y) = y(8 - 30y)$$
 (L3)

<u>Remarque 1</u>: il se peut que l'on doive développer des expressions entre les crochets comme dans cet exemple (de L1 à L2).

<u>Remarque 2</u> : on peut changer les « crochets » en « parenthèses » dès qu'il n'y a plus de parenthèses intérieures (ici de L1 à L2).

Deux cas particuliers

1) Factoriser l'expression suivante $B(y) = (1 + 6y)^2 + 3(1 + 6y)$. Astuce : écrire $(1 + 6y)^2 = (1 + 6y) \times (1 + 6y)$ et appliquer la méthode.

2) Factoriser l'expression suivante C(y) = (1 + 3y) + 4y(1 + 3y). Astuce : écrire $(1 + 3y) = (1 + 3y) \times 1$ et appliquer la méthode.

II/ Factorisation

2/ Factorisation par les identités remarquables

Ce chapitre a présenté 3 identités remarquables dans la partie « développement ». On peut également s'en servir pour la factorisation et en particulier la troisième qui s'avère très utile.

$$a^2 - b^2 = (a + b)(a - b)$$

Remarque : il s'agit en fait de factoriser une différence de deux carrés.

Méthode:

Étape 1 : Faire apparaître EXPLICITEMENT la différence de deux carrés.

Étape 2 : Identifier alors « a » et « b ».

Étape 3: Appliquer la relation $a^2 - b^2 = (a + b)(a - b)$.

Étape 4 : Réduire et ordonner si nécessaire l'expression obtenue.

Exemple: Factoriser $A(y) = (4y - 1)^2 - 64$

Etape 1 : $A(y) = (4y - 1)^2 - 8^2$

Ici, a² est donné mais il faut faire apparaître b².

Etape 2: a = (4y - 1) et b = 8

Remarque: ne pas oublier les parenthèses si nécessaire (ici pour « a »).

Etape 3:
$$A(y) = [(4y-1) + 8][(4y-1) - 8]$$

<u>Remarque</u>: utiliser des crochets est utile, notamment si « a » ou « b » ont des parenthèses.

Etape 4:
$$A(y) = [4y - 1 + 8][4y - 1 - 8]$$
 (L1)
 $A(y) = (4y + 7)(4y - 9)$ (L2)

<u>Remarque</u>: on peut changer les « crochets » en « parenthèses » dès qu'il n'y a plus de parenthèses intérieures (ici de L1 à L2).

Deux cas particuliers (en route vers la Seconde)

- 1) Factoriser l'expression suivante $B(y) = 4y^2 + 25$.
- Cette expression n'est pas factorisable! Ce n'est pas une différence de carrés et il n'y a aucun facteur commun entre « 4y² » et « 25 ».
- 2) Factoriser l'expression suivante $C(y) = 7 9y^2$.

<u>Astuce</u>: faire apparaître a^2 en écrivant que $7 = (\sqrt{7})^2$ et appliquer la méthode.

<u>Conclusion</u>: on peut développer toute expression mais pas forcément les factoriser, la forme « canonique » permettra d'apporter des solutions (lycée).