

Experiment / Assignment / Tutorial No. 4

Grade: AA / AB / BB / BC / CC / CD /DD

Signature of the Staff In-charge with date

Batch: D2 Roll No.: 16010122323 Experiment / assignment / tutorial No.: 4

Title: 4 bit Magnitude Comparator

Objective: Design a 2-bit comparator using logic gates and verify 4-bit magnitude comparator using IC 7485

Expected Outcome of Experiment:

CO2: Use different minimization technique and solve combinational circuits, synchronous & asynchronous sequential circuits.

Books/ Journals/ Websites referred:

- VLab Link: http://vlabs.iitb.ac.in/vlabs-dev/labs/dldesignlab/experimentlist.html
- R. P. Jain, "Modern Digital Electronics", Tata McGraw Hill
- M. Morris Mano, "Digital Logic & computer Design", PHI
- http://elnsite.teilam.gr/ebooks/digital_design/lab/dataSheets_page/7485.pdf

Pre Lab/Prior Concepts:

The comparison of two numbers is an operator that determines one number is greater than, less

1 Department of Computer Engineering

than (or) equal to the other number. A magnitude comparator is a combinational circuit that compares two numbers A and B and determines their relative magnitude. The outcome of the comparator is specified by three binary variables that indicate whether A>B, A=B (or) A<B.

Two Bit Magnitude Comparator Implementation Details: Truth Table

A1	A0	B1	B0	A > B	A = B	A < B	
. 0	0	0	0	0	1	0	
0	0	0	1	0	0	1	
0	0	1	0	0	0	1	
0	0	1	1	0	0	1	
. 0	1	0	0	1	0	0	
0	1	0	1	0	1	0	
0	1	1	0	0	0	1	
0	1	1	1	0	0	1	
1	0	0	0	1	0	0	
1	0	0	1	1	0	0	
1	0	1	0	0	1	0	
1	0	1	1	0	0	1	
1	1	0	0	1	0	0	
1	1	0	1	1	0	0	
1	1	1	0	1	0	0	
1	1	1	1	0	1	0	

From the Truth Table:

$$(A < B) = A1'B1 + A0'B1B0 + A1'A0'B0$$

$$(A=B)=A1'A0'B1'B0' + A1'A0B1'B0 + A1A0B1B0 + A1A0'B1B0'$$

$$(A>B)=A1B1'+A0B1'B0'+A1A0B0'$$

Logic Diagram of 2 bit Comparator

Comparing Table:

(ouport	1031003 9119			out pub				
A3, B3 A2,	BL A 1,8,	Po , Bo	B<4	ALB	A=B	A>B	NB	
A3>B3 A2= A3=B3 A2=	82 A1 = B1 B2 A1 = B1	XX AD 280 AD 280 AD = 80 AD = 80 AD = 80 AD = 80	KLLXH	L	XXXXX LLHHLL			

Four Bit Magnitude Comparator Implementation Details

Pin Diagram of IC 7485

Conclusion: In this experiment, we learned to design a 2-bit comparator using logic gates and verify 4-bit magnitude comparator using IC 7485

Post-Lab Descriptive Questions

1. Design a 1-bit magnitude comparator using logic gates.

