树莓派 Lora 基站

简介

最近闲来无事想做个玩具,亦或者想试试能不能做套方案出来,配合 Rulex 实现整套物 联网设备接入、控制以及数据采集方案。

硬件

正点原子: ATK-LORA-01_V3.0 (V3.0 是版本号, 型号是 ATK-LORA-01)。

软件

暂时以串口助手替代,任何一个都可以,后期会推出 C 或者 Golang 实现的固件 。

原理

下面是基本原理设计图:

连接

下面是实物图效果:

外观

地址

节点名称	波特率	校验位	空中速率	休眠时间	地址	信道	功率
Sender	9600	无	0.3K	15	0	30	11dPm
Receiver	9600	无	0.3K	1S	255	30	11dPm
Node1	9600	无	0.3K	1S	1	T1	11dPm
Node2	9600	无	0.3K	1S	2	T1	11dPm
Node N	9600	无	0.3K	1 S	N (N<255)	Tn	11dPm

注意:

其中信道可以改变,取决于实际场景,功率也可以增加。节点 ID 从 1 开始到 254,也 就是说自组网网络中一次只允许有 255 (包括网关) 个节点。

玩网关通过 Sender 节点发送到具体 ID 对应的节点,同样使用 Receiver 监听来自某个 ID 的节点的数据。

通信原理

1) 点对点

- 1,模块发送时可修改地址和信道,用户可以指定数据发送到任意地址和信道。
- 2, 可以实现组网和中继功能。

发送模块(1个):地址+信道+数据

接收模块(1个):数据

点对点(透传):模块地址、信道、速率相同

点对点(定向):模块地址可变、信道可变,速率相同

图 2.4.2.1 定向传输(点对点)

例如:

设备 A 地址 0X1234, 信道 0X17;

设备 B 地址 0xABCD, 信道 0X01;

设备 C 地址 0X1256, 信道 0x13。

设备 B 接收: AA BB CC DD

设备 C 接收: 无

设备 A 发送: 12 56 13 AA BB CC DD

设备 B 接收: 无

设备 C 接收: AA BB CC DD

2) 广播监听

- 1,模块地址为 0XFFFF,则该模块处于广播监听模式,发送的数据可以被具有相同速率和信道的其他所有模块接收到(广播);同时,可以监听相同速率和信道上所有模块的数据传输(监听);
- 2, 广播监听无需地址相同。
- 3,信道地址可设置。当地址为 0XFFFF 时,为广播模式;为其他时,为定向传输模式。

发送模块(1个): **0XFFFF**+信道+数据

接收模块(N个):数据

发送模块(1 个): 地址(非 0XFFFF)+信道+数据

接收模块(1个):数据

图 2.4.2.2 定向通信

广播监听

例如:

设备 A 地址 0XFFFF 信道 0X12;

设备 B、C 地址 0X1234, 信道 0X13;

设备 D 地址 0XAB00, 信道 0X01;

设备 E 地址 0XAB01, 信道 0X12;

设备 F 地址 0XAB02, 信道 0X12;

设备 A 广播: FF FF 13 AA BB CC DD

设备 B、C 接收: AA BB CC DD

设备 A 发送: AB 00 01 11 22 33 44

应用

传感器数据采集,楼宇监控,工厂监控,办公室监控等等。

RuleX

Rulex 可在其扮演主要消息处理和调度的角色:

通信协议规范

下面是通信报文规范设计:

协议号	名称	标识	备注		
0x00	心跳	PING	一个字节标识数据包类型		
0x01	心跳回包	1:成功; 0 失败 一个字节标识数据包类型			
0x02	上线	CONNECT 一个字节标识数据包类型			
0x03	上线回包	1:成功; 0 失败	一个字节标识数据包类型		
0x04	点对点数据	DATA 一个字节标识数据包类型 + 10 个字节目			
			ID+512字节数据,当目标ID为0的时候,		
			直达网关不进行转发。		
0x05	数据回包	1:成功; 0 失败	一个字节类型		

0x06	认证	AUTH	一个字节标识数据包类型 +10 个字节目标	
			ID	
0x07	认证回包	1:成功; 0 失败	一个字节标识数据包类型	
0x07	接收数据	RECEIVE	一个字节标识数据包类型 +10 个字节目标	
			ID + 512 字节数据, 当目标 ID 为 0 的时候,	
			表示此消息来自网关。	

数据库规范

节点终端表:

字段名	类型	约束	备注
Id	INT 11	NOT NULL	PK
SN	VARCHAR 10	NOT NULL	唯一序列号
State	INT 2	NOT NULL	状态
Info	VARCHAR 128		备注信息
ExtraData	JSON		额外信息