

Contents

	0.1	Partia	l Clausal Logic						
		0.1.1	Decided Literals						
		0.1.2	Backtracking						
		0.1.3	Decomposition with respect to the First Decided Literals						
		0.1.4	Negation of Clauses						
		0.1.5	Other						
		0.1.6	Extending Entailments to multisets						
1	NOT's CDCL and DPLL 2								
	1.1	Measu	${ m re} \ \ldots \ldots \ldots \ldots \ldots \ldots 23$						
	1.2	NOT's	s CDCL						
		1.2.1	Auxiliary Lemmas and Measure						
		1.2.2	Initial definitions						
		1.2.3	DPLL with backjumping						
		1.2.4	CDCL						
		1.2.5	CDCL with restarts						
		1.2.6	Merging backjump and learning						
		1.2.7	Instantiations						
	1.3	DPLL	as an instance of NOT						
		1.3.1	DPLL with simple backtrack						
		1.3.2	Adding restarts						
	1.4	Weide	nbach's DPLL						
		1.4.1	Rules						
		1.4.2	Invariants						
		1.4.3	Termination						
		1.4.4	Final States						
		1.4.5	Link with NOT's DPLL						
2	Wei	Weidenbach's CDCL 129							
	2.1	Weide	nbach's CDCL with Multisets						
		2.1.1	The State						
		2.1.2	CDCL Rules						
		2.1.3	Structural Invariants						
		2.1.4	CDCL Strong Completeness						
		2.1.5	Higher level strategy						
		2 1 6	9						

3	Imp	olemen	tation of DPLL and CDCL	2	239
	3.1	Simple	e List-Based Implementation of the DPLL and CDCL		239
		3.1.1	Common Rules		239
		3.1.2	CDCL specific functions		242
		3.1.3	List-based CDCL Implementation		244
		3.1.4	CDCL Implementation		247
	3.2	Mergi	ng backjump rules		273
		3.2.1	Inclusion of the states		273
		3.2.2	More lemmas conflict–propagate and backjumping		275
		3.2.3	CDCL with Merging		290
		3.2.4	CDCL with Merge and Strategy		295
	3.3	Link b	between Weidenbach's and NOT's CDCL		329
		3.3.1	Inclusion of the states		329
		3.3.2	Additional Lemmas between NOT and W states		332
		3.3.3	Inclusion of Weidenbach's CDCL in NOT's CDCL		334
		3.3.4	Correctness of $cdcl_W$ -merge-stgy		339
	3.4	Incren	nental SAT solving		341
		3.4.1	Adding Restarts		352
		3.4.2	Simple Implementation of DPLL		363
		3.4.3	Abstract Clause Representation		372
	3.5	Weide	nbach's CDCL with Abstract Clause Representation		
		3.5.1	Instantiation of the Multiset Version		374
		3.5.2	Abstract Relation and Relation Theorems		
		3.5.3	The State		381
		3.5.4	CDCL Rules		389
		3.5.5	Higher level strategy		404
	3.6	2-Wat	ched-Literal		408
		3.6.1	Essence of 2-WL		409
		3.6.2	Two Watched-Literals with invariant		429

0.1 Partial Clausal Logic

We here define decided literals (that will be used in both DPLL and CDCL) and the entailment corresponding to it.

 ${\bf theory}\ Partial-Annotated-Clausal-Logic\\ {\bf imports}\ Partial-Clausal-Logic$

begin

0.1.1 Decided Literals

Definition

```
datatype ('v, 'mark) ann-lit =
  is-decided: Decided (lit-of: 'v literal) |
  is-proped: Propagated (lit-of: 'v literal) (mark-of: 'mark)

lemma ann-lit-list-induct[case-names Nil Decided Propagated]:
  assumes P [] and
  \wedge L xs. P xs \Longrightarrow P (Decided L # xs) and
  \wedge L m xs. P xs \Longrightarrow P (Propagated L m # xs)
```

```
shows P xs
  using assms apply (induction xs, simp)
  by (rename-tac a xs, case-tac a) auto
lemma is-decided-ex-Decided:
  is-decided L \Longrightarrow (\bigwedge K. \ L = Decided \ K \Longrightarrow P) \Longrightarrow P
 by (cases L) auto
type-synonym ('v, 'm) ann-lits = ('v, 'm) ann-lit list
definition lits-of :: ('a, 'b) ann-lit set \Rightarrow 'a literal set where
lits-of Ls = lit-of ' Ls
abbreviation lits-of-l :: ('a, 'b) ann-lits \Rightarrow 'a literal set where
lits-of-lLs \equiv lits-of (set Ls)
lemma lits-of-l-empty[simp]:
  lits-of \{\} = \{\}
  unfolding lits-of-def by auto
lemma lits-of-insert[simp]:
  lits-of\ (insert\ L\ Ls) = insert\ (lit-of\ L)\ (lits-of\ Ls)
  unfolding lits-of-def by auto
lemma lits-of-l-Un[simp]:
  lits-of (l \cup l') = lits-of l \cup lits-of l'
  unfolding lits-of-def by auto
lemma finite-lits-of-def[simp]:
 finite (lits-of-l L)
 unfolding lits-of-def by auto
abbreviation unmark where
unmark \equiv (\lambda a. \{\#lit\text{-}of a\#\})
abbreviation unmark-s where
unmark-s M \equiv unmark ' M
abbreviation unmark-l where
unmark-l\ M \equiv unmark-s\ (set\ M)
lemma atms-of-ms-lambda-lit-of-is-atm-of-lit-of[simp]:
  atms-of-ms (unmark-l M') = atm-of ' lits-of-l M'
  unfolding atms-of-ms-def lits-of-def by auto
lemma lits-of-l-empty-is-empty[iff]:
  lits-of-lM = \{\} \longleftrightarrow M = []
 by (induct \ M) (auto \ simp: \ lits-of-def)
Entailment
definition true-annot :: ('a, 'm) ann-lits \Rightarrow 'a clause \Rightarrow bool (infix \models a 49) where
  I \models a C \longleftrightarrow (lits - of - l I) \models C
definition true-annots :: ('a, 'm) ann-lits \Rightarrow 'a clauses \Rightarrow bool (infix \models as 49) where
  I \models as \ CC \longleftrightarrow (\forall \ C \in CC. \ I \models a \ C)
```

```
lemma true-annot-empty-model[simp]:
  unfolding true-annot-def true-cls-def by simp
lemma true-annot-empty[simp]:
  \neg I \models a \{\#\}
  unfolding true-annot-def true-cls-def by simp
lemma empty-true-annots-def[iff]:
  [] \models as \ \psi \longleftrightarrow \psi = \{\}
 unfolding true-annots-def by auto
lemma true-annots-empty[simp]:
  I \models as \{\}
 unfolding true-annots-def by auto
lemma true-annots-single-true-annot[iff]:
  I \models as \{C\} \longleftrightarrow I \models a C
  unfolding true-annots-def by auto
lemma true-annot-insert-l[simp]:
  M \models a A \Longrightarrow L \# M \models a A
  unfolding true-annot-def by auto
lemma true-annots-insert-l [simp]:
  M \models as A \Longrightarrow L \# M \models as A
 unfolding true-annots-def by auto
lemma true-annots-union[iff]:
  M \models as A \cup B \longleftrightarrow (M \models as A \land M \models as B)
  unfolding true-annots-def by auto
lemma true-annots-insert[iff]:
  M \models as \ insert \ a \ A \longleftrightarrow (M \models a \ a \land M \models as \ A)
  unfolding true-annots-def by auto
Link between \models as and \models s:
{f lemma} true-annots-true-cls:
  I \models as \ CC \longleftrightarrow lits \text{-} of \text{-} l \ I \models s \ CC
  unfolding true-annots-def Ball-def true-annot-def true-clss-def by auto
\mathbf{lemma}\ in	ext{-}lit	ext{-}of	ext{-}true	ext{-}annot:
  a \in lits\text{-}of\text{-}l\ M \longleftrightarrow M \models a \{\#a\#\}
  unfolding true-annot-def lits-of-def by auto
lemma true-annot-lit-of-notin-skip:
  L \# M \models a A \Longrightarrow lit\text{-}of L \notin \# A \Longrightarrow M \models a A
 unfolding true-annot-def true-cls-def by auto
lemma true-clss-singleton-lit-of-implies-incl:
  I \models s \ unmark-l \ MLs \Longrightarrow lits-of-l \ MLs \subseteq I
  unfolding true-clss-def lits-of-def by auto
```

lemma true-annot-true-clss-cls:

```
MLs \models a \psi \Longrightarrow set (map \ unmark \ MLs) \models p \psi
  unfolding true-annot-def true-clss-cls-def true-cls-def
  by (auto dest: true-clss-singleton-lit-of-implies-incl)
lemma true-annots-true-clss-cls:
  MLs \models as \psi \implies set (map \ unmark \ MLs) \models ps \ \psi
  by (auto
    dest: true-clss-singleton-lit-of-implies-incl
    simp add: true-clss-def true-annots-def true-annot-def lits-of-def true-cls-def
    true-clss-clss-def)
lemma true-annots-decided-true-cls[iff]:
  map\ Decided\ M \models as\ N \longleftrightarrow set\ M \models s\ N
proof -
 have *: lit-of 'Decided' set M = set M unfolding lits-of-def by force
 show ?thesis by (simp add: true-annots-true-cls * lits-of-def)
qed
lemma true-annot-singleton[iff]: M \models a \{\#L\#\} \longleftrightarrow L \in lits-of-l M
  unfolding true-annot-def lits-of-def by auto
\mathbf{lemma}\ true\text{-}annots\text{-}true\text{-}clss\text{-}clss:
  A \models as \Psi \Longrightarrow unmark-l A \models ps \Psi
  {\bf unfolding} \ true\text{-}clss\text{-}def \ true\text{-}annots\text{-}def \ true\text{-}clss\text{-}def
  by (auto dest!: true-clss-singleton-lit-of-implies-incl
    simp: lits-of-def true-annot-def true-cls-def)
lemma true-annot-commute:
  M @ M' \models a D \longleftrightarrow M' @ M \models a D
  unfolding true-annot-def by (simp add: Un-commute)
lemma true-annots-commute:
  M @ M' \models as D \longleftrightarrow M' @ M \models as D
  unfolding true-annots-def by (auto simp: true-annot-commute)
lemma true-annot-mono[dest]:
  set\ I \subseteq set\ I' \Longrightarrow I \models a\ N \Longrightarrow I' \models a\ N
  using true-cls-mono-set-mset-l unfolding true-annot-def lits-of-def
 by (metis (no-types) Un-commute Un-upper1 image-Un sup.orderE)
lemma true-annots-mono:
  set \ I \subseteq set \ I' \Longrightarrow I \models as \ N \Longrightarrow I' \models as \ N
  unfolding true-annots-def by auto
```

Defined and undefined literals

We introduce the functions *defined-lit* and *undefined-lit* to know whether a literal is defined with respect to a list of decided literals (aka a trail in most cases).

Remark that undefined already exists and is a completely different Isabelle function.

```
definition defined-lit :: ('a, 'm) ann-lits \Rightarrow 'a literal \Rightarrow bool where defined-lit I \ L \longleftrightarrow (Decided \ L \in set \ I) \lor (\exists \ P. \ Propagated \ L \ P \in set \ I) \lor (Decided \ (-L) \in set \ I) \lor (\exists \ P. \ Propagated \ (-L) \ P \in set \ I)
abbreviation undefined-lit :: ('a, 'm) ann-lits \Rightarrow 'a literal \Rightarrow bool
```

```
where undefined-lit IL \equiv \neg defined-lit IL
lemma defined-lit-rev[simp]:
  defined-lit (rev\ M)\ L \longleftrightarrow defined-lit M\ L
  unfolding defined-lit-def by auto
lemma atm-imp-decided-or-proped:
  assumes x \in set I
  shows
   (Decided\ (-\ lit\text{-}of\ x)\in set\ I)
   \vee (Decided (lit-of x) \in set I)
   \vee (\exists l. \ Propagated (- \ lit of \ x) \ l \in set \ I)
   \vee (\exists l. Propagated (lit-of x) l \in set I)
  using assms ann-lit.exhaust-sel by metis
lemma literal-is-lit-of-decided:
 assumes L = lit - of x
 shows (x = Decided L) \lor (\exists l'. x = Propagated L l')
  using assms by (cases x) auto
\mathbf{lemma}\ true\text{-}annot\text{-}iff\text{-}decided\text{-}or\text{-}true\text{-}lit:
  defined-lit I \ L \longleftrightarrow (lits-of-l I \models l \ L \lor lits-of-l I \models l \ -L)
  unfolding defined-lit-def by (auto simp add: lits-of-def rev-image-eqI
   dest!: literal-is-lit-of-decided)
lemma consistent-inter-true-annots-satisfiable:
  consistent-interp (lits-of-l I) \Longrightarrow I \models as N \Longrightarrow satisfiable N
  by (simp add: true-annots-true-cls)
lemma defined-lit-map:
  defined-lit Ls L \longleftrightarrow atm\text{-}of \ L \in (\lambda l. \ atm\text{-}of \ (lit\text{-}of \ l)) 'set Ls
 unfolding defined-lit-def apply (rule iffI)
  using image-iff apply fastforce
 by (fastforce simp add: atm-of-eq-atm-of dest: atm-imp-decided-or-proped)
lemma defined-lit-uminus[iff]:
  defined-lit I (-L) \longleftrightarrow defined-lit I L
  unfolding defined-lit-def by auto
lemma Decided-Propagated-in-iff-in-lits-of-l:
  defined-lit I \ L \longleftrightarrow (L \in lits-of-l I \lor -L \in lits-of-l I)
  unfolding lits-of-def by (metis lits-of-def true-annot-iff-decided-or-true-lit true-lit-def)
lemma consistent-add-undefined-lit-consistent[simp]:
 assumes
    consistent-interp (lits-of-l Ls) and
    undefined-lit Ls L
  shows consistent-interp (insert L (lits-of-l Ls))
  using assms unfolding consistent-interp-def by (auto simp: Decided-Propagated-in-iff-in-lits-of-l)
lemma decided-empty[simp]:
  \neg defined-lit [] L
  unfolding defined-lit-def by simp
```

0.1.2 Backtracking

```
fun backtrack-split :: ('v, 'm) ann-lits
  \Rightarrow ('v, 'm) ann-lits \times ('v, 'm) ann-lits where
backtrack-split [] = ([], []) []
backtrack-split (Propagated L P # mlits) = apfst ((op #) (Propagated L P)) (backtrack-split mlits) |
backtrack-split (Decided L \# mlits) = ([], Decided L \# mlits)
lemma backtrack-split-fst-not-decided: a \in set (fst (backtrack-split l)) \Longrightarrow \neg is-decided a
  by (induct l rule: ann-lit-list-induct) auto
\mathbf{lemma}\ backtrack\text{-}split\text{-}snd\text{-}hd\text{-}decided:
  snd\ (backtrack-split\ l) \neq [] \implies is\text{-}decided\ (hd\ (snd\ (backtrack-split\ l)))}
  by (induct l rule: ann-lit-list-induct) auto
lemma backtrack-split-list-eq[simp]:
 fst\ (backtrack-split\ l)\ @\ (snd\ (backtrack-split\ l)) = l
 by (induct l rule: ann-lit-list-induct) auto
lemma backtrack-snd-empty-not-decided:
  backtrack\text{-}split\ M = (M'',\ []) \Longrightarrow \forall\ l \in set\ M.\ \neg\ is\text{-}decided\ l
  by (metis append-Nil2 backtrack-split-fst-not-decided backtrack-split-list-eq snd-conv)
\mathbf{lemma}\ backtrack\text{-}split\text{-}some\text{-}is\text{-}decided\text{-}then\text{-}snd\text{-}has\text{-}hd\text{:}
  \exists l \in set \ M. \ is\text{-}decided \ l \Longrightarrow \exists M' \ L' \ M''. \ backtrack\text{-}split \ M = (M'', \ L' \# \ M')
  by (metis backtrack-snd-empty-not-decided list.exhaust prod.collapse)
Another characterisation of the result of backtrack-split. This view allows some simpler proofs,
since take While and drop While are highly automated:
```

```
lemma backtrack-split-take While-drop While:
backtrack-split M = (take While (Not \ o \ is-decided) \ M, \ drop While (Not \ o \ is-decided) \ M)
by (induction M rule: ann-lit-list-induct) auto
```

0.1.3 Decomposition with respect to the First Decided Literals

In this section we define a function that returns a decomposition with the first decided literal. This function is useful to define the backtracking of DPLL.

Definition

The pattern get-all-ann-decomposition [] = [([], [])] is necessary otherwise, we can call the hd function in the other pattern.

```
fun get-all-ann-decomposition :: ('a, 'm) ann-lits
      ⇒ (('a, 'm) ann-lits × ('a, 'm) ann-lits) list where
get-all-ann-decomposition (Decided L # Ls) =
      (Decided L # Ls, []) # get-all-ann-decomposition Ls |
get-all-ann-decomposition (Propagated L P# Ls) =
      (apsnd ((op #) (Propagated L P)) (hd (get-all-ann-decomposition Ls)))
      # tl (get-all-ann-decomposition Ls) |
get-all-ann-decomposition [] = [([], [])]
value get-all-ann-decomposition [Propagated A5 B5, Decided C4, Propagated A3 B3,
Propagated A2 B2, Decided C1, Propagated A0 B0]
```

Now we can prove several simple properties about the function.

```
lemma get-all-ann-decomposition-never-empty[iff]:
  get-all-ann-decomposition M = [] \longleftrightarrow False
 by (induct M, simp) (rename-tac a xs, case-tac a, auto)
lemma get-all-ann-decomposition-never-empty-sym[iff]:
  [] = get\text{-}all\text{-}ann\text{-}decomposition } M \longleftrightarrow False
 using get-all-ann-decomposition-never-empty[of M] by presburger
lemma get-all-ann-decomposition-decomp:
  hd (get-all-ann-decomposition S) = (a, c) \Longrightarrow S = c @ a
proof (induct S arbitrary: a c)
 case Nil
 then show ?case by simp
next
 case (Cons \ x \ A)
 then show ?case by (cases x; cases hd (get-all-ann-decomposition A)) auto
qed
\mathbf{lemma} \ \ \textit{get-all-ann-decomposition-backtrack-split}:
  backtrack-split S = (M, M') \longleftrightarrow hd (get-all-ann-decomposition S) = (M', M)
proof (induction S arbitrary: M M')
 case Nil
 then show ?case by auto
next
 case (Cons\ a\ S)
 then show ?case using backtrack-split-takeWhile-dropWhile by (cases a) force+
\mathbf{lemma} \ get-all-ann-decomposition-Nil-backtrack-split-snd-Nil:
  get-all-ann-decomposition S = [([], A)] \Longrightarrow snd (backtrack-split S) = []
 by (simp add: get-all-ann-decomposition-backtrack-split sndI)
This functions says that the first element is either empty or starts with a decided element of
the list.
\mathbf{lemma} \ \textit{get-all-ann-decomposition-length-1-fst-empty-or-length-1}:
 assumes get-all-ann-decomposition M = (a, b) \# [
 shows a = [] \lor (length \ a = 1 \land is\text{-}decided \ (hd \ a) \land hd \ a \in set \ M)
 using assms
proof (induct M arbitrary: a b rule: ann-lit-list-induct)
 case Nil then show ?case by simp
next
 case (Decided L mark)
 then show ?case by simp
 case (Propagated\ L\ mark\ M)
 then show ?case by (cases get-all-ann-decomposition M) force+
qed
lemma\ get-all-ann-decomposition-fst-empty-or-hd-in-M:
 assumes get-all-ann-decomposition M = (a, b) \# l
 shows a = [] \lor (is\text{-}decided (hd a) \land hd a \in set M)
 using assms apply (induct M arbitrary: a b rule: ann-lit-list-induct)
   apply auto[2]
  \mathbf{by}\ (metis\ UnCI\ backtrack-split-snd-hd-decided\ get-all-ann-decomposition-backtrack-split
   get-all-ann-decomposition-decomp hd-in-set list.sel(1) set-append snd-conv)
```

```
\mathbf{lemma} \ \ \textit{get-all-ann-decomposition-snd-not-decided} :
 assumes (a, b) \in set (get-all-ann-decomposition M)
 and L \in set b
 shows \neg is\text{-}decided\ L
 using assms apply (induct M arbitrary: a b rule: ann-lit-list-induct, simp)
 by (rename-tac L' xs a b, case-tac get-all-ann-decomposition xs; fastforce)+
\mathbf{lemma}\ tl-get-all-ann-decomposition-skip-some:
 assumes x \in set (tl (get-all-ann-decomposition M1))
 shows x \in set (tl (get-all-ann-decomposition (M0 @ M1)))
 using assms
 by (induct M0 rule: ann-lit-list-induct)
    (auto\ simp\ add:\ list.set-sel(2))
lemma hd-qet-all-ann-decomposition-skip-some:
 assumes (x, y) = hd (get-all-ann-decomposition M1)
 shows (x, y) \in set (get-all-ann-decomposition (M0 @ Decided K # M1))
 using assms
proof (induction M0 rule: ann-lit-list-induct)
 case Nil
 then show ?case by auto
next
 case (Decided\ L\ M\theta)
 then show ?case by auto
next
 case (Propagated L C M0) note xy = this(1)[OF\ this(2-)] and hd = this(2)
 then show ?case
   by (cases get-all-ann-decomposition (M0 @ Decided K \# M1))
     (auto dest!: get-all-ann-decomposition-decomp
        arg-cong[of get-all-ann-decomposition - - hd])
qed
{\bf lemma}\ in-get-all-ann-decomposition-in-get-all-ann-decomposition-prepend:
 (a, b) \in set (get-all-ann-decomposition M') \Longrightarrow
   \exists b'. (a, b' @ b) \in set (get-all-ann-decomposition (M @ M'))
 apply (induction M rule: ann-lit-list-induct)
   apply (metis append-Nil)
  apply auto
 by (rename-tac L' m xs, case-tac get-all-ann-decomposition (xs @ M')) auto
lemma in-get-all-ann-decomposition-decided-or-empty:
 assumes (a, b) \in set (get-all-ann-decomposition M)
 shows a = [] \lor (is\text{-}decided (hd a))
 using assms
proof (induct M arbitrary: a b rule: ann-lit-list-induct)
 case Nil then show ?case by simp
next
 case (Decided 1 M)
 then show ?case by auto
 case (Propagated\ l\ mark\ M)
 then show ?case by (cases get-all-ann-decomposition M) force+
qed
\mathbf{lemma}\ \textit{get-all-ann-decomposition-remove-undecided-length}:
 assumes \forall l \in set M'. \neg is\text{-}decided l
```

```
shows length (get-all-ann-decomposition (M' @ M'')) = length (get-all-ann-decomposition M'')
 using assms by (induct M' arbitrary: M" rule: ann-lit-list-induct) auto
\mathbf{lemma}\ \textit{get-all-ann-decomposition-not-is-decided-length}:
 assumes \forall l \in set M'. \neg is\text{-}decided l
 shows 1 + length (get-all-ann-decomposition (Propagated <math>(-L) P \# M))
= length (get-all-ann-decomposition (M' @ Decided L \# M))
using assms get-all-ann-decomposition-remove-undecided-length by fastforce
lemma get-all-ann-decomposition-last-choice:
 assumes tl (get-all-ann-decomposition (M' @ Decided L \# M)) \neq []
 and \forall l \in set M'. \neg is\text{-}decided l
 and hd (tl (get-all-ann-decomposition (M' @ Decided L \# M))) = (M0', M0)
 shows hd (get-all-ann-decomposition (Propagated (-L) P \# M)) = (M0', Propagated (-L) P \# M0)
 using assms by (induct M' rule: ann-lit-list-induct) auto
{\bf lemma}\ \textit{get-all-ann-decomposition-except-last-choice-equal:}
 assumes \forall l \in set M'. \neg is-decided l
 shows tl (get-all-ann-decomposition (Propagated (-L) P \# M))
= tl \ (tl \ (get-all-ann-decomposition \ (M' @ Decided \ L \ \# \ M)))
 using assms by (induct M' rule: ann-lit-list-induct) auto
\mathbf{lemma}\ \textit{get-all-ann-decomposition-hd-hd}:
 assumes get-all-ann-decomposition Ls = (M, C) \# (M0, M0') \# l
 shows tl\ M = M0' @ M0 \land is\text{-}decided\ (hd\ M)
 using assms
proof (induct Ls arbitrary: M C M0 M0'l)
 case Nil
 then show ?case by simp
 case (Cons a Ls M C M0 M0' l) note IH = this(1) and g = this(2)
 { fix L level
   assume a: a = Decided L
   have Ls = M0' @ M0
     using g a by (force intro: get-all-ann-decomposition-decomp)
   then have tl\ M = M0' @ M0 \land is\text{-}decided\ (hd\ M) using q\ a by auto
 moreover {
   \mathbf{fix} \ L \ P
   assume a: a = Propagated L P
   have tl\ M = M0' @ M0 \land is\text{-}decided\ (hd\ M)
     using IH Cons.prems unfolding a by (cases get-all-ann-decomposition Ls) auto
 ultimately show ?case by (cases a) auto
qed
lemma get-all-ann-decomposition-exists-prepend[dest]:
 assumes (a, b) \in set (get-all-ann-decomposition M)
 shows \exists c. M = c @ b @ a
 using assms apply (induct M rule: ann-lit-list-induct)
   apply simp
 by (rename-tac L' xs, case-tac get-all-ann-decomposition xs;
   auto dest!: arg-cong[of get-all-ann-decomposition - - hd]
     get-all-ann-decomposition-decomp)+
```

 ${f lemma}\ get ext{-}all ext{-}ann ext{-}decomposition ext{-}incl:$

```
assumes (a, b) \in set (get-all-ann-decomposition M)
 shows set b \subseteq set M and set a \subseteq set M
  using assms get-all-ann-decomposition-exists-prepend by fastforce+
lemma get-all-ann-decomposition-exists-prepend':
  assumes (a, b) \in set (get-all-ann-decomposition M)
 obtains c where M = c @ b @ a
  using assms apply (induct M rule: ann-lit-list-induct)
   apply auto|1|
 by (rename-tac L' xs, case-tac hd (get-all-ann-decomposition xs),
   auto dest!: get-all-ann-decomposition-decomp simp add: list.set-sel(2))+
\mathbf{lemma}\ union\text{-}in\text{-}get\text{-}all\text{-}ann\text{-}decomposition\text{-}is\text{-}subset:}
  assumes (a, b) \in set (get-all-ann-decomposition M)
 shows set \ a \cup set \ b \subseteq set \ M
 using assms by force
lemma Decided-cons-in-qet-all-ann-decomposition-append-Decided-cons:
 \exists M1\ M2.\ (Decided\ K\ \#\ M1,\ M2) \in set\ (qet-all-ann-decomposition\ (c\ @\ Decided\ K\ \#\ c'))
 apply (induction c rule: ann-lit-list-induct)
   apply auto[2]
 apply (rename-tac L xs,
     case-tac hd (get-all-ann-decomposition (xs @ Decided K \# c')))
 apply (case-tac get-all-ann-decomposition (xs @ Decided K \# c'))
 by auto
\mathbf{lemma}\ \mathit{fst-get-all-ann-decomposition-prepend-not-decided}:
 assumes \forall m \in set MS. \neg is\text{-}decided m
 shows set (map\ fst\ (get-all-ann-decomposition\ M))
   = set (map fst (get-all-ann-decomposition (MS @ M)))
   using assms apply (induction MS rule: ann-lit-list-induct)
   apply auto|2|
   by (rename-tac L m xs; case-tac get-all-ann-decomposition (xs @ M)) simp-all
Entailment of the Propagated by the Decided Literal
lemma get-all-ann-decomposition-snd-union:
  set M = \{ \} (set \text{ 'snd 'set (qet-all-ann-decomposition } M)) \cup \{ L \mid L. \text{ is-decided } L \land L \in set M \}
 (is ?M M = ?U M \cup ?Ls M)
proof (induct M rule: ann-lit-list-induct)
  case Nil
 then show ?case by simp
next
 case (Decided L M) note IH = this(1)
 then have Decided L \in ?Ls \ (Decided L \# M) by auto
 moreover have ?U (Decided L \# M) = ?U M by auto
 moreover have ?M M = ?U M \cup ?Ls M using IH by auto
 ultimately show ?case by auto
next
 case (Propagated L m M)
 then show ?case by (cases (get-all-ann-decomposition M)) auto
qed
definition all-decomposition-implies :: 'a literal multiset set
 \Rightarrow (('a, 'm) ann-lits \times ('a, 'm) ann-lits) list \Rightarrow bool where
all-decomposition-implies N S \longleftrightarrow (\forall (Ls, seen) \in set S. unmark-l Ls \cup N \models ps unmark-l seen)
```

```
lemma all-decomposition-implies-empty [iff]:
  all-decomposition-implies N \parallel unfolding all-decomposition-implies-def by auto
lemma all-decomposition-implies-single[iff]:
  all-decomposition-implies N [(Ls, seen)] \longleftrightarrow unmark-l Ls \cup N \models ps unmark-l seen
  unfolding all-decomposition-implies-def by auto
lemma all-decomposition-implies-append[iff]:
  all-decomposition-implies N (S @ S')
   \longleftrightarrow (all-decomposition-implies N S \land all-decomposition-implies N S')
 unfolding all-decomposition-implies-def by auto
lemma all-decomposition-implies-cons-pair[iff]:
  all-decomposition-implies N ((Ls, seen) \# S')
   \longleftrightarrow (all-decomposition-implies N [(Ls, seen)] \land all-decomposition-implies N S')
 unfolding all-decomposition-implies-def by auto
lemma all-decomposition-implies-cons-single[iff]:
  all-decomposition-implies N \ (l \# S') \longleftrightarrow
   (\mathit{unmark-l}\ (\mathit{fst}\ l)\ \cup\ N\ \models \! \mathit{ps}\ \mathit{unmark-l}\ (\mathit{snd}\ l)\ \land
     all-decomposition-implies NS'
 unfolding all-decomposition-implies-def by auto
lemma all-decomposition-implies-trail-is-implied:
 assumes all-decomposition-implies N (get-all-ann-decomposition M)
 shows N \cup \{unmark \ L \mid L. \ is\text{-}decided \ L \land L \in set \ M\}
   \models ps \ unmark \ `(\ )(set \ `snd \ `set \ (get-all-ann-decomposition \ M))
using assms
proof (induct length (get-all-ann-decomposition M) arbitrary: M)
 case \theta
 then show ?case by auto
next
 case (Suc n) note IH = this(1) and length = this(2) and decomp = this(3)
 consider
     (le1) length (get-all-ann-decomposition M) \leq 1
    (qt1) length (qet\text{-}all\text{-}ann\text{-}decomposition }M) > 1
   by arith
  then show ?case
   proof cases
     then obtain a b where g: get-all-ann-decomposition M = (a, b) \# []
       by (cases get-all-ann-decomposition M) auto
     moreover {
       assume a = []
       then have ?thesis using Suc.prems g by auto
     moreover {
       assume l: length a = 1 and m: is-decided (hd a) and hd: hd a \in set M
       then have unmark\ (hd\ a) \in \{unmark\ L\ | L.\ is\text{-}decided\ L \land L \in set\ M\} by auto
       then have H: unmark-l \ a \cup N \subseteq N \cup \{unmark \ L \mid L. \ is\text{-decided} \ L \land L \in set \ M\}
         using l by (cases a) auto
       have f1: unmark-l \ a \cup N \models ps \ unmark-l \ b
         using decomp unfolding all-decomposition-implies-def g by simp
       have ?thesis
         apply (rule true-clss-clss-subset) using f1 H g by auto
```

```
}
 ultimately show ?thesis
   using get-all-ann-decomposition-length-1-fst-empty-or-length-1 by blast
next
 case gt1
 then obtain Ls\theta \ seen\theta \ M' where
   Ls0: get-all-ann-decomposition M = (Ls0, seen0) \# get-all-ann-decomposition M' and
   length': length (get-all-ann-decomposition M') = n and
   M'-in-M: set M' \subseteq set M
   using length by (induct M rule: ann-lit-list-induct) (auto simp: subset-insertI2)
 let ?d = \bigcup (set 'snd 'set (get-all-ann-decomposition M'))
 let ?unM = \{unmark \ L \mid L. \ is\text{-}decided \ L \land L \in set \ M\}
 let ?unM' = \{unmark \ L \mid L. \ is\text{-}decided \ L \land L \in set \ M'\}
   assume n = 0
   then have get-all-ann-decomposition M' = [] using length' by auto
   then have ?thesis using Suc.prems unfolding all-decomposition-implies-def Ls0 by auto
 moreover {
   assume n: n > 0
   then obtain Ls1 seen1 l where
     Ls1: get-all-ann-decomposition M' = (Ls1, seen1) \# l
     using length' by (induct M' rule: ann-lit-list-induct) auto
   have all-decomposition-implies N (get-all-ann-decomposition M')
     using decomp unfolding Ls0 by auto
   then have N: N \cup ?unM' \models ps \ unmark-s ?d
     using IH length' by auto
   have l: N \cup ?unM' \subseteq N \cup ?unM
     using M'-in-M by auto
   from true-clss-clss-subset[OF this N]
   have \Psi N: N \cup ?unM \models ps \ unmark-s ?d \ by \ auto
   have is-decided (hd Ls0) and LS: tl Ls0 = seen1 @ Ls1
     using get-all-ann-decomposition-hd-hd[of M] unfolding Ls0 Ls1 by auto
   have LSM: seen 1 @ Ls1 = M' using qet-all-ann-decomposition-decomp[of M'] Ls1 by auto
   have M': set M' = ?d \cup \{L \mid L. \text{ is-decided } L \land L \in \text{set } M'\}
     using get-all-ann-decomposition-snd-union by auto
   {
     assume Ls\theta \neq [
     then have hd Ls\theta \in set M
       using get-all-ann-decomposition-fst-empty-or-hd-in-M Ls0 by blast
     then have N \cup ?unM \models p \ unmark \ (hd \ Ls0)
       using (is-decided (hd Ls0)) by (metis (mono-tags, lifting) UnCI mem-Collect-eq
         true-clss-cls-in)
   } note hd-Ls\theta = this
   have l: unmark ' (?d \cup \{L \mid L. is\text{-}decided \ L \land L \in set \ M'\}) = unmark\text{-}s ?d \cup ?unM'
   have N \cup ?unM' \models ps \ unmark \ (?d \cup \{L \mid L. \ is\text{-decided} \ L \land L \in set \ M'\})
     unfolding l using N by (auto simp: all-in-true-clss-clss)
   then have t: N \cup ?unM' \models ps \ unmark-l \ (tl \ Ls\theta)
     using M' unfolding LS LSM by auto
   then have N \cup ?unM \models ps \ unmark-l \ (tl \ Ls\theta)
     using M'-in-M true-clss-clss-subset [OF - t, of N \cup ?unM] by auto
```

```
then have N \cup ?unM \models ps \ unmark-l \ Ls0
         using hd-Ls\theta by (cases Ls\theta) auto
       moreover have unmark-l Ls\theta \cup N \models ps unmark-l seen\theta
         using decomp unfolding Ls0 by simp
       moreover have \bigwedge M Ma. (M::'a \ literal \ multiset \ set) \cup Ma \models ps \ M
         by (simp add: all-in-true-clss-clss)
       ultimately have \Psi: N \cup ?unM \models ps \ unmark-l \ seen 0
         by (meson true-clss-clss-left-right true-clss-clss-union-and true-clss-clss-union-l-r)
       moreover have unmark ' (set seen0 \cup ?d) = unmark-l seen0 \cup unmark-s ?d
         by auto
       ultimately have ?thesis using \Psi N unfolding Ls\theta by simp
     ultimately show ?thesis by auto
   qed
\mathbf{qed}
\mathbf{lemma}\ all\text{-}decomposition\text{-}implies\text{-}propagated\text{-}lits\text{-}are\text{-}implied:}
  assumes all-decomposition-implies N (get-all-ann-decomposition M)
 shows N \cup \{unmark\ L\ | L.\ is\text{-}decided\ L \land L \in set\ M\} \models ps\ unmark\text{-}l\ M
    (is ?I \models ps ?A)
proof -
  have ?I \models ps \ unmark-s \{L \mid L. \ is-decided \ L \land L \in set \ M\}
   by (auto intro: all-in-true-clss-clss)
  moreover have ?I \models ps \ unmark \ ` \bigcup (set \ `snd \ `set \ (get-all-ann-decomposition \ M))
   using all-decomposition-implies-trail-is-implied assms by blast
  ultimately have N \cup \{unmark \ m \mid m. \ is\text{-}decided \ m \land m \in set \ M\}
   \models ps\ unmark\ `\bigcup (set\ `snd\ `set\ (get-all-ann-decomposition\ M))
     \cup unmark ' \{m \mid m. is\text{-decided } m \land m \in set M\}
     by blast
  then show ?thesis
   by (metis\ (no\text{-}types)\ get\text{-}all\text{-}ann\text{-}decomposition\text{-}snd\text{-}union}[of\ M]\ image\text{-}Un)
qed
lemma all-decomposition-implies-insert-single:
  all-decomposition-implies N M \Longrightarrow all-decomposition-implies (insert C N) M
  unfolding all-decomposition-implies-def by auto
```

0.1.4 Negation of Clauses

We define the negation of a 'a Partial-Clausal-Logic.clause: it converts it from the a single clause to a set of clauses, wherein each clause is a single negated literal.

```
unfolding CNot-def by auto
lemma CNot-eq-empty[iff]:
  CNot\ D = \{\} \longleftrightarrow D = \{\#\}
  unfolding CNot-def by (auto simp add: multiset-eqI)
lemma in-CNot-implies-uminus:
  assumes L \in \# D and M \models as CNot D
  shows M \models a \{\#-L\#\} \text{ and } -L \in \textit{lits-of-l } M
  using assms by (auto simp: true-annots-def true-annot-def CNot-def)
lemma CNot\text{-}remdups\text{-}mset[simp]:
  CNot (remdups-mset A) = CNot A
  unfolding CNot-def by auto
lemma Ball-CNot-Ball-mset[simp]:
  (\forall x \in CNot \ D. \ P \ x) \longleftrightarrow (\forall L \in \# \ D. \ P \ \{\#-L\#\})
 unfolding CNot-def by auto
lemma consistent-CNot-not:
  assumes consistent-interp I
  shows I \models s \ CNot \ \varphi \Longrightarrow \neg I \models \varphi
  using assms unfolding consistent-interp-def true-clss-def true-cls-def by auto
lemma total-not-true-cls-true-clss-CNot:
  assumes total-over-m\ I\ \{\varphi\} and \neg I \models \varphi
 shows I \models s CNot \varphi
  \mathbf{using}\ assms\ \mathbf{unfolding}\ total-over-m-def\ total-over-set-def\ true-clss-def\ true-cls-def\ CNot-def
   apply clarify
  by (rename-tac x L, case-tac L) (force intro: pos-lit-in-atms-of neg-lit-in-atms-of)+
lemma total-not-CNot:
  assumes total-over-m I \{\varphi\} and \neg I \models s \ CNot \ \varphi
 shows I \models \varphi
  using assms total-not-true-cls-true-clss-CNot by auto
lemma atms-of-ms-CNot-atms-of[simp]:
  atms-of-ms (CNot \ C) = atms-of C
  unfolding atms-of-ms-def atms-of-def CNot-def by fastforce
\mathbf{lemma}\ true\text{-}clss\text{-}clss\text{-}contradiction\text{-}true\text{-}clss\text{-}cls\text{-}false:
  C \in D \Longrightarrow D \models ps \ CNot \ C \Longrightarrow D \models p \ \{\#\}
  unfolding true-clss-cls-def true-clss-cls-def total-over-m-def
  by (metis Un-commute atms-of-empty atms-of-ms-CNot-atms-of atms-of-ms-insert atms-of-ms-union
   consistent-CNot-not insert-absorb sup-bot.left-neutral true-clss-def)
lemma true-annots-CNot-all-atms-defined:
  assumes M \models as \ CNot \ T \ and \ a1: L \in \# \ T
  shows atm\text{-}of\ L\in atm\text{-}of ' lits\text{-}of\text{-}l\ M
  by (metis assms atm-of-uninus image-eqI in-CNot-implies-uninus(1) true-annot-singleton)
lemma true-annots-CNot-all-uminus-atms-defined:
  assumes M \models as \ CNot \ T \ and \ a1: -L \in \# \ T
  shows atm\text{-}of\ L\in atm\text{-}of ' lits\text{-}of\text{-}l\ M
  by (metis assms atm-of-uninus image-eqI in-CNot-implies-uninus(1) true-annot-singleton)
```

```
lemma true-clss-clss-false-left-right:
 assumes \{\{\#L\#\}\}\cup B\models p \{\#\}
 shows B \models ps \ CNot \ \{\#L\#\}
 unfolding true-clss-cls-def true-clss-cls-def
proof (intro allI impI)
 \mathbf{fix} I
 assume
   tot: total-over-m I (B \cup CNot \{\#L\#\}) and
   cons: consistent-interp I and
   I: I \models s B
 have total-over-m I(\{\{\#L\#\}\}\cup B) using tot by auto
 then have \neg I \models s insert \{\#L\#\} B
   using assms cons unfolding true-clss-cls-def by simp
 then show I \models s \ CNot \ \{\#L\#\}
   using tot I by (cases L) auto
qed
lemma true-annots-true-cls-def-iff-negation-in-model:
  M \models as \ CNot \ C \longleftrightarrow (\forall \ L \in \# \ C. \ -L \in lits \text{-}of \text{-}l \ M)
 {\bf unfolding}\ \mathit{CNot-def}\ \mathit{true-annots-true-cls}\ \mathit{true-clss-def}\ {\bf by}\ \mathit{auto}
lemma true-annot-CNot-diff:
  I \models as \ CNot \ C \Longrightarrow I \models as \ CNot \ (C - C')
 by (auto simp: true-annots-true-cls-def-iff-negation-in-model dest: in-diffD)
lemma CNot-mset-replicate[simp]:
  CNot (mset\ (replicate\ n\ L)) = (if\ n = 0\ then\ \{\}\ else\ \{\{\#-L\#\}\})
 by (induction \ n) auto
lemma consistent-CNot-not-tautology:
  consistent-interp M \Longrightarrow M \models s \ CNot \ D \Longrightarrow \neg tautology \ D
 by (metis atms-of-ms-CNot-atms-of consistent-CNot-not satisfiable-carac' satisfiable-def
   tautology-def total-over-m-def)
lemma atms-of-ms-CNot-atms-of-ms: atms-of-ms (CNot CC) = atms-of-ms {CC}
 by simp
lemma total-over-m-CNot-toal-over-m[simp]:
  total-over-m \ I \ (CNot \ C) = total-over-set I \ (atms-of C)
 unfolding total-over-m-def total-over-set-def by auto
The following lemma is very useful when in the goal appears an axioms like -L=K: this
lemma allows the simplifier to rewrite L.
lemma uminus-lit-swap: -(a::'a \ literal) = i \longleftrightarrow a = -i
 by auto
\mathbf{lemma}\ true\text{-}clss\text{-}cls\text{-}plus\text{-}CNot:
 assumes
    CC-L: A \models p CC + \{\#L\#\} and
    CNot\text{-}CC: A \models ps \ CNot \ CC
 shows A \models p \{\#L\#\}
 unfolding true-clss-clss-def true-clss-cls-def CNot-def total-over-m-def
proof (intro allI impI)
 \mathbf{fix} I
 assume
```

```
tot: total-over-set I (atms-of-ms (A \cup \{\{\#L\#\}\})) and
   cons: consistent-interp\ I and
   I: I \models s A
  let ?I = I \cup \{Pos\ P | P.\ P \in atms\text{-}of\ CC \land P \notin atm\text{-}of `I'\}
  have cons': consistent-interp ?I
   using cons unfolding consistent-interp-def
   by (auto simp: uminus-lit-swap atms-of-def rev-image-eqI)
  have I': ?I \models s A
   using I true-clss-union-increase by blast
  have tot-CNot: total-over-m ?I (A \cup CNot CC)
   using tot atms-of-s-def by (fastforce simp: total-over-m-def total-over-set-def)
  then have tot-I-A-CC-L: total-over-m ?I (A \cup \{CC + \{\#L\#\}\})
   using tot unfolding total-over-m-def total-over-set-atm-of by auto
  then have ?I \models CC + \{\#L\#\} \text{ using } CC\text{-}L \text{ cons' } I' \text{ unfolding } true\text{-}clss\text{-}cls\text{-}def \text{ by } blast
  moreover
   have ?I \models s \ CNot \ CC \ using \ CNot-CC \ cons' \ I' \ tot-CNot \ unfolding \ true-clss-clss-def \ by \ auto
   then have \neg A \models p \ CC
     by (metis (no-types, lifting) I' atms-of-ms-CNot-atms-of-ms atms-of-ms-union cons'
        consistent-CNot-not tot-CNot total-over-m-def true-clss-cls-def)
   then have \neg ?I \models CC using \langle ?I \models s \ CNot \ CC \rangle \ cons' \ consistent-CNot-not \ by \ blast
  ultimately have ?I \models \{\#L\#\} by blast
  then show I \models \{\#L\#\}
   by (metis (no-types, lifting) atms-of-ms-union cons' consistent-CNot-not tot total-not-CNot
      total-over-m-def total-over-set-union true-clss-union-increase)
ged
lemma true-annots-CNot-lit-of-notin-skip:
  assumes LM: L \# M \models as \ CNot \ A \ and \ LA: \ lit-of \ L \notin \# A - lit-of \ L \notin \# A
  shows M \models as \ CNot \ A
  using LM unfolding true-annots-def Ball-def
proof (intro allI impI)
  assume H: \forall x. \ x \in \mathit{CNot}\ A \longrightarrow L \# M \models ax \ \text{and}\ l: l \in \mathit{CNot}\ A
  then have L \# M \models a l by auto
 then show M \models a l \text{ using } LA l \text{ by } (cases L) (auto simp: CNot-def)
 qed
\mathbf{lemma}\ true\text{-}clss\text{-}clss\text{-}union\text{-}false\text{-}true\text{-}clss\text{-}clss\text{-}cnot\text{:}
  A \cup \{B\} \models ps \{\{\#\}\} \longleftrightarrow A \models ps \ CNot \ B
  using total-not-CNot consistent-CNot-not unfolding total-over-m-def true-clss-clss-def
  by fastforce
lemma true-annot-remove-hd-if-notin-vars:
  assumes a \# M' \models a D and atm\text{-}of (lit\text{-}of a) \notin atms\text{-}of D
  shows M' \models a D
  using assms true-cls-remove-hd-if-notin-vars unfolding true-annot-def by auto
lemma true-annot-remove-if-notin-vars:
  assumes M @ M' \models a D and \forall x \in atms-of D. x \notin atm-of `lits-of-l M
 shows M' \models a D
  using assms by (induct M) (auto dest: true-annot-remove-hd-if-notin-vars)
{f lemma}\ true\mbox{-}annots\mbox{-}remove\mbox{-}if\mbox{-}notin\mbox{-}vars:
  assumes M @ M' \models as D and \forall x \in atms - of - ms D. x \notin atm - of `lits - of - l M
  shows M' \models as D unfolding true-annots-def
```

```
using assms unfolding true-annots-def atms-of-ms-def
 by (force dest: true-annot-remove-if-notin-vars)
\mathbf{lemma}\ \mathit{all-variables-defined-not-imply-cnot}:
 assumes
   \forall s \in atms\text{-}of\text{-}ms \{B\}. \ s \in atm\text{-}of \text{ '} lits\text{-}of\text{-}l \ A \text{ and }
   \neg A \models a B
 shows A \models as \ CNot \ B
 unfolding true-annot-def true-annots-def Ball-def CNot-def true-lit-def
proof (clarify, rule ccontr)
 assume LB: L \in \# B and \neg lits-of-l A \models l - L
 then have atm\text{-}of\ L\in atm\text{-}of ' lits\text{-}of\text{-}l\ A
   using assms(1) by (simp add: atm-of-lit-in-atms-of lits-of-def)
  then have L \in lits-of-l A \lor -L \in lits-of-l A
   using atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set by metis
  then have L \in lits-of-l A using \langle \neg lits-of-l A \models l - L \rangle by auto
 then show False
   using LB assms(2) unfolding true-annot-def true-lit-def true-cls-def Bex-def
   by blast
qed
lemma CNot-union-mset[simp]:
  CNot (A \# \cup B) = CNot A \cup CNot B
 unfolding CNot-def by auto
0.1.5
          Other
abbreviation no-dup L \equiv distinct \ (map \ (\lambda l. \ atm-of \ (lit-of \ l)) \ L)
lemma no-dup-rev[simp]:
 no-dup (rev M) \longleftrightarrow no-dup M
 by (auto simp: rev-map[symmetric])
lemma no-dup-length-eq-card-atm-of-lits-of-l:
 assumes no-dup M
 shows length M = card (atm-of 'lits-of-l M)
 using assms unfolding lits-of-def by (induct M) (auto simp add: image-image)
lemma distinct-consistent-interp:
  no\text{-}dup\ M \Longrightarrow consistent\text{-}interp\ (lits\text{-}of\text{-}l\ M)
proof (induct M)
 case Nil
 show ?case by auto
next
 case (Cons\ L\ M)
 then have a1: consistent-interp (lits-of-l M) by auto
 have a2: atm-of (lit-of L) \notin (\lambda l. atm-of (lit-of l)) 'set M using Cons.prems by auto
 have undefined-lit M (lit-of L)
   using a2 unfolding defined-lit-map by fastforce
  then show ?case
   using a1 by simp
\mathbf{lemma}\ distinct\text{-} get\text{-}all\text{-}ann\text{-}decomposition\text{-}no\text{-}dup:
 assumes (a, b) \in set (get-all-ann-decomposition M)
```

```
and no-dup M
 shows no-dup (a @ b)
 using assms by force
lemma true-annots-lit-of-notin-skip:
  assumes L \# M \models as \ CNot \ A
 and -lit-of L \notin \# A
 and no-dup (L \# M)
 shows M \models as \ CNot \ A
proof
 have \forall l \in \# A. -l \in lits\text{-}of\text{-}l \ (L \# M)
   using assms(1) in-CNot-implies-uminus(2) by blast
 moreover
   have atm\text{-}of\ (lit\text{-}of\ L) \notin atm\text{-}of\ `lits\text{-}of\text{-}l\ M
     using assms(3) unfolding lits-of-def by force
   then have - lit-of L \notin lits-of-l M unfolding lits-of-def
     by (metis (no-types) atm-of-uminus imageI)
 ultimately have \forall l \in \# A. -l \in lits\text{-}of\text{-}l M
   using assms(2) by (metis\ insert-iff\ list.simps(15)\ lits-of-insert\ uminus-of-uminus-id)
 then show ?thesis by (auto simp add: true-annots-def)
qed
```

0.1.6 Extending Entailments to multisets

We have defined previous entailment with respect to sets, but we also need a multiset version depending on the context. The conversion is simple using the function *set-mset* (in this direction, there is no loss of information).

```
abbreviation true-annots-mset (infix \models asm 50) where
I \models asm \ C \equiv I \models as \ (set\text{-}mset \ C)
abbreviation true-clss-clss-m:: 'v clause multiset \Rightarrow 'v clause multiset \Rightarrow bool (infix \models psm 50)
I \models psm \ C \equiv set\text{-}mset \ I \models ps \ (set\text{-}mset \ C)
Analog of theorem true-clss-clss-subsetE
lemma true-clss-clssm-subsetE: N \models psm B \Longrightarrow A \subseteq \# B \Longrightarrow N \models psm A
  using set-mset-mono true-clss-clss-subsetE by blast
abbreviation true-clss-cls-m:: 'a clause multiset \Rightarrow 'a clause \Rightarrow bool (infix \models pm \ 50) where
I \models pm \ C \equiv set\text{-}mset \ I \models p \ C
abbreviation distinct-mset-mset :: 'a multiset multiset \Rightarrow bool where
distinct-mset-mset \Sigma \equiv distinct-mset-set (set-mset \Sigma)
abbreviation all-decomposition-implies-m where
all-decomposition-implies-m A B \equiv all-decomposition-implies (set-mset A) B
abbreviation atms-of-mm :: 'a literal multiset multiset \Rightarrow 'a set where
atms-of-mm U \equiv atms-of-ms (set-mset U)
Other definition using Union-mset
lemma atms-of-mm U \equiv set\text{-mset} (\bigcup \# image\text{-mset} (image\text{-mset} atm\text{-of}) U)
  unfolding atms-of-ms-def by (auto simp: atms-of-def)
```

abbreviation true-clss-m:: 'a interp \Rightarrow 'a clause multiset \Rightarrow bool (infix \models sm 50) where $I \models$ sm $C \equiv I \models$ s set-mset C

abbreviation true-clss-ext-m (infix \models sextm 49) where $I \models$ sextm $C \equiv I \models$ sext set-mset C

 $\label{eq:clauses} \textbf{type-synonym} \ 'v \ clauses = 'v \ clause \ multiset \\ \textbf{end}$

Chapter 1

NOT's CDCL and DPLL

theory CDCL-WNOT-Measure imports Main List-More begin

The organisation of the development is the following:

- CDCL_WNOT_Measure.thy contains the measure used to show the termination the core of CDCL.
- CDCL_NOT. thy contains the specification of the rules: the rules are defined, and we proof the correctness and termination for some strategies CDCL.
- DPLL_NOT.thy contains the DPLL calculus based on the CDCL version.
- DPLL_W.thy contains Weidenbach's version of DPLL and the proof of equivalence between the two DPLL versions.

1.1 Measure

This measure show the termination of the core of CDCL: each step improves the number of literals we know for sure.

This measure can also be seen as the increasing lexicographic order: it is an order on bounded sequences, when each element is bounded. The proof involves a measure like the one defined here (the same?).

```
definition \mu_C :: nat \Rightarrow nat \Rightarrow nat \ list \Rightarrow nat \ \text{where}
\mu_C \ s \ b \ M \equiv (\sum i=0... < length \ M. \ M!i * b \ (s+i-length \ M))
\begin{array}{l} \text{lemma} \ \mu_C \text{-}Nil[simp]: \\ \mu_C \ s \ b \ [] = 0 \\ \text{unfolding} \ \mu_C \text{-}def \ \text{by} \ auto \\ \\ \text{lemma} \ \mu_C \text{-}single[simp]: \\ \mu_C \ s \ b \ [L] = L * b \ \ (s-Suc \ 0) \\ \text{unfolding} \ \mu_C \text{-}def \ \text{by} \ auto} \\ \\ \text{lemma} \ set\text{-}sum\text{-}atLeastLessThan\text{-}add:} \\ (\sum i=k... < k+(b::nat). \ f \ i) = (\sum i=0... < b. \ f \ (k+i)) \\ \text{by} \ (induction \ b) \ auto} \end{array}
```

```
\mathbf{lemma}\ set\text{-}sum\text{-}atLeastLessThan\text{-}Suc:
 (\sum i=1...<Suc\ j.\ f\ i)=(\sum i=0...<j.\ f\ (Suc\ i))
 using set-sum-atLeastLessThan-add[of - 1 j] by force
lemma \mu_C-cons:
 \mu_C \ s \ b \ (L \# M) = L * b \ \widehat{\ } (s-1 - length M) + \mu_C \ s \ b \ M
proof
 have \mu_C \ s \ b \ (L \# M) = (\sum i = 0... < length \ (L \# M). \ (L \# M)! \ i * b^ (s + i - length \ (L \# M)))
   unfolding \mu_C-def by blast
 also have ... = (\sum i=0..<1. (L\#M)!i*b^(s+i-length (L\#M)))
              + (\sum i=1..< length\ (L\#M).\ (L\#M)!i*b^(s+i-length\ (L\#M)))
    by (rule setsum-add-nat-ivl[symmetric]) simp-all
 finally have \mu_C s b (L \# M) = L * b ^ (s - 1 - length M)
               + (\sum_{i=1}^{i=1} .. < length(L\#M). (L\#M)! i * b^(s+i - length(L\#M)))
    by auto
 moreover {
   have (\sum i=1...< length (L\#M). (L\#M)!i * b^ (s+i - length (L\#M))) =
         (\sum i=0..< length\ (M).\ (L\#M)!(Suc\ i)*b^(s+(Suc\ i)-length\ (L\#M)))
    {\bf unfolding} \ \textit{length-Cons} \ \textit{set-sum-atLeastLessThan-Suc} \ {\bf by} \ \textit{blast}
   also have ... = (\sum i=0..< length (M). M!i * b^ (s + i - length M))
   finally have (\sum i=1...< length\ (L\#M).\ (L\#M)!i*b^(s+i-length\ (L\#M)))=\mu_C\ s\ b\ M
     unfolding \mu_C-def.
 ultimately show ?thesis by presburger
qed
lemma \mu_C-append:
 assumes s > length (M@M')
 shows \mu_C \ s \ b \ (M@M') = \mu_C \ (s - length \ M') \ b \ M + \mu_C \ s \ b \ M'
proof -
 have \mu_C \ s \ b \ (M@M') = (\sum i = 0... < length \ (M@M'). \ (M@M')!i * b^ (s + i - length \ (M@M')))
   unfolding \mu_C-def by blast
 moreover then have ... = (\sum i=\theta.. < length M. (M@M')!i * b^ (s+i - length (M@M')))
               + (\sum i = length \ M.. < length \ (M@M'). \ (M@M')!i * b^ (s + i - length \ (M@M')))
   by (auto intro!: setsum-add-nat-ivl[symmetric])
 moreover
   have \forall i \in \{0.. < length M\}. (M@M')!i * b^{(s+i-length (M@M'))} = M!i * b^{(s-length M')}
     +i-length M)
     using \langle s \geq length \ (M@M') \rangle by (auto simp add: nth-append ac-simps)
    then have \mu_C (s - length M') b M = (\sum i=0.. < length M. (M@M')!i * b^ (s + i - length)
(M@M'))
     unfolding \mu_C-def by auto
 ultimately have \mu_C s b (M@M') = \mu_C (s - length M') b M
               + (\sum i = length \ M.. < length \ (M@M'). \ (M@M')!i * b^ (s + i - length \ (M@M')))
    by auto
 moreover {
   have (\sum i = length \ M.. < length \ (M@M'). \ (M@M')!i * b^ (s + i - length \ (M@M'))) =
         (\sum i=0..< length\ M'.\ M'!i*b^(s+i-length\ M'))
    unfolding length-append set-sum-atLeastLessThan-add by auto
   then have (\sum_i = length \ M... < length \ (M@M'). \ (M@M')!i * b^ (s+i-length \ (M@M'))) = \mu_C \ s \ b
M'
     unfolding \mu_C\text{-}def .
 ultimately show ?thesis by presburger
```

```
lemma \mu_C-cons-non-empty-inf:
 assumes M-ge-1: \forall i \in set M. i \geq 1 and M: M \neq []
 shows \mu_C \ s \ b \ M \ge b \ \widehat{\ } (s - length \ M)
 using assms by (cases M) (auto simp: mult-eq-if \mu_C-cons)
Copy of ~~/src/HOL/ex/NatSum.thy (but generalized to 0 < k)
lemma sum-of-powers: 0 \le k \Longrightarrow (k-1) * (\sum_{i=0}^{n} i=0... < n. \ k^i) = k^n - (1::nat)
 apply (cases k = 0)
   apply (cases n; simp)
 by (induct n) (auto simp: Nat.nat-distrib)
In the degenerated cases, we only have the large inequality holds. In the other cases, the
following strict inequality holds:
lemma \mu_C-bounded-non-degenerated:
 fixes b :: nat
 assumes
   b > \theta and
   M \neq [] and
   M-le: \forall i < length M. M!i < b and
   s \geq length M
 shows \mu_C \ s \ b \ M < b \hat{s}
proof -
 consider (b1) b=1 | (b) b>1 using \langle b>0 \rangle by (cases b) auto
  then show ?thesis
   proof cases
     case b1
     then have \forall i < length M. M!i = 0 using M-le by auto
     then have \mu_C \ s \ b \ M = \theta unfolding \mu_C-def by auto
     then show ?thesis using \langle b > 0 \rangle by auto
   next
     case b
     have \forall i \in \{0..< length M\}. M!i * b^(s+i-length M) \leq (b-1) * b^(s+i-length M)
       using M-le \langle b > 1 \rangle by auto
     then have \mu_C \ s \ b \ M \le (\sum i=0... < length \ M. \ (b-1) * b \ (s+i-length \ M))
        using \langle M \neq | \rangle \langle b > 0 \rangle unfolding \mu_C-def by (auto intro: setsum-mono)
     also
      have \forall i \in \{0.. < length M\}. (b-1) * b^{(s+i-length M)} = (b-1) * b^{(i)} * b^{(s-length M)}
         by (metis Nat.add-diff-assoc2 add.commute assms(4) mult.assoc power-add)
       then have (\sum i=0...< length\ M.\ (b-1)*b^ (s+i-length\ M))
         = (\sum i=0..< length\ M.\ (b-1)*\ b^i*\ b^i*\ b^i+\ length\ M))
         by (auto simp add: ac-simps)
     also have ... = (\sum i=0.. < length \ M. \ b^i) * b^k (s - length \ M) * (b-1)
       by (simp add: setsum-left-distrib setsum-right-distrib ac-simps)
     finally have \mu_C \ s \ b \ M \le (\sum i=0... < length \ M. \ b^i) * (b-1) * b^i(s - length \ M)
      by (simp add: ac-simps)
       have (\sum i=0..< length\ M.\ b^i)*(b-1) = b^i(length\ M) - 1
         using sum-of-powers[of b length M] \langle b > 1 \rangle
         by (auto simp add: ac-simps)
     finally have \mu_C \ s \ b \ M \le (b \ \widehat{\ } (length \ M) - 1) * b \ \widehat{\ } (s - length \ M)
      by auto
     also have ... < b \cap (length M) * b \cap (s - length M)
```

```
using \langle b > 1 \rangle by auto
     also have ... = b \hat{s}
      by (metis assms(4) le-add-diff-inverse power-add)
     finally show ?thesis unfolding \mu_C-def by (auto simp add: ac-simps)
   qed
qed
In the degenerate case b = (\theta::'a), the list M is empty (since the list cannot contain any
element).
lemma \mu_C-bounded:
 fixes b :: nat
 assumes
   M-le: \forall i < length M. M!i < b and
   s \geq length M
   b > 0
 shows \mu_C \ s \ b \ M < b \ s
proof -
 consider (M\theta) M = [ | (M) b > \theta  and M \neq [ ]
   using M-le by (cases b, cases M) auto
 then show ?thesis
   proof cases
     case M0
     then show ?thesis using M-le \langle b > 0 \rangle by auto
   next
     case M
     show ?thesis using \mu_C-bounded-non-degenerated [OF M assms(1,2)] by arith
   qed
qed
When b = 0, we cannot show that the measure is empty, since \theta^0 = 1.
lemma \mu_C-base-\theta:
 assumes length M \leq s
 shows \mu_C \ s \ \theta \ M \leq M!\theta
proof -
 {
   assume s = length M
   moreover {
     have (\sum i=\theta...< n.\ M!\ i*(\theta::nat) \cap i) \leq M!\ \theta
      apply (induction n rule: nat-induct)
      by simp (rename-tac n, case-tac n, auto)
   ultimately have ?thesis unfolding \mu_C-def by auto
 moreover
   assume length M < s
   then have \mu_C \ s \ \theta \ M = \theta \ unfolding \ \mu_C - def \ by \ auto \}
 ultimately show ?thesis using assms unfolding \mu_C-def by linarith
qed
lemma finite-bounded-pair-list:
 fixes b :: nat
 (\forall i < length \ xs. \ xs \ ! \ i < b) \land (\forall i < length \ ys. \ ys \ ! \ i < b) \}
```

```
proof -
  have H: \{(ys, xs). \ length \ xs < s \land \ length \ ys < s \land \}
    (\forall i < length \ xs. \ xs \ ! \ i < b) \land (\forall i < length \ ys. \ ys \ ! \ i < b) \}
    \{xs. \ length \ xs < s \land (\forall i < length \ xs. \ xs \ ! \ i < b)\} \times 
    \{xs. \ length \ xs < s \land (\forall i < length \ xs. \ xs \mid i < b)\}
  moreover have finite \{xs. \ length \ xs < s \land (\forall i < length \ xs. \ xs \mid i < b)\}
    by (rule finite-bounded-list)
  ultimately show ?thesis by (auto simp: finite-subset)
qed
definition \nu NOT :: nat \Rightarrow nat \Rightarrow (nat \ list \times nat \ list) \ set \ \mathbf{where}
\nu NOT \ s \ base = \{(ys, xs). \ length \ xs < s \land length \ ys < s \land \}
  (\forall i < length \ xs. \ xs \mid i < base) \land (\forall i < length \ ys. \ ys \mid i < base) \land
  (ys, xs) \in lenlex less-than
lemma finite-\nu NOT[simp]:
 finite (\nu NOT \ s \ base)
proof -
  have \nu NOT \ s \ base \subseteq \{(ys, xs). \ length \ xs < s \land length \ ys < s \land \}
    (\forall i < length \ xs. \ xs \mid i < base) \land (\forall i < length \ ys. \ ys \mid i < base) \}
    by (auto simp: \nu NOT-def)
  moreover have finite \{(ys, xs). length xs < s \land length ys < s \land
    (\forall i < length \ xs. \ xs \mid i < base) \land (\forall i < length \ ys. \ ys \mid i < base) \}
      by (rule finite-bounded-pair-list)
 ultimately show ?thesis by (auto simp: finite-subset)
qed
lemma acyclic-\nu NOT: acyclic (\nu NOT s base)
  apply (rule acyclic-subset[of lenlex less-than \nu NOT\ s\ base])
    apply (rule wf-acyclic)
  by (auto simp: \nu NOT-def)
lemma wf-\nu NOT: wf (\nu NOT \ s \ base)
  by (rule finite-acyclic-wf) (auto simp: acyclic-\nu NOT)
end
theory CDCL-NOT
imports List-More Wellfounded-More CDCL-WNOT-Measure Partial-Annotated-Clausal-Logic
begin
```

1.2 NOT's CDCL

1.2.1 Auxiliary Lemmas and Measure

We define here some more simplification rules, or rules that have been useful as help for some tactic

```
lemma no-dup-cannot-not-lit-and-uminus:

no-dup M \Longrightarrow - lit-of x = lit-of x \Longrightarrow x \in set \ M \Longrightarrow xa \notin set \ M

by (metis atm-of-uminus distinct-map inj-on-eq-iff uminus-not-id')

lemma atms-of-ms-single-atm-of[simp]:

atms-of-ms {unmark L \mid L. \mid P \mid L} = atm-of '{lit-of L \mid L. \mid P \mid L}

unfolding atms-of-ms-def by force
```

```
lemma atms-of-uminus-lit-atm-of-lit-of: atms-of \{\#-lit\text{-}of\ x.\ x\in\#A\#\}=atm\text{-}of\ `(lit\text{-}of\ `(set\text{-}mset\ A)) unfolding atms-of-def by (auto simp add: Fun.image-comp) lemma atms-of-ms-single-image-atm-of-lit-of: atms-of-ms (unmark-s A) = atm-of `(lit-of `A) unfolding atms-of-ms-def by auto
```

1.2.2 Initial definitions

The state

We define here an abstraction over operation on the state we are manipulating.

```
locale dpll-state-ops =
fixes

trail :: 'st \Rightarrow ('v, unit) \ ann-lits and

clauses_{NOT} :: 'st \Rightarrow 'v \ clauses \ and

prepend-trail :: ('v, unit) \ ann-lit \Rightarrow 'st \Rightarrow 'st and

tl-trail :: 'st \Rightarrow 'st and

add-cls_{NOT} :: 'v \ clause \Rightarrow 'st \Rightarrow 'st \ and

remove-cls_{NOT} :: 'v \ clause \Rightarrow 'st \Rightarrow 'st
begin

abbreviation state_{NOT} :: 'st \Rightarrow ('v, unit) \ ann-lit list \times 'v \ clauses \ where \ state_{NOT} \ S \equiv (trail \ S, \ clauses_{NOT} \ S)
end
```

NOT's state is basically a pair composed of the trail (i.e. the candidate model) and the set of clauses. We abstract this state to convert this state to other states. like Weidenbach's five-tuple.

```
locale dpll-state =
  dpll-state-ops
    trail\ clauses_{NOT}\ prepend-trail\ tl-trail add-cls_{NOT}\ remove-cls_{NOT} — related to the state
  for
    trail :: 'st \Rightarrow ('v, unit) \ ann-lits \ and
    clauses_{NOT} :: 'st \Rightarrow 'v \ clauses \ {\bf and}
    prepend-trail :: ('v, unit) \ ann-lit \Rightarrow 'st \Rightarrow 'st \ \mathbf{and}
    tl-trail :: 'st \Rightarrow 'st and
    add\text{-}cls_{NOT} :: 'v \ clause \Rightarrow 'st \Rightarrow 'st \ \mathbf{and}
    remove\text{-}cls_{NOT} :: 'v \ clause \Rightarrow 'st \Rightarrow 'st +
  assumes
    prepend-trail_{NOT}:
      state_{NOT} (prepend-trail L st) = (L # trail st, clauses_{NOT} st) and
    tl-trail_{NOT}:
      state_{NOT} (tl-trail st) = (tl (trail st), clauses_{NOT} st) and
    add-cls_{NOT}:
      state_{NOT} (add-cls_{NOT} C st) = (trail st, \{\#C\#\} + clauses_{NOT} st) and
    remove-cls_{NOT}:
      state_{NOT} (remove-cls<sub>NOT</sub> C st) = (trail st, removeAll-mset C (clauses<sub>NOT</sub> st))
begin
lemma
  trail-prepend-trail[simp]:
    trail\ (prepend-trail\ L\ st) = L\ \#\ trail\ st
  trail-trail_{NOT}[simp]: trail(tl-trail(st) = tl(trail(st)) and
  trail-add-cls_{NOT}[simp]: trail\ (add-cls_{NOT}\ C\ st)=trail\ st and
```

```
trail-remove-cls_{NOT}[simp]: trail (remove-cls_{NOT} C st) = trail st and
  clauses-prepend-trail[simp]:
    clauses_{NOT} (prepend-trail L st) = clauses_{NOT} st
  clauses-tl-trail[simp]: clauses_{NOT} (tl-trail st) = clauses_{NOT} st and
  clauses-add-cls_{NOT}[simp]:
    clauses_{NOT} (add-cls_{NOT} \ C \ st) = \{ \# C \# \} + clauses_{NOT} \ st \ and
  clauses\text{-}remove\text{-}cls_{NOT}[simp]\text{:}
    clauses_{NOT} (remove-cls_{NOT} C st) = removeAll-mset C (clauses_{NOT} st)
  using prepend-trail_{NOT}[of\ L\ st]\ tl-trail_{NOT}[of\ st]\ add-cls_{NOT}[of\ C\ st]\ remove-cls_{NOT}[of\ C\ st]
  by (cases\ state_{NOT}\ st;\ auto)+
We define the following function doing the backtrack in the trail:
function reduce-trail-to<sub>NOT</sub> :: 'a list \Rightarrow 'st \Rightarrow 'st where
reduce-trail-to<sub>NOT</sub> FS =
  (if length (trail S) = length F \vee trail S = [] then S else reduce-trail-to<sub>NOT</sub> F (tl-trail S))
by fast+
termination by (relation measure (\lambda(-, S)). length (trail S))) auto
declare reduce-trail-to_{NOT}.simps[simp\ del]
Then we need several lemmas about the reduce-trail-to<sub>NOT</sub>.
lemma
  shows
  reduce-trail-to<sub>NOT</sub>-Nil[simp]: trail\ S = [] \Longrightarrow reduce-trail-to<sub>NOT</sub> F\ S = S and
  reduce-trail-to_{NOT}-eq-length[simp]: length (trail S) = length F \Longrightarrow reduce-trail-to_{NOT} F S = S
  by (auto simp: reduce-trail-to<sub>NOT</sub>.simps)
lemma reduce-trail-to_{NOT}-length-ne[simp]:
  length (trail S) \neq length F \Longrightarrow trail S \neq [] \Longrightarrow
    reduce-trail-to<sub>NOT</sub> F S = reduce-trail-to<sub>NOT</sub> F (tl-trail S)
  by (auto simp: reduce-trail-to<sub>NOT</sub>.simps)
lemma trail-reduce-trail-to_{NOT}-length-le:
  assumes length F > length (trail S)
  shows trail\ (reduce-trail-to_{NOT}\ F\ S)=[]
  using assms by (induction F S rule: reduce-trail-to<sub>NOT</sub>.induct)
  (simp\ add:\ less-imp-diff-less\ reduce-trail-to_{NOT}.simps)
lemma trail-reduce-trail-to_{NOT}-Nil[simp]:
  trail (reduce-trail-to_{NOT} || S) = ||
  by (induction [] S rule: reduce-trail-to<sub>NOT</sub>.induct)
  (simp\ add:\ less-imp-diff-less\ reduce-trail-to_{NOT}.simps)
lemma clauses-reduce-trail-to<sub>NOT</sub>-Nil:
  clauses_{NOT} (reduce-trail-to<sub>NOT</sub> [] S) = clauses_{NOT} S
  by (induction [] S rule: reduce-trail-to<sub>NOT</sub>.induct)
  (simp\ add:\ less-imp-diff-less\ reduce-trail-to_{NOT}.simps)
lemma trail-reduce-trail-to_{NOT}-drop:
  trail (reduce-trail-to_{NOT} F S) =
   (if \ length \ (trail \ S) \ge length \ F
    then drop (length (trail S) – length F) (trail S)
  apply (induction F S rule: reduce-trail-to<sub>NOT</sub>.induct)
  apply (rename-tac F S, case-tac trail S)
```

```
apply auto
  apply (rename-tac\ list,\ case-tac\ Suc\ (length\ list) > length\ F)
  prefer 2 apply simp
  apply (subgoal-tac Suc (length list) - length F = Suc (length list - length F))
  apply simp
 apply simp
 done
lemma reduce-trail-to<sub>NOT</sub>-skip-beginning:
 assumes trail S = F' @ F
 shows trail\ (reduce-trail-to_{NOT}\ F\ S)=F
 using assms by (auto simp: trail-reduce-trail-to<sub>NOT</sub>-drop)
lemma reduce-trail-to_{NOT}-clauses[simp]:
  clauses_{NOT} (reduce-trail-to_{NOT} F S) = clauses_{NOT} S
 by (induction F S rule: reduce-trail-to<sub>NOT</sub>.induct)
  (simp\ add:\ less-imp-diff-less\ reduce-trail-to_{NOT}.simps)
lemma trail-eq-reduce-trail-to<sub>NOT</sub>-eq:
  trail\ S = trail\ T \Longrightarrow trail\ (reduce-trail-to_{NOT}\ F\ S) = trail\ (reduce-trail-to_{NOT}\ F\ T)
 apply (induction F S arbitrary: T rule: reduce-trail-to<sub>NOT</sub>.induct)
 by (metis trail-tl-trail_{NOT} reduce-trail-to_{NOT}-eq-length reduce-trail-to_{NOT}-length-ne
   reduce-trail-to_{NOT}-Nil)
lemma trail-reduce-trail-to_{NOT}-add-cls_{NOT}[simp]:
  no-dup (trail S) \Longrightarrow
   trail\ (reduce-trail-to_{NOT}\ F\ (add-cls_{NOT}\ C\ S)) = trail\ (reduce-trail-to_{NOT}\ F\ S)
 by (rule trail-eq-reduce-trail-to<sub>NOT</sub>-eq) simp
lemma reduce-trail-to_{NOT}-trail-tl-trail-decomp[simp]:
  trail\ S = F' @ Decided\ K \# F \Longrightarrow
    trail\ (reduce-trail-to_{NOT}\ F\ (tl-trail\ S)) = F
 apply (rule reduce-trail-to<sub>NOT</sub>-skip-beginning[of - tl (F' \otimes Decided K \# [])])
 by (cases F') (auto simp add:tl-append reduce-trail-to<sub>NOT</sub>-skip-beginning)
lemma reduce-trail-to<sub>NOT</sub>-length:
  length M = length M' \Longrightarrow reduce-trail-to_{NOT} M S = reduce-trail-to_{NOT} M' S
 apply (induction M S rule: reduce-trail-to<sub>NOT</sub>.induct)
 by (simp\ add: reduce-trail-to<sub>NOT</sub>.simps)
abbreviation trail-weight where
trail-weight\ S \equiv map\ ((\lambda l.\ 1 + length\ l)\ o\ snd)\ (get-all-ann-decomposition\ (trail\ S))
As we are defining abstract states, the Isabelle equality about them is too strong: we want the
weaker equivalence stating that two states are equal if they cannot be distinguished, i.e. given
the getter trail and clauses_{NOT} do not distinguish them.
definition state\text{-}eq_{NOT}:: 'st \Rightarrow 'st \Rightarrow bool (infix \sim 50) where
S \sim T \longleftrightarrow trail \ S = trail \ T \wedge clauses_{NOT} \ S = clauses_{NOT} \ T
lemma state-eq_{NOT}-ref[simp]:
  S \sim S
 unfolding state-eq_{NOT}-def by auto
lemma state-eq_{NOT}-sym:
 S \sim T \longleftrightarrow T \sim S
```

```
unfolding state-eq_{NOT}-def by auto
lemma state\text{-}eq_{NOT}\text{-}trans:
  S \sim T \Longrightarrow T \sim U \Longrightarrow S \sim U
  unfolding state-eq_{NOT}-def by auto
lemma
 shows
    state-eq_{NOT}-trail: S \sim T \Longrightarrow trail \ S = trail \ T and
    state-eq_{NOT}-clauses: S \sim T \Longrightarrow clauses_{NOT} S = clauses_{NOT} T
  unfolding state-eq_{NOT}-def by auto
lemmas \ state-simp_{NOT}[simp] = state-eq_{NOT}-trail \ state-eq_{NOT}-clauses
lemma reduce-trail-to<sub>NOT</sub>-state-eq<sub>NOT</sub>-compatible:
 assumes ST: S \sim T
 shows reduce-trail-to<sub>NOT</sub> F S \sim reduce-trail-to<sub>NOT</sub> F T
  have clauses_{NOT} (reduce-trail-to<sub>NOT</sub> F S) = clauses_{NOT} (reduce-trail-to<sub>NOT</sub> F T)
    using ST by auto
  moreover have trail (reduce-trail-to<sub>NOT</sub> F S) = trail (reduce-trail-to<sub>NOT</sub> F T)
    using trail-eq-reduce-trail-to<sub>NOT</sub>-eq[of S T F] ST by auto
  ultimately show ?thesis by (auto simp del: state-simp<sub>NOT</sub> simp: state-eq<sub>NOT</sub>-def)
qed
end
Definition of the operation
Each possible is in its own locale.
\mathbf{locale}\ propagate - ops =
  dpll-state trail\ clauses_{NOT}\ prepend-trail tl-trail add-cls_{NOT}\ remove-cls_{NOT}
  for
    trail :: 'st \Rightarrow ('v, unit) \ ann-lits \ and
    clauses_{NOT} :: 'st \Rightarrow 'v \ clauses \ \mathbf{and}
    prepend-trail :: ('v, unit) \ ann-lit \Rightarrow 'st \Rightarrow 'st \ \mathbf{and}
    tl-trail :: 'st \Rightarrow'st and
    add\text{-}cls_{NOT} :: 'v \ clause \Rightarrow 'st \Rightarrow 'st \ \mathbf{and}
    remove\text{-}cls_{NOT} :: 'v \ clause \Rightarrow 'st \Rightarrow 'st +
  fixes
    propagate\text{-}cond :: ('v, unit) \ ann\text{-}lit \Rightarrow 'st \Rightarrow bool
begin
inductive propagate_{NOT} :: 'st \Rightarrow 'st \Rightarrow bool  where
propagate_{NOT}[intro]: C + \{\#L\#\} \in \# clauses_{NOT} S \Longrightarrow trail S \models as CNot C
    \implies undefined-lit (trail S) L
    \implies propagate-cond (Propagated L ()) S
    \implies T \sim prepend-trail (Propagated L ()) S
    \implies propagate_{NOT} S T
inductive-cases propagate_{NOT}E[elim]: propagate_{NOT} S T
end
locale decide-ops =
  dpll-state trail\ clauses_{NOT}\ prepend-trail tl-trail add-cls_{NOT}\ remove-cls_{NOT}
```

for

```
trail :: 'st \Rightarrow ('v, unit) \ ann-lits \ and
    clauses_{NOT} :: 'st \Rightarrow 'v \ clauses \ \mathbf{and}
    prepend-trail :: ('v, unit) \ ann-lit \Rightarrow 'st \Rightarrow 'st \ \mathbf{and}
    tl-trail :: 'st \Rightarrow 'st and
    \mathit{add\text{-}\mathit{cls}_{NOT}} :: 'v \; \mathit{clause} \Rightarrow 'st \Rightarrow 'st \; \mathbf{and} \;
    remove\text{-}cls_{NOT} :: 'v \ clause \Rightarrow 'st \Rightarrow 'st
inductive decide_{NOT} :: 'st \Rightarrow 'st \Rightarrow bool where
decide_{NOT}[intro]: undefined-lit (trail S) L \Longrightarrow atm-of L \in atms-of-mm (clauses_{NOT} S)
  \implies T \sim prepend-trail (Decided L) S
  \implies decide_{NOT} \ S \ T
inductive-cases decide_{NOT}E[elim]: decide_{NOT} S S'
locale backjumping-ops =
  dpll-state trail\ clauses_{NOT}\ prepend-trail tl-trail add-cls_{NOT}\ remove-cls_{NOT}
    trail :: 'st \Rightarrow ('v, unit) \ ann-lits \ and
    clauses_{NOT} :: 'st \Rightarrow 'v \ clauses \ \mathbf{and}
    prepend-trail :: ('v, unit) \ ann-lit \Rightarrow 'st \Rightarrow 'st \ \mathbf{and}
    tl-trail :: 'st \Rightarrow'st and
    add\text{-}cls_{NOT} :: 'v clause \Rightarrow 'st \Rightarrow 'st and
    remove\text{-}cls_{NOT} :: 'v \ clause \Rightarrow 'st \Rightarrow 'st +
    backjump\text{-}conds :: 'v \ clause \Rightarrow 'v \ clause \Rightarrow 'v \ literal \Rightarrow 'st \Rightarrow 'st \Rightarrow bool
begin
inductive backjump where
trail\ S = F' @ Decided\ K \# F
   \implies T \sim prepend-trail (Propagated L ()) (reduce-trail-to_{NOT} F S)
   \implies C \in \# clauses_{NOT} S
   \implies trail \ S \models as \ CNot \ C
   \implies undefined\text{-}lit \ F \ L
   \implies atm-of L \in atms-of-mm (clauses<sub>NOT</sub> S) \cup atm-of '(lits-of-l (trail S))
   \implies clauses_{NOT} S \models pm C' + \{\#L\#\}
   \implies F \models as \ CNot \ C'
   \implies backjump\text{-}conds\ C\ C'\ L\ S\ T
   \implies backjump \ S \ T
inductive-cases backjumpE: backjump S T
The condition atm\text{-}of\ L \in atms\text{-}of\text{-}mm\ (clauses_{NOT}\ S) \cup atm\text{-}of\ `its\text{-}of\text{-}l\ (trail\ S) is not
implied by the the condition clauses_{NOT} S \models pm C' + \{\#L\#\}  (no negation).
end
            DPLL with backjumping
1.2.3
locale dpll-with-backjumping-ops =
  propagate-ops\ trail\ clauses_{NOT}\ prepend-trail\ tl-trail\ add-cls_{NOT}\ remove-cls_{NOT}\ propagate-conds\ +
  decide-ops\ trail\ clauses_{NOT}\ prepend-trail\ tl-trail\ add-cls_{NOT}\ remove-cls_{NOT}\ +
```

propagate-ops trail clauses_{NOT} prepend-trail tl-trail add-cls_{NOT} remove-cls_{NOT} propagate-conds + decide-ops trail clauses_{NOT} prepend-trail tl-trail add-cls_{NOT} remove-cls_{NOT} + backjumping-ops trail clauses_{NOT} prepend-trail tl-trail add-cls_{NOT} remove-cls_{NOT} backjump-conds for trail :: 'st \Rightarrow ('v, unit) ann-lits and clauses_{NOT} :: 'st \Rightarrow 'v clauses and prepend-trail :: ('v, unit) ann-lit \Rightarrow 'st \Rightarrow 'st and

tl- $trail :: 'st \Rightarrow 'st$ and

```
add\text{-}cls_{NOT} :: 'v \ clause \Rightarrow 'st \Rightarrow 'st \ \textbf{and}
     remove\text{-}cls_{NOT} :: 'v \ clause \Rightarrow 'st \Rightarrow 'st \ \text{and}
     inv :: 'st \Rightarrow bool and
     backjump\text{-}conds :: 'v \ clause \Rightarrow 'v \ clause \Rightarrow 'v \ literal \Rightarrow 'st \Rightarrow 'st \Rightarrow bool \ \mathbf{and}
     propagate\text{-}conds :: ('v, unit) \ ann\text{-}lit \Rightarrow 'st \Rightarrow bool +
   assumes
       bj-can-jump:
       \bigwedge S \ C \ F' \ K \ F \ L.
          inv S \Longrightarrow
          no-dup (trail S) \Longrightarrow
          trail\ S = F' @ Decided\ K \# F \Longrightarrow
          C \in \# clauses_{NOT} S \Longrightarrow
          trail S \models as CNot C \Longrightarrow
          undefined-lit F L \Longrightarrow
          atm-of L \in atms-of-mm (clauses_{NOT} S) \cup atm-of '(lits-of-l(F' @ Decided K \# F)) \Longrightarrow
          clauses_{NOT} S \models pm C' + \{\#L\#\} \Longrightarrow
          F \models as \ CNot \ C' \Longrightarrow
          \neg no-step backjump S
begin
```

We cannot add a like condition atms-of $C' \subseteq atms-of-ms$ N to ensure that we can backjump even if the last decision variable has disappeared from the set of clauses.

The part of the condition $atm\text{-}of\ L\in atm\text{-}of$ ' lits-of-l (F' @ Decided K # F) is important, otherwise you are not sure that you can backtrack.

Definition

We define dpll with backjumping:

```
inductive dpll-bj :: 'st \Rightarrow 'st \Rightarrow bool \text{ for } S :: 'st \text{ where}
bj-decide_{NOT}: decide_{NOT} S S' \Longrightarrow dpll-bj S S'
\textit{bj-propagate}_{NOT} : \textit{propagate}_{NOT} \ S \ S' \Longrightarrow \textit{dpll-bj} \ S \ S' \mid
bj-backjump: backjump \ S \ S' \Longrightarrow dpll-bj \ S \ S'
lemmas dpll-bj-induct = dpll-bj.induct[split-format(complete)]
thm dpll-bj-induct[OF dpll-with-backjumping-ops-axioms]
lemma dpll-bj-all-induct[consumes\ 2, case-names\ decide_{NOT}\ propagate_{NOT}\ backjump]:
  fixes S T :: 'st
  assumes
    dpll-bj S T and
    inv S
    \bigwedge L T. undefined-lit (trail S) L \Longrightarrow atm\text{-}of\ L \in atms\text{-}of\text{-}mm\ (clauses_{NOT}\ S)
      \implies T \sim prepend-trail (Decided L) S
      \implies P S T and
    \bigwedge C \ L \ T. \ C + \{\#L\#\} \in \# \ clauses_{NOT} \ S \Longrightarrow trail \ S \models as \ CNot \ C \Longrightarrow undefined-lit \ (trail \ S) \ L
      \implies T \sim prepend-trail (Propagated L ()) S
      \implies P S T  and
    \bigwedge C \ F' \ K \ F \ L \ C' \ T. \ C \in \# \ clauses_{NOT} \ S \Longrightarrow F' @ \ Decided \ K \ \# \ F \models as \ CNot \ C
      \implies trail \ S = F' \ @ \ Decided \ K \ \# \ F
      \implies undefined\text{-}lit \ F \ L
      \implies atm-of L \in atms-of-mm (clauses_{NOT} S) \cup atm-of ' (lits-of-l (F' @ Decided K \# F))
      \implies clauses_{NOT} S \models pm C' + \{\#L\#\}
      \implies F \models as \ CNot \ C'
      \implies T \sim prepend-trail (Propagated L ()) (reduce-trail-to_{NOT} F S)
      \implies P S T
```

```
shows P S T
 apply (induct T rule: dpll-bj-induct[OF local.dpll-with-backjumping-ops-axioms])
    apply (rule\ assms(1))
   using assms(3) apply blast
  apply (elim \ propagate_{NOT}E) using assms(4) apply blast
 apply (elim backjumpE) using assms(5) \langle inv S \rangle by simp
Basic properties
First, some better suited induction principle lemma dpll-bj-clauses:
 assumes dpll-bj S T and inv S
 shows clauses_{NOT} S = clauses_{NOT} T
 using assms by (induction rule: dpll-bj-all-induct) auto
No duplicates in the trail lemma dpll-bj-no-dup:
 assumes dpll-bj S T and inv S
 and no-dup (trail S)
 shows no-dup (trail\ T)
 using assms by (induction rule: dpll-bj-all-induct)
  (auto simp add: defined-lit-map reduce-trail-to<sub>NOT</sub>-skip-beginning)
Valuations lemma dpll-bj-sat-iff:
 assumes dpll-bj S T and inv S
 shows I \models sm \ clauses_{NOT} \ S \longleftrightarrow I \models sm \ clauses_{NOT} \ T
 using assms by (induction rule: dpll-bj-all-induct) auto
Clauses lemma dpll-bj-atms-of-ms-clauses-inv:
 assumes
   dpll-bj S T and
 shows atms-of-mm (clauses_{NOT} S) = atms-of-mm (clauses_{NOT} T)
 using assms by (induction rule: dpll-bj-all-induct) auto
lemma dpll-bj-atms-in-trail:
 assumes
   dpll-bj S T and
   inv S and
   atm\text{-}of \ (lits\text{-}of\text{-}l \ (trail \ S)) \subseteq atms\text{-}of\text{-}mm \ (clauses_{NOT} \ S)
 shows atm\text{-}of ' (lits\text{-}of\text{-}l\ (trail\ T))\subseteq atms\text{-}of\text{-}mm\ (clauses_{NOT}\ S)
 using assms by (induction rule: dpll-bj-all-induct)
  (auto simp: in-plus-implies-atm-of-on-atms-of-ms reduce-trail-to<sub>NOT</sub>-skip-beginning)
lemma dpll-bj-atms-in-trail-in-set:
 assumes dpll-bj S T and
   inv S and
  atms-of-mm (clauses_{NOT} S) \subseteq A and
  atm\text{-}of ' (lits\text{-}of\text{-}l (trail S)) \subseteq A
 shows atm\text{-}of ' (lits\text{-}of\text{-}l\ (trail\ T))\subseteq A
  using assms by (induction rule: dpll-bj-all-induct)
  (auto simp: in-plus-implies-atm-of-on-atms-of-ms)
lemma dpll-bj-all-decomposition-implies-inv:
 assumes
   dpll-bj S T and
   inv: inv S and
```

```
decomp: all-decomposition-implies-m (clauses<sub>NOT</sub> S) (get-all-ann-decomposition (trail S))
 shows all-decomposition-implies-m (clauses<sub>NOT</sub> T) (get-all-ann-decomposition (trail T))
 using assms(1,2)
proof (induction rule:dpll-bj-all-induct)
 case decide_{NOT}
 then show ?case using decomp by auto
next
 case (propagate_{NOT} \ C \ L \ T) note propa = this(1) and undef = this(3) and T = this(4)
 let ?M' = trail (prepend-trail (Propagated L ()) S)
 let ?N = clauses_{NOT} S
 obtain a y l where ay: get-all-ann-decomposition ?M' = (a, y) \# l
   by (cases get-all-ann-decomposition ?M') fastforce+
 then have M': M' = y \otimes a using get-all-ann-decomposition-decomp[of M'] by auto
 have M: get-all-ann-decomposition (trail S) = (a, tl y) \# l
   using ay undef by (cases get-all-ann-decomposition (trail S)) auto
 have y_0: y = (Propagated L()) \# (tl y)
   using ay undef by (auto simp add: M)
 from arg\text{-}cong[OF this, of set] have y[simp]: set y = insert (Propagated L ()) (set (tl y))
   by simp
 have tr-S: trail S = tl y @ a
   using arg-cong[OF M', of tl] y_0 M get-all-ann-decomposition-decomp by force
 have a-Un-N-M: unmark-l a \cup set-mset ?N \models ps unmark-l (tl \ y)
   using decomp ay unfolding all-decomposition-implies-def by (simp add: M)+
 moreover have unmark-l a \cup set-mset ?N \models p \{\#L\#\}  (is ?I \models p-)
   proof (rule true-clss-cls-plus-CNot)
     show ?I \models p C + \{\#L\#\}
      using propagate<sub>NOT</sub>. prems by (auto dest!: true-clss-clss-in-imp-true-clss-cls)
   next
     have unmark-l ?M' \models ps \ CNot \ C
      using \langle trail \ S \models as \ CNot \ C \rangle undef by (auto simp add: true-annots-true-clss-clss)
     have a1: unmark-l \ a \cup unmark-l \ (tl \ y) \models ps \ CNot \ C
      using propagate_{NOT}.hyps(2) tr-S true-annots-true-clss-clss
      by (force simp add: image-Un sup-commute)
     then have unmark-l \ a \cup set\text{-}mset \ (clauses_{NOT} \ S) \models ps \ unmark-l \ a \cup unmark-l \ (tl \ y)
      using a-Un-N-M true-clss-clss-def by blast
     then show unmark-l a \cup set-mset (clauses<sub>NOT</sub> S) \models ps CNot C
      using a1 by (meson true-clss-clss-left-right true-clss-clss-union-and
        true-clss-union-l-r)
   qed
 ultimately have unmark-l \ a \cup set\text{-}mset \ ?N \models ps \ unmark-l \ ?M'
   unfolding M' by (auto simp add: all-in-true-clss-clss image-Un)
 then show ?case
   using decomp T M undef unfolding ay all-decomposition-implies-def by (auto simp add: ay)
next
 case (backjump C F' K F L D T) note confl = this(2) and tr = this(3) and undef = this(4) and
   L = this(5) and N-C = this(6) and vars-D = this(5) and T = this(8)
 have decomp: all-decomposition-implies-m (clauses<sub>NOT</sub> S) (get-all-ann-decomposition F)
   using decomp unfolding tr all-decomposition-implies-def
   by (metis (no-types, lifting) get-all-ann-decomposition.simps(1)
     get-all-ann-decomposition-never-empty hd-Cons-tl insert-iff list.sel(3) list.set(2)
     tl-get-all-ann-decomposition-skip-some)
 obtain a b li where F: get-all-ann-decomposition F = (a, b) \# li
   by (cases get-all-ann-decomposition F) auto
 have F = b @ a
```

```
using get-all-ann-decomposition-decomp[of F a b] F by auto
 have a-N-b:unmark-l a \cup set-mset (clauses_{NOT} S) \models ps unmark-l b
   using decomp unfolding all-decomposition-implies-def by (auto simp add: F)
 have F-D: unmark-l F \models ps \ CNot \ D
   using \langle F \models as \ CNot \ D \rangle by (simp add: true-annots-true-clss-clss)
 then have unmark-l \ a \cup unmark-l \ b \models ps \ CNot \ D
   unfolding \langle F = b \otimes a \rangle by (simp add: image-Un sup.commute)
 have a-N-CNot-D: unmark-l a \cup set-mset (clauses_{NOT} S) \models ps \ CNot \ D \cup unmark-l b
   apply (rule true-clss-clss-left-right)
   using a-N-b F-D unfolding \langle F = b \otimes a \rangle by (auto simp add: image-Un ac-simps)
 have a-N-D-L: unmark-l a \cup set-mset (clauses_{NOT} S) \models p D + \{\#L\#\}
   by (simp \ add: N-C)
 have unmark-l a \cup set\text{-mset} (clauses_{NOT} S) \models p \{\#L\#\}
   using a-N-D-L a-N-CNot-D by (blast intro: true-clss-cls-plus-CNot)
 then show ?case
   using decomp T tr undef unfolding all-decomposition-implies-def by (auto simp add: F)
qed
Termination
Using a proper measure lemma length-get-all-ann-decomposition-append-Decided:
 length (qet-all-ann-decomposition (F' @ Decided K \# F)) =
   length (get-all-ann-decomposition F')
   + length (get-all-ann-decomposition (Decided K \# F))
 by (induction F' rule: ann-lit-list-induct) auto
lemma take-length-get-all-ann-decomposition-decided-sandwich:
 take (length (get-all-ann-decomposition F))
     (map\ (f\ o\ snd)\ (rev\ (get-all-ann-decomposition\ (F'\ @\ Decided\ K\ \#\ F))))
    map\ (f\ o\ snd)\ (rev\ (get-all-ann-decomposition\ F))
\mathbf{proof} (induction F' rule: ann-lit-list-induct)
 case Nil
 then show ?case by auto
next
 case (Decided K)
 then show ?case by (simp add: length-get-all-ann-decomposition-append-Decided)
 case (Propagated L m F') note IH = this(1)
 obtain a b l where F': get-all-ann-decomposition (F' @ Decided K # F) = (a, b) # l
   by (cases get-all-ann-decomposition (F' @ Decided K \# F)) auto
 have length (get-all-ann-decomposition F) - length l = 0
   using length-qet-all-ann-decomposition-append-Decided of F' K F
   unfolding F' by (cases get-all-ann-decomposition F') auto
 then show ?case
   using IH by (simp \ add: F')
qed
\mathbf{lemma}\ length\text{-} get\text{-}all\text{-}ann\text{-}decomposition\text{-}length:}
 length (get-all-ann-decomposition M) \leq 1 + length M
 by (induction M rule: ann-lit-list-induct) auto
```

```
lemma length-in-get-all-ann-decomposition-bounded: assumes i:i \in set (trail-weight S) shows i \leq Suc (length (trail S)) proof — obtain a b where (a, b) \in set (get-all-ann-decomposition (trail S)) and ib: i = Suc (length b) using i by auto then obtain c where trail \ S = c \ @ b \ @ a using get-all-ann-decomposition-exists-prepend' by metis from arg-cong[OF\ this,\ of\ length] show ?thesis using i ib by auto qed
```

Well-foundedness The bounds are the following:

- 1 + card (atms-of-ms A): card (atms-of-ms A) is an upper bound on the length of the list. As get-all-ann-decomposition appends an possibly empty couple at the end, adding one is needed.
- 2 + card (atms-of-ms A): card (atms-of-ms A) is an upper bound on the number of elements, where adding one is necessary for the same reason as for the bound on the list, and one is needed to have a strict bound.

```
abbreviation unassigned-lit :: 'b literal multiset set \Rightarrow 'a list \Rightarrow nat where
  unassigned-lit N M \equiv card (atms-of-ms N) - length M
lemma dpll-bj-trail-mes-increasing-prop:
 fixes M :: ('v, unit) \ ann-lits \ and \ N :: 'v \ clauses
 assumes
   dpll-bj S T and
   inv S and
   NA: atms-of-mm \ (clauses_{NOT} \ S) \subseteq atms-of-ms \ A \ and
   MA: atm\text{-}of ' lits\text{-}of\text{-}l (trail S) \subseteq atms\text{-}of\text{-}ms A  and
   n-d: no-dup (trail S) and
   finite: finite A
  shows \mu_C (1+card (atms-of-ms A)) (2+card (atms-of-ms A)) (trail-weight T)
   > \mu_C (1+card (atms-of-ms A)) (2+card (atms-of-ms A)) (trail-weight S)
  using assms(1,2)
proof (induction rule: dpll-bj-all-induct)
 case (propagate_{NOT} \ C \ L) note CLN = this(1) and MC = this(2) and undef - L = this(3) and T = this(3)
 have incl: atm-of 'lits-of-l (Propagated L () # trail S) \subseteq atms-of-ms A
   using propagate_{NOT} dpll-bj-atms-in-trail-in-set bj-propagate<sub>NOT</sub> NA MA CLN
   by (auto simp: in-plus-implies-atm-of-on-atms-of-ms)
 have no-dup: no-dup (Propagated L () \# trail S)
   using defined-lit-map n-d undef-L by auto
  obtain a b l where M: get-all-ann-decomposition (trail S) = (a, b) \# l
   by (cases get-all-ann-decomposition (trail S)) auto
 have b-le-M: length b \leq length (trail S)
   \mathbf{using} \ \textit{get-all-ann-decomposition-decomp} [\textit{of trail } S] \ \mathbf{by} \ (\textit{simp add: } M)
 have finite (atms-of-ms A) using finite by simp
  then have length (Propagated L () \# trail S) \leq card (atms-of-ms A)
   using incl finite unfolding no-dup-length-eq-card-atm-of-lits-of-l[OF no-dup]
```

```
by (simp add: card-mono)
 then have latm: unassigned-lit A b = Suc (unassigned-lit A (Propagated L d \# b))
   using b-le-M by auto
 then show ?case using T undef-L by (auto simp: latm M \mu_C-cons)
 case (decide_{NOT} L) note undef-L = this(1) and MC = this(2) and T = this(3)
 have incl: atm-of 'lits-of-l (Decided L # (trail S)) \subseteq atms-of-ms A
   using dpll-bj-atms-in-trail-in-set bj-decide_{NOT} decide_{NOT}. decide_{NOT}. decide_{NOT}. hyps] NA MA
MC
   by auto
 have no-dup: no-dup (Decided L \# (trail S))
   using defined-lit-map n-d undef-L by auto
 obtain a b l where M: get-all-ann-decomposition (trail S) = (a, b) \# l
   by (cases get-all-ann-decomposition (trail S)) auto
 then have length (Decided L # (trail S)) \leq card (atms-of-ms A)
   using incl finite unfolding no-dup-length-eq-card-atm-of-lits-of-l[OF no-dup]
   by (simp add: card-mono)
 show ?case using T undef-L by (simp add: \mu_C-cons)
next
 case (backjump C F' K F L C' T) note undef-L = this(4) and MC = this(1) and tr-S = this(3)
and
   L = this(5) and T = this(8)
 have incl: atm-of 'lits-of-l (Propagated L () \# F) \subseteq atms-of-ms A
   using dpll-bj-atms-in-trail-in-set NA MA L by (auto simp: tr-S)
 have no-dup: no-dup (Propagated L () \# F)
   using defined-lit-map n-d undef-L tr-S by auto
 obtain a b l where M: qet-all-ann-decomposition (trail S) = (a, b) \# l
   by (cases get-all-ann-decomposition (trail S)) auto
 have b-le-M: length b \leq length (trail S)
   using get-all-ann-decomposition-decomp[of trail S] by (simp add: M)
 have fin-atms-A: finite (atms-of-ms A) using finite by simp
 then have F-le-A: length (Propagated L () \# F) \leq card (atms-of-ms A)
   using incl finite unfolding no-dup-length-eq-card-atm-of-lits-of-l[OF no-dup]
   by (simp add: card-mono)
 have tr-S-le-A: length (trail\ S) \le card\ (atms-of-ms\ A)
   using n-d MA by (metis fin-atms-A card-mono no-dup-length-eq-card-atm-of-lits-of-l)
 obtain a b l where F: get-all-ann-decomposition F = (a, b) \# l
   by (cases get-all-ann-decomposition F) auto
 then have F = b @ a
   using get-all-ann-decomposition-decomp[of Propagated L () \# F a
     Propagated L() \# b] by simp
 then have latm: unassigned-lit A b = Suc (unassigned-lit A (Propagated L () \# b))
    using F-le-A by simp
 obtain rem where
   rem:map\ (\lambda a.\ Suc\ (length\ (snd\ a)))\ (rev\ (qet-all-ann-decomposition\ (F'\ @\ Decided\ K\ \#\ F)))
   = map \ (\lambda a. \ Suc \ (length \ (snd \ a))) \ (rev \ (get-all-ann-decomposition \ F)) \ @ rem
   using take-length-get-all-ann-decomposition-decided-sandwich of F \lambda a. Suc (length a) F' K
   unfolding o-def by (metis append-take-drop-id)
 then have rem: map (\lambda a. Suc (length (snd a)))
     (get-all-ann-decomposition (F' @ Decided K \# F))
   = \mathit{rev} \ \mathit{rem} \ @ \ \mathit{map} \ (\lambda \mathit{a}. \ \mathit{Suc} \ (\mathit{length} \ (\mathit{snd} \ \mathit{a}))) \ ((\mathit{get-all-ann-decomposition} \ \mathit{F}))
   by (simp add: rev-map[symmetric] rev-swap)
```

```
have length (rev rem @ map (\lambda a. Suc (length (snd a))) (get-all-ann-decomposition F))
        \leq Suc (card (atms-of-ms A))
   using arg-cong[OF rem, of length] tr-S-le-A
   length-get-all-ann-decomposition-length[of F' @ Decided K # F] tr-S by auto
  moreover
   { fix i :: nat and xs :: 'a list
     have i < length xs \Longrightarrow length xs - Suc i < length xs
      by auto
     then have H: i < length \ xs \implies rev \ xs \ ! \ i \in set \ xs
      using rev-nth[of i xs] unfolding in-set-conv-nth by (force simp add: in-set-conv-nth)
   } note H = this
   have \forall i < length \ rem. \ rev \ rem! \ i < card (atms-of-ms \ A) + 2
     using tr-S-le-A length-in-get-all-ann-decomposition-bounded[of - S] unfolding tr-S
     by (force simp add: o-def rem dest!: H intro: length-get-all-ann-decomposition-length)
 ultimately show ?case
   using \mu_C-bounded of rev rem card (atms-of-ms A)+2 unassigned-lit A l T undef-L
   by (simp add: rem \mu_C-append \mu_C-cons F tr-S)
lemma dpll-bj-trail-mes-decreasing-prop:
 assumes dpll: dpll-bj S T and inv: inv S and
  N-A: atms-of-mm (clauses_{NOT} S) \subseteq atms-of-ms A and
  M-A: atm-of ' lits-of-l (trail\ S) \subseteq atms-of-ms\ A and
 nd: no\text{-}dup \ (trail \ S) \ \mathbf{and}
 fin-A: finite A
 shows (2+card (atms-of-ms A)) \cap (1+card (atms-of-ms A))
             -\mu_C (1+card (atms-of-ms A)) (2+card (atms-of-ms A)) (trail-weight T)
          < (2+card (atms-of-ms A)) \cap (1+card (atms-of-ms A))
             -\mu_C \ (1+card \ (atms-of-ms \ A)) \ (2+card \ (atms-of-ms \ A)) \ (trail-weight \ S)
proof -
 let ?b = 2 + card (atms-of-ms A)
 let ?s = 1 + card (atms-of-ms A)
 let ?\mu = \mu_C ?s ?b
 have M'-A: atm-of ' lits-of-l (trail\ T) \subseteq atms-of-ms\ A
   by (meson M-A N-A dpll dpll-bj-atms-in-trail-in-set inv)
 have nd': no-dup (trail T)
   using \langle dpll-bj \mid S \mid T \rangle \mid dpll-bj-no-dup \mid nd \mid inv \mid by \mid blast
  { fix i :: nat and xs :: 'a list
   have i < length xs \Longrightarrow length xs - Suc i < length xs
     by auto
   then have H: i < length \ xs \implies xs \mid i \in set \ xs
     using rev-nth[of i xs] unfolding in-set-conv-nth by (force simp add: in-set-conv-nth)
  \} note H = this
  have l-M-A: length (trail\ S) \le card\ (atms-of-ms\ A)
   by (simp add: fin-A M-A card-mono no-dup-length-eq-card-atm-of-lits-of-l nd)
  have l-M'-A: length (trail\ T) \leq card\ (atms-of-ms\ A)
   by (simp add: fin-A M'-A card-mono no-dup-length-eq-card-atm-of-lits-of-l nd')
 have l-trail-weight-M: length (trail-weight T) \leq 1 + card (atms-of-ms A)
    using l-M'-A length-qet-all-ann-decomposition-length[of trail T] by auto
 have bounded-M: \forall i < length (trail-weight T). (trail-weight T)! i < card (atms-of-ms A) + 2
   using length-in-get-all-ann-decomposition-bounded [of - T] l-M'-A
   by (metis (no-types, lifting) H Nat.le-trans add-2-eq-Suc' not-le not-less-eq-eq)
 from dpll-bj-trail-mes-increasing-prop[OF dpll inv N-A M-A nd fin-A]
 have \mu_C ?s ?b (trail-weight S) < \mu_C ?s ?b (trail-weight T) by simp
```

```
moreover from \mu_C-bounded[OF bounded-M l-trail-weight-M]
   have \mu_C ?s ?b (trail-weight T) \leq ?b \hat{} ?s by auto
  ultimately show ?thesis by linarith
qed
lemma wf-dpll-bj:
 assumes fin: finite A
 shows wf \{(T, S). dpll-bj S T
   \land atms-of-mm (clauses<sub>NOT</sub> S) \subseteq atms-of-ms A \land atm-of 'lits-of-l (trail S) \subseteq atms-of-ms A
   \land no-dup (trail S) \land inv S}
  (is wf ?A)
proof (rule wf-bounded-measure[of -
       \lambda-. (2 + card (atms-of-ms A))^(1 + card (atms-of-ms A))
       \lambda S. \ \mu_C \ (1+card \ (atms-of-ms \ A)) \ (2+card \ (atms-of-ms \ A)) \ (trail-weight \ S)])
 \mathbf{fix} \ a \ b :: 'st
 let ?b = 2 + card (atms-of-ms A)
 let ?s = 1 + card (atms-of-ms A)
 let ?\mu = \mu_C ?s ?b
 assume ab: (b, a) \in ?A
 have fin-A: finite (atms-of-ms A)
   using fin by auto
 have
   dpll-bj: dpll-bj a b and
   N-A: atms-of-mm (clauses_{NOT} \ a) \subseteq atms-of-ms A and
   M-A: atm-of ' lits-of-l (trail\ a) \subseteq atms-of-ms\ A and
   nd: no-dup (trail a) and
   inv: inv a
   using ab by auto
  have M'-A: atm-of ' lits-of-l (trail\ b) \subseteq atms-of-ms\ A
   by (meson M-A N-A (dpll-bj a b) dpll-bj-atms-in-trail-in-set inv)
  have nd': no-dup (trail b)
   using \langle dpll-bj \ a \ b \rangle \ dpll-bj-no-dup \ nd \ inv by blast
  { fix i :: nat and xs :: 'a list
   have i < length \ xs \Longrightarrow length \ xs - Suc \ i < length \ xs
   then have H: i < length xs \implies xs \mid i \in set xs
     using rev-nth[of i xs] unfolding in-set-conv-nth by (force simp add: in-set-conv-nth)
  } note H = this
 have l-M-A: length (trail\ a) \leq card\ (atms-of-ms\ A)
   by (simp add: fin-A M-A card-mono no-dup-length-eq-card-atm-of-lits-of-l nd)
  have l-M'-A: length (trail\ b) \leq card (atms-of-ms A)
   by (simp add: fin-A M'-A card-mono no-dup-length-eq-card-atm-of-lits-of-l nd')
  have l-trail-weight-M: length (trail-weight b) <math>\leq 1 + card (atms-of-ms A)
    using l-M'-A length-get-all-ann-decomposition-length of trail b by auto
  have bounded-M: \forall i < length (trail-weight b). (trail-weight b)! i < card (atms-of-ms A) + 2
   using length-in-qet-all-ann-decomposition-bounded [of - b] l-M'-A
   by (metis (no-types, lifting) Nat.le-trans One-nat-def Suc-1 add.right-neutral add-Suc-right
     le-imp-less-Suc less-eq-Suc-le nth-mem)
 from dpll-bj-trail-mes-increasing-prop[OF dpll-bj inv N-A M-A nd fin]
 have \mu_C ?s ?b (trail-weight a) < \mu_C ?s ?b (trail-weight b) by simp
  moreover from \mu_C-bounded[OF bounded-M l-trail-weight-M]
   have \mu_C ?s ?b (trail-weight b) \leq ?b ^ ?s by auto
```

```
ultimately show ?b \ ^?s \le ?b \ ^?s \land \mu_C \ ?s \ ?b \ (trail\text{-}weight \ b) \le ?b \ ^?s \land \mu_C \ ?s \ ?b \ (trail\text{-}weight \ a) < \mu_C \ ?s \ ?b \ (trail\text{-}weight \ b) by blast qed
```

Normal Forms

We prove that given a normal form of DPLL, with some structural invariants, then either N is satisfiable and the built valuation M is a model; or N is unsatisfiable.

Idea of the proof: We have to prove tat satisfiable $N, \neg M \models as N$ and there is no remaining step is incompatible.

- 1. The decide rule tells us that every variable in N has a value.
- 2. The assumption $\neg M \models as N$ implies that there is conflict.
- 3. There is at least one decision in the trail (otherwise, M would be a model of the set of clauses N).
- 4. Now if we build the clause with all the decision literals of the trail, we can apply the backjump rule.

The assumption are saying that we have a finite upper bound A for the literals, that we cannot do any step no-step dpll-bj S

```
theorem dpll-backjump-final-state:
  fixes A :: 'v \ clause \ set \ and \ S \ T :: 'st
  assumes
    atms-of-mm (clauses_{NOT} S) \subseteq atms-of-ms A and
   atm\text{-}of ' lits\text{-}of\text{-}l (trail\ S) \subseteq atms\text{-}of\text{-}ms\ A and
   no-dup (trail S) and
   finite A and
   inv: inv S and
   n-s: no-step dpll-bj S and
    decomp: all-decomposition-implies-m \ (clauses_{NOT} \ S) \ (get-all-ann-decomposition \ (trail \ S))
  shows unsatisfiable (set-mset (clauses<sub>NOT</sub> S))
   \vee (trail S \models asm\ clauses_{NOT}\ S \land satisfiable\ (set\text{-mset}\ (clauses_{NOT}\ S)))
proof -
  let ?N = set\text{-}mset (clauses_{NOT} S)
 let ?M = trail S
  consider
     (sat) satisfiable ?N and ?M \models as ?N
    \mid (sat') \ satisfiable ?N \ and \neg ?M \models as ?N
   | (unsat) unsatisfiable ?N
   by auto
  then show ?thesis
   proof cases
     case sat' note sat = this(1) and M = this(2)
     obtain C where C \in ?N and \neg ?M \models a C using M unfolding true-annots-def by auto
     obtain I :: 'v \ literal \ set \ where
       I \models s ?N  and
       cons: consistent-interp\ I and
       tot: total\text{-}over\text{-}m \ I \ ?N \ \mathbf{and}
       atm-I-N: atm-of 'I \subseteq atms-of-ms ?N
```

```
using sat unfolding satisfiable-def-min by auto
let ?I = I \cup \{P | P. P \in lits\text{-}of\text{-}l ?M \land atm\text{-}of P \notin atm\text{-}of `I'\}
let ?O = \{unmark\ L\ | L.\ is-decided\ L \land L \in set\ ?M \land atm-of\ (lit-of\ L) \notin atms-of-ms\ ?N\}
have cons-I': consistent-interp ?I
 using cons using \langle no\text{-}dup ?M \rangle unfolding consistent-interp-def
 by (auto simp add: atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set lits-of-def
    dest!: no-dup-cannot-not-lit-and-uminus)
have tot-I': total-over-m ?I (?N \cup unmark-l ?M)
 using tot atm-I-N unfolding total-over-m-def total-over-set-def
 by (fastforce simp: image-iff lits-of-def)
have \{P \mid P. P \in lits\text{-}of\text{-}l ? M \land atm\text{-}of P \notin atm\text{-}of `I\} \models s ? O
 using \langle I \models s ? N \rangle atm-I-N by (auto simp add: atm-of-eq-atm-of true-clss-def lits-of-def)
then have I'-N: ?I \models s ?N \cup ?O
 using \langle I \models s ? N \rangle true-clss-union-increase by force
have tot': total-over-m ?I (?N \cup ?O)
 using atm-I-N tot unfolding total-over-m-def total-over-set-def
 by (force simp: lits-of-def elim!: is-decided-ex-Decided)
have atms-N-M: atms-of-ms ?N \subseteq atm-of ' lits-of-l ?M
 proof (rule ccontr)
   assume ¬ ?thesis
   then obtain l :: 'v where
      l-N: l \in atms-of-ms ?N and
     l\text{-}M: l \notin atm\text{-}of ' lits\text{-}of\text{-}l ?M
     by auto
   have undefined-lit ?M (Pos l)
      using l-M by (metis Decided-Propagated-in-iff-in-lits-of-l
       atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set literal.sel(1))
   from bj-decide_{NOT}[OF\ decide_{NOT}[OF\ this]] show False
      using l-N n-s by (metis\ literal.sel(1)\ state-eq_{NOT}-ref)
 qed
have ?M \models as \ CNot \ C
 apply (rule all-variables-defined-not-imply-cnot)
 using \langle C \in set\text{-}mset \ (clauses_{NOT} \ S) \rangle \langle \neg \ trail \ S \models a \ C \rangle
    atms-N-M by (auto dest: atms-of-atms-of-ms-mono)
have \exists l \in set ?M. is\text{-}decided l
 proof (rule ccontr)
   let ?O = \{unmark\ L\ | L.\ is-decided\ L \land L \in set\ ?M \land atm-of\ (lit-of\ L) \notin atms-of-ms\ ?N\}
   have \vartheta[iff]: \bigwedge I. total-over-m I (?N \cup ?O \cup unmark-l ?M)
      \longleftrightarrow total\text{-}over\text{-}m \ I \ (?N \cup unmark\text{-}l \ ?M)
     unfolding total-over-set-def total-over-m-def atms-of-ms-def by blast
   assume ¬ ?thesis
   then have [simp]: \{unmark\ L\ | L.\ is\text{-}decided\ L \land L \in set\ ?M\}
      = \{unmark\ L\ | L.\ is-decided\ L\wedge L \in set\ ?M\wedge atm-of\ (lit-of\ L) \notin atms-of-ms\ ?N\}
     by auto
   then have ?N \cup ?O \models ps \ unmark-l \ ?M
     using all-decomposition-implies-propagated-lits-are-implied [OF decomp] by auto
   then have ?I \models s \ unmark-l \ ?M
      using cons-I' I'-N tot-I' \langle ?I \models s ?N \cup ?O \rangle unfolding \vartheta true-clss-clss-def by blast
   then have lits-of-l ?M \subseteq ?I
      unfolding true-clss-def lits-of-def by auto
   then have ?M \models as ?N
      using I'-N \langle C \in ?N \rangle \langle \neg ?M \models a C \rangle cons-I' atms-N-M
     by (meson \ \langle trail \ S \models as \ CNot \ C \rangle \ consistent-CNot-not \ rev-subsetD \ sup-ge1 \ true-annot-def
        true-annots-def true-cls-mono-set-mset-l true-clss-def)
```

```
then show False using M by fast
 qed
from List.split-list-first-propE[OF\ this] obtain K:: 'v\ literal\ and
  F F' :: ('v, unit) \ ann-lits \ \mathbf{where}
 M-K: ?M = F' @ Decided K # F and
 nm: \forall f \in set \ F'. \ \neg is\text{-}decided \ f
 unfolding is-decided-def by (metis (full-types) old.unit.exhaust)
let ?K = Decided K :: ('v, unit) ann-lit
have ?K \in set ?M
 unfolding M-K by auto
let C = image-mset\ lit-of\ \{\#L \in \#mset\ M.\ is-decided\ L \land L \neq R \} :: 'v\ clause
let ?C' = set\text{-mset} \ (image\text{-mset} \ (\lambda L::'v \ literal. \{\#L\#\}) \ (?C + unmark \ ?K))
have ?N \cup \{unmark\ L\ | L.\ is\text{-}decided\ L \land L \in set\ ?M\} \models ps\ unmark\text{-}l\ ?M
 using all-decomposition-implies-propagated-lits-are-implied[OF decomp].
moreover have C': ?C' = \{unmark \ L \ | L. \ is\text{-}decided \ L \land L \in set \ ?M\}
 unfolding M-K by standard force+
ultimately have N-C-M: ?N \cup ?C' \models ps \ unmark-l ?M
have N-M-False: ?N \cup (\lambda L. \ unmark \ L) ' (set \ ?M) \models ps \ \{\{\#\}\}\}
 using M \triangleleft ?M \models as \ CNot \ C \rangle \triangleleft C \in ?N \rangle unfolding true-clss-clss-def true-annots-def Ball-def
 true\text{-}annot\text{-}def \ \ \mathbf{by} \ \ (met is \ consistent\text{-}CNot\text{-}not \ sup.order E \ sup\text{-}commute \ true\text{-}clss\text{-}def
   true-clss-singleton-lit-of-implies-incl true-clss-union true-clss-union-increase)
have undefined-lit F K using (no-dup ?M) unfolding M-K by (simp\ add:\ defined-lit-map)
moreover
 have ?N \cup ?C' \models ps \{\{\#\}\}\}
   proof -
     have A: ?N \cup ?C' \cup unmark-l ?M = ?N \cup unmark-l ?M
       unfolding M-K by auto
     show ?thesis
       using true-clss-clss-left-right[OF N-C-M, of {{#}}] N-M-False unfolding A by auto
   qed
 have ?N \models p \ image\text{-}mset \ uminus \ ?C + \{\#-K\#\}
   unfolding true-clss-cls-def true-clss-clss-def total-over-m-def
   proof (intro allI impI)
     \mathbf{fix}\ I
     assume
       tot: total-over-set I (atms-of-ms (?N \cup {image-mset uminus ?C+ {#- K#}})) and
       cons: consistent-interp\ I and
       I \models s ?N
     have (K \in I \land -K \notin I) \lor (-K \in I \land K \notin I)
       using cons tot unfolding consistent-interp-def by (cases K) auto
     have \{a \in set \ (trail \ S). \ is\text{-}decided \ a \land a \neq Decided \ K\} =
       set (trail\ S) \cap \{L.\ is\text{-decided}\ L \land L \neq Decided\ K\}
      by auto
     then have tot': total-over-set I
        (atm\text{-}of 'lit\text{-}of '(set ?M \cap \{L. is\text{-}decided } L \land L \neq Decided K\}))
       using tot by (auto simp add: atms-of-uminus-lit-atm-of-lit-of)
     { \mathbf{fix} \ x :: ('v, unit) \ ann-lit}
       assume
         a3: lit-of x \notin I and
         a1: x \in set ?M and
         a4: is\text{-}decided \ x \ \mathbf{and}
         a5: x \neq Decided K
       then have Pos (atm\text{-}of\ (lit\text{-}of\ x)) \in I \lor Neg\ (atm\text{-}of\ (lit\text{-}of\ x)) \in I
         using a5 a4 tot' a1 unfolding total-over-set-def atms-of-s-def by blast
```

```
moreover have f6: Neg (atm-of (lit-of x)) = - Pos (atm-of (lit-of x))
               by simp
             ultimately have - lit-of x \in I
               using f6 a3 by (metis (no-types) atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set
                  literal.sel(1)
            } note H = this
           have \neg I \models s ?C'
             using \langle ?N \cup ?C' \models ps \{ \{\#\} \} \rangle \ tot \ cons \langle I \models s ?N \rangle
             unfolding true-clss-clss-def total-over-m-def
             by (simp add: atms-of-uminus-lit-atm-of-lit-of atms-of-ms-single-image-atm-of-lit-of)
           then show I \models image\text{-mset uminus } ?C + \{\#-K\#\}
             unfolding true-cls-def true-cls-def using (K \in I \land -K \notin I) \lor (-K \in I \land K \notin I)
             by (auto dest!: H)
         qed
      moreover have F \models as \ CNot \ (image-mset \ uminus \ ?C)
       using nm unfolding true-annots-def CNot-def M-K by (auto simp add: lits-of-def)
      ultimately have False
       using bj-can-jump[of S F' K F C - K
         image-mset\ uminus\ (image-mset\ lit-of\ \{\#\ L:\#\ mset\ ?M.\ is-decided\ L\land L\ne Decided\ K\#\}\}
         \langle C \in ?N \rangle n-s \langle ?M \models as\ CNot\ C \rangle bj-backjump inv \langle no\text{-}dup\ (trail\ S) \rangle unfolding M-K by auto
       then show ?thesis by fast
   qed auto
qed
end — End of dpll-with-backjumping-ops
locale dpll-with-backjumping =
  dpll-with-backjumping-ops trail clauses_{NOT} prepend-trail tl-trail add-cls_{NOT} remove-cls_{NOT} inv
    backjump-conds propagate-conds
   trail :: 'st \Rightarrow ('v, unit) \ ann-lits \ and
   clauses_{NOT} :: 'st \Rightarrow 'v \ clauses \ and
   prepend-trail :: ('v, unit) ann-lit \Rightarrow 'st \Rightarrow 'st and
   tl-trail :: 'st \Rightarrow 'st and
   add\text{-}cls_{NOT} :: 'v \ clause \Rightarrow 'st \Rightarrow 'st \ \textbf{and}
   remove\text{-}cls_{NOT} :: 'v \ clause \Rightarrow 'st \Rightarrow 'st \ \text{and}
   inv :: 'st \Rightarrow bool and
   backjump\text{-}conds :: 'v \ clause \Rightarrow 'v \ clause \Rightarrow 'v \ literal \Rightarrow 'st \Rightarrow 'st \Rightarrow bool \ \mathbf{and}
   propagate\text{-}conds :: ('v, unit) \ ann\text{-}lit \Rightarrow 'st \Rightarrow bool
 assumes dpll-bj-inv: \land S T. dpll-bj S T \Longrightarrow inv S \Longrightarrow inv T
begin
lemma rtranclp-dpll-bj-inv:
  assumes dpll-bj^{**} S T and inv S
  shows inv T
  using assms by (induction rule: rtranclp-induct)
   (auto simp add: dpll-bj-no-dup intro: dpll-bj-inv)
lemma rtranclp-dpll-bj-no-dup:
  assumes dpll-bj^{**} S T and inv S
 and no-dup (trail S)
 shows no-dup (trail\ T)
  using assms by (induction rule: rtranclp-induct)
  (auto simp add: dpll-bj-no-dup dest: rtranclp-dpll-bj-inv dpll-bj-inv)
```

```
\mathbf{lemma}\ rtranclp\text{-}dpll\text{-}bj\text{-}atms\text{-}of\text{-}ms\text{-}clauses\text{-}inv:
  assumes
    dpll-bj^{**} S T  and inv S
  shows atms-of-mm (clauses_{NOT} S) = atms-of-mm (clauses_{NOT} T)
  using assms by (induction rule: rtranclp-induct)
    (auto dest: rtranclp-dpll-bj-inv dpll-bj-atms-of-ms-clauses-inv)
lemma rtranclp-dpll-bj-atms-in-trail:
  assumes
    dpll-bj^{**} S T and
    inv S and
    atm\text{-}of \ (lits\text{-}of\text{-}l \ (trail \ S)) \subseteq atms\text{-}of\text{-}mm \ (clauses_{NOT} \ S)
  shows atm-of ' (lits-of-l (trail\ T)) \subseteq atms-of-mm (clauses_{NOT}\ T)
  using assms apply (induction rule: rtranclp-induct)
  using dpll-bj-atms-in-trail dpll-bj-atms-of-ms-clauses-inv rtranclp-dpll-bj-inv by auto
lemma rtranclp-dpll-bj-sat-iff:
  assumes dpll-bj^{**} S T and inv S
  shows I \models sm \ clauses_{NOT} \ S \longleftrightarrow I \models sm \ clauses_{NOT} \ T
  using assms by (induction rule: rtranclp-induct)
    (auto dest!: dpll-bj-sat-iff simp: rtranclp-dpll-bj-inv)
\mathbf{lemma}\ \mathit{rtranclp-dpll-bj-atms-in-trail-in-set}:
  assumes
    dpll-bj^{**} S T and
    inv S
    atms-of-mm (clauses_{NOT} S) \subseteq A and
    atm\text{-}of ' (lits-of-l (trail S)) \subseteq A
  shows atm\text{-}of ' (lits\text{-}of\text{-}l\ (trail\ T))\subseteq A
  using assms by (induction rule: rtranclp-induct)
  (auto dest: rtranclp-dpll-bj-inv
    simp: dpll-bj-atms-in-trail-in-set rtranclp-dpll-bj-atms-of-ms-clauses-inv rtranclp-dpll-bj-inv)
\mathbf{lemma}\ rtranclp\text{-}dpll\text{-}bj\text{-}all\text{-}decomposition\text{-}implies\text{-}inv\text{:}}
  assumes
    dpll-bj^{**} S T and
    inv S
    all-decomposition-implies-m (clauses<sub>NOT</sub> S) (get-all-ann-decomposition (trail S))
  shows all-decomposition-implies-m (clauses<sub>NOT</sub> T) (get-all-ann-decomposition (trail T))
  using assms by (induction rule: rtranclp-induct)
    (auto intro: dpll-bj-all-decomposition-implies-inv simp: rtranclp-dpll-bj-inv)
lemma rtranclp-dpll-bj-inv-incl-dpll-bj-inv-trancl:
  \{(T, S), dpll-bj^{++} S T\}
    \land \ atms\text{-}of\text{-}mm \ (\textit{clauses}_{NOT} \ S) \subseteq atms\text{-}of\text{-}ms \ A \ \land \ atm\text{-}of \ \lq \ lits\text{-}of\text{-}l \ (\textit{trail} \ S) \subseteq atms\text{-}of\text{-}ms \ A
    \land no-dup (trail S) \land inv S}
     \subseteq \{(T, S). \ dpll-bj \ S \ T \land atms-of-mm \ (clauses_{NOT} \ S) \subseteq atms-of-ms \ A
        \land atm-of 'lits-of-l (trail S) \subseteq atms-of-ms A \land no-dup (trail S) \land inv S}<sup>+</sup>
    (is ?A \subset ?B^+)
proof standard
  \mathbf{fix} \ x
 assume x-A: x \in ?A
  obtain S T::'st where
    x[simp]: x = (T, S) by (cases x) auto
  have
```

```
dpll-bj<sup>++</sup> S T and
   atms-of-mm (clauses_{NOT} S) \subseteq atms-of-ms A and
   atm\text{-}of ' lits\text{-}of\text{-}l (trail\ S) \subseteq atms\text{-}of\text{-}ms\ A and
    no-dup (trail S) and
    inv S
   using x-A by auto
  then show x \in ?B^+ unfolding x
   proof (induction rule: tranclp-induct)
      case base
      then show ?case by auto
   next
      case (step T U) note step = this(1) and ST = this(2) and IH = this(3)[OF this(4-7)]
       and N-A = this(4) and M-A = this(5) and nd = this(6) and inv = this(7)
      have [simp]: atms-of-mm (clauses_{NOT} S) = atms-of-mm (clauses_{NOT} T)
       \textbf{using} \ \textit{step rtranclp-dpll-bj-atms-of-ms-clauses-inv tranclp-into-rtranclp inv } \textbf{by} \ \textit{fastforce}
      have no-dup (trail T)
       using local.step nd rtranclp-dpll-bj-no-dup tranclp-into-rtranclp inv by fastforce
      moreover have atm\text{-}of ' (lits\text{-}of\text{-}l\ (trail\ T))\subseteq atms\text{-}of\text{-}ms\ A
       \mathbf{by}\ (\textit{metis inv M-A N-A local.step rtranclp-dpll-bj-atms-in-trail-in-set}
         tranclp-into-rtranclp)
      moreover have inv T
        using inv local.step rtranclp-dpll-bj-inv tranclp-into-rtranclp by fastforce
      ultimately have (U, T) \in ?B using ST N-A M-A inv by auto
      then show ?case using IH by (rule trancl-into-trancl2)
   ged
qed
lemma wf-tranclp-dpll-bj:
  assumes fin: finite A
 shows wf \{(T, S). dpll-bj^{++} S T
   \land atms-of-mm (clauses_{NOT} S) \subseteq atms-of-ms A \land atm-of 'lits-of-l (trail S) \subseteq atms-of-ms A
   \land no-dup (trail S) \land inv S}
  using wf-trancl[OF \ wf-dpll-bj[OF \ fin]] rtranclp-dpll-bj-inv-incl-dpll-bj-inv-trancl
  by (rule wf-subset)
lemma dpll-bj-sat-ext-iff:
  dpll-bj \ S \ T \Longrightarrow inv \ S \Longrightarrow I \models sextm \ clauses_{NOT} \ S \longleftrightarrow I \models sextm \ clauses_{NOT} \ T
  by (simp add: dpll-bj-clauses)
lemma rtranclp-dpll-bj-sat-ext-iff:
  dpll-bj^{**} S T \Longrightarrow inv S \Longrightarrow I \models sextm \ clauses_{NOT} S \longleftrightarrow I \models sextm \ clauses_{NOT} T
  by (induction rule: rtranclp-induct) (simp-all add: rtranclp-dpll-bj-inv dpll-bj-sat-ext-iff)
theorem full-dpll-backjump-final-state:
  fixes A :: 'v \ clause \ set \ and \ S \ T :: 'st
  assumes
   full: full dpll-bj S T and
   atms-S: atms-of-mm (clauses_{NOT} S) \subseteq atms-of-ms A and
   \mathit{atms-trail} \colon \mathit{atm-of} \mathrel{`} \mathit{lits-of-l} \mathrel{(trail\ S)} \subseteq \mathit{atms-of-ms}\ \mathit{A} \ \mathbf{and}
   n\text{-}d: no\text{-}dup\ (trail\ S) and
   finite A and
   inv: inv S and
    decomp: all-decomposition-implies-m \ (clauses_{NOT} \ S) \ (get-all-ann-decomposition \ (trail \ S))
  shows unsatisfiable (set-mset (clauses_{NOT} S))
  \vee (trail T \models asm\ clauses_{NOT}\ S \land satisfiable\ (set\text{-mset}\ (clauses_{NOT}\ S)))
```

```
proof -
 have st: dpll-bj^{**} S T and no\text{-}step dpll-bj T
   using full unfolding full-def by fast+
  moreover have atms-of-mm (clauses_{NOT} \ T) \subseteq atms-of-ms A
   using atms-S inv rtranclp-dpll-bj-atms-of-ms-clauses-inv st by blast
  moreover have atm-of ' lits-of-l (trail\ T) \subseteq atms-of-ms\ A
    using atms-S atms-trail inv rtranclp-dpll-bj-atms-in-trail-in-set st by auto
 moreover have no-dup (trail\ T)
   using n-d inv rtranclp-dpll-bj-no-dup st by blast
  moreover have inv: inv T
   using inv rtranclp-dpll-bj-inv st by blast
 moreover
   have decomp: all-decomposition-implies-m (clauses_{NOT} T) (get-all-ann-decomposition (trail T))
     using \langle inv S \rangle decomp rtranclp-dpll-bj-all-decomposition-implies-inv st by blast
  ultimately have unsatisfiable (set-mset (clauses<sub>NOT</sub> T))
   \vee (trail T \models asm\ clauses_{NOT}\ T \land satisfiable\ (set\text{-mset}\ (clauses_{NOT}\ T)))
   using \langle finite \ A \rangle dpll-backjump-final-state by force
  then show ?thesis
   by (meson (inv S) rtranclp-dpll-bj-sat-iff satisfiable-carac st true-annots-true-cls)
qed
corollary full-dpll-backjump-final-state-from-init-state:
 fixes A :: 'v \ clause \ set \ and \ S \ T :: 'st
 assumes
   full: full dpll-bj S T and
   trail S = [] and
   clauses_{NOT} S = N and
   inv S
 shows unsatisfiable (set-mset N) \vee (trail T \models asm N \land satisfiable (set-mset N))
 using assms full-dpll-backjump-final-state of S T set-mset N by auto
\mathbf{lemma}\ tranclp\text{-}dpll\text{-}bj\text{-}trail\text{-}mes\text{-}decreasing\text{-}prop:
 assumes dpll: dpll-bj<sup>++</sup> S T and inv: inv S and
  N-A: atms-of-mm (clauses_{NOT} S) \subseteq atms-of-ms A and
  M-A: atm-of ' lits-of-l (trail\ S) \subseteq atms-of-ms\ A and
  n-d: no-dup (trail S) and
 fin-A: finite A
 shows (2+card (atms-of-ms A)) \cap (1+card (atms-of-ms A))
             -\mu_C (1+card (atms-of-ms A)) (2+card (atms-of-ms A)) (trail-weight T)
          < (2+card (atms-of-ms A)) \cap (1+card (atms-of-ms A))
             -\mu_C (1+card (atms-of-ms A)) (2+card (atms-of-ms A)) (trail-weight S)
 using dpll
proof (induction)
  case base
  then show ?case
   using N-A M-A n-d dpll-bj-trail-mes-decreasing-prop fin-A inv by blast
next
  case (step T U) note st = this(1) and dpll = this(2) and IH = this(3)
 have atms-of-mm (clauses<sub>NOT</sub> S) = atms-of-mm (clauses<sub>NOT</sub> T)
   using rtranclp-dpll-bj-atms-of-ms-clauses-inv by (metis dpll-bj-clauses dpll-bj-inv inv st
     tranclpD)
  then have N-A': atms-of-mm (clauses_{NOT} T) \subseteq atms-of-ms A
    using N-A by auto
 moreover have M-A': atm-of ' lits-of-l (trail\ T) \subseteq atms-of-ms A
   by (meson M-A N-A inv rtranclp-dpll-bj-atms-in-trail-in-set st dpll
     tranclp.r-into-trancl tranclp-into-rtranclp tranclp-trans)
```

```
moreover have nd: no-dup (trail T)
by (metis inv n-d rtranclp-dpll-bj-no-dup st tranclp-into-rtranclp)
moreover have inv T
by (meson dpll dpll-bj-inv inv rtranclp-dpll-bj-inv st tranclp-into-rtranclp)
ultimately show ?case
using IH dpll-bj-trail-mes-decreasing-prop[of T U A] dpll fin-A by linarith
qed
end — End of dpll-with-backjumping
```

1.2.4 CDCL

In this section we will now define the conflict driven clause learning above DPLL: we first introduce the rules learn and forget, and the add these rules to the DPLL calculus.

Learn and Forget

Learning adds a new clause where all the literals are already included in the clauses.

```
locale learn-ops =
  dpll-state trail\ clauses_{NOT}\ prepend-trail tl-trail add-cls_{NOT}\ remove-cls_{NOT}
    trail :: 'st \Rightarrow ('v, unit) \ ann-lits \ and
    clauses_{NOT} :: 'st \Rightarrow 'v \ clauses \ \mathbf{and}
    prepend-trail :: ('v, unit) ann-lit \Rightarrow 'st \Rightarrow 'st and
    tl-trail :: 'st \Rightarrow 'st and
    add\text{-}cls_{NOT} :: 'v \ clause \Rightarrow 'st \Rightarrow 'st \ \mathbf{and}
    remove\text{-}cls_{NOT} :: 'v \ clause \Rightarrow 'st \Rightarrow 'st +
  fixes
    learn\text{-}cond :: 'v \ clause \Rightarrow 'st \Rightarrow bool
begin
inductive learn :: 'st \Rightarrow 'st \Rightarrow bool where
learn_{NOT}-rule: clauses_{NOT} S \models pm C \Longrightarrow
  atms-of\ C\subseteq atms-of-mm\ (clauses_{NOT}\ S)\cup atm-of\ `(lits-of-l\ (trail\ S))\Longrightarrow
  learn\text{-}cond\ C\ S \Longrightarrow
  T \sim add\text{-}cls_{NOT} \ C S \Longrightarrow
  learn S T
inductive-cases learn_{NOT}E: learn S T
lemma learn-\mu_C-stable:
  assumes learn S T and no-dup (trail S)
  shows \mu_C A B (trail-weight S) = \mu_C A B (trail-weight T)
  using assms by (auto elim: learn_{NOT}E)
end
```

Forget removes an information that can be deduced from the context (e.g. redundant clauses, tautologies)

```
locale forget-ops = dpll-state trail clauses_{NOT} prepend-trail tl-trail add-cls_{NOT} remove-cls_{NOT} for trail :: 'st \Rightarrow ('v, unit) \ ann-lits \ and \ clauses_{NOT} :: 'st \Rightarrow 'v \ clauses \ and \ prepend-trail :: ('v, unit) \ ann-lit \Rightarrow 'st \Rightarrow 'st \ and \ tl-trail :: 'st \Rightarrow'st and add-cls_{NOT} :: 'v clause \Rightarrow 'st \Rightarrow 'st and
```

```
remove\text{-}cls_{NOT} :: 'v \ clause \Rightarrow 'st \Rightarrow 'st +
  fixes
    forget\text{-}cond :: 'v \ clause \Rightarrow 'st \Rightarrow bool
begin
inductive forget_{NOT} :: 'st \Rightarrow 'st \Rightarrow bool  where
forget_{NOT}:
  removeAll\text{-}mset\ C(clauses_{NOT}\ S) \models pm\ C \Longrightarrow
  forget\text{-}cond\ C\ S \Longrightarrow
  C \in \# \ clauses_{NOT} \ S \Longrightarrow
  T \sim remove\text{-}cls_{NOT} \ C \ S \Longrightarrow
  forget_{NOT} S T
inductive-cases forget_{NOT}E: forget_{NOT} S T
lemma forget-\mu_C-stable:
  assumes forget_{NOT} S T
  shows \mu_C A B (trail-weight S) = \mu_C A B (trail-weight T)
  using assms by (auto elim!: forget_{NOT}E)
locale learn-and-forget_{NOT} =
  learn-ops\ trail\ clauses_{NOT}\ prepend-trail\ tl-trail\ add-cls_{NOT}\ remove-cls_{NOT}\ learn-cond\ +
  forget-ops\ trail\ clauses_{NOT}\ prepend-trail\ tl-trail\ add-cls_{NOT}\ remove-cls_{NOT}\ forget-cond
  for
    trail :: 'st \Rightarrow ('v, unit) \ ann-lits \ \mathbf{and}
    clauses_{NOT} :: 'st \Rightarrow 'v \ clauses \ and
    prepend-trail :: ('v, unit) ann-lit \Rightarrow 'st \Rightarrow 'st and
    tl-trail :: 'st \Rightarrow 'st and
    add\text{-}cls_{NOT} :: 'v \ clause \Rightarrow 'st \Rightarrow 'st \ \mathbf{and}
    remove\text{-}cls_{NOT} :: 'v \ clause \Rightarrow 'st \Rightarrow 'st \ \text{and}
    learn\text{-}cond\ forget\text{-}cond\ ::\ 'v\ clause \Rightarrow 'st \Rightarrow bool
begin
inductive learn-and-forget<sub>NOT</sub> :: 'st \Rightarrow 'st \Rightarrow bool
where
lf-learn: learn \ S \ T \Longrightarrow learn-and-forget_{NOT} \ S \ T \mid
lf-forget: forget_{NOT} \ S \ T \Longrightarrow learn-and-forget_{NOT} \ S \ T
end
Definition of CDCL
locale \ conflict-driven-clause-learning-ops =
  dpll-with-backjumping-ops trail clauses_{NOT} prepend-trail tl-trail add-cls_{NOT} remove-cls_{NOT}
    inv\ backjump\text{-}conds\ propagate\text{-}conds\ +
  learn-and-forget_{NOT} trail clauses_{NOT} prepend-trail tl-trail add-cls_{NOT} remove-cls_{NOT} learn-cond
    forget-cond
  for
    trail :: 'st \Rightarrow ('v, unit) \ ann-lits \ and
    clauses_{NOT} :: 'st \Rightarrow 'v \ clauses \ {\bf and}
    prepend-trail :: ('v, unit) ann-lit \Rightarrow 'st \Rightarrow 'st and
    tl-trail :: 'st \Rightarrow 'st and
    add\text{-}cls_{NOT} :: 'v \ clause \Rightarrow 'st \Rightarrow 'st \ \text{and}
    remove\text{-}cls_{NOT} :: 'v \ clause \Rightarrow 'st \Rightarrow 'st \ \mathbf{and}
    inv :: 'st \Rightarrow bool  and
    backjump\text{-}conds :: 'v \ clause \Rightarrow 'v \ literal \Rightarrow 'st \Rightarrow 'st \Rightarrow bool \ \mathbf{and}
    propagate\text{-}conds:: ('v, unit) \ ann\text{-}lit \Rightarrow 'st \Rightarrow bool \ and
    learn\text{-}cond\ forget\text{-}cond:: 'v\ clause \Rightarrow 'st \Rightarrow bool
begin
```

```
inductive cdcl_{NOT} :: 'st \Rightarrow 'st \Rightarrow bool for S :: 'st where
c-dpll-bj: dpll-bj S S' \Longrightarrow cdcl_{NOT} S S'
c-learn: learn \ S \ S' \Longrightarrow cdcl_{NOT} \ S \ S'
c	ext{-}forget_{NOT} : forget_{NOT} \ S \ S' \Longrightarrow cdcl_{NOT} \ S \ S'
lemma cdcl_{NOT}-all-induct[consumes 1, case-names dpll-bj learn forget_{NOT}]:
  fixes S T :: 'st
  assumes cdcl_{NOT} S T and
    dpll: \bigwedge T. \ dpll-bj \ S \ T \Longrightarrow P \ S \ T \ and
   learning:
     \bigwedge C \ T. \ clauses_{NOT} \ S \models pm \ C \Longrightarrow
     atms-of\ C\subseteq atms-of-mm\ (clauses_{NOT}\ S)\cup atm-of\ `(lits-of-l\ (trail\ S))\Longrightarrow
      T \sim add\text{-}cls_{NOT} \ C S \Longrightarrow
     P S T and
   forgetting: \bigwedge C T. removeAll-mset C (clauses<sub>NOT</sub> S) \models pm C \Longrightarrow
      C \in \# clauses_{NOT} S \Longrightarrow
      T \sim remove\text{-}cls_{NOT} \ C \ S \Longrightarrow
     PST
  shows P S T
  using assms(1) by (induction rule: cdcl_{NOT}.induct)
  (auto intro: assms(2, 3, 4) elim!: learn_{NOT}E forget<sub>NOT</sub>E)+
lemma cdcl_{NOT}-no-dup:
  assumes
    cdcl_{NOT} S T and
    inv S and
   no-dup (trail S)
  shows no-dup (trail T)
  using assms by (induction rule: cdcl_{NOT}-all-induct) (auto intro: dpll-bj-no-dup)
Consistency of the trail lemma \ cdcl_{NOT}-consistent:
  assumes
    cdcl_{NOT} S T and
    inv S and
   no-dup (trail S)
  shows consistent-interp (lits-of-l (trail T))
  using cdcl_{NOT}-no-dup[OF\ assms]\ distinct-consistent-interp by fast
The subtle problem here is that tautologies can be removed, meaning that some variable can
disappear of the problem. It is also means that some variable of the trail might not be present
in the clauses anymore.
lemma cdcl_{NOT}-atms-of-ms-clauses-decreasing:
 assumes cdcl_{NOT} S Tand inv S and no-dup (trail\ S)
  shows atms-of-mm (clauses_{NOT} T) \subseteq atms-of-mm (clauses_{NOT} S) \cup atm-of ' (lits-of-l (trail S))
  using assms by (induction rule: cdcl_{NOT}-all-induct)
   (auto dest!: dpll-bj-atms-of-ms-clauses-inv set-mp simp add: atms-of-ms-def Union-eq)
lemma cdcl_{NOT}-atms-in-trail:
  assumes cdcl_{NOT} S T and inv S and no-dup (trail S)
  and atm\text{-}of ' (lits\text{-}of\text{-}l\ (trail\ S))\subseteq atms\text{-}of\text{-}mm\ (clauses_{NOT}\ S)
  shows atm\text{-}of ' (lits\text{-}of\text{-}l\ (trail\ T))\subseteq atms\text{-}of\text{-}mm\ (clauses_{NOT}\ S)
  using assms by (induction rule: cdcl_{NOT}-all-induct) (auto simp add: dpll-bj-atms-in-trail)
lemma cdcl_{NOT}-atms-in-trail-in-set:
```

```
assumes
    cdcl_{NOT} S T and inv S and no-dup (trail S) and
   atms-of-mm (clauses_{NOT} S) \subseteq A and
   atm\text{-}of ' (lits-of-l (trail S)) \subseteq A
  shows atm\text{-}of ' (lits\text{-}of\text{-}l\ (trail\ T))\subseteq A
  using assms
 by (induction rule: cdcl_{NOT}-all-induct)
    (simp-all add: dpll-bj-atms-in-trail-in-set dpll-bj-atms-of-ms-clauses-inv)
lemma cdcl_{NOT}-all-decomposition-implies:
 assumes cdcl_{NOT} S T and inv S and n\text{-}d[simp]: no\text{-}dup \ (trail \ S) and
   all-decomposition-implies-m (clauses<sub>NOT</sub> S) (get-all-ann-decomposition (trail S))
 shows
   all-decomposition-implies-m (clauses<sub>NOT</sub> T) (get-all-ann-decomposition (trail T))
  using assms(1,2,4)
proof (induction rule: cdcl_{NOT}-all-induct)
 case dpll-bj
 then show ?case
    using dpll-bj-all-decomposition-implies-inv n-d by blast
\mathbf{next}
  case learn
 then show ?case by (auto simp add: all-decomposition-implies-def)
next
  case (forget<sub>NOT</sub> C T) note cls-C = this(1) and C = this(2) and T = this(3) and iniv = this(4)
and
    decomp = this(5)
 show ?case
   unfolding all-decomposition-implies-def Ball-def
   proof (intro allI, clarify)
     \mathbf{fix} \ a \ b
     assume (a, b) \in set (get-all-ann-decomposition (trail T))
     then have unmark-l a \cup set-mset (clauses<sub>NOT</sub> S) \models ps unmark-l b
       using decomp T by (auto simp add: all-decomposition-implies-def)
     moreover
       have a1:C \in set\text{-}mset\ (clauses_{NOT}\ S)
         using C by blast
       have clauses_{NOT} T = clauses_{NOT} (remove-cls<sub>NOT</sub> CS)
        using T state-eq<sub>NOT</sub>-clauses by blast
       then have set-mset (clauses<sub>NOT</sub> T) \models ps set-mset (clauses<sub>NOT</sub> S)
         using a1 by (metis (no-types) clauses-remove-cls<sub>NOT</sub> cls-C insert-Diff order-refl
         set-mset-minus-replicate-mset(1) true-clss-clss-def true-clss-clss-insert)
     ultimately show unmark-l a \cup set-mset (clauses<sub>NOT</sub> T)
       \models ps \ unmark-l \ b
       using true-clss-clss-generalise-true-clss-clss by blast
   qed
\mathbf{qed}
Extension of models lemma cdcl_{NOT}-bj-sat-ext-iff:
 assumes cdcl_{NOT} S Tand inv S and n-d: no-dup (trail S)
 shows I \models sextm \ clauses_{NOT} \ S \longleftrightarrow I \models sextm \ clauses_{NOT} \ T
  using assms
proof (induction rule: cdcl_{NOT}-all-induct)
  case dpll-bj
 then show ?case by (simp add: dpll-bj-clauses)
next
  case (learn C T) note T = this(3)
```

```
\{ \text{ fix } J \}
   assume
     I \models sextm\ clauses_{NOT}\ S and
     I \subseteq J and
     tot: total-over-m J (set-mset (\{\#C\#\} + clauses_{NOT} S)) and
     cons: consistent-interp J
   then have J \models sm\ clauses_{NOT}\ S unfolding true-clss-ext-def by auto
   moreover
     with \langle clauses_{NOT} S \models pm \ C \rangle have J \models C
       using tot cons unfolding true-clss-cls-def by auto
   ultimately have J \models sm \{\#C\#\} + clauses_{NOT} S by auto
  then have H: I \models sextm (clauses_{NOT} S) \Longrightarrow I \models sext insert C (set-mset (clauses_{NOT} S))
   unfolding true-clss-ext-def by auto
  show ?case
   apply standard
     using T n-d apply (auto simp add: H)[]
   using T n-d apply simp
   by (metis Diff-insert-absorb insert-subset subsetI subset-antisym
     true-clss-ext-decrease-right-remove-r)
next
 case (forget_{NOT} \ C \ T) note cls\text{-}C = this(1) and T = this(3)
 \{ \text{ fix } J \}
   assume
     I \models sext \ set\text{-}mset \ (clauses_{NOT} \ S) - \{C\} \ and
     I \subseteq J and
     tot: total-over-m J (set-mset (clauses_{NOT} S)) and
     cons: consistent-interp J
   then have J \models s \ set\text{-}mset \ (clauses_{NOT} \ S) - \{C\}
     unfolding true-clss-ext-def by (meson Diff-subset total-over-m-subset)
   moreover
     with cls-C have J \models C
       using tot cons unfolding true-clss-cls-def
       by (metis Un-commute forget_{NOT}.hyps(2) insert-Diff insert-is-Un order-reft
         set-mset-minus-replicate-mset(1))
   ultimately have J \models sm \ (clauses_{NOT} \ S) by (metis \ insert-Diff-single \ true-clss-insert)
  then have H: I \models sext \ set\text{-}mset \ (clauses_{NOT} \ S) - \{C\} \Longrightarrow I \models sextm \ (clauses_{NOT} \ S)
   unfolding true-clss-ext-def by blast
 show ?case using T by (auto simp: true-clss-ext-decrease-right-remove-r H)
qed
end — end of conflict-driven-clause-learning-ops
CDCL with invariant
locale conflict-driven-clause-learning =
  conflict-driven-clause-learning-ops +
 assumes cdcl_{NOT}-inv: \bigwedge S T. cdcl_{NOT} S T \Longrightarrow inv S \Longrightarrow inv T
begin
sublocale dpll-with-backjumping
 apply unfold-locales
 using cdcl_{NOT}.simps\ cdcl_{NOT}.inv by auto
```

```
lemma rtranclp-cdcl_{NOT}-inv:
  cdcl_{NOT}^{**} S T \Longrightarrow inv S \Longrightarrow inv T
  by (induction rule: rtranclp-induct) (auto simp\ add:\ cdcl_{NOT}-inv)
lemma rtranclp-cdcl_{NOT}-no-dup:
  assumes cdcl_{NOT}^{**} S T and inv S
 and no-dup (trail S)
 shows no-dup (trail\ T)
 using assms by (induction rule: rtranclp-induct) (auto intro: cdcl_{NOT}-no-dup rtranclp-cdcl_{NOT}-inv)
lemma rtranclp-cdcl_{NOT}-trail-clauses-bound:
 assumes
    cdcl: cdcl_{NOT}^{**} S T  and
   inv: inv S and
   n-d: no-dup (trail S) and
   atms-clauses-S: atms-of-mm (clauses<sub>NOT</sub> S) \subseteq A and
   atms-trail-S: atm-of '(lits-of-l (trail S)) \subseteq A
 shows atm-of '(lits-of-l (trail T)) \subseteq A \land atms-of-mm (clauses<sub>NOT</sub> T) \subseteq A
  using cdcl
proof (induction rule: rtranclp-induct)
  case base
  then show ?case using atms-clauses-S atms-trail-S by simp
next
  case (step T U) note st = this(1) and cdcl_{NOT} = this(2) and IH = this(3)
 have inv T using inv st rtranclp-cdcl_{NOT}-inv by blast
  have no-dup (trail\ T)
   using rtranclp-cdcl_{NOT}-no-dup[of S T] st cdcl_{NOT} inv n-d by blast
  then have atms-of-mm (clauses_{NOT} \ U) \subseteq A
   using cdcl_{NOT}-atms-of-ms-clauses-decreasing [OF cdcl_{NOT}] IH n-d \langle inv T \rangle by fast
 moreover
   have atm\text{-}of '(lits\text{-}of\text{-}l (trail U)) \subseteq A
     using cdcl_{NOT}-atms-in-trail-in-set[OF cdcl_{NOT}, of A] \langle no\text{-}dup \ (trail \ T) \rangle
     by (meson atms-trail-S atms-clauses-S IH \langle inv T \rangle cdcl<sub>NOT</sub>)
 ultimately show ?case by fast
qed
lemma rtranclp-cdcl_{NOT}-all-decomposition-implies:
 assumes cdcl_{NOT}^{**} S T and inv S and no-dup (trail S) and
    all-decomposition-implies-m (clauses<sub>NOT</sub> S) (get-all-ann-decomposition (trail S))
 shows
   all-decomposition-implies-m (clauses<sub>NOT</sub> T) (get-all-ann-decomposition (trail T))
  using assms by (induction)
  (auto intro: rtranclp-cdcl_{NOT}-inv cdcl_{NOT}-all-decomposition-implies rtranclp-cdcl_{NOT}-no-dup)
\mathbf{lemma}\ rtranclp\text{-}cdcl_{NOT}\text{-}bj\text{-}sat\text{-}ext\text{-}iff\text{:}
  assumes cdcl_{NOT}^{**} S Tand inv S and no-dup (trail S)
 shows I \models sextm \ clauses_{NOT} \ S \longleftrightarrow I \models sextm \ clauses_{NOT} \ T
 using assms apply (induction rule: rtranclp-induct)
 using cdcl_{NOT}-bj-sat-ext-iff by (auto intro: rtranclp-cdcl_{NOT}-inv rtranclp-cdcl_{NOT}-no-dup)
definition cdcl_{NOT}-NOT-all-inv where
cdcl_{NOT}-NOT-all-inv A S \longleftrightarrow (finite A \land inv S \land atms-of-mm \ (clauses_{NOT} S) \subseteq atms-of-ms A
   \land atm-of 'lits-of-l (trail S) \subseteq atms-of-ms A \land no-dup (trail S))
lemma cdcl_{NOT}-NOT-all-inv:
 assumes cdcl_{NOT}^{**} S T and cdcl_{NOT}-NOT-all-inv A S
```

```
shows cdcl_{NOT}-NOT-all-inv A T
  using assms unfolding cdcl_{NOT}-NOT-all-inv-def
  by (simp add: rtranclp-cdcl_{NOT}-inv rtranclp-cdcl_{NOT}-no-dup rtranclp-cdcl_{NOT}-trail-clauses-bound)
abbreviation learn-or-forget where
learn-or-forget S T \equiv learn S T \lor forget_{NOT} S T
lemma rtranclp-learn-or-forget-cdcl_{NOT}:
  learn-or-forget^{**} S T \Longrightarrow cdcl_{NOT}^{**} S T
 using rtranclp-mono[of\ learn-or-forget\ cdcl_{NOT}] by (blast intro: cdcl_{NOT}.c-learn cdcl_{NOT}.c-forget cdcl_{NOT})
lemma learn-or-forget-dpll-\mu_C:
 assumes
   l-f: learn-or-forget** S T and
   dpll: dpll-bj \ T \ U \ {\bf and}
   inv: cdcl_{NOT}-NOT-all-inv \ A \ S
 shows (2+card (atms-of-ms A)) \cap (1+card (atms-of-ms A))
     -\mu_C (1+card (atms-of-ms A)) (2+card (atms-of-ms A)) (trail-weight U)
   <(2+card\ (atms-of-ms\ A)) \cap (1+card\ (atms-of-ms\ A))
      -\mu_C \ (1+card \ (atms-of-ms \ A)) \ (2+card \ (atms-of-ms \ A)) \ (trail-weight \ S)
    (is ?\mu U < ?\mu S)
proof -
 have ?\mu S = ?\mu T
   using l-f
   proof (induction)
     {f case}\ base
     then show ?case by simp
   next
     case (step \ T \ U)
     moreover then have no-dup (trail T)
       \mathbf{using}\ \mathit{rtranclp-cdcl}_{NOT}\text{-}\mathit{no-dup}[\mathit{of}\ S\ T]\ \mathit{cdcl}_{NOT}\text{-}\mathit{NOT-all-inv-def}\ \mathit{inv}
       rtranclp-learn-or-forget-cdcl_{NOT} by auto
     ultimately show ?case
       using forget-\mu_C-stable learn-\mu_C-stable inv unfolding cdcl_{NOT}-NOT-all-inv-def by presburger
   qed
 moreover have cdcl_{NOT}-NOT-all-inv A T
    using rtranclp-learn-or-forget-cdcl_{NOT} cdcl_{NOT}-NOT-all-inv l-f inv by blast
  ultimately show ?thesis
   \mathbf{using}\ \mathit{dpll-bj-trail-mes-decreasing-prop}[\mathit{of}\ T\ U\ A,\ \mathit{OF}\ \mathit{dpll}]\ \mathit{finite}
   unfolding cdcl_{NOT}-NOT-all-inv-def by presburger
qed
lemma infinite-cdcl_{NOT}-exists-learn-and-forget-infinite-chain:
 assumes
    \bigwedge i. \ cdcl_{NOT} \ (f \ i) \ (f(Suc \ i)) \ and
   inv: cdcl_{NOT}-NOT-all-inv \ A \ (f \ \theta)
 shows \exists j. \forall i \geq j. learn-or-forget (f i) (f (Suc i))
 using assms
proof (induction (2+card (atms-of-ms A)) \cap (1+card (atms-of-ms A))
    -\mu_C (1+card (atms-of-ms A)) (2+card (atms-of-ms A)) (trail-weight (f 0))
   arbitrary: f
   rule: nat-less-induct-case)
 case (Suc n) note IH = this(1) and \mu = this(2) and cdcl_{NOT} = this(3) and inv = this(4)
 consider
     (dpll-end) \exists j. \ \forall i \geq j. \ learn-or-forget \ (f \ i) \ (f \ (Suc \ i))
```

```
|(dpll\text{-more}) \neg (\exists j. \ \forall i \geq j. \ learn\text{-or-forget} \ (f \ i) \ (f \ (Suc \ i)))|
 by blast
then show ?case
 proof cases
   case dpll-end
   then show ?thesis by auto
 next
   case dpll-more
   then have j: \exists i. \neg learn (f i) (f (Suc i)) \land \neg forget_{NOT} (f i) (f (Suc i))
     by blast
   obtain i where
      \neg learn\ (f\ i)\ (f\ (Suc\ i)) \land \neg forget_{NOT}\ (f\ i)\ (f\ (Suc\ i)) and
     \forall k < i. learn-or-forget (f k) (f (Suc k))
     proof -
        obtain i_0 where \neg learn (f i_0) (f (Suc i_0)) \land \neg forget_{NOT} (f i_0) (f (Suc i_0))
          using j by auto
        then have \{i.\ i \leq i_0 \land \neg\ learn\ (f\ i)\ (f\ (Suc\ i)) \land \neg forget_{NOT}\ (f\ i)\ (f\ (Suc\ i))\} \neq \{\}
        let ?I = \{i. \ i \leq i_0 \land \neg \ learn \ (f \ i) \ (f \ (Suc \ i)) \land \neg forget_{NOT} \ (f \ i) \ (f \ (Suc \ i))\}
        let ?i = Min ?I
        have finite ?I
          by auto
        have \neg learn (f ?i) (f (Suc ?i)) \land \neg forget_{NOT} (f ?i) (f (Suc ?i))
          using Min-in[OF \langle finite ?I \rangle \langle ?I \neq \{\} \rangle] by auto
        moreover have \forall k < ?i. learn-or-forget (f k) (f (Suc k))
          using Min.coboundedI[of \{i. i \leq i_0 \land \neg learn (f i) (f (Suc i)) \land \neg forget_{NOT} (f i)\}
            (f(Suc\ i)), simplified
         by (meson \leftarrow learn\ (f\ i_0)\ (f\ (Suc\ i_0)) \land \neg\ forget_{NOT}\ (f\ i_0)\ (f\ (Suc\ i_0)) \rangle\ less-imp-le
            dual-order.trans not-le)
        ultimately show ?thesis using that by blast
     qed
   \operatorname{def} g \equiv \lambda n. f (n + Suc i)
   have dpll-bj (f i) (g \theta)
     using \langle \neg learn (f i) (f (Suc i)) \wedge \neg forget_{NOT} (f i) (f (Suc i)) \rangle cdcl_{NOT} cdcl_{NOT}.cases
     g-def by auto
     \mathbf{fix} \ j
     assume j \leq i
     then have learn-or-forget** (f \ \theta) \ (f \ j)
       \mathbf{apply} \ (induction \ j)
        apply simp
        by (metis (no-types, lifting) Suc-leD Suc-le-lessD rtranclp.simps
          \forall k < i. \ learn \ (f \ k) \ (f \ (Suc \ k)) \lor forget_{NOT} \ (f \ k) \ (f \ (Suc \ k)) \rangle
   then have learn-or-forget^{**} (f \ 0) (f \ i) by blast
   then have (2 + card (atms-of-ms A)) \cap (1 + card (atms-of-ms A))
         -\mu_C (1 + card (atms-of-ms A)) (2 + card (atms-of-ms A)) (trail-weight (g 0))
      <(2 + card (atms-of-ms A)) \cap (1 + card (atms-of-ms A))
        -\mu_C (1 + card (atms-of-ms A)) (2 + card (atms-of-ms A)) (trail-weight (f 0))
     using learn-or-forget-dpll-\mu_C[of f \ 0 \ f \ i \ g \ 0 \ A] inv \langle dpll-bj \ (f \ i) \ (g \ 0) \rangle
     unfolding cdcl_{NOT}-NOT-all-inv-def by linarith
   moreover have cdcl_{NOT}-i: cdcl_{NOT}^{**} (f \theta) (g \theta)
     using rtranclp-learn-or-forget-cdcl_{NOT}[of f \ 0 \ f \ i] \ \langle learn-or-forget^{**} \ (f \ 0) \ (f \ i) \rangle
      cdcl_{NOT}[of i] unfolding g-def by auto
   moreover have \bigwedge i. \ cdcl_{NOT} \ (g \ i) \ (g \ (Suc \ i))
```

```
using cdcl_{NOT} g-def by auto
      moreover have cdcl_{NOT}-NOT-all-inv A (g \theta)
        using inv cdcl_{NOT}-i rtranclp-cdcl_{NOT}-trail-clauses-bound g-def cdcl_{NOT}-NOT-all-inv by auto
      ultimately obtain j where j: \bigwedge i. i \ge j \implies learn-or-forget (g i) (g (Suc i))
        using IH unfolding \mu[symmetric] by presburger
      show ?thesis
        proof
          {
            \mathbf{fix} \ k
            assume k \ge j + Suc i
            then have learn-or-forget (f k) (f (Suc k))
              using j[of k-Suc \ i] unfolding g-def by auto
          then show \forall k \ge j + Suc \ i. \ learn-or-forget \ (f \ k) \ (f \ (Suc \ k))
            by auto
        qed
    qed
next
  case \theta note H = this(1) and cdcl_{NOT} = this(2) and inv = this(3)
 show ?case
    proof (rule ccontr)
      assume \neg ?case
      then have j: \exists i. \neg learn (f i) (f (Suc i)) \land \neg forget_{NOT} (f i) (f (Suc i))
        by blast
      obtain i where
        \neg learn\ (f\ i)\ (f\ (Suc\ i)) \land \neg forget_{NOT}\ (f\ i)\ (f\ (Suc\ i)) and
       \forall k < i. learn-or-forget (f k) (f (Suc k))
       proof -
          obtain i_0 where \neg learn (f i_0) (f (Suc i_0)) \land \neg forget_{NOT} (f i_0) (f (Suc i_0))
            using j by auto
          then have \{i.\ i \leq i_0 \land \neg\ learn\ (f\ i)\ (f\ (Suc\ i)) \land \neg forget_{NOT}\ (f\ i)\ (f\ (Suc\ i))\} \neq \{\}
            by auto
          let ?I = \{i. \ i \leq i_0 \land \neg \ learn \ (f \ i) \ (f \ (Suc \ i)) \land \neg forget_{NOT} \ (f \ i) \ (f \ (Suc \ i))\}
          let ?i = Min ?I
          have finite ?I
            by auto
          have \neg learn (f?i) (f(Suc?i)) \land \neg forget_{NOT} (f?i) (f(Suc?i))
            using Min-in[OF \langle finite?I \rangle \langle ?I \neq \{\} \rangle] by auto
          moreover have \forall k < ?i. learn-or-forget (f k) (f (Suc k))
            using Min.coboundedI[of \{i. i \leq i_0 \land \neg learn (f i) (f (Suc i)) \land \neg forget_{NOT} (f i)\}
              (f(Suc\ i)), simplified
            by (meson \leftarrow learn\ (f\ i_0)\ (f\ (Suc\ i_0)) \land \neg\ forget_{NOT}\ (f\ i_0)\ (f\ (Suc\ i_0)) \land\ less-imp-le
              dual-order.trans not-le)
          ultimately show ?thesis using that by blast
        qed
      have dpll-bj (f i) (f (Suc i))
        using \langle \neg learn (f i) (f (Suc i)) \wedge \neg forget_{NOT} (f i) (f (Suc i)) \rangle cdcl_{NOT} cdcl_{NOT}.cases
        by blast
       \mathbf{fix}\ j
        assume j \leq i
        then have learn-or-forget^{**} (f \ \theta) (f \ j)
          apply (induction j)
          apply simp
          \mathbf{by}\ (\mathit{metis}\ (\mathit{no-types},\ \mathit{lifting})\ \mathit{Suc-leD}\ \mathit{Suc-le-lessD}\ \mathit{rtranclp.simps}
            \forall k < i. \ learn \ (f \ k) \ (f \ (Suc \ k)) \lor forget_{NOT} \ (f \ k) \ (f \ (Suc \ k)) \rangle
```

```
then have learn-or-forget^{**} (f \ 0) (f \ i) by blast
      then show False
       using learn-or-forget-dpll-\mu_C[of f \ 0 \ f \ i \ f \ (Suc \ i) \ A] inv \ 0
        \langle dpll-bj \ (f \ (Suc \ i)) \rangle unfolding cdcl_{NOT}-NOT-all-inv-def by linarith
   qed
qed
lemma wf-cdcl_{NOT}-no-learn-and-forget-infinite-chain:
  assumes
    no-infinite-lf: \bigwedge f j. \neg (\forall i \geq j. learn-or-forget (f i) (f (Suc i)))
  shows wf \{(T, S). \ cdcl_{NOT} \ S \ T \land cdcl_{NOT}\text{-}NOT\text{-}all\text{-}inv \ A \ S\}
   (is wf \{(T, S). \ cdcl_{NOT} \ S \ T \land ?inv \ S\})
  \mathbf{unfolding} \ \textit{wf-iff-no-infinite-down-chain}
\mathbf{proof}\ (\mathit{rule}\ \mathit{ccontr})
  assume ¬ ¬ (∃f. \forall i. (f (Suc i), f i) ∈ {(T, S). cdcl_{NOT} S T \land ?inv S})
  then obtain f where
   \forall i. \ cdcl_{NOT} \ (f \ i) \ (f \ (Suc \ i)) \land ?inv \ (f \ i)
   by fast
  then have \exists j. \ \forall i \geq j. \ learn-or-forget (f i) (f (Suc i))
    using infinite-cdcl_{NOT}-exists-learn-and-forget-infinite-chain of f by meson
  then show False using no-infinite-lf by blast
qed
lemma inv-and-tranclp-cdcl-_{NOT}-tranclp-cdcl__{NOT}-and-inv:
  cdcl_{NOT}^{++} S T \land cdcl_{NOT}-NOT-all-inv A S \longleftrightarrow (\lambda S T. cdcl_{NOT} S T \land cdcl_{NOT}-NOT-all-inv A
S)^{++} S T
  (is ?A \land ?I \longleftrightarrow ?B)
proof
  assume ?A \land ?I
  then have ?A and ?I by blast+
  then show ?B
   apply induction
      apply (simp add: tranclp.r-into-trancl)
   by (subst tranclp.simps) (auto intro: cdcl_{NOT}-NOT-all-inv tranclp-into-rtranclp)
next
 assume ?B
 then have ?A by induction auto
  moreover have ?I using \(\cap ?B \) tranclpD by fastforce
  ultimately show ?A \land ?I by blast
qed
lemma wf-tranclp-cdcl_{NOT}-no-learn-and-forget-infinite-chain:
  assumes
    no-infinite-lf: \bigwedge f j. \neg (\forall i \geq j. learn-or-forget (f i) (f (Suc i)))
  shows wf \{(T, S). \ cdcl_{NOT}^{++} \ S \ T \land cdcl_{NOT}^{-} NOT \text{-} all \text{-} inv \ A \ S\}
  \mathbf{using} \ \textit{wf-trancl}[OF \ \textit{wf-cdcl}_{NOT}\text{-}\textit{no-learn-and-forget-infinite-chain}[OF \ \textit{no-infinite-lf}]]
 apply (rule wf-subset)
  by (auto simp: trancl-set-tranclp inv-and-tranclp-cdcl-_{NOT}-tranclp-cdcl_{NOT}-and-inv)
lemma cdcl_{NOT}-final-state:
  assumes
   n-s: no-step cdcl_{NOT} S and
   inv: cdcl_{NOT}-NOT-all-inv \ A \ S and
   decomp: all-decomposition-implies-m \ (clauses_{NOT} \ S) \ (get-all-ann-decomposition \ (trail \ S))
```

```
shows unsatisfiable (set-mset (clauses<sub>NOT</sub> S))
   \vee (trail \ S \models asm \ clauses_{NOT} \ S \land satisfiable \ (set\text{-mset} \ (clauses_{NOT} \ S)))
proof -
  have n-s': no-step dpll-bj S
   using n-s by (auto simp: cdcl_{NOT}.simps)
 show ?thesis
   apply (rule dpll-backjump-final-state[of S A])
   using inv \ decomp \ n\text{-}s' unfolding cdcl_{NOT}\text{-}NOT\text{-}all\text{-}inv\text{-}def by auto
qed
lemma full-cdcl_{NOT}-final-state:
 assumes
   full: full cdcl_{NOT} S T and
   inv: cdcl_{NOT}-NOT-all-inv \ A \ S and
   n-d: no-dup (trail S) and
    decomp: all-decomposition-implies-m (clauses<sub>NOT</sub> S) (get-all-ann-decomposition (trail S))
  shows unsatisfiable (set-mset (clauses<sub>NOT</sub> T))
   \vee (trail T \models asm\ clauses_{NOT}\ T \land satisfiable\ (set\text{-mset}\ (clauses_{NOT}\ T)))
proof -
 have st: cdcl_{NOT}^{**} S T and n-s: no-step cdcl_{NOT} T
   using full unfolding full-def by blast+
  have n\text{-}s': cdcl_{NOT}-NOT-all-inv A T
   using cdcl_{NOT}-NOT-all-inv inv st by blast
  moreover have all-decomposition-implies-m (clauses<sub>NOT</sub> T) (get-all-ann-decomposition (trail T))
   using cdcl_{NOT}-NOT-all-inv-def decomp inv rtranclp-cdcl<sub>NOT</sub>-all-decomposition-implies st by auto
  ultimately show ?thesis
   using cdcl_{NOT}-final-state n-s by blast
qed
end — end of conflict-driven-clause-learning
```

Termination

To prove termination we need to restrict learn and forget. Otherwise we could forget and relearn the exact same clause over and over. A first idea is to forbid removing clauses that can be used to backjump. This does not change the rules of the calculus. A second idea is to "merge" backjump and learn: that way, though closer to implementation, needs a change of the rules, since the backjump-rule learns the clause used to backjump.

Restricting learn and forget

```
locale conflict-driven-clause-learning-learning-before-backjump-only-distinct-learnt = dpll-state trail clauses_{NOT} prepend-trail tl-trail add-cls_{NOT} remove-cls_{NOT} + conflict-driven-clause-learning trail clauses_{NOT} prepend-trail tl-trail add-cls_{NOT} remove-cls_{NOT} inv backjump-conds propagate-conds  \lambda C \ S. \ distinct\text{-mset} \ C \land \neg tautology \ C \land learn\text{-restrictions} \ C \ S \land \\ (\exists F \ K \ d \ F' \ C' \ L. \ trail \ S = F' \ @ \ Decided \ K \ \# \ F \land C = C' + \{\#L\#\} \land F \models as \ CNot \ C' \land C' + \{\#L\#\} \notin \# \ clauses_{NOT} \ S) \\ \lambda C \ S. \ \neg (\exists F' F \ K \ d \ L. \ trail \ S = F' \ @ \ Decided \ K \ \# \ F \land F \models as \ CNot \ (remove1\text{-mset} \ L \ C)) \\ \land \ forget\text{-restrictions} \ C \ S \\ \text{for} \\ trail :: 'st \Rightarrow ('v, unit) \ ann\text{-lits} \ \text{and} \\ clauses_{NOT} :: 'st \Rightarrow 'v \ clauses \ \text{and} \\ prepend\text{-trail} :: ('v, unit) \ ann\text{-lit} \Rightarrow 'st \Rightarrow 'st \ \text{and} \\ tl\text{-trail} :: 'st \Rightarrow 'st \ \text{and}
```

```
add\text{-}cls_{NOT} :: 'v \ clause \Rightarrow 'st \Rightarrow 'st \ \text{and}
    remove\text{-}cls_{NOT} :: 'v \ clause \Rightarrow 'st \Rightarrow 'st \ \text{and}
    inv :: 'st \Rightarrow bool  and
    backjump\text{-}conds:: 'v\ clause \Rightarrow 'v\ clause \Rightarrow 'v\ literal \Rightarrow 'st \Rightarrow 'st \Rightarrow bool\ and
    propagate\text{-}conds :: ('v, unit) \ ann\text{-}lit \Rightarrow 'st \Rightarrow bool \ \mathbf{and}
    learn-restrictions forget-restrictions :: 'v clause \Rightarrow 'st \Rightarrow bool
begin
lemma cdcl_{NOT}-learn-all-induct[consumes 1, case-names dpll-bj learn forget_{NOT}]:
  fixes S T :: 'st
  assumes cdcl_{NOT} S T and
    dpll: \bigwedge T. \ dpll-bj \ S \ T \Longrightarrow P \ S \ T \ \mathbf{and}
    learning:
      \bigwedge C \ F \ K \ F' \ C' \ L \ T. \ clauses_{NOT} \ S \models pm \ C \Longrightarrow
        atms-of\ C\subseteq atms-of-mm\ (clauses_{NOT}\ S)\cup atm-of\ `(lits-of-l\ (trail\ S))\Longrightarrow
        distinct-mset C \Longrightarrow
        \neg tautology C \Longrightarrow
        learn-restrictions C S \Longrightarrow
        trail\ S = F' @ Decided\ K \# F \Longrightarrow
         C = C' + \{\#L\#\} \Longrightarrow
        F \models as \ CNot \ C' \Longrightarrow
         C' + \{\#L\#\} \notin \# clauses_{NOT} S \Longrightarrow
         T \sim add\text{-}cls_{NOT} \ C S \Longrightarrow
         P S T and
    forgetting: \bigwedge C T. removeAll-mset C (clauses<sub>NOT</sub> S) \models pm C \Longrightarrow
      C \in \# clauses_{NOT} S \Longrightarrow
      \neg (\exists F' \ F \ K \ L. \ trail \ S = F' \ @ \ Decided \ K \ \# \ F \land F \models as \ CNot \ (C - \{\#L\#\})) \Longrightarrow
      T \sim remove\text{-}cls_{NOT} \ C \ S \Longrightarrow
      forget-restrictions C S \Longrightarrow
      PST
    shows P S T
  using assms(1)
  apply (induction rule: cdcl_{NOT}.induct)
    apply (auto dest: assms(2) simp add: learn-ops-axioms)[]
  apply (auto elim!: learn-ops.learn.cases[OF learn-ops-axioms] dest: assms(3))[]
  apply (auto elim!: forget-ops.forget_{NOT}.cases[OF\ forget-ops-axioms]\ dest!:\ assms(4))
  done
lemma rtranclp-cdcl_{NOT}-inv:
  cdcl_{NOT}^{**} S T \Longrightarrow inv S \Longrightarrow inv T
  apply (induction rule: rtranclp-induct)
  apply simp
  using cdcl_{NOT}-inv unfolding conflict-driven-clause-learning-def
  conflict-driven-clause-learning-axioms-def by blast
lemma learn-always-simple-clauses:
  assumes
    learn: learn S T and
    n-d: no-dup (trail S)
  shows set-mset (clauses_{NOT} T - clauses_{NOT} S)
    \subseteq simple\text{-}clss \ (atms\text{-}of\text{-}mm \ (clauses_{NOT} \ S) \cup atm\text{-}of \ `lits\text{-}of\text{-}l \ (trail \ S))
  fix C assume C: C \in set\text{-}mset \ (clauses_{NOT} \ T - clauses_{NOT} \ S)
  have distinct-mset C ¬tautology C using learn C n-d by (elim learn_{NOT}E; auto)+
  then have C \in simple\text{-}clss (atms\text{-}of C)
    using distinct-mset-not-tautology-implies-in-simple-clss by blast
```

```
moreover have atms-of C \subseteq atms-of-mm (clauses_{NOT} S) \cup atm-of 'lits-of-l (trail S)
   using learn C n-d by (elim learn NOTE) (auto simp: atms-of-ms-def atms-of-def image-Un
     true-annots-CNot-all-atms-defined)
  moreover have finite (atms-of-mm (clauses<sub>NOT</sub> S) \cup atm-of 'lits-of-l (trail S))
  ultimately show C \in simple-clss (atms-of-mm (clauses<sub>NOT</sub> S) \cup atm-of 'lits-of-l (trail S))
    using simple-clss-mono by (metis (no-types) insert-subset mk-disjoint-insert)
qed
definition conflicting-bj-clss S \equiv
   \{C+\{\#L\#\}\mid C\ L.\ C+\{\#L\#\}\in\#\ clauses_{NOT}\ S\ \land\ distinct\text{-mset}\ (C+\{\#L\#\})\}
  \wedge \neg tautology (C + \{\#L\#\})
    \land (\exists F' \ K \ F. \ trail \ S = F' @ Decided \ K \ \# \ F \land F \models as \ CNot \ C) \}
lemma conflicting-bj-clss-remove-cls_{NOT}[simp]:
  conflicting-bj-clss\ (remove-cls_{NOT}\ C\ S) = conflicting-bj-clss\ S - \{C\}
  unfolding conflicting-bj-clss-def by fastforce
lemma conflicting-bj-clss-remove-cls_{NOT} '[simp]:
  T \sim remove\text{-}cls_{NOT} \ C \ S \Longrightarrow conflicting\text{-}bj\text{-}clss \ T = conflicting\text{-}bj\text{-}clss \ S - \{C\}
  unfolding conflicting-bj-clss-def by fastforce
lemma conflicting-bj-clss-add-cls_{NOT}-state-eq:
  assumes
    T: T \sim add\text{-}cls_{NOT} C' S and
    n-d: no-dup (trail S)
  shows conflicting-bj-clss\ T
   = conflicting-bj-clss S
     \cup (if \exists CL. C' = C + \{\#L\#\} \land distinct\text{-mset} (C + \{\#L\#\}) \land \neg tautology (C + \{\#L\#\})
    \land (\exists F' \ K \ d \ F. \ trail \ S = F' \ @ \ Decided \ K \ \# \ F \ \land F \models as \ CNot \ C)
    then \{C'\} else \{\}\}
proof -
  \mathbf{def}\ P \equiv \lambda C\ L\ T.\ distinct\text{-mset}\ (C + \{\#L\#\}) \land \neg\ tautology\ (C + \{\#L\#\}) \land \neg
   (\exists F' \ K \ F. \ trail \ T = F' \ @ \ Decided \ K \ \# \ F \land F \models as \ CNot \ C)
 have conf: \bigwedge T. conflicting-bj-clss T = \{C + \{\#L\#\} \mid CL.\ C + \{\#L\#\} \in \#\ clauses_{NOT}\ T \land P\ C\}
L T
   unfolding conflicting-bj-clss-def P-def by auto
  have P-S-T: \bigwedge C L. P C L T = P C L S
   using T n-d unfolding P-def by auto
 have P: conflicting-bj-clss T = \{C + \{\#L\#\} \mid C L. C + \{\#L\#\} \in \# clauses_{NOT} S \land P C L T\} \cup A
    \{C + \{\#L\#\} \mid C L. C + \{\#L\#\} \in \# \{\#C'\#\} \land P C L T\}
   using T n-d unfolding conf by auto
 moreover have \{C + \{\#L\#\} \mid CL.\ C + \{\#L\#\} \in \#\ clauses_{NOT}\ S \land P\ CL\ T\} = conflicting-bj-clss
   using T n-d unfolding P-def conflicting-bj-clss-def by auto
  moreover have \{C + \#L\#\} \mid CL. C + \#L\#\} \in \# \#C'\#\} \land PCLT\} =
   (if \exists C L. C' = C + \{\#L\#\} \land P C L S then \{C'\} else \{\})
   using n-d T by (force simp: P-S-T)
 ultimately show ?thesis unfolding P-def by presburger
qed
lemma conflicting-bj-clss-add-cls_{NOT}:
  no-dup (trail S) \Longrightarrow
  conflicting-bj-clss (add-cls_{NOT} C'S)
   = conflicting-bj-clss S
     \cup (if \exists C L. C' = C + \{\#L\#\} \land distinct\text{-mset} (C + \{\#L\#\}) \land \neg tautology (C + \{\#L\#\})
```

```
\wedge (\exists F' \ K \ d \ F. \ trail \ S = F' \ @ \ Decided \ K \ \# \ F \ \wedge F \models as \ CNot \ C)
    then \{C'\} else \{\}\}
  using conflicting-bj-clss-add-cls_{NOT}-state-eq by auto
lemma conflicting-bj-clss-incl-clauses:
   conflicting-bj-clss\ S \subseteq set-mset\ (clauses_{NOT}\ S)
  unfolding conflicting-bj-clss-def by auto
lemma finite-conflicting-bj-clss[simp]:
 finite\ (conflicting-bj-clss\ S)
 using conflicting-bj-clss-incl-clauses[of S] rev-finite-subset by blast
lemma learn-conflicting-increasing:
  no\text{-}dup\ (trail\ S) \Longrightarrow learn\ S\ T \Longrightarrow conflicting\text{-}bj\text{-}clss\ S \subseteq conflicting\text{-}bj\text{-}clss\ T
  apply (elim\ learn_{NOT}E)
  by (subst conflicting-bj-clss-add-cls_{NOT}-state-eq[of T]) auto
abbreviation conflicting-bj-clss-yet b S \equiv
  3 \hat{b} - card (conflicting-bj-clss S)
abbreviation \mu_L :: nat \Rightarrow 'st \Rightarrow nat \times nat where
 \mu_L \ b \ S \equiv (conflicting-bj-clss-yet \ b \ S, \ card \ (set-mset \ (clauses_{NOT} \ S)))
lemma remove1-mset-single-add-if:
  remove1-mset L(C + \{\#L'\#\}) = (if L = L' then C else remove1-mset L C + \{\#L'\#\})
  by (auto simp: multiset-eq-iff)
\mathbf{lemma}\ do\text{-}not\text{-}forget\text{-}before\text{-}backtrack\text{-}rule\text{-}clause\text{-}learned\text{-}clause\text{-}untouched\text{:}}
  assumes forget_{NOT} S T
  shows conflicting-bj-clss S = conflicting-bj-clss T
  using assms apply (elim\ forget_{NOT}E)
 apply rule
  apply (subst conflicting-bj-clss-remove-cls_{NOT} [of T], simp)
  apply (fastforce simp: conflicting-bj-clss-def remove1-mset-single-add-if split: if-splits)
  apply fastforce
  done
lemma forget-\mu_L-decrease:
  assumes forget_{NOT}: forget_{NOT} S T
  shows (\mu_L \ b \ T, \mu_L \ b \ S) \in less-than < lex > less-than
proof -
  have card (set\text{-}mset (clauses_{NOT} S)) > 0
   using forget_{NOT} by (elim\ forget_{NOT}E) (auto simp: size-mset-removeAll-mset-le-iff card-gt-0-iff)
  then have card (set-mset (clauses<sub>NOT</sub> T)) < card (set-mset (clauses<sub>NOT</sub> S))
   using forget_{NOT} by (elim\ forget_{NOT}E) (auto simp: size-mset-removeAll-mset-le-iff)
  then show ?thesis
   unfolding do-not-forget-before-backtrack-rule-clause-learned-clause-untouched [OF\ forget_{NOT}]
   by auto
qed
lemma set-condition-or-split:
   \{a. (a = b \lor Q \ a) \land S \ a\} = (if \ S \ b \ then \ \{b\} \ else \ \{\}) \cup \{a. \ Q \ a \land S \ a\}
  by auto
lemma set-insert-neq:
  A \neq insert \ a \ A \longleftrightarrow a \notin A
```

```
lemma learn-\mu_L-decrease:
  assumes learnST: learn S T and n-d: no-dup (trail S) and
  A: atms-of-mm \ (clauses_{NOT} \ S) \cup atm-of \ `lits-of-l \ (trail \ S) \subseteq A \ \mathbf{and}
  fin-A: finite A
 shows (\mu_L \ (card \ A) \ T, \mu_L \ (card \ A) \ S) \in less-than <*lex*> less-than
proof -
 have [simp]: (atms-of-mm\ (clauses_{NOT}\ T) \cup atm-of\ `lits-of-l\ (trail\ T))
   = (atms-of-mm \ (clauses_{NOT} \ S) \cup atm-of \ `lits-of-l \ (trail \ S))
   using learnST n-d by (elim\ learn_{NOT}E) auto
  then have card\ (atms-of-mm\ (clauses_{NOT}\ T) \cup atm-of\ `its-of-l\ (trail\ T))
   = card (atms-of-mm (clauses_{NOT} S) \cup atm-of 'lits-of-l (trail S))
   by (auto intro!: card-mono)
  then have 3: (3::nat) \hat{} card (atms-of-mm\ (clauses_{NOT}\ T) \cup atm-of\ '\ lits-of-l\ (trail\ T))
   = 3 \ \widehat{} \ card \ (atms-of-mm \ (clauses_{NOT} \ S) \cup atm-of \ (trail \ S))
   by (auto intro: power-mono)
  moreover have conflicting-bj-clss S \subseteq conflicting-bj-clss T
   using learnST n-d by (simp add: learn-conflicting-increasing)
  moreover have conflicting-bj-clss S \neq conflicting-bj-clss T
   using learnST
   proof (elim\ learn_{NOT}E,\ goal\text{-}cases)
     case (1 C) note clss-S = this(1) and atms-C = this(2) and inv = this(3) and T = this(4)
     then obtain F K F' C' L where
       tr-S: trail S = F' @ Decided K # F and
       C: C = C' + \{\#L\#\} \text{ and }
       F: F \models as \ CNot \ C' and
       C\text{-}S\text{:}C' + \{\#L\#\} \notin \# clauses_{NOT} S
       by blast
     moreover have distinct-mset C \neg tautology C using inv by blast+
     ultimately have C' + \{\#L\#\} \in conflicting-bj-clss\ T
       using T n-d unfolding conflicting-bj-clss-def by fastforce
     moreover have C' + \{\#L\#\} \notin conflicting-bj\text{-}clss S
       using C-S unfolding conflicting-bj-clss-def by auto
     ultimately show ?case by blast
  moreover have fin-T: finite (conflicting-bj-clss T)
   using learnST by induction (auto simp add: conflicting-bj-clss-add-cls_{NOT})
  ultimately have card (conflicting-bj-clss T) \geq card (conflicting-bj-clss S)
   using card-mono by blast
  moreover
   have fin': finite (atms-of-mm (clauses<sub>NOT</sub> T) \cup atm-of 'lits-of-l (trail T))
     by auto
   have 1:atms-of-ms (conflicting-bj-clss T) \subseteq atms-of-mm (clauses_{NOT} T)
     unfolding conflicting-bj-clss-def atms-of-ms-def by auto
   have 2: \bigwedge x. \ x \in conflicting-bj-clss \ T \Longrightarrow \neg \ tautology \ x \wedge \ distinct-mset \ x
     unfolding conflicting-bj-clss-def by auto
   have T: conflicting-bj-clss T
   \subseteq simple-clss (atms-of-mm (clauses<sub>NOT</sub> T) \cup atm-of 'lits-of-l (trail T))
     by standard (meson 1 2 fin' (finite (conflicting-bj-clss T)) simple-clss-mono
       distinct-mset-set-def simplified-in-simple-clss subsetCE sup.coboundedI1)
 moreover
   then have \#: 3 \cap card (atms-of-mm (clauses_{NOT} T) \cup atm-of `lits-of-l (trail T))
       \geq card (conflicting-bj-clss T)
```

```
by (meson\ Nat.le-trans\ simple-clss-card\ simple-clss-finite\ card-mono\ fin') have atms-of-mm\ (clauses_{NOT}\ T)\cup atm-of\ `lits-of-l\ (trail\ T)\subseteq A using learn_{NOT}E[OF\ learnST]\ A by simp then have 3\ \widehat{\ }(card\ A)\geq card\ (conflicting-bj-clss\ T) using \#\ fin-A by (meson\ simple-clss-card\ simple-clss-finite\ simple-clss-mono\ calculation(2)\ card-mono\ dual-order.trans) ultimately show ?thesis using psubset-card-mono[OF\ fin-T\ ] unfolding less-than-iff\ lex-prod-def\ by clarify\ (meson\ (conflicting-bj-clss\ S\neq conflicting-bj-clss\ T) (conflicting-bj-clss\ S\subseteq conflicting-bj-clss\ T)
```

We have to assume the following:

- *inv S*: the invariant holds in the inital state.
- A is a (finite finite A) superset of the literals in the trail atm-of ' lits-of-l ($trail\ S$) \subseteq $atms\text{-}of\text{-}ms\ A$ and in the clauses atms-of-mm ($clauses_{NOT}\ S$) \subseteq $atms\text{-}of\text{-}ms\ A$. This can the set of all the literals in the starting set of clauses.
- no-dup (trail S): no duplicate in the trail. This is invariant along the path.

```
definition \mu_{CDCL} where
\mu_{CDCL} A T \equiv ((2+card (atms-of-ms A)) \cap (1+card (atms-of-ms A))
             -\mu_C \ (1+card \ (atms-of-ms \ A)) \ (2+card \ (atms-of-ms \ A)) \ (trail-weight \ T),
          conflicting-bj-clss-yet\ (card\ (atms-of-ms\ A))\ T,\ card\ (set-mset\ (clauses_{NOT}\ T)))
lemma cdcl_{NOT}-decreasing-measure:
 assumes
   cdcl_{NOT} S T and
   inv: inv S and
   atm-clss: atms-of-mm (clauses_{NOT} S) \subseteq atms-of-ms A and
   atm-lits: atm-of ' lits-of-l (trail S) \subseteq atms-of-ms A and
   n-d: no-dup (trail S) and
   fin-A: finite A
 shows (\mu_{CDCL} A T, \mu_{CDCL} A S)
          \in less-than < *lex* > (less-than < *lex* > less-than)
 using assms(1)
proof induction
 case (c-dpll-bj\ T)
 from dpll-bj-trail-mes-decreasing-prop[OF this(1) inv atm-clss atm-lits n-d fin-A]
 show ?case unfolding \mu_{CDCL}-def
   by (meson in-lex-prod less-than-iff)
  case (c\text{-}learn\ T) note learn = this(1)
 then have S: trail S = trail T
   using inv atm-clss atm-lits n-d fin-A
   by (elim\ learn_{NOT}E) auto
 show ?case
   using learn-\mu_L-decrease OF learn n-d, of atms-of-ms A atm-clss atm-lits fin-A n-d
   unfolding S \mu_{CDCL}-def by auto
next
  case (c\text{-}forget_{NOT} \ T) note forget_{NOT} = this(1)
 have trail S = trail\ T using forget_{NOT} by induction auto
```

```
then show ?case
   using forget-\mu_L-decrease[OF\ forget_{NOT}] unfolding \mu_{CDCL}-def by auto
qed
lemma wf-cdcl_{NOT}-restricted-learning:
 assumes finite A
 shows wf \{ (T, S).
   (atms-of-mm\ (clauses_{NOT}\ S)\subseteq atms-of-ms\ A\wedge atm-of\ `flits-of-l\ (trail\ S)\subseteq atms-of-ms\ A
   \wedge no-dup (trail S)
   \wedge inv S)
   \land cdcl_{NOT} S T \}
 by (rule\ wf\text{-}wf\text{-}if\text{-}measure'[of\ less\text{-}than <*lex*> (less\text{-}than <*lex*> less\text{-}than)])
    (auto\ intro:\ cdcl_{NOT}\text{-}decreasing\text{-}measure[OF\text{-----}\ assms])
definition \mu_C':: 'v clause set \Rightarrow 'st \Rightarrow nat where
\mu_C' A T \equiv \mu_C (1 + card (atms-of-ms A)) (2 + card (atms-of-ms A)) (trail-weight T)
definition \mu_{CDCL}' :: 'v \ clause \ set \Rightarrow 'st \Rightarrow nat \ where
\mu_{CDCL}' A T \equiv
 ((2+card\ (atms-of-ms\ A)) \cap (1+card\ (atms-of-ms\ A)) - \mu_C'\ A\ T) * (1+3 \cap (atms-of-ms\ A)) *
 + conflicting-bj-clss-yet (card (atms-of-ms A)) T * 2
 + \ card \ (set\text{-}mset \ (clauses_{NOT} \ T))
lemma cdcl_{NOT}-decreasing-measure':
 assumes
   cdcl_{NOT} S T and
   inv: inv S and
   atms-clss: atms-of-mm (clauses_{NOT} S) \subseteq atms-of-ms A and
   atms-trail: atm-of ' lits-of-l (trail S) \subseteq atms-of-ms A and
   n-d: no-dup (trail S) and
   fin-A: finite A
 shows \mu_{CDCL}' A T < \mu_{CDCL}' A S
  using assms(1)
\mathbf{proof} (induction rule: cdcl_{NOT}-learn-all-induct)
 case (dpll-bj\ T)
  then have (2+card (atms-of-ms A)) \cap (1+card (atms-of-ms A)) - \mu_C' A T
   <(2+card\ (atms-of-ms\ A)) \cap (1+card\ (atms-of-ms\ A)) - \mu_C'\ A\ S
   using dpll-bj-trail-mes-decreasing-prop fin-A inv n-d atms-clss atms-trail
   unfolding \mu_C'-def by blast
  then have XX: ((2+card\ (atms-of-ms\ A)) \cap (1+card\ (atms-of-ms\ A)) - \mu_C' A\ T) + 1
   \leq (2+card (atms-of-ms A)) \cap (1+card (atms-of-ms A)) - \mu_C' A S
   by auto
  from mult-le-mono1[OF this, of <math>1 + 3 arcapta (atms-of-ms A)]
  have ((2 + card (atms-of-ms A)) \cap (1 + card (atms-of-ms A)) - \mu_C' A T) *
     (1 + 3 \cap card (atms-of-ms A)) + (1 + 3 \cap card (atms-of-ms A))
   \leq ((2 + card (atms-of-ms A)) \cap (1 + card (atms-of-ms A)) - \mu_C' A S)
     * (1 + 3 \cap card (atms-of-ms A))
   unfolding Nat.add-mult-distrib
   by presburger
 moreover
   have cl-T-S: clauses_{NOT} T = clauses_{NOT} S
     using dpll-bj.hyps inv dpll-bj-clauses by auto
   have conflicting-bj-clss-yet (card (atms-of-ms A)) S < 1 + 3 and (atms-of-ms A)
   by simp
  ultimately have ((2 + card (atms-of-ms A)) \cap (1 + card (atms-of-ms A)) - \mu_C' A T)
```

```
* (1 + 3 \cap card (atms-of-ms A)) + conflicting-bj-clss-yet (card (atms-of-ms A)) T
    <((2+card\ (atms-of-ms\ A))^{(1+card\ (atms-of-ms\ A))} - \mu_C'\ A\ S)*(1+3^{card\ (atms-of-ms\ A)})
A))
     by linarith
  then have ((2 + card (atms-of-ms A)) \cap (1 + card (atms-of-ms A)) - \mu_C' A T)
          * (1 + 3 \hat{} card (atms-of-ms A))
       + conflicting-bj-clss-yet (card (atms-of-ms A)) T
     <((2 + card (atms-of-ms A)) \cap (1 + card (atms-of-ms A)) - \mu_C' A S)
          * (1 + 3 \cap card (atms-of-ms A))
       + conflicting-bj-clss-yet (card (atms-of-ms A)) S
     by linarith
  then have ((2 + card (atms-of-ms A)) \cap (1 + card (atms-of-ms A)) - \mu_C' A T)
       *(1 + 3 \cap card (atms-of-ms A)) * 2
     + conflicting-bj-clss-yet (card (atms-of-ms A)) T * 2
     <((2 + card (atms-of-ms A)) \cap (1 + card (atms-of-ms A)) - \mu_C' A S)
       *(1 + 3 \cap card (atms-of-ms A)) * 2
     + conflicting-bj-clss-yet (card (atms-of-ms A)) S * 2
     by linarith
  then show ?case unfolding \mu_{CDCL}'-def cl-T-S by presburger
  case (learn C F' K F C' L T) note clss-S-C = this(1) and atms-C = this(2) and dist = this(3)
     and tauto = this(4) and tauto = this(5) and tr-S = this(6) and tr-S = this(6)
     F-C = this(8) and C-new = this(9) and T = this(10)
  have insert C (conflicting-bj-clss S) \subseteq simple-clss (atms-of-ms A)
     proof
       have C \in simple\text{-}clss (atms\text{-}of\text{-}ms A)
          using C'
          by (metis (no-types, hide-lams) Un-subset-iff simple-clss-mono
            contra-subset D dist distinct-mset-not-tautology-implies-in-simple-clss
            dual-order.trans atms-C atms-clss atms-trail tauto)
       moreover have conflicting-bj-clss S \subseteq simple-clss (atms-of-ms A)
          proof
            fix x :: 'v \ clause
            assume x \in conflicting-bj-clss S
            then have x \in \# clauses_{NOT} S \wedge distinct\text{-}mset \ x \wedge \neg \ tautology \ x
               unfolding conflicting-bj-clss-def by blast
            then show x \in simple\text{-}clss \ (atms\text{-}of\text{-}ms \ A)
               by (meson atms-clss atms-of-atms-of-ms-mono atms-of-ms-finite simple-clss-mono
                  distinct-mset-not-tautology-implies-in-simple-clss fin-A finite-subset
                  set-rev-mp)
          qed
       ultimately show ?thesis
          by auto
  then have card (insert C (conflicting-bj-clss S)) \leq 3 \widehat{} (card (atms-of-ms A))
     \mathbf{by}\ (meson\ Nat.le-trans\ atms-of-ms-finite\ simple-clss-card\ simple-clss-finite
       card-mono fin-A)
  moreover have [simp]: card (insert C (conflicting-bj-clss S))
     = Suc (card ((conflicting-bj-clss S)))
     by (metis (no-types) C' C-new card-insert-if conflicting-bj-clss-incl-clauses contra-subsetD
       finite-conflicting-bj-clss)
  moreover have [simp]: conflicting-bj-clss (add-cls_{NOT} \ C \ S) = conflicting-bj-clss \ S \cup \{C\}
     using dist tauto F-C by (subst conflicting-bj-clss-add-cls<sub>NOT</sub>[OF n-d]) (force simp: C' tr-S n-d)
  ultimately have [simp]: conflicting-bj-clss-yet (card (atms-of-ms A)) S
     = Suc\ (conflicting-bj-clss-yet\ (card\ (atms-of-ms\ A))\ (add-cls_{NOT}\ C\ S))
       by simp
```

```
have 1: clauses_{NOT} T = clauses_{NOT} (add-cls_{NOT} CS) using T by auto
 have 2: conflicting-bj-clss-yet (card (atms-of-ms A)) T
   = conflicting-bj-clss-yet (card (atms-of-ms A)) (add-cls_{NOT} C S)
   using T unfolding conflicting-bj-clss-def by auto
  have 3: \mu_C' A T = \mu_C' A (add-cls<sub>NOT</sub> C S)
   using T unfolding \mu_C'-def by auto
  have ((2 + card (atms-of-ms A)) \cap (1 + card (atms-of-ms A)) - \mu_C' A (add-cls_{NOT} C S))
   * (1 + 3 \cap card (atms-of-ms A)) * 2
   = ((2 + card (atms-of-ms A)) \cap (1 + card (atms-of-ms A)) - \mu_C' A S)
   * (1 + 3 \cap card (atms-of-ms A)) * 2
     using n-d unfolding \mu_C'-def by auto
 moreover
   have conflicting-bj-clss-yet (card (atms-of-ms A)) (add-cls<sub>NOT</sub> CS)
       * 2
     + card (set\text{-}mset (clauses_{NOT} (add\text{-}cls_{NOT} CS)))
     < conflicting-bj-clss-yet (card (atms-of-ms A)) S * 2
     + card (set\text{-}mset (clauses_{NOT} S))
     by (simp\ add:\ C'\ C\text{-}new\ n\text{-}d)
  ultimately show ?case unfolding \mu_{CDCL}'-def 1 2 3 by presburger
  case (forget_{NOT} \ C \ T) note T = this(4)
 have [simp]: \mu_C ' A (remove-cls_{NOT} \ C \ S) = \mu_C ' A \ S
   unfolding \mu_C'-def by auto
 have forget_{NOT} S T
   apply (rule forget_{NOT}.intros) using forget_{NOT} by auto
  then have conflicting-bj-clss\ T = conflicting-bj-clss\ S
   using do-not-forget-before-backtrack-rule-clause-learned-clause-untouched by blast
 moreover have card (set-mset (clauses<sub>NOT</sub> T)) < card (set-mset (clauses<sub>NOT</sub> S))
   by (metis T card-Diff1-less clauses-remove-cls<sub>NOT</sub> finite-set-mset forget<sub>NOT</sub>.hyps(2)
     order-refl set-mset-minus-replicate-mset(1) state-eq<sub>NOT</sub>-clauses)
 ultimately show ?case unfolding \mu_{CDCL}'-def
   using T \langle \mu_C' A \text{ (remove-cls}_{NOT} C S \rangle = \mu_C' A S \rangle by (metis (no-types) add-le-cancel-left
     \mu_C'-def not-le state-eq<sub>NOT</sub>-trail)
qed
lemma cdcl_{NOT}-clauses-bound:
  assumes
   cdcl_{NOT} S T and
   inv S and
   atms-of-mm (clauses_{NOT} S) \subseteq A and
   atm\text{-}of \ (lits\text{-}of\text{-}l \ (trail \ S)) \subseteq A \ \mathbf{and}
   n-d: no-dup (trail S) and
   fin-A[simp]: finite\ A
  shows set-mset (clauses_{NOT} \ T) \subseteq set-mset (clauses_{NOT} \ S) \cup simple-clss A
  using assms
proof (induction rule: cdcl_{NOT}-learn-all-induct)
 case dpll-bj
 then show ?case using dpll-bj-clauses by simp
next
  case forget_{NOT}
 then show ?case using clauses-remove-cls_{NOT} unfolding state-eq_{NOT}-def by auto
  case (learn C F K d F' C' L) note atms-C = this(2) and dist = this(3) and tauto = this(4) and
  T = this(10) and atms-clss-S = this(12) and atms-trail-S = this(13)
 have atms-of C \subseteq A
   using atms-C atms-clss-S atms-trail-S by fast
```

```
then have simple-clss\ (atms-of\ C)\subseteq simple-clss\ A
   by (simp add: simple-clss-mono)
  then have C \in simple\text{-}clss A
   using finite dist tauto by (auto dest: distinct-mset-not-tautology-implies-in-simple-clss)
  then show ?case using T n-d by auto
qed
lemma rtranclp-cdcl_{NOT}-clauses-bound:
 assumes
   cdcl_{NOT}^{**} S T and
   inv S and
   atms-of-mm (clauses_{NOT} S) \subseteq A and
   atm\text{-}of \ (lits\text{-}of\text{-}l \ (trail \ S)) \subseteq A \ \mathbf{and}
   n-d: no-dup (trail S) and
   finite: finite A
  shows set-mset (clauses_{NOT} \ T) \subseteq set-mset (clauses_{NOT} \ S) \cup simple-clss A
 using assms(1-5)
proof induction
 case base
 then show ?case by simp
next
 case (step T U) note st = this(1) and cdcl_{NOT} = this(2) and IH = this(3)[OF\ this(4-7)] and
    inv = this(4) and atms-clss-S = this(5) and atms-trail-S = this(6) and finite-cls-S = this(7)
 have inv T
   using rtranclp-cdcl_{NOT}-inv st inv by blast
 moreover have atms-of-mm (clauses_{NOT} T) \subseteq A and atm-of 'lits-of-l (trail T) \subseteq A
   using rtranclp-cdcl_{NOT}-trail-clauses-bound [OF st] inv atms-clss-S atms-trail-S n-d by auto
 moreover have no-dup (trail T)
  using rtranclp-cdcl_{NOT}-no-dup[OF\ st\ \langle inv\ S\rangle\ n-d] by simp
  ultimately have set-mset (clauses<sub>NOT</sub> U) \subseteq set-mset (clauses<sub>NOT</sub> T) \cup simple-clss A
   using cdcl_{NOT} finite n-d by (auto simp: cdcl_{NOT}-clauses-bound)
  then show ?case using IH by auto
lemma rtranclp-cdcl_{NOT}-card-clauses-bound:
 assumes
    cdcl_{NOT}^{**} S T and
   inv S and
   atms-of-mm (clauses_{NOT} S) \subseteq A and
   atm\text{-}of \ (lits\text{-}of\text{-}l \ (trail \ S)) \subseteq A \ \mathbf{and}
   n-d: no-dup (trail S) and
   finite: finite A
 shows card (set-mset (clauses<sub>NOT</sub> T)) \leq card (set-mset (clauses<sub>NOT</sub> S)) + 3 \hat{} (card A)
  using rtranclp-cdcl_{NOT}-clauses-bound [OF assms] finite by (meson Nat.le-trans
   simple-clss-card\ simple-clss-finite\ card-Un-le\ card-mono\ finite-UnI
   finite-set-mset nat-add-left-cancel-le)
lemma rtranclp-cdcl_{NOT}-card-clauses-bound':
 assumes
   cdcl_{NOT}^{**} S T and
   inv S and
   atms-of-mm (clauses_{NOT} S) \subseteq A and
   atm\text{-}of '(lits\text{-}of\text{-}l (trail S)) \subseteq A and
   n-d: no-dup (trail S) and
   finite: finite A
  shows card \{C|C, C \in \# clauses_{NOT} T \land (tautology C \lor \neg distinct-mset C)\}
```

```
\leq card \{C|C. C \in \# clauses_{NOT} S \land (tautology C \lor \neg distinct\text{-mset } C)\} + 3 \cap (card A)
   (is card ?T \leq card ?S + -)
  using rtranclp-cdcl_{NOT}-clauses-bound[OF assms] finite
proof -
  have ?T \subseteq ?S \cup simple\text{-}clss A
   using rtranclp-cdcl_{NOT}-clauses-bound [OF assms] by force
  then have card ?T \leq card (?S \cup simple-clss A)
    using finite by (simp add: assms(5) simple-clss-finite card-mono)
  then show ?thesis
   by (meson le-trans simple-clss-card card-Un-le local.finite nat-add-left-cancel-le)
qed
lemma rtranclp-cdcl_{NOT}-card-simple-clauses-bound:
    cdcl_{NOT}^{**} S T and
    inv S and
   NA: atms-of-mm (clauses_{NOT} S) \subseteq A and
   MA: atm\text{-}of ' (lits\text{-}of\text{-}l (trail S)) \subseteq A \text{ and }
   n-d: no-dup (trail S) and
   finite: finite A
  shows card (set\text{-}mset (clauses_{NOT} T))
  \leq card \ \{C. \ C \in \# \ clauses_{NOT} \ S \land (tautology \ C \lor \neg distinct-mset \ C)\} + \beta \cap (card \ A)
    (is card ?T \leq card ?S + -)
  using rtranclp-cdcl_{NOT}-clauses-bound [OF assms] finite
proof -
  have \bigwedge x. \ x \in \# \ clauses_{NOT} \ T \Longrightarrow \neg \ tautology \ x \Longrightarrow distinct-mset \ x \Longrightarrow x \in simple-clss \ A
   using rtranclp-cdcl_{NOT}-clauses-bound [OF assms] by (metis (no-types, hide-lams) Un-iff NA
     atms-of-atms-of-ms-mono simple-clss-mono contra-subsetD subset-trans
      distinct-mset-not-tautology-implies-in-simple-clss)
  then have set-mset (clauses_{NOT} \ T) \subseteq ?S \cup simple-clss \ A
   using rtranclp-cdcl_{NOT}-clauses-bound [OF assms] by auto
  then have card(set\text{-}mset\ (clauses_{NOT}\ T)) \leq card\ (?S \cup simple\text{-}clss\ A)
   using finite by (simp add: assms(5) simple-clss-finite card-mono)
  then show ?thesis
   by (meson le-trans simple-clss-card card-Un-le local.finite nat-add-left-cancel-le)
qed
definition \mu_{CDCL}'-bound :: 'v clause set \Rightarrow 'st \Rightarrow nat where
\mu_{CDCL}'-bound A S =
  ((2 + card (atms-of-ms A)) ^ (1 + card (atms-of-ms A))) * (1 + 3 ^ card (atms-of-ms A)) * 2
    + 2*3 \cap (card (atms-of-ms A))
    + card \{C. C \in \# clauses_{NOT} S \land (tautology C \lor \neg distinct\text{-}mset C)\} + 3 \land (card (atms-of\text{-}ms A))
lemma \mu_{CDCL}'-bound-reduce-trail-to<sub>NOT</sub>[simp]:
  \mu_{CDCL}'-bound A (reduce-trail-to<sub>NOT</sub> M S) = \mu_{CDCL}'-bound A S
  unfolding \mu_{CDCL}'-bound-def by auto
lemma rtranclp-cdcl_{NOT}-\mu_{CDCL}'-bound-reduce-trail-to<sub>NOT</sub>:
  assumes
    cdcl_{NOT}^{**} S T and
    inv S and
    atms-of-mm (clauses_{NOT} S) \subseteq atms-of-ms A and
   atm\text{-}of \ (lits\text{-}of\text{-}l \ (trail \ S)) \subseteq atms\text{-}of\text{-}ms \ A \ \mathbf{and}
   n-d: no-dup (trail S) and
   finite: finite (atms-of-ms A) and
    U: U \sim reduce\text{-}trail\text{-}to_{NOT} M T
```

```
shows \mu_{CDCL}' A U \leq \mu_{CDCL}'-bound A S
proof -
 have ((2 + card (atms-of-ms A)) \cap (1 + card (atms-of-ms A)) - \mu_C' A U)
   \leq (2 + card (atms-of-ms A)) \cap (1 + card (atms-of-ms A))
   by auto
  then have ((2 + card (atms-of-ms A)) \cap (1 + card (atms-of-ms A)) - \mu_C' A U)
       * (1 + 3 \cap card (atms-of-ms A)) * 2
   \leq (2 + card (atms-of-ms A)) \cap (1 + card (atms-of-ms A)) * (1 + 3 \cap card (atms-of-ms A)) * 2
   using mult-le-mono1 by blast
 moreover
   have conflicting-bj-clss-yet (card (atms-of-ms A)) T*2 \le 2*3 and (atms-of-ms A)
     by linarith
 moreover have card (set-mset (clauses_{NOT} U))
     \leq card \{C. \ C \in \# \ clauses_{NOT} \ S \land (tautology \ C \lor \neg distinct-mset \ C)\} + 3 \cap card \ (atms-of-ms \ A)
   using rtranclp-cdcl_{NOT}-card-simple-clauses-bound[OF assms(1-6)] U by auto
 ultimately show ?thesis
   unfolding \mu_{CDCL}'-def \mu_{CDCL}'-bound-def by linarith
lemma rtranclp-cdcl_{NOT}-\mu_{CDCL}'-bound:
 assumes
   cdcl_{NOT}^{**} S T and
   inv S and
   atms-of-mm (clauses_{NOT} S) \subseteq atms-of-ms A and
   atm\text{-}of \ (lits\text{-}of\text{-}l \ (trail \ S)) \subseteq atms\text{-}of\text{-}ms \ A \ \mathbf{and}
   n-d: no-dup (trail S) and
   finite: finite (atms-of-ms A)
 shows \mu_{CDCL}' A T \leq \mu_{CDCL}'-bound A S
proof -
 have \mu_{CDCL}' A (reduce-trail-to<sub>NOT</sub> (trail T) T) = \mu_{CDCL}' A T
   unfolding \mu_{CDCL}'-def \mu_{C}'-def conflicting-bj-clss-def by auto
 then show ?thesis using rtranclp-cdcl_{NOT}-\mu_{CDCL}'-bound-reduce-trail-to<sub>NOT</sub>[OF assms, of - trail T]
    state-eq_{NOT}-ref by fastforce
qed
lemma rtranclp-\mu_{CDCL}'-bound-decreasing:
  assumes
   cdcl_{NOT}^{**} S T and
   inv S and
   atms-of-mm (clauses_{NOT} S) \subseteq atms-of-ms A and
   atm\text{-}of \ (lits\text{-}of\text{-}l \ (trail \ S)) \subseteq atms\text{-}of\text{-}ms \ A \ \mathbf{and}
   n-d: no-dup (trail S) and
   finite[simp]: finite\ (atms-of-ms\ A)
 shows \mu_{CDCL}'-bound A T \leq \mu_{CDCL}'-bound A S
proof -
 have \{C.\ C \in \#\ clauses_{NOT}\ T \land (tautology\ C \lor \neg\ distinct\text{-mset}\ C)\}
   \subseteq \{C. \ C \in \# \ clauses_{NOT} \ S \land (tautology \ C \lor \neg \ distinct\text{-mset} \ C)\} \ (is \ ?T \subseteq ?S)
   proof (rule Set.subsetI)
     fix C assume C \in ?T
     then have C-T: C \in \# clauses_{NOT} T and t-d: tautology C \vee \neg distinct\text{-mset } C
     then have C \notin simple\text{-}clss (atms\text{-}of\text{-}ms A)
       by (auto dest: simple-clssE)
     then show C \in ?S
       using C-T rtranclp-cdcl<sub>NOT</sub>-clauses-bound[OF assms] t-d by force
   qed
```

```
then have card \{C.\ C \in \#\ clauses_{NOT}\ T \land (tautology\ C \lor \neg\ distinct\text{-mset}\ C)\} \le
    card \{C. C \in \# clauses_{NOT} S \land (tautology C \lor \neg distinct\text{-mset } C)\}
    by (simp add: card-mono)
  then show ?thesis
    unfolding \mu_{CDCL}'-bound-def by auto
qed
{f end} — end of conflict-driven-clause-learning-learning-before-backjump-only-distinct-learnt
            CDCL with restarts
1.2.5
Definition
locale restart-ops =
  fixes
    cdcl_{NOT} :: 'st \Rightarrow 'st \Rightarrow bool and
    restart :: 'st \Rightarrow 'st \Rightarrow bool
inductive cdcl_{NOT}-raw-restart :: 'st \Rightarrow 'st \Rightarrow bool where
cdcl_{NOT} S T \Longrightarrow cdcl_{NOT}-raw-restart S T
\mathit{restart}\ S\ T \Longrightarrow \mathit{cdcl}_{NOT}\text{-}\mathit{raw}\text{-}\mathit{restart}\ S\ T
end
{f locale}\ conflict\mbox{-}driven\mbox{-}clause\mbox{-}learning\mbox{-}with\mbox{-}restarts =
  conflict-driven-clause-learning\ trail\ clauses_{NOT}\ prepend-trail\ tl-trail\ add-cls_{NOT}\ remove-cls_{NOT}
    inv backjump-conds propagate-conds learn-cond forget-cond
  for
    trail :: 'st \Rightarrow ('v, unit) \ ann-lits \ and
    clauses_{NOT} :: 'st \Rightarrow 'v \ clauses \ and
    prepend-trail :: ('v, unit) ann-lit \Rightarrow 'st \Rightarrow 'st and
    tl-trail :: 'st \Rightarrow 'st and
    add\text{-}cls_{NOT} :: 'v clause \Rightarrow 'st \Rightarrow 'st and
    remove\text{-}cls_{NOT} :: 'v \ clause \Rightarrow 'st \Rightarrow 'st \ \text{and}
    inv :: 'st \Rightarrow bool and
    backjump\text{-}conds:: 'v\ clause \Rightarrow 'v\ clause \Rightarrow 'v\ literal \Rightarrow 'st \Rightarrow 'st \Rightarrow bool\ \mathbf{and}
    propagate\text{-}conds::('v, unit) \ ann\text{-}lit \Rightarrow 'st \Rightarrow bool \ \mathbf{and}
    learn\text{-}cond\ forget\text{-}cond:: 'v\ clause \Rightarrow 'st \Rightarrow bool
begin
lemma cdcl_{NOT}-iff-cdcl_{NOT}-raw-restart-no-restarts:
  cdcl_{NOT} S T \longleftrightarrow restart-ops.cdcl_{NOT}-raw-restart \ cdcl_{NOT} \ (\lambda- -. False) S T
  (is ?C S T \longleftrightarrow ?R S T)
proof
  \mathbf{fix} \ S \ T
  assume ?CST
  then show ?R \ S \ T by (simp \ add: restart-ops.cdcl_{NOT}-raw-restart.intros(1))
next
  \mathbf{fix} \ S \ T
  assume ?R \ S \ T
  then show ?CST
    apply (cases rule: restart-ops.cdcl_{NOT}-raw-restart.cases)
    using \langle ?R \ S \ T \rangle by fast+
```

lemma $cdcl_{NOT}$ - $cdcl_{NOT}$ -raw-restart:

qed

```
cdcl_{NOT} \ S \ T \Longrightarrow restart-ops.cdcl_{NOT}-raw-restart cdcl_{NOT} restart S \ T by (simp \ add: restart-ops.cdcl_{NOT}-raw-restart.intros(1)) and
```

Increasing restarts

To add restarts we needs some assumptions on the predicate (called $cdcl_{NOT}$ here):

- a function f that is strictly monotonic. The first step is actually only used as a restart to clean the state (e.g. to ensure that the trail is empty). Then we assume that $(1::'a) \leq f$ n for $(1::'a) \leq n$: it means that between two consecutive restarts, at least one step will be done. This is necessary to avoid sequence. like: full restart full ...
- a measure μ : it should decrease under the assumptions bound-inv, whenever a $cdcl_{NOT}$ or a restart is done. A parameter is given to μ : for conflict- driven clause learning, it is an upper-bound of the clauses. We are assuming that such a bound can be found after a restart whenever the invariant holds.
- we also assume that the measure decrease after any $cdcl_{NOT}$ step.
- an invariant on the states $cdcl_{NOT}$ -inv that also holds after restarts.
- it is not required that the measure decrease with respect to restarts, but the measure has to be bound by some function μ -bound taking the same parameter as μ and the initial state of the considered $cdcl_{NOT}$ chain.

```
locale cdcl_{NOT}-increasing-restarts-ops =
  restart-ops cdcl_{NOT} restart for
    restart :: 'st \Rightarrow 'st \Rightarrow bool and
    cdcl_{NOT} :: 'st \Rightarrow 'st \Rightarrow bool +
  fixes
    f :: nat \Rightarrow nat  and
    bound-inv :: 'bound \Rightarrow 'st \Rightarrow bool and
    \mu :: 'bound \Rightarrow 'st \Rightarrow nat and
    cdcl_{NOT}-inv :: 'st \Rightarrow bool and
    \mu-bound :: 'bound \Rightarrow 'st \Rightarrow nat
  assumes
    f: unbounded f and
    f-ge-1:\bigwedge n. n \ge 1 \implies f n \ne 0 and
    bound-inv: \bigwedge A \ S \ T. cdcl_{NOT}-inv S \Longrightarrow bound-inv A \ S \Longrightarrow cdcl_{NOT} \ S \ T \Longrightarrow bound-inv A \ T and
     cdcl_{NOT}-measure: \bigwedge A \ S \ T. cdcl_{NOT}-inv S \Longrightarrow bound-inv A \ S \Longrightarrow cdcl_{NOT} \ S \ T \Longrightarrow \mu \ A \ T < \mu
A S  and
    measure-bound2: \bigwedge A \ T \ U. \ cdcl_{NOT}-inv T \Longrightarrow bound-inv A \ T \Longrightarrow cdcl_{NOT}^{**} \ T \ U
        \implies \mu \ A \ U \leq \mu \text{-bound } A \ T \ \text{and}
     measure-bound4: \bigwedge A T U. cdcl_{NOT}-inv T \Longrightarrow bound-inv A T \Longrightarrow cdcl_{NOT}^{**} T U
        \implies \mu-bound A \ U \leq \mu-bound A \ T and
     cdcl_{NOT}-restart-inv: \bigwedge A\ U\ V.\ cdcl_{NOT}-inv U\Longrightarrow restart\ U\ V\Longrightarrow bound-inv A\ U\Longrightarrow bound-inv
A V
     exists-bound: \bigwedge R S. cdcl_{NOT}-inv R \Longrightarrow restart R S \Longrightarrow \exists A. bound-inv A S and
     cdcl_{NOT}-inv: \bigwedge S T. cdcl_{NOT}-inv S \Longrightarrow cdcl_{NOT} S T \Longrightarrow cdcl_{NOT}-inv T and
     cdcl_{NOT}-inv-restart: \bigwedge S T. cdcl_{NOT}-inv S \Longrightarrow restart S T \Longrightarrow cdcl_{NOT}-inv T
begin
```

lemma $cdcl_{NOT}$ - $cdcl_{NOT}$ -inv:

```
assumes
   (cdcl_{NOT} \widehat{\hspace{1em}} n) S T and
   cdcl_{NOT}-inv S
 shows cdcl_{NOT}-inv T
 using assms by (induction n arbitrary: T) (auto intro:bound-inv cdcl_{NOT}-inv)
lemma cdcl_{NOT}-bound-inv:
 assumes
   (cdcl_{NOT} \widehat{\hspace{1em}} n) S T and
   cdcl_{NOT}-inv S
   bound-inv A S
 shows bound-inv A T
 using assms by (induction n arbitrary: T) (auto intro:bound-inv cdcl_{NOT}-cdcl_{NOT}-inv)
lemma rtranclp-cdcl_{NOT}-cdcl_{NOT}-inv:
 assumes
   cdcl_{NOT}^{**} S T and
   cdcl_{NOT}-inv S
 shows cdcl_{NOT}-inv T
 using assms by induction (auto intro: cdcl_{NOT}-inv)
lemma rtranclp-cdcl_{NOT}-bound-inv:
 assumes
   cdcl_{NOT}^{**} S T and
   bound-inv A S and
   cdcl_{NOT}-inv S
 shows bound-inv A T
 using assms by induction (auto intro:bound-inv rtranclp-cdcl_{NOT}-cdcl_{NOT}-inv)
lemma cdcl_{NOT}-comp-n-le:
 assumes
   (cdcl_{NOT} \cap (Suc \ n)) \ S \ T \ and
   bound-inv \ A \ S
   cdcl_{NOT}-inv S
 shows \mu A T < \mu A S - n
 using assms
proof (induction n arbitrary: T)
 case \theta
 then show ?case using cdcl_{NOT}-measure by auto
next
 case (Suc\ n) note IH = this(1)[OF - this(3)\ this(4)] and S-T = this(2) and b-inv = this(3) and
  c\text{-}inv = this(4)
 obtain U: 'st where S-U: (cdcl_{NOT} \cap (Suc\ n)) S U and U-T: cdcl_{NOT} U T using S-T by auto
 then have \mu A U < \mu A S - n using IH[of U] by simp
 moreover
   have bound-inv A U
     using S-U b-inv cdcl_{NOT}-bound-inv c-inv by blast
   then have \mu A T < \mu A U using cdcl_{NOT}-measure [OF - U-T] S-U c-inv cdcl_{NOT}-cdcl<sub>NOT</sub>-inv
 ultimately show ?case by linarith
qed
lemma wf-cdcl_{NOT}:
  wf \{(T, S). \ cdcl_{NOT} \ S \ T \land cdcl_{NOT} \text{-inv } S \land bound\text{-inv } A \ S\} \ (is \ wf \ ?A)
 apply (rule wfP-if-measure2[of - - \mu A])
 using cdcl_{NOT}-comp-n-le[of \theta - - A] by auto
```

```
lemma rtranclp-cdcl_{NOT}-measure:
 assumes
   cdcl_{NOT}^{**} S T and
   bound-inv A S and
   cdcl_{NOT}-inv S
 shows \mu A T \leq \mu A S
 using assms
proof (induction rule: rtranclp-induct)
 case base
 then show ?case by auto
next
  case (step\ T\ U) note IH=this(3)[OF\ this(4)\ this(5)] and st=this(1) and cdcl_{NOT}=this(2)
   b-inv = this(4) and c-inv = this(5)
 have bound-inv A T
   by (meson\ cdcl_{NOT}\text{-}bound\text{-}inv\ rtranclp-}imp\text{-}relpowp\ st\ step.prems)
 moreover have cdcl_{NOT}-inv T
   using c-inv rtranclp-cdcl_{NOT}-cdcl_{NOT}-inv st by blast
  ultimately have \mu A U < \mu A T using cdcl_{NOT}-measure [OF - - cdcl_{NOT}] by auto
  then show ?case using IH by linarith
qed
lemma cdcl_{NOT}-comp-bounded:
 assumes
   bound-inv A S and cdcl_{NOT}-inv S and m \geq 1 + \mu A S
 shows \neg (cdcl_{NOT} \curvearrowright m) \ S \ T
 using assms cdcl_{NOT}-comp-n-le[of m-1 S T A] by fastforce
    • f n < m ensures that at least one step has been done.
inductive cdcl_{NOT}-restart where
restart-step: (cdcl_{NOT} \widehat{\ } m) \ S \ T \Longrightarrow m \ge f \ n \Longrightarrow restart \ T \ U
  \implies cdcl_{NOT}\text{-}restart\ (S,\ n)\ (U,\ Suc\ n)\ |
restart-full: full1 cdcl_{NOT} S T \Longrightarrow cdcl_{NOT}-restart (S, n) (T, Suc n)
lemmas cdcl_{NOT}-with-restart-induct = cdcl_{NOT}-restart.induct[split-format(complete),
  OF\ cdcl_{NOT}-increasing-restarts-ops-axioms]
lemma cdcl_{NOT}-restart-cdcl_{NOT}-raw-restart:
  cdcl_{NOT}-restart S \ T \Longrightarrow cdcl_{NOT}-raw-restart** (fst S) (fst T)
proof (induction rule: cdcl_{NOT}-restart.induct)
 case (restart\text{-}step \ m \ S \ T \ n \ U)
  then have cdcl_{NOT}^{**} S T by (meson relpowp-imp-rtranclp)
  then have cdcl_{NOT}-raw-restart** S T using cdcl_{NOT}-raw-restart.intros(1)
   rtranclp-mono[of\ cdcl_{NOT}\ cdcl_{NOT}-raw-restart] by blast
 moreover have cdcl_{NOT}-raw-restart T U
   using \langle restart\ T\ U \rangle\ cdcl_{NOT}-raw-restart.intros(2) by blast
 ultimately show ?case by auto
next
 case (restart-full\ S\ T)
 then have cdcl_{NOT}^{**} S T unfolding full1-def by auto
  then show ?case using cdcl_{NOT}-raw-restart.intros(1)
   rtranclp-mono[of\ cdcl_{NOT}\ cdcl_{NOT}-raw-restart]\ \mathbf{by}\ auto
qed
```

```
lemma cdcl_{NOT}-with-restart-bound-inv:
  assumes
    cdcl_{NOT}-restart S T and
   bound-inv A (fst S) and
    cdcl_{NOT}-inv (fst S)
  shows bound-inv A (fst T)
  using assms apply (induction rule: cdcl_{NOT}-restart.induct)
   \mathbf{prefer} \ \mathcal{Z} \ \mathbf{apply} \ (\mathit{metis} \ \mathit{rtranclp-unfold} \ \mathit{fstI} \ \mathit{full1-def} \ \mathit{rtranclp-cdcl}_{NOT}\text{-}\mathit{bound-inv})
  by (metis\ cdcl_{NOT}-bound-inv cdcl_{NOT}-cdcl<sub>NOT</sub>-inv cdcl_{NOT}-restart-inv fst-conv)
lemma cdcl_{NOT}-with-restart-cdcl_{NOT}-inv:
  assumes
    cdcl_{NOT}-restart S T and
    cdcl_{NOT}-inv (fst S)
  shows cdcl_{NOT}-inv (fst T)
  using assms apply induction
   apply (metis cdcl_{NOT}-cdcl_{NOT}-inv cdcl_{NOT}-inv-restart fst-conv)
  apply (metis fstI full-def full-unfold rtranclp-cdcl_{NOT}-cdcl_{NOT}-inv)
  done
lemma rtranclp-cdcl_{NOT}-with-restart-cdcl<sub>NOT</sub>-inv:
  assumes
    cdcl_{NOT}-restart** S T and
    cdcl_{NOT}-inv (fst S)
  shows cdcl_{NOT}-inv (fst T)
  using assms by induction (auto intro: cdcl_{NOT}-with-restart-cdcl_{NOT}-inv)
lemma rtranclp-cdcl_{NOT}-with-restart-bound-inv:
 assumes
    cdcl_{NOT}-restart** S T and
    cdcl_{NOT}-inv (fst S) and
    bound-inv A (fst S)
  shows bound-inv A (fst T)
  using assms apply induction
  apply (simp\ add:\ cdcl_{NOT}-cdcl_{NOT}-inv\ cdcl_{NOT}-with-restart-bound-inv)
  using cdcl_{NOT}-with-restart-bound-inv rtranclp-cdcl<sub>NOT</sub>-with-restart-cdcl<sub>NOT</sub>-inv by blast
lemma cdcl_{NOT}-with-restart-increasing-number:
  cdcl_{NOT}-restart S \ T \Longrightarrow snd \ T = 1 + snd \ S
  by (induction rule: cdcl_{NOT}-restart.induct) auto
end
locale cdcl_{NOT}-increasing-restarts =
  cdcl_{NOT}-increasing-restarts-ops restart cdcl_{NOT} f bound-inv \mu cdcl_{NOT}-inv \mu-bound +
  dpll-state trail\ clauses_{NOT}\ prepend-trail tl-trail add-cls_{NOT}\ remove-cls_{NOT}
  for
   trail :: 'st \Rightarrow ('v, unit) \ ann-lits \ and
   clauses_{NOT} :: 'st \Rightarrow 'v \ clauses \ and
   prepend-trail :: ('v, unit) ann-lit \Rightarrow 'st \Rightarrow 'st and
   tl-trail :: 'st \Rightarrow 'st and
   add\text{-}cls_{NOT} :: 'v \ clause \Rightarrow 'st \Rightarrow 'st \ \mathbf{and}
   remove\text{-}cls_{NOT} :: 'v clause \Rightarrow 'st \Rightarrow 'st and
   f :: nat \Rightarrow nat  and
   restart :: 'st \Rightarrow 'st \Rightarrow bool and
   bound-inv :: 'bound \Rightarrow 'st \Rightarrow bool and
```

```
\mu :: 'bound \Rightarrow 'st \Rightarrow nat and
   cdcl_{NOT} :: 'st \Rightarrow 'st \Rightarrow bool and
   cdcl_{NOT}-inv :: 'st \Rightarrow bool and
   \mu-bound :: 'bound \Rightarrow 'st \Rightarrow nat +
  assumes
    measure-bound: \bigwedge A \ T \ V \ n. \ cdcl_{NOT}-inv T \Longrightarrow bound-inv A \ T
      \implies cdcl_{NOT}\text{-restart }(T, n) \ (V, Suc \ n) \implies \mu \ A \ V \leq \mu\text{-bound } A \ T \ \mathbf{and}
    cdcl_{NOT}\text{-}raw\text{-}restart\text{-}\mu\text{-}bound:
      cdcl_{NOT}-restart (T, a) (V, b) \Longrightarrow cdcl_{NOT}-inv T \Longrightarrow bound-inv A T
         \Rightarrow \mu-bound A \ V \leq \mu-bound A \ T
begin
lemma rtranclp-cdcl_{NOT}-raw-restart-\mu-bound:
  cdcl_{NOT}-restart** (T, a) (V, b) \Longrightarrow cdcl_{NOT}-inv T \Longrightarrow bound-inv A T
    \implies \mu-bound A \ V \le \mu-bound A \ T
  apply (induction rule: rtranclp-induct2)
  apply simp
  by (metis cdcl_{NOT}-raw-restart-\mu-bound dual-order.trans fst-conv
   rtranclp-cdcl_{NOT}-with-restart-bound-inv rtranclp-cdcl_{NOT}-with-restart-cdcl_{NOT}-inv)
lemma cdcl_{NOT}-raw-restart-measure-bound:
  cdcl_{NOT}-restart (T, a) (V, b) \Longrightarrow cdcl_{NOT}-inv T \Longrightarrow bound-inv A T
    \implies \mu \ A \ V \leq \mu \text{-bound } A \ T
  apply (cases rule: cdcl_{NOT}-restart.cases)
    apply simp
   using measure-bound relpowp-imp-rtrancly apply fastforce
  by (metis full-def full-unfold measure-bound2 prod.inject)
lemma rtranclp-cdcl_{NOT}-raw-restart-measure-bound:
  cdcl_{NOT}-restart** (T, a) (V, b) \Longrightarrow cdcl_{NOT}-inv T \Longrightarrow bound-inv A T
    \implies \mu \ A \ V \leq \mu \text{-bound } A \ T
  apply (induction rule: rtranclp-induct2)
   apply (simp add: measure-bound2)
  by (metis dual-order.trans fst-conv measure-bound2 r-into-rtranclp rtranclp.rtrancl-refl
    rtranclp-cdcl_{NOT}-with-restart-bound-inv\ rtranclp-cdcl_{NOT}-with-restart-cdcl_{NOT}-inv
   rtranclp-cdcl_{NOT}-raw-restart-\mu-bound)
lemma wf-cdcl_{NOT}-restart:
  wf \{(T, S). \ cdcl_{NOT}\text{-restart} \ S \ T \land cdcl_{NOT}\text{-inv} \ (fst \ S)\}\ (is \ wf \ ?A)
proof (rule ccontr)
  assume ¬ ?thesis
  then obtain g where
    g: \bigwedge i. \ cdcl_{NOT}-restart (g \ i) \ (g \ (Suc \ i)) and
    cdcl_{NOT}-inv-g: \bigwedge i. \ cdcl_{NOT}-inv (fst \ (g \ i))
   unfolding wf-iff-no-infinite-down-chain by fast
 have snd-g: \bigwedge i. snd (g \ i) = i + snd (g \ \theta)
   apply (induct-tac i)
      apply simp
      by (metis Suc-eq-plus1-left add.commute add.left-commute
        cdcl_{NOT}-with-restart-increasing-number g)
  then have snd-g-\theta: \bigwedge i. i > \theta \Longrightarrow snd (g i) = i + snd (g \theta)
   by blast
  have unbounded-f-g: unbounded (\lambda i. f (snd (g i)))
   using f unfolding bounded-def by (metis add.commute f less-or-eq-imp-le snd-g
      not-bounded-nat-exists-larger not-le le-iff-add)
```

```
{ fix i
    have H: \bigwedge T Ta m. (cdcl_{NOT} \curvearrowright m) T Ta \Longrightarrow no-step cdcl_{NOT} T \Longrightarrow m = 0
      apply (case-tac m) by simp (meson relpowp-E2)
    have \exists T m. (cdcl_{NOT} \curvearrowright m) (fst (g i)) T \land m \geq f (snd (g i))
      using g[of\ i] apply (cases rule: cdcl_{NOT}-restart.cases)
        apply auto[]
      using g[of Suc \ i] \ f-ge-1 apply (cases rule: cdcl_{NOT}-restart.cases)
      apply (auto simp add: full1-def full-def dest: H dest: tranclpD)
      using H Suc-leI leD by blast
  \} note H = this
 obtain A where bound-inv A (fst (g 1))
    using g[of \ \theta] \ cdcl_{NOT}-inv-g[of \ \theta] apply (cases rule: cdcl_{NOT}-restart.cases)
      apply (metis One-nat-def cdcl_{NOT}-inv exists-bound fst-conv relpowp-imp-rtrancly
        rtranclp-induct)
      using H[of 1] unfolding full1-def by (metis One-nat-def Suc-eq-plus1 diff-is-0-eq' diff-zero
        f-ge-1 fst-conv le-add2 relpowp-E2 snd-conv)
  let ?j = \mu-bound A (fst (g 1)) + 1
  obtain j where
    j: f (snd (g j)) > ?j  and j > 1
    using unbounded-f-g not-bounded-nat-exists-larger by blast
     fix i j
     have cdcl_{NOT}-with-restart: j \geq i \implies cdcl_{NOT}-restart** (g\ i)\ (g\ j)
       apply (induction j)
         apply simp
       by (metis g le-Suc-eq rtranclp.rtrancl-into-rtrancl rtranclp.rtrancl-reft)
  } note cdcl_{NOT}-restart = this
  have cdcl_{NOT}-inv (fst (g (Suc \theta)))
    by (simp add: cdcl_{NOT}-inv-g)
  have cdcl_{NOT}-restart** (fst (g\ 1), snd (g\ 1)) (fst (g\ j), snd (g\ j))
    using \langle j > 1 \rangle by (simp \ add: \ cdcl_{NOT}\text{-}restart)
  have \mu \ A \ (fst \ (g \ j)) \le \mu \text{-bound} \ A \ (fst \ (g \ 1))
    \mathbf{apply} \ (\mathit{rule} \ \mathit{rtranclp-cdcl}_{NOT}\text{-}\mathit{raw-restart-measure-bound})
    using \langle cdcl_{NOT}\text{-}restart^{**} \ (fst \ (g \ 1), \ snd \ (g \ 1)) \ (fst \ (g \ j), \ snd \ (g \ j)) \rangle apply blast
        apply (simp\ add:\ cdcl_{NOT}-inv-g)
       using \langle bound\text{-}inv \ A \ (fst \ (q \ 1)) \rangle apply simp
    done
  then have \mu \ A \ (fst \ (g \ j)) \le ?j
    by auto
  have inv: bound-inv A (fst (g \ j))
    using \langle bound\text{-}inv \ A \ (fst \ (g \ 1)) \rangle \langle cdcl_{NOT}\text{-}inv \ (fst \ (g \ (Suc \ \theta))) \rangle
    \langle cdcl_{NOT}\text{-}restart^{**} \ (fst \ (g \ 1), \ snd \ (g \ 1)) \ (fst \ (g \ j), \ snd \ (g \ j)) \rangle
    rtranclp-cdcl_{NOT}-with-restart-bound-inv by auto
  obtain T m where
    cdcl_{NOT}-m: (cdcl_{NOT} \curvearrowright m) (fst (g j)) T and
    f-m: f (snd (g j)) <math>\leq m
    using H[of j] by blast
  have ?j < m
    using f-m j Nat.le-trans by linarith
  then show False
    using \langle \mu \ A \ (\textit{fst} \ (\textit{g} \ \textit{j})) \leq \mu\text{-bound} \ A \ (\textit{fst} \ (\textit{g} \ \textit{1})) \rangle
    cdcl_{NOT}-comp-bounded[OF inv cdcl_{NOT}-inv-g, of ] cdcl_{NOT}-inv-g cdcl_{NOT}-m
    \langle ?j < m \rangle by auto
qed
```

```
lemma cdcl_{NOT}-restart-steps-bigger-than-bound:
   cdcl_{NOT}-restart S T and
   bound-inv A (fst S) and
   cdcl_{NOT}-inv (fst S) and
   f (snd S) > \mu-bound A (fst S)
 shows full1 cdcl_{NOT} (fst S) (fst T)
 using assms
proof (induction rule: cdcl_{NOT}-restart.induct)
 case restart-full
 then show ?case by auto
next
  case (restart-step m S T n U) note st = this(1) and f = this(2) and bound-inv = this(4) and
   cdcl_{NOT}-inv = this(5) and \mu = this(6)
 then obtain m' where m: m = Suc m' by (cases m) auto
 have \mu A S - m' = 0
   using f bound-inv cdcl_{NOT}-inv \mu m rtranclp-cdcl_{NOT}-raw-restart-measure-bound by fastforce
  then have False using cdcl_{NOT}-comp-n-le[of m' S T A] restart-step unfolding m by simp
 then show ?case by fast
qed
lemma rtranclp-cdcl_{NOT}-with-inv-inv-rtranclp-cdcl<sub>NOT</sub>:
 assumes
   inv: cdcl_{NOT}-inv S and
   binv: bound-inv A S
 shows (\lambda S \ T. \ cdcl_{NOT} \ S \ T \land \ cdcl_{NOT}\text{--inv} \ S \land \ bound-inv} \ A \ S)^{**} \ S \ T \longleftrightarrow cdcl_{NOT}^{**} \ S \ T
   (is ?A^{**} S T \longleftrightarrow ?B^{**} S T)
 apply (rule iffI)
   using rtranclp-mono[of ?A ?B] apply blast
  apply (induction rule: rtranclp-induct)
   using inv binv apply simp
  by (metis (mono-tags, lifting) binv inv rtranclp.simps rtranclp-cdcl_{NOT}-bound-inv
   rtranclp-cdcl_{NOT}-cdcl_{NOT}-inv)
lemma no-step-cdcl_{NOT}-restart-no-step-cdcl_{NOT}:
 assumes
   n-s: no-step cdcl_{NOT}-restart S and
   inv: cdcl_{NOT}-inv (fst S) and
   binv: bound-inv A (fst S)
 shows no-step cdcl_{NOT} (fst S)
proof (rule ccontr)
 assume ¬ ?thesis
  then obtain T where T: cdcl_{NOT} (fst S) T
   by blast
  then obtain U where U: full (\lambda S T. cdcl_{NOT} S T \wedge cdcl_{NOT}-inv S \wedge bound-inv A S) T U
    using wf-exists-normal-form-full [OF wf-cdcl<sub>NOT</sub>, of A T] by auto
  moreover have inv-T: cdcl_{NOT}-inv T
   using \langle cdcl_{NOT} \ (fst \ S) \ T \rangle \ cdcl_{NOT}-inv inv by blast
  moreover have b-inv-T: bound-inv A T
   using \langle cdcl_{NOT} \ (fst \ S) \ T \rangle binv bound-inv inv by blast
  ultimately have full cdcl_{NOT} T U
   using rtranclp-cdcl_{NOT}-with-inv-inv-rtranclp-cdcl<sub>NOT</sub> rtranclp-cdcl_{NOT}-bound-inv
   rtranclp-cdcl_{NOT}-cdcl_{NOT}-inv unfolding full-def by blast
  then have full1\ cdcl_{NOT}\ (fst\ S)\ U
   using T full-fullI by metis
```

```
then show False by (metis n-s prod.collapse restart-full)
qed
```

end

1.2.6

```
Merging backjump and learning
locale \ cdcl_{NOT}-merge-bj-learn-ops =
  decide-ops\ trail\ clauses_{NOT}\ prepend-trail\ tl-trail\ add-cls_{NOT}\ remove-cls_{NOT}\ +
 forget-ops\ trail\ clauses_{NOT}\ prepend-trail\ tl-trail\ add-cls_{NOT}\ remove-cls_{NOT}\ forget-cond\ +
  propagate-ops\ trail\ clauses_{NOT}\ prepend-trail\ tl-trail\ add-cls_{NOT}\ remove-cls_{NOT}\ propagate-conds
  for
    trail :: 'st \Rightarrow ('v, unit) \ ann-lits \ and
    clauses_{NOT} :: 'st \Rightarrow 'v \ clauses \ {\bf and}
    prepend-trail :: ('v, unit) ann-lit \Rightarrow 'st \Rightarrow 'st and
    tl-trail :: 'st \Rightarrow 'st and
    add\text{-}cls_{NOT} :: 'v \ clause \Rightarrow 'st \Rightarrow 'st \ \text{and}
    remove\text{-}cls_{NOT} :: 'v \ clause \Rightarrow 'st \Rightarrow 'st \ \textbf{and}
    propagate\text{-}conds:: ('v, unit) \ ann\text{-}lit \Rightarrow 'st \Rightarrow bool \ and
    forget\text{-}cond :: 'v \ clause \Rightarrow 'st \Rightarrow bool +
  fixes backjump-l-cond :: 'v \ clause \Rightarrow 'v \ clause \Rightarrow 'v \ literal \Rightarrow 'st \Rightarrow 'st \Rightarrow bool
begin
We have a new backjump that combines the backjumping on the trail and the learning of the
used clause (called C'' below)
inductive backjump-l where
\textit{backjump-l: trail } S = \textit{F'} @ \textit{Decided } K \ \# \ \textit{F}
   \implies no\text{-}dup \ (trail \ S)
   \implies T \sim prepend-trail (Propagated L ()) (reduce-trail-to_{NOT} F (add-cls_{NOT} C'' S))
   \implies C \in \# clauses_{NOT} S
   \implies trail \ S \models as \ CNot \ C
   \implies undefined\text{-}lit \ F \ L
   \implies atm-of L \in atms-of-mm (clauses<sub>NOT</sub> S) \cup atm-of '(lits-of-l (trail S))
   \implies clauses_{NOT} S \models pm C' + \{\#L\#\}
   \implies C'' = C' + \{\#L\#\}
   \implies F \models as \ CNot \ C'
   \implies backjump-l\text{-}cond\ C\ C'\ L\ S\ T
   \implies backjump-l \ S \ T
Avoid (meaningless) simplification in the theorem generated by inductive-cases:
declare reduce-trail-to<sub>NOT</sub>-length-ne[simp del] Set.Un-iff[simp del] Set.insert-iff[simp del]
inductive-cases backjump-lE: backjump-lS T
thm backjump-lE
declare\ reduce-trail-to_{NOT}-length-ne[simp] Set.Un-iff[simp] Set.insert-iff[simp]
inductive cdcl_{NOT}-merged-bj-learn :: 'st \Rightarrow 'st \Rightarrow bool for S :: 'st where
cdcl_{NOT}-merged-bj-learn-decide<sub>NOT</sub>: decide_{NOT} S S' \Longrightarrow cdcl_{NOT}-merged-bj-learn S S' \mid
cdcl_{NOT}-merged-bj-learn-propagate<sub>NOT</sub>: propagate_{NOT} S S' \Longrightarrow cdcl_{NOT}-merged-bj-learn S S'
cdcl_{NOT}-merged-bj-learn-backjump-l: backjump-l S S' \Longrightarrow cdcl_{NOT}-merged-bj-learn S S'
cdcl_{NOT}-merged-bj-learn-forget_{NOT}: forget_{NOT} \ S \ S' \Longrightarrow cdcl_{NOT}-merged-bj-learn S \ S'
lemma cdcl_{NOT}-merged-bj-learn-no-dup-inv:
  cdcl_{NOT}-merged-bj-learn S \ T \Longrightarrow no-dup (trail \ S) \Longrightarrow no-dup (trail \ T)
```

apply (induction rule: $cdcl_{NOT}$ -merged-bj-learn.induct)

using defined-lit-map apply fastforce

```
using defined-lit-map apply fastforce
   apply (force simp: defined-lit-map elim!: backjump-lE)[]
  using forget_{NOT}.simps apply auto[1]
  done
end
locale\ cdcl_{NOT}-merge-bj-learn-proxy =
  cdcl_{NOT}-merge-bj-learn-ops trail clauses_{NOT} prepend-trail tl-trail add-cls_{NOT} remove-cls_{NOT}
    propagate-conds forget-cond
    \lambda C\ C'\ L'\ S\ T. backjump-l-cond C\ C'\ L'\ S\ T
    \land distinct\text{-mset} (C' + \{\#L'\#\}) \land \neg tautology (C' + \{\#L'\#\})
  for
    trail :: 'st \Rightarrow ('v, unit) \ ann-lits \ \mathbf{and}
    clauses_{NOT} :: 'st \Rightarrow 'v \ clauses \ \mathbf{and}
    prepend-trail :: ('v, unit) ann-lit \Rightarrow 'st \Rightarrow 'st and
    tl-trail :: 'st \Rightarrow 'st and
    add\text{-}cls_{NOT} :: 'v \ clause \Rightarrow 'st \Rightarrow 'st \ \text{and}
    remove\text{-}cls_{NOT} :: 'v \ clause \Rightarrow 'st \Rightarrow 'st \ \text{and}
    propagate\text{-}conds:: ('v, unit) \ ann\text{-}lit \Rightarrow 'st \Rightarrow bool \ and
    forget\text{-}cond :: 'v \ clause \Rightarrow 'st \Rightarrow bool \ \mathbf{and}
    backjump\text{-}l\text{-}cond :: 'v \ clause \Rightarrow 'v \ clause \Rightarrow 'v \ literal \Rightarrow 'st \Rightarrow 'st \Rightarrow bool +
    inv :: 'st \Rightarrow bool
  assumes
     bj-merge-can-jump:
     \bigwedge S \ C \ F' \ K \ F \ L.
       inv S
       \implies trail \ S = F' \ @ \ Decided \ K \ \# \ F
        \implies C \in \# clauses_{NOT} S
       \implies trail \ S \models as \ CNot \ C
        \implies undefined\text{-}lit \ F \ L
       \implies atm\text{-}of\ L\in atms\text{-}of\text{-}mm\ (clauses_{NOT}\ S)\ \cup\ atm\text{-}of\ ``(lits\text{-}of\text{-}l\ (F'\ @\ Decided\ K\ \#\ F))
       \implies clauses_{NOT} S \models pm C' + \{\#L\#\}
       \implies F \models as \ CNot \ C'
       \implies \neg no\text{-step backjump-l } S and
     cdcl-merged-inv: \bigwedge S T. cdcl_{NOT}-merged-bj-learn S T \Longrightarrow inv S \Longrightarrow inv T
begin
abbreviation backjump\text{-}conds::'v\ clause \Rightarrow 'v\ clause \Rightarrow 'v\ literal \Rightarrow 'st \Rightarrow 'st \Rightarrow bool
backjump\text{-}conds \equiv \lambda C \ C' \ L' \ S \ T. \ distinct\text{-}mset \ (C' + \{\#L'\#\}) \land \neg tautology \ (C' + \{\#L'\#\})
Without additional knowledge on backjump-l-cond, it is impossible to have the same invariant.
{\bf sublocale}\ dpll-with-backjumping-ops\ trail\ clauses_{NOT}\ prepend-trail\ tl-trail\ add-cls_{NOT}\ remove-cls_{NOT}
  inv backjump-conds propagate-conds
proof (unfold-locales, goal-cases)
  case 1
  \{ \text{ fix } S S' \}
    assume bj: backjump-l S S' and no-dup (trail S)
    then obtain F' K F L C' C D where
      S': S' \sim prepend-trail (Propagated L ()) (reduce-trail-to_{NOT} F (add-cls_{NOT} D S))
        and
      tr-S: trail S = F' @ Decided K # F and
      C: C \in \# clauses_{NOT} S and
      tr-S-C: trail S \models as CNot C and
      undef-L: undefined-lit F L and
```

```
atm-L:
       atm\text{-}of\ L \in insert\ (atm\text{-}of\ K)\ (atms\text{-}of\text{-}mm\ (clauses_{NOT}\ S) \cup atm\text{-}of\ `(lits\text{-}of\text{-}l\ F') \cup lits\text{-}of\text{-}l\ F))
      cls-S-C': clauses_{NOT} S \models pm C' + \{\#L\#\}  and
      F-C': F \models as \ CNot \ C' and
      dist: distinct-mset (C' + \{\#L\#\}) and not-tauto: \neg tautology (C' + \{\#L\#\}) and
      cond: backjump-l-cond C C' L S S'
      D = C' + \{\#L\#\}
      by (elim backjump-lE) metis
    interpret\ backjumping-ops\ trail\ clauses_{NOT}\ prepend-trail\ tl-trail\ add-cls_{NOT}\ remove-cls_{NOT}
    backjump\text{-}conds
      by unfold-locales
    have \exists T. backjump S T
      apply rule
      apply (rule backjump.intros)
                using tr-S apply simp
              apply (rule state-eq_{NOT}-ref)
             using C apply simp
             using tr-S-C apply simp
          using undef-L apply simp
         using atm-L tr-S apply simp
        using cls-S-C' apply simp
       using F-C' apply simp
      using dist not-tauto cond apply simp
      done
    }
  then show ?case using 1 bj-merge-can-jump by meson
qed
end
locale cdcl_{NOT}-merge-bj-learn-proxy2 =
  cdcl_{NOT}-merge-bj-learn-proxy trail clauses_{NOT} prepend-trail tl-trail add-cls_{NOT} remove-cls_{NOT}
    propagate\text{-}conds\ forget\text{-}cond\ backjump\text{-}l\text{-}cond\ inv
  for
    trail :: 'st \Rightarrow ('v, unit) \ ann-lits \ and
    clauses_{NOT} :: 'st \Rightarrow 'v \ clauses \ and
    prepend-trail :: ('v, unit) \ ann-lit \Rightarrow 'st \Rightarrow 'st \ \mathbf{and}
    tl-trail :: 'st \Rightarrow 'st and
    add\text{-}cls_{NOT} :: 'v clause \Rightarrow 'st \Rightarrow 'st and
    remove\text{-}cls_{NOT}:: 'v \ clause \Rightarrow 'st \Rightarrow 'st \ \mathbf{and}
    propagate\text{-}conds :: ('v, unit) \ ann\text{-}lit \Rightarrow 'st \Rightarrow bool \ \mathbf{and}
    forget\text{-}cond :: 'v \ clause \Rightarrow 'st \Rightarrow bool \ \mathbf{and}
    backjump\text{-}l\text{-}cond :: 'v \ clause \Rightarrow 'v \ clause \Rightarrow 'v \ literal \Rightarrow 'st \Rightarrow 'st \Rightarrow bool \ \mathbf{and}
    inv :: 'st \Rightarrow bool
begin
sublocale conflict-driven-clause-learning-ops trail clauses _{NOT} prepend-trail tl-trail add-cls_{NOT}
  remove-cls_{NOT} inv backjump-conds propagate-conds
  \lambda C -. distinct-mset C \wedge \neg tautology C
  forget-cond
  by unfold-locales
end
locale \ cdcl_{NOT}-merge-bj-learn =
```

```
cdcl_{NOT}-merge-bj-learn-proxy2 trail clauses_{NOT} prepend-trail tl-trail add-cls_{NOT} remove-cls_{NOT}
   propagate-conds forget-cond backjump-l-cond inv
  for
    trail :: 'st \Rightarrow ('v, unit) \ ann-lits \ and
   clauses_{NOT} :: 'st \Rightarrow 'v \ clauses \ {\bf and}
   prepend-trail :: ('v, unit) \ ann-lit \Rightarrow 'st \Rightarrow 'st \ and
   tl-trail :: 'st \Rightarrow'st and
   add\text{-}cls_{NOT} :: 'v \ clause \Rightarrow 'st \Rightarrow 'st \ \mathbf{and}
   remove\text{-}cls_{NOT}:: 'v\ clause \Rightarrow 'st \Rightarrow 'st\ \mathbf{and}
   backjump-l-cond :: 'v clause \Rightarrow 'v clause \Rightarrow 'v literal \Rightarrow 'st \Rightarrow 'st \Rightarrow bool and
   propagate\text{-}conds:: ('v, unit) \ ann\text{-}lit \Rightarrow 'st \Rightarrow bool \ \mathbf{and}
   forget\text{-}cond :: 'v \ clause \Rightarrow 'st \Rightarrow bool \ \mathbf{and}
   inv :: 'st \Rightarrow bool +
  assumes
   dpll-merge-bj-inv: \bigwedge S T. dpll-bj S T \Longrightarrow inv S \Longrightarrow inv T and
   learn-inv: \land S \ T. \ learn \ S \ T \Longrightarrow inv \ S \Longrightarrow inv \ T
begin
sublocale
   conflict-driven-clause-learning\ trail\ clauses_{NOT}\ prepend-trail\ tl-trail\ add-cls_{NOT}\ remove-cls_{NOT}
    inv\ backjump\text{-}conds\ propagate\text{-}conds
    \lambda C -. distinct-mset C \wedge \neg tautology C
    forget-cond
  apply unfold-locales
  using cdcl_{NOT}-merged-bj-learn-forget<sub>NOT</sub> cdcl-merged-inv learn-inv
  by (auto simp add: cdcl_{NOT}.simps dpll-merge-bj-inv)
lemma backjump-l-learn-backjump:
  assumes bt: backjump-l S T and inv: inv S and n-d: no-dup (trail S)
  shows \exists C' L D. learn S (add-cls_{NOT} D S)
   \wedge D = (C' + \{\#L\#\})
   \land backjump (add-cls<sub>NOT</sub> D S) T
   \land atms-of (C' + \#L\#\}) \subseteq atms-of-mm (clauses_{NOT} S) \cup atm-of (lits-of-(trail S))
proof -
  obtain C F' K F L l C' D where
    tr-S: trail S = F' @ Decided K # F and
     T: T \sim prepend-trail (Propagated L l) (reduce-trail-to_{NOT} F (add-cls_{NOT} D S)) and
     C-cls-S: C \in \# clauses_{NOT} S and
    tr-S-CNot-C: trail S \models as CNot C  and
    undef: undefined-lit F L and
    atm-L: atm-of L \in atm-of-mm (clauses_{NOT} S) \cup atm-of ' (lits-of-l (trail S)) and
    clss-C: clauses_{NOT} S \models pm D  and
     D: D = C' + \{\#L\#\}
     F \models as \ CNot \ C' \ and
     distinct: distinct-mset D and
    not-tauto: \neg tautology D
    using bt inv by (elim backjump-lE) simp
   have atms-C': atms-of C' \subseteq atm-of ' (lits-of-l F)
    by (metis\ D(2)\ atms-of-def\ image-subsetI\ true-annots-CNot-all-atms-defined)
  then have atms-of (C' + \#L\#) \subseteq atms-of-mm (clauses_{NOT} S) \cup atm-of ' (lits-of-l (trail S))
    using atm-L tr-S by auto
   moreover have learn: learn S (add-cls<sub>NOT</sub> D S)
    apply (rule learn.intros)
        apply (rule clss-C)
       using atms-C' atm-L D apply (fastforce simp add: tr-S in-plus-implies-atm-of-on-atms-of-ms)
    apply standard
```

```
apply (rule distinct)
     apply (rule not-tauto)
     apply simp
    done
  moreover have bj: backjump (add-cls<sub>NOT</sub> D S) T
    apply (rule backjump.intros)
    using \langle F \models as \ CNot \ C' \rangle C-cls-S tr-S-CNot-C undef T distinct not-tauto n-d D
    by (auto simp: tr-S state-eq_{NOT}-def simp del: state-simp_{NOT})
  ultimately show ?thesis using D by blast
lemma cdcl_{NOT}-merged-bj-learn-is-tranclp-cdcl_{NOT}:
  cdcl_{NOT}-merged-bj-learn S T \Longrightarrow inv S \Longrightarrow no\text{-}dup \ (trail \ S) \Longrightarrow cdcl_{NOT}^{++} \ S \ T
proof (induction rule: cdcl_{NOT}-merged-bj-learn.induct)
 case (cdcl_{NOT}-merged-bj-learn-decide_{NOT} T)
 then have cdcl_{NOT} S T
   using bj-decide_{NOT} cdcl_{NOT}.simps by fastforce
 then show ?case by auto
next
  case (cdcl_{NOT}-merged-bj-learn-propagate<sub>NOT</sub> T)
 then have cdcl_{NOT} S T
   using bj-propagate<sub>NOT</sub> cdcl_{NOT}.simps by fastforce
  then show ?case by auto
next
  case (cdcl_{NOT}-merged-bj-learn-forget_{NOT} T)
  then have cdcl_{NOT} S T
    using c-forget_{NOT} by blast
  then show ?case by auto
next
  case (cdcl_{NOT}-merged-bj-learn-backjump-l T) note bt = this(1) and inv = this(2) and
    n-d = this(3)
  obtain C':: 'v clause and L:: 'v literal and D:: 'v clause where
    f3: learn \ S \ (add\text{-}cls_{NOT} \ D \ S) \ \land
      backjump \ (add\text{-}cls_{NOT} \ D \ S) \ T \ \land
      atms-of\ (C' + \{\#L\#\}) \subseteq atms-of-mm\ (clauses_{NOT}\ S) \cup atm-of\ `lits-of-l\ (trail\ S)\ and
    D: D = C' + \{\#L\#\}
    using n-d backjump-l-learn-backjump[OF bt inv] by blast
  then have f_4: cdcl_{NOT} S (add\text{-}cls_{NOT} D S)
    using n-d c-learn by blast
  have cdcl_{NOT} (add-cls_{NOT} D S) T
    using f3 n-d bj-backjump c-dpll-bj by blast
  then show ?case
    using f4 by (meson tranclp.r-into-trancl tranclp.trancl-into-trancl)
\mathbf{lemma}\ rtranclp\text{-}cdcl_{NOT}\text{-}merged\text{-}bj\text{-}learn\text{-}is\text{-}rtranclp\text{-}cdcl_{NOT}\text{-}and\text{-}inv}.
  cdcl_{NOT}-merged-bj-learn** S T \Longrightarrow inv S \Longrightarrow no\text{-}dup \ (trail \ S) \Longrightarrow cdcl_{NOT}** S T \land inv \ T
proof (induction rule: rtranclp-induct)
 case base
 then show ?case by auto
next
  case (step T U) note st = this(1) and cdcl_{NOT} = this(2) and IH = this(3)[OF\ this(4-)] and
    inv = this(4) and n-d = this(5)
 have cdcl_{NOT}^{**} T U
   using cdcl_{NOT}-merged-bj-learn-is-tranclp-cdcl_{NOT}[OF\ cdcl_{NOT}]\ IH
   rtranclp-cdcl_{NOT}-no-dup inv n-d by auto
```

```
then have cdcl_{NOT}^{**} S U using IH by fastforce
 moreover have inv U using n-d IH \langle cdcl_{NOT}^{**} \mid T \mid U \rangle rtranclp-cdcl<sub>NOT</sub>-inv by blast
 ultimately show ?case using st by fast
qed
lemma rtranclp-cdcl_{NOT}-merged-bj-learn-is-rtranclp-cdcl<sub>NOT</sub>:
  cdcl_{NOT}-merged-bj-learn** S T \Longrightarrow inv S \Longrightarrow no-dup (trail S) \Longrightarrow cdcl_{NOT}** S T
  using rtranclp-cdcl_{NOT}-merged-bj-learn-is-rtranclp-cdcl_{NOT}-and-inv by blast
lemma rtranclp-cdcl_{NOT}-merged-bj-learn-inv:
  cdcl_{NOT}-merged-bj-learn** S T \Longrightarrow inv S \Longrightarrow no-dup (trail S) \Longrightarrow inv T
 using rtranclp-cdcl_{NOT}-merged-bj-learn-is-rtranclp-cdcl_{NOT}-and-inv by blast
definition \mu_C' :: 'v \ clause \ set \Rightarrow 'st \Rightarrow nat \ where
\mu_C' A T \equiv \mu_C (1 + card (atms-of-ms A)) (2 + card (atms-of-ms A)) (trail-weight T)
definition \mu_{CDCL}'-merged :: 'v clause set \Rightarrow 'st \Rightarrow nat where
\mu_{CDCL}'-merged A T \equiv
 ((2+card\ (atms-of-ms\ A)) \cap (1+card\ (atms-of-ms\ A)) - \mu_C'\ A\ T)*2 + card\ (set-mset\ (clauses_{NOT})
T))
lemma cdcl_{NOT}-decreasing-measure':
 assumes
   cdcl_{NOT}-merged-bj-learn S T and
   inv: inv S and
   atm-clss: atms-of-mm (clauses_{NOT} S) \subseteq atms-of-ms A and
   atm-trail: atm-of ' lits-of-l (trail S) \subseteq atms-of-ms A and
   n-d: no-dup (trail S) and
   fin-A: finite A
  shows \mu_{CDCL}'-merged A T < \mu_{CDCL}'-merged A S
 using assms(1)
proof induction
 case (cdcl_{NOT}-merged-bj-learn-decide<sub>NOT</sub> T)
 have clauses_{NOT} S = clauses_{NOT} T
   using cdcl_{NOT}-merged-bj-learn-decide<sub>NOT</sub>.hyps by auto
  moreover have
   (2 + card (atms-of-ms A)) \cap (1 + card (atms-of-ms A))
      -\mu_C (1 + card (atms-of-ms A)) (2 + card (atms-of-ms A)) (trail-weight T)
    <(2 + card (atms-of-ms A)) \cap (1 + card (atms-of-ms A))
      -\mu_C (1 + card (atms-of-ms A)) (2 + card (atms-of-ms A)) (trail-weight S)
   apply (rule dpll-bj-trail-mes-decreasing-prop)
   using cdcl_{NOT}-merged-bj-learn-decide<sub>NOT</sub> fin-A atm-clss atm-trail n-d inv
   by (simp-all\ add:\ bj-decide_{NOT}\ cdcl_{NOT}-merged-bj-learn-decide_{NOT}.hyps)
  ultimately show ?case
   unfolding \mu_{CDCL}'-merged-def \mu_{C}'-def by simp
 case (cdcl_{NOT}-merged-bj-learn-propagate<sub>NOT</sub> T)
 have clauses_{NOT} S = clauses_{NOT} T
   using cdcl_{NOT}-merged-bj-learn-propagate<sub>NOT</sub>.hyps
   by (simp\ add:\ bj\text{-}propagate_{NOT}\ inv\ dpll\text{-}bj\text{-}clauses)
  moreover have
   (2 + card (atms-of-ms A)) \cap (1 + card (atms-of-ms A))
      -\mu_C (1 + card (atms-of-ms A)) (2 + card (atms-of-ms A)) (trail-weight T)
    <(2 + card (atms-of-ms A)) ^ (1 + card (atms-of-ms A))
      -\mu_C (1 + card (atms-of-ms A)) (2 + card (atms-of-ms A)) (trail-weight S)
   apply (rule dpll-bj-trail-mes-decreasing-prop)
```

```
using inv n-d atm-clss atm-trail fin-A by (simp-all add: bj-propagate<sub>NOT</sub>
     cdcl_{NOT}-merged-bj-learn-propagate<sub>NOT</sub>.hyps)
 ultimately show ?case
   unfolding \mu_{CDCL}'-merged-def \mu_{C}'-def by simp
next
 case (cdcl_{NOT}-merged-bj-learn-forget_{NOT} T)
 have card (set-mset (clauses_{NOT} T)) < card (set-mset (clauses_{NOT} S))
   using \langle forget_{NOT} \ S \ T \rangle by (metis card-Diff1-less clauses-remove-cls_{NOT} finite-set-mset
     forget_{NOT}.cases\ linear\ set-mset-minus-replicate-mset(1)\ state-eq_{NOT}.def)
 moreover
   have trail\ S = trail\ T
     using \langle forget_{NOT} \ S \ T \rangle by (auto\ elim: forget_{NOT} E)
   then have
     (2 + card (atms-of-ms A)) \cap (1 + card (atms-of-ms A))
       -\mu_C (1 + card (atms-of-ms A)) (2 + card (atms-of-ms A)) (trail-weight T)
= (2 + card (atms-of-ms A)) \cap (1 + card (atms-of-ms A))
      -\mu_C (1 + card (atms-of-ms A)) (2 + card (atms-of-ms A)) (trail-weight S)
     by auto
 ultimately show ?case
   unfolding \mu_{CDCL}'-merged-def \mu_{C}'-def by simp
next
 case (cdcl_{NOT}-merged-bj-learn-backjump-l T) note bj-l = this(1)
 obtain C' L D where
   learn: learn S (add-cls_{NOT} D S) and
   bj: backjump (add-cls<sub>NOT</sub> D S) T and
   atms-C: atms-of (C' + \{\#L\#\}) \subseteq atms-of-mm (clauses_{NOT} S) \cup atm-of (lits-of-l (trail S)) and
   D: D = C' + \{\#L\#\}
   using bj-l inv backjump-l-learn-backjump [of S] n-d atm-clss atm-trail by blast
 have card-T-S: card (set-mset (clauses<sub>NOT</sub> T)) \leq 1 + card (set-mset (clauses<sub>NOT</sub> S))
   using bj-l inv by (force elim!: backjump-lE simp: card-insert-if)
 have
   ((2 + card (atms-of-ms A)) ^ (1 + card (atms-of-ms A))
     -\mu_C (1 + card (atms-of-ms A)) (2 + card (atms-of-ms A)) (trail-weight T))
   < ((2 + card (atms-of-ms A)) ^ (1 + card (atms-of-ms A))
     -\mu_C (1 + card (atms-of-ms A)) (2 + card (atms-of-ms A))
         (trail-weight\ (add-cls_{NOT}\ D\ S)))
   apply (rule dpll-bj-trail-mes-decreasing-prop)
       using bj bj-backjump apply blast
      using cdcl_{NOT}.c-learn cdcl_{NOT}-inv inv learn apply blast
      using atms-C atm-clss atm-trail D apply (simp add: n-d) apply fast
     using atm-trail n-d apply simp
    apply (simp add: n-d)
   using fin-A apply simp
   done
 then have ((2 + card (atms-of-ms A)) \cap (1 + card (atms-of-ms A))
     -\mu_C (1 + card (atms-of-ms A)) (2 + card (atms-of-ms A)) (trail-weight T))
   < ((2 + card (atms-of-ms A)) \cap (1 + card (atms-of-ms A))
     -\mu_C (1 + card (atms-of-ms A)) (2 + card (atms-of-ms A)) (trail-weight S))
   using n-d by auto
 then show ?case
   using card-T-S unfolding \mu_{CDCL}'-merged-def \mu_{C}'-def by linarith
lemma wf-cdcl_{NOT}-merged-bj-learn:
 assumes
   fin-A: finite A
```

```
shows wf \{(T, S).
   (inv\ S \land atms-of-mm\ (clauses_{NOT}\ S) \subseteq atms-of-ms\ A \land atm-of\ `itis-of-l\ (trail\ S) \subseteq atms-of-ms\ A
   \land no-dup (trail S))
   \land cdcl_{NOT}-merged-bj-learn S T
  apply (rule wfP-if-measure[of - - \mu_{CDCL}'-merged A])
  using cdcl_{NOT}-decreasing-measure' fin-A by simp
lemma tranclp-cdcl_{NOT}-cdcl_{NOT}-tranclp:
  assumes
    cdcl_{NOT}-merged-bj-learn^{++} S T and
    inv: inv S and
   atm-clss: atms-of-mm (clauses_{NOT} S) \subseteq atms-of-ms A and
   atm-trail: atm-of ' lits-of-l (trail\ S) \subseteq atms-of-ms\ A and
   n-d: no-dup (trail S) and
   fin-A[simp]: finite\ A
  shows (T, S) \in \{(T, S).
   (inv\ S \land atms\text{-}of\text{-}mm\ (clauses_{NOT}\ S) \subseteq atms\text{-}of\text{-}ms\ A \land atm\text{-}of\ `itis\text{-}of\text{-}l\ (trail\ S) \subseteq atms\text{-}of\text{-}ms\ A
   \land no-dup (trail S))
   \land \ cdcl_{NOT}-merged-bj-learn S \ T\}^+ \ (\mathbf{is} \ \text{-} \in \ ?P^+)
  using assms(1)
proof (induction rule: tranclp-induct)
  case base
  then show ?case using n-d atm-clss atm-trail inv by auto
next
  case (step T U) note st = this(1) and cdcl_{NOT} = this(2) and IH = this(3)
  have cdcl_{NOT}^{**} S T
   apply (rule rtranclp-cdcl_{NOT}-merged-bj-learn-is-rtranclp-cdcl_{NOT})
   using st cdcl_{NOT} inv n-d atm-clss atm-trail inv by auto
  have inv T
   apply (rule rtranclp-cdcl_{NOT}-merged-bj-learn-inv)
      using inv st cdcl_{NOT} n-d atm-clss atm-trail inv by auto
  moreover have atms-of-mm (clauses_{NOT} T) \subseteq atms-of-ms A
   using rtranclp-cdcl_{NOT}-trail-clauses-bound[OF \langle cdcl_{NOT}^{***} S T \rangle inv n-d atm-clss atm-trail]
   by fast
  moreover have atm\text{-}of ' (lits\text{-}of\text{-}l\ (trail\ T))\subseteq atms\text{-}of\text{-}ms\ A
   \mathbf{using}\ rtranclp\text{-}cdcl_{NOT}\text{-}trail\text{-}clauses\text{-}bound[OF\ \langle cdcl_{NOT}^{***}\ S\ T\rangle\ inv\ n\text{-}d\ atm\text{-}clss\ atm\text{-}trail]
  moreover have no-dup (trail T)
   using rtranclp-cdcl_{NOT}-no-dup[OF \langle cdcl_{NOT}^{**} S T \rangle inv n-d] by fast
  ultimately have (U, T) \in P
   using cdcl_{NOT} by auto
  then show ?case using IH by (simp add: trancl-into-trancl2)
qed
lemma wf-tranclp-cdcl_{NOT}-merged-bj-learn:
  assumes finite A
  shows wf \{ (T, S).
   (inv\ S \land atms\text{-}of\text{-}mm\ (clauses_{NOT}\ S) \subseteq atms\text{-}of\text{-}ms\ A \land atm\text{-}of\ `itis\text{-}of\text{-}l\ (trail\ S) \subseteq atms\text{-}of\text{-}ms\ A
   \land no-dup (trail S))
   \land cdcl_{NOT}-merged-bj-learn<sup>++</sup> S T}
  apply (rule wf-subset)
  apply (rule wf-trancl[OF wf-cdcl_{NOT}-merged-bj-learn])
  using assms apply simp
  using tranclp-cdcl_{NOT}-cdcl_{NOT}-tranclp[OF - - - - - \langle finite A \rangle] by auto
```

lemma backjump-no-step-backjump-l:

```
backjump \ S \ T \Longrightarrow inv \ S \Longrightarrow \neg no\text{-step backjump-l } S
  apply (elim \ backjumpE)
  apply (rule bj-merge-can-jump)
   apply auto[7]
  by blast
\mathbf{lemma}\ cdcl_{NOT}\text{-}merged\text{-}bj\text{-}learn\text{-}final\text{-}state\text{:}}
  fixes A :: 'v \ clause \ set \ and \ S \ T :: 'st
  assumes
    n-s: no-step cdcl_{NOT}-merged-bj-learn S and
   atms-S: atms-of-mm (clauses_{NOT} S) \subseteq atms-of-ms A and
   atms-trail: atm-of 'lits-of-l (trail S) \subseteq atms-of-ms A and
   n-d: no-dup (trail S) and
   finite A and
   inv: inv S and
    decomp: all-decomposition-implies-m (clauses_{NOT} S) (get-all-ann-decomposition (trail S))
  shows unsatisfiable (set-mset (clauses<sub>NOT</sub> S))
   \vee (trail S \models asm\ clauses_{NOT}\ S \land satisfiable\ (set\text{-mset}\ (clauses_{NOT}\ S)))
proof -
  let ?N = set\text{-}mset (clauses_{NOT} S)
 let ?M = trail S
  consider
     (sat) satisfiable ?N and ?M \models as ?N
    \mid (sat') \ satisfiable ?N \ \mathbf{and} \ \neg \ ?M \models as \ ?N
   | (unsat) unsatisfiable ?N
   by auto
  then show ?thesis
   proof cases
     case sat' note sat = this(1) and M = this(2)
     obtain C where C \in ?N and \neg ?M \models a C using M unfolding true-annots-def by auto
     obtain I :: 'v literal set where
       I \models s ?N  and
       cons: consistent-interp I and
       tot: total-over-m I ?N and
       atm-I-N: atm-of 'I \subseteq atms-of-ms ?N
       using sat unfolding satisfiable-def-min by auto
     let ?I = I \cup \{P \mid P. P \in lits\text{-}of\text{-}l ?M \land atm\text{-}of P \notin atm\text{-}of `I'\}
     let ?O = \{unmark\ L\ | L.\ is\text{-}decided\ L\ \land\ L\in set\ ?M\ \land\ atm\text{-}of\ (lit\text{-}of\ L)\notin atms\text{-}of\text{-}ms\ ?N\}
     have cons-I': consistent-interp ?I
       using cons using (no-dup ?M) unfolding consistent-interp-def
       by (auto simp add: atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set lits-of-def
         dest!: no-dup-cannot-not-lit-and-uminus)
     have tot-I': total-over-m ?I (?N \cup unmark-l ?M)
       using tot atms-of-s-def unfolding total-over-m-def total-over-set-def
       by (fastforce simp: image-iff)
     have \{P \mid P. P \in lits\text{-}of\text{-}l ? M \land atm\text{-}of P \notin atm\text{-}of `I\} \models s ? O
       using \langle I \models s ? N \rangle atm-I-N by (auto simp add: atm-of-eq-atm-of true-clss-def lits-of-def)
     then have I'-N: ?I \models s ?N \cup ?O
       using \langle I \models s ? N \rangle true-clss-union-increase by force
     have tot': total-over-m ?I (?N \cup ?O)
       using atm-I-N tot unfolding total-over-m-def total-over-set-def
       by (force simp: lits-of-def elim!: is-decided-ex-Decided)
     have atms-N-M: atms-of-ms ?N \subseteq atm-of ' lits-of-l ?M
       proof (rule ccontr)
         assume ¬ ?thesis
```

```
then obtain l :: 'v where
        l-N: l \in atms-of-ms ?N and
        l\text{-}M: l \notin atm\text{-}of ' lits\text{-}of\text{-}l ?M
        by auto
       have undefined-lit ?M (Pos l)
         using l-M by (metis Decided-Propagated-in-iff-in-lits-of-l
           atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set literal.sel(1))
       \mathbf{have}\ \mathit{decide}_{NOT}\ S\ (\mathit{prepend-trail}\ (\mathit{Decided}\ (\mathit{Pos}\ l))\ S)
        by (metis \ (undefined-lit \ ?M \ (Pos \ l)) \ decide_{NOT}.intros \ l-N \ literal.sel(1)
           state-eq_{NOT}-ref)
       then show False
         using cdcl_{NOT}-merged-bj-learn-decide<sub>NOT</sub> n-s by blast
    qed
  have ?M \models as CNot C
  apply (rule all-variables-defined-not-imply-cnot)
    using atms-N-M \ \langle C \in ?N \rangle \ \langle \neg ?M \models a \ C \rangle \ atms-of-atms-of-ms-mono[OF \ \langle C \in ?N \rangle]
    by (auto dest: atms-of-atms-of-ms-mono)
  have \exists l \in set ?M. is\text{-}decided l
    proof (rule ccontr)
       let ?O = \{unmark\ L\ | L.\ is-decided\ L \land L \in set\ ?M \land atm-of\ (lit-of\ L) \notin atms-of-ms\ ?N\}
       have \vartheta[iff]: \Lambda I. \ total-over-m \ I \ (?N \cup ?O \cup unmark-l ?M)
         \longleftrightarrow total\text{-}over\text{-}m\ I\ (?N\ \cup unmark\text{-}l\ ?M)
         unfolding total-over-set-def total-over-m-def atms-of-ms-def by blast
       assume ¬ ?thesis
       then have [simp]: \{unmark \ L \mid L. \ is\text{-}decided \ L \land L \in set \ ?M\}
= \{unmark\ L\ | L.\ is\text{-}decided\ L\ \land\ L \in set\ ?M\ \land\ atm\text{-}of\ (lit\text{-}of\ L) \notin atms\text{-}of\text{-}ms\ ?N\}
        by auto
       then have ?N \cup ?O \models ps \ unmark-l \ ?M
         using all-decomposition-implies-propagated-lits-are-implied [OF decomp] by auto
       then have ?I \models s \ unmark-l \ ?M
         using cons-I' I'-N tot-I' (?I \models s ?N \cup ?O) unfolding \vartheta true-clss-clss-def by blast
       then have lits-of-l?M \subseteq ?I
         unfolding true-clss-def lits-of-def by auto
       then have ?M \models as ?N
         using I'-N \lor C \in ?N \lor \neg ?M \models a C \lor cons-I' atms-N-M
        by (meson \ \langle trail \ S \models as \ CNot \ C \rangle \ consistent-CNot-not \ rev-subsetD \ sup-qe1 \ true-annot-def
           true-annots-def true-cls-mono-set-mset-l true-clss-def)
       then show False using M by fast
    qed
  from List.split-list-first-propE[OF\ this] obtain K:: 'v\ literal\ and\ d::\ unit\ and
     F F' :: ('v, unit) \ ann-lits \ \mathbf{where}
     M-K: ?M = F' @ Decided K # F and
     nm: \forall f \in set \ F'. \ \neg is\text{-}decided \ f
    unfolding is-decided-def by (metis (full-types) old.unit.exhaust)
  let ?K = Decided K::('v, unit) ann-lit
  have ?K \in set ?M
    unfolding M-K by auto
  let ?C = image\text{-}mset\ lit\text{-}of\ \{\#L \in \#mset\ ?M.\ is\text{-}decided\ L \land L \neq ?K\#\} :: 'v\ clause
  let ?C' = set\text{-mset} \ (image\text{-mset} \ (\lambda L::'v \ literal. \{\#L\#\}) \ (?C + unmark \ ?K))
  have ?N \cup \{unmark\ L\ | L.\ is\text{-}decided\ L \land L \in set\ ?M\} \models ps\ unmark\text{-}l\ ?M
     using all-decomposition-implies-propagated-lits-are-implied[OF decomp].
  moreover have C': ?C' = \{unmark \ L \mid L. \ is\text{-}decided \ L \land L \in set \ ?M\}
    unfolding M-K apply standard
       apply force
```

```
by auto
ultimately have N-C-M: ?N \cup ?C' \models ps \ unmark-l \ ?M
have N-M-False: ?N \cup (\lambda L. \ unmark \ L) ' (set \ ?M) \models ps \ \{\{\#\}\}\}
 using M \triangleleft ?M \models as \ CNot \ C \triangleleft \ \langle C \in ?N \rangle unfolding true-clss-clss-def true-annots-def Ball-def
 true-annot-def by (metis consistent-CNot-not sup.orderE sup-commute true-clss-def
   true-clss-singleton-lit-of-implies-incl true-clss-union true-clss-union-increase)
have undefined-lit F 	ext{ } K 	ext{ using } \langle no\text{-}dup \text{ } ?M \rangle \text{ } unfolding \text{ } M\text{-}K \text{ } by \text{ } (simp \text{ } add: \text{ } defined\text{-}lit\text{-}map)
moreover
 have ?N \cup ?C' \models ps \{\{\#\}\}\}
   proof -
     have A: ?N \cup ?C' \cup unmark-l ?M = ?N \cup unmark-l ?M
       unfolding M-K by auto
     show ?thesis
       using true-clss-clss-left-right[OF N-C-M, of {{#}}] N-M-False unfolding A by auto
   qed
 have ?N \models p \ image\text{-}mset \ uminus \ ?C + \{\#-K\#\}\
   unfolding true-clss-cls-def true-clss-cls-def total-over-m-def
   proof (intro allI impI)
     \mathbf{fix}\ I
     assume
       tot: total-over-set I (atms-of-ms (?N \cup \{image-mset\ uminus\ ?C+ \{\#-K\#\}\})) and
       cons: consistent-interp\ I and
       I \models s ?N
     have (K \in I \land -K \notin I) \lor (-K \in I \land K \notin I)
       using cons tot unfolding consistent-interp-def by (cases K) auto
      have \{a \in set \ (trail \ S). \ is\text{-}decided \ a \land a \neq Decided \ K\} =
      set\ (trail\ S)\cap \{L.\ is\ decided\ L\wedge L\neq Decided\ K\}
      by auto
      then have tot': total-over-set I
         (atm\text{-}of 'lit\text{-}of '(set ?M \cap \{L. is\text{-}decided L \land L \neq Decided K\}))
       using tot by (auto simp add: atms-of-uminus-lit-atm-of-lit-of)
      { \mathbf{fix} \ x :: ('v, unit) \ ann-lit}
       assume
          a3: lit-of x \notin I and
          a1: x \in set ?M and
          a4: is\text{-}decided \ x \ \mathbf{and}
          a5: x \neq Decided K
       then have Pos (atm\text{-}of\ (lit\text{-}of\ x)) \in I \lor Neg\ (atm\text{-}of\ (lit\text{-}of\ x)) \in I
         using a5 a4 tot' a1 unfolding total-over-set-def atms-of-s-def by blast
       moreover have f6: Neg (atm-of (lit-of x)) = - Pos (atm-of (lit-of x))
         by simp
       ultimately have - lit-of x \in I
          using f6 a3 by (metis (no-types) atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set
           literal.sel(1)
      } note H = this
     have \neg I \models s ?C'
       using \langle ?N \cup ?C' \models ps \{ \{ \# \} \} \rangle tot cons \langle I \models s ?N \rangle
       unfolding true-clss-clss-def total-over-m-def
       by (simp add: atms-of-uminus-lit-atm-of-lit-of atms-of-ms-single-image-atm-of-lit-of)
      then show I \models image\text{-mset uminus } ?C + \{\#-K\#\}
       unfolding true-clss-def true-cls-def Bex-def
       using \langle (K \in I \land -K \notin I) \lor (-K \in I \land K \notin I) \rangle
       by (auto dest!: H)
```

```
qed
     moreover have F \models as \ CNot \ (image-mset \ uminus \ ?C)
       using nm unfolding true-annots-def CNot-def M-K by (auto simp add: lits-of-def)
     ultimately have False
       using bj-merge-can-jump[of S F' K F C - K
         image-mset\ uminus\ (image-mset\ lit-of\ \{\#\ L:\#\ mset\ ?M.\ is-decided\ L\land L\ne Decided\ K\#\}\}
         \langle C \in ?N \rangle n-s \langle ?M \models as \ CNot \ C \rangle bj-backjump inv unfolding M-K
         \mathbf{by}\ (\mathit{auto}\ \mathit{simp}:\ \mathit{cdcl}_{NOT}\text{-}\mathit{merged-bj-learn}.\mathit{simps})
       then show ?thesis by fast
   qed auto
\mathbf{qed}
lemma full-cdcl_{NOT}-merged-bj-learn-final-state:
 fixes A :: 'v \ clause \ set \ and \ S \ T :: 'st
 assumes
   full: full cdcl_{NOT}-merged-bj-learn S T and
   atms-S: atms-of-mm (clauses_{NOT} S) \subseteq atms-of-ms A and
   atms-trail: atm-of ' lits-of-l (trail S) \subseteq atms-of-ms A and
   n-d: no-dup (trail S) and
   finite A and
   inv: inv S and
   decomp: all-decomposition-implies-m (clauses<sub>NOT</sub> S) (get-all-ann-decomposition (trail S))
 shows unsatisfiable (set-mset (clauses<sub>NOT</sub> T))
   \lor (trail \ T \models asm \ clauses_{NOT} \ T \land satisfiable (set-mset \ (clauses_{NOT} \ T)))
proof -
  have st: cdcl_{NOT}-merged-bj-learn** S T and n-s: no-step cdcl_{NOT}-merged-bj-learn T
   using full unfolding full-def by blast+
  then have st: cdcl_{NOT}^{**} S T
   using inv rtranclp-cdcl_{NOT}-merged-bj-learn-is-rtranclp-cdcl_{NOT}-and-inv n-d by auto
 have atms-of-mm (clauses_{NOT} T) \subseteq atms-of-ms A and atm-of 'lits-of-l (trail T) \subseteq atms-of-ms A
   using rtranclp-cdcl<sub>NOT</sub>-trail-clauses-bound[OF st inv n-d atms-S atms-trail] by blast+
 moreover have no-dup (trail\ T)
   using rtranclp-cdcl_{NOT}-no-dup inv n-d st by blast
 moreover have inv T
   using rtranclp-cdcl_{NOT}-inv inv st by blast
  moreover have all-decomposition-implies-m (clauses<sub>NOT</sub> T) (get-all-ann-decomposition (trail T))
   using rtranclp-cdcl_{NOT}-all-decomposition-implies inv st decomp n-d by blast
  ultimately show ?thesis
   using cdcl_{NOT}-merged-bj-learn-final-state[of T A] \langle finite \ A \rangle n-s by fast
qed
```

 \mathbf{end}

1.2.7 Instantiations

In this section, we instantiate the previous locales to ensure that the assumption are not contradictory.

```
locale cdcl_{NOT}-with-backtrack-and-restarts = conflict-driven-clause-learning-learning-before-backjump-only-distinct-learnt trail clauses_{NOT} prepend-trail tl-trail add-cls_{NOT} remove-cls_{NOT} inv backjump-conds propagate-conds learn-restrictions forget-restrictions for trail :: 'st \Rightarrow ('v, unit) \ ann-lits and clauses_{NOT} :: 'st \Rightarrow 'v \ clauses \ and prepend-trail :: ('v, unit) \ ann-lit \Rightarrow 'st \Rightarrow 'st and
```

```
tl-trail :: 'st \Rightarrow 'st and
    add\text{-}cls_{NOT} :: 'v \ clause \Rightarrow 'st \Rightarrow 'st \ \mathbf{and}
    remove\text{-}cls_{NOT} :: 'v \ clause \Rightarrow 'st \Rightarrow 'st \ \text{and}
    inv :: 'st \Rightarrow bool  and
    backjump\text{-}conds :: 'v \ clause \Rightarrow 'v \ clause \Rightarrow 'v \ literal \Rightarrow 'st \Rightarrow 'st \Rightarrow bool \ \mathbf{and}
    propagate\text{-}conds:: ('v, unit) \ ann\text{-}lit \Rightarrow 'st \Rightarrow bool \ and
    learn-restrictions forget-restrictions :: 'v clause \Rightarrow 'st \Rightarrow bool
    +
  fixes f :: nat \Rightarrow nat
  assumes
    unbounded: unbounded f and f-ge-1: \bigwedge n. n \geq 1 \Longrightarrow f n \geq 1 and
    inv\text{-restart:} \land S \ T. \ inv \ S \Longrightarrow \ T \sim reduce\text{-trail-to}_{NOT} \ ([]::'a \ list) \ S \Longrightarrow inv \ T
begin
lemma bound-inv-inv:
 assumes
    inv S and
    n-d: no-dup (trail S) and
    atms-clss-S-A: atms-of-mm (clauses_{NOT} S) \subseteq atms-of-ms A and
    atms-trail-S-A:atm-of ' lits-of-l (trail S) \subseteq atms-of-ms A and
    finite A and
    cdcl_{NOT}: cdcl_{NOT} S T
  shows
    atms-of-mm (clauses_{NOT} \ T) \subseteq atms-of-ms A and
    atm\text{-}of ' lits\text{-}of\text{-}l (trail T) \subseteq atms\text{-}of\text{-}ms A and
    finite A
proof -
  have cdcl_{NOT} S T
    using \langle inv S \rangle cdcl_{NOT} by linarith
  then have atms-of-mm (clauses_{NOT}\ T) \subseteq atms-of-mm (clauses_{NOT}\ S) \cup atm-of 'lits-of-l (trail\ S)
    using \langle inv S \rangle
    by (meson conflict-driven-clause-learning-ops.cdcl_{NOT}-atms-of-ms-clauses-decreasing
      conflict-driven-clause-learning-ops-axioms n-d)
  then show atms-of-mm (clauses<sub>NOT</sub> T) \subseteq atms-of-ms A
    using atms-clss-S-A atms-trail-S-A by blast
next
  show atm-of ' lits-of-l (trail\ T) \subseteq atms-of-ms\ A
    by (meson (inv S) atms-clss-S-A atms-trail-S-A cdcl_{NOT} cdcl_{NOT}-atms-in-trail-in-set n-d)
next
  show finite A
    using \langle finite \ A \rangle by simp
qed
sublocale cdcl_{NOT}-increasing-restarts-ops \lambda S T. T \sim reduce-trail-to<sub>NOT</sub> ([]::'a list) S cdcl_{NOT} f
 \lambda A\ S.\ atms-of-mm\ (clauses_{NOT}\ S)\subseteq atms-of-ms\ A\ \land\ atm-of\ ``lits-of-l\ (trail\ S)\subseteq atms-of-ms\ A\ \land\ 
 finite A
 \mu_{CDCL}' \lambda S. inv S \wedge no-dup (trail S)
 \mu_{CDCL}'-bound
 apply unfold-locales
           apply (simp add: unbounded)
          using f-ge-1 apply force
         using bound-inv-inv apply meson
        apply (rule cdcl_{NOT}-decreasing-measure'; simp)
        apply (rule rtranclp-cdcl<sub>NOT</sub>-\mu_{CDCL}'-bound; simp)
       apply (rule rtranclp-\mu_{CDCL}'-bound-decreasing; simp)
      apply auto[]
```

```
apply auto[]
  using cdcl_{NOT}-inv cdcl_{NOT}-no-dup apply blast
  using inv-restart apply auto[]
  done
lemma cdcl_{NOT}-with-restart-\mu_{CDCL}'-le-\mu_{CDCL}'-bound:
    cdcl_{NOT}: cdcl_{NOT}-restart (T, a) (V, b) and
    cdcl_{NOT}-inv:
     inv T
     no-dup (trail T) and
   bound-inv:
     atms-of-mm (clauses_{NOT} \ T) \subseteq atms-of-ms A
     atm\text{-}of ' lits\text{-}of\text{-}l (trail\ T) \subseteq atms\text{-}of\text{-}ms\ A
     finite A
  shows \mu_{CDCL}' A V \leq \mu_{CDCL}'-bound A T
  using cdcl_{NOT}-inv bound-inv
proof (induction rule: cdcl_{NOT}-with-restart-induct[OF cdcl_{NOT}])
  case (1 m S T n U) note U = this(3)
  show ?case
   apply (rule rtranclp-cdcl<sub>NOT</sub>-\mu_{CDCL}'-bound-reduce-trail-to<sub>NOT</sub>[of S T])
        using \langle (cdcl_{NOT} \ \widehat{} \ m) \ S \ T \rangle apply (fastforce dest!: relpowp-imp-rtranclp)
       using 1 by auto
next
  case (2 S T n) note full = this(2)
 show ?case
   apply (rule rtranclp-cdcl_{NOT}-\mu_{CDCL}'-bound)
   using full 2 unfolding full1-def by force+
lemma cdcl_{NOT}-with-restart-\mu_{CDCL}'-bound-le-\mu_{CDCL}'-bound:
 assumes
    cdcl_{NOT}: cdcl_{NOT}-restart (T, a) (V, b) and
    cdcl_{NOT}-inv:
     inv T
     no-dup (trail T) and
    bound-inv:
     atms-of-mm (clauses_{NOT} \ T) \subseteq atms-of-ms A
     atm\text{-}of ' lits\text{-}of\text{-}l (trail\ T) \subseteq\ atms\text{-}of\text{-}ms\ A
     finite A
  shows \mu_{CDCL}'-bound A \ V \leq \mu_{CDCL}'-bound A \ T
  using cdcl_{NOT}-inv bound-inv
\mathbf{proof}\ (\mathit{induction}\ \mathit{rule}\colon \mathit{cdcl}_{NOT}\text{-}\mathit{with-restart-induct}[\mathit{OF}\ \mathit{cdcl}_{NOT}])
  case (1 m S T n U) note U = this(3)
 have \mu_{CDCL}'-bound A T \leq \mu_{CDCL}'-bound A S
    apply (rule rtranclp-\mu_{CDCL}'-bound-decreasing)
        using \langle (cdcl_{NOT} \ \widehat{} \ m) \ S \ T \rangle apply (fastforce dest: relpowp-imp-rtranclp)
       using 1 by auto
  then show ?case using U unfolding \mu_{CDCL}'-bound-def by auto
  case (2 S T n) note full = this(2)
 show ?case
   apply (rule rtranclp-\mu_{CDCL}'-bound-decreasing)
   using full 2 unfolding full1-def by force+
qed
```

```
sublocale cdcl_{NOT}-increasing-restarts - - - - -
   \lambda S \ T. \ T \sim reduce-trail-to_{NOT} \ ([]::'a \ list) \ S
  \lambda A \ S. \ atms-of-mm \ (clauses_{NOT} \ S) \subseteq atms-of-ms \ A
    \land atm-of 'lits-of-l (trail S) \subseteq atms-of-ms A \land finite A
  \mu_{CDCL}' \ cdcl_{NOT}
   \lambda S. inv S \wedge no\text{-}dup (trail S)
  \mu_{CDCL}'-bound
 apply unfold-locales
  using cdcl_{NOT}-with-restart-\mu_{CDCL}'-le-\mu_{CDCL}'-bound apply simp
 using cdcl_{NOT}-with-restart-\mu_{CDCL}'-bound-le-\mu_{CDCL}'-bound apply simp
 done
lemma cdcl_{NOT}-restart-all-decomposition-implies:
 assumes cdcl_{NOT}-restart S T and
   inv (fst S) and
   no-dup (trail (fst S))
   all-decomposition-implies-m (clauses<sub>NOT</sub> (fst S)) (get-all-ann-decomposition (trail (fst S)))
 shows
    all-decomposition-implies-m (clauses<sub>NOT</sub> (fst T)) (get-all-ann-decomposition (trail (fst T)))
  using assms apply (induction)
  using rtranclp-cdcl_{NOT}-all-decomposition-implies by (auto dest!: tranclp-into-rtranclp
   simp: full1-def)
lemma rtranclp-cdcl_{NOT}-restart-all-decomposition-implies:
 assumes cdcl_{NOT}-restart** S T and
   inv: inv (fst S) and
   n-d: no-dup (trail (fst S)) and
   decomp:
     all-decomposition-implies-m (clauses<sub>NOT</sub> (fst S)) (get-all-ann-decomposition (trail (fst S)))
 shows
   all\text{-}decomposition\text{-}implies\text{-}m\ (clauses_{NOT}\ (\textit{fst}\ T))\ (\textit{get-all-ann-decomposition}\ (\textit{trail}\ (\textit{fst}\ T)))
 using assms(1)
proof (induction rule: rtranclp-induct)
 {f case}\ base
 then show ?case using decomp by simp
 case (step T u) note st = this(1) and r = this(2) and IH = this(3)
 have inv (fst T)
   using rtranclp-cdcl_{NOT}-with-restart-cdcl<sub>NOT</sub>-inv[OF st] inv n-d by blast
 moreover have no-dup (trail (fst T))
   using rtranclp-cdcl_{NOT}-with-restart-cdcl_{NOT}-inv[OF\ st] inv n-d by blast
  ultimately show ?case
   using cdcl_{NOT}-restart-all-decomposition-implies r IH n-d by fast
qed
lemma cdcl_{NOT}-restart-sat-ext-iff:
 assumes
   st: cdcl_{NOT}-restart S T and
   n-d: no-dup (trail (fst S)) and
   inv: inv (fst S)
 shows I \models sextm\ clauses_{NOT}\ (fst\ S) \longleftrightarrow I \models sextm\ clauses_{NOT}\ (fst\ T)
 using assms
proof (induction)
 case (restart-step m S T n U)
 then show ?case
```

```
using rtranclp-cdcl_{NOT}-bj-sat-ext-iff n-d by (fastforce dest!: relpowp-imp-rtranclp)
next
  case restart-full
  then show ?case using rtranclp-cdcl_{NOT}-bj-sat-ext-iff unfolding full1-def
 by (fastforce dest!: tranclp-into-rtranclp)
qed
lemma rtranclp-cdcl_{NOT}-restart-sat-ext-iff:
  fixes S T :: 'st \times nat
  assumes
   st: cdcl_{NOT}\text{-}restart^{**} \ S \ T \ \mathbf{and}
   n-d: no-dup (trail (fst S)) and
   inv: inv (fst S)
  shows I \models sextm\ clauses_{NOT}\ (fst\ S) \longleftrightarrow I \models sextm\ clauses_{NOT}\ (fst\ T)
  using st
proof (induction)
  case base
  then show ?case by simp
next
  case (step T U) note st = this(1) and r = this(2) and IH = this(3)
 have inv (fst T)
   using rtranclp-cdcl_{NOT}-with-restart-cdcl<sub>NOT</sub>-inv[OF st] inv n-d by blast+
  moreover have no-dup (trail\ (fst\ T))
   \mathbf{using} \ \mathit{rtranclp-cdcl}_{NOT}\text{-}\mathit{with-restart-cdcl}_{NOT}\text{-}\mathit{inv} \ \mathit{rtranclp-cdcl}_{NOT}\text{-}\mathit{no-dup} \ \mathit{st} \ \mathit{inv} \ \mathit{n-d} \ \mathbf{by} \ \mathit{blast}
  ultimately show ?case
   using cdcl_{NOT}-restart-sat-ext-iff[OF r] IH by blast
qed
theorem full-cdcl_{NOT}-restart-backjump-final-state:
  fixes A :: 'v \ clause \ set \ and \ S \ T :: 'st
  assumes
   full: full cdcl_{NOT}-restart (S, n) (T, m) and
   atms-S: atms-of-mm (clauses_{NOT} S) \subseteq atms-of-ms A and
   atms-trail: atm-of ' lits-of-l (trail S) \subseteq atms-of-ms A and
   n-d: no-dup (trail S) and
   fin-A[simp]: finite A and
   inv: inv S and
    decomp: all-decomposition-implies-m \ (clauses_{NOT} \ S) \ (get-all-ann-decomposition \ (trail \ S))
  shows unsatisfiable (set-mset (clauses<sub>NOT</sub> S))
    \lor (lits - of - l \ (trail \ T) \models sextm \ clauses_{NOT} \ S \land satisfiable \ (set-mset \ (clauses_{NOT} \ S)))
proof -
  have st: cdcl_{NOT}\text{-}restart^{**} (S, n) (T, m) and
    n-s: no-step cdcl_{NOT}-restart (T, m)
   using full unfolding full-def by fast+
  have binv-T: atms-of-mm (clauses<sub>NOT</sub> T) \subseteq atms-of-ms A
    atm\text{-}of ' lits\text{-}of\text{-}l (trail\ T) \subseteq atms\text{-}of\text{-}ms\ A
   using rtranclp-cdcl_{NOT}-with-restart-bound-inv[OF st, of A] inv n-d atms-S atms-trail
  moreover have inv-T: no-dup (trail T) inv T
   using rtranclp-cdcl_{NOT}-with-restart-cdcl<sub>NOT</sub>-inv[OF st] inv n-d by auto
  moreover have all-decomposition-implies-m (clauses<sub>NOT</sub> T) (get-all-ann-decomposition (trail T))
   using rtranclp-cdcl_{NOT}-restart-all-decomposition-implies [OF st] inv n-d
    decomp by auto
  ultimately have T: unsatisfiable (set-mset (clauses<sub>NOT</sub> T))
   \vee (trail T \models asm\ clauses_{NOT}\ T \land satisfiable\ (set\text{-mset}\ (clauses_{NOT}\ T)))
   using no-step-cdcl<sub>NOT</sub>-restart-no-step-cdcl<sub>NOT</sub>[of (T, m) A] n-s
```

```
cdcl_{NOT}-final-state[of T A] unfolding cdcl_{NOT}-NOT-all-inv-def by auto
  have eq-sat-S-T:\bigwedge I. I \models sextm\ clauses_{NOT}\ S \longleftrightarrow I \models sextm\ clauses_{NOT}\ T
    using rtranclp-cdcl_{NOT}-restart-sat-ext-iff [OF st] inv n-d atms-S
        atms-trail by auto
  have cons-T: consistent-interp (lits-of-l (trail T))
    using inv-T(1) distinct-consistent-interp by blast
  consider
      (unsat) unsatisfiable (set-mset (clauses_{NOT} T))
    (sat) trail T \models asm clauses_{NOT} T  and satisfiable (set-mset (clauses_{NOT} T))
    using T by blast
  then show ?thesis
    proof cases
      case unsat
      then have unsatisfiable (set-mset (clauses<sub>NOT</sub> S))
        using eq-sat-S-T consistent-true-clss-ext-satisfiable true-clss-imp-true-cls-ext
        unfolding satisfiable-def by blast
      then show ?thesis by fast
    next
      case sat
      then have lits-of-l (trail T) \models sextm clauses<sub>NOT</sub> S
        using rtranclp-cdcl_{NOT}-restart-sat-ext-iff[OF st] inv n-d atms-S
        atms-trail by (auto simp: true-clss-imp-true-cls-ext true-annots-true-cls)
      moreover then have satisfiable (set-mset (clauses<sub>NOT</sub> S))
          using cons-T consistent-true-clss-ext-satisfiable by blast
      ultimately show ?thesis by blast
    ged
qed
end — end of cdcl_{NOT}-with-backtrack-and-restarts locale
The restart does only reset the trail, contrary to Weidenbach's version where forget and restart
are always combined. But there is a forget rule.
\mathbf{locale}\ cdcl_{NOT}-merge-bj-learn-with-backtrack-restarts =
  cdcl_{NOT}-merge-bj-learn trail clauses_{NOT} prepend-trail tl-trail add-cls_{NOT} remove-cls_{NOT}
    \lambda C C' L' S T. distinct-mset (C' + \{\#L'\#\}) \wedge backjump-l-cond C C' L' S T
    propagate-conds forget-conds inv
  for
    trail :: 'st \Rightarrow ('v, unit) \ ann-lits \ \mathbf{and}
    clauses_{NOT} :: 'st \Rightarrow 'v \ clauses \ and
    prepend-trail :: ('v, unit) \ ann-lit \Rightarrow 'st \Rightarrow 'st \ \mathbf{and}
    tl-trail :: 'st \Rightarrow 'st and
    add\text{-}cls_{NOT} :: 'v clause \Rightarrow 'st \Rightarrow 'st and
    remove\text{-}cls_{NOT} :: 'v \ clause \Rightarrow 'st \Rightarrow 'st \ \text{and}
    propagate\text{-}conds:: ('v, unit) \ ann\text{-}lit \Rightarrow 'st \Rightarrow bool \ \mathbf{and}
    inv :: 'st \Rightarrow bool and
    forget\text{-}conds :: 'v \ clause \Rightarrow 'st \Rightarrow bool \ \mathbf{and}
    backjump-l-cond :: 'v clause \Rightarrow 'v clause \Rightarrow 'v literal \Rightarrow 'st \Rightarrow 'st \Rightarrow bool
    +
  fixes f :: nat \Rightarrow nat
  assumes
    unbounded: unbounded f and f-ge-1: \bigwedge n. n \geq 1 \Longrightarrow f n \geq 1 and
    inv\text{-}restart: \bigwedge S \ T. \ inv \ S \Longrightarrow \ T \sim reduce\text{-}trail\text{-}to_{NOT} \ [] \ S \Longrightarrow inv \ T
begin
definition not-simplified-cls A = \{ \#C \in \#A. \ tautology \ C \lor \neg distinct-mset \ C\# \}
lemma simple-clss-or-not-simplified-cls:
```

```
assumes atms-of-mm (clauses_{NOT} S) \subseteq atms-of-ms A and
   x \in \# clauses_{NOT} S and finite A
 shows x \in simple-clss (atms-of-ms A) \lor x \in \# not-simplified-cls (clauses_{NOT} S)
proof -
  consider
     (simpl) \neg tautology x  and distinct-mset x
     (n\text{-}simp) tautology x \vee \neg distinct\text{-}mset\ x
   by auto
  then show ?thesis
   proof cases
     case simpl
     then have x \in simple\text{-}clss (atms\text{-}of\text{-}ms A)
       by (meson assms atms-of-atms-of-ms-mono atms-of-ms-finite simple-clss-mono
         distinct-mset-not-tautology-implies-in-simple-clss finite-subset
         subsetCE)
     then show ?thesis by blast
   next
     case n-simp
     then have x \in \# not-simplified-cls (clauses<sub>NOT</sub> S)
       using \langle x \in \# \ clauses_{NOT} \ S \rangle unfolding not-simplified-cls-def by auto
     then show ?thesis by blast
   qed
qed
lemma cdcl_{NOT}-merged-bj-learn-clauses-bound:
 assumes
   cdcl_{NOT}-merged-bj-learn S T and
   inv: inv S and
   atms-clss: atms-of-mm (clauses_{NOT} S) \subseteq atms-of-ms A and
   atms-trail: atm-of '(lits-of-l (trail S)) \subseteq atms-of-ms A and
   n-d: no-dup (trail S) and
   fin-A[simp]: finite A
  shows set-mset (clauses<sub>NOT</sub> T) \subseteq set-mset (not-simplified-cls (clauses<sub>NOT</sub> S))
   \cup simple-clss (atms-of-ms A)
 using assms
proof (induction rule: cdcl_{NOT}-merged-bj-learn.induct)
 case cdcl_{NOT}-merged-bj-learn-decide_{NOT}
  then show ?case using dpll-bj-clauses by (force dest!: simple-clss-or-not-simplified-cls)
next
  case cdcl_{NOT}-merged-bj-learn-propagate<sub>NOT</sub>
 then show ?case using dpll-bj-clauses by (force dest!: simple-clss-or-not-simplified-cls)
next
  case cdcl_{NOT}-merged-bj-learn-forget<sub>NOT</sub>
  then show ?case using clauses-remove-cls<sub>NOT</sub> unfolding state-eq<sub>NOT</sub>-def
   by (force elim!: forget_{NOT}E dest: simple-clss-or-not-simplified-cls)
 case (cdcl_{NOT}-merged-bj-learn-backjump-l T) note bj = this(1) and inv = this(2) and
   atms-clss = this(3) and atms-trail = this(4) and n-d = this(5)
 have cdcl_{NOT}^{**} S T
   apply (rule rtranclp-cdcl_{NOT}-merged-bj-learn-is-rtranclp-cdcl_{NOT})
   using bj inv cdcl_{NOT}-merged-bj-learn.simps n-d by blast+
 have atm\text{-}of '(lits\text{-}of\text{-}l (trail T)) \subseteq atms\text{-}of\text{-}ms A
   \mathbf{using} \ \mathit{rtranclp-cdcl}_{NOT}\text{-}\mathit{trail-clauses-bound}[\mathit{OF} \ \langle \mathit{cdcl}_{NOT}^{**} \ S \ T \rangle] \ \mathit{inv} \ \mathit{atms-trail} \ \mathit{atms-clss}
   n-d by auto
 have atms-of-mm (clauses_{NOT} \ T) \subseteq atms-of-ms A
```

```
using rtranclp-cdcl_{NOT}-trail-clauses-bound[OF \langle cdcl_{NOT}^{**} \rangle S T\rangle inv n-d atms-clss atms-trail]
   by fast
  moreover have no-dup (trail T)
   using rtranclp-cdcl_{NOT}-no-dup[OF \langle cdcl_{NOT}^{**} S T \rangle inv n-d] by fast
  obtain F' K F L l C' C D where
    tr-S: trail S = F' @ Decided K # F and
    T: T \sim prepend-trail \ (Propagated \ L \ l) \ (reduce-trail-to_{NOT} \ F \ (add-cls_{NOT} \ D \ S)) and
    C \in \# clauses_{NOT} S and
    trail S \models as CNot C  and
    undef: undefined-lit FL and
   clauses_{NOT} S \models pm C' + \{\#L\#\}  and
    F \models as \ CNot \ C' and
    D: D = C' + \{\#L\#\} \text{ and }
    dist: distinct-mset (C' + \{\#L\#\}) and
   tauto: \neg tautology (C' + \{\#L\#\}) and
   backjump-l-cond C C' L S T
   using \langle backjump-l | S | T \rangle apply (elim \ backjump-lE) by auto
  have atms-of C' \subseteq atm-of ' (lits-of-l F)
   \mathbf{using} \ \langle F \models as \ CNot \ C' \rangle \ \mathbf{by} \ (simp \ add: \ atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set
      atms-of-def image-subset-iff in-CNot-implies-uminus(2))
  then have atms-of (C'+\{\#L\#\}) \subseteq atms-of-ms A
    using T \land atm\text{-}of \land lits\text{-}of\text{-}l \ (trail \ T) \subseteq atms\text{-}of\text{-}ms \ A \land tr\text{-}S \ undef \ n\text{-}d \ \mathbf{by} \ auto
  then have simple-clss (atms-of (C' + \{\#L\#\})) \subseteq simple-clss (atms-of-ms A)
   apply - by (rule simple-clss-mono) (simp-all)
  then have C' + \{\#L\#\} \in simple\text{-}clss (atms\text{-}of\text{-}ms A)
   using distinct-mset-not-tautology-implies-in-simple-clss[OF dist tauto]
   by auto
  then show ?case
   using T inv atms-clss undef tr-S n-d D by (force dest!: simple-clss-or-not-simplified-cls)
qed
lemma cdcl_{NOT}-merged-bj-learn-not-simplified-decreasing:
  assumes cdcl_{NOT}-merged-bj-learn S T
  shows not-simplified-cls (clauses<sub>NOT</sub> T) \subseteq \# not-simplified-cls (clauses<sub>NOT</sub> S)
  using assms apply induction
  prefer 4
  unfolding not-simplified-cls-def apply (auto elim!: backjump-lE forget<sub>NOT</sub>E)[3]
  by (elim backjump-lE) auto
lemma rtranclp-cdcl_{NOT}-merged-bj-learn-not-simplified-decreasing:
  assumes cdcl_{NOT}-merged-bj-learn** S T
  shows not-simplified-cls (clauses<sub>NOT</sub> T) \subseteq \# not-simplified-cls (clauses<sub>NOT</sub> S)
  using assms apply induction
   apply simp
  by (drule\ cdcl_{NOT}\text{-}merged\text{-}bj\text{-}learn\text{-}not\text{-}simplified\text{-}decreasing})\ auto
lemma rtranclp-cdcl_{NOT}-merged-bj-learn-clauses-bound:
  assumes
    cdcl_{NOT}-merged-bj-learn** S T and
    inv S and
    atms-of-mm (clauses_{NOT} S) \subseteq atms-of-ms A and
    atm-of '(lits-of-l (trail S)) \subseteq atms-of-ms A and
   n-d: no-dup (trail S) and
   finite[simp]: finite A
```

```
shows set-mset (clauses<sub>NOT</sub> T) \subseteq set-mset (not-simplified-cls (clauses<sub>NOT</sub> S))
   \cup simple-clss (atms-of-ms A)
  using assms(1-5)
proof induction
  case base
  then show ?case by (auto dest!: simple-clss-or-not-simplified-cls)
next
  case (step T U) note st = this(1) and cdel_{NOT} = this(2) and IH = this(3)[OF\ this(4-7)] and
    inv = this(4) and atms-clss-S = this(5) and atms-trail-S = this(6) and finite-cls-S = this(7)
  have st': cdcl_{NOT}^{**} S T
   using inv rtranclp-cdcl_{NOT}-merged-bj-learn-is-rtranclp-cdcl_{NOT}-and-inv st n-d by blast
  have inv T
   using inv rtranclp-cdcl_{NOT}-merged-bj-learn-inv st n-d by blast
 moreover
   have atms-of-mm (clauses_{NOT} \ T) \subseteq atms-of-ms A and
     atm\text{-}of ' lits\text{-}of\text{-}l (trail T) \subseteq atms\text{-}of\text{-}ms A
     using rtranclp-cdcl<sub>NOT</sub>-trail-clauses-bound[OF st'] inv atms-clss-S atms-trail-S n-d
  moreover moreover have no-dup (trail T)
    using rtranclp-cdcl_{NOT}-no-dup[OF \langle cdcl_{NOT}^{**} S T \rangle inv n-d] by fast
  ultimately have set-mset (clauses_{NOT} U)
    \subseteq set-mset (not-simplified-cls (clauses<sub>NOT</sub> T)) \cup simple-clss (atms-of-ms A)
   using cdcl_{NOT} finite cdcl_{NOT}-merged-bj-learn-clauses-bound
   \mathbf{by}\ (\mathit{auto\ intro!}:\ \mathit{cdcl}_{NOT}\text{-}\mathit{merged-bj-learn-clauses-bound})
  moreover have set-mset (not-simplified-cls (clauses<sub>NOT</sub> T))
    \subseteq set-mset (not-simplified-cls (clauses<sub>NOT</sub> S))
   using rtranclp-cdcl_{NOT}-merged-bj-learn-not-simplified-decreasing [OF\ st] by auto
  ultimately show ?case using IH inv atms-clss-S
   by (auto dest!: simple-clss-or-not-simplified-cls)
qed
abbreviation \mu_{CDCL}'-bound where
\mu_{CDCL}'-bound A T \equiv ((2+card (atms-of-ms A))) \cap (1+card (atms-of-ms A))) * 2
     + card (set\text{-}mset (not\text{-}simplified\text{-}cls(clauses_{NOT} T)))
    + 3 \hat{} card (atms-of-ms A)
lemma rtranclp-cdcl_{NOT}-merged-bj-learn-clauses-bound-card:
  assumes
    cdcl_{NOT}-merged-bj-learn** S T and
    inv S and
   atms-of-mm (clauses_{NOT} S) \subseteq atms-of-ms A and
   atm\text{-}of \ (lits\text{-}of\text{-}l \ (trail \ S)) \subseteq atms\text{-}of\text{-}ms \ A \ \mathbf{and}
   n-d: no-dup (trail S) and
   finite: finite A
  shows \mu_{CDCL}'-merged A T \leq \mu_{CDCL}'-bound A S
proof -
  have set-mset (clauses<sub>NOT</sub> T) \subseteq set-mset (not-simplified-cls(clauses<sub>NOT</sub> S))
   \cup simple-clss (atms-of-ms A)
   using rtranclp-cdcl_{NOT}-merged-bj-learn-clauses-bound [OF assms].
  moreover have card (set-mset (not-simplified-cls(clauses<sub>NOT</sub> S))
     \cup simple-clss (atms-of-ms A))
    \leq card \ (set\text{-}mset \ (not\text{-}simplified\text{-}cls(clauses_{NOT} \ S))) + 3 \ \hat{} \ card \ (atms\text{-}of\text{-}ms \ A)
   by (meson Nat.le-trans atms-of-ms-finite simple-clss-card card-Un-le finite
     nat-add-left-cancel-le)
  ultimately have card (set-mset (clauses_{NOT} T))
    \leq card \ (set\text{-}mset \ (not\text{-}simplified\text{-}cls(clauses_{NOT} \ S))) + 3 \ \widehat{} \ card \ (atms\text{-}of\text{-}ms \ A)
```

```
by (meson Nat.le-trans atms-of-ms-finite simple-clss-finite card-mono
     finite-UnI finite-set-mset local.finite)
  moreover have ((2 + card (atms-of-ms A)) \cap (1 + card (atms-of-ms A)) - \mu_C' A T) * 2
   \leq (2 + card (atms-of-ms A)) \cap (1 + card (atms-of-ms A)) * 2
   by auto
  ultimately show ?thesis unfolding \mu_{CDCL}'-merged-def by auto
qed
sublocale cdcl_{NOT}-increasing-restarts-ops \lambda S T. T \sim reduce-trail-to<sub>NOT</sub> ([]::'a list) S
  cdcl_{NOT}-merged-bj-learn f
  \lambda A \ S. \ atms-of-mm \ (clauses_{NOT} \ S) \subseteq atms-of-ms \ A
    \land atm-of 'lits-of-l (trail S) \subseteq atms-of-ms A \land finite A
  \mu_{CDCL}'-merged
   \lambda S. inv S \wedge no\text{-}dup (trail S)
  \mu_{CDCL}'-bound
  apply unfold-locales
            using unbounded apply simp
           using f-qe-1 apply force
          \mathbf{apply}\ (\mathit{blast}\ \mathit{dest}!:\ \mathit{cdcl}_{NOT}\text{-}\mathit{merged-bj-learn-is-tranclp-cdcl}_{NOT}\ \mathit{tranclp-into-rtranclp}
            rtranclp-cdcl_{NOT}-trail-clauses-bound)
         apply (simp add: cdcl_{NOT}-decreasing-measure')
         using rtranclp-cdcl_{NOT}-merged-bj-learn-clauses-bound-card apply blast
         apply (drule rtranclp-cdcl_{NOT}-merged-bj-learn-not-simplified-decreasing)
         apply (auto simp: card-mono set-mset-mono)[]
      apply simp
     apply auto[]
    using cdcl_{NOT}-merged-bj-learn-no-dup-inv cdcl-merged-inv apply blast
   apply (auto simp: inv-restart)
   done
lemma cdcl_{NOT}-restart-\mu_{CDCL}'-merged-le-\mu_{CDCL}'-bound:
 assumes
   cdcl_{NOT}-restart T V
   inv (fst T) and
   no-dup (trail (fst T)) and
   atms-of-mm (clauses_{NOT} (fst T)) \subseteq atms-of-ms A and
   atm\text{-}of ' lits\text{-}of\text{-}l (trail (fst T)) \subseteq atms\text{-}of\text{-}ms A and
   finite A
 shows \mu_{CDCL}'-merged A (fst V) \leq \mu_{CDCL}'-bound A (fst T)
 using assms
proof induction
 case (restart-full S T n)
 show ?case
   unfolding fst-conv
   apply (rule rtranclp-cdcl_{NOT}-merged-bj-learn-clauses-bound-card)
   using restart-full unfolding full1-def by (force dest!: tranclp-into-rtranclp)+
next
  case (restart-step m S T n U) note st = this(1) and U = this(3) and inv = this(4) and
   n-d = this(5) and atms-clss = this(6) and atms-trail = this(7) and finite = this(8)
  then have st': cdcl_{NOT}-merged-bj-learn** S T
   by (blast dest: relpowp-imp-rtranclp)
  then have st'': cdcl_{NOT}^{**} S T
   using inv n-d apply - by (rule rtranclp-cdcl<sub>NOT</sub>-merged-bj-learn-is-rtranclp-cdcl<sub>NOT</sub>) auto
 have inv T
   apply (rule rtranclp-cdcl_{NOT}-merged-bj-learn-inv)
     using inv st' n-d by auto
```

```
then have inv U
    using U by (auto simp: inv-restart)
  have atms-of-mm (clauses_{NOT} \ T) \subseteq atms-of-ms A
    using rtranclp-cdcl<sub>NOT</sub>-trail-clauses-bound[OF st'] inv atms-clss atms-trail n-d
    by simp
  then have atms-of-mm (clauses_{NOT} \ U) \subseteq atms-of-ms A
    using U by simp
  have not-simplified-cls (clauses<sub>NOT</sub> U) \subseteq \# not-simplified-cls (clauses<sub>NOT</sub> T)
    using \langle U \sim reduce\text{-}trail\text{-}to_{NOT} \ [] \ T \rangle by auto
  moreover have not-simplified-cls (clauses<sub>NOT</sub> T) \subseteq \# not-simplified-cls (clauses<sub>NOT</sub> S)
    apply (rule rtranclp-cdcl_{NOT}-merged-bj-learn-not-simplified-decreasing)
    using \langle (cdcl_{NOT}\text{-}merged\text{-}bj\text{-}learn \ \widehat{} \ m) \ S \ T \rangle by (auto dest!: relpowp-imp-rtranclp)
  ultimately have U-S: not-simplified-cls (clauses<sub>NOT</sub> U) \subseteq \# not-simplified-cls (clauses<sub>NOT</sub> S)
    by auto
  have (set\text{-}mset\ (clauses_{NOT}\ U))
    \subseteq set-mset (not-simplified-cls (clauses<sub>NOT</sub> U)) \cup simple-clss (atms-of-ms A)
    apply (rule rtranclp-cdcl_{NOT}-merged-bj-learn-clauses-bound)
        apply simp
        using \langle inv \ U \rangle apply simp
       using \langle atms\text{-}of\text{-}mm \ (clauses_{NOT} \ U) \subseteq atms\text{-}of\text{-}ms \ A \rangle apply simp
      using U apply simp
     using U apply simp
    using finite apply simp
    done
 then have f1: card (set\text{-}mset (clauses_{NOT} U)) \leq card (set\text{-}mset (not\text{-}simplified\text{-}cls (clauses_{NOT} U))
    \cup simple-clss (atms-of-ms A))
    by (simp add: simple-clss-finite card-mono local.finite)
  moreover have set-mset (not-simplified-cls (clauses<sub>NOT</sub> U)) \cup simple-clss (atms-of-ms A)
    \subseteq set-mset (not-simplified-cls (clauses<sub>NOT</sub> S)) \cup simple-clss (atms-of-ms A)
    using U-S by auto
  then have f2:
    card\ (set\text{-}mset\ (not\text{-}simplified\text{-}cls\ (clauses_{NOT}\ U)) \cup simple\text{-}clss\ (atms\text{-}of\text{-}ms\ A))
      \leq card \ (set\text{-}mset \ (not\text{-}simplified\text{-}cls \ (clauses_{NOT} \ S)) \cup simple\text{-}clss \ (atms\text{-}of\text{-}ms \ A))
    by (simp add: simple-clss-finite card-mono local.finite)
  moreover have card (set-mset (not-simplified-cls (clauses<sub>NOT</sub> S))
      \cup simple-clss (atms-of-ms A))
    \leq card \ (set\text{-}mset \ (not\text{-}simplified\text{-}cls \ (clauses_{NOT} \ S))) + card \ (simple\text{-}clss \ (atms\text{-}of\text{-}ms \ A))
    using card-Un-le by blast
  moreover have card (simple-clss (atms-of-ms A)) \leq 3 \hat{} card (atms-of-ms A)
    using atms-of-ms-finite simple-clss-card local.finite by blast
  ultimately have card (set-mset (clauses_{NOT} U))
    \leq card \ (set\text{-}mset \ (not\text{-}simplified\text{-}cls \ (clauses_{NOT} \ S))) + 3 \ \hat{} \ card \ (atms\text{-}of\text{-}ms \ A)
    by linarith
  then show ?case unfolding \mu_{CDCL}'-merged-def by auto
lemma cdcl_{NOT}-restart-\mu_{CDCL}'-bound-le-\mu_{CDCL}'-bound:
  assumes
    cdcl_{NOT}-restart T V and
    no-dup (trail (fst T)) and
    inv (fst T) and
    fin: finite A
  shows \mu_{CDCL}'-bound A (fst V) \leq \mu_{CDCL}'-bound A (fst T)
```

```
using assms(1-3)
proof induction
  case (restart-full\ S\ T\ n)
  have not-simplified-cls (clauses<sub>NOT</sub> T) \subseteq \# not-simplified-cls (clauses<sub>NOT</sub> S)
   \mathbf{apply} \ (\textit{rule rtranclp-cdcl}_{NOT}\text{-}\textit{merged-bj-learn-not-simplified-decreasing})
   using \langle full1\ cdcl_{NOT}-merged-bj-learn S\ T\rangle unfolding full1-def
   by (auto dest: tranclp-into-rtranclp)
  then show ?case by (auto simp: card-mono set-mset-mono)
next
  case (restart-step m S T n U) note st = this(1) and U = this(3) and n-d = this(4) and
    inv = this(5)
  then have st': cdcl_{NOT}-merged-bj-learn** S T
   by (blast dest: relpowp-imp-rtranclp)
  then have st'': cdcl_{NOT}^{**} S T
   using inv n-d apply – by (rule rtranclp-cdcl_{NOT}-merged-bj-learn-is-rtranclp-cdcl_{NOT}) auto
  have inv T
   apply (rule rtranclp-cdcl_{NOT}-merged-bj-learn-inv)
     using inv st' n-d by auto
  then have inv U
   using U by (auto simp: inv-restart)
  have not-simplified-cls (clauses<sub>NOT</sub> U) \subseteq \# not-simplified-cls (clauses<sub>NOT</sub> T)
   using \langle U \sim reduce\text{-}trail\text{-}to_{NOT} \ [] \ T \rangle by auto
  moreover have not-simplified-cls (clauses<sub>NOT</sub> T) \subseteq \# not-simplified-cls (clauses<sub>NOT</sub> S)
   apply (rule rtranclp-cdcl_{NOT}-merged-bj-learn-not-simplified-decreasing)
   using \langle (cdcl_{NOT}\text{-}merged\text{-}bj\text{-}learn \ \widehat{} \ m) \ S \ T \rangle by (auto dest!: relpowp-imp-rtranclp)
  ultimately have U-S: not-simplified-cls (clauses<sub>NOT</sub> U) \subseteq \# not-simplified-cls (clauses<sub>NOT</sub> S)
   by auto
 then show ?case by (auto simp: card-mono set-mset-mono)
sublocale cdcl_{NOT}-increasing-restarts - - - - - f
  \lambda S \ T. \ T \sim reduce-trail-to_{NOT} \ ([]::'a \ list) \ S
  \lambda A \ S. \ atms-of-mm \ (clauses_{NOT} \ S) \subseteq atms-of-ms \ A
    \land atm-of 'lits-of-l (trail S) \subseteq atms-of-ms A \land finite A
  \mu_{CDCL}'-merged cdcl_{NOT}-merged-bj-learn
   \lambda S. inv S \wedge no\text{-}dup (trail S)
  \lambda A T. ((2+card (atms-of-ms A)) \cap (1+card (atms-of-ms A))) * 2
    + \ card \ (set\text{-}mset \ (not\text{-}simplified\text{-}cls(clauses_{NOT} \ T)))
    + 3 \hat{} card (atms-of-ms A)
  apply unfold-locales
    using cdcl_{NOT}-restart-\mu_{CDCL}'-merged-le-\mu_{CDCL}'-bound apply force
   using cdcl_{NOT}-restart-\mu_{CDCL}'-bound-le-\mu_{CDCL}'-bound by fastforce
lemma cdcl_{NOT}-restart-eq-sat-iff:
  assumes
    cdcl_{NOT}-restart S T and
   no-dup (trail (fst S))
    inv (fst S)
  shows I \models sextm\ clauses_{NOT}\ (fst\ S) \longleftrightarrow I \models sextm\ clauses_{NOT}\ (fst\ T)
  using assms
proof (induction rule: cdcl_{NOT}-restart.induct)
  case (restart-full S T n)
  then have cdcl_{NOT}-merged-bj-learn** S T
   by (simp add: tranclp-into-rtranclp full1-def)
  then show ?case
```

```
using rtranclp-cdcl_{NOT}-bj-sat-ext-iff restart-full.prems(1,2)
   rtranclp-cdcl_{NOT}-merged-bj-learn-is-rtranclp-cdcl_{NOT} by auto
next
  case (restart-step m \ S \ T \ n \ U)
  then have cdcl_{NOT}-merged-bj-learn** S T
   by (auto simp: tranclp-into-rtranclp full1-def dest!: relpowp-imp-rtranclp)
  then have I \models sextm\ clauses_{NOT}\ S \longleftrightarrow I \models sextm\ clauses_{NOT}\ T
   using rtranclp-cdcl_{NOT}-bj-sat-ext-iff restart-step.prems(1,2)
   rtranclp-cdcl_{NOT}-merged-bj-learn-is-rtranclp-cdcl_{NOT} by auto
 moreover have I \models sextm\ clauses_{NOT}\ T \longleftrightarrow I \models sextm\ clauses_{NOT}\ U
   using restart-step.hyps(3) by auto
 ultimately show ?case by auto
qed
lemma rtranclp-cdcl_{NOT}-restart-eq-sat-iff:
 assumes
   cdcl_{NOT}-restart** S T and
   inv: inv (fst S) and n-d: no-dup(trail (fst S))
 shows I \models sextm\ clauses_{NOT}\ (fst\ S) \longleftrightarrow I \models sextm\ clauses_{NOT}\ (fst\ T)
 using assms(1)
proof (induction rule: rtranclp-induct)
 case base
  then show ?case by simp
next
  case (step T U) note st = this(1) and cdcl = this(2) and IH = this(3)
  have inv (fst T) and no-dup (trail (fst T))
   using rtranclp-cdcl_{NOT}-with-restart-cdcl<sub>NOT</sub>-inv using st inv n-d by blast+
  then have I \models sextm\ clauses_{NOT}\ (fst\ T) \longleftrightarrow I \models sextm\ clauses_{NOT}\ (fst\ U)
   using cdcl_{NOT}-restart-eq-sat-iff cdcl by blast
 then show ?case using IH by blast
qed
lemma cdcl_{NOT}-restart-all-decomposition-implies-m:
 assumes
   cdcl_{NOT}-restart S T and
   inv: inv (fst S) and n-d: no-dup(trail (fst S)) and
   all-decomposition-implies-m (clauses<sub>NOT</sub> (fst S))
     (get-all-ann-decomposition (trail (fst S)))
 shows all-decomposition-implies-m (clauses<sub>NOT</sub> (fst T))
     (get-all-ann-decomposition\ (trail\ (fst\ T)))
 using assms
proof induction
  case (restart-full S T n) note full = this(1) and inv = this(2) and n-d = this(3) and
   decomp = this(4)
 have st: cdcl_{NOT}-merged-bj-learn** S T and
   n-s: no-step cdcl_{NOT}-merged-bj-learn T
   using full unfolding full1-def by (fast dest: tranclp-into-rtranclp)+
 have st': cdcl_{NOT}^{**} S T
   using inv rtranclp-cdcl_{NOT}-merged-bj-learn-is-rtranclp-cdcl_{NOT}-and-inv st n-d by auto
 have inv T
   using rtranclp-cdcl_{NOT}-cdcl_{NOT}-inv[OF\ st]\ inv\ n-d by auto
  then show ?case
   using rtranclp-cdcl_{NOT}-all-decomposition-implies [OF - - n-d decomp] st' inv by auto
next
  case (restart-step m S T n U) note st = this(1) and U = this(3) and inv = this(4) and
   n-d = this(5) and decomp = this(6)
```

```
show ?case using U by auto
qed
lemma rtranclp-cdcl_{NOT}-restart-all-decomposition-implies-m:
   cdcl_{NOT}-restart** S T and
   inv: inv (fst S) and n-d: no-dup(trail (fst S)) and
   decomp: all-decomposition-implies-m (clauses<sub>NOT</sub> (fst S))
     (get-all-ann-decomposition (trail (fst S)))
 shows all-decomposition-implies-m (clauses<sub>NOT</sub> (fst T))
     (qet-all-ann-decomposition\ (trail\ (fst\ T)))
 using assms
proof induction
 case base
 then show ?case using decomp by simp
  case (step T U) note st = this(1) and cdcl = this(2) and IH = this(3)[OF\ this(4-)] and
   inv = this(4) and n-d = this(5) and decomp = this(6)
 have inv (fst T) and no-dup (trail (fst T))
   using rtranclp-cdcl_{NOT}-with-restart-cdcl<sub>NOT</sub>-inv using st inv n-d by blast+
  then show ?case
   using cdcl_{NOT}-restart-all-decomposition-implies-m[OF cdcl] IH by auto
qed
lemma full-cdcl_{NOT}-restart-normal-form:
 assumes
   full: full cdcl_{NOT}-restart S T and
   inv: inv (fst S) and n-d: no-dup(trail (fst S)) and
   decomp: all-decomposition-implies-m (clauses<sub>NOT</sub> (fst S))
     (qet-all-ann-decomposition (trail (fst S))) and
   atms-cls: atms-of-mm (clauses_{NOT} (fst S)) \subseteq atms-of-ms A and
   atms-trail: atm-of 'lits-of-l (trail (fst S)) \subseteq atms-of-ms A and
   fin: finite A
 shows unsatisfiable (set-mset (clauses<sub>NOT</sub> (fst S)))
   \vee lits-of-l (trail (fst T)) \models sextm clauses<sub>NOT</sub> (fst S) \wedge
      satisfiable (set\text{-}mset (clauses_{NOT} (fst S)))
 have inv-T: inv (fst T) and n-d-T: no-dup (trail (fst T))
   using rtranclp-cdcl_{NOT}-with-restart-cdcl<sub>NOT</sub>-inv using full inv n-d unfolding full-def by blast+
  moreover have
   atms-cls-T: atms-of-mm (clauses_{NOT} (fst T)) \subseteq atms-of-ms A and
   atms-trail-T: atm-of ' lits-of-l (trail (fst T)) \subseteq atms-of-ms A
   using rtranclp-cdcl<sub>NOT</sub>-with-restart-bound-inv[of S T A] full atms-cls atms-trail fin inv n-d
   unfolding full-def by blast+
  ultimately have no-step cdcl_{NOT}-merged-bj-learn (fst T)
   apply -
   apply (rule no-step-cdcl<sub>NOT</sub>-restart-no-step-cdcl<sub>NOT</sub>[of - A])
      using full unfolding full-def apply simp
     apply simp
   using fin apply simp
   done
  moreover have all-decomposition-implies-m (clauses<sub>NOT</sub> (fst T))
   (get-all-ann-decomposition\ (trail\ (fst\ T)))
   using rtranclp-cdcl_{NOT}-restart-all-decomposition-implies-m[of S T] inv n-d decomp
   full unfolding full-def by auto
  ultimately have unsatisfiable (set-mset (clauses<sub>NOT</sub> (fst T)))
```

```
\vee trail (fst T) \models asm clauses<sub>NOT</sub> (fst T) \wedge satisfiable (set-mset (clauses<sub>NOT</sub> (fst T)))
   apply (rule cdcl_{NOT}-merged-bj-learn-final-state)
   using atms-cls-T atms-trail-T fin n-d-T fin inv-T by blast+
  then consider
     (unsat) unsatisfiable (set-mset (clauses_{NOT} (fst T)))
     (sat) trail (fst T) \models asm clauses_{NOT} (fst T)  and satisfiable (set-mset (clauses_{NOT} (fst T)))
   by auto
  then show unsatisfiable (set-mset (clauses<sub>NOT</sub> (fst S)))
   \vee lits-of-l (trail (fst T)) \models sextm clauses<sub>NOT</sub> (fst S) \wedge
      satisfiable (set-mset (clauses_{NOT} (fst S)))
   proof cases
     case unsat
     then have unsatisfiable (set-mset (clauses<sub>NOT</sub> (fst S)))
       unfolding satisfiable-def apply auto
       using rtranclp-cdcl_{NOT}-restart-eq-sat-iff[of S T ] full inv n-d
       consistent-true-clss-ext-satisfiable true-clss-imp-true-cls-ext
       unfolding satisfiable-def full-def by blast
     then show ?thesis by blast
   next
     case sat
     then have lits-of-l (trail (fst T)) \models sextm clauses<sub>NOT</sub> (fst T)
       using true-clss-imp-true-cls-ext by (auto simp: true-annots-true-cls)
     then have lits-of-l (trail (fst T)) \models sextm clauses<sub>NOT</sub> (fst S)
       using rtranclp-cdcl<sub>NOT</sub>-restart-eq-sat-iff[of S T] full inv n-d unfolding full-def by blast
     moreover then have satisfiable (set-mset (clauses<sub>NOT</sub> (fst S)))
       using consistent-true-clss-ext-satisfiable distinct-consistent-interp n-d-T by fast
     ultimately show ?thesis by fast
   qed
qed
corollary full-cdcl_{NOT}-restart-normal-form-init-state:
   init-state: trail\ S = []\ clauses_{NOT}\ S = N and
   full: full cdcl_{NOT}-restart (S, \theta) T and
   inv: inv S
  shows unsatisfiable (set-mset N)
   \vee lits-of-l (trail (fst T)) \models sextm N \wedge satisfiable (set-mset N)
 using full-cdcl<sub>NOT</sub>-restart-normal-form[of (S, \theta) T] assms by auto
end
end
theory DPLL-NOT
imports CDCL-NOT
begin
```

1.3 DPLL as an instance of NOT

1.3.1 DPLL with simple backtrack

We are using a concrete couple instead of an abstract state.

```
 \begin \\ inductive \ backtrack :: ('v, unit) \ ann-lits \times 'v \ clauses \\
```

```
\Rightarrow ('v, unit) ann-lits \times 'v clauses \Rightarrow bool where
backtrack\text{-split }(fst\ S) = (M',\ L\ \#\ M) \Longrightarrow is\text{-decided}\ L \Longrightarrow D \in \#\ snd\ S
 \implies fst S \models as \ CNot \ D \implies backtrack \ S \ (Propagated \ (- \ (lit-of \ L)) \ () \# M, \ snd \ S)
inductive-cases backtrackE[elim]: backtrack (M, N) (M', N')
lemma backtrack-is-backjump:
 fixes M M' :: ('v, unit) \ ann-lits
 assumes
   backtrack: backtrack (M, N) (M', N') and
   no-dup: (no-dup \circ fst) (M, N) and
   decomp: all-decomposition-implies-m \ N \ (get-all-ann-decomposition \ M)
   shows
      \exists C F' K F L l C'.
         M = F' @ Decided K \# F \land
         M' = Propagated \ L \ l \ \# \ F \land N = N' \land C \in \# \ N \land F' \ @ \ Decided \ K \ \# \ F \models as \ CNot \ C \land
         undefined-lit\ F\ L\ \land\ atm-of\ L\ \in\ atms-of-mm\ N\ \cup\ atm-of\ `lits-of-l\ (F'\ @\ Decided\ K\ \#\ F)\ \land
         N \models pm \ C' + \{\#L\#\} \land F \models as \ CNot \ C'
proof -
 let ?S = (M, N)
 let ?T = (M', N')
 obtain F F' P L D where
   b-sp: backtrack-split M = (F', L \# F) and
   is-decided L and
   D \in \# \ snd \ ?S \ {\bf and}
   M \models as \ CNot \ D \ and
   bt: backtrack ?S (Propagated (- (lit-of L)) P \# F, N) and
   M': M' = Propagated (- (lit-of L)) P \# F and
   [simp]: N' = N
  using backtrackE[OF backtrack] by (metis backtrack fstI sndI)
 let ?K = lit \text{-} of L
 let ?C = image\text{-mset lit-of } \{\#K \in \#mset M. is\text{-decided } K \land K \neq L\#\} :: 'v \ clause
 let ?C' = set\text{-}mset \ (image\text{-}mset \ single \ (?C+\{\#?K\#\}))
 obtain K where L: L = Decided K using (is-decided L) by (cases L) auto
 have M: M = F' @ Decided K \# F
   using b-sp by (metis L backtrack-split-list-eq fst-conv snd-conv)
 moreover have F' @ Decided K \# F \models as \ CNot \ D
   using \langle M \models as \ CNot \ D \rangle unfolding M.
 moreover have undefined-lit F(-?K)
   using no-dup unfolding M L by (simp add: defined-lit-map)
  moreover have atm-of (-K) \in atm-of-mm N \cup atm-of 'lits-of-l (F' @ Decided K \# F)
   by auto
 moreover
   have set-mset N \cup ?C' \models ps \{\{\#\}\}
     proof -
       have A: set-mset N \cup ?C' \cup unmark-l M =
         set\text{-}mset \ \ N \, \cup \, unmark\text{-}l \, \, M
         unfolding M L by auto
       have set-mset N \cup \{\{\#lit\text{-of }L\#\} \mid L. \text{ is-decided } L \land L \in set M\}
           \models ps \ unmark-l \ M
         using all-decomposition-implies-propagated-lits-are-implied [OF decomp].
       moreover have C': ?C' = \{\{\#lit\text{-}of\ L\#\}\ | L.\ is\text{-}decided\ L \land L \in set\ M\}
         unfolding ML apply standard
           apply force
         using IntI by auto
       ultimately have N-C-M: set-mset N \cup ?C' \models ps \ unmark-l \ M
```

```
by auto
   have set-mset N \cup (\lambda L. \{\#lit\text{-of }L\#\}) \text{ '} (set M) \models ps \{\{\#\}\}\}
      unfolding true-clss-clss-def
      proof (intro allI impI, goal-cases)
        case (1 I) note tot = this(1) and cons = this(2) and I-N-M = this(3)
       have I \models D
         using I-N-M \langle D \in \# \ snd \ ?S \rangle unfolding true-clss-def by auto
       moreover have I \models s CNot D
         using \langle M \models as \ CNot \ D \rangle unfolding M by (metis \ 1(3) \ \langle M \models as \ CNot \ D \rangle)
            true-annots-true-cls true-cls-mono-set-mset-l true-clss-def
            true-clss-singleton-lit-of-implies-incl true-clss-union)
       ultimately show ?case using cons consistent-CNot-not by blast
      qed
   then show ?thesis
      using true-clss-clss-left-right[OF N-C-M, of \{\{\#\}\}\}] unfolding A by auto
  aed
have N \models pm \ image\text{-}mset \ uminus \ ?C + \{\#-?K\#\}
  unfolding true-clss-cls-def true-clss-clss-def total-over-m-def
  proof (intro allI impI)
   \mathbf{fix}\ I
   assume
     tot: total-over-set I (atms-of-ms (set-mset N \cup \{image-mset\ uminus\ ?C + \{\#-\ ?K\#\}\})) and
      cons: consistent-interp I and
      I \models sm N
   have (K \in I \land -K \notin I) \lor (-K \in I \land K \notin I)
      using cons tot unfolding consistent-interp-def L by (cases K) auto
   have \{a \in set \ M. \ is\text{-}decided \ a \land a \neq Decided \ K\} =
      set M \cap \{L. \text{ is-decided } L \land L \neq Decided K\}
      by auto
   then have
      tI: total-over-set\ I\ (atm-of\ `(set\ M\cap \{L.\ is-decided\ L\wedge L\neq Decided\ K\}))
      using tot by (auto simp add: L atms-of-uminus-lit-atm-of-lit-of)
   then have H: \bigwedge x.
        lit\text{-}of \ x \notin I \Longrightarrow x \in set \ M \Longrightarrow is\text{-}decided \ x
        \implies x \neq Decided K \implies -lit \text{-} of x \in I
      proof -
       \mathbf{fix} \ x :: ('v, unit) \ ann-lit
       assume a1: x \neq Decided K
       assume a2: is-decided x
       assume a3: x \in set M
       assume a4: lit-of x \notin I
       have atm\text{-}of\ (lit\text{-}of\ x) \in atm\text{-}of\ `lit\text{-}of\ `
          (set\ M\cap \{m.\ is\ decided\ m\land m\neq Decided\ K\})
         using a3 a2 a1 by blast
        then have Pos (atm\text{-}of\ (lit\text{-}of\ x)) \in I \lor Neg\ (atm\text{-}of\ (lit\text{-}of\ x)) \in I
         using tI unfolding total-over-set-def by blast
        then show - lit-of x \in I
         using a4 by (metis (no-types) atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set
            literal.sel(1,2)
      qed
   have \neg I \models s ?C'
      using \langle set\text{-}mset\ N\cup ?C' \models ps\ \{\{\#\}\}\rangle\ tot\ cons\ \langle I \models sm\ N\rangle
      unfolding true-clss-clss-def total-over-m-def
      by (simp add: atms-of-uninus-lit-atm-of-lit-of atms-of-ms-single-image-atm-of-lit-of)
   then show I \models image\text{-}mset\ uminus\ ?C + \{\#-\ lit\text{-}of\ L\#\}
```

```
unfolding true-clss-def true-cls-def
                  using \langle (K \in I \land -K \notin I) \lor (-K \in I \land K \notin I) \rangle
                  unfolding L by (auto dest!: H)
          \mathbf{qed}
   moreover
       have set F' \cap \{K. \text{ is-decided } K \land K \neq L\} = \{\}
          using backtrack-split-fst-not-decided[of - M] b-sp by auto
       then have F \models as \ CNot \ (image-mset \ uminus \ ?C)
            unfolding M CNot-def true-annots-def by (auto simp add: L lits-of-def)
   ultimately show ?thesis
       using M' \langle D \in \# snd ?S \rangle L by force
qed
lemma backtrack-is-backjump':
   fixes M M' :: ('v, unit) ann-lits
   assumes
       backtrack: backtrack S T and
       no-dup: (no-dup \circ fst) S and
       decomp: all-decomposition-implies-m (snd S) (qet-all-ann-decomposition (fst S))
              \exists C F' K F L l C'.
                  fst S = F' @ Decided K \# F \land
                  T = (Propagated \ L \ l \ \# \ F, \ snd \ S) \land C \in \# \ snd \ S \land fst \ S \models as \ CNot \ C
                  \land undefined-lit F \ L \land atm-of L \in atm-of-mm (snd \ S) \cup atm-of 'lits-of-l (fst \ S) \land atm-of-mathematical states of the states of 
                  snd S \models pm C' + \{\#L\#\} \land F \models as CNot C'
   apply (cases S, cases T)
   using backtrack-is-backjump[of fst S snd S fst T snd T] assms by fastforce
{\bf sublocale}\ \mathit{dpll-state}
   fst snd \lambda L (M, N). (L \# M, N) \lambda (M, N). (tl M, N)
   \lambda C (M, N). (M, \{\#C\#\} + N) \lambda C (M, N). (M, removeAll-mset C N)
   by unfold-locales (auto simp: ac-simps)
sublocale backjumping-ops
   fst snd \lambda L (M, N). (L \# M, N) \lambda (M, N). (tl M, N)
   \lambda C (M, N). (M, \{\#C\#\} + N) \lambda C (M, N). (M, removeAll\text{-}mset\ C\ N) \lambda- - - S\ T. backtrack S\ T
   by unfold-locales
{f thm} reduce-trail-to_{NOT}-clauses
lemma reduce-trail-to<sub>NOT</sub>:
    reduce-trail-to<sub>NOT</sub> F S =
       (if \ length \ (fst \ S) \ge length \ F
       then drop (length (fst S) – length F) (fst S)
       else [],
       snd S) (is ?R = ?C)
proof -
   have ?R = (fst ?R, snd ?R)
       by (cases reduce-trail-to_{NOT} F S) auto
   also have (fst ?R, snd ?R) = ?C
       by (auto simp: trail-reduce-trail-to<sub>NOT</sub>-drop)
   finally show ?thesis.
qed
lemma backtrack-is-backjump":
   fixes M M' :: ('v, unit) ann-lits
   assumes
```

```
backtrack: backtrack S T and
   no\text{-}dup: (no\text{-}dup \circ fst) \ S \ \mathbf{and}
   decomp: all-decomposition-implies-m \ (snd \ S) \ (get-all-ann-decomposition \ (fst \ S))
   shows backjump S T
proof -
 obtain C F' K F L l C' where
    1: fst S = F' @ Decided K \# F and
   2: T = (Propagated \ L \ l \ \# \ F, \ snd \ S) and
   3: C \in \# snd S and
   4: fst S \models as CNot C and
   5: undefined-lit FL and
   \textit{6: atm-of } L \in \textit{atms-of-mm} \; (\textit{snd} \; S) \; \cup \; \textit{atm-of `its-of-l} \; (\textit{fst} \; S) \; \textbf{and} \;
    7: snd S \models pm C' + \{\#L\#\}  and
   8: F \models as \ CNot \ C'
  using backtrack-is-backjump'[OF assms] by force
 show ?thesis
   apply (cases S)
   using backjump.intros[OF 1 - - 4 5 - - 8, of T] 2 backtrack 1 5 3 6 7
   by (auto simp: state-eq_{NOT}-def trail-reduce-trail-to<sub>NOT</sub>-drop
     reduce-trail-to<sub>NOT</sub> simp\ del:\ state-simp_{NOT})
qed
lemma can-do-bt-step:
  assumes
    M: fst \ S = F' @ Decided \ K \# F  and
    C \in \# \ snd \ S \ and
    C: fst \ S \models as \ CNot \ C
  shows \neg no-step backtrack S
proof -
 obtain L G' G where
   backtrack-split (fst S) = (G', L \# G)
   unfolding M by (induction F' rule: ann-lit-list-induct) auto
 moreover then have is-decided L
    by (metis\ backtrack-split-snd-hd-decided\ list.distinct(1)\ list.sel(1)\ snd-conv)
 ultimately show ?thesis
    using backtrack.intros[of S G' L G C] \langle C \in \# \text{ snd } S \rangle C unfolding M by auto
qed
end
sublocale dpll-with-backtrack \subseteq dpll-with-backjumping-ops
   fst snd \lambda L (M, N). (L \# M, N)
 \lambda(M, N). (tl M, N) \lambda C (M, N). (M, {#C#} + N) \lambda C (M, N). (M, removeAll-mset C N)
 \lambda(M, N). no-dup M \wedge all-decomposition-implies-m N (get-all-ann-decomposition M)
 \lambda- - - S T. backtrack S T
 \lambda- -. True
 apply unfold-locales
 by (metis (mono-tags, lifting) case-prod-beta comp-def dpll-with-backtrack.backtrack-is-backjump"
   dpll-with-backtrack.can-do-bt-step)
sublocale dpll-with-backtrack \subseteq dpll-with-backjumping
   fst snd \lambda L (M, N). (L \# M, N)
 \lambda(M, N). (tl M, N) \lambda C (M, N). (M, {#C#} + N) \lambda C (M, N). (M, removeAll-mset C N)
 \lambda(M, N). no-dup M \wedge all-decomposition-implies-m N (get-all-ann-decomposition M)
 \lambda- - - S T. backtrack S T
 \lambda- -. True
```

```
apply unfold-locales
 using dpll-bj-no-dup dpll-bj-all-decomposition-implies-inv apply fastforce
{f context}\ dpll	ext{-}with	ext{-}backtrack
begin
lemma wf-tranclp-dpll-inital-state:
 assumes fin: finite A
 shows wf \{((M'::('v, unit) \ ann\text{-}lits, \ N'::'v \ clauses), \ ([], \ N))|M' \ N' \ N.
   dpll-bj^{++} ([], N) (M', N') \wedge atms-of-mm N \subseteq atms-of-ms A}
 using wf-tranclp-dpll-bj[OF assms(1)] by (rule wf-subset) auto
corollary full-dpll-final-state-conclusive:
 fixes M M' :: ('v, unit) \ ann-lits
 assumes
   full: full dpll-bj ([], N) (M', N')
 shows unsatisfiable (set-mset N) \vee (M' \models asm N \wedge satisfiable (set-mset N))
 using assms full-dpll-backjump-final-state of ([],N) (M',N') set-mset N by auto
corollary full-dpll-normal-form-from-init-state:
 \mathbf{fixes}\ M\ M' :: ('v,\ unit)\ ann\text{-}lits
 assumes
   full: full dpll-bj ([], N) (M', N')
 shows M' \models asm \ N \longleftrightarrow satisfiable (set-mset \ N)
proof
 have no-dup M'
   using rtranclp-dpll-bj-no-dup[of([], N)(M', N')]
   full unfolding full-def by auto
  then have M' \models asm N \implies satisfiable (set-mset N)
   using distinct-consistent-interp satisfiable-carac' true-annots-true-cls by blast
 then show ?thesis
 using full-dpll-final-state-conclusive [OF full] by auto
interpretation conflict-driven-clause-learning-ops
   fst snd \lambda L (M, N). (L # M, N)
 \lambda(M, N). (tl M, N) \lambda C (M, N). (M, \{\#C\#\} + N) \lambda C (M, N). (M, removeAll-mset C N)
 \lambda(M, N). no-dup M \wedge all-decomposition-implies-m N (qet-all-ann-decomposition M)
 \lambda- - - S T. backtrack S T
 \lambda- -. True \lambda- -. False \lambda- -. False
 by unfold-locales
interpretation conflict-driven-clause-learning
   fst snd \lambda L (M, N). (L \# M, N)
 \lambda(M, N). (tl M, N) \lambda C (M, N). (M, {#C#} + N) \lambda C (M, N). (M, removeAll-mset C N)
 \lambda(M, N). no-dup M \wedge all-decomposition-implies-m N (get-all-ann-decomposition M)
 \lambda- - - S T. backtrack S T
 \lambda- -. True \lambda- -. False \lambda- -. False
 apply unfold-locales
 using cdcl_{NOT}-all-decomposition-implies cdcl_{NOT}-no-dup by fastforce
lemma cdcl_{NOT}-is-dpll:
  cdcl_{NOT} S T \longleftrightarrow dpll-bj S T
 by (auto simp: cdcl_{NOT}.simps\ learn.simps\ forget_{NOT}.simps)
```

Another proof of termination:

```
\begin{array}{l} \textbf{lemma} \ wf \ \{(T, S). \ dpll-bj \ S \ T \land cdcl_{NOT}\text{-}NOT\text{-}all\text{-}inv \ A \ S\} \\ \textbf{unfolding} \ cdcl_{NOT}\text{-}is\text{-}dpll[symmetric] \\ \textbf{by} \ (rule \ wf\text{-}cdcl_{NOT}\text{-}no\text{-}learn\text{-}and\text{-}forget\text{-}infinite\text{-}chain}) \\ \ (auto \ simp: \ learn.simps \ forget_{NOT}.simps) \\ \textbf{end} \end{array}
```

1.3.2 Adding restarts

This was mainly a test whether it was possible to instantiate the assumption of the locale.

```
locale dpll-with backtrack-and-restarts =
  dpll-with-backtrack +
 fixes f :: nat \Rightarrow nat
 assumes unbounded: unbounded f and f-ge-1:\land n. n \ge 1 \implies f n \ge 1
begin
 sublocale cdcl_{NOT}-increasing-restarts
 fst snd \lambda L (M, N). (L \# M, N) \lambda (M, N). (tl M, N)
   \lambda C (M, N). (M, \#C\#\} + N) \lambda C (M, N). (M, removeAll-mset\ C\ N) f \lambda (-, N)\ S. S = ([], N)
  \lambda A \ (M,\ N). \ atms-of-mm \ N \subseteq atms-of-ms \ A \wedge atm-of \ `lits-of-l \ M \subseteq atms-of-ms \ A \wedge finite \ A
   \land all-decomposition-implies-m N (get-all-ann-decomposition M)
 \lambda A \ T. \ (2+card \ (atms-of-ms \ A)) \ \widehat{\ } \ (1+card \ (atms-of-ms \ A))
             -\mu_C (1+card (atms-of-ms A)) (2+card (atms-of-ms A)) (trail-weight T) dpll-bj
 \lambda(M, N). no-dup M \wedge all-decomposition-implies-m N (get-all-ann-decomposition M)
  \lambda A -. (2+card (atms-of-ms A)) \cap (1+card (atms-of-ms A))
 apply unfold-locales
        apply (rule unbounded)
       using f-ge-1 apply fastforce
       apply (smt dpll-bj-all-decomposition-implies-inv dpll-bj-atms-in-trail-in-set
        dpll-bj-clauses id-apply prod.case-eq-if)
      apply (rule dpll-bj-trail-mes-decreasing-prop; auto)
     apply (rename-tac A \ T \ U, case-tac T, simp)
    apply (rename-tac A T U, case-tac U, simp)
   using dpll-bj-clauses dpll-bj-all-decomposition-implies-inv dpll-bj-no-dup by fastforce+
end
end
theory DPLL-W
imports Main Partial-Clausal-Logic Partial-Annotated-Clausal-Logic List-More Wellfounded-More
  DPLL-NOT
begin
```

1.4 Weidenbach's DPLL

1.4.1 Rules

```
type-synonym 'a dpll_W-ann-lit = ('a, unit) ann-lit

type-synonym 'a dpll_W-ann-lits = ('a, unit) ann-lits

type-synonym 'v dpll_W-state = 'v dpll_W-ann-lits × 'v clauses

abbreviation trail :: 'v dpll_W-state \Rightarrow 'v dpll_W-ann-lits where

trail \equiv fst

abbreviation clauses :: 'v dpll_W-state \Rightarrow 'v clauses where

clauses \equiv snd

inductive dpll_W :: 'v dpll_W-state \Rightarrow 'v dpll_W-state \Rightarrow bool where

propagate: C + \{\#L\#\} \in \# clauses S \implies trail S \models as CNot C \implies undefined-lit (trail S) L
```

```
⇒ dpll_W S (Propagated L () # trail S, clauses S) | decided: undefined-lit (trail S) L ⇒ atm-of L ∈ atms-of-mm (clauses S) | \Rightarrow dpll_W S (Decided L # trail S, clauses S) | backtrack: backtrack-split (trail S) = (M', L # M) ⇒ is-decided L ⇒ D ∈# clauses S ⇒ trail S |= as CNot D ⇒ dpll_W S (Propagated (− (lit-of L)) () # M, clauses S)

1.4.2 Invariants

lemma dpll_W-distinct-inv: assumes dpll_W S S'
```

```
and no-dup (trail S)
 shows no-dup (trail S')
 using assms
proof (induct rule: dpll_W.induct)
 case (decided L S)
  then show ?case using defined-lit-map by force
next
  case (propagate \ C \ L \ S)
 then show ?case using defined-lit-map by force
next
 case (backtrack S M' L M D) note extracted = this(1) and no-dup = this(5)
 show ?case
   using no-dup backtrack-split-list-eq[of trail S, symmetric] unfolding extracted by auto
qed
lemma dpll_W-consistent-interp-inv:
 assumes dpll_W S S'
 and consistent-interp (lits-of-l (trail S))
 and no-dup (trail S)
 shows consistent-interp (lits-of-l (trail S'))
 using assms
proof (induct rule: dpll_W.induct)
 case (backtrack S M' L M D) note extracted = this(1) and decided = this(2) and D = this(4) and
   cons = this(5) and no-dup = this(6)
 have no-dup': no-dup M
   \mathbf{by}\ (\textit{metis}\ (\textit{no-types})\ \textit{backtrack-split-list-eq}\ \textit{distinct.simps}(2)\ \textit{distinct-append}\ \textit{extracted}
     list.simps(9) map-append no-dup snd-conv)
  then have insert (lit-of L) (lits-of-l M) \subseteq lits-of-l (trail S)
   using backtrack-split-list-eq[of trail S, symmetric] unfolding extracted by auto
  then have cons: consistent-interp (insert (lit-of L) (lits-of-l M))
   using consistent-interp-subset cons by blast
 moreover
   have lit\text{-}of\ L\notin lits\text{-}of\text{-}l\ M
     using no-dup backtrack-split-list-eq[of trail S, symmetric] extracted
     unfolding lits-of-def by force
   have atm\text{-}of\ (-lit\text{-}of\ L) \notin (\lambda m.\ atm\text{-}of\ (lit\text{-}of\ m)) 'set M
     using no-dup backtrack-split-list-eq[of trail S, symmetric] unfolding extracted by force
   then have -lit\text{-}of L \notin lits\text{-}of\text{-}l M
     unfolding lits-of-def by force
  ultimately show ?case by simp
qed (auto intro: consistent-add-undefined-lit-consistent)
lemma dpll_W-vars-in-snd-inv:
 assumes dpll_W S S'
```

and atm-of ' (lits-of-l ($trail\ S$)) $\subseteq atms\text{-}of\text{-}mm$ ($clauses\ S$)

```
shows atm-of '(lits-of-l (trail S')) \subseteq atms-of-mm (clauses S')
  using assms
proof (induct rule: dpll<sub>W</sub>.induct)
 case (backtrack S M' L M D)
  then have atm\text{-}of\ (lit\text{-}of\ L) \in atms\text{-}of\text{-}mm\ (clauses\ S)
   using backtrack-split-list-eq[of trail S, symmetric] by auto
  moreover
   have atm\text{-}of ' lits\text{-}of\text{-}l (trail\ S) \subseteq atms\text{-}of\text{-}mm (clauses\ S)
     using backtrack(5) by simp
   then have \bigwedge xb. xb \in set M \Longrightarrow atm\text{-}of (lit\text{-}of xb) \in atms\text{-}of\text{-}mm (clauses S)
     using backtrack-split-list-eq[symmetric, of trail S] backtrack.hyps(1)
     unfolding lits-of-def by auto
 ultimately show ?case by (auto simp : lits-of-def)
qed (auto simp: in-plus-implies-atm-of-on-atms-of-ms)
lemma atms-of-ms-lit-of-atms-of: atms-of-ms ((\lambda a. \{\#lit\text{-}of a\#\}) \cdot c) = atm\text{-}of \cdot lit\text{-}of \cdot c
 unfolding atms-of-ms-def using image-iff by force
theorem 2.8.2 page 73 of Weidenbach's book
lemma dpll_W-propagate-is-conclusion:
 assumes dpll_W S S'
 and all-decomposition-implies-m (clauses S) (get-all-ann-decomposition (trail S))
 and atm\text{-}of ' lits\text{-}of\text{-}l (trail\ S) \subseteq atms\text{-}of\text{-}mm (clauses\ S)
 shows all-decomposition-implies-m (clauses S') (qet-all-ann-decomposition (trail S'))
 using assms
proof (induct rule: dpll_W.induct)
 case (decided L S)
 then show ?case unfolding all-decomposition-implies-def by simp
  case (propagate C L S) note inS = this(1) and cnot = this(2) and IH = this(4) and undef =
this(3) and atms-incl = this(5)
 let ?I = set (map (\lambda a. \{\#lit\text{-}of a\#\}) (trail S)) \cup set\text{-}mset (clauses S)
 have ?I \models p C + \{\#L\#\} by (auto simp add: inS)
  moreover have ?I \models ps\ CNot\ C using true-annots-true-clss-cls cnot by fastforce
 ultimately have ?I \models p \{\#L\#\} using true-clss-cls-plus-CNot[of ?I \ C \ L] in S by blast
  {
   assume get-all-ann-decomposition (trail\ S) = []
   then have ?case by blast
  }
 moreover {
   assume n: get-all-ann-decomposition (trail S) \neq []
   have 1: \bigwedge a b. (a, b) \in set (tl (get-all-ann-decomposition (trail S)))
     \implies (unmark-l \ a \cup set\text{-}mset \ (clauses \ S)) \models ps \ unmark-l \ b
     using IH unfolding all-decomposition-implies-def by (fastforce simp add: list.set.set(2) n)
   moreover have 2: \bigwedge a c. hd (get-all-ann-decomposition (trail S)) = (a, c)
     \implies (unmark-l a \cup set-mset (clauses S)) \models ps (unmark-l c)
     by (metis IH all-decomposition-implies-cons-pair all-decomposition-implies-single
       list.collapse n
   moreover have 3: \bigwedge a c. hd (get-all-ann-decomposition (trail S)) = (a, c)
     \implies (unmark-l \ a \cup set-mset \ (clauses \ S)) \models p \ \{\#L\#\}
     proof -
       \mathbf{fix} \ a \ c
       assume h: hd (get-all-ann-decomposition (trail S)) = (a, c)
       have h': trail S = c @ a using get-all-ann-decomposition-decomp h by blast
       have I: set (map\ (\lambda a.\ \{\#lit\text{-}of\ a\#\})\ a) \cup set\text{-}mset\ (clauses\ S)
         \cup unmark-l \ c \models ps \ CNot \ C
```

```
using \langle I | = ps \ CNot \ C \rangle unfolding h' by (simp add: Un-commute Un-left-commute)
     have
       atms-of-ms (CNot C) \subseteq atms-of-ms (set (map (\lambda a. {#lit-of a#}) a) \cup set-mset (clauses S))
         and
       atms-of-ms (unmark-l c) \subseteq atms-of-ms (set (map (\lambda a. {#lit-of a#})) a)
        \cup set-mset (clauses S))
        apply (metis CNot-plus Un-subset-iff atms-of-atms-of-ms-mono atms-of-ms-CNot-atms-of
          atms-of-ms-union in S sup.cobounded I2)
       using in S atms-of-atms-of-ms-mono atms-incl by (fastforce simp: h')
     then have unmark-l a \cup set-mset (clauses S) \models ps \ CNot \ C
       using true-clss-clss-left-right[OF - I] h 2 by auto
     then show unmark-l a \cup set-mset (clauses S) \models p \{ \#L\# \}
       by (metis (no-types) Un-insert-right in Sinsert I1 mk-disjoint-insert in S
         true-clss-cls-in true-clss-cls-plus-CNot)
   qed
 ultimately have ?case
   by (cases hd (qet-all-ann-decomposition (trail S)))
      (auto simp: all-decomposition-implies-def)
ultimately show ?case by auto
case (backtrack SM'LMD) note extracted = this(1) and decided = this(2) and D = this(3) and
  cnot = this(4) and cons = this(4) and IH = this(5) and atms-incl = this(6)
have S: trail S = M' @ L \# M
 using backtrack-split-list-eq[of trail S] unfolding extracted by auto
have M': \forall l \in set M'. \neg is\text{-}decided l
 using extracted backtrack-split-fst-not-decided[of - trail S] by simp
have n: get-all-ann-decomposition (trail S) \neq [] by auto
then have all-decomposition-implies-m (clauses S) ((L \# M, M')
        \# tl (get-all-ann-decomposition (trail S)))
 by (metis (no-types) IH extracted get-all-ann-decomposition-backtrack-split list.exhaust-sel)
then have 1: unmark-l (L \# M) \cup set-mset (clauses S) \models ps(\lambda a.\{\#lit-of a\#\}) 'set M'
 by simp
moreover
 have unmark-l\ (L \# M) \cup unmark-l\ M' \models ps\ CNot\ D
   by (metis (mono-tags, lifting) S Un-commute cons image-Un set-append
     true-annots-true-clss-clss)
 then have 2: unmark-l (L \# M) \cup set\text{-mset} (clauses S) \cup unmark-l M'
     \models ps \ CNot \ D
   by (metis (no-types, lifting) Un-assoc Un-left-commute true-clss-clss-union-l-r)
ultimately
 have set (map \ (\lambda a. \ \{\#lit\text{-}of \ a\#\}) \ (L \ \# \ M)) \cup set\text{-}mset \ (clauses \ S) \models ps \ CNot \ D
   using true-clss-clss-left-right by fastforce
 then have set (map\ (\lambda a.\ \{\#lit\text{-}of\ a\#\})\ (L\ \#\ M))\cup set\text{-}mset\ (clauses\ S)\models p\ \{\#\}
   by (metis (mono-tags, lifting) D Un-def mem-Collect-eq
     true-clss-clss-contradiction-true-clss-cls-false)
 then have IL: unmark-l M \cup set-mset (clauses S) \models p \{\#-lit\text{-of }L\#\}
   using true-clss-clss-false-left-right by auto
show ?case unfolding S all-decomposition-implies-def
 proof
   \mathbf{fix} \ x \ P \ level
   \mathbf{assume}\ x{:}\ x\in set\ (get\text{-}all\text{-}ann\text{-}decomposition}
     (fst (Propagated (- lit-of L) P \# M, clauses S)))
   let ?M' = Propagated (-lit-of L) P \# M
   let ?hd = hd (get-all-ann-decomposition ?M')
```

```
let ?tl = tl \ (get-all-ann-decomposition ?M')
 have x = ?hd \lor x \in set ?tl
   using x
   by (cases get-all-ann-decomposition ?M')
      auto
 moreover {
   assume x': x \in set ?tl
   have L': Decided (lit-of L) = L using decided by (cases L, auto)
   have x \in set (get-all-ann-decomposition (M' @ L # M))
     using x' get-all-ann-decomposition-except-last-choice-equal [of M' lit-of L P M]
     L' by (metis (no-types) M' list.set-sel(2) tl-Nil)
   then have case x of (Ls, seen) \Rightarrow unmark-l Ls \cup set-mset (clauses S)
     \models ps \ unmark-l \ seen
     using decided IH by (cases L) (auto simp add: S all-decomposition-implies-def)
 }
 moreover {
   assume x': x = ?hd
   have tl: tl (get-all-ann-decomposition (M' \otimes L \# M)) \neq []
     proof -
      have f1: \ \ \ ms. \ length \ (get-all-ann-decomposition \ (M' @ ms))
        = length (get-all-ann-decomposition ms)
        by (simp add: M' get-all-ann-decomposition-remove-undecided-length)
      have Suc (length (get-all-ann-decomposition M)) \neq Suc 0
        \mathbf{by} blast
      then show ?thesis
        using f1 decided by (metis (no-types) qet-all-ann-decomposition.simps(1) length-tl
          list.sel(3) \ list.size(3) \ ann-lit.collapse(1))
     qed
   obtain M\theta' M\theta where
     L0: hd (tl (qet-all-ann-decomposition (M' \otimes L \# M)) = (M0, M0')
     by (cases hd (tl (get-all-ann-decomposition (M' @ L \# M))))
   have x'': x = (M0, Propagated (-lit-of L) P # M0')
     unfolding x' using get-all-ann-decomposition-last-choice tl M' L0
     by (metis\ decided\ ann-lit.collapse(1))
   obtain l-get-all-ann-decomposition where
     get-all-ann-decomposition (trail S) = (L \# M, M') \# (M0, M0') \#
      l-qet-all-ann-decomposition
     using qet-all-ann-decomposition-backtrack-split extracted by (metis (no-types) L0 S
      hd-Cons-tl \ n \ tl)
   then have M = M0' @ M0 using get-all-ann-decomposition-hd-hd by fastforce
   then have IL': unmark-l M0 \cup set-mset (clauses S)
     \cup unmark-l\ M0' \models ps\ \{\{\#-\ lit\text{-}of\ L\#\}\}\
     using IL by (simp add: Un-commute Un-left-commute image-Un)
   moreover have H: unmark-l M0 \cup set-mset (clauses S)
     ⊨ps unmark-l M0'
     using IH x" unfolding all-decomposition-implies-def by (metis (no-types, lifting) L0 S
      list.set-sel(1) list.set-sel(2) old.prod.case tl tl-Nil)
   ultimately have case x of (Ls, seen) \Rightarrow unmark-l Ls \cup set\text{-mset} (clauses S)
     \models ps \ unmark-l \ seen
     using true-clss-clss-left-right unfolding x'' by auto
 ultimately show case x of (Ls, seen) \Rightarrow
   unmark-l Ls \cup set-mset (snd (?M', clauses S))
     \models ps \ unmark-l \ seen
   unfolding snd-conv by blast
qed
```

```
qed
```

```
theorem 2.8.3 page 73 of Weidenbach's book
theorem dpll_W-propagate-is-conclusion-of-decided:
 assumes dpll_W S S'
 and all-decomposition-implies-m (clauses S) (get-all-ann-decomposition (trail S))
 and atm\text{-}of ' lits\text{-}of\text{-}l (trail\ S) \subseteq atms\text{-}of\text{-}mm (clauses\ S)
 shows set-mset (clauses S') \cup {{#lit-of L#} |L. is-decided L \land L \in set (trail S')}
   using all-decomposition-implies-trail-is-implied [OF\ dpll_W-propagate-is-conclusion [OF\ assms]].
theorem 2.8.4 page 73 of Weidenbach's book
lemma only-propagated-vars-unsat:
 assumes decided: \forall x \in set M. \neg is\text{-decided } x
 and DN: D \in N and D: M \models as \ CNot \ D
 and inv: all-decomposition-implies N (get-all-ann-decomposition M)
 and atm-incl: atm-of 'lits-of-l M \subseteq atms-of-ms N
 shows unsatisfiable N
proof (rule ccontr)
 assume \neg unsatisfiable N
 then obtain I where
   I: I \models s N \text{ and }
   cons: consistent-interp I and
   tot: total-over-m I N
   unfolding satisfiable-def by auto
 then have I-D: I \models D
   using DN unfolding true-clss-def by auto
 have l0: \{\{\#lit\text{-}of\ L\#\}\ | L.\ is\text{-}decided\ L \land L \in set\ M\} = \{\}\ \mathbf{using}\ decided\ \mathbf{by}\ auto
 have atms-of-ms (N \cup unmark-l M) = atms-of-ms N
   using atm-incl unfolding atms-of-ms-def lits-of-def by auto
 then have total-over-m I (N \cup (\lambda a. \{\#lit\text{-of } a\#\}) ` (set M))
   using tot unfolding total-over-m-def by auto
 then have I \models s (\lambda a. \{\#lit\text{-}of a\#\}) \text{ '} (set M)
   using all-decomposition-implies-propagated-lits-are-implied [OF inv] cons I
   unfolding true-clss-clss-def l0 by auto
 then have IM: I \models s \ unmark-l \ M \ by \ auto
 {
   \mathbf{fix} K
   assume K \in \# D
   then have -K \in lits-of-l M
     by (auto split: if-split-asm
       intro: allE[OF\ D[unfolded\ true-annots-def\ Ball-def],\ of\ \{\#-K\#\}])
   then have -K \in I using IM true-clss-singleton-lit-of-implies-incl by fastforce
 then have \neg I \models D using cons unfolding true-cls-def consistent-interp-def by auto
 then show False using I-D by blast
qed
lemma dpll_W-same-clauses:
 assumes dpll_W S S'
 shows clauses S = clauses S'
 using assms by (induct rule: dpll<sub>W</sub>.induct, auto)
lemma rtranclp-dpll_W-inv:
```

```
assumes rtranclp \ dpll_W \ S \ S'
 and inv: all-decomposition-implies-m (clauses S) (get-all-ann-decomposition (trail S))
 and atm-incl: atm-of 'lits-of-l (trail S) \subseteq atms-of-mm (clauses S)
 and consistent-interp (lits-of-l (trail S))
 and no-dup (trail S)
 shows all-decomposition-implies-m (clauses S') (get-all-ann-decomposition (trail S'))
 and atm\text{-}of ' lits\text{-}of\text{-}l (trail\ S') \subseteq atms\text{-}of\text{-}mm (clauses\ S')
 and clauses S = clauses S'
 and consistent-interp (lits-of-l (trail S'))
 and no-dup (trail S')
 using assms
proof (induct rule: rtranclp-induct)
  case base
 show
   all-decomposition-implies-m (clauses S) (qet-all-ann-decomposition (trail S)) and
   \mathit{atm}\text{-}\mathit{of} ' \mathit{lits}\text{-}\mathit{of}\text{-}\mathit{l} (\mathit{trail}\ S) \subseteq \mathit{atms}\text{-}\mathit{of}\text{-}\mathit{mm} (\mathit{clauses}\ S) and
   clauses S = clauses S and
   consistent-interp (lits-of-l (trail S)) and
   no-dup (trail S) using assms by auto
  case (step S' S'') note dpll_WStar = this(1) and IH = this(3,4,5,6,7) and
    dpll_W = this(2)
 moreover
   assume
     inv: all-decomposition-implies-m (clauses S) (get-all-ann-decomposition (trail S)) and
     atm-incl: atm-of 'lits-of-l (trail S) \subset atms-of-mm (clauses S) and
     cons: consistent-interp (lits-of-l (trail S)) and
     no-dup (trail S)
  ultimately have decomp: all-decomposition-implies-m (clauses S')
    (qet-all-ann-decomposition (trail <math>S')) and
   atm-incl': atm-of ' lits-of-l (trail S') \subseteq atms-of-mm (clauses S') and
   snd: clauses S = clauses S' and
   cons': consistent-interp (lits-of-l (trail S')) and
   no-dup': no-dup (trail S') by blast+
  show clauses S = clauses S'' using dpll_W-same-clauses [OF \ dpll_W] and by metis
  show all-decomposition-implies-m (clauses S'') (qet-all-ann-decomposition (trail S''))
   using dpll_W-propagate-is-conclusion [OF dpll_W] decomp atm-incl' by auto
 show atm-of 'lits-of-l (trail S'') \subseteq atms-of-mm (clauses S'')
   using dpll_W-vars-in-snd-inv[OF dpll_W] atm-incl atm-incl' by auto
 show no-dup (trail S'') using dpll_W-distinct-inv[OF dpll_W] no-dup' dpll_W by auto
 show consistent-interp (lits-of-l (trail S''))
   using cons' no-dup' dpll_W-consistent-interp-inv[OF dpll_W] by auto
qed
definition dpll_W-all-inv S \equiv
  (all-decomposition-implies-m (clauses S) (get-all-ann-decomposition (trail S))
 \land atm-of 'lits-of-l (trail S) \subseteq atms-of-mm (clauses S)
 \land consistent\text{-}interp (lits\text{-}of\text{-}l (trail S))
 \land no-dup (trail S))
lemma dpll_W-all-inv-dest[dest]:
 assumes dpll_W-all-inv S
 shows all-decomposition-implies-m (clauses S) (get-all-ann-decomposition (trail S))
 and atm\text{-}of ' lits\text{-}of\text{-}l (trail\ S) \subseteq atms\text{-}of\text{-}mm (clauses\ S)
 and consistent-interp (lits-of-l (trail S)) \land no-dup (trail S)
```

```
using assms unfolding dpllw-all-inv-def lits-of-def by auto
```

```
lemma rtranclp-dpll_W-all-inv:
 assumes rtranclp \ dpll_W \ S \ S'
 and dpll_W-all-inv S
 shows dpll_W-all-inv S'
 using assms rtranclp-dpll_W-inv[OF\ assms(1)] unfolding dpll_W-all-inv-def\ lits-of-def\ by\ blast
lemma dpll_W-all-inv:
 assumes dpll_W S S'
 and dpll_W-all-inv S
 shows dpll_W-all-inv S'
 using assms rtranclp-dpll_W-all-inv by blast
lemma rtranclp-dpll_W-inv-starting-from-\theta:
 assumes rtranclp \ dpll_W \ S \ S'
 and inv: trail\ S = []
 shows dpll_W-all-inv S'
proof -
 have dpll_W-all-inv S
   using assms unfolding all-decomposition-implies-def dpllw-all-inv-def by auto
 then show ?thesis using rtranclp-dpll<sub>W</sub>-all-inv[OF assms(1)] by blast
qed
lemma dpll_W-can-do-step:
 assumes consistent-interp (set M)
 and distinct M
 and atm\text{-}of ' (set\ M)\subseteq atms\text{-}of\text{-}mm\ N
 shows rtrancly dpll_W ([], N) (map Decided M, N)
 using assms
proof (induct M)
 case Nil
 then show ?case by auto
next
  case (Cons\ L\ M)
 then have undefined-lit (map Decided M) L
   unfolding defined-lit-def consistent-interp-def by auto
 moreover have atm\text{-}of\ L\in atms\text{-}of\text{-}mm\ N\ using\ Cons.prems(3)\ by\ auto
 ultimately have dpll_W (map Decided M, N) (map Decided (L # M), N)
   using dpll_W.decided by auto
 moreover have consistent-interp (set M) and distinct M and atm-of 'set M \subseteq atms-of-mm N
   using Cons.prems unfolding consistent-interp-def by auto
 ultimately show ?case using Cons.hyps by auto
qed
definition conclusive-dpll_W-state (S:: 'v dpll_W-state) \longleftrightarrow
 (trail\ S \models asm\ clauses\ S \lor ((\forall\ L \in set\ (trail\ S).\ \neg is\text{-}decided\ L)
 \land (\exists C \in \# clauses S. trail S \models as CNot C)))
theorem 2.8.6 page 74 of Weidenbach's book
lemma dpll_W-strong-completeness:
 assumes set M \models sm N
 and consistent-interp (set M)
 and distinct M
 and atm\text{-}of ' (set\ M)\subseteq atms\text{-}of\text{-}mm\ N
 shows dpll_{W}^{**} ([], N) (map Decided M, N)
```

```
and conclusive-dpll_W-state (map\ Decided\ M,\ N)
proof -
 show rtrancly dpll_W ([], N) (map Decided M, N) using dpll_W-can-do-step assms by auto
 have map Decided M \models asm \ N \ using \ assms(1) \ true-annots-decided-true-cls by auto
 then show conclusive-dpll<sub>W</sub>-state (map Decided M, N)
   unfolding conclusive-dpll_W-state-def by auto
qed
theorem 2.8.5 page 73 of Weidenbach's book
lemma dpll_W-sound:
 assumes
   rtranclp dpll_W ([], N) (M, N) and
   \forall S. \neg dpll_W (M, N) S
 shows M \models asm N \longleftrightarrow satisfiable (set-mset N) (is ?A \longleftrightarrow ?B)
proof
 let ?M' = lits - of - lM
 assume ?A
 then have ?M' \models sm \ N by (simp \ add: true-annots-true-cls)
 moreover have consistent-interp ?M'
   using rtranclp-dpll_W-inv-starting-from-0[OF assms(1)] by auto
  ultimately show ?B by auto
next
 assume ?B
 show ?A
   proof (rule ccontr)
     assume n: \neg ?A
     have (\exists L. \ undefined-lit \ M \ L \land \ atm-of \ L \in atms-of-mm \ N) \lor (\exists D \in \#N. \ M \models as \ CNot \ D)
      proof -
        obtain D :: 'a \ clause \ \mathbf{where} \ D : D \in \# \ N \ \mathbf{and} \ \neg \ M \models a \ D
          using n unfolding true-annots-def Ball-def by auto
        then have (\exists L. undefined-lit M L \land atm-of L \in atms-of D) \lor M \models as CNot D
           unfolding true-annots-def Ball-def CNot-def true-annot-def
           using atm-of-lit-in-atms-of true-annot-iff-decided-or-true-lit true-cls-def by blast
        then show ?thesis
          by (metis Bex-def D atms-of-atms-of-ms-mono rev-subsetD)
      \mathbf{qed}
     moreover {
      assume \exists L. undefined-lit M L \land atm\text{-}of L \in atms\text{-}of\text{-}mm N
       then have False using assms(2) decided by fastforce
     moreover {
      assume \exists D \in \#N. M \models as CNot D
       then obtain D where DN: D \in \# N and MD: M \models as \ CNot \ D by auto
        assume \forall l \in set M. \neg is\text{-}decided l
        moreover have dpll_W-all-inv ([], N)
          using assms unfolding all-decomposition-implies-def dpllw-all-inv-def by auto
        ultimately have unsatisfiable (set\text{-}mset N)
          using only-propagated-vars-unsat[of M D set-mset N] DN MD
          rtranclp-dpll_W-all-inv[OF\ assms(1)] by force
        then have False using \langle ?B \rangle by blast
       }
       moreover {
        assume l: \exists l \in set M. is\text{-}decided l
        then have False
          using backtrack[of(M, N) - - D]DNMD assms(2)
```

```
backtrack-split-some-is-decided-then-snd-has-hd[OF l]
          by (metis\ backtrack-split-snd-hd-decided\ fst-conv\ list.distinct(1)\ list.sel(1)\ snd-conv)
       ultimately have False by blast
     ultimately show False by blast
    qed
\mathbf{qed}
1.4.3
          Termination
definition dpll_W-mes M n =
 map \ (\lambda l. \ if \ is\ decided \ l \ then \ 2 \ else \ (1::nat)) \ (rev \ M) \ @ \ replicate \ (n-length \ M) \ 3
lemma length-dpll_W-mes:
 assumes length M \leq n
 shows length (dpll_W - mes\ M\ n) = n
 using assms unfolding dpll_W-mes-def by auto
lemma distinct card-atm-of-lit-of-eq-length:
 assumes no-dup S
 shows card (atm-of 'lits-of-l S) = length S
 using assms by (induct S) (auto simp add: image-image lits-of-def)
lemma dpll_W-card-decrease:
 assumes dpll: dpll_W S S' and length (trail S') \leq card vars
 \mathbf{and}\ \mathit{length}\ (\mathit{trail}\ S) \leq \mathit{card}\ \mathit{vars}
 shows (dpll_W-mes (trail\ S')\ (card\ vars),\ dpll_W-mes (trail\ S)\ (card\ vars))
   \in lexn \{(a, b). a < b\} (card vars)
 using assms
proof (induct rule: dpll<sub>W</sub>.induct)
 case (propagate \ C \ L \ S)
 have m: map (\lambda l. if is-decided l then 2 else 1) (rev (trail S))
      @ replicate (card vars - length (trail S)) 3
    = map(\lambda l. if is\text{-}decided l then 2 else 1) (rev (trail S)) @ 3
        \# replicate (card vars - Suc (length (trail S))) 3
    using propagate.prems[simplified] using Suc-diff-le by fastforce
  then show ?case
   using propagate.prems(1) unfolding dpll_W-mes-def by (fastforce simp add: lexn-conv assms(2))
\mathbf{next}
  case (decided \ S \ L)
 have m: map (\lambda l. if is\text{-}decided \ l then \ 2 \ else \ 1) \ (rev \ (trail \ S))
     @ replicate (card vars - length (trail S)) 3
   = map (\lambda l. if is\text{-}decided l then 2 else 1) (rev (trail S)) @ 3
     \# replicate (card vars - Suc (length (trail S))) 3
   using decided.prems[simplified] using Suc-diff-le by fastforce
  then show ?case
   using decided.prems unfolding dpll_W-mes-def by (force simp add: lexn-conv assms(2))
next
 case (backtrack S M' L M D)
 have L: is-decided L using backtrack.hyps(2) by auto
 have S: trail\ S = M' @ L \# M
   using backtrack.hyps(1) backtrack-split-list-eq[of\ trail\ S] by auto
 show ?case
   using backtrack.prems L unfolding dpll_W-mes-def S by (fastforce simp add: lexn-conv assms(2))
qed
```

```
lemma dpll_W-card-decrease':
 assumes dpll: dpll_W S S'
 and atm-incl: atm-of 'lits-of-l (trail S) \subseteq atms-of-mm (clauses S)
 and no-dup: no-dup (trail S)
 shows (dpll_W - mes \ (trail \ S') \ (card \ (atms-of-mm \ (clauses \ S'))),
        dpll_W-mes (trail S) (card (atms-of-mm (clauses S)))) \in lex \{(a, b), a < b\}
proof
 have finite (atms-of-mm (clauses S)) unfolding atms-of-ms-def by auto
 then have 1: length (trail S) \leq card (atms-of-mm (clauses S))
   using distinct card-atm-of-lit-of-eq-length [OF no-dup] atm-incl card-mono by metis
 moreover
   have no-dup': no-dup (trail S') using dpll dpll_W-distinct-inv no-dup by blast
   have SS': clauses S' = clauses S using dpll by (auto dest!: dpll<sub>W</sub>-same-clauses)
   have atm-incl': atm-of 'lits-of-l (trail S') \subseteq atms-of-mm (clauses S')
     using atm-incl dpll dpll_W-vars-in-snd-inv[OF dpll] by force
   have finite (atms-of-mm (clauses S'))
     unfolding atms-of-ms-def by auto
   then have 2: length (trail S') \leq card (atms-of-mm (clauses S))
     using distinct card-atm-of-lit-of-eq-length [OF no-dup'] atm-incl' card-mono SS' by metis
 ultimately have (dpll_W - mes \ (trail \ S') \ (card \ (atms-of-mm \ (clauses \ S))),
     dpll_W-mes (trail S) (card (atms-of-mm (clauses S))))
   \in lexn \{(a, b). \ a < b\} \ (card \ (atms-of-mm \ (clauses \ S)))
   using dpll_W-card-decrease [OF assms(1), of atms-of-mm (clauses S)] by blast
 then have (dpll_W - mes \ (trail \ S') \ (card \ (atms-of-mm \ (clauses \ S))),
        dpll_W-mes (trail S) (card (atms-of-mm (clauses S)))) \in lex \{(a, b), a < b\}
   unfolding lex-def by auto
 then show (dpll_W - mes \ (trail \ S') \ (card \ (atms-of-mm \ (clauses \ S'))),
       dpll_W-mes (trail S) (card (atms-of-mm (clauses S)))) \in lex \{(a, b), a < b\}
   using dpll_W-same-clauses [OF assms(1)] by auto
qed
lemma wf-lexn: wf (lexn \{(a, b), (a::nat) < b\} (card (atms-of-mm (clauses S))))
proof -
 have m: \{(a, b), a < b\} = measure id by auto
 show ?thesis apply (rule wf-lexn) unfolding m by auto
qed
lemma dpll_W-wf:
 wf \{(S', S). dpll_W - all - inv S \wedge dpll_W S S'\}
 apply (rule wf-wf-if-measure'[OF wf-lex-less, of - -
        \lambda S. \ dpll_W-mes (trail S) (card (atms-of-mm (clauses S)))])
 using dpll_W-card-decrease' by fast
lemma dpll_W-tranclp-star-commute:
 \{(S', S).\ dpll_W - all - inv\ S \land dpll_W\ S\ S'\}^+ = \{(S', S).\ dpll_W - all - inv\ S \land tranclp\ dpll_W\ S\ S'\}
   (is ?A = ?B)
proof
 { fix S S'
   assume (S, S') \in ?A
   then have (S, S') \in ?B
     by (induct rule: trancl.induct, auto)
```

```
}
 then show ?A \subseteq ?B by blast
  \{ \text{ fix } S S' \}
   assume (S, S') \in ?B
   then have dpll_W^{++} S' S and dpll_W-all-inv S' by auto
   then have (S, S') \in ?A
     proof (induct rule: tranclp.induct)
       case r-into-trancl
       then show ?case by (simp-all add: r-into-trancl')
     next
       case (trancl-into-trancl S S' S'')
       then have (S', S) \in \{a. \ case \ a \ of \ (S', S) \Rightarrow dpll_W - all - inv \ S \land dpll_W \ S \ S'\}^+ \ by \ blast
       moreover have dpll_W-all-inv S'
         using rtranclp-dpll_W-all-inv[OF\ tranclp-into-rtranclp[OF\ trancl-into-trancl.hyps(1)]]
         trancl-into-trancl.prems by auto
       ultimately have (S'', S') \in \{(pa, p), dpll_W - all - inv p \land dpll_W p pa\}^+
         using \langle dpll_W - all - inv S' \rangle trancl-into-trancl.hyps(3) by blast
       then show ?case
         using \langle (S', S) \in \{a. \ case \ a \ of \ (S', S) \Rightarrow dpll_W - all - inv \ S \land dpll_W \ S \ S'\}^+ \rangle by auto
     qed
 then show ?B \subseteq ?A by blast
qed
lemma dpll_W-wf-tranclp: wf \{(S', S), dpll_W-all-inv S \wedge dpll_W^{++} S S'\}
 unfolding dpll_W-tranclp-star-commute[symmetric] by (simp add: dpll_W-wf wf-trancl)
lemma dpll_W-wf-plus:
 shows wf \{(S', ([], N)) | S' . dpll_W^{++} ([], N) S' \} (is wf ?P)
 apply (rule wf-subset[OF dpll_W-wf-tranclp, of ?P])
 using assms unfolding dpll_W-all-inv-def by auto
1.4.4
          Final States
```

Proposition 2.8.1: final states are the normal forms of $dpll_W$

```
lemma dpll_W-no-more-step-is-a-conclusive-state:
 assumes \forall S'. \neg dpll_W S S'
 shows conclusive-dpll_W-state S
proof -
  have vars: \forall s \in atms\text{-}of\text{-}mm \ (clauses \ S). \ s \in atm\text{-}of \ `lits\text{-}of\text{-}l \ (trail \ S)
    proof (rule ccontr)
      assume \neg (\forall s \in atms\text{-}of\text{-}mm \ (clauses \ S). \ s \in atm\text{-}of \ `its\text{-}of\text{-}l \ (trail \ S))
      then obtain L where
        L-in-atms: L \in atms-of-mm (clauses S) and
        L-notin-trail: L \notin atm\text{-}of \text{ '} lits\text{-}of\text{-}l \text{ (trail } S) by metis
      obtain L' where L': atm\text{-}of\ L' = L\ by\ (meson\ literal.sel(2))
      then have undefined-lit (trail S) L'
        unfolding Decided-Propagated-in-iff-in-lits-of-l by (metis L-notin-trail atm-of-uninus imageI)
      then show False using dpll_W.decided \ assms(1) \ L-in-atms \ L' by blast
    qed
  show ?thesis
    proof (rule ccontr)
      assume not-final: ¬ ?thesis
     then have
        \neg trail S \models asm clauses S  and
```

```
(\exists L \in set \ (trail \ S). \ is\text{-}decided \ L) \lor (\forall C \in \#clauses \ S. \ \neg trail \ S \models as \ CNot \ C)
       unfolding conclusive-dpll_W-state-def by auto
     moreover {
       assume \exists L \in set \ (trail \ S). is-decided L
       then obtain L M' M where L: backtrack-split (trail S) = (M', L \# M)
         using backtrack-split-some-is-decided-then-snd-has-hd by blast
       obtain D where D \in \# clauses S and \neg trail S \models a D
         using \langle \neg trail \ S \models asm \ clauses \ S \rangle unfolding true-annots-def by auto
       then have \forall s \in atms\text{-}of\text{-}ms \{D\}. s \in atm\text{-}of \text{ '}lits\text{-}of\text{-}l (trail S)
         using vars unfolding atms-of-ms-def by auto
       then have trail S \models as \ CNot \ D
         using all-variables-defined-not-imply-cnot [of D] \langle \neg trail \ S \models a \ D \rangle by auto
       moreover have is-decided L
         using L by (metis backtrack-split-snd-hd-decided list.distinct(1) list.sel(1) snd-conv)
       ultimately have False
         using assms(1) dpll_W.backtrack\ L\ \langle D\in\#\ clauses\ S\rangle\ \langle trail\ S\models as\ CNot\ D\rangle\ by\ blast
     }
     moreover {
       assume tr: \forall C \in \#clauses \ S. \ \neg trail \ S \models as \ CNot \ C
       obtain C where C-in-cls: C \in \# clauses S and trC: \neg trail S \models a C
         using \langle \neg trail \ S \models asm \ clauses \ S \rangle unfolding true-annots-def by auto
       have \forall s \in atms \text{-}of\text{-}ms \{C\}. s \in atm\text{-}of \text{ '}lits\text{-}of\text{-}l (trail S)
         using vars \langle C \in \# clauses S \rangle unfolding atms-of-ms-def by auto
       then have trail\ S \models as\ CNot\ C
         by (meson C-in-cls tr trC all-variables-defined-not-imply-cnot)
       then have False using tr C-in-cls by auto
     ultimately show False by blast
   qed
qed
lemma dpll_W-conclusive-state-correct:
 assumes dpll_{W}^{**}([], N) (M, N) and conclusive-dpll_{W}-state (M, N)
  shows M \models asm N \longleftrightarrow satisfiable (set-mset N) (is ?A \longleftrightarrow ?B)
proof
  let ?M' = lits - of - lM
  assume ?A
  then have ?M' \models sm \ N by (simp \ add: true-annots-true-cls)
  moreover have consistent-interp ?M'
   using rtranclp-dpll_W-inv-starting-from-0[OF assms(1)] by auto
  ultimately show ?B by auto
next
  assume ?B
  show ?A
   proof (rule ccontr)
     assume n: \neg ?A
     have no-mark: \forall L \in set M. \neg is-decided L \exists C \in \# N. M \models as CNot C
       using n \ assms(2) unfolding conclusive-dpll_W-state-def by auto
     moreover obtain D where DN: D \in \# N and MD: M \models as \ CNot \ D using no-mark by auto
     ultimately have unsatisfiable (set-mset N)
       using only-propagated-vars-unsat rtranclp-dpll_W-all-inv[OF\ assms(1)]
       unfolding dpll_W-all-inv-def by force
     then show False using \langle ?B \rangle by blast
   \mathbf{qed}
qed
```

1.4.5 Link with NOT's DPLL

```
interpretation dpll_{W-NOT}: dpll-with-backtrack.
declare dpll_{W-NOT}.state-simp_{NOT}[simp\ del]
lemma state-eq_{NOT}-iff-eq[iff, simp]: dpll_{W-NOT}.state-eq_{NOT} S T \longleftrightarrow S = T
 unfolding dpll_{W-NOT}. state-eq_{NOT}-def by (cases S, cases T) auto
lemma dpll_W-dpll_W-bj:
 assumes inv: dpll_W-all-inv S and dpll: dpll_W S T
 shows dpll_{W-NOT}.dpll-bj S T
 using dpll inv
 apply (induction rule: dpll_W.induct)
   apply (rule dpll_W-_{NOT}.bj-propagate_{NOT})
   apply (rule dpll_W-_{NOT}.propagate_{NOT}.propagate_{NOT}; simp?)
   apply fastforce
  apply (rule dpll_{W-NOT}. bj-decide<sub>NOT</sub>)
  apply (rule dpll_{W-NOT}.decide_{NOT}.decide_{NOT}; simp?)
  apply fastforce
 apply (frule\ dpll_{W-NOT}.backtrack.intros[of - - - -],\ simp-all)
 apply (rule dpll_W-_{NOT}.dpll-bj.bj-backjump)
 apply (rule dpll_{W-NOT}. backtrack-is-backjump",
   simp-all\ add:\ dpll_W-all-inv-def)
 done
lemma dpll_W-bj-dpll:
 assumes inv: dpll_W-all-inv S and dpll: dpll_W-NOT. dpll-bj S T
 shows dpll_W S T
 using dpll
 apply (induction rule: dpll_{W-NOT}.dpll-bj.induct)
   apply (elim \ dpll_{W-NOT}.decide_{NOT}E, \ cases \ S)
   apply (frule decided; simp)
  apply (elim dpll_{W-NOT}.propagate<sub>NOT</sub>E, cases S)
  apply (auto intro!: propagate[of - - (-, -), simplified])[]
 apply (elim dpll_{W-NOT}.backjumpE, cases S)
 \mathbf{by}\ (simp\ add:\ dpll_W.simps\ dpll-with-backtrack.backtrack.simps)
lemma rtranclp-dpll_W-rtranclp-dpll_W-_{NOT}:
 assumes dpll_W^{**} S T and dpll_W-all-inv S
 shows dpll_{W-NOT}.dpll-bj^{**} S T
 using assms apply (induction)
  apply simp
 by (auto intro: rtranclp-dpll_W-all-inv dpll_W-dpll_W-bj rtranclp.rtrancl-into-rtrancl)
lemma rtranclp-dpll-rtranclp-dpll_W:
 assumes dpll_{W-NOT}.dpll-bj^{**} S T and dpll_{W}-all-inv S
 shows dpll_W^{**} S T
 using assms apply (induction)
  apply simp
 by (auto intro: dpll_W-bj-dpll rtranclp.rtrancl-into-rtrancl rtranclp-dpll_W-all-inv)
{\bf lemma}\ dpll{\it -conclusive-state-correctness}:
 assumes dpll_{W^{-}NOT}.dpll-bj^{**} ([], N) (M, N) and conclusive-dpll_{W^{-}state} (M, N)
 shows M \models asm N \longleftrightarrow satisfiable (set-mset N)
proof -
 have dpll_W-all-inv ([], N)
```

```
unfolding dpll_W-all-inv-def by auto

show ?thesis

apply (rule dpll_W-conclusive-state-correct)

apply (simp add: \langle dpll_W-all-inv ([], N)> assms(1) rtranclp-dpll-rtranclp-dpll_W)

using assms(2) by simp

qed

end

theory CDCL-W-Level

imports Partial-Annotated-Clausal-Logic

begin
```

Level of literals and clauses

Getting the level of a variable, implies that the list has to be reversed. Here is the function after reversing.

In get-level (resp. get-level), the beginning (resp. the end) can be skipped if the literal is not in the beginning (resp. the end).

```
\begin{array}{l} \textbf{lemma} \ \ get\text{-}rev\text{-}level\text{-}skip[simp]\text{:} \\ \textbf{assumes} \ \ atm\text{-}of \ L \notin atm\text{-}of \ \ \ lits\text{-}of\text{-}l \ M \\ \textbf{shows} \ \ get\text{-}level \ (M @ M') \ L = get\text{-}level \ M' \ L \\ \textbf{using} \ \ assms \ \textbf{by} \ \ (induct \ M \ rule: \ ann\text{-}lit\text{-}list\text{-}induct) \ \ auto \end{array}
```

If the literal is at the beginning, then the end can be skipped

```
lemma get-rev-level-skip-end[simp]:
   assumes atm-of L \in atm-of 'lits-of-l M
   shows get-level (M @ M') L = get-level M L + length (filter is-decided M')
   using assms by (induct M' rule: ann-lit-list-induct) (auto simp: lits-of-def)

lemma get-level-skip-beginning:
   assumes atm-of L' \neq atm-of (lit-of K)
   shows get-level (K \# M) L' = get-level M L'
   using assms by auto
```

lemma get-level-skip-beginning-not-decided[simp]:

```
assumes atm\text{-}of \ L \notin atm\text{-}of \ `lits\text{-}of\text{-}l \ S
 and \forall s \in set S. \neg is\text{-}decided s
 shows get-level (M @ S) L = get-level M L
  using assms apply (induction S rule: ann-lit-list-induct)
   apply auto[2]
 apply (case-tac atm-of L \in atm-of 'lits-of-l M)
 apply (auto simp: image-iff lits-of-def filter-empty-conv dest: set-dropWhileD)
 done
lemma get-level-skip-in-all-not-decided:
 fixes M :: ('a, 'b) ann-lits and L :: 'a literal
 assumes \forall m \in set M. \neg is\text{-}decided m
 and atm\text{-}of\ L\in atm\text{-}of ' lits\text{-}of\text{-}l\ M
 shows get-level ML = 0
 using assms by (induction M rule: ann-lit-list-induct) auto
lemma get-level-skip-all-not-decided[simp]:
 fixes M
 assumes \forall m \in set M. \neg is\text{-}decided m
 shows get-level M L = 0
 using assms by (auto simp: filter-empty-conv dest: set-dropWhileD)
abbreviation MMax\ M \equiv Max\ (set\text{-}mset\ M)
the \{\#\theta::'a\#\} is there to ensures that the set is not empty.
definition get-maximum-level :: ('a, 'b) ann-lits \Rightarrow 'a literal multiset \Rightarrow nat
 where
get-maximum-level M D = MMax (\{\#0\#\} + image-mset (get-level M) D)
lemma get-maximum-level-ge-get-level:
  L \in \# D \Longrightarrow get\text{-}maximum\text{-}level\ M\ D \ge get\text{-}level\ M\ L
 unfolding get-maximum-level-def by auto
lemma get-maximum-level-empty[simp]:
  get-maximum-level M \{\#\} = 0
 unfolding get-maximum-level-def by auto
lemma get-maximum-level-exists-lit-of-max-level:
  D \neq \{\#\} \Longrightarrow \exists L \in \# D. \text{ get-level } M L = \text{get-maximum-level } M D
 unfolding get-maximum-level-def
 apply (induct D)
  apply simp
 by (rename-tac D x, case-tac D = \{\#\}) (auto simp add: max-def)
lemma get-maximum-level-empty-list[simp]:
  qet-maximum-level []D = 0
 unfolding get-maximum-level-def by (simp add: image-constant-conv)
lemma get-maximum-level-single[simp]:
  get-maximum-level M {\#L\#} = get-level M L
 unfolding get-maximum-level-def by simp
lemma get-maximum-level-plus:
  get-maximum-level M (D + D') = max (get-maximum-level M D) (get-maximum-level M D')
 by (induct D) (auto simp add: get-maximum-level-def)
```

```
lemma get-maximum-level-exists-lit:
 assumes n: n > 0
 and max: get-maximum-level MD = n
 shows \exists L \in \#D. get-level ML = n
proof -
 have f: finite (insert 0 ((\lambda L. get-level M L) 'set-mset D)) by auto
 then have n \in ((\lambda L. \ get\text{-level } M \ L) \ `set\text{-mset } D)
   using n \max Max-in[OF f] unfolding get-maximum-level-def by simp
 then show \exists L \in \# D. get-level ML = n by auto
qed
lemma \ get-maximum-level-skip-first[simp]:
 assumes atm-of L \notin atms-of D
 shows get-maximum-level (Propagated L C \# M) D = get-maximum-level M D
 using assms unfolding qet-maximum-level-def atms-of-def
   atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set
 by (smt atm-of-in-atm-of-set-in-uminus get-level-skip-beginning image-iff ann-lit.sel(2)
   multiset.map-conq0)
lemma get-maximum-level-skip-beginning:
 assumes DH: \forall x \in atms\text{-}of D. x \notin atm\text{-}of `lits\text{-}of\text{-}l c
 shows get-maximum-level (c @ H) D = get-maximum-level H D
proof -
 have (get\text{-}level\ (c\ @\ H)) 'set-mset D=(get\text{-}level\ H)'set-mset D
   apply (rule image-cong)
    apply simp
   using DH unfolding atms-of-def by auto
 then show ?thesis using DH unfolding get-maximum-level-def by auto
lemma get-maximum-level-D-single-propagated:
 get-maximum-level [Propagated x21 x22] D = 0
 unfolding get-maximum-level-def by (simp add: image-constant-conv)
\mathbf{lemma} \ \textit{get-maximum-level-skip-un-decided-not-present}:
 assumes
   \forall L \in \#D. \ atm\text{-}of \ L \notin atm\text{-}of \ `lits\text{-}of\text{-}l \ M \ and }
   \forall m \in set M. \neg is\text{-}decided m
 shows get-maximum-level (M @ aa) D = get-maximum-level aa D
 using assms unfolding get-maximum-level-def by simp
lemma get-maximum-level-union-mset:
  get-maximum-level M (A \# \cup B) = get-maximum-level M (A + B)
 unfolding get-maximum-level-def by (auto simp: image-Un)
lemma count-decided-rev[simp]:
  count-decided (rev M) = count-decided M
 by (auto simp: rev-filter[symmetric])
lemma count-decided-ge-get-level[simp]:
  count-decided M \ge get-level M L
 by (induct M rule: ann-lit-list-induct) (auto simp add: le-max-iff-disj)
\mathbf{lemma}\ count\text{-}decided\text{-}ge\text{-}get\text{-}maximum\text{-}level\text{:}
  count-decided M \ge get-maximum-level M D
  using get-maximum-level-exists-lit-of-max-level unfolding Bex-def
```

```
by (metis get-maximum-level-empty count-decided-ge-get-level le0)
fun get-all-mark-of-propagated where
get-all-mark-of-propagated [] = []
get-all-mark-of-propagated (Decided - \# L) = get-all-mark-of-propagated L
qet-all-mark-of-propagated (Propagated - mark \# L) = mark \# qet-all-mark-of-propagated L
lemma get-all-mark-of-propagated-append[simp]:
 get-all-mark-of-propagated (A @ B) = get-all-mark-of-propagated A @ get-all-mark-of-propagated B
 by (induct A rule: ann-lit-list-induct) auto
Properties about the levels
lemma atm-lit-of-set-lits-of-l:
 (\lambda l. \ atm\text{-}of \ (lit\text{-}of \ l)) 'set xs = atm\text{-}of 'lits-of-l xs
 unfolding lits-of-def by auto
lemma le-count-decided-decomp:
 assumes no-dup M
 shows i < count-decided M \longleftrightarrow (\exists c \ K \ c'. \ M = c \ @ \ Decided \ K \ \# \ c' \land \ get-level M \ K = Suc \ i)
   (is ?A \longleftrightarrow ?B)
proof
 assume ?B
 then obtain c K c' where
   M = c @ Decided K \# c'  and get-level M K = Suc i
 then show ?A using count-decided-qe-qet-level[of K M] by auto
next
 assume ?A
 then show ?B
   using \langle no\text{-}dup \ M \rangle
   proof (induction M rule: ann-lit-list-induct)
     case Nil
     then show ?case by simp
   next
     case (Decided L M) note IH = this(1) and i = this(2) and n-d = this(3)
     then have n-d-M: no-dup M by simp
     show ?case
      proof (cases i < count\text{-}decided M)
        case True
        then obtain c K c' where
          M: M = c @ Decided K \# c'  and lev-K: get-level M K = Suc i
          using IH n-d-M by blast
        show ?thesis
         apply (rule exI[of - Decided L \# c])
         apply (rule\ ext[of - K])
         apply (rule exI[of - c'])
         using lev-K n-d unfolding M by auto
      next
        case False
        show ?thesis
```

apply (rule exI[of - []]) apply (rule exI[of - L]) apply (rule exI[of - M]) using False i by auto

qed

```
\mathbf{next}
       case (Propagated L mark' M) note i = this(2) and n-d = this(3) and IH = this(1)
       then obtain c K c' where
         M: M = c @ Decided K \# c'  and lev-K: get-level M K = Suc i
         \mathbf{by} auto
       show ?case
         apply (rule exI[of - Propagated L mark' # c])
         \mathbf{apply} \ (\mathit{rule} \ \mathit{exI}[\mathit{of} - \mathit{K}])
         apply (rule\ ext[of - c'])
         using lev-K n-d unfolding M by (auto simp: atm-lit-of-set-lits-of-l)
      \mathbf{qed}
\mathbf{qed}
\mathbf{end}
theory CDCL-W
{\bf imports}\ {\it List-More}\ {\it CDCL-W-Level}\ {\it Wellfounded-More}\ {\it Partial-Annotated-Clausal-Logic}
begin
```

Chapter 2

Weidenbach's CDCL

The organisation of the development is the following:

- CDCL_W.thy contains the specification of the rules: the rules and the strategy are defined, and we proof the correctness of CDCL.
- CDCL_W_Termination.thy contains the proof of termination.
- CDCL_W_Merge.thy contains a variant of the calculus: some rules of the raw calculus are always applied together (like the rules analysing the conflict and then backtracking). We define an equivalent version of the calculus where these rules are applied together. This is useful for implementations.
- CDCL_WNOT.thy proves the inclusion of Weidenbach's version of CDCL in NOT's version. We use here the version defined in CDCL_W_Merge.thy. We need this, because NOT's backjump corresponds to multiple applications of three rules in Weidenbach's calculus. We show also the termination of the calculus without strategy.

We have some variants build on the top of Weidenbach's CDCL calculus:

- CDCL_W_Incremental.thy adds incrementality on the top of CDCL_W.thy. The way we are doing it is not compatible with CDCL_W_Merge.thy, because we add conflicts and the CDCL_W_Merge.thy cannot analyse conflicts added externally, because the conflict and analyse are merged.
- CDCL_W_Restart.thy adds restart. It is built on the top of CDCL_W_Merge.thy.

2.1 Weidenbach's CDCL with Multisets

declare $upt.simps(2)[simp \ del]$

2.1.1 The State

We will abstract the representation of clause and clauses via two locales. We here use multisets, contrary to CDCL_W_Abstract_State.thy where we assume only the existence of a conversion to the state.

 $locale state_W - ops =$

```
fixes
    trail :: 'st \Rightarrow ('v, 'v \ clause) \ ann-lits \ and
    init-clss :: 'st \Rightarrow 'v clauses and
    learned-clss :: 'st \Rightarrow 'v \ clauses \ \mathbf{and}
    backtrack-lvl :: 'st \Rightarrow nat and
    conflicting :: 'st \Rightarrow 'v clause option and
    cons-trail :: ('v, 'v clause) ann-lit \Rightarrow 'st \Rightarrow 'st and
    tl-trail :: 'st \Rightarrow 'st and
    add-learned-cls :: 'v clause \Rightarrow 'st \Rightarrow 'st and
    remove\text{-}cls :: 'v \ clause \Rightarrow 'st \Rightarrow 'st \ \text{and}
    update-backtrack-lvl :: nat \Rightarrow 'st \Rightarrow 'st and
    update\text{-}conflicting :: 'v \ clause \ option \Rightarrow 'st \Rightarrow 'st \ \mathbf{and}
    init-state :: 'v clauses \Rightarrow 'st
begin
abbreviation hd-trail :: 'st \Rightarrow ('v, 'v \ clause) \ ann-lit where
hd-trail S \equiv hd (trail S)
definition clauses :: 'st \Rightarrow 'v \ clauses \ \mathbf{where}
clauses S = init-clss S + learned-clss S
abbreviation resolve-cls where
resolve\text{-}cls\ L\ D'\ E \equiv remove1\text{-}mset\ (-L)\ D'\ \#\cup\ remove1\text{-}mset\ L\ E
abbreviation state :: 'st \Rightarrow ('v, 'v clause) ann-lits \times 'v clauses \times 'v clauses
  \times nat \times 'v clause option where
state\ S \equiv (trail\ S,\ init-clss\ S,\ learned-clss\ S,\ backtrack-lvl\ S,\ conflicting\ S)
```

We are using an abstract state to abstract away the detail of the implementation: we do not need to know how the clauses are represented internally, we just need to know that they can be converted to multisets.

Weidenbach state is a five-tuple composed of:

- 1. the trail is a list of decided literals;
- 2. the initial set of clauses (that is not changed during the whole calculus);
- 3. the learned clauses (clauses can be added or remove);
- 4. the maximum level of the trail;
- 5. the conflicting clause (if any has been found so far).

There are two different clause representation: one for the conflicting clause ('v Partial-Clausal-Logic.clause, standing for conflicting clause) and one for the initial and learned clauses ('v Partial-Clausal-Logic.clause, standing for clause). The representation of the clauses annotating literals in the trail is slightly different: being able to convert it to 'v Partial-Clausal-Logic.clause is enough (needed for function hd-trail below).

There are several axioms to state the independence of the different fields of the state: for example, adding a clause to the learned clauses does not change the trail.

locale $state_W =$

```
state_W-ops
```

```
— functions about the state:
      — getter:
    trail init-clss learned-clss backtrack-lvl conflicting
    cons\text{-}trail\ tl\text{-}trail\ add\text{-}learned\text{-}cls\ remove\text{-}cls\ update\text{-}backtrack\text{-}lvl
    update	ext{-}conflicting
      — Some specific states:
    init\text{-}state
  for
    trail :: 'st \Rightarrow ('v, 'v \ clause) \ ann-lits \ \mathbf{and}
    init-clss :: 'st \Rightarrow 'v clauses and
    learned-clss :: 'st \Rightarrow 'v clauses and
    backtrack-lvl :: 'st \Rightarrow nat and
    conflicting :: 'st \Rightarrow 'v \ clause \ option \ and
    cons-trail :: ('v, 'v clause) ann-lit \Rightarrow 'st \Rightarrow 'st and
    tl-trail :: 'st \Rightarrow 'st and
    add-learned-cls :: 'v clause \Rightarrow 'st \Rightarrow 'st and
    remove\text{-}cls :: 'v \ clause \Rightarrow 'st \Rightarrow 'st \ \mathbf{and}
    update-backtrack-lvl :: nat \Rightarrow 'st \Rightarrow 'st and
    update\text{-}conflicting :: 'v \ clause \ option \Rightarrow 'st \Rightarrow 'st \ \mathbf{and}
    init-state :: 'v clauses \Rightarrow 'st +
  assumes
    cons-trail:
      \bigwedge S'. state st = (M, S') \Longrightarrow
        state\ (cons-trail\ L\ st)=(L\ \#\ M,\ S') and
    tl-trail:
      \bigwedge S'. state st = (M, S') \Longrightarrow state (tl-trail st) = (tl M, S') and
    remove-cls:
      \bigwedge S'. state st = (M, N, U, S') \Longrightarrow
        state\ (remove-cls\ C\ st) =
           (M, removeAll-mset\ C\ N, removeAll-mset\ C\ U,\ S') and
    add-learned-cls:
      \bigwedge S'. state st = (M, N, U, S') \Longrightarrow
        state (add-learned-cls C st) = (M, N, \{\#C\#\} + U, S') and
    update-backtrack-lvl:
      \bigwedge S'. state st = (M, N, U, k, S') \Longrightarrow
        state\ (update-backtrack-lvl\ k'\ st)=(M,\ N,\ U,\ k',\ S') and
    update-conflicting:
      state \ st = (M, N, U, k, D) \Longrightarrow
        state\ (update\text{-}conflicting\ E\ st) = (M,\ N,\ U,\ k,\ E)\ \mathbf{and}
      state\ (init\text{-}state\ N) = ([],\ N,\ \{\#\},\ \theta,\ None)
begin
  lemma
    trail-cons-trail[simp]:
```

```
trail\ (cons-trail\ L\ st) = L\ \#\ trail\ st\ {\bf and}
trail-tl-trail[simp]: trail (tl-trail st) = tl (trail st) and
trail-add-learned-cls[simp]:
 trail\ (add-learned-cls\ C\ st)=trail\ st\ {\bf and}
trail-remove-cls[simp]:
 trail\ (remove-cls\ C\ st) = trail\ st\ and
trail-update-backtrack-lvl[simp]: trail (update-backtrack-lvl k st) = trail st and
trail-update-conflicting[simp]: trail (update-conflicting E st) = trail st and
init-clss-cons-trail[simp]:
 init-clss (cons-trail M st) = init-clss st
 and
init-clss-tl-trail[simp]:
 init-clss (tl-trail st) = init-clss st and
init-clss-add-learned-cls[simp]:
 init-clss (add-learned-cls C st) = init-clss st and
init-clss-remove-cls[simp]:
 init-clss (remove-cls C st) = removeAll-mset C (init-clss st) and
init-clss-update-backtrack-lvl[simp]:
 init-clss (update-backtrack-lvl k st) = init-clss st and
init-clss-update-conflicting [simp]:
 init-clss (update-conflicting E st) = init-clss st and
learned-clss-cons-trail[simp]:
 learned-clss (cons-trail M st) = learned-clss st and
learned-clss-tl-trail[simp]:
 learned-clss (tl-trail st) = learned-clss st and
learned-clss-add-learned-cls[simp]:
 learned-clss\ (add-learned-cls\ C\ st) = \{\#C\#\} + learned-clss\ st\ and
learned-clss-remove-cls[simp]:
 learned-clss (remove-cls C st) = removeAll-mset C (learned-clss st) and
learned-clss-update-backtrack-lvl[simp]:
 learned-clss (update-backtrack-lvl k st) = learned-clss st and
learned-clss-update-conflicting[simp]:
 learned-clss (update-conflicting E st) = learned-clss st and
backtrack-lvl-cons-trail[simp]:
 backtrack-lvl (cons-trail M st) = backtrack-lvl st and
backtrack-lvl-tl-trail[simp]:
 backtrack-lvl (tl-trail st) = backtrack-lvl st  and
backtrack-lvl-add-learned-cls[simp]:
 backtrack-lvl \ (add-learned-cls \ C \ st) = backtrack-lvl \ st \ and
backtrack-lvl-remove-cls[simp]:
 backtrack-lvl (remove-cls C st) = backtrack-lvl st  and
backtrack-lvl-update-backtrack-lvl[simp]:
  backtrack-lvl (update-backtrack-lvl k st) = k and
backtrack-lvl-update-conflicting[simp]:
 backtrack-lvl (update-conflicting E st) = backtrack-lvl st and
conflicting-cons-trail[simp]:
 conflicting (cons-trail M st) = conflicting st  and
conflicting-tl-trail[simp]:
  conflicting (tl-trail st) = conflicting st  and
conflicting-add-learned-cls[simp]:
  conflicting (add-learned-cls \ C \ st) = conflicting \ st
 and
```

```
conflicting-remove-cls[simp]:
     conflicting (remove-cls \ C \ st) = conflicting \ st \ and
   conflicting-update-backtrack-lvl[simp]:
     conflicting (update-backtrack-lvl \ k \ st) = conflicting \ st \ and
    conflicting-update-conflicting[simp]:
     conflicting (update-conflicting E st) = E and
   init-state-trail[simp]: trail (init-state N) = [] and
   init-state-clss[simp]: init-clss(init-state N) = N and
   init-state-learned-clss[simp]: learned-clss(init-state N) = \{\#\} and
   init-state-backtrack-lvl[simp]: backtrack-lvl (init-state N) = 0 and
   init-state-conflicting [simp]: conflicting (init-state N) = None
  using cons-trail[of st] tl-trail[of st] add-learned-cls[of st - - - - C]
  update-backtrack-lvl[of\ st\ -\ -\ -\ k]\ update-conflicting[of\ st\ -\ -\ -\ E]
  remove-cls[of st - - - C]
  init-state[of N]
 by (cases state st; auto simp:)+
lemma
 shows
   clauses-cons-trail[simp]:
     clauses (cons-trail M S) = clauses S  and
   clss-tl-trail[simp]: clauses (tl-trail S) = clauses S and
   clauses-add-learned-cls-unfolded:
     clauses \; (add\text{-}learned\text{-}cls \; U \; S) = \{\#\, U\#\} \; + \; learned\text{-}clss \; S \; + \; init\text{-}clss \; S \;
     and
    clauses-update-backtrack-lvl[simp]: clauses (update-backtrack-lvl k S) = clauses S and
   clauses-update-conflicting[simp]: clauses (update-conflicting D S) = clauses S and
   clauses-remove-cls[simp]:
     clauses (remove-cls \ C \ S) = removeAll-mset \ C \ (clauses \ S) and
    clauses-add-learned-cls[simp]:
      clauses (add-learned-cls C S) = {\# C \#} + clauses S and
   clauses-init-state[simp]: clauses (init-state N) = N
   by (auto simp: ac-simps replicate-mset-plus clauses-def intro: multiset-eqI)
abbreviation incr-lvl :: 'st \Rightarrow 'st where
incr-lvl S \equiv update-backtrack-lvl (backtrack-lvl S + 1) S
definition state-eq :: 'st \Rightarrow 'st \Rightarrow bool (infix \sim 50) where
S \sim T \longleftrightarrow state \ S = state \ T
lemma state-eq-ref[simp, intro]:
 S \sim S
 unfolding state-eq-def by auto
lemma state-eq-sym:
 S \sim T \longleftrightarrow T \sim S
 unfolding state-eq-def by auto
lemma state-eq-trans:
 S \sim T \Longrightarrow T \sim U \Longrightarrow S \sim U
 unfolding state-eq-def by auto
```

lemma

```
shows
   state-eq-trail: S \sim T \Longrightarrow trail \ S = trail \ T and
   state-eq-init-clss: S \sim T \Longrightarrow init-clss S = init-clss T and
   state-eq-learned-clss: S \sim T \Longrightarrow learned-clss S = learned-clss T and
   state-eq-backtrack-lvl: S \sim T \Longrightarrow backtrack-lvl S = backtrack-lvl T and
   state-eq-conflicting: S \sim T \Longrightarrow conflicting S = conflicting T and
   state-eq-clauses: S \sim T \Longrightarrow clauses S = clauses T and
    state-eq-undefined-lit: S \sim T \Longrightarrow undefined-lit (trail S) L = undefined-lit (trail T) L
  unfolding state-eq-def clauses-def by auto
lemma state-eq-conflicting-None:
  S \sim T \Longrightarrow conflicting \ T = None \Longrightarrow conflicting \ S = None
 unfolding state-eq-def clauses-def by auto
We combine all simplification rules about op \sim in a single list of theorems. While they are
handy as simplification rule as long as we are working on the state, they also cause a huge
slow-down in all other cases.
lemmas state-simp[simp] = state-eq-trail state-eq-init-clss state-eq-learned-clss
  state-eq-backtrack-lvl\ state-eq-conflicting\ state-eq-clauses\ state-eq-undefined-lit
 state\text{-}eq\text{-}conflicting\text{-}None
function reduce-trail-to :: 'a list \Rightarrow 'st \Rightarrow 'st where
reduce-trail-to F S =
 (if length (trail S) = length F \lor trail S = [] then S else reduce-trail-to F (tl-trail S))
by fast+
termination
 by (relation measure (\lambda(-, S)). length (trail S))) simp-all
declare reduce-trail-to.simps[simp del]
lemma
 shows
    reduce-trail-to-Nil[simp]: trail S = [] \implies reduce-trail-to F S = S and
    reduce-trail-to-eq-length[simp]: length (trail S) = length F \Longrightarrow reduce-trail-to F S = S
 by (auto simp: reduce-trail-to.simps)
lemma reduce-trail-to-length-ne:
  length (trail S) \neq length F \Longrightarrow trail S \neq [] \Longrightarrow
   reduce-trail-to F S = reduce-trail-to F (tl-trail S)
 \mathbf{by}\ (\mathit{auto}\ \mathit{simp}:\ \mathit{reduce-trail-to.simps})
\mathbf{lemma}\ trail-reduce-trail-to-length-le:
 assumes length F > length (trail S)
 shows trail (reduce-trail-to F(S) = []
 using assms apply (induction F S rule: reduce-trail-to.induct)
 by (metis (no-types, hide-lams) length-tl less-imp-diff-less less-irrefl trail-tl-trail
   reduce-trail-to.simps)
lemma trail-reduce-trail-to-Nil[simp]:
```

```
 \begin{array}{l} \textbf{lemma} \ \ clauses\text{-}reduce\text{-}trail\text{-}to\text{-}Nil\text{:}} \\ \ \ clauses\ (reduce\text{-}trail\text{-}to\ []\ S)\ =\ clauses\ S \end{array}
```

trail (reduce-trail-to [] S) = []

apply (induction []::('v, 'v clause) ann-lits S rule: reduce-trail-to.induct) **by** (metis length-0-conv reduce-trail-to-length-ne reduce-trail-to-Nil)

```
\mathbf{proof} (induction [] S rule: reduce-trail-to.induct)
  case (1 Sa)
  then have clauses (reduce-trail-to ([::'a\ list)\ (tl-trail Sa)) = clauses (tl-trail Sa)
   \vee trail Sa = []
   by fastforce
  then show clauses (reduce-trail-to ([]::'a list) Sa) = clauses Sa
   by (metis (no-types) length-0-conv reduce-trail-to-eq-length clss-tl-trail
     reduce-trail-to-length-ne)
qed
lemma reduce-trail-to-skip-beginning:
 assumes trail\ S = F' @ F
 \mathbf{shows}\ \mathit{trail}\ (\mathit{reduce-trail-to}\ F\ S) = F
 using assms by (induction F' arbitrary: S) (auto simp: reduce-trail-to-length-ne)
lemma clauses-reduce-trail-to[simp]:
  clauses (reduce-trail-to F S) = clauses S
 apply (induction F S rule: reduce-trail-to.induct)
 by (metis clss-tl-trail reduce-trail-to.simps)
lemma conflicting-update-trail[simp]:
  conflicting (reduce-trail-to F(S) = conflicting(S)
 apply (induction F S rule: reduce-trail-to.induct)
 by (metis conflicting-tl-trail reduce-trail-to.simps)
lemma backtrack-lvl-update-trail[simp]:
  backtrack-lvl \ (reduce-trail-to \ F \ S) = backtrack-lvl \ S
 apply (induction F S rule: reduce-trail-to.induct)
 by (metis backtrack-lvl-tl-trail reduce-trail-to.simps)
lemma init-clss-update-trail[simp]:
  init-clss (reduce-trail-to F(S) = init-clss S
 apply (induction F S rule: reduce-trail-to.induct)
 by (metis init-clss-tl-trail reduce-trail-to.simps)
lemma learned-clss-update-trail[simp]:
  learned-clss (reduce-trail-to F(S) = learned-clss S
 apply (induction F S rule: reduce-trail-to.induct)
 by (metis learned-clss-tl-trail reduce-trail-to.simps)
lemma conflicting-reduce-trail-to [simp]:
  conflicting (reduce-trail-to F(S) = None \longleftrightarrow conflicting(S) = None
 apply (induction F S rule: reduce-trail-to.induct)
 by (metis conflicting-update-trail map-option-is-None)
lemma trail-eq-reduce-trail-to-eq:
  trail\ S = trail\ T \Longrightarrow trail\ (reduce-trail-to\ F\ S) = trail\ (reduce-trail-to\ F\ T)
 apply (induction F S arbitrary: T rule: reduce-trail-to.induct)
 by (metis trail-tl-trail reduce-trail-to.simps)
lemma reduce-trail-to-state-eq_{NOT}-compatible:
 assumes ST: S \sim T
 shows reduce-trail-to F S \sim reduce-trail-to F T
proof -
 have trail (reduce-trail-to F(S) = trail (reduce-trail-to F(T))
   using trail-eq-reduce-trail-to-eq[of S T F] ST by auto
```

```
qed
lemma reduce-trail-to-trail-tl-trail-decomp[simp]:
  trail\ S = F' \ @\ Decided\ K \ \#\ F \Longrightarrow (trail\ (reduce-trail-to\ F\ S)) = F
 apply (rule reduce-trail-to-skip-beginning of - F' @ Decided K \# []])
 by (cases F') (auto simp add:tl-append reduce-trail-to-skip-beginning)
lemma reduce-trail-to-add-learned-cls[simp]:
  trail\ (reduce-trail-to\ F\ (add-learned-cls\ C\ S)) = trail\ (reduce-trail-to\ F\ S)
 by (rule trail-eq-reduce-trail-to-eq) auto
lemma reduce-trail-to-remove-learned-cls[simp]:
  trail\ (reduce-trail-to\ F\ (remove-cls\ C\ S)) = trail\ (reduce-trail-to\ F\ S)
 by (rule trail-eq-reduce-trail-to-eq) auto
\mathbf{lemma}\ reduce\text{-}trail\text{-}to\text{-}update\text{-}conflicting[simp]:}
  trail\ (reduce-trail-to\ F\ (update-conflicting\ C\ S)) = trail\ (reduce-trail-to\ F\ S)
 by (rule trail-eq-reduce-trail-to-eq) auto
lemma reduce-trail-to-update-backtrack-lvl[simp]:
  trail\ (reduce-trail-to\ F\ (update-backtrack-lvl\ k\ S)) = trail\ (reduce-trail-to\ F\ S)
 by (rule trail-eq-reduce-trail-to-eq) auto
lemma reduce-trail-to-length:
  length M = length M' \Longrightarrow reduce-trail-to M S = reduce-trail-to M' S
 apply (induction M S rule: reduce-trail-to.induct)
 by (simp add: reduce-trail-to.simps)
lemma trail-reduce-trail-to-drop:
  trail (reduce-trail-to F S) =
   (if length (trail S) \ge length F
   then drop (length (trail S) – length F) (trail S)
   else [])
 apply (induction F S rule: reduce-trail-to.induct)
 apply (rename-tac F S, case-tac trail S)
  apply auto
 apply (rename-tac list, case-tac Suc (length list) > length F)
  \mathbf{prefer} \ 2 \ \mathbf{apply} \ (\mathit{metis \ diff-is-0-eq \ drop-Cons' \ length-Cons \ nat-le-linear \ nat-less-le}
    reduce-trail-to-eq-length trail-reduce-trail-to-length-le)
 apply (subgoal-tac Suc (length list) - length F = Suc (length list - length F)
 by (auto simp add: reduce-trail-to-length-ne)
\mathbf{lemma}\ in\text{-}get\text{-}all\text{-}ann\text{-}decomposition\text{-}trail\text{-}update\text{-}trail[simp]:}
 assumes H: (L \# M1, M2) \in set (get-all-ann-decomposition (trail S))
 shows trail\ (reduce-trail-to\ M1\ S)=M1
proof -
 obtain K where
   L: L = Decided K
   using H by (cases L) (auto dest!: in-get-all-ann-decomposition-decided-or-empty)
  obtain c where
   tr-S: trail S = c @ M2 @ L # M1
   using H by auto
 show ?thesis
   by (rule\ reduce-trail-to-trail-tl-trail-decomp[of - c @ M2 K])
    (auto simp: tr-SL)
```

then show ?thesis using ST by (auto simp del: state-simp simp: state-eq-def)

```
lemma conflicting-cons-trail-conflicting[simp]:
   assumes undefined-lit (trail S) (lit-of L)
   shows
   conflicting (cons-trail L S) = None \longleftrightarrow conflicting S = None
   using assms conflicting-cons-trail[of L S] map-option-is-None by fastforce+

lemma conflicting-add-learned-cls-conflicting[simp]:
   conflicting (add-learned-cls C S) = None \longleftrightarrow conflicting S = None
   by fastforce+

lemma conflicting-update-backtracl-lvl[simp]:
   conflicting (update-backtrack-lvl k S) = None \longleftrightarrow conflicting S = None
   using map-option-is-None conflicting-update-backtrack-lvl[of k S] by fastforce+

end — end of S = None
```

2.1.2 CDCL Rules

Because of the strategy we will later use, we distinguish propagate, conflict from the other rules

```
locale conflict-driven-clause-learning_W =
  state_W
     — functions for the state:
       — access functions:
    trail init-clss learned-clss backtrack-lvl conflicting
       — changing state:
     cons\text{-}trail\ tl\text{-}trail\ add\text{-}learned\text{-}cls\ remove\text{-}cls\ update\text{-}backtrack\text{-}lvl
     update-conflicting
       — get state:
    init\text{-}state
  for
     trail :: 'st \Rightarrow ('v, 'v \ clause) \ ann-lits \ \mathbf{and}
     init-clss :: 'st \Rightarrow 'v clauses and
    learned-clss :: 'st \Rightarrow 'v \ clauses \ \mathbf{and}
    backtrack-lvl :: 'st \Rightarrow nat and
    conflicting :: 'st \Rightarrow 'v clause option and
     cons-trail :: ('v, 'v clause) ann-lit \Rightarrow 'st \Rightarrow 'st and
    tl-trail :: 'st \Rightarrow 'st and
    add-learned-cls :: 'v clause \Rightarrow 'st \Rightarrow 'st and
     remove\text{-}cls:: 'v \ clause \Rightarrow 'st \Rightarrow 'st \ \mathbf{and}
    update-backtrack-lvl :: nat \Rightarrow 'st \Rightarrow 'st and
     update\text{-}conflicting :: 'v \ clause \ option \Rightarrow 'st \Rightarrow 'st \ \mathbf{and}
     init-state :: 'v clauses \Rightarrow 'st
begin
inductive propagate :: 'st \Rightarrow 'st \Rightarrow bool for S :: 'st where
propagate-rule: conflicting S = None \Longrightarrow
  E \in \# \ clauses \ S \Longrightarrow
  L \in \# E \Longrightarrow
  trail \ S \models as \ CNot \ (E - \{\#L\#\}) \Longrightarrow
  undefined-lit (trail\ S)\ L \Longrightarrow
```

```
T \sim cons-trail (Propagated L E) S \Longrightarrow
  propagate S T
inductive-cases propagateE: propagateS T
inductive conflict :: 'st \Rightarrow 'st \Rightarrow bool for S :: 'st where
conflict\hbox{-} rule:
  conflicting S = None \Longrightarrow
  D \in \# \ clauses \ S \Longrightarrow
  trail \ S \models as \ CNot \ D \Longrightarrow
  T \sim update\text{-conflicting (Some D) } S \Longrightarrow
  conflict S T
inductive-cases conflictE: conflict S T
inductive backtrack :: 'st \Rightarrow 'st \Rightarrow bool for S :: 'st where
backtrack-rule:
  conflicting S = Some D \Longrightarrow
  L \in \# D \Longrightarrow
  (Decided\ K\ \#\ M1,\ M2) \in set\ (get-all-ann-decomposition\ (trail\ S)) \Longrightarrow
  get-level (trail S) L = backtrack-lvl S \Longrightarrow
  get-level (trail S) L = get-maximum-level (trail S) D \Longrightarrow
  get-maximum-level (trail\ S)\ (D-\{\#L\#\}) \equiv i \Longrightarrow
  get-level (trail S) K = i + 1 \Longrightarrow
  T \sim cons-trail (Propagated L D)
        (reduce-trail-to M1
          (add-learned-cls D
             (update-backtrack-lvl\ i
               (update\text{-}conflicting\ None\ S)))) \Longrightarrow
  backtrack S T
inductive-cases backtrackE: backtrack\ S\ T
thm backtrackE
inductive decide :: 'st \Rightarrow 'st \Rightarrow bool \text{ for } S :: 'st \text{ where}
decide-rule:
  conflicting S = None \Longrightarrow
  undefined-lit (trail\ S)\ L \Longrightarrow
  atm\text{-}of \ L \in atms\text{-}of\text{-}mm \ (init\text{-}clss \ S) \Longrightarrow
  T \sim cons-trail (Decided L) (incr-lvl S) \Longrightarrow
  decide S T
inductive-cases decideE: decide S T
inductive skip :: 'st \Rightarrow 'st \Rightarrow bool \text{ for } S :: 'st \text{ where}
skip-rule:
  trail\ S = Propagated\ L\ C' \#\ M \Longrightarrow
  conflicting S = Some E \Longrightarrow
   -L \notin \# E \Longrightarrow
   E \neq \{\#\} \Longrightarrow
   T \sim tl\text{-}trail \ S \Longrightarrow
   skip\ S\ T
inductive-cases skipE: skip S T
get-maximum-level (Propagated L (C + \{\#L\#\}\}) \# M) D = k \vee k = 0 (that was in a previous
```

```
version of the book) is equivalent to get-maximum-level (Propagated L (C + \{\#L\#\}\}) \# M) D = k, when the structural invariants holds.
```

```
inductive resolve :: 'st \Rightarrow 'st \Rightarrow bool for S :: 'st where
resolve-rule: trail S \neq [] \Longrightarrow
  hd-trail S = Propagated L E \Longrightarrow
  L \in \# E \Longrightarrow
  conflicting S = Some D' \Longrightarrow
  -L \in \# D' \Longrightarrow
  get-maximum-level (trail S) ((remove1-mset (-L) D')) = backtrack-lvl S \Longrightarrow
  T \sim update\text{-}conflicting (Some (resolve\text{-}cls L D' E))
    (tl\text{-}trail\ S) \Longrightarrow
  resolve S T
inductive-cases resolveE: resolve S T
inductive restart :: 'st \Rightarrow 'st \Rightarrow bool for S :: 'st where
restart: state S = (M, N, U, k, None) \Longrightarrow
  \neg M \models asm \ clauses \ S \Longrightarrow
  U' \subseteq \# U \Longrightarrow
  state T = ([], N, U', 0, None) \Longrightarrow
  restart\ S\ T
inductive-cases restartE: restart S T
We add the condition C \notin \# init\text{-}clss S, to maintain consistency even without the strategy.
inductive forget :: 'st \Rightarrow 'st \Rightarrow bool where
forget-rule:
  conflicting S = None \Longrightarrow
  C \in \# learned\text{-}clss S \Longrightarrow
  \neg(trail\ S) \models asm\ clauses\ S \Longrightarrow
  C \notin set (get-all-mark-of-propagated (trail S)) \Longrightarrow
  C \notin \# init\text{-}clss \ S \Longrightarrow
  T \sim remove\text{-}cls \ C \ S \Longrightarrow
  forget S T
inductive-cases forgetE: forget S T
inductive cdcl_W-rf :: 'st \Rightarrow 'st \Rightarrow bool for S :: 'st where
restart: restart S T \Longrightarrow cdcl_W-rf S T
forget: forget S T \Longrightarrow cdcl_W-rf S T
inductive cdcl_W-bj :: 'st \Rightarrow 'st \Rightarrow bool where
skip: skip \ S \ S' \Longrightarrow cdcl_W - bj \ S \ S'
resolve: resolve S S' \Longrightarrow cdcl_W-bj S S'
backtrack: backtrack \ S \ S' \Longrightarrow cdcl_W \text{-}bj \ S \ S'
inductive-cases cdcl_W-bjE: cdcl_W-bj S T
inductive cdcl_W-o :: 'st \Rightarrow 'st \Rightarrow bool for S :: 'st where
decide: decide S S' \Longrightarrow cdcl_W \text{-}o S S'
bj: cdcl_W-bj S S' \Longrightarrow cdcl_W-o S S'
```

inductive $cdcl_W :: 'st \Rightarrow 'st \Rightarrow bool \text{ for } S :: 'st \text{ where}$

propagate: propagate $S S' \Longrightarrow cdcl_W S S' \mid$ conflict: conflict $S S' \Longrightarrow cdcl_W S S' \mid$

```
other: cdcl_W-o S S' \Longrightarrow cdcl_W S S'
rf: cdcl_W - rf S S' \Longrightarrow cdcl_W S S'
lemma rtranclp-propagate-is-rtranclp-cdcl_W:
  propagate^{**} S S' \Longrightarrow cdcl_{W}^{**} S S'
  apply (induction rule: rtranclp-induct)
   apply simp
 apply (frule propagate)
 using rtranclp-trans[of cdcl_W] by blast
lemma cdcl_W-all-rules-induct[consumes 1, case-names propagate conflict forget restart decide skip
    resolve backtrack]:
  fixes S :: 'st
  assumes
   cdcl_W: cdcl_W S S' and
   propagate: \bigwedge T. propagate S \ T \Longrightarrow P \ S \ T and
   conflict: \bigwedge T. conflict S T \Longrightarrow P S T and
   forget: \bigwedge T. forget S T \Longrightarrow P S T and
   restart: \bigwedge T. restart S T \Longrightarrow P S T and
   decide: \bigwedge T. \ decide \ S \ T \Longrightarrow P \ S \ T \ and
   \mathit{skip} \colon \bigwedge T. \ \mathit{skip} \ S \ T \Longrightarrow P \ S \ T \ \mathbf{and}
   resolve: \bigwedge T. resolve S T \Longrightarrow P S T and
    backtrack: \bigwedge T.\ backtrack\ S\ T \Longrightarrow P\ S\ T
  shows P S S
  using assms(1)
proof (induct S' rule: cdcl<sub>W</sub>.induct)
  case (propagate S') note propagate = this(1)
 then show ?case using assms(2) by auto
next
  case (conflict S')
  then show ?case using assms(3) by auto
next
  case (other S')
  then show ?case
   proof (induct \ rule: \ cdcl_W-o.induct)
      case (decide\ U)
      then show ?case using assms(6) by auto
   next
      case (bj S')
      then show ?case using assms(7-9) by (induction rule: cdcl_W-bj.induct) auto
   qed
next
  case (rf S')
  then show ?case
   by (induct rule: cdcl<sub>W</sub>-rf.induct) (fast dest: forget restart)+
lemma cdcl_W-all-induct consumes 1, case-names propagate conflict forget restart decide skip
   resolve backtrack]:
 fixes S :: 'st
 assumes
    cdcl_W: cdcl_W S S' and
   propagateH: \bigwedge C \ L \ T. \ conflicting \ S = None \Longrightarrow
       C \in \# clauses S \Longrightarrow
       L \in \# C \Longrightarrow
       trail \ S \models as \ CNot \ (remove1\text{-}mset \ L \ C) \Longrightarrow
```

```
undefined-lit (trail\ S)\ L \Longrightarrow
      T \sim cons-trail (Propagated L C) S \Longrightarrow
      PST and
  conflictH: \land D \ T. \ conflicting \ S = None \Longrightarrow
      D \in \# \ clauses \ S \Longrightarrow
      trail \ S \models as \ CNot \ D \Longrightarrow
      T \sim update\text{-}conflicting (Some D) S \Longrightarrow
      P S T and
  forgetH: \bigwedge C \ T. \ conflicting \ S = None \Longrightarrow
     C \in \# learned\text{-}clss S \Longrightarrow
     \neg(trail\ S) \models asm\ clauses\ S \Longrightarrow
     C \notin set (get-all-mark-of-propagated (trail S)) \Longrightarrow
     C \notin \# init\text{-}clss S \Longrightarrow
     T \sim remove\text{-}cls \ C \ S \Longrightarrow
     PST and
  restartH: \bigwedge T \ U. \ \neg trail \ S \models asm \ clauses \ S \Longrightarrow
     conflicting S = None \Longrightarrow
     state T = ([], init\text{-}clss S, U, 0, None) \Longrightarrow
     U \subseteq \# learned\text{-}clss S \Longrightarrow
     PST and
   decideH: \bigwedge L \ T. \ conflicting \ S = None \Longrightarrow
     undefined-lit (trail S) L \Longrightarrow
     atm\text{-}of \ L \in atms\text{-}of\text{-}mm \ (init\text{-}clss \ S) \Longrightarrow
     T \sim cons-trail (Decided L) (incr-lvl S) \Longrightarrow
     PST and
  skipH: \bigwedge L \ C' \ M \ E \ T.
     trail\ S = Propagated\ L\ C' \#\ M \Longrightarrow
     conflicting S = Some E \Longrightarrow
     -L \notin \# E \Longrightarrow E \neq \{\#\} \Longrightarrow
     T \sim tl\text{-}trail \ S \Longrightarrow
     PST and
  resolveH: \bigwedge L \ E \ M \ D \ T.
     trail\ S = Propagated\ L\ E\ \#\ M \Longrightarrow
     L \in \# E \Longrightarrow
     hd\text{-}trail\ S = Propagated\ L\ E \Longrightarrow
     conflicting S = Some D \Longrightarrow
     -L \in \# D \Longrightarrow
     get-maximum-level (trail S) ((remove1-mset (-L) D)) = backtrack-lvl S \Longrightarrow
     T \sim update\text{-}conflicting
       (Some\ (resolve-cls\ L\ D\ E))\ (tl-trail\ S) \Longrightarrow
     P S T and
  backtrack H \colon \bigwedge L\ D\ K\ i\ M1\ M2\ T.
     conflicting S = Some D \Longrightarrow
     L \in \# D \Longrightarrow
     (Decided\ K\ \#\ M1,\ M2) \in set\ (get-all-ann-decomposition\ (trail\ S)) \Longrightarrow
     get-level (trail S) L = backtrack-lvl S \Longrightarrow
     get-level (trail S) L = get-maximum-level (trail S) D \Longrightarrow
     get-maximum-level (trail S) (remove1-mset L D) \equiv i \Longrightarrow
     qet-level (trail S) K = i+1 \Longrightarrow
     T \sim cons-trail (Propagated L D)
            (reduce-trail-to M1
              (add-learned-cls D
                 (update-backtrack-lvl\ i
                   (update\text{-}conflicting\ None\ S)))) \Longrightarrow
      PST
shows P S S'
```

```
using cdcl_W
proof (induct S S' rule: cdcl<sub>W</sub>-all-rules-induct)
  case (propagate S')
  then show ?case
   by (auto elim!: propagateE intro!: propagateH)
next
  case (conflict S')
  then show ?case
   by (auto elim!: conflictE intro!: conflictH)
next
 case (restart S')
 then show ?case
   by (auto elim!: restartE intro!: restartH)
  case (decide T)
 then show ?case
   by (auto elim!: decideE intro!: decideH)
  case (backtrack S')
 then show ?case by (auto elim!: backtrackE intro!: backtrackH
   simp del: state-simp simp add: state-eq-def)
next
  case (forget S')
  then show ?case by (auto elim!: forgetE intro!: forgetH)
next
  case (skip S')
 then show ?case by (auto elim!: skipE intro!: skipH)
next
  case (resolve S')
  then show ?case
   by (cases trail S) (auto elim!: resolveE intro!: resolveH)
qed
lemma cdcl_W-o-induct[consumes 1, case-names decide skip resolve backtrack]:
 fixes S :: 'st
 assumes cdcl_W: cdcl_W-o S T and
    decideH: \land L \ T. \ conflicting \ S = None \Longrightarrow undefined-lit \ (trail \ S) \ L
     \implies atm\text{-}of \ L \in atms\text{-}of\text{-}mm \ (init\text{-}clss \ S)
     \implies T \sim cons\text{-trail} (Decided L) (incr-lvl S)
     \implies P S T  and
   skipH: \bigwedge L \ C' \ M \ E \ T.
     trail\ S = Propagated\ L\ C' \#\ M \Longrightarrow
     conflicting S = Some E \Longrightarrow
      -L \notin \# E \Longrightarrow E \neq \{\#\} \Longrightarrow
      T \sim tl\text{-}trail \ S \Longrightarrow
     PST and
   resolveH: \land L \ E \ M \ D \ T.
     trail\ S = Propagated\ L\ E\ \#\ M \Longrightarrow
     L \in \# E \Longrightarrow
     hd-trail S = Propagated L E \Longrightarrow
     conflicting S = Some D \Longrightarrow
     -L \in \# D \Longrightarrow
     get-maximum-level (trail S) ((remove1-mset (-L) D)) = backtrack-lvl S \Longrightarrow
      T \sim update\text{-}conflicting
       (Some\ (resolve-cls\ L\ D\ E))\ (tl-trail\ S) \Longrightarrow
     P S T and
```

```
backtrackH: \bigwedge L D K i M1 M2 T.
     conflicting S = Some D \Longrightarrow
     L \in \# D \Longrightarrow
     (Decided\ K\ \#\ M1,\ M2) \in set\ (get-all-ann-decomposition\ (trail\ S)) \Longrightarrow
     get-level (trail S) L = backtrack-lvl S \Longrightarrow
     get-level (trail S) L = get-maximum-level (trail S) D \Longrightarrow
     get-maximum-level (trail S) (remove1-mset L D) \equiv i \Longrightarrow
     get-level (trail S) K = i + 1 \Longrightarrow
      T \sim cons-trail (Propagated L D)
               (reduce-trail-to M1
                 (add-learned-cls D
                   (update-backtrack-lvl i
                     (update\text{-}conflicting\ None\ S)))) \Longrightarrow
      PST
  shows P S T
  using cdcl_W apply (induct T rule: cdcl_W-o.induct)
  using assms(2) apply (auto elim: decideE)[1]
  apply (elim\ cdcl_W-bjE\ skipE\ resolveE\ backtrackE)
   apply (frule skipH; simp)
   apply (cases trail S; auto elim!: resolveE intro!: resolveH)
  apply (frule backtrackH; simp)
  done
\mathbf{thm}\ cdcl_W-o.induct
lemma cdcl_W-o-all-rules-induct[consumes 1, case-names decide backtrack skip resolve]:
  fixes S T :: 'st
  assumes
    cdcl_W-o S T and
   \bigwedge T. decide S T \Longrightarrow P S T and
   \bigwedge T. backtrack S T \Longrightarrow P S T and
   \bigwedge T. skip S T \Longrightarrow P S T and
   \bigwedge T. resolve S T \Longrightarrow P S T
  shows P S T
  using assms by (induct T rule: cdcl_W-o.induct) (auto simp: cdcl_W-bj.simps)
lemma cdcl_W-o-rule-cases consumes 1, case-names decide backtrack skip resolve]:
  fixes S T :: 'st
  assumes
   cdcl_W-o S T and
   decide\ S\ T \Longrightarrow P and
   backtrack \ S \ T \Longrightarrow P \ \mathbf{and}
   skip S T \Longrightarrow P and
   resolve S T \Longrightarrow P
  shows P
  using assms by (auto simp: cdcl_W-o.simps cdcl_W-bj.simps)
```

2.1.3 Structural Invariants

Properties of the trail

We here establish that:

- the consistency of the trail;
- the fact that there is no duplicate in the trail.

```
lemma backtrack-lit-skiped:
 assumes
   L: get-level (trail S) L = backtrack-lvl S and
   M1: (Decided \ K \ \# \ M1, \ M2) \in set \ (get-all-ann-decomposition \ (trail \ S)) and
   no-dup: no-dup (trail S) and
   bt-l: backtrack-lvl S = length (filter is-decided (trail S)) and
   lev-K: get-level (trail S) K = i + 1
 shows atm\text{-}of \ L \notin atm\text{-}of \text{ '} lits\text{-}of\text{-}l \ M1
proof (rule ccontr)
 let ?M = trail S
 assume L-in-M1: \neg atm-of L \notin atm-of ' lits-of-l M1
 obtain c where
   Mc: trail S = c @ M2 @ Decided K \# M1
   using M1 by blast
 have atm\text{-}of\ L\notin atm\text{-}of\ ``lits\text{-}of\text{-}l\ c\ and\ atm\text{-}of\ L\notin atm\text{-}of\ ``lits\text{-}of\text{-}l\ M2\ and\ }
   atm\text{-}of\ L \neq atm\text{-}of\ K and Kc:\ atm\text{-}of\ K \notin atm\text{-}of ' lits-of-l c and
   KM2: atm-of K \notin atm-of ' lits-of-l M2
   using L-in-M1 no-dup unfolding Mc lits-of-def by force+
  then have g\text{-}M\text{-}eq\text{-}g\text{-}M1: get\text{-}level\ ?M\ L=get\text{-}level\ M1\ L
   using L-in-M1 unfolding Mc by auto
  then have get-level M1 L < Suc i
   using count-decided-ge-get-level[of L M1] KM2 lev-K Kc unfolding Mc
   by (auto simp del: count-decided-ge-get-level)
 moreover have Suc\ i \leq backtrack-lvl\ S using bt-l\ KM2\ lev-K\ Kc unfolding Mc by (simp\ add:\ Mc)
 ultimately show False using L g-M-eq-g-M1 by auto
ged
lemma cdcl_W-distinctinv-1:
 assumes
   cdcl_W S S' and
   no-dup (trail S) and
   bt-lev: backtrack-lvl S = count-decided (trail S)
 shows no-dup (trail S')
 using assms
proof (induct rule: cdcl<sub>W</sub>-all-induct)
  case (backtrack L D K i M1 M2 T) note decomp = this(3) and L = this(4) and lev-K = this(7)
   T = this(8) and n-d = this(9)
 obtain c where Mc: trail S = c @ M2 @ Decided K \# M1
   using decomp by auto
 have no-dup (M2 @ Decided K \# M1)
   using Mc n-d by fastforce
 moreover have atm\text{-}of \ L \notin atm\text{-}of ' lits\text{-}of\text{-}l \ M1
   using backtrack-lit-skiped of L S K M1 M2 i L decomp lev-K n-d bt-lev by fast
 moreover then have undefined-lit M1 L
    by (simp add: defined-lit-map lits-of-def image-image)
 ultimately show ?case using decomp T n-d by (simp add: lits-of-def image-image)
qed (auto simp: defined-lit-map)
Item 1 page 81 of Weidenbach's book
lemma cdcl_W-consistent-inv-2:
 assumes
   cdcl_W S S' and
   no-dup (trail S) and
   backtrack-lvl S = count-decided (trail S)
 shows consistent-interp (lits-of-l (trail S'))
```

```
using cdcl_W-distinctinv-1[OF assms] distinct-consistent-interp by fast
```

```
lemma cdcl_W-o-bt:
 assumes
   cdcl_W-o S S' and
   backtrack-lvl S = count-decided (trail S) and
   n-d[simp]: no-dup (trail S)
 shows backtrack-lvl S' = count\text{-}decided (trail S')
 using assms
proof (induct rule: cdcl_W-o-induct)
  case (backtrack L D K i M1 M2 T) note decomp = this(3) and levK = this(7) and T = this(8)
and
  level = this(9)
 have [simp]: trail (reduce-trail-to M1 S) = M1
   using decomp by auto
 obtain c where M: trail S = c @ M2 @ Decided K \# M1 using decomp by auto
 moreover have atm\text{-}of\ L \notin atm\text{-}of ' lits\text{-}of\text{-}l\ M1
   using backtrack-lit-skiped of L S K M1 M2 i backtrack (4,8,9) levK decomp
   by (fastforce simp add: lits-of-def)
  moreover then have undefined-lit M1 L
    by (simp add: defined-lit-map lits-of-def image-image)
 moreover
   \mathbf{have}\ \mathit{atm-of}\ K \not\in \mathit{atm-of}\ `\mathit{iits-of-l}\ \mathit{M1}\ \mathbf{and}\ \mathit{atm-of}\ K \not\in \mathit{atm-of}\ `\mathit{iits-of-l}\ \mathit{c}
     and atm\text{-}of\ K \notin atm\text{-}of ' lits\text{-}of\text{-}l\ M2
     using T n-d levK unfolding M by (auto simp: lits-of-def)
 ultimately show ?case
   using T levK unfolding M by (auto dest!: append-cons-eq-upt-length)
qed auto
lemma cdcl_W-rf-bt:
 assumes
   cdcl_W-rf S S' and
   backtrack-lvl S = count-decided (trail S)
 shows backtrack-lvl S' = count\text{-}decided (trail S')
 using assms by (induct rule: cdcl_W-rf.induct) (auto elim: restartE forgetE)
Item 7 page 81 of Weidenbach's book
lemma cdcl_W-bt:
 assumes
   cdcl_W S S' and
   backtrack-lvl S = count-decided (trail S) and
   no-dup (trail S)
  shows backtrack-lvl S' = count-decided (trail S')
 using assms by (induct rule: cdcl_W.induct) (auto simp: cdcl_W-o-bt cdcl_W-rf-bt
   elim: conflictE propagateE)
We write 1 + count\text{-}decided (trail S) instead of backtrack-lvl S to avoid non termination of
rewriting.
definition cdcl_W-M-level-inv :: 'st \Rightarrow bool where
cdcl_W-M-level-inv S \longleftrightarrow
  consistent-interp (lits-of-l (trail S))
 \land no-dup (trail S)
 \land backtrack-lvl S = count\text{-}decided (trail S)
```

lemma $cdcl_W$ -M-level-inv-decomp:

```
assumes cdcl_W-M-level-inv S
 shows
   consistent-interp (lits-of-l (trail S)) and
   no-dup (trail S)
 using assms unfolding cdcl<sub>W</sub>-M-level-inv-def by fastforce+
lemma cdcl_W-consistent-inv:
 fixes S S' :: 'st
 assumes
   cdcl_W S S' and
   cdcl_W-M-level-inv S
 shows cdcl_W-M-level-inv S'
 using assms cdcl_W-consistent-inv-2 cdcl_W-distinctinv-1 cdcl_W-bt
 unfolding cdcl<sub>W</sub>-M-level-inv-def by meson+
lemma rtranclp-cdcl_W-consistent-inv:
 assumes
   cdcl_{W}^{**} S S' and
   cdcl_W-M-level-inv S
 shows cdcl_W-M-level-inv S'
 using assms by (induct rule: rtranclp-induct) (auto intro: cdcl_W-consistent-inv)
lemma tranclp\text{-}cdcl_W\text{-}consistent\text{-}inv:
 assumes
   cdcl_W^{++} S S' and
   cdcl_W-M-level-inv S
 shows cdcl_W-M-level-inv S'
 using assms by (induct rule: tranclp-induct) (auto intro: cdcl<sub>W</sub>-consistent-inv)
lemma cdcl_W-M-level-inv-S0-cdcl_W[simp]:
 cdcl_W-M-level-inv (init-state N)
 unfolding cdcl_W-M-level-inv-def by auto
lemma cdcl_W-M-level-inv-get-level-le-backtrack-lvl:
 assumes inv: cdcl_W-M-level-inv S
 shows get-level (trail S) L \leq backtrack-lvl S
 using inv unfolding cdcl_W-M-level-inv-def
 by simp
lemma backtrack-ex-decomp:
 assumes
   M-l: cdcl_W-M-level-inv S and
   i-S: i < backtrack-lvl S
 shows \exists K \ M1 \ M2. (Decided K \# M1, M2) \in set (get-all-ann-decomposition (trail S)) \land
   get-level (trail S) K = Suc i
proof -
 let ?M = trail S
 have i < count\text{-}decided (trail S)
   using i-S M-l by (auto simp: cdcl_W-M-level-inv-def)
 then obtain c \ K \ c' where tr-S: trail \ S = c \ @ \ Decided \ K \ \# \ c' and
   lev-K: get-level (trail S) K = Suc i
   using le-count-decided-decomp[of trail S i] M-l by (auto simp: cdcl<sub>W</sub>-M-level-inv-def)
 obtain M1 M2 where (Decided K # M1, M2) \in set (get-all-ann-decomposition (trail S))
   using Decided-cons-in-get-all-ann-decomposition-append-Decided-cons unfolding tr-S by fast
 then show ?thesis using lev-K by blast
qed
```

```
\mathbf{lemma}\ \textit{backtrack-lvl-backtrack-decrease} :
 assumes inv: cdcl_W-M-level-inv S and bt: backtrack S T
 shows backtrack-lvl T < backtrack-lvl S
 using inv bt le-count-decided-decomp[of trail S backtrack-lvl T]
 unfolding cdcl_W-M-level-inv-def
 apply (auto elim!: backtrackE dest!: get-all-ann-decomposition-exists-prepend)
 by (metis append-assoc)
Compatibility with op \sim
lemma propagate-state-eq-compatible:
 assumes
   propa: propagate S T and
   SS': S \sim S' and
   TT': T \sim T'
 shows propagate S' T'
proof -
 obtain CL where
   conf: conflicting S = None  and
   C: C \in \# clauses S  and
   L: L \in \# C and
   tr: trail \ S \models as \ CNot \ (remove 1-mset \ L \ C) and
   undef: undefined-lit (trail S) L and
   T: T \sim cons-trail (Propagated L C) S
 using propa by (elim propagateE) auto
 have C': C \in \# clauses S'
   using SS' C
   by (auto simp: state-eq-def clauses-def simp del: state-simp)
 show ?thesis
   apply (rule propagate-rule[of - C])
   using state-eq-sym[of S S'| SS' conf C' L tr undef TT' T
   by (auto simp: state-eq-def simp del: state-simp)
qed
lemma conflict-state-eq-compatible:
 assumes
   confl: conflict S T  and
   TT': T \sim T' and
   SS': S \sim S'
 shows conflict S' T'
proof -
 obtain D where
   conf: conflicting S = None  and
   D: D \in \# \ clauses \ S \ \mathbf{and}
   tr: trail S \models as CNot D and
   T: T \sim update\text{-conflicting (Some D) } S
 using confl by (elim conflictE) auto
 have D': D \in \# clauses S'
   using D SS' by fastforce
 show ?thesis
```

```
apply (rule conflict-rule[of - D])
   \mathbf{using} \ \mathit{state-eq-sym}[\mathit{of} \ \mathit{S} \ \mathit{S'}] \ \mathit{SS'} \ \mathit{conf} \ \mathit{D'} \ \mathit{tr} \ \mathit{TT'} \ \mathit{T}
   by (auto simp: state-eq-def simp del: state-simp)
qed
lemma backtrack-state-eq-compatible:
 assumes
   bt: backtrack S T and
   SS': S \sim S' and
   TT': T \sim T' and
   inv: cdcl_W-M-level-inv S
 shows backtrack S' T'
proof -
 obtain D L K i M1 M2 where
   conf: conflicting S = Some D  and
   L: L \in \# D and
   decomp: (Decided K \# M1, M2) \in set (get-all-ann-decomposition (trail S)) and
   lev: qet-level (trail S) L = backtrack-lvl S and
   max: get-level (trail S) L = get-maximum-level (trail S) D and
   max-D: get-maximum-level (trail S) (remove1-mset L D) \equiv i and
   lev-K: get-level (trail S) K = Suc i  and
   T: T \sim cons-trail (Propagated L D)
              (reduce-trail-to M1
               (add-learned-cls D
                 (update-backtrack-lvl\ i
                   (update-conflicting None S))))
  using bt inv by (elim backtrackE) metis
 have D': conflicting S' = Some D
   using SS' conf by (cases conflicting S') auto
 have T': T' \sim cons-trail (Propagated L D)
    (reduce-trail-to M1 (add-learned-cls D
    (update-backtrack-lvl \ i \ (update-conflicting \ None \ S'))))
   using TT' unfolding state-eq-def
   using decomp D' inv SS' T by (auto simp add: cdcl_W-M-level-inv-def)
  show ?thesis
   apply (rule backtrack-rule[of - D])
      apply (rule D')
      using state-eq-sym[of S S'] TT' SS' D' conf L decomp lev max max-D T
      apply (auto simp: state-eq-def simp del: state-simp)[]
     using decomp SS' lev SS' max-D max T' lev-K by (auto simp: state-eq-def simp del: state-simp)
qed
\mathbf{lemma}\ decide-state-eq-compatible:
 assumes
   decide S T and
   S \sim S' and
   T \sim T'
 shows decide S' T'
 using assms apply (elim decideE)
 by (rule decide-rule) (auto simp: state-eq-def clauses-def simp del: state-simp)
{f lemma}\ skip\text{-}state\text{-}eq\text{-}compatible:
 assumes
   skip: skip S T and
```

```
SS': S \sim S' and
   TT': T \sim T'
 shows skip S' T'
proof -
 obtain L C' M E where
   tr: trail S = Propagated L C' \# M and
   raw: conflicting S = Some E and
   L: -L \notin \# E and
   E: E \neq \{\#\} and
   T: T \sim tl\text{-}trail S
 using skip by (elim \ skipE) \ simp
 obtain E' where E': conflicting S' = Some E'
   using SS' raw by (cases conflicting S') (auto simp: state-eq-def simp del: state-simp)
 show ?thesis
   apply (rule skip-rule)
     using tr raw L E T SS' apply (auto simp: simp del: )[]
    using E' apply simp
    using E'SS' L raw E apply (auto simp: state-eq-def simp del: state-simp)[2]
   using T TT' SS' by (auto simp: state-eq-def simp del: state-simp)
qed
lemma resolve-state-eq-compatible:
 assumes
   \mathit{res} \colon \mathit{resolve} \ S \ T \ \mathbf{and}
   TT': T \sim T' and
   SS': S \sim S'
 shows resolve S' T'
proof -
 obtain E D L where
   tr: trail S \neq [] and
   hd: hd-trail S = Propagated L E and
   L: L \in \# E and
   raw: conflicting S = Some D and
   LD: -L \in \# D and
   i: get-maximum-level (trail S) ((remove1-mset (-L) D)) = backtrack-lvl S and
   T: T \sim update\text{-conflicting (Some (resolve-cls L D E)) (tl-trail S)}
 using assms by (elim resolveE) simp
 obtain D' where
   D': conflicting S' = Some D'
   using SS' raw by fastforce
 have [simp]: D = D'
   using D'SS' raw state-simp(5) by fastforce
 have T'T: T' \sim T
   using TT' state-eq-sym by auto
 show ?thesis
   apply (rule resolve-rule)
        using tr SS' apply simp
        using hd SS' apply simp
       using L apply simp
      using D' apply simp
     using D'SS' raw LD apply (auto simp add: state-eq-def simp del: state-simp)[]
    using D'SS' raw LD apply (auto simp add: state-eq-def simp del: state-simp)
    using raw SS' i apply (auto simp add: state-eq-def simp del: state-simp)[]
   using T T'T SS' by (auto simp: state-eq-def simp del: state-simp)
qed
```

```
\mathbf{lemma}\ forget\text{-}state\text{-}eq\text{-}compatible\text{:}
 assumes
   forget: forget S T and
   SS': S \sim S' and
   TT': T \sim T'
 shows forget S' T'
proof -
 obtain C where
   conf: conflicting S = None  and
   C: C \in \# learned\text{-}clss \ S \ \mathbf{and}
   tr: \neg(trail\ S) \models asm\ clauses\ S and
   C1: C \notin set (get-all-mark-of-propagated (trail S)) and
   C2: C \notin \# init\text{-}clss \ S and
   T: T \sim remove\text{-}cls \ C \ S
   using forget by (elim forgetE) simp
 show ?thesis
   apply (rule forget-rule)
       using SS' conf apply simp
       using CSS' apply simp
      using SS' tr apply simp
     using SS' C1 apply simp
    using SS' C2 apply simp
   using T TT' SS' by (auto simp: state-eq-def simp del: state-simp)
qed
lemma cdcl_W-state-eq-compatible:
 assumes
   cdcl_W S T and \neg restart S T and
   S \sim S'
   T \sim T' and
   cdcl_W-M-level-inv S
 shows cdcl_W S' T'
  using assms by (meson backtrack backtrack-state-eq-compatible bj cdcl<sub>W</sub>.simps cdcl<sub>W</sub>-o-rule-cases
   cdcl_W-rf. cases conflict-state-eq-compatible decide decide-state-eq-compatible forget
   forget-state-eq-compatible propagate-state-eq-compatible resolve resolve-state-eq-compatible
   skip skip-state-eq-compatible state-eq-ref)
lemma cdcl_W-bj-state-eq-compatible:
 assumes
   cdcl_W-bj S T and cdcl_W-M-level-inv S
   T \sim T'
 shows cdcl_W-bj S T'
 using assms by (meson backtrack backtrack-state-eq-compatible cdcl<sub>W</sub>-bjE resolve
   resolve-state-eq-compatible skip skip-state-eq-compatible state-eq-ref)
lemma tranclp-cdcl_W-bj-state-eq-compatible:
   cdcl_W-bj^{++} S T and inv: cdcl_W-M-level-inv S and
   S \sim S' and
   T \sim T'
 shows cdcl_W-bj^{++} S' T'
 using assms
proof (induction arbitrary: S' T')
 case base
```

```
then show ?case
   unfolding tranclp-unfold-end by (meson backtrack-state-eq-compatible cdcl_W-bj.simps
     resolve-state-eq-compatible rtranclp-unfold skip-state-eq-compatible)
next
  case (step T U) note IH = this(3)[OF this(4-5)]
 have cdcl_W^{++} S T
   using tranclp-mono[of\ cdcl_W-bj\ cdcl_W]\ step.hyps(1)\ cdcl_W.other\ cdcl_W-o.bj\ by\ blast
  then have cdcl_W-M-level-inv T
   using inv tranclp-cdcl_W-consistent-inv by blast
  then have cdcl_W-bj^{++} T T'
   using \langle U \sim T' \rangle cdcl<sub>W</sub>-bj-state-eq-compatible[of T U] \langle cdcl_W-bj T U\rangle by auto
 then show ?case
   using IH[of T] by auto
qed
Conservation of some Properties
lemma cdcl_W-o-no-more-init-clss:
 assumes
   cdcl_W-o S S' and
   inv: cdcl_W-M-level-inv S
 shows init-clss S = init-clss S'
 using assms by (induct rule: cdcl_W-o-induct) (auto simp: inv cdcl_W-M-level-inv-decomp)
lemma tranclp-cdcl_W-o-no-more-init-clss:
  assumes
   cdcl_W-o^{++} S S' and
   inv: cdcl_W-M-level-inv S
 shows init-clss S = init-clss S'
 using assms apply (induct rule: tranclp.induct)
  by (auto dest: cdcl_W-o-no-more-init-clss
   dest!: tranclp-cdcl_W-consistent-inv dest: tranclp-mono-explicit[of <math>cdcl_W-o - - cdcl_W]
   simp: other)
lemma rtranclp-cdcl_W-o-no-more-init-clss:
 assumes
   cdcl_W-o^{**} S S' and
   inv: cdcl_W-M-level-inv S
 shows init-clss S = init-clss S'
 using assms unfolding rtranclp-unfold by (auto intro: tranclp-cdcl<sub>W</sub>-o-no-more-init-clss)
lemma cdcl_W-init-clss:
 assumes
   cdcl_W S T and
   inv: cdcl_W-M-level-inv S
 shows init-clss S = init-clss T
 using assms by (induction rule: cdcl<sub>W</sub>-all-induct)
  (auto simp: inv\ cdcl_W-M-level-inv-decomp not-in-iff)
lemma rtranclp-cdcl_W-init-clss:
  cdcl_W^{**} S T \Longrightarrow cdcl_W-M-level-inv S \Longrightarrow init-clss S = init-clss T
 by (induct rule: rtranclp-induct) (auto dest: cdcl_W-init-clss rtranclp-cdcl<sub>W</sub>-consistent-inv)
lemma tranclp\text{-}cdcl_W\text{-}init\text{-}clss:
  cdcl_W^{++} S T \Longrightarrow cdcl_W-M-level-inv S \Longrightarrow init-clss S = init-clss T
  using rtranclp-cdcl_W-init-clss[of\ S\ T] unfolding rtranclp-unfold by auto
```

Learned Clause

This invariant shows that:

- the learned clauses are entailed by the initial set of clauses.
- the conflicting clause is entailed by the initial set of clauses.
- the marks are entailed by the clauses.

```
definition cdcl_W-learned-clause (S :: 'st) \longleftrightarrow
 (init\text{-}clss\ S \models psm\ learned\text{-}clss\ S)
 \land (\forall T. conflicting S = Some T \longrightarrow init-clss S \models pm T)
 \land set (get-all-mark-of-propagated (trail S)) \subseteq set-mset (clauses S))
of Weidenbach's book for the inital state and some additional structural properties about the
trail.
lemma cdcl_W-learned-clause-S0-cdcl_W[simp]:
  cdcl_W-learned-clause (init-state N)
 unfolding cdcl_W-learned-clause-def by auto
Item 4 page 81 of Weidenbach's book
lemma cdcl_W-learned-clss:
 assumes
   cdcl_W S S' and
   learned: cdcl_W-learned-clause S and
   lev-inv: cdcl_W-M-level-inv S
 shows cdcl_W-learned-clause S'
 using assms(1) lev-inv learned
proof (induct rule: cdcl<sub>W</sub>-all-induct)
 case (backtrack K i M1 M2 L D T) note decomp = this(3) and confl = this(1) and lev-K = this
(7) and
   undef = this(8) and T = this(9)
 show ?case
   using decomp confl learned undef T lev-K unfolding cdclw-learned-clause-def
   by (auto dest!: get-all-ann-decomposition-exists-prepend
     simp: clauses-def lev-inv cdcl<sub>W</sub>-M-level-inv-decomp dest: true-clss-clss-left-right)
next
 case (resolve L \ C \ M \ D) note trail = this(1) and CL = this(2) and confl = this(4) and DL = this(5)
   and lvl = this(6) and T = this(7)
 moreover
   have init-clss S \models psm \ learned-clss S
     using learned trail unfolding cdcl_W-learned-clause-def clauses-def by auto
   then have init-clss S \models pm \ C + \{\#L\#\}
     using trail learned unfolding cdclw-learned-clause-def clauses-def
     by (auto dest: true-clss-cls-in-imp-true-clss-cls)
 moreover have remove1-mset (-L) D + \{\#-L\#\} = D
   using DL by (auto simp: multiset-eq-iff)
 moreover have remove1-mset L C + \{\#L\#\} = C
   using CL by (auto simp: multiset-eq-iff)
 ultimately show ?case
   using learned T
   by (auto dest: mk-disjoint-insert
     simp\ add: cdcl_W-learned-clause-def clauses-def
     introl: true-clss-cls-union-mset-true-clss-cls-or-not-true-clss-cls-or[of - - L])
```

```
next
 case (restart \ T)
 then show ?case
   using learned
   by (auto
     simp: clauses-def \ state-eq-def \ cdcl_W-learned-clause-def
     simp del: state-simp
     dest: true-clss-clssm-subsetE)
next
 case propagate
 then show ?case using learned by (auto simp: cdcl_W-learned-clause-def)
next
 case conflict
 then show ?case using learned
   by (fastforce simp: cdcl_W-learned-clause-def clauses-def
     true-clss-clss-in-imp-true-clss-cls)
next
 case (forget U)
 then show ?case using learned
   by (auto simp: cdcl_W-learned-clause-def clauses-def split: if-split-asm)
\mathbf{qed} (auto simp: cdcl_W-learned-clause-def clauses-def)
lemma rtranclp-cdcl_W-learned-clss:
 assumes
   cdcl_{W}^{**} S S' and
   cdcl_W-M-level-inv S
   cdcl_W-learned-clause S
 shows cdcl_W-learned-clause S'
 using assms by induction (auto dest: cdcl_W-learned-clss intro: rtrancl_P-cdcl_W-consistent-inv)
```

No alien atom in the state

This invariant means that all the literals are in the set of clauses. These properties are implicit in Weidenbach's book.

```
definition no-strange-atm S' \longleftrightarrow (
    (\forall T. conflicting S' = Some T \longrightarrow atms-of T \subseteq atms-of-mm (init-clss S'))
  \land (\forall L \ mark. \ Propagated \ L \ mark \in set \ (trail \ S')
       \longrightarrow atms-of\ mark \subseteq atms-of-mm\ (init-clss\ S'))
  \land atms-of-mm (learned-clss S') \subseteq atms-of-mm (init-clss S')
  \land atm\text{-}of \ (lits\text{-}of\text{-}l \ (trail \ S')) \subseteq atms\text{-}of\text{-}mm \ (init\text{-}clss \ S'))
lemma no-strange-atm-decomp:
  assumes no-strange-atm S
  shows conflicting S = Some \ T \Longrightarrow atms-of \ T \subseteq atms-of-mm \ (init-clss \ S)
  and (\forall L \ mark. \ Propagated \ L \ mark \in set \ (trail \ S))
     \longrightarrow atms-of\ mark \subseteq atms-of-mm\ (init-clss\ S))
  and atms-of-mm (learned-clss S) \subseteq atms-of-mm (init-clss S)
  and atm\text{-}of ' (lits\text{-}of\text{-}l\ (trail\ S))\subseteq atms\text{-}of\text{-}mm\ (init\text{-}clss\ S)
  using assms unfolding no-strange-atm-def by blast+
lemma no-strange-atm-S0 [simp]: no-strange-atm (init-state N)
  unfolding no-strange-atm-def by auto
\mathbf{lemma}\ in\text{-}atms\text{-}of\text{-}implies\text{-}atm\text{-}of\text{-}on\text{-}atms\text{-}of\text{-}ms\text{:}
  C + \{\#L\#\} \in \#A \implies x \in atms\text{-}of\ C \implies x \in atms\text{-}of\text{-}mm\ A
```

```
lemma propagate-no-strange-atm-inv:
  assumes
   propagate S T and
   alien: no-strange-atm S
  shows no-strange-atm T
  using assms(1)
proof (induction)
  case (propagate-rule CLT) note confl = this(1) and C = this(2) and C-L = this(3) and
   tr = this(4) and undef = this(5) and T = this(6)
 have atm-CL: atms-of C \subseteq atms-of-mm (init-clss S)
   using C alien unfolding no-strange-atm-def
   by (auto simp: clauses-def atms-of-ms-def)
  show ?case
   unfolding no-strange-atm-def
   proof (intro conjI allI impI, goal-cases)
     then show ?case
       \mathbf{using}\ \mathit{confl}\ \mathit{T}\ \mathit{undef}\ \mathbf{by}\ \mathit{auto}
   next
     case (2 L' mark')
     then show ?case
       using C-L T alien undef atm-CL unfolding no-strange-atm-def clauses-def by (auto 5 5)
   next
     show ?case using T alien undef unfolding no-strange-atm-def by auto
   \mathbf{next}
     case (4)
     show ?case
       using T alien undef C-L atm-CL unfolding no-strange-atm-def by (auto simp: atms-of-def)
   qed
qed
lemma in-atms-of-remove1-mset-in-atms-of:
  x \in atms\text{-}of \ (remove1\text{-}mset \ L \ C) \Longrightarrow x \in atms\text{-}of \ C
 using in-diffD unfolding atms-of-def by fastforce
\mathbf{lemma}\ atms-of\text{-}ms\text{-}learned\text{-}clss\text{-}restart\text{-}state\text{-}in\text{-}atms\text{-}of\text{-}ms\text{-}learned\text{-}clssI\text{:}}
  atms-of-mm (learned-clss S) \subseteq atms-of-mm (init-clss S) \Longrightarrow
  x \in atms\text{-}of\text{-}mm \ (learned\text{-}clss \ T) \Longrightarrow
  learned\text{-}clss \ T \subseteq \# \ learned\text{-}clss \ S \Longrightarrow
  x \in atms\text{-}of\text{-}mm \ (init\text{-}clss \ S)
  by (meson atms-of-ms-mono contra-subsetD set-mset-mono)
lemma cdcl_W-no-strange-atm-explicit:
 assumes
   cdcl_W S S' and
   lev: cdcl_W-M-level-inv S and
   conf: \forall T. \ conflicting \ S = Some \ T \longrightarrow atms-of \ T \subseteq atms-of-mm \ (init-clss \ S) and
   decided: \forall L \ mark. \ Propagated \ L \ mark \in set \ (trail \ S)
      \longrightarrow atms-of mark \subseteq atms-of-mm \ (init-clss S) and
   learned: atms-of-mm (learned-clss S) \subseteq atms-of-mm (init-clss S) and
   trail: atm-of ' (lits-of-l (trail S)) \subseteq atms-of-mm (init-clss S)
  shows
   (\forall T. conflicting S' = Some T \longrightarrow atms-of T \subseteq atms-of-mm (init-clss S')) \land
```

```
(\forall L \ mark. \ Propagated \ L \ mark \in set \ (trail \ S')
      \longrightarrow atms-of mark \subseteq atms-of-mm \ (init-clss S')) \land
   atms-of-mm (learned-clss S') \subseteq atms-of-mm (init-clss S') \land
   \mathit{atm-of} \,\, (\,\mathit{lits-of-l} \,\, (\mathit{trail} \,\, S')) \subseteq \mathit{atms-of-mm} \,\, (\mathit{init-clss} \,\, S')
   (is ?C S' \land ?M S' \land ?U S' \land ?V S')
  using assms(1,2)
proof (induct rule: cdcl_W-all-induct)
  case (propagate C L T) note confl = this(1) and C-L = this(2) and tr = this(3) and undef =
this(4)
 and T = this(5)
 show ?case
   \mathbf{using}\ propagate-rule[OF\ propagate.hyps(1-3)\ -\ propagate.hyps(5,6),\ simplified]
   propagate.hyps(4) propagate-no-strange-atm-inv[of S T]
   conf decided learned trail unfolding no-strange-atm-def by presburger
next
 case (decide\ L)
 then show ?case using learned decided conf trail unfolding clauses-def by auto
  case (skip\ L\ C\ M\ D)
 then show ?case using learned decided conf trail by auto
next
  case (conflict D T) note D-S = this(2) and T = this(4)
 have D: atm-of 'set-mset D \subseteq \bigcup (atms-of ' (set-mset (clauses\ S)))
   using D-S by (auto simp add: atms-of-def atms-of-ms-def)
  moreover {
   \mathbf{fix} \ xa :: 'v \ literal
   assume a1: atm-of 'set-mset D \subseteq (\bigcup x \in set\text{-mset (init-clss S)}). atms-of x)
     \cup (\bigcup x \in set\text{-}mset \ (learned\text{-}clss \ S). \ atms\text{-}of \ x)
   assume a2:
     ([] x \in set\text{-}mset \ (learned\text{-}clss \ S). \ atms\text{-}of \ x) \subseteq ([] x \in set\text{-}mset \ (init\text{-}clss \ S). \ atms\text{-}of \ x)
   assume xa \in \# D
   then have atm\text{-}of\ xa \in UNION\ (set\text{-}mset\ (init\text{-}clss\ S))\ atms\text{-}of
     using a2 a1 by (metis (no-types) Un-iff atm-of-lit-in-atms-of atms-of-def subset-Un-eq)
   then have \exists m \in set\text{-}mset \ (init\text{-}clss \ S). \ atm\text{-}of \ xa \in atms\text{-}of \ m
     by blast
   } note H = this
  ultimately show ?case using conflict.prems T learned decided conf trail
   unfolding atms-of-def atms-of-ms-def clauses-def
   by (auto simp add: H)
next
 case (restart T)
 then show ?case using learned decided conf trail
   by (auto intro: atms-of-ms-learned-clss-restart-state-in-atms-of-ms-learned-clssI)
 case (forget C T) note confl = this(1) and C = this(4) and C-le = this(5) and
    T = this(6)
 have H: \bigwedge L mark. Propagated L mark \in set (trail\ S) \Longrightarrow atms-of\ mark \subseteq atms-of-mm\ (init-clss\ S)
   using decided by simp
 show ?case unfolding clauses-def apply (intro conjI)
      using conf confl T trail C unfolding clauses-def apply (auto dest!: H)[]
     using T trail C C-le apply (auto dest!: H)[]
    using T learned C-le atms-of-ms-remove-subset[of set-mset (learned-clss S)] apply auto[]
  using T trail C-le apply (auto simp: clauses-def lits-of-def)
  done
next
  case (backtrack L D K i M1 M2 T) note confl = this(1) and LD = this(2) and decomp = this(3)
```

```
and
   lev-K = this(7) and T = this(8)
 have ?CT
   using conf T decomp lev lev-K by (auto simp: cdcl_W-M-level-inv-decomp)
 moreover have set M1 \subseteq set (trail S)
   using decomp by auto
 then have M: ?M T
   using decided conf confl T decomp lev lev-K
   \mathbf{by} \ (\mathit{auto} \ \mathit{simp} \colon \mathit{image-subset-iff} \ \mathit{clauses-def} \ \mathit{cdcl}_W \text{-} \mathit{M-level-inv-decomp})
 moreover have ?UT
   using learned decomp conf confl T lev lev-K unfolding clauses-def
   by (auto simp: cdcl_W-M-level-inv-decomp)
 moreover have ?V T
   using M conf confl trail T decomp lev LD lev-K
   by (auto simp: cdcl_W-M-level-inv-decomp atms-of-def
     dest!: qet-all-ann-decomposition-exists-prepend)
 ultimately show ?case by blast
 case (resolve L C M D T) note trail-S = this(1) and confl = this(4) and T = this(7)
 let ?T = update\text{-}conflicting (Some (resolve\text{-}cls L D C)) (tl\text{-}trail S)
 have ?C ?T
   using confl trail-S conf decided by (auto dest!: in-atms-of-remove1-mset-in-atms-of)
 moreover have ?M ?T
   using confl trail-S conf decided by auto
 moreover have ?U ?T
   using trail learned by auto
 moreover have ?V?T
   using confl trail-S trail by auto
 ultimately show ?case using T by simp
qed
lemma cdcl_W-no-strange-atm-inv:
 assumes cdcl_W S S' and no-strange-atm S and cdcl_W-M-level-inv S
 shows no-strange-atm S'
 using cdcl_W-no-strange-atm-explicit[OF assms(1)] assms(2,3) unfolding no-strange-atm-def by fast
lemma rtranclp-cdcl_W-no-strange-atm-inv:
 assumes cdcl_W^{**} S S' and no-strange-atm S and cdcl_W-M-level-inv S
 shows no-strange-atm S'
 using assms by induction (auto intro: cdcl_W-no-strange-atm-inv rtranclp-cdcl_W-consistent-inv)
```

No Duplicates all Around

This invariant shows that there is no duplicate (no literal appearing twice in the formula). The last part could be proven using the previous invariant also. Remark that we will show later that there cannot be duplicate *clause*.

```
definition distinct-cdcl<sub>W</sub>-state (S ::'st)

←→ ((∀ T. conflicting S = Some T → distinct-mset T)

∧ distinct-mset-mset (learned-clss S)

∧ distinct-mset-mset (init-clss S)

∧ (∀ L mark. (Propagated L mark ∈ set (trail S) → distinct-mset mark)))

lemma distinct-cdcl<sub>W</sub>-state-decomp:

assumes distinct-cdcl<sub>W</sub>-state (S ::'st)

shows
```

```
\forall T. conflicting S = Some T \longrightarrow distinct\text{-mset } T \text{ and }
   distinct-mset-mset (learned-clss S) and
   distinct-mset-mset (init-clss S) and
   \forall L \ mark. \ (Propagated \ L \ mark \in set \ (trail \ S) \longrightarrow distinct-mset \ mark)
  using assms unfolding distinct-cdcl<sub>W</sub>-state-def by blast+
lemma distinct\text{-}cdcl_W\text{-}state\text{-}decomp\text{-}2:
  assumes distinct-cdcl_W-state (S :: 'st) and conflicting S = Some T
  shows distinct-mset T
  using assms unfolding distinct-cdcl<sub>W</sub>-state-def by auto
lemma distinct\text{-}cdcl_W\text{-}state\text{-}S0\text{-}cdcl_W[simp]:
  distinct-mset-mset N \Longrightarrow distinct-cdcl_W-state (init-state N)
  unfolding distinct\text{-}cdcl_W\text{-}state\text{-}def by auto
lemma distinct\text{-}cdcl_W\text{-}state\text{-}inv:
  assumes
    cdcl_W S S' and
   \mathit{lev-inv} \colon \mathit{cdcl}_W\operatorname{-}\!\mathit{M-level-inv}\ S and
   distinct-cdcl_W-state S
  shows distinct\text{-}cdcl_W\text{-}state\ S'
  using assms(1,2,2,3)
proof (induct rule: cdcl_W-all-induct)
  case (backtrack L D K i M1 M2)
  then show ?case
   using lev-inv unfolding distinct-cdcl_W-state-def
   by (auto dest: get-all-ann-decomposition-incl simp: cdcl_W-M-level-inv-decomp)
next
  case restart
  then show ?case
   unfolding distinct-cdcl<sub>W</sub>-state-def distinct-mset-set-def clauses-def by auto
next
  case resolve
  then show ?case
   by (auto simp add: distinct-cdcl_W-state-def distinct-mset-set-def clauses-def
     distinct-mset-single-add
     intro!: distinct-mset-union-mset)
qed (auto simp: distinct-cdcl<sub>W</sub>-state-def distinct-mset-set-def clauses-def
  dest!: in-diffD)
lemma rtanclp-distinct-cdcl_W-state-inv:
  assumes
    cdcl_W^{**} S S' and
    cdcl_W-M-level-inv S and
    distinct-cdcl_W-state S
  shows distinct\text{-}cdcl_W\text{-}state\ S'
  using assms apply (induct rule: rtranclp-induct)
  using distinct-cdcl_W-state-inv rtranclp-cdcl_W-consistent-inv by blast+
```

Conflicts and Annotations

This invariant shows that each mark contains a contradiction only related to the previously defined variable.

```
abbreviation every-mark-is-a-conflict :: 'st \Rightarrow bool where every-mark-is-a-conflict S \equiv
```

```
\forall L \ mark \ a \ b. \ a @ Propagated \ L \ mark \ \# \ b = (trail \ S)
  \longrightarrow (b \models as \ CNot \ (mark - \{\#L\#\}) \land L \in \# \ mark)
definition cdcl_W-conflicting S \longleftrightarrow
  (\forall T. conflicting S = Some T \longrightarrow trail S \models as CNot T)
 \land every-mark-is-a-conflict S
{f lemma}\ backtrack-atms-of-D-in-M1:
 fixes M1 :: ('v, 'v \ clause) \ ann-lits
 assumes
   inv: cdcl_W-M-level-inv S and
   i: get-maximum-level (trail S) ((remove1-mset L D)) \equiv i and
   decomp: (Decided K \# M1, M2)
      \in set (get-all-ann-decomposition (trail S)) and
   S-lvl: backtrack-lvl S = get-maximum-level (trail S) D and
   S-confl: conflicting S = Some D and
   lev-K: qet-level (trail S) K = Suc i  and
    T: T \sim cons-trail (Propagated L D)
              (reduce-trail-to M1
                (add-learned-cls D)
                  (update-backtrack-lvl i
                    (update\text{-}conflicting\ None\ S)))) and
   confl: \forall T. conflicting S = Some \ T \longrightarrow trail \ S \models as \ CNot \ T
 shows atms-of ((remove1\text{-}mset\ L\ D)) \subseteq atm\text{-}of\ `its-of-l\ (tl\ (trail\ T))
proof (rule ccontr)
 let ?k = qet-maximum-level (trail S) D
 let ?D' = remove1\text{-}mset\ L\ D
 have trail S \models as \ CNot \ D using confl S-confl by auto
  then have vars-of-D: atms-of D \subseteq atm-of 'lits-of-l (trail S) unfolding atms-of-def
   by (meson image-subset true-annots-CNot-all-atms-defined)
 obtain M0 where M: trail S = M0 @ M2 @ Decided K \# M1
   using decomp by auto
 have max: ?k = count\text{-}decided \ (M0 @ M2 @ Decided K \# M1)
   using inv unfolding cdcl<sub>W</sub>-M-level-inv-def S-lvl M by simp
  assume a: \neg ?thesis
  then obtain L' where
   L': L' \in atms\text{-}of ?D' and
   L'-notin-M1: L' \notin atm-of 'lits-of-lM1
   using T decomp inv by (auto simp: cdcl_W-M-level-inv-decomp)
  then have L'-in: L' \in atm-of 'lits-of-l (M0 @ M2 @ Decided K # [])
   \textbf{using} \ \textit{vars-of-D} \ \textbf{unfolding} \ \textit{M} \ \textbf{by} \ (\textit{auto} \ \textit{dest: in-atms-of-remove1-mset-in-atms-of})
  then obtain L'' where
   L'' \in \# ?D' and
   L'': L' = atm\text{-}of L''
   using L'L'-notin-M1 unfolding atms-of-def by auto
  have atm\text{-}of \ K \notin atm\text{-}of \ `lits\text{-}of\text{-}l \ (M0 @ M2)
   using inv by (auto simp: cdcl<sub>W</sub>-M-level-inv-def M lits-of-def)
  then have count-decided M1 = i
   using lev-K unfolding M by (auto\ simp:\ image-Un)
  then have lev-L'':
   get-level (trail S) L'' = get-level (M0 @ M2 @ Decided K # []) L'' + i
   using L'-notin-M1 L'' get-rev-level-skip-end[OF L'-in[unfolded L''], of M1] M by auto
  moreover
   consider
```

```
(M0) L' \in atm\text{-}of 'lits\text{-}of\text{-}l M0
     (M2) L' \in atm\text{-}of 'lits\text{-}of\text{-}lM2
     (K) L' = atm\text{-}of K
     using inv L'-in unfolding L'' by (auto simp: cdcl_W-M-level-inv-def)
   then have get-level (M0 @ M2 @ Decided K # []) L'' \geq Suc \ 0
     proof cases
       case M0
       then have L' \neq atm\text{-}of K
         using inv \langle atm\text{-}of \ K \notin atm\text{-}of \ ' \ lits\text{-}of\text{-}l \ (M0 @ M2) \rangle unfolding L'' by auto
       then show ?thesis using M0 unfolding L'' by auto
     next
       case M2
       then have L' \notin atm\text{-}of ' lits-of-l (M0 @ Decided K # [])
         using inv \langle atm\text{-}of \ K \notin atm\text{-}of \ `lits\text{-}of\text{-}l \ (M0 @ M2) \rangle unfolding L''
         by (auto simp: M cdcl<sub>W</sub>-M-level-inv-def atm-lit-of-set-lits-of-l)
       then show ?thesis using M2 unfolding L'' by (auto simp: image-Un)
     next
       case K
       then have L' \notin atm\text{-}of ' lits\text{-}of\text{-}l \ (M0 @ M2)
         using inv unfolding L'' by (auto simp: cdcl<sub>W</sub>-M-level-inv-def atm-lit-of-set-lits-of-l M)
       then show ?thesis using K unfolding L'' by (auto simp: image-Un)
     qed
  ultimately have get-level (trail S) L'' \ge i + 1
   using lev-L'' unfolding M by simp
  then have get-maximum-level (trail S) ?D' \ge i + 1
   using get-maximum-level-ge-get-level[OF \langle L'' \in \# ?D' \rangle, of trail S| by auto
  then show False using i by auto
qed
lemma distinct-atms-of-incl-not-in-other:
 assumes
   a1: no-dup (M @ M') and
   a2: atms-of D \subseteq atm-of ' lits-of-lM' and
   a3: x \in atms-of D
 shows x \notin atm\text{-}of ' lits\text{-}of\text{-}l M
proof -
  have ff1: \bigwedge l ms. undefined-lit ms l \vee atm-of l
   \in set \ (map \ (\lambda m. \ atm-of \ (lit-of \ (m :: ('a, 'b) \ ann-lit))) \ ms)
   by (simp add: defined-lit-map)
  have ff2: \bigwedge a. \ a \notin atms\text{-}of \ D \lor a \in atm\text{-}of \ `lits\text{-}of\text{-}l \ M'
   using a2 by (meson subsetCE)
  have ff3: \bigwedge a. \ a \notin set \ (map \ (\lambda m. \ atm-of \ (lit-of \ m)) \ M')
   \vee a \notin set (map (\lambda m. atm-of (lit-of m)) M)
   using a1 by (metis (lifting) IntI distinct-append empty-iff map-append)
  have \forall L \ a \ f \ \exists \ l \ ((a::'a) \notin f \ `L \lor (l ::'a \ literal) \in L) \land (a \notin f \ `L \lor f \ l = a)
   by blast
  then show x \notin atm\text{-}of ' lits\text{-}of\text{-}l M
   using ff3 ff2 ff1 a3 by (metis (no-types) Decided-Propagated-in-iff-in-lits-of-l)
qed
Item 5 page 81 of Weidenbach's book
lemma cdcl_W-propagate-is-conclusion:
  assumes
   cdcl_W S S' and
   inv: cdcl_W-M-level-inv S and
   decomp: all-decomposition-implies-m (init-clss S) (get-all-ann-decomposition (trail S)) and
```

```
learned: cdcl_W-learned-clause S and
   confl: \forall T. conflicting S = Some \ T \longrightarrow trail \ S \models as \ CNot \ T and
   alien: no-strange-atm S
 shows all-decomposition-implies-m (init-clss S') (get-all-ann-decomposition (trail S'))
 using assms(1,2)
proof (induct rule: cdcl_W-all-induct)
 case restart
 then show ?case by auto
next
 case forget
 then show ?case using decomp by auto
next
 case conflict
 then show ?case using decomp by auto
 case (resolve L C M D) note tr = this(1) and T = this(7)
 let ?decomp = qet-all-ann-decomposition M
 have M: set ?decomp = insert (hd ?decomp) (set (tl ?decomp))
   by (cases ?decomp) auto
 show ?case
   using decomp tr T unfolding all-decomposition-implies-def
   by (cases hd (get-all-ann-decomposition M))
      (auto\ simp:\ M)
next
 case (skip\ L\ C'\ M\ D) note tr=this(1) and T=this(5)
 have M: set (get-all-ann-decomposition M)
   =insert\ (hd\ (qet-all-ann-decomposition\ M))\ (set\ (tl\ (qet-all-ann-decomposition\ M)))
   by (cases get-all-ann-decomposition M) auto
 show ?case
   using decomp tr T unfolding all-decomposition-implies-def
   by (cases hd (get-all-ann-decomposition M))
      (auto simp add: M)
 case decide note S = this(1) and undef = this(2) and T = this(4)
 show ?case using decomp T undef unfolding S all-decomposition-implies-def by auto
next
 case (propagate C L T) note propa = this(2) and L = this(3) and undef = this(5) and T = this(6)
 obtain a y where ay: hd (get-all-ann-decomposition (trail S)) = (a, y)
   by (cases hd (get-all-ann-decomposition (trail S)))
 then have M: trail\ S = y\ @\ a\ using\ get-all-ann-decomposition-decomp\ by\ blast
 have M': set (get-all-ann-decomposition (trail S))
   =insert\ (a,\ y)\ (set\ (tl\ (get-all-ann-decomposition\ (trail\ S))))
   using ay by (cases get-all-ann-decomposition (trail S)) auto
 have unmark-l \ a \cup set\text{-}mset \ (init\text{-}clss \ S) \models ps \ unmark-l \ y
   using decomp ay unfolding all-decomposition-implies-def
   by (cases get-all-ann-decomposition (trail S)) fastforce+
 then have a-Un-N-M: unmark-l a \cup set-mset (init-clss S)
   \models ps \ unmark-l \ (trail \ S)
   unfolding M by (auto simp add: all-in-true-clss-clss image-Un)
 have unmark-l \ a \cup set\text{-}mset \ (init\text{-}clss \ S) \models p \ \{\#L\#\} \ (is \ ?I \models p \ -)
   proof (rule true-clss-cls-plus-CNot)
     show ?I \models p \ remove 1 - mset \ L \ C + \{\#L\#\}
      {\bf apply} \ (\textit{rule true-clss-cls-in-imp-true-clss-cls}[\textit{of --}
          set-mset (init-clss S) \cup set-mset (learned-clss S)])
      using learned propa L by (auto simp: clauses-def cdcl_W-learned-clause-def
```

```
true-annot-CNot-diff)
   next
     have unmark-l (trail\ S) \models ps\ CNot\ (remove1-mset\ L\ C)
      using \langle (trail\ S) \models as\ CNot\ (remove1-mset\ L\ C) \rangle true-annots-true-clss-clss
     then show ?I \models ps \ CNot \ (remove 1-mset \ L \ C)
       using a-Un-N-M true-clss-clss-left-right true-clss-clss-union-l-r by blast
   qed
 moreover have \bigwedge aa\ b.
    \forall (Ls, seen) \in set (get-all-ann-decomposition (y @ a)).
       unmark-l Ls \cup set-mset (init-clss S) <math>\models ps unmark-l seen \Longrightarrow
      (aa, b) \in set (tl (get-all-ann-decomposition (y @ a))) \Longrightarrow
       unmark-l aa \cup set-mset (init-clss S) <math>\models ps unmark-l b
   by (metis (no-types, lifting) case-prod-conv get-all-ann-decomposition-never-empty-sym
     list.collapse\ list.set-intros(2))
 ultimately show ?case
   using decomp T undef unfolding ay all-decomposition-implies-def
   ay by auto
next
  case (backtrack L D K i M1 M2 T) note conf = this(1) and LD = this(2) and decomp' = this(3)
and
   lev-L = this(4) and lev-K = this(7) and undef = this(8) and T = this(9)
 let ?D' = remove1\text{-}mset\ L\ D
 have \forall l \in set M2. \neg is\text{-}decided l
   using get-all-ann-decomposition-snd-not-decided decomp' by blast
 obtain M0 where M: trail S = M0 @ M2 @ Decided K \# M1
   using decomp' by auto
 show ?case unfolding all-decomposition-implies-def
   proof
     \mathbf{fix} \ x
     assume x \in set (get-all-ann-decomposition (trail T))
     then have x: x \in set (get-all-ann-decomposition (Propagated L D # M1))
      using T decomp' undef inv by (simp add: cdcl_W-M-level-inv-decomp)
     let ?m = qet-all-ann-decomposition (Propagated L D # M1)
     let ?hd = hd ?m
     let ?tl = tl ?m
     consider
        (hd) x = ?hd
      |(tl)| x \in set ?tl
      using x by (cases ?m) auto
     then show case x of (Ls, seen) \Rightarrow unmark-l Ls \cup set\text{-mset } (init\text{-}clss T) \models ps \ unmark-l \ seen
      proof cases
        case tl
        then have x \in set (get-all-ann-decomposition (trail S))
          \textbf{using} \ \textit{tl-get-all-ann-decomposition-skip-some} [\textit{of} \ x] \ \textbf{by} \ (\textit{simp add: list.set-sel}(\textit{2}) \ \textit{M})
        then show ?thesis
          using decomp learned decomp confl alien inv T undef M
          unfolding all-decomposition-implies-def cdcl<sub>W</sub>-M-level-inv-def
          by auto
      next
        case hd
        obtain M1' M1'' where M1: hd (get-all-ann-decomposition M1) = (M1', M1'')
          by (cases hd (get-all-ann-decomposition M1))
        then have x': x = (M1', Propagated L D \# M1'')
```

```
using \langle x = ?hd \rangle by auto
        have (M1', M1'') \in set (get-all-ann-decomposition (trail S))
          using M1[symmetric] hd-qet-all-ann-decomposition-skip-some[OF M1[symmetric],
            of M0 @ M2] unfolding M by fastforce
        then have 1: unmark-l M1' \cup set-mset (init-clss S) \models ps unmark-l M1"
          using decomp unfolding all-decomposition-implies-def by auto
        moreover
          have vars-of-D: atms-of ?D' \subseteq atm-of 'lits-of-l M1
           using backtrack-atms-of-D-in-M1 [of S D L i K M1 M2 T] backtrack.hyps inv conf confl
           by (auto simp: cdcl_W-M-level-inv-decomp)
          have no-dup (trail S) using inv by (auto simp: cdcl_W-M-level-inv-decomp)
          then have vars-in-M1:
            \forall x \in atms\text{-}of ?D'. x \notin atm\text{-}of `lits\text{-}of\text{-}l (M0 @ M2 @ Decided } K \# [])
           using vars-of-D distinct-atms-of-incl-not-in-other of
             M0 @ M2 @ Decided K \# [] M1] unfolding M by auto
          have trail S \models as \ CNot \ (remove1\text{-}mset\ L\ D)
            using conf confl LD unfolding M true-annots-true-cls-def-iff-negation-in-model
           by (auto dest!: Multiset.in-diffD)
          then have M1 \models as \ CNot \ ?D'
            using vars-in-M1 true-annots-remove-if-notin-vars of M0 @ M2 @ Decided K # []
              M1 CNot ?D' conf confl unfolding M lits-of-def by simp
          have M1 = M1'' @ M1' by (simp \ add: M1 \ get-all-ann-decomposition-decomp)
          have TT: unmark-l M1' \cup set-mset (init-clss S) \models ps CNot ?D'
            using true-annots-true-clss-cls[OF \land M1 \models as\ CNot\ ?D'\rangle] true-clss-clss-left-right[OF\ 1]
            unfolding \langle M1 = M1'' \otimes M1' \rangle by (auto simp add: inf-sup-aci(5,7))
          have init-clss S \models pm ?D' + \{\#L\#\}
            using conf learned confl LD unfolding cdcl<sub>W</sub>-learned-clause-def by auto
          then have T': unmark-l M1' \cup set-mset (init-clss S) \models p ?D' + \{\#L\#\} by auto
          have atms-of (?D' + \{\#L\#\}) \subseteq atms-of-mm (clauses S)
            using alien conf LD unfolding no-strange-atm-def clauses-def by auto
          then have unmark-l\ M1' \cup set\text{-}mset\ (init\text{-}clss\ S) \models p\ \{\#L\#\}
           using true-clss-cls-plus-CNot[OF T' TT] by auto
        ultimately show ?thesis
            using T' T decomp' undef inv unfolding x' by (simp add: cdcl_W-M-level-inv-decomp)
       qed
   \mathbf{qed}
qed
lemma cdcl_W-propagate-is-false:
 assumes
   cdcl_W S S' and
   lev: cdcl_W-M-level-inv S and
   learned: cdcl_W-learned-clause S and
   decomp: all-decomposition-implies-m (init-clss S) (get-all-ann-decomposition (trail S)) and
   confl: \forall T. \ conflicting \ S = Some \ T \longrightarrow trail \ S \models as \ CNot \ T \ and
   alien: no-strange-atm S and
   mark-confl: every-mark-is-a-conflict S
 shows every-mark-is-a-conflict S'
 using assms(1,2)
proof (induct rule: cdcl_W-all-induct)
  case (propagate C L T) note LC = this(3) and confl = this(4) and undef = this(5) and T = this(5)
this(6)
 show ?case
   proof (intro allI impI)
```

```
fix L' mark a b
     assume a @ Propagated L' mark \# b = trail T
     then consider
        (hd) a = [] and L = L' and mark = C and b = trail S
      | (tl) tl a @ Propagated L' mark # b = trail S
      using T undef by (cases a) fastforce+
     then show b \models as \ CNot \ (mark - \{\#L'\#\}) \land L' \in \# \ mark
      using mark-confl confl LC by cases auto
   qed
next
 case (decide L) note undef[simp] = this(2) and T = this(4)
 have \bigwedge a La mark b. a @ Propagated La mark \# b = Decided L \# trail S
   \implies tl a @ Propagated La mark # b = trail S by (case-tac a) auto
 then show ?case using mark-conft T unfolding decide.hyps(1) by fastforce
 case (skip\ L\ C'\ M\ D\ T) note tr=this(1) and T=this(5)
 show ?case
   proof (intro allI impI)
     fix L' mark a b
     assume a @ Propagated L' mark # b = trail T
     then have a @ Propagated L' mark \# b = M using tr T by simp
     then have (Propagated L C' \# a) @ Propagated L' mark \# b = Propagated L C' \# M by auto
     moreover have \forall La \ mark \ a \ b. \ a @ Propagated \ La \ mark \ \# \ b = Propagated \ L \ C' \ \# \ M
      \longrightarrow b \models as \ CNot \ (mark - \{\#La\#\}) \land La \in \# \ mark
      using mark-confl unfolding skip.hyps(1) by simp
     ultimately show b \models as \ CNot \ (mark - \{\#L'\#\}) \land L' \in \# \ mark \ by \ blast
   qed
next
 case (conflict D)
 then show ?case using mark-confl by simp
 case (resolve L C M D T) note tr-S = this(1) and T = this(7)
 show ?case unfolding resolve.hyps(1)
   proof (intro allI impI)
     fix L' mark a b
     assume a @ Propagated\ L'\ mark\ \#\ b=trail\ T
     then have (Propagated L (C + \{\#L\#\}\) # a) @ Propagated L' mark # b
      = Propagated \ L \ (C + \{\#L\#\}) \ \# \ M
      using T tr-S by auto
     then show b \models as \ CNot \ (mark - \{\#L'\#\}) \land L' \in \# \ mark
      using mark-confl unfolding tr-S by (metis\ Cons-eq-appendI\ list.sel(3))
   qed
\mathbf{next}
 case restart
 then show ?case by auto
next
 case forget
 then show ?case using mark-confl by auto
 case (backtrack L D K i M1 M2 T) note conf = this(1) and LD = this(2) and decomp = this(3)
and
   lev-K = this(7) and T = this(8)
 have \forall l \in set M2. \neg is\text{-}decided l
   using get-all-ann-decomposition-snd-not-decided decomp by blast
 obtain M0 where M: trail S = M0 @ M2 @ Decided K \# M1
   using decomp by auto
```

```
have [simp]: trail (reduce-trail-to M1 (add-learned-cls D)
   (update-backtrack-lvl\ i\ (update-conflicting\ None\ S))))=M1
   using decomp lev by (auto simp: cdcl_W-M-level-inv-decomp)
 let ?D' = remove1\text{-}mset\ L\ D
 show ?case
   proof (intro allI impI)
     fix La:: 'v literal and mark:: 'v clause and
       a \ b :: ('v, 'v \ clause) \ ann-lits
     assume a @ Propagated La mark \# b = trail T
     then consider
         (hd-tr) a = [] and
          (Propagated\ La\ mark:: ('v, 'v\ clause)\ ann-lit) = Propagated\ L\ D\ and
          b = M1
       | (tl-tr) tl \ a @ Propagated La mark \# b = M1
       using M T decomp lev by (cases a) (auto simp: cdcl_W-M-level-inv-def)
     then show b \models as \ CNot \ (mark - \{\#La\#\}) \land La \in \# \ mark
       proof cases
         case hd-tr note A = this(1) and P = this(2) and b = this(3)
         have trail S \models as \ CNot \ D using conf confl by auto
         then have vars-of-D: atms-of D \subseteq atm-of 'lits-of-l (trail S)
          unfolding atms-of-def
          by (meson image-subset true-annots-CNot-all-atms-defined)
         have vars-of-D: atms-of ?D' \subseteq atm-of 'lits-of-l M1
          using backtrack-atms-of-D-in-M1 [of S D L i K M1 M2 T] T backtrack lev confl
          by (auto simp: cdcl_W-M-level-inv-decomp)
         have no-dup (trail S) using lev by (auto simp: cdcl_W-M-level-inv-decomp)
         then have \forall x \in atms\text{-}of ?D'. x \notin atm\text{-}of `lits\text{-}of\text{-}l (M0 @ M2 @ Decided } K \# [])
          using vars-of-D distinct-atms-of-incl-not-in-other of
            M0 @ M2 @ Decided K \# [] M1] unfolding M by auto
         then have M1 \models as \ CNot \ ?D'
          using true-annots-remove-if-notin-vars[of M0 @ M2 @ Decided K # []
            M1 CNot ?D' (trail S \models as \ CNot \ D) unfolding M lits-of-def
          by (simp add: true-annot-CNot-diff)
         then show b \models as \ CNot \ (mark - \{\#La\#\}) \land La \in \# \ mark
          using P LD b by auto
      next
         case tl-tr
         then obtain c' where c' @ Propagated La mark \# b = trail S
          unfolding M by auto
         then show b \models as \ CNot \ (mark - \{\#La\#\}) \land La \in \# \ mark
          using mark-confl by auto
       qed
   qed
qed
lemma cdcl_W-conflicting-is-false:
 assumes
   cdcl_W S S' and
   M-lev: cdcl_W-M-level-inv S and
   confl-inv: \forall T. \ conflicting \ S = Some \ T \longrightarrow trail \ S \models as \ CNot \ T \ and
   decided-confl: \forall L \text{ mark } a \text{ b. } a @ Propagated L \text{ mark } \# b = (trail S)
     \longrightarrow (b \models as \ CNot \ (mark - \{\#L\#\}) \land L \in \# \ mark) \ \mathbf{and}
   dist: distinct-cdcl_W-state S
 shows \forall T. conflicting S' = Some \ T \longrightarrow trail \ S' \models as \ CNot \ T
 using assms(1,2)
proof (induct rule: cdcl_W-all-induct)
```

```
case (skip L C' M D T) note tr-S = this(1) and confl = this(2) and L-D = this(3) and T =
this(5)
 have D: Propagated L C' \# M \models as CNot D using assms skip by auto
 moreover
   have L \notin \# D
     proof (rule ccontr)
      assume ¬ ?thesis
      then have -L \in lits-of-l M
        using in-CNot-implies-uminus(2)[of L D Propagated L C' \# M]
        \langle Propagated \ L \ C' \# M \models as \ CNot \ D \rangle \ by \ simp
       then show False
        by (metis (no-types, hide-lams) M-lev cdcl<sub>W</sub>-M-level-inv-decomp(1) consistent-interp-def
          image-insert\ insert-iff\ list.set(2)\ lits-of-def\ ann-lit.sel(2)\ tr-S)
     qed
 ultimately show ?case
   using tr-S confl L-D T unfolding cdcl_W-M-level-inv-def
   by (auto intro: true-annots-CNot-lit-of-notin-skip)
  case (resolve L C M D T) note tr = this(1) and LC = this(2) and confl = this(4) and LD = this(4)
this(5)
 and T = this(7)
 let ?C = remove1\text{-}mset\ L\ C
 let ?D = remove1\text{-}mset (-L) D
 show ?case
   proof (intro allI impI)
     fix T'
     have the trail S = as \ CNot \ ?C \ using \ tr \ decided-confl \ by \ fastforce
     moreover
       have distinct-mset (?D + \{\#-L\#\}) using confl dist LD
        unfolding distinct-cdcl<sub>W</sub>-state-def by auto
       then have -L \notin \# ?D unfolding distinct-mset-def
        by (meson \ (distinct\text{-}mset \ (?D + \{\#-L\#\})) \ distinct\text{-}mset\text{-}single\text{-}add)
       have M \models as \ CNot \ ?D
        proof -
          have Propagated L (?C + \{\#L\#\}) \# M \modelsas CNot ?D \cup CNot \{\#-L\#\}
            using confl tr confl-inv LC by (metis CNot-plus LD insert-DiffM2)
          then show ?thesis
            using M-lev \langle -L \notin \# ?D \rangle tr true-annots-lit-of-notin-skip
            unfolding cdcl_W-M-level-inv-def by force
     moreover assume conflicting T = Some T'
     ultimately
      show trail T \models as CNot T'
       using tr T by auto
   qed
\mathbf{qed} (auto simp: M-lev cdcl_W-M-level-inv-decomp)
lemma cdcl_W-conflicting-decomp:
 assumes cdcl_W-conflicting S
 shows \forall T. conflicting S = Some T \longrightarrow trail S \models as CNot T
 and \forall L \ mark \ a \ b. \ a @ Propagated \ L \ mark \ \# \ b = (trail \ S)
    \longrightarrow (b \models as \ CNot \ (mark - \{\#L\#\}) \land L \in \# \ mark)
 using assms unfolding cdcl<sub>W</sub>-conflicting-def by blast+
lemma cdcl_W-conflicting-decomp2:
 assumes cdcl_W-conflicting S and conflicting <math>S = Some \ T
```

```
shows trail S \models as CNot T
 using assms unfolding cdcl_W-conflicting-def by blast+
lemma cdcl_W-conflicting-S0-cdcl_W[simp]:
 cdcl_W-conflicting (init-state N)
 unfolding cdcl_W-conflicting-def by auto
Putting all the invariants together
lemma cdcl_W-all-inv:
 assumes
   cdcl_W: cdcl_W S S' and
   1: all-decomposition-implies-m (init-clss S) (get-all-ann-decomposition (trail S)) and
   2: cdcl_W-learned-clause S and
   4: cdcl_W-M-level-inv S and
   5: no-strange-atm S and
   7: distinct\text{-}cdcl_W\text{-}state\ S and
   8: cdcl_W-conflicting S
 shows
   all-decomposition-implies-m (init-clss S') (get-all-ann-decomposition (trail S')) and
   cdcl_W-learned-clause S' and
   cdcl_W-M-level-inv\ S' and
   no-strange-atm S' and
   distinct\text{-}cdcl_W\text{-}state\ S' and
   cdcl_W-conflicting S'
proof -
 show S1: all-decomposition-implies-m (init-clss S') (get-all-ann-decomposition (trail S'))
   using cdcl_W-propagate-is-conclusion[OF cdcl_W 4 1 2 - 5] 8 unfolding cdcl_W-conflicting-def
   by blast
 show S2: cdcl_W-learned-clause S' using cdcl_W-learned-clss[OF cdcl_W 2 4].
 show S4: cdcl_W-M-level-inv S' using cdcl_W-consistent-inv[OF cdcl_W 4].
 show S5: no-strange-atm S' using cdcl_W-no-strange-atm-inv[OF cdcl_W 5 4].
 show S7: distinct-cdcl_W-state S' using distinct-cdcl_W-state-inv[OF cdcl_W 47].
 show S8: cdcl_W-conflicting S'
   using cdcl<sub>W</sub>-conflicting-is-false[OF cdcl<sub>W</sub> 4 - - 7] 8 cdcl<sub>W</sub>-propagate-is-false[OF cdcl<sub>W</sub> 4 2 1 -
   unfolding cdcl_W-conflicting-def by fast
qed
lemma rtranclp-cdcl_W-all-inv:
 assumes
   cdcl_W: rtranclp \ cdcl_W \ S \ S' and
   1: all-decomposition-implies-m (init-clss S) (get-all-ann-decomposition (trail S)) and
   2: cdcl_W-learned-clause S and
   4: cdcl_W - M - level - inv S and
   5: no-strange-atm S and
   7: distinct\text{-}cdcl_W\text{-}state\ S and
   8: cdcl_W-conflicting S
 \mathbf{shows}
   all-decomposition-implies-m (init-clss S') (get-all-ann-decomposition (trail S')) and
   cdcl_W-learned-clause S' and
   cdcl_W-M-level-inv S' and
   no-strange-atm S' and
   distinct-cdcl_W-state S' and
   cdcl_W-conflicting S'
  using assms
```

```
proof (induct rule: rtranclp-induct)
  case base
   case 1 then show ?case by blast
   case 2 then show ?case by blast
   case 3 then show ?case by blast
   case 4 then show ?case by blast
   case 5 then show ?case by blast
   case 6 then show ?case by blast
next
  case (step \ S' \ S'') note H = this
   case 1 with H(3-7)[OF\ this(1-6)] show ?case using cdcl_W-all-inv[OF\ H(2)]
       H by presburger
   case 2 with H(3-7)[OF\ this(1-6)] show ?case using cdcl_W-all-inv[OF\ H(2)]
       H by presburger
   case 3 with H(3-7)[OF\ this(1-6)] show ?case using cdcl_W-all-inv[OF\ H(2)]
       H by presburger
   case 4 with H(3-7)[OF\ this(1-6)] show ?case using cdcl_W-all-inv[OF\ H(2)]
       H by presburger
   case 5 with H(3-7)[OF\ this(1-6)] show ?case using cdcl_W-all-inv[OF\ H(2)]
       H by presburger
   case 6 with H(3-7)[OF\ this(1-6)] show ?case using cdcl_W-all-inv[OF\ H(2)]
       H by presburger
qed
lemma all-invariant-S0-cdcl_W:
 assumes distinct-mset-mset N
 shows
   all-decomposition-implies-m (init-clss (init-state N))
                              (get-all-ann-decomposition (trail (init-state N))) and
   cdcl_W-learned-clause (init-state N) and
   \forall T. \ conflicting \ (init\text{-state } N) = Some \ T \longrightarrow (trail \ (init\text{-state } N)) \models as \ CNot \ T \ and
   no-strange-atm (init-state N) and
   consistent-interp (lits-of-l (trail (init-state N))) and
   \forall L \ mark \ a \ b. \ a \ @ \ Propagated \ L \ mark \ \# \ b = trail \ (init\text{-state } N) \longrightarrow
    (b \models as \ CNot \ (mark - \{\#L\#\}) \land L \in \# \ mark) \ \mathbf{and}
    distinct\text{-}cdcl_W\text{-}state \ (init\text{-}state \ N)
 using assms by auto
Item 6 page 81 of Weidenbach's book
lemma cdcl_W-only-propagated-vars-unsat:
 assumes
   decided: \forall x \in set M. \neg is\text{-}decided x \text{ and }
   DN: D \in \# \ clauses \ S \ and
   D: M \models as CNot D  and
   inv: all-decomposition-implies-m N (get-all-ann-decomposition M) and
   state: state S = (M, N, U, k, C) and
   learned-cl: cdcl_W-learned-clause S and
   atm-incl: no-strange-atm S
 shows unsatisfiable (set-mset N)
proof (rule ccontr)
  assume \neg unsatisfiable (set-mset N)
  then obtain I where
   I: I \models s \ set\text{-}mset \ N \ \mathbf{and}
   cons: consistent-interp I and
   tot: total\text{-}over\text{-}m \ I \ (set\text{-}mset \ N)
   unfolding satisfiable-def by auto
```

```
have atms-of-mm N \cup atms-of-mm U = atms-of-mm N
   using atm-incl state unfolding total-over-m-def no-strange-atm-def
   by (auto simp add: clauses-def)
 then have total-over-m I (set-mset N) using tot unfolding total-over-m-def by auto
 moreover then have total-over-m I (set-mset (learned-clss S))
   using atm-incl state unfolding no-strange-atm-def total-over-m-def total-over-set-def
 moreover have N \models psm\ U using learned-cl state unfolding cdcl_W-learned-clause-def by auto
 ultimately have I-D: I \models D
   using I DN cons state unfolding true-clss-def true-clss-def Ball-def
   by (auto simp add: clauses-def)
 have l0: \{unmark\ L\ | L.\ is\text{-}decided\ L \land L \in set\ M\} = \{\}\ using\ decided\ by\ auto
 have atms-of-ms (set-mset N \cup unmark-l M) = atms-of-mm N
   using atm-incl state unfolding no-strange-atm-def by auto
 then have total-over-m I (set-mset N \cup unmark-l M)
   using tot unfolding total-over-m-def by auto
 then have I \models s \ unmark-l \ M
   using all-decomposition-implies-propagated-lits-are-implied [OF inv] cons I
   unfolding true-clss-clss-def l0 by auto
 then have IM: I \models s \ unmark-l \ M \ by \ auto
 {
   \mathbf{fix} K
   assume K \in \# D
   then have -K \in lits-of-l M
     using D unfolding true-annots-def Ball-def CNot-def true-annot-def true-cls-def true-lit-def
     Bex-def by force
   then have -K \in I using IM true-clss-singleton-lit-of-implies-incl lits-of-def by fastforce \}
 then have \neg I \models D using cons unfolding true-cls-def true-lit-def consistent-interp-def by auto
 then show False using I-D by blast
qed
Item 5 page 81 of Weidenbach's book
We have actually a much stronger theorem, namely all-decomposition-implies-propagated-lits-are-implied,
that show that the only choices we made are decided in the formula
 assumes all-decomposition-implies-m N (get-all-ann-decomposition M)
 and \forall m \in set M. \neg is\text{-}decided m
 shows set-mset N \models ps \ unmark-l \ M
proof
 have T: \{unmark\ L\ | L.\ is\text{-}decided\ L\land L\in set\ M\}=\{\}\ using\ assms(2)\ by\ auto
 then show ?thesis
   using all-decomposition-implies-propagated-lits-are-implied [OF assms(1)] unfolding T by simp
qed
Item 7 page 81 of Weidenbach's book (part 1)
lemma conflict-with-false-implies-unsat:
 assumes
   cdcl_W: cdcl_W S S' and
   lev: cdcl_W-M-level-inv S and
   [simp]: conflicting S' = Some \{\#\} and
   learned: cdcl_W-learned-clause S
 shows unsatisfiable (set-mset (init-clss S))
 using assms
proof -
```

```
have cdcl_W-learned-clause S' using cdcl_W-learned-clss cdcl_W learned lev by auto then have init-clss S' \models pm {#} using assms(3) unfolding cdcl_W-learned-clause-def by auto then have init-clss S \models pm {#} using cdcl_W-init-clss [OF\ assms(1)\ lev] by auto then show ?thesis unfolding satisfiable-def true-clss-cls-def by auto qed

Item 7 page 81 of Weidenbach's book (part 2)

lemma conflict-with-false-implies-terminated: assumes cdcl_W\ S\ S' and conflicting\ S = Some\ \{\#\} shows False using assms by (induct\ rule:\ cdcl_W-all-induct) auto
```

No tautology is learned

This is a simple consequence of all we have shown previously. It is not strictly necessary, but helps finding a better bound on the number of learned clauses.

```
{f lemma}\ learned\text{-}clss\text{-}are\text{-}not\text{-}tautologies:
  assumes
    cdcl_W S S' and
    lev: cdcl_W-M-level-inv S and
    conflicting: cdcl_W-conflicting S and
    no-tauto: \forall s \in \# learned-clss S. \neg tautology s
  shows \forall s \in \# learned\text{-}clss S'. \neg tautology s
  using assms
proof (induct rule: cdcl<sub>W</sub>-all-induct)
  case (backtrack\ L\ D\ K\ i\ M1\ M2\ T) note confl=this(1)
  have consistent-interp (lits-of-l (trail S)) using lev by (auto simp: cdcl<sub>W</sub>-M-level-inv-decomp)
  moreover
    have trail S \models as \ CNot \ D
      using conflicting confl unfolding cdcl<sub>W</sub>-conflicting-def by auto
    then have lits-of-l (trail S) \modelss CNot D
      using true-annots-true-cls by blast
  ultimately have \neg tautology D using consistent-CNot-not-tautology by blast
  then show ?case using backtrack no-tauto lev
    by (auto simp: cdcl_W-M-level-inv-decomp split: if-split-asm)
next
  case restart
 then show ?case using state-eq-learned-clss no-tauto
    by (auto intro: atms-of-ms-learned-clss-restart-state-in-atms-of-ms-learned-clssI)
qed (auto dest!: in-diffD)
definition final-cdcl_W-state (S :: 'st)
  \longleftrightarrow (trail S \models asm init-clss S
    \vee ((\forall L \in set \ (trail \ S). \ \neg is-decided \ L) <math>\wedge
       (\exists C \in \# init\text{-}clss \ S. \ trail \ S \models as \ CNot \ C)))
definition termination-cdcl_W-state (S :: 'st)
   \longleftrightarrow (trail S \models asm init-clss S
     \lor ((\forall L \in atms\text{-}of\text{-}mm \ (init\text{-}clss \ S). \ L \in atm\text{-}of \ `its\text{-}of\text{-}l \ (trail \ S))
        \land (\exists C \in \# init\text{-}clss \ S. \ trail \ S \models as \ CNot \ C)))
```

2.1.4 CDCL Strong Completeness

```
lemma cdcl_W-can-do-step:
 assumes
   consistent-interp (set M) and
   distinct M and
   atm\text{-}of \text{ '} (set M) \subseteq atms\text{-}of\text{-}mm N
 shows \exists S. rtranclp \ cdcl_W \ (init\text{-state } N) \ S
   \wedge state S = (map (\lambda L. Decided L) M, N, {\#}, length M, None)
 using assms
proof (induct M)
  case Nil
  then show ?case apply - by (rule exI[of - init-state N]) auto
next
 case (Cons\ L\ M) note IH = this(1)
 have consistent-interp (set M) and distinct M and atm-of 'set M \subseteq atms-of-mm N
   using Cons.prems(1-3) unfolding consistent-interp-def by auto
  then obtain S where
   st: cdcl_{W}^{**} (init\text{-}state\ N)\ S \ \mathbf{and}
   S: state S = (map (\lambda L. Decided L) M, N, \{\#\}, length M, None)
   using IH by blast
 let ?S_0 = incr-lvl \ (cons-trail \ (Decided \ L) \ S)
 have undefined-lit (map (\lambda L. Decided L) M) L
   using Cons. prems(1,2) unfolding defined-lit-def consistent-interp-def by fastforce
 moreover have init-clss S = N
   using S by blast
 moreover have atm\text{-}of\ L\in atms\text{-}of\text{-}mm\ N\ using\ Cons.prems(3)\ by\ auto
  moreover have undef: undefined-lit (trail\ S) L
   using S (distinct (L \# M)) (calculation(1)) by (auto simp: defined-lit-map)
  ultimately have cdcl_W S ?S_0
   using cdcl_W.other[OF cdcl_W-o.decide[OF decide-rule[of S L ?S<sub>0</sub>]]] S
   by (auto simp: state-eq-def simp del: state-simp)
  then have cdcl_W^{**} (init-state N) ?S<sub>0</sub>
   using st by auto
  then show ?case
   using S undef by (auto intro!: exI[of - ?S_0] del: simp del:)
theorem 2.9.11 page 84 of Weidenbach's book
lemma cdcl_W-strong-completeness:
 assumes
   MN: set M \models sm N  and
   cons: consistent-interp (set M) and
   dist: distinct M and
   atm: atm\text{-}of `(set M) \subseteq atms\text{-}of\text{-}mm N
  obtains S where
   state S = (map (\lambda L. Decided L) M, N, \{\#\}, length M, None) and
   rtranclp \ cdcl_W \ (init\text{-}state \ N) \ S \ and
   final-cdcl_W-state S
proof -
 obtain S where
   st: rtranclp\ cdcl_W\ (init\text{-state}\ N)\ S and
   S: state S = (map (\lambda L. Decided L) M, N, \{\#\}, length M, None)
   using cdcl_W-can-do-step[OF cons dist atm] by auto
 have lits-of-l (map (\lambda L. Decided L) M) = set M
   by (induct\ M,\ auto)
```

```
then have map\ (\lambda L.\ Decided\ L)\ M \models asm\ N\ using\ MN\ true-annots-true-cls\ by\ metis then have final\text{-}cdcl_W\text{-}state\ S} using S unfolding final\text{-}cdcl_W\text{-}state\text{-}def\ by\ auto} then show ?thesis\ using\ that\ st\ S\ by\ blast qed
```

2.1.5 Higher level strategy

The rules described previously do not lead to a conclusive state. We have to add a strategy.

Definition

```
lemma tranclp-conflict:
  tranclp\ conflict\ S\ S' \Longrightarrow conflict\ S\ S'
 apply (induct rule: tranclp.induct)
  apply simp
 by (metis\ conflictE\ conflicting-update-conflicting\ option.distinct(1)\ state-eq-conflicting)
lemma tranclp-conflict-iff[iff]:
 full1 conflict S S' \longleftrightarrow conflict S S'
proof -
 have tranclp conflict S S' \Longrightarrow conflict S S' by (meson tranclp-conflict rtranclpD)
 then show ?thesis unfolding full1-def
 by (metis conflict.simps conflicting-update-conflicting option.distinct(1)
   state-eq-conflicting tranclp.intros(1))
qed
inductive cdcl_W-cp :: 'st \Rightarrow 'st \Rightarrow bool where
conflict'[intro]: conflict S S' \Longrightarrow cdcl_W - cp S S'
propagate': propagate \ S \ S' \Longrightarrow cdcl_W - cp \ S \ S'
lemma rtranclp-cdcl_W-cp-rtranclp-cdcl_W:
  cdcl_W - cp^{**} S T \Longrightarrow cdcl_W^{**} S T
 by (induction rule: rtranclp-induct) (auto simp: cdcl_W-cp.simps dest: cdcl_W.intros)
lemma cdcl_W-cp-state-eq-compatible:
 assumes
   cdcl_W-cp S T and
   S \sim S' and
   T \sim T'
 shows cdcl_W-cp S' T'
 using assms
 apply (induction)
   using conflict-state-eq-compatible apply auto[1]
 using propagate' propagate-state-eq-compatible by auto
lemma tranclp-cdcl_W-cp-state-eq-compatible:
  assumes
   cdcl_W-cp^{++} S T and
   S \sim S' and
   T \sim T'
 shows cdcl_W-cp^{++} S' T'
 using assms
proof induction
 case base
```

```
then show ?case
   using cdcl_W-cp-state-eq-compatible by blast
  case (step \ U \ V)
  obtain ss :: 'st where
    cdcl_W-cp S ss and cdcl_W-cp^{**} ss U
   by (metis\ (no\text{-}types)\ step(1)\ tranclpD)
  then show ?case
   by (meson\ cdcl_W\text{-}cp\text{-}state\text{-}eq\text{-}compatible\ rtranclp.rtrancl-into\text{-}rtrancl\ rtranclp-into\text{-}tranclp2
     state-eq-ref step(2) step(4) step(5)
qed
lemma option-full-cdcl_W-cp:
  conflicting S \neq None \Longrightarrow full \ cdcl_W - cp \ S \ S
  unfolding full-def rtranclp-unfold tranclp-unfold
  by (auto simp add: cdcl_W-cp.simps elim: conflictE propagateE)
lemma skip-unique:
  skip \ S \ T \Longrightarrow skip \ S \ T' \Longrightarrow T \sim T'
  by (fastforce simp: state-eq-def simp del: state-simp elim: skipE)
lemma resolve-unique:
  resolve S \ T \Longrightarrow resolve \ S \ T' \Longrightarrow \ T \sim \ T'
  by (fastforce simp: state-eq-def simp del: state-simp elim: resolveE)
lemma cdcl_W-cp-no-more-clauses:
  assumes cdcl_W-cp S S'
  shows clauses S = clauses S'
  using assms by (induct rule: cdcl_W-cp.induct) (auto elim!: conflictE propagateE)
lemma tranclp-cdcl_W-cp-no-more-clauses:
 assumes cdcl_W-cp^{++} S S'
 shows clauses S = clauses S'
  using assms by (induct rule: tranclp.induct) (auto dest: cdcl_W-cp-no-more-clauses)
lemma rtranclp-cdcl_W-cp-no-more-clauses:
  assumes cdcl_W-cp^{**} S S'
  shows clauses S = clauses S'
  using assms by (induct rule: rtranclp-induct) (fastforce dest: cdcl<sub>W</sub>-cp-no-more-clauses)+
lemma no-conflict-after-conflict:
  conflict \ S \ T \Longrightarrow \neg conflict \ T \ U
  by (metis conflictE conflicting-update-conflicting option.distinct(1) state-simp(5))
lemma no-propagate-after-conflict:
  conflict \ S \ T \Longrightarrow \neg propagate \ T \ U
  \mathbf{by}\ (\mathit{metis}\ \mathit{conflictE}\ \mathit{conflicting-update-conflicting}\ \mathit{option.distinct}(1)\ \mathit{propagate.cases}
   state-eq-conflicting)
lemma tranclp\text{-}cdcl_W\text{-}cp\text{-}propagate\text{-}with\text{-}conflict\text{-}or\text{-}not:
 assumes cdcl_W-cp^{++} S U
 shows (propagate^{++} S U \land conflicting U = None)
   \vee (\exists T D. propagate^{**} S T \wedge conflict T U \wedge conflicting U = Some D)
proof -
  have propagate^{++} S U \vee (\exists T. propagate^{**} S T \wedge conflict T U)
   using assms by induction
```

```
(force\ simp:\ cdcl_W\text{-}cp.simps\ tranclp-into-rtranclp\ dest:\ no-conflict-after-conflict
      no-propagate-after-conflict)+
  moreover
   have propagate^{++} S U \Longrightarrow conflicting U = None
     unfolding tranclp-unfold-end by (auto elim!: propagateE)
  moreover
   have \bigwedge T. conflict T \ U \Longrightarrow \exists D. conflicting U = Some \ D
     by (auto elim!: conflictE simp: state-eq-def simp del: state-simp)
 ultimately show ?thesis by meson
qed
lemma cdcl_W-cp-conflicting-not-empty[simp]: conflicting S = Some \ D \Longrightarrow \neg cdcl_W-cp S \ S'
 assume cdcl_W-cp \ S \ S' and conflicting \ S = Some \ D
 then show False by (induct rule: cdcl_W-cp.induct)
 (auto elim: conflictE propagateE simp: state-eq-def simp del: state-simp)
qed
lemma no-step-cdcl_W-cp-no-conflict-no-propagate:
 assumes no-step cdcl_W-cp S
 shows no-step conflict S and no-step propagate S
 using assms conflict' apply blast
 by (meson assms conflict' propagate')
CDCL with the reasonable strategy: we fully propagate the conflict and propagate, then we
apply any other possible rule cdcl_W-o S S' and re-apply conflict and propagate cdcl_W-cp^{\downarrow} S'
S''
inductive cdcl_W-stgy :: 'st \Rightarrow 'st \Rightarrow bool for S :: 'st where
conflict': full1\ cdcl_W\text{-}cp\ S\ S' \Longrightarrow cdcl_W\text{-}stgy\ S\ S'
other': cdcl_W - o \ S \ S' \Longrightarrow no\text{-}step \ cdcl_W - cp \ S \Longrightarrow full \ cdcl_W - cp \ S' \ S'' \Longrightarrow cdcl_W - stgy \ S \ S''
Invariants
These are the same invariants as before, but lifted
lemma cdcl_W-cp-learned-clause-inv:
 assumes cdcl_W-cp S S'
 shows learned-clss S = learned-clss S'
 using assms by (induct rule: cdcl_W-cp.induct) (fastforce elim: conflictE propagateE)+
lemma rtranclp-cdcl_W-cp-learned-clause-inv:
 assumes cdcl_W-cp^{**} S S'
 shows learned-clss S = learned-clss S'
 using assms by (induct rule: rtranclp-induct) (fastforce dest: cdcl<sub>W</sub>-cp-learned-clause-inv)+
lemma tranclp-cdcl_W-cp-learned-clause-inv:
 assumes cdcl_W-cp^{++} S S'
 shows learned-clss S = learned-clss S'
 using assms by (simp add: rtranclp-cdcl_W-cp-learned-clause-inv tranclp-into-rtranclp)
lemma cdcl_W-cp-backtrack-lvl:
 assumes cdcl_W-cp S S'
 shows backtrack-lvl S = backtrack-lvl S'
  using assms by (induct rule: cdcl_W-cp.induct) (fastforce elim: conflictE propagateE)+
lemma rtranclp-cdcl_W-cp-backtrack-lvl:
```

```
assumes cdcl_W-cp^{**} S S'
 shows backtrack-lvl S = backtrack-lvl S'
 using assms by (induct rule: rtranclp-induct) (fastforce dest: cdcl_W-cp-backtrack-lvl)+
lemma cdcl_W-cp-consistent-inv:
 assumes cdcl_W-cp S S' and cdcl_W-M-level-inv S
 shows cdcl_W-M-level-inv S'
 using assms
proof (induct rule: cdcl_W-cp.induct)
 case (conflict')
 then show ?case using cdcl_W-consistent-inv cdcl_W.conflict by blast
next
 case (propagate' S S')
 have cdcl_W S S'
   using propagate'.hyps(1) propagate by blast
 then show cdcl_W-M-level-inv S'
   using propagate'.prems(1) cdcl_W-consistent-inv propagate by blast
qed
lemma full1-cdcl_W-cp-consistent-inv:
 assumes full1 cdcl_W-cp S S' and cdcl_W-M-level-inv S
 shows cdcl_W-M-level-inv S'
 using assms unfolding full1-def
 by (metis\ rtranclp-cdcl_W-cp-rtranclp-cdcl_W\ rtranclp-unfold\ tranclp-cdcl_W-consistent-inv)
lemma rtranclp-cdcl_W-cp-consistent-inv:
 assumes rtranclp cdcl<sub>W</sub>-cp S S' and cdcl<sub>W</sub>-M-level-inv S
 shows cdcl_W-M-level-inv S'
 using assms unfolding full1-def
 by (induction rule: rtranclp-induct) (blast intro: cdcl_W-cp-consistent-inv)+
lemma cdcl_W-stgy-consistent-inv:
 assumes cdcl_W-stgy S S' and cdcl_W-M-level-inv S
 shows cdcl_W-M-level-inv S'
 using assms apply (induct rule: cdcl_W-stgy.induct)
 unfolding full-unfold by (blast intro: cdcl_W-consistent-inv full1-cdcl_W-cp-consistent-inv
   cdcl_W.other)+
\mathbf{lemma}\ \mathit{rtranclp-cdcl}_W\mathit{-stgy-consistent-inv}:
 assumes cdcl_W-stgy^{**} S S' and cdcl_W-M-level-inv S
 shows cdcl_W-M-level-inv S'
 using assms by induction (auto dest!: cdcl_W-stgy-consistent-inv)
lemma cdcl_W-cp-no-more-init-clss:
 assumes cdcl_W-cp S S'
 shows init-clss S = init-clss S'
 using assms by (induct rule: cdcl_W-cp.induct) (auto elim: conflictE propagateE)
lemma tranclp-cdcl_W-cp-no-more-init-clss:
 assumes cdcl_W-cp^{++} S S'
 shows init-clss S = init-clss S'
 using assms by (induct rule: tranclp.induct) (auto dest: cdcl_W-cp-no-more-init-clss)
lemma cdcl_W-stgy-no-more-init-clss:
 assumes cdcl_W-stgy S S' and cdcl_W-M-level-inv S
 shows init-clss S = init-clss S'
```

```
using assms
 apply (induct rule: cdcl_W-stgy.induct)
 unfolding full1-def full-def apply (blast dest: tranclp-cdcl_W-cp-no-more-init-clss
   tranclp-cdcl_W-o-no-more-init-clss)
 by (metis\ cdcl_W-o-no-more-init-clss rtranclp-unfold tranclp-cdcl_W-cp-no-more-init-clss)
lemma rtranclp-cdcl_W-stgy-no-more-init-clss:
 assumes cdcl_W-stgy^{**} S S' and cdcl_W-M-level-inv S
 shows init-clss S = init-clss S'
 using assms
 apply (induct rule: rtranclp-induct, simp)
 using cdcl_W-stgy-no-more-init-clss by (simp add: rtranclp-cdcl_W-stgy-consistent-inv)
lemma cdcl_W-cp-dropWhile-trail':
 assumes cdcl_W-cp S S'
 obtains M where trail S' = M @ trail S and (\forall l \in set M. \neg is\text{-}decided l)
 using assms by induction (fastforce elim: conflictE propagateE)+
lemma rtranclp-cdcl_W-cp-drop\ While-trail':
 assumes cdcl_W-cp^{**} S S'
 obtains M :: ('v, 'v \ clause) \ ann-lits \ where
   trail \ S' = M @ trail \ S \ and \ \forall \ l \in set \ M. \ \neg is\text{-}decided \ l
 using assms by induction (fastforce dest!: cdcl<sub>W</sub>-cp-dropWhile-trail')+
lemma cdcl_W-cp-dropWhile-trail:
 assumes cdcl_W-cp S S'
 shows \exists M. trail S' = M @ trail S \land (\forall l \in set M. \neg is-decided l)
 using assms by induction (fastforce elim: conflictE propagateE)+
lemma rtranclp-cdcl_W-cp-drop While-trail:
 assumes cdcl_W-cp^{**} S S'
 shows \exists M. trail S' = M @ trail S \land (\forall l \in set M. \neg is-decided l)
 using assms by induction (fastforce dest: cdcl<sub>W</sub>-cp-dropWhile-trail)+
This theorem can be seen a a termination theorem for cdcl_W-cp.
{f lemma}\ length{\it -model-le-vars}:
 assumes
   no-strange-atm S and
   no-d: no-dup (trail S) and
   finite\ (atms-of-mm\ (init-clss\ S))
 shows length (trail\ S) \le card\ (atms-of-mm\ (init-clss\ S))
proof -
 obtain M N U k D where S: state S = (M, N, U, k, D) by (cases state S, auto)
 have finite (atm-of 'lits-of-l (trail S))
   using assms(1,3) unfolding S by (auto simp add: finite-subset)
 have length (trail\ S) = card\ (atm-of\ `lits-of-l\ (trail\ S))
   using no-dup-length-eq-card-atm-of-lits-of-l no-d by blast
 then show ?thesis using assms(1) unfolding no-strange-atm-def
 by (auto simp add: assms(3) card-mono)
qed
lemma cdcl_W-cp-decreasing-measure:
 assumes
   cdcl_W: cdcl_W-cp S T and
   M-lev: cdcl_W-M-level-inv S and
   alien: no-strange-atm S
```

```
shows (\lambda S. \ card \ (atms-of-mm \ (init-clss \ S)) - length \ (trail \ S)
     + (if \ conflicting \ S = None \ then \ 1 \ else \ 0)) \ S
   > (\lambda S. \ card \ (atms-of-mm \ (init-clss \ S)) - length \ (trail \ S)
     + (if \ conflicting \ S = None \ then \ 1 \ else \ 0)) \ T
  using assms
proof -
  have length (trail T) \leq card (atms-of-mm (init-clss T))
   apply (rule length-model-le-vars)
      using cdcl_W-no-strange-atm-inv alien M-lev apply (meson cdcl_W cdcl_W.simps cdcl_W-cp.cases)
     using M-lev cdcl_W cdcl_W-cp-consistent-inv cdcl_W-M-level-inv-def apply blast
     using cdcl_W by (auto simp: cdcl_W-cp.simps)
 with assms
 show ?thesis by induction (auto elim!: conflictE propagateE
    simp del: state-simp simp: state-eq-def)+
qed
lemma cdcl_W-cp-wf: wf {(b, a). (cdcl_W-M-level-inv a \land no-strange-atm a) \land cdcl_W-cp a b}
 apply (rule wf-wf-if-measure' of less-than - -
     (\lambda S. \ card \ (atms-of-mm \ (init-clss \ S)) - length \ (trail \ S)
        + (if \ conflicting \ S = None \ then \ 1 \ else \ 0))])
   apply simp
  using cdcl_W-cp-decreasing-measure unfolding less-than-iff by blast
\mathbf{lemma}\ rtranclp\text{-}cdcl_W\text{-}all\text{-}struct\text{-}inv\text{-}cdcl_W\text{-}cp\text{-}iff\text{-}rtranclp\text{-}cdcl_W\text{-}cp\text{:}}
  assumes
   lev: cdcl_W-M-level-inv S and
   alien: no-strange-atm S
  shows (\lambda a \ b. \ (cdcl_W - M - level - inv \ a \land no - strange - atm \ a) \land cdcl_W - cp \ a \ b)^{**} \ S \ T
   \,\longleftrightarrow\, cdcl_W\text{-}cp^{**}\ S\ T
  (is ?IS T \longleftrightarrow ?CS T)
proof
 assume
    ?IST
  then show ?C S T by induction auto
next
  assume
    ?CST
  then show ?IST
   proof induction
     case base
     then show ?case by simp
   next
     case (step\ T\ U) note st=this(1) and cp=this(2) and IH=this(3)
     have cdcl_W^{**} S T
       by (metis rtranclp-unfold cdcl_W-cp-conflicting-not-empty cp st
         rtranclp-propagate-is-rtranclp-cdcl_W tranclp-cdcl_W-cp-propagate-with-conflict-or-not)
     then have
       cdcl_W-M-level-inv T and
       no-strange-atm T
        using \langle cdcl_W^{**} \mid S \mid T \rangle apply (simp \ add: \ assms(1) \ rtranclp-cdcl_W-consistent-inv)
       \mathbf{using} \ \langle cdcl_{W}^{**} \ S \ T \rangle \ alien \ rtranclp-cdcl_{W}-no-strange-atm-inv lev \mathbf{by} \ blast
     then have (\lambda a\ b.\ (cdcl_W\text{-}M\text{-}level\text{-}inv\ a\ \land\ no\text{-}strange\text{-}atm\ a)\ \land\ cdcl_W\text{-}cp\ a\ b)^{**}\ T\ U
       using cp by auto
     then show ?case using IH by auto
   qed
qed
```

```
lemma cdcl_W-cp-normalized-element:
 assumes
   lev: cdcl_W-M-level-inv S and
   no-strange-atm S
 obtains T where full\ cdcl_W-cp\ S\ T
proof -
 let ?inv = \lambda a. (cdcl<sub>W</sub>-M-level-inv a \wedge no-strange-atm a)
 obtain T where T: full (\lambda a \ b. ?inv a \wedge cdcl_W-cp a \ b) S T
   using cdcl_W-cp-wf wf-exists-normal-form of \lambda a b. ?inv a \wedge cdcl_W-cp a b
   unfolding full-def by blast
   then have cdcl_W-cp^{**} S T
     using rtranclp-cdcl_W-all-struct-inv-cdcl_W-cp-iff-rtranclp-cdcl_W-cp assms unfolding full-def
     by blast
   moreover
     then have cdcl_W^{**} S T
       using rtranclp-cdcl_W-cp-rtranclp-cdcl_W by blast
       cdcl_W-M-level-inv T and
       no-strange-atm T
       using \langle cdcl_W^{**} \mid S \mid T \rangle apply (simp \ add: \ assms(1) \ rtranclp-cdcl_W-consistent-inv)
       \mathbf{using} \ \langle cdcl_W^{**} \ S \ T \rangle \ assms(2) \ rtranclp-cdcl_W-no-strange-atm-inv lev by blast
     then have no-step cdcl_W-cp T
       using T unfolding full-def by auto
   ultimately show thesis using that unfolding full-def by blast
qed
lemma always-exists-full-cdcl_W-cp-step:
 assumes no-strange-atm S
 shows \exists S''. full cdcl_W-cp S S''
 using assms
proof (induct card (atms-of-mm (init-clss S) – atm-of 'lits-of-l (trail S)) arbitrary: S)
  case \theta note card = this(1) and alien = this(2)
  then have atm: atms-of-mm (init-clss S) = atm-of 'lits-of-l (trail S)
   unfolding no-strange-atm-def by auto
  { assume a: \exists S'. conflict S S'
   then obtain S' where S': conflict S S' by metis
   then have \forall S''. \neg cdcl_W-cp S'S''
     by (auto simp: cdcl_W-cp.simps elim!: conflictE propagateE
       simp del: state-simp simp: state-eq-def)
   then have ?case using a S' cdcl_W-cp.conflict' unfolding full-def by blast
  }
 moreover {
   assume a: \exists S'. propagate SS'
   then obtain S' where propagate SS' by blast
   then obtain EL where
     S: conflicting S = None  and
     E: E \in \# clauses S  and
     LE: L \in \# E \text{ and }
     tr: trail \ S \models as \ CNot \ (E - \{\#L\#\}) \ \mathbf{and}
     undef: undefined-lit (trail S) L and
     S': S' \sim cons-trail (Propagated L E) S
     by (elim propagateE) simp
   have atms-of-mm (learned-clss S) \subseteq atms-of-mm (init-clss S)
     using alien S unfolding no-strange-atm-def by auto
   then have atm\text{-}of\ L\in atms\text{-}of\text{-}mm\ (init\text{-}clss\ S)
```

```
using E LE S undef unfolding clauses-def by (force simp: in-implies-atm-of-on-atms-of-ms)
     then have False using undef S unfolding atm unfolding lits-of-def
        by (auto simp add: defined-lit-map)
   ultimately show ?case unfolding full-def by (metis cdcl_W-cp.cases rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl
next
   case (Suc n) note IH = this(1) and card = this(2) and alien = this(3)
   { assume a: \exists S'. conflict S S'
     then obtain S' where S': conflict S S' by metis
     then have \forall S''. \neg cdcl_W - cp S' S''
        by (auto simp: cdcl_W-cp.simps elim!: conflictE propagateE
           simp del: state-simp simp: state-eq-def)
     then have ?case unfolding full-def Ex-def using S' cdclw-cp.conflict' by blast
   moreover {
     assume a: \exists S'. propagate SS'
     then obtain S' where propagate: propagate S S' by blast
     then obtain EL where
        S: conflicting S = None  and
        E: E \in \# \ clauses \ S \ \mathbf{and}
        LE: L \in \# E \text{ and }
        tr: trail \ S \models as \ CNot \ (E - \{\#L\#\}) \ and
        undef: undefined-lit (trail S) L and
        S': S' \sim cons-trail (Propagated L E) S
        by (elim propagateE) simp
     then have atm\text{-}of \ L \notin atm\text{-}of \ `lits\text{-}of\text{-}l \ (trail \ S)
        unfolding lits-of-def by (auto simp add: defined-lit-map)
     moreover
        have no-strange-atm S' using alien propagate propagate-no-strange-atm-inv by blast
        then have atm\text{-}of\ L\in atms\text{-}of\text{-}mm\ (init\text{-}clss\ S)
           using S' LE E undef unfolding no-strange-atm-def
           by (auto simp: clauses-def in-implies-atm-of-on-atms-of-ms)
        then have A. \{atm\text{-}of\ L\}\subseteq atms\text{-}of\text{-}mm\ (init\text{-}clss\ S)-A\lor atm\text{-}of\ L\in A\ by\ force
     moreover have Suc\ n - card\ \{atm\text{-}of\ L\} = n\ \textbf{by}\ simp
     moreover have card\ (atms-of-mm\ (init-clss\ S)\ -\ atm-of\ `ilits-of-l\ (trail\ S))\ =\ Suc\ n
       using card S S' by simp
     ultimately
        have card\ (atms-of-mm\ (init-clss\ S) - atm-of\ `insert\ L\ (lits-of-l\ (trail\ S))) = n
           by (metis (no-types) Diff-insert card-Diff-subset finite.emptyI finite.insertI image-insert)
        then have n = card (atms-of-mm (init-clss S') - atm-of `lits-of-l (trail S'))
           using card S S' undef by simp
     then have a1: Ex (full cdcl_W-cp S') using IH (no-strange-atm S') by blast
     have ?case
        proof -
           obtain S'' :: 'st where
              ff1: cdcl_W-cp^{**} S' S'' \wedge no-step cdcl_W-cp S''
              using a1 unfolding full-def by blast
           have cdcl_W-cp^{**} S S''
              using ff1 cdcl_W-cp.intros(2)[OF\ propagate]
              by (metis (no-types) converse-rtranclp-into-rtranclp)
           then have \exists S''. \ cdcl_W - cp^{**} \ S \ S'' \land (\forall S'''. \neg \ cdcl_W - cp \ S'' \ S''')
              using ff1 by blast
           then show ?thesis unfolding full-def
              by meson
        qed
     }
```

ultimately show ?case unfolding full-def by (metis $cdcl_W$ -cp.cases rtranclp.rtrancl-reft) qed

Literal of highest level in conflicting clauses

One important property of the $cdcl_W$ with strategy is that, whenever a conflict takes place, there is at least a literal of level k involved (except if we have derived the false clause). The reason is that we apply conflicts before a decision is taken.

```
abbreviation no-clause-is-false :: 'st \Rightarrow bool where
no-clause-is-false \equiv
 \lambda S. \ (conflicting \ S = None \longrightarrow (\forall \ D \in \# \ clauses \ S. \ \neg trail \ S \models as \ CNot \ D))
abbreviation conflict-is-false-with-level :: 'st \Rightarrow bool where
conflict-is-false-with-level S \equiv \forall D. conflicting S = Some D \longrightarrow D \neq \{\#\}
  \longrightarrow (\exists L \in \# D. \ get\text{-level (trail S)} \ L = backtrack\text{-lvl S})
lemma not-conflict-not-any-negated-init-clss:
 assumes \forall S'. \neg conflict S S'
 shows no-clause-is-false S
proof (clarify)
 \mathbf{fix} D
 assume D \in \# local clauses S and conflicting S = None and trail S \models as CNot D
 then show False
   using conflict-rule[of S D update-conflicting (Some D) S] assms
   by auto
qed
lemma full-cdcl_W-cp-not-any-negated-init-clss:
 assumes full cdcl_W-cp S S'
 shows no-clause-is-false S'
 using assms not-conflict-not-any-negated-init-clss unfolding full-def by auto
lemma full1-cdcl_W-cp-not-any-negated-init-clss:
 assumes full1 cdcl_W-cp S S
 shows no-clause-is-false S'
 \mathbf{using} \ \mathit{assms} \ \mathit{not-conflict-not-any-negated-init-clss} \ \mathbf{unfolding} \ \mathit{full1-def} \ \mathbf{by} \ \mathit{auto}
lemma cdcl_W-stgy-not-non-negated-init-clss:
 assumes cdcl_W-stgy SS'
 shows no-clause-is-false S'
 using assms apply (induct rule: cdcl_W-stgy.induct)
 using full1-cdcl_W-cp-not-any-negated-init-clss full-cdcl_W-cp-not-any-negated-init-clss by metis+
lemma rtranclp-cdcl_W-stgy-not-non-negated-init-clss:
 assumes cdcl_W-stqy^{**} S S' and no-clause-is-false S
 shows no-clause-is-false S'
 using assms by (induct rule: rtranclp-induct) (auto simp: cdcl_W-stgy-not-non-negated-init-clss)
lemma cdcl_W-stgy-conflict-ex-lit-of-max-level:
 assumes
   cdcl_W-cp\ S\ S' and
   no-clause-is-false S and
   cdcl_W-M-level-inv S
 shows conflict-is-false-with-level S'
  using assms
```

```
proof (induct rule: cdcl_W-cp.induct)
 case conflict'
 then show ?case by (auto elim: conflictE)
next
 case propagate'
 then show ?case by (auto elim: propagateE)
qed
lemma no-chained-conflict:
 assumes conflict \ S \ ' and conflict \ S' \ S''
 shows False
 using assms unfolding conflict.simps
 by (metis conflicting-update-conflicting option.distinct(1) state-eq-conflicting)
lemma rtranclp-cdcl_W-cp-propa-or-propa-confl:
 assumes cdcl_W-cp^{**} S U
 shows propagate^{**} S U \vee (\exists T. propagate^{**} S T \wedge conflict T U)
 using assms
proof induction
 case base
 then show ?case by auto
 case (step U V) note SU = this(1) and UV = this(2) and IH = this(3)
 consider (confl) T where propagate^{**} S T and conflict T U
   | (propa) propagate** S U using IH by auto
 then show ?case
   proof cases
     case confl
     then have False using UV by (auto elim: conflictE)
     then show ?thesis by fast
   next
     case propa
     also have conflict U \ V \ \vee \ propagate \ U \ V \ using \ UV \ by (auto simp add: cdcl_W-cp.simps)
     ultimately show ?thesis by force
   qed
qed
lemma rtranclp-cdcl_W-co-conflict-ex-lit-of-max-level:
 assumes full: full cdcl_W-cp S U
 and cls-f: no-clause-is-false S
 and conflict-is-false-with-level S
 and lev: cdcl_W-M-level-inv S
 shows conflict-is-false-with-level U
proof (intro allI impI)
 \mathbf{fix} D
 assume
   confl: conflicting U = Some D and
   D: D \neq \{\#\}
 consider (CT) conflicting S = None \mid (SD) \mid D' where conflicting S = Some \mid D'
   by (cases conflicting S) auto
 then show \exists L \in \#D. get-level (trail U) L = backtrack-lvl U
   proof cases
     case SD
     then have S = U
      by (metis\ (no\text{-}types)\ assms(1)\ cdcl_W\text{-}cp\text{-}conflicting\text{-}not\text{-}empty\ full\text{-}}def\ rtranclpD)
     then show ?thesis using assms(3) confl D by blast-
```

```
next
 case CT
 have init-clss U = init-clss S and learned-clss U = learned-clss S
   using full unfolding full-def
     apply (metis (no-types) rtranclpD tranclp-cdcl<sub>W</sub>-cp-no-more-init-clss)
   by (metis (mono-tags, lifting) full full-def rtranclp-cdcl_W-cp-learned-clause-inv)
 obtain T where propagate^{**} S T and TU: conflict T U
   proof -
     have f5: U \neq S
       using confl CT by force
     then have cdcl_W-cp^{++} S U
       by (metis full full-def rtranclpD)
     have \bigwedge p pa. \neg propagate p pa \lor conflicting pa =
       (None :: 'v clause option)
       by (auto elim: propagateE)
     then show ?thesis
       using f5 that translp-cdcl<sub>W</sub>-cp-propagate-with-conflict-or-not[OF \langle cdcl_W - cp^{++} | S | U \rangle]
       full confl CT unfolding full-def by auto
   ged
 obtain D' where
   conflicting T = None  and
   D': D' \in \# \ clauses \ T \ \mathbf{and}
   tr: trail \ T \models as \ CNot \ (D') \ and
    U: U \sim update\text{-conflicting (Some (D'))} T
   using TU by (auto elim!: conflictE)
 have init-clss T = init-clss S and learned-clss T = learned-clss S
   using U \ \langle init\text{-}clss \ U = init\text{-}clss \ S \rangle \ \langle learned\text{-}clss \ U = learned\text{-}clss \ S \rangle by auto
 then have D \in \# clauses S
   using confl\ U\ D' by (auto simp: clauses-def)
 then have \neg trail S \models as CNot D
   using cls-f CT by simp
 moreover
   obtain M where tr-U: trail U = M @ trail S and nm: \forall m \in set M. \neg is-decided m
     by (metis (mono-tags, lifting) assms(1) full-def rtranclp-cdcl_W-cp-dropWhile-trail)
   have trail U \models as \ CNot \ D
     using tr confl U by (auto elim!: conflictE)
 ultimately obtain L where L \in \# D and -L \in lits-of-l M
   unfolding tr-U CNot-def true-annots-def Ball-def true-annot-def true-cls-def by force
 moreover have inv-U: cdcl_W-M-level-inv U
   by (metis\ cdcl_W - stgy. conflict'\ cdcl_W - stgy-consistent-inv\ full\ full-unfold\ lev)
 moreover
   have backtrack-lvl\ U = backtrack-lvl\ S
     using full unfolding full-def by (auto dest: rtranclp-cdcl_W-cp-backtrack-lvl)
 moreover
   have no-dup (trail U)
     using inv-U unfolding cdcl_W-M-level-inv-def by auto
    { \mathbf{fix} \ x :: ('v, 'v \ clause) \ ann	ext{-}lit \ \mathbf{and}
       xb :: ('v, 'v \ clause) \ ann-lit
     assume a1: atm\text{-}of\ L = atm\text{-}of\ (lit\text{-}of\ xb)
     moreover assume a2: -L = lit - of x
     moreover assume a3: (\lambda l. \ atm\text{-}of \ (lit\text{-}of \ l)) ' set M
       \cap (\lambda l. \ atm\text{-}of \ (lit\text{-}of \ l)) \ `set \ (trail \ S) = \{\}
     moreover assume a4: x \in set M
```

```
moreover assume a5: xb \in set (trail S)
         moreover have atm\text{-}of (-L) = atm\text{-}of L
           by auto
         ultimately have False
           by auto
       then have LS: atm\text{-}of \ L \notin atm\text{-}of \ `lits\text{-}of\text{-}l \ (trail \ S)
         using \langle -L \in lits\text{-}of\text{-}l \ M \rangle \langle no\text{-}dup \ (trail \ U) \rangle unfolding tr\text{-}U \ lits\text{-}of\text{-}def by auto
     ultimately have get-level (trail U) L = backtrack-lvl U
       proof (cases count-decided (trail S) \neq 0, goal-cases)
         case 2 note LD = this(1) and LM = this(2) and inv - U = this(3) and US = this(4) and
           LS = this(5) and ne = this(6)
         have backtrack-lvl S = 0
           using lev ne unfolding cdcl_W-M-level-inv-def by auto
         moreover have get-level ML = 0
           using nm by auto
         ultimately show ?thesis using LS ne US unfolding tr-U
           by (simp add: lits-of-def filter-empty-conv)
         case 1 note LD = this(1) and LM = this(2) and inv - U = this(3) and US = this(4) and
           LS = this(5) and ne = this(6)
         have count-decided (trail S) = backtrack-lvl S
           using ne lev unfolding cdcl<sub>W</sub>-M-level-inv-def by auto
         moreover have atm\text{-}of\ L\in atm\text{-}of ' lits\text{-}of\text{-}l\ M
           using \langle -L \in lits-of-l M \rangle by (simp \ add: \ atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set
             lits-of-def)
         ultimately show ?thesis
           using nm ne get-level-skip-in-all-not-decided[of M L] unfolding lits-of-def US tr-U
           by auto
         qed
     then show \exists L \in \#D. get-level (trail U) L = backtrack-lvl U
       using \langle L \in \# D \rangle by blast
   qed
qed
Literal of highest level in decided literals
definition mark-is-false-with-level :: 'st \Rightarrow bool where
mark-is-false-with-level S' \equiv
 \forall D \ M1 \ M2 \ L. \ M1 \ @ \ Propagated \ L \ D \# \ M2 = trail \ S' \longrightarrow D - \{\#L\#\} \neq \{\#\}
    \longrightarrow (\exists L. \ L \in \# D \land get\text{-level (trail } S') \ L = count\text{-decided } M1)
definition no-more-propagation-to-do :: 'st \Rightarrow bool where
no-more-propagation-to-do S \equiv
 \forall D \ M \ M' \ L. \ D + \{\#L\#\} \in \# \ clauses \ S \longrightarrow trail \ S = M' @ M \longrightarrow M \models as \ CNot \ D
    \longrightarrow undefined-lit M L \longrightarrow count-decided M < backtrack-lvl S
    \longrightarrow (\exists L. \ L \in \# \ D \land get\text{-level (trail S)} \ L = count\text{-decided } M)
lemma propagate-no-more-propagation-to-do:
  assumes propagate: propagate S S'
 and H: no-more-propagation-to-do S
 and lev-inv: cdcl_W-M-level-inv S
  shows no-more-propagation-to-do S'
  using assms
proof -
```

```
obtain EL where
 S: conflicting S = None  and
 E: E \in \# \ clauses \ S \ {\bf and}
 LE: L \in \# E \text{ and }
 tr: trail \ S \models as \ CNot \ (E - \{\#L\#\}) \ and
 undefL: undefined-lit (trail S) L and
 S': S' \sim cons-trail (Propagated L E) S
 using propagate by (elim propagateE) simp
let ?M' = Propagated \ L \ E \ \# \ trail \ S
show ?thesis unfolding no-more-propagation-to-do-def
 proof (intro allI impI)
   fix D M1 M2 L'
   assume
     D\text{-}L: D + \{\#L'\#\} \in \# \ clauses \ S' \ and
     trail S' = M2 @ M1 and
     get-max: count-decided M1 < backtrack-lvl S' and
     M1 \models as \ CNot \ D and
     undef: undefined-lit M1 L'
   have the M2 @ M1 = trail S \vee (M2 = [] \wedge M1 = Propagated L E \# trail S)
     using \langle trail \ S' = M2 @ M1 \rangle \ S' \ S \ undefL \ lev-inv
     by (cases M2) (auto simp:cdcl_W-M-level-inv-decomp)
   moreover {
     assume tl \ M2 \ @ \ M1 = trail \ S
     moreover have D + \{\#L'\#\} \in \# clauses S
       using D-L S S' undefL unfolding clauses-def by auto
     moreover have count-decided M1 < backtrack-lvl S
       using get-max S S' undefL by auto
     ultimately obtain L' where L' \in \# D and
       get-level (trail S) L' = count-decided M1
       using H \langle M1 \models as\ CNot\ D \rangle undef unfolding no-more-propagation-to-do-def by metis
     moreover
       { have cdcl_W-M-level-inv S'
          using cdcl_W-consistent-inv lev-inv cdcl_W.propagate OF propagate by blast
         then have no-dup ?M' using S' undefL unfolding cdcl_W-M-level-inv-def by auto
          have atm\text{-}of\ L' \in atm\text{-}of\ `(lits\text{-}of\text{-}l\ M1)
            using \langle L' \in \# D \rangle \langle M1 \models as \ CNot \ D \rangle by (metis atm-of-uninus image-eqI
              in-CNot-implies-uminus(2))
          then have atm\text{-}of\ L' \in atm\text{-}of\ `(lits\text{-}of\text{-}l\ (trail\ S))
            using \langle tl \ M2 \ @ \ M1 = trail \ S \rangle [symmetric] \ S \ undefL \ by \ auto
        ultimately have atm-of L \neq atm-of L' unfolding lits-of-def by auto
     }
     ultimately have \exists L' \in \# D. get-level (trail S') L' = count\text{-}decided M1
       using S S' undefL by auto
   }
   moreover {
     assume M2 = [] and M1: M1 = Propagated L E \# trail S
     have cdcl_W-M-level-inv S'
       using cdcl_W-consistent-inv[OF - lev-inv] cdcl_W.propagate[OF propagate] by blast
     then have count-decided M1 = backtrack-lvl S'
       using S' M1 undefL unfolding cdcl_W-M-level-inv-def by (auto intro: Max-eqI)
     then have False using get-max by auto
   ultimately show \exists L. \ L \in \# \ D \land get\text{-level (trail } S') \ L = count\text{-decided } M1
     by fast
qed
```

```
\mathbf{lemma}\ conflict \hbox{-} no\hbox{-}more\hbox{-}propagation\hbox{-}to\hbox{-}do:
 assumes
    conflict: conflict S S' and
   H: no\text{-}more\text{-}propagation\text{-}to\text{-}do\ S\ and
   M: cdcl_W - M - level - inv S
 shows no-more-propagation-to-do S'
 using assms unfolding no-more-propagation-to-do-def by (force elim!: conflictE)
lemma cdcl_W-cp-no-more-propagation-to-do:
 assumes
    conflict: cdcl_W-cp S S' and
   H: no\text{-}more\text{-}propagation\text{-}to\text{-}do\ S\ \mathbf{and}
   M: cdcl_W-M-level-inv S
 shows no-more-propagation-to-do S'
 using assms
 proof (induct rule: cdcl<sub>W</sub>-cp.induct)
 case (conflict' S S')
 then show ?case using conflict-no-more-propagation-to-do[of S S'] by blast
next
 case (propagate' S S') note S = this
 show 1: no-more-propagation-to-do S'
   using propagate-no-more-propagation-to-do[of S S'] S by blast
qed
lemma cdcl_W-then-exists-cdcl_W-stgy-step:
 assumes
    o: cdcl_W-o S S' and
   alien: no-strange-atm S and
   lev: cdcl_W-M-level-inv S
 shows \exists S'. \ cdcl_W \text{-stgy } S S'
proof -
 obtain S'' where full cdcl_W-cp S' S''
   \mathbf{using}\ \ always-exists-full-cdcl_W-cp-step\ \ alien\ \ cdcl_W-no-strange-atm-inv\ \ cdcl_W-o-no-more-init-clss
    o other lev by (meson\ cdcl_W\text{-}consistent\text{-}inv)
 then show ?thesis
   using assms by (metis always-exists-full-cdcl<sub>W</sub>-cp-step cdcl<sub>W</sub>-stqy.conflict' full-unfold other')
qed
lemma backtrack-no-decomp:
 assumes
   S: conflicting S = Some E  and
   LE: L \in \# E \text{ and }
   L: get-level (trail S) L = backtrack-lvl S and
   D: get-maximum-level (trail S) (remove1-mset L E) < backtrack-lvl S and
   bt: backtrack-lvl \ S = get\text{-}maximum\text{-}level \ (trail \ S) \ E \ \mathbf{and}
   M-L: cdcl_W-M-level-inv S
 shows \exists S'. \ cdcl_W \text{-}o \ S \ S'
proof -
 have L-D: get-level (trail S) L = get-maximum-level (trail S) E
   using L D bt by (simp add: get-maximum-level-plus)
 let ?i = get-maximum-level (trail S) (remove1-mset L E)
 obtain KM1M2 where
    K: (Decided \ K \ \# \ M1, \ M2) \in set \ (get-all-ann-decomposition \ (trail \ S)) and
   lev-K: get-level (trail S) K = Suc ?i
```

```
using backtrack-ex-decomp[OF M-L, of ?i] D S by auto
 show ?thesis using backtrack-rule[OF S LE K L, of ?i] bt L lev-K bj by (auto simp: cdcl<sub>W</sub>-bj.simps)
qed
lemma cdcl_W-stgy-final-state-conclusive:
  assumes
   termi: \forall S'. \neg cdcl_W \text{-stgy } S S' \text{ and }
   decomp: all-decomposition-implies-m (init-clss S) (get-all-ann-decomposition (trail S)) and
   learned: cdcl_W-learned-clause S and
   level-inv: cdcl_W-M-level-inv: S and
   alien: no-strange-atm S and
   no-dup: distinct-cdcl_W-state S and
   confl: cdcl_W-conflicting S and
   confl-k: conflict-is-false-with-level S
 shows (conflicting S = Some \{\#\} \land unsatisfiable (set-mset (init-clss S)))
       \vee (conflicting S = None \wedge trail S \models as set-mset (init-clss S))
proof -
 let ?M = trail S
 let ?N = init\text{-}clss S
 let ?k = backtrack-lvl S
 let ?U = learned\text{-}clss S
 consider
     (None) conflicting S = None
   | (Some-Empty) \ E \ \mathbf{where} \ conflicting \ S = Some \ E \ \mathbf{and} \ E = \{\#\}
   | (Some) E'  where conflicting S = Some E' and
     conflicting S = Some (E') and E' \neq \{\#\}
   by (cases conflicting S, simp) auto
  then show ?thesis
   proof cases
     case (Some\text{-}Empty\ E)
     then have conflicting S = Some \{\#\} by auto
     then have unsatisfiable (set-mset (init-clss S))
       using assms(3) unfolding cdcl_W-learned-clause-def true-clss-cls-def
       by (metis (no-types, lifting) Un-insert-right atms-of-empty satisfiable-def
        sup-bot.right-neutral total-over-m-insert total-over-set-empty true-cls-empty)
     then show ?thesis using Some-Empty by auto
   next
     case None
     { assume \neg ?M \models asm ?N
       have atm-of '(lits-of-l?M) = atms-of-mm?N (is ?A = ?B)
          show ?A \subseteq ?B using alien unfolding no-strange-atm-def by auto
          show ?B \subseteq ?A
            proof (rule ccontr)
              assume \neg ?B \subseteq ?A
              then obtain l where l \in ?B and l \notin ?A by auto
              then have undefined-lit ?M (Pos l)
               using \langle l \notin ?A \rangle unfolding lits-of-def by (auto simp add: defined-lit-map)
              moreover have conflicting S = None
               using None by auto
              ultimately have \exists S'. \ cdcl_W \text{-}o \ S \ S'
               using cdcl_W-o.decide\ decide-rule \langle l \in ?B \rangle no-strange-atm-def
               by (metis\ literal.sel(1)\ state-eq-def)
              then show False
               using termi\ cdcl_W-then-exists-cdcl_W-stgy-step[OF - alien] level-inv by blast
            qed
```

```
qed
   obtain D where \neg ?M \models a D \text{ and } D \in \# ?N
      using \langle \neg ?M \models asm ?N \rangle unfolding lits-of-def true-annots-def Ball-def by auto
   have atms-of D \subseteq atm-of ' (lits-of-l?M)
     using \langle D \in \#?N \rangle unfolding \langle atm\text{-}of \cdot (lits\text{-}of\text{-}l?M) = atms\text{-}of\text{-}mm?N \rangle atms\text{-}of\text{-}ms\text{-}def
     by (auto simp add: atms-of-def)
   then have a1: atm-of 'set-mset D \subseteq atm-of 'lits-of-l (trail S)
     by (auto simp add: atms-of-def lits-of-def)
   have total-over-m (lits-of-l ?M) \{D\}
     using \langle atms\text{-}of \ D \subseteq atm\text{-}of \ (lits\text{-}of\text{-}l \ ?M) \rangle
     atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set by (fastforce simp: total-over-set-def)
   then have ?M \models as \ CNot \ D
     using total-not-true-cls-true-clss-CNot \langle \neg trail \ S \models a \ D \rangle true-annot-def
     true-annots-true-cls by fastforce
   then have False
     proof -
       obtain S' where
         f2: full\ cdcl_W-cp S\ S'
         by (meson \ alien \ always-exists-full-cdcl_W-cp-step \ level-inv)
       then have S' = S
         using cdcl_W-stgy.conflict'[of S] by (metis (no-types) full-unfold termi)
       then show ?thesis
         using f2 \langle D \in \# init\text{-}clss S \rangle None \langle trail S \models as CNot D \rangle
         clauses-def full-cdcl_W-cp-not-any-negated-init-clss by auto
     qed
 }
 then have ?M \models asm ?N by blast
 then show ?thesis
   using None by auto
next
 case (Some E') note conf = this(1) and LD = this(2) and nempty = this(3)
 then obtain L D where
   E'[simp]: E' = D + \{\#L\#\} \text{ and }
   lev-L: qet-level ?M L = ?k
   by (metis (mono-tags) confl-k insert-DiffM2)
 let ?D = D + \{\#L\#\}
 have ?D \neq \{\#\} by auto
 have ?M \models as CNot ?D using confl LD unfolding cdcl_W-conflicting-def by auto
 then have ?M \neq [] unfolding true-annots-def Ball-def true-annot-def true-cls-def by force
 have M: ?M = hd ?M \# tl ?M using \langle ?M \neq [] \rangle list.collapse by fastforce
 have g-k: get-maximum-level (trail S) D \leq ?k
   using count-decided-ge-get-maximum-level[of ?M] level-inv
   unfolding cdcl_W-M-level-inv-def
   by auto
   assume decided: is-decided (hd?M)
   then obtain k' where k': k' + 1 = ?k
     using level-inv M unfolding cdcl<sub>W</sub>-M-level-inv-def
     by (cases hd (trail S); cases trail S) auto
   obtain L' where L': hd ?M = Decided L' using decided by (cases hd ?M) auto
   have *: \bigwedge list. no-dup list \Longrightarrow
         -L \in lits-of-l list \Longrightarrow atm-of L \in atm-of ' lits-of-l list
     by (metis\ atm\text{-}of\text{-}uminus\ imageI)
   have L'-L: L' = -L
     proof (rule ccontr)
```

```
assume ¬ ?thesis
   moreover have -L \in lits-of-l ?M using confl LD unfolding cdcl_W-conflicting-def by auto
   ultimately have get-level (hd (trail S) \# tl (trail S)) L = get-level (tl ?M) L
     using cdcl_W-M-level-inv-decomp(1)[OF level-inv] unfolding consistent-interp-def
     by (subst (asm) (2) M) (auto simp add: atm-of-eq-atm-of L')
   moreover
     have count-decided (trail S) = ?k
       using level-inv unfolding cdcl<sub>W</sub>-M-level-inv-def by auto
     then have count: count-decided (tl (trail S)) = ?k - 1
      using level-inv unfolding cdcl_W-M-level-inv-def
      by (subst\ (asm)\ M)\ (auto\ simp\ add:\ L')
     then have get-level (tl ?M) L < ?k
      using count-decided-ge-get-level[of L tl ?M] unfolding count k'[symmetric]
      by auto
   finally show False using lev-L M by auto
 qed
have L: hd ?M = Decided (-L) using L'-L L' by auto
have get-maximum-level (trail S) D < ?k
 proof (rule ccontr)
   assume ¬ ?thesis
   then have get-maximum-level (trail S) D = \frac{9}{2}k using M g-k unfolding L by auto
   then obtain L'' where L'' \in \# D and L-k: get-level ?M L'' = ?k
     using get-maximum-level-exists-lit[of ?k ?M D] unfolding k'[symmetric] by auto
   have L \neq L'' using no-dup \langle L'' \in \# D \rangle
     unfolding distinct-cdcl<sub>W</sub>-state-def LD
     by (metis E' add.right-neutral add-diff-cancel-right'
       distinct-mem-diff-mset union-commute union-single-eq-member)
   have L^{\prime\prime} = -L
     proof (rule ccontr)
      assume ¬ ?thesis
       then have get-level ?M L'' = get-level (tl ?M) L''
        using M \langle L \neq L'' \rangle get-level-skip-beginning [of L'' hd ?M tl ?M] unfolding L
        by (auto simp: atm-of-eq-atm-of)
      moreover
        have d: drop While (\lambda S. atm\text{-}of (lit\text{-}of S) \neq atm\text{-}of L) (tl (trail S)) = []
          using level-inv unfolding cdcl_W-M-level-inv-def apply (subst (asm)(2) M)
          by (auto simp: image-iff L'L'-L)
        have get-level (tl (trail S)) L = 0
          by (auto simp: filter-empty-conv d)
       moreover
        have get-level (tl (trail S)) L'' \leq count\text{-}decided (tl (trail S))
          by auto
        then have get-level (tl (trail S)) L'' < backtrack-lvl S
          using level-inv unfolding cdcl_W-M-level-inv-def apply (subst (asm)(5) M)
          by (auto simp: image-iff L' L'-L simp del: count-decided-ge-get-level)
       ultimately show False
        apply -
        apply (subst (asm) M, subst (asm)(3) M, subst (asm) L')
        using L-k
        apply (auto simp: L' L'-L split: if-splits)
        apply (subst (asm)(3) M, subst (asm) L')
        using \langle L'' \neq -L \rangle by (auto simp: L' L'-L split: if-splits)
   then have taut: tautology (D + \{\#L\#\})
     using \langle L'' \in \# D \rangle by (metis add.commute mset-leD mset-le-add-left multi-member-this
```

```
tautology-minus)
    have consistent-interp (lits-of-l ?M)
      using level-inv unfolding cdcl<sub>W</sub>-M-level-inv-def by auto
     then have \neg ?M \models as \ CNot \ ?D
      using taut by (metis \langle L'' = -L \rangle \langle L'' \in \# D \rangle add.commute consistent-interp-def
        diff-union-cancelR in-CNot-implies-uminus(2) in-diffD multi-member-this)
     moreover have ?M \models as \ CNot \ ?D
      using confl no-dup LD unfolding cdcl_W-conflicting-def by auto
     ultimately show False by blast
   qed note H = this
 have get-maximum-level (trail S) D < get-maximum-level (trail S) (D + \{\#L\#\})
   using H by (auto simp: get-maximum-level-plus lev-L max-def)
 moreover have backtrack-lvl S = get-maximum-level (trail S) (D + \{\#L\#\})
   using H by (auto simp: get-maximum-level-plus lev-L max-def)
 ultimately have False
   using backtrack-no-decomp[OF conf - lev-L] level-inv termi
   cdcl_W-then-exists-cdcl_W-stgy-step[of S] alien unfolding E'
   by (auto simp add: lev-L max-def)
\} note not-is-decided = this
moreover {
 let ?D = D + \{\#L\#\}
 have ?D \neq \{\#\} by auto
 have ?M \models as \ CNot \ ?D \ using \ confl \ LD \ unfolding \ cdcl_W-conflicting-def by auto
 then have ?M \neq [] unfolding true-annots-def Ball-def true-annot-def true-cls-def by force
 assume nm: \neg is\text{-}decided (hd ?M)
 then obtain L' C where L'C: hd-trail S = Propagated L' C using \langle trail S \neq [] \rangle
   by (cases hd-trail S) auto
 then have hd ?M = Propagated L' C
   using \langle trail \ S \neq [] \rangle by fastforce
 then have M: ?M = Propagated L' C \# tl ?M
   using \langle ?M \neq [] \rangle list.collapse by fastforce
 then obtain C' where C': C = C' + \{\#L'\#\}
   using confl unfolding cdcl_W-conflicting-def by (metis append-Nil diff-single-eq-union)
 { assume -L' \notin \# ?D
   then have Ex (skip S)
     using skip-rule [OF M conf] unfolding E' by auto
   then have False
     using cdcl_W-then-exists-cdcl_W-stgy-step[of S] alien level-inv termi
    by (auto dest: cdcl_W-o.intros cdcl_W-bj.intros)
 }
 moreover {
   assume L'D: -L' \in \# ?D
   then obtain D' where D': ?D = D' + \{\#-L'\#\} by (metis insert-DiffM2)
   then have get-maximum-level (trail S) D' \leq ?k
     using count-decided-ge-get-maximum-level[of Propagated L' C # tl ?M] M
     level-inv unfolding cdcl_W-M-level-inv-def by auto
   then have get-maximum-level (trail S) D' = ?k
     \vee get-maximum-level (trail S) D' < ?k
    using le-neq-implies-less by blast
   moreover {
     assume g-D'-k: get-maximum-level (trail\ S)\ D' = ?k
     then have f1: get-maximum-level (trail S) D' = backtrack-lvl S
      using M by auto
     then have Ex\ (cdcl_W - o\ S)
      using f1 resolve-rule[of S L' C, OF \(\text{trail } S \neq [] \) - - conf] conf g-D'-k
```

```
L'C L'D unfolding C' D' E'
           by (fastforce simp add: D' intro: cdcl_W-o.intros cdcl_W-bj.intros)
          then have False
           by (meson alien cdcl_W-then-exists-cdcl_W-stgy-step termi level-inv)
        moreover {
         assume a1: get-maximum-level (trail S) D' < ?k
         then have f3: get-maximum-level (trail S) D' < \text{get-level (trail S) } (-L')
           using a lev-L by (metis D' get-maximum-level-ge-get-level insert-noteq-member
             not-less)
          moreover have backtrack-lvl S = get-level (trail S) L'
           apply (subst\ M)
           using level-inv unfolding cdcl_W-M-level-inv-def
           by (subst\ (asm)(3)\ M)\ (auto\ simp\ add:\ cdcl_W-M-level-inv-decomp)[]
          moreover
           then have get-level (trail S) L' = get-maximum-level (trail S) (D' + \{\#-L'\#\})
             using a1 by (auto simp add: get-maximum-level-plus max-def)
          ultimately have False
           using M backtrack-no-decomp[of S - L', OF conf]
            cdcl_W-then-exists-cdcl_W-stgy-step L'D level-inv termi alien
           unfolding D' E' by auto
        ultimately have False by blast
      ultimately have False by blast
     ultimately show ?thesis by blast
   qed
qed
lemma cdcl_W-cp-tranclp-cdcl_W:
 cdcl_W-cp \ S \ S' \Longrightarrow cdcl_W^{++} \ S \ S'
 apply (induct rule: cdcl_W-cp.induct)
  by \ (meson \ cdcl_W.conflict \ cdcl_W.propagate \ tranclp.r-into-trancl \ tranclp.trancl-into-trancl) +
lemma tranclp-cdcl_W-cp-tranclp-cdcl_W:
 cdcl_W - cp^{++} S S' \Longrightarrow cdcl_W^{++} S S'
 apply (induct rule: tranclp.induct)
  apply (simp add: cdcl_W-cp-tranclp-cdcl_W)
 by (meson\ cdcl_W - cp - tranclp - cdcl_W\ tranclp - trans)
lemma cdcl_W-stgy-tranclp-cdcl_W:
  cdcl_W-stgy S S' \Longrightarrow cdcl_W^{++} S S'
proof (induct rule: cdcl_W-stgy.induct)
 case conflict'
 then show ?case
  unfolding full1-def by (simp add: tranclp-cdcl_W-cp-tranclp-cdcl<sub>W</sub>)
 case (other' S' S'')
 then have S' = S'' \vee cdcl_W - cp^{++} S' S''
   by (simp add: rtranclp-unfold full-def)
 then show ?case
   using other' by (meson cdcl_W.other tranclp.r-into-trancl
     tranclp-cdcl_W-cp-tranclp-cdcl_W tranclp-trans)
qed
```

```
lemma tranclp-cdcl_W-stgy-tranclp-cdcl_W:
  cdcl_W-stgy^{++} S S' \Longrightarrow cdcl_W^{++} S S'
 apply (induct rule: tranclp.induct)
  using cdcl_W-stgy-tranclp-cdcl_W apply blast
 by (meson\ cdcl_W-stgy-tranclp-cdcl<sub>W</sub> tranclp-trans)
lemma rtranclp-cdcl_W-stgy-rtranclp-cdcl_W:
  cdcl_W-stgy^{**} S S' \Longrightarrow cdcl_W^{**} S S'
 using rtranclp-unfold[of\ cdcl_W\ -stgy\ S\ S\ ]\ tranclp-cdcl_W\ -stgy\ -tranclp-cdcl_W[of\ S\ S\ ]\ by auto
\mathbf{lemma}\ not\text{-}empty\text{-}get\text{-}maximum\text{-}level\text{-}exists\text{-}lit\text{:}}
 assumes n: D \neq \{\#\}
 and max: get-maximum-level MD = n
 shows \exists L \in \#D. get-level M L = n
proof -
 have f: finite (insert 0 ((\lambda L. get-level M L) 'set-mset D)) by auto
 then have n \in ((\lambda L. \ get\text{-level} \ M \ L) \ `set\text{-mset} \ D)
   using n max qet-maximum-level-exists-lit-of-max-level image-iff
   unfolding get-maximum-level-def by force
 then show \exists L \in \# D. get-level ML = n by auto
qed
lemma cdcl_W-o-conflict-is-false-with-level-inv:
 assumes
   cdcl_W-o S S' and
   lev: cdcl_W-M-level-inv S and
   confl-inv: conflict-is-false-with-level S and
   n-d: distinct-cdcl_W-state S and
   conflicting: cdcl_W-conflicting S
  shows conflict-is-false-with-level S'
  using assms(1,2)
proof (induct rule: cdcl_W-o-induct)
  case (resolve L C M D T) note tr-S = this(1) and confl = this(4) and LD = this(5) and T = this(4)
this(7)
 have uL-not-D: -L \notin \# remove1-mset (-L) D
   using n-d confl unfolding distinct-cdclw-state-def distinct-mset-def
   by (metis distinct-cdcl<sub>W</sub>-state-def distinct-mem-diff-mset multi-member-last n-d)
  moreover have L-not-D: L \notin \# remove1\text{-}mset (-L) D
   proof (rule ccontr)
     assume ¬ ?thesis
     then have L \in \# D
      by (auto simp: in-remove1-mset-neg)
     moreover have Propagated L C \# M \modelsas CNot D
       using conflicting conflicting conflicting cdcl<sub>W</sub>-conflicting-def by auto
     ultimately have -L \in lits-of-l (Propagated L C \# M)
       using in-CNot-implies-uminus(2) by blast
     moreover have no-dup (Propagated L C \# M)
       using lev tr-S unfolding cdcl<sub>W</sub>-M-level-inv-def by auto
     ultimately show False unfolding lits-of-def by (metis consistent-interp-def image-eqI
       list.set-intros(1) lits-of-def ann-lit.sel(2) distinct-consistent-interp)
   qed
  ultimately
   have g-D: get-maximum-level (Propagated L C \# M) (remove1-mset (-L) D)
     = get\text{-}maximum\text{-}level\ M\ (remove1\text{-}mset\ (-L)\ D)
     using get-maximum-level-skip-first[of\ L\ remove 1-mset (-L)\ D\ C\ M]
```

```
by (simp add: atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set atms-of-def)
 have lev-L[simp]: get-level\ M\ L=0
   apply (rule atm-of-notin-get-rev-level-eq-0)
   using lev unfolding cdcl_W-M-level-inv-def tr-S by (auto simp: lits-of-def)
 have D: get-maximum-level M (remove1-mset (-L) D) = backtrack-lvl S
   using resolve.hyps(6) LD unfolding tr-S by (auto simp: get-maximum-level-plus max-def q-D)
 have get-maximum-level M (remove1-mset L C) \leq backtrack-lvl S
   using count-decided-ge-get-maximum-level[of M] lev unfolding tr-S cdcl<sub>W</sub>-M-level-inv-def by auto
 then have
   get-maximum-level M (remove1-mset (-L) D \# \cup remove1-mset L C) =
     backtrack-lvl S
   by (auto simp: get-maximum-level-union-mset get-maximum-level-plus max-def D)
 then show ?case
   using tr-S not-empty-qet-maximum-level-exists-lit[of
     remove1-mset (-L) D \# \cup remove1-mset L C M T
   by auto
 case (skip L C' M D T) note tr-S = this(1) and D = this(2) and T = this(5)
 then obtain La where
   La \in \# D \text{ and }
   get-level (Propagated L C' \# M) La = backtrack-lvl S
   using skip confl-inv by auto
 moreover
   have atm-of La \neq atm-of L
     proof (rule ccontr)
      assume ¬ ?thesis
      then have La: La = L using \langle La \in \# D \rangle \langle -L \notin \# D \rangle
        by (auto simp add: atm-of-eq-atm-of)
      have Propagated L C' \# M \modelsas CNot D
        using conflicting tr-S D unfolding cdcl_W-conflicting-def by auto
      then have -L \in lits-of-l M
        using \langle La \in \# D \rangle in-CNot-implies-uninus(2)[of L D Propagated L C' \# M] unfolding La
        by auto
      then show False using lev tr-S unfolding cdcl<sub>W</sub>-M-level-inv-def consistent-interp-def by auto
     qed
   then have get-level (Propagated L C' \# M) La = get-level M La by auto
 ultimately show ?case using D tr-S T by auto
next
 case backtrack
 then show ?case
   by (auto split: if-split-asm simp: cdcl_W-M-level-inv-decomp lev)
qed auto
Strong completeness
lemma cdcl_W-cp-propagate-confl:
 assumes cdcl_W-cp S T
 shows propagate^{**} S T \lor (\exists S'. propagate^{**} S S' \land conflict S' T)
 using assms by induction blast+
lemma rtranclp-cdcl_W-cp-propagate-conft:
 assumes cdcl_W-cp^{**} S T
 shows propagate^{**} S T \vee (\exists S'. propagate^{**} S S' \wedge conflict S' T)
 by (simp add: assms rtranclp-cdcl_W-cp-propa-or-propa-confl)
```

```
lemma propagate-high-levelE:
 assumes propagate S T
 obtains M'N'UkLC where
   state S = (M', N', U, k, None) and
   state T = (Propagated\ L\ (C + \{\#L\#\})\ \#\ M',\ N',\ U,\ k,\ None) and
   C + \{\#L\#\} \in \# local.clauses S  and
   M' \models as \ CNot \ C and
   undefined-lit (trail\ S)\ L
proof -
 obtain EL where
   conf: conflicting S = None  and
   E: E \in \# \ clauses \ S \ \mathbf{and}
   LE: L \in \# E \text{ and }
   tr: trail \ S \models as \ CNot \ (E - \{\#L\#\}) \ and
   undef: undefined-lit (trail S) L and
   T: T \sim cons-trail (Propagated L E) S
   using assms by (elim propagateE) simp
 obtain M N U k where
   S: state \ S = (M, N, U, k, None)
   using conf by auto
 \mathbf{show} \ thesis
   using that [of M N U k L remove1-mset L E] S T LE E tr undef
   by auto
qed
lemma cdcl_W-cp-propagate-completeness:
 assumes MN: set M \models s set-mset N and
 cons: consistent-interp (set M) and
 tot: total\text{-}over\text{-}m \ (set \ M) \ (set\text{-}mset \ N) \ \mathbf{and}
 lits-of-l (trail S) \subseteq set M and
 init-clss\ S=N and
 propagate^{**} S S' and
 learned-clss S = {\#}
 shows length (trail S) \leq length (trail S') \wedge lits-of-l (trail S') \subseteq set M
 using assms(6,4,5,7)
proof (induction rule: rtranclp-induct)
 case base
 then show ?case by auto
next
 case (step\ Y\ Z)
 note st = this(1) and propa = this(2) and IH = this(3) and lits' = this(4) and NS = this(5) and
   learned = this(6)
 then have len: length (trail S) \leq length (trail Y) and LM: lits-of-l (trail Y) \subseteq set M
    by blast+
 obtain M'N'UkCL where
   Y: state \ Y = (M', N', U, k, None) and
   Z: state Z = (Propagated\ L\ (C + \{\#L\#\})\ \#\ M',\ N',\ U,\ k,\ None) and
   C: C + \{\#L\#\} \in \# clauses \ Y \ and
   M'-C: M' \models as \ CNot \ C and
   undefined-lit (trail Y) L
   using propa by (auto elim: propagate-high-levelE)
 have init-clss\ S = init-clss\ Y
   using st by induction (auto elim: propagateE)
 then have [simp]: N' = N using NS Y Z by simp
 have learned-clss Y = \{\#\}
```

```
using st learned by induction (auto elim: propagateE)
  then have [simp]: U = \{\#\} using Y by auto
  have set M \models s \ CNot \ C
   using M'-C LM Y unfolding true-annots-def Ball-def true-annot-def true-clss-def true-cls-def
   by force
 moreover
   have set M \models C + \{\#L\#\}
     using MN C learned Y NS (init-clss S = init-clss Y) (learned-clss Y = \{\#\})
     unfolding true-clss-def clauses-def by fastforce
 ultimately have L \in set M by (simp \ add: cons \ consistent-CNot-not)
 then show ?case using LM len Y Z by auto
qed
lemma
 assumes propagate^{**} S X
 shows
   rtranclp-propagate-init-clss: init-clss X = init-clss S and
   rtranclp-propagate-learned-clss: learned-clss X = learned-clss S
  using assms by (induction rule: rtranclp-induct) (auto elim: propagateE)
lemma completeness-is-a-full1-propagation:
 fixes S :: 'st and M :: 'v literal list
 assumes MN: set M \models s set-mset N
 and cons: consistent-interp (set M)
 and tot: total-over-m (set M) (set-mset N)
 and alien: no-strange-atm S
 and learned: learned-clss S = \{\#\}
 and clsS[simp]: init-clss\ S = N
 \mathbf{and}\ \mathit{lits}\text{:}\ \mathit{lits}\text{-}\mathit{of}\text{-}\mathit{l}\ (\mathit{trail}\ S)\subseteq\mathit{set}\ \mathit{M}
 shows \exists S'. propagate^{**} S S' \land full \ cdcl_W - cp \ S S'
proof -
  obtain S' where full: full cdcl_W-cp S S'
   using always-exists-full-cdcl<sub>W</sub>-cp-step alien by blast
  then consider (propa) propagate** S S'
   \mid (confl) \exists X. \ propagate^{**} \ S \ X \land conflict \ X \ S'
   using rtranclp-cdcl_W-cp-propagate-confl unfolding full-def by blast
  then show ?thesis
   proof cases
     case propa then show ?thesis using full by blast
   next
     case confl
     then obtain X where
       X: propagate^{**} S X  and
       Xconf: conflict X S'
     by blast
     have clsX: init-clss\ X = init-clss\ S
       using X by (blast dest: rtranclp-propagate-init-clss)
     have learnedX: learned-clss\ X = \{\#\}
       using X learned by (auto dest: rtranclp-propagate-learned-clss)
     obtain E where
       E: E \in \# init\text{-}clss \ X + learned\text{-}clss \ X \ \mathbf{and}
       Not-E: trail\ X \models as\ CNot\ E
       using Xconf by (auto simp add: clauses-def elim!: conflictE)
     have lits-of-l (trail\ X) \subseteq set\ M
       using cdcl_W-cp-propagate-completeness [OF assms(1-3) lits - X learned] learned by auto
     then have MNE: set M \models s \ CNot \ E
```

```
using Not-E
       by (fastforce simp add: true-annots-def true-annot-def true-clss-def true-cls-def)
     have \neg set M \models s set-mset N
        \mathbf{using}\ E\ consistent\text{-}CNot\text{-}not[OF\ cons\ MNE]
        unfolding learnedX true-clss-def unfolding clsX clsS by auto
     then show ?thesis using MN by blast
   qed
qed
See also rtranclp-cdcl_W-cp-drop\ While-trail
lemma rtranclp-propagate-is-trail-append:
 propagate^{**} S T \Longrightarrow \exists c. trail T = c @ trail S
 by (induction rule: rtranclp-induct) (auto elim: propagateE)
lemma rtranclp-propagate-is-update-trail:
 propagate^{**} S T \Longrightarrow cdcl_W \text{-}M\text{-}level\text{-}inv S \Longrightarrow
   init\text{-}clss\ S = init\text{-}clss\ T\ \land\ learned\text{-}clss\ S = learned\text{-}clss\ T\ \land\ backtrack\text{-}lvl\ S = backtrack\text{-}lvl\ T
   \wedge conflicting S = conflicting T
proof (induction rule: rtranclp-induct)
 case base
 then show ?case unfolding state-eq-def by (auto simp: cdcl_W-M-level-inv-decomp)
next
 case (step\ T\ U) note IH = this(3)[OF\ this(4)]
 moreover have cdcl_W-M-level-inv U
   using rtranclp-cdcl_W-consistent-inv \langle propagate^{**} \ S \ T \rangle \langle propagate \ T \ U \rangle
   rtranclp-mono[of\ propagate\ cdcl_W]\ cdcl_W-cp-consistent-inv propagate'
   rtranclp-propagate-is-rtranclp-cdcl_W step.prems by blast
   then have no-dup (trail U) unfolding cdcl_W-M-level-inv-def by auto
  ultimately show ?case using \(\rho propagate T U \rangle \) unfolding state-eq-def
   by (fastforce simp: elim: propagateE)
qed
lemma cdcl_W-stgy-strong-completeness-n:
 assumes
   MN: set M \models s set-mset N and
   cons: consistent-interp\ (set\ M) and
   tot: total-over-m (set M) (set-mset N) and
   atm-incl: atm-of '(set M) \subseteq atms-of-mm N and
   distM: distinct M and
   length: n \leq length M
  \mathbf{shows}
   \exists M' \ k \ S. \ length \ M' \geq n \land
     lits-of-lM' \subseteq setM \land
     no-dup M' \wedge
     state S = (M', N, \{\#\}, k, None) \land
     cdcl_W-stqy** (init-state N) S
 using length
proof (induction n)
 case \theta
 have state (init-state N) = ([], N, {\#}, 0, None)
   by (auto simp: state-eq-def simp del: state-simp)
 moreover have
   0 \leq length [] and
   lits-of-l [] \subseteq set M and
   cdcl_W-stgy** (init-state N) (init-state N)
   and no-dup
```

```
by (auto simp: state-eq-def simp del: state-simp)
ultimately show ?case using state-eq-sym by blast
case (Suc n) note IH = this(1) and n = this(2)
then obtain M' k S where
 l-M': length <math>M' \geq n and
 M': lits-of-l M' \subseteq set M and
 n\text{-}d[simp]: no\text{-}dup\ M' and
 S: state S = (M', N, \{\#\}, k, None) and
 st: cdcl_W - stgy^{**} (init-state\ N)\ S
 by auto
have
 M: cdcl_W-M-level-inv S and
 alien: no-strange-atm S
   using cdcl_W-M-level-inv-S0-cdcl_W rtranclp-cdcl_W-stqy-consistent-inv st apply blast
 using cdcl_W-M-level-inv-S0-cdcl_W no-strange-atm-S0 rtranclp-cdcl_W-no-strange-atm-inv
 rtranclp-cdcl_W-stgy-rtranclp-cdcl_W st by blast
{ assume no-step: \neg no-step propagate S
 obtain S' where S': propagate^{**} S S' and full: full cdcl_W-cp S S'
   using completeness-is-a-full1-propagation [OF assms(1-3), of S] alien M'S
   by (auto simp: comp-def)
 have lev: cdcl_W-M-level-inv S'
   using MS' rtranclp-cdcl<sub>W</sub>-consistent-inv rtranclp-propagate-is-rtranclp-cdcl<sub>W</sub> by blast
 then have n-d'[simp]: no-dup (trail S')
   unfolding cdcl_W-M-level-inv-def by auto
 have length (trail\ S) \leq length\ (trail\ S') \wedge lits-of-l\ (trail\ S') \subseteq set\ M
   using S' full cdcl_W-cp-propagate-completeness [OF\ assms(1-3),\ of\ S]\ M'\ S
   by (auto simp: comp-def)
 moreover
   have full: full1 cdcl_W-cp S S'
     using full no-step no-step-cdcl_W-cp-no-conflict-no-propagate(2) unfolding full1-def full-def
     rtranclp-unfold by blast
   then have cdcl_W-stgy S S' by (simp \ add: \ cdcl_W-stgy.conflict')
 moreover
   have propa: propagate^{++} S S' using S' full unfolding full1-def by (metis rtranclpD tranclpD)
   have trail\ S = M'
     using S by (auto simp: comp-def rev-map)
   with propa have length (trail S') > n
     using l-M' propa by (induction rule: tranclp.induct) (auto elim: propagateE)
 moreover
   have stS': cdcl_W-stgy^{**} (init-state N) S'
     using st\ cdcl_W-stgy.conflict'[OF full] by auto
   then have init-clss S' = N
     using stS' rtranclp-cdcl<sub>W</sub>-stgy-no-more-init-clss by fastforce
 moreover
   have
     [simp]: learned-clss\ S' = \{\#\} and
     [simp]: init-clss S' = init-clss S and
     [simp]: conflicting S' = None
     using tranclp-into-rtranclp[OF \langle propagate^{++} S S' \rangle] S
     rtranclp-propagate-is-update-trail[of S S'] S M unfolding state-eq-def
     by (auto simp: comp-def)
   have S-S': state S' = (trail\ S',\ N,\ \{\#\},\ backtrack-lvl\ S',\ None)
     using S by auto
   have cdcl_W-stgy** (init-state N) S'
```

```
apply (rule rtranclp.rtrancl-into-rtrancl)
     using st apply simp
     using \langle cdcl_W \text{-} stgy \ S \ S' \rangle by simp
 ultimately have ?case
   apply -
   apply (rule exI[of - trail S'], rule exI[of - backtrack-lvl S'], rule exI[of - S'])
   using S-S' by (auto simp: state-eq-def simp del: state-simp)
}
moreover {
 assume no-step: no-step propagate S
 have ?case
   proof (cases length M' \geq Suc \ n)
     case True
     then show ?thesis using l-M' M' st M alien S n-d by blast
   next
     {\bf case}\ \mathit{False}
     then have n': length M' = n using l-M' by auto
     have no-confl: no-step conflict S
      proof -
        { fix D
          assume D \in \# N and M' \models as \ CNot \ D
          then have set M \models D using MN unfolding true-clss-def by auto
          moreover have set M \models s \ CNot \ D
           using \langle M' \models as \ CNot \ D \rangle \ M'
           by (metis le-iff-sup true-annots-true-cls true-clss-union-increase)
          ultimately have False using cons consistent-CNot-not by blast
        then show ?thesis
          using S by (auto simp: true-clss-def comp-def rev-map
            clauses-def elim!: conflictE)
      qed
     have lenM: length M = card (set M) using distM by (induction M) auto
     have no-dup M' using S M unfolding cdcl_W-M-level-inv-def by auto
     then have card (lits-of-l M') = length M'
      by (induction M') (auto simp add: lits-of-def card-insert-if)
     then have lits-of-l M' \subset set M
      using n M' n' lenM by auto
     then obtain L where L: L \in set M and undef-m: L \notin lits-of-l M' by auto
     moreover have undef: undefined-lit M' L
      using M' Decided-Propagated-in-iff-in-lits-of-l calculation (1,2) cons
      consistent-interp-def by (metis (no-types, lifting) subset-eq)
     moreover have atm\text{-}of\ L\in atms\text{-}of\text{-}mm\ (init\text{-}clss\ S)
      using atm-incl calculation S by auto
     ultimately
      have dec: decide S (cons-trail (Decided L) (incr-lvl S))
        using decide-rule[of\ S\ -\ cons-trail\ (Decided\ L)\ (incr-lvl\ S)]\ S
        by auto
     let ?S' = cons\text{-trail} (Decided L) (incr-lvl S)
     have lits-of-l (trail ?S') \subseteq set M using L M'S undef by auto
     moreover have no-strange-atm ?S'
      using alien dec\ M by (meson\ cdcl_W-no-strange-atm-inv decide\ other)
     ultimately obtain S'' where S'': propagate^{**} ?S' S'' and full: full cdcl_W-cp ?S' S''
      using completeness-is-a-full1-propagation [OF assms(1-3), of ?S'] S undef
      by auto
     have cdcl_W-M-level-inv ?S'
      using M dec rtranclp-mono[of decide cdcl_W] by (meson cdcl_W-consistent-inv decide other)
```

```
then have lev'': cdcl_W-M-level-inv S''
         using S'' rtranclp-cdcl<sub>W</sub>-consistent-inv rtranclp-propagate-is-rtranclp-cdcl<sub>W</sub> by blast
       then have n-d'': no-dup (trail S'')
         unfolding cdcl_W-M-level-inv-def by auto
       have length (trail ?S') \leq length (trail S'') \wedge lits-of-l (trail S'') \subseteq set M
         using S'' full cdcl<sub>W</sub>-cp-propagate-completeness[OF assms(1-3), of ?S' S''] L M' S undef
       then have Suc \ n \leq length \ (trail \ S'') \land lits\text{-}of\text{-}l \ (trail \ S'') \subseteq set \ M
         using l-M' S undef by auto
       moreover
         have cdcl_W-M-level-inv (cons-trail (Decided L)
           (update-backtrack-lvl (Suc (backtrack-lvl S)) S))
          using S \langle cdcl_W - M - level - inv \ (cons-trail \ (Decided \ L) \ (incr-lvl \ S)) \rangle by auto
         then have S'':
           state S'' = (trail\ S'',\ N,\ \{\#\},\ backtrack-lvl\ S'',\ None)
          using rtranclp-propagate-is-update-trail[OF S''] S undef n-d" lev"
          by auto
         then have cdcl_W-stqy** (init-state N) S''
           using cdcl_W-stgy.intros(2)[OF decide[OF dec] - full] no-step no-confl st
          by (auto simp: cdcl_W-cp.simps)
       ultimately show ?thesis using S'' n-d'' by blast
     qed
  }
 ultimately show ?case by blast
theorem 2.9.11 page 84 of Weidenbach's book (with strategy)
lemma cdcl_W-stgy-strong-completeness:
 assumes
   MN: set M \models s set\text{-}mset N \text{ and }
   cons: consistent-interp (set M) and
   tot: total\text{-}over\text{-}m \ (set \ M) \ (set\text{-}mset \ N) \ \mathbf{and}
   atm	ext{-incl: } atm	ext{-of '} (set M) \subseteq atms	ext{-of-mm } N  and
   distM: distinct M
 shows
   \exists M' k S.
     lits-of-lM' = set M \wedge
     state S = (M', N, \{\#\}, k, None) \land
     cdcl_W-stgy^{**} (init-state N) S \wedge
     final-cdcl_W-state S
proof -
 from cdcl_W-stgy-strong-completeness-n[OF assms, of length M]
 obtain M' k T where
   l: length M \leq length M' and
   M'-M: lits-of-l M' \subseteq set M and
   no-dup: no-dup: M' and
    T: state \ T = (M', N, \{\#\}, k, None) \ and
   st: cdcl_W - stgy^{**} (init-state \ N) \ T
   by auto
 have card (set M) = length M using distM by (simp add: distinct-card)
  moreover
   have cdcl_W-M-level-inv T
     using rtranclp-cdcl_W-stgy-consistent-inv[OF st] T by auto
   then have card (set ((map (\lambda l. atm-of (lit-of l)) M'))) = length M'
     using distinct-card no-dup by fastforce
 moreover have card (lits-of-lM') = card (set ((map (\lambda l. atm-of (lit-of l)) M')))
```

```
using no-dup unfolding lits-of-def apply (induction M') by (auto simp add: card-insert-if) ultimately have card (set M) \leq card (lits-of-l M') using l unfolding lits-of-def by auto then have set M = lits-of-l M' using M'-M card-seteq by blast moreover then have M' \models asm N using MN unfolding true-annots-def Ball-def true-annot-def true-clss-def by auto then have final-cdcl_W-state T using T no-dup unfolding final-cdcl_W-state-def by auto ultimately show ?thesis using st T by blast qed
```

No conflict with only variables of level less than backtrack level

This invariant is stronger than the previous argument in the sense that it is a property about all possible conflicts.

```
definition no-smaller-confl (S :: 'st) \equiv
  (\forall M \ K \ M' \ D. \ M' \ @ \ Decided \ K \ \# \ M = trail \ S \longrightarrow D \in \# \ clauses \ S
   \longrightarrow \neg M \models as \ CNot \ D)
lemma no-smaller-confl-init-sate[simp]:
  no-smaller-confl (init-state N) unfolding no-smaller-confl-def by auto
lemma cdcl_W-o-no-smaller-confl-inv:
 fixes S S' :: 'st
 assumes
   cdcl_W-o SS' and
   lev: cdcl_W-M-level-inv S and
   max-lev: conflict-is-false-with-level S and
   smaller: no-smaller-confl S and
   no-f: no-clause-is-false S
 shows no-smaller-confl S'
  using assms(1,2) unfolding no-smaller-confl-def
proof (induct rule: cdcl<sub>W</sub>-o-induct)
  case (decide L T) note confl = this(1) and undef = this(2) and T = this(4)
 have [simp]: clauses T = clauses S
   using T undef by auto
 show ?case
   proof (intro allI impI)
     \mathbf{fix} \ M'' \ K \ M' \ Da
     assume M'' @ Decided K \# M' = trail\ T
     and D: Da \in \# local.clauses T
     then have tl\ M^{\prime\prime} @ Decided\ K\ \#\ M^\prime=trail\ S
       \vee (M'' = [] \wedge Decided \ K \# M' = Decided \ L \# trail \ S)
      using T undef by (cases M'') auto
     moreover {
       assume tlM'' @ Decided K \# M' = trail S
       then have \neg M' \models as \ CNot \ Da
         using D T undef no-f confl smaller unfolding no-smaller-confl-def smaller by fastforce
     moreover {
       assume Decided\ K\ \#\ M'=Decided\ L\ \#\ trail\ S
       then have \neg M' \models as \ CNot \ Da \ using \ no-f \ D \ confl \ T \ by \ auto
     ultimately show \neg M' \models as \ CNot \ Da by fast
```

```
qed
next
 case resolve
 then show ?case using smaller no-f max-lev unfolding no-smaller-confl-def by auto
next
 case skip
 then show ?case using smaller no-f max-lev unfolding no-smaller-confl-def by auto
next
 case (backtrack L D K i M1 M2 T) note confl = this(1) and LD = this(2) and decomp = this(3)
and
 obtain c where M: trail S = c @ M2 @ Decided K \# M1
   using decomp by auto
 show ?case
   proof (intro allI impI)
     \mathbf{fix} \ M \ ia \ K' \ M' \ Da
     assume M' @ Decided K' \# M = trail T
     then have tl\ M'\ @\ Decided\ K'\ \#\ M=M1
      using T decomp lev by (cases M') (auto simp: cdcl_W-M-level-inv-decomp)
     \mathbf{let} \ ?S' = (\mathit{cons-trail} \ (\mathit{Propagated} \ L \ D)
               (reduce-trail-to M1 (add-learned-cls D
               (update-backtrack-lvl \ i \ (update-conflicting \ None \ S)))))
     assume D: Da \in \# clauses T
     moreover{
      assume Da \in \# clauses S
      then have \neg M \models as \ CNot \ Da \ using \ \langle tl \ M' @ \ Decided \ K' \# M = M1 \rangle \ M \ conft \ smaller
        unfolding no-smaller-confl-def by auto
     moreover {
      assume Da: Da = D
      have \neg M \models as \ CNot \ Da
        proof (rule ccontr)
          assume ¬ ?thesis
          then have -L \in \mathit{lits-of-l}\ M
           using LD unfolding Da by (simp\ add: in-CNot-implies-uminus(2))
          then have -L \in lits-of-l (Propagated L D \# M1)
           using UnI2 \langle tl \ M' \ @ \ Decided \ K' \# \ M = M1 \rangle
           by auto
          moreover
           have backtrack S ?S'
             using backtrack-rule[of S] backtrack.hyps
             by (force simp: state-eq-def simp del: state-simp)
           then have cdcl_W-M-level-inv ?S'
             using cdcl_W-consistent-inv[OF - lev] other[OF bj] by (auto intro: cdcl_W-bj.intros)
           then have no-dup (Propagated L D \# M1)
             using decomp lev unfolding cdcl_W-M-level-inv-def by auto
          ultimately show False
           using Decided-Propagated-in-iff-in-lits-of-l defined-lit-map by auto
        \mathbf{qed}
     ultimately show \neg M \models as \ CNot \ Da
      using T decomp lev unfolding cdcl_W-M-level-inv-def by fastforce
   qed
qed
```

```
lemma conflict-no-smaller-confl-inv:
 assumes conflict S S'
 and no-smaller-confl S
 shows no-smaller-confl S'
 using assms unfolding no-smaller-confl-def by (fastforce elim: conflictE)
\mathbf{lemma}\ propagate \textit{-}no\textit{-}smaller\textit{-}confl\textit{-}inv:
 assumes propagate: propagate S S
 and n-l: no-smaller-confl S
 shows no-smaller-confl S'
 unfolding no-smaller-confl-def
proof (intro allI impI)
 fix M' K M'' D
 assume M': M'' @ Decided\ K\ \#\ M' = trail\ S'
 and D \in \# clauses S'
 obtain M N U k C L where
   S: state \ S = (M, N, U, k, None) and
   S': state S' = (Propagated \ L \ (C + \{\#L\#\}) \ \# \ M, \ N, \ U, \ k, \ None) and
   C + \{\#L\#\} \in \# clauses S \text{ and }
   M \models as \ CNot \ C and
   undefined-lit M L
   using propagate by (auto elim: propagate-high-levelE)
 have tl \ M'' @ Decided \ K \# M' = trail \ S \ using \ M' \ S \ S'
   by (metis Pair-inject list.inject list.sel(3) ann-lit.distinct(1) self-append-conv2
     tl-append2)
  then have \neg M' \models as \ CNot \ D
   using \langle D \in \# \ clauses \ S' \ n-l \ S \ S' \ clauses-def \ unfolding \ no-smaller-confl-def \ by \ auto
 then show \neg M' \models as \ CNot \ D by auto
lemma cdcl_W-cp-no-smaller-confl-inv:
 assumes propagate: cdcl_W-cp S S'
 and n-l: no-smaller-confit S
 shows no-smaller-confl S'
 using assms
proof (induct rule: cdcl_W-cp.induct)
 case (conflict' S S')
  then show ?case using conflict-no-smaller-confl-inv[of SS'] by blast
next
  case (propagate' S S')
 then show ?case using propagate-no-smaller-confl-inv[of S S'] by fastforce
lemma rtrancp-cdcl_W-cp-no-smaller-confl-inv:
 assumes propagate: cdcl_W-cp^{**} S S'
 and n-l: no-smaller-confl S
 shows no-smaller-confl S'
 using assms
proof (induct rule: rtranclp-induct)
 case base
 then show ?case by simp
 case (step S' S'')
 then show ?case using cdcl_W-cp-no-smaller-confl-inv[of S' S''] by fast
```

```
lemma trancp-cdcl_W-cp-no-smaller-confl-inv:
 assumes propagate: cdcl_W-cp^{++} S S'
 and n-l: no-smaller-confl S
 shows no-smaller-confl S'
 using assms
proof (induct rule: tranclp.induct)
 case (r-into-trancl S S')
 then show ?case using cdcl_W-cp-no-smaller-confl-inv[of SS'] by blast
next
 case (trancl-into-trancl\ S\ S'\ S'')
 then show ?case using cdcl_W-cp-no-smaller-confl-inv[of S' S''] by fast
lemma full-cdcl_W-cp-no-smaller-confl-inv:
 assumes full\ cdcl_W-cp\ S\ S'
 and n-l: no-smaller-confl S
 shows no-smaller-confl S'
 using assms unfolding full-def
 using rtrancp-cdcl_W-cp-no-smaller-confl-inv[of S S'] by blast
lemma full1-cdcl_W-cp-no-smaller-confl-inv:
 assumes full1 cdcl_W-cp S S'
 and n-l: no-smaller-confl S
 shows no-smaller-confl S'
 using assms unfolding full1-def
 using trancp-cdcl_W-cp-no-smaller-confl-inv[of SS'] by blast
lemma cdcl_W-stgy-no-smaller-confl-inv:
 assumes cdcl_W-stgy SS'
 and n-l: no-smaller-confl S
 and conflict-is-false-with-level S
 and cdcl_W-M-level-inv S
 shows no-smaller-confl S'
 using assms
proof (induct \ rule: \ cdcl_W-stgy.induct)
  case (conflict' S')
 then show ?case using full1-cdclw-cp-no-smaller-confl-inv[of S S'] by blast
next
 case (other' S' S'')
 have no-smaller-confl S'
   using cdcl_W-o-no-smaller-confl-inv[OF other'.hyps(1) other'.prems(3,2,1)]
   not\text{-}conflict\text{-}not\text{-}any\text{-}negated\text{-}init\text{-}clss\ other'.hyps(2)\ cdcl_W\text{-}cp.simps\ \mathbf{by}\ auto
 then show ?case using full-cdcl_W-cp-no-smaller-confl-inv[of S' S'] other'.hyps by blast
qed
\mathbf{lemma}\ \textit{is-conflicting-exists-conflict}:
 assumes \neg(\forall D \in \#init\text{-}clss\ S' + learned\text{-}clss\ S'.\ \neg\ trail\ S' \models as\ CNot\ D)
 and conflicting S' = None
 shows \exists S''. conflict S' S''
 using assms clauses-def not-conflict-not-any-negated-init-clss by fastforce
lemma cdcl_W-o-conflict-is-no-clause-is-false:
 fixes S S' :: 'st
 assumes
   cdcl_W-o SS' and
   lev: cdcl_W-M-level-inv S and
```

```
max-lev: conflict-is-false-with-level S and
   no-f: no-clause-is-false S and
   no-l: no-smaller-confl S
  shows no-clause-is-false S'
   \lor (conflicting S' = None
        \longrightarrow (\forall D \in \# \ clauses \ S'. \ trail \ S' \models as \ CNot \ D
             \longrightarrow (\exists L. \ L \in \# \ D \land get\text{-level (trail } S') \ L = backtrack\text{-lvl } S')))
  using assms(1,2)
proof (induct rule: cdcl_W-o-induct)
  case (decide L T) note S = this(1) and undef = this(2) and T = this(4)
  show ?case
   proof (rule HOL.disjI2, clarify)
     \mathbf{fix} D
     assume D: D \in \# clauses T and M-D: trail T \models as CNot D
     let ?M = trail S
     let ?M' = trail T
     let ?k = backtrack-lvl S
     have \neg ?M \models as \ CNot \ D
         using no-f D S T undef by auto
     have -L \in \# D
       proof (rule ccontr)
         assume ¬ ?thesis
         have ?M \models as \ CNot \ D
           unfolding true-annots-def Ball-def true-annot-def CNot-def true-cls-def
           proof (intro allI impI)
             \mathbf{fix} \ x
             assume x: x \in \{ \{ \# - L \# \} \mid L. L \in \# D \}
             then obtain L' where L': x = \{\#-L'\#\}\ L' \in \#\ D by auto
             obtain L'' where L'' \in \# x and L'': lits-of-l (Decided L \# ?M) \models l L''
               using M-D x T undef unfolding true-annots-def Ball-def true-annot-def CNot-def
               true-cls-def Bex-def by auto
             show \exists L \in \# x. lits-of-l? M \models l L unfolding Bex-def
               using L'(1) L'(2) \leftarrow L \notin \!\!\!\!/ \!\!\!/ D \land L'' \in \!\!\!\!\!/ \!\!\!\!/ x \rangle
               \langle lits\text{-}of\text{-}l \ (Decided \ L \ \# \ trail \ S) \models l \ L'' \rangle \ \mathbf{by} \ auto
           qed
         then show False using \langle \neg ?M \models as \ CNot \ D \rangle by auto
       qed
     have atm\text{-}of \ L \notin atm\text{-}of \ `(lits\text{-}of\text{-}l \ ?M)
       using undef defined-lit-map unfolding lits-of-def by fastforce
     then have get-level (Decided L # ?M) (-L) = ?k + 1
       using lev unfolding cdcl_W-M-level-inv-def by auto
     then have -L \in \# D \land get\text{-level } ?M'(-L) = backtrack\text{-lvl } T
       using \langle -L \in \# D \rangle T undef by auto
     then show \exists La. La \in \# D \land get\text{-level }?M'La = backtrack\text{-lvl } T
       \mathbf{by} blast
   \mathbf{qed}
next
  {f case}\ resolve
 then show ?case by auto
next
  case skip
  then show ?case by auto
  case (backtrack L D K i M1 M2 T) note decomp = this(3) and lev-K = this(7) and T = this(8)
  show ?case
```

```
proof (rule HOL.disjI2, clarify)
     \mathbf{fix} \ Da
     assume Da: Da \in \# \ clauses \ T \ and \ M-D: \ trail \ T \models as \ CNot \ Da
     obtain c where M: trail S = c @ M2 @ Decided K \# M1
       using decomp by auto
     have tr-T: trail T = Propagated \ L \ D \# M1
       using T decomp lev by (auto simp: cdcl_W-M-level-inv-decomp)
     have backtrack S T
       using backtrack-rule[of S] backtrack.hyps T
       by (force simp del: state-simp simp: state-eq-def)
     then have lev': cdcl_W-M-level-inv T
       using cdcl_W-consistent-inv lev other cdcl_W-bj.backtrack cdcl_W-o.bj by blast
     then have -L \notin lits-of-l M1
       using lev cdcl_W-M-level-inv-def tr-T unfolding consistent-interp-def by (metis insert-iff
         list.simps(15) lits-of-insert ann-lit.sel(2))
     { assume Da \in \# clauses S
       then have \neg M1 \models as \ CNot \ Da \ using \ no-l \ M \ unfolding \ no-smaller-confl-def \ by \ auto
     moreover {
       assume Da: Da = D
       have \neg M1 \models as \ CNot \ Da \ using \leftarrow L \notin lits \text{-} of \text{-} l \ M1 \rangle \ unfolding \ Da
         using backtrack.hyps(2) in-CNot-implies-uminus(2) by auto
     ultimately have \neg M1 \models as \ CNot \ Da
       using Da T decomp lev by (fastforce simp: cdcl_W-M-level-inv-decomp)
     then have -L \in \# Da
       using M-D \leftarrow L \notin lits-of-l M1 \rightarrow T unfolding tr-T true-annots-true-cls true-cls-def
       by (auto simp: uminus-lit-swap)
     have no-dup (Propagated L D \# M1)
       using lev lev' T decomp unfolding cdcl<sub>W</sub>-M-level-inv-def by auto
     then have L: atm-of L \notin atm-of 'lits-of-l M1 unfolding lits-of-def by auto
     have get-level (Propagated L D # M1) (-L) = i
       using lev-K lev unfolding cdcl_W-M-level-inv-def
       by (simp add: M image-Un atm-lit-of-set-lits-of-l)
     then have -L \in \# Da \land get\text{-}level (trail T) (-L) = backtrack\text{-}lvl T
       using \langle -L \in \# Da \rangle T decomp lev by (auto simp: cdcl_W-M-level-inv-def)
     then show \exists La. La \in \# Da \land get\text{-level (trail } T) La = backtrack\text{-lvl } T
       by blast
   qed
qed
lemma full1-cdcl_W-cp-exists-conflict-decompose:
 assumes
   confl: \exists D \in \#clauses \ S. \ trail \ S \models as \ CNot \ D \ and
   full: full cdcl_W-cp S U and
   no\text{-}confl: conflicting } S = None \text{ and }
   lev: cdcl_W-M-level-inv S
 shows \exists T. propagate^{**} S T \land conflict T U
proof -
  consider (propa) propagate^{**} S U
       \mid (confl) \ T \ \mathbf{where} \ propagate^{**} \ S \ T \ \mathbf{and} \ conflict \ T \ U
  using full unfolding full-def by (blast dest: rtranclp-cdcl_W-cp-propa-or-propa-confl)
  then show ?thesis
   proof cases
     case confl
```

```
then show ?thesis by blast
   next
     case propa
     then have conflicting U = None and
       [simp]: learned-clss\ U = learned-clss\ S and
       [simp]: init-clss U = init-clss S
      using no-confl rtranclp-propagate-is-update-trail lev by auto
     moreover
      obtain D where D: D \in \#clauses\ U and
        trS: trail S \models as CNot D
        using confl clauses-def by auto
      obtain M where M: trail U = M @ trail S
        using full rtranclp-cdcl_W-cp-drop\,While-trail unfolding full-def by meson
      have tr-U: trail\ U \models as\ CNot\ D
        apply (rule true-annots-mono)
        using trS unfolding M by simp-all
     have \exists V. conflict U V
      using \langle conflicting | U = None \rangle D clauses-def not-conflict-not-any-negated-init-clss tr-U
      by meson
     then have False using full cdcl<sub>W</sub>-cp.conflict' unfolding full-def by blast
     then show ?thesis by fast
   qed
qed
lemma full1-cdcl_W-cp-exists-conflict-full1-decompose:
 assumes
   confl: \exists D \in \#clauses \ S. \ trail \ S \models as \ CNot \ D \ and
   full: full cdcl_W-cp S U and
   no-confl: conflicting S = Noneand
   lev: cdcl_W-M-level-inv S
 shows \exists T D. propagate^{**} S T \land conflict T U
   \land trail T \models as \ CNot \ D \land conflicting \ U = Some \ D \land D \in \# \ clauses \ S
 obtain T where propa: propagate^{**} S T and conf: conflict T U
   using full1-cdcl_W-cp-exists-conflict-decompose [OF assms] by blast
 have p: learned-clss T = learned-clss S init-clss T = init-clss S
    using propa lev rtranclp-propagate-is-update-trail by auto
 have c: learned-clss U = learned-clss T init-clss U = init-clss T
    using conf by (auto elim: conflictE)
 obtain D where trail T \models as \ CNot \ D \land conflicting \ U = Some \ D \land D \in \# \ clauses \ S
   using conf p c by (fastforce simp: clauses-def elim!: conflictE)
 then show ?thesis
   using propa conf by blast
lemma cdcl_W-stgy-no-smaller-confl:
 assumes
   cdcl_W-stgy S S' and
   n-l: no-smaller-confl S and
   conflict-is-false-with-level S and
   cdcl_W-M-level-inv S and
   no-clause-is-false S and
   distinct-cdcl_W-state S and
   cdcl_W-conflicting S
 shows no-smaller-confl S'
 using assms
```

```
proof (induct rule: cdcl_W-stgy.induct)
 case (conflict' S')
 show no-smaller-confl S'
   using conflict'.hyps conflict'.prems(1) full1-cdcl<sub>W</sub>-cp-no-smaller-confl-inv by blast
next
 case (other' S' S'')
 have lev': cdcl_W-M-level-inv S'
   using cdcl_W-consistent-inv other other '.hyps(1) other'.prems(3) by blast
 show no-smaller-confl S''
   using cdcl_W-stgy-no-smaller-confl-inv[OF cdcl_W-stgy.other'[OF other'.hyps(1-3)]]
   other'.prems(1-3) by blast
qed
lemma cdcl_W-stgy-ex-lit-of-max-level:
 assumes
   cdcl_W-stgy S S' and
   n-l: no-smaller-confl S and
   conflict-is-false-with-level S and
   cdcl_W-M-level-inv S and
   no-clause-is-false S and
   distinct-cdcl_W-state S and
   cdcl_W-conflicting S
 shows conflict-is-false-with-level S'
 using assms
proof (induct rule: cdcl_W-stgy.induct)
 case (conflict' S')
 have no-smaller-confl S'
   using conflict'.hyps conflict'.prems(1) full1-cdcl<sub>W</sub>-cp-no-smaller-confl-inv by blast
 moreover have conflict-is-false-with-level S'
   using conflict'.hyps conflict'.prems(2-4)
   rtranclp-cdcl_W-co-conflict-ex-lit-of-max-level[of S S']
   unfolding full-def full1-def rtranclp-unfold by presburger
 then show ?case by blast
next
 case (other' S' S'')
 have lev': cdcl_W-M-level-inv S'
   using cdcl_W-consistent-inv other other'.hyps(1) other'.prems(3) by blast
 moreover
   have no-clause-is-false S'
     \lor (conflicting S' = None \longrightarrow (\forall D \in \#clauses S'. trail S' \models as CNot D
         \rightarrow (\exists L. \ L \in \# D \land get\text{-level (trail } S') \ L = backtrack\text{-lvl } S')))
     using cdcl_W-o-conflict-is-no-clause-is-false of S[S'] other'.hyps(1) other'.prems(1-4) by fast
 moreover {
   assume no-clause-is-false S'
     assume conflicting S' = None
     then have conflict-is-false-with-level S' by auto
     moreover have full cdcl_W-cp S' S''
      by (metis\ (no-types)\ other'.hyps(3))
     ultimately have conflict-is-false-with-level S"
      using rtranclp-cdcl_W-co-conflict-ex-lit-of-max-level[of S' S''] lev' (no-clause-is-false S')
      by blast
   moreover
   {
     assume c: conflicting S' \neq None
```

```
have conflicting S \neq None using other'.hyps(1) c
     by (induct rule: cdcl_W-o-induct) auto
   then have conflict-is-false-with-level S'
     using cdcl_W-o-conflict-is-false-with-level-inv[OF other'.hyps(1)]
     other'.prems(3,5,6,2) by blast
   moreover have cdcl_W-cp^{**} S' S'' using other'.hyps(3) unfolding full-def by auto
   then have S' = S'' using c
     by (induct rule: rtranclp-induct)
        (fastforce\ intro:\ option.exhaust)+
   ultimately have conflict-is-false-with-level S" by auto
 }
 ultimately have conflict-is-false-with-level S" by blast
moreover {
  assume
    confl: conflicting S' = None and
    D-L: \forall D \in \# clauses S'. trail S' \models as CNot D
      \longrightarrow (\exists L. \ L \in \# D \land get\text{-level (trail } S') \ L = backtrack\text{-lvl } S')
  { assume \forall D \in \#clauses S'. \neg trail S' \models as CNot D
    then have no-clause-is-false S' using confl by simp
    then have conflict-is-false-with-level S'' using calculation(3) by presburger
  moreover {
    assume \neg(\forall D \in \#clauses \ S'. \ \neg \ trail \ S' \models as \ CNot \ D)
    then obtain TD where
      propagate** S' T and
      conflict T S'' and
      D: D \in \# \ clauses \ S' and
      trail S'' \models as CNot D and
      conflicting S'' = Some D
      using full1-cdcl_W-cp-exists-conflict-full1-decompose[OF - - confl]
      other'(3) lev' by (metis (mono-tags, lifting) conflictE state-eq-trail
        trail-update-conflicting)
    obtain M where M: trail S'' = M @ trail S' and nm: \forall m \in set M. \neg is\text{-}decided m
      using rtranclp-cdcl_W-cp-drop While-trail other'(3) unfolding full-def by meson
    have btS: backtrack-lvl S'' = backtrack-lvl S'
      using other'.hyps(3) unfolding full-def by (metis rtranclp-cdcl_W-cp-backtrack-lvl)
    have inv: cdcl_W-M-level-inv S''
      by (metis\ (no\text{-}types)\ cdcl_W\text{-}stgy.conflict'\ cdcl_W\text{-}stgy\text{-}consistent\text{-}inv\ full-unfold\ lev'}
        other'.hyps(3)
    then have nd: no\text{-}dup \ (trail \ S'')
      by (metis\ (no\text{-}types)\ cdcl_W\text{-}M\text{-}level\text{-}inv\text{-}decomp(2))
    have conflict-is-false-with-level S''
      proof cases
        assume trail S' \models as \ CNot \ D
        moreover then obtain L where
          L \in \# D and
          lev-L: qet-level (trail S') L = backtrack-lvl S'
          using D-L D by blast
        moreover
          have LS': -L \in lits-of-l (trail S')
            using \langle trail \ S' \models as \ CNot \ D \rangle \ \langle L \in \# \ D \rangle \ in\text{-}CNot\text{-}implies\text{-}uminus(2) \ by \ blast
          { \mathbf{fix} \ x :: ('v, 'v \ clause) \ ann-lit \ \mathbf{and}
              xb :: ('v, 'v \ clause) \ ann-lit
            assume a1: x \in set \ (trail \ S') and
              a2: xb \in set M and
```

```
a3: (\lambda l. \ atm\text{-}of \ (lit\text{-}of \ l)) 'set M \cap (\lambda l. \ atm\text{-}of \ (lit\text{-}of \ l)) 'set (trail \ S')
                 = \{\} and
                a4: -L = lit - of x and
                a5: atm-of L = atm-of (lit-of xb)
             moreover have atm\text{-}of (lit\text{-}of x) = atm\text{-}of L
               using a4 by (metis (no-types) atm-of-uminus)
             ultimately have False
               using a5 a3 a2 a1 by auto
           then have atm\text{-}of \ L \notin atm\text{-}of ' lits\text{-}of\text{-}l \ M
             using nd LS' unfolding M by (auto simp add: lits-of-def)
           then have get-level (trail S'') L = get-level (trail S') L
             unfolding M by (simp add: lits-of-def)
         ultimately show ?thesis using btS \ (conflicting S'' = Some D) by auto
       next
         assume \neg trail\ S' \models as\ CNot\ D
         then obtain L where L \in \# D and LM: -L \in lits\text{-}of\text{-}l M
           using \langle trail \ S'' \models as \ CNot \ D \rangle unfolding M
             by (auto simp add: true-cls-def M true-annots-def true-annot-def
                   split: if-split-asm)
         { \mathbf{fix} \ x :: ('v, 'v \ clause) \ ann-lit \ \mathbf{and}
             xb :: ('v, 'v \ clause) \ ann-lit
           assume a1: xb \in set \ (trail \ S') and
             a2: x \in set M and
             a3: atm-of L = atm-of (lit-of xb) and
             a4: -L = lit - of x and
             a5: (\lambda l. \ atm\text{-}of \ (lit\text{-}of \ l)) 'set M \cap (\lambda l. \ atm\text{-}of \ (lit\text{-}of \ l)) 'set (trail \ S')
           \mathbf{moreover} \ \mathbf{have} \ \mathit{atm-of} \ (\mathit{lit-of} \ \mathit{xb}) = \mathit{atm-of} \ (-\ \mathit{L})
             using a3 by simp
           ultimately have False
             by auto }
         then have LS': atm\text{-}of \ L \notin atm\text{-}of \ ' \ lits\text{-}of\text{-}l \ (trail \ S')
           using nd \langle L \in \# D \rangle LM unfolding M by (auto simp add: lits-of-def)
         show ?thesis
           proof -
             have atm\text{-}of\ L\in atm\text{-}of ' lits\text{-}of\text{-}l\ M
               using \langle -L \in lits\text{-}of\text{-}l M \rangle
               by (simp add: atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set lits-of-def)
             then have get-level (M @ trail S') L = backtrack-lvl S'
               using lev' LS' nm unfolding cdcl<sub>W</sub>-M-level-inv-def by auto
             then show ?thesis
               using nm \langle L \in \#D \rangle \langle conflicting S'' = Some D \rangle
               unfolding lits-of-def btS M
               by auto
           \mathbf{qed}
       qed
   ultimately have conflict-is-false-with-level S'' by blast
}
moreover
  assume conflicting S' \neq None
  have no-clause-is-false S' using (conflicting S' \neq None) by auto
  then have conflict-is-false-with-level S'' using calculation(3) by presburger
}
```

```
ultimately show ?case by blast
qed
lemma rtranclp-cdcl_W-stgy-no-smaller-confl-inv:
 assumes
    cdcl_W-stgy^{**} S S' and
   n-l: no-smaller-confl S and
   cls-false: conflict-is-false-with-level S and
   lev: cdcl_W-M-level-inv S and
   no-f: no-clause-is-false S and
   dist: distinct-cdcl_W-state S and
   conflicting: cdcl_W-conflicting S and
   decomp: all-decomposition-implies-m (init-clss S) (get-all-ann-decomposition (trail S)) and
   learned: cdcl_W-learned-clause S and
   alien: no-strange-atm S
  shows no-smaller-confl S' \wedge conflict-is-false-with-level S'
 using assms(1)
proof (induct rule: rtranclp-induct)
 case base
 then show ?case using n-l cls-false by auto
next
  case (step S' S'') note st = this(1) and cdcl = this(2) and IH = this(3)
 have no-smaller-confl S' and conflict-is-false-with-level S'
   using IH by blast+
 moreover have cdcl_W-M-level-inv S'
   using st lev rtranclp-cdcl_W-stgy-rtranclp-cdcl_W
   by (blast intro: rtranclp-cdcl_W-consistent-inv)+
 moreover have no-clause-is-false S'
   using st no-f rtranclp-cdcl<sub>W</sub>-stgy-not-non-negated-init-clss by presburger
 moreover have distinct\text{-}cdcl_W\text{-}state\ S'
   using rtanclp-distinct-cdcl_W-state-inv[of\ S\ S']\ lev\ rtranclp-cdcl_W-stay-rtranclp-cdcl_W[OF\ st]
    dist by auto
 moreover have cdcl_W-conflicting S'
   \mathbf{using}\ \mathit{rtranclp-cdcl}_W\mathit{-all-inv}(6)[\mathit{of}\ \mathit{S}\ \mathit{S'}]\ \mathit{st}\ \mathit{alien}\ \mathit{conflicting}\ \mathit{decomp}\ \mathit{dist}\ \mathit{learned}\ \mathit{lev}
   rtranclp-cdcl_W-stgy-rtranclp-cdcl_W by blast
  ultimately show ?case
   using cdcl_W-stqy-no-smaller-conf[OF cdcl] cdcl_W-stqy-ex-lit-of-max-level[OF cdcl] by fast
qed
Final States are Conclusive
lemma full-cdcl_W-stgy-final-state-conclusive-non-false:
 fixes S' :: 'st
 assumes full: full cdcl_W-stgy (init-state N) S'
 and no-d: distinct-mset-mset N
 and no-empty: \forall D \in \#N. D \neq \{\#\}
 shows (conflicting S' = Some \{\#\} \land unsatisfiable (set-mset (init-clss <math>S')))
   \lor (conflicting S' = None \land trail S' \models asm init-clss S')
proof
 let ?S = init\text{-state } N
 have
   termi: \forall S''. \neg cdcl_W \text{-stgy } S' S'' \text{ and }
   step: cdcl_W-stgy** ?S S' using full unfolding full-def by auto
  moreover have
   learned: cdcl_W-learned-clause S' and
```

level-inv: $cdcl_W$ -M-level-inv S' and

```
alien: no-strange-atm S' and
   no-dup: distinct\text{-}cdcl_W\text{-}state\ S' and
   confl: cdcl_W-conflicting S' and
   decomp: all-decomposition-implies-m \ (init-clss \ S') \ (get-all-ann-decomposition \ (trail \ S'))
   using no-d translp-cdcl<sub>W</sub>-stgy-translp-cdcl<sub>W</sub>[of ?S S'] step rtranslp-cdcl<sub>W</sub>-all-inv(1-6)[of ?S S']
   unfolding rtranclp-unfold by auto
  moreover
   have \forall D \in \#N. \neg [] \models as \ CNot \ D \ using \ no-empty \ by \ auto
   then have confl-k: conflict-is-false-with-level S'
     using rtranclp-cdcl_W-stgy-no-smaller-confl-inv[OF step] no-d by auto
 show ?thesis
   using cdcl<sub>W</sub>-stgy-final-state-conclusive[OF termi decomp learned level-inv alien no-dup confl
     confl-k].
qed
lemma conflict-is-full1-cdcl_W-cp:
 assumes cp: conflict S S'
 shows full1 cdcl_W-cp S S'
proof -
 have cdcl_W-cp \ S \ S' and conflicting \ S' \neq None
   using cp \ cdcl_W-cp.intros \ by \ (auto \ elim!: \ conflictE \ simp: \ state-eq-def \ simp \ del: \ state-simp)
  then have cdcl_W-cp^{++} S S' by blast
 moreover have no-step cdcl_W-cp S'
   using \langle conflicting S' \neq None \rangle by (metis\ cdcl_W - cp\text{-}conflicting\text{-}not\text{-}empty)
     option.exhaust)
 ultimately show full1 cdcl<sub>W</sub>-cp S S' unfolding full1-def by blast+
qed
lemma cdcl_W-cp-fst-empty-conflicting-false:
 assumes
   cdcl_W-cp\ S\ S' and
   trail S = [] and
   conflicting S \neq None
 shows False
 using assms by (induct rule: cdcl<sub>W</sub>-cp.induct) (auto elim: propagateE conflictE)
lemma cdcl_W-o-fst-empty-conflicting-false:
 assumes cdcl_W-o SS'
 and trail S = [
 and conflicting S \neq None
 shows False
 using assms by (induct rule: cdcl_W-o-induct) auto
lemma cdcl_W-stgy-fst-empty-conflicting-false:
 assumes cdcl_W-stgy S S'
 and trail\ S = []
 and conflicting S \neq None
 shows False
 using assms apply (induct rule: cdcl_W-stgy.induct)
 using tranclpD cdcl<sub>W</sub>-cp-fst-empty-conflicting-false unfolding full1-def apply metis
 using cdcl_W-o-fst-empty-conflicting-false by blast
thm cdcl_W-cp.induct[split-format(complete)]
lemma cdcl_W-cp-conflicting-is-false:
  cdcl_W-cp \ S \ S' \Longrightarrow conflicting \ S = Some \ \{\#\} \Longrightarrow False
```

```
by (induction rule: cdcl_W-cp.induct) (auto elim: propagateE conflictE)
lemma rtranclp-cdcl_W-cp-conflicting-is-false:
  cdcl_W - cp^{++} S S' \Longrightarrow conflicting S = Some \{\#\} \Longrightarrow False
 apply (induction rule: tranclp.induct)
 by (auto dest: cdcl_W-cp-conflicting-is-false)
lemma cdcl_W-o-conflicting-is-false:
  cdcl_W-o S S' \Longrightarrow conflicting <math>S = Some \{\#\} \Longrightarrow False
 by (induction rule: cdcl_W-o-induct) auto
lemma cdcl_W-stgy-conflicting-is-false:
  cdcl_W-stgy S S' \Longrightarrow conflicting <math>S = Some \{\#\} \Longrightarrow False
 apply (induction rule: cdcl_W-stgy.induct)
   unfolding full1-def apply (metis (no-types) cdcl<sub>W</sub>-cp-conflicting-not-empty tranclpD)
  unfolding full-def by (metis conflict-with-false-implies-terminated other)
lemma rtranclp-cdcl_W-stgy-conflicting-is-false:
  cdcl_W-stgy** S S' \Longrightarrow conflicting <math>S = Some \{\#\} \Longrightarrow S' = S
 apply (induction rule: rtranclp-induct)
   apply simp
 using cdcl_W-stgy-conflicting-is-false by blast
lemma full-cdcl_W-init-clss-with-false-normal-form:
 assumes
   \forall m \in set M. \neg is\text{-}decided m \text{ and }
   E = Some D and
   state S = (M, N, U, \theta, E)
   full\ cdcl_W-stgy S\ S' and
   all-decomposition-implies-m (init-clss S) (qet-all-ann-decomposition (trail S))
   cdcl_W-learned-clause S
   cdcl_W-M-level-inv S
   no-strange-atm S
   distinct-cdcl_W-state S
   cdcl_W-conflicting S
  shows \exists M''. state S' = (M'', N, U, 0, Some {\#})
 using assms(10,9,8,7,6,5,4,3,2,1)
proof (induction M arbitrary: E D S)
 case Nil
 then show ?case
   using rtranclp-cdcl_W-stqy-conflicting-is-false unfolding full-def cdcl_W-conflicting-def
   by fastforce
\mathbf{next}
 case (Cons\ L\ M) note IH=this(1) and full=this(8) and E=this(10) and inv=this(2-7) and
   S = this(9) and nm = this(11)
 obtain K p where K: L = Propagated K p
   using nm by (cases L) auto
 have every-mark-is-a-conflict S using inv unfolding cdcl_W-conflicting-def by auto
  then have MpK: M \models as \ CNot \ (p - \{\#K\#\}) \ and \ Kp: K \in \# \ p
   using S unfolding K by fastforce+
  then have p: p = (p - \{\#K\#\}) + \{\#K\#\}
   by (auto simp add: multiset-eq-iff)
  then have K': L = Propagated K ((p - \{\#K\#\}) + \{\#K\#\})
   using K by auto
  obtain p' where
   p': hd-trail S = Propagated K <math>p' and
```

```
pp': p' = p
   using S K by (cases hd-trail S) auto
 have conflicting S = Some D
   using S E by (cases conflicting S) auto
 then have DD: D = D
   using S E by auto
 consider (D) D = \{\#\} \mid (D') \ D \neq \{\#\}  by blast
 then show ?case
   proof cases
     case D
     then show ?thesis
      using full rtranclp-cdcl_W-stgy-conflicting-is-false S unfolding full-def E D by auto
   \mathbf{next}
     case D
     then have no-p: no-step propagate S and no-c: no-step conflict S
      using S E by (auto elim: propagateE conflictE)
     then have no-step cdcl_W-cp S by (auto simp: cdcl_W-cp.simps)
     have res-skip: \exists T. (resolve S \ T \land no-step skip S \land full \ cdcl_W-cp T \ T)
      \vee (skip S \ T \land no-step resolve S \land full \ cdcl_W-cp T \ T)
      proof cases
        assume -lit-of L \notin \# D
        then obtain T where sk: skip S T
          using SD'K skip-rule unfolding E by fastforce
        then have res: no-step resolve S
          using \langle -lit\text{-}of \ L \notin \# \ D \rangle \ S \ D' \ K \ unfolding \ E
          by (auto elim!: skipE resolveE)
        have full\ cdcl_W-cp\ T\ T
          using sk by (auto intro!: option-full-cdcl<sub>W</sub>-cp elim: skipE)
        then show ?thesis
          using sk res by blast
      next
        assume LD: \neg -lit - of L \notin \# D
        then have D: Some D = Some ((D - \{\#-lit\text{-of }L\#\}) + \{\#-lit\text{-of }L\#\})
          by (auto simp add: multiset-eq-iff)
        have \bigwedge L. get-level M L = 0
          by (simp add: nm)
          then have get-maximum-level (Propagated K (p - \{\#K\#\} + \{\#K\#\}) \# M) (D - \{\#-1\})
K\#\}) = 0
          using LD get-maximum-level-exists-lit-of-max-level
           obtain L' where get-level (L\#M) L' = get-maximum-level (L\#M) D
             using LD get-maximum-level-exists-lit-of-max-level of D L#M by fastforce
            then show ?thesis by (metis (mono-tags) K' get-level-skip-all-not-decided
             get-maximum-level-exists-lit nm not-gr0)
          qed
        then obtain T where sk: resolve S T
          using resolve-rule [of S \ K \ p' \ D] S \ p' \ \langle K \in \# \ p \rangle \ D \ LD
          unfolding K' D E pp' by auto
        then have res: no-step skip S
          using LD S D' K unfolding E
          by (auto elim!: skipE resolveE)
        have full cdcl_W-cp T T
          using sk by (auto simp: option-full-cdcl<sub>W</sub>-cp elim: resolveE)
        then show ?thesis
         using sk res by blast
```

```
qed
     then have step-s: \exists T. <math>cdcl_W-stgy S T
      using \langle no\text{-}step\ cdcl_W\text{-}cp\ S\rangle other' by (meson\ bj\ resolve\ skip)
     have get-all-ann-decomposition (L \# M) = [([], L \# M)]
      using nm unfolding K apply (induction M rule: ann-lit-list-induct, simp)
        by (rename-tac L xs, case-tac hd (get-all-ann-decomposition xs), auto)+
     then have no-b: no-step backtrack S
      using nm S by (auto elim: backtrackE)
     have no-d: no-step decide S
      using S E by (auto elim: decideE)
     have full-S-S: full cdcl_W-cp S
      using S E by (auto simp add: option-full-cdcl<sub>W</sub>-cp)
     then have no-f: no-step (full1 cdcl_W-cp) S
      unfolding full-def full1-def rtranclp-unfold by (meson tranclpD)
     obtain T where
      s: cdcl_W-stgy S T and st: cdcl_W-stgy^{**} T S'
      using full step-s full unfolding full-def by (metis rtranclp-unfold tranclpD)
     have resolve S T \vee skip S T
      using s no-b no-d res-skip full-S-S cdcl_W-cp-state-eq-compatible resolve-unique
      skip-unique unfolding cdcl_W-stgy.simps cdcl_W-o.simps full-unfold
      full1-def by (blast dest!: tranclpD elim!: cdcl_W-bj.cases)+
     then obtain D' where T: state T = (M, N, U, 0, Some D')
      using S E by (auto elim!: skipE resolveE simp: state-eq-def simp del: state-simp)
     have st-c: cdcl_W** S T
      using E \ T \ rtranclp-cdcl_W-stgy-rtranclp-cdcl_W s by blast
     have cdcl_W-conflicting T
      using rtranclp-cdcl_W-all-inv(6)[OF st-c inv(6,5,4,3,2,1)].
     show ?thesis
      apply (rule IH[of T])
               using rtranclp-cdcl_W-all-inv(6)[OF st-c inv(6,5,4,3,2,1)] apply blast
             using rtranclp-cdcl_W-all-inv(5)[OF st-c inv(6,5,4,3,2,1)] apply blast
            using rtranclp-cdcl_W-all-inv(4)[OF st-c inv(6,5,4,3,2,1)] apply blast
           using rtranclp-cdcl_W-all-inv(3)[OF st-c inv(6,5,4,3,2,1)] apply blast
           using rtranclp-cdcl_W-all-inv(2)[OF st-c inv(6,5,4,3,2,1)] apply blast
          using rtranclp-cdcl_W-all-inv(1)[OF st-c inv(6,5,4,3,2,1)] apply blast
         apply (metis full-def st full)
        using T E apply blast
       apply auto[]
      using nm by simp
   qed
qed
lemma full-cdcl_W-stgy-final-state-conclusive-is-one-false:
 fixes S' :: 'st
 assumes full: full cdcl_W-stgy (init-state N) S'
 and no\text{-}d: distinct\text{-}mset\text{-}mset\ N
 and empty: \{\#\} \in \# N
 shows conflicting S' = Some \{\#\} \land unsatisfiable (set-mset (init-clss S'))
proof -
 let ?S = init\text{-state } N
 have cdcl_W-stgy^{**} ?S S' and no-step cdcl_W-stgy S' using full unfolding full-def by auto
 then have plus-or-eq: cdcl_W-stgy<sup>++</sup> ?S S' \vee S' = ?S unfolding rtranclp-unfold by auto
 have \exists S''. conflict ?S S''
   using empty not-conflict-not-any-negated-init-clss[of init-state N] by auto
```

```
then have cdcl_W-stgy: \exists S'. cdcl_W-stgy ?S S'
 using cdcl_W-cp.conflict'[of ?S] conflict-is-full1-cdcl_W-cp cdcl_W-stqy.intros(1) by metis
have S' \neq ?S using \langle no\text{-}step\ cdcl_W\text{-}stgy\ S' \rangle\ cdcl_W\text{-}stgy\ \mathbf{by}\ blast
then obtain St :: 'st where St : cdcl_W - stgy ?S St and cdcl_W - stgy^{**} St S'
 using plus-or-eq by (metis (no-types) \langle cdcl_W \text{-stgy}^{**} ?S S' \rangle converse-rtranclpE)
have st: cdcl_{W}^{**} ?S St
 by (simp add: rtranclp-unfold \langle cdcl_W - stgy ?S St \rangle \ cdcl_W - stgy - tranclp-cdcl_W)
have \exists T. conflict ?S T
 using empty not-conflict-not-any-negated-init-clss[of ?S] by force
then have fullSt: full1 \ cdcl_W-cp \ ?S \ St
 using St unfolding cdcl_W-stqy.simps by blast
then have bt: backtrack-lvl St = (0::nat)
 using rtranclp-cdcl_W-cp-backtrack-lvl unfolding full1-def
 by (fastforce dest!: tranclp-into-rtranclp)
have cls-St: init-clss St = N
 using fullSt\ cdcl_W-stgy-no-more-init-clss[OF\ St] by auto
have conflicting St \neq None
 proof (rule ccontr)
   assume conf: \neg ?thesis
   obtain E where
     ES: E \in \# init\text{-}clss \ St \ \mathbf{and}
     E: E = \{\#\}
     using empty cls-St by metis
   then have \exists T. conflict St T
     using empty cls-St conflict-rule[of St E] ES conf unfolding E
     by (auto simp: clauses-def dest:)
   then show False using fullSt unfolding full1-def by blast
 qed
have 1: \forall m \in set (trail St). \neg is\text{-}decided m
 using fullSt unfolding full1-def by (auto dest!: tranclp-into-rtranclp
   rtranclp-cdcl_W-cp-drop While-trail)
have 2: full cdcl_W-stqy St S'
  using \langle cdcl_W \text{-}stqy^{**} \ St \ S' \rangle \langle no\text{-}step \ cdcl_W \text{-}stqy \ S' \rangle bt unfolding full-def by auto
have 3: all-decomposition-implies-m
   (init-clss\ St)
   (get-all-ann-decomposition
      (trail\ St)
using rtranclp-cdcl_W-all-inv(1)[OF\ st]\ no-d\ bt\ by\ simp
have 4: cdcl_W-learned-clause St
 using rtranclp-cdcl_W-all-inv(2)[OF\ st]\ no-d\ bt\ by\ simp
have 5: cdcl_W-M-level-inv St
 using rtranclp-cdcl_W-all-inv(3)[OF st] no-d bt by simp
have 6: no-strange-atm St
 using rtranclp-cdcl_W-all-inv(4)[OF st] no-d bt by simp
have 7: distinct\text{-}cdcl_W\text{-}state\ St
 using rtranclp-cdcl_W-all-inv(5)[OF\ st]\ no-d\ bt\ by\ simp
have 8: cdcl_W-conflicting St
  using rtranclp-cdcl_W-all-inv(6)[OF\ st]\ no-d\ bt\ by\ simp
have init-clss S' = init-clss St and conflicting S' = Some \{\#\}
  using \langle conflicting St \neq None \rangle full-cdcl<sub>W</sub>-init-clss-with-false-normal-form [OF 1, of - St]
  2 3 4 5 6 7 8 St apply (metis \( cdcl_W\)-stgy** St S'\( rtranclp\)-cdcl_W\-stgy\-no\-more\-init\-clss\( )
```

```
using (conflicting St \neq None) full-cdcl<sub>W</sub>-init-clss-with-false-normal-form [OF 1, of - - St - -
     S' 2 3 4 5 6 7 8 by (metis bt option.exhaust prod.inject)
 moreover have init-clss S' = N
   using \langle cdcl_W - stqy^{**}  (init-state N) S' rtranclp-cdcl<sub>W</sub>-stqy-no-more-init-clss by fastforce
  moreover have unsatisfiable (set-mset N)
   by (meson empty satisfiable-def true-cls-empty true-clss-def)
 ultimately show ?thesis by auto
qed
theorem 2.9.9 page 83 of Weidenbach's book
lemma full-cdcl_W-stgy-final-state-conclusive:
 fixes S' :: 'st
 assumes full: full cdcl_W-stqy (init-state N) S' and no-d: distinct-mset-mset N
 shows (conflicting S' = Some \{\#\} \land unsatisfiable (set-mset (init-clss <math>S')))
   \lor (conflicting S' = None \land trail S' \models asm init-clss S')
 using assms full-cdcl<sub>W</sub>-stqy-final-state-conclusive-is-one-false
 full-cdcl_W-stgy-final-state-conclusive-non-false by blast
theorem 2.9.9 page 83 of Weidenbach's book
\mathbf{lemma}\ full\text{-}cdcl_W\text{-}stgy\text{-}final\text{-}state\text{-}conclusive\text{-}from\text{-}init\text{-}state:}
 fixes S' :: 'st
 assumes full: full cdcl_W-stgy (init-state N) S'
 and no-d: distinct-mset-mset N
 shows (conflicting S' = Some \{\#\} \land unsatisfiable (set-mset N))
  \lor (conflicting S' = None \land trail S' \models asm N \land satisfiable (set-mset N))
proof -
 have N: init-clss S' = N
   using full unfolding full-def by (auto dest: rtranclp-cdcl<sub>W</sub>-stgy-no-more-init-clss)
  consider
     (confl) conflicting S' = Some \{\#\} and unsatisfiable (set-mset (init-clss S'))
   |(sat)| conflicting S' = None and trail S' \models asm init-clss S'
   using full-cdcl_W-stgy-final-state-conclusive[OF\ assms] by auto
  then show ?thesis
   proof cases
     case confl
     then show ?thesis by (auto simp: N)
   next
     case sat
     have cdcl_W-M-level-inv (init-state N) by auto
     then have cdcl_W-M-level-inv S'
       using full\ rtranclp\ cdcl_W\ -stgy\ -consistent\ -inv unfolding full\ -def by blast
     then have consistent-interp (lits-of-l (trail S')) unfolding cdcl_W-M-level-inv-def by blast
     moreover have lits-of-l (trail S') \models s set-mset (init-clss S')
      using sat(2) by (auto simp add: true-annots-def true-annot-def true-clss-def)
     ultimately have satisfiable (set-mset (init-clss S')) by simp
     then show ?thesis using sat unfolding N by blast
   qed
qed
end
end
theory CDCL-W-Termination
imports CDCL-W
begin
```

2.1.6 Termination

The condition that no learned clause is a tautology is overkill (in the sense that the no-duplicate condition is enough), but we can reuse *simple-clss*.

The invariant contains all the structural invariants that holds,

```
definition cdcl_W-all-struct-inv where
  cdcl_W-all-struct-inv S \longleftrightarrow
   no-strange-atm S \wedge
   cdcl_W-M-level-inv S \wedge
   (\forall s \in \# learned\text{-}clss S. \neg tautology s) \land
   distinct-cdcl_W-state S \land
   cdcl_W-conflicting S \wedge
   all-decomposition-implies-m (init-clss S) (qet-all-ann-decomposition (trail S)) \land
   cdcl_W-learned-clause S
lemma cdcl_W-all-struct-inv-inv:
 assumes cdcl_W S S' and cdcl_W-all-struct-inv S
 shows cdcl_W-all-struct-inv S'
 unfolding cdcl_W-all-struct-inv-def
proof (intro HOL.conjI)
  show no-strange-atm S'
   using cdcl_W-all-inv[OF assms(1)] assms(2) unfolding cdcl_W-all-struct-inv-def by auto
  show cdcl_W-M-level-inv S'
   using cdcl_W-all-inv[OF assms(1)] assms(2) unfolding cdcl_W-all-struct-inv-def by fast
  show distinct\text{-}cdcl_W\text{-}state\ S'
    using cdcl_W-all-inv[OF assms(1)] assms(2) unfolding cdcl_W-all-struct-inv-def by fast
  show cdcl_W-conflicting S'
    using cdcl_W-all-inv[OF assms(1)] assms(2) unfolding cdcl_W-all-struct-inv-def by fast
  show all-decomposition-implies-m (init-clss S') (qet-all-ann-decomposition (trail S'))
    using cdcl_W-all-inv[OF\ assms(1)]\ assms(2) unfolding cdcl_W-all-struct-inv-def\ by\ fast
 show cdcl_W-learned-clause S'
    using cdcl_W-all-inv[OF assms(1)] assms(2) unfolding cdcl_W-all-struct-inv-def by fast
 show \forall s \in \#learned\text{-}clss S'. \neg tautology s
   using assms(1)[THEN\ learned-clss-are-not-tautologies]\ assms(2)
   unfolding cdcl_W-all-struct-inv-def by fast
qed
lemma rtranclp-cdcl_W-all-struct-inv-inv:
 assumes cdcl_W^{**} S S' and cdcl_W-all-struct-inv S
 shows cdcl_W-all-struct-inv S'
 using assms by induction (auto intro: cdcl_W-all-struct-inv-inv)
lemma cdcl_W-stqy-cdcl_W-all-struct-inv:
  cdcl_W-stgy S T \Longrightarrow cdcl_W-all-struct-inv S \Longrightarrow cdcl_W-all-struct-inv T
 by (meson\ cdcl_W\ -stgy\ -tranclp\ -cdcl_W\ -tranclp\ -cdcl_W\ -all\ -struct\ -inv\ -inv\ rtranclp\ -unfold)
lemma rtranclp-cdcl_W-stgy-cdcl_W-all-struct-inv:
  cdcl_W-stgy^{**} S T \Longrightarrow cdcl_W-all-struct-inv S \Longrightarrow cdcl_W-all-struct-inv T
  by (induction rule: rtranclp-induct) (auto intro: cdcl_W-stgy-cdcl_W-all-struct-inv)
```

No Relearning of a clause

```
lemma cdcl_W-o-new-clause-learned-is-backtrack-step:
  assumes learned: D \in \# learned-clss T and
  new: D \notin \# learned\text{-}clss S  and
  cdcl_W: cdcl_W-o S T and
  lev: cdcl_W-M-level-inv S
 shows backtrack S T \land conflicting <math>S = Some \ D
 using cdcl_W lev learned new
proof (induction rule: cdcl_W-o-induct)
  case (backtrack L C K i M1 M2 T) note decomp = this(3) and undef = this(6) and T = this(8)
    D\text{-}T = this(10) \text{ and } D\text{-}S = this(11)
  then have D = C
   using not-gr0 lev by (auto simp: cdcl_W-M-level-inv-decomp)
  then show ?case
   using T backtrack.hyps(1-5) backtrack.intros[OF\ backtrack.hyps(1,2)] backtrack.hyps(3-7)
   by auto
qed auto
\mathbf{lemma}\ cdcl_W\text{-}cp\text{-}new\text{-}clause\text{-}learned\text{-}has\text{-}backtrack\text{-}step\text{:}}
 assumes learned: D \in \# learned-clss T and
 new: D \notin \# learned\text{-}clss S  and
  cdcl_W: cdcl_W-stgy S T and
  lev: cdcl_W-M-level-inv S
 shows \exists S'. backtrack S S' \land cdcl_W-stgy** S' T \land conflicting S = Some D
  using cdcl_W learned new
proof (induction rule: cdcl_W-stgy.induct)
  case (conflict' S')
  then show ?case
   unfolding full1-def by (metis (mono-tags, lifting) rtranclp-cdcl<sub>W</sub>-cp-learned-clause-inv
     tranclp-into-rtranclp)
next
  case (other' S' S'')
  then have D \in \# learned\text{-}clss S'
   unfolding full-def by (auto dest: rtranclp-cdcl<sub>W</sub>-cp-learned-clause-inv)
  then show ?case
   using cdcl_W-o-new-clause-learned-is-backtrack-step[OF - \langle D \notin \# | learned-clss S \rangle \langle cdcl_W-o S S' \rangle]
   \langle full\ cdcl_W-cp S'\ S'' \rangle lev by (metis\ cdcl_W-stqy.conflict'\ full-unfold\ r-into-rtranclp
     rtranclp.rtrancl-refl)
qed
lemma rtranclp-cdcl_W-cp-new-clause-learned-has-backtrack-step:
 assumes learned: D \in \# learned\text{-}clss T and
 new: D \notin \# learned\text{-}clss S  and
  cdcl_W: cdcl_W-stqy^{**} S T and
  lev: cdcl_W-M-level-inv S
 shows \exists S' S''. cdcl_W-stgy^{**} S S' \land backtrack S' S'' \land conflicting S' = Some D \land
   cdcl_W-stgy^{**} S^{\prime\prime} T
 using cdcl_W learned new
proof (induction rule: rtranclp-induct)
 case base
 then show ?case by blast
  case (step T U) note st = this(1) and o = this(2) and IH = this(3) and
   D\text{-}U = this(4) and D\text{-}S = this(5)
```

```
show ?case
   proof (cases D \in \# learned-clss T)
     case True
     then obtain S'S'' where
      st': cdcl_W - stqy^{**} S S' and
      bt: backtrack S' S'' and
      confl: conflicting S' = Some D and
      st'': cdcl_W-stgy^{**} S'' T
      using IH D-S by metis
     have cdcl_W-stgy^{++} S'' U
      using st'' o by force
     then show ?thesis
      by (meson bt confl rtranclp-unfold st')
     case False
     have cdcl_W-M-level-inv T
      using lev rtranclp-cdcl_W-stgy-consistent-inv st by blast
     then obtain S' where
      bt: backtrack T S' and
      st': cdcl_W \text{-}stgy^{**} S' U and
      confl: conflicting T = Some D
      using cdcl_W-cp-new-clause-learned-has-backtrack-step[OF D-U False o]
       by metis
     then have cdcl_W-stgy^{**} S T and
      backtrack T S' and
      conflicting T = Some D and
      cdcl_W-stgy^{**} S' U
      using o st by auto
     then show ?thesis by blast
   qed
qed
lemma propagate-no-more-Decided-lit:
 assumes propagate S S'
 shows Decided K \in set (trail S) \longleftrightarrow Decided K \in set (trail S')
 using assms by (auto elim: propagateE)
lemma conflict-no-more-Decided-lit:
 assumes conflict S S'
 shows Decided K \in set (trail S) \longleftrightarrow Decided K \in set (trail S')
 using assms by (auto elim: conflictE)
lemma cdcl_W-cp-no-more-Decided-lit:
 assumes cdcl_W-cp S S'
 shows Decided K \in set (trail S) \longleftrightarrow Decided K \in set (trail S')
 using assms apply (induct rule: cdcl_W-cp.induct)
 using conflict-no-more-Decided-lit propagate-no-more-Decided-lit by auto
lemma rtranclp-cdcl_W-cp-no-more-Decided-lit:
 assumes cdcl_W-cp^{**} S S'
 shows Decided K \in set (trail S) \longleftrightarrow Decided K \in set (trail S')
 using assms apply (induct rule: rtranclp-induct)
 using cdcl_W-cp-no-more-Decided-lit by blast+
lemma cdcl_W-o-no-more-Decided-lit:
 assumes cdcl_W-o S S' and lev: cdcl_W-M-level-inv S and \neg decide S S'
```

```
shows Decided K \in set (trail S') \longrightarrow Decided K \in set (trail S)
  using assms
proof (induct rule: cdcl<sub>W</sub>-o-induct)
 case backtrack note decomp = this(3) and undef = this(8) and T = this(9)
 then show ?case using lev by (auto simp: cdcl<sub>W</sub>-M-level-inv-decomp)
next
 case (decide\ L\ T)
 then show ?case using decide-rule[OF decide.hyps] by blast
qed auto
lemma cdcl_W-new-decided-at-beginning-is-decide:
 assumes cdcl_W-stgy S S' and
 lev: cdcl_W-M-level-inv S and
  trail \ S' = M' @ Decided \ L \# M \ and
  trail\ S = M
 shows \exists T. decide S T \land no-step cdcl_W-cp S
 using assms
proof (induct rule: cdcl<sub>W</sub>-stqy.induct)
 case (conflict' S') note st = this(1) and no\text{-}dup = this(2) and S' = this(3) and S = this(4)
 have cdcl_W-M-level-inv S'
   using full1-cdcl_W-cp-consistent-inv no-dup st by blast
  then have Decided L \in set \ (trail \ S') \ and \ Decided \ L \notin set \ (trail \ S)
   using no-dup unfolding SS' cdcl<sub>W</sub>-M-level-inv-def by (auto simp add: rev-image-eqI)
  then have False
   using st rtranclp-cdcl<sub>W</sub>-cp-no-more-Decided-lit[of SS']
   unfolding full1-def rtranclp-unfold by blast
 then show ?case by fast
next
  case (other' T U) note o = this(1) and ns = this(2) and st = this(3) and no\text{-}dup = this(4) and
   S' = this(5) and S = this(6)
 have cdcl_W-M-level-inv U
   by (metis (full-types) lev cdcl<sub>W</sub>.simps cdcl<sub>W</sub>-consistent-inv full-def o
     other'.hyps(3) rtranclp-cdcl_W-cp-consistent-inv)
  then have Decided L \in set (trail \ U) and Decided L \notin set (trail \ S)
   using no-dup unfolding S S' cdcl<sub>W</sub>-M-level-inv-def by (auto simp add: rev-image-eqI)
  then have Decided L \in set (trail T)
   using st rtranclp-cdcl<sub>W</sub>-cp-no-more-Decided-lit unfolding full-def by blast
  then show ?case
   using cdcl_W-o-no-more-Decided-lit[OF o] \langle Decided \ L \notin set \ (trail \ S) \rangle ns lev by meson
qed
lemma cdcl_W-o-is-decide:
 assumes cdcl_W-o S T and lev: cdcl_W-M-level-inv S
  trail T = drop \ (length \ M_0) \ M' @ Decided \ L \# H @ Mand
  \neg (\exists M'. trail S = M' @ Decided L \# H @ M)
 shows decide S T
 using assms
proof (induction\ rule: cdcl_W-o-induct)
 case (backtrack L D K i M1 M2 T)
  then obtain c where trail S = c @ M2 @ Decided K \# M1
   by auto
  show ?case
   using backtrack lev
   apply (cases drop (length M_0) M')
    apply (auto simp: cdcl_W-M-level-inv-decomp)
   using \langle trail \ S = c @ M2 @ Decided \ K \# M1 \rangle
```

```
by (auto simp: cdcl_W-M-level-inv-decomp)
next
 case decide
 show ?case using decide-rule[of S] decide(1-4) by auto
qed auto
\mathbf{lemma}\ \mathit{rtranclp-cdcl}_W\mathit{-new-decided-at-beginning-is-decide}:
 assumes cdcl_W-stgy^{**} R U and
 trail\ U=M'\ @\ Decided\ L\ \#\ H\ @\ M\ {\bf and}
 trail R = M and
 cdcl_W-M-level-inv R
 shows
   \exists S \ T \ T'. \ cdcl_W\text{-}stgy^{**} \ R \ S \ \land \ decide \ S \ T \ \land \ cdcl_W\text{-}stgy^{**} \ T \ U \ \land \ cdcl_W\text{-}stgy^{**} \ S \ U \ \land
    cdcl_W-stgy^{**} T' U
 using assms
proof (induct arbitrary: M H M' i rule: rtranclp-induct)
 case base
 then show ?case by auto
 case (step T U) note st = this(1) and IH = this(3) and s = this(2) and
   U = this(4) and S = this(5) and lev = this(6)
 show ?case
   proof (cases \exists M'. trail T = M' @ Decided L \# H @ M)
    case False
    with s show ?thesis using U s st S
      proof induction
        case (conflict' W) note cp = this(1) and nd = this(2) and W = this(3)
        then obtain M_0 where trail W = M_0 @ trail T and ndecided: \forall l \in set M_0. \neg is-decided l
         using rtranclp-cdcl<sub>W</sub>-cp-dropWhile-trail unfolding full1-def rtranclp-unfold by meson
        then have MV: M' @ Decided L \# H @ M = M_0 @ trail T unfolding W by <math>simp
        then have V: trail T = drop \ (length \ M_0) \ (M' @ Decided \ L \# H @ M)
        have take While (Not o is-decided) M' = M_0 @ take While (Not o is-decided) (trail T)
         using arg-cong[OF MV, of takeWhile (Not o is-decided)] ndecided
         by (simp add: takeWhile-tail)
        from arg-cong[OF this, of length] have length M_0 < \text{length } M'
         unfolding length-append by (metis (no-types, lifting) Nat.le-trans le-add1
           length-takeWhile-le)
        then have False using nd V by auto
        then show ?case by fast
      next
        case (other'\ T'\ U) note o=this(1) and ns=this(2) and cp=this(3) and nd=this(4)
         and U = this(5) and st = this(6)
        obtain M_0 where trail U = M_0 @ trail T' and ndecided: \forall l \in set M_0. \neg is-decided l
         using rtranclp-cdcl_W-cp-drop While-trail cp unfolding full-def by meson
        then have MV: M' @ Decided L \# H @ M = M_0 @ trail T' unfolding U by simp
        then have V: trail T' = drop \ (length \ M_0) \ (M' @ Decided \ L \# H @ M)
         by auto
        have take While (Not o is-decided) M' = M_0 @ take While (Not \circ is-decided) (trail T')
         using arg-cong[OF MV, of takeWhile (Not o is-decided)] ndecided
         by (simp add: take While-tail)
        from arg-cong[OF this, of length] have length M_0 \leq length M'
         unfolding length-append by (metis (no-types, lifting) Nat.le-trans le-add1
           length-takeWhile-le)
        then have tr-T': trail T' = drop \ (length \ M_0) \ M' @ Decided \ L \# H @ M \ using \ V \ by \ auto
```

```
then have LT': Decided L \in set (trail T') by auto
         moreover
          have cdcl_W-M-level-inv T
            using lev rtranclp-cdcl<sub>W</sub>-stgy-consistent-inv step.hyps(1) by blast
          then have decide T T' using o nd tr-T' cdclw-o-is-decide by metis
         ultimately have decide T T' using cdcl<sub>W</sub>-o-no-more-Decided-lit[OF o] by blast
         then have 1: cdcl_W-stgy^{**} R T and 2: decide\ T\ T' and 3: cdcl_W-stgy^{**} T' U
           using st other'.prems(4)
          by (metis cdcl<sub>W</sub>-stgy.conflict' cp full-unfold r-into-rtranclp rtranclp.rtrancl-refl)+
         have [simp]: drop\ (length\ M_0)\ M' = []
          using \langle decide\ T\ T' \rangle \langle Decided\ L \in set\ (trail\ T') \rangle \ nd\ tr-T'
          by (auto simp add: Cons-eq-append-conv elim: decideE)
         have T': drop (length M_0) M' @ Decided L # H @ M = Decided L # trail T
           using \langle decide\ T\ T' \rangle \langle Decided\ L \in set\ (trail\ T') \rangle\ nd\ tr\text{-}T'
          by (auto elim: decideE)
         have trail T' = Decided L \# trail T
           using \langle decide\ T\ T' \rangle \langle Decided\ L \in set\ (trail\ T') \rangle\ tr\text{-}T'
          by (auto elim: decideE)
         then have 5: trail T' = Decided L \# H @ M
            using append.simps(1) list.sel(3) local.other'(5) tl-append2 by (simp add: tr-T')
         have \theta: trail\ T = H @ M
          by (metis (no-types) \langle trail\ T' = Decided\ L \# trail\ T \rangle
            \langle trail\ T' = drop\ (length\ M_0)\ M'\ @\ Decided\ L\ \#\ H\ @\ M 
angle\ append-Nil\ list.sel(3)\ nd
            tl-append2)
         have 7: cdcl_W-stgy^{**} T U using other'.prems(4) st by auto
         have 8: cdcl_W-stgy T U cdcl_W-stgy** U U
           using cdcl_W-stgy.other'[OF other'(1-3)] by simp-all
         show ?case apply (rule exI[of - T], rule exI[of - T'], rule exI[of - U])
           using ns 1 2 3 5 6 7 8 by fast
       qed
   next
     case True
     then obtain M' where T: trail T = M' @ Decided L \# H @ M by metis
     from IH[OF this S lev] obtain S' S'' S''' where
       1: cdcl_W-stgy^{**} R S' and
       2: decide S'S'' and
       3: cdcl_W-stgy^{**} S^{"} T and
       4: no\text{-}step \ cdcl_W\text{-}cp \ S' and
       6: trail\ S'' = Decided\ L\ \#\ H\ @\ M and
       7: trail S' = H @ M and
       8: cdcl_W-stgy^{**} S' T and
       9: cdcl_W-stqy S'S''' and
       10: cdcl_W-stgy^{**} S''' T
         by blast
     have cdcl_W-stgy^{**} S'' U using s \langle cdcl_W-stgy^{**} S'' T \rangle by auto
     moreover have cdcl_W-stgy^{**} S' U using 8 s by auto
     moreover have cdcl_W-stgy^{**} S''' U using 10 s by auto
     ultimately show ?thesis apply - apply (rule exI[of - S'], rule exI[of - S''])
       using 1 2 4 6 7 8 9 by blast
   qed
qed
\mathbf{lemma}\ rtranclp\text{-}cdcl_W\text{-}new\text{-}decided\text{-}at\text{-}beginning\text{-}is\text{-}decide':
 assumes cdcl_W-stgy^{**} R U and
  trail\ U = M' @ Decided\ L \ \# \ H @ M \ and
  trail R = M  and
```

```
cdcl_W-M-level-inv R
  shows \exists y \ y'. \ cdcl_W - stgy^{**} \ R \ y \land cdcl_W - stgy \ y' \land \neg \ (\exists \ c. \ trail \ y = c \ @ \ Decided \ L \ \# \ H \ @ \ M)
    \wedge (\lambda a \ b. \ cdcl_W \text{-stgy } a \ b \ \wedge (\exists \ c. \ trail \ a = c \ @ \ Decided \ L \ \# \ H \ @ \ M))^{**} \ y' \ U
proof -
  fix T'
  obtain S' T T' where
    st: cdcl_W-stgy^{**} R S' and
    decide S' T and
    TU: cdcl_W \text{-} stgy^{**} \ T \ U \text{ and }
    no-step cdcl_W-cp S' and
    trT: trail\ T = Decided\ L \ \# \ H \ @\ M and
    trS': trail S' = H @ M and
    S'U: cdcl_W \text{-}stgy^{**} S'U and
    S'T': cdcl_W-stgy S' T' and
    T'U: cdcl_W - stgy^{**} T'U
    using rtranclp-cdcl_W-new-decided-at-beginning-is-decide[OF assms] by blast
  have n: \neg (\exists c. trail S' = c @ Decided L \# H @ M) using trS' by auto
    using rtranclp-trans[OF st] rtranclp-exists-last-with-prop[of cdcl<sub>W</sub>-stgy S' T' -
        \lambda a -. \neg (\exists c. trail \ a = c @ Decided \ L \# H @ M), OF S'T' T'U \ n]
    by meson
qed
\mathbf{lemma}\ beginning\text{-}not\text{-}decided\text{-}invert:
  assumes A: M @ A = M' @ Decided K \# H and
  nm: \forall m \in set M. \neg is\text{-}decided m
 shows \exists M. A = M @ Decided K \# H
proof -
  \mathbf{have}\ A = \mathit{drop}\ (\mathit{length}\ M)\ (\mathit{M'}\ @\ \mathit{Decided}\ K\ \#\ H)
    using arg-cong[OF A, of drop (length M)] by auto
 \mathbf{moreover} \ \mathbf{have} \ \mathit{drop} \ (\mathit{length} \ \mathit{M}) \ (\mathit{M'} \ @ \ \mathit{Decided} \ \mathit{K} \ \# \ \mathit{H}) = \mathit{drop} \ (\mathit{length} \ \mathit{M}) \ \mathit{M'} \ @ \ \mathit{Decided} \ \mathit{K} \ \# \ \mathit{H}
    using nm by (metis (no-types, lifting) A drop-Cons' drop-append ann-lit.disc(1) not-gr0
      nth-append nth-append-length nth-mem zero-less-diff)
 finally show ?thesis by fast
qed
lemma cdcl_W-stqy-trail-has-new-decided-is-decide-step:
  assumes cdcl_W-stgy S T
  \neg (\exists c. trail S = c @ Decided L \# H @ M) and
  (\lambda a \ b. \ cdcl_W-stgy a \ b \land (\exists \ c. \ trail \ a = c @ Decided \ L \# H @ M))^{**} \ T \ U \ \mathbf{and}
  \exists M'. trail U = M' \otimes Decided L \# H \otimes M and
  lev: cdcl_W-M-level-inv S
  shows \exists S'. decide S S' \land full \ cdcl_W - cp \ S' \ T \land no\text{-step} \ cdcl_W - cp \ S
  using assms(3,1,2,4,5)
proof induction
  case (step \ T \ U)
  then show ?case by fastforce
next
  case base
  then show ?case
    proof (induction rule: cdcl_W-stgy.induct)
      case (conflict' T) note cp = this(1) and nd = this(2) and M' = this(3) and no\text{-}dup = this(3)
      then obtain M' where M': trail T = M' @ Decided L \# H @ M by metis
      obtain M'' where M'': trail T = M'' @ trail S and nm: \forall m \in set M''. \neg is-decided m
        using cp unfolding full1-def
        by (metis\ rtranclp-cdcl_W-cp-drop\ While-trail'\ tranclp-into-rtranclp)
```

```
have False
      using beginning-not-decided-invert of M'' trail S M' L H @ M M' nm nd unfolding M''
     then show ?case by fast
   next
     case (other' TU') note o = this(1) and ns = this(2) and cp = this(3) and nd = this(4)
      and trU' = this(5)
     have cdcl_W-cp^{**} T U' using cp unfolding full-def by blast
     from rtranclp-cdcl_W-cp-drop While-trail[OF this]
     have \exists M'. trail T = M' @ Decided L \# H @ M
      using trU' beginning-not-decided-invert of - trail T - L H @ M by metis
     then obtain M' where M': trail\ T=M' @ Decided\ L\ \#\ H @ M
      by auto
     with o lev nd cp ns
     show ?case
      proof (induction rule: cdcl_W-o-induct)
        case (decide\ L) note dec = this(1) and cp = this(5) and ns = this(4)
        then have decide\ S\ (cons-trail\ (Decided\ L)\ (incr-lvl\ S))
          using decide.hyps decide.intros[of S] by force
        then show ?case using cp decide.prems by (meson decide-state-eq-compatible ns state-eq-ref
          state-eq-sym)
        case (backtrack L' D K j M1 M2 T) note decomp = this(3) and undef = this(8) and
          T = this(9) and trT = this(13)
        obtain MS3 where MS3: trail\ S = MS3\ @\ M2\ @\ Decided\ K\ \#\ M1
         using get-all-ann-decomposition-exists-prepend[OF decomp] by metis
        have tl (M' @ Decided L \# H @ M) = tl M' @ Decided L \# H @ M
         using lev trT T lev undef decomp by (cases M') (auto simp: cdcl_W-M-level-inv-decomp)
        then have M'': M1 = tl M' @ Decided L \# H @ M
          using arg-cong[OF trT[simplified], of tl] T decomp undef lev
         by (simp\ add:\ cdcl_W-M-level-inv-decomp)
        have False using nd MS3 T undef decomp unfolding M'' by auto
        then show ?case by fast
      ged auto
     qed
qed
lemma rtranclp-cdcl_W-stgy-with-trail-end-has-trail-end:
 assumes (\lambda a\ b.\ cdcl_W\text{-stgy}\ a\ b\ \wedge\ (\exists\ c.\ trail\ a=c\ @\ Decided\ L\ \#\ H\ @\ M))^{**}\ T\ U and
 \exists M'. trail U = M' @ Decided L \# H @ M
 shows \exists M'. trail T = M' @ Decided L \# H @ M
 using assms by (induction rule: rtranclp-induct) auto
lemma remove1-mset-eq-remove1-mset-same:
 remove1-mset\ L\ D = remove1-mset\ L'\ D \Longrightarrow L \in \#\ D \Longrightarrow L = L'
 by (metis diff-single-trivial insert-DiffM multi-drop-mem-not-eq single-eq-single
   union-right-cancel)
lemma cdcl_W-o-cannot-learn:
 assumes
   cdcl_W-o y z and
   lev: cdcl_W-M-level-inv y and
   M: trail y = c @ Decided Kh # H and
   DL: D \notin \# learned\text{-}clss \ y \ \mathbf{and}
   LD: L \in \# D and
   DH: atms-of \ (remove1-mset \ L \ D) \subseteq atm-of \ `lits-of-l \ H \ and
```

```
LH: atm\text{-}of \ L \notin atm\text{-}of \ `lits\text{-}of\text{-}l \ H \ \mathbf{and}
   learned: \forall T. conflicting y = Some T \longrightarrow trail y \models as CNot T and
   z: trail z = c' @ Decided Kh # H
 shows D \notin \# learned\text{-}clss z
  using assms(1-2) M DL DH LH learned z
proof (induction rule: cdcl_W-o-induct)
 case (backtrack L' D' K j M1 M2 T) note confl = this(1) and LD' = this(2) and decomp = this(3)
   and levL = this(4) and levD = this(5) and j = this(6) and lev-K = this(7) and T = this(8) and
   z = this(15)
 \mathbf{def}\ i \equiv get\text{-}level\ (trail\ T)\ Kh
 have lev T: cdcl_W-M-level-inv T
   using backtrack-rule[OF confl LD' decomp levL levD - - T] lev-K j lev
   by (metis Suc\text{-}eq\text{-}plus1\ cdcl_W.simps\ cdcl_W\text{-}bj.simps\ cdcl_W\text{-}consistent\text{-}inv\ cdcl_W\text{-}o.simps)
  obtain M3 where M3: trail y = M3 @ M2 @ Decided K \# M1
   using decomp get-all-ann-decomposition-exists-prepend by metis
  have c' @ Decided Kh # H = Propagated L' D' # trail (reduce-trail-to M1 y)
   using z decomp T lev by (force simp: cdcl_W-M-level-inv-def)
  then obtain d where d: M1 = d @ Decided Kh \# H
   by (metis (no-types) decomp in-get-all-ann-decomposition-trail-update-trail list.inject
     list.sel(3) ann-lit.distinct(1) self-append-conv2 tl-append2)
  have atm\text{-}of\ Kh \notin atm\text{-}of ' lits\text{-}of\text{-}l\ c'
   using levT unfolding cdcl_W-M-level-inv-def z
   by (auto simp: atm-lit-of-set-lits-of-l)
  then have count-H: count-decided H = i - 1 i > 0
   unfolding z i-def by auto
  have n-d-y: no-dup (trail y) and bt-y: backtrack-lvl y = count-decided (trail y)
   using lev unfolding cdcl_W-M-level-inv-def by auto
 have tr-T: trail\ T = Propagated\ L'\ D' \#\ M1
   using decomp \ T \ n-d-y by auto
 show ?case
   proof
     assume D \in \# learned\text{-}clss T
     then have DLD': D = D'
      using DL T neg0-conv decomp n-d-y by fastforce
     have L-cKh: atm-of L \in atm-of 'lits-of-l (c \otimes [Decided Kh])
      using LH learned M DLD'[symmetric] confl LD' LD
      apply (auto simp add: image-iff dest!: in-CNot-implies-uminus)
      apply (metis atm-of-uminus)+ done
     then consider (Lc) atm-of L \in atm-of 'lits-of-l c and atm-of L \neq atm-of Kh
      (LKh) atm-of L = atm-of Kh and atm-of L \notin atm-of ' lits-of-l c
      using n-d-y M by (auto simp: atm-lit-of-set-lits-of-l)
     then have lev-L-c-Kh: get-level (c @ [Decided Kh]) L \geq 1
      by cases auto
     have get-level (trail y) L = get-level (c @ [Decided Kh]) L + count-decided H
      using get-rev-level-skip-end[OF L-cKh, of H] unfolding M by simp
     then have get-level (trail y) L > i
      using count-H lev-L-c-Kh by linarith
     then have i-le-bt-y: i \leq backtrack-lvl y
       using cdcl_W-M-level-inv-get-level-le-backtrack-lvl[OF lev, of L] by linarith
     have DD'[simp]: remove1-mset L D = D' - \{\#L'\#\}
      proof (rule ccontr)
        assume DD': \neg ?thesis
        then have L' \in \# remove1\text{-}mset \ L \ D \text{ using } DLD' \ LD \text{ by } (metis \ LD' \ in-remove1\text{-}mset-neq)
```

```
then have get-level (trail y) L' \leq get-maximum-level (trail y) (remove1-mset L D)
     using get-maximum-level-ge-get-level by blast
   moreover
   have \forall x \in atms-of (remove1-mset L D). x \notin atm-of 'lits-of-l (c @ Decided Kh # [])
     using DH n-d-y unfolding M by (auto simp: atm-lit-of-set-lits-of-l)
   from get-maximum-level-skip-beginning[OF this, of H]
     have get-maximum-level (trail y) (remove1-mset L D) =
     get-maximum-level H (remove1-mset L D)
     unfolding M by (simp add: get-maximum-level-skip-beginning)
   moreover
     have atm\text{-}of\ Kh \notin atm\text{-}of ' lits\text{-}of\text{-}l\ c'
      using levT unfolding cdcl_W-M-level-inv-def z
      by (auto simp: atm-lit-of-set-lits-of-l)
     then have count-decided H < i
      unfolding i-def z by auto
     then have 0 < i - count\text{-}decided H
      by presburger
   ultimately have get-maximum-level (trail y) (remove1-mset L(D) < i
     by (metis (no-types) count-decided-ge-get-maximum-level diff-is-0-eq diff-le-mono2
      not-le)
   moreover
     have L \in \# remove1\text{-}mset L' D'
      using DLD'[symmetric] DD' LD by (metis in-remove1-mset-neq)
     then have get-maximum-level (trail y) (remove1-mset L'D') \geq
      get-level (trail\ y)\ L
      using get-maximum-level-ge-get-level by blast
   moreover
    have get-maximum-level (trail y) (remove1-mset L'D')
       < qet-level (trail y) L
      using \langle get\text{-level }(trail\ y)\ L' \leq get\text{-maximum-level }(trail\ y)\ (remove1\text{-mset}\ L\ D) \rangle
       calculation(1) i-le-bt-y levL by linarith
   ultimately show False using backtrack.hyps(4) by linarith
 qed
then have LL': L = L'
 using LD LD' remove1-mset-eq-remove1-mset-same unfolding DLD'[symmetric] by fast
have [simp]: atm-of K \notin atm-of ' lits-of-l M2 and
 [simp]: atm-of K \notin atm-of 'lits-of-l M3
 using lev unfolding M3 cdcl<sub>W</sub>-M-level-inv-def by (auto simp: atm-lit-of-set-lits-of-l)
{ assume D: remove1-mset L D' = \{\#\}
 then have j\theta: j = \theta using levD \ j by (simp \ add: LL')
 have \forall m \in set M1. \neg is\text{-}decided m
   using lev-K unfolding j0 M3 by (auto simp: atm-lit-of-set-lits-of-l image-Un
     filter-empty-conv)
 then have False using d by auto
moreover {
 assume D[simp]: remove1-mset L D' \neq \{\#\}
 have i < j
   using lev count-H lev-K unfolding M3 d cdcl<sub>W</sub>-M-level-inv-def by (auto simp add:
     atm-lit-of-set-lits-of-l)
 have j > \theta apply (rule ccontr)
   using \langle i > 0 \rangle lev-K unfolding M3 d
   by (auto simp add: rev-swap[symmetric] dest!: upt-decomp-lt)
 obtain L'' where
   L'' \in \# remove1\text{-}mset \ L \ D' and
```

```
L''D': get-level (trail y) L'' = get-maximum-level (trail y)
            (remove1-mset\ L\ D')
          using get-maximum-level-exists-lit-of-max-level [OF D, of trail y] by auto
        have L''M: atm\text{-}of\ L'' \in atm\text{-}of ' lits\text{-}of\text{-}l\ (trail\ y)
          using get-level-ge-0-atm-of-in[of 0 L'' trail <math>y \mid \langle j > 0 \rangle levD L''D'
          i-le-bt-y levL by (simp add: LL' j)
        then have L'' \in lits-of-l (Decided Kh \# d)
          proof -
            {
              assume L''H: atm-of L'' \in atm-of ' lits-of-l H
              then have atm\text{-}of L'' \notin atm\text{-}of \text{ '} lits\text{-}of\text{-}l \ (c @ [Decided Kh])
                using n-d-y unfolding M by (auto simp: lits-of-def atm-of-eq-atm-of)
              then have get-level (trail y) L'' = get-level H L''
                using L''H unfolding M by auto
              moreover have get-level HL'' \leq count-decided H
                by auto
              ultimately have False
                using \langle j > 0 \rangle \langle i \leq j \rangle L"D' LL' (get-level H L" \leq count-decided H) count-H(1) j
                unfolding count-H by presburger
            }
            moreover
              have atm\text{-}of L'' \in atm\text{-}of ' lits\text{-}of\text{-}l H
                using DD'DH \langle L'' \in \# remove1\text{-}mset\ L\ D' \rangle \ atm\text{-}of\text{-}lit\text{-}in\text{-}atms\text{-}of\ LL'\ LD
                LD' by fastforce
            ultimately show ?thesis
              using DD'DH \lor L'' \in \# remove1\text{-}mset\ L\ D' \land atm\text{-}of\text{-}lit\text{-}in\text{-}atms\text{-}of
          qed
        moreover
          have atm\text{-}of\ L'' \in atms\text{-}of\ (remove1\text{-}mset\ L\ D')
            using \langle L'' \in \# remove1\text{-}mset \ L \ D' \rangle by (auto simp: atms-of-def)
          then have atm\text{-}of\ L^{\prime\prime}\in\ atm\text{-}of\ ``lits\text{-}of\text{-}l\ H
            using DH unfolding DD' unfolding LL' by blast
        ultimately have False
          using n-d-y unfolding M3 d LL' by (auto simp: lits-of-def)
      ultimately show False by blast
    qed
qed auto
lemma cdcl_W-stgy-with-trail-end-has-not-been-learned:
  assumes
    cdcl_W-stgy y z and
    cdcl_W-M-level-inv y and
    trail\ y = c\ @\ Decided\ Kh\ \#\ H\ {\bf and}
    D \notin \# learned\text{-}clss \ y \ \mathbf{and}
    LD: L \in \# D and
    DH: atms-of (remove1-mset L D) \subseteq atm-of ' lits-of-l H and
    LH: atm\text{-}of \ L \notin atm\text{-}of \ `lits\text{-}of\text{-}l \ H \ \mathbf{and}
    \forall T. conflicting y = Some T \longrightarrow trail y \models as CNot T and
    trail\ z = c'\ @\ Decided\ Kh\ \#\ H
  shows D \notin \# learned\text{-}clss z
  using assms
proof induction
  case conflict'
```

```
then show ?case
   unfolding full1-def using tranclp-cdcl_W-cp-learned-clause-inv by auto
  case (other' T U) note o = this(1) and cp = this(3) and lev = this(4) and trY = this(5) and
   notin = this(6) and LD = this(7) and DH = this(8) and LH = this(9) and confl = this(10) and
   trU = this(11)
 obtain c' where c': trail T = c' @ Decided Kh # H
   using cp beginning-not-decided-invert[of - trail T c' Kh H]
     rtranclp-cdcl_W-cp-drop While-trail[of T U] unfolding trU full-def by fastforce
 show ?case
   using cdcl_W-o-cannot-learn[OF o lev trY notin LD DH LH confl c']
     rtranclp-cdcl_W-cp-learned-clause-inv cp unfolding full-def by auto
qed
lemma rtranclp-cdcl_W-stqy-with-trail-end-has-not-been-learned:
 assumes
   (\lambda a \ b. \ cdcl_W\text{-stgy} \ a \ b \land (\exists \ c. \ trail \ a = c \ @ \ Decided \ K \# \ H \ @ \ []))^{**} \ S \ z \ and
   cdcl_W-all-struct-inv S and
   trail\ S = c\ @\ Decided\ K\ \#\ H\ and
   D \notin \# learned\text{-}clss S and
   LD: L \in \# D and
   DH: atms-of (remove1-mset L D) \subseteq atm-of ' lits-of-l H and
   LH: atm\text{-}of \ L \notin atm\text{-}of \ `lits\text{-}of\text{-}l \ H \ \mathbf{and}
   \exists c'. trail z = c' @ Decided K # H
 shows D \notin \# learned\text{-}clss z
 using assms(1-4.8)
proof (induction rule: rtranclp-induct)
 case base
 then show ?case by auto[1]
next
 case (step T U) note st = this(1) and s = this(2) and IH = this(3)[OF this(4-6)]
   and lev = this(4) and trS = this(5) and DL-S = this(6) and trU = this(7)
 obtain c where c: trail T = c @ Decided K \# H  using s by auto
 obtain c' where c': trail U = c' @ Decided K \# H using trU by blast
 have cdcl_W^{**} S T
   proof -
     have \forall p \ pa. \ \exists s \ sa. \ \forall sb \ sc \ sd \ se. \ (\neg \ p^{**} \ (sb::'st) \ sc \ \lor \ p \ s \ sa \ \lor \ pa^{**} \ sb \ sc)
       \land (\neg pa \ s \ sa \lor \neg p^{**} \ sd \ se \lor pa^{**} \ sd \ se)
       by (metis (no-types) mono-rtranclp)
     then have cdcl_W-stgy^{**} S T
       using st by blast
     then show ?thesis
       using rtranclp-cdcl_W-stgy-rtranclp-cdcl_W by blast
  then have lev': cdcl_W-all-struct-inv T
   using rtranclp-cdcl_W-all-struct-inv-inv[of S T] lev by auto
  then have confl': \forall Ta. conflicting T = Some Ta \longrightarrow trail T \models as CNot Ta
   unfolding cdcl_W-all-struct-inv-def cdcl_W-conflicting-def by blast
 show ?case
   apply (rule cdcl_W-stqy-with-trail-end-has-not-been-learned [OF - - c - LD DH LH confl' c'])
   using s lev' IH c unfolding cdcl<sub>W</sub>-all-struct-inv-def by blast+
qed
\mathbf{lemma}\ cdcl_W\textit{-}stgy\textit{-}new\textit{-}learned\textit{-}clause:
 assumes cdcl_W-stgy S T and
```

 $lev: cdcl_W$ -M-level-inv S and

```
E \notin \# learned\text{-}clss \ S and
   E \in \# learned\text{-}clss T
 shows \exists S'. backtrack S S' \land conflicting S = Some E \land full cdcl_W - cp S' T
 using assms
proof induction
 case conflict'
 then show ?case unfolding full1-def by (auto dest: tranclp-cdcl<sub>W</sub>-cp-learned-clause-inv)
next
 case (other' T U) note o = this(1) and cp = this(3) and not-yet = this(5) and learned = this(6)
 have E \in \# learned\text{-}clss T
   using learned cp rtranclp-cdclw-cp-learned-clause-inv unfolding full-def by auto
 then have backtrack S T and conflicting S = Some E
   using cdcl_W-o-new-clause-learned-is-backtrack-step[OF - not-yet o] lev by blast+
 then show ?case using cp by blast
qed
theorem 2.9.7 page 83 of Weidenbach's book
lemma cdcl_W-stgy-no-relearned-clause:
 assumes
   invR: cdcl_W-all-struct-inv R and
   st': cdcl_W - stgy^{**} R S and
   bt: backtrack S T and
   confl: conflicting S = Some E and
   already-learned: E \in \# clauses S and
   R: trail R = []
 shows False
proof -
 have M-lev: cdcl_W-M-level-inv R
   using invR unfolding cdcl_W-all-struct-inv-def by auto
 have cdcl_W-M-level-inv S
   using M-lev assms(2) rtranclp-cdcl_W-stqy-consistent-inv by blast
 with bt obtain L K :: 'v literal and M1 M2-loc :: ('v, 'v clause) ann-lits
   and i :: nat where
    T: T \sim cons-trail (Propagated L E)
     (reduce-trail-to M1 (add-learned-cls E
       (update-backtrack-lvl\ i\ (update-conflicting\ None\ S))))
    and
   decomp: (Decided K # M1, M2-loc) \in
             set (get-all-ann-decomposition (trail S)) and
   LD: L \in \# E  and
   k: get-level (trail S) L = backtrack-lvl S and
   level: get-level (trail S) L = get-maximum-level (trail S) E and
   confl-S: conflicting S = Some E and
   i: i = get-maximum-level (trail S) (remove1-mset L E) and
   lev-K: qet-level (trail S) <math>K = Suc i
   using confl apply (induction rule: backtrack.induct)
     apply (simp del: state-simp)
     by blast
 obtain M2 where
   M: trail S = M2 @ Decided K \# M1
   using get-all-ann-decomposition-exists-prepend [OF\ decomp] unfolding i by (metis\ append-assoc)
 let ?E' = remove1\text{-}mset\ L\ E
 have invS: cdcl_W-all-struct-inv S
   using invR rtranclp-cdcl_W-all-struct-inv-inv rtranclp-cdcl_W-stgy-rtranclp-cdcl_W st' by blast
 then have conf: cdcl_W-conflicting S unfolding cdcl_W-all-struct-inv-def by blast
 then have trail\ S \models as\ CNot\ E\ unfolding\ cdcl_W-conflicting-def confl-S by auto
```

```
then have MD: trail S \models as CNot E by auto
then have MD': trail \ S \models as \ CNot \ ?E' \ using \ true-annot-CNot-diff \ by \ blast
have lev': cdcl_W-M-level-inv S using invS unfolding cdcl_W-all-struct-inv-def by blast
have lev: cdcl_W-M-level-inv R using invR unfolding cdcl_W-all-struct-inv-def by blast
then have vars-of-D: atms-of ?E' \subseteq atm-of 'lits-of-l M1
  using backtrack-atms-of-D-in-M1[OF lev' - decomp - - -, of E - i T] conft-S conf T decomp k
  level lev' lev-K unfolding i cdcl<sub>W</sub>-conflicting-def by (auto simp: cdcl<sub>W</sub>-M-level-inv-decomp)
have no-dup (trail S) using lev' by (auto simp: cdcl_W-M-level-inv-decomp)
have vars-in-M1:
  \forall x \in atms\text{-}of ?E'. x \notin atm\text{-}of `lits\text{-}of\text{-}l (M2 @ [Decided K])
  unfolding Set.Ball-def apply (intro impI allI)
   apply (rule vars-of-D distinct-atms-of-incl-not-in-other) of
   M2 @ Decided K \# [] M1 ?E'])
   using \langle no\text{-}dup \ (trail \ S) \rangle \ M \ vars\text{-}of\text{-}D \ by \ simp\text{-}all
have M1-D: M1 \models as CNot ?E'
  using vars-in-M1 true-annots-remove-if-notin-vars[of M2 @ Decided K # [] M1 CNot ?E']
  MD' M by simp
have backtrack-lvl S > 0 using lev' unfolding cdcl_W-M-level-inv-def M by auto
obtain M1'K'Ls where
  M': trail S = Ls @ Decided K' # M1' and
  Ls: \forall l \in set \ Ls. \ \neg \ is\text{-}decided \ l \ \mathbf{and}
  set M1 \subseteq set M1'
  proof -
   let ?Ls = takeWhile (Not o is-decided) (trail S)
   have MLs: trail\ S = ?Ls \ @\ drop\ While\ (Not\ o\ is\ decided)\ (trail\ S)
   have drop While (Not o is-decided) (trail S) \neq [] unfolding M by auto
   moreover
     from hd-dropWhile[OF this] have is-decided(hd (dropWhile (Not o is-decided) (trail S)))
       by simp
   ultimately
     obtain K' where
       K'k: drop While (Not o is-decided) (trail S)
         = Decided K' \# tl (drop While (Not o is-decided) (trail S))
       by (cases drop While (Not \circ is-decided) (trail S);
           cases hd (drop While (Not \circ is\text{-}decided) (trail S)))
         simp-all
   moreover have \forall l \in set ? Ls. \neg is\text{-}decided l using set\text{-}takeWhileD by force
   moreover have set M1 \subseteq set (tl (dropWhile (Not o is-decided) (trail S)))
     unfolding M by (induction M2) auto
   ultimately show ?thesis using that of take While (Not \circ is-decided) (trail S)
     K' tl (drop While (Not o is-decided) (trail S))] MLs by simp
  qed
have M1'-D: M1' \models as\ CNot\ ?E' using M1-D\ (set\ M1 \subseteq set\ M1') by (auto intro: true-annots-mono)
have -L \in lits-of-l (trail S) using conf confl-S LD unfolding cdcl_W-conflicting-def
  by (auto simp: in-CNot-implies-uminus)
have L-notin: atm-of L \in atm-of ' lits-of-l Ls \vee atm-of L = atm-of K'
  proof (rule ccontr)
   assume ¬ ?thesis
   then have atm-of L \notin atm-of 'lits-of-l (Decided K' # rev Ls) by simp
   then have get-level (trail S) L = get-level M1' L
     unfolding M' by auto
```

```
moreover
     have get-level M1' L \leq count-decided M1'
     then have get-level M1' L < backtrack-lvl S
       using lev' unfolding cdcl<sub>W</sub>-M-level-inv-def M'
       by (auto simp del: count-decided-ge-get-level)
   ultimately show False using k by linarith
 qed
obtain YZ where
 RY: cdcl_W \text{-}stgy^{**} R Y \text{ and }
  YZ: cdcl_W-stgy YZ and
 nt: \neg (\exists c. trail \ Y = c @ Decided \ K' \# M1' @ []) and
 Z: (\lambda a \ b. \ cdcl_W \text{-stgy} \ a \ b \land (\exists \ c. \ trail \ a = c \ @ \ Decided \ K' \# M1' \ @ \ []))^{**} \ Z \ S
 using rtranclp-cdcl<sub>W</sub>-new-decided-at-beginning-is-decide'[OF st' - - lev, of Ls K'
   M1'[]] unfolding RM' by auto
have [simp]: cdcl_W-M-level-inv Y
 using RY lev rtranclp-cdcl_W-stgy-consistent-inv by blast
obtain M' where trZ: trail\ Z = M' @ Decided\ K' \# M1'
 using rtranclp-cdcl_W-stgy-with-trail-end-has-trail-end[OF Z] M' by auto
have no-dup (trail\ Y)
 using RY lev rtranclp-cdcl_W-stgy-consistent-inv unfolding cdcl_W-M-level-inv-def by blast
then obtain Y' where
  dec: decide \ Y \ Y' and
  Y'Z: full cdcl_W-cp Y' Z and
 no-step cdcl_W-cp Y
 using cdcl<sub>W</sub>-stgy-trail-has-new-decided-is-decide-step[OF YZ nt Z] M' by auto
have trY: trail\ Y = M1'
 proof -
   obtain M' where M: trail Z = M' @ Decided K' \# M1'
     using rtranclp-cdcl_W-stgy-with-trail-end-has-trail-end[OF Z] M' by auto
   obtain M'' where M'': trail Z = M'' @ trail Y' and \forall m \in set M''. \neg is-decided m
     using Y'Z rtranclp-cdcl<sub>W</sub>-cp-drop While-trail' unfolding full-def by blast
   obtain M''' where trail Y' = M''' @ Decided K' \# M1'
     using M'' unfolding M
     by (metis (no-types, lifting) \forall m \in set M''. \neg is-decided m \land beginning-not-decided-invert)
   then show ?thesis using dec nt by (induction M''') (auto elim: decideE)
have Y-CT: conflicting Y = None using (decide Y Y') by (auto elim: decideE)
have cdcl_W^{**} R Y by (simp add: RY rtranclp-cdcl<sub>W</sub>-stgy-rtranclp-cdcl<sub>W</sub>)
then have init-clss Y = init-clss R using rtranclp-cdcl<sub>W</sub>-init-clss [of R Y] M-lev by auto
{ assume DL: E \in \# clauses Y
 have atm\text{-}of \ L \notin atm\text{-}of ' lits\text{-}of\text{-}l \ M1
   apply (rule backtrack-lit-skiped[of - S])
   using decomp i k lev' lev-K unfolding cdcl<sub>W</sub>-M-level-inv-def by auto
 then have LM1: undefined-lit M1 L
   by (metis Decided-Propagated-in-iff-in-lits-of-l atm-of-uminus image-eqI)
 have L-trY: undefined-lit (trail Y) L
   using L-notin (no-dup (trail S)) unfolding defined-lit-map trY\ M'
   by (auto simp add: image-iff lits-of-def)
 have Ex (propagate Y)
   using propagate-rule[of Y E L] DL M1'-D L-trY Y-CT trY LD by auto
 then have False using \langle no\text{-}step\ cdcl_W\text{-}cp\ Y\rangle\ propagate' by blast
moreover {
 assume DL: E \notin \# clauses Y
 have lY-lZ: learned-clss Y = learned-clss Z
```

```
using dec Y'Z rtranclp-cdcl<sub>W</sub>-cp-learned-clause-inv[of Y' Z] unfolding full-def
     by (auto \ elim: \ decideE)
   have invZ: cdcl_W-all-struct-inv Z
     by (meson RY YZ invR r-into-rtranclp rtranclp-cdcl<sub>W</sub>-all-struct-inv-inv
       rtranclp-cdcl_W-stgy-rtranclp-cdcl_W)
   have n: E \notin \# learned\text{-}clss Z
      using DL lY-lZ YZ unfolding clauses-def by auto
   have E \notin \#learned\text{-}clss\ S
     \mathbf{apply} \ (\mathit{rule}\ \mathit{rtranclp-cdcl}_W \, \text{-} \mathit{stgy-with-trail-end-has-not-been-learned}[\mathit{OF}\ \mathit{Z}\ \mathit{invZ}\ \mathit{trZ}])
        apply (simp \ add: \ n)
       using LD apply simp
      apply (metis (no-types, lifting) (set M1 \subseteq set M1') image-mono order-trans
        vars-of-D lits-of-def)
      using L-notin (no-dup (trail S)) unfolding M' by (auto simp add: image-iff lits-of-def)
   then have False
     using already-learned DL confl st' M-lev rtranclp-cdcl_W-stqy-no-more-init-clss[of R S]
     unfolding M'
     by (simp add: (init-clss Y = init-clss R) clauses-def confl-S
       rtranclp-cdcl_W-stgy-no-more-init-clss)
 ultimately show False by blast
qed
lemma rtranclp-cdcl_W-stgy-distinct-mset-clauses:
 assumes
   invR: cdcl_W-all-struct-inv R and
   st: cdcl_W - stgy^{**} R S and
   dist: distinct-mset (clauses R) and
   R: trail R = []
 shows distinct-mset (clauses S)
 using st
proof (induction)
 case base
 then show ?case using dist by simp
  case (step S T) note st = this(1) and s = this(2) and IH = this(3)
 from s show ?case
   proof (cases rule: cdcl_W-stgy.cases)
     case conflict'
     then show ?thesis
      using IH unfolding full1-def by (auto dest: tranclp-cdcl_W-cp-no-more-clauses)
   next
     case (other' S') note o = this(1) and full = this(3)
     have [simp]: clauses T = clauses S'
      using full unfolding full-def by (auto dest: rtranclp-cdcl_W-cp-no-more-clauses)
     show ?thesis
      using o IH
      proof (cases rule: cdcl_W-o-rule-cases)
        case backtrack
        moreover
          have cdcl_W-all-struct-inv S
            using invR rtranclp-cdcl_W-stgy-cdcl_W-all-struct-inv st by blast
          then have cdcl_W-M-level-inv S
            unfolding cdcl_W-all-struct-inv-def by auto
        ultimately obtain E where
          conflicting S = Some E  and
```

```
cls-S': clauses <math>S' = \{\#E\#\} + clauses S
          using \langle cdcl_W \text{-}M\text{-}level\text{-}inv S \rangle
          by (induction rule: backtrack.induct) (auto simp: cdcl_W-M-level-inv-decomp)
         then have E \notin \# clauses S
          using cdcl_W-stgy-no-relearned-clause R invR local.backtrack st by blast
         then show ?thesis using IH by (simp add: distinct-mset-add-single cls-S')
       qed (auto elim: decideE skipE resolveE)
   \mathbf{qed}
qed
lemma cdcl_W-stgy-distinct-mset-clauses:
 assumes
   st: cdcl_W - stgy^{**} (init-state \ N) \ S \ {\bf and}
   no-duplicate-clause: distinct-mset N and
   no-duplicate-in-clause: distinct-mset-mset N
 shows distinct-mset (clauses S)
 using rtranclp-cdcl_W-stgy-distinct-mset-clauses[OF - st] assms
  by (auto simp: cdcl_W-all-struct-inv-def distinct-cdcl_W-state-def)
Decrease of a Measure
fun cdcl_W-measure where
cdcl_W-measure S =
  [(3::nat) \cap (card (atms-of-mm (init-clss S))) - card (set-mset (learned-clss S)),
   if conflicting S = None then 1 else 0,
   if conflicting S = None then card (atms-of-mm (init-clss S)) – length (trail S)
   else length (trail S)
lemma length-model-le-vars-all-inv:
 assumes cdcl_W-all-struct-inv S
 shows length (trail\ S) \le card\ (atms-of-mm\ (init-clss\ S))
 using assms length-model-le-vars [of S] unfolding cdcl_W-all-struct-inv-def
 by (auto simp: cdcl_W-M-level-inv-decomp)
end
context conflict-driven-clause-learning<sub>W</sub>
lemma learned-clss-less-upper-bound:
 fixes S :: 'st
 assumes
   distinct-cdcl_W-state S and
   \forall s \in \# learned\text{-}clss S. \neg tautology s
 shows card(set\text{-}mset\ (learned\text{-}clss\ S)) \leq 3 \cap card\ (atms\text{-}of\text{-}mm\ (learned\text{-}clss\ S))
 have set-mset (learned-clss S) \subseteq simple-clss (atms-of-mm (learned-clss S))
   apply (rule simplified-in-simple-clss)
   using assms unfolding distinct-cdcl<sub>W</sub>-state-def by auto
  then have card(set\text{-}mset\ (learned\text{-}clss\ S))
   \leq card \ (simple-clss \ (atms-of-mm \ (learned-clss \ S)))
   by (simp add: simple-clss-finite card-mono)
  then show ?thesis
   by (meson atms-of-ms-finite simple-clss-card finite-set-mset order-trans)
qed
```

```
lemma cdcl_W-measure-decreasing:
 fixes S :: 'st
 assumes
   cdcl_W S S' and
   no-restart:
     \neg (learned\text{-}clss\ S \subseteq \#\ learned\text{-}clss\ S' \land [] = trail\ S' \land conflicting\ S' = None)
    and
   no\text{-}forget:\ learned\text{-}clss\ S\subseteq\#\ learned\text{-}clss\ S' and
   no-relearn: \land S'. backtrack SS' \Longrightarrow \forall T. conflicting S = Some T \longrightarrow T \notin \# learned-clss S
   alien: no-strange-atm S and
   M-level: cdcl_W-M-level-inv S and
   no-taut: \forall s \in \# learned\text{-}clss S. \neg tautology s  and
   no-dup: distinct-cdcl_W-state S and
   confl: cdcl_W-conflicting S
  shows (cdcl_W-measure S', cdcl_W-measure S) \in lexn\ less-than 3
  using assms(1) M-level assms(2,3)
proof (induct rule: cdcl_W-all-induct)
  case (propagate CL) note conf = this(1) and undef = this(5) and T = this(6)
 have propa: propagate S (cons-trail (Propagated L C) S)
   using propagate-rule [OF\ propagate.hyps(1,2)]\ propagate.hyps\ by\ auto
  then have no-dup': no-dup (Propagated L C \# trail S)
   using M-level cdcl_W-M-level-inv-decomp(2) undef defined-lit-map by auto
 let ?N = init\text{-}clss S
 have no-strange-atm (cons-trail (Propagated L(C)(S))
   using alien cdcl_W.propagate cdcl_W-no-strange-atm-inv propa M-level by blast
  then have atm-of 'lits-of-l (Propagated L C \# trail S)
   \subseteq atms-of-mm (init-clss S)
   using undef unfolding no-strange-atm-def by auto
  then have card (atm-of 'lits-of-l (Propagated L C \# trail S))
   \leq card (atms-of-mm (init-clss S))
   by (meson atms-of-ms-finite card-mono finite-set-mset)
  then have length (Propagated L C # trail S) \leq card (atms-of-mm ?N)
   using no-dup-length-eq-card-atm-of-lits-of-l no-dup' by fastforce
  then have H: card (atms-of-mm (init-clss S)) - length (trail S)
   = Suc (card (atms-of-mm (init-clss S)) - Suc (length (trail S)))
   by simp
 show ?case using conf T undef by (auto simp: H lexn3-conv)
 case (decide L) note conf = this(1) and undef = this(2) and T = this(4)
 moreover
   have dec: decide S (cons-trail (Decided L) (incr-lvl S))
     using decide-rule decide.hyps by force
   then have cdcl_W:cdcl_W \ S \ (cons-trail \ (Decided \ L) \ (incr-lvl \ S))
     using cdcl_W.simps\ cdcl_W-o.intros by blast
  moreover
   have lev: cdcl_W-M-level-inv (cons-trail (Decided L) (incr-lvl S))
     using cdcl_W M-level cdcl_W-consistent-inv[OF cdcl_W] by auto
   then have no-dup: no-dup (Decided L \# trail S)
     using undef unfolding cdcl_W-M-level-inv-def by auto
   \mathbf{have}\ no\text{-}strange\text{-}atm\ (cons\text{-}trail\ (Decided\ L)\ (incr\text{-}lvl\ S))
     using M-level alien calculation (4) cdcl_W-no-strange-atm-inv by blast
   then have length (Decided L \# (trail S))
     \leq card (atms-of-mm (init-clss S))
```

```
using no-dup undef
     length-model-le-vars[of\ cons-trail\ (Decided\ L)\ (incr-lvl\ S)]
     by fastforce
 ultimately show ?case using conf by (simp add: lexn3-conv)
 case (skip L C' M D) note tr = this(1) and conf = this(2) and T = this(5)
 show ?case using conf T by (simp add: tr lexn3-conv)
\mathbf{next}
 {f case} conflict
 then show ?case by (simp add: lexn3-conv)
next
  case resolve
 then show ?case using finite by (simp add: lexn3-conv)
 case (backtrack L D K i M1 M2 T) note conf = this(1) and decomp = this(3) and T = this(8) and
 lev = this(9)
 have bt: backtrack S T
   using backtrack-rule[OF backtrack.hyps] by auto
  have D \notin \# learned\text{-}clss S
   using no-relearn conf bt by auto
  then have card-T:
   card\ (set\text{-}mset\ (\{\#D\#\} + learned\text{-}clss\ S)) = Suc\ (card\ (set\text{-}mset\ (learned\text{-}clss\ S)))
   by simp
 have distinct\text{-}cdcl_W\text{-}state\ T
   using bt M-level distinct-cdcl<sub>W</sub>-state-inv no-dup other cdcl_W-o.intros cdcl_W-bj.intros by blast
  moreover have \forall s \in \#learned\text{-}clss \ T. \neg \ tautology \ s
   using learned-clss-are-not-tautologies [OF cdcl_W.other [OF cdcl_W-o.bj [OF
     cdcl_W-bj.backtrack[OF bt]]]] M-level no-taut confl by auto
  ultimately have card (set-mset (learned-clss T)) \leq 3 \hat{} card (atms-of-mm (learned-clss T))
     by (auto simp: learned-clss-less-upper-bound)
   then have H: card (set-mset (\{\#D\#\}\ + \ learned\text{-}clss\ S))
     \leq 3 \, \hat{} \, card \, (atms-of-mm \, (\{\#D\#\} + learned-clss \, S))
     using T decomp M-level by (simp add: cdcl_W-M-level-inv-decomp)
 moreover
   have atms-of-mm (\{\#D\#\} + learned\text{-}clss\ S) \subseteq atms\text{-}of\text{-}mm\ (init\text{-}clss\ S)
     using alien conf unfolding no-strange-atm-def by auto
   then have card-f: card (atms-of-mm (\{\#D\#\}\ + \ learned\text{-}clss\ S))
     \leq card (atms-of-mm (init-clss S))
     \mathbf{by}\ (\mathit{meson}\ \mathit{atms-of-ms-finite}\ \mathit{card-mono}\ \mathit{finite-set-mset})
   then have (3::nat) \widehat{\ } card (atms-of-mm\ (\{\#D\#\} + learned-clss\ S))
     \leq 3 \, \hat{} \, card \, (atms-of-mm \, (init-clss \, S)) by simp
  ultimately have (3::nat) \widehat{\ } card (atms-of-mm\ (init-clss\ S))
   \geq card (set\text{-}mset (\{\#D\#\} + learned\text{-}clss S))
   using le-trans by blast
  then show ?case using decomp diff-less-mono2 card-T T M-level
   by (auto simp: cdcl_W-M-level-inv-decomp lexn3-conv)
next
  case restart
 then show ?case using alien by (auto simp: state-eq-def simp del: state-simp)
  case (forget C T) note no-forget = this(9)
  then have C \in \# learned-clss S and C \notin \# learned-clss T
   using forget.hyps by auto
  then have \neg learned-clss S \subseteq \# learned-clss T
    by (auto simp add: mset-leD)
  then show ?case using no-forget by blast
```

```
lemma propagate-measure-decreasing:
 fixes S :: 'st
 assumes propagate S S' and cdcl_W-all-struct-inv S
 shows (cdcl_W-measure S', cdcl_W-measure S) \in lexn\ less-than 3
 apply (rule cdcl_W-measure-decreasing)
 using assms(1) propagate apply blast
        using assms(1) apply (auto simp add: propagate.simps)[3]
      using assms(2) apply (auto simp\ add: cdcl_W-all-struct-inv-def)
 done
lemma conflict-measure-decreasing:
 fixes S :: 'st
 assumes conflict S S' and cdcl_W-all-struct-inv S
 shows (cdcl_W-measure S', cdcl_W-measure S) \in lexn\ less-than 3
 apply (rule cdcl_W-measure-decreasing)
 using assms(1) conflict apply blast
         using assms(1) apply (auto simp: state-eq-def simp del: state-simp elim!: conflictE)[3]
       using assms(2) apply (auto simp\ add:\ cdcl_W-all-struct-inv-def elim:\ conflictE)
 done
lemma decide-measure-decreasing:
 fixes S :: 'st
 assumes decide\ S\ S' and cdcl_W-all-struct-inv S
 shows (cdcl_W-measure S', cdcl_W-measure S) \in lexn \ less-than 3
 apply (rule cdcl_W-measure-decreasing)
 using assms(1) decide other apply blast
         using assms(1) apply (auto simp: state-eq-def simp del: state-simp elim!: <math>decideE)[3]
       using assms(2) apply (auto simp\ add:\ cdcl_W-all-struct-inv-def elim:\ decideE)
 done
lemma cdcl_W-cp-measure-decreasing:
 fixes S :: 'st
 assumes cdcl_W-cp S S' and cdcl_W-all-struct-inv S
 shows (cdcl_W-measure S', cdcl_W-measure S) \in lexn\ less-than 3
 using assms
proof induction
 case conflict'
 then show ?case using conflict-measure-decreasing by blast
next
 case propagate'
 then show ?case using propagate-measure-decreasing by blast
lemma tranclp-cdcl_W-cp-measure-decreasing:
 fixes S :: 'st
 assumes cdcl_W-cp^{++} S S' and cdcl_W-all-struct-inv S
 shows (cdcl_W-measure S', cdcl_W-measure S) \in lexn\ less-than 3
 using assms
proof induction
 case base
 then show ?case using cdcl_W-cp-measure-decreasing by blast
next
 case (step T U) note st = this(1) and step = this(2) and IH = this(3) and inv = this(4)
 then have (cdcl_W-measure T, cdcl_W-measure S) \in lexn less-than 3 by blast
```

```
moreover have (cdcl_W-measure U, cdcl_W-measure T) \in lexn\ less-than 3
   using cdcl_W-cp-measure-decreasing [OF step] rtranclp-cdcl_W-all-struct-inv-inv inv
   tranclp-cdcl_W-cp-tranclp-cdcl_W[OF\ st]
   unfolding trans-def rtranclp-unfold
   by blast
 ultimately show ?case using lexn-transI[OF trans-less-than] unfolding trans-def by blast
qed
lemma cdcl_W-stgy-step-decreasing:
 fixes R S T :: 'st
 assumes cdcl_W-stgy S T and
 cdcl_W-stgy^{**} R S
 trail R = [] and
 cdcl_W-all-struct-inv R
 shows (cdcl_W-measure T, cdcl_W-measure S) \in lexn\ less-than 3
proof -
 have cdcl_W-all-struct-inv S
   using assms
   by (metis rtranclp-unfold rtranclp-cdcl<sub>W</sub>-all-struct-inv-inv tranclp-cdcl<sub>W</sub>-stgy-tranclp-cdcl<sub>W</sub>)
 with assms show ?thesis
   proof induction
     case (conflict' V) note cp = this(1) and inv = this(5)
     show ?case
       using tranclp-cdcl<sub>W</sub>-cp-measure-decreasing[OF HOL.conjunct1[OF cp[unfolded full1-def]] inv
   next
     case (other' T U) note st = this(1) and H = this(4,5,6,7) and cp = this(3)
     have cdcl_W-all-struct-inv T
      using cdcl_W-all-struct-inv-inv other other'.hyps(1) other'.prems(4) by blast
     from tranclp-cdcl_W-cp-measure-decreasing [OF - this]
     have le-or-eq: (cdcl_W-measure U, cdcl_W-measure T) \in lexn\ less-than\ 3\ \lor
      cdcl_W-measure U = cdcl_W-measure T
      using cp unfolding full-def rtranclp-unfold by blast
     moreover
      have cdcl_W-M-level-inv S
        using cdcl_W-all-struct-inv-def other'.prems(4) by blast
      with st have (cdcl_W-measure T, cdcl_W-measure S) \in lexn\ less-than 3
      proof (induction rule: cdcl_W-o-induct)
        case (decide\ T)
        then show ?case using decide-measure-decreasing H decide.intros[OF decide.hyps] by blast
      next
        case (backtrack L D K i M1 M2 T) note conf = this(1) and decomp = this(3) and
          undef = this(8) and T = this(9)
        have bt: backtrack S T
          apply (rule backtrack-rule)
          using backtrack.hyps by auto
        then have no-relearn: \forall T. conflicting S = Some T \longrightarrow T \notin \# learned-clss S
          using cdcl_W-stqy-no-relearned-clause of R S T H conf
          unfolding cdcl_W-all-struct-inv-def clauses-def by auto
        have inv: cdcl_W-all-struct-inv S
          using \langle cdcl_W - all - struct - inv S \rangle by blast
        show ?case
          apply (rule cdcl_W-measure-decreasing)
                using bt cdcl_W-bj.backtrack cdcl_W-o.bj other apply simp
               using bt T undef decomp inv unfolding cdcl_W-all-struct-inv-def
```

```
cdcl_W-M-level-inv-def apply auto[]
               using bt T undef decomp inv unfolding cdcl_W-all-struct-inv-def
                cdcl_W-M-level-inv-def apply auto[]
              using bt no-relearn apply auto[]
             using inv unfolding cdcl_W-all-struct-inv-def apply simp
            using inv unfolding cdcl_W-all-struct-inv-def cdcl_W-M-level-inv-def apply simp
           using inv unfolding cdcl_W-all-struct-inv-def apply simp
          using inv unfolding cdcl_W-all-struct-inv-def apply simp
          using inv unfolding cdcl_W-all-struct-inv-def by simp
      next
        case skip
        then show ?case by (auto simp: lexn3-conv)
      next
        case resolve
        then show ?case by (auto simp: lexn3-conv)
      qed
     ultimately show ?case
      by (metis (full-types) lexn-transI transD trans-less-than)
   qed
\mathbf{qed}
Roughly corresponds to theorem 2.9.15 page 86 of Weidenbach's book (using a different bound)
lemma tranclp-cdcl_W-stgy-decreasing:
 fixes R S T :: 'st
 assumes cdcl_W-stgy^{++} R S
 trail R = [] and
 cdcl_W-all-struct-inv R
 shows (cdcl_W-measure S, cdcl_W-measure R) \in lexn\ less-than 3
 using assms
 apply induction
  using cdcl_W-stgy-step-decreasing [of R - R] apply blast
 using cdcl_W-stgy-step-decreasing[of - - R] tranclp-into-rtranclp[of \ cdcl_W-stgy R]
 lexn-transI[OF trans-less-than, of 3] unfolding trans-def by blast
lemma tranclp-cdcl_W-stgy-S0-decreasing:
 fixes R S T :: 'st
 assumes
   pl: cdcl_W-stgy^{++} (init-state N) S and
   no-dup: distinct-mset-mset N
 shows (cdcl_W-measure S, cdcl_W-measure (init-state N)) \in lexn\ less-than 3
proof -
 have cdcl_W-all-struct-inv (init-state N)
   using no-dup unfolding cdcl_W-all-struct-inv-def by auto
 then show ?thesis using pl tranclp-cdcl_W-stgy-decreasing init-state-trail by blast
qed
lemma wf-tranclp-cdcl_W-stqy:
 wf \{(S::'st, init\text{-}state\ N)|
    S N. distinct\text{-}mset\text{-}mset N \wedge cdcl_W\text{-}stgy^{++} (init\text{-}state N) S
 apply (rule wf-wf-if-measure'-notation2[of lexn less-than 3 - - cdcl_W-measure])
  apply (simp add: wf wf-lexn)
 using tranclp-cdcl_W-stgy-S0-decreasing by blast
lemma cdcl_W-cp-wf-all-inv:
 wf \{(S', S). \ cdcl_W - all - struct - inv \ S \land cdcl_W - cp \ S \ S'\}
 (is wf ?R)
```

```
\mathbf{proof} \ (\mathit{rule} \ \mathit{wf-bounded-measure}[\mathit{of} \ \text{-}
     \lambda S. \ card \ (atms-of-mm \ (init-clss \ S))+1
     \lambda S.\ length\ (\mathit{trail}\ S)\ +\ (\mathit{if}\ \mathit{conflicting}\ S\ =\ \mathit{None}\ \mathit{then}\ 0\ \mathit{else}\ 1)],\ \mathit{goal-cases})
  case (1 S S')
  then have cdcl_W-all-struct-inv S and cdcl_W-cp S S' by auto
  moreover then have \mathit{cdcl}_W-all-struct-inv S'
     \mathbf{using} \ \ \mathit{cdcl}_W\text{-}\mathit{cp.simps} \ \ \mathit{cdcl}_W\text{-}\mathit{all-struct-inv-inv} \ \ \mathit{conflict} \ \ \mathit{cdcl}_W.\mathit{intros} \ \ \mathit{cdcl}_W\text{-}\mathit{all-struct-inv-inv}
     by blast+
  {\bf ultimately \ show} \ \textit{?case}
     by (auto simp:cdcl_W-cp.simps state-eq-def simp del: state-simp elim!: conflictE propagateE
       dest: length-model-le-vars-all-inv)
qed
\quad \text{end} \quad
\quad \mathbf{end} \quad
{\bf theory}\ DPLL\text{-}CDCL\text{-}W\text{-}Implementation
imports Partial-Annotated-Clausal-Logic CDCL-W-Level
begin
```

Chapter 3

Implementation of DPLL and CDCL

We then reuse all the theorems to go towards an implementation using 2-watched literals:

• CDCL_W_Abstract_State.thy defines a better-suited state: the operation operating on it are more constrained, allowing simpler proofs and less edge cases later.

3.1 Simple List-Based Implementation of the DPLL and CDCL

The idea of the list-based implementation is to test the stack: the theories about the calculi, adapting the theorems to a simple implementation and the code exportation. The implementation are very simple and simply iterate over-and-over on lists.

3.1.1 Common Rules

Propagation

```
The following theorem holds:
```

```
lemma lits-of-l-unfold[iff]: (\forall c \in set \ C. -c \in lits-of-l \ Ms) \longleftrightarrow Ms \models as \ CNot \ (mset \ C) unfolding true-annots-def Ball-def true-annot-def CNot-def by auto
```

The right-hand version is written at a high-level, but only the left-hand side is executable.

```
definition is-unit-clause :: 'a literal list \Rightarrow ('a, 'b) ann-lits \Rightarrow 'a literal option where is-unit-clause l M = (case List.filter (\lambda a. atm-of a \notin atm-of 'lits-of-l M) l of a \# [] \Rightarrow if M \models as CNot (mset l - \{\#a\#\}) then Some a else None |-\Rightarrow None)

definition is-unit-clause-code :: 'a literal list \Rightarrow ('a, 'b) ann-lits \Rightarrow 'a literal option where is-unit-clause-code l M = (case List.filter (\lambda a. atm-of a \notin atm-of 'lits-of-l M) l of a \# [] \Rightarrow if (\forall c \in set (remove1 a l). -c \in lits-of-l M) then Some a else None |-\Rightarrow None)
```

```
lemma is-unit-clause-is-unit-clause-code [code]: is-unit-clause l\ M= is-unit-clause-code l\ M
```

```
proof -
  have 1: \bigwedge a. (\forall c \in set \ (remove1 \ a \ l). - c \in lits of - l \ M) \longleftrightarrow M \models as \ CNot \ (mset \ l - \{\#a\#\})
    using lits-of-l-unfold[of remove1 - l, of - M] by simp
  then show ?thesis
    unfolding is-unit-clause-code-def is-unit-clause-def 1 by blast
qed
lemma is-unit-clause-some-undef:
 assumes is-unit-clause l M = Some a
 shows undefined-lit M a
proof -
  have (case [a \leftarrow l : atm\text{-}of \ a \notin atm\text{-}of \ `lits\text{-}of\text{-}l \ M] \ of \ [] \Rightarrow None
           [a] \Rightarrow if M \models as CNot (mset l - \{\#a\#\}) then Some a else None
           | a \# ab \# xa \Rightarrow Map.empty xa) = Some a
    using assms unfolding is-unit-clause-def.
  then have a \in set \ [a \leftarrow l \ . \ atm\text{-}of \ a \notin atm\text{-}of \ `its\text{-}of\text{-}l \ M]
    apply (cases [a \leftarrow l \ . \ atm\text{-}of \ a \notin atm\text{-}of \ `lits\text{-}of\text{-}l \ M])
      apply simp
    apply (rename-tac aa list; case-tac list) by (auto split: if-split-asm)
  then have atm\text{-}of \ a \notin atm\text{-}of ' lits\text{-}of\text{-}l \ M by auto
  then show ?thesis
    by (simp add: Decided-Propagated-in-iff-in-lits-of-l
      atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set)
qed
lemma is-unit-clause-some-CNot: is-unit-clause l M = Some \ a \Longrightarrow M \models as \ CNot \ (mset \ l - \{\#a\#\})
 unfolding is-unit-clause-def
proof -
 assume (case [a \leftarrow l : atm\text{-}of \ a \notin atm\text{-}of \ `lits\text{-}of\text{-}l \ M] \ of \ [] \Rightarrow None
          |[a] \Rightarrow if M \models as CNot (mset l - \{\#a\#\}) then Some a else None
          | a \# ab \# xa \Rightarrow Map.empty xa) = Some a
  then show ?thesis
    apply (cases [a \leftarrow l \ . \ atm\text{-}of \ a \notin atm\text{-}of \ `lits\text{-}of\text{-}l \ M], \ simp)
      apply simp
    apply (rename-tac aa list, case-tac list) by (auto split: if-split-asm)
qed
lemma is-unit-clause-some-in: is-unit-clause l\ M=Some\ a\Longrightarrow a\in set\ l
  unfolding is-unit-clause-def
proof -
  assume (case [a \leftarrow l : atm\text{-}of \ a \notin atm\text{-}of \ `lits\text{-}of\text{-}l \ M] \ of \ [] \Rightarrow None
         | [a] \Rightarrow if M \models as CNot (mset l - \{\#a\#\}) then Some a else None
         \mid a \# ab \# xa \Rightarrow Map.empty xa) = Some a
  then show a \in set l
    by (cases [a \leftarrow l : atm\text{-}of \ a \notin atm\text{-}of \ `lits\text{-}of\text{-}l \ M])
       (fastforce dest: filter-eq-ConsD split: if-split-asm split: list.splits)+
qed
lemma is-unit-clause-Nil[simp]: is-unit-clause [] M = None
  unfolding is-unit-clause-def by auto
```

Unit propagation for all clauses

Finding the first clause to propagate

fun find-first-unit-clause :: 'a literal list list \Rightarrow ('a, 'b) ann-lits

```
\Rightarrow ('a literal \times 'a literal list) option where
find-first-unit-clause (a # l) M =
  (case is-unit-clause a M of
   None \Rightarrow find\text{-}first\text{-}unit\text{-}clause \ l \ M
  | Some L \Rightarrow Some (L, a) |
find-first-unit-clause [] - = None
\mathbf{lemma}\ \mathit{find-first-unit-clause-some} :
 find-first-unit-clause\ l\ M = Some\ (a,\ c)
  \implies c \in set \ l \land M \models as \ CNot \ (mset \ c - \{\#a\#\}) \land undefined-lit \ M \ a \land a \in set \ c
 apply (induction \ l)
   apply simp
  by (auto split: option.splits dest: is-unit-clause-some-in is-unit-clause-some-CNot
         is-unit-clause-some-undef)
lemma propagate-is-unit-clause-not-None:
 assumes dist: distinct c and
  M: M \models as \ CNot \ (mset \ c - \{\#a\#\}) \ and
  undef: undefined-lit M a and
  ac: a \in set c
  shows is-unit-clause c M \neq None
proof -
  have [a \leftarrow c : atm\text{-}of \ a \notin atm\text{-}of \ `its\text{-}of\text{-}l \ M] = [a]
   using assms
   proof (induction c)
      case Nil then show ?case by simp
   next
      case (Cons\ ac\ c)
      show ?case
       proof (cases \ a = ac)
          case True
          then show ?thesis using Cons
           by (auto simp del: lits-of-l-unfold
                 simp add: lits-of-l-unfold[symmetric] Decided-Propagated-in-iff-in-lits-of-l
                   atm\text{-}of\text{-}eq\text{-}atm\text{-}of\text{-}in\text{-}atm\text{-}of\text{-}set\text{-}iff\text{-}in\text{-}set\text{-}or\text{-}uminus\text{-}in\text{-}set)
       next
          then have T: mset \ c + \{\#ac\#\} - \{\#a\#\} = mset \ c - \{\#a\#\} + \{\#ac\#\}\}
           by (auto simp add: multiset-eq-iff)
          show ?thesis using False Cons
           by (auto simp add: T atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set)
       qed
   \mathbf{qed}
  then show ?thesis
   using M unfolding is-unit-clause-def by auto
qed
lemma find-first-unit-clause-none:
  distinct \ c \Longrightarrow c \in set \ l \Longrightarrow M \models as \ CNot \ (mset \ c - \{\#a\#\}) \Longrightarrow undefined-lit \ M \ a \Longrightarrow a \in set \ c
  \implies find-first-unit-clause l M \neq None
 by (induction \ l)
     (auto split: option.split simp add: propagate-is-unit-clause-not-None)
```

Decide

fun find-first-unused-var :: 'a literal list list \Rightarrow 'a literal set \Rightarrow 'a literal option where

```
find-first-unused-var (a # l) <math>M =
  (case List.find (\lambdalit. lit \notin M \wedge -lit \notin M) a of
    None \Rightarrow find\text{-}first\text{-}unused\text{-}var\ l\ M
  \mid Some \ a \Rightarrow Some \ a) \mid
find-first-unused-var [] - = None
lemma find-none[iff]:
  \textit{List.find } (\lambda \textit{lit. lit} \notin M \land -\textit{lit} \notin M) \ a = \textit{None} \longleftrightarrow \ a\textit{tm-of `set a} \subseteq \textit{atm-of `} M
 apply (induct a)
  using atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set
    by (force simp add: atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set)+
\textbf{lemma} \textit{ find-some: List.find } (\lambda \textit{lit. lit} \notin M \ \land \ -\textit{lit} \notin M) \ a = \textit{Some } b \Longrightarrow b \in \textit{set } a \ \land \ b \notin M \ \land \ -b \notin M
  unfolding find-Some-iff by (metis nth-mem)
lemma find-first-unused-var-None[iff]:
 find-first-unused-var\ l\ M=None\longleftrightarrow (\forall\ a\in set\ l.\ atm-of\ `set\ a\subseteq atm-of\ `\ M)
 by (induct\ l)
     (auto split: option.splits dest!: find-some
       simp\ add:\ image-subset-iff\ atm-of-in-atm-of-set-iff-in-set-or-uninus-in-set)
lemma find-first-unused-var-Some-not-all-incl:
  assumes find-first-unused-var\ l\ M = Some\ c
  shows \neg(\forall a \in set \ l. \ atm\text{-}of \ `set \ a \subseteq atm\text{-}of \ `M)
proof -
  have find-first-unused-var l M \neq None
    using assms by (cases find-first-unused-var l M) auto
 then show \neg(\forall a \in set \ l. \ atm\text{-}of \ `set \ a \subseteq atm\text{-}of \ `M) by auto
{\bf lemma}\ find\mbox{-} first\mbox{-} unused\mbox{-} var\mbox{-} Some:
 find\mbox{-}first\mbox{-}unused\mbox{-}var\ l\ M = Some\ a \Longrightarrow (\exists\ m\in set\ l.\ a\in set\ m\ \land\ a\notin M\ \land -a\notin M)
 by (induct l) (auto split: option.splits dest: find-some)
\mathbf{lemma}\ \mathit{find-first-unused-var-undefined}\colon
 find-first-unused-var l (lits-of-l Ms) = Some a \Longrightarrow undefined-lit Ms a
  using find-first-unused-var-Some[of l lits-of-l Ms a] Decided-Propagated-in-iff-in-lits-of-l
 \mathbf{by} blast
3.1.2
           CDCL specific functions
Level
fun maximum-level-code:: 'a literal list \Rightarrow ('a, 'b) ann-lits \Rightarrow nat
 where
maximum-level-code [] - = 0 |
maximum-level-code (L \# Ls) M = max (get-level M L) (maximum-level-code Ls M)
lemma maximum-level-code-eq-get-maximum-level[simp]:
  maximum-level-code D M = get-maximum-level M (mset D)
  by (induction D) (auto simp add: get-maximum-level-plus)
lemma [code]:
  fixes M :: ('a, 'b) \ ann-lits
  shows get-maximum-level M (mset D) = maximum-level-code D M
```

by simp

Backjumping

```
fun find-level-decomp where
find-level-decomp M \mid D \mid k = None \mid
find-level-decomp M (L \# Ls) D k =
   (case (get-level M L, maximum-level-code (D @ Ls) M) of
      (i,j) \Rightarrow if \ i = k \land j < i \ then \ Some \ (L,j) \ else \ find-level-decomp \ M \ Ls \ (L\#D) \ k
lemma find-level-decomp-some:
   assumes find-level-decomp M Ls D k = Some(L, j)
   shows L \in set\ Ls \land get\text{-}maximum\text{-}level\ M\ (mset\ (remove1\ L\ (Ls\ @\ D))) = j \land get\text{-}level\ M\ L = k
   using assms
proof (induction Ls arbitrary: D)
   case Nil
   then show ?case by simp
next
   case (Cons L' Ls) note IH = this(1) and H = this(2)
   \mathbf{def} \ find \equiv (if \ get\text{-}level \ M \ L' \neq k \lor \neg \ get\text{-}maximum\text{-}level \ M \ (mset \ D + mset \ Ls) < get\text{-}level \ M \ L'
       then find-level-decomp M Ls (L' \# D) k
       else Some (L', get\text{-}maximum\text{-}level\ M\ (mset\ D\ +\ mset\ Ls)))
   have a1: \bigwedge D. find-level-decomp M Ls D k = Some(L, j) \Longrightarrow
        L \in set \ Ls \land get\text{-}maximum\text{-}level \ M \ (mset \ Ls + mset \ D - \{\#L\#\}) = j \land get\text{-}level \ M \ L = k
      using IH by simp
   have a2: find = Some(L, j)
      using H unfolding find-def by (auto split: if-split-asm)
   { assume Some (L', get\text{-}maximum\text{-}level\ M\ (mset\ D+mset\ Ls)) \neq find}
      then have f3: L \in set\ Ls and get-maximum-level M (mset Ls + mset\ (L' \# D) - \{\#L\#\} = j
          using a1 IH a2 unfolding find-def by meson+
       moreover then have mset\ Ls + mset\ D - \{\#L\#\} + \{\#L'\#\} = \{\#L'\#\} + mset\ D + (mset\ Ls
- \{ \#L\# \} )
          by (auto simp: ac-simps multiset-eq-iff Suc-leI)
      ultimately have f4: get-maximum-level M (mset Ls + mset D - \{\#L\#\} + \{\#L'\#\}) = j
          by (metis add.commute diff-union-single-conv in-multiset-in-set mset.simps(2))
   } note f_4 = this
   have \{\#L'\#\} + (mset\ Ls + mset\ D) = mset\ Ls + (mset\ D + \{\#L'\#\})
          by (auto simp: ac-simps)
   then have
      L = L' \longrightarrow get-maximum-level M (mset Ls + mset D) = j \land get-level M L' = k and
      L \neq L' \longrightarrow L \in \textit{set Ls} \, \land \, \textit{get-maximum-level} \, \, \textit{M} \, \, (\textit{mset Ls} \, + \, \textit{mset} \, \, \textit{D} \, - \, \{\#L\#\} \, + \, \{\#L'\#\}) = j \, \land \, \, (\#L\#) + (\#L\#
          get-level M L = k
          using a2 a1 [of L' \# D] unfolding find-def apply (metis add-diff-cancel-left' mset.simps(2)
              option.inject prod.inject union-commute)
      using f_4 a2 a1 [of L' \# D] unfolding find-def by (metis option inject prod.inject)
   then show ?case by simp
qed
lemma find-level-decomp-none:
   assumes find-level-decomp M Ls E k = None and mset (L \# D) = mset (Ls @ E)
   shows \neg(L \in set \ Ls \land get\text{-}maximum\text{-}level \ M \ (mset \ D) < k \land k = get\text{-}level \ M \ L)
   using assms
proof (induction Ls arbitrary: E L D)
   case Nil
   then show ?case by simp
next
```

```
case (Cons\ L'\ Ls) note IH=this(1) and find-none = this(2) and LD=this(3)
 have mset\ D + \{\#L'\#\} = mset\ E + (mset\ Ls + \{\#L'\#\}) \implies mset\ D = mset\ E + mset\ Ls
   by (metis add-right-imp-eq union-assoc)
 then show ?case
   using find-none IH[of L' \# E L D] LD by (auto simp add: ac-simps split: if-split-asm)
qed
fun bt-cut where
bt\text{-}cut\ i\ (Propagated\ 	ext{--} + \#\ Ls) = bt\text{-}cut\ i\ Ls\ |
bt-cut i (Decided K \# Ls) = (if count-decided Ls = i then Some (Decided K \# Ls) else bt-cut i Ls)
bt-cut i [] = None
lemma bt-cut-some-decomp:
 assumes no-dup M and bt-cut i M = Some M'
 shows \exists K M2 M1. M = M2 @ M' \land M' = Decided K \# M1 \land qet-level M K = (i+1)
 using assms by (induction i M rule: bt-cut.induct) (auto split: if-split-asm)
lemma bt-cut-not-none:
 assumes no-dup M and M = M2 @ Decided K # M' and get-level M K = (i+1)
 shows bt-cut i M \neq None
 using assms by (induction M2 arbitrary: M rule: ann-lit-list-induct)
 (auto simp: atm-lit-of-set-lits-of-l)
\mathbf{lemma} \ \textit{get-all-ann-decomposition-ex}:
 \exists N. (Decided \ K \# M', N) \in set (get-all-ann-decomposition (M2@Decided \ K \# M'))
 apply (induction M2 rule: ann-lit-list-induct)
   apply auto[2]
 by (rename-tac L m xs, case-tac get-all-ann-decomposition (xs @ Decided K \# M'))
 auto
{f lemma}\ bt-cut-in-get-all-ann-decomposition:
 assumes no-dup M and bt-cut i M = Some M'
 shows \exists M2. (M', M2) \in set (get-all-ann-decomposition M)
 using bt-cut-some-decomp[OF assms] by (auto simp add: get-all-ann-decomposition-ex)
fun do-backtrack-step where
do-backtrack-step (M, N, U, k, Some D) =
 (case find-level-decomp MD [] k of
   None \Rightarrow (M, N, U, k, Some D)
 | Some (L, j) \Rightarrow
   (case bt-cut j M of
     Some (Decided - # Ls) \Rightarrow (Propagated L D # Ls, N, D # U, j, None)
    - \Rightarrow (M, N, U, k, Some D))
do-backtrack-step S = S
end
theory CDCL-W-Implementation
imports DPLL-CDCL-W-Implementation CDCL-W-Termination
begin
```

3.1.3 List-based CDCL Implementation

We here have a very simple implementation of Weidenbach's CDCL, based on the same principle as the implementation of DPLL: iterating over-and-over on lists. We do not use any fancy data-

structure (see the two-watched literals for a better suited data-structure).

The goal was (as for DPLL) to test the infrastructure and see if an important lemma was missing to prove the correctness and the termination of a simple implementation.

```
Types and Instantiation
notation image-mset (infixr '# 90)
type-synonym 'a cdcl_W-mark = 'a clause
type-synonym v \ cdcl_W-ann-lit = (v, v \ cdcl_W-mark) ann-lit
type-synonym 'v \ cdcl_W-ann-lits = ('v, 'v \ cdcl_W-mark) ann-lits
type-synonym 'v \ cdcl_W-state =
  'v\ cdcl_W-ann-lits \times\ 'v\ clauses \times\ 'v\ clauses \times\ nat \times\ 'v\ clause\ option
abbreviation raw-trail :: 'a \times 'b \times 'c \times 'd \times 'e \Rightarrow 'a where
raw-trail \equiv (\lambda(M, -), M)
abbreviation raw-cons-trail:: 'a \Rightarrow 'a \ list \times 'b \times 'c \times 'd \times 'e \Rightarrow 'a \ list \times 'b \times 'c \times 'd \times 'e
  where
raw-cons-trail \equiv (\lambda L (M, S), (L \# M, S))
abbreviation raw-tl-trail :: 'a list \times 'b \times 'c \times 'd \times 'e \Rightarrow 'a list \times 'b \times 'c \times 'd \times 'e where
raw-tl-trail \equiv (\lambda(M, S), (tl M, S))
abbreviation raw-init-clss :: 'a \times 'b \times 'c \times 'd \times 'e \Rightarrow 'b where
raw-init-clss \equiv \lambda(M, N, -). N
abbreviation raw-learned-clss :: 'a \times 'b \times 'c \times 'd \times 'e \Rightarrow 'c where
raw-learned-clss \equiv \lambda(M, N, U, -). U
abbreviation raw-backtrack-lvl :: 'a \times 'b \times 'c \times 'd \times 'e \Rightarrow 'd where
raw-backtrack-lvl \equiv \lambda(M, N, U, k, -). k
abbreviation raw-update-backtrack-lvl :: 'd \Rightarrow 'a \times 'b \times 'c \times 'd \times 'e \Rightarrow 'a \times 'b \times 'c \times 'd \times 'e
  where
raw-update-backtrack-lvl \equiv \lambda k \ (M, N, U, -, S). \ (M, N, U, k, S)
abbreviation raw-conflicting :: a \times b \times c \times d \times e \Rightarrow e where
raw-conflicting \equiv \lambda(M, N, U, k, D). D
abbreviation raw-update-conflicting:: 'e \Rightarrow 'a \times 'b \times 'c \times 'd \times 'e \Rightarrow 'a \times 'b \times 'c \times 'd \times 'e
 where
raw-update-conflicting \equiv \lambda S (M, N, U, k, -). (M, N, U, k, S)
abbreviation S0\text{-}cdcl_W N \equiv (([], N, \{\#\}, 0, None):: 'v \ cdcl_W\text{-}state)
abbreviation raw-add-learned-clss where
raw-add-learned-clss \equiv \lambda C (M, N, U, S). (M, N, {\#C\#} + U, S)
abbreviation raw-remove-cls where
raw-remove-cls \equiv \lambda C (M, N, U, S). (M, removeAll-mset C N, removeAll-mset C U, S)
```

lemma raw-trail-conv: raw-trail (M, N, U, k, D) = M and clauses-conv: raw-init-clss (M, N, U, k, D) = N and

```
raw-learned-clss-conv: raw-learned-clss (M, N, U, k, D) = U and
  raw-conflicting-conv: raw-conflicting (M, N, U, k, D) = D and
  raw-backtrack-lvl-conv: raw-backtrack-lvl (M, N, U, k, D) = k
 by auto
lemma state-conv:
 S = (raw\text{-}trail\ S,\ raw\text{-}init\text{-}clss\ S,\ raw\text{-}learned\text{-}clss\ S,\ raw\text{-}backtrack\text{-}lvl\ S,\ raw\text{-}conflicting\ S)
 by (cases S) auto
interpretation state_W
  raw-trail raw-init-clss raw-learned-clss raw-backtrack-lvl raw-conflicting
 \lambda L (M, S). (L \# M, S)
 \lambda(M, S). (tl M, S)
 \lambda C (M, N, U, S). (M, N, \{\#C\#\} + U, S)
 \lambda C (M, N, U, S). (M, removeAll-mset C N, removeAll-mset C U, S)
 \lambda(k::nat) \ (M, N, U, -, D). \ (M, N, U, k, D)
 \lambda D (M, N, U, k, -). (M, N, U, k, D)
 \lambda N. ([], N, \{\#\}, \theta, None)
 by unfold-locales auto
interpretation conflict-driven-clause-learning w raw-trail raw-init-clss raw-learned-clss raw-backtrack-lul
raw-conflicting
 \lambda L (M, S). (L \# M, S)
 \lambda(M, S). (tl M, S)
 \lambda C (M, N, U, S). (M, N, \{\#C\#\} + U, S)
 \lambda C (M, N, U, S). (M, removeAll-mset C N, removeAll-mset C U, S)
 \lambda(k::nat) \ (M,\ N,\ U,\ -,\ D).\ (M,\ N,\ U,\ k,\ D)
 \lambda D \ (M, N, U, k, -). \ (M, N, U, k, D)
 \lambda N. ([], N, \{\#\}, \theta, None)
 by unfold-locales auto
declare clauses-def[simp]
lemma cdcl_W-state-eq-equality[iff]: state-eq S T \longleftrightarrow S = T
 unfolding state-eq-def by (cases S, cases T) auto
declare state-simp[simp del]
lemma reduce-trail-to-empty-trail[simp]:
  reduce-trail-to F([], aa, ab, ac, b) = ([], aa, ab, ac, b)
 using reduce-trail-to.simps by auto
lemma raw-trail-reduce-trail-to-length-le:
 assumes length F > length (raw-trail S)
 shows raw-trail (reduce-trail-to F(S) = []
 using assms trail-reduce-trail-to-length-le [of SF]
 by (cases S, cases reduce-trail-to F S) auto
lemma reduce-trail-to:
  reduce-trail-to F S =
   ((if \ length \ (raw-trail \ S) \ge length \ F
   then drop (length (raw-trail S) – length F) (raw-trail S)
   else []), raw-init-clss S, raw-learned-clss S, raw-backtrack-lvl S, raw-conflicting S)
   (is ?S = -)
proof (induction F S rule: reduce-trail-to.induct)
 case (1 F S) note IH = this
```

```
show ?case
   \mathbf{proof} (cases raw-trail S)
    case Nil
    then show ?thesis using IH by (cases S) auto
    case (Cons\ L\ M)
    then show ?thesis
      apply (cases Suc (length M) > length F)
       prefer 2 using IH reduce-trail-to-length-ne[of S F] apply (cases S) apply auto[]
      apply (subgoal-tac Suc (length M) – length F = Suc (length M – length F))
      using reduce-trail-to-length-ne [of SF] IH by (cases S) auto
   qed
qed
```

3.1.4CDCL Implementation

Definition of the rules

```
Types lemma true-raw-init-clss-remdups[simp]:
 I \models s \ (mset \circ remdups) \ `N \longleftrightarrow I \models s \ mset \ `N'
 by (simp add: true-clss-def)
lemma satisfiable-mset-remdups[simp]:
  satisfiable \ ((mset \circ remdups) \ `N) \longleftrightarrow satisfiable \ (mset \ `N)
\mathbf{unfolding} \ \mathit{satisfiable\text{-}carac}[\mathit{symmetric}] \ \mathbf{by} \ \mathit{simp}
type-synonym 'v cdcl_W-state-inv-st = ('v, 'v literal list) ann-lit list \times
  'v literal list list \times 'v literal list list \times nat \times 'v literal list option
We need some functions to convert between our abstract state v cdcl_W-state and the concrete
state 'v \ cdcl_W-state-inv-st.
fun convert :: ('a, 'c \ list) \ ann-lit \Rightarrow ('a, 'c \ multiset) \ ann-lit \ \ \mathbf{where}
convert (Propagated \ L \ C) = Propagated \ L \ (mset \ C) \mid
convert (Decided K) = Decided K
abbreviation convertC :: 'a \ list \ option \Rightarrow 'a \ multiset \ option \ \ \mathbf{where}
convertC \equiv map\text{-}option \ mset
lemma convert-Propagated[elim!]:
  convert z = Propagated \ L \ C \Longrightarrow (\exists \ C'. \ z = Propagated \ L \ C' \land C = mset \ C')
 by (cases z) auto
lemma is-decided-convert[simp]: is-decided (convert x) = is-decided x
  by (cases \ x) auto
lemma get-level-map-convert[simp]:
  get-level (map\ convert\ M)\ x = get-level M\ x
 by (induction M rule: ann-lit-list-induct) (auto simp: comp-def)
lemma get-maximum-level-map-convert[simp]:
  get-maximum-level (map convert M) D = get-maximum-level M D
  by (induction D)
    (auto simp add: get-maximum-level-plus)
```

Conversion function

```
fun toS :: 'v \ cdcl_W-state-inv-st \Rightarrow 'v \ cdcl_W-state where
toS(M, N, U, k, C) = (map\ convert\ M,\ mset\ (map\ mset\ N),\ mset\ (map\ mset\ U),\ k,\ convert\ C)
Definition an abstract type
typedef 'v \ cdcl_W-state-inv = \{S:: v \ cdcl_W-state-inv-st. cdcl_W-all-struct-inv \ (toS \ S)\}
 morphisms rough-state-of state-of
 show ([],[], [], \theta, None) \in \{S. \ cdcl_W - all - struct - inv \ (toS\ S)\}
   by (auto simp add: cdcl_W-all-struct-inv-def)
qed
instantiation cdcl_W-state-inv :: (type) equal
begin
definition equal-cdcl<sub>W</sub>-state-inv :: 'v cdcl<sub>W</sub>-state-inv \Rightarrow 'v cdcl<sub>W</sub>-state-inv \Rightarrow bool where
equal-cdcl_W-state-inv S S' = (rough-state-of S = rough-state-of S')
 by standard (simp add: rough-state-of-inject equal-cdcl<sub>W</sub>-state-inv-def)
end
lemma lits-of-map-convert[simp]: lits-of-l (map\ convert\ M) = lits-of-l M
 by (induction M rule: ann-lit-list-induct) simp-all
lemma atm-lit-of-convert[simp]:
  lit-of\ (convert\ x) = lit-of\ x
 by (cases x) auto
lemma undefined-lit-map-convert[iff]:
  undefined-lit (map\ convert\ M)\ L \longleftrightarrow undefined-lit M\ L
 by (auto simp add: defined-lit-map image-image)
lemma true-annot-map-convert[simp]: map convert M \models a N \longleftrightarrow M \models a N
 by (simp-all add: true-annot-def image-image lits-of-def)
lemma true-annots-map-convert[simp]: map convert M \models as N \longleftrightarrow M \models as N
 unfolding true-annots-def by auto
lemmas propagateE
lemma find-first-unit-clause-some-is-propagate:
 assumes H: find-first-unit-clause (N @ U) <math>M = Some (L, C)
 shows propagate (toS (M, N, U, k, None)) (toS (Propagated L C # M, N, U, k, None))
 using assms
 by (auto dest!: find-first-unit-clause-some simp add: propagate.simps
   intro!: exI[of - mset C - \{\#L\#\}])
The Transitions
Propagate definition do-propagate-step where
do-propagate-step S =
 (case S of
   (M, N, U, k, None) \Rightarrow
     (case find-first-unit-clause (N @ U) M of
       Some (L, C) \Rightarrow (Propagated \ L \ C \# M, N, U, k, None)
     | None \Rightarrow (M, N, U, k, None) \rangle
 \mid S \Rightarrow S
```

lemma do-propgate-step:

```
do\text{-}propagate\text{-}step\ S \neq S \Longrightarrow propagate\ (toS\ S)\ (toS\ (do\text{-}propagate\text{-}step\ S))
 apply (cases S, cases raw-conflicting S)
  {f using}\ find-first-unit-clause-some-is-propagate [of\ raw-init-clss\ S\ raw-learned-clss\ S\ raw-trail\ S --
   raw-backtrack-lvl S
 by (auto simp add: do-propagate-step-def split: option.splits)
\mathbf{lemma}\ do\text{-}propagate\text{-}step\text{-}option[simp]:
  raw-conflicting S \neq None \implies do-propagate-step S = S
 unfolding do-propagate-step-def by (cases S, cases raw-conflicting S) auto
lemma do-propagate-step-no-step:
 assumes dist: \forall c \in set \ (raw\text{-}init\text{-}clss \ S \ @ \ raw\text{-}learned\text{-}clss \ S). distinct c and
 prop-step: do-propagate-step S = S
 shows no-step propagate (toS S)
proof (standard, standard)
 \mathbf{fix} \ T
 assume propagate (toS S) T
 then obtain M N U k C L E where
   toSS: toS S = (M, N, U, k, None) and
   LE: L \in \# E \text{ and }
    T: T = (Propagated \ L \ E \ \# \ M, \ N, \ U, \ k, \ None) and
   MC: M \models as CNot C  and
   undef: undefined-lit M L and
   CL: C + \{\#L\#\} \in \#N + U
   apply - by (cases \ to S \ S) (auto \ elim!: propagate E)
 let ?M = raw\text{-}trail\ S
 let ?N = raw\text{-}init\text{-}clss S
 let ?U = raw\text{-}learned\text{-}clss S
 let ?k = raw\text{-}backtrack\text{-}lvl S
 let ?D = None
 have S: S = (?M, ?N, ?U, ?k, ?D)
   using toSS by (cases S, cases raw-conflicting S) simp-all
 have S: toS S = toS (?M, ?N, ?U, ?k, ?D)
   unfolding S[symmetric] by simp
 have
   M: M = map \ convert \ ?M \ and
   N: N = mset \ (map \ mset \ ?N) and
    U: U = mset (map mset ?U)
   using toSS[unfolded S] by auto
 obtain D where
   DCL: mset\ D = C + \{\#L\#\} and
   D: D \in set \ (?N @ ?U)
   using CL unfolding N U by auto
  obtain C'L' where
   set D: set D = set (L' \# C') and
   C': mset C' = C and
   L: L = L'
   using DCL by (metis\ ex-mset\ mset.simps(2)\ mset-eq-setD)
 have find-first-unit-clause (?N @ ?U) ?M \neq None
   \mathbf{apply} \ (\mathit{rule} \ \mathit{dist} \ \mathit{find-first-unit-clause-none}[\mathit{of} \ \mathit{D} \ ?N \ @ \ ?U \ ?M \ \mathit{L}, \ \mathit{OF} \ - \ \mathit{D} \ ])
      using D \ assms(1) apply auto[1]
     using MC setD DCL M MC unfolding C'[symmetric] apply auto[1]
    using M undef apply auto[1]
   unfolding setD L by auto
```

```
then show False using prop-step S unfolding do-propagate-step-def by (cases\ S) auto \mathbf{qed}
```

```
Conflict fun find-conflict where
find\text{-}conflict\ M\ [] = None\ []
find-conflict M (N \# Ns) = (if (\forall c \in set \ N. -c \in lits-of-l \ M) then Some \ N else find-conflict \ M \ Ns)
lemma find-conflict-Some:
 find\text{-}conflict\ M\ Ns = Some\ N \Longrightarrow N \in set\ Ns \land M \models as\ CNot\ (mset\ N)
 by (induction Ns rule: find-conflict.induct)
     (auto split: if-split-asm)
lemma find-conflict-None:
 find\text{-}conflict\ M\ Ns = None \longleftrightarrow (\forall\ N \in set\ Ns.\ \neg M \models as\ CNot\ (mset\ N))
 by (induction Ns) auto
lemma find-conflict-None-no-confl:
  find\text{-}conflict\ M\ (N@U) = None \longleftrightarrow no\text{-}step\ conflict\ (toS\ (M,\ N,\ U,\ k,\ None))
  by (auto simp add: find-conflict-None conflict.simps)
definition do-conflict-step where
do-conflict-step S =
  (case S of
    (M, N, U, k, None) \Rightarrow
      (case find-conflict M (N @ U) of
        Some a \Rightarrow (M, N, U, k, Some a)
      | None \Rightarrow (M, N, U, k, None))
  \mid S \Rightarrow S \rangle
lemma do-conflict-step:
  do\text{-}conflict\text{-}step\ S \neq S \Longrightarrow conflict\ (toS\ S)\ (toS\ (do\text{-}conflict\text{-}step\ S))
  apply (cases S, cases raw-conflicting S)
  {\bf unfolding} \ conflict.simps \ do\text{-}conflict\text{-}step\text{-}def
 by (auto dest!:find-conflict-Some split: option.splits)
\mathbf{lemma}\ do\text{-}conflict\text{-}step\text{-}no\text{-}step:
  do\text{-}conflict\text{-}step\ S = S \Longrightarrow no\text{-}step\ conflict\ (toS\ S)
  apply (cases S, cases raw-conflicting S)
  unfolding do-conflict-step-def
  using find-conflict-None-no-confl[of raw-trail S raw-init-clss S raw-learned-clss S
      raw-backtrack-lvl S
  by (auto split: option.splits elim!: conflictE)
lemma do\text{-}conflict\text{-}step\text{-}option[simp]:
  raw-conflicting S \neq None \implies do-conflict-step S = S
  unfolding do-conflict-step-def by (cases S, cases raw-conflicting S) auto
lemma do\text{-}conflict\text{-}step\text{-}raw\text{-}conflicting[dest]:
  do\text{-}conflict\text{-}step\ S \neq S \Longrightarrow raw\text{-}conflicting\ (do\text{-}conflict\text{-}step\ S) \neq None
  unfolding do-conflict-step-def by (cases S, cases raw-conflicting S) (auto split: option.splits)
definition do-cp-step where
do\text{-}cp\text{-}step\ S =
  (do-propagate-step\ o\ do-conflict-step)\ S
```

lemma cp-step-is- $cdcl_W$ -cp:

```
assumes H: do\text{-}cp\text{-}step \ S \neq S
 shows cdcl_W-cp (toS S) (toS (do-cp-step S))
proof -
 show ?thesis
 proof (cases do-conflict-step S \neq S)
   case True
   then show ?thesis
     by (auto simp add: do-conflict-step do-conflict-step-raw-conflicting do-cp-step-def)
 next
   case False
   then have confl[simp]: do-conflict-step S = S by simp
   show ?thesis
     proof (cases do-propagate-step S = S)
       {\bf case}\ {\it True}
       then show ?thesis
       using H by (simp add: do-cp-step-def)
     next
       case False
       let ?S = toS S
       let ?T = toS (do\text{-}propagate\text{-}step S)
       let ?U = toS (do\text{-}conflict\text{-}step (do\text{-}propagate\text{-}step S))
       have propa: propagate (toS S) ?T using False do-propagate-step by blast
       moreover have ns: no-step conflict (toSS) using confl do-conflict-step-no-step by blast
       ultimately show ?thesis
         using cdcl_W-cp.intros(2)[of ?S ?T] confl unfolding do-cp-step-def by auto
     qed
 qed
qed
lemma do-cp-step-eq-no-prop-no-confl:
  do\text{-}cp\text{-}step\ S = S \Longrightarrow do\text{-}conflict\text{-}step\ S = S \land do\text{-}propagate\text{-}step\ S = S
 by (cases S, cases raw-conflicting S)
   (auto simp add: do-conflict-step-def do-propagate-step-def do-cp-step-def split: option.splits)
\mathbf{lemma} \ \textit{no-cdcl}_W\textit{-cp-iff-no-propagate-no-conflict}:
  no\text{-}step\ cdcl_W\text{-}cp\ S\longleftrightarrow no\text{-}step\ propagate\ S\land no\text{-}step\ conflict\ S
 by (auto simp: cdcl_W-cp.simps)
lemma do-cp-step-eq-no-step:
 assumes H: do-cp-step S = S and \forall c \in set (raw-init-clss S @ raw-learned-clss S). distinct c
 shows no-step cdcl_W-cp (toS\ S)
  unfolding no\text{-}cdcl_W\text{-}cp\text{-}iff\text{-}no\text{-}propagate\text{-}no\text{-}conflict
 using assms apply (cases S, cases raw-conflicting S)
  using do-propagate-step-no-step[of S]
 by (auto dest!: do-cp-step-eq-no-prop-no-confl[simplified] do-conflict-step-no-step
   split: option.splits)
lemma cdcl_W-cp-cdcl_W-st: cdcl_W-cp S S' \Longrightarrow cdcl_W^{**} S S'
 by (simp add: cdcl_W-cp-tranclp-cdcl<sub>W</sub> tranclp-into-rtranclp)
lemma cdcl_W-all-struct-inv-rough-state[simp]: cdcl_W-all-struct-inv (toS (rough-state-of S))
  using rough-state-of by auto
lemma [simp]: cdcl_W-all-struct-inv (toS\ S) \Longrightarrow rough-state-of (state-of S) = S
 by (simp add: state-of-inverse)
```

```
lemma rough-state-of-state-of-do-cp-step[<math>simp]:
  rough-state-of (state-of (do-cp-step (rough-state-of S))) = do-cp-step (rough-state-of S)
proof -
 have cdcl_W-all-struct-inv (toS (do-cp-step (rough-state-of S)))
   apply (cases\ do\ cp\ step\ (rough\ state\ of\ S) = (rough\ state\ of\ S))
     apply simp
   using cp-step-is-cdcl_W-cp[of\ rough-state-of\ S]\ cdcl_W-all-struct-inv-rough-state[of\ S]
   cdcl_W-cp-cdcl_W-st rtranclp-cdcl_W-all-struct-inv-inv by blast
 then show ?thesis by auto
qed
Skip fun do-skip-step :: 'v cdcl_W-state-inv-st \Rightarrow 'v cdcl_W-state-inv-st where
do-skip-step (Propagated L C \# Ls,N,U,k, Some D) =
  (if -L \notin set \ D \land D \neq []
  then (Ls, N, U, k, Some D)
  else (Propagated L C \#Ls, N, U, k, Some D))
do-skip-step S = S
lemma do-skip-step:
  do-skip-step S \neq S \Longrightarrow skip (toS S) (toS (do-skip-step S))
 apply (induction S rule: do-skip-step.induct)
 by (auto simp add: skip.simps)
lemma do-skip-step-no:
  do\text{-}skip\text{-}step\ S = S \Longrightarrow no\text{-}step\ skip\ (toS\ S)
 by (induction S rule: do-skip-step.induct)
    (auto simp add: other split: if-split-asm elim: skipE)
lemma do-skip-step-raw-trail-is-None[iff]:
  do-skip-step S = (a, b, c, d, None) \longleftrightarrow S = (a, b, c, d, None)
 by (cases S rule: do-skip-step.cases) auto
Resolve fun maximum-level-code: 'a literal list \Rightarrow ('a, 'a literal list) ann-lit list \Rightarrow nat
  where
maximum-level-code [] - = 0 |
maximum-level-code (L \# Ls) M = max (get-level M L) (maximum-level-code Ls M)
lemma maximum-level-code-eq-get-maximum-level[code, simp]:
  maximum-level-code D M = get-maximum-level M (mset D)
 by (induction D) (auto simp add: get-maximum-level-plus)
fun do-resolve-step :: 'v cdcl_W-state-inv-st \Rightarrow 'v cdcl_W-state-inv-st where
do-resolve-step (Propagated L C \# Ls, N, U, k, Some D) =
  (if -L \in set \ D \land maximum-level-code \ (remove1 \ (-L) \ D) \ (Propagated \ L \ C \ \# \ Ls) = k
 then (Ls, N, U, k, Some (remdups (remove1 L C @ remove1 <math>(-L) D)))
  else (Propagated L C \# Ls, N, U, k, Some D))
\textit{do-resolve-step}\ S = S
lemma do-resolve-step:
  cdcl_W-all-struct-inv (toS S) \Longrightarrow do-resolve-step S \neq S
  \implies resolve (toS S) (toS (do-resolve-step S))
proof (induction S rule: do-resolve-step.induct)
 case (1 L C M N U k D)
 then have
   -L \in set D and
```

```
M: maximum-level-code (remove1 (-L) D) (Propagated L C \# M) = k
   by (cases mset D - \{\#-L\#\} = \{\#\},\
      auto dest!: get-maximum-level-exists-lit-of-max-level[of - Propagated L C \# M]
      split: if-split-asm)+
 have every-mark-is-a-conflict (toS (Propagated L C \# M, N, U, k, Some D))
   using 1(1) unfolding cdcl_W-all-struct-inv-def cdcl_W-conflicting-def by fast
 then have L \in set \ C by fastforce
 then obtain C' where C: mset\ C = C' + \{\#L\#\}
   by (metis add.commute in-multiset-in-set insert-DiffM)
 obtain D' where D: mset D = D' + \{\#-L\#\}
   using \langle -L \in set D \rangle by (metis add.commute in-multiset-in-set insert-DiffM)
 have D'L: D' + \{\# - L\#\} - \{\# - L\#\} = D' by (auto simp add: multiset-eq-iff)
 have CL: mset\ C - \{\#L\#\} + \{\#L\#\} = mset\ C\ using\ (L \in set\ C)\ by\ (auto\ simp\ add:\ multiset-eq-iff)
 have get-maximum-level (Propagated L (C' + \{\#L\#\}) # map convert M) D' = k
   using M[simplified] unfolding maximum-level-code-eq-get-maximum-level C[symmetric] CL
   by (metis\ D\ D'L\ convert.simps(1)\ get-maximum-level-map-convert\ list.simps(9))
 then have
   resolve
      (map\ convert\ (Propagated\ L\ C\ \#\ M),\ mset\ '\#\ mset\ N,\ mset\ '\#\ mset\ U,\ k,\ Some\ (mset\ D))
      (map convert M, mset '\# mset N, mset '\# mset U, k,
       Some (((mset\ D - \{\#-L\#\})\ \#\cup\ (mset\ C - \{\#L\#\}))))
   unfolding resolve.simps
     by (simp \ add: \ C \ D)
 moreover have
   (map convert (Propagated L C # M), mset '# mset N, mset '# mset U, k, Some (mset D))
    = toS (Propagated L C \# M, N, U, k, Some D)
   by (auto simp: mset-map)
 moreover
   have distinct-mset (mset C) and distinct-mset (mset D)
     using \langle cdcl_W - all - struct - inv \ (toS \ (Propagated \ L \ C \ \# \ M, \ N, \ U, \ k, \ Some \ D) \rangle
     unfolding cdcl_W-all-struct-inv-def distinct-cdcl_W-state-def
   then have (mset\ C - \{\#L\#\})\ \#\cup\ (mset\ D - \{\#-L\#\}) =
     remdups-mset \ (mset \ C - \{\#L\#\} + (mset \ D - \{\#-L\#\}))
     by (auto simp: distinct-mset-rempdups-union-mset)
   then have (map convert M, mset '# mset N, mset '# mset U, k,
   Some ((mset \ D - \{\#-L\#\}) \ \# \cup (mset \ C - \{\#L\#\})))
   = toS (do-resolve-step (Propagated L C \# M, N, U, k, Some D))
   using \langle -L \in set \ D \rangle \ M by (auto simp:ac-simps mset-map)
 ultimately show ?case
   by simp
qed auto
lemma do-resolve-step-no:
 do\text{-}resolve\text{-}step\ S = S \Longrightarrow no\text{-}step\ resolve\ (toS\ S)
 apply (cases S; cases hd (raw-trail S); cases raw-trail S; cases raw-conflicting S)
 by (auto
   elim!: resolveE split: if-split-asm
   dest!: union-single-eq-member
   simp del: in-multiset-in-set get-maximum-level-map-convert
   simp: get-maximum-level-map-convert[symmetric])
lemma rough-state-of-state-of-resolve[simp]:
 cdcl_W-all-struct-inv (toS S) \Longrightarrow rough-state-of (state-of (do-resolve-step S)) = do-resolve-step S
 apply (rule state-of-inverse)
```

```
apply (cases do-resolve-step S = S)
  apply simp
 by (blast dest: other resolve bj do-resolve-step cdcl<sub>W</sub>-all-struct-inv-inv)
lemma do-resolve-step-raw-trail-is-None[iff]:
 do-resolve-step S = (a, b, c, d, None) \longleftrightarrow S = (a, b, c, d, None)
 \mathbf{by}\ (cases\ S\ rule:\ do-resolve-step.cases)\ auto
Backjumping lemma get-all-ann-decomposition-map-convert:
 (get-all-ann-decomposition (map convert M)) =
   map \ (\lambda(a, b). \ (map \ convert \ a, \ map \ convert \ b)) \ (get-all-ann-decomposition \ M)
 apply (induction M rule: ann-lit-list-induct)
   apply simp
 by (rename-tac L xs, case-tac get-all-ann-decomposition xs; auto)+
lemma do-backtrack-step:
 assumes
   db: do-backtrack-step S \neq S and
   inv: cdcl_W-all-struct-inv (toS S)
 shows backtrack (toS S) (toS (do-backtrack-step S))
 \mathbf{proof} (cases S, cases raw-conflicting S, goal-cases)
   case (1 \ M \ N \ U \ k \ E)
   then show ?case using db by auto
 next
   case (2 M N U k E C) note S = this(1) and confl = this(2)
   have E: E = Some \ C using S confl by auto
   obtain L j where fd: find-level-decomp M C [] k = Some (L, j)
     using db unfolding S E by (cases C) (auto split: if-split-asm option.splits list.splits
      ann-lit.splits)
   have
     L \in set \ C \ {\bf and}
     j: get\text{-}maximum\text{-}level\ M\ (mset\ (remove1\ L\ C)) = j\ \mathbf{and}
     levL: get-level M L = k
     using find-level-decomp-some[OF fd] by auto
   obtain C' where C: mset\ C = mset\ C' + \{\#L\#\}
     using \langle L \in set \ C \rangle by (metis add.commute ex-mset in-multiset-in-set insert-DiffM)
   obtain M2 where M2: bt-cut j M = Some M2
     using db fd unfolding S E by (auto split: option.splits)
   have no-dup M and k: k = count-decided (filter is-decided M)
     using inv unfolding cdcl_W-all-struct-inv-def cdcl_W-M-level-inv-def S by (auto simp: comp-def)
   then obtain M1 K c where
     M1: M2 = Decided K \# M1 \text{ and } lev-K: get-level M K = j + 1 \text{ and }
     c: M = c @ M2
     using bt-cut-some-decomp[OF - M2] by (cases M2) auto
    have j \le k unfolding c j[symmetric] k
     by (metis (mono-tags, lifting) count-decided-qe-qet-maximum-level filter-cong filter-filter)
   have max-l-j: maximum-level-code C'M = j
     using db fd M2 C unfolding S E by (auto
        split: option.splits list.splits ann-lit.splits
        dest!: find-level-decomp-some)[1]
   have get-maximum-level M (mset C) \geq k
     using \langle L \in set \ C \rangle \ levL \ get\text{-maximum-level-ge-get-level} by (metis \ set\text{-mset-mset})
   moreover have get-maximum-level M (mset C) \leq k
     using get-maximum-level-exists-lit-of-max-level[of mset\ C\ M] inv
       cdcl_W-M-level-inv-get-level-le-backtrack-lvl[of toS S]
```

```
unfolding C \ cdcl_W \ -all \ -struct \ -inv \ -def \ S by (auto dest: sym[of \ get \ -evel \ -eve
      ultimately have get-maximum-level M (mset C) = k by auto
      obtain M2' where M2': (M2, M2') \in set (get-all-ann-decomposition M)
         using bt-cut-in-get-all-ann-decomposition[OF (no-dup M) M2] by metis
      have decomp:
         (Decided K \# (map \ convert \ M1),
         (map\ convert\ M2')) \in
         set (get-all-ann-decomposition (map convert M))
         using imageI[of - \lambda(a, b)]. (map convert a, map convert b), OF M2' j
         unfolding S E M1 by (simp add: get-all-ann-decomposition-map-convert)
      show ?case
         apply (rule backtrack-rule)
            using M2 fd confl \langle L \in set \ C \rangle j decomp levL \langle get-maximum-level M (mset \ C) = k \rangle
            unfolding S E M1 apply (auto simp: mset-map)[6]
         using M2' M2 fd j lev-K unfolding S E M1 CDCL-W-Implementation.state-eq-def
         by (auto simp: comp-def\ ac\text{-}simps)[2]
qed
\mathbf{lemma}\ \mathit{map-eq-list-length}\colon
   map \ f \ L = L' \Longrightarrow length \ L = length \ L'
  by auto
\mathbf{lemma}\ \mathit{map-mmset-of-mlit-eq-cons}:
   assumes map convert M = a @ c
   obtains a' c' where
       M = a' @ c' and
       a = map \ convert \ a' and
        c = map \ convert \ c'
   using that [of take (length a) M drop (length a) M]
   assms by (metis append-eq-conv-conj append-take-drop-id drop-map take-map)
lemma Decided-convert-iff:
   Decided K = convert za \longleftrightarrow za = Decided K
   by (cases za) auto
lemma do-backtrack-step-no:
   assumes
      db: do-backtrack-step S = S and
      inv: cdcl_W-all-struct-inv (toS S)
  shows no-step backtrack (toS S)
proof (rule ccontr, cases S, cases raw-conflicting S, goal-cases)
   case 1
   then show ?case using db by (auto split: option.splits elim: backtrackE)
   case (2 M N U k E C) note bt = this(1) and S = this(2) and confl = this(3)
   obtain K j M1 M2 L D where
      CE: raw-conflicting S = Some D and
      LD: L \in \# mset D and
      decomp: (Decided K \# M1, M2) \in set (get-all-ann-decomposition (raw-trail S)) and
      levL: get-level (raw-trail S) L = raw-backtrack-lvl S and
      k: get-level (raw-trail S) L = get-maximum-level (raw-trail S) (mset D) and
      j: get-maximum-level (raw-trail S) (remove1-mset L (mset D)) \equiv j and
      lev-K: get-level (raw-trail S) K = Suc j
      using bt apply clarsimp
      apply (elim backtrackE)
```

```
apply (cases S)
 by (auto simp add: get-all-ann-decomposition-map-convert reduce-trail-to
   Decided-convert-iff)
obtain c where c: raw-trail S = c @ M2 @ Decided K \# M1
 using decomp by blast
have k = count\text{-}decided (raw\text{-}trail S) and n\text{-}d: no\text{-}dup M
 using inv S unfolding cdcl_W-all-struct-inv-def cdcl_W-M-level-inv-def
 by (auto simp: comp-def)
then have k > j
 using j count-decided-ge-get-maximum-level [of raw-trail S remove1-mset L (mset D)]
 count-decided-ge-get-level[of K raw-trail S]
 unfolding k \ lev-K
unfolding c by (auto simp: get-all-ann-decomposition-map-convert simp del: count-decided-ge-get-level)
have [simp]: L \in set D
 using LD by auto
have CD: C = D
 using CE confl by auto
obtain D' where
 E: E = Some \ D \ \mathbf{and}
 DD': mset\ D = \{\#L\#\} + mset\ D'
 using that[of\ remove1\ L\ D]
 using S CE confl LD by (auto simp add: insert-DiffM)
have find-level-decomp MD [] k \neq None
 apply rule
 apply (drule find-level-decomp-none[of - - - L D'])
 using DD' \langle k > j \rangle mset-eq-set DS lev L unfolding k[symmetric] j[symmetric]
 by (auto simp: ac-simps)
then obtain L' j' where fd-some: find-level-decomp M D [] k = Some (L', j')
 by (cases find-level-decomp MD [] k) auto
have L': L' = L
 proof (rule ccontr)
   assume ¬ ?thesis
   then have L' \in \# mset (remove1 \ L \ D)
    by (metis fd-some find-level-decomp-some in-set-remove1 set-mset-mset)
   then have get-level M L' \leq get-maximum-level M (mset (remove1 L D))
    using get-maximum-level-ge-get-level by blast
   then show False using \langle k > j \rangle if find-level-decomp-some [OF fd-some] S DD' by auto
 ged
then have j': j' = j using find-level-decomp-some [OF fd-some] j S DD' by auto
obtain c' M1' where cM: M = c' @ Decided K # M1'
 apply (rule map-mmset-of-mlit-eq-cons of M map convert (c @ M2)
   map\ convert\ (Decided\ K\ \#\ M1)])
   using c S apply simp
 apply (rule map-mmset-of-mlit-eq-cons[of - map convert [Decided K] map convert M1])
  apply auto[]
 apply (rename-tac a b' aa b, case-tac aa)
  apply auto[]
 apply (rename-tac a b' aa b, case-tac aa)
 by auto
have btc-none: bt-cut j M \neq None
 apply (rule bt-cut-not-none[of M])
   using n-d cM S lev-K S apply blast+
 using lev-K S by auto
show ?case using db n-d unfolding S E
 by (auto split: option.splits list.splits ann-lit.splits
```

```
simp\ add: fd-some\ L'\ j'\ btc-none
     dest: bt-cut-some-decomp)
qed
lemma rough-state-of-state-of-backtrack[simp]:
 assumes inv: cdcl_W-all-struct-inv (toS S)
 shows rough-state-of (state-of (do-backtrack-step S))= do-backtrack-step S
proof (rule state-of-inverse)
 consider
   (step) backtrack (toS\ S) (toS\ (do-backtrack-step\ S))
    (0) do-backtrack-step S = S
   using do-backtrack-step inv by blast
  then show do-backtrack-step S \in \{S. \ cdcl_W - all - struct-inv \ (toS\ S)\}
   proof cases
     case \theta
     thus ?thesis using inv by simp
   next
     case step
     then show ?thesis
       using inv
       by (auto dest!: cdcl_W other cdcl_W-o.bj cdcl_W-bj.backtrack intro: cdcl_W-all-struct-inv-inv)
   qed
qed
Decide fun do-decide-step where
do\text{-}decide\text{-}step\ (M,\ N,\ U,\ k,\ None) =
  (case find-first-unused-var N (lits-of-l M) of
   None \Rightarrow (M, N, U, k, None)
  | Some L \Rightarrow (Decided L \# M, N, U, k+1, None)) |
do\text{-}decide\text{-}step\ S=S
lemma do-decide-step:
  do\text{-}decide\text{-}step \ S \neq S \Longrightarrow decide \ (toS \ S) \ (toS \ (do\text{-}decide\text{-}step \ S))
 apply (cases S, cases raw-conflicting S)
 apply (auto split: option.splits simp add: decide.simps
         dest: find-first-unused-var-undefined find-first-unused-var-Some
         intro: atms-of-atms-of-ms-mono)[1]
proof -
 fix a :: ('a, 'a \ literal \ list) \ ann-lit \ list \ and
       b :: 'a \ literal \ list \ list \ and \ c :: 'a \ literal \ list \ list \ and
       d :: nat  and e :: 'a  literal  list  option 
   fix a :: ('a, 'a literal list) ann-lit list and
       b :: 'a literal list list and c :: 'a literal list list and
       d:: nat \text{ and } x2:: 'a \text{ literal and } m:: 'a \text{ literal list}
   assume a1: m \in set b
   assume x2 \in set m
   then have f2: atm-of x2 \in atms-of (mset m)
     by simp
   have \bigwedge f. (f m::'a literal multiset) \in f 'set b
     using a1 by blast
   then have \bigwedge f. (atms-of\ (f\ m)::'a\ set) \subseteq atms-of-ms\ (f\ `set\ b)
    using atms-of-atms-of-ms-mono by blast
   then have \bigwedge n f. (n::'a) \in atms\text{-}of\text{-}ms \ (f \text{ '} set \ b) \lor n \notin atms\text{-}of \ (f \ m)
     by (meson\ contra-subset D)
```

```
then have atm\text{-}of \ x2 \in atms\text{-}of\text{-}ms \ (mset \ `set \ b)
     using f2 by blast
  } note H = this
   fix m :: 'a \ literal \ list \ and \ x2
   have m \in set \ b \Longrightarrow x2 \in set \ m \Longrightarrow x2 \notin lits \text{-} of \text{-} l \ a \Longrightarrow -x2 \notin lits \text{-} of \text{-} l \ a \Longrightarrow
     \exists aa \in set \ b. \ \neg \ atm\text{-}of \ `set \ aa \subseteq atm\text{-}of \ `lits\text{-}of\text{-}l \ a
     by (meson atm-of-in-atm-of-set-in-uminus contra-subsetD rev-image-eqI)
  } note H' = this
 assume do-decide-step S \neq S and
    S = (a, b, c, d, e) and
    raw-conflicting S = None
 then show decide\ (toS\ S)\ (toS\ (do-decide-step\ S))
   using HH' by (auto split: option.splits simp: decide.simps defined-lit-map lits-of-def
     image-image atm-of-eq-atm-of dest!: find-first-unused-var-Some)
qed
lemma do-decide-step-no:
  do\text{-}decide\text{-}step\ S = S \Longrightarrow no\text{-}step\ decide\ (toS\ S)
 apply (cases S, cases raw-conflicting S)
 apply (auto simp: atms-of-ms-mset-unfold Decided-Propagated-in-iff-in-lits-of-l lits-of-def
     dest!: atm-of-in-atm-of-set-in-uminus
     elim!: decideE
     split: option.splits)+
 using atm-of-eq-atm-of by blast+
lemma rough-state-of-do-decide-step[simp]:
  cdcl_W-all-struct-inv (toS S) \Longrightarrow rough-state-of (state-of (do-decide-step S)) = do-decide-step S
proof (subst state-of-inverse, goal-cases)
 case 1
 then show ?case
   by (cases do-decide-step S = S)
     (auto\ dest:\ do-decide-step\ decide\ other\ intro:\ cdcl_W\ -all-struct-inv-inv)
qed simp
lemma rough-state-of-state-of-do-skip-step[simp]:
  cdcl_W-all-struct-inv (toS S) \Longrightarrow rough-state-of (state-of (do-skip-step S)) = do-skip-step S
 apply (subst state-of-inverse, cases do-skip-step S = S)
  apply simp
 by (blast dest: other skip bj do-skip-step cdcl<sub>W</sub>-all-struct-inv-inv)+
Code generation
Type definition There are two invariants: one while applying conflict and propagate and one
for the other rules
declare rough-state-of-inverse[simp add]
definition Con where
  Con xs = state-of (if cdcl_W-all-struct-inv (toS (fst xs, snd xs)) then xs
  else ([], [], [], \theta, None))
lemma [code abstype]:
 Con\ (rough\text{-}state\text{-}of\ S) = S
 using rough-state-of [of S] unfolding Con-def by simp
```

```
definition do\text{-}cp\text{-}step' where
do\text{-}cp\text{-}step' S = state\text{-}of (do\text{-}cp\text{-}step (rough\text{-}state\text{-}of S))
typedef'v \ cdcl_W-state-inv-from-init-state =
  \{S:: v \ cdcl_W \ -state \ -inv \ -st. \ cdcl_W \ -all \ -struct \ -inv \ (toS\ S)\}
    \land cdcl_W \text{-}stgy^{**} (S0\text{-}cdcl_W (raw\text{-}init\text{-}clss (toS S))) (toS S) \}
  morphisms rough-state-from-init-state-of state-from-init-state-of
proof
  show ([],[], [], \theta, None) \in \{S. \ cdcl_W - all - struct - inv \ (toS\ S)\}
    \land cdcl_W \text{-}stgy^{**} (S0\text{-}cdcl_W (raw\text{-}init\text{-}clss (toS S))) (toS S)
    \mathbf{by}\ (\mathit{auto}\ \mathit{simp}\ \mathit{add}\colon \mathit{cdcl}_W\text{-}\mathit{all}\text{-}\mathit{struct}\text{-}\mathit{inv}\text{-}\mathit{def})
qed
instantiation cdcl_W-state-inv-from-init-state :: (type) equal
definition equal-cdcl<sub>W</sub>-state-inv-from-init-state :: 'v cdcl<sub>W</sub>-state-inv-from-init-state \Rightarrow
  v \ cdcl_W-state-inv-from-init-state \Rightarrow bool \ \mathbf{where}
 equal\text{-}cdcl_W\text{-}state\text{-}inv\text{-}from\text{-}init\text{-}state\ S\ S'\longleftrightarrow
   (rough-state-from-init-state-of\ S=rough-state-from-init-state-of\ S')
instance
  by standard (simp add: rough-state-from-init-state-of-inject
    equal-cdcl_W-state-inv-from-init-state-def)
end
definition ConI where
  ConI S = state-from-init-state-of (if cdcl_W-all-struct-inv (toS (fst S, snd S)))
    \land cdcl_W - stgy^{**} (S0 - cdcl_W (raw - init - clss (toS S))) (toS S) then S else ([], [], [], 0, None))
lemma [code abstype]:
  ConI (rough-state-from-init-state-of S) = S
  using rough-state-from-init-state-of [of S] unfolding ConI-def
  by (simp add: rough-state-from-init-state-of-inverse)
definition id\text{-}of\text{-}I\text{-}to:: v \ cdcl_W\text{-}state\text{-}inv\text{-}from\text{-}init\text{-}state} \Rightarrow v \ cdcl_W\text{-}state\text{-}inv \ \textbf{where}
id\text{-}of\text{-}I\text{-}to\ S = state\text{-}of\ (rough\text{-}state\text{-}from\text{-}init\text{-}state\text{-}of\ S)
lemma [code abstract]:
  rough-state-of (id-of-I-to S) = rough-state-from-init-state-of S
  unfolding id-of-I-to-def using rough-state-from-init-state-of [of S] by auto
Conflict and Propagate function do-full1-cp-step :: 'v cdcl_W-state-inv \Rightarrow 'v cdcl_W-state-inv
where
do-full1-cp-step S =
  (let S' = do\text{-}cp\text{-}step' S in
   if S = S' then S else do-full1-cp-step S'
by auto
termination
proof (relation \{(T', T). (rough\text{-state-of } T', rough\text{-state-of } T) \in \{(S', S).
  (toS\ S',\ toS\ S) \in \{(S',\ S).\ cdcl_W\ -all\ -struct\ -inv\ S\ \land\ cdcl_W\ -cp\ S\ S'\}\}\},\ goal\ -cases)
  case 1
  show ?case
    using wf-if-measure-f[OF wf-if-measure-f[OF cdcl_W-cp-wf-all-inv, of toS], of rough-state-of].
next
  case (2 S' S)
  then show ?case
```

```
unfolding do-cp-step'-def
   apply simp
   by (metis\ cp\text{-}step\text{-}is\text{-}cdcl_W\text{-}cp\ rough\text{-}state\text{-}of\text{-}inverse})
qed
lemma do-full1-cp-step-fix-point-of-do-full1-cp-step:
  do-cp-step(rough-state-of\ (do-full1-cp-step\ S)) = (rough-state-of\ (do-full1-cp-step\ S))
 by (rule do-full1-cp-step.induct[of \lambda S. do-cp-step(rough-state-of (do-full1-cp-step S))
      = (rough-state-of (do-full1-cp-step S))])
   (metis (full-types) do-full1-cp-step.elims rough-state-of-state-of-do-cp-step do-cp-step'-def)
lemma in-clauses-rough-state-of-is-distinct:
  c \in set \ (raw\text{-}init\text{-}clss \ (rough\text{-}state\text{-}of \ S) \ @ \ raw\text{-}learned\text{-}clss \ (rough\text{-}state\text{-}of \ S)) \implies distinct \ c
 apply (cases rough-state-of S)
 using rough-state-of [of S] by (auto simp add: distinct-mset-set-distinct cdcl_W-all-struct-inv-def
   distinct-cdcl_W-state-def)
lemma do-full1-cp-step-full:
 full\ cdcl_W-cp\ (toS\ (rough-state-of\ S))
   (toS (rough-state-of (do-full1-cp-step S)))
  unfolding full-def
proof (rule conjI, induction S rule: do-full1-cp-step.induct)
 case (1 S)
 then have f1:
     cdcl_W - cp^{**} (toS (do-cp-step (rough-state-of S))) (
       toS (rough-state-of (do-full1-cp-step (state-of (do-cp-step (rough-state-of S))))))
     \vee state-of (do-cp-step (rough-state-of S)) = S
   using rough-state-of-state-of-do-cp-step unfolding do-cp-step'-def by fastforce
 have f2: \land c. (if c = state-of (do-cp-step (rough-state-of c))
      then c else do-full1-cp-step (state-of (do-cp-step (rough-state-of c))))
    = do-full 1-cp-step c
   by (metis (full-types) do-cp-step'-def do-full1-cp-step.simps)
  have f3: \neg cdcl_W - cp \ (toS \ (rough-state-of \ S)) \ (toS \ (do-cp-step \ (rough-state-of \ S)))
   \vee state-of (do-cp-step (rough-state-of S)) = S
   \lor cdcl_W - cp^{++} (toS (rough-state-of S))
       (toS (rough-state-of (do-full1-cp-step (state-of (do-cp-step (rough-state-of S))))))
   using f1 by (meson rtranclp-into-tranclp2)
  { assume do-full1-cp-step S \neq S
   then have do-cp-step (rough-state-of S) = rough-state-of S
        \longrightarrow cdcl_W-cp** (toS (rough-state-of S)) (toS (rough-state-of (do-full1-cp-step S)))
     \vee do-cp-step (rough-state-of S) \neq rough-state-of S
       \land state-of (do-cp-step (rough-state-of S)) \neq S
     using f2 f1 by (metis (no-types))
   then have do-cp-step (rough-state-of S) \neq rough-state-of S
       \land state-of (do-cp-step (rough-state-of S)) \neq S
     \vee \ cdcl_W - cp^{**} \ (toS \ (rough-state-of \ S)) \ (toS \ (rough-state-of \ (do-full1-cp-step \ S)))
     by (metis rough-state-of-state-of-do-cp-step)
   then have cdcl_W-cp^{**} (toS (rough-state-of S)) (toS (rough-state-of (do-full1-cp-step S)))
     using f3 f2 by (metis (no-types) cp-step-is-cdcl<sub>W</sub>-cp tranclp-into-rtranclp) }
 then show ?case
   by fastforce
 show no-step cdcl_W-cp (toS (rough-state-of (do-full1-cp-step S)))
   apply (rule do-cp-step-eq-no-step[OF do-full1-cp-step-fix-point-of-do-full1-cp-step[of S]])
   using in-clauses-rough-state-of-is-distinct unfolding do-cp-step'-def by blast
qed
```

```
lemma [code abstract]:
rough-state-of (do-cp-step'S) = do-cp-step (rough-state-of S)
unfolding do-cp-step'-def by auto
The other rules fun do-other-step where
do-other-step S =
  (let T = do-skip-step S in
    if T \neq S
    then T
    else
      (let U = do-resolve-step T in
      if U \neq T
      then U else
      (let V = do-backtrack-step U in
      if V \neq U then V else do-decide-step V)))
lemma do-other-step:
 assumes inv: cdcl_W-all-struct-inv (toS S) and
 st: do-other-step S \neq S
 shows cdcl_W-o (toS\ S)\ (toS\ (do\text{-}other\text{-}step\ S))
 using st inv by (auto split: if-split-asm
   simp add: Let-def
   dest!: do-skip-step do-resolve-step do-backtrack-step do-decide-step
   dest!: cdcl_W - o.intros \ cdcl_W - bj.intros)
lemma do-other-step-no:
 assumes inv: cdcl_W-all-struct-inv (toS S) and
 st: do-other-step S = S
 shows no-step cdcl_W-o (toS S)
 using st inv by (auto split: if-split-asm elim: cdcl_W-bjE
   simp\ add: Let\text{-}def\ cdcl_W\text{-}bj.simps\ elim!: cdcl_W\text{-}o.cases
   dest!: do-skip-step-no do-resolve-step-no do-backtrack-step-no do-decide-step-no)
lemma rough-state-of-state-of-do-other-step[simp]:
 rough-state-of (state-of (do-other-step (rough-state-of S))) = do-other-step (rough-state-of S)
proof (cases do-other-step (rough-state-of S) = rough-state-of S)
 case True
 then show ?thesis by simp
next
 case False
 have cdcl_W-o (toS (rough-state-of S)) (toS (do-other-step (rough-state-of S)))
   by (metis False cdcl_W-all-struct-inv-rough-state do-other-step[of rough-state-of S])
 then have cdcl_W-all-struct-inv (toS (do-other-step (rough-state-of S)))
   using cdcl_W-all-struct-inv-inv cdcl_W-all-struct-inv-rough-state other by blast
 then show ?thesis
   by (simp add: CollectI state-of-inverse)
\mathbf{qed}
definition do-other-step' where
do-other-step' S =
 state-of\ (do-other-step\ (rough-state-of\ S))
lemma rough-state-of-do-other-step'[code abstract]:
rough-state-of (do-other-step' S) = do-other-step (rough-state-of S)
apply (cases do-other-step (rough-state-of S) = rough-state-of S)
```

```
unfolding do-other-step'-def apply simp
 using do-other-step of rough-state-of S by (auto intro: cdcl_W-all-struct-inv-inv
   cdcl_W-all-struct-inv-rough-state other state-of-inverse)
definition do\text{-}cdcl_W\text{-}stgy\text{-}step where
do\text{-}cdcl_W\text{-}stgy\text{-}step\ S =
   (let T = do-full1-cp-step S in
     if T \neq S
     then T
     else
      (let \ U = (do\text{-}other\text{-}step'\ T)\ in
       (do-full1-cp-step\ U)))
definition do\text{-}cdcl_W\text{-}stgy\text{-}step' where
do-cdcl_W-stgy-step' S = state-from-init-state-of (rough-state-of (do-cdcl_W-stgy-step (id-of-I-to S)))
lemma toS-do-full1-cp-step-not-eq: do-full1-cp-step S \neq S \Longrightarrow
   toS (rough-state-of S) \neq toS (rough-state-of (do-full1-cp-step S))
proof
  assume a1: do-full1-cp-step S \neq S
  then have S \neq do\text{-}cp\text{-}step' S
   by fastforce
  then show ?thesis
   by (metis\ (no\text{-}types)\ cp\text{-}step\text{-}is\text{-}cdcl_W\text{-}cp\ do\text{-}cp\text{-}step'\text{-}def\ do\text{-}cp\text{-}step\text{-}eq\text{-}no\text{-}step})
      do-full1-cp-step-fix-point-of-do-full1-cp-step in-clauses-rough-state-of-is-distinct
     rough-state-of-inverse)
ged
do-full1-cp-step should not be unfolded anymore:
declare do-full1-cp-step.simps[simp del]
Correction of the transformation lemma do-cdcl_W-stgy-step:
  assumes do\text{-}cdcl_W\text{-}stgy\text{-}step\ S \neq S
  shows cdcl_W-stqy (toS (rough-state-of S)) (toS (rough-state-of (do-cdcl_W-stqy-step S)))
proof (cases do-full1-cp-step S = S)
  case False
  then show ?thesis
   using assms do-full1-cp-step-full[of S] unfolding full-unfold do-cdcl<sub>W</sub>-stqy-step-def
   by (auto intro!: cdcl_W-stgy.intros dest: toS-do-full1-cp-step-not-eq)
next
  case True
  have cdcl_W-o (toS (rough-state-of S)) (toS (rough-state-of (do-other-step' S)))
   by (smt\ True\ assms\ cdcl_W\mbox{-}all\mbox{-}struct\mbox{-}inv\mbox{-}rough\mbox{-}state\ do\mbox{-}cdcl_W\mbox{-}stgy\mbox{-}step\mbox{-}def\ do\mbox{-}other\mbox{-}step
     rough\text{-}state\text{-}of\text{-}do\text{-}other\text{-}step'\ rough\text{-}state\text{-}of\text{-}inverse)
  moreover
   have
     np: no-step \ propagate \ (toS \ (rough-state-of \ S)) and
     nc: no-step conflict (toS (rough-state-of S))
       apply (metis True do-cp-step-eq-no-prop-no-confl
          do-full 1-cp-step-fix-point-of-do-full 1-cp-step \ do-propagate-step-no-step
         in-clauses-rough-state-of-is-distinct)
     by (metis True do-conflict-step-no-step do-cp-step-eq-no-prop-no-confl
        do-full1-cp-step-fix-point-of-do-full1-cp-step)
   then have no-step cdcl_W-cp (toS (rough-state-of S))
     by (simp\ add:\ cdcl_W\text{-}cp.simps)
  moreover have full cdcl_W-cp (toS (rough-state-of (do-other-step'S)))
```

```
(toS\ (rough\text{-}state\text{-}of\ (do\text{-}full1\text{-}cp\text{-}step\ (do\text{-}other\text{-}step'\ S))))
   using do-full1-cp-step-full by auto
  ultimately show ?thesis
   using assms True unfolding do-cdcl<sub>W</sub>-stgy-step-def
   by (auto intro!: cdcl<sub>W</sub>-stgy.other' dest: toS-do-full1-cp-step-not-eq)
qed
\mathbf{lemma}\ \mathit{length\text{-}raw\text{-}trail\text{-}toS[\mathit{simp}]\text{:}}
  length (raw-trail (toS S)) = length (raw-trail S)
  by (cases S) auto
\mathbf{lemma}\ \mathit{raw-conflicting-noTrue-iff-toS[simp]} :
  raw-conflicting (toS\ S) \neq None \longleftrightarrow raw-conflicting S \neq None
  by (cases\ S) auto
\mathbf{lemma}\ raw\text{-}trail\text{-}toS\text{-}neq\text{-}imp\text{-}raw\text{-}trail\text{-}neq\text{:}}
  raw-trail (toS\ S) \neq raw-trail (toS\ S') \Longrightarrow raw-trail S \neq raw-trail S'
 by (cases S, cases S') auto
\mathbf{lemma}\ do\text{-}skip\text{-}step\text{-}raw\text{-}trail\text{-}changed\text{-}or\text{-}conflict\text{:}}
  assumes d: do-other-step S \neq S
 and inv: cdcl_W-all-struct-inv (toS S)
  shows raw-trail S \neq raw-trail (do-other-step S)
proof -
  have M: \bigwedge M \ K \ M1 \ c. \ M = c @ K \# M1 \Longrightarrow Suc (length M1) \leq length M
   by auto
  have cdcl_W-M-level-inv (toS S)
   using inv unfolding cdcl_W-all-struct-inv-def by auto
  have cdcl_W-o (toS\ S)\ (toS\ (do-other-step\ S)) using do-other-step[OF\ inv\ d].
  then show ?thesis
   using \langle cdcl_W \text{-}M\text{-}level\text{-}inv \ (toS\ S) \rangle
   proof (induction to S (do-other-step S) rule: cdcl_W-o-induct)
      case decide
      then show ?thesis
       by (auto simp add: raw-trail-toS-neq-imp-raw-trail-neq)[]
   next
   case (skip)
   then show ?case
      by (cases S; cases do-other-step S) force
   next
      case (resolve)
      then show ?case
        by (cases\ S,\ cases\ do\text{-}other\text{-}step\ S)\ force
     case (backtrack L D K i M1 M2) note LD = this(2) and decomp = this(3) and confl-S = this(1)
       and i = this(6) and U = this(8)
      have
       bt: raw-backtrack-lvl (toS S) = count-decided (raw-trail (toS S)) and
       raw-trail (toS S) \models as CNot D and
       cons: consistent-interp (lits-of-l (raw-trail (toS S)))
       using inv confl-S unfolding cdcl<sub>W</sub>-all-struct-inv-def cdcl<sub>W</sub>-M-level-inv-def
        cdcl_W-conflicting-def by simp-all
      then have -L \in lits-of-l (raw-trail (toS S))
       using LD true-annots-true-cls-def-iff-negation-in-model by blast
      then have -L \in lits-of-l (raw-trail S)
```

```
by (cases S) (auto simp: lits-of-def)
      moreover have consistent-interp (lits-of-l (raw-trail S))
       using cons by (cases S) (auto simp: lits-of-def image-image)
      ultimately have L \notin lits-of-l (raw-trail S)
       using consistent-interp-def by blast
      moreover
       have L \in lits-of-l (raw-trail (toS (do-other-step S)))
          using U by auto
       then have L \in lits-of-l (raw-trail (do-other-step S))
          by (cases do-other-step S) (auto simp: lits-of-def)
      ultimately show ?thesis
       by metis
   qed
qed
lemma do-full1-cp-step-induct:
  (\land S. (S \neq do\text{-}cp\text{-}step' S) \Longrightarrow P (do\text{-}cp\text{-}step' S)) \Longrightarrow P S) \Longrightarrow P a0
  using do-full1-cp-step.induct by metis
\mathbf{lemma}\ do\text{-}cp\text{-}step\text{-}neq\text{-}raw\text{-}trail\text{-}increase\text{:}
  \exists c. \ raw\text{-trail} \ (do\text{-}cp\text{-}step \ S) = c \ @ \ raw\text{-}trail \ S \land (\forall m \in set \ c. \ \neg \ is\text{-}decided \ m)
  by (cases S, cases raw-conflicting S)
     (auto simp add: do-cp-step-def do-conflict-step-def do-propagate-step-def split: option.splits)
lemma do-full1-cp-step-neg-raw-trail-increase:
  \exists c. raw\text{-}trail (rough\text{-}state\text{-}of (do\text{-}full1\text{-}cp\text{-}step S)) = c @ raw\text{-}trail (rough\text{-}state\text{-}of S)
   \land (\forall m \in set \ c. \ \neg \ is\text{-}decided \ m)
  apply (induction rule: do-full1-cp-step-induct)
  apply (rename-tac S, case-tac do-cp-step' S = S)
   apply (simp add: do-full1-cp-step.simps)
  \mathbf{by} (smt Un-iff append-assoc do-cp-step'-def do-cp-step-neg-raw-trail-increase do-full1-cp-step.simps
    rough-state-of-state-of-do-cp-step set-append)
lemma do-cp-step-raw-conflicting:
  raw-conflicting (rough-state-of S) \neq None \implies do-cp-step' S = S
  unfolding do-cp-step'-def do-cp-step-def by simp
lemma do-full1-cp-step-raw-conflicting:
  raw\text{-}conflicting \ (rough\text{-}state\text{-}of \ S) \neq None \implies do\text{-}full 1\text{-}cp\text{-}step \ S = S
  unfolding do-cp-step'-def do-cp-step-def
  apply (induction rule: do-full1-cp-step-induct)
  by (rename-tac S, case-tac S \neq do-cp-step' S)
  (auto simp add: do-full1-cp-step.simps do-cp-step-raw-conflicting)
\mathbf{lemma}\ do\text{-}decide\text{-}step\text{-}not\text{-}raw\text{-}conflicting\text{-}one\text{-}more\text{-}decide\text{:}}
 assumes
   raw-conflicting S = None and
    do\text{-}decide\text{-}step\ S \neq S
  shows Suc (length (filter is-decided (raw-trail S)))
    = length (filter is-decided (raw-trail (do-decide-step S)))
  using assms unfolding do-other-step'-def
  by (cases S) (auto simp: Let-def split: if-split-asm option.splits
     dest!: find-first-unused-var-Some-not-all-incl)
```

 $\mathbf{lemma}\ \textit{do-decide-step-not-raw-conflicting-one-more-decide-bt}:$

```
assumes raw-conflicting S \neq None and
  do\text{-}decide\text{-}step\ S \neq S
 shows length (filter is-decided (raw-trail S)) < length (filter is-decided (raw-trail (do-decide-step S)))
  using assms unfolding do-other-step'-def by (cases S, cases raw-conflicting S)
   (auto simp add: Let-def split: if-split-asm option.splits)
lemma count-decided-raw-trail-toS:
  count-decided (raw-trail (toS\ S)) = count-decided (raw-trail S)
 by (cases S) (auto simp: comp-def)
lemma do-other-step-not-raw-conflicting-one-more-decide-bt:
 assumes
   raw-conflicting (rough-state-of S) \neq None and
   raw-conflicting (rough-state-of (do-other-step' S)) = None and
   do\text{-}other\text{-}step' S \neq S
 shows count-decided (raw-trail (rough-state-of S))
   > count-decided (raw-trail (rough-state-of (do-other-step' S)))
proof (cases S, goal-cases)
  case (1 \ y) note S = this(1) and inv = this(2)
 obtain M N U k E where y: y = (M, N, U, k, Some E)
   using assms(1) S inv by (cases y, cases raw-conflicting y) auto
  have M: rough-state-of (state-of (M, N, U, k, Some E)) = (M, N, U, k, Some E)
   using inv y by (auto simp add: state-of-inverse)
 have bt: do-other-step' S = state-of (do-backtrack-step (rough-state-of S))
   proof (cases rough-state-of S rule: do-decide-step.cases)
     case 1
     then show ?thesis
      using assms(1,2) by auto[]
     case (2 \ v \ vb \ vd \ vf \ vh)
     have f3: \bigwedge c. (if do-skip-step (rough-state-of c) \neq rough-state-of c
       then do-skip-step (rough-state-of c)
       else if do-resolve-step (do-skip-step (rough-state-of c)) \neq do-skip-step (rough-state-of c)
           then do-resolve-step (do-skip-step (rough-state-of c))
           else if do-backtrack-step (do-resolve-step (do-skip-step (rough-state-of c)))
             \neq do-resolve-step (do-skip-step (rough-state-of c))
           then do-backtrack-step (do-resolve-step (do-skip-step (rough-state-of c)))
           else do-decide-step (do-backtrack-step (do-resolve-step
             (do\text{-}skip\text{-}step\ (rough\text{-}state\text{-}of\ c)))))
       = rough\text{-}state\text{-}of (do\text{-}other\text{-}step' c)
       by (simp add: rough-state-of-do-other-step')
    have (raw-trail (rough-state-of (do-other-step'S)), raw-init-clss (rough-state-of (do-other-step'S)),
        raw-learned-clss (rough-state-of (do-other-step' S)),
        raw-backtrack-lvl (rough-state-of (do-other-step' S)), None)
       = rough\text{-}state\text{-}of (do\text{-}other\text{-}step' S)
       using assms(2) by (metis\ (no-types)\ state-conv)
     then show ?thesis
       using f3 2 by (metis (no-types) do-decide-step.simps(2) do-resolve-step-raw-trail-is-None
         do-skip-step-raw-trail-is-None rough-state-of-inverse)
   qed
 have
   bt: raw-backtrack-lvl \ (toS\ y) = count-decided \ (raw-trail \ (toS\ y))
   using inv unfolding cdcl<sub>W</sub>-all-struct-inv-def cdcl<sub>W</sub>-M-level-inv-def
   cdcl_W-conflicting-def by simp-all
  have confl-y: raw-conflicting (toS (rough-state-of (do-other-step' (state-of y)))) = None
  using assms(2) y S raw-conflicting-noTrue-iff-toS by blast
```

```
have backtrack (toS (rough-state-of S))
    (toS\ (rough\text{-}state\text{-}of\ (do\text{-}other\text{-}step'\ (state\text{-}of\ y)))) \lor
   resolve\ (toS\ (rough-state-of\ S))
    (toS\ (rough\text{-}state\text{-}of\ (do\text{-}other\text{-}step'\ (state\text{-}of\ y)))) \lor
   skip (toS (rough-state-of S))
    (toS\ (rough\text{-}state\text{-}of\ (do\text{-}other\text{-}step'\ (state\text{-}of\ y))))
   proof -
     have f1: (M, N, U, k, Some E) = rough-state-of S
       by (simp \ add: M S \ y)
     then have f2: do-other-step (M, N, U, k, Some E) \neq (M, N, U, k, Some E)
       by (metis assms(3) rough-state-of-do-other-step' rough-state-of-inject)
     have cdcl_W-all-struct-inv (toS (M, N, U, k, Some E))
       using f1 by simp
     then have cdcl_W-o (toS\ (M,\ N,\ U,\ k,\ Some\ E)) (toS\ (do-other-step\ (M,\ N,\ U,\ k,\ Some\ E)))
       using f2 do-other-step by blast
     then have f3: cdcl_W - o (toS (rough-state-of S))
        (toS\ (rough\text{-}state\text{-}of\ (do\text{-}other\text{-}step'\ (state\text{-}of\ (M,\ N,\ U,\ k,\ Some\ E)))))
       using f1 by (simp add: rough-state-of-do-other-step')
     have \neg decide (toS (rough-state-of S))
       (toS\ (rough\text{-}state\text{-}of\ (do\text{-}other\text{-}step'\ (state\text{-}of\ (M,\ N,\ U,\ k,\ Some\ E)))))
       using f1 by (metis\ (no-types)\ do-decide-step.simps(2)\ do-decide-step-no)
     then show ?thesis
       using f3 \ cdcl_W-o-rule-cases y by blast
   qed
  then have bt: backtrack (toS (rough-state-ofS))
    (toS\ (rough-state-of\ (do-other-step'\ (state-of\ y))))
   using confl-y by (cases rough-state-of S) (auto elim!: resolveE skipE)
moreover
 have no-dup (raw-trail (rough-state-of S))
   using rough-state-of [of S] unfolding cdcl<sub>W</sub>-all-struct-inv-def cdcl<sub>W</sub>-M-level-inv-def
   by (cases S) (auto simp: comp-def)
have cdcl_W-M-level-inv (toS (rough-state-of S)) and
  cdcl_W-M-level-inv (toS (rough-state-of (do-other-step' (state-of y))))
   using inv apply (simp add: cdcl_W-all-struct-inv-def S)
 using cdcl_W-all-struct-inv-def cdcl_W-all-struct-inv-rough-state by blast
then show ?case
   using backtrack-lvl-backtrack-decrease[OF - bt]
   using S unfolding cdcl_W-M-level-inv-def
   by (simp add: comp-def count-decided-raw-trail-toS)
qed
\mathbf{lemma}\ do\text{-}other\text{-}step\text{-}not\text{-}raw\text{-}conflicting\text{-}one\text{-}more\text{-}decide:}
 assumes raw-conflicting (rough-state-of S) = None and
  do-other-step' S \neq S
 shows 1 + length (filter is-decided (raw-trail (rough-state-of S)))
    = length (filter is\text{-}decided (raw-trail (rough-state-of (do-other-step' S))))
proof (cases S, goal-cases)
  case (1 y) note S = this(1) and inv = this(2)
 obtain M N U k where y: y = (M, N, U, k, None) using assms(1) S inv by (cases y) auto
 have M: rough-state-of (state-of (M, N, U, k, None)) = (M, N, U, k, None)
   using inv y by (auto simp add: state-of-inverse)
 have state-of (do\text{-}decide\text{-}step\ (M,\ N,\ U,\ k,\ None)) \neq state\text{-}of\ (M,\ N,\ U,\ k,\ None)
   using assms(2) unfolding do-other-step'-def y inv S by (auto simp add: M)
  then have f_4: do-skip-step (rough-state-of S) = rough-state-of S
   unfolding S M y by (metis (full-types) do-skip-step.simps(4))
 have f5: do-resolve-step (rough-state-of S) = rough-state-of S
```

```
unfolding S M y by (metis (no-types) do-resolve-step.simps(<math>4))
  have f6: do-backtrack-step (rough-state-of S) = rough-state-of S
   unfolding S M y by (metis\ (no-types)\ do-backtrack-step.simps(2))
  have do-other-step (rough-state-of S) \neq rough-state-of S
   using assms(2) unfolding S M y do-other-step'-def by (metis\ (no-types))
  then show ?case
   using f6 f5 f4 by (simp add: assms(1) do-decide-step-not-raw-conflicting-one-more-decide
      do-other-step'-def)
qed
lemma rough-state-of-state-of-do-skip-step-rough-state-of[simp]:
  rough-state-of (state-of (do-skip-step (rough-state-of S))) = do-skip-step (rough-state-of S)
  by (smt do-other-step.simps rough-state-of-inverse rough-state-of-state-of-do-other-step)
lemma raw-conflicting-do-resolve-step-iff[iff]:
  raw-conflicting (do-resolve-step S) = None \longleftrightarrow raw-conflicting S = None
  by (cases S rule: do-resolve-step.cases)
  (auto simp add: Let-def split: option.splits)
lemma raw-conflicting-do-skip-step-iff[iff]:
  raw-conflicting (do-skip-step S) = None \longleftrightarrow raw-conflicting S = None
  by (cases S rule: do-skip-step.cases)
    (auto simp add: Let-def split: option.splits)
lemma raw-conflicting-do-decide-step-iff[iff]:
  raw-conflicting (do-decide-step S) = None \longleftrightarrow raw-conflicting S = None
  by (cases S rule: do-decide-step.cases)
    (auto simp add: Let-def split: option.splits)
lemma raw-conflicting-do-backtrack-step-imp[simp]:
  do-backtrack-step S \neq S \Longrightarrow raw-conflicting (do-backtrack-step S) = None
  by (cases S rule: do-backtrack-step.cases)
    (auto simp add: Let-def split: list.splits option.splits ann-lit.splits)
\mathbf{lemma}\ do\text{-}skip\text{-}step\text{-}eq\text{-}iff\text{-}raw\text{-}trail\text{-}eq\text{:}
  do-skip-step S = S \longleftrightarrow raw-trail (do-skip-step S) = raw-trail S
  by (cases S rule: do-skip-step.cases) auto
\mathbf{lemma}\ do\text{-}decide\text{-}step\text{-}eq\text{-}iff\text{-}raw\text{-}trail\text{-}eq\text{:}
  do\text{-}decide\text{-}step\ S = S \longleftrightarrow raw\text{-}trail\ (do\text{-}decide\text{-}step\ S) = raw\text{-}trail\ S
  by (cases S rule: do-decide-step.cases) (auto split: option.split)
lemma do-backtrack-step-eq-iff-raw-trail-eq:
  assumes no-dup (raw-trail S)
  shows do-backtrack-step S = S \longleftrightarrow raw-trail (do-backtrack-step S) = raw-trail S
  using assms apply (cases S rule: do-backtrack-step.cases)
  by (auto split: option.split list.splits ann-lit.splits
    simp: comp-def
     dest!: bt-cut-in-get-all-ann-decomposition)
\mathbf{lemma}\ do\text{-}resolve\text{-}step\text{-}eq\text{-}iff\text{-}raw\text{-}trail\text{-}eq\text{:}
  do\text{-}resolve\text{-}step\ S = S \longleftrightarrow raw\text{-}trail\ (do\text{-}resolve\text{-}step\ S) = raw\text{-}trail\ S
  by (cases S rule: do-resolve-step.cases) auto
lemma do-other-step-eq-iff-raw-trail-eq:
  assumes no-dup (raw-trail S)
```

```
shows raw-trail (do-other-step S) = raw-trail S \longleftrightarrow do-other-step S = S
  using assms
  by (auto simp add: Let-def do-skip-step-eq-iff-raw-trail-eq[symmetric]
   do-decide-step-eq-iff-raw-trail-eq[symmetric] \ do-backtrack-step-eq-iff-raw-trail-eq[symmetric]
   do-resolve-step-eq-iff-raw-trail-eq[symmetric])
lemma do-full1-cp-step-do-other-step'-normal-form[dest!]:
 assumes H: do-full1-cp-step (do-other-step' S) = S
 shows do-other-step' S = S \land do-full1-cp-step S = S
proof -
 let ?T = do\text{-}other\text{-}step' S
  { assume confl: raw-conflicting (rough-state-of ?T) \neq None
   then have tr: raw-trail (rough-state-of (do-full1-cp-step ?T)) = raw-trail (rough-state-of ?T)
     using do-full1-cp-step-raw-conflicting[of ?T] by auto
   have raw-trail (rough-state-of (do-full1-cp-step (do-other-step' S))) = raw-trail (rough-state-of S)
     using arg-cong[OF\ H, of\ \lambda S.\ raw-trail (rough-state-of S)].
   then have raw-trail (rough-state-of (do-other-step' S)) = raw-trail (rough-state-of S)
      by (auto simp add: do-full1-cp-step-raw-conflicting confl)
   then have do-other-step' S = S
     using assms confl
     by (simp add: do-other-step-eq-iff-raw-trail-eq do-other-step'-def
       do-full1-cp-step-raw-conflicting
            del: do-other-step.simps)
  }
 moreover {
   assume eq[simp]: do\text{-}other\text{-}step' S = S
   obtain c where c: raw-trail (rough-state-of (do-full1-cp-step S)) = c \otimes raw-trail (rough-state-of S)
     using do-full1-cp-step-neq-raw-trail-increase by auto
   moreover have raw-trail (rough-state-of (do-full1-cp-step S)) = raw-trail (rough-state-of S)
     using arg\text{-}cong[OF\ H,\ of\ \lambda S.\ raw\text{-}trail\ (rough\text{-}state\text{-}of\ S)] by simp
   finally have c = [] by blast
   then have do-full1-cp-step S = S using assms by auto
   }
  moreover {
   assume confl: raw-conflicting (rough-state-of ?T) = None and neg: do-other-step' S \neq S
   obtain c where
     c: raw-trail (rough-state-of (do-full1-cp-step ?T)) = c @ raw-trail (rough-state-of ?T) and
     nm: \forall m \in set \ c. \ \neg \ is\text{-}decided \ m
     using do-full1-cp-step-neq-raw-trail-increase by auto
   have length (filter is-decided (raw-trail (rough-state-of (do-full1-cp-step ?T))))
      = length (filter is-decided (raw-trail (rough-state-of ?T))) using nm unfolding c by force
   moreover have length (filter is-decided (raw-trail (rough-state-of S)))
      \neq length (filter is-decided (raw-trail (rough-state-of ?T)))
     using do-other-step-not-raw-conflicting-one-more-decide[OF - neq]
     do\text{-}other\text{-}step\text{-}not\text{-}raw\text{-}conflicting\text{-}one\text{-}more\text{-}decide\text{-}bt[of\ S,\ OF\ -\ confl\ neq]
     by linarith
   finally have False unfolding H by blast
 ultimately show ?thesis by blast
qed
lemma do-cdcl_W-stgy-step-no:
 assumes S: do\text{-}cdcl_W\text{-}stgy\text{-}step S = S
```

```
shows no-step cdcl_W-stgy (toS (rough-state-of S))
proof -
   fix S'
   assume full1 cdcl_W-cp (toS (rough-state-of S)) S'
   then have False
     using do-full1-cp-step-full[of S] unfolding full-def S rtranclp-unfold full1-def
     by (smt \ assms \ do-cdcl_W-stgy-step-def \ tranclpD)
  }
 moreover {
   fix S' S''
   assume cdcl_W-o (toS\ (rough\text{-}state\text{-}of\ S))\ S' and
    no-step propagate (toS (rough-state-of S)) and
    no-step conflict (toS (rough-state-of S)) and
    full\ cdcl_W-cp\ S'\ S''
   then have False
     using assms unfolding do-cdcl_W-stgy-step-def
     by (smt\ cdcl_W-all-struct-inv-rough-state\ do-full1-cp-step-do-other-step'-normal-form
       do-other-step-no rough-state-of-do-other-step')
 ultimately show ?thesis using assms by (force simp: cdcl<sub>W</sub>-cp.simps cdcl<sub>W</sub>-stgy.simps)
qed
\mathbf{lemma}\ to S-rough-state-of\text{-}state-of\text{-}rough-state\text{-}from\text{-}init\text{-}state\text{-}of[simp]:
  toS (rough-state-of (state-of (rough-state-from-init-state-of S)))
   = toS (rough-state-from-init-state-of S)
  using rough-state-from-init-state-of [of S] by (auto simp add: state-of-inverse)
lemma cdcl_W-cp-is-rtranclp-cdcl<sub>W</sub>: cdcl_W-cp S T \Longrightarrow cdcl_W^{**} S T
 apply (induction rule: cdcl_W-cp.induct)
  using conflict apply blast
 using propagate by blast
lemma rtranclp-cdcl_W-cp-is-rtranclp-cdcl_W: cdcl_W-cp^{**} \ S \ T \Longrightarrow cdcl_W^{**} \ S \ T
  apply (induction rule: rtranclp-induct)
   apply \ simp
 by (fastforce dest!: cdcl_W-cp-is-rtranclp-cdcl<sub>W</sub>)
lemma cdcl_W-stgy-is-rtranclp-cdcl_W:
  cdcl_W-stgy S T \Longrightarrow cdcl_W^{**} S T
  apply (induction rule: cdcl_W-stgy.induct)
  using cdcl_W-stgy.conflict' rtranclp-cdcl_W-stgy-rtranclp-cdcl_W apply blast
  unfolding full-def by (fastforce dest!:other rtranclp-cdcl<sub>W</sub>-cp-is-rtranclp-cdcl<sub>W</sub>)
lemma cdcl_W-stgy-init-raw-init-clss:
  cdcl_W-stgy S T \Longrightarrow cdcl_W-M-level-inv S \Longrightarrow raw-init-clss S = raw-init-clss T
  using cdcl_W-stgy-no-more-init-clss by blast
lemma clauses-toS-rough-state-of-do-cdcl_W-stgy-step[simp]:
  raw-init-clss (toS (rough-state-of (do-cdcl<sub>W</sub>-stgy-step (state-of (rough-state-from-init-state-of S)))))
    = raw-init-clss (toS (rough-state-from-init-state-of S)) (is - = raw-init-clss (toS ?S))
 apply (cases do-cdcl<sub>W</sub>-stgy-step (state-of ?S) = state-of ?S)
   apply simp
  by (metis\ cdcl_W\ -all\ -struct\ -inv\ -def\ cdcl_W\ -all\ -struct\ -inv\ -rough\ -state\ cdcl_W\ -stgy\ -no\ -more\ -init\ -clss
   do-cdcl_W-stgy-step toS-rough-state-of-state-of-rough-state-from-init-state-of)
```

```
\mathbf{lemma}\ \textit{rough-state-from-init-state-of-do-cdcl}_W \textit{-stgy-step'}[\textit{code}\ \textit{abstract}] :
rough-state-from-init-state-of (do-cdcl<sub>W</sub>-stgy-step' S) =
   rough-state-of (do-cdcl_W-stgy-step (id-of-I-to S))
proof -
 let ?S = (rough-state-from-init-state-of S)
 \mathbf{have} \ cdcl_W \text{-}stgy^{**} \ (S0\text{-}cdcl_W \ (raw\text{-}init\text{-}clss \ (toS \ (rough\text{-}state\text{-}from\text{-}init\text{-}state\text{-}of \ S))))
   (toS\ (rough-state-from-init-state-of\ S))
   using rough-state-from-init-state-of [of S] by auto
 moreover have cdcl_W-stgy^{**}
                (toS\ (rough\text{-}state\text{-}from\text{-}init\text{-}state\text{-}of\ S))
                (toS\ (rough\text{-}state\text{-}of\ (do\text{-}cdcl_W\text{-}stgy\text{-}step))
                  (state-of\ (rough-state-from-init-state-of\ S)))))
    using do\text{-}cdcl_W\text{-}stgy\text{-}step[of\ state\text{-}of\ ?S]
    by (cases\ do-cdcl_W-stqy-step\ (state-of\ ?S)=state-of\ ?S)\ auto
 ultimately show ?thesis
   unfolding do-cdcl<sub>W</sub>-stgy-step'-def id-of-I-to-def
   by (auto intro!: state-from-init-state-of-inverse)
qed
All rules together function do-all-cdcl_W-stgy where
do-all-cdcl_W-stgy S =
 (let \ T = do\text{-}cdcl_W\text{-}stgy\text{-}step'\ S\ in
 if T = S then S else do-all-cdcl<sub>W</sub>-stqy T)
by fast+
termination
proof (relation \{(T, S)\}.
   (cdcl_W-measure (toS\ (rough-state-from-init-state-of T)),
   cdcl_W-measure (toS (rough-state-from-init-state-of S)))
     \in lexn less-than 3, goal-cases)
 case 1
 show ?case by (rule wf-if-measure-f) (auto intro!: wf-lexn wf-less)
  case (2 S T) note T = this(1) and ST = this(2)
 let ?S = rough-state-from-init-state-of S
 have S: cdcl_W - stgy^{**} (S0 - cdcl_W (raw-init-clss (toS ?S))) (toS ?S)
   using rough-state-from-init-state-of [of S] by auto
  moreover have cdcl_W-stgy (toS (rough-state-from-init-state-of S))
   (toS (rough-state-from-init-state-of T))
   proof -
     have \bigwedge c. rough-state-of (state-of (rough-state-from-init-state-of c)) =
       rough-state-from-init-state-of c
       using rough-state-from-init-state-of state-of-inverse by fastforce
     then have diff: do-cdcl_W-stgy-step (state-of (rough-state-from-init-state-of S))
       \neq state-of (rough-state-from-init-state-of S)
       using ST T by (metis (no-types) id-of-I-to-def rough-state-from-init-state-of-inject
         rough-state-from-init-state-of-do-cdcl_W-stgy-step')
     have rough-state-of (do-cdcl_W-stgy-step (state-of (rough-state-from-init-state-of S)))
       = rough-state-from-init-state-of (do-cdcl_W-stgy-step'S)
       by (simp add: id-of-I-to-def rough-state-from-init-state-of-do-cdcl<sub>W</sub>-stgy-step')
     then show ?thesis
       using do-cdcl<sub>W</sub>-stgy-step T diff unfolding id-of-I-to-def do-cdcl<sub>W</sub>-stgy-step by fastforce
   qed
  moreover
   have cdcl_W-all-struct-inv (toS (rough-state-from-init-state-of S))
     using rough-state-from-init-state-of [of S] by auto
```

```
then have cdcl_W-all-struct-inv (S0\text{-}cdcl_W (raw\text{-}init\text{-}clss (toS (rough-state-from-init-state-of S))))}
     by (cases rough-state-from-init-state-of S)
        (auto simp add: cdcl_W-all-struct-inv-def distinct-cdcl_W-state-def)
  ultimately show ?case
   using tranclp-cdcl_W-stgy-S0-decreasing
   by (auto intro!: cdcl_W-stqy-step-decreasing[of - SO-cdcl_W (raw-init-clss (toS ?S))]
     simp \ del: \ cdcl_W-measure.simps)
qed
thm do-all-cdcl_W-stgy.induct
lemma do-all-cdcl_W-stgy-induct:
  (\bigwedge S. (do-cdcl_W-stgy-step' S \neq S \Longrightarrow P (do-cdcl_W-stgy-step' S)) \Longrightarrow P S) \Longrightarrow P a0
 using do-all-cdcl_W-stgy.induct by metis
lemma no\text{-}step\text{-}cdcl_W\text{-}stgy\text{-}cdcl_W\text{-}all:
  fixes S :: 'a \ cdcl_W-state-inv-from-init-state
 shows no-step cdcl_W-stgy (toS (rough-state-from-init-state-of (do-all-cdcl_W-stgy S)))
 apply (induction S rule: do-all-cdcl_W-stqy-induct)
  apply (rename-tac S, case-tac do-cdcl<sub>W</sub>-stgy-step' S \neq S)
proof -
  \mathbf{fix} \ Sa :: 'a \ cdcl_W-state-inv-from-init-state
  assume a1: \neg do\text{-}cdcl_W\text{-}stgy\text{-}step' Sa \neq Sa
  { fix pp
   have (if True then Sa else do-all-cdcl<sub>W</sub>-stgy Sa) = do-all-cdcl<sub>W</sub>-stgy Sa
     using a1 by auto
   then have \neg cdcl_W-stqy (toS (rough-state-from-init-state-of (do-all-cdcl_W-stqy Sa))) pp
     using a1 by (metis (no-types) do-cdcl<sub>W</sub>-stgy-step-no id-of-I-to-def
       rough-state-from-init-state-of-do-cdcl_W-stgy-step' rough-state-of-inverse) }
  then show no-step cdcl_W-stgy (toS (rough-state-from-init-state-of (do-all-cdcl_W-stgy Sa)))
   by fastforce
\mathbf{next}
  \mathbf{fix} \ Sa :: \ 'a \ cdcl_W-state-inv-from-init-state
  assume a1: do\text{-}cdcl_W\text{-}stgy\text{-}step'\ Sa \neq Sa
   \implies no-step cdcl_W-stgy (toS (rough-state-from-init-state-of
     (do-all-cdcl_W-stgy\ (do-cdcl_W-stgy-step'\ Sa))))
  assume a2: do\text{-}cdcl_W\text{-}stqy\text{-}step' Sa \neq Sa
  have do\text{-}all\text{-}cdcl_W\text{-}stqy\ Sa = do\text{-}all\text{-}cdcl_W\text{-}stqy\ (do\text{-}cdcl_W\text{-}stqy\text{-}step'\ Sa)}
   by (metis\ (full-types)\ do-all-cdcl_W-stgy.simps)
  then show no-step cdcl_W-stgy (toS (rough-state-from-init-state-of (do-all-cdcl_W-stgy Sa)))
   using a2 a1 by presburger
qed
lemma do-all-cdcl_W-stgy-is-rtranclp-cdcl_W-stgy:
  cdcl_W-stgy** (toS (rough-state-from-init-state-of S))
    (toS\ (rough\text{-}state\text{-}from\text{-}init\text{-}state\text{-}of\ (do\text{-}all\text{-}cdcl_W\text{-}stgy\ S)))
proof (induction S rule: do-all-cdcl_W-stgy-induct)
  case (1 S) note IH = this(1)
  show ?case
   proof (cases do-cdcl<sub>W</sub>-stqy-step' S = S)
     case True
     then show ?thesis by simp
   next
     case False
     have f2: do-cdcl_W-stgy-step \ (id-of-I-to \ S) = id-of-I-to \ S \longrightarrow
       rough-state-from-init-state-of (do-cdcl_W-stgy-step' S)
       = rough-state-of (state-of (rough-state-from-init-state-of S))
```

```
using rough-state-from-init-state-of-do-cdcl_W-stgy-step'
      by (simp add: id-of-I-to-def rough-state-from-init-state-of-do-cdcl<sub>W</sub>-stgy-step')
     have f3: do\text{-}all\text{-}cdcl_W\text{-}stgy\ S = do\text{-}all\text{-}cdcl_W\text{-}stgy\ (do\text{-}cdcl_W\text{-}stgy\text{-}step'\ S)}
       by (metis\ (full-types)\ do-all-cdcl_W-stgy.simps)
     have cdcl_W-stgy (toS (rough-state-from-init-state-of S))
         (toS\ (rough-state-from-init-state-of\ (do-cdcl_W-stgy-step'\ S)))
       = cdcl_W-stgy (toS (rough-state-of (id-of-I-to S)))
         (toS (rough-state-of (do-cdcl_W-stgy-step (id-of-I-to S))))
       using rough-state-from-init-state-of-do-cdcl<sub>W</sub>-stgy-step
       toS-rough-state-of-state-of-rough-state-from-init-state-of
       by (simp add: id-of-I-to-def rough-state-from-init-state-of-do-cdcl<sub>W</sub>-stgy-step')
     then show ?thesis
       using f3 f2 IH do-cdcl_W-stgy-step by fastforce
   qed
qed
Final theorem:
lemma DPLL-tot-correct:
 assumes
   r: rough-state-from-init-state-of (do-all-cdcl<sub>W</sub>-stgy (state-from-init-state-of)
     (([], map\ remdups\ N, [],\ \theta,\ None)))) = S and
   S: (M', N', U', k, E) = toS S
 shows (E \neq Some \{\#\} \land satisfiable (set (map mset N)))
   \vee (E = Some {#} \wedge unsatisfiable (set (map mset N)))
proof
 let ?N = map \ remdups \ N
 have inv: cdcl_W-all-struct-inv (toS ([], map remdups N, [], 0, None))
   unfolding cdcl<sub>W</sub>-all-struct-inv-def distinct-cdcl<sub>W</sub>-state-def distinct-mset-set-def by auto
  then have S0: rough-state-of (state-of ([], map remdups N, [], 0, None))
   = ([], map \ remdups \ N, [], \theta, None) \ by \ simp
  have 1: full cdcl_W-stgy (toS ([], ?N, [], 0, None)) (toS S)
   unfolding full-def apply rule
     using do-all-cdcl_W-stgy-is-rtranclp-cdcl_W-stgy[of
       state-from-init-state-of ([], map remdups N, [], 0, None)] inv
       no-step-cdcl_W-stgy-cdcl_W-all
       apply (auto simp del: do-all-cdcl<sub>W</sub>-stqy.simps simp: state-from-init-state-of-inverse
         r[symmetric] comp-def)[]
     using do-all-cdcl_W-stgy-is-rtranclp-cdcl_W-stgy[of
     state-from-init-state-of ([], map remdups N, [], 0, None)] inv
     no-step-cdcl_W-stgy-cdcl_W-all
     by (force simp: state-from-init-state-of-inverse r[symmetric] comp-def)
 moreover have 2: finite (set (map mset ?N)) by auto
 moreover have 3: distinct-mset-set (set (map mset ?N))
    unfolding distinct-mset-set-def by auto
  moreover
   have cdcl_W-all-struct-inv (to S S)
     by (metis\ (no\text{-}types)\ cdcl_W\text{-}all\text{-}struct\text{-}inv\text{-}rough\text{-}state\ }r
       toS-rough-state-of-state-of-rough-state-from-init-state-of)
   then have cons: consistent-interp (lits-of-l M')
     unfolding cdcl_W-all-struct-inv-def cdcl_W-M-level-inv-def S[symmetric] by auto
  moreover
   have raw-init-clss (toS ([], ?N, [], \theta, None)) = raw-init-clss (toS S)
     apply (rule rtranclp-cdcl_W-stgy-no-more-init-clss)
     using 1 unfolding full-def by (auto simp add: rtranclp-cdcl_W-stgy-rtranclp-cdcl_W)
   then have N': mset\ (map\ mset\ ?N) = N'
     using S[symmetric] by auto
```

```
have (E \neq Some \ \{\#\} \land satisfiable \ (set \ (map \ mset \ ?N)))

\lor \ (E = Some \ \{\#\} \land unsatisfiable \ (set \ (map \ mset \ ?N)))

using full\text{-}cdcl_W-stgy-final-state-conclusive unfolding N' apply rule

using 1 apply simp

using 2 apply simp

using 3 apply simp

using S[symmetric] \ N' apply auto[1]

using S[symmetric] \ N' cons by (fastforce \ simp: true-annots-true-cls)

then show ?thesis by auto

qed
```

The Code The SML code is skipped in the documentation, but stays to ensure that some version of the exported code is working. The only difference between the generated code and the one used here is the export of the constructor ConI.

end

3.2 Merging backjump rules

```
theory CDCL-W-Merge imports CDCL-W-Termination begin
```

Before showing that Weidenbach's CDCL is included in NOT's CDCL, we need to work on a variant of Weidenbach's calculus: NOT's backjump assumes the existence of a clause that is suitable to backjump. This clause is obtained in W's CDCL by applying:

- 1. conflict-driven-clause-learning_W.conflict to find the conflict
- 2. the conflict is analysed by repetitive application of conflict-driven-clause-learning_W. resolve and conflict-driven-clause-learning_W. skip,
- 3. finally conflict-driven-clause-learning W. backtrack is used to backtrack.

We show that this new calculus has the same final states than Weidenbach's CDCL if the calculus starts in a state such that the invariant holds and no conflict has been found yet. The latter condition holds for initial states.

3.2.1 Inclusion of the states

```
context conflict-driven-clause-learning_W
begin
declare cdcl_W.intros[intro] cdcl_W-bj.intros[intro] cdcl_W-o.intros[intro]

lemma backtrack-no-cdcl_W-bj:
assumes cdcl: cdcl_W-bj T U and inv: cdcl_W-M-level-inv V
shows \neg backtrack V T
using cdcl inv
apply (induction\ rule:\ cdcl_W-bj.induct)
apply (elim\ skipE,\ force\ elim!:\ backtrackE\ simp:\ cdcl_W-M-level-inv-def)
apply (elim\ resolveE,\ force\ elim!:\ backtrackE\ simp:\ cdcl_W-M-level-inv-def)
apply (elim\ backtrackE)
apply (force\ simp\ del:\ state-simp\ simp\ add:\ state-eq-def\ cdcl_W-M-level-inv-decomp)
```

skip-or-resolve corresponds to the analyze function in the code of MiniSAT.

```
inductive skip-or-resolve :: 'st \Rightarrow 'st \Rightarrow bool where
s-or-r-skip[intro]: skip S T \Longrightarrow skip-or-resolve S T
s-or-r-resolve[intro]: resolve S T \Longrightarrow skip-or-resolve S T
lemma rtranclp-cdcl_W-bj-skip-or-resolve-backtrack:
 assumes cdcl_W-bj^{**} S U and inv: cdcl_W-M-level-inv S
 shows skip-or-resolve^{**} S U \lor (\exists T. skip-or-resolve^{**} S T \land backtrack T U)
 using assms
proof (induction)
 case base
 then show ?case by simp
next
 case (step U V) note st = this(1) and bj = this(2) and IH = this(3)[OF\ this(4)]
 consider
     (SU) S = U
   | (SUp) \ cdcl_W - bj^{++} \ S \ U
   using st unfolding rtranclp-unfold by blast
  then show ?case
   proof cases
     case SUp
     have \bigwedge T. skip-or-resolve** S T \Longrightarrow cdcl_W** S T
       using mono-rtranclp[of skip-or-resolve cdcl_W]
       by (blast intro: skip-or-resolve.cases)
     then have skip-or-resolve** S U
       using bj IH inv backtrack-no-cdcl<sub>W</sub>-bj rtranclp-cdcl<sub>W</sub>-consistent-inv[OF - inv] by meson
     then show ?thesis
       using bj by (auto simp: cdcl<sub>W</sub>-bj.simps dest!: skip-or-resolve.intros)
   next
     case SU
     then show ?thesis
       using bj by (auto simp: cdcl_W-bj.simps dest!: skip-or-resolve.intros)
   qed
qed
lemma rtranclp-skip-or-resolve-rtranclp-cdcl_W:
 skip\text{-}or\text{-}resolve^{**} \ S \ T \Longrightarrow cdcl_W^{**} \ S \ T
 by (induction rule: rtranclp-induct)
 (auto dest!: cdcl_W-bj.intros cdcl_W.intros cdcl_W-o.intros simp: skip-or-resolve.simps)
definition backjump-l-cond :: 'v clause \Rightarrow 'v clause \Rightarrow 'v literal \Rightarrow 'st \Rightarrow bool where
backjump-l-cond \equiv \lambda C C' L' S T. True
definition inv_{NOT} :: 'st \Rightarrow bool  where
inv_{NOT} \equiv \lambda S. \text{ no-dup (trail } S)
declare inv_{NOT}-def[simp]
end
context conflict-driven-clause-learning<sub>W</sub>
begin
```

3.2.2 More lemmas conflict-propagate and backjumping

Termination

```
lemma cdcl_W-cp-normalized-element-all-inv:
 assumes inv: cdcl_W-all-struct-inv S
 obtains T where full cdcl_W-cp S T
 using assms cdclw-cp-normalized-element unfolding cdclw-all-struct-inv-def by blast
thm backtrackE
lemma cdcl_W-bj-measure:
 assumes cdcl_W-bj S T and cdcl_W-M-level-inv S
 shows length (trail\ S) + (if\ conflicting\ S = None\ then\ 0\ else\ 1)
   > length (trail T) + (if conflicting T = None then 0 else 1)
 using assms by (induction rule: cdcl_W-bj.induct)
  (force dest: arg-cong[of - - length]
   intro:\ get-all-ann-decomposition-exists-prepend
   elim!: backtrackE skipE resolveE
   simp: cdcl_W - M - level - inv - def) +
lemma wf-cdcl_W-bj:
  wf \{(b,a). \ cdcl_W - bj \ a \ b \land cdcl_W - M - level - inv \ a\}
 apply (rule wfP-if-measure of \lambda-. True
     - \lambda T. length (trail T) + (if conflicting T = None then 0 else 1), simplified])
  using cdcl_W-bj-measure by simp
lemma cdcl_W-bj-exists-normal-form:
 assumes lev: cdcl_W-M-level-inv S
 shows \exists T. full \ cdcl_W-bj S T
proof -
  obtain T where T: full (\lambda a \ b. \ cdcl_W-bj a \ b \land \ cdcl_W-M-level-inv a) S T
   using wf-exists-normal-form-full[OF wf-cdcl<sub>W</sub>-bj] by auto
  then have cdcl_W-bj^{**} S T
    by (auto dest: rtranclp-and-rtranclp-left simp: full-def)
 moreover
   then have cdcl_W^{**} S T
     using mono-rtranclp[of\ cdcl_W-bj\ cdcl_W] by blast
   then have cdcl_W-M-level-inv T
     using rtranclp-cdcl_W-consistent-inv lev by auto
 ultimately show ?thesis using T unfolding full-def by auto
qed
lemma rtranclp-skip-state-decomp:
 assumes skip^{**} S T and no-dup (trail S)
 shows
   \exists M. \ trail \ S = M \ @ \ trail \ T \land (\forall m \in set \ M. \neg is\text{-}decided \ m)
   init-clss S = init-clss T
   learned-clss S = learned-clss T
   backtrack-lvl S = backtrack-lvl T
   conflicting S = conflicting T
  using assms by (induction rule: rtranclp-induct)
  (auto simp del: state-simp simp: state-eq-def elim!: skipE)
```

More backjumping

```
Backjumping after skipping or jump directly lemma rtranclp-skip-backtrack-backtrack: assumes
```

```
skip^{**} S T and
```

```
backtrack T W and
   cdcl_W-all-struct-inv S
 shows backtrack S W
 using assms
proof induction
 case base
 then show ?case by simp
\mathbf{next}
 case (step T V) note st = this(1) and skip = this(2) and IH = this(3) and bt = this(4) and
   inv = this(5)
 have skip^{**} S V
   using st skip by auto
 then have cdcl_W-all-struct-inv V
   using rtranclp-mono[of\ skip\ cdcl_W]\ assms(3)\ rtranclp-cdcl_W-all-struct-inv-inv\ mono-rtranclp
   by (auto dest!: bj other cdcl_W-bj.skip)
 then have cdcl_W-M-level-inv V
   unfolding cdcl_W-all-struct-inv-def by auto
 then obtain K i M1 M2 L D where
   conf: conflicting V = Some D  and
   LD: L \in \# D and
   decomp: (Decided K \# M1, M2) \in set (get-all-ann-decomposition (trail V)) and
   lev-L: get-level (trail V) L = backtrack-lvl V and
   max: get-level (trail\ V)\ L = get-maximum-level (trail\ V)\ D and
   max-D: get-maximum-level (trail V) (remove1-mset L D) \equiv i and
   lev-k: get-level (trail V) K = Suc \ i and
   W: W \sim cons-trail (Propagated L D)
            (reduce-trail-to M1
              (add-learned-cls D
                (update-backtrack-lvl i
                 (update\text{-}conflicting\ None\ V))))
 using bt inv by (elim backtrackE) metis+
 obtain L' C' M E where
   tr: trail \ T = Propagated \ L' \ C' \# M \ and
   raw: conflicting T = Some E and
   LE: -L' \notin \# E and
   E: E \neq \{\#\} and
   V:~V\sim~tl	ext{-}trail~T
   using skip by (elim skipE) metis
 let ?M = Propagated L' C' \# trail V
 have tr-M: trail T = ?M
   using tr \ V by auto
 have MT: M = tl (trail T) and MV: M = trail V
   using tr V by auto
 have DE[simp]: D = E
   using V conf raw by (auto simp add: state-eq-def simp del: state-simp)
 have cdcl_W^{**} S T using bj cdcl_W-bj.skip mono-rtranclp[of skip cdcl_W S T] other st by meson
 then have inv': cdcl_W-all-struct-inv T
   using rtranclp-cdcl_W-all-struct-inv-inv inv by blast
 have M-lev: cdcl_W-M-level-inv T using inv' unfolding cdcl_W-all-struct-inv-def by auto
 then have n-d': no-dup ?M
   using tr-M unfolding cdcl_W-M-level-inv-def by auto
 let ?k = backtrack-lvl T
 have [simp]:
   backtrack-lvl\ V=?k
   using V by simp
 have ?k > 0
```

```
using decomp M-lev V tr unfolding cdcl_W-M-level-inv-def by auto
then have atm-of L \in atm-of 'lits-of-l (trail V)
 using lev-L get-level-ge-0-atm-of-in[of 0 L trail V] by auto
then have L-L': atm-of L \neq atm-of L'
 using n-d' unfolding lits-of-def by auto
have L'-M: atm-of L' \notin atm-of 'lits-of-l (trail V)
 using n-d' unfolding lits-of-def by auto
have ?M \models as CNot D
 using inv' raw unfolding cdcl<sub>W</sub>-conflicting-def cdcl<sub>W</sub>-all-struct-inv-def tr-M by auto
then have L' \notin \# (remove1\text{-}mset\ L\ D)
 using L-L' L'-M \langle Propagated L' C' \# trail V \models as CNot D \rangle
 unfolding true-annots-true-cls true-clss-def
 by (auto simp: uminus-lit-swap atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set dest!: in-diffD)
have [simp]: trail (reduce-trail-to\ M1\ T) = M1
 using decomp tr W V by auto
have skip^{**} S V
 using st skip by auto
have no-dup (trail\ S)
 using inv unfolding cdcl<sub>W</sub>-all-struct-inv-def cdcl<sub>W</sub>-M-level-inv-def by auto
then have [simp]: init-clss S = init-clss V and [simp]: learned-clss S = learned-clss V
 using rtranclp-skip-state-decomp[OF (skip^{**} S V)] V
 by (auto simp del: state-simp simp: state-eq-def)
then have
  W-S: W \sim cons-trail (Propagated L E) (reduce-trail-to M1
  (add-learned-cls E (update-backtrack-lvl i (update-conflicting None T))))
 using W V M-lev decomp tr
 by (auto simp del: state-simp simp: state-eq-def cdcl<sub>W</sub>-M-level-inv-def)
obtain M2' where
 decomp': (Decided K \# M1, M2') \in set (get-all-ann-decomposition (trail T))
 using decomp V unfolding tr-M by (cases hd (get-all-ann-decomposition (trail V)),
   cases get-all-ann-decomposition (trail V)) auto
moreover
 from L-L' have get-level ?M L = ?k
   using lev-L V by (auto split: if-split-asm)
moreover
 have atm\text{-}of L' \notin atms\text{-}of D
   by (metis DE LE L-L' \langle L' \notin \# \text{ (remove 1-mset } L D) \rangle in-remove 1-mset-neg
     atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set atms-of-def)
 then have get-level ?M L = get-maximum-level ?M D
   using calculation(2) lev-L max by auto
moreover
 have atm\text{-}of\ L' \notin atms\text{-}of\ ((remove1\text{-}mset\ L\ D))
   by (metis DE LE \langle L' \notin \# (remove1\text{-}mset\ L\ D) \rangle
     atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set atms-of-def in-remove1-mset-neg
     in-atms-of-remove1-mset-in-atms-of)
 have i = get\text{-}maximum\text{-}level ?M ((remove1\text{-}mset L D))
   using max-D \langle atm\text{-}of L' \notin atms\text{-}of ((remove1\text{-}mset L D)) \rangle by auto
moreover have atm\text{-}of L' \neq atm\text{-}of K
 using inv' qet-all-ann-decomposition-exists-prepend[OF decomp]
 unfolding cdcl_W-all-struct-inv-def cdcl_W-M-level-inv-def tr MV by auto
ultimately have backtrack T W
 apply -
 apply (rule backtrack-rule[of T - L K M1 M2' i W, OF raw])
 unfolding tr-M[symmetric]
       using LD apply simp
```

```
apply simp
      apply simp
     apply simp
     apply auto[]
    using W-S lev-k tr MV apply auto
   using W-S lev-k apply auto[]
 then show ?thesis using IH inv by blast
See also theorem rtranclp-skip-backtrack-backtrack
\mathbf{lemma}\ rtranclp\text{-}skip\text{-}backtrack\text{-}backtrack\text{-}end:}
 assumes
   skip: skip^{**} S T and
   bt: backtrack S W and
   inv: cdcl_W-all-struct-inv S
 shows backtrack T W
 using assms
proof -
 have M-lev: cdcl_W-M-level-inv S
   using bt inv unfolding cdcl<sub>W</sub>-all-struct-inv-def by (auto elim!: backtrackE)
 then obtain K i M1 M2 L D where
   S: conflicting S = Some D  and
   LD: L \in \# D and
   decomp: (Decided K \# M1, M2) \in set (get-all-ann-decomposition (trail S)) and
   lev-l: get-level (trail S) L = backtrack-lvl S and
   lev-l-D: get-level (trail S) L = get-maximum-level (trail S) D and
   i: get-maximum-level (trail S) (remove1-mset L D) \equiv i and
   lev-K: get-level (trail S) K = Suc i  and
   W: W \sim cons-trail (Propagated L D)
             (reduce-trail-to M1
               (add-learned-cls D
                (update-backtrack-lvl\ i
                  (update-conflicting\ None\ S))))
   using bt by (elim backtrackE)
   (simp-all\ add:\ cdcl_W-M-level-inv-decomp\ state-eq-def\ del:\ state-simp)
 let ?D = remove1\text{-}mset\ L\ D
 have [simp]: no-dup (trail\ S)
   using M-lev by (auto simp: cdcl_W-M-level-inv-decomp)
 have cdcl_W-all-struct-inv T
   using mono-rtranclp of skip cdcl_W by (smt\ bj\ cdcl_W-bj.skip inv local.skip other
     rtranclp-cdcl_W-all-struct-inv-inv)
 then have [simp]: no-dup (trail\ T)
   unfolding cdcl_W-all-struct-inv-def cdcl_W-M-level-inv-def by auto
  obtain MS M_T where M: trail S = MS @ M_T and M_T: M_T = trail T and nm: \forall m \in set MS.
\neg is-decided m
   using rtranclp-skip-state-decomp(1)[OF skip] S M-lev by auto
 have T: state T = (M_T, init\text{-}clss S, learned\text{-}clss S, backtrack\text{-}lvl S, Some D)
   using M_T rtranclp-skip-state-decomp[of S T] skip S
   by (auto simp del: state-simp simp: state-eq-def)
 have cdcl_W-all-struct-inv T
   apply (rule rtranclp-cdcl_W-all-struct-inv-inv[OF - inv])
   using bj cdcl_W-bj.skip local.skip other rtranclp-mono[of skip cdcl_W] by blast
```

```
then have M_T \models as \ CNot \ D
   unfolding cdcl_W-all-struct-inv-def cdcl_W-conflicting-def using T by blast
  then have \forall L \in \#D. atm\text{-}of L \in atm\text{-}of 'lits\text{-}of\text{-}l M_T
   by (meson atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set
     true-annots-true-cls-def-iff-negation-in-model)
  moreover have no-dup (trail S)
   using inv unfolding cdcl<sub>W</sub>-all-struct-inv-def cdcl<sub>W</sub>-M-level-inv-def by auto
  ultimately have \forall L \in \#D. atm\text{-}of L \notin atm\text{-}of \text{ } its\text{-}of\text{-}l MS
   unfolding M unfolding lits-of-def by auto
  then have H: \Lambda L. L \in \#D \Longrightarrow get\text{-level (trail S)} L = get\text{-level } M_T L
   unfolding M by (fastforce simp: lits-of-def)
 have [simp]: get-maximum-level (trail S) D = get-maximum-level M_T D
   using \langle M_T \models as \ CNot \ D \rangle \ M \ nm \ \langle \forall \ L \in \#D. \ atm-of \ L \notin atm-of \ `lits-of-l \ MS \rangle
   by (auto simp: get-maximum-level-skip-un-decided-not-present)
 have lev-l': get-level M_T L = backtrack-lvl S
   using lev-l LD by (auto simp: H)
 have [simp]: trail (reduce-trail-to M1 T) = M1
   using T decomp M nm by (smt M_T append-assoc beginning-not-decided-invert
     get-all-ann-decomposition-exists-prepend reduce-trail-to-trail-tl-trail-decomp)
 have W: W \sim cons-trail (Propagated L D) (reduce-trail-to M1
   (add-learned-cls\ D\ (update-backtrack-lvl\ i\ (update-conflicting\ None\ T))))
   using W T i decomp by (auto simp del: state-simp simp: state-eq-def)
  have lev-l-D': get-level M_T L = get-maximum-level M_T D
   using lev-l-D LD by (auto simp: H)
 have [simp]: get-maximum-level (trail S) ?D = get-maximum-level M_T ?D
   by (smt H get-maximum-level-exists-lit get-maximum-level-ge-get-level in-diffD le-antisym
     not-gr0 not-less)
  then have i': i = get-maximum-level M_T?
   using i by auto
  have Decided K \# M1 \in set \ (map \ fst \ (get-all-ann-decomposition \ (trail \ S)))
   using Set.imageI[OF decomp, of fst] by auto
  then have Decided K \# M1 \in set \ (map \ fst \ (get-all-ann-decomposition \ M_T))
   using fst-get-all-ann-decomposition-prepend-not-decided [OF nm] unfolding M by auto
  then obtain M2' where decomp':(Decided\ K\ \#\ M1,\ M2')\in set\ (get-all-ann-decomposition\ M_T)
   by auto
 moreover
   have atm\text{-}of\ K \notin atm\text{-}of ' lits\text{-}of\text{-}l\ MS
     using \langle no\text{-}dup \ (trail \ S) \rangle \ decomp' \ unfolding \ M \ M_T
     by (auto simp: lits-of-def)
   then have get-level (trail T) K = get-level (trail S) K
     unfolding M M_T by auto
  ultimately show backtrack T W
   apply -
   apply (rule backtrack.intros[of T D])
     using T lev-l' lev-l-D' i' W LD lev-K i apply auto[7]
   using T W unfolding i'[symmetric]
   by (auto simp del: state-simp simp: state-eq-def)
qed
lemma cdcl_W-bj-decomp-resolve-skip-and-bj:
 assumes cdcl_W-bj^{**} S T and inv: cdcl_W-M-level-inv S
 shows (skip\text{-}or\text{-}resolve^{**} \ S \ T
   \vee (\exists U. skip-or-resolve^{**} S U \wedge backtrack U T))
 using assms
proof induction
```

```
case base
 then show ?case by simp
  case (step T U) note st = this(1) and bj = this(2) and IH = this(3)
 have IH: skip-or-resolve** S T
   proof -
     { assume \exists U. skip\text{-}or\text{-}resolve^{**} S U \land backtrack U T
       then obtain V where
        bt: backtrack V T and
        skip-or-resolve** S V
        by blast
       have cdcl_W^{**} S V
        \mathbf{using} \ \langle skip\text{-}or\text{-}resolve^{**} \ S \ V \rangle \ rtranclp\text{-}skip\text{-}or\text{-}resolve\text{-}rtranclp\text{-}cdcl_W} \ \mathbf{by} \ blast
       then have cdcl_W-M-level-inv V and cdcl_W-M-level-inv S
        using rtranclp-cdcl_W-consistent-inv inv by blast+
       with bj bt have False using backtrack-no-cdclw-bj by simp
     then show ?thesis using IH inv by blast
   ged
  show ?case
   using bj
   proof (cases rule: cdcl_W-bj.cases)
     case backtrack
     then show ?thesis using IH by blast
   qed (metis (no-types, lifting) IH rtranclp.simps skip-or-resolve.simps)+
ged
{f lemma}\ resolve	ext{-}skip	ext{-}deterministic:
 \mathit{resolve}\ S\ T \Longrightarrow \mathit{skip}\ S\ U \Longrightarrow \mathit{False}
 by (auto elim!: skipE resolveE)
lemma list-same-level-decomp-is-same-decomp:
 assumes M-K: M=M1 @ Decided K \# M2 and M-K': M=M1' @ Decided K' \# M2' and
 lev-KK': get-level\ M\ K=get-level\ M\ K' and
 n-d: no-dup M
 shows K = K' and M1 = M1' and M2 = M2'
proof -
 {
   \mathbf{fix}\ j\ j'\ K\ K'\ M1\ M1'\ M2\ M2'
   assume
     M-K: M = M1 @ Decided K # M2 and
     M-K': M = M1' @ Decided K' # <math>M2' and
     levKK': get-level\ M\ K = get-level\ M\ K' and
     j: M ! j = Decided K  and j-M: j < length M  and
     j': M ! j' = Decided K' and j'-M: j' < length M and
     jj: j' > j
   have j \ge length M1
     proof (rule ccontr)
      assume \neg length M1 < j
      then have j < length M1
        \mathbf{by} auto
       then have Decided K \in set M1
        using j unfolding M-K
        by (auto simp: nth-append in-set-conv-nth split: if-splits)
       from Set.imageI[OF\ this,\ of\ \lambda L.\ atm-of\ (lit-of\ L)]
       show False using n-d unfolding M-K by auto
```

```
qed
 moreover then have j' - Suc (length M1) < length M2
   using j'-M jj M-K unfolding M-K' by (metis One-nat-def Suc-eq-plus1 add.left-commute
     le-less-trans length-append less-diff-conv2 list.size(4) not-less not-less-eq)
 ultimately have dec: Decided K' \in set M2
   using jj j j' j'-M unfolding M-K by (auto simp: nth-append in-set-conv-nth List.nth-Cons')
 obtain xs ys where
   M2: M2 = xs @ Decided K' \# ys
   using List.split-list[OF dec] by auto
 have [simp]: atm\text{-}of\ K \neq atm\text{-}of\ K'
   using n-d unfolding M-K M2 by auto
 have atm\text{-}of\ K \notin atm\text{-}of\ `lits\text{-}of\text{-}l\ M1\ and\ }atm\text{-}of\ K' \notin atm\text{-}of\ `lits\text{-}of\text{-}l\ M1\ and\ }
 atm\text{-}of\ K'\notin\ atm\text{-}of\ ``lits\text{-}of\text{-}l\ xs
   using n-d Set.imageI[OF dec, of \lambda L. atm-of (lit-of L)] unfolding M-K
   using n-d unfolding M-K M2
   by (auto simp: lits-of-def)
 then have False
   using M2 levKK' unfolding M-K by (auto simp: split: if-splits)
} note H = this
have Decided K \in set M and Decided K' \in set M
  using M-K apply simp
  using M-K' by simp
then obtain j j' where
 j: M ! j = Decided K  and j-M: j < length M  and
 j': M ! j' = Decided K'  and j'-M: j' < length M
   using in-set-conv-nth by metis
have [simp]: j = j' using H[OF\ M\text{-}K\ M\text{-}K' - j\ j\text{-}M\ j'\ j'\text{-}M]
  H[OF\ M-K'\ M-K-j'\ j'-M\ j\ j-M]\ lev-KK'\ \mathbf{by}\ presburger
then show KK': K = K' using j j' by auto
have j-M1: j = length M1
 proof (rule ccontr)
   assume j \neq length M1
   moreover then have j - Suc (length M1) < length M2 \lor j < length M1
     using j-M M-K unfolding M-K' by force
   ultimately have Decided K \in set (M1 @ M2)
     using j unfolding M-K by (auto simp: nth-append in-set-conv-nth split: if-splits)
   from Set.imageI[OF this, of \lambda L. atm-of (lit-of L)]
   show False using n-d unfolding M-K by auto
 qed
have j-M2: j' = length M1'
 proof (rule ccontr)
   assume j' \neq length M1'
   moreover then have j' - Suc (length M1') < length M2' \vee j' < length M1'
     using j'-M M-K' unfolding M-K by force
   ultimately have Decided K' \in set (M1' @ M2')
     using j' unfolding M-K' by (auto simp: nth-append in-set-conv-nth split: if-splits)
   from Set.imageI[OF this, of \lambda L. atm-of (lit-of L)]
   show False using n-d unfolding M-K' by auto
 qed
show M1 = M1' M2 = M2'
 using arg\text{-}cong[OF\ M\text{-}K,\ of\ take\ j]\ j\text{-}M1\ arg\text{-}cong[OF\ M\text{-}K',\ of\ take\ j']\ j\text{-}M2
 using arg\text{-}cong[OF\ M\text{-}K,\ of\ drop\ (j+1)]\ j\text{-}M1\ arg\text{-}cong[OF\ M\text{-}K',\ of\ drop\ (j'+1)]\ j\text{-}M2
 by auto
```

```
{f lemma}\ backtrack	ext{-}unique:
 assumes
   bt-T: backtrack S T and
   bt-U: backtrack S U and
   inv: cdcl_W-all-struct-inv S
 shows T \sim U
proof -
 have lev: cdcl_W-M-level-inv S
   using inv unfolding cdcl_W-all-struct-inv-def by auto
 then obtain K i M1 M2 L D where
   S: conflicting S = Some D  and
   LD: L \in \# D and
   decomp: (Decided K \# M1, M2) \in set (get-all-ann-decomposition (trail S)) and
   lev-l: get-level (trail S) L = backtrack-lvl S and
   lev-l-D: get-level (trail S) L = get-maximum-level (trail S) D and
   i: qet-maximum-level (trail S) (remove1-mset L D) \equiv i and
   lev-K: get-level (trail S) K = Suc i and
   T: T \sim cons-trail (Propagated L D)
             (reduce-trail-to M1
               (add-learned-cls D
                (update-backtrack-lvl i
                  (update\text{-}conflicting\ None\ S))))
   using bt-T by (elim backtrackE) (force simp: cdcl_W-M-level-inv-def)+
 obtain K' i' M1' M2' L' D' where
   S': conflicting S = Some D' and
   LD': L' \in \# D' and
   decomp': (Decided K' # M1', M2') \in set (get-all-ann-decomposition (trail S)) and
   lev-l: get-level (trail S) L' = backtrack-lvl S and
   lev-l-D: get-level (trail S) L' = get-maximum-level (trail S) D' and
   i': get-maximum-level (trail S) (remove1-mset L'D') \equiv i' and
   lev-K': get-level (trail S) K' = Suc i' and
   U: U \sim cons-trail (Propagated L' D')
             (reduce-trail-to M1'
               (add-learned-cls D'
                (update-backtrack-lvl\ i'
                  (update\text{-}conflicting\ None\ S))))
   using bt-U lev by (elim backtrackE) (force simp: cdcl_W-M-level-inv-def)+
 obtain c where M: trail S = c @ M2 @ Decided K \# M1
   using decomp by auto
 obtain c' where M': trail S = c' @ M2' @ Decided K' # M1'
   using decomp' by auto
 have n-d: no-dup (trail S) and bt: backtrack-lvl S = count-decided (trail S)
   using lev unfolding cdcl<sub>W</sub>-M-level-inv-def by auto
 then have atm\text{-}of \ K \notin atm\text{-}of \ `lits\text{-}of\text{-}l \ (c @ M2)
   by (auto simp: lits-of-def M)
 then have i < backtrack-lvl S
   using lev-K unfolding M bt by (auto simp add: image-Un)
 have [simp]: L' = L
   proof (rule ccontr)
     assume ¬ ?thesis
     then have L' \in \# remove1\text{-}mset \ L \ D
      using S S' LD LD' by (simp \ add: in-remove1-mset-neq)
```

```
then have get-maximum-level (trail S) (remove1-mset L D) \geq backtrack-lvl S
       using \langle get\text{-}level \ (trail \ S) \ L' = backtrack\text{-}lvl \ S \rangle \ get\text{-}maximum\text{-}level\text{-}ge\text{-}get\text{-}level}
     then show False using i' i < backtrack-lvl S  by auto
   qed
  then have [simp]: D' = D
   using SS' by auto
 have [simp]: i' = i
   using i i' by auto
 have [simp]: K = K' and [simp]: M1 = M1'
    apply (rule list-same-level-decomp-is-same-decomp[of trail S c @ M2 K M1
        c' @ M2' K' M1')
    using lev-K lev-K' M M' n-d apply (auto)[4]
   apply (rule list-same-level-decomp-is-same-decomp[of trail S c @ M2 K M1
       c' @ M2' K' M1')
   using lev-K lev-K' M M' n-d apply (auto)[4]
   done
 show ?thesis using T U inv decomp by (auto simp del: state-simp simp: state-eq-def
   cdcl_W-all-struct-inv-def cdcl_W-M-level-inv-decomp)
qed
\mathbf{lemma}\ \textit{if-can-apply-backtrack-no-more-resolve}:
 assumes
   skip: skip^{**} S U and
   bt: backtrack S T and
   inv: cdcl_W-all-struct-inv S
 shows \neg resolve\ U\ V
proof (rule ccontr)
  assume resolve: \neg\neg resolve\ U\ V
 obtain L E D where
   U: trail \ U \neq [] and
   tr-U: hd-trail\ U = Propagated\ L\ E\ and
   LE: L \in \# E \text{ and }
   confl-U: conflicting U = Some D and
   LD: -L \in \# D and
   qet-maximum-level (trail\ U)\ ((remove1-mset (-L)\ D)) = backtrack-lvl U and
   V: V \sim update\text{-conflicting (Some (resolve-cls L D E)) (tl\text{-trail } U)}
   using resolve by (auto elim!: resolveE)
  have inv-U: cdcl_W-all-struct-inv U
   using mono-rtranclp[of skip cdcl_W] by (meson bj cdcl_W-bj.skip inv local.skip other
     rtranclp-cdcl_W-all-struct-inv-inv)
  then have [iff]: no\text{-}dup \ (trail \ S) \ cdcl_W\text{-}M\text{-}level\text{-}inv \ S \ and } [iff]: no\text{-}dup \ (trail \ U)
   using inv unfolding cdcl<sub>W</sub>-all-struct-inv-def cdcl<sub>W</sub>-M-level-inv-def by blast+
 have inv-V: cdcl_W-all-struct-inv V
   using mono-rtranclp[of\ resolve\ cdcl_W]\ inv-U\ resolve\ cdcl_W.simps\ cdcl_W-all-struct-inv-inv
   cdcl_W-bj.resolve cdcl_W-o.simps by blast
   S: init\text{-}clss \ U = init\text{-}clss \ S
      learned-clss U = learned-clss S
      backtrack\text{-}lvl\ U = backtrack\text{-}lvl\ S
      backtrack-lvl V = backtrack-lvl S
      conflicting S = Some D
   using rtranclp-skip-state-decomp[OF skip] U confl-U V
   by (auto simp del: state-simp simp: state-eq-def)
  obtain M_0 where
```

```
tr-S: trail <math>S = M_0 @ trail U and
 nm: \forall m \in set M_0. \neg is\text{-}decided m
 using rtranclp-skip-state-decomp[OF skip] by blast
obtain K'i'M1'M2'L'D' where
 S': conflicting S = Some D' and
 LD': L' \in \# D' and
 decomp': (Decided K' \# M1', M2') \in set (get-all-ann-decomposition (trail S)) and
 lev-l: get-level (trail S) L' = backtrack-lvl S and
 lev-l-D: get-level (trail S) L' = get-maximum-level (trail S) D' and
 i': get-maximum-level (trail S) (remove1-mset L'D') \equiv i' and
 lev-K': get-level (trail S) K' = Suc i' and
 R: T \sim cons-trail (Propagated L' D')
            (reduce-trail-to M1'
              (add-learned-cls D'
                (update-backtrack-lvl i'
                  (update\text{-}conflicting\ None\ S))))
 using bt by (elim backtrackE) metis
obtain c where M: trail S = c @ M2' @ Decided K' \# M1'
 \mathbf{using} \ \textit{get-all-ann-decomposition-exists-prepend} [\textit{OF decomp'}] \ \mathbf{by} \ \textit{auto}
have i' < backtrack-lvl S
 using count-decided-ge-get-level [of K' trail S] inv
 unfolding cdcl_W-all-struct-inv-def cdcl_W-M-level-inv-def lev-K'
 by linarith
have U: trail U = Propagated L E \# trail V
using tr-S U S V tr-U \langle trail U \neq [] \rangle by (cases trail U) (auto simp: lits-of-def)
have DD'[simp]: D' = D
 using US'S by auto
have [simp]: L' = -L
 proof (rule ccontr)
   assume ¬ ?thesis
   then have -L \in \# remove1\text{-}mset \ L' \ D'
     using DD' LD' LD by (simp add: in-remove1-mset-neq)
     have M': trail\ S = M_0 \ @\ Propagated\ L\ E\ \#\ trail\ V
       using tr-S unfolding U by auto
     have no-dup (trail S)
        using inv U unfolding cdcl<sub>W</sub>-all-struct-inv-def cdcl<sub>W</sub>-M-level-inv-def by auto
     then have atm-L-notin-M: atm-of L \notin atm-of ' (lits-of-l (trail V))
       using M' U S by (auto simp: lits-of-def)
     have get-lev-L:
       get-level(Propagated L E # trail V) L = backtrack-lvl V
       using inv-V unfolding cdcl<sub>W</sub>-all-struct-inv-def cdcl<sub>W</sub>-M-level-inv-def by auto
     have atm\text{-}of \ L \notin atm\text{-}of \ (lits\text{-}of\text{-}l \ (rev \ M_0))
       using \langle no\text{-}dup \ (trail \ S) \rangle \ M' \ \text{by} \ (auto \ simp: \ lits\text{-}of\text{-}def)
     then have get-level (trail\ S)\ L = backtrack-lvl S
       using get-lev-L S unfolding M' by auto
   ultimately
     have get-maximum-level (trail S) (remove1-mset L'D') \geq backtrack-lvl S
       by (metis get-maximum-level-ge-get-level get-level-uminus)
   then show False
     using \langle i' < backtrack-lvl S \rangle i' by auto
 \mathbf{qed}
have cdcl_W^{**} S U
 using bj cdcl_W-bj.skip local.skip mono-rtranclp[of skip cdcl_W S U] other by meson
```

```
then have cdcl_W-all-struct-inv U
   using inv \ rtranclp-cdcl_W-all-struct-inv-inv by blast
  then have Propagated L E # trail V \models as \ CNot \ D'
    using U confl-U unfolding cdcl_W-all-struct-inv-def cdcl_W-conflicting-def by auto
  then have \forall L' \in \# (remove1\text{-}mset L' D').
    atm\text{-}of\ L' \in atm\text{-}of ' lits\text{-}of\text{-}l (Propagated L E # trail U)
   using U atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set in-CNot-implies-uminus(2)
   by (fastforce dest: in-diffD)
  then have \forall L' \in \# (remove1\text{-}mset L' D').
    atm\text{-}of \ L' \notin atm\text{-}of \ `lits\text{-}of\text{-}l \ M_0
   using (no\text{-}dup\ (trail\ S)) unfolding tr\text{-}S\ U by (fastforce\ simp:\ lits\text{-}of\text{-}def\ image\text{-}image)
  then have get-maximum-level (trail S) (remove1-mset L'D') = backtrack-lvl S
    using get-maximum-level-skip-un-decided-not-present[of remove1-mset L' D'
        M_0 trail U | tr-S nm U
      (get\text{-}maximum\text{-}level\ (trail\ U)\ ((remove1\text{-}mset\ (-L)\ D)) = backtrack\text{-}lvl\ U)
    by (auto simp: S)
  then show False
   using i' \langle i' < backtrack-lvl S \rangle by auto
qed
{f lemma}\ if-can-apply-resolve-no-more-backtrack:
  assumes
   skip: skip^{**} S U and
   resolve: resolve S T and
   inv: cdcl_W-all-struct-inv S
  shows \neg backtrack\ U\ V
  using assms
  by (meson if-can-apply-backtrack-no-more-resolve rtranclp.rtrancl-refl
   rtranclp-skip-backtrack-backtrack)
\mathbf{lemma}\ if\ can-apply-backtrack-skip\ or\ resolve\ is\ skip:
 assumes
   bt: backtrack S T and
   skip: skip-or-resolve^{**} S U and
   inv: cdcl_W-all-struct-inv S
  shows skip^{**} S U
  using assms(2,3,1)
  by induction (simp-all add: if-can-apply-backtrack-no-more-resolve skip-or-resolve.simps)
lemma cdcl_W-bj-decomp:
  assumes cdcl_W-bj^{**} S W and cdcl_W-all-struct-inv S
  shows
   (\exists T \ U \ V. \ (\lambda S \ T. \ skip-or-resolve \ S \ T \land no-step \ backtrack \ S)^{**} \ S \ T
       \wedge (\lambda T U. resolve T U \wedge no-step backtrack T) T U
       \wedge skip^{**} U V \wedge backtrack V W
   \vee (\exists T \ U. \ (\lambda S \ T. \ skip-or-resolve \ S \ T \ \land \ no-step \ backtrack \ S)** \ S \ T
       \wedge (\lambda T \ U. \ resolve \ T \ U \wedge no\text{-step backtrack} \ T) \ T \ U \wedge skip^{**} \ U \ W)
   \vee (\exists T. skip^{**} S T \wedge backtrack T W)
   \vee skip^{**} S W (is ?RB S W \vee ?R S W \vee ?SB S W \vee ?S S W)
  using assms
proof induction
  case base
  then show ?case by simp
 case (step W X) note st = this(1) and bj = this(2) and IH = this(3)[OF\ this(4)] and inv = this(4)
```

```
have \neg ?RB S W and \neg ?SB S W
 proof (clarify, goal-cases)
   case (1 \ T \ U \ V)
   have skip-or-resolve** S T
     using 1(1) by (auto dest!: rtranclp-and-rtranclp-left)
   then show False
    by (metis (no-types, lifting) 1(2) 1(4) 1(5) backtrack-no-cdcl<sub>W</sub>-bj
      cdcl_W-all-struct-inv-def cdcl_W-all-struct-inv-inv cdcl_W-o.bj local.bj other
      resolve\ rtranclp-cdcl_W-all-struct-inv-inv rtranclp-skip-backtrack-backtrack
      rtranclp-skip-or-resolve-rtranclp-cdcl_W step.prems)
 next
   case 2
   then show ?case by (meson\ assms(2)\ cdcl_W-all-struct-inv-def\ backtrack-no-cdcl_W-bj
     local.bj rtranclp-skip-backtrack-backtrack)
 qed
then have IH: ?R S W \lor ?S S W using IH by blast
have cdcl_{W}^{**} S W using mono-rtranclp[of cdcl_{W}-bj cdcl_{W}] st by blast
then have inv-W: cdcl_W-all-struct-inv W by (simp\ add: rtranclp-cdcl_W-all-struct-inv-inv
 step.prems)
consider
   (BT) X' where backtrack W X'
  (skip) no-step backtrack W and skip W X
 (resolve) no-step backtrack W and resolve W X
 using bj \ cdcl_W-bj.cases by meson
then show ?case
 proof cases
   case (BT X')
   then consider
      (bt) backtrack W X
     |(sk)| skip W X
     using bj if-can-apply-backtrack-no-more-resolve [of WWX'X] inv-Wcdcl_W-bj.cases by fast
   then show ?thesis
    proof cases
      case bt
      then show ?thesis using IH by auto
      case sk
      then show ?thesis using IH by (meson rtranclp-trans r-into-rtranclp)
     qed
 next
   case skip
   then show ?thesis using IH by (meson rtranclp.rtrancl-into-rtrancl)
   case resolve note no-bt = this(1) and res = this(2)
   consider
      (RS) T U where
        (\lambda S \ T. \ skip\text{-}or\text{-}resolve \ S \ T \land no\text{-}step \ backtrack \ S)^{**} \ S \ T \ and
        resolve T U and
        no-step backtrack T and
        skip^{**} U W
     | (S) skip^{**} S W
     using IH by auto
   then show ?thesis
    proof cases
      case (RS \ T \ U)
```

```
have cdcl_W^{**} S T
    using RS(1) cdcl_W-bj.resolve cdcl_W-o.bj other skip
    mono-rtranclp[of (\lambda S \ T. \ skip-or-resolve \ S \ T \land no-step \ backtrack \ S) \ cdcl_W \ S \ T]
    by (meson skip-or-resolve.cases)
  then have cdcl_W-all-struct-inv U
    by (meson\ RS(2)\ cdcl_W-all-struct-inv-inv\ cdcl_W-bj.resolve\ cdcl_W-o.bj\ other
      rtranclp-cdcl_W-all-struct-inv-inv step.prems)
  { fix U'
    assume skip^{**} U U' and skip^{**} U' W
    have cdcl_W-all-struct-inv U'
      using \langle cdcl_W - all - struct - inv \ U \rangle \langle skip^{**} \ U \ U' \rangle \ rtranclp - cdcl_W - all - struct - inv - inv
         cdcl_W-o.bj rtranclp-mono[of skip cdcl_W] other skip by blast
    then have no-step backtrack U'
      using if-can-apply-backtrack-no-more-resolve[OF \langle skip^{**} \ U' \ W \rangle] res by blast
  with \langle skip^{**} \ U \ W \rangle
  have (\lambda S \ T. \ skip-or-resolve \ S \ T \land no-step \ backtrack \ S)^{**} \ U \ W
     proof induction
       case base
       then show ?case by simp
      case (step V W) note st = this(1) and skip = this(2) and IH = this(3) and H = this(4)
       have \bigwedge U'. skip^{**} U' V \Longrightarrow skip^{**} U' W
         using skip by auto
       then have (\lambda S \ T. \ skip\text{-}or\text{-}resolve \ S \ T \land no\text{-}step \ backtrack \ S)^{**} \ U \ V
         using IH H by blast
       moreover have (\lambda S \ T. \ skip-or-resolve \ S \ T \land no-step \ backtrack \ S)^{**} \ V \ W
         by (simp add: local.skip r-into-rtranclp st step.prems skip-or-resolve.intros)
       ultimately show ?case by simp
     qed
  then show ?thesis
    proof -
      have f1: \forall p \ pa \ pb \ pc. \neg p \ (pa) \ pb \lor \neg p^{**} \ pb \ pc \lor p^{**} \ pa \ pc
        by (meson converse-rtranclp-into-rtranclp)
      have skip-or-resolve T U \wedge no-step backtrack T
        using RS(2) RS(3) by force
      then have (\lambda p \ pa. \ skip-or-resolve \ p \ pa \land no-step \ backtrack \ p)^{**} \ T \ W
        proof -
          have (\exists vr19 \ vr16 \ vr17 \ vr18. \ vr19 \ (vr16::'st) \ vr17 \ \land \ vr19^{**} \ vr17 \ vr18
               \wedge \neg vr19^{**} vr16 vr18
            \vee \neg (skip\text{-}or\text{-}resolve\ T\ U\ \land\ no\text{-}step\ backtrack\ T)
            \vee \neg (\lambda uu \ uua. \ skip-or-resolve \ uu \ uua \land no-step \ backtrack \ uu)^{**} \ U \ W
            \vee (\lambda uu \ uua. \ skip-or-resolve \ uu \ uua \wedge no-step \ backtrack \ uu)^{**} \ T \ W
            by force
          then show ?thesis
            by (metis (no-types) \langle (\lambda S \ T. \ skip-or-resolve \ S \ T \ \land \ no-step \ backtrack \ S)^{**} \ U \ W \rangle
               \langle skip\text{-}or\text{-}resolve\ T\ U\ \land\ no\text{-}step\ backtrack\ T\rangle\ f1)
        qed
      then have (\lambda p \ pa. \ skip-or-resolve \ p \ pa \land no-step \ backtrack \ p)^{**} \ S \ W
        using RS(1) by force
      then show ?thesis
        using no-bt res by blast
    qed
next
  case S
```

```
{ fix U'
          assume skip^{**} S U' and skip^{**} U' W
           then have cdcl_W^{**} S U'
            using mono-rtranclp[of skip cdcl_W \ S \ U'] by (simp add: cdcl_W-o.bj other skip)
           then have cdcl_W-all-struct-inv U'
            by (metis (no-types, hide-lams) \langle cdcl_W - all - struct - inv S \rangle
              rtranclp-cdcl_W-all-struct-inv-inv)
           then have no-step backtrack U'
            using if-can-apply-backtrack-no-more-resolve[OF \langle skip^{**} \ U' \ W \rangle] res by blast
         }
         with S
         have (\lambda S \ T. \ skip\text{-}or\text{-}resolve \ S \ T \land no\text{-}step \ backtrack \ S)^{**} \ S \ W
           proof induction
             \mathbf{case}\ base
             then show ?case by simp
           next
            case (step V W) note st = this(1) and skip = this(2) and IH = this(3) and H = this(4)
             have \bigwedge U'. skip^{**} U' V \Longrightarrow skip^{**} U' W
               using skip by auto
             then have (\lambda S \ T. \ skip\text{-}or\text{-}resolve \ S \ T \land no\text{-}step \ backtrack \ S)^{**} \ S \ V
               using IH H by blast
             moreover have (\lambda S \ T. \ skip-or-resolve \ S \ T \land no-step \ backtrack \ S)^{**} \ V \ W
               by (simp add: local.skip r-into-rtranclp st step.prems skip-or-resolve.intros)
             ultimately show ?case by simp
           ged
         then show ?thesis using res no-bt by blast
       qed
   qed
qed
The case distinction is needed, since T \sim V does not imply that R^{**} T V.
lemma cdcl_W-bj-strongly-confluent:
  assumes
    cdcl_W-bj^{**} S V and
    cdcl_W-bj^{**} S T and
    n-s: no-step cdcl_W-bj V and
    inv: cdcl_W-all-struct-inv S
  shows T \sim V \vee cdcl_W - bj^{**} T V
  using assms(2)
proof induction
 case base
 then show ?case by (simp \ add: assms(1))
  case (step T U) note st = this(1) and s-o-r = this(2) and IH = this(3)
 have cdcl_W^{**} S T
   using st mono-rtranclp[of cdcl_W-bj cdcl_W] other by blast
  then have lev-T: cdcl_W-M-level-inv T
   using inv rtranclp-cdcl<sub>W</sub>-consistent-inv[of S T]
   unfolding cdcl_W-all-struct-inv-def by auto
 consider
      (TV) T \sim V
    |(bj-TV) \ cdcl_W - bj^{**} \ T \ V
   using IH by blast
  then show ?case
```

```
proof cases
 case TV
 have no-step cdcl_W-bj T
   using \langle cdcl_W - M - level - inv \ T \rangle n-s cdcl_W - bj-state-eq-compatible [of T - V] TV
   by (meson\ backtrack\text{-}state\text{-}eq\text{-}compatible\ cdcl}_W\text{-}bj.simps\ resolve\text{-}state\text{-}eq\text{-}compatible\ }
     skip-state-eq-compatible state-eq-ref)
 then show ?thesis
   using s-o-r by auto
next
 case bj-TV
 then obtain U' where
    T-U': cdcl_W-bj T U' and
   cdcl_W-bj^{**} U' V
   using IH n-s s-o-r by (metis rtranclp-unfold tranclpD)
 have cdcl_W^{**} S T
   by (metis (no-types, hide-lams) bj mono-rtranclp[of cdcl_W-bj cdcl_W] other st)
 then have inv-T: cdcl_W-all-struct-inv T
   by (metis (no-types, hide-lams) inv rtranclp-cdcl<sub>W</sub>-all-struct-inv-inv)
 have lev-U: cdcl_W-M-level-inv U
   using s-o-r cdcl_W-consistent-inv lev-T other by blast
 show ?thesis
   using s-o-r
   proof cases
     case backtrack
     then obtain V0 where skip** T V0 and backtrack V0 V
       \mathbf{using}\ IH\ if\text{-}can\text{-}apply\text{-}backtrack\text{-}skip\text{-}or\text{-}resolve\text{-}is\text{-}skip[OF\ backtrack\ -\ inv\text{-}T]}
        cdcl_W-bj-decomp-resolve-skip-and-bj
        by (meson\ bj-TV\ cdcl_W-bj.backtrack\ inv-T\ lev-T\ n-s
          rtranclp-skip-backtrack-backtrack-end)
     then have cdcl_W-bj^{**} T V\theta and cdcl_W-bj V\theta V
       using rtranclp-mono[of skip cdcl_W-bj] by blast+
     then show ?thesis
       using \langle backtrack \ V0 \ V \rangle \ \langle skip^{**} \ T \ V0 \rangle \ backtrack-unique \ inv-T \ local.backtrack
       rtranclp-skip-backtrack-backtrack by auto
   next
     case resolve
     then have U \sim U'
       by (meson \ T-U' \ cdcl_W-bj.simps \ if-can-apply-backtrack-no-more-resolve \ inv-T
         resolve-skip-deterministic resolve-unique rtranclp.rtrancl-refl)
     then show ?thesis
       using \langle cdcl_W - bj^{**} \ U' \ V \rangle unfolding rtranclp-unfold
       by (meson T-U' bj cdcl_W-consistent-inv lev-T other state-eq-ref state-eq-sym
         tranclp-cdcl_W-bj-state-eq-compatible)
   next
     case skip
     consider
         (sk) skip T U'
       | (bt) backtrack T U'
       using T-U' by (meson\ cdcl_W-bj.cases\ local.skip\ resolve-skip-deterministic)
     then show ?thesis
       proof cases
         case sk
         then show ?thesis
           using \langle cdcl_W - bj^{**} \ U' \ V \rangle unfolding rtranclp-unfold
           by (meson \ T-U' \ bj \ cdcl_W-all-inv(3) \ cdcl_W-all-struct-inv-def \ inv-T \ local.skip \ other
```

```
tranclp-cdcl_W-bj-state-eq-compatible skip-unique state-eq-ref)
           next
            case bt
            have skip^{++} T U
              using local.skip by blast
            have cdcl_W-bj U U'
              by (meson \langle skip^{++} \mid T \mid U \rangle backtrack bt inv-T rtranclp-skip-backtrack-backtrack-end
                tranclp-into-rtranclp)
            then have cdcl_W-bj^{++} U V
              using \langle cdcl_W - bj^{**} \ U' \ V \rangle by auto
            then show ?thesis
              \mathbf{by}\ (meson\ tranclp\text{-}into\text{-}rtranclp)
           qed
       qed
   qed
\mathbf{qed}
lemma cdcl_W-bj-unique-normal-form:
 assumes
   ST: cdcl_W - bj^{**} S T  and SU: cdcl_W - bj^{**} S U  and
   n-s-U: no-step cdcl_W-bj U and
   n-s-T: no-step cdcl_W-bj T and
   inv: cdcl_W-all-struct-inv S
 shows T \sim U
proof -
 have T \sim U \vee cdcl_W - bj^{**} T U
   using ST SU \ cdcl_W-bj-strongly-confluent inv n-s-U by blast
 then show ?thesis
   by (metis (no-types) n-s-T rtranclp-unfold state-eq-ref tranclp-unfold-begin)
qed
lemma full-cdcl_W-bj-unique-normal-form:
assumes full cdcl_W-bj S T and full cdcl_W-bj S U and
  inv: cdcl_W-all-struct-inv S
shows T \sim U
  using cdcl_W-bj-unique-normal-form assms unfolding full-def by blast
3.2.3
          CDCL with Merging
inductive cdcl_W-merge-restart :: 'st \Rightarrow 'st \Rightarrow bool where
fw-r-propagate: propagate S S' \Longrightarrow cdcl_W-merge-restart S S'
fw-r-conflict: conflict S T \Longrightarrow full \ cdcl_W-bj T \ U \Longrightarrow cdcl_W-merge-restart S \ U \mid
fw-r-decide: decide\ S\ S' \Longrightarrow cdcl_W-merge-restart S\ S'
fw-r-rf: cdcl_W-rf S S' \Longrightarrow cdcl_W-merge-restart S S'
lemma rtranclp-cdcl_W-bj-rtranclp-cdcl_W:
  cdcl_W - bj^{**} S T \Longrightarrow cdcl_W^{**} S T
 using mono-rtranclp[of cdcl_W-bj cdcl_W] by blast
lemma cdcl_W-merge-restart-cdcl_W:
 assumes cdcl_W-merge-restart S T
 shows cdcl_W^{**} S T
 using assms
proof induction
 case (fw-r-conflict S T U) note confl = this(1) and bj = this(2)
```

```
have cdcl_W \ S \ T using confl by (simp \ add: \ cdcl_W.intros \ r-into-rtranclp)
  moreover
   have cdcl_W-bj^{**} T U using bj unfolding full-def by auto
   then have cdcl_W^{**} T U using rtranclp-cdcl_W-bj-rtranclp-cdcl_W by blast
  ultimately show ?case by auto
qed (simp-all \ add: \ cdcl_W-o.intros \ cdcl_W.intros \ r-into-rtranclp)
lemma cdcl_W-merge-restart-conflicting-true-or-no-step:
 assumes cdcl_W-merge-restart S T
 shows conflicting T = None \lor no\text{-step } cdcl_W T
 using assms
proof induction
  case (fw\text{-}r\text{-}conflict \ S \ T \ U) note confl = this(1) and n\text{-}s = this(2)
   assume cdcl_W U V and conflicting U = Some D
   then have False
     using n-s unfolding full-def
     by (induction rule: cdcl_W-all-rules-induct)
       (auto dest!: cdcl_W-bj.intros elim: decideE propagateE conflictE forgetE restartE)
 then show ?case by (cases conflicting U) fastforce+
qed (auto simp add: cdcl<sub>W</sub>-rf.simps elim: propagateE decideE restartE forgetE)
inductive cdcl_W-merge :: 'st \Rightarrow 'st \Rightarrow bool where
fw-propagate: propagate S S' \Longrightarrow cdcl_W-merge S S'
fw-conflict: conflict S T \Longrightarrow full \ cdcl_W-bj T \ U \Longrightarrow cdcl_W-merge S \ U \ |
fw-decide: decide \ S \ S' \Longrightarrow cdcl_W-merge S \ S'
fw-forget: forget \ S \ S' \Longrightarrow cdcl_W-merge S \ S'
lemma cdcl_W-merge-cdcl_W-merge-restart:
  cdcl_W-merge S T \Longrightarrow cdcl_W-merge-restart S T
 by (meson\ cdcl_W\text{-}merge.cases\ cdcl_W\text{-}merge-restart.simps\ forget)
lemma rtranclp-cdcl_W-merge-tranclp-cdcl_W-merge-restart:
  cdcl_W-merge** S T \Longrightarrow cdcl_W-merge-restart** S T
 using rtranclp-mono[of\ cdcl_W-merge\ cdcl_W-merge-restart]\ cdcl_W-merge-cdcl_W-merge-restart\ by blast
lemma cdcl_W-merge-rtranclp-cdcl_W:
  cdcl_W-merge S T \Longrightarrow cdcl_W^{**} S T
  using cdcl_W-merge-cdcl_W-merge-restart cdcl_W-merge-restart-cdcl_W by blast
lemma rtranclp-cdcl_W-merge-rtranclp-cdcl_W:
  cdcl_W-merge^{**} S T \Longrightarrow cdcl_W^{**} S T
  using rtranclp-mono of cdcl_W-merge cdcl_W^{**} cdcl_W-merge-rtranclp-cdcl_W by auto
lemmas rulesE =
  skipE\ resolveE\ backtrackE\ propagateE\ conflictE\ decideE\ restartE\ forgetE
lemma\ cdcl_W-all-struct-inv-tranclp-cdcl_W-merge-tranclp-cdcl_W-merge-cdcl_W-all-struct-inv:
 assumes
   inv: cdcl_W-all-struct-inv b
   cdcl_W-merge^{++} b a
 shows (\lambda S \ T. \ cdcl_W - all - struct - inv \ S \ \wedge \ cdcl_W - merge \ S \ T)^{++} \ b \ a
 using assms(2)
proof induction
  case base
```

```
then show ?case using inv by auto
next
 case (step\ c\ d) note st=this(1) and fw=this(2) and IH=this(3)
 have cdcl_W-all-struct-inv c
   using tranclp-into-rtranclp[OF\ st]\ cdcl_W-merge-rtranclp-cdcl_W
   assms(1) rtranclp-cdcl<sub>W</sub>-all-struct-inv-inv rtranclp-mono[of cdcl<sub>W</sub>-merge cdcl<sub>W</sub>**] by fastforce
 then have (\lambda S \ T. \ cdcl_W - all - struct - inv \ S \wedge cdcl_W - merge \ S \ T)^{++} \ c \ d
   using fw by auto
 then show ?case using IH by auto
qed
lemma backtrack-is-full1-cdcl_W-bj:
 assumes bt: backtrack S T and inv: cdcl_W-M-level-inv S
 shows full1 cdcl_W-bj S T
  using bt inv backtrack-no-cdcl<sub>W</sub>-bj unfolding full1-def by blast
lemma rtrancl-cdcl_W-conflicting-true-cdcl_W-merge-restart:
 assumes cdcl_{W}^{**} S V and inv: cdcl_{W}-M-level-inv S and conflicting S = None
 shows (cdcl_W - merge - restart^{**} S V \land conflicting V = None)
   \vee (\exists T U. cdcl_W-merge-restart** S T \wedge conflicting V \neq None \wedge conflict T U \wedge cdcl_W-bj** U V)
 using assms
proof induction
 case base
 then show ?case by simp
next
 case (step U V) note st = this(1) and cdcl_W = this(2) and IH = this(3)[OF\ this(4-)] and
   conf[simp] = this(5) and inv = this(4)
 from cdcl_W
 show ?case
   proof (cases)
     case propagate
     moreover then have conflicting U = None and conflicting V = None
      by (auto elim: propagateE)
     ultimately show ?thesis using IH cdcl_W-merge-restart.fw-r-propagate[of U V] by auto
   next
     case conflict
     moreover then have conflicting U = None and conflicting V \neq None
      by (auto elim!: conflictE simp del: state-simp simp: state-eq-def)
     ultimately show ?thesis using IH by auto
   next
     case other
     then show ?thesis
      proof cases
        case decide
        then show ?thesis using IH cdcl_W-merge-restart.fw-r-decide[of U V] by (auto elim: decideE)
      next
        case bj
        moreover {
          assume skip-or-resolve U V
          have f1: cdcl_W - bj^{++} U V
           by (simp add: local.bj tranclp.r-into-trancl)
          obtain T T' :: 'st where
           f2: cdcl_W-merge-restart** S U
             \lor cdcl_W-merge-restart** S \ T \land conflicting \ U \neq None
               \wedge \ conflict \ T \ T' \wedge \ cdcl_W - bj^{**} \ T' \ U
           using IH confl by blast
```

```
have conflicting V \neq None \land conflicting U \neq None
             using \langle skip\text{-}or\text{-}resolve\ U\ V \rangle
            by (auto simp: skip-or-resolve.simps state-eq-def elim!: skipE resolveE
              simp del: state-simp)
           then have ?thesis
             by (metis (full-types) IH f1 rtranclp-trans tranclp-into-rtranclp)
         moreover {
          assume backtrack\ U\ V
           then have conflicting U \neq None by (auto elim: backtrackE)
           then obtain T T' where
             cdcl_W-merge-restart** S T and
             conflicting U \neq None and
             conflict \ T \ T' and
             cdcl_W-bj^{**} T' U
            \mathbf{using}\ \mathit{IH}\ \mathit{confl}\ \mathbf{by}\ \mathit{meson}
           have invU: cdcl_W-M-level-inv U
             using inv rtranclp-cdcl<sub>W</sub>-consistent-inv step.hyps(1) by blast
           then have conflicting V = None
             using \langle backtrack\ U\ V \rangle inv by (auto elim: backtrackE
              simp: cdcl_W - M - level - inv - decomp)
           have full cdcl_W-bj T' V
            apply (rule rtranclp-fullI[of cdcl_W-bj T'UV])
              using \langle cdcl_W - bj^{**} T' U \rangle apply fast
             using \(\delta backtrack \ U \ V \rangle \) backtrack-is-full1-cdcl_W-bj invU unfolding full1-def full-def
            by blast
           then have ?thesis
            using cdcl_W-merge-restart.fw-r-conflict[of T T' V] \langle conflict T T' \rangle
             \langle cdcl_W \text{-}merge\text{-}restart^{**} \mid S \mid T \rangle \langle conflicting \mid V \mid = None \rangle \text{ by } auto
         ultimately show ?thesis by (auto simp: cdcl<sub>W</sub>-bj.simps)
     qed
   \mathbf{next}
     case rf
     moreover then have conflicting U = None and conflicting V = None
       by (auto simp: cdcl_W-rf.simps elim: restartE forgetE)
     ultimately show ?thesis using IH cdcl<sub>W</sub>-merge-restart.fw-r-rf[of U V] by auto
   qed
qed
lemma no-step-cdcl_W-no-step-cdcl_W-merge-restart: no-step cdcl_W S \implies no-step cdcl_W-merge-restart
 by (auto simp: cdcl_W.simps cdcl_W-merge-restart.simps cdcl_W-o.simps cdcl_W-bj.simps)
lemma no-step-cdcl_W-merge-restart-no-step-cdcl_W:
 assumes
   conflicting S = None  and
   cdcl_W-M-level-inv S and
   no-step cdcl_W-merge-restart S
 shows no-step cdcl_W S
proof -
 \{ \text{ fix } S' \}
   assume conflict S S'
   then have cdcl_W S S' using cdcl_W.conflict by auto
   then have cdcl_W-M-level-inv S'
     using assms(2) cdcl_W-consistent-inv by blast
```

```
then obtain S'' where full\ cdcl_W-bj\ S'\ S''
     using cdcl_W-bj-exists-normal-form[of S'] by auto
   then have False
     using \langle conflict \ S \ S' \rangle \ assms(3) \ fw-r-conflict \ by \ blast
 then show ?thesis
   using assms unfolding cdcl_W.simps cdcl_W-merge-restart.simps cdcl_W-o.simps cdcl_W-bj.simps
   by (auto elim: skipE resolveE backtrackE conflictE decideE restartE)
qed
lemma cdcl_W-merge-restart-no-step-cdcl_W-bj:
 assumes
   cdcl_W-merge-restart S T
 shows no-step cdcl_W-bj T
 using assms
 by (induction rule: cdcl_W-merge-restart.induct)
  (force simp: cdcl_W-bj.simps cdcl_W-rf.simps cdcl_W-merge-restart.simps full-def
    elim!: rulesE)+
lemma rtranclp-cdcl_W-merge-restart-no-step-cdcl_W-bj:
 assumes
   cdcl_W-merge-restart** S T and
   conflicting S = None
 shows no-step cdcl_W-bj T
 using assms unfolding rtranclp-unfold
 apply (elim \ disjE)
  apply (force simp: cdcl_W-bj.simps cdcl_W-rf.simps elim!: rulesE)
 by (auto simp: tranclp-unfold-end simp: cdcl_W-merge-restart-no-step-cdcl_W-bj)
If conflicting S \neq None, we cannot say anything.
Remark that this theorem does not say anything about well-foundedness: even if you know that
one relation is well-founded, it only states that the normal forms are shared.
lemma conflicting-true-full-cdcl_W-iff-full-cdcl_W-merge:
 assumes confl: conflicting S = None and lev: cdcl_W-M-level-inv S
 shows full cdcl_W S V \longleftrightarrow full cdcl_W-merge-restart S V
proof
 assume full: full cdcl_W-merge-restart S V
 then have st: cdcl_W^{**} S V
   using rtranclp-mono[of\ cdcl_W-merge-restart\ cdcl_W^{**}]\ cdcl_W-merge-restart-cdcl_W
   unfolding full-def by auto
 have n-s: no-step cdcl_W-merge-restart V
   using full unfolding full-def by auto
 have n-s-bj: no-step cdcl_W-bj V
   using rtranclp-cdcl_W-merge-restart-no-step-cdcl_W-bj confl full unfolding full-def by auto
 have \bigwedge S'. conflict V S' \Longrightarrow cdcl_W-M-level-inv S'
   using cdcl_W.conflict cdcl_W-consistent-inv lev rtranclp-cdcl_W-consistent-inv st by blast
 then have \bigwedge S'. conflict V S' \Longrightarrow False
   using n-s n-s-bj cdcl_W-bj-exists-normal-form cdcl_W-merge-restart.simps by meson
 then have n-s-cdcl_W: no-step cdcl_W V
   using n-s n-s-bj by (auto simp: cdcl_W.simps cdcl_W-o.simps cdcl_W-merge-restart.simps)
 then show full cdcl_W S V using st unfolding full-def by auto
next
 assume full: full cdcl_W S V
 have no-step cdcl_W-merge-restart V
```

```
using full no-step-cdcl_W-no-step-cdcl_W-merge-restart unfolding full-def by blast
  moreover
    consider
        (fw) cdcl_W-merge-restart** S V and conflicting V = None
      | (bj) T U  where
        cdcl_W-merge-restart** S T and
        conflicting V \neq None and
        conflict \ T \ U \ {\bf and}
        cdcl_W-bj^{**} U V
      using full rtrancl-cdcl<sub>W</sub>-conflicting-true-cdcl<sub>W</sub>-merge-restart confl lev unfolding full-def
      by meson
    then have cdcl_W-merge-restart** S V
      proof cases
        case fw
        then show ?thesis by fast
      next
        case (bj \ T \ U)
       have no-step cdcl_W-bj V
          using full unfolding full-def by (meson cdcl<sub>W</sub>-o.bj other)
        then have full cdcl_W-bj U V
          using \langle cdcl_W - bj^{**} U V \rangle unfolding full-def by auto
        then have cdcl_W-merge-restart T V
          using \langle conflict \ T \ U \rangle \ cdcl_W-merge-restart.fw-r-conflict by blast
        then show ?thesis using \langle cdcl_W-merge-restart** S T \rangle by auto
 ultimately show full cdcl_W-merge-restart S V unfolding full-def by fast
qed
lemma init-state-true-full-cdcl_W-iff-full-cdcl_W-merge:
  shows full cdcl_W (init-state N) V \longleftrightarrow full\ cdcl_W-merge-restart (init-state N) V
 by (rule conflicting-true-full-cdcl_W-iff-full-cdcl_W-merge) auto
           CDCL with Merge and Strategy
The intermediate step
inductive cdcl_W-s' :: 'st \Rightarrow 'st \Rightarrow bool where
conflict': full1 \ cdcl_W - cp \ S \ S' \Longrightarrow cdcl_W - s' \ S \ S' \mid
\mathit{decide'} \colon \mathit{decide} \mathrel{SS'} \Longrightarrow \mathit{no\text{-}step} \mathrel{\mathit{cdcl}}_W \text{-}\mathit{cp} \mathrel{S} \Longrightarrow \mathit{full} \mathrel{\mathit{cdcl}}_W \text{-}\mathit{cp} \mathrel{S'} \mathrel{S''} \Longrightarrow \mathit{cdcl}_W \text{-}\mathit{s'} \mathrel{SS''} \mid
bj': full1\ cdcl_W-bj\ S\ S' \Longrightarrow no-step cdcl_W-cp\ S \Longrightarrow full\ cdcl_W-cp\ S'\ S'' \Longrightarrow cdcl_W-s'\ S\ S''
inductive-cases cdcl_W-s'E: cdcl_W-s' S T
\mathbf{lemma} \ \mathit{rtranclp-cdcl}_W\text{-}\mathit{bj-full1-cdclp-cdcl}_W\text{-}\mathit{stgy} \text{:}
  cdcl_W-bj^{**} S S' \Longrightarrow full cdcl_W-cp S' S'' \Longrightarrow cdcl_W-stgy^{**} S S''
proof (induction rule: converse-rtranclp-induct)
  case base
  then show ?case by (metis cdcl_W-stgy.conflict' full-unfold rtranclp.simps)
next
  case (step T U) note st = this(2) and bj = this(1) and IH = this(3)[OF\ this(4)]
  have no-step cdcl_W-cp T
    using bj by (auto simp add: cdcl_W-bj.simps cdcl_W-cp.simps elim!: rulesE)
  consider
    | (U') U'  where cdcl_W-bj U U'  and cdcl_W-bj^{**} U' S'
    using st by (metis\ converse-rtranclpE)
```

```
then show ?case
   proof cases
     case U
     then show ?thesis
       using \langle no\text{-step } cdcl_W\text{-}cp | T \rangle cdcl_W\text{-}o.bj | local.bj | other' | step.prems | by | (meson r-into-rtranclp)
     case U' note U' = this(1)
     have no-step cdcl_W-cp U
       using U' by (fastforce simp: cdcl_W-cp.simps cdcl_W-bj.simps elim: rulesE)
     then have full cdcl_W-cp U U
       by (simp add: full-unfold)
     then have cdcl_W-stgy T U
       using \langle no\text{-}step\ cdcl_W\text{-}cp\ T \rangle\ cdcl_W\text{-}stgy.simps\ local.bj\ cdcl_W\text{-}o.bj\ \mathbf{by}\ meson
     then show ?thesis using IH by auto
   qed
\mathbf{qed}
lemma cdcl_W-s'-is-rtrancl_P-cdcl_W-stqy:
  cdcl_W-s' S T \Longrightarrow cdcl_W-stgy^{**} S T
 apply (induction rule: cdcl_W-s'.induct)
   apply (auto intro: cdcl_W-stgy.intros)[]
  apply (meson decide other' r-into-rtranclp)
 by (metis\ full1-def\ rtranclp-cdcl_W-bj-full1-cdclp-cdcl_W-stgy\ tranclp-into-rtranclp)
lemma cdcl_W-cp-cdcl_W-bj-bissimulation:
 assumes
   full\ cdcl_W-cp\ T\ U and
   cdcl_W-bj^{**} T T' and
   cdcl_W-all-struct-inv T and
   no-step cdcl_W-bj T'
 shows full cdcl_W-cp T' U
   \vee (\exists U' U''. full cdcl_W-cp T' U'' \wedge full cdcl_W-bj U U' \wedge full cdcl_W-cp U' U''
     \land \ cdcl_W - s'^{**} \ U \ U'')
 using assms(2,1,3,4)
proof (induction rule: rtranclp-induct)
  case base
 then show ?case by blast
next
 case (step T' T'') note st = this(1) and bj = this(2) and IH = this(3)[OF this(4,5)] and
   full = this(4) and inv = this(5)
 have cdcl_W-bj^{**} T T''
   using local.bj st by auto
  then have cdcl_W^{**} T T''
   using rtranclp-cdcl_W-bj-rtranclp-cdcl_W by blast
  then have inv-T'': cdcl_W-all-struct-inv T''
   using inv \ rtranclp-cdcl_W-all-struct-inv-inv by blast
 have cdcl_W-bj^{++} T T''
   using local.bj st by auto
 have full1 cdcl_W-bj T T''
   by (metis \langle cdcl_W - bj^{++} \ T \ T'' \rangle \ full 1-def \ step.prems(3))
  then have T = U
   proof -
     obtain Z where cdcl_W-bj T Z
       using \langle cdcl_W - bj^{++} \ T \ T'' \rangle by (blast dest: tranclpD)
     { assume cdcl_W - cp^{++} T U
       then obtain Z' where cdcl_W-cp T Z'
```

```
by (meson\ tranclpD)
        then have False
          using \langle cdcl_W - bj \mid T \mid Z \rangle by (fastforce \ simp: \ cdcl_W - bj.simps \ cdcl_W - cp.simps
            elim: rulesE)
      then show ?thesis
        using full unfolding full-def rtranclp-unfold by blast
    qed
  obtain U'' where full\ cdcl_W-cp\ T''\ U''
    using cdcl_W-cp-normalized-element-all-inv inv-T" by blast
  moreover then have cdcl_W-stqy^{**} U U''
    \textbf{by} \; (\textit{metis} \; \langle T = U \rangle \; \langle \textit{cdcl}_W \text{-}\textit{bj}^{++} \; T \; T^{\prime\prime} \rangle \; \textit{rtranclp-cdcl}_W \text{-}\textit{bj-full1-cdclp-cdcl}_W \text{-}\textit{stgy} \; \textit{rtranclp-unfold})
  moreover have cdcl_W-s'** U~U''
    proof -
      obtain ss :: 'st \Rightarrow 'st where
       f1: \forall x2. (\exists v3. cdcl_W - cp x2 v3) = cdcl_W - cp x2 (ss x2)
       by moura
      have \neg cdcl_W - cp \ U \ (ss \ U)
        by (meson full full-def)
      then show ?thesis
        using f1 by (metis (no-types) \langle T = U \rangle \langle full1 \ cdcl_W-bj T \ T'' \rangle \ bj' \ calculation(1)
          r-into-rtranclp)
    qed
  ultimately show ?case
    using \langle full1 \ cdcl_W - bj \ T \ T'' \rangle \langle full \ cdcl_W - cp \ T'' \ U'' \rangle unfolding \langle T = U \rangle by blast
qed
lemma cdcl_W-cp-cdcl_W-bj-bissimulation':
  assumes
    full\ cdcl_W-cp\ T\ U and
    cdcl_W-bj^{**} T T' and
    cdcl_W-all-struct-inv T and
    no-step cdcl_W-bj T'
  shows full cdcl_W-cp T' U
    \vee (\exists U'. full1 cdcl_W-bj U U' \wedge (\forall U''. full cdcl_W-cp U' U'' \longrightarrow full \ cdcl_W-cp T' U''
      \wedge \ cdcl_W - s'^{**} \ U \ U'')
  using assms(2,1,3,4)
proof (induction rule: rtranclp-induct)
  case base
  then show ?case by blast
  case (step T' T'') note st = this(1) and bj = this(2) and IH = this(3)[OF this(4,5)] and
   full = this(4) and inv = this(5)
  have cdcl_W^{**} T T''
    by (metis local.bj rtranclp.simps rtranclp-cdcl<sub>W</sub>-bj-rtranclp-cdcl<sub>W</sub> st)
  then have inv-T'': cdcl_W-all-struct-inv T''
    using inv \ rtranclp-cdcl_W-all-struct-inv-inv by blast
  have cdcl_W-bj^{++} T T''
    using local.bj st by auto
  have full1\ cdcl_W-bj T\ T''
    by (metis \langle cdcl_W - bj^{++} \ T \ T'' \rangle \ full 1-def \ step.prems(3))
  then have T = U
    proof -
      obtain Z where cdcl_W-bj T Z
        using \langle cdcl_W - bj^{++} T T'' \rangle by (blast dest: tranclpD)
      { assume cdcl_W-cp^{++} T U
```

```
then obtain Z' where cdcl_W-cp T Z'
         by (meson\ tranclpD)
       then have False
         using \langle cdcl_W-bj TZ \rangle by (fastforce simp: cdcl_W-bj.simps cdcl_W-cp.simps elim: rulesE)
     then show ?thesis
       using full unfolding full-def rtranclp-unfold by blast
   qed
  { fix U''
   assume full\ cdcl_W-cp\ T^{\prime\prime}\ U^{\prime\prime}
   moreover then have cdcl_W-stgy^{**} U U''
     by (metis \ \langle T = U \rangle \ \langle cdcl_W - bj^{++} \ T \ T'' \rangle \ rtranclp-cdcl_W - bj-full1-cdclp-cdcl_W - stgy \ rtranclp-unfold)
   moreover have cdcl_W-s'** U~U''
     proof -
       obtain ss :: 'st \Rightarrow 'st where
         f1: \forall x2. (\exists v3. cdcl_W - cp x2 v3) = cdcl_W - cp x2 (ss x2)
         by moura
       have \neg cdcl_W - cp \ U \ (ss \ U)
         by (meson \ assms(1) \ full-def)
       then show ?thesis
         using f1 by (metis (no-types) \langle T = U \rangle \langle full1 \ cdcl_W - bj \ T \ T'' \rangle \ bj' \ calculation(1)
           r-into-rtranclp)
     qed
   ultimately have full1 cdcl_W-bj U T'' and cdcl_W-s'^{**} T'' U''
     using \langle full1 \ cdcl_W-bj T \ T'' \rangle \langle full \ cdcl_W-cp T'' \ U'' \rangle unfolding \langle T = U \rangle
     by (metis (full cdcl_W-cp T'' U'') cdcl_W-s'.simps full-unfold rtranclp.simps)
   }
  then show ?case
   using \langle full1 \ cdcl_W-bj T \ T'' \rangle full \ bj' unfolding \langle T = U \rangle full-def by (metis r-into-rtranclp)
qed
lemma cdcl_W-stgy-cdcl_W-s'-connected:
 assumes cdcl_W-stgy S U and cdcl_W-all-struct-inv S
 shows cdcl_W-s' S U
   \vee (\exists U'. \text{ full 1 } cdcl_W - bj \ U \ U' \land (\forall U''. \text{ full } cdcl_W - cp \ U' \ U'' \longrightarrow cdcl_W - s' \ S \ U''))
 using assms
proof (induction rule: cdcl_W-stgy.induct)
 case (conflict' T)
 then have cdcl_W-s' S T
   using cdcl_W-s'.conflict' by blast
 then show ?case
   by blast
next
 case (other'\ T\ U) note o=this(1) and n-s=this(2) and full=this(3) and inv=this(4)
 show ?case
   using o
   proof cases
     case decide
     then show ?thesis using cdcl_W-s'.simps full n-s by blast
   next
     have inv-T: cdcl_W-all-struct-inv T
       using cdcl_W-all-struct-inv-inv o other other'.prems by blast
     consider
         (cp) full cdcl_W-cp T U and no-step cdcl_W-bj T
```

```
| (fbj) T' where full cdcl_W-bj TT'
       apply (cases no-step cdcl_W-bj T)
        using full apply blast
       \mathbf{using} \ \ cdcl_W\text{-}bj\text{-}exists\text{-}normal\text{-}form[of\ T]\ \ inv\text{-}T\ \ \mathbf{unfolding}\ \ cdcl_W\text{-}all\text{-}struct\text{-}inv\text{-}def
       by (metis full-unfold)
     then show ?thesis
       proof cases
         case cp
         then show ?thesis
          proof -
            obtain ss :: 'st \Rightarrow 'st where
              f1: \forall s \ sa \ sb. \ (\neg full1 \ cdcl_W-bj \ s \ sa \ \lor \ cdcl_W-cp \ s \ (ss \ s) \ \lor \neg full \ cdcl_W-cp \ sa \ sb)
                \lor \ cdcl_W \text{-}s' \ s \ sb
              using bj' by moura
            have full1 \ cdcl_W-bj \ S \ T
              by (simp add: cp(2) full1-def local.bj tranclp.r-into-trancl)
            then show ?thesis
              using f1 full n-s by blast
          qed
       next
         case (fbj\ U')
         then have full1 cdcl_W-bj S U'
           using bj unfolding full1-def by auto
         moreover have no-step cdcl_W-cp S
          using n-s by blast
         moreover have T = U
           using full fbj unfolding full1-def full-def rtranclp-unfold
          by (force dest!: tranclpD simp: cdcl_W-bj.simps elim: rulesE)
         ultimately show ?thesis using cdcl_W-s'.bj'[of S U'] using fbj by blast
       qed
   \mathbf{qed}
qed
lemma cdcl_W-stgy-cdcl_W-s'-connected':
 assumes cdcl_W-stgy S U and cdcl_W-all-struct-inv S
 shows cdcl_W-s' S U
   \vee (\exists U' U''. \ cdcl_W - s' \ S \ U'' \land full \ cdcl_W - bj \ U \ U' \land full \ cdcl_W - cp \ U' \ U'')
 using assms
proof (induction rule: cdcl_W-stgy.induct)
 case (conflict' T)
 then have cdcl_W-s' S T
   using cdcl_W-s'.conflict' by blast
 then show ?case
   by blast
next
 case (other'\ T\ U) note o=this(1) and n-s=this(2) and full=this(3) and inv=this(4)
 show ?case
   using o
   proof cases
     case decide
     then show ?thesis using cdcl_W-s'.simps full n-s by blast
   next
     case bi
     have cdcl_W-all-struct-inv T
       using cdcl_W-all-struct-inv-inv o other other' prems by blast
     then obtain T' where T': full cdcl_W-bj T T'
```

```
using cdcl_W-bj-exists-normal-form unfolding full-def cdcl_W-all-struct-inv-def by metis
     then have full\ cdcl_W-bj\ S\ T'
      proof -
        have f1: cdcl_W - bj^{**} T T' \wedge no\text{-}step \ cdcl_W - bj \ T'
          \mathbf{by} \ (\textit{metis} \ (\textit{no-types}) \ \textit{T'full-def})
        then have cdcl_W-bj^{**} S T'
          by (meson converse-rtranclp-into-rtranclp local.bj)
        then show ?thesis
          using f1 by (simp add: full-def)
       qed
     have cdcl_W-bj^{**} T T'
      using T' unfolding full-def by simp
     have cdcl_W-all-struct-inv T
       using cdcl_W-all-struct-inv-inv o other other'.prems by blast
     then consider
        (T'U) full cdcl_W-cp T' U
       | (U) U' U'' where
          full cdcl_W-cp T' U'' and
          full1 cdcl_W-bj U U' and
          full\ cdcl_W-cp\ U'\ U'' and
          cdcl_W-s'** U U''
       using cdcl_W-cp-cdcl_W-bj-bissimulation[OF full <math>\langle cdcl_W-bj^{**} T T' \rangle] T' unfolding full-def
      by blast
     then show ?thesis by (metis T' cdcl<sub>W</sub>-s'.simps full-fullI local.bj n-s)
qed
lemma cdcl_W-stgy-cdcl_W-s'-no-step:
 assumes cdcl_W-stgy S U and cdcl_W-all-struct-inv S and no-step cdcl_W-bj U
 shows cdcl_W-s' S U
 using cdcl_W-stgy-cdcl<sub>W</sub>-s'-connected[OF assms(1,2)] assms(3)
 by (metis (no-types, lifting) full1-def tranclpD)
lemma rtranclp-cdcl_W-stgy-connected-to-rtranclp-cdcl_W-s':
 assumes cdcl_W-stgy^{**} S U and inv: cdcl_W-M-level-inv S
 shows cdcl_W - s'^{**} S U \vee (\exists T. cdcl_W - s'^{**} S T \wedge cdcl_W - bj^{++} T U \wedge conflicting U \neq None)
 using assms(1)
proof induction
 case base
 then show ?case by simp
 case (step T V) note st = this(1) and o = this(2) and IH = this(3)
 from o show ?case
   proof cases
     case conflict'
     then have f2: cdcl_W - s' T V
       using cdcl_W-s'.conflict' by blast
     obtain ss :: 'st where
       f3: S = T \lor cdcl_W - stqy^{**} S ss \land cdcl_W - stqy ss T
      by (metis (full-types) rtranclp.simps st)
     obtain ssa :: 'st where
       ssa: cdcl_W-cp T ssa
       using conflict' by (metis (no-types) full1-def tranclpD)
     have \forall s. \neg full \ cdcl_W \text{-}cp \ s \ T
       by (meson ssa full-def)
     then have S = T
```

```
by (metis\ (full-types)\ f3\ ssa\ cdcl_W-stgy.cases full1-def)
 then show ?thesis
   using f2 by blast
next
 case (other' U) note o = this(1) and n-s = this(2) and full = this(3)
 then show ?thesis
   using o
   proof (cases rule: cdcl_W-o-rule-cases)
     case decide
     then have cdcl_W-s'** S T
      using IH by (auto elim: rulesE)
     then show ?thesis
      by (meson decide decide' full n-s rtranclp.rtrancl-into-rtrancl)
     case backtrack
     consider
        (s') cdcl_W-s'^{**} S T
      (bj) S' where cdcl_W-s'** S S' and cdcl_W-bj<sup>++</sup> S' T and conflicting T \neq None
      using IH by blast
     then show ?thesis
      proof cases
        case s'
        moreover
         have cdcl_W-M-level-inv T
           using inv local.step(1) rtranclp-cdcl<sub>W</sub>-stgy-consistent-inv by auto
          then have full cdcl_W-bj T U
           using backtrack-is-full1-cdcl_W-bj backtrack by blast
         then have cdcl_W-s' T V
          using full bj' n-s by blast
        ultimately show ?thesis by auto
        case (bj S') note S-S' = this(1) and bj-T = this(2)
        have no-step cdcl_W-cp S'
         using bj-T by (fastforce simp: cdcl_W-cp.simps cdcl_W-bj.simps dest!: tranclpD
           elim: rulesE)
        moreover
         have cdcl_W-M-level-inv T
           using inv local.step(1) rtranclp-cdcl<sub>W</sub>-stgy-consistent-inv by auto
         then have full1 cdcl_W-bj T U
           using backtrack-is-full1-cdcl_W-bj backtrack by blast
          then have full cdcl_W-bj S' U
           using bj-T unfolding full1-def by fastforce
        ultimately have cdcl_W-s' S' V using full by (simp \ add: \ bj')
        then show ?thesis using S-S' by auto
      qed
   next
     case skip
     then have [simp]: U = V
      using full converse-rtranclpE unfolding full-def by (fastforce elim: rulesE)
     then have confl-V: conflicting V \neq None
      using skip by (auto elim!: rulesE simp del: state-simp simp: state-eq-def)
     consider
        (s') cdcl_W-s'^{**} S T
      (bj) S' where cdcl_W-s'** S S' and cdcl_W-bj<sup>++</sup> S' T and conflicting T \neq None
      using IH by blast
     then show ?thesis
```

```
proof cases
            case s'
            show ?thesis using s' confl-V skip by force
            case (bj S') note S-S' = this(1) and bj-T = this(2)
            have cdcl_W-bj^{++} S' V
              using skip bj-T by (metis \langle U = V \rangle cdcl<sub>W</sub>-bj.skip tranclp.simps)
            then show ?thesis using S-S' confl-V by auto
          qed
      next
        case resolve
        then have [simp]: U = V
          \mathbf{using} \ \mathit{full} \ \mathbf{unfolding} \ \mathit{full-def} \ \mathit{rtranclp-unfold}
          by (auto elim!: rulesE dest!: tranclpD
            simp\ del:\ state-simp\ simp:\ state-eq-def\ cdcl_W-cp.simps)
        have confl-V: conflicting V \neq None
          using resolve by (auto elim!: rulesE simp del: state-simp simp: state-eq-def)
        consider
            (s') cdcl_W-s'^{**} S T
          | (bj) S' where cdcl_W-s'** S S' and cdcl_W-bj<sup>++</sup> S' T and conflicting T \neq None
          using IH by blast
        then show ?thesis
          proof cases
            case s'
            have cdcl_W - bj^{++} T V
              using resolve by force
            then show ?thesis using s' confl-V by auto
          next
            case (bj S') note S-S' = this(1) and bj-T = this(2)
            have cdcl_W-bj^{++} S' V
              using resolve bj-T by (metis \langle U = V \rangle cdcl<sub>W</sub>-bj.resolve tranclp.simps)
            then show ?thesis using confl-V S-S' by auto
          qed
       \mathbf{qed}
   \mathbf{qed}
\mathbf{qed}
lemma n-step-cdcl_W-stgy-iff-no-step-cdcl_W-cl-cdcl_W-o:
 assumes inv: cdcl_W-all-struct-inv S
 shows no-step cdcl_W-s' S \longleftrightarrow no-step cdcl_W-cp S \land no-step cdcl_W-o S (is ?S' S \longleftrightarrow ?C S \land ?O S)
proof
 assume ?CS \land ?OS
 then show ?S'S
   by (auto simp: cdcl_W-s'.simps full1-def tranclp-unfold-begin)
next
 assume n-s: ?S' S
 have ?CS
   proof (rule ccontr)
     assume ¬ ?thesis
     then obtain S' where cdcl_W-cp S S'
     then obtain T where full cdcl_W-cp S T
       using cdcl_W-cp-normalized-element-all-inv inv by (metis (no-types, lifting) full-unfold)
     then show False using n-s cdcl_W-s'.conflict' by blast
   qed
```

```
moreover have ?OS
   proof (rule ccontr)
     assume ¬ ?thesis
     then obtain S' where cdcl_W-o S S'
       by auto
     then obtain T where full cdcl_W-cp S' T
       using cdcl_W-cp-normalized-element-all-inv inv
       by (meson\ cdcl_W-all-struct-inv-def\ n-s
         cdcl_W-stgy-cdcl_W-s'-connected' cdcl_W-then-exists-cdcl_W-stgy-step)
     then show False using n-s by (meson \langle cdcl_W - o S S' \rangle cdcl_W - all-struct-inv-def
        cdcl_W-stgy-cdcl_W-s'-connected' cdcl_W-then-exists-cdcl_W-stgy-step inv)
  ultimately show ?C S \land ?O S by auto
lemma cdcl_W-s'-tranclp-cdcl_W:
   cdcl_W-s' S S' \Longrightarrow cdcl_W<sup>++</sup> S S'
proof (induct rule: cdcl_W-s'.induct)
  case conflict'
  then show ?case
   by (simp add: full1-def tranclp-cdcl<sub>W</sub>-cp-tranclp-cdcl<sub>W</sub>)
next
  case decide'
  then show ?case
   using cdcl_W-stgy.simps cdcl_W-stgy-tranclp-cdcl_W by (meson cdcl_W-o.simps)
  case (bj' Sa S'a S'') note a2 = this(1) and a1 = this(2) and n-s = this(3)
  obtain ss :: 'st \Rightarrow 'st \Rightarrow ('st \Rightarrow 'st \Rightarrow bool) \Rightarrow 'st where
   \forall x0 \ x1 \ x2. \ (\exists \ v3. \ x2 \ x1 \ v3 \ \land \ x2^{**} \ v3 \ x0) = (x2 \ x1 \ (ss \ x0 \ x1 \ x2) \ \land \ x2^{**} \ (ss \ x0 \ x1 \ x2) \ x0)
   by moura
  then have f3: \forall p \ s \ sa. \ \neg \ p^{++} \ s \ sa \ \lor \ p \ s \ (ss \ sa \ s \ p) \ \land \ p^{**} \ (ss \ sa \ s \ p) \ sa
   by (metis (full-types) tranclpD)
  have cdcl_W-bj^{++} Sa S'a \wedge no-step cdcl_W-bj S'a
   using a2 by (simp add: full1-def)
  then have cdcl_W-bj Sa (ss S'a Sa cdcl_W-bj) \wedge cdcl_W-bj** (ss S'a Sa cdcl_W-bj) S'a
   using f3 by auto
  then show cdcl_W^{++} Sa S"
   using a1 n-s by (meson bj other rtranclp-cdcl<sub>W</sub>-bj-full1-cdclp-cdcl<sub>W</sub>-stgy
     rtranclp-cdcl_W-stgy-rtranclp-cdcl_W rtranclp-into-tranclp2)
qed
lemma tranclp\text{-}cdcl_W\text{-}s'\text{-}tranclp\text{-}cdcl_W:
  cdcl_W - s'^{++} S S' \Longrightarrow cdcl_W + S S'
  apply (induct rule: tranclp.induct)
  using cdcl_W-s'-tranclp-cdcl<sub>W</sub> apply blast
  by (meson\ cdcl_W - s' - tranclp - cdcl_W\ tranclp - trans)
lemma rtranclp-cdcl_W-s'-rtranclp-cdcl_W:
   cdcl_W - s'^{**} S S' \Longrightarrow cdcl_W ^{**} S S'
  using rtranclp-unfold[of cdcl_W-s' S S'] tranclp-cdcl_W-s'-tranclp-cdcl_W[of S S'] by auto
lemma full-cdcl_W-stgy-iff-full-cdcl_W-s':
  assumes inv: cdcl_W-all-struct-inv S
  shows full cdcl_W-stgy S T \longleftrightarrow full cdcl_W-s' S T (is ?S \longleftrightarrow ?S')
proof
  assume ?S'
```

```
then have cdcl_W^{**} S T
   using rtranclp-cdcl_W-s'-rtranclp-cdcl_W[of\ S\ T] unfolding full-def by blast
  then have inv': cdcl_W-all-struct-inv T
   using rtranclp-cdcl_W-all-struct-inv-inv inv by blast
 have cdcl_W-stgy^{**} S T
   using \langle ?S' \rangle unfolding full-def
     using cdcl_W-s'-is-rtranclp-cdcl_W-stgy rtranclp-mono[of cdcl_W-s' cdcl_W-stgy**] by auto
  then show ?S
   using \langle ?S' \rangle inv' cdcl_W-stgy-cdcl_W-s'-connected' unfolding full-def by blast
\mathbf{next}
 assume ?S
 then have inv-T:cdcl_W-all-struct-inv T
    by \ (met is \ assms \ full-def \ rtranclp-cdcl_W-all-struct-inv-inv \ rtranclp-cdcl_W-stgy-rtranclp-cdcl_W) 
 consider
     (s') cdcl_W-s'^{**} S T
   (st) S' where cdcl_W-s'** S S' and cdcl_W-bj<sup>++</sup> S' T and conflicting T \neq None
   using rtranclp-cdcl_W-stgy-connected-to-rtranclp-cdcl_W-s'[of S T] inv \langle ?S \rangle
   unfolding full-def cdcl_W-all-struct-inv-def
   by blast
  then show ?S'
   proof cases
     case s'
     have no-step cdcl_W-s' T
       using \langle full\ cdcl_W-stgy S\ T \rangle unfolding full-def
       by (meson\ cdcl_W-all-struct-inv-def\ cdcl_W-s'E\ cdcl_W-stgy.conflict'
         cdcl_W-then-exists-cdcl_W-stgy-step inv-T n-step-cdcl_W-stgy-iff-no-step-cdcl_W-cl-cdcl_W-o)
     then show ?thesis
       using s' unfolding full-def by blast
   next
     case (st S')
     have full\ cdcl_W-cp\ T\ T
       using option-full-cdcl<sub>W</sub>-cp st(3) by blast
     moreover
       have n-s: no-step cdcl_W-bj T
         \mathbf{by} \ (\textit{metis} \ \langle \textit{full} \ \textit{cdcl}_W \textit{-stgy} \ S \ T \rangle \ \textit{bj} \ \textit{inv-} T \ \textit{cdcl}_W \textit{-all-struct-inv-def}
           cdcl_W-then-exists-cdcl_W-stgy-step full-def)
       then have full cdcl_W-bj S' T
         using st(2) unfolding full1-def by blast
     moreover have no-step cdcl_W-cp S'
       using st(2) by (fastforce dest!: tranclpD simp: cdcl_W-cp.simps cdcl_W-bj.simps
         elim: rulesE)
     ultimately have cdcl_W-s' S' T
       using cdcl_W-s'.bj'[of S' T T] by blast
     then have cdcl_W-s<sup>i**</sup> S T
       using st(1) by auto
     moreover have no-step cdcl_W-s' T
       using inv-T \land full \ cdcl_W-cp \ T \ T \land full \ cdcl_W-stgy \ S \ T \land  unfolding full-def
       by (metis\ cdcl_W\ -all\ -struct\ -inv\ -def\ cdcl_W\ -then\ -exists\ -cdcl_W\ -stqy\ -step)
         n-step-cdcl<sub>W</sub>-stgy-iff-no-step-cdcl<sub>W</sub>-cl-cdcl<sub>W</sub>-o)
     ultimately show ?thesis
       unfolding full-def by blast
   qed
\mathbf{qed}
```

```
assumes
   conflict S T
   cdcl_W-all-struct-inv S
 shows \exists T. cdcl_W-stgy S T
proof -
 obtain U where full\ cdcl_W-cp\ S\ U
   using cdcl_W-cp-normalized-element-all-inv assms by blast
  then have full1\ cdcl_W-cp\ S\ U
   by (metis\ cdcl_W\text{-}cp.conflict'\ assms(1)\ full-unfold)
 then show ?thesis using cdcl_W-stgy.conflict' by blast
qed
lemma decide-step-cdcl_W-stgy-step:
 assumes
   decide S T
   cdcl_W-all-struct-inv S
 shows \exists T. \ cdcl_W-stgy S \ T
proof -
 obtain U where full\ cdcl_W-cp\ T\ U
   using cdcl_W-cp-normalized-element-all-inv by (meson\ assms(1)\ assms(2)\ cdcl_W-all-struct-inv-inv
     cdcl_W-cp-normalized-element-all-inv decide other)
  then show ?thesis
   by (metis assms cdcl_W-cp-normalized-element-all-inv cdcl_W-stgy.conflict' decide full-unfold
     other'
qed
\mathbf{lemma}\ \mathit{rtranclp-cdcl}_W\text{-}\mathit{cp-conflicting-Some} :
  cdcl_W-cp^{**} S T \Longrightarrow conflicting <math>S = Some \ D \Longrightarrow S = T
 using rtranclpD tranclpD by fastforce
inductive cdcl_W-merge-cp: 'st \Rightarrow 'st \Rightarrow bool for S: 'st where
conflict': conflict \ S \ T \Longrightarrow full \ cdcl_W - bj \ T \ U \Longrightarrow cdcl_W - merge-cp \ S \ U \ |
propagate': propagate^{++} S S' \Longrightarrow cdcl_W-merge-cp S S'
lemma cdcl_W-merge-restart-cases[consumes 1, case-names conflict propagate]:
 assumes
   cdcl_W-merge-cp S U and
   \bigwedge T. conflict S T \Longrightarrow full\ cdcl_W-bj T U \Longrightarrow P and
   propagate^{++} S U \Longrightarrow P
 shows P
 using assms unfolding cdcl_W-merge-cp.simps by auto
lemma cdcl_W-merge-cp-tranclp-cdcl_W-merge:
  cdcl_W-merge-cp S T \Longrightarrow cdcl_W-merge<sup>++</sup> S T
 apply (induction rule: cdcl_W-merge-cp.induct)
   using cdcl_W-merge.simps apply auto[1]
 using tranclp-mono of propagate\ cdcl_W-merge fw-propagate by blast
lemma rtranclp-cdcl_W-merge-cp-rtranclp-cdcl_W:
  cdcl_W-merge-cp^{**} S T \Longrightarrow cdcl_W^{**} S T
apply (induction rule: rtranclp-induct)
 apply simp
unfolding cdcl_W-merge-cp.simps by (meson cdcl_W-merge-restart-cdcl_W fw-r-conflict
  rtranclp-propagate-is-rtranclp-cdcl_{W}\ rtranclp-trans\ tranclp-into-rtranclp)
```

lemma full1- $cdcl_W$ -bj-no-step- $cdcl_W$ -bj:

```
full1 cdcl_W-bj S T \Longrightarrow no-step cdcl_W-cp S unfolding full1-def by (metis rtranclp-unfold cdcl_W-cp-conflicting-not-empty option.exhaust rtranclp-cdcl_W-merge-restart-no-step-cdcl_W-bj tranclpD)
```

Full Transformation

```
inductive cdcl_W-s'-without-decide where
conflict'-without-decide[intro]: full1\ cdcl_W-cp S\ S' \Longrightarrow cdcl_W-s'-without-decide S\ S'
\textit{bj'-without-decide}[\textit{intro}] : \textit{full1 } \textit{cdcl}_{W} \textit{-bj } \textit{S } \textit{S'} \Longrightarrow \textit{no-step } \textit{cdcl}_{W} \textit{-cp } \textit{S} \Longrightarrow \textit{full } \textit{cdcl}_{W} \textit{-cp } \textit{S'} \textit{S''}
     \implies cdcl_W-s'-without-decide S S''
lemma rtranclp-cdcl_W-s'-without-decide-rtranclp-cdcl_W:
  cdcl_W-s'-without-decide** S \ T \Longrightarrow cdcl_W** S \ T
  apply (induction rule: rtranclp-induct)
   apply simp
  by (meson\ cdcl_W - s'.simps\ cdcl_W - s'-tranclp-cdcl_W\ cdcl_W - s'-without-decide.simps
   rtranclp-tranclp-tranclp tranclp-into-rtranclp)
lemma rtranclp-cdcl_W-s'-without-decide-rtranclp-cdcl_W-s':
  cdcl_W-s'-without-decide** S T \Longrightarrow cdcl_W-s'** S T
proof (induction rule: rtranclp-induct)
  case base
  then show ?case by simp
next
  case (step y z) note a2 = this(2) and a1 = this(3)
  have cdcl_W-s' y z
   using a2 by (metis (no-types) bj' cdcl_W-s'.conflict' cdcl_W-s'-without-decide.cases)
  then show cdcl_W-s'** S z
   using a1 by (meson r-into-rtranclp rtranclp-trans)
qed
\mathbf{lemma}\ rtranclp\text{-}cdcl_W\text{-}merge\text{-}cp\text{-}is\text{-}rtranclp\text{-}cdcl_W\text{-}s'\text{-}without\text{-}decide}:
  assumes
    cdcl_W-merge-cp^{**} S V
    conflicting S = None
  shows
   (cdcl_W - s' - without - decide^{**} S V)
   \vee (\exists T. \ cdcl_W - s' - without - decide^{**} \ S \ T \land propagate^{++} \ T \ V)
   \vee (\exists T U. cdcl_W-s'-without-decide** S T \wedge full1 cdcl_W-bj T U \wedge propagate** U V)
  using assms
{f proof}\ (induction\ rule:\ rtranclp-induct)
  case base
  then show ?case by simp
next
  case (step U V) note st = this(1) and cp = this(2) and IH = this(3)[OF\ this(4)]
  from cp show ?case
   proof (cases rule: cdcl_W-merge-restart-cases)
     case propagate
     then show ?thesis using IH by (meson rtranclp-tranclp-tranclp-into-rtranclp)
     case (conflict U') note confl = this(1) and bj = this(2)
     have full1-U-U': full1 \ cdcl_W-cp \ U \ U'
       by (simp add: conflict-is-full1-cdcl<sub>W</sub>-cp local.conflict(1))
     consider
         (s') cdcl_W-s'-without-decide^{**} S U
       \mid (propa) \ T' where cdcl_W-s'-without-decide** S \ T' and propagate^{++} \ T' \ U
```

```
\mid (\mathit{bj-prop}) \ \mathit{T'} \ \mathit{T''} \ \mathbf{where}
           cdcl_W-s'-without-decide** S T' and
          full1 cdcl_W-bj T' T'' and
          propagate^{**} T^{\prime\prime} U
       using IH by blast
     then show ?thesis
       proof cases
         case s'
         have cdcl_W-s'-without-decide U U'
         using full1-U-U' conflict'-without-decide by blast
         then have cdcl_W-s'-without-decide** S U'
          using \langle cdcl_W - s' - without - decide^{**} S U \rangle by auto
         moreover have U' = V \vee full1 \ cdcl_W-bj U' \ V
          using bj by (meson full-unfold)
         ultimately show ?thesis by blast
       next
         case propa note s' = this(1) and T'-U = this(2)
         have full1 cdcl_W-cp T' U'
           using rtranclp-mono[of\ propagate\ cdcl_W-cp]\ T'-U\ cdcl_W-cp.propagate'\ full1-U-U'
           rtranclp-full1I[of\ cdcl_W-cp\ T']\ by (metis\ (full-types)\ predicate2D\ predicate2I
            tranclp-into-rtranclp)
         have cdcl_W-s'-without-decide** S U'
           using \langle full1 \ cdcl_W \text{-}cp \ T' \ U' \rangle \ conflict'\text{-}without\text{-}decide \ s' \ by \ force
         have full cdcl_W-bj U' V \vee V = U' using bj unfolding full-unfold by blast
         then show ?thesis
          using \langle cdcl_W - s' - without - decide^{**} S U' \rangle by blast
       next
         case bj-prop note s' = this(1) and bj-T' = this(2) and T''-U = this(3)
         have no-step cdcl_W-cp T'
           using bj-T' full1-cdcl_W-bj-no-step-cdcl_W-bj by blast
         moreover have full1 cdcl_W-cp T'' U'
           using rtranclp-mono[of\ propagate\ cdcl_W-cp]\ T''-U\ cdcl_W-cp.propagate'\ full1-U-U'
           rtranclp-full1I[of\ cdcl_W-cp\ T''] by blast
         ultimately have cdcl_W-s'-without-decide T' U'
           using bj'-without-decide[of T' T'' U'] bj-T' by (simp add: full-unfold)
         then have cdcl_W-s'-without-decide** \tilde{S} U'
           using s' rtranclp.intros(2)[of - S T' U'] by blast
         then show ?thesis
           using local.bj unfolding full-unfold by blast
       qed
   qed
qed
lemma rtranclp-cdcl_W-s'-without-decide-is-rtranclp-cdcl_W-merge-cp:
 assumes
   cdcl_W-s'-without-decide** S V and
   confl: conflicting S = None
   (cdcl_W - merge - cp^{**} S V \wedge conflicting V = None)
   \lor (cdcl_W - merge - cp^{**} S \ V \land conflicting \ V \neq None \land no - step \ cdcl_W - cp \ V \land no - step \ cdcl_W - bj \ V)
   \vee (\exists T. cdcl_W-merge-cp^{**} S T \wedge conflict T V)
 using assms(1)
proof (induction)
 {f case}\ base
 then show ?case using confl by auto
next
```

```
case (step U V) note st = this(1) and s = this(2) and IH = this(3)
from s show ?case
 proof (cases rule: cdcl_W-s'-without-decide.cases)
   case conflict'-without-decide
   then have rt: cdcl_W-cp^{++} U V unfolding full1-def by fast
   then have conflicting U = None
    using tranclp-cdcl_W-cp-propagate-with-conflict-or-not [of UV]
     conflict by (auto dest!: tranclpD simp: rtranclp-unfold elim: rulesE)
   then have cdcl_W-merge-cp^{**} S U using IH by (auto elim: rulesE
     simp del: state-simp simp: state-eq-def)
   consider
      (propa)\ propagate^{++}\ U\ V
     | (confl') conflict U V
     | (propa-confl') U' where propagate<sup>++</sup> U U' conflict U' V
    using tranclp-cdcl<sub>W</sub>-cp-propagate-with-conflict-or-not[OF rt] unfolding rtranclp-unfold
    by fastforce
   then show ?thesis
    proof cases
      case propa
      then have cdcl_W-merge-cp U V
        by (auto intro: cdcl_W-merge-cp.intros)
      moreover have conflicting V = None
        using propa unfolding translp-unfold-end by (auto elim: rulesE)
      ultimately show ?thesis using \langle cdcl_W-merge-cp^{**} S U\rangle by (auto elim!: rulesE
        simp del: state-simp simp: state-eq-def)
    next
      case confl'
      then show ?thesis using \langle cdcl_W-merge-cp^{**} S U\rangle by auto
      case propa-confl' note propa = this(1) and confl' = this(2)
      then have cdcl_W-merge-cp U U' by (auto intro: cdcl_W-merge-cp.intros)
      then have cdcl_W-merge-cp^{**} S U' using \langle cdcl_W-merge-cp^{**} S U \rangle by auto
      then show ?thesis using \langle cdcl_W-merge-cp** S U \rangle confl' by auto
    qed
 next
   case (bj'-without-decide U') note full-bj = this(1) and cp = this(3)
   then have conflicting U \neq None
    using full-bj unfolding full1-def by (fastforce dest!: tranclpD simp: cdcl<sub>W</sub>-bj.simps
      elim: rulesE)
   with IH obtain T where
     S-T: cdcl_W-merge-cp^{**} S T and T-U: conflict T U
    using full-bj unfolding full1-def by (blast dest: tranclpD)
   then have cdcl_W-merge-cp T U'
    using cdcl_W-merge-cp.conflict'[of T U U'] full-bj by (simp add: full-unfold)
   then have S-U': cdcl_W-merge-cp** S U' using S-T by auto
   consider
      (n-s) U' = V
     \mid (propa) \ propagate^{++} \ U' \ V
     | (confl') conflict U' V
     | (propa-confl') U''  where propagate^{++} U' U''  conflict U'' V
    using tranclp-cdcl_W-cp-propagate-with-conflict-or-not cp
    unfolding rtranclp-unfold full-def by metis
   then show ?thesis
    proof cases
      case propa
      then have cdcl_W-merge-cp U' V by (blast intro: cdcl_W-merge-cp.intros)
```

```
moreover have conflicting V = None
         using propa unfolding translp-unfold-end by (auto elim: rulesE)
        ultimately show ?thesis using S-U' by (auto elim: rulesE
         simp del: state-simp simp: state-eq-def)
      next
        case confl'
        then show ?thesis using S-U' by auto
      next
        case propa-confl' note propa = this(1) and confl = this(2)
        have cdcl_W-merge-cp U' U'' using propa by (blast intro: cdcl_W-merge-cp.intros)
        then show ?thesis using S-U' confl by (meson rtranclp.rtrancl-into-rtrancl)
      next
        case n-s
        then show ?thesis
         using S-U' apply (cases conflicting V = None)
          using full-bj apply simp
         by (metis cp full-def full-unfold full-bj)
      qed
   qed
\mathbf{qed}
lemma no-step-cdcl_W-s'-no-ste-cdcl_W-merge-cp:
 assumes
   cdcl_W-all-struct-inv S
   conflicting S = None
   no-step cdcl_W-s' S
 shows no-step cdcl_W-merge-cp S
 using assms apply (auto simp: cdcl_W-s'.simps cdcl_W-merge-cp.simps)
   using conflict-is-full1-cdcl_W-cp apply blast
 using cdcl_W-cp-normalized-element-all-inv cdcl_W-cp.propagate' by (metis cdcl_W-cp.propagate'
   full-unfold tranclpD)
The no-step decide S is needed, since cdcl_W-merge-cp is cdcl_W-s' without decide.
lemma\ conflicting-true-no-step-cdcl_W-merge-cp-no-step-s'-without-decide:
 assumes
   confl: conflicting S = None  and
   inv: cdcl_W-M-level-inv S and
   n-s: no-step cdcl_W-merge-cp S
 shows no-step cdcl_W-s'-without-decide S
proof (rule ccontr)
 assume \neg no-step cdcl_W-s'-without-decide S
 then obtain T where
   cdcl_W: cdcl_W-s'-without-decide S T
   by auto
 then have inv-T: cdcl_W-M-level-inv T
   using rtranclp-cdcl_W-s'-without-decide-rtranclp-cdcl_W[of S T]
   rtranclp-cdcl_W-consistent-inv inv by blast
 from cdcl_W show False
   proof cases
    case conflict'-without-decide
    have no-step propagate S
      using n-s by (blast intro: cdcl_W-merge-cp.intros)
    then have conflict S T
      using local.conflict' tranclp-cdcl_W-cp-propagate-with-conflict-or-not[of S T]
      local.conflict'-without-decide unfolding full1-def rtranclp-unfold
      by (metis tranclp-unfold-begin)
```

```
moreover
        then obtain T' where full\ cdcl_W-bj\ T\ T'
          using cdcl_W-bj-exists-normal-form inv-T by blast
      ultimately show False using cdcl_W-merge-cp.conflict' n-s by meson
      case (bj'-without-decide S')
      then show ?thesis
        using confl unfolding full1-def by (fastforce simp: cdcl_W-bj.simps dest: tranclpD
          elim: rulesE)
    qed
\mathbf{qed}
\mathbf{lemma}\ conflicting\text{-}true\text{-}no\text{-}step\text{-}s'\text{-}without\text{-}decide\text{-}no\text{-}step\text{-}cdcl_W\text{-}merge\text{-}cp};
  assumes
    inv: cdcl_W-all-struct-inv S and
    n-s: no-step cdcl_W-s'-without-decide S
  shows no-step cdcl_W-merge-cp S
proof (rule ccontr)
  assume ¬ ?thesis
  then obtain T where cdcl_W-merge-cp S T
    by auto
  then show False
    proof cases
      case (conflict' S')
      then show False using n-s conflict'-without-decide conflict-is-full1-cdcl<sub>W</sub>-cp by blast
    next
      case propagate'
      moreover
       have cdcl_W-all-struct-inv T
          using inv by (meson local.propagate' rtranclp-cdcl<sub>W</sub>-all-struct-inv-inv
            rtranclp-propagate-is-rtranclp-cdcl_W tranclp-into-rtranclp)
        then obtain U where full\ cdcl_W-cp\ T\ U
          using cdcl_W-cp-normalized-element-all-inv by auto
      ultimately have full 1 \ cdcl_W-cp \ S \ U
        using tranclp-full-full1I[of\ cdcl_W-cp\ S\ T\ U]\ cdcl_W-cp.propagate'
        tranclp{-}mono[of\ propagate\ cdcl_W{-}cp]\ \mathbf{by}\ blast
      then show False using conflict'-without-decide n-s by blast
    qed
\mathbf{qed}
lemma no-step-cdcl_W-merge-cp-no-step-cdcl_W-cp:
  no\text{-step } cdcl_W\text{-}merge\text{-}cp \ S \Longrightarrow cdcl_W\text{-}M\text{-}level\text{-}inv \ S \Longrightarrow no\text{-step } cdcl_W\text{-}cp \ S
  using cdcl_W-bj-exists-normal-form cdcl_W-consistent-inv[OF\ cdcl_W.conflict,\ of\ S]
  by (metis\ cdcl_W\text{-}cp.cases\ cdcl_W\text{-}merge\text{-}cp.simps\ tranclp.intros(1))
\mathbf{lemma}\ conflicting\text{-}not\text{-}true\text{-}rtranclp\text{-}cdcl_W\text{-}merge\text{-}cp\text{-}no\text{-}step\text{-}cdcl_W\text{-}bj\text{:}}
  assumes
    conflicting S = None  and
    cdcl_W-merge-cp^{**} S T
  shows no-step cdcl_W-bj T
  using assms(2,1) by (induction)
  (fast force\ simp:\ cdcl_W\mbox{-}merge-cp.simps\ full-def\ tranclp-unfold-end\ cdcl_W\mbox{-}bj.simps
    elim: rulesE)+
\mathbf{lemma}\ conflicting\text{-}true\text{-}full\text{-}cdcl_W\text{-}merge\text{-}cp\text{-}iff\text{-}full\text{-}cdcl_W\text{-}s'\text{-}without\text{-}decode}:
```

assumes

```
confl: conflicting S = None and
   inv: cdcl_W-all-struct-inv S
 shows
   full\ cdcl_W-merge-cp S\ V\longleftrightarrow full\ cdcl_W-s'-without-decide S\ V\ (\mathbf{is}\ ?fw\longleftrightarrow ?s')
proof
 assume ?fw
  then have st: cdcl_W-merge-cp^{**} S V and n-s: no-step cdcl_W-merge-cp V
   unfolding full-def by blast+
 have inv-V: cdcl_W-all-struct-inv V
   using rtranclp-cdcl_W-merge-cp-rtranclp-cdcl_W[of S V] \langle ?fw \rangle unfolding full-def
   by (simp add: inv rtranclp-cdcl<sub>W</sub>-all-struct-inv-inv)
  consider
     (s') cdcl_W-s'-without-decide^{**} S V
     (propa) T where cdcl_W-s'-without-decide** S T and propagate<sup>++</sup> T V
   using rtranclp-cdcl_W-merge-cp-is-rtranclp-cdcl_W-s'-without-decide confl st n-s by metis
  then have cdcl_W-s'-without-decide** S V
   proof cases
     case s'
     then show ?thesis.
   next
     case propa note s' = this(1) and propa = this(2)
     have no-step cdcl_W-cp V
       using no-step-cdcl_W-merge-cp-no-step-cdcl_W-cp n-s inv-V
       unfolding cdcl_W-all-struct-inv-def by blast
     then have full cdcl_W-cp T V
       using propa tranclp-mono[of propagate cdcl_W-cp] cdcl_W-cp.propagate' unfolding full1-def
       by blast
     then have cdcl_W-s'-without-decide T V
       using conflict'-without-decide by blast
     then show ?thesis using s' by auto
   next
     case by note s' = this(1) and bj = this(2) and propa = this(3)
     have no-step cdcl_W-cp V
       using no-step-cdcl_W-merge-cp-no-step-cdcl_W-cp n-s inv-V
       unfolding cdcl_W-all-struct-inv-def by blast
     then have full cdcl_W-cp U V
       using propa rtranclp-mono[of\ propagate\ cdcl_W-cp]\ cdcl_W-cp.propagate'\ unfolding\ full-def
       by blast
     moreover have no-step cdcl_W-cp T
       using by unfolding full1-def by (fastforce dest!: tranclpD \ simp: cdcl_W-bj.simps \ elim: \ rulesE)
     ultimately have cdcl_W-s'-without-decide T V
       using bj'-without-decide[of T U V] bj by blast
     then show ?thesis using s' by auto
   qed
  moreover have no-step cdcl_W-s'-without-decide V
   proof (cases conflicting V = None)
     case False
     { fix ss :: 'st
      have ff1: \forall s \ sa. \neg cdcl_W - s' \ s \ sa \lor full1 \ cdcl_W - cp \ s \ sa
         \vee (\exists sb. \ decide \ s \ sb \land no\text{-}step \ cdcl_W\text{-}cp \ s \land full \ cdcl_W\text{-}cp \ sb \ sa)
         \vee (\exists sb. full1 \ cdcl_W - bj \ s \ sb \land no\text{-step} \ cdcl_W - cp \ s \land full \ cdcl_W - cp \ sb \ sa)
         by (metis\ cdcl_W - s'.cases)
       \mathbf{have}\ \mathit{ff2}\colon (\forall\ p\ s\ sa.\ \neg\ \mathit{full1}\ p\ (s{::}'st)\ sa\ \lor\ p^{++}\ s\ sa\ \land\ \mathit{no-step}\ p\ sa)
         \land (\forall p \ s \ sa. \ (\neg p^{++} \ (s::'st) \ sa \lor (\exists s. \ p \ sa \ s)) \lor full1 \ p \ sa)
         by (meson full1-def)
```

```
obtain ssa :: ('st \Rightarrow 'st \Rightarrow bool) \Rightarrow 'st \Rightarrow 'st \Rightarrow 'st where
          ff3: \forall p \ s \ sa. \ \neg p^{++} \ s \ sa \ \lor \ p \ s \ (ssa \ p \ s \ sa) \ \land \ p^{**} \ (ssa \ p \ s \ sa) \ sa
          by (metis (no-types) tranclpD)
       then have a3: \neg cdcl_W - cp^{++} V ss
          using False by (metis option-full-cdcl<sub>W</sub>-cp full-def)
       have \bigwedge s. \neg cdcl_W - bj^{++} V s
          using ff3 False by (metis confl st
            conflicting-not-true-rtranclp-cdcl_W-merge-cp-no-step-cdcl_W-bj)
       then have \neg cdcl_W-s'-without-decide V ss
          using ff1 a3 ff2 by (metis cdcl_W-s'-without-decide.cases)
      then show ?thesis
       by fastforce
      next
       case True
       then show ?thesis
          \mathbf{using}\ conflicting\text{-}true\text{-}no\text{-}step\text{-}cdcl_W\text{-}merge\text{-}cp\text{-}no\text{-}step\text{-}s'\text{-}without\text{-}decide}\ n\text{-}s\ inv\text{-}V
          unfolding cdcl_W-all-struct-inv-def by simp
   qed
  ultimately show ?s' unfolding full-def by blast
next
  assume s': ?s'
  then have st: cdcl_W-s'-without-decide** S V and n-s: no-step cdcl_W-s'-without-decide V
   unfolding full-def by auto
  then have cdcl_W^{**} S V
   using rtranclp-cdcl_W-s'-without-decide-rtranclp-cdcl<sub>W</sub> st by blast
  then have inv-V: cdcl<sub>W</sub>-all-struct-inv V using inv rtranclp-cdcl<sub>W</sub>-all-struct-inv-inv by blast
  then have n-s-cp-V: no-step cdcl_W-cp V
   using cdcl_W-cp-normalized-element-all-inv[of V] full-fullI[of cdcl_W-cp V] n-s
   conflict'-without-decide conflicting-true-no-step-s'-without-decide-no-step-cdcl_W-merge-cp
   no\text{-}step\text{-}cdcl_W\text{-}merge\text{-}cp\text{-}no\text{-}step\text{-}cdcl_W\text{-}cp
   unfolding cdcl_W-all-struct-inv-def by presburger
  have n-s-bj: no-step cdcl_W-bj V
   proof (rule ccontr)
      assume ¬ ?thesis
      then obtain W where W: cdcl_W-bj V W by blast
      have cdcl_W-all-struct-inv W
        using W \ cdcl_W.simps \ cdcl_W-all-struct-inv-inv \ inv-V \ by \ blast
      then obtain W' where full cdcl_W-bj V W'
       \mathbf{using} \ \ \mathit{cdcl}_W \textit{-}\mathit{bj-exists-normal-form}[\mathit{of} \ \ \mathit{W}] \ \ \mathit{full-fullI}[\mathit{of} \ \mathit{cdcl}_W \textit{-}\mathit{bj} \ \ \mathit{V} \ \ \mathit{W}] \ \ \mathit{W}
       unfolding cdcl_W-all-struct-inv-def
       by blast
      moreover
       then have cdcl_W^{++} V W'
          using tranclp-mono[of\ cdcl_W-bj\ cdcl_W]\ cdcl_W.other\ cdcl_W-o.bj\ unfolding\ full1-def\ by\ blast
       then have cdcl_W-all-struct-inv W'
          by (meson\ inv-V\ rtranclp-cdcl_W-all-struct-inv-inv\ tranclp-into-rtranclp)
       then obtain X where full\ cdcl_W-cp\ W'\ X
          using cdcl_W-cp-normalized-element-all-inv by blast
      ultimately show False
        using bj'-without-decide n-s-cp-V n-s by blast
  from s' consider
      (cp\text{-}true)\ cdcl_W\text{-}merge\text{-}cp^{**}\ S\ V\ and\ conflicting\ V=None
   |(cp\text{-}false)| cdcl_W-merge-cp^{**} S V and conflicting V \neq None and no-step cdcl_W-cp V and
        no-step cdcl_W-bj V
```

```
| (cp\text{-}confl) \ T \ \text{where} \ cdcl_W\text{-}merge\text{-}cp^{**} \ S \ T \ conflict \ T \ V
   using rtranclp-cdcl_W-s'-without-decide-is-rtranclp-cdcl_W-merge-cp[of\ S\ V]\ confl
   unfolding full-def by meson
  then have cdcl_W-merge-cp^{**} S V
   proof cases
     case cp-confl note S-T = this(1) and conf-V = this(2)
     have full cdcl_W-bj V
       using conf-V n-s-bj unfolding full-def by fast
     then have cdcl_W-merge-cp T V
       using cdcl_W-merge-cp.conflict' conf-V by auto
     then show ?thesis using S-T by auto
   qed fast+
  moreover
   then have cdcl_W^{**} S V using rtranclp-cdcl_W-merge-cp-rtranclp-cdcl<sub>W</sub> by blast
   then have cdcl_W-all-struct-inv V
     using inv rtranclp-cdcl_W-all-struct-inv-inv by blast
   then have no-step cdcl_W-merge-cp V
     using conflicting-true-no-step-s'-without-decide-no-step-cdcl_W-merge-cp s'
     unfolding full-def by blast
 ultimately show ?fw unfolding full-def by auto
qed
lemma conflicting-true-full1-cdcl_W-merge-cp-iff-full1-cdcl_W-s'-without-decode:
 assumes
   confl: conflicting S = None  and
   inv: cdcl_W-all-struct-inv S
 shows
   full1\ cdcl_W-merge-cp S\ V\longleftrightarrow full1\ cdcl_W-s'-without-decide S\ V
proof -
 have full cdcl_W-merge-cp S V = full \ cdcl_W-s'-without-decide S V
   using conflicting-true-full-cdcl_W-merge-cp-iff-full-cdcl_W-s'-without-decode inv
   by simp
 then show ?thesis unfolding full-unfold full1-def tranclp-unfold-begin by blast
qed
\mathbf{lemma}\ conflicting\text{-}true\text{-}full1\text{-}cdcl_W\text{-}merge\text{-}cp\text{-}imp\text{-}full1\text{-}cdcl_W\text{-}s'\text{-}without\text{-}decode}:
   fw: full1 cdcl_W-merge-cp S V and
   inv: cdcl_W-all-struct-inv S
 shows
   full1 cdcl_W-s'-without-decide S V
proof -
 have conflicting S = None
   using fw unfolding full1-def by (auto dest!: tranclpD simp: cdclw-merge-cp.simps elim: rulesE)
 then show ?thesis
   using conflicting-true-full1-cdcl<sub>W</sub>-merge-cp-iff-full1-cdcl<sub>W</sub>-s'-without-decode fw inv by simp
qed
inductive cdcl_W-merge-stay for S:: 'st where
fw-s-cp[intro]: full1\ cdcl_W-merge-cp\ S\ T \implies cdcl_W-merge-stgy\ S\ T\ |
fw-s-decide[intro]: decide S T \Longrightarrow no-step cdcl_W-merge-cp S \Longrightarrow full\ cdcl_W-merge-cp T U
  \implies cdcl_W-merge-stgy S \ U
lemma cdcl_W-merge-stgy-tranclp-cdcl<sub>W</sub>-merge:
 assumes fw: cdcl_W-merge-stgy S T
 shows cdcl_W-merge<sup>++</sup> S T
```

```
proof -
  \{ \mathbf{fix} \ S \ T \}
   assume full1 cdcl_W-merge-cp \ S \ T
   then have cdcl_W-merge<sup>++</sup> S T
     using tranclp-mono[of\ cdcl_W-merge-cp\ cdcl_W-merge^{++}]\ cdcl_W-merge-cp-tranclp-cdcl_W-merge
     unfolding full1-def
     by auto
  } note full1-cdcl_W-merge-cp-cdcl_W-merge = this
 show ?thesis
   using fw
   apply (induction rule: cdcl_W-merge-stgy.induct)
     using full1-cdcl_W-merge-cp-cdcl_W-merge apply simp
   unfolding full-unfold by (auto dest!: full1-cdcl_W-merge-cp-cdcl<sub>W</sub>-merge fw-decide)
qed
lemma rtranclp-cdcl_W-merge-stgy-rtranclp-cdcl_W-merge:
 assumes fw: cdcl_W-merge-stgy** S T
 shows cdcl_W-merge** S T
  using fw cdcl_W-merge-stqy-tranclp-cdcl_W-merge rtranclp-mono[of cdcl_W-merge-stqy cdcl_W-merge+^+]
  unfolding tranclp-rtranclp-rtranclp by blast
lemma cdcl_W-merge-stgy-rtranclp-cdcl<sub>W</sub>:
  cdcl_W-merge-stgy S T \Longrightarrow cdcl_W^{**} S T
 apply (induction rule: cdcl_W-merge-stgy.induct)
   using rtranclp-cdcl_W-merge-cp-rtranclp-cdcl<sub>W</sub> unfolding full1-def
   apply (simp add: tranclp-into-rtranclp)
  \mathbf{using}\ rtranclp\text{-}cdcl_W\text{-}merge\text{-}cp\text{-}rtranclp\text{-}cdcl_W\ cdcl_W\text{-}o.decide\ cdcl_W.other\ \mathbf{unfolding}\ full\text{-}def
 by (meson r-into-rtranclp rtranclp-trans)
lemma rtranclp-cdcl_W-merge-stgy-rtranclp-cdcl_W:
  cdcl_W-merge-stgy** S T \Longrightarrow cdcl_W** S T
  using rtranclp-mono[of\ cdcl_W-merge-stgy\ cdcl_W^{**}]\ cdcl_W-merge-stgy-rtranclp-cdcl_W by auto
lemma cdcl_W-merge-stgy-cases[consumes 1, case-names fw-s-cp fw-s-decide]:
  assumes
    cdcl_W-merge-stgy S U
   full1\ cdcl_W-merge-cp S\ U \Longrightarrow P
   \bigwedge T. decide S T \Longrightarrow no\text{-step } cdcl_W\text{-merge-cp } S \Longrightarrow full \ cdcl_W\text{-merge-cp } T U \Longrightarrow P
  shows P
 using assms by (auto simp: cdcl_W-merge-stgy.simps)
inductive cdcl_W-s'-w :: 'st \Rightarrow 'st \Rightarrow bool where
conflict': full1\ cdcl_W-s'-without-decide\ S\ S' \Longrightarrow cdcl_W-s'-w\ S\ S'
decide': decide \ S \ S' \Longrightarrow no-step \ cdcl_W-s'-without-decide \ S \Longrightarrow full \ cdcl_W-s'-without-decide \ S' \ S''
  \implies cdcl_W - s' - w \ S \ S''
lemma cdcl_W-s'-w-rtranclp-cdcl_W:
  cdcl_W - s' - w \ S \ T \Longrightarrow cdcl_W^{**} \ S \ T
 apply (induction rule: cdcl_W-s'-w.induct)
   using rtranclp-cdcl_W-s'-without-decide-rtranclp-cdcl_W unfolding full1-def
   apply (simp add: tranclp-into-rtranclp)
  using rtranclp-cdcl_W-s'-without-decide-rtranclp-cdcl<sub>W</sub> unfolding full-def
 by (meson decide other rtranclp-into-tranclp2 tranclp-into-rtranclp)
lemma rtranclp-cdcl_W-s'-w-rtranclp-cdcl_W:
  cdcl_W-s'-w** S T \Longrightarrow cdcl_W** S T
```

```
using rtranclp-mono[of\ cdcl_W-s'-w\ cdcl_W^{**}]\ cdcl_W-s'-w-rtranclp-cdcl_W by auto
lemma no-step-cdcl_W-cp-no-step-cdcl_W-s'-without-decide:
  assumes no-step cdcl_W-cp S and conflicting <math>S = None and inv: cdcl_W-M-level-inv S
 shows no-step cdcl_W-s'-without-decide S
 by (metis\ assms\ cdcl_W\text{-}cp.conflict'\ cdcl_W\text{-}cp.propagate'\ cdcl_W\text{-}merge\text{-}restart\text{-}cases\ tranclpD}
   conflicting-true-no-step-cdcl_W-merge-cp-no-step-s'-without-decide)
lemma no-step-cdcl_W-cp-no-step-cdcl_W-merge-restart:
 assumes no-step cdcl_W-cp S and conflicting <math>S = None
 shows no-step cdcl_W-merge-cp S
 by (metis\ assms(1)\ cdcl_W-cp.conflict'\ cdcl_W-cp.propagate'\ cdcl_W-merge-restart-cases tranclpD)
lemma after-cdcl_W-s'-without-decide-no-step-cdcl_W-cp:
  assumes cdcl_W-s'-without-decide S T
 shows no-step cdcl_W-cp T
 using assms by (induction rule: cdcl_W-s'-without-decide.induct) (auto simp: full1-def full-def)
lemma no-step-cdcl_W-s'-without-decide-no-step-cdcl_W-cp:
  cdcl_W-all-struct-inv S \Longrightarrow no-step cdcl_W-s'-without-decide S \Longrightarrow no-step cdcl_W-cp S
 \mathbf{by} \ (\mathit{simp} \ \mathit{add:} \ \mathit{conflicting-true-no-step-s'-without-decide-no-step-cdcl}_W \text{-} \mathit{merge-cp}
   no\text{-}step\text{-}cdcl_W\text{-}merge\text{-}cp\text{-}no\text{-}step\text{-}cdcl_W\text{-}cp\ }cdcl_W\text{-}all\text{-}struct\text{-}inv\text{-}def)
lemma after-cdcl_W-s'-w-no-step-cdcl_W-cp:
 assumes cdcl_W-s'-w S T and cdcl_W-all-struct-inv S
 shows no-step cdcl_W-cp T
 using assms
proof (induction rule: cdcl_W-s'-w.induct)
 case conflict'
 then show ?case
   by (auto simp: full1-def tranclp-unfold-end after-cdcl_W-s'-without-decide-no-step-cdcl_W-cp)
next
 case (decide' \ S \ T \ U)
 moreover
   then have cdcl_W^{**} S U
     using rtranclp-cdcl_W-s'-without-decide-rtranclp-cdcl_W[of\ T\ U]\ cdcl_W.other[of\ S\ T]
     cdcl_W-o. decide unfolding full-def by auto
   then have cdcl_W-all-struct-inv U
     using decide'.prems\ rtranclp-cdcl_W-all-struct-inv-inv\ by\ blast
  ultimately show ?case
   using no\text{-}step\text{-}cdcl_W\text{-}s'\text{-}without\text{-}decide\text{-}no\text{-}step\text{-}cdcl_W\text{-}cp} unfolding full-def by blast
qed
lemma rtranclp-cdcl_W-s'-w-no-step-cdcl_W-cp-or-eq:
 assumes cdcl_W-s'-w^{**} S T and cdcl_W-all-struct-inv S
 shows S = T \vee no\text{-step } cdcl_W\text{-}cp T
 using assms
proof (induction rule: rtranclp-induct)
 case base
 then show ?case by simp
next
  case (step \ T \ U)
 moreover have cdcl_W-all-struct-inv T
   using rtranclp-cdcl_W-s'-w-rtranclp-cdcl_W[of S U] assms(2) rtranclp-cdcl_W-all-struct-inv-inv
    rtranclp-cdcl_W-s'-w-rtranclp-cdcl_W step.hyps(1) by blast
  ultimately show ?case using after-cdcl_W-s'-w-no-step-cdcl_W-cp by fast
qed
```

```
\mathbf{lemma}\ rtranclp\text{-}cdcl_W\text{-}merge\text{-}stgy'\text{-}no\text{-}step\text{-}cdcl_W\text{-}cp\text{-}or\text{-}eq:
  assumes cdcl_W-merge-stgy** S T and inv: cdcl_W-all-struct-inv S
 shows S = T \vee no\text{-step } cdcl_W\text{-}cp T
  using assms
proof (induction rule: rtranclp-induct)
  case base
  then show ?case by simp
next
  case (step \ T \ U)
  moreover have cdcl_W-all-struct-inv T
   using rtranclp-cdcl_W-merge-stgy-rtranclp-cdcl_W [of S U] assms(2) rtranclp-cdcl_W-all-struct-inv-inv
   rtranclp-cdcl_W-s'-w-rtranclp-cdcl_W step.hyps(1)
   by (meson\ rtranclp-cdcl_W-merge-stgy-rtranclp-cdcl_W)
  ultimately show ?case
   using after-cdcl_W-s'-w-no-step-cdcl<sub>W</sub>-cp inv unfolding cdcl_W-all-struct-inv-def
   by (metis\ cdcl_W\ -all\ -struct\ -inv\ -def\ cdcl_W\ -merge\ -stgy. simps\ full\ 1-def\ full\ -def
      no-step-cdcl_W-merge-cp-no-step-cdcl_W-cp rtranclp-cdcl_W-all-struct-inv-inv
      rtranclp-cdcl_W-merge-stqy-rtranclp-cdcl_W tranclp.intros(1) tranclp-into-rtranclp)
qed
lemma no\text{-}step\text{-}cdcl_W\text{-}s'\text{-}without\text{-}decide\text{-}no\text{-}step\text{-}cdcl_W\text{-}bj:
  assumes no-step cdcl_W-s'-without-decide S and inv: cdcl_W-all-struct-inv S
  shows no-step cdcl_W-bj S
proof (rule ccontr)
  assume ¬ ?thesis
  then obtain T where S-T: cdcl_W-bj S T
   by auto
  have cdcl_W-all-struct-inv T
   using S-T cdcl_W-all-struct-inv-inv inv other by blast
  then obtain T' where full1 \ cdcl_W-bj \ S \ T'
   using cdcl_W-bj-exists-normal-form[of T] full-fullI S-T unfolding cdcl_W-all-struct-inv-def
   by metis
  moreover
   then have cdcl_W^{**} S T'
      \mathbf{using} \ \mathit{rtranclp-mono}[\mathit{of} \ \mathit{cdcl}_W \mathit{-}\mathit{bj} \ \mathit{cdcl}_W.\mathit{other} \ \mathit{cdcl}_W \mathit{-}\mathit{o.bj} \ \mathit{tranclp-into-rtranclp}[\mathit{of} \ \mathit{cdcl}_W \mathit{-}\mathit{bj}]
      unfolding full1-def by blast
   then have cdcl_W-all-struct-inv T'
      using inv rtranclp-cdcl_W-all-struct-inv-inv by blast
   then obtain U where full cdcl_W-cp T' U
      using cdcl_W-cp-normalized-element-all-inv by blast
  moreover have no-step cdcl_W-cp S
   using S-T by (auto simp: cdcl_W-bj.simps elim: rulesE)
  ultimately show False
  using assms cdcl_W-s'-without-decide.intros(2)[of S T' U] by fast
qed
lemma cdcl_W-s'-w-no-step-cdcl_W-bj:
 assumes cdcl_W-s'-w S T and cdcl_W-all-struct-inv S
 shows no-step cdcl_W-bj T
  using assms apply induction
   using rtranclp-cdcl_W-s'-without-decide-rtranclp-cdcl_W rtranclp-cdcl_W-all-struct-inv-inv
   no-step-cdcl<sub>W</sub>-s'-without-decide-no-step-cdcl<sub>W</sub>-bj unfolding full1-def
   apply (meson tranclp-into-rtranclp)
  \mathbf{using}\ rtranclp\text{-}cdcl_W\text{-}s'\text{-}without\text{-}decide\text{-}rtranclp\text{-}cdcl_W\ }rtranclp\text{-}cdcl_W\text{-}all\text{-}struct\text{-}inv\text{-}inv
    no\text{-}step\text{-}cdcl_W\text{-}s'\text{-}without\text{-}decide\text{-}no\text{-}step\text{-}cdcl_W\text{-}bj unfolding full-def
```

```
by (meson\ cdcl_W-merge-restart-cdcl<sub>W</sub> fw-r-decide)
lemma rtranclp-cdcl_W-s'-w-no-step-cdcl_W-bj-or-eq:
    assumes cdcl_W-s'-w** S T and cdcl_W-all-struct-inv S
    shows S = T \vee no\text{-step } cdcl_W\text{-bj } T
    using assms apply induction
        apply simp
    using rtranclp-cdcl_W-s'-w-rtranclp-cdcl<sub>W</sub> rtranclp-cdcl_W-all-struct-inv-inv
        cdcl_W-s'-w-no-step-cdcl_W-bj by meson
\mathbf{lemma} \ rtranclp\text{-}cdcl_W\text{-}s'\text{-}no\text{-}step\text{-}cdcl_W\text{-}s'\text{-}without\text{-}decide\text{-}decomp\text{-}into\text{-}cdcl_W\text{-}merge:}
    assumes
        cdcl_W-s'** R V and
        conflicting R = None  and
        inv: cdcl_W-all-struct-inv R
    shows (cdcl_W - merge - stgy^{**} R \ V \land conflicting \ V = None)
    \lor (cdcl_W \text{-merge-stgy}^{**} R \ V \land conflicting \ V \neq None \land no\text{-step} \ cdcl_W \text{-bj} \ V)
    \vee (\exists S \ T \ U. \ cdcl_W-merge-stqy** R \ S \land no-step cdcl_W-merge-cp S \land decide \ S \ T
        \land cdcl_W-merge-cp^{**} T \cup \land conflict \cup V
    \vee (\exists S \ T. \ cdcl_W \text{-merge-stgy}^{**} \ R \ S \land no\text{-step} \ cdcl_W \text{-merge-cp} \ S \land decide \ S \ T
        \land \ cdcl_W-merge-cp^{**} \ T \ V
            \land conflicting V = None
    \vee (cdcl_W \text{-merge-}cp^{**} \ R \ V \land conflicting \ V = None)
    \vee (\exists U. \ cdcl_W \text{-merge-} cp^{**} \ R \ U \land conflict \ U \ V)
    using assms(1,2)
proof induction
    case base
   then show ?case by simp
    case (step V W) note st = this(1) and s' = this(2) and IH = this(3)[OF\ this(4)] and
        n-s-R = this(4)
    from s'
    show ?case
        proof cases
            case conflict'
            consider
                    (s') cdcl_W-merge-stqy** R V
                \mid (dec\text{-}confl) \mid S \mid T \mid U \text{ where } cdcl_W\text{-}merge\text{-}stqy^{**} \mid R \mid S \text{ and } no\text{-}step \ cdcl_W\text{-}merge\text{-}cp \mid S \text{ and } no\text{-}step \ cdcl_W\text{-}cp \mid S \text{ and } no\text{-}step \ cdcl_W\text{-}cp \mid S \text{ and } no\text{-}st
                        decide\ S\ T\ {\bf and}\ cdcl_W\mbox{-}merge\mbox{-}cp^{**}\ T\ U\ {\bf and}\ conflict\ U\ V
               (dec) S T where cdcl_W-merge-stgy** R S and no-step cdcl_W-merge-cp S and decide S T
                        and cdcl_W-merge-cp^{**} T V and conflicting V = None
                   (cp) \ cdcl_W - merge - cp^{**} \ R \ V
                 | (cp\text{-}confl) \ U \text{ where } cdcl_W\text{-}merge\text{-}cp^{**} \ R \ U \text{ and } conflict \ U \ V
                using IH by meson
            then show ?thesis
                proof cases
                    case s'
                    then have R = V using inv local.conflict' unfolding full1-def
                        by (metis tranclp-unfold-begin
                            rtranclp-cdcl_W-merge-stgy'-no-step-cdcl_W-cp-or-eq)
                    consider
                            (V-W) V = W
                           (propa) propagate^{++} V W and conflicting W = None
                        | (propa-confl) V' where propagate** V V' and conflict V' W
                        using tranclp-cdcl_W-cp-propagate-with-conflict-or-not[of V W] conflict'
                        unfolding full-unfold full1-def by meson
```

```
then show ?thesis
   proof cases
    case V-W
    then show ?thesis using \langle R = V \rangle n-s-R by simp
    case propa
    then show ?thesis using \langle R = V \rangle by (auto intro: cdcl_W-merge-cp.intros)
   next
    case propa-confl
    moreover
      then have cdcl_W-merge-cp^{**} V V'
        by (metis rtranclp-unfold cdcl_W-merge-cp.propagate' r-into-rtranclp)
    ultimately show ?thesis using s' (R = V) by blast
   qed
next
 case dec\text{-}confl note - = this(5)
 then have False using conflict' unfolding full1-def by (auto dest!: tranclpD elim: rulesE)
 then show ?thesis by fast
next
 case dec note T-V = this(4)
 consider
     (propa) propagate^{++} V W  and conflicting W = None
   | (propa-confl) V' where propagate** V V' and conflict V' W
   using tranclp-cdcl_W-cp-propagate-with-conflict-or-not[of V W] conflict'
   unfolding full1-def by meson
 then show ?thesis
   proof cases
    case propa
    then show ?thesis
      by (meson T-V cdcl<sub>W</sub>-merge-cp.propagate' dec rtranclp.rtrancl-into-rtrancl)
    case propa-confl
    then have cdcl_W-merge-cp^{**} T V'
      using T-V by (metis rtranclp-unfold cdcl_W-merge-cp.propagate' rtranclp.simps)
    then show ?thesis using dec propa-confl(2) by metis
   qed
next
 case cp
 consider
     (propa) propagate^{++} V W and conflicting W = None
   | (propa-confl) V' where propagate** V V' and conflict V' W
   using tranclp-cdcl_W-cp-propagate-with-conflict-or-not[of V W] conflict'
   unfolding full1-def by meson
 then show ?thesis
   proof cases
    case propa
    then show ?thesis by (meson cdcl<sub>W</sub>-merge-cp.propagate' cp
      rtranclp.rtrancl-into-rtrancl)
   next
    case propa-confl
    then show ?thesis
      using propa-confl(2) cp
      by (metis\ (full-types)\ cdcl_W-merge-cp.propagate' rtranclp.rtrancl-into-rtrancl
        rtranclp-unfold)
   qed
next
```

```
case cp-confl
            then show ?thesis using conflict' unfolding full1-def by (fastforce dest!: tranclpD
                elim!: rulesE)
        qed
next
    case (decide' V')
    then have conf-V: conflicting V = None
        by (auto elim: rulesE)
    consider
          (s') cdcl_W-merge-stgy** R V
        \mid (dec\text{-}confl) \mid S \mid T \mid U \text{ where } cdcl_W\text{-}merge\text{-}stgy^{**} \mid R \mid S \text{ and } no\text{-}step \ cdcl_W\text{-}merge\text{-}cp \mid S \text{ and } no\text{-}step \ cdcl_W\text{-}cp \mid S \text{ and } no\text{-}step \ cdcl_W\text{-}cp \mid S \text{ and } no\text{-}st
                decide\ S\ T\ and\ cdcl_W-merge-cp^{**}\ T\ U\ and\ conflict\ U\ V
        and cdcl_W-merge-cp^{**} T V and conflicting V = None
          (cp) \ cdcl_W - merge - cp^{**} \ R \ V
        | (cp\text{-}confl) \ U \text{ where } cdcl_W\text{-}merge\text{-}cp^{**} \ R \ U \text{ and } conflict \ U \ V
        using IH by meson
    then show ?thesis
        proof cases
            case s'
            have confl-V': conflicting V' = None using decide'(1) by (auto elim: rulesE)
            have full: full1 cdcl_W-cp\ V'\ W\ \lor\ (V'=\ W\ \land\ no\text{-step}\ cdcl_W\text{-}cp\ W)
                using decide'(3) unfolding full-unfold by blast
            consider
                   (V'-W) \ V' = W
                (propa) propagate^{++} V' W and conflicting W = None
                | (propa-confl) V'' where propagate** V' V'' and conflict V'' W
               using tranclp\text{-}cdcl_W\text{-}cp\text{-}propagate\text{-}with\text{-}conflict\text{-}or\text{-}not[of\ V\ W]\ decide'}
                  \langle full1\ cdcl_W - cp\ V'\ W\ \lor\ V' = W\ \land\ no\text{-step}\ cdcl_W - cp\ W\rangle unfolding full1-def
               by (metis\ tranclp-cdcl_W-cp-propagate-with-conflict-or-not)
            then show ?thesis
               proof cases
                   case V'-W
                   then show ?thesis
                       using confl-V' local.decide'(1,2) s' conf-V
                       no\text{-}step\text{-}cdcl_W\text{-}cp\text{-}no\text{-}step\text{-}cdcl_W\text{-}merge\text{-}restart[of\ V]
                       by auto
               next
                   case propa
                   then show ?thesis using local.decide'(1,2) s' by (metis cdcl_W-merge-cp.simps conf-V
                       no-step-cdcl_W-cp-no-step-cdcl_W-merge-restart\ r-into-rtranclp)
                next
                   case propa-confl
                   then have cdcl_W-merge-cp^{**} V' V''
                       by (metis rtranclp-unfold cdcl_W-merge-cp.propagate' r-into-rtranclp)
                   then show ?thesis
                       using local.decide'(1,2) propa-confl(2) s' conf-V
                       no-step-cdcl_W-cp-no-step-cdcl_W-merge-restart
                       by metis
               qed
       next
            case (dec) note s' = this(1) and dec = this(2) and cp = this(3) and ns-cp-T = this(4)
            have full cdcl_W-merge-cp T V
               unfolding full-def by (simp add: conf-V local.decide'(2)
                    no-step-cdcl_W-cp-no-step-cdcl_W-merge-restart \ ns-cp-T)
            moreover have no-step cdcl_W-merge-cp V
```

```
by (simp add: conf-V local.decide'(2) no-step-cdcl<sub>W</sub>-cp-no-step-cdcl<sub>W</sub>-merge-restart)
 moreover have no-step cdcl_W-merge-cp S
   by (metis dec)
 ultimately have cdcl_W-merge-stgy S V
   using cp by blast
 then have cdcl_W-merge-stgy** R V using s' by auto
 consider
     (V'-W) V' = W
   | (propa) propagate^{++} V' W  and conflicting W = None
   | (propa-conft) V'' where propagate** V' V'' and conflict V'' W
   using tranclp-cdcl_W-cp-propagate-with-conflict-or-not[of V'W] decide'
   unfolding full-unfold full1-def by meson
 then show ?thesis
   proof cases
     case V'-W
     moreover have conflicting V' = None
       using decide'(1) by (auto elim: rulesE)
     ultimately show ?thesis
       using \langle cdcl_W \text{-}merge\text{-}stgy^{**} R V \rangle decide' \langle no\text{-}step \ cdcl_W \text{-}merge\text{-}cp \ V \rangle  by blast
   \mathbf{next}
     case propa
     moreover then have cdcl_W-merge-cp V' W by (blast intro: cdcl_W-merge-cp.intros)
     ultimately show ?thesis
       \mathbf{using} \ \langle cdcl_W \text{-}merge\text{-}stgy^{**} \ R \ V \rangle \ decide' \ \langle no\text{-}step \ cdcl_W \text{-}merge\text{-}cp \ V \rangle
       by (meson \ r-into-rtranclp)
   next
     case propa-confl
     moreover then have \operatorname{cdcl}_W\operatorname{-merge-cp}^{**}\ V'\ V''
       by (metis\ cdcl_W-merge-cp.propagate' rtranclp-unfold tranclp-unfold-end)
     ultimately show ?thesis using \langle cdcl_W-merge-stgy** R V \rangle decide'
       \langle no\text{-}step\ cdcl_W\text{-}merge\text{-}cp\ V \rangle by (meson\ r\text{-}into\text{-}rtranclp)
   qed
next
 case cp
 have no-step cdcl_W-merge-cp V
   using conf-V local.decide'(2) no-step-cdcl<sub>W</sub>-cp-no-step-cdcl<sub>W</sub>-merge-restart by auto
 then have full cdcl_W-merge-cp R V
   unfolding full-def using cp by fast
 then have cdcl_W-merge-stgy** R V
   unfolding full-unfold by auto
 have full1 cdcl_W-cp\ V'\ W\ \lor\ (V'=W\ \land\ no\text{-step}\ cdcl_W-cp\ W)
   using decide'(3) unfolding full-unfold by blast
 consider
     (V'-W) V' = W
     (propa) propagate^{++} V' W and conflicting W = None
    | (propa-confl) V'' where propagate** V' V'' and conflict V'' W
   using tranclp\text{-}cdcl_W\text{-}cp\text{-}propagate\text{-}with\text{-}conflict\text{-}or\text{-}not[of\ V'\ W]\ decide'}
   unfolding full-unfold full1-def by meson
 then show ?thesis
   proof cases
     case V'-W
     moreover have conflicting V' = None
       using decide'(1) by (auto elim: rulesE)
     ultimately show ?thesis
```

```
using \langle cdcl_W-merge-stgy** R V\rangle decide' \langle no-step cdcl_W-merge-cp V\rangle by blast
       next
         case propa
         moreover then have cdcl_W-merge-cp V'W
           by (blast intro: cdcl_W-merge-cp.intros)
         ultimately show ?thesis using \langle cdcl_W \text{-merge-stgy}^{**} R V \rangle decide'
           \langle no\text{-}step\ cdcl_W\text{-}merge\text{-}cp\ V \rangle\ \mathbf{by}\ (meson\ r\text{-}into\text{-}rtranclp)
       next
         case propa-confl
         moreover then have cdcl_W-merge-cp^{**} V' V''
           by (metis cdcl<sub>W</sub>-merge-cp.propagate' rtranclp-unfold tranclp-unfold-end)
         ultimately show ?thesis using \langle cdcl_W-merge-stgy** R V \rangle decide'
           (no\text{-}step\ cdcl_W\text{-}merge\text{-}cp\ V)\ \mathbf{by}\ (meson\ r\text{-}into\text{-}rtranclp)
       qed
   next
     case (dec-confl)
     show ?thesis using conf-V dec-confl(5) by (auto elim!: rulesE
       simp del: state-simp simp: state-eq-def)
   next
     case cp-confl
     then show ?thesis using decide' apply - by (intro HOL.disjI2) (fastforce elim: rulesE
       simp del: state-simp simp: state-eq-def)
 qed
next
 case (bj' \ V')
 then have \neg no\text{-}step\ cdcl_W\text{-}bj\ V
   by (auto dest: tranclpD simp: full1-def)
 then consider
    (s') cdcl_W-merge-stgy** R V and conflicting V = None
   | (dec-confl) S T U where cdcl<sub>W</sub>-merge-stgy** R S and no-step cdcl<sub>W</sub>-merge-cp S and
       decide\ S\ T\ {\bf and}\ cdcl_W\mbox{-}merge\mbox{-}cp^{**}\ T\ U\ {\bf and}\ conflict\ U\ V
   |(dec) S T where cdcl_W-merge-stgy** R S and no-step cdcl_W-merge-cp S and decide S T
       and cdcl_W-merge-cp^{**} T V and conflicting V = None
   (cp) \ cdcl_W-merge-cp^{**} \ R \ V \ and \ conflicting \ V = None
   | (cp\text{-}confl) \ U \text{ where } cdcl_W\text{-}merge\text{-}cp^{**} \ R \ U \text{ and } conflict \ U \ V
   using IH by meson
 then show ?thesis
   proof cases
     case s' note - = this(2)
     then have False
       using bj'(1) unfolding full1-def by (force dest!: tranclpD simp: cdcl<sub>W</sub>-bj.simps
         elim: rulesE)
     then show ?thesis by fast
   next
     case dec note - = this(5)
     then have False
       using bj'(1) unfolding full1-def by (force dest!: tranclpD simp: cdcl_W-bj.simps
         elim: rulesE)
     then show ?thesis by fast
   next
     case dec-confl
     then have cdcl_W-merge-cp UV'
       using bj' \ cdcl_W-merge-cp.intros(1)[of U \ V \ V'] by (simp add: full-unfold)
     then have cdcl_W-merge-cp^{**} T V'
       using dec\text{-}confl(4) by simp
     consider
```

```
(V'-W) \ V' = W
   |(propa)| propagate^{++} V' W  and conflicting W = None
   | (propa-confl) V'' where propagate** V' V'' and conflict V'' W
   using tranclp-cdcl_W-cp-propagate-with-conflict-or-not[of V'W] bj'(3)
   unfolding full-unfold full1-def by meson
 then show ?thesis
   proof cases
     case V'-W
     then have no-step cdcl_W-cp V'
      using bj'(3) unfolding full-def by auto
     then have no-step cdcl_W-merge-cp V'
      by (metis\ cdcl_W\text{-}cp.propagate'\ cdcl_W\text{-}merge\text{-}cp.cases\ tranclpD)
        no-step-cdcl_W-cp-no-conflict-no-propagate(1)
     then have full1\ cdcl_W-merge-cp T\ V'
      unfolding full1-def using \langle cdcl_W-merge-cp U V' \rangle dec-confl(4) by auto
     then have full cdcl_W-merge-cp T V'
      by (simp add: full-unfold)
     then have cdcl_W-merge-stay S V'
      using dec\text{-}confl(3) cdcl_W-merge-stgy.fw-s-decide \langle no\text{-}step \ cdcl_W-merge-cp S \rangle by blast
     then have cdcl_W-merge-stgy** R\ V'
      using \langle cdcl_W-merge-stgy** R S \rangle by auto
     show ?thesis
      proof cases
        assume conflicting\ W = None
        then show ?thesis using \langle cdcl_W-merge-stgy** R\ V' \rangle\ \langle V' =\ W \rangle by auto
      next
        assume conflicting W \neq None
        then show ?thesis
          using \langle cdcl_W-merge-stgy** R\ V' \rangle\ \langle V' = W \rangle by (metis\ \langle cdcl_W-merge-cp U\ V' \rangle
            conflictE\ conflicting-not-true-rtranclp-cdcl_W-merge-cp-no-step-cdcl_W-bj
            dec\text{-}confl(5) r\text{-}into\text{-}rtranclp)
      qed
   next
     case propa
     moreover then have cdcl_W-merge-cp V' W by (blast intro: cdcl_W-merge-cp.intros)
   rtranclp.rtrancl-into-rtrancl)
   next
     case propa-confl
     moreover then have cdcl_W-merge-cp^{**} V' V''
      by (metis\ cdcl_W-merge-cp.propagate' rtranclp-unfold tranclp-unfold-end)
   ultimately show ?thesis by (meson \langle cdcl_W - merge-cp^{**} \ T \ V' \rangle \ dec\text{-}confl(1-3) \ rtranclp-trans)
   qed
next
 case cp note - = this(2)
 then show ?thesis using bj'(1) \langle \neg no\text{-step } cdcl_W\text{-}bj \ V \rangle
   conflicting-not-true-rtranclp-cdcl_W-merge-cp-no-step-cdcl_W-bj by auto
 case cp-confl
 then have cdcl_W-merge-cp U V' by (simp add: cdcl_W-merge-cp.conflict' full-unfold
   local.bj'(1)
 consider
     (V'-W) V'=W
   | (propa) \ propagate^{++} \ V' \ W \ and \ conflicting \ W = None
   | (propa-conft) V'' where propagate** V' V'' and conflict V'' W
   using tranclp-cdcl_W-cp-propagate-with-conflict-or-not[of V' W] bj'
```

```
unfolding full-unfold full1-def by meson
         then show ?thesis
          proof cases
            case V'-W
            show ?thesis
              proof cases
                assume conflicting V' = None
                then show ?thesis
                 using V'-W \langle cdcl_W-merge-cp U V' \rangle cp-confl(1) by force
              next
                assume confl: conflicting V' \neq None
                then have no-step cdcl_W-merge-stgy V'
                 by (fastforce simp: cdcl_W-merge-stgy.simps full1-def full-def
                   cdcl_W-merge-cp.simps dest!: tranclpD elim: rulesE)
                have no-step cdcl_W-merge-cp V'
                 using confl by (auto simp: full1-def full-def cdcl_W-merge-cp.simps
                 dest!: tranclpD elim: rulesE)
                moreover have cdcl_W-merge-cp U W
                 using V'-W \langle cdcl_W-merge-cp \ U \ V' \rangle by blast
                ultimately have full1 cdcl_W-merge-cp R V'
                 using cp\text{-}confl(1) V'-W unfolding full1-def by auto
                then have cdcl_W-merge-stgy R V'
                 by auto
                moreover have no-step cdcl_W-merge-stgy V'
                 using confl \ \langle no\text{-}step \ cdcl_W\text{-}merge\text{-}cp \ V' \rangle by (auto simp: cdcl_W\text{-}merge\text{-}stqy.simps
                   full1-def dest!: tranclpD elim: rulesE)
                ultimately have cdcl_W-merge-stgy** R\ V' by auto
                { fix ss :: 'st
                 have cdcl_W-merge-cp U W
                   using V'-W \langle cdcl_W-merge-cp \ U \ V' \rangle by blast
                 then have \neg cdcl_W-bj W ss
                   by (meson\ conflicting-not-true-rtranclp-cdcl_W-merge-cp-no-step-cdcl_W-bj
                     cp-confl(1) rtranclp.rtrancl-into-rtrancl step.prems)
                 then have cdcl_W-merge-stgy** R W \wedge conflicting W = None \vee
                   cdcl_W-merge-stgy^{**} R W \land \neg cdcl_W-bj W ss
                   using V'-W \langle cdcl_W-merge-stgy** R V' \rangle by presburger }
                then show ?thesis
                 by presburger
             qed
          next
            case propa
            moreover then have cdcl_W-merge-cp V'W
              by (blast intro: cdcl_W-merge-cp.intros)
            ultimately show ?thesis using \langle cdcl_W-merge-cp U|V'\rangle cp-confl(1) by force
          next
            case propa-confl
            moreover then have \mathit{cdcl}_W\text{-}\mathit{merge\text{-}\mathit{cp}^{**}}\ \mathit{V'}\ \mathit{V''}
              by (metis cdcl<sub>W</sub>-merge-cp.propagate' rtranclp-unfold tranclp-unfold-end)
            ultimately show ?thesis
              using \langle cdcl_W-merge-cp U|V'\rangle cp-confl(1) by (metis rtranclp.rtrancl-into-rtrancl
                rtranclp-trans)
          qed
      \mathbf{qed}
   \mathbf{qed}
qed
```

```
lemma decide-rtranclp-cdcl_W-s'-rtranclp-cdcl_W-s':
  assumes
    dec: decide S T  and
   cdcl_W-s'** T U and
   n-s-S: no-step cdcl_W-cp S and
    no-step cdcl_W-cp U
  shows cdcl_W-s'^{**} S U
  using assms(2,4)
proof induction
  case (step U(V)) note st = this(1) and s' = this(2) and IH = this(3) and n-s = this(4)
  consider
     (TU) T = U
    (s'-st) T' where cdcl_W-s' T T' and cdcl_W-s'^{**} T' U
   using st[unfolded rtranclp-unfold] by (auto dest!: tranclpD)
  then show ?case
   proof cases
     case TU
     then show ?thesis
       proof -
         assume a1: T = U
         then have f2: cdcl_W - s' T V
           using s' by force
         obtain ss :: 'st where
           ss: cdcl_W-s'** S T \lor cdcl_W-cp T ss
           using a1 step.IH by blast-
         obtain ssa :: 'st \Rightarrow 'st where
           f3: \forall s \ sa \ sb. \ (\neg \ decide \ s \ sa \ \lor \ cdcl_W - cp \ s \ (ssa \ s) \ \lor \ \neg \ full \ cdcl_W - cp \ sa \ sb)
             \vee \ cdcl_W \text{-}s' \ s \ sb
           using cdcl_W-s'.decide' by moura
         have \forall s \ sa. \ \neg \ cdcl_W \ \neg s' \ s \ sa \ \lor \ full1 \ cdcl_W \ \neg cp \ s \ sa \ \lor
           (\exists sb. \ decide \ s \ sb \land no\text{-}step \ cdcl_W\text{-}cp \ s \land full \ cdcl_W\text{-}cp \ sb \ sa) \lor
           (\exists sb. full1 \ cdcl_W - bj \ s \ sb \land no\text{-step} \ cdcl_W - cp \ s \land full \ cdcl_W - cp \ sb \ sa)
           by (metis\ cdcl_W - s'E)
         then have \exists s. \ cdcl_W - s'^{**} \ S \ s \land \ cdcl_W - s' \ s \ V
           using f3 ss f2 by (metis dec full1-is-full n-s-S rtranclp-unfold)
         then show ?thesis
           by force
       \mathbf{qed}
   next
     case (s'-st T') note s'-T' = this(1) and st = this(2)
     have cdcl_W-s'** S T'
       using s'-T'
       proof cases
         case conflict'
         then have cdcl_W-s' S T'
            using dec\ cdcl_W-s'.decide'\ n-s-S by (simp\ add:\ full-unfold)
         then show ?thesis
            using st by auto
       next
         case (decide' T'')
         then have cdcl_W-s' S T
            using dec cdcl<sub>W</sub>-s'.decide' n-s-S by (simp add: full-unfold)
         then show ?thesis using decide' s'-T' by auto
       next
         case bj'
```

```
then have False
          using dec unfolding full1-def by (fastforce dest!: tranclpD simp: cdcl<sub>W</sub>-bj.simps
            elim: rulesE)
         then show ?thesis by fast
       ged
     then show ?thesis using s' st by auto
   qed
next
 {f case}\ base
 then have full cdcl_W-cp T T
   by (simp add: full-unfold)
 then show ?case
   using cdcl_W-s'.simps dec n-s-S by auto
lemma rtranclp-cdcl_W-merge-stgy-rtranclp-cdcl_W-s':
 assumes
   cdcl_W-merge-stqy** R V and
   inv: cdcl_W-all-struct-inv R
 shows cdcl_W-s'^{**} R V
 using assms(1)
proof induction
 case base
 then show ?case by simp
next
 case (step S T) note st = this(1) and fw = this(2) and IH = this(3)
 have cdcl_W-all-struct-inv S
   using inv rtranclp-cdcl_W-all-struct-inv-inv rtranclp-cdcl_W-merge-styy-rtranclp-cdcl_W st by blast
 from fw show ?case
   proof (cases rule: cdcl_W-merge-stgy-cases)
     case fw-s-cp
     have \bigwedge s. \neg full\ cdcl_W-merge-cp s\ S
       using fw-s-cp unfolding full-def full1-def by (metis tranclp-unfold-begin)
     then have S = R
       using fw-s-cp unfolding full1-def by (metis cdcl_W-cp.conflict' cdcl_W-cp.propagate'
         cdcl_W-merge-cp. cases tranclp-unfold-begin inv st
         rtranclp-cdcl_W-merge-stqy'-no-step-cdcl_W-cp-or-eq)
     then have full cdcl_W-s'-without-decide R T
       using inv local.fw-s-cp
       by (blast intro: conflicting-true-full1-cdcl_W-merge-cp-imp-full1-cdcl_W-s'-without-decode)
     then show ?thesis unfolding full1-def
       \mathbf{by} \ (\textit{metis} \ (\textit{no-types}) \ \textit{rtranclp-cdcl}_W - \textit{s'-without-decide-rtranclp-cdcl}_W - \textit{s'} \ \textit{rtranclp-unfold})
   next
     case (fw-s-decide S') note dec = this(1) and n-S = this(2) and full = this(3)
     moreover then have conflicting S' = None
       by (auto elim: rulesE)
     ultimately have full\ cdcl_W-s'-without-decide S' T
      by (meson \ \langle cdcl_W \text{-}all \text{-}struct \text{-}inv \ S \rangle \ cdcl_W \text{-}merge \text{-}restart \text{-}cdcl_W \ fw \text{-}r \text{-}decide}
         rtranclp-cdcl_W-all-struct-inv-inv
         conflicting-true-full-cdcl_W-merge-cp-iff-full-cdcl_W-s'-without-decode)
     then have a1: cdcl_W-s'** S' T
       unfolding full-def by (metis (full-types) rtranclp-cdcl<sub>W</sub>-s'-without-decide-rtranclp-cdcl<sub>W</sub>-s')
     have cdcl_W-merge-stgy** S T
       using fw by blast
     then have cdcl_W-s'** S T
       using decide-rtranclp-cdcl_W-s'-rtranclp-cdcl_W-s' a1 by (metis \langle cdcl_W-all-struct-inv S \rangle dec
```

```
n-S no-step-cdcl_W-merge-cp-no-step-cdcl_W-cp cdcl_W-all-struct-inv-def
         rtranclp-cdcl_W-merge-stgy'-no-step-cdcl_W-cp-or-eq)
      then show ?thesis using IH by auto
   qed
qed
lemma rtranclp-cdcl_W-merge-stgy-distinct-mset-clauses:
  assumes invR: cdcl_W-all-struct-inv R and
  st: cdcl_W-merge-stgy^{**} R S and
  dist: distinct-mset (clauses R) and
  R: trail R = []
  shows distinct-mset (clauses S)
  using rtranclp-cdcl_W-stgy-distinct-mset-clauses [OF invR - dist R]
  invR st rtranclp-mono[of\ cdcl_W-s'\ cdcl_W-stgy^{**}]\ cdcl_W-s'-is-rtranclp-cdcl_W-stgy
  by (auto dest!: cdcl_W-s'-is-rtranclp-cdcl<sub>W</sub>-stgy rtranclp-cdcl<sub>W</sub>-merge-stgy-rtranclp-cdcl<sub>W</sub>-s')
lemma no\text{-}step\text{-}cdcl_W\text{-}s'\text{-}no\text{-}step\text{-}cdcl_W\text{-}merge\text{-}stgy:
  assumes
    inv: cdcl_W-all-struct-inv R and s': no-step cdcl_W-s' R
  shows no-step cdcl_W-merge-stgy R
proof -
  { fix ss :: 'st
   obtain ssa :: 'st \Rightarrow 'st \Rightarrow 'st where
      ff1: \land s sa. \neg cdcl_W-merge-stgy s sa \lor full1 cdcl_W-merge-cp s sa \lor decide s (ssa s sa)
      using cdcl_W-merge-stgy.cases by moura
   obtain ssb :: ('st \Rightarrow 'st \Rightarrow bool) \Rightarrow 'st \Rightarrow 'st \Rightarrow 'st where
      ff2: \bigwedge p \ s \ sa. \ \neg \ p^{++} \ s \ sa \lor p \ s \ (ssb \ p \ s \ sa)
      by (meson tranclp-unfold-begin)
   obtain ssc :: 'st \Rightarrow 'st where
      ff3: \bigwedge s sa sb. (\neg cdcl_W - all - struct - inv s \lor \neg cdcl_W - cp s sa \lor cdcl_W - s' s (ssc s))
       \land (\neg cdcl_W - all - struct - inv \ s \lor \neg cdcl_W - o \ s \ sb \lor cdcl_W - s' \ s \ (ssc \ s))
      using n-step-cdcl<sub>W</sub>-stgy-iff-no-step-cdcl<sub>W</sub>-cl-cdcl<sub>W</sub>-o by moura
   then have ff_4: \Lambda s. \neg cdcl_W - o R s
      using s' inv by blast
   have ff5: \bigwedge s. \neg cdcl_W - cp^{++} R s
      using ff3 ff2 s' by (metis inv)
   have \bigwedge s. \neg cdcl_W - bj^{++} R s
      using ff4 ff2 by (metis bj)
   then have \bigwedge s. \neg cdcl_W-s'-without-decide R s
      using ff5 by (simp add: cdcl_W-s'-without-decide.simps full1-def)
   then have \neg cdcl_W - s'-without-decide<sup>++</sup> R ss
      using ff2 by blast
   then have \neg full1\ cdcl_W-s'-without-decide R ss
      by (simp add: full1-def)
   then have \neg cdcl_W-merge-stgy R ss
      using ff4 ff1 conflicting-true-full1-cdcl_W-merge-cp-imp-full1-cdcl_W-s'-without-decode inv
      by blast }
  then show ?thesis
   by fastforce
qed
end
```

Termination and full Equivalence

We will discharge the assumption later using NOT's proof of termination.

```
locale \ conflict-driven-clause-learning<sub>W</sub>-termination =
  conflict-driven-clause-learning_W +
 assumes wf-cdcl_W-merge-inv: wf {(T, S). cdcl_W-all-struct-inv S \land cdcl_W-merge S T}
begin
lemma wf-tranclp-cdcl<sub>W</sub>-merge: wf \{(T, S). cdcl_W-all-struct-inv S \wedge cdcl_W-merge<sup>++</sup> S T\}
  using wf-trancl[OF wf-cdcl<sub>W</sub>-merge-inv]
 apply (rule wf-subset)
 by (auto simp: trancl-set-tranclp
   cdcl_W-all-struct-inv-tranclp-cdcl_W-merge-tranclp-cdcl_W-merge-cdcl_W-all-struct-inv)
lemma wf-cdcl_W-merge-cp:
  wf\{(T, S). \ cdcl_W - all - struct - inv \ S \land cdcl_W - merge - cp \ S \ T\}
 using wf-tranclp-cdcl_W-merge by (rule wf-subset) (auto simp: cdcl_W-merge-cp-tranclp-cdcl_W-merge)
lemma wf-cdcl_W-merge-stgy:
  wf\{(T, S). \ cdcl_W - all - struct - inv \ S \land cdcl_W - merge - stgy \ S \ T\}
 using wf-tranclp-cdcl_W-merge by (rule wf-subset)
  (auto simp add: cdcl_W-merge-stgy-tranclp-cdcl_W-merge)
lemma cdcl_W-merge-cp-obtain-normal-form:
 assumes inv: cdcl_W-all-struct-inv R
 obtains S where full cdcl_W-merge-cp R S
proof -
  obtain S where full (\lambda S T. cdcl_W-all-struct-inv S \wedge cdcl_W-merge-cp S T) R S
   using wf-exists-normal-form-full[OF wf-cdcl<sub>W</sub>-merge-cp] by blast
  then have
   st: (\lambda S \ T. \ cdcl_W-all-struct-inv S \land cdcl_W-merge-cp S \ T)^{**} \ R \ S and
   n-s: no-step (\lambda S T. cdcl_W-all-struct-inv S \wedge cdcl_W-merge-cp S T) S
   unfolding full-def by blast+
 have cdcl_W-merge-cp^{**} R S
   using st by induction auto
 moreover
   have cdcl_W-all-struct-inv S
     \mathbf{using}\ st\ inv
     apply (induction rule: rtranclp-induct)
      apply simp
     by (meson\ r-into-rtranclp\ rtranclp-cdcl_W-all-struct-inv-inv
       rtranclp-cdcl_W-merge-cp-rtranclp-cdcl_W)
   then have no-step cdcl_W-merge-cp S
     using n-s by auto
  ultimately show ?thesis
   using that unfolding full-def by blast
lemma no-step-cdcl_W-merge-stgy-no-step-cdcl_W-s':
 assumes
   inv: cdcl_W-all-struct-inv R and
   confl: conflicting R = None and
   n-s: no-step cdcl_W-merge-stgy R
 shows no-step cdcl_W-s' R
proof (rule ccontr)
 assume ¬ ?thesis
 then obtain S where cdcl_W-s' R S by auto
  then show False
   proof cases
```

```
case conflict'
     then obtain S' where full1\ cdcl_W-merge-cp R\ S'
      proof -
        obtain R' where
          cdcl_W-merge-cp R R'
          using inv unfolding cdcl_W-all-struct-inv-def by (meson confl
            cdcl_W-s'-without-decide.simps conflict'
            conflicting-true-no-step-cdcl_W-merge-cp-no-step-s'-without-decide)
        then show ?thesis
          using that by (metis cdcl_W-merge-cp-obtain-normal-form full-unfold inv)
      qed
     then show False using n-s by blast
   next
     case (decide' R')
     then have cdcl_W-all-struct-inv R'
      using inv cdcl_W-all-struct-inv-inv cdcl_W.other cdcl_W-o.decide by meson
     then obtain R'' where full\ cdcl_W-merge-cp R'\ R''
      using cdcl_W-merge-cp-obtain-normal-form by blast
     moreover have no-step cdcl_W-merge-cp R
      by (simp add: confl local.decide'(2) no-step-cdcl<sub>W</sub>-cp-no-step-cdcl<sub>W</sub>-merge-restart)
     ultimately show False using n-s cdcl_W-merge-stgy.intros local.decide'(1) by blast
   next
     case (bj' R')
     then show False
      using confl\ no\text{-}step\text{-}cdcl_W\text{-}cp\text{-}no\text{-}step\text{-}cdcl_W\text{-}s'\text{-}without\text{-}decide}\ inv
      unfolding cdcl_W-all-struct-inv-def by auto
   qed
\mathbf{qed}
lemma rtranclp-cdcl_W-merge-cp-no-step-cdcl_W-bj:
 assumes conflicting R = None and cdcl_W-merge-cp^{**} R S
 shows no-step cdcl_W-bj S
 using assms conflicting-not-true-rtranclp-cdcl<sub>W</sub>-merge-cp-no-step-cdcl<sub>W</sub>-bj by auto
lemma rtranclp-cdcl_W-merge-stgy-no-step-cdcl_W-bj:
 assumes confl: conflicting R = None and cdcl_W-merge-stgy** R S
 shows no-step cdcl_W-bj S
 using assms(2)
proof induction
 case base
 then show ?case
   using confl by (auto simp: cdcl_W-bj.simps elim: rulesE)
next
 case (step S T) note st = this(1) and fw = this(2) and IH = this(3)
 have confl-S: conflicting S = None
   using fw apply cases
   by (auto simp: full1-def cdcl_W-merge-cp.simps dest!: tranclpD elim: rulesE)
 from fw show ?case
   proof cases
     case fw-s-cp
     then show ?thesis
      using rtranclp-cdcl_W-merge-cp-no-step-cdcl_W-bj confl-S
      by (simp add: full1-def tranclp-into-rtranclp)
   \mathbf{next}
     case (fw-s-decide S')
     moreover then have conflicting S' = None by (auto elim: rulesE)
```

```
ultimately show ?thesis
using conflicting-not-true-rtranclp-cdclw-merge-cp-no-step-cdclw-bj
unfolding full-def by meson
qed
qed
end
end
theory CDCL-WNOT
imports CDCL-NOT CDCL-W-Termination CDCL-W-Merge
begin
```

3.3 Link between Weidenbach's and NOT's CDCL

3.3.1 Inclusion of the states

```
declare upt.simps(2)[simp \ del]
fun convert-ann-lit-from-W where
convert-ann-lit-from-W (Propagated L -) = Propagated L () |
convert-ann-lit-from-W (Decided L) = Decided L
abbreviation convert-trail-from-W ::
  ('v, 'mark) ann-lits
   \Rightarrow ('v, unit) ann-lits where
convert-trail-from-W \equiv map \ convert-ann-lit-from-W
\textbf{lemma} \ \textit{lits-of-l-convert-trail-from-W} [\textit{simp}] :
  lits-of-l (convert-trail-from-W M) = lits-of-l M
 by (induction rule: ann-lit-list-induct) simp-all
lemma lit-of-convert-trail-from-W[simp]:
  lit-of\ (convert-ann-lit-from-W\ L) = lit-of\ L
 by (cases L) auto
lemma no-dup-convert-from-W[simp]:
  no-dup (convert-trail-from-WM) \longleftrightarrow no-dup M
 by (auto simp: comp-def)
lemma convert-trail-from-W-true-annots[simp]:
  convert-trail-from-WM \models as C \longleftrightarrow M \models as C
 by (auto simp: true-annots-true-cls image-image lits-of-def)
lemma defined-lit-convert-trail-from-W[simp]:
  defined-lit (convert-trail-from-W S) L \longleftrightarrow defined-lit S L
 by (auto simp: defined-lit-map image-comp)
The values \theta and \{\#\} are dummy values.
consts dummy-cls :: 'cls
\mathbf{fun}\ convert\text{-}ann\text{-}lit\text{-}from\text{-}NOT
 :: ('v, 'mark) \ ann-lit \Rightarrow ('v, 'cls) \ ann-lit \ where
convert-ann-lit-from-NOT (Propagated L -) = Propagated L dummy-cls
convert-ann-lit-from-NOT (Decided L) = Decided L
```

```
abbreviation convert-trail-from-NOT where
convert-trail-from-NOT \equiv map convert-ann-lit-from-NOT
lemma undefined-lit-convert-trail-from-NOT[simp]:
  undefined-lit (convert-trail-from-NOT F) L \longleftrightarrow undefined-lit F L
 by (induction F rule: ann-lit-list-induct) (auto simp: defined-lit-map)
{f lemma}\ lits-of-l-convert-trail-from-NOT:
  lits-of-l (convert-trail-from-NOT F) = lits-of-l F
 by (induction F rule: ann-lit-list-induct) auto
\mathbf{lemma}\ convert\text{-}trail\text{-}from\text{-}W\text{-}from\text{-}NOT[simp]:
  convert-trail-from-W (convert-trail-from-NOT M) = M
 by (induction rule: ann-lit-list-induct) auto
\mathbf{lemma}\ convert\text{-}trail\text{-}from\text{-}W\text{-}convert\text{-}lit\text{-}from\text{-}NOT[simp]:
  convert-ann-lit-from-W (convert-ann-lit-from-NOT L) = L
 by (cases L) auto
abbreviation trail_{NOT} where
trail_{NOT} S \equiv convert-trail-from-W (fst S)
lemma undefined-lit-convert-trail-from-W[iff]:
  undefined-lit (convert-trail-from-W M) L \longleftrightarrow undefined-lit M L
 by (auto simp: defined-lit-map image-comp)
lemma lit-of-convert-ann-lit-from-NOT[iff]:
  lit-of\ (convert-ann-lit-from-NOT\ L) = lit-of\ L
 by (cases L) auto
sublocale state_W \subseteq dpll\text{-}state\text{-}ops
  \lambda S. convert-trail-from-W (trail S)
  clauses
  \lambda L S. \ cons-trail (convert-ann-lit-from-NOT L) S
  \lambda S. tl-trail S
  \lambda C S. add-learned-cls C S
  \lambda C S. remove-cls C S
  by unfold-locales
sublocale state_W \subseteq dpll-state
  \lambda S. \ convert-trail-from-W \ (trail \ S)
  clauses
  \lambda L \ S. \ cons-trail (convert-ann-lit-from-NOT L) S
  \lambda S. tl-trail S
  \lambda C S. add-learned-cls C S
  \lambda C S. remove-cls C S
 by unfold-locales (auto simp: map-tl o-def)
context state_W
begin
declare state-simp_{NOT}[simp\ del]
sublocale conflict-driven-clause-learning_W \subseteq cdcl_{NOT}-merge-bj-learn-ops
 \lambda S. convert-trail-from-W (trail S)
  clauses
```

```
\lambda L \ S. \ cons-trail (convert-ann-lit-from-NOT L) S
  \lambda S. tl-trail S
  \lambda C S. add-learned-cls C S
  \lambda C S. remove-cls C S
  \lambda- -. True
  \lambda- S. conflicting S = None
  \lambda C C' L' S T. backjump-l-cond C C' L' S T
   \land distinct\text{-mset} (C' + \{\#L'\#\}) \land \neg tautology (C' + \{\#L'\#\})
 by unfold-locales
thm cdcl_{NOT}-merge-bj-learn-proxy.axioms
sublocale conflict-driven-clause-learning_W \subseteq cdcl_{NOT}-merge-bj-learn-proxy
  \lambda S. convert-trail-from-W (trail S)
  clauses
  \lambda L \ S. \ cons-trail (convert-ann-lit-from-NOT L) S
 \lambda S. tl-trail S
 \lambda C S. add-learned-cls C S
 \lambda C S. remove-cls C S
  \lambda- -. True
  \lambda- S. conflicting S = None
  backjump-l-cond
  inv_{NOT}
proof (unfold-locales, goal-cases)
  then show ?case using cdcl_{NOT}-merged-bj-learn-no-dup-inv by (auto simp: comp-def)
next
  case (1 C' S C F' K F L)
  moreover
   let ?C' = remdups\text{-}mset C'
   have L \notin \# C'
      \mathbf{using} \ \langle F \models as \ \mathit{CNot} \ \mathit{C'} \rangle \ \langle \mathit{undefined-lit} \ \mathit{F} \ \mathit{L} \rangle \ \mathit{Decided-Propagated-in-iff-in-lits-of-l}
      in-CNot-implies-uminus(2) by fast
   then have distinct-mset (?C' + \{\#L\#\})
      by (simp add: distinct-mset-single-add)
  moreover
   have no-dup F
      \mathbf{using} \ \langle inv_{NOT} \ S \rangle \ \langle convert\text{-}trail\text{-}from\text{-}W \ (trail \ S) = F' \ @ \ Decided \ K \ \# \ F \rangle
      unfolding inv_{NOT}-def
      by (smt\ comp-apply\ distinct.simps(2)\ distinct-append\ list.simps(9)\ map-append
        no-dup-convert-from-W)
   then have consistent-interp (lits-of-l F)
      using distinct-consistent-interp by blast
   then have \neg tautology C'
      using \langle F \models as\ CNot\ C' \rangle consistent-CNot-not-tautology true-annots-true-cls by blast
   then have \neg tautology (?C' + {\#L\#})
      using \langle F \models as \ CNot \ C' \rangle \langle undefined\text{-}lit \ F \ L \rangle by (metis \ CNot\text{-}remdups\text{-}mset
        Decided-Propagated-in-iff-in-lits-of-l add.commute in-CNot-uminus tautology-add-single
        tautology-remdups-mset true-annot-singleton true-annots-def)
  show ?case
   proof -
      have f2: no-dup (convert-trail-from-W (trail S))
       using \langle inv_{NOT} \rangle unfolding inv_{NOT}-def by (simp \ add: \ o\text{-}def)
      have f3: atm-of L \in atms-of-mm (clauses S)
       \cup atm-of 'lits-of-l (convert-trail-from-W (trail S))
       using \langle convert\text{-trail-from-}W \ (trail \ S) = F' @ Decided \ K \ \# \ F \rangle
```

```
\langle atm\text{-}of\ L \in atm\text{-}of\text{-}mm\ (clauses\ S) \cup atm\text{-}of\ `lits\text{-}of\text{-}l\ (F'\ @\ Decided\ K\ \#\ F) \rangle by auto
     have f_4: clauses S \models pm \ remdups\text{-mset} \ C' + \{\#L\#\}
       by (metis\ (no\text{-types})\ \langle L\notin\#\ C'\rangle\ \langle clauses\ S\models pm\ C'+\{\#L\#\}\rangle\ remdups-mset-singleton-sum(2)
         true-clss-cls-remdups-mset union-commute)
     have F \models as \ CNot \ (remdups-mset \ C')
       by (simp \ add: \langle F \models as \ CNot \ C' \rangle)
     have Ex\ (backjump-l\ S)
       apply standard
       apply (rule backjump-l.intros[OF - f2, of - - -])
       using f_4 f_3 f_2 \leftarrow tautology (remdups-mset <math>C' + \{\#L\#\}))
       calculation(2-5,9) \langle F \models as \ CNot \ (remdups-mset \ C') \rangle
       state-eq_{NOT}-ref unfolding backjump-l-cond-def by blast+
     then show ?thesis
       by blast
   qed
\mathbf{qed}
sublocale conflict-driven-clause-learning_W \subseteq cdcl_{NOT}-merge-bj-learn-proxy2
  \lambda S. \ convert-trail-from-W (trail S)
  clauses
  \lambda L\ S.\ cons-trail (convert-ann-lit-from-NOT L) S
  \lambda S. tl-trail S
  \lambda C S. add-learned-cls C S
  \lambda C S. remove-cls C S
  \lambda- -. True
  \lambda- S. conflicting S = None \ backjump-l-cond \ inv_{NOT}
  by unfold-locales
sublocale conflict-driven-clause-learning_W \subseteq cdcl_{NOT}-merge-bj-learn
  \lambda S. convert-trail-from-W (trail S)
  clauses
  \lambda L \ S. \ cons-trail (convert-ann-lit-from-NOT L) S
  \lambda S. tl-trail S
  \lambda C S. \ add-learned-cls C S
  \lambda C S. remove-cls C S
  backjump-l-cond
  \lambda- -. True
  \lambda- S. conflicting S = None \ inv_{NOT}
  apply unfold-locales
  using dpll-bj-no-dup apply (simp add: comp-def)
  using cdcl_{NOT}.simps cdcl_{NOT}-no-dup no-dup-convert-from-W unfolding inv_{NOT}-def by blast
context conflict-driven-clause-learning<sub>W</sub>
begin
Notations are lost while proving locale inclusion:
notation state-eq<sub>NOT</sub> (infix \sim_{NOT} 50)
3.3.2
           Additional Lemmas between NOT and W states
lemma trail_W-eq-reduce-trail-to<sub>NOT</sub>-eq:
  trail\ S = trail\ T \Longrightarrow trail\ (reduce-trail-to_{NOT}\ F\ S) = trail\ (reduce-trail-to_{NOT}\ F\ T)
\mathbf{proof} (induction F S arbitrary: T rule: reduce-trail-to<sub>NOT</sub>.induct)
  case (1 F S T) note IH = this(1) and tr = this(2)
  then have [] = convert-trail-from-W (trail S)
   \vee length F = length (convert-trail-from-W (trail S))
```

```
\vee trail (reduce-trail-to<sub>NOT</sub> F (tl-trail S)) = trail (reduce-trail-to<sub>NOT</sub> F (tl-trail T))
   using IH by (metis (no-types) trail-tl-trail)
  then show trail (reduce-trail-to<sub>NOT</sub> FS) = trail (reduce-trail-to<sub>NOT</sub> FT)
   using tr by (metis (no-types) reduce-trail-to_{NOT}.elims)
qed
lemma trail-reduce-trail-to_{NOT}-add-learned-cls:
no-dup (trail S) \Longrightarrow
 trail\ (reduce-trail-to_{NOT}\ M\ (add-learned-cls\ D\ S)) = trail\ (reduce-trail-to_{NOT}\ M\ S)
by (rule\ trail_W-eq-reduce-trail-to_{NOT}-eq)\ simp
lemma reduce-trail-to_{NOT}-reduce-trail-convert:
  reduce-trail-to_{NOT} C S = reduce-trail-to (convert-trail-from-NOT C) S
 apply (induction C S rule: reduce-trail-to<sub>NOT</sub>.induct)
 apply (subst reduce-trail-to<sub>NOT</sub>.simps, subst reduce-trail-to.simps)
 by auto
lemma reduce-trail-to-map[simp]:
 reduce-trail-to (map\ f\ M)\ S = reduce-trail-to M\ S
 by (rule reduce-trail-to-length) simp
lemma reduce-trail-to_{NOT}-map[simp]:
  reduce-trail-to<sub>NOT</sub> (map\ f\ M)\ S = reduce-trail-to<sub>NOT</sub> M\ S
 by (rule reduce-trail-to<sub>NOT</sub>-length) simp
{\bf lemma}\ skip-or-resolve-state-change:
 assumes skip-or-resolve** S T
 shows
   \exists M. \ trail \ S = M @ \ trail \ T \land (\forall m \in set \ M. \neg is\text{-}decided \ m)
   clauses S = clauses T
   backtrack\text{-}lvl\ S\ =\ backtrack\text{-}lvl\ T
 using assms
proof (induction rule: rtranclp-induct)
 case base
 case 1 show ?case by simp
 case 2 show ?case by simp
 case 3 show ?case by simp
next
 case (step T U) note st = this(1) and s-o-r = this(2) and IH = this(3) and IH' = this(3-5)
 case 2 show ?case using IH' s-o-r by (auto elim!: rulesE simp: skip-or-resolve.simps)
 case 3 show ?case using IH' s-o-r by (auto elim!: rulesE simp: skip-or-resolve.simps)
 case 1 show ?case
   using s-o-r
   proof cases
     case s-or-r-skip
     then show ?thesis using IH by (auto elim!: rulesE simp: skip-or-resolve.simps)
     case s-or-r-resolve
     then show ?thesis
       using IH by (cases trail T) (auto elim!: rulesE simp: skip-or-resolve.simps)
   qed
qed
```

3.3.3 Inclusion of Weidenbach's CDCL in NOT's CDCL

This lemma shows the inclusion of Weidenbach's CDCL $cdcl_W$ -merge (with merging) in NOT's $cdcl_{NOT}$ -merged-bj-learn.

```
lemma cdcl_W-merge-is-cdcl_{NOT}-merged-bj-learn:
 assumes
   inv: cdcl_W-all-struct-inv S and
   cdcl_W: cdcl_W-merge S T
 shows cdcl_{NOT}-merged-bj-learn S T
   \vee (no-step cdcl_W-merge T \wedge conflicting <math>T \neq None)
 using cdcl_W inv
proof induction
 case (fw\text{-}propagate\ S\ T) note propa = this(1)
 then obtain M N U k L C where
   H: state \ S = (M, N, U, k, None) \ and
   CL: C + \{\#L\#\} \in \# clauses S \text{ and }
   M-C: M \models as CNot C and
   undef: undefined-lit (trail S) L and
   T: state \ T = (Propagated \ L \ (C + \{\#L\#\}) \ \# \ M, \ N, \ U, \ k, \ None)
   by (auto elim: propagate-high-levelE)
 have propagate_{NOT} S T
   using H CL T undef M-C by (auto simp: state-eq_{NOT}-def state-eq-def clauses-def
     simp del: state-simp)
 then show ?case
   using cdcl_{NOT}-merged-bj-learn.intros(2) by blast
 case (fw-decide S T) note dec = this(1) and inv = this(2)
 then obtain L where
   undef-L: undefined-lit (trail S) L and
   atm-L: atm-of L \in atms-of-mm (init-clss S) and
   T: T \sim cons-trail (Decided L)
     (update-backtrack-lvl (Suc (backtrack-lvl S)) S)
   by (auto elim: decideE)
 have decide_{NOT} S T
   apply (rule\ decide_{NOT}.decide_{NOT})
      using undef-L apply simp
    using atm-L inv unfolding cdcl_W-all-struct-inv-def no-strange-atm-def clauses-def
     apply auto[]
   using T undef-L unfolding state-eq-def state-eq<sub>NOT</sub>-def by (auto simp: clauses-def)
 then show ?case using cdcl_{NOT}-merged-bj-learn-decide_{NOT} by blast
 case (fw-forget S T) note rf = this(1) and inv = this(2)
 then obtain C where
    S: conflicting S = None and
    C-le: C \in \# learned-clss S and
    \neg(trail\ S) \models asm\ clauses\ S and
    C \notin set (get-all-mark-of-propagated (trail S)) and
    C-init: C \notin \# init\text{-}clss S and
    T: T \sim remove\text{-}cls \ C \ S
   by (auto elim: forgetE)
 have init-clss S \models pm \ C
   using inv C-le unfolding cdcl<sub>W</sub>-all-struct-inv-def cdcl<sub>W</sub>-learned-clause-def clauses-def
   by (meson true-clss-cls-in-imp-true-clss-cls)
 then have S-C: removeAll-mset C (clauses S) \models pm \ C
   using C-init C-le unfolding clauses-def by (auto simp add: Un-Diff ac-simps)
```

```
have forget_{NOT} S T
   apply (rule forget_{NOT}.forget_{NOT})
     using S-C apply blast
     using S apply simp
    using C-init C-le apply (simp add: clauses-def)
   using T C-le C-init by (auto
     simp: state-eq-def \ Un-Diff \ state-eq_{NOT}-def \ clauses-def \ ac-simps
     simp del: state-simp)
 then show ?case using cdcl_{NOT}-merged-bj-learn-forget<sub>NOT</sub> by blast
next
 case (fw-conflict S T U) note confl = this(1) and bj = this(2) and inv = this(3)
 obtain C_S CT where
   confl-T: conflicting T = Some CT and
   CT: CT = C_S and
   C_S: C_S \in \# clauses S and
   tr-S-C_S: trail\ S \models as\ CNot\ C_S
   using confl by (elim conflictE) (auto simp del: state-simp simp: state-eq-def)
 have cdcl_W-all-struct-inv T
   using cdcl_W.simps\ cdcl_W-all-struct-inv-inv\ confl\ inv\ by blast
 then have cdcl_W-M-level-inv T
   unfolding cdcl_W-all-struct-inv-def by auto
 then consider
     (no\text{-}bt) skip\text{-}or\text{-}resolve^{**} T U
   \mid (bt) \ T' where skip-or-resolve** T \ T' and backtrack \ T' \ U
   using bj rtranclp-cdcl_W-bj-skip-or-resolve-backtrack unfolding full-def by meson
 then show ?case
   proof cases
     case no-bt
     then have conflicting U \neq None
      using confl by (induction rule: rtranclp-induct)
      (auto simp del: state-simp simp: skip-or-resolve.simps state-eq-def elim!: rulesE)
     moreover then have no-step cdcl_W-merge U
      by (auto simp: cdcl_W-merge.simps elim: rulesE)
     ultimately show ?thesis by blast
     case bt note s-or-r = this(1) and bt = this(2)
     have cdcl_W^{**} T T'
      using s-or-r mono-rtranclp[of skip-or-resolve cdcl_W] rtranclp-skip-or-resolve-rtranclp-cdcl_W
      by blast
     then have cdcl_W-M-level-inv T'
      using rtranclp-cdcl_W-consistent-inv \langle cdcl_W-M-level-inv T \rangle by blast
     then obtain M1 M2 i D L K where
      confl-T': conflicting T' = Some D and
      LD: L \in \# D and
      M1-M2:(Decided\ K\ \#\ M1\ ,\ M2)\in set\ (get-all-ann-decomposition\ (trail\ T')) and
      get-level (trail T') K = i+1
      get-level (trail T') L = backtrack-lvl T' and
      get-level (trail T') L = get-maximum-level (trail T') D and
      get-maximum-level (trail T') (remove1-mset L(D) = i and
       U: U \sim cons-trail (Propagated L D)
              (reduce-trail-to M1
                  (add-learned-cls D
                     (update-backtrack-lvl i
                       (update\text{-}conflicting\ None\ T'))))
      using bt by (auto elim: backtrackE)
     have [simp]: clauses S = clauses T
```

```
using confl by (auto elim: rulesE)
have [simp]: clauses T = clauses T'
 using s-or-r
 proof (induction)
   {f case}\ base
   then show ?case by simp
 next
   case (step\ U\ V) note st=this(1) and s\text{-}o\text{-}r=this(2) and IH=this(3)
   have clauses U = clauses V
     using s-o-r by (auto simp: skip-or-resolve.simps elim: rulesE)
   then show ?case using IH by auto
 qed
have inv-T: cdcl_W-all-struct-inv T
 by (meson\ cdcl_W\text{-}cp.simps\ confl\ inv\ r\text{-}into\text{-}rtranclp\ rtranclp\text{-}cdcl_W\text{-}all\text{-}struct\text{-}inv\text{-}inv
   rtranclp-cdcl_W-cp-rtranclp-cdcl_W)
have cdcl_W^{**} T T'
 using rtranclp-skip-or-resolve-rtranclp-cdcl_W s-or-r by blast
have inv-T': cdcl_W-all-struct-inv T'
 using \langle cdcl_W^{**} \mid T \mid T' \rangle inv-T rtranclp-cdcl<sub>W</sub>-all-struct-inv-inv by blast
have inv-U: cdcl_W-all-struct-inv U
 using cdcl_W-merge-restart-cdcl_W confl fw-r-conflict inv local.bj
 rtranclp-cdcl_W-all-struct-inv-inv by blast
have [simp]: init-clss S = init-clss T'
 using \langle cdcl_W^{**} T T' \rangle cdcl_W-init-clss confl cdcl_W-all-struct-inv-def conflict inv
 by (metis \( cdcl_W \cdot M \cdcl_W \cdot M \cdcl_W \cdot T \) rtranclp-cdcl_W \( \cdot init \cds \) clss
then have atm-L: atm-of L \in atms-of-mm (clauses S)
 using inv-T' confl-T' LD unfolding cdcl<sub>W</sub>-all-struct-inv-def no-strange-atm-def
  clauses-def
 by (simp add: atms-of-def image-subset-iff)
obtain M where tr-T: trail T = M @ trail T'
 using s-or-r skip-or-resolve-state-change by meson
obtain M' where
 tr-T': trail T' = M' @ Decided K # <math>tl (trail U) and
 tr-U: trail U = Propagated L D # <math>tl (trail U)
 using U M1-M2 inv-T' unfolding cdcl_W-all-struct-inv-def cdcl_W-M-level-inv-def
 by fastforce
\mathbf{def}\ M^{\prime\prime} \equiv M \ @\ M^{\prime}
have tr-T: trail S = M'' @ Decided K \# tl (trail U)
 using tr-T tr-T' confl unfolding M"-def by (auto elim: rulesE)
have init-clss T' + learned-clss S \models pm D
 using inv-T' confl-T' unfolding cdcl_W-all-struct-inv-def cdcl_W-learned-clause-def
 clauses-def by simp
have reduce-trail-to (convert-trail-from-NOT (convert-trail-from-W M1)) S =
 reduce-trail-to M1 S
 by (rule reduce-trail-to-length) simp
moreover have trail (reduce-trail-to M1 S) = M1
 apply (rule reduce-trail-to-skip-beginning[of - M @ - @ M2 @ [Decided K]])
 using confl M1-M2 \langle trail \ T = M @ trail \ T' \rangle
   apply (auto dest!: get-all-ann-decomposition-exists-prepend
     elim!: conflictE)
   by (rule sym) auto
ultimately have [simp]: trail (reduce-trail-to<sub>NOT</sub> M1 S) = M1
 using M1-M2 confl by (subst reduce-trail-to<sub>NOT</sub>-reduce-trail-convert)
 (auto simp: comp-def elim: rulesE)
have every-mark-is-a-conflict U
```

```
using inv-U unfolding cdcl<sub>W</sub>-all-struct-inv-def cdcl<sub>W</sub>-conflicting-def by simp
     then have U-D: tl\ (trail\ U) \models as\ CNot\ (remove1-mset\ L\ D)
       by (metis append-self-conv2 tr-U)
     have undef-L: undefined-lit (tl (trail U)) <math>L
       using U M1-M2 inv-U unfolding cdcl<sub>W</sub>-all-struct-inv-def cdcl<sub>W</sub>-M-level-inv-def
       by (auto simp: lits-of-def defined-lit-map)
     have backjump-l S U
       apply (rule backjump-l[of - - - - L D - remove1-mset L D])
              using tr-T apply simp
              using inv unfolding cdclw-all-struct-inv-def cdclw-M-level-inv-def
              apply (simp add: comp-def)
             using UM1-M2 confl M1-M2 inv-T' inv unfolding cdcl_W-all-struct-inv-def
             cdcl_W-M-level-inv-def apply (auto simp: state-eq_{NOT}-def
               trail-reduce-trail-to<sub>NOT</sub>-add-learned-cls)[]
            using C_S apply auto[]
           using tr-S-C_S apply simp
          using undef-L apply auto[]
         using atm-L apply (simp add: trail-reduce-trail-to_NOT-add-learned-cls)
        using \langle init\text{-}clss \ T' + learned\text{-}clss \ S \models pm \ D \rangle \ LD unfolding clauses\text{-}def
        apply simp
       using LD apply simp
       apply (metis U-D convert-trail-from-W-true-annots)
       using inv-T' inv-U U confl-T' undef-L M1-M2 LD unfolding cdcl_W-all-struct-inv-def
       distinct-cdcl_W-state-def by (simp\ add:\ cdcl_W-M-level-inv-decomp\ backjump-l-cond-def)
     then show ?thesis using cdcl<sub>NOT</sub>-merged-bj-learn-backjump-l by fast
   qed
qed
abbreviation cdcl_{NOT}-restart where
cdcl_{NOT}-restart \equiv restart-ops.cdcl_{NOT}-raw-restart cdcl_{NOT} restart
lemma\ cdcl_W-merge-restart-is-cdcl<sub>NOT</sub>-merged-bj-learn-restart-no-step:
 assumes
   inv: cdcl_W-all-struct-inv S and
   cdcl_W: cdcl_W-merge-restart S T
 shows cdcl_{NOT}-restart** S T \vee (no\text{-step } cdcl_W\text{-merge } T \wedge conflicting T \neq None)
proof -
  consider
     (fw) \ cdcl_W-merge S \ T
   \mid (fw-r) \ restart \ S \ T
   using cdcl_W by (meson\ cdcl_W-merge-restart.simps cdcl_W-rf.cases fw-conflict fw-decide fw-forget
     fw-propagate)
  then show ?thesis
   proof cases
     case fw
     then have IH: cdcl_{NOT}-merged-bj-learn S T \vee (no-step \ cdcl_W-merge T \wedge conflicting \ T \neq None)
       using inv cdcl_W-merge-is-cdcl_{NOT}-merged-bj-learn by blast
     have invS: inv_{NOT} S
       using inv unfolding cdcl_W-all-struct-inv-def cdcl_W-M-level-inv-def by auto
     have ff2: cdcl_{NOT}^{++} S T \longrightarrow cdcl_{NOT}^{**} S T
        by (meson\ tranclp-into-rtranclp)
     have ff3: no-dup (convert-trail-from-W (trail S))
       using invS by (simp add: comp-def)
     have cdcl_{NOT} \leq cdcl_{NOT}-restart
       by (auto simp: restart-ops.cdcl_{NOT}-raw-restart.simps)
```

```
then show ?thesis
       using ff3 ff2 IH cdcl_{NOT}-merged-bj-learn-is-tranclp-cdcl_{NOT}
       rtranclp-mono[of\ cdcl_{NOT}\ cdcl_{NOT}-restart]\ invS\ predicate2D\ {f by}\ blast
   next
     \mathbf{case}\ \mathit{fw-r}
     then show ?thesis by (blast intro: restart-ops.cdcl<sub>NOT</sub>-raw-restart.intros)
   qed
\mathbf{qed}
abbreviation \mu_{FW} :: 'st \Rightarrow nat \text{ where }
\mu_{FW} S \equiv (if no\text{-step } cdcl_W\text{-merge } S \text{ then } 0 \text{ else } 1 + \mu_{CDCL}'\text{-merged } (\text{set-mset } (init\text{-clss } S)) S)
lemma cdcl_W-merge-\mu_{FW}-decreasing:
 assumes
   inv: cdcl_W-all-struct-inv S and
   fw: cdcl_W-merge S T
 shows \mu_{FW} T < \mu_{FW} S
proof -
 let ?A = init\text{-}clss S
 have atm-clauses: atms-of-mm (clauses S) \subseteq atms-of-mm ?A
   using inv unfolding cdcl<sub>W</sub>-all-struct-inv-def no-strange-atm-def clauses-def by auto
 have atm-trail: atm-of 'lits-of-l (trail S) \subseteq atms-of-mm ?A
   using inv unfolding cdcl<sub>W</sub>-all-struct-inv-def no-strange-atm-def clauses-def by auto
 have n-d: no-dup (trail S)
   using inv unfolding cdcl_W-all-struct-inv-def by (auto simp: cdcl_W-M-level-inv-decomp)
 have [simp]: \neg no\text{-step } cdcl_W\text{-merge } S
   using fw by auto
 have [simp]: init-clss S = init-clss T
   using cdcl_W-merge-restart-cdcl_W [of S T] inv rtranclp-cdcl_W-init-clss
   unfolding cdcl_W-all-struct-inv-def
   by (meson\ cdcl_W\text{-}merge.simps\ cdcl_W\text{-}merge-restart.simps\ cdcl_W\text{-}rf.simps\ fw)
  consider
     (merged) \ cdcl_{NOT}-merged-bj-learn S \ T
   \mid (n-s) \text{ no-step } cdcl_W\text{-merge } T
   using cdcl_W-merge-is-cdcl_{NOT}-merged-bj-learn inv fw by blast
  then show ?thesis
   proof cases
     case merged
     then show ?thesis
       using cdcl_{NOT}-decreasing-measure'[OF - - atm-clauses, of T] atm-trail n-d
       by (auto split: if-split simp: comp-def image-image lits-of-def)
   next
     case n-s
     then show ?thesis by simp
   qed
qed
lemma wf\text{-}cdcl_W\text{-}merge: wf {(T, S). cdcl_W\text{-}all\text{-}struct\text{-}inv S \land cdcl_W\text{-}merge S T}
 apply (rule wfP-if-measure[of - - \mu_{FW}])
 using cdcl_W-merge-\mu_{FW}-decreasing by blast
sublocale conflict-driven-clause-learning<sub>W</sub>-termination
 by unfold-locales (simp add: wf-cdcl<sub>W</sub>-merge)
```

3.3.4 Correctness of $cdcl_W$ -merge-stgy

```
lemma full-cdcl_W-s'-full-cdcl_W-merge-restart:
  assumes
    conflicting R = None  and
    inv: cdcl_W-all-struct-inv R
  shows full cdcl_W-s' R V \longleftrightarrow full <math>cdcl_W-merge-stgy R V (is ?s' \longleftrightarrow ?fw)
proof
  assume ?s'
  then have cdcl_W-s'** R V unfolding full-def by blast
  have cdcl_W-all-struct-inv V
    \mathbf{using} \ \langle cdcl_W \text{-}s'^{**} \ R \ V \rangle \ inv \ rtranclp\text{-}cdcl_W \text{-}all\text{-}struct\text{-}inv\text{-}inv \ rtranclp\text{-}cdcl_W \text{-}s'\text{-}rtranclp\text{-}cdcl_W}
    by blast
  then have n-s: no-step cdcl_W-merge-stgy V
    using no\text{-}step\text{-}cdcl_W\text{-}s'-no\text{-}step\text{-}cdcl_W-merge\text{-}stqy by (meson \land full \ cdcl_W\text{-}s' \ R \ V) \ full\text{-}def)
  have n-s-bj: no-step cdcl_W-bj V
    by (metis \langle cdcl_W - all - struct - inv \ V \rangle \langle full \ cdcl_W - s' \ R \ V \rangle \ bj \ full - def
      n-step-cdcl<sub>W</sub>-stgy-iff-no-step-cdcl<sub>W</sub>-cl-cdcl<sub>W</sub>-o)
  have n-s-cp: no-step cdcl_W-merge-cp V
    proof -
      { fix ss :: 'st
        obtain ssa :: 'st \Rightarrow 'st where
           ff1: \forall s. \neg cdcl_W - all - struct - inv \ s \lor cdcl_W - s' - without - decide \ s \ (ssa \ s)
             \vee no-step cdcl_W-merge-cp s
           using conflicting-true-no-step-s'-without-decide-no-step-cdcl<sub>W</sub>-merge-cp by moura
        have \forall p \ s \ sa. \neg full \ p \ (s::'st) \ sa \lor p^{**} \ s \ sa \land no\text{-step} \ p \ sa \ \text{and}
           \forall p \ s \ sa. \ (\neg p^{**} \ (s::'st) \ sa \lor (\exists s. \ p \ sa \ s)) \lor full \ p \ s \ sa
           by (meson full-def)+
        then have \neg cdcl_W-merge-cp V ss
           using ff1 by (metis\ (no\text{-}types)\ (cdcl_W\text{-}all\text{-}struct\text{-}inv\ V)\ (full\ cdcl_W\text{-}s'\ R\ V)\ cdcl_W\text{-}s'.simps
             cdcl_W-s'-without-decide.cases) }
      then show ?thesis
        \mathbf{by} blast
    qed
  consider
      (fw-no-confl) cdcl_W-merge-stgy** R V and conflicting V = None
      (fw\text{-}confl) \ cdcl_W\text{-}merge\text{-}stgy^{**} \ R \ V \ \mathbf{and} \ conflicting \ V \neq None \ \mathbf{and} \ no\text{-}step \ cdcl_W\text{-}bj \ V
    | (fw-dec-confl) S T U  where cdcl_W-merge-stgy** R S  and no-step cdcl_W-merge-cp S  and
         decide \ S \ T \ and \ cdcl_W-merge-cp^{**} \ T \ U \ and \ conflict \ U \ V
    \mid (fw\text{-}dec\text{-}no\text{-}confl) \ S \ T \ \text{where} \ cdcl_W\text{-}merge\text{-}stgy^{**} \ R \ S \ \text{and} \ no\text{-}step \ cdcl_W\text{-}merge\text{-}cp \ S \ \text{and}
         decide S T and cdcl_W-merge-cp^{**} T V and conflicting V = None
    | (cp\text{-}no\text{-}confl) \ cdcl_W\text{-}merge\text{-}cp^{**} \ R \ V \ \mathbf{and} \ conflicting \ V = None
    | (cp\text{-}confl) \ U \text{ where } cdcl_W\text{-}merge\text{-}cp^{**} \ R \ U \text{ and } conflict \ U \ V
    using rtranclp-cdcl_W-s'-no-step-cdcl<sub>W</sub>-s'-without-decide-decomp-into-cdcl<sub>W</sub>-merge | OF
      \langle cd\bar{c}l_W-s'** R\ V \rangle\ assms] by auto
  then show ?fw
    proof cases
      case fw-no-confl
      then show ?thesis using n-s unfolding full-def by blast
    next
      case fw-confl
      then show ?thesis using n-s unfolding full-def by blast
      case fw-dec-confl
      have cdcl_W-merge-cp U V
        using n-s-bj by (metis cdcl_W-merge-cp.simps full-unfold fw-dec-confl(5))
```

```
then have full1 cdcl_W-merge-cp T V
       unfolding full1-def by (metis fw-dec-confl(4) n-s-cp tranclp-unfold-end)
     then have cdcl_W-merge-stqy S V using \langle decide\ S\ T \rangle \langle no-step cdcl_W-merge-cp\ S \rangle by auto
     then show ?thesis using n-s < cdcl_W-merge-stqy** R > S unfolding full-def by auto
     case fw-dec-no-confl
     then have full cdcl_W-merge-cp T V
       using n-s-cp unfolding full-def by blast
     then have cdcl_W-merge-stay S V using \langle decide\ S T \rangle \langle no-step cdcl_W-merge-cp\ S \rangle by auto
     then show ?thesis using n-s \in cdcl_W-merge-stgy** R S> unfolding full-def by auto
   next
     case cp-no-confl
     then have full\ cdcl_W-merge-cp R\ V
       by (simp add: full-def n-s-cp)
     then have R = V \vee cdcl_W-merge-stgy<sup>++</sup> R V
       using fw-s-cp unfolding full-unfold fw-s-cp
      by (metis (no-types) rtranclp-unfold tranclp-unfold-end)
     then show ?thesis
       by (simp add: full-def n-s rtranclp-unfold)
   \mathbf{next}
     case cp-confl
     have full cdcl_W-bj V
       using n-s-bj unfolding full-def by blast
     then have full1\ cdcl_W-merge-cp R\ V
       unfolding full1-def by (meson cdcl_W-merge-cp.conflict' cp-confl(1,2) n-s-cp
         rtranclp-into-tranclp1)
     then show ?thesis using n-s unfolding full-def by auto
   qed
next
 assume ?fw
 then have cdcl_W^{**} R V using rtranclp-mono[of\ cdcl_W-merge-stgy\ cdcl_W^{**}]
   cdcl_W-merge-stgy-rtranclp-cdcl_W unfolding full-def by auto
  then have inv': cdcl_W-all-struct-inv V using inv rtranclp-cdcl_W-all-struct-inv-inv by blast
 have cdcl_W-s'** R V
   using \langle ?fw \rangle by (simp\ add:\ full-def\ inv\ rtranclp-cdcl_W-merge-stgy-rtranclp-cdcl_W-s')
  moreover have no-step cdcl_W-s' V
   proof cases
     assume conflicting V = None
     then show ?thesis
       \mathbf{by} \ (\mathit{metis} \ \mathit{inv'} \ \langle \mathit{full} \ \mathit{cdcl}_W \text{-} \mathit{merge-stgy} \ \mathit{R} \ \mathit{V} \rangle \ \mathit{full-def}
         no-step-cdcl<sub>W</sub>-merge-stgy-no-step-cdcl<sub>W</sub>-s')
   next
     assume confl-V: conflicting V \neq None
     then have no-step cdcl_W-bj V
     using rtranclp-cdcl_W-merge-stgy-no-step-cdcl<sub>W</sub>-bj by (meson \ \ full \ cdcl_W-merge-stgy R \ \ V)
       assms(1) full-def)
     then show ?thesis using confl-V by (fastforce simp: cdcl_W-s'.simps full1-def cdcl_W-cp.simps
       dest!: tranclpD elim: rulesE)
   qed
 ultimately show ?s' unfolding full-def by blast
qed
lemma full-cdcl_W-stgy-full-cdcl_W-merge:
 assumes
   conflicting R = None  and
   cdcl_W-all-struct-inv R
```

```
shows full cdcl_W-stgy R V \longleftrightarrow full <math>cdcl_W-merge-stgy R V
 by (simp\ add:\ assms\ full-cdcl_W-s'-full-cdcl_W-merge-restart\ full-cdcl_W-stgy-iff-full-cdcl_W-s')
lemma full-cdcl_W-merge-stgy-final-state-conclusive':
 fixes S' :: 'st
 assumes
   full: full cdcl_W-merge-stgy (init-state N) S' and
   no-d: distinct-mset-mset N
 shows (conflicting S' = Some \{\#\} \land unsatisfiable (set-mset N))
   \vee (conflicting S' = None \wedge trail S' \models asm N \wedge satisfiable (set-mset N))
proof -
 have cdcl_W-all-struct-inv (init-state N)
   using no-d unfolding cdcl_W-all-struct-inv-def by auto
 moreover have conflicting (init-state N) = None
   by auto
 ultimately show ?thesis
   using full full-cdcl_W-stgy-final-state-conclusive-from-init-state
   full-cdcl_W-stgy-full-cdcl<sub>W</sub>-merge no-d by presburger
qed
end
end
theory CDCL-W-Incremental
\mathbf{imports}\ \mathit{CDCL}\text{-}\mathit{W}\text{-}\mathit{Termination}
begin
```

3.4 Incremental SAT solving

```
locale state_W-adding-init-clause =
  state_W
     — functions about the state:
       — getter:
    trail init-clss learned-clss backtrack-lvl conflicting
    cons\text{-}trail\ tl\text{-}trail\ add\text{-}learned\text{-}cls\ remove\text{-}cls\ update\text{-}backtrack\text{-}lvl
    update-conflicting
       — Some specific states:
    init\text{-}state
  for
    trail :: 'st \Rightarrow ('v, 'v \ clause) \ ann-lits \ and
    init-clss :: 'st \Rightarrow 'v clauses and
    learned-clss :: 'st \Rightarrow 'v \ clauses \ \mathbf{and}
    backtrack-lvl :: 'st \Rightarrow nat and
    conflicting :: 'st \Rightarrow 'v clause option and
    cons-trail :: ('v, 'v clause) ann-lit \Rightarrow 'st \Rightarrow 'st and
    tl-trail :: 'st \Rightarrow 'st and
    add-learned-cls :: 'v clause \Rightarrow 'st \Rightarrow 'st and
    remove\text{-}cls :: 'v \ clause \Rightarrow 'st \Rightarrow 'st \ \mathbf{and}
    update-backtrack-lvl :: nat \Rightarrow 'st \Rightarrow 'st and
    update-conflicting :: 'v clause option \Rightarrow 'st \Rightarrow 'st and
    init-state :: 'v clauses \Rightarrow 'st +
  fixes
```

```
add-init-cls :: 'v clause \Rightarrow 'st \Rightarrow 'st
  assumes
   add-init-cls:
      state \ st = (M, N, U, S') \Longrightarrow
       state (add-init-cls C st) = (M, \{\#C\#\} + N, U, S')
begin
lemma
  trail-add-init-cls[simp]:
   trail\ (add-init-cls\ C\ st)=trail\ st\ and
  init-clss-add-init-cls[simp]:
    init\text{-}clss\ (add\text{-}init\text{-}cls\ C\ st) = \{\#C\#\} + init\text{-}clss\ st
   and
  learned-clss-add-init-cls[simp]:
   learned-clss (add-init-cls C st) = learned-clss st and
  backtrack-lvl-add-init-cls[simp]:
   backtrack-lvl \ (add-init-cls \ C \ st) = backtrack-lvl \ st \ and
  conflicting-add-init-cls[simp]:
    conflicting (add-init-cls \ C \ st) = conflicting \ st
  using add-init-cls[of st - - - - C] by (cases state st; auto)+
lemma clauses-add-init-cls[simp]:
   clauses\ (add\text{-}init\text{-}cls\ N\ S) = \{\#N\#\} + init\text{-}clss\ S + learned\text{-}clss\ S
  unfolding clauses-def by auto
lemma reduce-trail-to-add-init-cls[simp]:
  trail\ (reduce-trail-to\ F\ (add-init-cls\ C\ S)) = trail\ (reduce-trail-to\ F\ S)
  by (rule trail-eq-reduce-trail-to-eq) auto
lemma conflicting-add-init-cls-iff-conflicting[simp]:
  conflicting (add-init-cls CS) = None \longleftrightarrow conflicting S = None
  by fastforce+
end
{\bf locale}\ conflict\mbox{-} driven\mbox{-} clause\mbox{-} learning\mbox{-} with\mbox{-} adding\mbox{-} init\mbox{-} clause_W =
  state_W-adding-init-clause
   — functions for the state:
      — access functions:
   trail init-clss learned-clss backtrack-lvl conflicting
       – changing state:
   cons-trail tl-trail add-learned-cls remove-cls update-backtrack-lvl
   update-conflicting
       — get state:
   in it\text{-}state
      — Adding a clause:
    add-init-cls
  for
    trail :: 'st \Rightarrow ('v, 'v \ clause) \ ann-lits \ \mathbf{and}
   hd-trail :: 'st \Rightarrow ('v, 'v clause) ann-lit and
   init-clss :: 'st \Rightarrow 'v clauses and
   learned-clss :: 'st \Rightarrow 'v clauses and
   backtrack-lvl :: 'st \Rightarrow nat and
    conflicting :: 'st \Rightarrow 'v clause option and
```

```
cons-trail :: ('v, 'v clause) ann-lit \Rightarrow 'st \Rightarrow 'st and
   tl-trail :: 'st \Rightarrow 'st and
   add-learned-cls :: 'v clause \Rightarrow 'st \Rightarrow 'st and
   remove\text{-}cls :: 'v \ clause \Rightarrow 'st \Rightarrow 'st \ \mathbf{and}
   update-backtrack-lvl :: nat \Rightarrow 'st \Rightarrow 'st and
   update\text{-}conflicting :: 'v \ clause \ option \Rightarrow 'st \Rightarrow 'st \ \mathbf{and}
   init-state :: 'v clauses \Rightarrow 'st and
   add-init-cls :: 'v clause \Rightarrow 'st \Rightarrow 'st
begin
sublocale conflict-driven-clause-learning_W
 by unfold-locales
This invariant holds all the invariant related to the strategy. See the structural invariant in
cdcl_W-all-struct-inv
definition cdcl_W-stgy-invariant where
cdcl_W-stqy-invariant S \longleftrightarrow
  conflict-is-false-with-level S
 \land no-clause-is-false S
 \land no-smaller-confl S
 \land no-clause-is-false S
lemma cdcl_W-stgy-cdcl_W-stgy-invariant:
  assumes
  cdcl_W: cdcl_W-stgy S T and
  inv-s: cdcl_W-stgy-invariant S and
  inv: cdcl_W-all-struct-inv S
 shows
   cdcl_W-stqy-invariant T
  unfolding cdcl_W-stgy-invariant-def cdcl_W-all-struct-inv-def apply (intro conjI)
   apply (rule cdcl_W-stgy-ex-lit-of-max-level[of S])
   using assms unfolding cdcl_W-stqy-invariant-def cdcl_W-all-struct-inv-def apply auto[7]
   using cdcl_W cdcl_W-stgy-not-non-negated-init-clss apply simp
  apply (rule cdcl_W-stgy-no-smaller-confl-inv)
  using assms unfolding cdcl_W-stqy-invariant-def cdcl_W-all-struct-inv-def apply auto[4]
 using cdcl_W cdcl_W-stqy-not-non-negated-init-clss by auto
lemma rtranclp-cdcl_W-stgy-cdcl_W-stgy-invariant:
  assumes
  cdcl_W: cdcl_W-stgy^{**} S T and
  inv-s: cdcl_W-stgy-invariant S and
  inv: cdcl_W-all-struct-inv S
  \mathbf{shows}
   cdcl_W-stgy-invariant T
  using assms apply (induction)
   apply simp
  using cdcl_W-stgy-cdcl_W-stgy-invariant rtranclp-cdcl_W-all-struct-inv-inv
  rtranclp-cdcl_W-stgy-rtranclp-cdcl_W by blast
abbreviation decr-bt-lvl where
decr-bt-lvl \ S \equiv update-backtrack-lvl \ (backtrack-lvl \ S - 1) \ S
```

When we add a new clause, we reduce the trail until we get to the first literal included in C. Then we can mark the conflict.

```
fun cut-trail-wrt-clause where
cut-trail-wrt-clause <math>C [] S = S
cut-trail-wrt-clause C (Decided L \# M) S =
  (if -L \in \# C then S)
   else cut-trail-wrt-clause C M (decr-bt-lvl (tl-trail S))) |
cut-trail-wrt-clause C (Propagated L - \# M) S =
  (if -L \in \# C then S)
   else cut-trail-wrt-clause C M (tl-trail S)
definition add-new-clause-and-update :: 'v clause \Rightarrow 'st \Rightarrow 'st where
add-new-clause-and-update CS =
  (if trail S \models as \ CNot \ C
  then update-conflicting (Some C) (add-init-cls C
   (cut\text{-}trail\text{-}wrt\text{-}clause\ C\ (trail\ S)\ S))
  else add-init-cls CS)
{f thm} cut-trail-wrt-clause.induct
lemma init-clss-cut-trail-wrt-clause[simp]:
  init-clss (cut-trail-wrt-clause C M S) = init-clss S
 \mathbf{by}\ (induction\ rule:\ cut\text{-}trail\text{-}wrt\text{-}clause.induct)\ auto
lemma learned-clss-cut-trail-wrt-clause[simp]:
  learned-clss (cut-trail-wrt-clause C M S) = learned-clss S
 by (induction rule: cut-trail-wrt-clause.induct) auto
lemma conflicting-clss-cut-trail-wrt-clause[simp]:
  conflicting\ (cut-trail-wrt-clause\ C\ M\ S) = conflicting\ S
 by (induction rule: cut-trail-wrt-clause.induct) auto
lemma trail-cut-trail-wrt-clause:
  \exists M. \ trail \ S = M \ @ \ trail \ (cut\text{-}trail\text{-}wrt\text{-}clause \ C \ (trail \ S) \ S)
proof (induction trail S arbitrary: S rule: ann-lit-list-induct)
 case Nil
 then show ?case by simp
next
  case (Decided L M) note IH = this(1)[of decr-bt-lvl (tl-trail S)] and M = this(2)[symmetric]
 then show ?case using Cons-eq-appendI by fastforce+
next
 case (Propagated L l M) note IH = this(1)[of\ tl-trail\ S] and M = this(2)[symmetric]
 then show ?case using Cons-eq-appendI by fastforce+
qed
lemma n-dup-no-dup-trail-cut-trail-wrt-clause[simp]:
 assumes n-d: no-dup (trail\ T)
 shows no-dup (trail\ (cut\text{-}trail\text{-}wrt\text{-}clause\ C\ (trail\ T)\ T))
proof -
 obtain M where
   M: trail \ T = M @ trail (cut-trail-wrt-clause \ C \ (trail \ T) \ T)
   using trail-cut-trail-wrt-clause of T C by auto
 \mathbf{show} \ ?thesis
   using n-d unfolding arg-cong[OF M, of no-dup] by auto
\mathbf{lemma}\ \mathit{cut-trail-wrt-clause-backtrack-lvl-length-decided}\colon
 assumes
    backtrack-lvl T = count-decided (trail T)
```

```
shows
   backtrack-lvl (cut-trail-wrt-clause C (trail T) T) =
     count-decided (trail (cut-trail-wrt-clause C (trail T) T))
 using assms
proof (induction trail T arbitrary: T rule: ann-lit-list-induct)
 case Nil
 then show ?case by simp
next
 case (Decided L M) note IH = this(1)[of decr-bt-lvl (tl-trail T)] and M = this(2)[symmetric]
   and bt = this(3)
 then show ?case by auto
next
  case (Propagated L l M) note IH = this(1)[of tl-trail T] and M = this(2)[symmetric] and bt =
 then show ?case by auto
qed
lemma cut-trail-wrt-clause-CNot-trail:
 assumes trail T \models as \ CNot \ C
 shows
   (trail\ ((cut\text{-}trail\text{-}wrt\text{-}clause\ C\ (trail\ T)\ T))) \models as\ CNot\ C
proof (induction trail T arbitrary: T rule: ann-lit-list-induct)
 case Nil
 then show ?case by simp
 case (Decided L M) note IH = this(1)[of decr-bt-lvl (tl-trail T)] and M = this(2)[symmetric]
   and bt = this(3)
 show ?case
   proof (cases count C(-L) = 0)
     case False
     then show ?thesis
      using IH M bt by (auto simp: true-annots-true-cls)
   next
     case True
     obtain mma :: 'v clause where
      f6: (mma \in \{\{\#-l\#\} \mid l. \ l \in \#\ C\} \longrightarrow M \models a\ mma) \longrightarrow M \models as \{\{\#-l\#\} \mid l. \ l \in \#\ C\}
      using true-annots-def by blast
     have mma \in \{\{\#-l\#\} \mid l. \ l \in \#\ C\} \longrightarrow trail\ T \models a\ mma
      using CNot-def M bt by (metis (no-types) true-annots-def)
     then have M \models as \{ \{ \# - l \# \} \mid l. \ l \in \# \ C \}
      using f6 True M bt by (force simp: count-eq-zero-iff)
     then show ?thesis
      using IH true-annots-true-cls M by (auto simp: CNot-def)
   qed
next
 case (Propagated L l M) note IH = this(1)[of\ tl-trail\ T] and M = this(2)[symmetric] and bt =
this(3)
 show ?case
   proof (cases count C (-L) = \theta)
     case False
     then show ?thesis
      using IH M bt by (auto simp: true-annots-true-cls)
   next
     case True
     obtain mma :: 'v clause where
```

```
f6: (mma \in \{\{\#-l\#\} \mid l.\ l \in \#\ C\} \longrightarrow M \models a\ mma) \longrightarrow M \models as \{\{\#-l\#\} \mid l.\ l \in \#\ C\}
        using true-annots-def by blast
      have mma \in \{\{\#-l\#\} \mid l. \ l \in \#\ C\} \longrightarrow trail\ T \models a\ mma
        using CNot-def M bt by (metis (no-types) true-annots-def)
      then have M \models as \{ \{ \# - l \# \} \mid l. \ l \in \# \ C \}
        using f6 True M bt by (force simp: count-eq-zero-iff)
      then show ?thesis
        using IH true-annots-true-cls M by (auto simp: CNot-def)
    qed
qed
\mathbf{lemma}\ \textit{cut-trail-wrt-clause-hd-trail-in-or-empty-trail}:
  ((\forall L \in \#C. -L \notin lits - of -l (trail T)) \land trail (cut-trail-wrt-clause C (trail T) T) = [])
    \vee (-lit\text{-}of \ (hd \ (trail \ (cut\text{-}trail\text{-}wrt\text{-}clause \ C \ (trail \ T) \ T))) \in \# \ C
       \land length (trail (cut-trail-wrt-clause C (trail T) T)) \geq 1)
  using assms
proof (induction trail T arbitrary: T rule: ann-lit-list-induct)
  case Nil
  then show ?case by simp
next
  case (Decided L M) note IH = this(1)[of decr-bt-lvl (tl-trail T)] and M = this(2)[symmetric]
  then show ?case by simp force
next
  case (Propagated L l M) note IH = this(1)[of\ tl-trail T] and M = this(2)[symmetric]
  then show ?case by simp force
ged
We can fully run cdcl_W-s or add a clause. Remark that we use cdcl_W-s to avoid an explicit
skip, resolve, and backtrack normalisation to get rid of the conflict C if possible.
inductive incremental-cdcl<sub>W</sub> :: 'st \Rightarrow 'st \Rightarrow bool for S where
  trail \ S \models asm \ init-clss \ S \Longrightarrow \ distinct-mset \ C \Longrightarrow \ conflicting \ S = None \Longrightarrow
   trail S \models as CNot C \Longrightarrow
  full\ cdcl_W-stgy
     (update-conflicting (Some C)
       (add\text{-}init\text{-}cls\ C\ (cut\text{-}trail\text{-}wrt\text{-}clause\ C\ (trail\ S)\ S)))\ T \Longrightarrow
   incremental\text{-}cdcl_W \ S \ T \ |
add-no-confl:
  trail \ S \models asm \ init-clss \ S \Longrightarrow \ distinct-mset \ C \Longrightarrow \ conflicting \ S = None \Longrightarrow
   \neg trail \ S \models as \ CNot \ C \Longrightarrow
   full\ cdcl_W-stgy (add-init-cls C\ S) T \implies
   incremental\text{-}cdcl_W \ S \ T
\mathbf{lemma}\ cdcl_W\text{-}all\text{-}struct\text{-}inv\text{-}add\text{-}new\text{-}clause\text{-}and\text{-}update\text{-}cdcl_W\text{-}all\text{-}struct\text{-}inv\text{:}}
 assumes
    inv-T: cdcl_W-all-struct-inv T and
    tr-T-N[simp]: trail T \models asm N and
    tr-C[simp]: trail\ T \models as\ CNot\ C and
    [simp]: distinct-mset C
  shows cdcl_W-all-struct-inv (add-new-clause-and-update C T) (is cdcl_W-all-struct-inv ?T')
proof -
 let ?T = update\text{-}conflicting (Some C)
    (add\text{-}init\text{-}cls\ C\ (cut\text{-}trail\text{-}wrt\text{-}clause\ C\ (trail\ T)\ T))
  obtain M where
    M: trail\ T = M @ trail\ (cut-trail-wrt-clause\ C\ (trail\ T)\ T)
      using trail-cut-trail-wrt-clause[of T C] by blast
```

```
have H[dest]: \Lambda x. \ x \in lits\text{-}of\text{-}l \ (trail \ (cut\text{-}trail\text{-}wrt\text{-}clause \ C \ (trail \ T) \ T)) \Longrightarrow
 x \in lits\text{-}of\text{-}l \ (trail \ T)
 using inv-T arg-cong[OF M, of lits-of-l] by auto
have H'[dest]: \bigwedge x. \ x \in set \ (trail \ (cut\text{-}trail\text{-}wrt\text{-}clause \ C \ (trail \ T) \ T)) \Longrightarrow
 x \in set (trail T)
 using inv-T arg-cong[OF M, of set] by auto
have H-proped: \bigwedge x. x \in set (get-all-mark-of-propagated (trail (cut-trail-wrt-clause C
(trail\ T)\ T))) \Longrightarrow x \in set\ (get-all-mark-of-propagated\ (trail\ T))
using inv-T arg-cong[OF M, of get-all-mark-of-propagated] by auto
have [simp]: no-strange-atm ?T
 using inv-T unfolding cdcl_W-all-struct-inv-def no-strange-atm-def add-new-clause-and-update-def
  cdcl_W-M-level-inv-def by (auto 20 1)
have M-lev: cdcl_W-M-level-inv T
 using inv-T unfolding cdcl_W-all-struct-inv-def by blast
then have no-dup (M @ trail (cut\text{-}trail\text{-}wrt\text{-}clause \ C \ (trail \ T) \ T))
 unfolding cdcl_W-M-level-inv-def unfolding M[symmetric] by auto
then have [simp]: no-dup (trail (cut-trail-wrt-clause C (trail T) T))
 by auto
have consistent-interp (lits-of-l (M @ trail (cut-trail-wrt-clause C (trail T) T)))
  using M-lev unfolding cdcl_W-M-level-inv-def unfolding M[symmetric] by auto
then have [simp]: consistent-interp (lits-of-l (trail (cut-trail-wrt-clause C
 (trail\ T)\ T)))
 unfolding consistent-interp-def by auto
have [simp]: cdcl_W-M-level-inv ?T
 using M-lev unfolding cdcl_W-M-level-inv-def by (auto dest: H H'
   simp: M-lev\ cdcl_W-M-level-inv-def\ cut-trail-wrt-clause-backtrack-lvl-length-decided)
have [simp]: \land s. \ s \in \# \ learned\text{-}clss \ T \Longrightarrow \neg tautology \ s
 using inv-T unfolding cdcl_W-all-struct-inv-def by auto
have distinct\text{-}cdcl_W\text{-}state\ T
 using inv-T unfolding cdcl_W-all-struct-inv-def by auto
then have [simp]: distinct-cdcl_W-state ?T
 unfolding distinct-cdcl_W-state-def by auto
have cdcl_W-conflicting T
 using inv-T unfolding cdcl_W-all-struct-inv-def by auto
have trail ?T \models as CNot C
  by (simp add: cut-trail-wrt-clause-CNot-trail)
then have [simp]: cdcl_W-conflicting ?T
 unfolding cdcl_W-conflicting-def apply simp
 by (metis M \langle cdcl_W-conflicting T \rangle append-assoc cdcl_W-conflicting-decomp(2))
have
 decomp-T: all-decomposition-implies-m (init-clss T) (qet-all-ann-decomposition (trail T))
 using inv-T unfolding cdcl_W-all-struct-inv-def by auto
have all-decomposition-implies-m (init-clss ?T)
  (get-all-ann-decomposition (trail ?T))
 unfolding all-decomposition-implies-def
 proof clarify
   \mathbf{fix} \ a \ b
   assume (a, b) \in set (get-all-ann-decomposition (trail ?T))
```

```
from in-get-all-ann-decomposition-in-get-all-ann-decomposition-prepend[OF this, of M]
     obtain b' where
       (a, b' \otimes b) \in set (get-all-ann-decomposition (trail T))
       using M by auto
     then have unmark-l \ a \cup set\text{-}mset \ (init\text{-}clss \ T) \models ps \ unmark-l \ (b' @ b)
       using decomp-T unfolding all-decomposition-implies-def by fastforce
     then have unmark-l a \cup set-mset (init-clss ?T) \models ps unmark-l (b \otimes b')
       by (simp add: Un-commute)
     then show unmark-l a \cup set-mset (init-clss ?T) \models ps unmark-l b
       by (auto simp: image-Un)
   qed
 have [simp]: cdcl_W-learned-clause ?T
   using inv-T unfolding cdcl_W-all-struct-inv-def cdcl_W-learned-clause-def
   by (auto dest!: H-proped simp: clauses-def)
 show ?thesis
   using \langle all\text{-}decomposition\text{-}implies\text{-}m \pmod{?T}
   (qet-all-ann-decomposition (trail ?T))
   unfolding cdcl_W-all-struct-inv-def by (auto simp: add-new-clause-and-update-def)
\mathbf{qed}
lemma cdcl_W-all-struct-inv-add-new-clause-and-update-cdcl_W-stgy-inv:
 assumes
   inv-s: cdcl_W-stgy-invariant T and
   inv: cdcl_W-all-struct-inv T and
   tr-T-N[simp]: trail T \models asm N and
   tr-C[simp]: trail\ T \models as\ CNot\ C and
   [simp]: distinct-mset C
 shows cdcl_W-stgy-invariant (add-new-clause-and-update C T)
   (is cdcl_W-stqy-invariant ?T')
proof -
 have cdcl_W-all-struct-inv ?T'
   using cdcl_W-all-struct-inv-add-new-clause-and-update-cdcl_W-all-struct-inv assms by blast
  then have
   no-dup-cut-T[simp]: no-dup (trail (cut-trail-wrt-clause C (trail T) T)) and
   n-d[simp]: no-dup (trail T)
   using cdcl_W-M-level-inv-decomp(2) cdcl_W-all-struct-inv-def inv
   n-dup-no-dup-trail-cut-trail-wrt-clause by blast+
  then have trail (add-new-clause-and-update C T) \models as CNot C
   by (simp add: add-new-clause-and-update-def cut-trail-wrt-clause-CNot-trail
     cdcl_W-M-level-inv-def cdcl_W-all-struct-inv-def)
  obtain MT where
   MT: trail T = MT @ trail (cut-trail-wrt-clause C (trail T) T)
   using trail-cut-trail-wrt-clause by blast
 consider
     (false) \ \forall L \in \#C. - L \notin lits\text{-}of\text{-}l \ (trail \ T) \ \mathbf{and}
       trail\ (cut\text{-}trail\text{-}wrt\text{-}clause\ C\ (trail\ T)\ T) = []
   (not-false)
     - lit-of (hd (trail (cut-trail-wrt-clause C (trail T) T))) \in \# C and
     1 \leq length (trail (cut-trail-wrt-clause C (trail T) T))
   using cut-trail-wrt-clause-hd-trail-in-or-empty-trail[of C T] by auto
  then show ?thesis
   proof cases
     case false note C = this(1) and empty-tr = this(2)
     then have [simp]: C = \{\#\}
       by (simp\ add:\ in\text{-}CNot\text{-}implies\text{-}uminus(2)\ multiset\text{-}eqI)
```

```
show ?thesis
       \mathbf{using}\ empty\text{-}tr\ \mathbf{unfolding}\ cdcl_W\text{-}stgy\text{-}invariant\text{-}def\ no\text{-}smaller\text{-}confl\text{-}def
       cdcl_W-all-struct-inv-def by (auto simp: add-new-clause-and-update-def)
   next
     case not-false note C = this(1) and l = this(2)
     let ?L = -lit\text{-}of (hd (trail (cut\text{-}trail\text{-}wrt\text{-}clause C (trail T) T)))}
     have L: get-level (trail (cut-trail-wrt-clause C (trail T) T)) (-?L)
       = count\text{-}decided (trail (cut\text{-}trail\text{-}wrt\text{-}clause C (trail T) T))
       apply (cases trail (add-init-cls C
           (cut\text{-}trail\text{-}wrt\text{-}clause\ C\ (trail\ T)\ T));
        cases hd (trail (cut-trail-wrt-clause C (trail T) T)))
       using l by (auto split: if-split-asm
         simp:rev-swap[symmetric] \ add-new-clause-and-update-def)
     have L': count-decided(trail (cut-trail-wrt-clause C
       (trail\ T)\ T)
       = backtrack-lvl (cut-trail-wrt-clause C (trail T) T)
       using \langle cdcl_W-all-struct-inv ? T' \rangle unfolding cdcl_W-all-struct-inv-def cdcl_W-M-level-inv-def
       by (auto simp:add-new-clause-and-update-def)
     have [simp]: no-smaller-confl (update-conflicting (Some C)
       (add\text{-}init\text{-}cls\ C\ (cut\text{-}trail\text{-}wrt\text{-}clause\ C\ (trail\ T)\ T)))
       unfolding no-smaller-confl-def
     proof (clarify, goal-cases)
       case (1 \ M \ K \ M' \ D)
       then consider
           (DC) D = C
         \mid (D-T) \ D \in \# \ clauses \ T
         by (auto simp: clauses-def split: if-split-asm)
       then show False
         proof cases
           case D-T
           have no-smaller-confl T
             using inv-s unfolding cdcl_W-stgy-invariant-def by auto
           have (MT @ M') @ Decided K \# M = trail T
             using MT 1(1) by auto
            then show False using D-T (no-smaller-conft T) 1(3) unfolding no-smaller-conft-def by
blast
         next
           case DC note -[simp] = this
           then have atm\text{-}of (-?L) \in atm\text{-}of (lits\text{-}of\text{-}l M)
             using 1(3) C in-CNot-implies-uminus(2) by blast
           moreover
             have lit-of (hd (M' @ Decided K # [])) = -?L
               using l 1(1)[symmetric] inv
               by (cases M', cases trail (add-init-cls C
                  (cut\text{-}trail\text{-}wrt\text{-}clause\ C\ (trail\ T)\ T)))
               (auto dest!: arg\text{-}cong[of - \# - - hd] simp: hd\text{-}append\ cdcl_W\text{-}all\text{-}struct\text{-}inv\text{-}def
                 cdcl_W-M-level-inv-def)
             from arg-cong[OF this, of atm-of]
             have atm\text{-}of\ (-?L) \in atm\text{-}of\ (lits\text{-}of\text{-}l\ (M'\ @\ Decided\ K\ \#\ []))
               by (cases (M' @ Decided K \# [])) auto
           moreover have no-dup (trail (cut-trail-wrt-clause C (trail T) T))
             using \langle cdcl_W - all - struct - inv ?T' \rangle unfolding cdcl_W - all - struct - inv - def
             cdcl_W-M-level-inv-def by (auto simp: add-new-clause-and-update-def)
           ultimately show False
```

```
unfolding 1(1)[symmetric, simplified] by (auto simp: lits-of-def)
       qed
     qed
     show ?thesis using L L' C
       unfolding cdcl_W-stgy-invariant-def
       unfolding cdcl_W-all-struct-inv-def by (auto simp: add-new-clause-and-update-def)
   \mathbf{qed}
\mathbf{qed}
lemma full-cdcl_W-stgy-inv-normal-form:
 assumes
   full: full cdcl_W-stgy S T and
   inv-s: cdcl_W-stgy-invariant S and
   inv: cdcl_W-all-struct-inv S
 shows conflicting T = Some \{\#\} \land unsatisfiable (set-mset (init-clss S))
   \vee conflicting T = None \wedge trail \ T \models asm \ init-clss \ S \wedge satisfiable (set-mset (init-clss \ S))
proof -
 have no-step cdcl_W-stqy T
   using full unfolding full-def by blast
  moreover have cdcl_W-all-struct-inv T and inv-s: cdcl_W-stgy-invariant T
   apply (metis rtranclp-cdcl<sub>W</sub>-stgy-rtranclp-cdcl<sub>W</sub> full full-def inv
     rtranclp-cdcl_W-all-struct-inv-inv)
   by (metis full full-def inv inv-s rtranclp-cdcl_W-stgy-cdcl_W-stgy-invariant)
  ultimately have conflicting T = Some \{\#\} \land unsatisfiable (set-mset (init-clss T))
   \vee conflicting T = None \wedge trail T \models asm init-clss T
   using cdcl_W-stay-final-state-conclusive [of T] full
   unfolding cdcl_W-all-struct-inv-def cdcl_W-stgy-invariant-def full-def by fast
 moreover have consistent-interp (lits-of-l (trail T))
   using \langle cdcl_W - all - struct - inv \ T \rangle unfolding cdcl_W - all - struct - inv - def \ cdcl_W - M - level - inv - def
   by auto
 moreover have init-clss S = init-clss T
   using inv unfolding cdcl_W-all-struct-inv-def
   by (metis\ rtranclp-cdcl_W-stgy-no-more-init-clss\ full\ full-def)
  ultimately show ?thesis
   by (metis satisfiable-carac' true-annot-def true-annots-def true-clss-def)
qed
lemma incremental\text{-}cdcl_W\text{-}inv:
 assumes
   inc: incremental\text{-}cdcl_W S T and
   inv: cdcl_W-all-struct-inv S and
   s-inv: cdcl_W-stgy-invariant S
 shows
   cdcl_W-all-struct-inv T and
   cdcl_W-stgy-invariant T
  using inc
proof (induction)
  case (add\text{-}confl\ C\ T)
 let ?T = (update\text{-}conflicting (Some C) (add\text{-}init\text{-}cls C)
   (cut\text{-}trail\text{-}wrt\text{-}clause\ C\ (trail\ S)\ S)))
 have cdcl_W-all-struct-inv ?T and inv-s-T: cdcl_W-stgy-invariant ?T
   using add-confl.hyps(1,2,4) add-new-clause-and-update-def
   cdcl_W-all-struct-inv-add-new-clause-and-update-cdcl_W-all-struct-inv inv apply auto[1]
   using add-confl.hyps(1,2,4) add-new-clause-and-update-def
   cdcl_W-all-struct-inv-add-new-clause-and-update-cdcl_W-stgy-inv inv s-inv by auto
  case 1 show ?case
```

```
by (metis\ add\text{-}confl.hyps(1,2,4,5)\ add\text{-}new\text{-}clause\text{-}and\text{-}update\text{-}def
       cdcl_W - all - struct - inv - add - new - clause - and - update - cdcl_W - all - struct - inv
      rtranclp-cdcl_W-all-struct-inv-inv rtranclp-cdcl_W-stgy-rtranclp-cdcl_W full-def inv)
  case 2 show ?case
   by (metis inv-s-T add-confl.hyps(1,2,4,5) add-new-clause-and-update-def
     cdcl_W-all-struct-inv-add-new-clause-and-update-cdcl_W-all-struct-inv full-def inv
     rtranclp-cdcl_W-stgy-cdcl_W-stgy-invariant)
next
  case (add-no-confl\ C\ T)
  case 1
  have cdcl_W-all-struct-inv (add-init-cls CS)
   using inv \langle distinct\text{-}mset \ C \rangle unfolding cdcl_W\text{-}all\text{-}struct\text{-}inv\text{-}def no-strange-atm-def
   cdcl_W-M-level-inv-def distinct-cdcl_W-state-def cdcl_W-conflicting-def cdcl_W-learned-clause-def
   by (auto 9 1 simp: all-decomposition-implies-insert-single clauses-def)
  then show ?case
   using add-no-confl(5) unfolding full-def by (auto intro: rtranclp-cdcl<sub>W</sub>-stgy-cdcl<sub>W</sub>-all-struct-inv)
  case 2
  have nc: \forall M. (\exists K \ i \ M'. \ trail \ S = M' @ Decided \ K \# M) \longrightarrow \neg M \models as \ CNot \ C
   using \langle \neg trail \ S \models as \ CNot \ C \rangle
   by (auto simp: true-annots-true-cls-def-iff-negation-in-model)
  have cdcl_W-stgy-invariant (add-init-cls CS)
   using s-inv \langle \neg trail \ S \models as \ CNot \ C \rangle inv unfolding cdcl_W-stgy-invariant-def
   no-smaller-confl-def\ eq-commute\ [of\ -\ trail\ -]\ cdcl_W-M-level-inv-def\ cdcl_W-all-struct-inv-def
   by (auto simp: clauses-def nc)
  then show ?case
   by (metis \langle cdcl_W - all - struct - inv \ (add - init - cls \ C \ S) \rangle add - no - confl. hyps(5) full-def
     rtranclp-cdcl_W-stgy-cdcl_W-stgy-invariant)
qed
lemma rtranclp-incremental-cdcl_W-inv:
  assumes
    inc: incremental\text{-}cdcl_W^{**} \ S \ T and
   inv: cdcl_W-all-struct-inv S and
    s-inv: cdcl_W-stqy-invariant S
  shows
    cdcl_W-all-struct-inv T and
    cdcl_W-stgy-invariant T
    using inc apply induction
   using inv apply simp
   using s-inv apply simp
  using incremental\text{-}cdcl_W\text{-}inv by blast+
\mathbf{lemma}\ incremental\text{-}conclusive\text{-}state:
  assumes
    inc: incremental\text{-}cdcl_W S T and
   inv: cdcl_W-all-struct-inv S and
   s-inv: cdcl_W-stgy-invariant S
  shows conflicting T = Some \{\#\} \land unsatisfiable (set-mset (init-clss T))
    \vee conflicting T = None \wedge trail \ T \models asm \ init-clss \ T \wedge satisfiable (set-mset (init-clss \ T))
  using inc
proof induction
  print-cases
 case (add-confl C T) note tr = this(1) and dist = this(2) and conf = this(3) and C = this(4) and
```

```
full = this(5)
 have full\ cdcl_W-stgy T T
   using full unfolding full-def by auto
  then show ?case
   using full C conf dist tr
   by (metis\ full-cdcl_W\ -stqy\ -inv-normal\ -form\ incremental\ -cdcl_W\ .simps\ incremental\ -cdcl_W\ -inv(1)
     incremental\text{-}cdcl_W\text{-}inv(2) inv s\text{-}inv)
next
 case (add-no-conft C T) note tr = this(1) and dist = this(2) and conf = this(3) and C = this(4)
   and full = this(5)
 have full\ cdcl_W-stgy T T
   using full unfolding full-def by auto
 then show ?case
    by (meson\ C\ conf\ dist\ full\ full\ -cdcl_W\ -stgy\ -inv\ -normal\ -form\ incremental\ -cdcl_W\ .add\ -no\ -confl
      incremental - cdcl_W - inv(1) incremental - cdcl_W - inv(2) inv s - inv tr)
qed
{\bf lemma}\ tranclp-incremental\text{-}correct:
 assumes
   inc: incremental - cdcl_W^{++} S T and
   inv: cdcl_W-all-struct-inv S and
   s-inv: cdcl_W-stgy-invariant S
  shows conflicting T = Some \{\#\} \land unsatisfiable (set-mset (init-clss T))
   \vee conflicting T = None \wedge trail \ T \models asm \ init-clss \ T \wedge satisfiable (set-mset (init-clss \ T))
  using inc apply induction
  using assms incremental-conclusive-state apply blast
 by (meson incremental-conclusive-state inv rtranclp-incremental-cdcl<sub>W</sub>-inv s-inv
   tranclp-into-rtranclp)
end
end
theory CDCL-W-Restart
imports CDCL-W-Merge
begin
3.4.1
          Adding Restarts
locale \ cdcl_W-restart =
  conflict-driven-clause-learning_W
     - functions for the state:
     — access functions:
   trail init-clss learned-clss backtrack-lvl conflicting
      — changing state:
   cons-trail tl-trail add-learned-cls remove-cls update-backtrack-lvl
   update-conflicting
     — get state:
   init\text{-}state
 for
   trail :: 'st \Rightarrow ('v, 'v \ clause) \ ann-lits \ \mathbf{and}
   init-clss :: 'st \Rightarrow 'v clauses and
   learned-clss :: 'st \Rightarrow 'v \ clauses \ \mathbf{and}
   backtrack-lvl :: 'st \Rightarrow nat and
```

```
conflicting :: 'st \Rightarrow 'v clause option and
    cons-trail :: ('v, 'v clause) ann-lit \Rightarrow 'st \Rightarrow 'st and
    tl-trail :: 'st \Rightarrow 'st and
    add-learned-cls :: 'v clause \Rightarrow 'st \Rightarrow 'st and
    remove\text{-}cls :: 'v \ clause \Rightarrow 'st \Rightarrow 'st \ \mathbf{and}
    update-backtrack-lvl :: nat \Rightarrow 'st \Rightarrow 'st and
     update-conflicting :: 'v clause option \Rightarrow 'st \Rightarrow 'st and
     init-state :: 'v clauses \Rightarrow 'st +
  fixes f :: nat \Rightarrow nat
  assumes f: unbounded f
begin
```

The condition of the differences of cardinality has to be strict. Otherwise, you could be in a strange state, where nothing remains to do, but a restart is done. See the proof of well-

```
foundedness.
inductive cdcl_W-merge-with-restart where
restart-step:
 (cdcl_W-merge-stgy \widehat{\phantom{a}} (card\ (set-mset\ (learned-clss\ T)) - card\ (set-mset\ (learned-clss\ S)))) S T
 \implies card (set-mset (learned-clss T)) - card (set-mset (learned-clss S)) > f n
 \implies restart \ T \ U \implies cdcl_W-merge-with-restart (S, n) \ (U, Suc \ n)
restart-full: full1 cdcl_W-merge-stgy S T \Longrightarrow cdcl_W-merge-with-restart (S, n) (T, Suc n)
lemma cdcl_W-merge-with-restart S T \Longrightarrow cdcl_W-merge-restart<sup>**</sup> (fst S) (fst T)
 by (induction rule: cdcl_W-merge-with-restart.induct)
  (auto dest!: relpowp-imp-rtranclp\ cdcl_W-merge-stgy-tranclp-cdcl_W-merge\ tranclp-into-rtranclp
    rtranclp-cdcl_W-merge-stgy-rtranclp-cdcl_W-merge-rtranclp-cdcl_W-merge-restart
    fw-r-rf cdcl_W-rf.restart
   simp: full1-def)
lemma cdcl_W-merge-with-restart-rtranclp-cdcl_W:
  cdcl_W-merge-with-restart S \ T \Longrightarrow cdcl_W^{**} \ (fst \ S) \ (fst \ T)
  by (induction rule: cdcl_W-merge-with-restart.induct)
  (auto dest!: relpowp-imp-rtranclp\ rtranclp-cdcl_W-merge-stgy-rtranclp-cdcl_W\ cdcl_W.rf
   cdcl_W-rf.restart tranclp-into-rtranclp simp: full1-def)
lemma cdcl_W-merge-with-restart-increasing-number:
  cdcl_W-merge-with-restart S T \Longrightarrow snd T = 1 + snd S
 by (induction rule: cdcl_W-merge-with-restart.induct) auto
lemma full1 cdcl_W-merge-stgy S T \Longrightarrow cdcl_W-merge-with-restart (S, n) (T, Suc n)
 using restart-full by blast
lemma cdcl_W-all-struct-inv-learned-clss-bound:
 assumes inv: cdcl_W-all-struct-inv S
 shows set-mset (learned-clss S) \subseteq simple-clss (atms-of-mm (init-clss S))
proof
 assume C: C \in set\text{-}mset \ (learned\text{-}clss \ S)
 have distinct-mset C
   using C inv unfolding cdcl_W-all-struct-inv-def distinct-cdcl_W-state-def distinct-mset-set-def
   by auto
  moreover have \neg tautology C
   using C inv unfolding cdcl_W-all-struct-inv-def cdcl_W-learned-clause-def by auto
```

```
moreover
   have atms-of C \subseteq atms-of-mm (learned-clss S)
     using C by auto
   then have atms-of C \subseteq atms-of-mm (init-clss S)
   using inv unfolding cdcl<sub>W</sub>-all-struct-inv-def no-strange-atm-def by force
  moreover have finite (atms-of-mm\ (init-clss\ S))
   using inv unfolding cdcl_W-all-struct-inv-def by auto
  ultimately show C \in simple-clss (atms-of-mm (init-clss S))
   using distinct-mset-not-tautology-implies-in-simple-clss simple-clss-mono
   by blast
qed
lemma cdcl_W-merge-with-restart-init-clss:
  cdcl_W-merge-with-restart S \ T \Longrightarrow cdcl_W-M-level-inv (fst S) \Longrightarrow
  init-clss (fst S) = init-clss (fst T)
 using cdcl_W-merge-with-restart-rtranclp-cdcl<sub>W</sub> rtranclp-cdcl<sub>W</sub>-init-clss by blast
lemma
  wf \{ (T, S). \ cdcl_W - all - struct - inv \ (fst \ S) \land cdcl_W - merge - with - restart \ S \ T \}
proof (rule ccontr)
 assume ¬ ?thesis
   then obtain g where
   g: \bigwedge i. \ cdcl_W-merge-with-restart (g\ i)\ (g\ (Suc\ i)) and
   inv: \bigwedge i. \ cdcl_W-all-struct-inv (fst (g\ i))
   unfolding wf-iff-no-infinite-down-chain by fast
   have init-clss (fst (g\ i)) = init-clss (fst (g\ 0))
     apply (induction i)
      apply simp
     using q inv unfolding cdcl_W-all-struct-inv-def by (metis cdcl_W-merge-with-restart-init-clss)
   } note init-g = this
 let ?S = g \theta
 have finite (atms-of-mm \ (init-clss \ (fst \ ?S)))
   using inv unfolding cdcl_W-all-struct-inv-def by auto
 have snd-g: \bigwedge i. snd (g i) = i + snd (g 0)
   apply (induct-tac i)
     apply simp
   by (metis Suc-eq-plus1-left add-Suc cdcl_W-merge-with-restart-increasing-number q)
  then have snd-g-\theta: \bigwedge i. i > \theta \Longrightarrow snd(g i) = i + snd(g \theta)
   by blast
 have unbounded-f-g: unbounded (\lambda i. f (snd (g i)))
   using f unfolding bounded-def by (metis add.commute f less-or-eq-imp-le snd-q
     not-bounded-nat-exists-larger not-le le-iff-add)
 obtain k where
   f-g-k: f (snd (g k)) > card (simple-clss (atms-of-mm (init-clss (fst ?S)))) and
   k > card (simple-clss (atms-of-mm (init-clss (fst ?S))))
   using not-bounded-nat-exists-larger[OF unbounded-f-g] by blast
The following does not hold anymore with the non-strict version of cardinality in the definition.
  { fix i
   assume no-step cdcl_W-merge-stgy (fst (g\ i))
   with g[of i]
   have False
     proof (induction rule: cdcl_W-merge-with-restart.induct)
       case (restart-step T S n) note H = this(1) and c = this(2) and n-s = this(4)
```

```
obtain S' where cdcl_W-merge-stgy S S'
         using H c by (metis gr-implies-not0 relpowp-E2)
       then show False using n-s by auto
     next
       case (restart-full S T)
       then show False unfolding full1-def by (auto dest: tranclpD)
     qed
   } note H = this
  obtain m T where
   m: m = card (set\text{-}mset (learned\text{-}clss T)) - card (set\text{-}mset (learned\text{-}clss (fst (g k))))) and
   m > f \ (snd \ (g \ k)) and
   restart T (fst (g(k+1))) and
   cdcl_W\text{-}merge\text{-}stgy\colon (cdcl_W\text{-}merge\text{-}stgy\ \widehat{\ }\ m)\ (fst\ (g\ k))\ T
   using g[of k] H[of Suc k] by (force simp: cdcl_W-merge-with-restart.simps full1-def)
  have cdcl_W-merge-stgy^{**} (fst (g k)) T
   using cdcl_W-merge-stgy relpowp-imp-rtrancly by metis
  then have cdcl_W-all-struct-inv T
   using inv[of k] rtranclp-cdcl_W-all-struct-inv-inv rtranclp-cdcl_W-merge-stgy-rtranclp-cdcl_W
   by blast
  moreover have card (set\text{-}mset (learned\text{-}clss \ T)) - card (set\text{-}mset (learned\text{-}clss \ (fst \ (g \ k))))
     > card \ (simple-clss \ (atms-of-mm \ (init-clss \ (fst \ ?S))))
     unfolding m[symmetric] using \langle m > f (snd (g k)) \rangle f-g-k by linarith
   then have card (set-mset (learned-clss T))
     > card \ (simple-clss \ (atms-of-mm \ (init-clss \ (fst \ ?S))))
     by linarith
 moreover
   have init-clss (fst (g k)) = init-clss T
     \mathbf{using} \ \langle cdcl_W \text{-}merge\text{-}stgy^{**} \ (fst \ (g \ k)) \ T \rangle \ rtranclp\text{-}cdcl_W \text{-}merge\text{-}stgy\text{-}rtranclp\text{-}cdcl_W
     rtranclp-cdcl_W-init-clss inv unfolding cdcl_W-all-struct-inv-def by blast
   then have init-clss (fst ?S) = init-clss T
     using init-g[of k] by auto
  ultimately show False
   using cdcl_W-all-struct-inv-learned-clss-bound
   by (simp add: \langle finite\ (atms-of-mm\ (init-clss\ (fst\ (g\ 0)))) \rangle simple-clss-finite
     card-mono leD)
qed
lemma cdcl_W-merge-with-restart-distinct-mset-clauses:
 assumes invR: cdcl_W-all-struct-inv (fst R) and
  st: cdcl_W-merge-with-restart R S and
  dist: distinct-mset (clauses (fst R)) and
  R: trail (fst R) = []
 shows distinct-mset (clauses (fst S))
 using assms(2,1,3,4)
proof (induction)
 case (restart-full S T)
 then show ?case using rtranclp-cdcl_W-merge-stgy-distinct-mset-clauses[of S T] unfolding full1-def
   by (auto dest: tranclp-into-rtranclp)
next
  case (restart\text{-}step \ T \ S \ n \ U)
 then have distinct-mset (clauses T)
   using rtranclp-cdcl<sub>W</sub>-merge-stgy-distinct-mset-clauses[of S T] unfolding full1-def
   by (auto dest: relpowp-imp-rtranclp)
 then show ?case using \langle restart\ T\ U \rangle unfolding clauses-def
   by (metis distinct-mset-union fstI restartE subset-mset.le-iff-add union-assoc)
qed
```

```
inductive cdcl_W-with-restart where
restart-step:
  (cdcl_W\text{-stgy} \widehat{\ } (card (set\text{-mset } (learned\text{-}clss \ T)) - card (set\text{-mset } (learned\text{-}clss \ S)))) \ S \ T \Longrightarrow
     card\ (set\text{-}mset\ (learned\text{-}clss\ T)) - card\ (set\text{-}mset\ (learned\text{-}clss\ S)) > f\ n \Longrightarrow
     restart \ T \ U \Longrightarrow
   cdcl_W-with-restart (S, n) (U, Suc n)
restart-full: full1 cdcl_W-stgy S T \Longrightarrow cdcl_W-with-restart (S, n) (T, Suc n)
lemma cdcl_W-with-restart-rtranclp-cdcl_W:
  cdcl_W-with-restart S \ T \Longrightarrow cdcl_W^{**} \ (fst \ S) \ (fst \ T)
  apply (induction rule: cdcl_W-with-restart.induct)
  by (auto dest!: relpowp-imp-rtranclp tranclp-into-rtranclp fw-r-rf
     cdcl_W-rf.restart rtranclp-cdcl_W-stgy-rtranclp-cdcl_W cdcl_W-merge-restart-cdcl_W
    simp: full1-def)
lemma cdcl_W-with-restart-increasing-number:
  cdcl_W-with-restart S \ T \Longrightarrow snd \ T = 1 + snd \ S
  by (induction rule: cdcl_W-with-restart.induct) auto
\mathbf{lemma} \ \mathit{full1} \ \mathit{cdcl}_W \textit{-stgy} \ S \ T \Longrightarrow \mathit{cdcl}_W \textit{-with-restart} \ (S, \ n) \ (T, \ \mathit{Suc} \ n)
  using restart-full by blast
lemma cdcl_W-with-restart-init-clss:
  cdcl_W-with-restart S \ T \implies cdcl_W-M-level-inv (fst S) \implies init-clss (fst S) = init-clss (fst T)
  using cdcl_W-with-restart-rtranclp-cdcl<sub>W</sub> rtranclp-cdcl<sub>W</sub>-init-clss by blast
lemma
  wf \{ (T, S). \ cdcl_W - all - struct - inv \ (fst S) \land cdcl_W - with - restart \ S \ T \}
proof (rule ccontr)
  assume ¬ ?thesis
    then obtain g where
    g: \bigwedge i. \ cdcl_W-with-restart (g\ i)\ (g\ (Suc\ i)) and
    inv: \bigwedge i. \ cdcl_W-all-struct-inv (fst (g\ i))
    unfolding wf-iff-no-infinite-down-chain by fast
  \{ \text{ fix } i \}
    have init-clss (fst (q \ i)) = init-clss (fst (q \ 0))
     apply (induction i)
        apply simp
      using g inv unfolding cdcl_W-all-struct-inv-def by (metis cdcl_W-with-restart-init-clss)
    } note init-g = this
  let ?S = q \theta
  have finite (atms-of-mm \ (init-clss \ (fst \ ?S)))
    using inv unfolding cdcl_W-all-struct-inv-def by auto
  have snd-g: \bigwedge i. snd (g \ i) = i + snd (g \ \theta)
    apply (induct-tac i)
     apply simp
    by (metis Suc-eq-plus1-left add-Suc cdcl_W-with-restart-increasing-number g)
  then have snd-q-\theta: \land i. i > \theta \Longrightarrow snd(q i) = i + snd(q \theta)
    bv blast
  have unbounded-f-g: unbounded (\lambda i. f (snd (g i)))
    using f unfolding bounded-def by (metis add.commute f less-or-eq-imp-le snd-g
      not	ext{-}bounded	ext{-}nat	ext{-}exists	ext{-}larger\ not	ext{-}le\ le	ext{-}iff	ext{-}add)
  obtain k where
    f-g-k: f (snd (g k)) > card (simple-clss (atms-of-mm (init-clss (fst ?S)))) and
```

```
k > card (simple-clss (atms-of-mm (init-clss (fst ?S))))
   using not-bounded-nat-exists-larger[OF unbounded-f-g] by blast
The following does not hold anymore with the non-strict version of cardinality in the definition.
  \{ \text{ fix } i \}
   assume no-step cdcl_W-stgy (fst (g i))
   with g[of i]
   have False
     proof (induction rule: cdcl_W-with-restart.induct)
       case (restart-step T S n) note H = this(1) and c = this(2) and n-s = this(4)
       obtain S' where cdcl_W-stgy SS'
         using H c by (metis gr-implies-not0 relpowp-E2)
       then show False using n-s by auto
     next
       case (restart-full S T)
       then show False unfolding full1-def by (auto dest: tranclpD)
     qed
   } note H = this
 obtain m T where
   m: m = card \ (set\text{-}mset \ (learned\text{-}clss \ T)) - card \ (set\text{-}mset \ (learned\text{-}clss \ (fst \ (g \ k)))) and
   m > f \ (snd \ (g \ k)) and
   restart T (fst (g(k+1))) and
   cdcl_W-merge-stgy: (cdcl_W-stgy ^{\sim} m) (fst (g \ k)) T
   using g[of k] H[of Suc k] by (force simp: cdcl_W-with-restart.simps full1-def)
 have cdcl_W-stgy^{**} (fst (g \ k)) T
   using cdcl_W-merge-stgy relpowp-imp-rtrancly by metis
  then have cdcl_W-all-struct-inv T
   using inv[of k] rtranelp-cdel_W-all-struct-inv-inv rtranelp-cdel_W-stgy-rtranelp-cdel_W by blast
  moreover have card (set-mset (learned-clss T)) – card (set-mset (learned-clss (fst (g \ k))))
     > card (simple-clss (atms-of-mm (init-clss (fst ?S))))
     unfolding m[symmetric] using \langle m > f \ (snd \ (g \ k)) \rangle f-g-k by linarith
   then have card (set-mset (learned-clss T))
     > card (simple-clss (atms-of-mm (init-clss (fst ?S))))
     by linarith
  moreover
   have init\text{-}clss\ (fst\ (g\ k)) = init\text{-}clss\ T
     \mathbf{using} \ \langle cdcl_W \text{-}stqy^{**} \ (fst \ (g \ k)) \ T \rangle \ rtranclp\text{-}cdcl_W \text{-}stqy\text{-}rtranclp\text{-}cdcl_W \ rtranclp\text{-}cdcl_W \ -}init\text{-}clss
     inv unfolding cdcl_W-all-struct-inv-def
     by blast
   then have init-clss (fst ?S) = init-clss T
     using init-g[of k] by auto
 ultimately show False
   using cdcl_W-all-struct-inv-learned-clss-bound
   \mathbf{by} \ (\mathit{simp \ add} \colon \langle \mathit{finite} \ (\mathit{atms-of-mm} \ (\mathit{init-clss} \ (\mathit{fst} \ (\mathit{g} \ \mathit{0})))) \rangle \ \mathit{simple-clss-finite}
     card-mono\ leD)
qed
lemma cdcl_W-with-restart-distinct-mset-clauses:
  assumes invR: cdcl_W-all-struct-inv (fst R) and
  st: cdcl_W-with-restart R S and
  dist: distinct-mset (clauses (fst R)) and
  R: trail (fst R) = []
 shows distinct-mset (clauses (fst S))
 using assms(2,1,3,4)
proof (induction)
```

case $(restart\text{-}full\ S\ T)$

```
then show ?case using rtranclp-cdcl_W-stgy-distinct-mset-clauses[of S T] unfolding full1-def
   by (auto dest: tranclp-into-rtranclp)
  case (restart\text{-}step \ T \ S \ n \ U)
  then have distinct-mset (clauses T) using rtranclp-cdcl<sub>W</sub>-stqy-distinct-mset-clauses[of S T]
   unfolding full1-def by (auto dest: relpowp-imp-rtranclp)
  then show ?case using \langle restart \ T \ U \rangle unfolding clauses-def
   by (metis distinct-mset-union fstI restartE subset-mset.le-iff-add union-assoc)
qed
end
locale luby-sequence =
 fixes ur :: nat
 assumes ur > 0
begin
lemma exists-luby-decomp:
 fixes i :: nat
  shows \exists k :: nat. (2 \hat{k} - 1) \le i \land i < 2 \hat{k} - 1) \lor i = 2 \hat{k} - 1
proof (induction i)
  case \theta
  then show ?case
   by (rule\ exI[of - \theta],\ simp)
\mathbf{next}
  case (Suc\ n)
  then obtain k where 2 \hat{k} (k-1) \leq n \wedge n < 2 \hat{k} - 1 \vee n = 2 \hat{k} - 1
   by blast
  then consider
     (st\text{-}interv) 2 \widehat{\phantom{a}}(k-1) \leq n and n \leq 2 \widehat{\phantom{a}}k-2
    |(end\text{-}interv)| 2 \widehat{\phantom{a}}(k-1) \le n and n = 2 \widehat{\phantom{a}}k - 2 |(pow2)| n = 2 \widehat{\phantom{a}}k - 1
   by linarith
  then show ?case
   proof cases
     {f case} st\text{-}interv
     then show ?thesis apply – apply (rule exI[of - k])
       by (metis (no-types, lifting) One-nat-def Suc-diff-Suc Suc-lessI
         (2 \ \widehat{} \ (k-1) \le n \land n < 2 \ \widehat{} \ k-1 \lor n=2 \ \widehat{} \ k-1 \lor diff-self-eq-0
         dual-order.trans le-SucI le-imp-less-Suc numeral-2-eq-2 one-le-numeral
         one-le-power zero-less-numeral zero-less-power)
   next
     case end-interv
     then show ?thesis apply - apply (rule exI[of - k]) by auto
     case pow2
     then show ?thesis apply - apply (rule\ exI[of\ -\ k+1]) by auto
   qed
qed
```

Luby sequences are defined by:

- $2^k 1$, if $i = (2::'a)^k (1::'a)$
- luby-sequence-core $(i-2^{k-1}+1)$, if $(2::'a)^{k-1} \le i$ and $i \le (2::'a)^k (1::'a)$

Then the sequence is then scaled by a constant unit run (called *ur* here), strictly positive.

```
function luby-sequence-core :: nat \Rightarrow nat where
luby-sequence-core i =
 (if \ \exists \ k. \ i = 2\hat{\ \ }k - 1
 then 2^{(SOME k. i = 2^k - 1) - 1)}
  else luby-sequence-core (i-2^{(SOME\ k.\ 2^{(k-1)} \le i \land i < 2^{k}-1)-1)+1))
by auto
termination
proof (relation less-than, goal-cases)
 case 1
 then show ?case by auto
next
 case (2 i)
 let ?k = SOME \ k. \ 2 \ (k-1) \le i \land i < 2 \ k-1
 have 2^{(k-1)} \le i \land i < 2^{(k-1)}
   apply (rule some I-ex)
   using 2 exists-luby-decomp by blast
  then show ?case
   proof -
     have \forall n \ na. \ \neg (1::nat) \leq n \lor 1 \leq n \ \widehat{\ } na
       by (meson\ one-le-power)
     then have f1: (1::nat) \le 2 \ \hat{\ } (?k-1)
       using one-le-numeral by blast
     have f2: i - 2 \hat{\ } (?k - 1) + 2 \hat{\ } (?k - 1) = i
       using \langle 2 \cap (?k-1) \leq i \wedge i < 2 \cap ?k-1 \rangle le-add-diff-inverse2 by blast
     have f3: 2 \ \widehat{} ?k - 1 \neq Suc 0
       using f1 \langle 2 \ \widehat{} \ (?k-1) \leq i \wedge i < 2 \ \widehat{} \ ?k-1 \rangle by linarith
     have 2^{\hat{}} ?k - (1::nat) \neq 0
       using \langle 2 \cap (?k-1) \leq i \wedge i < 2 \cap ?k-1 \rangle gr-implies-not0 by blast
     then have f_4: 2 \ \widehat{\ }?k \neq (1::nat)
       by linarith
     have f5: \forall n \ na. \ if \ na = 0 \ then \ (n::nat) \cap na = 1 \ else \ n \cap na = n * n \cap (na - 1)
       by (simp add: power-eq-if)
     then have ?k \neq 0
       using f_4 by meson
     then have 2 \cap (?k-1) \neq Suc \ \theta
       using f5 f3 by presburger
     then have Suc \ \theta < 2 \ \widehat{\ } \ (?k-1)
       using f1 by linarith
     then show ?thesis
       using f2 less-than-iff by presburger
   qed
qed
function natlog2 :: nat \Rightarrow nat where
natlog2 \ n = (if \ n = 0 \ then \ 0 \ else \ 1 + natlog2 \ (n \ div \ 2))
 using not0-implies-Suc by auto
termination by (relation measure (\lambda n. n)) auto
declare natlog2.simps[simp del]
declare luby-sequence-core.simps[simp del]
lemma two-pover-n-eq-two-power-n'-eq:
 assumes H: (2::nat) ^ (k::nat) - 1 = 2 ^ k' - 1
 shows k' = k
```

```
proof -
 have (2::nat) \hat{\ } (k::nat) = 2 \hat{\ } k'
   using H by (metis One-nat-def Suc-pred zero-less-numeral zero-less-power)
 then show ?thesis by simp
qed
\mathbf{lemma}\ \mathit{luby-sequence-core-two-power-minus-one}:
 luby-sequence-core (2\hat{k}-1)=2\hat{k}-1 (is ?L=?K)
proof -
 have decomp: \exists ka. \ 2 \ \hat{k} - 1 = 2 \ \hat{k}a - 1
 have ?L = 2^{(SOME k'. (2::nat)^k - 1 = 2^k' - 1) - 1)}
   apply (subst luby-sequence-core.simps, subst decomp)
 moreover have (SOME \ k'. (2::nat)^k - 1 = 2^k' - 1) = k
   apply (rule some-equality)
     apply simp
     using two-pover-n-eq-two-power-n'-eq by blast
 ultimately show ?thesis by presburger
qed
lemma different-luby-decomposition-false:
 assumes
   H: 2 \cap (k - Suc \ \theta) \leq i \text{ and }
   k': i < 2 \hat{\ } k' - Suc \theta and
   k-k': k > k'
 shows False
proof -
 have 2 \hat{k}' - Suc \theta < 2 \hat{k} - Suc \theta
   using k-k' less-eq-Suc-le by auto
 then show ?thesis
   using H k' by linarith
lemma luby-sequence-core-not-two-power-minus-one:
 assumes
   k-i: 2 \ \widehat{} \ (k-1) \leq i and
   i-k: i < 2^k - 1
 shows luby-sequence-core i = luby-sequence-core (i - 2 \hat{\ } (k - 1) + 1)
proof -
 have H: \neg (\exists ka. \ i = 2 \land ka - 1)
   proof (rule ccontr)
     assume ¬ ?thesis
     then obtain k'::nat where k': i = 2 \hat{k}' - 1 by blast
     have (2::nat) \hat{k}' - 1 < 2 \hat{k} - 1
      using i-k unfolding k'.
     then have (2::nat) \hat{k}' < 2 \hat{k}
      by linarith
     then have k' < k
      by simp
     have 2^{(k-1)} \le 2^{(k'-1)} = 2^{(k'-1)}
      using k-i unfolding k'.
     then have (2::nat) \hat{k} (k-1) < 2 \hat{k}'
      by (metis Suc-diff-1 not-le not-less-eq zero-less-numeral zero-less-power)
     then have k-1 < k'
      by simp
```

```
show False using \langle k' < k \rangle \langle k-1 < k' \rangle by linarith
 have \bigwedge k \ k'. 2 \ \widehat{} \ (k - Suc \ \theta) \le i \Longrightarrow i < 2 \ \widehat{} \ k - Suc \ \theta \Longrightarrow 2 \ \widehat{} \ (k' - Suc \ \theta) \le i \Longrightarrow
   i < 2 \hat{k}' - Suc \ \theta \Longrightarrow k = k'
   by (meson different-luby-decomposition-false linorder-neqE-nat)
  then have k: (SOME \ k. \ 2 \ \widehat{} \ (k - Suc \ \theta) \le i \land i < 2 \ \widehat{} \ k - Suc \ \theta) = k
   using k-i i-k by auto
 show ?thesis
   apply (subst luby-sequence-core.simps[of i], subst H)
   by (simp \ add: k)
qed
lemma unbounded-luby-sequence-core: unbounded luby-sequence-core
 unfolding bounded-def
proof
 assume \exists b. \forall n. luby-sequence-core n \leq b
 then obtain b where b: \bigwedge n. luby-sequence-core n \leq b
   by metis
 have luby-sequence-core (2^{(b+1)} - 1) = 2^{b}
   using luby-sequence-core-two-power-minus-one[of b+1] by simp
 moreover have (2::nat)^b > b
   by (induction b) auto
 ultimately show False using b[of 2^{\hat{}}(b+1) - 1] by linarith
abbreviation luby-sequence :: nat \Rightarrow nat where
luby-sequence n \equiv ur * luby-sequence-core n
lemma bounded-luby-sequence: unbounded luby-sequence
 using bounded-const-product[of ur] luby-sequence-axioms
 luby-sequence-def unbounded-luby-sequence-core by blast
lemma luby-sequence-core-0: luby-sequence-core 0 = 1
proof -
 have \theta: (\theta :: nat) = 2 \hat{\theta} - 1
   by auto
 show ?thesis
   by (subst 0, subst luby-sequence-core-two-power-minus-one) simp
lemma luby-sequence-core n \geq 1
proof (induction n rule: nat-less-induct-case)
 case \theta
 then show ?case by (simp add: luby-sequence-core-0)
next
 case (Suc \ n) note IH = this
 consider
     (interv) k where 2 \hat{k} (k-1) \leq Suc \ n and Suc \ n < 2 \hat{k} - 1
   |(pow2)| k where Suc n = 2 \hat{k} - Suc \theta
   using exists-luby-decomp[of Suc \ n] by auto
 then show ?case
    proof cases
      case pow2
```

```
show ?thesis
        using luby-sequence-core-two-power-minus-one pow2 by auto
     next
       case interv
      have n: Suc \ n - 2 \ \hat{\ } (k - 1) + 1 < Suc \ n
        by (metis Suc-1 Suc-eq-plus1 add.commute add-diff-cancel-left' add-less-mono1 gr0I
           interv(1) \ interv(2) \ le-add-diff-inverse2 \ less-Suc-eq \ not-le \ power-0 \ power-one-right
          power-strict-increasing-iff)
      show ?thesis
        apply (subst luby-sequence-core-not-two-power-minus-one[OF interv])
        using IH n by auto
     \mathbf{qed}
qed
end
locale \ luby-sequence-restart =
  luby-sequence ur +
  conflict-driven-clause-learning_W
    — functions for the state:
      — access functions:
   trail init-clss learned-clss backtrack-lvl conflicting
      — changing state:
    cons\text{-}trail\ tl\text{-}trail\ add\text{-}learned\text{-}cls\ remove\text{-}cls\ update\text{-}backtrack\text{-}lvl
   update-conflicting
      — get state:
   init-state
 for
    ur :: nat  and
   trail :: 'st \Rightarrow ('v, 'v \ clause) \ ann-lits \ and
   hd-trail :: 'st \Rightarrow ('v, 'v clause) ann-lit and
   init-clss :: 'st \Rightarrow 'v clauses and
   learned-clss :: 'st \Rightarrow 'v \ clauses \ and
   backtrack-lvl :: 'st \Rightarrow nat and
    conflicting :: 'st \Rightarrow 'v \ clause \ option \ \mathbf{and}
    cons-trail :: ('v, 'v clause) ann-lit \Rightarrow 'st \Rightarrow 'st and
   tl-trail :: 'st \Rightarrow 'st and
   add-learned-cls :: 'v clause \Rightarrow 'st \Rightarrow 'st and
   remove\text{-}cls :: 'v \ clause \Rightarrow 'st \Rightarrow 'st \ \mathbf{and}
    update-backtrack-lvl :: nat \Rightarrow 'st \Rightarrow 'st and
    update-conflicting :: 'v clause option \Rightarrow 'st \Rightarrow 'st and
   init-state :: 'v clauses \Rightarrow 'st
begin
sublocale cdcl_W-restart - - - - - - - luby-sequence
 apply unfold-locales
 using bounded-luby-sequence by blast
end
theory DPLL-W-Implementation
\mathbf{imports}\ \mathit{DPLL-CDCL-W-Implementation}\ \mathit{DPLL-W}\ ^{\sim\sim}/\mathit{src/HOL/Library/Code-Target-Numeral}
begin
```

3.4.2 Simple Implementation of DPLL

Combining the propagate and decide: a DPLL step

```
definition DPLL-step :: int dpll_W-ann-lits \times int literal list list
  \Rightarrow int dpll<sub>W</sub>-ann-lits \times int literal list list where
DPLL-step = (\lambda(Ms, N)).
  (case find-first-unit-clause N Ms of
   Some (L, -) \Rightarrow (Propagated L () \# Ms, N)
   if \exists C \in set \ N. \ (\forall c \in set \ C. \ -c \in lits \text{-of-} l \ Ms)
   then
     (case backtrack-split Ms of
       (-, L \# M) \Rightarrow (Propagated (- (lit-of L)) () \# M, N)
     | (-, -) \Rightarrow (Ms, N)
   else
   (case find-first-unused-var N (lits-of-l Ms) of
       Some a \Rightarrow (Decided \ a \# Ms, N)
     | None \Rightarrow (Ms, N)))
Example of propagation:
value DPLL-step ([Decided (Neg 1)], [[Pos (1::int), Neg 2]])
We define the conversion function between the states as defined in Prop-DPLL (with multisets)
and here (with lists).
abbreviation toS \equiv \lambda(Ms::(int, unit) \ ann-lits)
                     (N:: int literal list list). (Ms, mset (map mset N))
abbreviation toS' \equiv \lambda(Ms::(int, unit) ann-lits,
                         N:: int \ literal \ list \ list). \ (Ms, \ mset \ (map \ mset \ N))
Proof of correctness of DPLL-step
lemma DPLL-step-is-a-dpll<sub>W</sub>-step:
  assumes step: (Ms', N') = DPLL-step (Ms, N)
 and neg: (Ms, N) \neq (Ms', N')
  shows dpll_W (toS Ms N) (toS Ms' N')
proof -
  let ?S = (Ms, mset (map mset N))
  { fix L E
   assume unit: find-first-unit-clause N Ms = Some (L, E)
   then have Ms'N: (Ms', N') = (Propagated L () \# Ms, N)
     using step unfolding DPLL-step-def by auto
   obtain C where
     C: C \in set \ N \ \mathbf{and}
     Ms: Ms \models as \ CNot \ (mset \ C - \{\#L\#\}) \ and
     undef: undefined-lit Ms L and
     L \in set \ C \ using \ find-first-unit-clause-some[OF \ unit] \ by \ metis
   have dpll_W (Ms, mset (map mset N))
        (Propagated L () # fst (Ms, mset (map mset N)), snd (Ms, mset (map mset N)))
     \mathbf{apply} \ (\mathit{rule} \ \mathit{dpll}_{W}.\mathit{propagate})
     \mathbf{using}\ \mathit{Ms}\ \mathit{undef}\ \mathit{C}\ \langle \mathit{L} \in \mathit{set}\ \mathit{C}\rangle\ \mathbf{by}\ (\mathit{auto}\ \mathit{simp}\ \mathit{add}\colon \mathit{C})
   then have ?thesis using Ms'N by auto
  }
  moreover
  \{ assume unit: find-first-unit-clause N Ms = None \}
   assume exC: \exists C \in set \ N. \ Ms \models as \ CNot \ (mset \ C)
```

```
then obtain C where C: C \in set N and Ms: Ms \models as CNot (mset C) by auto
   then obtain L M M' where bt: backtrack-split Ms = (M', L \# M)
     using step exC neq unfolding DPLL-step-def prod.case unit
     by (cases backtrack-split Ms, rename-tac b, case-tac b) auto
   then have is-decided L using backtrack-split-snd-hd-decided of Ms by auto
   have 1: dpll_W (Ms, mset (map mset N))
               (Propagated (-lit-of L) () \# M, snd (Ms, mset (map mset N)))
     apply (rule dpll_W.backtrack[OF - \langle is\text{-}decided L \rangle, of ])
     using C Ms bt by auto
   moreover have (Ms', N') = (Propagated (- (lit-of L)) () \# M, N)
     using step exC unfolding DPLL-step-def bt prod.case unit by auto
   ultimately have ?thesis by auto
 }
 moreover
 { assume unit: find-first-unit-clause N Ms = None
   assume exC: \neg (\exists C \in set \ N. \ Ms \models as \ CNot \ (mset \ C))
   obtain L where unused: find-first-unused-var N (lits-of-l Ms) = Some L
     using step exC neg unfolding DPLL-step-def prod.case unit
     by (cases find-first-unused-var N (lits-of-l Ms)) auto
   have dpll_W (Ms, mset (map mset N))
            (Decided L \# fst \ (Ms, \ mset \ (map \ mset \ N)), \ snd \ (Ms, \ mset \ (map \ mset \ N)))
     apply (rule dpll_W.decided[of ?S L])
     using find-first-unused-var-Some[OF unused]
     by (auto simp add: Decided-Propagated-in-iff-in-lits-of-l atms-of-ms-def)
   moreover have (Ms', N') = (Decided L \# Ms, N)
     using step exC unfolding DPLL-step-def unused prod.case unit by auto
   ultimately have ?thesis by auto
 ultimately show ?thesis by (cases find-first-unit-clause N Ms) auto
qed
lemma DPLL-step-stuck-final-state:
 assumes step: (Ms, N) = DPLL-step (Ms, N)
 shows conclusive-dpll_W-state (toS Ms N)
proof -
 have unit: find-first-unit-clause N Ms = None
   using step unfolding DPLL-step-def by (auto split:option.splits)
 { assume n: \exists C \in set \ N. \ Ms \models as \ CNot \ (mset \ C)
   then have Ms: (Ms, N) = (case\ backtrack-split\ Ms\ of\ (x, []) \Rightarrow (Ms, N)
                    (x, L \# M) \Rightarrow (Propagated (-lit-of L) () \# M, N))
     using step unfolding DPLL-step-def by (simp add:unit)
 have snd (backtrack-split Ms) = []
   proof (cases backtrack-split Ms, cases snd (backtrack-split Ms))
     \mathbf{fix} \ a \ b
     assume backtrack-split\ Ms = (a, b) and snd\ (backtrack-split\ Ms) = []
     then show snd (backtrack-split Ms) = [] by blast
   next
     fix a b aa list
     assume
      bt: backtrack-split\ Ms=(a,\ b) and
      bt': snd (backtrack-split Ms) = aa \# list
     then have Ms: Ms = Propagated (-lit-of aa) () \# list using Ms by auto
     have is-decided as using backtrack-split-snd-hd-decided of Ms bt bt' by auto
     moreover have fst (backtrack-split Ms) @ aa \# list = Ms
```

```
using backtrack-split-list-eq[of Ms] bt' by auto
   ultimately have False unfolding Ms by auto
   then show snd\ (backtrack-split\ Ms) = [] by blast
 qed
 then have ?thesis
   using n backtrack-snd-empty-not-decided of Ms unfolding conclusive-dpll_W-state-def
   by (cases backtrack-split Ms) auto
}
moreover {
 assume n: \neg (\exists C \in set \ N. \ Ms \models as \ CNot \ (mset \ C))
 then have find-first-unused-var N (lits-of-l Ms) = None
   using step unfolding DPLL-step-def by (simp add: unit split: option.splits)
 then have a: \forall a \in set \ N. \ atm\text{-}of \ `set \ a \subseteq atm\text{-}of \ `(lits\text{-}of\text{-}l \ Ms) by auto
 have fst (toS Ms N) \models asm snd (toS Ms N) unfolding true-annots-def CNot-def Ball-def
   proof clarify
     \mathbf{fix} \ x
     assume x: x \in set\text{-}mset \ (clauses \ (toS \ Ms \ N))
     then have \neg Ms \models as\ CNot\ x using n unfolding true-annots-def CNot-def Ball-def by auto
     moreover have total-over-m (lits-of-l Ms) \{x\}
       using a x image-iff in-mono atms-of-s-def
       unfolding total-over-m-def total-over-set-def lits-of-def by fastforce
     ultimately show fst (toS Ms N) \models a x
       using total-not-CNot[of\ lits-of-l\ Ms\ x] by (simp\ add:\ true-annot-def\ true-annots-true-cls)
 then have ?thesis unfolding conclusive-dpllw-state-def by blast
ultimately show ?thesis by blast
```

Adding invariants

```
Invariant tested in the function function DPLL-ci :: int dpll_W-ann-lits \Rightarrow int literal list list
  \Rightarrow int dpll_W-ann-lits \times int literal list list where
DPLL-ci\ Ms\ N =
  (if \neg dpll_W - all - inv (Ms, mset (map mset N))
  then (Ms, N)
  else
  let (Ms', N') = DPLL-step (Ms, N) in
  if (Ms', N') = (Ms, N) then (Ms, N) else DPLL-ci Ms'(N)
 by fast+
termination
proof (relation \{(S', S), (toS'S', toS'S) \in \{(S', S), dpll_W-all-inv S \land dpll_W S S'\}\})
 show wf \{(S', S).(toS' S', toS' S) \in \{(S', S). dpll_W - all - inv S \land dpll_W S S'\}\}
   using wf-if-measure-f[OF\ dpll_W-wf, of toS'] by auto
 fix Ms :: int \ dpll_W-ann-lits and N \ x \ xa \ y
 assume \neg \neg dpll_W - all - inv (toS Ms N)
 and step: x = DPLL-step (Ms, N)
 and x: (xa, y) = x
 and (xa, y) \neq (Ms, N)
 then show ((xa, N), Ms, N) \in \{(S', S). (toS'S', toS'S) \in \{(S', S). dpll_W - all - inv S \land dpll_W SS'\}\}
   using DPLL-step-is-a-dpll<sub>W</sub>-step dpll_W-same-clauses split-conv by fastforce
qed
```

No invariant tested function (domintros) DPLL-part:: int $dpll_W$ -ann-lits \Rightarrow int literal list list \Rightarrow

```
int \ dpll_W-ann-lits \times \ int \ literal \ list \ list \ where
DPLL-part Ms N =
 (let (Ms', N') = DPLL\text{-}step (Ms, N) in
  if (Ms', N') = (Ms, N) then (Ms, N) else DPLL-part Ms'(N)
 by fast+
lemma \ snd-DPLL-step[simp]:
 snd\ (DPLL\text{-}step\ (Ms,\ N)) = N
 unfolding DPLL-step-def by (auto split: if-split option.splits prod.splits list.splits)
lemma dpll_W-all-inv-implieS-2-eq3-and-dom:
 assumes dpll_W-all-inv (Ms, mset (map mset N))
 shows DPLL-ci~Ms~N = DPLL-part~Ms~N \land DPLL-part-dom~(Ms, N)
 using assms
proof (induct rule: DPLL-ci.induct)
 case (1 Ms N)
 have snd (DPLL\text{-step }(Ms, N)) = N by auto
 then obtain Ms' where Ms': DPLL-step (Ms, N) = (Ms', N) by (cases DPLL-step (Ms, N)) auto
 have inv': dpll_W-all-inv (toS\ Ms'\ N) by (metis\ (mono\text{-}tags)\ 1.prems\ DPLL\text{-}step\text{-}is\text{-}a\text{-}dpll_W\text{-}step)
   Ms' dpll_W-all-inv old.prod.inject)
 { assume (Ms', N) \neq (Ms, N)
   then have DPLL-ci Ms' N = DPLL-part Ms' N \wedge DPLL-part-dom (Ms', N) using 1(1)[of - Ms']
N] Ms'
     1(2) inv' by auto
   then have DPLL-part-dom (Ms, N) using DPLL-part.domintros Ms' by fastforce
   moreover have DPLL-ci Ms N = DPLL-part Ms N using 1.prems DPLL-part.psimps Ms
     \langle DPLL\text{-}ci\ Ms'\ N = DPLL\text{-}part\ Ms'\ N \land DPLL\text{-}part\text{-}dom\ (Ms',\ N) \rangle \ \langle DPLL\text{-}part\text{-}dom\ (Ms,\ N) \rangle \ \mathbf{by}
auto
   ultimately have ?case by blast
 moreover {
   assume (Ms', N) = (Ms, N)
   then have ?case using DPLL-part.domintros DPLL-part.psimps Ms' by fastforce
 ultimately show ?case by blast
qed
lemma DPLL-ci-dpll_W-rtranclp:
 assumes DPLL-ci Ms N = (Ms', N')
 shows dpll_W^{**} (toS Ms N) (toS Ms' N)
 using assms
proof (induct Ms N arbitrary: Ms' N' rule: DPLL-ci.induct)
 case (1 Ms N Ms' N') note IH = this(1) and step = this(2)
 obtain S_1 S_2 where S:(S_1, S_2) = DPLL-step (Ms, N) by (cases DPLL-step (Ms, N)) auto
 { assume \neg dpll_W-all-inv (toS Ms N)
   then have (Ms, N) = (Ms', N) using step by auto
   then have ?case by auto
 }
 moreover
 { assume dpll_W-all-inv (toS Ms N)
   and (S_1, S_2) = (Ms, N)
   then have ?case using S step by auto
 }
 moreover
 { assume dpll_W-all-inv (toS Ms N)
```

```
and (S_1, S_2) \neq (Ms, N)
      moreover obtain S_1' S_2' where DPLL-ci S_1 N = (S_1', S_2') by (cases DPLL-ci S_1 N) auto
      moreover have DPLL-ci Ms N = DPLL-ci S_1 N using DPLL-ci.simps[of Ms N] calculation
          proof -
             have (case (S_1, S_2) of (ms, lss) \Rightarrow
                 if (ms, lss) = (Ms, N) then (Ms, N) else DPLL-ci ms N = DPLL-ci Ms N
                 using S DPLL-ci.simps[of Ms N] calculation by presburger
             then have (if (S_1, S_2) = (Ms, N) then (Ms, N) else DPLL-ci S_1 N) = DPLL-ci Ms N
                 by fastforce
             then show ?thesis
                 using calculation(2) by presburger
          qed
      ultimately have dpll_W^{**} (to S_1'N) (to S_1'N) using IH[of(S_1, S_2) S_1 S_2] S step by simp
      moreover have dpll_W (toS Ms N) (toS S_1 N)
          by (metis DPLL-step-is-a-dpll<sub>W</sub>-step S(S_1, S_2) \neq (Ms, N)) prod.sel(2) snd-DPLL-step)
      ultimately have ?case by (metis (mono-tags, hide-lams) IH S (S_1, S_2) \neq (Ms, N))
          \langle DPLL\text{-}ci \ Ms \ N = DPLL\text{-}ci \ S_1 \ N \rangle \langle dpll_W\text{-}all\text{-}inv \ (toS \ Ms \ N) \rangle \ converse\text{-}rtranclp\text{-}into\text{-}rtranclp
          local.step)
   ultimately show ?case by blast
qed
lemma dpll_W-all-inv-dpll_W-tranclp-irrefl:
   assumes dpll_W-all-inv (Ms, N)
   and dpll_W^{++} (Ms, N) (Ms, N)
   shows False
proof -
   have 1: wf \{(S', S). dpll_W - all - inv S \wedge dpll_W^{++} S S'\} using dpll_W - wf - tranclp by auto
   have ((Ms, N), (Ms, N)) \in \{(S', S), dpll_W - all - inv S \wedge dpll_W^{++} S S'\} using assms by auto
   then show False using wf-not-ref[OF 1] by blast
qed
lemma DPLL-ci-final-state:
   assumes step: DPLL-ci Ms N = (Ms, N)
   and inv: dpll_W-all-inv (toS Ms N)
   shows conclusive-dpll_W-state (toS Ms N)
proof -
   have st: dpll_W^{**} (toS Ms N) (toS Ms N) using DPLL-ci-dpll<sub>W</sub>-rtranclp[OF step].
   have DPLL-step (Ms, N) = (Ms, N)
      proof (rule ccontr)
          obtain Ms' N' where Ms'N: (Ms', N') = DPLL-step (Ms, N)
             by (cases\ DPLL\text{-}step\ (Ms,\ N))\ auto
          assume ¬ ?thesis
          then have DPLL-ci Ms' N = (Ms, N) using step inv st Ms'N[symmetric] by fastforce
          then have dpll_W^{++} (toS Ms N) (toS Ms N)
           by (metis DPLL-ci-dpll_W-rtranclp DPLL-step-is-a-dpll_W-step Ms'N \land DPLL-step (Ms, N) \neq (Ms,
N)
                 prod.sel(2) rtranclp-into-tranclp2 snd-DPLL-step)
          then show False using dpllw-all-inv-dpllw-tranclp-irreft inv by auto
   then show ?thesis using DPLL-step-stuck-final-state[of Ms N] by simp
qed
lemma DPLL-step-obtains:
   obtains Ms' where (Ms', N) = DPLL\text{-}step (Ms, N)
```

```
lemma DPLL-ci-obtains:
 obtains Ms' where (Ms', N) = DPLL-ci Ms N
proof (induct rule: DPLL-ci.induct)
 case (1 Ms N) note IH = this(1) and that = this(2)
 obtain S where SN: (S, N) = DPLL-step (Ms, N) using DPLL-step-obtains by metis
 { assume \neg dpll_W-all-inv (toS Ms N)
   then have ?case using that by auto
 }
 moreover {
   assume n: (S, N) \neq (Ms, N)
   and inv: dpll_W-all-inv (toS Ms N)
   have \exists ms. DPLL\text{-step }(Ms, N) = (ms, N)
    by (metis \land hesisa. (\land S. (S, N) = DPLL\text{-step} (Ms, N) \Longrightarrow thesisa) \Longrightarrow thesisa)
   then have ?thesis
     using IH that by fastforce
 }
 moreover {
   assume n: (S, N) = (Ms, N)
   then have ?case using SN that by fastforce
 ultimately show ?case by blast
qed
\mathbf{lemma}\ DPLL\text{-}ci\text{-}no\text{-}more\text{-}step:
 assumes step: DPLL-ci Ms N = (Ms', N')
 shows DPLL-ci Ms' N' = (Ms', N')
 using assms
proof (induct arbitrary: Ms' N' rule: DPLL-ci.induct)
 case (1 Ms N Ms' N') note IH = this(1) and step = this(2)
 obtain S_1 where S:(S_1, N) = DPLL-step (Ms, N) using DPLL-step-obtains by auto
 { assume \neg dpll_W-all-inv (toS Ms N)
   then have ?case using step by auto
 moreover {
   assume dpll_W-all-inv (toS Ms N)
   and (S_1, N) = (Ms, N)
   then have ?case using S step by auto
 }
 moreover
 { assume inv: dpll_W-all-inv (toS \ Ms \ N)
   assume n: (S_1, N) \neq (Ms, N)
   obtain S_1 where SS: (S_1, N) = DPLL-ci S_1 N using DPLL-ci-obtains by blast
   moreover have DPLL-ci\ Ms\ N=DPLL-ci\ S_1\ N
     proof -
      have (case (S_1, N) \text{ of } (ms, lss) \Rightarrow if (ms, lss) = (Ms, N) \text{ then } (Ms, N) \text{ else } DPLL\text{-}ci \text{ } ms \text{ } N)
= DPLL-ci Ms N
        using S DPLL-ci.simps[of Ms N] calculation inv by presburger
      then have (if (S_1, N) = (Ms, N) then (Ms, N) else DPLL-ci S_1 N = DPLL-ci Ms N
        by fastforce
      then show ?thesis
        using calculation n by presburger
     qed
   moreover
```

```
ultimately have ?case using step by fastforce
 }
 ultimately show ?case by blast
qed
lemma DPLL-part-dpll_W-all-inv-final:
 fixes M Ms':: (int, unit) ann-lits and
   N :: int \ literal \ list \ list
 assumes inv: dpll_W-all-inv (Ms, mset (map mset N))
 and MsN: DPLL-part Ms N = (Ms', N)
 shows conclusive-dpll<sub>W</sub>-state (toS Ms' N) \wedge dpll<sub>W</sub>** (toS Ms N) (toS Ms' N)
proof -
 have 2: DPLL-ci Ms N = DPLL-part Ms N using inv dpll_W-all-inv-implieS-2-eq3-and-dom by blast
 then have star: dpll_W^{**} (to SMs N) (to SMs' N) unfolding MsN using DPLL-ci-dpll<sub>W</sub>-rtranclp
 then have inv': dpllw-all-inv (toS Ms' N) using inv rtranclp-dpllw-all-inv by blast
 show ?thesis using star DPLL-ci-final-state[OF DPLL-ci-no-more-step inv] 2 unfolding MsN by
blast
qed
Embedding the invariant into the type
Defining the type typedef dpll_W-state =
   \{(M::(int, unit) \ ann-lits, N::int \ literal \ list \ list).
      dpll_W-all-inv (toS M N)}
 morphisms rough-state-of state-of
proof
   show ([],[]) \in \{(M,N), dpll_W-all-inv (toS M N)\} by (auto simp add: dpll_W-all-inv-def)
qed
lemma
 DPLL-part-dom ([], N)
 using assms dpll_W-all-inv-implieS-2-eq3-and-dom[of [] N] by (simp add: dpll_W-all-inv-def)
Some type classes instantiation dpll_W-state :: equal
definition equal-dpll_W-state :: dpll_W-state \Rightarrow dpll_W-state \Rightarrow bool where
equal-dpll_W-state S S' = (rough\text{-state-of } S = rough\text{-state-of } S')
instance
 by standard (simp add: rough-state-of-inject equal-dpll<sub>W</sub>-state-def)
end
DPLL definition DPLL-step' :: dpll_W-state \Rightarrow dpll_W-state where
 DPLL-step' S = state-of (DPLL-step (rough-state-of S))
declare rough-state-of-inverse[simp]
lemma DPLL-step-dpll_W-conc-inv:
 DPLL-step (rough-state-of S) \in \{(M, N). dpll_W-all-inv (toS M N)\}
 by (smt\ DPLL\text{-}ci.simps\ DPLL\text{-}ci.dpll_W\text{-}rtranclp\ case-prodE\ case-prodI2\ rough-state-of}
   mem-Collect-eq old.prod.case prod.sel(2) rtranclp-dpll<sub>W</sub>-all-inv snd-DPLL-step)
lemma rough-state-of-DPLL-step'-DPLL-step[simp]:
```

```
rough-state-of (DPLL-step' S) = DPLL-step (rough-state-of S)
 using DPLL-step-dpll_W-conc-inv DPLL-step'-def state-of-inverse by auto
function DPLL-tot:: dpll_W-state \Rightarrow dpll_W-state where
DPLL-tot S =
 (let S' = DPLL-step' S in
  if S' = S then S else DPLL-tot S'
 by fast+
termination
proof (relation \{(T', T).
    (rough-state-of\ T',\ rough-state-of\ T)
       \in \{(S', S). (toS' S', toS' S)\}
            \in \{(S', S). dpll_W - all - inv S \land dpll_W S S'\}\}\}
 show wf \{(b, a).
        (rough-state-of b, rough-state-of a)
          \in \{(b, a). (toS'b, toS'a)\}
           \in \{(b, a). dpll_W - all - inv \ a \land dpll_W \ a \ b\}\}\}
   using wf-if-measure-f[OF wf-if-measure-f[OF dpll<sub>W</sub>-wf, of toS'], of rough-state-of].
next
 \mathbf{fix}\ S\ x
 assume x: x = DPLL-step' S
 and x \neq S
 have dpll_W-all-inv (case rough-state-of S of (Ms, N) \Rightarrow (Ms, mset (map mset N)))
   by (metis (no-types, lifting) case-prodE mem-Collect-eq old.prod.case rough-state-of)
 moreover have dpll_W (case rough-state-of S of (Ms, N) \Rightarrow (Ms, mset (map mset N)))
                  (case rough-state-of (DPLL-step' S) of (Ms, N) \Rightarrow (Ms, mset (map mset N))
   proof -
     obtain Ms N where Ms: (Ms, N) = rough-state-of S by (cases rough-state-of S) auto
     have dpll_W-all-inv (toS'(Ms, N)) using calculation unfolding Ms by blast
     moreover obtain Ms' N' where Ms': (Ms', N') = rough-state-of (DPLL-step' S)
      by (cases rough-state-of (DPLL-step' S)) auto
     ultimately have dpll_W-all-inv (toS'(Ms', N')) unfolding Ms'
      by (metis (no-types, lifting) case-prod-unfold mem-Collect-eq rough-state-of)
     have dpll_W (toS Ms N) (toS Ms' N')
      apply (rule DPLL-step-is-a-dpllw-step[of Ms' N' Ms N])
      unfolding Ms Ms' using \langle x \neq S \rangle rough-state-of-inject x by fastforce+
     then show ?thesis unfolding Ms[symmetric] Ms'[symmetric] by auto
   qed
 ultimately show (x, S) \in \{(T', T). (rough-state-of T', rough-state-of T)\}
   \in \{(S', S). (toS'S', toS'S) \in \{(S', S). dpll_W - all - inv S \land dpll_W SS'\}\}\}
   by (auto simp add: x)
qed
lemma [code]:
DPLL-tot S =
 (let S' = DPLL-step' S in
  if S' = S then S else DPLL-tot S') by auto
\mathbf{lemma}\ DPLL\text{-}tot\text{-}DPLL\text{-}step\text{-}DPLL\text{-}tot[simp]}\text{:}\ DPLL\text{-}tot\ (DPLL\text{-}step'\ S) = DPLL\text{-}tot\ S
 apply (cases DPLL-step' S = S)
 unfolding DPLL-tot.simps[of S] by (simp del: DPLL-tot.simps)
lemma DOPLL-step'-DPLL-tot[simp]:
 DPLL-step' (DPLL-tot S) = DPLL-tot S
```

```
{f lemma} DPLL-tot-final-state:
 assumes DPLL-tot S = S
 shows conclusive-dpll_W-state (toS'(rough-state-of S))
proof -
 have DPLL-step' S = S using assms[symmetric] DOPLL-step'-DPLL-tot by metis
 then have DPLL-step (rough-state-of S) = (rough-state-of S)
   unfolding DPLL-step'-def using DPLL-step-dpll<sub>W</sub>-conc-inv rough-state-of-inverse
   by (metis rough-state-of-DPLL-step'-DPLL-step)
 then show ?thesis
   by (metis (mono-tags, lifting) DPLL-step-stuck-final-state old.prod.exhaust split-conv)
qed
lemma DPLL-tot-star:
 assumes rough-state-of (DPLL\text{-tot }S) = S'
 shows dpll_W^{**} (toS' (rough-state-of S)) (toS' S')
 using assms
proof (induction arbitrary: S' rule: DPLL-tot.induct)
 case (1 S S')
 let ?x = DPLL\text{-}step' S
 { assume ?x = S
   then have ?case using 1(2) by simp
 }
 moreover {
   assume S: ?x \neq S
   have ?case
    apply (cases DPLL-step' S = S)
      using S apply blast
    by (smt 1.IH 1.prems DPLL-step-is-a-dpll<sub>W</sub>-step DPLL-tot.simps case-prodE2
      rough-state-of-DPLL-step'-DPLL-step' rtranclp.rtrancl-into-rtrancl rtranclp.rtrancl-refl
      rtranclp-idemp split-conv)
 ultimately show ?case by auto
qed
lemma rough-state-of-rough-state-of-Nil[simp]:
 rough-state-of (state-of ([], N)) = ([], N)
 apply (rule DPLL-W-Implementation.dpll_W-state.state-of-inverse)
 unfolding dpll_W-all-inv-def by auto
Theorem of correctness
lemma DPLL-tot-correct:
 assumes rough-state-of (DPLL\text{-}tot\ (state\text{-}of\ (([],\ N)))) = (M,\ N')
 and (M', N'') = toS'(M, N')
 shows M' \models asm \ N'' \longleftrightarrow satisfiable (set-mset \ N'')
 have dpll_{W}^{**} (toS'([], N)) (toS'(M, N')) using DPLL-tot-star[OF assms(1)] by auto
 moreover have conclusive-dpll_W-state (toS'(M, N'))
   using DPLL-tot-final-state by (metis (mono-tags, lifting) DOPLL-step'-DPLL-tot DPLL-tot.simps
    assms(1)
 ultimately show ?thesis using dpllw-conclusive-state-correct by (smt DPLL-ci.simps
   DPLL-ci-dpll<sub>W</sub>-rtranclp assms(2) dpll_W-all-inv-def prod.case prod.sel(1) prod.sel(2)
```

by (rule DPLL-tot.induct[of λS . DPLL-step' (DPLL-tot S) = DPLL-tot S S])

(metis (full-types) DPLL-tot.simps)

```
rtranclp-dpll_W-inv(3) rtranclp-dpll_W-inv-starting-from-0) qed
```

Code export

prod.case-eq-if)

A conversion to DPLL-W-Implementation. $dpll_W$ -state definition $Con :: (int, unit) \ ann-lits \times int \ literal \ list$

```
\Rightarrow dpll_W\text{-}state \ \mathbf{where}
Con \ xs = state\text{-}of \ (if \ dpll_W\text{-}all\text{-}inv \ (toS \ (fst \ xs) \ (snd \ xs)) \ then \ xs \ else \ ([], []))
\mathbf{lemma} \ [code \ abstype]\text{:}
Con \ (rough\text{-}state\text{-}of \ S) = S
\mathbf{using} \ rough\text{-}state\text{-}of [of \ S] \ \mathbf{unfolding} \ Con\text{-}def \ \mathbf{by} \ auto
\mathbf{declare} \ rough\text{-}state\text{-}of\text{-}DPLL\text{-}step'\text{-}DPLL\text{-}step[code \ abstract]}
\mathbf{lemma} \ Con\text{-}DPLL\text{-}step\text{-}rough\text{-}state\text{-}of\text{-}state\text{-}of[simp]\text{:}}
Con \ (DPLL\text{-}step \ (rough\text{-}state\text{-}of \ s)) = state\text{-}of \ (DPLL\text{-}step \ (rough\text{-}state\text{-}of \ s))
\mathbf{unfolding} \ Con\text{-}def \ \mathbf{by} \ (metis \ (mono\text{-}tags, \ lifting) \ DPLL\text{-}step\text{-}dpll_W\text{-}conc\text{-}inv \ mem\text{-}Collect\text{-}eq
```

A slightly different version of *DPLL-tot* where the returned boolean indicates the result.

```
\begin{array}{l} \textbf{definition} \ DPLL\text{-}tot\text{-}rep \ \textbf{where} \\ DPLL\text{-}tot\text{-}rep \ S = \\ (let \ (M, \ N) = (rough\text{-}state\text{-}of \ (DPLL\text{-}tot \ S)) \ in \ (\forall \ A \in set \ N. \ (\exists \ a \in set \ A. \ a \in \textit{lits\text{-}of\text{-}l} \ (M)), \ M)) \end{array}
```

One version of the generated SML code is here, but not included in the generated document. The only differences are:

- export 'a literal from the SML Module Clausal-Logic;
- export the constructor Con from DPLL-W-Implementation;
- export the *int* constructor from *Arith*.

 All these allows to test on the code on some examples.

```
end
theory CDCL-Abstract-Clause-Representation
imports Main Partial-Clausal-Logic
begin
```

```
type-synonym 'v clause = 'v literal multiset
type-synonym 'v clauses = 'v clause multiset
```

3.4.3 Abstract Clause Representation

We will abstract the representation of clause and clauses via two locales. We expect our representation to behave like multiset, but the internal representation can be done using list or whatever other representation.

We assume the following:

• there is an equivalent to adding and removing a literal and to taking the union of clauses.

locale raw-cls =

```
fixes
    mset-cls :: 'cls \Rightarrow 'v \ clause
begin
end
locale raw-ccls-union =
    mset-cls :: 'cls \Rightarrow 'v \ clause \ \mathbf{and}
    union\text{-}cls:: 'cls \Rightarrow 'cls \Rightarrow 'cls \text{ and }
    remove\text{-}clit :: 'v \ literal \Rightarrow 'cls \Rightarrow 'cls
    mset\text{-}ccls\text{-}union\text{-}cls[simp]: mset\text{-}cls \ (union\text{-}cls \ C \ D) = mset\text{-}cls \ C \ \# \cup \ mset\text{-}cls \ D \ \mathbf{and}
    remove-clit[simp]: mset-cls (remove-clit L C) = remove1-mset L (mset-cls C)
begin
end
Instantiation of the previous locale, in an unnamed context to avoid polluating with simp rules
begin
  interpretation list-cls: raw-cls mset
    \mathbf{by} \ unfold\text{-}locales
  interpretation cls-cls: raw-cls id
    by unfold-locales
  interpretation list-cls: raw-ccls-union mset
```

Over the abstract clauses, we have the following properties:

interpretation cls-cls: raw-ccls-union id op #∪ remove1-mset

by unfold-locales (auto simp: union-mset-list ex-mset)

by unfold-locales (auto simp: union-mset-list)

• We can insert a clause

 $union\text{-}mset\text{-}list\ remove 1$

end

- We can take the union (used only in proofs for the definition of *clauses*)
- there is an operator indicating whether the abstract clause is contained or not
- if a concrete clause is contained the abstract clauses, then there is an abstract clause

```
locale raw\text{-}cls = raw\text{-}cls \; mset\text{-}cls for mset\text{-}cls :: 'cls \Rightarrow 'v \; clause + fixes mset\text{-}clss:: 'clss \Rightarrow 'v \; clauses \; and union\text{-}clss :: 'clss \Rightarrow 'clss \Rightarrow 'clss \; and in\text{-}clss :: 'cls \Rightarrow 'clss \Rightarrow bool \; and insert\text{-}clss :: 'cls \Rightarrow 'clss \Rightarrow 'clss \; and remove\text{-}from\text{-}clss :: 'cls \Rightarrow 'clss \Rightarrow 'clss  assumes insert\text{-}clss[simp]: mset\text{-}clss \; (insert\text{-}clss \; L \; C) = mset\text{-}clss \; C + \{\#mset\text{-}cls \; L\#\} \; and \; union\text{-}clss[simp]: mset\text{-}clss \; (union\text{-}clss \; C \; D) = mset\text{-}clss \; C + mset\text{-}clss \; D \; and
```

```
mset-clss-union-clss[simp]: mset-clss (insert-clss C' D) = {\#mset-clss C'\#} + mset-clss D and
   in\text{-}clss\text{-}mset\text{-}clss[dest]: in\text{-}clss\ a\ C \Longrightarrow mset\text{-}cls\ a \in \#\ mset\text{-}clss\ C and
    in\text{-}mset\text{-}clss\text{-}exists\text{-}preimage:}\ b\in\#\ mset\text{-}clss\ C\implies\exists\ b'.\ in\text{-}clss\ b'\ C\land mset\text{-}cls\ b'=b\ \mathbf{and}
    remove-from-clss-mset-clss[simp]:
      mset\text{-}clss\ (remove\text{-}from\text{-}clss\ a\ C) = mset\text{-}clss\ C - \{\#mset\text{-}cls\ a\#\} \text{ and }
    in-clss-union-clss[simp]:
      in\text{-}clss\ a\ (union\text{-}clss\ C\ D)\longleftrightarrow in\text{-}clss\ a\ C\ \lor\ in\text{-}clss\ a\ D
begin
end
experiment
begin
  fun remove-first where
 remove-first - [] = [] |
  remove-first C(C' \# L) = (if mset C = mset C' then L else C' \# remove-first C L)
  lemma mset-map-mset-remove-first:
   mset\ (map\ mset\ (remove-first\ a\ C)) = remove1-mset\ (mset\ a)\ (mset\ (map\ mset\ C))
   by (induction C) (auto simp: ac-simps remove1-mset-single-add)
  interpretation clss-clss: raw-clss id
    id\ op + op \in \# \lambda L\ C.\ C + \{\#L\#\}\ remove1\text{-}mset
   by unfold-locales (auto simp: ac-simps)
 interpretation list-clss: raw-clss mset
   \lambda L. \ mset \ (map \ mset \ L) \ op @ \lambda L \ C. \ L \in set \ C \ op \ \#
   remove-first
   by unfold-locales (auto simp: ac-simps union-mset-list mset-map-mset-remove-first ex-mset)
end
end
theory CDCL-W-Abstract-State
imports CDCL-Abstract-Clause-Representation List-More CDCL-W-Level Wellfounded-More
  CDCL	ext{-}WNOT\ CDCL	ext{-}Abstract	ext{-}Clause	ext{-}Representation
```

begin

3.5 Weidenbach's CDCL with Abstract Clause Representation

We first instantiate the locale of Weidenbach's locale. Then we define another abstract state: the goal of this state is to be used for implementations. We add more assumptions on the function about the state. For example *cons-trail* is restricted to undefined literals.

3.5.1 Instantiation of the Multiset Version

We use definition, otherwise we could not use the simplification theorems we have already shown.

```
definition trail :: 'v \ cdcl_W \text{-}mset \Rightarrow ('v, 'v \ clause) \ ann-lit \ list \ \mathbf{where} trail \equiv \lambda(M, \cdot). \ M
```

```
definition init-clss :: 'v \ cdcl_W-mset \Rightarrow 'v \ clauses \ where
init\text{-}clss \equiv \lambda(\text{-}, N, \text{-}). N
definition learned-clss :: 'v \ cdcl_W-mset \Rightarrow 'v \ clauses \ where
learned-clss \equiv \lambda(-, -, U, -). U
definition backtrack-lvl :: 'v \ cdcl_W - mset \Rightarrow nat \ \mathbf{where}
backtrack-lvl \equiv \lambda(-, -, -, k, -). k
definition conflicting :: 'v cdcl_W-mset \Rightarrow 'v clause option where
conflicting \equiv \lambda(-, -, -, -, C). C
definition cons-trail :: ('v, 'v clause) ann-lit \Rightarrow 'v cdcl<sub>W</sub>-mset \Rightarrow 'v cdcl<sub>W</sub>-mset where
cons-trail \equiv \lambda L (M, R). (L \# M, R)
definition tl-trail where
tl-trail \equiv \lambda(M, R). (tl M, R)
{\bf definition}\ add\text{-}learned\text{-}cls\ {\bf where}
add-learned-cls \equiv \lambda C (M, N, U, R). (M, N, {\#C\#} + U, R)
definition remove-cls where
remove-cls \equiv \lambda C \ (M, N, U, R). \ (M, removeAll-mset \ C \ N, removeAll-mset \ C \ U, R)
definition update-backtrack-lvl where
update-backtrack-lvl \equiv \lambda k \ (M,\ N,\ U,\ \text{--},\ D).\ (M,\ N,\ U,\ k,\ D)
definition update-conflicting where
update\text{-}conflicting \equiv \lambda D \ (M, N, U, k, -). \ (M, N, U, k, D)
definition init-state where
init\text{-state} \equiv \lambda N. ([], N, \{\#\}, \theta, None)
\mathbf{lemmas}\ cdcl_W\textit{-}mset\textit{-}state = \mathit{trail\textit{-}def}\ cons\textit{-}\mathit{trail\textit{-}def}\ add\textit{-}learned\textit{-}\mathit{cls\textit{-}def}
    remove-cls-def update-backtrack-lvl-def update-conflicting-def init-clss-def learned-clss-def
    backtrack-lvl-def conflicting-def init-state-def
interpretation cdcl_W-mset: state_W-ops where
  trail = trail and
  init-clss = init-clss and
  learned-clss = learned-clss and
  backtrack-lvl = backtrack-lvl and
  conflicting = conflicting and
  cons-trail = cons-trail and
  tl-trail = tl-trail and
  add-learned-cls = add-learned-cls and
  remove-cls = remove-cls and
  update-backtrack-lvl = update-backtrack-lvl and
  update-conflicting = update-conflicting and
  init-state = init-state
```

interpretation $cdcl_W$ -mset: $state_W$ where

trail = trail and

```
init-clss = init-clss and
 learned-clss = learned-clss and
 backtrack-lvl = backtrack-lvl and
 conflicting = conflicting and
 cons-trail = cons-trail and
 tl-trail = tl-trail and
 add-learned-cls = add-learned-cls and
 remove-cls = remove-cls and
 update-backtrack-lvl = update-backtrack-lvl and
 update-conflicting = update-conflicting and
 init\text{-}state = init\text{-}state
 by unfold-locales (auto simp: cdcl_W-mset-state)
interpretation cdcl_W-mset: conflict-driven-clause-learning w where
 trail = trail and
 init-clss = init-clss and
 learned-clss = learned-clss and
 backtrack-lvl = backtrack-lvl and
 conflicting = conflicting and
 cons-trail = cons-trail and
 tl-trail = tl-trail and
 add-learned-cls = add-learned-cls and
 remove-cls = remove-cls and
 update-backtrack-lvl = update-backtrack-lvl and
 update-conflicting = update-conflicting and
 init-state = init-state
 by unfold-locales auto
lemma cdcl_W-mset-state-eq-eq: cdcl_W-mset.state-eq = (op =)
  apply (intro ext)
  unfolding cdcl_W-mset.state-eq-def
  by (auto simp: cdcl_W-mset-state)
notation cdcl_W-mset.state-eq (infix \sim m 49)
```

3.5.2 Abstract Relation and Relation Theorems

This locales makes the lifting from the relation defined with multiset R and the version with an abstract state R-abs. We are lifting many different relations (each rule and the the strategy).

```
\bigwedge S \ T \ U. \ inv \ (state \ S) \Longrightarrow R-abs \ S \ T \Longrightarrow state \ T \sim m \ state \ U \Longrightarrow R-abs \ S \ U
begin
lemma relation-compatible-eq:
 assumes
   inv: inv (state S) and
   abs: R-abs \ S \ T and
   SS': state S \sim m state S' and
    TT': state T \sim m state T'
 shows R-abs S' T'
proof -
 have R (state S) (state T)
   using relation-compatible-state inv abs by blast
 then obtain U where S'U: R-abs S' U and TU: state T \sim m state U
   using relation-compatible-abs[OF inv SS'] by blast
 then show ?thesis
   using relation-abs-right-compatible [OF - S'U, of T'] TT' inv SS'[unfolded \ cdcl_W-mset-state-eq-eq]
   cdcl_W-mset.state-eq-trans[of state T' state T state U]
   by (auto simp add: cdcl_W-mset.state-eq-sym)
qed
lemma rtranclp-relation-invariant:
  R^{++} S T \Longrightarrow inv S \Longrightarrow inv T
 by (induction rule: tranclp-induct) (auto simp: relation-invariant)
\mathbf{lemma}\ rtranclp\text{-}abs\text{-}rtranclp\text{:}
  R\text{-}abs^{**} \ S \ T \Longrightarrow inv \ (state \ S) \Longrightarrow R^{**} \ (state \ S) \ (state \ T)
 apply (induction rule: rtranclp-induct)
   apply simp
 by (metis relation-compatible-state rtranclp.simps rtranclpD rtranclp-relation-invariant)
{\bf lemma}\ tranclp-relation-tranclp-relation-abs-compatible:
 fixes S :: 'st
 assumes
   R: R^{++} (state S) T and
   inv: inv (state S)
 shows \exists U. R-abs^{++} S U \wedge T \sim m state U
 using R
proof (induction rule: tranclp-induct)
 case (base\ T)
 then show ?case
   using relation-compatible-abs[of state S S T] inv by auto
next
  case (step T U) note st = this(1) and R = this(2) and IH = this(3)
 obtain V where
   SV: R-abs^{++} S V \text{ and } TV: T \sim m \text{ state } V
   using IH by auto
  then obtain W where
    VW: R\text{-}abs \ V \ W \ \text{and} \ UW: \ U \sim m \ state \ W
   using relation-compatible-abs[OF - TV R] inv rtranclp-relation-invariant[OF st] by blast
 have R-abs^{++} S W
   using SV VW by auto
  then show ?case using UW by blast
qed
```

```
{\bf lemma}\ rtranclp-relation-rtranclp-relation-abs-compatible:
 fixes S :: 'st
 assumes
    R: R^{**} (state S) T and
   inv: inv (state S)
  shows \exists U. R \text{-}abs^{**} S U \wedge T \sim m \text{ state } U
  using R inv by (auto simp: rtranclp-unfold dest: tranclp-relation-tranclp-relation-abs-compatible)
lemma no-step-iff:
  inv (state S) \Longrightarrow no\text{-step } R (state S) \longleftrightarrow no\text{-step } R\text{-abs } S
 {f using}\ relation\mbox{-}compatible\mbox{-}state\mbox{-}relation\mbox{-}compatible\mbox{-}abs\mbox{-}cdcl_W\mbox{-}mset.state\mbox{-}eq\mbox{-}ref
 by blast
{f lemma}\ tranclp-relation-compatible-eq-and-inv:
 assumes
   inv: inv (state S) and
   st: R-abs<sup>++</sup> S T and
   SS': state S \sim m state S' and
    TU: state T \sim m state U
 shows R-abs<sup>++</sup> S' U \wedge inv (state U)
 using st \ TU
proof (induction arbitrary: U rule: tranclp-induct)
 case (base\ T)
 moreover then have inv (state U)
   by (metis\ (full-types)\ cdcl_W-mset-state-eq-eq inv relation-compatible-state relation-invariant)
  ultimately show ?case
   using relation-compatible-eq[of S T S' U] SS' inv
   by (auto simp: tranclp.r-into-trancl)
next
 case (step T T') note st = this(1) and R = this(2) and IH = this(3) and TU = this(4)
 have R-abs^{++} S' T and invT: inv (state T) using IH[of T] by auto
 moreover have R-abs T U
   using relation-compatible-eq[of T T' T U] R TU inv rtranclp-relation-invariant invT by simp
 moreover have inv (state U)
   using calculation(3) invT relation-compatible-state relation-invariant by blast
 ultimately show ?case by auto
qed
lemma
 assumes
   inv: inv (state S) and
   st: R-abs^{++} S T and
   SS': state S \sim m state S' and
    TU: state T \sim m state U
 shows
    tranclp-relation-compatible-eq: R-abs<sup>++</sup> S' U and
   tranclp\text{-}relation\text{-}abs\text{-}invariant\text{: }inv\ (state\ U)
   {\bf using} \ translp-relation-compatible-eq-and-inv} [OF \ assms] \ {\bf by} \ blast+
lemma tranclp-abs-tranclp: R-abs<sup>++</sup> S T \Longrightarrow inv (state S) \Longrightarrow R^{++} (state S) (state T)
 apply (induction rule: tranclp-induct)
   apply (auto simp add: relation-compatible-state)
 apply clarsimp
 apply (erule tranclp.trancl-into-trancl)
 using relation-compatible-state translp-relation-abs-invariant by blast
```

```
lemma full1-iff:
 assumes inv: inv (state S)
 shows full R (state S) (state T) \longleftrightarrow full R-abs S T (is ?R \longleftrightarrow ?R-abs)
proof
 assume ?R
 then have st: R^{++} (state S) (state T) and ns: no-step R (state T) unfolding full1-def by auto
 have invT: inv (state T)
   using inv rtranclp-relation-invariant st by blast
 then have R-abs^{++} S T
   using tranclp-relation-tranclp-relation-abs-compatible[OF st] inv
   tranclp-relation-compatible-eq[of S - S T] cdcl_W-mset.state-eq-sym by blast
 moreover have no-step R-abs T
   using ns inv no-step-iff invT by blast
 ultimately show ?R-abs
   unfolding full1-def by blast
next
 assume ?R-abs
 then have st: R-abs<sup>++</sup> S T and ns: no-step R-abs T unfolding full1-def by auto
 have R^{++} (state S) (state T)
   using st translp-abs-translp inv by blast
 moreover
   have invT: inv (state T)
     using inv tranclp-relation-abs-invariant st by blast
   then have no-step R (state T)
     using ns inv no-step-iff by blast
 ultimately show ?R
   unfolding full1-def by blast
qed
lemma full1-iff-compatible:
 assumes inv: inv (state S) and SS': S' \sim m state S and TT': T' \sim m state T
 shows full R S' T' \longleftrightarrow full R-abs S T (is ?R \longleftrightarrow ?R-abs)
 using full1-iff assms unfolding cdcl_W-mset-state-eq-eq by simp
\mathbf{lemma}\ \mathit{full-if-full-abs}:
 assumes inv (state S) and full R-abs S T
 shows full R (state S) (state T)
 using assms full1-iff cdcl_W-mset-state-eq-eq relation-compatible-abs
 unfolding full-unfold by blast
The converse does not hold, since we cannot prove that S = T given state S = state S.
lemma full-abs-if-full:
 assumes inv (state S) and full R (state S) (state T)
 shows full R-abs S T \vee (state S \sim m state T \wedge no-step R (state S))
 using assms full1-iff relation-compatible-abs unfolding full-unfold by auto
lemma full-exists-full-abs:
 assumes inv: inv (state S) and full: full R (state S) T
 obtains U where full R-abs S U and T \sim m state U
proof -
 consider
          state S = T \text{ and } no\text{-}step R (state S) \mid
   (\theta)
   (full1) full1 R (state S) T
 using full unfolding full-unfold cdcl_W-mset-state-eq-eq by fast
 then show ?thesis
   proof cases
```

```
case \theta
     then show ?thesis using that[of S] unfolding full-def
      using cdcl_W-mset.state-eq-ref inv relation-compatible-state rtranclp.rtrancl-refl by blast
   next
     case full1
     then obtain U where
      R-abs^{++} S U and T \sim m state U
      using tranclp-relation-tranclp-relation-abs-compatible inv unfolding full1-def
      by blast
     then show ?thesis
      using full1 that[of U] full1-iff[OF inv] full1-is-full full-def
      unfolding cdcl_W-mset-state-eq-eq by blast
   qed
qed
\mathbf{lemma}\ full 1-exists-full 1-abs:
 assumes inv: inv (state S) and full1: full1 R (state S) T
 obtains U where full R-abs S U and T \sim m state U
proof
 obtain U where
   R-abs^{++} S U and T \sim m state U
   using transler-relation-transler-relation-abs-compatible inv full1 unfolding full1-def
   by blast
 then show ?thesis
   using full1 that[of U] full1-iff[OF inv] unfolding cdcl<sub>W</sub>-mset-state-eq-eq by blast
qed
lemma full1-right-compatible:
 assumes inv (state S) and
   full1: full1 R-abs S T and TV: state T \sim m state V
 shows full1 R-abs S V
 by (metis\ (full-types)\ TV\ assms(1)\ cdcl_W-mset-state-eq-eq full1 full1-iff)
lemma full-right-compatible:
 assumes inv: inv (state S) and
   full-ST: full R-abs S T and TU: state T \sim m state U
 shows full R-abs S U \vee (S = T \wedge no-step R-abs S)
proof -
 consider
   (0) S = T and no-step R-abs T
   (full1) full1 R-abs S T
   using full-ST unfolding full-unfold by blast
 then show ?thesis
   proof cases
     case full1
     then show ?thesis
      using full1-right-compatible [OF inv, of T U] TU full-unfold by blast
   next
     case \theta
     then show ?thesis by fast
   qed
qed
end
{f locale}\ relation	ext{-}relation	ext{-}abs =
```

```
fixes
     R :: 'v \ cdcl_W \text{-}mset \Rightarrow 'v \ cdcl_W \text{-}mset \Rightarrow bool \ \mathbf{and}
     R-abs :: 'st \Rightarrow 'st \Rightarrow bool and
     state :: 'st \Rightarrow 'v \ cdcl_W \text{-}mset \ \mathbf{and}
     inv :: 'v \ cdcl_W \text{-}mset \Rightarrow bool
  assumes
     relation-compatible-state:
       inv (state S) \Longrightarrow R (state S) (state T) \longleftrightarrow R-abs S T  and
     relation-compatible-abs:
       \bigwedge S \ S' \ T. inv S \Longrightarrow S \sim m \ state \ S' \Longrightarrow R \ S \ T \Longrightarrow \exists \ U. R-abs S' \ U \wedge T \sim m \ state \ U and
     relation-invariant:
       \bigwedge S \ T. \ R \ S \ T \Longrightarrow inv \ S \Longrightarrow inv \ T
begin
lemma relation-compatible-eq:
  \mathit{inv}\ (\mathit{state}\ S) \Longrightarrow \mathit{R-abs}\ S\ T \Longrightarrow \mathit{state}\ S \sim \!\!\! \mathit{m}\ \mathit{state}\ S' \Longrightarrow \mathit{state}\ T \sim \!\!\!\! \mathit{m}\ \mathit{state}\ T' \Longrightarrow \mathit{R-abs}\ S'\ T'
  by (simp\ add:\ cdcl_W-mset-state-eq-eq relation-compatible-state[symmetric])
{f lemma} relation-right-compatible:
  inv \ (state \ S) \Longrightarrow R\text{-}abs \ S \ T \Longrightarrow state \ T \sim m \ state \ U \Longrightarrow R\text{-}abs \ S \ U
  by (simp\ add:\ cdcl_W-mset-state-eq-eq relation-compatible-state[symmetric])
{\bf sublocale}\ relation\hbox{-}implied\hbox{-}relation\hbox{-}abs
  apply unfold-locales
  using relation-compatible-eq relation-compatible-state relation-compatible-abs relation-invariant
  relation-right-compatible by blast+
end
```

3.5.3 The State

We will abstract the representation of clause and clauses via two locales. We expect our representation to behave like multiset, but the internal representation can be done using list or whatever other representation.

```
locale abs-state_W-ops =
  raw-clss mset-cls
    mset-clss union-clss in-clss insert-clss remove-from-clss
  raw-ccls-union mset-ccls union-ccls remove-clit
  for
       - Clause
    mset-cls :: 'cls \Rightarrow 'v \ clause \ and
    — Multiset of Clauses
    mset-clss :: 'clss \Rightarrow 'v \ clauses \ and
     union\text{-}clss :: 'clss \Rightarrow 'clss \Rightarrow 'clss \text{ and }
     in\text{-}clss :: 'cls \Rightarrow 'clss \Rightarrow bool \text{ and }
     insert-clss :: 'cls \Rightarrow 'clss \Rightarrow 'clss and
    remove-from-clss :: 'cls \Rightarrow 'clss \Rightarrow 'clss and
    mset\text{-}ccls :: 'ccls \Rightarrow 'v \ clause \ \mathbf{and}
     union\text{-}ccls :: 'ccls \Rightarrow 'ccls \Rightarrow 'ccls \text{ and }
    remove\text{-}clit :: 'v \ literal \Rightarrow 'ccls \Rightarrow 'ccls
```

```
fixes
    ccls-of-cls :: 'cls \Rightarrow 'ccls and
    cls-of-ccls :: 'ccls \Rightarrow 'cls and
    conc\text{-}trail :: 'st \Rightarrow ('v, 'v \ clause) \ ann\text{-}lits \ \mathbf{and}
    hd-raw-conc-trail :: 'st \Rightarrow ('v, 'cls) ann-lit and
    raw-conc-init-clss :: 'st \Rightarrow 'clss and
    raw-conc-learned-clss :: 'st \Rightarrow 'clss and
    conc-backtrack-lvl :: 'st \Rightarrow nat and
    raw-conc-conflicting :: 'st \Rightarrow 'ccls option and
    cons\text{-}conc\text{-}trail :: ('v, 'cls) \ ann\text{-}lit \Rightarrow 'st \Rightarrow 'st \ \mathbf{and}
    tl-conc-trail :: 'st \Rightarrow 'st and
    add-conc-confl-to-learned-cls :: 'st \Rightarrow 'st and
    remove\text{-}cls :: 'cls \Rightarrow 'st \Rightarrow 'st and
    update\text{-}conc\text{-}backtrack\text{-}lvl :: nat \Rightarrow 'st \Rightarrow 'st and
    mark-conflicting :: 'ccls \Rightarrow 'st \Rightarrow 'st and
    reduce-conc-trail-to :: ('v, 'v clause) ann-lits \Rightarrow 'st \Rightarrow 'st and
    resolve-conflicting :: 'v literal \Rightarrow 'cls \Rightarrow 'st \Rightarrow 'st and
    conc\text{-}init\text{-}state :: 'clss \Rightarrow 'st \text{ and }
    restart-state :: 'st \Rightarrow 'st
  assumes
    mset-ccls-ccls-of-cls[simp]:
      mset-ccls (ccls-of-cls C) = mset-cls C and
    mset-cls-of-ccls[simp]:
      mset-cls (cls-of-ccls D) = mset-ccls D and
    ex-mset-cls: \exists a. mset-cls a = E
begin
fun mmset-of-mlit :: ('v, 'cls) \ ann-lit \Rightarrow ('v, 'v \ clause) \ ann-lit
 where
mmset-of-mlit (Propagated L C) = Propagated L (mset-cls C)
mmset-of-mlit (Decided L) = Decided L
\mathbf{lemma}\ \mathit{lit-of-mmset-of-mlit}[\mathit{simp}]:
  lit-of\ (mmset-of-mlit\ a) = lit-of\ a
 by (cases a) auto
lemma lit-of-mmset-of-mlit-set-lit-of-l[simp]:
  lit-of ' mmset-of-mlit ' set M' = lits-of-l M'
  by (induction M') auto
lemma map-mmset-of-mlit-true-annots-true-cls[simp]:
  map mmset-of-mlit\ M' \models as\ C \longleftrightarrow M' \models as\ C
  by (simp add: true-annots-true-cls lits-of-def)
abbreviation conc-init-clss \equiv \lambda S. mset-clss (raw-conc-init-clss S)
abbreviation conc-learned-clss \equiv \lambda S. mset-clss (raw-conc-learned-clss S)
abbreviation conc-conflicting \equiv \lambda S. map-option mset-ccls (raw-conc-conflicting S)
notation in-clss (infix ! \in ! 50)
notation union-clss (infix \oplus 50)
notation insert-clss (infix !++! 50)
notation union-ccls (infix ! \cup 50)
```

```
definition raw-clauses :: 'st \Rightarrow 'clss where raw-clauses S = union\text{-}clss (raw-conc-init-clss S) (raw-conc-learned-clss S)

abbreviation conc-clauses :: 'st \Rightarrow 'v clauses where conc-clauses S \equiv mset\text{-}clss (raw-clauses S)

definition state :: 'st \Rightarrow 'v cdcl<sub>W</sub>-mset where state = (\lambda S. (conc-trail S, conc-init-clss S, conc-learned-clss S, conc-backtrack-lvl S, conc-conflicting S))
```

end

We are using an abstract state to abstract away the detail of the implementation: we do not need to know how the clauses are represented internally, we just need to know that they can be converted to multisets.

Weidenbach state is a five-tuple composed of:

- 1. the trail is a list of decided literals;
- 2. the initial set of clauses (that is not changed during the whole calculus);
- 3. the learned clauses (clauses can be added or remove);
- 4. the maximum level of the trail;
- 5. the conflicting clause (if any has been found so far).

There are two different clause representation: one for the conflicting clause ('ccls, standing for conflicting clause) and one for the initial and learned clauses ('cls, standing for clause). The representation of the clauses annotating literals in the trail is slightly different: being able to convert it to 'v CDCL-Abstract-Clause-Representation.clause is enough (needed for function hd-raw-conc-trail below).

There are several axioms to state the independence of the different fields of the state: for example, adding a clause to the learned clauses does not change the trail.

```
locale abs-statew =
abs-statew-ops
— functions for clauses:
mset-cls
mset-cls union-clss in-clss insert-clss remove-from-clss

— functions for the conflicting clause:
mset-ccls union-ccls remove-clit

— Conversion between conflicting and non-conflicting
ccls-of-cls cls-of-ccls

— functions about the state:
— getter:
conc-trail hd-raw-conc-trail raw-conc-init-clss raw-conc-learned-clss conc-backtrack-lvl
raw-conc-conflicting
— setter:
cons-conc-trail tl-conc-trail add-conc-confl-to-learned-cls remove-cls update-conc-backtrack-lvl
mark-conflicting reduce-conc-trail-to resolve-conflicting
```

```
— Some specific states:
  conc\text{-}init\text{-}state
  restart\text{-}state
for
  mset-cls :: 'cls \Rightarrow 'v \ clause \ and
  mset-clss :: 'clss \Rightarrow 'v \ clauses \ {\bf and}
  union\text{-}clss: 'clss \Rightarrow 'clss \Rightarrow 'clss \text{ and }
  in\text{-}clss :: 'cls \Rightarrow 'clss \Rightarrow bool \text{ and }
  insert-clss :: 'cls \Rightarrow 'clss \Rightarrow 'clss and
  remove-from-clss::'cls \Rightarrow 'clss \Rightarrow 'clss and
  mset\text{-}ccls :: 'ccls \Rightarrow 'v \ clause \ \mathbf{and}
  union\text{-}ccls :: 'ccls \Rightarrow 'ccls \Rightarrow 'ccls \text{ and }
  remove\text{-}clit :: 'v \ literal \Rightarrow 'ccls \Rightarrow 'ccls \ \mathbf{and}
  ccls-of-cls :: 'cls \Rightarrow 'ccls and
  cls-of-ccls :: 'ccls \Rightarrow 'cls and
  conc\text{-}trail :: 'st \Rightarrow ('v, 'v \ clause) \ ann\text{-}lits \ \mathbf{and}
  hd-raw-conc-trail :: 'st \Rightarrow ('v, 'cls) ann-lit and
  raw-conc-init-clss :: 'st \Rightarrow 'clss and
  raw-conc-learned-clss :: 'st \Rightarrow 'clss and
  conc-backtrack-lvl :: 'st \Rightarrow nat and
  raw-conc-conflicting :: 'st \Rightarrow 'ccls option and
  cons\text{-}conc\text{-}trail :: ('v, 'cls) \ ann\text{-}lit \Rightarrow 'st \Rightarrow 'st \ \mathbf{and}
  tl-conc-trail :: 'st \Rightarrow 'st and
  add-conc-confl-to-learned-cls :: 'st \Rightarrow 'st and
  remove\text{-}cls:: 'cls \Rightarrow 'st \Rightarrow 'st and
  update-conc-backtrack-lvl :: nat \Rightarrow 'st \Rightarrow 'st and
  mark-conflicting :: 'ccls \Rightarrow 'st \Rightarrow 'st and
  reduce-conc-trail-to :: ('v, 'v clause) ann-lits \Rightarrow 'st \Rightarrow 'st and
  resolve\text{-}conflicting :: 'v \ literal \Rightarrow 'cls \Rightarrow 'st \Rightarrow 'st \ \mathbf{and}
  conc\text{-}init\text{-}state :: 'clss \Rightarrow 'st \text{ and }
  restart-state :: 'st \Rightarrow 'st +
assumes
   — Definition of hd-raw-trail:
  hd-raw-conc-trail:
    conc-trail S \neq [] \implies mmset-of-mlit (hd-raw-conc-trail S) = hd (conc-trail S) and
  cons-conc-trail:
    \bigwedge S'. undefined-lit (conc-trail st) (lit-of L) \Longrightarrow
       state \ st = (M, S') \Longrightarrow
       state\ (cons\text{-}conc\text{-}trail\ L\ st) = (mmset\text{-}of\text{-}mlit\ L\ \#\ M,\ S') and
  tl-conc-trail:
    \bigwedge S'. state st = (M, S') \Longrightarrow state (tl-conc-trail st) = (tl M, S') and
  remove-cls:
    \bigwedge S'. state st = (M, N, U, S') \Longrightarrow
       state\ (remove-cls\ C\ st) =
         (M, removeAll\text{-}mset \ (mset\text{-}cls \ C) \ N, removeAll\text{-}mset \ (mset\text{-}cls \ C) \ U, \ S') and
```

```
add-conc-confl-to-learned-cls:
      no\text{-}dup\ (conc\text{-}trail\ st) \Longrightarrow state\ st = (M,\ N,\ U,\ k,\ Some\ F) \Longrightarrow
        state\ (add\text{-}conc\text{-}confl\text{-}to\text{-}learned\text{-}cls\ st) =
          (M, N, \{\#F\#\} + U, k, None) and
    update-conc-backtrack-lvl:
      \bigwedge S'. state st = (M, N, U, k, S') \Longrightarrow
        state\ (update-conc-backtrack-lvl\ k'\ st) = (M,\ N,\ U,\ k',\ S') and
    mark-conflicting:
      state \ st = (M, N, U, k, None) \Longrightarrow
        state (mark-conflicting E st) = (M, N, U, k, Some (mset-ccls E)) and
    conc\text{-}conflicting\text{-}mark\text{-}conflicting[simp]:}
      raw-conc-conflicting (mark-conflicting E st) = Some E and
    resolve-conflicting:
      state \ st = (M, N, U, k, Some \ F) \Longrightarrow -L' \in \# \ F \Longrightarrow L' \in \# \ mset-cls \ D \Longrightarrow
        state\ (resolve\-conflicting\ L'\ D\ st) =
          (M, N, U, k, Some (cdcl_W-mset.resolve-cls L' F (mset-cls D))) and
    conc\text{-}init\text{-}state:
      \mathit{state}\ (\mathit{conc\text{-}init\text{-}state}\ \mathit{Ns}) = ([],\ \mathit{mset\text{-}clss}\ \mathit{Ns},\ \{\#\},\ \mathit{0},\ \mathit{None})\ \mathbf{and}
    — Properties about restarting restart-state:
    conc-trail-restart-state[simp]: conc-trail (restart-state S) = [] and
    conc-init-clss-restart-state[simp]: conc-init-clss (restart-state S) = conc-init-clss S and
    conc-learned-clss-restart-state[intro]:
      conc-learned-clss (restart-state S) \subseteq \# conc-learned-clss S and
    conc-backtrack-lvl-restart-state[simp]: conc-backtrack-lvl (restart-state S) = 0 and
    conc\text{-}conflicting\text{-}restart\text{-}state[simp]: conc\text{-}conflicting (restart\text{-}state S) = None and
    — Properties about reduce-conc-trail-to:
    reduce-conc-trail-to[simp]:
      \bigwedge S'. conc-trail st = M2 \otimes M1 \Longrightarrow state \ st = (M, S') \Longrightarrow
        state\ (reduce\text{-}conc\text{-}trail\text{-}to\ M1\ st) = (M1,\ S')
begin
lemma
    — Properties about the trail conc-trail:
    conc-trail-cons-conc-trail[simp]:
      undefined-lit (conc-trail st) (lit-of L) \Longrightarrow
        conc-trail (cons-conc-trail L st) = mmset-of-mlit L \# conc-trail st and
    conc-trail-tl-conc-trail[simp]:
      conc-trail (tl-conc-trail st) = tl (conc-trail st) and
    conc-trail-add-conc-confl-to-learned-cls[simp]:
      no-dup (conc-trail st) \Longrightarrow conc-conflicting st \neq None \Longrightarrow
        conc-trail (add-conc-confl-to-learned-cls st) = conc-trail st and
    conc-trail-remove-cls[simp]:
      conc-trail (remove-cls C st) = conc-trail st and
    conc-trail-update-conc-backtrack-lvl[simp]:
      conc-trail (update-conc-backtrack-lvl k st) = conc-trail st and
    conc-trail-mark-conflicting[simp]:
      raw-cone-conflicting st = None \implies cone-trail \ (mark-conflicting E \ st) = cone-trail \ st and
    conc-trail-resolve-conflicting[simp]:
      conc-conflicting st = Some \ F \Longrightarrow -L' \in \# \ F \Longrightarrow L' \in \# \ mset\text{-}cls \ D \Longrightarrow
        conc-trail (resolve-conflicting L' D st) = conc-trail st and
```

```
— Properties about the initial clauses conc-init-clss:
conc\text{-}init\text{-}clss\text{-}cons\text{-}conc\text{-}trail[simp]:
  undefined-lit (conc-trail st) (lit-of L) \Longrightarrow
    conc\text{-}init\text{-}clss \ (cons\text{-}conc\text{-}trail \ L \ st) = conc\text{-}init\text{-}clss \ st
  and
conc\text{-}init\text{-}clss\text{-}tl\text{-}conc\text{-}trail[simp]:
  conc\text{-}init\text{-}clss\ (tl\text{-}conc\text{-}trail\ st) = conc\text{-}init\text{-}clss\ st\ \mathbf{and}
conc\text{-}init\text{-}clss\text{-}add\text{-}conc\text{-}confl\text{-}to\text{-}learned\text{-}cls[simp]:
  no\text{-}dup\ (conc\text{-}trail\ st) \Longrightarrow conc\text{-}conflicting\ st \neq None \Longrightarrow
    conc\text{-}init\text{-}clss \ (add\text{-}conc\text{-}confl\text{-}to\text{-}learned\text{-}cls \ st) = conc\text{-}init\text{-}clss \ st \ and
conc\text{-}init\text{-}clss\text{-}remove\text{-}cls[simp]:
  conc-init-clss (remove-cls C st) = removeAll-mset (mset-cls C) (conc-init-clss st) and
conc\text{-}init\text{-}clss\text{-}update\text{-}conc\text{-}backtrack\text{-}lvl[simp]:
  conc\text{-}init\text{-}clss (update-conc-backtrack-lvl k st) = conc\text{-}init\text{-}clss st and
conc-init-clss-mark-conflicting[simp]:
  raw-conc-conflicting st = None \Longrightarrow
    conc\text{-}init\text{-}clss \ (mark\text{-}conflicting } E \ st) = conc\text{-}init\text{-}clss \ st \ and
conc-init-clss-resolve-conflicting[simp]:
  conc\text{-}conflicting \ st = Some \ F \Longrightarrow -L' \in \# \ F \Longrightarrow L' \in \# \ mset\text{-}cls \ D \Longrightarrow
    conc\text{-}init\text{-}clss \ (resolve\text{-}conflicting \ L'\ D\ st) = conc\text{-}init\text{-}clss \ st \ and
— Properties about the learned clauses conc-learned-clss:
conc-learned-clss-cons-conc-trail[simp]:
  undefined-lit (conc-trail st) (lit-of L) =
    conc-learned-clss (cons-conc-trail L st) = conc-learned-clss st and
conc\mbox{-}learned\mbox{-}clss\mbox{-}tl\mbox{-}conc\mbox{-}trail[simp]:
  conc-learned-clss (tl-conc-trail st) = conc-learned-clss st and
conc-learned-clss-add-conc-confl-to-learned-cls[simp]:
  no\text{-}dup\ (conc\text{-}trail\ st) \Longrightarrow conc\text{-}conflicting\ st = Some\ C' \Longrightarrow
    conc-learned-clss (add-conc-confl-to-learned-cls st) = \{\#C'\#\} + conc-learned-clss st and
conc-learned-clss-remove-cls[simp]:
  conc-learned-clss (remove-cls C st) = removeAll-mset (mset-cls C) (conc-learned-clss st) and
conc-learned-clss-update-conc-backtrack-lvl[simp]:
  conc-learned-clss (update-conc-backtrack-lvl k st) = conc-learned-clss st and
conc-learned-clss-mark-conflicting[simp]:
  raw-conc-conflicting st = None \Longrightarrow
    conc-learned-clss (mark-conflicting E st) = conc-learned-clss st and
conc-learned-clss-clss-resolve-conflicting[simp]:
  conc\text{-}conflicting \ st = Some \ F \Longrightarrow -L' \in \# \ F \Longrightarrow L' \in \# \ mset\text{-}cls \ D \Longrightarrow
    conc-learned-clss (resolve-conflicting L' D st) = conc-learned-clss st and
  — Properties about the backtracking level conc-backtrack-lvl:
conc-backtrack-lvl-cons-conc-trail[simp]:
  undefined-lit (conc-trail st) (lit-of L) \Longrightarrow
    conc-backtrack-lvl (cons-conc-trail L st) = conc-backtrack-lvl st and
conc-backtrack-lvl-tl-conc-trail[simp]:
  conc-backtrack-lvl (tl-conc-trail st) = conc-backtrack-lvl st and
conc-backtrack-lvl-add-conc-confl-to-learned-cls[simp]:
  no\text{-}dup\ (conc\text{-}trail\ st) \Longrightarrow conc\text{-}conflicting\ st \neq None \Longrightarrow
    conc-backtrack-lvl (add-conc-confl-to-learned-cls st) = conc-backtrack-lvl st and
conc-backtrack-lvl-remove-cls[simp]:
  conc-backtrack-lvl (remove-cls C st) = conc-backtrack-lvl st and
conc-backtrack-lvl-update-conc-backtrack-lvl[simp]:
  conc-backtrack-lvl (update-conc-backtrack-lvl k st) = k and
conc-backtrack-lvl-mark-conflicting[simp]:
```

```
raw-conc-conflicting st = None \Longrightarrow
      conc-backtrack-lvl (mark-conflicting E st) = conc-backtrack-lvl st and
  conc-backtrack-lvl-clss-clss-resolve-conflicting[simp]:
    conc\text{-}conflicting\ st = Some\ F \Longrightarrow -L' \in \#\ F \Longrightarrow L' \in \#\ mset\text{-}cls\ D \Longrightarrow
      conc-backtrack-lvl (resolve-conflicting L'D st) = conc-backtrack-lvl st and
    — Properties about the conflicting clause conc-conflicting:
  conc\text{-}conflicting\text{-}cons\text{-}conc\text{-}trail[simp]:
    undefined-lit (conc-trail st) (lit-of L) \Longrightarrow
      conc\text{-}conflicting\ (cons\text{-}conc\text{-}trail\ L\ st) = conc\text{-}conflicting\ st\ and
  conc-conflicting-tl-conc-trail[simp]:
    conc\text{-}conflicting\ (tl\text{-}conc\text{-}trail\ st) = conc\text{-}conflicting\ st\ and
  conc\text{-}conflicting\text{-}add\text{-}conc\text{-}confl\text{-}to\text{-}learned\text{-}cls[simp]:
    no\text{-}dup\ (conc\text{-}trail\ st) \Longrightarrow conc\text{-}conflicting\ st = Some\ C' \Longrightarrow
      conc\text{-}conflicting\ (add\text{-}conc\text{-}confl\text{-}to\text{-}learned\text{-}cls\ st) = None
    and
  raw-conc-conflicting-add-conc-confl-to-learned-cls[simp]:
    no\text{-}dup\ (conc\text{-}trail\ st) \Longrightarrow conc\text{-}conflicting\ st = Some\ C' \Longrightarrow
      raw-conc-conflicting (add-conc-confl-to-learned-cls st) = None and
  conc\text{-}conflicting\text{-}remove\text{-}cls[simp]:
    conc\text{-}conflicting (remove\text{-}cls \ C \ st) = conc\text{-}conflicting \ st \ and
  conc\text{-}conflicting\text{-}update\text{-}conc\text{-}backtrack\text{-}lvl[simp]:}
    conc\text{-}conflicting (update\text{-}conc\text{-}backtrack\text{-}lvl \ k \ st) = conc\text{-}conflicting \ st \ and
  conc\text{-}conflicting\text{-}clss\text{-}clss\text{-}resolve\text{-}conflicting[simp]:}
    conc-conflicting st = Some \ F \Longrightarrow -L' \in \# \ F \Longrightarrow L' \in \# \ mset\text{-}cls \ D \Longrightarrow
      conc\text{-}conflicting\ (resolve\text{-}conflicting\ L'\ D\ st) =
        Some (cdcl_W-mset.resolve-cls L' F (mset-cls D)) and
  — Properties about the initial state conc-init-state:
 conc\text{-}init\text{-}state\text{-}conc\text{-}trail[simp]: conc\text{-}trail (conc\text{-}init\text{-}state Ns) = [] and
  conc-init-state-clss[simp]: conc-init-clss (conc-init-state Ns) = mset-clss Ns and
  conc-init-state-conc-learned-clss[simp]: conc-learned-clss (conc-init-state Ns) = \{\#\} and
  conc-init-state-conc-backtrack-lvl[simp]: conc-backtrack-lvl (conc-init-state Ns) = 0 and
 conc-init-state-conc-conflicting [simp]: conc-conflicting (conc-init-state Ns) = None and
  — Properties about reduce-conc-trail-to:
 trail-reduce-conc-trail-to[simp]:
    conc-trail st = M2 @ M1 \Longrightarrow conc-trail (reduce-conc-trail-to M1 \ st) = M1 \ \mathbf{and}
 conc\text{-}init\text{-}clss\text{-}reduce\text{-}conc\text{-}trail\text{-}to[simp]:
    conc-trail st = M2 @ M1 \Longrightarrow
      conc\text{-}init\text{-}clss \ (reduce\text{-}conc\text{-}trail\text{-}to \ M1 \ st) = conc\text{-}init\text{-}clss \ st \ and
 conc-learned-clss-reduce-conc-trail-to[simp]:
    conc-trail st = M2 @ M1 \Longrightarrow
      conc-learned-clss (reduce-conc-trail-to M1 st) = conc-learned-clss st and
 conc-backtrack-lvl-reduce-conc-trail-to[simp]:
    conc-trail st = M2 @ M1 \Longrightarrow
      conc-backtrack-lvl (reduce-conc-trail-to M1 st) = conc-backtrack-lvl st and
  conc\text{-}conflicting\text{-}reduce\text{-}conc\text{-}trail\text{-}to[simp]:}
    conc-trail st = M2 @ M1 \Longrightarrow
      conc-conflicting (reduce-conc-trail-to M1 st) = conc-conflicting st
using cons-conc-trail[of st L conc-trail st snd (state st)] tl-conc-trail[of st]
add-conc-confl-to-learned-cls[of st conc-trail st - - -]
update-conc-backtrack-lvl[of st - - - - k]
mark-conflicting[of st - - - E]
remove-cls[of\ st\ -\ -\ -\ C]
conc-init-state[of Ns]
```

```
reduce-conc-trail-to[of st]
  resolve\text{-}conflicting[of\ st\ -\ -\ -\ F\ L'\ D]
  unfolding state-def by auto
lemma
  shows
    clauses-cons-conc-trail[simp]:
     undefined-lit (conc-trail S) (lit-of L) \Longrightarrow
       conc-clauses (cons-conc-trail L(S) = conc-clauses S and
    clss-tl-conc-trail[simp]: conc-clauses (tl-conc-trail S) = conc-clauses S and
    clauses-update-conc-backtrack-lvl[simp]:
      conc-clauses (update-conc-backtrack-lvl k S) = conc-clauses S and
    clauses-mark-conflicting[simp]:
     raw-conc-conflicting S = None \Longrightarrow
       conc-clauses (mark-conflicting D S) = conc-clauses S and
    clauses-remove-cls[simp]:
      conc-clauses (remove-cls CS) = removeAll-mset (mset-cls C) (conc-clauses S) and
    clauses-add-conc-confl-to-learned-cls[simp]:
     no-dup (conc-trail S) \Longrightarrow conc-conflicting S = Some C' \Longrightarrow
        conc-clauses (add-conc-confl-to-learned-cls S) = \{\#C'\#\} + conc-clauses S and
    clauses-restart[simp]: conc-clauses (restart-state S) \subseteq \# conc-clauses S and
    clauses-conc-init-state[simp]: \bigwedge N. conc-clauses (conc-init-state N) = mset-clss N
   prefer 8 using raw-clauses-def conc-learned-clss-restart-state apply fastforce
   by (auto simp: ac-simps replicate-mset-plus raw-clauses-def intro: multiset-eqI)
abbreviation incr-lvl :: 'st \Rightarrow 'st where
incr-lvl\ S \equiv update-conc-backtrack-lvl\ (conc-backtrack-lvl\ S + 1)\ S
abbreviation state-eq: 'st \Rightarrow 'st \Rightarrow bool (infix \sim 36) where
S\,\sim\,T\,\equiv\,state\,\,S\,\sim\!m\,\,state\,\,T
lemma state-eq-sym:
  S \sim T \longleftrightarrow T \sim S
  using cdcl_W-mset.state-eq-sym by blast
lemma state-eq-trans:
  S \sim T \Longrightarrow T \sim U \Longrightarrow S \sim U
  using cdcl_W-mset.state-eq-trans by blast
lemma
  shows
   state-eq-conc-trail: S \sim T \Longrightarrow conc-trail S = conc-trail T and
   state-eq-conc-init-clss: S \sim T \Longrightarrow conc-init-clss S = conc-init-clss T and
   state-eq-conc-learned-clss: S \sim T \Longrightarrow conc-learned-clss S = conc-learned-clss T and
   state-eq\text{-}conc\text{-}backtrack\text{-}lvl:}\ S\sim\ T\Longrightarrow conc\text{-}backtrack\text{-}lvl\ S=conc\text{-}backtrack\text{-}lvl\ T} and
   state-eq-conc-conflicting: S \sim T \Longrightarrow conc\text{-}conflicting \ S = conc\text{-}conflicting \ T and
    state-eq-clauses: S \sim T \Longrightarrow conc\text{-}clauses \ S = conc\text{-}clauses \ T and
   state-eq-undefined-lit:
     S \sim T \Longrightarrow undefined-lit (conc-trail S) L = undefined-lit (conc-trail T) L
  unfolding raw-clauses-def state-def cdcl_W-mset.state-eq-def
  by (auto simp: cdcl_W-mset-state)
```

We combine all simplification rules about $op \sim$ in a single list of theorems. While they are handy as simplification rule as long as we are working on the state, they also cause a *huge*

```
slow-down in all other cases.
```

 $\begin{array}{l} \textbf{lemmas} \ state\text{-}simp = state\text{-}eq\text{-}conc\text{-}trail \ state\text{-}eq\text{-}conc\text{-}init\text{-}clss \ state\text{-}eq\text{-}conc\text{-}learned\text{-}clss \ state\text{-}eq\text{-}conc\text{-}backtrack\text{-}lvl \ state\text{-}eq\text{-}conc\text{-}conflicting \ state\text{-}eq\text{-}clauses \ state\text{-}eq\text{-}undefined\text{-}lit \ state\text{-}eq\text{-}clauses \ state\text{-}eq\text$

 $\begin{array}{l} \textbf{lemma} \ atms-of\text{-}ms\text{-}conc\text{-}learned\text{-}clss\text{-}restart\text{-}state\text{-}in\text{-}atms\text{-}of\text{-}ms\text{-}conc\text{-}learned\text{-}clss\text{I}[intro]:} \\ x \in atms\text{-}of\text{-}mm \ (conc\text{-}learned\text{-}clss \ (restart\text{-}state \ S)) \Longrightarrow x \in atms\text{-}of\text{-}mm \ (conc\text{-}learned\text{-}clss \ S) \\ \textbf{by} \ (meson \ atms\text{-}of\text{-}ms\text{-}mono \ conc\text{-}learned\text{-}clss\text{-}restart\text{-}state \ set\text{-}mset\text{-}mono \ subsetCE}) \\ \end{array}$

 $\mathbf{lemma}\ clauses\text{-}reduce\text{-}conc\text{-}trail\text{-}to[simp]\text{:}$

conc-trail S=M2 @ $M1\Longrightarrow conc$ -clauses (reduce-conc-trail-to M1 S)=conc-clauses S unfolding raw-clauses-def by auto

lemma in-get-all-ann-decomposition-conc-trail-update-conc-trail[simp]: assumes $H: (L \# M1, M2) \in set (get-all-ann-decomposition (conc-trail S))$ shows conc-trail (reduce-conc-trail-to M1 S) = M1 using assms by auto

lemma raw-conc-conflicting-cons-conc-trail[simp]: assumes undefined-lit (conc-trail S) (lit-of L) shows

raw-conc-conflicting (cons-conc-trail $L(S) = None \longleftrightarrow raw$ -conc-conflicting S = None using assms conc-conflicting-cons-conc-trail[of S(L)] map-option-is-None by fastforce+

 $\mathbf{lemma}\ raw-conc\text{-}conflicting\text{-}update\text{-}backtracl\text{-}lvl[simp]:$

raw-conc-conflicting (update-conc-backtrack-lvl k S) = $None \longleftrightarrow raw$ -conc-conflicting S = None using map-option-is-None conc-conflicting-update-conc-backtrack-lvl[of k S] by fastforce+

end — end of $state_W$ locale

3.5.4 CDCL Rules

mset- $cls :: 'cls \Rightarrow 'v \ clause \ and$

 $locale \ abs-conflict-driven-clause-learning_W =$ abs- $state_W$ — functions for clauses: mset-clss union-clss in-clss insert-clss remove-from-clss — functions for the conflicting clause: mset-ccls union-ccls remove-clit conversion ccls-of-cls cls-of-ccls — functions for the state: — access functions: $conc\text{-}trail\text{ }hd\text{-}raw\text{-}conc\text{-}trail\text{ }raw\text{-}conc\text{-}init\text{-}clss\text{ }raw\text{-}conc\text{-}learned\text{-}clss\text{ }conc\text{-}backtrack\text{-}lvl\text{ }ll\text{-}ll\text{-}ll\text{-}ll\text{-}ll\text{-}ll\text{-}}ll\text{-}l$ raw-conc-conflicting — changing state: $cons\-conc\-trail\ tl\-conc\-trail\ add\-conc\-confl\-to\-learned\-cls\ remove\-cls\ update\-conc\-backtrack\-lvl$ mark-conflicting reduce-conc-trail-to resolve-conflicting — get state: conc-init-staterestart-statefor

```
mset-clss :: 'clss \Rightarrow 'v \ clauses \ and
     union\text{-}clss :: 'clss \Rightarrow 'clss \Rightarrow 'clss \text{ and }
     in\text{-}clss :: 'cls \Rightarrow 'clss \Rightarrow bool \text{ and }
     insert-clss :: 'cls \Rightarrow 'clss \Rightarrow 'clss and
     remove-from-clss :: 'cls \Rightarrow 'clss \Rightarrow 'clss and
     mset\text{-}ccls :: 'ccls \Rightarrow 'v \ clause \ \mathbf{and}
     union\text{-}ccls:: 'ccls \Rightarrow 'ccls \Rightarrow 'ccls \text{ and }
     remove\text{-}clit :: 'v \ literal \Rightarrow 'ccls \Rightarrow 'ccls \ \mathbf{and}
    ccls-of-cls :: 'cls \Rightarrow 'ccls and
    cls-of-ccls :: 'ccls \Rightarrow 'cls and
    conc\text{-}trail :: 'st \Rightarrow ('v, 'v \ clause) \ ann\text{-}lits \ and
    hd-raw-conc-trail :: 'st \Rightarrow ('v, 'cls) ann-lit and
    raw-conc-init-clss :: 'st \Rightarrow 'clss and
     raw-conc-learned-clss :: 'st \Rightarrow 'clss and
     conc-backtrack-lvl :: 'st \Rightarrow nat and
     raw-conc-conflicting :: 'st \Rightarrow 'ccls option and
     cons\text{-}conc\text{-}trail :: ('v, 'cls) \ ann\text{-}lit \Rightarrow 'st \Rightarrow 'st \ \mathbf{and}
     tl-conc-trail :: 'st \Rightarrow 'st and
     add\text{-}conc\text{-}confl\text{-}to\text{-}learned\text{-}cls::} 'st \Rightarrow 'st and
     remove\text{-}cls :: 'cls \Rightarrow 'st \Rightarrow 'st \text{ and }
     update\text{-}conc\text{-}backtrack\text{-}lvl :: nat \Rightarrow 'st \Rightarrow 'st and
     mark-conflicting :: 'ccls \Rightarrow 'st \Rightarrow 'st and
     reduce\text{-}conc\text{-}trail\text{-}to::('v, 'v \ clause) \ ann\text{-}lits \Rightarrow 'st \Rightarrow 'st \ \mathbf{and}
    resolve\text{-}conflicting:: 'v\ literal \Rightarrow 'cls \Rightarrow 'st \Rightarrow 'st\ \mathbf{and}
     conc\text{-}init\text{-}state :: 'clss \Rightarrow 'st \text{ and }
     restart-state :: 'st \Rightarrow 'st
begin
\mathbf{lemma}\ clauses\text{-}state\text{-}conc\text{-}clauses[simp]\text{:}\ cdcl_W\text{-}mset.clauses\ (state\ S) = conc\text{-}clauses\ S
  apply (cases state S)
  unfolding cdclw-mset.clauses-def raw-clauses-def
  unfolding cdcl_W-mset-state state-def
  \mathbf{by} \ simp
lemma conflicting-None-iff-raw-conc-conflicting[simp]:
  conflicting\ (state\ S) = None \longleftrightarrow raw-conc-conflicting\ S = None
  unfolding state-def conflicting-def by simp
\mathbf{lemma}\ \textit{trail-state-add-conc-confl-to-learned-cls}:
  no\text{-}dup\ (conc\text{-}trail\ S) \Longrightarrow conc\text{-}conflicting\ S \neq None \Longrightarrow
     trail\ (state\ (add\text{-}conc\text{-}confl\text{-}to\text{-}learned\text{-}cls\ S)) = trail\ (state\ S)
  unfolding trail-def state-def by simp
lemma trail-state-update-backtrack-lvl:
  trail\ (state\ (update-conc-backtrack-lvl\ i\ S)) = trail\ (state\ S)
  unfolding trail-def state-def by simp
lemma trail-state-update-conflicting:
  raw-conc-conflicting S = None \Longrightarrow trail (state (mark-conflicting i S)) = trail (state S)
  unfolding trail-def state-def by simp
```

```
lemma trail-state-conc-trail[simp]:
  trail\ (state\ S) = conc\text{-}trail\ S
 unfolding trail-def state-def by auto
lemma init-clss-state-conc-init-clss[simp]:
  init-clss (state S) = conc-init-clss S
 unfolding init-clss-def state-def by auto
lemma learned-clss-state-conc-learned-clss[simp]:
  learned-clss (state S) = conc-learned-clss S
 unfolding learned-clss-def state-def by auto
lemma tl-trail-state-tl-con-trail[simp]:
  tl-trail (state S) = state (tl-conc-trail S)
 by (auto simp: cdcl_W-mset-state state-def simp del: trail-state-conc-trail
   init-clss-state-conc-init-clss
   learned-clss-state-conc-learned-clss local.state-simp)
lemma add-learned-cls-state-add-conc-confl-to-learned-cls[simp]:
  assumes no-dup (conc-trail S) and raw-conc-conflicting S = Some D
 shows update-conflicting None (add-learned-cls (mset-ccls D) (state S)) =
   state\ (add\text{-}conc\text{-}confl\text{-}to\text{-}learned\text{-}cls\ S)
  using assms by (auto simp: cdcl_W-mset-state state-def simp del: trail-state-conc-trail
   init\text{-}clss\text{-}state\text{-}conc\text{-}init\text{-}clss
   learned-clss-state-conc-learned-clss local.state-simp)
lemma state-cons-cons-trail-cons-trail[simp]:
  undefined-lit (trail\ (state\ S))\ (lit-of L) \Longrightarrow
   cons-trail (mmset-of-mlit L) (state S) = state (cons-conc-trail L S)
 by (auto simp: cdcl_W-mset-state state-def simp del: trail-state-conc-trail
   init-clss-state-conc-init-clss
   learned-clss-state-conc-learned-clss local.state-simp)
lemma state-cons-trail-cons-trail-propagated[simp]:
  undefined-lit (trail (state S)) K \Longrightarrow
   cons-trail (Propagated K (mset-cls C)) (state S) = state (cons-conc-trail (Propagated K C) S)
  using state-cons-cons-trail-cons-trail of S Propagated K C by simp
lemma state-cons-cons-trail-cons-trail-propagated-ccls[simp]:
  undefined-lit (trail\ (state\ S))\ K \Longrightarrow
   cons-trail (Propagated K (mset-ccls C)) (state S) =
     state\ (cons\text{-}conc\text{-}trail\ (Propagated\ K\ (cls\text{-}of\text{-}ccls\ C))\ S)
  using state-cons-trail-cons-trail[of S Propagated K (cls-of-ccls C)] by simp
lemma state-cons-trail-cons-trail-decided[simp]:
  undefined-lit (trail\ (state\ S))\ K \Longrightarrow
   cons-trail (Decided K) (state S) = state (cons-conc-trail (Decided K) S)
 using state-cons-trail-cons-trail of S Decided K by simp
lemma state-mark-conflicting-update-conflicting[simp]:
  assumes raw-conc-conflicting S = None
 shows
   update-conflicting (Some (mset-ccls D)) (state S) = state (mark-conflicting D S)
   update-conflicting (Some (mset-cls D')) (state S) =
     state\ (mark\text{-}conflicting\ ((ccls\text{-}of\text{-}cls\ D'))\ S)
```

```
using assms by (auto simp: cdcl<sub>W</sub>-mset-state state-def simp del: trail-state-conc-trail
    init\text{-}clss\text{-}state\text{-}conc\text{-}init\text{-}clss
   learned-clss-state-conc-learned-clss local.state-simp)
lemma update-backtrack-lvl-state[simp]:
  update-backtrack-lvl\ i\ (state\ S) = state\ (update-conc-backtrack-lvl\ i\ S)
  by (auto simp: cdcl<sub>W</sub>-mset-state state-def simp del: trail-state-conc-trail
    init\text{-}clss\text{-}state\text{-}conc\text{-}init\text{-}clss
   learned-clss-state-conc-learned-clss local.state-simp)
lemma conc-conflicting-conflicting[simp]:
  conflicting (state S) = conc\text{-}conflicting S
  by (auto simp: cdcl_W-mset-state state-def simp del: trail-state-conc-trail
    init\text{-}clss\text{-}state\text{-}conc\text{-}init\text{-}clss
   learned-clss-state-conc-learned-clss local.state-simp)
lemma update-conflicting-resolve-state-mark-conflicting[simp]:
  raw-conc-conflicting S = Some \ D' \Longrightarrow -L \in \# \ mset-ccls D' \Longrightarrow L \in \# \ mset-cls E' \Longrightarrow
   update-conflicting (Some (remove1-mset (- L) (mset-ccls D') \# \cup remove1-mset L (mset-cls E')))
   (state\ (tl\text{-}conc\text{-}trail\ S)) =
   state\ (resolve\mbox{-}conflicting\ L\ E'\ (tl\mbox{-}conc\mbox{-}trail\ S))
  by (auto simp: cdcl<sub>W</sub>-mset-state state-def simp del: trail-state-conc-trail
    init\text{-}clss\text{-}state\text{-}conc\text{-}init\text{-}clss
   learned-clss-state-conc-learned-clss local.state-simp)
lemma add-learned-update-backtrack-update-conflicting[simp]:
no\text{-}dup\ (conc\text{-}trail\ S) \Longrightarrow raw\text{-}conc\text{-}conflicting\ S = Some\ D' \Longrightarrow add\text{-}learned\text{-}cls\ (mset\text{-}ccls\ D')
         (update-backtrack-lvl i
           (update-conflicting None
             (state\ S))) =
  state\ (add\text{-}conc\text{-}confl\text{-}to\text{-}learned\text{-}cls\ (update\text{-}conc\text{-}backtrack\text{-}lvl\ i\ S))
  by (auto simp: cdcl_W-mset-state state-def simp del: trail-state-conc-trail
    init\text{-}clss\text{-}state\text{-}conc\text{-}init\text{-}clss
   learned-clss-state-conc-learned-clss local.state-simp)
lemma conc-backtrack-lvl-backtrack-lvl[simp]:
  backtrack-lvl (state S) = conc-backtrack-lvl S
  unfolding state-def by (auto simp: cdcl_W-mset-state)
lemma state-state:
  cdcl_W-mset.state (state S) = (trail (state S), init-clss (state S), learned-clss (state S),
  backtrack-lvl (state S), conflicting (state S))
  by (simp)
lemma state-reduce-conc-trail-to-reduce-conc-trail-to[simp]:
  assumes [simp]: conc-trail S = M2 @ M1
  shows cdcl_W-mset.reduce-trail-to M1 (state S) = state (reduce-conc-trail-to M1 S) (is ?RS = ?SR)
proof -
  have 1: trail ?SR = trail ?RS
   apply (subst state-def)
   apply (auto simp add: cdcl_W-mset.trail-reduce-trail-to-drop)
   apply (auto simp: trail-def)
   done
 have 2: init-clss ?SR = init-clss ?RS
     by simp
```

```
have 3: learned-clss ?SR = learned-clss ?RS
    by simp
 have 4: backtrack-lvl ?SR = backtrack-lvl ?RS
    by simp
 have 5: conflicting ?SR = conflicting ?RS
    by simp
 show ?thesis
   using 1 2 3 4 5 apply -
   apply (subst (asm) trail-def, subst (asm) trail-def)
   apply (subst (asm) init-clss-def, subst (asm) init-clss-def)
   apply (subst (asm) learned-clss-def, subst (asm) learned-clss-def)
   apply (subst (asm) backtrack-lvl-def, subst (asm) backtrack-lvl-def)
   apply (subst (asm) conflicting-def, subst (asm) conflicting-def)
   apply (cases state (reduce-conc-trail-to M1 S))
   apply (cases cdcl_W-mset.reduce-trail-to M1 (state S))
   by simp
qed
lemma state-conc-init-state: state (conc-init-state N) = init-state (mset-clss N)
 by (auto simp: cdcl_W-mset-state state-def simp del: trail-state-conc-trail
   init\text{-}clss\text{-}state\text{-}conc\text{-}init\text{-}clss
   learned-clss-state-conc-learned-clss local.state-simp)
More robust version of in-mset-clss-exists-preimage:
lemma in-clauses-preimage:
 assumes b: b \in \# cdcl_W-mset.clauses (state C)
 shows \exists b'. b' ! \in ! raw\text{-}clauses \ C \land mset\text{-}cls \ b' = b
proof -
 have b \in \# conc\text{-}clauses C
   using b by auto
 from in-mset-clss-exists-preimage[OF this] show ?thesis.
qed
lemma state-reduce-conc-trail-to-reduce-conc-trail-to-decomp[simp]:
 assumes (P \# M1, M2) \in set (qet-all-ann-decomposition (conc-trail S))
 shows cdcl_W-mset.reduce-trail-to M1 (state S) = state (reduce-conc-trail-to M1 S)
 using assms by auto
inductive propagate-abs :: 'st \Rightarrow 'st \Rightarrow bool \text{ for } S :: 'st \text{ where}
propagate-abs-rule: conc-conflicting S = None \Longrightarrow
  E !\in ! raw\text{-}clauses S \Longrightarrow
 L \in \# mset\text{-}cls \ E \Longrightarrow
  conc\text{-}trail\ S \models as\ CNot\ (mset\text{-}cls\ E - \{\#L\#\}) \Longrightarrow
  undefined-lit (conc-trail S) L \Longrightarrow
  T \sim cons\text{-}conc\text{-}trail (Propagated L E) S \Longrightarrow
 propagate-abs S T
inductive-cases propagate-absE: propagate-abs\ S\ T
lemma propagate-propagate-abs:
  cdcl_W-mset.propagate (state S) (state T) \longleftrightarrow propagate-abs S T (is ?mset \longleftrightarrow ?abs)
proof
```

```
assume ?abs
  then obtain EL where
   confl: conc\text{-}conflicting S = None \text{ and }
   E: E !\in ! raw\text{-}clauses S and
   L: L \in \# mset\text{-}cls \ E \ \mathbf{and}
   tr-E: conc-trail <math>S \models as \ CNot \ (mset-cls \ E - \{\#L\#\}) and
   undef: undefined-lit (conc-trail S) L and
   T: T \sim cons\text{-}conc\text{-}trail (Propagated L E) S
   by (auto elim: propagate-absE)
 show ?mset
   apply (rule\ cdcl_W-mset.propagate-rule)
       using confl apply auto[]
      using E apply auto[]
     using L apply auto[]
    using tr-E apply auto[]
    using undef apply (auto simp:)[]
   using undef T unfolding cdclw-mset-state-eq-eq state-def cons-trail-def by simp
next
  assume ?mset
 then obtain EL where
   conc\text{-}conflicting S = None \text{ and }
   E !\in ! raw\text{-}clauses S  and
   L \in \# mset-cls E and
   conc-trail S \models as\ CNot\ (mset-cls E - \{\#L\#\}) and
   undefined-lit (conc-trail S) L and
   state T \sim m cons-trail (Propagated L (mset-cls E)) (state S)
   by (auto elim!: cdcl_W-mset.propagateE dest!: in-clauses-preimage
     simp: cdcl_W-mset.clauses-def raw-clauses-def)
  then show ?abs
   by (auto intro!: propagate-abs-rule)
qed
lemma propagate-compatible-abs:
 assumes SS': S \sim m state S' and abs: cdcl_W-mset.propagate S T
 obtains U where propagate-abs S' U and T \sim m state U
proof -
 obtain EL where
   confl: conflicting S = None and
   E: E \in \# \ cdcl_W \text{-}mset.clauses \ S \ and
   L: L \in \# E  and
   tr: trail \ S \models as \ CNot \ (E - \{\#L\#\}) \ \mathbf{and}
   undef: undefined\text{-}lit \ (trail \ S) \ L \ \mathbf{and}
   T: T \sim m \ cons\text{-trail} \ (Propagated \ L \ E) \ S
   using abs by (auto elim!: cdcl_W-mset.propagateE dest!: in-clauses-preimage
     simp: cdcl_W-mset.clauses-def raw-clauses-def)
  then obtain E' where
   E': E'!\in! raw-clauses S' and [simp]: E = mset-cls E'
   by (metis\ SS'\ cdcl_W\ -mset.state-eq-clauses\ in-clauses-preimage)
 let ?U = cons\text{-}conc\text{-}trail (Propagated L E') S'
 have propagate-abs S' ?U
   apply (rule propagate-abs-rule)
        using confl SS' apply simp
       using E'SS' apply simp
      using L apply simp
     using tr SS' apply simp
```

```
using undef SS' apply simp
   using undef SS' by simp
  moreover have T \sim m \ state \ ?U
   using TSS' undef by (auto simp: cdcl<sub>W</sub>-mset-state-eq-eq)
 ultimately show thesis using that by blast
qed
interpretation propagate-abs: relation-relation-abs cdcl_W-mset.propagate propagate-abs state
 \lambda-. True
 apply unfold-locales
  apply (simp add: propagate-propagate-abs)
 using propagate-compatible-abs by blast
inductive conflict-abs :: 'st \Rightarrow 'st \Rightarrow bool for S :: 'st where
conflict-abs-rule:
  conc\text{-}conflicting S = None \Longrightarrow
  D \in ! raw\text{-}clauses S \Longrightarrow
  conc\text{-trail } S \models as \ CNot \ (mset\text{-}cls \ D) \Longrightarrow
  T \sim mark\text{-}conflicting (ccls-of\text{-}cls D) S \Longrightarrow
  conflict-abs\ S\ T
inductive-cases conflict-absE: conflict-absS
\mathbf{lemma}\ conflict\text{-}conflict\text{-}abs:
  cdcl_W-mset.conflict (state S) (state T) \longleftrightarrow conflict-abs S T (is ?mset \longleftrightarrow ?abs)
proof
 assume ?abs
 then obtain D where
   confl: conc\text{-}conflicting S = None \text{ and }
   D: D !\in ! raw\text{-}clauses S  and
   tr-D: conc-trail S \models as CNot (mset-cls D) and
   T: T \sim mark\text{-conflicting (ccls-of-cls D) } S
   by (auto elim!: conflict-absE)
 show ?mset
   apply (rule\ cdcl_W-mset.conflict-rule)
      using confl apply simp
     using D apply auto[]
    using tr-D apply simp
   using T confl apply auto
   done
next
 assume ?mset
 then obtain D where
   confi: conflicting (state S) = None  and
   D: D \in \# \ cdcl_W \text{-}mset.clauses \ (state \ S) \ \mathbf{and}
   tr-D: trail (state S) \models as CNot D and
    T: state T \sim m update-conflicting (Some D) (state S)
   by (cases state S) (auto elim: cdcl_W-mset.conflictE)
  obtain D' where D': D' ! \in ! raw-clauses S and DD'[simp]: D = mset-cls\ D'
   using D by (auto dest!: in-mset-clss-exists-preimage)[]
 \mathbf{show} ?abs
   apply (rule conflict-abs-rule)
      using confl apply simp
     using D' apply simp
    using tr-D apply simp
   using T confl by auto
```

```
{f lemma}\ conflict	ext{-}compatible	ext{-}abs:
 assumes SS': S \sim m state S' and conflict: cdcl_W-mset.conflict S T
 obtains U where conflict-abs S' U and T \sim m state U
proof -
 obtain D where
   confl: conflicting S = None  and
   D: D \in \# \ cdcl_W-mset.clauses S and
   tr-D: trail S \models as CNot D and
    T: T \sim m \ update\text{-conflicting (Some D) } S
   using conflict by (auto elim: cdcl_W-mset.conflictE)
  obtain D' where D': D' !\in! raw-clauses S' and DD'[simp]: D = mset-cls D'
   using D SS' by (auto dest!: in-mset-clss-exists-preimage)[]
 let ?U = mark\text{-}conflicting (ccls-of\text{-}cls D') S'
 have conflict-abs S'?U
   apply (rule conflict-abs-rule)
      using confl SS' apply simp
     using D'SS' apply simp
    using tr-D SS' apply simp
   using T by auto
  moreover have T \sim m \ state \ ?U
   using TSS' confl by (auto simp: cdcl_W-mset-state-eq-eq)
  ultimately show thesis using that [of ?U] by fast
qed
interpretation conflict-abs: relation-relation-abs cdclw-mset.conflict conflict-abs state
 \lambda-. True
 apply unfold-locales
  apply (simp add: conflict-conflict-abs)
 using conflict-compatible-abs by metis
inductive backtrack-abs:: 'st \Rightarrow 'st \Rightarrow bool \text{ for } S:: 'st \text{ where}
backtrack-abs-rule:
 raw-conc-conflicting S = Some D \Longrightarrow
  L \in \# mset\text{-}ccls \ D \Longrightarrow
  (Decided\ K\ \#\ M1,\ M2) \in set\ (qet-all-ann-decomposition\ (conc-trail\ S)) \Longrightarrow
  get-level (conc-trail S) L = conc-backtrack-lvl S \Longrightarrow
  get-level (conc-trail S) L = get-maximum-level (conc-trail S) (mset-ccls D) \Longrightarrow
  get-maximum-level (conc-trail S) (mset-ccls D - \{\#L\#\}) \equiv i \Longrightarrow
 get-level (conc-trail S) K = i + 1 \Longrightarrow
  T \sim cons\text{-}conc\text{-}trail (Propagated L (cls-of\text{-}ccls D))
       (reduce-conc-trail-to M1
         ({\it add-conc-confl-to-learned-cls}
           (update-conc-backtrack-lvl\ i\ S))) \Longrightarrow
  backtrack-abs S T
inductive-cases backtrack-absE: backtrack-absS T
{f lemma}\ backtrack-backtrack-abs:
 assumes inv: cdcl_W-mset.cdcl_W-all-struct-inv (state S)
 shows cdcl_W-mset.backtrack (state S) (state T) \longleftrightarrow backtrack-abs S T (is ?conc \longleftrightarrow ?abs)
proof
 assume ?abs
 then obtain D L K M1 M2 i where
  D: raw\text{-}conc\text{-}conflicting \ S = Some \ D \ \mathbf{and}
```

```
L: L \in \# mset\text{-}ccls \ D \text{ and }
  decomp: (Decided \ K \# M1, M2) \in set \ (get-all-ann-decomposition \ (conc-trail \ S)) and
  lev-L: get-level (conc-trail S) L = conc-backtrack-lvl S and
  lev-Max: qet-level (conc-trail S) L = qet-maximum-level (conc-trail S) (mset-ccls D) and
  i: get-maximum-level (conc-trail S) (mset-ccls D - \{\#L\#\}) \equiv i and
  lev-K: get-level (conc-trail S) K = i + 1 and
  T: T \sim cons\text{-}conc\text{-}trail (Propagated L (cls-of\text{-}ccls D))
       (reduce-conc-trail-to M1
        (add\text{-}conc\text{-}confl\text{-}to\text{-}learned\text{-}cls
          (update-conc-backtrack-lvl\ i\ S)))
   by (auto elim!: backtrack-absE)
 have n-d: no-dup (trail\ (state\ S))
   \mathbf{using}\ lev-L\ inv\ \mathbf{unfolding}\ cdcl_W-mset.cdcl_W-all-struct-inv-def\ cdcl_W-mset.cdcl_W-M-level-inv-def
   by simp
 have atm\text{-}of\ L \notin atm\text{-}of ' lits\text{-}of\text{-}l\ M1
   apply (rule cdcl_W-mset.backtrack-lit-skiped[of - state S])
     using lev-L inv unfolding cdcl_W-mset.cdcl_W-all-struct-inv-def cdcl_W-mset.cdcl_W-M-level-inv-def
      apply simp
     using decomp apply simp
    \mathbf{using}\ lev-L\ inv\ \mathbf{unfolding}\ cdcl_W-mset.cdcl_W-all-struct-inv-def\ cdcl_W-mset.cdcl_W-M-level-inv-def
      apply simp
   using lev-L inv unfolding cdcl_W-mset.cdcl_W-all-struct-inv-def cdcl_W-mset.cdcl_W-M-level-inv-def
      apply simp
  using lev-K apply simp
  done
  then have undef: undefined-lit M1 L
   by (auto simp add: defined-lit-map lits-of-def)
  obtain c where tr: conc-trail S = c @ M2 @ Decided K \# M1
   using decomp by auto
 show ?conc
   apply (rule cdcl_W-mset.backtrack-rule)
         using D apply simp
        using L apply simp
       using decomp apply simp
       using lev-L apply simp
      using lev-Max apply simp
     using i apply simp
    using lev-K apply simp
   using T undef n-d tr D unfolding cdcl_W-mset.state-eq-def
   by auto
next
 assume ?conc
  then obtain L D K M1 M2 i where
   confl: conflicting (state S) = Some D  and
   L: L \in \# D and
   decomp: (Decided \ K \# M1, M2) \in set \ (get-all-ann-decomposition \ (trail \ (state \ S))) and
   lev-L: get-level (trail (state S)) L = backtrack-lvl (state S) and
   lev-max: get-level (trail (state S)) L = get-maximum-level (trail (state S)) (D) and
   i: get-maximum-level (trail (state S)) (D - \{\#L\#\}) \equiv i and
   lev-K: get-level (trail (state S)) K = i + 1 and
   T: state \ T \sim m \ cons-trail \ (Propagated \ L \ (D))
        (cdcl_W-mset.reduce-trail-to M1
          (add-learned-cls D
            (update-backtrack-lvl i
              (update\text{-}conflicting\ None\ (state\ S)))))
   by (auto elim: cdcl_W-mset.backtrackE)
```

```
obtain D' where
       confl': raw-conc-conflicting S = Some D' \text{ and } D[simp]: D = mset-ccls D'
       using confl by auto
    have n-d: no-dup (trail (state S))
       using lev-L inv unfolding cdcl_W-mset.cdcl_W-all-struct-inv-def cdcl_W-mset.cdcl_W-M-level-inv-def
       by simp
    have atm-of L \notin atm-of ' lits-of-l M1
       apply (rule cdcl_W-mset.backtrack-lit-skiped[of - state S])
            using lev-L inv unfolding cdcl_W-mset.cdcl_W-all-struct-inv-def cdcl_W-mset.cdcl_W-M-level-inv-def
            apply simp
           using decomp apply simp
         using lev-L inv unfolding cdcl_W-mset.cdcl_W-all-struct-inv-def cdcl_W-mset.cdcl_W-M-level-inv-def
            apply simp
       using lev-L inv unfolding cdcl_W-mset.cdcl_W-all-struct-inv-def cdcl_W-mset.cdcl_W-M-level-inv-def
            apply simp
     using lev-K apply simp
     done
    then have undef: undefined-lit M1 L
       by (auto simp add: defined-lit-map lits-of-def)
    \mathbf{show} \ ?abs
       apply (rule backtrack-abs-rule)
                    using confl' apply simp
                  using L apply simp
                using decomp apply simp
              using lev-L apply simp
             using lev-max apply simp
           using i apply simp
         using lev-K apply simp
       using T undef n-d decomp confl' by auto
qed
lemma backtrack-exists-backtrack-abs-step:
   assumes bt: cdcl_W-mset.backtrack S T and inv: cdcl_W-mset.cdcl<sub>W</sub>-all-struct-inv S and
     SS': S \sim m \ state \ S'
   obtains U where backtrack-abs S' U and T \sim m state U
proof -
    from bt obtain L D K M1 M2 i where
       confl: conflicting S = Some D  and
       L: L \in \# D and
       decomp: (Decided K \# M1, M2) \in set (get-all-ann-decomposition (trail S)) and
       lev-L: get-level (trail S) L = backtrack-lvl S and
       lev-max: get-level (trail S) L = get-maximum-level (trail S) (D) and
       i: get-maximum-level (trail S) (D - \{\#L\#\}) \equiv i and
       lev-K: get-level (trail S) K = i + 1 and
        T: T \sim m \ cons\text{-trail} \ (Propagated \ L \ (D))
                  (cdcl_W-mset.reduce-trail-to M1
                      (add-learned-cls D
                          (update-backtrack-lvl i
                              (update\text{-}conflicting\ None\ S))))
       by (auto elim: cdcl_W-mset.backtrackE)
    obtain D' where
        confl': raw-conc-conflicting S' = Some D' \text{ and } D[simp]: D = mset-ccls D'
       using confl SS' by auto
    have n-d: no-dup (trail (state S'))
     \textbf{using } \textit{lev-L } \textit{inv } \textit{SS'} \textbf{ unfolding } \textit{cdcl}_W \textit{-mset.cdcl}_W \textit{-all-struct-inv-def } \textit{cdcl}_W \textit{-mset.cdcl}_W \textit{-M-level-inv-def } \textit{cdcl}_W \textit{-mset.cdcl}_W \textit{-mset.cdcl}_W
       by simp
```

```
have atm\text{-}of \ L \notin atm\text{-}of ' lits\text{-}of\text{-}l \ M1
      apply (rule cdcl_W-mset.backtrack-lit-skiped[of - state S'])
        \mathbf{using}\ lev-L\ inv\ SS'\ \mathbf{unfolding}\ cdcl_W\ -mset.cdcl_W\ -all\ -struct\ -inv\ -def\ cdcl_W\ -mset.cdcl_W\ -M\ -level\ -inv\ -def\ cdcl_W\ -mset.cdcl_W\ -mset.cdcl
           apply simp
          using decomp SS' apply simp
      using lev-L inv SS' unfolding cdcl_W-mset.cdcl_W-all-struct-inv-def cdcl_W-mset.cdcl_W-M-level-inv-def
           apply simp
    \mathbf{using}\ lev-L\ inv\ SS'\ \mathbf{unfolding}\ cdcl_W-mset.cdcl_W-all-struct-inv-def\ cdcl_W-mset.cdcl_W-M-level-inv-def
           apply simp
    using lev-K SS' apply simp
   then have undef: undefined-lit M1 L
      by (auto simp add: defined-lit-map lits-of-def)
   let ?U = cons\text{-}conc\text{-}trail (Propagated L (cls-of\text{-}ccls D'))
                 (reduce-conc-trail-to M1
                    (add\text{-}conc\text{-}confl\text{-}to\text{-}learned\text{-}cls
                       (update-conc-backtrack-lvl i S')))
   have backtrack-abs S'?U
      apply (rule backtrack-abs-rule)
                  using confl' apply simp
                 using L apply simp
               using decomp SS' apply simp
             using lev-L SS' apply simp
            using lev-max SS' apply simp
          using i SS' apply simp
        using lev-K SS' apply simp
      using T undef n-d decomp by auto
   moreover have T \sim m \ state \ ?U
      using undef decomp T n-d SS'[unfolded\ cdcl_W-mset-state-eq-eq] confl' by auto
   ultimately show thesis using that [of ?U] by fast
qed
interpretation \ backtrack-abs: \ relation-relation-abs \ cdcl_W-mset. backtrack \ backtrack-abs \ state
   cdcl_W-mset.cdcl_W-all-struct-inv
   apply unfold-locales
        apply (simp add: backtrack-backtrack-abs)
      using backtrack-exists-backtrack-abs-step apply metis
   using cdcl_W-mset.backtrack cdcl_W-mset.bj cdcl_W-mset.cdcl_W-all-struct-inv-inv by blast
inductive decide-abs :: 'st \Rightarrow 'st \Rightarrow bool for S :: 'st where
decide-abs-rule:
   conc\text{-}conflicting S = None \Longrightarrow
   undefined-lit (conc-trail S) L \Longrightarrow
   atm\text{-}of\ L\in atms\text{-}of\text{-}mm\ (conc\text{-}init\text{-}clss\ S)\Longrightarrow
   T \sim cons\text{-}conc\text{-}trail (Decided L) (incr-lvl S) \Longrightarrow
   decide-abs S T
inductive-cases decide-absE: decide-absST
\mathbf{lemma}\ decide\text{-}decide\text{-}abs:
   cdcl_W-mset.decide (state S) (state T) \longleftrightarrow decide-abs S T
   by (auto elim!: cdcl_W-mset.decideE decide-absE intro!: cdcl_W-mset.decide-rule decide-abs-rule)
interpretation decide-abs: relation-relation-abs cdcl_W-mset.decide decide-abs state
   \lambda-. True
```

```
apply unfold-locales
    apply (simp add: decide-decide-abs)
   apply (metis (full-types) cdcl_W-mset.decide.cases cdcl_W-mset-state-eq-eq
     conc\text{-}trail\text{-}update\text{-}conc\text{-}backtrack\text{-}lvl\ decide\text{-}decide\text{-}abs
     state-cons-cons-trail-cons-trail-decided \ trail-state-conc-trail \ update-backtrack-lvl-state)
  using cdcl_W-mset.cdcl_W-all-struct-inv-inv cdcl_W-mset.decide\ cdcl_W-mset.other by blast
inductive skip\text{-}abs :: 'st \Rightarrow 'st \Rightarrow bool \text{ for } S :: 'st \text{ where}
skip-abs-rule:
  conc\text{-}trail\ S = Propagated\ L\ C\,' \ \#\ M \Longrightarrow
  raw-conc-conflicting S = Some E \Longrightarrow
   -L \notin \# mset\text{-}ccls E \Longrightarrow
  mset\text{-}ccls\ E \neq \{\#\} \Longrightarrow
   T \sim tl\text{-}conc\text{-}trail\ S \Longrightarrow
  skip-abs S T
inductive-cases skip-absE: skip-absST
lemma skip-skip-abs:
  cdcl_W-mset.skip (state S) (state T) \longleftrightarrow skip-abs S T (is ?conc \longleftrightarrow ?abs)
proof
  assume ?abs
  then show ?conc
   by (auto elim!: skip-absE intro!: cdcl<sub>W</sub>-mset.skip-rule)
next
 assume ?conc
  then obtain L C' E M where
   tr: trail (state S) = Propagated L C' \# M and
   confi: conflicting (state S) = Some E  and
    L: -L \notin \# E and
    E: E \neq \{\#\} \text{ and }
    T: state T \sim m tl-trail (state S)
   by (auto elim: cdcl_W-mset.skipE)
  obtain E' where
    confl': raw-conc-conflicting S = Some E'  and [simp]: E = mset-ccls E'
   using confl by auto
  \mathbf{show} \ ?abs
   \mathbf{apply} \ (\mathit{rule} \ \mathit{skip-abs-rule})
       using tr apply simp
       using confl' apply simp
     using L apply simp
    using E apply simp
    using T by simp
qed
\mathbf{lemma}\ skip\text{-}exists\text{-}skip\text{-}abs:
 assumes skip: cdcl_W-mset.skip \ S \ T and SS': \ S \sim m \ state \ S'
 obtains U where skip-abs S' U and T \sim m state U
proof -
  obtain L C' E M where
   tr: trail S = Propagated L C' \# M and
   confl: conflicting S = Some E  and
    L: -L \notin \# E and
    E: E \neq \{\#\} \text{ and }
    T: T \sim m \ tl-trail S
   using skip by (auto\ elim:\ cdcl_W-mset.skipE)
```

```
obtain E' where
   confl': raw-conc-conflicting S' = Some E' and [simp]: E = mset-ccls E'
   using confl SS' by auto
  have skip-abs\ S'\ (tl-conc-trail\ S')
   apply (rule skip-abs-rule)
       using tr SS' apply simp
      using confl' SS' apply simp
     using L SS' apply simp
    using E apply simp
   using T by simp
  then show ?thesis
   using that [of tl-conc-trail S'] T SS'[unfolded cdcl_W-mset-state-eq-eq] by auto
interpretation skip-abs: relation-relation-abs cdcl_W-mset.skip skip-abs state
 \lambda-. True
 apply unfold-locales
    apply (simp add: skip-skip-abs)
   using skip-exists-skip-abs apply metis
  \mathbf{using}\ cdcl_W-mset.cdcl_W-all-struct-inv-inv cdcl_W-mset.skip\ cdcl_W-mset.other\ \mathbf{by}\ blast
inductive resolve-abs :: 'st \Rightarrow 'st \Rightarrow bool for S :: 'st where
resolve-abs-rule: conc-trail S \neq [] \Longrightarrow
 hd-raw-conc-trail S = Propagated L E \Longrightarrow
  L \in \# mset\text{-}cls \ E \Longrightarrow
 raw-conc-conflicting S = Some D' \Longrightarrow
  -L \in \# mset\text{-}ccls D' \Longrightarrow
  get-maximum-level (conc-trail S) (mset-ccls (remove-clit (-L) D')) = conc-backtrack-lvl S \Longrightarrow
  T \sim resolve\text{-}conflicting \ L \ E \ (tl\text{-}conc\text{-}trail \ S) \Longrightarrow
  resolve-abs S T
inductive-cases resolve-absE: resolve-abs S T
lemma resolve-resolve-abs:
  cdcl_W-mset.resolve (state S) (state T) \longleftrightarrow resolve-abs S T (is ?conc \longleftrightarrow ?abs)
proof
 assume ?conc
 then obtain L E D where
   tr: trail (state S) \neq [] and
   hd: cdcl_W-mset.hd-trail (state S) = Propagated L E and
   LE: L \in \# E \text{ and }
   confl: conflicting (state S) = Some D  and
   LD: -L \in \# D and
   lvl-max: get-maximum-level (trail (state S)) ((remove1-mset (-L) D)) = backtrack-lvl (state S) and
    T: state T \sim m update-conflicting (Some (cdcl<sub>W</sub>-mset.resolve-cls L D E)) (tl-trail (state S))
   by (auto elim!: cdcl_W-mset.resolveE)
  obtain E' where
   hd': hd-raw-conc-trail S = Propagated \ L \ E' and
   [simp]: E = mset-cls E'
   apply (cases hd-raw-conc-trail S)
   using hd-raw-conc-trail[of S] tr \ hd by simp-all
  obtain D' where
   confl': raw-conc-conflicting S = Some D' and
   [simp]: D = mset-ccls D'
   using confl by auto
  \mathbf{show} \ ?abs
```

```
apply (rule resolve-abs-rule)
        using tr apply simp
       using hd' apply simp
      using LE apply simp
     using confl' apply simp
     using LD apply simp
    using lvl-max apply simp
   using T confl' LE LD by simp
next
 assume ?abs
 then show ?conc
   using hd-raw-conc-trail [of S] by (auto elim!: resolve-absE intro!: cdcl_W-mset.resolve-rule)
lemma resolve-exists-resolve-abs:
 assumes
   res: cdcl_W-mset.resolve S T and
   SS': S \sim m \ state \ S'
 obtains U where resolve-abs S' U and T \sim m state U
proof -
 obtain L E D where
   tr: trail S \neq [] and
   hd: cdcl_W-mset.hd-trail\ S = Propagated\ L\ E\ {\bf and}
   LE: L \in \# E \text{ and }
   confl: conflicting S = Some D and
   LD: -L \in \# D and
   lvl-max: get-maximum-level (trail S) ((remove1-mset (-L) D)) = backtrack-lvl S and
   T: T \sim m \text{ update-conflicting (Some (cdcl_W-mset.resolve-cls L D E)) (tl-trail S)}
   using res
   by (auto elim!: cdcl_W-mset.resolveE)
 obtain E' where
   hd': hd-raw-conc-trail S' = Propagated \ L \ E' and
   [simp]: E = mset-cls E'
   apply (cases hd-raw-conc-trail S')
   using hd-raw-conc-trail[of S'] tr hd SS' by simp-all
 obtain D' where
   confl': raw-conc-conflicting S' = Some D' and
   [simp]: D = mset-ccls D'
   using confl SS' by auto
 let ?U = resolve\text{-}conflicting L E' (tl\text{-}conc\text{-}trail S')
 have resolve-abs S'?U
   apply (rule resolve-abs-rule)
        using tr SS' apply simp
       using hd' apply simp
      using LE apply simp
     using confl' apply simp
     using LD apply simp
    using lvl-max SS' apply simp
   using T by simp
 moreover have T \sim m \ state \ ?U
   using TSS' confl LE LD unfolding cdcl<sub>W</sub>-mset.state-eq-def by fastforce
 ultimately show thesis using that [of ?U] by fast
qed
```

interpretation resolve-abs: relation-relation-abs $cdcl_W$ -mset.resolve resolve-abs state λ -. True

```
apply unfold-locales
     apply (simp add: resolve-resolve-abs)
    using resolve-exists-resolve-abs apply metis
  using cdcl_W-mset.cdcl_W-all-struct-inv-inv cdcl_W-mset.resolve\ cdcl_W-mset.other by blast
inductive restart :: 'st \Rightarrow 'st \Rightarrow bool for S :: 'st where
restart: conc\text{-}conflicting S = None \Longrightarrow
  \neg conc\text{-}trail\ S \models asm\ conc\text{-}clauses\ S \Longrightarrow
  T \sim restart\text{-}state \ S \Longrightarrow
  restart S T
inductive-cases restartE: restart S T
We add the condition C \notin \# conc\text{-}init\text{-}clss S, to maintain consistency even without the strategy.
inductive forget :: 'st \Rightarrow 'st \Rightarrow bool where
forget-rule:
  conc\text{-}conflicting S = None \Longrightarrow
  C \in ! raw-conc-learned-clss S \Longrightarrow
  \neg(conc\text{-trail }S) \models asm \ clauses \ S \Longrightarrow
  mset\text{-}cls\ C \notin set\ (get\text{-}all\text{-}mark\text{-}of\text{-}propagated\ (conc\text{-}trail\ S))} \Longrightarrow
  mset\text{-}cls\ C \notin \#\ conc\text{-}init\text{-}clss\ S \Longrightarrow
  T \sim remove\text{-}cls \ C \ S \Longrightarrow
  forget S T
\mathbf{inductive\text{-}cases}\ \mathit{forgetE}\colon \mathit{forget}\ S\ T
inductive cdcl_W-abs-rf :: 'st \Rightarrow 'st \Rightarrow bool for S :: 'st where
restart: restart-abs S T \Longrightarrow cdcl_W-abs-rf S T
forget: forget-abs S T \Longrightarrow cdcl_W-abs-rf S T
inductive cdcl_W-abs-bj :: 'st \Rightarrow 'st \Rightarrow bool where
skip: skip-abs \ S \ S' \Longrightarrow cdcl_W-abs-bj \ S \ S' \mid
resolve: resolve-abs S S' \Longrightarrow cdcl_W-abs-bj S S'
backtrack: backtrack-abs \ S \ S' \Longrightarrow cdcl_W-abs-bj \ S \ S'
inductive-cases cdcl_W-abs-bjE: cdcl_W-abs-bjS T
lemma cdcl_W-abs-bj-cdcl_W-abs-bj:
  cdcl_W-mset.cdcl_W-all-struct-inv (state S) \Longrightarrow
    cdcl_W-mset.cdcl_W-bj (state S) (state T) \longleftrightarrow cdcl_W-abs-bj S T
  by (auto simp: cdcl_W-mset.cdcl_W-bj.simps cdcl_W-abs-bj.simps
    backtrack-backtrack-abs skip-skip-abs resolve-resolve-abs)
\textbf{interpretation} \ \ cdcl_W - abs - bj: \ relation - relation - abs \ \ cdcl_W - mset. \ cdcl_W - bj \ \ cdcl_W - abs - bj \ \ state
  cdcl_W-mset.cdcl_W-all-struct-inv
  apply unfold-locales
     apply (simp\ add:\ cdcl_W-abs-bj-cdcl_W-abs-bj)
    apply (metis (no-types, hide-lams) backtrack-exists-backtrack-abs-step cdcl_W-abs-bj.simps
      cdcl_W-mset.cdcl_W-bj.simps resolve-exists-resolve-abs skip-abs.relation-compatible-abs)
  using cdcl_W-mset.bj cdcl_W-mset.cdcl_W-all-struct-inv-inv cdcl_W-mset.other by blast
inductive cdcl_W-abs-o :: 'st \Rightarrow 'st \Rightarrow bool for S :: 'st where
decide: decide-abs \ S \ S' \Longrightarrow cdcl_W-abs-o \ S \ S'
bj: cdcl_W-abs-bj S S' \Longrightarrow cdcl_W-abs-o S S'
```

inductive $cdcl_W$ -abs :: 'st \Rightarrow 'st \Rightarrow bool for S :: 'st where

```
propagate: propagate-abs S S' \Longrightarrow cdcl_W-abs S S' \mid conflict: conflict-abs S S' \Longrightarrow cdcl_W-abs S S' \mid other: cdcl_W-abs-o S S' \Longrightarrow cdcl_W-abs S S' \mid rf: cdcl_W-abs-rf S S' \Longrightarrow cdcl_W-abs S S'
```

3.5.5 Higher level strategy

The rules described previously do not lead to a conclusive state. We have add a strategy and show the inclusion in the multiset version.

```
inductive cdcl_W-merge-abs-cp: 'st \Rightarrow 'st \Rightarrow bool for S: 'st where
conflict': conflict-abs\ S\ T \Longrightarrow full\ cdcl_W-abs-bj\ T\ U \Longrightarrow cdcl_W-merge-abs-cp\ S\ U
propagate': propagate-abs^{++} S S' \Longrightarrow cdcl_W-merge-abs-cp S S'
lemma cdcl_W-merge-cp-cdcl_W-abs-merge-cp:
 assumes
   cp: cdcl_W-merge-abs-cp S T and
   inv: cdcl_W-mset.cdcl_W-all-struct-inv (state S)
 shows cdcl_W-mset.cdcl_W-merge-cp (state S) (state T)
  using cp
proof (induction\ rule:\ cdcl_W-merge-abs-cp.induct)
  case (conflict' T U) note confl = this(1) and bj = this(2)
  then have cdcl_W-mset.conflict (state S) (state T)
   by (auto simp: conflict-conflict-abs propagate-propagate-abs cdcl<sub>W</sub>-abs-bj-cdcl<sub>W</sub>-abs-bj)
 moreover
   have cdcl_W-mset.cdcl_W-all-struct-inv (state T)
     using cdcl_W-mset.conflict cdcl_W-mset.cdcl<sub>W</sub>-all-struct-inv-inv confl inv
     unfolding conflict-conflict-abs[symmetric] by blast
   then have full cdcl_W-mset.cdcl_W-bj (state T) (state U)
     using by (auto simp: cdcl_W-abs-bj.full-if-full-abs)
 ultimately show ?case by (auto intro: cdcl<sub>W</sub>-mset.cdcl<sub>W</sub>-merge-cp.intros)
next
  case (propagate' T)
 then show ?case
   by (auto simp: propagate-abs.tranclp-abs-tranclp intro: cdcl_W-mset.cdcl_W-merge-cp.propagate')
qed
lemma cdcl_W-merge-cp-abs-exists-cdcl<sub>W</sub>-merge-cp:
 assumes
   cp: cdcl_W-mset.cdcl_W-merge-cp (state S) T and
   inv: cdcl_W-mset.cdcl_W-all-struct-inv (state S)
 obtains U where cdcl_W-merge-abs-cp S U and T \sim m state U
 using cp
proof (induction rule: cdcl_W-mset.cdcl_W-merge-cp.induct)
  case (conflict' T U) note confl = this(1) and bj = this(2) and that = this(3)
 obtain V where SV: conflict-abs S V and TV: T \sim m state V
   using conflict-abs.relation-compatible-abs[of state S S] confl by blast
  have inv-V: cdcl_W-mset.cdcl_W-all-struct-inv (state V) and
   inv-T: cdcl_W-mset.cdcl_W-all-struct-inv T
   \mathbf{using} \ TV \ bj \ cdcl_W \text{-}mset.cdcl_W \text{-}stgy.simps \ cdcl_W \text{-}mset.cdcl_W \text{-}stgy-cdcl_W \text{-}all\text{-}struct-inv}
   cdcl_W-mset.conflict-is-full1-cdcl_W-cp confl inv unfolding cdcl_W-mset-state-eq-eq by blast+
  then obtain T' where full cdcl_W-abs-bj V T' and U \sim m state T'
   using TV bj cdcl_W-abs-bj.full-exists-full-abs[of V U] unfolding cdcl_W-mset-state-eq-eq
   by blast
  then show ?thesis using that cdcl_W-merge-abs-cp.conflict'[of S V T'] SV by fast
```

```
next
  case (propagate' T)
 then show ?case
   using cdcl_W-merge-abs-cp.propagate'
   propagate-abs.tranclp-relation-tranclp-relation-abs-compatible by blast
qed
lemma no-step-cdcl_W-merge-cp-no-step-cdcl_W-abs-merge-cp:
 assumes
   inv: cdcl_W-mset.cdcl_W-all-struct-inv (state S)
 shows no-step cdcl_W-merge-abs-cp S \longleftrightarrow no-step cdcl_W-mset.cdcl_W-merge-cp (state S)
 (is ?abs \longleftrightarrow ?conc)
proof
 assume ?abs
 show ?conc
   proof (rule ccontr)
     assume ¬ ?thesis
     then obtain T where cdcl_W-mset.cdcl_W-merge-cp (state S) T
      by blast
     then show False
       using cdcl_W-merge-cp-abs-exists-cdcl<sub>W</sub>-merge-cp[of S T] \langle ?abs \rangle inv by auto
   qed
next
 assume ?conc
 then show ?abs
   using cdcl_W-merge-cp-cdcl_W-abs-merge-cp inv by blast
qed
lemma cdcl_W-merge-abs-cp-right-compatible:
  cdcl_W-merge-abs-cp S \ V \Longrightarrow cdcl_W-mset.cdcl_W-all-struct-inv (state S) \Longrightarrow
  V \sim W \Longrightarrow cdcl_W-merge-abs-cp S W
proof (induction rule: cdcl_W-merge-abs-cp.induct)
  case (conflict' T U) note confl = this(1) and full = this(2) and inv = this(3) and UW = this(4)
 have inv-T: cdcl_W-mset.cdcl_W-all-struct-inv (state\ T)
   \mathbf{using}\ cdcl_W\textit{-}mset.cdcl_W\textit{-}stgy.simps\ cdcl_W\textit{-}mset.cdcl_W\textit{-}stgy\text{-}cdcl_W\textit{-}all\text{-}struct\text{-}inv
   cdcl_W-mset.conflict-is-full1-cdcl_W-cp conflict-conflict-abs inv by blast
  then have full cdcl_W-abs-bj T W \vee (T = U \wedge no-step cdcl_W-abs-bj T)
   using cdcl_W-abs-bj.full-right-compatible [OF - full UW] full by blast
  then consider
     (full) full cdcl_W-abs-bj T W \mid
     (0) T = U and no-step cdcl_W-abs-bj T
   by blast
  then show ?case
   proof cases
     case full
     then show ?thesis using confl by (blast intro: cdcl<sub>W</sub>-merge-abs-cp.intros)
   next
     case \theta
     then have conflict-abs S W and no-step cdcl<sub>W</sub>-abs-bj W
       using confl UW conflict-abs.relation-right-compatible apply blast
       using full unfolding full-def
       by (metis (mono-tags, lifting) \theta(1) UW inv-T cdcl_W-abs-bj-cdcl_W-abs-bj
        cdcl_W-mset-state-eq-eq)
     moreover then have full cdcl_W-abs-bj W W
       unfolding full-def by auto
     ultimately show ?thesis by (blast intro: cdcl_W-merge-abs-cp.intros)
```

```
qed
next
  case (propagate')
 then show ?case using propagate-abs.tranclp-relation-compatible-eq
   by (blast intro: cdcl_W-merge-abs-cp.propagate')
qed
interpretation\ cdcl_W-merge-abs-cp: relation-implied-relation-abs
  cdcl_W-mset.cdcl_W-merge-cp cdcl_W-merge-abs-cp state cdcl_W-mset.cdcl_W-all-struct-inv
 apply unfold-locales
    using cdcl_W-merge-cp-cdcl<sub>W</sub>-abs-merge-cp apply blast
   \textbf{using} \ cdcl_W\textit{-merge-cp-abs-exists-cdcl}_W\textit{-merge-cp} \ \textbf{unfolding} \ cdcl_W\textit{-mset-state-eq-eq} \ \textbf{apply} \ blast
  using cdcl_W-mset.rtranclp-cdcl<sub>W</sub>-all-struct-inv-inv
  cdcl_W-mset.rtranclp-cdcl_W-merge-cp-rtranclp-cdcl_W apply blast
  using cdcl_W-merge-abs-cp-right-compatible unfolding cdcl_W-mset-state-eq-eq by blast
inductive cdcl_W-merge-abs-stgy for S :: 'st where
fw-s-cp: full1\ cdcl_W-merge-abs-cp S\ T \Longrightarrow cdcl_W-merge-abs-stqy S\ T
fw-s-decide: decide-abs S T \Longrightarrow no-step cdcl_W-merge-abs-cp S \Longrightarrow full \ cdcl_W-merge-abs-cp T U
  \implies cdcl_W-merge-abs-stgy S \ U
lemma cdcl_W-cp-cdcl_W-abs-cp:
 assumes stgy: cdcl_W-merge-abs-stgy S T and
   inv: cdcl_W-mset.cdcl_W-all-struct-inv (state S)
 shows cdcl_W-mset.cdcl_W-merge-stgy (state S) (state T)
 using stgy
proof (induction rule: cdcl_W-merge-abs-stgy.induct)
  case (fw-s-cp\ T)
 show ?case
   apply (rule cdcl_W-mset.cdcl_W-merge-stgy.fw-s-cp)
   using fw-s-cp inv by (simp add: cdcl_W-merge-abs-cp.full1-iff)
  case (fw-s-decide T U) note dec = this(1) and ns = this(2) and full = this(3)
 have dec': cdcl_W-mset.decide (state S) (state T)
   using dec decide-decide-abs by blast
  then have cdcl_W-mset.cdcl_W-all-struct-inv (state T)
   using inv\ cdcl_W-mset.cdcl_W-all-struct-inv-inv
   by (blast dest: cdcl_W-mset.cdcl_W.other cdcl_W-mset.cdcl_W-o.decide)
  then have full\ cdcl_W-mset.cdcl_W-merge-cp\ (state\ T)\ (state\ U)
   using full cdcl_W-merge-abs-cp.full-if-full-abs by blast
  then show ?case
   using dec' cdcl_W-mset.cdcl_W-merge-styy.fw-s-decide[of state \ S \ state \ T \ state \ U] ns inv
   by (simp\ add:\ no\text{-}step\text{-}cdcl_W\text{-}merge\text{-}cp\text{-}no\text{-}step\text{-}cdcl_W\text{-}abs\text{-}merge\text{-}cp)}
qed
lemma cdcl_W-merge-abs-stgy-exists-cdcl_W-merge-stgy:
 assumes
   inv: cdcl_W-mset.cdcl_W-all-struct-inv S and
   SS': S \sim m \ state \ S' and
   st: cdcl_W-mset.cdcl_W-merge-stgy S T
 shows \exists U. cdcl_W-merge-abs-stgy S' U \land T \sim m \text{ state } U
 using st
proof (induction rule: cdcl_W-mset.cdcl_W-merge-stgy.induct)
  case (fw-s-cp\ T)
  then show ?case using cdcl_W-merge-abs-cp.full1-exists-full1-abs[of S' T] inv
```

```
unfolding SS'[unfolded\ cdcl_W-mset-state-eq-eq] by (metis\ cdcl_W-merge-abs-stgy.fw-s-cp)
next
 case (fw\text{-}s\text{-}decide\ T\ U) note dec = this(1) and n\text{-}s = this(2) and full = this(3)
 have SS': S = state S'
   using SS' unfolding cdcl_W-mset-state-eq-eq.
 obtain T' where decide-abs S' T' and TT': T \sim m state T'
   using dec decide-abs.relation-compatible-abs[of S S' T] SS' by auto
 moreover
   have cdcl_W-mset.cdcl_W-all-struct-inv (state T')
     using SS' calculation(1) cdcl_W-mset.cdcl_W.intros(3) cdcl_W-mset.cdcl_W-all-struct-inv-inv
     cdcl_W-mset.decide decide-decide-abs inv by blast
   then obtain U' where full cdcl_W-merge-abs-cp T' U' and U \sim m state U'
     using full cdcl_W-merge-abs-cp.full-exists-full-abs unfolding TT'[unfolded\ cdcl_W-mset-state-eq-eq]
     by blast
 moreover have no-step cdcl_W-merge-abs-cp S'
   using n-s cdcl_W-merge-abs-cp.no-step-iff inv unfolding SS' by blast
 ultimately show ?case
   using cdcl_W-merge-abs-stqy.fw-s-decide[of S' T' U'] by fast
qed
\mathbf{lemma}\ cdcl_W\text{-}merge\text{-}abs\text{-}stgy\text{-}right\text{-}compatible}:
 assumes
   inv: cdcl_W-mset.cdcl_W-all-struct-inv (state S) and
   st: cdcl_W-merge-abs-stgy S T and
   TU: T \sim V
 shows cdcl_W-merge-abs-stgy S V
 using st TU
proof (induction rule: cdcl_W-merge-abs-stgy.induct)
 case (fw-s-cp\ T)
 then show ?thesis
   using cdcl_W-merge-abs-cp.full1-right-compatible cdcl_W-merge-abs-stqy.fw-s-cp inv by blast
next
 case (fw\text{-}s\text{-}decide\ T\ U) note dec=this(1) and n\text{-}s=this(2) and full=this(3) and UV=this(4)
 have inv-T: cdcl_W-mset.cdcl_W-all-struct-inv (state\ T)
   using dec\ inv\ cdcl_W-mset.cdcl_W-all-struct-inv-inv[of\ state\ S\ state\ T]
   by (auto dest!: cdcl_W-mset.cdcl_W-o.decide\ cdcl_W-mset.cdcl_W.other
     simp: decide-decide-abs[symmetric])
 then have full cdcl_W-merge-abs-cp T \ V \lor (T = U \land no\text{-step } cdcl_W\text{-merge-abs-cp } T)
   using cdcl<sub>W</sub>-merge-abs-cp.full-right-compatible[of T U V] full UV by blast
 then consider
   (full) full cdcl_W-merge-abs-cp T V
   (0) T = U and no-step cdcl_W-merge-abs-cp T
   by blast
 then show ?case
   proof cases
     case full
     then show ?thesis
      using n-s dec by (blast\ intro:\ cdcl_W-merge-abs-stgy.intros)
   next
     case \theta note TU = this(1) and n-s' = this(2)
     have decide-abs S V
      using TU dec UV decide-abs.relation-abs-right-compatible by auto
     moreover
      have cdcl_W-mset.cdcl_W-all-struct-inv (state V)
        using inv-T by (metis (full-types) TU cdcl_W-mset-state-eq-eq fw-s-decide.prems)
      then have full cdcl_W-merge-abs-cp V V
```

```
using n-s' TU UV[unfolded cdcl_W-mset-state-eq-eq]
       unfolding full-def by (metis cdcl_W-merge-abs-cp.no-step-iff rtranclp-unfold)
    ultimately show ?thesis using n-s by (blast intro: cdcl<sub>W</sub>-merge-abs-stgy.intros)
   qed
qed
interpretation cdcl_W-merge-abs-stgy: relation-implied-relation-abs
 cdcl_W-mset.cdcl_W-merge-stgy cdcl_W-merge-abs-stgy state cdcl_W-mset.cdcl_W-all-struct-inv
 apply unfold-locales
   using cdcl_W-cp-cdcl_W-abs-cp apply blast
   using cdcl_W-merge-abs-stgy-exists-cdcl_W-merge-stgy apply blast
  apply blast
 using cdcl_W-merge-abs-stgy-right-compatible by blast
lemma cdcl_W-merge-abs-stgy-final-State-conclusive:
 fixes T :: 'st
 assumes
   full: full cdcl_W-merge-abs-stgy (conc-init-state N) T and
   n-d: distinct-mset-mset (mset-clss N)
 shows (conc-conflicting T = Some \{\#\} \land unsatisfiable (set-mset (mset-clss N)))
   \vee (conc-conflicting T = None \wedge conc-trail T \models asm mset-clss N
    \land satisfiable (set-mset (mset-clss N)))
proof -
 have cdcl_W-mset.cdcl_W-all-struct-inv (state (conc-init-state N))
   using n-d unfolding cdcl_W-mset.cdcl_W-all-struct-inv-def by (auto\ simp:\ state-conc-init-state)
 then show ?thesis
   using cdcl_W-mset.full-cdcl_W-merge-stgy-final-state-conclusive'[of mset-clss N state T]
   cdcl_W-merge-abs-stgy.full-if-full-abs[of conc-init-state N T] full
   by (auto simp: state-conc-init-state n-d)
qed
end
end
```

3.6 2-Watched-Literal

theory CDCL-Two-Watched-Literals imports CDCL-W-Abstract-State begin

First we define here the core of the two-watched literal data structure:

- 1. A clause is composed of (at most) two watched literals.
- 2. It is sufficient to find the candidates for propagation and conflict from the clauses such that the new literal is watched.

While this it the principle behind the two-watched literals, an implementation have to remember the candidates that have been found so far while updating the data structure.

We will directly on the two-watched literals data structure with lists: it could be also seen as a state over some abstract clause representation we would later refine as lists. However, as we need a way to select element from a clause, working on lists is better.

3.6.1 Essence of 2-WL

Data structure and Access Functions

Only the 2-watched literals have to be verified here: the backtrack level and the trail that appear in the state are not related to the 2-watched algoritm.

```
datatype 'v twl-clause =
  TWL-Clause (watched: 'v literal list) (unwatched: 'v literal list)
datatype 'v twl-state =
  TWL-State (raw-trail: ('v, 'v twl-clause) ann-lits)
   (raw-init-clss: 'v twl-clause list)
   (raw-learned-clss: 'v twl-clause list) (backtrack-lvl: nat)
   (raw-conflicting: 'v literal list option)
fun mmset-of-mlit :: ('v, 'v twl-clause) ann-lit <math>\Rightarrow ('v, 'v clause) ann-lit
 where
mmset-of-mlit (Propagated L C) = Propagated L (mset (watched C @ unwatched C))
mmset-of-mlit (Decided L) = Decided L
lemma lit-of-mmset-of-mlit[simp]: lit-of (mmset-of-mlit x) = lit-of x
 by (cases \ x) auto
lemma lits-of-mmset-of-mlit[simp]: lits-of (mmset-of-mlit 'S) = lits-of S
 by (auto simp: lits-of-def image-image)
abbreviation trail where
trail S \equiv map \ mmset-of-mlit \ (raw-trail S)
abbreviation clauses-of-l where
  clauses-of-l \equiv \lambda L. \ mset \ (map \ mset \ L)
definition raw-clause :: 'v twl-clause \Rightarrow 'v literal list where
  raw-clause C \equiv watched \ C @ unwatched \ C
definition clause :: 'v twl-clause \Rightarrow 'v clause where
  clause\ C \equiv mset\ (raw-clause\ C)
\mathbf{lemma} \mathit{clause-def-lambda}:
  clause = (\lambda C. mset (raw-clause C))
 by (auto simp: clause-def)
abbreviation raw-clss :: 'v twl-state \Rightarrow 'v clauses where
  raw-clss S \equiv mset (map clause (raw-init-clss S @ raw-learned-clss S))
abbreviation raw-clss-l::'a twl-clause list \Rightarrow 'a literal multiset multiset where
 raw-clss-l C \equiv mset \ (map \ clause \ C)
interpretation raw-cls clause.
lemma mset-map-clause-remove1-cond:
  mset\ (map\ (\lambda x.\ mset\ (unwatched\ x) + mset\ (watched\ x))
   (remove1\text{-}cond\ (\lambda D.\ clause\ D=\ clause\ a)\ Cs))=
  remove1-mset (clause a) (mset (map clause Cs))
  apply (induction Cs)
    apply simp
```

```
by (auto simp: ac-simps remove1-mset-single-add raw-clause-def clause-def)
interpretation raw-clss
 clause
 raw-clss-l op @
 \lambda L \ C. \ L \in set \ C \ op \ \# \ \lambda C. \ remove1-cond \ (\lambda D. \ clause \ D = clause \ C)
 apply (unfold-locales)
 using mset-map-clause-remove1-cond by (auto simp: hd-map comp-def map-tl ac-simps raw-clause-def
   union-mset-list mset-map-mset-remove1-cond ex-mset clause-def-lambda)
lemma ex-mset-unwatched-watched:
 \exists a. mset (unwatched a) + mset (watched a) = E
proof -
 obtain e where mset e = E
   using ex-mset by blast
 then have mset (unwatched (TWL-Clause [] e)) + mset (watched (TWL-Clause [] e)) = E
   by auto
 then show ?thesis by fast
qed
interpretation twl: abs-state_W-ops
 clause
 raw-clss-l op @
 \lambda L \ C. \ L \in set \ C \ op \ \# \ \lambda C. \ remove1-cond \ (\lambda D. \ clause \ D = clause \ C)
 mset \lambda xs ys. case-prod append (fold (\lambda x (ys, zs). (remove1 x ys, x \# zs)) xs (ys, [])
 remove1
 raw-clause \lambda C. TWL-Clause [] C
 trail \ \lambda S. \ hd \ (raw-trail \ S)
 raw-init-clss raw-learned-clss backtrack-lvl raw-conflicting
 rewrites
   twl.mmset-of-mlit = mmset-of-mlit
proof goal-cases
 case 1
 show H: ?case
 apply unfold-locales apply (auto simp: hd-map comp-def map-tl ac-simps raw-clause-def
   union-mset-list mset-map-mset-remove1-cond ex-mset-unwatched-watched clause-def)
 done
 case 2
 show ?case
   apply (rule ext)
   apply (rename-tac x)
   apply (case-tac \ x)
   apply (simp-all \ add: \ abs-state_W-ops.mmset-of-mlit.simps[OF\ H]\ raw-clause-def\ clause-def)
 done
qed
declare CDCL-Two-Watched-Literals.twl.mset-ccls-of-cls[simp del]
definition
```

 $\{(L, C) \mid L C.$

where

candidates-propagate S =

candidates-propagate :: 'v twl-state \Rightarrow ('v literal \times 'v twl-clause) set

```
C \in set \ (twl.raw\text{-}clauses \ S) \ \land \ set \ (watched \ C) - (uminus \ 'lits\text{-}of\text{-}l \ (trail \ S)) = \{L\} \land \ undefined\text{-}lit \ (raw\text{-}trail \ S) \ L\}
\mathbf{definition} \ candidates\text{-}conflict \ :: \ 'v \ twl\text{-}state \Rightarrow 'v \ twl\text{-}clause \ set \ \mathbf{where} \ candidates\text{-}conflict \ S = \ \{C. \ C \in set \ (twl.raw\text{-}clauses \ S) \land \ set \ (watched \ C) \subseteq uminus \ 'lits\text{-}of\text{-}l \ (raw\text{-}trail \ S)\}
\mathbf{primrec} \ (nonexhaustive) \ index \ :: \ 'a \ list \Rightarrow 'a \Rightarrow nat \ \mathbf{where} \ index \ (a \ \# \ l) \ c = (if \ a = c \ then \ 0 \ else \ 1 + index \ l \ c)
\mathbf{lemma} \ index\text{-}nth: \ a \in set \ l \implies l \ ! \ (index \ l \ a) = a \ \mathbf{by} \ (induction \ l) \ auto
```

Invariants

The structural invariants states that there are at most two watched elements, that the watched literals are distinct, and that there are 2 watched literals if there are at least than two different literals in the full clauses.

```
primrec struct-wf-twl-cls :: 'v twl-clause \Rightarrow bool where struct-wf-twl-cls (TWL-Clause W UW) \longleftrightarrow distinct W \wedge length W \leq 2 \wedge (length W < 2 \longrightarrow set UW \subseteq set W)
```

We need the following property about updates: if there is a literal L with -L in the trail, and L is not watched, then it stays unwatched; i.e., while updating with rewatch, L does not get swapped with a watched literal L' such that -L' is in the trail. This corresponds to the laziness of the data structure.

Remark that M is a trail: literals at the end were the first to be added to the trail.

```
primrec watched-only-lazy-updates :: ('v, 'mark) ann-lits ⇒ 'v twl-clause ⇒ bool where watched-only-lazy-updates M (TWL-Clause W UW) \longleftrightarrow (\forall L'∈ set W. \forall L∈ set UW. -L'∈ lits-of-l M \longrightarrow -L ∈ lits-of-l M \longrightarrow L \notin set W \longrightarrow index (map lit-of M) (-L') \leq index (map lit-of M) (-L)
```

If the negation of a watched literal is included in the trail, then the negation of every unwatched literals is also included in the trail. Otherwise, the data-structure has to be updated.

```
\begin{array}{l} \mathbf{primrec} \ \ watched\text{-}wf\text{-}twl\text{-}cls :: ('a, 'b) \ \ ann\text{-}lits \Rightarrow 'a \ twl\text{-}clause \Rightarrow \\ bool \ \mathbf{where} \\ watched\text{-}wf\text{-}twl\text{-}cls \ M \ (TWL\text{-}Clause \ W \ UW) \longleftrightarrow \\ (\forall \ L \in set \ W. \ -L \in lits\text{-}of\text{-}l \ M \longrightarrow (\forall \ L' \in set \ UW. \ L' \notin set \ W \longrightarrow -L' \in lits\text{-}of\text{-}l \ M)) \end{array}
```

Here are the invariant strictly related to the 2-WL data structure.

```
\begin{array}{l} \mathbf{primrec} \ \ wf\text{-}twl\text{-}cls :: ('v, 'mark) \ ann\text{-}lits \Rightarrow 'v \ twl\text{-}clause \Rightarrow bool \ \mathbf{where} \\ \ \ wf\text{-}twl\text{-}cls \ M \ (TWL\text{-}Clause \ W \ UW) \longleftrightarrow \\ \ \ struct\text{-}wf\text{-}twl\text{-}cls \ (TWL\text{-}Clause \ W \ UW) \land watched\text{-}wf\text{-}twl\text{-}cls \ M \ (TWL\text{-}Clause \ W \ UW) \land \\ \ \ watched\text{-}only\text{-}lazy\text{-}updates \ M \ (TWL\text{-}Clause \ W \ UW) \end{array}
```

```
lemma wf-twl-cls-annotation-independant:

assumes M: map\ lit-of\ M = map\ lit-of\ M'
```

```
shows wf-twl-cls M (TWL-Clause W UW) \longleftrightarrow wf-twl-cls M' (TWL-Clause W UW)
proof -
 have lits-of-lM = lits-of-lM'
   using arg-cong[OF M, of set] by (simp add: lits-of-def)
 then show ?thesis
   by (simp add: lits-of-def M)
qed
lemma wf-twl-cls-wf-twl-cls-tl:
 assumes wf: wf-twl-cls M C and n-d: no-dup M
 shows wf-twl-cls (tl M) C
proof (cases M)
 case Nil
 then show ?thesis using wf
   by (cases C) (simp add: wf-twl-cls.simps[of tl -])
 case (Cons l M') note M = this(1)
 obtain W \ UW where C: C = TWL-Clause W \ UW
   by (cases C)
 \{ \mathbf{fix} \ L \ L' \}
   assume
     LW: L \in set \ W and
     LM: -L \in lits-of-l M' and
     L'UW: L' \in set\ UW and
     L' \notin set W
   then have
     L'M: -L' \in lits\text{-}of\text{-}lM
     using wf by (auto simp: C M)
   have watched-only-lazy-updates M C
     using wf by (auto simp: C)
   then have
     index \ (map \ lit of \ M) \ (-L) \leq index \ (map \ lit of \ M) \ (-L')
     using LM L'M L'UW LW \langle L' \notin set W \rangle C M unfolding lits-of-def
     by (fastforce simp: lits-of-def)
   then have -L' \in lits-of-l M'
     using \langle L' \notin set \ W \rangle \ LW \ L'M by (auto simp: C M split: if-split-asm)
 moreover
   {
     \mathbf{fix} \ L' \ L
     assume
      L' \in set \ W \ and
      L \in set\ UW and
      L'M: -L' \in lits\text{-}of\text{-}l\ M' and
       -L \in lits-of-lM' and
      L \notin set W
     moreover
      have lit-of l \neq -L'
      using n-d unfolding M
        by (metis (no-types) L'M M Decided-Propagated-in-iff-in-lits-of-l defined-lit-map
          distinct.simps(2) \ list.simps(9) \ set-map)
     moreover have watched-only-lazy-updates M C
      using wf by (auto simp: C)
     ultimately have index (map lit-of M') (-L') \leq index (map lit-of M') (-L)
      by (fastforce simp: M C split: if-split-asm)
   }
```

```
moreover have distinct W and length W \leq 2 and (length W < 2 \longrightarrow set \ UW \subseteq set \ W)
   using wf by (auto simp: CM)
  ultimately show ?thesis by (auto simp add: M C)
qed
lemma wf-twl-cls-append:
 assumes
   n\text{-}d: no\text{-}dup\ (M'\ @\ M) and
   wf: wf\text{-}twl\text{-}cls \ (M' @ M) \ C
 shows wf-twl-cls M C
  using wf n-d apply (induction M')
   apply simp
  using wf-twl-cls-wf-twl-cls-tl by fastforce
definition wf-twl-state :: 'v twl-state <math>\Rightarrow bool where
  wf-twl-state S \longleftrightarrow
   (\forall C \in set \ (twl.raw-clauses \ S). \ wf-twl-cls \ (raw-trail \ S) \ C) \land no-dup \ (raw-trail \ S)
\mathbf{lemma}\ \textit{wf-candidates-propagate-sound}\colon
  assumes wf: wf-twl-state S and
    cand: (L, C) \in candidates-propagate S
 shows raw-trail S \models as CNot (mset (removeAll\ L\ (raw-clause\ C))) \land undefined-lit (raw-trail S)\ L
    (is ?Not \land ?undef)
proof
  \mathbf{def}\ M \equiv \mathit{raw-trail}\ S
 \operatorname{\mathbf{def}} N \equiv \operatorname{raw-init-clss} S
 \operatorname{\mathbf{def}}\ U \equiv \operatorname{raw-learned-clss}\ S
 note MNU-defs [simp] = M-def N-def U-def
 have cw:
    C \in set (N @ U)
   set (watched C) - uminus `lits-of-l M = \{L\}
   undefined-lit M L
   using cand unfolding candidates-propagate-def MNU-defs twl.raw-clauses-def by auto
  obtain W \ UW where cw-eq: C = TWL-Clause W \ UW
   by (cases C)
 have l-w: L \in set W
   using cw(2) cw-eq by auto
 have wf-c: wf-twl-cls M C
   using wf cw(1) unfolding wf-twl-state-def by (simp add: twl.raw-clauses-def)
  have w-nw:
   distinct W
   length W < 2 \Longrightarrow set UW \subseteq set W
   \bigwedge L \ L'. \ L \in set \ W \Longrightarrow -L \in lits \text{-of-}l \ M \Longrightarrow L' \in set \ UW \Longrightarrow L' \notin set \ W \Longrightarrow -L' \in lits \text{-of-}l \ M
  using wf-c unfolding cw-eq by (auto simp: image-image)
  have \forall L' \in set \ (raw\text{-}clause \ C) - \{L\}. \ -L' \in lits\text{-}of\text{-}l \ M
  proof (cases length W < 2)
   case True
   moreover have size W \neq 0
     using cw(2) cw-eq by auto
```

```
ultimately have size W = 1
   by linarith
 then have w: W = [L]
   using l-w by (auto simp: length-list-Suc-\theta)
 from True have set UW \subseteq set W
   using w-nw(2) by blast
 then show ?thesis
   using w \ cw(1) \ cw-eq by (auto simp: raw-clause-def)
next
 case sz2: False
 show ?thesis
 proof
   fix L'
   assume l': L' \in set (raw\text{-}clause \ C) - \{L\}
   have ex-la: \exists La. La \neq L \land La \in set W
   proof (cases W)
    case w: Nil
    then show ?thesis
      using l-w by auto
   next
     case lb: (Cons Lb W')
    show ?thesis
    proof (cases W')
      case Nil
      then show ?thesis
        using lb sz2 by simp
     next
      case lc: (Cons Lc W'')
      then show ?thesis
        by (metis\ distinct-length-2-or-more\ lb\ list.set-intros(1)\ list.set-intros(2)\ w-nw(1))
    qed
   qed
   then obtain La where la: La \neq L La \in set W
    by blast
   then have La \in uminus ' lits-of-l M
     using cw(2)[unfolded\ cw-eq,\ simplified,\ folded\ M-def]\ \langle La\in set\ W\rangle\ \langle La\neq L\rangle by auto
   then have nla: -La \in lits\text{-}of\text{-}l\ M
     by (auto simp: image-image)
   then show -L' \in lits-of-l M
   proof -
    have f1: L' \in set \ (raw\text{-}clause \ C)
      using l' by blast
    have f2: L' \notin \{L\}
      using l' by fastforce
    have \bigwedge l \ L. - (l::'a \ literal) \in L \lor l \notin uminus `L
      by force
     then show ?thesis
      using cw(1) cw-eq w-nw(3) raw-clause-def by (metis DiffI Un-iff cw(2) f1 f2 la(2) nla
        set-append twl-clause.sel(1) twl-clause.sel(2))
   qed
 qed
qed
then show ?Not
 unfolding true-annots-def by (auto simp: image-image Ball-def CNot-def)
```

```
show ?undef
   using cw(3) unfolding M-def by blast
qed
{f lemma}\ wf\ -candidates\ -propagate\ -complete:
  assumes wf: wf\text{-}twl\text{-}state\ S and
   c-mem: C \in set (twl.raw-clauses S) and
   l-mem: L \in set (raw-clause C) and
   unsat: trail\ S \models as\ CNot\ (mset\text{-set}\ (set\ (raw\text{-}clause\ C) - \{L\})) and
   undef: undefined-lit (raw-trail S) L
 shows (L, C) \in candidates-propagate S
proof -
  \mathbf{def}\ M \equiv \mathit{raw-trail}\ S
 \operatorname{\mathbf{def}} N \equiv \operatorname{raw-init-clss} S
 \operatorname{\mathbf{def}}\ U \equiv \operatorname{\mathit{raw-learned-clss}}\ S
 note MNU-defs [simp] = M-def N-def U-def
 obtain W UW where cw-eq: C = TWL-Clause W UW
   by (cases\ C,\ blast)
  have wf-c: wf-twl-cls <math>M C
   using wf c-mem unfolding wf-twl-state-def by simp
  have w-nw:
   distinct W
   length \ W < 2 \Longrightarrow set \ UW \subseteq set \ W
   \bigwedge L \ L'. \ L \in set \ W \Longrightarrow -L \in lits \text{-of-l} \ M \Longrightarrow L' \in set \ UW \Longrightarrow L' \notin set \ W \Longrightarrow -L' \in lits \text{-of-l} \ M
  using wf-c unfolding cw-eq by (auto simp: image-image)
  have unit-set: set W - (uminus 'lits-of-l M) = \{L\} (is ?W = ?L)
  proof
   show ?W \subseteq \{L\}
   proof
     fix L'
     assume l': L' \in ?W
     then have l'-mem-w: L' \in set W
       by (simp add: in-diffD)
     have L' \notin uminus ' lits-of-lM
       using l' by blast
     then have \neg M \models a \{\#-L'\#\}
       by (auto simp: lits-of-def uminus-lit-swap image-image)
     moreover have L' \in set \ (raw\text{-}clause \ C)
       using c-mem cw-eq l'-mem-w by (auto simp: raw-clause-def)
     ultimately have L' = L
       using unsat[unfolded CNot-def true-annots-def, simplified]
       unfolding M-def by fastforce
     then show L' \in \{L\}
       by simp
   qed
  next
   \mathbf{show}\ \{L\}\subseteq \mathscr{P}W
   proof clarify
     have L \in set W
     proof (cases W)
       case Nil
```

```
then show ?thesis
        using w-nw(2) cw-eq l-mem by (auto simp: raw-clause-def)
      case (Cons La W')
      then show ?thesis
      proof (cases La = L)
        case True
        then show ?thesis
          using Cons by simp
      next
        case False
        have -La \in lits-of-l M
          using False Cons cw-eq unsat[unfolded CNot-def true-annots-def, simplified]
          by (fastforce simp: raw-clause-def)
        then show ?thesis
          using Cons cw-eq l-mem undef w-nw(3)
          by (auto simp: Decided-Propagated-in-iff-in-lits-of-l raw-clause-def)
      qed
     qed
     moreover have L \notin \# mset-set (uminus 'lits-of-l M)
      using undef by (auto simp: Decided-Propagated-in-iff-in-lits-of-l image-image)
     ultimately show L \in ?W
      by simp
   qed
 qed
 show ?thesis
   unfolding candidates-propagate-def using unit-set undef c-mem unfolding cw-eq M-def
   by (auto simp: image-image cw-eq intro!: exI[of - C])
qed
lemma wf-candidates-conflict-sound:
 assumes wf: wf-twl-state S and
   cand: C \in candidates\text{-}conflict S
 shows trail S \models as CNot (clause C) \land C \in set (twl.raw-clauses S)
proof
 \mathbf{def}\ M \equiv \mathit{raw-trail}\ S
 \operatorname{\mathbf{def}} N \equiv \operatorname{raw-init-clss} S
 \operatorname{\mathbf{def}}\ U \equiv \operatorname{raw-learned-clss}\ S
 note MNU-defs [simp] = M-def N-def U-def
 have cw:
   C \in set (N @ U)
   set (watched C) \subseteq uminus `lits-of-l (trail S)
   using cand[unfolded candidates-conflict-def, simplified] unfolding twl.raw-clauses-def by auto
 obtain W \ UW where cw-eq: C = TWL-Clause W \ UW
   by (cases C, blast)
 have wf-c: wf-twl-cls M C
   using wf cw(1) unfolding wf-twl-state-def by (simp add: comp-def twl.raw-clauses-def)
 have w-nw:
   distinct W
   length \ W < 2 \Longrightarrow set \ UW \subseteq set \ W
```

```
\bigwedge L \ L'. \ L \in set \ W \Longrightarrow -L \in lits \text{-of-}l \ M \Longrightarrow L' \in set \ UW \Longrightarrow L' \notin set \ W \Longrightarrow -L' \in lits \text{-of-}l \ M
  using wf-c unfolding cw-eq by (auto simp: image-image)
 have \forall L \in set \ (raw\text{-}clause \ C). \ -L \in lits\text{-}of\text{-}l \ M
  proof (cases W)
   case Nil
   then have raw-clause C = []
     using cw(1) cw-eq w-nw(2) by (auto simp: raw-clause-def)
   then show ?thesis
     by simp
  next
   case (Cons La W') note W' = this(1)
   show ?thesis
   proof
     \mathbf{fix} \ L
     assume l: L \in set (raw\text{-}clause C)
     \mathbf{show} - L \in \mathit{lits-of-l} \ M
     proof (cases L \in set W)
       case True
       then show ?thesis
         using cw(2) cw-eq by fastforce
     next
       case False
       then show ?thesis
         using W' cw(2) cw-eq l w-nw(3) unfolding M-def raw-clause-def
         by (metis (no-types, lifting) UnE imageE list.set-intros(1)
           lits-of-mmset-of-mlit rev-subsetD set-append set-map twl-clause.sel(1)
           twl-clause.sel(2) uminus-of-uminus-id)
     qed
   qed
  qed
  then show trail S \models as \ CNot \ (clause \ C)
   unfolding CNot-def true-annots-def clause-def by auto
 show C \in set (twl.raw-clauses S)
   using cw unfolding twl.raw-clauses-def by auto
qed
{f lemma}\ wf\mbox{-} candidates\mbox{-} conflict\mbox{-} complete:
 assumes wf: wf\text{-}twl\text{-}state\ S and
   c-mem: C \in set (twl.raw-clauses S) and
   unsat: trail S \models as \ CNot \ (clause \ C)
 shows C \in candidates-conflict S
proof -
 \mathbf{def}\ M \equiv \mathit{raw-trail}\ S
 \operatorname{\mathbf{def}} N \equiv twl.conc\text{-}init\text{-}clss\ S
 \operatorname{\mathbf{def}}\ U \equiv twl.conc\text{-}learned\text{-}clss\ S
 note MNU-defs [simp] = M-def N-def U-def
 obtain W \ UW where cw-eq: C = TWL-Clause W \ UW
   by (cases C, blast)
 have wf-c: wf-twl-cls M C
   using wf c-mem unfolding wf-twl-state-def by simp
```

```
have w-nw:
    distinct W
   length \ W < 2 \Longrightarrow set \ UW \subseteq set \ W
   \bigwedge L \ L'. \ L \in set \ W \Longrightarrow -L \in lits \text{-of-l} \ M \Longrightarrow L' \in set \ UW \Longrightarrow L' \notin set \ W \Longrightarrow -L' \in lits \text{-of-l} \ M
  using wf-c unfolding cw-eq by (auto simp: image-image)
  have \bigwedge L. L \in set (raw\text{-}clause \ C) \Longrightarrow -L \in lits\text{-}of\text{-}l \ M
   unfolding M-def using unsat[unfolded CNot-def true-annots-def, simplified]
   by (auto simp: clause-def)
  then have set (raw\text{-}clause\ C) \subseteq uminus\ 'its\text{-}of\text{-}l\ M
   by (metis imageI subsetI uminus-of-uminus-id)
  then have set W \subseteq uminus ' lits-of-l M
   using cw-eq by (auto simp: raw-clause-def)
  then have subset: set W \subseteq uminus ' lits-of-l M
   by (simp\ add:\ w\text{-}nw(1))
 have W = watched C
   using cw-eq twl-clause.sel(1) by simp
  then show ?thesis
    using MNU-defs c-mem subset candidates-conflict-def by blast
qed
typedef 'v wf-twl = \{S:: 'v \ twl-state. \ wf-twl-state \ S\}
{f morphisms}\ rough\text{-}state\text{-}of\text{-}twl\ twl\text{-}of\text{-}rough\text{-}state
proof -
  have TWL-State ([]::('v, 'v twl-clause) ann-lits)
   [] [] 0 None \in \{S:: 'v \ twl-state. \ wf-twl-state \ S\}
   by (auto simp: wf-twl-state-def twl.raw-clauses-def)
  then show ?thesis by auto
qed
lemma [code abstype]:
  twl-of-rough-state (rough-state-of-twl S) = S
  by (fact CDCL-Two-Watched-Literals.wf-twl.rough-state-of-twl-inverse)
lemma wf-twl-state-rough-state-of-twl[simp]: wf-twl-state (rough-state-of-twl S)
  using rough-state-of-twl by auto
abbreviation candidates-conflict-twl :: 'v wf-twl \Rightarrow 'v twl-clause set where
candidates-conflict-twl S \equiv candidates-conflict (rough-state-of-twl S)
abbreviation candidates-propagate-twl :: 'v wf-twl \Rightarrow ('v literal \times 'v twl-clause) set where
candidates-propagate-twl S \equiv candidates-propagate (rough-state-of-twl S)
abbreviation raw-trail-twl :: 'a wf-twl \Rightarrow ('a, 'a twl-clause) ann-lits where
raw-trail-twl S \equiv raw-trail (rough-state-of-twl S)
abbreviation trail-twl :: 'a wf-twl \Rightarrow ('a, 'a literal multiset) ann-lits where
trail-twl\ S \equiv trail\ (rough-state-of-twl\ S)
abbreviation raw-clauses-twl :: 'a wf-twl \Rightarrow 'a twl-clause list where
raw-clauses-twl S \equiv twl.raw-clauses (rough-state-of-twl S)
abbreviation raw-init-clss-twl :: 'a wf-twl \Rightarrow 'a twl-clause list where
raw-init-clss-twl S \equiv raw-init-clss (rough-state-of-twl S)
```

```
abbreviation raw-learned-clss-twl :: 'a wf-twl \Rightarrow 'a twl-clause list where
raw-learned-clss-twl S \equiv raw-learned-clss (rough-state-of-twl S)
abbreviation backtrack-lvl-twl where
backtrack-lvl-twl S \equiv backtrack-lvl (rough-state-of-twl S)
abbreviation raw-conflicting-twl where
raw-conflicting-twl S \equiv raw-conflicting (rough-state-of-twl S)
{\bf lemma}\ \textit{wf-candidates-twl-conflict-complete}:
 assumes
    c\text{-}mem: C \in set (raw\text{-}clauses\text{-}twl S) \text{ and }
   unsat: trail-twl \ S \models as \ CNot \ (clause \ C)
 shows C \in candidates-conflict-twl S
 using c-mem unsat wf-candidates-conflict-complete wf-twl-state-rough-state-of-twl by blast
abbreviation update-backtrack-lvl where
  update-backtrack-lvl k S \equiv
   TWL-State (raw-trail S) (raw-init-clss S) (raw-learned-clss S) k (raw-conflicting S)
abbreviation update-conflicting where
  update-conflicting C S \equiv
    TWL-State (raw-trail S) (raw-init-clss S) (raw-learned-clss S) (backtrack-lvl S) C
Abstract 2-WL
definition tl-trail where
  tl-trail S =
  TWL-State (tl (raw-trail S)) (raw-init-clss S) (raw-learned-clss S) (backtrack-lvl S)
  (raw-conflicting S)
locale \ abstract-twl =
 fixes
    watch :: 'v \ twl\text{-}state \Rightarrow 'v \ literal \ list \Rightarrow 'v \ twl\text{-}clause \ \mathbf{and}
   rewatch :: 'v \ literal \Rightarrow 'v \ twl-state \Rightarrow
     'v \ twl-clause \Rightarrow 'v \ twl-clause and
   restart-learned :: 'v twl-state \Rightarrow 'v twl-clause list
  assumes
   clause-watch: no-dup (raw-trail S) \implies clause (watch S C) = mset C and
   wf-watch: no-dup (raw-trail S) \implies wf-twl-cls (raw-trail S) (watch S C) and
   clause-rewatch: clause (rewatch L' S C') = clause C' and
   wf-rewatch:
     no-dup (raw-trail S) \Longrightarrow undefined-lit (raw-trail S) (lit-of L) \Longrightarrow
       wf-twl-cls (raw-trail S) C' \Longrightarrow
       wf-twl-cls (L \# raw-trail S) (rewatch (lit-of L) S C')
   restart-learned: mset (restart-learned S) \subseteq \# mset (raw-learned-clss S) — We need mset and not set
to take care of duplicates.
begin
definition
  cons-trail :: ('v, 'v twl-clause) ann-lit \Rightarrow 'v twl-state \Rightarrow 'v twl-state
where
  cons-trail L S =
   TWL-State (L \# raw-trail S) (map (rewatch (lit-of L) S) (raw-init-clss S))
    (map (rewatch (lit-of L) S) (raw-learned-clss S)) (backtrack-lvl S) (raw-conflicting S)
```

```
definition
  add-init-cls :: 'v literal list \Rightarrow 'v twl-state \Rightarrow 'v twl-state
where
  add-init-cls C S =
   TWL-State (raw-trail S) (watch S C # raw-init-clss S) (raw-learned-clss S) (backtrack-lvl S)
    (raw-conflicting S)
definition
  add-learned-cls :: 'v literal list \Rightarrow 'v twl-state \Rightarrow 'v twl-state
where
  add-learned-cls C S =
  TWL-State (raw-trail S) (raw-init-clss S) (watch S C # raw-learned-clss S) (backtrack-lvl S)
    (raw-conflicting S)
definition
  remove\text{-}cls :: 'v \ literal \ list \Rightarrow 'v \ twl\text{-}state \Rightarrow 'v \ twl\text{-}state
 remove-cls \ C \ S =
   TWL-State (raw-trail S)
    (removeAll\text{-}cond\ (\lambda D.\ clause\ D=mset\ C)\ (raw\text{-}init\text{-}clss\ S))
    (removeAll\text{-}cond\ (\lambda D.\ clause\ D=mset\ C)\ (raw\text{-}learned\text{-}clss\ S))
    (backtrack-lvl\ S)
    (raw-conflicting S)
definition init-state :: 'v literal list list \Rightarrow 'v twl-state where
  init-state N = fold \ add-init-cls \ N \ (TWL-State \ [] \ [] \ [] \ 0 \ None)
lemma unchanged-fold-add-init-cls:
  raw-trail (fold add-init-cls Cs (TWL-State M N U k C)) = M
 raw-learned-clss (fold add-init-cls Cs (TWL-State M N U k C)) = U
  backtrack-lvl \ (fold \ add-init-cls \ Cs \ (TWL-State \ M \ N \ U \ k \ C)) = k
  raw-conflicting (fold add-init-cls Cs (TWL-State M N U k C)) = C
 by (induct Cs arbitrary: N) (auto simp: add-init-cls-def)
lemma unchanged-init-state[simp]:
  raw-trail (init-state N) = []
 raw-learned-clss (init-state N) = []
  backtrack-lvl (init-state N) = 0
 raw-conflicting (init-state N) = None
 unfolding init-state-def by (rule unchanged-fold-add-init-cls)+
lemma clauses-init-fold-add-init:
  no-dup M \Longrightarrow
  twl.conc-init-clss (fold add-init-cls Cs (TWL-State M N U k C)) =
  clauses-of-l Cs + raw-clss-l N
 by (induct Cs arbitrary: N) (auto simp: add-init-cls-def clause-watch comp-def ac-simps
   clause-def[symmetric])
lemma init-clss-init-state[simp]: twl.conc-init-clss (init-state N) = clauses-of-l N
 unfolding init-state-def by (subst clauses-init-fold-add-init) simp-all
definition restart' where
 restart' S = TWL\text{-}State \ [] \ (raw\text{-}init\text{-}clss \ S) \ (restart\text{-}learned \ S) \ 0 \ None
```

end

Instanciation of the previous locale

```
definition watch-nat :: 'v twl-state \Rightarrow 'v literal list \Rightarrow 'v twl-clause where
  watch-nat S C =
   (let
      C' = remdups C;
      neg-not-assigned = filter \ (\lambda L. -L \notin lits-of-l \ (raw-trail \ S)) \ C';
      neg-assigned-sorted-by-trail = filter (\lambda L. L \in set C) (map (\lambda L. -lit-of L) (raw-trail S));
       W = take \ 2 \ (neg-not-assigned \ @ neg-assigned-sorted-by-trail);
      UW = foldr \ remove1 \ W \ C
    in TWL-Clause W UW)
lemma list-cases2:
  fixes l :: 'a \ list
  assumes
    l = [] \Longrightarrow P and
    \bigwedge x. \ \bar{l} = [x] \Longrightarrow P \text{ and }
    \bigwedge x \ y \ xs. \ l = x \# y \# xs \Longrightarrow P
  shows P
  by (metis assms list.collapse)
\mathbf{lemma}\ \mathit{filter-in-list-prop-verifiedD}:
  assumes [L \leftarrow P : Q L] = l
  shows \forall x \in set \ l. \ x \in set \ P \land Q \ x
  using assms by auto
lemma no-dup-filter-diff:
  assumes n-d: no-dup M and H: [L \leftarrow map \ (\lambda L. - lit\text{-}of \ L) \ M. \ L \in set \ C] = l
  shows distinct l
  unfolding H[symmetric]
  apply (rule distinct-filter)
  using n-d by (induction M) auto
\mathbf{lemma}\ watch-nat\text{-}lists\text{-}disjointD:
  assumes
    l: [L \leftarrow remdups \ C. - L \notin lits - of - l \ (raw - trail \ S)] = l \ and
    l': [L \leftarrow map \ (\lambda L. - lit - of \ L) \ (raw - trail \ S) \ . \ L \in set \ C] = l'
  shows \forall x \in set \ l. \ \forall y \in set \ l'. \ x \neq y
  by (auto simp: l[symmetric] l'[symmetric] lits-of-def image-image)
lemma watch-nat-list-cases-witness[consumes 2, case-names Nil-Nil Nil-single Nil-other
  single-Nil single-other other]:
  fixes
    C :: 'v \ literal \ list \ \mathbf{and}
    S :: 'v \ twl-state
  defines
    xs \equiv [L \leftarrow remdups \ C. - L \notin lits - of - l \ (raw - trail \ S)] and
    ys \equiv [L \leftarrow map \ (\lambda L. - lit - of \ L) \ (raw - trail \ S) \ . \ L \in set \ C]
  assumes
    n-d: no-dup (raw-trail S) and
    Nil-Nil: xs = [] \Longrightarrow ys = [] \Longrightarrow P and
    Nil-single:
      \bigwedge a. \ xs = [] \Longrightarrow ys = [a] \Longrightarrow a \in set \ C \Longrightarrow P \ and
    Nil-other: \bigwedge a\ b\ ys'.\ xs = [] \Longrightarrow ys = a \# b \# ys' \Longrightarrow a \neq b \Longrightarrow P and
    single-Nil: \land a. \ xs = [a] \Longrightarrow ys = [] \Longrightarrow P \ \mathbf{and}
    single-other: \bigwedge a\ b\ ys'.\ xs = [a] \Longrightarrow ys = b\ \#\ ys' \Longrightarrow a \neq b \Longrightarrow P and
```

```
other: \bigwedge a\ b\ xs'.\ xs = a\ \#\ b\ \#\ xs' \Longrightarrow a \neq b \Longrightarrow P
  shows P
proof -
  note xs-def[simp] and ys-def[simp]
  have dist: \bigwedge P. distinct [L \leftarrow remdups \ C \ . \ P \ L]
    by auto
  then have H: \land a \ b \ P \ xs. \ [L \leftarrow remdups \ C \ . \ P \ L] = a \ \# \ b \ \# \ xs \Longrightarrow a \neq b
    by (metis distinct-length-2-or-more)
  show ?thesis
  apply (cases [L \leftarrow remdups\ C. - L \notin lits\text{-}of\text{-}l\ (raw\text{-}trail\ S)]
        rule: list-cases2;
      cases [L \leftarrow map\ (\lambda L. - lit\text{-}of\ L)\ (raw\text{-}trail\ S)\ .\ L \in set\ C]\ rule:\ list\text{-}cases2)
          using Nil-Nil apply simp
         using Nil-single apply (force dest: filter-in-list-prop-verifiedD)
        using Nil-other no-dup-filter-diff[OF n-d, of C]
        apply fastforce
       using single-Nil apply simp
      using single-other xs-def ys-def apply (metis list.set-intros(1) watch-nat-lists-disjointD)
     using single-other unfolding xs-def ys-def apply (metis list.set-intros(1)
       watch-nat-lists-disjointD)
    using other xs-def ys-def by (metis\ H)+
qed
lemma watch-nat-list-cases [consumes 1, case-names Nil-Nil Nil-single Nil-other single-Nil
  single-other other]:
  fixes
    C :: 'v \ literal \ list \ \mathbf{and}
    S :: 'v \ twl-state
  defines
    xs \equiv [L \leftarrow remdups \ C \ . - L \notin lits - of - l \ (raw - trail \ S)] and
    ys \equiv [L \leftarrow map \ (\lambda L. - lit - of \ L) \ (raw - trail \ S) \ . \ L \in set \ C]
  assumes
    n-d: no-dup (raw-trail S) and
    Nil-Nil: xs = [] \Longrightarrow ys = [] \Longrightarrow P and
    Nil-single:
      \bigwedge a. \ xs = [] \Longrightarrow ys = [a] \Longrightarrow \ a \in set \ C \Longrightarrow P \ and
    Nil-other: \bigwedge a\ b\ ys'.\ xs = [] \Longrightarrow ys = a\ \#\ b\ \#\ ys' \Longrightarrow a \neq b \Longrightarrow P and
    single-Nil: \land a. \ xs = [a] \Longrightarrow ys = [] \Longrightarrow P \ \mathbf{and}
    single-other: \bigwedge a\ b\ ys'.\ xs = [a] \Longrightarrow ys = b\ \#\ ys' \Longrightarrow a \neq b \Longrightarrow P and
    other: \bigwedge a\ b\ xs'. xs = a \# b \# xs' \Longrightarrow a \neq b \Longrightarrow P
  shows P
  using watch-nat-list-cases-witness[OF n-d, of C P]
  Nil-Nil Nil-single Nil-other single-Nil single-other other
  unfolding xs-def[symmetric] ys-def[symmetric] by auto
\mathbf{lemma}\ \mathit{watch-nat-lists-set-union-witness}:
  fixes
    C :: 'v \ literal \ list \ \mathbf{and}
    S :: 'v \ twl-state
    xs \equiv [L \leftarrow remdups \ C. - L \notin lits - of - l \ (raw - trail \ S)] and
    ys \equiv [L \leftarrow map \ (\lambda L. - lit - of \ L) \ (raw - trail \ S) \ . \ L \in set \ C]
  assumes n-d: no-dup (raw-trail S)
  shows set C = set xs \cup set ys
  using n-d unfolding xs-def ys-def by (auto simp: lits-of-def comp-def uminus-lit-swap)
```

```
lemma mset-intersection-inclusion: A + (B - A) = B \longleftrightarrow A \subseteq \# B
 apply (rule iffI)
  apply (metis mset-le-add-left)
  by (auto simp: ac-simps multiset-eq-iff subseteq-mset-def)
lemma clause-watch-nat:
  assumes no-dup (raw-trail S)
  shows clause (watch-nat S(C) = mset(C)
  using assms
 apply (cases rule: watch-nat-list-cases [OF \ assms(1), \ of \ C])
  by (auto dest: filter-in-list-prop-verifiedD simp: watch-nat-def multiset-eq-iff raw-clause-def
   clause-def)
lemma index-uminus-index-map-uminus:
  -a \in set \ L \Longrightarrow index \ L \ (-a) = index \ (map \ uminus \ L) \ (a::'a \ literal)
 by (induction L) auto
lemma index-filter:
  a \in set \ L \Longrightarrow b \in set \ L \Longrightarrow P \ a \Longrightarrow P \ b \Longrightarrow
  index\ L\ a \leq index\ L\ b \longleftrightarrow index\ (filter\ P\ L)\ a \leq index\ (filter\ P\ L)\ b
  by (induction L) auto
lemma foldr-remove1-W-Nil[simp]: foldr remove1 W = [
 by (induct W) auto
lemma image-lit-of-mmset-of-mlit[simp]:
  lit-of 'mmset-of-mlit' A = lit-of 'A
  unfolding comp-def
  using [[simp-trace]]by (simp add: image-image comp-def)
lemma distinct-filter-eq:
 assumes distinct xs
 shows [L \leftarrow xs. \ L = a] = (if \ a \in set \ xs \ then \ [a] \ else \ [])
  using assms by (induction xs) auto
lemma no-dup-distinct-map-uminus-lit-of:
  no\text{-}dup \ xs \Longrightarrow distinct \ (map \ (\lambda L. - lit\text{-}of \ L) \ xs)
  by (induction xs) auto
lemma wf-watch-witness:
  fixes C :: 'v \ literal \ list and
    S :: 'v \ twl-state
  defines
     ass: neg-not-assigned \equiv filter \ (\lambda L. -L \notin lits-of-l \ (raw-trail \ S)) \ (remdups \ C) and
    tr: neg-assigned-sorted-by-trail \equiv filter (\lambda L. \ L \in set \ C) \ (map \ (\lambda L. \ -lit-of \ L) \ (raw-trail \ S))
  defines
      W: W \equiv take \ 2 \ (neg\text{-}not\text{-}assigned \ @ neg\text{-}assigned\text{-}sorted\text{-}by\text{-}trail)
  assumes
    n-d[simp]: no-dup (raw-trail S)
 shows wf-twl-cls (raw-trail S) (TWL-Clause W (foldr remove1 W C))
  {f unfolding} \ \textit{wf-twl-cls.simps} \ \textit{struct-wf-twl-cls.simps}
proof (intro conjI, goal-cases)
  case 1
  then show ?case using n-d W unfolding ass tr
   apply (cases rule: watch-nat-list-cases-witness[of S C, OF n-d])
   by (auto simp: distinct-mset-add-single)
```

```
next
 case 2
 then show ?case unfolding W by simp
next
  case \beta
 show ?case using n-d
   proof (cases rule: watch-nat-list-cases-witness[of S C])
     case Nil-Nil
     then have set\ C = set\ [] \cup set\ []
      using watch-nat-lists-set-union-witness n-d by metis
     then show ?thesis
      by simp
   \mathbf{next}
     case (Nil-single a)
     moreover have \bigwedge x. set C = \{a\} \Longrightarrow -a \in lits-of-l(trail\ S) \Longrightarrow x \in set\ (remove1\ a\ C) \Longrightarrow
      using notin-set-remove1 by auto
     ultimately show ?thesis
      using watch-nat-lists-set-union-witness[of S C] 3 by (auto simp: W ass tr comp-def)
   \mathbf{next}
     case Nil-other
     then show ?thesis
      using 3 by (auto simp: W ass tr)
   \mathbf{next}
     case (single-Nil\ a)
     show ?thesis
      using watch-nat-lists-set-union-witness[of S C] 3
      by (fastforce simp add: W ass tr single-Nil comp-def distinct-filter-eq
        no-dup-distinct-map-uminus-lit-of min-def)
   next
     case single-other
     then show ?thesis
      using 3 by (auto simp: W ass tr)
   next
     case other
     then show ?thesis
      using 3 by (auto simp: W ass tr)
   qed
next
 case 4 note -[simp] = this
 show ?case
   using n-d apply (cases rule: watch-nat-list-cases-witness[of S C])
     apply (auto dest: filter-in-list-prop-verifiedD
      simp: W \ ass \ tr \ lits-of-def \ filter-empty-conv)[4]
   using watch-nat-lists-set-union-witness[of S C]
   by (force dest: filter-in-list-prop-verifiedD simp: W ass tr lits-of-def)+
next
 case 5
 from n-d show ?case
   proof (cases rule: watch-nat-list-cases-witness[of S C])
     case Nil-Nil
     then show ?thesis by (auto simp: W ass tr)
   next
     case Nil-single
     then show ?thesis
      using watch-nat-lists-set-union-witness[of S C] tr by (fastforce simp: W ass)
```

```
next
     case Nil-other
     then show ?thesis
      unfolding watched-only-lazy-updates.simps Ball-def
      apply (intro\ allI\ impI)
      apply (subst index-uminus-index-map-uminus,
        simp add: index-uminus-index-map-uminus lits-of-def o-def)
      apply (subst index-uninus-index-map-uninus,
        simp add: index-uminus-index-map-uminus lits-of-def o-def)
      apply (subst index-filter[of - - - \lambda L. L \in set C])
      by (auto dest: filter-in-list-prop-verifiedD
        simp: uminus-lit-swap lits-of-def o-def W ass tr dest: in-diffD)
   next
     case single-Nil
     then show ?thesis
       using watch-nat-lists-set-union-witness[of S C] tr by (fastforce simp: W ass)
     case single-other
     then show ?thesis
      unfolding watched-only-lazy-updates.simps Ball-def
      apply (clarify)
      apply (subst index-uminus-index-map-uminus,
        simp add: index-uminus-index-map-uminus lits-of-def image-image o-def)
      apply (subst index-uminus-index-map-uminus,
        simp add: index-uminus-index-map-uminus lits-of-def o-def)
      apply (subst index-filter[of - - \lambda L. L \in set C])
      by (auto dest: filter-in-list-prop-verifiedD
        simp: W ass tr uminus-lit-swap lits-of-def o-def dest: in-diffD)
   next
     case other
     then show ?thesis
      unfolding watched-only-lazy-updates.simps
      apply clarify
      apply (subst index-uninus-index-map-uninus,
        simp add: index-uninus-index-map-uninus lits-of-def o-def)[1]
      apply (subst index-uninus-index-map-uninus,
        simp add: index-uminus-index-map-uminus lits-of-def o-def)[1]
      apply (subst index-filter[of - - - \lambda L. L \in set C])
      by (auto dest: filter-in-list-prop-verifiedD)
        simp: index-uminus-index-map-uminus lits-of-def o-def uminus-lit-swap
         W \ ass \ tr)
   qed
qed
\mathbf{lemma} \ \textit{wf-watch-nat: no-dup (raw-trail S)} \Longrightarrow \textit{wf-twl-cls (raw-trail S) (watch-nat S C)}
 using wf-watch-witness[of S C] watch-nat-def by metis
definition
 rewatch-nat ::
 'v\ literal \Rightarrow 'v\ twl\text{--state} \Rightarrow 'v\ twl\text{--clause} \Rightarrow 'v\ twl\text{--clause}
where
 rewatch-nat\ L\ S\ C =
  (if - L \in set (watched C) then
```

```
case filter (\lambda L'. L' \notin set \ (watched \ C) \land -L' \notin insert \ L \ (lits-of-l \ (trail \ S)))
        (unwatched\ C)\ of
        [] \Rightarrow C
      \mid L' \# - \Rightarrow
        TWL	ext{-}Clause \ (L' \ \# \ remove1 \ (-L) \ (watched \ C)) \ (-L \ \# \ remove1 \ L' \ (unwatched \ C))
    else
      C
lemma clause-rewatch-nat:
  fixes UW :: 'v literal list and
   S :: 'v \ twl-state and
   L :: 'v \ literal \ \mathbf{and} \ C :: 'v \ twl\text{-}clause
  shows clause (rewatch-nat L S C) = clause C
  using List.set-remove1-subset[of -L watched C]
  apply (cases C)
  by (auto simp: raw-clause-def rewatch-nat-def ac-simps multiset-eq-iff clause-def
   split: list.split
   dest: filter-in-list-prop-verifiedD)
lemma filter-sorted-list-of-multiset-Nil:
  [x \leftarrow sorted\text{-}list\text{-}of\text{-}multiset\ M.\ p\ x] = [] \longleftrightarrow (\forall\ x \in \#\ M.\ \neg\ p\ x)
  by auto (metis empty-iff filter-set list.set(1) member-filter set-sorted-list-of-multiset)
\mathbf{lemma}\ filter\text{-}sorted\text{-}list\text{-}of\text{-}multiset\text{-}ConsD\text{:}
  [x \leftarrow sorted\text{-}list\text{-}of\text{-}multiset M. p x] = x \# xs \Longrightarrow p x
 by (metis filter-set insert-iff list.set(2) member-filter)
lemma mset-minus-single-eq-mempty:
  a - \{\#b\#\} = \{\#\} \longleftrightarrow a = \{\#b\#\} \lor a = \{\#\}\}
  by (metis Multiset.diff-cancel add.right-neutral diff-single-eq-union
   diff-single-trivial zero-diff)
lemma size-mset-le-2-cases:
 assumes size W < 2
 shows W = \{\#\} \lor (\exists a. \ W = \{\#a\#\}) \lor (\exists a \ b. \ W = \{\#a,b\#\})
proof -
  have size W = 0 \lor size W = 1 \lor size W = 2
   using assms by linarith
  then show ?thesis
   using assms by (fastforce elim!: size-mset-SucE simp: Num.numeral-2-eq-2)
qed
lemma filter-sorted-list-of-multiset-eqD:
 assumes [x \leftarrow sorted\text{-}list\text{-}of\text{-}multiset A. p x] = x \# xs (is ?comp = -)
  shows x \in \# A
proof -
 have x \in set ?comp
   using assms by simp
  then have x \in set (sorted-list-of-multiset A)
   by simp
  then show x \in \# A
   by simp
qed
lemma clause-rewatch-witness':
 assumes
```

```
wf: wf-twl-cls (raw-trail S) C and
   undef: undefined-lit (raw-trail S) (lit-of L)
 shows wf-twl-cls (L \# raw\text{-trail } S) (rewatch\text{-nat } (lit\text{-of } L) \ S \ C)
proof (cases - lit\text{-}of L \in set (watched C))
 case False
 then show ?thesis
   apply (cases C)
   using wf undef unfolding rewatch-nat-def
   by (auto simp: uminus-lit-swap Decided-Propagated-in-iff-in-lits-of-l comp-def)
next
 case falsified: True
 let ?unwatched-nonfalsified =
   [L' \leftarrow unwatched\ C.\ L' \notin set\ (watched\ C) \land -L' \notin insert\ (lit-of\ L)\ (lits-of-l\ (trail\ S))]
 obtain W \ UW where C: C = TWL-Clause W \ UW
   by (cases C)
 show ?thesis
 proof (cases ?unwatched-nonfalsified)
   case Nil
   show ?thesis
     using falsified Nil
     apply (simp only: wf-twl-cls.simps if-True list.cases C rewatch-nat-def
      struct-wf-twl-cls.<math>simps)
     apply (intro\ conjI)
     proof goal-cases
      case 1
      then show ?case using wf C by simp
     next
      case 2
      then show ?case using wf C by simp
     next
      case 3
      then show ?case using wf C by simp
     next
      case 4
      have \bigwedge p l. filter p (unwatched C) \neq [] \lor l \notin set UW \lor \neg p l
        unfolding C by (metis\ (no-types)\ filter-empty-conv\ twl-clause.sel(2))
      then show ?case
        using 4(2) C by auto
     next
      case 5
      then show ?case
        using wf by (fastforce simp add: C comp-def uminus-lit-swap)
     qed
 next
   case (Cons L' Ls)
   show ?thesis
     unfolding rewatch-nat-def
     using falsified Cons
     apply (simp only: wf-twl-cls.simps if-True list.cases C struct-wf-twl-cls.simps)
     apply (intro\ conjI)
     proof goal-cases
      case 1
      have distinct (watched (TWL-Clause W UW))
        using wf unfolding C by auto
```

```
moreover have L' \notin set \ (remove1 \ (-lit\text{-}of \ L) \ (watched \ (TWL\text{-}Clause \ W \ UW)))
   using 1(2) not-gr0 by (fastforce dest: filter-in-list-prop-verifiedD in-diffD)
 ultimately show ?case
   by (auto simp: distinct-mset-single-add)
next
 case 2
 have f2: [l \leftarrow unwatched \ (TWL\text{-}Clause \ W \ UW) \ . \ l \notin set \ (watched \ (TWL\text{-}Clause \ W \ UW))
   \land - l \notin insert (lit - of L) (lit s - of - l (trail S))] \neq []
   using 2(2) by simp
 then have \neg set UW \subseteq set W
    using 2 by (auto simp add: filter-empty-conv)
 then show ?case
   using wf C 2(1) by (auto simp: length-remove1)
 case \beta
 have W: length W \leq Suc \ \theta \longleftrightarrow length \ W = \theta \lor length \ W = Suc \ \theta
   by linarith
 show ?case
   using wf C 3 by (auto simp: length-remove1 W length-list-Suc-0 dest!: subset-singletonD)
next
 case 4
 have H: \forall L \in set \ W. - L \in lits \text{-}of \text{-}l \ (trail \ S) \longrightarrow
   (\forall L' \in set\ UW.\ L' \notin set\ W \longrightarrow -\ L' \in lits\text{-of-}l\ (trail\ S))
   using wf by (auto simp: C)
 have W: length W \leq 2 and W-UW: length W < 2 \longrightarrow set \ UW \subseteq set \ W
   using wf by (auto simp: C)
 have distinct: distinct W
   using wf by (auto simp: C)
 show ?case
   using 4
   {f unfolding} C watched-only-lazy-updates.simps Ball-def twl-clause.sel
     watched-wf-twl-cls.simps
   apply (intro\ allI\ impI)
   apply (rename-tac \ xW \ xUW)
   apply (case-tac - lit-of L = xW; case-tac xW = xUW; case-tac L' = xW)
           apply (auto simp: uminus-lit-swap)[2]
         apply (force dest: filter-in-list-prop-verifiedD)
        using H distinct apply (fastforce)
      using distinct apply (fastforce)
     using distinct apply (fastforce)
    apply (force dest: filter-in-list-prop-verifiedD)
   using H by (auto simp: uminus-lit-swap)
next
 case 5
 have H: \forall x. \ x \in set \ W \longrightarrow -x \in lits-of-l \ (trail \ S) \longrightarrow (\forall x. \ x \in set \ UW \longrightarrow x \notin set \ W
    \longrightarrow -x \in lits\text{-}of\text{-}l \ (trail \ S))
   using wf by (auto simp: C)
 show ?case
   unfolding C watched-only-lazy-updates.simps Ball-def
   proof (intro allI impI conjI, goal-cases)
     case (1 xW x)
     show ?case
       proof (cases - lit - of L = xW)
         case True
         then show ?thesis
           by (cases \ xW = x) \ (auto \ simp: uminus-lit-swap)
```

```
next
             case False note LxW = this
             have f9: L' \in set \ [l \leftarrow unwatched \ C. \ l \notin set \ (watched \ (TWL-Clause \ W \ UW))
                \land - \textit{l} \not\in \textit{lits-of-l} (\textit{L} \# \textit{raw-trail} \textit{S})]
              using 1(2) 5 C by auto
             moreover then have f11: -xW \in lits-of-l(trail S)
              using 1(3) LxW by (auto simp: uminus-lit-swap)
             moreover then have xW \notin set W
              using f9\ 1(2)\ H by (auto simp: C)
             ultimately have False
              using 1 by auto
             then show ?thesis
              by fast
           qed
        qed
    \mathbf{qed}
 \mathbf{qed}
qed
interpretation twl: abstract-twl watch-nat rewatch-nat raw-learned-clss
 apply unfold-locales
 apply (rule clause-watch-nat; simp add: image-image comp-def)
 apply (rule wf-watch-nat; simp add: image-image comp-def)
 apply (rule clause-rewatch-nat)
 apply (rule clause-rewatch-witness'; simp add: image-image comp-def)
 apply (simp)
 done
interpretation twl2: abstract-twl watch-nat rewatch-nat \lambda-.
 apply unfold-locales
 apply (rule clause-watch-nat; simp add: image-image comp-def)
 apply (rule wf-watch-nat; simp add: image-image comp-def)
 apply (rule clause-rewatch-nat)
 apply (rule clause-rewatch-witness'; simp add: image-image comp-def)
 apply (simp)
 done
end
         Two Watched-Literals with invariant
3.6.2
theory CDCL-Two-Watched-Literals-Invariant
```

```
imports CDCL-Two-Watched-Literals DPLL-CDCL-W-Implementation
begin
```

Interpretation for conflict-driven-clause-learning_W. $cdcl_W$

We define here the 2-WL with the invariant of well-foundedness and show the role of the candidates by defining an equivalent CDCL procedure using the candidates given by the datastructure.

```
{f context} abstract-twl
begin
```

```
Direct Interpretation lemma mset-map-removeAll-cond:
  mset (map clause
   (removeAll\text{-}cond\ (\lambda D.\ clause\ D = clause\ C)\ N))
  = mset (removeAll (clause C) (map clause N))
 by (induction \ N) auto
{\bf lemma}\ \textit{mset-raw-init-clss-init-state}:
  mset (map clause (raw-init-clss (init-state (map raw-clause N))))
 = mset (map clause N)
 by (metis (no-types, lifting) init-clss-init-state map-eq-conv map-map o-def clause-def)
\mathbf{fun}\ \mathit{reduce-trail-to}\ \mathbf{where}
reduce-trail-to M1 S =
 (case S of
   (TWL\text{-}State\ M\ N\ U\ k\ C) \Rightarrow TWL\text{-}State\ (drop\ (length\ M\ -\ length\ M1)\ M)\ N\ U\ k\ C)
abbreviation resolve-conflicting where
resolve-conflicting L D S \equiv
  update-conflicting
  (Some\ (union-mset-list\ (remove1\ (-L)\ (the\ (raw-conflicting\ S)))\ (remove1\ L\ (raw-clause\ D))))
interpretation rough-cdcl: abs-state_W-ops
   clause
   raw-clss-l op @
   \lambda L \ C. \ L \in set \ C \ op \ \# \ \lambda C. \ remove1\text{-cond} \ (\lambda D. \ clause \ D = \ clause \ C)
   mset \lambda xs ys. case-prod append (fold (\lambda x (ys, zs). (remove1 x ys, x # zs)) xs (ys, []))
   remove1
   raw-clause \lambda C. TWL-Clause [] C
   trail \lambda S. hd (raw-trail S)
   raw-init-clss raw-learned-clss backtrack-lvl raw-conflicting
   cons-trail tl-trail \lambda S. update-conflicting None (add-learned-cls (the (raw-conflicting S)) S)
   \lambda C. remove-cls (raw-clause C)
   update-backtrack-lvl
   \lambda C. update-conflicting (Some C) reduce-trail-to resolve-conflicting
   \lambda N. init-state (map raw-clause N) restart'
 rewrites
   rough-cdcl.mmset-of-mlit = mmset-of-mlit
proof goal-cases
 case 1
 show H: ?case by unfold-locales
 case 2
 show ?case
   apply (rule ext)
   apply (rename-tac x)
   apply (case-tac x)
   apply (simp-all add: abs-statew-ops.mmset-of-mlit.simps[OF H] raw-clause-def clause-def)
 done
qed
interpretation rough-cdcl: abs-state_W
  clause
 raw-clss-l op @
```

```
\lambda L \ C. \ L \in set \ C \ op \ \# \ \lambda C. \ remove1-cond \ (\lambda D. \ clause \ D = clause \ C)
  mset \lambda xs ys. case-prod append (fold (\lambda x (ys, zs). (remove1 x ys, x \# zs)) xs (ys, []))
  remove1
  raw-clause \lambda C. TWL-Clause [] C
  trail \lambda S. hd (raw-trail S)
  raw-init-clss raw-learned-clss backtrack-lvl raw-conflicting
  cons-trail tl-trail \lambda S. update-conflicting None (add-learned-cls (the (raw-conflicting S)) S)
  \lambda C. remove-cls (raw-clause C)
  update-backtrack-lvl
  \lambda C. update-conflicting (Some C) reduce-trail-to resolve-conflicting
  \lambda N. init-state (map raw-clause N) restart'
proof goal-cases
  case 1
 have stupid-locales: abs-state_W-ops clause raw-clss-l op @ (\lambda L C. L \in set C) op #
   (\lambda C. \ remove 1\text{-cond}\ (\lambda D. \ clause\ D = clause\ C))\ mset\ union\text{-mset-list}\ remove 1\ raw\text{-clause}
   (TWL-Clause [])
   by unfold-locales
  have [simp]: abs-state_W-ops.mmset-of-mlit clause = mmset-of-mlit
   apply (rule ext, rename-tac L, case-tac L)
   by (auto simp: abs-state<sub>W</sub>-ops.mmset-of-mlit.simps[OF stupid-locales] clause-def
    raw-clause-def)
  have [simp]: \Lambda S. \ raw-clss-l \ (restart-learned \ S) \subseteq \# \ rough-cdcl.conc-learned-clss \ S
   using image-mset-subseteq-mono[OF restart-learned] unfolding mset-map
    bv blast
  have H: \bigwedge M2 \ M1 \ x1. \ M2 \ @ M1 = map \ mmset-of-mlit \ x1 \Longrightarrow
      map\ mmset-of-mlit (drop\ (length\ x1\ -\ length\ M1)\ x1)=M1
   by (metis add-diff-cancel-right' append-eq-conv-conj drop-map length-append length-map)
  show H: ?case
   apply unfold-locales
   apply (case-tac raw-trail S; case-tac hd (raw-trail S))
   by (auto simp add: add-init-cls-def add-learned-cls-def clause-rewatch clause-watch
     cons-trail-def remove-cls-def restart'-def tl-trail-def map-tl comp-def
     ac\text{-}simps\ mset\text{-}map\text{-}remove All\text{-}cond\ mset\text{-}raw\text{-}init\text{-}clss\text{-}init\text{-}state\ rough\text{-}cdcl.} state\text{-}def
      clause-def[symmetric] H split: twl-state.splits)
qed
interpretation rough-cdcl: abs-conflict-driven-clause-learning_W
  clause
  raw-clss-l op @
  \lambda L \ C. \ L \in set \ C \ op \ \# \ \lambda C. \ remove1-cond \ (\lambda D. \ clause \ D = \ clause \ C)
  mset \ \lambda xs \ ys. \ case-prod \ append \ (fold \ (\lambda x \ (ys, zs). \ (remove1 \ x \ ys, \ x \ \# \ zs)) \ xs \ (ys, [])
  remove1
  raw-clause \lambda C. TWL-Clause [] C
  trail \ \lambda S. \ hd \ (raw-trail \ S)
  raw-init-clss raw-learned-clss backtrack-lvl raw-conflicting
  cons-trail tl-trail \lambda S. update-conflicting None (add-learned-cls (the (raw-conflicting S)) S)
  \lambda C. remove-cls (raw-clause C)
  update-backtrack-lvl
  \lambda C. update-conflicting (Some C) reduce-trail-to resolve-conflicting
  \lambda N. init-state (map raw-clause N) restart'
  by unfold-locales
```

```
Opaque Type with Invariant declare rough-cdcl.state-simp[simp del]
definition cons-trail-twl :: ('v, 'v twl-clause) ann-lit \Rightarrow 'v wf-twl \Rightarrow 'v wf-twl
 where
cons-trail-twl L S \equiv twl-of-rough-state (cons-trail L (rough-state-of-twl S))
lemma wf-twl-state-cons-trail:
 assumes
   undef: undefined-lit (raw-trail S) (lit-of L) and
   wf: wf\text{-}twl\text{-}state S
 shows wf-twl-state (cons-trail L S)
 using undef\ wf\ wf-rewatch[of S] unfolding wf-twl-state-def Ball-def
 by (auto simp: cons-trail-def defined-lit-map comp-def image-def twl.raw-clauses-def)
lemma rough-state-of-twl-cons-trail:
  undefined-lit (raw-trail-twl S) (lit-of L) \Longrightarrow
   rough-state-of-twl (cons-trail-twl L S) = cons-trail L (rough-state-of-twl S)
  using rough-state-of-twl twl-of-rough-state-inverse wf-twl-state-cons-trail
  unfolding cons-trail-twl-def by blast
abbreviation add-init-cls-twl where
add-init-cls-twl CS \equiv twl-of-rough-state (add-init-cls C (rough-state-of-twl S))
lemma wf-twl-add-init-cls: wf-twl-state S \Longrightarrow wf-twl-state (add-init-cls L S)
 unfolding wf-twl-state-def by (auto simp: wf-watch add-init-cls-def comp-def twl.raw-clauses-def
   split: if-split-asm)
lemma rough-state-of-twl-add-init-cls:
  rough-state-of-twl (add-init-cls-twl L S) = add-init-cls L (rough-state-of-twl S)
  using rough-state-of-twl twl-of-rough-state-inverse wf-twl-add-init-cls by blast
abbreviation add-learned-cls-twl where
add-learned-cls-twl CS \equiv twl-of-rough-state (add-learned-cls C (rough-state-of-twl S))
lemma wf-twl-add-learned-cls: wf-twl-state S \Longrightarrow wf-twl-state (add-learned-cls L S)
  unfolding wf-twl-state-def by (auto simp: wf-watch add-learned-cls-def twl.raw-clauses-def
   split: if-split-asm)
lemma rough-state-of-twl-add-learned-cls:
  rough-state-of-twl (add-learned-cls-twl L S) = add-learned-cls L (rough-state-of-twl S)
 using rough-state-of-twl twl-of-rough-state-inverse wf-twl-add-learned-cls by blast
abbreviation remove-cls-twl where
remove\text{-}cls\text{-}twl \ C \ S \equiv twl\text{-}of\text{-}rough\text{-}state \ (remove\text{-}cls \ C \ (rough\text{-}state\text{-}of\text{-}twl \ S))
lemma set-removeAll-condD: x \in set (removeAll-cond f xs) \Longrightarrow x \in set xs
 by (induction xs) (auto split: if-split-asm)
lemma wf-twl-remove-cls: wf-twl-state S \Longrightarrow wf-twl-state (remove-cls L S)
  unfolding wf-twl-state-def by (auto simp: wf-watch remove-cls-def twl.raw-clauses-def comp-def
   split: if-split-asm dest: set-removeAll-condD)
lemma rough-state-of-twl-remove-cls:
  rough-state-of-twl (remove-cls-twl L(S)) = remove-cls L(rough-state-of-twl S)
```

```
abbreviation init-state-twl where
init-state-twl N \equiv twl-of-rough-state (init-state N)
\mathbf{lemma} \ \textit{wf-twl-state-wf-twl-state-fold-add-init-cls}:
 assumes wf-twl-state S
 shows wf-twl-state (fold add-init-cls N S)
 using assms apply (induction N arbitrary: S)
  apply (auto simp: wf-twl-state-def)
 by (simp add: wf-twl-add-init-cls)
lemma wf-twl-state-epsilon-state[simp]:
  wf-twl-state (TWL-State [] [] [] 0 None)
 by (auto simp: wf-twl-state-def twl.raw-clauses-def)
lemma wf-twl-init-state: wf-twl-state (init-state N)
 unfolding init-state-def by (auto intro!: wf-twl-state-wf-twl-state-fold-add-init-cls)
lemma rough-state-of-twl-init-state:
  rough-state-of-twl (init-state-twl N) = init-state N
 by (simp add: twl-of-rough-state-inverse wf-twl-init-state)
abbreviation tl-trail-twl where
tl-trail-twl S \equiv twl-of-rough-state (tl-trail (rough-state-of-twl S))
lemma wf-twl-state-tl-trail: wf-twl-state S \implies wf-twl-state (tl-trail S)
 by (auto simp add: twl-of-rough-state-inverse wf-twl-init-state wf-twl-cls-wf-twl-cls-tl
   tl-trail-def wf-twl-state-def distinct-tl map-tl comp-def twl.raw-clauses-def)
lemma rough-state-of-twl-tl-trail:
  rough-state-of-twl (tl-trail-twl S) = tl-trail (rough-state-of-twl S)
 using rough-state-of-twl twl-of-rough-state-inverse wf-twl-state-tl-trail by blast
abbreviation update-backtrack-lvl-twl where
update-backtrack-lvl-twl \ k \ S \equiv twl-of-rough-state \ (update-backtrack-lvl \ k \ (rough-state-of-twl \ S))
lemma wf-twl-state-update-backtrack-lvl:
  wf-twl-state <math>S \implies wf-twl-state (update-backtrack-lvl k S)
  unfolding wf-twl-state-def by (auto simp: comp-def twl.raw-clauses-def)
lemma rough-state-of-twl-update-backtrack-lvl:
  rough-state-of-twl (update-backtrack-lvl-twl k S) = update-backtrack-lvl k
   (rough-state-of-twl\ S)
 using rough-state-of-twl[of S]
   twl-of-rough-state-inverse[of update-backtrack-lvl k (rough-state-of-twl S)]
   wf-twl-state-update-backtrack-lvl[of\ rough-state-of-twl\ S\ k]\ by\ fast
abbreviation update-conflicting-twl where
update\text{-}conflicting\text{-}twl\ k\ S \equiv twl\text{-}of\text{-}rough\text{-}state\ (update\text{-}conflicting\ k\ (rough\text{-}state\text{-}of\text{-}twl\ S))
lemma wf-twl-state-update-conflicting:
  wf-twl-state S \implies wf-twl-state (update-conflicting k S)
 unfolding wf-twl-state-def by (auto simp: comp-def twl.raw-clauses-def)
```

 $\mathbf{lemma}\ rough\text{-}state\text{-}of\text{-}twl\text{-}update\text{-}add\text{-}learned\text{-}cls\text{:}$

```
rough-state-of-twl (update-conflicting-twl None (add-learned-cls-twl CS)) =
   update-conflicting None (add-learned-cls C (rough-state-of-twl S))
   (is rough-state-of-twl ?upd = update-conflicting None ?le)
 using rough-state-of-twl[of ?upd] twl-of-rough-state-inverse
   wf-twl-add-learned-cls[of rough-state-of-twl S C]
  wf-twl-state-update-conflicting[of ?le None]
 by fastforce
abbreviation reduce-trail-to-twl where
reduce-trail-to-twl M1 S \equiv twl-of-rough-state (reduce-trail-to-M1 (rough-state-of-twl S))
abbreviation resolve-conflicting-twl where
resolve-conflicting-twl L D S \equiv twl-of-rough-state (resolve-conflicting L D (rough-state-of-twl S))
lemma rough-state-of-twl-update-conflicting:
 rough-state-of-twl (update-conflicting-twl k S) = update-conflicting k
   (rough-state-of-twl\ S)
 using rough-state-of-twl twl-of-rough-state-inverse wf-twl-state-update-conflicting by fast
abbreviation raw-clauses-twl where
raw-clauses-twl S \equiv twl.raw-clauses (rough-state-of-twl S)
abbreviation restart-twl where
restart-twl S \equiv twl-of-rough-state (restart' (rough-state-of-twl S))
lemma mset-union-mset-setD:
 mset\ A\subseteq\#\ mset\ B\Longrightarrow set\ A\subseteq set\ B
 by auto
lemma wf-wf-restart': wf-twl-state S \Longrightarrow wf-twl-state (restart' S)
 unfolding restart'-def wf-twl-state-def apply standard
  apply clarify
  apply (rename-tac x)
  apply (subgoal-tac wf-twl-cls (raw-trail S) x)
   apply (case-tac \ x)
 using restart-learned by (auto simp: twl.raw-clauses-def comp-def dest: mset-union-mset-setD)
lemma rough-state-of-twl-restart-twl:
 rough-state-of-twl (restart-twl S) = restart' (rough-state-of-twl S)
 by (simp add: twl-of-rough-state-inverse wf-wf-restart')
lemma undefined-lit-trail-twl-raw-trail[iff]:
 undefined-lit (trail-twl S) L \longleftrightarrow undefined-lit (raw-trail-twl S) L
 by (auto simp: defined-lit-map image-image)
\mathbf{lemma} wf-twl-reduce-trail-to:
 assumes trail\ S = M2\ @\ M1 and wf:\ wf\text{-}twl\text{-}state\ S
 shows wf-twl-state (reduce-trail-to M1 S)
proof -
 obtain M N U k C where S: S = TWL-State M N U k C
   by (cases S)
 have n-d: no-dup M
   using wf by (auto simp: S comp-def wf-twl-state-def)
 have M: M = take (length M - length M1) M @ drop (length M - length M1) M
   by auto
 have [simp]: no-dup (drop\ (length\ M - length\ M1)\ M)
```

```
using n-d by (metis distinct-drop drop-map)
  have \bigwedge C. C \in set\ (twl.raw-clauses\ S) \Longrightarrow wf-twl-cls\ (raw-trail\ S)\ C
   using wf by (auto simp: S comp-def wf-twl-state-def)
  then show ?thesis
   unfolding wf-twl-state-def S
   using wf-twl-cls-append[of take (length M - length M1) M drop (length M - length M1) M,
     unfolded M[symmetric]]
   by (simp-all add: n-d twl.raw-clauses-def)
qed
\mathbf{lemma}\ trail-twl-twl-rough-state-reduce-trail-to:
 assumes trail-twl\ st=M2\ @\ M1
 shows trail-twl (twl-of-rough-state (reduce-trail-to M1 (rough-state-of-twl st))) = M1
proof -
 have wf-twl-state (reduce-trail-to M1 (rough-state-of-twl st))
   using wf-twl-reduce-trail-to assms by fastforce
  moreover
   have length (trail-twl\ st) - length M1 = length M2
     unfolding assms by auto
   then have trail\ (reduce-trail-to\ M1\ (rough-state-of-twl\ st))=M1
     \mathbf{apply}\ (\mathit{cases}\ \mathit{rough\text{-}state\text{-}\mathit{of\text{-}}\mathit{twl}}\ \mathit{st})
     using assms by (auto simp: drop-map[symmetric])
 ultimately show ?thesis
   using twl-of-rough-state-inverse [of reduce-trail-to M1 (rough-state-of-twl st)]
   rough-state-of-twl[of st]
   by (auto simp add: assms)
qed
lemma twl-of-rough-state-reduce-trail-to:
 assumes trail-twl\ st=M2\ @\ M1 and
   S: rough\text{-}cdcl.state (rough\text{-}state\text{-}of\text{-}twl\ st) = (M, S)
 shows
   rough-cdcl.state
     (rough-state-of-twl\ (twl-of-rough-state\ (reduce-trail-to\ M1\ (rough-state-of-twl\ st)))) =
     (M1, S) (is ?st) and
   raw-init-clss-twl (twl-of-rough-state (reduce-trail-to M1 (rough-state-of-twl st)))
     = raw-init-clss-twl st (is ?A) and
   raw-learned-clss-twl (twl-of-rough-state (reduce-trail-to M1 (rough-state-of-twl st)))
     = raw-learned-clss-twl\ st\ (is\ ?B) and
   backtrack-lvl-twl (twl-of-rough-state (reduce-trail-to M1 (rough-state-of-twl st)))
     = backtrack-lvl-twl\ st\ (is\ ?C) and
   rough-cdcl.conc-conflicting\ (rough-state-of-twl\ (twl-of-rough-state
        (reduce-trail-to M1 (rough-state-of-twl st))))
     = rough\text{-}cdcl.conc\text{-}conflicting (rough\text{-}state\text{-}of\text{-}twl\ st)  (is ?D)
proof -
 have wf-twl-state (reduce-trail-to M1 (rough-state-of-twl st))
   using wf-twl-reduce-trail-to assms by fastforce
 moreover
   have length (trail-twl \ st) - length \ M1 = length \ M2
     unfolding assms by auto
   then have
     raw-init-clss (reduce-trail-to M1 (rough-state-of-twl st)) = raw-init-clss-twl st
     raw-learned-clss (reduce-trail-to M1 (rough-state-of-twl st)) = raw-learned-clss-twl st
     backtrack-lvl \ (reduce-trail-to \ M1 \ (rough-state-of-twl \ st)) = backtrack-lvl-twl \ st
     rough-cdcl.conc-conflicting\ (reduce-trail-to\ M1\ (rough-state-of-twl\ st)) =
```

```
rough-cdcl.conc-conflicting (rough-state-of-twl st)
     using assms by (cases rough-state-of-twl st, auto simp: drop-map[symmetric])+
  ultimately show ?A ?B ?C ?D
   using twl-of-rough-state-inverse of reduce-trail-to M1 (rough-state-of-twl st)
   rough-state-of-twl[of st]
   by (auto simp add: assms)
  moreover have trail-twl (twl-of-rough-state (reduce-trail-to M1 (rough-state-of-twl st))) = M1
   using trail-twl-twl-rough-state-reduce-trail-to[OF\ assms(1)].
 ultimately show ?st using S unfolding rough-cdcl.state-def by auto
qed
lemma add-learned-cls-rough-state-of-twl-simp:
 assumes raw-conflicting-twl st = Some z
 shows
   trail\ (add-learned-cls\ z\ (rough-state-of-twl\ st)) = trail-twl\ st
   rough-cdcl.conc-init-clss (add-learned-cls z (rough-state-of-twl st)) =
     rough-cdcl.conc-init-clss (rough-state-of-twl st)
   rough-cdcl.conc-learned-clss (local.add-learned-cls z (rough-state-of-twl st)) =
     \{\#mset\ z\#\} + rough\text{-}cdcl.conc\text{-}learned\text{-}clss\ (rough\text{-}state\text{-}of\text{-}twl\ st)
   backtrack-lvl (add-learned-cls z (rough-state-of-twl st)) = backtrack-lvl-twl st
  using assms wf-twl-state-rough-state-of-twl[of st]
  unfolding wf-twl-state-def apply
  (auto simp: wf-watch add-learned-cls-def comp-def twl.raw-clauses-def local.clause-watch
   ac\text{-}simps
   split: if-split-asm)
 done
sublocale wf-twl: abs-state_W-ops
  clause
 raw-clss-l op @
 \lambda L \ C. \ L \in set \ C \ op \ \# \ \lambda C. \ remove1-cond \ (\lambda D. \ clause \ D = clause \ C)
 mset \lambda xs ys. case-prod append (fold (\lambda x (ys, zs). (remove1 x ys, x # zs)) xs (ys, []))
 remove1
 \lambda C. \ raw-clause C \ \lambda C. \ TWL-Clause [] \ C
  trail-twl \lambda S. hd (raw-trail-twl S)
  raw-init-clss-twl
  raw-learned-clss-twl
  backtrack-lvl-twl
  raw-conflicting-twl
  cons-trail-twl
  tl-trail-twl
 \lambda S. update-conflicting-twl None (add-learned-cls-twl (the (raw-conflicting-twl S)) S)
  \lambda C. remove\text{-}cls\text{-}twl (raw\text{-}clause C)
  update-backtrack-lvl-twl
  \lambda C. update\text{-}conflicting\text{-}twl (Some C)
 reduce-trail-to-twl
  resolve-conflicting-twl
 \lambda N. init-state-twl (map raw-clause N)
 restart-twl
 by unfold-locales
sublocale wf-twl: abs-state<sub>W</sub>
  clause
  raw-clss-l op @
```

```
\lambda L \ C. \ L \in set \ C \ op \ \# \ \lambda C. \ remove1\text{-}cond \ (\lambda D. \ clause \ D = \ clause \ C)
 mset \lambda xs ys. case-prod append (fold (\lambda x (ys, zs). (remove1 x ys, x \# zs)) xs (ys, []))
  remove1
  \lambda C. raw-clause C \lambda C. TWL-Clause [] C
  trail-twl \lambda S. hd (raw-trail-twl S)
  raw-init-clss-twl
  raw-learned-clss-twl
  backtrack-lvl-twl
 raw-conflicting-twl
  cons-trail-twl
  tl	ext{-}trail	ext{-}twl
 \lambda S. update-conflicting-twl None (add-learned-cls-twl (the (raw-conflicting-twl S)) S)
  \lambda C. remove-cls-twl (raw-clause C)
  update-backtrack-lvl-twl
  \lambda C. update\text{-}conflicting\text{-}twl (Some C)
  reduce-trail-to-twl
 resolve-conflicting-twl
 \lambda N. init-state-twl (map raw-clause N)
  restart-twl
proof goal-cases
 case 1
 have stupid-locales: abs-state<sub>W</sub>-ops clause raw-clss-l op @ (\lambda L \ C. \ L \in set \ C) op #
   (\lambda C. remove1\text{-}cond (\lambda D. clause D = clause C)) mset union-mset-list remove1 raw-clause
   (TWL-Clause [])
   by unfold-locales
 have ugly[simp]: abs-state_W-ops.mmset-of-mlit clause = mmset-of-mlit
   apply (rule ext, rename-tac L, case-tac L)
   by (auto simp: abs-state<sub>W</sub>-ops.mmset-of-mlit.simps[OF stupid-locales] clause-def
   raw-clause-def)
 have [simp]: \bigwedge S. \ raw-clss-l \ (restart-learned \ S) \subseteq \# \ rough-cdcl.conc-learned-clss \ S
   using image-mset-subseteq-mono[OF restart-learned] unfolding mset-map
    by blast
 interpret \ abs-state_W-ops \ clause
    raw-clss-l op @
   \lambda L \ C. \ L \in set \ C \ op \ \# \ \lambda C. \ remove1\text{-cond} \ (\lambda D. \ clause \ D = clause \ C)
   mset \lambda xs ys. case-prod append (fold (\lambda x (ys, zs). (remove1 x ys, x # zs)) xs (ys, []))
   remove1
   \lambda C. raw-clause C \lambda C. TWL-Clause [] C
   by unfold-locales
  have abs: \bigwedge S. abs-state<sub>W</sub>-ops.state raw-clss-l mset trail-twl raw-init-clss-twl
    raw-learned-clss-twl backtrack-lvl-twl raw-conflicting-twl S =
   rough-cdcl.state (rough-state-of-twl S)
   unfolding abs-state_W-ops.state-def[OF stupid-locales] ..
 show ?case
    apply unfold-locales
              using rough-cdcl.hd-raw-conc-trail unfolding ugly apply blast
            apply (auto simp add: rough-state-of-twl-cons-trail rough-cdcl.state-def abs; fail)
           apply (auto simp add: rough-state-of-twl-tl-trail rough-cdcl.state-def abs; fail)[]
          apply (auto simp add: rough-state-of-twl-remove-cls
            rough-state-of-twl-update-backtrack-lvl rough-cdcl.state-def abs; fail)[]
        apply (auto simp add: rough-state-of-twl-update-add-learned-cls rough-cdcl.state-def
```

```
add-learned-cls-rough-state-of-twl-simp
          abs; fail)[]
       apply (auto simp add: rough-state-of-twl-update-backtrack-lvl
          rough-state-of-twl-update-conflicting rough-cdcl.state-def abs; fail)[]
      apply (auto simp add: rough-state-of-twl-update-add-learned-cls rough-cdcl.state-def
          add-learned-cls-rough-state-of-twl-simp
          rough-state-of-twl-update-conflicting abs; fail)
     apply (auto simp add: rough-state-of-twl-update-add-learned-cls rough-cdcl.state-def
          rough-state-of-twl-update-conflicting abs; fail)
    using twl-of-rough-state-reduce-trail-to(1) unfolding abs
    {\bf using} \ \ rough-cdcl. conc\text{-}init\text{-}clss\text{-}restart\text{-}state \ \ rough-cdcl. conc\text{-}learned\text{-}clss\text{-}restart\text{-}state
    \mathbf{apply} \ (simp \ add: \ rough-cdcl. resolve-conflicting \ twl 2. rough-state-of-twl-update-conflicting)
  using twl-of-rough-state-reduce-trail-to(1) unfolding abs
 \textbf{using} \ rough-cdcl. conc-init-clss-restart-state \ rough-cdcl. conc-learned-clss-restart-state
  by (auto simp: rough-state-of-twl-restart-twl abs
   rough-cdcl.state-def rough-state-of-twl-init-state comp-def)[7]
  qed
sublocale wf-twl: abs-conflict-driven-clause-learningW
  clause
  raw-clss-l op @
 \lambda L \ C. \ L \in set \ C \ op \ \# \ \lambda C. \ remove 1-cond \ (\lambda D. \ clause \ D = \ clause \ C)
 mset \lambda xs ys. case-prod append (fold (\lambda x (ys, zs). (remove1 x ys, x \# zs)) xs (ys, [])
 remove1
 \lambda C. raw-clause C \lambda C. TWL-Clause [] C
  trail-twl \lambda S. hd (raw-trail-twl S)
  raw-init-clss-twl
  raw-learned-clss-twl
  backtrack-lvl-twl
  raw-conflicting-twl
  cons-trail-twl
  tl-trail-twl
 \lambda S. update-conflicting-twl None (add-learned-cls-twl (the (raw-conflicting-twl S)) S)
  \lambda C. remove-cls-twl (raw-clause C)
  update-backtrack-lvl-twl
 \lambda C. update-conflicting-twl (Some C)
  reduce-trail-to-twl
  resolve-conflicting-twl
 \lambda N. init-state-twl (map raw-clause N)
 restart-twl
 by unfold-locales
declare local.rough-cdcl.mset-ccls-ccls-of-cls[simp del]
abbreviation state\text{-}eq\text{-}twl \text{ (infix } \sim TWL \text{ 51)} where
state-eq-twl\ S\ S' \equiv rough-cdcl.state-eq\ (rough-state-of-twl\ S)\ (rough-state-of-twl\ S')
notation wf-twl.state-eq (infix \sim 51)
To avoid ambiguities:
no-notation state-eq-twl (infix \sim 51)
Alternative Definition of CDCL using the candidates of 2-WL inductive propagate-twl
"" v wf-twl \Rightarrow "v wf-twl \Rightarrow bool where"
propagate-twl-rule: (L, C) \in candidates-propagate-twl S \Longrightarrow
```

```
S' \sim cons-trail-twl (Propagated L C) S \Longrightarrow
  raw-conflicting-twl S = None \Longrightarrow
 propagate-twl S S'
inductive-cases propagate-twlE: propagate-twl S T
lemma propagate-twl-iff-propagate:
 assumes inv: cdcl_W-mset.cdcl_W-all-struct-inv (wf-twl.state S)
 shows wf-twl.propagate-abs S T \longleftrightarrow propagate-twl <math>S T (is P \longleftrightarrow P)
proof
 assume ?P
  then obtain L E where
   raw-conflicting-twl S = None and
   CL-Clauses: E \in set (wf-twl.raw-clauses S) and
   LE: L \in \# \ clause \ E \ \mathbf{and}
   tr-CNot: trail-twl S \models as CNot (remove1-mset L (clause E)) and
   undef-lot[simp]: undefined-lit (trail-twl S) L and
   T \sim cons-trail-twl (Propagated L E) S
   by (blast elim: wf-twl.propagate-absE)
  have distinct (raw-clause E)
   using inv CL-Clauses unfolding cdcl_W-mset.cdcl_W-all-struct-inv-def distinct-mset-set-def
   cdcl_W-mset.distinct-cdcl<sub>W</sub>-state-def wf-twl.raw-clauses-def by (auto simp: clause-def)
  then have X: remove1-mset L (mset (raw-clause E)) = mset-set (set (raw-clause E) - \{L\})
   by (auto simp: multiset-eq-iff raw-clause-def count-mset distinct-filter-eq-if)
  have (L, E) \in candidates-propagate-twl S
   apply (rule wf-candidates-propagate-complete)
       using rough-state-of-twl apply auto[]
       using CL-Clauses unfolding wf-twl.raw-clauses-def twl.raw-clauses-def
      apply auto
      using LE apply (simp add: clause-def)
     using tr-CNot X apply (simp add: clause-def)
    using undef-lot apply blast
    done
 show ?T
   apply (rule propagate-twl-rule)
      \mathbf{apply} \ (\mathit{rule} \ \lang(L, \ E) \in \mathit{candidates-propagate-twl} \ S \gt)
     using \langle T \sim cons\text{-}trail\text{-}twl \ (Propagated \ L \ E) \ S \rangle
     apply (auto simp: \langle raw\text{-}conflicting\text{-}twl \ S = None \rangle \ cdcl_W\text{-}mset.state\text{-}eq\text{-}def)
   done
next
 assume ?T
 then obtain L C where
   LC: (L, C) \in candidates-propagate-twl S and
   T: T \sim cons-trail-twl (Propagated L C) S and
   confl: raw-conflicting-twl S = None
   by (auto elim: propagate-twlE)
  have
   C'S: C \in set (raw-clauses-twl S) and
   L: set (watched C) - uminus 'lits-of-l (trail-twl S) = \{L\} and
   undef: undefined-lit (trail-twl S) L
   using LC unfolding candidates-propagate-def wf-twl.raw-clauses-def by auto
 have dist: distinct (raw-clause C)
   using inv C'S unfolding cdcl_W-mset.cdcl_W-all-struct-inv-def cdcl_W-mset.distinct-cdcl_W-state-def
    distinct-mset-set-def twl.raw-clauses-def \mathbf{by} (fastforce \ simp: \ clause-def)
  then have C-L-L: mset-set (set (raw-clause C) – \{L\}) = clause C – \{\#L\#\}
   by (metis distinct-mset-distinct distinct-mset-minus distinct-mset-set-mset-ident mset-remove1
     set-mset-mset set-remove1-eq clause-def)
```

```
show ?P
   apply (rule wf-twl.propagate-abs-rule[of S \ C \ L])
       using confl apply auto[]
      using C'S unfolding twl.raw-clauses-def apply (simp\ add:\ wf\text{-}twl.raw\text{-}clauses\text{-}def)
      using L unfolding candidates-propagate-def apply (auto simp: raw-clause-def clause-def)
     using wf-candidates-propagate-sound[OF - LC] rough-state-of-twl dist
     apply (simp add: distinct-mset-remove1-All true-annots-true-cls clause-def)
    using undef apply simp
   using T undef unfolding cdcl_W-mset.state-eq-def by auto
qed
no-notation twl.state\text{-}eq\text{-}twl (infix \sim TWL 51)
inductive conflict-twl where
conflict-twl-rule:
C \in candidates\text{-}conflict\text{-}twl\ S \Longrightarrow
  S' \sim update\text{-}conflicting\text{-}twl (Some (raw\text{-}clause C)) S \Longrightarrow
 raw-conflicting-twl S = None \Longrightarrow
  conflict-twl S S'
inductive-cases conflict-twlE: conflict-twlS T
\mathbf{lemma} \ \textit{conflict-twl-iff-conflict} \colon
 shows wf-twl.conflict-abs S \ T \longleftrightarrow conflict-twl \ S \ T \ (is \ ?C \longleftrightarrow ?T)
proof
 assume ?C
 then obtain D where
   S: raw\text{-}conflicting\text{-}twl \ S = None \ and
   D: D \in set (wf\text{-}twl.raw\text{-}clauses S) and
   MD: trail-twl \ S \models as \ CNot \ (clause \ D) and
   T: T \sim update\text{-}conflicting\text{-}twl (Some (raw-clause D)) S
   by (elim \ wf\text{-}twl.conflict\text{-}absE)
 have D \in candidates-conflict-twl S
   apply (rule wf-candidates-conflict-complete)
      apply simp
     using D apply (auto simp: wf-twl.raw-clauses-def twl.raw-clauses-def)[]
   using MD S by auto
  moreover have T \sim twl-of-rough-state (update-conflicting (Some (raw-clause D))
  (rough-state-of-twl\ S))
   using T unfolding cdcl_W-mset.state-eq-def by auto
  ultimately show ?T
   using S by (auto intro: conflict-twl-rule)
next
 assume ?T
 then obtain C where
    C: C \in candidates\text{-}conflict\text{-}twl\ S\ and
    T: T \sim update\text{-}conflicting\text{-}twl (Some (raw\text{-}clause C)) S \text{ and}
   confl: raw-conflicting-twl S = None
   by (auto elim: conflict-twlE)
 have
    C \in set (wf\text{-}twl.raw\text{-}clauses S)
   using C unfolding candidates-conflict-def wf-twl.raw-clauses-def twl.raw-clauses-def by auto
moreover have trail-twl S \models as \ CNot \ (clause \ C)
   using wf-candidates-conflict-sound[OF - C] by auto
```

```
ultimately show ?C apply — apply (rule\ wf\text{-}twl.conflict\text{-}abs\text{-}rule[of\text{-}C]) using confl\ T unfolding cdcl_W\text{-}mset.state\text{-}eq\text{-}def by (auto\ simp\ del:\ map\text{-}map) qed We have shown that we we can use conflict\text{-}twl and propagate\text{-}twl in a CDCL calculus. end end
```