

Motor Homing

System Configuration

What is Homing?

- > Establishing an initial position reference for a motor
 - o Typically, defining the 0 "home" position
 - With user configurable home offset
 - o Home search (capture) move with incremental encoders
 - Capture on index, flag, or a combination
 - Commonly used w/ quadrature and sinusoidal encoders
 - Capture on hard-stop if no index or flag (slower speed, not as accurate/repeatable)
 - o Simple "automatic" computation with absolute encoders
 - Absolute serial encoders (single turn, or multi-turn)
 - Resolvers (single turn only)
 - No motion required
 - Motor does not have to be energized
- > Homing is generally performed once per machine power-up or reset

- **➤** Why is homing important?
 - Setting up machine limits (workspace)
 - Soft limits
 - Offsets
 - Establishing reference
 - Compensation tables
 - Kinematics (robot)

Home Search Move Profile

> Home search move profile

- Motor[].HomeVel (<u>Positive or Negative</u>)
- o Motor[].JogTa
- Motor[].JogTs
- Motor[].HomeOffset

→ Home search move <u>online</u> commands

- o #1HM or #1HOME
- o #1..4HM
- o #1,2,3,4HM

➤ Home search move <u>program</u> commands

- o HOME 1
- **HOME 1..4**
- o HOME 1,2,3,4

Units

- HomeVel [motor units/msec]
- o JogTa
 - $[\mathbf{msec}]$ if > 0, acceleration time
 - $[msec^2/motor\ unit]$ if < 0, inverse acceleration rate
- o JogTs
 - [msec] if > 0, s-curve time
 - [$msec^3/motor unit$] if < 0, inverse jerk rate
- HomeOffset [motor units]

> Status bits to watch

- Motor[].HomeInProgress
- Motor[].HomeComplete

Home Search Move Control

Motor[].CaptureMode

- o = 0 Hardware capture (default)
 - Encoder is processed by the ASIC
 - Input trigger is wired to / processed by the ASIC
 - Position latched on the trigger in the ASIC
- o = 1 "Software" capture
 - Encoder <u>not</u> directly processed by the ASIC
 - Input trigger is wired to / processed by the ASIC
 - Position latched from actual position
- o = 2 Torque limit capture
 - Hard stop homing or torque limit trigger
 - Triggers when Motor[].WarnFeLimit is exceeded
- o =3 "Timer-assisted software" capture
 - Encoder <u>not</u> directly processed by the ASIC
 - Input trigger not wired to / processed by the ASIC
 - Captured position derived from actual pos. history

Home Search Move Control

Gate3[].Chan[].CaptCtrl

 \circ Range 0 – 15 for combination of inputs (low or high)

```
Gate3[i].Chan[i].CaptCtrl = 0:
                                 Immediate or Hall capture
Gate3[i].Chan[j].CaptCtrl = 1:
                                 Capture on Index (CHCn) high
Gate3[i].Chan[j].CaptCtrl = 2:
                                 Capture on Flag high
Gate3[i].Chan[j].CaptCtrl = 3:
                                 Capture on (Index low AND Flag low)
Gate3[i].Chan[j].CaptCtrl = 4:
                                 Immediate or Hall capture
Gate3[i].Chan[j].CaptCtrl = 5:
                                 Capture on Index (CHCn) low
                                 Capture on Flag high
Gate3[i].Chan[j].CaptCtrl = 6:
                                 Capture on (Index high AND Flag low)
Gate3[i].Chan[i].CaptCtrl = 7:
                                 Immediate or Hall capture
Gate3[i].Chan[j].CaptCtrl = 8:
Gate3[i].Chan[j].CaptCtrl = 9:
                                 Capture on Index (CHCn) high
Gate3[i].Chan[j].CaptCtrl = 10:
                                 Capture on Flag low
                                 Capture on (Index low AND Flag high)
Gate3[i].Chan[i].CaptCtrl = 11:
                                 Immediate or Hall capture
Gate3[i].Chan[j].CaptCtrl = 12:
Gate3[i].Chan[i].CaptCtrl = 13:
                                 Capture on Index (CHCn) low
Gate3[i].Chan[j].CaptCtrl = 14:
                                 Capture on Flag low
                                 Capture on (Index high AND Flag high)
Gate3[i].Chan[j].CaptCtrl = 15:
```

➤ Gate3[].Chan[].CaptFlagSel

- \circ = 0 Home input flag
- = 1 Positive limit flag
- = 2 Negative limit flag
- \circ = 3 User Flag

➤ Homing Exercise Examples:

- 1. Arbitrary homing
- 2. Homing to Minus Limit AND Encoder Index
- 3. Homing to Home Flag
- 4. Homing to Home Flag AND Encoder Index
- 5. Homing to hard stop

Homing Exercise 1: Arbitrary

> Arbitrary home 0 position

- Sets the motor positon counter to zero
- o Often used when commissioning or troubleshooting

Online command

> Program command

- o HOMEZ 1
- o HOMEZ 1..4
- o HOMEZ 1,2,3,4

Motor[].pAbsPos must be = 0

- o So not reading absolute position
- o If pAbsPos ≠ 0, PMAC will try to read position from the specified register

Does not care about

- Capture control
- Flag select
- Home offset

Note

The same command is used to read absolute position if pAbsPos is pointing to a register address

Homing Exercise 2: Index

- ➤ What is an index pulse (or C channel)?
- > Zeroes position at the edge of the index pulse
 - o Can be low or high
- Basic index capture (default) settings
 - o Motor[].CaptureMode = 0
 - o Gate3[].Chan[].CaptCtrl = 1
 - o Gate3[].Chan[].CaptFlagSel?
 - Does not matter

Gate3[i].Chan[j].CaptCtrl = 0:	Immediate or Hall capture
Gate3[i].Chan[j].CaptCtrl = 1:	Capture on Index (CHCn) high
Gate3[t].Chan[t].CaptCtrl = 2 :	Capture on Flag high

a) Without offsets

- o For "linear motors" (#1..3)
 - Home velocity 10 mm/s
 - Acceleration rate 0.15 Gs
 - Jerk Limit 0
- For rotary motor (#4)
 - Home velocity -0.5 deg/s
 - Acceleration time 300 msec
 - Jerk Limit 0

b) With offsets

 Find and store (save) home offsets for all motors so that the Delta Tau Logo points upwards after homing

Homing Exercise 3: Minus Limit Flag

- What is a minus limit?
- > Zeroes position at the edge of the minus limit
 - o Can be low or high
- Basic Minus flag capture settings
 - o HomeVel positive or negative?
 - o Motor[].CaptureMode = 0
 - \circ Gate3[].Chan[].CaptCtrl = 2 (high) or 10 (low)
 - o Gate3[].Chan[].CaptFlagSel = 2

Gate3[i].Chan[i].CaptCtrl = 1:	Capture on Index (CHCn) high
Gate3[i].Chan[j].CaptCtrl = 2:	Capture on Flag high
Gate3[i].Chan[j].CaptCtrl = 3:	Capture on (Index low AND Flag low)

```
Gate3[i].Chan[j].CaptFlagSel = 0: HOMEn (Home Flag n)
Gate3[i].Chan[i].CaptFlagSel = 1: PLIMn (Positive End Limit Flag n)
Gate3[i].Chan[j].CaptFlagSel = 2: MLIMn (Negative End Limit Flag n)
Gate3[i].Chan[j].CaptFlagSel = 3: USERn (User Flag n)
```

a) Perform a home flag search move

- Using the existing profile parameters
 - HomeVel, JogTa, and JogTs
- o Set up for high true flag
- o Redo for low true flag

Note

Limits must be disabled (Motor[].pLimits = 0) when used for a home search move

Remember to restore the limits pointer once finished with homing

Homing Exercise 4: Home Flag

- What is a home flag?
- > Zeroes position at the edge of the home flag
 - o Can be low or high
- Basic home flag capture settings
 - o Motor[].CaptureMode = 0
 - o Gate3[].Chan[].CaptCtrl = 2 (high) or 10 (low)
 - o Gate3[].Chan[].CaptFlagSel = 0

Gate3[i].Chan[i].CaptCtrl = 1:	Capture on Index (CHCn) high
Gate3[i].Chan[j].CaptCtrl = 2:	Capture on Flag high
Gate3[i].Chan[j].CaptCtrl = 3:	Capture on (Index low AND Flag low)

```
Gate3[i].Chan[j].CaptFlagSel = 0: HOMEn (Home Flag n)
Gate3[i].Chan[j].CaptFlagSel = 1: PLIVIN (Positive End Limit Flag n)
Gate3[i].Chan[j].CaptFlagSel = 2: MLIMn (Negative End Limit Flag n)
Gate3[i].Chan[j].CaptFlagSel = 3: USERn (User Flag n)
```

a) Perform a home flag search move

- Using the existing profile parameters
 - HomeVel, JogTa, and JogTs
- o Set up for high true flag
- Redo for low true flag

Homing Exercise 5: Index & Home Flag

> Basic home index combo capture settings

- Motor[].CaptureMode = 0
- Gate3[].Chan[].CaptCtrl = 15 (high high)
- o Gate3[].Chan[].CaptFlagSel = 0

```
Gate3[i].Chan[i].CaptCtrl = 14: Capture on Flag low
Gate3[i].Chan[j].CaptCtrl = 15: Capture on (Index high AND Flag high)
```

```
Gate3[i].Chan[j].CaptFlagSel = 0: HOMEn (Home Flag n)
Gate3[i].Chan[j].CaptFlagSel = 1: PLIMn (Positive End Limit Flag n)
Gate3[i].Chan[j].CaptFlagSel = 2: MLIMn (Negative End Limit Flag n)
Gate3[i].Chan[j].CaptFlagSel = 3: USERn (User Flag n)
```

a) Perform a home & index flag search move

- Using the existing profile parameters
 - HomeVel, JogTa, and JogTs
- o Set up for high true index and low true flag
- o Redo for high true index and high true flag

Homing Exercise 6: Hard Stop

Basic hard stop capture settings

- Motor[].CaptureMode = 2
- o Gate3[].Chan[].CaptCtrl?
- o Gate3[].Chan[].CaptFlagSel?
- Recommended motor settings
 - Disable the position error integrator
 - Motor[].Servo.SwZvInt
 - Short time or slow accel rate
 - Slower home velocity
 - Opposite direction home offset (recommended)
 - No stopping
- o Optimize with trial and error (system dependent)
 - Start slow and increase gradually
 - Plot following error during move
 - High acceleration could trigger immediately
 - High speed can create a clunk

a) Example

```
Motor[1].CaptureMode = 2
Motor[1].WarnFeLimit = 0.050
Motor[1].Servo.SwZvInt = 1
Motor[1].JogTa = 18
Motor[1].JogTs = 2
Motor[1].HomeVel = 0.005
Motor[1].HomeOffset =-1
```


When finished with this exercise, set and save homing to only index (with original offset), restore integration mode (=0), and jog acceleration settings

Typical Home Search Move Profile

- > For a Homing search move at 2 mu/s, and acceleration time of 500 msec (JogTa=500, JogTs=0)
 - No home offset, HomeOffset = 0
- Where did the trigger occur?
- > Is the home complete bit alone sufficient to consider that homing is finished?
 - o No, must also look at the in-position bit
- Are all accels and decels equal?
 - Yes, as programmed by JogTa and JogTs

Typical Home Search Move Profile

- > For a Homing search move at 2 mu/s, and acceleration time of 500 msec (JogTa=500, JogTs=0)
 - With home offset
- ➤ Which plot corresponds to a positive / negative home offset?
- > How many motor units is the home offset (roughly) in both cases?
 - o Position is on the right hand side vertical scale
- ➤ Are all accels and decels equal?
 - Yes, as programmed by JogTa and JogTs

Triggered Moves

- > Triggered moves are Jog or rapid mode moves
- > The occurrence of a trigger (specified by the capture control elements) brings the motor to the trigger location or a user configurable location relative to the trigger position
 - o The trigger capture control is set up similarly to homing search moves
 - o Triggered moves are particularly useful for probing or measurement type applications
- > Triggered online Jog move examples
 - o #1J=100^0
 - Jog #1 to 100 mu
 - If trigger occurs before, stop and move 0 mu
 - o #2,3J:15^-2
 - Jog #1, and #2 15 mu incrementally
 - If trigger occurs before, stop and move -2 mu

- > Triggered program move examples
 - JOG1=100^0
 - o JOG2,3:15^-2
 - o INC LINEAR RAPID X15^0

Triggered moves do <u>not</u> work with indefinite jog commands J+, or J-