Overview

Logistic Regression Classifier

Director of TEAMLAB Sungchul Choi

머신러닝의 학습 방법들

- Gradient descent based learning
- Probability theory based learning
- Information theory based learning
- Distance similarity based learning

- 발전소 발전기가 제대로 돌아가고 있는가?

ID	RPM	VIBRATION	STATUS	ID	RPM	VIBRATION	STATUS
1	568	585	good	29	562	309	faulty
2	586	565	good	30	578	346	faulty
3	609	536	good	31	593	357	faulty
4	616	492	good	32	626	341	faulty
5	632	465	good	33	635	252	faulty
6	652	528	good	34	658	235	faulty
7	655	496	good	35	663	299	faulty
8	660	471	good	36	677	223	faulty
9	688	408	good	37	685	303	faulty
10	696	399	good	38	698	197	faulty
11	708	387	good	39	699	311	faulty
12	701	434	good	40	712	257	faulty
13	715	506	good	41	722	193	faulty
14	732	485	good	42	735	259	faulty
15	731	395	good	43	738	314	faulty
16	749	398	good	44	753	113	faulty
17	759	512	good	45	767	286	faulty
18	773	431	good	46	771	264	faulty
19	782	456	good	47	780	137	faulty
20	797	476	good	48	784	131	faulty
21	794	421	good	49	798	132	faulty
22	824	452	good	50	820	152	faulty
23	835	441	good	51	834	157	faulty
24	862	372	good	52	858	163	faulty
25	879	340	good	53	888	91	faulty
26	892	370	good	54	891	156	faulty
27	913	373	good	55	911	79	faulty
28	933	330	good	56	939	99	faulty

Vibration

Vibration Vibration = 830 - 0.667*RPM

$$f(x) = 803 - 0.667 * RPM - 1 * Vibration = 0$$

$$Status = \begin{cases} 1 & \text{if } f(x) \ge 0\\ 0 & \text{otherwise} \end{cases}$$

어떻게 학습을 시킬까?

$$f(x) = 803 - 0.667 * RPM - 1 * Vibration = 0$$

$$Status = \begin{cases} 1 & \text{if } f(x) \ge 0\\ 0 & \text{otherwise} \end{cases}$$

Linear Regression으로 학습해보자

f(x) = -2.4507508832597606 + 0.00227488 * RPM + 0.00379006 * Vibration

```
array([ 1.05856314e+00.
                           1.02370973e+00.
                                              9.66120163e-01,
click to scroll output; double click to hide 7.49348117e-01,
                                              1.03361935e+00,
         9.19162092e-01,
                            8.35784996e-01,
                                              6.60707802e-01,
         6.44796277e-01,
                            6.26614080e-01,
                                              7.88822723e-01,
                           1.05263689e+00,
         1.09355523e+00,
                                              7.09256697e-01,
         7.61574640e-01,
                           1.21639013e+00,
                                              9.41243609e-01.
         1.05646897e+00,
                           1.16639329e+00,
                                              9.51115412e-01,
         1.13685352e+00,
                           1.12018650e+00,
                                              9.20094079e-01,
         8.37485080e-01,
                           9.80760238e-01,
                                              1.03990281e+00,
         9.22427788e-01.
                          -1.14240215e-03,
                                              1.75487796e-01,
         2.51301583e-01,
                           2.65731543e-01,
                                             -5.11098276e-02,
        -6.32186858e-02,
                           1.90719471e-01,
                                             -6.54767525e-02,
         2.55926977e-01,
                          -1.16245894e-01,
                                              3.18095711e-01,
         1.43005910e-01, -7.68091088e-02,
                                              2.02908173e-01,
         4.18186047e-01, -3.09492679e-01,
                                              3.78035795e-01,
         3.03754000e-01, -1.57109613e-01,
                                             -1.70750464e-01.
        -1.35112143e-01,
                          -9.26369286e-03,
                                              4.15348645e-02,
         1.18872240e-01,
                          -8.57657338e-02,
                                              1.67412730e-01,
        -7.89242969e-02,
                           6.05734081e-021)
```


기존 접근의 문제점들

- 1이상 또는 0이하의 수들이 나오는 걸 어떻게 해석?
- 1 또는 0으로 정확히 표현 가능한가? $Status = \begin{cases} 1 & \text{if } f(x) \ge 0 \\ 0 & \text{otherwise} \end{cases}$
- 변수가 Y에 영향을 주는정도가 비례하는 가?
- 확률로 발생할 사건의 가능성을 표현해야 함

f(x) = -2.4507508832597606 + 0.00227488 * RPM + 0.00379006 * Vibration

Solution

확률로 나타내자!

Human knowledge belongs to the world.