Step-1

Now let *A* be the 3 by 3 identity matrix and let b = (1,0,0). We need to obtain the multiple of V = (1,1,1), so that $P(y) = \frac{1}{2}y^{T}y - y_{1}$ will be minimum?

Step-2

Let the required $y = (y_1, y_2, y_3)^T$.

Therefore, we get

$$P(y) = \frac{1}{2}y^{T}y - y_{1}$$

$$= \frac{1}{2}(y_{1}, y_{2}, y_{3}) \begin{bmatrix} y_{1} \\ y_{2} \\ y_{3} \end{bmatrix} - y_{1}$$

$$= \frac{1}{2}(y_{1}^{2} + y_{2}^{2} + y_{3}^{2}) - y_{1}$$

$$= \frac{y_{1}^{2} + y_{2}^{2} + y_{3}^{2} - 2y_{1}}{2}$$

Step-3

Whatever be $y = (y_1, y_2, y_3)^T$, the quantities y_2^2 and y_3^2 will be non negative. Therefore, their minimum will be zero.

Thus, $y = (y_1, 0, 0)^T$.

This gives, $P(y) = \frac{y_1^2 - 2y_1}{2}$

Step-4

Let us consider a function f, such that $f(x) = x^2 - 2x$. Differentiating f with respect to x, gives f'(x) = 2x - 2.

Equating f'(x) to zero gives x = 1.

Therefore, the minimum of f occurs when x = 1. Similarly, $P(y) = \frac{y_1^2 - 2y_1}{2}$ is minimum when $y_1 = 1$.

Step-5

Therefore, the required $y = (1,0,0)^T$.