Concevoir la partie commande des systèmes asservis afin de valider leurs performances

Chapitre 1 - Correction des systèmes

Sciences
Industrielles de
l'Ingénieur

PSI[⋆]

TD 1

Téléchirurgie robotisée au contact d'organes mobiles

CCP - PSI 2015

Savoirs et compétences :

- Res1.C4: Correction
- Res1.C4.SF1: Proposer la démarche de réglage d'un correcteur proportionnel, proportionnel intégral
- Con.C2 : Correction d'un système asservi

Présentation

Réalisation de la commande de l'esclave

Objectif Concevoir la commande du dispositif esclave de façon à satisfaire l'ensemble des exigences incluses dans l'exigence « Commande » (id 1.1).

Modélisation et étude des performances du système sans correction

Objectif Identifier les performances non satisfaites afin de choisir un correcteur adapté.

La modélisation permettant de relier la consigne $x_m(t)$ issue du dispositif maître au déplacement $x_v(t)$ de l'organe terminal est représentée par le schéma-blocs suivant.

- $H_{ad}(p) = k_a = 1 \text{ Nm}^{-1}$ permet d'adapter la consigne position en consigne force;
- $H_S(p) = \frac{X_S(p)}{F_S(p)} = \frac{k_S}{p(m_S^+ b_S)}$ avec $k_S = 1 \text{ m N}^{-1}$, $m_S = 0,152 \text{ kg et } b_S = 1,426 \text{ N sm}^{-1}$;

1

• $k_e = 200 \,\mathrm{N} \,\mathrm{m}^{-1}$.

Question 1 Simplifier le schéma bloc précédant pour lui donner la forme illustrée par la figure suivante. Exprimer $H_t(p)$ et H(p) en fonction de k_e , k_a et $H_S(p)$.

Pour la suite du problème, on prendra : $H(p) = \frac{1}{m_S p^2 + b_S p + k_e}$.

Vérification des exigences sans correction : C(p) = 1

Question 2 Déterminer la fonction de transfert en boucle fermée (avec une perturbation nulle : $X_e^*(p) = 0$) : $F_{BFI}(p) = \frac{X_v(p)}{X_m(p)}$, puis la mettre sous forme canonique de façon à identifier les paramètres caractéristiques : gain statique (K), pulsation propre (ω_0) et coefficient d'amortissement (z). Faire l'application numérique.

Question 3 En vous aidant des abaques de la figure suivante, vérifier les exigences « stabilité » (uniquement l'amortissement), « rapidité » et « précision » (uniquement l'erreur statique).

(a) Abaque du temps de réponse réduit

(b) Abaque des dépassements relatifs

Modélisation et étude des performances du système avec correction intégrale : $C(p) = \frac{K_i}{n}$

Objectif Vérifier la capacité d'une correction intégrale à atteindre les exigences.

Question 4 Les résultats d'une simulation pour un gain $K_i = 100$ sont donnés sur les figures suivantes. Vérifier les exigences « stabilité », « rapidité », « précision » (uniquement l'erreur statique).

Diagramme de Bode de la fonction de transfert en boucle ouverte pour $K_i=100$

Réponse temporelle de la fonction de transfert en boucle fermée pour un échelon de $10~{\rm cm}$ et $K_i=100$

Question 5 Pour améliorer la rapidité, il faut augmenter le gain K_i . Déterminer la valeur K_{imax} du coefficient K_i qui permet de respecter les marges de stabilité.

Question 6 En analysant la courbe suivante, compléter le tableau du document puis conclure sur la capacité du correcteur à valider simultanément les exigences de « stabilité » et de « rapidité ».

Réponse temporelle de la fonction de transfert en boucle fermée pour un échelon de $10~{\rm cm}$ avec le réglage K_{imax}

Question 7 Le diagramme de Bode de la figure suivante représente la réponse fréquentielle (courbe de gain uniquement) de la fonction $F_{BF2}(j\omega) = \frac{X_{\nu}(j\omega)}{X_e^*(j\omega)}$ pour $K_i = K_{imax}$. Quelle sera l'atténuation minimale $\left|F_{BF2}(j\omega)\right|_{min}$ de la perturbation x_e^* (en %) sur l'intervalle $[1,25\,\mathrm{rad}\,\mathrm{s}^{-1};12,5\,\mathrm{rad}\,\mathrm{s}^{-1}]$. Conclure sur la validation de l'exigence de « précision ».

Modélisation et étude des performances du système avec correction IMC

Objectif Améliorer la rapidité tout en atténuant la perturbation sinusoïdale.

Pour améliorer l'atténuation de la perturbation sinusoïdale, il est possible de changer la structure de l'asservissement et d'opter pour une correction IMC (Internal

Model Corrector) dont le schéma-blocs est donné sur la figure suivante.

Avec F(p) la fonction de transfert d'un filtre de la forme $F(p) = \frac{1}{(1+Tp)^2}$ et la fonction de transfert H(p) =

 $\overline{m_S p^2 + b_S p + k_e}$. La grandeur de sortie $X_v(p)$ peut s'exprimer par

l'équation :
$$X_{\nu}(p) = A(p)X_{m}(p) + B(p)Q(p)$$
 avec $A(p) = \frac{1}{\left(1+Tp\right)^{2}}$ et $B(p) = \frac{Tp\left(2+Tp\right)}{\left(1+Tp\right)^{2}}$.

Question 8 Indiquer s'il faut augmenter ou diminuer la valeur de T pour améliorer le temps de réponse consécutif à un échelon de consigne $x_m(t) = x_0$ (on prendra Q(p) = 0 pour cette question). Justifier votre réponse. En déduire la valeur limite de T permettant de satisfaire l'exigence de « rapidité ».

Question 9 Le diagramme de Bode de $B(j\omega)$ pour T = 1s est donné ci-après. Indiquer sur la copie s'il faut augmenter ou diminuer la valeur de T pour minimiser l'effet de la perturbation sur l'intervalle $[1,25\,\mathrm{rad}\,\mathrm{s}^{-1};12,5\,\mathrm{rad}\,\mathrm{s}^{-1}]$. Justifier votre réponse. En déduire la valeur limite de T permettant de satisfaire l'atténuation de la perturbation liée à l'exigence de « précision » sur cet intervalle.

 $\omega \; (\text{rad} \cdot s^{-1})$

0 1

Chapitre 1 - Correction des systèmes

TD 1 - Corrigé

Téléchirurgie robotisée au contact d'organes mobiles

CCP - PSI 2015

Savoirs et compétences :

- □ Res1.C4: Correction
- Res1.C4.SF1 : Proposer la démarche de réglage d'un correcteur proportionnel, proportionnel intégral
- Con.C2: Correction d'un système asservi

Présentation

Réalisation de la commande de l'esclave

Objectif Concevoir la commande du dispositif esclave de façon à satisfaire l'ensemble des exigences incluses dans l'exigence « Commande » (id 1.1).

Modélisation et étude des performances du système sans correction

Objectif Identifier les performances non satisfaites afin de choisir un correcteur adapté.

La modélisation permettant de relier la consigne $x_m(t)$ issue du dispositif maître au déplacement $x_v(t)$ de l'organe terminal est représentée par le schéma-blocs suivant.

- $H_{ad}(p) = k_a = 1 \text{ Nm}^{-1}$ permet d'adapter la consigne position en consigne force;
- $H_S(p) = \frac{X_S(p)}{F_S(p)} = \frac{k_S}{p(m_S^+ b_S)}$ avec $k_S = 1 \text{ m N}^{-1}$, $m_S = 1 \text{ m N}^{-1}$ $0.152 \,\mathrm{kg} \,\mathrm{et} \,b_{\mathrm{S}} = 1.426 \,\mathrm{Nsm}^{-1}$

• $k_e = 200 \,\mathrm{N}\,\mathrm{m}^{-1}$.

Question 1 Simplifier le schéma bloc précédant pour lui donner la forme illustrée par la figure suivante. Exprimer $H_t(p)$ et H(p) en fonction de k_e , k_a et $H_S(p)$.

Correction

Pour la suite du problème, on prendra : H(p) = $m_S p^2 + \overline{b_S p + k_e}$

Vérification des exigences sans correction : C(p) = 1

Question 2 Déterminer la fonction de transfert en boucle fermée (avec une perturbation nulle : $X_o^*(p) = 0$): $F_{BFI}(p) = \frac{X_v(p)}{X_m(p)}$, puis la mettre sous forme canonique de façon à identifier les paramètres caractéristiques : gain statique (K), pulsation propre (ω_0) et coefficient d'amortissement (z). Faire l'application numérique.

Correction

Question 3 En vous aidant des abaques de la figure suivante, vérifier les exigences « stabilité » (uniquement l'amortissement), « rapidité » et « précision » (uniquement l'erreur statique).

Correction

(a) Abaque du temps de réponse réduit

(b) Abaque des dépassements relatifs

Modélisation et étude des performances du système avec correction intégrale : $C(p) = \frac{K_i}{p}$

Objectif Vérifier la capacité d'une correction intégrale à atteindre les exigences.

Question 4 Les résultats d'une simulation pour un gain $K_i = 100$ sont donnés sur les figures suivantes. Vérifier les exigences « stabilité », « rapidité », « précision » (uniquement l'erreur statique).

Diagramme de Bode de la fonction de transfert en boucle ouverte pour $K_i = 100$

Réponse temporelle de la fonction de transfert en boucle fermée pour un échelon de $10~{\rm cm}$ et $K_i=100$

Question 5 Pour améliorer la rapidité, il faut augmenter le gain K_i . Déterminer la valeur K_{imax} du coefficient K_i qui permet de respecter les marges de stabilité.

Correction

Question 6 En analysant la courbe suivante, compléter le tableau du document puis conclure sur la capacité du correcteur à valider simultanément les exigences de « stabilité » et de « rapidité ».

Correction

Réponse temporelle de la fonction de transfert en boucle fermée pour un échelon de 10 cm avec le réglage K_{imax}

Question 7 Le diagramme de Bode de la figure suivante représente la réponse fréquentielle (courbe de gain uniquement) de la fonction $F_{BF2}(j\omega) = \frac{X_{\nu}(j\omega)}{X_e^*(j\omega)}$ pour $K_i = K_{imax}$. Quelle sera l'atténuation minimale $\left|F_{BF2}(j\omega)\right|_{min}$ de la perturbation x_e^* (en %) sur l'intervalle [1,25 rad s⁻¹; 12,5 rad s⁻¹]. Conclure sur la validation de l'exigence de « précision ».

Correction En 1,25 rad s⁻¹ l'atténuation est de -55 dB. On a $20 \log K = -55$ soit K = 0,002 (inférieur à 1%). En 12,5 rad s⁻¹ l'atténuation est de -30 dB. On a $20 \log K = -30$ soit K = 0,03 (supérieur à 1%).

Le critère d'atténuation n'est pas vérifié sur l'ensemble de l'intervalle.

Modélisation et étude des performances du système avec correction IMC

Objectif Améliorer la rapidité tout en atténuant la perturbation sinusoïdale.

Pour améliorer l'atténuation de la perturbation sinusoïdale, il est possible de changer la structure de l'asservissement et d'opter pour une correction IMC (Internal Model Corrector) dont le schéma-blocs est donné sur la figure suivante.

Avec F(p) la fonction de transfert d'un filtre de la forme $F(p) = \frac{1}{(1+Tp)^2}$ et la fonction de transfert H(p) =

$$\frac{1}{m_S p^2 + b_S p + k_e}.$$

La grandeur de sortie $X_{\nu}(p)$ peut s'exprimer par l'équation : $X_{\nu}(p) = A(p)X_{m}(p) + B(p)Q(p)$ avec $A(p) = \frac{1}{(1+Tp)^{2}}$ et $B(p) = \frac{Tp(2+Tp)}{(1+Tp)^{2}}$.

$$\frac{1}{\left(1+Tp\right)^2} \text{ et } B(p) = \frac{Tp\left(2+Tp\right)}{\left(1+Tp\right)^2}.$$

Question 8 Indiquer s'il faut augmenter ou diminuer la valeur de T pour améliorer le temps de réponse consécutif à un échelon de consigne $x_m(t) = x_0$ (on prendra Q(p) = 0 pour cette question). Justifier votre réponse. En déduire la valeur limite de T permettant de satisfaire l'exigence de « rapidité ».

Correction En utilisant la formulation proposée, on a $X_v(p) = A(p)X_m(p) = \frac{X_m(p)}{(1+Tp)^2}.$

Pour améliorer le temps de réponse du système, il faut diminuer *T*.

Justification On a
$$G(p) = \frac{1}{1 + T^2 p^2 + 2Tp}$$
. On a donc $\frac{1}{\omega_0^2} = T^2$ et $\frac{2\xi}{\omega_0} = 2T$. On a donc $\omega_0 = \frac{1}{T}$ et $\xi = 1$.

Pour $\xi = 1$, $t_{5\%}\omega_0 = 5$. Ainsi pour réduire le temps de réponse à 5% il faut augmenter ω_0 et donc diminuer T.

Pour un temps de réponse à 5% de 0,1 s, il faut $\omega_0 = \frac{5}{0.1} = 50 \,\text{rad}\,\text{s}^{-1} \text{ et } T = 0.02 \,\text{s} \text{ (valeur maximale)}.$

Question 9 Le diagramme de Bode de $B(j\omega)$ pour T = 1s est donné ci-après. Indiquer sur la copie s'il faut augmenter ou diminuer la valeur de T pour minimiser l'effet de la perturbation sur l'intervalle $[1,25 \,\mathrm{rad}\,\mathrm{s}^{-1};12,5 \,\mathrm{rad}\,\mathrm{s}^{-1}]$. Justifier votre réponse. En déduire la valeur limite de T permettant de satisfaire l'atténuation de la perturbation liée à l'exigence de « précision » sur cet intervalle.

Correction On a
$$B(p) = \frac{Tp(2+Tp)}{(1+Tp)^2}$$
.

Pour minimiser l'effet de la perturbation, il faut que décaler la cassure vers la droite. D'après le cahier des charges, l'effet de la perturbation doit être divisé par 100. L'atténuation en dB doit donc être de $20\log\frac{1}{100} = -40\,\text{dB}.$

Il faut donc chercher T pour lequel le gain est de -40 dB. En passant B(p) sous forme canonique et en se plaçant en basse fréquence, on a $B(p) \simeq 2Tp$. On a donc $B_{dB}(\omega) = 20 \log(2T\omega)$.

On veut $B_{dB}(12,5) = 20\log(2T \times 12,5) < -40$ soit $\log(2T \times 12,5) < -2 \Rightarrow 2T \times 12,5 < e^{-2} \Rightarrow T < e^{-2}/25$ et T < 0.005 s.

