

98-109003/10 KOVYAZIN V A 94.03.31 94RU-011366 (97.07.20) C07F 7/10, 7/18 Preparation of N:N:bis:hydroxy:methacryl:hydroxypropyl-aminopropyl -tri: ethoxy-silane - by reacting aminopropyl-tri:ethoxy-silane with glycyl methacrylate in the presence of di:tert.-butyl-methylphenol C98-035759 Addnl. Data: KOVYAZIN V A, KOPYLOV V M, SHKOLNIK M I	KOVY/ 94.03.31 *RU 2084456-C1 A(8-M1D, 8-R4, 12-S8B) E(5-E2D)
	The method gives up to 100% conversion of reactants. The product has low viscosity and fairly good water solubility.
<u>EXAMPLE</u> 3-(N,N-bis(2-hydroxy-3-methacryl-hydroxypropyl)amino)propyl(triethoxy)silane, formula $(CH_2=C(CH_3)COOCH_2CH(OH)CH_2)_2N(CH_2)_3Si(OC_2H_5)_3$, is prepared by reacting 3-aminopropyltriethoxysilane (AGM-9) with glycyl-methacrylate (GMA) at 105 -1 10°C for 20-25 min in the presence of 0.5-1.0 mass% 2,6-di-tert butyl-4-methylphenol (ionol).	284 g GMA, 221 g AGM-9, and 5.06 g ionol were mixed together and then heated at 100°C for 20 min. This gave 505 g product with a viscosity of 83 mPa.sec and a bromine number of 65.7, which was partially soluble in water at pH 4. Conversion of reactants was 93% (3pp2301DwgNo.0/0)
<u>USE</u> As a finishing additive for fibre glass compositions used in the construction industry.	
<u>ADVANTAGE</u>	RU 2084456-C

(19) RU (11) 2 084 456 (13) С1
(51) МПК⁶ С 07 F 7/10, 7/18

РОССИЙСКОЕ АГЕНТСТВО
ПО ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ

(21), (22) Заявка: 94011366/04, 31.03.1994

(46) Дата публикации: 20.07.1997

(56) Ссылки: Авторское свидетельство СССР N
1122662, кл. С 07 F 7/18, 1983.

(71) Заявитель:
Ковязин Владимир Александрович,
Копылов Виктор Михайлович,
Школьник Марк Израильевич,
Сафрыгина Ирина Александровна,
Демина Наталья Михайловна

(72) Изобретатель: Ковязин Владимир
Александрович,
Копылов Виктор Михайлович, Школьник Марк
Израильевич, Сафрыгина Ирина
Александровна, Демина Наталья
Михайловна, Ежова Валентина Андреевна

(73) Патентообладатель:
Ковязин Владимир Александрович,
Копылов Виктор Михайлович,
Школьник Марк Израильевич,
Сафрыгина Ирина Александровна,
Демина Наталья Михайловна

(71) Заявитель (прод.):
Ежова Валентина Андреевна

(73) Патентообладатель (прод.):
Ежова Валентина Андреевна

(54) СПОСОБ ПОЛУЧЕНИЯ 3-[N,N-БИС (2-ГИДРОКСИ-3-МЕТАКРИЛОКСИПРОПИЛ)АМИНО]
ПРОПИЛ(ТРИЭТОКСИ)СИЛАНА

(57) Реферат:

Изобретение относится к химии
кремнийорганических соединений, а именно к
способу получения
3-[N,N-бис(2-гидрокси-3-метакрилосипропил)
амино]пропил (триэтокси)силана формулы:

Указанное соединение используется для
аппетрирования стекловолокна в
композиционных стеклопластиках,
применяемых в качестве конструкционных

материалов, изделий сантехнического
оборудования и т.д. Предлагается способ
получения
3-[N,N-бис(2-гидрокси-3-метакрилосипропил)
амино]пропил (триэтокси)силана
взаимодействием
3-аминопропилтриэтоксисилана и
глицидилметакрилата в непрерывном режиме
при температуре 105-110°C в течение 20-25
мин в присутствии
2,6-ди-трет-бутил-4-метилфенола в
количестве 0,5-1 мас.%. Получают продукт с
вязкостью 92-96 мПа ·с и хорошей
растворимостью в воде при pH 4. 1 табл.

R
U
2
0
8
4
4
5
6
C
1

RU
2
0
8
4
4
5
6
C
1

(19) RU (11) 2 084 456 (13) C1
(51) Int. Cl. 6 C 07 F 7/10, 7/18

RUSSIAN AGENCY
FOR PATENTS AND TRADEMARKS

(12) ABSTRACT OF INVENTION

(21), (22) Application: 94011366/04, 31.03.1994

(46) Date of publication: 20.07.1997

(71) Applicant:
Kovjazin Vladimir Aleksandrovich,
Kopylov Viktor Mikhajlovich,
Shkol'nik Mark Izrail'evich,
Safrygina Irina Aleksandrovna,
Demina Natal'ja Mikhajlovna

(72) Inventor: Kovjazin Vladimir Aleksandrovich,
Kopylov Viktor Mikhajlovich, Shkol'nik Mark
Izrail'evich, Safrygina Irina
Aleksandrovna, Demina Natal'ja
Mikhajlovna, Ezhova Valentina Andreevna

(73) Proprietor:
Kovjazin Vladimir Aleksandrovich,
Kopylov Viktor Mikhajlovich,
Shkol'nik Mark Izrail'evich,
Safrygina Irina Aleksandrovna,
Demina Natal'ja Mikhajlovna

(71) Applicant (cont.):
Ezhova Valentina Andreevna

(73) Proprietor (cont.):
Ezhova Valentina Andreevna

(54) METHOD OF SYNTHESIS OF
3-[N,N-BIS-(2-HYDROXY-3-METHACRYLHYDROXYPROPYL)AMINO]-PROPYL- -(TRIETHOXY)-SILANE

(57) Abstract:

FIELD: chemistry of organosilicon compounds. SUBSTANCE: product: 3-[N,N-bis-(2-hydroxy-3-methacrylhydroxypropyl)amino]-propyl- -(triethoxy)-silane of the formula:

CH₃ OH

Method of synthesis involves interaction

of 3-aminopropyltriethoxysilane and glycidylmethacrylate at continuous regime at 105-110 °C for 20-25 min in the presence of 2,6-di-tert.-butyl-4-methylphenol at amount 0.5-1 wt.-%. Synthesized compound shows viscosity 92-96 MPa · s and good water solubility at pH = 4. Synthesized compound is used for fiberglass dressing. EFFECT: improved method of synthesis. 1 tbl

R
U
2
0
8
4
4
5
6
C
1

RU
2
0
8
4
4
5
6
C
1

Изобретение относится к химии кремнийорганических соединений, а именно к способу получения 3-[N,N-бис(2-гидрокси-3-метакрилоксипропил)амин о]пропил (триэтокси) силана формулы:

Указанное соединение используется для аппретирования стекловолокна в композиционных стеклопластиках, применяемых в качестве конструкционных материалов, изделий сантехнического оборудования и т.д.

Предлагается способ получения 3-[N,N-бис(2-гидрокси-3-метакрилоксипропил)амино]пропил (триэтокси) силана взаимодействием АГМ-9 и ГМА в непрерывном режиме при температуре 105-110°C в течение 20-25 мин в присутствии 2,6-ди-трет-бутил-4-метилфенола в количестве 0,5-1 мас.

Ниже приведены примеры, иллюстрирующие изобретение.

Пример 1.

В смеситель с охлаждающей рубашкой загружают 284 г (2 моля) ГМА, 221 г (1 моль) АГМ-9, перемешивают 10 мин, затем дозирующим насосом реакционную смесь подают в проточный реактор, обогреваемый теплоносителем с температурой 100°C со скоростью, обеспечивающей пребывание реакционной смеси в реакторе в течение 20 мин. Получают 505 г продукта, конверсия исходных реагентов 93% вязкость 132 мПа ·с, бромное число 51,6, растворимость в воде при pH 4 неполная.

Пример 2.

В смеситель с охлаждающей рубашкой загружают 284 г (2 моля) ГМА, 221 г (1 моль) АГМ-9 и 5,06 г (1,0 мас.) ионола, перемешивают 10 мин, затем дозирующим насосом реакционную смесь подают в проточный реактор, обогреваемый теплоносителем с температурой 100°C со

скоростью, обеспечивающей пребывание реакционной смеси в реакторе в течение 20 мин. Получают 505 г продукта, конверсия исходных реагентов 93% вязкость 83 мПа·с, бромное число 65,7, растворимость в воде при pH 4 неполная.

В таблице приведены примеры синтеза соединения 1.

Проведение реакции при температуре ниже 105°C существенно снижает конверсию исходных продуктов. Повышение температуры выше 110°C приводит к повышению вязкости продукта и ухудшению его растворимости в воде.

Оптимальное время пребывания реакционной смеси в реакторе составляет 20-25 мин. При продолжительности реакции менее 20 мин исходные продукты полностью не расходуются. При увеличении времени пребывания в реакторе более 25 мин возрастает вязкость продукта и ухудшается его растворимость в воде.

Минимальное количество ингибитора составляет 0,5 мас. ниже которого возрастает вязкость продукта. Увеличение содержания ингибитора более 1 мас. не влияет на изменение вязкости продукта.

Таким образом, 3-[N,N-бис(2-гидрокси-3-метакрилоксипропил)амино]пропил (триэтокси) силан, полученный по предлагаемому способу, обладает низкой вязкостью и хорошей растворимостью в воде и может быть использован в качестве водорастворимого аппрета для обработки стекловолокна и других минеральных наполнителей для композиционных материалов.

Формула изобретения:

Способ получения 3-[N,N-бис(2-гидрокси-3-метакрилоксипропил)амино]пропил(триэтокси) силана, отличающийся тем, что 3-аминопропилтриэтокси силан подвергают взаимодействию с глицилметакрилатом при 105-110°C в течение 20-25 мин в присутствии 2,6-ди-трет-бутил-4-метилфенола в количестве 0,5-1,0 мас.

45

50

55

60

R U 2 0 8 4 4 5 6 C 1

При- мер	t, °C	Вре- мя, мин	Инги- битор	Содер- жание ингиби- тора, мас.%	Конверсия исходных реагентов, %		Вяз- кость, мПа·с	Бром- ное число, Br ₂ /100г	Раство- римость в воде при pH 4
					АГМ-9	ГМА			
1	100	20	-	-	93	93	132	51,6	неполная
2	100	20	Ионол	1,0	94	93	83	65,7	неполная
3	105	20	---	0,5	100	100	92	63,0	полная
4	105	18	---	0,5	97	96	87	63,3	неполная
5	105	25	---	0,5	100	100	94	62,8	полная
6	105	28	---	0,5	100	100	128	58,2	неполная
7	105	28	---	1,0	100	100	123	59,3	неполная
8	100	25	---	0,5	96	91	85	63,0	неполная
9	100	30	---	0,5	99	97	91	60,1	неполная
10	110	20	---	0,5	100	100	93	62,8	полная
11	110	25	---	0,5	100	100	96	62,2	полная
12	110	30	---	0,5	100	100	176	53,4	неполная
13	110	30	---	1,0	100	100	156	56,7	неполная
14	110	25	---	1,0	100	100	94	62,7	полная
15	110	25	---	1,2	100	100	94	62,8	полная
16	100	25	---	0,3	100	100	168	54,3	неполная
17	115	20	---	1,0	100	100	139	57,6	неполная
18	115	20	---	1,5	100	100	130	58,3	неполная
19	115	18	---	1,5	97	98	124	59,4	неполная
20	105	25	1,4-ги- дрохи-	1,0	100	100	184	56,7	неполная
21	105	25	нон	1,5	100	100	171	56,9	неполная
22	100	25	---	1,0	100	100	196	52,8	неполная
23	110	25	---	1,5	100	100	185	53,0	неполная

R U 2 0 8 4 4 5 6 C 1