Tutorial 1 - Asymptotic Notations

Find the relationship between f(n) and g(n). It can be:

•
$$f(n) = \mathcal{O}(g(n))$$

•
$$f(n) = \Omega(g(n))$$

•
$$f(n) = \Theta(g(n))$$

1.
$$f(n) = \frac{n^2 - n}{2}$$
 and $g(n) = n$

2.
$$f(n) = n + 2\sqrt{n}$$
 and $g(n) = n^2$

3.
$$f(n) = n + \log n$$
 and $g(n) = n\sqrt{n}$

4.
$$f(n) = 2(\log n)^2$$
 and $g(n) = \log n + 1$

5.
$$f(n) = n^2$$
 and $g(n) = n^3$

6.
$$f(n) = 2n^2 + 1$$
 and $g(n) = n^2$

7.
$$f(n) = 3n^2 + \sqrt{n}$$
 and $g(n) = n + n\sqrt{n} + \sqrt{n}$

8.
$$f(n) = n \log n$$
 and $g(n) = n\sqrt{n}$

9.
$$f(n) = n^2 + 3n$$
 and $g(n) = 6n + 7$

10.
$$f(n) = n\sqrt{n}$$
 and $g(n) = n^2 - n$

11.
$$f(n) = n^{\log n}$$
 and $g(n) = (\log n)^n$

12.
$$f(n) = 3n \lfloor \log n \rfloor$$
 and $g(n) = n^2$

- 13. Rank the following functions by increasing order of growth (i.e., the slowest-growing first, the fastest-growing last)
 - (a) $(\log \log n)^2$
 - (b) $\log(n!)$
 - (c) \sqrt{n}
 - (d) $n^{1.1}$
 - (e) $n \log n$
 - (f) 2^n

- (g) n^2
- (h) $(\log n)^{0.3}$
- (i) $10 \log n$
- (j) $2^{\log n}$
- 14. Compute simple, tight upper bounds for f(n), where f(n) is the following:
 - (a) $\log_{ln_5}(log^{log100}n)$
 - (b) $5^{\log(3)}n^3 + 10^{80}n^2 + \log(3)n^{3.1} + 6006$
- 15. Sort the functions in increasing order of asymptotic (big-O) complexity:
 - (a) $f_1(n) = n^{0.999999} log n$
 - (b) $f_2(n) = 100000n$
 - (c) $f_3(n) = 1.000000001^n$
 - (d) $f_4(n) = n^2$