Problem 1

The first goal of the current research was to identify whether there's a statistically significant relationship between participation in Erasmus exchange and language skills. For this task the crosstabulation of those two variables were constructed with the corresponding χ^2 test. Here is the complete table showing the number of observations and the column percentages for different group interactions of variables participation in Erasmus exchange and language skills.

Language skills * Participation in Erasmus exchange Crosstabulation

		Language okino i artiolpation in		_		
			Participa	ation in Erasmus ex	change	
			Before the	During the	After the	
			exchange	exchange	exchange	Total
Language	Poor to	Count	22	28	28	78
skills	moderate	Expected Count	17,3	33,4	27,2	78,0
		% within Participation in Erasmus exchange	52,4%	34,6%	42,4%	41,3%
	Good	Count	18	44	26	88
		Expected Count	19,6	37,7	30,7	88,0
		% within Participation in Erasmus exchange	42,9%	54,3%	39,4%	46,6%
	Fluent	Count	2	9	12	23
		Expected Count	5,1	9,9	8,0	23,0
		% within Participation in Erasmus exchange	4,8%	11,1%	18,2%	12,2%
Total		Count	42	81	66	189
		Expected Count	42,0	81,0	66,0	189,0
		% within Participation in Erasmus exchange	100,0%	100,0%	100,0%	100,0%

The first step was to determine whether such a test could be applied.

Chi-Square Tests

	-		Asymptotic
			Significance (2-
	Value	df	sided)
Pearson Chi-Square	7,988ª	4	,092

a. 0 cells (0,0%) have expected count less than 5. The minimum expected count is 5,11.

According to the footnote in the table, there's 0% of cells containing less than 5 observations, which means that χ^2 test will produce reliable results. The next step concerns the null hypothesis of χ^2 test. As p value of 0.092 is below the significance level of 0.1 (we can use this level of alpha due to total number of observations =189 <200) we reject the H_0 . It means that those difference in percentages shown in the table above is statistically significant.

Symmetric Measures					
Approximate					
	Value	Significance			
Cramer's V	,145	,092			

Cramer's V is seemed to be not meaningful cause it is lease than 0.3, but his particular metric requires more complex analysis.

Problem 2

The second problem concerns examination the difference between group means of willingness to emigrate to Poland based on participation of Erasmus exchange.

Here we can see on the bar plot that there's 3 group of independent variable, so wee need to use ANOVA instead of T-test to compare group means.

Participation in Erasmus exchange

First of all we should check the assumptions of normality of errors. Just for simplification task we can explore the skewness and kurtosis of original variable which still will present a meaningful result.

Descriptives

		Statistic	Std. Error
Willingness to emigrate	Skewness	-,329	,177
within one year after	Kurtosis	-,967	,352
graduation			

We can see that both skewness and kurtosis is within [-1.5;1.5] range, which means that we do not expect non-normal residuals.

Test of Homogeneity of Variances

		Levene Statistic	df1	df2	Sig.
Willingness to emigrate	Based on Mean	2,263	2	186	,107
within one year after					
graduation					

As we see, we do not reject null hypothesis in homogeneity test (p value = 0.107 > 0.1 and 0.05). Thus, the second assumption is also fulfilled and we can interpret our coefficients.

Multiple Comparisons

Dependent Variable: Willingness to emigrate within one year after graduation

LSD

(I) Participation in Erasmus	(J) Participation in Erasmus	Mean Difference			95% Confide	ence Interval
exchange	exchange	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
Before the exchange	During the exchange	,087	,289	,763	-,48	,66
	After the exchange	-,251	,300	,404	-,84	,34
During the exchange	Before the exchange	-,087	,289	,763	-,66	,48
	After the exchange	-,338	,252	,181	-,84	,16
After the exchange	Before the exchange	,251	,300	,404	-,34	,84
	During the exchange	,338	,252	,181	-,16	,84

However, we see that none of the means is significantly different from each other.

Problem 3

Before building a regression we need to check variables for multicollinearity. In case of attitudes towards political and economic situation in Poland, religiosity, family and tradition, we see that they are correlated (with the help of correlation matrix). Thus, we need to compare factor analysis.

KMO and Bartlett's Test

Kaiser-Meyer-Olkin Measure	,887	
Bartlett's Test of Sphericity	Approx. Chi-Square	2377,699
	df	210
	Sig.	,000

First of all we examine KMO and Barlett's statistics. We see that KMO is way above cutoff point of 0.5 and p value of Barlett's test is left than alpha. It means that correlation matrix is significant from Identity matrix and factor analysis is appropriate.

Total Variance Explained

	Extraction Sums of Squared Loadings			Rotation St	ums of Square	d Loadings
Component						
1	7,578	36,087	36,087	4,982	23,723	23,723
2	2,525	12,025	48,111	4,347	20,698	44,421
3	1,879	8,948	57,060	2,361	11,244	55,665
4	1,647	7,841	64,901	1,940	9,236	64,901

Extraction Method: Principal Component Analysis.

Then we examine the total variance explained by our common factors. We see that 4 components explains about 65% of all variance, which is pretty good result.

Communalities

	Initial	Extraction
The current government is	1,000	,512
acting on behalf of all Poles.		
The government is just.	1,000	,649
I'm prouder of being Polish	1,000	,794
under the current		
government than before.		
The current government	1,000	,732
gives Poland a good image		
abroad.		

I feel safe in Poland under	1,000	,665
the current government.		
Overall, I think the	1,000	,846
government makes good		
choices.		
Religion is important in my	1,000	,828
life.		
Church should be supported	1,000	,649
by state.		
Religion should be taught in	1,000	,653
public schools.		
I attend religious services	1,000	,800
regularly.		
I pray daily.	1,000	,751
One cannot achieve	1,000	,693
happiness in life without		
religion.		
Religious people are more	1,000	,592
reliable than not religious.	,	,
I cannot afford to go out	1,000	,431
once a week.	,,,,,,	, -
My job is secured and stable.	1,000	,404
I believe that my living	1,000	,563
conditions are good.	1,000	,000
My current financial situation	1,000	,546
is better now than it was a	1,000	,010
year ago.		
I often participate in local	1,000	,522
events in my local	1,000	,022
community.		
In everything I do, I always	1,000	,664
have in mind, first and	1,000	,004
foremost, the good of		
Poland.		
I'm attached to Poland's	1 000	670
	1,000	,679
traditions and values (family,		
religion).	4 000	050
I am proud of being Polish/	1,000	,658
have Polish decent.		

Extraction Method: Principal Component Analysis.

Then I'd like to show the table which shows how much of variance was explained in each variable by those factors. The cutoff point here is 0.3 so each result is significant.

Rotated Component Matrix^a

	Component			
	1	2	3	4
Religion is important in my life.	,881			
I attend religious services regularly.	,865			
I pray daily.	,849			
One cannot achieve happiness in life without religion.	,818			
Religion should be taught in public schools.	,732			
Religious people are more reliable than not religious.	,718			
Church should be supported by state.	,703	,352		
Overall, I think the government makes good choices.		,889,		
The current government gives Poland a good image abroad.		,837		
I'm prouder of being Polish under the current government than before.		,832		
I feel safe in Poland under the current government.		,770		
The government is just.		,764		
The current government is acting on behalf of all Poles.		,701		
I am proud of being Polish/ have Polish decent.			,742	
I often participate in local events in my local community.			,720	

In everything I do, I always have in mind, first and foremost, the good of Poland.		,346	,706	
I'm attached to Poland's traditions and values (family, religion).	,421		,690	
I believe that my living conditions are good.				,742
My current financial situation is better now than it was a year ago.				,715
My job is secured and stable.				,616
I cannot afford to go out once a week.				-,603

Extraction Method: Principal Component Analysis.

Rotation Method: Varimax with Kaiser Normalization.

a. Rotation converged in 5 iterations.

The next matrix shows which factors explains which variables best. I decided to create 4 components and call them religion, political, tradition ,finance.

Then we needed to transform dependent variable cause it consisted of more than 2 groups.

Statistics

Willingness to emigrate within one year after graduation

N	Valid	189
	Missing	0

Willingness to emigrate within one year after graduation

					Cumulative
		Frequency	Percent	Valid Percent	Percent
Valid	Not willing at all	11	5,8	5,8	5,8
	2	26	13,8	13,8	19,6
	3	32	16,9	16,9	36,5
	4	37	19,6	19,6	56,1
	5	44	23,3	23,3	79,4
	I'll surely emigrate.	39	20,6	20,6	100,0
	Total	189	100,0	100,0	

I decided to recode 5 and 6 as 0 and all other groups as 1.

willingness_bin

					Cumulative
		Frequency	Percent	Valid Percent	Percent
Valid	,00	83	43,9	43,9	43,9
	1,00	106	56,1	56,1	100,0
	Total	189	100,0	100,0	

Next I held regression analysis. In a result we first obtain classification table of the original model with no independent variables. We see that it's accuracy of predicting is 56,5%.

Class	sification	n Table ^{a,b}	,
Olasi	moano	II I abic	

]		Predicted		
	1		willingn	Percentage	
	Observed		,00	1,00	Correct
Step 0	willingness_bin	,00	0	81	,0
		1,00	0	105	100,0
	Overall Percentage	Э			56,5

a. Constant is included in the model.

Then I included a table with pseudo-R-squared variables (Nagelkerke). We see that the last models shows the best result so I decided to investigate it. The final models shows 0.521 of reduction in the prediction error as compared to the baseline model.

Model Summary

		Cox & Snell R	Nagelkerke R
Step	-2 Log likelihood	Square	Square
1	193,840ª	,279	,374
2	187,813 ^b	,302	,405
3	182,965 ^b	,320	,429
4	177,436 ^b	,340	,456
5	172,617 ^b	,357	,479
6	168,034 ^b	,373	,500
7	163,301 ^b	,388	,521

a. Estimation terminated at iteration number 5 because parameter estimates changed by less than ,001.

b. The cut value is ,500

b. Estimation terminated at iteration number 20 because maximum iterations has been reached. Final solution cannot be found.

Omnibus Tests of Model Coefficients

	Chi-square	df	Sig.
Step 7	4,734	1	,030
	35,570	7	,000
	91,445	18	,000

The next test is about whether the final model is more accurate than the previous and we see that is actually true due to low sig.

Hosmer and Lemeshow Test

Step	Chi-square	df	Sig.
1	8,483	8	,388
2	10,360	8	,241
3	4,327	8	,827
4	5,628	8	,689
5	7,676	8	,466
6	11,028	8	,200
7	11,995	8	,151

Classification Table^a

	7					
	_	Predicted				
			willingne	ess_bin	Percentage	
	Observed		,00	1,00	Correct	
Step 1	willingness_bin	,00	59	22	72,8	
		1,00	22	83	79,0	
	Overall Percentag	е			76,3	
Step 2	willingness_bin	,00	59	22	72,8	
		1,00	23	82	78,1	
	Overall Percentag	е			75,8	
Step 3	willingness_bin	,00	61	20	75,3	
		1,00	24	81	77,1	
	Overall Percentag	е			76,3	
Step 4	willingness_bin	,00	61	20	75,3	
		1,00	21	84	80,0	
	Overall Percentag	е			78,0	
Step 5	willingness_bin	,00	61	20	75,3	
		1,00	23	82	78,1	
	Overall Percentag	е			76,9	
Step 6	willingness_bin	,00	62	19	76,5	

		1,00	21	84	80,0
	Overall Percentag	e			78,5
Step 7	willingness_bin	,00	64	17	79,0
		1,00	21	84	80,0
	Overall Percentag	e			79,6

a. The cut value is ,500

The next table shows us how the accuracy has improved. It's actually pretty well (79,6-56.5)/56.5

Variables in the Equation

		В	S.E.	Wald	df	Sig.	Exp(B)
Step 7 ^g	religion	1,082	,285	14,376	1	,000	2,952
	political	,088	,225	,153	1	,696	1,092
	tradition	,474	,240	3,891	1	,049	1,606
	finance	1,083	,339	10,198	1	,001	2,955
	Q.4=Poor to moderate	3,239	1,461	4,914	1	,027	25,518
	Q.4=Good	3,345	1,467	5,202	1	,023	28,368
	Q.1=Before the exchange	-,372	,575	,420	1	,517	,689
	Q.1=During the exchange	-3,006	1,210	6,175	1	,013	,049
	Gender	-1,840	,927	3,939	1	,047	,159
	Work status	-1,027	,487	4,456	1	,035	,358
	Family members living	-,265	,471	,316	1	,574	,767
	abroad						
	religion * erasmus_6	-,917	,451	4,145	1	,042	,400
	tradition * erasmus_6	,967	,466	4,298	1	,038	2,630
	finance * erasmus_5	-,995	,446	4,973	1	,026	,370
	D.1=Male * Q.5.2=No	20,633	7833,746	,000	1	,998	913795831,278
	D.1=Female * erasmus_5	2,554	1,203	4,506	1	,034	12,863
	Q.2=Yes * language_3	4,023	1,753	5,268	1	,022	55,885
	language_3 * erasmus_4	25,136	22750,794	,000	1	,999	82518689283,78
							3
	Constant	-,462	1,711	,073	1	,787	,630

g. Variable(s) entered on step 7: tradition * erasmus_6.

1 standard deviation in political corresponds to increased odds of being classified as group 1 by 0.092%.

ROC curve is wery well with an AUC more about 88%.

Area Under the Curve

Test Result Variable(s): Predicted probability

			Asymptotic 95% Confidence		
			Inte	rval	
Area	Std. Error ^a	Asymptotic Sig.b	Lower Bound	Upper Bound	
,877	,025	,000	,828	,926	

- a. Under the nonparametric assumption
- b. Null hypothesis: true area = 0.5

Coordinates of the Curve

Test Result Variable(s): Predicted probability

Positive if		
Greater Than or		
Equal To ^a	Sensitivity	1 - Specificity
,0000000	1,000	1,000
,0026134	1,000	,988
,0050948	1,000	,975
,0074446	1,000	,963
,0125766	1,000	,951
,0195934	1,000	,938

,0248917	1,000	,926
,0308946	1,000	,914
,0361368	1,000	,901
,0524169	1,000	,889
,0686412	,990	,889
,0706882	,990	,877
,0725605	,990	,864
,0756587	,990	,852
,0789790	,990	,840
,0952870	,990	,827
,1104733	,990	,815
,1141772	,981	,815
,1204976	,981	,802
,1256496	,981	,790
,1334678	,981	,778
,1424748	,981	,765
,1512251	,981	,753
,1578583	,981	,741
,1687144	,981	,728
,1797840	,981	,716
,1820780	,981	,704
,1854166	,981	,691
,1941543	,981	,679
,2010107	,981	,667
,2024015	,981	,654
,2061662	,981	,642
,2112939	,981	,630
,2153036	,981	,617
,2194111	,981	,605
,2255063	,981	,593
,2340913	,981	,580
,2400720	,981	,568
,2415917	,981	,556
,2437973	,971	,556
,2518394	,962	,556
,2617217	,952	,556
,2684064	,952	,543
,2730237	,952	,531
,2751706	,952	,519

,2836277	,943	,519
,2920122	,933	,519
,2976603	,933	,506
,3031815	,933	,494
,3034701	,933	,481
,3049730	,933	,469
,3159087	,924	,469
,3319195	,924	,457
,3387891	,924	,444
,3396396	,924	,432
,3421197	,924	,420
,3454254	,924	,407
,3478373	,924	,395
,3498523	,924	,383
,3527039	,914	,383
,3566512	,914	,370
,3592691	,905	,370
,3670792	,895	,370
,3745935	,886	,370
,3815034	,886	,358
,3929576	,886	,346
,3982741	,876	,346
,4045556	,867	,346
,4125273	,857	,346
,4156635	,848	,346
,4187046	,848	,333
,4235633	,838,	,333
,4273216	,838	,321
,4311384	,838	,309
,4377019	,838	,296
,4448452	,838	,284
,4509959	,838,	,272
,4536094	,829	,272
,4541772	,829	,259
,4563357	,829	,247
,4580374	,819	,247
,4634603	,819	,235
,4708325	,810	,235
,4765426	,800	,235

a. The smallest cutoff value is the minimum observed test value minus 1, and the largest cutoff value is the maximum observed test value plus 1. All the other cutoff values are the averages of two consecutive ordered observed test values.

Cutoff point is ,4765426.