8. Типы распределений, примеры.

Дискретное распределение

Случайная величина ξ имеет **дискретное распределение**, если она принимает не более чем счетное число значений (эти значения называют атомами).

Например, распределение Бернулли P(X=1)=p, P(X=0)=1-p.

Если записать соответствие между значениями случайных величин и вероятностями принимать эти значения в виде таблицы, получится **таблица распределения**.

У дискретных величин можно сделать такую таблицу (возможно бесконечную).

Абсолютное непрерывное распределение

Случайная величина ξ имеет **абсолютно непрерывное распределение**, если существует неотрицательная функция $f_{\xi}(x)$ (функция плотности распределения) такая, что для любого подмножества B имеет место равенство:

$$P(\xi \in B) = \int\limits_B f_{\xi}(x) dx.$$

Например, равномерное распределение $U_{[0,1]}$: f(t)=t при $t\in [0,1]$ иначе 0.

Свойства функции плотности вероятности:

1.
$$\forall x: f_{\xi}(x) \geq 0$$
.

2.
$$\int\limits_{-\infty}^{\infty}f_{\xi}(t)dt=1.$$

У непрерывных - нет.

Сингулярное распределение

Определение 25. Случайная величина ξ имеет *сингулярное* распределение, если существует борелевское множество B с нулевой лебеговой мерой $\lambda(B)=0$ такое, что $\mathsf{P}(\xi\in B)=1$, но при этом $\mathsf{P}(\xi=x)=0$ для любой точки $x\in B$.

Случайная величина X имеет сингулярное распределение, если $F_X(t)$ непрерывна, но не существует такой p(t), что $F_X(t) = \int\limits_{-\infty}^t p(y) dy$

Например, распределение на лестнице Кантора.

Смешанное распределение

О п р е д е л е н и е 26. Случайная величина ξ имеет *смешанное* распределение, если найдутся такие случайные величины ξ_1 , ξ_2 и ξ_3 —с дискретным, абсолютно непрерывным и сингулярным распределениями соответственно (или такие три распределения), и числа $p_1, p_2, p_3 \in [0, 1), p_1 + p_2 + p_3 = 1$, что для любого $B \in \mathfrak{B}(\mathbb{R})$ имеет место равенство

$$P(\xi \in B) = p_1 P(\xi_1 \in B) + p_2 P(\xi_2 \in B) + p_3 P(\xi_3 \in B).$$

X имеет смешанное распределение, если $F_X(t) = \alpha F_D(t) + (1-\alpha)F_C(t)$, где F_D, F_C - функции распределения дискретного и абсолютно непрерывного распределения соответственно; $\alpha \in [0,1]$.

Например, распределение $Y = \min(1,X), X \sim U_{[0,2]}.$