

Ex.2. [et The at	iee with an	even hum	bor of edges	. Show that	at least on	e vortex
must ha	ive even dega	ee.					
Solver	s. Sea	T = (V, E) . Sabe	nos gre			
		(E) =	11/1-1				
Com	ic IEI es	par, IVI	les Impa	r.			
					ices trong	ado Impac.	
					lo coal		
	ver						
C	IMPAC, pues	es una sum	0	(par)			
	sk una contide						
	(mpanes)						
Así,	existe alm	onos un vént	ice de so	ado par			
,			0	(2.0)			

