Power Analysis for Non-Inferiority Trial Comparing App-Based vs Face-to-Face CPT for PTSD

Introduction

This document presents a power analysis for a non-inferiority trial comparing app-based with face-to-face Cognitive Processing Therapy (CPT) for PTSD.

The trial employs a three-arm design:

- 1. Active Control (n = 50): Standard face-to-face CPT treatment (including 20 historical controls)
- 2. App with Expert Guidance (n = 30): App-based CPT guided by experienced therapists
- 3. App with Non-Expert Guidance (n = 30): App-based CPT guided by less experienced therapists

Analytical Approach

The primary outcome is PTSD symptom change measured by the PSSI (clinician interview). The study uses a Bayesian multilevel pre-post model to analyze changes in standardized PSSI scores. Standardized scores (z-scores) are used to increase interpretability, with effects expressed in standard deviation units.

Key Parameters and Assumptions

For this power analysis, we make the following assumptions:

- Effect sizes:
 - Face-to-face CPT: 1.24 SD (based on Asmundson et al., 2018)
 - App with expert guidance: 1.24 SD (assumed comparable to face-to-face)
 - App with non-expert guidance: 1.24 SD (assumed comparable to face-to-face)
- Correlation: ICC of 0.5 between pre and post measurements
- Non-inferiority: Margin of 0.5 SD units, with probability threshold of 0.89 for declaring non-inferiority
- Attrition: Dropout rate of 20% across all conditions
- Simulation: 1000 Monte Carlo simulations

Hypotheses of Interest

Two key hypotheses will be examined:

- 1. **Primary hypothesis (H1)**: Face-to-face CPT is not superior to combined app-based interventions by more than the non-inferiority margin of 0.5 SD.
- 2. Secondary hypothesis (H2): App with expert guidance is not superior to app with non-expert guidance by more than the non-inferiority margin of 0.5 SD.

Simulation Method and Validation

To verify our simulation function works correctly, we generated an example dataset and examined its properties. The simulation produces a dataset that includes pre- and post-treatment measurements with the specified effect sizes, ICC, and dropout rates. Below is a brief sanity check of the simulated data:

Table 1: Example of Simulated Data Structure

id	condition	wave	$pssi_z$
1	f2f	pre	-0.0128879
1	f2f	post	2.1986250
2	f2f	pre	-0.1362440
2	f2f	post	0.4623330
3	f2f	pre	1.8401732
3	f2f	post	NA

Table 2: Observed Effect Sizes in Simulated Data

condition	n	mean_change	${\it effect_size}$
app_expert app_nonexpert	22 22	1.28 1.52 1.21	1.15 1.67 1.20

Table 3: Observed Dropout Rates by Condition

condition	total	percent_dropout
app_expert app_nonexpert	30 30 50	26.7 26.7 12.0

The simulation function effectively creates data with the specified treatment effects, correlation structure, and expected dropout rates.

Bayesian Model Implementation

We fit a Bayesian multilevel model to test our non-inferiority hypotheses:

Table 4: Fixed Effects from Example Model

Parameter	Estimate	Est.Error	2.5%	97.5%
conditionapp_expert conditionapp_nonexpert	-0.259 0.189	0.128 0.133	-0.494 -0.068	0.112 0.463
conditionf2f	0.189 0.226	0.133 0.122	-0.068	0.403 0.412
conditionapp_expert:time conditionapp_nonexpert:time	1.124 1.220	$0.203 \\ 0.167$	$0.718 \\ 0.900$	1.437 1.464
conditionf2f:time	0.985	0.134	0.791	1.289

Table 5: Non-Inferiority Probabilities (Single Simulation)

Hypothesis	Probability of Non-Inferiority
H1 (Primary): F2F vs App Combined	0.998
H2 (Secondary): Expert vs Non-Expert	0.995

Full Power Analysis

Now we run the complete power analysis with 1000 simulations:

Hi

Table 6: Power Analysis Results with 89% CI

Hypothesis	Median Probability	SD	89\% CI Lower	89\% CI Upper	Power
H1 (Primary): F2F vs App Combined	0.981	0.096	0.756	1	0.839
H2 (Secondary): Expert vs Non-Expert	0.969	0.119	0.663	1	0.751

Table 7: Simulation Performance

Cores Used	Number of Simulations	Runtime (minutes)
1	1000	155.84

Interpretation

The results indicate that the proposed study design has:

- 83.9% power to detect non-inferiority for the primary hypothesis (H1): comparing face-to-face CPT to combined app-based interventions.
- **75.1% power** to detect non-inferiority for the secondary hypothesis (H2): comparing app with expert guidance to app with non-expert guidance.

While the power for the secondary hypothesis is lower than conventional standards (80%), this is justified as this is a pilot study where the primary focus is on establishing the overall non-inferiority of app-based approaches compared to traditional face-to-face therapy. The secondary hypothesis regarding differences between types of app guidance is exploratory in nature and will inform future, more focused studies on implementation factors.

Reference

Asmundson, G. J. G., Thorisdottir, A. S., Roden-Foreman, J. W., Baird, S. O., Witcraft, S. M., Stein, A. T., ... Powers, M. B. (2018). A meta-analytic review of cognitive processing therapy for adults with posttraumatic stress disorder. *Cognitive Behaviour Therapy*, 48(1), 1–14. https://doi.org/10.1080/16506073.2018.1522371