Edge Detection

CS 450: Computer Vision slides by Dr. Bryan Morse

Edges and Gradients

- Edge: local indication of an object transition
- Edge detection: local operators that "find" edges (usually involves convolution)
- Local intensity transitions are indicated by the gradient:

$$\nabla I = \begin{bmatrix} \frac{\partial}{\partial x} I \\ \frac{\partial}{\partial y} I \end{bmatrix}$$

- Interpretation:
 - ► Gradient magnitude ||∇I||: edge "strength"
 - Gradient orientation $\phi(\nabla I)$: cross-edge direction

Prewitt Kernels

Idea: central finite differences

Central difference:

$$\frac{dI}{dx}\approx [I(x+1)-I(x-1)]/2$$

or for two-dimensional images:

$$\frac{\partial I}{\partial x} \approx [I(x+1,y) - I(x-1,y)]/2$$

This corresponds to the following convolution kernel:

Prewitt Kernels

Or for more robustness to noise, smooth in the other direction:

-1	0	1		
-1	0	1		
-1	0	1		
$\partial/\partial x$				

$$\begin{vmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \\ \hline \frac{\partial}{\partial y}$$

Sobel Kernels

Or, giving more weight to the central pixels when averaging:

-1	0	1	
-2	0	2	
-1	0	1	
$\partial/\partial x$			

$$\begin{array}{c|cccc} -1 & -2 & -1 \\ \hline 0 & 0 & 0 \\ \hline 1 & 2 & 1 \\ \hline \partial/\partial y \\ \end{array}$$

- These kernels can also be thought of as 3 x 3 approximations of the first derivative of a small Gaussian
- Can be though of as blurring by a small Gaussian to remove noise, then taking the derivative:

$$\frac{\partial}{\partial x}(I*G) = I*\frac{\partial}{\partial x}G \approx I*Sobel(x)$$

From Gradient Magnitude to Edges

The gradient magnitude gives a measure *at every pixel* of the "edginess" of each pixel:

$$\|\nabla I(x,y)\|$$

Somehow, you have to still find the best edges:

- Threshold (global or local), etc.
- Local maxima of gradient magnitude

:

Using Second Derivatives

Classic maximum test from calculus:

x is a extremum of
$$f(x)$$
 if $\frac{df}{dx}(x) = 0$

Extend this idea to find maximal first derivatives:

x is a extremum of
$$\frac{df}{dx}(x)$$
 if $\frac{df^2}{dx^2}(x) = 0$

Using Second Derivatives

Laplacian

▶ The Laplacian is defined mathematically as

$$\nabla^2 = \nabla \cdot \nabla = \begin{bmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \end{bmatrix} \cdot \begin{bmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \end{bmatrix} = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$$

When we apply it to an image, we get

$$\nabla^2 I = \left(\left| \begin{array}{c} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \end{array} \right| \cdot \left| \begin{array}{c} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \end{array} \right| \right) I = \frac{\partial^2 I}{\partial x^2} + \frac{\partial^2 I}{\partial y^2}$$

Marr-Hildreth Edge Detection

Idea: approximate finding maxima of gradient magnitude (edges) by finding places where

$$\nabla^2 I(x,y) = 0$$

 Can't always find discrete pixels where the Laplacian is exactly zero—look for zero crossings instead.

Laplacian Operators

Second difference:

$$\frac{d^2 I}{dx^2} \approx [I(x+1) - I(x)] - [I(x) - I(x-1)]$$

= $I(x+1) - 2I(x) + I(x-1)$

The Laplacian is one of these in the x direction added to one of these in the y direction:

0	0	0
1	-2	1
0	0	0

0	1	0
1	-4	1
0	1	0

Derivatives of Gaussians

Gaussian kernel for noise removal:

$$G(x,y) = (2\pi\sigma)^{-d/2} e^{-r^2/2\sigma^2}$$

where $r^2 = x^2 + y^2$ and d is the dimensionality (images=2)

- Can solve in closed form for the first- and second-order derivatives of the Gaussian (including the Laplacian)
- Can convolve with these directly exactly the same as blurring first then applying derivatives

Difference of Gaussians

Another property of the Laplacian of Gaussian:

$$\nabla^2 G = \frac{\partial}{\partial \sigma} G$$

We can thus approximate the Laplacian by the difference of one Gaussian and a just-smaller one:

$$\nabla^2 G \approx G(x, y; \sigma_1) - G(x, y; \sigma_2)$$

This is the *Difference of Gaussians* (DoG) kernel.

▶ Ratio (σ_1/σ_2) for best approximation is about 1.6. (Some people like $\sqrt{2}$.)

Combining Both First- and Second-Derivatives

Laplacian zero crossings:

$$\nabla^2 I = 0$$

- Problem:
 Tells you the gradient magnitude is at a maximum, not how strong it is—lots of spurious edges.
- Idea: Combine the two measures

$$\nabla^2 I = 0$$
 and $\nabla I > T$

Canny Edge Detector

- Problem with Laplacian zero-crossings: adds the principal curvatures together—it doesn't really determine a maximum of gradient magnitude in any one direction.
- The Canny Edge Detector defines edges as zero-crossings of second derivatives in the direction of greatest first derivative.

The Direction of Greatest First Derivative

This is simply the gradient direction.

The Second Derivative in The Direction of ...

We can compute this using the matrix of second derivatives (Hessian).

Zero Crossings of...

As with the Marr-Hildreth edge detector, we'll use positive-negative transitions to "trap" zeroes.

 Gives connected edges much like the Laplacian operator but more accurately localize the edge.

Now What?

Now you have potential edge points, how do you get contours?

- Thresholding gradient magnitude
- Threshold, then "relax" the labeling
 - Thresholding with hysteresis (Canny)
 - Edge relaxation algorithms using other criteria
- Edge linking (including postprocessing)
- Connected loci of local maxima (ridges)
- Maximum-magnitude contours/paths
 (Turns into optimization problem—we'll come back later.)

Representation

Once you have contours, how do you represent them?

- Chain codes (4- or 8-connected directions)
- Differential chain codes (4- or 8-connected relative directions)
- Polylines (fit with short line segments)
- Arc-length parameterization
 - Position
 - Tangent orientation
 - Curvature
 - Distance to some central point
 - **...**
- Fourier descriptors
- Many other ways to represent curves

Representation

What do you want to do with the representation?

- Reproduction
- Matching
 - Translated
 - Rotated
 - Scaled
 - Noise and variation (smooth the curves)
 - **.**..

Want to be invariant to as much as possible