参数优化: 误差反向传播 (error Back Propagation, BP)

- 》 如果我们想计算梯度 $\frac{dy}{dx}$,则由<u>链式法</u>则得: $\frac{dy}{dx} = \frac{dy}{db} \frac{db}{da} \frac{da}{dx}$ 显然, 计算这个梯度有两种不同的计算方法: 反向模式 ______

★反向传播误差=反向传播梯度

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \left(\frac{\mathrm{d}y}{\mathrm{d}b}\frac{\mathrm{d}b}{\mathrm{d}a}\right)\frac{\mathrm{d}a}{\mathrm{d}x},$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}b}\left(\frac{\mathrm{d}b}{\mathrm{d}a}\frac{\mathrm{d}a}{\mathrm{d}x}\right).$$

$$\text{Epigenson}$$

前馈神经网络误差反向传播:

正向传播: 隐藏层h1、h2和输出层01、02的激活函数均为sigmoid函数。输入输出函数用In、out表示,即 In_{h_1} 、 In_{h_2} 、 In_{o_1} 、 In_{o_2} 、 Out_{h_1} 、 Out_{h_2} 、 Out_{o_1} 、 Out_{o_2} 、它们关系如下(以h1为例):

$$In_{h_1} = w_1 \times x_1 + w_3 \times x_2$$
, $Out_{h_1} = Sigmoid(In_{h_1})$

误差函数为:
$$Error = \frac{1}{2} \sum_{i=1}^{2} (o_i - y_i)^2$$

题目1: 用梯度计算写出反向传播公式,即写出 $w_1 \sim w_8$ 的梯度表达式,如 $\delta_1 = \frac{\partial Error}{\partial w_1} = \dots$ 并考察 δ_i 之间有无关联。

前馈神经网络误差反向传播:

其中, $Error = 0.5 \times (o_1 - 0.23)^2 + 0.5 \times (o_2 - (-0.07))^2$,这里0.23和-0.07是 对输入样本数据(0.5, 0.3)的标注信息。

题目2: 根据权值更新公式和初始化的参数,求出网络的所有变量和权值,即 h1, h2, o1, o2, Error, δ_i , w1-w8 。注: $\eta = 1$ 。

更新后的参数, 仅供参考。

