

Background

- AI is everywhere
 - o Rise of LLMs
- Benefits
 - Improved productivity
 - Efficient access of knowledge
 - Non-stop tutors
- Drawbacks
 - Misinformation
 - Deceptive confidence
 - Hallucinations
 - Not just deception but contrived facts and events

Limitations in Current Approaches

Existing approaches

- Exclusion of Misinformation from LLM Training Data
 - Hard to do without a model that can detect misinformation
- LLM Reinforcement Learning w/ Human Feedback (RLHF)
 - Misinformation can cause a topic to be controversial, even though there's a true answer.
 - Hard for humans to judge
 - Hard to adapt to new information
- Content filters
 - Impossible to create an exhaustive list

Intuition

- Configuring a model to output the correct response:
 - Is there a correct response?
 - O Who decides that?
 - Does it change with evolving information?
- Alternative → Assume the correct response is unknown on query:
 - Explore the possibility space of every stance that could be taken
 - Through debate, expose the faulty logic
 - The best answer is the most substantiated and survives the pressure of being challenged
 - o Mirrors ensemble learning except for ideas
 - The sum of all independent ideas is less likely to be wrong

Hypothesis

Having models deliberate on a prompt through Chain of Debate before issuing a final response will improve the quality of responses

Papers

- Chain of Agents: Large Language Models Collaborating on Long-Context Tasks
 - Addresses the limitations of the context window in LLM's.
 - Vanishing problem after prolonged sessions of prompting
 - Proposal: sub-contexting using agents
- MAD-Sherlock: Multi-Agent Debates for Out-of-Context Misinformation Detection
 - Cross validation from multiple agents to handle misleading prompts references
 - Image that's not consistent with the description
 - Also references sub-contexting using agents
- Exploring the Role of Large Language Models in Fake News Detection
 - o Using LLM's to propose multi-perspective narratives for fake news detection
 - Incorporation of the proposal is handled to SLM's

Papers

- VeraCT Scan: Retrieval-Augmented Fake News Detection
 - Using a RAG to distill the facts and then scours the internet for conflicting or supporting evidence
- An Empirical Analysis on Large Language Models in Debate Evaluation
 - Limitations of using LLM's debate evaluators
 - Analyzes biases in judgments
 - GPT-3.5 and GPT-4 favor the second-to-speak and concluding speaker
- CrAM: Credibility-Aware Attention Modification in LLMs for Combating Misinformation In RAG
 - o Proposes a method for weighing the credibility of sources for RAGS
 - Less credible sources have less influence

Setup

- Initialization
 - o Initialize debaters as independent models
 - Take opposing stances on an issue
 - True news of fake news
- Debate
 - Models interact with each following a debate format
- Verdict
 - Judge model selects best argument as a final response: Fake or True
- Dataset
 - o Fake News Detection Dataset
 - Data: title, subject, and content of an article
 - Labels: Boolean
 - Whether the article is fake news
 - Take 1500 (out of 44898) subset without replacement at random for testing
 - > FEVER
 - WIP scraping restrictions

Debate Format

- Structure
 - Opening arguments
 - Initial arguments to set the stage for the debate
 - o 2 rounds of responses
 - Round 1
 - Opening argument responses for each model
 - Round 2
 - Counter responses to round 1 arguments
 - Closing remarks
 - Highlights of strongest arguments for each model

Metrics

- Accuracy
 - Correct predictions out of all the training examples
- Precision
 - Reliability of a model in its relevant class predictions
 - Penalizes mistaking a fake news article for a true one
 - Measured as the ratio of true positives over true positives and false positives
- Recall
 - Reliability of a model among all relevant class examples
 - Penalizes mistaking a true news article for a fake one
 - Ratio of true positives and true positives + false negatives
- F1
- Average of precision and recall
- Confusion matrix

Results - Base Model

- 1500 examples
 - o 764 are fake
 - o 736 are true
 - Positive = true articles
- 136 true negatives (top left)
 - Correctly identified fake articles
- 103 false negatives (bottom left)
 - Mistaking true articles for fake ones
- 628 false positives (top right)
 - Mistaking fake articles for true ones
- 633 true positives (bottom right)
 - o Correctly identified true articles

Results - Base Model

- 51.26% Accuracy
- 53.6% weighted average precision
 - Number of examples as a weight
- 51.3% weighted average recall
- 44.92% weighted average F1

	Base Model Metrics			
Γ	Precision	Recall	F1-Score	Support
FAKE	0.569	0.178	0.271	764.0
TRUE	0.502	0.86	0.634	736.0
Macro Avg	0.536	0.519	0.453	1500.0
Weighted Avg	0.536	0.513	0.449	1500.0

Results - Chain of Debate

- Confusion matrix
 - o 132 true negatives (-6)
 - Fewer correct predictions of fake articles
 - o 85 false negatives (-15)
 - Reduction in mistakes for true examples
 - 632 false positives (+4)
 - Slight increase in mistakes of fake examples
 - o 651 true positives (+18)
 - More correct classifications of true examples
- Net result:

$$(15 + 18) - (6 + 4) = 21$$

A better confusion matrix

Results - Chain of Debate

- 52.2% accuracy (+.93%)
- 55.9% avg precision (+2.3%)
- 52.2% avg recall (+.9%)
- 45.4% avg F1 (+.5%)
- Net improvement!

	Chain of Debate Metrics			
ſ	Precision	Recall	F1-Score	Support
FAKE	0.608	0.173	0.269	764.0
TRUE	0.507	0.884	0.645	736.0
Macro Avg	0.558	0.529	0.457	1500.0
Weighted Avg	0.559	0.522	0.454	1500.0

Patterns

- General
 - Recall
 - Both experiments yielded poor recall for fake instances
 - Performant on recall for true
 - Precisions
 - Comparable but stronger performance for fake instances
- Insight
 - If an article is indeed true, it will likely be detected by the model significantly more than if it were fake
 - A model is less likely to misclassify fake news article than a true news article

	Chain of	Debate	
	Precision	Recall	
FAKE	0.608	0.173	
TRUE	0.507	0.884	

Comparison to Simple Models

Naive Bayes (94% Accuracy)

	Precision	Recall	F1-Score
FAKE	0.94	0.94	0.94
TRUE	0.94	0.94	0.94
Macro Avg	0.94	0.94	0.94
Weighted Avg	0.94	0.94	0.94

Logistic Regression (96% Accuracy)

	Precision	Recall	F1-Score
FAKE	0.96	0.97	0.97
TRUE	0.96	0.96	0.96
Macro Avg	0.96	0.96	0.96
Weighted Avg	0.96	0.96	0.96

Random Forest (98% Accuracy)

	Precision	Recall	F1-Score
FAKE	0.99	0.98	0.98
TRUE	0.98	0.99	0.98
Macro Avg	0.98	0.98	0.98
Weighted Avg	0.98	0.98	0.98

Effectiveness of Our Approach

- Post training optimizations
 - o Fine-tuning
 - Debate framework restructuring
 - Allows for combining different models
- Can be used to detect misinformation AND generate responses
 - In contrast to non-generative models
- Easy to catch where the model went off track
 - o Single-response models have no incentive to expand on their assumptions
 - Source of hallucinations

Future Work

- Fine-tuning
 - Misinformation
- Implementing Search
 - o Saw initial improvements
 - o Source Quality Analysis
- Integration of Encoder Only Models
 - o Simplifies framework
 - o Reduces Computation
- Improve Debate Frameworks
- Apply Improvements to Similar Benchmarks

Works Cited

- Boyi Deng, Wenjie Wang, Fengbin Zhu, Qifan Wang, and Fuli Feng. Cram: Credibility-aware attention modification in llms for combating misinformation in rag, 2024.
- Beizhe Hu, Qiang Sheng, Juan Cao, Yuhui Shi, Yang Li, Danding Wang, and Peng Qi. Badactor, good advisor: Exploring the role of large language models in fake news detection. Proceedings of the AAAI Conference on Artificial Intelligence, 38(20):22105–22113, March 2024.
- Kumud Lakara, Georgia Channing, Juil Sock, Christian Rupprecht, Philip Torr, John Collomosse, and Christian Schroeder de Witt. Llm-consensus: Multi-agent debate for visual misinformation detection, 2025.
- Xinyi Liu, Pinxin Liu, and Hangfeng He. An empirical analysis on large language models in debate evaluation, 2024.
- Cheng Niu, Yang Guan, Yuanhao Wu, Juno Zhu, Juntong Song, Randy Zhong, Kaihua Zhu, Siliang Xu, Shizhe Diao, and Tong Zhang. Veract scan: Retrieval-augmented fake news detection with justifiable reasoning, 2024.
- Yusen Zhang, Ruoxi Sun, Yanfei Chen, Tomas Pfister, Rui Zhang, and Sercan "O. Arik. Chain of agents: Large language models collaborating on long-context tasks, 2024.

Image Sources

iStock. (n.d.). Artificial intelligence illustrations. iStock. https://www.istockphoto.com/illustrations/artificial-intelligence

IconScout. (n.d.). Database [Icon]. IconScout. https://iconscout.com/free-icon/database-827_444649

iStock. (n.d.). Gavel silhouette illustrations. iStock. https://www.istockphoto.com/illustrations/gavel-silhouette