18. Konstrukční uspořádání PC – sokety, chlazení, chipsety

- vnitřní struktura, popis jednotlivých částí základní desky, chipset
- typy a charakteristiky socketů Intel na AMD
- vliv zátěže a taktovací frekvence na spotřebu
- TDP a návrhy chlazení
- typy a charakteristiky chlazení procesorů, princip fungování Heat pipe
- technologie TCC (Thermal Control Circuit), EIST (Enhanced Intel Speed Technology), Inteligent power capatibility, Cool'n'Quiet a Turbo boost.

Vnitřní struktura a popis základní desky

- Účelem základní deska je propojit jednotlivé součástky PC do fungujících celku a poskytnout jim elektrické napájení
- Nejdůležitější IO jsou zabudovány v čipové sadě

Chipset

- Nejdůležitější logický obvod základní desky
- Umožňuje procesoru komunikovat s ostatními částmi PC -> řídí komunikaci
- V obvodech čipové sady jsou integrovány řadiče, které na základě zpracování instrukcí generují řídící signály pro tato zařízení
- Sběrnice jsou uspořádány hierarchicky od nejrychlejší (FSB) po nejpomalejší (ISA)
- Obsahuje mosty pro propojení různých sběrnic mezi sebou
 - Severní most
 - Jižní most
- Dělení:
 - o Čipová sada s obvody severního a jižního mostu
 - Čipová sada s integrovaným řadičem paměti v CPU
 - Čipová sada s integrovaným severním mostem

- Severní most = North Bridge
 - Systémový řadič, nazýván MCH (Memory Controller Hub)
 - o Přímo komunikuje s COU, OP a GPU
 - S jižním mostem pomocí speciální sběrnice DMI
 - Propojen s CPU pomocí FSB (front Side Bus)
 - o 64 bit
 - Od frekvence sběrnice se odvíjí taktovací frekvence CPU a OP Během 1 CLK dokáže přenést data 4x
 - o V případě víceprocesorového systému sdílejí CPU sběrnici FSB
 - Nemožnost komunikace CPU přímo mezi sebou
 - Snížení přenosové rychlost
- Jižní most = South Bridge
 - Nazván také ICH (Input Output Controler Hub)
 - Pomalejší než MCH (Main Controler Hub)
 - o Umožnuje připojení periferních zařízení k MB
 - o Obsahuje řadič disků (ATA, SATA, eSATA, RAID) a rozhraní (USB, PS/2)
 - Řídí komunikace na sběrnici PCIe
 - K obvodu muže být připojen zvukový adaptér, paměťový obvod BIOS, integrovaný síťový adaptér
 - Se severním mostem propojeno pomocí DMI rozepsat název
- Čipové sady s integrovaným řadičem OP
 - Severní most dostal označení IOH = Input Output Hub
 - Řadič operační paměti se přesunul z IOH do CPU
 - o Místo FSB sběrnice se objevuje Quick Path Interconnect QPI
 - Rychlejší komunikace
 - Odolnější proti chybám vzniklých při přenosu
 - Lepší kompatibilita s OP
 - Lepší chlazení díky integraci v CPU
 - Vyšší teplo vyzářené z CPU
 - QUICK PATH INTERCONNECT
 - Umožnuje komunikaci více CPU přímo mezi sebou
 - Full duplex (2x20bit)
 - Každá IOH obsahuje 2 QPI
 - Využití jednoho IOH pro každý CPU vlastní QPI
 - Využití dvou IOH pro každý CPU vlastní IOH
- Čipová sada s plně integrovaným severním mostem
 - o Kromě řadiče OP je integrován také řadič GPU sběrnice
 - Základní deska nově obsahuje PCH
 - Platform Controler Hub
 - Propojeno s CPU pomocí DMI

Zastává funkci jižního mostu

Sockety – Intel a AMD

- Patice (socket) je konektor pro připojení CPU k základní desce
- Slot = konektor, do kterého se procesor staví
- Typ patice určuje typ použitého procesoru
- Mají podobný tvar, ale liší se počtem otvorů pro piny procesoru
- INTEL
 - o LGA 1151
 - Skylake
 - o LGA 2011
 - Core i5, i7
 - Socket 1150
 - Haswell
 - Socket 1155
 - Sandy Bridge
 - o Socket 1366
 - Socket 1156
- AMD
 - Socket AM4
 - Ryzen
 - Socket FM2+
 - Socket FM1, FM2
 - o Socket AM3+, AM3, AM2, AM2+
- Intel vs. AMD
 - LGA = plošky
 - o PGA = piny
 - o Intel používá plošky
 - o AMD používá hlavně piny, ale i plošky
 - o Liší se jinou definicí TDP

Heat pipe

- Slouží k přenosu tepla z jednoho místa na druhé za pomocí pracovní látky
- Jde o uzavřený kovový válec, který je naplněný tekutinou
- Na jednom konci je zasazeny do zdroje tepla a na druhém do chladiče
- Po dosažení teploty, na kterou je nastaven se začne pracovní látka (čpavek, voda, alkohol) odpařovat a proudí směrem k ochlazovanému místu, kde kondenzuje
- Proud par se dává do pohybu na základě rozdílných tlaků v místě výparníku (vyšší tlak) a v místě kondenzátoru (nižší tlak)
- Návrat kondenzátu zpět ke zdroji tepla je zajištěn kapilárními silami v porézním materiálu, který kondenzát nasává zpět ke zdroji tepla (pomocí knotu)
- Umožňuje, aby pracoval v poloze, kdy je kondenzát níže než výparník

Termosifon

- Tekutina se vypaří ve spodní části a zkapalní ve vrchní části
- Cyklus pokračuje díky gravitaci
- Vyžaduje dostatečný výškový rozdíl, neměnnou orientaci a stabilní podmínky
- Termosifonové chlazení na rozdíl od heat pipe dokáže vyvinout velký průtok úzkým průřezem a odvést tak značné množství tepla z velmi malé oblasti

Teplená ochrana procesoru

- Teplo, které CPU vyprodukuje je potřeba spolehlivě odvádět
- Pokud by došlo k poruše chlazení, mohlo by to mít pro CPU katastrofální následky
- Proto existují technologie, které mohou stav kritické teploty ovlivnit

Tepelné ochrany – Technologie

- TCC = Thermal Control Circuit
 - Vkláda nulové cykly
 - o Tepelná dioda, která se používá k regulaci otáček ventilátoru

- o Při překročení teplotního limitu je vysílán signál, který aktivuje CPU throtling
- Výsledkem je snížení napětí a frekvence CPU
- EIST = Enhanced INtel Speed Technology
 - o CPU mění za běhu dynamicky taktovací frekvenci a napětí podle zátěže
- Inteligent Power Capatibility
 - Inteligentní řízení spotřeby
 - Funkce, která napájí jednotlivé sub systémy pouze v případě potřeby
- Cool'n'Quiet
 - Používáno AMD
 - Pracuje podobně jako EIST od Intelu
 - Dynamická změna taktovací frekvence a napětí na CPU podle zátěže
- Turbo Boost
 - Umožňuje jednotlivým jádrům CPU běžet rychleji, než je jejich základní frekvence za předpokladu, že to okolnosti dovolují
 - Dochází ke zvýšení výkonu jedno i více vláknových operací

Vliv zátěže a taktovací frekvence na spotřebu

- Při přetaktování se spotřeba jednotlivých komponent několikanásobně zvyšuje
- Je třeba zvolit zdroj s dostatečnou výkonovou rezervou
- S vyšší frekvenci stoupá výdej tepla

