Digital Image Processing Chapter 5: Image Restoration

White Noise

White noise: Fourier spectrum of noise is constant

 $Fourier\ {\rm transform\ of\ unit\ impulse\ function}:$

$$F(\delta(t)) = \int_{-\infty}^{\infty} \delta(t) e^{-j\alpha t} dt = 1$$

Unit impulse contains Component at Every Frequency

$$\delta(t) \iff 1$$

Concept of Image Restoration

Image restoration is to restore a degraded image back to the original image while image enhancement is to manipulate the image so that it is suitable for a specific application.

Degradation model:

$$g(x, y) = f(x, y) * h(x, y) + \eta(x, y)$$

where h(x,y) is a system that causes image distortion and $\eta(x,y)$ is noise, * is the convolution.

(Images from Rafiel C. Gonzalez and Richard E. Wood, Digital Image Processing, 2^{-p} Edition.

White Noise(white random process)

A continuous time random process w(t) is a white noise process if and only if its mean function and autocorrelation function satisfy the following:

$$\mu_w(t) = \mathbb{E}\{w(t)\} = 0$$

$$R_{ww}(t_1, t_2) = \mathbb{E}\{w(t_1)w(t_2)\} = (N_0/2)\delta(t_1 - t_2)$$

 \rightarrow Stochastically independent in t_1 and t_2

White Gaussian noise(identically distributed) : $p_{ij} = p = N(0, \sigma)$

Salt and pepper noise:

Noise Models

Noise cannot be predicted but can be approximately described in statistical way using the probability density function (PDF)

Gaussian noise: z denotes gray level

$$p(z) = \frac{1}{2\pi\sigma} e^{-(z-\mu)^2/2\sigma^2}$$

Rayleigh noise

$$p(z) = \begin{cases} \frac{2}{b} (z - a)e^{-(z - a)^2/b} & \text{for } z \ge a \\ 0 & \text{for } z < a \end{cases}$$

Erlang (Gamma) noise

$$p(z) = \begin{cases} \frac{a^b z^{b-1}}{(b-1)!} (z-a)e^{-az} & \text{for } z \ge 0\\ 0 & \text{for } z < 0 \end{cases}$$

Mean Filters

Degradation model:

$$g(x,y) = f(x,y) * h(x,y) + \eta(x,y)$$

To remove this part

Arithmetic mean filter or moving average filter (from Chapter 3)

$$\hat{f}(x,y) = \frac{1}{mn} \sum_{(s,t) \in S_{xy}} g(s,t)$$

Geometric mean filter

$$\hat{f}(x,y) = \left(\prod_{(s,t)\in S_{xy}} g(s,t)\right)^{\frac{1}{mn}}$$

- *mn* = size of moving window Achieves smoothing, lose less image detail

Harmonic and Contraharmonic Filters

Harmonic mean filter

$$\hat{f}(x,y) = \frac{mn}{\sum_{(s,t) \in S_{xy}} \frac{1}{g(s,t)}}$$

Works well for salt noise but fails for pepper noise

Contraharmonic mean filter

mn = size of moving windowQ =order of the filter

$$\hat{f}(x, y) = \frac{\sum_{(s,t) \in S_{xy}} g(s,t)^{Q+1}}{\sum_{(s,t) \in S_{xy}} g(s,t)^{Q}}$$

Positive *Q* is suitable for eliminating pepper noise. Negative Q is suitable for eliminating salt noise.

For Q = 0, the filter reduces to an arithmetic mean filter. For Q = -1, the filter reduces to a harmonic mean filter.

Formula:

$$\hat{f}(x,y) = \frac{1}{mn-d} \sum_{(s,t) \in S_{xy}} g_r(s,t)$$

where $g_r(s,t)$ represent the remaining mn-d pixels after removing the d/2 highest and d/2 lowest values of g(s,t). If d=0, reduces to *arithmetic mean filter*

This filter is useful in situations involving multiple types of noise such as *a combination of salt-and-pepper and Gaussian noise*.

Adaptive Filter

General concept:

- Filter behavior changes based on statistical characteristics of local areas inside mxn moving window
- More complex but superior performance compared with "fixed"

Statistical characteristics:

Local mean:

Noise variance:

$$m_L = \frac{1}{mn} \sum_{(s,t) \in S_{xy}} g(s,t)$$

Local variance:

variance:

$$\sigma_L^2 = \frac{1}{mn} \sum_{(s,t) \in S_{xy}} (g(s,t) - m_L)^2$$

Alpha-trimmed Mean Filter: Example (cont.)

Image obtained using a 5x5 arithmetic mean filter

Image obtained using a 5x5 geometric mean filter

Image obtained using a 5x5 median filter

Image obtained using a 5x5 alphatrimmed mean filter with d = 5

Adaptive, Local Noise Reduction Filter

Purpose: want to preserve edges

Concept:

- 1. If σ_n^2 is zero, \rightarrow No noise the filter should return g(x,y) because g(x,y) = f(x,y)
- 2. If σ_L^2 is high relative to σ_n^2 , \rightarrow Edges (should be preserved), the filter should return the value close to g(x,y)
- 3. If $\sigma_L^2 = \sigma_{\eta}^2$, \rightarrow Areas inside objects the filter should return the arithmetic mean value m_1

Formula:

$$\hat{f}(x,y) = g(x,y) - \frac{\sigma_{\eta}^2}{\sigma_L^2} (g(x,y) - m_L)$$


```
Adaptive Median Filter
  Purpose: want to remove impulse noise while preserving edges
  1) Impulse noise reduction
  2) Other noises reduction: smoothing
  3) Edge preserving
                      Level A:
                                            A1 = z_{\text{median}} - z_{\text{min}}
                                            A2= z_{\text{median}} - z_{\text{max}}
If A1 > 0 and A2 < 0, goto level B
Algorithm:
                                            Else increase window size
                                                       If window size \leq S_{max} repeat level A
                                                       Else return z_{xy}
                      Level B:
                                            \mathbf{B1} = z_{xy} - z_{min}
                                            B2= z_{xy} - z_{max}
If B1 > 0 and B2 < 0, return z_{xy}
                                            Else return z_{\text{median}}
                                                  z_{\min} = minimum gray level value in S_{\text{xy}}
                                                  z_{\text{max}} = maximum gray level value in S_{xy}
                                    Where,
                                                  z_{\text{median}} = median of gray levels in S_{xy}
                                                  z_{xy} = gray level value at pixel (x,y)
                                                  S_{\text{max}} = \text{maximum allowed size of } S_{\text{max}}
```


Estimation of Degradation Model Degradation model: $g(x, y) = f(x, y) * h(x, y) + \eta(x, y)$ or G(u, v) = F(u, v)H(u, v) + N(u, v)Purpose: to estimate h(x, y) or H(u, v)Why? If we know exact h(x, y), regardless of noise, we can do deconvolution to get f(x, y) back from g(x, y). Methods: 1. Estimation by Image Observation 2. Estimation by Experiment 3. Estimation by Modeling

(Images from Rafael C. Gonzalez and Richard E Wood, Digital Image Processing, 2nd Edition.

Estimation by Modeling: Motion Blurring

Assume that camera velocity is $(x_0(t), y_0(t))$ The blurred image is obtained by

$$g(x, y) = \int_{0}^{T} f(x - x_0(t), y - y_0(t)) dt$$

where T =exposure time.

$$G(u,v) = \int_{-\infty-\infty}^{\infty} g(x,y)e^{-j2\pi(ux+vy)}dxdy$$

$$= \int_{-\infty-\infty}^{\infty} \left[\int_{0}^{T} f(x-x_0(t),y-y_0(t))dt \right] e^{-j2\pi(ux+vy)}dxdy$$

$$= \int_{0}^{T} \left[\int_{-\infty-\infty}^{\infty} f(x-x_0(t),y-y_0(t))e^{-j2\pi(ux+vy)}dxdy \right] dt$$

Motion Blurring Example

For constant motion

$$H(u,v) = \frac{T}{\pi(ua+vb)}\sin(\pi(ua+vb))e^{-j\pi(ua+vb)}$$

Original image

Motion blurred image a = b = 0.1, T = 1

(Images from Rafael C. Gonzalez and Richard E Wood, Digital Image Processing, 2nd Edition.

Estimation by Modeling: Motion Blurring (cont.)

$$G(u,v) = \int_{0}^{T} \left[\int_{-\infty-\infty}^{\infty} f(x-x_{0}(t), y-y_{0}(t)) e^{-j2\pi(ux+vy)} dx dy \right] dt$$

$$= \int_{0}^{T} \left[F(u,v) e^{-j2\pi(ux_{0}(t)+vy_{0}(t))} \right] dt$$

$$= F(u,v) \int_{0}^{T} e^{-j2\pi(ux_{0}(t)+vy_{0}(t))} dt$$

Then we get, the motion blurring transfer function:

$$H(u,v) = \int_{0}^{T} e^{-j2\pi(ux_{0}(t)+vy_{0}(t))} dt$$

For constant motion $(x_0(t), y_0(t)) = (at, bt)$

$$H(u,v) = \int_{0}^{T} e^{-j2\pi(ua+vb)} dt = \frac{T}{\pi(ua+vb)} \sin(\pi(ua+vb)) e^{-j\pi(ua+vb)}$$

Inverse Filter

From degradation model:

$$G(u,v) = F(u,v)H(u,v) + N(u,v)$$

after we obtain H(u,v), we can estimate F(u,v) by the inverse filter:

$$\hat{F}(u,v) = \frac{G(u,v)}{H(u,v)} = F(u,v) + \frac{N(u,v)}{H(u,v)}$$

Noise is enhanced when H(u,v) is small.

To avoid the side effect of enhancing noise, we can apply this formulation to freq. component (u,v) within a radius D_0 from the center of H(u,v).

In practical, the inverse filter is not popularly used.

(Images from Rafael C. Gonzalez and Richard E. Wood, Digital Image Processing, 2nd Edition.

Constrained Least Squares Filter

Degradation model:

Written in a matrix form

 $g(x, y) = f(x, y) * h(x, y) + \eta(x, y)$

$$g = Hf + \eta$$

Restoration problem is reduced to simple matrix manipulations?

- 1) g = (MxN), H = (MNxMN), matrices are too big to handle
- 2) H is highly sensitive to noise

Noise sensitivity problem → measure of smoothness

Objective: to find the minimum of a criterion function

$$C = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} \left[\nabla^2 f(x, y) \right]^2$$

Subject to the constraint

$$\|\mathbf{g} - \mathbf{H}\hat{\mathbf{f}}\|^2 = \|\mathbf{\eta}\|^2$$
 where $\|\mathbf{w}\|^2 = \mathbf{w}^T \mathbf{w}$

$$\|\mathbf{w}\|^2 = \mathbf{w}^T \mathbf{w}$$

Constrained Least Squares Filter

Assumptions on *Wiener filtering*:

- degradation function *H* is known
- power spectra of undegraded image and noise is known
- a constant estimate of the ratio of power spectra
- minimize a statistical criterion, is optimal in an average sense

Constrained Least Squares Filtering

- needs only the mean and variance of the noise?
- optimal result for each image

Constrained Least Squares Filter

The frequency domain solution to the problem: a constrained least square filter

$$\hat{F}(u,v) = \left[\frac{H^*(u,v)}{|H(u,v)|^2 + \gamma |P(u,v)|^2} \right] G(u,v)$$

where

$$P(u,v) = \text{Fourier transform of } p(x,y) = \begin{bmatrix} 0 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 0 \end{bmatrix}$$

If constant $\gamma = 0$, it reduces to ? IF.

Constrained Least Squares Filter: Example

Constrained least square filter

$$\hat{F}(u,v) = \left[\frac{H^*(u,v)}{|H(u,v)|^2 + \gamma |P(u,v)|^2} \right] G(u,v)$$

 γ is adaptively adjusted to achieve the best result.

Results from the previous slide obtained from the constrained least square filter

Constrained Least Squares Filter: Adjusting \(\gamma \)

 $\mathbf{r} = \mathbf{g} - \mathbf{H}\hat{\mathbf{f}}$ Monotonically increasing: $\phi(\gamma) = \mathbf{r}^T \mathbf{r} = \|\mathbf{r}\|^2$

We want to adjust gamma so that $\|\mathbf{r}\|^2 = \|\mathbf{\eta}\|^2 \pm a \longrightarrow \mathbf{1}$

$$\|\mathbf{r}\|^2 = \|\mathbf{\eta}\|^2 \pm a \longrightarrow$$

where a = accuracy factor

- 1. Specify an initial value of γ
- Compute $\|\mathbf{r}\|^2$
- Stop if 1 is satisfied
- Otherwise return step 2 after increasing γ if $\|\mathbf{r}\|^2 < \|\mathbf{\eta}\|^2 a$

Use the new value of γ to recompute

or decreasing γ if $\|\mathbf{r}\|^2 > \|\mathbf{\eta}\|^2 + a$

$$\hat{F}(u,v) = \left[\frac{H^*(u,v)}{|H(u,v)|^2 + \gamma |P(u,v)|^2} \right] G(u,v)$$

$$\hat{F}(u,v) = \left[\frac{H^*(u,v)}{|H(u,v)|^2 + \gamma |P(u,v)|^2} \right] G(u,v)$$

$$R(u,v) = G(u,v) - H(u,v) \hat{F}(u,v)$$

$$\|\mathbf{r}\|^2 = \frac{1}{MN} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} r^2(x,y)$$
For computing $\|\mathbf{r}\|^2$

$$m_{\eta} = \frac{1}{MN} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} \eta(x,y)$$

$$\sigma_{\eta}^2 = \frac{1}{MN} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} [\eta(x,y) - m_{\eta}]^2$$

$$\|\mathbf{\eta}\|^2 = MN [\sigma_{\eta}^2 - m_{\eta}]$$
For computing $\|\mathbf{\eta}\|^2$

Geometric transformations modify the spatial relationships between pixels in an image.

These transformations are often called rubber-sheet transformations: Printing an image on a rubber sheet and then stretch this sheet according to some predefined set of rules.

A geometric transformation consists of 2 basic operations:

1. spatial transformation:

rearrangement of pixels on the image plane

2. gray level interpolation:

Assign gray level values to pixels in the spatially transformed image.

Homework – due next class

- Code the noise generator of AWGN, uniform distribution noise, salt and pepper noise.
 - For the image in the text book and Lena image, apply these noise generator to create noisy images, probably with different parameters.
 - Restore the noisy images in your best. Display the results and explain what happened.
- 2. For the images in the text book(airplace images and the book cover with camera movement) and another sample, try the turbulance model to re-generate the images in the textbook. Explain the meaning of D₀ parameter and display other results with different parameters. What are the differences? Conclude your experiment.
- Try Wiener filter to do the same thing. Present your point or message in the experiment with detailed explanation.