제목: A Hybrid Retrieval-Generation Neural Conversation Model

- 1. Abstract & Introduction:
 - 현재 인공지능 개인 맞춤 시스템이 많은 인기를 얻고 있다
 - Amazon Alexa, Apple Siri, Microsoft Cortana
 - 최근에 이런 챗봇 모델은 수작업을 줄이기 위해서 End to End Conversation 모델을 제시하고 있고 아래 대표적인 2 개의 모델이 있다
 - o 1) Retrieval based, 2) Generation based 로 나누어 질 수 있음
 - 1) Retrieval based
 - 1)질문이 들어오면 가장 유사한 답변을 Response
 Repository 에서 찾은 다음 2)가장 유사한 질문을 re-rank 하고
 neural ranking 모델이 최적의 답을 찾는다
 - 장점:
 - 사람의 답변에 유사한 답을 하며 Response 에 대한 Controllable 과 Explainable 하다
 - Retrieval based 는 Response repository 에 해당 질문과
 가장 유사한 답변을 하기 때문에 다양한 주제에 대해서
 Fluent 와 Informative 한 response 를 함
 - 단점:
 - o Response repository 의 사이즈의 한계
 - Long tail context 에 대해서 답변하기 어려움
 - Flexibility 가 떨어짐 왜냐면 Response repository 가 이미 Constructed 되어 있기 때문에
 - 2) Generation based
 - Seq2seq 모델을 바탕으로 Encoder 에서 conversation context 의 representation 을 학습하고, Decoder 에서 response sequence 를 생성한다
 - 장점:
 - o 어떤 Topic 에도 High Coherent new Response 함
 - 단점:
 - Grounding Knowledge 부족으로 인한
 Generic(일반적이고) Not Informative 함

- Ex)
- "I Have no Idea"
- o Grammar Error 존재
- 두 메소드 차이 정리

Table 1: A comparison of retrieval-based methods and generation-based methods for data driven conversation models.

Item	Retrieval-based methods	Generation-based methods
Main techniques	Retrieval models; Neural ranking models	Seq2Seq models
Diversity	Usually good if similar contexts have diverse responses in the repository	Easy to generate bland or universal responses
Response length	Can be very long	Usually short
Context property	Easy for similar context in the repository; Hard for unseen context	Easy to generalize to unseen context
Efficiency	Building index takes long time; Retrieval is fast	Training takes long time; Decoding is fast
Flexibility	Fixed response set once the repository is constructed	Can generate new responses not covered in history
Fluency	Natural human utterances	Sometimes bad or contain grammar errors
Bottleneck	Size and coverage of the repository	Specific responses; Long text; Sparse data
Informativeness	Easy to retrieve informative content	Hard to integrate external factual knowledge
Controllability	Easy to control and explain	Difficult to control the actual generated content

- 따라서 이 논문에서는 두가지 기술의 Merits 를 결합한 Hybrid neural conversation model 을 제시
 - 1) Generation model 에서 Response 를 생성하고(Seq2seq 모델),
 - 2) Retrieval Model 에서 Response candidates 의 set 을 Recall 하고,
 - 3) neural ranking model 이 1)과 2)으로부터 best response candidate 를 select 한다(neural ranking model 은 conversation pair 의 representation 과 matching feature 를 학습)
 - 이를 학습하기 위해서 distante supervision 을 제안하는데, retrieval 모델/generation 모델 label 을 자동으로 추론 해서 학습에 도움이 되도록 데이터를 설계
- 실험 결과는 Twitter 와 Foursquare data 에서 다른 2 가지 모델보다 Outperform 하는 것을 보여줌
- Contribution
 - Retrieval-based model 과 Generation-based model 을 비교한 것
 - Hybrid neural conversational 모델을 제안한 것
 - Distant Supervision approach 제시
 - 자동 평가와 사람 평가에서 좋은 결과를 가져옴
- 2. Related work
 - Neural Ranking Models
 - 3 Category
 - 1. Representation-focused models
 - Queries 와 Documents 의 Representation 를 학습하고 이 둘의 유사도를 계산
 - 2. Interaction-focused model

- Query-document 의 쌍의 interaction matrix 계산해서
 매칭
- 3.1,2 번 neural ranking 모델을 혼합해서 사용 Lexical 과
 semantic matching 을 사용
- 이 Approach 에 사용한 모델은 Interaction-focused 모델에 속함
- 3. OUR APPROACH
 - o 3.1 Problem Formulation
 - Conversation Context 에서 u_i is the i-th context sequence
 - F factual snippets of text $F_i = \{f_i^1, f_i^2, ..., f_i^F\}$

Figure 1: An example of the conversational response generation task. The factual information from external knowledge is denoted in blue color.

- Ex)
- o 3.2 Method Overview
 - Hybrid Neural Conversation Model(HybridNCM)
 - 1)Generation module
 - \circ Conversation Context u_i 와 F_i (Fact)를 Seq2seq 모델서 Response Candidate G_i Set 을 생성
 - Context Encoder
 - Seq2seq model + attention mechanism
 - $\bullet h_t = RNN(u_t, h_{t-1}),$
 - 2 LSTM Layer
 - Fact Encoder
 - Context Encoder 와 같은 Layer
 - o Response Decoder
 - Next Word Gt 를 생성, 2 LSTM Layer + attention

$$p(g|u_i, \mathcal{F}) = \prod_{t=1}^{L_g} p(g_t|g_{1:t-1}, u_i, \mathcal{F})$$
 (2)

$$\mathbf{E} = [\mathbf{h}_1, \cdots, \mathbf{h}_{L_u}, \bar{\mathbf{f}}^1, \cdots, \bar{\mathbf{f}}^F] \in \mathbb{R}^{H \times (L_u + F)}$$
(3)

$$\mathbf{a}_t = \operatorname{softmax} \left(\mathbf{E}^T \mathbf{s}_{t-1} \right) \tag{4}$$

$$\mathbf{c}_t = \mathbf{E}\mathbf{a}_t \tag{5}$$

$$\mathbf{v}_t = \tanh\left(\left[\mathbf{s}_{t-1}, \mathbf{c}_t\right]\right) \tag{6}$$

$$\mathbf{s}_t = \text{RNN}(\mathbf{v}_t, \mathbf{s}_{t-1}) \tag{7}$$

$$\mathbf{s}_0 = \varphi \left(\tanh \left(\mathbf{h}_{L_u} + \frac{1}{F} \sum_{j=1}^F \bar{\mathbf{f}}^j \right) \right) \tag{8}$$

- 4) -> 이전 Decoder hidden state S_{t-1}의 Attention a_t
- 8) Encoder 의 Last output 을 가지고 Decoder
 초기화

$$p(g_t|g_{1:t-1},u_i,\mathcal{F}) = \operatorname{softmax}(\phi([\mathbf{s}_{t-1},\mathbf{c}_t]))$$

- 이전 단어 다음에 나올 단어 예측
- Train and Decode

$$\mathcal{L}_g = -\frac{1}{|\mathcal{U}|} \sum_{y^*, u_i, \mathcal{F}} \log p(y^* | u_i, \mathcal{F})$$
 (10)

- Negative log-likelihood 를 모든 트레이닝 데이터에서 훈련
- Response 를 생성하기 위해서 Beam search 를 이용
- 짧은 답변을 생성한 경우에 Penalty 를 주기위해 log-likelihood 점수를 생성된 단어를 length 로 나누어 준다

0

- 2) Retrieval Module
 - o "Context-Context Match" Approach
 - \circ 모든 historical conversation context 에서 현재 conversation context u_i 를 매칭하여 Response candidate R_i 를 생성
- 3) Hybrid Ranking Module
 - Interaction Matching Matrix
 - $Y_i = G_i \cup R_i$
 - Generated Response G_i Set

- Response Candidate R_i Set
- Hybrid Ranking Candidate Re-Rank all candidate Y_i
- Conversation Context u_i
- Distant Supervision 으로부터 라벨로 학습된 Hybrid
 Neural Ranker 를 통해서 all candidate Yi Best response 를 출력함
- o Fact 는 사용하지 않고
- o Conversation Context u_i all candidate Y_i의 Interaction Matching MatrixCNN 과 MLP 로 계산
- 4) Distant Supervision for Model Training
 - o Ranking을 매기 위한 데이터 구성
 - triples(u_i,y^{k+},y^{k-}), where y^{k+} and y^{k-} denote the positive and the negative response candidate 를 학습 데이터로 사용
 - 입력 Context 와 적절한 Response 를 평가하는 것이 쉽지 않고, 또 비용이 많이 들어가므로 입력된 Context 에 대한 적절한 응답을 계산하는 것이 필요
 - 따라서 효과적으로 트레이닝 하기 위해서 Ranking module 을 학습하기 위한 Training data 를 생성할 필요가 있음
 - Hybrid ranking model 에서 생성한 Repsonse Candidate Y_i와
 BLEU/ROUGE-L 과 값은 기법으로 Ground Truth 를
 비교한다. 이 비교를 통해서 Positive Candidate
 response 와 정답과 다른 Negative candidate 를 구별하고
 Training data 의 라벨로 만듬
 - Hybrid Ranking model 의 Hinge Loss

$$\mathcal{L}_{h} = \sum_{i=1}^{I} \max(0, \epsilon - f(u_{i}, y_{i}^{k+}) + f(u_{i}, y_{i}^{k-})) + \lambda ||\Theta||_{2}^{2}$$
 (13)

- Relation Extraction 기법에 영감을 받음
- Negative 개념이 들어가는건 더 좋은 Response 를 구별하기 위해서
- 4. Experiments
 - 4.1 Data Set Description

Table 3: Statistics of experimental data used in this paper.

Items	Train	Valid	Test
# Context-response pairs	1,059,370	2,067	2,066
# Facts	43,111,643	79,950	79,915
Avg # facts per context	40.70	38.68	38.68
Avg # words per facts	17.58	17.42	17.47
Avg # words per context	16.66	17.85	17.66
Avg # words per response	11.65	15.58	15.89

o 4.2 Experimental Setup

- 3 가지 모델을 비교
 - Retrieval-based
 - Generation-based
 - Hybrid retrieval-generation method
 - o 1) HybridNCM-RS
 - o 2) HybridNCM-RSF(Fact Encoder 추가)
- Seq2seq
- Seg2seg-Fact(fact encoder 추가),
- KNCM-MTask-R(Knowledge-grounded neural conversation model, 23 million general Twitter conversation, 1 million fact data) 최근 가장 좋은 모델
- Evaluation
 - 생성된 response 에 대한 BLEU 와 ROUGE-L 기법을 사용
 - Corpus Level 에서 BLEU 평가가 Sentence Level 평가보다 더 사람의 평가에 상관성이 있다.
 - Lexical 에 diversity(Distinct-1 과 Distinct-2 사용) 와 informativeness 를 평가
 - 사람의 평가도 들어감
- Parameter Settings

Models	Seq2Seq	Seq2Seq-Facts
Embedding size	512	256
# LSTM layers in encoder/decoder	2	2
LSTM hidden state size	512	256
Learning rate	0.0001	0.001
Learning rate decay	0.5	0.5
# Steps between validation	10000	5000
Patience of early stopping	10	10
Dropout	0.3	0.3
# Steps between validation Patience of early stopping	10000	5000 10

o 4.3 Evaluation Results

Method	BLEU	ROUGE-L	Distinct-1	Distinct-2
Seq2Seq	0.5032	8.4432	2.36%	11.18%
Seq2Seq-Facts	0.5904	8.8291	1.91%	7.85%
KNCM-MTask-R	1.0800	\	7.08%	21.90%
Retrieval	1.2491	8.6302	14.68%	58.71%
HybridNCM-RS	1.3450	10.4078 [‡]	11.30%	47.35%
HybridNCM-RSF	1.3695	10.3445 [‡]	11.10%	46.01%

- 사람 평가
 - Appropriateness
 - Informativeness
 - 0(bad), +1(neutral, +2(good)

Comparision	Appropriateness					Informativeness				
Method	Mean	Bad(0)	Neutral(+1)	Good(+2)	Agreement	Mean	Bad(0)	Neutral(+1)	Good(+2)	Agreement
Seq2Seq	0.4733	61.67%	29.33%	9.00%	0.2852	0.2417	77.58%	20.67%	1.75%	0.4731
Seq2Seq-Facts	0.4758	62.50%	27.42%	10.08%	0.3057	0.3142	70.75%	27.08%	2.17%	0.4946
Retrieval	0.9425	34.42%	36.92%	28.67%	0.2664	0.8008	35.50%	48.92%	15.58%	0.3196
HybridNCM-RS	1.1175 [‡]	27.83%	32.58%	39.58%	0.3010	1.0650 [‡]	18.42%	56.67%	24.92%	0.1911
HybridNCM-RSF	1.0358 [‡]	31.67%	33.08%	35.25%	0.2909	1.0292 [‡]	20.42%	56.25%	23.33%	0.2248

Type	Appropriateness	Informativeness
Comparision	Win/Tie/Loss	Win/Tie/Loss
HNCM-RS v.s. Seq2Seq	0.71/0.15/0.14	0.84/0.10/0.06
HNCM-RSF v.s. Seq2Seq	0.68/0.16/0.16	0.82/0.11/0.07
HNCM-RS v.s. Seq2Seq-F	0.70/0.15/0.15	0.80/0.12/0.08
HNCM-RSF v.s. Seq2Seq-F	0.65/0.19/0.17	0.77/0.15/0.09
HNCM-RS v.s. Retrieval	0.43/0.31/0.26	0.50/0.31/0.18
HNCM-RSF v.s. Retrieval	0.41/0.30/0.29	0.50/0.28/0.22

o 4.4 Analysis of Top Responses Selected By Re-Ranker

Item	Hybri	dNCM-RS	HybridNCM-RSF		
#TestQNum	2066	100.00%	2066	100.00%	
#PickedGenRes	179	8.66%	275	13.31%	
#PickedRetRes	1887	91.34%	1791	86.69%	
#PickedTop1BM25	279	13.50%	253	12.25%	

4.5 Impact of Distant Supervision Signals

Model	Hybrid	INCM-RS	HybridNCM-RSF		
Supervision	BLEU	J ROUGE-L BL		ROUGE-L	
BLEU-1	1.3450	10.4078	1.3695	10.3445	
BLEU-2	1.1165	10.1584	0.8239	9.8575	
ROUGE-L	1.1435	10.0928	0.9838	9.7961	
SentBLEU	0.8326	9.2887	1.0631	9.6338	

4.6 Impact of Ratio of Positive Samples

	Supervision	BLEU-1		BLEU-2		ROUGE-L	
Model	# Positive	BLEU	ROUGE-L	BLEU	ROUGE-L	BLEU	ROUGE-L
	k'=1	0.9022	8.9596	0.7547	8.8351	1.0964	8.9234
HybridNCM-RS	k'=2	1.0649	9.7241	1.1099	9.9168	1.1019	9.6216
	k'=3	1.3450	10.4078	1.1165	10.1584	1.1435	10.0928
	k'=1	1.0223	9.2996	1.1027	9.2453	1.0035	9.2812
HybridNCM-RSF	k'=2	1.3284	9.8637	1.0175	9.8562	1.0999	9.8061
	k'=3	1.3695	10.3445	0.8239	9.8575	0.9838	9.7961

4.7 Example and Case Study

Context	Dor	nated to the [ENTITY] last night and now I have to listen to					
Context	auto	automated phone calls. It's enough to make me want to cancel.					
Method	r/g	System Output Response					
Ground Truth	-	Ask them to put you on their internal dnc list. They will likely					
		respect this, because future calls can get them charged.					
Seq2Seq	g	I didn't get it. I didn't.					
Seq2Seq-Facts	g	I'm sorry to hear that. Please dm us your email address so we					
		can look into this. Thanks!					
Retrieval	r	It's a known issue in LA county. I just got an email from my					
		dm and tech and it should be good in 30 minutes or so.					
HNCM-RS	r	We're listening and would like to know more and help with					
		your experience. Please follow us so i can dm you our contact					
		info. [ENTITY]					
HNCM-RSF	g	We're sorry to hear this. Please dm us if you need assistance.					
		Please dm us your contact info so we can look into this.					

• 5. Conclusions and Future work

- Retrieval 과 Generation 을 혼합하여 사용하고, 학습을 할때 Distant
 Supervision Approach 를 이용해서 학습데이터를 자동으로 label 화를 시킨다.
- 이를 통해서 실험에서 위와 같은 Approach 가 효과가 있다고 증명하고 있다