

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	«Информатика и системы управления»
КАФЕДРА	«Информационная безопасность»

ЛАБОРАТОРНАЯ РАБОТА 2:

«Теория игр и исследование операций»

Аналитический и численный методы решения непрерывной выпукловогнутой антагонистической игры

ВАРИАНТ: 4

Студент:	<u>Гончарова М.К.</u> (И.О. Фамилия)
Преподаватель:	<u>Коннова Н.С.</u> (И.О. Фамилия)

Цель работы:

Найти оптимальные стратегии непрерывной выпукло-вогнутой антагонистической игры аналитическим и численным методами.

Постановка задачи:

Задана игра со следующими параметрами:

a	b	С	d	e
-15	$\frac{20}{3}$	40	-12	-24

Функция ядра имеет вид:

$$H(x,y) = ax^2 + by^2 + cxy - dx - ey.$$

Найдите цену игры и оптимальные чистые стратегии обоих игроков аналитическим и численным методами. Сравните полученные результаты.

Ход работы:

Аналитическое решение:

Проверка выполнимости условий для принадлежности игры к классу выпукло-вогнутых:

$$H_{rr} = 2a = -30 < 0$$

$$H_{yy} = 2b = \frac{40}{3} > 0$$

Так как $H_{xx} < 0$ и $H_{yy} > 0$ то представленная игра является выпукло — вогнутой.

Найдём производные функции ядра по каждой переменной:

$$H_x = 2ax + cy + d = -30x + 40y - 12$$
,

$$H_y = 2by + cx + e = \frac{40}{3}y + 40x - 24.$$

После приравнивания производных к нулю получим:

$$x = -\frac{cy+d}{2a} = -\frac{40y-12}{-30} = \frac{20y-6}{15},$$
$$y = -\frac{cx+e}{2b} = -\frac{40x-24}{\frac{40}{3}} = -\frac{15x-9}{5}.$$

Учитывая, что х и у должны быть неотрицательными, для оптимальных стратегий соответственно имеем:

$$\psi(y) = \begin{cases} \frac{20y - 6}{15}, y \ge \frac{3}{10}, \\ 0, y < \frac{3}{10}; \end{cases}$$

$$\varphi(x) = \begin{cases} -\frac{15x - 9}{5}, x \le \frac{3}{5}, \\ 0, x > \frac{3}{5}. \end{cases}$$

Найдём общее решение этих уравнений. Для этого подставим в выражение для у выражение для х:

$$y = -\frac{15x - 9}{5} = -\frac{15\left(\frac{20y - 6}{15}\right) - 9}{5} = -\frac{20y - 15}{5} = -4y + 3,$$
$$5y = 3,$$
$$y = \frac{3}{5}.$$

Подставим получившееся значение у в выражение для х:

$$x = \frac{20y - 6}{15} = \frac{12 - 6}{15} = \frac{2}{5}$$
.

Получившееся значение х подставим в выражение для у, чтобы выполнить проверку:

$$y = -\frac{15x - 9}{5} = -\frac{6 - 9}{5} = \frac{3}{5}$$
.

Найдём седловую точку игры, подставив получившиеся значения x и у в функцию ядра:

$$H(x,y) = -15 * \left(\frac{2}{5}\right)^2 + \frac{20}{3} * \left(\frac{3}{5}\right)^2 + 40 * \frac{2}{5} * \frac{3}{5} - 12 * \frac{2}{5} - 24 * \frac{3}{5}$$
$$= -\frac{12}{5} + \frac{12}{5} + \frac{48}{5} - \frac{24}{5} - \frac{72}{5} = -\frac{48}{5} = -9,6.$$

Далее найдем оптимальные чистые стратегии и цену игры численным методом. Воспользуемся методом аппроксимации функции выигрышей на сетке. Параметр разбиения N=1,...,10. С помощью программы найдем решения при различном шаге сетки для исходной задачи. Ни рисунках 1-5 представлены результаты вычислений.

Рисунок 1 – первые 2 итерации численного метода

N=4						_		
(index)	0	1	2	3		4		
0	0	 -5 . 583	-10.33	3 -14.1	25	-17.	333	
1 1	-3.938	-7.021	-9.271	-10.	688	-11.2	271	
2	-9.75	-10.333	-10.083	3 -9		-7.08	33	
3	-17.438	-15.521	-12.771	l -9.1	88	-4.77	71	
4	-27	-22.583	-17.33	3 -11.	25	-4.33	33	
(index)	0	1	2	3	 	4		5
 0	0	-4 . 533	-8.533	-12	 -14	1.933	 -17	.333
1	-3	-5.933	-8.333	-10.2	-11	1.533	-12	.333
2	-7.2	-8.533	-9.333	-9.6	-9.	.333	-8.	533
3	-12.6	-12.333	-11.533	-10.2	-8.	.333	-5.	933
4	-19.2	-17.333	-14.933	-12	-8.	.533	-4.	533
5	-27	-23.533	-19.533	-15	-9.	.933	-4.	333
Есть седлов	зая точка	1:					-	
x=0.4 y=0.6	5 H=-9.6							

Рисунок 2 – вторые 2 итерации численного метода

0 0 -3.815 -7.259 -10.333 -13.037 -15.37 -17.333 1 -2.417 -5.12 -7.454 -9.417 -11.009 -12.231 -13.083 2 -5.667 -7.259 -8.481 -9.333 -9.815 -9.926 -9.667 3 -9.75 -10.231 -10.343 -10.083 -9.454 -8.454 -7.083 4 -14.667 -14.037 -13.037 -11.667 -9.926 -7.815 -5.333 5 -20.417 -18.676 -16.565 -14.083 -11.231 -8.009 -4.417	(inde	ex)	0	1 1	2	3	4	5	6
2	0		0	-3.815	-7 . 259	-10.333	-13 . 037	-15.37	-17.333
3 -9.75 -10.231 -10.343 -10.083 -9.454 -8.454 -7.083 4 -14.667 -14.037 -13.037 -11.667 -9.926 -7.815 -5.333 5 -20.417 -18.676 -16.565 -14.083 -11.231 -8.009 -4.417	1		-2.417	-5.12	-7.454	-9.417	-11.009	-12.231	-13.083
4 -14.667 -14.037 -13.037 -11.667 -9.926 -7.815 -5.333 5 -20.417 -18.676 -16.565 -14.083 -11.231 -8.009 -4.417	2		-5.667	-7.259	-8.481	-9.333	-9.815	-9.926	-9.667
5 -20.417 -18.676 -16.565 -14.083 -11.231 -8.009 -4.417	3		-9.75	-10.231	-10.343	-10.083	-9.454	-8.454	-7.083
	4		-14.667	-14.037	-13.037	-11.667	-9.926	-7.815	-5.333
6 27 24 440 20 020 47 222 42 27 0 027 4 222	5		-20.417	-18.676	-16.565	-14.083	-11.231	-8.009	-4.417
6 -27 -24.148 -20.926 -17.333 -13.37 -9.037 -4.333	6		-27	-24.148	-20.926	-17.333	-13.37	-9.037	-4.333

Рисунок 3 – 5я итерация численного метода

index)		1	2	3 	4	5	6	7
0	0	 -3 .2 93	 -6.313	 -9.061	 -11.537	-13.741	-15 . 673	-17.333
1	-2.02	-4.497	-6.701	-8.633	-10.293	-11.68	-12.796	-13.639
2	-4.653	-6.313	-7.701	-8.816	-9.66	-10.231	-10.531	-10.558
3	-7.898	-8.741	-9.313	-9.612	-9.639	-9.395	-8.878	-8.088
4	-11.755	-11.782	-11.537	-11.02	-10.231	-9.17	-7.837	-6.231
5	-16.224	-15.435	-14.374	-13.041	-11.435	-9.558	-7.408	-4.986
	-21.306	-19.701	-17.823	-15.673	-13.252	-10.558	-7.592	-4.354
7	-27	-24.578	-21.884	-18.918	-15.68	-12.17	-8.388	-4.333

Рисунок 4 — 6я итерация численного метода

index)	0	1	2	3	4		6		8
0	0	-2.896	-5.583	-8.063	-10.333	-12.396	-14.25	-15.896	 -17.333
1	-1.734	-4.005	-6.068	-7.922	-9.568	-11.005	-12.234	-13.255	-14.068
2	-3.938	-5.583	-7.021	-8.25	-9.271	-10.083	-10.688	-11.083	-11.271
	-6.609	-7.63	-8.443	-9.047	-9.443	-9.63	-9.609	-9.38	-8.943
4	-9.75	-10.146	-10.333	-10.313	-10.083	-9.646	-9	-8.146	-7.083
	-13.359	-13.13	-12.693	-12.047	-11.193	-10.13	-8.859	-7.38	-5.693
	-17.438	-16.583	-15.521	-14.25	-12.771	-11.083	-9.188	-7.083	-4.771
7	-21.984	-20.505	-18.818	-16.922	-14.818	-12.505	-9.984	-7.255	-4.318
8	-27	-24.896	-22.583	-20.063	-17.333	-14.396	-11.25	-7.896	-4.333
									L

Рисунок 5 – 7я итерация численного метода

index)		1	2		4	5	6	7		
0	0	-2.584	-5.004	-7.259	-9.35	 -11.276	 -13.037	-14.634	-16.066	-17.333
	-1.519	-3.609	-5.535	-7.296	-8.893	-10.325	-11.593	-12.695	-13.634	-14.407
2	-3.407	-5.004	-6.436	-7.704	-8.807	-9.745	-10.519	-11.128	-11.572	-11.852
	-5.667	-6.77	-7.708	-8.481	-9.091	-9.535	-9.815	-9.93	-9.881	-9.667
4	-8.296	-8.905	-9.35	-9.63	-9.745	-9.695	-9.481	-9.103	-8.56	-7.852
	-11.296	-11.412	-11.362	-11.148	-10.77	-10.226	-9.519	-8.646	-7.609	-6.407
	-14.667	-14.288	-13.745	-13.037	-12.165	-11.128	-9.926	-8.56	-7.029	-5.333
	-18.407	-17.535	-16.498	-15.296	-13.93	-12.399	-10.704	-8.844	-6.819	-4.63
	-22.519	-21.152	-19.621	-17.926	-16.066	-14.041	-11.852	-9.498	-6.979	-4.296
	-27	-25.14	-23.115	-20.926	-18.572	-16.053	-13.37	-10.523	-7.51	-4.333

Рисунок 6 – 8я итерация численного метода

(index)	0	1	2	3	4		6	7	8	9	10
0	0	-2.333	-4 . 533	-6.6	-8.533	-10.333	-12	-13.533	-14.933	-16.2	-17.333
1	-1.35	-3.283	-5.083	-6.75	-8.283	-9.683	-10.95	-12.083	-13.083	-13.95	-14.683
2	-3	-4.533	-5.933	-7.2	-8.333	-9.333	-10.2	-10.933	-11.533	-12	-12.333
3	-4.95	-6.083	-7.083	-7.95	-8.683	-9.283	-9.75	-10.083	-10.283	-10.35	-10.283
4	-7.2	-7.933	-8.533	-9	-9.333	-9.533	-9.6	-9.533	-9.333	-9	-8.533
5	-9.75	-10.083	-10.283	-10.35	-10.283	-10.083	-9.75	-9.283	-8.683	-7.95	-7.083
6	-12.6	-12.533	-12.333	-12	-11.533	-10.933	-10.2	-9.333	-8.333	-7.2	-5.933
7	-15.75	-15.283	-14.683	-13.95	-13.083	-12.083	-10.95	-9.683	-8.283	-6.75	-5.083
8	-19.2	-18.333	-17.333	-16.2	-14.933	-13.533	-12	-10.333	-8.533	-6.6	-4.533
9	-22.95	-21.683	-20.283	-18.75	-17.083	-15.283	-13.35	-11.283	-9.083	-6.75	-4.283
10	-27	-25.333	-23.533	-21.6	-19.533	-17.333	-15	-12.533	-9.933	-7.2	-4.333
	L	L	L	L	L		L			L	!

Рисунок 7 – 9я итерация численного метода

Таким образом, в результате численного метода мы получили следующие оптимальные чистые стратегии и цену игры:

$$x = 0.4$$

$$y = 0.6$$

$$H = -9.6$$

Решение аналитическим методом и численным методом совпали. В программе было задано округление до третьего значения после запятой. Погрешность составляет $\partial = 0$ %.

Вывод:

В результате выполнения лабораторной работы были найдены оптимальные чистые стратегии и цена игры для непрерывной выпукло-вогнутой антагонистической игры аналитическим и численным методами. Результаты двух методов совпали, при условии, что в программе все значения округлялись до третьего знака после запятой.

ПРИЛОЖЕНИЕ А

```
let braunRobinson = require('../lab1/lab1');
function findSaddlePoint(matrix) {
    let matrixMin = [[]];
    let matrixMax = [[]];
for (let i = 0; i < matrix.length; i++) {</pre>
         matrixMin[i] = [];
         matrixMax[i] = [];
    for (let i = 0; i < matrix.length; i++) {</pre>
         for (let j = 0; j < matrix.length; j++) {
    matrixMin[i][j] = undefined;</pre>
              matrixMax[i][j] = undefined;
    let idxMin = 0;
    let idxMax = 0;
    for (let i = 0; i < matrix.length; i++) {</pre>
         let minEl = matrix[i][0];
         let maxEl = matrix[0][i];
         for (let j = 0; j < matrix.length; j++) {</pre>
              if (matrix[i][j] < minEl) {</pre>
                   minEl = matrix[i][j];
                   idxMin = j;
              if (matrix[j][i] > maxEl) {
                  maxEl = matrix[j][i];
                   idxMax = j;
         matrixMin[i][idxMin] = minEl;
         matrixMax[idxMax][i] = maxEl;
    for (let i = 0; i < matrix.length; i++) {</pre>
         for (let j = 0; j < matrix.length; j++) {</pre>
              if (matrixMax[i][j] && matrixMin[i][j]) {
                        value: matrixMax[i][j],
                       x: Number((i / (matrix.length - 1)).toFixed(3)),
y: Number((j / (matrix.length - 1)).toFixed(3))
    return 0;
```

```
function kernel(x, y) {
   let a = -15;
   let d = -12;
   let e = -24;
   return Number((a * x * x + b * y * y + c * x * y + d * x + e * y).toFixed(3));
function buildMatrix(N) {
   let matrix = [];
   for (let i = 0; i < N + 1; i++) {
        matrix[i] = [];
   for (let i = 0; i < N + 1; i++) {
            matrix[i][j] = kernel(i / N, j / N);
   console.table(matrix);
   return matrix;
function findH(matrix, x, y) {
    for (let i = 0; i < x.length; i++) {</pre>
        for (let j = 0; j < y.length; j++) {</pre>
            H += matrix[i][j] * x[i] * y[j];
function algorithm() {
    for (let i = 2; i < 11; i++) {
        console.log( '\n'+'N=' + i);
let matrix = buildMatrix(i);
        let saddlePoint = findSaddlePoint(matrix);
        if (saddlePoint) {
            console.log('Есть седловая точка: ' + '\n' + `x=${saddlePoint.x} ` +
y=${saddlePoint.y} ` + `H=${saddlePoint.value}`);
            let obj = braunRobinson(matrix);
            let H = findH(matrix, obj.x, obj.y);
            let matrixDist = [];
            for (let i = 0; i < matrix.length; i++) {</pre>
                matrixDist[i] = [];
            for (let i = 0; i < matrix.length; i++) {</pre>
                 for (let j = 0; j < matrix.length; j++) {</pre>
                    matrixDist[i][j] = Math.abs(matrix[i][j] - H);
```

```
| let minEl = Math.min(...[].concat(...matrixDist));
| let braunRobDesicion = {};
| for (let i = 0; i < matrixDist.length; i++) {
| for (let j = 0; j < matrixDist.length; j++) {
| if (matrixDist[i][j] === minEl) {
| braunRobDesicion["x"] = Number((i / (matrix.length -
1)).toFixed(3));
| braunRobDesicion["y"] = Number((j / (matrix.length -
1)).toFixed(3));
| braunRobDesicion['value'] = matrix[i][j];
| }
| }
| console.log('Het седловой точки. Решение методом Брауна-Робинсон: ' + 'x=' +
| braunRobDesicion['x'] + 'y=' + braunRobDesicion['y'] + 'H=' +
| braunRobDesicion["value"]);
| }
| }
| algorithm();
```