ПРАКТИЧНЕ ЗАНЯТТЯ № 3.

Неперервні випадкові величини.

1. Щільність неперервної випадкової величини. Властивості щільності. 2. Рівномірний розподіл. 3. Показниковий розподіл. 4. Нормальний розподіл з параметрами (m, σ^2) . 5. Функція Лапласа $\Phi(x)$ та її використання. 6. Параметри неперервних випадкових величин.

1. Щільність неперервної випадкової величини.

Вказівка: Випадкова величина ξ називається *неперервною*, якщо для будь-якого дійсного числа x її функцію розподілу $F_{z}(x) = P\{\xi < x\}$, можна записати у вигляді:

$$F_{\xi}(x) = \int_{-\infty}^{x} f_{\xi}(u) du, -\infty < x < \infty.$$

Функція $f_{\xi}(x)$ називається *щільністю* випадкової величини ξ :

$$f_{\mathcal{E}}(x) = (F_{\mathcal{E}}(x))'.$$

Вона має наступні властивості:

1)
$$f(x) \ge 0$$
, $-\infty < x < \infty$,

$$2) \int_{-\infty}^{\infty} f(x) dx = 1.$$

Вказівка: Нехай $F_{\xi}(x)$ — функція розподілу випадкової величини ξ .

Ймовірність події $\{a < \xi < b\}$ знаходимо за формулою:

$$P\{\mathbf{a} < \xi < \mathbf{b}\} = F_{\xi}(\mathbf{b}) - F_{\xi}(\mathbf{a}).$$

Якщо ξ — випадкова величина, що має розподіл неперервний розподіл з щільністю $f_{\xi}(x), x \in R$, то:

$$P\{a < \xi < b\} = \int_a^b f_{\xi}(x) dx.$$

1. Властивості щільності.

Приклад. 1. ([3], s. 88). Щільність $f_{\xi}(x)$ випадкової величини ξ має наступний вигляд

$$f_{\xi}(x) = \begin{cases} 0, \ \textit{якщо} \ x < 0, \textit{або} x > 1 \\ a \cdot x^2, \ \textit{якщо} \ 0 \le x \le 1 \end{cases}.$$

1. Знайти значення параметру a.

Відповідь: a = 3.

2. Знайти функцію розподілу $F_{\xi}(x) = P\{\xi < x\}$ випадкової величини ξ .

Відповідь:
$$F(x) = 0$$
, якщо $x \le 0$; $F(x) = x^3$, якщо $0 < x \le 1$; $F(x) = 1$, якщо $x > 1$.

2. Рівномірний розподіл.

Вказівка: Неперервна випадкова величина ρ має рівномірний розподіл на проміжку [a;b], якщо її щільність $f_{\rho}(x)$ визначається формулою:

$$f_{\rho}(x) = \begin{cases} 0, \text{ якщо } x < a, a \text{ бо } x > b \\ \frac{1}{b-a}, \ a \le x \le b, \end{cases}.$$

Приклад 2. Випадкова величина ρ має рівномірний розподіл на проміжку [a; b]. Довести, що її функція розподілу $F_o(x)$ має вигляд:

$$F_{\rho}(x) = \begin{cases} 0, & dla \ x < a; \\ \frac{x - a}{b - a}, & dla \ a \le x \le b; \\ 1, & dla \ x > b. \end{cases}$$

3. Показниковий розподіл.

Приклад 3. Випадкова величина ξ_{λ} має *показниковий розподіл* з параметром λ , якщо її щільність $f_{\lambda}(x)$ визначається формулою

$$f_{\lambda}(x) = \begin{cases} 0, & \text{якщо } x \leq 0 \\ \lambda \cdot e^{-\lambda x}, & \text{якщо } x > 0 \end{cases}.$$

Знайти функцію розподілу $F_{\lambda}(x)$ Випадкової величини ξ_{λ} .

Відповідь:
$$F_{\lambda}(x) = \begin{cases} 0, & \text{якщо } x \leq 0; \\ 1 - e^{-\lambda \cdot x}, & \text{якщо } x > 0. \end{cases}$$

4. Нормальний розподіл.

Вказівка: Неперервна випадкова величина ξ має нормальний розподіл з параметрами (m, σ^2) : $\xi \Leftrightarrow N(m, \sigma^2)$, якщо її щільність $f_{\xi}(x)$ визначається формулою:

$$f_{\xi}(x) = \frac{1}{\sigma\sqrt{2\pi}} \cdot e^{-\frac{(x-m)^2}{2\sigma^2}}, -\infty < x < \infty.$$

Розподіл N(0, 1) називається стандартним. Функція

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \cdot \int_{0}^{x} e^{-\frac{u^2}{2}} du, -\infty < x < \infty,$$

називається функцією Лапласа.

5. Функція Лапласа $\Phi(x)$ та її використання.

Приклад 4. $\Phi(x)$, $-\infty < x < \infty$, означає функцію Лапласа. Переконатися, що

$$\Phi(x) = P\{N(0, 1) < x\},\$$

та довести наступні властивості функції $\Phi(x)$:

- **1.** $\Phi(0) = 0.5$.
- **2.** $\Phi(-a) = 1 \Phi(a)$, для довільного a > 0.

Приклад 5. Довести, що між нормальним розподілом $N(m, \sigma^2)$ та нормальним стандартним розподілом N(0, 1) існує наступний зв'язок:

Якщо
$$\xi \Leftrightarrow N(m, \sigma^2)$$
, то $\eta = \frac{\xi - m}{\sigma} \Leftrightarrow N(0, 1)$.

Приклад 6. ([3], с. 170). Випадкова величина η має розподіл N(0, 1).

1. Використовуючи таблицю функції Лапласа визначити число A таким чином, щоб виконувалась рівність:

$$P\{\eta < A\} = 0.835.$$

Відповідь: A = 0.975.

- **2.** Дати графічну ілюстрацію розв'язку використовуючи графік щільності $f_{\eta}(x)$ та графік функції Лапласа $\Phi(x)$.
- **3.** Визначити число A застосовуючи статистичні функції («*HOPM.CTOБP*» та «*HOPM.OБP*») аркушу «*Excel*».

Відповідь: A = 0.9741.

Приклад 7. ([3], с. 168). Випадкова величина ξ має нормальний розподіл $\xi \Leftrightarrow N(2, 0.04)$.

1. Використовуючи таблицю функції Лапласа знайти ймовірність події

$$P\{1,98 < \xi < 2,14\}.$$

Відповідь: $P\{1.98 < \xi < 2.14\} = 0.2978$.

2. Знайти ймовірність події $P\{1,98 < \xi < 2,14\}$, застосовуючи функцію «*НОРМ.РАСП*» аркушу "*Excel*" для нормального розподілу $N(m; \sigma^2)$ з *довільними параметрами* $(m; \sigma^2)$.

Відповідь: $P{1,98 < \xi < 2,14} = 0,2978.$

6. Параметри неперервних випадкових величин.

Нехай ξ — випадкова величина, що має неперервний розподіл з щільністю $f_{\xi}(x)$, $x \in R$. Математичним сподіванням та дисперсією ξ називаються числа $E(\xi)$ та $D(\xi)$, обчислені наступним чином:

$$m = E(\xi) = \int_{-\infty}^{\infty} x \cdot f_{\xi}(x) dx;$$

$$\sigma^2 = D(\xi) = E(\xi - E(\xi))^2 = \int_{-\infty}^{\infty} (x - m)^2 \cdot f_{\xi}(x) dx.$$

Приклад 8. ([3], s. 88). (Пр.1. *Продовження*). Щільність $f_{\xi}(x)$ випадкової величини ξ має наступний вигляд

$$f_{\xi}(x) = \begin{cases} 0, \text{ якщо } x < 0, a \delta o x > 1 \\ a \cdot x^2, \text{ якщо } 0 \le x \le 1 \end{cases}.$$

- 1) Знайти $E(\xi)$.
- 2) Знайти $D(\xi)$.

Відповідь: 1).
$$m = E(\xi) = 0.75$$
; 2) $D(\xi) = 3/80$.

3) Знайти ймовірність події $\{0,4 < \xi < 0,8\}$.

Відповідь:
$$P{0,4 < \xi < 0.8} = 0.448$$
.

4) Намалювати графік щільності $f_{\xi}(x)$ і дати ілюстрацію розв'язку п. 3).

Приклад 9. Випадкова величина ρ має рівномірний розподіл на проміжку [a; b]. Довести, що

- **1.** $E(\xi) = (a+b)/2$.
- **2.** $D(\xi) = (b-a)^2/12$.
- **3.** Покласти a = 5, b = 11, та обчислити $m = E(\xi)$ і $\sigma^2 = D(\xi)$.

Відповідь:
$$m = E(\xi) = 8$$
; 2) $D(\xi) = 3$.

Приклад 10. ([3], с. 164). Випадкова величина ξ має нормальний розподіл $N(m, \sigma^2)$ з параметрами (m, σ^2) . Довести, що:

- **1.** $E(\xi) = m$.
- **2.** $D(\xi) = \sigma^2$.

Приклад 11. Випадкова величина η має розподіл N(0, 1).

1. Використовуючи таблицю функції Лапласа визначити число B таким чином, щоб виконувалась рівність:

$$P\{|n| < B\} = 0.835.$$

Відповідь: B = 1,39.

- **2.** Дати графічну ілюстрацію розв'язку використовуючи графік щільності $f_{\eta}(x)$ та графік функції Лапласа $\Phi(x)$.
- **3.** Визначити число B застосовуючи статистичні функції («*HOPM.CTOБP*» та «*HOPM.OБP*») аркушу «*Excel*».

Відповідь: B = 1,3885.