Correction de la séance d'AP 1 : Outils pour la démonstration

EXERCICE 1

Pour chaque ligne du tableau, dire si la proposition P implique la proposition Q, si la proposition Q implique la proposition P ou s'il y a équivalence.

Proposition P	Proposition Q	$\mathbf{P}\Rightarrow\mathbf{Q}$	$\mathbf{Q}\Rightarrow\mathbf{P}$	$\mathbf{P} \Leftrightarrow \mathbf{Q}$
M est une point de la média- trice de [AB]	M équidistant de A et de B			X
Je réside en France	Je réside en Europe	X		
Je suis majeur(e)	Jai 19 ans		X	
CDEF est un parallélogramme	CDEF est un carré		X	
x = 3	$x^2 = 9$	X		
MNP est rectangle en M	$MP^2 + MN^2 = NP^2$			X
$x \ge -2$	$x \ge -1$		X	
a+b=5	a = 2 et b = 3		X	
4x - (x - 5) = 7	$x = \frac{2}{3}$			X
(ax+b)(cx+d) = 0	ax + b = 0 ou cx + d = 0			X

EXERCICE 2

Toutes les affirmations suivantes sont fausses. Pour chacune, donner un contre exemple.

1) Si
$$x^2 > 4$$
, alors $x > 2$.

Contre-exemple:

Prenons
$$x = -3$$
, $x^2 = (-3)^2 = 9 > 4$ Cependant, $x = -3 < 2$.

2) Pour tout couple de réels (x; y), on a $(x + y)^3 = x^3 + y^3$.

Contre-exemple:

Prenons
$$x = -1$$
 et $y = 2$, d'une part : $(-1 + 2)^3 = 1^3 = 1$
D'autre part, $(-1)^3 + 2^3 = -1 + 8 = 7$ Or $1 \neq 7$

3) Si
$$x^2 = 9$$
 alors $x = 3$.

Contre-exemple:

Prenons x = -3 alors $x^2 = 9.11$ y a donc une autre solution. 3 n'est pas la seule solution.

4) Pour tout couple de réels positifs (a; b), on a $\sqrt{a} + \sqrt{b} = \sqrt{a+b}$.

Contre-exemple:

Prenons
$$a=1$$
 et $b=2$, d'une part : $\sqrt{1}+\sqrt{2}\approx 1,4$
D'autre part, $\sqrt{1+2}=\sqrt{3}\approx 1,7$ Or $1,7\neq 1,4$

5) Pour tout réel p, le réel 10p est négatif.

Contre-exemple:

Prenons p réel tel que p = 4, alors 10p = 40 > 0

6) Tous les réels ont un inverse.

Contre-exemple:

Prenons x réel tel que x = 0, l'inverse de ce réel n'existe pas.

7) Tous les multiples de 5 sont des multiples de 10.

Contre-exemple:

Prenons par exemple 15 qui est bien un multiple de 5. Néanmoins 5 n'est pas multiple de 10.

8) Si x(x-3) = 0, alors x = 3.

Contre-exemple:

Prenons x = 30 alors $3(3 - 3) = 3 \times 0 = 0$

9) Si x < 1, alors x < 0.

Contre-exemple:

Prenons Si x < 1 alors x peut être égale à 0. Or 0 n'est pas strictement inférieur à 0.

10) Si x < 2, alors $x^2 < 4$.

Contre-exemple:

Prenons x = -4 alors $(-4)^2 = 16 > 4$

11) Pour tout x, x est un nombre négatif.

Contre-exemple:

Prenons x = 105 alors x n'est pas négatif.

12) Pour tout entier n, si n est divisible par 3, il est divisible par 6.

Contre-exemple:

Prenons n=21, $21=3 \times 7$ donc 21 est bien un multiple de 3. Cependant 21 n'est pas un multiple de 6.

13) Si $1 \le x \le 3$ alors $x \in]1; 3[$.

Contre-exemple:

Prenons x tel que $1 \le x \le 3$, x peut être égale à 1 ou à 3, or dans l'intervalle les nombres 1 et 3 sont exclus.

14) Si $x \in [1; 5[$, alors $1 \le x \le 5$.

Contre-exemple:

Prenons x tel que $x \in [1; 5]$, x est donc différent de 5. Or, dans l'inégalité il est inclu.

15) Si $x \in [0; 10]$, alors x est un entier naturel.

Contre-exemple:

Dans l'intervalle [0; 10], il y a une infinité de nombres. Par exemple : 0.5; $\frac{1}{3}$; $\sqrt{2}$

EXERCICE 3

Pour aller plus loin.

Ecrire la démonstration de la propriété suivante : "La somme de deux nombres impairs est un nombre pair."

Prenons deux nombres impairs.

Le premier est 2n + 1 et le second 2p + 1.

Nous avons:

$$(2n+1) + (2p+1) = 2n+1+2p+1 = 2n+2p+2 = 2(n+p+1)$$

Ce résultat est de la forme 2k, (multiple de 2), donc la somme est paire.