Árboles (CARTs)

Big Data y Machine Learning para Economía Aplicada

Ignacio Sarmiento-Barbieri

Universidad de los Andes

Agenda

1 Recap

- 2 Árboles
 - Árboles de Regresiór
 - Árboles de Clasificación
 - Sobreajuste

Recap

ightharpoonup Queremos predecir y en funcion de observables (x_i)

$$y = f(\mathbf{x}_i) + u \tag{1}$$

donde la estimación de f implica la que minimize el riesgo empírico (prediga mejor fuera de muestra):

$$\hat{f} = \underset{f}{\operatorname{argmin}} \left\{ \sum_{i=1}^{n} L(y_i, f(\mathbf{x}_i; \Theta)) \right\}$$
 (2)

Sarmiento-Barbieri (Uniandes)

Recap

▶ Por ejemplo en regresión $f(x_i) = \mathbf{x}_i \beta$ y minimizamos

$$\hat{\beta} = \underset{\tilde{\beta}}{\operatorname{argmin}} \left\{ \sum_{i=1}^{n} (y_i - \mathbf{x}_i \beta)^2 \right\}$$
 (3)

► Por ejemplo en clasificación logistica $p(x_i) = \frac{1}{1 + e^{-x_i \beta}}$

$$\hat{\beta}^{MLE} = \underset{\beta}{argmin} - \left[\sum_{i=1}^{n} log \left(\frac{p_i}{1 - p_i} \right)^{y_i} + \sum_{i=1}^{n} log (1 - p_i) \right]$$
(4)

Sarmiento-Barbieri (Uniandes)

Agenda

1 Recap

- 2 Árboles
 - Árboles de Regresión
 - Árboles de Clasificación
 - Sobreajuste

Motivación

▶ Queremos predecir:

$$Precio = f(habitaciones, Distancia al CBD)$$
 (5)

Motivación

▶ Podemos asumir *f* es lineal

$$f(\mathbf{x}_i; \beta) = \beta_0 + \beta_1 Habitaciones_i + \beta_2 DCBD_i + u_i$$
 (6)

o ajustar un modelo flexible e interpretable como son los arboles

$$f(x_i; \{R_j, \gamma_j\}_1^I) = T(x_i; \{R_j, \gamma_j\}_1^I)$$
(7)

Sarmiento-Barbieri (Uniandes)

Agenda

1 Recap

- 2 Árboles
 - Árboles de Regresión
 - Árboles de Clasificación
 - Sobreajuste

"Recursive binary splitting"

DCBD

Habitaciones

"Recursive binary splitting"

Habitaciones

"Recursive binary splitting"

Habitaciones

► El problema de optimización

$$\hat{f} = \underset{f}{\operatorname{argmin}} \left\{ \sum_{i=1}^{n} L(y_i, f(\mathbf{x}_i; \Theta)) \right\}$$
 (8)

es ahora

$$\{\hat{R}_{j}, \hat{\gamma}_{j}\}_{1}^{J} = \underset{\{R_{j}, \gamma_{j}\}_{1}^{J}}{\operatorname{argmin}} \left\{ \sum_{i=1}^{n} L(y_{i}, T(\mathbf{x}_{i}; \{R_{j}, \gamma_{j}\}_{1}^{J})) \right\}$$
(9)

- ▶ Datos: $y_{n \times 1}$ y $X_{n \times k}$
- Definiciones
 - ightharpoonup j es la variable que parte el espacio y s es el punto de partición
 - Defina los siguientes semiplanos

$$R_1(j,s) = \{X | X_j \le s\} \& R_2(j,s) = \{X | X_j > s\}$$
(10)

▶ El problema: usando una "perdida cuadrática" buscar la variable de partición X_j y el punto s de forma tal que:

$$\min_{j,s} \left[\min_{\gamma_{R_1}} \sum_{x_i \in R_1(j,s)} (y - \gamma_{R_1})^2 + \min_{\gamma_{R_2}} \sum_{x_i \in R_2(j,s)} (y - \gamma_{R_2})^2 \right]$$
(11)

Sarmiento-Barbieri (Uniandes)

► ¿Cuál es la solución?

photo from https://www.dailydot.com/parsec/batman-1966-labels-tumblr-twitter-vine/

Agenda

1 Recap

- 2 Árboles
 - Arboles de Regresiór
 - Árboles de Clasificación
 - Sobreajuste

Árboles: Problema

▶ Jugamos al tenis?

Cielo	Humedad	Tenis?
Sol	Alta	No
Sol	Alta	No
Nublado	Alta	Sí
Sol	Alta	No
Sol	Normal	Sí
Nublado	Alta	Sí
Nublado	Normal	Sí

Árboles: Problema

Cielo	Humedad	Tenis?
Sol	Alta	No
Sol	Alta	No
Nublado	Alta	Sí
Sol	Alta	No
Sol	Normal	Sí
Nublado	Alta	Sí
Nublado	Normal	Sí

Árboles: Problema

Cielo	Humedad	Tenis?
Sol	Alta	No
Sol	Alta	No
Nublado	Alta	Sí
Sol	Alta	No
Sol	Normal	Sí
Nublado	Alta	Sí
Nublado	Normal	Sí

Sarmiento-Barbieri (Uniandes)

- ► Regiones lo más "puras" posibles
 - ▶ **Regresión**: minima varianza
 - ► Clasificación: ?

Problemas de clasificación

Temperatura °C	Llovió
23	NO
24	NO
29	SI
31	SI
33	SI

Problemas de clasificación

► ¿Cuál de los dos cortes es mejor?

Problemas de clasificación. Medidas de Impureza

- Medidas de impureza dentro de cada hoja:
 - ▶ Índice de Gini : $G = \sum_{k=1}^{K} \hat{p}_{mk} (1 \hat{p}_{mk})$
 - ► Entropía : $-\sum_{k=1}^{K} \hat{p}_{mk} log(\hat{p}_{mk})$
- Se define la impureza de un árbol por el promedio ponderado de las impurezas de cada hoja. El ponderador es la fracción de observaciones en cada hoja.

Problemas de clasificación. Impureza

► ¿Cuál de los dos cortes es mejor?

Temperatura °C	Llovió
31	SI
24	NO
29	SI
33	SI
23	NO

Problemas de clasificación. Impureza

► ¿Cuál de los dos cortes es mejor?

)

Problemas de clasificación. Predicción

Agenda

1 Recap

- 2 Árboles
 - Árboles de Regresiór
 - Árboles de Clasificación
 - Sobreajuste

Sobreajuste

Sobreajuste. Algunas soluciones

- ► Fijar la profundidad del árbol.
- Fijar la mínima cantidad de datos que están contenidos dentro de cada hoja.
- ▶ Pruning (poda).
 - ightharpoonup Dejar crecer un árbol muy grande T_0
 - ► Luego cortarlo obteniendo sub-árbol (*subtree*)
 - ► Como cortarlo?

- No es posible calcular el error de predicción usando cross-validation para cada sub-árbol posible
- ► Solución: *Cost complexity pruning (cortar las ramas mas débiles)*
 - ightharpoonup Indexamos los arboles con T.
 - Un sub-árbol $T \in T_0$ es un árbol que se obtuvo colapsando los nodos terminales de otro árbol (cortando ramas).
 - ightharpoonup [T] = número de nodos terminales del árbol T

► Cost complexity del árbol *T*

$$C_{\alpha}(T) = \sum_{m=1}^{|T|} n_m Q_m(T) + \alpha[T]$$
 (12)

- ▶ donde $Q_m(T) = \frac{1}{n_m} \sum_{x_i \in R_m} (y_i \hat{y}_m)^2$ para los árboles de regresión
- $ightharpoonup Q_m(T)$ penaliza la heterogeneidad dentro de la regresión y α el número de regiones
- **D** Objetivo: para un dado α , encontrar el pruning óptimo que minimice $C_{\alpha}(T)$

32 / 35

Sarmiento-Barbieri (Uniandes) Árboles (CARTs)

ightharpoonup Mecanismo de búsqueda para T_{α} (pruning óptimo dado α).

Resultado: para cada α hay un sub-árbol único T_{α} que minimiza $C\alpha$ (T).

- lacktriangle Eliminar sucesivamente las ramas que producen un aumento mínimo en $\sum_{m=1}^{[T]} n_m Q_m(T)$
- ▶ Se colapsa hasta el nodo inicial pero va a través de una sucesión de árboles
- $ightharpoonup T_{\alpha}$ pertenece a esta secuencia. (Breiman et al., 1984)

Algoritmo Completo

- 1 Utilizamos particiones recursivas binarias para hacer crecer el árbol
- 2 Para un dado α , aplicamos *cost complexity pruning* al árbol para obtener la secuencia de los subarboles como α .
- 3 Utilizamos K-fold cross-validation para elegir α .
- f 4 Tenemos entonces una secuencia de subarboles para distintos valores de lpha
- 5 Elegimos el α y el subárbol que tienen el menor error de predicción.

Ejemplo

photo from https://www.dailydot.com/parsec/batman-1966-labels-tumblr-twitter-vine/