

Universidad Nacional Autónoma de México Facultad de Ingeniería

Carrera: Ingeniería en Computación

Curso: Sistemas Operativos

Profesor: Ing. Gunnar Eyal Wolf Iszaevich

Alumn@:

Montiel Juarez Oscar Ivan

Torres Delgadillo Samuel Mixcoatl

Fecha de entrega: 1 de Abril del 2025

Semestre: 2025-2

1. Introducción al Edge Computing

Edge Computing: Ventajas y Desafíos

Ventajas:

- Baja latencia: Procesamiento local reduce latencia hasta 84.1% vs cloud logrando <10ms en servidores cercanos (<30 km) [1,2,3].
- Ahorro de ancho de banda: Solo envía datos relevantes a la nube [4,5]. Para 2025, la mayoría de datos se procesarán en edge [6].
- Seguridad: Menor exposición de datos sensibles vs cloud [7,8,9].

Desafíos:

- Escalabilidad: Complejo gestionar miles de dispositivos heterogéneos [8,10].
 Balanceo de carga tradicional no siempre funciona [11].
- Recursos limitados: Dispositivos edge tienen poca potencia y almacenamiento
 [12]. Asignación óptima de recursos es NP-hard [13].
- Seguridad: Más vulnerabilidades por distribución (ej. malware, ataques físicos) y dificultad para actualizar dispositivos [14].

2. Componentes Clave

- 1. Dispositivos Edge:
 - a. Sensores, cámaras y dispositivos IoT con capacidad limitada de procesamiento [15]
 - Ejecutan sistemas operativos ligeros (Ej: Raspbian, Ubuntu Core) para procesamiento inicial
- Nodos Edge:
 - a. Gateways o micro centros de datos con mayor potencia computacional [15,16]
 - b. Sistemas operativos especializados (Ej: K3s, Fedora IoT) para:
 - Filtrado de datos
 - ii. Agregación de múltiples fuentes
 - iii. Ejecución de contenedores ligeros (Docker, Kubernetes)
- 3. Cloud Central:
 - a. Gestión centralizada del sistema [8]
 - b. Compatible con sistemas operativos tradicionales (Linux/Windows Server)

3. Flujo de Datos y Requerimientos del SO

1. Captura: Dispositivos edge generan datos usando SOs en tiempo real (RTOS

como FreeRTOS o Zephyr)

- 2. Procesamiento Local:
 - a. SOs optimizados para baja latencia (Ej: Azure Sphere OS)
 - b. Protocolos ligeros: MQTT/CoAP [17]
- 3. Transmisión a Cloud:
 - a. TCP/IP sobre SOs convencionales [8]
 - b. Encriptación obligatoria (TLS/SSL integrado en el SO)

Aspectos Críticos para SOs Edge:

- 1. Baja latencia: Kernels optimizados (Ej: Linux con parches PREEMPT RT)
- Seguridad: Actualizaciones OTA y sandboxing (Ej: SELinux en nodos edge) [8]
- 3. Eficiencia energética: Gestión de recursos en SOs embebidos

4. Requisitos Clave para SOs Edge

- 1. Eficiencia de recursos:
 - a. Mínima huella en memoria y CPU (critical en dispositivos limitados) [12]
 - Ejemplos: Kernels modulares (microkernels) y soporte para hibernación profunda
- 2. Escalabilidad distribuida:
 - a. Gestión centralizada de flotas de dispositivos heterogéneos [8]
 - b. Soporte nativo para redes mesh y actualizaciones OTA
- 3. Tolerancia a fallos:
 - a. Mecanismos de autoreparación y operación offline [8]
 - b. Transaccionalidad en updates (ej: Ubuntu Core)
- 4. Seguridad reforzada:
 - a. Sandboxing obligatorio (snaps/flatpaks) [14]
 - b. Encriptación hardware-aware (TPM/HSM)
- 5. Soporte a heterogeneidad:
 - a. Compatibilidad multi-architecture (ARM/x86/RISC-V) [7]
 - b. Drivers unificados para protocolos diversos (MQTT, LoRaWAN)

5. SOs Edge vs Tradicionales

característica	SOs Edge	SOs Tradicionales
Arquitectura	Microkernel/Unikernel	Monolítica (linux/windows)
Footprint	10-100MB (Riot OS)	1GB+

Latencia	us-ms (RTOS)	ms-s
Actualizaciones	Atómicas(a/B updates)	Paquetes convencionales

Ejemplos Técnicos:

- 1. Azure IoT Edge: Containers asilados + offline operation
- 2. RIOT OS: RTOS para dispositivos <64KB RAM
- Ubuntu Core: Snapcraft + updates transaccionales

6. Gestión de Recursos en Edge

Desafíos:

- 1. Asignación dinámica en hardware heterogéneo [12,18]
- 2. Balanceo de carga en redes inestables [11]

Soluciones Técnicas:

- 1. Kubernetes Edge: K3s para clusters distribuidos
- 2. Unikernels: Compilación estática de apps + solo librerías esenciales
- 3. Virtualización Ligera: Firecracker (AWS) para microVMs seguras

7. Seguridad en Edge Computing

Riesgos Clave:

- 1. Ataques físicos: Dispositivos en ubicaciones inseguras (ej: manipulación de sensores industriales) [8]
- Vulnerabilidades distribuidas:
 - a. DDoS contra nodos edge [14]
 - b. Side-channel attacks en hardware limitado
 - c. Inyección de malware por protocolos IoT

Estrategias a Nivel de SO:

- 1. Cifrado eficiente:
 - a. Algoritmos lightweight (ChaCha20-Poly1305) para datos en tránsito/reposo [8,14]
 - b. Soporte hardware para aceleración AES/ECC
- 2. Autenticación robusta:
 - a. Protocolos basados en ECC para dispositivos limitados [14]

- b. Zero-trust architecture con MFA
- 3. Actualizaciones OTA seguras:
 - a. Firmware firmado criptográficamente
 - b. Particiones A/B para rollback automático [8]
- 4. Hardening del kernel:
 - a. Syscall filtering (seccomp-bpf)
 - b. Memory-safe languages (Rust) para drivers

8. Casos de Uso Reales

Aplicación	Requisitos Técnicos	Sos Utilizados
llot	RTOS para predic maintenance	FreeRTOS, Zephyr
Vehículo Autónomos	Latencia <10ms, soporte GPU/TPU	QNX, ROS 2
Telemedicina	HIPAA-compliance, cifrado end to end	Azure sphere os, ubuntu core
Smart cities	Escalabilidad masiva	RIOT OS, OpenWrt

9. Tendencias Futuras

- 1. 5G + Edge:
 - a. SOs con stack de red optimizado (kernel bypass con DPDK) [4]
- 2. Edge Al:
 - a. Kernels con soporte nativo para TPUs (TensorFlow Lite Micro) [7]
- 3. SOs especializados:
 - a. Unikernels para cargas de trabajo específicas (ej: inferencia ML)
 - b. Microkernels certificados (seL4 en entornos críticos)
- 4. Blockchain en Edge:
 - a. Light clients para consenso distribuido [18]
 - b. Smart contracts ejecutados en nodos edge

10. Conclusiones

Los SOs edge deben equilibrar:

1. Baja latencia (<1ms en casos críticos)

- 2. Seguridad by design (TEEs, enclaves SGX)
- 3. Gestión eficiente de recursos (memory ballooning, CPU pinning)

Áreas de Oportunidad:

- 1. Schedulers para heterogeneidad hardware
- 2. Debugging distribuido en entornos edge
- 3. Standardización de APIs para gestión remota

Fuentes citadas

- 2. X. Mengwei, "IWQoS23-edge-latency.pdf," xumengwei.github.io, Mar. 26, 2025. [Online]. Available: https://xumengwei.github.io/files/IWQoS23-edge-latency.pdf
- 3. "Measuring Latency Reduction and the Digital Divide of Cloud Edge Datacenters,"
 ResearchGate, Mar. 26, 2025. [Online]. Available:
 https://www.researchgate.net/publication/369974733 Measuring Latency Reduction an dathe Digital Divide of Cloud Edge Datacenters
- 4. "IJSRA-2024-2082.pdf," ijsra.net, Mar. 26, 2025. [Online]. Available: https://ijsra.net/sites/default/files/IJSRA-2024-2082.pdf
- Arm, "What Is Edge Computing (Versus Cloud Computing)?," Arm Glossary, Mar. 26, 2025. [Online]. Available: https://www.arm.com/glossary/edge-computing-vs-cloud-computing
- 6. "The Role of Edge Computing in Manufacturing: Enhancing Network Performance and Decision-Making," coevolve.com, Mar. 26, 2025. [Online]. Available: https://www.coevolve.com/insights-the-role-of-edge-computing-in-improving-network-performance-and-business-decisions/
- 7. "Edge computing," Wikipedia, Mar. 25, 2025. [Online]. Available: https://en.wikipedia.org/wiki/Edge computing
- 8. Stratus Technologies, "What is Edge Computing | Why We Need Edge," stratus.com, Mar. 26, 2025. [Online]. Available: https://www.stratus.com/edge-computing/
- "Location Privacy Protection in Edge Computing: Co-Design of Differential Privacy and Offloading Mode," MDPI, vol. 13, no. 13, 2025. [Online]. Available: https://www.mdpi.com/2079-9292/13/13/2668
- S. A. Khan, et al., "ScalEdge: A framework for scalable edge computing in Internet of...," SAGE Journals, vol. 15501477211035332, Mar. 26, 2025. [Online]. Available: https://journals.sagepub.com/doi/10.1177/15501477211035332?icid=int.sj-fu I-text.similar-articles.7
- 11. "Revolutionizing load harmony in edge computing networks with...," PMC, Mar. 26, 2025. [Online]. Available: https://pmc.ncbi.nlm.nih.gov/articles/PMC11779838/
- 12. "EDGE COMPUTING: EVOLUTION, CHALLENGES, AND FUTURE DIRECTIONS," ResearchGate, Mar. 26, 2025. [Online]. Available: https://www.researchgate.net/publication/380341600 EDGE COMPUTING EVOLUTIO

N CHALLENGES AND FUTURE DIRECTIONS

- 13. "Joint Task Offloading and Resource Alocation in Heterogeneous...," NSF, Mar. 26, 2025. [Online]. Available: https://par.nsf.gov/servlets/purl/10450429
- 14. "A Survey on Edge Computing (Ec) Security Chalenges...," Preprints.org, vol. 202502.1500, Mar. 26, 2025. [Online]. Available: https://www.preprints.org/manuscript/202502.1500/v1
- 15. "Edge Computing vs. Cloud Computing: Key Differences in 2024...," Jessup University Blog, Mar. 26, 2025. [Online]. Available: https://iessup.edu/blog/engineering-technology/edge-computing-vs-cloud-computing/
- 16. "Edge Computing," Microsoft Research, Mar. 26, 2025. [Online]. Available: https://www.microsoft.com/en-us/research/project/edge-computing/
- 17. "What Is Edge Computing? | Microsoft Azure," Azure, Mar. 26, 2025. [Online]. Available: https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-edge-computing
- 18. "Optimizing Resource Management in 5G Heterogeneous Edge...," ResearchGate, Mar. 26, 2025. [Online]. Available: https://www.researchgate.net/publication/389415591 Optimizing Resource Management in 5G Heterogeneous Edge Computing with Blockchain and Deep Learning