Practice Problems on Inventory Management - Newsvendor: Solutions

1. Every catalog fetches a profit of \$35.00 and costs \$5.00 to produce. Therefore, Cost of under stocking $C_u = 35 . Cost of overstocking $C_o = 5 .

Critical ratio = $C_u / (C_u + C_o) = 35 / (35 + 5) = 0.875$. z = 1.15.

Each run needs to satisfy the demand during half a year, with mean 16,000 / 2 = 8,000 and standard deviation = $4000 * \sqrt{0.5} = 2828.43$.

Total quantity, Q = 8,000 + 1.15 * 2828.43 = 11252.69, round up. Johnson should print 11253 catalogs for each run.

Remark: Fixed cost is sunk, so should not be taken into account.

2. $C_u = \text{Lost revenue from lost sale} = $120 - $18 = $102.$

 C_0 = Loss from an unsold crate = \$18 + \$2 = \$20.

Critical ratio = $C_u / (C_u + C_o) = 102 / (102 + 20) = 0.836$.

The probability density of demand and the cumulative probability is listed below.

Demand	3	4	5	6	7	8	9	10	11	12	13	14	15
Frequency	1	3	2	5	1	6	7	6	8	5	4	1	3
Prob.	0.019	0.058	0.038	0.096	0.019	0.115	0.135	0.115	0.154	0.096	0.077	0.019	0.058
Cumulative Prob. $P(d \le x)$	0.019	0.077	0.115	0.211	0.23	0.345	0.48	0.595	0.749	0.845	0.922	0.941	1

The optimal order quantity is 12.

3. D = Amount of trash (in tons) put out per day; Normally distributed: μ = 35 tons, σ = 9 tons Q = Amount of trash (in tons) that can be collected per day Number of crews needed = Q/5 (since each crew can collect 5 tons per day)

Overstocking:

- Happens if less trash than crews can collect (D < Q)
- Cost of overstocking is the cost of idle crews, Co = \$625/crew = \$125/ton

Understocking:

- Happens if more trash than crews can collect (D > Q)
- You'll have to hire an outside contractor, so the cost of understocking is the extra cost due to the contractor, $C_u = $650/\text{ton} $125/\text{ton} = $525/\text{ton}$

SL* = Critical ratio = $C_u / (C_u + C_o)$ = 0.8077 z = NORMSINV(0.8077) = 0.86945 Q* = μ + z σ = 35 + 0.86945*9 = 42.8 tons

Hence, it is optimal to have 42.8/5 crews = 8.56 crews \rightarrow 9 crews (round-up rule)