1 Frobenius Norm, Trace, SVD

The Frobenius norm of a matrix is defined as the square root of the sum of the absolute squares of its elements:

$$||M||_F = \sqrt{\sum_{i,j} |m_{i,j}|^2}$$

In class we have used the following property to simplify our calculations of the Frobenius norm,

$$||M||_F = \sqrt{\mathrm{Tr}(MM^T)}$$

- (a) Prove that the above equation is true.
- (b) Now show that the Frobenius norm of a square matrix is equal to the square root of the sum of the singular values:

$$\|M\|_F = \sqrt{\sum_i \sigma_i^2}$$

(c) In HW 4 we used the Eckart-Young-Mirsky thereom to find the closest lower-rank approximation of a degenerate matrix in the Frobenius Norm. Show that the following is true:

Given a matrix $M \in R^{mxn}$ with singular values $\sigma_1 \ge \sigma_2 \ge ... \ge \sigma_n$

$$\min_{\tilde{M}_k} \|M - \tilde{M}_k\|_F^2 = \sum_{i=k+1}^m \sigma_i^2$$

Hint: First show that i) There is a rank k matrix \tilde{M}_k such that

$$||M - \tilde{M}_k||_F^2 = \sum_{i=k+1}^n \sigma_i^2$$

then show that ii) \tilde{M}_k yields the minimal solution to the optimization problem.

2 Bias/Variance for K-Nearest Neighbors Regression

Suppose we have n training points x_i with labels y_i . We want to model a regression problem with k-nearest neighbors regression. K-nearest neighbors works as follows: for a particular data point z, the k-nearest neighbors regression algorithm finds the closest k points to z in our n training points and predicts the value label for z by averaging the labels of the closest k points. More formally, we model our hypothesis h(z) as

$$h(z) = \frac{1}{k} \sum_{i=1}^{n} N(x_i, z, k)$$

where the function N is defined as

$$N(x_i, z, k) = \begin{cases} y_i & \text{if } x_i \text{ is one of the } k \text{ closest points to } z \\ 0 & o.w. \end{cases}$$

Suppose also we assume our labels $y_i = f(x_i) + \varepsilon$, where ε is the noise that comes from $\mathcal{N}(0, \sigma^2)$ and f is the true function.

- (a) Derive the bias² of our model for given x_i , y_i pairs. Remember that the bias is simply $(\mathbb{E}(h(z)) f(z))^2$.
- (b) How well does k-nearest neighbors behave as $k \longrightarrow \infty$? How about when k = 1? Comment.
- (c) Derive the variance of our model, which is defined as the Var(h(z)).
- (d) What happens to the variance when $k \longrightarrow \infty$? How about when k = 1?

CS 189, Fall 2017, gs1 2

3 MLE, MAP, and Lasso

Assume a set of points $x_1, ..., x_n \in \mathbb{R}^d$, an unknown parameter vector $\theta^* \in \mathbb{R}^d$, and observations $y_1, ..., y_n \in \mathbb{R}$ generated by

$$y_i = x_i^{\top} \theta^* + \varepsilon_i$$

where $\varepsilon_i \sim \mathcal{N}(0, \sigma^2)$ for some arbitrary σ^2 . Note that this can equivalently be written as

$$y_i \sim \mathcal{N}(x_i^{\top} \boldsymbol{\theta}^*, \boldsymbol{\sigma}^2)$$

(a) Show that performing maximum likelihood estimation under these modeling assumptions is equivalent to solving the unconstrained least squares problem. That is, show that you can formulate the optimization problem as

$$\hat{\theta} = \arg\min_{\theta} \alpha \|X\theta - Y\|_2^2 \tag{1}$$

for $\alpha > 0, X \in \mathbb{R}^{n \times d}, Y \in \mathbb{R}^n$.

(b) Now assume that θ_i^* is drawn from a distribution with probability density function $p(\theta_i^*) \propto e^{-|\theta_i^*|/t}$ where t>0 is a constant. Show that performing maximum a posteriori estimation is equivalent to solving the l-1 regularized least squares problem. That is, show that you can formulate the optimization problem as

$$\hat{\theta} = \arg\min_{\theta} \alpha \|X\theta - Y\|_2^2 + \beta \|\theta\|_1$$
 (2)

for $\alpha > 0$, $\beta > 0$, $X \in \mathbb{R}^{n \times d}$, $Y \in \mathbb{R}^n$.

(c) Consider the following l-2 regularized regression problem:

$$\hat{\theta} = \arg\min_{\theta} \|X\theta - Y\|_{2}^{2} + \lambda \|\theta\|_{2}^{2}$$
(3)

Solve for $\hat{\theta}$ and show that it is a biased estimator.

(d) Consider the optimization problem below that combines l-1 and l-2 regularization with $\gamma \in [0,1]$:

$$\hat{\theta} = \arg\min_{\theta} \|X\theta - Y\|_{2}^{2} + \lambda \left[\gamma \|\theta\|_{2}^{2} + (1 - \gamma) \|\theta\|_{1} \right]$$
 (4)

Show that it can be rewritten as an l-1 regularized problem with augmented versions of X and Y.

Hint: You can modify *X* to be a specific block matrix.

CS 189, Fall 2017, gs1 3

4 GLS and the Gauss-Markov Theorem

Suppose we are in the GLS setting where we have a model Y = Xw + N where $N \sim \mathcal{N}(0,\Sigma)$ for some PSD covariance matrix Σ (that is, the error terms could be correlated). Recall that the GLS estimate is $\hat{w}_{GLS} = (X^T \Sigma^{-1} X)^{-1} X^T \Sigma^{-1} Y$ and coincides with the MLE when N is Gaussian. In this problem we will show that the GLS estimator is a "best linear unbiased estimator" of w in that it yields the lowest mean squared error $E(\|\hat{w} - w\|_2^2)$ out of all unbiased estimators \hat{w} of w that are linear in y.

- (a) Compute $E(\hat{w}_{GLS})$ and $Cov(\hat{w}_{GLS})$. What is the distribution of \hat{w} ?
- (b) Show that $MSE(\hat{w}) = E(\|w \hat{w}\|_2^2)$ can be decomposed into the sum of the squared norm of the bias, $\|w E(\hat{w})\|_2^2$, and the trace of the covariance matrix $Tr(Cov(\hat{w}))$. Conclude that for unbiased estimators \hat{w} of w, $MSE(\hat{w}) = Tr(Cov(\hat{w}))$.
- (c) In this part of the problem we will prove a version of the Gauss-Markov Theorem for GLS, which states that if \hat{w} is an unbiased estimator of w that is linear in y (that is, $\hat{w} = Cy$ for some C), then $Cov(\hat{w}) Cov(\hat{w}_{GLS})$ is positive semi-definite.
 - (a) Set $M = (X^T \Sigma^{-1} X)^{-1} X^T \Sigma^{-1}$ so that $\hat{w}_{GLS} = MY$. If $\hat{w} = (M+D)Y$ where $D \neq 0$ (because if D = 0, $\hat{w} = \hat{w}_{GLS}$), show that a necessary and sufficient condition for \hat{w} to be unbiased for every w is the condition DX = 0 (hint: take $E(\hat{w})$ and express it as β plus another term).
 - (b) Show that $Cov(\hat{w}_{GLS}) Cov(\hat{w})$ is PSD for every such \hat{w} satisfying the conditions for the Gauss-Markov Theorem (hint: take $Cov(\hat{w})$ and express it as $Cov(\hat{w}_{GLS})$ plus another term using the condition found in part (a) then show that term is PSD).
 - (c) Does the Gauss-Markov theorem apply when the errors *N* do not follow a normal distribution?
- (d) Conclude that the GLS estimator minimizes the MSE over all unbiased estimators that are linear in y. In particular, if the covariance matrix of the errors is not a multiple of the identity, GLS does at least as well as OLS.

CS 189, Fall 2017, gs1 4