Pharmaceutical Stress vs. Strain Simulations Using Machine Learning

Juan Mendoza

Motivation

- Why a pharmaceutical simulation?
 - "In 2019, the pharmaceutical industry spent \$83 billion dollars on R&D...about 10 times what the industry spent per year in the 1980s" (Congressional Budget Office).
 - Pre-pandemic!
- Why AI?
 - Endless applications
 - Can improve research in every field
 - Can improve everyday life

Congressional Budget Office, using data from Bloomberg, limited to U.S. firms as identified by Aswath Damodaran, "Data: Breakdown" (accessed January 13, 2020), https://tinyurl.com/yd5hq4t6. See www.cbo.gov/publication/57025#data.

Problem Statement

- What is the compaction behavior of pharmaceutical powders given their properties?
- What is the strain vs. stress relationship?
- Applications
 - o Pharmaceutical manufacturing of tablets
 - Metal forming

"Tablet Compression - How it works animation".

Related Work

Simulating Compaction Behavior with the Discrete Element Method

Pros

- No analytical solution exists for modeling compaction behavior for more than two particles
- Expanded our knowledge of how these systems behave

Cons

- The behavior of each particle is calculated by Newton's Second Law
- Slow and computationally expensive
- Requires high performance computing

Contributions

Proposal

- We propose a new approach that speeds up the process to Θ
 (1) time complexity
- Relies on machine learning and particularly neural networks
- Build a dedicated dataset
- Evaluate our approach to show that it is efficient and speedy

Outline

- Background Material
- Our Approach
- Evaluation
- Conclusion

Background Material

Strain vs Stress

DEM simulations

 Given some properties, we can simulate the relationship between strain and stress over time

Inputs

 Properties of the material (Ex. Loading Plasticity Value, Unloading Plasticity, Coefficient Adhesion)

Outputs

A function of strain and stress over time

Exponential Regression

What is it?

 Statistical method to find an exponential relationship between two variables

Optimization

 Try to find coefficients that minimize the error between the curve and the points

Neural Networks

- Subset of machine learning
- Typically used for supervised learning
 - Inputs and outputs are given to infer a function between them
- Neural networks learn through backpropagation
 - A form of gradient descent
 - The network adjusts its weights based on the error between its predictions and the training outputs
 - These adjustments can make its predictions more accurate

Regression with a deep neural network (DNN)

In the previous section, you implemented two linear models for single and multiple inputs.

Here, you will implement single-input and multiple-input DNN models.

The code is basically the same except the model is expanded to include some "hidden" non-linear layers. The name "hidden" here just means not directly connected to the inputs or outputs.

These models will contain a few more layers than the linear model:

- The normalization layer, as before (with horsepower_normalizer for a single-input model and normalizer for a multiple-input model).
- Two hidden, non-linear, Dense layers with the ReLU (relu) activation function nonlinearity.
- · A linear Dense single-output layer.

Both models will use the same training procedure so the compile method is included in the build_and_compile_model function below.

Approach

Our Approach

Constraints

- Focus on the loading phase
- Focus on families of inputs that give simulation results that are roughly exponential

Our Approach

End product

The Training Process

Steps

- Collect simulation samples
- Cut everything after loading phase
- Use exponential regression to get a and b
- Create training dataset

Our Approach

Training Process

Collect Data

Collaborators

- Worked with Kostas Giannis, a PhD student from Technische Universität Braunschweig · Institut für Partikeltechnik - Center of Pharmaceutical Engineering (PVZ)
- Wrote a Python script to generate random input files for the simulation to run on HPC
- Generated random values within a realistic range for the following parameters: Loading Plasticity Value, Unloading Plasticity, Coefficient Plasticity Depth, Coefficient Adhesion

Results

Gathered a total of 3500 simulation runs

```
m1 all property/global youngsModulus peratomtype 2.58e8
            m2 all property/global poissonsRatio peratomtype 0.3
#fix
                 m33 all property/global kn peratomtypepair 2 0.4e8 0.4e8 0.4e8 0.4e8
fix
            m3 all property/global LoadingStiffness peratomtypepair 1 28216.9295019
fix
           m4 all property/global UnloadingStiffness peratomtypepair 1 12941.9090378
                m5 all property/global coefficientPlasticityDepth peratomtypepair 1 0.205465141219
#fix
                m44 all property/global kt peratomtypepair 2 100 100 100 100
fix
                m6 all property/global gamman peratomtypepair 1 100
fix
                m7 all property/global gammat peratomtypepair 1 100
            m27 all property/global coefficientRestitution peratomtypepair 1 0.352
           m8 all property/global coefficientFriction peratomtypepair 1 0.561
fix
            m9 all property/global coefficientAdhesionStiffness peratomtypepair 1 1.69903424655
            m10 all property/global pullOffForce peratomtypepair 1 0
            m11 all property/global FluidViscosity peratomtypepair 1 0.5
           m12 all property/global coeffFrictionStiffness peratomtypepair 1 0
           m13 all property/global FrictionViscosity peratomtypepair 1 0.01
fix
                m144 all property/global coefficientRollingFriction peratomtypepair 1 0.3
#New pair style
# AM: or no history?
#pair_style gran model hertz/stiffness tangential history
pair_style gran model luding tangential tan_luding rolling_friction cdt #rolling_friction luding
#rolling_friction luding
pair coeff **
variable dt equal 0.000000001
```

2000 0.4 1e5 1e5 0 2e4 0e4 0e4 .. 0.5 0.5 0 0 .8. 1546.26490773707 309.252981547414 0 0 154.6 30.9 0.5 0

Collect Data

All Stress vs. Strain Simulation Graphs

Single Stress vs. Strain Graph

Crop Images

We know at what strain the mass stress will be, but I still just split the graph at the max anyway.

Fit exponential

Used the Python curve_fit function to fit an exponential function and return it's corresponding coefficients.

NN Dataset

- Neural Network Training Examples
 - Loading Plasticity Value [N / m^2]
 - Unloading Plasticity [-]
 - Coefficient Plasticity Depth [-]
 - Coefficient Adhesion [-]
 - Exponential Coefficient 1 [-]
 - Exponential Coefficient 2 [-]
- Total number of training examples:
 3028

LY	Lpv ▼	Up ♥	Cpd ▼	Ca ▼	Out1 ▼	Out2 ▼
1439	94856857.97	2750.46	0.35	1.47	22.02	12.8
2770	33391.33	3594.62	0.24	1.3	0.17	8.61
1999	5092.52	13542.69	0.14	1.34	0.39	6.75
2000	37621.07	8201.76	0.41	1.06	0.01	14.96
2510	98707.69	18034.11	0.79	1.48	0	5.67
1213	1961458.41	16604.76	0.56	4.02	0	57.43
34	68165456.88	7345.27	0.05	1.53	5588.41	5.89
182	19203427.18	14065.16	0.36	2.16	18.51	13.16
689	79757175.45	10285.03	0.42	1.37	2.43	17.91
2055	31509.24	7725.66	0.42	0.57	0	16.04
2468	40591.29	14170.07	0.26	3.01	0.56	9.23
613	1968707.18	13021.79	0.34	4.8	3.9	11.87
2376	99847.95	2346.25	0.98	1.97	0	5
232	80467763.38	261.33	0.62	1.09	0.46	8.14
1355	22354431.84	5809.06	0.84	0.63	0.37	5.39
814	70362612.32	5100.31	0.51	2.14	0	34.76
1653	81545750.75	657.81	0.61	3.58	0	18.45
1288	18608869.41	13708.41	0.99	2.74	0.35	5.11
1958	61976.04	9948.9	0.85	1.64	0	5.11
2777	92624.25	4529.3	0.2	1.7	1.05	7.89
1298	24919959.78	5554.9	0.55	4.97	0	50.07
2254	53038.52	10344.96	0.47	0.79	0	22.25
1090	85431346.7	18500.18	0.76	2.59	1.39	5.51
3010	93079.34	8294.53	0.36	4.62	0.05	13.16
2757	59441.99	6807.48	0.41	1.99	0	15.69
2678	33370.18	734.09	0.99	3.38	0	4.96
694	8788628.99	11706.75	0.35	1.35	7.74	13.01
9	36086796.12	12128.59	0.83	1.32	0.59	5.44
576	98179095.97	1296.83	0.67	1.84	0.89	6.98
1223	3028413.47	14513.54	0.35	3.75	4.57	12.43
817	57054097.57	17039.12	0.27	3.68	736.21	9.59
2431	35262.39	13723.76	0.56	3.08	0	38.14
442	14572064.11	3349.24	0.48	3.81	0	24.8
2939	71861.62	4520.86	0.14	0.88	1.67	6.9
2811	54021.66	7273.68	0.19	1.83	1.14	7.69
4470	7050400 07				400770	

Fun Graphs

All Stress vs. Strain Simulation Graphs

All Exponential Fit Graphs

Fun Graphs

Frequency Distribution of a

Frequency distribution of b

Fun Graphs

Scatter Plot of a vs. b

Train a NN

Neural Network Architecture

- Layers
 - 4 nodes in input layer
 - 64 nodes in first hidden layer
 - o 64 nodes in second hidden layer
 - 2 nodes in output layer
 - Concluded after experimenting with different architectures
- Used Adam (Adaptive Moment Estimation) optimization algorithm
- All ReLU (Rectified Linear Unit) activation functions
- Allocation
 - 45% of these records go to training
 - 25% of these records go to validation
 - 20% of these records go to testing
- Early stopping
 - Stop backpropagation when validation error hits minimum

Evaluation

Evaluation Methodology

Evaluate each component

- Exponential fitting
- NN (lambda evaluation results)

Evaluate the whole method

The whole method

Exponential Fitting

Residuals

Root Mean Square Error	745.5558711149811		
Mean Absolute Error	470.00821986935165		
Mean Square Error	555853.5569540182		

Lambda

a b

Root Mean Square Error	156.48366958051417	Root Mean Square Error	2.2242482487163016
Mean Absolute Error	110.97848067559875	Mean Absolute Error	1.743066214136309
Mean Square Error	24487.13884538354	Mean Square Error	4.947280271917535

Lambda

Error Histogram

Methodology

Residuals

Root Mean Square Error	54.87599563758551	
Mean Absolute Error	9.76554860746884	
Mean Square Error	3011.374897216304	

Noteworthy

Good C: Bad :C

Conclusions

Some great stuff

 Our approach does not require HPC after training to run

Future Work

- Unloading phase
- Could try this process for other simulations, possibly non-exponential

Fin.