Logica e Modelli Computazionali

Automi a Stati Finiti Deterministici

Marco Console

Ingegneria Informatica e Automatica, Sapienza Università di Roma

ASFD – Descrizione Informale

- Gli Automi a Stati Finiti Deterministici (ASFD) sono un modello computazionale
 - Il primo che incontreremo nel corso
- Gli ASFD rappresentano calcolatori semplici con memoria molto limitata
 - L'input di è una stringa e l'output è un bit (risolvono alcuni problemi di riconoscimento)
 - L'unica memoria di questi calcolatori è un registro che contiene lo stato interno
 - Gli stati interni sono un numero fisso determinato dal programma
 - Un ASDF esamina un simbolo della stringa dell'input alla volta (senza considerare i precedenti o successivi)
- A partire dal primo simbolo della stringa di input \mathcal{I} e lo stato iniziale \mathcal{S}_0 l'ASFD esegue i seguenti passi:
 - 1. Esamina il simbolo corrente $\mathcal C$ della stringa di input e lo stato interno corrente $\mathcal S$
 - 2. Sceglie se cambiare lo **stato intero** S in uno **stato** S'
 - 3. Se esiste un **simbolo** \mathcal{C} ' che segue **simbolo corrente** \mathcal{C} nella stringa di input, passa al **simbolo** \mathcal{C} '
 - 4. Se tale **simbolo** C' non esiste (la stringa termina al **simbolo** C) la computazione termina e
 - Se lo stato interno corrente S è uno stato "Finale" ritorna 1 (stringa accettata)
 - Se lo stato interno corrente S non è uno stato "Finale" ritorna 0 (stringa rifiutata)

Diagramma degli Stati – Descrizione Informale

- Il funzionamento degli ASFD (e delle macchine che rappresentano) possono essere descritti tramite diagrammi degli stati (o grafi di transizione)
 - Intuitivamente, il diagramma rappresenta il programma eseguito dalle macchine
- Un diagramma degli stati è un grafo orientato ed etichettato in cui:
 - I nodi rappresentano gli stati della macchina che stiamo rappresentando;
 - Gli archi rappresentano le possibili transizioni di stato;
 - Le etichette sugli archi rappresentano il simbolo la cui lettura determina la transizione;
 - Lo stato iniziale è rappresentato tramite una freccia senza partenza;
 - Gli stati finali sono rappresentati con un doppio cerchio
 - Se la transizione per un certo simbolo non è definita da uno stato, assumiamo sia un cappio

INPUT

A A A A B

STATO CORRENTE

INPUT

A A B A A B

STATO CORRENTE

STATO CORRENTE

STATO CORRENTE

STATO CORRENTE

STATO CORRENTE

STATO CORRENTE

STATO CORRENTE

 q_1

Α

INPUT

ASFD – Definizione Formale

- Un automa a stati finiti deterministico (ASFD) è una quintupla $< \Sigma, Q, \delta, I, F >$
 - 1. $\Sigma = \{a_1, ..., a_n\}$ è l'**alfabeto** di input;
 - 2. Q è un insieme finito detto **insieme degli stati**;
 - 3. $I \in Q$ è lo **stato iniziale**;
 - 4. $F \subseteq Q$ è un insieme degli stati finali;
 - 5. $\delta: Q \times \Sigma \to Q$ è una funzione da $Q \times \Sigma$ in Q, chiamata **funzione di transizione**
- Intuitivamente, le cinque componenti di un ASFD rappresentano
 - 1. L'insieme dei possibili simboli utilizzati nelle stringhe di input (*alfabeto* Σ)
 - 2. L'insieme dei possibili stati interni della macchina (*insieme degli stati* **Q**)
 - 3. Lo stato interno della macchina da cui parte la computazione (stato iniziale I)
 - 4. L'insieme degli stati in cui la macchina ritorna 1 (*insieme degli stati finali* F)
 - 5. La funzione che determina il passaggio di stato (*funzione di transizione* δ)

ASFD – Esempio

Consideriamo il Diagramma degli Stati visto in precedenza

- L'ASFD che rappresenta la macchina descritta dal diagramma è $< \Sigma, Q, \delta, I, F >$ t.c.
 - 1. $\Sigma = \{a, b\};$
 - 2. $Q = \{q_0, q_1, q_2\};$
 - 3. $I = q_0$;
 - 4. $F = \{q_1\}$;
 - 5. δ definita dalla tabella a destra \rightarrow

Q	S	$\delta(Q,S)$
q_0	а	q_0
q_0	b	q_1
q_1	а	q_2
q_1	b	q_2
q_2	a	q_2
q_2	b	q_2

Diagramma degli Stati e ASFD

- Nel seguito, rappresenteremo spesso gli ASFD tramite il diagramma degli stati
- In questi casi, dato un diagramma G, ci riferiamo all'ASFD $A_G = < \Sigma, Q, \delta, I, F >$ tale che
 - 1. Σ è l'insieme delle etichette degli archi di G
 - 2. Q è l'insieme dei nodi di G
 - 3. I è il nodo contrassegnato dalla freccia nel diagramma
 - 4. F è l'insieme dei nodi contrassegnati dal doppio cerchio nel diagramma
 - 5. δ è la funzione tale che $\delta(q,s)=q'$ per ogni arco da q a q' con etichetta s in G
- Nota. La trasformazione che abbiamo definito è semi-formale
 - Per definire formalmente un ASFD non basta un diagramma degli stato ma serve la quintupla
 - Per noi spesso una definizione semi-formale sarà sufficiente

Da Diagramma degli Stati ad ASFD

Consideriamo il Diagramma degli Stati G visto in precedenza

- L'ASFD $A_G < \Sigma, Q, \delta, I, F >$ tale che
 - 1. $\Sigma = \{a, b\};$
 - 2. $Q = \{q_0, q_1, q_2\};$
 - 3. $I = q_0$;
 - 4. $F = \{q_1\}$;
 - 5. δ definita dalla tabella a destra \rightarrow

Q	S	$\delta(Q,S)$
q_0	а	q_0
q_0	b	q_1
q_1	а	q_2
q_1	b	q_2
q_2	а	q_2
q_2	b	q_2

Calcolare con un ASFD – Intuizione

- Fino ad ora, abbiamo definito solamente la "sintassi" di un ASFD
 - Insieme al comportamento intuitivo che vogliamo rappresentare
- Procediamo a definire la semantica di ogni quintupla che rappresenta un ASFD
 - Il comportamento formale di tali quintuple
- Per un ASFD $A = < \Sigma, Q, \delta, I, F >$, **l'intuizione rimane la stessa** discussa in precedenza
- Con Input $S = "c_1c_2 \dots c_k" \in \Sigma^*$, a partire da Q = I e $C = c_1 A$ "esegue" i seguenti passi
 - **1.** Se $C = \epsilon$ allora la computazione termina
 - Se $Q \in F$ ritorna 1 (stringa accettata)
 - Se $Q \notin F$ ritorna 0 (stringa rifiutata)
 - 2. Altrimenti
 - 1. $Q := \delta(Q, C)$
 - $2. \ \mathcal{C} \coloneqq \text{prossimo carattere di } \mathcal{S} \text{ (se esiste) altrimenti} \mathcal{C} \coloneqq \epsilon$
 - 3. Torna al passo 1

Esecuzioni

- Sia dato un ASFD $A = < \Sigma, Q, \delta, I, F > e$ una stringa $S = "c_1c_2 ... c_n" \in \Sigma^*$ con |S| = n
- **Definizione**. Una **esecuzione di** A **su** S è una sequenza $(q_1, ..., q_{n+1}) \in Q^{n+1}$ di n+1 elementi di Q t.c.
 - $q_1 = I$ (intuitivamente, il primo stato è quello iniziale)
 - $\delta(q_i, c_i) = q_{i+1}$ per i = 1, ..., n (intuitivamente, ogni stato è generato dal precedente applicando δ al simbolo corrente)
- **Definizione**. Lo stato finale di una esecuzione $X=(q_0,...,q_n)$ è l'ultimo stato della sequenza q_n
- Proposizione. Data $s \in \Sigma^*$ (stringa sull'alfabeto di A), esiste esattamente una esecuzione A(S) di A su S.
- **Prova.** Per definizione, $(q_0, q_1, ..., q_n) \in Q^{n+1}$ è una esecuzione di A su S se e solo se $q_1 = I$; $q_2 = \delta(q_0, c_0)$; $q_3 = \delta(q_2, c_2)$; ...; $q_n = \delta(q_{n-1}, c_{n-1})$. Visto che δ è una funzione su $Q \times \Sigma$, per ogni coppia $q_i, c_i \in Q \times \Sigma$, esiste esattamente un valore $\delta(q_i, c_i)$.
- **Definizione**. L'esecuzione $A(S) = (q_0, ..., q_n)$ è accettante se il suo stato finale q_n appartiene a F

Esempio di Esecuzione

L'ASFD $A_G < \Sigma, Q, \delta, I, F >$ tale che

1.
$$\Sigma = \{a, b\};$$

2.
$$Q = \{q_0, q_1, q_2\};$$

3.
$$I = q_0$$
;

4.
$$F = \{q_1\};$$

5. δ definito dalla tabella sottostante

Q	S	$\delta(Q,S)$
q_0	а	q_0
q_0	b	q_1
q_1	а	q_2
q_1	b	q_2
q_2	а	q_2
q_2	b	q_2

INPUT

_	•			•	
Α	Α	Α	Α	Α	В

ESECUZIONE ACCETTANTE

q_0	q_0	q_0	q_0	q_0	q_0	q_1	
-------	-------	-------	-------	-------	-------	-------	--

Esempio di Esecuzione

L'ASFD $A_G < \Sigma, Q, \delta, I, F >$ tale che

1.
$$\Sigma = \{a, b\};$$

2.
$$Q = \{q_0, q_1, q_2\};$$

3.
$$I = q_0$$
;

4.
$$F = \{q_1\};$$

5. δ definito dalla tabella sottostante

Q	S	$\delta(Q,S)$
q_0	а	q_0
q_0	b	q_1
q_1	а	q_2
q_1	b	q_2
q_2	а	q_2
q_2	b	q_2

INPUT

Α	Α	В	Α	Α	В
		_			

ESECUZIONE NON ACCETTANTE

q_0	q_0	q_0	q_1	q_2	q_2	q_2

Linguaggio Riconosciuto da un ASFD

- **Definizione**. Dato un ASFD $A = < \Sigma$, Q, δ , q_0 , F > e una stringa $x \in \Sigma^*$
 - x è accettata da A se A(x) è accettante
 - Altrimenti, x è rifiutata
- **Definizione**. Un **linguaggio** è un insieme di stringhe
- **Definizione**. Sia $A = < \Sigma, Q, \delta, q_0, F >$ un ASFD. **Il linguaggio riconosciuto da** A è il linguaggio L(A) sull'alfabeto Σ tale che $L(A) = \{x \in \Sigma^* \mid x \text{ è } accettata \text{ } da \text{ } A\}$
- Definizione. Un linguaggio \mathcal{L} è detto regolare se esiste un ASFD A tale che $L(A) = \mathcal{L}$
 - Un linguaggio è regolare se e solo se esiste un ASFD che lo riconosce

Linguaggio Riconosciuto da un ASFD – Esempio

L'ASFD $A_G < \Sigma, Q, \delta, I, F >$ tale che

1.
$$\Sigma = \{a, b\};$$

2.
$$Q = \{q_0, q_1, q_2\};$$

3.
$$I = q_0$$
;

4.
$$F = \{q_1\};$$

5. δ definito dalla tabella sottostante

Q	S	$\delta(Q,S)$
q_0	а	q_0
q_0	b	q_1
q_1	а	q_2
q_1	b	q_2
q_2	а	q_2
q_2	b	q_2

Il linguaggio $L(A_G)$ riconosciuto da A_G è il seguente

$$L(A_G) = \{a^n b \mid per \ n \ge 0\}$$

• Definire un ASFD che riconosce il linguaggio su $\{a,b\}$ delle stringhe il cui secondo simbolo è b oppure il terzo è a

Esercizio 1 – Soluzione

• Definire un ASFD che riconosce il linguaggio su $\{a,b\}$ delle stringhe il cui secondo simbolo è b oppure il terzo è a

Esercizio 1 – Soluzione

• Definire un ASFD che riconosce il linguaggio su $\{a,b\}$ delle stringhe il cui secondo simbolo è b oppure il terzo è a

- $\Sigma = \{a, b\}$
- $Q = \{q_0, q_1, q_2, q_3, q_4\}$
- $I = q_0$
- $F = \{q_2\}$
- δ definito dalla tabella

Q	S	$\delta(Q,S)$
q_0	а	q_1
q_0	b	q_1
q_1	а	q_3
q_1	b	q_2
q_2	а	q_2
q_2	b	q_2
q_3	а	q_2
q_3	b	q_4
q_4	а	q_4
q_4	b	q_4

• Definire un ASFD che riconosce il linguaggio su $\{a,b\}$ delle stringhe il cui secondo simbolo è b e il terzo simbolo è a

Esercizio 2 – Soluzione

• Definire un ASFD che riconosce il linguaggio su $\{a,b\}$ delle stringhe il cui secondo simbolo è b e il terzo simbolo è a

Esercizio 2 – Soluzione

 Definire un ASFD che riconosce il linguaggio su {a, b} delle stringhe il cui secondo simbolo è b e il terzo simbolo è a

- $\Sigma = \{a, b\}$
- $Q = \{q_0, q_1, q_2, q_3, q_4\}$
- $I = q_0$
- $F = \{q_2\}$
- δ definito dalla tabella

Q	S	$\delta(Q,S)$
q_0	а	q_1
q_0	b	q_1
q_1	b	q_3
q_1	а	q_4
q_2	а	q_2
q_2	b	q_2
q_3	а	q_2
q_3	b	q_4
q_4	а	q_4
q_4	b	q_4

Definire un ASFD che riconosce il linguaggio su $\{a,b\}$ delle stringhe il cui penultimo carattere è b

Definire un ASFD che riconosce il linguaggio su $\{a,b\}$ delle stringhe il cui penultimo carattere è b

Definire un ASFD che riconosce il linguaggio su $\{a,b\}$ delle stringhe aventi un numero pari di a o un numero pari di b

Esercizio 4 – Soluzione

Definire un ASFD che riconosce il linguaggio su $\{a,b\}$ delle stringhe aventi un numero pari di a o un numero pari di b

•
$$\Sigma = \{a, b\}$$

- $Q = \{q_0, q_1, q_2, q_3\}$
- $I = q_0$
- $F = \{q_0, q_1\}$
- δ definito dalla tabella

δ	$\mid a \mid$	b
q_0	q_1	q_2
q_1	q_0	q_3
q_2	q_3	q_0
q_3	q_2	q_1

