re:Invent

BDM301

Best Practices for Apache Spark on Amazon EMR

Jonathan Fritz, Sr. Product Manager, Amazon EMR Yekesa Kosuru, VP of Engineering, DataXu Dong Jiang, Sr. Principal Software Engineer, DataXu Saket Mengle, Sr. Principal Data Scientist, DataXu

AWS re:Invent 2016

What to Expect from the Session

- Spark on EMR architecture
- Spark performance and using S3
- Spark security
- Spark for ETL and data science at DataXu
- Demo of DataXu's Spark workflow

Spark on YARN

- Run Spark Driver in Client or Cluster mode
- Spark application runs as a YARN application
- SparkContext runs as a library in your program, one instance per Spark application.
- Spark Executors run in YARN Containers on NodeManagers in your cluster
- Access Spark UI through the Resource Manager or Spark History Server

Configuring Executors – Dynamic Allocation

- Optimal resource utilization
- YARN dynamically creates and shuts down executors based on the resource needs of the Spark application
- Spark uses the executor memory and executor cores settings in the configuration for each executor
- Amazon EMR uses dynamic allocation by default, and calculates the default executor size to use based on the instance family of your Core Group
- Or, use maximizeResourceAllocation for single-tenancy

Options to submit jobs – on cluster

Notebooks and IDEs: Apache Zeppelin, Jupyter, RStudio, and more!

Use Spark Actions in your Apache Oozie workflow to create DAGs of jobs.

Or, use Spark Submit or the Spark Shell

Connect with ODBC / JDBC to Spark Thriftserver

Develop fast using notebooks and IDEs

Included in EMR releases

Install using Bootstrap Actions

Connect with ODBC / JDBC

Options to submit jobs – off cluster

Many storage layers to choose from

Decouple compute and storage by using S3 as your data layer

S3 is designed for 11 9's of durability and is massively scalable

S3 tips: Partitions, compression, and file formats

- Avoid key names in lexicographical order
- Improve throughput and S3 list performance
- Use hashing/random prefixes or reverse the date-time
- Compress data set to minimize bandwidth from S3 to EC2
 - Make sure you use splittable compression or have each file be the optimal size for parallelization on your cluster
- Columnar file formats like Parquet can give increased performance on reads

Encryption at-rest and in-flight

Auto Scaling for data science on-demand

Coming Soon: Advanced Spot provisioning

- Provision from a list of instance types with Spot and On-Demand
- Launch in the most optimal AZ based on capacity/price
- Spot Block support

Using Spark at DataXu - Overview

- Who is DataXu
- Why Spark
- DataXu Processing Flows
 - Benchmarks
 - Tips & Lessons Learned
 - Demo
- DataXu Science
 - Benchmarks
 - Tips and Lessons Learned
 - Demo

DataXu

Who

- Spun out of MIT Labs
- A petabyte scale digital marketing platform
- One of the fastest growing companies in Inc. 5000

What

- Help world's most valuable brands understand and engage with their consumer
- Maximize ROI

Quick Statistics

- 2M+ bid requests per second
- Billions of impressions, Petabytes of data
- ~10ms round trip response time
- 180+TB logs per day
- 2PB data analyzed
- 3000+ servers powering the platform
- 13 regions, 24x7

Real Time Bidding

Why Spark?

- Performance
 - Speed of execution: Spark sorted 100 TB of data (1 trillion records) 3X faster using 10X fewer machines than traditional MapReduce
 - Massively parallel
 - In-memory vs disk IO
 - Partition aware shuffles
- Speaks your language Java, Scala, Python, R
- Streaming Use Cases Streaming API
- Spark on EMR
 - EMR as Common Foundation mature platform
 - Elasticity, Security, Spot Instances, Decoupled Storage and Compute
 - Low TCO: Spot Instances, Low OPEX

DataXu Flows

AWS

Ecosystem of tools and services

DataXu Spark Pipeline

DataXu Flows - New Generation

ETL Pipeline

Event Data

- Impressions
- Activities
- Attributions
- (Facts)

Reference Data (Dimensions)

Spark on EMR (ETL)

Application Logs Exceptions Data Reporting Data

Cost/Performance Benchmarks

ETL Workload: Spark on EMR vs MPP Database

Cluster	Instance Type, Count	Execution Time (mins)	Monthly Costs
Shared MPP*	48 x nodes	20, 30, 54	\$20,000
(COLO)	(24 cores, 64GB)		(Excluding SW license)
Single-node MPP (AWS)	1 i2.8xlarge	~40	\$4,992 (Excluding SW license)
Spark on EMR	7 m3.xlarge	20, 20, 20	\$875
(AWS)	7 m4.xlarge	18, 18, 18	\$766
Spark on EMR	3 m3.xlarge	50, 51, 51	\$375
(AWS)	3 m4.xlarge	44, 45, 46	\$328

Execution Time and Cost vs Number of Core Nodes

Number of Core Nodes

Scalability w/ Data Volume

Data Volume

Tips

Spark SQL

BroadcastHashJoin, Easy in 2.0

UDF for Readability, Modularity and Testability, no performance penalty

Complex SQL queries may need to be materialized

Watch out for bottlenecks, like Spark driver operations

Lessons Learned

Big Picture

Re-think infrastructure (Cloud vs Host Solution)

Think cloud native instead of fork lifting

Re-think ETL process (Spark vs MPP database vs Hadoop MR)

- Spark Core and SQL are rock solid, MR as fallback
- Streamline processing

Re-think in-memory processing

- Minimize incoming data footprints
- Control unnecessary joins

EMR is an excellent common backend

- Default setting just works
- Consistent performance

Demo

DataXu Machine Learning

Why is this hard?

Huge Scale	 2 Petabytes Processed Daily 2 Million Bid Decisions Per Second Runs 24 X 7 on 5 Continents Thousands of ML Models Trained per Day 	
Unattended Operation	Model training and deployment runs automatically every day	
Changing Industry	 Need ability to adapt quickly to new customer requirements 	

Benchmark – Training Time

- Training times are linear using Spark AWS
- Three different algorithms tested at scale
 - Decision Tree
 - Random Forest
 - Logistic Regression
- Linear Scalability is important

For training/evaluating we used a 6 node r3.2xlarge cluster - 150 GB Memory, 20 Cores.

Benchmarks – Bidding time

Data XU Data. Insight. Action.®

- Out-of-the-box Spark performance is impressive
 - Latency
 - Model Size
- DataXu models are faster and smaller but they were optimized for years

Takeaways

Big Picture

One common big data platform

Spark on Amazon EMR works well out of the box

Very little code to train and evaluate models

Automated & unattended ML at scale

Thank you!

jonfritz@amazon.com

aws.amazon.com/emr/ aws.amazon.com/blogs/big-data/ ykosuru@dataxu.com djiang@dataxu.com smengle@dataxu.com

We are hiring! www.dataxu.com/careers

Remember to complete your evaluations!