CSC 412 (Lecture 4): Undirected Graphical Models

Raquel Urtasun

University of Toronto

Feb 2, 2016

Today

Undirected Graphical Models:

- Semantics of the graph: conditional independence
- Parameterization
 - Clique
 - Potentials
 - Gibbs Distribution
 - Partition function
 - Hammersley-Clifford Theorem
- Factor Graphs
- Learning

R Urtasun (UofT) CSC 412 Feb 2, 2016 2 / 37

Directed Graphical Models

- Represent large joint distribution using "local" relationships specified by the graph
- Each random variable is a node
- The edges specify the statistical dependencies
- We have seen directed acyclic graphs

R Urtasun (UofT) CSC 412 Feb 2, 2016 3 / 37

Directed Acyclic Graphs

Represent distribution of the form

$$p(y_1,\cdots,y_N)=\prod_i p(y_i|y_{\pi_i})$$

with π_i the parents of the node i

- Factorizes in terms of local conditional probabilities
- Each node has to maintain $p(y_i|y_{\pi_i})$
- Each variable is CI of its non-descendants given its parents

$$\{y_i \perp y_{\tilde{\pi}_i} | y_{\pi_i}\} \quad \forall i$$

with $y_{\tilde{\pi}_i}$ the nodes before y_i that are not its parents

- Such an ordering is a "topological" ordering (i.e., parents have lower numbers than their children)
- Missing edges imply conditional independence

What's the joint probability distribution?

R Urtasun (UofT) CSC 412 Feb 2, 2016 5 / 37

Internal Representation

• For discrete variables, each node stores a conditional probability table (CPT)

R Urtasun (UofT) CSC 412 Feb 2, 2016 6 / 37

Are DGM Always Useful?

- Not always clear how to choose the direction for the edges
- Example: Modeling dependencies in an image

Figure: Causal MRF or a Markov mesh

- Unnatural conditional independence, e.g., see Markov Blanket $mb(8) = \{3,7\} \cup \{9,13\} \cup \{12,4\}$, parents, children and co-parents
- Alternative: Undirected Graphical models (UGMs)

Undirected Graphical Models

- Also called Markov random field (MRF) or Markov network
- As in DGM, the nodes in the graph represent the variables
- Edges represent probabilistic interaction between neighboring variables
- How to parametrize the graph?
 - In DGM we used CPD (conditional probabilities) to represent distribution of a node given others
 - For undirected graphs, we use a more symmetric parameterization that captures the affinities between related variables.

Semantics of the Graph: Conditional Independence

• Global Markov Property: $x_A \perp x_B | x_C$ iff C separates A from B (no path in the graph), e.g., $\{1, 2\} \perp \{6, 7\} | \{3, 4, 5\}$

Markov Blanket (local property) is the set of nodes that renders a node t
conditionally independent of all the other nodes in the graph

$$t \perp \mathcal{V} \setminus cl(t)|mb(t)$$

where $cl(t) = mb(t) \cup t$ is the closure of node t. It is the set of neighbors, e.g., $mb(5) = \{2, 3, 4, 6, 7\}$.

Pairwise Markov Property

$$s \perp t | \mathcal{V} \setminus \{s, t\} \iff G_{st} = 0$$

R Urtasun (UofT) CSC 412 Feb 2, 2016 9 / 37

Dependencies and Examples

- Pairwise: $1 \perp 7 | \text{rest}$
- Local: $1 \perp \text{rest}|2,3$
- Global: $1, 2 \perp 6, 7 \mid 3, 4, 5$

ightarrow See page 119 of Koller and Friedman for a proof

Image Example

Complete the following statements:

- Pairwise: $1 \perp 7 | \text{rest?}, 1 \perp 20 | \text{rest?}, 1 \perp 2 | \text{rest?}$
- Local: $1 \perp \text{rest}$ | ?, $8 \perp \text{rest}$ | ?
- Global: $1, 2 \perp 15, 20$ |?

R Urtasun (UofT) CSC 412 Feb 2, 2016 11 / 37

- From Directed to Undirected via moralization
- From Undirected to Directed via triangulation
- See (Kohler and Friedman) book if interested

Not all UGM can be represented as DGM

- Fig. (a) Two independencies: $(A \perp C|D,B)$ and $(B \perp D|A,C)$
- Can we encode this with a DGM?
- Fig. (b) First attempt: encodes $(A \perp C|D,B)$ but it also implies that $(B \perp D|A)$ but dependent given both A,C
- Fig. (c) Second attempt: encodes $(A \perp C|D, B)$, but also implies that B and D are marginally independent.

R Urtasun (UoFT) CSC 412 Feb 2, 2016 13 / 37

Not all DGM can be represented as UGM

Example is the V-structure

• Undirected model fails to capture the marginal independence $(X \perp Y)$ that holds in the directed model at the same time as $\neg(X \perp Y | Z)$

R Urtasun (UofT) CSC 412 Feb 2, 2016 14 / 37

- A clique in an undirected graph is a subset of its vertices such that every two vertices in the subset are connected by an edge
 → i.e., the subgraph induced by the clique is complete
- The maximal clique is a clique that cannot be extended by including one more adjacent vertex
- The maximum clique is a clique of the largest possible size in a given graph
- What are the maximal cliques? And the maximum clique in the figure?

Parameterization of an UGM

- $\mathbf{y} = (y_1, \dots, y_m)$ the set of all random variables
- Unlike DGM, since there is no topological ordering associated with an undirected graph, we can't use the chain rule to represent p(y)
- Instead of associating conditional probabilities to each node, we associate potential functions or factors with each maximal clique in the graph
- For a clique c, we define the potential function or factor

$$\psi_c(\mathbf{y}_c|\theta_c)$$

to be any non-negative function, with \mathbf{y}_c the restriction to a subset of variables in \mathbf{y}

- The joint distribution is then proportional to the product of clique potentials
- Any positive distribution whose CI are represented with an UGM can be represented this way (let's see this more formally)

R Urtasun (UofT) CSC 412 Feb 2, 2016 16 / 37

Factor Parameterization

Theorem (Hammersley-Clifford)

A positive distribution p(y) > 0 satisfies the CI properties of an undirected graph $G \underline{iff} p$ can be represented as a product of factors, one per maximal clique, i.e.,

$$p(\mathbf{y}|\theta) = \frac{1}{Z(\theta)} \prod_{c \in \mathcal{C}} \psi_c(\mathbf{y}_c|\theta_c)$$

with C the set of all (maximal) cliques of G, and $Z(\theta)$ the partition function defined as

$$Z(\theta) = \sum_{\mathbf{y}} \prod_{c \in \mathcal{C}} \psi_c(\mathbf{y}_c | \theta_c)$$

Proof.

Can be found in (Koller and Friedman book)

We need the partition function as the potentials are not conditional distributions. In DGMs we don't need it

The partition function

The joint distribution is

$$p(\mathbf{y}|\theta) = \frac{1}{Z(\theta)} \prod_{c \in \mathcal{C}} \psi_c(\mathbf{y}_c|\theta_c)$$

with the partition function

$$Z(\theta) = \sum_{\mathbf{y}} \prod_{c \in \mathcal{C}} \psi_c(\mathbf{y}_c | \theta_c)$$

- This is the hardest part of learning and inference. Why?
- Factored structure of the distribution makes it possible to more efficiently do the sums/integrals needed to compute it.

R Urtasun (UofT) CSC 412 Feb 2, 2016 18 / 37

Example

$$p(\mathbf{y}) \propto \psi_{1,2,3}(y_1, y_2, y_3)\psi_{2,3,5}(y_2, y_3, y_5)\psi_{2,4,5}(y_2, y_4, y_5)$$
$$\psi_{3,5,6}(y_3, y_5, y_6)\psi_{4,5,6,7}(y_4, y_5, y_6, y_7)$$

- Is this representation unique?
- What if I want a pairwise MRF?

R Urtasun (UofT) CSC 412 Feb 2, 2016 19 / 37

Representing Potentials

 If the variables are discrete, we can represent the potential or energy functions as tables of (non-negative) numbers

$$p(A,B,C,D) = \frac{1}{Z}\psi_{a,b}(A,B)\psi_{b,c}(B,C)\psi_{c,d}(C,D)\psi_{a,d}(A,D)$$

- The potentials are NOT probabilities
- They represent compatibility between the different assignments

Factor product

• Given 3 disjoint set of variables $\mathbf{X}, \mathbf{Y}, \mathbf{Z}$, and factors $\psi_1(\mathbf{X}, \mathbf{Y})$, $\psi_2(\mathbf{Y}, \mathbf{Z})$, the factor product is defined as

$$\psi_{x,y,z}(\mathbf{X},\mathbf{Y},\mathbf{Z}) = \psi_{x,y}(\mathbf{X},\mathbf{Y})\phi_{y,z}(\mathbf{Y},\mathbf{Z})$$

R Urtasun (UofT) CSC 412 Feb 2, 2016 21 / 37

Query about probabilities: marginalization

$\phi_1[A,B]$	$\phi_2[B,C]$	$\phi_3[C,D]$	$\phi_4[D,A]$
$\begin{bmatrix} a^0 & b^0 & 30 \\ a^0 & b^1 & 5 \\ a^1 & b^0 & 1 \\ a^1 & b^1 & 10 \end{bmatrix}$	$\begin{array}{cccc} b^0 & c^0 & 100 \\ b^0 & c^1 & 1 \\ b^1 & c^0 & 1 \\ b^1 & c^1 & 100 \end{array}$	$ \begin{array}{cccc} c^0 & d^0 & 1 \\ c^0 & d^1 & 100 \\ c^1 & d^0 & 100 \\ c^1 & d^1 & 1 \end{array} $	$ \begin{vmatrix} d^0 & a^0 & 100 \\ d^0 & a^1 & 1 \\ d^1 & a^0 & 1 \\ d^1 & a^1 & 100 \end{vmatrix} $

Assignment		nt	Unnormalized	Normalized	
a^0	b^0	c^0	d^0	300000	0.04
a^0	b^0	c^0	d^1	300000	0.04
a^0	b^0	c^1	d^0	300000	0.04
a^0	b^0	c^1	d^1	30	$4.1 \cdot 10^{-6}$
a^0	b^1	c^0	d^0	500	$6.9 \cdot 10^{-5}$
a^0	b^1	c^0	d^1	500	$6.9 \cdot 10^{-5}$
a^0	b^1	c^1	d^0	5000000	0.69
a^0	b^1	c^1	d^1	500	$6.9 \cdot 10^{-5}$
a^1	b^0	c^0	d^0	100	$1.4 \cdot 10^{-5}$
a^1	b^0	c^0	d^1	1000000	0.14
a^1	b^0	c^1	d^0	100	$1.4 \cdot 10^{-5}$
a^1	b^0	c^1	d^1	100	$1.4 \cdot 10^{-5}$
a^1	b^1	c^0	d^0	10	$1.4 \cdot 10^{-6}$
a^1	b^1	c^0	d^1	100000	0.014
a^1	b^1	c^1	d^0	100000	0.014
a^1	b^1	c^1	d^1	100000	0.014

• What's the $p(b^0)$? Marginalize the other variables!

Query about probabilities: conditioning

α^1	b¹	C1	0.25
a^1	b ²	c1	0.08
α²	b1	c1	0.05
a^2	b ²	C1	0
a^3	b¹	C1	0.15
a^3	b ²	c1	0.09

(Original)

(Cond. on c^1)

- ullet Conditioning on an assignment $oldsymbol{u}$ to a subset of variables $oldsymbol{U}$ can be done by
 - Eliminating all entries that are inconsistent with the assignment
 - Re-normalizing the remaining entries so that they sum to 1

Reduced Markov Networks

• Let \mathcal{H} be a Markov network over \mathbf{X} and let $\mathbf{U} = u$ be the context. The reduced network $\mathcal{H}[u]$ is a Markov network over the nodes $\mathbf{W} = \mathbf{X} - \mathbf{U}$ where we have an edge between X and Y if there is an edge between then in \mathcal{H}

- If **U** = Grade?
- If $U = \{Grade, SAT\}$?

Connections to Statistical Physics

The Gibbs Distribution is defined as

$$p(\mathbf{y}|\theta) = \frac{1}{Z(\theta)} \exp\left(-\sum_{c} E(\mathbf{y}_{c}|\theta_{c})\right)$$

where $E(\mathbf{y}_c) > 0$ is the energy associated with the variables in clique c

• We can convert this distribution to a UGM by

$$\psi(\mathbf{y}_c|\theta_c) = \exp(-E(\mathbf{y}_c|\theta_c))$$

- High probability states correspond to low energy configurations.
- These models are named energy based models

R Urtasun (UofT) CSC 412 Feb 2, 2016 25 / 37

Log Linear Models

Represent the log potentials as a linear function of the parameters

$$\log \psi_c(\mathbf{y}_c) = \phi_c(\mathbf{y}_c)^T \theta_c$$

The log probability is then

$$\log p(\mathbf{y}|\theta) = \sum_{c} \phi_{c}(\mathbf{y}_{c})^{\mathsf{T}} \theta_{c} - \log Z(\theta)$$

- This is called log linear model
- Example: we can represent tabular potentials

$$\psi(y_s = j, y_t = k) = \exp([\theta_{st}^T \phi_{st}]_{jk}) = \exp(\theta_{st}(j, k))$$

with $\phi_{st}(y_s, y_t) = [\cdots, I(y_s = j, y_t = k), \cdots)$ and I the indicator function

Example: Ising model

- Captures the energy of a set of interacting atoms.
- $y_i \in \{-1, +1\}$ represents direction of the atom spin.
- The graph is a 2D or 3D lattice, and the energy of the edges is symmetric

$$\psi_{st}(y_s, y_t) = \begin{pmatrix} e^{w_{st}} & e^{-w_{st}} \\ e^{-w_{st}} & e^{w_{st}} \end{pmatrix}$$

with w_{st} the coupling strength between two nodes. If not connected $w_{st}=0$

- Often we assume all edges have the same strength, i.e., $w_{st} = J \neq 0$
- If all weights positive, then neighboring spins likely same spin (ferromagnets, associative Markov network)
- ullet If weights are very strong, then two models, all +1 and all -1
- If weights negative, then anti-ferromagnets. Not all the constraints can be satisfied, and the prob. distribution has multiple modes
- Also individual node potentials that encode the bias of the individual atoms (i.e., external field)

R Urtasun (UofT) CSC 412 Feb 2, 2016 27 / 37

More on Ising Models

- Captures the energy of a set of interacting atoms.
- $y_i \in \{-1, +1\}$ represents direction of the atom spin.
- The energy associated is

$$P(\mathbf{y}) = \frac{1}{Z} \exp \left(\sum_{i,j} \frac{1}{2} w_{i,j} y_i y_j + \sum_i b_i y_i \right) = \frac{1}{Z} \exp \left(\frac{1}{2} \mathbf{y}^T \mathbf{W} \mathbf{y} + \mathbf{b}^T \mathbf{y} \right)$$

The energy can be written as

$$E(\mathbf{y}) = -\frac{1}{2}(\mathbf{y} - \boldsymbol{\mu})^T \mathbf{W}(\mathbf{y} - \boldsymbol{\mu}) + c$$

with
$$\mu = -\mathbf{W}^{-1}\mathbf{u}$$
, $c = \frac{1}{2}\mu^T\mathbf{W}\mu$

- Looks like a Gaussian... but is it?
- Often modulated by a temperature $p(\mathbf{y}) = \frac{1}{7} \exp(-E(\mathbf{y})/T)$
- T small makes distribution picky

R Urtasun (UofT) CSC 412 Feb 2, 2016 28 / 37

Example: Hopfield networks

- A Hopfield network is a fully connected Ising model with a symmetric weight matrix $\mathbf{W} = \mathbf{W}^T$
- The main application of Hopfield networks is as an associative memory

Training Image

Test Image 60% Occlusion

Interm Result After 5 Iterations

Recoverd Image

Example: Potts Model

- Multiple discrete states $y_i \in \{1, 2, \cdots, K\}$
- Common to use

$$\psi_{st}(y_s, y_t) = \begin{pmatrix} e^J & 0 & 0 \\ 0 & e^J & 0 \\ 0 & 0 & e^J \end{pmatrix}$$

- If J > 0 neighbors encourage to have the same label
- Phase transition: change of behavior, J = 1.44 in example

Figure : Sample from a 10-state Potts model of size 128×128 for (a) J=1.42, (b) J=1.44, (c) J=1.46

More on Potts

$$p(\mathbf{y}|\mathbf{x},\theta) = \frac{1}{Z} \prod_{i} \psi_{i}(y_{i}|\mathbf{x}) \prod_{i,j} \psi_{i,j}(y_{i},y_{j})$$

31 / 37

Example: Gaussian MRF

Is a pairwise MRF

$$p(\mathbf{y}|\theta) \propto \prod_{s \sim t} \psi_{st}(y_s, y_t) \prod_t \psi_t(y_t)$$

$$\psi_{st}(y_s, y_t) = \exp\left(-\frac{1}{2}y_s \Lambda_{st} y_t\right)$$

$$\psi_t(y_t) = \exp\left(-\frac{1}{2}\Lambda_{tt} y_t^2 + \eta_t y_t\right)$$

The joint distribution is then

$$ho(\mathbf{y}| heta) \propto \exp\left[\eta^T \mathbf{y} - rac{1}{2} \mathbf{y}^T \Lambda \mathbf{y}
ight]$$

- ullet This is a multivariate Gaussian with $\Lambda=\Sigma^{-1}$ and $\eta=\Lambda\mu$
- If $\Lambda_{st}=0$ (structural zero), then no pairwise connection and by factorization theorem

$$y_s \perp y_t | \mathbf{y}_{-(st)} \Longleftrightarrow \Lambda_{st} = 0$$

• UGM are sparse precision matrices. Used for structured learning

Factor Graphs

- A factor graph is a graphical model representation that unifies directed and undirected models
- It is an undirected bipartite graph with two kinds of nodes.
 - Round nodes represent variables,
 - Square nodes represent factors

and there is an edge from each variable to every factor that mentions it.

• Represents the distribution more uniquely than a graphical model

Factor Graphs for Directed Models

 One factor per CPD (conditional distribution) and connect the factor to all the variables that use the CPD

Learning using Gradient methods

MRF in log-linear form

$$p(\mathbf{y}|\theta) = \frac{1}{Z(\theta)} \exp\left(\sum_{c} \theta_{c}^{T} \phi_{c}(\mathbf{y}_{c})\right)$$

• Given training examples $\mathbf{y}^{(i)}$, the scaled log likelihood is

$$\ell(\theta) = -\frac{1}{N} \sum_{i} \log p(\mathbf{y}^{(i)}|\theta) = \frac{1}{N} \sum_{i} \left[-\sum_{c} \theta_{c}^{T} \phi_{c}(\mathbf{y}_{c}^{(i)}) + \log Z^{(i)}(\theta) \right]$$

- ullet Since MRFs are in the exponential family, this function is convex in heta
- We can find the global maximum, e.g., via gradient descent

$$\frac{\partial \ell}{\partial \theta_c} = \frac{1}{N} \sum_{i} \left[-\phi_c(\mathbf{y}_c^{(i)}) + \frac{\partial}{\partial \theta_c} \log Z^{(i)}(\theta) \right]$$

• The first term is constant for each iteration of gradient descent, it is called the empirical means

Moment Matching

$$\frac{\partial \ell}{\partial \theta_c} = \frac{1}{N} \sum_{i} \left[-\phi_c(\mathbf{y}_c^{(i)}) + \frac{\partial}{\partial \theta_c} \log Z^{(i)}(\theta) \right]$$

ullet The derivative of the log partition function w.r.t. $heta_c$ is the expectation of the c'th feature under the model

$$\frac{\partial \log Z(\theta)}{\partial \theta_c} = \sum_{\mathbf{y}} \phi_c(\mathbf{y}) p(\mathbf{y}|\theta) = E[\phi_c(\mathbf{y})]$$

Thus the gradient of the log likelihood is

$$\frac{\partial \ell}{\partial \theta_c} = \left[-\frac{1}{N} \sum_{i} \phi_c(\mathbf{y}_c^{(i)}) \right] + E[\phi_c(\mathbf{y})]$$

- The second term is the contrastive term or unclamped term and requires inference in the model (it has to be done for each step in gradient descent)
- Dif. of the empirical distrib. and model's expectation of the feature vector

$$rac{\partial \ell}{\partial heta_c} = -E_{
m extit{ extit{p}}_{emp}}[\phi_c(\mathbf{y})] + E_{
m extit{p}(\cdot| heta)}[\phi_c(\mathbf{y})]$$

36 / 37

• At the optimum the moments are matched (i.e., moment matching)

R Urtasun (UofT) CSC 412 Feb 2, 2016

Approximated Methods

- In UGM, no closed form solution to the ML estimate of the parameters, need to do gradient-based optimization
- Computing each gradient step requires inference → very expensive (NP-hard in general)
- Many approximations exist: stochastic approaches, pseudo likelihood, etc