Measure Your Body Fat

Zhengyuan Wen, Jiaying Jia, Hengrui Qu

Module2 of STAT 628 Data Science Practicum FALL21 20 OCTOBER 2021

Contents

1. Introduction and Data Cleaning

Introduction
By Summary Table of Dataset
By Siri's equation and BMI equation

2. Model Selection

Candidate Models Metric for Model performance

3. Final Model

Model Description Statistical Properties of Final Model Example Usage of Model Model Diagnosis Strength and weakness

Outline

1. Introduction and Data Cleaning

Introduction
By Summary Table of Dataset
By Siri's equation and BMI equation

Model Selection

Candidate Models
Metric for Model performance

3. Final Model

Model Description
Statistical Properties of Final Model
Example Usage of Model
Model Diagnosis
Strength and weakness

Introduction

- The goal is to come up a simple, robust, and accurate "rule-of-thumb" to estimate percentage of body fat using clinically available measurements
- 252 observations
- BODYFAT is response variable
- 14 predictors: Age, Weight, Height, Adiposity, Neck circumference, Chest circumference, Abdomen circumference, Hip circumference, Thigh circumference, Knee circumference, Ankle circumference, Biceps circumference, Forearm circumference, Wrist circumference

Data Cleaning by summary table

Part of Summary of the dataset

```
BODYFAT
                  DENSITY
                                  WEIGHT
                                                  HEIGHT
Min.
      : 0.00
               Min.
                     :0.995
                              Min.
                                     :118.5
                                             Min.
                                                    29.50
1st Qu.:12.80
               1st Qu.:1.041
                                             1st Qu.:68.25
                              1st Qu.:159.0
Median :19.00
               Median :1.055
                             Median :176.5
                                             Median :70.00
Mean
      :18.94
               Mean :1.056
                             Mean :178.9
                                             Mean
                                                    :72.25
                             3rd Qu.:197.0
3rd Qu.:24.60
               3rd Qu.:1.070
                                             3rd Qu.:197.0
      :45.10
                                     :363.1
Max.
               Max. :1.109
                              Max.
                                             Max.
                                                    :363.1
```

Some individuals which have the abnormal values

Individual	variables	outliers value
172	BODYFAT	1.9
182	BODYFAT	0.0
216	BODYFAT	45.1
39	WEIGHT	363.1
42	HEIGHT	29.50

Data Cleaning by Siri's equation and BMI equation

The Siri's Equation

BODYFAT % =
$$\frac{495}{D} - 450$$
, D is the Body Density (gm/cm³)

The BMI equation

$$\text{ADIPOSITY}(BMI) = \frac{\text{Weight } (lbs) \times 703}{[\text{ Height } (inch)]^2}$$

Some individuals which disobey the Siri's Equation and BMI equation

Individual	disobeyed equation
33	Siri's
48	Siri's
76	Siri's
96	Siri's
163	BMI
221	BMI

Data Cleaning Summary

- In the equation checking, we are not sure which variable has input error in original dataset, so we remove them.
- The potential outliers only consist of less than 5%, we will remove them all.
- now there are 241 individuals

Outline

1. Introduction and Data Cleaning

Introduction
By Summary Table of Dataset
By Siri's equation and BMI equation

2. Model Selection

Candidate Models
Metric for Model performance

3. Final Model

Model Description
Statistical Properties of Final Model
Example Usage of Model
Model Diagnosis
Strength and weakness

Candidate Models

- Simple Linear Regression with BIC Criteria
- Lasso
- Generalized Additive Model (GAM)

Candidate Model	Variables
SLR with BIC	WEIGHT ABONMEN WRIST
Lasso	AGE HEIGHT NECK ABDOMEN WRIST
GAMs	AGE WEIGHT FOREARM ABDOMEN THIGH WRIST

Metric for Model performance

We ended up choosing the best model by 10-fold Cross Validation (CV).
 We compared three models above, used training data to train the model, and used test data to calculate RMSE

0.0000

0.0278

0.0550

0.0008

FALSE

1337.629

11 / 21

Variable		0,				
	Models					
Variables	(0)	(1)	(2)	(3)	(4)	(5)
Intercept	0.0000	0.0000	0.0130	0.0035	0.0044	0.0003
AGE	0.0151	0.019	0.0163	0.0137	0.0185	0.0326
WEIGHT	0.1516	0.2084	0.0325	0.0044	0.0033	0.0009
HEIGHT	0.0612	0.6452				

0.0639

0.0000

0.4628

0.0433

0.1900

0.0723

0.0018

FALSE

1335.550

0.0758

0.0000

0.0529

0.1777

0.0661

0.0018

FALSE

1334.177

0.1215

0.0000

0.0180

0.0185

0.0031

FALSE

1335.817

0.0138

0.0000

0.0428

0.1616

0.0253

0.2369

TRUE

1337.549

0.0606

0.0000

0.6217

0.0809

0.2353

0.0897

0.0017

FALSE

1337.911

Four decimal places number represent the P-value for smoothing terms or coefficients. The numbers with blue are treated as smoothing terms.

NECK

ABDOMEN

HIP

THIGH

BICEPS

FORFARM

WRIST

SELECT

AIC

Outline

1. Introduction and Data Cleaning

Introduction
By Summary Table of Dataset
By Siri's equation and BMI equation

2. Model Selection

Candidate Models
Metric for Model performance

3. Final Model

Model Description
Statistical Properties of Final Model
Example Usage of Model
Model Diagnosis
Strength and weakness

Model Description

Final Model

$$\begin{split} BODYFAT_i &= 26.035 + 0.060AGE_i - 0.108WEIGHT_i \\ &+ 0.332FOREARM_i + f_1(ABDOMEN_i) + f_2(THIGH_i) + f_3(WRIST_i) \end{split}$$

- Linear terms
- As men get older by one year/his weight get lower by one pound/his forearm circumferences larger by one centimeters , he is expected to gain 0.06%/0.108%/0.332% in body fat

Model Description

Non-parametric terms

Figure: Estimation for Non-parametric part

- ullet For Y axis in the figure, the abdomen has the dominant effect on bodyfat
- As thigh increase, increasing rate of bodyfat goes down to near the zero, and then slightly goes up as thigh reach around 63 cm.
- The bodyfat will go down as the circumference of wrist goes up.

Statistical Properties of Final Model

Parametric Cofficients

Variables	EST	std.error	Т	P-value
Intercept	26.03456	7.08668	3.674	0.000298
AGE	0.05996	0.02788	2.151	0.032563
WEIGHT	-0.10784	0.03207	-3.363	0.000906
FOREARM	0.33212	0.17217	1.929	0.054978

• Approximate significance of smooth terms

Terms	edf	F-statistics	p-value
s(ABDOMEN)	4.357	32.164	<2e-16
s(THIGH)	3.589	2.743	0.02784
s(WRIST)	2.215	6.006	0.00079

• Adjusted R-squared is 0.747

Example Usage of Model

Athletes	Fit	Average	Obese
6.5%-14.0%	14.0%-19.0%	19.0%-23.4%	23.4%-37.1%

One Example

Given a man with 22 years old, 154 pls weight, 85.2 cm abdomen, 59 cm thigh, 27.4 cm forearm and 17.1 cm wrist, model gave a fitted value 15.74% bodyfat and a 95% confidence interval [14.18, 17.31].

 Shiny https://wennroy.shinyapps.io/shiny/

Model Diagnosis

Checked the residuals plot and residuals are indeed randomly normal distributed

Strength and weakness

Strength

- Final model has a great prediction on data
- Intuitive figure present.
- Variable Interpretations can be more precise.
- Capture the non linear trends.

Weakness

- Some of predictors are highly correlated, then there might exist some interaction effects on Body Fat.
- Large computation should be done.
- Insufficient generalization ability.

Prospects

- Construct a GAM model considering joint distribution of predictors. (Intersection terms)
- Try our best to solve the correlation problem among predictors.

Appendix

Thanks!