de Finetti Lattices and Magog Triangles

Andrew Beveridge¹

joint work with

Ian Calaway² and Kristin Heysse¹

Macalester College¹ and Stanford University²

Canadian Discrete and Algorithmic Mathematics Conference May 2021

Introduction

Boolean Lattice B_n and Order Ideal $B_{n,2}$

 $B_5 = \text{subsets of } \{1, 2, 3, 4, 5\} \text{ ordered by inclusion}$

Boolean Lattice B_n and Order Ideal $B_{n,2}$

 $B_5 = \text{subsets of } \{1, 2, 3, 4, 5\} \text{ ordered by inclusion}$

de Finetti Lattice $F_{n,2}$

de Finetti Lattice $F_{4,2}$

de Finetti Lattice $F_{n,2}$

de Finetti Lattice $F_{4,2}$

Motivation for de Finetti Lattice $F_{n,2}$

Definition

A de Finetti refinement (F, \prec_F) of the Boolean lattice (B_n, \prec) is a poset refinement that adheres to

(F1)
$$\emptyset \prec \{1\} \prec \{2\} \prec \ldots \prec \{n\}$$
, and

(F2) $X \prec Y$ if and only if $X \cup Z \prec Y \cup Z$ for all $Z \subset [n]$ such that $(X \cup Y) \cap Z = \emptyset$.

for all sets $X, Y \subset [n]$ that are comparable in F.

A de Finetti total order is a linear extension of B_n that adheres to (F1) and (F2).

example:
$$3 \prec 21 \longleftrightarrow 543 \prec 5421$$

Condition (F2) is de Finetti's axiom (1931)

de Finetti Total Orders

de Finetti total orders of B_n appear in various settings:

- Comparable Probability Orders (probability)
- Boolean Term Orders (computational algebra)
- Completely Separable Preferences (social choice theory)

Open Question: General formula for the number of de Finetti total orders of B_n (OEIS A005806)

1 1 2 14 546 169,444 560,043,206

(The first 14 terms are known.)

Our Results for Refinements of $F_{n,2}$

Theorem [B, Calaway, Heysse (2021)]

The collection $\mathcal{F}_{n,2}$ of linear extensions of $F_{n,2}$ are in bijection with Strict Sense Ballots for n candidates.

strict sense ballots \longleftrightarrow shifted standard Young tableaux of shape $(n, n-1, \ldots, 1)$

Theorem [B, Calaway, Heysse (2021)]

The collection $\mathcal{F}_{n,2}^1$ of poset refinements of $F_{n,2}$ that are induced by resolving all disjoint pairs $\{i\}, \{k, \ell\}$ are in bijection with Magog Triangles of size n-1.

magog triangles \longleftrightarrow totally symmetric self-complementary plane partitions

Linear Extensions of $F_{n,2}$

Linear Extensions of $F_{n,2}$

Theorem [B, Calaway, Heysse (2021)]

The collection $\mathcal{F}_{n,2}$ of linear extensions of $F_{n,2}$ are in bijection with Strict Sense Ballots for n candidates.

The strict-sense ballot number sequence (OEIS A003121) begins with

and the general formula for the nth strict-sense ballot number is

$$\binom{n+1}{2}! \frac{\prod_{k=1}^{n-1} k!}{\prod_{k=1}^{n} (2k-1)!}.$$

Linear Extension of $F_{n,2} \iff$ Shifted Standard Young Tableau of shape (n, n - 1, ..., 1).

Linear Extension of $F_{n,2} \iff$ Shifted Standard Young Tableau of shape (n, n - 1, ..., 1).

pick a valid total order

Linear Extension of $F_{n,2} \iff$ Shifted Standard Young Tableau

of shape (n, n - 1, ..., 1).

pick a valid total order

rotate and omit 0

record order visited

Linear Extension of $F_{n,2} \iff$ Shifted Standard Young Tableau of shape $(n, n-1, \ldots, 1)$.

1	2	3	5
	4	6	8
		7	9
			10

pick a valid total order de Finetti refinement rotate and omit $\boldsymbol{\emptyset}$

record order visited

rows and columns increase

Proof Part 2: Shifted SYT to Strict Sense Ballot (folklore)

Strict Sense Ballot with *n* candidates:

- Candidate k receives exactly n+1-k votes for $1 \le k \le n$
- During the vote count, candidate k always strictly ahead of candidate ℓ for all $1 \le k < \ell \le n$

Proof Part 2: Shifted SYT to Strict Sense Ballot (folklore)

Strict Sense Ballot with *n* candidates:

- Candidate k receives exactly n+1-k votes for $1 \le k \le n$
- During the vote count, candidate k always strictly ahead of candidate ℓ for all $1 \le k < \ell \le n$

Shifted SYT

 \iff

Strict Sense Ballot

Proof Part 2: Shifted SYT to Strict Sense Ballot (folklore)

Strict Sense Ballot with *n* candidates:

- Candidate k receives exactly n + 1 k votes for 1 < k < n
- During the vote count, candidate k always strictly ahead of candidate ℓ for all $1 \le k < \ell \le n$

Row i gives the indices of the votes for candidate i. \square

Magog Triangles and Kagog Triangles Refinements of $F_{n,2}$ and Kagog Triangle

Singleton Refinements of $F_{n,2}$

Singleton Refinements of $F_{4,2}$

Theorem [B, Calaway, Heysse (2021)]

The collection $\mathcal{F}_{n,2}^1$ of poset refinements of $F_{n,2}$ that are induced by resolving all disjoint pairs $\{i\}, \{k, \ell\}$ are in bijection with Magog Triangles of size n-1.

The magog triangle sequence (OEIS A005130) begins with

and the general formula is

$$\prod_{k=0}^{n-1} \frac{(3k+1)!}{(n+k)!}.$$

TSSCPP are in bijection with Magog Triangles

Totally Symmetric Self-Complementary Plane Partition (TSSCPP): A stack of cubes in a $2n \times 2n \times 2n$ box with the maximum possible symmetry.

Magog Triangle: triangular array M(i,j) where $1 \le j \le i \le n$ and $1 \le M(i,j) \le j$ with weakly increasing columns and weakly increasing rows.

Image adapted from Fischer and Konvalinka, PNAS (2020)

TSSCPP and ASM and DPP and AST are equinumerous

Four distinct families enumerated by $\prod_{k=0}^{n-1} \frac{(3k+1)!}{(n+k)!}$

Alternating Sign Matrices

Descending Plane Partitions

TSSCPP

Alternating Sign Triangles

 $\begin{smallmatrix}0&0&1&0&0\\&1&-1&1\\&&1\end{smallmatrix}$

0001

TSSCPP and ASM and DPP and AST are equinumerous

Four Three distinct families enumerated by $\prod_{k=0}^{n-1} \frac{(3k+1)!}{(n+k)!}$

Breakthrough: Fischer and Konvalinka (2019) found a bijection between ASMs and DPP!

Image adapted from Fischer and Konvalinka, PNAS (2020)

magog triangle M(i,j)

- n rows
- $1 \leq M(i,j) \leq j$
- columns weakly increasing
- rows weakly increasing

1					
1	1				
1	1	1			
1	1	2	2		
1	2	2	2	3	
1	2	2	4	5	5

magog triangle M(i,j)

- n rows
- $1 \leq M(i,j) \leq j$
- columns weakly increasing
- rows weakly increasing

omagog triangle $M^{\circ}(i,j)$

- \bullet n-1 rows
- $0 \le M^{\circ}(i,j) \le j$
- columns weakly increasing
- rows weakly increasing

magog triangle M(i,j)

- n rows
- 1 < M(i, j) < j
- columns weakly increasing
- rows weakly increasing

omagog triangle $M^{\circ}(i,j)$

- n-1 rows
- $0 \le M^{\circ}(i,j) \le j$
- columns weakly increasing
- rows weakly increasing

NEW!

kagog triangle K(i,j)

- \bullet n-1 rows
- $0 \le K(i,j) \le j$
- columns weakly decreasing
- rows can start with multiple zeros, then positive entries strictly increasing

Theorem [B, Calaway, Heysse (2021)]

Kagog triangles are in bijection with omagog triangles (and therefore with magog triangles and TSSCPPs).

Proof Sketch:

- Represent an omagog triangle as a two-color cube pyramid
 - White cubes are present
 - Gray cubes are missing
- Invert the colors
- Perform a series of elementary geometric transformations
- The result is a kagog pyramid

Example of omagog to kagog mapping

The kagog triangle is made from the "missing cubes" of the omagog triangle.

Back to Singleton Refinements of $F_{4,2}$

Theorem [B, Calaway, Heysse (2021)]

The collection $\mathcal{F}_{n,2}^1$ of poset refinements of $F_{n,2}$ that are induced by resolving all disjoint pairs $\{i\}, \{k,\ell\}$ are in bijection with Magog Triangles of size n-1 Kagog Triangles of size n-2.

Singleton Refinements of $F_{4,2}$

de Finetti Lattice $F_{4,2}$

three different refinements (out of seven)

kagog triangle

- columns: weakly decreasing
- rows: positive entries strictly increasing

count white boxes in each row

kagog triangle

- columns: weakly decreasing
 - rows: positive entries strictly increasing

count white boxes in each row

kagog triangle

- columns: weakly decreasing
 - rows: positive entries strictly increasing

count white boxes in each row

kagog triangle

- columns: weakly decreasing
- rows: positive entries strictly increasing

The de Finetti constraints correspond to the kagog constraints. \square

decreasing rows: positive

increasing

entries strictly

Summary and Future Work

Refinements and linear extensions of de Finetti Lattice $F_{n,2}$

Our Bijective Results

 $\begin{array}{cccc} \text{Linear extensions of } F_{n,2} & \longleftrightarrow & \text{Strict Sense Ballots} \\ \text{Singleton refinements of } F_{n,2} & \longleftrightarrow & \text{Kagog Triangles} \\ & \text{Kagog Triangles} & \longleftrightarrow & \text{Magog Triangles} \end{array}$

Future Directions: find enumerative formulas for

- de Finetti refinements of $F_{n,k}$ for $3 \le k \le n$
- de Finetti total orders of $F_{n,n}$ = de Finetti total orders of B_n (aka comparative probability orders, OEIS A005806)

Some References

- G. Andrews. Plane partitions V: the TSSCPP conjecture. J. Combin. Theory, Ser. A, 66:28–39, 1994.
- W. J. Bradley, J. K. Hodge, and D. M. Kilgour. Separable discrete preferences. Math. Social Sci., 49(1):335–353, 2005.
- R. Christian, M. Conder, and A. Slinko. Flippable pairs and subset comparisons in comparative probability orderings. Order, 24:193–213, 2007.
- B. de Finetti. Sul significato soggettivo della probabilità. Fundamenta Mathematicae, 17:298-329, 1931.
- T. Fine and J. Gill. The enumeration of comparative probability relations. Ann. Prob., 4:667–673, 1976.
- I. Fischer and M. Konvalinka, A bijective proof of the ASM theorem, part II: ASM enumeration and ASM-DPP relation. Elec. J. Combin., 27 (3): #3.35, 2020.
- P. C. Fishburn. Finite linear qualitative probability. J. Math. Psychology, 40:64-77, 1996.
- J. K. Hodge. The mathematics of referendums and separable preferences. Math. Mag., 84(4):268–277, 2011.
- C. H. Kraft, J. W. Pratt, and A. Seidenberg. Intuitive probability on finite sets. Ann. Math. Statist., 30:408–419, 1959.
- G. Kuperberg. Another proof of the alternating sign matrix conjecture. Int. Math. Research Notes, 1996:139–150, 1996.
- D. Maclagan. Boolean term orders and the root system b_n. Order, 15:279–295, 1999.
- W.H. Mills, D. P. Robbins, and H. Rumsey. Alternating-sign matrices and descending plane partitions. J. Combin. Theory, Ser. A, 34:340–359, 1983.
- A. Slinko. Additive representability of finite measurement structures. In S. J. Brams, W. V. Gehrlein, and F. S. Roberts, editors, The Mathematics of Preference, Choice and Order, pages 113–133. Springer, 2009.
- D. Zeilberger. Proof of the alternating sign matrix conjecture. Elec. J. Comb., 3, R13, 1996.

Alternating Sign Matrices and Gog Triangles

Alternating Sign Matrices

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \quad \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \begin{bmatrix} 0 & 1 & 0 \\ 1 & -1 & 1 \\ 0 & 1 & 0 \end{bmatrix} \quad \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \quad \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \quad \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

Column Sum Matrices

$$\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \quad \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix} \quad \begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \quad \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix} \quad \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \quad \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix} \quad \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

Gog Triangles (aka Monotone Triangles)

Ogog Triangles (subtract minimal Gog Triangle)

Two-Color Cube Pyramid Involution for Gog Triangles

Theorem [B, Calaway, Heysse (2021)]

There is a gog triangle involution ϕ that corresponds to both:

- an affine transformation of two-color cube pyramids, and
- reversing the order of the rows of the corresponding alternating sign matrix.

