CO2015

Introduction to Transistors and Appliactions

What is Transistor?

- Transistor is a semiconductor device used to:
 - Amplifier signal
 - Switch signal or electrical power
- There are two types of basic transistor out there: Bi-Polar Junction (BJT) and Metal-Oxide Field-Effect (MOSFET)

Transistor

- Bi-polar Junction Transistor (BJT)
- Collector (C), Base (B), and Emitter (E)

Transistor = 2 Diodes

- Checking transistors is similar to diodes
- Pin order: ECB or BCE

 From these measurements, determine what type of BJT this is (PNP or NPN)

Answer

PNP transistor

PNP transistor

Saturation Mode

- Saturation is the ON MODE of a transistor
- A transistor in saturation mode acts like a short circuit between collector and emitter

Cut-Off Mode

- Cutoff mode is the opposite of saturation
- There is no collector current, and therefore no emitter current
- It almost looks like an open circuit

Applications I: Switches

- When the voltage at the base is less than 0.6V the transistor is in cutoff mode
 - □ open circuit

Low-side switch

Applications I: Switches

GND

- High side switch
- PNP transistor: Control signals are reversed
- A transistor without a resistor on the base is like an LED with no <u>current-limiting resistor</u>

Logic Gate - NOT

Logic Gates

Logic Gate

H-Bridge

- Q2 ON Q1 OFF
- $V_{BE}(Q2) = 0.7V$
- The voltage from V_{CC} charges C1 to 4.3V

- Positive of C2 is connected to GND (due to Q2 is ON)
- VCC slowly charges C2 until 0.7V

 Q1 ON

- VC1 is currently 4.3V
- Positive pin returns to 0V

$$f = \frac{1}{\ln(2) \cdot (R_2 C_1 + R_3 C_2)}$$

CO2015

Amplifier using Bipolar Junction Transistor

Bipolar Junction Transistor

(b) pnp

BJT as Amplifier

$$I_E = I_C + I_B$$

$$eta_{DC} = rac{I_C}{I_B}$$

$$lpha_{ extsf{DC}} = rac{ extsf{I}_{ extsf{C}}}{ extsf{I}_{ extsf{E}}}$$

Voltages in a BJT

- V_{CC} , V_{BB}
- V_C , V_B , V_E
- V_{BE} , V_{CE} , V_{CB}

Current and Voltage Analysis

- E-B: Forward Bias (like diode)
 - $V_{BF} \approx 0.7V$
- Base Circuit

$$V_{BB} = R_B \bullet I_B + V_{BE}$$

$$I_{B} = \frac{V_{BB} - V_{BE}}{R_{B}}$$

• Collecto, unclic

$$V_{CC} = R_C \bullet I_C + V_{CE}$$

$$V_{CE} = V_{CC} - R_C \bullet I_C = V_{CC} - R_C \bullet (\beta_{DC}.I_B)$$

• Determine I_B , I_C , I_E , V_{BE} , V_{CE} and V_{CB} for the given circuit when β_{DC} = 150

Solution 1

$$I_{\rm B} = \frac{V_{\rm BB} - V_{\rm BE}}{R_{\rm B}} = \frac{5 \text{ V} - 0.7 \text{ V}}{10 \text{ k}\Omega} = 430 \,\mu\text{A}$$

$$I_{\rm C} = \beta_{\rm DC}I_{\rm B} = (150)(430 \,\mu\text{A}) = 64.5 \,\text{mA}$$

$$I_{\rm E} = I_{\rm C} + I_{\rm B} = 64.5 \,\text{mA} + 430 \,\mu\text{A} = 64.9 \,\text{mA}$$

$$V_{\text{CE}} = V_{\text{CC}} - I_{\text{C}}R_{\text{C}} = 10 \text{ V} - (64.5 \text{ mA})(100 \Omega) = 10 \text{ V} - 6.45 \text{ V} = 3.55 \text{ V}$$

 $V_{\text{CB}} = V_{\text{CE}} - V_{\text{BE}} = 3.55 \text{ V} - 0.7 \text{ V} = 2.85 \text{ V}$

• Determine I_B , I_C , I_E , V_{BE} , V_{CE} and V_{CB}

Solution 2

Assume that the circuit is working linearly

$$I_{\rm B} = \frac{V_{\rm BB} - V_{\rm BE}}{R_{\rm B}} = \frac{3 \text{ V} - 0.7 \text{ V}}{10 \text{ k}\Omega} = \frac{2.3 \text{ V}}{10 \text{ k}\Omega} = 0.23 \text{ mA}$$

$$I_{\rm C} = \beta_{\rm DC} I_{\rm B} = (50)(0.23 \text{ mA}) = 11.5 \text{ mA}$$

Solution 2

Saturation Mode

• Determine β_{DC}

Explain why VC is 15V

Midterm (45 mins – Closed Book)

- Multichoice + Written
- Chapter 1: Basic Electronic Components
 - Deterimine the resistor values (4-band colors, 5-band colors)
 - LEDs connectors (Serial + Parallel)
- Chapter 2: Diode
 - Diode Principles and Models
 - Applications using Diodes
- Chapter 3: BJT (npn)
 - Amplifier Coefficient, Applications
 - Vbe = 0.7 (for default)