Electric Current

Physics 212 Lecture 9

Today's Concept:

Ohm's Law, Resistors in circuits

Current and Resistance

Key Concepts:

- 1) How resistance depends on A, L, σ , r
- 2) How to combine resistors in series and parallel
- 3) Understanding resistors in circuits

Today's Plan:

- 1) Review of resistance & prelectures
- 2) Work out a circuit problem in detail

Observables:

$$V = EL$$
 $I = JA$
 $I = V/(L/\sigma A)$
 $R = Resistance$
 $\rho = 1/\sigma$
 $I = V/R$
 $I = V/(L/\sigma A)$
 $I = V/R$
 $I = V/R$

Check Point 1

The SAME amount of current I passes through three different resistors. R_2 has twice the cross-sectional area and the same length as R_1 , and R_3 is three times as long as R_1 but has the same cross-sectional area as R_1 .

In which case is the CURRENT DENSITY through the resistor the smallest?

A. Case 1

B. Case 2

C. Case 3

$$J \equiv \frac{I}{A} \longrightarrow J_1 = J_3 = 2J_2$$
 Same Current
$$\longrightarrow J \propto \frac{1}{A}$$

This is just like Plumbing!

I is like flow rate of water (gallons/hour)

V is like pressure

R is how hard it is for water to flow in a pipe

$$R = \frac{L}{\sigma A}$$

To make R big, make L long or A small

To make R small, make L short or A big

Check Point 2a

Check Point 2b

 $\bigcirc V_1 > V_2$ $\bigcirc V_1 = V_2$ $\bigcirc V_1 < V_2$ A B C Same current through both resistors

Compare voltages across resistors

$$R \propto \frac{L}{A}$$

$$V = IR \propto \frac{L}{A}$$

Resistor Summary

Series

Every loop with R₁ also has R₂

Wiring

Each resistor on the same wire.

Voltage

<u>Different</u> for each resistor.

$$V_{total} = V_1 + V_2$$

Current

Same for each resistor

$$I_{total} = I_1 = I_2$$

Resistance

Increases

$$R_{eq} = R_1 + R_2$$

Parallel

There is a loop that contains
ONLY R₁ and R₂

Each resistor on a different wire.

Same for each resistor.

$$V_{total} = V_1 = V_2$$

Different for each resistor

$$I_{total} = I_1 + I_2$$

Decreases

$$1/R_{eq} = 1/R_1 + 1/R_2$$

Resistors and Capacitors

Can we go over why Capacitors and Resistors are inverses in series and parallel? Like more of a physical reason not just "the math works that way"

Series, you are adding lengths

Parallel, you are adding Area

$$C = \varepsilon \frac{A}{d}$$

$$C_{tot} = C_1 + C_2$$

Check Point 3a

Three resistors are connected to a battery with emf V as shown. The resistances of the resistors are all the same, i.e. $R_1 = R_2 = R_3 = R$.

Compare the current through R_2 with the current through R_3 :

A.
$$I_2 > I_3$$

B.
$$I_2 = I_3$$
 C. $I_2 < I_3$

$$R_2$$
 in series with R_3

Current through R_2 and R_3 is the same

$$I_{23} = \frac{V}{R_2 + R_3}$$

Check Point 3b

Compare the current through R_1 with the current through R_2

$$A I_1/I_2 = 1/2$$

$$B I_1/I_2 = 1$$

$$I_1/I_2 = 2$$

$$I_1/I_2 = 3$$

Similarly:
$$I_1 = \frac{V}{R}$$

$$I_1 = I_{23} \frac{R_2 + R_3}{R_1}$$

Check Point 3C

Compare the voltage across R_2 with the voltage across R_3

$$\mathsf{B} \qquad V_2 = V_3 = V$$

$$\mathbf{C}$$
 $V_2 = V_3 < V$

$$V_2 = I_2 R_2$$

$$V_3 = I_3 R_3$$

$$I_2 = I_3$$
 (Series)
 $R_2 = R_3$ (Problem statement)

Check Point 3D

Compare the voltage across R_1 with the voltage across R_2

B
$$V_1 = \frac{1}{2} V_2 = V$$

$$V_1 = \frac{1}{2} V_2 = \frac{1}{5} V$$

$$V_1 = \frac{1}{2} V_2 = \frac{1}{2} V$$

 R_1 in parallel with series combination of R_2 and R_3

In the circuit shown: V = 18V,

$$R_1 = 1\Omega$$
, $R_2 = 2\Omega$, $R_3 = 3\Omega$, and $R_4 = 4\Omega$.

What is V_2 , the voltage across R_2 ?

Conceptual Analysis:

Ohm's Law: when current I flows through resistance R, the potential drop V is given by: V = IR.

Resistances are combined in series and parallel combinations

$$R_{series} = R_a + R_b$$
$$(1/R_{parallel}) = (1/R_a) + (1/R_b)$$

Strategic Analysis:

Combine resistances to form equivalent resistances

Evaluate voltages or currents from Ohm's Law

Expand circuit back using knowledge of voltages and currents

In the circuit shown: V = 18V,

$$R_1 = 1\Omega$$
, $R_2 = 2\Omega$, $R_3 = 3\Omega$, and $R_4 = 4\Omega$.

What is V_2 , the voltage across R_2 ?

Combine Resistances:

 R_1 and R_2 are connected:

- A) in series
- B) in parallel

C) neither in series nor in parallel

Parallel Combination

Parallel: Can make a loop that contains only those two resistors

Series Combination

Series: Every loop with resistor 1 also has resistor 2.

In the circuit shown: V = 18V,

$$R_1 = 1\Omega$$
, $R_2 = 2\Omega$, $R_3 = 3\Omega$, and $R_4 = 4\Omega$.

What is V_2 , the voltage across R_2 ?

We first will combine resistances R_2 , R_4 :

Which of the following is true?

- A) R_2 and R_4 are connected in series
- B) R_2 and R_4 are connected in parallel
- C) R_2 and R_4 are neither in series nor in parallel
- D) R_2 and R_4 are both in series and in parallel

In the circuit shown: V = 18V,

$$R_1 = 1\Omega$$
, $R_2 = 2\Omega$, $R_3 = 3\Omega$, and $R_4 = 4\Omega$.

What is V_2 , the voltage across R_2 ?

 R_2 and R_4 are connected in series (R_{24})

Redraw the circuit using the equivalent resistor R_{24} = series combination of R_2 and R_4 .

In the circuit shown: V = 18V,

$$R_1 = 1\Omega$$
, $R_2 = 2\Omega$, $R_3 = 3\Omega$, and $R_4 = 4\Omega$.

What is V_2 , the voltage across R_2 ?

Combine Resistances:

 R_2 and R_4 are connected in series = R_{24} R_3 and R_{24} are connected in parallel = R_{234}

What is the value of R_{234} ?

A)
$$R_{234} = 1 \ \Omega$$
 B) $R_{234} = 2 \ \Omega$ C) $R_{234} = 4 \ \Omega$ D) $R_{234} = 6 \ \Omega$

$$R_2$$
 and R_4 in series
$$R_{24} = R_2 + R_4 = 2\Omega + 4\Omega = 6\Omega$$

 R_3 and R_{24} are connected in parallel

$$(1/R_{parallel}) = (1/R_a) + (1/R_b)$$

In the circuit shown: V = 18V,

$$R_1 = 1\Omega$$
, $R_2 = 2\Omega$, $R_3 = 3\Omega$, and $R_4 = 4\Omega$.

$$R_{24} = 6\Omega \qquad R_{234} = 2\Omega$$

What is V_2 , the voltage across R_2 ?

 R_1 and R_{234} are in series. $R_{1234} = 1 + 2 = 3 \Omega$

Our next task is to calculate the total current in the circuit

Ohm's Law tells us: $I_{1234} = V/R_{1234}$ = 18 / 3 = 6 Amps

In the circuit shown: V = 18V, $R_1 = 1\Omega$, $R_2 = 2\Omega$, $R_3 = 3\Omega$, and $R_4 = 4\Omega$. $R_{24} = 6\Omega$ $R_{234} = 2\Omega$ $I_{1234} = 6A$ What is V_2 , the voltage across R_2 ?

$$I_{234} = I_{1234}$$
 Since R_1 in series with R_{234}

What is V_{ab} , the voltage across R_{234} ?

A)
$$V_{ab} = 1 \ V$$

B)
$$V_{ab} = 2 V$$

C)
$$V_{ab} = 9 \ V$$

A)
$$V_{ab} = 1 V$$
 B) $V_{ab} = 2 V$ C) $V_{ab} = 9 V$ D) $V_{ab} = 12 V$ E) $V_{ab} = 16 V$

E)
$$V_{ab} = 16 \ V$$

V = 18V $R_1 = 1\Omega$ $R_2 = 2\Omega$ $R_3 = 3\Omega$ $R_4 = 4\Omega$ $R_{24} = 6\Omega$ $R_{234} = 2\Omega$ $I_{1234} = 6 \text{ Amps}$ $I_{234} = 6 \text{ Amps}$ $V_{234} = 12V$ What is V_2 ?

Which of the following are true?

A)
$$V_{234} = V_{24}$$
 B) $I_{234} = I_{24}$

B)
$$I_{234} = I_{24}$$

D) None

 R_3 and R_{24} were combined in parallel to get R_{234} Voltages are same!

Ohm's Law

$$I_{24} = V_{24} / R_{24}$$

= 12 / 6
= 2 Amps

V = 18V $R_1 = 1\Omega$ $R_3 = 3\Omega$ $R_4 = 4\Omega$. $R_{24} = 6\Omega$ $R_{234} = 2\Omega$ What is V_2 ?

Which of the following are true?

A)
$$V_{24} = V_2$$

B)
$$I_{24} = I_2$$

A)
$$V_{24} = V_2$$
 B) $I_{24} = I_2$ C) Both A+B

 R_2 and R_4 where combined in series to get R_{24} \longrightarrow Currents are same!

Ohm's Law

The Problem Can Now Be Solved!

$$V_2 = I_2 R_2$$

$$= 2 \times 2$$

$$= 4 \text{ Volts!}$$

Quick Follow-Ups

V = 18V
$R_1 = 1\Omega$
$R_2 = 2\Omega$
$R_3 = 3\Omega$
$R_4 = 4\Omega$
$R_{24} = 6\Omega$
$R_{234} = 2\Omega$
$V_{234} = 12V$
$V_2 = 4V$
$I_{1234} = 6 \text{ Amps}$

What is I_3 ?

A)
$$I_3 = 2 A$$
 B) $I_3 = 3 A$ C) $I_3 = 4 A$

B)
$$I_3 = 3 A$$

C)
$$I_3 = 4 A$$

$$V_3 = V_{234} = 12V$$

What is I_1 ?

We know $I_1 = I_{1234} = 6 A$

NOTE:
$$I_2 = V_2/R_2 = 4/2 = 2 A$$

$$\rightarrow$$

$$I_1 = I_2 + I_3$$

Make Sense?

Current and Resistance

Key Concepts:

- 1) How resistance depends on A, L, σ , r
- 2) How to combine resistors in series and parallel
- 3) Understanding resistors in circuits
- 4) Solve a network circuit