Problem Set – 1

CS 230, Spring 2023

Questions

1. Which of the following are true regarding XOR (\oplus) operation if $A_1 \oplus A_2 \oplus A_3 = P$?

- a. $A_1 \oplus A_2 \oplus P = A_3$
- b. $A_2 \oplus A_3 \oplus P = A_1$
- c. $A_1 \oplus A_2 = A_3 \oplus P$
- d. $A_1 \oplus A_2 \oplus A_3 \oplus A_4 = P$

2. The minimum number of 2-input NOR gates required to implement the function is ___

$$f = \overline{A} + \overline{\left[B + \overline{C}\left(\overline{AB + A\overline{C}}\right)\right]}$$

3. The minimum number of 2-input NOR gates required to implement a 4-variable function represented in the form of minterms as, $f = \sum (0,2,5,7,8,10,13,15)$ is?

4. Minimum how many 2-input NAND gates are required to implement the Boolean function f = (A + C)(B + D)?

5. A function f^d is said to be dual function of f if all the OR operations in f are changed to AND in f^d and all the AND operations are changed into OR respectively. f is an orthogonal function if dual of f and complement of f are same. $[f^d = f^c]$ In a system of f literals, how many such orthogonal functions are possible?

6. If $M = \overline{XYZ + \overline{X}\overline{Y}} + YZ$ then dual and compliment of M are respectively,

- a. $(XYZ + \overline{X}\overline{Y}) \cdot (Y + Z)$ and $[(\overline{X + Y + Z}) + (\overline{X} + \overline{Y})] \cdot YZ$
- b. $[(X + Y + Z + \overline{X} \cdot \overline{Y})] \cdot \overline{YZ}$ and $[XYZ + (\overline{X} + \overline{Y})] \cdot \overline{YZ}$
- c. $[(\overline{X+Y+Z})+(\overline{X}+\overline{Y})]\cdot(Y+Z)$ and $(XYZ+\overline{X}\overline{Y})\cdot\overline{YZ}$
- d. $[\overline{XYZ} + \overline{X} + \overline{Y}] \cdot \overline{YZ}$ and $[(X + Y + Z) + \overline{X} \cdot \overline{Y}] \cdot YZ$

7. There exists a Boolean function f(a, b, c, d) such that,

$$f(a, 0, 0, d) = 1$$

 $f(1, b, 1, d) = b + d$
 $f(a, 1, c, d) = ad + c$

How many literals are there in minimum SOP expression of f?

8. Consider the following K-map.

AB				
CD	00	01	11	10
00	1	1		1
01	Х			
11	Х			
10	1	1		χ

Here X denotes "don't care" term. Which means, the outcome of the function is not influenced by the value being 0 or 1. What is the minimal form of the function represented by above K-map?