Devoir surveillé n°13

- La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- On prendra le temps de vérifier les résultats dans la mesure du possible.
- Les calculatrices sont interdites.

Solution 1

1. On trouve successivement

$$3^1 \equiv 3[11]$$
 $3^2 \equiv -2[11]$ $3^3 \equiv 5[11]$ $3^4 \equiv 4[11]$ $3^5 \equiv 1[11]$

Ainsi p = 5.

2. Soit $n \in \mathbb{N}$. Comme 2012 $\equiv 2[5]$, la question précédente montre que $3^{n+2012} \equiv 3^{n+2}[11]$ ou encore $3^{n+2012} \equiv 9 \times 10^{n+2012}$ $3^{n}[11]$. Par ailleurs $5^{2} = 25 \equiv 3[11]$ donc $5^{2n} \equiv 3^{n}[11]$. Ainsi $3^{n+2012} - 9 \times 5^{2n} \equiv 0[11]$ i.e. 11 divise $3^{n+2012} - 9 \times 5^{2n}$.

Problème 1

1 1.a Soit $x \in \mathbb{R}_+$. L'application $x \mapsto x^n$ est une bijection de \mathbb{R}_+ sur \mathbb{R}_+ . Ainsi $\mathbb{R}_+ \subset T_1(\mathbb{R})$. Réciproquement, si $x \in T_1(\mathbb{R})$, il existe $y \in \mathbb{R}$ tel que $x = y^2 \ge 0$. Ainsi $T_1(\mathbb{R}) \subset \mathbb{R}_+$. Par double inclusion, $T_1(\mathbb{R}) = \mathbb{R}_+$.

1.b Les racines *n*-ièmes de *b* sont les complexes $\sqrt[n]{re^{\frac{i(\theta+2k\pi)}{n}}}$ pour $k \in [0, n-1]$.

1.c La question précédente, montre que tout complexe non nul appartient à $T_1(\mathbb{C})$. Mais 0 appartient évidemment à $T_1(\mathbb{C})$ puisque $0^n = 0$ pour tout $n \in \mathbb{N}^*$. Ainsi $T_1(\mathbb{C}) = \mathbb{C}$.

2 2.a Soit $A \in T_p(\mathbb{K})$. Soit $n \in \mathbb{N}^*$. Alors il existe $B \in \mathcal{M}_p(\mathbb{K})$ telle que $B^n = A$. Par conséquent, $\det(A) = (\det B)^n$ avec det $B \in \mathbb{K}$. Ainsi det $A \in T_1(\mathbb{K})$.

2.b Puisque $T_1(\mathbb{R}) = \mathbb{R}_+$, il suffit de choisir une matrice de déterminant strictement négatif. Par exemple $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.

3 Supposons qu'il existe une matrice $B = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{R})$ telle que $B^2 = A$. Comme B commute avec B^2 , B commute

avec A, ce qui donne b = c = 0. Alors $B^2 = A$ donne maintenant $a^2 = -1$ et $d^2 = -2$ ce qui est évidemment impossible. Pour tout $det(A) = 2 \in \mathbb{R}_+ = T_1(\mathbb{R})$.

$$\boxed{\textbf{4}} \text{ 4.a On trouve } \chi_A = (X-1)(X-2)^2, \ E_1(A) = \text{vect} \left(\begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} \right) \text{ et } E_2(A) = \text{vect} \left(\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 3 \\ 2 \\ 0 \end{pmatrix} \right). \ \text{Ainsi dim } E_1(A) + \frac{1}{2} \left(\frac{1}{2} \right) \left$$

 $\dim E_2(A) = 3 \operatorname{donc} A \operatorname{est} \operatorname{diagonalisable}.$

4.b La matrice A est semblable à la matrice D = diag(1, 2, 2). Il existe donc $P \in GL_3(\mathbb{R})$ telle que $A = PDP^{-1}$. Soit $n \in \mathbb{N}^*$. En posant $\Delta = \operatorname{diag}(1, \sqrt[n]{2}, \sqrt[n]{2})$ et $B = P\Delta P^{-1}$, on a bien $B^n = P\Delta^n P^{-1} = PDP^{-1} = A$. Ainsi A est $TP\mathbb{R}$.

4.c On peut choisir $P = \begin{pmatrix} 1 & 1 & 3 \\ 1 & 0 & 2 \\ -1 & 1 & 0 \end{pmatrix}$. Alors $P^{-1} = \begin{pmatrix} 2 & -3 & -2 \\ 2 & -3 & -1 \\ -1 & 2 & 1 \end{pmatrix}$. En choisissant B comme précédemment, on trouve

$$B = \begin{pmatrix} 2 - \sqrt{2} & -3 + 3\sqrt{2} & -2 + \sqrt{2} \\ 2 - 2\sqrt{2} & -3 + 4\sqrt{2} & -2 + \sqrt{2} \\ -2 + 2\sqrt{2} & 3 - 3\sqrt{2} & 2 - \sqrt{2} \end{pmatrix}$$

1

© Laurent Garcin MP Dumont d'Urville

et pour n = 3,

$$B = \begin{pmatrix} 2 - \sqrt[3]{2} & -3 + 3\sqrt[3]{2} & -2 + \sqrt[3]{2} \\ 2 - 2\sqrt[3]{2} & -3 + 4\sqrt[3]{2} & -2 + \sqrt[3]{2} \\ -2 + 2\sqrt[3]{2} & 3 - 3\sqrt[3]{2} & 2 - \sqrt[3]{2} \end{pmatrix}$$

5 5.a On rappelle que $R(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ est la matrice de la rotation d'angle θ . Ainsi $A = R(\pi)$ est la matrice d'une rotation d'angle π .

5.b On sait d'après le cours que R est un morphisme du groupe $(\mathbb{R}, +)$ sur le groupe $(SO_2(\mathbb{R}), \times)$. Ainsi, pour tout $n \in \mathbb{N}^*$, $A = R(\pi) = R(\pi/n)^n$ donc A est $TP\mathbb{R}$.

6. 6.a D'après le cours, N et trigonalisable et son unique valeur propre est 0. Elle est donc semblable à une matrice triangulaire de diagonale nulle. On en déduit immédiatement que $\chi_N = X^p$. D'après le théorème de Cayley-Hamilton, $N^p = 0$.

6.b Supposons que N soit TPK. Notamment, il existe $B \in \mathcal{M}_p(\mathbb{K})$ telle que $B^p = N$. Alors $B^{p^2} = N^p = 0$. Par conséquent, B est nilpotente. En appliquant la question précédente à B (et non à N!), on obtient $N = B^p = 0$.

7 Comme les polynômes $(X - \lambda_i)^{r_i}$ sont premiers entre eux deux à deux, le lemme des noyaux permet d'affirmer que

$$\operatorname{Ker} \chi_u(u) = \bigoplus_{i=1}^k \operatorname{Ker} (u - \lambda_i \operatorname{Id}_{\operatorname{E}})^{r_i}$$

Or $\chi_u(u) = 0$ d'après le théorème de Cayley-Hamilton donc $\operatorname{Ker} \chi_u(u) = \mathbb{K}^p$. Ainsi

$$\mathbb{K}^p = \bigoplus_{i=1}^k \mathcal{C}_i$$

Soit $i \in [1, k]$. Comme $\mathbb{K}[u]$ est une algèbre commutative, u commute avec $(u - \lambda_i \operatorname{Id}_{\mathbb{K}^p})^{r_i}$. On en déduit que $C_i = \operatorname{Ker}(u - \lambda_i \operatorname{Id}_{\mathbb{K}^p})^{r_i}$ est stable par u.

9 Soit $x \in C_i$. Alors, par définition de C_i ,

$$(u_{\mathbf{C}_i} - \lambda_i \operatorname{Id}_{\mathbf{C}_i})^{r_i}(x) = (u - \lambda_i \operatorname{Id}_{\mathbb{K}^p})^{r_i}(x) = 0$$

Ainsi $(u_{C_i} - \lambda_i \operatorname{Id}_{C_i})^{r_i} = 0$ donc $u_{C_i} - \lambda_i \operatorname{Id}_{C_i}$ est nilpotent.

10 Soit $i \in [1, k]$. Comme $u_{C_i} - \lambda_i \operatorname{Id}_{C_i}$ est nilpotent, sa matrice N_i dans une base \mathcal{B}_i de C_i est nilpotente. La matrice

de u_{C_i} dans cette base \mathcal{B}_i est alors $\lambda_i I_{p_i} + N_i$. Comme $\mathbb{K}^p = \bigoplus^{\kappa} C_i$, la concaténation des bases \mathcal{B}_i est une base de \mathbb{K}^p .

Dans cette base, la matrice de u est alors $\operatorname{diag}(\lambda_1 I_{p_1} + N_1, \dots, \lambda_k I_{p_k} + N_k)$. La matrice A de ce même endomorphisme u dans la base $\mathcal B$ est donc semblable à $\operatorname{diag}(\lambda_1 I_{p_1} + N_1, \dots, \lambda_k I_{p_k} + N_k)$. Il existe donc $P \in \operatorname{GL}_p(\mathbb K)$ telle que

$$\mathbf{A} = \mathbf{P}\operatorname{diag}(\lambda_1\mathbf{I}_{p_1} + \mathbf{N}_1, \dots, \lambda_k\mathbf{I}_{p_k} + \mathbf{N}_k)\mathbf{P}^{-1}$$

11 Supposons que pour tout $i \in [\![1,k]\!]$, $\lambda_i I_{p_i} + N_i$ est TPK. Soit $N \in \mathbb{N}^*$. Il existe donc $B_i \in \mathcal{M}_{p_i}(\mathbb{K})$ telle que $\lambda_i I_{p_i} + N_i = B_i^n$. Posons $B = \operatorname{diag}(B_1, \dots, B_k)$. Alors

$$\operatorname{diag}(\lambda_1 \mathrm{I}_{p_1} + \mathrm{N}_1, \dots, \lambda_k \mathrm{I}_{p_k} + \mathrm{N}_k) \mathrm{P}^{-1} = \operatorname{diag}(\mathrm{B}_1^n, \dots, \mathrm{B}_k^n) = \mathrm{B}^n$$

puis

$$A = PB^{n}P^{-1} = (PBP^{-1})^{n}$$

Ainsi A est-elle même TPK.

12. 12.a Effectuons la division euclidienne de V par X^p . Il existe donc $Q \in \mathbb{R}[X]$ et $R \in \mathbb{R}_{p-1}[X]$ tel que $V = X^pQ + R$. Comme Q est continue en $Q \in \mathbb{R}[X]$ et $Q \in \mathbb{R}[X]$ e

car $V(x) = o(x^p)$ par hypotèse. En notant $R = \sum_{k=0}^{p-1} a_k X^k$, on a donc

$$\sum_{k=0}^{p-1} a_k x^k = -Q(0)x^p + o(x^p)$$

Par unicité du développement limité, tous les a_k sont nuls. Ainsi R=0 puis $V=X^pQ$.

12.b En considérant le développement limité à l'ordre p de $(1+x)^{\frac{1}{n}}$ au voisinage de 0, il existe $U \in \mathbb{R}_n[X]$ tel que

$$(1+x)^{\frac{1}{n}} = U(x) + o(x^p)$$

On en déduit que

$$1 + x = U(x)^n + o(x^p)$$

12.c Comme $1 + x - U(x)^n = o(x^p)$, il existe $Q \in \mathbb{R}[X]$ tel que $1 + X - U^n = X^pQ$ i.e. $1 + X = U^n + X^pQ$.

13 13.a Soit $N \in \mathbb{N}^*$. On choisit U et Q comme à la question précédente. On a vu précédemment que $N^p = 0$ car N est nilpotente. En appliquant l'égalité polynomiale $1 + X = U^n + X^pQ$ en N, on obtient

$$I_p + N = U(N)^n + N^p Q(N) = U(N)^n$$

Ceci prouve que $I_p + N$ est bien TPK.

13.b Supposons que λ est TPK. Soit $n \in \mathbb{N}^*$. Il existe donc $\mu \in \mathbb{K}$ tel que $\lambda = \mu^n$. Remarquons que N/ λ est également nilpotente puisque $(N/\lambda)^p = N^p/\lambda^p = 0$. D'après la question précédente, il existe $B \in \mathcal{M}_p(\mathbb{K})$ telle que $I_p + \frac{1}{\lambda}N = B^n$. Mais alors

$$\lambda I_p + N = \lambda (I_p + N/\lambda) = \mu^n B^n = (\mu B)^n$$

Ceci prouve que $\lambda I_p + N$ est également TPK.

14 14.a Soit A une matrice inversible de $\mathcal{M}_p(\mathbb{C})$. Alors toutes ses valeurs propres sont non nulles et son polynôme caractéristique est scindé. En reprenant les notations de la partie précédente, $\lambda_i \operatorname{Id}_{p_i} + \operatorname{N}_i$ est $\operatorname{TP}\mathbb{C}$ d'après la question précédente. D'après la question 11, A est-elle même $\operatorname{TP}\mathbb{C}$.

14.b Si p=1, on a vu précédemment que $T_1(\mathbb{C})=\mathbb{C}$. Ainsi toute «matrice» de $\mathcal{M}_1(\mathbb{C})$ est $\mathrm{TP}\mathbb{C}$. Supposons $p\geq 2$. D'après la question **6.b**, la seule matrice $\mathrm{TP}\mathbb{C}$ de $\mathcal{M}_p(\mathbb{C})$ est la matrice nulle. Or il existe des matrices nilpotentes non nulles dans $\mathcal{M}_p(\mathbb{C})$. Il suffit par exemple de considérer la matrice dont tous les coefficients sont nuls sauf le coefficient «en haut à droite».

15 On peut par exemple considérer la matrice

$$\mathbf{A} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

En posant $N = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, alors $A = diag(0, I_3 + N)$. On remarque que N est clairement nilpotente (triangulaire de

A n'est pas inversible puisque rg(A) = 3 < 4. A n'est pas diagonalisable car sinon, $I_3 + N$ le serait également et enfini N le serait aussi. Puisque N est nilpotente, elle serait nulle, ce qui n'est pas le cas.

Enfin, le «bloc» 0 est $TP\mathbb{R}$ car $0 \in T_1(\mathbb{R}) = \mathbb{R}_+$ et le bloc $I_3 + N$ est $TP\mathbb{R}$ car il est unipotent. D'après la question 11, A est $TP\mathbb{R}$.

diagonale nulle).