

MAT1320-Linear Algebra Lecture Notes

System of Linear Equations, Gauss-Jordan Elimination Method

Mehmet E. KÖROĞLU Fall 2024

YILDIZ TECHNICAL UNIVERSITY, DEPARTMENT OF MATHEMATICS ${\it mkoroglu@yildiz.edu.tr}$

Table of contents

- 1. System of Linear Equations
- 2. The Rank of A Matrix

3. Gauss-Jordan Elimination Method

4. Homogenous System of Linear Equations

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$
(1)

is a system of linear equations of m equations in n unknowns.

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$
(1)

is a system of linear equations of m equations in n unknowns. The matrix

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

is called the coefficient matrix of the system.

Then for
$$\mathbf{X} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} b_1 \\ \vdots \\ b_m \end{bmatrix}$ the system given in (1) can

be written as

$$AX = b$$

Then for
$$\mathbf{X} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} b_1 \\ \vdots \\ b_m \end{bmatrix}$ the system given in (1) can

be written as

$$AX = b$$

where \mathbf{X} is called the vector of unknowns and \mathbf{b} is called the vector of constants.

Then for
$$\mathbf{X} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} b_1 \\ \vdots \\ b_m \end{bmatrix}$ the system given in (1) can

be written as

$$AX = b$$

where X is called the vector of unknowns and b is called the vector of constants.

Definition

The augmented matrix of the system is denoted by $[A|\mathbf{b}]$ and obtained by appending the vector of constants \mathbf{b} as the (n+1)-th column to the coefficient matrix A.

The Rank of A Matrix

The Rank of A Matrix

Definition

Let REF or RREF of the matrix A be the C. The number of nonzero rows of C is called rank of A and denoted by rank(A).

The Rank of A Matrix

Definition

Let REF or RREF of the matrix A be the C. The number of nonzero rows of C is called rank of A and denoted by rank(A).

Example

The matrix A and its RREF C is given below.

Then rank(A) = 2.

Let $A\mathbf{X} = \mathbf{b}$ be the system of linear equation with m equations in n unknowns given in (1).

Let $A\mathbf{X} = \mathbf{b}$ be the system of linear equation with m equations in n unknowns given in (1). Let $[A|\mathbf{b}]$ be the augmented matrix of the system.

Let $A\mathbf{X} = \mathbf{b}$ be the system of linear equation with m equations in n unknowns given in (1). Let $[A|\mathbf{b}]$ be the augmented matrix of the system. Examination of the solutions of a system of linear equations by transforming augmented matrix of the system $[A|\mathbf{b}]$ into RREF is called Gauss-Jordan Elimination Method.

Let $A\mathbf{X} = \mathbf{b}$ be the system of linear equation with m equations in n unknowns given in (1). Let $[A|\mathbf{b}]$ be the augmented matrix of the system. Examination of the solutions of a system of linear equations by transforming augmented matrix of the system $[A|\mathbf{b}]$ into RREF is called Gauss-Jordan Elimination Method. In the Gauss-Jordan Elimination Method we have the following cases:

1. If $rank(A) \neq rank([A|\mathbf{b}])$, then the system has no solution. In this case we called system as inconsistent.

Let $A\mathbf{X} = \mathbf{b}$ be the system of linear equation with m equations in n unknowns given in (1). Let $[A|\mathbf{b}]$ be the augmented matrix of the system. Examination of the solutions of a system of linear equations by transforming augmented matrix of the system $[A|\mathbf{b}]$ into RREF is called Gauss-Jordan Elimination Method. In the Gauss-Jordan Elimination Method we have the following cases:

- 1. If $rank(A) \neq rank([A|\mathbf{b}])$, then the system has no solution. In this case we called system as inconsistent.
- 2. If $rank(A) = rank([A|\mathbf{b}])$, then the system has solution.

Let $A\mathbf{X} = \mathbf{b}$ be the system of linear equation with m equations in n unknowns given in (1). Let $[A|\mathbf{b}]$ be the augmented matrix of the system. Examination of the solutions of a system of linear equations by transforming augmented matrix of the system $[A|\mathbf{b}]$ into RREF is called Gauss-Jordan Elimination Method. In the Gauss-Jordan Elimination Method we have the following cases:

- 1. If $rank(A) \neq rank([A|\mathbf{b}])$, then the system has no solution. In this case we called system as inconsistent.
- 2. If $rank(A) = rank([A|\mathbf{b}])$, then the system has solution.
 - 2.1 If rank(A) = n, i.e., the number of unknowns and the number of equations are equal, then the system has a unique solution.

Let $A\mathbf{X} = \mathbf{b}$ be the system of linear equation with m equations in n unknowns given in (1). Let $[A|\mathbf{b}]$ be the augmented matrix of the system. Examination of the solutions of a system of linear equations by transforming augmented matrix of the system $[A|\mathbf{b}]$ into RREF is called Gauss-Jordan Elimination Method. In the Gauss-Jordan Elimination Method we have the following cases:

- 1. If $rank(A) \neq rank([A|\mathbf{b}])$, then the system has no solution. In this case we called system as inconsistent.
- 2. If $rank(A) = rank([A|\mathbf{b}])$, then the system has solution.
 - 2.1 If rank(A) = n, i.e., the number of unknowns and the number of equations are equal, then the system has a unique solution.
 - 2.2 If $\operatorname{rank}(A) = r < n$, i.e., the number of unknowns is greater than the number of equations, then the system has infinitely many solutions depending on n-r parameters.

Example (Gauss-Jordan Elimination)

Example (Gauss-Jordan Elimination)

- 1. For the vector of unknowns $\mathbf{x} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$, state the system as
 - $\mathbf{A}\mathbf{x} = \mathbf{b}$.

Example (Gauss-Jordan Elimination)

- 1. For the vector of unknowns $\mathbf{x} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$, state the system as
 - Ax = b.
- 2. Write the augmented matrix of the given system and put it into RREF.

Example (Gauss-Jordan Elimination)

- 1. For the vector of unknowns $\mathbf{x} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$, state the system as
 - $\mathbf{A}\mathbf{x} = \mathbf{b}$.
- Write the augmented matrix of the given system and put it into RREF.
- 3. Find $rank(\mathbf{A})$ and $rank([\mathbf{A}|\mathbf{b}])$.

Example (Gauss-Jordan Elimination)

- 1. For the vector of unknowns $\mathbf{x} = \left[\begin{array}{c} x \\ y \\ z \end{array} \right]$, state the system as
 - $\mathbf{A}\mathbf{x} = \mathbf{b}$.
- 2. Write the augmented matrix of the given system and put it into RREF.
- 3. Find $rank(\mathbf{A})$ and $rank([\mathbf{A}|\mathbf{b}])$.
- 4. If any, find all solutions of the system.

1. The given system can be arranged as follows.

$$x -y +3z = 1$$

$$2x +y = 5$$

$$-x -5y +9z = -7$$

1. The given system can be arranged as follows.

$$x -y +3z = 1$$

$$2x +y = 5$$

$$-x -5y +9z = -7$$

Then

$$\begin{bmatrix} 1 & -1 & 3 \\ 2 & 1 & 0 \\ -1 & -5 & 9 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 5 \\ -7 \end{bmatrix}$$

2. The augmented matrix of the system is
$$\begin{bmatrix} 1 & -1 & 3 & 1 \\ 2 & 1 & 0 & 5 \\ -1 & -5 & 9 & -7 \end{bmatrix}$$
.

2. The augmented matrix of the system is $\begin{bmatrix} 1 & -1 & 3 & 1 \\ 2 & 1 & 0 & 5 \\ -1 & -5 & 9 & -7 \end{bmatrix}$.

$$\begin{bmatrix} 1 & -1 & 3 & 1 \\ 2 & 1 & 0 & 5 \\ -1 & -5 & 9 & -7 \end{bmatrix} \quad \begin{matrix} H_{21}(-2) \\ H_{31}(1) \\ \sim \end{matrix}$$

2. The augmented matrix of the system is $\begin{vmatrix} 1 & -1 & 3 & 1 \\ 2 & 1 & 0 & 5 \\ -1 & -5 & 9 & -7 \end{vmatrix}$.

$$\begin{bmatrix} 1 & -1 & 3 & 1 \\ 2 & 1 & 0 & 5 \\ -1 & -5 & 9 & -7 \end{bmatrix} \quad \begin{matrix} H_{21}(-2) \\ H_{31}(1) \\ \sim \end{matrix} \quad \begin{bmatrix} 1 & -1 & 3 & 1 \\ 0 & 3 & -6 & 3 \\ 0 & -6 & 12 & -6 \end{bmatrix} \quad \begin{matrix} H_2\left(\frac{1}{3}\right) \\ H_3\left(\frac{-1}{6}\right) \\ \sim \end{matrix}$$

2. The augmented matrix of the system is $\begin{vmatrix} 1 & -1 & 3 & 1 \\ 2 & 1 & 0 & 5 \\ -1 & -5 & 9 & -7 \end{vmatrix}$.

$$\begin{bmatrix} 1 & -1 & 3 & 1 \\ 2 & 1 & 0 & 5 \\ -1 & -5 & 9 & -7 \end{bmatrix} \begin{array}{c} H_{21}(-2) & \begin{bmatrix} 1 & -1 & 3 & 1 \\ 0 & 3 & -6 & 3 \\ 0 & -6 & 12 & -6 \end{bmatrix} \begin{array}{c} H_{2}\left(\frac{1}{3}\right) \\ H_{3}\left(\frac{-1}{6}\right) \\ \sim \end{array}$$

$$\begin{bmatrix} 1 & -1 & 3 & 1 \\ 0 & 1 & -2 & 1 \\ 0 & 1 & -2 & 1 \end{bmatrix} \quad H_{32}(-1) \sim$$

2. The augmented matrix of the system is $\begin{vmatrix} 1 & -1 & 3 & 1 \\ 2 & 1 & 0 & 5 \\ -1 & -5 & 9 & -7 \end{vmatrix}$.

$$\begin{bmatrix} 1 & -1 & 3 & 1 \\ 2 & 1 & 0 & 5 \\ -1 & -5 & 9 & -7 \end{bmatrix} \begin{array}{c} H_{21} \left(-2 \right) & \begin{bmatrix} 1 & -1 & 3 & 1 \\ 0 & 3 & -6 & 3 \\ 0 & -6 & 12 & -6 \end{bmatrix} \begin{array}{c} H_{2} \left(\frac{1}{3} \right) \\ H_{3} \left(\frac{-1}{6} \right) \\ \sim \end{array}$$

$$\begin{bmatrix} 1 & -1 & 3 & 1 \\ 0 & 1 & -2 & 1 \\ 0 & 1 & -2 & 1 \end{bmatrix} \quad H_{32} \left(-1 \right) \quad \begin{bmatrix} 1 & -1 & 3 & 1 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \quad H_{12} \left(1 \right)$$

2. The augmented matrix of the system is $\begin{bmatrix} 1 & -1 & 3 & 1 \\ 2 & 1 & 0 & 5 \\ -1 & -5 & 9 & -7 \end{bmatrix}$.

$$\begin{bmatrix} 1 & -1 & 3 & 1 \\ 2 & 1 & 0 & 5 \\ -1 & -5 & 9 & -7 \end{bmatrix} \begin{array}{c} H_{21}\left(-2\right) & \begin{bmatrix} 1 & -1 & 3 & 1 \\ 0 & 3 & -6 & 3 \\ 0 & -6 & 12 & -6 \end{bmatrix} \begin{array}{c} H_{2}\left(\frac{1}{3}\right) \\ H_{3}\left(\frac{-1}{6}\right) \\ \sim \end{array}$$

$$\begin{bmatrix} 1 & -1 & 3 & 1 \\ 0 & 1 & -2 & 1 \\ 0 & 1 & -2 & 1 \end{bmatrix} \quad H_{32} \left(-1 \right) \quad \begin{bmatrix} 1 & -1 & 3 & 1 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \quad H_{12} \left(1 \right)$$

$$\left[\begin{array}{ccc|c}
1 & 0 & 1 & 2 \\
0 & 1 & -2 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]$$

3.
$$rank(A) = rank([A|b]) = 2.$$

3.
$$rank(A) = rank([A|b]) = 2.$$

4. Since
$$[\mathbf{A}|\mathbf{b}] \sim \begin{bmatrix} 1 & 0 & 1 & 2 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

- **3.** rank(A) = rank([A|b]) = 2.
- **4.** Since $[\mathbf{A}|\mathbf{b}] \sim \begin{bmatrix} 1 & 0 & 1 & 2 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ we have $\begin{cases} x = 2 z \\ y = 1 + 2z \end{cases}$.

- **3.** $rank(\mathbf{A}) = rank([\mathbf{A}|\mathbf{b}]) = 2.$
- **4.** Since $[\mathbf{A}|\mathbf{b}] \sim \begin{bmatrix} 1 & 0 & 1 & 2 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ we have $\begin{cases} x = 2 z \\ y = 1 + 2z \end{cases}$. Then

$$x = 2 - t$$

for arbitrary parameter $z=t\in\mathbb{R}$ we have $\ y=1+2t$. Then z=t

$$\mathbf{x} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$
 is the solution of the system.

Equations

Homogenous System of Linear

$$\begin{cases}
a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0 \\
a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0 \\
\vdots \\
a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = 0
\end{cases}$$
(2)

is a homogeneous linear system of m equations in n unknowns.

$$\begin{cases}
a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0 \\
a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0 \\
\vdots \\
a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = 0
\end{cases}$$
(2)

is a homogeneous linear system of m equations in n unknowns.

A homogenous system always has solution, because $\operatorname{rank}(A) = \operatorname{rank}([A|\mathbf{b}])$.

$$\begin{cases}
a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0 \\
a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0 \\
\vdots \\
a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = 0
\end{cases}$$
(2)

is a homogeneous linear system of m equations in n unknowns.

A homogenous system always has solution, because $\operatorname{rank}(A) = \operatorname{rank}([A|\mathbf{b}])$.

1. If rank(A) = n, i.e., the number of unknowns and the number of equations are equal, then the system has zero solution as the unique solution.

$$\begin{cases}
a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0 \\
a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0 \\
\vdots \\
a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = 0
\end{cases}$$
(2)

is a homogeneous linear system of m equations in n unknowns.

A homogenous system always has solution, because ${\rm rank}(A) = {\rm rank}([A|\mathbf{b}]) \,.$

- 1. If rank(A) = n, i.e., the number of unknowns and the number of equations are equal, then the system has zero solution as the unique solution.
- 2. If rank(A) = r < n, i.e., the number of unknowns is greater than the number of equations, then the system has infinitely Mehmet E. KOROĞIGIULIONS depending on n-r parameters.

Example

Let the homogenous system
$$\begin{cases} x - y + 3z = 0 \\ 2x + y = 0 \\ -x - 5y + 9z = 0 \end{cases}$$
 be given.

Example

Let the homogenous system $\begin{cases} x - y + 3z = 0 \\ 2x + y = 0 \\ -x - 5y + 9z = 0 \end{cases}$ be given.

- 1. For the vector of unknowns $\mathbf{x} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$, state the system as
 - $\mathbf{A}\mathbf{x} = \mathbf{b}$.

Example

Let the homogenous system $\begin{cases} x-y+3z=0\\ 2x+y=0 & \text{be given.}\\ -x-5y+9z=0 \end{cases}$

- 1. For the vector of unknowns $\mathbf{x} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$, state the system as
 - $\mathbf{A}\mathbf{x} = \mathbf{b}$.
- 2. Write the augmented matrix of the given system and put it into RREF.

Example

Let the homogenous system $\begin{cases} x - y + 3z = 0 \\ 2x + y = 0 \\ -x - 5y + 9z = 0 \end{cases}$ be given.

- 1. For the vector of unknowns $\mathbf{x} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$, state the system as
 - Ax = b.
- 2. Write the augmented matrix of the given system and put it into RREF.
- 3. Find $rank(\mathbf{A})$ and $rank([\mathbf{A}|\mathbf{b}])$.

Example

Let the homogenous system $\begin{cases} x - y + 3z = 0 \\ 2x + y = 0 \\ -x - 5y + 9z = 0 \end{cases}$ be given.

1. For the vector of unknowns $\mathbf{x} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$, state the system as

Ax = b.

- 2. Write the augmented matrix of the given system and put it into RREF.
- 3. Find $rank(\mathbf{A})$ and $rank([\mathbf{A}|\mathbf{b}])$.
- 4. Find all the solutions of the system.

1. We rearrange the system as follows:

$$\begin{array}{rcl}
x & -y & +3z & = & 0 \\
2x & +y & = & 0 \\
-x & -5y & +9z & = & 0
\end{array}$$

1. We rearrange the system as follows:

$$\begin{array}{rcl}
x & -y & +3z & = & 0 \\
2x & +y & = & 0 \\
-x & -5y & +9z & = & 0
\end{array}$$

Then

$$\begin{bmatrix} 1 & -1 & 3 \\ 2 & 1 & 0 \\ -1 & -5 & 9 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

2. The augmented matrix of the system is
$$\begin{bmatrix} 1 & -1 & 3 & 0 \\ 2 & 1 & 0 & 0 \\ -1 & -5 & 9 & 0 \end{bmatrix}.$$

2. The augmented matrix of the system is $\begin{bmatrix} 1 & -1 & 3 & 0 \\ 2 & 1 & 0 & 0 \\ -1 & -5 & 9 & 0 \end{bmatrix}$.

2. The augmented matrix of the system is $\begin{bmatrix} 1 & -1 & 3 & 0 \\ 2 & 1 & 0 & 0 \\ -1 & -5 & 9 & 0 \end{bmatrix}$.

$$\begin{bmatrix} 1 & -1 & 3 & 0 \\ 2 & 1 & 0 & 0 \\ -1 & -5 & 9 & 0 \end{bmatrix} \quad \begin{matrix} H_{21} (-2) \\ H_{31} (1) \\ \sim \end{matrix}$$

2. The augmented matrix of the system is $\begin{vmatrix} 1 & -1 & 3 & 0 \\ 2 & 1 & 0 & 0 \\ -1 & -5 & 9 & 0 \end{vmatrix}$.

$$\begin{bmatrix} 1 & -1 & 3 & 0 \\ 2 & 1 & 0 & 0 \\ -1 & -5 & 9 & 0 \end{bmatrix} \xrightarrow{H_{21}(-2)} \begin{bmatrix} 1 & -1 & 3 & 0 \\ 0 & 3 & -6 & 0 \\ 0 & -6 & 12 & 0 \end{bmatrix} \xrightarrow{H_2(\frac{1}{3})} H_3(\frac{-1}{6})$$

2. The augmented matrix of the system is $\begin{vmatrix} 1 & -1 & 3 & 0 \\ 2 & 1 & 0 & 0 \\ -1 & -5 & 9 & 0 \end{vmatrix}$.

$$\begin{bmatrix} 1 & -1 & 3 & 0 \\ 2 & 1 & 0 & 0 \\ -1 & -5 & 9 & 0 \end{bmatrix} \begin{array}{c} H_{21} \left(-2 \right) \\ H_{31} \left(1 \right) \\ \sim \end{array} \begin{bmatrix} 1 & -1 & 3 & 0 \\ 0 & 3 & -6 & 0 \\ 0 & -6 & 12 & 0 \end{bmatrix} \begin{array}{c} H_{2} \left(\frac{1}{3} \right) \\ H_{3} \left(\frac{-1}{6} \right) \\ \sim \end{array}$$

$$\begin{bmatrix}
1 & -1 & 3 & 0 \\
0 & 1 & -2 & 0 \\
0 & 1 & -2 & 0
\end{bmatrix}$$
 $H_{32}(-1)$
 \sim

2. The augmented matrix of the system is $\begin{vmatrix} 1 & -1 & 3 & 0 \\ 2 & 1 & 0 & 0 \\ -1 & -5 & 9 & 0 \end{vmatrix}$.

$$\begin{bmatrix} 1 & -1 & 3 & 0 \\ 2 & 1 & 0 & 0 \\ -1 & -5 & 9 & 0 \end{bmatrix} \begin{array}{c} H_{21} \left(-2 \right) & \begin{bmatrix} 1 & -1 & 3 & 0 \\ 0 & 3 & -6 & 0 \\ 0 & -6 & 12 & 0 \end{bmatrix} \begin{array}{c} H_{2} \left(\frac{1}{3} \right) \\ H_{3} \left(\frac{-1}{6} \right) \\ \sim \end{array}$$

$$\begin{bmatrix} 1 & -1 & 3 & 0 \\ 0 & 1 & -2 & 0 \\ 0 & 1 & -2 & 0 \end{bmatrix} \quad H_{32} \left(-1 \right) \quad \begin{bmatrix} 1 & -1 & 3 & 0 \\ 0 & 1 & -2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \quad H_{12} \left(1 \right)$$

2. The augmented matrix of the system is $\begin{bmatrix} 1 & -1 & 3 & 0 \\ 2 & 1 & 0 & 0 \\ -1 & -5 & 9 & 0 \end{bmatrix}$.

$$\begin{bmatrix} 1 & -1 & 3 & 0 \\ 2 & 1 & 0 & 0 \\ -1 & -5 & 9 & 0 \end{bmatrix} \begin{array}{c} H_{21}\left(-2\right) & \begin{bmatrix} 1 & -1 & 3 & 0 \\ 0 & 3 & -6 & 0 \\ 0 & -6 & 12 & 0 \end{bmatrix} \begin{array}{c} H_{2}\left(\frac{1}{3}\right) \\ H_{3}\left(\frac{-1}{6}\right) \\ \sim \end{array}$$

$$\begin{bmatrix} 1 & -1 & 3 & 0 \\ 0 & 1 & -2 & 0 \\ 0 & 1 & -2 & 0 \end{bmatrix} \quad H_{32} \left(-1 \right) \quad \begin{bmatrix} 1 & -1 & 3 & 0 \\ 0 & 1 & -2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \quad H_{12} \left(1 \right)$$

$$\left[\begin{array}{ccc|c}
1 & 0 & 1 & 0 \\
0 & 1 & -2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]$$

3.
$$rank(A) = rank([A|b]) = 2.$$

- **3.** rank(A) = rank([A|b]) = 2.
- **4.** Since $[\mathbf{A}|\mathbf{b}] \sim \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & -2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ we have

- **3.** rank(A) = rank([A|b]) = 2.
- **4.** Since $[\mathbf{A}|\mathbf{b}] \sim \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & -2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ we have $\begin{aligned} x &= -z \\ y &= 2z \end{aligned}$

lözüm:

- 3. $rank(\mathbf{A}) = rank([\mathbf{A}|\mathbf{b}]) = 2$.
- **4.** Since $[\mathbf{A}|\mathbf{b}] \sim \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & -2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ we have $\begin{cases} x = -z \\ y = 2z \end{cases}$ Then for

$$x = -t$$

arbitrary parameter $z=t\in\mathbb{R}$ we get y=2t . Thus, all

$$z = t$$

solutions are of the form
$$\mathbf{x} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} = t \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$
.

?