54F/74F545 Octal Bidirectional Transceiver with TRI-STATE® Outputs

General Description

The 'F545 is an 8-bit, TRI-STATE, high-speed transceiver. It provides bidirectional drive for bus-oriented microprocessor and digital communications systems. Straight through bidirectional transceivers are featured, with 24 mA (20 mA Mil) bus drive capability on the A ports and 64 mA (48 mA Mil) bus drive capability on the B ports.

One input, Transmit/Receive (T/\overline{R}) determines the direction of logic signals through the bidirectional transceiver. Transmit enables data from A ports to B ports; Receive enables data from B ports to A ports. The Output Enable input disables both A and B ports by placing them in a TRI-STATE condition.

Features

- Higher drive than 8304
- 8-bit bidirectional data flow reduces system package
- TRI-STATE inputs/outputs for interfacing with bus-oriented systems
- 24 mA (20 mA Mil) and 64 mA (48 mA Mil) bus drive capability on A and B ports, respectively
- Transmit/Receive and Output Enable simplify control logic
- Guaranteed 4000V minimum ESD protection
- Pin for Pin compatible with Intel 8286

Commercial	Military	Package Number	Package Description			
74F545PC		N20A	20-Lead (0.300" Wide) Molded Dual-In-Line			
	54F545DM (Note 2)	J20A	20-Lead Ceramic Dual-In-Line			
74F545SC (Note 1)		M20B	20-Lead (0.300" Wide) Molded Small Outline, JEDEC			
74F545SJ (Note 1)		M20D	20-Lead (0.300" Wide) Molded Small Outline, EIAJ			
	54F545FM (Note 2)	W20A	20-Lead Cerpack			
	54F545LM (Note 2)	E20A	20-Lead Ceramic Leadless Chip Carrier, Type C			

Note 1: Devices also available in 13" reel. Use suffix = SCX and SJX.

 $\textbf{Note 2:} \ \textbf{Military grade device with environmental and burn-in processing.} \ \textbf{Use suffix} = \textbf{DMQB, FMQB and LMQB.}$

Logic Symbols

TL/F/9556-5

TRI-STATE® is a registered trademark of National Semiconductor Corporation

Connection Diagrams

Pin Assignment for DIP, SOIC and Flatpak

TL/F/9556-2

TL/F/9556-1

Truth Table

Inputs		Outputs				
ŌĒ	T/R	Outputs				
L	L	Bus B Data to Bus A				
L	Н	Bus A Data to Bus B				
Н	X	High Z				

H = HIGH Voltage Level
 L = LOW Voltage Level
 X = Immaterial
 Z = High Impedance

Unit Loading/Fan Out

		54F/74F				
Pin Names	Description	U.L. HIGH/LOW	Input I _{IH} /I _{IL} Output I _{OH} /I _{OL}			
ŌĒ	Output Enable Input (Active LOW)	1.0/2.0	20 μA/ – 1.2 mA			
T/R	Transmit/Receive Input	1.0/2.0	20 μA/ – 1.2 mA			
A ₀ -A ₇	Side A TRI-STATE Inputs or	3.5/1.083	70 μΑ/ – 650 μΑ			
	TRI-STATE Outputs	150/40 (33.3)	-3 mA/24 mA (20 mA)			
B ₀ -B ₇	Side B TRI-STATE Inputs or	3.5/1.083	70 μΑ/ – 650 μΑ			
	TRI-STATE Outputs	600/106.6 (80)	-12 mA/64 mA (48 mA)			

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

-65°C to +150°C Storage Temperature Ambient Temperature under Bias -55°C to +125°C Junction Temperature under Bias -55°C to +175°C Plastic -55°C to +150°C

V_{CC} Pin Potential to

Ground Pin -0.5V to +7.0VInput Voltage (Note 2) -0.5V to +7.0V

Input Current (Note 2) -30~mA to +5.0~mA

Voltage Applied to Output

in HIGH State (with $V_{CC} = 0V$)

Standard Output -0.5V to $V_{\mbox{\footnotesize CC}}$ TRI-STATE Output -0.5V to +5.5V

Current Applied to Output in LOW State (Max) ESD Last Passing Voltage (Min)

twice the rated I_{OL} (mA) 4000V be damaged or have its useful life impaired. Functional operation under these conditions is not implied. Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Note 1: Absolute maximum ratings are values beyond which the device may

Recommended Operating Conditions

Free Air Ambient Temperature

Military -55°C to +125°C 0°C to $\,\pm\,70^{\circ}\text{C}$ Commercial

Supply Voltage

 $+\,4.5V$ to $+\,5.5V$ Military Commercial +4.5V to +5.5V

DC Electrical Characteristics

Symbol	Parameter -		54F/74F			Units	Vcc	Conditions	
Symbol			Min	Тур	Max	Units	vcc vcc	Conditions	
V _{IH}	Input HIGH Voltage	2.0			V		Recognized as a HIGH Signal		
V _{IL}	Input LOW Voltage			0.8	V		Recognized as a LOW Signal		
V _{CD}	Input Clamp Diode Vo	oltage			-1.2	V	Min	$I_{IN} = -18 \text{ mA } (\overline{OE}, T/\overline{R})$	
V _{OH}	Output HIGH Voltage	54F 10% V _{CC} 54F 10% V _{CC} 54F 10% V _{CC} 74F 10% V _{CC} 74F 10% V _{CC} 74F 10% V _{CC} 74F 5% V _{CC} 74F 5% V _{CC}	2.5 2.4 2.0 2.5 2.4 2.0 2.7 2.7			V	Min	$\begin{split} I_{OH} &= -1 \text{ mA } (A_n) \\ I_{OH} &= -3 \text{ mA } (A_n) \\ I_{OH} &= -12 \text{ mA } (B_n) \\ I_{OH} &= -11 \text{ mA } (A_n) \\ I_{OH} &= -3 \text{ mA } (A_n) \\ I_{OH} &= -15 \text{ mA } (B_n) \\ I_{OH} &= -1 \text{ mA } (A_n) \\ I_{OH} &= -3 \text{ mA } (A_n) \\ I_{OH} &= -3 \text{ mA } (A_n) \end{split}$	
V _{OL}	Output LOW Voltage	54F 10% V _{CC} 54F 10% V _{CC} 74F 10% V _{CC} 74F 10% V _{CC}			0.5 0.55 0.5 0.55	٧	Min	$I_{OL} = 20 \text{ mA } (A_n)$ $I_{OL} = 48 \text{ mA } (B_n)$ $I_{OL} = 24 \text{ mA } (A_n)$ $I_{OL} = 64 \text{ mA } (B_n)$	
I _{IH}	Input HIGH Current	54F 74F			20.0 5.0	μΑ	Max	$V_{IN} = 2.7V (\overline{OE}, T/\overline{R})$	
I _{BVI}	Input HIGH Current Breakdown Test	54F 74F			100 7.0	μΑ	Max	$V_{IN} = 7.0V (\overline{OE}, T/\overline{R})$	
I _{BVIT}	Input HIGH Current Breakdown (I/O)	54F 74F			1.0 0.5	mA	Max	$V_{IN} = 5.5V (A_n, B_n)$	
I _{CEX}	Output HIGH Leakage Current	54F 74F			250 50	μΑ	Max	$V_{OUT} = V_{CC}$	
V_{ID}	Input Leakage Test	74F	4.75			V	0.0	$I_{\text{ID}} = 1.9 \mu\text{A}$ All Other Pins Grounded	
I _{OD}	Output Leakage Circuit Current	74F			3.75	μΑ	0.0	V _{IOD} = 150 mV All Other Pins Grounded	
I _{IL}	Input LOW Current				-1.2	mA	Max	$V_{IN} = 0.5V (\overline{OE}, T/\overline{R})$	
I _{IH} + I _{OZH}	Output Leakage Current				70	μΑ	Max	$V_{OUT} = 2.7V (A_n, B_n)$	
I _{IL} + I _{OZL}	Output Leakage Current				-650	μΑ	Max	$V_{OUT} = 0.5V (A_n, B_n)$	
los	Output Short-Circuit (-60 -100		150 225	mA	Max	$V_{OUT} = 0V (A_n)$ $V_{OUT} = 0V (B_n)$		

DC Electrical Characteristics (Continued)

Symbol	Parameter		54F/74F		Units	V _{CC}	Conditions	
	Farameter	Min	Тур	Max	Office	▼ CC		
I _{ZZ}	Bus Drainage Test			500	μΑ	0.0V	$V_{OUT} = 5.25V$	
I _{CCH}	Power Supply Current		70	90	mA	Max	V _O = HIGH	
I _{CCL}	Power Supply Current		95	120	mA	Max	$V_O = LOW$	
I _{CCZ}	Power Supply Current		85	110	mA	Max	V _O = HIGH Z	

AC Electrical Characteristics

					54F T _A , V _{CC} = Mil C _L = 50 pF		74F T _A , V _{CC} = Com C _L = 50 pF		Units
Symbol	Parameter								
		Min	Тур	Max	Min	Max	Min	Max	
t _{PLH}	Propagation Delay	2.5	4.2	6.0	2.0	7.5	2.5	7.0	ns
t _{PHL}	A_n to B_n or B_n to A_n	2.5	4.6	6.0	2.0	7.5	2.5	7.0	113
t _{PZH}	Output Enable Time	3.0	5.3	7.0	2.5	9.0	3.0	8.0	
t _{PZL}		3.5	6.0	8.0	3.0	10.0	3.5	9.0	ns
t _{PHZ}	Output Disable Time	3.0	5.0	6.5	2.5	9.0	3.0	7.5	"
t _{PLZ}		2.0	5.0	6.5	2.0	10.0	2.0	7.5	

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Ordering Information

SJ = Small Outline SOIC EIAJ

The device number is used to form part of a simplified purchasing code where the package type and temperature range are defined as follows:

20-Lead (0.300" Wide) Molded Dual-In-Line Package (P) NS Package Number N20A N20A (REV G)

Physical Dimensions inches (millimeters) (Continued)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor National Semiconducto Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018

National Semiconductor Europe

Fax: (+49) 0-180-530 85 86 Fax: (+49) U-18U-35U oo oo Email: onjwege tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 85 85 English Tei: (+49) 0-180-532 78 32 Français Tei: (+49) 0-180-532 93 58 Italiano Tel: (+49) 0-180-534 16 80

National Semiconductor National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960

National Semiconductor Japan Ltd.
Tel: 81-043-299-2309
Fax: 81-043-299-2408