Break-Ground:

A changing circle

Two young mathematicians discuss a circle that is changing.

Check out this dialogue between two calculus students (based on a true story):

Devyn: Riley, I've been thinking about calculus.

Riley: YOLO.

Devyn: Consider a circle of some radius r.

Riley: Ha! What else would we ever call the "radius?"

Devyn: Exactly. Now the formula for the perimeter of a circle is?

Riley: $P = 2 \cdot \pi \cdot r$ baby.

Devyn: And its area?

Riley: You know it's $A = \pi \cdot r^2$.

Devyn: Right, but here's what's bugging me: If I know r', what is P'? What's A'?

Riley: Oooh. Ouch. Hmmm. I wanna say it's

$$P' = 2 \cdot \pi \cdot r'$$
 and $A' = \pi(r')^2$

but I'm not sure that is right.

Devyn: Yeah...me too. But I'm not sure that's right either. Are we forgetting something?

Problem 1 Do you think our young mathematicians above are correct?

Multiple Choice:

- (a) Yes. $P' = 2 \cdot \pi \cdot r'$ and $A' = \pi(r')^2$.
- (b) No. While $P' = 2 \cdot \pi \cdot r'$, $A' \neq \pi(r')^2$.
- (c) No. While $A' = \pi(r')^2$, $P' \neq 2 \cdot \pi \cdot r'$.

Learning outcomes: Solve related rates word problems. Calculate derivatives of expressions with multiple variables implicitly.

- (d) No. $P' \neq 2 \cdot \pi \cdot r'$ and $A' \neq \pi(r')^2$.
- (e) There is no way to tell.

Problem 2 Set $r(t) = 3 \cdot t$. What is r'(t) when r = 15? $r'(t) = \boxed{3}$

Problem 3 Set $r = 3 \cdot t$. Now $P(t) = 2 \cdot \pi \cdot 3 \cdot t$. What is P'(t) when r = 15? $P'(t) = 2 \cdot \pi \cdot 3$

Problem 4 Describe what P' means in this context.

Free Response: It describes how fast the perimeter is changing at a particular instant in time.

Problem 5 Set $r=3 \cdot t$. Now $A(t)=\pi \cdot (3 \cdot t)^2$. What is A'(t) when r=15? $A'(t)=\boxed{2 \cdot \pi \cdot 15 \cdot 3}$

Problem 6 Describe what A' means in this context. Does it make sense that A' is positive?

Free Response: It describes how fast the area is changing. It does make sense that A' is positive, since as the radius gets larger, the area should get larger, too.

Problem 7 What, if anything, did our two young mathematicians forget about above?

Free Response: They forgot the chain rule.