

دانشگاه تهران- دانشگده مهندی برق و کاپیوتر ریاضیات مهندی-نیم سال دوم سال ۱۴۰۰-۱۳۹۹ تمرین ۴: تبدیل فوریه مدرس: دکترمهدی طالع ماموله - حل تمرین: کلین سفاری

براى بوالات نود درخصوص اين ترين ما رايانامه sneginsafari@gmail.com كاتبه نامد.

(۱) تبدیل فوریه تابع زیر را به دست آورید.

۲) حاصل عبارات زیر را به کمک تبدیل فوریه به دست آورید.

$$A = \int_{-\infty}^{\infty} sinc^{4}(t) . dt$$
$$B = \int_{-\infty}^{\infty} \frac{1}{1 + \omega^{2}} . d\omega$$

$$A = \int_{-\infty}^{\infty} sinc^{4}(t). dt \qquad * sinc(t) = \frac{\sin(\pi t)}{\pi t}$$

۳) تابع پیوسته در زمان مربوط به شکل زیر را بیابید.

دانشگاه تهران- دانشگده مهندی برق و کاپپوتر ریاضیات مهندی-نیم سال دوم سال ۱۴۰۰-۱۳۹۹ تمرین ۴: تبدیل فوریه مدرس: دکترمهدی طلع ماسوله - عل تمرین: نکمین سفاری

رای بوالات نود درخصوص ان ترن مارا مانمه sneginsafari@gmail.com کاته نابد.

- است: $\chi(t)$ را با تبدیل فوریه $\chi(j\omega)$ در نظر بگیرید. اطلاعات زیر داده شده است:
 - ات. x(t) حقیقی و نا منفی است.
- ، که A مستقل از t است. $F^{-1}\{(1+j\omega).X(j\omega)\}=A.\exp(-2t).u(t)$ ۲
 - $\int_{-\infty}^{\infty} |X(j\omega)|^2 \, d\omega = 2\pi \quad .$
 - را بیابید.x(t)
 - ۵) تبدیل فوریه معکوس توابع زیر را به دست آورید.

$$I) X(j\omega) = \frac{j\omega - 1}{j\omega + 2}$$

II)
$$X(j\omega) = \frac{e^{-j3\omega}}{(2+j\omega)^2}$$

III)
$$X(j\omega) = \frac{(j\omega+1)^2(j\omega+2)}{(j\omega+3)(j\omega+4)}$$

u(x) o 0 در معادله زیر k عدد ثابت است و همچنین زمانی که $\infty o \infty$ خواهیم داشت: κ

معادله ديفرانسيل زير را با استفاده از تبديل فوريه حل كنيد:

$$-\frac{d^2u}{dx^2} + K^2u = e^{-|x|}; -\infty < x < \infty$$

دانشخاه تهران- دانشگده مهندسی برق و کاپیوتر ریاضیات مهندسی-نیم سال دوم سال ۱۴۰۰-۱۳۹۹ تمرین ۴: تبدیل فوریه مدرس: دکترمهدی طالع ماموله - مل تمرین: نکمین سفاری

راى موالات خود دخصوص اين تمرين ما رايانامه sneginsafari@gmail.com كاتبه نايد.

(Y

الف) تبديل فوريه تابع زير را محاسبه كنيد.

$$f(x) = e^{-x}\cos(2\pi x)u(x)$$

ب) آیا حاصل عبارت $\int_{-\infty}^{\infty}|f(x)|^2dx$ محدود است یا به بینهایت میل می کند؟ توضیح دهید.

باشد، حاصل تبدیل فوریه تابع
$$f'(x)$$
 را به دست آورید. $f(x)=\begin{cases} 1 & |x|<2 \ 0 & |x|>2 \end{cases}$ را به دست آورید.