Chapter 10

Trace and Determinant

10.A Trace

10/27:

- To study the trace and determinant, we'll need to know how $\mathcal{M}(T,(v_1,\ldots,v_n))$ (for $T\in\mathcal{L}(V)$) changes as v_1,\ldots,v_n changes.
- n-by-n identity matrix: The matrix of the identity operator $I \in \mathcal{L}(V)$. Denoted by I. Given by

$$\begin{pmatrix} 1 & & 0 \\ & \ddots & \\ 0 & & 1 \end{pmatrix}$$

- $-\mathcal{M}(I)$ is the same with respect to every basis of V.
- Invertible (matrix A): A square matrix A for which there exists a square matrix B of identical size such that AB = BA = I. Also known as nonsingular.
- Inverse (of an invertible matrix A): The unique matrix B in the above definition. Denoted by A^{-1} .
 - The "unique" part of this definition follows from a proof symmetric to that of Theorem 3.12.
- Singular (matrix A): A matrix A that is not invertible. Also known as noninvertible.
- The following result is connected to Theorem 3.11.

Theorem 10.1. Suppose $u_1, \ldots, u_n, v_1, \ldots, v_n$, and w_1, \ldots, w_n are all bases of V. Suppose $S, T \in \mathcal{L}(V)$. Then

$$\mathcal{M}(ST, (u_1, \dots, u_n), (w_1, \dots, w_n)) = \mathcal{M}(S, (v_1, \dots, v_n), (w_1, \dots, w_n)) \mathcal{M}(T, (u_1, \dots, u_n), (v_1, \dots, v_n))$$

 \bullet We now discuss the matrix of the identity operator with respect to two bases.

Theorem 10.2. Suppose u_1, \ldots, u_n and v_1, \ldots, v_n are bases of V. Then the matrices

$$\mathcal{M}(I,(u_1,\ldots,u_n),(v_1,\ldots,v_n)) \qquad \qquad \mathcal{M}(I,(v_1,\ldots,v_n),(u_1,\ldots,u_n))$$

are invertible, and each is the inverse of the other.

Proof. It follows from Theorem 10.1 that

$$I = \mathcal{M}(I, (u_1, \dots, u_n), (v_1, \dots, v_n)) \mathcal{M}(I, (v_1, \dots, v_n), (u_1, \dots, u_n))$$

and

$$I = \mathcal{M}(I, (v_1, \dots, v_n), (u_1, \dots, u_n)) \mathcal{M}(I, (u_1, \dots, u_n), (v_1, \dots, v_n))$$

as desired.

- It follows that the above matrices change the coordinates of a vector in V from one basis to another.
- We now discuss change of basis for an operator.

Theorem 10.3. Suppose $T \in \mathcal{L}(V)$. Let u_1, \ldots, u_n and v_1, \ldots, v_n be bases of V. Let

$$A = \mathcal{M}(I, (u_1, \dots, u_n), (v_1, \dots, v_n))$$

Then

$$\mathcal{M}(T,(u_1,\ldots,u_n)) = A^{-1}\mathcal{M}(T,(v_1,\ldots,v_n))A$$

Proof. We have that

$$\mathcal{M}(T, (u_1, \dots, u_n)) = \mathcal{M}(IT, (u_1, \dots, u_n), (u_1, \dots, u_n))$$

$$= \mathcal{M}(I, (v_1, \dots, v_n), (u_1, \dots, u_n)) \mathcal{M}(T, (u_1, \dots, u_n), (v_1, \dots, v_n)) \quad \text{Theorem 10.1}$$

$$= A^{-1} \mathcal{M}(T, (u_1, \dots, u_n), (v_1, \dots, v_n)) \quad \text{Theorem 10.2}$$

We also have that

$$\mathcal{M}(T, (u_1, \dots, u_n), (v_1, \dots, v_n)) = \mathcal{M}(TI, (u_1, \dots, u_n), (v_1, \dots, u_n))$$

$$= \mathcal{M}(T, (v_1, \dots, v_n), (v_1, \dots, v_n)) \mathcal{M}(I, (u_1, \dots, u_n), (v_1, \dots, v_n))$$
Theorem 10.1
$$= \mathcal{M}(T, (v_1, \dots, v_n)) A$$

Substituting the second equation into the first gives the desired results.

- Trace (of $T \in \mathcal{L}(V)$, V complex): The sum of the eigenvalues of T with each eigenvalue repeated according to its multiplicity. Denoted by trace T.
- Trace (of $T \in \mathcal{L}(V)$, V real): The sum of the eigenvalues of $T_{\mathbb{C}}$ with each eigenvalue repeated according to its multiplicity. Denoted by trace T.
- Suppose $T \in \mathcal{L}(V)$. Let $n = \dim V$. Then trace T equals the negative of the coefficient of z^{n-1} in the characteristic polynomial of T.
- Trace (of A): The sum of the diagonal entries of a square matrix A. Denoted by trace A.
- We now build up to proving that trace $T = \operatorname{trace} \mathcal{M}(T, (v_1, \dots, v_n))$ where v_1, \dots, v_n is an arbitrary basis of V.

Theorem 10.4. If A and B are square matrices of the same size, then

$$trace(AB) = trace(BA)$$

Proof. Let

$$A = \begin{pmatrix} A_{1,1} & \cdots & A_{1,n} \\ \vdots & & \vdots \\ A_{n,1} & \cdots & A_{n,n} \end{pmatrix} \qquad B = \begin{pmatrix} B_{1,1} & \cdots & B_{1,n} \\ \vdots & & \vdots \\ B_{n,1} & \cdots & B_{n,n} \end{pmatrix}$$

The j^{th} diagonal entry of AB is by the definition of matrix multiplication $\sum_{k=1}^{n} A_{j,k} B_{k,j}$. Thus,

$$\operatorname{trace}(AB) = \sum_{j=1}^{n} \sum_{k=1}^{n} A_{j,k} B_{k,j}$$
$$= \sum_{k=1}^{n} \sum_{j=1}^{n} B_{k,j} A_{j,k}$$
$$= \operatorname{trace}(BA)$$

as desired.

• We now prove that the trace of a matrix is unique up to change of basis.

Theorem 10.5. Let $T \in \mathcal{L}(V)$. Suppose u_1, \ldots, u_n and v_1, \ldots, v_n are bases of V. Then

trace
$$\mathcal{M}(T,(u_1,\ldots,u_n)) = \operatorname{trace} \mathcal{M}(T,(v_1,\ldots,v_n))$$

Proof. Let $A = \mathcal{M}(I, (u_1, \dots, u_n), (v_1, \dots, v_n))$. Then

$$\mathcal{M}(T, (u_1, \dots, u_n)) = \operatorname{trace}(A^{-1}(\mathcal{M}(T, (v_1, \dots, v_n)))A)$$
 Theorem 10.3
$$= \operatorname{trace}((\mathcal{M}(T, (v_1, \dots, v_n)))A^{-1}A)$$
 Theorem 10.4
$$= \operatorname{trace} \mathcal{M}(T, (v_1, \dots, v_n))$$

as desired.

• We can now prove the main result.

Theorem 10.6. Suppose $T \in \mathcal{L}(V)$. Then trace $T = \operatorname{trace} \mathcal{M}(T)$.

Proof. By Theorem 10.5, trace $\mathcal{M}(T)$ is independent of which basis of V we choose. Thus, to prove that trace $T = \operatorname{trace} \mathcal{M}(T)$, it will suffice to prove the equality for any basis of V.

Let v_1, \ldots, v_n be the basis of V specified by Theorem 8.13. It follows that trace $\mathcal{M}(T) = d_1\lambda_1 + \cdots + d_m\lambda_m$ where $\lambda_1, \ldots, \lambda_m$ are the eigenvalues of T and d_1, \ldots, d_m are there respective multiplicities. But this is just trace T if V is complex and trace $T_{\mathbb{C}}$ if V is real, as desired.

- Note that the statement of Theorem 10.6 does not specify a basis because trace is invariant under change of basis, as proven in Theorem 10.5.
- The trace is additive.

Theorem 10.7. Suppose $S, T \in \mathcal{L}(V)$. Then $\operatorname{trace}(S+T) = \operatorname{trace} S + \operatorname{trace} T$.

Proof. We have that

$$\operatorname{trace}(S+T) = \operatorname{trace} \mathcal{M}(S+T)$$
 Theorem 10.6
 $= \operatorname{trace}(\mathcal{M}(S) + \mathcal{M}(T))$
 $= \operatorname{trace} \mathcal{M}(S) + \operatorname{trace} \mathcal{M}(T)$
 $= \operatorname{trace} S + \operatorname{trace} T$ Theorem 10.6

as desired.

• We now state a curious consequence of the previous theorems that has important applications to quantum theory.

Theorem 10.8. There do not exist operators $S, T \in \mathcal{L}(V)$ such that ST - TS = I.

Proof. Suppose $S, T \in \mathcal{L}(V)$. Then

$$trace(ST - TS) = trace(ST) - trace(TS)$$
 Theorem 10.7
$$= trace \mathcal{M}(ST) - trace \mathcal{M}(TS)$$
 Theorem 10.6
$$= trace \mathcal{M}(S)\mathcal{M}(T) - trace \mathcal{M}(T)\mathcal{M}(S)$$
 Theorem 3.11
$$= trace \mathcal{M}(S)\mathcal{M}(T) - trace \mathcal{M}(S)\mathcal{M}(T)$$
 Theorem 10.4
$$= 0$$

Since trace I > 0 necessarily, trace $(ST - TS) \neq \text{trace } I$. It follows that $ST - TS \neq I$, as desired.

10.B Determinant

- **Determinant** (of $T \in \mathcal{L}(V)$, V complex): The product of the eigenvalues of T with each eigenvalue repeated according to its multiplicity. *Denoted by* **det** T.
- **Determinant** (of $T \in \mathcal{L}(V)$, V real): The product of the eigenvalues of $T_{\mathbb{C}}$ with each eigenvalue repeated according to its multiplicity. *Denoted by* **det** T.
- If $\lambda_1, \ldots, \lambda_m$ are the distinct eigenvalues of T (or $T_{\mathbb{C}}$ if V is real) with corresponding multiplicities d_1, \ldots, d_m , then

$$\det T = \lambda_1^{d_1} \cdots \lambda_m^{d_m}$$

- Suppose $T \in \mathcal{L}(V)$. Let $n = \dim V$. Then $\det T$ is $(-1)^n$ times the constant term of the characteristic polynomial of T.
- Invertibility and determinant.

Theorem 10.9. An operator on V is invertible if and only if its determinant is nonzero.

Proof. Let $T \in \mathcal{L}(V)$. We divide into two cases (V is complex and V is real). Let's begin,

Suppose first that V is complex. By Theorem 5.7, there is a basis of V with respect to which $\mathcal{M}(T)$ is upper triangular. By Theorem 5.8, T is invertible iff all diagonal entries of $\mathcal{M}(T)$ are nonzero. By Theorem 5.9, all diagonal entries of $\mathcal{M}(T)$ are nonzero iff all eigenvalues of T are nonzero. But this is true iff the product of the eigenvalues of T, i.e., det T is nonzero, as desired.

Now suppose that V is real. As before, T is invertible iff 0 is not an eigenvalue of $T_{\mathbb{C}}$. But by Theorem 9.4, it follows in both directions that 0 is not an eigenvalue of T, so $\det T \neq 0$ in this case too, as desired.

• Characteristic polynomial and determinant.

Theorem 10.10. Suppose $T \in \mathcal{L}(V)$. Then the characteristic polynomial of T equals $\det(zI - T)$.

Proof. Suppose first that V is complex. We know that λ is an eigenvalue of T iff $z - \lambda$ is an eigenvalue of zI - T:

$$-(T - \lambda I) = 0 = (zI - T) - (z - \lambda)I$$

Raising both sides to the dim V power and taking null spaces proves that the multiplicity of λ wrt. T equals the multiplicity of $z - \lambda$ wrt. zI - T. It follows that

$$\det(zI - T) = (z - \lambda_1)^{d_1} \cdots (z - \lambda_n)^{d_n}$$

which is the characteristic polynomial, as desired.

The real case follows from applying the complex case to $T_{\mathbb{C}}$.

- **Permutation** (of (1, ..., n)): A list $(m_1, ..., m_n)$ that contains each of the numbers 1, ..., n exactly once.
- **perm** n: The set of all permutations of (1, ..., n).
- Sign (of a permutation (m_1, \ldots, m_n)): The number 1 if the number of pairs of integers (j, k) with $1 \le j < k \le n$ such that j appears after k in the permutation is even, and the number -1 otherwise (e.g., if the number of such pairs is odd). Denoted by sign n. Also known as signum.
 - "In other words, the sign of a permutation equals 1 if the natural order has been changed an even number of times and equals −1 if the natural order has been changed an odd number of times" (Axler, 2015, p. 313).

• We now prove a connection between the sign and transpositions.

Theorem 10.11. Interchanging two entries in a permutation multiplies the sign of the permutation by -1.

• **Determinant** (of A): The following quantity. Denoted by **det** A. Given by

$$\det A = \sum_{(m_1, \dots, m_n) \in \text{perm } n} (\text{sign}(m_1, \dots, m_n)) A_{m_1, 1} \cdots A_{m_n, n}$$

- We now build up to proving that the determinant of A is invariant with respect to basis.
- Interchanging two columns.

Theorem 10.12. Suppose A is a square matrix and B is the matrix obtained from A by interchanging two columns. Then

$$\det A = -\det B$$

Proof. Notice that the same products appear in the sum defining the determinants of both matrices. However, the terms appear in different orders; in fact, each term has a unique transposition. Thus, every term of $\det B$ is -1 times the corresponding term in $\det A$ by Theorem 10.11. It follows by factoring out the -1's that $\det A = -\det B$.

• If $\mathcal{M}(T)$ has two equal columns, then T is not injective hence not invertible, so det = 0. Similarly...

Theorem 10.13. If A is a square matrix that has two equal columns, then $\det A = 0$.

Proof. By the definition of A, interchanging the two equal columns of A gives A. But by Theorem 10.12, this implies that

$$\det A = -\det A$$
$$2 \det A = 0$$
$$\det A = 0$$

as desired.

• We now generalize Theorem 10.12.

Theorem 10.14. Suppose $A = \begin{pmatrix} A_{\cdot,1} & \cdots & A_{\cdot,n} \end{pmatrix}$ is an $n \times n$ matrix and (m_1, \dots, m_n) is a permutation. Then

$$\det (A_{\cdot,m_1} \quad \cdots \quad A_{\cdot,m_n}) = (\operatorname{sign}(m_1,\ldots,m_n)) \det A$$

Proof. Change A into $(A_{\cdot,m_1} \cdots A_{\cdot,m_n})$ iteratively, one column switch at a time, and apply Theorems 10.12 and 10.11.

• The determinant is linear.

Theorem 10.15. Suppose k, n are positive integers with $1 \le k \le n$. Fix $n \times 1$ matrices $A_{\cdot,1}, \ldots, A_{\cdot,n}$ except $A_{\cdot,k}$. Then the function that takes an $n \times 1$ column vector $A_{\cdot,k}$ to

$$\det (A_{\cdot,1} \quad \cdots \quad A_{\cdot,k} \quad \cdots \quad A_{\cdot,n})$$

is a linear map from the vector space of $n \times 1$ matrices with entries in \mathbb{F} to \mathbb{F} .

Proof. The linearity follows from the definition, where each term in the sum contains precisely one entry from the k^{th} column of A.

• The determinant of the product of two matrices is equal to the product of the determinants^[1].

Theorem 10.16. Suppose A, B are square matrices of the same size. Then

$$\det(AB) = \det(BA) = (\det A)(\det B)$$

Proof. Given, but complicated. See LinAlgGIEPNotes on Browne.

• We can now prove that the determinant is independent of basis.

Theorem 10.17. Suppose $T \in \mathcal{L}(V)$. Suppose u_1, \ldots, u_n and v_1, \ldots, v_n are bases of V. Then

$$\det \mathcal{M}(T,(u_1,\ldots,u_n)) = \det \mathcal{M}(T,(v_1,\ldots,v_n))$$

Proof. Invoke Theorem 10.16 in a paradigm symmetric to that used in the proof of Theorem 10.5.

• We can now prove that the determinant of an operator is equal to the determinant of any of its matrices.

Theorem 10.18. Suppose $T \in \mathcal{L}(V)$. Then $\det T = \det \mathcal{M}(T)$.

Proof. Invoke Theorem 10.16 in a paradigm symmetric to that used in the proof of Theorem 10.6.

• Like the trace is additive, the determinant is multiplicative.

Theorem 10.19. Suppose $S, T \in \mathcal{L}(V)$. Then

$$\det(ST) = \det(TS) = (\det S)(\det T)$$

Proof. Invoke Theorems 10.18 and 10.16 in a paradigm symmetric to that used in the proof of Theorem 10.7.

- We now transition from discussing properties of the determinant to applications.
- Determinant of an isometry.

Theorem 10.20. Suppose V is an inner product space and $S \in \mathcal{L}(V)$ is an isometry. Then

$$|\det S| = 1$$

Proof. Suppose first that V is complex. Then by Theorem 7.20, every eigenvalue of S has absolute value 1. Therefore, by the definition of the determinant as the product of the eigenvalues, we have that

$$|\det S| = |\lambda_1| \cdots |\lambda_m| = 1$$

as desired.

Now suppose that V is real. Applying the complexification, we have that $|\det S_{\mathbb{C}}| = 1$ and $\det S = \det S_{\mathbb{C}}$, as desired.

- We have that $\det \sqrt{T^*T} \ge 0$ as a positive operator with all positive eigenvalues.
- We now further investigate the relation between T and $\sqrt{T^*T}$ with respect to the determinant.

Theorem 10.21. Suppose V is an inner product space and $T \in \mathcal{L}(V)$. Then

$$|\det T| = \det \sqrt{T^*T}$$

¹The first proof of this theorem was given in 1812 by French mathematicians Jacques Binet and Augustin-Louis Cauchy.

Proof. We have by the Polar Decomposition that there exists an isometry $S \in \mathcal{L}(V)$ such that $T = S\sqrt{T^*T}$. Thus

$$|\det T| = |\det S| \cdot \det \sqrt{T^*T}$$
 Theorem 10.16
= $\det \sqrt{T^*T}$ Theorem 10.20

as desired.

- Axler (2015) now discusses applications of the determinant to volume in \mathbb{R}^n .
- If $\Omega \subset \mathbb{R}^n$, then the volume of $T(\Omega)$ (where T is a positive operator) equals det T times the volume of Ω .
- Isometries don't change volume.
- If T is an arbitrary operator, then the volume of $T(\Omega)$ equals $|\det T|$ times the volume of Ω .
- Integrals and derivatives are discussed.
- Talks about the Jacobian and change of coordinates.