Devoir surveillé n° 7 Version 1

Durée : 3 heures, calculatrices et documents interdits

I. Un exercice vu en TD.

Soit $n \in \mathbb{N}^*$. Montrer que la décomposition en éléments simples de $\frac{1}{X^n-1}$ est

$$\frac{1}{X^n-1} = \frac{1}{n} \sum_{\omega \in \mathbb{U}_n} \frac{\omega}{X-\omega}.$$

II. La méthode de Newton.

Soient a et b deux réels tels que a < b. Posons I = [a, b].

Partie I. théorème du point fixe

On se donne $g: I \to \mathbb{R}$ une fonction k-lipschitzienne avec $k \in [0, 1[$ et telle que $g(I) \subset I$.

- 1) a) (Question de cours) Montrer que g est continue sur I.
 - b) Montrer que l'équation g(x) = x possède une solution et une seule dans le segment I. On notera α cette solution.
- 2) Soit $u \in I$ et $(x_n)_{n \in \mathbb{N}}$ la suite réelle définie par :

$$x_0 = u$$
 et $\forall n \in \mathbb{N} : x_{n+1} = g(x_n)$

- a) Montrer que pour tout $n \in \mathbb{N}$ on a : $|x_n \alpha| \leq k^n |u \alpha|$. En déduire que (x_n) converge vers un réel que l'on déterminera.
- **b)** Établir que pour tout $(n, p) \in \mathbb{N}^2$ on a :

$$|x_{n+p} - x_n| \le \frac{1 - k^p}{1 - k} |x_{n+1} - x_n|$$

c) En déduire que pour tout $n \in \mathbb{N}$ on a :

$$|x_n - \alpha| \leqslant \frac{k^n}{1 - k} |x_1 - x_0|.$$

3) On suppose que g est dérivable en α .

- a) Établir que $|g'(\alpha)| \leq k$.
- b) On reprend les notations de la question 2). Montrer que, si pour tout $n \in \mathbb{N}$, $x_n \neq \alpha$ alors

$$\lim_{n \to +\infty} \frac{x_{n+1} - \alpha}{x_n - \alpha} = g'(\alpha)$$

Partie II. Méthode de Newton

Soit f une fonction de I dans \mathbb{R} de classe \mathscr{C}^2 . On suppose que f(a) < 0, f(b) > 0 et que f'(x) > 0 pour tout $x \in I$.

On s'intéresse ici à la résolution de l'équation f(x) = 0 d'inconnue $x \in I$.

- 1) a) Montrer que cette équation possède une unique solution dans]a,b[. Cette solution sera notée α .
 - b) Soit $x_0 \in I$. Déterminer l'abscisse du point d'intersection de l'axe des abscisses et de la tangente à f en x_0 .
- 2) On définit la fonction q par :

$$g : \left\{ \begin{array}{ll} I & \to & \mathbb{R} \\ x & \mapsto & x - \frac{f(x)}{f'(x)} \end{array} \right.$$

- a) Justifier que g est de classe \mathscr{C}^1 .
- **b)** Calculer $g(\alpha)$ et $g'(\alpha)$.
- 3) On suppose, dans cette question seulement, que f' est décroissante. On considère la suite (x_n) définie par

$$x_0 = a$$
 et $\forall n \in \mathbb{N} : x_{n+1} = g(x_n)$

- a) Dessiner le graphe d'une fonction f vérifiant toutes ces conditions.
- **b)** Montrer que, pour tout $n \in \mathbb{N}$,
 - x_{n+1} est bien définie.
 - $\bullet x_{n+1} \geqslant x_n$

•
$$\frac{f(x_{n+1}) - f(x_n)}{x_{n+1} - x_n} \leqslant f'(x_n)$$
 puis que $x_{n+1} \leqslant \alpha$

- c) Montrer que (x_n) converge vers α .
- 4) On revient au cas général.
 - a) Justifier qu'il existe h > 0 tel que : en notant $J = [\alpha h, \alpha + h]$, on ait |g'(x)| < 1 pour tout $x \in J$.
 - **b)** Établir que : $\forall x \in J : g(x) \in J$.
 - c) Justifier qu'il existe $k \in [0, 1]$ tel que g soit k-lipschitzienne sur J.

d) En déduire que, pour tout $u \in J$, la suite (x_n) définie par

$$x_0 = u$$
 et $\forall n \in \mathbb{N} \ x_{n+1} = g(x_n)$

converge vers α .

- 5) Dans cette question, on suppose f de classe \mathscr{C}^3 et on admettra la formule de Taylor-Young à l'ordre 2: pour toute application φ de classe \mathscr{C}^2 sur I, pour tout x_0 appartenant à I, on a pour x au voisinage de x_0 , $\varphi(x) = \varphi(x_0) + (x x_0)\varphi'(x_0) + \frac{1}{2}(x x_0)^2\varphi''(x_0) + o_{x \to x_0}((x x_0)^2)$.
 - a) Justifier qu'il existe une constante C > 0 et un réel $\eta > 0$ tel que $[\alpha \eta, \alpha + \eta] \subset [a, b]$ et pour tout $x \in [\alpha \eta, \alpha + \eta]$, on a $|g(x) \alpha| \leq C(x \alpha)^2$.
 - **b)** On pose $\nu = \min(\frac{1}{2C}, \eta)$ et $K = [\alpha \nu, \alpha + \nu]$. Montrer que pour tout $u \in K$, la suite (x_n) définie par $x_0 = u$ et $\forall n \in \mathbb{N}$ $x_{n+1} = g(x_n)$ est bien définie.
 - c) Montrer que pour tout $n \in \mathbb{N}$, on a

$$C|x_n - \alpha| \leqslant (C|x_0 - \alpha|)^{2^n}$$

et en déduire que pour tout $n \in \mathbb{N}$, on a

$$|x_n - \alpha| \leqslant \frac{1}{C2^{(2^n)}}$$

III. Une équation différentielle linéaire homogène.

On cherche dans ce problème à résoudre l'équation différentielle linéaire réelle

$$y''' + y'' + y' + y = 0. (\mathscr{E})$$

On note ${\mathscr S}$ l'ensemble des solutions de $({\mathscr E})$:

$$\mathscr{S} = \{ y \in \mathscr{C}^{\infty}(\mathbb{R}, \mathbb{R}) \mid y''' + y'' + y' + y = 0 \}.$$

- 1) Question préliminaire : Factoriser dans $\mathbb R$ et dans $\mathbb C$ le polynôme X^3+X^2+X+1 .
- 2) Montrer que $(\mathscr{S},+,\cdot)$ est un \mathbb{R} -espace vectoriel stable par dérivation.
- 3) On considère $g: x \mapsto e^{-x}$.
 - a) Montrer que $g \in \mathscr{S}$.
 - b) En déduire que $\operatorname{Vect}(g) \subset \mathscr{S}$.
 - c) Déterminer une équation différentielle dont Vect(g) est exactement l'ensemble des solutions.
- **4)** On pose $\mathscr{T} = \{ y \in \mathscr{C}^{\infty}(\mathbb{R}, \mathbb{R}) \mid y'' + y = 0 \}.$
 - a) Montrer que $\mathcal T$ est un sous-espace vectoriel de $\mathcal S$.
 - b) Déterminer deux fonctions c et s telles que $\mathscr{T}=\mathrm{Vect}(c,s).$
- 5) Montrer que pour toute fonction $f \in \mathcal{S}$, on a $f'' + f \in \text{Vect}(g)$.
- 6) Montrer de même que pour toute $f \in \mathscr{S}$, on a $f' + f \in \mathscr{T}$.
- 7) Montrer que $\mathscr{S} = \operatorname{Vect}(g) \oplus \mathscr{T}$.
- 8) En déduire une expression explicite de \mathscr{S} , par exemple en fonction de $g,\,c$ et s.