

2º Grado Informática Estructura de Computadores Ensayo Enero 2016

Examen Test de Teoría (puntuaría sobre 3.0p)

Todas las preguntas son de elección simple sobre 4 alternativas. Cada respuesta vale 3/30 si es correcta, 0 si está en blanco o claramente tachada, -1/30 si es errónea. Anotar las respuestas (a, b, c o d) en la siguiente tabla.

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
a	С	С	a	d	d	a	С	b	b	С	a	С	С	a	a	d	d	С	a	b	d	a	a	b	b	b	b	b	b

Examen Test de Prácticas (puntuaría sobre 4.0p)

Todas las preguntas son de elección simple sobre 4 alternativas. Cada respuesta vale 4/20 si es correcta, 0 si está en blanco o claramente tachada, -1.33.../20 si es errónea. Anotar las respuestas (a, b, c o d) en la siguiente tabla.

1	. 2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
a	b	b	a	b	С	d	b	b	С	b	d	b	С	b	a	С	d	a	b

Examen de Problemas (puntuaría sobre 3.0p)

1. Acceso a arrays (0.5 puntos)

H = 9J = 15

2. Representación y acceso a estructuras (0.5 puntos).

type1_t: cualquiera de tamaño 4B: (int, unsigned, long, etc)

type2_t: char CNT: 7

3. Memoria cache (0.5 puntos).

Bloques de 64 palabras = 2^6 pal/blq \rightarrow 6 bits para direccionar la palabra dentro de cada bloque \rightarrow 15 bits para direccionar en memoria \rightarrow 2¹⁵ pal / 2⁶ pal/blq = 2^9 bloques en MP (512 bloques) \rightarrow 2¹² pal / 2⁶ pal/blq = 2^6 marcos en cache (64 marcos)

Totalmente Asociativa: Cualquier bloque puede ir a cualquier marco, se identifica bloque por etiqueta

15 bits
15-6 = 9 bits 6 bits
etiqueta palabra

Correspondencia directa: Bloques sucesivos van a marcos sucesivos. Al acabarse la cache, vuelta a empezar 15 bits

15-6-6=3	6 bits	6 bits
etiqueta	marco (bloque)	palabra

Asociativa 16 vías: Bloques sucesivos van a conjuntos sucesivos, pero cada conj.tiene varios marcos (vías) $16 = 2^4$ blq/conj, cache de 2^6 marcos $\rightarrow 2^6$ marcos / 2^4 blq/conj = 2^2 conjuntos $\rightarrow 2$ bits para direccionar conjunto

	15 0113	
15-2-6= 7 bits	2bits	6 bits
etiqueta	coni.	palabra

- 4. Diseño del sistema de memoria (0.5 puntos).
- **5. Entrada/Salida** (0.5 puntos).
- **6.** Unidad de control microprogramada (0.5 puntos).

Ver imágenes adjuntas

3. Memoria caché (0,5 puntos)

A. Totalmente asociativa

C. Asociativa par conjuntos con 16 depues par conjunto

5. Entrada/Solida (0,5 pumbs)

6. Unidad de vontrel microprogramada (0,5 punts)
Captación o devodificación de restrucción:

Fetch: MAR := PC; Z := PC+1; MBR := M[MAR]; PC := Z; IR := MBR; Jobo f(IR); // devolificación