Amendments to the Claims

Please amend Claims 4, 9, 23, 26, 31 and 45. The Claim Listing below will replace all prior versions of the claims in the application.

Claim Listing

- 1. (Cancelled)
- 2. (Previously Presented) A compound represented by the following structural formula:

wherein R is represented by a structural formula selected from:

$$R^{5} - S_{1} - O_{1} - S_{1} - R^{2} - S_{1} - O_{2}$$

$$R^{6} - S_{1} - O_{3} - R^{6} - S_{1} - O_{4}$$
or
$$R^{6} - S_{1} - O_{5} - C_{5} - C$$

wherein:

each group R^1 , each group R^3 and each group R^4 is independently a substituted or unsubstituted C_{1-12} alkyl, C_{1-12} cycloalkyl, aryl substituted C_{1-12} alkyl or aryl group;

each group R^2 is independently a substituted or unsubstituted C_{1-12} alkylene, C_{1-12} cycloalkylene, C_{1-12} arylalkylene, or arylene group, $-Y_1$ -[O- Y_1]_p-, $-Y_1$ -Si(R^2)₂- Y_1 -, $-Y_1$ -Si(R^2)₂- Y_1 -O- Y_1 -Si(R^2)₂- Y_1 -, or $-Y_1$ -Si(R^2)₂- Y_1 -Si(R^2)₂- Y_1 -;

- 3 -

each group R⁵ is independently, an epoxide substituted aliphatic group having 2-10 carbon atoms; and

each group R^6 is independently hydrogen, an alkenyl, a substituted or unsubstituted C_{1-12} alkyl, C_{1-12} cycloalkyl, aryl substituted C_{1-12} -alkyl or aryl or R^z - $(O-Y_1)_m$ -, $(R^z)_3Si$ - $(O-Si(R^z)_2)_q$ - Y_1 - or $(R^z)_3Si$ - $(O-Si(R^z)_2)_q$ -O-;

each R² is independently a substituted or unsubstituted C₁₋₁₂ alkyl group, C₁₋₁₂ cycloalkylalkyl group, aryl substituted C₁₋₁₂ alkyl group or aryl group;

each Y₁ is independently a C₁₋₁₂ alkylene group;

p is an integer from 1 to 5; m is an integer from 1 to 10; and q is an integer from 0 to 4.

- 3. (Original) The compound of Claim 2 wherein each group R² is independently, a substituted or unsubstituted C₁₋₁₂ alkylene, C₁₋₁₂ cycloalkylene, C₁₋₁₂ substituted arylalkylene, or arylene group; and each R⁶ is independently a substituted or unsubstituted C₁₋₁₂ alkylsilane, C₁₋₁₂ cycloalkylsilane, C₁₋₁₂ alkoxysilane, aryl substituted C₁₋₁₂ alkylsilane, a hydrogen, a vinyl, a substituted or unsubstituted C₁₋₁₂ alkyl, C₁₋₁₂ dialkylether, (C₁₋₁₂ cycloalkyl)C₁₋₁₂ alkylether, C₁₋₁₂ cycloalkyl, aryl substituted C₁₋₁₂ alkyl or aryl group.
- 4. (Currently amended) The compound of Claim 3 wherein at least one \mathbb{R}^5 comprises the epoxide in \mathbb{R}^5 is a cycloalkene oxide.
- 5. (Original) The compound of Claim 3 wherein each R⁵ is represented by the following structural formula:

- 6. (Original) The compound of Claim 3 wherein R¹ is a methyl group; each group R² is an ethylene, hexylene, or octylene group, each group R³ is a methyl group; each group R⁴ is a methyl group; each group R⁵ is a 2-(3,4-epoxycyclohexyl) ethyl grouping, and each group R⁶ is a hydrogen or ethenyl.
- 7. (Previously Presented) A compound represented by the following structural formula:

$$R^{14} - S_{1} - O - S_{15}^{15} - R^{16} - S_{18}^{17} - R^{16} - S_{18}^{16} - S_{$$

wherein \mathbb{R}^{14} is represented by a structural formula selected from:

$$O-S_{1}$$
 R^{22}
 R^{23}

each group R^{15} , each group R^{17} , each group R^{18} , each group R^{19} , each group R^{20} and each group R^{22} is independently a substituted or unsubstituted C_{1-12} alkyl, C_{1-12} cycloalkyl, aryl substituted C_{1-12} alkyl or aryl group;

- 5 -

each group R^{16} is independently a substituted or unsubstituted C_{1-12} alkylene, C_{1-12} cycloalkylene, C_{1-12} arylalkylene, or arylene group, $-Y_1-[O-Y_1]_{p^-}$, $-Y_1-S_1(R^2)_2-Y_1-$, $-Y_1-S_1(R^2)_2-Y_1-$, or $-Y_1-S_1(R^2)_2-Y_1-$ Si $(R^2)_2-Y_1-$ Si $(R^2)_2-$ Si(

each R²¹ is independently an epoxide substituted aliphatic group having 2-10 carbon atoms:

 R^{23} is independently hydrogen, an alkenyl, a substituted or unsubstituted C_{1-12} alkyl, C_{1-12} cycloalkyl, aryl substituted C_{1-12} -alkyl or aryl or R^2 - $(O-Y_1)_{m^2}$, $(R^2)_3S_1$ - $(O-S_1(R^2)_2)_0$ -

each group X is independently oxygen or R16;

each R^2 is independently a substituted or unsubstituted C_{1-12} alkyl group, C_{1-12} cycloalkylalkyl group, aryl substituted C_{1-12} alkyl group or aryl group;

each Y₁ is independently a C₁₋₁₂ alkylene group;

p is an integer from 1 to 5; m is an integer from 1 to 10; and q is an integer from 0 to 4.

- 8. (Original) The compound of Claim 7 wherein each group R¹⁶ is independently a substituted or unsubstituted C₁₋₁₂ alkylene, C₁₋₁₂ cycloalkylene, aryl substituted C₁₋₁₂ alkylene or arylene group; R²³ is, independently, a hydrogen, a monovalent substituted or unsubstituted C₁₋₁₂ alkyl, C₁₋₁₂ dialkylether (alkyl-O-alkylene-), C₁₋₁₂ cycloalkyl C₁₋₁₂ alkylether, C₁₋₁₂ cycloalkyl, aryl substituted C₁₋₁₂ alkyl or aryl group; and X is oxygen.
- 9. (Currently Amended) The compound of Claim 8 wherein at least one R²¹ comprises the epoxide in R²¹ is a cycloalkene oxide.
- 10. (Original) The compound of Claim 9 wherein each is R²¹ represented by the following structural formula:

- ۸ -

(Original) The compound of Claim 10 wherein: each group R¹⁵, R¹⁷, R¹⁸ R¹⁹, R²⁰ and R²² is a methyl group; each group R¹⁶ is an ethylene, hexylene, or octylene group; and R²³ is a hydrogen, hexyl, or alkylether.

12-22. (Cancelled)

- 23. (Currently Amended) A holographic recording medium comprising:
 - a) at least one polyfunctional epoxide monomer;
 - b) a binder which is capable of supporting cationic polymerization;
 - c) an acid generator capable of producing an acid upon exposure to actinic radiation; and, optionally,
 - d) a sensitizer,

wherein the polyfunctional epoxide monomer is by the following structural formula:

wherein:

X₁ and X₂ are independently each an inert linking group oxygen or a substituted or unsubstituted C₁₋₁₂ alkylene, C₁₋₁₂ cycloalkylene, C₁₋₁₂ arylalkylene, or arylene

-7-

group, $-Y_1-[O-Y_1]_{p^-}$, $-Y_1-Si(R^2)_2-Y_1-$, $-Y_1-Si(R^2)_2-Y_1-O-Y_1-Si(R^2)_2-Y_1-$, or $-Y_1-Si(R^2)_2-Y_1-Si(R^2)_2-Y_1-$;

each R² is independently a substituted or unsubstituted C₁₋₁₂ alkyl group, C₁₋₁₂ cycloalkylalkyl group, aryl substituted C₁₋₁₂ alkyl group or aryl group;

each Y1 is independently a C1-12 alkylene group;

p is an integer from 1 to 5;

each R³ is independently a substituted or unsubstituted aliphatic group or a substituted or unsubstituted aryl group;

n is 1, 2, 3 or 4;

R is a substituted or unsubstituted aliphatic group, a substituted or unsubstituted aryl group or is represented by a structural formula selected from:

each Rb is independently an epoxide substituted aliphatic group; and

R^c is H, an unsubstituted aliphatic group, a substituted aliphatic group, an unsubstituted aryl group, a substituted aryl group, a substituted siloxane group, an unsubstituted siloxane group, a substituted polysiloxane group or an unsubstituted polysiloxane group.

24 (Original) The holographic recording medium of Claim 23 wherein the polyfunctional epoxide monomer is represented by the following structural formula:

3

09/941,166

- R -

wherein R is represented by a structural formula selected from:

wherein:

each group R^1 , each group R^3 and each group R^4 is independently a substituted or unsubstituted C_{1-12} alkyl, C_{1-12} cycloalkyl, aryl substituted C_{1-12} alkyl or aryl group,

each group R^2 is independently a substituted or unsubstituted C_{1-12} alkylene, C_{1-12} cycloalkylene, C_{1-12} arylaikylene, or arylene group, $-Y_1$ - $[O-Y_1]_p$ -, $-Y_1$ - $Si(R^z)_2$ - Y_1 -, $-Y_1$ - $Si(R^z)_2$ - Y_1 -, or $-Y_1$ - $Si(R^z)_2$ - Y_1 -Si($R^z)_2$ - Y_1 -, or $-Y_1$ - $Si(R^z)_2$ - Y_1 -Si($R^z)_2$ - Y_1 -, or $-Y_1$ - Y_1 -Si(Y_1

each group R⁵ is independently, an epoxide substituted aliphatic group having 2-10 carbon atoms; and

each group R^6 is independently hydrogen, an alkenyl, a substituted or unsubstituted C_{1-12} alkyl, C_{1-12} cycloalkyl, aryl substituted C_{1-12} -alkyl or aryl or R^2 - $(O-Y_1)_{m^2}$, $(R^2)_3Si$ - $(O-Si(R^2)_2)_q$ - Y_1 - or $(R^2)_3Si$ - $(O-Si(R^2)_2)_q$ -O-;

each R' is independently a substituted or unsubstituted C_{1-12} alkyl group, C_{1-12} cycloalkylalkyl group, aryl substituted C_{1-12} alkyl group or aryl group;

each Y1 is independently a C1-12 alkylene group;

- 9 -

p is an integer from 1 to 5; m is an integer from 1 to 10; and q is an integer from 0 to 4.

- 25. (Original) The holographic recording medium of Claim 24 wherein each group R² is independently, a substituted or unsubstituted C₁₋₁₂ alkylene, C₁₋₁₂ cycloalkylene, aryl substituted C₁₋₁₂ alkylene, or arylene group each R⁶ is independently a monovalent substituted or unsubstituted C₁₋₁₂ alkylsilane, C₁₋₁₂ cycloalkylsilane, C₁₋₁₂ alkoxysilane, aryl substituted C₁₋₁₂ alkylsilane, a hydrogen, a vinyl, a monovalent substituted or unsubstituted C₁₋₁₂ alkyl, C₁₋₁₂ dialkylether, (C₁₋₁₂ cycloalkyl)C₁₋₁₂ alkylether, C₁₋₁₂ cycloalkyl, aryl substituted C₁₋₁₂ alkyl or aryl group.
- 26. (Currently Amended) The holographic recording medium of Claim 25 wherein at least one R⁵ comprises the epoxide in R⁵ is a cycloalkene oxide.
- 27. (Original) The holographic recording medium of Claim 26 wherein each R⁵ is represented by the following structural formula:

- 28. (Original) The holographic recording medium of Claim 27 wherein R¹ is a methyl group, each group R² is an ethylene, hexylene, or octylene group; each group R³ is a methyl group; each group R⁴ is a methyl group; each group R⁵ is a 2-(3,4-epoxycyclohexyl) ethyl grouping, and each group R⁶ is a hydrogen or ethenyl.
- 29. (Original) The holographic recording medium of Claim 23 wherein the polyfunctional

- 10 -

epoxide monomer is represented by the following structural formula:

wherein R¹⁴ is represented by a structural formula selected from:

$$O = S_{15}^{R^{15}} = R^{16} - S_{18}^{R^{17}} = X - S_{18}^{R^{17}} = R^{16} - S_{18}^{R^{19}} = C - S_{18}^{R^{19}} = R^{21}$$
OI

each group R^{15} , each group R^{17} , each group R^{18} , each group R^{19} , each group R^{20} and each group R^{22} is independently a substituted or unsubstituted C_{1-12} alkyl, C_{1-12} eyeloalkyl, aryl substituted C_{1-12} alkyl or aryl group;

each group R 16 is independently a substituted or unsubstituted C_{1-12} alkylene, C_{1-12} cycloalkylene, C_{1-12} arylalkylene, or arylene group, $-Y_1$ - $[O-Y_1]_{p^-}$, $-Y_1$ - $Si(R^2)_2$ - Y_1 -, $-Y_1$ - $Si(R^2)_2$ - Y_1 -, or $-Y_1$ - $Si(R^2)_2$ - Y_1 -;

each R^{21} is independently an epoxide substituted aliphatic group having 2-10 carbon atoms.

 R^{23} is independently hydrogen, an alkenyl, a substituted or unsubstituted C_{1-12} alkyl, C_{1-12} cycloalkyl, aryl substituted C_{1-12} -alkyl or aryl or R^2 - $(O-Y_1)_m$ -, $(R^2)_3$ Si- $(O-Si(R^2)_2)_q$ - Y_1 - or $(R^2)_3$ Si- $(O-Si(R^2)_2)_q$ -O-;

-11-

each group X is independently oxygen or R¹⁶;

each R' is independently a substituted or unsubstituted C₁₋₁₂ alkyl group, C₁₋₁₂ cycloalkylalkyl group, aryl substituted C₁₋₁₂ alkyl group or aryl group;

each Y₁ is independently a C₁₋₁₂ alkylene group; p is an integer from 1 to 5, m is an integer from 1 to 10; and q is an integer from 0 to 4.

- 30. (Original) The holographic recording medium of Claim 29 wherein each group R¹⁶ is independently a substituted or unsubstituted C₁₋₁₂ alkylene, C₁₋₁₂ cycloalkylene, C₁₋₁₂ arylalkylene or arylene group, R²³ is, independently, a hydrogen, a monovalent substituted or unsubstituted C₁₋₁₂ alkyl, C₁₋₁₂ dialkylether (alkyl-O-alkylene-), C₁₋₁₂ cycloalkyl C₁₋₁₂ alkylether, C₁₋₁₂ cycloalkyl, aryl substituted C₁₋₁₂ alkyl or aryl group; and X is oxygen.
- 31. (Currently Amended) The holographic recording medium of Claim 30 wherein at least one R²¹ comorises the epoxide in R²¹ is a cycloalkene oxide.
- 32. (Original) The holographic recording medium of Claim 31 wherein each is R²¹ represented by the following structural formula:

33. (Original) The holographic recording medium of Claim 32 wherein each group R¹⁵, R¹⁷, R¹⁸ R¹⁹, R²⁰ and R²² is a methyl group; each group R¹⁶ is an ethylene, hexylene, or octylene group; and R²³ is a hydrogen, hexyl, or alkylether.

- 12 -

34. - 44. (Cancelled)

- 45. (Currently Amended) The holographic recording medium of Claim 23 additionally comprising a diffunctional epoxide monomer.
- 46. (Previously Presented) The holographic recording media of Claim 45 wherein the diffunctional epoxide monomer is represented by the following structural formula:

 R²⁴Si(R²⁵)₂OSi(R²⁶)₂R²⁴

where each group R^{24} is a 2-(3,4-epoxycyclohexyl)ethyl grouping; each grouping R^{25} is a methyl group, and each group R^{26} is a methyl group

- 47. (Previously Presented) The holographic recording medium of Claim 45 wherein the holographic medium comprises between about 0.25 to about 5 parts by weight of the diffunctional epoxide monomer per part by weight of the polyfunctional epoxide monomer.
- 48. (Previously Presented) The holographic recording medium of Claim 45 wherein the holographic medium comprises from about 90 parts binder and 10 parts monomer or oligomer (w/w) to about 10 parts binder and 90 parts monomer or oligomer (w/w).
- 49. (Previously Presented) The holographic recording medium of Claim 23 wherein the acid generator capable of producing an acid upon exposure to actinic radiation is a diaryliodonium salt.
- 50. (Previously Presented) A holographic recording medium of Claim 23 wherein the sensitizer is 5,12-bis(phenylethynyl)naphthacene.

- 13 -

51. (Previously Presented) The holographic recording medium of Claim 23, additionally comprising a monofunctional epoxide monomer.