Algoritmos y Estructuras de Datos III

Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires

Trabajo Práctico 1

Segundo Cuatrimestre 2014

Integrante	LU	Correo electrónico
Ricardo Colombo	156/08	a@a.com
Federico Suarez	610/11	a@a.com
Juan Carlos Giudici	827/06	elchudi@gmail.com
Franco Negri	000/00	a@a.com

Reservado para la cátedra

Instancia	$\operatorname{Docente}$	Nota
Primera entrega		
Segunda entrega		

Contents

1	Puentes sobre lava caliente	3
2	Horizontes lejanos	4
3	Biohazard 3.1 Introducción	5 5
4	Apéndice	7

Puentes sobre lava caliente

Horizontes lejanos

Biohazard

3.1 Introducción

En este problema, se nos pide que ideemos un algoritmo que dados n productos quimicos que deben transportarse en camiones de un lugar a otro, tales que si un elemento i va en el mismo cambion que otro elemento j, esto conlleva una "peligrosidad" asociada h_{ij} . El objetivo aquí es utilizar la menor cantidad de camiónes posibles, pero que cada camión tenga una peligrosidad menor a una cota m.

La entrada del problema consiste en:

- Un entero $n \to \text{Representar}$ a el número de productos quimicos a transportar.
- Un entero $m \to \text{Representar}$ á la cota de peligrosidad que ningun camión puede superar.
- n-1 filas donde, para cada fila i consta de n-i enteros:
 - $-h_{ii+1}, h_{ii+2} \dots h_{in} \rightarrow \text{Representar}$ án la peligrosidad asociada del elemento i con los elementos

La salida, por su parte, constará de una fila con:

- Un entero $\mathbf{C} \to \text{Representar}$ á la cantidad indispensable de camiónes que es necesaria para transportar los productos bajo las condiciones del problema.
- n enteros \rightarrow Representarán en que camión viaja cada producto.

3.1.1Ejemplo de entrada valida

Hagamos un pequeño ejemplo para que pueda ilustrarse bien el problema.

Supongamos que tenemos 3 productos quimicos, el producto 1 es muy inestable, por lo que si es transportado con el producto 2 la peligrosidad asciende a 40, y si se transporta con el producto 3 la peligrosidad es de 35. El producto 2 en cambio es de naturaleza mas estable, por lo que si es transportado con el producto 3 solo produce una peligrosidad de 3.

Por otro lado queremos que la peligrosidad por camión no supere el valor de 39.

Entonces la entrada para este problema será:

Para una entrada de estas dimenciones es posible buscar la mejor solucioón a mano.

Las posibles combinaciones son que los tres productos viajen juntos, que los tres viajen separados, que 1 y 2 viajen juntos, que 1 y 3 viajen juntos y que 2 y 3 viajen juntos y el producto sobrante viaje en otro camión.

La primera dá una peligrosidad de 40+35+3 por lo que es inviable, la segunda es valida, pero se necesitan 3 camiones. Que 1 y 2 viajen juntos, tampoco es valida (peligrosidad muy alta), y finalmente las ultimas dos son validas (peligrosidad 35 y 3, respectivamente) y solo son necesarios dos camiones. Luego las dos salidas que podrá devolver el algoritmo son:

• 2 1 2 1

o

• 2 1 2 2

Apéndice