BÁRBARA DENICOL DO AMARAL RODRIGUEZ CINTHYA MARIA SCHNEIDER MENEGHETTI CRISTIANA ANDRADE POFFAL

DERIVADAS DE FUNÇÕES REAIS DE UMA VARIÁVEL

1ª Edição

Rio Grande Editora da FURG 2016

Universidade Federal do Rio Grande - FURG

NOTAS DE AULA DE CÁLCULO

Instituto de Matemática, Estatística e Física - IMEF
Bárbara Rodriguez
Cinthya Meneghetti
Cristiana Poffal
sites.google.com/site/calculofurg

Sumário

1	Der	ivadas	de Funções Reais de Uma Variável	6							
	1.1	Defini	ção de Derivada	7							
		1.1.1	Derivadas laterais em um ponto	10							
	1.2	O Pro	blema da Reta Tangente	12							
	1.3	Taxa d	le variação instantânea e média	17							
	1.4	Diferen	nciabilidade e continuidade	22							
	1.5	Regras	s Elementares de Derivação	24							
		1.5.1	Derivada da função constante	25							
		1.5.2	Derivada de uma potência	25							
		1.5.3	Derivada da multiplicação de uma função por uma constante.	26							
		1.5.4	Derivada da função exponencial de base a	27							
		1.5.5	Derivada da função logaritmo de base a	29							
		1.5.6	Derivada da função seno	30							
		1.5.7	Derivada da função cosseno	31							
		1.5.8	Derivada da soma algébrica de funções	32							
		1.5.9	Derivada do produto de funções	34							
		1.5.10	Derivada para o quociente de funções	35							
		1.5.11	Derivada da função inversa	38							
	1.6	Deriva	da de Função Composta - Regra da Cadeia	40							
2	Regras de Derivação										
	2.1	Deriva	das de Funções Implícitas	49							
	2.2	Deriva	da das funções trigonométricas inversas	52							
		2.2.1	Derivada da função arco seno	52							
		2.2.2	Derivada da função arco cosseno	54							

		2.2.3 Derivada da função arco tangente	5
		2.2.4 Derivada da função arco cotangente	6
		2.2.5 Derivada da função arco secante	7
		2.2.6 Derivada da função arco cossecante	8
	2.3	Lista de Exercícios - Parte 1 e Parte 2 6	0
•	D	de la la Recaña Desira la como Marida d	4
5		rivadas de Funções Reais de uma Variável 6	
	3.1	Derivadas Sucessivas	
	3.2	Derivadas de Funções Paramétricas	
	3.3	Lista de Exercícios	
	3.4	Propriedades das Funções Deriváveis	
	3.5	Cálculo dos Limites Indeterminados	
		3.5.1 Formas $\frac{0}{0} e^{\frac{\infty}{\infty}}$ 7	8
		3.5.2 Formas $+\infty - \infty$, $-\infty + \infty$, $0 \cdot \infty$	9
		3.5.3 Formas 1^{∞} , 0^{0} , ∞^{0}	1
	3.6	Lista de Exercícios	3
1	Est	udo de Máximos e Mínimos das Funções 8	5
	4.1	Noções Preliminares	5
	4.2	Teste para determinar intervalos de crescimento e decrescimento de	
		uma função (sinal da 1ª derivada)	_
		uma runção (smar da 1 derivada)	7
	4.3	Extremos de uma função (Máximos e Mínimos)	
	4.3 4.4	Extremos de uma função (Máximos e Mínimos)	
		Extremos de uma função (Máximos e Mínimos)	9
		Extremos de uma função (Máximos e Mínimos)	9
		Extremos de uma função (Máximos e Mínimos)	9 0 0 2
		Extremos de uma função (Máximos e Mínimos)	9 0 0 2 2
		Extremos de uma função (Máximos e Mínimos)	9 0 0 2 2 6
		Extremos de uma função (Máximos e Mínimos)	9 0 0 2 2 6 6
	4.4	Extremos de uma função (Máximos e Mínimos)	9 0 0 2 2 6 6 8
	4.4	Extremos de uma função (Máximos e Mínimos)	9 0 0 2 2 6 8 0
	4.4	Extremos de uma função (Máximos e Mínimos) 8 Extremos locais ou relativos. 9 4.4.1 Condição necessária para extremos relativos 9 4.4.2 Extremos Absolutos 9 4.4.3 Critérios para determinação de extremos relativos ou locais 9 4.4.4 Concavidade e pontos de inflexão 9 4.4.5 Teste para a concavidade de um gráfico 9 Lista de Exercícios 9 4.5.1 Exercícios Complementares 10	9 0 0 2 2 6 6 8 0
	4.4 4.5 4.6	Extremos de uma função (Máximos e Mínimos) 8 Extremos locais ou relativos. 9 4.4.1 Condição necessária para extremos relativos 9 4.4.2 Extremos Absolutos 9 4.4.3 Critérios para determinação de extremos relativos ou locais 9 4.4.4 Concavidade e pontos de inflexão 9 4.4.5 Teste para a concavidade de um gráfico 9 Lista de Exercícios 9 4.5.1 Exercícios Complementares 10 Análise geral do comportamento de uma função - construção de gráficos 10	9 0 0 2 2 6 6 8 0 0
	4.4 4.5 4.6 4.7	Extremos de uma função (Máximos e Mínimos)	9 0 0 2 2 6 6 8 0 0 1 3

4.10	Taxas Relacionadas														.]	118
4.11	Lista de Exercícios														-	12

Capítulo 1

Derivadas de Funções Reais de Uma Variável

Neste capítulo, estuda-se o conceito de derivada de uma função real de uma variável. A derivada envolve a variação ou a mudança no comportamento de vários fenômenos. Para melhor compreender a definição de derivada, abordam-se três problemas do Cálculo que envolvem variação e movimento:

- O problema da reta tangente: sejam $f:D(f)\subset\mathbb{R}\to\mathbb{R}$ uma função real e $x_0\in D(f)$, como obter a equação da reta tangente ao gráfico de f que passa pelo ponto $(x_0,f(x_0))$?
- O problema da velocidade e da aceleração: seja $s:D(s)\subset\mathbb{R}\to\mathbb{R}$ uma função real que descreve o deslocamento de um objeto no plano e $t_0\in D(s)$, como determinar a velocidade e a aceleração do objeto em $t=t_0$?
- O problema de máximos e mínimos: seja $f:D(f)\subset\mathbb{R}\to\mathbb{R}$ uma função real qualquer. Como encontrar os pontos extremos do gráfico de f?

Tais problemas são definidos a partir do conceito de limite que foi abordado anteriormente. É importante observar que para uma função real $f:D(f)\subset\mathbb{R}\to\mathbb{R}$, o que chamaremos de "derivada da função f" será também uma função. A função "derivada da função f" é obtida através do cálculo de um limite que será estudado na seção 1.1.

1.1 Definição de Derivada

Seja $f: D(f) \subset \mathbb{R} \to \mathbb{R}$ uma função real.

Definição 1.1.1. A derivada de f no ponto de abscissa $x=x_0$ é definida como o número

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x},$$
(1.1.1)

supondo que o limite exista. Quando o limite (1.1.1) existir, diz-se que a função é derivável em $x=x_0$.

Pode-se pensar em f' como uma função cuja entrada é o número x_0 e cuja saída é o valor $f'(x_0)$. Portanto, ao substituir-se x_0 por x em (1.1.1), tem-se f'(x), ou seja, a derivada da função f em relação à variável x, definida por,

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}.$$
 (1.1.2)

O processo para calcular uma derivada é chamado derivação ou diferenciação.

Notações para a derivada:

Existem diversas maneiras de representar a derivada de uma função y=f(x), onde a variável independente é x e a dependente é y. Algumas das notações mais usuais para a derivada são:

Notação "linha" (Joseph Lagrange): f'(x), y'.

Notação de Leibniz: $\frac{dy}{dx}$, $\frac{df}{dx}$, $\frac{d}{dx}[f(x)]$.

Notação de operador: $D_x[y]$.

Notação de Newton: \dot{y} .

Para indicar o valor de uma derivada em um determinado ponto $x=x_0,$ utilizam-se as notações

$$f'(x_0) = \frac{dy}{dx}\Big|_{x=x_0} = \frac{df}{dx}\Big|_{x=x_0} = \frac{d}{dx}[f(x)]\Big|_{x=x_0}.$$

Exemplo 1.1.1. Mostre que a derivada de $f(x) = x^2 + 3x$ é f'(x) = 2x + 3. Solução:

Sabendo que $f(x) = x^2 + 3x$, deve-se mostrar que f'(x) = 2x + 3.

Para isso aplica-se a definição de derivada, representada por (1.1.2). Primeiramente deve-se calcular $f(x + \Delta x)$:

$$f(x + \Delta x) = (x + \Delta x)^{2} + 3(x + \Delta x)$$

$$f(x + \Delta x) = x^{2} + 2x\Delta x + (\Delta x)^{2} + 3x + 3\Delta x.$$
 (1.1.3)

Substituindo a equação (1.1.3) em (1.1.2), tem-se:

$$f'(x) = \lim_{\Delta x \to 0} \frac{x^2 + 2x\Delta x + (\Delta x)^2 + 3x + 3\Delta x - [x^2 + 3x]}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{x^2 + 2x\Delta x + (\Delta x)^2 + 3x + 3\Delta x - x^2 - 3x}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{\cancel{2} + 2x\Delta x + (\Delta x)^2 + 3\cancel{x} + 3\Delta x \cancel{x}^2 - 3\cancel{x}}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{2x\Delta x + (\Delta x)^2 + 3\Delta x}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{2x\Delta x + (\Delta x)^2 + 3\Delta x}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{\Delta x(2x + \Delta x + 3)}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{\cancel{\Delta} x(2x + \Delta x + 3)}{\cancel{\Delta} x}$$

$$f'(x) = \lim_{\Delta x \to 0} 2x + \Delta x + 3.$$

Como Δx tende a zero, a derivada de $f(x) = x^2 + 3x$ é f'(x) = 2x + 3.

Exemplo 1.1.2. Aplicando a definição, determine a derivada das funções:

a)
$$f(x) = e^{ax}$$

Solução:

Sabendo que $f(x) = e^{ax}$ e aplicando (1.1.2), tem-se:

$$f'(x) = \lim_{\Delta x \to 0} \frac{e^{ax + a\Delta x} - (e^{ax})}{\Delta x}$$
$$= \lim_{\Delta x \to 0} \frac{e^{ax}(e^{a\Delta x} - 1)}{\Delta x}$$
$$f'(x) = \lim_{\Delta x \to 0} e^{ax} \cdot \lim_{\Delta x \to 0} \frac{a(e^{a\Delta x} - 1)}{a\Delta x}.$$

Como $\lim_{\Delta x \to 0} \frac{e^{a\Delta x} - 1}{a\Delta x}$ é o limite fundamental exponencial, tem-se:

$$f'(x) = e^{ax} \cdot \ln e \cdot a$$

$$f'(x) = e^{ax} \cdot a.$$

b) $g(x) = \operatorname{sen}(ax)$.

Solução:

Seja g(x) = sen(ax), aplicando (1.1.2), tem-se:

$$g'(x) = \lim_{\Delta x \to 0} \frac{\sin(ax + a\Delta x) - \sin(ax)}{\Delta x}.$$
 (1.1.4)

Utilizando a identidade trigonométrica:

$$sen(ax + a\Delta x) = sen(ax)\cos(a\Delta x) + \cos(ax)sen(a\Delta x),$$

reescreve-se a equação (1.1.4) como:

$$g'(x) = \lim_{\Delta x \to 0} \frac{\sin(ax)\cos(a\Delta x) + \cos(ax)\sin(a\Delta x) - \sin(ax)}{\Delta x}$$

Aplicando as propriedades para o cálculo de limites:

$$g'(x) = \lim_{\Delta x \to 0} \frac{\sin(ax)[\cos(a\Delta x) - 1]}{\Delta x} + \lim_{\Delta x \to 0} \frac{\cos(ax)\sin(a\Delta x)}{\Delta x}$$
$$= -\lim_{\Delta x \to 0} \frac{1 - \cos(a\Delta x)}{\Delta x} \left(\lim_{\Delta x \to 0} \sin(ax)\right) + \left(\lim_{\Delta x \to 0} \cos(ax)\right) \lim_{\Delta x \to 0} \frac{\sin(a\Delta x)}{\Delta x}$$

e os limites fundamentais, tem-se:

$$g'(x) = 0 \cdot \operatorname{sen}(ax) + \cos(ax) \cdot a.$$

Portanto a derivada da função g(x) é representada por:

$$g'(x) = a\cos(ax).$$

Exemplo 1.1.3. Considere a função $m(x) = \sqrt{x}$, determine a derivada de m(x). Solução:

Por (1.1.2), tem-se:

$$m'(x) = \lim_{\Delta x \to 0} \frac{\sqrt{x + \Delta x} - \sqrt{x}}{\Delta x}.$$

Tem-se uma indeterminação do tipo $\frac{0}{0}$. Como a função é irracional, deve-se multiplicar e dividir a função pelo conjugado (do numerador) para levantar a indeterminação. Assim,

$$m'(x) = \lim_{\Delta x \to 0} \frac{(\sqrt{x + \Delta x} - \sqrt{x})}{\Delta x} \cdot \frac{(\sqrt{x + \Delta x} + \sqrt{x})}{(\sqrt{x + \Delta x} + \sqrt{x})}$$

$$= \lim_{\Delta x \to 0} \frac{(x + \Delta x) - (x)}{\Delta x (\sqrt{x + \Delta x} + \sqrt{x})}$$

$$= \lim_{\Delta x \to 0} \frac{\Delta x}{\Delta x (\sqrt{x + \Delta x} + \sqrt{x})}$$

$$= \lim_{\Delta x \to 0} \frac{1}{\sqrt{x + \Delta x} + \sqrt{x}}$$

$$= \frac{1}{2\sqrt{x}}.$$

Portanto, a derivada de $m(x) = \sqrt{x}$ é $m'(x) = \frac{1}{2\sqrt{x}}$.

Exercício 1.1.1. Determine a derivada de $f(x) = \cos(ax)$ pela definição.

Resposta do exercício

1.1.1.
$$f'(x) = -a \cdot \text{sen}(ax)$$

Teorema 1.1.1. (Forma alternativa para a derivada): Seja $f: D(f) \subset \mathbb{R} \to \mathbb{R}$ uma função e $x_0 \in D(f)$. Então:

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0},$$

desde que o limite exista. Se o limite não existir ou for infinito, diz-se que a função f não tem derivada em x_0 .

Demonstração:

A derivada de f(x) em $x = x_0$ é dada por:

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}.$$

Se $x = x_0 + \Delta x$, então $x \to x_0$ quando $\Delta x \to 0$.

Logo, substituindo $x_0 + \Delta x$ por x, obtém-se:

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}.$$
 (1.1.5)

1.1.1 Derivadas laterais em um ponto

Definição 1.1.2. Uma função y = f(x) tem derivada lateral à direita de um ponto de abscissa $x = x_0$ se o limite lateral à direita de $x = x_0$ da razão incremental

$$f'(x_0^+) = \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0},$$

existir. Neste caso, diz-se que a função f é derivável à direita em $x=x_0$.

Definição 1.1.3. Uma função y = f(x) tem derivada lateral à esquerda de um ponto de abscissa $x = x_0$ se existir o limite lateral à esquerda de $x = x_0$ da razão incremental

$$f'(x_0^-) = \lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0}.$$

Neste caso, diz-se que a função f é derivável à esquerda em $x = x_0$.

Uma propriedade importante, que relaciona a derivada com as derivadas laterais de uma função f(x) em $x=x_0$, afirma que f é diferenciável em x_0 se, e somente se, as derivadas laterais em x_0 existem e são iguais. Neste caso, tem-se que

$$f'(x_0^-) = f'(x_0^+) = f'(x_0).$$

Exemplo 1.1.4. Mostre que a função f(x) = |x-2| não possui derivada em x = 2. Solução:

Note que
$$f(2) = 0$$
 e $f(x) = \begin{cases} x - 2, & \text{se } x \ge 2\\ 2 - x, & \text{se } x < 2. \end{cases}$

Para mostrar que f não possui derivada em x=2, basta mostrar que as derivadas laterais são diferentes. De fato, pela Definição 1.1.2:

$$f'(2^+) = \lim_{\Delta x \to 2^+} \frac{(x-2) - 0}{x-2} = 1.$$

Por outro lado, pela Definição 1.1.3,

$$f'(2^-) = \lim_{\Delta x \to 2^-} \frac{(2-x)-0}{x-2} = -1.$$

Portanto, como $f'(2^+) \neq f'(2^-)$, tem-se que f'(2) não existe.

Exemplo 1.1.5. Verifique se a função f(x) = sen(x) possui derivada em x = 0. Solução:

De fato, pela Definição 1.1.2:

$$f'(0^+) = \lim_{\Delta x \to 0^+} \frac{\operatorname{sen}(x) - 0}{x - 0} = \lim_{\Delta x \to 0^+} \frac{\operatorname{sen}(x)}{x} = 1.$$

Por outro lado, pela definição 1.1.3,

$$f'(0^-) = \lim_{\Delta x \to 0^-} \frac{\operatorname{sen}(x) - 0}{x - 0} = \lim_{\Delta x \to 0^-} \frac{\operatorname{sen}(x)}{x} = 1.$$

Note que nos dois limites emprega-se o limite fundamental trigonométrico para obter o resultado. Como as derivadas laterais existem e são iguais, temos que a função é derivável em x=0 e f'(0)=1.

Exercício 1.1.2. Mostre que a função $m(x) = \sqrt{x}$ não é derivável em x = 0.

1.2 O Problema da Reta Tangente

O objetivo desta seção é entender o que significa dizer que uma reta é tangente a uma curva em um determinado ponto P. Primeiro, considera-se que esta curva seja uma circunferência. Neste caso, a reta tangente no ponto P é a reta perpendicular à radial que passa por P (observe Figura 1.1 (a)).

Para uma curva qualquer esta caracterização é mais difícil (observe Figura 1.1 (b-d)).

Figura 1.1: Retas tangentes à f(x) no ponto P.

O problema em determinar a reta tangente em um ponto P consiste, basicamente, na determinação da inclinação (ou declividade) da reta procurada. Esta inclinação pode ser aproximada utilizando-se uma reta que passa pelo ponto de tangência e por outro ponto pertencente à curva. Tal reta é chamada de reta secante.

Sejam P e Q dois pontos pertencentes ao gráfico da função f(x). Fazendo Q aproximar-se de P (Figura 1.2(a)), podem ocorrer duas situações:

Situação 1) A reta PQ tende a duas posições limites, t_1 e t_2 , obtidas respectivamente ao fazer o ponto Q se aproximar de P pela esquerda e pela direita. Neste caso, a reta tangente ao gráfico não existe. A Figura 1.2(c) ilustra esta situação onde $P(x_0, f(x_0))$ é um ponto anguloso (bico) no gráfico da função.

Situação 2) A reta PQ tende a uma única posição limite t. Neste caso, a reta t é chamada de reta tangente ao gráfico da função f(x) no ponto P, desde que ela não seja vertical. É importante salientar que o ponto Q deve aproximar-se de P tanto pela esquerda quanto pela direita, e em ambos casos a reta PQ deve tender à reta t. Nas Figuras 1.2(a) e 1.2(b), respectivamente, mostram-se instantâneos de Q escorregando ao longo do gráfico de f(x), em direção à P pela esquerda e pela direita.

Figura 1.2: Retas secantes à f(x) no ponto P.

Sejam $P(x_1, y_1)$ e $Q(x_2, y_2)$ dois pontos da curva y = f(x), então a decli-

vidade da reta secante que passa por estes dois pontos é escrita como:

$$m_{\rm sec} = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}.$$

Figura 1.3: Cálculo da declividade.

Outras notações podem ser utilizadas para representar a declividade da reta secante, a saber:

$$m_{\rm sec} = \frac{f(x_2) - f(x_1)}{\Delta x},$$

onde $\Delta x = x_2 - x_1$. Ou,

$$m_{\rm sec} = \frac{f(x_1 + \Delta x) - f(x_1)}{\Delta x}.$$
 (1.2.1)

Observação 1.2.1. Note que $\frac{\Delta y}{\Delta x}$ representa a inclinação da reta secante (que intercepta a curva nos pontos P e Q como mostra a Figura 1.3). Se Δx é muito pequeno, isto é, $\Delta x \to 0$, então o ponto Q tende para o ponto P e a inclinação da reta secante PQ, tende a inclinação $m_{\rm tg}$ da reta tangente a função f no ponto P.

Definição 1.2.1. Se $P(x_0, y_0)$ é um ponto da função f, então a reta tangente ao gráfico de f em P é definida como a reta que passa por P com declividade (coeficiente angular) definida por

$$m_{\rm tg} = \lim_{\Delta x \to 0} \frac{f(x) - f(x_0)}{\Delta x},\tag{1.2.2}$$

desde que o limita exista. Pode-se escrever (1.2.2) como:

$$m_{\text{tg}} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}.$$

14

Logo, se $h = \Delta x$ tem-se:

$$m_{\rm tg} = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h},$$
 (1.2.3)

desde que o limita exista.

Observe que as fórmulas (1.2.2) e (1.2.3) são maneiras de expressar a inclinação de uma reta tangente como um limite de inclinações de retas secantes. Elas permitem concluir que

$$m_{tg} = f'(x_0).$$

Importante: A equação de uma reta não vertical que passa pelo ponto $P(x_0, y_0)$ com coeficiente angular m pode ser escrita como:

$$y - f(x_0) = m(x - x_0). (1.2.4)$$

Equação da Reta Tangente

A equação geral da reta tangente ao gráfico de uma função f no ponto $P(x_0,f(x_0))$ é

$$y - f(x_0) = f'(x_0)(x - x_0), (1.2.5)$$

onde $f'(x_0)$ é dito coeficiente angular da reta tangente $m_{\rm tg}$.

Exemplo 1.2.1. Sendo $f(x) = x^2$, calcule a inclinação da reta tangente ao gráfico da função f(x) no ponto de abscissa 5.

Solução:

A inclinação da reta tangente é f'(5). Primeiramente calcula-se a função f' e depois substitui-se x=5.

O ponto da curva $f(x) = x^2$, cuja abscissa é 5, é o ponto P(5, f(5)) = (5, 25). Desse modo, se $f(x) = x^2$, para determinar a inclinação da curva no ponto (5, 25), escreve-se:

$$f(x + \Delta x) = (x + \Delta x)^{2}$$
$$= x^{2} + 2x\Delta x + (\Delta x)^{2}. \tag{1.2.6}$$

Com a equação (1.2.6) tem-se:

$$m_{\text{tg}} = \lim_{\Delta x \to 0} \frac{x^2 + 2x\Delta x + (\Delta x)^2 - x^2}{\Delta x}$$
$$= \lim_{\Delta x \to 0} \frac{\Delta x (2x + \Delta x)}{\Delta x}$$
$$m_{\text{tg}} = \lim_{\Delta x \to 0} \frac{\Delta x (2x + \Delta x)}{\Delta x}.$$

Como Δx tende a zero, a inclinação da reta tangente pode ser representada por:

$$m_{\rm tg} = 2x. \tag{1.2.7}$$

Para x = 5,

$$m_{\rm tg} = 2x = 2 \cdot (5) = 10.$$

Portanto, a inclinação da reta tangente ao gráfico de $f(x)=x^2$ em x=5 é $m_{tg}=10$.

Equação da Reta Normal

Definição 1.2.2. Chama-se **reta normal** ao gráfico de uma função f no ponto $P(x_0, f(x_0))$, a reta perpendicular à reta tangente neste ponto. A equação da reta normal é escrita como:

$$y - f(x_0) = -\frac{1}{m_{\text{tg}}}(x - x_0), m_{\text{tg}} \neq 0.$$
 (1.2.8)

Exemplo 1.2.2. Sendo $f(x) = x^3 + 2x$, escreva a equação da reta tangente e da reta normal ao gráfico de f(x) no ponto de abscissa 1.

Solução:

O ponto pertencente à curva $f(x) = x^3 + 2x$, cuja a abscissa é 1, é o ponto P(1, f(1)) = (1, 3).

A equação da reta tangente em um ponto (x_0, y_0) é representada pela equação (1.2.5).

Se $f(x) = x^3 + 2x$, então:

$$f(x + \Delta x) = (x + \Delta x)^3 + 2(x + \Delta x)$$

= $x^3 + 3x^2 \Delta x + 3x(\Delta x)^2 + 2x + 2\Delta x$. (1.2.9)

Substituindo a equação (1.2.9) na equação (1.2.5) tem-se:

$$m_{\text{tg}} = \lim_{\Delta x \to 0} \frac{x^3 + 3x^2 \Delta x + 3x(\Delta x)^2 + 2x + 2\Delta x - x^3 - 2x}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{\cancel{x}^3 + 3x^2 \Delta x + 3x(\Delta x)^2 + \cancel{2}\cancel{x} + 2\Delta x \cancel{x}^3 \cancel{-2}\cancel{x}}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{\cancel{\Delta}\cancel{x}(3x^2 + \Delta x + \Delta x^2 + 2)}{\cancel{\Delta}\cancel{x}}$$

$$m_{\text{tg}} = \lim_{\Delta x \to 0} (3x^2 + \Delta x + \Delta x^2 + 2).$$

1.3. TAXA DE VARIAÇÃO INSTANTÂNEA E MÉDIA

Como Δx tende a zero, escreve-se a inclinação da reta tangente como

$$m_{\rm tg} = 3x^2 + 2. (1.2.10)$$

Logo, para x = 1, $m_{\text{tg}} = 3 \cdot (1)^2 + 2 = 5$.

Utilizando a equação (1.2.5) é possível escrever a equação da reta tangente à curva $f(x) = x^3 + 2x$ no ponto P(1,3), como:

$$y - y_0 = m_{tg}(x - x_0)$$

 $y - 3 = 5(x - 1)$
 $y - 3 = 5x - 5$
 $5x - y - 2 = 0$.

Portanto, a equação da reta tangente ao gráfico de f(x) é 5x-y-2=0. A equação da reta normal à curva $f(x)=x^3+2x$ no ponto P(1,3) é escrita como

$$y - f(x_0) = -\frac{1}{m_{tg}}(x - x_0)$$

$$y - 3 = -\frac{1}{5}(x - 1)$$

$$y - 3 = -\frac{1}{5}x + \frac{1}{5}$$

$$\frac{1}{5}x + y - 3 - \frac{1}{5} = 0$$

$$x + 5y - 16 = 0.$$

Portanto, a reta normal à curva f(x) é x + 5y - 16 = 0.

1.3 Taxa de variação instantânea e média

O conceito de derivada está intimamente relacionado à taxa de variação instantânea de uma função. Em nosso dia-a-dia, pode-se pensar muitas vezes na taxa de variação de certas grandezas, como por exemplo, a taxa de variação do crescimento de uma certa população, ou a taxa de variação da temperatura num dia específico, ou ainda, a velocidade de corpos ou objetos em movimento. A velocidade, por exemplo, pode ser entendida como uma taxa de variação: a taxa de variação da posição (s) em função do tempo (t).

Considere um ponto móvel deslocando-se ao longo de uma reta, de modo que sua posição seja determinada por uma única coordenada s (observe a Figura 1.4).

Figura 1.4: Posição do objeto

O movimento é totalmente conhecido quando se sabe a localização do ponto móvel em cada momento, isto é, uma vez conhecida a posição s como uma função do tempo t: s=f(t). O tempo é normalmente medido a partir de algum instante inicial, em geral este instante é t=0.

A ideia de velocidade está presente no cotidiano das pessoas, como um número que mede a taxa na qual uma distância está sendo percorrida. Frequentemente também estudam-se velocidades médias. Se um carro percorre a distância de 480 km em 6 horas, então a velocidade média é de 80 km/h. A velocidade média v_m é obtida calculando-se $v_m = \frac{\Delta s}{\Delta t}$, onde Δs é a distância percorrida e Δt é o intervalo de tempo gasto.

Para determinar a velocidade do objeto num dado instante t, considera-se um intervalo de tempo $\Delta t = [t_1, t_2]$, onde $t_1 = t$ e $t_2 = t + \Delta t$ e o objeto deslocando-se da posição inicial $s_1 = f(t)$ até a posição final $s_2 = f(t + \Delta t)$. A velocidade média nesse intervalo é o quociente:

$$v_m = \frac{s_2 - s_1}{t_2 - t_1} = \frac{\Delta s}{\Delta t}. (1.3.1)$$

Para valores pequenos de Δt , o valor da velocidade média aproxima-se da velocidade exata v, no começo do intervalo, isto é, $v\cong \frac{\Delta s}{\Delta t}$, onde \cong lê-se: "é aproximadamente igual a". Além disso, quanto menor o valor de Δt , melhor a aproximação para a velocidade v. Assim tem-se

$$v(t) = \lim_{\Delta t \to 0} \frac{\Delta s}{\Delta t}$$

$$v(t) = \lim_{\Delta t \to 0} \frac{s_2 - s_1}{\Delta t}$$

$$v(t) = \lim_{\Delta t \to 0} \frac{f(t + \Delta t) - f(t)}{\Delta t}.$$
(1.3.2)

1.3. TAXA DE VARIAÇÃO INSTANTÂNEA E MÉDIA

A velocidade v é conhecida como velocidade instantânea. Nessa terminologia, a velocidade é simplesmente a taxa de variação da posição com relação ao tempo.

Pode-se ainda definir a aceleração de um móvel como uma taxa de variação de sua velocidade em relação ao tempo t, ou seja,

$$a(t) = \lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t}.$$
 (1.3.3)

Exemplo 1.3.1. Determine a velocidade e a aceleração no instante t = 1 s e t = 2 s de um objeto em queda livre cuja função posição é dada por $s(t) = -16t^2 + 100$, onde s está medido em metros e t em segundos. Calcule também a velocidade média no intervalo [1,2].

Solução:

A velocidade média do objeto no intervalo de tempo entre t=1 s e t=2 s é dada por:

$$v_m = \frac{s(2) - s(1)}{2 - 1}.$$

Como $s(t) = -16t^2 + 100$, tem-se:

$$v_m = \frac{[-16(2)^2 + 100] - [-16(1)^2 + 100]}{2 - 1}$$

$$v_m = \frac{(-64 + 100) - (-16 + 100)}{1}$$

$$v_m = \frac{36 - 84}{1}$$

$$v_m = -48 \text{ m/s}.$$

Para determinar o valor da velocidade do objeto no instante t=1 s, primeiramente, calcula-se $s(t+\Delta t)$.

Para $s(t) = -16t^2 + 100$, tem-se $s(t + \Delta t)$ igual a

$$s(t + \Delta t) = -16(t + \Delta t)^{2} + 100$$

$$= -16[t^{2} + 2t\Delta t + (\Delta t)^{2}] + 100$$

$$s(t + \Delta t) = -16t^{2} - 32t\Delta t - 16(\Delta t)^{2} + 100.$$
(1.3.4)

Substituindo a equação (1.3.4) na equação (1.3.2), tem-se:

$$v(t) = \lim_{\Delta t \to 0} \frac{-16t^2 - 32t\Delta t - 16(\Delta t)^2 + 100 - [-16t^2 + 100]}{\Delta t}$$

$$= \lim_{\Delta t \to 0} \frac{-16t^2 - 32t\Delta t - 16(\Delta t)^2 + 100 + 16t^2 - 100}{\Delta t}$$

$$= \lim_{\Delta t \to 0} \frac{-32t\Delta t - 16(\Delta t)^2}{\Delta t}$$

$$= \lim_{\Delta t \to 0} \frac{\Delta t(-32t - 16\Delta t)}{\Delta t}$$

$$= \lim_{\Delta t \to 0} \frac{\Delta t(-32t - 16\Delta t)}{\Delta t}$$

$$v(t) = \lim_{\Delta t \to 0} -32t - 16(\Delta t).$$

Calculando-se o limite quando Δt tende a zero, tem-se:

$$v(t) = -32t.$$

Portanto, no instante t=1 s, a velocidade instantânea é

$$v(1) = -32(1) = -32$$
 m/s.

E para o instante t=2 s, a velocidade instantânea é igual a

$$v(2) = -32(2) = -64$$
 m/s.

A aceleração em um instante de tempo t é definida como

$$a(t) = \lim_{\Delta t \to 0} \frac{v(t + \Delta t) - v(t)}{\Delta t},$$
(1.3.5)

para v(t) = -32t, tem-se

$$v(t + \Delta t) = -32(t + \Delta t)$$

$$v(t + \Delta t) = -32t - 32\Delta t.$$
 (1.3.6)

Substituindo a equação (1.3.6) em (1.3.5), tem-se:

$$a = \lim_{\Delta t \to 0} \frac{-32t - 32\Delta t - (-32t)}{\Delta t}$$

$$= \lim_{\Delta t \to 0} \frac{-32t - 32\Delta t + 32t}{\Delta t}$$

$$= \lim_{\Delta t \to 0} \frac{-32\Delta t}{\Delta t}$$

$$a = -32.$$

Desse modo, $a(t)=-32 {\rm m/s}^2$, ou seja, a aceleração é constante durante o movimento.

Portanto, nos instantes t=1 s e t=2 s, a aceleração é de $-32\,\mathrm{m/s}^2$.

Exemplo 1.3.2. A área de um círculo está relacionada com seu diâmetro pela equação $A=\frac{\pi}{4}D^2$. Calcule a taxa na qual a área varia em relação ao diâmetro, quando o diâmetro é igual a 10 m.

Solução:

Deseja-se determinar a que taxa a área muda em relação ao diâmetro, isto é, $\frac{dA}{dD}.$

Se $A = \frac{\pi}{4}D^2$, então $A(D + \Delta D)$ será:

$$A(D + \Delta D) = \frac{\pi}{4}(D + \Delta D)^{2}$$

$$= \frac{\pi}{4}[D^{2} + 2D\Delta D + (\Delta D)^{2}]$$

$$A(D + \Delta D) = \frac{\pi}{4}D^{2} + \frac{\pi}{2}D\Delta D + \frac{\pi}{4}(\Delta D)^{2}.$$
(1.3.7)

A variação da área em relação ao diâmetro pode ser calculada como:

$$\frac{dA}{dD} = \lim_{\Delta D \to 0} \frac{A(D + \Delta D) - A(D)}{\Delta D}.$$
 (1.3.8)

Substituindo a equação (1.3.7) na equação (1.3.8), tem-se:

$$\begin{array}{ll} \frac{dA}{dD} &= \lim\limits_{\Delta D \to 0} \frac{\frac{\pi}{4}D^2 + \frac{\pi}{2}D\Delta D + \frac{\pi}{4}(\Delta D)^2 - \frac{\pi}{4}D^2}{\Delta D} \\ &= \lim\limits_{\Delta D \to 0} \frac{\frac{\pi}{4}D^2 + \frac{\pi}{2}D\Delta D + \frac{\pi}{4}(\Delta D)^2 - \frac{\pi}{4}D^2}{\Delta D} \\ &= \lim\limits_{\Delta D \to 0} \frac{\frac{\pi}{2}D\Delta D + \frac{\pi}{4}(\Delta D)^2}{\Delta D} \\ &= \lim\limits_{\Delta D \to 0} \frac{\Delta D(\frac{\pi}{2}D + \frac{\pi}{4}(\Delta D)}{\Delta D} \\ &= \lim\limits_{\Delta D \to 0} \frac{\Delta D(\frac{\pi}{2}D + \frac{\pi}{4}\Delta D)}{\Delta D} \\ &= \lim\limits_{\Delta D \to 0} \frac{\Delta D(\frac{\pi}{2}D + \frac{\pi}{4}\Delta D)}{\Delta D} \\ \frac{dA}{dD} &= \lim\limits_{\Delta D \to 0} \frac{\pi}{2}D + \frac{\pi}{4}\Delta D. \end{array}$$

Como ΔD tende a zero,

$$\frac{dA}{dD} = \frac{\pi}{2}D. \tag{1.3.9}$$

Logo para D = 10 m, tem-se:

$$\frac{dA}{dD} = \frac{\pi}{2}(10)$$

$$\frac{dA}{dD} = 5\pi.$$

Desse modo, a área varia em relação ao diâmetro a uma taxa de 5π m.

Exercício 1.3.1. Supõe-se que uma população de 25.000 indivíduos (no instante t=0) cresce de acordo com a fórmula $N(t)=25.000+45t^2$, onde t é o tempo medido em dias. Determine:

- a) a taxa média de crescimento de t = 0 a t = 2;
- b) a taxa média de crescimento de t = 2 a t = 10;
- c) a taxa média de crescimento de t = 0 a 10;
- d) a taxa de crescimento em t=2;
- e) a taxa de crescimento em t = 10.

Respostas do exercício 1.3.1

- a) 90 indivíduos/dia.
- b) 540 indivíduos/dia.
- c) 450 indivíduos/dia.
- d) 180 indivíduos/dia.
- e) 900 indivíduos/dia.

1.4 Diferenciabilidade e continuidade

Teorema 1.4.1. Se a função f(x) é diferenciável em $x = x_0$, então ela é contínua em $x = x_0$.

Demonstração:

Pela hipótese, f(x) é diferenciável em $x = x_0$, logo,

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0},$$

existe e é igual a $f'(x_0)$.

Deve-se mostrar que f(x) é contínua em $x=x_0$, isto é:

$$\lim_{x \to x_0} f(x) = f(x_0).$$

Para $x \neq x_0$, tem-se $f(x) - f(x_0) = \frac{f(x) - f(x_0)}{x - x_0} \cdot (x - x_0)$, assim, calculando o limite para x tendendo a x_0 .

$$\lim_{x \to x_0} [f(x) - f(x_0)] = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \cdot \lim_{x \to x_0} (x - x_0)$$

$$\lim_{x \to x_0} [f(x) - f(x_0)] = f'(x_0) \cdot 0$$

$$\lim_{x \to x_0} [f(x) - f(x_0)] = 0,$$
(1.4.1)

portanto:

$$\lim_{x \to x_0} f(x) = f(x_0).$$

Observação 1.4.1. Segue do Teorema 1.4.1 que se f(x) não for contínua em $x = x_0$, então f(x) não poderá ser derivável em $x = x_0$.

Exemplo 1.4.1. Considere as funções $f(x) = \begin{cases} x^2, & x \le 1 \\ 2, & x > 1 \end{cases}$ e $g(x) = \begin{cases} x^2, & x \le 1 \\ 1, & x > 1 \end{cases}$, responda:

- a) As funções f(x) e g(x) são contínuas em x = 1?
- b) As funções f(x) e g(x) são diferenciáveis em x = 1?

Solução:

a) A função f(x) é contínua em x=1 se:

$$\lim_{x \to 1} f(x) = f(1).$$

Note que f(1)=1. No entanto, $\lim_{x\to 1^+}2=2$, e $\lim_{x\to 1^-}x^2=1$. Portanto, f não é contínua em x=1.

A função g(x) é contínua em x = 1 se:

$$\lim_{x \to 1} g(x) = g(1).$$

Note que g(1)=1. No entanto, $\lim_{x\to 1^+}1=1$, e $\lim_{x\to 1^-}x^2=1$. Portanto, g é contínua em x=1.

b) Como f não é contínua em x=1, pelo Teorema 1.4.1 temos que f não é diferenciável em x=1. Quanto a função g, tem-se que é diferenciável em x=1 se as derivadas laterais existem e são iguais. De fato,

$$\lim_{x \to 1^+} \frac{g(x) - g(1)}{x - 1} = \lim_{x \to 1^+} \frac{1 - 1}{x - 1} = 0$$

e

$$\lim_{x \to 1^{-}} \frac{g(x) - g(1)}{x - 1} = \lim_{x \to 1^{-}} \frac{x^{2} - 1}{x - 1} = \lim_{x \to 1^{-}} x + 1 = 2.$$

Portanto, g não é diferenciável em x = 1.

Exemplo 1.4.2. Verifique se a função f(x) = |x| é contínua e se possui derivada em x = 0.

Solução:

A função f(x) é contínua em x = 0 se:

$$\lim_{x \to 0} f(x) = f(0).$$

Note que f(0)=0. Além disso, $\lim_{x\to 0^+}x=0$, e $\lim_{x\to 0^-}-x=0$. Portanto, f é contínua em x=0.

Tem-se que f é diferenciável em x=0 se suas derivadas laterais existem e são iguais. No entanto,

$$\lim_{x \to 0^+} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^+} \frac{x - 0}{x - 0} = 1$$

е

$$\lim_{x \to 0^{-}} \frac{-x - 0}{x - 0} = -1.$$

Portanto, f não é diferenciável em x=0.

1.5 Regras Elementares de Derivação

Na seção anterior, definiu-se a derivada de uma função f como um limite. Este limite pode ser utilizado para calcular derivadas de qualquer função. No entanto, é um processo cansativo mesmo para funções pouco complexas.

A partir desta seção, onde estudam-se algumas regras que permitem derivar uma grande variedade de funções, a derivação de uma função ocorrerá de forma mais eficiente e prática. Será assumido que todos os limites que correspondem as derivadas das funções avaliadas foram devidademente calculados e seus resultados serão chamados de "Regras de Derivação" o resultado deles.

Sejam c um número real, n um número racional, f(x) e g(x) funções diferenciáveis.

1.5.1 Derivada da função constante

Seja f(x) = c. A derivada da função constante é nula, isto é:

$$\frac{d}{dx}[c] = 0.$$

Geometricamente, pode-se afirmar que a reta horizontal y = f(x) = c tem o coeficiente angular igual a zero.

Demonstração:

Através da definição de derivada, tem-se:

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

$$f'(x) = \lim_{\Delta x \to 0} \frac{c - c}{\Delta x} = 0.$$
 (1.5.1)

Portanto, f'(x) = 0 se f(x) = c.

Exemplo 1.5.1. Calcule a derivada das seguintes funções em relação a x:

- a) f(x) = 9
- b) $g(x) = \pi$.

Solução:

- a) Analisando a função f(x) = 9, percebe-se que 9 é uma constante. Portanto pela regra da derivada da função constante, a derivada da função f(x) é nula.
- b) Analisando a função $g(x) = \pi$, percebe-se que π é uma constante. Portanto pela regra da derivada da função constante, a derivada da função g(x) é nula.

1.5.2 Derivada de uma potência

Para qualquer constante racional n, a derivada da função $f(x) = x^n$ é

$$\frac{d}{dx}[x^n] = nx^{n-1}.$$

Demonstração:

Seja $f(x) = x^n$. Utilizando a forma alternativa da definição de derivada

$$f'(x) = \frac{d}{dx}[f(x)] = \lim_{z \to x} \frac{f(z) - f(x)}{z - x},$$

e a expansão $z^n-x^n=(z-x)(z^{n-1}+z^{n-2}x+\ldots+zx^{n-2}+x^{n-1}),$ então:

$$f'(x) = \lim_{z \to x} \frac{z^n - x^n}{z - x}$$

$$= \lim_{z \to x} z^{n-1} + z^{n-2}x + zx^{n-2} + x^{n-1}$$

$$f'(x) = nx^{n-1}.$$
(1.5.2)

Portanto, se $f(x) = x^n$, então $f'(x) = nx^{n-1}$.

Exemplo 1.5.2. Seja $f(x) = x^3$.

- a) Determine a derivada de f(x).
- b) Escreva a equação da reta tangente ao gráfico de f(x) no ponto de ordenada 8.

Solução:

a) Pela análise da função $f(x) = x^3$, percebe-se que a potência de x é igual a 3 e pela regra da derivada da potência da função, com n = 3, tem-se:

$$f'(x) = 3 \cdot x^{(3-1)} = 3x^2.$$

b) O ponto de ordenada 8 tem abscissa 2. Logo, a inclinação da reta tangente é

$$f'(2) = 3.2^2 = 12$$

e a equação da reta tangente é escrita como

$$y-8 = 12(x-2)$$

$$y-8 = 12x-24$$

$$12x-y+16 = 0.$$
 (1.5.3)

1.5.3 Derivada da multiplicação de uma função por uma constante.

Seja c uma constante e u = f(x) uma função derivável em x, então:

$$\frac{d}{dx}[cf(x)] = cf'(x).$$

Demonstração:

Pela hipótese, existe,

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}.$$

Seja g uma função definida por g(x)=cf(x). Logo, tem-se para $g'(x)=\frac{d}{dx}[g(x)]$ que,

$$g'(x) = \lim_{\Delta x \to 0} \frac{g(x + \Delta x) - g(x)}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{cf(x + \Delta x) - cf(x)}{\Delta x}$$

$$= \lim_{\Delta x \to 0} c \left[\frac{f(x + \Delta x) - f(x)}{\Delta x} \right]$$

$$= c \lim_{\Delta x \to 0} \left[\frac{f(x + \Delta x) - f(x)}{\Delta x} \right]$$

$$g'(x) = cf'(x). \tag{1.5.4}$$

Exemplo 1.5.3. Determine a derivada das seguintes funções em relação a x:

- a) $f(x) = 4x^{\frac{3}{2}}$
- b) g(x) = 7x.

Solução:

a) Pela análise da função f(x) observa-se que c=4 e $f(x)=x^{\frac{3}{2}}$, logo f(x) tem como potência $\frac{3}{2}$. Desse modo a derivada é igual a

$$\frac{d}{dx}[f(x)] = 4 \cdot \left(\frac{3}{2}\right) x^{\frac{3}{2}-1}$$
$$= 6x^{\frac{1}{2}}.$$

b) Analisando a função g(x), observa-se que c=7 e u(x)=x, logo a derivada é igual a

$$\frac{d}{dx}[g(x)] = 7 \cdot 1 = 7.$$

1.5.4 Derivada da função exponencial de base a

Seja a função exponencial $f(x)=a^x$, definida $\forall x\in\mathbb{R},\ a>0, a\neq 1,$ então

$$\frac{d}{dx}\left[a^x\right] = a^x \cdot \ln(a).$$

Demonstração:

Aplicando a definição de derivada, tem-se para $\frac{d}{dx}[f(x)] = f'(x)$:

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}.$$

Efetuam-se as devidas substituições:

$$f'(x) = \lim_{\Delta x \to 0} \frac{a^{(x+\Delta x)} - a^x}{\Delta x}$$

$$f'(x) = \lim_{\Delta x \to 0} \frac{a^x (a^{\Delta x} - 1)}{\Delta x}.$$
(1.5.5)

Sabe-se que $\lim_{\Delta x \to 0} \frac{a^{\Delta x} - 1}{\Delta x} = \ln(a), \forall a > 0$ e $a \neq 1$.

Calculando o limite, pode-se reescrever (1.5.5) como:

$$\frac{d}{dx}[f(x)] = f'(x) = a^x \cdot \ln(a)$$

Logo, pode-se afirmar que, se $f(x) = a^x$ então:

$$f'(x) = a^x \cdot \ln(a).$$

Caso particular: Derivada da função exponencial natural $f(x) = e^x$.

Se $f(x) = e^x$, então

$$\frac{d}{dx}[e^x] = e^x \cdot \ln(e) = e^x.$$

Exemplo 1.5.4. Calcule a derivada de $f(x) = 4e^x$.

Solução:

Aplicando-se as regras da derivada da multiplicação de uma função por uma constante 1.5.3 seguida da derivada da função exponencial 1.5.4, tem-se:

$$f'(x) = 4\frac{d(e^x)}{dx}$$
$$= 4 \cdot e^x \cdot \ln e. \tag{1.5.6}$$

Portanto, a derivada da função $f(x) = 4e^x$ é

$$f'(x) = 4e^x.$$

1.5.5 Derivada da função logaritmo de base a

A derivada da função logaritmo de base a > 0 e $a \neq 1$ é:

$$\frac{d}{dx} \left[\log_a(x) \right] = \left(\frac{1}{x} \right) \log_a e = \frac{1}{x \ln(a)}.$$

Demonstração:

Seja $f(x) = \log_a(x)$. Pelo conceito de derivada tem-se:

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}.$$

Substituindo $f(x) = \log_a(x)$, tem-se:

$$f'(x) = \lim_{\Delta x \to 0} \frac{\log_a(x + \Delta x) - \log_a(x)}{\Delta x}.$$

Através da propriedade dos logaritmos, onde a diferença dos logaritmos é igual ao logaritmo do quociente dos logaritmandos, tem-se:

$$f'(x) = \lim_{\Delta x \to 0} \frac{\log_a \left(\frac{x + \Delta x}{x}\right)}{\Delta x}$$

$$f'(x) = \lim_{\Delta x \to 0} \frac{1}{\Delta x} \cdot \log_a \left(\frac{x + \Delta x}{x}\right)$$
(1.5.7)

Por meio da propriedade dos expoentes dos logaritmos, tem-se:

$$f'(x) = \lim_{\Delta x \to 0} \log_a \left(\frac{x + \Delta x}{x} \right)^{\frac{1}{\Delta x}}.$$

Aplicando-se a mudança de variável

$$\frac{\Delta x}{r} = t,$$

de onde vêm que

$$\Delta x = x \cdot t.$$

Observa-se que quando $\Delta x \to 0, \ t \to 0,$ essa mudança é equivalente e não altera o resultado do limite. Então:

$$f'(x) = \lim_{\Delta x \to 0} \log_a \left(1 + \frac{\Delta x}{x} \right)^{\frac{1}{\Delta x}}$$

$$f'(x) = \lim_{t \to 0} \log_a (1+t)^{\frac{1}{x \cdot t}}$$

$$f'(x) = \lim_{t \to 0} \log_a [(1+t)^{\frac{1}{t}}]^{\frac{1}{x}}.$$
(1.5.8)

Sabe-se que $\lim_{t\to 0} (1+t)^{\frac{1}{t}} = e$, logo:

$$f'(x) = \log_a(e^{\frac{1}{x}})$$

$$f'(x) = \frac{1}{x} \log_a(e).$$

Como $\log_a e = \frac{\ln(e)}{\ln(a)} = \frac{1}{\ln(a)},$ pode-se escrever

$$f'(x) = \frac{1}{x \ln(a)}.$$

Caso particular: se a = e tem-se $\ln(e) = 1$, portanto:

$$f'(x) = \frac{1}{x}.$$

Portanto, se $f(x) = \ln(x)$, tem-se:

$$f'(x) = \frac{1}{x}.$$

Exemplo 1.5.5. Determine as derivadas:

- a) $\frac{d}{dt}[\log_2(t)]$
- b) $\frac{d}{dz}[\ln(z)]$

Solução:

a)
$$\frac{d}{dt}[\log_2(t)] = \frac{1}{t}\log_2(e) = \frac{1}{t\ln(2)}$$

b)
$$\frac{d}{dz}[\ln(z)] = \frac{1}{z}\ln(e) = \frac{1}{z}$$
.

1.5.6 Derivada da função seno

A derivada da função seno é:

$$\frac{d}{dx}\left[\operatorname{sen}(x)\right] = \cos(x).$$

Demonstração:

Seja f(x) = sen(x). Tem-se:

$$f'(x) = \lim_{\Delta x \to 0} \frac{\sin(x + \Delta x) - \sin(x)}{\Delta x}.$$
 (1.5.9)

Utilizando a identidade trigonométrica:

$$sen(x + \Delta x) = sen(x)cos(\Delta x) + cos(x)sen(\Delta x),$$

reescreve-se a equação (1.5.10):

$$f'(x) = \lim_{\Delta x \to 0} \frac{\sin(x)\cos(\Delta x) + \cos(x)\sin(\Delta x) - \sin(x)}{\Delta x}$$

Aplicando as propriedades para o cálculo de limites:

$$f'(x) = \lim_{\Delta x \to 0} \frac{\operatorname{sen}(x)[\cos(\Delta x) - 1]}{\Delta x} + \lim_{\Delta x \to 0} \frac{\cos(x)\operatorname{sen}(\Delta x)}{\Delta x}$$
$$= -\left[\lim_{\Delta x \to 0} \frac{1 - \cos(\Delta x)}{\Delta x}\right] \left[\lim_{\Delta x \to 0} \operatorname{sen}(x)\right] + \left[\lim_{\Delta x \to 0} \cos(x)\right] \left[\lim_{\Delta x \to 0} \frac{\operatorname{sen}(\Delta x)}{\Delta x}\right].$$

Dos limites fundamentais, tem-se:

$$f'(x) = 0 \cdot \operatorname{sen}(x) + \cos(x) \cdot 1.$$

Portanto,

$$f'(x) = \cos(x).$$

1.5.7 Derivada da função cosseno

A derivada da função cosseno é definida por

$$\frac{d}{dx}\left[\cos(x)\right] = -\sin(x).$$

Demonstração:

Seja $f(x) = \cos(x)$. Tem-se:

$$f'(x) = \lim_{\Delta x \to 0} \frac{\cos(x + \Delta x) - \cos(x)}{\Delta x}.$$
 (1.5.10)

Utilizando a identidade trigonométrica:

$$\cos(x + \Delta x) = \cos(x)\cos(\Delta x) - \sin(x)\sin(\Delta x),$$

reescreve-se a equação (1.5.10):

$$f'(x) = \lim_{\Delta x \to 0} \frac{\cos(x)\cos(\Delta x) - \sin(x)\sin(\Delta x) - \cos(x)}{\Delta x}.$$

Aplicando as propriedades para o cálculo de limites:

$$f'(x) = \lim_{\Delta x \to 0} \frac{\cos(x)[\cos(\Delta x) - 1]}{\Delta x} - \lim_{\Delta x \to 0} \frac{\sin(x)\sin(\Delta x)}{\Delta x}$$
$$= -\left[\lim_{\Delta x \to 0} \frac{1 - \cos(\Delta x)}{\Delta x}\right] \left[\lim_{\Delta x \to 0} \cos(x)\right] - \left[\lim_{\Delta x \to 0} \sin(x)\right] \left[\lim_{\Delta x \to 0} \frac{\sin(\Delta x)}{\Delta x}\right].$$

Dos limites fundamentais, tem-se:

$$f'(x) = 0 \cdot \cos(x) - \sin(x) \cdot 1.$$

Portanto,

$$f'(x) = -\operatorname{sen}(x).$$

1.5.8 Derivada da soma algébrica de funções

Sejam u = f(x) e v = g(x) duas funções de x, então:

$$\frac{d}{dx}[f \pm g] = \frac{d}{dx}[f] \pm \frac{d}{dx}[g].$$

Demonstração:

Através da definição de derivada, tem-se:

$$\frac{d}{dx}[f \pm g] = \lim_{\Delta x \to 0} \frac{[f(x + \Delta x) + g(x + \Delta x)] - [f(x) + g(x)]}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{[f(x + \Delta x) - g(x)] + [g(x + \Delta x) - g(x)]}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} + \lim_{\Delta x \to 0} \frac{g(x + \Delta x) - g(x)}{\Delta x}$$

$$\frac{d}{dx}[f \pm g] = \frac{d}{dx}[f] \pm \frac{d}{dx}[g].$$
(1.5.11)

Exemplo 1.5.6. Calcule a derivada das funções:

a)
$$f(x) = 5x^4 + 6x^3 - 20$$

b)
$$z(x) = 5x^5 + \sqrt{x^3} - x^{\frac{3}{5}}$$

c)
$$g(x) = -\frac{1}{3}x^{15} + \frac{1}{\sqrt{x}} - \frac{3}{\sqrt[3]{x}}$$
.

Solução:

a) Analisando a função f(x) e considerando $u=5x^4,\ v=6x^3$ e p=-20. O cálculo de u',v' será feito aplicando a regra da derivada da função potência, logo tem-se:

$$u' = 20x^3$$
$$v' = 18x^2$$

$$p'=0.$$

Empregando-se (1.5.8) tem-se:

$$f'(x) = 20x^3 + 18x^2.$$

b) Analisando z(x) e considerando $u = 5x^5$, $v = \sqrt{x^3}$ e $p = x^{\frac{3}{5}}$. O cálculo de u', v' e p' será feito aplicando a regra da derivada da função potência, logo tem-se:

$$u' = 25x^4$$

$$v' = \frac{3\sqrt{x}}{2}$$

$$p' = \frac{3}{5}x^{-\frac{2}{5}}.$$

Por meio de (1.5.8) tem-se:

$$z'(x) = 25x^4 + \frac{3\sqrt{x}}{2} - \frac{3}{5}x^{-\frac{2}{5}}.$$

c) Analisando g(x) e considerando $u=-\frac{1}{3}x^{15},\ v=\frac{1}{\sqrt{x}}$ e $p=-\frac{3}{\sqrt[3]{x}}$. O cálculo de u',v' e p' será feito por potências, logo tem-se:

$$u' = -5x^{14}$$

$$v' = -\frac{1}{2}x^{-\frac{3}{2}}$$

$$p' = -x^{-\frac{4}{3}}.$$

Por meio de (1.5.8) tem-se:

$$g'(x) = -5x^{14} - \frac{1}{2}x^{-\frac{3}{2}} - x^{-\frac{4}{3}}.$$

Exercício 1.5.1. Calcule a derivada das funções hiperbólicas:

- a) $f(x) = \operatorname{senh}(x)$
- b) $g(x) = \cosh(x)$.

Exercício 1.5.2. Em um experimento a massa M de glicose decresce de acordo com a fórmula $M(t) = 4, 5 - 0, 03t^2$, onde t é o tempo de reação em horas. Calcule:

- a) a taxa de reação em t = 0;
- b) a taxa de reação em t = 2;
- c) a taxa média de reação no intervalo de t=0 h a t=2 h.

Respostas dos Exercícios

1.5.1. a) $\cosh(x)$

b) senh(x)

33

1.5.2. a) 0

b) -0, 12

c) -0.06

1.5.9 Derivada do produto de funções

Sejam u=f(x) e v=g(x) funções de x, então a derivada do produto de u e v é:

$$\boxed{\frac{d}{dx}[u \cdot v] = u \frac{d}{dx}[v] + v \frac{d}{dx}[u].}$$

Demonstração:

Através da definição de derivada, tem-se:

$$\frac{d}{dx}[u \cdot v] = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) \cdot g(x + \Delta x) - f(x) \cdot g(x)}{\Delta x}.$$

Para transformar essa fração em uma equivalente que contenha razões incrementais para as derivadas de f e g, efetua-se a subtração e adição de $f(x + \Delta x)g(x)$ ao numerador.

$$\begin{split} &\frac{d}{dx}[u\cdot v] = \\ &= \lim_{\Delta x \to 0} \frac{f(x+\Delta x) \cdot g(x+\Delta x) - f(x+\Delta x)g(x) + f(x+\Delta x)g(x) - f(x)g(x)}{\Delta x} \\ &= \lim_{\Delta x \to 0} \left[f(x+\Delta x) \frac{g(x+\Delta x) - g(x)}{\Delta x} + g(x) \frac{f(x+\Delta x) - f(x)}{\Delta x} \right] \\ &= \lim_{\Delta x \to 0} f(x+\Delta x) \cdot \lim_{\Delta x \to 0} \left[\frac{g(x+\Delta x) - f(x)}{\Delta x} \right] + g(x) \cdot \lim_{\Delta x \to 0} \left[\frac{f(x+\Delta x) - f(x)}{\Delta x} \right]. \end{split}$$

À medida que Δx tende a zero, $f(x + \Delta x)$ aproxima-se de f(x) logo:

$$\frac{d}{dx}[u \cdot v] = f(x) \cdot \frac{d}{dx}[g(x)] + g(x) \cdot \frac{d}{dx}[f(x)] = u \cdot \frac{d}{dx}[v] + v \cdot \frac{d}{dx}[u]. \tag{1.5.12}$$

Exemplo 1.5.7. Determine a derivada das funções:

a)
$$f(x) = x^3 e^x$$

b)
$$g(x) = (x^2 + 1) \cdot 5^x$$
.

Solução:

a) Considerando $u=x^3$ e $v=e^x$, e aplicando a regra do produto de funções:

$$\frac{d}{dx}[u \cdot v] = u\frac{dv}{dx} + v\frac{du}{dx}.$$

Tem-se:

$$\frac{d}{dx}[u \cdot]v = x^3 \cdot e^x + e^x \cdot 3x^2 = e^x x^2 (x+2).$$

b) Considerando $u=(x^2+1)$ e $v=5^x$, e fazendo:

$$\frac{d}{dx}[u \cdot v] = u\frac{dv}{dx} + v\frac{du}{dx}.$$

Tem-se:

$$\frac{d}{dx}[u \cdot v] = (x^2 + 1) \cdot 5^x \ln(5) + 2x \cdot 5^x.$$

Exercício 1.5.3. Determine a derivada das funções de duas maneiras.

a)
$$f(x) = 35x^{101}(x^2 + 1)$$

b)
$$g(x) = 2x(x^2 + 4)$$

c)
$$m(x) = \frac{(x^2 + x)}{2} (2\sqrt{x} - 3x).$$

Resposta do Exercício

1.5.3.

a)
$$f'(x) = 35x^{100}(103x^2 + 101)$$

b)
$$g'(x) = 6x^2 + 8$$

c)
$$m'(x) = \frac{1}{2} (5x^{3/2} - 9x^2 + 3x^{1/2} - 6x).$$

1.5.10 Derivada para o quociente de funções

Sejam u=f(x) e v=g(x) funções de x. Se u' e v' existem, então a derivada do quociente de u por v é

$$\frac{d}{dx} \left[\frac{u}{v} \right] = \frac{v \cdot u' - u \cdot v'}{v^2}, v \neq 0.$$

Exemplo 1.5.8. Obtenha as derivadas das funções:

a)
$$f(x) = \frac{x+1}{2x+1}$$

b)
$$g(x) = \frac{x^2 - 1}{x^2 + 1}$$

c)
$$h(x) = \frac{8e^x - 1}{x^2 + 1}$$

d)
$$v(x) = \frac{10^{\sqrt{2}} + \log \pi}{\sqrt{3} + 1024}$$
.

Solução:

a) Sejam u = x + 1 e v = 2x + 1, aplicando a regra da derivada para o quociente de funções:

$$\frac{d}{dx} \left[\frac{u}{v} \right] = \frac{(2x+1)(x+1)' - (x+1)(2x+1)'}{(2x+1)^2}$$

$$\frac{d}{dx} \left[\frac{u}{v} \right] = \frac{(2x+1) - (2x+2)}{(2x+1)^2}$$

$$\frac{d}{dx} \left[\frac{u}{v} \right] = \frac{(2x+1) - 2x - 2}{(2x+1)^2}$$

$$\frac{d}{dx} \left[\frac{u}{v} \right] = -\frac{1}{(2x+1)^2}.$$

b) Para $u=x^2-1$ e $v=x^2+1$, aplicando a regra da derivada para o quociente de funções, tem-se

$$\frac{d}{dx} \left[\frac{u}{v} \right] = \frac{(x^2 + 1)(x^2 - 1)' - (x^2 - 1)(x^2 + 1)'}{(x^2 + 1)^2}$$

$$\frac{d}{dx} \left[\frac{u}{v} \right] = \frac{(x^2 + 1)2x - (x^2 - 1)2x}{(x^2 + 1)^2}$$

$$\frac{d}{dx} \left[\frac{u}{v} \right] = \frac{2x^3 + 2x - 2x^3 + 2x}{(x^2 + 1)^2}$$

$$\frac{d}{dx} \left[\frac{u}{v} \right] = \frac{4x}{(x^2 + 1)^2}$$

c) Sejam $u=8e^x-1$ e $v=x^2+1$ e aplicando a regra da derivada para o quociente de funções tem-se:

$$\frac{d}{dx} \left[\frac{u}{v} \right] = \frac{(x^2 + 1)(8e^x - 1)' - (8e^x - 1)(x^2 + 1)'}{(x^2 + 1)^2}$$

$$= \frac{(x^2 + 1)(8e^x) - (8e^x - 1)2x}{(x^2 + 1)^2}$$

$$\frac{d}{dx} \left[\frac{u}{v} \right] = \frac{8e^x x^2 + 8e^x - 16xe^x + 2x}{(x^2 + 1)^2}$$

 $d) \frac{d}{dx}[v] = 0.$

Exemplo 1.5.9 (Derivada da Tangente). Calcule, usando a regra do quociente, a derivada da função f(x) = tg(x).

Solução:

Considerando $f(x) = tg(x) = \frac{sen(x)}{cos(x)}$, pela regra da derivada do quociente (1.5.10), tem-se:

$$f'(x) = \frac{\cos(x) \cdot [\sin(x)]' - \sin(x) \cdot [\cos(x)]'}{\cos^2(x)}$$

$$= \frac{\cos(x) \cdot \cos(x) - \sin(x)[-\sin(x)]}{\cos^2(x)}$$

$$= \frac{\cos^2(x) + \sin^2(x)}{\cos^2(x)}$$

$$= \frac{1}{\cos^2(x)}$$

$$f'(x) = \sec^2(x).$$

Portanto,

$$\frac{d}{dx} [\operatorname{tg}(x)] = \sec^2(x).$$

Exemplo 1.5.10 (Derivada da Cotangente). Calcule, usando a regra do quociente, a derivada da função $f(x) = \cot(x)$.

Solução:

Considerando $f'(x) = \cot(x) = \frac{\cos(x)}{\sin(x)}$, aplicando a regra da derivada do quociente (1.5.10), tem-se:

$$f'(x) = \frac{\operatorname{sen}(x) \cdot [\cos(x)]' - \cos(x) \cdot [\operatorname{sen}(x)]'}{\operatorname{sen}^2(x)}$$

$$= \frac{\operatorname{sen}(x) \cdot [-\operatorname{sen}(x)] - \cos(x) \cdot \cos(x)}{\operatorname{sen}^2(x)}$$

$$= \frac{-\operatorname{sen}^2(x) - \cos^2(x)}{\operatorname{sen}^2(x)}$$

$$= \frac{-1}{\operatorname{sen}^2(x)}$$

$$f'(x) = -\operatorname{cosec}^2(x).$$

$$\frac{d}{dx}\left[\cot g(x)\right] = -\csc^2(x).$$

Exemplo 1.5.11 (Derivada da Secante). Calcule, usando a regra do quociente, a derivada da função $f(x) = \sec(x)$.

Solução:

Considerando $f(x) = \sec(x) = \frac{1}{\cos(x)}$, aplicando a regra da derivada do quociente (1.5.10), tem-se:

$$f'(x) = \frac{\cos(x) \cdot 1' - 1 \cdot [\cos(x)]'}{\cos^2(x)}$$

$$= \frac{\sin(x)}{\cos^2(x)}$$

$$= \frac{\sin(x)}{\cos(x)} \cdot \frac{1}{\cos(x)}$$

$$f'(x) = \operatorname{tg}(x) \cdot \sec(x).$$

Logo,

$$\frac{d}{dx}\left[\sec(x)\right] = \operatorname{tg}(x) \cdot \sec(x).$$

Exemplo 1.5.12 (Derivada da Cossecante). Mostre que se $f(x) = \csc(x)$ então $f'(x) = -\csc(x) \cdot \cot(x)$.

Solução:

Considerando $f(x) = \csc(x) = \frac{1}{\sin(x)}$, aplicando a regra da derivada do quociente (1.5.10), tem-se:

$$f'(x) = \frac{\operatorname{sen}(x) \cdot 1' - 1 \cdot [\operatorname{sen}(x)]'}{\operatorname{sen}^{2}(x)}$$

$$= -\frac{\cos(x)}{\operatorname{sen}^{2}(x)}$$

$$= \frac{-1}{\operatorname{sen}(x)} \cdot \frac{\cos(x)}{\operatorname{sen}(x)}$$

$$f'(x) = -\operatorname{cosec}(x) \cdot \operatorname{cotg}(x).$$

Logo,

$$\frac{d}{dx}\left[\csc(x)\right] = -\csc(x) \cdot \cot(x).$$

1.5.11 Derivada da função inversa

Seja y=f(x). Suponha que f(x) admite uma função inversa $x=f^{-1}(y)$ contínua. Se $\frac{d}{dx}[f(x)]$ existe e é diferente de zero, então a derivada de $x=f^{-1}(y)$ é

$$\frac{d}{dy}\left[f^{-1}(y)\right] = \frac{1}{\frac{d}{dx}[f(x)]}.$$

Pode-se reescrever a regra da forma

$$\frac{d}{dy}[x] = \frac{1}{\frac{d}{dx}[f(x)]} = \frac{1}{\frac{d}{dx}[y]},$$

ou seja,

$$\frac{dx}{dy} = \frac{1}{\frac{dy}{dx}}.$$

Exemplo 1.5.13. Se y = f(x), calcule $\frac{dx}{dy} = \frac{d}{dy}[f^{-1}(y)]$ nos seguintes casos:

- a) f(x) = 3x + 4
- b) $f(x) = x^3 + 3x^2 + x$.

Solução:

- a) Pela regra da derivada da função inversa, tem-se $\frac{d}{dy}[f^{-1}(y)] = \frac{1}{f'(x)} = \frac{1}{3}$.
- b) Pela regra da derivada da função inversa, tem-se $\frac{d}{dy}[f^{-1}(y)] = \frac{1}{f'(x)} = \frac{1}{3x^2 + 6x + 1}$.

Exemplo 1.5.14. Se $y = f(x) = a^x$ tem-se que $x = f^{-1}(y) = \log_a y$. Determine $\frac{d}{dy}[f^{-1}(y)]$ de duas formas: primeiramente derivando diretamente a função $f^{-1}(y)$ e depois usando a regra da derivada da função inversa.

Solução:

Primeiramente, pela regra da derivada do logarítmo de base a tem-se que

$$\frac{d}{dy}[f^{-1}(y)] = \frac{d}{dy}[\log_a y] = \frac{1}{y\ln(a)} = \frac{1}{a^x\ln(a)}.$$

Pela regra da derivada da função inversa, tem-se

$$\frac{d}{dy}[f^{-1}(y)] = \frac{1}{\frac{d}{dx}[a^x]} = \frac{1}{a^x \ln(a)}.$$

1.6 Derivada de Função Composta - Regra da Cadeia

A regra da cadeia permite derivar funções complicadas utilizando derivadas de funções mais simples.

Teorema 1.6.1. Se y = f(u), u = g(x) e as derivadas $\frac{dy}{du}$ e $\frac{du}{dx}$ existem, então a função composta $f \circ g$ possui derivada representada por

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} \tag{1.6.1}$$

ou

$$y'(x) = f'(u) \cdot g'(x) \tag{1.6.2}$$

ou ainda

$$y'(x) = f'(g(x)) \cdot g'(x).$$

Observação 1.6.1. Seja a função composta $f \circ g$, tal que $(f \circ g)(x) = f[g(x)]$. Neste caso, a função g pode ser chamada de "função interna" e f de "função externa", devido às posições que ocupam na expressão f[g(x)]. Então, a regra da cadeia pode ser estabelecida como: a derivada da composta de duas funções é a derivada da função externa tomada no valor da função interna vezes a derivada da função interna.

Exemplo 1.6.1. Seja $y = u^3$ e $u = 2x^2 + 4x - 2$, calcule $\frac{dy}{dx}$. Solução:

Pela Regra da Cadeia tem-se $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$, onde $\frac{dy}{du} = 3u^2$ e $\frac{du}{dx} = 4x + 4$. Portanto, $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx} = 3u^2 (4x + 4) = 3(2x^2 + 4x - 2)^2 (4x + 4)$.

Exemplo 1.6.2. Calcule a derivada das funções:

a)
$$f(x) = e^{x^3 + 4x}$$

f)
$$y = \frac{1}{\sqrt[3]{3x}}$$

b)
$$y = (x^2 - 2)^4 (x^2 + 2)^{10}$$

c)
$$h(x) = x^2(9 - x^2)^{-2}$$
.

g)
$$h(x) = (x^2 + 2x)^{-\frac{1}{2}}$$

d)
$$f(x) = (3x^2 + 4)^4$$

h)
$$m(x) = \left(\frac{5x^3 + 4}{7}\right)^4$$
.

e)
$$g(x) = \sqrt{2x+1}$$

1.6. DERIVADA DE FUNÇÃO COMPOSTA - REGRA DA CADEIA

Solução:

a) Seja $u(x)=x^3+4x$. Então $u'(x)=3x^2+4$. Como $f(x)=e^{u(x)}$, tem-se pela regra da cadeia $f'(x)=u'(x)e^{u(x)}$. Portanto, $f'(x)=(3x^2+4)e^{x^3+4x}.$

b) Sejam $u(x) = x^2 - 2$ e $v(x) = x^2 + 2$. Então u'(x) = 2x e v'(x) = 2x. A função f(x) pode ser escrita como $f(x) = u^4(x)v^{10}(x)$. Pela regra do produto, tem-se

$$f'(x) = u^4(x)\frac{d}{dx}[v^{10}(x)] + \frac{d}{dx}[u^4(x)]v^{10}(x).$$

Pela regra da cadeia, $\frac{d}{dx}[v^{10}(x)] = 10v^9(x)v'(x)$ e $\frac{d}{dx}[u^4(x)] = 4u^3(x)u'(x)$. Portanto,

$$f'(x) = u^{4}(x)10v^{9}(x)v'(x) + 4u^{3}(x)u'(x)v^{10}(x).$$

Substituindo as funções $u, u', v \in v'$ obtém-se

$$f'(x) = (x^2 - 2)^4 10(x^2 + 2)^9 2x + 4(x^2 - 2)^3 2x(x^2 + 2)^{10}$$
$$= 4x(x^2 - 2)^3 (x^2 + 2)^9 (7x^2 - 6).$$

A solução dos próximos ítens será feita de maneira resumida:

c) Pelas regras da derivada do produto e da cadeia, tem-se:

$$h'(x) = 2x \cdot (9 - x^2)^{-2} + x^2 \cdot (-2)(9 - x^2)^{-3}(-2x).$$

Portanto,

$$h'(x) = 2x(9-x^2)^{-2} + 4x^3(9-x^2)^{-3}.$$

d) Pela regra da cadeia tem-se:

$$f'(x) = 4(3x^2 + 4)^3(6x).$$

Portanto,

$$f'(x) = 24x(3x^2 + 4)^3.$$

e) Pela regra da cadeia tem-se:

$$g'(x) = \frac{1}{2}(2x+1)^{-\frac{1}{2}}(2),$$

Portanto,

$$g'(x) = \frac{1}{\sqrt{2x+1}}.$$

f) Pela regra da cadeia tem-se:

$$y' = -\frac{1}{3}(3x)^{-\frac{4}{3}}(3),$$

Portanto,

$$y' = -\frac{1}{\sqrt[3]{(3x)^4}}.$$

g) Pela regra da cadeia, tem-se:

$$h'(x) = -\frac{1}{2}(x^2 + 2x)^{-\frac{3}{2}}(2x + 2).$$

Portanto,

$$h'(x) = -\frac{x+1}{\sqrt{(x^2+2x)^3}}.$$

h) Pela regra da cadeia, tem-se:

$$m'(x) = 4\left(\frac{5x^3 + 4}{7}\right)^3 \left(\frac{15}{7}x^2\right).$$

Portanto,

$$m'(x) = \frac{60}{7}x^2 \left(\frac{5x^3 + 4}{7}\right)^3.$$

Exercício 1.6.1. Escreva a equação da reta normal ao gráfico da função $y = e^{-x}$ no ponto A(0,1).

Exercício 1.6.2. Sejam f e g funções diferenciáveis tais que $g(7) = \frac{1}{4}$, $g'(7) = \frac{2}{3}$ e $f'\left(\frac{1}{4}\right) = 10$. Seja $h = f \circ g$, calcule h'(7).

Respostas dos Exercícios

1.6.1.
$$y = x + 1$$
.

1.6.2.
$$h'(t) = \frac{20}{3}$$

Exemplo 1.6.3. Determine as derivadas:

a)
$$\frac{d}{dt}[\ln(2t)]$$

d)
$$f(x) = 2^{x^3 + 4x}$$

b)
$$\frac{d}{dz}[\ln(z^2+5)]$$

$$e) g(x) = 5 \left(\frac{x-4}{x+1}\right).$$

c)
$$\frac{d}{dx} \left[\ln \left(\frac{x+1}{x-1} \right) \right]$$
.

Solução:

a) Seja u(t)=2t. Então u'(t)=2. Como $f(t)=\ln(u(t)),$ tem-se $\frac{d}{dt}[\ln(u(t))]=\frac{1}{u(t)}u'(t).$ Portanto,

$$\frac{d}{dt}[\ln(2t)] = \frac{1}{2t}2 = \frac{1}{t}.$$

b) Seja $u(z)=z^2+5$. Então u'(z)=2z. Como $f(z)=\ln(u(z)),$ tem-se $\frac{d}{dz}[\ln(u(z))]=\frac{1}{u(z)}u'(z).$ Portanto,

$$\frac{d}{dz}[\ln(z^2+5)] = \frac{1}{z^2+5}2z = \frac{2z}{z^2+5}.$$

c) Primeiramente, usando uma propriedade dos logarítmos pode-se reescrever a função $f(x) = \ln\left(\frac{x+1}{x-1}\right)$ como

$$f(x) = \ln(x+1) - \ln(x-1).$$

Sejam u(x) = x + 1 e v(x) = x - 1. Então u'(x) = 1 e v'(x) = 1.

Como $f(x) = \ln(u(x)) - \ln(v(x))$, pela regra da cadeia juntamente com a regra da derivada da função logarítmica natural tem-se

$$\frac{d}{dx}[f(x)] = \frac{1}{u(x)}u'(x) - \frac{1}{v(x)}v'(x),$$

onde substituindo $u, u', v \in v'$ obtém-se

$$\frac{d}{dx}[f(x)] = \frac{1}{x+1} - \frac{1}{x-1} = -\frac{2}{x^2 - 1}.$$

d) Seja $u(x) = x^3 + 4x$, então $u'(x) = 3x^2 + 4$. Como $f(x) = 2^{x^3 + 4x}$, tem-se $\frac{d}{dx}[2^{u(x)}] = 2^{u(x)}u'(x).$

Portanto,

$$\frac{d}{dx}[2^{x^3+4x}] = (3x^2+4)2^{x^3+4x}.$$

e) Seja $u(x)=\left(\frac{x-4}{x+1}\right)$ então pela regra da derivada do quociente $u'(x)=\frac{5}{(x+1)^2}.$

Como
$$g(x) = 5^{\left(\frac{x-4}{x+1}\right)}$$
, tem-se $\frac{d}{dx}[5^{u(x)}] = 5^{u(x)}u'(x)$.

Portanto,

$$g'(x) = \frac{5}{(x+1)^2} 5^{\left(\frac{x-4}{x+1}\right)} = \frac{5^{\frac{2x-3}{x+1}}}{(x+1)^2}.$$

Diferenciação Logarítmica

Uma forma mais rápida de calcular a derivada de funções que envolvem um produto de vários fatores, quocientes e potências é a diferenciação logarítmica.

O processo de diferenciação logarítmica consiste nos seguintes passos:

- 1) Aplicar o logaritmo natural em ambos os membros da equação y=f(x). (Antes de derivar!)
- 2) Usar as propriedades dos logaritmos para simplificar a equação.
- 3) Derivar a expressão obtida no passo 2 implicitamente em relação a x. (Ou seja: derive ambos os lados da igualdade, usando a regra da cadeia no lado esquerdo da equação)
- 4) Resolver para y'.
- 5) Substituir y por f(x).

Observe o exemplo.

Exemplo 1.6.4. Calcule a derivada de $f(x) = x^x$.

Solução:

1.6. DERIVADA DE FUNÇÃO COMPOSTA - REGRA DA CADEIA

1) Aplicar o logaritmo natural em ambos os membros da equação:

$$\ln(f(x)) = \ln(x^x).$$

2) Usar as propriedades dos logaritmos para simplificar a equação:

$$ln(f(x)) = x ln(x).$$

3) Derivar a equação obtida no passo 2 em relação a x, usando a regra da cadeia no lado esquerdo da igualdade.

$$\frac{1}{f(x)}f'(x) = \ln(x) + x\frac{1}{x}.$$

4) Resolver para f'(x).

$$f'(x) = f(x) \left(\ln(x) + 1 \right).$$

5) Substituir f(x) por x^x .

$$f'(x) = x^x \left(\ln(x) + 1 \right).$$

Atenção! A diferenciação logarítmica pode ser utilizada para calcular a derivada de funções em que há variável na base e no expoente, onde não é possível aplicar as regras de derivação anteriores.

Exemplo 1.6.5. Calcule a derivada das funções:

a)
$$f(x) = x^{\sqrt{x^2+4}}$$

Solução:

1) Aplicar o logaritmo natural em ambos os membros da equação:

$$\ln(f(x)) = \ln\left(x^{\sqrt{x^2+4}}\right).$$

2) Usar as propriedades dos logaritmos para simplificar a equação:

$$\ln(f(x)) = \sqrt{x^2 + 4} \ln(x).$$

3) Derivar a equação obtida no passo 2 em relação a x, usando a regra da cadeia no lado esquerdo da igualdade.

$$\frac{1}{f(x)}f'(x) = \frac{2x}{\sqrt{x^2 + 4}} \cdot \ln(x) + \sqrt{x^2 + 4} \cdot \frac{1}{x}.$$

4) Resolver para f'(x).

$$f'(x) = f(x) \left(\frac{2x}{\sqrt{x^2 + 4}} \ln(x) + \frac{\sqrt{x^2 + 4}}{x} \right).$$

5) Substituir f(x) por $x^{\sqrt{x^2+4}}$

$$f'(x) = x^{\sqrt{x^2+4}} \left(\frac{2x}{\sqrt{x^2+4}} \ln(x) + \frac{\sqrt{x^2+4}}{x} \right).$$

b) $f(x) = \sqrt[x]{x}$.

Solução:

1) Aplicar o logaritmo natural em ambos os membros da equação:

$$\ln(f(x)) = \ln\left(x^{1/x}\right).$$

2) Usar as propriedades dos logaritmos para simplificar a equação:

$$\ln(f(x)) = \frac{1}{x}\ln(x).$$

3) Derivar a equação obtida no passo 2 em relação a x, usando a regra da cadeia no lado esquerdo da igualdade.

$$\frac{1}{f(x)}f'(x) = \frac{-1}{x^2} \cdot \ln(x) + \frac{1}{x} \cdot \frac{1}{x}.$$

4) Resolver para f'(x).

$$f'(x) = f(x) \left(-\frac{1}{x^2} \ln(x) + \frac{1}{x^2} \right).$$

5) Substituir f(x) por $\sqrt[x]{x}$.

$$f'(x) = \sqrt[x]{x} \left(\frac{-1}{x^2} \ln(x) + \frac{1}{x^2} \right).$$

Exercício 1.6.3. Mostre que $\frac{d}{dx}a^x = a^x \ln(a)$.

Exercício 1.6.4. Suponha que g(x) é uma função derivável. Utilizando a regra da cadeia, mostre que:

a)
$$\frac{d}{dx}[e^{g(x)}] = e^{g(x)} \cdot g'(x)$$

b)
$$\frac{d}{dx} [\ln g(x)] = \frac{g'(x)}{g(x)}$$
.

Exemplo 1.6.6. Diferencie as funções:

$$a) f(x) = \log(3x + 1)$$

b)
$$f(x) = \sin(3x^3 + 5x^2 + 6)$$

c)
$$g(x) = \sqrt{\sin(x^2 + 1)}$$

Solução:

a) Seja u(x)=3x+1. Então u'(x)=3. Como $f(x)=\log(u(x))$ tem-se pela regra da cadeia $f'(x)=\frac{1}{u(x)\ln(10)}u'(x)$.

Substituindo u e u' obtém-se:

$$f'(x) = \frac{3}{(3x+1)\ln(10)}.$$

b) Seja $u(x) = 3x^3 + 5x^2 + 6$. Então $u'(x) = 9x^2 + 10x$. Como $f(x) = \operatorname{sen}(u(x))$ tem-se pela regra da cadeia $f'(x) = [\cos(u(x))] u'(x)$.

Substituindo u e u' obtém-se:

$$f'(x) = \left[\cos(3x^3 + 5x^2 + 6)\right](9x^2 + 10x).$$

c) Seja $u(x) = \text{sen}(x^2 + 1)$. Então $u'(x) = [\cos(x^2 + 1)] 2x$.

Como $f(x) = \sqrt{u(x)}$ tem-se pela regra da cadeia $f'(x) = \frac{1}{2}u^{-1/2}(x)u'(x)$.

Portanto,

$$f'(x) = \frac{1}{2} [\operatorname{sen}(x^2 + 1)]^{-1/2} \left[\cos(x^2 + 1) \right] 2x = \frac{\left[\cos(x^2 + 1) \right] x}{\sqrt{\operatorname{sen}(x^2 + 1)}}.$$

Exercício 1.6.5. Obtenha a derivada das funções:

a)
$$f(x) = \operatorname{tg}(3x)$$

$$d) f(x) = \cot(6x + 8)$$

b)
$$g(x) = e^{5x} \text{tg}(2x)$$

e)
$$g(x) = \ln(x) \cdot \cot(x)$$

c)
$$h(x) = \frac{\sin(4x)}{\operatorname{tg}(x)}$$

f)
$$h(x) = x^2 \cot(x^3)$$

g)
$$f(y) = \sec(y^2 + 8y)$$

$$j) f(x) = \csc(2x^2)$$

h)
$$g(y) = \operatorname{sen}(3y) \cdot \operatorname{sec}(3y)$$

$$1) \ f(x) = \sqrt[3]{\operatorname{cosec}(3x)}$$

i)
$$h(y) = y \cdot \sec(\sqrt{y})$$

m)
$$f(x) = \ln[\csc(x+4)].$$

Respostas do Exercício

a)
$$f'(x) = 3\sec^2(3x)$$

b)
$$g'(x) = e^{5x} \left[2\sec^2(2x) + 5\tan(2x) \right]$$

c)
$$h'(x) = \frac{4\operatorname{tg}(x)\cos(4x) - \sin(4x)\sec^2(x)}{\operatorname{tg}^2(x)}$$

d)
$$f'(x) = -6\csc^2(6x + 8)$$

e)
$$g'(x) = \frac{\cot(x)}{x} - \ln(x)\csc^2(x)$$

f)
$$h'(x) = 2x\cot(x^3) - 3x^4\csc^2(x^3)$$

g)
$$f'(y) = (2y+8)\sec(y^2+8y)\operatorname{tg}(y^2+8y)$$

h)
$$g'(y) = 3\sec^2(3y)$$

i)
$$h'(y) = \frac{y \sec(\sqrt{y}) \operatorname{tg}(\sqrt{y})}{2} + \sec(\sqrt{y})$$

j)
$$f'(x) = -4x\csc(2x^2)\cot(2x^2)$$

1)
$$f'(x) = -\sqrt[3]{\operatorname{cosec}(3x)}\operatorname{cotg}(3x)$$

m)
$$f'(x) = -\cot(x+4)$$
.

Capítulo 2

Regras de Derivação

2.1 Derivadas de Funções Implícitas

Quando não é possível escrever uma equação do tipo F(x,y)=0 na forma y=f(x) para derivá-la de maneira usual, pode-se determinar $\frac{dy}{dx}$ por intermédio do processo de derivação chamado derivação implícita.

O processo de derivação implícita consiste:

- 1. Derivar os dois membros da equação em relação a x, considerando y como uma função dependente de x.
- 2. Agrupar os termos que contém $\frac{dy}{dx}$ em um membro da equação.
- 3. Determinar $\frac{dy}{dx}$.

Observação 2.1.1. É importante lembrar que se y = f(x), então ao longo do texto a derivada da função f(x) será denotada por: $y' = \frac{dy}{dx} = \frac{d}{dx} [f(x)]$.

Exemplo 2.1.1. Derivando implicitamente, determine $\frac{dy}{dx}$ se $y^2 = x$. Solução:

Derivando $y^2 = x$ implicitamente em relação a x, obtém-se:

$$2y\frac{dy}{dx} = 1. (2.1.1)$$

Isolando $\frac{dy}{dx}$ em (2.1.1), tem-se:

$$\frac{dy}{dx} = \frac{1}{2y}.$$

Como
$$y = \pm \sqrt{x}$$
, então: $\frac{dy}{dx} = \frac{1}{2\sqrt{x}}$ ou $\frac{dy}{dx} = -\frac{1}{2\sqrt{x}}$.

Observação 2.1.2. Para derivar uma função na forma implícita, basta lembrar que y é uma função de x e aplicar a regra da cadeia.

Exemplo 2.1.2. Derivando implicitamente, determine a derivada indicada das funções:

a)
$$\frac{dy}{dx}$$
, $x^2 + y^2 - 25 = 0$

b)
$$\frac{dy}{dx}$$
, $x^3 + y^3 - 3axy = 0$

c)
$$\frac{dy}{dx}$$
, $x^y = y^x$.

Solução:

- a) Para derivar implicitamente $x^2 + y^2 25 = 0$ em relação a x, segue-se o processo:
 - 1. Derivar os dois membros da equação em relação a x, considerando y como uma função dependente de x.

$$2x + 2y\frac{dy}{dx} - 0 = 0.$$

2. Agrupar os termos que contém $y' = \frac{dy}{dx}$ em um membro da equação.

$$2y\frac{dy}{dx} = -2x.$$

3. Determinar $\frac{dy}{dx}$.

$$\frac{dy}{dx} = -\frac{x}{y}.$$

- b) Para derivar implicitamente $x^3 + y^3 3axy = 0$ em relação a x, segue-se o processo:
 - 1. Derivar os dois membros da equação em relação a x, considerando y como uma função dependente de x.

$$3x^2 + 3y^2y' - 3a[y + xy'] = 0.$$

2. Agrupar os termos que contém $y' = \frac{dy}{dx}$ em um membro da equação.

$$[3y^2 - 3ax]y' = -3x^2 + 3ay.$$

3. Determinar $y' = \frac{dy}{dx}$.

$$y' = \frac{-3x^2 + 3ay}{3y^2 - 3ax}.$$

- c) Para derivar implicitamente $x^y = y^x$ em relação a x, segue-se o processo:
 - 1. Derivar os dois membros da equação em relação a x, considerando y como uma função dependente de x. Neste caso precisa-se usar a diferenciação logarítmica.

$$y \ln(x) = x \ln(y)$$
$$y' \ln(x) + \frac{y}{x} = \ln(y) + \frac{xy'}{y}.$$

2. Agrupar os termos que contém $y' = \frac{dy}{dx}$ em um membro da equação.

$$y'\left(\ln(x) - \frac{x}{y}\right) = \ln(y) - \frac{y}{x}.$$

3. Determinar $y' = \frac{dy}{dx}$.

$$\frac{dy}{dx} = \frac{\ln(y) - \frac{y}{x}}{\ln(x) - \frac{x}{y}}.$$

Exercício 2.1.1. Derivando implicitamente, determine as derivadas das funções:

a)
$$\frac{dy}{dx}$$
, $b^2 + y^2 - 2xy = 0$

b)
$$\frac{dy}{dx}$$
, $(x+y)^2 - (x-y)^2 = x^4 + y^4$.

Exercício 2.1.2. Determine os coeficientes angulares das retas tangente e normal à curva $x^3 + y^3 - xy - 7 = 0$ no ponto A(1,2).

Exercício 2.1.3. Escreva a equação da reta tangente ao gráfico das funções implícitas definidas por:

a) Folium Descartes: $x^3 + y^3 = 6xy$ no ponto (3,3).

2.2. DERIVADA DAS FUNÇÕES TRIGONOMÉTRICAS INVERSAS

b) Lemniscata de Bernoulli: $2(x^2+y^2)^2=25(x^2-y^2)$ no ponto (3,1).

Respostas dos Exercícios

2.1.1.

a)
$$y' = \frac{y}{y - x}$$

b)
$$\frac{dy}{dx} = \frac{x^3 - y}{x - y^3}.$$

2.1.2.
$$m_{\text{tg}} = -\frac{1}{11}$$
, $m_n = 11$.

2.1.3.

a)
$$x + y - 6 = 0$$

b)
$$13y + 9x - 40$$
.

2.2 Derivada das funções trigonométricas inversas

2.2.1 Derivada da função arco seno

Seja u=f(x). Aplicando a regra da cadeia, a derivada da função arco

$$\frac{d}{dx}\left[\operatorname{arcsen}(u)\right] = \frac{1}{\sqrt{1 - u^2}} \cdot \frac{du}{dx}, \, |u| < 1.$$

Em particular, se u = x tem-se

$$\frac{d}{dx}\left[\operatorname{arcsen}(x)\right] = \frac{1}{\sqrt{1-x^2}}, |x| < 1.$$

Demonstração:

seno é:

Se u = x.

Determina-se a derivada de $y = \arcsin(x)$, escrevendo:

$$\operatorname{sen}(y) = x. \tag{2.2.1}$$

Derivando implicitamente a equação (2.2.1) em relação a x, tem-se:

$$\frac{d}{dx}[\operatorname{sen}(y)] = \frac{d}{dx}(x).$$

Através da regra da cadeia: $\cos(y)\frac{dy}{dx} = 1$.

Isolando $\frac{dy}{dx}$, tem-se:

$$\frac{dy}{dx} = \frac{1}{\cos(y)}.$$

Pela relação trigonométrica fundamental $\cos(y)=\sqrt{1-\sin^2(y)}$ e de 2.2.1 ($\sin(y)=x$), escreve-se:

$$\cos(y) = \sqrt{1 - x^2}.$$

Consequentemente:

$$\frac{dy}{dx} = \frac{1}{\sqrt{1 - x^2}}.$$

Observação 2.2.1. É possível obter a derivada da função $y = \arcsin(x)$ pela regra da derivada da função inversa. Se $x = \sin(y)$ é a inversa de y, então a derivada $y' = \frac{dy}{dx}$ é

$$y' = \frac{dy}{dx} = \frac{1}{\frac{dx}{dy}} = \frac{1}{\cos(y)} = \frac{1}{\sqrt{1 - \sin^2(y)}} = \frac{1}{\sqrt{1 - x^2}}.$$

Exemplo 2.2.1. Para cada uma das funções f(x), calcule f'(x):

- a) $f(x) = \arcsin(x^2 + 8)$
- b) $f(x) = 4\arcsin(\sqrt[3]{x+3})$
- c) $f(x) = x \cdot \arcsin(x) + \sqrt{1 x^2}$.

Solução:

a) Seja $u(x) = x^2 + 8$. Então u'(x) = 2x e a derivada de f(x) é

$$f'(x) = \frac{2x}{\sqrt{1 - (x^2 + 8)^2}}.$$

b) Seja $u(x) = \sqrt[3]{x+3}$. Então $u'(x) = \frac{1}{3\sqrt[3]{(x+3)^2}}$ e a derivada de f(x) é

$$f'(x) = \frac{4}{3} \frac{1}{\sqrt{1 - (\sqrt[3]{x+3})^2}} \cdot \frac{1}{\sqrt[3]{(x+3)^2}}.$$

c) Para derivar a primeira parcela da função f(x) será utilizada a regra do produto. Na derivada da segunda parcela de f(x) será utilizada a regra da cadeia. De fato:

$$f'(x) = 1 \cdot \arcsin(x) + x \cdot \frac{1}{\sqrt{1 - x^2}}.$$

Derivada da função arco cosseno

Seja u = f(x). Então, aplicando a regra da cadeia tem-se para a derivada da função arco cosseno:

$$\frac{d}{dx}\left[\arccos(u)\right] = -\frac{1}{\sqrt{1-u^2}} \cdot \frac{du}{dx}, |u| < 1.$$

Em particular, se u = x tem-se

$$\frac{d}{dx}\left[\arccos(x)\right] = -\frac{1}{\sqrt{1-x^2}}, |x| < 1.$$

Exemplo 2.2.2. Calcule f'(x):

- a) $f(x) = \arccos(\sin(2x))$
- b) $f(x) = 3x \arccos(x)$
- c) $f(x) = \arccos(\sqrt{x}) + e^{\arccos(x)}$.

Solução:

IMEF - FURG - IN

a) Seja u(x) = sen(2x). Então $u'(x) = 2\cos(2x)$ e a derivada de f(x) é

$$f'(x) = -\frac{2\cos(2x)}{\sqrt{1 - (\sin(2x))^2}}.$$

b) Para derivar esta função usa-se a regra do produto:

$$f'(x) = 3\arccos(x) - \frac{3x}{\sqrt{1-x^2}}.$$

c) Para derivar a função f(x) usa-se a regra da cadeia para cada parcela separadamente. Seja $u(x) = \sqrt{x}$ e $u'(x) = \frac{1}{2\sqrt{x}}$. Para a segunda parcela seja $v(x) = \arccos(x) e v'(x) = -\frac{1}{\sqrt{1-x^2}}$. Assim, tem-se

$$f'(x) = -\frac{1}{\sqrt{1 - (\sqrt{x})^2}} \cdot \frac{1}{2\sqrt{x}} - \frac{e^{\arccos(x)}}{\sqrt{1 - x^2}}.$$

Portanto,

$$f'(x) = -\frac{1}{2\sqrt{(1-x)x}} - \frac{e^{\arccos(x)}}{\sqrt{1-x^2}}.$$

Exercício 2.2.1. Mostre que $\frac{d}{dx}[\arccos(x)] = -\frac{1}{\sqrt{1-x^2}}$.

2.2.3 Derivada da função arco tangente

Seja u=f(x). Então, aplicando a regra da cadeia, a derivada da função arco tangente é definida por:

$$\frac{d}{dx}\left[\operatorname{arctg}(u)\right] = \frac{1}{1+u^2} \cdot \frac{du}{dx}.$$

Em particular, se u = x tem-se

$$\frac{d}{dx}\left[\arctan(x)\right] = \frac{1}{1+x^2}.$$

Demonstração:

Se u = x.

Determina-se a derivada de $y = \operatorname{arctg}(x)$, escrevendo $\operatorname{tg}(y) = x$.

Derivando ambos lados em relação a x:

$$\frac{d}{dx}[\operatorname{tg}(y)] = \frac{d}{dx}(x)$$

Através da regra da cadeia:

$$\sec^2(y)\frac{dy}{dx} = 1.$$

Isolando $\frac{dy}{dx}$, tem-se:

$$\frac{dy}{dx} = \frac{1}{\sec^2(y)}. (2.2.2)$$

Como $\sec^2(y)=1+ \tan^2(y)$ e substituindo-se $y=\arctan(x)$, obtém-se: $\tan^2(y)=x^2$. De (2.2.2) segue que a derivada da função arco tangente é:

$$\frac{d}{dx}\left[\arctan(x)\right] = \frac{1}{1+x^2}.$$

Exemplo 2.2.3. Obtenha a derivada das funções:

- a) $f(x) = \operatorname{arctg}(6x + 3)$
- b) $g(x) = \ln[\arctan(x)]$
- c) $h(x) = \arctan\left(\frac{1}{x^2}\right)$.

Solução:

a) Seja u(x) = 6x + 3. Portanto, u'(x) = 6 e

$$f'(x) = \frac{6}{1 + (6x + 3)^2}.$$

b) Seja $u(x) = \operatorname{arctg}(x)$. Portanto, $u'(x) = \frac{1}{1+x^2}$ e

$$g'(x) = \frac{1}{\arctan(x)[1+x^2]}.$$

c) Seja $u(x) = \frac{1}{x^2}$. Portanto, $u'(x) = -\frac{2}{x^3}$ e

$$h'(x) = \frac{1}{1 + \frac{1}{x^4}} \cdot \left(-\frac{2}{x^3}\right) = -\frac{2x}{x^4 + 1}.$$

2.2.4 Derivada da função arco cotangente

Seja u=f(x). Aplicando a regra da cadeia, a derivada da função arco cotangente é

$$\frac{d}{dx}\left[\operatorname{arccotg}(u)\right] = -\frac{1}{1+u^2} \cdot \frac{du}{dx}.$$

Em particular, se u = x tem-se

$$\frac{d}{dx}\left[\operatorname{arccotg}(x)\right] = -\frac{1}{1+x^2}.$$

Exemplo 2.2.4. Calcule a derivada das funções trigonométricas inversas:

- a) $f_1(x) = \operatorname{arccotg}(3e^{5x})$
- b) $f_2(x) = \operatorname{arccotg}[x^2 \ln(x)]$
- c) $f_3(x) = \operatorname{sen}(x) \cdot \operatorname{arccotg}(\sqrt{x})$.

Solução:

a) Seja $u(x) = 3e^{5x}$. Portanto, $u'(x) = 15e^{5x}$ e

$$f_1'(x) = -\frac{15e^{5x}}{1 + 9e^{10x}}.$$

b) Seja $u(x) = x^2 \ln(x)$. Portanto, $u'(x) = 2x \ln(x) + x = x(2 \ln(x) + 1)$ e

$$f_2'(x) = -\frac{x(2\ln(x) + 1)}{1 + x^4 \ln^2(x)}.$$

c) Seja $u(x) = \sqrt{x}$. Portanto, $u'(x) = \frac{1}{2\sqrt{x}}$ e

$$f_3'(x) = \cos(x)\operatorname{arccotg}(x) - \frac{\sin(x)}{2\sqrt{x}(1+x)}.$$

Exercício 2.2.2. Mostre que: $\frac{d}{dx} \left[\operatorname{arccotg}(x) \right] = -\frac{1}{1+x^2}$.

2.2.5 Derivada da função arco secante

Seja u=f(x). Aplicando a regra da cadeia, a derivada da função arco secante é:

$$\frac{d}{dx}\left[\operatorname{arcsec}(u)\right] = \frac{1}{u\sqrt{u^2 - 1}} \cdot \frac{du}{dx}, |u| < 1.$$

Em particular, se f(x) = x tem-se

$$\frac{d}{dx}\left[\operatorname{arcsec}(x)\right] = \frac{1}{x\sqrt{x^2 - 1}}, |x| < 1.$$

Demonstração:

Se u = x.

Determina-se a derivada de $y = \operatorname{arcsec}(x)$, escrevendo:

$$\sec(y) = x.$$

Derivando ambos lados em relação a x:

$$\frac{d}{dx}\left[\sec(y)\right] = \frac{d}{dx}(x).$$

Através da regra da cadeia:

$$\sec(y) \cdot \operatorname{tg}(y) \frac{dy}{dx} = 1.$$

Isolando $\frac{dy}{dx}$, obtém-se:

$$\frac{dy}{dx} = \frac{1}{\sec(y) \cdot \tan(y)}.$$
 (2.2.3)

 ${\rm Com~sec}(y)=x~{\rm e~sec}^2\,y=1+{\rm tg}^2(y),~{\rm ent\~ao~\'e~poss\'evel~escrever~tg^2}(y)=\\ \sec^2(y)-1,~{\rm ou~seja,~tg}(x)=\sqrt{\sec^2(y)-1},~{\rm chega-se~a:}$

$$\frac{dy}{dx} = \frac{1}{x\sqrt{\sec^2(y) - 1}}.$$

Usando o fato que sec(y) = x e o resultado (2.2.3), tem-se:

$$\frac{d}{dx}[\operatorname{arcsec}(x)] = \frac{1}{u\sqrt{u^2 - 1}}.$$

Exemplo 2.2.5. Diferencie:

- a) $f(x) = \operatorname{arcsec}(x+3)$
- b) $g(x) = x \cdot \operatorname{arcsec}(x^2)$
- c) $h(x) = \cos(x) \cdot \operatorname{arcsec}(x)$.

Solução:

a) Seja u(x) = x + 3. Portanto, u'(x) = 1 e

$$f'(x) = \frac{1}{(x+3)\sqrt{(x+3)^2 - 1}}.$$

b) Pela regra da derivada de um produto de funções e pela regra da cadeia, tem-se

$$g'(x) = \operatorname{arcsec}(x^2) + \frac{2}{\sqrt{x^4 - 1}}.$$

c) Pela regra da derivada de um produto de funções, tem-se

$$h'(x) = \cos(x) \frac{1}{x\sqrt{x^2 - 1}} - \sin(x)\operatorname{arcsec}(x).$$

2.2.6 Derivada da função arco cossecante

Seja u=f(x). Aplicando a regra da cadeia, a derivada da função arco cossecante é:

$$\frac{d}{dx}\left[\operatorname{arccosec}(u)\right] = -\frac{1}{u\sqrt{u^2 - 1}} \cdot \frac{du}{dx}, |u| < 1.$$

Em particular, se u = x tem-se

$$\frac{d}{dx}\left[\operatorname{arccosec}(x)\right] = -\frac{1}{x\sqrt{x^2 - 1}}, |x| < 1.$$

Exemplo 2.2.6. Obtenha a derivada das funções:

a)
$$f(x) = \operatorname{arccosec}(x^3)$$

b)
$$g(x) = \ln[\arccos(x)]$$

c)
$$h(x) = \arccos(e^{5x})$$
.

Solução:

a) Seja $u(x) = x^3$. Portanto, $u'(x) = 3x^2$ e

$$f'(x) = -\frac{3}{x\sqrt{x^6 - 1}}.$$

b) Seja $u(x) = \arccos(x)$. Portanto, $u'(x) = -\frac{1}{x\sqrt{x^2 - 1}}$ e

$$g'(x) = -\frac{1}{(x\sqrt{x^2 - 1})\operatorname{arccosec}(x)}.$$

c) Seja $u(x) = e^{5x}$. Portanto, $u'(x) = 5e^{5x}$ e

$$h'(x) = -\frac{5}{\sqrt{e^{10x} - 1}}.$$

Exercício 2.2.3. Mostre que $\frac{d}{dx}[\operatorname{arccosec}(x)] = -\frac{1}{x\sqrt{x^2 - 1}}$.

2.3 Lista de Exercícios - Parte 1 e Parte 2

1. Calcule a derivada das funções:

a)
$$f(x) = 4\sqrt[5]{x} - 3\sqrt{x} + \frac{2}{x^2} - 3$$

$$b)f(x) = 4^x \operatorname{arcsen}(x)$$

$$c)f(x) = \ln(x) \cdot tg(x)$$

$$d)f(x) = \sqrt{x}\ln(x^6 + 3)$$

$$e)f(x) = x^2 \ln(x) \arcsin(x)$$

f)
$$f(x) = \frac{\cosh(x)}{5x^4 + 3x^3 + 2x - 7}$$

$$g)f(x) = \frac{\operatorname{sen}(x) + e^x}{x+2}$$

$$h)f(x) = \frac{3\cos(x) + 4\sqrt{x}}{e^x}$$

$$i) f(x) = 3^x + e^{\cos(x)} + \log_3(x)$$

$$j)f(x) = \frac{(x^4 - 2x) \cdot \text{sen}(x)}{\sqrt{x}}$$

$$\mathbf{k})f(x) = \sqrt{\cos(x)}$$

$$1)f(x) = e^{\cos(x^2)}$$

$$\mathbf{m})f(x) = \cos(\log_3(x)) + \operatorname{tg}\left(\frac{1}{x^5}\right) - 4$$

$$f(x) = \cos(e^{\frac{1}{x}} + 2^x)$$

$$o) f(x) = [\ln(x) \cdot \operatorname{tg}(x)]^3$$

$$p)f(x) = [tg(x)]^{e^x + 4}$$

$$q) f(x) = [sen(x)]^{2x^x - x + 3}$$

r)
$$f(x) = (x^4 - 3x^2 - 5)^{\operatorname{tg}(x)}$$

$$s)f(x) = \arctan(x) - 5^x - 9 \cdot \operatorname{sen}\left(\frac{1}{x^2}\right) + \operatorname{senh}(2x) \quad t)f(x) = \frac{\operatorname{sen}(x^2)}{\sqrt{2x+1}}.$$

$$t)f(x) = \frac{\operatorname{sen}(x^2)}{\sqrt{2x+1}}.$$

- 2. Considere $f(x) = x^3 3x^2 x + 5$, obtenha a equação da reta tangente e da reta normal ao gráfico de f(x) o ponto A(3,2).
- 3. Seja $f(x) = 2 x x^2$. Determine a equação da reta tangente ao gráfico de f(x) que seja paralela à reta y = x - 4.
- 4. Em que ponto a reta tangente à parábola $y = x^2 7x + 3$ é paralela à reta 5x + y - 3 = 0?
- 5. Escreva a equação da reta tangente à curva $y=\sqrt{4x-3}-1$ que seja perpendicular à reta x + 2y - 11 = 0.
- 6. Determine, se houver, os pontos da curva $y = 3x^4 + 4x^3 12x^2 + 20$ nos quais a reta tangente é horizontal.

- 7. Influências externas produzem uma aceleração numa partícula de tal forma que a equação de seu movimento retilíneo é $y=\frac{b}{t}+ct$, onde y é o deslocamento e o t é o tempo. Responda:
- a) Qual é a velocidade da partícula quando t = 2?
- b) Qual é a equação da aceleração dessa partícula?
- 8. Considere a função: $g(x) = \begin{cases} 5x, & x < 2 \\ 5x + 20, & x \ge 2. \end{cases}$
- a) A função g(x) é contínua? Justifique sua resposta.
- b) A função g(x) é diferenciável? Justifique sua resposta.
- 9. Determine $\frac{dy}{dx}$ das funções implícitas:

$$a) y^3 = \frac{x - y}{x + y}$$

b)
$$y^2 = 4px$$
.

Respostas da Lista

1.

a)
$$\frac{4}{5x^{\frac{4}{5}}} - \frac{3}{2\sqrt{x}} - \frac{4}{x^3}$$

b)
$$4^x \ln(4) \arcsin(x) + \frac{4^x}{\sqrt{1-x^2}}$$

c)
$$\frac{\operatorname{tg}(x)}{x} + \ln(x) \sec^2(x)$$

d)
$$\frac{6x^{\frac{11}{2}}}{x^6+3} + \frac{\ln(x^6+3)}{2\sqrt{x}}$$

e)
$$x \operatorname{arcsen}(x) + \frac{x^2 \ln(x)}{\sqrt{1-x^2}} + 2x \cdot \operatorname{arcsen}(x) \ln(x)$$

f)
$$\frac{\operatorname{senh}(x)}{5x^4 + 3x^3 + 2x - 7} - \frac{\cosh(x)(20x^3 + 9x^2 + 2)}{(5x^4 + 3x^3 + 2x - 7)^2}$$

g)
$$\frac{\cos(x) + e^x}{x+2} - \frac{\sin(x) + e^x}{(x+2)^2}$$

h)
$$\frac{-3\text{sen}(x) + \frac{2}{\sqrt{x}}}{e^x} - \frac{3\cos(x) + 4\sqrt{x}}{e^x}$$

i)
$$3^x \ln(3) - e^{\cos(x)} \operatorname{sen}(x) + \frac{1}{x \ln(3)}$$

j)
$$\frac{(x^4 - 2x)\cos(x)}{\sqrt{x}} + \frac{(4x^3 - 2)\sin(x)}{\sqrt{x}} - \frac{(x^4 - 2x)\sin(x)}{2x^{\frac{3}{2}}}$$

$$k) - \frac{\operatorname{sen}(x)}{2\sqrt{\cos(x)}}$$

1)
$$-2x \cdot e^{\cos(x^2)} \operatorname{sen}(x^2)$$

m)
$$-\frac{\operatorname{sen}\left(\frac{\ln(x)}{\ln(3)}\right)}{x\ln(3)} - \frac{5\operatorname{sec}^2(1/x^5)}{x^6}$$

n)
$$\operatorname{sen}(e^{1/x} + 2^x) \left(\frac{e^{1/x}}{x^2} - 2^x \ln(2) \right)$$

o)
$$3\ln^3(x)\sec^2(x)\operatorname{tg}^2(x) + \frac{3\ln^2(x)\operatorname{tg}^3(x)}{x}$$

p)
$$[e^x \ln(tg(x)) + \sec^2(x)\cot(x)(e^x + 4)][tg(x)]^{e^x + 4}$$

q)
$$[sen(x)]^{2x^x-x+3} \{ (2x^x - x + 3)cotg(x) + ln[sen(x)][2x^x(ln(x) + 1) - 1] \}$$

r)
$$(x^4 - 3x^2 - 5)^{\operatorname{tg}(x)} \left[\sec^2(x) \ln(x^4 - 3x^2 - 5) + \operatorname{tg}(x) \frac{4x^3 - 6x}{x^4 - 3x^2 - 5} \right]$$

s)
$$\frac{1}{1+x^2} - 5^x \ln(5) + \frac{18\cos\left(\frac{1}{x^2}\right)}{x^3} + 2\cosh(2x)$$

t)
$$\frac{2x\cos(x^2)}{\sqrt{2x+1}} - \frac{\sin(x^2)}{(2x+1)^{\frac{3}{2}}}$$
.

2. Reta tangente, 8x - y - 22 = 0 Reta normal, x + 8y - 19 = 0.

3.
$$x - y + 3 = 0$$
.

4.
$$P = (1, -3)$$
.

5.
$$2x - y - 2 = 0$$

6.
$$(1,15);(-2,-12);(0,20).$$

7.

a)
$$v(2) = -\frac{b}{4} + c$$

b)
$$a(t) = \frac{2b}{t^3}$$
.

8.

- a) Não
- b) Não.
- 9.
- a) $\frac{dy}{dx} = \frac{1 y^3}{3xy^2 + 4y^3 + 1}$
- b) $\frac{dy}{dx} = \frac{2p}{y}$.

Capítulo 3

Derivadas de Funções Reais de uma Variável

3.1 Derivadas Sucessivas

A derivada f'(x) de uma função é novamente uma função, que pode ter a sua própria derivada. Se f'(x) for derivável, então a sua derivada é denotada por f''(x) e é denominada segunda derivada da função f. Enquanto houver a diferenciabilidade das funções obtidas, pode-se continuar este processo de derivação obtendo-se as chamadas derivadas sucessivas de f(x). As derivadas sucessivas de uma função f(x) podem ser denotadas por

Primeira derivada	f'(x)	y'	$\frac{dy}{dx}$	$\frac{df(x)}{dx}$
Segunda derivada	f''(x)	y''	$\frac{d^2y}{dx^2}$	$\frac{d^2f(x)}{dx^2}$
Terceira derivada	f'''(x)	<i>y'''</i>	$\frac{d^3y}{dx^3}$	$\frac{d^3f(x)}{dx^3}$
<u>:</u>	:	÷	:	÷
N-ésima derivada	$f^{(n)}(x)$	y^n	$\frac{d^n y}{dx^n}$	$\frac{d^n f(x)}{dx^n}$

Exemplo 3.1.1. Calcule todas as derivadas de $y = x^6$. Solução:

Pode-se observar que $y=x^6$ é um polinômio de grau 6. Calculando todas as derivadas da função, obtém-se:

$$y' = 6x^{5}$$

$$y'' = 30x^{4} = 6 \cdot 5 \cdot x^{4}$$

$$y''' = 120x^{3} = 6 \cdot 5 \cdot 4 \cdot x^{3}$$

$$y^{(iv)} = 360x^{2} = 6 \cdot 5 \cdot 4 \cdot 3 \cdot x^{2}$$

$$y^{(v)} = 720x = 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot x$$

$$y^{(vi)} = 720$$

 $y^{(vii)} = 0$ e a partir daqui todas as derivadas são nulas.

Exemplo 3.1.2. Calcule:

a)
$$\frac{d^2}{dx^2} \left(\frac{1-x}{1+x} \right)$$

b)
$$\frac{d^{500}}{dx^{500}}(x^{131} - 3x^{79} + 4)$$

c)
$$f'''(x)$$
, se $f(x) = \ln(x+1)$

d)
$$y''$$
, se $y = \ln\left(\frac{e^x}{e^x + 1}\right)$

e)
$$\frac{d^2}{dx^2}[x \cdot \arcsin(x)]$$

f)
$$f''(x)$$
 se $f(x) = \frac{x^3}{1-x}$.

Solução:

a) Deve-se calcular a segunda derivada da função $y = \left(\frac{1-x}{1+x}\right)$. Antes disso, calcula-se a primeira derivada, isto é $\frac{dy}{dx}$.

Aplicando a regra da derivada do quociente (1.5.10) para v = 1 + x e u = 1 - x, tem-se:

$$\frac{d}{dx} \left(\frac{u}{v} \right) = \frac{v \cdot u' - u \cdot v'}{v^2}
= \frac{(1+x) \cdot (1-x)' - (1-x) \cdot (1+x)'}{(1+x)^2}
\frac{d}{dx} \left(\frac{1-x}{1+x} \right) = \frac{-2}{x^2 + 2x + 1}.$$
(3.1.1)

Uma vez calculada a primeira derivada, pode-se reescrever $\frac{dy}{dx} = -\frac{2}{(1+x)^2}$. Deriva-se a equação (3.1.1) novamente obtendo-se a segunda derivada, ou seja,

 $\frac{d^2y}{dx^2}$. Aplicando a regra da derivada do quociente (1.5.10) para $v=x^2+2x+1=(x+1)^2$ e u=-2, tem-se:

$$\frac{d^2}{dx^2} \left(\frac{1-x}{1+x} \right) = \frac{(x^2 + 2x + 1) \cdot (-2)' + 2 \cdot (x^2 + 2x + 1)'}{(x^2 + 2x + 1)^2}$$

$$\frac{d^2}{dx^2} \left(\frac{1-x}{1+x} \right) = \frac{4}{x+1}.$$

b) Observa-se que o grau do maior expoente da função é 131, mas 131 é menor que 500 logo:

$$\frac{d^{500}}{dx^{500}}(x^{131} - 3x^{79} + 4) = 0. (3.1.2)$$

c) Deseja-se calcular f'''(x). Primeiramente calcula-se f'(x). Aplicando-se a regra da derivada da função logarítmica (1.5.5), com u = x + 1, tem-se

$$f'(x) = \frac{1}{(x+1)} \cdot (x+1)'$$

$$= \frac{1}{(x+1)} \cdot 1$$

$$f'(x) = \frac{1}{(x+1)}.$$
(3.1.3)

d) Deseja-se calcular y'', isto é a segunda derivada da função $y = \ln\left(\frac{e^x}{e^x + 1}\right)$. Primeiramente calcula-se y', aplicando-se a regra da derivada da função logarítmica (1.5.5), onde $u = \left(\frac{e^x}{e^x + 1}\right)$:

$$y' = \frac{1}{\left(\frac{e^x}{e^x+1}\right)} \cdot \left(\frac{e^x}{e^x+1}\right)'$$

$$y' = \frac{1}{e^x+1}$$
(3.1.4)

Para se obter a segunda derivada da função y, basta derivar novamente a função. Então, aplicando-se a regra da derivada do quociente (1.5.12), para u=1 e $v=e^x+1$, tem-se

$$y'' = \frac{e^x}{(e^x + 1)^2}.$$

e) Deseja-se calcular a segunda derivada da função $y = x \cdot \arcsin(x)$, isto é, $\frac{d^2y}{dx^2}$. Inicialmente calcula-se a primeira derivada de y aplicando-se a regra da derivada do produto, com u = x e $v = \arcsin(x)$,

$$\frac{d}{dx}[x \cdot \arcsin(x)] = \arcsin(x) + \frac{x}{\sqrt{1 - x^2}}.$$

Calculando-se a segunda derivada, uma vez aplicada as regras da derivada da soma e da derivada do produto, obtém-se:

$$\frac{d^2}{dx^2}[x \cdot \arcsin(x)] = \frac{2}{\sqrt{1-x^2}} + \frac{1}{\sqrt{(1-x^2)^3}}.$$

f) Deseja-se calcular f''(x), então calcula-se a primeira derivada, isto é, f'(x).

Para $u=x^3$ e v=1-x, aplicando-se a regra da derivada do quociente (1.5.12), tem-se:

$$f'(x) = \frac{(1-x) \cdot (x^3)' - x^3 \cdot (1-x)'}{(1-x)^2}$$

$$= \frac{(1-x) \cdot 3x^2 + x^3}{(1-x)^2}$$

$$= \frac{3x^2 - 3x^3 + x^3}{(x^2 - 2x + 1)}$$

$$f'(x) = \left(\frac{3x^2 - 2x^3}{x^2 - 2x + 1}\right). \tag{3.1.5}$$

Uma vez calculada a derivada primeira, deriva-se (3.1.5) novamente obtendo a derivada segunda, ou seja, f''(x), sabendo que $u = 3x^2 - 2x^3$ e que $v = (x^2 - 2x + 1)$, por (1.5.12), tem-se:

$$f''(x) = \frac{(x^2 - 2x + 1) \cdot (3x^2 - 2x^3)' - (3x^2 - 2x^3) \cdot (x^2 - 2x + 1)'}{(x^2 - 2x + 1)^2}$$

$$= \frac{(x^2 - 2x + 1) \cdot (6x - 6x^2) - (3x^2 - 2x^3) \cdot (2x - 2)}{(x^2 - 2x + 1)^2}$$

$$f''(x) = \frac{-2x^3 + 6x^2 - 6x}{x^3 - 3x^2 + 3x - 1}.$$
(3.1.6)

Exemplo 3.1.3. Mostre que a função $y = 2\text{sen}(x) + 3\cos(x)$ satisfaz à equação y'' + y = 0.

Solução:

Inicialmente calculam-se y' e y''.

Calculando-se y', tem-se:

$$y' = 2\cos(x) - 3\sin(x).$$

Deriva-se novamente y' e obtém-se y'':

$$y'' = -2\operatorname{sen}(x) - 3\cos(x).$$

Substituindo y'' e y na equação y'' + y = 0, tem-se:

$$y'' + y = -2\operatorname{sen}(x) - 3\cos(x) + 2\operatorname{sen}(x) + 3\cos(x) = 0.$$

3.2 Derivadas de Funções Paramétricas

Função na forma paramétrica

Em determinadas situações, ao invés de descrever uma curva expressando a ordenada de um ponto P(x,y) dessa curva em função de x, é conveniente descrevê-la expressando ambas coordenadas em função de uma terceira variável t.

Se x e y são definidos como funções x = f(t) e y = g(t) para um intervalo de valores de t, então o conjunto de pontos (x,y) = (f(t),g(t)) definido por essas equações é uma curva parametrizada. As equações são chamadas de equações paramétricas da curva.

A variável t é um parâmetro para a curva e seu domínio I é o intervalo do parâmetro. Se I for um intervalo fechado, $a \leq t \leq b$, o ponto (f(a), g(a)) é o ponto inicial da curva e (f(b), g(b)) é o ponto final. As equações paramétricas e o intervalo para o parâmetro de uma curva constituem a parametrização da curva.

Derivadas de funções na forma paramétrica

Uma curva parametrizada x=f(t) e y=g(t) será derivável em t se x e y forem deriváveis em t. Em um ponto de uma curva parametrizada derivável, onde y também é função derivável de x, as derivadas $\frac{dy}{dt}, \frac{dx}{dt}$ e $\frac{dy}{dx}$ estão relacionadas com a regra da cadeia: $\frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt}$.

Se $\frac{dx}{dt} \neq 0$, segue que:

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}.$$

As derivadas sucessivas de uma função na forma paramétrica são definidas como:

Segunda derivada
$$\frac{d^2y}{dx^2} = \frac{\frac{d}{dt}\left(\frac{dy}{dx}\right)}{\frac{dx}{dt}}$$
Terceira derivada
$$\frac{d^3y}{dx^3} = \frac{\frac{d^2}{dt^2}\left(\frac{dy}{dx}\right)}{\frac{dx}{dt}}$$

$$\vdots \qquad \vdots$$

N-ésima derivada
$$\frac{d^{n}y}{dx^{n}} = \frac{\frac{d^{n-1}}{dt^{n-1}} \left(\frac{dy}{dx}\right)}{\frac{dx}{dt}}$$

Exemplo 3.2.1. Calcule $\frac{dy}{dx}$ para as funções escritas na forma paramétrica:

a)
$$\begin{cases} x = 2t + 1 \\ y = 4t + 3 \end{cases}, t \in \mathbb{R}$$

b)
$$\begin{cases} x = a(t - \operatorname{sen}(t)) \\ y = a(1 - \cos(t)) \end{cases}, 0 \le t \le 2\pi$$

c)
$$\begin{cases} x = \ln(t) \\ y = t^3 \end{cases}, t > 0.$$

Solução:

a)
$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{4}{2} = 2.$$

b)
$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{a\mathrm{sen}(t)}{a - a\cos(t)} = \frac{\mathrm{sen}(t)}{1 - \cos(t)}.$$

c)
$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dt}{dt}} = \frac{3t^2}{\frac{1}{t}} = 3t^3.$$

Exemplo 3.2.2. Um avião da Cruz Vermelha lança suprimentos alimentares e medicamentos em uma área de desastre. Se o avião lançar os suprimentos imediatamente acima do limite inicial de um campo aberto de 700 m de comprimento, e considerando que a carga se desloca para frente durante a queda, segundo a função paramétrica $s(t) = \begin{cases} x = 120t \\ y = -16t^2 + 500 \end{cases}$, $t \ge 0$, sabendo que as coordenadas x e y são medidas em metros e o parâmetro t (tempo após o lançamento), em segundos, responda:

- a) A carga cairá dentro do campo?
- b) Qual é a equação cartesiana para a trajetória da carga lançada e a taxa de queda da carga em relação ao seu movimento para diante quando ela atinge o solo?

Solução:

a) A carga atinge o solo quando y=0, ou seja, quando $y=-16t^2+500=0$. Logo, $t=\frac{5\sqrt{5}}{2}{\rm s}.$

A abscissa no instante do lançamento é x=0. Quando a carga atinge o solo $x=120\cdot\left(\frac{5\sqrt{2}}{2}\right)=300\sqrt{5}$ m $\cong 670, 8$ m< 700 m.

Logo, a carga cai dentro do campo.

b) A equação cartesiana será obtida através da substituição de t por $t=\frac{x}{120}$ na equação de y.

Isto é,
$$y = -16\left(\frac{x}{120}\right)^2 = -\frac{x^2}{900} + 500.$$

A taxa de queda em relação ao seu movimento para frente será dado por $\frac{dy}{dx}$. O cálculo pode ser realizado de duas maneiras:

1. Usando a forma paramétrica

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = -\frac{32t}{120} = -\frac{4}{15}t.$$

2. Usando a equação cartesiana

$$\frac{dy}{dx} = \frac{d}{dx} \left(-\frac{x^2}{900} + 500 \right) = -\frac{1}{450}x.$$

A taxa de queda da carga em relação ao seu movimento para frente no instante em que a carga atinge o solo $(x=300\sqrt{5} \text{ m ou } t=\frac{5\sqrt{5}}{2} \text{ s})$ é:

$$\frac{dy}{dt}\Big|_{t=\frac{5\sqrt{5}}{2}} = -\frac{4}{15} \cdot \frac{5\sqrt{5}}{2}$$
$$= -\frac{2}{3}\sqrt{5}$$
$$\cong -1, 59.$$

Logo, a taxa de queda da carga em relação ao seu movimento para frente é de aproximadamente -1,59 m/s.

Exercício 3.2.1. Calcule a derivada que se pede para as funções escritas na forma paramétrica:

a)
$$\frac{dy}{dx}$$
,
$$\begin{cases} x = 3t - 1 \\ y = 9t^2 - 6t \end{cases}$$
, $t \in \mathbb{R}$

b)
$$\frac{dy}{dx}, \begin{cases} x = \frac{3at}{1+t^2} \\ y = \frac{3at^2}{1+t} \end{cases}, t > 0$$

c)
$$\frac{d^2y}{dx^2}$$
,
$$\begin{cases} x = e^t \cos(t) \\ y = e^t \operatorname{sen}(t) \end{cases}$$
, $t \in [0, 2\pi]$.

Respostas do exercício

3.2.1.

a)
$$\frac{dy}{dx} = 6t - 2$$

b)
$$\frac{dy}{dx} = \frac{t(t+2)\cdot(1+t^2)^2}{(1+t)^2\cdot(1-t^2)}$$

c)
$$\frac{d^2y}{dx^2} = \frac{2e^{-t}}{(\cos(t) - \sin(t))^3}$$
.

3.3 Lista de Exercícios

1. Calcule a derivada que se pede das funções paramétricas:

a)
$$\frac{dy}{dx}$$
,
$$\begin{cases} x = e^t \cos(t) \\ y = e^t \operatorname{sen}(t) \end{cases}$$
, $t \in [0, 2\pi]$

b)
$$\frac{dy}{dx}$$
, $\begin{cases} x = t \ln(t) \\ y = \frac{\ln(t)}{t} \end{cases}$, $t > 0$

- 2. Obtenha a derivada de ordem indicada de cada função:
 - a) $\frac{d^3y}{dx^3}$, $y = e^{ax}$
 - b) f''(x), $f(x) = (1 + x^2) \operatorname{arctg}(x)$
 - c) $y'', y = \frac{\sin(2x)}{x+1}$.
- 3. Verifique se a função $y = \frac{1}{1+x+\ln(x)}$ satisfaz à equação $xy' = y[\ln(x)-1]$.
- 4. Numa granja experimental constatou-se que a massa de uma ave em desenvolvimento, em gramas, é dada pela função $M(t) = \begin{cases} 20 + \frac{1}{2}(t+4)^2, & 0 \le t \le 60 \\ 24, 4t + 604, & 60 \le t \le 90 \end{cases}$ onde t é medido em dias. Responda:
 - a) Qual é a razão de aumento de massa da ave quando t = 50?
 - b) Quanto a massa da ave aumentará no 51° dia?
 - c) Qual é a razão de aumento de massa da ave quando t = 80?
- 5. Suponha que f(1) = 1, f'(1) = 3, f''(1) = 6 e que f'''(x) = 0, para todo x, prove que $f(x) = 3x^2 3x + 1$.
- 6. Se $f(x) = x^3 2x^2 x$, para que valores de x, f'(x) = f''(x)?

Respostas dos Exercícios

1.

a)
$$\frac{dy}{dx} = \frac{\sin(t) + \cos(t)}{\cos(t) - \sin(t)}$$

b)
$$\frac{dy}{dx} = \frac{1 - \ln(t)}{t^2 \cdot [1 + \ln(t)]}$$

2

a)
$$\frac{d^3y}{dx^3} = a^3e^{ax}$$

b)
$$f''(x) = \frac{2x}{1+x^2} + 2\arctan(x)$$

c)
$$y'' = \frac{(-4x^2 - 8x - 2) \cdot \text{sen}(2x) - 4(x+1)\cos(2x)}{(x+1)^3}$$

- 4. a) 54 b) 1 c) 24, 4.
- 6. x = 3 ou $x = \frac{1}{3}$.

3.4 Propriedades das Funções Deriváveis

Anteriormente estudou-se que a derivada de uma função pode ser interpretada como o coeficiente angular da reta tangente ao seu gráfico. Nesta seção, serão exploradas algumas propriedades das funções deriváveis.

1. Teorema de Rolle (Michel Rolle: 1652 - 1719)

Se f(x) é uma função contínua no intervalo fechado [a,b] e é diferenciável no intervalo aberto (a,b), se f(a)=f(b), então existe pelo menos um número c em (a,b) tal que f'(c)=0.

Demonstração:

Sejam f(a) = d = f(b). Neste caso, existem três possibilidades para f(x):

<u>Caso 1:</u> Se f(x) = d para todo x em [a, b], então f é constante no intervalo, e, pela regra de derivação de constante f'(x) = 0 para todo x em (a, b).

<u>Caso 2:</u> Se f(x) > d para algum x em (a, b), então pelo Teorema de Weierstrass¹, f atinge um máximo em algum c no intervalo. Além disso, como f(c) > d, esse máximo não é atingido nos extremos do intervalo. Portanto, f tem um máximo no intervalo aberto (a, b), o que implica que f(c) é um máximo relativo. Como f é diferenciável em c, então f'(c) = 0.

<u>Caso 3:</u> Se f(x) < d para algum x em (a,b), então pelo Teorema de Weierstrass, f atinge um mínimo em algum c no intervalo. Além disso, como f(c) < d, esse mínimo não é atingido no extremo do intervalo. Portanto, f tem um mínimo no intervalo aberto (a,b), o que implica que f(c) é um mínimo relativo. Como f é diferenciável em c, então f'(c) = 0.

 $^{^1}$ O Teorema de Weierstrass afirma que qualquer função contínua num intervalo [a,b] em $\mathbb R$ é limitada e que, além disso, tem um máximo e um mínimo.

Exercício 3.4.1. Considere a função $f(x) = x^2 - 3x + 2$.

- a) Determine os pontos de intersecção da função com o eixo x.
- b) Mostre que f'(x) = 0 em algum ponto entre suas intersecções.

Resposta do exercício

3.4.1. a) Os pontos são (1,0) e (2,0).

2. Teorema do Valor Médio ou Teorema de Lagrange

Se f(x) é uma função contínua no intervalo fechado [a,b] e é diferenciável no intervalo aberto (a, b), então existe pelo menos um número c em (a, b) com a < cc < b, tal que:

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Demonstração:

Observando a Figura 3.1. A reta secante contendo os pontos (a, f(a)) e (b, f(b)) é dada por:

$$y = \left\lceil \frac{f(b) - f(a)}{b - a} \right\rceil (x - a) + f(a).$$

Figura 3.1: Representação das retas tangentes e secante à f(x).

Seja g(x) a diferença entre f(x) e y. Então, g(x) = f(x) - y, isto é,

$$g(x) = f(x) - \left[\frac{f(b) - f(a)}{b - a}\right](x - a) - f(a).$$

Calculando g(a) e g(b), observa-se que g(a) = g(b) = 0. Além disso, como f(x) é diferenciável, pode-se aplicar o Teorema de Rolle à função g(x). Portanto, existe um número c em (a,b) tal que g'(x)=0. Isto significa que:

$$g'(c) = f'(c) - \left[\frac{f(b) - f(a)}{b - a}\right] = 0.$$

Logo, existe um número
$$c$$
 em (a,b) tal que $f'(c) = \left[\frac{f(b) - f(a)}{b-a}\right]$.

Observação 3.4.1. O Teorema do Valor Médio é mais utilizado para provar outros teoremas do que na resolução de problemas. Ele foi demonstrado por Joseph-Louis Lagrange (1736 - 1813).

Exemplo 3.4.1. Dois carros da polícia rodoviária equipados estão estacionados a 6 km um do outro em um trecho retilíneo de uma estrada. Quando um caminhão passa pelo primeiro carro, o radar marca sua velocidade como sendo de 75 km. Quatro minutos depois, o caminhão passa pelo segundo carro a 80 km. Prove que o caminhão tem que ter excedido a velocidade limite (de 80 km) em algum instante dos quatro minutos.

Solução:

Pelo Teorema do Valor Médio, se f(x) é uma função contínua no intervalo fechado [a,b] e é diferenciável no intervalo aberto (a,b), então existe pelo menos um número c em (a,b) com a < c < b, tal que $f'(c) = \frac{f(b) - f(a)}{b-a}$.

No problema, a velocidade é uma função contínua, então pelo Teorema do Valor Médio:

$$f'(c) = \frac{6-0}{\frac{4}{60} - 0} = 90$$
 km/h.

Isso significa que em algum ponto do percurso de 4 minutos o caminhão andou a 90 km/h, ou seja, excedeu a velocidade limite de 80 km/h.

Exemplo 3.4.2. Seja a função definida por $f(x) = x^3 + 2x^2 + 1$. Por cálculo direto, determine um número c entre 0 e 3 tal que a tangente ao gráfico de f no ponto A(c, f(c)) seja paralela à reta secante entre os dois pontos B(0, f(0)) e (3, f(3)). Solução:

Para determinar o coeficiente angular da reta tangente, calcula-se: $m_t = f'(c)$, logo:

$$m_t = \frac{f(3) - f(0)}{3 - 0}$$

$$= \frac{46 - 1}{3}$$
 $m_t = 15.$ (3.4.1)

Por outro lado,

$$f'(x) = 3x^2 + 4x$$

 $f'(c) = 3c^2 + 4c.$ (3.4.2)

Igualando (3.4.1) com (3.4.2), tem-se:

$$3c^2 + 4c = 15$$
.

então:

$$3c^2 + 4c - 15 = 0.$$

As raízes desta equação do 2º grau são $c_1=\frac{5}{3}$ e $c_2=-3$. Visto que c deve pertencer ao intervalo (0,3), então rejeita-se a solução c=-3. Portanto, o número desejado é $\frac{5}{3}$.

Exercício 3.4.2. Em que ponto da curva $y = \ln(x)$ a reta tangente é paralela à corda que une os pontos A(1,0) e B(e,1)?

Exercício 3.4.3. Seja a função definida por $f(x) = \frac{x^2}{6}$.

- a) Verifique a hipótese do Teorema do Valor Médio para a função f no intervalo [2,6].
- b) Determine um valor para c no intervalo (2,6) tal que $f'(c) = \frac{f(6) f(2)}{6 2}$.
- c) Interprete geometricamente o resultado do item (b) e ilustre-o graficamente.

Resposta dos Exercícios

3.4.2.
$$P(e-1, \ln(e-1))$$
.

3.4.3. b)
$$c = 4$$

3. Teorema de Cauchy

Se as funções f(x) e g(x):

- a) são contínuas no intervalo [a, b],
- b) são deriváveis no intervalo (a, b),

c)
$$g'(x) \neq 0, \forall x \in (a, b),$$

então existe pelo menos um ponto $c \in (a, b), a < c < b$, tal que:

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}, a < c < b.$$

Demonstração:

Seja Q o valor de:

$$Q = \frac{f(b) - f(a)}{g(b) - g(a)},$$

onde $g(b) - g(a) \neq 0$. Construindo uma função F(x),

$$F(x) = f(x) - f(a) - Q[g(x) - g(a)].$$

Dessa construção, temos que F(a)=0 e F(b)=0. Consequentemente, F(x) satisfaz às condições do Teorema de Rolle. Então, existe um ponto x=c, onde F(c)=0. Mas,

$$F'(x) = f'(x) - Qg'(x).$$

Então

$$F'(c) = f'(c) - Qg'(c) = 0,$$

logo,

$$Q = \frac{f'(c)}{g'(c)}.$$

Substituindo Q pela sua definição, tem-se:

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}.$$

4. Teorema de L'Hospital

Sejam f(x) e g(x) funções diferenciáveis em um intervalo aberto (a,b) contendo x_0 , com a possível exceção de x_0 , se $\lim_{x\to x_0} \frac{f(x)}{g(x)}$ produz uma fórmula indeterminada $\frac{0}{0}$ ou $\frac{\infty}{\infty}$, então para $g'(x_0)\neq 0$,

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)} = \frac{f'(x_0)}{g'(x_0)},$$

desde que o limite à direita exista (ou seja infinito).

Demonstração:

Supondo que $f(x_0) = g(x_0) = 0$, então:

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{\frac{f(x)}{x - x_0}}{\frac{g(x)}{x - x_0}}$$

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{f'(x)}{g'(x)}.$$
(3.4.3)

3.5 Cálculo dos Limites Indeterminados

3.5.1 Formas $\frac{0}{0}$ e $\frac{\infty}{\infty}$

Derivam-se o numerador e o denominador separadamente, conforme o Teorema de L'Hospital. Para os exemplos a seguir, sempre que for usado o Teorema de L'Hospital haverá "LH" na igualdade. As igualdades sem esta indicação serão apenas simplificações das expressões anteriores

Exemplo 3.5.1. Calcule os limites utilizando o Teorema de L'Hospital.

a)
$$\lim_{x \to 0} \frac{\operatorname{tg}(x) - x}{x - \operatorname{sen}(x)}$$

b)
$$\lim_{y \to 0} \frac{1 - \cos(y) - \frac{y^2}{2}}{y^4}$$

c)
$$\lim_{x\to 2} \frac{e^{x-2} - e^{2-x}}{\operatorname{sen}(x-2)}$$

$$d) \lim_{x \to 0} \frac{a^x - b^x}{x}$$

e)
$$\lim_{x \to 0} \frac{\ln[\text{sen}(x)]}{\ln[\text{tg}(x)]}$$

f)
$$\lim_{x \to +\infty} \frac{\ln(x)}{x}$$
.

Solução:

a)

$$\lim_{x \to 0} \frac{\operatorname{tg}(x) - x}{x - \operatorname{sen}(x)} \stackrel{LH}{=} \lim_{x \to 0} \frac{\operatorname{sec}^{2}(x) - 1}{1 - \operatorname{cos}(x)}$$

$$\stackrel{LH}{=} \lim_{x \to 0} \frac{2 \operatorname{sec}^{2}(x) \operatorname{tg}(x)}{\operatorname{sen}(x)}$$

$$= \lim_{x \to 0} 2 \frac{1}{\operatorname{cos}^{2}(x)} \frac{1}{\operatorname{sen}(x)} \frac{\operatorname{sen}(x)}{\operatorname{cos}(x)}$$

$$= 2$$
(3.5.1)

b)

$$\lim_{y \to 0} \frac{1 - \cos(y) - \frac{y^2}{2}}{y^4} \stackrel{LH}{=} \lim_{y \to 0} \frac{\cos(y) - 1}{12y^2}$$

$$\stackrel{LH}{=} \lim_{y \to 0} -\frac{\sin(y)}{24y}$$

$$\stackrel{LH}{=} \lim_{y \to 0} -\frac{\cos(y)}{24}$$

$$= -\frac{1}{24}.$$
(3.5.2)

c)

$$\lim_{x \to 2} \frac{e^{x-2} - e^{2-x}}{\operatorname{sen}(x-2)} \stackrel{LH}{=} \lim_{x \to 2} \frac{e^{x-2} + e^{2-x}}{\operatorname{cos}(x-2)}$$

$$= \frac{2}{1} = 2. \tag{3.5.3}$$

d)

$$\lim_{x \to 0} \frac{a^x - b^x}{x} \stackrel{LH}{=} \lim_{x \to 0} \frac{a^x \ln(a) - b^x \ln(b)}{1}$$

$$= \ln(a) - \ln(b). \tag{3.5.4}$$

e)

$$\lim_{x \to 0} \frac{\ln[\operatorname{sen}(x)]}{\ln[\operatorname{tg}(x)]} \stackrel{LH}{=} \lim_{x \to 0} \frac{\frac{\cos(x)}{\operatorname{sen}(x)}}{\frac{\operatorname{sec}^{2}(x)}{\operatorname{tg}(x)}}$$

$$= \frac{\cos(x)}{\operatorname{sen}(x)} \frac{\operatorname{sen}(x)}{\cos(x)} \cos^{2}(x)$$

$$= 1. \tag{3.5.5}$$

f)

$$\lim_{x \to +\infty} \frac{\ln(x)}{x} \stackrel{LH}{=} \lim_{x \to +\infty} \frac{\frac{1}{x}}{1}$$

$$= \frac{1}{x} = 1. \tag{3.5.6}$$

Formas $+\infty - \infty$, $-\infty + \infty$, $0 \cdot \infty$ 3.5.2

Por artifícios algébricos, procura-se chegar às indeterminações $\frac{0}{0}$ ou $\frac{\infty}{\infty}$.

Exemplo 3.5.2. Calcule os limites, utilizando o Teorema de L'Hospital.

a)
$$\lim_{x \to 1} \left[\frac{x}{x-1} - \frac{1}{\ln(x)} \right]$$

b)
$$\lim_{x \to 1} \left[(1 - x) \operatorname{tg}\left(\frac{\pi x}{2}\right) \right]$$

c) $\lim_{x\to 0} [x^n \ln(x)].$

Solução:

a) Inicia-se escrevendo como o quociente de duas funções:

$$\lim_{x \to 1} \left[\frac{x}{x - 1} - \frac{1}{\ln(x)} \right] = \lim_{x \to 1} \left[\frac{x \ln(x) - x + 1}{(x - 1) \ln(x)} \right]$$

$$\stackrel{LH}{=} \lim_{x \to 1} \left[\frac{\ln(x) + 1 - 1}{\ln(x) + \frac{x - 1}{x}} \right]$$

$$\stackrel{LH}{=} \lim_{x \to 1} \frac{\frac{1}{x}}{\frac{1}{x} + \frac{x - (x - 1)}{x^2}}$$

$$= \frac{1}{2}$$
(3.5.7)

Portanto, $\lim_{x \to 1} \left[\frac{x}{x-1} - \frac{1}{\ln(x)} \right] = 2.$

b) Escreve-se t
g $\left(\frac{\pi x}{2}\right)$ como quociente de sen $\left(\frac{\pi x}{2}\right)$ e co
s $\left(\frac{\pi x}{2}\right)$

$$\lim_{x \to 1} \left[(1 - x) \operatorname{tg} \left(\frac{\pi x}{2} \right) \right] = \lim_{x \to 1} \frac{(1 - x) \operatorname{sen} \left(\frac{\pi x}{2} \right)}{\operatorname{cos} \left(\frac{\pi x}{2} \right)}$$

$$\stackrel{LH}{=} \lim_{x \to 1} \frac{-\operatorname{sen} \left(\frac{\pi x}{2} \right) + (1 - x) \frac{\pi}{2} \operatorname{cos} \left(\frac{\pi x}{2} \right)}{\frac{\pi}{2} \operatorname{sen} \left(\frac{\pi x}{2} \right)}$$

$$= \frac{-1}{-\frac{\pi}{2}} = \frac{2}{\pi}. \tag{3.5.8}$$

c) Escreve-se a função como quociente de duas funções:

$$\lim_{x \to 0} \left[x^n \ln(x) \right] = \lim_{x \to 0} \frac{\ln(x)}{x^{-n}}$$

$$\stackrel{LH}{=} \lim_{x \to 0} \frac{\frac{1}{x}}{-nx^{-n-1}}$$

$$= \lim_{x \to 0} -\frac{x^n}{n}$$

$$= 0. \tag{3.5.9}$$

3.5.3 Formas 1^{∞} , 0^{0} , ∞^{0}

Assume-se $\lim_{x\to a}[f(x)]^{g(x)}$. Para calcular os limites envolvendo estes tipos de indeterminações seguem-se os seguintes passos.

- a) Define-se $y = [f(x)]^{g(x)}$.
- b) Logaritimiza-se: $\ln(y) = g(x) \ln[f(x)]$.
- c) Aplica-se o limite em ln(y) e calcula-se.
- d) Aplica-se a operação de inversão: $y = e^{\lim \ln(y)}$.

Exemplo 3.5.3. Utilizando o Teorema de L'Hospital, calcule os limites:

a)
$$\lim_{x \to +\infty} \left(1 + \frac{a}{x}\right)^x$$

- b) $\lim_{x\to 0} x^{\operatorname{sen}(x)}$
- c) $\lim_{x \to +\infty} (3x + 9)^{\frac{1}{x}}$.

Solução:

a) Define-se $y = \left(1 + \frac{a}{x}\right)^x$.

Aplica-se ln(y).

$$\ln(y) = \ln\left[\left(1 + \frac{a}{x}\right)^x\right]$$

$$\ln(y) = x \ln\left(1 + \frac{a}{x}\right). \tag{3.5.10}$$

Calcula-se o limite em (3.5.10).

$$\lim_{x \to +\infty} x \ln \left(1 + \frac{a}{x} \right) = \lim_{x \to +\infty} \frac{\ln \left(1 + \frac{a}{x} \right)}{\frac{1}{x}}$$

$$= \lim_{x \to +\infty} \frac{\frac{1}{(1 + \frac{a}{x})} \cdot -\frac{a}{x^2}}{-\frac{1}{x^2}}$$

$$\lim_{x \to +\infty} x \ln \left(1 + \frac{a}{x} \right) = a. \tag{3.5.11}$$

Aplica-se a operação inversa em (3.5.11).

$$\lim_{x \to +\infty} \left(1 + \frac{a}{x}\right)^x = e^a.$$

b) Define-se $y = x^{\text{sen}}(x)$.

Aplica-se ln(y).

$$\ln(y) = \operatorname{sen}(x) \ln(x)$$

$$= \frac{\ln(x)}{\operatorname{sen}^{-1}(x)}.$$
(3.5.12)

Calcula-se o limite em (3.5.12).

$$\lim_{x \to +\infty} \frac{\ln(x)}{\operatorname{sen}^{-1}(x)} \stackrel{LH}{=} \lim_{x \to +\infty} \frac{\frac{1}{x}}{-\operatorname{sen}^{-2}(x)\cos(x)}$$

$$= \lim_{x \to +\infty} -\frac{1}{x} \frac{\operatorname{sen}^{2}(x)}{\cos(x)}$$

$$\stackrel{LH}{=} \lim_{x \to +\infty} \frac{-2\operatorname{sen}(x)\cos(x)}{\cos(x) - x\operatorname{sen}(x)}$$

$$= 0. \tag{3.5.13}$$

Aplica-se a operação inversa em (3.5.13).

$$\lim_{x \to 0} x^{\text{sen}(x)} = e^0 = 1.$$

c) Define-se $y = (3x + 9)^{1/x}$.

Aplica-se ln(y).

$$ln(y) = \frac{1}{x} ln(3x+9).$$
(3.5.14)

Calcula-se o limite em (3.5.14).

$$\lim_{x \to +\infty} \frac{1}{x} \ln(3x+9) \stackrel{LH}{=} \lim_{x \to +\infty} \frac{\frac{3}{3x+9}}{1}$$

$$= 0. \tag{3.5.15}$$

Aplica-se a operação inversa em (3.5.15).

$$\lim_{x \to +\infty} (3x+9)^{1/x} = e^0 = 1.$$

ATENÇÃO!!!

NÃO são indeterminações:

a)
$$\frac{0}{\infty} = 0 \cdot \frac{1}{\infty} = 0 \cdot 0 = 0$$

b)
$$\frac{\infty}{0} = \frac{1}{0} \cdot \infty = \infty \cdot \infty = \infty$$

c)
$$0^{\infty} \to \ln(0)^{\infty} = \infty \cdot \ln(0) = \infty \cdot (-\infty) = -\infty$$

d)
$$\infty + \infty = \infty$$

Lista de Exercícios 3.6

1. Usando o Teorema de L'Hospital, calcule os limites:

a)
$$\lim_{x \to 1} \frac{x^5 - 6x^3 + 5}{x^4 - 1}$$

b)
$$\lim_{x \to +\infty} \frac{e^x}{x}$$

b)
$$\lim_{x \to +\infty} \frac{e^x}{x}$$
 c) $\lim_{x \to 0} [\cot g(x)]^{\frac{1}{\ln(x)}}$

d)
$$\lim_{x\to 0} [\sec(x) + \cos(x)]^{\frac{1}{x}}$$

e)
$$\lim_{x \to 1} (x)^{\frac{1}{1-x}}$$

d)
$$\lim_{x \to 0} [\operatorname{sen}(x) + \cos(x)]^{\frac{1}{x}}$$
 e) $\lim_{x \to 1} (x)^{\frac{1}{1-x}}$ f) $\lim_{x \to 1} \frac{\ln(x^2 + x + 1)}{\ln(x^2 + 2x + 1)}$

$$g) \lim_{x \to 0} \frac{\operatorname{tg}(3x)}{\operatorname{sen}(2x)}$$

h)
$$\lim_{x \to +\infty} \frac{\ln(x)}{e^{3x}}$$

h)
$$\lim_{x \to +\infty} \frac{\ln(x)}{e^{3x}}$$
 i) $\lim_{x \to +\infty} \frac{3x^2 - 2x + 1}{2x^2 + 3}$

$$\mathbf{j})\lim_{x\to 0}\frac{e^x-(1+x)}{x}$$

k)
$$\lim_{x\to 2} \frac{e^{x^2-4}-1}{x-2}$$

k)
$$\lim_{x \to 2} \frac{e^{x^2 - 4} - 1}{x - 2}$$
 l) $\lim_{x \to 0} \left[\frac{1}{x^2 + x} - \frac{1}{x} \right]$

$$\mathrm{m})\lim_{x\to 0}\frac{e^{\mathrm{tg}(2x)}-1}{\mathrm{sen}(5x)}$$

$$n) \lim_{x \to 0} x \cdot \cot(2x)$$

n)
$$\lim_{x \to 0} x \cdot \cot(2x)$$
 o) $\lim_{x \to 1} \frac{\ln\left(\frac{x+1}{x}\right)}{\ln\left(\frac{x-1}{x}\right)}$

p)
$$\lim_{x\to 0} \frac{2-x^2-2\cos(x)}{x^4}$$
 q) $\lim_{x\to 0} \frac{x-\ln(x+1)}{1-\cos(2x)}$ r) $\lim_{x\to 0} \frac{x-\operatorname{tg}(x)}{\operatorname{sen}(x)-x}$.

q)
$$\lim_{x\to 0} \frac{x - \ln(x+1)}{1 - \cos(2x)}$$

$$r) \lim_{x \to 0} \frac{x - \operatorname{tg}(x)}{\operatorname{sen}(x) - x}.$$

- 2. Considere a função $f(x) = \frac{x^2 4}{x^2}$.
- a) Calcule f(-2) e f(2).

- b) O Teorema de Rolle pode ser aplicado a esta função no intervalo [-2,2]? Explique.
- 3. Determine se o Teorema de Rolle pode ser aplicado no intervalo [-1,3] à função $f(x)=(x-3)(x+2)^2$. Em caso afirmativo, determine todos valores de c tais que f'(c)=0.
- 4. Considere a função $f(x) = \sqrt{x-2}$, se possível aplique o teorema do valor médio para determinar todos os valores de c em [2,6] tais que $f'(c) = \frac{f(b) f(a)}{b-a}$, onde a=2 e b=6.
- 5. Resolva:
- a) Analise o seguinte cálculo e mostre o erro existente: $\lim_{x \to 1} \frac{x^3 x^2 + x 1}{x^3 x^2} = \lim_{x \to 1} \frac{3x^2 2x + 1}{3x^2 2x} = \lim_{x \to 1} \frac{6x 2}{6x 2} = 1.$
- b) Determine a resposta correta.
- 6. Resolva:
- a) Explique por que a regra de L'Hospital não se aplica ao problema $\lim_{x\to 0} \frac{x^2 \operatorname{sen}(\frac{1}{x})}{\operatorname{sen}(x)}$.
- b) Calcule o limite.
- c) Determine o limite: $\lim_{x\to 0} \frac{x \operatorname{sen}(\frac{1}{x})}{\operatorname{sen}(x)}$, se ele existir.

Respostas dos Exercícios

1.

a)
$$-\frac{13}{4}$$
 b) $+\infty$ c) e^{-1} d) e e) e^{-1} f) $\frac{\ln(3)}{\ln(4)}$ g) $\frac{3}{2}$ h)0 i) $\frac{3}{2}$

j)0 k)4 l) -1 m)
$$\frac{2}{5}$$
 n) $\frac{1}{2}$ o)0 p) - $\frac{1}{12}$ q) $\frac{1}{4}$ r)2.

- 2. f(-2) = f(2) = 0.
- 3. c = -1 ou $c = \frac{5}{3}$.
- 4. c = 3.
- 5. 2.
- 6. b) 0 c) O limite não existe.

Capítulo 4

Estudo de Máximos e Mínimos das Funções

4.1 Noções Preliminares

Nessa seção estudam-se os pontos de máximo e mínimo de funções de uma variável real com o intuito de construir os gráficos dessas funções e/ou resolver problemas de otimização e taxas relacionadas.

Definição 4.1.1. Uma função f(x) é dita **monótona** quando ela não muda de comportamento em relação ao crescimento, ou seja, se ela é crescente em todo seu domínio (ou estritamente crescente) ou se ela é decrescente em todo seu domínio (ou estritamente decrescente). A Figura 4.1 ilustra esse conceito.

Figura 4.1: Exemplos de funções monótonas crescente e decrescente, respectivamente.

Definição 4.1.2. Diz-se que f(x) é uma **função crescente** em um intervalo $I \subset D(f)$ se e somente se:

$$x_1 < x_2 \Rightarrow f(x_1) \leqslant f(x_2), \forall x_1, x_2 \in I \subset D(f).$$

Definição 4.1.3. Diz-se que f(x) é estritamente crescente em um intervalo $I \subset D(f)$, se e somente se:

$$x_1 < x_2 \Rightarrow f(x_1) < f(x_2), \forall x_1, x_2 \in I \subset D(f).$$

Definição 4.1.4. Diz-se que f(x) é **decrescente** em um intervalo $I \subset D(f)$, se e somente se:

$$x_1 < x_2 \Rightarrow f(x_1) \geqslant f(x_2), \forall x_1, x_2 \in I \subset D(f).$$

Definição 4.1.5. Diz-se que f(x) é estritamente decrescente em um intervalo $I \subset D(f)$, se e somente se:

$$x_1 < x_2 \Rightarrow f(x_1) > f(x_2), \forall x_1, x_2 \in I \subset D(f).$$

Observe a Figura 4.2. Nos intervalos onde a função é estritamente crescente, a derivada de f(x) é positiva, isto é f'(x) > 0, já nos intervalos onde a função é estritamente decrescente, a derivada de f(x) é negativa, ou seja, f'(x) < 0. Quando a função é constante, a derivada de f(x) é nula, f'(x) = 0.

Figura 4.2: Intervalos de crescimento e decrescimento da função

Além disso, na Figura 4.2, tem-se que a função é crescente no intervalo $[2,+\infty[.$

Através da análise geométrica do sinal da derivada é possível determinar os intervalos onde uma função derivável é (estritamente) crescente ou (estritamente) decrescente.

4.2. TESTE PARA DETERMINAR INTERVALOS DE CRESCIMENTO E DECRESCIMENTO DE UMA FUNÇÃO (SINAL DA 1ª DERIVADA)

4.2 Teste para determinar intervalos de crescimento e decrescimento de uma função (sinal da 1ª derivada)

Teorema 4.2.1 (Teste da Primeira Derivada). Seja f(x) uma função contínua num intervalo [a, b] e derivável no intervalo [a, b].

- (i) Se f'(x) > 0 para todo $x \in]a, b[$, então f é estritamente crescente em [a, b].
- (ii) Se f'(x) < 0 para todo $x \in]a, b[$, então f é estritamente decrescente em [a, b].
- (iii) Se f'(x) = 0 para todo $x \in]a, b[$, então f é constante em [a, b].

Exemplo 4.2.1. Determine os intervalos para os quais a função é estritamente crescente ou estritamente decrescente.

a)
$$f(x) = x^2 - 4x + 3$$

b)
$$f(x) = x^3 + 3$$

c)
$$f(x) = 3x^4 + 4x^3 - 12x^2 + 2$$
.

Solução:

a) Observe o gráfico da função f(x) na Figura 4.3.

O gráfico mostra que f é estritamente decrescente para x < 2 e estritamente crescente para x > 2.

Isso pode ser confirmado, estudando-se o sinal da primeira derivada de f(x). A derivada de f(x) é f'(x) = 2x - 4. Portanto, tem-se que

$$f'(x) < 0 \text{ se } x < 2$$

$$f'(x) > 0 \text{ se } x > 2.$$

Uma vez que f é contínua em todos os pontos, pelo Teorema 4.2.1, pode-se afirmar que f é estritamente decrescente no intervalo de $]-\infty,2[$ e estritamente crescente no intervalo de $]2,+\infty[$.

4.2. TESTE PARA DETERMINAR INTERVALOS DE CRESCIMENTO E DECRESCIMENTO DE UMA FUNÇÃO (SINAL DA 1ª DERIVADA)

Figura 4.3: Gráfico de $f(x) = x^2 - 4x + 3$.

b) A função é estritamente crescente em $]-\infty,0[\cup]0,+\infty[$. Como f'(0)=0, diz-se que f(x) é crescente em $]-\infty,+\infty[=\mathbb{R}.$ De fato, por meio do cálculo da primeira derivada de f(x), tem-se $f'(x)=3x^2\geq 0, \ \forall x\in\mathbb{R}.$

Exemplo 4.2.2. Analise os intervalos de crescimento e decrescimento de cada uma das funções:

$$a) f(x) = \frac{x^2}{x-3}$$

b)
$$f(x) = |x^2 - 3x + 2|$$
.

Solução:

a) Calculando a derivada da função f(x), obtém-se:

$$f'(x) = \frac{x(x-6)}{(x-3)^2}.$$

A Figura 4.4 mostra o estudo do sinal da derivada.

Portanto, a função $f(x)=\frac{x^2}{x-3}$ é estritamente crescente nos intervalos] $-\infty$, 0[e]6, $+\infty$ [e estritamente decrescente no intervalo]0, 6[.

b) Como o gráfico da função $g(x) = x^2 - 3x + 2$ é uma parábola côncava para cima e que intercepta o eixo x nos pontos (1,0) e (2,0), tem-se que o gráfico de $f(x) = |x^2 - 3x + 2|$ pode ser obtido espelhando a parte em que a imagem é negativa em relação ao eixo x. A Figura 4.5 ilustra o gráfico de f(x).

Figura 4.4: Estudo do Sinal de f'(x).

Figura 4.5: Gráfico de f(x).

Portanto, a função $f(x)=|x^2-3x+2|$ é estritamente crescente nos intervalos $\left]1,\frac{3}{2}\right[$ e $\left]2,+\infty\right[$ e estritamente decrescente nos intervalos $\left]-\infty,1\right[$ e $\left]\frac{3}{2},2\right[$. Como exercício, o leitor pode obter o mesmo resultado usando o Teste do sinal da primeira derivada.

4.3 Extremos de uma função (Máximos e Mínimos)

A Figura 4.6 apresenta o gráfico de uma função, onde as abscissas $x_1,\,x_2,\,x_3$ e x_4 estão assinaladas.

Os pontos $(x_i, f(x_i))$, onde i = 1, 2, 3, 4 são chamados pontos extremos da função. Os valores $f(x_1)$ e $f(x_3)$ são chamados valores máximos relativos (ou locais) e $f(x_2)$ e $f(x_4)$ são chamados valores mínimos relativos (ou locais).

Os pontos de máximo ou mínimo de uma função são chamados de pontos de extremo. Geometricamente, um determinado ponto é identificado como **ponto de máximo relativo** se nele ocorre um pico. Analogamente, um ponto é identificado

Figura 4.6: Máximos e Mínimos relativos

como ponto de mínimo relativo se nele ocorre uma depressão.

4.4 Extremos locais ou relativos.

Pode-se formalizar as definições de pontos de extremo como segue.

Definição 4.4.1. Uma função f(x) tem um ponto de máximo relativo ou máximo local em x = c, se existir um intervalo aberto I, contendo x = c, tal que $f(c) \ge f(x)$ para todo $x \in I \cap D(f)$. Neste caso, representa-se por: $P_{ML}(c, f(c))$.

Definição 4.4.2. Uma função f(x) tem um mínimo relativo ou mínimo local em x = c, se existir um intervalo aberto I, contendo x = c, tal que $f(c) \leq f(x)$ para todo $x \in I \cap D(f)$. Neste caso representa-se por: $P_{mL}(c, f(c))$.

Definição 4.4.3. Diz-se que um ponto (c, f(c)) é um **ponto crítico** para a função f quando f é definida em x = c e f'(c) = 0 ou $f'(c) = +\infty$, ou não existe f'(c).

4.4.1 Condição necessária para extremos relativos

Se a função f possui um extremo relativo em um valor x=c, então (c,f(c)) é um ponto crítico para f.

Na prática:

- Todo ponto de máximo ou mínimo relativo é um ponto crítico, no entanto,
- nem todo ponto crítico é um ponto de máximo ou mínimo relativo.

Exemplo 4.4.1. Seja $f(x) = x^3$. Determine os pontos críticos de f(x).

Solução: A abcissa x = 0 é tal que (0, f(0)) é ponto crítico de f. Para determinar o ponto crítico de f basta igualar a primeira derivada a zero, ou seja,

$$f'(x) = 0 \Rightarrow 3x^2 = 0 \Rightarrow x = 0.$$

Entretanto, (0, f(0)) não é ponto de máximo ou mínimo local da função f(x), veja a Figura 4.7.

Figura 4.7: Gráfico de $f(x) = x^3$, exemplo .

É interessante verificar que uma função definida num intervalo pode admitir diversos pontos extremos relativos. O maior valor da função num intervalo é chamado **máximo absoluto** da função neste intervalo. Analogamente, o menor valor é chamado **mínimo absoluto**.

Para analisar o máximo e o mínimo absoluto de uma função quando o intervalo não for especificado usam-se as definições que seguem:

4.4.2 Extremos Absolutos

Definição 4.4.4. Diz-se que f(c) é o valor máximo absoluto da função f, se $c \in D(f)$ e $f(c) \ge f(x)$ para todos os valores de x no domínio da f. Neste caso, representa-se o ponto de máximo absoluto por: $P_{MA}(c, f(c))$.

Definição 4.4.5. Diz-se que f(c) é o valor mínimo absoluto da função f, se $c \in D(f)$ e $f(c) \leq f(x)$ para todos os valores de x no domínio da f. Neste caso, representa-se o ponto de mínimo absoluto por: $P_{mA}(c, f(c))$.

Com base nestas definições, no gráfico da função representado na Figura 4.6, o ponto $(x_3, f(x_3))$ é chamado de máximo absoluto e o ponto $(x_4, f(x_4))$ é chamado de mínimo absoluto.

4.4.3 Critérios para determinação de extremos relativos ou locais

<u>1º critério:</u> Teste da Primeira Derivada para determinação de extremos relativos Seja f(x) uma função contínua num intervalo fechado [a,b] que possui derivada em todo $x \in]a,b[$, exceto possivelmente em x=c.

- (i) Se f'(x) > 0 para todo x < c e f'(x) < 0 para todo x > c, então f tem um máximo relativo em (c, f(c)).
- (ii) Se f'(x) < 0 para todo x < c e f'(x) > 0 para todo x > c, então f tem um mínimo relativo em (c, f(c)).

A Figura 4.8 ilustra o 1º critério.

Observação 4.4.1. Se f'(x) à esquerda de x = c tiver o mesmo sinal da derivada à direita, então não há pontos de máximo nem de mínimo, isto pode ser observado na Figura 4.9, onde tem-se f'(x) > 0 tanto à esquerda quanto a direita de x = 0.

Procedimentos para aplicação do Teste da Primeira Derivada

- 1. Calcular as abscissas dos pontos críticos de f(x), resolvendo f'(x) = 0.
- 2. Localizar as abscissas dos pontos críticos no eixo x, estabelecendo deste modo um número de intervalos.

Figura 4.8: Pontos máximos e mínimos

Figura 4.9: $f'(x) > 0 \ \forall x \neq 0$

- 3. Determinar o sinal de f'(x) em cada intervalo.
- 4. Analisar o sinal de f'(x) nas proximidades de x = c.
- a) f(x) possui valor máximo relativo, se f'(x) mudar de sinal passando de positivo para negativo.
- b) f(x) possui valor mínimo relativo, se f'(x) mudar de sinal passando de negativo para positivo.
- c) f(x) não possui um valor máximo relativo, nem um valor mínimo relativo em

x = c, se f'(x) não mudar de sinal.

Exercício 4.4.1. Localize os extremos relativos da função $f(x) = 3x^{\frac{5}{3}} - 15x^{\frac{2}{3}}$ e determine se são pontos de máximo ou mínimo.

Resposta do exercício

4.4.1 A função $f(x) = 3x^{\frac{5}{3}} - 15x^{\frac{2}{3}}$ possui um ponto mínimo, $P_m(2, -9\sqrt[3]{4})$ e um ponto máximo $P_M(0,0)$.

2º critério: Teste da Segunda Derivada para determinação de extremos relativos

Seja f uma função derivável num intervalo]a,b[e (c,f(c)) um ponto crítico de f com $c \in]a,b[$, isto é, f'(c)=0, com a < c < b. Se f admite segunda derivada em]a,b[, tem-se:

- (i) Se f''(c) < 0, f tem um ponto de máximo relativo em (c, f(c)).
- (ii) Se f''(c) > 0, f tem um ponto de mínimo relativo em (c, f(c)).
- (iii) Se f''(c) = 0, então o teste é inconclusivo.

A Figura 4.10 ilustra os itens (i) e (ii) do 2º critério.

Figura 4.10: Teste da derivada segunda

Desse modo:

• Para o intervalo onde f''(x) > 0 e existe um ponto crítico, este ponto é de mínimo relativo.

• Para o intervalo onde f''(x) < 0 e existe um ponto crítico, este ponto é de máximo relativo.

Observação 4.4.2. O critério falha:

- 1°) Quando o ponto que anula a primeira derivada também anula a segunda derivada;
- 2°) Para pontos onde a primeira derivada não existe.

Exemplo 4.4.2. Utilizando o teste da segunda derivada, determine e classifique os extremos locais das funções, se existirem:

a)
$$y = x^4 - 2x^2$$

b)
$$y = 4 - x^4$$
.

Solução:

a) O primeiro passo consiste em determinar os pontos críticos da função f(x), ou seja, resolver f'(x) = 0. Portanto,

$$f'(x) = 4x^{3} - 4x$$

$$4x^{3} - 4x = 0$$

$$4x(x^{2} - 1) = 0$$

$$x = 0, x = -1, x = 1.$$

Tem-se que f(0)=0, f(-1)=-1 e f(1)=-1. Os pontos críticos da função f(x) são (0,0), (-1,-1) e (1,-1).

No segundo passo, calcula-se f''(x) e aplica-se o Teste da Segunda Derivada para classificá-los:

$$f''(x) = 12x^2 - 4$$

 $f''(0) = -4 < 0$, logo $(0,0)$ é um ponto de máximo relativo;
 $f''(-1) = 8 > 0$, logo $(-1,-1)$ é um ponto de mínimo relativo;
 $f''(1) = 8 > 0$, logo $(1,-1)$ é um ponto de mínimo relativo.

Procedimentos para aplicação do Teste da Segunda Derivada

- 1. Determine os pontos críticos de f(x), resolvendo f'(x) = 0;
- 2. Para um ponto crítico (c, f(c)):
- a) f(x) possui valor máximo relativo em f(c), se f''(c) < 0.
- b) f(x) possui valor mínimo relativo em f(c), se f''(c) > 0.

O teste falha se f''(c)=0 ou se torna infinita. Neste caso, o teste da primeira derivada deve ser utilizado. Se $f'''(c)\neq 0$, o ponto (c,f(c)) não é extremo da função.

4.4.4 Concavidade e pontos de inflexão

O conceito de concavidade é muito útil no esboço do gráfico de uma função.

Definição 4.4.6. Uma função f é dita **côncava para cima** no intervalo a, b, se f'(x) é crescente neste intervalo.

Definição 4.4.7. Uma função f é dita **côncava para baixo** no intervalo a, b, se f'(x) é decrescente neste intervalo.

Reconhecer os intervalos onde uma curva tem concavidade voltada para cima ou para baixo auxilia no traçado do gráfico. Faz-se isso pela análise do sinal da derivada segunda f''(x).

4.4.5 Teste para a concavidade de um gráfico

Teorema 4.4.1 (Teste da Concavidade). Seja f(x) uma função contínua no intervalo [a,b] e derivável até 2^a ordem no intervalo [a,b].

- a) Se f''(x) > 0, o gráfico de f(x) tem concavidade voltada para cima em]a,b[.
- b) Se f''(x) < 0, o gráfico de f(x) tem concavidade voltada para baixo em]a,b[.

Definição 4.4.8. Um ponto (c, f(c)) do gráfico de uma função contínua f é chamado **ponto de inflexão**, se existe um intervalo]a, b[contendo c, tal que uma das seguintes situações ocorra:

- (i) f é côncava para cima em a, c e côncava para baixo em c, b.
- (ii) f é côncava para baixo em a, c e côncava para cima em c, b.

Pode-se ainda afirmar que o ponto (c, f(c)) é dito ponto de inflexão do gráfico da função f(x), se neste ponto da curva o gráfico da f(x) troca de concavidade. A Figura 4.11 ilustra este fato.

Derivada crescente $\rightarrow \text{ variação da derivada maior que zero } f''(x) > 0.$

Derivada decrescente $\rightarrow \,$ variação da derivada menor que zero $\rightarrow f''(x) < 0$.

Figura 4.11: Ponto de inflexão (c, f(c))

Exemplo 4.4.3. Determine as regiões onde a concavidade do gráfico da função $f(x) = xe^{-x}$ é para baixo e onde é para cima e determine os pontos de inflexão, caso existam.

Solução:

O primeiro passo para estudar a concavidade do gráfico da função é obter a segunda derivada da função $f(x) = xe^{-x}$. Portanto,

$$f(x) = xe^{-x}$$

$$f'(x) = e^{-x} + xe^{-x}(-1)$$

$$f'(x) = e^{-x}(1-x).$$

Para calcular a segunda derivada de f(x), basta derivar novamente f'(x) =

 $e^{-x}(1-x),$

$$f''(x) = (1-x)e^{-x}(-1) + e^{-x}(-1)$$

$$f''(x) = e^{-x}(-1+x-1)$$

$$f''(x) = e^{-x}(x-2).$$

Aplicando-se o Teste da Segunda Derivada para determinar as regiões onde a concavidade do gráfico da função f(x) é para baixo e onde é para cima, tem-se que a função exponencial e^{-x} é positiva $\forall x \in \mathbb{R}$, então estuda-se o sinal da função polinomial de primeiro grau (x-2). Portanto,

$$f''(x) > 0$$
, se $x > 2$
 $f''(x) < 0$, se $x < 2$

Para determinar os pontos de inflexão da função basta tomar f''(x) = 0. Neste caso,

$$f''(x) = 0$$
$$e^{-x}(x-2) = 0.$$

Uma vez que a função exponencial $e^{-x} \neq 0 \ \forall x \in \mathbb{R},$ então $x-2=0 \Rightarrow x=2.$

Portanto, o ponto de inflexão da função é $(2, 2e^{-2})$.

4.5 Lista de Exercícios

- 1. Estude a concavidade do gráfico das funções:
- a) $y = 2x^3 + 3x^2 12x + 5$
- b) $y = \frac{x^3}{x^2 + 3}$.
- 2. Determine os pontos de inflexão para cada uma das funções:
- a) $y = x^3 6x^2 + 9x 4$
- b) $y = xe^x$.

- 3. Determine o intervalo onde f(x) = x + sen(x) é crescente.
- 4. Determine o maior intervalo aberto na qual f(x) é uma função i) crescente, ii) decrescente, iii) côncava para cima e iv) côncava para baixo. Obtenha os pontos de inflexão, das seguintes funções:
- a) $f(x) = x^2 + 5x + 6$
- b) $f(x) = (x+2)^2$
- c) $f(x) = \cos(x), 0 < x < 2\pi$
- d) $f(x) = \sqrt[3]{x+2}$.
- 5. Esboce o gráfico de uma função f(x) definida para x>0 e tendo as propriedades: f(1)=0 e $f'(x)=\frac{1}{x}(x>0)$.
- 6. Construa uma fórmula de uma função f(x) com um máximo em x=-2 e um mínimo em x=1.
- 7. Resolva os itens abaixo.
- a) Fazendo um esboço, mostre que $y = x^2 + \frac{a}{x}$ tem um mínimo, mas não um máximo para qualquer valor da constante a. Verifique o fato também por meio de cálculo.
- b) Determine o ponto de inflexão de $y = x^2 \frac{8}{x}$.
- 8. Calcule a e b tais que $y = a\sqrt{x} + \frac{b}{\sqrt{x}}$ tenha (1, 4) como ponto de inflexão.
- 9. Seja k um número positivo diferente de 1. Mostre que a parte da curva $y=x^k$ no primeiro quadrante é:
- a) côncava para cima se k > 1
- b) côncava para baixo se k < 1.

Respostas da Lista

1. a) Para cima
$$\left(-\frac{1}{2}, +\infty\right)$$
; Para baixo $\left(-\infty, \frac{1}{2}\right)$
b) Para cima $\left(-\infty, 0\right) \cup \left(-\frac{27}{16}, +\infty\right)$; Para baixo $\left(0, \frac{27}{16}\right)$

2. a)
$$(-2, 2)$$

b) $\left(-2, -\frac{2}{e^2}\right)$.

- 3. $(-\infty, +\infty)$
- 4.
- a) (i) $[-\frac{5}{2},+\infty)$ (ii) $[-\infty,-\frac{5}{2})$ (iii) $(-\infty,+\infty)$ (iv) nenhum (v) nenhum
- b) (i) $(-2, +\infty)$ (ii) $(-\infty, 2)$ (iii) $(-\infty, +\infty)$ (iv) nenhum (v) -2

c) (i)[
$$\pi$$
, 2π] (ii)($0, \pi$] (iii) $\left(\frac{\pi}{2}, \frac{3\pi}{2}\right)$ (iv) $\left(0, \frac{\pi}{2}\right) \cup \left(\frac{3\pi}{2}, 2\pi\right)$ (v) $\left(\frac{\pi}{2}, \frac{3\pi}{2}\right)$

- d) (i) $(-\infty, +\infty)$ (ii)nenhum (iii) $(-\infty, -2)$ (iv) $(-2, +\infty)$ (v)-2
- **6.** $f(x) = \frac{x^3}{3} + \frac{x^2}{2} 2x$
- **7.** b) (2,0)
- **8.** a = 3 e b = 1.

4.5.1 Exercícios Complementares

Exercício 4.5.1. Um objeto com massa m é arrastado ao longo de um plano horizontal por uma força agindo ao longo de uma corda presa ao objeto. Se a corda faz um ângulo θ com o plano, então a intensidade da força é

$$F = \frac{\mu mg}{\mu \text{sen}(\theta) + \cos(\theta)}$$

onde μ é uma constante positiva chamada coeficiente de atrito e $0 \le \theta \le \frac{\pi}{2}$. Mostre que F é minimizada quando $tg(\theta) = \mu$.

Exercício 4.5.2. Se f(x) tem um valor mínimo em x=c, mostre que a função g(x)=-f(x) tem um valor máximo em x=c.

4.6 Análise geral do comportamento de uma função

- construção de gráficos

Utilizando os conceitos e resultados discutidos até aqui, é possível formar um conjunto de informações que permite fazer a análise do comportamento das funções.

A Tabela 1 apresenta um resumo que poderá ser seguido para analisar o comportamento de uma função a partir de sua representação algébrica.

Tabela 1: Resumo para analisar o comportamento de uma função

Etapas	Procedimento
1 ^a	Determinar o domínio da função.
2^{a}	Calcular os pontos de intersecção com os eixos.
3^{a}	Calcular a primeira derivada da função.
$4^{\rm a}$	Obter os pontos críticos.
$5^{\rm a}$	Determinar os intervalos de crescimento e decrescimento de $f(x)$.
6^{a}	Calcular a segunda derivada da função.
$7^{\rm a}$	Classificar os pontos críticos em máximos e mínimos relativos.
8 ^a	Determinar a concavidade e os pontos de inflexão da f .
9^{a}	Obter as assíntotas horizontais e verticais, se existirem.
10 ^a	Esboçar o gráfico.

Exemplo 4.6.1. Esboce o gráfico da função polinomial $f(x) = 3x^5 - 5x^4$. Solução:

A fim de esboçar o gráfico de f(x) utilizam-se os seguintes passos:

1. Determinar o domínio da função.

O domínio da função polinomial f(x) corresponde ao conjunto dos números reais, isto é, $D(f) = \mathbb{R}$.

2. Calcular os pontos de intersecção com os eixos.

O ponto de intersecção com o eixo y corresponde ao valor de f(0), logo, f(0) = 0.

As intersecções com o eixo das abscissas são as raízes da função, calculadas por f(x)=0, isto é, $3x^5-5x^4=0$. As raízes são x=0 (multiplicidade quatro) e $x=\frac{5}{3}$.

3. Calcular a primeira derivada da função.

A primeira derivada de f(x) é $f'(x) = 15x^4 - 20x^3 = 5x^3(3x - 4)$.

4. Obter os pontos críticos.

As abscissas dos pontos críticos de f(x) são os zeros de f'(x). Isto é, resolve-se $15x^4-20x^3=0$. Os valores de x são $\left\{0,\frac{4}{3}\right\}$. As ordenadas correspondem aos valores de f(0) e $f\left(\frac{4}{3}\right)$.

5. Determinar os intervalos de crescimento e decrescimento de f(x).

Os intervalos de crescimento e decrescimento de f(x) são obtidos através do estudo do sinal de f'(x).

Efetuando o produto dos sinais de x^3 e (3x-4), obtém-se:

Intervalo de crescimento de f(x): $\left\{x \in \mathbb{R} | x < 0, x > \frac{4}{3}\right\}$.

Intervalo de decrescimento de f(x): $\left\{ x \in \mathbb{R} | 0 < x < \frac{4}{3} \right\}$.

6. Calcular a segunda derivada da função.

A segunda derivada de f(x) é $f''(x) = 60x^3 - 60x^2$.

7. Classificar os pontos críticos em máximos e mínimos relativos.

Pelo sinal de f'(x), obtém-se que o A=(0,0) é ponto de máximo de f(x) e $B=\left(\frac{4}{3},f\left(\frac{4}{3}\right)\right)$ é ponto de mínimo de f(x).

8. Determinar a concavidade e os pontos de inflexão da f.

A concavidade de f e seus pontos de inflexão são obtidos através do sinal de f''(x) e dos zeros de f''(x), respectivamente.

Os zeros de
$$f''(x) = 60x^3 - 60x^2 = 60x^2(x-1)$$
 são $\{0, 1\}$.

Através da análise do sinal de f''(x), obtém-se que f(x) é côncava para cima em $\{x \in \mathbb{R} | x > 1\}$ e é côncava para baixo em $\{x \in \mathbb{R} | x < 1\}$. Consequentemente, o ponto (1, -2) é ponto de inflexão.

Observe que (0,0) não é ponto de inflexão, pois não há mudança no sinal de f''(x) em torno de x=0.

9. Obter as assíntotas horizontais e verticais, se existirem.

Não há assintotas verticais, uma vez que $D(f) = \mathbb{R}$.

O cálculo dos limites $\lim_{x\to-\infty}f(x)=-\infty$ e $\lim_{x\to+\infty}f(x)=+\infty$ mostra que também não há assíntotas horizontais.

10. Esboçar o gráfico.

Com as informações obtidas nos itens anteriores, esboça-se o gráfico da função. A Figura 4.12 ilustra o gráfico.

Figura 4.12: Gráfico de f(x) do exemplo 4.6.1.

Exemplo 4.6.2. Esboce o gráfico da função racional $f(x) = \frac{12}{x^2} - \frac{12}{x}$. Solução:

A fim de esboçar o gráfico de f(x) utilizam-se os seguintes passos:

1. Determinar o domínio da função.

O domínio da função racional f(x) corresponde ao conjunto $D(f) = \mathbb{R} - \{0\}.$

2. Calcular os pontos de intersecção com os eixos.

Não há ponto de intersecção com o eixo y porque x=0 não pertence ao domínio de f(x).

Não há intersecção com o eixo x, pois f(x) não possui raízes.

3. Calcular a primeira derivada da função.

A primeira derivada de f(x) é

$$f'(x) = (-1)(x^2 + x)^{-2}(2x + 1) = -\frac{2x + 1}{(x^2 + x)^2}.$$

4. Obter os pontos críticos.

As abscissas dos pontos críticos de f(x) são os zeros de f'(x). Isto é,

$$\frac{-24 + 12x}{x^3} = 0.$$

O valor de $x \in x = 2$. A ordenada corresponde ao valor de f(2) = -3.

5. Determinar os intervalos de crescimento e decrescimento de f(x).

Os intervalos de crescimento e decrescimento de f(x) são obtidos através do estudo do sinal de f'(x).

Efetuando o quociente dos sinais de x^3 e (12x - 24), obtém-se:

Intervalo de crescimento de f(x): $\{x \in \mathbb{R}/x < 0, x > 2\}$.

Intervalo de decrescimento de f(x): $\{x \in \mathbb{R}/0 < x < 2\}$.

6. Calcular a segunda derivada da função.

A segunda derivada de f(x) é

$$f''(x) = -24(-3)x^{-4} + 12(-2)x^{-3},$$

isto é,

$$f''(x) = \frac{72 - 24x}{x^4}.$$

7. Classificar os pontos críticos em máximos e mínimos relativos.

Pelo sinal de f'(x), obtém-se que A=(2,-3) é ponto de mínimo de f(x). Não há pontos de máximo.

8. Determinar a concavidade e os pontos de inflexão da f.

A concavidade de f e seus pontos de inflexão são obtidos através do sinal de f''(x) e dos zeros de f''(x), respectivamente.

O zero de
$$f''(x) = \frac{72 - 24x}{x^4}$$
 é $x = 3$.

Através da análise do sinal de f''(x), obtém-se que f(x) é côncava para cima em $\{x \in \mathbb{R} \mid x < 3\}$ e é côncava para baixo em $\{x \in \mathbb{R} \mid x > 3\}$. Consequentemente, o ponto $\left(3, -\frac{8}{3}\right)$ é ponto de inflexão.

9. Obter as assíntotas horizontais e verticais, se existirem.

A fim de verificar a existência de assíntotas verticais, calculam-se os limites: $\lim_{x\to 0^-} f(x) = +\infty$ e $\lim_{x\to 0^+} f(x) = +\infty$.

Dessa forma, x = 0 é assíntota vertical do gráfico de f(x).

O cálculo dos limites $\lim_{x\to-\infty} f(x) = 0$ e $\lim_{x\to+\infty} f(x) = 0$ mostra que y=0 é assíntota horizontal do gráfico de f(x).

10. Esboçar o gráfico.

Com as informações obtidas nos itens anteriores, esboça-se o gráfico da função.

Figura 4.13: Gráfico de f(x) do exemplo 4.6.2.

Exemplo 4.6.3. Esboce o gráfico da função racional $f(x) = \frac{1}{x^2 + x}$. Solução:

A fim de esboçar o gráfico de f(x) utilizam-se os seguintes passos:

1. Determinar o domínio da função.

O domínio da função racional f(x) não inclui os pontos que anulam x^2+x , isto é, corresponde ao conjunto $D(f)=\mathbb{R}-\{-1,0\}$.

2. Calcular os pontos de intersecção com os eixos.

Não há ponto de intersecção com o eixo y, porque x=0 não pertence ao domínio de f(x).

A intersecção com o eixo x é a raiz de f(x). Assim, resolve-se $\frac{1}{x^2+x}=0, \text{ isto \'e}, \ f(x) \text{ não possui raiz}.$

3. Calcular a primeira derivada da função.

A primeira derivada de f(x) é

$$f'(x) = (-1)(x^2 + x)^{-2}(2x + 1) = -\frac{2x + 1}{(x^2 + x)^2}.$$

4. Obter os pontos críticos.

As abscissas dos pontos críticos de f(x) são os zeros de f'(x). Isto é, a solução de

$$-\frac{2x+1}{(x^2+x)^2} = 0.$$

A solução é $x=-\frac{1}{2}$. A ordenada correspondente ao valor de $f\left(-\frac{1}{2}\right)$ é -4.

5. Determinar os intervalos de crescimento e decrescimento de f(x).

Os intervalos de crescimento e decrescimento de f(x) são obtidos através do estudo do sinal de f'(x).

Como o sinal de $(x^2+x)^2 \ge 0$, o sinal de f'(x) é o mesmo de (-2x-1) e obtém-se:

Intervalo de crescimento de f(x): $\{x \in \mathbb{R}/x < -1, -1 < x < -\frac{1}{2}\}.$

Intervalo de decrescimento de f(x): $\{x \in \mathbb{R}/ -\frac{1}{2} < x < 0, x > 0\}$.

6. Calcular a segunda derivada da função.

A segunda derivada de f(x) é

$$f''(x) = \frac{2(3x^2 + 3x + 1)}{(x^2 + x)^3}.$$

7. Classificar os pontos críticos em máximos e mínimos relativos.

Pelo sinal de f'(x), obtém-se que $A = \left(-\frac{1}{2}, -4\right)$ é ponto de máximo de f(x). Não há pontos de mínimo.

8. Determinar a concavidade e os pontos de inflexão da f.

A concavidade de f e seus pontos de inflexão são obtidos através do sinal de f''(x) e dos zeros de f''(x), respectivamente.

A função $f''(x)=\frac{2(3x^2+3x+1)}{(x^2+x)^3}$ não possui raízes. Logo, f(x) não possui pontos de inflexão.

Através da análise do sinal de f''(x), obtém-se que f(x) é côncava para cima em $\{x \in \mathbb{R} \mid x < -1, x > 0\}$ e é côncava para baixo em $\{x \in \mathbb{R} \mid -1 < x < 0\}$.

9. Obter as assíntotas horizontais e verticais, se existirem.

A fim de verificar a existência de assíntotas verticais, calculam-se os limites:

$$\lim_{x \to 0^{-}} f(x) = -\infty \quad \lim_{x \to 0^{+}} f(x) = +\infty$$
$$\lim_{x \to 1^{-}} f(x) = +\infty \quad \lim_{x \to 1^{+}} f(x) = -\infty.$$

Pelos resultados anteriores, x = -1 e x = 0 são assíntotas verticais de f(x).

O cálculo dos limites $\lim_{x\to-\infty} f(x) = 0$ e $\lim_{x\to+\infty} f(x) = 0$ mostra que y=0 é assíntota horizontal do gráfico de f(x).

10. Esboçar o gráfico.

Com as informações obtidas nos itens anteriores, esboça-se o gráfico da função que está representado na Figura 4.14.

Exemplo 4.6.4. Sabendo que a função definida por $f(x) = \frac{4x^2}{x^2 + 3}$ é côncava para cima no intervalo (-1, 1) e que é côncava para baixo no intervalo $(-\infty, -1)$ e $(1, +\infty)$ e que $f'(x) = \frac{24x}{(x^2 + 3)^2}$, determine:

- a) o domínio de f(x);
- b) as raízes de f(x);
- c) os pontos de máximo e mínimo de f(x);
- d) os intervalos onde f(x) é crescente ou decrescente;

Figura 4.14: Gráfico de f(x) do exemplo 4.6.3.

- e) os pontos de inflexão;
- f) com as informações obtidas, esboce o gráfico de f(x).

Solução:

a) Seja a função $f(x) = \frac{4x^2}{x^2 + 3}$. Para determinar o domínio de f(x) basta determinar os valores de x para os quais f(x) está definida.

Para esta função racional, estuda-se o denominador da função f(x), isto é, x^2+3 que deve ser diferente de zero para a função estar definida. Portanto,

$$x^2 + 3 \neq 0.$$

Neste caso, não existem valores de x que anulem a função x^2+3 , portanto $D(f)=\mathbb{R}.$

b) Para o cálculo das raízes de f(x) basta resolver f(x) = 0.

$$f(x) = 0 \Rightarrow \frac{4x^2}{x^2 + 3} = 0.$$
 (4.6.1)

Observe que o valor de x que satisfaz (4.6.1) é x=0. Portanto, a raiz de f(x) é x=0.

4.6. ANÁLISE GERAL DO COMPORTAMENTO DE UMA FUNÇÃO - CONSTRUÇÃO DE GRÁFICOS

c) Determinam-se os pontos de máximo e mínimo de f(x), primeiramente calculandose os pontos críticos de f(x). Para isso basta tomar f'(x) = 0.

Sabendo que
$$f(x) = \frac{4x^2}{x^2 + 3}$$
, tem-se $f'(x) = \frac{24x}{(x^2 + 3)^2}$. Fazendo $f'(x) = 0$, tem-se

$$f'(x) = 0$$

$$\frac{24x}{(x^2+3)^2} = 0$$

$$x = 0.$$

Portanto (0,0) é o ponto mínimo, não há ponto máximo.

d) Uma vez obtida a primeira derivada da função, basta aplicar o teste da primeira derivada para determinar os intervalos de crescimento e decrescimento. Sendo $f'(x) = \frac{24x}{(x^2+3)^2}$, tem-se que x=0 é o valor de x que anula a primeira derivada e, estudando-se o sinal da primeira derivada de f(x) obtém-se,

$$f'(x) < 0$$
, se $x < 0$
 $f'(x) < 0$, se $x > 0$.

Portanto, tem-se

Intervalo de crescimento de f(x): $\{x \in \mathbb{R} | x < 0\}$. Intervalo de decrescimento de f(x): $\{x \in \mathbb{R} | x > 0\}$.

e) Os pontos de inflexão são obtidos igualando-se segunda derivada a zero. Portanto, tem-se

$$f''(x) = \frac{d}{dx} \left(\frac{24x}{(x^2+3)^2} \right)$$

$$f''(x) = \frac{72(1-x^2)}{(x^2+3)^3}$$

$$\frac{72(1-x^2)}{(x^2+3)^3} = 0$$

$$x = 1, x = -1.$$

Então os pontos de inflexão são (-1,1) e (1,1).

f) O gráfico de f(x)está ilustrado na Figura 4.15

$4.6.\;$ ANÁLISE GERAL DO COMPORTAMENTO DE UMA FUNÇÃO - CONSTRUÇÃO DE GRÁFICOS

Figura 4.15: Gráfico de f(x) do exemplo 4.6.4.

Exemplo 4.6.5. Sabendo que $f(x) = (x^2 + 1)e^x$, e $\lim_{x \to +\infty} f(x) = +\infty$ e $\lim_{x \to -\infty} f(x) = 0$, determine:

- a) o domínio e a raízes de f(x);
- b) os pontos de máximo e mínimo de f(x);
- c) os intervalos onde f(x) é crescente ou decrescente;
- d) os pontos de inflexão;
- e) as assíntotas horizontais e verticais, caso existam;
- f) com as informações obtidas, esboçar o gráfico de f(x).

Solução:

Tabela 2: Solução do Exemplo 4.6.5.

	$f(x) = (x^2 + 1)e^x$
Domínio	\mathbb{R}
Raízes	Não há raízes
Pontos críticos	Não há pontos críticos de máximo e mínimo
Intervalo de crescimento	\mathbb{R}
Intervalo de decrescimento	Não há
Pontos de inflexão	$\left(-3, \frac{10}{e^3}\right), \left(-1, \frac{2}{e}\right)$
Concavidade para cima	$\{x \in \mathbb{R} \mid x < 3, x > -1\}$
Concavidade para baixo	$\{x \in \mathbb{R} \mid -3 < x < -1\}$
Assíntota vertical	Não há
Assíntota horizontal	$y = 0$, pois $\lim_{x \to -\infty} f(x) = 0$

Gráfico:

Figura 4.16: Figura do exemplo 4.6.5

4.7 Lista de Exercícios

- 1. Determine para cada função:
- a) o intervalo onde a função é crescente e decrescente;
- b) os pontos extremos locais (máximos e mínimos);
- c) os pontos de inflexão;

- d) a concavidade;
- e) o gráfico.

(i)
$$f(x) = x^3 - 3x^2 + 3$$

(ii)
$$f(x) = \ln(1+x^2)$$

(iii)
$$f(x) = |x^2 + 9|$$

(iv)
$$f(x) = \frac{x^2 + 1}{x}$$
.

- 2. Use a expressão dada para a segunda derivada de uma função para localizar os pontos de inflexão, os intervalos em que o gráfico é côncavo para cima e os intervalos e que a concavidade é para baixo:
- (i) $y'' = 8x^2 + 32x$

(ii)
$$y'' = (x+2)(x^2+4)$$

3. Esboce o gráfico das funções:

a)
$$f(x) = x^4 - 2x^2 + 1$$

b)
$$g(x) = x^4 - 6x^2$$

c)
$$h(x) = x^3(x-1)^2$$

d)
$$m(x) = \frac{4x^2}{x^2 + 3}$$

e)
$$n(x) = \frac{9}{x^2 + 9}$$

f)
$$p(x) = \frac{x^3}{x^2 + 1}$$

- 4. Sabendo que a função dada por $f(x)=2e^x-2xe^x$, sabendo que $\lim_{x\to +\infty}f(x)=-\infty$ e $\lim_{x\to -\infty}f(x)=0$, determine:
- a) o domínio e raízes (ou zeros) de f(x);
- b) os intervalos f(x) onde é crescente ou decrescente;
- c) os pontos de máximo e mínimo locais de f(x);

4.8. PROBLEMAS DE OTIMIZAÇÃO - MAXIMIZAÇÃO E MINIMIZAÇÃO

- d) intervalos onde o gráfico é côncavo para cima e onde é côncavo para baixo;
- e) pontos de inflexão;
- f) assíntotas horizontas e assíntotas verticais, caso existam;
- g) com as informações obtidas, esboce o gráfico de f(x).

Respostas da Lista

Use um software gráfico para obter as soluções.

4.8 Problemas de Otimização - Maximização e Minimização

Alguns problemas práticos em diversas áreas sobre máximos e mínimos serão apresentados a seguir.

O primeiro passo para solucioná-los consiste em escrever precisamente qual a função a ser analisada. Esta função poderá ser escrita em termos de uma ou mais variáveis. Quando for dependente de três ou mais variáveis, deve-se procurar reduzir este número de variáveis, escrevendo uma em função da outra.

Com a função bem definida, deve-se identificar um intervalo apropriado e, então, proceder a rotina matemática de resolução.

Exemplo 4.8.1. Um campo retangular deve ser cercado com 500 m de cerca ao longo de três lados e tem um rio reto como a Figura 4.17. Seja x o comprimento de cada lado perpendicular ao rio e y o comprimento de cada lado paralelo ao rio. Determine:

- a) y em termos de x;
- b) a área A do campo em termos de x;
- c) a maior área que pode ser cercada.
 Solução:

Figura 4.17: Situação descrita no exemplo 4.8.1

a) Para cercar os lados, há 500 m de cerca, assim:

$$x + y + x = 500.$$

Isolando y, é possível escrever y em termos de x:

$$y = 500 - 2x.$$

b) A área do retângulo é $\acute{A}rea = base \cdot altura$, a base do retângulo é y = 500 - 2xe a altura é x, portanto:

$$A = (500 - 2x) \cdot x$$

$$A = 500x - 2x^2.$$

c) A maior área cercada corresponde à ordenada do vértice da parábola que descreve a área. Neste caso o ponto máximo ou mínimo da função.

O vértice é calculado por:

$$x_{v} = -\frac{b}{2a}$$

$$= -\frac{500}{-4}$$

$$x_{v} = 125.$$
(4.8.1)

Maior área: $\frac{dA}{dx} = 500 - 4x = 0$

$$4x = 500$$

$$x = 125$$

Substituindo o valor de x em A

$$A = 500x - 2x^{2}$$
$$= 500(125) - 2(125)^{2}$$
$$A = 31.250\text{m}^{2}.$$

Exemplo 4.8.2. Deseja-se confeccionar uma caixa a partir de uma folha de cartolina de 16 cm de largura por 30 cm de comprimento, a fim de que seu volume interno seja o maior possível.

Solução:

A Figura 4.18 ilustra a folha de cartolina com os cortes necessários para a confecção da caixa descrita no enunciado.

Figura 4.18: Situação do exemplo 4.8.2

O volume da caixa é calculado $volume = área da base \cdot altura, logo:$

$$V = (16 - 2x) \cdot (30 - 2x)x$$
$$V = 480x - 92x^2 + 4x^3.$$

Calculando $\frac{dV}{dx}$ para determinar o valor da variável x que maximiza o volume, obtém-se:

$$\frac{dV}{dx} = 480 - 184x + 12x^2.$$

Fazendo $480 - 184x + 12x^2 = 0$, obtém-se $x' = \frac{10}{3}$ e x'' = -36.

Como x''é inviável, substitui-se x'em $V=480x-92x^2+4x^3,$ logo $V=726{\rm cm}^3.$

Exemplo 4.8.3. Uma caixa sem tampa, de base quadrada, deve ser construída de forma que o seu volume seja 2.500 m³. O material da base vai custar 1.200,00 reais por m² e o material dos lados custa 980,00 reais por m². Determine as dimensões da caixa de modo que o custo do material seja mínimo.

Solução:

Escreve-se a função que descreve o custo do material com base nas Figuras $4.19 \ {\rm e} \ 4.20.$

Figura 4.20:

Figura 4.19:

O custo é dado por:

$$C = x^2(1.200) + 4xy(980).$$

Como $V=x^2y=2.500$ cm³, tem-se que a dimensão y pode ser escrita como $y=\frac{2.500}{x^2}$. Substituindo esse resultado em C, obtém-se:

$$C(x) = 1.200x^2 + \frac{9.800}{x},$$

que é a função a ser minimizada.

Calcula-se a derivada de C em relação a x:

$$C'(x) = \frac{2.400x^3 - 9.800.000}{x^2}.$$

Resolvendo $\frac{2.400x^3-9.800.000}{x^2}=0$, obtém-se $x\cong 15,983$ m, que é o ponto crítico. De fato, $x\cong 15,983$ m será um ponto de mínimo, já que C''(15,983)>0.

Portanto as dimensões da caixa de modo a obter o menor custo possível são $x\cong 15,93$ m e $y\cong 9,785$ m.

4.9 Lista de Exercícios

1. Expresse o número 10 como a soma de dois números positivos cujo produto seja o maior possível.

- 2. Uma folha quadrada de papelão de 12 m² é usada para fazer uma caixa aberta. São cortados quadrados de igual tamanho nos quatro cantos da folha e dobrados para dar altura à caixa. De que tamanho devem ser cortados os quadrados para conseguir o maior volume possível para a caixa?
- 3. Um container retangular fechado possui uma base quadrada e um volume de 2.000 cm³. As bases custam, por cm², o dobro do que custam os lados laterais. Determine as dimensões do container de menor custo.
- 4. O custo e a receita total com a produção e comercialização de um produto são dados por:

$$C(q) = 600 + 2, 2q,$$

е

$$R(q) = 10q - 0,006q^2,$$

sendo $0 \leqslant q \leqslant 900$.

- a) Determine a quantidade q que maximiza o lucro com a venda desse produto.
- b) Qual o nível de produção que minimiza o lucro?
- 5. Uma pedra é lançada verticalmente para cima. Sua altura h (metros), em relação ao solo, é dada por:

$$h = 30 + 20t - 5t^2,$$

em que t indica o número de segundos decorridos após o lançamento. Em que instante a pedra atingirá sua altura máxima?

Respostas dos exercícios

- 1. 10 = 5 + 5.
- 2.0,57 m
- 3. Base= 10 cm e altura= 20 cm
- 4. (a) q = 650 (b) $q \approx 82$
- 5. t = 2 s.

4.10 Taxas Relacionadas

Em aplicações de taxas relacionadas, o objetivo consiste em determinar a taxa de variação de uma grandeza em termos da taxa de variação de outra.

O processo consiste em escrever uma equação que relacione as duas grandezas e então utilizar derivação implícita e/ou regra da cadeia para diferenciar ambos os membros da equação em relação ao tempo t.

Os passos a seguir representam um procedimento possível para a resolução de problemas envolvendo taxas relacionadas.

- 1. Desenhar uma figura que represente o problema, se isso for possível.
- 2. Definir as variáveis. Em geral definir primeiro t, pois as outras variáveis usualmente dependem de t.
- 3. Escrever todas as informações numéricas conhecidas sobre as variáveis e suas derivadas em relação ao tempo t.
- 4. Obter uma equação envolvendo as variáveis que dependem de t.
- 5. Derivar em relação ao tempo ambos os membros da equação encontrada na etapa 4.
- 6. Substituir na equação resultante, na etapa 5, todos os valores de quantidades conhecidas.
- 7. Finalmente, resolver em relação à taxa de variação procurada.

Exemplo 4.10.1. O raio r de um círculo está aumentando à razão de 2 mm/min. Calcule a taxa de variação da área quando:

- a) r = 6 mm
- b) r = 24 mm.

Solução:

A área do círculo é definida por:

$$A(t) = \pi r^2(t). (4.10.1)$$

Derivando ambos membros de (4.10.1) em relação a t, obtém-se:

$$\frac{d}{dt}[A] = \frac{d}{dt}[\pi r^2].$$

Logo,

$$\frac{dA}{dt} = 2\pi r \frac{dr}{dt}. (4.10.2)$$

Substituindo r = 6 em (4.10.2), tem-se:

$$\frac{dA}{dt} = 2\pi(6) \cdot (2) = 24\pi \text{ mm}^2 / \text{min.}$$

Para r = 24 em (4.10.2), tem-se:

$$\frac{dA}{dt} = 2\pi(24) \cdot (2) = 96\pi \text{ mm}^2 / \text{min.}$$

Exemplo 4.10.2. Um balão esférico é inflado com gás à razão de 20 cm³/min. Com que rapidez o raio do balão está variando no instante em que:

- a) r=1 cm
- b) r=2 cm.

Solução:

O volume do balão é dado por:

$$V(t) = \frac{4}{3}\pi r^3(t). \tag{4.10.3}$$

Derivando ambos membros de (4.10.3) em relação a t, obtém-se:

$$\frac{d}{dt}[V] = \frac{d}{dt}\left[\frac{4}{3}\pi r^3\right]$$

$$\frac{dV}{dt} = 4\pi r^2 \frac{dr}{dt}.$$
(4.10.4)

Segundo o enunciado, $\frac{dV}{dt}=20~{\rm cm^3/min}$. Assim, a rapidez com que o raio do balão está variando no instante em que $r=1~{\rm cm}$ é:

$$20 = 4\pi (1)^2 \frac{dr}{dt}.$$

Isolando $\frac{dr}{dt}$, tem-se:

$$\frac{dr}{dt} = \frac{5}{\pi} \text{ cm/min.}$$

Para r = 2 cm:

$$20 = 4\pi(2)^2 \frac{dr}{dt}.$$

Isolando $\frac{dr}{dt}$, tem-se:

$$\frac{dr}{dt} = \frac{5}{4\pi} \, \text{cm/min.}$$

Exemplo 4.10.3. A areia cai de uma esteira transportadora à razão de 20 m³/min, formando uma pilha cônica. O diâmetro da base do cone é aproximadamente três vezes a altura do cone. A que taxa a altura da pilha está variando quando sua altura é de 10 m?

Solução:

Os dados do problema permitem escrever o diâmetro como:

$$d(t) = 3h(t).$$

O raio é:

$$2r = 3h \Longleftrightarrow r = \frac{3h}{2}.$$

Sabendo que o volume do cone é: $V = \frac{1}{3}\pi r^2 h$, subbtituindo r tem-se: Sabendo que o volume do cone é:

$$V = \frac{1}{3}\pi r^2 h$$

$$V = \frac{1}{3}\pi \left[\frac{3h}{2}\right]^2 h$$

$$V = \frac{1}{3}\pi \frac{9h^2}{4}h$$

$$V = \frac{3\pi}{4}h^3.$$
(4.10.5)

Derivando ambos membros de (4.10.5) em relação a t, obtém-se:

$$\frac{d}{dt}[V] = \frac{d}{dt} \left[\frac{3\pi}{4} h^3 \right]$$

$$\frac{dV}{dt} = \frac{3\pi}{4} \cdot 3h^2 \cdot \frac{dh}{dt}$$

$$\frac{dV}{dt} = \frac{9\pi^2}{h} 4\frac{dh}{dt}$$
(4.10.6)

Sabendo que $\frac{dV}{dt} = 20$ e h = 10 m, logo:

$$2\mathscr{O} = \frac{9\pi \cancel{100}}{4} \frac{dh}{dt}$$

$$1 = \frac{9\pi \cdot 5}{4} \frac{dh}{dt}$$

$$\frac{dh}{dt} = \frac{4}{45\pi} \text{m/min.}$$

$$(4.10.7)$$

Exemplo 4.10.4. Todas as arestas de um cubo estão se expandindo à razão de 3 cm/s. Determine com que rapidez o volume está variando quando cada aresta é:

- a) 1 cm
- b) 10 cm.

Solução:

O volume do cubo é dado por:

$$V(t) = a^3(t). (4.10.8)$$

Derivando ambos membros de (4.10.8) em relação a t, obtém-se:

$$\frac{d}{dt}[V] = \frac{d}{dt}[a^3]$$

$$\frac{dV}{dt} = 3a^2 \frac{da}{dt}.$$
(4.10.9)

Para a = 1 cm:

$$\frac{dV}{dt} = 3 \cdot (1)^2 \cdot (3) = 9 \text{ cm}^3/\text{s}.$$

Para b = 10 cm:

$$\frac{dV}{dt} = 3 \cdot (10)^2 \cdot (3) = 900 \text{ cm}^3/\text{s}.$$

4.11 Lista de Exercícios

1. O volume de um cubo cresce a taxa de $10~{\rm cm^3/min}$. Com que rapidez está crescendo a área superficial quando o comprimento da aresta é $30~{\rm cm}$?

- 2. Coloca-se água no interior de um tanque cônico de altura h=3 m e raio da base r=1 m. Quando o nível da água é de 2 m, a água está sendo lançada no tanque a razão de $0.05~\rm m^3/min$. Determine para este instante, a velocidade de subida do nível da água.
- 3. Um balão contém 1.000 pés cúbicos de gás à pressão de 5 libras por polegada quadrada. Se a pressão decresce na razão de 0,05 libras por polegada quadrada por hora, com que velocidade cresce o volume? (Sugestão: use a lei de Boyle pv=c).
- 4. O ponteiro do minuto de certo relógio tem 4 pol de comprimento. Começando do momento em que o ponteiro está apontando diretamente para cima, com que rapidez está variando a área do setor que é varrido pelo ponteiro durante uma revolução?
- 5. Dois carros A e B partem de um cruzamento no mesmo instante. O carro A vai para a direção leste à razão de 60 km/h e o carro B vai para a direção sul à razão de 80 km/h. Determine a taxa na qual os dois carros estão se separando 30 min após a partida.
- 6. A dilatação pelo calor de um prato circular de metal é tal que o raio cresce com velocidade de 0,01 cm/s. Com que velocidade cresce a área do prato quando o raio tem 2 cm?
- 7. Areia cai de uma calha de escoamento formando uma pilha cônica, cuja altura é sempre igual ao diâmetro da base. Se a altura crescer a uma taxa constante de 5 pés/min, com que taxa a areia estará escoando quando a pilha estiver com 10 pés de altura?
- 8. Dois carros, um dirigindo-se para o leste à taxa de 72 km/h e o outro se dirigindo para o sul à taxa de 54 km/h estão viajando em direção ao cruzamento de duas rodovias. A que taxa os carros se aproximam um do outro, no instante em que o primeiro estiver a 400 m e o segundo estiver a 300 m do cruzamento?

Respostas dos exercícios

1. $\frac{4}{3}$ cm²/min

- 2. 0,036 m/s
- 3. 10 pés cúbicos/hora
- 4. $\frac{4\pi}{15} \text{ pol}^2/\text{min}$
- $5.\ 100\ km/h$
- 6. $0,04 \text{ cm}^2/\text{s}$
- 7. $125\pi \text{ pés}^3/\text{min}$
- 8. -25 m/s.