Название проекта: Анализ гипотез для увеличения выручки интернет магазина.

Как аналитику крупного интернет-магазина перед нами стоит задача. Вместе с отделом маркетинга мы подготовили список гипотез для увеличения выручки. Нам предстоит провести приоритезацию гипотез, запустить **А/В**-тест и проанализировать результаты.

Описание данных:

Данные для первой части </div>

Файл /datasets/hypothesis.csv. Скачать датасет

- Hypothesis краткое описание гипотезы;
- Reach охват пользователей по 10-балльной шкале;
- Impact влияние на пользователей по 10-балльной шкале;
- Confidence уверенность в гипотезе по 10-балльной шкале;
- Efforts затраты ресурсов на проверку гипотезы по **10**-балльной шкале. Чем больше значение Efforts, тем дороже проверка гипотезы.

Данные для второй части

Файл /datasets/orders.csv. Скачать датасет

- transactionId идентификатор заказа;
- visitorId идентификатор пользователя, совершившего заказ;
- date дата, когда был совершён заказ;
- revenue выручка заказа;
- group группа **А/В**-теста, в которую попал заказ.

Файл /datasets/visitors.csv. Скачать датасет

- date дата;
- group группа А/В-теста;
- visitors количество пользователей в указанную дату в указанной группе А/В-теста

Приоретизация гипотез

Импортируем все необходимые библиотеки

```
In [1]:
```

```
import pandas as pd
import scipy.stats as stats
import datetime as dt
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from scipy import stats as st
```

```
In [2]:
```

```
data = pd.read_csv('/datasets/hypothesis.csv', sep=',')
data
```

```
Out[2]:
```

0	Добавить два новых канала привлечения Hypothesis	Reach	Impact	Confidence	Efforts
1	Запустить собственную службу доставки, что сок	2	5	4	10
2	Добавить блоки рекомендаций товаров на сайт ин	8	3	7	3
3	Изменить структура категорий, что увеличит кон	8	3	3	8
4	Изменить цвет фона главной страницы, чтобы уве	3	1	1	1
5	Добавить страницу отзывов клиентов о магазине,	3	2	2	3
6	Показать на главной странице баннеры с актуаль	5	3	8	3
7	Добавить форму подписки на все основные страни	10	7	8	5
8	Запустить акцию, дающую скидку на товар в день	1	9	9	5

In [3]:

```
data.columns = data.columns.str.lower()
```

Проведем приоритезацию гипотез с помощью фреймворка ICE (умножаем значимость для пользовательского опыта impact на нашу уверенность в этом confidence и делим на цену уровень стоимости проверки efforts)

In [4]:

```
data['ICE'] = round (data['impact']*data['confidence']/data['efforts'], 2) # рассчитывае м ICE, результат записываем в отдельный столбец pd.set_option('max_colwidth', 150) # увеличиваем максимальную ширину столбца, чтобы была возможность прочесть гипотезы полностью display(data[['hypothesis','ICE']].sort_values(by='ICE', ascending=False)) # выводим на экран гипотезы в порядке приоритезации по ICE
```

	hypothesis	ICE
8	Запустить акцию, дающую скидку на товар в день рождения	16.20
0	Добавить два новых канала привлечения трафика, что позволит привлекать на 30% больше пользователей	13.33
7	Добавить форму подписки на все основные страницы, чтобы собрать базу клиентов для email- рассылок	11.20
6	Показать на главной странице баннеры с актуальными акциями и распродажами, чтобы увеличить конверсию	8.00
2	Добавить блоки рекомендаций товаров на сайт интернет магазина, чтобы повысить конверсию и средний чек заказа	7.00
1	Запустить собственную службу доставки, что сократит срок доставки заказов	2.00
5	Добавить страницу отзывов клиентов о магазине, что позволит увеличить количество заказов	1.33
3	Изменить структура категорий, что увеличит конверсию, т.к. пользователи быстрее найдут нужный товар	1.12
4	Изменить цвет фона главной страницы, чтобы увеличить вовлеченность пользователей	1.00

Теперь воспользуемся фреймворком RICE. При использовании этого фреймворка в множители числителя добавляем значение оценку количества пользователей, которых затронут изменения reach

In [5]:

```
data['RICE'] = data['reach']*data['impact']*data['confidence']/data['efforts'] # рассчит ываем RICE, результат записываем в отдельный столбец display(data[['hypothesis','RICE']].sort_values(by='RICE', ascending=False)) # выводим н а экран гипотезы в порядке приоритезации по RICE
```

	hypothesis	RICE
7	Добавить форму подписки на все основные страницы, чтобы собрать базу клиентов для email -рассылок	112.0
2	Добавить блоки рекомендаций товаров на сайт интернет магазина, чтобы повысить конверсию и средний чек заказа	56.0
0	Добавить два новых канала привлечения трафика, что позволит привлекать на 30% больше пользователей	40.0
6	Показать на главной странише баннеры с актуальными акшидми и распролажами, чтобы увеличить конверсию	4 0 0

~	поласать на главном отранице санноры с алтуальными алдилим и распродалами, посы увели иль понвороме	70.0
8	hypothesis Запустить акцию, дающую скидку на товар в день рождения	16.2
3	Изменить структура категорий, что увеличит конверсию, т.к. пользователи быстрее найдут нужный товар	9.0
1	Запустить собственную службу доставки, что сократит срок доставки заказов	4.0
5	Добавить страницу отзывов клиентов о магазине, что позволит увеличить количество заказов	4.0
4	Изменить цвет фона главной страницы, чтобы увеличить вовлеченность пользователей	3.0

Для наглядности выведем рядом очередность приоритезации гипотез разными фреймворками

ICE	RICE
8	7
0	2
7	0
6	6
2	8
1	3
5	1
3	5
4	4

Результаты несколько разнятся. Это связано с тем, что RICE учитывает оценку количества пользователей, которых затронут изменения и чем их больше, тем приоритет гипотезы выше. Для ICE этот критерий не учитывается.

Стоит отметить, что в обоих случаях можно выделить приоритетными гипотезы под номерами 7, 0, 6. Несмотря на то, что их приоритет разнится при оценке разными фреймворками, в обоих случаях они вверху нашего "рейтинга". Гипотезы же 4, 5, 3, 1 в обоих случаях имеют низкий приоритет.

Анализ А/В теста

Предобработка

Для начала запишем данные из имеющихся датафреймов в переменные orders и visitors соответственно и посмотрим как выглядят таблицы.

```
In [6]:
```

```
orders = pd.read_csv('/datasets/orders.csv', sep=',')
orders.head()
```

Out[6]:

	transactionId	visitorld	date	revenue	group
0	3667963787	3312258926	2019-08-15	1650	В
1	2804400009	3642806036	2019-08-15	730	В
2	2961555356	4069496402	2019-08-15	400	Α
3	3797467345	1196621759	2019-08-15	9759	В
4	2282983706	2322279887	2019-08-15	2308	В

In [7]:

```
visitors = pd.read_csv('/datasets/visitors.csv')
```

```
visitors.head()
```

Out[7]:

	date	group	visitors
0	2019-08-01	Α	719
1	2019-08-02	Α	619
2	2019-08-03	Α	507
3	2019-08-04	Α	717
4	2019-08-05	Α	756

Приведем тип данных в столбцах date в обоих датафреймах к типу datetime

```
In [8]:
```

```
orders['date'] = orders['date'].map(
    lambda x: dt.datetime.strptime(x, '%Y-%m-%d')
)
visitors['date'] = visitors['date'].map(
    lambda x: dt.datetime.strptime(x, '%Y-%m-%d')
)
```

Проверяем корректность разделения пользователей по группам.

In [9]:

```
# отбираем группы из данных с заказами
group_a=orders.query('group == "A"')
group_b=orders.query('group == "B"')

# получаем ід пользователей, попавших в обе группы
group_intersections=list(np.intersectld(group_a['visitorId'], group_b['visitorId']))
len(group_intersections)
```

Out[9]:

58

Получается 58 пользователей попали в обе группы. Это может исказить выводы дальнейшего исследования, поэтому от записей о покупках этих пользователей придется избавиться

```
In [10]:
```

```
# перезаписываем orders
orders = orders.query('visitorId not in @group_intersections')
```

Проверим, что в данных не осталось записей о пользователях попавших в обе группы

In [11]:

```
# отбираем группы из данных с заказами
group_a=orders.query('group == "A"')
group_b=orders.query('group == "B"')

# получаем пользователей, попавших в обе группы
group_intersections=list(np.intersectld(group_a['visitorId'], group_b['visitorId']))
len(group_intersections)
```

Out[11]:

0

Чтобы построить графики, нужно собрать кумулятивные данные. Создадим датафрейм cumulativeData со столбцами:

- date дата;
- group группа **А/В**-теста (**А** или **В**);
- orders кумулятивное количество заказов на указанную дату в указанной группе;
- buyers кумулятивное количество пользователей, совершивших хотя бы один заказ, на указанную дату в указанной группе;
- revenue кумулятивная выручка на указанную дату в указанной группе (средний чек);
- visitors кумулятивное количество посетителей интернет-магазина на указанную дату в определённой группе.

Для этого вначале подготовимся.

In [12]:

```
# создаем массив уникальных пар значений дат и групп теста datesGroups = orders[['date','group']].drop_duplicates()
```

Получим строки таблицы orders, дата которых меньше или равна дате элемента из datesGroups, а группа теста равна группе из datesGroups.

Агрегируем значения. Вычислим максимальную дату. Для группы тоже рассчитаем максимум, и хотя она будет определённой, сделаем это, чтобы столбец group не пропал из итогового вывода. Найдём число уникальных **ID** заказов и пользователей. Подсчитаем сумму средних чеков

Применим методы к каждой строке датафрейма и отсортируем результаты по столбцам date и group.

Результат запишем в датафрейм ordersAgregated

In [13]:

```
ordersAggregated = datesGroups.apply(lambda x: orders[np.logical_and(orders['date'] <= x
['date'], orders['group'] == x['group'])]\
.agg({'date' : 'max', 'group' : 'max', 'transactionId' : 'nunique', 'visitorId' : 'nunique', 'revenue' : 'sum'}), axis=1).sort_values(by=['date','group'])</pre>
```

Аналогично visitorsAggregated

In [14]:

```
visitorsAggregated = datesGroups.apply(lambda x: visitors[np.logical_and(visitors['date'
] <= x['date'], visitors['group'] == x['group'])].agg({'date' : 'max', 'group' : 'max',
'visitors' : 'sum'}), axis=1).sort_values(by=['date','group'])</pre>
```

Таким образом в ordersAggregated и visitorsAggregated будут находиться такие данные как будто мы ежедневно считали результаты тестирования до выбранного дня включительно и сохраняли их в строках таблиц.

In [15]:

```
# объединяем кумулятивные данные в одной таблице и присваиваем ее столбцам понятные назва ния cumulativeData = ordersAggregated.merge(visitorsAggregated, left_on=['date', 'group'], r ight_on=['date', 'group']) cumulativeData.columns = ['date', 'group', 'orders', 'buyers', 'revenue', 'visitors'] print(cumulativeData.head(5))
```

	date	group	orders	buyers	revenue	visitors
0	2019-08-01	A	23	19	142779	719
1	2019-08-01	В	17	17	59758	713
2	2019-08-02	A	42	36	234381	1338
3	2019-08-02	В	40	39	221801	1294
4	2019-08-03	А	66	60	346854	1845

График кумулативной выручки по группам

I Papelly hympholishich colpy has no i pyrinam

```
In [16]:
```

```
# параметры визуализации
sns.set(font_scale=2, style='whitegrid', rc={'figure.figsize':(20,7)})
```

```
In [17]:
```

```
# датафрейм с кумулятивным количеством заказов и кумулятивной выручкой по дням в группе А
cumulativeRevenueA = cumulativeData[cumulativeData['group'] == 'A'][['date', 'revenue', 'ord
ers']]
# датафрейм с кумулятивным количеством заказов и кумулятивной выручкой по дням в группе В
cumulativeRevenueB = cumulativeData[cumulativeData['group']=='B'][['date','revenue', 'ord
ers']]
# Строим график выручки группы А
plt.plot(cumulativeRevenueA['date'], cumulativeRevenueA['revenue'], label='A')
# Строим график выручки группы В
plt.plot(cumulativeRevenueB['date'], cumulativeRevenueB['revenue'], label='B')
# размер шрифта по оси х
plt.tick params(axis='x', which='major', labelsize=15)
plt.title('График кумулятивной выручки по группам')
plt.xlabel('Дата')
plt.ylabel('Выручка')
plt.legend();
```


Вывод:

- выручка стабильно растет на протяжении всего теста в обоих группах;
- в начале теста метрика немного колеблется, но показывает близкие значения в обоих группах;
- у группы В наблюдается резкий всплеск после **17.08**, который может быть связан с резким увеличением заказов в этот день, либо о появлении очень дорогих заказов в выборке;
- после выброса в группе В выручки в обоих группах стабилизируются и растут практически одинаково.

Однозначно утверждать, что группа В лучше на данном шаге нельзя.

График кумулятивного среднего чека по группам.

Построим графики среднего чека по группам — разделим кумулятивную выручку на кумулятивное число заказов:

```
In [18]:
```

```
# график среднего чека группы А
```

```
plt.plot(cumulativeRevenueA['date'], cumulativeRevenueA['revenue']/cumulativeRevenueA['or ders'], label='A')

# график среднего чека группы В
plt.plot(cumulativeRevenueB['date'], cumulativeRevenueB['revenue']/cumulativeRevenueB['or ders'], label='B')

# размер шрифта по оси х
plt.tick_params(axis='x', which='major', labelsize=15)

plt.title('График кумулятивного среднего чека по группам')
plt.xlabel('Дата')
plt.ylabel('Кумулятивный средний чек')
plt.legend();
```


- В целом к концу теста метрика стабилизируется в обоих группах.
- Группа А, в отличии от группы В более равномерна, к концу теста средний чек почти сравнялся с максимальным значением, достигнутым 13 августа.
- Выделяется аномальный рост среднего чека **18-19** августа по группе В, а затем снижение. Возможно, в группу **В** в первой половине теста попали крупные заказы (резкий всплеск на графике). Тогда ей нужно больше данных, чтобы прийти к реальному среднему чеку и установиться на его уровне;

График относительного изменения кумулятивного среднего чека группы В к группе А.

Построим график относительного различия для среднего чека.

In [19]:

```
# собираем данные в одном датафрейме
mergedCumulativeRevenue = cumulativeRevenueA.merge(cumulativeRevenueB, left_on='date', ri
ght_on='date', how='left', suffixes=['A', 'B'])

# строим отношение средних чеков
plt.plot(mergedCumulativeRevenue['date'], (mergedCumulativeRevenue['revenueB']/mergedCumu
lativeRevenue['ordersB'])/(mergedCumulativeRevenue['revenueA']/mergedCumulativeRevenue['o
rdersA'])-1)

# добавляем ось X
plt.axhline(y=0, color='black', linestyle='--')

# размер шрифта по оси х
plt.tick_params(axis='x', which='major', labelsize=15)

plt.title('График относительного изменения кумулятивного среднего чека группы В к группе
A')
plt.xlabel('Дата')
```


- В начале теста лучше себя чувствовали показатели группы В, затем они стали ухудшаться относительно А
- Ближе к середине теста **13.08** A достигает своих лучших показателей, поэтому график опускается в худшую за время теста для В точку
- Однако важно отметить, что на графике различия между сегментами резко «скачет» в некоторых днях, например **05.08** или **08.08**, но особенно выделяется, конечно скачок **18.08**. Очевидно есть выбросы.
- После выброса метрика снижается и стремится стабилизироваться.

График кумулятивной конверсии по группам

Теперь посмотрим на кумулятивную конверсию

```
In [20]:
```

```
# считаем кумулятивную конверсию
cumulativeData['conversion'] = cumulativeData['orders']/cumulativeData['visitors']
# отделяем данные по группе А
cumulativeDataA = cumulativeData[cumulativeData['group']=='A']
# отделяем данные по группе В
cumulativeDataB = cumulativeData[cumulativeData['group']=='B']
# строим графики
plt.plot(cumulativeDataA['date'], cumulativeDataA['conversion'], label='A')
plt.plot(cumulativeDataB['date'], cumulativeDataB['conversion'], label='B')
plt.legend()
# размер шрифта по оси х
plt.tick params(axis='x', which='major', labelsize=15)
# задаем масштаб осей
plt.axis([dt.datetime(2019, 8, 1), dt.datetime(2019, 9, 1), 0.020, 0.038])
plt.title('График кумулятивной конверсии по группам')
plt.xlabel('Дата')
plt.ylabel('Кумулятивная конверсия');
```


- В начале теста наблюдаем заметные колебания. В начале конверсия у группы А была больше группы В, но уже к концу первой недели тестирования конверсия группы В выросла, а группы А снизилась, после чего графики начали стремиться к стабилизации
- К 11-12 августа различие в конверсии у обоих групп становится очевидно, и начинает фиксироваться.
- Примерно к 20 августа колебания максимально сглаживаются
- В целом, конверсия у группы В стабильно лучше по накопленным показателям чем А

График относительного изменения кумулятивной конверсии группы В к группе А

Построим график относительного изменения кумулятивных конверсий

```
In [21]:
```

```
mergedCumulativeConversions = cumulativeDataA[['date','conversion']].merge(cumulativeDat aB[['date','conversion']], left_on='date', right_on='date', how='left', suffixes=['A', 'B'])

plt.plot(mergedCumulativeConversions['date'], mergedCumulativeConversions['conversionB']/
mergedCumulativeConversions['conversionA']-1, label="Относительный прирост конверсии груп
пы В относительно группы А")
plt.legend()

plt.axhline(y=0, color='black', linestyle='--')
plt.axhline(y=0.1, color='grey', linestyle='--')
plt.axis([dt.datetime(2019, 8, 1), dt.datetime(2019, 9, 1), -0.3, 0.3])

# размер шрифта по оси х
plt.tick_params(axis='x', which='major', labelsize=15)

plt.title('График относительного изменения кумулятивной конверсии группы В к группе A')
plt.xlabel('Дата')
plt.ylabel('Кумулятивная конверсия');
```


Вывод:

• С самого начала теста, метрика группа 🛭 в меньше группы 🖪 , но с 6 августа вырвалась вперед и стабильно

- росла до своего пика 15.08 в 21%, далее метрика начинается снижаться и стремиться к стабилизации.
- В целом отношение конверсии стремится примерно к уровню **13-17**% в пользу В, но в последние дни теста еще растет. Скорее всего отношение конверсии еще полностью не установилось, и сейчас делать какие-либо однозначные выводы по тесту еще нельзя, но на первый взгляд В выглядит интереснее в плане конверсии.

Точечный график количества заказов по пользователям

Для начала посмотрим топ количества заказов в табличном виде

In [22]:

```
ordersByUsers = (orders.groupby('visitorId', as_index=False).agg({'transactionId': pd.Se
ries.nunique}))
ordersByUsers.columns = ['visitorId', 'orders']
ordersByUsers.sort_values(by='orders', ascending=False).head(10)
```

Out[22]:

	visitorId	orders
908	3967698036	3
55	249864742	3
478	2108163459	3
687	2988190573	3
890	3908431265	3
138	611059232	3
632	2742574263	3
157	678354126	2
323	1404560065	2
452	1985475298	2

Теперь построим точечный график количества заказов по пользователям

In [23]:

```
# серия из чисел от 0 до количества наблюдений в ordersByUsers
x_values = pd.Series(range(0, len(ordersByUsers)))
plt.scatter(x_values, ordersByUsers['orders']);

plt.title('Точечный график количества заказов по пользователям')
plt.ylabel('Количество заказов');
```


Есть пользователи, которые совершали по **1**, **2**, **3** заказов. Чаще всего **1** заказ, не редки случаи и **2**-х заказов. Их точная доля не ясна — непонятно, считать их аномалиями или нет. Для этого необходимо посчитать выборочные перцентили количества заказов на одного пользователя.

Посчитаем выборочные **95**-й и **99**-й перцентили количества заказов на одного пользователя

```
In [24]:
```

```
print(np.percentile(ordersByUsers['orders'], [95, 99]))
[1. 2.]
```

Вывод:

Не более **5**% пользователей оформляли больше чем один и не более **1**% пользователей - больше двух заказов. Целесообразно выбрать **1** заказ на одного пользователя за нижнюю границу "нормального" числа заказов, и отсеять аномальных пользователей.

Точечный график стоимости заказов

Для начала посмотрим в табличном виде топ по стоимости заказов

In [25]:

```
orders.sort_values(by='revenue', ascending=False).head(10)
```

Out[25]:

	transactionId	visitorId	date	revenue	group
425	590470918	1920142716	2019-08-19	1294500	В
1196	3936777065	2108080724	2019-08-15	202740	В
1136	666610489	1307669133	2019-08-13	92550	Α
744	3668308183	888512513	2019-08-27	86620	В
743	3603576309	4133034833	2019-08-09	67990	Α
1103	1348774318	1164614297	2019-08-12	66350	Α
1099	316924019	148427295	2019-08-12	65710	Α
949	1347999392	887908475	2019-08-21	60450	Α
940	2420050534	4003628586	2019-08-08	58550	В
131	3163614039	2254586615	2019-08-22	53904	Α

даже в этой таблице уже виден пользователь из группы В, который скорее всего и стал причиной аномального всплеска, потратив **1 294 500** рублей

Теперь построим точечный график

In [26]:

```
x_values = pd.Series(range(0, len(orders['revenue'])))
plt.scatter(x_values, orders['revenue']);
plt.title('Точечный график стоимостей заказов')
plt.ylabel('Стоимость заказа в млн.');
```


На графике зафиксирован один самый крупный заказ на сумму **1 294 500.** Далее виден заказ в размере **202 740** Все остальные заказы ниже **92 550.** Для того, чтобы точно определить стоимость заказа, которую следует считать аномальной посчитаем выборочные перцентели.

Посчитаем выборочные 95-й и 99-й перцентили стоимости заказов

```
In [27]:
```

```
print(np.percentile(orders['revenue'], [95, 99]))
[26785. 53904.]
```

Вывол:

Не более, чем у 5% пользователей чек дороже 26 785, и только не более 1% пользователей оформили на чек дороже 53 904. Границей для определения аномальных заказов следует обозначить до 26 785.

Статистическая значимость различия в конверсии между группами по "сырым" данным.

Перед тестом Манна-Уитни проверим гипотезу о нормальном распределении с помощью критерия Шапиро-Уилка:

```
H_0 : Конверсии группы {
m A} распределены нормально H_1
```

 $_{\cdot}$: Конверсии группы ${
m A}$ не распределены нормально

α=5% критический уровень статистической значимости.

Аналогично для группы В.

In [28]:

```
visitorsBCummulative = visitorsBDaily.apply(
    lambda x: visitorsBDaily[visitorsBDaily['date'] <= x['date']].agg(</pre>
        {'date': 'max', 'visitorsPerDateB': 'sum'}
    ),
   axis=1,
visitorsBCummulative.columns = ['date', 'visitorsCummulativeB']
ordersADaily = (
    orders[orders['group'] == 'A'][['date', 'transactionId', 'visitorId', 'revenue']]
    .groupby('date', as index=False)
    .agg({'transactionId': pd.Series.nunique, 'revenue': 'sum'})
ordersADaily.columns = ['date', 'ordersPerDateA', 'revenuePerDateA']
ordersACummulative = ordersADaily.apply(
    lambda x: ordersADaily[ordersADaily['date'] <= x['date']].agg(</pre>
        {'date': 'max', 'ordersPerDateA': 'sum', 'revenuePerDateA': 'sum'}
    ),
   axis=1,
).sort values(by=['date'])
ordersACummulative.columns = [
    'date',
    'ordersCummulativeA',
    'revenueCummulativeA',
ordersBDaily = (
    orders[orders['group'] == 'B'][['date', 'transactionId', 'visitorId', 'revenue']]
    .groupby('date', as index=False)
    .agg({'transactionId': pd.Series.nunique, 'revenue': 'sum'})
ordersBDaily.columns = ['date', 'ordersPerDateB', 'revenuePerDateB']
ordersBCummulative = ordersBDaily.apply(
    lambda x: ordersBDaily[ordersBDaily['date'] <= x['date']].agg(</pre>
        {'date': 'max', 'ordersPerDateB': 'sum', 'revenuePerDateB': 'sum'}
    ),
    axis=1,
).sort values(by=['date'])
ordersBCummulative.columns = [
    'date',
    'ordersCummulativeB',
    'revenueCummulativeB',
data = (
    ordersADaily.merge(
        ordersBDaily, left on='date', right on='date', how='left'
    .merge(ordersACummulative, left on='date', right on='date', how='left')
    .merge(ordersBCummulative, left_on='date', right_on='date', how='left')
    .merge(visitorsADaily, left_on='date', right_on='date', how='left')
    .merge(visitorsBDaily, left_on='date', right_on='date', how='left')
    .merge(visitorsACummulative, left_on='date', right_on='date', how='left')
    .merge(visitorsBCummulative, left_on='date', right_on='date', how='left')
# для пользователей, совершивших хотя бы 1 заказ, будет указано число заказов
ordersByUsersA = (
   orders[orders['group'] == 'A']
    .groupby('visitorId', as index=False)
    .agg({'transactionId': pd.Series.nunique})
ordersByUsersA.columns = ['userId', 'orders']
ordersByUsersB = (
   orders[orders['group'] == 'B']
    .groupby('visitorId', as index=False)
    .agg({'transactionId': pd.Series.nunique})
```

```
ordersByUsersB.columns = ['userId', 'orders']
# пользователям с заказами будет соответствовать число заказов пользователя, а пользовате
лям без заказов — нули
sampleA = pd.concat([ordersByUsersA['orders'],pd.Series(0, index=np.arange(data['visitor
sPerDateA'].sum() - len(ordersByUsersA['orders'])), name='orders')],axis=0)
sampleB = pd.concat([ordersByUsersB['orders'], pd.Series(0, index=np.arange(data['visitor
sPerDateB'].sum() - len(ordersByUsersB['orders'])), name='orders')],axis=0)
# зададим уровень значимости 5%
alpha=0.05
p=st.shapiro(sampleA)
print("Shapiro-Wilk normality test, W-statistic: %f, p-value: %f" % p)
if p[1] > alpha:
   print('Принять гипотезу о нормальности распределении группа A')
   print('Отклонить гипотезу о нормальности распределении группа A')
p=st.shapiro(sampleB)
print("Shapiro-Wilk normality test, W-statistic: %f, p-value: %f" % p)
if p[1] > alpha:
   print('Принять гипотезу о нормальности распределении группа В')
else:
   print('Отклонить гипотезу о нормальности распределении группа В')
Shapiro-Wilk normality test, W-statistic: 0.132646, p-value: 0.000000
```

```
Отклонить гипотезу о нормальности распределении группа В /opt/conda/lib/python3.9/site-packages/scipy/stats/_morestats.py:1761: UserWarning: p-val ue may not be accurate for N > 5000.
```

Итак данные в обоих группах данные не подходят под нормальное распределение, поэтому воспользуемся **U**-критерием Манна — Уитни

```
H_0 : Конверсии групп {f A} и {f B} равны, статистически значимых отличий нет H_1 : Конверсии групп {f A} и {f B} различны, статистически значимые отличия есть
```

warnings.warn("p-value may not be accurate for N > 5000.")

Отклонить гипотезу о нормальности распределении группа А

Shapiro-Wilk normality test, W-statistic: 0.150587, p-value: 0.000000

α=5% критический уровень статистической значимости.

Применим тест **U**-критерий Манна — Уитни

```
In [29]:
```

```
print("{0:.3f}".format(stats.mannwhitneyu(sampleA, sampleB)[1]))
print("{0:.2f}".format(sampleB.mean() / sampleA.mean() - 1))
0.011
0.16
```

Вывод:

- Первое число p-value = 0.011 меньше 0.05. Значит, нулевую гипотезу о том, что конверсии равны и статистически значимых различий в конверсии между группами нет отвертаем. Конверсии различаются значимо.
- Относительный проигрыш группы А составляет 16%

Статистическая значимость различий в среднем чеке заказа между группами по «сырым» данным.

```
H_0
```

: Средние чеки групп ${\bf A}$ и ${\bf B}$ равны, статистически значимых отличий нет H_1

: Средние чеки групп A и B различны, статистически значимые отличия есть

α=5% критический уровень статистической значимости.

In [30]:

```
print('{0:.3f}'.format(stats.mannwhitneyu(orders[orders['group']=='A']['revenue'], order
s[orders['group']=='B']['revenue'])[1]))
print('{0:.2f}'.format(orders[orders['group']=='B']['revenue'].mean()/orders[orders['group']=='A']['revenue'].mean()-1))

0.829
0.29
```

Вывод:

- Первое число p-value = 0.829 значительно больше 0.05. Значит, нулевую гипотезу о том, что средние чеки равны и статистически значимых различий между группами в размере среднего чека нет принимаем.
- При этом средний чек группы В значительно выше чем у А, почти на 29%, но тут свою роль могли сыграть выбросы, проверим это далее на очищенных данных

Статистическая значимость различий в конверсии между группами по «очищенным» данным.

Как мы определились ранее, за аномальных пользователей примем тех, кто совершил более 1 заказа или совершил заказ дороже 26 785 рублей. Сделаем срезы пользователей с числом заказов больше 2 — usersWithManyOrders и пользователей, совершивших заказы дороже 26 785 — usersWithExpensiveOrders. Объединим их в таблице abnormalUsers.

In [31]:

```
568 113298937
1099 148427295
928 204675465
33 249864742
684 358944393
dtype: int64
86
```

Получаем 86 аномальных пользователя, проверим как они повлияли на результат теста.

T T

Посчитаем статистическую значимость различий в конверсии между группами теста по очищенным данным. Сначала подготовим выборки количества заказов по пользователям по группам теста:

: Конверсии групп ${\bf A}$ и ${\bf B}$ равны, статистически значимых отличий нет H_1

 $\mathsf{L}:$ Конверсии групп $\mathrm A$ и $\mathrm B$ различны, статистически значимые отличия есть

α=5% критический уровень статистической значимости.

In [32]:

```
sampleAFiltered = pd.concat(
    [
        ordersByUsersA[
            np.logical not(ordersByUsersA['userId'].isin(abnormalUsers))
        ]['orders'],
        pd.Series (
            0,
            index=np.arange(
                data['visitorsPerDateA'].sum() - len(ordersByUsersA['orders'])
            ),
            name='orders',
        ),
   ],
    axis=0,
sampleBFiltered = pd.concat(
        ordersByUsersB[
            np.logical not(ordersByUsersB['userId'].isin(abnormalUsers))
        ]['orders'],
        pd.Series (
            0,
            index=np.arange(
                data['visitorsPerDateB'].sum() - len(ordersByUsersB['orders'])
            name='orders',
        ),
    ],
    axis=0,
```

Применим тест **U**-критерий Манна — Уитни

In [33]:

```
print('{0:.3f}'.format(stats.mannwhitneyu(sampleAFiltered, sampleBFiltered)[1]))
print('{0:.2f}'.format(sampleBFiltered.mean()/sampleAFiltered.mean()-1))
0.016
0.17
```

Вывод:

Результаты по конверсии значимо не изменились. **p-value** стал чуть больше на **0,005,** что никак не меняет наших выводов. Проигрыш группы А на очищенных данных немного увеличился **17**% против **16**% на сырых

Статистическая значимость различий в среднем чеке заказа между группами по «очищенным» данным

 H_0 : Средние чеки групп ${f A}$ и ${f B}$ равны, статистически значимых отличий нет H_1

: Средние чеки групп ${
m A}$ и ${
m B}$ различны, статистически значимые отличия есть

 α =5% критический уровень статистической значимости.

In [34]:

```
print(
   '{0:.3f}'.format(
        stats.mannwhitneyu (
            orders[
                np.logical and(
                    orders['group'] == 'A',
                    np.logical not(orders['visitorId'].isin(abnormalUsers)),
            ['revenue'],
            orders[
                np.logical and(
                    orders['group'] == 'B',
                    np.logical not(orders['visitorId'].isin(abnormalUsers)),
            ]['revenue'],
       )[1]
   )
)
print(
   "{0:.2f}".format(
        orders[
            np.logical and(
                orders['group'] == 'B',
                np.logical not(orders['visitorId'].isin(abnormalUsers)),
        ]['revenue'].mean()
        / orders[
            np.logical and(
                orders['group'] == 'A',
                np.logical not(orders['visitorId'].isin(abnormalUsers)),
        ['revenue'].mean()
    )
```

0.727 -0.03

Вывод:

- p-value уменьшился почти на 0.1, но по прежнему значительно выше 0,05
- Особенно нужно обратить внимание на разницу между средним чеком. Она упала с **29**% в пользу В до **3**% в пользу А ! Это еще раз заставляет убедиться, что статистически значимых различий по этой метрике между группами нет, а наблюдаемая на неочищенных данных разница как мы и предполагали была связана с выбросами.

Вывод

Резюмируем имеющиеся факты:

- есть статистически значимые различия по конверсии между группами (как по сырым так и по очищенным данным), при этом преимущество у группы В порядка 16-17%;
- нет статистически значимых различий по среднему чеку между группами (как по сырым так и по очищенным данным);
- график различия конверсий между группами показывает, что результаты группы В лучше группы А в конце исследования приблизительно на 13-17%, при этом есть тенденция к еще небольшому улучшению;
- график различий кумулятивного среднего чека говорит нам о преимуществе группы В только из за выброса, после чего метрика начинает снижаться к более естественному положению

Исходя из обнаруженных фактов тест следует остановить и признать его успешным в части улучшения конверсии в целевой группе В В части среднего чека нельзя утверждать, что какая - либо из групп имеет

преимущество над другой. Оснований полагать, что при продолжении теста разница между группами в конверсиях либо среднем чеке значимо изменятся нет, т.к. колебания в графиках носят затухающий характер.