以机器学习分析矩阵运算

七月算法 **邹博** 2015年10月18日

线性代数

- □ 定义: 方阵的行列式
 - 1阶方阵的行列式为该元素本身
 - 11阶方阵的行列式等于它的任一行(或列)的各元素与其对应的代数余子式乘积之和。

范德蒙行列式Vandermonde

□ 证明范德蒙行列式Vandermonde:

$$D_{n} = \begin{vmatrix} 1 & 1 & 1 & \cdots & 1 \\ x_{1} & x_{2} & x_{3} & \cdots & x_{n} \\ x_{1}^{2} & x_{2}^{2} & x_{3}^{2} & \cdots & x_{n}^{2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_{1}^{n-1} & x_{2}^{n-1} & x_{3}^{n-1} & \cdots & x_{n}^{n-1} \end{vmatrix} = \prod_{n \geq i \geq j \geq 1} (x_{i} - x_{j})$$

- 提示: 数学归纳法
- 注:参考Lagrange/Newton插值法

9月机器学习礁

矩阵的乘法

□ A为m×s阶的矩阵, B为s×n阶的矩阵, 那么, C=A×B是m×n阶的矩阵, 其中,

$$c_{ij} = \sum_{k=1}^{s} a_{ik} b_{kj}$$

矩阵模型

- □考虑某随机过程π,它的状态有n个,用1~n 表示。记在当前时刻t时位于i状态,它在t+1 时刻位于j状态的概率为P(i,j)=P(j|i):
 - 即状态转移的概率只依赖于前一个状态。

举例

□ 假定按照经济状况将人群分成上、中、下三 个阶层,用1、2、3表示。假定当前处于某 阶层只和上一代有关,即:考察父代为第i阶 层,则子代为第i阶层的概率。假定为如下转 移概率矩阵:

 $\begin{bmatrix} 0.65 & 0.28 & 0.07 \end{bmatrix}$ 父代 0.15 0.67 0.18 0.12 0.36 0.52

0.36

0.15

0.12

0.07

概率转移矩阵

□ 第n+1代中处于第j个阶层的概率为:

$$\pi(X_{n+1} = j) = \sum_{i=1}^{n} \pi(X_n = i) \cdot P(X_{n+1} = j \mid X_n = i)$$

$$\Rightarrow \pi^{(n+1)} = \pi^{(n)} \cdot P$$

- □ 因此,矩阵P即为(条件)概率转移矩阵。
 - 第i行元素表示:在上一个状态为i时的分布概率,即:每一行元素的和为1。
- □ 思考:初始概率分布 π 对最终分布的影响?

探索: 初始概率 $\pi = [0.21, 0.68, 0.1]$ 迭代

第n代	第1阶层	第2阶层	第3阶层
0	0.21	0.68	0.11
1	0.252	0.554	0.194
2	0.27	0.512	0.218
3	0.278	0.497	0.225
4	0.282	0.49	0.226
5	0.285	0.489	0.225
6	0.286	0.489	0.225
7	0.286	0.489	0.225
8	0.286	0.488	0.225
9	0.286	0.489	0.225
10	0.286	0.489	0.225

初始概率 $\pi = [0.75, 0.15, 0.1]$ 的迭代结果

第n代	第1阶层	第2阶层	第3阶层
0	0.75	0.15	0.1
1	0.522	0.347	0.132
2	0.407	0.426	0.167
3	0.349	0.459	0.192
4	0.318	0.475	0.207
5	0.303	0.482	0.215
6	0.295	0.485	0.22
7	0.291	0.487	0.222
8	0.289	0.488	0.225
9	0.286	0.489	0.225
10	0.286	0.489	0.225

- □ 初始概率不同,但经过若干次迭代, π最终 稳定收敛在某个分布上。
- □从而,这是转移概率矩阵P的性质,而非初始分布的性质。事实上,上述矩阵P的n次幂,每行都是(0.286,0.489,0.225), n>20
- \square 如果一个非周期马尔科夫随机过程具有转移概率矩阵P,且它的任意两个状态都是连通的,则 $\lim_{n\to\infty}P_{ij}^n$ 存在,记做 $\lim_{n\to\infty}P_{ij}^n=\pi(j)$ 。

平稳分布

□ 事实上, 下面两种写法等价:

$$\lim_{n\to\infty} P_{ij}^n = \pi(j) \qquad \qquad \lim_{n\to\infty} P^n = \begin{bmatrix} \pi(1) & \pi(2) & \dots & \pi(n) \\ \pi(1) & \pi(2) & \dots & \pi(n) \\ \vdots & \vdots & \ddots & \vdots \\ \pi(1) & \pi(2) & \dots & \pi(n) \end{bmatrix}$$

- □ 同时, 若某概率分布 πP=π, 说明
 - 该多项分布 π 是状态转移矩阵P的平稳分布;
 - 线性方程xP=x的非负解为π,而Pn唯一,因此 π是线性方程xP=x的唯一非负解。
 - 该问题将在马尔科夫模型中继续探讨。

思考

- □ 根据定义来计算 C=A×B,需要m*n*s次乘法。
 - 即:若A、B都是n阶方阵,C的计算时间复杂度为O(n³)
 - 问:可否设计更快的算法?
- □ 三个矩阵A、B、C的阶分别是 $a_0 \times a_1$, $a_1 \times a_2$, $a_2 \times a_3$, 从而(A×B)×C和A×(B×C)的乘法次数是 $a_0 a_1 a_2 + a_0 a_2 a_3$ 、 $a_1 a_2 a_3 + a_0 a_1 a_3$,二者一般情况是不相等的。
 - 问:给定n个矩阵的连乘积: $A_1 \times A_2 \times A_3 \dots \times A_n$,如何添加括号来改变计算次序,使得乘法的计算量最小?

解

- □ 矩阵乘法C=A×B优化问题
 - 分治法
- □矩阵连乘的加括号最优策略
 - 动态规划
- □属于算法的经典问题,将在姊妹班"算法班" 中做进一步探讨。

附:矩阵连乘的提法

- □ 给定n个矩阵 $\{A_1,A_2,...,A_n\}$, 其中 A_i 与 A_{i+1} 是可乘的,i=1, 2..., n-1。考察该n个矩阵的连乘积: $A_1 \times A_2 \times A_3...$ 从 A_n ,确定计算矩阵连乘积的计算次序,使得依此次序计算矩阵连乘积需要的乘法次数最少。
 - 即:利用结合律,通过加括号的方式,改变计 算过程,使得数乘的次数最少。

□ 由m[i,j]的递推关系式可以看出,在计算m[i,j]时,需要用到m[i+1,j], m[i+2,j]...m[j-1,j];

$$m[i,j] = \begin{cases} 0 & i = j \\ \min_{i \le k < j} \{m[i,k] + m[k+1,j] + p_{i-1}p_k p_j\} & i < j \end{cases}$$

- □ 因此,求m[i,j]的前提,不是m[0...i-1;0...j-1],而 是沿着主对角线开始,依次求取到右上角元素。
- □ 因为m[i,j]一个元素的计算,最多需要遍历n-1次,共 $O(n^2)$ 个元素,故算法的时间复杂度是 $O(n^3)$,空间复杂度是 $O(n^2)$ 。

Code

```
//p[0...n]存储了n+1个数,其中,(p[i-1],p[i])是矩阵i的阶;
_//s[i][j]记录A[i...j]从什么位置断开; m[i][j]记录数乘最小值

    □ void MatrixMultiply(int* p, int n, int** m, int** s)

     int r. i. j. k. t:
     for (i = 1; i \le n; i++)
        m[i][i] = 0:
     //r个连续矩阵的连乘:上面的初始化,相当于r=1
     for (r = 2; r \le n; r++)
         for (i = 1; i \le n-r+1; i++)
            j=i+r-1;
            m[i][j] = m[i+1][j] + p[i-1]*p[i]*p[j];
            s[i][i] = i:
            for (k = i+1; k < i; k++)
                t = m[i][k] + m[k+1][j] + p[i-1]*p[k]*p[j];
                if(t < m[i][i])
                    m[i][j] = t;
                    s[i][i] = k:
```

矩阵连乘问题的进一步思考

□ n个矩阵连乘,可以分解成i个矩阵连乘和(n-i)个矩阵连乘, 最后,再将这两个矩阵相乘。故:

$$P(n) = \begin{cases} \sum_{k=1}^{n-1} P(k)P(n-k) & n=1\\ n>1 \end{cases} \Rightarrow P(n) = \Omega(\frac{4^{n}}{\sqrt{\pi} * n^{3/2}})$$

$$P(n) = \frac{1}{n} C_{2n-2}^{n-1}$$

□ 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, 35357670, 129644790, 477638700, 1767263190, 6564120420, 24466267020, 91482563640, 343059613650, 1289904147324, 4861946401452......

矩阵的秩

- □ 在m×n矩阵A中,任取k行k列,不改变这k²个元素 在A中的次序,得到k阶方阵,称为矩阵A的k阶子 式。
 - 显然, $m \times n$ 矩 阵A的k阶子式有 $C_m^k C_n^k$ 个。
- □ 设在矩阵A中有一个不等于0的r阶子式D,且所有r+1阶子式(如果存在的话)全等于0,那么,D称为矩阵A的最高阶非零子式,r称为矩阵A的秩,记做R(A)=r。
 - n×n的可逆矩阵,秩为n
 - 可逆矩阵又称满秩矩阵
 - 矩阵的秩等于它行(列)向量组的秩

秩与线性方程组的解的关系

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

$$Ax = b$$

- □ 对于n元线性方程组Ax=b,
 - 无解的充要条件是R(A)<R(A,b)
 - 有唯一解的充要条件是R(A)=R(A,b)=n
 - 有无限多解的充要条件是R(A)=R(A,b)<n

推论

- □ Ax=0有非零解的充要条件是R(A)<n
- □ Ax=b有解的充要条件是R(A)=R(A,b)

向量组等价

- □ 向量b能由向量组 $A:a_1,a_2,...,a_m$ 线性表示的充要条件是矩阵 $A=(a_1,a_2,...a_m)$ 的秩等于矩阵 $B=(a_1,a_2,...a_m,b)$ 的秩。
- □ 设有两个向量组A:a₁,a₂,...,a_m及B:b₁,b₂,...,b_n,若B组的向量都能由向量组A线性表示,则称向量组B能由向量组A线性表示。若向量组A与向量组B能相互线性表示,则称两个向量组等价。

系数矩阵

- □ 把向量组A和B所构成的矩阵依次记做 $A=(a_1,a_2,...,a_m)$ 和 $B=(b_1,b_2,...,b_n)$, B组能由A组 线性表示,即对每个向量 b_j ,存在 k_{1j} , k_{2j} ,··· k_{mj}
- □使得

$$(b_1 \quad b_2 \quad \cdots \quad b_n) = (a_1 \quad a_2 \quad \cdots$$

$$a_{m}\begin{pmatrix}k_{11} & k_{12} & \cdots & k_{1n} \\ k_{21} & k_{22} & \cdots & k_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ k_{m1} & k_{m2} & \cdots & k_{mn}\end{pmatrix}$$

对C=AB的重认识

- □由此可知,若C=AB,则矩阵C的列向量能由 A的列向量线性表示,B即为这一表示的系 数矩阵。
- 口 向量组B: $b_1,b_2,...,b_n$ 能由向量组A: $a_1,a_2,...,a_m$ 线性表示的充要条件是矩阵A= $(a_1,a_2,...,a_m)$ 的 秩等于矩阵 $(A,B)=(a_1,a_2,...,a_m,b_1,b_2,...,b_n)$ 的 秩,即:R(A)=R(A,B)

正交阵

- □ 若n阶矩阵A满足A^TA=I,成A为正交矩阵, 简称正交阵。
 - A是正交阵的充要条件: A的列(行)向量都是单位向量,且两两正交。
- □ A是正交阵,x为向量,则A·x称作正交变换。
 - 正交变换不改变向量长度

思考

- □ 若A、B都是n阶正交阵,那么,A×B是正交阵吗?
- □正交阵和对称阵,能够通过何种操作获得一 定意义下的联系?

9月机器学习礁

特征值和特征向量

- \square A是n阶矩阵,若数 λ 和n维非0列向量x满足 $Ax=\lambda x$,那么,数 λ 称为A的特征值,x称 为A的对应于特征值 λ 的特征向量。
 - 根据定义,立刻得到(A- λ I)x=0,令关于 λ 的多项式|A- λ I|为0,方程|A- λ I|=0的根为A的特征值;将根 λ_0 带入方程组(A- λ I)x=0,求得到的非零解,即 λ_0 对应的特征向量。

特征值的性质

- 口 设n阶矩阵A=(a_{ii}) 的特征值为 $\lambda_1, \lambda_2, ..., \lambda_n$,则
- \square $\lambda_1 + \lambda_2 + ... + \lambda_n = a11 + a22 + ... + ann$
- \square $\lambda_1 \lambda_2 \dots \lambda_n = |A|$
 - 矩阵A主行列式的元素和,称作矩阵A的迹。

思考

- □ 已知 λ 是方阵A的特征值,
- □则
 - λ²是A²的特征值
 - A可逆时, λ-1是A-1的特征值。

不同特征值对应的特征向量

口 设 $\lambda_1, \lambda_2, ..., \lambda_m$ 是 方 阵 A 的 m 个 特 征 值 , $p_1, p_2, ..., p_m$ 是 依 次 与 之 对 应 的 特 征 向 量 , 若 $\lambda_1, \lambda_2, ..., \lambda_m$ 各 不 相 等 , 则 $p_1, p_2, ..., p_m$ 线 性 无 关 。

□ 总结

- 不同特征值对应的特征向量,线性无关。
- 若方阵A是对称阵呢?结论是否会加强?
 - □ 协方差矩阵、二次型矩阵、无向图的邻接矩阵等都是对 称阵
 - □ 在谱聚类中将会有所涉及

引理

- □实对称阵的特征值是实数
 - U 复数 λ 为对称 阵A的特征值,复向量x为对应的特征向量,即 $Ax=\lambda$ $x(x\neq 0)$
 - 用 $\overline{\lambda}$ 表示 λ 的共轭复数, \overline{X} 表示 X 的共轭复向量, 而 A 是实矩阵,有 \overline{A} = A
 - 下面给出证明过程。

证明

$$\overline{x}^{T}(Ax) = \overline{x}^{T}(Ax) = \overline{x}^{T}\lambda x = \lambda \overline{x}^{T}x$$

$$\overline{x}^{T}(Ax) = (\overline{x}^{T}A^{T})x = (A\overline{x})^{T}x = (\overline{\lambda}\overline{x})^{T}x = \overline{\lambda}\overline{x}^{T}x$$

□ 从而

$$\lambda \overline{x}^T x = \overline{\lambda} \overline{x}^T x \Longrightarrow (\lambda - \overline{\lambda}) \overline{x}^T x = 0$$

- $\overline{x}^T x = \sum_{i=1}^n \overline{x_i} x_i = \sum_{i=1}^n \left| x_i \right|^2 \neq 0$
- ロ 所以 $\lambda \overline{\lambda} = 0 \Rightarrow \lambda = \overline{\lambda}$

实对称阵不同特征值的特征向量正交

- □ 令实对称矩阵为A, 它的两个不同的特征值 $\lambda_1 \lambda_2$ 对 应的特征向量分别是 $\mu_1 \mu_2$; 其中, $\lambda_1 \lambda_2 \mu_1 \mu_2$ 都 是实数或是实向量。
- □ 则有: $A \mu_1 = \lambda_1 \mu_1$, $A \mu_2 = \lambda_2 \mu_2$
- \Box $(A \mu_1)^T = (\lambda_1 \mu_1)^T$, 从而: $\mu_1^T A = \lambda_1 \mu_1^T$
- **□** 所以: $\mu_1^T A \mu_2 = \lambda_1 \mu_1^T \mu_2$
- □ 同射, $\mu_1^T A \mu_2 = \mu_1^T (A \mu_2) = \mu_1^T \lambda_2 \mu_2 = \lambda_2 \mu_1^T \mu_2$
- □ 所以, $\lambda_1 \mu_1^T \mu_2 = \lambda_2 \mu_1^T \mu_2$
- **口** 故: $(\lambda_1 \lambda_2) \mu_1^T \mu_2 = 0$
- □ あ $\lambda_1 \neq \lambda_2$, 所以 $\mu_1^T \mu_2 = 0$, 即: μ_1 , μ_2 正交。

利用上述结论很快得到

□ 将实数 λ 带入方程组(A- λ I)x=0, 该方程组 为实系数方程组, 因此,实对称阵的特征向量可以取实向量。

最终结论

- \square 设A为n阶对称阵,则必有正交阵P,使得 $P^{-1}AP=P^TAP=\Lambda$
 - Λ是以A的n个特征值为对角元的对角阵。
 - 该变换称为"合同变换",A和A互为合同矩阵。

二次型

- □ 含有n个变量的二次齐次函数,称为二次型;
- □ 一个二次型对应一个对称阵;
- □ 而对称阵可以由正交阵对角化,
- □从而二次型可以化成只有n个变量平方项的标准型,而这个正交阵,对应看坐标系的旋转变化。

正定阵

- \square 对于n阶分阵A,若任意n阶向量x,都有 $x^TAx>0$,则称A是正定阵。
 - 若条件变成xTAx≥0,则A称作半正定阵
 - 类似还有负定阵,半负定阵。

正定阵的判定

- □ 对称阵A为正定阵;
- □ A的特征值都为正;
- □ A的顺序主子式大于0;
- □以上三个命题等价。

$$(a_{11}) \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$

$$egin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ dots & dots & \ddots & dots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$

练习题

□ 给定凸锥的定义如下:

C为岛维 $\Leftrightarrow \forall x_1, x_2 \in C, \theta_1, \theta_1 \geq 0, 有 \theta_1 x_1 + \theta_2 x_2 \in C$

- □ 试证明: 11阶半正定方阵的集合为凸锥。
 - 考察半正定阵的定义

利用定义证明

- □ 若A、B为n阶半正定阵,则 $\forall \vec{z}, \vec{z}^T A \vec{z} \ge 0, \vec{z}^T B \vec{z} \ge 0$
- 以场, $\forall \theta_1, \theta_2 \geq 0$, $\vec{z}^T \cdot (\theta_1 A + \theta_2 B) \cdot \vec{z} = \vec{z}^T \cdot \theta_1 A \cdot \vec{z} + \vec{z}^T \cdot \theta_2 B \cdot \vec{z}$ $= \theta_1 \vec{z}^T A \vec{z} + \theta_2 \vec{z}^T B \vec{z} \geq 0$
- 口即: $\forall \theta_1, \theta_2 \geq 0, \theta_1 A + \theta_2 B$ 为半正定阵。从而, n阶半正定阵的集合为凸锥。

向量的导数

- \square A为m×n的矩阵,x为n×1的列向量,则Ax 为m×1的列向量,记 $\vec{y} = A \cdot \vec{x}$
- 为m.

 思考: $\frac{\partial \vec{y}}{\partial \vec{x}} = ?$

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

$$\vec{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \quad \vec{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \qquad A \cdot \vec{x} = \begin{pmatrix} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n \\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n \end{pmatrix}$$

$$\frac{\partial \vec{y}}{\partial \vec{x}} = \frac{\partial A\vec{x}}{\partial \vec{x}} = \begin{bmatrix} a_{11} & a_{21} & \cdots & a_{n1} \\ a_{12} & a_{22} & \cdots & a_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1m} & a_{2m} & \cdots & a_{nm} \end{bmatrix} = A^T$$

结论与直接推广

 \square 向量偏导公式: $\frac{\partial A\vec{x}}{\partial x} = A^T$

$$\frac{\partial A\vec{x}}{\partial \vec{x}} = A^T$$

$$\frac{\partial A^T \vec{x}}{\partial \vec{x}} = A \qquad \frac{\partial A \vec{x}}{\partial \vec{x}^T} = A$$

□在线性回归中将直接使用该公式。

思考题

- □ 给定两个随机变量X和Y,如何度量这两个 随机变量的"距离"?
- □ 如何证明大数定理?
- □ 仿照指数分布的概率密度函数 $f(x) = \lambda e^{-\lambda x}$, 猜测相对应的幂分布的概率密度函数,查阅关于幂律分布的相关文献。

$$f(x) = ax^{-r}$$
, a, r 为正常数

延伸算法题

- □ 根据定义来计算 C=A×B, 需要m*n*s次乘法。
 - 即:若A、B都是n阶方阵,C的计算时间复杂度为O(n³)
 - 问:可否设计更快的算法?
- □ 三个矩阵A、B、C的阶分别是 $a_0 \times a_1$, $a_1 \times a_2$, $a_2 \times a_3$, 从而(A×B)×C和A×(B×C)的乘法次数是 $a_0 a_1 a_2 + a_0 a_2 a_3$ 、 $a_1 a_2 a_3 + a_0 a_1 a_3$,二者一般情况是不相等的。
 - \blacksquare 问:给定n个矩阵的连乘积: $A_1 \times A_2 \times A_3 \dots \times A_n$,如何添加括号来改变计算次序,使得乘法的计算量最小?

参考文献

□ 王松桂,程维虎,高旅端编,概率论与数理统计,科学出版社,2000

我们在这里

- 7 ヒ月算法 http://www.julyedu.com/
 - 视频/课程/社区
- □ 七月 题 库 APP: Android/iOS
 - http://www.julyapp.com/
- □ 微博
 - @研究者July
 - @七月题库
 - @邹博_机器学习
- □ 微信公众号
 - julyedu

感谢大家!

恩请大家批评指正!