

MAX-PLANCK-INSTITUT FÜR DEMOGRAFISCHE FORSCHUNG

MAX PLANCK INSTITUTE FOR DEMOGRAPHIC RESEARCH

MAX-PLANCK-INSTITUT FÜR DEMOGRAFISCHE FOR DEMOGRAPHIC FORSCHUNG RESEARCH

Morbidity concentration and dispersion

Tim Riffe, Aïda Solé Auro, Maarten J. Bijlsma

Fries' diagrams are a nice prop

Figure 1. Possible scenarios for future morbidity and longevity.

Pattern indifference within lifespan

Pattern indifference within lifespan

Compression definition

The level of morbidity compression is the average proportion of life in good health, $\mathbb{C} = \frac{HLE}{IF}$.

Objective:

Separate morbidity levels and morbidity dispersion.

Compression definition

The level of morbidity compression is the average proportion of life in good health, $\mathbb{C} = \frac{HLE}{IF}$.

Objective:

Separate morbidity levels and morbidity dispersion.

Dispersion definition

Morbidity dispersion, \mathbb{D} , is the average time-to-death of late-life morbidity prevalence.

Formal definition

$$\mathbb{D} = \frac{\int_0^\omega y \pi^*(y) \, \mathrm{d}y}{\int_0^\omega \pi^*(y) \, \mathrm{d}y} \tag{1}$$

where a is age, y is time until death, and $\pi^*(y)$ is morbidity prevalance by time to death.

Or one might rather weight a lifespan-varying $\pi(y, l)$, by the length-of-life distribution.

Dispersion definition

Morbidity dispersion, \mathbb{D} , is the average time-to-death of late-life morbidity prevalence.

Formal definition

$$\mathbb{D} = \frac{\int_0^\omega y \pi^*(y) \, \mathrm{d}y}{\int_0^\omega \pi^*(y) \, \mathrm{d}y} \tag{1}$$

where a is age, y is time until death, and $\pi^*(y)$ is morbidity prevalance by time to death.

Or one might rather weight a lifespan-varying $\pi(y, l)$, by the length-of-life distribution.

Dispersion definition

Morbidity dispersion, \mathbb{D} , is the average time-to-death of late-life morbidity prevalence.

Formal definition

$$\mathbb{D} = \frac{\int_0^\omega y \pi^*(y) \, \mathrm{d}y}{\int_0^\omega \pi^*(y) \, \mathrm{d}y} \tag{1}$$

where a is age, y is time until death, and $\pi^*(y)$ is morbidity prevalance by time to death.

Or one might rather weight a lifespan-varying $\pi(y, l)$, by the length-of-life distribution.

Scenario U	JLE	HLE	LE	\mathbb{C}	\mathbb{D}
------------	-----	-----	----	--------------	--------------

Base

Results from HRS (RAND, vP), 82 measures

Results from HRS (RAND, vP), 82 measures

Results from HRS (RAND, vP), 82 measures

