ГУАП

КАФЕДРА № 44

ОТЧЕТ ЗАЩИЩЕН С ОЦЕН	НКОЙ		
ПРЕПОДАВАТЕЛЬ			
Доц., канд. техн.	=		О.О. Жаринов
должность, уч. степе	ень, звание	подпись, дата	инициалы, фамилия
	ОТЧЕТ О ЛА	БОРАТОРНОЙ РАБО	OTE №6
РАЗРАБОТК А.	А МОДУЛЯ СЧ ЛГОРИТМОМ 1	ІЕТНОГО УСТРОЙС РАБОТЫ, В СРЕДЕ (TBA C ЗАДАННЫМ QUARTUS
	по курс	су: СХЕМОТЕХНИК <i>!</i>	A
РАБОТУ ВЫПОЛНІ	1 Л		
СТУДЕНТ ГР. №	4142	подпись, дата	К.С. Некрасов инициалы, фамилия

Цель работы

Разработать проект модуля счетного устройства, работающего по заданному алгоритму, в среде программирования Quartus.

Индивидуальное задание. Вариант 13

Основание счётчика - 17

Таблица (окончание) - Последовательность выходных кодов устройства

.№	порядковый номер входного импульса счетного модуля																		
варианта	0	1	2		M-2	M-1	M	M+1	M+2	M+3	M+4	M+5	M+6	M+7	M+8	M+9	M+10	M+11	M+12
11	0	1	2		M-2	M-1	0	0	1	2									
12	0	1	2		M-2	M-1	0	0	0	1	2								
13	0	1	2		M-2	M-1	0	0	0	0	1	2							
			-		34.0	35.4													

Рисунок 1 - Задание

Решение

Сперва выходной сигнал с нулевого до 16-го такта возрастает от 0 до 16, затем выходной сигнал равен нулю на протяжении 4-х тактов. Для реализации была построена схема с использованием одного счётчика и одного компаратора.

Счётчик по модулю 20 отсчитывает номера тактов, а компаратор сравнивает текущее значение счётчика с константой 17. Если номер такта меньше 17, компаратор выдает единицу, иначе – ноль. Затем значение счётчика побитово умножается на значение компаратора.

Рисунок 2 - Схема устройства

Top View - Wire Bond MAX II - EPM570ZM256I8

Рисунок 3 – Подключение контактов ПЛИС

Node Name	Direction	Location	I/O Bank	Fitter Location	I/O Standard	Reserved	Current Strength trict Preservation
in_ c	Input	PIN_K1	1	PIN_K1	3.3-V LVTTL		16mA (default)
out q[4]	Output	PIN_A5	2	PIN_A5	3.3-V LVTTL		16mA (default)
out q[3]	Output	PIN_A4	2	PIN_A4	3.3-V LVTTL		16mA (default)
out q[2]	Output	PIN_A3	2	PIN_A3	3.3-V LVTTL		16mA (default)
º q[1]	Output	PIN_A2	2	PIN_A2	3.3-V LVTTL		16mA (default)
out q[0]	Output	PIN_A1	2	PIN_A1	3.3-V LVTTL		16mA (default)
< <new node="">></new>							

Рисунок 4 – Подключение контактов ПЛИС

Вывод

Был разработан проект модуля счетного устройства, работающего по заданному алгоритму.