"Zeit" Subscribers and Unsubscribers in the Light of Data Science

Marco Zagermann

Overview

- 1. What is churn prediction?
- 2. The dataset
- 3. Who is likely to churn?
- 4. Feature selection
- 5. ML models
- 6. Conclusion and outlook

1. What is churn prediction?

Churn prediction

A common problem of many newspapers and magazines:

Subscribers may end their subscription ("churn")

- → Negative effect on revenues
- → It is usually easier to prevent churn than attracting new customers
- → But: This requires that one knows beforehand who is likely to churn soon

→ Churn prediction!

2. The dataset

The original dataset

- 209 000 subscribers of "Die Zeit" (on paper and/or digital)
- 171 features
- Only subscriptions that were still active in May 2019
- Starting dates of those subscription: 2013 2019
- Subscription cancellations ("churns") from June 2019 to May 2020

The overall "churn probability" in the dataset: 30.2 %

Goal:

Predict which subscribers are most likely to churn in the near future!

3. Who is likely to churn?

Churn probability by subgroups

Channel of recruitment:

Digital vs. paper vs. Christ & Welt:

Type of subscription:

Rhythm of payment:

Months of reading:

Billing month?:

Method of payment:

Student subscription?:

Postal code (one digit):

Postal code (two digits):

Postal code (three digits):

Quantiles are plotted here:

Country of residence:

Shop purchases:

Mr./Mrs./Family:

Title:

4. Feature selection

Two problems

Problem 1:

- Dataset contains many categorical variables
- Some of them (city of residence, postal code etc.) take on many values
- Naive treatment would lead to 11 000 dummy variables

Problem 2:

- Many subgroups with high or low churn probability have a rather small size
- Limits the predictivity of the corresponding feature

→ Feature selection

Three methods

- 1. Correlation with churn
- 2. **SelectKBest** from Scikit-Learn
- 3. Feature importance from decision trees
 - → Several different feature sets with 20 or 30 features each
 - → For tuning a classifier choose that feature set which works best with that classifier

→ Feature selection!

5. ML models

Models used

- 1. Gaussian Naive Bayes
- 2. Logistic regression
- 3. K nearest neighbors
- 4. Decision trees
- 5. Support vector machines
- 6. Random forests
- 7. XGBoost
- 8. AdaBost

 \rightarrow Grid search

Randomized search

The best models:

[[22445 1983] [5568 5013]]

Accuracy: 0.784312605330058
Precision: 0.7165523156089194

Recall: 0.473773745392685 ROC_AUC: 0.6962982039555532

AP: 0.49852849138288413 f1: 0.5704045058883769

fbeta: 0.6499416569428238

[[22435 1993] [6155 4426]]

Accuracy: 0.767259847467794
Precision: 0.6895155008568313

Recall: 0.4182969473584727 ROC AUC: 0.6683551217879641

AP: 0.46423416323885613 f1: 0.5207058823529412 fbeta: 0.610364895054748

Random forest optimized for the fbeta score

XGBoost optimized for accuracy

The best models:

[[22951 1477] [6718 3863]]

Accuracy: 0.7659173355422891 Precision: 0.7234082397003745 Recall: 0.36508836593894717 ROC AUC: 0.6523124816431268

AP: 0.4560014452356122 f1: 0.4852710256893411 fbeta: 0.6047086816317585

XGBoost optimized for the fbeta score

[[22270 2158] [6221 4360]]

Accuracy: 0.7606615441743552 Precision: 0.6689168456581773 Recall: 0.41205935166808433 ROC AUC: 0.6618590519597995

AP: 0.45333060532827485 f1: 0.5099713433534124 fbeta: 0.5947671404796334

K nearest neighbors optimized for accuracy and the fbeta score

6. Conclusion and outlook

Summary

With judicious feature selection and tuning and selecting ML models, we are able to predict churn of "Zeit" subscribers with almost 78% accuracy and almost 72% precision at 47% recall.

Future work

- There is a lot of unused information in the geographical features
 - →Suitable aggregation, perhaps with external data
- Do some more feature engineering
- Use more ensemble methods
- Try a neural network
- Try some more balancing methods
- Analyse the effects of the measures that have been taken to avoid churn.

Thank you!

The truncated dataset

Problem:

- Original dataset contains many subscribers with very high numbers of subscriptions (up to 7000, may include different kinds of publications)
- Presumably larger companies/institutions

The extreme: Subscribers with >78 subscriptions (Clusters around 1000 - 3000 and 6000 -7000 subscriptions)

The truncated dataset

Problem:

- Original dataset contains many subscribers with very high numbers of subscriptions (up to 7000, may include different kinds of publications)
- Presumably larger companies/institutions

Exponential fall-off for < 20 subscriptions per subscriber

The truncated dataset

Problem:

- Original dataset contains many subscribers with very high numbers of subscriptions (up to 7000, may include different kinds of publications)
- Presumably larger companies/institutions
- Hard to draw the line to "ordinary" subscribers/housholds with given data
- Our approach: Truncate to subscribers with at most four subscriptions

Result: 209 000 **175 000** (i.e. we drop 33 000 subscribers)

Details on multiple subscriptions

Total numbers of subscribers: 175 000

33 000 subscribers wiith > 4 subscriptions (All truncated out)

The target variable: "churn or not churn?"

- Starting point: 175 000 subscribers in June 2019
- 53 000 of them cancel their subscription in the reference period Ju

June 2019-May 2020

• This gives the overall "churn probability" of 30.2 %

Question:

Which of the 170 given features are good predictors for a high churn probability?

Groups of features

- Formal subscription features
- Subscription options
- Personal information
- Temporal features
- Location features
- Activity features

Formal subscription features:

```
kanal
objekt_name
aboform_name
zahlung_rhythmus_name
rechnungsmonat
zahlung_weg_name
studentenabo
unterbrechung
```

Subscription options:

```
zon che, opt in
zon sit opt in
zon_zp_grey
zon_premium
zon boa
zon kommentar
zon_sonstige
zon zp red
zon_app_sonstige
cnt abo
cnt abo diezeit
cnt_abo_diezeit digital
cnt abo magazin
```

```
cnt umwandlungsstatus2 dkey
nl zeitbrief
nl zeitshop
nl zeitverlag hamburg
```

Personal information

anrede titel

Temporal features:

```
lesedauer
liefer_beginn_evt
abo_registrierung_min
nl_registrierung_min
```

Location features

```
plz_1
plz_2
plz_3
ort
metropole
land_iso_code
```

Activity features

shop_kauf email_am kunden nl blacklist sum nl bounced sum nl aktivitaet nl sperrliste sum received anzahl 1w received anzahl 1m received anzahl 3m received anzahl 6m opened anzahl 1w opened anzahl 1m

opened_anzahl 3m openedanzahl 6m clicked anzahl 1w clicked anzahl 1m clicked anzahl 3m clicked anzahl 6m unsubscribed anzahl 1w unsubscribed anzahl 1m unsubscribed anzahl 3m unsubscribed anzahl 6m openrate 1w clickrate 1w

clickrate_1m
openrate_3m
clickrate_3m
received_anzahl_bestandskunden_1w
received_anzahl_bestandskunden_1m
received_anzahl_bestandskunden_3m
received_anzahl_bestandskunden_6m

+ many more (altogether more than 100)

"Average churn" (based on months of reading and rhythm of payment):

Seasonal variation of begins of subscriptions

Average seasonal variation of begins of subscriptions

Temporal evolution of new subscriptions

Some open questions

 How should one best make use of the following location features?

```
plz_1 (eleven different values)
plz_2 (97 different values)
plz_3 (697 different values)
ort (11 137 different values)
```

Some open questions

How should one treat these two temporal features?

```
abo_registrierung_min_year
nl_registrierung_min_year
```

Earliest year of registration

1900 is not a real date, but due to some operational cutoffs. Treating this feature as a numerical variable could thus lead to unwanted effects.

1900!

Some open questions

How should one treat the very skewed features?

Two out of many examples:

shop_kauf opened_anzahl_zeitbrief_3m

Shop purchases

Not normally distributed and highly skewed!

(n=175 000)

153802
7327
5188
2066
1985
1016
847
563
417
337
245
227
169
131
103
87
73
59
51
39
37
35
35

Shop purchases

Churn probability by shop_kauf: shop_kauf has an influence on churn (The large fluctuations for the larger values are probably due to the small number of cases)

Shop purchases

Distribution of logarithm of shop_kauf

boxcox of shop_kauf with parameter -7

Doesn't look very normally distributed

Opened number of "Zeitbrief" in three months

opened_anzahl_zeitbrief_3m

Not normally distributed and highly skewed!

0	118682
1	9888
2	6882
3	5370
13	5180
4	4161
5	3527
12	3358
6	2993
11	2751
7	2690
8	2579
9	2451
10	2365
14	1610
15	176
16	99
24	67
36	64
20	52
17	33
52	32

(n=175 000)

Opened number of "Zeitbrief" in three months

Logarithm of opened_anzahl_zeitbrief_3m

Boxcox of opened_anzahl_zeitbrief_3m with parameter -7

Opened number of "Zeitbrief" in three months

Churn probability by opened_anzahl_zeitbrief_3m: Seems less relevant

Numerical tests to answer these questions

Small numerical tests with a subset of the features yielded the following results:

Results of small numerical tests

- plz_3 as 697 dummies instead of no plz improves ROC_AUC by 1-1.5 percentage points for logistic regression 5 percentage points for K nearest neighbors
- plz_3 vs. plz_1 or plz_2 improves performance by up to 1 percentage point (logistic regression)
 3.2 percentage points (K nearest neighbors)
- abo_registrierung_min_year and nl_registrierung_min_year binned and turned into dummies gives slightly better results than as naive numerical variable
- Treatment (log, scaling, drop) of extremely skewed features has little impact

Model building

Erster Punkt

Text hier einfügen Text hier einfügen

Text hier einfügen

Text hier einfügen Text hier einfügen Text hier einfügen Text hier einfügen Text hier einfügen Text hier einfügen.

Text hier einfügen Text hier einfügen

Zweiter Punkt

Abschließender Punkt

Beschreibung desselben in einer Zeile

"Dies ist ein sehr bedeutendes Zitat."

- Ein Experte

Dies ist der Ort für die Hauptaussage, die jeder aus dieser Präsentation für sich mitnehmen sollte.