

relations

can be replaced by familiar symbols such as <, $\not<$, >, $\not>$, =, \neq

exercise 1

Suppose there are two sets $A = \{4, 36, 49, 50\}$ and $B = \{1, -2, -6, -7, 7, 6, 2\}$

Define "(a, b) is in the relation R if a is a square of b"

exercise 2

Suppose there are two sets $A = \{1,2,3,4,5,6\}$ and $B = \{1,2,3,4\}$ Define the relation $(a,b) \in R$ iff $(a-b) \mod 2 = 0$.

reations

- a relation R from the set A to the set B is a subset $A \times B$
 - relation R consists of ordered pairs (a,b) where $a \in A$ and $b \in B$
 - we say *is related to* and can write a(R)b

can be replaced by familiar symbols such as <, $\not<$, >, \Rightarrow , =, \neq

exercise 1

Suppose there are two sets $A = \{4, 36, 49, 50\}$ and $B = \{1, -2, -6, -7, 7, 6, 2\}$ Define "(a, b) is in the relation R if a is a square of b"

exercise 2

Suppose there are two sets $A = \{1,2,3,4,5,6\}$ and $B = \{1,2,3,4\}$ Define the relation $(a,b) \in R$ iff $(a-b) \mod 2 = 0$.

functions

input-output