

MSR-GCN: Multi-Scale Residual Graph Convolution Networks for Human Motion Prediction

SICCVOCTOBER 11-17
REPORT OF THE PROPERTY OF T

Lingwei Dang ¹, Yongwei Nie ^{1*}, Chengjiang Long ², Qing Zhang ³, Guiqing Li ¹

South China University of Technology, ² JD Finance America Corporation, ³ Sun Yat-sen University

Background & Motivation

- Human motion prediction is challenging for the stochasticity and aperiodicity of future poses.
- Graph Convolution Networks (GCNs) is suitable for non-grid graph-structured data like skeleton-based pose sequences.
- One can stabilize the motion pattern by gradually abstracting body parts in a fine-to-coarse manner.

Contributions

- A novel multi-scale residual graph convolution network.
- The descending and ascending GCN blocks can extract features in both fine-to-coarse and coarse-to-fine manners.
- The intermediate supervision benefiting high-quality future prediction.

Datasets & Metric & Project

- Datasets: Human3.6M, CMU Mocap Dataset
- Metric: Mean Per Joint Position Error (MPJPE)
- Project: https://github.com/Droliven/MSRGCN

Quantitative Results

Short-term errors on CMU Mocap

Scenarios	Dasketball				Dasketbali sigilal				directing traffic				Jumping			
millisecond (ms)	80	160	320	400	80	160	320	400	80	160	320	400	80	160	320	400
Residual sup. [34]	15.45	26.88	43.51	49.23	20.17	32.98	42.75	44.65	20.52	40.58	75.38	90.36	26.85	48.07	93.50	108.90
DMGNN [27]	15.57	28.72	59.01	73.05	5.03	9.28	20.21	26.23	10.21	20.90	41.55	52.28	31.97	54.32	96.66	119.92
Traj-GCN [33]	11.68	21.26	40.99	50.78	3.33	6.25	13.58	17.98	6.92	13.69	30.30	39.97	17.18	32.37	60.12	72.55
MSR-GCN	10.28	18.94	37.68	47.03	3.03	5.68	12.35	16.26	5.92	12.09	28.36	38.04	14.99	28.66	55.86	69.05
scenarios	running				soccer				walking				washwindow			
millisecond (ms)	80	160	320	400	80	160	320	400	80	160	320	400	80	160	320	400
Residual sup. [34]	25.76	48.91	88.19	100.80	17.75	31.30	52.55	61.40	44.35	76.66	126.83	151.43	22.84	44.71	86.78	104.68
DMGNN [27]	17.42	26.82	38.27	40.08	14.86	25.29	52.21	65.42	9.57	15.53	26.03	30.37	7.93	14.68	33.34	44.24
Traj-GCN [33]	14.53	24.20	37.44	41.10	13.33	24.00	43.77	53.20	6.62	10.74	17.40	20.35	5.96	11.62	24.77	31.63
MSR-GCN	12.84	20.42	30.58	34.42	10.92	19.50	37.05	46.38	6.31	10.30	17.64	21.12	5.49	11.07	25.05	32.51

Performance gain over Traj-GCN

Qualitative Results

