

Kernel Computation

Chia-Chi Tsai (蔡家齊)
cctsai@gs.ncku.edu.tw
Al System Lab
Department of Electrical Engineering
National Cheng Kung University

Outline

- Overview
- Matrix Multiplication Based Convolution
- Tiling for Optimizing Performance
- Computation Transform Optimizations

Outline

- Overview
- Matrix Multiplication Based Convolution
- Tiling for Optimizing Performance
- Computation Transform Optimizations

Fundamental Computation of Al

- Fundamental computation
 - Convolution Layer
 - Fully Connected Layer
 - Consist of Multiply-and-accumulate(MAC) operations
- Flexibility and parallelization is the key
- Temporal and spatial parallelism

Temporal and Spatial Architecture

Temporal Architecture (SIMD/SIMT)

Spatial Architecture (Dataflow Processing)

Temporal Architecture

- Centralized control for a large number of arithmetic logic units (ALUs)
 - Fetch data from the memory hierarchy
 - Cannot communicate directly with each other
- Commonly seem in CPUs and GPUs
 - Vector instructions(SIMD)
 - Parallel threads(SIMT)

Spatial Architecture

- Allow for communication between ALUs
- Use dataflow processing
 - ALUs form a processing chain so that they can pass data from one to another directly
- Each ALU may can have its own control logic and local memory
 - Scratchpad or register file
- ALU with its own local memory → Processing Engine(PE)
- Commonly seem for processing DNNs in ASIC- and FPGA-based designs

Temporal System Support for DNNs

- With the rise in popularity of DNN, many programmable temporal systems (i.e., CPUs and GPUs) started adding features that target DNN processing
- Intel Knights Landing CPU
 - Special vector instructions
 - Performed multiple fused multiply accumulate operations
- Nvidia PASCAL GP100 GPU
 - 16-bit floating point (fp16) arithmetic
 - Perform two fp16 operations on a single precision core
- Nvidia VOLTA GV100 GPU
 - Special compute unit for performing matrix multiplication and accumulation

Individual instructions that perform many MAC operations

Systems of DNN processing

- Facebook's Big Basin custom DNN server
- Nvidia's DGX-1
- Apple's A Series
- Nvidia's Tegra
- Samsung's Exynos

Things to Learn

- For temporal architecture
 - How DNN algorithms can be mapped optimized on these platforms
 - How computational transforms on the kernel can reduce the number of multiplications to increase throughput
 - How the computation (e.g., MACs) can be ordered (i.e., tiled) to improve memory subsystem behavior
- For spatial architecture
 - How dataflows can increase data reuse from low-cost memories in the memory hierarchy to reduce energy consumption
 - How other architectural features can help optimize data movement

Volta GV100

- 84 SM Units
- 120 TFLOPS(FP16)
- 400 GFLOPS/W(FP16)

Volta GV100 Streaming Multiprocessor(SM)

- 8 Tensor Cores per SM
- 640 Tensor Cores

GV100 – Tensor Cores

Tensor Core 4x4x4 matrix multiply and accumulate

- New opcodes Matrix Multiply Accumulate (HMMA)
- Number of FP16 operands? Inputs 48, Outputs 16
- 64 Multiplies/clock
- 64 Adds/clock

GV100 – Tensor Cores Operation

TPU

Top-Level Architecture

Floorplan

Jouppi, N. P., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa, R., ... & Yoon, D. H. (2017, June). In-datacenter performance analysis of a tensor processing unit. In *Proceedings of the 44th annual international symposium on computer architecture* (pp. 1-12).

TPU

Systolic data flow of Matrix Multiply Unit

Outline

- Overview
- Matrix Multiplication Based Convolution
- Tiling for Optimizing Performance
- Computation Transform Optimizations

Flattened 2D Dot Product

2D dot product

2D dot product

- Matrix–Vector Multiply:
 - Multiply all inputs in all channels by a weight and sum

- Matrix–Vector Multiply:
 - Multiply all inputs in all channels by a weight and sum

- Matrix–Vector Multiply:
 - Multiply all inputs in all channels by a weight and sum

 After flattening, having a batch size of N turns the matrix-vector operation into a matrix-matrix multiply

 After flattening, having a batch size of N turns the matrix-vector operation into a matrix-matrix multiply

 After flattening, having a batch size of N turns the matrix-vector operation into a matrix-matrix multiply

 After flattening, having a batch size of N turns the matrix-vector operation into a matrix-matrix multiply

Convolution Layer

CONV Layer Implementation

Naïve 7-layer for-loop implementation:

```
for (n=0; n<N; n++) {
         for (m=0; m<M; m++) {</pre>
                                                 for each output
                                                 fmap value
              for (x=0; x<F; x++) {</pre>
                   for (y=0; y<E; y++) { }
                        O[n][m][x][y] = B[m];
for (i=0; i<R; i++) {</pre>
       Convolve a
                             for (j=0; j<S; j++) {
                                  for (k=0; k<C; k++) {</pre>
       window and
                                       O[n][m][x][y] += I[n][k][Ux+i][Uy+j] \times W[m][k][i][j];
       apply
10
       activation
11
13
                        O[n][m][x][y] = Activation(O[n][m][x][y]);
14
15
16
```

```
Shape
                Description
Parameter 4 8 1
                Number of input fmaps/output fmaps (batch size)
                Number of 2-D input fmaps /filters (channels)
                Height of input fmap (activations)
                Width of input fmap (activations)
                Height of 2-D filter (weights)
                Width of 2-D filter (weights)
                Number of 2-D output fmaps (channels)
                Height of output fmap (activations)
                Width of output fmap (activations)
```

How much temporal locality for naïve implementation? None

Convolution Layer

Filter

Input

Output

Feature map

Feature map

F ₁₁	F ₁₂
F ₂₁	F ₂₂

$$egin{array}{c|c} 0_{11} & 0_{12} \\ 0_{21} & 0_{22} \\ \end{array}$$

Computation Steps

$$1 \quad \begin{array}{|c|c|c|}\hline F_{11} & F_{12} \\ \hline F_{21} & F_{22} \\ \end{array}$$

$$0_{11} 0_{12} \\ 0_{21} 0_{22}$$

$$F_{11} | F_{12} | F_{21} | F_{22}$$

$$= \mathbf{0_{11}} \mathbf{0_{12}} \mathbf{0_{21}} \mathbf{0_{22}}$$

$$\begin{array}{c|cccc} I_{11} & I_{12} & I_{13} \\ I_{21} & I_{22} & I_{23} \\ I_{31} & I_{32} & I_{33} \\ \end{array}$$

$$0_{11} 0_{12} \\ 0_{21} 0_{22}$$

$$f{F_{11}} m{F_{12}} m{F_{21}} m{F_{22}}$$

$$egin{array}{c} I_{12} \\ I_{23} \\ I_{23} \\ \end{array}$$

$$0_{11} 0_{12} 0_{21} 0_{22}$$

Convolution Layer

Filter

Input

Output

Feature map

Feature map

F ₁₁	F ₁₂
F ₂₁	F ₂₂

$$egin{array}{c} 0_{11} \ 0_{12} \ 0_{21} \ 0_{22} \ \end{array}$$

Computation Steps

$$3 \quad \begin{array}{c|c} F_{11} & F_{12} \\ \hline F_{21} & F_{22} \end{array}$$

$$egin{array}{c|cccc} I_{11} & I_{12} & I_{13} \\ I_{21} & I_{22} & I_{23} \\ I_{31} & I_{32} & I_{33} \\ \end{array}$$

$$F_{11} | F_{12} | F_{21} | F_{22}$$

$$0_{11} \, 0_{12} \, 0_{21} \, 0_{21}$$

$$0_{11} 0_{12} \\ 0_{21} 0_{22}$$

$$f{F_{11}} m{F_{12}} m{F_{21}} m{F_{22}}$$

$$I_{23}$$
 I_{32}
 I_{33}

$$= 0_{11} 0_{12} 0_{21} 0_{22}$$

Filter

Input

Output

Feature map

Feature map

F ₁₁	F ₁₂
F ₂₁	F ₂₂

$$rac{F_{11}}{F_{12}} F_{21} F_{22}$$

$$egin{array}{c} I_{11} \\ I_{12} \\ I_{21} \\ I_{22} \\ \end{array}$$

$$= 0_{11} 0_{12} 0_{21} 0_{22}$$

$$\begin{bmatrix} \mathbf{F_{11}} & \mathbf{F_{12}} & \mathbf{F_{21}} & \mathbf{F_{22}} \end{bmatrix}$$

$$egin{array}{c} I_{12} \\ I_{13} \\ I_{22} \\ I_{23} \\ \end{array}$$

$$0_{11} 0_{12} 0_{21} 0_{22}$$

$$F_{11} | F_{12} | F_{21} | F_{22}$$

$$I_{21}$$
 I_{22}
 I_{31}
 I_{32}

$$= 0_{11} 0_{12} 0_{21} 0_{22}$$

$$\mathbf{F_{11}} \ \mathbf{F_{12}} \ \mathbf{F_{21}} \ \mathbf{F_{22}}$$

$$egin{array}{c} I_{22} \\ I_{23} \\ I_{32} \\ I_{33} \\ \end{array}$$

$$0_{11} | 0_{12} | 0_{21} | \mathbf{0_{22}}$$

$$I_{11}$$
 I_{12}
 I_{21}

$$= 0_{11} 0_{12} 0_{21} 0_{22}$$

$$F_{11} | F_{12} | F_{21} | F_{22} |$$

$$egin{array}{c} I_{12} \\ I_{13} \\ I_{22} \\ I_{23} \\ \end{array}$$

$$0_{11}$$
 0_{12} 0_{21} 0_{22}

$$|F_{11}| F_{12} |F_{21}| F_{22}$$

$$= 0_{11} 0_{12} 0_{21} 0_{22}$$

$$|\mathbf{F_{11}}| \mathbf{F_{12}} | \mathbf{F_{21}} | \mathbf{F_{22}}|$$

$$\begin{array}{c}
I_{22} \\
I_{23} \\
I_{32}
\end{array}$$

$$0_{11} \, 0_{12} \, 0_{21} \, \mathbf{0_{22}}$$

Integrate

$$oxed{F_{11} | F_{12} | F_{21} | F_{22}}$$

$$0_{11} 0_{12} 0_{21} 0_{22}$$

Matrix Multiply (Toeplitz Matrix))

Filter

Input

Output

Feature map

Feature map

F ₁₁	F ₁₂
F ₂₁	F ₂₂

$$egin{array}{c} 0_{11} \ 0_{12} \ 0_{21} \ 0_{22} \ \end{array}$$

Convolution

Convert to matrix multiply using the **Toeplitz Matrix**

Matrix Multiply (Toeplitz Matrix))

$$f F_{11} \ f F_{12} \ f F_{21} \ f F_{22}$$

I ₁₁	I ₁₂	I ₂₁	I ₂₂
I ₁₂	I ₁₃	I ₂₂	I ₂₃
I ₂₁	I ₂₂	I ₃₁	I ₃₂
I ₂₂	I ₂₃	I ₃₂	I ₃₃

$$= 0_{11} 0_{12} 0_{21} 0_{22}$$

Filter

Input

Output

Feature map

Feature map

F ₁₁	F ₁₂
F ₂₁	F ₂₂

$$= \begin{array}{c} \mathbf{0_{11}} \mathbf{0_{12}} \\ \mathbf{0_{21}} \mathbf{0_{22}} \end{array}$$

Convolution

Convert to matrix multiply using the **Toeplitz Matrix**

Matrix Multiply (Toeplitz Matrix))

$$f{F_{11}} \ f{F_{12}} \ f{F_{21}} \ f{F_{22}}$$

I ₁₁	I ₁₂	I ₂₁	I ₂₂
I ₁₂	I ₁₃	I ₂₂	I ₂₃
I ₂₁	I ₂₂	I ₃₁	I ₃₂
I ₂₂	I ₂₃	I ₃₂	I ₃₃

$$0_{11} 0_{12} 0_{21} 0_{22}$$

Data is repeated(redundant data)

Multiple Input Channels

Output Feature map

$$= \begin{array}{c|c} o_{11} & o_{12} \\ \hline o_{21} & o_{22} \end{array}$$
 Channel 1

Multiple Input Channels

Input Feature map

as Toeplitz matrix (w/ redundant data)

I ₁₁₁	I ₁₁₂	I ₁₂₁	I ₁₂₂	,		Output	
I ₁₁₂	I ₁₁₃	I ₁₂₂	I ₁₂₃	Channel 1		Feature map	
I ₁₂₁	I ₁₂₂	I ₁₃₁	I ₁₃₂				
I ₁₂₂	I ₁₂₃	I ₁₃₂	I ₁₃₃		=	$0_{11} 0_{12} 0_{21} 0_{22}$	Channel 1
I ₂₁₁	I ₂₁₂	I ₂₂₁	I ₂₂₂				
I ₂₁₂	I ₂₁₃	I ₂₂₂	I ₂₂₃				
I ₂₂₁	I ₂₂₂	I ₂₃₁	I ₂₃₂	Channel 2			
I ₂₂₂	I ₂₂₃	I ₂₃₂	I ₂₃₃				

Multiple Output Channels

Output Feature map

0 ₂₁₁	0 ₂₁₂	Channel 2
0221	0222	

Multiple Output Channels

Input Feature map

as Toeplitz matrix (w/ redundant data)

I ₁₁₁	I ₁₁₂	I ₁₂₁	I ₁₂₂	
I ₁₁₂	I ₁₁₃	I ₁₂₂	I ₁₂₃	Channel 1
I ₁₂₁	I ₁₂₂	I ₁₃₁	I ₁₃₂	
I ₁₂₂	I ₁₂₃	I ₁₃₂	I ₁₃₃	
I ₂₁₁	I ₂₁₂	I ₂₂₁	I ₂₂₂	
	1	l		
I ₂₁₂	I ₂₁₃			
	I ₂₁₃	I ₂₂₂	I ₂₂₃	Channel 2

Output Feature map

 Dimensions of matrices for matrix multiply in convolution layers with batch size N

Weight Replication of CONV

- Since the filter size is typically much smaller than the size of the input feature map
 - We can also convert convolution into a matrix multiply by replicating the filter weights to correspond to the filter weight convolutional reuse
- Result in sparse matrix
 - Inefficiency in storage
 - Complex memory access pattern

Weight Replication of CONV

Filter

as Toeplitz matrix (w/ redundant data)

$ F_{11} $ 0 0 0	
$F_{12} F_{11} 0 0$	
0 F ₁₂ 0 0	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$\left F_{22}\right F_{21}\left F_{12}\right F_{1}$	1
$\mid 0 \mid F_{22} \mid 0 \mid F_{1} \mid$	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2

Output Feature map

$$\mathbf{o_{11}} \mathbf{o_{21}} \mathbf{o_{21}} \mathbf{o_{22}}$$
 Channel 1

Weight Replication vs. Input Replication

I ₁₁ I ₁₂	I ₁₃	I ₂₁	I ₂₂	I ₂₃	I ₃₁	I ₃₂	I ₃₃
---------------------------------	-----------------	-----------------	-----------------	-----------------	-----------------	-----------------	-----------------

Weight Replication

• Required Memory= $9 + 9 \times 4 = 45$

$$f F_{11} \ f F_{12} \ f F_{21} \ f F_{22}$$

I ₁₁	I ₁₂	I ₂₁	I ₂₂
I ₁₂	I ₁₃	I ₂₂	I ₂₃
I ₂₁	I ₂₂	I ₃₁	I ₃₂
I ₂₂	I ₂₃	I ₃₂	I ₃₃

Input Replication

• Required Memory= $4 + 4 \times 4 = 20$

Outline

- Overview
- Matrix Multiplication Based Convolution
- Tiling for Optimizing Performance
- Computation Transform Optimizations

Tiled Computation of Matrix Multiplication

 Matrix multiply tiled to fit in cache and computation ordered to maximize reuse of data in cache

Tiled Computation of Matrix Multiplication

 Matrix multiply tiled to fit in cache and computation ordered to maximize reuse of data in cache

Tiled Computation of Matrix Multiplication

 Matrix multiply tiled to fit in cache and computation ordered to maximize reuse of data in cache

Matrix Multiplication

- Implementation: Matrix Multiplication (GEMM)
 - CPU: OpenBLAS, Intel MKL, etc
 - GPU: cuBLAS, cuDNN, etc
- Library will note shape of the matrix multiply and select implementation optimized for that shape.
- Optimization usually involves proper tiling to storage hierarchy
- Attempt to maximize reuse of the values held in the smaller, faster, and more energy-efficient memories

GEMM Based Convolution

Step3: data unflattening

 Flatten input data and kernels, solve the convolution as a matrix multiplication problem

Step1: data flattening

Al System Lab

Number of Kernels

Im2Col

What Really Happened?

What was the tensor size?

What is lowered matrix means?

What does lowering mean?

What is the impact on Memory?

Im2Col

Do We Have Other Options?

Do We Have Other Options?

Conventional Approach Penalizes Memory To Optimize Performance

 Casts convolution to Matrix-Matrix-Multiplication, in order to utilize high performance MMM implementations in

Basic-Linear-Algebra-Subroutines(BLAS) libraries

Image Feature Map

Matrix

Direct Convolution is Better

• Higher performance, zero memory overheads

	Matrix-Matrix-Multiplication	Direct Convolution	
Packing	YesOver 10x additional memory for image dataPerformance penalty	NoZero memory overheadsNo performance penalty	
Computation Performance	Less than expected theoretic peak of GEMM	Close to system's theoretic peak	

TYZOLIAN 1931

- Rules for each new character
 - Buffers
 - Re-fetch rate
- $m_r n_r k_c m_c n_c m k n$
- $m_0 n_0 k_0 m_1 n_1 m_2 k_1 n_2$

```
egin{aligned} \mathbf{for} \ j_c &= 0, \dots, n-1 \ \mathbf{in} \ \mathbf{steps} \ \mathbf{of} \ n_c \ \mathbf{for} \ p_c &= 0, \dots, k-1 \ \mathbf{in} \ \mathbf{steps} \ \mathbf{of} \ k_c \ B(p_c: p_c + k_c - 1, j_c: j_c + n_c - 1) 
ightarrow B_c \ \mathbf{for} \ i_c &= 0, \dots, m-1 \ \mathbf{in} \ \mathbf{steps} \ \mathbf{of} \ m_c \ A(i_c: i_c + m_c - 1, p_c: p_c + k_c - 1) 
ightarrow A_c \ \mathbf{for} \ j_r &= 0, \dots, n_c - 1 \ \mathbf{in} \ \mathbf{steps} \ \mathbf{of} \ n_r \ \mathbf{for} \ i_r &= 0, \dots, m_c - 1 \ \mathbf{in} \ \mathbf{steps} \ \mathbf{of} \ m_r \ \mathbf{for} \ p_r &= 0, \dots, k_c - 1 \ \mathbf{in} \ \mathbf{steps} \ \mathbf{of} \ 1 \ C_c(i_r: i_r + m_r - 1, j_r: j_r + n_r - 1) \ + = A_c(i_r: i_r + m_r - 1, p_r) \ \cdot \ B_c(p_r, j_r: j_r + n_r - 1) \end{aligned}
```


- Rules for each new character
 - Buffers
 - Re-fetch rate
- m_r n_r k_c
- m₀ n₀ k₀

```
\begin{array}{c} \textbf{for} \ j_c = 0, \dots, n-1 \ \textbf{in} \ \textbf{steps of} \ n_c \\ \textbf{for} \ p_c = 0, \dots, k-1 \ \textbf{in} \ \textbf{steps of} \ k_c \\ B(p_c: p_c + k_c - 1, j_c: j_c + n_c - 1) \to B_c \\ \textbf{for} \ i_c = 0, \dots, m-1 \ \textbf{in} \ \textbf{steps of} \ m_c \\ \hline A(i_c: i_c + m_c - 1, p_c: p_c + k_c - 1) \to A_c \\ \hline \textbf{for} \ j_r = 0, \dots, n_c - 1 \ \textbf{in} \ \textbf{steps of} \ n_r \\ \textbf{for} \ i_r = 0, \dots, m_c - 1 \ \textbf{in} \ \textbf{steps of} \ m_r \\ \hline \textbf{for} \ p_r = 0, \dots, k_c - 1 \ \textbf{in} \ \textbf{steps of} \ 1 \\ C_c(i_r: i_r + m_r - 1, j_r: j_r + n_r - 1) \\ + = A_c(i_r: i_r + m_r - 1, p_r) \\ \cdot B_c(p_r, j_r: j_r + n_r - 1) \end{array}
```


- Rules for each new character
 - Buffers
 - Re-fetch rate
- m_r n_r k_c m_c
- m₀ n₀ k₀ m₁

```
\begin{array}{c} \textbf{for} \ j_c = 0, \dots, n-1 \ \textbf{in} \ \textbf{steps of} \ n_c \\ \textbf{for} \ p_c = 0, \dots, k-1 \ \textbf{in} \ \textbf{steps of} \ k_c \\ B(p_c: p_c + k_c - 1, j_c: j_c + n_c - 1) \to B_c \\ \textbf{for} \ i_c = 0, \dots, m-1 \ \textbf{in} \ \textbf{steps of} \ m_c \\ A(i_c: i_c + m_c - 1, p_c: p_c + k_c - 1) \to A_c \\ \hline \textbf{for} \ j_r = 0, \dots, n_c - 1 \ \textbf{in} \ \textbf{steps of} \ n_r \\ \hline \textbf{for} \ i_r = 0, \dots, m_c - 1 \ \textbf{in} \ \textbf{steps of} \ m_r \\ \hline \textbf{for} \ p_r = 0, \dots, k_c - 1 \ \textbf{in} \ \textbf{steps of} \ 1 \\ C_c(i_r: i_r + m_r - 1, j_r: j_r + n_r - 1) \\ + = A_c(i_r: i_r + m_r - 1, p_r) \\ \cdot B_c(p_r, j_r: j_r + n_r - 1) \end{array}
```


AND LAND KUNDO

- Rules for each new character
 - Buffers
 - Re-fetch rate
- $m_r n_r k_c m_c n_c$
- m₀ n₀ k₀ m₁ n₁

```
egin{aligned} \mathbf{for} \ j_c &= 0, \dots, n-1 \ \mathbf{in} \ \mathbf{steps} \ \mathbf{of} \ n_c \ \mathbf{for} \ p_c &= 0, \dots, k-1 \ \mathbf{in} \ \mathbf{steps} \ \mathbf{of} \ k_c \ B(p_c: p_c + k_c - 1, j_c: j_c + n_c - 1) 
ightarrow B_c \ \mathbf{for} \ i_c &= 0, \dots, m-1 \ \mathbf{in} \ \mathbf{steps} \ \mathbf{of} \ m_c \ A(i_c: i_c + m_c - 1, p_c: p_c + k_c - 1) 
ightarrow A_c \ \hline egin{aligned} \mathbf{for} \ j_r &= 0, \dots, n_c - 1 \ \mathbf{in} \ \mathbf{steps} \ \mathbf{of} \ n_r \ \mathbf{for} \ i_r &= 0, \dots, m_c - 1 \ \mathbf{in} \ \mathbf{steps} \ \mathbf{of} \ m_r \ \mathbf{for} \ p_r &= 0, \dots, k_c - 1 \ \mathbf{in} \ \mathbf{steps} \ \mathbf{of} \ 1 \ C_c(i_r: i_r + m_r - 1, j_r: j_r + n_r - 1) \ + = A_c(i_r: i_r + m_r - 1, p_r) \ \cdot \ B_c(p_r, j_r: j_r + n_r - 1) \end{aligned}
```


TAND KUNO CZZ

- Rules for each new character
 - Buffers
 - Re-fetch rate
- m_r n_r k_c m_c n_c m
- $m_0 n_0 k_0 m_1 n_1 m_2$

```
egin{aligned} \mathbf{for} \ j_c &= 0, \dots, n-1 \ \mathbf{in} \ \mathbf{steps} \ \mathbf{of} \ n_c \ \mathbf{for} \ p_c &= 0, \dots, k-1 \ \mathbf{in} \ \mathbf{steps} \ \mathbf{of} \ k_c \ B(p_c: p_c + k_c - 1, j_c: j_c + n_c - 1) 
ightarrow B_c \ & \mathbf{for} \ i_c &= 0, \dots, m-1 \ \mathbf{in} \ \mathbf{steps} \ \mathbf{of} \ m_c \ & \frac{A(i_c: i_c + m_c - 1, p_c: p_c + k_c - 1) 
ightarrow A_c \ \mathbf{for} \ j_r &= 0, \dots, n_c - 1 \ \mathbf{in} \ \mathbf{steps} \ \mathbf{of} \ n_r \ & \mathbf{for} \ i_r &= 0, \dots, m_c - 1 \ \mathbf{in} \ \mathbf{steps} \ \mathbf{of} \ m_r \ & \mathbf{for} \ p_r &= 0, \dots, k_c - 1 \ \mathbf{in} \ \mathbf{steps} \ \mathbf{of} \ 1 \ & C_c(i_r: i_r + m_r - 1, j_r: j_r + n_r - 1) \ & + = A_c(i_r: i_r + m_r - 1, p_r) \ & \cdot \ B_c(p_r, j_r: j_r + n_r - 1) \end{aligned}
```


TAND KAND KAND TO THE PROPERTY OF THE PROPERTY

- Rules for each new character
 - Buffers
 - Re-fetch rate
- $m_r n_r k_c m_c n_c m k$
- $m_0 n_0 k_0 m_1 n_1 m_2 k_1$

```
\mathbf{for} \ j_c = 0, \dots, n-1 \ \mathbf{in} \ \mathbf{steps} \ \mathbf{of} \ n_c \ B(p_c : p_c + k_c - 1, j_c : j_c + n_c - 1) 	oup B_c \ \mathbf{for} \ i_c = 0, \dots, m-1 \ \mathbf{in} \ \mathbf{steps} \ \mathbf{of} \ m_c \ A(i_c : i_c + m_c - 1, p_c : p_c + k_c - 1) 	oup A_c \ \mathbf{for} \ j_r = 0, \dots, n_c - 1 \ \mathbf{in} \ \mathbf{steps} \ \mathbf{of} \ n_r \ \mathbf{for} \ i_r = 0, \dots, m_c - 1 \ \mathbf{in} \ \mathbf{steps} \ \mathbf{of} \ m_r \ \mathbf{for} \ p_r = 0, \dots, k_c - 1 \ \mathbf{in} \ \mathbf{steps} \ \mathbf{of} \ 1 \ C_c(i_r : i_r + m_r - 1, j_r : j_r + n_r - 1) \ + = A_c(i_r : i_r + m_r - 1, p_r) \ \cdot \ B_c(p_r, j_r : j_r + n_r - 1)
```


- Rules for each new character
 - Buffers
 - Re-fetch rate
- $m_r n_r k_c m_c n_c m k n$
- $m_0 n_0 k_0 m_1 n_1 m_2 k_1 n_2$

```
egin{aligned} \mathbf{for} \; j_c = 0, \dots, n-1 \; \mathbf{in} \; \mathbf{steps} \; \mathbf{of} \; n_c \ \mathbf{for} \; p_c = 0, \dots, k-1 \; \mathbf{in} \; \mathbf{steps} \; \mathbf{of} \; k_c \ B(p_c: p_c + k_c - 1, j_c: j_c + n_c - 1) 
ightarrow B_c \ \mathbf{for} \; i_c = 0, \dots, m-1 \; \mathbf{in} \; \mathbf{steps} \; \mathbf{of} \; m_c \ A(i_c: i_c + m_c - 1, p_c: p_c + k_c - 1) 
ightarrow A_c \ \mathbf{for} \; j_r = 0, \dots, n_c - 1 \; \mathbf{in} \; \mathbf{steps} \; \mathbf{of} \; n_r \ \mathbf{for} \; i_r = 0, \dots, m_c - 1 \; \mathbf{in} \; \mathbf{steps} \; \mathbf{of} \; m_r \ \mathbf{for} \; p_r = 0, \dots, k_c - 1 \; \mathbf{in} \; \mathbf{steps} \; \mathbf{of} \; 1 \ C_c(i_r: i_r + m_r - 1, j_r: j_r + n_r - 1) \ + = A_c(i_r: i_r + m_r - 1, p_r) \ \cdot \; B_c(p_r, j_r: j_r + n_r - 1) \end{aligned}
```


Memory Hierarchy with GEMM

Tiling For Optimizing Performance

- Improve efficiency at each level of the memory hierarchy
- Tiling can also be applied to parallelize the computation across multiple CPUs or the many threads of a GPU
- Must consider replacement policy of associative caches to achieve optimal performance
 - Least Recently Used(LRU)
 - Dynamic Re-Reference Interval Prediction (DRRIP)
- GEMM library will dynamically select and run the most appropriate implementation

• Layer shape, hardware platform, etc.

Tiling For Optimizing Performance

- Compilers optimize a user-written program for tiling
- Creating a polyhedral model of the computation and using a Boolean satisfiability (SAT) solver to optimally tile and schedule the program. [1]
- Decouples the basic expression of the algorithm from user-provided annotations that describe the desired scheduling and tiling of the algorithm. [2]
- GCC, LLVM

[1] Lam, M. D., Rothberg, E. E., & Wolf, M. E. (1991). The cache performance and optimizations of blocked algorithms. *ACM SIGOPS Operating Systems Review*, 25(Special Issue), 63-74.

[2] Ragan-Kelley, J., Barnes, C., Adams, A., Paris, S., Durand, F., & Amarasinghe, S. (2013). Halide: a language and compiler for optimizing parallelism, locality, and recomputation in image processing pipelines. *Acm Sigplan Notices*, 48(6), 519-530.

Compiler for DNN Hardwares

- TVM Compiler for DNN hardware
 - Graph-level and operator-level optimizations for DNN workloads across diverse hardware back-ends
 - Tiling for hiding memory latency
 - High-level operator fusion
 - E.g. performing a CONV layer and ReLU together with one pass through memory
 - Mapping to arbitrary hardware primitives
- Maximize data reuse
 - in the memory hierarchy
 - in parallel computation units

Outline

- Overview
- Matrix Multiplication Based Convolution
- Tiling for Optimizing Performance
- Computation Transform Optimizations

Computation Transformations

- Goal
 - Bitwise same result, but reduce number of operations
 - In DNNs, reduce number of multiplications
 - Improve performance
 - Reduce energy consumption
- Focuses mostly on compute
- May come at the cost of
 - More intermediate results
 - Increased number of additions
 - More irregular data access pattern

Gauss's Multiplication Algorithm

Complex multiplication

$$(ac - bd) + (bc + ad)i$$

- 4 multiplications + 3 additions
- Re-associate operations

$$k_1 = c(a + b)$$

 $k_2 = a(d - c)$
 $k_3 = b(c + d)$
 $Real \ part = k_1 - k_3$
 $Imaginary \ part = k_1 + k_2$

• 3 multiplications + 5 additions

Strassen Matrix Multiplication Transform

•
$$\begin{bmatrix} A11 & A12 \\ A21 & A22 \end{bmatrix} \times \begin{bmatrix} B11 & B12 \\ B21 & B22 \end{bmatrix} = \begin{bmatrix} C11 & C12 \\ C21 & C22 \end{bmatrix}$$

Strassen Matrix Multiplication Transform

Matrix multiplication of A and B

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, B = \begin{bmatrix} e & f \\ g & h \end{bmatrix}$$
$$AB = \begin{bmatrix} ae + bg & af + bh \\ ce + da & ef + dh \end{bmatrix}$$

- 8 multiplications and 4 additions
- Re-associate operations

$$M_1 = a(f - h)$$

 $M_2 = h(a + b)$
 $M_3 = e(c + d)$
 $M_4 = d(g - e)$
 $M_5 = (a + d)(e + h)$
 $M_6 = (b - d)(g + h)$
 $M_7 = (a - c)(e + f)$

$$AB = \begin{bmatrix} M_5 + M_4 - M_2 + M_6 & M_1 + M_2 \\ M_3 + M_4 & M_1 + M_5 - M_3 - M_7 \end{bmatrix}$$

$$M_1 + M_2 \ M_1 + M_5 - M_3 - M_7$$

7 multiplications and 18 additions, creation of 7 intermediate values

Asymptotic Complexity of Strassen

- Asymptotic complexity of matrix multiplication $\Theta(N^3)$, $N=2^n$ $f(n)=number\ of\ operations\ for\ a\ 2^n\times 2^n\ matrix$
- Recursive apply Strassen algorithm

$$f(n) = 7f(n-1) + l4^n = (7 + o(1))^n$$

l=some constant depends on the number of additions in Stressen

Asymptotic complexity using Strassen

$$\Theta\left(\left(7 + o(1)\right)^n\right) = \Theta(N^{\log_2 7 + o(1)}) \approx \Theta(N^{2.8074})$$

Asymptotic Complexity of Strassen

- Reduce the complexity of matrix multiplication from $\Theta(N^3)$ to $\Theta(N^{2.8074})$ by reducing multiplications
- Comes at the price of reduced numerical stability and requires significantly more memory

Winograd Transform

- Targeting convolutions instead of matrix multiply
- Significantly reduce multiplies
- Achieves varies based on the filter and tile size
- Requires specialized processing depending on the size of the filter and tile
- Winograd hardware typically support only specific tile and filter sizes

NVDLA only support 3x3 filters

1D Convolution

6 multiplications + 4 additions

1D Convolution Using Winograd Transform

1D Convolution using Winograd transform

$$\begin{bmatrix} i_0 & i_1 & i_2 \\ i_1 & i_2 & i_3 \end{bmatrix} \begin{bmatrix} f_0 \\ f_1 \\ f_2 \end{bmatrix} = \begin{bmatrix} o_0 \\ o_1 \end{bmatrix} = \begin{bmatrix} m_1 + m_2 + m_3 \\ m_2 - m_3 - m_4 \end{bmatrix}$$

$$m_1 = (i_0 - i_2)f_0$$

$$m_2 = (i_1 + i_2)\frac{f_0 + f_1 + f_2}{2}$$

$$m_3 = (i_2 - i_1)\frac{f_0 - f_1 + f_2}{2}$$

$$m_4 = (i_1 - i_3)f_2$$

4 multiplications + 12 additions + 2 shifts(divided by 2) With constant weights

→ 4 multiplications + 8 additions

Linear Algebraic Formulation

Input transform matrix (constant)

$$B^{T} = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} \qquad G = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

filter matrix

$$f = [f_0 \quad f_1 \quad f_2]^T$$

Filter transform matrix (constant)

$$G = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 1 \end{bmatrix}$$

Output transform matrix (constant)

$$A^T = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & -1 & -1 \end{bmatrix}$$

input matrix

$$i = [i_0 \quad i_1 \quad i_2]^T$$

- Sandwiching those matrices in a chain of matrix multiplies by constant matrices
 - $[GfG^T]$ and $[B^TiB]$
 - Existing in a Winograd space
 - GfG^T only need to be performed once, since the filter weights are constant across many applications of the tiled convolution

Linear Algebraic Formulation

Input transform matrix (constant)

$$B^{T} = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} \qquad G = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

filter matrix

$$f = [f_0 \quad f_1 \quad f_2]^T$$

Filter transform matrix (constant)

$$G = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 1 \end{bmatrix}$$

Output transform matrix (constant)

$$A^T = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & -1 & -1 \end{bmatrix}$$

input matrix

$$i = [i_0 \quad i_1 \quad i_2]^T$$

- Convolution can be performed by combining those matrices with element-wise multiplication
 - $[GfG^T] \odot [B^TiB]$
- Reverse transformation out of the Winograd space

•
$$Y = A^T [[GfG^T] \odot [B^T iB]]A$$

2D Winograd Transform

• 1D Winograd is nested to make 2D Winograd

Filter

 $egin{array}{c|c|c} f_{00} & f_{01} & f_{02} \ \hline f_{10} & f_{11} & f_{12} \ \hline f_{20} & f_{21} & f_{22} \ \hline \end{array}$

Input Feature map

i_{00}	i_{01}	i_{02}	i_{03}
i_{10}	i_{11}	i_{12}	i_{13}
i_{20}	<i>i</i> ₂₁	<i>i</i> ₂₂	i_{23}
i_{30}	i_{31}	i_{32}	i_{33}

Output Feature map

$$= \begin{array}{c|c} o_{00} & o_{01} \\ \hline o_{10} & o_{11} \end{array}$$

- Original
 - 36 multiplication
- Winograd
 - 16 multiplication → 2.25 multiplication reduction

2D Winograd Halo

 Winograd works on a small region of output at a time, and therefore uses inputs repeatedly

Output Feature map

000	001	002	o_{03}
010	o ₁₁	012	o ₁₃

Winograd Performance Varies

Optimal convolution algorithm depends on convolution layer dimensions

Winograd speedup over GEMM-based convolution (VGG-E layers, N=1)

- Meta parameters (data layouts, texture memory) afford higher performance
- Using texture memory for convolution: 13% inference speedup (GoogLeNet, batch size 1)

Fast Fourier Transform (FFT)

- 1. Convert filter and input to frequency domain
- 2. Make convolution a simple multiply
- 3. Convert back to space domain
- Follows a similar pattern to the Winograd transform
 - Convert a convolution into a new space where convolution is more computationally efficient

FFT to Accelerate DNN

 Convolution in the time domain is equivalent to point-wise multiply in the frequency domain.

$$f*g=\mathcal{F}^{-1}\big\{\mathcal{F}\{f\}\cdot\mathcal{F}\{g\}\big\}$$

 $\mathcal{F}{f}$: Fourier transform of f

 $\mathcal{F}\{g\}$: Fourier transform of g

* : convolution(not multiplication)

FFT-based Convolution

FFT-based Convolution

Vasilache, N., Johnson, J., Mathieu, M., Chintala, S., Piantino, S., & LeCun, Y. (2014). Fast convolutional nets with fbfft: A GPU performance evaluation. *arXiv preprint arXiv:1412.7580*.

FFT Convolution

- Complexity
 - For output size P x Q, Filter size R x S
 - Convert direct convolution O(PQRS) to $O(PQ \log_2 PQ)$
- Drawbacks
 - Computational benefit of FFT decreases with decreasing size of filter
 - Needs $RS > \log_2 PQ$ for there to be a benefit
 - Size of the FFT is dictated by the output feature map size
 - Often much larger than the filter
 - The coefficients in the frequency domain are complex

FFT Optimization for DNN Computation

- FFT of the filter can be pre-computed and stored
 - Reduce the number of operations
 - but convolutional filter in frequency domain is much larger than in space domain
- FFT of the input feature map can be computed once to generate multiple channels in the output feature map
- An image contains only real values
 - Its Fourier Transform is symmetric
 - Can be exploited to reduce storage and computation cost
- Can accumulate across channels before performing inverse transform to reduce number of IFFT

FFT Costs

- Input and Filter matrices are 0-completed
 - i.e., expanded to size E+R-1 x F+S-1
- Frequency domain matrices are same dimensions as input, but complex.
- FFT often reduces computation, but requires much more memory space and bandwidth

cuDNN: Speed up with Transformations

60x Faster Training in 3 Years

AlexNet training throughput on:

CPU: 1x E5-2680v3 12 Core 2.5GHz. 128GB System Memory, Ubuntu 14.04

M40 bar: 8x M40 GPUs in a node, P100: 8x P100 NVLink-enabled

cuDNN: Speed up with Transformations

Up to 3x Faster RNN Training

TensorFlow performance (tokens/sec), Tesla P100 + cuDNN 6 (FP32) on 17.12 NGC container, Tesla V100 + cuDNN 7.0 (Mixed) on 18.02 NGC container, Telsa V100 + cuDNN 7.4 (Mixed) on 18.10 NGC container, OpenSeq2Seq (GNMT), Batch Size: 64

Up to 3x Faster CNN Training

TensorFlow performance (images/sec), Tesla P100 + cuDNN 6 (FP32) on 17.12 NGC container, Tesla V100 + cuDNN 7.0 (Mixed) on 18.02 NGC container, Telsa V100 + cuDNN 7.4 (Mixed) on 18.10 NGC container, ResNet-50, Batch Size: 128

Selecting A Transform

- Different algorithms might be used for different layer shapes and sizes
 - E.g. FFT for filters greater than 5x5, and Winograd for filters 3x3 and below
- Existing platform libraries dynamically choose the appropriate algorithm for a given shape and size
 - MKL
 - cuDNN

Optimization Tools

Halide

- A language for fast, portable computation on images and tensors
- embedded in C++
- Support x86, arm, MIPS, RISC-V, PowerPC, CUDA, OpenCL, OpenGl, etc.

TVM

- An End to End Machine Learning Compiler Framework for CPUs, GPUs and accelerators
- Various framework
 - Tensorflow, Keras, etc.
- Various backend
 - LLVM, C, CPUs, DSPs, GPUs, FPGAs,
- Timeloop
 - A Systematic Approach to DNN Accelerator Evaluation
- Many other optimization tools...

Analysis of Convolution Approaches

	Pro	Con
GEMM	 Generic and stable Easy to implement (problem mapped into a BLAS call) Optimized solution if good BLAS is provided 	 Additional memory to store the intermediate data Rely heavily on optimized BLAS
Spatial Domain	 Avoids additional memory copy Speedy with optimized code 	 Rely on individually optimized kernels according to given params, or even given HW architecture
FFT fomain	Lower computational complexity	 Additional memory to save FFT data Overhead is big for small kernel size, or large stride

Concluding Remarks

- Temporal platform
 - CPUs and GPUs
- Spatial platforms
 - Communication between ALUs with its own control logic and storage
- Methods that restructure the computations to improve efficiency without any impact on accuracy
 - Nearly bit-wise identical results
 - Reshape computation for efficiency
 - Reduce memory bandwidth
 - Reduce high-cost operations

Concluding Remarks

- Toeplitz transformation
 - Converts a convolution into a matrix multiply by replicating value
 - Widely used in CPUs and GPUs
 - GEMM libraries supports
- Strassen
 - Comes at the price of reduced numerical stability and requires significantly more memory
- Winograd
 - Targeting convolutions instead of matrix multiply
 - Convert to Winograd space, compute, then convert back
- FFT transform
 - Convert filter and input to frequency domain, compute, then convert back