

37. Soit z_1 et z_2 les racines de l'équation $z^2 = (i+1)(z-2)$.

Calculer l'expression $\frac{1}{z_1} + \frac{1}{z_2}$

- $$1. -i-1 \quad 2. 1/2 \quad 3. \frac{1-i}{2} \quad 4. -1/2 \quad 5. \frac{i-1}{2} \quad (\text{MB}, 88)$$

38. L'argument à $2k\pi$ près du complexe : $\frac{1+i\sqrt{3}}{\sqrt{3}+i}$

1. $\pi/7$ 2. $\pi/12$ 3. $-7\pi/12$ 4. $-\pi/12$ 5. $7\pi/12$ (MB. - 88)

39. Son module vaut : www.ecoles-rdc.net

- $$1. \frac{\sqrt{2}}{2} \quad 2. \frac{\sqrt{3}}{3} \quad 4. \sqrt{3} - 1 \quad 4. \sqrt{2} \quad 5. \frac{1}{2}$$

40. Le produit des racines quatrièmes d'un nombre complexe $z = a + bi$ vaut :

- $$1. z^2 \quad 2. 0 \quad 3. 4 \quad 4. \sqrt[4]{z} \quad 5. 4z \quad (\text{MB} - 86)$$

41. Le produit des racines cubiques d'un nombre complexe z vaut

1. $3z$ 2. z^2 3. 0 4. z 5. $\sqrt[3]{z}$

Dans \mathbb{C} , soit $z = x + iy$, avec x et y réels et soit \bar{z} son conjugué.

On donne l'expression $T = z^2 + z\bar{z} + i(z - \bar{z}) - 2i$. Les questions 42 et 43 se rapportent à cet énoncé.

42. L'expression T est nulle si et seulement si ses parties réelles et imaginaires sont nulles. Cette condition est satisfaite pour z égal à :

1. i 2. 1+i 3. 2 4. 0 5. -1-i

43. L'ensemble des points M d'affixes z tels que l'expression T est imaginaire est :

1. une hyperbole équilatérale 4. une parabole d'axe Oy
 2. un cercle centré à l'origine 5. une droite passant par l'origine
 3. une ellipse centrée à l'origine (M. - 86)

44. Dans \mathbb{C} , soit le nombre complexe z de module 2 et d'argument $\pi/6$.

Le nombre $1/z$ a respectivement pour module et argument :

1. $\frac{1}{2}$ et $\frac{7\pi}{6}$ 3. $\frac{1}{2}$ et $\frac{5\pi}{6}$ 5. $\frac{1}{2}$ et $\frac{11\pi}{6}$
 2. $\frac{1}{2}$ et $\frac{\pi}{6}$ 4. 2 et $\frac{5\pi}{6}$ (M. - 87)