

EMC TEST REPORT

Report Number: 102011503ATL-001 Project Number: G102011503

Report Issue Date: May 6, 2015

Product Designation:

Model tested: Wireless Professional

Manufacturer Declared Equivalent Product Designations:Model not tested: SP8.0, SP6.0, Fit5.0 and Wireless USA

Standards: CFR47 FCC Part 15 Subpart C:2015 Section 15.205, 15.209, 15.215,

15.249

CFR47 FCC Part 15 Subpart B:2015 Section 15.109

Industry Canada RSS-210 Issue 8 December 2010, Annex A2.9

Industry Canada RSS-GEN Issue 4 November 2014

Tested by:
Intertek Testing Services NA, Inc.
1950 Evergreen Blvd, Suite 100
Duluth, GA 30096 USA

Client: DJO LLC 1430 Decision Street Vista, CA 92081 USA

Report prepared by

Mary Sampson/Senior Project Engineer

Report reviewed by

Krishna Vemuri/Senior Staff Engineer

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

1 Introduction and Conclusion

The tests indicated in section 2.0 were performed on the product constructed as described in section 4.0. The remaining test sections are the verbatim text from the actual data sheets used during the investigation. These test sections include the test name, the specified test Method, a list of the actual Test Equipment Used, documentation Photos, Results and raw Data. No additions, deviations, or exclusions have been made from the standard(s) unless specifically noted.

Based on the results of our investigation, we have concluded the product tested **complies** with the requirements of the standard(s) indicated. The results obtained in this test report pertain only to the item(s) tested.

2 Test Summary

Section	Test full name	Result
3	Client Information	
4	Description of Equipment Under Test	
5	System Setup and Method	
6	Fundamental Frequency Radiated Emissions (47CFR Part 15 Subpart C: 2015 Section 15.249 RSS-210 Issue 8 Dec 2010 Annex A2.9)	Pass
	AC Mains Conducted Emissions (Battery Powered Device)	N/A
7	Transmitter Spurious Radiated Emissions (47CFR Part 15 Subpart C: 2015 Section 15.249, 15.209, 15.205 RSS-210 Issue 8 Dec 2010 Annex A2.9)	Pass
8	Duty Cycle (47CFR Part 15 Subpart A: 2015 Section 15.35(c) RSS-GEN Issue 4: Nov 2014 Section 6.10)	Pass
9	20 dB Bandwidth (47CFR Part 15 Subpart C: 2015 Section 15.215 RSS-GEN Issue 4:Nov 2014 Section 6.6)	Pass
10	Bandedge (Band Edge (47CFR FCC Part 15 Subpart C: 2015 Section 15.215(c), 15.249(d); RSS-210 Issue 8: Dec 2010 Annex A2.9)	Pass
11	Digital Parts Emissions (47CFR Part 15 Subpart B: 2015 Section 15.109 RSS-GEN Issue 4:Nov 2014 Section 6.6	Pass
12	RF Exposure(47CFR Part 2 Subpart J:2015 Section 2.1091; RSS-102 Issue 4 Mar 2010 Section 2.5.1)	Pass
13	Revision History	

Report Number: 102011503ATL-001 Issued: 05/06/2015

3 Client Information

This EUT was tested at the request of:

Client: DJO LLC

1430 Decision Street Vista, CA 92081

USA

 Contact:
 Mark Stavro

 Telephone:
 (760) 734-3551

 Fax:
 (760) 734-5694

Email: mark.stavro@djoglobal.com

4 Description of Equipment Under Test

Manufacturer: DJO LLC

1430 Decision Street Vista. CA 92081

USA

Equipment Under Test					
Description	Manufacturer	Model Number	Serial Number		
Wireless Professional Remote Controller	DJO	00300	YNP000712		

Receive Date:	10/15/2014	
Received Condition:	Good	
Type:	Production	

Description of Equipment Under Test (provided by client)

The Wireless Professional Remote Controller is a muscle stimulator which uses wireless communication to control up to four muscle stimulators. The Wireless Pro can be used by a healthy person for the purposes of pain relief, muscle conditioning, muscle warmup and muscle recovery.

Per the client, the Compex Wireless Professional Remote Controller, SP8.0, SP6.0, Fit5.0 and Wireless USA all use the same radio board and transmitter protocol, the only difference is the color and firmware.

Equipment Under Test Power Configuration					
Rated Voltage	Rated Voltage Rated Current Rated Frequency Number of Phases				
3.7 Vdc 1500 mAh		N/A	N/A		
	Max Charging = 1.5 A				

Operating modes of the EUT:

	opo.	dung modes of the 2011
1	No.	Descriptions of EUT Exercising
	1	Continuous transmission
	2	Idle

Software used by the EUT:

No.	Descriptions of EUT Exercising
1	Firmware version: 0209x1DC5F303

5 System Setup and Method

	Cables					
ID	Description	Length (m)	Shielding	Ferrites	Termination	
	None					

Support Equipment					
Description Manufacturer Model Number Serial Number					
None					

5.1 Method:

Configuration as required by CFR47 FCC Part 15 Subpart C:2015 Sections 15.205, 15.209, 15.215, 15.249, Industry Canada RSS-210 Issue 8 December 2010, Annex A2.9, Industry Canada RSS-GEN Issue 4 November 2014, and ANSI C63.10-2013.

5.2 EUT Block Diagram:

Remote Controller

6 Fundamental Frequency Radiated Emissions

6.1 Method

Tests are performed in accordance with 47CFR Part 15 Subpart C:2015 Section 15.249, RSS-210 Issue 8 Annex A2.9, and ANSI C63.10:2013.

TEST SITE: 10m Semi-Anechoic Chamber

10 Meter Semi-Anechoic Chamber The test site for radiated emissions is located at 1950 Evergreen Blvd, Suite 100, Duluth, Georgia 30096. It is a 10 meter semi-anechoic chamber manufactured by Panashield. Embedded in the floor is a 3 meter diameter turntable.

Measurement Uncertainty

For radiated emissions, U_{lab} (3.9 dB at 3m and 3.6 dB at 10m below 1 GHz, and 4.2 dB at 3m above 1 GHz) < $U_{\it CISPR}$ (5.2 dB), which is the reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required, based on CISPR 22 and CISPR 11 (for 2006 and later revisions) Clause 11.

Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CF - AG

Where FS = Field Strength in $dB\mu V/m$

RA = Receiver Amplitude (including preamplifier) in dBµV

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

 $RA = 52.0 dB\mu V$

AF = 7.4 dB/m

CF = 1.6 dB

AG = 29.0 dB

 $FS = 32 dB\mu V/m$

To convert from $dB\mu V$ to μV or mV the following was used:

UF =
$$10^{(NF/20)}$$
 where UF = Net Reading in μ V
NF = Net Reading in dB μ V

Example:

FS = RA + AF + CF - AG =
$$52.0 + 7.4 + 1.6 - 29.0 = 32.0$$

UF = $10^{(32 \, dB_{\mu}V \, / \, 20)} = 39.8 \, \mu V/m$

6.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
200162;	EMI Receiver (20Hz-40GHz)	Rohde & Schwarz	ESU 40	100314	03/02/2015	03/02/2016
	Barometer, Temperature, and Humidity sensor -					
211872;	Network based. Also marked as iServer MicroServer.	Omega	iBTHX-W	0240116	11/07/2014	11/07/2015
213061;	Antenna, Horn, <18 GHz	EMCO	3115	9208-3919	07/22/2014	07/22/2015
			G919-NKNK-			
MP1;	Cable MP1, 18 GHz, N, 394 inches	Megaphase	310	MP1	11/14/2014	11/14/2015
			G919-NKNK-			
MP3;	Cable MP3, 18 GHz, N, 10m	Megaphase	394	MP3	05/08/2014	05/08/2015
			EM18-N1N1-			
MP-HF-2;	Cable, 3-meters, 1-18GHz	Megaphase	119	12090601002	08/26/2014	08/26/2015

Software Utilized:

Name	Manufacturer	Version
None (Spectrum Analyzer Firmware)		

6.3 Results:

FCC Part 15 Section 15.249

00 T dit 10 000tion 10:210					
Fundamental	Field strength of				
Frequency	fundamental	Field strength of harmonics			
(MHz)	(millivolts/meter)	(microvolts/meter)			
902-928 MHz	50	500			
2400-2483.5 MHz	50	500			
5725-5875 MHz	50	500			
24.0-24.25 GHz	250	2500			

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

IC RSS-210 Section A2.9

Fundamental Frequency (MHz)	Field strength (millivolts/meter)			
	Fundamental	Harmonics		
902-928 MHz	50	0.5		
2400-2483.5 MHz	50	0.5		
5725-5875 MHz	50	0.5		

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general field strength limits listed in RSS-Gen, whichever is less stringent.

Report Number: 102011503ATL-001 Issued: 05/06/2015

6.4 Setup Photographs:

Setup photographs can be found in Test Setup Photos exhibit.

6.5 Plots/Data:

Client: DJO Receiver: R&S ESU40

Model Number: Compex Wireless Controller

Project Number: G102011503

Receiver: R&S ESU40

Antenna: EMCO 3115

Cables: MP1+MP3+MP-HF-2

Tested By: MTS Preamp:

Frequency Range (MHz): Fundamental Test Distance (m): 3
Input power: Battery Modifications for compliance (y/n): n

Notes:

Notes:										
A	В	С	D	Е	F	G	Н	I	J	K
Ant.			Antenna	Cable	Pre-amp	Duty Cycle		3m		
										Detector/
Pol.	Frequency	Reading	Factor	Loss	Factor	Factor	Net	Limit	Margin	Bandwidth
(V/H)	MHz	dB(uV)	dB(1/m)	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB	
X-axis, low		45.5	20.2				00.4	1440	22.0	DYF (43. 577
H	2403.000	47.7	28.3	4.1	0.0	0.0	80.1	114.0	-33.9	PK/1MHz
H	2403.000	47.7	28.3	4.1	0.0	16.5	63.6	94.0	-30.4	A VG/1MHz
V	2403.000	38.1	28.3	4.1	0.0	0.0	70.5	114.0	-43.5	PK/1MHz
V	2403.000	38.1	28.3	4.1	0.0	16.5	54.0	94.0	-40.0	AVG/1MHz
X-Axis, mi		44.7	20.2	4.0	1 00		77.2	1140	26.0	DIZ /13 ATT
H	2440.000	44.7	28.3	4.2	0.0	0.0	77.2	114.0	-36.8	PK/1MHz
H V	2440.000	44.7 39.5	28.3	4.2	0.0	16.5	60.7	94.0	-33.3 -42.0	A VG/1MHz
V	2440.000 2440.000	39.5	28.3 28.3	4.2	0.0	0.0 16.5	72.0 55.5	114.0 94.0	-38.5	PK/1MHz
	gh channel	39.3	28.3	4.2	0.0	10.5	33.3	94.0	-38.3	A VG/1MHz
H H	2475.000	43.2	28.3	4.2	0.0	0.0	75.7	114.0	-38.3	PK/1MHz
H	2475.000	43.2	28.3	4.2	0.0	16.5	59.2	94.0	-34.8	A VG/1MHz
V	2475.000	32.8	28.3	4.2	0.0	0.0	65.2	114.0	-48.8	PK/1MHz
V	2475.000	32.8	28.3	4.2	0.0	16.5	48.7	94.0	-45.3	A VG/1MHz
Y-Axis, lov		32.0	20.3	7.2	0.0	10.5	40.7	74.0	-43.3	A VO IIVIIIZ
H	2403.000	40.2	28.3	4.1	0.0	0.0	72.6	114.0	-41.4	PK/1MHz
Н	2403.000	40.2	28.3	4.1	0.0	16.5	56.1	94.0	-37.9	AVG/1MHz
V	2403.000	43.4	28.3	4.1	0.0	0.0	75.8	114.0	-38.2	PK/1MHz
V	2403.000	43.4	28.3	4.1	0.0	16.5	59.3	94.0	-34.7	AVG/1MHz
Y-Axis, mi		15.1	20.5			10.5	07.5	70	3	11 (0 11/1112
Н	2440.000	42.9	28.3	4.2	0.0	0.0	75.4	114.0	-38.6	PK/1MHz
Н	2440.000	42.9	28.3	4.2	0.0	16.5	58.9	94.0	-35.1	AVG/1MHz
V	2440.000	40.6	28.3	4.2	0.0	0.0	73.1	114.0	-40.9	PK/1MHz
V	2440.000	40.6	28.3	4.2	0.0	16.5	56.6	94.0	-37.4	AVG/1MHz
Y-Axis, hig	h channel				•	•				
Н	2475.000	38.9	28.3	4.2	0.0	0.0	71.4	114.0	-42.6	PK/1MHz
Н	2475.000	38.9	28.3	4.2	0.0	16.5	54.9	94.0	-39.1	AVG/1MHz
V	2475.000	38.4	28.3	4.2	0.0	0.0	70.8	114.0	-43.2	PK/1MHz
V	2475.000	38.4	28.3	4.2	0.0	16.5	54.3	94.0	-39.7	AVG/1MHz
Z-Axis, lov	v channel									
Н	2403.000	42.5	28.3	4.1	0.0	0.0	74.9	114.0	-39.1	PK/1MHz
Н	2403.000	42.5	28.3	4.1	0.0	16.5	58.4	94.0	-35.6	AVG/1MHz
V	2403.000	41.6	28.3	4.1	0.0	0.0	74.0	114.0	-40.0	PK/1MHz
V	2403.000	41.6	28.3	4.1	0.0	16.5	57.5	94.0	-36.5	AVG/1MHz
Z-Axis, mi	d channel									
Н	2440.000	38.4	28.3	4.2	0.0	0.0	70.9	114.0	-43.1	PK/1MHz
Н	2440.000	38.4	28.3	4.2	0.0	16.5	54.4	94.0	-39.6	AVG/1MHz
V	2440.000	41.4	28.3	4.2	0.0	0.0	73.9	114.0	-40.1	PK/1MHz
V	2440.000	41.4	28.3	4.2	0.0	16.5	57.4	94.0	-36.6	AVG/1MHz
Z-Axis, hig										
Н	2475.000	37.4	28.3	4.2	0.0	0.0	69.9	114.0	-44.1	PK/1MHz
Н	2475.000	37.4	28.3	4.2	0.0	16.5	53.4	94.0	-40.6	AVG/1MHz
V	2475.000	39.2	28.3	4.2	0.0	0.0	71.6	114.0	-42.4	PK/1MHz
V	2475.000	39.2	28.3	4.2	0.0	16.5	55.1	94.0	-38.9	AVG/1MHz
Calcu	lations	G=C+	D+E-F	I=	G-H]				

EUT was placed in the X. Y and Z orthoganal axes.

Note: PK indicates peak detection. AVG indicates the peak reading corrected by the duty cycle.

Report Number: 102011503ATL-001 Issued: 05/06/2015

Test Personnel: Mary Sampson MTS 03/31/2015 Test Date: Supervising/Reviewing Engineer: (Where Applicable) 47CFR Part 15 Subpart C: 2015 Section 15.249, RSS-Limit Applied: See section 6.3 210 Issue 8: 2010 Annex Product Standard: A2.9 Input Voltage: Battery Pretest Verification w/ Ambient Temperature: 24 °C Ambient Signals or Relative Humidity: 34.4 % BB Source: BB Source Atmospheric Pressure: 981.7 mbars

Deviations, Additions, or Exclusions: None

7 Transmitter Spurious Radiated Emissions

7.1 Method

Tests are performed in accordance with 47CFR Part 15 Subpart C: 2015 Section 15.249, 15.209, and 15.205, RSS-210 Issue 8 Annex A2.9, and ANSI C63.10:2013.

TEST SITE: 10m Semi-Anechoic Chamber

10 Meter Semi-Anechoic Chamber The test site for radiated emissions is located at 1950 Evergreen Blvd, Suite 100, Duluth, Georgia 30096. It is a 10 meter semi-anechoic chamber manufactured by Panashield. Embedded in the floor is a 3 meter diameter turntable.

Measurement Uncertainty

For radiated emissions, U_{lab} (3.9 dB at 3m and 3.6 dB at 10m below 1 GHz, and 4.2 dB at 3m above 1 GHz) < $U_{\it CISPR}$ (5.2 dB), which is the reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required, based on CISPR 22 and CISPR 11 (for 2006 and later revisions) Clause 11.

Sample Calculations

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CF - AG

Where FS = Field Strength in $dB\mu V/m$

RA = Receiver Amplitude (including preamplifier) in $dB\mu V$

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 dB $_{\mu}V$ is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB $_{\mu}V/m$. This value in dB $_{\mu}V/m$ was converted to its corresponding level in $_{\mu}V/m$.

RA = $52.0 \text{ dB}_{\mu}\text{V}$ AF = 7.4 dB/mCF = 1.6 dB

AG = 29.0 dB

 $FS = 32 dB\mu V/m$

To convert from $dB\mu V$ to μV or mV the following was used:

UF =
$$10^{(NF/20)}$$
 where UF = Net Reading in μ V
NF = Net Reading in dB μ V

Example:

FS = RA + AF + CF - AG =
$$52.0 + 7.4 + 1.6 - 29.0 = 32.0$$

UF = $10^{(32 \text{ dB}_{\mu}\text{V} / 20)} = 39.8 \text{ µV/m}$

7.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
213061;	Antenna, Horn, <18 GHz	EMCO	3115	9208-3919	07/22/2014	07/22/2015
			G919-NKNK-			
MP3;	Cable MP3, 18 GHz, N, 10m	Megaphase	394	MP3	05/08/2014	05/08/2015
			EM18-N1N1-			
MP-HF-;2	Cable, 3-meters, 1-18GHz	Megaphase	119	12090601002	08/26/2014	08/26/2015
			A81-0303-			
ST-5;	7m Cable, 0.01-18GHz	Storm Products Co.	275.6	121-07-002	08/14/2014	08/14/2015
200108;	Preamplifier, 20 MHz to 18 GHz, 40 dB	A.H. Systems	PAM-0118	199	12/03/2014	12/03/2015
200162;	EMI Receiver (20Hz-40GHz)	Rohde & Schwarz	ESU 40	100314	03/02/2015	03/02/2016
213023;	Antenna, Horn, 18-40 GHz	EMCO	3116	9310-2222	10/09/2014	10/09/2015
			JS41800400-			
200080;	Preamplifier, 18-40GHz, 29 dB Gain	Miteq	30-5P-S	818197	08/27/2014	08/27/2015
			TM40 K1K1			
E404;	Cable E404, 40 GHz, 2.9, 2m	Megaphase	80	E404	08/27/2014	08/27/2015
211386;	Antenna, BiLog, 20-2000MHz					
200082;	Preamplifier, 20MHz to 2GHz, 30 dB	A.H. Systems	PAM-0202	203	10/02/2014	10/02/2015
			TM18-N1N1-	14065201-		
E210;	RF Coax Cable	Megaphase	120	003	05/08/2014	05/08/2015
			TM18-N1N1-	14065201-		
E209;	RF Coax Cable	Megaphase	120	003	05/08/2014	05/08/2015
TT6;	RF Coax Cable. Rated 9KHz to 2 GHz.	Andrews	Cable TT-6	TT6	06/18/2014	06/18/2015
TW2						
211411;	Cable TW2	Andrews	Cable TW2	TW2	05/08/2014	05/08/2015
015762;	EMI Receiver, Preselector section	Hewlett Packard	85460A	3330A00158	04/09/2014	04/09/2015
211505;	EMI Receiver	Hewlett Packard	8546A	3650A00362	04/09/2014	04/09/2015

Software Utilized:

Name	Manufacturer	Version
None (Spectrum Analyzer Firmware)Tile	Quantum Change	3.4.K.22

7.3 Results:

FCC 15.249

Fundamental	Field strength of	
Frequency	fundamental	Field strength of harmonics
(MHz)	(millivolts/meter)	(microvolts/meter)
902-928 MHz	50	500
2400-2483.5 MHz	50	500
5725-5875 MHz	50	500
24.0-24.25 GHz	250	2500

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

FCC 15.209

Fundamental		Measurement
Frequency	Field strength	distance
(MHz)	(microvolts/meter)	(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30–88	100**	3
88–216	150**	3
216–960	200**	3
Above 960	500	3

**Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54–72 MHz, 76–88 MHz, 174–216 MHz or 470–806 MHz. However, operation within these frequency bands is permItted under other sections of this part, e.g., §§ 15.231 and 15.241.

IC RSS-210 Section A2.9

Fundamental Frequency (MHz)	Field strength (millivolts/meter)			
	Fundamental	Harmonics		
902-928 MHz	50	0.5		
2400-2483.5 MHz	50	0.5		
5725-5875 MHz	50	0.5		

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general field strength limits listed in RSS-Gen, whichever is less stringent.

IC RSS-Gen Section 8.3

Fundamental	
Frequency	Field strength
(MHz)	(μV/m at 3 metres)
30–88	100
88–216	150
216–960	200
Above 960	500*

(*)Unless otherwise specified, for all frequencies greater than 1 GHz, the radiated emission limits for licence-exempt radio apparatus stated in applicable RSSs (including RSS-Gen) are based on measurements using a linear average detector function having a minimum resolution bandwidth of 1 MHz. If an average limit is specified for the EUT, then the peak emission shall also be measured with instrumentation properly adjusted for such factors as pulse desensitization to ensure the peak emission is less than 20 dB above the average limit.

Testing was performed with EUT in X, Y, and Z axis from 30 MHz to 25 GHz. Hand scan was performed from 18 to 25 GHz, no significant emissions were detected.

Report Number: 102011503ATL-001 Issued: 05/06/2015

7.4 Setup Photographs:

Setup photographs can be found in Test Setup Photos exhibit.

Report Number: 102011503ATL-001 Issued: 05/06/2015

7.5 Plots/Data:

Client: DJO Global Receiver: HP 8546A

Model Number: Remote Controller REF 6522040 Antenna: Chase 2622

Project Number: Q500558693 Cables: E-205+E-209+TT-6+TW2

Tested By: LEM Preamp: ZKL-2 200069

Date: 11/6/14

Frequency Range (MHz): 30-1000 Test Distance (m):

Input power: Battery

Limit: CISPR Class A-10m

Modifications for compliance (y/n): n

relocations for compliance (y/n). If									
A	В	C	D	Е	F	G	Н	I	J
Ant.			Antenna	Cable	Pre-amp		10m		Detectors /
Pol.	Frequency	Reading	Factor	Loss	Factor	Net	Limit	Margin	Bandwidths
(V/H)	MHz	dB(uV)	dB(1/m)	dB	dB	dB(uV/m)	dB(uV/m)	dB	Det/RBW/VBW
Н	32.480	34.6	16.5	0.9	31.6	20.3	40.0	-19.7	120KHz
Н	36.232	34.3	13.6	0.9	31.6	17.3	40.0	-22.7	120KHz
Н	39.944	34.0	12.0	1.0	31.6	15.4	40.0	-24.6	120KHz
Н	112.072	31.2	11.4	2.0	31.4	13.2	40.0	-26.8	120KHz
V	36.217	34.3	15.4	0.9	31.6	19.0	40.0	-21.0	120KHz
V	40.000	34.2	13.6	1.0	31.6	17.2	40.0	-22.8	120KHz
Calculations		G=C+	D+F-F	I=C	7-H				

Client: DJO Receiver: R&S ESU40 Model Number: Compex Wireless Controller Antenna: EMCO 3115 Project Number: G102011503 Cables: ST-5+MP3+MP-HF-2

Tested By: MTS Preamp: PAM-0118 Limit: FCC15 Class B-3m **Date:** 04/07/2015

Frequency Range (MHz): 1000-18000 Test Distance (m): 3

requency R	ange (MHz):	1000-18000				Test Distance (m): 3				
	Input power:	Battery								
Notes: Co	ntinuous tra	nsmission, l	ow channel							
A	В	С	D	Е	F	G	Н	I	J	K
Ant. Pol.	Frequency	Reading	Antenna Factor	Cable Loss	Pre-amp Factor	Duty Cycle Factor	Net	3m Limit	Margin	Detector/ Bandwidth
(V/H)	MHz	dB(uV)	dB(1/m)	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB	
X-Axis		-			•		-			
V	4806.000	45.2	32.8	3.5	39.5	0.0	42.0	74.0	-32.0	PK/1MHz
V	4806.000	45.2	32.8	3.5	39.5	16.5	25.5	54.0	-28.5	AVG/1MHz
Н	4806.000	47.1	32.8	3.5	39.5	0.0	43.9	74.0	-30.1	PK/1MHz
Н	4806.000	47.1	32.8	3.5	39.5	16.5	27.4	54.0	-26.6	AVG/1MHz
V	7209.000	44.5	35.8	4.7	38.9	0.0	46.0	74.0	-28.0	PK/1MHz
V	7209.000	44.5	35.8	4.7	38.9	16.5	29.5	54.0	-24.5	AVG/1MHz
Н	7209.000	44.6	35.8	4.7	38.9	0.0	46.1	74.0	-27.9	PK/1MHz
Н	7209.000	44.6	35.8	4.7	38.9	16.5	29.6	54.0	-24.4	AVG/1MHz
V	9612.000	43.0	37.6	5.4	37.1	0.0	49.0	74.0	-25.0	PK/1MHz
V	9612.000	43.0	37.6	5.4	37.1	16.5	32.5	54.0	-21.5	AVG/1MHz
Н	9612.000	42.8	37.6	5.4	37.1	16.5	32.2	74.0	-41.8	PK/1MHz
Н	9612.000	42.8	37.6	5.4	37.1	16.5	32.2	54.0	-21.8	AVG/1MHz
Y-Axis										
V	4806.000	46.3	32.8	3.5	39.5	0.0	43.1	74.0	-30.9	PK/1MHz
V	4806.000	46.3	32.8	3.5	39.5	16.5	26.6	54.0	-27.4	AVG/1MHz
Н	4806.000	46.5	32.8	3.5	39.5	0.0	43.3	74.0	-30.7	PK/1MHz
Н	4806.000	46.5	32.8	3.5	39.5	16.5	26.8	54.0	-27.2	AVG/1MHz
V	7209.000	44.6	35.8	4.7	38.9	0.0	46.1	74.0	-27.9	PK/1MHz
V	7209.000	44.6	35.8	4.7	38.9	16.5	29.6	54.0	-24.4	AVG/1MHz
Н	7209.000	44.9	35.8	4.7	38.9	0.0	46.4	74.0	-27.6	PK/1MHz
Н	7209.000	44.9	35.8	4.7	38.9	16.5	29.9	54.0	-24.1	AVG/1MHz
V	9612.000	42.8	37.6	5.4	37.1	0.0	48.8	74.0	-25.2	PK/1MHz
V	9612.000	42.8	37.6	5.4	37.1	16.5	32.3	54.0	-21.7	AVG/1MHz
Н	9612.000	42.6	37.6	5.4	37.1	0.0	48.5	74.0	-25.5	PK/1MHz
Н	9612.000	42.6	37.6	5.4	37.1	16.5	32.0	54.0	-22.0	AVG/1MHz
Z-Axis										
V	4806.000	45.5	32.8	3.5	39.5	0.0	42.3	74.0	-31.7	PK/1MHz
V	4806.000	45.5	32.8	3.5	39.5	16.5	25.8	54.0	-28.2	AVG/1MHz
Н	4806.000	45.4	32.8	3.5	39.5	0.0	42.2	74.0	-31.8	PK/1MHz
Н	4806.000	45.4	32.8	3.5	39.5	16.5	25.7	54.0	-28.3	AVG/1MHz
V	7209.000	44.8	35.8	4.7	38.9	0.0	46.4	74.0	-27.6	PK/1MHz
V	7209.000	44.8	35.8	4.7	38.9	16.5	29.9	54.0	-24.1	AVG/1MHz
Н	7209.000	45.1	35.8	4.7	38.9	0.0	46.7	74.0	-27.3	PK/1MHz
Н	7209.000	45.1	35.8	4.7	38.9	16.5	30.2	54.0	-23.8	AVG/1MHz
V	9612.000	43.6	37.6	5.4	37.1	0.0	49.6	74.0	-24.4	PK/1MHz
V	9612.000	43.6	37.6	5.4	37.1	16.5	33.1	54.0	-20.9	AVG/1MHz
Н	9612.000	43.3	37.6	5.4	37.1	0.0	49.2	74.0	-24.8	PK/1MHz
Н	9612.000	43.3	37.6	5.4	37.1	16.5	32.7	54.0	-21.3	AVG/1MHz
1										

Note: PK indicates peak detection. AVG indicates the peak reading corrected by the duty cycle.

G=C+D+E-F

Calculations

Report Number: 102011503ATL-001 Issued: 05/06/2015

Client: DJO Receiver: R&S ESU40 Model Number: Compex Wireless Controller Antenna: EMCO 3115 Project Number: G102011503 Cables: ST-5+MP3+MP-HF-2 Tested By: MTS Preamp: PAM-0118 Limit: FCC15 Class B-3m **Date:** 04/07/2015

Frequency Range (MHz): 1000-18000 Test Distance (m): 3 Input power: Battery Modifications for compliance (y/n): n

Notes: Cor	ntinuous trans	mission, mi	d channel							
A	В	С	D	Е	F	G	Н	I	J	K
Ant.			Antenna	Cable	Pre-amp	Duty Cycle		3m		
										Detector/
Pol.	Frequency	Reading	Factor	Loss	Factor	Factor	Net	Limit	Margin	Bandwidth
(V/H)	MHz	dB(uV)	dB(1/m)	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB	
X-Axis										
V	4880.000	44.9	32.8	3.5	39.5	0.0	41.6	74.0	-32.4	PK/1MHz
V	4880.000	44.9	32.8	3.5	39.5	16.5	25.1	54.0	-28.9	AVG/1MHz
Н	4880.000	44.7	32.8	3.5	39.5	0.0	41.4	74.0	-32.6	PK/1MHz
Н	4880.000	44.7	32.8	3.5	39.5	16.5	24.9	54.0	-29.1	AVG/1MHz
V	7320.000	44.0	36.2	4.7	38.9	0.0	45.9	74.0	-28.1	PK/1MHz
V	7320.000	44.0	36.2	4.7	38.9	16.5	29.4	54.0	-24.6	AVG/1MHz
Н	7320.000	44.0	36.3	4.7	38.9	0.0	46.0	74.0	-28.0	PK/1MHz
Н	7320.000	44.0	36.3	4.7	38.9	16.5	29.5	54.0	-24.5	AVG/1MHz
V	9760.000	39.7	37.6	5.4	37.1	0.0	45.6	74.0	-28.4	PK/1MHz
V	9760.000	39.7	37.6	5.4	37.1	16.5	29.1	54.0	-24.9	AVG/1MHz
Н	9760.000	40.0	37.6	5.4	37.1	16.5	29.4	74.0	-44.6	PK/1MHz
Н	9760.000	40.0	37.6	5.4	37.1	16.5	29.4	54.0	-24.6	AVG/1MHz
Y-Axis										
V	4880.000	45.1	32.8	3.5	39.5	0.0	41.9	74.0	-32.1	PK/1MHz
V	4880.000	45.1	32.8	3.5	39.5	16.5	25.4	54.0	-28.6	AVG/1MHz
Н	4880.000	45.1	32.8	3.5	39.5	0.0	41.8	74.0	-32.2	PK/1MHz
Н	4880.000	45.1	32.8	3.5	39.5	16.5	25.3	54.0	-28.7	AVG/1MHz
V	7320.000	44.1	36.2	4.7	38.9	0.0	46.0	74.0	-28.0	PK/1MHz
V	7320.000	44.1	36.2	4.7	38.9	16.5	29.5	54.0	-24.5	AVG/1MHz
Н	7320.000	44.7	36.3	4.7	38.9	0.0	46.7	74.0	-27.3	PK/1MHz
Н	7320.000	44.7	36.3	4.7	38.9	16.5	30.2	54.0	-23.8	AVG/1MHz
V	9760.000	40.4	37.6	5.4	37.1	0.0	46.3	74.0	-27.8	PK/1MHz
V	9760.000	40.4	37.6	5.4	37.1	16.5	29.8	54.0	-24.3	AVG/1MHz
Н	9760.000	40.4	37.6	5.4	37.1	0.0	46.3	74.0	-27.8	PK/1MHz
Н	9760.000	40.4	37.6	5.4	37.1	16.5	29.8	54.0	-24.2	AVG/1MHz
Z-Axis										
V	4880.000	45.8	32.8	3.5	39.5	0.0	42.5	74.0	-31.5	PK/1MHz
V	4880.000	45.8	32.8	3.5	39.5	16.5	26.0	54.0	-28.0	AVG/1MHz
Н	4880.000	45.3	32.8	3.5	39.5	0.0	42.1	74.0	-31.9	PK/1MHz
Н	4880.000	45.3	32.8	3.5	39.5	16.5	25.6	54.0	-28.4	AVG/1MHz
V	7320.000	44.6	36.2	4.7	38.9	0.0	46.6	74.0	-27.4	PK/1MHz
V	7320.000	44.6	36.2	4.7	38.9	16.5	30.1	54.0	-23.9	AVG/1MHz
Н	7320.000	44.5	36.3	4.7	38.9	0.0	46.5	74.0	-27.5	PK/1MHz
Н	7320.000	44.5	36.3	4.7	38.9	16.5	30.0	54.0	-24.0	AVG/1MHz
V	9760.000	40.2	37.6	5.4	37.1	0.0	46.1	74.0	-27.9	PK/1MHz
V	9760.000	40.2	37.6	5.4	37.1	16.5	29.6	54.0	-24.4	AVG/1MHz
Н	9760.000	39.9	37.6	5.4	37.1	0.0	45.7	74.0	-28.3	PK/1MHz
Н	9760.000	39.9	37.6	5.4	37.1	16.5	29.2	54.0	-24.8	AVG/1MHz
Calci	ulations	G=C+	D+E-F	I=	G-H					

Note: PK indicates peak detection. AVG indicates the peak reading corrected by the duty cycle.

Client: DJO Model Number: Compex Wireless Controller Project Number: G102011503

Tested By: MTS
Date: 04/07/2015
Frequency Range (MHz): 1000-18000

Receiver: R&SESU40
Antenna: EMCO 3115
Cables: ST-5+MP3+MP-HF-2
Preamp: PAM-0118
Limit: FCC15 Class B-3m

Test Distance (m): 3
Modifications for compliance (y/n): N

Input power: Battery
Notes: Continuous transmission, high channel

	tinnons trans									
A	В	C	D	E	F	G	H	I	J	K
Ant.			Antenna	Cable	Pre-amp	Duty Cycle		3m		
										Detector/
Pol.	Frequency	Reading	Factor	Loss	Factor	Factor	Net	Limit	Margin	Bandwidtl
(V/H)	MHz	dB(uV)	dB(1/m)	dВ	dB	dB	dB(uV/m)	dB(uV/m)	dВ	
X-Axis										
V	4950.000	44.8	33.0	3.5	39.6	0.0	41.7	74.0	-32.3	PK/1MHz
v	4950.000	44.8	33.0	3.5	39.6	16.5	25.2	54.0	-28.8	A VG/IMI
H	4950.000	45.3	33.0	3.5	39.6	0.0	42.1	74.0	-31.9	PK/1MH:
H	4950.000	45.3	33.0	3.5	39.6	16.5	25.7	54.0	-28.3	A VG/1MI
v	7425.000	45.0	36.5	4.7	38.8	0.0	47.4	74.0	-26.6	PK/1MH
V	7425.000	45.0	36.5	4.7	38.8	16.5	30.9	54.0	-23.1	AVG/1MI
Н	7425.000	44.9	36.5	4.7	38.8	0.0	47.3	74.0	-26.7	PK/1MH:
Н	7425.000	44.9	36.5	4.7	38.8	16.5	30.8	54.0	-23.2	AVG/1MI
v	9900.000	41.1	38.0	5.4	37.0	0.0	47.6	74.0	-26.4	PK/1MH
v	9900.000	41.1	38.0	5.4	37.0	16.5	31.1	54.0	-22.9	AVG/1MI
Н	9900.000	41.2	38.0	5.4	37.0	16.5	31.1	74.0	-42.9	PK/1MH
Н	9900.000	41.2	38.0	5.4	37.0	16.5	31.1	54.0	-22.9	A VC/1MI
Y-Axis										
v	4950.000	44.3	33.0	3.5	39.6	0.0	41.2	74.0	-32.8	PK/1MH
V	4950.000	44.3	33.0	3.5	39.6	16.5	24.7	54.0	-29.3	AVG/IMI
н	4950.000	44.1	33.0	3.5	39.6	0.0	40.9	74.0	-33.1	PK/1MH
H	4950.000	44.1	33.0	3.5	39.6	16.5	24.4	54.0	-29.6	AVG/IMI
v	7425.000	45.4	36.5	4.7	38.8	0.0	47.8	74.0	-26.2	PK/1MH
v	7425.000	45.4	36.5	4.7	38.8	16.5	31.3	54.0	-22.7	AVG/1MI
H	7425.000	44.9	36.5	4.7	38.8	0.0	47.2	74.0	-26.8	PK/1MH
Н	7425.000	44.9	36.5	4.7	38.8	16.5	30.7	54.0	-23.3	AVG/1MI
v	9900.000	41.4	38.0	5.4	37.0	0.0	47.8	74.0	-26.2	PK/1MH
v	9900.000	41.4	38.0	5.4	37.0	16.5	31.3	54.0	-22.7	AVG/IMI
н	9900.000	41.5	38.0	5.4	37.0	0.0	48.0	74.0	-26.0	PK/1MH
н	9900.000	41.5	38.0	5.4	37.0	16.5	31.5	54.0	-22.5	A VC/1MI
Z-Axis		•								
v	4950.000	45.1	33.0	3.5	39.6	0.0	42.1	74.0	-31.9	PK/1MH
v	4950.000	45.1	33.0	3.5	39.6	16.5	25.6	54.0	-28.4	AVG/IMI
Н	4950.000	44.9	33.0	3.5	39.6	0.0	41.7	74.0	-32.3	PK/1MH
Н	4950.000	44.9	33.0	3.5	39.6	16.5	25.2	54.0	-28.8	AVG/IME
v	7425.000	45.2	36.5	4.7	38.8	0.0	47.6	74.0	-26.4	PK/1MH
v	7425.000	45.2	36.5	4.7	38.8	16.5	31.1	54.0	-22.9	AVG/1MI
Н	7425.000	45.6	36.5	4.7	38.8	0.0	48.0	74.0	-26.0	PK/1MH
H	7425.000	45.6	36.5	4.7	38.8	16.5	31.5	54.0	-22.5	A VG/1MI
v	9900.000	41.0	38.0	5.4	37.0	0.0	47.5	74.0	-26.6	PK/1MH
v	9900.000	41.0	38.0	5.4	37.0	16.5	31.0	54.0	-23.1	AVG/IMI
H	9900.000	41.1	38.0	5.4	37.0	0.0	47.6	74.0	-26.4	PK/1MH
H	9900.000	41.1	38.0	5.4	37.0	16.5	31.1	54.0	-22.9	AVG/IME
	lations		D+B-F		3-H					

Note: PK indicates peak detection. AVG indicates the peak reading corrected by the duty cycle.

 Larry Miller
 Test Date:
 11/6/2014

 Test Personnel:
 Mary Sampson MTS
 04/07/2015

Supervising/Reviewing

Engineer:

(Where Applicable)

47CFR Part 15 Subpart C: 2015 Section 15.249, 15.209,

2015 Section 15.249, 15.209, and 15.205, RSS-210 Issue 8: 2010 Annex A2.9, and RSS-Gen Issue 4: 2014

Product Standard: Section 8.3

Input Voltage: 3 Vdc

Pretest Verification w/ Ambient Signals or

BB Source: BB

Ambient Temperature: Nov: 22 °C

Relative Humidity: Apr: 23.9 °C
Nov: 40 %

Atmospheric Pressure: Apr: 40.5 %
Nov: 983 mbars

Limit Applied: See section 7.3

Feb: 988.5 mbars

Deviations, Additions, or Exclusions: None

8 Duty Cycle

8.1 Method

Tests are performed in accordance with 47CFR Part 15 Subpart A: 2015 Section 15.35(c), RSS-Gen Issue 4:Nov 2014 Section 6.10, and ANSI C63.10:2013.

TEST SITE: EMC Lab

<u>The EMC Lab</u> has one Semi-anechoic Chamber and one Shielded Chamber. AC Mains Power is available at 120, 230, and 277 Single Phase; 208, 400, and 480 3-Phase. Large reference ground-planes are installed in the general lab area to facilitate EMC work not requiring a shielded environment.

8.2 Test Equipment Used:

ı	Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
ſ	T006217;	THDX	Oregon Scientific	BA888	NSN	12/11/2013	12/11/2014
ſ	200162;	EMI Receiver (20Hz-40GHz)	Rohde & Schwarz	ESU 40	100314	11/21/2013	11/21/2014

Software Utilized:

Name	Manufacturer	Version
None (Spectrum Analyzer Firmware)		

8.3 Results:

47CFR Part 15 Subpart A: 2015 Section 15.35(c)

Unless otherwise specified, e.g., §§15.255(b), and 15.256(l)(5), when the radiated emission limits are expressed in terms of the average value of the emission, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value. The exact method of calculating the average field strength shall be submitted with any application for certification or shall be retained in the measurement data file for equipment subject to notification or verification.

IC RSS-210 Section 6.10 Pulsed Operation

When the field strength (or envelope power) is not constant or it is in pulses, and an average detector is specified to be used, the value of field strength or power shall be determined by averaging over one complete pulse train, including blanking intervals within the pulse train, as long as the pulse train does not exceed 0.1 second. In cases where the pulse train exceeds 0.1 second, the average value of field strength or output power shall be determined during a 0.1 second interval during which the field strength or power is at its maximum value.

The exact method of calculating the average field strength shall be submitted with the application for certification or shall be retained in the measurement data file for equipment subject to notification or verification.

8.4 Setup Photographs:

Setup photographs can be found in Test Setup Photos exhibit.

8.5 Plots/Data:

Date: 13.NOV.2014 15:23:31

11 pulses at 480.769231 μ s = 5.288461541 ms

Date: 13.NOV.2014 15:24:12

10 pulses at 961.538462 μ s = 9.61538462 ms

Duty cycle correction factor

= 11 pulses at $480.769231 \mu s$ = 5.288461541 ms + 10 pulses at $961.538462 \mu s$ = 9.61538462 ms

= 5.288461541 ms + 9.61538462 ms/100 ms = 0.14903846161 ms

Duty correction factor = $20 \log (0.14903846161) = -16.5 \text{ dB}$

Test Personnel:	Mary Sampson MTS	Test Date:	11/13/2014
Supervising/Reviewing Engineer:			
(Where Applicable)			
	47CFR Part 15 Subpart	Limit Applied:	See section 8.3
	A:2015 Section 15.35(c), RSS-GEN Issue 4:Nov 2014.		
	Section 6.10, and ANSI		
Product Standard:	C63.10:2013		
Input Voltage:	Battery		
		Ambient Temperature:	21.5 °C
		Relative Humidity:	34 %
		Atmospheric Pressure:	983 mbars

Deviations, Additions, or Exclusions: None

9 20 dB Bandwidth

9.1 Method

Tests are performed in accordance with 47CFR Part 15 Subpart C Section 15.215(c), RSS-GEN Issue 4 Nov 2014 Section 6.6, and ANSI C63.10:2013.

TEST SITE: EMC Lab

<u>The EMC Lab</u> has two Semi-anechoic Chambers and one Shielded Chamber. AC Mains Power is available at 120, 230, and 277 Single Phase; 208, 400, and 480 3-Phase. Large reference ground-planes are installed in the general lab area to facilitate EMC work not requiring a shielded environment.

9.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
T006217;	THDX	Oregon Scientific	BA888	NSN	12/11/2013	12/11/2014
200162;	EMI Receiver (20Hz-40GHz)	Rohde & Schwarz	ESU 40	100314	11/21/2013	11/21/2014

Software Utilized:

Name	Manufacturer	Version
None (Spectrum Analyzer Firmware)		

9.3 Results:

47CFR Part 15 Subpart C Section 15.215(c)

(c) Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§15.217 through 15.257 and in subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. In the case of intentional radiators operating under the provisions of subpart E, the emission bandwidth may span across multiple contiguous frequency bands identified in that subpart. The requirement to contain the designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If a frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation.

RSS-GEN Issue 4 Nov 2014, Section 6.6

The emission bandwidth (x dB) is defined as the frequency range between two points, one above and one below the carrier frequency, at which the spectral density of the emission is attenuated x dB below the maximum in-band spectral density of the modulated signal. Spectral density (power per unit bandwidth) is to be measured with a detector of resolution bandwidth in the range of 1% to 5% of the anticipated emission bandwidth, and a video bandwidth at least 3x the resolution bandwidth.

When the occupied bandwidth limit is not stated in the applicable RSS or reference measurement method, the transmitted signal bandwidth shall be reported as the 99% emission bandwidth, as calculated or measured.

9.4 Setup Photographs:

Setup photographs can be found in Test Setup Photos exhibit.

9.5 Plots/Data:

Date: 13.Nov.2014 15:50:12

Date: 13.NOV.2014 15:40:38

Test Personnel:	Mary Sampson MTS	Test Date:	11/13/2014
Supervising/Reviewing Engineer:	Mary Gampson		
(Where Applicable)			
	47CFR Part 15 Subpart	Limit Applied:	See section 9.3
	A:2015 Section 15.215(c), RSS-GEN Issue 4:Nov 2014,		
Product Standard:	Section 6.6		
Input Voltage:	Battery		
		Ambient Temperature:	21.5 °C
		Relative Humidity:	34 %
		Atmospheric Pressure:	983 mbars

Deviations, Additions, or Exclusions: None

10 Bandedge 10.1 Method

Tests are performed in accordance with 47CFR Part 15 Subpart C Section 15.215(c), RSS-210 Issue 8 Dec 2010 Section A2.9(b), and ANSI C63.10:2013.

TEST SITE: EMC Lab

<u>The EMC Lab</u> has two Semi-anechoic Chambers and one Shielded Chamber. AC Mains Power is available at 120, 230, and 277 Single Phase; 208, 400, and 480 3-Phase. Large reference ground-planes are installed in the general lab area to facilitate EMC work not requiring a shielded environment.

10.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
	Barometer, Temperature, and Humidity sensor -					
211872;	Network based. Also marked as iServer MicroServer.	Omega	iBTHX-W	0240116	11/07/2014	11/07/2015
031690;	EMC Analyzer	Agilent	E7405A	US40240205	07/31/2014	07/31/2015
213061;	Antenna, Horn, <18 GHz	EMCO	3115	9208-3919	07/22/2014	07/22/2015
			G919-NKNK-			
MP1;	Cable MP1, 18 GHz, N, 394 inches	Megaphase	310	MP1	11/14/2014	11/14/2015
			G919-NKNK-			
MP3;	Cable MP3, 18 GHz, N, 10m	Megaphase	394	MP3	05/08/2014	05/08/2015
			EM18-N1N1-			
MP-HF-1;	Cable, 3-meters, 1-18GHz	Megaphase	119	12090601001	08/26/2014	08/26/2015

Software Utilized:

Name	Manufacturer	Version
None (/Spectrum Analyzer		
Firmware)		

10.3 Results:

47CFR Part 15 Subpart C Section 15.215(c)

(c) Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§15.217 through 15.257 and in subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. In the case of intentional radiators operating under the provisions of subpart E, the emission bandwidth may span across multiple contiguous frequency bands identified in that subpart. The requirement to contain the designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If a frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation.

RSS-210 Issue 8 Dec 2010 Section A2.9(b)

(b) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general field strength limits listed in RSS-Gen, whichever is less stringent.

10.4 Setup Photographs:

Setup photographs can be found in Test Setup Photos exhibit.

10.5 Plots/Data:

Client: DJO Receiver: R&S ESU40
Model Number: Compex Wireless Controller Antenna: EMCO 3115

Project Number: G102011503 Cables: MP1+MP3+MP-HF-2

Tested By: MTS Preamp:

Date: 02/27/2015 Limit: FCC15 Class B-3m

Frequency Range (MHz): Bandedge Test Distance (m): 3 Input power: Battery Modifications for compliance (y/n): 1

Notes:

Notes:										
A	В	С	D	Е	F	G	Н	I	J	K
Ant.			Antenna	Cable	Pre-amp	Duty Cycle		3m		
										Detector/
Pol.	Frequency	Reading	Factor	Loss	Factor	Factor	Net	Limit	Margin	Bandwidth
(V/H)	MHz	dB(uV)	dB(1/m)	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB	
Low channe	el									
Н	2390.000	35.4	27.9	4.1	0.0	0.0	67.4	74.0	-6.6	PK/1MHz
Н	2390.000	35.4	27.9	4.1	0.0	16.5	50.9	54.0	-3.1	AVG/1MHz
High chan	ıd									
Н	2483.500	35.2	28.3	4.2	0.0	0.0	67.7	74.0	-6.3	PK/1MHz
Н	2483.500	35.2	28.3	4.2	0.0	16.5	51.2	54.0	-2.8	AVG/1MHz

EUT was placed in the X. Y and Z orthoganal axes.

Note: PK indicates peak detection. AVG indicates the peak reading corrected by the duty cycle.

Test Personnel: Mary Sampson MTS Test Date: 02/27/2015

Supervising/Reviewing

Engineer:

(Where Applicable)

47CFR Part 15 Subpart C

Section 15.215(c), RSS-210

Issue 8 Dec 2010 Section

Product Standard: A2.9(b)

Input Voltage: Battery

Pretest Verification w/

Artifact: BB source

Limit Applied: See section 10.3

Ambient Temperature: 22.6 °C

Relative Humidity: 25.9 %

Atmospheric Pressure: 992.7 mbars

Deviations, Additions, or Exclusions: None

11 Digital Parts Emissions

11.1 Method

Tests are performed in accordance with 47CFR Part 15 Subpart C: 2015 Section 15.109, RSS-Gen Issue 4 Nov 2014 Section 7.1.2, and ANSI C63.4:2014.

TEST SITE: 10m Semi-Anechoic Chamber

<u>10 Meter Semi-Anechoic Chamber</u> The test site for radiated emissions is located at 1950 Evergreen Blvd, Suite 100, Duluth, Georgia 30096. It is a 10 meter semi-anechoic chamber manufactured by Panashield. Embedded in the floor is a 3 meter diameter turntable.

Measurement Uncertainty

For radiated emissions, $U_{\it lab}$ (3.9 dB at 3m and 3.6 dB at 10m below 1 GHz, and 4.2 dB at 3m above 1 GHz) < $U_{\it CISPR}$ (5.2 dB), which is the reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required, based on CISPR 22 and CISPR 11 (for 2006 and later revisions) Clause 11.

Sample Calculations

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CF - AG

Where FS = Field Strength in $dB\mu V/m$

RA = Receiver Amplitude (including preamplifier) in $dB\mu V$

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

RA = $52.0 \text{ dB}_{\mu}V$ AF = 7.4 dB/mCF = 1.6 dB

 $AG = 29.0 \, dB$

 $FS = 32 dB\mu V/m$

To convert from $dB\mu V$ to μV or mV the following was used:

UF =
$$10^{(NF/20)}$$
 where UF = Net Reading in μV NF = Net Reading in $dB\mu V$

Example:

FS = RA + AF + CF - AG =
$$52.0 + 7.4 + 1.6 - 29.0 = 32.0$$

UF = $10^{(32 \text{ dB}_{\mu}\text{V} / 20)} = 39.8 \text{ μV/m}$

11.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
211386;	Antenna, BiLog, 20-2000MHz	Chase	CBL6112B	2622	12/18/2014	12/18/2015
200082;	Preamplifier, 20MHz to 2GHz, 30 dB	A.H. Systems	PAM-0202	203	10/02/2014	10/02/2015
			TM18-N1N1-	14065201-		
E210;	RF Coax Cable	Megaphase	120	003	05/08/2014	05/08/2015
			TM18-N1N1-	14065201-		
E209;	RF Coax Cable	Megaphase	120	003	05/08/2014	05/08/2015
TT6;	RF Coax Cable. Rated 9KHz to 2 GHz.	Andrews	Cable TT-6	TT6	06/18/2014	06/18/2015
TW2						
211411;	Cable TW2	Andrews	Cable TW2	TW2	05/08/2014	05/08/2015
015762;	EMI Receiver, Preselector section	Hewlett Packard	85460A	3330A00158	04/09/2014	04/09/2015
211505;	EMI Receiver	Hewlett Packard	8546A	3650A00362	04/09/2014	04/09/2015
T006217	THDX	Oregon Scientific	BA888	NSN	12/11/2013	12/11/2014

Software Utilized:

Name	Manufacturer	Version
Tile	Quantum Change	3.4.K.22

11.3 Results:

47CFR Part 15 Subpart C: 2015 Section 15.109

(a) Except for Class A digital devices, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

Frequency of emission (MHz)	Field strength (microvolts/meter)
30–88	100
88–216	150
216–960	200
Above 960	500

RSS-Gen Issue 4 Nov 2014 Section 7.1.2

Field Strength
(μv/m at 3 metres)*
100
150
200
500

^{*} Measurements for compliance with limits in the above table may be performed at distances other than 3 metres, in accordance with Section 6.5.

11.4 Setup Photographs:

Setup photographs can be found in Test Setup Photos exhibit.

11.5 Plots/Data:

Client: DJO Global Receiver: HP 8546A

Model Number: Remote Controller REF 6522040 Antenna: Chase 2622

Tested By: LEM Preamp: ZKL-2 200069

Date: 11/6/14

Frequency Range (MHz): 30-1000 Test Distance (m):

Input power: Battery Limit: CISPR Class A-10m

IDLE Mode Modifications for compliance (y/n): n

Modifications for compliance (y/n): n									
A	В	C	D	Е	F	G	Н	I	J
Ant.			Antenna	Cable	Pre-amp		10m		Detectors /
Pol.	Frequency	Reading	Factor	Loss	Factor	Net	Limit	Margin	Bandwidths
(V/H)	MHz	dB(uV)	dB(1/m)	dB	dB	dB(uV/m)	dB(uV/m)	dB	Det/RBW/VBW
V	31.899	34.3	17.7	0.9	31.6	21.2	40.0	-18.8	120KHz
V	39.919	33.8	13.6	1.0	31.6	16.8	40.0	-23.2	120KHz
V	108.472	31.0	11.9	2.0	31.4	13.5	40.0	-26.5	120KHz
V	88.141	30.7	8.8	1.8	31.5	9.9	40.0	-30.1	120KHz
Н	32.418	34.4	16.5	0.9	31.6	20.2	40.0	-19.8	120KHz
Н	36.112	34.0	13.7	0.9	31.6	17.0	40.0	-23.0	120KHz
Calculations		G=C+D+E-F		I=G-H					

Test Date: 11/6/2014

Test Personnel: Larry Miller

Supervising/Reviewing

Engineer: (Where Applicable)

47CFR Part 15 Subpart C:

Battery

2015 Section 15.109, RSS-Gen Issue 4 Nov 2014

Product Standard: Section 7.1.2

Input Voltage: Pretest Verification w/

Ambient Signals or

Ambient Signals of

BB Source: BB Source

Limit Applied: See section 7.3

Ambient Temperature: 22°C Relative Humidity: 40 %

Atmospheric Pressure: 983 mbars

Deviations, Additions, or Exclusions: None

Non-Specific EMC Report Shell Rev. July 2013 **DJO LLC Wireless Professional**

12 RF Exposure

SAR test exclusion threshold formula according to FCC KDB 447898 D01 v05r02 is

 $P*\sqrt{f/d} < 3$

where

P is max. power of channel, including tune-up tolerance, mW f is operating frequency in GHz d is min. test separation distance, mm

The maximum measured radiated power is 0.03 mW (-15.13 dBm). The antenna gain, G is 1.0 dBi. Therefore, the conducted power (P) is 0.03 mW.

At 5mm distance the condition for SAR exclusion threshold is

 $0.03 \times \sqrt{02.403 \div 5} = 0.02$ which is less than 3.

Therefore, SAR testing is not required as the SAR Test Exclusion Threshold condition is satisfied.

Therefore, SAR testing is not required as the SAR Test Exclusion Threshold condition is satisfied.

SAR Exemption limit according to IC RSS-102 Issue 5, at 5 mm separation distance = 4 mW Routine evaluation is not required since the higher of the maximum conducted or equivalent isotropically radiated power (e.i.r.p.) source-based, time averaged output power is below the exemption limit.

Report Number: 102011503ATL-001 Issued: 05/06/2015

13 Revision History

Revision Level	Date	Report Number	Prepared By	Reviewed By	Notes
0	05/06/2015	102011503ATL-001	MTS MTS	KV	Original Issue
		·			
		·			