

BLG 335E – Analysis of Algorithms I Fall 2013, Recitation 5 11.12.2013

R.A. Atakan Aral
aralat@itu.edu.tr - Research Lab 1
R.A. Doğan Altan
daltan@itu.edu.tr - Research Lab 3

Asırlardır Çağdas

Question 1

- Insert the following sequence of numbers into a 2-3-4 tree
 - {53, 27, 75, 25, 70, 41, 38, 16, 59, 36, 73, 65, 60, 46, 55, 33, 68, 79, 48}

Solution 1

- **2-3-4 tree:** Perfect balance by allowing 1, 2, or 3 keys per node:
 - 2-node: one key, two children.
 - 3-node: two keys, three children.
 - 4-node: three keys, four children.
- Every path from root to leaf has the same length.

• {**53**, 27, 75, 25, 70, 41, 38, 16, 59, 36, 73, 65, 60, 46, 55, 33, 68, 79, 48}

53

• {53, **27**, 75, 25, 70, 41, 38, 16, 59, 36, 73, 65, 60, 46, 55, 33, 68, 79, 48}

27 53

• $\{53, 27, 75, 25, 70, 41, 38, 16, 59, 36, 73, 65, 60, 46, 55, 33, 68, 79, 48\} \rightarrow \text{causes a split}$

• $\{53, 27, 75, 25, 70, 41, 38, 16, 59, 36, 73, 65, 60, 46, 55, 33, 68, 79, 48\} \rightarrow \text{causes a split}$

• $\{53, 27, 75, 25, 70, 41, 38, 16, 59, 36, 73, 65, 60, 46, 55, 33, 68, 79, 48\} \rightarrow \text{causes a split}$

• $\{53, 27, 75, 25, 70, 41, 38, 16, 59, 36, 73, 65, 60, 46, 55, 33, 68, 79, 48\} \rightarrow \text{causes a split}$

• {53, 27, 75, 25, 70, 41, 38, 16, 59, 36, 73, 65, 60, **46**, 55, 33, 68, 79, 48} → causes a split that propagates up to the root

• {53, 27, 75, 25, 70, 41, 38, 16, 59, 36, 73, 65, 60, **46**, 55, 33, 68, 79, 48} → causes a split that propagates up to the root

• $\{53, 27, 75, 25, 70, 41, 38, 16, 59, 36, 73, 65, 60, 46, 55, 33, 68, 79, 48\} \rightarrow \text{causes a split}$

• $\{53, 27, 75, 25, 70, 41, 38, 16, 59, 36, 73, 65, 60, 46, 55, 33, 68, 79, 48\} \rightarrow \text{causes a split}$

Question 2

- 2-3-4 trees are balanced and can be searched in O(logn), but they have different node structures.
- To get 2-3-4 tree advantages in a binary tree format, we can represent it as a red-black tree.
- Convert the following 2-3-4 tree to a red-black tree

Solution 2

- Properties of a red-black tree:
 - the root is always black
 - black condition: every path from the root to a leaf node has the same number of black nodes
 - red condition: every red node has a black parent

• 2-nodes: can be represented with a black node

• 4-nodes: center value becomes the parent (black) and the others become children (red)

Note:

- 1. Red-black trees are not unique
- 2. However, the corresponding 2-3-4 tree is unique

- Top-down conversion algorithm (start at the root):
 - 1. Apply red-black tree representation to each node
 - 2. Repeat for next level...

Question 3

- Insert the following sequence of numbers into a red-black tree
 - $-\{2, 1, 4, 5, 9, 3, 6, 7\}$

Solution 3

□ {**2**, 1, 4, 5, 9, 3, 6, 7}

2

□ {2, **1**, 4, 5, 9, 3, 6, 7}

□ {2, 1, **4**, 5, 9, 3, 6, 7}

 \square {2, 1, 4, 5, 9, 3, 6, 7} \rightarrow recoloring

 \square {2, 1, 4, 5, 9, 3, 6, 7} \rightarrow recoloring and rotation

 \square {2, 1, 4, 5, 9, 3, 6, 7} \rightarrow recoloring

□ {2, 1, 4, 5, 9, 3, **6**, 7}

 \square {2, 1, 4, 5, 9, 3, 6, **7**} \rightarrow recoloring

Asırlardır Çağdaş

 \square {2, 1, 4, 5, 9, 3, 6, **7**} \rightarrow 2 rotations

Question 4

• Delete 90, 80 and 70 from the following red-black tree in the given order

