

Description

These N-Channel enhancement mode power field effect transistors are using split gate trench DMOS technology. This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and with stand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency fast switching applications.

Features

- 40V,120A, $R_{DS(on),max} = 2.5 \text{m}\Omega @V_{GS} = 10V$
- Improved dv/dt capability
- Fast switching
- ♦ 100% EAS Guaranteed
- Green device available

Applications

- Motor Drives
- UPS
- DC-DC Converter

Product Summary

 V_{DSS} 40V $R_{DS(on),max}$ V_{GS} = 10V 2.5m Ω 120A

Pin Configuration

G S

Schematic

Absolute Maximum Ratings T_C = 25°C unless otherwise noted

Parameter	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	40	V
Continuous drain current (T _C = 25°C) ¹⁾		120	A
Continuous drain current (T _C = 100°C)	ID ID	81	A
Pulsed drain current ²⁾	I _{DM}	360	A
Gate-Source voltage	V _{GSS}	±18	V
Avalanche energy ³⁾	E _{AS}	306	mJ
Power Dissipation (T _C = 25°C)	P _D	57.6	W
Storage Temperature Range	T _{STG}	-55 to +150	°C
Operating Junction Temperature Range	T _J	-55 to +150	°C

Thermal Characteristics

Parameter	Symbol	Value	Unit
Thermal Resistance, Junction-to-Case	Rejc	2.17	°C/W

Package Marking and Ordering Information

Device	Device Package	Marking
VST04N025-T1	TO-251	VST04N025-T1
VST04N025-T2	TO-252	VST04N025-T2
VST04N025-TC	TO-220C	VST04N025-TC

Electrical Characteristics T_J = 25°C unless otherwise noted

Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Static characteristics						
Drain-source breakdown voltage	BV _{DSS}	V _{GS} =0 V, I _D =250uA	40			V
Gate threshold voltage	V _{GS(th)}	V _{DS} =V _{GS} , I _D =250uA	1.0	1.5	2.2	V
Drain-source leakage current	I _{DSS}	V _{DS} =40 V, V _{GS} =0V, T _J = 25°C			1	μA
Gate leakage current, Forward	I _{GSSF}	V _{GS} =18 V, V _{DS} =0 V			100	nA
Gate leakage current, Reverse	I _{GSSR}	V _{GS} =-18 V, V _{DS} =0 V			-100	nA
Drain-source on-state resistance		V _{GS} =10 V, I _D =50 A		2.2	2.5	mΩ
	R _{DS(on)}	V _{GS} =4.5 V, I _D =20 A		2.9	5	mΩ
Forward transconductance	g _{fs}	V _{DS} =10V , I _D =20A		125		S
Dynamic characteristics						
Input capacitance	C _{iss}	V 45.V.V 0.V		3550		
Output capacitance	Coss	$V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V},$		1790		pF
Reverse transfer capacitance	C _{rss}	- F = 1MHz		178		
Turn-on delay time	t _{d(on)}			11		ns
Rise time	t _r	$V_{DD} = 15V, V_{GS} = 10V, I_D = 20A$		10		
Turn-off delay time	t _{d(off)}	$R_G=15\Omega$		160		
Fall time	t _f			41		
Gate charge characteristics						
Gate to source charge	Q _{gs}	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		7.7		
Gate to drain charge	Q_{gd}	V_{DS} =15V, I_D =15A, V_{GS} = 10 V		7.9		nC
Gate charge total	Qg			50		
Drain-Source diode characterist	ics and Maxi	mum Ratings				
Continuous Source Current	Is				120	А
Pulsed Source Current ⁴⁾	I _{SM}				360	Α
Diode Forward Voltage	V _{SD}	V _{GS} =0V, I _S =50A, T _J =25℃		0.85	1.2	V
Reverse Recovery Time	t _{rr}				96	ns
Reverse Recovery Charge	Q _{rr}	$I_S=I_F$, di/dt=100A/us, $T_J=25^{\circ}C^{-5}$			76.8	nC

Notes:

- 1: The maximum junction current rating is package limited.
- 2: Repetitive Rating: Pulse width limited by maximum junction temperature.
- 3: V_{DD}=30V, V_{GS}=10V, L=0.5mH, I_{AS}=35A, R_G=25 Ω , Starting T_J=25 $^{\circ}$ C.
- 4: Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.
- 5: Guaranteed by design, not subject to production.

Electrical Characteristics Diagrams

Fig 1: Output Characteristics

Figure 3. Capacitance Characteristics

Figure 5. Body-Diode Characteristics

Fig 2: Transfer Characteristics

Figure 4. Gate Charge Waveform

Figure 6. Rdson-Drain Current

Fig 7: Rds(on) vs Gate Voltage

Fig 8: Rdson-Junction Temperature(°C)

Figure 9. BVdss vs. Junction temperature

Figure 10. Maximum Safe Operating Area

Figure 11. Normalized Maximum Transient Thermal Impedance (RthJC)

Square Wave Pluse Duration(sec)

Test Circuit & Waveform

Figure 12. Gate Charge Test Circuit & Waveform

Figure 13. Resistive Switching Test Circuit & Waveforms

Figure 14. Unclamped Inductive Switching (UIS) Test Circuit & Waveform

Figure 15. Diode Recovery Circuit & Waveform

