Slides: https://www.irif.fr/~kesner/enseignement/mpri/ll/Proof-Nets.pdf

Why Linear Logic?

- Purpose: control duplication and erasure
- Insights: proof-nets, cbn vs cbv as logic, implicit complexity & cost models
- Revisit: evaluation & typing, new calculus

MLL (two-sided) sequent

$$\frac{}{A \vdash A} \operatorname{Ax} \qquad \frac{\Gamma \vdash A, \Delta \quad A, \Gamma' \vdash \Delta'}{\Gamma, \Gamma' \vdash \Delta, \Delta'} \operatorname{Cut}$$

MLL (unilateral) sequent

If we want to move lhs of \vdash to rhs, we negate formulas on lhs and move them to rhs. In this process, there would be no need to have separate left and right rules.

$$\overline{\vdash A^{\perp}, A}^{\text{Ax}}$$
 TODO Cut

Proof-Nets

Problem: From the same premise, there might be **multiple proofs (derivations)** to the same conclusion. Any possible derivation captures a particular constructor **history**.

Solution: **MLL Proof-Net (PN)** with conclusions \overline{A} , a graph defined by induction as:

TODO

How to read these graphs:

- 1. White squares are whatever that expose the interface shown below it.
- 2. Disjoint white squares are independent (parallel) proof-nets.

Terminology

Interface: leaf formulas.

- 1. If you just keep to the interface, you get the current proof status.
- 2. Interfaces can be connected and they are no longer interfaces while a new node would become an interface.
- 3. All proofs of the same formula can be represented as a single proof-net. The very reason is that PNs can *parallelize* different parts of the proof.

TODO so only for reasoning systems that have *subformula property?*)

Pre Proof-Nets

Pre proof-nets are a weaker version of proof-nets that ignores all independence requirements.

```
E.g.

ax
_|_
A A1
---
|
cut
```

is a pre proof-net but it's not a proof-net because two inputs of the cut rule are not independent.

Correctness Criteria

But what makes a pre proof-net a proof-net?

Acyclic Connected Criteria

 P^- is a Pre PN, but mark angles with dependent precedences with a red arc.

Contractibility

- 1. Merge two edges with a red arc if the precedence is a single common node.
- 2. Merge an edge with its two connected nodes into one node if the edge is the only edge connected to these two nodes.

Theorem: A pre proof-net is a proof-net iff its P^- is contractible (reduces to a single node).

Intuition: if it can collapse a single node then it's a single sequent. The only thing that stops it from collapsing is the red arc, i.e. par.

MELL

MLL + weakening and contraction.

If one want to weaken/contract a variable, one must mark it explicitly with a !. To allow a variable to be weakened, one can introduce a !.

NOTE **Duality** a! in the left is a? in the right.

Promotion rules are interesting, while when applying promotion, one allows a formula to

Introduce weakening and dereliction constructs.

Note that a graph with bare weakening is a pre PN but it's not a PN because you need something to weaken first.

NOTE There's a typo on a MLTT reduction example where two derivations don't have the same conclusion, but the PN is correct.