Data assimilation in an elastic friction model

Tom Gustafsson

20. September 2012

Question

 Is it possible to estimate weakly known parameters from a simple elastic friction model by using the tools of data assimilation?

Model, 2D

- Initial setting: Block, slab
- Boundary conditions

Abaqus/Standard 6.12-1, simulations on CSC

Steps of the simulation

• Step 1: 5 kN force acting downwards

• Step 2: Displacement of block's upper boundary by 70 cm to the right

Steps of the simulation: displacement of the block

Done by using boundary conditions. Thus, a "slow displacement"

Steps of the simulation: displacement of the block, 2

Inversion problem

- ullet Attempting to estimate friction coefficient μ
- As a priori data: x directional stress in chosen measurement points
 (~ strain gauge)

Data assimilation

- Gives an answer to the problem: How to merge measurement and model data in an optimal way?
- Traditional applications: Weather prediction, oceanography
- Multiple different methods: 3D- and 4DVar, the family of Kalman filters, ...
- In this work Ensemble Kalman Filter

Ensemble Kalman Filter

- ullet System is characterized by a bunch of state vectors $oldsymbol{\psi} \in \mathbb{R}^n$
- They estimate the same true state and their deviation characterizes the uncertainty
- This group of states is known as ensemble
- Each member of the ensemble is integrated forwards in time to the next measurement point
- After the time integration each state is merged with the measurement using

$$oldsymbol{\psi}^{oldsymbol{a}} = oldsymbol{\psi}^{oldsymbol{f}} + oldsymbol{\Sigma}_{\psi} \mathsf{M}^{\mathrm{T}} \left(oldsymbol{\Sigma}_{d} + \mathsf{M} oldsymbol{\Sigma}_{\psi} \mathsf{M}^{\mathrm{T}}
ight)^{-1} \left(oldsymbol{d} - \mathsf{M} oldsymbol{\psi}^{oldsymbol{f}}
ight)$$

Ensemble Kalman Filter, estimating parameters

- Using the same procedure as previously but extend each state vector with the unknown parameters
- Formulation of the method guarantees that the unknown parameters are found
- Note! There must be some kind of correlation between the state and the unknown parameters

Back to the problem

Model

- ullet Estimated parameter μ
- Define the state as

$$\boldsymbol{\psi} = (\sigma_x^1, \sigma_x^2, \sigma_x^3, \dots, \sigma_x^N, \mu)^{\mathrm{T}}$$

- ullet No contact in the beginning \Rightarrow all the stress components are zero
- ullet Therefore, initial state is specified by μ_0

Back to the problem 2

- What we need is
 - First-guess $\mu_0 = 0.6$
 - Deviation for first-guess $\sigma_0 = 0.1$
 - Ensemble size n = 200
 - Initial ensemble taken from distribution $\mathcal{N}(\mu_0, \sigma_0^2)$
- A single state of the initial ensemble

$$\psi_j = (\underbrace{0,0,\ldots,0,0}_{N \text{ kpl}},\mu_0 + \epsilon)^{\mathrm{T}}, \ j = 1,\ldots,n$$

- Measurement data when block's displacement is $\Delta x = 7, 14, 21, \dots, 70$ (cm)
- Measurement data is synthetic

Some results, n = 200

Influence of ensemble size, mean

Red: $\Delta x = 70$, blue: $\Delta x = 42$, green: $\Delta x = 14$

Standard deviation of the analysed ensemble

Variance between consecutive analyses

Any questions?