

MERIDIAN JUNIOR COLLEGE 2017 FASTEST FINGERS GC COMPETITION PRELIMINARY ROUND

WRITE YOUR ANSWER IN THE BOX PROVIDED.

LEAVE ALL NON-EXACT ANSWERS TO 3 SIGNIFICANT FIGURES, UNLESS OTHERWISE STATED.

1. Evaluate the following

$$\ln 1 - \ln 2 + \ln 3 - \ln 4 + ... + \ln 19 - \ln 20$$

- 2. Find the sum of the first 30 terms of an Arithmetic Progression with first term 100 and common difference -1.5.
- 3. Evaluate $\sum_{r=0}^{10} \left(\left(-1 \right)^{r+1} 2^r + \frac{2+r}{r!} \right)$.
- 4. Find the real root of the equation $(\pi x)^3 + (\frac{x}{e})^2 + x \ln \sqrt{13} = \tan 2$.
- 5. Find the largest value of k such that $\frac{2x+6}{3x-x^2} > (x-2)^3$ for all x < k where $k \in \mathbb{R}^-$.
- 6. The curve *C* is defined by

$$x = \cos^{-1} t + \sin t, \ y = \left(\frac{1}{t} + e^{t}\right)^{\frac{1}{3}}$$

Find the gradient of C at $t = \frac{\sqrt{2}}{3}$.

7. A plane contains a point A(3,2,2) and a line $l: \mathbf{r} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 7 \\ 2 \\ 4 \end{pmatrix}, \lambda \in \mathbb{R}$.

Find the value of a if the plane is parallel to $\begin{pmatrix} 4 \\ a \\ -2 \end{pmatrix}$.

8. A curve has parametric equations $x = 3\sin\theta - 2$, $y = \cos\theta$, $-\pi < \theta \le \pi$. Find the area bounded by the curve. Give your answer to 3 significant figures.

- **9.** Evaluate, to 4 decimal places, $\int_{\sqrt{2}-1}^{1} \frac{1}{(x+1)\sqrt{(x^2+2x+1)}} dx$
- 10. Given that $z_1 = -\frac{1}{\sqrt{2}} + \frac{3}{4}i$ and $z_2 = \frac{1}{2} \frac{4}{\sqrt{3}}i$, find the argument of the complex number $\left(\frac{\left(z_1\right)^2}{\left(z_2^*\right)^3}\right)^4.$
- 11. Evaluate ${}^{5}C_{0} + {}^{5}C_{1} + {}^{5}C_{2} + {}^{5}C_{3} + {}^{5}C_{4} + {}^{5}C_{5} + \frac{{}^{10}P_{5}}{{}^{10}C_{5}} + \frac{{}^{12}P_{5}}{{}^{12}C_{5}} + \frac{{}^{15}P_{3}}{{}^{15}C_{3}}$
- 12. The random variable *X* has the distribution $B\left(64, \frac{5}{8}\right)$. Find $P\left(X = 34 \text{ or } 35 \mid X \le E(X)\right)$.
- 13. The random variable X has the distribution N(12,0.3). The random variable Y has the distribution N(60,2.5). Find the probability that the sum of 5 independent observations of X differs from a random observation of Y by at least 4.
- 14. A large number of students in a college have taken an examination. The time, *x* hours, taken by a student to prepare for the examination is noted for a sample of 200 students. The following results are obtained:

$$\sum x = 9670$$
 and $\sum x^2 = 488400$.

Determine the p-value for the test that the population mean time for a student to prepare for the examination is less than 50 hours.

- 15. A random sample of n pairs of values (s, t) is collected. The equation of the line of regression t on s is found to be 2t + 9s = 41, and the equation of the line of regression s on t is 5s + 12t = 99. Given $\sum t = 140$, find the value of $\sum s$.
- 16. The following observations of x and y have been reported.

x	170	161	120	102	95	84	53	42	13
у	2	30	35	65	73	80	82	120	210

Find the product moment correlation coefficient of x + 20 and $\frac{y}{100}$.

ANSWERS

- 1. -1.74 (3s.f.)
- 2. 2347.5
- 3. -675 (3s.f.)
- 4. -0.381 (3s.f.)
- 5. -0.173 (3s.f.)
- 6. 1.65 (3s.f.)
- 7. 2
- 8. 9.42 (3s.f.)
- 9. 0.2071 (4d.p.)
- 10. 2.32 (3s.f.)
- 11.278
- 12. 0.137 (3s.f.)
- 13. 0.0455 (3s.f.)
- 14. 0.0113 (3s.f.)
- 15.60
- 16. -0.916 (3s.f.)