Real Time Communications

- · In most data communications, important that data arrives reliably
 - Would like it to be fast, but prefer reliable
 - E.g. web, email, p2p, etc.
 - Often characterised as *elastic* applications
- In real time communications it is important that the message arrives in a timely manner
 - Timeliness may be more important than reliability
 - Messages may have priority
 - Examples:
 - · A "drive by wire" system in a car
 - · Packet voice and telephony applications

Modelling Real Time Traffic

- Assume a packet-based network
 - Real-time traffic on circuit switched network trivial after connection setup
- Traffic falls into two categories:
 - Synchronous periodic flows
 - Produced and consumed in a continuous basis, according to some schedule
 - · Generally require some performance guarantee
 - · Can be generated by periodic tasks
 - Fixed rate ("isochronous") flows (e.g. sensor data, speech)
 - Characterise by inter-packet spacing, message length, reception deadline
 - Can be generated by sporadic tasks
 - Variable rate flows (e.g. MPEG-2 video, control traffic)
 - Characterise by average throughput + maximum burst size
 - Aperiodic (asynchronous) messages
 - No deadline, best effort delivery, but want to keep delays small
 - · Characterise by average delivery time

Modelling Sources of Timing Variation

- Ideally the network delivers messages to receiver with no delay, preserving timing
- In reality there is:
 - Queuing delay at sender
 - Network not always ready to accept a packet when it becomes available; data may be queued if produced faster than the network can deliver it
 - Queuing delay at receiver
 - · Application not always ready to accept packets arriving from network
 - Network may deliver data in bursts
 - Queuing delay in the network
 - · Due to cross-traffic or bottleneck links
 - Network transit time
 - · Fixed propagation delay

Model of Packet Switched Networks

Performance Metrics and Constraints

- · From these models, derive performance metrics:
 - Throughput and delay
 - Jitter and buffer requirements
 - Miss rates, when jitter causes a deadline to be missed
 - Packet loss and invalid rates
- Characterise traffic and network according to metrics to schedule communications
 - Need to meet application timing constraints

Throughput, Delay and Jitter

- Throughput, delay and jitter vary according to router scheduling algorithms
 - Possible to derive bounds for delay/jitter in some cases
 - Lecture 16

Example: Ethernet

- Recall that Ethernet uses CSMA/CD with exponential back off
 - Try to transmit, listening for collision
 - If a collision occurs, stop sending, wait before retry
 - Random binary exponential back-off
 - After i collisions back-off by up to 2i slots, randomly chosen
- Potentially unbounded delay on busy network
 - Cannot schedule transmissions to avoid collision
- No prioritisation of messages
- Implications:
 - Cannot easily reason about timing properties
 - Difficult to schedule messages to ensure timely delivery

Summary

- What is real time communication
- · Factors that affect real time communication
 - Throughput, delay and jitter
 - Clock skew
 - Congestion and loss
- · Examples of networks and their timing properties
 - Some networks provide timing guarantees, others do not