The network structure of Single layer perceptron to solve the AND, OR, and XOR Boolean operations are as follows:



The Boolean operation for AND, OR and XOR gates are as follows:

| AND operation |    |   | OR operation |    |   | XOR operation |    |   |
|---------------|----|---|--------------|----|---|---------------|----|---|
| X1            | X2 | 0 | X1           | X2 | О | X1            | X2 | 0 |
| 0             | 0  | 0 | 0            | 0  | 0 | 0             | 0  | 0 |
| 0             | 1  | 0 | 0            | 1  | 1 | 0             | 1  | 1 |
| 1             | 0  | 0 | 1            | 0  | 1 | 1             | 0  | 1 |
| 1             | 1  | 1 | 1            | 1  | 1 | 1             | 1  | 0 |

I have used the **bipolar sigmoid activation function** f(.), with learning parameter  $\eta$ =0.05 and random initialization of the weight vectors W. It has been observed that using *Single Layer perceptron* only AND and OR operations are possible not the XOR operation. The outputs of the three Boolean operations using single layer perceptron are as follows:

|      | AND operation |    |        | OR operation |    |        | XOR operation |    |       |
|------|---------------|----|--------|--------------|----|--------|---------------|----|-------|
| bias | X1            | X2 | 0      | X1           | X2 | 0      | X1            | X2 | 0     |
| -1   | 0             | 0  | 0.0000 | 0            | 0  | 0.0172 | 0             | 0  | 0.500 |
| -1   | 0             | 1  | 0.0169 | 0            | 1  | 0.9423 | 0             | 1  | 0.500 |
| -1   | 1             | 0  | 0.0169 | 1            | 0  | 0.9423 | 1             | 0  | 0.500 |
| -1   | 1             | 1  | 0.8891 | 1            | 1  | 0.9999 | 1             | 1  | 0.500 |

Reduction of output error corresponding to increasing the number of iterations shown as follows:

|       | AND     | OR       | XOR     |  |
|-------|---------|----------|---------|--|
| Epoch | error   | error    | error   |  |
| 1000  | 0.03595 | 0.025573 | 0.25000 |  |
| 2000  | 0.01821 | 0.011210 | 0.25000 |  |
| 3000  | 0.01186 | 0.006884 | 0.25000 |  |
| 4000  | 0.0087  | 0.004902 | 0.25000 |  |
| 5000  | 0.00682 | 0.003784 | 0.25000 |  |
| 6000  | 0.0056  | 0.003072 | 0.25000 |  |
| 7000  | 0.00473 | 0.002581 | 0.25000 |  |
| 8000  | 0.0041  | 0.002223 | 0.25000 |  |
| 9000  | 0.00361 | 0.001951 | 0.25000 |  |
| 10000 | 0.00322 | 0.001737 | 0.25000 |  |

| Updated weights after 1000 iterations |         |        |                                  |  |  |  |  |
|---------------------------------------|---------|--------|----------------------------------|--|--|--|--|
| Weight                                | AND     | OR     | XOR                              |  |  |  |  |
|                                       |         |        | 1.0e-007*                        |  |  |  |  |
| W1                                    | 6.1474  | 6.8417 | 0.3418                           |  |  |  |  |
| W2                                    | 6.1474  | 6.8417 | 0.3418                           |  |  |  |  |
| Wbias                                 | 10.2137 | 4.0483 | 0.3615                           |  |  |  |  |
|                                       |         |        | (Each value<br>is very<br>small) |  |  |  |  |