Practice: Extend the number evaluation scheme to support grammar which has real numbers (rule number → sign list . list replaces number → sign list)

number → sign list

list.position ← 0
if sign.negative
 then number.value ← - list.value
 else number.value ← list.value

 $sign \rightarrow + sign \rightarrow -$

sign.negative ← false sign.negative ← true

list \rightarrow bit

bit.position ← list.position list.value ← bit.value

 $list_0 \rightarrow list_1$ bit

list₁.position ← list₀.position + 1 bit.position ← list₀.position list₀.value ← list₁.value + bit.value

bit $\rightarrow 0$ bit $\rightarrow 1$

bit.value ← 0 bit.value ← $2^{bit.position}$

Compiler Design

Attribute Evaluation

Amey Karkare
Department of Computer Science and Engineering
IIT Kanpur

karkare@iitk.ac.in

Bottom-up evaluation of S-attributed definitions

- Can be evaluated while parsing
- Whenever reduction is made, value of new synthesized attribute is computed from the attributes on the stack
- Extend stack to hold the values also
- The current top of stack is indicated by top pointer

to	state	valu
	stac	е
p	k	stack

Bottom-up evaluation of S-attributed definitions

Suppose semantic rule

$$A.a = f(X.x, Y.y, Z.z)$$

is associated with production

$$A \rightarrow XYZ$$

- Before reducing XYZ to A, value of Z is in val(top), value of Y is in val(top-1) and value of X is in val(top-2)
- If symbol has no attribute then the entry is undefined
- After the reduction, top is decremented by 2 and state covering A is put in val(top)

Example: desk calculator

```
L \rightarrow E \ + T
E \rightarrow T
T \rightarrow T \ + F
T \rightarrow F
F \rightarrow (E)
F \rightarrow digit
```

```
Print (E.val)
E.val = E.val + T.val
E.val = T.val
T.val = T.val * F.val
T.val = F.val
F.val = E.val
F.val = digit.lexval
```

Example: desk calculator

```
L \rightarrow E $
E \rightarrow E + T
E \rightarrow T
T \rightarrow T * F
T \rightarrow F
F \rightarrow (E)
F \rightarrow digit
```

Before reduction ntop = top - r + 1After code reduction top = ntopr is the #symbols on RHS

Example: desk calculator

```
L \rightarrow E$ print(val(top))

E \rightarrow E + T val(ntop) = val(top-2) + val(top)

E \rightarrow T

T \rightarrow T * F val(ntop) = val(top-2) * val(top)

T \rightarrow F

F \rightarrow (E) val(ntop) = val(top-1)

F \rightarrow digit
```

Before reduction ntop = top - r + 1After code reduction top = ntopr is the #symbols on RHS

INPUT	STATE	Val	PROD
3*5+4\$			
5+4\$ []	digit	3	
*5+4\$	F	3	$F \rightarrow digit$
*5+4\$	T	3	$T \rightarrow F$
5+4\$	T*	3 □	
+4\$	T*digit	3 □ 5	
+4\$	T*F	3 □ 5	$F \rightarrow digit$
+4\$	T	15	$T \rightarrow T * F$
+4\$	Е	15	E o T
4\$	E+	15 □	
\$	E+digit	15 □ 4	
\$	E+F	15 □ 4	$F \rightarrow digit$
4\$ \$ \$ \$	E+T	15 □ 4	$T \rightarrow F$
\$	E	19	$E \rightarrow E + T$

YACC Terminology

E → E + T val(ntop) = val(top-2) + val(top)

In YACC

E → E + T
$$$$$
\$ = \$1 + \$3

\$\$\$ maps to val[top - r + 1]

\$\$k maps to val[top - r + k]

r=#symbols on RHS (here 3)

\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$ = \$1 is the default action in YACC

L-attributed definitions

- When translation takes place during parsing, order of evaluation is linked to the order in which nodes are created
- In S-attributed definitions parent's attribute evaluated after child's.
- A natural order in both top-down and bottom-up parsing is depth first-order
- L-attributed definition: where attributes can be evaluated in depth-first order

L attributed definitions ...

- A syntax directed definition is Lattributed if each inherited attribute of X_j ($1 \le j \le n$) at the right hand side of $A \rightarrow X_1 X_2 ... X_n$ depends only on
 - -Attributes of symbols X₁ X₂...X_{i-1} and
 - -Inherited attribute of A
- Examples (i inherited, s synthesized)

$$A \rightarrow LM$$
 $L.i = f_1(A.i)$ $M.i = f_2(L.s)$ $A.s = f_3(M.s)$

$$A \rightarrow QR$$
 $R.i = f4(A.i)$ $Q.i = f5(R.s)$ $A.s = f6(Q.s)$

Translation schemes

- A CFG where semantic actions occur within the rhs of production
- Example: A translation scheme to map infix to postfix

```
E \rightarrow TR
R \rightarrow addop TR \mid \epsilon
T \rightarrow num
addop \rightarrow + \mid -
```

Exercises: 1) Create Parse Tree for 9-5+22) Add actions to convert infix to postfix

Parse tree for 9-5+2

Translation schemes

- A CFG where semantic actions occur within the rhs of production
- Example: A translation scheme to map infix to postfix

```
E\rightarrow T R
R\rightarrow addop T {print(addop)} R | \epsilon
T\rightarrow num {print(num)}
addop \rightarrow + | -
```

Parse tree for 9-5+2

Evaluation of Translation Schemes

- Assume actions are terminal symbols
- Perform depth first order traversal to obtain 9 5 – 2 +
- When designing translation scheme, ensure attribute value is available when referred to
- In case of synthesized attribute it is trivial (why?)

 An inherited attribute for a symbol on RHS of a production must be computed in an action before that symbol

S \rightarrow A₁ A₂ {A₁.in = 1,A₂.in = 2} A \rightarrow a {print(A₁.in)}

A₁

A₂

A₁.in=1

A₂

A₂.in=2

depth first order traversal gives error (undef)

 A synthesized attribute for the non terminal on the LHS is computed after all attributes it references, have been computed. The action normally should be placed at the end of RHS.

Example: Translation scheme for EQN (LaTeX like equations)

$$S \rightarrow B$$

$$B \rightarrow B_1 B_2$$

$$B \rightarrow B_1 \text{ sub } B_2$$

$$B \rightarrow text$$

Example: Translation scheme for EQN (LaTeX like equations)

$$S \rightarrow B$$

$$B \rightarrow B_1 B_2$$

$$B_1.pts = B.pts$$

 $B_2.pts = B.pts$
 $B.ht = max(B_1.ht,B_2.ht)$

$$B \rightarrow B_1 \text{ sub } B_2$$

$$B \rightarrow text$$

After putting actions in the right place

$$S \rightarrow \{B.pts = 10\} \quad B$$

$$\{S.ht = B.ht\}$$

$$B \rightarrow \{B_1.pts = B.pts\} \quad B_1$$

$$\{B_2.pts = B.pts\} \quad B_2$$

$$\{B.ht = max(B_1.ht,B_2.ht)\}$$

$$B \rightarrow \{B_1.pts = B.pts\} \quad B_1 \quad sub$$

$$\{B_2.pts = shrink(B.pts)\} \quad B_2$$

$$\{B.ht = disp(B_1.ht,B_2.ht)\}$$

$$B \rightarrow text \{B.ht = text.h * B.pts\}$$

Bottom up evaluation of inherited attributes

- Remove embedded actions from translation scheme
- Make transformation so that embedded actions occur only at the ends of their productions
- Replace each action by a distinct marker non terminal M and attach action at end of M → ε

```
E \rightarrow TR
R \rightarrow + T \{print (+)\} R
R \rightarrow -T \{ print (-) \} R
R \rightarrow \epsilon
T \rightarrow \text{num } \{\text{print}(\text{num.val})\}
transforms to
E \rightarrow TR
R \rightarrow + T M R
R \rightarrow - T N R
R \rightarrow \epsilon
                           {print(num.val)}
T \rightarrow num
                           {print(+)}
M \rightarrow \epsilon
N \rightarrow \epsilon
                            {print(-)}
```

Inheriting attribute on parser stacks

- bottom up parser reduces rhs of A → XY by removing XY from stack and putting A on the stack
- Suppose synthesized attributes of X is inherited by Y by using the copy rule Y.i=X.s
- X.s is already on the parser stack before any reductions take place in the sub-tree below Y
 - X.s can be used easily

Recall: SDD for Inherited Attributes

$$D \rightarrow T L$$

$$L.in = T.type$$

$$T \rightarrow real$$

$$T.type = real$$

$$T \rightarrow int$$

$$T.type = int$$

$$L \rightarrow L_1$$
, id

$$L \rightarrow id$$

addtype (id.entry,L.in)

Exercise: Convert to Translation Scheme

Inherited Attributes: Translation Scheme

$$D \rightarrow T \{L.in = T.type\} L$$

```
T \rightarrow int \quad \{T.type = integer\}

T \rightarrow real \quad \{T.type = real\}
```

$$L \rightarrow \{L_1.in = L.in\} L_1,id \{addtype(id.entry,L_{in})\}$$

$$L \rightarrow id \{addtype(id.entry, L_{in})\}$$

Example: take string real p,q,r

INPUT	PRODUCTION
real p,q,r	
p,q,r	
p,q,r	$T \rightarrow real$
,q,r	
,q,r	$L \rightarrow id$
q,r	
,r	
,r	$L \rightarrow L,id$
r	
-	
-	$L \rightarrow L,id$
-	$D \rightarrow TL$
	real p,q,r p,q,r p,q,r ,q,r ,q,r q,r ,r

Observation: Every time a string is reduced to L, T is just below it on the stack

Example ...

- Every time a reduction to L is made, the value of T type is just below it
- Use the fact that T.type is at a known place in the value stack
- When production L → id is applied, id.entry is at the top of the stack and T.type is just below it, therefore,

addtype(id.entry,L.in) ⇔

addtype(val[top], val[top-1])

 Similarly when production L → L₁, id is applied id.entry is at the top of the stack and T.type is three places below it, therefore,

addtype(id.entry, L.in) ⇔

addtype(val[top],val[top-3])

Example ...

Therefore, the translation scheme becomes

```
D \rightarrow T L
```

$$T \rightarrow int$$
 val[top] =integer

$$T \rightarrow real$$
 val[top] = real

Simulating the evaluation of inherited attributes

- The scheme works only if grammar allows position of attribute to be predicted.
- Consider the grammar

$$S \rightarrow aAC$$
 $C_i = A_s$
 $S \rightarrow bABC$ $C_i = A_s$
 $C \rightarrow c$ $C_s = g(C_i)$

- C inherits A_s
- there may or may not be a B between A and C on the stack when reduction by rule C → c takes place
- When reduction by C → c is performed the value of C_i is either in [top-1] or [top-2]

Simulating the evaluation ...

 Insert a marker M just before C in the second rule and change rules to

$$S \rightarrow aAC$$
 $C_i = A_s$
 $S \rightarrow bABMC$ $M_i = A_s$; $C_i = M_s$
 $C \rightarrow c$ $C_s = g(C_i)$
 $M \rightarrow \epsilon$ $M_s = M_i$

- When production $M \rightarrow \varepsilon$ is applied we have $M_s = M_i = A_s$
- Therefore value of C_i is always at val[top-1]

Simulating the evaluation ...

 Markers can also be used to simulate rules that are not copy rules

$$S \rightarrow aAC$$

$$C_i = f(A.s)$$

using a marker

$$S \rightarrow aANC$$

 $N \rightarrow \epsilon$

$$N_i = A_s$$
; $C_i = N_s$
 $N_s = f(N_i)$

- Algorithm: Bottom up parsing and translation with inherited attributes
- Input: L attributed definitions
- Output: A bottom up parser
- Assume every non terminal has one inherited attribute and every grammar symbol has a synthesized attribute
- For every production $A \rightarrow X_1... X_n$ introduce n markers $M_1...M_n$ and replace the production by

$$A \rightarrow M_1 X_1 \dots M_n X_n$$

 $M_1 \rightarrow \epsilon, \dots, M_n ? \epsilon$

- Synthesized attribute $X_{j,s}$ goes into the value entry of X_i
- Inherited attribute X_{j,i} goes into the value entry of M_i

Algorithm ...

 If the reduction is to a marker M_j and the marker belongs to a production

 $A \rightarrow M_1 X_1 \dots M_n X_n$

Then for computation of $X_{j,i}$ $X_{2,s}$ is in position top-2j+6 $X_{2,i}$ is in position top-2j+5 $X_{1,s}$ is in position top-2j+4 $X_{1,i}$ is in position top-2j+3 A_i is in position top-2j+2

Thus, all the attributes can be computed during the parsing.

Space for attributes at compile time

- Lifetime of an attribute begins when it is first computed
- Lifetime of an attribute ends when all the attributes depending on it, have been computed
- Space can be conserved by assigning space for an attribute only during its lifetime

Example

Consider following definition

```
D\rightarrowTL L.in := T.type

T\rightarrow real T.type := real

T\rightarrow int T.type := int

L\rightarrow L<sub>1</sub>, I L<sub>1</sub>.in := L.in; I.in=L.in

L\rightarrow I I.in = L.in

I\rightarrow I<sub>1</sub>[num] I<sub>1</sub>.in=array(num, I.in)

I\rightarrow id addtype(id.entry,I.in)
```

Consider string int x[3], y[5]

its parse tree and dependence graph

Consider string int x[3], y[5]

Allocate resources using life time information

R1 R1 R2 R3 R2 R1 R1 R2 R1

Allocate resources using lifetime and copy information

Space for attributes at Compiler Construction time

- Attributes can be held on a single stack.
 However, lot of attributes are copies of other attributes
- For a rule like A →B C stack grows up to a height of five (assuming each symbol has one inherited and one synthesized attribute)
- Just before reduction by the rule A →B C the stack contains I(A) I(B) S(B) I(C) S(C)
- After reduction the stack contains I(A) S(A)
- Using multiple stacks can help in reducing space

Example

- Consider rule B →B1 B2 with inherited attribute ps and synthesized attribute ht
- The parse tree for this string and a snapshot of the stack at each node appears as

Example ...

 However, if different stacks are maintained for the inherited and synthesized attributes, the stacks will normally be smaller

Reading Assignment

Section 5.5, 5.9 of the OLD Dragonbook (3 authors: Aho, Sethi, Ullman).