2020 年下半年初中数学网络教学资源学生作业答案

第3周(9月14日~9月18日)

下载链接: https://pan.baidu.com/s/1X3lrxjaYzuOHsOvalST6Nw 提取码: kt54

下载二维码:

<u> </u>	2田 田石	<i>从</i> 业
课序	课题	作业答案
08	1.5 公因数 与最大公因 数①	1. 12=2×2×3, 30=2×3×5, 最大公因数为 2×3=6.
		2. 1, 9, 17, 1, 9, 1.
		3. 2, 5, 2, 9, 7, 17.
		4. (1) $\sqrt{2}$; (2) $\sqrt{3}$; (3) \times ; (4) \times .
	1.5 公因数 与最大公因 数②	1. 2.
00		2. 3和5; 14和15; 18和1.
09		3. 1; 3; 6; 13; 6; 5.
	双②	4. 60, 1; 30, 2; 20, 3; 15, 4; 12, 5; 10, 6 六种不同形状的长方形.
	1.6 公倍数 与最小公倍 数①	1. 18 和 27 的最小公倍数是 54;
		14 和 4 的最小公倍数是 28;
		12 和 16 的最小公倍数是 48;
		15 和 20 的最小公倍数是 60.
10		2.8和12的最小公倍数是24;
		28 和 20 的最小公倍数是 140;
		27 和 15 的最小公倍数是 135 .
		3 . 30 和 45 的最大公因数是 15, 最小公倍数是 90;
		21 和 35 的最大公因数是 7, 最小公倍数是 105.
	1.6 公倍数 与最小公倍 数②	1.12和7的最小公倍数是84;
11		15 和 30 的最小公倍数是 30;
		12 和 18 的最小公倍数是 36 .
		2. 7和9的最大公因数是 1, 最小公倍数是 63;
		17 和 68 的最大公因数是 17, 最小公倍数是 68.
		3. 至少要选拔13名学生参加跳舞.

课序	课题	作业答案
08	9.5 合并同 类项 (1)	1. a^2b 的同类项: a^2b 、 $2ba^2$ 、 $2.5a^2b$ 、 $-\frac{a^2b}{5}$; $-ab$ 的同类项: $3ab$ 、 $\frac{1}{3}ba$ 、 $\frac{ab}{4}$; $2005ab^2$ 的同类项: $4ab^2$ 、 $-\frac{2}{3}b^2a$. 2. $-a^2$. (2) $-5a^2 + 4a + 4$. (3) $-2x^2$. (4) $5a^2b + 4ab - 6ab^2$.
09	9.5 合并同 类项 (2)	1. (1) 原代数式化简为 $\frac{13}{6}a$, 当 $a=12$ 时,此代数式的值为 26. (2) 原代数式化简为 $2y^2+2xy$, 当 $x=\frac{5}{2}$, $y=-3$ 时,此代数式的值为 3. 2. 原代数式化简为 $5mn$,此代数式的值为 60.
10	9.6整式的加减(1)	1 (1) $3a-3b+2$; (2) $a+b-3c+4$; (3) $4x^3+3x^2-2x+1$. 2 (1) $-x^2+2x+2$; (2) $-a^2+ab+b^2$; (3) $-x^3-x^2-x+1$; (4) $-\frac{3}{2}x^2+xy-\frac{11}{3}y^2$; (5) $-a^2b-5ab-2ab^2$; (6) $\frac{11}{2}x^2+3x-\frac{17}{2}$.
11	9.6 整式的加減 (2)	1. $\frac{5}{2}x^2 + y^2 + 1$. 2. $6a + \frac{9}{2}ab - \frac{5}{6}b$. 3. $-2x^2 + xy - \frac{5}{2}y^2$. 4. $a^2 + \frac{3}{2}ab - 2b^2$. 5. $2x^2 - \frac{5}{2}x + 6$. 6. (1) $-x^2 - \frac{7}{6}x - 5$; (2) $-a^2 + 4ab + 11b^2$. 7. (1) 原代数式化简为 $2x^2 - 3$, 当 $x = -\frac{1}{2}$ 时,原式 $= -2\frac{1}{2}$. (2) 原代数式化简为 $ab + 10b^2$,当 $a = 2$, $b = 0.2$ 时,原式 $= 0.8$. 8. $x^4 + x^2 = x^4 - x^2$; $-x^4 + x^2 = x^4 - x^2$.

课序	课题	作业答案		
08	式的运算④	1. A. 2. $\sqrt[4]{3}$: $\sqrt{3}$:		
09	二次根式单 元复习与小 结	1. (1) $\frac{\sqrt{3}}{3} + 11\sqrt{2}$; (2) $\frac{28}{5}\sqrt{5} - \frac{1}{6}\sqrt{6}$. 2. $\frac{3\sqrt{3}c}{c}$. 3. $x > \frac{\sqrt{2}}{16}$. 4. $x = -14 + 8\sqrt{3}$. 5. 4. 6. $\frac{4ab}{3}\sqrt{3ab}(b>0)$. 7. 12. 8. $\frac{1}{2}$.		
10		将 $\sqrt{30}$ 化为连分数:		
11	17.1 一元二 次方程的概 念	1. (1) √; (2) √; (3) ×; (4) ×. 2. 一般式 二次项系数 一次项系数 常数项 2x²-3x+5=0 2 -3 5 x²-2x-1=0 1 -2 -1 2x²-9x-14=0 2 -9 -14		

	$(1 - \sqrt{2})x^2 - (1 + \sqrt{2})x = 0$	$1-\sqrt{2}$	$-1-\sqrt{2}$	0
	 (1) m≠±2; (2) - 4. 是, 略. 	5.		
	5. 答案不唯一. 提示: 如	$\mathbb{R} ax^2 + bx + c$	$e = 0 (a \neq 0)$	有一个根
	为 1, 那 $a+b+c=0$.	已知 $b=-1$,戶	f以只要满足 a	+ c = 1的
	条件即可. 如 $2x^2 - x - 1$	= 0 .		

课序	课题	作业答案	
10	24.4 相似 三角形的判 定③	 相似,三边对应成比例. △ABC 与△DEF 相似.提示:可以用判定定理 3,也可以用判定定理 2. 提示:先证明△ABD∽△A₁B₁D₁,得∠B=∠B₁, 再证△ABC∽△A₁B₁C₁. 	
11	24.4 相似三角形的判定④	 提示: 先证明△ABC∽△DAC, 得∠B=∠DAC. 提示: 先证明△BDC∽△B₁D₁C₁, 得∠C=∠C₁. 再证△ABC∽△A₁B₁C₁. 因为 AD//BC, ∠A=90°, 所以∠B=∠A=90°. 当 AD/BP = AP/BC 时, △APD∽△BCP, 即 AP=1或6 时, △APD∽△BCP. 当 AD/BC = AP/BP 时, △APD∽△BPC, 即 AP=1寸6 时, △APD∽△BPC. 当 AD/BC = AP/BP 时, △APD∽△BPC. 当 AP/BC = 14/5 时, △APD∽△BPC. 当 AP/BC = 14/5 时, △APD 与△BPC 相似. 	
12	24.4 相似 三角形的判 定⑤	 提示:可以从多个角度,用不同判定定理证明. 提示:先证明△ABE ∽ △ACD,得∠B=∠C, 再证△FDB ∽ △FEC. 当AP的长为9厘米或4厘米时,△ADP与△ABC相似. 	
13	24.5 相似三 角形的性质 ①	1. 10 厘米, 15 厘米. 2. 8.	

		3. 4厘米.
		4. 提示:根据已知条件,求得 $\frac{BD}{B_1D_1} = \frac{BC}{B_1C_1}$;再证明
		$\triangle ABD \hookrightarrow \triangle A_1B_1D_1$.
		1. 喀.
		2. $AC = \frac{15}{2}$ 厘米, $B_1C_1 = 12$ 厘米.
14	24.5 相似三 角形的性质 ②	$3. \frac{4}{9}$
		4. $\frac{\sqrt{3}+1}{2}$.