Ruiqi Yan (ry2417)

5/4/2022

Hurrican Data

hurricane 703.csv collected the track data of 703 hurricanes in the North Atlantic area since 1950. For all the storms, their location (longitude & latitude) and maximum wind speed were recorded every 6 hours. The data includes the following variables

- 1. **ID**: ID of the hurricanes
- 2. Season: In which year the hurricane occurred
- 3. Month: In which month the hurricane occurred
- 4. Nature: Nature of the hurricane
- ET: Extra Tropical
- DS: Disturbance
- NR: Not Rated
- SS: Sub Tropical
- TS: Tropical Storm
- 5. time: dates and time of the record
- 6. Latitude and Longitude: The location of a hurricane check point
- 7. Wind.kt Maximum wind speed (in Knot) at each check point

load and clean data

Part I: Likelihood, Prior, Posterior and Conditional Posterior

Likelihood

$$L(oldsymbol{Y} \mid oldsymbol{ heta}) \propto \prod_{i=1}^{m} \left(\sigma^2\right)^{-rac{n_i}{2}} \exp\left\{-rac{1}{2\sigma^2} \left(oldsymbol{Y}_i - oldsymbol{X}_ioldsymbol{eta}_i
ight)^T \left(oldsymbol{Y}_i - oldsymbol{X}_ioldsymbol{eta}_i
ight)
ight\}$$

where m is the number of hurricane and n_i is the number of observations for i_{th} hurricane

Prior

$$\pi\left(\boldsymbol{\theta}=\left(\boldsymbol{B},\boldsymbol{\mu},\boldsymbol{\Sigma}^{-1},\boldsymbol{\sigma}^{2}\right)\right)\propto\left(\boldsymbol{\sigma}^{2}\right)^{-1}\left|\boldsymbol{\Sigma}^{-1}\right|^{d+1}\exp\left\{-\frac{1}{2}\operatorname{tr}\left(\boldsymbol{\Sigma}^{-1}\right)\right\}\prod_{i=1}^{m}\left|\boldsymbol{\Sigma}^{-1}\right|^{\frac{1}{2}}\exp\left\{-\frac{1}{2}\left(\boldsymbol{\beta}_{i}-\boldsymbol{\mu}\right)^{T}\boldsymbol{\Sigma}^{-1}(\boldsymbol{\beta}_{i}-\boldsymbol{\mu})\right\}$$

where d is the dimension of μ

Posterior

$$\pi(\boldsymbol{\theta} \mid \boldsymbol{Y}) \propto (\sigma^{2})^{-1} \left| \Sigma^{-1} \right|^{d+1} \exp \left\{ -\frac{1}{2} + \operatorname{tr} \left(\Sigma^{-1} \right) \right\}$$

$$\times \prod_{i=1}^{m} (\sigma^{2})^{-\frac{n_{i}}{2}} \left| \Sigma^{-1} \right|^{\frac{1}{2}} \exp \left\{ -\frac{1}{2\sigma^{2}} \left(\boldsymbol{Y}_{i} - \boldsymbol{X}_{i} \boldsymbol{\beta}_{i} \right)^{T} \left(\boldsymbol{Y}_{i} - \boldsymbol{X}_{i} \boldsymbol{\beta}_{i} \right) \right\} \exp \left\{ -\frac{1}{2} \left(\boldsymbol{\beta}_{i} - \boldsymbol{\mu} \right)^{T} \Sigma^{-1} \left(\boldsymbol{\beta}_{i} - \boldsymbol{\mu} \right) \right\}$$

$$= (\sigma^{2})^{-\left(1 + \frac{\sum_{i=1}^{m} n_{i}}{2}\right)} \left| \Sigma^{-1} \right|^{d+1 + \frac{m}{2}} \exp \left\{ -\frac{1}{2} \operatorname{tr} \left(\Sigma^{-1} \right) \right\} \exp \left\{ -\frac{1}{2} \sum_{i=1}^{m} \left(\boldsymbol{\beta}_{i} - \boldsymbol{\mu} \right)^{T} \Sigma^{-1} \left(\boldsymbol{\beta}_{i} - \boldsymbol{\mu} \right) \right\}$$

$$\times \exp \left\{ -\frac{1}{2\sigma^{2}} \sum_{i=1}^{m} \left(\boldsymbol{Y}_{i} - \boldsymbol{X}_{i} \boldsymbol{\beta}_{i} \right)^{T} \left(\boldsymbol{Y}_{i} - \boldsymbol{X}_{i} \boldsymbol{\beta}_{i} \right) \right\}$$

Conditional Posterior

For β_i :

$$\pi(\boldsymbol{\beta}_i \mid \boldsymbol{\theta}_{(-\boldsymbol{\beta}_i)} \boldsymbol{Y}) \propto \exp \left\{ -\frac{1}{2} \left(\boldsymbol{\beta}_i - \boldsymbol{\mu} \right)^T \Sigma^{-1} \left(\boldsymbol{\beta}_i - \boldsymbol{\mu} \right) - \frac{1}{2\sigma^2} \left(\boldsymbol{Y}_i - \boldsymbol{X}_i \boldsymbol{\beta}_i \right)^T \left(\boldsymbol{Y}_i - \boldsymbol{X}_i \boldsymbol{\beta}_i \right) \right\}$$

For μ :

$$\begin{split} \pi\left(\boldsymbol{\mu}\mid\boldsymbol{\theta}_{(-\boldsymbol{\mu})},\boldsymbol{Y}\right) &\propto \exp\left\{-\frac{1}{2}\sum_{i=1}^{m}\left(\boldsymbol{\beta}_{i}-\boldsymbol{\mu}\right)^{T}\boldsymbol{\Sigma}^{-1}\left(\boldsymbol{\beta}_{i}-\boldsymbol{\mu}\right)\right\} \\ (\boldsymbol{\beta}_{i}-\boldsymbol{\mu})^{T}\boldsymbol{\Sigma}^{-1}(\boldsymbol{\beta}_{i}-\boldsymbol{\mu}) &= \operatorname{tr}\left(\left(\boldsymbol{\beta}_{i}-\boldsymbol{\mu}\right)^{T}\boldsymbol{\Sigma}^{-1}\left(\boldsymbol{\beta}_{i}-\boldsymbol{\mu}\right)\right) \\ &= \operatorname{tr}\left(\boldsymbol{\Sigma}^{-1}\left(\boldsymbol{\beta}_{i}-\boldsymbol{\mu}\right)\left(\boldsymbol{\beta}_{i}-\boldsymbol{\mu}\right)^{T}\right) \\ \pi\left(\boldsymbol{\mu}\mid\boldsymbol{\theta}_{(-\boldsymbol{\mu})},\boldsymbol{Y}\right) &\propto \exp\left\{-\frac{1}{2}\operatorname{tr}\left(\boldsymbol{\Sigma}^{-1}\sum_{i=1}^{m}\left(\boldsymbol{\beta}_{i}-\boldsymbol{\mu}\right)\left(\boldsymbol{\beta}_{i}-\boldsymbol{\mu}\right)^{T}\right)\right\} \\ &= \exp\left\{-\frac{1}{2}\operatorname{tr}\left(\boldsymbol{\Sigma}^{-1}m\left(\boldsymbol{\mu}-\bar{\boldsymbol{\beta}}\right)\left(\boldsymbol{\mu}-\bar{\boldsymbol{\beta}}\right)^{T}\right)\right\} \\ &= \exp\left\{-\frac{1}{2}(\boldsymbol{\mu}-\bar{\boldsymbol{\beta}})^{T}\boldsymbol{\Sigma}^{-1}m(\boldsymbol{\mu}-\bar{\boldsymbol{\beta}})\right\} \\ &\Rightarrow \boldsymbol{\mu}\mid\boldsymbol{\theta}_{(-\boldsymbol{\mu})},\boldsymbol{Y}\sim N(\bar{\boldsymbol{\beta}},\boldsymbol{\Sigma}/m) \end{split}$$

For σ^2 :

$$\pi\left(\sigma^{2} \mid \boldsymbol{\theta}_{\left(-\sigma^{2}\right)}, \boldsymbol{Y}\right) \propto \left(\sigma^{2}\right)^{-\left(1 + \frac{\sum_{i=1}^{m} n_{i}}{2}\right)} \times \exp\left\{-\frac{1}{2\sigma^{2}} \sum_{i=1}^{m} \left(\boldsymbol{Y}_{i} - \boldsymbol{X}_{i} \boldsymbol{\beta}_{i}\right)^{T} \left(\boldsymbol{Y}_{i} - \boldsymbol{X}_{i} \boldsymbol{\beta}_{i}\right)\right\}$$

$$\pi \left(\Sigma^{-1} \mid \boldsymbol{\theta}_{(-\Sigma^{-1})}, \boldsymbol{Y} \right) \propto \left| \Sigma^{-1} \right|^{d+1+\frac{m}{2}} \exp \left\{ -\frac{1}{2} \operatorname{tr} \left(\Sigma^{-1} \right) \right\} \exp \left\{ -\frac{1}{2} \sum_{i=1}^{m} \left(\boldsymbol{\beta}_{i} - \boldsymbol{\mu} \right)^{T} \Sigma^{-1} \left(\boldsymbol{\beta}_{i} - \boldsymbol{\mu} \right) \right\}$$

$$= \left| \Sigma^{-1} \right|^{d+1+\frac{m}{2}} \exp \left\{ -\frac{1}{2} \operatorname{tr} \left(\Sigma^{-1} \right) - \frac{1}{2} \operatorname{tr} \left(\Sigma^{-1} \sum_{i=1}^{m} \left(\boldsymbol{\beta}_{i} - \boldsymbol{\mu} \right) \left(\boldsymbol{\beta}_{i} - \boldsymbol{\mu} \right)^{T} \right) \right\}$$

$$= \left| \Sigma^{-1} \right|^{d+1+\frac{m}{2}} \exp \left\{ -\frac{1}{2} \operatorname{tr} \left(\Sigma^{-1} \left(I + \sum_{i=1}^{m} \left(\boldsymbol{\beta}_{i} - \boldsymbol{\mu} \right) \left(\boldsymbol{\beta}_{1} - \boldsymbol{\mu} \right)^{T} \right) \right) \right\}$$

$$\Rightarrow \Sigma^{-1} \mid \boldsymbol{\theta}_{(-\Sigma^{-1})}, \boldsymbol{Y} \sim \operatorname{Wishart} \left(3d + 3 + m, \left(\boldsymbol{I} + \sum_{i=1}^{m} \left(\boldsymbol{\beta}_{i} - \boldsymbol{\mu} \right) \left(\boldsymbol{\beta}_{i} - \boldsymbol{\mu} \right)^{T} \right)^{-1} \right)$$

Part II: MCMC Algorithm

We could generate full conditional posterior distribution for partial parameters, so we apply hybrid algorithm consisting with Metropolis-Hastings steps and Gibbs steps.

MH steps for β_{ij} :

Sampling proposed β'_{ij} j=0,1...4 for i_{th} hurricane from proposal distribution $U\left(\beta^{(t)}_{ij}-a_{ij},\beta^{(t)}_{ij}+a_{ij}\right)$, where a_{ij} is the search window for β_{ij} . Since the proposals are symmetry, the accepting or rejecting the proposed β'_{ij} depends on the ratio of posterior distribution. Some of the parameters in $\boldsymbol{\theta}$ could be cancelled out, so the ratio simplified to be:

$$\frac{\pi\left(\boldsymbol{\beta}_{i}^{(t)},\boldsymbol{\theta}_{\left(-\boldsymbol{\beta}_{i}\right)}^{(t)}\mid\boldsymbol{Y}\right)}{\pi\left(\boldsymbol{\beta}_{i}^{(t)},\boldsymbol{\theta}_{\left(-\boldsymbol{\beta}_{i}\right)}^{(t)}\mid\boldsymbol{Y}\right)} = \frac{\exp\left\{-\frac{1}{2\sigma^{2(t)}}\left(\boldsymbol{Y}_{i}-\boldsymbol{X}_{i}\boldsymbol{\beta}_{i}^{'}\right)^{T}\left(\boldsymbol{Y}_{i}-\boldsymbol{X}_{i}\boldsymbol{\beta}_{i}^{'}\right)-\frac{1}{2}\left(\boldsymbol{\beta}_{i}^{'}-\boldsymbol{\mu}^{(t)}\right)^{T}\boldsymbol{\Sigma}^{-1^{(t)}}\left(\boldsymbol{\beta}_{i}^{'}-\boldsymbol{\mu}^{(t)}\right)\right\}}{\exp\left\{-\frac{1}{2\sigma^{2(t)}}\left(\boldsymbol{Y}_{i}-\boldsymbol{X}_{i}\boldsymbol{\beta}_{i}^{(t)}\right)^{T}\left(\boldsymbol{Y}_{i}-\boldsymbol{X}_{i}\boldsymbol{\beta}_{i}^{(t)}\right)-\frac{1}{2}\left(\boldsymbol{\beta}_{i}^{(t)}-\boldsymbol{\mu}^{(t)}\right)^{T}\boldsymbol{\Sigma}^{-1(t)}\left(\boldsymbol{\beta}_{i}^{(t)}-\boldsymbol{\mu}^{(t)}\right)\right\}}$$

where β'_i consisting with β'_{ij} , $\beta^{(t)}_{ik}$ for k > j and $\beta^{(t+1)}_{ik}$ for k < j.

The log of the ratio:

$$\log \frac{\pi \left(\beta_{i}^{\prime}, \boldsymbol{\theta}_{(-\beta_{i})}^{(t)} \mid \boldsymbol{Y}\right)}{\pi \left(\beta_{i}^{(t)}, \boldsymbol{\theta}_{(-\beta_{i})}^{(t)} \mid \boldsymbol{Y}\right)} = -\frac{1}{2} \left(\frac{\left(\boldsymbol{Y}_{i} - \boldsymbol{X}_{i} \boldsymbol{\beta}_{i}^{\prime}\right)^{T} \left(\boldsymbol{Y}_{i} - \boldsymbol{X}_{i} \boldsymbol{\beta}_{i}^{\prime}\right)}{\sigma^{2(t)}} + \left(\beta_{i}^{\prime} - \boldsymbol{\mu}^{(t)}\right)^{T} \boldsymbol{\Sigma}^{-1^{(t)}} \left(\beta_{i}^{\prime} - \boldsymbol{\mu}^{(t)}\right)\right)$$

$$+ \frac{1}{2} \left(\frac{\left(\boldsymbol{Y}_{i} - \boldsymbol{X}_{i} \boldsymbol{\beta}_{i}^{(t)}\right)^{T} \left(\boldsymbol{Y}_{i} - \boldsymbol{X}_{i} \boldsymbol{\beta}_{i}^{(t)}\right)}{\sigma^{2(t)}} + \left(\beta_{i}^{(t)} - \boldsymbol{\mu}^{(t)}\right)^{T} \boldsymbol{\Sigma}^{-1^{(t)}} \left(\boldsymbol{\beta}_{i}^{(t)} - \boldsymbol{\mu}^{(t)}\right)\right)$$

Then we randomly sample u from U(0,1) and compare $\log(u)$ with the log ratio, if the $\log(u)$ is smaller, we accept $\beta'_{ij} = \beta^{(t+1)}_{ij}$, otherwise we reject β'_{ij} and $\beta^{(t)}_{ij} = \beta^{(t+1)}_{ij}$.

Then, Gibb step for μ : Sample $\mu^{(t+1)}$ from $N\left(\bar{\beta}^{(t+1)}, \Sigma^{(t)}/m\right)$.

Next, MH step to generate $\sigma^{2'}$. The log posterior ratio:

$$\log \frac{\pi\left(\sigma^{2'}, \boldsymbol{\theta}_{(-\sigma^2)}^{(t)} \mid \boldsymbol{Y}\right)}{\pi\left(\sigma^{2^{(t)}}, \boldsymbol{\theta}_{(-\sigma^2)}^{(t)} \mid \boldsymbol{Y}\right)} = -\left(1 + \frac{M}{2}\right) \log(\sigma^{2'}) - \frac{1}{2\sigma^{2'}} \sum_{i=1}^{m} \left(\boldsymbol{Y}_i - \boldsymbol{X}_i \boldsymbol{\beta}_i^{(t+1)}\right)^T \left(\boldsymbol{Y}_i - \boldsymbol{X}_i \boldsymbol{\beta}_i^{(t+1)}\right) + \left(1 + \frac{M}{2}\right) \log(\sigma^{2^{(t)}}) + \frac{1}{2\sigma^{2^{(t)}}} \sum_{i=1}^{m} \left(\boldsymbol{Y}_i - \boldsymbol{X}_i \boldsymbol{\beta}_i^{(t+1)}\right)^T \left(\boldsymbol{Y}_i - \boldsymbol{X}_i \boldsymbol{\beta}_i^{(t+1)}\right)$$

where M is total number of observation for all hurricanes.

Check whether $\sigma^{2'}$ is positive, if not, we reject $\sigma^{2'}$. Then, we randomly sample u from U(0,1) and compare $\log(u)$ with the log ratio. If the $\log(u)$ is smaller, we accept $\sigma^{2'} = \sigma^{2^{(t+1)}}$.

Finally, we sample
$$\Sigma^{-1^{(t+1)}}$$
 from Wishart $\left(3d+3+m,\left(\boldsymbol{I}+\sum_{i=1}^{m}\left(\boldsymbol{\beta}_{i}^{(t+1)}-\boldsymbol{\mu}^{(t+1)}\right)\left(\boldsymbol{\beta}_{i}^{(t+1)}-\boldsymbol{\mu}^{(t+1)}\right)^{T}\right)^{-1}\right)$

Part III: Implementation and Estimations

Starting Value and Search Window

Table 1: Range of Search Window and Acceptance Rate for each paraemter in MH Algorithm

	search window	acceptance rate (%)
$oldsymbol{eta}_0$	1.1	45.87-51.36
$oldsymbol{eta}_1$	0.04-0.1	31.67-63.68
$oldsymbol{eta}_2$	0.8-1	38.6-45.6
$oldsymbol{eta}_3$	0.5-0.6	33.2-61.32
$oldsymbol{eta}_4$	0.4-0.5	34.95-60.45
$oldsymbol{\sigma}^2$	2	44.93

Implement 10000 MCMC iterations

Acceptance Rate

Convergence trace plots

Histograms

Estimates (burn-in first 5500 runs)

Table 2: Bayesian Estimates for μ and σ^2

	μ_0	μ_1	μ_2	μ_3	μ_4	σ^2
Estimates	3.8	0.92	-0.14	-0.39	0.48	36.36

Table 3: Bayesian Estimate for Σ^{-1}

	$\boldsymbol{\beta}_0$	$oldsymbol{eta}_1$	$oldsymbol{eta}_2$	$\boldsymbol{\beta}_3$	$oldsymbol{eta}_4$
$\boldsymbol{\beta}_0$	16.07	7.63	-1.78	5.39	1.48
$oldsymbol{eta}_1$	7.63	0.34	0.47	3.96	1.14
$oldsymbol{eta}_2$	-1.78	0.47	381.32	-6.32	24.35
$oldsymbol{eta}_3$	5.39	3.96	-6.32	21.43	-3.30
$oldsymbol{eta}_4$	1.48	1.14	24.35	-3.30	55.12

Beta estimate histograms

Histograms of Betas of All Hurricanes

Chart of the estimates of mu, sigma and inverseCov

Table 4: R_{adj}^2 for each hurricane

R_{adj}^2	Count of Hurricanes	Percentage(%)
0.7-1	472	69.3
0.3-0.7	117	17.2
0-0.3	31	4.6
< 0	61	9.0

Part IV: Model Performance Observed Wind Speed vs. Baysian Model Estimates

