

Concours d'entrée 2003 -2004

Mathematique

Duree: 3 heures juillet 2003

Remarque: L'usage d'une calculatrice non-programmable est permis.

La distribution des notes est sur 25

I- (4 points) On admet que, pour tout entier $\alpha \lim_{n\to\infty} x^{\alpha} e^{-x} = 0$

On pose $U_p(n) = \int_0^n x^p e^{-x} dx$ ou n et p sont deux entiers naturels.

- 1) Calculer $U_0(n)$ et montrer que $U_1(n) = 1 (1+n)e^{-n}$
- 2) En utilisant une intégration par parties, montrer que $U_2(n)=2U_1(n)-n^2e^{-n}$. Calculer $\lim_{n\to\infty}U_1(n)$ et déduire $\lim_{n\to\infty}U_2(n)$
- 3) En utilisant une intégration par parties, trouver une relation entre $U_p(n)$ et $U_{p-1}(n)$. En déduire que $\lim_{n\to\infty}U_p(n)=p!$

II- (3 points) On dispose de 3 urnes U_1 , U_2 et U_3 telles que: U_1 contient <u>une</u> boule rouge et 4 boules blanches, U_2 contient 4 boules rouges et 4 boules blanches; U_3 contient 7 boules rouges et 3 boules blanches.

On désigne par: P_1 la probabilité de choisir l'urne U_1 ;

 P_2 la probabilité de choisir l'urne U_2 ;

 P_3 la probabilité de choisir l'urne U_3 ;

- 1) Sachant que P_1 , P_2 et P_3 sont respectivement proportionnelles à 1, 2 et 3, montrer que $P_1 = \frac{1}{6}$ et calculer P_2 et P_3 .
- 2) On choisit une urne, et de cette urne on choisit au hasard une boule.
 - a) Calculer la probabilité de choisir une boule rouge sachant qu'elle provient de U_1
 - b) Calculer la probabilité de l'évènement : la boule choisie est rouge et provient de U_1 ".
 - c) Calculer la probabilité de l'évènement : la boule choisie est rouge
 - d) Nous savons que la boule choisie est rouge, quelle est la probabilité qu'elle provienne de U_1 ?

III- (8 points) Le plan étant rapporté au repère orthonormé $(O; \vec{i}, \vec{j})$. Les deux coubes (C) et (Γ) ci-dessous représentent respectivement les variations de deux fonctions f et g, définie sur IR, et telles que f est la dérivée de g et g est la dérivée de f.

- a) démontrer que h'(x) est constante.
- b) En déduire que $f(x) g(x) = e^{-x}$
- 2) On désigne par U_n l'aire du domaine limité par (C), (Γ) et les deux droites d'équations x = n 1 et x = n où $n \in IN^{\bullet}$
 - a) Montrer que $U_n = (e-1)e^{-n}$
 - b) démontrer que U_n est le terme général d'une suite géométrique dont on calculera le premier terme et la raison.

- c) Calculer en fonction de n, la somme $S_n = U_1 + U_2 + \dots + U_n$ et déterminer sa limite lorsque n tend vers $+\infty$
- d) Déterminer les valeurs de n tels que $S_n > 0.99$. Soit P la plus petite de ces valeurs; donner un encadrement de S_p d'amplitude 10^{-3} .
- 3) a) Démontrer que f et g sont deux solutions d'une même équation différentielle (E) du second ordre que l'on déterminera.
 - b) Résoudre (E) et en déduire l'expression de f(x) et celle de g(x).
- 4) En utilisant uniquement la relation $f(x) g(x) = e^{-x}$ et en admettant que f est pair et g est impair, démontrer que $f(-x) + g(-x) = e^{-x}$ et retrouver les expressions de f(x) et g(x).

IV- (10 points) Les parties A et B du problème sont indépendantes.

Dans le plan complexe rapporté au repère orthonormé $(O; \overrightarrow{u}, \overrightarrow{v})$, on considère la transformation T qui, à tout point M d'affixe z associe le point M d'affixe z telle que z = az + bOù a et b sont deux nombres complexes tels que $a \neq 0$ et $a \neq 1$.

A- Dans cette partie on suppose que $b \neq 0$.

On considère la suite de points M_n définie par $M_0 = O$ (O étant l'origine du repère) et $M_n = T$ (M_{n-1}), et la suite de leurs affixes respectives z_n définie par $z_0 = 0$ et $z_n = a z_{n-1} + b$

- 1) a) Montrer par récurrence que, pour tout $n \ge 1$, $z_n = b \frac{1 a^n}{1 a}$
 - b) Montrer que si |a| < 1, z_n a une limite ℓ que l'on déterminera.
 - c) Que représente le point L d'affixe ℓ pour la transformation T?

- 2) On suppose que $a = \cos 2\alpha + i \sin 2\alpha$ et $b = 2\sin \alpha$ où α est un nombre non multiple de π
- a) Donner la nature de la transformation T correspondante et déterminer ses éléments caractéristique en fonction de α .
- b) En déduire que les points M_n d'affixes z_n se trouvent sur un cercle passant par O dont on déterminera le rayon et les coordonnées du centre.
- c) Faire une figure dans le cas où $\alpha = \frac{\pi}{3}$ et placer les points M_0 , M_1 , M_2 et M_3 .
- B- Dans cette parie on suppose que $\alpha = 1+i$ et b = 0.

La transformation T aura ainsi pour expression complexe z' = (1+i) z.

- 1) Quelle est la nature de T? Déterminer ses éléments caractéristiques.
- 2) On considère l'hyperbole (H) d'équation $\frac{x^2}{4} \frac{y^2}{5} = 1$
 - a) Déterminer le centre de (H), ses sommets et les équations de ses asymptotes. Tracer (H).
 - b) Déterminer l'excentricité de (H), l'un de ses foyers et la directrice correspondante.
- 3) On désigne par (H') la courbe transformée de (H) par T.
- a) Démontrer que l'équation de (H') est $x^2 + y^2 + 18xy = 80$
- b) Soit le point F_1 (3, 3) et la droite (Δ) d'équation 3x + 3y 8 = 0Démontrer que l'ensemble des points N tels que $4NF_1^2 = 9NK^2$ ou NK est la distance de N à (Δ), est la courbe (H').
- c) En déduire que (H est une conique dont on déterminera la nature, l'excentricité, un foyer et la directrice correspondante.

Durée: 3 heures

Concours d'entrée 2003-2004

Solution de Mathématique

I- 1)
$$U_0(n) = \int_0^n e^{-x} dx = -e^{-x} \Big|_0^n = -e^{-n} + 1, U_1(n) = \int_0^n x e^{-x} dx$$

Posons u = x et $v' = e^{-x}$, on aura:

u' = 1 et $v = -e^{-x}$, ce qui donne

$$U_1(n) = \int_0^n x e^{-x} dx = -x e^{-x} \Big|_0^n + \int_0^n e^{-x} dx = -n e^{-n} - e^{-n} + 1 = 1 - (1+n)e^{-n}$$

2)
$$U_2(n) = \int_0^n x^2 e^{-x} dx$$

Posons $u = x^2$ et $v' = e^{-x}$, on aura:

u' = 2x et $v = -e^{-x}$, ce qui donne

$$U_2(n) = \int_0^n x^2 e^{-x} dx = -x^2 e^{-x} \Big|_0^n + \int_0^n 2x e^{-x} dx = -n^2 e^{-n} + 2U_1(n)$$

$$\lim_{n \to +\infty} U_1(n) = \lim_{n \to +\infty} [(1 - e^{-n}) + (-ne^{-n})] = 1 - 0 - 0 = 1$$

$$\lim_{n \to +\infty} U_2(n) = \lim_{n \to +\infty} 2U_1(n) - n^2 e^{-n} = 2 - 0 = 2$$

3)
$$U_p(n) = \int_0^n x^p e^{-x} dx$$

Posons $u = x^p$ et $v' = e^{-x}$, on aura:

 $u' = px^{p-1}$ et $v = -e^{-x}$, ce qui donne

$$U_{p}(n) = -x^{p}e^{-x}\Big|_{0}^{n} + p\int_{0}^{n}x^{p-1}e^{-x}dx = -n^{p}e^{-n} + pU_{p-1}(n)$$

$$\lim_{n \to +\infty} U_p(n) = \lim_{n \to +\infty} [-n^p e^{-n} + p U_{p-1}(n)] =$$

$$-\lim_{n \to +\infty} n^{p} e^{-n} + p \lim_{n \to +\infty} U_{p-1}(n) = 0 + p \times \lim_{n \to +\infty} U_{p-1}(n) = p \times \lim_{n \to +\infty} U_{p-1}(n)$$

En raisonnant de la même façon on aura;

$$\lim_{n\to+\infty} U_{p-1}(n) = (p-1) \lim_{n\to+\infty} U_{p-2}(n)$$

Donc
$$\lim_{n\to+\infty} U_p(n) = p \times (p-1) \times \lim_{n\to+\infty} U_{p-2}(n)$$

Et ainsi de suite, d'ou :

$$\lim_{n \to +\infty} U_p(n) = p \times (p-1) \times \dots \times 2 \times \lim_{n \to +\infty} U_1(n)$$
$$= p \times (p-1) \times \dots \times 2 \times 1 = p!$$

II-1) p_1 , p_2 et p_3 sont proportionnelles a 1, 2 et 3

d'où :
$$\frac{p_1}{1} = \frac{p_2}{2} = \frac{p_3}{3} = k$$
 et comme $p_1 + p_2 + p_3 = 1$, on aura :

$$k+2k+3k=1$$
, ce qui donne $k=\frac{1}{6}$, et par suite :

$$p_1 = \frac{1}{6}, p_2 = \frac{2}{6} = \frac{1}{3}et \ p_3 = \frac{3}{6} = \frac{1}{2}$$

2) a- $p(R/U_1) = \frac{1}{5}$ car U_1 contient 5 boules dont une seule est rouge.

b-
$$p(R \cap U_1) = p(U_1) \times p(R/U_1) = \frac{1}{6} \times \frac{1}{5} = \frac{1}{30}$$

$$c- p(R) = p(R \cap \Omega) = p(R \cap (U_1 \cup U_2 \cup U_3))$$
$$= p((R \cap U_1) \cup (R \cap U_2) \cup (R \cap U_3))$$
$$= p(R \cap U_1) + p(R \cap U_2) + p(R \cap U_3)$$

Or:
$$p(R \cap U_2) = p(U_2) \times p(R/U_2) = \frac{1}{3} \times \frac{4}{8} = \frac{1}{6}$$

$$p(R \cap U_3) = p(U_3) \times p(R/U_3) = \frac{1}{2} \times \frac{7}{10}$$
, d'où

$$p(R_1) = p(R \cap U_1) + p(R \cap U_2) + p(R \cap U_3) = \frac{1}{30} + \frac{1}{3} \times \frac{4}{8} + \frac{1}{2} \times \frac{7}{10} = \frac{11}{20} = 0,55$$

d- On a:
$$p(U_1/R) = \frac{p(U_1 \cap R)}{p(R)} = \frac{1}{30} \times \frac{20}{11} = \frac{20}{30 \times 11} = \frac{2}{33}$$

III-1) a- On a:

$$h'(x) = \frac{[f(x) - g(x)]}{f(x) - g(x)} = \frac{f'(x) - g'(x)}{f(x) - g(x)} = \frac{g(x) - f(x)}{f(x) - g(x)} = -1$$

Donc h'(x) est une constant, soit h(x) = -x + k

b- Graphiquement on voit que (C) passe par le point (0; 1) et (Γ) passe par l'origine (0; 0), donc f(0) = 1 et g(0) = 0, ce qui donne : $h(0) = \ln[f(0) - g(0)] = \ln 1 = 0$ et d'autre part on a h(0) = k, d'où k = 0 et par suite h(x) = -x.

D'où:
$$f(x) - g(x) = e^{-x}$$

2) a-
$$U_n = \int_{n-1}^{n} [f(x) - g(x)dx] = \int_{n-1}^{n} e^{-x} dx = [-e^{-x}]_{n-1}^{n}$$

$$= -[e^{-n} - e^{-(n-1)}] = e^{-(n-1)} - e^{-n} = e^{-n+1} - e^{-n} = e^{-n}(e-1)$$

b- On a:
$$U_{n+1} = (e-1)e^{-(n+1)} = (e-1)e^{-n} \times e^{-1} = \frac{e-1}{e}e^{-n} = \frac{U_n}{e}$$

Donc (U_n) est une suite géométrique de 1^{er} terme

$$U_1 = 1 - e^{-1} = 1 - \frac{1}{e}$$
 et de raison $q = \frac{1}{e}$

c- $S_n = U_1 + U_2 + \dots + U_n$ est la somme de n termes consécutifs d'une suite géométrique du

1^{er} terme
$$U_1 = (1 - \frac{1}{e})$$
 et de raison $q = \frac{1}{e}$

Donc
$$S_n = U_1 \frac{1 - q^n}{1 - q} = (1 - \frac{1}{e}) \frac{1 - (\frac{1}{e})^n}{(1 - \frac{1}{e})} = 1 - e^{-n}$$

$$\lim_{n\to\infty} S_n = 1$$

d- $S_n > 0.99$ donne $1 - e^{-n} > 0.99$, soit $e^{-n} < 0.01$, d'où:

 $-n < \ln(0.01)$, soit $-n < \ln(\frac{1}{100})$, ce qui donne $-n < -\ln 100$ et par suite $n > \ln(100)$ ou n > 4.605.

Soit donc $n \ge 5$ car n est un entier naturel. La plus petite de ces valeur est donc p = 5.

$$S_5 = 1 - e^{-5} = 0.9932620$$
 Un encadrement de S_5 a 10^{-3} est donc $0.993 < S_5 < 0.994$.

3) a- Puisque
$$f'(x) = g(x)$$
 et $g'(x) = f(x)$ On aura $f''(x) = g'(x) = f(x)$ et par suite $f''(x) - f(x) = 0$

Ou y'' - y = 0. De même on a

$$g''(x) = f'(x) = g(x)$$
. Ce qui donne $y'' - y = 0$

Donc f est g sont solutions de l'équation différentielle y'' - y = 0

b- L'équation caractéristique associée à l'équation différentielle est $r^2 - 1 = 0$, qui a pour solutions

$$r_1 = 1$$
 et $r_2 = -1$, donc la solution générale de (E) est $y = C_1 e^x + C_2 e^{-x}$.

Or
$$f(0) = 1$$
 donne $C_1 + C_2 = 1$

D'où
$$y' = C_1 e^x - C_2 e^{-x}$$
 et comme $g(0) = f'(0) = 0$ on aura: $0 = C_1 - C_2$ ce qui donne

$$C_1 = C_2 = \frac{1}{2}$$

$$f(x) = \frac{1}{2}e^x + \frac{1}{2}e^{-x}$$
 et comme $g(x) = f'(x)$ on aura $g(x) = \frac{1}{2}e^x - \frac{1}{2}e^{-x}$

4) f est pair, donc f(-x) = f(x) et g est impaire donc g(-x) = -g(x) ce qui donne $f(-x) + g(-x) = f(x) - g(x) = e^{-x}$ cette relations donne $f(x) + g(x) = e^{x}$

Alors
$$f(x) = \frac{1}{2}e^x + \frac{1}{2}e^{-x}$$
 et $g(x) = \frac{1}{2}e^x - \frac{1}{2}e^{-x}$

IV-A

1) a- On a $b \neq 0$, $M_0 = O$ et $M_n = T(M_{n-1})$ pour n = 1, on aura

$$z_1 = az_0 + b = a \times 0 + b = b = b \times \frac{1 - a^1}{1 - a}$$
, donc la relation est vérifiée pour $n = 1$

Supposons la relation vraie jusqu'à l'ordre n et démontrons qu'elle reste vraie pour n+1.

En effet:
$$z_{n+1} = az_n + b = a\left[b\frac{1-a^n}{1-a}\right] + b = \frac{ab(1-a^n) + b(1-a)}{1-a} = \frac{b-ba^{n+1}}{1-a} = b\frac{1-a^{n+1}}{1-a}$$

Donc la relation est vraie pour tout $n \ge 1$

b- Si
$$|a| < 1$$
 alors $\lim_{n \to \infty} a_n = 0$ par suite $\lim_{n \to \infty} z_n = \frac{b}{1-a}$ donc $\ell = \frac{b}{1-a}$

- c- Le point L (ℓ) est le point invariant de T.
- 2) a- La forme complexe de T est z' = az + b donc T est une similitude plane directe.

Or $a = \cos 2\alpha + i \sin 2\alpha = e^{i2\alpha}$ donc, |a| = 1 et $\arg(a) = 2\alpha$, ce qui fait que le rapport de

T est 1 et son angle est 2α . Le centre de T est le point invariant L, d'affixe

$$l = \frac{b}{1-a} = \frac{2\sin\alpha}{1-\cos 2\alpha - i\sin 2\alpha} = \frac{2\sin\alpha}{2\sin^2\alpha - 2i\sin\alpha\cos\alpha} = \frac{1}{\sin\alpha - i\cos\alpha} = \sin\alpha + i\cos\alpha$$

Donc T est une rotation de centre le point L $(\sin \alpha; \cos \alpha)$ et d'angle 2α .

b-Puisque T est une rotation de centre L est d'angle 2α alors:

$$M_0 \xrightarrow{T} M_1 \xrightarrow{T} M_2 \dots M_{n-1} \xrightarrow{T} M_n$$

Donc
$$LM_0 = LM_1 = LM_2 = = LM_n$$

Or
$$LM_0 = LO \operatorname{car} M_0 = O \operatorname{par suite} OL = |\ell| = \sin^2 \alpha + \cos^2 \alpha = 1$$

Donc
$$LO = LM_1 = LM_2 = = LM_n = 1$$

Les points $M_n(z_n)$ se trouvent sur un même cercle de centre L et de rayon 1. Ce cercle passe par O car LO = 1.

c-
$$\alpha = \frac{\pi}{3}$$
 donne: $a = \cos\left(\frac{2\pi}{3}\right) + i\sin\left(\frac{2\pi}{3}\right) = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$

$$b = 2\sin\left(\frac{\pi}{3}\right) = \sqrt{3}$$
 d'ou: $z_0 = 0$, $z_1 = az_0 + b = \sqrt{3}$

$$z_2 = az_1 + b = \sqrt{3}\left(-\frac{1}{2} + i\frac{\sqrt{3}}{2}\right) + \sqrt{3} = \frac{\sqrt{3}}{2} + \frac{3}{2}i$$

$$z_3 = \left(-\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)\left(\frac{\sqrt{3}}{2} + \frac{3}{2}i\right) + \sqrt{3} = 0$$

Donc
$$M_0 = O$$
, $M_1(\sqrt{3};0)$, $M_2\left(\frac{\sqrt{3}}{2};\frac{3}{2}\right)$, $M_3 = O$

- B. 1) On a $a = 1 + i = \sqrt{2}e^{i\frac{\pi}{4}}$, donc T est une similitude plane directe de centre O, car b = 0, de rapport $\sqrt{2}$ et d'angle $\frac{\pi}{4}$
 - 2) Le centre de (H) est O(0; 0)

Pour y = 0 on aura $\frac{x^2}{4} = 1$, x = 2 ou x = -2, donc les sommets de (H) sont A(2; 0) et A'(-2; 0)

Les asymptotes de (H) sont $y = \frac{\sqrt{5}}{2}x$ et $y = -\frac{\sqrt{5}}{2}x$

b- On sait que
$$c^2 = a^2 + b^2 = 4 + 5 = 9$$
 donc $c = 3$ d'où $e = \frac{c}{a} = \frac{3}{2}$

Les foyers de (H) sont: F(c; 0) et F'(-c; 0) donc F(3; 0) et F'(-3; 0)

Les directrices sont respectivement :
$$x = \frac{a^2}{c} = \frac{4}{3}$$
 et $x = -\frac{a^2}{c} = -\frac{4}{3}$

D'où F(3; 0) et la directrices associée est $x = \frac{a^2}{c} = \frac{4}{3}$

3) a-On a
$$z' = (1 + i) z$$
 ce qui donne; $z = \frac{z'}{1+i} d'où$

$$x + iy = \frac{x' + iy'}{1 + i} = \frac{(x' + iy')(1 - i)}{(1 + i)(1 - i)} = \frac{x' + y' + i(y' - x')}{2}$$

Ce qui donne :
$$x = \frac{x' + y'}{2}$$
 et $y = \frac{y' - x'}{2}$

En remplaçant x et y par leurs valeurs dans (H) on aura :

$$\frac{(x'+y')^2}{16} - \frac{(y'-x')^2}{20} = 1 \text{ ce qui donne } x'^2 + y'^2 + 18x'y' = 80$$

Donc l'image de (H) est la courbe (H') d'équation :

$$x^2 + y^2 + 18xy = 80$$

b- On a
$$NK = \frac{|3x + 3y - 8|}{\sqrt{9 + 9}} = \frac{|3x + 3y - 8|}{3\sqrt{2}}$$

$$NF_1^2 = (x-3)^2 + (y-3)^2$$

 $4NF_1^2 = 9NK^2$ donne $x^2 + y^2 + 18xy = 80$ donc les points N variant sur la courbe (H')

c- $\frac{NF_1}{NK} = \frac{3}{2}$, donc N décrit la conique de foyer F_1 , de directrice (Δ) et d'excentricité $e = \frac{3}{2} > 1$

Donc (H') est l'hyperbole de foyer F₁, de directrice (Δ) et d'excentricité $e = \frac{3}{2}$