Math 54: HW #6

Abhijay Bhatnagar

October 5, 2018

4.1																									1
	1.																								1
	2 .																								1
	5.																								1
	6.																								1
	8.																								1
	11																								2
	20																								2
	21																								2
	22																								2
	23																								2
	31																								3
	32																								3

4.1

1

Solution:

- a.) Yes. The sum of non negative numbers can never be nonnegative.
- b.) u = [1, 1] and c = -1.

$\mathbf{2}$

Solution:

- a.) Yes. c will change the sign of both x, y.
- b.) u = [1, 0] and v = [0, -1]

5

Solution: Yes. Subspace of P_2 , addition and multiplication hold.

6

Solution: No, not a subspace. Multiplying by scalar makes it not longer in the form of $a + t^2$.

8

Solution: The set trivially contains the zero vector. Let some function $p_1(t), p_2(t)$ be in the set. $(p_1 + p_2)(0) = 0 + 0 = 0$, set is closed under addition. For any scalar c, (cp)(t) = cp(t), so the set is closed under multiplication.

11

Solution: u = [510] and v = [201]. It shows that W is a subspace of \mathbb{R}^3 because they are linearly independent.

20

Solution:

- a.) Prove the continuous functions have zero vector and are closed under addition and subtraction.
- b.) First, showing it contains zero vector. We can just define a C[0,0]: f(0) = f(0), which holds. Next, showing it's closed under addition: $\forall f,g \in \text{the set }, (f+g)(a) = f(a) + g(a) = f(b) + g(b) = (f+g)(a)$. Finally, showing it's closed under scalar multiplication, which is trivial by observation.

21

Solution: True. Addition holds because (2,1) will always be 0+0. Zero holds because a=b=d=0 is a valid case. Scalar holds as c*0=0.

22

Solution: Yes.

zero condition: Let A=0 matrix, $FA=0 \implies \overrightarrow{0} \in H$

addition closure: $F(A_1 + A_2) = FA_1 + FA_2 = 0 + 0 = 0$, which is in H, so it is closed.

scalar closure: c * 0 = 0, so it is closed.

23

Solution:

- a.) False. Most functions have some t: f(t) = 0.
- b.) False. Vectors exist outside of 3D space.
- c.) False. You also need to show it is closed under addition/scaling.
- d.) True. Definitional.
- e.) False. Not mentioned in introduction to chapter.

31

Solution: H has to contain spanu, v because vector spaces are closed under linear combinations, which is what the definition of span is.

32

Solution: zero condition: 0 was in H and K by definition of subspaces, so it is in the intersection as well.

addition closure: any two vectors that were in both planes must've also been closed under both original subspaces, so their additions are in the intersections.

scalar closure: similar argument to addition.