Assignment 3

Amarnath Patel

June 14, 2024

1 Question 1

1.1 Part (a)

This loop will repeat exactly N times if it does not contain a stop or a go to.

ullet If this loop does not contain a stop or a go to, then it will repeat exactly N times.

1.2 Part (b)

Freeze or I'll shoot.

 $\bullet\,$ If you do not freeze, then I'll shoot.

1.3 Part (c)

Fix my ceiling or I won't pay my rent.

• If you do not fix my ceiling, then I won't pay my rent.

2 Question 2

2.1 Part (a)

	p	q	$\sim p$	$\sim p \vee q$	$(\sim p \lor q) \to \sim q$
	Τ	Τ	F	Т	F
$\sim p \vee q \to \sim q$	Т	F	\mathbf{F}	F	T
	F	Τ	${ m T}$	Т	F
	F	F	Τ	T	T

2.2 Part (b)

	p	q	$\sim p$	$\sim p \wedge q$	$(p \lor q) \lor (\sim p \land q)$	$((p \lor q) \lor (\sim p \land q)) \to q$
	Τ	Τ	F	F	T	T
$(p \lor q) \lor (\sim p \land q) \to q$	Т	F	F	F	m T	F
	F	T	${ m T}$	${ m T}$	m T	${ m T}$
	F	F	Τ	\mathbf{F}	F	T

2.3 Part (c)

	p	q	r	$p \rightarrow r$	$q \rightarrow r$	$(p \to r) \leftrightarrow (q \to r)$
	Т	Т	Τ	Т	${ m T}$	T
	Т	Т	F	F	\mathbf{F}	${ m T}$
	Т	F	T	Т	${ m T}$	${ m T}$
$(p \to r) \leftrightarrow (q \to r)$	Т	F	F	F	${ m T}$	F
	F	Т	Т	Т	Τ	${ m T}$
	F	Т	F	Т	\mathbf{F}	F
	F	F	Т	Т	${ m T}$	T
	F	F	F	Т	Т	Т

3 Question 3

3.1 Part (a)

 $\sim p \to q$

• If $p \to q$ is false, then p is true and q is false. Therefore, $\sim p$ is false and $\sim p \to q$ is true.

3.2 Part (b)

 $p \vee q$

• Since p is true and q is false, $p \vee q$ is true.

3.3 Part (c)

 $q \to p$

• Since q is false and p is true, $q \to p$ is true.

4 Question 4

4.1 Part (a)

 $p \wedge \sim q \to r$

• Using $p \to q \equiv \sim p \lor q$:

- $\sim (p \land \sim q) \lor r$
- $\bullet \equiv (\sim p \lor q) \lor r$

4.2 Part (b)

 $p \vee \sim q \to r \vee q$

- Using $p \to q \equiv \sim p \lor q$:
- $\bullet \sim (p \lor \sim q) \lor (r \lor q)$
- $\bullet \ \equiv (\sim p \land q) \lor (r \lor q)$

4.3 Part (c)

 $(p \to r) \leftrightarrow (q \to r)$

- Using $p \leftrightarrow q \equiv (\sim p \lor q) \land (\sim q \lor p)$:
- $\bullet \ (\sim p \vee r) \wedge (\sim r \vee p) \equiv (\sim q \vee r) \wedge (\sim r \vee q)$

4.4 Part (d)

 $(p \to (q \to r)) \leftrightarrow ((p \land q) \to r)$

- Using $p \to q \equiv \sim p \lor q$ and $p \leftrightarrow q \equiv (\sim p \lor q) \land (\sim q \lor p)$:
- $(\sim p \lor (\sim q \lor r)) \equiv (\sim (p \land q) \lor r)$
- $\bullet \equiv (\sim p \lor \sim q \lor r) \equiv (\sim p \lor \sim q \lor r)$

5 Question 5

5.1 Part (a)

If P is a rectangle, then P is a square.

- ullet Negation: P is a rectangle and P is not a square.
- \bullet Contrapositive: If P is not a square, then P is not a rectangle.
- ullet Converse: If P is a square, then P is a rectangle.
- ullet Inverse: If P is not a rectangle, then P is not a square.

6 Question 6

- (a) Let p be "Jules solved this problem correctly" and q be "Jules obtained the answer 2". The argument is $p \to q, q : p$. This is the converse error.
- (b) Let p be "I go to the movies", q be "I won't finish my homework", and r be "I won't do well on the exam tomorrow". The argument is $p \to q, q \to r : p \to r$. This is a valid argument by the rule of Hypothetical Syllogism.
- (c) Let p be "At least one of these two numbers is divisible by 6" and q be "The product of these two numbers is divisible by 6". The argument is $p \to q, \sim p : \sim q$. This is a valid argument by the rule of Modus Tollens.
- (d) Let p be "This computer program is correct" and q be "It produces the correct output when run with the test data my teacher gave me". The argument is $p \to q, q : p$. This is the converse error.
- (e) Let p be "Sandra knows Java" and q be "Sandra knows C++". The argument is $p \land q : q$. This is a valid argument by the rule of Simplification.