耐为控制系统 上位通信说明

修改日期: 2023.04.19

目录

1.	概述		.3
2.	连接		3
	(1)	HCFA-Q0 版	. 3
	(2)	HCFA-Q1 版	. 3
	(3)	COTRUST-C35 版	. 4
	(4)	VMMORE-PC4M 版	. 5
3.	应用		.5
	(1)	更换文件执行序号	.5
	(2)	切换手/自动模式	. 5
	(3)	控制自动模式运行	.6
	(4)	获取当前坐标数据	.6
	(5)	获取指定坐标变量的坐标数据	.6
	(6)	运动到指定的目标点	. 7
	(7)	控制数字输入输出信号	.8
4.	测试		.8
	(1)	创建网络链接	. 8
	(2)	配置设备类型	. 8
	(3)	添加访问变量	. 9
	(4)	配置访问变量	.9
	(5)	监控访问变量	12
	(6)	保存测试配置	13
5.	异常		13
	(1)	连接不到服务器	13
	(2)	读写的数据有误差	13
	(3)	数据地址不正确	13
	(4)	修改服务器通信参数	14
6.	附录.	-变量地址	18

1. 概述

耐为总线型控制系统与上位设备的通信,采用 ModbusTCP 协议。耐为系统端默认内置了 ModbusTCP 服务器,上位设备需设置为 ModbusTCP 客户端。

2. 连接

请使用标准网线,连接到控制器 CPU 模块的 EtherNet 接口,组建局域网络。

(1) HCFA-Q0 版

服务器默认 IP: 192.168.88.100, PORT: 502。

(2) HCFA-Q1 版

服务器默认 IP: 192.168.88.100, PORT: 502。

(3) COTRUST-C35 版

PORT0(X2/X3):RS485接线端子

服务器默认 IP: 192.168.0.2, PORT: 502。

(4) VMMORE-PC4M 版

服务器默认 IP: 192.168.1.250, PORT: 502。

3. 应用

- (1) 更换文件执行序号
- ①{写}操作模式(MB500)=0,以手动模式为前提;
- ②{写}文件当前序号(MB2062)=用户指定文件序号;
- ③{写}文件操作方式(MB2068)=0,选择读取指定文件;
- ④{写}文件序号更改(MX105.2)=1,触发当前序号更改为指定文件;
- ⑤{写}文件操作执行(MX104.0)=1,触发对指定文件执行读取操作;
- ⑥若{读}文件执行序号(MB2064)=用户指定文件序号,说明更换成功。

(2) 切换手/自动模式

- ①{读}操作模式(MB500), 若为 0 表示当前是手动模式, 若为 1 表示当前是自动模式:
 - ②{写}操作模式(MB500)=0,可将当前操作模式修改为手动;
 - ③{写}操作模式(MB500)=1,可将当前操作模式修改为自动。
 - (3) 控制自动模式运行
 - ①{写}操作模式(MB500)=1,以自动模式为前提;
 - ②{写}自动运行方式(MB512)=0,将以无限循环方式运行;
- ③ 若{读}自动运行状态(MB502)=0 或 5,说明状态正常,可进行流程控制,若不正常,可尝试先{写}自动停止(MX 8.4)=1 或{写}复位(MX 8.2)=1;
 - (4){写}自动启动/继续(MX8.0)=1, 触发自动启动;
- ⑤若{读}自动运行状态(MB502)=3,需{写}自动启动/继续(MX8.0)=0,自动启动成功后,要复位触发信号;
 - (6){写}自动暂停(MX8.1)=1, 触发自动暂停;
 - (7) 若{读}自动运行状态(MB502)=5, 说明暂停成功;
- ⑧ {写}自动启动/继续(MX8.0)=1,同时{写}自动暂停(MX8.1)=0,触发自动继续,复位自动暂停;
- ⑨若{读}自动运行状态(MB502)=3,需{写}自动启动/继续(MX8.0)=0,自动继续成功后,要复位触发信号:
 - ⑩ {写}自动停止(MX8.4)=1,触发自动停止;
- ①若{读}自动运行状态(MB502)=5, 需{写}自动停止(MX8.4)=0, 停止成功后, 要复位触发信号;
 - ②{写}操作模式(MB500)=0,退出自动模式,切换到手动模式待机。
 - (4) 获取当前坐标数据
 - (4.1) 不切换坐标系, 读取不同坐标寄存器
- ① {读}第 i 轴当前坐标(MB4928+4*i),索引 i 取值 0~8,得到关节空间坐标系下各轴当前坐标,依次对应 J1 轴、J2 轴、J3 轴、J4 轴、J5 轴、J6 轴、附加 1 轴、附加 2 轴、附加 3 轴;
- ② {读}第 i 轴当前坐标(MB4892+4*i),索引 i 取值 0~8,得到笛卡尔空间坐标系下各轴当前坐标,依次对应 X 轴、Y 轴、Z 轴、A 轴、B 轴、C 轴、附加 1 轴、附加 2 轴、附加 3 轴。
 - (4.2) 需切换坐标系,读取同一坐标寄存器
 - ① {写}坐标系类型(MB508)=0,选择为关节空间坐标系;
- ② {读}第 i 轴当前坐标(MB1900+4*i),索引 i 取值 0~8,得到关节空间坐标系下各轴当前坐标,依次对应 J1 轴、J2 轴、J3 轴、J4 轴、J5 轴、J6 轴、附加 1 轴、附加 2 轴、附加 3 轴;
 - ③ {写}坐标系类型(MB508)=1,选择为笛卡尔空间坐标系;
- ④ {读}第 i 轴当前坐标(MB1900+4*i),索引 i 取值 0~8,得到关节空间坐标系下各轴当前坐标,依次对应 X 轴、Y 轴、Z 轴、A 轴、B 轴、C 轴、附加 1 轴、附加 2 轴、附加 3 轴。
 - (5) 获取指定坐标变量的坐标数据
 - (5.1) 关节空间坐标变量,以 GJ[98]为例

- ①{写}远程示教坐标选择(MB800)=3098,选中待操作坐标变量为 GJ[98];
- ②{读}远程第 i 轴示教坐标(MB4856+4*i), 索引 i 取值 0~8, 依次对应 J1 轴、J2 轴、J3 轴、J4 轴、J5 轴、J6 轴、附加 1 轴、附加 2 轴、附加 3 轴。
 - (5.2) 笛卡尔空间坐标变量,以 GP[156]为例
 - ① {写}远程示教坐标选择(MB800)=4156,选中待操作坐标变量为 GP[156];
- ② {读}远程第 i 轴示教坐标(MB4856+4*i), 索引 i 取值 0~8, 依次对应 X 轴、Y 轴、Z 轴、A 轴、B 轴、C 轴、附加 1 轴、附加 2 轴、附加 3 轴。

(6)运动到指定的目标点

具体任务示例:目标点坐标是(11.11,22.22,33.33,44.44,55.55,66.66,77.77,88.88,99.99),把目标点存入机器人变量 LP[123],随后运动到该目标点。

需要区分该任务在机器人手动模式实现,还是自动模式实现。因为坐标型 变量,手动下可读可写,自动下可读不可写。

(6.1) 手动模式

- ① {写}操作模式(MB500)=0,以手动模式为前提;
- ② {写}远程示教坐标选择(MB800)=2123,选中待操作坐标变量为 LP[123];
- ③ {写}远程第 0 轴示教坐标(MB4820)=11.11, {写}远程第 1 轴示教坐标(MB4824)=22.22, {写}远程第 2 轴示教坐标(MB4828)=33.33, {写}远程第 3 轴示教坐标(MB4832)=44.44, {写}远程第 4 轴示教坐标(MB4836)=55.55, {写}远程第 5 轴示教坐标(MB4840)=66.66, {写}远程第 6 轴示教坐标(MB4844)=77.77, {写}远程第 7 轴示教坐标(MB4848)=88.88,{写}远程第 8 轴示教坐标(MB4852)=99.99,目标坐标暂存;
- ④ {写}远程示教坐标更改(MX16.2)=1,触发把缓存的目标坐标保存到 LP[123];
 - ⑤ {写}伺服使能信号(MX10.0)=1,触发伺服机构上使能;
 - ⑥ 若{读}伺服使能 OK(MX10.1)=1, 说明上使能成功;
- ⑦ {写}远程示教坐标定位(MX16.1)=1, 触发从当前坐标运动到 LP[123]坐标;
- ⑧ 若{读}第 i 轴当前坐标(MB1900+4*i)=目标点坐标, {写}远程示教坐标定位 (MX16.1)=0,运动到位后,要复位触发信号。

(6.2) 自动模式

- ① {写}操作模式(MB500)=1,以自动模式为前提;
- ② 若{读}布尔量 M[0](MB50000)=0, 目标坐标待更新标志。
- ③ {写}浮点量 ER[0](MB50600)=11.11,{写}ER[1](MB50604)=22.22,{写}ER[2] (MB50608)=33.33,{写}ER[3](MB50612)=44.44,{写}ER[4](MB50616)=55.55,{写}ER[5](MB50620)=66.66,{写}ER[6](MB50624)=77.77,{写}ER[7](MB50628)=88.8 8,{写}ER[8](MB50632)=99.99,目标坐标缓存;
 - ④ {写}布尔量 M[0](MB50000)=1, 目标坐标更新完成标志。

对应机器人系统端需在示教器编写用户指令:

000: 等待 M[0]=ON //等待上位机更新坐标

001: 坐标= LP[123].0=ER[0]

002: 坐标= LP[123].1=ER[1]

003: 坐标= LP[123].2=ER[2]

004: 坐标= LP[123].3=ER[3]

005: 坐标= LP[123].4=ER[4] 006: 坐标= LP[123].5=ER[5]

007: 坐标= LP[123].6=ER[6] 008: 坐标= LP[123].7=ER[7]

009: 坐标= LP[123].8=ER[8] //获取上位机写入的目标坐标, 保存到 LP[123]

010: 直线运动 LP[123] V=1000MM/S 到位输出 M[0]=OFF// 运 动 到 目 标 点 LP[123],运动完成时复位坐标更新标志位

(7) 控制数字输入输出信号

- ①{读}数字输入 DI[11](MB20011), 获取第 11 数字输入端口的状态;
- ② {读}数字输出 DO[11](MB21008), 获取第 11 数字输出端口的状态;
- ③{写}数字输出 DO[8](MB21008)=1,则第 8 数字输出端口有输出;
- ④ {写}数字输出 DO[8](MB21008)=0,则第 8 数字输出端口无输出。

4. 测试

本节借助 MThings 模拟 ModbusTCP 客户端,对运行耐为系统的 VMMORE-PC4M 设备,进行变量的读写访问测试。

(1) 创建网络链接

此处新建网络链接 NET004,也可使用已存在的网络链接,点击"配置"按钮进行网络参数配置。目标 IP 和端口请按服务器实际参数填写。

(2) 配置设备类型

在新建完成的 NET004 链接中,点击"添加"按钮,进行设备类型配置。

(3)添加访问变量

配置条数、区块和起始数据地址,请根据实际应用情况填写。

(4) 配置访问变量

nome	R	obot		ModbusTCP					
name	memory	type	size	register	address	bit-offset			
自动启动/继续	MX 8.0	BIT	1	holding	4	0			
自动停止	MX 8.4	BIT	1	holding	4	4			
布尔量 M[15]	MB 50015	BOOL	8	holding	25007	8			
第1轴 ENABLE	MB 9001	BOOL	8	input	4500	8			
跟踪标定计数	MB 22340	SINT	8	holding	11170	0			
整型量 EM[34]	MB 50268	INT	16	holding	25134	0			
操作模式	MB 500	INT	16	holding	250	0			
自动运行方式	MB 512	UINT	16	holding	256	0			
机型主编号	MB 600	UINT	16	holding	300	0			
累计产量计数	MB 780	DINT	32	input	390	0			
实际产量计数	MB 776	DINT	32	input	388	0			
浮点量 ER[48]	MB 50792	REAL	32	holding	25396	0			
手动加速比	MB 820	REAL	32	holding	410	0			
第2轴编码器分辨率	MB 9108	LREAL	64	input	4554	0			
DH 参数 a[1]	MB 9172	LREAL	64	input	4586	0			

以上表所列变量为例,基本已涵盖除字符串外的其他各种数据类型。下图中将分别给出,针对各数据类型的详细配置参考。

			I	Robo	ot						Modbu	sTCP							
	name		memory	t	ype	si	ze	re	gist	er	addre	ss l	oit-o	ffse	t				
	自动启动/继续	MX 8.0	E	BIT		1	ho	oldin	ıg	4		0							
自动停止。			MX 8.4	E	BIT		1	/ ho	oldin	ıg	_ 4		_ 4						
8€ MT	hings 高效工作 快乐生活																	- (о ×
	∝ ≣	8	%	0		(8)	C										Take E Page		Z 🖺
	链接 数据	自定义	统计	辅助		关									2.2		- 3	设备 日 报	文□
輸入	直找名称 Q i	語 筛选列	新増 删除	排序	高級	向步	₽ X			1									
ID	名称	指令	区块	地址	9° 4	位偏移	10	系数	J. Harry	批量写	传输类型	呈现类型	字节序	字序	间隔时间(ms	超时时间(ms)	重发次数		^
1	自动启动/继续	-	保持寄存器(RW)	4	1			1	☑ 已选择	未选择	UINT	INT(DEC) 大端	大鍋	0	2000	0		
2	自动停止		保持寄存器(RW)	4	1	4	1	1	☑ 已选择	□ 未选择	UINT	INT(DEC) 大端	大端	0	2000	0		
3	-		保持寄存器(RW)	2	1	0	16	1	☑ 已选择	□ 未选择	UINT	FLOAT	大端	大調	0	2000	0		
4			保持寄存器(RW)	3	1	0	16	1	☑ 已选择	□ 未选择	UINT	FLOAT	大端	大端	0	2000	0		
5			保持寄存器(RW)	4	1	0	16	1	☑ 已选择	□ 未选择	UINT	FLOAT	大端	大端	0	2000	0		
6			保持寄存器(RW)	5	1	0	16	1	☑ 已选择	□ 未选择	UINT	FLOAT	大洲	大鍋	0	2000	0		
7			保持寄存器(RW)	6	1	0	16	1	☑ 已选择	□ 未选择	UINT	FLOAT	大端	大端	0	2000	0		
8			保持寄存器(RW)	7	1	0	16	1	☑ 已选择	□ 未选择	UINT	FLOAT	大端	大鏑	0	2000	0		
9			保持寄存器(RW)	8	1	0	16	1	☑ 已选择	□ 未选择	UINT	FLOAT	大端	大端	0	2000	0		
10			保持寄存器(RW)	9	1	0	16	1	☑ 已选择	□ 未选择	UINT	FLOAT	大端	大端	0	2000	0		
11			保持寄存器(RW)	10	1	0	16	1	☑ 已选择	□ 未选择	UINT	FLOAT	大端	大端	0	2000	0		
4.2			/Desident Million	4.4	4		40		WHER		LUAIT	FLOAT		_Link		2000	_		~

			Robo	ot	-				7)	Modbu	sTCP							
	name	memory	t	ype	si	ze	re	gist	er	addre	ss l	oit-o	ffse	t				
整型量 EM[34]			MB 50268	I	NT	1	6	h	oldir	ıg	25134	1	0					
	操作模式		MB 500	I	NT	1	6	h	oldir	ıg	250		0					
38 MT	hings 高效工作 快乐生活			_							de la						-	пΧ
	∝ 🔳 /	8=	%	0		(8)	7										CT CR	
	链接 数据	自定义	統计	辅助		¥ F								- 5		设计	§ 🗆	报文 🔲
		活造列	新增删除	排序	高級	同步	-	导出										
ID	名称	指令	区块	地址	叔星	位偏移	位数	系数	/心量读	批量写	传输类型	呈现类型		字序	间隔时间(ms)	超时时间(ms)	重发次数	. ^
6	整型量 EM[34]		保持寄存器(RW)	2 134	1	0	16		☑ 已选择	□ 未选择	INT	INT(DEC) 大端	大端	0	2000	0	
7	操作模式		保持寄存器(RW)	250	1	0	16		☑ 已选择	□ 未选择	INT	INT(DEC	大端	大端	0	2000	0	
8			保持寄存器(RW)	7	1	0	16		☑ 已选择	□ 未选择	UINT	FLOAT	大端	大端	0	2000	0	
. 9			保持寄存器(RW)	8	1	0	16		☑ 已选择	□ 未选择	UINT	FLOAT	大調	大端	0	2000	0	
10			保持寄存器(RW)	9	1	0	16	1	☑ 已选择	□ 未选择	UINT	FLOAT	大端	大端	0	2000	0	
11			保持寄存器(RW)	10	1	0	16		☑ 已选择	□ 未选择	UINT	FLOAT	大端	大端	0	2000	0	
12			保持寄存器(RW)	11	1	0	16		☑ 已选择	□ 未选择	UINT	FLOAT	大端	大端	0	2000	0	
13			保持寄存器(RW)	12	1	0	16	1	☑ 已选择	□ 未选择	UINT	FLOAT	大端	大端	0	2000	0	
14			保持寄存器(RW)	13	1	0	16		☑ 已选择	□ 未选择	UINT	FLOAT	大端	大端	0	2000	0	1
15			保持寄存器(RW)	14	1	0	16	-	☑ 已选择	□ 未选择	UINT	FLOAT	大端	大端	0	2000	0	

(5) 监控访问变量

"链接"页面,点击"启动",尝试连接客户端与服务器之间的通信端口。

"数据"页面,点击"配置",切换到监控页面。

点击"批量读",可以轮询所有批量读勾选了"已选择"的变量,实现这些变量的监控。

在"指令"栏填写目标值,左键双击后面的"写"字,可实现变量数据修改。

(6) 保存测试配置

点击右上角图标,可保存 MThings 当前配置,以备之后再次使用。

5. 异常

- (1) 连接不到服务器
- a) 检查上位设备的 IP 与耐为控制系统 CPU 模块的 IP 是否处于同一局域网:
 - b) 检查上位设备是否可以 PING 到控制器 CPU 模块;
 - c) 检查局域网内是否有重复 IP;
 - d) 检查网线是否有线体损坏或接口松动。
 - (2) 读写的数据有误差
 - a) 检查变量的寄存器访问地址是否设置正确;
 - b) 检查是否对变量进行了正确的数据解析和格式转换;
 - c) 检查或调整字序和字节序的大小端设置。

(3) 数据地址不正确

可能是各制造商的内存地址标准不一致造成。部分制造商的上位设备,需要在机器人默认寄存器地址基础上+1。

(4) 修改服务器通信参数

修改机器人 ModbusTCP 服务器的 IP 和 PORT,需要借助 Codesys Development System的 PC 客户端软件。

- (4.1)HCFA-Q0 版
- (4.2)HCFA-Q1 版
- (4.3)COTRUST-C35 版
- (4.4)VMMORE-PC4M 版
- a) 使用标准网线,连接到控制器 CPU 模块的 EtherNet 接口;
- b) 修改电脑以太网 IP 到控制器同网段, 组建局域网络;
- c) 打开 Codesys Development System IDE 工具,使用快捷键 "Ctrl+N",新建标准工程; (不必每次都新建工程,若已有工程,且工程设备为 PC5M-MC100E,可直接跳过 c、d 两步)

d) 请将设备选择为 PC5M-MC100E;

e) 双击左侧设备树的 device, 在右侧的 device 通信设置页面中,点击"扫描网络",选中目标设备,点击"确定";

f) 连接操作成功后,在网关和设备图标的右小角,均会出现绿色圆点标识;

g) 右侧切换到 device PLC 指令页面,在指令输入框中(使用英文输入法)输入?,点击键盘 Enter 键,出现指令列表;

h) 找到 ipaddress-set 指令,复制其示例格式,将其中的 IP 内容修改为目标 IP, 点击键盘 Enter 键;

- i) 出现反馈结果"Setting ip address success, reboot to take effort",说明目标 IP 设置成功,需断电重启生效;
 - j) 重启后,再次修改电脑以太网 IP 到与当前控制器同网段;
 - k) 通过操作系统终端工具的 ping 指令,验证控制器 IP 修改效果;

I) 或通过 Codesys Development System IDE 工具,重新进行 device 扫描连接后,进入 PLC 指令页面,使用 ipaddress-get 指令查询控制器当前 IP。

6. 附录-变量地址