Assignment: Written Assignment 8

Name: Oleksandr Yardas

Due Date: 04/20/2018

List Your Collaborators:	
• Problem 1: None	
• Problem 2: None	
• Problem 3: Alicia Ledesma-Alonso	
• Problem 4: Not Applicable	
• Problem 5: Not Applicable	
• Problem 6: Not Applicable	

Problem 1: Let V be a vector space, and let $\vec{u_1}, \vec{u_2}, \ldots, \vec{u_n}, \vec{w_1}, \vec{w_2}, \ldots, \vec{w_m} \in V$. Assume that $(\vec{u_1}, \vec{u_2}, \ldots, \vec{u_n})$ is linearly dependent. Show that $(\vec{u_1}, \vec{u_2}, \ldots, \vec{u_n}, \vec{w_1}, \vec{w_2}, \ldots, \vec{w_m})$ is linearly dependent.

Solution: Let $\vec{u_1}, \vec{u_2}, \dots, \vec{u_n}, \vec{w_1}, \vec{w_2}, \dots, \vec{w_m} \in V$ be arbitrary. By definition, a sequence $(\vec{v_1}, \dots, \vec{v_n})$ is linearly dependent if there exists $c_1, \dots, c_n \in \mathbb{R}$ with $c_1\vec{u_1} + \dots + c_n\vec{u_n} = \vec{0}$ such that at least one c_i is nonzero. By assumption, we have that $(\vec{u_1}, \vec{u_2}, \dots, \vec{u_n})$ is linearly dependent, so by definition we can fix $a_1, a_2, \dots, a_n \in \mathbb{R}$ with $a_1\vec{u_1} + a_2\vec{u_2} + \dots + a_n\vec{u_n} = \vec{0}$ with at least one nonzero a_i . Now fix $b_1, b_2, \dots, b_m \in \mathbb{R}$ with $b_1 = b_2 = \dots = b_m = 0$. Notice that

$$a_{1}\vec{u_{1}} + a_{2}\vec{u_{2}} + \dots + a_{n}\vec{u_{n}}$$

$$+ b_{1}\vec{w_{1}} + b_{2}\vec{w_{2}} + \dots + b_{m}\vec{w_{m}} = a_{1}\vec{u_{1}} + a_{2}\vec{u_{2}} + \dots + a_{n}\vec{u_{n}} + \vec{0} + \vec{0} + \dots + \vec{0} \quad \text{(By Proposition 4.1.11)}$$

$$= a_{1}\vec{u_{1}} + a_{2}\vec{u_{2}} + \dots + a_{n}\vec{u_{n}} + \vec{0}$$

$$= \vec{0}$$

We conclude that $a_1\vec{u_1} + a_2\vec{u_2} + \cdots + a_n\vec{u_n} + b_1\vec{w_1} + b_2\vec{w_2} + \cdots + b_n\vec{w_n} = \vec{0}$. Because there is at least one nonzero a_i , by definition the sequence $(\vec{u_1}, \vec{u_2}, \dots, \vec{u_n}, \vec{w_1}, \vec{w_2}, \dots, \vec{w_n})$ is linearly dependent.

Problem 2: Let V be a vector space and let $\vec{u}, \vec{v}, \vec{w} \in V$. Assume that $(\vec{u}, \vec{v}, \vec{w})$ is linearly independent. Show that $(\vec{u} + \vec{v}, \vec{u} + \vec{w}, \vec{v} + \vec{w})$ is linearly independent.

Hint: Think carefully about how to start your argument. Remember that you want to prove that $(\vec{u} + \vec{v}, \vec{u} + \vec{w}, \vec{v} + \vec{w})$ is linearly independent, which is a "for all" statement.

Solution: Let $\vec{u}, \vec{v}, \vec{w} \in V$ be arbitrary and suppose that $(\vec{u}, \vec{v}, \vec{w})$ is linearly independent. By definition, for all $x, y, z \in \mathbb{R}$, if $x\vec{u} + y\vec{v} + z + \vec{w} = \vec{0}$, then x = y = z = 0. Let $a, b, c \in \mathbb{R}$ be arbitrary, and suppose that $a(\vec{u} + \vec{v}) + b(\vec{u} + \vec{w}) + c(\vec{v} + \vec{w}) = \vec{0}$. Notice that

$$a(\vec{u} + \vec{v}) + b(\vec{u} + \vec{w}) + c(\vec{v} + \vec{w}) = a\vec{u} + a\vec{v} + b\vec{u} + b\vec{w} + c\vec{v} + c\vec{w}$$
 (By Property 8 of vector spaces.)
$$= a\vec{u} + b\vec{u} + a\vec{v} + c\vec{v} + b\vec{w} + c\vec{w}$$

$$= (a+b)\vec{u} + (a+c)\vec{v} + (b+c)\vec{w}$$
 (By Property 8 of vector spaces)

So $a(\vec{u}+\vec{v})+b(\vec{u}+\vec{w})+c(\vec{v}+\vec{w})=(a+b)\vec{u}+(a+c)\vec{v}+(b+c)\vec{w}$. Because $a(\vec{u}+\vec{v})+b(\vec{u}+\vec{w})+c(\vec{v}+\vec{w})=\vec{0}$ (by assumption), it follows that $(a+b)\vec{u}+(a+c)\vec{v}+(b+c)\vec{w}=\vec{0}$. Because $(\vec{u},\vec{v},\vec{w})$ is linearly independent, it must be the case that (a+b)=0, (a+c)=0, and (b+c)=0. We have the following a system of linear equations in the variables a,b,c:

We use Gaussian elimination to find the solution set of this system:

$$\begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{pmatrix} -R_3 + R_2$$

$$\rightarrow \begin{pmatrix} 2 & 0 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{pmatrix} R_2 + R_1$$

$$\rightarrow \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{pmatrix} -\frac{1}{2}R_1 + R_2$$

$$\rightarrow \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} -R_2$$

$$R_2 + R_3$$

Notice that the above matrix is in echelon form and that there are no leading entries in the last column, so by Proposition 4.1.12 we conclude that there is a unique solution to the system, which is (a,b,c)=(0,0,0), so the solution set of the system is $S=\{(0,0,0)\}$. Because a,b,c were arbitrary, it follows that for all $a,b,c\in\mathbb{R}$, if $a(\vec{u}+\vec{v})+b(\vec{u}+\vec{w})+c(\vec{v}+\vec{w})=\vec{0}$ then a=b=c=0. This satisfies the definition of linearly independent sequence. Therefore $(\vec{u}+\vec{v},\vec{u}+\vec{w},\vec{v}+\vec{w})$ is linearly independent.

Problem 3: Let V be a vector space, and let $\vec{u_1}, \vec{u_2}, \dots, \vec{u_n}, \vec{w_1}, \vec{w_2}, \dots, \vec{w_m} \in V$. Assume that both $(\vec{u_1}, \vec{u_2}, \dots, \vec{u_n})$ and $(\vec{w_1}, \vec{w_2}, \dots, \vec{w_m})$ are linearly independent.

a. Give an example of this situation where $(\vec{u_1}, \vec{u_2}, \dots, \vec{u_n}, \vec{w_1}, \vec{w_2}, \dots, \vec{w_m})$ is linearly dependent.

Solution: Consider the following sequences of vectors in \mathbb{R}^2 :

$$\left(\begin{pmatrix}1\\0\end{pmatrix},\begin{pmatrix}0\\1\end{pmatrix}\right)$$

and

$$\left(\begin{pmatrix} 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 2 \end{pmatrix} \right)$$

Notice that $\begin{pmatrix} 1 \\ 0 \end{pmatrix} \notin \operatorname{Span} \begin{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} \end{pmatrix}$ and that $\begin{pmatrix} 0 \\ 1 \end{pmatrix} \notin \operatorname{Span} \begin{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \end{pmatrix}$. Applying Proposition 4.3.2, we conclude that $\begin{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \end{pmatrix}$ is linearly independent. By similar reasoning, we conclude that $\begin{pmatrix} \begin{pmatrix} 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 2 \end{pmatrix} \end{pmatrix}$ is linearly independent. Now consider the sequnce $\begin{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 2 \end{pmatrix} \end{pmatrix}$. Notice that we have 4 vectors in \mathbb{R}^2 . Applying Corollary 4.3.5, we conclude that $\begin{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 2 \end{pmatrix} \end{pmatrix}$ is linearly dependent.

b. Assume also that

$$\mathrm{Span}(\vec{u_1}, \vec{u_2}, \dots, \vec{u_n}) \cap \mathrm{Span}(\vec{w_1}, \vec{w_2}, \dots, \vec{w_m}) = \{\vec{0}\}.$$

Show that $(\vec{u_1}, \vec{u_2}, \dots, \vec{u_n}, \vec{w_1}, \vec{w_2}, \dots, \vec{w_m})$ is linearly independent.

Solution: If $(\vec{u_1}, \vec{u_2}, \dots, \vec{u_n}, \vec{w_1}, \vec{w_2}, \dots, \vec{w_m})$ is linearly independent, then by definition, for all $c_1, c_2, \dots, c_n, d_1, d_2, \dots, d_m \in \mathbb{R}$, if $c_1\vec{u_1} + \dots + c_n\vec{u_n} + d_1\vec{w_1} + \dots + d_m\vec{w_m} = \vec{0}$, then $c_1 = c_2 = \dots = c_n = d_1 = d_2 \dots = d_m = 0$. Let $c_1, c_2, \dots, c_n, d_1, d_2, \dots, d_m \in \mathbb{R}$ be arbitrary. Suppose that $c_1\vec{u_1} + \dots + c_n\vec{u_n} + d_1\vec{w_1} + \dots + d_m\vec{w_m} = \vec{0}$. Subtracting all the $d_j\vec{w_j}$ terms from the left hand side, we get $c_1\vec{u_1} + \dots + c_n\vec{u_n} = -d_1\vec{w_1} - \dots - d_m\vec{w_m}$. Suppose that $\operatorname{Span}(\vec{u_1}, \vec{u_2}, \dots, \vec{u_n}) \cap \operatorname{Span}(\vec{w_1}, \vec{w_2}, \dots, \vec{w_m}) = \{\vec{0}\}$. By definition of set intersection, we get $\{\vec{v} \in V : \vec{v} \in \operatorname{Span}(\vec{u_1}, \vec{u_2}, \dots, \vec{u_n}) \text{ and } \vec{v} \in \operatorname{Span}(\vec{w_1}, \vec{w_2}, \dots, \vec{w_m})\} = \{\vec{0}\}$, that is, $\vec{0}$ is the only vector that is a linear combination of $(\vec{u_1}, \vec{u_2}, \dots, \vec{u_n})$ that is also a linear combination of $(\vec{w_1}, \vec{w_2}, \dots, \vec{w_m})$. So by definition of linear combination, $c_1\vec{u_1} + \dots + c_n\vec{u_n} = -d_1\vec{w_1} - \dots - d_m\vec{w_m}$ implies that $c_1\vec{u_1} + \dots + c_n\vec{u_n} = -d_1\vec{w_1} - \dots - d_m\vec{w_m} = \vec{0}$. Because $(\vec{u_1}, \vec{u_2}, \dots, \vec{u_n})$ and $(\vec{w_1}, \vec{w_2}, \dots, \vec{w_m})$ are both linearly independent, we have that for all $c_1, c_2, \dots, c_n, d_1, d_2, \dots, d_m \in \mathbb{R}$ that $c_1 = c_2 = \dots = c_n = d_1 = d_2 = \dots = d_m = 0$. Because $c_1, c_2, \dots, c_n, d_1, d_2, \dots, d_m$ were arbitrary, the result follows.