老產鄉電大灣

学生实验实习报告册

学年学期:	_ 2020 - 2021学年 □春□秋学期		
课程名称:	信号处理实验		
学生学院:	通信与信息工程学院		
专业班级:	01011803		
学生学号:	2018210215		
学生姓名:	席卓林		
联系电话:	15825944392		

重庆邮电大学教务处制

课程名称	信号处理实验	课程编号	
实验地点	YF304	实验时间	10.19
校外指导		校内指导	邵凯
教师		教师	日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日
实验名称	系统响应及系统稳定性		
评阅人签	成绩		
字			以 切

一、实验目的

学会运用 MATLAB 求解离散时间系统的零状态响应;

学会运用 MATLAB 求解离散时间系统的单位取样响应;

学会运用 MATLAB 求解离散时间系统的卷积和。

二、实验原理

MATLAB 中函数 filter 可对差分方程在指定时间范围内的输入序列所产生的响应进行求解。函数 filter 的语句格式为 y=filter(b,a,x)

其中, x 为输入的离散序列; y 为输出的离散序列; y 的长度与 x 的长度一样;

b 与 a 分别为差分方程右端与左端的系数向量。

系统的单位取样响应定义为系统在 d (n)激励下系统的零状态响应,用 h(n)

表示。MATLAB 求解单位取样响应可利用函数 filter,并将激励设为单位抽样

序列。

离散时间信号的卷积运算是求和运算,因而常称为"卷积和"。

MATLAB 求离散时间信号卷积和的命令为 conv, 其语句格式为 y=conv(x,h)

其中, x 与 h 表示离散时间信号值的向量; y 为卷积结果。用 MATLAB 进行卷

```
积和运算时, 无法实现无限的累加, 只能计算时限信号的卷积。
三、实验程序及结果分析
1. (1)
代码
a = [3 4 1];
b = [11];
n = 0:15;
x = (n==0);
h =filter(b,a,x);
stem(n,h,'fill')
grid on
xlabel('n')
title('系统单位取样响应h(n)')
1. (2)
a = [5/2 6 10];
b = [1];
n = 0:30;
x = (n==0);
h =filter(b,a,x);
stem(n,h,'fill')
grid on
xlabel('n')
title('系统单位取样响应(n)')
2.
```

```
nx = -1:5;
nh = -2:10;
x = uDT(nx) - uDT(nx-5);
h = (7/8).^nh.*(uDT(nh)-uDT(nh-10));
y = conv(x,h);
ny1 = nx(1) + nh(1);
ny2 = nx(end) + nh(end);
ny = ny1:ny2;
subplot(3,1,1)
stem(nx,x,'fill')
grid on ,xlabel('n'),title('x(n)')
axis([-4 16 0 3])
subplot(3,1,2)
stem(nh,h,'fill')
grid on ,xlabel('n'),title('h(n)')
axis([-4 16 0 3])
subplot(3,1,3)
stem(ny,y,'fill')
grid on ,xlabel('n'),title('y(n)=x(n)*h(n)')
axis([-4 16 0 4])
```


四、思考题

```
n = 0:11;
nx = [3,11,7,0,- 1,4,2];
ny = [2,3,0,- 5,2,1];
y = conv(nx,ny);
stem(n,y)
grid on
```


