1. Introduction 1.1 Discrete Event System mop y: T -> T > maybe continuous or discrete bt e T consider discrete valued signals often generated by quantization process $Y: IR^t \longrightarrow IR^t$ Example J quantized signal: ydl: 18t ->

Discrete Event System (DES): All signals are discrete-valued (sequence of timed/logical discrete event):

input, autput, internal signals.

timed DES

untimed / logical DES

- · Petri net method
- "nethod based on formal Clanguage I finite automate)

Introductory example: 3 desks Room (4 chairs (P) number of desks n room 1 events (7) room 2

2 person carry 1 desk 1 person carry 1 chair

2. | Petri Net Graph

Def: A Petri net graph is a direct bipartite graph

> node set partial into

arc weight N = CP, T, E, WWhen P = Sp, ..., pn finite set of places

The first set of places $T = \{t_1, ..., t_n\} \quad \text{finite set of transitions}.$ $E \subseteq (P \times T) \cup (T \times P) \quad \text{set of direct arcs} \mid \text{edges}.$

 $W: E \rightarrow IN...$ Weight function $\{1, 2, 3...\}$

graphical representation:

Remark: often alternative definition of weight function

$$W: (P \times T) \cup (T \times P) \longrightarrow |N_6 = \{0, 1, 2...\}$$

Then: E determined by $W: \frac{\text{corresponding to } W}{\text{E} = \{(Pi, tj) \mid W(Pi, tj) \} \mid V\{(tj, Pi) \mid W(tj, Pi) \} \mid Y$

<.2	Unamics .			
	Lynamics Out to its		1	
Defentation: A	t Petri Net is	a pair (N, X),	where	
1.	N = LP.T.t	= .W) graph		
2	$X^{\circ} = 1 N_{o}^{n}$, n	= 1P1 v	ector of initial	markinas
•	, , , , , , , , , , , , , , , , , , , ,	I,	TO WARE	K.J.
	$N = (P - T, t)$ $X^{\circ} = N_{\circ} ^{n}, n$	cardinality of set	p vise i	10904
graphical represent	fation: e.g. X_i^0	= 4	Ne have 4 to	phans initial Pi
Tatorproted:	a dillaria c	ustom with state	2 2201 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	→ /1. ⁿ
Interpreted:	u dynamic s	15121 Wun 51416	synar y . ///o	IIVo
	and initial s	ysten with state tutes $\chi(o) = \chi^{\circ}$		
		cox 1	past 1 deck 2 pason	s in room; for event
dynamic determinal	hu two rules :1.	whether transition	can actually occu	ur taking plan
Jacob Control		=> X: (b) ≥ +h	n 14/1 AP: 4:)	1 J T
	by two rules :1.	- yuler - And	e Negrito)	VIL CILGI
	2.'- - W(pi, tj)+	occurance ("firing".) of transition ?	ty changes the
		number of token	s in place Pi	according to:
/Xilk)	- W (Pi, 1/1) +	w (di Di) it	$A = \int_{a}^{b} dx $	Octi)
	7.77	We 9,70, 9	700 - 11/1	,,
Xi			not	
(Xi(k)	- W (pi, tj),	J P	$i \in I(4j) \setminus \frac{n\alpha}{0(4j)}$)
	I V	1	0 0	
			0 \ 7	
Xi(k)	+ WLtj. Pi),	if Pi	t 0(ty) \ I (t	7)
	UII	7 1	• •	l
		,		
(Xilk)		elsi	E	**

**

Jornally: transition function: $f: \mathbb{N}^n \times T \longrightarrow \mathbb{N}^n$ new state

old state Transition

j is a partial function

f(x(k), tj) is defined if rule | holds

If f(x(k), tj) is defined, then f(x(k), tj) = xi(k) is given by rule 2 (i=1,2,...)

in the following steps, only to can happen a dead lock

Lecture 2 N... Petri net graph PN: LP, T, E, W, X, X° EIN." n=1P1

place transition (PXT) U(TXP) W: E >11 Interpret Petri Net as a Dynamical System # state space /No" | N=1P|
initial state ×(0)=×° # state evolution governed by 2 rules (1) ty is enabled in state x(k), the state after firing of a transition $\iff x_i(k) \ge w(p_i, t_j)$. $\forall p_i \in I(t_j)$ $\begin{array}{c} \left(\begin{array}{c} X_{i}(k) \uparrow W(tj.\ p_{i}) - W(p_{i}.tj), \ \text{if} \ p_{i} \in \underline{I}(tj) \cap O(tj) \\ X_{i}(k) + W(tj.\ p_{i}) \\ X_{i}(k) + W(tj.\ p_{i}) \\ \end{array}\right), \ \text{if} \ X_{i}(k) \in \underline{O}(tj.) \setminus \underline{I}(tj.) \\ \left(\begin{array}{c} X_{i}(k) - W(p_{i}.tj) \\ \end{array}\right), \ \text{if} \ X_{i}(k) \in \underline{I}(tj.) \setminus \underline{O}(tj.tj) \\ \end{array}$, if xick) ∈ Octy)\Icty) , if $x_{i(k)} \in I(t_j) \setminus O(t_j)$ xi(k) n is the number of places

A \in N.

More than it is the number of transitions

With element $\overline{aij} = \sum_{i=1}^{N} (p_i, t_j)$, if $(p_i, t_j) \in E$ O. else

W(t), p_i) if $(t_j, p_i) \in E$ O, else

... number of token that p_i gains, if t_j fired # partial transition function $f: W_0^r \times 7 \longrightarrow W^r$

$$A := A^{\dagger} - A^{-} \in \mathbb{Z}^{n \times m}$$
 incidence matrix of the Petri Net with element $a_{ij} = a_{ij} - a_{ij}$

- · ty can fire a certain state x(n) = x(n) = (oly (A-)

 = A- uy

 element vector

 j-th whit vector
- . If ty is enabled in xik), then the new state xikn) = f(xik), ty) = xik)+colicals = xck)+Aug

$$A = A^{+} - A^{-} = \begin{bmatrix} -1 & 0 & -1 \\ 1 & 0 & 0 \\ 1 & -1 & -1 \\ 0 & 1 & -1 \end{bmatrix}$$

$$X^{\circ} \geqslant col.(A^{-}) \rightarrow t$$
, enabled.

$$N \neq (al_{2}(A^{-}) \rightarrow t_{2} \text{ not enabled}$$

$$X^{\circ} \neq cols(A^{-}) \longrightarrow t_{3}$$
 not enabled

$$X(1) = \int (x_1(0), t_1(0)) = X(0) + col_1(A^{-1}) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$N = (P, T, E, w) \iff A^{T}, A^{T} \iff A^{T}, A$$

a new Atansition D

to ben in P4 means customers having been served boistered to
post office.

"Customer depost/leave"

$$t_{1} = Q$$

$$t_{2} = S$$

$$t_{3} = S$$

$$t_{4} = C$$

$$t_{5} = C$$

$$t_{7} = C$$

$$t_{1} = C$$

$$t_{1} = C$$

$$t_{2} = C$$

$$t_{3} = C$$

$$t_{4} = C$$

$$t_{5} = C$$

$$t_{7} = C$$

$$t_{7} = C$$

$$t_{7} = C$$

$$t_{8} = C$$

$$t_{1} = C$$

$$t_{2} = C$$

$$t_{3} = C$$

$$t_{4} = C$$

$$t_{1} = C$$

$$t_{1} = C$$

$$t_{2} = C$$

$$t_{3} = C$$

$$t_{4} = C$$

$$t_{4} = C$$

$$t_{5} = C$$

$$t_{7} = C$$

$$t_{7$$

2.3 Special Classes of Petri Nets synchronization graph (event graph) the point Pi only have one # |I(pi) | = | ((pi) | = | Vpi & P input and one output # N(Pi.tj)=1 V (Pi, ty) ∈ E a cycle W(tj. Pi) =1 V (tj. Pi) € E Example; # cannot model conflicts/decision (enable several t fire at the same time) ("decision free" Petri Net) # model synchronization may have several input places · state machine # |Icti) | = 10cti) =1 Vtg e J # W(pi.tj)=| V(pi.tg)+E W(g, Pi)=1 & (ty, Pi) E # cannot model synchronization # model contract

2.4 Analysis of Petri Nets.

2.4.1 Petro Net Properties

$$T = \{t_1, \dots, t_m\}$$
 transition net

T* ... set of all finate strings from T

("Kleene closure")

 $T^{*} = \left\{ \begin{array}{l} \mathcal{Z}, \quad t_{1}, \dots, t_{m}, \quad t_{1}, t_{2}, t_{1}, t_{2}, \dots, t_{m}, \quad t_{n}, \quad t_{n}, t_{n}, t_{n}, \dots \right\}$ string of string of string of length 1 length 2

 $f: \mathcal{N}_{o}^{n} \times J^{k} \rightarrow \mathcal{N}_{o}^{n}$ $f(x^{o}, \Sigma) = x^{o}$ $f(x^{o}, t_{i_{1}}...t_{i_{k}}) = f(...(f(f(x_{o}, t_{i_{1}}), t_{i_{2}}), t_{i_{3}}),t_{i_{n}})$

a) Reachability

Def: A state $x^{1} \in \mathbb{N}_{0}^{n}$ of Petri net (N, x^{e}) is reachable, if there exists a string $S \in T^{*}$ such that $x^{1} = f(x^{e}, s)$

R(N, x°): the set of reachable state of (N, x°)

b) Boundedness.

Def: $Pi \in P$ is bounded if $\exists k \in /N_0$ such that $x_i \leq k \forall x^l \in R(N, x^o)$ a property refer to one or several places (N, x^o) is bounded if all the places are bounded obvious: (N, x^o) bounded $(\Rightarrow) R(N, x^o)$ is finite.

٠	•	
		_