Road Investments, Spatial Intensification and Deforestation in the Brazilian Amazon

Alexander Pfaff, Juan A. Robalino, Robert Walker, Eustaquio Reis, Stephen Perz, Claudio Bohrer and Steve Aldrich

> LBA-ECO 9th Science Team Meeting 2005 Sao Paulo, SP, Brazil

Question

- We found: new paved roads in a census tract ⇒ higher deforestation rate in that specific tract (using 6000+ observations for any point in time)
- Andersen et al.: new paved roads reduce rate of clearing in a highly previously cleared *municipio* (by interaction term, though < 300 observations)
- Could both be true, since these scales differ ? if paving reduces clearing in nearby tracts.
- Question: do new paved roads within a given tract reduce deforestation in neighboring tracts?

Why might neighboring deforestation change?

- The paving of roads reduces transport costs between regions. This might lead to all of:
 - changes in prices
 - facilitates migration
 - accessibility of new technology.
- The above might affect neighboring areas too:
 - Reducing deforestation in those areas is possible
 - -- Intensification of Agriculture and Migration
 - Increasing deforestation in those areas is also
 - -- Spillovers of Agricultural Profits

Empirical analysis of roads

Roads increase deforestation significantly:

- Time to Market, Western Brazil (Vosti et al. 2002)
- Cost of Access to Road, Mexico (Nelson & Hellerstein 1997)
- Dist. to roads, Amazon, (Mertens et al. 2002)
- Dist. to markets in road network, N.Thai. (Cropper et al. 01)
- Review of literature (Angelsen and Kaimowitz 1999)
- Dist. to roads, Ecuador (Greenberg et al. 2005)
- Dist. To markets, road network Mexico (Vance and Geoghegan 02)
- Dis. To roads and then markets, Belize, (Chomitz and Gray 1996)

Non-significant and/or non-robust results

- Road Density (Km/h), Mexico, (Barbier 2002)
- → Magnitude of the effect low, Panama, (Nelson et al. 2004)
- Distance to Roads mixed results Bolivia (Mertens et al. 04)
- Road Density mixed results Thailand (Cropper et al 1999)
- Length of Roads, Ecuador (Southgate et al. 1991)
- Distance to Roads, Vietnam (Muller and Munroe 2005)
- % of Area (50km from Roads), Amazon (Chomitz and Thomas 03)

Spatial & Spillover Stories

Intensification might decrease deforestation:

- Roads do not affect efficiency, Amazon (Camargo 2005)
- Roads increase agricultural Intensification, Ghana (Braimoh and Vlek 2005)
- Effects of intensification on deforestation are ambiguous, theoretical (Van Soest et al. 2002)

Spillover effects

- Neighboring Roads increase deforestation Amazon at municipality level (Pfaff, 1999)
- Neighbors Deforestation increase deforestation, Costa Rica (Robalino and Pfaff 2005)

Strategy

- Empirical Analysis, as theoretical sign of effect unclear
- Null Hypothesis: road paving within one census tract does not affect deforestation rate in neighboring CTs.
- Alternative Hypotheses:
 - paving increases deforestation in neighboring CTs
 - paving decreases deforestation in neighboring CTs
- Basic Approach: measure the density of road paving during 68-75 in each neighborhood & test if it is correlated with deforestation in 76-87.
- Sample: Census Tracks without paved roads

Roads Viewed As In A Municipio

Roads Viewed As In A Tract

Roads Viewed As In A Tract & Same-Municipio Tracts These Roads Might Affect

Regression Analysis

Dependent Variable

hazard rate of deforestation in a census track

Independent Variables of interest

 density of new paved roads in Census Tracks within 100k, 200k, 300k, 400k rings, and more than 500k, all within same municipio (to address prior result)

Independent Variables used as controls

"> % of original forest already cleared, distances to significant cities, distance to rivers, total rainfall, land slope category, and an index of soil quality

Empirical Challenges

Possible Causality Issues

- endogeneity of roads complicates inference (see various discussions, e.g. Chomitz and Gray 1996, and at micro/household level, Arima et al. 2005)
- spatial correlation can also confound inference

Helping to address these issues:

- use a lagged measure of road changes
- inclusion of spatial controls

Results

New Paved Roads	
Distance	Beta
0-100	124.8***
100-200	-137.6**
200-300	198.8***
300-400	519.8***
400-500	21.1
>500	-7.9

*** and ** represent 99% and 95% of significance respectively

New paved Road Net Effect on Neighboring CT Positive

Projections

- We have two results:
 - New Roads (68-75) affected deforestation (75-86) in own Census Tracks
 - New Roads (68-75) affected deforestation (75-86) in neighboring Census Tracks.
- We estimate possible deforestation scenarios with the first result

$$Y_{(76-87)} = \beta_1 \times NPR_{75} + \beta_2 \times X_2 + \beta_3 \times X_3 + \dots$$

$$Y_{(87-98)} = \beta_1 * NPR_{87} + \beta_2 * X_2 + \beta_3 * X_3 + ...$$

Places where deforestation (87-98) would have been projected due to new paved roads (75-87)

Summary

- Roads have spillover effects.
- These effects depend on distance
- The net effect is positive within Municipios

 We can create deforestation scenarios using many dynamic factors.

Future Work

- For Spillover effects from Roads
 - Spatial Correction and endogeneity
 - Paving effects measured by distances

- For Projection of Scenarios
 - Update other important dynamic variables such as population
 - Adding more years