#12: Constraint Solving

Sankha Narayan Guria

EECS 700: Introduction to Program Synthesis

Why do we care?

- 1. Synthesis is combinatorial search, and so is SAT/SMT
- 2. SAT/SMT solvers are really good these days
- 3. ??? ← this week
- 4. Profit!!!

Boolean SATisfiability

gin V tonic

Solution:

minor \mapsto T $gin \mapsto F$ $tonic \mapsto T$

Satisfiability Modulo Theories

(gin V tonic) Λ (age < 21 \Rightarrow abv = 0) Λ (age = 20)

In the United States, "gin" is defined as an ABV... alcoholic beverage of no less than 40% Wikipedia

Satisfiability Modulo Theories

Popular Solvers

SMT-LIB

Uniform format for SMT problems understood by all solvers

```
(declare-fun age () Int)
(declare-fun abv () Int)
(declare-fun gin () Bool)
(declare-fun tonic () Bool)
(assert (or gin tonic))
(assert (implies (< age 21) (= abv 0)))
(assert (= age 20))
(assert (implies gin (>= abv 40)))
(check-sat)
(get-model)
```

Problem: Array Partitioning

Partition an array of size N evenly into P sub-ranges

Problem: Array Partitioning

Partition an array of size N evenly into P sub-ranges

Problem: Array Partitioning

Partition an array of size N evenly into P sub-ranges

Can we always make them differ by at most 1?

Z3

to the rescue!

code: https://github.com/nadia-polikarpova/smt-talk

Let's generalize this into a program!

A program for partitioning

for i in range(P):
 if i < K:
 sz[i] = n/P + 1
 else:
 sz[i] = n/P</pre>

I want this program to work for all *n*! What should my *K* be?

A program for partitioning

How do I prove that this program works for all *n*?

```
for i in range(P):
   if i < K:
      sz[i] = n/P + 1
   else:
      sz[i] = n/P</pre>
```


Verification with SMT

```
for i in range(P):
   if i < K:
      sz[i] = n/P + 1
   else:
      sz[i] = n/P</pre>
```

want: prove $\forall n. spec(n)$

have: solve $\exists n. prop(n)$

idea: solve for counterexamples!

$$\exists n. \neg spec(n)$$

 $\forall n. \sum sz = n$

$$\exists n. \sum sz \neq n$$