Coordenadas Polares e Área em Coordenadas Polares

Coordenadas Polares

Um sistema de coordenadas representa um ponto no plano por um par ordenado de números chamados coordenadas. Até agora usamos as **coordenadas cartesianas**, que são distâncias orientadas a partir de dois eixos perpendiculares. Entretanto, existem outros sistemas de coordenadas possíveis para o plano.

Vamos apresentar um sistema de coordenadas, introduzido por Newton, denominado **sistema de coordenadas polares**, que é mais conveniente para muitos propósitos.

Definição: O sistema de coordenadas polares é constituído por:

- um ponto fixo O = polo (ou origem)
- uma semirreta fixa na origem O = eixo polar

Se P é um ponto do plano, então ele pode ser representado em coordenadas polares por (r, θ) , onde:

- r = comprimento de OP
- θ = ângulo entre o segmento OP e o eixo polar

Observações:

- (1) A orientação positiva de θ é a do sentido anti-horário a partir do eixo polar.
- (2) Se r = 0, o ponto $P = (0, \theta)$ coincide com o polo, para qualquer valor de θ .
- (3) Se r < 0, os pontos $(-r, \theta)$ e (r, θ) estão na mesma reta passando por O, estão à mesma distância |r| de O, mas em lados opostos de O.

(4) Se $P = (r, \theta)$, então dizemos que r e θ são as coordenadas polares de P. Alguns autores utilizam a notação com ponto e vírgula $(r; \theta)$ para representar as coordenadas polares de um ponto.

Exemplo: Marque, no plano polar, os pontos cujas coordenadas polares são dadas por:

(a)
$$\left(1, \frac{5\pi}{4}\right)$$

(b)
$$(2,3\pi)$$

(c)
$$\left(2, \frac{-2\pi}{3}\right)$$

(a)
$$\left(1, \frac{5\pi}{4}\right)$$
 (b) $(2, 3\pi)$ (c) $\left(2, \frac{-2\pi}{3}\right)$ (d) $\left(-3, \frac{3\pi}{4}\right)$

Solução:

(b)
$$(2,3\pi) \qquad 0$$

Observação: No sistema de coordenadas cartesianas cada ponto tem uma única representação, mas no sistema de coordenadas polares cada ponto tem *muitas representações*.

De fato, como uma rotação completa no sentido anti-horário por um ângulo é 2π , então o ponto representado pelas coordenadas polares (r, θ) é também representado por

$$(r, \theta + 2k\pi)$$
 ou $(-r, \theta + (2k+1)\pi)$, com k inteiro.

Por exemplo, o ponto $\left(1,\frac{5\pi}{4}\right)$, pode ser escrito também como $\left(1,\frac{-3\pi}{4}\right)$, $\left(1,\frac{13\pi}{4}\right)$ ou $\left(-1,\frac{\pi}{4}\right)$.

Relação entre coordenadas cartesianas e coordenadas polares

É muito importante relacionarmos as coordenadas cartesianas e as coordenadas polares. Essa relação é dada pelo teorema abaixo:

Teorema: Considere um plano munido do Sistema de Coordenadas Cartesianas Ortogonais e do Sistema de Coordenadas Polares, nos quais os eixos polar e das abscissas coincidem. Então, as coordenadas cartesianas (x, y) e as coordenadas polares (r, θ) de um mesmo ponto P satisfazem:

$$\begin{cases} x = r\cos\theta \\ y = rsen\theta \end{cases}$$

Podemos visualizar essas relações através da figura abaixo.

Das relações trigonométricas, temos que:

$$\cos \theta = \frac{x}{r} \text{ e } sen \theta = \frac{y}{r} \Rightarrow \begin{cases} x = r\cos \theta \\ y = rsen \theta \end{cases}$$

Observações:

- (1) As equações $x = r\cos\theta$ e $y = r\sin\theta$ nos permitem encontrar as coordenadas cartesianas de um ponto quando as coordenadas polares são conhecidas.
- (2) Para encontrarmos r e θ quando x e y são conhecidos, usamos as equações

$$r^2 = x^2 + y^2 e tg \theta = \frac{y}{x}$$

e observamos à qual quadrante o ponto pertence, para obter um valor para θ .

Exemplos:

(1) Se P é representado por $P = \left(4, \frac{5\pi}{6}\right)$ em coordenadas polares, encontre as suas coordenadas cartesianas.

Solução: Temos que r = 4 e $\theta = \frac{5\pi}{6}$. Logo,

$$x = r\cos\theta = 4\cos\left(\frac{5\pi}{6}\right) = 4\left(-\frac{\sqrt{3}}{2}\right) = -2\sqrt{3}$$

 $y = rsen \theta = 4sen\left(\frac{5\pi}{6}\right) = 4\left(\frac{1}{2}\right) = 2.$

Portanto, $P(-2\sqrt{3}, 2)$.

(2) Dado o ponto P = (1,1) em coordenadas cartesianas, obtenha suas coordenadas polares.

Solução: Temos que

$$r^2 = x^2 + y^2 \Rightarrow r = \sqrt{1^2 + 1^2} = \sqrt{2}$$

$$tg \theta = \frac{y}{x} \Rightarrow tg \theta = \frac{1}{1} = 1.$$

Como P=(1,1) pertence ao primeiro quadrante e $\operatorname{tg}\theta=1$, segue que $\theta=\frac{\pi}{4}$ radianos. Logo, em coordenadas polares, temos $P\left(\sqrt{2},\frac{\pi}{4}\right)$.

P(1,1) em coordenadas cartesianas P($\sqrt{2}$; $\pi/4$) em coordenadas polares

Curvas e Funções em Coordenadas Polares

À semelhança do que ocorre no plano cartesiano, uma equação nas variáveis polares r e θ pode representar uma curva no plano polar. Quando é possível colocar r em função de θ , ou seja, quando é possível isolar r, temos uma função $r = f(\theta)$ em coordenadas polares. Obviamente, podemos traçar curvas ou gráficos de funções no plano polar.

Exemplo: Determine a equação cartesiana e identifique o gráfico da curva polar $r = 4sen \theta$.

Solução: Temos que

$$r^2 = x^2 + y^2 \Rightarrow r = \sqrt{x^2 + y^2}$$

$$y = rsen \ \theta \Rightarrow sen \ \theta = \frac{y}{r} = \frac{y}{\sqrt{x^2 + y^2}}.$$

Logo,

$$r = 4sen \ \theta \Leftrightarrow \sqrt{x^2 + y^2} = 4 \frac{y}{\sqrt{x^2 + y^2}}$$
$$\Leftrightarrow \left(\sqrt{x^2 + y^2}\right)^2 = 4y$$
$$\Leftrightarrow x^2 + y^2 - 4y = 0.$$

Completando quadrado na variável y, obtemos:

$$x^{2} + y^{2} - 4y = 0 \Leftrightarrow x^{2} + y^{2} - 4y + 4 = 4$$
$$\Leftrightarrow x^{2} + (y - 2)^{2} = 2^{2}$$

Logo, a equação descreve uma circunferência de centro $\mathcal{C}(0,2)$ e raio 2.

Curvas ou Gráficos em Coordenadas Polares

Para auxiliar no desenho de curvas dadas por equações em coordenadas polares, vamos utilizar alguns testes de simetria.

Simetrias

(1) Em relação ao eixo polar

Se o gráfico é simétrico em relação ao eixo polar, então a equação não se altera quando trocamos θ por $-\theta$.

Se $r = f(\theta)$, então $f(-\theta) = f(\theta)$.

(2) Em relação à reta $\theta = \frac{\pi}{2}$

A equação não se altera quando trocamos θ por $\pi - \theta$.

Se $r = f(\theta)$, então $f(\pi - \theta) = f(\theta)$.

Exemplo: Faça um esboço das seguintes curvas polares:

(a)
$$r = 3$$

(b)
$$r = 1 + \cos \theta$$

(c)
$$r = 4\cos(2\theta)$$

Solução:

(a) A equação r=3 representa uma circunferência de centro na origem e raio 3.

De fato, veja que $r = 3 \Leftrightarrow r^2 = 9 \Leftrightarrow x^2 + y^2 = 9$.

(b) Seja
$$r = f(\theta) = 1 + \cos \theta$$
.

• Simetria em relação ao eixo polar: Veja que

$$f(-\theta) = 1 + \cos(-\theta)$$
$$= 1 + \cos(\theta) = f(\theta)$$

Logo, a curva é simétrica em relação ao eixo polar.

• Simetria em relação à reta $\theta = \frac{\pi}{2}$: Veja que

$$f(\pi - \theta) = 1 + \cos(\pi - \theta)$$

$$= 1 + \cos(\pi)\cos(\theta) + \sin(\pi)\sin(\theta)$$

$$= 1 - \cos(\theta)$$

$$\neq f(\theta)$$

Logo, a curva <u>não é simétrica</u> em relação à reta $\theta = \frac{\pi}{2}$.

$$\cos(a-b) = \cos(a)\cos(b) + sen(a)sen(b)$$

Vamos construir o gráfico para $0 \le \theta \le \pi$ e utilizar a reflexão em relação ao eixo polar para completar o gráfico.

θ	$r = 1 + \cos \theta$
0	$1 + \cos(0) = 1 + 1 = 2$
$\frac{\pi}{6}$	$1 + \cos\left(\frac{\pi}{6}\right) = 1 + \frac{\sqrt{3}}{2} \approx 1,87$
$\frac{\pi}{4}$	$1 + \cos\left(\frac{\pi}{4}\right) = 1 + \frac{\sqrt{2}}{2} \approx 1,71$
$\frac{\pi}{3}$	$1 + \cos\left(\frac{\pi}{3}\right) = 1 + \frac{1}{2} = 1,5$
$\frac{\pi}{2}$	$1 + \cos\left(\frac{\pi}{2}\right) = 1 + 0 = 1$
$\frac{2\pi}{3}$	$1 + \cos\left(\frac{2\pi}{3}\right) = 1 + \left(-\frac{1}{2}\right) = 0,5$
$\frac{3\pi}{4}$	$1 + \cos\left(\frac{3\pi}{4}\right) = 1 + \left(-\frac{\sqrt{2}}{2}\right) \approx 0,29$
$\frac{5\pi}{6}$	$1 + \cos\left(\frac{5\pi}{6}\right) = 1 + \left(-\frac{\sqrt{3}}{2}\right) \approx 0, 13$
π	$1 + \cos(\pi) = 1 + (-1) = 0$

O gráfico de $r=1+\cos(\theta)$ é uma curva chamada cardioide.

(c) Seja
$$r = f(\theta) = 4\cos(2\theta)$$
.

• Simetria em relação ao eixo polar: Veja que

$$f(-\theta) = 4\cos(-2\theta)$$
$$= 4\cos(2\theta) = f(\theta)$$

Logo, a curva é simétrica em relação ao eixo polar.

• Simetria em relação à reta $\theta = \frac{\pi}{2}$: Veja que

$$f(\pi - \theta) = 4\cos(2(\pi - \theta))$$

$$= 4\cos(2\pi - 2\theta)$$

$$= 4\left[\cos(2\pi)\cos(2\theta) + sen(2\pi)sen(2\theta)\right]$$

$$= 4\cos(2\theta)$$

$$= f(\theta)$$

 $\cos(a-b) = \cos(a)\cos(b) + sen(a)sen(b)$

Logo, a curva é simétrica em relação à reta $\theta = \frac{\pi}{2}$.

Vamos construir o gráfico para $0 \le \theta \le \frac{\pi}{2}$ e utilizar as reflexões para completar o gráfico.

θ	$r = 4\cos(2\theta)$
0	$r = 4\cos(2\cdot 0) = 4\cdot\cos 0 = 4\cdot 1 = 4$
$\frac{\pi}{12}$	$4\cos\left(\frac{2\pi}{12}\right) = 4\cos\left(\frac{\pi}{6}\right) = 4\cdot\frac{\sqrt{3}}{2}\approx 3,46$
$\frac{\pi}{8}$	$4\cos\left(\frac{2\pi}{12}\right) = 4\cos\left(\frac{\pi}{6}\right) = 4\cdot\frac{\sqrt{2}}{2}\approx 2,82$
$\frac{\pi}{6}$	$4\cos\left(\frac{2\pi}{6}\right) = 4\cos\left(\frac{\pi}{3}\right) = 4\cdot\frac{1}{2} = 2$
	$4\cos\left(\frac{2\pi}{4}\right) = 4\cos\left(\frac{\pi}{2}\right) = 4 \cdot 0 = 0$
$\frac{\pi}{4}$ $\frac{\pi}{3}$	$4\cos\left(\frac{2\pi}{3}\right) = 4\left(-\frac{1}{2}\right) = -2$
$\frac{3\pi}{8}$	$4\cos\left(\frac{2\cdot 3\pi}{8}\right) = 4\cos\frac{3\pi}{4} = 4\cdot\left(-\frac{\sqrt{2}}{2}\right) \approx -2,82$
<u>5π</u> 12	$4\cos\left(\frac{2\cdot 5\pi}{12}\right) = 4\cos\left(\frac{5\pi}{6}\right) = 4\left(-\frac{\sqrt{3}}{2}\right) \approx -3,46$
$\frac{\pi}{2}$	$4\cos\left(\frac{2\cdot\pi}{2}\right) = 4\cos\pi = 4\cdot(-1) = -4$

O gráfico de $r=4\cos(2\theta)$ é uma curva chamada rosácea de 4 pétalas.

Exemplos de Curvas Polares

- (1) Retas: no plano polar, o lugar geométrico dos pontos $P = (r, \theta)$ tais que:
 - $\circ \theta = k$ é uma reta passando pelo polo.
 - o $rcos \theta = k$ é uma reta perpendicular ao eixo polar.

 $\circ rsen \theta = k$ é uma reta paralela ao eixo polar.

 $(k \in \mathbb{R} \text{ constante})$

$$\theta = \frac{\pi}{4}$$

(2) Circunferências: no plano polar, o lugar geométrico dos pontos $P = (r, \theta)$ tais que:

o $r = k \ (k \neq 0 \text{ constante real})$ é uma circunferência de centro no polo e raio |k|.

o $r = k\cos\theta, k \neq 0$, é uma circunferência de centro no eixo polar e raio $\left|\frac{k}{2}\right|$.

o $r=ksen~\theta, k\neq 0$ é circunferência de centro na reta perpendicular ao eixo polar passando pelo

pólo e raio $\left|\frac{k}{2}\right|$.

$$r = sen \; \theta \; \left(ext{circunferência de centro cartesiano} \left(0, rac{1}{2}
ight) ext{ e raio} \; rac{1}{2}
ight)$$

(3) Espirais: no plano polar, o lugar geométrico dos pontos $P = (r, \theta)$ tais que:

o $r = k\theta$ ($k \neq 0$ constante real) é uma Espiral de Arquimedes.

o $r = \frac{k}{\theta}$, $k \neq 0$, é uma Espiral Hiperbólica.

 $\circ r = k^{c\theta}, k > 0, k \neq 1, c \neq 0$ é uma Espiral Logarítmica.

 $\circ r = k\sqrt{\theta}, k \neq 0$ é uma Espiral Parabólica.

 $r = \theta$ (Espiral de Arquimedes)

(4) Rosáceas: no plano polar, o lugar geométrico dos pontos $P = (r, \theta)$ tais que:

o $r = kcos(n\theta)$ $(k \neq 0 \text{ constante real}, n \geq 2 \text{ constante inteira})$ é uma rosácea de 2n laços, quando n é par, e n laços, quando n é impar.

o $r = ksen(n\theta)$ é uma rosácea com as mesmas considerações acima.

$$r = \cos(2\theta)$$

(5) Limaçons: no plano polar, o lugar geométrico dos pontos $P = (r, \theta)$ tais que:

o $r = k + l\cos(\theta)$ $(k, l \neq 0 \text{ constantes reais})$ é um limaçon (do latim limax, que significa caracol). Quando |k| < |l| o limaçon apresenta um "bico" e é, também, chamado de cardioide, devido ao formato de coração.

o $r = k + lsen(\theta)$ é um limaçon com as mesmas considerações acima.

 $r = 1 - \cos(\theta) \ (Cardioide)$

(6) Lemniscatas: no plano polar, o lugar geométrico dos pontos $P = (r, \theta)$ tais que:

o $r^2 = k\cos(2\theta)$ ($k \neq 0$ constante real), com θ variando em intervalos nos quais o segundo membro é positivo, é uma lemniscata (do latim lmniscus, que significa faixa suspensa). o $r^2 = ksen(2\theta)$ é uma lemniscata com as mesmas considerações acima.

$$r^2 = 4 \operatorname{sen}(2\theta)$$

Área em Coordenadas Polares

Consideremos uma curva em coordenadas polares dada por $r = f(\theta)$, sendo f não negativa em $[\alpha, \beta]$. Queremos calcular a área A da região delimitada pela curva $r = f(\theta)$ e pelas retas $\theta = \alpha$ e $\theta = \beta$.

Vamos usar a mesma ideia de aproximação de áreas por Somas de Riemann que foi feita para o cálculo de áreas no sistema de coordenadas cartesianas. Entretanto, nesse caso, ao invés de retângulos, vamos considerar setores circulares.

Recordemos, da geometria, que a área de um setor circular de abertura θ (em radianos) e raio r é igual a $\frac{r^2\theta}{2}$.

Seja $P = \{\alpha = \theta_0, \theta_1, ..., \theta_{n-1}, \theta_n = \beta\}$ uma partição do intervalo $[\alpha, \beta]$.

Tomemos números $\bar{\theta}_i \in [\theta_{i-1}, \theta_i]$ com i = 1, ..., n. Consideremos os setores circulares de aberturas $\Delta \theta_i = \theta_i - \theta_{i-1}$ e raios $f(\bar{\theta}_i)$.

Denotemos por $A_i = \frac{f(\overline{\theta}_i)^2 \Delta \theta_i}{2}$ a área de cada setor circular. Naturalmente, a soma dessas áreas é uma aproximação para a área A procurada. Temos assim, as seguintes Somas de Riemann em coordenadas polares:

$$A \cong \sum_{i=1}^{n} A_i = \sum_{i=1}^{n} \frac{[f(\bar{\theta}_i)]^2 \Delta \theta_i}{2}.$$

Fazendo $n \to \infty$, obtemos a integral definida que fornece a área procurada:

$$A = \lim_{n \to \infty} \sum_{i=1}^{n} \frac{[f(\bar{\theta}_i)]^2 \Delta \theta_i}{2} \Rightarrow A = \frac{1}{2} \int_{\alpha}^{\beta} [f(\theta)]^2 d\theta.$$

Observação: Para calcular a área de uma região R delimitada radialmente abaixo por $r = f_1(\theta)$ e radialmente acima por $r = f_2(\theta)$ com ângulo variando de α até β , fazemos:

$$A = \frac{1}{2} \int_{\alpha}^{\beta} ([f_2(\theta)]^2 - [f_1(\theta)]^2) d\theta$$

Exemplos:

(1) Calcular a área da região limitada pelo limaçon $r = 2 - \cos \theta$.

Solução: O esboço da curva é dado a seguir.

Observe que para cobrir toda a região, θ varia de 0 até 2π . Logo, a área pedida é dada por:

$$\begin{split} A &= \int_0^{2\pi} \frac{(2-\cos(\theta))^2}{2} d\theta = \frac{1}{2} \int_0^{2\pi} \left(4 - 4\cos(\theta) + \cos^2(\theta) \right) d\theta = \frac{1}{2} \int_0^{2\pi} \left(4 - 4\cos(\theta) + \frac{1+\cos(2\theta)}{2} \right) d\theta \\ &= \frac{1}{2} \left(\left. 4\theta - 4\sin(\theta) + \frac{1}{2}\theta + \frac{\sin(2\theta)}{4} \right|_0^{2\pi} \right) = \frac{1}{2} \left(8\pi - 0 + \pi + 0 - (0 - 0 + 0 + 0) \right) = \frac{9\pi}{2}. \end{split}$$

(2) Mostre que a área de um círculo de raio ρ é $A = \pi \rho^2$.

Solução: Posicionando o círculo com centro no polo, temos que sua equação polar é $r = \rho$, ou seja, $f(\theta) = \rho$. Para cobrir o círculo, θ varia de 0 até 2π . Assim,

$$A = \int_0^{2\pi} \frac{\rho^2}{2} d\theta = \left. \frac{\rho^2}{2} \theta \right|_0^{2\pi} = \frac{2\pi\rho^2}{2} - 0 = \pi\rho^2.$$

(3) Calcular a área da intersecção das regiões limitadas pelas curvas de equações polares $r = 2 - \cos \theta$ (limaçon) e $r = 1 + \cos \theta$ (cardioide).

Solução: Primeiro, devemos determinar as intersecções entre as curvas:

$$2 - \cos \theta = 1 + \cos \theta \Rightarrow 2 \cos \theta = 1$$
$$\Rightarrow \cos \theta = \frac{1}{2}$$
$$\Rightarrow \theta = \pm \frac{\pi}{3}$$

Sejam:

- A_1 : o conjunto de todos os pontos (r, θ) tais que $0 \le r \le 2 \cos \theta$ e $0 \le \theta \le \frac{\pi}{3}$.
- A_2 : o conjunto de todos os pontos (r, θ) tais que $0 \le r \le 1 + \cos \theta$ e $\frac{\pi}{3} \le \theta \le \pi$.

A área pedida é dada por $A = 2(\text{área de } A_1 + \text{área de } A_2)$, ou seja,

$$\begin{split} A &= 2 \left(\int_0^{\frac{\pi}{3}} \frac{(2 - \cos(\theta))^2}{2} d\theta + \int_{\frac{\pi}{3}}^{\pi} \frac{(1 + \cos(\theta))^2}{2} d\theta \right) = \int_0^{\frac{\pi}{3}} \left(4 - 4\cos(\theta) + \cos^2(\theta) \right) d\theta + \int_{\frac{\pi}{3}}^{\pi} \left(1 + 2\cos(\theta) + \cos^2(\theta) \right) d\theta \\ &= \int_0^{\frac{\pi}{3}} \left(4 - 4\cos(\theta) + \frac{1 + \cos(2\theta)}{2} \right) d\theta + \int_{\frac{\pi}{3}}^{\pi} \left(1 + 2\cos(\theta) + \frac{1 + \cos(2\theta)}{2} \right) d\theta \\ &= \left(4\theta - 4\sin(\theta) + \frac{1}{2}\theta + \frac{\sin(2\theta)}{4} \Big|_0^{\frac{\pi}{3}} \right) + \left(\theta + 2\sin(\theta) + \frac{1}{2}\theta + \frac{\sin(2\theta)}{4} \Big|_{\frac{\pi}{3}}^{\pi} \right) \\ &= \left(\frac{4\pi}{3} - 4\frac{\sqrt{3}}{2} + \frac{\pi}{6} + \frac{\sqrt{3}}{8} - (0 - 0 + 0 + 0) \right) + \left(\pi + 0 + \frac{\pi}{2} + 0 - \left(\frac{\pi}{3} + 2\frac{\sqrt{3}}{2} + \frac{\pi}{6} + \frac{\sqrt{3}}{8} \right) \right) = \frac{5\pi}{2} - 3\sqrt{3}. \end{split}$$

Exercícios

- (1) Calcule a área da região limitada pelo cardioide $r = 1 \cos \theta$. R:3 $\pi/2$
- (2) Calcule a área da intersecção das regiões limitadas pelas curvas de equações polares $r=3\cos\theta$ e $r=1+\cos\theta$. R: $5\pi/4$
- (3) Calcule a área da região interior à circunferência $r=2\cos\theta$ e exterior ao cardioide $r=2-2\cos\theta$. R: $4\sqrt{3}-4\pi/3$