

SF1624, -66, -67, -75, -84 Algebra och geometri Tentamen fredag, 6 april 2018

Skrivtid: 08:00-11:00

Tillåtna hjälpmedel: inga Examinator: Tilman Bauer

Tentamen består av sex uppgifter som vardera ger maximalt sex poäng.

Del A på tentamen utgörs av de två första uppgifterna. Till antalet erhållna poäng från del A adderas dina bonuspoäng. Poängsumman på del A kan dock som högst bli 12 poäng. Bonuspoängen beräknas automatiskt. Antal bonuspoäng framgår från resultatsidan.

De två följande uppgifterna utgör del B och de två sista uppgifterna del C, som främst är till för de högre betygen.

Betygsgränserna vid tentamen kommer att ges av

Betyg	A	В	C	D	E	Fx
Total poäng	27	24	21	18	16	15
varav från del C	6	3	_	_	_	_

För full poäng på en uppgift krävs att lösningen är väl presenterad och lätt att följa. Det innebär speciellt att införda beteckningar ska definieras, att den logiska strukturen tydligt beskrivs i ord eller symboler och att resonemangen är väl motiverade och tydligt förklarade. Lösningar som allvarligt brister i dessa avseenden bedöms med högst tre poäng.

DEL A

1. Betrakta följande matris:

$$A = \begin{bmatrix} 2 & 1 & 0 \\ -1 & 1 & -3 \\ 3 & -1 & 5 \end{bmatrix}.$$

- (a) Bestäm alla lösningar \vec{x} till $A\vec{x} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$. (3 **p**)
- (b) Bestäm om linjen $(2, 3, 11) + t(1, 2, \overline{1})$ avbildas av A till en linje eller en punkt. (3 p)
- **2.** Linjen L i \mathbb{R}^2 ges av ekvationen 3x + 4y = 2.
 - (a) Ange linjen L på parameterform. (2 p)
 - (b) Bestäm en ekvation på formen ax + by = c för en linje som går genom $Q = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$ och som är vinkelrät mot L.

3. För en linjär avbildning $F \colon \mathbb{R}^3 \to \mathbb{R}^3$ gäller att

$$F(1,0,0) = (1,0,1)$$
 och $F(1,0,1) = (2,1,0)$.

Vidare är vektorn $\vec{u}=(1,1,-1)$ en egenvektor till F med egenvärdet 2. Bestäm avbildningsmatrisen för F i

(b) basen
$$\mathcal{B} = \{(1,0,0), (1,0,1), (1,1,-1)\}.$$
 (3 p)

4. Delrummet V av \mathbb{R}^4 spänns up av vektorerna

$$\begin{bmatrix} 1 & -1 & 1 & 1 \end{bmatrix}^T \quad \text{och} \quad \begin{bmatrix} 2 & 1 & -2 & -1 \end{bmatrix}^T.$$

- (a) Bestäm en ortonormal bas till V. (3 \mathbf{p})
- (b) Beräkna projektionen av vektorn $\begin{bmatrix} 0 & 1 & 1 & 1 \end{bmatrix}^T$ på V. (3 **p**)

DEL C

5. Låt A vara en 2×2 -matris, sådan att $A^{10} = 0$.

(a) Visa att
$$\det A = 0$$
.

(b) Visa att $\operatorname{tr} A = 0$, där $\operatorname{tr} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = a + d$ är spåret av A.

Tips: basbyte påverkar inte spåret. (4 p)

- **6.** Det radioaktiva elementet saturnium faller sönder på så sätt att 1/2 av alla atomer blir elementet xenium varje julafton. Xenium är också radioaktivt: 1/3 av alla xeniumatomer faller sönder till bly på julafton. Bly är stabilt.
 - (a) Beskriv det radioaktiva sönderfallet av de tre elementen genom en 3×3 -matris M.

(2 p)

- (b) Bestäm alla egenvärden och motsvarande egenvektorer till M och skriv $M = SDS^{-1}$ där D är en diagonalmatris. (2 p)
- (c) I hur många mol saturnium/xenium/bly faller 1 mol saturnium sönder efter 100 julaftnar?

(2 p)