CHE 260F – Thermodynamics and Heat Transfer

Mid-Term Exam - 2016

You have 110 minutes to do the following five problems. You may use any type of non-communicating calculator. All questions are worth equal marks.

1) An insulated piston–cylinder device contains 5 L of saturated liquid water at a constant pressure of 175 kPa. The water is stirred by a paddle wheel while a current of 8 A flows for 45 min through a resistor placed in the water. If one-half of the liquid is evaporated during this constant- pressure process and the paddle-wheel work amounts to 400 kJ, determine the voltage applied across the resistor. Show the process on a *P-v* diagram with respect to saturation lines.

- 2) Argon gas enters an adiabatic turbine steadily at 900 kPa and 450°C with a velocity of 80 m/s and leaves at 150 kPa with a velocity of 150 m/s. The inlet area of the turbine is 60 cm². If the power output of the turbine is 250 kW, determine the exit temperature of the argon. Assume argon is an ideal gas with R=0.2081 kJ/kgK and c_p =0.5203 kJ/kgK.
- 3) A rigid container is divided by a wall into two equal-sized compartments, each 1 m³ in volume. One is filled with a saturated water steam mixture at 200 kPa with a quality of 0.8. The other contains steam at 2 MPa and a temperature of 400°C. The partition wall is removed and the water and steam are allowed to mix and lose heat to the surroundings until the system reaches a uniform state where its pressure is 1 MPa. Find the final temperature and the heat lost to the surroundings.
- 4) A 2 kg mass of ethane gas at 500 kPa and 100°C in a piston-cylinder system loses heat to the surrounding atmosphere at 20°C while undergoing a reversible expansion during which $Pv^{1.3}$ =constant. The final gas temperature is 20°C. Calculate the total entropy generated during this process. Assume ethane is an ideal gas with c_p =1.766 kJ/kgK, c_v =1.490 kJ/kgK, R=0.276 kJ/kgK.
- 5) An adiabatic steam turbine operates with inlet steam conditions of 400° C, 2 MPa and a measured outlet condition of 10 kPa, x=0.95.
 - a. How much work per unit mass of steam will this turbine produce?
 - b. If the turbine were reversible how much work could it produce for an outlet pressure of 10 kPa?

TABLE A-4											TABLE A-4	I											
Saturated wa	Saturated water—Temperature table	ture table									Saturat	ed water—	Temperatu	Saturated water—Temperature table (Continued)	tinued)								
	Spe	Specific volume, m³/kg		Internal energy, kJ/kg	nergy,		Enthalpy, kJ/kg	Ж	E k	Entropy, kJ/kg · K			Specifi	Specific volume, m³/kg	Щ	Internal energy, kJ/kg	æ,		Enthalpy, kJ/kg		5	Entropy, kJ/kg · K	
Sat. Temp., press., 7 °C P _{sat} kPa	Sat. s., liquid, kPa v,	Sat. vapor, v _g	Sat. liquid, u,	Evap., u _{fg}	Sat. vapor, u _g	Sat. liquid, h,	Evap., h _{fg}	Sat. vapor, h _g	Sat. liquid, s,	Sat. Evap., vapor, S _{fg} S _g	T°C	Sat. press., P _{set} kPa	Sat. liquid, v,	Sat. vapor, v _g	Sat. liquid, u _f	Evap., u _{fg}	Sat. vapor, u _k	Sat. liquid, h,	Evap., v	Sat. Sat. vapor, I	Sat. Iiquid, Eva S; S _{te}	Sat. Evap., vapo S _{tr} S _z	Sat. vapor, s _k
0.01 5 10 10 15 17 20 23	0.6117 0.001000 0.8725 0.001000 1.2281 0.001000 1.7057 0.001001 2.3392 0.001002	0 206.00 0 147.03 0 106.32 1 77.885 2 57.762	0.000 21.019 42.020 62.980 83.913	2374.9 2360.8 2346.6 2332.5 2318.4	2374.9 2381.8 2388.7 2395.5 2402.3	0.001 21.020 42.022 62.982 83.915	2500.9 2489.1 2477.2 2465.4 2453.5	2500.9 2510.1 2519.2 2528.3 2537.4	0.0000 0.0763 0.1511 0.2245 0.2965	9.1556 9.1556 8.9487 9.0249 8.7488 8.8999 8.5559 8.7803 8.3696 8.6661	205 210 220 220 235	1724.3 1907.7 2105.9 2319.6	0.001164 0.001173 0.001181 0.001190	0.11508 0.10429 0.094680 0.086094	872.86 895.38 918.02 940.79	1723.5 1723.5 1702.9 1681.9 1660.5	2596.4 2598.3 2599.9 2601.3	874.87 19 897.61 10 920.50 10 943.55 10	0i v≐ 80i 4i 4	4.8 7.3 9.3 7.0 7.0 7.0	2.3776 4. 2.4245 3. 2.4712 3. 2.5176 3.	5 12 8 2 7 7 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1	6.3930 6.3563 6.3200 6.2840 6.2483
25 3.1 30 4.2 35 5.6 40 7.3	3.1698 0.001003 4.2469 0.001004 5.6291 0.001006 7.3851 0.001008 9.5953 0.001010	3 43.340 4 32.879 6 25.205 8 19.515 0 15.251	104,83 125,73 146,63 167,53 188,43	2304.3 2290.2 2276.0 2261.9 2247.7	2409.1 2415.9 2422.7 2429.4 2436.1	104.83 125.74 146.64 167.53	2441.7 2429.8 2417.9 2406.0 2394.0	2546.5 2555.6 2564.6 2573.5 2582.4	0.3672 0.4368 0.5051 0.5724 0.6386	8.1895 8.5567 8.0152 8.4520 7.8466 8.3517 7.6832 8.2556 7.5247 8.1633	245 245 245 245 245 245 245	2797.1 3062.6 3347.0 3651.2	0.001209 0.001219 0.001229 0.001240	0.071505 0.065300 0.059707 0.054656	986.76 1010.0 1033.4 1056.9	1616.1 1593.2 1569.8 1545.7							6.2128 6.1775 6.1424 6.1072
50 12.352 55 15.763 60 19.947 65 25.043 70 31.202		П	209.33 230.24 251.16 272.09 293.04	2233.4 2219.1 2204.7 2190.3 2175.8		209.34 230.26 251.18 272.12 293.07	2382.0 2369.8 2357.7 2345.4 2333.0	2591.3 2600.1 2608.8 2617.5 2626.1		7.3710 8.0748 7.2218 7.9898 7.0769 7.9082 6.9360 7.8296 6.7989 7.7540	255 260 265 270 275	5976.2 4322.9 4692.3 5085.3 5503.0 5946.4	0.001263 0.001263 0.001289 0.001303 0.001317	0.032767 0.038748 0.035622	1104.7 1128.8 1153.3 1177.9	1495.8 1469.9 1443.2 1415.7 1387.4							6.0369 6.0369 5.9662 5.9305 5.8944
	~ u m m m		313.99 334.97 355.96 376.97 398.00	2161.3 2146.6 2131.9 2117.0 2102.0		314.03 335.02 356.02 377.04 398.09	2320.6 2308.0 2295.3 2282.5 2269.6	2634.6 2643.0 2651.4 2659.6 2667.6		6.6655 7.6812 6.5355 7.6111 6.4089 7.5435 6.2853 7.4782 6.1647 7.4151	282 292 302 303	6416.6 6914.6 7441.8 7999.0 8587.9	0.001333 0.001349 0.001366 0.001384	0.030153 0.027756 0.025554 0.023528	1228.2 1253.7 1279.7 1306.0	1358.2 1328.1 1296.9 1264.5							5.8579 5.8210 5.7834 5.7450 5.7059
100 101.42 105 120.90 110 143.38 115 169.18 120 198.67	2 0.001043 0 0.001047 8 0.001055 8 0.001056 7 0.001060	3 1.6720 7 1.4186 2 1.2094 6 1.0360 0 0.89133	419.06 440.15 461.27 482.42 503.60	2087.0 2071.8 2056.4 2040.9 2025.3	2506.0 2511.9 2517.7 2523.3 2528.9	419.17 440.28 461.42 482.59 503.81	2256.4 2243.1 2229.7 2216.0 2202.1	2675.6 2683.4 2691.1 2698.6 2706.0	1.3072 1.3634 1.4188 1.4737 1.5279	6.0470 7.3542 5.9319 7.2952 5.8193 7.2382 5.7092 7.1829 5.6013 7.1292	305 315 320	9209.4 9865.0 10,556 11,284	0.001425 0.001447 0.001472 0.001499	0.019932 0.018333 0.016849 0.015470	1360.0 1387.7 1416.1 1445.1	1195.9 1159.3 1121.1 1080.9							5.6657 5.6243 5.5816 5.5372
125 232.23 130 270.28 135 313.22 140 361.53 145 415.68	33 0.001065 22 0.001070 33 0.001080 8 0.001080	5 0.77012 0 0.66808 5 0.58179 0 0.50850 5 0.44600	524.83 546.10 567.41 588.77 610.19	2009.5 1993.4 1977.3 1960.9 1944.2	2534.3 2539.5 2544.7 2549.6 2554.4	525.07 546.38 567.75 589.16 610.64	2188.1 2173.7 2159.1 2144.3 2129.2	2713.1 2720.1 2726.9 2733.5 2739.8	1.5816 1.6346 1.6872 1.7392 1.7908	5.4956 7.0771 5.3919 7.0265 5.2901 6.9773 5.1901 6.9294 5.0919 6.8827	330 335 345 350 350	12,858 13,707 14,601 15,541 16,529	0.001528 0.001560 0.001597 0.001638 0.001685	0.012979 0.012979 0.010783 0.009772 0.008806	1475.0 1505.7 1537.5 1570.7 1605.5 1642.4	993.5 945.5 893.8 837.7 775.9	2513.4 2499.2 2483.0 2464.5 2443.2 2418.3	1493.4 1 1525.8 1 1559.4 10 1594.6 10 1631.7 9	1191.0 2 1140.3 2 1086.0 2 1027.4 2 963.4 2	2684.3 3 2666.0 3 2645.4 3 2622.0 3 2595.1 3	3,4998 1. 3,5516 1. 3,6050 1. 3,602 1. 3,7179 1.	1.9911 5.4 1.8906 5.4 1.7857 5.3 1.6756 5.3 1.5585 5.2 1.4326 5.2	5.4908 5.4422 5.3907 5.3358 5.2765
				1920.3 1893.0 1875.4 1857.5 1839.4 1820.9 1802.1 1783.0		653.79 675.47 697.24 719.08 741.02 763.05 785.19 807.43 829.78	2082.0 2082.0 2082.0 2048.8 2031.7 2014.2 1996.2 1959.0 1939.8	27518 27575 2767.9 2777.2 2777.2 2781.4 2785.3 2785.3			355 360 365 370 373.95		0,001808 0,001895 0,002015 0,00217 0,003106	0.007872 0.006950 0.006009 0.004953 0.003106	1682.2 1726.2 1777.2 1844.5 2015.7	706.4 625.7 526.4 385.6 0							5.1384 5.0537 4.9493 4.8009 4.4070

TABLE A-5	57											==	TABLE A-5												
Saturate	d water—	Saturated water—Pressure table	ible									Š	turated wa	ter—Pre	ssure table	Saturated water—Pressure table (Continued)	ভ		ı	ı		ı			
		Specifi	Specific volume, m³/kg	"	Internal energy kJ/kg	ergy,		Enthalpy, kJ/kg		E E	Entropy, kJ/kg · K				Specific volume, m³/kg	olume,	Inten	Internal energy KJ/kg	<u>.</u>	Ent	Enthalpy, kJ/kg		Entropy, KJ/kg · K	8 [×]	
Press., P kPa	Sat. temp., 7 _{sat} °C	Sat. liquid, v,	Sat. vapor, v _g	Sat. liquid, <i>u_f</i>	Evap., <i>uf</i> e	Sat. vapor, u _r	Sat. liquid, E h, t	Evap., v	Sat. S vapor, li h, s,	Sat. liquid, Eva st ste	<u>.</u>	5	Sat. Press., temp P kPa Test	ີ ຄ	. <u></u>	Sat. vapor, v _e	Sat. liquid, E u, u	S. Evap., va u _{fe} u _i	Sat. Sa vapor, lic	Sat. liquid, Eval h, h,	s.	Sat. Sat. vapor, liquid, h _e s _f	d, Evap.,	Sat. . vapor, .s,	۔
1.0 2.0 2.5 3.0		0.001000 1 0.001001 0.001001 0.001002	129.19 87.964 66.990 54.242 45.654	29.302 54.686 73.431 88.422 100.98	2355.2 2338.1 2325.5 2315.4 2306.9	2384.5 2392.8 2398.9 2403.8 2407.9	29.303 54.688 73.433 88.424 100.98	4.4 0.1 0.5 3.9	3.7 2.9 4.8 8.4	0.1059 8 0.1956 8 0.2606 8 0.3118 8	3690 3314 4621 3302 2222	8.9749 8.8270 8.7227 8.6421 8.5765	800 17 850 17 900 17 950 17 1000 17	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0.001115 0 0.001118 0 0.001121 0 0.001124 0	0.24035 0.22690 0.21489 0.20411 0.19436	719.97 18 731.00 18 741.55 18 751.67 18	12 2 2 3 4	2576.0 72 2577.9 73 2579.6 74 2581.3 75 2582.8 76	720.87 20.7731.95 203 731.95 203 742.56 203 752.74 203 762.51 203	7.5 8.8 8.2 4.5 7.5	2768.3 2.0457 2770.8 2.0705 2773.0 2.0941 2775.2 2.1166 2777.1 2.1381		<u> </u>	116 127 50 50
4.0 5.0 7.5 10 15	28.96 32.87 40.29 45.81 53.97	0.001004 0.001005 0.001008 0.001010	34.791 28.185 19.233 14.670 10.020	121.39 137.75 168.74 191.79 225.93	2293.1 2282.1 2261.1 2245.4 2222.1	2414.5 2419.8 2429.8 2437.2 2448.0	121.39 137.75 168.75 191.81 225.94	2432.3 2423.0 2405.3 2392.1 23372.3 2	2553.7 0 2560.7 0 2574.0 0 2583.9 0 2598.3 0	0.4224 8 0.4762 7 0.5763 7 0.6492 7 0.7549 7	8.0510 8. 7.9176 8. 7.6738 8. 7.4996 8.	8.4734 8.3938 8.2501 8.1488 8.0071	1100 18 1200 18 1300 19 1400 19 1500 19	184.06 0.0 187.96 0.0 191.60 0.0 195.04 0.0 198.29 0.0	0.001133 0 0.001138 0 0.001144 0 0.001149 0	0.17745 0.16326 0.15119 0.14078 0.13171	779.78 18 796.96 17 813.10 17 828.35 17 842.82 17	1805.7 29 1790.9 29 1776.8 29 1763.4 29 1750.6 29	2585.5 78 2587.8 79 2589.9 81 2591.8 82 2593.4 84	781.03 190 798.33 190 814.59 191 829.96 191 844.55 194	1999.6 27 1985.4 27 1971.9 27 1958.9 27 1946.4 27	2780.7 2.1785 2783.8 2.2159 2786.5 2.2508 2788.9 2.2835 2791.0 2.3143	85 4.3735 59 4.3058 08 4.2428 35 4.1840 43 4.1287	35 6.5520 58 6.5217 28 6.4936 40 6.4675 87 6.4430	20 17 36 30
20 25 30 50	60.06 64.96 69.09 75.86 81.32	0.001017 0.001020 0.001022 0.001026 0.001030	7.6481 6.2034 5.2287 3.9933 3.2403	251.40 271.93 289.24 317.58 340.49	2204.6 2190.4 2178.5 2158.8 2142.7	2456.0 2462.4 2467.7 2476.3 2483.2	251.42 271.96 289.27 317.62 340.54	2357.5 2 2345.5 2 2335.3 2 2318.4 2 2304.7 2	2608.9 0 2617.5 0 2624.6 0 2636.1 1 2645.2 1	0.8320 7 0.8932 6 0.9441 6 1.0261 6 1.0912 6	7.0752 7. 6.9370 7. 6.8234 7. 6.6430 7. 6.5019 7.	7.9073 7.8302 7.7675 7.6691 7.5931	1750 20 2000 21; 2250 21; 2500 22; 3000 23;	205.72 0.0 212.38 0.0 218.41 0.0 223.95 0.0 233.85 0.0	0.001166 0.001177 0.001187 0.001197 0.001217	0.11344 0.099587 0.088717 0.079952 0.066667 1	876.12 17 906.12 16 933.54 16 958.87 16 1004.6 15	1720.6 29 1693.0 29 1667.3 26 1643.2 26 1598.5 26	2596.7 87 2599.1 90 2600.9 93 2602.1 96 2603.2 100	878.16 19: 908.47 180 936.21 180 961.87 180	1917.1 27 1889.8 27 1864.3 28 1840.1 28 1794.9 28	2795.2 2.3844 2798.3 2.4467 2800.5 2.5029 2801.9 2.5542 2803.2 2.6454	44 4.0033 67 3.8923 729 3.7926 42 3.7016 54 3.5402	33 6.3877 23 6.3390 26 6.2954 16 6.2558 02 6.1856	77 90 58 58 56
75 100 101.325 125 150	91.76 99.61 99.97 105.97 111.35	0.001037 0.001043 0.001043 0.001048	2.2172 1.6941 1.6734 1.3750 1.1594	384.36 417.40 418.95 444.23 466.97	2111.8 2088.2 2087.0 2068.8 2052.3	2496.1 2505.6 2506.0 2513.0 2519.2	384.44 417.51 419.06 444.36 467.13	2278.0 2257.5 22256.5 2240.6 2226.0 2226.0	2662.4 1 2675.0 1 2675.6 1 2684.9 1 2693.1 1	1.2132 6 1.3028 6 1.3069 6 1.3741 5 1.4337 5	6.2426 7. 6.0562 7. 6.0476 7. 5.9100 7. 5.7894 7.	7.4558 7.3589 7.3545 7.2841 7.2231	3500 24, 4000 25, 5000 26, 6000 27, 7000 28,	242.56 0.0 250.35 0.0 263.94 0.0 275.59 0.0 285.83 0.0	0.001235 0.001252 0.001286 0.001319 0.001352	0.057061 1 0.049779 1 0.039448 1 0.032449 1	1045.4 1E 1082.4 1E 1148.1 14 1205.8 13	1557.6 26 1519.3 26 1448.9 28 1384.1 26	2603.0 1049.7 2601.7 1087.4 2597.0 1154.5 2589.9 1213.8 2581.0 1267.5		1753.0 28 1713.5 28 1639.7 27 1570.9 27 1505.2 27	2802.7 2.7253 2800.8 2.7966 2794.2 2.9207 2784.6 3.0275 2772.6 3.1220	53 3.3991 66 3.2731 07 3.0530 75 2.8627 20 2.6927	91 6.1244 31 6.0696 30 5.9737 27 5.8902 27 5.8148	44 03.3 48 48
175 200 225 250 275	116.04 120.21 123.97 127.41 130.58	0.001057 0.001061 0.001064 0.001067 0.001070	1.0037 0.88578 0.79329 0.71873 0.65732	486.82 504.50 520.47 535.08 548.57	2037.7 2024.6 2012.7 2001.8 1991.6	2524.5 2529.1 2533.2 2536.8 2540.1	487.01 504.71 520.71 535.35 548.86	2213.1 2 2201.6 2 2191.0 2 2181.2 2 2172.0 2	2700.2 1 2706.3 1 2711.7 1 2716.5 1 2720.9 1	1.4850 5 1.5302 5 1.5706 5 1.6072 5 1.6408 5	5.6865 7. 5.5968 7. 5.5171 7. 5.4453 7. 5.3800 7.	7.1716 7.1270 7.0877 7.0525 11	8000 29 9000 303 10,000 311,000 322 12,000 322	295.01 0.0 303.35 0.0 311.00 0.0 318.08 0.0 324.68 0.0	0.001384 0 0.001418 0 0.001452 0 0.001488 0	0.023525 1 0.020489 1 0.018028 1 0.015988 1	1306.0 12 1350.9 12 1393.3 11 1433.9 10 1473.0 10	1264.5 28 1207.6 28 1151.8 28 1096.6 28	2570.5 1317.1 2558.5 1363.7 2545.2 1407.8 2530.4 1450.2 2514.3 1491.3		1441.6 27 1379.3 27 1317.6 27 1256.1 27 1194.1 26	2758.7 3.2077 2742.9 3.2866 2725.5 3.3603 2706.3 3.4299 2685.4 3.4964	77 2.5373 66 2.3925 03 2.2556 99 2.1245 64 1.9975	73 5.7450 25 5.6791 56 5.6159 45 5.5544 75 5.4939	3 4 29 3 29
300 325 350 375 400	133.52 136.27 138.86 141.30 143.61	0.001073 0.001076 0.001079 0.001081 0.001084	0.60582 0.56199 0.52422 0.49133 0.46242	561.11 572.84 583.89 594.32 604.22	1982.1 1973.1 1964.6 1956.6 1948.9	2543.2 2545.9 2548.5 2550.9 2553.1	561.43 573.19 584.26 594.73 604.66	2163.5 2 2155.4 2 2147.7 2 2140.4 2 2133.4 2	2724.9 1 2728.6 1 2732.0 1 2735.1 1 2738.1 1	1.6717 5 1.7005 5 1.7274 5 1.7526 5 1.7765 5	5.3200 6. 5.2645 6. 5.2128 6. 5.1645 6. 5.1191 6.	6.9917 13 6.9650 14 6.9402 15 6.9171 16 6.8955 17	13,000 33 14,000 33 15,000 34; 16,000 35;	330.85 0.0 336.67 0.0 342.16 0.0 347.36 0.0 352.29 0.0	0.001566 0.001610 0.001657 0.001710 0.001770	0.012781 1 0.011487 1 0.010341 1 0.009312 1	1511.0 1548.4 1585.5 1622.6 1660.2	985.5 24 928.7 24 870.3 24 809.4 24 745.1 24	2496.6 1531.4 2477.1 1571.0 2455.7 1610.3 2432.0 1649.9 2405.4 1690.3		1131.3 26 1067.0 26 1000.5 26 931.1 25 857.4 25	2662.7 3.5606 2637.9 3.6232 2610.8 3.6848 2581.0 3.7461 2547.7 3.8082	06 1.8730 32 1.7497 48 1.6261 61 1.5005 82 1.3709	30 5.4336 97 5.3728 61 5.3108 05 5.2466 09 5.1791	968838
450 500 550 600 650 700 750	147.90 151.83 155.46 158.83 161.98 164.95 167.75	0.001088 0.001093 0.001101 0.001104 0.001108 0.001111	0.41392 0.37483 0.34261 0.31560 0.29260 0.27278 0.25552	622.65 639.54 655.16 669.72 683.37 696.23	1934.5 1921.2 1908.8 1897.1 1875.6 1865.6	2557.1 2560.7 2563.9 2566.8 2569.4 2571.8	623.14 640.09 655.77 670.38 684.08 697.00	2120.3 2108.0 2096.6 2085.8 2075.5 2065.8	2743.4 1 2748.1 1 2752.4 1 2756.2 1 2759.6 1 2762.8 1 2762.8 1 2765.7 2	1.8205 5 1.8604 4 1.8970 4 1.9308 4 1.9623 4 1.9918 4 2.0195 4	5.0356 6. 4.9603 6. 4.8916 6. 4.8285 6. 4.7699 6. 4.7153 6.	6.8561 18 6.8207 19 6.7886 20 6.7593 21 6.7322 22 6.7071 22	18,000 351 19,000 361 20,000 361 21,000 372 22,064 373	356.99 0.0 361.47 0.0 365.75 0.0 369.83 0.0 373.71 0.0 373.95 0.0	0.001840 0.001926 0.002038 0.002207 0.002703 0.003106	0.007504 1 0.006677 1 0.005862 1 0.004994 1 0.003644 1	1699.1 1740.3 1785.8 1841.6 1951.7 2015.7	675.9 23 598.9 23 509.0 23 391.9 22 0 26	2375.0 1732.2 2339.2 1776.8 2294.8 1826.6 2233.5 1888.0 2092.4 2011.1 2015.7 2084.3		777.8 25 689.2 24 585.5 24 450.4 23 0 20	2510.0 3.8720 2466.0 3.9396 2412.1 4.0146 2338.4 4.1071 2172.6 4.2942 2084.3 4.4070	20 1.2343 96 1.0860 46 0.9164 71 0.7005 170 0	43 5.1064 60 5.0256 64 4.9310 05 4.5439 96 4.5439	64 56 10 76 70

		s kJ/kg·K	15.04°C)		3040.9 6.9553 3150.1 7.1379 3258.1 7.3046				5411.3 9.3036 (212.38°C)	2798.3 6.3390	2836.1 6.4160 2903.3 6.5475							12.56°C)	2802.7 6.1244		3104.9 6.6601 3223.2 6.8428 3338.1 7.0074					4885.6 8.5236
		<i>u h</i> kJ/kg kJ/kg	1.40 MPa (19		2785.7 304 2869.7 315 2953.1 325				4468.3 5148. 4685.1 5411. 2.00 MPa (212	2599.1 27	2628.5 28.2 290						- 1	3.50 MPa (24	2603.0 28		2836.0 31(2927.2 32)		3464.7	3846.4		
		v m³/kg	P =	0.14078 0.14303 0.16356	0.18233 0.20029 0.21782	0.25216	0.35288 0.38614	0.41933	0.51866 P=	0.09959	5 0.10381 8 0.11150	000			000	000	0	P =	90.05706		0.07680					
		s kJ/kg·K	87.96°C)		.3 7.0335 .2 7.2139 .3 7.3793		.9 8.1904 .2 8.4176 .0 8.6303	യത്	.5 9.2022 .6 9.3750	2795.9 6.3775	2847.2 6.4825 2911.7 6.6088				0 00 0		- 1	33.85°C)	2803.2 6.1856		3116.1 6.7450 3231.7 6.9235 3344 9 7.0856					200 V 0000
		<i>и h</i> kJ/kg kJ/kg	= 1.20 MPa (1	l	2789.7 3046.3 2872.7 3154.2 2955.5 3261.3		3475.3 3922.9 3661.0 4155.2 3853.3 4394.0	2 10 1	4468.7 5148. 4685.5 5411. = 1.80 MPa (20	m	2637.0 28							= 3.00 MPa (2	2603.2 280		2844.4 31. 2933.6 32: 3021.2 334				4047.7 405	
		V L	P =	0.16326 0.16934 0.19241	0.21386 0.23455 0.25482	0.29464	0.3/29/ 0.41184 0.45059	0.48928	0.60509	0.11037							_	P =	0.06667		0.09056					5
	Superheated water (Continued)	<i>h</i> s kJ/kg kJ/kg·ŀ	79.88°C)		3051.6 7.1246 3158.2 7.3029 3264.5 7.4670		3924.1 8.2755 4156.1 8.5024 4394.8 8.7150	o 4 o ∞ o o	(201.37°C)	00	2857.8 6.5537 2919.9 6.6753			- 00 0	0 00 0	101	, O)	23.95°C)	2801.9 6.2558 2805.5 6.2629	9 9	3127.0 6.8424 3240.1 7.0170 33516 7.1768		/ ×			4XX/ 4 X 5X(14
	er (Continuea	<i>u</i> kJ/kg kJ/	: 1.00 MPa (1	2582.8 277 2622.3 283 2710.4 294	2793.7 308 2875.7 318 2957.9 326				4469.0 5148. 4685.8 5411. 1 60 MPa (201	3 2	2645.1 285 2692.9 291						9 00	= 2.50 MPa (2	2602.1 2801 2604.8 2805.		2852.5 312 2939.8 324 3026.2 335					4754 / 488
E A-6	erheated wate	v m³∕kg	P =		0 0.25799 0 0.28250 0 0.30661			000	0.72610 0.72610	0.12374	0.13293						0	P =	0.07995		0.10979					0.25330
TABL	Supe	۲ %		S	350				1300	Sat.	225 250 250				_		1300		- Sat. 5 225		350				٠,	9
	2	h s kJ/kg kJ/kg·K	9.61°C)			3074.5 8.2172 3278.6 8.5452 3488.7 8.8362			4893.6 10.1698 5150.6 10.3504 5413.3 10.5229	(143.61°C)		- 1- 1	3273.9 7.9003				000	8	1	2839.8 6.8177 2950.4 7.0402 2056.9 7.2245			00 00			00000 0 0000
		<i>u h</i> kJ/kg kJ/	0.10 MPa (9)			2810.7 307 2968.3 327 3132.2 348			4259.8 489 4470.7 518 4687.2 541	0.40 MPa (14	2553.1	2726.4	2964.9	3301.0	3663.9	1054.3 1054.3	1470.2	SO MPs	2576.0	2631.1 2715.9	2878.6	3126.6	3477.2 3662.5	3854.5 4053.3	4258.3	
		v m³/kg	P =	1.6941	2.1724 2.1724 2.4062	2.6389 3.1027 3.5655	4.0279	5.4137 5.8755	6.3372 6.7988 7.2605	+	0.46242	0.53434	0.77265	1.00558	1.23730	1.46859	1.69966	_ d	0.24035	0.26088	0.35442	0.44332	0.56011	0.67619	0.79197	0000
		s kJ/kg·K	.32°C)		~ ∞ ∞	5.8 8.5387 9.3 8.8659 9.3 9.1566			3.7 10.4897 0.7 10.6704 3.3 10.8429	.52°C)		5.9 7.3132 7.9 7.5180		4.0 8.5915			_		2	0.6 6.9683 7.6 7.1833					σ	000010
		<i>u h</i> kJ/kg kJ/kg	0.05 MPa (81.			2811.6 3075.8 2968.9 3279.3 3132.6 3489.3			4259.9 4893.7 4470.8 5150.7 4687.3 5413.3	0.30 MPa (133.52)			2807.0 3069.b 2966.0 3275.5						3	2639.4 2850.6 2721.2 2957.6 2801.4 2062.0						C CALT C CCAA
		v u m³/kg k	P = 0.			5.2841 23 6.2094 27 7.1338 33			12.6745 4; 13.5977 4 14.5209 4				1.03155 2					0 - 0	5	0.35212 20						. 00000
		s kJ/kg·K	*(D°			9.2827 9.6094 9.8998		10.8429	11.2326 11.4132 11.5857	1°C)				8.7793				3°C)	51	7.0610						10000
		h g kJ/kg	0.01 MPa (45.81°C)*	7.2 2583.9 3.3 2592.0 5.5 2687.5						0.20 MPa (120.21°C)			8.8 30/2.1 7.2 3277.0					- 8	2	3.3 2855.8 3.8 2961.0						0 07 17 00
	d water	u kg kJ/kg	P = 0.01			26.446 2812.3 31.063 2969.3 35.680 3132.9			63.373 4260.0 67.989 4470.9 72.604 4687.4	P = 0.20			1.54934 2967.2					9	2	0.42503 2643.3 0.47443 2723.8 0.52261 2803.3					1.26728 4259.0	0.0000
TABLE A-6	Superheate	7 v °C m³/kg				300 26.4 400 31.0 500 35.6			1100 63.3 1200 67.9 1300 72.6			250 1.0						٠.	٠.	700 07 720 07 700 07						0000