Integration is the most important application of limits next to the differentiation.

In a 1st step we define an integral for step functions (see Section "Functions", subsection "Applications for continuous functions")

With S[a, b] we denote the set of step functions $\tau : [a, b] \to \mathbb{R}$.

Properties of S[a, b]:

- a) The function being constantly 0 belongs to S[a, b].
- b) $\tau \in S[a,b], \lambda \in \mathbb{R} \implies \lambda \tau \in S[a,b]$
- c) $\tau_1, \tau_2 \in S[a, b] \implies \tau_1 + \tau_2 \in S[a, b]$

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Differentiation in 1d

Integration in 1d

Riemann integral

Integral: definition and properties

Primitive functions

Practical computation of integrals

Outlook

Proof of property (c)

Analysis 1

S.-J. Kimmerle

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Differentiation in 1d

Integration in 1d

Riemann integral

Integral: definition and properties

Primitive functions

Practical computation of integrals

Outlook

Theorem (Linearity of an integral (for step functions))

If $\tau_1, \tau_2 \in S[a, b]$ and $\lambda \in \mathbb{R}$,

then

$$\int_{a}^{b} (\tau_{1}(x) + \tau_{2}(x)) dx = \int_{a}^{b} \tau_{1}(x) dx + \int_{a}^{b} \tau_{2}(x) dx$$
$$\int_{a}^{b} \lambda \tau_{1}(x) dx = \lambda \int_{a}^{b} (\tau_{1}(x) + \tau_{2}(x))$$

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Differentiation in 1d

Integration in 1d

Riemann integral

Integral: definition and properties

Primitive functions

Practical computation of integrals

Outlook

Monotonicity of integrals

Theorem (Monotonicity of an integral (for step functions))

If $\tau_1, \tau_2 \in S[a, b]$,

then

$$\int_a^b \tau_1(x) \, dx \le \int_a^b \tau_2(x) \, dx.$$

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Differentiation in 1d

Integration in 1d

Riemann integral

Integral: definition and properties

Primitive functions

Practical computation of integrals

Outlook

Generalization of integrals from step functions I

The following defintions prepare the generalization of integrals for step functions to other functions:

Definition (Super-/subintegral)

Let $f:[a,b] \to \mathbb{R}$ a bounded function, then

$$\underline{I}(f) := \inf \left\{ \int_{a}^{b} \tau(x) \, dx \, | \, \tau \in T[a,b], \tau \geq f \right\}$$

is called a **superintegral** of f and

$$\bar{I}(f) := \sup \left\{ \int_a^b \tau(x) \, dx \, | \, \tau \in T[a,b], \tau \leq f \right\}$$

is called a **subintegral** of *f*.

Evidently, for step functions we have $\underline{I}(f) = I(f)$.

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Differentiation in 1d

Integration in 1d

Riemann integral

Integral: definition and properties

Primitive functions

Practical computation of integrals

Outlook

Generalization of integrals from step functions II

Theorem (Subaddivity of a superintegral)

Let $f, g : [a, b] \to \mathbb{R}$ bounded functions and let $\lambda \in \mathbb{R}_0^+$,

then

$$\overline{I}(f+g) \leq \overline{I}(f) + \overline{I}(g)$$

and

$$\bar{I}(\lambda f) \leq \lambda \bar{I}(f).$$

Analogously we have the superaddivity of a subintegral.

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Differentiation in 1d

Integration in 1d

Riemann integral

Integral: definition and properties

Primitive functions

Practical computation of integrals

Outlook

S.-J. Kimmerle

Definition (Riemann integral)

Let $f:[a,b] \to \mathbb{R}$ a bounded function,

then f is called **Riemann integrable** if

$$\underline{I}(f) = \overline{I}(f).$$

We write $I(f) := \overline{I}(f)$.

Evidently, any step function is Riemann integrable.

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Differentiation in 1d

Integration in 1d

Riemann integral

Integral: definition and properties

Primitive functions

Practical computation of integrals

Outlook

Characterization of Riemann integrable functions I

Theorem (Criterion for Riemann integrability)

A function $f:[a,b] \to \mathbb{R}$ is Riemann integrable,

iff for any $\varepsilon > 0$ there exist step functions $\tau_1, \tau_2 \in S[a, b]$ with

$$au_1 \leq f \leq au_2$$
 and $\int_a^b au_2(x) - \int_a^b au_1(x) < \varepsilon$.

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Differentiation in 1d

Integration in 1d

Riemann integral

Integral: definition and properties

Primitive functions

Practical computation of integrals

Outlook

Characterization of Riemann integrable functions II

Analysis 1

S.-J. Kimmerle

Theorem (Continuity implies Riemann integrability)

Any continuous function

$$f:[a,b]\to\mathbb{R}$$

is Riemann integrable.

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Differentiation in 1d

Integration in 1d

Riemann integral

Integral: definition and properties

Primitive functions

Practical computation of integrals

Outlook

Characterization of Riemann integrable functions III

Analysis 1

S.-J. Kimmerle

Theorem (Monotonicity implies Riemann integrability)

Any monotone function

$$f:[a,b]\to\mathbb{R}$$

is Riemann integrable.

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Differentiation in 1d

Integration in 1d

Riemann integral

Integral: definition and properties

Primitive functions

Practical computation of integrals

Outlook

Theorem (Riemann integrals and sums)

Let $f:[a,b] \to \mathbb{R}$ a Riemann integrable functions,

then there exists for any $\varepsilon > 0$ a $\delta > 0$, such that for any partition

$$a = x_0 < x_1 < \ldots < x_{n-1} < x_n = b$$

of an interval [a, b] with the fineness $\eta \leq \delta$ and any choice of the intermediate points $\xi_k \in [x_{k-1}, x_k], k = 1, ..., n$ holds:

$$\left| \int_a^b f(x) \, dx - \sum_{k=1}^n f(\xi_k)(x_k - x_{k-1}) \right| \le \varepsilon.$$

In the following we refer with integrable or integrability to Riemann integrable or Riemann integrability, resp.

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Differentiation in 1d

Integration in 1d

Riemann integral

Integral: definition and properties

Primitive functions

Practical computation of integrals

Outlook

The following properties transfer from step functions to integrable functions.

Let f, g integrable functions and $a \le b \le c$ with a, b, $c \in \mathbb{R}$.

Linearity:

$$\int_{a}^{b} f(x) + g(x) dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$$

and (factor rule)
$$\int_a^b c f(x) dx = c \int_a^b f(x) dx$$

Additivity:
$$\int_a^b f(x) \, dx + \int_b^c f(x) \, dx = \int_a^c f(x) \, dx$$

Monotonicity:
$$f \leq g \implies \int_a^b f(x) \, dx \leq \int_a^b g(x) \, dx$$

 $f < g \implies \int_a^b f(x) \, dx < \int_a^b g(x) \, dx$

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Differentiation in 1d

Integration in 1d

Riemann integral

Integral: definition and properties

Primitive functions

Practical computation of integrals

Outlook

Properties of integrals ||

Inequalities:

"triangle inequality"

Cauchy-Schwarz

$$\left|\int_a^b f(x)\,dx\right| \leq \int_a^b \left|f(x)\right|\,dx,$$

$$\left(\int_a^b f(x)g(x)\,dx\right)^2 \le \left(\int_a^b f(x)^2\,dx\right)\left(\int_a^b g(x)^2\,dx\right)$$

Change of integration bounds:

$$\int_a^b f(x) \, dx = -\int_b^a f(x) \, dx$$

Integration over interval of length zero: $\int_a^a f(x) dx = 0$

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Differentiation in 1d

Integration in 1d

Riemann integral

Integral: definition and

Primitive functions

Practical computation of integrals

Outlook

Computation of integrals: primitive

Definition (Primitive function)

A differentiable^a A function $F : [a, b] \to \mathbb{R}$ is called a **primitive (function)** of $f : [a, b] \to \mathbb{R}$, if

$$F'(x) = f(x)$$
 for all $x \in [a, b]$.

aIn the boundary points a and b one-sided differentiability is enough.

If there exists a primitive (for f on [a,b]), then it is unique up to a constant C.

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Differentiation in 1d

Integration in 1d

Riemann integral

Integral: definition and properties

Primitive functions

Practical computation of integrals

Outlook

Mean value theorem of integration

Theorem (Mean value theorem of integration)

Let $f:[a,b] \to \mathbb{R}$ continuous.

Then there exists a $\xi \in [a, b]$, such that

$$\int_a^b f(x) \, dx = f(\xi)(b-a).$$

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Differentiation in 1d

Integration in 1d

Riemann integral

Integral: definition and properties

Primitive functions

Practical computation of integrals

Outlook

Mean value theorem - geometrical interpretation

Analysis 1

S.-J. Kimmerle

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Differentiation in 1d

Integration in 1d

Riemann integral

Integral: definition and properties

Primitive functions

Practical computation of integrals

Outlook

Fundamental theorem of differentiation and integration

Theorem (Fundamental theorem of differential and integral calculus)

Let $f:[a,b] \to \mathbb{R}$ continuous.

Then

$$I(x) := \int_{a}^{x} f(\tilde{x}) d\tilde{x}$$

is continuously differentiable and there holds I'(x) = f(x).

Thus I is a primitive of f on [a, b].

The fundamental theorem shows,

- 1.) how to get primitives, and
- 2.) connects differentiation and integration.

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Differentiation in 1d

Integration in 1d

Riemann integral

Integral: definition and properties

Primitive functions

Practical computation of integrals

Outlook

S.-J. Kimmerle

Indefinite integral with variable upper bound *x*:

$$I(x) = \int_{a}^{x} f(\tilde{x}) d\tilde{x} = F(x) + Const = F(x) - F(a)$$

(analogous for variable lower bound),

a definite integral is yields a real number

$$\int_{a}^{b} f(x) \, dx = F(b) - F(a) = [F(x)]_{a}^{b} \quad ,$$

where F is a primitive of f on [a, b].

For a <u>continuous</u> function *f* its primitive *F* corresponds to the set of all indefinite integrals:

$$\int f(x) dx = F(x) + Const$$

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Differentiation in 1d

Integration in 1d

Riemann integral

Integral: definition and properties

Primitive functions

Practical computation of integrals

Outlook

Primitives of common functions

S.-J. Kimmerle

F(x)	F'(x) = f(x)	$\int f(x) dx = F(x) + c$	Bemerkg.
$\frac{1}{n+1}x^{n+1}$	x ⁿ	$\int x^{n} dx = \frac{1}{n+1} x^{n+1} + c$	$n \neq -1$
$\ln x $	$\frac{1}{x}$	$\int \frac{1}{x} dx = \ln x + c$	$x \neq 0$
$-\cos x$	sin x	$\int \sin x dx = -\cos x + c$	
$\sin x$	cos x	$\int \cos x dx = \sin x + c$	
arctan x	$\frac{1}{1+x^2}$	$\int \frac{dx}{1+x^2} = \arctan x + c$	
$\frac{1}{2} \ln \frac{1+x}{1-x}$	$\frac{1}{1-x^2}$	$\int \frac{dx}{1 - x^2} = \frac{1}{2} \ln \frac{1 + x}{1 - x} + c$	x < 1
$\frac{1}{a}e^{ax}$	e^{ax}	$\int e^{ax} dx = \frac{1}{a}e^{ax} + c$	$a \neq 0$
$\cosh x$	sinh x	$\int \sinh x dx = \cosh x + c$	
sinh x	$\cosh x$	$\int \cosh x dx = \sinh x + c$	

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Differentiation in 1d

Integration in 1d

Riemann integral

Integral: definition and properties

Primitive functions

Practical computation of integrals

Outlook

Summary - outlook and review

(Source: [Meyberg, Vachenauer])

