Circuitos Lógicos

Módulo#3

Circuitos Combinacionais

Como implementar os circuitos descritos por uma tabela verdade

	Δ.	В	С	F	Ē
(0	0	0	0	1
(0	0	1	0	1
(0	1	0	0	1
(0	1	1	1	0
	1	0	0	1	0
	1	0	1	1	0
	1	1	0	1	0
	1	1	1	1	0

... Perguntamos à tabela, por exemplo, onde a função F vale 1. Qual seria a resposta em linguagem natural ?

Α	В	С	F	Ē	0	1	1 0	1 1	. 1 . 1
0	0	0	0	1	1	0	1	0	1
0	0	1	0	1					
0	1	0	0	1					
0	1	1	1	0					
1	0	0	1_	0					
1	0	1	1_	0					
1	1	0	1-	-0-				_	
1	1	1	1-	0					

F = 1 quando A=0 e B=1 e C=1 ou A=1 e B=0 e C=0 ou A=1 e B=0 e C=1 ou A=1 e B=1 e C=0 ou A=1 e B=1 e C=1

Como implementar os circuitos descritos por uma tabela verdade

Α	В	С	F	Ē			
A 0 0 0 1 1 1	B 0 1 1 0 0 1 1	0 1 0 1 0 1 0	0 0 0 1 1 1 1	F 1 1 0 0 0 0 0	F = 1 quando A=0 e B=1 e C=1 ou A=1 e B=0 e C=0 ou A=1 e B=0 e C=1 ou A=1 e B=1 e C=0 ou A=1 e B=1 e C=1	Funções lógicas	F = 1 quando A=0 . B=1 . C=1 + A=1 . B=0 . C=0 + A=1 . B=0 . C=1 + A=1 . B=1 . C=0 +

... e, finalmente, F = A'.B.C + A.B'.C' + A.B.C' + A.B.C' + A.B.C

Como implementar os circuitos descritos por uma tabela verdade

Δ	R	С	F	F	
0	0	0	0	1	F = A'.B.C + A.B'.C' + A.B'.C + A.B.C' + A.B.C
0	0	1	0	1	
0	1	0	0	1	poderíamos fazer também
0	1	1	1	0	poderiamos lazer tambem
1	0	0	1	0	
1	0	1	1	0	F' = A'.B'.C' + A'.B'.C + A'.B.C'
1	1	0	1	0	71.516 71.516 71.516
1	1	1	1	0	complementando ambos os lados da expressão.
					complementando ambos os lados da expressão.

... lembram do teorema de DeMorgan ?

... por DeMorgan temos que (X + Y) ' = X' . Y' . Então ...

$$F = (A'.B'.C' + A'.B'.C + A'.B.C')' = (A'.B'.C')' . (A'.B'.C)' . (A'.B.C')'$$

... também por DeMorgan temos que (X . Y . Z) ' = X' + Y' + Z' . Então, finalmente, ...

$$F = (A + B + C) \cdot (A + B + C') \cdot (A + B' + C)$$
 EXPRESSÕES EQUIVALENTES

_A	В	С	F	Ē
0	0	0	0	1
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	1	0
1	0	1	1	0
1	1	0	1	0
1	1	1	1	0

F = A'.B.C + A.B'.C' + A.B'.C + A.B.C' + A.B.C

Nomenclatura

F = A'.B.C + A.B'.C' + A.B'.C + A.B.C' + A.B.C $F = (A + B + C) \cdot (A + B + C') \cdot (A + B' + C)$

$$F = (A + B + C) \cdot (A + B + C') \cdot (A + B' + C)$$

Soma de produtos - Forma canônica de mintermos

Produto de somas - Forma canônica de Maxtermos

Α	В	С	mintermos
0	0	0	$\overline{A}\overline{B}\overline{C} = m_0$
0	0	1	$\overline{A}\overline{B}C = m_1$
0	1	0	$\overline{\underline{A}} B \overline{\overline{C}} = m_2$
0	1	1	$ABC = m_3$
1	0	0	$ABC = m_4$
1	0	1	$ABC = m_5$
1	1	0	$AB\overline{C} = m_6$
1	1	1	$ABC = m_7$

U			1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Α	В	С	Maxtermos
0	0	0	A + B + <u>C</u> = M ₀
0	0	1	$A + B + C = M_1$
0	1	0	$A + B + C = M_2$
0	1	1	$\underline{A} + B + C = M_3$
1	0	0	$A + B + C = M_4$
1	0	1	$\overline{\underline{A}} + \underline{B} + \overline{C} = M_5$
1	1	0	$\overline{A} + \overline{B} + C = M_6$
1	1	1	$\overline{A} + \overline{B} + \overline{C} = M_7$

 $F = m_3 + m_4 + m_5 + m_6 + m_7$

 $F = M_0 . M_1 . M_2 = (A+B+C).(A+B+C').(A+B'+C)$

Como, afinal, devemos implementar a função F?

... como podemos, então, minimizar a função F?

F = A'.B.C + A.B'.C' + A.B'.C + A.B.C' + A.B.C

... procurando dentro da função termos adjacentes, isto é, entre eles uma única variável troca de valor e é eliminada.

... teremos então F = A'.B.C + A.B' + A.B = A'.B.C + A = A + B.C

soma de produtos minimizada (slide anterior)

Exercício 1 : Simplificar as seguintes funções lógicas

L(A,B,C,D)= m (0,2,5,7,8,10,13,15)

Exercício 2: Implementar os circuitos acima utilizando apenas portas NAND

Mapas de Karnaugh: algorítmo

- 1 Construir o mapa;
- 2 Fazer o menor número possível de agrupamentos ;
- 3 Dentro de cada agrupamento realizado, deve haver o maior número possível de termos;
- 4 Começar os agrupamentos pelos termos que têm apenas uma possibilidade de fazê-lo.

Mapas de Karnaugh

, BC	,		В		
A	00	01	11	10	
0	0	1	3	2	
1	4	5	7	6	
	С				

				С		
Α	SCD B	00	01	11	10	
	00	0	1	3	2	
	01	4	5	7	6]_
А	11	12	13	15	14	В
^	10	8	9	11	10	
	_		[D		

Mapas de Karnaugh : exemplo

F = A'.B.C + A.B'.C' + A.B'.C + A.B.C' + A.B.C = m3 + m4 + m5+ m6 + m7

A BO	00	01	11	10
0			1	
1	1	1	1	1

Concluindo, lembrando o algoritmo, ...

Simplificar a expressão abaixo:

$$F(A,B,C,D) = m (0,2,5,8,9,10,11,12,13,14,15)$$

ABCD	00	01	11	10
00	1	0	0	1
01	0	1	0	0
11	1	1	1	1
10	1	1	1	1

Simplificar a expressão abaixo:

... poderia ser escrita como

$$F(A,B,C,D) = M(1,3,6,7)$$

... e aí ?

Exercício: Simplificar as seguintes funções lógicas, utilizando MK

L(A,B,C,D)= m (0,2,5,7,8,10,13,15)

Outros mapas, com maior número de variáveis ...

- · Entendimento do problema
- · Análise das informações
- Minimização da expressão
- · Minimização do circuito *
- Testes
- * pode variar, dependendo da implementação

Circuitos combinacionais utilizando códigos binários

Codificadores

Decodificadores

Conversores de códigos

Codificadores

Codificador decimal => binário

Que circuito implementa a função ?

Decodificadores

Projeto 2 : Decodificador binário (3 bits) => oito saídas

Projeto 2 : Decodificador binário (3 bits) => oito saídas

... e o Enb ?

Dec 3:8 74ALS138

Quatro CIs 74ALS138 formando um decodificador 5:32

... explicar.

Decodificador BCD: decimal

Display de 7 segmentos

Projeto de Circuitos Combinacionais

Projetar um Decodificador Hexadecimal => 7 segmentos

Projetar um Decodificador Hexadecimal => 7 segmentos

AB					,AB				
/	00	01	11	10	. co	00	01	11	
00	1	0	1	1	00	1	1	0	
01	0	1	0	1	01	1	0	1	ĺ
11	1	1	1	0	11	1	1	0	
10	1	1	1	1	10	1	0	0	
			а					h	

Projeto de Circuitos Combinacionais

Decodificador BCD => 7 segmentos

O que muda no projeto ?

Decodificador BCD => 7 segmentos

CD ^{AB}	00	01	11	10
00	1	0	Х	1
01	0	1	Х	1
11	1	1	х	Х
10	1	1	Х	Х
			_	

, AB				
CD	00	01	11	10
00	1	1	Х	1
01	1	1	Х	1
11	1	1	Х	Х
10	0	1	Х	Х
		(,	

Projeto de Circuitos Combinacionais

Decodificador BCD => 7 segmentos

Decodificador BCD => 7 segmentos

Projeto de Circuitos Combinaciona

- Entendimento do problema
 Análise das informações
 Minimização do expressão
- Minimização da expressão
 Minimização do circuito *
 Testes
- * pode variar, dependendo de implementa

a = A + B D + C + B' D' b = A + C' D' + C D + B' c = A + B + C' + D

- . é esse o circuito que vamos implementar ?
- . quantos Cls de portas serão necessários ?

Decodificador/driver BCD para 7 segmentos para display de LEDs de 7 segmentos tipo anodo comum

Código ASCII

Caractere	HEX	Decimal	Caractere	HEX	Decimal	Caractere	HEX	Decimal	Caractere	HEX	Decima
NUL (null)	0	0	Space	20	32	e e	40	64		60	96
Start Heading	1	1	1	21	33	A	41	65	a	61	97
Start Text	2	2		22	34	В	42	66	b	62	98
End Text	3	3	#	23	35	C	43	67	c	63	99
End Transmit	4	4	8	24	36	D	44	68	d	64	100
Enquiry	5	5	%	25	37	E	45	69	e	65	101
Acknowlege	6	6	8	26	38	F	46	70	f	66	102
Bell	7	7		27	39	G	47	71	g	67	103
Backspace	8	8	(28	40	н	48	72	h	68	104
Horiz,Tab	9	9)	29	41	1	49	73	i	69	105
Line Feed	A	10		2A	42	J	4A	74	i	6A	106
Vert.Tab	В	11		28	43	К	48	75	k	68	107
Form Feed	C	12		20	44	L	4C	76	1	6C	108
Carriage Return	D	13	-	2D	45	м	4D	77	m	6D	109
Shift Out	E	14		2E	46	N	4E	78	n	6E	110
Shift In	F	15	1	2F	47	0	4F	79	o	вF	111
Data Link Esc	10	16	0	30	48	P	50	80	p	70	112
Direct Control 1	11	17	1	31	49	Q	51	81	q	71	113
Direct Control 2	12	18	2	32	50	R	52	82	r	72	114
Direct Control 3	13	19	3	33	51	8	53	83	s	73	115
Direct Control 4	14	20	4	34	52	T	54	84	t	74	116
Negative ACK	15	21	5	35	53	U	55	85	u	75	117
Synch Idle	16	22	6	36	54	v	56	86	v	76	118
End Trans Block	17	23	7	37	55	w	57	87	w	77	119
Cancel	18	24	8	38	56	x	58	88	×	78	120
End of Medium	19	25	9	39	57	Y	59	89	y	79	121
Substitue	1A	26	:	3A	58	z	5A	90	z	7A.	122
Escape	1B	27	;	38	59	1	5B	91	(78	123
Form separator	10	28	<	30	60	١.	5C	92	1	7C	124
Group separator	1D	29	=	3D	61	1	50	93	3	70	125
Record Separator	1E	30	>	3E	62	٨	5E	94	n.	7E	126
Unit Separator	1F	31	7	3F	63		5F	95	Delete	7F	127

Código de Gray

FIGURA 2.3 Codificador de posição (encoder) de eixo de três bits e oito posições.

TABELA 2.3 Representação dos números decimais.

Decimal	Binário	Hexadecimal	BCD	GRAY
0	0	0	0000	0000
1	1	1	0001	0001
2	10	2	0010	0011
3	11	3	0011	0010
4	100	4	0100	0110
5	101	5	0101	0111
6	110	6	0110	0101
7	111	7	0111	0100
8	1000	8	1000	1100
9	1001	9	1001	1101
10	1010	A	0001 0000	1111
11	1011	В	0001 0001	1110
12	1100	C	0001 0010	1010
13	1101	D	0001 0011	1011
14	1110	E	0001 0100	1001
15	1111	F	0001 0101	1000

Projetar um conversor BCD => Código de Gray

	t	ab	ela	ve	rda	ade	9
Α	В	С	D	W	Х	Υ	Ζ
0	0	0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0	0	0 0 0 0 1 1 1 1 1 X X X X X	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	1
0	0	1	1	0	0	1	0
0	1	0	0	0	0 0 1 1	1	0
0	1	0	1	1	1	1	0
0	1	1	0	1	0	1	0
0	1	1	1	1	0	1	1
1	0	0	0	1	0	0	1
1	0	0	1	1	0	0	0
1	0	1	0	Х	Х	Х	Х
1	0	1	1	Х	Х	Х	Х
1	1	0	0	Х	X	Х	X
1	1	0	1	Х	Х	Х	Х
0 0 0 0 0 0 1 1 1 1 1 1	1	1	0 1 0 1 0 1 0 1 0 1 0 1	Х	0 0 0 X X X X X X	1 0 0 X X X X X X	0 1 1 0 0 0 0 1 1 0 0 X X X X
1	1	1	1	Х	Х	Х	Х

Projetar um conversor BCD => Código de Gray

	t	ab	ela	ve	rda	ade	е	√ ^{4B}			co ^{AB} ∞			
Α	В	С	D	W	X	Υ	Z	00 00	01 11	10		01 11	10	
0	0	0	0	0	0	0	0	00 0	0 X	11	00 0	1 X	0	
0	0	0	1	0	0	0	1	01 0	1 X	1	01 0	1 X	0	
0	0	1	0	0	0	1	1				_	_		
0	0	1	1	0	0	1	0	C 11 0	1 X	Х	C 11 0	0 X	×	
0	1	0	0	0	1	1	0	10 0	1 X	Х	10 0	0 X	×	
0	1	0	1	1	1	1	0		-				\vdash	
0	1	1	0	1	0	1	0		В			В		
0	1	1	1	1	0	1	1		,	N		,	Κ .	
1	0	0	0	1	0	0	1		,			,		
1	0	0	1	1	0	0	0	CD 00	01 11	10	AB			
	0	. !	0	Х	Х	Х	Х	~ _			00 00	01 11	10	
1	0	1	1	Х	X	X	X	00 0	1 X	0	00 0	01 11 0 X	10	
1	0	1	1	X	X	X	Х	~ _					10	
1 1 1	0	1 0 0	0	X X X	X X	X X	X	00 0	1 X	0 0	00 0	0 X	1 0 D	
1 1 1 1	0		1	X X X	X X X	X X X	X X	00 0	1 X	0	00 0	0 X	1 0	
1 1 1 1	0		0	X X X	X X	X X	X	00 0	1 X	0 0	00 0	0 X	1 0 D	
1 1 1 1	0		0	X X X	X X X	X X X	X X	00 0 01 0	1 X 1 X	0 0 X X	00 0	0 X 0 X 1 X	1 0 X	

W = A + B D + B C X = B C' Y = B + C Z = A'B'C'D + B C D + A D' + B' C D'

Multiplexadores

Multiplexadores (seletores)

Diagrama lógico do multiplexador 74ALS151

	Inp		Sal	da		
Ē	S_2	Sį	S_0		Ž	Z
н	х	х	х	ı	н	L
L.	L	L	L	Ш	Īn	I _o
L	L	L	Н	Ш	T_1	-15
L.	L	н	L	П	T ₂	12
L	L	н	н	Ш	T ₂	15
L	н	L	L	Ш	Ta	-14
L	н	L	н	Ш	Īs	L
L	н	Н	L	П	Te	I,
L.	н	н	н	П	Ty	17

74HC151 combinados para formar um multiplexador de 16 entradas

74HC151 combinados para formar um multiplexador de 32 entradas (observe o decodificador 74139)

Analisar o circuito abaixo

Demultiplexador

Demultiplexador de 1 para 8 linhas

O decodificador 74ALS138 como um demultiplexador com E_1 usada como entrada de dado

Comparador de magnitude de quatro bits 74HC85 (7485, 74LS85)

TABELA-VERDADE

EN	TRADAS DE	COMPARAÇ	AO.	ENTRADAS	DE CASC	SAIDAS			
A ₃ , B ₃	A ₂ , B ₂	A1, B1	A ₀ , B ₀	IAHB	i _{A=B}	i _{A-B}	O _{A+B}	O _{A=B}	O _{A=0}
A ₃ >B ₃	х	x	×	×	×	x	н	L	L
A3 <b3< td=""><td>×</td><td>X</td><td>×</td><td>X</td><td>×</td><td>X</td><td>L</td><td>н</td><td>L</td></b3<>	×	X	×	X	×	X	L	н	L
A3=B3	A2>B2	X	×	X	×	x	H	L	L
A3=B3	A2<82	×	×	X	×	X X X	L	H	L
A ₃ =B ₃	A2=B2	A,>B,	×	×	X X X	×	н	L	L
A ₂ =B ₂	A,=8,	A, < B,	×	×	X	X	L	H	L
A ₈ =B ₈	A2=82	A,=B,	A ₀ >B ₀	×	X	X	H	14	L
A ₈ =B ₈	A2=82	A,=B,	A ₀ <b<sub>0</b<sub>	×	X	X X	L	H	L
A ₃ =B ₃	A2=B2	A ₁ =B ₁	A _o =B _o	н	L	L	H	t.	L
A ₃ =B ₃	A2=82	A ₁ =B ₁	A ₀ =B ₀	4.	H	1.	L	H	L
A3#B3	A,=B,	A.=B.	A ₀ =B ₀	×	×	H	L.	L.	H
A ₃ =B ₃	A ₂ =B ₂	A,=B,	A ₀ =B ₀	L	L	L	H	H	L
A3=B3	A2=B2	A,=B,	A ₀ =B ₀	H	H	L	L	L	L

H = Nível de tensão ALTO L = Nível de tensão BAIXO

Dois Cls 74HC85 cascateados para formar um comparador de oito bits.

Exercícios

Analisar os circuitos abaixo e implementá-los com um menor número de Cis.

Seja o circuito abaixo um alarme de automóvel. Projetar o circuito lógico para dar alarme quando: a) os faróis estão acesos e a ignição está desligada b) a porta está aberta e a ignição está ligada

Projetar o circuito que atenda à função X

Leitura indicada

- a) Sec. 5.1 5.6, pgs. 161 195
- b) Sec. 7.1 7.5, pgs. 239 262

Boolean Algebra and Simplification Techniques

Combinational Logic Circuits

LEARNING OBJECTIVES

- After completing this chapter, you will learn the following:

 Variables and larends of a Boolean expression.

 Equivalent, Audi, and canaplement of a Boolean expression and Boolean expression.

 Expanded from of Boolean expressions.

 Expanded from of Boolean

LEARNING OBJECTIVES

