

SciPy Sampa: Evolução da visão computacional utilizando redes neurais

Potenciais de Utilização da Teoria BCM em Visão Computacional

Por:

Jonas Santos Marma

jonas.marma@gmail.com
github.com/JonasMarma

Introdução: Olho humano

Axial organization of the retina (from Cajal, 1911). (Cajal, 1991): S. R. Y. CAJAL, Histologie Du Système Nerveux de lHomme et Des Vertébrés, Maloine, Paris, 1911

Campos receptivos

McGill University – The Retina

Desenvolvimento do campo receptivo (ESPECIALIZAÇÃO)

Biological Modeling of Neural Networks

Veja na prática!

Mas como?

Donald Hebb - 1949

"Células que disparam juntas, permanecem conectadas."

Teoria BCM - 1982

Modelo hebbiano de aprendizado desenvolvido por Bienenstock, Cooper e Munro.

3 postulados:

 $\mathbf{1^{2}}$: Mudança nos pesos \propto Atividade présináptica

3 postulados:

Mudança nos pesos Função da atividade **2**²: pós-sináptica ϕ sinápticos $\phi(y)$ θ_m

3 postulados:

32: O limiar θ_M depende do histórico de ativação y

Resumindo:

•
$$\frac{dw_i}{dt} \propto \chi_i$$

•
$$\frac{dw_i}{dt} \propto \phi(y, \theta_M)$$

•
$$\theta_{M} = f(\langle y \rangle)$$

Hebb X BCM

Formulação Law & Cooper - 1994

$$egin{array}{lll} y & = & \sigmaigg(\sum_i w_i x_iigg) \ rac{dw_i}{dt} & = & y(y- heta_M)x_i/ heta_M \ heta_M & = & E[y^2] \end{array}$$

Visão "biológica"

Visão computacional

Gato(94%)

```
def main(self):
    print("Digite a imagem que deseja processar:")
    img = raw_input()
    image = self.loadImage("images/" + img + ".bmp")
    normImage = self.normalize(image)
    inputVects = self.createInputs(normImage)

iterations = 150000
for i in range(0, iterations):
    #Pegando um quadrado aleatório
    randomPatch = np.random.randint(0, self.Npatches, 1)

    self.bcmTraining94(inputVects[randomPatch, :].flatten(), i)

self.showWeights(self.weights)
```

```
def normalize(self, image):
    mean = np.mean(image)
    std = np.std(image)
    image -= mean
    image /= std
    return image
```

153	213	200	150
45	145	144	45
230	144	150	155
215	211	49	90
0.6	0.1	0.6	0.4
0.8	0.1	0.4	0.9
0.6	0.2	0.3	0.4

0.2 0.5 0.6

```
def main(self):
    print("Digite a imagem que deseja processar:")
    img = raw_input()
    image = self.loadImage("images/" + img + ".bmp")
    normImage = self.normalize(image)
    inputVects = self.createInputs(normImage)

iterations = 150000
for i in range(0, iterations):
    #Pegando um quadrado aleatório
    randomPatch = np.random.randint(0, self.Npatches, 1)

    self.bcmTraining94(inputVects[randomPatch, :].flatten(), i)

self.showWeights(self.weights)
```

```
def createInputs(self, image, x0verlay = 4, y0verlay = 4, patchSize = 16):
    patches = []
    self.patchSize = patchSize
    i = 0; j = 0
    while True:
        if i + patchSize > self.imageX:
            i = 0
            j += patchSize - yOverlay
        if j + patchSize > self.imageY:
            break
        patch = image[i:(i+patchSize) , j:(j+patchSize)].flatten()
        patchHead = (patch > 0) * patch
        patchTail = (patch < 0) * np.abs(patch)</pre>
        line = np.concatenate((patchHead, patchTail), axis = 0)
        patches.append(line)
        i += (patchSize - x0verlay)
    self.Npatches = len(patches)
    patches = np.array(patches)
    return patches
```


6546543213216546513546213546879543132132165465 4621321324657981729814343785324445672385278652 780537850724432352732573504,0537253725370454654 6576457648948972374342164591879457642431246514 9184987650134126451975365465432132165465135462 1354687954313213216546546213213246579817298143 4378532444567238527865278053785072443235273257 3504,053725372537045465465764576489489723743421 6459187945764243124651491849876501341264519753 6546543213216546513546213546879543132132165465 4621321324657981729814343785324445672385278652 780537850724432352732573504,0537253725370454654 6576457648948972374342164591879457642431246514 4621321324657981729814343785324445672385278652 780537850724432352732573504,0537253725370454654 6576457648948972374342164591879457642431246514

```
def main(self):
    print("Digite a imagem que deseja processar:")
    img = raw_input()
    image = self.loadImage("images/" + img + ".bmp")
    normImage = self.normalize(image)
    inputVects = self.createInputs(normImage)

iterations = 150000
for i in range(0, iterations):
    #Pegando um quadrado aleatório
    randomPatch = np.random.randint(0, self.Npatches, 1)

    self.bcmTraining94(inputVects[randomPatch, :].flatten(), i)

self.showWeights(self.weights)
```

```
def bcmTraining94(self, inputVect, iteration):
                                                        y
     = self.sigmoid(np.inner(self.weights, inputVect))
   d weights = (inputVect * (y ** 2 - y * self.theta))/self.theta
   self.weights += d weights
   self.weights[self.weights < 0] = 0
   self.yIntegral += y
   self.theta = (self.yIntegral/(iteration+1))**2
                                                 dw_i
                                                                      y(y-	heta_M)x_i/	heta_M
                                        E[y^2]
         \theta_M
```

Seletividade no campo receptivo

Seletividade no campo receptivo

Obrigado!

jonas.marma@gmail.com

github.com/JonasMarma