No	SOLUTION						
A	SECTION – A (3 marks each)						
	1) (c) 2) (c) 3) (d) 4) (a) 5) (c)						
	6) (c) 7) (b) 8) (d) 9) (c) 10) (d)						
SECTION - B (15 marks each) B1							
	i) Add +65 ₁₀ to +23 ₁₀						
(b)	sign 64 32 16 8 4 2 1 $+65 = 0 1 0 0 0 0 0 1$ $+23 = 0 0 0 1 0 1 1 1$ $+88 = 0 1 0 1 1 0 0 0$						
	ii) Subtract $+26_{10}$ from -73_{10} is = Add -26 to -73						
	sign 64 32 16 8 4 2 1						
(c)	+26 = 0 0 0 1 1 0 1 0						
	-26 = 1 1 1 0 0 1 1 0						
	-20 = 1 1 1 0 0 1 1 0 +73 = 0 1 0 0 1 0 0 1						
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
	-99 = 1						

No	SOLUTION					
B2 (a)	A 4-BIT Parallel Adder IC contains four interconnected full adders and is able to add two set of 4 bit numbers applied to the A inputs and the B inputs, simultaneously. It produces a sum result of up to 5 bits at the Cout, S3, S2, S1 S0 outputs.					
	4 Full adder units are required to construct the 7483 4-bit Adder IC. Equivalent functional circuit of 7483:					
	A3 B3 A2 B2 A1 B1 A0 B0					
(b)	Two 74283 ICs are required.					
(c)	MSB A7A6A5A4 A3A2A1A0 COUT. 74283 CIN COUT. 74283 CIN B7B6B5B4 B3B2B1B0 LSB MSB Sum output LSB					

MODULE: <u>DIGITAL ELECTRONICS 2</u> MOD. CODE: <u>ET1004</u>

B3 From the given state transition diagram, the modulus of the counter is **Mod-7** as there are 7 unique output states.

(b)

Important for answers

using correct number of flip-flops

use of correct clock input

indicate clearly LSB and MSB outputs

use of external AND gate and connections to the correct counter outputs

<u>OR</u>

(c) Required Clock frequency = 7 * 10 kHz = 70 kHz

No	SOLUTION						
C1 a)	Circuit is an Astable multivibrator. Given $F = \frac{0.8}{R1C1}$, with $R1 = 1600\Omega$ and $C1 = 10\mu F$ Frequency $F = (0.8*10^5)/1600 = 50Hz$						
b)	Modulus of counter = 5_{10} because the feedback to the CLR inputs of the flip-flops = $\overline{A} + \overline{C} = \overline{A} \cdot \overline{C}$ from DeMorgan's theorems. Hence when the counter outputs are momentarily 101, the flip-flops will be cleared. Therefore maximum count is 100 or 4 decimal.						
c)	Frequency at output $C = 50/5 = 10$ Hz.						
	To determine duty cycle at output \mathcal{C} , observe the counter sequence at output \mathcal{C} , i.e :						
	С	В	Α				
	0	0	0				
	0	0	1				
	0	1	0				
	0	1	1				
	1	0	0				
	0	0	0				
	0	0	1				
	C _ 0 , 0 , 0 1 0						
	Therefore duty cycle = 1/5 * 100% = 20 %						

