物理实验预习报告

(2020 - 2021 学年度 春季学期)

姓名刘祖炎学号2019010485院系自动化系教师2021 年 4 月 15 日

目录

1	实验目的	1					
2	实验原理	1					
	2.1 热电子发射的理论依据						
	2.2 A 与 S 的测量与处理	1					
	2.3 发射电流 I_e 的测量						
	2.4 温度 T 的测量	2					
3	实验装置	2					
4	实验电路图						
5	5 数据记录表格						

1. 实验目的

- 用里查孙直线法测定阴极材料(钨)的电子逸出功。
- 了解热电子发射的规律,掌握逸出功的测量方法。

2. 实验原理

2.1 热电子发射的理论依据

图 1: 位能壁垒图

金属的位能壁垒图如图1所示。由于金属与真空之间有位能壁垒 W_a ,故电子若要从金属中逸出,至少需要 $W_0 = W_a - W_i$ 的动能。通过热电子发射的方法可以改变电子的能量分布,使得动能大于 W_i 的电子增多,从而使动能大于 W_a 的电子可能从金属中发射出来并观测到。

关于热电子发射,有里查孙-德西曼公式:

$$J_e = 2(1 - R_e)A_1 T^2 e^{-(W_a - W_i)/KT}$$

其中 J_e 为单位面积的发射电流, $A_1=\frac{2\pi k^2me_0}{h^3}=60.09A/cm^2K^2$ 为普适常数, R_e 为金属表面对发射电子的反射系数,T 为绝对温度。

令
$$2(1-R_e)A_1 = A$$
, 有:

$$I_e = AST^2 e^{-e_0\phi/KT} \tag{1}$$

其中 S 为阴极金属的有效发射面积。

2.2 A 与 S 的测量与处理

测量方法为里查孙直线法。 对式1进行整理,可得:

$$\lg \frac{I_e}{T^2} = \lg AS - 5.039 \times 10^3 \frac{\phi}{T}$$

可得 $lg \stackrel{L}{\leftarrow}$ 与 $\frac{1}{T}$ 成线性关系,根据作图法所得的直线斜率即可得到 ϕ 。由于 A 与 S 对某一固定材料的阴极而言是常数,故 lg AS 一项只改变上述直线的截距而不影响直线的斜率,由此可避免因 A 与 S 不能准确测定的困难。

2.3 发射电流 Ie 的测量

图 2: I_e 测量原理图

发射电流的测量方式如图2所示。在加速场的作用下,阴极发射电流 I_e' 与 E_a 满足:

$$I_e' = I_e e^{4.39\sqrt{E_a}/T}$$

对上式取对数,并把阳极做成圆柱形,并与阴极共轴,上式可变换为:

$$\lg I_e' = \lg I_e + \frac{4.39}{2.303T} \frac{1}{\sqrt{r_1 \ln(r_2/r_1)}} \sqrt{u_a}$$

一般情况下,阳极电压远大于接触电位差以及其他原因引起的电位差,上式为近似结果。其中 r_1 和 r_2 分别为阴极和阳极的半径, u_a 为阳极电压。

因而,在阴极温度一定的情况下, $\lg I_e'$ 与 $\sqrt{u_a}$ 成线性关系,画出其直线并将其延长至 $u_a=0$ 处,则此时 $\lg I_e'$ 即为 $\lg I_e$ 。由此即可得所需要的的 I_e 值。

2.4 温度 T 的测量

本实验通过测量阴极加热电流来确定阴极电流。对于纯钨丝而言,已知一定的比加热电流 I_1 与阴极温度的关系。实验测得 I_f 后可由该关系,利用直线插值求出温度 T。

表 1: 钨丝电流与温度关系表

I_f/A	0.500	0.550	0.600	0.650	0.700	0.750	
T/K	1726	1809	1901	1975	2059	2136	

3. 实验装置

• 直热式二极管

图 3: 实验用直热式二极管结构

- 双路直流可调电源 (输出范围 $0 \sim 150V$)
- 指针式电流表 (交直流两用,量程 1A,测灯丝电流 I_f)
- 数字电压表
- 实验面包板、元件 (可以搭建如下图所示的电路)

图 4: 电压测量电路

4. 实验电路图

实验电路图如图5所示。

搭建好电路后,在一定的灯丝温度下,测量加速电压 U_a 与阳极电流 I_e' 的关系。 U_a 从 36V 开始逐步增加,测量 6 \sim 7 组 $U_e \sim U_a$ 的值。

从 0.500A 开始逐步增加电源电流,每隔 0.04A 按照上步骤完成一次测量,电流最大值不超过 0.700A。 完成测量后,用直线拟合法或作图法处理数据。

图 5: 设计的实验电路图

5. 数据记录表格

表 2: 实验数据记录表格

I_a/A	T/K	$U_a = 36V$	49V	64V	81V	100V	121V	144V	1/T	U_e	r
0.50	1726										
0.54	1795										
0.58	1862										
0.62	1929										
0.66	1995										
0.70	2059										