Applications in Business and Industrial problem Customer Churn Prediction in Telecommunication Industry http://www.free-powerpoint-templates-design.com

Introduction Modeling Results conclusions Agenda

Churn Modeling

Customer Churn Prediction in Telecommunication Industry

Telecommunication

Introduction

Churn Rate

How to know Who will Churn?

Introduction

VARIABLE

Boxplot

CHURN COMPARE WITH TENURE

Stacked bar

Churn by Contract Type

Stacked bar

Churn by Seniority Level

VARIABLE

Distribution of monthly charges by churn

Distribution of total charges by churn

Modeling

RESULT LOGISTIC REGRESSION

Modeling

Beta 0:

[-1.06351583]

Coefficient:

 $\begin{bmatrix} 1.93539116e-01 -2.98146524e+00 -1.36432342e-01 1.14694845e+00 1.51836880e-02 -1.49579528e-02 3.81211240e-02 -3.78953888e-02 1.25994493e-02 -1.23737141e-02 7.73479455e-02 -7.71222102e-02 -1.57712442e-01 7.73479455e-02 8.05902313e-02 -3.59136790e-01 4.78030485e-01 -1.18667959e-01 2.37173810e-01 -1.18667959e-01 -1.18280115e-01 1.50954645e-01 -1.18667959e-01 -3.20609501e-02 3.80355661e-02 -1.18667959e-01 8.08581285e-02 1.97465812e-01 -1.18667959e-01 -7.85721178e-02 -4.43637263e-02 -1.18667959e-01 1.63257421e-01 -5.53843321e-02 -1.18667959e-01 1.74278027e-01 6.45790317e-01 -8.91169605e-02 -5.56447621e-01 -1.32223750e-01 1.32449485e-01 -3.26690710e-02 -2.22089219e-01 2.56487631e-01 -1.50360638e-03]]$

EVALUATION

Accuracy : 0.80758 Precisions : 0.78226 Recall : 0.73205 F1 Score : 0.74890

RESULT LOGISTIC REGRESSION

Modeling

Beta 0 : [-2.53019529]

Coefficient : [[-1.99163571 1.39213777 1.40070402 0.57168699]]

EVALUATION

Accuracy : 0.78483
Precisions : 0.74998
Recall : 0.70295
F1 Score : 0.71786

4.Conclusion

Compare Evolution between of All factors and Top 4 factors

Evolution	All Factors	Top 4 Factors
Accuracy	0.80758	0.78483
Precisions	0.78226	0.74998
Recall	0.78226	0.70295
F1 Score	0.74890	0.71786

Highest Evolution

Compare between Model of All factors and Top 4 factors

[-1.06351583]

Top 4 Factors

[-2.53019529]

[-1.99163571 1.39213777 1.40070402 0.57168699]]

Non-complex and simplify

CONCLUSION

CONCLUSION

Model of top 4 factors

Y = -2.53019529 + (-1.99163571)A + (1.39213777)B + (1.40070402)C + (0.57168699)E

Where

Beta 0 is -2.53019529

A is TotalCharges

B is Contract Month-to-month

C is InternetService_Fiber optic

D is PaymentMethod Electronic check

```
## IMPORT LIBRARY
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read csv)
import seaborn as sns # For creating plots
import matplotlib.ticker as mtick # For specifying the axes tick format
import matplotlib.pyplot as plt
from sklearn.metrics import confusion matrix
sns.set(style = 'white')
#Upload file
from google.colab import files
uploaded = files.upload()
# READ FILE
telecom cust = pd.read csv('WA Fn-UseC -Telco-Customer-Churn.csv')
```

```
# Check column
telecom cust.columns.values
# Check Data Type
telecom cust.dtypes
# Converting Total Charges to a numerical data type.
telecom cust.TotalCharges = pd.to numeric(telecom cust.TotalCharges, errors
='coerce')
telecom cust.isnull().sum()
#Removing missing values BY DELETE MISSING DATA
telecom cust.dropna(inplace = True)
#Remove customer IDs (ไม่ใช้)
df2 = telecom cust.iloc[:,1:]
```

```
#Converting the predictor variable in a binary numeric variable ເປລີ່ຍນສັງ
ແປລ Y ເປັນ O 1 (1 ບັນ O ໄມ່ຍ້າຍ)
df2['Churn'].replace(to_replace='Yes', value=1, inplace=True)
df2['Churn'].replace(to_replace='No', value=0, inplace=True)

#Let's convert all the categorical variables into dummy variables ສຸງົງ dummy ນອ
ງພວກ Category
df_dummies = pd.get_dummies(df2)
df_dummies.head()
```

```
#### COMPARE RARIO YES NO
ax = (telecom cust['Churn'].value counts()*100.0 /len(telecom cust)).plot(kind='bar',
stacked = True, rot = 0, figsize = (8, 6))
ax.yaxis.set major formatter(mtick.PercentFormatter())
ax.set ylabel('% Customers', size = 14)
ax.set xlabel('Churn', size = 14)
ax.set title('Churn Rate', size = 14)
# create a list to collect the plt.patches data
totals = []
# find the values and append to list
for i in ax.patches:
    totals.append(i.get width())
# set individual bar lables using above list
total = sum(totals)
for i in ax.patches:
    # get width pulls left or right; get y pushes up or down
    ax.text(i.get x()+.15, i.get height()-4.0, \setminus
            str(round((i.get height()/total), 1))+'%',
            fontsize=12,
            color='white',
           weight = 'bold',
           size = 14)
```

```
Logistic Regression
# We will use the data frame where we had created dummy variables
y = df dummies['Churn'].values
X = df dummies.drop(columns = ['Churn'])
# Scaling all the variables to a range of 0 to 1
from sklearn.preprocessing import MinMaxScaler
features = X.columns.values
scaler = MinMaxScaler(feature range = (0,1))
scaler.fit(X)
X = pd.DataFrame(scaler.transform(X))
X.columns = features
# Create Train & Test Data 70: 30
from sklearn.model selection import train test split
X_train, X_test, y_train, y_test = train test split(X, y, test size=0.3, ra
ndom state=123)
```

```
# Running logistic regression model
from sklearn.linear model import LogisticRegression
model = LogisticRegression()
result = model.fit(X train, y train)
from sklearn import metrics
prediction test = model.predict(X test)
# Print the prediction accuracy
print (metrics.accuracy score(y test, prediction test)) #ความแม่นยำ
# To get the weights of all the variables
weights = pd.Series(model.coef [0],
                  index=X.columns.values)
print (weights.sort values(ascending = False)[:10].plot(kind='bar'))
print (model.intercept ) ## ค่าคงที่ (beta0)
print (model.coef ) ## ค่าสัมประสิทธิ์
```

```
#### NEW MODEL WITH MOST 5 WEIGTH VARIABLE
'TotalCharges', 'Contract Month-to-
month', 'InternetService Fiber optic', 'PaymentMethod Electronic check'
# We will use the data frame where we had created dummy variables
y = df dummies['Churn'].values
X = df dummies[['TotalCharges','Contract Month-to-
month', 'InternetService Fiber optic', 'PaymentMethod Electronic check']]
# Scaling all the variables to a range of 0 to 1
from sklearn.preprocessing import MinMaxScaler
features = X.columns.values
scaler = MinMaxScaler(feature range = (0,1))
scaler.fit(X)
X = pd.DataFrame(scaler.transform(X))
X.columns = features
```

```
# Create Train & Test Data 70: 30
from sklearn.model selection import train test split
X train, X test, y train, y test = train test split(X, y, test size=0.3, ra
ndom state=123)
# Running logistic regression model
from sklearn.linear model import LogisticRegression
model = LogisticRegression()
result = model.fit(X train, y train)
from sklearn import metrics
prediction test = model.predict(X test)
# Print the prediction accuracy
print (metrics.accuracy score(y test, prediction test)) #ความแม่นยำ
```

