

Europäisches Patentamt
European Patent Office
Office européen des brevets

(11) EP 0 822 046 A2

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 04.02.1998 Bulletin 1998/06

(51) Int Cl.⁶: **B29C 33/20**, B29D 30/06

(21) Application number: 97303258.4

(22) Date of filing: 13.05.1997

(84) Designated Contracting States: DE FR GB IT

(30) Priority: 29.07.1996 JP 199158/96

(71) Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD. Tokyo 100 (JP) (72) Inventor: Irie, Nobuhiko, Miteubishi Heavy Industries, Ltd Nagasaki-shi, Nagasaki-ken (JP)

 (74) Representative: Goddard, David John et al Harrison Goddard Foote,
 Vine House,
 22 Hollins Lane
 Marple Bridge, Stockport SK6 5BB (GB)

(54) Tyre vulcanizer

(57) A tire vulcanizer in accordance with the present invention comprises a fixed base (1) on which tire vulcanization molds (M) are mounted, a movable frame (4) which can reciprocate in the longitudinal direction on the fixed base, and an elevating frame (6) attached to the movable frame so as to be raised and lowered. After the

tire vulcanization mold (M) is opened by raising the elevating frame and lifting an upper half mold (Ma) of the tire vulcanization mold, the upper half mold of the tire vulcanization mold is moved to the rear by the movable frame to carry out the removal of a vulcanized tire and the supply of a green tire.

F1G. 3

Printed by Jouve, 75001 PARIS (FR)

FIELD OF THE INVENTION AND RELATED ART STATEMENT

The present invention relates to a vulcanizer for a tire mounted on an automobile etc.

In a conventional tire vulcanizing press, during the vulcanization of a tire, forces to open a tire vulcanization mold, which are produced by a pressure of a heating/ pressurizing medium of a high temperature and high pressure introduced in the tire, are offset in the mold, so that the tire vulcanization mold is tightened during the vulcanization to prevent the mold from being opened. Accordingly, the applicant has already proposed a tire vulcanizing press in which a need for tightening the tire vulcanization mold is eliminated in such a case (see Japanese Patent Provisional Publication No. 5-200754 (No. 200754/1993)).

Also, in a conventional tire vulcanizing press, the time for the loading and shaping of a green tire and removal of a vulcanized tire is far shorter than the vulcanizing reaction time (the time for vulcanizing reaction carried out by introducing a heating/pressurizing medium into a tire with the tire vulcanization mold closed), so that the rate of operation of the mold opening/closing device and tire loading device is low. Accordingly, the applicant has already proposed a tire vulcanizing press for solving this problem (see Japanese Patent Provisional Publication No. 7-1469 (No. 1469/1995)).

However, the aforesaid tire vulcanizing press developed to meet the need for improved tire uniformity requires the installation space for a green tire loader etc. between the opened tire vulcanization molds, so that the elevation stroke for an upper half mold of tire vulcanization mold is large, by which the tire vulcanizing press is made high. Therefore, when the aforesaid tire vulcanizing press is transported to an end user, the press must be carried with the high portion disassembled, which results in an increase in transportation-related cost.

OBJECT AND SUMMARY OF THE INVENTION

The present invention was made to solve the above problems. Accordingly, an object of the present invention is to provide a tire vulcanizer which (1) can significantly reduce the transportation-related cost and (2) can decrease the ceiling height of a factory in which the tire vulcanizer is installed.

To achieve the above object, the tire vulcanizer in accordance with the present invention comprises a fixed base on which tire vulcanization molds are mounted, a movable frame which can reciprocate in the longitudinal direction on the fixed base, and an elevating frame attached to the movable frame so as to be raised and lowered, and is wherein after the tire vulcanization mold is opened by raising the elevating frame and lifting an upper half mold of the tire vulcanization mold, the upper

half mold of the tire vulcanization mold is moved to the rear by the movable frame to carry out the removal of a vulcanized tire and the supply of a green tire.

In the tire vulcanizer according to the present invention, a plurality of sets of tire vulcanization molds may be mounted on the fixed frame, and a connection severing device for severing the connection between the upper half mold and lower half mold of the tire vulcanization mold in which vulcanization process is finished is attached to the elevating frame so as to correspond to each tire vulcanization mold.

In the tire vulcanizer according to the present invention, a horizontal rail may be attached to the elevating frame in the transverse direction, and the connection severing device may be supported by the horizontal rail so as to be movable in the transverse direction.

In the tire vulcanizer according to the present invention, a horizontal rail may be attached to the elevating frame in the transverse direction, and a green tire loader may be supported by the rail so as to be movable in the transverse direction.

The tire vulcanizer in accordance with the present invention is configured as described above, so that it achieves the following effects. The conventional tire vulcanizing press developed to meet the need for improved tire uniformity requires the installation space for a green tire loader etc. between the opened tire vulcanization molds, so that the elevation stroke for the upper half mold of tire vulcanization mold is large, by which the tire vulcanizing press is made high. Therefore, when the tire vulcanizing press is transported to an end user, the press must be carried with the high portion disassembled. However, in the tire vulcanizer of the present invention, configured as described above, the upper half mold of the tire vulcanization mold is retreated after being raised from the lower half mold, so that the elevation stroke of the upper half mold of the tire vulcanization mold can be made small. Therefore, according to the tire vulcanizer in accordance with the present invention, the height of the tire vulcanizer can be decreased, and the tire vulcanizer can be transported to an end user without being disassembled, so that the transportationrelated cost can be decreased significantly.

Also, since the height of the tire vulcanizer can be decreased, the ceiling height of a factory in which the tire vulcanizer is installed can be decreased.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a front view of a tire vulcanizer in accordance with a first embodiment of the present invention, showing a state in which tire vulcanization molds (M3, M4 ...) are closed on the left side of line Y-Y, and a state in which a set of tire vulcanization mold M (M1) is open on the right side of line Y-Y; FIG. 2 is a side view of the tire vulcanizer viewed from the right of FIG. 1:

FIG. 3 is a longitudinal side sectional view of the tire

10

4

vulcanizer, showing a state-in which an upper half mold Ma of a open tire vulcanization mold M1 retreats, and the centerline X-X of a lower half mold Mb of the tire vulcanization mold M1 agrees with the center of a green tire loader 11; and

FIG. 4 is a front view of a tire vulcanizer in accordance with a second embodiment of the present invention.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

(First embodiment)

A tire vulcanizer in accordance with a first embodiment of the present invention will be described with reference to FIGS. 1 to 3.

FIG. 1 is a front view of a tire vulcanizer in accordance with a first embodiment of the present invention, showing a state S in which tire vulcanization molds (M3, M4...) are closed on the left side of line Y-Y, and a state O in which a set of tire vulcanization mold M (M1) is open on the right side of line Y-Y, FIG. 2 is a side view of the tire vulcanizer viewed from the right of FIG. 1, and FIG. 3 is a longitudinal side sectional view of the tire vulcanizer, showing a state in which an upper half mold Ma of a open tire vulcanization mold M1 retreats, and the centerline X-X of a lower half mold Mb of the tire vulcanization mold M1 agrees with the center of a green tire loader 11.

Reference numeral 1 denotes a fixed base for the tire vulcanizer. In the fixed base 1 are incorporated a publicly known center mechanism 3 and piping for a heating/pressurizing medium. To the top surface of the fixed base 1, mold loading/unloading roller guides 2 are assembled. In the case of this embodiment, four sets of tire vulcanization molds M (M1 to M4) are mounted on the mold loading/unloading roller guides 2, and a lower half mold Mb of the tire vulcanization mold M is fixed to the fixed base 1 by means of a locking device (not shown).

A type of tire vulcanization mold M, in which during the vulcanization of a tire, forces to open the tire vulcanization mold, which are produced by a pressure of the heating/pressurizing medium of a high temperature and high pressure introduced in the tire, are offset in the tire vulcanization mold M, (for example, the type disclosed in Japanese Patent Provisional Publication No. 8-47928 (No. 47928/1996)) is employed.

Reference numeral 1a denotes horizontal rails fixed on the top surface at both sides in the transverse direction of the fixed base 1 along the longitudinal direction, 4c denotes a direct-acting bearing engaging with respective horizontal rails 1a, 4a denotes a leg erected on the direct-acting bearing 4c, and 4 denotes a movable frame fixed to the upper end of the leg 4a. The movable frame 4 can move longitudinally along the horizontal rail 1a.

Reference numeral 1b is a bracket erected at the center in the transverse direction of the fixed base 1, 5 denotes a cylinder attached to the upper end of the bracket 1b, and 5a denotes a piston rod in the cylinder 5. The tip end of the piston rod 5a is connected to the movable frame 4. By actualing the cylinder 5 in the extension/contraction direction, the movable frame 4 is moved in the longitudinal direction, ie from right to left and vice versa as viewed in Figures 2 and 3.

Reference numeral 6 denotes an elevating frame, 6a denotes right and left legs for the elevating frame 6, 6b denotes a beam for connecting the right and left legs 6a, 6c denotes vertical rails fixed to the right and left legs 6a, and 4d denotes a direct-acting bearing which engages with the vertical rail 6c and is fixed to the leg 4a of the movable frame 4. The elevating frame 6 can be raised and lowered along the vertical rails 6c.

Reference numeral 7 denotes a cylinder fixed to the movable frame 4, and 7a denotes a piston rod in the cylinder 7. The upper end of the piston rod 7a is connected to the elevating frame 6. By actuating the cylinder 7 in the extension/contraction direction, the elevating frame 6 is raised and lowered.

Reference numeral 8 denotes a spacer (a spacer incorporating an upper center mechanism, divided tread mold opening/closing cylinder, and other devices as necessary) fixed to the lower surface of the beam 6b of the elevating frame 6, 8a denotes a lower flange fixed to the lower part of the spacer 8, 8b denotes a connection severing device (a publicly known connection severing device for severing the connection between the upper mold Ma and lower mold Mb of the tire vulcanization mold M (see Japanese Patent Provisional Publication No. 7-1469 (No. 1469/1995)) attached to the top surface of the lower flange 8a.

Reference numeral 9 denotes a beam fixed to the front face of the beam 6b of the elevating frame, 9a denotes upper and lower horizontal rails fixed to the front face of the beam 9 along the transverse direction, 10a denotes a direct-acting bearing engaging with each horizontal rail 9a, 10 denotes a loader transfer member fixed to the direct-acting bearings 10a, 11 denotes a green tire loader, Ilb denotes a cylinder erected on the loader transfer member 10, and 11a denotes a loader basket attached to the lower end of the piston rod of the cylinder 11b. By actuating a drive means (not shown), the loader transfer member 10 can be moved in the transverse direction. Also, when the movable frame 4 is moved in the longitudinal direction by actuating the cylinder 5 in the extension/contraction direction, the green tire loader 11 is moved in the longitudinal direction via the elevating frame 6.

Reference numeral 12 denotes a vulcanized tire To delivering roller conveyor of the same number as that of the tire vulcanization molds M. The vulcanized tire delivering roller conveyor 12 consists of a fixed portion 12b attached so as to be inclined with respect to the fixed base 1 and a swinging portion 12a attached to the upper

end of the fixed portion 12b so as to be capable of swinging between the horizontal position and inclined position. The central portion of the swinging portion 12a has a roller arrangement such as to pass a tire holding means 13a, mentioned later, but not to pass the vulcanized tire Tc.

Reference numeral 13 denotes a vulcanized tire To removing device. The vulcanized tire To removing device 13, including a tire holding means 13a having a holding claw 13c and a cylinder 13b for raising and lowering the tire holding means 13a, is configured as if the green tire loader 11 is attached to a movable stand 14, mentioned later, reversely in the vertical direction.

Reference numeral 15 denotes a pair of beams fixed to the fixed base 1, 15a denotes horizontal rails fixed to respective beams 15 along the transverse direction, 14a denotes direct-acting bearings engaging with respective horizontal rails 15a, and 14 denotes a movable stand fixed to the direct-acting bearings 14a. The movable stand 14 is configured so as to be capable of moving in the transverse direction.

Reference numeral 16 denotes a tire vulcanization mold M transfer device. The tire vulcanization mold M transfer device 16, including a base 16c, a movable stand 16b mounted on the base 16c so as to be capable of moving in the transverse direction, a roller guide 16a attached to the top surface of the movable stand 16b along the longitudinal direction, and a drive means (not shown), is arranged on the front side of the fixed base 1. When the tire vulcanization mold M is loaded and unloaded by using a forklift etc., this tire vulcanization mold M transfer device 16 is unnecessary. Also, the mold loading/unloading roller guides 2 can be omitted.

Next, the operation of the tire vulcanizer shown in FIGS. 1 to 3 will be described in detail.

If the tire vulcanization in the tire vulcanization mold M1 is finished, and a green tire Tg to be vulcanized in the tire vulcanization mold M1 is held by the green tire loader 11 and waits, the heating/pressurizing medium in the tire is discharged, and the connection between the upper half mold Ma and lower half mold Mb of the tire vulcanization mold M1 is severed by actuating the connection severing device 8b corresponding to the tire vulcanization mold M1.

Then, the upper half mold Ma of the tire vulcanization mold M1 1 is opened by actuating the cylinder 7 and raising the elevating frame 6. When the upper mold Ma is raised to a height such as not to interfere with the lower half mold Mb, the raising of the elevating frame 6 is stopped (see FIG. 2). At this time, a vulcanized tire Tc is also raised together with the upper half mold Ma. Since this operation is publicly known, the detailed explanation thereof is omitted.

Subsequently, the movable frame 4 is retreated by actuating the cylinder 5. At this time, the green tire loader 11, which holds the upper half mold Ma and the green tire Tg via the elevating frame 6, retreats. When the center of the green tire loader 11 agrees with the cen-

terline X-X of the lower half mold Mb, the retreat of the movable frame 4 is stopped (see FIG. 3). At this time, the vulcanized tire Tc removing device 13 is arranged so as to align with the center of the upper half mold Ma.

6

After the retreat of the movable frame 4 is stopped, the loader basket 11a is lowered to supply the green tire Tg into the empty lower half mold Mb. On the other hand, the empty loader basket 11a is raised.

During this time, the vulcanized tire Tc removing device 13 is raised while the tire holding means 13a closes the holding claw 13c. When the holding claw 13c reaches the inside of the lower bead of the vulcanized tire Tc (see the chain line 13d in FIG. 3), the raising of the tire holding means 13a is stopped. The holding claw 13c is opened to hold the vulcanized tire Tc.

Then, the holding means 13a is lowered to remove the vulcanized tire Tc from the upper half mold Ma by pulling it down out of the upper half mold Ma.

When the holding means 13a is lowered to a position indicated by the solid line 13e in FIG. 3, the holding claw 13c is closed and the holding means is further lowered. At this time, the vulcanized tire Tc is left on the swinging portion 12a of the vulcanized tire Tc delivering roller conveyor 12, and the holding means 13a passes through the swinging portion 12a, reaching the lowering limit position to stop.

Subsequently, the swinging portion 12a is inclined to deliver the vulcanized tire Tc to the outside of the tire vulcanizer by gravity via the fixed portion 12b.

After the loading and unloading operation of the tire is finished, the upper half mold Ma is advanced by reversing above procedure, and the upper half mold Ma is lowered while carrying out the shaping to close the tire vulcanization mold M1.

Then, the upper half mold Ma is connected to the lower half mold Mb, and a heating/pressuring medium for vulcanization is introduced into the tire to start the vulcanization process. At the same time, the connection between the upper half mold Ma and the elevating frame 6 is severed by using the connection severing device 8b, and the green tire loader 11 is moved to a green tire Tg supply position to receive the green tire Tg to be vulcanized next.

After that, the green tire loader 11 is moved to a position in front of the tire vulcanization mold M in which the vulcanization process is to be finished and kept waiting, and the vulcanized tire Tc removing device 13 is moved to a position at the rear of the tire vulcanization mold M in which the vulcanization process is to be finished next and kept waiting.

During the above time, the vulcanization process is continued in other tire vulcanization molds M.

In the case where the tire vulcanization mold M transfer device 16 is provided, when the change of mold, change of bladder, which is an expendable, and the cleaning of mold are performed, the lock of the lower half mold Mb to the fixed base 1 is released, and then the tire vulcanization mold M is pulled out onto the mov-

10

25

35

40

able stand 16b and moved to the mold change work position, where the necessary work is done. After the work is finished, the tire vulcanization mold M is mounted by reversing above procedure. During this time, vulcanization is continued in other tire vulcanization molds M, and the tire can be loaded and unloaded by opening the tire vulcanization mold M during the time when the mounting and demounting operation of mold is not interfered with.

(Second embodiment)

Next, a tire vulcanizer in accordance with a second embodiment of the present invention will be described with reference to FIG. 4.

FIG. 4 is a front view of the tire vulcanizer in accordance with the second embodiment. The configuration of the tire vulcanizer in accordance with the second embodiment is the same as that of the tire vulcanizer in accordance with the first embodiment except the connection severing device 8b (the connection severing device for severing the connection between the elevating frame 6 and upper mold Ma of the tire vulcanization mold M), so that only different points will be described.

Although in the first embodiment, the spacer 8 attached to the connection severing device 8b is fixed on the lower surface of the beam 6b of the elevating frame 6 corresponding to the tire vulcanization mold M, in the second embodiment a horizontal rail 6d is fixed on the lower surface of the beam 6b of the elevating frame 6 in the transverse direction, and direct-acting bearings 8c engaging with the horizontal rail 6d are fixed to the top surface of the spacer 8. To the lower flange 8a of the spacer 8 is attached the upper half mold Ma of the tire vulcanization mold M. By moving the spacer 8 in the transverse direction as indicated by the arrow in FIG. 4 by actuating a drive means (not shown), the connection severing device 8b can be used in common for a plurality of sets of tire vulcanization molds M.

In the tire vulcanizer shown in FIG. 4, after the connection severing device 8b is made in the severing state in advance, the elevating frame 6 is raised slightly once, and then the connection severing device 8b is moved, via the spacer 8, to the position of tire vulcanization mold M in which the vulcanization process is finished next, and then the elevating frame 6 is lowered. The elevating frame 6 is connected to the upper half mold Ma of the tire vulcanization mold M, and the finish of the tire vulcanization process in this tire vulcanization mold M is awaited. The subsequent operation is the same as that of the first embodiment.

Needless to say, in the second embodiment, a plurality of conventional tire vulcanization molds cannot be mounted.

Claims

1. A tire vulcanizer comprising a fixed base (1) on

which tire vulcanization molds (M) are mounted, a movable frame (4) which can reciprocate in the longitudinal direction on said fixed base, and an elevating frame (6) attached to said movable frame (4) so as to be raised and lowered, in which after the tire vulcanization mold (M) is opened by raising said elevating frame and lifting an upper half mold (Ma) of the tire vulcanization mold, the upper half mold of the tire vulcanization mold is moved to the rear by said movable frame (4) to carry out the removal of a vulcanized tire (Tc) and the supply of a green tire (Tg).

- 2. A tire vulcanizer according to claim (1), wherein a plurality of sets of tire vulcanization molds (M) are mounted on the fixed base (1), and a connection severing device (8b) for severing the connection between the upper half mold (Ma) and lower half mold (Mb) of the tire vulcanization mold (M) in which vulcanization process is finished is attached to said elevating frame (6) so as to correspond to each tire vulcanization mold.
 - 3. A tire vulcanizer according to claim (1), wherein a horizontal rail (6d) is attached to said elevating frame (6) in the transverse direction, and said connection severing device (8b) is supported by said horizontal rail (6d) so as to be movable in the transverse direction.
 - 4. A tire vulcanizer according to any one of preceding claims (1) to (3), wherein a horizontal rail (9a) is attached to said elevating frame (6) in the transverse direction, and a green tire loader (11) is supported by said horizontal rail (9a)so as to be movable in the transverse direction.
 - 5. A tire vulcanizer comprising a fixed base (1) on which tire vulcanization molds (M) are mounted, a movable frame (4) which is reciprocable in the longitudinal direction relative to said fixed base (1) and means (5, 1a, 4c) for moving said frame (4) in the longitudinal direction, an elevatable frame (6) attached to said movable frame (4) so as to be raisable or lowerable relative thereto and means (7, 6c, 4d) for raising or lowering said elevatable frame (6), in which said tire vulcanization mold (M) is openable by raising said elevatable frame (6) which is operably attached to an upper half mold (Ma) of said tire mold (M), said upper half mold (Ma) and said frame (6) being movable rearwardly on said frame (4) by said moving means (5, 1a, 4c), means (12, 13) for the removal of a vulcanized tire (Tc), and means (10, 11) for supplying a green tire (Tg).
 - A tire vulcanizer according to any one preceding claim wherein said elevatable frame (6) comprises vertical legs (6a) substantially spanning said fixed

55

base (1) in the transverse direction and a crossbeam (6b) joining upper ends of said vertical legs (6a)

- 7. A tire vulcanizer according to any one preceding claim wherein said tire vulcanizer has a plurality of tire vulcanization molds (M), the green tire (Tg) supply means (10, 11) are mounted on said elevatable frame (6) by means (9a, 10a) allowing transverse movement thereof relative to said frame (6) and said means (12, 13) for removing said vulcanized tire (Tc) are mounted on moving means (14, 15) for moving said vulcanized tire removing means in a direction transverse to said fixed base (1).
- 8. A tire vulcanizer according to any one of preceding claims (5) to (7) wherein said means for elevating said frame (6), moving said frame (4) and supplying said green tire include fluid cylinders and piston rods (5, 5a, 7, 7a, 11b).
- A tire vulcanizer according to any one preceding claim wherein said upper half mold (Ma) retains said vulcanized tire (Tc) when said upper half mold is removed by said elevatable frame (6) when said vulcanization mold (M) is opened and is moved rearwardly relative to said fixed base (1).
- 10. A tire vulcanizer according to any one preceding claim wherein when said movable frame (4) is in said rearward position with said upper half mold (Ma), a centre of the green tire loading means (10, 11) coincides with a centreline (X-X) of said lower half mold (Mb) and said vulcanized tire removing means (13) aligns with the centre of said upper half mold (Ma) and said vulcanized tire (Tc).

. 6

10

55

50

40

F I G. 2

F I G. 3

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS			
IMAGE CUT OFF AT TOP, BOTT	OM OR SIDES		•
☐ FADED TEXT OR DRAWING			
☐ BLURRED OR ILLEGIBLE TEXT	OR DRAWING		
☐ SKEWED/SLANTED IMAGES		•••	
☐ COLOR OR BLACK AND WHITE	PHOTOGRAPHS		•
GRAY SCALE DOCUMENTS	· · · · · · · · · · · · · · · · · · ·		
LINES OR MARKS ON ORIGINA	L DOCUMENT		
REFERENCE(S) OR EXHIBIT(S)	SUBMITTED ARE I	POOR QUAL	TTY

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.