

HYDROCARBONS

Compounds composed entirely of carbon and hydrogen atoms bonded to each other by covalent bonds.

Acyclic/Open chain/Aliphatic

[Source: Petroleum]

Cyclic/Closed chain

Saturated

Alkanes/paraffins [C,H2n+2]:

- · Isomerism Chain, Conformational.
- Hybridisation sp³
- · Preparation -

2CH₃COONa + 2H₂O (Kolbés electrolysis)

CH₂=CH₂ + H₂
(Subatier & Senderens)
Ns, 200°C

CH₃CHO + 4[H]
(Clemmensen reduction)
Zn-Hg/HCl

A, Dry ether

CH₃-CH₃

CH₃I + Zn + ICH₃
(Wurtz reaction)

(Frankland reaction)

Special method for CH₄
Al₄C₃ + 12H₂O → 4Al(OH)₃ + 3CH₄↑
Aluminium carbide

Properties

Alkanes

Physical

 Boiling point: For straight chain alkanes, b.pt

molecular size.

In isomeric alkanes, b.pt = 1/branching.

- Melting point: Even no. of C-atoms → Higher m.pt.; Odd no. of C- atoms → Lower m.pt.
- Density

 molecular mass.

Chemical

- Least reactive because of strong C—C and C—H
 σ bonds.
- · Undergo only substitution reactions.
- Sulphonation and halogenation occur by free radical mechanism.

Aromaticity Hückel's Rule

· An aromatic molecule

- Planar, cyclic and completely conjugated.
- Contains (4n + 2) π-electrons, (where n = an integer).
- If, on ring closure, the π -electron energy of an open chain polyene decreases.
 - e.g., [6] annulene (Benzene)

An anti-aromatic molecule -

- Planar, cyclic and completely conjugated.
- Contains 4n π-electrons, (where n = an integer).
- If, on ring closure, the π-electron energy increases.

e.g., [4] annulene (Cyclobutadiene)

· A non-aromatic molecule-

- Non-planar, non-cyclic and not completely conjugated.
- If, on ring closure, the π-electron energy remains the same.

e.g., Alkanes, alkenes and

1, 3, 5-cycloheptatriene.

Unsaturated

Alkenes/olefins [C,H,]:

- Isomerism Chain, Position, Geometrical, Ring-chain.
- Hybridisation sp²

Properties

Alkenes

Physical

- Less volatile than alkanes i.e. b. pt. and m. pt. are higher than alkanes.

Chemical

- Undergo electrophilic addition reactions.
- Test for unsaturation-Gives bromine water and Baever's tests.
- Addition of unsymmetrical reagents (HX, H,O,HOX, etc.) → Markovnikov's rule.
- In presence of peroxides, addition is anti-Markovnikov's or Peroxide or Kharasch effect.

Alkynes [C_nH_{2n-2}]:

- Isomerism Chain, Position, Functional, Ring-chain.
- Hybridisation sp

Preparation

CaC₂ + 2H₂O (CH₂Br)₂ 2CHI₃ + 6Ag

AL: | KXMI

2C + H₂ | CH = CH | (CHCOOK)₂ (Berthelot reaction)

(Berthelot reaction)

Have A Look!

- The first three members of alkanes do not exhibit isomerism.
- Alkanes containing odd no. of C atoms cannot be prepared by Kolbe's electrolysis.
- Methane cannot be prepared by Sabatier and Senderen's reaction.
- · Method-
 - to ascend the C-chain-Wurtz reaction.
 - to descend the C-chain Decarboxylation.

Benzene + X₂

Addition reaction.

Octane no.-Knocking quality of an automobile fuel

Aromatic

[Source: Coal]

Benzenoids/arenes [C_nH_{2n-6m}]:

(where, n = no. of C-atoms, m = no. of rings.)

- Isomerism Position.
- Preparation OH

 3CH ≡ CH Red hot Zn dust O

 COONs CI

 NaOH + CaO

 Δ NI-Al alloy

 [|H|+NaOH| O|

Properties

Benzenoids

Physical

- Melting and Boiling points

 molecular size.
- Solubility: Insoluble in water but soluble in organic solvents.

Chemical

- Reactivity: Alkenes>alkynes>arenes>
 alkanes
 - atkanes
- Undergo electrophilic substitution reactions.
- Do not give Baeyer's test.

Non-benzenoids:

Do not contain benzene ring.
 e.g., Azulene, tropolone, pyrrole, etc.

Afleyelic

Contain a ring of three or more C-atoms.
 e.g., Cyclopropane, cyclobutene etc.

Properties

Alkynes

Physical

- Melting and boiling points: Alkynes > alkanes and alkenes.
- Solubility: Insoluble in water but soluble in organic solvents.

Chemical

- Test for unsaturation-Gives bromine water and Baever's test.
- Undergo electrophilic and nucleophilic addition reactions.
- Degree of unsaturation or index of hydrogen deficiency = (2n₁ + 2 - n₂)/2, where n₁ = number of carbon atoms, n₂ = number of hydrogen atoms.
- Tetraethyl lead (an antiknock compound) is used as a mixture of TEL (63%), ethylene bromide (26%), ethylene chloride (9%) and methylene blue (2%).
- Cetane no. Scale to decide quality of diesel fuel.

CH₃(CH₂)₁₄CH₃

Hexadecane, Cetane no. = 100 Henites rapidly! 1-Methyl naphthalene Cetane no. = 0 Henites bodiyi