

ADITYA HARSH

R100214007

Computer Science and Engineering

University of Petroleum and Energy Studies, Dehradun

Website: www.adityaharsh.com
Github: https://github.com/adityasiwan

Email: adityasiwan@gmail.com

Contact: +91 88592 74271

Summary: Computer Science student and <u>professional Code Reviewer</u>, interested in machine learning, artificial intelligence, and Android development. Currently building machine learning models to support various business objectives and decisions, and frequently contributing to open source communities.

ACADEMIC QUALIFICATIONS

Year	Degree/Certificate	Institute/School, City
2016	Machine Learning, Nanodegree	Udacity
2014-Present 2013	5 th semester, Computer Science and Engineering Class XII Board (CBSE)	University of Petroleum and Energy Studies, Dehradun D.A.V Public School, Jamshedpur
2011	Class X Board (CBSE)	D.A.V Public School, Siwan

TECHNICAL SKILLS

Programming Languages
 C, C++, Python, Java, MySQL, HTML, PHP, CSS, Javascript, Json

Libraries Scikit-learn, PyBrain, Theano, Pandas, Numpy

Platform(OS)
 Android, Windows Phone, Linux, Kali Linux, Microsoft Windows

• Software Eclipse, Android Studio, Solid Works

Documentation LaTeX

PROJECTS

SELF DRIVING CAR (MACHINE LEARNING)

(July 2016)

- Developed a reinforcement learning agent for a smart cab that needs to drop off its passenger to the goal state in the shortest time possible.
- Developed an algorithm to tweak when the agent needs to explore and when it needs to exploit using the q-learning policy.
- Technologies used: Reinforcement Learning, Q-Learning, Optimization, Modeling, Model Tuning, Statistics, Algebra, Calculus, Python.

CUSTOMER SEGMENTS CREATION (MACHINE LEARNING)

(June 2016)

- Reviewed unstructured data to understand the patterns and natural categories that the data fits into.
- · Used multiple algorithms and both empirically and theoretically compared and contrasted their results.
- Made predictions about the natural categories of multiple types in a dataset, then checked these predictions against the result of unsupervised analysis.
- Technologies used: Clustering, PCA/ICA, Scikit-learn, feature selection, visualizing data.

PREDICTING STOCK MARKET PRICES (MACHINE LEARNING)

(July 2016)

- Built a model to predict Stock Market prices, using a combination of Machine Learning Algorithms and the best results were obtained using SVM.
- Predicted the directional movement of stock prices for S&P 500(a commonly used benchmark for hedge funds and mutual funds) by training the model with a dataset of 5 year. The model yielded an F1 score of 66% and the portfolio vastly outperformed the SPY.
- Technologies used: Python, Scikit-learn, Pymysql.

STUDENT INTERVENTION SYSTEM (MACHINE LEARNING)

(June 2016)

- Investigated the factors that affect a student's performance in high school. Trained and tested several supervised machine learning models on a given dataset to predict how likely a student is to pass.
- Selected the best model based on relative accuracy and efficiency and achieved a graduation rate of 95% from 67%.
- Technologies used: sklearn, Regression, Classification, Model Fitting, Decision Trees Regression, Neural Networks, Support Vector Machines, Naive Bayes, K-Nearest Neighbors, Python, Adaboosting.

PREDICTING HOUSING PRICES (MACHINE LEARNING)

(June 2016)

- Built a model to predict the value of a given house in the Boston real estate market using various statistical analysis tools.
- Identified the best price that a client can sell their house utilizing machine learning.
- Technologies used: sklearn, Statistical Analysis, Metric Performance, Cross Validation, bias/underfitting & variance overfitting, Learning Curves, Model Complexity, Model Tuning.

POSITIONS OF RESPONSIBILITY

MACHINE LEARNING CODE REVIEWER, UDACITY

(August 2016 - Present)

- · Review code and provide feedback to Udacity students on various Python and Machine Learning projects.
- Provide feedback to Udacity team on student projects which includes clarification and support for student queries.

OPEN SOURCE COMMUNITY MEMBER/CONTRIBUTOR, DuckDuckGo (DDG)

(July 2016 - Present)

- Involved in the creation of DuckDuckGo's Instant Answer modules using Perl and Javascript.
- Fix reported bugs in the existing Instant Answers and code review pull requests for new Instant Answers.

TECHNICAL CORE COMMITTEE MEMBER, Association for Computing Machinery (ACM)

(2015 - Present)

• Involved in the ACM technical core committee for the issues related to android and web developing