Lógica para Computação Aula 04 - Lógica Proposicional¹

Sílvia M.W. Moraes

Escola Politécnica - PUCRS

 $^{^1}$ Este material não pode ser reproduzido ou utilizado de forma parcial sem a permissão dos autores.

Sinopse

- Nesta aula, continuamos a introduzir a Lógica
 Proposicional. Veremos, nesta aula, semântica.
- Este material foi construído com base nos slides do prof.
 Rafael Bordini e dos livros do Mortari e do Huth & Ryan.

Sumário

1 Lógica Proposicional: Semântica

2 Próxima Aula

Lógica Proposicional - Relembrando ...

- Proposições
- Fórmulas Bem Formadas
- Conectivos
- Tabelas Verdade

Semântica

A semântica (significado) de uma fórmula da lógica proposicional depende de uma função de valoração que atribua valor V ou F para cada variável proposicional da fórmula. Desse modo, pode-se avaliar o valor verdade da fórmula toda.

- Semântica: associação a cada elemento sintático um significado ou interpretação.
 - Exemplo: A fórmula p ∧ q pode ser V ou F, isso dependerá das interpretações de p e q.
 - Lógica Proposicional é bivalente (V ou F).
 - É determinada por uma função / denominada interpretação, definida como uma função binária total.
 - binária: seu contradomínio possui apenas dois elementos : $\{V,F\}$
 - total: está definida para todos os elementos do seu domínio.
 - definição: $I(P) = \{V, F\}$, onde P corresponde ao conjunto das fórmulas da Lógica Proposicional.

- Dada as fórmulas α e β da lógica proposicional e uma função de interpretação I, a **interpretação** de uma fórmula α , denotada por $I(\alpha)$, é dada pelas regras:
 - $I(\neg \alpha) = V$ sse $I(\alpha) = F$
 - $I(\alpha \lor \beta) = V$ sse $I(\alpha) = V$ ou $I(\beta) = V$
 - $I(\alpha \land \beta) = V$ sse $I(\alpha) = V$ e $I(\beta) = V$
 - $I(\alpha \rightarrow \beta) = V$ sse $I(\alpha) = F$ ou $I(\beta) = V$
 - $I(\alpha \longleftrightarrow \beta) = V$ sse $I(\alpha) = I(\beta)$
- As regras semânticas dos operadores são definidas pelas suas tabelas-verdade.

 Mas ... em qual semântica estamos interessados e como podemos verificá-la ?

- Através das tabelas-verdade, podemos definir em que "situações" as fórmulas são verdadeiras.
 - Exemplo: Se o trem chegasse atrasado e não houvesse táxi na estação, então John não chegaria em tempo para a sua reunião.
 - Representação (Sintaxe) : (p∧¬q) →¬r, onde p= "Se o trem chegasse atrasado" q= "houvesse táxi na estação" r= "John chegaria em tempo para a sua reunião"
 - Tabela-verdade ...

- Através das tabelas-verdade, podemos definir em que "situações" as fórmulas são verdadeiras.
 - Exemplo:...
 - Representação (Sintaxe) : $(p \land \neg q) \to \neg r$

P	q	r	¬q	¬r	p^¬q	$p \land \neg q \rightarrow \neg r$
F	F	F	V	V	F	V
F	F	V	V	F	F	V
F	V	F	F	V	F	V
F	V	V	F	F	F	V
V	F	F	V	V	V	V
V	F	V	V	F	V	F
V	V	F	F	V	F	V
V	V	V	F	F	F	V

 As propriedades semânticas permitem que as fórmulas sejam classificadas em:

 Uma tautologia é uma fórmula composta que é sempre verdadeira, independentemente do valor verdade das proposições atômicas que ocorrem nela.

• Exemplo: $((p \land q) \rightarrow r) \leftrightarrow (p \rightarrow (q \rightarrow r))$

р	q	r	p∧q	$(p \land q) \rightarrow r$	$q \rightarrow r$	$p \rightarrow (q \rightarrow r)$	$((p \land q) \rightarrow r) \leftrightarrow (p \rightarrow (q \rightarrow r))$
F	F	F	F	V	V	V	v
F	F	V	F	V	V	V	V
F	V	F	F	V	F	V	v
F	V	٧	F	٧	V	V	v
V	F	F	F	V	V	V	v
V	F	V	F	V	V	V	v
V	V	F	V	F	F	F	v
V	V	V	V	V	V	V	V

- Uma contradição é uma fórmula composta que é sempre falsa.
- Exemplo: $p \wedge \neg p$

р	$\neg p$	$p \wedge \neg p$
F	V	F
V	F	F

- Uma fórmula α é contingência se e somente se existe ao menos uma interpretação $I(\alpha) = V$.
 - $p \wedge q \wedge \neg r$

р	q	r	\neg_r	$p \wedge q \wedge \neg r$
F	F	F	V	F
F	F	V	F	F
F	V	F	V	F
F	V	V	F	F
V	F	F	٧	F
V	F	V	F	F
V	v	F	v	٧
V	V	V	F	F

- Podemos verificar também a equivalência de fórmulas.
- Duas fórmulas φ e ψ são **equivalentes** se elas têm o mesmo significado.
- Lei distribuitiva: $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$.

р	q	r	q∧r	$p \lor (q \land r)$	p∨q	p∨r	$(p \lor q) \land (p \lor r)$	$p \lor (q \land r) \leftrightarrow (p \lor q) \land (p \lor r)$
F	F	F	F	F	F	F	F	V
F	F	٧	F	F	F	V	F	V
F	V	F	F	F	V	F	F	v
F	V	V	V	V	V	V	V	V
V	F	F	F	V	V	V	V	V
V	F	٧	F	V	٧	V	V	V
V	V	F	F	V	٧	V	V	V
V	V	٧	V	v	V	V	V	V

Frame Lógica Proposicional - Exercícios

- Atividade 01: Classifique as fórmulas abaixo como tautologias, contingências ou contradições:
- Atividade 02: Prove as equivalências a seguir:

Leitura

- Huth, M. R. A; Ryan, M. D. Lógica em Ciência da Computação: Modelagem e Argumentação sobre Sistemas: Capítulo 1 - seção 1.2
- Souza, João Nunes. Lógica para Computação: Uma introdução concisa: Capítulo 4.