HOMEWORK 5

DANQING LAN

Question 1.

The results of OLS regression of log wages on education, experience, and dummy variables are shown below.

FIGURE 0.1. OLS Results

Linear regression model:
lwage ~ 1 + educ + exper + smsa + black + south

Estimated Coefficients:

	Estimate	SE	tStat	pValue
(Intercept)	4.9133	0.063121	77.84	0
educ	0.073807	0.0035336	20.887	1.4251e-90
exper	0.039313	0.0021955	17.906	3.2859e-68
smsa	0.16474	0.015692	10.499	2.3971e-25
black	-0.18822	0.017768	-10.593	9.0467e-26
south	-0.12905	0.015229	-8.4744	3.6472e-17

Number of observations: 3010, Error degrees of freedom: 3004

Root Mean Squared Error: 0.377

R-squared: 0.279, Adjusted R-Squared 0.278

F-statistic vs. constant model: 232, p-value = 4.42e-210

Question 2.

Figure 0.2 showes the histograms of the posterior approximations with a flat prior for all parameters while figure 0.3 showes the one with a given prior for $\hat{\beta}_{edu}$. with an acceptance rate of 20.5% in flat prior and 20.7% in given prior, both practices do meet the convergence properties we expected.

FIGURE 0.2. Posterior with a Flat Prior

FIGURE 0.3. Posterior with a Given Prior in $\mathrm{Beta}_e duc$

