Name :			• • • • • • • • • • • • • • • • • • • •	••••••			
Roll No.:		•••••		•••••			
Invigilator	's Si	gnature :					
#				/I-7/CS-702/2010-11			
•		2010					
		ARTIFICIAL IN	TELLI	•			
Time Allot	ted :	3 Hours		Full Marks: 70			
	Th	e figures in the marg	in indica	te full marks.			
Candida	ites d	are required to give th as far as		pers in their own words ble.			
		GROU	P – A				
	. (Multiple Choice	Type Q	uestions)			
1. Cho	ose t	he correct alternativ	es for th	e following: $10 \times 1 = 10$			
i) An algorithm that gives optimal solution is							
	a)	Hill Climbing	b)	BFS			
	c)	Blind search	d) ✓	A*.			
ii)	A fo	ormula with no free v	variables	is			
	a)	formula	b)	clause			
	c)	a sentence	d)	paragraph.			
iii)	In l	First Order logic, res	olution (condenses the			
•	of logical inference down to a single rule.						
	a)	Traditional syllogi	sm b)	Logical sequence			
	c)	Logical reference	d)	None of these.			
7201				[Turn over			

Uninformed search is also known as

iv)

	a)	Brute force search	b)	Hill climbing search
	c)	Worst case search	a dy	
v)	Ho lite	orn clause is a claus crals.	se wi	th positive
	a)/	At most one	b)	At most two
	c)	At least one	d)	At most four.
vi)	Wh	ich of the following is a	decla	rative knowledge ?
	a)			
	b)	Using LISP code to de	fine a	value
	c) V	Describing the objects associated values	usin	g a set of attributes and
	d)	A knowledge about the subgoals.	ne ord	ler in which to pursue
vii)	Which chai	ch of the following is	not	true about backward
	a)	Backward chaining is process	a go	oal directed reasoning
	b)	Backward chaining wo when trying to prove th	ould b	e much better to use

c)

more natural

√ that would probably use.

For arriving at a new fact, backward chaining is

A medical diagnostic program is a query system

- viii) "John is tall". This statement can be completely expressed in
 - a) FOPL
 - b) Propositional logic
 - c) Fuzzy logic
 - d) Default logic.
- ix) Which is not heuristic search?
 - a) Constrained satisfaction search
 - b) Depth first search
 - c) Simulated annealing
 - d) Steepest ascent Hill climbing.
- x) Resolution can be used for
 - a) question answering b), theorem proving
 - c) both (a) and (b) d) none of these.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

- 2. A problem-solving search can proceed in either the forward or the backward direction. What factors determine the choice of direction for a particular problem?
- 3. With suitable example explain the characteristics of monotonic and partially commutative production system.
- 4. Give one example of a problem in which solutions requiring minimum search are more appropriate than optimal solutions. Give reasons for your choices.
- 5. Discuss the benefits of production system.
- 6. Write a program in prolog to compute the factorial of a number using iteration/tail recursion.

 $3 \times 15 = 45$

[Turn over

GROUP - C

(Long Answer Type Questions) Answer any three of the following.

7 .	Pro	ove each of the following statements:	
	a)	Breadth first search is a special case of uniform	cost
		search.	5
1	b)	Breadth first, depth first and uniform cost search	are
	· ·	special cases of Best First Search.	5
	c)	Uniform cost search is a special case of A* search.	5
3.	a)	Represent the following sentences by default logic.	Also
		mention the sets D and W .	
		i) Typically molluscs are shell-bearers	
•		ii) Cephalopods are molluscs	
		iii) Cephalopods are not shell-bearers.	6
	b)	Draw a decision tree corresponding to the follow	ving
		expression:	
		If (Weather = Hot A Humidity = High)	· v
		(Weather = Cool A Humidity = Moderate)	V
		(Weather = Rainy \(\text{Wind} = \text{Strong} \)).	
	* *	Then start reading a story book.	9

7201

- 9. a) Using the Euclidean distance of a node (x, y) from a fixed node (2, 2), i.e., $h = \left[(x-2)^2 + (y-2)^2 \right]^{\frac{1}{2}}$ solve the water-jug problem by A* algorithm. Does this heuristic function return an optimal path? Consequently, can you call it an admissible heuristic?
 - b) Show the computation for the first 3 ply moves in a tictac-toe game using the α - β cut-off algorithm. 7
- 10. Test whether the following production systems are commutative. Justify your answer.
 - a) Knowledge base:

If A & B then C

If C then D

If A & D then E.

Initial Working Memory = $\{A, B\}$

Knowledge base:

If A & B then C

If X & Y then C

If A then E

If B then F.

Initial WM = $\{A, B, X, Y\}$.

8

b) Give the following initial and the goal state for the Block's world problem. Construct a set of operators (rules) and hence generate a plan to reach the goal state from the initial state.

Initial State: On (C, A)

Clear (C),

On (B, Table),

Clear (B).

Goal State: On (B, A)

On (C, B).

7