assignment_4

Table of contents

Regionale data fra Eurostat	2
toc.eurostat	2
GDP NUTS3	2
Populasjonsdata	4
Oppgave 1	4
Oppgave 2	5
Alternative populasjonsdata	6
Oppgave 3	6
Bearbeiding av populasjonsdata	7
Oppgave 4	7
Oppgave 5	8
Oppgave 6	8
Oppgave 7	8
Oppgave 8	8
Oppgave 9	8
Oppgave 10	9
Oppgave 11	9
Oppgave 12	9
	10
** ~	11
** ~	11
	11
	11
Oppgave 17	12
	13
	13
	14
** 0	14
	1 /

Oppgave $22 \ldots \ldots \ldots \ldots \ldots$					14
Plots som viser utviklingen					15
Oppgave 23					15
Oppgave 24					16
Hvordan er verdiskapningen fordelt mellom regionene i ulike land?					19
Spania					19
Tyskland					21
Frankrike					23
Enkle modeller					31
"Data Science" modeller					31
Panel modell					32

Regionale data fra Eurostat

MSB105 - Data Science

Gruppe 4: Hanna Sundal Bjerkreim & Elvar Solheim

I denne oppgaven skal vi hente ned regionale data fra Eurostat, som er EU sin statistikk organisasjon. Vi skal fokusere på landene Østerrike, Tyskland, Danmark, Frankrike, Hellas, Spania, Italia, Nederland, Belgia, Irland, Polen, Portugal, Norge, Sverige, Finland og Sveits. Vi skal hente data fra Eurostat ved hjelp av en api fra pakken restapi. Vi henter regionale GDP data og populasjonsdata for landene på NUTS3 nivå og aggregerer senere opp til NUTS2, NUTS1 og NUTSc nivå. Vi skal ordne dataene i list-columns, noe som muliggjør et "nested" datasett som inneholder data om brutto-nasjonalprodukt, befolkning, BNP per person og beregnet Gini-koeffisient. Dataene vil dekke perioden 2000-2020. Når "nested" datasett er på plass, skal vi produsere ulike plots og estimere noen enkle modeller.

toc.eurostat

Vi starter med å hente innholdsfortegnelsen fra Eurostat.

GDP NUTS3

Videre laster vi inn data for brutto-nasjonalprodukt (GDP) på NUTS3-nivå. Først finner vi en oversikt over Eurostat sine tabeller som både inneholder *GDP* og *NUTS3*.

title	code
Average annual population to calculate regional GI data (thousand persons) by NUTS 3 regions	OP nama_10r_3popgdp

title	code
Gross domestic product (GDP) at current market prices by NUTS 3 regions	nama_10r_3gdp
European Union trade mark (EUTM) applications per billion GDP by NUTS 3 regions	ipr_ta_gdpr
Community design (CD) applications per billion GDP by NUTS 3 regions	ipr_da_gdpr

Vi velger å benytte tabellen med kode nama_10r_3gdp, med følgende forklarende tekst: «Gross domestic product (GDP) at current market prices by NUTS 3 regions». Vi henter videre «Data Structure Definition» (DSD) for å få en oversikt over hva som finnes i dette datasettet.

concept	code	name
freq	A	Annual
unit	MIO_EUR	Million euro
unit	EUR_HAB	Euro per inhabitant
unit	EUR_HAB_I	Euro per inhabitant in percentage of the EU27 (from 2020) average
unit	MIO_NAC	Million units of national currency
unit	MIO_PPS_E	Million purchasing power standards (PPS, EU27 2020) from 2020)
unit	PPS_EU27_2	Purchasing power standard (PPS, EU27 from 2020), 2020 HAB per inhabitant
unit	PPS_HAB_E	Purchasing power standard (PPS, EU27 from 2020), EU27 i2020itant in percentage of the EU27 (from 2020) average
geo	EU27_2020	European Union - 27 countries (from 2020)
geo	BE	Belgium
geo	BE1	Région de Bruxelles-Capitale/Brussels Hoofdstedelijk Gewest
geo	BE10	Région de Bruxelles-Capitale/Brussels Hoofdstedelijk Gewest

concept	code	name
geo	BE100	Arr. de Bruxelles-Capitale/Arr. Brussel-Hoofdstad
geo	BE2	Vlaams Gewest
geo	BE21	Prov. Antwerpen

Vi velger MIO_PPS_EU27_2020 som mål på GDP. Dette gir GDP i løpende priser (million Euro).

Populasjonsdata

Oppgave 1

Videre skal vi laste inn data for totalbefolkningen i landene på NUTS3-nivå. Vi søker etter tabeller fra Eurostat som inneholder både population og NUTS 3.

title	code
Population density by NUTS 3 region	demo_r_d3dens
Population on 1 January by age group, sex and NUTS 3 region	demo_r_pjangrp3
Population on 1 January by broad age group, sex and NUTS 3 region	l demo_r_pjanaggr3
Population structure indicators by NUTS 3 region	$demo_r_pjanind3$
Population change - Demographic balance and crude rates at regional level (NUTS 3)	demo_r_gind3
Population by single year of age and NUTS 3 region	$cens_11ag_r3$
Population by marital status and NUTS 3 region	$cens_11ms_r3$
Population by family status and NUTS 3 region	$cens_11fs_r3$
Population by sex, citizenship and NUTS 3 regions	cens_01rsctz
Population by sex, age group, current activity status and NUTS 3 regions	cens_01rapop
Total and active population by sex, age, employment status, residence one year prior to the census and NUTS 3 regions	cens_01ramigr

title	code
Population by sex, age group, educational attainment level, current activity status and NUTS 3 regions	tcens_01rews
Population by sex, age group, household status and NUTS 3 regions $$	cens_01rhtype
Population by sex, age group, size of household and NUTS 3 regions $$	cens_01rhsize
Average annual population to calculate regional GDI data (thousand persons) by NUTS 3 regions	nama_10r_3popgdp
European Union trade mark (EUTM) applications per million population by NUTS 3 regions	ipr_ta_popr
Community design (CD) applications per million population by NUTS 3 regions	ipr_da_popr
Population with Ukrainian citizenship by 5-year age group and NUTS3 regions	cens_21ua_a5r3
Population with Ukrainian citizenship by age and NUTS 3 regions	cens_21ua_ar3
Population with Ukrainian citizenship by 5-year age group, marital status and NUTS3 regions	cens_21ua_msr3
Population by broad age group and NUTS 3 regions	cens_21agr3
Population on 1st January by age, sex, type of projection and NUTS 3 region	proj_19rp3

Vi bruker tabellen med teksten: «Average annual population to calculate regional GDP data (thousand persons) by NUTS 3 regions». Denne tabellen har manglende data for noen regioner, og vi skal senere supplere med data fra tabellen med teksten «Population on 1 January by broad age group, sex and NUTS 3 region».

Oppgave 2

Tabellen med teksten «Average annual population to calculate regional GDP data (thousand persons) by NUTS 3 regions» har koden nama_10r_3popgdp. Vi laster ned Data Structure Definition (DSD) for denne tabellen.

concept	code	name
freq	A	Annual
unit	THS	Thousand
geo	EU27_2020	European Union - 27 countries (from 2020)
geo	BE	Belgium
geo	BE1	Région de Bruxelles-Capitale/Brussels Hoofdstedelijk Gewest
geo	BE10	Région de Bruxelles-Capitale/Brussels Hoofdstedelijk Gewest
geo	BE100	Arr. de Bruxelles-Capitale/Arr. Brussel-Hoofdstad
geo	BE2	Vlaams Gewest
geo	BE21	Prov. Antwerpen
geo	BE211	Arr. Antwerpen
geo	BE212	Arr. Mechelen
geo	BE213	Arr. Turnhout
geo	BE22	Prov. Limburg (BE)
geo	BE223	Arr. Tongeren
geo	BE224	Arr. Hasselt

Ut i fra DSD formulerer vi en spørring mot Eurostat og laster ned datasettet «Average annual population to calculate regional GDP data (thousand persons) by NUTS 3 regions».

Alternative populasjonsdata

Oppgave 3

Vi skal nå hente ned befolningsdata fra tabellen med teksten «Population on 1 January by broad age group, sex and NUTS 3 region». Denne tabellen har koden demo_r_pjanaggr3.

concept	code	name
freq	A	Annual
unit	NR	Number

concept	code	name
sex	Т	Total
sex	M	Males
sex	F	Females
age	TOTAL	Total
age	Y_LT15	Less than 15 years
age	Y15-64	From 15 to 64 years
age	Y_GE65	65 years or over
age	UNK	Unknown
geo	EU27_2020	European Union - 27 countries (from 2020)
geo	EU28	European Union - 28 countries (2013-2020)
geo	EU27_2007	European Union - 27 countries (2007-2013)
geo	BE	Belgium
geo	BE1	Région de Bruxelles-Capitale/Brussels Hoofdstedelijk Gewest

Bearbeiding av populasjonsdata

Vi tar utgangspunkt i populasjonsdata fra tabellen «Average annual population to calculate regional GDP data (thousand persons) by NUTS 3 regions» og supplerer med data fra tabellen «Population on 1 January by broad age group, sex and NUTS 3 region» der data mangler.

Oppgave 4

Vi sjekker hvilke NUTS 3 soner som inngår i tabellen "Average annual population to calculate regional GDP data (thousand persons) by NUTS 3 regions", men ikke i tabellen "Population on 1 January by broad age group, sex and NUTS 3 region".

```
[1] "DKZZZ" "ESZZZ" "ITG2D" "ITG2E" "ITG2F" "ITG2G" "ITG2H" "ITZZZ" "NLZZZ" [10] "N0020" "N0074" "N0081" "N0082" "N0091" "N0092" "N00A1" "N00A2" "N00A3" [19] "N00B2" "N0ZZZ"
```

Vi sjekker også hvilke NUTS 3 soner som inngår i tabellen «Population on 1 January by broad age group, sex and NUTS 3 region», men ikke i tabellen «Average annual population to calculate regional GDP data (thousand persons) by NUTS 3 regions».

```
[1] "BE221" "BE222" "BE321" "BE322" "BE324" "BE325" "BE326" "BE327" "FRXXX" [10] "ITG25" "ITG26" "ITG27" "ITG28" "ITG29" "ITG2A" "ITG2B" "ITG2C" "N0011" [19] "N0012" "N0021" "N0022" "N0031" "N0032" "N0033" "N0034" "N0041" "N0042" [28] "N0043" "N0051" "N0052" "N0053" "N0061" "N0062" "N0072" "N0073"
```

Oppgave 6

Vi skal nå foreta en full join av de to populasjonstabellene, for å få ett samlet datasett med populasjonsdata.

```
Joining with `by = join_by(geo, time)`
```

Oppgave 7

Vi sjekker sonene i de nye datasettet full_pop_nuts3 mot dem vi har i GDP tabellen, nama_10_3gdp.

```
[1] "BE221" "BE222" "BE321" "BE322" "BE324" "BE325" "BE326" "BE327" "FRXXX" [10] "ITG25" "ITG26" "ITG27" "ITG28" "ITG29" "ITG2A" "ITG2B" "ITG2C" "N0011" [19] "N0012" "N0021" "N0022" "N0031" "N0032" "N0033" "N0034" "N0041" "N0042" [28] "N0043" "N0051" "N0052" "N0053" "N0061" "N0062" "N0073"
```

Oppgave 8

Vi sjekker også om sonene i GDP tabellen mot dem vi har i full_pop_nuts3.

```
[1] "ATZZZ" "BEZZZ" "FIZZZ" "FRZZZ" "PTZZZ" "SEZZZ"
```

Oppgave 9

**ZZZ er en slags oppsamlingskategori i gdp-dataene. Vi har ikke tilsvarende for befolkning så disse har vi ingen bruk for. Vi fjerner **ZZZ sonene fra nama_10r_3gdp.

Vi ønsker å benytte dataene fra «Average annual population to calculate regional GDP data (thousand persons) by NUTS 3 regions» (pop.x) der disse eksisterer og supplere med data fra «Population on 1 January by broad age group, sex and NUTS 3 region» (pop.y) der vi mangler data. Mangler vi data i begge tabellene setter vi verdien lik NA.Vi lager en ny variabel pop i full pop nuts3 og dropper deretter variablene pop.x og pop.y.

Oppgave 11

Videre undersøkes det om vi har noen NUTS 3 soner med pop lik 0. Disse rekodes til NA.

[1] "Verdier lik 0."

Oppgave 12

Vi har et helt sett av NUTS3 regioner som finnes i befolkningsdata, men ikke i gdp datasettet. Vi fjerner dem ved hjelp av en left_join der x er gdp-data. Da legger vi bare til befolkningsdata for de sonene hvor vi har gdp-data.

Vi utfører en left_join() der populasjonsdata blir lagt til datasettet som innholder GDP-data.

[1] 21062 4

Vi lager en ny variabel country fra de to første karakterene i NUTS3.

Vi sjekker så antall NUTS3 i hvert land.

# 1	A tibble:	16 x 2
	country	Antall
	<chr></chr>	<int></int>
1	AT	35
2	BE	44
3	CH	26
4	DE	401
5	DK	11
6	EL	52
7	ES	59
8	FI	19
9	FR	101

10	ΙE	8
11	IT	107
12	NL	40
13	NO	12
14	${\tt PL}$	73
15	PT	25
16	SE	21

Vi sjekker også summary for variablene i eu_data.

geo	time	gdp	pop
Length:21062	Length:21062	Min. :8.512e+07	Min. : 8400
Class :character	Class :character	1st Qu.:2.957e+09	1st Qu.: 132240
Mode :character	Mode :character	Median :5.342e+09	Median : 241050
		Mean :1.004e+10	Mean : 373869
		3rd Qu.:1.037e+10	3rd Qu.: 440690
		Max. :2.606e+11	Max. :6757000
			NA's :13

country
Length:21062
Class :character
Mode :character

Vi endrer navn og rekkefølge på variabelen i eu_data.

Oppgave 13

Vi beregner gdp_per_capita for hver NUTS3 region for årene 2000-2020 og avrunder til 2 desimaler.

Sjekker summary gdp_per_capita.

gdp_per_capita
Min. : 3359
1st Qu.: 18324
Median : 23270
Mean : 25308

3rd Qu.: 29377 Max. :177427 NA's :13

Oppgave 14

Vi bruker case_when() for å legge til variabelen country_name. Denne variabelen inkluderer fullt navn på landene.

Oppgave 15

Vi lager de tre variablene NUTS2, NUTS1 og NUTSc fra NUTS3. NUTSc er vår egen «oppfinnelse» og angir land (to første karakterer i NUTS kode).

Beregning av Gini-koeffisient

Vi benytter Gini-koeffisient for å undersøke hvor jevnt *verdiskapningen* er fordelt mellom regioner. Vi skal nå beregne Gini for hvert år på NUTS2, NUTS1 og NUTSc nivå. Vi vil beregne Gini utfra gdp_per_capita og pop i NUTS3 for alle aggregeringsnivåene.

Oppgave 16

Vi begynner med å beregne Gini-koeffisienten for NUTS2. Vi inkluderer også variablene "pop" og "gdp" for NUTS2. Disse vil være summen av de tilsvarende NUTS3 nivå.

country_name		country		NUTS2		year	
Length	n:4193	Length	:4193	Length	n:4193	Length	n:4193
Class	:character	Class	:character	Class	:character	Class	:character
Mode	:character	Mode	:character	Mode	:character	Mode	:character

pop	gdp	gdp_per_capita	num_nuts3
Min. : 0	Min. :8.512e+07	Min. : 3359	Min. : 1.000
1st Qu.: 714880	1st Qu.:1.628e+10	1st Qu.:19425	1st Qu.: 2.000
Median : 1451900	Median :3.416e+10	Median :24498	Median : 4.000
Mean : 1876835	Mean :5.042e+10	Mean : Inf	Mean : 5.023
3rd Qu.: 2374900	3rd Qu.:6.267e+10	3rd Qu.:30870	3rd Qu.: 7.000
Max. :12363480	Max. :6.996e+11	Max. : Inf	Max. :23.000

gini_nuts2
Min. :0.0001
1st Qu.:0.0591
Median :0.1014
Mean :0.1196
3rd Qu.:0.1603
Max. :0.4547
NA's :703

Vi sjekker observasjoner med Gini avrundet til 0,0000.

A tibble: 4 x 8 country NUTS2 year gdp gdp_per_capita num_nuts3 gini_nuts2 pop <chr> <chr> <chr> <dbl> <int> <dbl> <dbl> <dbl> 1 ES ES43 0.000405 2010 1100400 18879360000 17157. 2 2 IT ITF5 2006 588300 11135870000 18929. 2 0.000545 3 NO NO07 2010 467100 13738470000 29412. 2 0.000479 4 PL PL43 2020 1010100 18762060000 18574. 2 0.000148

Oppgave 17

Vi beregner nå Gini-koeffisienter på NUTS1 nivå. Vi inkluderer også variablene "pop" og "gdp" for NUTS1. Disse vil være summen av de tilsvarende NUTS2 nivå.

country_name	country	NUTS1	year	
Length: 1545	Length: 1545	Length: 1545	Length: 1545	
Class :character	Class :character	Class :character	Class :character	
Mode : character	Mode :character	Mode :character	Mode :character	

pop	gdp	gdp_per_capita	num_nuts3
Min. : 25740	Min. :6.815e+08	Min. : 6423	Min. : 1.00
1st Qu.: 2544800	1st Qu.:5.422e+10	1st Qu.:19819	1st Qu.: 6.00
Median : 4032210	Median :9.979e+10	Median :24765	Median :10.00
Mean : 5093573	Mean :1.368e+11	Mean :26180	Mean :13.63
3rd Qu.: 6076380	3rd Qu.:1.649e+11	3rd Qu.:31275	3rd Qu.:16.00
Max. :17939970	Max. :6.996e+11	Max. :63383	Max. :96.00

gini_nuts1
Min. :0.01983
1st Qu.:0.08361
Median :0.12644
Mean :0.13387
3rd Qu.:0.16753
Max. :0.39082
NA's :144

Oppgave 18

Vi beregner nå Gini-koeffisienter på NUTSc nivå. Vi inkluderer også variablene "pop" og "gdp" for NUTSc. Disse vil være summen av de tilsvarende NUTS1 nivå.

country_name	country	NUTSc	year	
Length:312	Length:312	Length:312	Length:312	
Class :character	Class :character	Class :character	Class :character	
Mode :character	Mode :character	Mode :character	Mode :character	
pop	gdp	gdp_per_capita	num_nuts3	
Min. : 3543470	Min. :9.547e+10	Min. : 8865	Min. : 6.00	
1st Qu.: 7997358	1st Qu.:2.037e+11	1st Qu.:23421	1st Qu.: 21.00	
Median :10557885	Median :3.121e+11	Median :28361	Median : 40.00	
Mean :25222983	Mean :6.776e+11	Mean :28676	Mean : 67.51	
3rd Qu.:43837275	3rd Qu.:1.010e+12	3rd Qu.:34222	3rd Qu.: 73.00	
Max. :83161210	Max. :3.147e+12	Max. :61599	Max. :401.00	
gini_nutsc				
Min. :0.1110				
1st Qu.:0.1430				
Median :0.1691				
Mean :0.1755				
3rd Qu.:0.2004				
Max. :0.3826				

"Nestete" datastruktur

 $\label{lem:continuous} \begin{tabular}{ll} Vi vil nå "neste" de ulike gini_NUTS* datasettene og sette dem sammen til et nestet datasett "eu_dataset_nestet" som innholder alle dataene ovenfor i en fint ordnet struktur. \\ \end{tabular}$

Vi begynner med å "neste" dataene på NUTS2 nivå.

Oppgave 20

Videre "nester" vi dataene på NUTS1 nivå.

Oppgave 21

Vi skal nå "neste" dataene på nasjonsnivå.

Oppgave 22

Til slutt "nester" vi dataene på NUTS3 nivå og bruker en left_join() til legge til de "nestede" datasettene for NUTS2, NUTS1 og NUTSc.

# /	# A tibble: 16 x 6							
	country_name	country	NUTS3_da	ata		${\tt NUTS2_data}$	${\tt NUTS1_data}$	${\tt NUTSc_data}$
	<chr></chr>	<chr></chr>	<list></list>			<list></list>	<list></list>	<list></list>
1	Østerrike	AT	<tibble< td=""><td>[735 x</td><td>7]></td><td><tibble></tibble></td><td><tibble></tibble></td><td><tibble></tibble></td></tibble<>	[735 x	7]>	<tibble></tibble>	<tibble></tibble>	<tibble></tibble>
2	Belgia	BE	<tibble< td=""><td>[712 x</td><td>7]></td><td><tibble></tibble></td><td><tibble></tibble></td><td><tibble></tibble></td></tibble<>	[712 x	7]>	<tibble></tibble>	<tibble></tibble>	<tibble></tibble>
3	Sveits	CH	<tibble< td=""><td>[208 x</td><td>7]></td><td><tibble></tibble></td><td><tibble></tibble></td><td><tibble></tibble></td></tibble<>	[208 x	7]>	<tibble></tibble>	<tibble></tibble>	<tibble></tibble>
4	Tyskland	DE	<tibble< td=""><td>[8,421</td><td>x 7]></td><td><tibble></tibble></td><td><tibble></tibble></td><td><tibble></tibble></td></tibble<>	[8,421	x 7]>	<tibble></tibble>	<tibble></tibble>	<tibble></tibble>
5	Danmark	DK	<tibble< td=""><td>[231 x</td><td>7]></td><td><tibble></tibble></td><td><tibble></tibble></td><td><tibble></tibble></td></tibble<>	[231 x	7]>	<tibble></tibble>	<tibble></tibble>	<tibble></tibble>
6	Hellas	EL	<tibble< td=""><td>[1,092</td><td>x 7]></td><td><tibble></tibble></td><td><tibble></tibble></td><td><tibble></tibble></td></tibble<>	[1,092	x 7]>	<tibble></tibble>	<tibble></tibble>	<tibble></tibble>
7	Spania	ES	<tibble< td=""><td>[1,239</td><td>x 7]></td><td><tibble></tibble></td><td><tibble></tibble></td><td><tibble></tibble></td></tibble<>	[1,239	x 7]>	<tibble></tibble>	<tibble></tibble>	<tibble></tibble>
8	Finland	FI	<tibble< td=""><td>[399 x</td><td>7]></td><td><tibble></tibble></td><td><tibble></tibble></td><td><tibble></tibble></td></tibble<>	[399 x	7]>	<tibble></tibble>	<tibble></tibble>	<tibble></tibble>
9	Frankrike	FR	<tibble< td=""><td>[2,121</td><td>x 7]></td><td><tibble></tibble></td><td><tibble></tibble></td><td><tibble></tibble></td></tibble<>	[2,121	x 7]>	<tibble></tibble>	<tibble></tibble>	<tibble></tibble>
10	Irland	IE	<tibble< td=""><td>[162 x</td><td>7]></td><td><tibble></tibble></td><td><tibble></tibble></td><td><tibble></tibble></td></tibble<>	[162 x	7]>	<tibble></tibble>	<tibble></tibble>	<tibble></tibble>
11	Italia	IT	<tibble< td=""><td>[2,247</td><td>x 7]></td><td><tibble></tibble></td><td><tibble></tibble></td><td><tibble></tibble></td></tibble<>	[2,247	x 7]>	<tibble></tibble>	<tibble></tibble>	<tibble></tibble>
12	Nederland	NL	<tibble< td=""><td>[840 x</td><td>7]></td><td><tibble></tibble></td><td><tibble></tibble></td><td><tibble></tibble></td></tibble<>	[840 x	7]>	<tibble></tibble>	<tibble></tibble>	<tibble></tibble>
13	Norge	NO	<tibble< td=""><td>[156 x</td><td>7]></td><td><tibble></tibble></td><td><tibble></tibble></td><td><tibble></tibble></td></tibble<>	[156 x	7]>	<tibble></tibble>	<tibble></tibble>	<tibble></tibble>
14	Polen	PL	<tibble< td=""><td>[1,533</td><td>x 7]></td><td><tibble></tibble></td><td><tibble></tibble></td><td><tibble></tibble></td></tibble<>	[1,533	x 7]>	<tibble></tibble>	<tibble></tibble>	<tibble></tibble>
15	Portugal	PT	<tibble< td=""><td>[525 x</td><td>7]></td><td><tibble></tibble></td><td><tibble></tibble></td><td><tibble></tibble></td></tibble<>	[525 x	7]>	<tibble></tibble>	<tibble></tibble>	<tibble></tibble>
16	Sverige	SE	<tibble< td=""><td>[441 x</td><td>7]></td><td><tibble></tibble></td><td><tibble></tibble></td><td><tibble></tibble></td></tibble<>	[441 x	7]>	<tibble></tibble>	<tibble></tibble>	<tibble></tibble>

Plots som viser utviklingen

Oppgave 23

Vi skal nå generere ett plott som viser utviklingen i Gini-koeffisient på nasjonsnivå for de 16 landene.

Tabellen under viser Gini i år 2020 for alle landene.

country_name	gini_nutsc
Irland	0.3826165
Polen	0.2378284
Frankrike	0.2064403
Hellas	0.2036007
Tyskland	0.2020493
Belgia	0.1959298
Italia	0.1845053
Danmark	0.1654528
Nederland	0.1573150

country_name	gini_nutsc
Norge	0.1510297
Spania	0.1400519
Sverige	0.1323442
Portugal	0.1230546
Østerrike	0.1224705
Finland	0.1212452

Ut i fra plottet ser vi at Gini-koeffisienten for Irland skyter til værs fra omlag år 2010. Irland er også det landet med høyest Gini-verdi. Vi skal nå se nærmere på utvikling i gini-koeffisient og gdp_per_capita for de ulike NUTS2 sonene i Irland.

I tabellen under ser vi en oversikt over utviklingen i Gini-koeffisient for NUTS2 sonene i Irland.

NUTS2	year	gini_nuts2gdp_per_capita
IE04	2000	0.12312561 16,692.46
IE04	2001	$0.12956190 17{,}661.33$
IE04	2002	0.06318599 19,128.84
IE04	2003	$0.03032886 19{,}637.24$
IE04	2004	0.08109587 21,620.15
IE04	2005	$0.07961662 22{,}089.61$
IE04	2006	$0.06434471 24{,}331.68$
IE04	2007	$0.07999625 24{,}585.47$
IE04	2008	0.09187490 22,675.35
IE04	2009	0.12750682 20,296.05
IE04	2010	$0.16571218 21{,}949.62$
IE04	2011	$0.17174129 24{,}164.51$
IE04	2012	$0.19386944 24{,}150.40$
IE04	2013	$0.17280122 21{,}574.19$

NUTS2	year	 gini_nuts2gdp_per_capita
IE04	2014	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
IE04	2015	0.20607425 24,124.46
IE04	2016	0.20662891 22,942.09
IE04	2017	0.15140781 25,035.40
IE04	2018	0.16895623 25,146.39
IE04	2019	$0.17456392 25{,}184.98$
IE04	2020	$0.32178852 23{,}696.39$
IE05	2000	0.14272675 23,835.52
IE05	2001	$0.17157286 26{,}998.52$
IE05	2002	$0.23133080 29{,}920.73$
IE05	2003	0.15978361 30,664.21
IE05	2004	0.14181869 30,657.57
IE05	2005	$0.15701296 31{,}326.17$
IE05	2006	0.15216101 33,455.42
IE05	2007	$0.15286466 35{,}714.88$
IE05	2008	$0.13684589 32{,}355.49$
IE05	2009	$0.19583205 29{,}667.47$
IE05	2010	0.19852713 30,680.67
IE05	2011	0.24429044 32,826.67
IE05	2012	$0.24476866 33{,}372.58$
IE05	2013	0.16406741 32,815.19
IE05	2014	$0.21325659 33{,}924.39$
IE05	2015	30,172.28
IE05	2016	29,699.72
IE05	2017	29,789.05
IE05	2018	0.33340668 71,209.31
IE05	2019	$0.27480470 74{,}539.22$

NUTS2	year	gini_nuts2gdp_per_ca
IE05	2020	0.38215439 76,983.92
IE06	2000	$0.24578629 29{,}192.95$
IE06	2001	0.27125525 30,485.86
IE06	2002	0.21019030 31,805.13
IE06	2003	$0.22778539 33{,}002.40$
IE06	2004	$0.22757404 36{,}195.35$
IE06	2005	0.25673014 38,579.77
IE06	2006	$0.22348125 40{,}448.89$
IE06	2007	$0.23501259 42{,}350.73$
IE06	2008	0.26258757 39,852.99
IE06	2009	$0.26782869 36{,}569.62$
IE06	2010	$0.32317347 38{,}186.56$
IE06	2011	$0.34423906 37{,}708.15$
IE06	2012	0.35534175 38,688.55
IE06	2013	0.38360258 40,634.37
IE06	2014	0.39008370 43,838.62
IE06	2015	0.33548581 49,405.75
IE06	2016	$0.35346251 53{,}774.71$
IE06	2017	0.36839547 57,092.90
IE06	2018	$0.37901152 59{,}937.07$
IE06	2019	0.39684316 61,274.46
IE06	2020	0.43423978 64,839.24

I tabellen over ser vi en oversikt over utviklingen i gdp $_$ per $_$ capita for de ulike NUTS2 sonene i Irland.

Ut i fra tabellene ser vi en sammenheng mellom utviklingen i Gini-koeffisienten og GDP per capita i Irland. For IE04 øker Gini-koeffisienten fra 2000 til 2020, noe som indikerer økt ulikhet i verdiskapningen. Samtidig ser vi en jevn økning i GDP per capita fra 2000 til 2018, men en nedgang i 2019 og 2020. For IE05 varierer Gini-koeffisienten gjennom årene, men det er en

tydelig økning fra 2018 til 2020. GDP per capita har hatt en jevn økning over hele perioden, med en betydelig økning fra 2018 til 2020. For IE06 har Gini-koeffisienten variert, men hatt en markant økning fra 2016 til 2020. GDP per capita har hatt en jevn økning fra 2000 til 2020.

Det ser ut til å være en tendens til økende ulikhet i alle regionene mot slutten av perioden, spesielt fra 2018 til 2020. For IE04 og IE06 ser vi at økning i Gini-koeffisienten korrelerer med økning i GDP oer capita. For IE05 er sammenhengen mer kompleks, da Gini-koeffisienten og GDP per capita varierer uavhenging i visse år. Kort forklart er årsaken til Irlands spesielle kurver at Apple Inc. restrukturerte sitt skatteopplegg.

Hvordan er verdiskapningen fordelt mellom regionene i ulike land?

Spania

Oppgave 25

25. Lager et line-plot som viser utviklingen i Gini-koeffisientene for NUTS2 regionene i Spania

26. Gjør tilsvarende for NUTS1 regionene i Spania

Oppgave 27

Gini-koeffisientene i 2020 spenner fra ca. 0.01 til over 0.1. Det ser altså ut til å være noen forskjeller mellom NUTS2 regionene i Spania, de fleste ligger i spennet fra ca. 0,02 til ca. 0,05 noe som tilsier en relativit lik økonomisk aktivitet og moderat til middels ulikhet. De gjennstående tre regionene spenner fra 0,08 til nesten 0,12 og disse er derfor noe mer ulike enn de andre noe som kan tyde på mindre økonomisk aktivitet og en mye større ulikhet.

Ser vi på NUTS1 regionene har vi to med lav ulikhet, to med middels ulikhet og to med ekstrem ulikhet. Dette kan forklare noe av grunnen til at så mange NUTS3 lå samlet, nemlig fordi spriket i NUTS1 er ganske gjennomsnittelig på middels forskjeller og man ser videre at forskjellene er både ganske små og store innenfor visse NUTS1 regioner.

Oppgave 28

28. Lag et line-plot (plottet vist i Figur 3) som viser utviklingen i gdp_per_capita (nominelle verdier) for de ulike NUTS2 regionene i Spania. Hva er det vi ser effekten av til høyre i Figur 3?

Det vi ser effekten av er at gdp per capita synker for alle regioner når covid19 ankom.

Tyskland

Oppgave 29

29. Et line-plot som viser utviklingen i Gini-koeffisient for NUTS2 regionene i Tyskland:

Oppgave 30

Line-plot som viser utviklingen i Gini-koeffisient for NUTS1 regionene i Tyskland:

Vi finner samme trend i NUTS1 regionene.

Frankrike

Oppgave 31

31. Utviklingen i Gini-koeffisient for NUTS2 regionene i Frankrike i et line-plot:

Oppgave 32

32. Utviklingen i Gini-koeffisient for NUTS1 regionene i Frankrike i et line-plot:

Vi ser at det store inntektsforskjeller i gdp i denne regionen, som kan være en idikator på at det er store forskjeller mellom de som har mest og de som har minst, som igjen resulterer i en høyere gini-faktor. Vi ser også at dette er Paris-regionen, og man kan dermed tenke seg at hypotesen ovenfor stemmer i og med at det nok finnes svært velstående og langt mindre velstående områder her. Vi skal undersøke dette nærmere nedenfor:

Oppgave 34

NUTS3	year	gdp_per_capita
FR101	2000	64,711.33
FR101	2001	67,959.57
FR101	2002	68,409.07
FR101	2003	66,383.41
FR101	2004	66,717.22
FR101	2005	70,632.26
FR101	2006	71,119.75

NUTS3	year	gdp_per_capita
FR101	2007	75,298.60
FR101	2008	74,872.69
FR101	2009	71,147.89
FR101	2010	77,445.13
FR101	2011	78,650.71
FR101	2012	80,113.32
FR101	2013	82,883.77
FR101	2014	84,199.17
FR101	2015	86,616.83
FR101	2016	89,288.42
FR101	2017	92,711.33
FR101	2018	97,608.98
FR101	2019	104,924.34
FR101	2020	96,832.10
FR102	2000	18,234.30
FR102	2001	18,383.98
FR102	2002	19,849.50
FR102	2003	19,771.76
FR102	2004	20,375.17
FR102	2005	21,072.37
FR102	2006	22,042.36
FR102	2007	23,072.22
FR102	2008	24,052.58
FR102	2009	23,450.88
FR102	2010	23,241.38
FR102	2011	24,739.38
FR102	2012	25,163.23

NUTS3	year	gdp_per_capita
FR102	2013	24,974.51
FR102	2014	25,148.82
FR102	2015	25,440.98
FR102	2016	25,774.97
FR102	2017	26,212.26
FR102	2018	26,447.38
FR102	2019	28,458.36
FR102	2020	25,253.07
FR103	2000	26,053.11
FR103	2001	27,265.99
FR103	2002	27,917.60
FR103	2003	27,383.44
FR103	2004	27,542.31
FR103	2005	29,238.05
FR103	2006	29,873.91
FR103	2007	31,622.30
FR103	2008	33,001.76
FR103	2009	31,175.22
FR103	2010	32,595.35
FR103	2011	33,602.09
FR103	2012	33,238.97
FR103	2013	34,442.85
FR103	2014	33,930.65
FR103	2015	35,265.27
FR103	2016	35,769.17
FR103	2017	36,226.33
FR103	2018	36,910.82

NUTS3	year	gdp_per_capita
FR103	2019	38,718.16
FR103	2020	35,764.50
FR104	2000	23,505.97
FR104	2001	25,080.70
FR104	2002	26,238.29
FR104	2003	26,497.41
FR104	2004	26,767.19
FR104	2005	26,974.71
FR104	2006	28,329.77
FR104	2007	29,925.14
FR104	2008	31,904.51
FR104	2009	30,391.92
FR104	2010	31,579.49
FR104	2011	30,627.77
FR104	2012	30,773.91
FR104	2013	33,418.20
FR104	2014	33,456.83
FR104	2015	34,066.68
FR104	2016	34,442.80
FR104	2017	35,674.12
FR104	2018	36,828.32
FR104	2019	38,981.61
FR104	2020	37,715.82
FR105	2000	59,215.16
FR105	2001	61,801.35
FR105	2002	64,608.62
FR105	2003	63,029.64

NUTS3	year	gdp_per_capita
FR105	2004	64,401.21
FR105	2005	69,520.20
FR105	2006	70,968.09
FR105	2007	75,660.52
FR105	2008	78,390.85
FR105	2009	75,135.04
FR105	2010	81,504.56
FR105	2011	82,513.52
FR105	2012	83,458.31
FR105	2013	87,055.95
FR105	2014	87,571.29
FR105	2015	88,589.36
FR105	2016	91,034.48
FR105	2017	92,925.87
FR105	2018	97,472.78
FR105	2019	106,004.00
FR105	2020	99,390.35
FR106	2000	21,797.18
FR106	2001	22,640.51
FR106	2002	23,763.08
FR106	2003	23,490.82
FR106	2004	24,229.39
FR106	2005	25,753.06
FR106	2006	26,926.69
FR106	2007	28,303.06
FR106	2008	28,764.16
FR106	2009	27,669.69

NUTS3	year	gdp_per_c
FR106	2010	29,978.03
FR106	2011	29,704.06
FR106	2012	29,621.48
FR106	2013	30,573.68
FR106	2014	33,315.13
FR106	2015	34,500.65
FR106	2016	34,588.08
FR106	2017	35,228.29
FR106	2018	36,137.40
FR106	2019	37,518.76
FR106	2020	32,554.17
FR107	2000	21,735.83
FR107	2001	22,663.97
FR107	2002	23,662.41
FR107	2003	24,120.79
FR107	2004	24,626.91
FR107	2005	25,584.52
FR107	2006	27,339.84
FR107	2007	28,946.21
FR107	2008	28,950.11
FR107	2009	29,473.03
FR107	2010	31,004.93
FR107	2011	31,102.83
FR107	2012	30,824.80
FR107	2013	31,937.45
FR107	2014	32,245.09
FR107	2015	34,015.60

NUTS3	year	gdp_per_capita
FR107	2016	34,558.29
FR107	2017	35,019.33
FR107	2018	35,320.95
FR107	2019	36,936.85
FR107	2020	$34{,}102.55$
FR108	2000	19,882.64
FR108	2001	20,756.18
FR108	2002	21,891.88
FR108	2003	21,731.36
FR108	2004	22,755.78
FR108	2005	24,123.01
FR108	2006	24,739.98
FR108	2007	26,175.87
FR108	2008	27,063.20
FR108	2009	25,734.03
FR108	2010	26,154.10
FR108	2011	26,847.58
FR108	2012	27,381.03
FR108	2013	27,634.94
FR108	2014	25,615.16
FR108	2015	25,951.61
FR108	2016	26,240.62
FR108	2017	27,159.16
FR108	2018	27,352.50
FR108	2019	28,649.54
FR108	2020	26,734.90

Det ser ut til at det er betydelige forskjeller i GDP per capita mellom ulike NUTS3-regioner i FR1. Regioner som FR105 og FR101 har høyere GDP per capita sammenlignet med andre regioner som FR102 og FR108. Dette skaper større ulikheter og forklarer den høye ginifaktoren.

Enkle modeller

"Data Science" modeller

Oppgave 36

Oppgave 37

Oppgave 38

Oppgave 39

Oppgave 40

Antall positive regresjonskoeffisienter for diff_gdp_per_capita er: 105

Oppgave 42

Gjennomsnittet av koeffisientene for diff_gdp_per_capita er: 1.720057e-06

Oppgave 43

```
T-test for diff_gdp_per_capita:
```

Total Sum of Squares: 1.9594

Teststatistikk: 2.622602

P-verdi: 0.004754696

Panel modell

Oppgave 44 og 45

Residual Sum of Squares: 1.6911

R-Squared: 0.13692 Adj. R-Squared: 0.091551

F-statistic: 522.094 on 1 and 3291 DF, p-value: < 2.22e-16

Tolkning av resultatene:

1. Residuals (Feil):

• Min. til Max.: Dette viser spredningen av de beregnede feiltermene (residuals) i modellen. Minimumsverdien er -0.2643, og maksimumsverdien er 0.2851.

2. Coefficients (Koeffisienter):

- Estimate (Estimat): 3.0221e-06 er estimert endring i Gini-koeffisienten for hver enhet endring i GDP per capita. Med andre ord, en liten positiv endring i GDP per capita er forbundet med en liten positiv endring i Gini-koeffisienten.
- Std. Error (Standardfeil): 1.3226e-07 er standardfeilen knyttet til estimatet. Dette gir en indikasjon på usikkerheten rundt estimatet.
- t-value: 22.849 er t-verdien, som er et mål på hvor langt estimatet er fra null, relativt til standardfeilen. Jo høyere t-verdien er, jo mer signifikant er koeffisienten.
- Pr(>|t|): < 2.2e-16 er p-verdien, som indikerer signifikansnivået. I dette tilfellet er p-verdien svært lav, noe som tyder på at koeffisienten er svært signifikant.

3. Model Fit (Modelltilpasning):

- Total Sum of Squares: 1.9594 er den totale variansen i Gini-koeffisienten.
- Residual Sum of Squares: 1.6911 er den gjenværende variansen som ikke forklares av modellen.
- R-Squared: 0.13692 er R-kvadrat, som er et mål på hvor mye variasjon i Ginikoeffisienten modellen forklarer. Her forklarer modellen omtrent 13.7% av variansen.
- Adj. R-Squared: 0.091551 er justert R-kvadrat, som tar hensyn til antall prediktorer i modellen. Det justerte R-kvadratet er lavere enn R-kvadratet og tar hensyn til over-tilpasning.
- 4. **F-statistic:** 522.094 er F-statistikken, som tester nullhypotesen om at alle koeffisientene i modellen er lik null. En høy F-verdi indikerer at modellen er signifikant.
- 5. **P-value for F-statistic:** < 2.22e-16 er p-verdien for F-statistikken, og den er svært lav. Dette indikerer at modellen som helhet er signifikant.

Samlet sett tyder resultatene på at det er en signifikant sammenheng mellom endringer i GDP per capita og endringer i Gini-koeffisienten, og at modellen er statistisk signifikant.

Oppgave 46

```
Oneway (individual) effect Within Model
Note: Coefficient variance-covariance matrix supplied: function(x) vcovHC(x, method = "white:
Call:
plm(formula = diff_gini_nuts2 ~ diff_gdp_per_capita, data = NUTS2_diff_pdata,
    model = "within", index = c("NUTS2", "year"))
Unbalanced Panel: n = 173, T = 7-21, N = 3465
Residuals:
       Min.
                1st Qu.
                             Median
                                        3rd Qu.
                                                       Max.
-0.26428158 -0.00640460 -0.00076946 0.00495061 0.28513472
Coefficients:
                      Estimate Std. Error t-value Pr(>|t|)
diff_gdp_per_capita 3.0221e-06 1.6303e-07 18.538 < 2.2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Total Sum of Squares:
                         1.9594
Residual Sum of Squares: 1.6911
R-Squared:
                0.13692
Adj. R-Squared: 0.091551
F-statistic: 343.639 on 1 and 172 DF, p-value: < 2.22e-16
```

I den siste koden bruker du vcov-argumentet i summary-funksjonen for å tilpasse standardfeilene ved hjelp av robust standardfeilsmetode (vcovHC med method = "white2"). Dette gir deg heteroskedastisitet-korrigerte standardfeil i tillegg til de vanlige standardfeilene.

Sammenligning av resultatene fra de to summary-kallene:

- 1. Vanlig summary-kall:
- Standardfeilene er basert på antagelsen om homoskedastisitet (konstant feilvarians).
- t-verdien for diff_gdp_per_capita er 22.849.
- Antall frihetsgrader er basert på det totale antallet observasjoner (DF), som er 3291.

- F-statistikken er 522.094.
- 1. summary-kall med robuste standardfeil:
- Standardfeilene er basert på heteroskedastisitet-robuste standardfeil (vcovHC med method = "white2").
- t-verdien for diff_gdp_per_capita er 18.538.
- Antall frihetsgrader er basert på antall grupper (NUTS2) og antall tidspunkter (year), som er 173 og 172.
- F-statistikken er 343.639.

Forskjellene i t-verdier og F-statistikken indikerer at de robuste standardfeilene gir annerledes inferens om signifikansnivået. I tillegg indikerer bruk av robuste standardfeil en form for korrigering for mulig heteroskedastisitet i feiltermen.

Generelt er bruken av robuste standardfeil spesielt relevant når det er mistanke om at feilvariansen kan være heteroskedastisk. Hvis antagelsen om homoskedastisitet brytes, kan de robuste standardfeilene gi mer pålitelige inferenser om parameterestimatene.