线性椭圆方程期中考试

- 1. (20 分) 设 $u \in C^2(\Omega)$ 满足 $\Delta u = 0$, 则 $u(x) = \frac{1}{\omega_n} \int_{|w|=1} u(x+rw) ds$, $\forall B_r(x) \subset \Omega$; 反之若 $u \in C(\Omega)$ 满足平均值性质, 则 $u \in C^\infty(\Omega)$ 且 $\Delta u = 0$.
 - 2. (20分)设 $\Delta u = 0$ 以及 u > 0在 Ω 上成立,则

$$\sup_{B_{1/2}}|Dlogu|\leq C(n).$$

3. (20 分) 设 $\Delta u = f$ 在 Ω 上成立, $f \in C^1$, 则对任意的 $\Omega' \subset \Omega$ 有如下估计成立

$$\sup_{\Omega'}|Du|\leq C,$$

其中常数 C 只与 $d(\Omega, \Omega')$, $|u|_{L^{\infty}}$ 和 $|f|_{C^1}$ 有关.

(Hint: $\phi = \eta^2 |Du|^2 + \alpha u^2$.)

4. (20 分) 设 $\Delta u + u^{\alpha} = 0$ 在 \mathbb{R}^n 上成立且满足 $u \ge 0$, 试证当 $1 < \alpha < \frac{n}{n-2}$ 时, $u \equiv 0$; 当 $\alpha = \frac{n}{n-2}$ 时, $u \equiv 0$.

(Hint: 乘 ξ^p, 这里 ξ 是截断函数.)

5. (20 分) 设 Ω 是 R" 的区域, 在 Ω 上定义

$$Lu = a_{ij}(x)u_{ij} + b_i(x)u_i + c(x)u,$$

其中 a_{ij} 满足一致椭圆条件且 a_{ij} , b_i , $c \in C(\Omega)$; 若在 Ω 上有 $c \le 0$ 和 $Lu \ge 0$ 则 u 在 $\partial\Omega$ 上取得非负最大值.

6. (20 分) 设 $u \in H^1(B_1)$ 是下列方程的一个解

$$\int_{B_1} a_{ij}(x) D_i u D_j \phi = \int_{B_1} f \phi \quad \forall \phi \in H^1_0(\Omega).$$

假设 $a_{ij} \in C^{\alpha}(\overline{B}_{1})$ 以及 $f \in L^{q}(B_{1})$, 这里 q > n 和 $\alpha = 1 - \frac{n}{q} \in (0,1)$. 则 $Du \in C^{\alpha}(B_{1})$, 并且存在 $R_{0} = R_{0}(\lambda, |a_{ij}|_{C^{\alpha}})$ 使得对任意的 $x \in B_{1/2}$ 和 $r \leq R_{0}$ 成立 如下估计

$$\int_{B_r(x)} |Du - (Du)_{x,r}|^2 \le C r^{n+2\alpha} \{ ||f||_{L^q(B_1)} + ||u||_{H^1(B_1)} \}$$

其中 $C = C(\lambda, |a_{ij}|_{C^a})$ 是一个正数.