Large time behavior of solutions of the *p*-Laplacian equation

Ki-ahm Lee, Arshak Petrosyan, and Juan Luis Vázguez

Abstract

We establish the behavior of the solutions of the degenerate parabolic equation

$$u_t = \nabla \cdot (|\nabla u|^{p-2} \nabla u), \qquad p > 2,$$

posed in the whole space with nonnegative, continuous and compactly supported initial data. We prove a nonlinear concavity estimate for the pressure $v=u^{(p-2)/(p-1)}$ away from the the maximum point of v. The estimate implies that the support of the solution becomes convex for large times and converges to a ball. In dimension one, we know also that the pressure itself eventually becomes concave.

1 Introduction

In this paper we establish the large time behavior of the solutions of the degenerate parabolic equation

$$(1.1) u_t = \nabla \cdot (|\nabla u|^{p-2} \nabla u).$$

For exponent p=2 this is the classical Heat Equation (HE), whose theory is well known. Among its features we find C^{∞} smoothness of solutions, infinite speed of propagation of disturbances and the strong Maximum Principle. These properties generalize to a number of related evolution equations, notably those which are linear and uniformly parabolic.

A marked departure occurs in (1.1) when the exponent p is larger than 2. The equation is degenerate parabolic and finite propagation holds. It is usually called the evolution p-Laplacian equation (PLP for short). We consider the initial value problem for the PLP posed in $Q = \mathbf{R}^N \times (0, \infty)$, with initial data

(1.2)
$$u(x,0) = u_0(x)$$
 on \mathbf{R}^N ,

where u_0 is a nonnegative integrable function in \mathbf{R}^N whose support is contained in the ball B(0,R) centered at 0 and having radius R.

 $^{2000\} Mathematics\ Subject\ Classification:\ Primary\ 35K55,\ 35K65.$

 $Key\ words\ and\ phrases:$ Evolution p-Laplacian equation, asymptotic behavior, concavity, convergence of supports.

It is known that if $u_0 \in L^1(\mathbf{R}^N)$ there exists a unique nonnegative weak solution and for each t it has compact support that increases with t. Hence, there exists an *interface* or *free boundary* separating regions where u > 0 from regions where u = 0. The solution is C^{∞} smooth in its positivity set, but the interface might not be a smooth surface if u_0 is topologically complicated, as the focusing solutions studied by Gil and Vázquez show, [14], see also [2]. However, the solutions are known to have locally Hölder continuous first derivatives of [6, 9].

About the asymptotic behavior, in [18], 1988, Kamin and Vazquez studied the uniqueness and asymptotic behavior of positive solutions. They proved that the explicit solutions

$$U_M(x,t) = t^{-k} \left(C - q \left(\frac{|x|}{t^{k/N}} \right)^{\frac{p}{p-1}} \right)_+^{\frac{p-1}{p-2}}$$

found by G. I. Barenblatt in 1952 are essentially the only positive solutions to a Cauchy problem with the initial data

$$u(x,0) = M\delta(x), \qquad M > 0.$$

Here

$$k = \left(p - 2 + \frac{p}{N}\right)^{-1}, \qquad q = \frac{p - 2}{p} \left(\frac{k}{N}\right)^{\frac{1}{p - 1}}$$

and C is related to the mass M by $C=cM^{\alpha}$, with $\alpha=p(p-2)k/N(p-1)$ and c=c(p,N) determined from the condition $\int U_M(x,t)dx=M$. Using the idea of asymptotic radial symmetry, Kamin and Vazquez established that any nonnegative solution with globally integrable initial values is asymptotically equal to the Barenblatt solution as $t\to\infty$.

A consequence of the approximation to the Barenblatt profiles is the property of asymptotic concavity that can be best expressed in terms of the convenient variable,

$$(1.3) v = \frac{p-1}{p-2} u^{\frac{p-2}{p-1}}$$

known as the pressure (in which u is the density). Then v satisfies the equation

(1.4)
$$v_t = \frac{p-2}{p-1} v \Delta_p v + |\nabla v|^p$$

The pressure variable is appropriate to study properties related to interface behavior and geometry, while u is better suited for existence and uniqueness questions. It is easy to see that for the Barenblatt solutions the formula

(1.5)
$$\partial_e(|\nabla v|^{p-2}\partial_e v) = -\frac{K}{t}, \qquad K = \left(\frac{p-2}{p-1}\right)^{2(p-1)} \frac{k}{N}$$

holds in the set v > 0 for every direction e. As one can show, this property implies the concavity of v (see Lemma 5.1 in Section 5.)

Outline of the paper:

- Section 2 contains definitions and preliminary results and in Section 3 we state our main results.
- Section 4 contains the proof of C^{∞} regularity near the interface for p>2. Section 5 deals with convergence to the Barenblatt solution for all p. In the next three sections we work in one dimension. Section 6 contains the proof of eventual concavity for p<2 and Section 7 for p>2. The study of the curve of maxima is done in Section 8.

2 Definitions and preliminary results

The Cauchy problem (1.1)–(1.2) (or problem (CP) for short) does not possess classical solutions for general data in the class: $u_0 \in L^1(\mathbf{R}^N)$, $u_0 \geq 0$ (or even in a smaller class, like the set of smooth nonnegative and rapidly decaying initial data). This is due to the fact that the equation is parabolic only where $|\nabla u| > 0$, but degenerate where $|\nabla u| = 0$. Therefore, we need to introduce a concept of generalized solution and make sure that the problem is well-posed in that class.

By a *weak solution* of the equation (1.1) we will mean a nonnegative measurable function u(x,t), defined for $(x,t) \in Q$ such that: (i) viewed as a map

$$(2.1) t \to u(\cdot, t) = u(t).$$

we have $u \in C((0, \infty); L^1(\mathbf{R}^N))$; (ii) the functions u and $|\nabla u|^{p-2}\nabla u$ belong to $L^1(t_1, t_2; L^1(\mathbf{R}^N))$ for all $0 < t_1 < t_2$; and (iii) the equation (1.1) is satisfied in the weak sense

$$\iint \{u\varphi_t - |\nabla u|^{p-2}\nabla u \cdot \nabla \varphi\} \, dxdt = 0$$

for every smooth test function $\varphi > 0$ with compact support in Q.

By a solution of problem (CP) we mean a weak solution of (1.1) such that the initial data (1.2) are taken in the following sense:

(2.2)
$$u(t) \to u_0 \text{ in } L^1(\mathbf{R}^N) \text{ as } t \to 0.$$

In other words, $u \in C([0,\infty); L^1(\mathbf{R}^N))$ and $u(0) = u_0$.

The existence and uniqueness of solutions of problem (CP) in Q for compactly supported u_0 follows from the result of DiBenedetto and Herrero [10, 11] for general initial data $u_0 \in L^1_{loc}(\mathbf{R}^N)$ with an optimal growth condition at infinity (if p > 2)

$$||u_0|||_r = \sup_{\rho \ge r} \rho^{-\lambda} \int_{B_{\rho}(0)} u_0(x) dx < \infty, \quad \lambda = N + \frac{p}{p-2}$$

Next we list some important properties of solutions.

Property 1 The solutions of problem (CP) satisfy the law of mass conservation

(2.3)
$$\int_{\mathbf{R}^{N}} u(x,t) \, dx = \int_{\mathbf{R}^{N}} u_0(x) \, dx,$$

i.e., $||u(t)||_{L^1(\mathbf{R}^N)} = ||u_0||_{L^1(\mathbf{R}^N)}$ for all t > 0.

The proof of the following estimate can be found in [26]

Property 2 The solutions are bounded for $t \ge \tau > 0$. More precisely,

$$|u(x,t)| \le U_M(0,t) = c_*(p,N)M^{pk/N}t^{-k},$$

where $M = ||u_0||_{L^1(\mathbf{R}^N)}$ and $k = (p-2+p/N)^{-1}$.

Property 3 The weak solutions u(x,t) and their spatial gradients $\nabla u(x,t)$ are uniformly Hölder continuous for $0 < \tau < t < T < \infty$.

The next semi-convexity estimate is due to Esteban-Vazquez [13]

Property 4 For p > 2N/(N+1) there exist a constant C = C(p,N) such that for any nonnegative solution u of the Cauchy problem (CP), the pressure v satisfies the estimate

$$(2.5) \Delta_p v \ge -\frac{C}{t}.$$

in the sense of distributions.

Property 5 (Finite propagation property) If the initial function u_0 is compactly supported so are the functions $u(\cdot,t)$ for every t>0. Under these conditions there exists a free boundary or interface which separates the regions $\{(x,t) \in Q : u(x,t) > 0\}$ and $\{(x,t) \in Q : u(x,t) = 0\}$.

This interface is usually an N-dimensional hypersurface in \mathbf{R}^{N+1} ,

Property 6 (Scaling) One of the critical properties of the p-Laplacian equation is the scaling invariance. Any solution u(x,t) of (1.1) will produce a family of solutions

(2.6)
$$\left(\frac{B}{A^p}\right)^{\frac{1}{p-2}} u(Ax, Bt)$$

for any A, B > 0. In particular, choosing $A = \theta^{-k/N}$, $B = \theta^{-1}$ for $\theta > 0$, we obtain the scaling

(2.7)
$$\frac{1}{\theta^k} u\left(\frac{x}{\theta^{k/N}}, \frac{t}{\theta}\right)$$

which is the one that conserves the mass for the density u.

Let us conclude this section by pointing out that the source-type solutions $U_M(x,t)$ are weak solutions of (1.1), but they are *not* solutions of problem (CP) as stated because they do not take L^1 initial data. Indeed, it is easy to check that U_M converges to a Dirac mass

(2.8)
$$U_M(x,t) \to M \,\delta(x)$$
 as $t \to 0$,

This is the reason for the name "source-type solutions". They are invariant under scaling for the choice $A=B^{k/N}$.

The asymptotic behavior of any solution of the Cauchy problem is described in terms of the Barenblatt solution with the same mass.

Theorem 2.1 Let u(x,t) be the unique solution of problem (CP) with initial data $u_0 \in L^1(\mathbf{R}^N)$, let $M = \int u_0(x) dx$. If U_M is the Barenblatt solution with the same mass as u_0 , then as $t \to \infty$ we have

(2.9)
$$\lim_{t \to \infty} t^k ||u(t) - U_M(t)||_{L^{\infty}(\mathbf{R}^n)} = 0.$$

The the proof is due to [13].

Let us finally recall that the functions $U_M(x,t)$ have the self-similar form

(2.10)
$$U_M(x,t) = t^{-k} F(xt^{-k/N}; C),$$

where $k=(p-2+p/N)^{-1}$ and $k/N=(N(p-2)+p)^{-1}$ are the similarity exponents and

(2.11)
$$F(s) = (C - qs^{\frac{p}{p-1}})_{+}^{\frac{p-1}{p-2}}.$$

is the profile, where $C = cM^{\alpha}$, with $\alpha = p(p-2)k/N(p-1)$, c = c(p,N) and $q = (1-2/p)(k/N)^{1/(p-1)}$. For the pressure variable we can write

$$V_M(r,t) = \frac{1}{(Lt)^{k\frac{p-2}{p-1}}} G_L\left(\frac{|x|}{(Lt)^{k/N}}\right),$$

with $L = M^{p-2}$ and profile

$$G_L(s) = L^{\frac{1}{p-1}} \left(c - q \, s^{\frac{p}{p-1}} \right)_+$$

for c, q depending only on p and N. The free boundary is given by the equation $|x|=(c/q)(Lt)^{k/N}$.

Property 7 (Asymptotic error for the support.) Using Aleaksandrov's Reflection Principle, one can prove the following sharp estimates on the size of the positivity set $\Omega(t) = \{v(\cdot,t) > 0\}$, see e.g. [29]

$$B_{r(t)} \subset \Omega(t) \subset B_{R(t)}, \quad R(t) \leq r(t) + 2R_0, \quad R(t) \sim (c/q)(Lt)^{k/N},$$

if the support of the initial data contained in the ball of radius R_0 (with center at 0).

3 Statement of main results

We are going to impose the conditions on the initial pressure v_0 , which have been used to get the long-time non-degenerate Lipschitz solutions in [7, 29] and $C^{1,\alpha}$ regularity of the interface in [20].

Conditions:

- 1. The support of v_0 , $\overline{\Omega}_0 = \{v_0 \ge 0\}$, is contained in a ball of radius R > 0,
- 2. Regularity: $\partial \Omega_0$ is C^1 regular and $v_0 \in C^1(\overline{\Omega}_0)$,
- 3. Non-degeneracy: $0 < \frac{1}{K} < v_0 + |\nabla v_0| < K$ in $\overline{\Omega}_0$,
- 4. Semi-concavity: $\partial_{ee}v_0 \geq -K_0$ in a strip $S \subset \Omega_0$ near the boundary $\partial \Omega_0$ for any direction e.

The uniform convergence result (2.9) can be restated as

(3.1)
$$\lim_{t \to \infty} t^{k \frac{p-2}{p-1}} \| v(t) - V_M(t) \|_{L^{\infty}(\mathbf{R}^N)} = 0.$$

Our goal in this paper is improving the uniform convergence up to C^{∞} -convergence and then getting the convexity of the positivity set, $\Omega(t) = \{x: v(x,t) > 0\}$ (or the support, which is its closure) and the concavity of v(x,t) in $\Omega(t)$ at all long times t >> 1.

Scaling will play an important role in our proof. The first use is in reducing the problem. Thus, given a solution with mass M > 0 we can use the scaling

$$\tilde{v}(x,t) = \frac{1}{A^{\frac{p}{p-1}}} v(Ax,t)$$

with $A = M^{(k/N)(p-2)}$ to get another solution \tilde{v} with mass 1. Therefore, we can take M = L = 1 in the sequel. We will write G instead of G_1 for the Barenblatt profile, and V instead of V_1 for the corresponding solution.

On a more fundamental aspect, given a solution v = v(x, t) with mass M we will define the family

(3.2)
$$v_{\lambda}(x,t) = \lambda^{k\frac{p-2}{p-1}} v(\lambda^{k/N} x, \lambda t), \qquad \lambda > 0,$$

which are again solutions of the same equation with same mass, now normalized to 1. The long-time behavior can be captured through the uniform bound for the scaled solutions. Formula (3.1) can be stated equally by

$$|v_{\lambda}(x,t) - V(x,t)| \to 0$$
 as $\lambda \to \infty$,

uniformly in |x| < K, 1 < t < 2. Therefore, we will concentrate on the convergence of v_{λ} towards $V(x,t) = t^{-k\frac{p-2}{p-1}}G(xt^{-k/N})$.

First we are going to show the uniform estimate of all possible derivatives of v_{λ} (for large $\lambda > 0$) for $t \in [1,2]$ everywhere except an arbitrary small ball B_{ε} centered at the origin.

Theorem 3.1 For every k > 0 and $\varepsilon > 0$ there exists a value of the scaling parameter $\lambda_{k,\varepsilon}$ and a uniform constant $C_{k,\varepsilon} > 0$ such that

$$(3.3) ||v_{\lambda}(x,t)||_{C_{\alpha,t}^{k}(\overline{\Omega(v_{\lambda})}\setminus B_{\varepsilon}(0)\times[1,2])} < C_{k,\varepsilon} for all \lambda > \lambda_{k,\varepsilon},$$

where

$$\Omega(v_{\lambda}) = \{(x,t) | v_{\lambda}(x,t) > 0, 1 < t < 2\}.$$

Let us translate these results into asymptotic concavity statements. We remark that we have the following identity for G(x)

$$\partial_e(|\nabla G|^{p-2}\partial_e G) = -q^{p-1}$$

for every direction e and at all points x such that G(x) > 0, and the C_x^2 -convergence away from the origin implies

$$\partial_e(|\nabla v_\lambda|^{p-2}\partial_e v_\lambda) < 0$$
 on $\{v_\lambda(\cdot,t) > 0\} \setminus B_\varepsilon$

for λ large.

Theorem 3.2 There is $t_0 > 0$ such that $\Omega(t) = \{x : v(x,t) > 0\}$ is a convex subset of \mathbf{R}^N for $t \geq t_0$ and its curvature converges to the constant curvature of the free boundary of the Barenblatt solution

(3.4)
$$\lim_{t \to \infty} t^{k/N} K(x,t) = C.$$

uniformly in $x \in \partial\Omega(t)$ Moreover, for every $\varepsilon > 0$ there is $t_{0,\varepsilon}$ such that v(x,t) is concave in $\Omega(t) \setminus B_{\varepsilon t^{k/N}}$ for $t \geq t_{0,\varepsilon}$. More precisely,

(3.5)
$$\lim_{t \to \infty} t \, \partial_e(|\nabla v|^{p-2} \partial_e v) = -q^{p-1}$$

for every direction e uniformly for $x \in \Omega(t) \setminus B_{\varepsilon t^{k/N}}$ for every $\varepsilon > 0$.

In one-dimensional case we can also establish the concavity near the origin.

Theorem 3.2' In the dimension N=1, the convergence (3.5) is uniform for $x \in \Omega(t)$. As a consequence, all level sets $\{x : v(x,t) \geq c\}$, c > 0, are convex (if not empty). The function $u(\cdot,t)$ has only one maximum point $\gamma(t)$. Moreover, the curve $x = \gamma(t)$ is $C^{1,\alpha}$ -regular for $t > t_0$.

4 Regularity near the interface, p > 2

Let v be a solution of (1.4) for p > 2. Due Esteban and Vazquez [13], we know that

(4.1)
$$\Delta_p v \geq -\frac{C}{t}, \quad \text{for } C = C(p, N) > 0$$

$$(4.2) v_t \geq -\frac{p-1}{p-2} \cdot \frac{C}{t} \cdot v$$

and also

$$v_t, |\nabla v|^p = O\left(t^{-k\frac{p-2}{p-1}-1}\right)$$

which after the scaling (3.2) take the form

(4.4)
$$\Delta_p v_{\lambda} \ge -C, \qquad v_t \ge -\frac{p-1}{p-2} C v_{\lambda}, \qquad v_{\lambda,t}, \ |\nabla v|^p \le C$$

with C independent of λ .

4.1 Nondegeneracy of ∇v_{λ} near the free boundary.

From the exact estimates on the growth of the domain $\Omega(t) = \{x : v(x,t) > 0\}$, see Property 7 in Section 2, after rescaling we can assume that

(4.5)
$$B_{\rho_0} \subset \Omega_{\lambda}(t) = \{x : v_{\lambda}(x,t) > 0\} \subset B_{\rho_1}, \text{ for } t \in [1,2]$$

for some ρ_0 , $\rho_1 > 0$, independent of λ . We claim that there is $\delta_0 > 0$ and $c_0 > 0$ independent of λ such that

(4.6)
$$|\nabla v_{\lambda}| > c_0$$
 in δ_0 -neighborhood of $\partial \Omega_{\lambda}(t)$, $t \in [1, 2]$.

or, equivalently,

(4.7)
$$v_{\lambda} + |\nabla v_{\lambda}| \ge K_1(K, K_0) > 0 \text{ in } \{v_{\lambda} > 0\} \text{ for } t \in [1, 2].$$

The proof of this statement is based on the inequality

$$(4.8) \qquad \frac{A-p}{p-1}v(x,t) + x \cdot \nabla v(x,t) + (At+B)v_t(x,t) \ge 0$$

in $\mathbf{R}^N \times (0, \infty)$, which can be found in [7, 29]. Here A, B > 0 depend only on K and K_0 . Using straightforward computations, one can show that after rescaling (3.2) the inequality (4.8) will take the form

$$(4.9) \qquad \frac{A-p}{n-1} v_{\lambda}(x,t) + x \cdot \nabla v_{\lambda}(x,t) + (At+B/\lambda) v_{\lambda,t}(x,t) \ge 0.$$

Now, using the ideas analogous to those in the proof of Lemma 3.3 in [4], and carried out in detail for p-Laplacian equation by Ko [20], Section 3, one can prove the estimate (4.7). An important observation is that even though $B/\lambda \to 0$ as $\lambda \to \infty$, the estimates in [20] will depend actually on A and $At + B/\lambda$ but when $t \in [1,2]$ and $\lambda > 1$ we have

$$A \le At + B/\lambda \le 2A + B$$

which implies the uniformity of these estimates.

4.2 $C^{1,\alpha}$ -regularity of the pressure

From now on, to simplify notations, we will omit the index λ and use simply v for the rescaled pressure v_{λ} .

From the result of Y. Ko [20], we know that the interface $\partial\Omega(t)$ will be $C^{1,\alpha}$ regular for $t\in[1,2]$. However we need also $C^{1,\alpha}$ regularity of the pressure v in order to prove C^{∞} regularity of the interface. We apply the method originally due Koch [K], which was used to prove C^{∞} regularity of the interface in the porous medium equation.

We know that the positivity set $\Omega(t)$ of $v(\cdot,t)$ contains a ball B_{ρ_0} for $t \in [1,2]$. Moreover, we may assume $\Omega(0)$ is contained in $B_{\rho_0/2}$ for λ large. Then, a simple reflection argument used in Proposition 2.1, [1] implies that there is a uniform cone of directions $\mathcal{C} = \{\alpha \in S^{n-1} : \operatorname{angle}(\alpha, x/|x|) < \pi/2 - \eta_0\}$ such that function v(x,t) is decreasing in any direction from \mathcal{C} for x with $|x| > \rho_0/2$, where $\eta_0 > 0$ is a uniform constant, which can be made as small as we wish if we take λ sufficiently large. This, together with the uniform nondegeneracy of the gradient of $v(\cdot,t)$ near $\partial\Omega(t)$, allows to prove that there exist uniform positive constants δ_0 and c_0 such that

$$\partial_e v(x,t) \leq -c_0$$

for $x \in B_{\delta_0}(x_0)$, where $x_0 \in \partial \Omega(t)$ and $e = x_0/|x_0|$.

Let now fix $(x_0, t_0) \in \partial \{v > 0\}$ with $t_0 \in (1, 2)$. Denote $e = x_0/|x_0|$ and let e_n be the direction of $\nabla v(x_0, t_0)$. Since e is the axis of the cone of monotonicity \mathcal{C} with opening $\pi/2 - \eta_0$, we have $\operatorname{angle}(e, -e_n) \leq \eta_0$ and therefore if λ is sufficiently large (implying that η_0 is small), we will have

$$\partial_{e_n} v(x,t) \geq c_0$$

in $B_{\delta_0}(x_0)$ (with possibly different c_0 , δ_0 then before.) Consider now the mapping $(x,t)\mapsto (y,t)=(x',v(x,t),t)$ defined in a small neighborhood

$$V_0 = B_{\delta_0}(x_0) \times (t_0 - \delta_0, t_0 + \delta_0) \cap \overline{\{v > 0\}}$$

into a subset W_0 of $\{(y,t): y_n > 0\}$ which is open in the relative topology of the halfspace and contains the point $(0,t_0)$. The Jacobian of this mapping is $\partial_{e_n} v \geq c_0 > 0$ and hence by the implicit function theorem there exist an inverse mapping $(y,t) \mapsto (x,t) = (y',w(y,t),t)$, where the functions w and v are related trough the identity

(4.10)
$$x_n = w(x', v(x, t), t).$$

Differentiating (4.10) we find

$$(4.11) v_{x_n} = \frac{1}{w_{y_n}}, v_{x_i} = -\frac{w_{y_i}}{w_{y_n}}, i = 1, 2, \dots, n-1, v_t = -\frac{w_t}{w_{y_n}}.$$

and using the differentiation rules

(4.12)
$$\partial_{x_n} = \frac{1}{w_{y_n}} \, \partial_{y_n}, \quad \partial_{x_i} = \partial_{y_i} - \frac{w_{y_i}}{w_{y_n}} \, \partial_{y_n}$$

one can deduce the equation for w from the equation (1.4) for v:

$$-\frac{w_t}{w_{y_n}} = \frac{p-1}{p-2} y_n \left[\frac{1}{w_{y_n}} \left(a^{p-2} \frac{1}{w_{y_n}} \right)_{y_n} - \left(a^{p-2} \frac{w_{y_i}}{w_{y_n}} \right)_{y_i} + \frac{w_{y_i}}{w_{y_n}} \left(a^{p-2} \frac{w_{y_i}}{w_{y_n}} \right)_{y_i} \right] + a^p,$$

$$(4.13)$$

where

(4.14)
$$a = a(\nabla_y w) = |\nabla_x v| = \frac{\sqrt{1 + |\nabla_{y'} w|^2}}{w_{y_n}}.$$

After the simplification, the equation above can be rewritten in the form

$$(4.15) w_t = c_p y_n (a^{p-2} w_{y_i})_{y_i} - c_p y_n^{-\sigma} \left(y_n^{1+\sigma} a^{p-2} \frac{1 + |\nabla_{y'} w|^2}{w_{y_n}} \right)_{y_n},$$

where

(4.16)
$$c_p = \frac{p-1}{p-2}$$
 and $\sigma = -\frac{1}{p-1} > -1$.

To the equations of type (4.15) one can apply the regularity theory of Koch [K]. What follows is mainly a modification of the proof of Theorem 5.6.1 in [K]. We show first that the derivatives w_{y_i} are C^{α} for $i = 1, \ldots, n-1$ and then we prove C^{α} -regularity of w_{y_n} .

Let g be a difference quotient of w in a direction tangential to the boundary. Then it satisfies

(4.17)
$$g_t = y_n (A^{ij} g_{y_j})_{y_i} + y_n^{-\sigma} (y_n^{1+\sigma} A^{nj} g_{y_j})_{y_n}$$

where \mathcal{A}^{kj} is uniformly elliptic. Then by Theorem 4.5.5 in [K] g are uniformly C^{α} hence so are the derivatives w_{y_i} , i = 1, ..., n-1.

Next, the derivative $g = w_{y_n}$ satisfies an equation

$$(4.18) g_t = y_n (\mathcal{B}^{ij} g_{y_j})_{y_i} + y_n^{-1-\sigma} \left(y_n^{2+\sigma} \mathcal{B}^{nj} g_{y_j} \right)_{y_n} + c_p (a^{p-2} w_{y_i})_{y_i}.$$

Applying now Theorem 4.5.6 from [K] we find constants C, c > 0 such that on a cube $Q_h = Q'_h(0) \times [0, 2h] \times [t^0 - h, t^0 + h]$ with closure contained in W_0 we have

$$(4.19) ||g||_{C^{\alpha}(Q_h)} \le C + c \sum_{i=1}^{n-1} ||a^{p-2} w_{y_i}||_{C^{\alpha}(Q_h)},$$

where

(4.20)
$$a = a\left(\nabla_y w\right) = \frac{\sqrt{1 + |\nabla_{y'} w|^2}}{w_{y_n}}.$$

We can rewrite

$$a^{p-2}w_{y_i} = f^i(\nabla_{y'}w)w_{y_n}^{2-p}$$

where $f^i(\nabla_{y'}w) = (1+|\nabla_{y'}w|^2)^{\frac{p-2}{2}} w_{y_i}$ will be C^{α} and moreover

(4.21)
$$f^{i}(\nabla_{y'}w)|_{(0,t^{0})} = 0, \qquad i = 1, \dots, n-1.$$

Next, we can estimate

$$||a^{p-2} w_{y_i}||_{C^{\alpha}(Q_h)} = ||f^i(\nabla_{y'} w) w_{y_n}^{2-p}||_{C^{\alpha}(Q_h)}$$

$$\leq C_1 ||w_{y_n}||_{C^{\alpha}(Q_h)} ||f^i||_{L^{\infty}(Q_h)} + C_2 ||f^i||_{C^{\alpha}(Q_h)}.$$
(4.22)

If we now take h sufficiently small, so that

$$||f^i||_{L^{\infty}(Q_h)} < \varepsilon_0$$

(which is possible by (4.21)) we will obtain

$$(4.23) ||a^{p-2} w_{y_i}||_{C^{\alpha}(Q_h)} \le C_1 \varepsilon_0 ||w_{y_n}||_{C^{\alpha}(Q_h)} + C_3$$

Substituting this estimate into (4.19) we obtain

$$(4.24) ||w_{y_n}||_{C^{\alpha}(Q_h)} \le C_4 + C_5 \varepsilon_0 ||w_{y_n}||_{C^{\alpha}(Q_h)}$$

and taking h small enough so that $C_5\varepsilon_0 < 1/2$ we find

$$(4.25) ||w_{y_n}||_{C^{\alpha}(Q_h)} \le C_6.$$

which proves that w and therefore v is $C^{1,\alpha}$.

4.3 C^{∞} -regularity of the pressure

To prove the C^{∞} -regularity of v we should basically iterate the argument for the $C^{1,\alpha}$ -regularity. That, is we are taking successive derivatives of the equation (4.15) first in the directions e_i , i = 1, 2, ..., n-1 and then in e_n . The new terms that we will be obtaining in the equation will be of the form $f + \sum \partial_j (y_n f^j)$ with f and f^j already known to be C^{α} . For more details we refer to Koch's paper [K], proof of Theorem 5.6.1. The result that can be proved is as follows

Proposition 4.1 There exist a uniform neighborhood U of $(0, t_0)$ in $\mathbf{R}^{n-1} \times [0, \infty) \times \mathbf{R}$ such that $w_{\lambda} \in C^{\infty}(U)$ and $||w_{\lambda}||_{C^{\ell}_{x,t}(U)} < C_{\ell}$ for $\ell > 0$ and $\lambda > \lambda_0$.

We also find our $C^{1,\alpha}$ -estimate is enough to use the Schauder-type estimates in Daskalopoulos-Hamilton [8] for higher regularity. In [8], they assumed weighted $C_{\delta}^{2,\alpha}$ regularity of the initial data to get a degenerate equation with Hölder coefficient in a fixed domain after a global change of coordinates. On the other hand those assumptions are not necessary in our case since we just make a local argument. In the other words, $C^{1,\alpha}$ -regularity of v gives us the same type degenerate equation (4.17) with Hölder coefficient.

5 Convergence to the Barenblatt solution

In this section we prove Theorems 3.1 and 3.2.

The C^{∞} estimate in Proposition 4.1, after the inverse change of variables, implies that the uniform convergence of $v_{\lambda}(x,t)$ to the selfsimilar $V(x,t)=t^{-k\frac{p-2}{p-1}}G(xt^{-k/N})$ for $t\in[1,2]$ as $\lambda\to\infty$ is in fact C^{ℓ} convergence for every $\ell>0$ in an δ_0 -neighborhood U of the interface $\partial\{G(xt^{-k/N})>0\}$, $t\in[1,2]$, in the sense that for large λ there exists a C^{∞} function $h_{\lambda}(x,t)$ such that

(5.1)
$$v_{\lambda}(x,t) = t^{-k\frac{p-2}{p-1}}G\left(xt^{-k/N} + h_{\lambda}(x,t)x/|x|\right)$$

in U and

for every $\ell > 0$. In particular, since

(5.3)
$$\partial_e \left(|\nabla G|^{p-2} \partial_e G \right) = -q^{p-1}, \qquad q = q(N, p) > 0$$

we will have that for large λ

$$(5.4) \partial_e \left(|\nabla v_\lambda|^{p-2} \partial_e v_\lambda \right) < 0$$

in $\Omega_{\lambda}(t) = \{v_{\lambda}(\cdot,t) > 0\}$ in δ -neighborhood of the interface, $t \in [1,2]$. However, we claim that given $\varepsilon > 0$ (5.4) holds true in $\Omega_{\lambda}(t) \setminus B_{\varepsilon}$ for λ sufficiently large. Indeed, if dist $(x,\partial\Omega_{\lambda}(t)) \geq \delta$, we will have $v_{\lambda}(x,t) \geq \eta > 0$ and the uniform $C^{1,\alpha}$ regularity of the density $u_{\lambda}(\cdot,t)$ (see [9]) will imply the uniform $C^{1,\alpha}$ regularity of $v_{\lambda}(\cdot,t)$ in $\{v_{\lambda}(\cdot,t) \geq \eta\}$. In particular, $v_{\lambda}(\cdot,t)$ will converge to $V(\cdot,t)$ in $C^{1,\beta}$ norm. But, the gradient $|\nabla V(x,t)| > 0$ for |x| > 0, hence the equation (1.4) for v_{λ} is uniformly parabolic on $\{(x,t) : v_{\lambda}(x,t) \geq \eta, 1 \leq t \leq 2\} \setminus B_{\varepsilon} \times [1,2]$ and therefore

$$(5.5) ||v_{\lambda}(\cdot,t) - V(\cdot,t)||_{C^{\ell}(\{v_{\lambda} \ge \eta\} \setminus B_{\varepsilon})} \to 0$$

as $\lambda \to 0$ for every $\ell > 0$. As a consequence, we obtain that (5.4) holds in $\Omega(t) \setminus B_{\varepsilon}$ for λ sufficiently large.

Proof of Theorem 3.1. The proof follows from (5.1)–(5.2) and (5.5).

Proof of Theorem 3.2. The proof follows from (5.1)–(5.2), (5.3), (5.4) in $\Omega(t)\backslash B_{\varepsilon}$, and the Lemma 5.1 below by rescaling v_{λ} back to v.

Lemma 5.1 Let w(x) be a C^2 function in an open set U of \mathbb{R}^n such that

$$Z_e := \partial_e(|\nabla w|^{p-2}\partial_e w) < 0$$

for any spatial direction e. Then w(x) is locally concave in U.

Proof. For $x_0 \in U$ define

$$Z_e = |\nabla w|^{p-2} w_{ee} + (p-2)|\nabla w|^{p-4} (\nabla w \cdot \nabla w_e) w_e$$

Choose now the spatial coordinate system so that the matrix $D^2w(x_0)$ is diagonal and let e be directed along one of the coordinate axes. Then

$$Z_e = |\nabla w|^{p-2} w_{ee} + (p-2) |\nabla w|^{p-4} w_e^2 w_{ee}$$
$$= (|\nabla w|^{p-2} + (p-2) |\nabla w|^{p-4} w_e^2) w_{ee}.$$

Now, since $|\nabla w|^{p-2} + (p-2)|\nabla w|^{p-4}w_e^2 \ge (p-1)|\nabla w|^{p-4}w_e^2$ is always nonnegative, $Z_e < 0$ implies $w_{ee} < 0$. This proves that the eigenvalues of $D^2w(x_0)$ are nonpositive and the lemma follows.

6 Convexity in fast diffusion, 1 , <math>N = 1

In this section we work in dimension 1 and for $p \in (1,2)$ and we call it the fast diffusion in analogy with the porous medium equation with $m \in (0,1)$. In contrast to the case p > 2 the equation does not have the finite propagation property and the density becomes positive everywhere for t > 0.

In this case there is a problem with the definition (1.3) of the pressure v, since it becomes negative. We prefer therefore redefine it as

$$v = \frac{p-1}{2-p} u^{-\frac{2-p}{p-1}}.$$

Now it is positive and in dimension satisfies

(6.1)
$$v_t = c_p v (|v_x|^{p-2} v_x)_x - |v_x|^p, \qquad c_p = \frac{2-p}{p-1}$$

Next, what we know is that v is $C^{1,\alpha}$ and that it is close to the Barenblatt profile after we pass to the rescaled solutions v_{λ} . The convergence is uniform away from x = 0 so we assume that v is close in C^2 (hence, convex) in any compact set except a small neighborhood of 0.

To prove the convexity of v in a small neighborhood of the origin, it is enough to prove that $Z = (|v_x|^{p-2}v_x)_x > 0$, as one can see from an obvious generalization of Lemma 5.1. As a starting point we mention the following estimate by Esteban and Vazquez [13]

$$-\frac{K_1}{t} \le Z \le \frac{K_2}{t}$$

for some positive constants K_1 and K_2 depending only on p.

Introduce an auxiliary function $U = |v_x|^{p-2}v_x$ so that we have $Z = U_x$. We are going to derive equations for U and Z, but the problem is that these quantities are not generally smooth, so we have to use a regularization. It can be done as in [13], or as we do below.

For a given $\varepsilon > 0$ consider the solutions v^{ε} of the approximating equation

(6.3)
$$v_t = c_p v \left(f^{\varepsilon}(v_x) \right)_x - g^{\varepsilon}(v_x),$$

where

$$(6.4) f^{\varepsilon}(s) = (s^2 + \varepsilon)^{\frac{p-2}{2}}s$$

(6.5)
$$g^{\varepsilon}(s) = (s^2 + \varepsilon)^{\frac{p-2}{2}} (s^2 + (2 - 1/(p-1))\varepsilon)$$

Since the equation (6.3) is locally uniformly parabolic, the solutions v^{ε} are C^{∞} and taking ε small enough we can assume that v^{ε} are sufficiently close to the pressure v in $C^{1,\alpha}$ norm on compact subsets of Q. Next, we introduce

(6.6)
$$U^{\varepsilon} = f^{\varepsilon}(v_x^{\varepsilon}), \qquad Z^{\varepsilon} = U_x^{\varepsilon}.$$

Differentiating (6.3) with respect to x and multiplying by $(f^{\varepsilon})'(v^{\varepsilon})$ we find the equation for U^{ε}

$$U_{t}^{\varepsilon} = c_{p}v^{\varepsilon}(f^{\varepsilon})'(v_{x}^{\varepsilon})U_{xx}^{\varepsilon} + [c_{p}v_{x}^{\varepsilon}(f^{\varepsilon})'(v_{x}^{\varepsilon}) - (g^{\varepsilon})'(v_{x}^{\varepsilon})]U_{x}^{\varepsilon}$$

$$= a^{\varepsilon}(x,t)U_{xx}^{\varepsilon} + b^{\varepsilon}(x,t)U_{x}^{\varepsilon}$$
(6.7)

(6.8)
$$a^{\varepsilon}(x,t) = c_p v(v_x^2 + \varepsilon)^{\frac{p-4}{2}} ((p-1)v_x^2 + \varepsilon)$$

(6.9)
$$b^{\varepsilon}(x,t) = -2(p-1)v_x(v_x^2 + \varepsilon)^{\frac{p-2}{2}}.$$

Differentiating now (6.7), we obtain the equation for Z^{ε}

(6.10)
$$Z_t^{\varepsilon} = a^{\varepsilon} Z_{xx}^{\varepsilon} + \tilde{b}^{\varepsilon} Z_x^{\varepsilon} - 2(p-1)(Z^{\varepsilon})^2$$

where a^{ε} as above, $\tilde{b}^{\varepsilon} = 2c_p v_x(f^{\varepsilon})'(v_x) + c_p v v_{xx}(f^{\varepsilon})''(v_x) - (g^{\varepsilon})'(v_x)$. In computation we used the following identity

$$c_p(f^{\varepsilon})''(s) - (g^{\varepsilon})''(s) = C_p(f^{\varepsilon})'(s), \quad C_p = 2 - 2p - c_p$$

Consider now Z^{ε} in a rectangle $\mathcal{R}=(-r,r)\times(1,2)$ and assume that $v=v_{\lambda}$ is the rescaled pressure. From the C^{∞} convergence of v_{λ} to the Barenblatt solution on every compact K separated from 0, we have that $Z_{\lambda}\geq 2\delta_0>0$ on $\{-r,r\}\times[1,2]$ for large λ . But then, taking $\varepsilon<\varepsilon(\lambda)$, we can make $Z_{\lambda}^{\varepsilon}\geq \delta_0$ on $\{-r,r\}\times[1,2]$. For simplicity we will omit the indices ε and λ in what follows, if there is no ambiguity. Also, if it is not stated otherwise, the constants that appear below are uniform in ε and λ .

Lemma 6.1 Suppose that $Z \ge \delta_0 > 0$ on the parabolic boundary of a rectangle $\mathcal{R} = (-r, r) \times (t_1, t_2)$, i.e. on $[-r, r] \times \{t_1\} \cup \{-r, r\} \times [t_1, t_2]$. Then $Z^{\varepsilon} \ge \delta_1$ in \mathcal{R} , where $\delta_1 > 0$ depends only on δ_0 , t_1 and t_2 .

Proof. The proof is pretty much standard and uses the comparison with the stationary solutions of (6.10), that is functions $\zeta(t)$ satisfying

$$\zeta' = -2(p-1)\zeta^2.$$

Solutions of this ODE have the form

(6.11)
$$\zeta(t) = \frac{c}{t+t_0}, \qquad c = \frac{1}{2(p-1)}$$

and we can choose t_0 very large, so that $\zeta(t) < \delta_0/2$ on $[t_1,t_2]$. Then we claim $Z(x,t) > \zeta(t)$ in \mathcal{R} . Indeed, assuming the contrary, let t^* be the minimal $t \in [t_1,t_2]$ such that $Z(x,t) = \zeta(t)$ for some $x \in [-r,r]$. It is clear that $t^* > t_1$ since $Z(x,t_1) \geq \delta_0 > \zeta(t_1)$. Next, let $x^* \in [-r,r]$ be such that $Z(x^*,t^*) = \zeta(t^*)$. Then x^* is an interior point, since for $Z(x,t) \geq \delta_0 > \zeta(t)$ on the lateral boundary $\{-r,r\} \times [t_1,t_2]$. It is easily follows now that

$$Z_x(x^*, t^*) \ge 0$$
, $Z_x(x^*, t^*) = 0$, $Z_t(x^*, t^*) \le \zeta'(t^*)$

Here, we actually need to modify $\zeta(t)$ a little bit if we wish to arrive at a contradiction. Let everywhere above $\zeta(t)$ be given by (6.11) but with $c < \frac{1}{2(p-1)}$, so that we have

$$\zeta'(t) = -\frac{1}{c}\zeta^2(t) < -2(p-1)\zeta^2(t).$$

But then the contradiction is immediate:

$$-2(p-1)\zeta^{2}(t^{*}) > \zeta'(t^{*}) \ge Z_{t}(x^{*}, t^{*}) \ge -2(p-1)Z^{2}(x^{*}, t^{*}),$$

where in the last inequality we used the equation (6.10) for Z. Hence $Z(x,t) > \zeta(t)$ in \mathcal{R} and the lemma follows.

We are thus left with the proof of strict p-convexity at some time. We make a second-order estimate for U, namely an estimate for

$$I = \iint Z_x^2 \, dx dt = \iint U_{xx}^2 \, dx dt.$$

We multiply the equation (6.7) by U_{xx} and integrate by parts in a rectangle $\mathcal{R} = (-r, r) \times (\frac{1}{2})$ with r > 0 small to get

(6.12)
$$\iint a U_{xx}^2 dxdt = \iint U_t U_{xx} dxdt - \iint b U_x U_{xx} dxdt = I_1 + I_2.$$

Since b is small, b = O(r), we have

(6.13)
$$|I_2| \le Cr \left(\iint U_x^2 \, dx dt \right)^{1/2} \left(\iint U_{xx}^2 \, dx dt \right)^{1/2} \le Cr \, I^{1/2},$$

since $U_x = Z$ is bounded. We estimate the other term as follows

(6.14)
$$I_1 = -\iint U_x U_{xt} \, dx dt + \int_S U_t \, U_x \, dt = \frac{1}{2} \int U_x(x,1) \, dx - \frac{1}{2} \int U_x(x,2) \, dx + \int_S U_t \, U_x \, dt.$$

Now, the first terms are bounded uniformly as O(r) and the last is very small when $\lambda \gg 1$ because of the uniform convergence away from x=0 of the rescaled solutions. Summing up, we get

(6.15)
$$Cr^{-(2-p)/(p-1)} \iint U_{xx}^2 dxdt \le \iint a U_{xx}^2 dxdt \le C + Cr I^{1/2}$$

which means that I is bounded and small. But as an iterated integral it means that for some $t = t_1 \in (\frac{1}{2}2)$ the integral $\int Z_x^2 dx$ is small. At that t we obtain

$$(6.16) |Z - K_1/t| \le \varepsilon + \int_{-r}^{x} |Z_x| \, dx \le \varepsilon + r^{1/2} \left(\int Z_x^2 \, dx \right)^{1/2} \le 2\varepsilon,$$

hence $Z \geq c_0 > 0$. Observe that we may assume $t_1 \in (1, \frac{3}{2})$. But then, by Lemma 6.1 we will have that $Z \geq c_0 > 0$ on $[-r, r] \times [\frac{3}{2}, 2]$. In particular, we obtain that $v_{\lambda}^{\varepsilon}(\cdot, \frac{3}{2})$ is convex in \mathbf{R} for λ very large and $0 < \varepsilon < \varepsilon(\lambda)$, and therefore v_{λ} is convex everywhere in \mathbf{R} . But then, taking $\lambda = \frac{2}{3}t$ this precisely means $v(\cdot, t)$ is convex in \mathbf{R} for large t.

7 Concavity near the origin for p > 2, N = 1

We now perform the concavity analysis in the dimension N=1 for the slow diffusion case, p>2, and prove the first part of Theorem 3.2' that the rescaled solutions v_{λ} are concave near the origin for $\lambda \gg 1$.

As before, concavity of v will follow if we prove that the quantity $Z = (|v_x|^{p-2}v_x)_x$ is nonpositive. In this case we only have a bound from below for Z by Esteban and Vazquez [13].

The proof is similar to the convexity proof in the case of fast diffusion from the previous section. We consider an auxiliary variable $U = |v_x|^{p-2}v_x$, so that $U_x = Z$. All computations below are formal, but can be justified precisely as we did for the fast diffusion by considering regularizations v^{ε} , U^{ε} , and Z^{ε} .

From the pressure equation

(7.1)
$$v_t = c_p v(|v_x|^{p-2}v_x)_x + |v_x|^p, \qquad c_p = \frac{p-2}{p-1}$$

we obtain that U satisfies

$$U_t = (p-2) v |v_x|^{p-2} U_{xx} + (2p-2) |v_x|^{p-2} v_x U_x$$

$$= a(x,t) U_{xx} + b(x,t) U_x.$$
(7.2)

Lemma 7.1 There is a second-order estimate for U of the form

(7.3)
$$I = \iint a Z_x^2 dx dt = \iint a U_{xx}^2 dx dt \le C.$$

Proof. We multiply by U_{xx} and integrate by parts in a rectangle $\mathcal{R} = (-r, r) \times (1, 2)$ with r > 0 small to get

(7.4)
$$\iint a U_{xx}^2 dx dt = \iint U_t U_{xx} dx dt - \iint b U_x U_{xx} dx dt = I_1 + I_2.$$

First we estimate I_2

(7.5)
$$|I_2| \le 2 \iint \frac{b^2}{a} U_x^2 \, dx dt + \frac{1}{2} \iint a U_{xx}^2 \, dx dt.$$

The quantity b^2/a above equals $C(p)|v_x|^p$, so that $b^2/a = O(r^{\frac{p}{p-1}})$. Also we know that U_x is L^2 integrable, see Proposition 3.1, Chap. VIII in [9], which implies that

$$(7.6) |I_2| \le Cr^{\frac{p}{p-1}} + \frac{1}{2}I$$

Next, to estimate I_1 we integrate by parts.

(7.7)
$$I_{1} = -\iint U_{x}U_{xt} dxdt + \int_{S} U_{t} U_{x} dt = \frac{1}{2} \int U_{x}(x,1) dx - \frac{1}{2} \int U_{x}(x,2) dx + \int_{S} U_{t} U_{x} dt.$$

Again, since U_x is spatially L^2 integrable (see the reference above) the first two integrals are bounded. The last integral will be bounded since U_tU_x converges uniformly to the corresponding quantity for the Barenblatt solution on S. Hence we obtain that

$$(7.8)$$
 $|I_1| < C$

with C independent of r. Combining the estimates above we obtain that

(7.9)
$$\iint a Z_x^2 dx dt \le C.$$

Lemma is proved. □

Proof of Theorem 3.2'. We should start with a remark that as everywhere else in this section we must work with approximations of U and Z (as well as of a and b) as in the previous section, but for simplicity of the presentation we do formal computations with U and Z. From Theorem 3.2 it follows that for a given r > 0 and $\varepsilon > 0$ and large λ we have

$$|Z(x,t) + K/t| < \varepsilon$$
 for $x \in \text{supp } v(\cdot,t) \setminus (-r,r), \ t \in [1,2],$

where K = K(p) > 0. From Lemma 7.1 above it follows that for some $t = t_1 \in (1,2)$ the integral $\int aZ_x^2 dx$ bounded. At that t we get

(7.10)
$$|Z(x,t) + K/t| \le \varepsilon + \int_{-r}^{x} |Z_x| dx$$

$$\le \varepsilon + \left(\int_{-r}^{x} \frac{1}{a} dx\right)^{1/2} \left(\int a Z_x^2 dx\right)^{1/2}$$

and the statement will follow once we show that

(7.11)
$$\int_{-r}^{x} \frac{1}{a} dx = \int_{r}^{x} |v_{x}|^{2-p} dx \to 0 \quad \text{as } r \to 0$$

This seems to work since $a=|v_x|^{2-p}\simeq |x|^{-(p-2)(p-1)}$ which suggests also that the above quantity should be actually $O(r^{1/(p-1)})$. We need to make this precise. We start from a small distance x=-r where the difference is less than ε small enough and we integrate in the interval [-r,x'] where $x'\in (-r,r)$ is the first point at which Z=-K/(2t) for instance. Then $U_x=Z$ will be bounded away from zero and that implies that even if U vanishes at a point $x_0\in [-r,x']$ (in the worst case) we still have

$$|U(x,t)| \ge C|x - x_0|$$
 in $I = [-r, x']$.

and since $a = (p-2)v|U|^{(p-2)/(p-1)} < c(p)|x-x_0|^{(p-2)/(p-1)}$, the above formula (7.11) holds at x = x' and leads to contradiction in the preceding estimate for Z. Indeed, we will have

$$K/(2t) = |Z(x',t) + K/t| \le \varepsilon + Cr^{1/(p-1)}$$

with C depending on p only, which is impossible if r and ε are sufficiently small. Therefere, Z never reaches the level -K/2t, and in fact stays near -K/t, for this particular $t=t_1\in(1,2)$. Observe however, that we may assume $t_1\in(1,\frac{3}{2})$ and then apply an analogue of Lemma 6.1, which says that if $Z\leq -\delta_0<$ on a parabolic boundary of $(-r,r)\times(t_1,t_2)$ then if fact $Z\leq -\delta_1<0$ everywhere in $[-r,r]\times[t_1,t_2]$. In our case we obtain $Z\leq -c_0<0$ in $[-r,r]\times[\frac{3}{2},2]$ and in particular that $v_\lambda\left(\cdot,\frac{3}{2}\right)$ is strictly concave in its positivity set. But then taking $\lambda=\frac{2}{3}t$ we find that $v(\cdot,t)$ is strictly concave in $\Omega(t)=\{v(\cdot,t)>0\}$.

The second part of Theorem 3.2' on the regularity of the curve of maxima is the contents of the next section, where we finish the proof of the theorem.

8 Regularity of the curve of maxima

As we have seen in the previous section, in 1-dimension, starting from some moment, the pressure $v(\cdot,t)$ will become strictly concave in its positivity set $\Omega(t)$. As a consequence, the function $v(\cdot,t)$ has only one maximum point. We will denote this point by $\gamma(t)$. Below we show that the result of M. Bertsch and D. Hilhorst [3] on the regularity of the interface in one-dimensional two-phase porous medium equation implies that the curve $x = \gamma(t)$ is $C^{1,\alpha}$ regular. The connection with the porous medium equation is as follows. It is clear that $\gamma(t)$ is also the only maximum point of $u(\cdot,t)$. Moreover, $\gamma(t)$ is the only point, where the derivative u_x crosses the value 0. In other words, the curve $x = \gamma(t)$ separates the regions $\{u_x < 0\}$ and $\{u_x > 0\}$. Finally, the function

$$(8.1) w(x,t) = u_x(x,t)$$

satisfies

$$(8.2) w_t = (|w|^{p-2}w)_{xx},$$

which is precisely the two-phase the porous medium equation with the parameter m = p - 1.

Proposition 8.1 Let w be a solution of (8.2) on $(-L, L) \times (t_0, \infty)$ with the assumptions that $w(\cdot, t_0)$ is nonincreasing on (-L, L) and w(-L, t) = a, w(L, t) = -b for $t \ge t_0$ for some positive constants a and b. Then the null-set $\mathcal{N}(t) = \{x : w(x,t) = 0\}$ can be described as follows. There exist Lipschitz functions $\gamma_-(t)$ and $\gamma_+(t)$ such that

$$\mathcal{N}(t) = [\gamma_{-}(t), \gamma_{+}(t)], \quad \text{for } t \geq t_0.$$

and there is $t^* \geq t_0$ such that

(i)
$$\gamma_{-}(t) = \gamma_{+}(t) =: \gamma(t) \text{ for } t \geq t^{*};$$

(ii)
$$(|w|^{p-2}w)_x = 0$$
 on $\mathcal{N}(t)$ for $t \in [t_0, t^*]$ and $(|w|^{p-2}w)_x < 0$ for $t > t^*$.

Moreover, $\gamma \in C^{1,\alpha}((t^*,\infty))$ for some $\alpha \in (0,1)$.

Proof. This is a particular case of Theorem 1.3 (see also Lemma 4.1) in [3]. \Box

Proof of Theorem 3.2' (continuation.) In order to use Proposition 8.1 for $w = u_x$ we must prove that $w(\cdot, t_0)$ is nonincreasing on (-L, L) for small L and large t_0 . We actually consider the rescaled solutions $u_{\lambda}(x, t)$ for on $\mathcal{R} = (-r, r) \times (1, 2)$ and respectively defined $w_{\lambda} = (u_{\lambda})_x$. Then (omitting λ)

$$(|w|^{p-2}w)_x = C_p \left(v^{\frac{p-1}{p-2}} |v_x|^{p-2} v_x \right)_x = C_p v^{\frac{1}{p-2}} \left(c_p |v_x|^p + v(|v_x|^{p-2} v_x)_x \right)$$

and therefore for small r and large λ we have

$$(|w_{\lambda}|^{p-2}w_{\lambda})_x < 0$$
 on $\mathcal{R} = (-r, r) \times (1, 2)$.

Indeed, this simply follows from the fact that for large λ we have $(|v_x|^{p-2}v_x)_x < -C(p) < 0$ and for small r > 0 v_x is small and v is like a positive constant. As a consequence, we obtain also that $w_{\lambda}(\cdot,1)$ is nonincreasing on (-r,r). Also for $t \in [1,2]$ $w_{\lambda}(-r,t) > 0$ and $w_{\lambda}(r,t) < 0$. Even though $w_{\lambda}(-r,t)$ and $w_{\lambda}(r,t)$ are not constants, (but separated) from 0, the conclusion of Proposition 8.1 above holds, since this condition is not essential for the proof. Moreover we can take $t^* = 1$, since we proved that $(|w_{\lambda}|^{p-2}w_{\lambda})_x < 0$ in \mathcal{R} . Scaling w_{λ} back to w we obtain that the curve $x = \gamma(t)$ is $C^{1,\alpha}$ regular, where $\gamma(t)$ is the only maximum point of the pressure v at time v, for v is v in v in v in the proof of Theorem 3.2'.

Acknowledgments: This work has been done during a stay of the authors at the University of Texas, Austin. They wish to thank the Department of Mathematics and the TICAM for their hospitality.

References

- D.G. Aronson and L.A. Caffarelli, The initial trace of a solution of the porous medium equation, Trans. Amer. Math. Soc. 280(1983), 351-366.
- [2] D.G. Aronson, O. Gil, and J.L. Vázquez, Limit behaviour of focusing solutions to non-linear diffusions, Comm. Partial Differential Equations 23 (1998), no. 1-2, 307–332.
- [3] M. Bertsch and D. Hilhorst, The interface between regions where u < 0 and u > 0 in the porous medium equation, Appl. Anal. 41 (1991), no. 1-4, 111–130.
- [4] L.A. Caffarelli, J.L. Vázquez, and N.I. Wolanski, Lipschitz continuity of solutions and interfaces of the N-dimensional porous medium equation, Indiana Univ. Math. J. 36 (1987), no. 2, 3, 373–401.
- [5] L.A. Caffarelli and N. Wolanski, C^{1,α} regularity of the free boundary for the Ndimensional porous media equation, Comm. Pure Appl. Math. 43 (1990), no. 7, 885–902.
- [6] Y. Chen, Hölder continuity of the gradient of the solutions of certain degenerate parabolic equations, Chin. Ann. Math. 8B (1987), pp. 343356.
- [7] H.J. Choe and J. Kim, Regularity for the interfaces of evolutionary p-Laplacian functions, SIAM J. Math. Anal. 26 4 (1995), pp. 791–819.
- [8] P. Daskalopoulos and R. Hamilton, C^{∞} -regularity of the interface of the evolution p-Laplacian equation, Math. Res. Lett. 5 (1998), no. 5, 685–701.
- [9] E. DiBenedetto, Degenerate Parabolic Equations, Springer, Berlin, 1993.
- [10] E. DiBenedetto and M.A. Herrero, On the Cauchy problem and initial traces for a degenerate parabolic equation, Trans. Amer. Math. Soc. 314 (1989), no. 1, 187–224.
- [11] E. DiBenedetto and M. A. Herrero, Nonnegative solutions of the evolution p-Laplacian equation. Initial traces and Cauchy problem when 1 , Arch. Rational Mech. Anal.**111**(1990), no. 3, 225–290.
- [12] V.A. Galaktionov and J.L. Vázquez, Geometrical properties of the solutions of onedimensional nonlinear parabolic equations, Math. Ann. 303 (1995), no. 4, 741–769.
- [13] J.R. Esteban and J.L. Vazquez, Régularité des solutions positives de l'équation parabolique p-laplacienne, C.R. Acad. Sci. Paris Ser. I Math. 310 (1990), pp. 105110.
- [14] O. Gil and J.L. Vázquez, Focusing solutions for the p-Laplacian evolution equation, Adv. Differential Equations 2 (1997), no. 2, 183–202.
- [15] Y. Ham and Y. Ko, C-infinity interfaces of solutions for one-dimensional parabolic p-Laplacian equations Electron. J. Differential Equations 1999, No. 1, 12 pp. (electronic).
- [16] J. Hulshof, J.R. King, and M. Bowen, Intermediate asymptotics of the porous medium equation with sign changes, Leiden preprint W98-20 (1998), accepted for publication in Adv. Diff. Equations.
- [17] A.V. Ivanov, Hölder estimates for quasilinear doubly degenerate parabolic equations, J. Sov. Math. 56 (1991), pp. 2320-2347.
- [18] S. Kamin and J.L. Vázquez, Fundamental solutions and asymptotic behaviour for the p-Laplacian equation, Rev. Mat. Iberoamericana 4 (1988), no. 2, 339–354.
- [19] S. Kamin and J.L. Vázquez, Asymptotic behaviour of solutions of the porous medium equation with changing sign, SIAM J. Math. Anal. 22 (1991), no. 1, 34–45.

- [20] Y. Ko, C^{1,α} regularity of interfaces for solutions of the parabolic p-Laplacian equation, Comm. Partial Differential Equations 24 (1999), no. 5-6, 915–950.
- [21] Y. Ko, C^{1,α} regularity of interface of some nonlinear degenerate parabolic equations, Nonlinear Anal. 42 (2000), no. 7, Ser. A: Theory Methods, 1131–1160.
- [K] H. Koch, Non-Euclidean Singular Integrals and the Porous Medium Equation, Habilitation thesis, University of Heidelberg, 1999.
- [22] O.A. Ladyzhenskaya, N.A. Solonnikov, and N.N. Uraltzeva, Linear and quasilinear equations of parabolic type, Trans. Math. Monographs, vol. 23, Amer. Math. Soc., Providence, RI, 1968.
- [23] S. Sakaguchi, Spatial critical points of nonnegative solutions of the evolution p-Laplacian equation: the fast diffusion case, Differential Integral Equations 10 (1997), no. 6, 1049– 1063
- [24] S. Sakaguchi, The number of peaks of nonnegative solutions to some nonlinear degenerate parabolic equations, J. Math. Anal. Appl. 203 (1996), no. 1, 78–103.
- [25] J.L. Vázquez, Two nonlinear diffusion equations with finite speed of propagation, Problems involving change of type (Stuttgart, 1988), 197–206, Lecture Notes in Phys., 359, Springer, Berlin, 1990.
- [26] J. L. Vázquez, Symmetrization in nonlinear parabolic equations, Portugal. Math. 41 (1982), no. 1-4, 339–346 (1984).
- [27] M. Wiegner, On C-regularity of the gradient of solutions of degenerate parabolic systems, Ann. Mat. Pura Appl. 4 145 (1986), pp. 385–405.
- [28] J. Zhao, Lipschitz continuity of the free boundary of some nonlinear degenerate parabolic equations, Nonlinear Anal. 28 6 (1997), pp. 1047–1062.
- [29] J. N. Zhao, H. J. Yuan, Lipschitz continuity of solutions and interfaces of the evolution p-Laplacian equation, Northeast. Math. J. 8 (1992), no. 1, 21–37.

Department of Mathematics, Seoul National University, Seoul, South Korea $E\text{-}mail\ address:\ \mathtt{kiahm@math.snu.ac.kr}$

Department of Mathematics, University of Texas at Austin, Austin, TX 78712, USA *E-mail address:* arshak@math.utexas.edu

Departamento de Matemáticas, Universidad Autónoma de Madrid, 28046 Madrid, Spain

E-mail address: juanluis.vazquez@uam.es