SOCIAL INEQUALITY STUDY

USING MACHINE LEARNING AND TITANIC

DATASET

ABAROUDI YOUNES09/16/2024

Agenda

- Introduction
- Dataset Overview
- Exploratory Data Analysis (EDA)
- Model 1: Shallow Artificial Neural Network (ANN)
- Model 2: Multiclass Logistic Regression
- Conclusion and Key Takeaways

Social Inequality Study

Predicting Survival Using Machine Learning Models

In this project, we will explore **social inequality** in the Titanic dataset by examining how passenger class, gender, and other factors influenced survival rates.

- Focus Areas:
 - Social class (Pclass)
 - Gender
 - Family size
 - Wealth (Fare)
- Models Used:
 - Shallow Artificial Neural Network (ANN)
 - Multiclass Logistic Regression

Dataset Overview

Dataset Summary

- Total passengers: 891 passengers
- Key Features:
 - Pclass, Sex, Age, Fare, Embarked, Family Size, Title
- Target Variable: Survived (0 = No, 1 = Yes)

Data Cleaning

Removed 95 duplicate rows

Feature Engineering

• Combine ("Pclass_1", "Pclass_2", "Pclass_3") into a single feature "Pclass"

Exploratory Data Analysis (EDA)

Survival Rate Distribution Across Classes and Genders

OBSERVATIONS

- Wealthier passengers (first class) had better access to lifeboats, while passengers from lower classes (third class) had a much lower chance of survival.
- **Gender** also played a significant role, as females were given priority during the rescue, leading to significantly higher survival rates among women.

Influence of Fare on Survival

OBSERVATIONS

• Fare is a proxy for wealth, and wealthier passengers, who had better accommodations, were more likely to have access to lifeboats, contributing to higher survival rates.

Correlation between Social Inequality Features

OBSERVATIONS

- Passenger class and fare are key indicators of wealth, and wealth had a substantial impact on survival.
- Gender-based societal norms during the time of the Titanic disaster are evident in the correlation between `Sex` and survival, as women had a higher survival rate.

Influence of Family size on Survival

OBSERVATIONS

• Traveling alone or in small groups appears to have been an advantage during evacuation, while larger families faced more challenges, leading to lower survival rates.

Model 1: Shallow Artificial Neural Network (ANN)

Model Description

We implemented a Shallow ANN with the following architecture:

- Input layer: Corresponding to the number of input features.
- Hidden layer: 6 neurons using the `tanh` activation function.
- Output layer: Softmax function to handle multiclass classification.

Result

 After training the model for 30,000 iterations, the Shallow ANN achieved an accuracy of 69.38%.

Model 2: Multiclass Logistic

Regression

Model Description

We implemented a Multiclass Logistic Regression using softmax activation for multiclass classification. We focused on optimizing the model by:

- Feature engineering the `Pclass` feature.
- Fine-tuning hyperparameters such as the learning rate (`eta`) and the number of epochs.

Result

- Without feature engineering `Pclass` (using one-hot encoding), the logistic regression model achieved an accuracy of 58%.
- - After feature engineering `Pclass`, the accuracy increased significantly to 95.6%

SUMMARY

- The Multiclass Logistic Regression model performed best with an accuracy of 95.6% after feature engineering the `Pclass` feature. This demonstrates the importance of preserving the ordinal relationship between passenger classes in the dataset.
- The Shallow ANN, even with hyperparameter tuning, reached an accuracy of 69.38%, which is lower compared to logistic regression.
- Feature engineering and hyperparameter tuning played a critical role in improving model performance, particularly in the logistic regression model.

THANK YOU