广东省队集训 2025 NOI 模拟赛

广东省集

模拟赛

题目名称	火力全开	异或症测试 3	树上邻邻域数点
题目类型	传统型	传统型	传统型
目录	fire	basis	tree
可执行文件名	fire	basis	tree
输入文件名	fire.in	basis.in	tree.in
输出文件名	fire.out	basis.out	tree.out
每个测试点时限	4.0 秒	1.0 秒	2.0 秒
内存限制	1024 MiB	512 MiB	1024 MiB
测试点数目	0	0	0
测试点是否等分	是	是	是

提交源程序文件名

对于 C++ 语言	fire.cpp	basis.cpp	tree.cpp
-----------	----------	-----------	----------

编译选项

对于 C++ 语言	-02 -std=c++14
-----------	----------------

注意事项 (请仔细阅读)

测试点数目与是否等分以题目为准。

- 1. 文件名(程序名和输入输出文件名)必须使用英文小写。
- 2. C/C++ 中函数 main() 的返回值类型必须是 int,程序正常结束时的返回值必须 是 0。
- 3. 提交的程序代码文件的放置位置请参考各省的具体要求。
- 4. 因违反以上三点而出现的错误或问题,申诉时一律不予受理。
- 5. 若无特殊说明,结果的比较方式为全文比较(过滤行末空格及文末回车)。
- 6. 选手提交的程序源文件必须不大于 100KB。
- 7. 程序可使用的栈空间内存限制与题目的内存限制一致。
- 8. 全国统一评测时采用的机器配置为: Inter(R) Core(TM) i7-8700K CPU @3.70GHz, 内存 32GB。上述时限以此配置为准。
- 9. 只提供 Linux 格式附加样例文件。
- 10. 评测在当前最新公布的 NOI Linux 下进行,各语言的编译器版本以此为准。

火力全开 (fire)

【题目描述】

有n个敌人,你有两种攻击他们的方式:

- 1. 花费 1 的代价,选择一个敌人,对其进行一次普通攻击。
- 2. 使用一颗炮弹,对所有敌人造成一次爆炸。

对于第二种攻击方式,有 m 颗炮弹可供使用,使用第 i 颗炮弹需要花费 c_i 的代价,并造成一次威力为 d_i 的爆炸。每颗炮弹只能使用一次。

对于第 i 个敌人,如果其被使用第一种攻击方式攻击了 a_i 次,或者受到了 k 次威力不小于 b_i 的爆炸,就会死亡。

有 q 次修改,每次输入 op, x, y, z,如果 op = 1,表示将 a_x 修改为 y, b_x 修改为 z。 否则 op = 2,表示将 c_x 修改为 y, d_x 修改为 z。每次修改后,求出至少需要花费多少 代价,才能使所有敌人死亡。修改之间不独立,也即修改的结果会继承。

【输入格式】

第一行四个正整数 n, m, q, k,分别表示敌人个数,炮弹颗数,修改次数,敌人的抗爆属性。

接下来 n 行, 每行两个整数 a_i, b_i , 表示敌人的属性。

接下来 m 行,每行两个整数 c_i, d_i ,表示炮弹的属性。

接下来 q 行,每行四个整数 op, x, y, z,表示一次修改。

【输出格式】

输出 q 行,每行一个整数,表示每次修改后的答案。

【样例1输入】

```
1 2 2 3 1
2 10 6
3 6 10
4 3 7
5 6 5
6 2 1 10 10
7 2 1 5 4
8 2 2 8 9
```

【样例1输出】

1 10

2 16

3 **14**

【样例1解释】

第一次修改后,直接选择第一颗炮弹,可以将所有敌人炸死,代价为10。

第二次修改后,最优方案是用普通攻击击败所有敌人,代价为16。

第三次修改后,使用第二颗炮弹炸掉第一个敌人,再用普通攻击击败第二个敌人, 代价为 14。

【样例 2~3】

见下发文件,分别满足子任务 1,5 的限制条件。

【子任务】

对于所有数据, $1 \le n, m, q \le 2.5 \times 10^5$, $1 \le k \le 10^4$, $qk \le 5 \times 10^5$, $1 \le op \le 2$, $1 \le a_i, b_i, c_i, d_i, y, z \le 10^9$,如果op = 1,则 $1 \le x \le n$,否则 $1 \le x \le m$ 。

子任务编号	$n, m, q \leq$	特殊性质	分数
1	200	无	10
2	5000	无	20
3	10^{5}	op = 1	20
4	10^{5}	$k \le 10$	20
5	2.5×10^5	无	30

异或症测试 3 (basis)

【题目描述】

给你一个集合 B 和一个整数 X,你要求出有多少个非空集合 $S \subseteq \{1,2,3,\ldots,X\}$,使得 B 是 S 的线性基。答案对 998244353 取模。

称一个集合 B 是另一个集合 S 的线性基,当且仅当 S 中任意元素都能被表示为 B 中若干元素的异或和,且 B 是所有这样的集合中大小最小的(可能有多个最小的)。

【输入格式】

第一行两个整数 n, m, n 为集合 B 的大小,B 中所有元素以及 X 均不超过 2^m-1 。 不保证 B 中没有重复元素。

接下来 n 行,每行一个长为 m 的 01 字符串,第 i 行为 B_i 的二进制表示,行末为最低位。

最后一行一个长为m的 01 字符串,为X的二进制表示。

【输出格式】

输出一行一个整数,表示答案对998244353取模的结果。

【样例1输入】

- 1 2 2
- 2 **01**
- 3 10
- 4 11

【样例1输出】

1 4

【样例1解释】

 $B_1 = 1$, $B_2 = 2$, X = 3, A = 3

【样例 2 输入】

1 3 3

2 001

3 **010**

4 101

5 **110**

【样例 2 输出】

1 38

【样例 3~5】

见下发文件,分别满足子任务 2,4,7 的限制。

【子任务】

对于所有数据, $1 \le n, m \le 2000$ 。

子任务编号	$n,m \leq$	特殊性质	分数
1	4	无	10
2	10	无	10
3	30	无	10
4	100	A	10
5	500	无	20
6	2000	A	20
7	2000	无	20

特殊性质 A: 保证 n = m, $X = 2^m - 1$

树上邻邻域数点(tree)

【题目描述】

这是一道交互题。保证在询问合法的情况下,交互库占用运行时间不超过 500ms, 空间不超过 128MB。因此你的程序运行时间不应超过 1500ms, 空间不超过 896MB。

给你一棵 N 个点的树,节点编号为 $0 \sim N-1$,点 i 有一个未知的整数点权 a_i ,保证 $0 \leq a_i < 32$ 。每次你可以给出整数 x,d,v,向交互库询问:在树上距离 x 恰为 d 的点中,有多少个点 y 满足 $a_y \leq v$ 。你需要在不超过 M 次询问内求出每个点的点权。并且询问的 d 不小于给定的限制 L。保证不存在一个点的度数为 N-1。定义树上两点的距离为两个点最短路径经过的边数。

【实现细节】

选手不需要,也不应该实现 main 函数。选手应确保提交的程序包含头文件 tree.h,可在程序开头加入以下代码实现:

#include "tree.h"

选手需要实现以下函数:

std::vector<int> tree(int N, std::vector<std::pair<int,int> >
 E,int M,int L);

- N 表示树的节点个数。
- E 表示树的边集,大小为 N-1,其中的元素 (u,v) 表示存在一条连接 u 和 v 的 边:
- M 表示询问次数限制。
- L 表示询问的 d 的限制。
- 该函数需要返回长为 N 的数组 ret, 编号 $0 \sim N 1$, 其中 $ret_i = a_i$.
- 对于每个测试点,该函数会被交互库调用恰好1次。

选手可以通过调用以下函数向交互库发送一次询问:

- int ask(int x, int d, int v);
 - 你需要确保 0 < x < N, L < d < N, 0 < v < 32。
 - 该函数会返回在树上距离 x 恰为 d 的点 y 中,满足 $a_y \le v$ 的点的个数。

【测试程序方式】

下发文件中的 template_tree.cpp 是一份示例代码, grader.cpp 是提供的交互库参考实现,最终测试时所用的交互库实现与该参考实现有所不同,因此选手的解法不应该依赖交互库的实现。

选手可以在本题目录下使用如下命令编译得到可执行程序:

g++ grader.cpp tree.cpp -o tree -O2 -std=c++14 -static

对于编译得到的可执行程序:

- 可执行文件将从标准输入读入以下格式的数据:
 - -输入的第一行包含三个非负整数 N, M, L,表示树的节点个数和询问限制。
 - 接下来一行输入一个非负整数 R_1 ,表示树的生成方式,如果 $R_1 = 0$,则接下来 N-1 行,每行读入两个数 u,v,表示树上的边。否则将会以 R_1 为随机种子,对 $1 \le i < N$ 随机生成 $0 \le fa_i < i$,树上的每条边为 (fa_i,i) 。
 - 接下来一行输入一个非负整数 R_2 ,表示点权的生成方式,如果 $R_2 = 0$,则 接下来一行读入 N 个数,第 i 个数为 a_i ,表示 i 的点权。否则将会以 R_2 为 随机种子,对 $0 \le i < N$ 随机生成 $0 \le a_i < 32$ 。

【子任务】

本题共有 3 个子任务。所有数据均满足 N=50000。

子任务编号	M =	L =	分数
1	2.5×10^{5}	0	10
2	10^{6}	1	30
3	10^{6}	2	60

其中,对于子任务 2 和子任务 3,有更特别的评分方式,假设你实际询问次数为 Q,那么你可以获得的分数占该子任务满分的百分比为:

Q	百分比
$Q \le 2.5 \times 10^5$	100
$2.5 \times 10^5 < Q \le 3 \times 10^5$	$80 + \lfloor (3 \times 10^5 - Q)/2500 \rfloor$
$3 \times 10^5 < Q \le 5 \times 10^5$	$40 + [(5 \times 10^5 - Q)/5000]$
$5 \times 10^5 < Q \le 10^6$	$\lfloor (10^6 - Q)/12500 \rfloor$