DNN for Object Detection and Segmentation

Deep Learning Application Examples

- classification (top-3)
 - ◆https://www.youtube.com/watch?v=qrzQ_AB1DZk
- instance segmentation and pose estimation
 - ◆https://www.youtube.com/watch?v=OAWCp7OXLnY
- dense human pose estimation
 - https://www.youtube.com/watch?v=Dhkd_bAwwMc
- deep robot learning
 - ♦ https://www.youtube.com/watch?v=2hGngG64dNM

Image Classification in ILSVRC

- ♦ ImageNet dataset
 - ◆ 140M images
 - ◆22K categories
- ♦ ILSVRC (Image Large Scale Visual Recognition Challenge (ILSVRC)
 - ◆ 1000 object categories
 - ♦ top-1 and top-5 error rates

Fully-Connected:

4096 to 1000

Class Scores

Cat: 0.9

Dog: 0.05

Car: 0.01

...

This image is CCO public domain

Figure copyright Alex Krizhevsky, ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission

Vectors: 4096

Object Detection in PASCAL VOC

PASCAL Visual Object Challenge (VOC): 20 categories)

Detection and Segmentation

Classification + Localization

Object Detection: two-stage vs. one-stage

Two-Stage Detector: Faster RCNN (Region CNN)

影像特徵擷取 和 目標物件後選區 為兩個獨立網路

- **→**運算量龐大
- →運算速度不佳,無法達到即時的物件偵測

- →運算速度提升
- >可達到即時的物件偵測

Two-stage Detector(1/2)

R-CNN: Regions with CNN features [1]

Selective Search \, HOG \, LBP

CAT

Two-stage Detector(2/2)

Fast R-CNN [2] x, y, length, width Faster R-CNN [3] Region Proposal **ROI** Pooling **CAT** Feature extraction

[2] R. Girshick, "Fast R-CNN," ICCV, 2015 [3] S. Ren, et al., "Faster R-CNN," NIPS, 2015 DNN

One-stage Detector

[4] W. Liu, et al., "SD: Single Shot MultiBox Detector," ICCV, 2016

[5] J. Redmon, et al., "You Only Look Once: Unified, Real-Time Object Detection," CVPR, 2016

[6] J. Redmon, et al., YOLO9000: Better, Faster, Stronger"," CVPR, 2017

[7] J. Redmon, et al., ", YOLOv3: An Incremental Improvement," 2018.

SSD: Single Shot Multibox Detector[4]

YOLO: You Only Look Once [5][6][7]

Feature extraction

提取影像特徵

Feature Map

DNN

Detection

預測目標物件位置、種類

CAT

Object Detection Algorithm

Two-stage Detector

One-stage Detector

SSD

Object Detection as Regression?

Each image needs a different number of outputs!

CAT: (x, y, w, h)

4 numbers

DOG: (x, y, w, h)

DOG: (x, y, w, h) 16 numbers

CAT: (x, y, w, h)

DUCK: (x, y, w, h)

DUCK: (x, y, w, h)

numbers!

Many

Object Detection as Classification: Sliding Window

Apply a CNN to many different crops of the image, CNN classifies each crop as object or background

Dog? NO Cat? YES Background? NO

Problem: Need to apply CNN to huge number of locations, scales, and aspect ratios, very computationally expensive!

Region Proposals / Selective Search

- Find "blobby" image regions that are likely to contain objects
- Relatively fast to run; e.g. Selective Search gives 2000 region proposals in a few seconds on CPU

Linear Regression for bounding box offsets R-CNN **SVMs** Classify regions with SVMs Bbox reg **SVMs** Bbox reg **SVMs** Bbox reg Forward each region through ConvNet ConvNet ConvNet ConvNet Warped image regions Regions of Interest(ROI) from a proposal method (~2k) Input image

R-CNN: Problems

- > Ad hoc training objectives
 - Fine-tune network with softmax classifier (log loss)
 - Train post-hoc linear SVMs (hinge loss)
 - Train post-hoc bounding-box regressions (least squares)
- > Training is slow (84h), takes a lot of disk space
- ➤ Inference (detection) is slow
 - 47s / image with VGG16
 - Fixed by SPP-net [He et al. ECCV14]

SPP-Net (Spatial Pyramid Pooling)

Cropping or warping to fit a fixed size

A conventional CNN vs. spatial pyramid pooling network structure.

Fast R-CNN

ROI Pooling

Training time (Hours)

R-CNN 84 SPP-Net 25.5 Fast R-CNN 8.75 0 25 50 75

Test time (seconds)

Girshick, "Fast R-CNN", ICCV 2015...

Figure copyright Ross Girshick, 2015; source. Reproduced with permission

Faster R-CNN

- Make CNN do proposals!
- Insert Region Proposal Network (RPN) to predict proposals from features
- Jointly train with 4 losses:
 - 1. RPN classify object / not object
 - 2. RPN regress box coordinates
 - 3. Final classification score (object classes)

2k scores

256-d

sliding window

cls layer

4. Final box coordinates

Detection without Proposals: YOLO / SSD

Go from input image to tensor of scores with one big convolutions network!

Input image 3*H*W

Divide image into grid 7*7

Image a set of **base boxes** Centered at each grid cell Here B = 3

Within each grid cell:

- Regress from each of the B base boxes to a final box with 5 numbers:
 (dx, dy, dh, dw, confidence)
- Predict scores for each of C classes(including background as a class)

Output: 7*7*(5*B+C)

SSD (Single Shot Detection)

Image with GT boxes

8*8 feature map

4*4 feature map

YOLO (You Only Look Once)

Unified Detection

- 1. Resize image.
 2. Run convolutional network.
 3. Non-max suppression.
- 1) Divide Image into **S x S** grids
- 2) Grid cell
 - → B: BBoxes and Confidence score

→ C: class probabilities w.r.t #classes

Pr(Class_i | Object)

SxS grids
B bounding boxes for each grid
C class probabilities for each grid
=> an S*S*(5*B+C) tensor

YOLOv1

YOLOv2

CNN(darknet-19)

Type

Type	1 111013	SizerStride	Output
Convolutional	32	3×3	224×224
Maxpool		$2 \times 2/2$	112×112
Convolutional	64	3×3	112×112
Maxpool		$2 \times 2/2$	56×56
Convolutional	128	3×3	56×56
Convolutional	64	1×1	56×56
Convolutional	128	3×3	56×56
Maxpool		$2 \times 2/2$	28×28
Convolutional	256	3×3	28×28
Convolutional	128	1×1	28×28
Convolutional	256	3×3	28×28
Maxpool		$2 \times 2/2$	14×14
Convolutional	512	3×3	14×14
Convolutional	256	1×1	14×14
Convolutional	512	3×3	14×14
Convolutional	256	1×1	14×14
Convolutional	512	3×3	14×14
Maxpool		$2 \times 2/2$	7×7
Convolutional	1024	3×3	7×7
Convolutional	512	1×1	7×7
Convolutional	1024	3×3	7×7
Convolutional	512	1×1	7×7
Convolutional	1024	3×3	7×7
Convolutional	1000	1×1	7×7
Avgpool		Global	1000
Softmax			
			'

Filters | Size/Stride

Output

With Anchor Boxes :

引入Faster R-CNN中的anchor 思維,並使用K-means聚類方 法訓練,自動找到更好的 boxes寬高維度,提高精準度。

• Multi-Scale Training:

Average pooling Layer 使YOLOv2可以適應不同大小的輸入圖片。

	••••	
608		
608	19 7	

Detection Frameworks	Train	mAP	FPS
Fast R-CNN [5]	2007+2012	70.0	0.5
Faster R-CNN VGG-16[15]	2007+2012	73.2	7
Faster R-CNN ResNet[6]	2007+2012	76.4	5
YOLO [14]	2007+2012	63.4	45
SSD300 [11]	2007+2012	74.3	46
SSD500 [11]	2007+2012	76.8	19
YOLOv2 288 × 288	2007+2012	69.0	91
$YOLOv2\ 352 \times 352$	2007+2012	73.7	81
YOLOv2 416×416	2007+2012	76.8	67
$YOLOv2\ 480 \times 480$	2007+2012	77.8	59
YOLOv2 544×544	2007+2012	78.6	40
$ \begin{array}{l} \text{YOLOv2 } 416 \times 416 \\ \text{YOLOv2 } 480 \times 480 \end{array} $	2007+2012 2007+2012	76.8 77.8	67 59

YOLO v2

Detection Frameworks	Train	mAP	FPS
Fast R-CNN [5]	2007+2012	70.0	0.5
Faster R-CNN VGG-16[15]	2007+2012	73.2	7
Faster R-CNN ResNet[6]	2007+2012	76.4	5
YOLO [14]	2007+2012	63.4	45
SSD300 [11]	2007+2012	74.3	46
SSD500 [11]	2007+2012	76.8	19
YOLOv2 288 × 288	2007+2012	69.0	91
$YOLOv2\ 352 \times 352$	2007+2012	73.7	81
$YOLOv2\ 416 \times 416$	2007+2012	76.8	67
$YOLOv2 480 \times 480$	2007+2012	77.8	59
YOLOv2 544×544	2007+2012	78.6	40

Type	Filters	Size/Stride	Output
Convolutional	32	3×3	224×224
Maxpool		$2 \times 2/2$	112×112
Convolutional	64	3×3	112×112
Maxpool		$2 \times 2/2$	56×56
Convolutional	128	3×3	56×56
Convolutional	64	1×1	56×56
Convolutional	128	3×3	56×56
Maxpool		$2 \times 2/2$	28×28
Convolutional	256	3×3	28×28
Convolutional	128	1×1	28×28
Convolutional	256	3×3	28×28
Maxpool	200	$2 \times 2/2$	14×14
Convolutional	512	3×3	14×14
Convolutional	256	1×1	14×14
Convolutional	512	3×3	14×14
Convolutional	256	1×1	14×14
Convolutional	512	3×3	14×14
Maxpool	200 0 14.0	$2 \times 2/2$	7×7
Convolutional	1024	3×3	7×7
Convolutional	512	1×1	7×7
Convolutional	1024	3×3	7×7
Convolutional	512	1×1	7×7
Convolutional	1024	3×3	7×7
Convolutional	1000	1 × 1	7 × 7
Avgpool		Global	1000
Softmax			
	Dai	knet-19	

YOLOv3

3D tensor Dimension:

$N \times N \times [3 \times (4 + 1 + 80)]$

NxN: Scale size (i.e. 13x13)

3: # Boxes: (each grid predict 3 boxes)

4: Box Cordinate: (tx, ty, tw, th)

1: Objectness score: how likely it is an object

80: # classes

3 different scales

YOLO v3

	Type	Filters	Size	Output
	Convolutional	32	3 × 3	256 × 256
	Convolutional	64	$3 \times 3/2$	128 × 128
1	Convolutional	32	1 × 1	
1×	Convolutional	64	3×3	
	Residual			128 × 128
	Convolutional	128	3×3/2	64 × 64
	Convolutional	64	1 × 1	
2×	Convolutional	128	3×3	
	Residual			64 × 64
	Convolutional	256	$3 \times 3/2$	32 × 32
	Convolutional	128	1 × 1	
8×	Convolutional	256	3×3	
	Residual			32 × 32
	Convolutional	512	$3 \times 3/2$	16×16
	Convolutional	256	1 × 1	
8×	Convolutional	512	3×3	
	Residual			16 × 16
- 65	Convolutional	1024	$3 \times 3/2$	8 × 8
	Convolutional	512	1 × 1	
4×	Convolutional	1024	3×3	
	Residual			8 × 8
	Avgpool		Global	
	Connected		1000	
	Softmax			
Darknet-53				

Object Detection: Lots of variables...

Base Network:

VGG16

ResNet-101

Inception V2

Inception V3

Inception

ResNet

MobileNet

Object Detection

architecture:

Faster R-CNN

R-FCN

SSD

Image Size

Region Proposals

Takeaways:

Faster R-CNN is

slower but more

accurate

SSD is much faster but not as accurate

• • •

Object Detection: Impact of Deep Learning

Image Segmentation

Semantic Segmentation

Label each pixel in the image with a category label

Don't differentiate instances, only care about pixels

Semantic Segmentation Idea: Sliding Window

Farabet et al, "Learning Hierarchical Features for Scene Labeling," TPAMI 2013
Pinheiro and Collobert, "Recurrent Convolutional Neural Networks for Scene Labeling", ICML 2014

between overlapping patches

Semantic Segmentation Idea: Fully Convolution

Design a network as a bunch of convolution layers to make predictions for pixels all at once!

be very expensive ...

Semantic Segmentation Idea: Fully Convolutional

Downsampling: Pooling, strided convolution

Design network as a bunch of convolutional layers, with downsampling and unsampling inside the network!

Input: 3*H*W

Unsampling:
Unpooling or strided
transpose convolution

Predictions: H*W

3x3 Transpose Convolution (DeConvolution)

3 * 3 transpose convolution, stride 2 & pad 1

Other names:

- -Deconvolution (bad)
- -Upconvolution
- -Fractionally strided convolution
- -Backward strided convolution

Filter moves 2 pixels in the <u>output</u> for every one pixel int the **input**

Stride gives ratio between movement in output and input

Input: 2 * 2 Output: 4 * 4

1D Example

Output contains copies of the filter weighted by the input, summing at where at overlaps in the output

Need to crop one pixel from output to make output exactly 2x input

1-D Conv and DeConv with stride=1

We can express convolution in terms of a matrix multiplication

$$\vec{x} * \vec{a} = X\vec{a}$$

$$egin{bmatrix} x & y & x & 0 & 0 & 0 \ 0 & x & y & x & 0 & 0 \ 0 & 0 & x & y & x & 0 \ 0 & 0 & 0 & x & y & x \end{bmatrix} egin{bmatrix} 0 \ a \ b \ c \ d \ 0 \end{bmatrix} = egin{bmatrix} ay + bz \ ax + by + cz \ bx + cy + dz \ cx + dy \end{bmatrix}$$

Example: 1D conv, kernel size=3, stride=1, padding=1

Convolution transpose multiplies by the transpose of the same matrix:

$$\vec{x} *^T \vec{a} = X^T \vec{a}$$

$$egin{bmatrix} x & 0 & 0 & 0 \ y & x & 0 & 0 \ z & y & x & 0 \ 0 & z & y & x \ 0 & 0 & 0 & z \end{bmatrix} egin{bmatrix} a \ b \ c \ d \end{bmatrix} = egin{bmatrix} ax \ ay + bx \ az + by + cx \ bz + cy + dx \ cz + dy \ dz \end{bmatrix}$$

When stride=1, convolution transpose is just a regular convolution (with different padding rules)

1-D Conv and DeConv with stride>1

We can express convolution in terms of a matrix multiplication

$$\vec{x} * \vec{a} = X\vec{a}$$

$$\begin{pmatrix}
x & y & z & 0 & 0 & 0 \\
0 & 0 & x & y & z & 0
\end{pmatrix}
\begin{pmatrix}
0 \\
a \\
b \\
c \\
d \\
0
\end{pmatrix} = \begin{pmatrix}
ay + bz \\
bx + cy + dz
\end{pmatrix}$$

Example: 1D conv, kernel size=3, stride=2, padding=1

Convolution transpose multiplies by the transpose of the same matrix:

$$\vec{x} *^T \vec{a} = X^T \vec{a}$$

$$\begin{pmatrix}
x & 0 \\
y & 0 \\
z & x \\
0 & y \\
0 & z \\
0 & 0
\end{pmatrix}
\begin{pmatrix}
a \\
b
\end{pmatrix} = \begin{pmatrix}
ax \\
ay \\
az + bx \\
by \\
bz
\end{pmatrix}$$

When stride > 1, convolution transpose is a no longer a normal convolution!