Linear Programming: Linear Programming

Daniel Kane

Department of Computer Science and Engineering University of California, San Diego

Advanced Algorithms and Complexity Data Structures and Algorithms

Learning Objectives

- Understand the formal definition of a linear programming problem.
- Provide some examples of linear programming problems

Last Time

Factory. Set M, W to maximize 200M + 100W subject to

- W > 0.
- $100 \ge M \ge 0$.
- W > 2M.
- $100,000 \ge 200(W 2M) + 600M$.

Linear Programming

Linear programming asks for real numbers x_1, x_2, \ldots, x_n satisfying linear inequalities:

$$a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n \geq b_1$$

$$\ldots$$

$$a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n \geq b_m$$

So that a linear objective

$$v_1x_1+v_2x_2+\ldots+v_nx_n$$

is as large (or small) as possible.

Notation

Linear Programming

Input: An $m \times n$ matrix A and vectors

 $b \in \mathbb{R}^m$, $v \in \mathbb{R}^n$

Output: A vector $x \in \mathbb{R}^n$ so that $Ax \ge b$

and $v \cdot x$ is as large (or small) as

possible.

Examples

Linear programming is useful because an extraordinary number of problems can be put into this framework.

Factory Example

The factory example we just worked.

The Diet Problem

Studied by George Stigler in the 1930s and 1940s.

How cheaply can you purchase food for a healthy diet?

Variables

You have a number of types of food (bread, milk, apples, etc.).

For each you have a variable giving the number of servings per day.

 $X_{bread}, X_{milk}, X_{apples}, \dots$

Constraints

Non-negative number of servings:

$$x_f \geq 0$$
.

Constraints

Non-negative number of servings:

$$x_f > 0$$
.

Sufficient calories/day:

(Cal/serving bread)
$$x_{bread}$$
+(Cal/serving milk) x_{milk} +... \geq 2000.

Constraints

Non-negative number of servings:

$$x_f > 0$$
.

Sufficient calories/day:

(Cal/serving bread)
$$x_{bread}$$

+(Cal/serving milk) x_{milk} + . . . \geq 2000.

Similar constraints for other nutritional needs (vitamin C, protein, etc.)

Optimization

Minimize cost.

```
(cost of serving bread)x_{bread}
+(cost of serving milk)x_{milk} + . . .
```

Optimization

Minimize cost.

```
(cost of serving bread)x_{bread}
+(cost of serving milk)x_{milk} + . . .
```

Warning: actually doing this can get you some pretty weird diets.

Network flow problems are actually just a special case of linear programming problems!

Variables: f_e for each edge e.

Variables: f_e for each edge e.

Constraints:

$$0 \leq f_e \leq C_e.$$

$$\sum_{e \text{ into } v} f_e - \sum_{e \text{ out of } v} f_e = 0.$$

Variables: f_e for each edge e.

Constraints:

$$0 \leq f_e \leq C_e.$$
 $\sum_{e ext{ into } v} f_e - \sum_{e ext{ out of } v} f_e = 0.$

Objective:

$$\sum_{e \text{ out of } s} f_e - \sum_{e \text{ into } s} f_e$$

Strange Cases

There are a couple of edge cases to keep in mind here.

- No Solution
- No Optimum

No Solution

Consider the system:

$$x \ge 1$$
, $y \ge 1$, $x + y \le 1$.

No Optimum

Consider trying to maximize x subject to $x \ge 0$, $y \ge 0$, and $x - y \ge 1$.

Problem

Of these three systems, one has no solution, one has no maximum x value, and one has a maximum. Which is which?

- (A) $x + y \ge 1$, $x + y \le 0$.
- (B) $x + y \le 2$, $x y \le 1$.
- (C) $x + y \ge 0$, $x y \le 0$.

Solution

