Solution to Problem 3.1

Min
$$20x_1 + 24x_2 + 10x_3 + 6y$$

S.t. $x_1 + 2x_2 + x_3 + 2y \ge 15$
 $4x_1 + 4x_2 + x_3 + y \ge 18$
 $x_1, x_2, x_3 \ge 0, y \in \{0,1,2,...,10\}$

$$\mathbf{c}^{\mathrm{T}} = \begin{bmatrix} 20 & 24 & 10 \end{bmatrix} \quad \mathbf{d}^{\mathrm{T}} = \begin{bmatrix} 6 \end{bmatrix} \quad \mathbf{A} = \begin{bmatrix} 1 & \mathbf{b} = \begin{bmatrix} 1 & 2 & 1 \\ 4 & 4 & 1 \end{bmatrix} \quad \mathbf{F} = \begin{bmatrix} 2 \\ 1 \end{bmatrix} \quad \mathbf{h} = \begin{bmatrix} 15 \\ 18 \end{bmatrix}$$

Iteration 1

Solve MP1

MP1 is formulated as.

Min
$$z_{lower}$$

S.t. $z_{lower} \ge 6y$
 $y \in \{0,1,2,...,10\}$

which results in $\hat{y} = 0$ and $\hat{z}_{lower} = 0$.

Solve SP1

With $\hat{y} = 0$, SP1 is formulated as

$$\begin{aligned} & \textit{Min } 20x_1 + 24x_2 + 10x_3 \\ & \textit{S.t.} \quad x_1 + 2x_2 + x_3 \ge 15 - 2\hat{y} \\ & 4x_1 + 4x_2 + x_3 \ge 18 - \hat{y} \\ & x_1, x_2, x_3 \ge 0 \end{aligned} \qquad u_2$$

Solve SP1, we get the optimal solution of 156 with $x_1 = 0$, $x_2 = 1.5$, $x_3 = 12$ and dual multipliers $u_1 = 8$, $u_2 = 2$. Thus, the upper bound optimal solution of the original problem is $\hat{z}_{upper} = 6\hat{y} + 156 = 0 + 156 = 156$ (based on $\hat{z}_{upper} = \mathbf{d}^T\hat{\mathbf{y}} + \mathbf{c}^T\hat{\mathbf{x}}$). Because $\hat{z}_{upper} = 156 > \hat{z}_{lower} = 0$, we will continue with the next iteration.

The feasibility cut is $z_{lower} \ge 6y + 156 - 18*(y - 0) = -12y + 156$ (based on $z \ge \mathbf{d}^{\mathrm{T}} \mathbf{y} + w(\hat{\mathbf{y}}) - (\mathbf{y} - \hat{\mathbf{y}})^{\mathrm{T}} \mathbf{F}^{\mathrm{T}} \mathbf{u}^{\mathrm{P}}$). Note that $\boldsymbol{\pi}^{\mathrm{P}} = -\mathbf{F}^{\mathrm{T}} \mathbf{u}^{\mathrm{P}} = -\begin{bmatrix} 2 \\ 1 \end{bmatrix}^{\mathrm{T}} \begin{bmatrix} 8 \\ 2 \end{bmatrix} = -18$

Iteration 2:

Solve MP2

Add $z_{lower} \ge -12y + 156$ to MP2, we have

$$\begin{aligned} & \textit{Min } z_{lower} \\ & \textit{S.t.} \quad z_{lower} \geq 6y \\ & \quad z_{lower} \geq -12y + 156 \\ & \quad y \in \left\{0,1,2,\ldots,10\right\} \end{aligned}$$

which results in $\hat{y} = 9$ and $\hat{z}_{lower} = 54$.

Solve SP1

With $\hat{y} = 9$, SP1 is formulated as

$$\begin{aligned} & \textit{Min } 20x_1 + 24x_2 + 10x_3 \\ & \textit{S.t.} \quad x_1 + 2x_2 + x_3 \ge 15 - 2\hat{y} \\ & 4x_1 + 4x_2 + x_3 \ge 18 - \hat{y} \\ & x_1, x_2, x_3 \ge 0 \end{aligned} \qquad u_2$$

Solve SP1, we get the optimal solution of 45 with $x_1 = 2.25$, $x_2 = 0$, $x_3 = 0$ and dual multipliers $u_1 = 0$, $u_2 = 5$. Thus, the upper bound optimal solution of the original problem is $\hat{z}_{upper} = 6\hat{y} + 45 = 6*9 + 45 = 99$ (based on $\hat{z}_{upper} = \mathbf{d}^T\hat{\mathbf{y}} + \mathbf{c}^T\hat{\mathbf{x}}$). Because $\hat{z}_{upper} = 99 > \hat{z}_{lower} = 54$, we will continue with the next iteration.

The feasibility cut is $z_{lower} \ge 6y + 45 - 5*(y - 9) = y + 90$ (based or $z \ge \mathbf{d}^{\mathrm{T}} \mathbf{y} + w(\hat{\mathbf{y}}) - (\mathbf{y} - \hat{\mathbf{y}})^{\mathrm{T}} \mathbf{F}^{\mathrm{T}} \mathbf{u}^{\mathrm{P}}$). Note that $\boldsymbol{\pi}^{\mathrm{P}} \equiv -\mathbf{F}^{\mathrm{T}} \mathbf{u}^{\mathrm{P}} = -\begin{bmatrix} 2 \\ 1 \end{bmatrix}^{\mathrm{T}} \begin{bmatrix} 0 \\ 5 \end{bmatrix} = -5$

Iteration 3:

Solve MP2

Add
$$z_{lower} \ge y + 90$$
 to MP2, we have

$$Min z_{lower}$$

$$\begin{split} S.t. & z_{lower} \geq 6y \\ & z_{lower} \geq -12y + 156 \\ & z_{lower} \geq y + 90 \\ & y \in \big\{0,1,2,\dots,10\big\} \end{split}$$

which results in $\hat{y} = 5$ and $\hat{z}_{lower} = 96$.

Solve SP1

With $\hat{y} = 5$, SP1 is formulated as

$$\begin{aligned} & \textit{Min } 20x_1 + 24x_2 + 10x_3 \\ & \textit{S.t.} \quad x_1 + 2x_2 + x_3 \ge 15 - 2\hat{y} \\ & 4x_1 + 4x_2 + x_3 \ge 18 - \hat{y} \\ & x_1, x_2, x_3 \ge 0 \end{aligned} \qquad u_2$$

Solve SP1, we get the optimal solution of 72 with $x_1 = 1.5$, $x_2 = 1.75$, $x_3 = 0$ and dual multipliers $u_1 = 4$, $u_2 = 4$. Thus, the upper bound optimal solution of the original problem is $\hat{z}_{upper} = 6\hat{y} + 45 = 6*5 + 72 = 102$ (based on $\hat{z}_{upper} = \mathbf{d}^T\hat{\mathbf{y}} + \mathbf{c}^T\hat{\mathbf{x}}$). Because $\hat{z}_{upper} = 102 > \hat{z}_{lower} = 96$, we will continue with the next iteration.

The feasibility cut is
$$z_{lower} \ge 6y + 72 - 12*(y - 5) = -6y + 132$$
 (based on $z \ge \mathbf{d}^{\mathsf{T}} \mathbf{y} + w(\hat{\mathbf{y}}) - (\mathbf{y} - \hat{\mathbf{y}})^{\mathsf{T}} \mathbf{F}^{\mathsf{T}} \mathbf{u}^{\mathsf{P}}$). Note that $\boldsymbol{\pi}^{\mathsf{P}} = -\mathbf{F}^{\mathsf{T}} \mathbf{u}^{\mathsf{P}} = -\begin{bmatrix} 2 \\ 1 \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} 4 \\ 4 \end{bmatrix} = -12$

Iteration 4:

Solve MP2

Add
$$z_{lower} \ge -6y + 132$$
 to MP2, we have
Min z_{lower}

S.t. $z_{lower} \ge 6y$
 $z_{lower} \ge -12y + 156$
 $z_{lower} \ge y + 90$
 $z_{lower} \ge -6y + 132$
 $y \in \{0,1,2,...,10\}$

which results in $\hat{y} = 6$ and $\hat{z}_{lower} = 96$.

Solve SP1

With $\hat{y} = 6$, SP1 is formulated as

$$\begin{aligned} & \textit{Min } 20x_1 + 24x_2 + 10x_3 \\ & \textit{S.t.} \quad x_1 + 2x_2 + x_3 \ge 15 - 2\hat{y} \\ & 4x_1 + 4x_2 + x_3 \ge 18 - \hat{y} \\ & x_1, x_2, x_3 \ge 0 \end{aligned} \qquad u_2$$

Solve SP1, we get the optimal solution of 60 with $x_1 = 3$, $x_2 = 0$, $x_3 = 0$ and dual multipliers $u_1 = 0$, $u_2 = 5$. Thus, the upper bound optimal solution of the original problem is $\hat{z}_{upper} = 6\hat{y} + 45 = 6*6 + 60 = 96$ (based on $\hat{z}_{upper} = \mathbf{d}^T\hat{\mathbf{y}} + \mathbf{c}^T\hat{\mathbf{x}}$). Because $\hat{z}_{upper} = \hat{z}_{lower} = 96$, the problem is converged and we stop the iteration.

Figure 1 shows the convergence of the optimization problem.

Figure 1

Solution to Problem 3.2

Min
$$x + y$$

S.t. $2x - y \le 3$
 $x \ge 0, y \in \{-5, -4, ..., 3, 4\}$
 $\mathbf{c}^{\mathsf{T}} = [1] \quad \mathbf{d}^{\mathsf{T}} = [-1] \quad \mathbf{A} = [\] \quad \mathbf{b} = [\] \quad \mathbf{E} = [2] \quad \mathbf{F} = [1] \quad \mathbf{h} = [3]$

Iteration 1:

Solve MP1

MP1 is formulated as

min
$$z_{lower}$$

 $S.t.$ $z_{lower} \ge y$
 $y \in \{-5, -4, ..., 3, 4\}$

which results in $\hat{y} = -5$, $\hat{z}_{lower} = -5$.

Solve SP1

With $\hat{y} = -5$, SP1 is formulated as

This SP1 is infeasible at $\hat{y} = -5$. So, we have to solve SP2.

Solve SP2

With $\hat{y} = -5$ and adding slack variables, SP2 is formulated as

min s

St.
$$2x - s \le 3 + \hat{y}$$
 u_1
 $x \ge 0, s \ge 0$

The optimal solution is 2 with x = 0, s = 2 and its dual multipliers are $u_1 = 1$. The Benders cut is $2 - 1*(y - (-5)) \le 0$ (based on $v(\hat{\mathbf{y}}) - (\mathbf{y} - \hat{\mathbf{y}})^T \mathbf{F}^T \mathbf{u}^T \le \mathbf{0}$), that is $y \ge -3$ at $\hat{\mathbf{y}} = -5$. Note that $\boldsymbol{\pi}^r = -\mathbf{F}^T \mathbf{u}^r = -[1]^T [1] = [-1]$

Iteration 2:

Solve MP2

Add $y \ge -3$ to MP2, we have

 $\min z_{lower}$

S.t.
$$z_{lower} \ge y$$

 $y \ge -3$
 $y \in \{-5, -4, ..., 3, 4\}$

which results in $\hat{y} = -3$, $\hat{z}_{lower} = -3$.

Solve SP1

With $\hat{y} = -3$, SP1 is formulated as

 $\min x$

St.
$$2x \le 3 + \hat{y}$$
 u_1
 $x \ge 0$

SP1 is feasible. The optimal solution is 0 with x=0 and dual multipliers $\hat{u}_1=1.736$. Accordingly, the upper-bound solution of the original problem is $\hat{z}_{upper}=\hat{y}+0=-3$ (based on $\hat{z}_{upper}=\mathbf{d}^T\hat{\mathbf{y}}+\mathbf{c}^T\hat{\mathbf{x}}$). Because $\hat{z}_{upper}=\hat{z}_{lower}=-3$, the problem is converged and we stop the iteration.