Prefix	Symbol	Magnitude
exa	Е	1018
peta	P	1015
tera	T	1012
giga	G	109
mega	M	106
kilo	k	10^{3}
milli	m	10-3
micro	JE	10-6
nano	n	10-9
pico	p	10-12
femto	f	10-15
atto	a	10^{-18}

$$e = 1.6 \times 10^{-19}$$
 (C)

$$P = \frac{dw}{dt} = \frac{dw}{dq} \frac{dq}{dt} = vi$$

$$e = 1.6 \times 10^{-19}$$
 (C) $\sum P = 0$ Energy conservation
$$P = \frac{dw}{dt} = \frac{dw}{dq} \frac{dq}{dt} = vi \qquad P = V \cdot I = (R \cdot I) \cdot I = I^2 R$$

$$i = \frac{dq}{dt} \qquad v = iR$$

$$R = \frac{v}{\sigma A} = \rho \frac{\ell}{A} \qquad (\Omega).$$

$$\rho = \text{resistivity, } \sigma = \text{conductivity}$$

$$\sum P = 0$$

$$P = V \cdot I = (R \cdot I) \cdot I = I^2 R$$

$$R = \frac{\ell}{\sigma A} = \rho \, \frac{\ell}{A} \qquad (\Omega), \label{eq:R}$$

 $\rho = \text{resistivity}, \sigma = \text{conductivity}$

Source Transformation

For the two circuits to be equivalent:

$$i_{s} = V_{s}/R_{s}$$

$$R_{2} = R_{1}$$

Simultaneous solution leads to:

$\Delta \rightarrow Y$ Transformation

$$R_1 = \frac{R_b R_c}{R_a + R_b + R_c}$$

$$R_2 = \frac{R_a R_c}{R_a + R_b + R_c}$$

$$R_3 = \frac{R_a R_b}{R_a + R_b + R_c}$$

Y→ ∆ Transformation

$$R_a = \frac{R_1 R_2 + R_2 R_3 + R_1 R_3}{R_1}$$

$$R_b = \frac{R_1 R_2 + R_2 R_3 + R_1 R_3}{R_2}$$

$$R_c = \frac{R_1 R_2 + R_2 R_3 + R_1 R_3}{R_3}$$