Logistic Regression

27 January 2024 09:16 AM

- Logistic regression is a supervised learning algorithm.
- It is used for binary classification
- It is based on the regression approach

- A Regression approach can be used to predict values 0 to 1.
- But the predictions may go above 1 or below 0.
- In logistic regression the model gives a probability which is converted to labels based on threshold value.
- Probability above 1 or below 0 does not make sense.
- We use sigmoid function to limit the output between 0 to 1.

* SIGMOID FUNCTION ! -

$$Siy(x) = \frac{1}{1+e^{-x}}$$

 $C = 2.71..$

CASEI: X is Very large + Ve Value

$$\Rightarrow e^{-x} = 0$$

$$\Rightarrow 1 + e^{-x} = 1$$

$$\Rightarrow \Delta iy(x) = 1 \quad (Stim Im)$$

CASE 2:
$$\chi$$
 is very large -ve value
=> $C^{-\chi} \simeq +\infty$ (very large value)
=> $1+C^{-\chi} \simeq +\infty$
=> $5y(x) \simeq 0$

CASE3:
$$\chi$$
 is 0
=> $C^{-\chi} = C^{\circ} = 1$
=> $1+C^{-\chi} = 1+1 = 2$
=> $6ig(x) = 0.5$

* LOGISTIC REGRESSION:

$$Z = \beta_0 + \beta_1 \chi_1 + \beta_2 \chi_2 \dots \beta_n \chi_n$$

 $\hat{y} = \text{Sig}(z)$

$$\hat{y} = \text{Sig}(\beta_0 + \beta_1 x_1 + \beta_2 x_2 \dots \beta_n x_n)$$

* The Cost function used for logistic regression is log loss.

ACTUAL LABEL	PRED. PROB.	CORRECTED PROB.
	0.9	0.9
1	0.8	0.8
()	0 · 1	0.9
()	0.3	0.7
(0 · 2	0.2
O	0.7	0.3

$$P_{C} = \begin{cases} P_{J} & \forall = 1 \\ 1 - P_{J} & \forall = 0 \end{cases}$$

$$Loy Loss = -\frac{1}{6} \left[loy(0.9) + loy(0.8) + loy(0.9) + loy(0.7) + loy(0.2) + loy(0.3) \right]$$

$$= 0.87$$

$$Ly Loss = -\frac{1}{m} Z[Y_i . log(P) + (1 - Y_i) log(1 - P)]$$