

Dipartimento di Scienze Matematiche, Informatiche e Fisiche Corso di Laurea in \square Informatica, \square IBW, \square TWM

Analisi Matematica, tema A

Compitino del 24 giugno 2020

Cog	nom	ее	N	ome:

Mat	rico	la:				•							•	

Si prega di consegnare anche il presente testo. La brutta copia non va consegnata. Non sono permessi libri, appunti cartacei, strumenti elettronici. Va riportato lo svolgimento degli esercizi.

1. Calcolare i seguenti limiti, usando il teorema de L'Hôpital dove si ritenga lecito e opportuno

a)
$$\lim_{x \to 0} \frac{3x^2 \cos x - 2x\sqrt{x+1} + 2e^x(x-1)^2 \sin x}{x^2(x-\sqrt{x^2-x^3})}$$

e)
$$\lim_{n \to +\infty} \frac{\left(1 + \frac{1}{n}\right)^{2n^3}}{e^{2n^2 - n}}$$

b)
$$\lim_{x \to +\infty} \left(x \log \left(\left(1 + \frac{1}{x} \right)^x \right) - x \log \left(\left(1 + \frac{1}{x} \right)^{x+1} \right) \right)$$

f)
$$\lim_{x \to 0} \frac{\arccos(\cos x)}{\cos(\arccos x)}$$

c)
$$\lim_{x \to 0} \frac{24\sqrt{1-x} - 5x^2(x-3) + 12x(\cos x - \sin x) - 24}{(\sin 2x - \sin x)^3(\sqrt{e^x} - \arctan 2x)}$$

g)
$$\lim_{n \to +\infty} \frac{((n-1)!)^2}{(n-1)^{n-1}}$$

d)
$$\lim_{x \to 0} \frac{3x(e^x + 1)^2 - 8\cos(x - x^2) + 8(1 - x)^{3/2}}{x - |x^3 + x|}$$

h)
$$\lim_{n \to +\infty} \sqrt[n]{\frac{n^{2n}}{n!}}$$

2. Data la funzione $f(x) := \frac{x^2 - x - 2}{4x^2 + 9x + 2}$, trovare **a)** dominio, segno e limiti agli estremi; **b)** eventuali asintoti; **c)** f', crescenza/decrescenza e punti di massimo/minimo di f; **d)** f'' e intervalli di convessità/concavità e flessi; **e)** un grafico qualitativo di f.

3. Data la funzione $g(x) := \arctan\left|\frac{x+1}{1-x}\right| - x - \frac{\pi}{4}$, trovare **a)** dominio, continuità, limiti agli estremi ed eventuali asintoti; **b)** g', crescenza/decrescenza e punti di massimo/minimo di g; **c)** sfruttando le informazioni già ottenute, dedurre il segno di g(x); **d)** calcolare g'' e trovare gli intervalli di convessità/concavità e flessi; **e)** un grafico qualitativo di g.

4. Calcolare primitive delle seguenti funzioni (l'ultima per parti):

(a)
$$\frac{x^4 + x^3 + 2}{(x+2)(x^2 - 2x + 2)}$$
, (b) $\frac{1 + \frac{2}{x}}{1 + (x+2\log x)^2}$, (c) $\frac{2\log x}{x(2 + \log^2 x)}$ (d) $(2-x^2)\log^2 x$, (e) $\frac{1 + \tan^2(\arcsin 2x)}{\sqrt{1 - 4x^2}}$

5. Calcolare l'integrale $\int \frac{1}{x-4x^2\sqrt{1-4x^2}} dx$, per esempio con la sostituzione $y=\sqrt{\frac{1}{x^2}-4}$. 6. Si mettano in ordine le successioni seguenti, in modo che per $n\to +\infty$ la precedente sia "o piccolo"

6. Si mettano in ordine le successioni seguenti, in modo che per $n \to +\infty$ la precedente sia "o piccolo" della successiva: e^{-n^2} , (2n)!, $\left(1-\frac{1}{n}\right)^{n^3}$, $1/\sin(1/n)$, $1/(1-\cos(1/n))$, $\sqrt{n^3-2n+1}$, (3n)!/n!, $\sqrt[n]{\log n}$, 3^{-n} .

Dipartimento di Scienze Matematiche, Informatiche e Fisiche Corso di Laurea in \square Informatica, \square IBW, \square TWM

Analisi Matematica, tema B

Compitino del 24 giugno 2020

Cognome	e	Nome:
---------	---	-------

Matricola:																								

Si prega di consegnare anche il presente testo. La brutta copia non va consegnata. Non sono permessi libri, appunti cartacei, strumenti elettronici. Va riportato lo svolgimento degli esercizi.

1. Calcolare i seguenti limiti, usando il teorema de L'Hôpital dove si ritenga lecito e opportuno

a)
$$\lim_{x \to 0} \frac{2x(\cos 2x - \sin x) - x^2(3x - 1) + 2 - 2\sqrt{2x + 1}}{(e^{2x} + \sqrt{\tan x})(\sin x - \sin 3x)^3}$$

e)
$$\lim_{n \to +\infty} \left(1 - \frac{2}{n}\right)^{n^3} e^{2n^2 + 2n}$$

b)
$$\lim_{x \to 0} \frac{x^2 \cos x - 2x\sqrt{1-x} + 2e^x(x-1)^2 \sin x}{x^2(x-\sqrt{x^2-x^3})}$$

f)
$$\lim_{x\to 0} \frac{\operatorname{sen}(\operatorname{arcsen} x)}{\operatorname{arccos}(\cos x)}$$

c)
$$\lim_{x\to 0} \frac{6\cos(x-x^2) - 6(1+x)^{3/2} + x(2+e^x)^2}{x - |x-x^3|}$$

g)
$$\lim_{n \to +\infty} \sqrt[n]{\frac{n^{2n+2}}{(n+1)!}}$$

d)
$$\lim_{x \to +\infty} x \left(\log \left(\left(1 + \frac{1}{x} \right)^x \right) - \log \left(\left(1 + \frac{1}{x} \right)^{1+x} \right) \right)$$

h)
$$\lim_{n \to +\infty} \frac{((n+1)!)^2}{n^{n+1}}$$

2. Data la funzione $f(x) := \frac{2 - x - x^2}{4x^2 - 9x + 2}$, trovare **a)** dominio, segno e limiti agli estremi; **b)** eventuali asintoti; **c)** f', crescenza/decrescenza e punti di massimo/minimo di f; **d)** f'' e intervalli di convessità/concavità e flessi; **e)** un grafico qualitativo di f.

3. Data la funzione $g(x) := x - \frac{\pi}{4} + \arctan\left|\frac{1-x}{x+1}\right|$, trovare **a)** dominio, continuità, limiti agli estremi ed eventuali asintoti; **b)** g', crescenza/decrescenza e punti di massimo/minimo di g; **c)** sfruttando le informazioni già ottenute, dedurre il segno di g(x); **d)** calcolare g'' e trovare gli intervalli di convessità/concavità e flessi; **e)** un grafico qualitativo di g.

4. Calcolare primitive delle seguenti funzioni (l'ultima per parti):

(a)
$$\frac{x^4 - 2x^3 + 1}{(x+2)(x^2 - 2x + 2)}$$
, (b) $\frac{2 + \frac{1}{x}}{1 + (2x + \log x)^2}$, (c) $\frac{4 \log x}{x(1 - 2\log^2 x)}$ (d) $(2x^2 + 1)\log^2 x$, (e) $\frac{1 + \tan^2(\arcsin x)}{\sqrt{1 - x^2}}$

5. Calcolare l'integrale $\int \frac{1}{x+x^2\sqrt{2-x^2}} dx$, per esempio con la sostituzione $y=\sqrt{\frac{2}{x^2}-1}$.

6. Si mettano in ordine le successioni seguenti, in modo che per $n \to +\infty$ la precedente sia "o piccolo" della successiva: 3^{-n} , $\sqrt[n]{\log n}$, $1/e^{n^2}$, $1/\sin(1/n)$, (3n)!/n!, $1/(1-\cos(1/n))$, $\sqrt{n^3-2n+1}$, $\left(1-\frac{1}{n}\right)^{n^3}$, (2n)!.

Dipartimento di Scienze Matematiche, Informatiche e Fisiche Corso di Laurea in □ Informatica, □ IBW, □ TWM

Analisi Matematica, tema C

Compitino del 24 giugno 2020

2.5			

Si prega di consegnare anche il presente testo. La brutta copia non va consegnata. Non sono permessi libri, appunti cartacei, strumenti elettronici. Va riportato lo svolgimento degli esercizi.

Calcolare i seguenti limiti, usando il teorema de L'Hôpital dove si ritenga lecito e opportuno

a)
$$\lim_{x \to 0} \frac{8\sqrt{1-x} - 3(x-3)x^2 - 4(2x - \cos x)\sin x - 8}{(\sin 2x - 3\sin x)^3(e^x - \sqrt{\tan 2x})}$$

e)
$$\lim_{n \to +\infty} \frac{n^{n+1}}{((n+1)!)^2}$$

b)
$$\lim_{x\to 0} \frac{5x^2 \cos x + 2x\sqrt{1+x} - e^x(x+1)^2 \sin 2x}{x^3 - \sqrt{x^6 - x^7}}$$

f)
$$\lim_{n \to +\infty} \frac{e^{2n^2 - n}}{\left(1 + \frac{1}{n}\right)^{2n^3}}$$

c)
$$\lim_{x\to 0} \frac{3x(1+e^{-x})^2 + 8\cos(x^2+x) - 8(x+1)^{3/2}}{|x^3+x|+x}$$

g)
$$\lim_{x\to 0} \frac{\arccos(\cos x)}{\sin(\arcsin x)}$$

d)
$$\lim_{x \to +\infty} x \left(\log \left(\left(\frac{1}{x} + 1 \right)^{x+1} \right) - \log \left(\left(\frac{1}{x} + 1 \right)^x \right) \right)$$

h)
$$\lim_{n \to +\infty} \sqrt[n]{\frac{(n+1)!}{n^{2n+2}}}$$

2. Data la funzione $f(x) := \frac{2 + x - x^2}{4x^2 + 9x + 2}$, trovare **a)** dominio, segno e limiti agli estremi; **b)** eventuali asintoti; **c)** f', crescenza/decrescenza e punti di massimo/minimo di f; **d)** f'' e intervalli di convessità/concavità e flessi; \mathbf{e}) un grafico qualitativo di f.

3. Data la funzione $g(x) := x - \frac{\pi}{4} + \arctan\left|\frac{x+1}{1-x}\right|$, trovare **a)** dominio, continuità, limiti agli estremi ed eventuali asintoti; b) g', crescenza/decrescenza e punti di massimo/minimo di g; c) sfruttando le informazioni già ottenute, dedurre il segno di q(x); d) calcolare q'' e trovare gli intervalli di convessità/concavità e flessi; \mathbf{e}) un grafico qualitativo di g.

Calcolare primitive delle seguenti funzioni (l'ultima per parti):

(a)
$$\frac{x^4 + x^3 + 3}{(x-2)(x^2 + 2x + 2)}$$
, (b) $\frac{2 - \frac{1}{x}}{1 + (2x - \log x)^2}$, (c) $\frac{2 \log x}{x(2 - \log^2 x)}$ (d) $(x^2 - 1)\log^2 x$, (e) $\frac{1 + \tan^2(\arccos x)}{\sqrt{1 - x^2}}$

5. Calcolare l'integrale $\int \frac{1}{x^2\sqrt{2-x^2}-x} dx$, per esempio con la sostituzione $y=\sqrt{\frac{2}{x^2}-1}$. 6. Si mettano in ordine le successioni seguenti, in modo che per $n\to +\infty$ la precedente sia "o piccolo"

della successiva: $\sqrt[n]{\log n}$, $1/(1-\cos(1/n))$, (2n)!, $\left(1-\frac{1}{n}\right)^{n^3}$, $1/\sin(1/n)$, $\sqrt{n^3-2n+1}$, $1/3^n$, (3n)!/n!, e^{-n^2} .

Dipartimento di Scienze Matematiche, Informatiche e Fisiche Corso di Laurea in \square Informatica, \square IBW, \square TWM

Analisi Matematica, tema D

Compitino del 24 giugno 2020

Cognome	е	Nome:
Cognome	$^{\circ}$	TIOHIC

Mat	rico	la:											

Si prega di consegnare anche il presente testo. La brutta copia non va consegnata. Non sono permessi libri, appunti cartacei, strumenti elettronici. Va riportato lo svolgimento degli esercizi.

1. Calcolare i seguenti limiti, usando il teorema de L'Hôpital dove si ritenga lecito e opportuno

a)
$$\lim_{x\to 0} \frac{8\sqrt{x+1} - (2x-1)x^2 - 2(1+\cos x)\sin x - 8}{(\sin x - \sin 2x)^2(\sqrt{e^x} - \cos 2x)}$$

e)
$$\lim_{n \to +\infty} e^{2n^2 + n} \left(1 - \frac{1}{n}\right)^{2n^3}$$

b)
$$\lim_{x\to 0} \frac{7x^2 \cos x + 2x\sqrt{x+1} - 2e^{2x}(x+1)^2 \sin x}{\sqrt{x^6 - x^7} - x^3}$$

f)
$$\lim_{n \to +\infty} \frac{(n-1)^{n-1}}{((n-1)!)^2}$$

c)
$$\lim_{x \to +\infty} \left(x \log \left(\left(\frac{1}{x} + 1 \right)^{x+1} \right) - x \log \left(\left(\frac{1}{x} + 1 \right)^x \right) \right)$$

g)
$$\lim_{x\to 0} \frac{\cos(\arccos x)}{\arccos(\cos x)}$$

d)
$$\lim_{x\to 0} \frac{x(e^{-x}+2)^2 - 6\cos(x^2+x) + 6(1-x)^{3/2}}{x+|x-x^3|}$$

$$h) \lim_{n \to +\infty} \sqrt[n]{\frac{n!}{n^{2n}}}$$

2. Data la funzione $f(x) := \frac{x^2 + x - 2}{4x^2 - 9x + 2}$, trovare **a)** dominio, segno e limiti agli estremi; **b)** eventuali asintoti; c) f', crescenza/decrescenza e punti di massimo/minimo di f; d) f'' e intervalli di convessità/concavità e flessi; \mathbf{e}) un grafico qualitativo di f.

3. Data la funzione $g(x) := \arctan \left| \frac{1-x}{x+1} \right| - x - \frac{\pi}{4}$, trovare a) dominio, continuità, limiti agli estremi ed eventuali asintoti; b) g', crescenza/decrescenza e punti di massimo/minimo di g; c) sfruttando le informazioni già ottenute, dedurre il segno di g(x); d) calcolare g'' e trovare gli intervalli di convessità/concavità e flessi; e) un grafico qualitativo di q.

Calcolare primitive delle seguenti funzioni (l'ultima per parti):

(a)
$$\frac{x^4 - x^3 + 2}{(x - 2)(x^2 + 2x + 2)}$$
, (b) $\frac{1 - \frac{2}{x}}{1 + (x - 2\log x)^2}$, (c) $\frac{4\log x}{x(1 + 2\log^2 x)}$
(d) $(x^2 + 1)\log^2 x$, (e) $\frac{1 + \tan^2(\arccos 2x)}{\sqrt{1 - 4x^2}}$

5. Calcolare l'integrale $\int \frac{1}{x + 4x^2\sqrt{1 - 4x^2}} dx$, per esempio con la sostituzione $y = \sqrt{\frac{1}{x^2} - 4}$. 6. Si mettano in ordine le successioni seguenti, in modo che per $n \to +\infty$ la precedente sia "o piccolo"

della successiva: $\sqrt{n^3-2n+1}$, $\sqrt[n]{\log n}$, $1/\sin(1/n)$, (2n)!, $\left(1-\frac{1}{n}\right)^{n^3}$, $1/(1-\cos(1/n))$, $1/e^{n^2}$, 3^{-n} , (3n)!/n!.