Reporte de Rentabilidad Energética

Grupo: 8

Fecha: 10 de junio de 2025

Documentacion Técnica: https://github.com/edpo1998/ModelacionySimulacion1

Insights clave

• Costo Promedio Mensual 0.2 MWh Jornada Completa (8714,86)

• Costo Promedio Mensual 0.15 MWh Jornada Completa (6536,14)

• Costo **Promedio Mensual** 0.15 MWh Trabajando la mitad (3268.073)

• Mes más rentable: Febrero (5 877,67)

• Mes menos rentable: Mayo (13 359,50)

Resumen de Costos

PROFESSEUR: M.DA ROS

No	Mes	Costo (0,2 MWh)	Costo (0,15 MWh)
1	Enero	6 006,78	4 505,09
2	Febrero	5 877,67	4 408,25
3	Marzo	9 261,82	6 946,36
4	Abril	9 027,44	6 770,58
5	Мауо	13 359,50	10 019,60
6	Junio	13 317,10	9 987,82
7	Julio	8 953,27	6 714,95
8	Agosto	8 548,81	6 411,60
9	Septiembre	7 260,77	5 445,58
10	Octubre	7 940,07	5 955,06
11	Noviembre	7 600,25	5 700,19
12	Diciembre	7 424,84	5 568,63

Tendencia Mensual

Escenarios De Inversores

Escenario	Periodo 1	Periodo 2	Costo (Q.)
Α	00:00 - 04:00	12:00 – 16:00	2 738,55
В	08:00 – 12:00	16:00 – 20:00	5 306,88
С	08:00 – 12:00	20:00 – 24:00	5 468,81

Escenarios mes 2

Comparación Mensual de Escenarios

Mes	Α	В	С
1	2 801,83	5 494,15	5 765,98
2	2 738,55	5 306,88	5 468,81
3	4 152,09	8 260,84	8 548,11
4	3 860,82	7 704,78	7 971,06
5	5 559,94	10 906,40	11 488,70
6	5 650,28	10 839,40	11 372,50
7	3 929,75	7 746,68	7 946,99
8	3 768,93	7 529,06	7 767,08
9	2 913,39	5 862,72	6 148,90
10	3 036,83	6 007,25	6 497,23
11	2 341,75	4 529,40	5 434,32
12	3 146,10	6 040,37	6 496,61

Comparación escenarios mensual

Tendencia sin fines de semana

Costos por Tipo de Día (08-20 h)

Tipo de Día	Costo (Q.)	
Laboral	79 326,40	
Fin de semana	25 252 00	

Costos por Estación

Estación	Costo (Q.)	
Primavera	31 648,80	
Verano	30 819,20	
Otoño	22 801,10	
Invierno	19 309,30	

> **V Conclusiones** > 1. Los costos de energía presentan un mínimo en febrero y un pico en mayo. > 1.1 Costo Promedio Mensual con 0.2 MWh en Jornada Completa (8714,86) > 1.2 Costo Promedio Mensual con 0.15 MWh en Jornada Completa (6536,14) > 1.2 Costo Promedio Mensual con 0.15 MWh Trabajando la Mitad (6536,14) > 2. La tendencia con 0.15 MWh trabajando la mitad no genera cambios en la rentabilidad. > 3. El escenario A (00–04h / 12–16h) presenta menor consumo es probable que sea importante considerar horas de calor, y que los horarios nocturnos pueda ayudar a reducir el consumo y mejorar la rentabilidad. > 4. Se valida que es importante considerar las variables extras para analizar si esos dias no hubiera operabilidad. > 4.1 Excluir fines de semana y feriados suaviza la curva de costos sin alterar la tendencia general. > 4.2 Los días laborales concentran más de un 75 % del gasto total. > 4.3 La primavera y el verano son las estaciones con mayor consumo económico, es asi como se concluye que el calor si es un factor importante a considerar para reducir costos.