Administración de Transacciones

Luis Andahur Figueroa luis.andahur 1501@alumnos.ubiobio.cl

Protocolo 2PL estricto

- Posee dos candados:
 - -S(X): Bloqueo compartido. Sirve para leer un dato X
 - X(X): Bloqueo exclusivo. Sirve para modificar un dato X
- Dos reglas:
 - Si una transacción T quiere leer o modificar un objeto, primero solicita un bloqueo sobre el objeto.
 - Todos los bloqueos concedidos a una transacción se liberan cuando la transacción se completa (en el Commit).

Protocolo 2PL estricto

T1	T2
R(A)	
	R(B)
	W(B)
R(C)	
W(C)	
commit	
	commit

T1	T2
S(A)	
R(A)	
	X(B)
	R(B)
	W(B)
X(C)	
R(C)	
W(C)	
commit	
	commit

Protocolo 2PL

- Versión más relajada que la anterior.
- Nuevas reglas:
 - Una transacción puede entregar sus candados antes del final de la transacción (antes de commit o abort).
 - Una transacción no puede pedir candados adicionales una vez que empieza a devolver sus candados.

Protocolo 2PL

T1	T2
R(A)	
	R(A)
	W(A)
R(C)	
W(C)	
commit	
	commit

T1	T2
S(A)	
R(A)	
X(C)	
Free(S(A))	
	X(A)
	R(A)
	W(A)
R(C)	
W(C)	
commit	
	commit

Interbloqueos

- Hay momentos en que al solicitar candados, ocurre un «Deadlock» o interbloqueo entre las transacciones que les impide continuar avanzando.
- Detección: Grafo de espera.
- Solución: Abortar una transacción.
- Prevención: Priorizar transacciones.

Interbloqueos

T ₁	T ₂	<i>T</i> ₃	T ₄
S(A) R(A)	X(B) W(B)		
S(B)		S(C) R(C)	
73	X(Q)	H(C)	X(B)
		X(A)	

Grafo de espera

Transacción conflictiva

Recuperación de la Base de Datos.

- LOG: es un historial de las acciones *ejecutadas* por el SGBD.
 - Cada registro en el LOG tiene un identificador, el LSN (Log Sequence Number).
 - Operaciones:
 - Updates
 - Commit
 - Abort
 - *End*
 - Recuperación

LOG

LSN		LOG
10	_	Update: T1 escribe P3
20	_	Update: T1 escribe P2
30	_	Update: T2 escribe P5
40	_	T2 commit
50	_	T2 end
60	_	Update: T3 escribe P1
	X	CRASH, Restart

ARIES

- ARIES: Algoritmo que se encarga de la recuperación de la Base de Datos. Tiene tres fases:
 - Análisis: identificar páginas sucias.
 - Rehacer: identificar transacciones activas.
 - Deshacer: deshacer los updates en sentido inverso

ARIES

LSN		LOG
10	_	Update: T1 escribe P3
20	_	Update: T1 escribe P2
30	_	Update: T2 escribe P5
40	_	T2 commit
50	_	T2 end
60	_	Update: T3 escribe P1
	X	CRASH, Restart

Análisis: P3, P2, P1

Rehacer: T1 y T3

Deshacer:

ARIES

Análisis: P3, P2, P1

Rehacer: T1 y T3

Deshacer:

LSN		LOG
70	_	Deshacer T3 LSN 60
80	_	Deshacer T1 LSN 20
90	_	Deshacer T1 LSN 10