Robotics Stack

Sence

Collecting, pre-processing and fusing sensor data from multiple sources

Sensor Fusion - Ability to bring data together from different sensors and sources and combine them for the processing process.

Data Model- Integrated multiple sensor data from a different source

Decide

Process the collected and created data model and apply algorithms

Data:

Categorical Data [Classification]
 Motor Speed from 0 to 100 can be grouped into 5 groups

• Quantitative Data [Regression]

Process information from the environment and Plan the actions to be performed in the environment.

Act

Applying the output

- Multi-dimensional
- Specific

Carry out the actions that plan on the data model.

Event

Event Listeners

- → Audio [Mic]
- → Visual [Camera]
- → Sensory[Temp, IMU, GPS]
- → Software [API Calls, Scheduled Program, MQTT]

Event Types

Audio

[Human-Voice]

[Abnormal Sound]

Visula

[Human-Detection]

[Object-Detection]

[Luminosity Variation]

[Abnormal Vision]

Sensory

[Temp Difference]

[Abnormal Spatial Variation]

[Abnormal Orientation Variation]

Software

[API Calls]

[MQTT-Remote]

Response Mechanism

Sr. No	Response Element	Response Drive	Output Type	
1	Dialogue	RASA	[Audio] Speaker	
2	Graphical Expressions	Animation Player	[Visual] On-Screen	
3	Eyelids	ROS EL	[Mechanical] Servo	
4	Facial Orientation	ROS-FO	[Mechanical] Servo	
5	Body Posture	ROS-BP	[Mechanical]	
6	Body Position Change	ROS-BPC	[Mechanical]	
7	Software Action	API Calls Scheduler Engine		

Response Set ID: 23

Dialogue: NA

Graphical Expressions: //path:suspicious_2.gif

Eyelids:

ES1: S3 ES2: S5

Facial Orientation

P: 30

T: NC (no-change)

R: 10

Body Posture

L1: [55, 5, LP] L2: [55, 5, LP] L3: [80, 5, LP] L4: [80, 5, LP]

Body Position Change

Azimuth Angle

Destination Coordinate

Software Action: //path:sendalert.py

Body Posture Moments: (Data Structure)

3 Value Array(3D)

L1 : [55, 5, LP]
(Limb1) (Target) (Seconds) (Last Position)

5 Values Array(5D)

L1 : [65, 5, 85, 2, LP]

7 Values Array(7D)

L1 : [65, 5, 85, 2, 90, 10, CP]

Deep Learning Models

- DeepSpeech
 - o Speech-to-Text engine
 - o INDIC Dataset
 - o Important Links
 - DeepSpeech's documentation
 - mozilla / DeepSpeech GitHub
- Tacotron
 - o End-to-End speech synthesis
 - o LJ Dataset
- YOLO (You Only Look Once)
 - o Object Detection
 - o Human Recognition

<u>Trigger</u>

Events

Some action take place with the help hardware and software

- Scheduled at a particular time [time]
- Instructions information processing [voice, visual, RC, API]
- Self-derivation condition [instruction + logical + monitoring]

VERBAL (Audio Processing Stack)

- → Sound Recording
- → Hotword Detection
- → Speech-To-Text [DeepSpeech]
- → Speaker Recognition
- → Natural Language Understanding [RASA]
- → Dialogue Management (Dialogue flow) [RASA]
- → Text-To-Speech (Speech Synthesis) [Tacotron]
- → Sound Anomaly Detection
- → Seq2SQL (Natural Language to SQL query)
- → Direction of Arrival detection

Navigation

Required Hardwares:

- GPS Module
 - o To get the GPS Coordinate and localise the robot in the environment
 - To get the Azimuth angle
- Digital Compass
 - o To get the Delta between Heading and Azimuth angle
- Ultrasonic Sensor
 - To detect the obstacle in short range profile

Working Motors:

The robot moment in the environment will be controlled by sending the velocity command on the motors.

- MX1
- MX2
- MX3
- MX4

High Level Model for Autonomous System:

This model helps to control robot motion in dynamic or global environment

- 1. Derivation required (Azimuth angle & Distance)
- 2. Align noise to required Azimuth angle
- 3. Verify short-range obstacle profile
- 4. Verify mid-range obstacle profile
- 5. Initiate MX (using commands)
- 6. Verify mid-range obstacle profile
- 7. Verify Azimuth profile

Manual Control:

Autonomous Mobility Software(AMS): [Decision making motor controls]

- I. Lane Awareness
- II. Lane Discipline
- III. Speed Control
- IV. Obstacle Avoidance

AMS versions:

- In-house / on- premise
- Road

Lane Awareness:

1. Understand road scene

Lane Discipline:

1. Follow road rules

Obstacle Avoidance:

- 1. Camera
 - a. Type of obstacle
- 2. RADAR
 - a. Distance of obstacle
 - b. Angle of obstacle
 - c. Speed of obstacle

Speed Control:

- 1. Selection of Acceleration Profile (AP)
 - a. Distance to next position
 - b. Terrain
 - c. Distance to next obstacle
- 2. Change of AP

Task: Go to Home and Get my Pen

Process:

- → Reach destination
- → Action
- → Return to source
- 1. Current location: Source
 - o GPS Coordinates (GPS Module)
 - o Azimuth angle (Digital Compass)
- 2. Process to reach(WP1)
 - o Specific to environment
- 3. WP1 to WP2: path detail
 - o Distance and Azimuth angle

Dhruyaa Compute Layout

J1:

[MQTT Broker]
[Energy Monitoring (BMS)]
[Telecom and GPS]
[Web Server / API Gateway]
[Ros Node- Publish GPS]

Connected Devices

- Bluetooth Module
 - o For interfacing smarth BMS
- SIM7600H-G
 - o For GPS
 - o For 4G telecom
- Wi-Fi Dongle
 - For Wi-Fi telecom
- Airlink
- Satelite

Tools Installation

- Mosquitto
- ROS
- Apache
- SIM7600

J4:

[AMS- Autonomous Mobility Software] [ROS Node- Subscribe GPS, Publish MX]

Data Receiving

- RADAR
 - o Angle/Distance
 - o Speed
- CAMERA
 - o Type of object
 - Depth perception
- GPS
 - Location coordinates
- Compass
 - o Heading Angle
- IMU
- Ultrasonic

Decision Making Derivatives

P R E P A R A T I O N		W A Y - P O I N T		P R I M E		T R A N S I T I O N A L		P R I M E
-----------------------	--	-------------------	--	-----------	--	-------------------------	--	-----------------------

IP Address

- Physical
- Logical

Physical

[MAC Address]

Remains Same life cycle

12 Char

6- Manufacturer

6- Device

Logical

[IP Address]

IPv4- 32 bit

IPv6- 128 bit

IP Class

Α	[0-126]	N.N.N.H
В	[128-181]	N.N.H.H
С	[182-223]	N.N.N.H
D	[224-238]	
Е	[240-254]	