FRANCIS JOSEPH

+1 202 640 8629 \$\phi\$ francisvac@gmail.com \$\phi\$ francisvac.github.io

WORK

Motion Planning Engineer AutoX, San Jose, CA

July 2018 - Present

Intern PlusAI, Palo Alto, CA

June 2017 - September 2017

Synchronized data from asynchronous sensors.

Built a data driven model to calibrate steering of the autonomous vehicle parameterized over speed.

Wrote an ACC controller in C++ to handle highway driving with the control law handling cut-in of vehicles.

Software Engineer ESI, Bengaluru, India

August 2012 - July 2016

Developed features for the pre-processor for a finite element method solution involving linear algebra.

Worked on applying transformations to loads onto meshed surfaces.

Wrote run-time code in C++ and python for automated testing scripts.

EDUCATION

Master of Science University of California San Diego

September 2016 - June 2018

Course Work: Robot Motion Planning, Principles of Artificial Intelligence: Probabilistic Reasoning and Decision Making, Estimation and Sensing, Linear Control Systems, Optimal Control, Robot Manipulation, Design and Analysis of Algorithms

Bachelor of Engineering PES Institute of Technology, Bengaluru, India September 2008 - June 2012 Course Work: Computer Programming, Kinematics of Machinery, Automotive Transmissions, Design of Machine Elements, Operations Research

PROJECTS

Learning based approach to control a self-assembling robot

September 2017 - June 2018

- · Manufactured the self-assembling robot whose manufacturing process was published in IROS 2017.
- · Determined one step prediction using Gaussian and Neural network function approximation.
- · Compared closed loop PID with a DP using the learned model for trajectory tracking.

Autonomous Mail Delivery

January 2018 - June 2018

- · Integrated Autoware with Dataspeed drive by wire unit with docker.
- · Built 3D maps and semantic maps offline using NDT matching and used the same algorithm for localization.
- · Wrote and tuned a throttle, brake and steering controller with a dp planner for trajectory following.

Learning Control of a Two-Link Arm

April 2017 - June 2017

- · Learned the controls of two link arm without knowledge of the model of the arm using DDPG.
- · Optimized the network to learn in less than 10,000 random demonstrations using MuJoCo for simulation.

SIDE PROJECTS AND SKILLS

- \bullet Gaussian model to detect red barrels \bullet Kalman filter to track the pose of the camera \bullet Particle filter to localize and map for SLAM \bullet Strain sensors to map internal coral reef \bullet RRT planner for a two-link arm
- RRT* planner for a 2D work space JPS incremental planner for a 2D space
- $\bullet \ C \bullet C++ \bullet \ Python \bullet \ MATLAB \bullet CMake \bullet Bazel \bullet ROS \bullet ROS2 \bullet Docker \bullet TensorFlow \bullet Keras \bullet Pybullet \bullet OpenAI \ Gym \bullet MuJoCo \bullet Robotics Toolbox (MATLAB) \bullet OpenCV \bullet G \ code \bullet Excel (VBA/Macros) \bullet IATEX \bullet GIT \bullet SVN Subversion$