Search for Experimental Evidence of Supersymmetry at the Large Hadron Collider Balas, Michael A. ProQuest Dissertations and Theses; 2011; ProQuest Dissertations & Theses Global pg. n/a Search for Experimental Evidence of Supersymmetry at the Large Hadron Collider Michael A. Balazs Charlottesville, Virginia Bachelors of Science in Physics and Computer Science, Johns Hopkins University, 2004 A Dissertation presented to the Graduate Faculty of the University of Virginia in Candidacy for the Degree of Doctor of Philosophy Department of Physics University of Virginia May 2011

UMI Number: 3475674

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

UMI 3475674

Copyright 2011 by ProQuest LLC.

All rights reserved. This edition of the work is protected against unauthorized copying under Title 17, United States Code.

ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106-1346

Abstract

This thesis describes a search for the general gauge-mediated model of supersymmetry in the first $35.5~pb^{-1}$ of proton-proton interactions at 7 TeV to be recorded at LHC by the CMS experiment. In this version of supersymmetry, the neutralino serves as the next-to-lightest supersymmetric particle which decays to a gravitino, the lightest supersymmetric particle, and a high energy photon. R-parity conservation requires the neutralinos are pair produced yielding a topology of two highly energetic, isolated photons and at least one hadronic jet. The missing transverse energy spectrum of these events, due to the gravitino escaping detection, is compared to the expected spectrum resulting from standard model processes. No excess events in the high missing transverse energy region are observed. An upper limit between 0.3 and 1.1 pb depending on the mass of the supersymmetric particles has been determined for the cross-section of the general gauge-mediated model and a 95% confidence limit exclusion region has been determined on the neutralino, squark, and gluino masses.

Dedictation

This thesis is dedicated to my grandfather, who instilled in me an inquisitive nature and a desire to know the truth. It is also dedicated to my wife, whose unwavering love and support has helped me to see this project through.

Acknowledgements

I would like to acknowledge the work of the thousands of people who made the LHC and CMS experiment possible. I also want to acknowledge the help of my analysis group at CMS, especially Bernadette Heyburn, Alexander Ledovskoy and Rachel Yohay with whom I have had the pleasure of learning with and from over the last few years. Finally, I want to acknowledge Dr. Bradley Cox who has been the ideal advisor over the past five years. He has always looked out for what is in my best interest and had the perfect balance of allowing independent but still guided work.

Contents

Li	ist of	Figur	es		vii
Li	ist of	Table	i		x
G	lossa	$\mathbf{r}\mathbf{y}$			xi
1	Intr	oduct	on		1
2	The	eory			5
	2.1	The S	andard Mode	1	5
		2.1.1	The Standar	d Model Particles	6
			2.1.1.1 Fer	mions	6
			2.1.1.2 Ga	uge Bosons	7
			2.1.1.3 Hig	ggs Boson	7
		2.1.2	The Standar	d Model Forces	8
			2.1.2.1 Qu	antum Electrodynamics	8
			2.1.2.2 We	ak Interaction	9
			2.1.2.3 Qu	antum Chromodynamics	10
	2.2	Shorte	omings of the	Standard Model	11
		2.2.1	The Hierarch	ny Problem	12
	2.3	Super	symmetry		13
	2.4	Alterr	atives to Supe	ersymmetry	16

			iv
3	Exp	periment	19
	3.1	Large Hadron Collider	19
	3.2	Compact Muon Solenoid	20
		3.2.1 Superconducting Solenoid Magnet	27
		3.2.2 Tracker System	27
		3.2.3 Electromagnetic Calorimeter	29
		3.2.4 Hadronic Calorimeter	33
		3.2.5 Muon System	34
		3.2.6 Trigger System	35
4	Dat	casets and Triggers	37
	4.1	Datasets	37
	4.2	Triggers	38
5	Eve	ent Selection	39
	5.1	Definition of Object Preselection and Identification Variables	40
		5.1.1 Electromagnetic Object Variables	40
		5.1.2 Jet Object Variables	41
	5.2	Electromagnetic Object Preselection	42
	5.3	Object Identification	43
		5.3.1 Photon and Electron Identification	43
		5.3.2 Fake Photon Identification	43
		5.3.3 Jet Identification	44
	5.4	$ff, ee, e\gamma$ and $\gamma\gamma$ Datasets	45
	5.5	General Gauge Mediated Supersymmetry Monte Carlo	46
		5.5.1 GCM Monte Carlo Event Selection	46

6	Obj	ject Identification Efficiency	49
	6.1	Photon Identification Efficiency	49
	6.2	Electron Misidentification	50
		6.2.1 Fitting the ee , $e\gamma$, and $\gamma\gamma$ Invariant Mass Spectra	51
		6.2.2 Determination of the Electron Misidentification Fraction \dots	52
7	Esti	imation of Backgrounds	54
	7.1	ff and ee QCD Background Estimates	54
		7.1.1 Determination of the QCD Background	55
		7.1.2 Comparison of ff of ee Control Samples used for QCD Back-	
		ground Modelling	57
	7.2	Electroweak Background Estimates	58
	7.3	$\not\!\!E_T$ Spectra of $\gamma\gamma$ Candidate Sample and ff/ee Control Samples	58
8	Err	ors	61
	8.1	Systematic Error on Expected Number of Events	61
	8.2	Error on Measured Background in Data	62
		8.2.1 Systematic Errors on the Reweighting of the E_T Spectra	63
		8.2.2 Systematic Error on the Normalization of the $\not\!\!E_T$ Spectra	64
	8.3	Systematic Error on Monte Carlo Acceptance * Efficiency	65
		8.3.1 Systematic Error Resulting from Jet Energy Uncertainty	66
9	Est	imation of Upper Limit of GGM SUSY	67
	9.1	Upper Limits Using the Bayesian Method	67
	9.2	Upper Limits Calculation Example	69
	9.3	GGM Exclusion Regions	71

10	Con	clusion	74
A	CMS	S Coordinate System	7 6
В	CM	SSW Reconstruction Software	77
	B.1	High Level Trigger	77
	B.2	ECAL Reconstruction	78
		B.2.1 Swiss Cross Cleaning	79
		B.2.2 Photon Reconstruction	79
	B.3	Pixel Matching	80
	B.4	Track Algorithms	80
	B.5	Jet Algorithms	81
	B.6	Missing Transverse Energy Algorithms	82
	B.7	CMSSW Dataset Details	82
\mathbf{C}	Effe	ct of Jet Multiplicity on Monte Carlo Selection	84
D	Con	nparison of Data and MC Photons	86
E	Spik	te Cleaning	92
F	Veri	fication of Analysis Technique with $e\gamma$ Dataset	94
G	Pers	sonal Projects	96
	G.1	Techniques for Particle Identification	96
	G.2	Vacuum Photo Triodes Response	97
	G.3	Construction and Testing of the Electromagnetic Calorimeter's Endcaps	97
	G.4	CMS Reconstruction Software	98

References 99

List of Figures

1.1	CMS's Total Integrated Luminosity	2
1.2	Event Display of CMS's First Recorded Collision	3
2.1	Standard Model Particles	0
2.2	Summary of Standard Model Interactions	8
2.3	Quantum Electrodynamics	9
2.4	Electron Positron Annihilation	9
2.5	Neutron Beta Decay	10
2.6	Weak Interaction	10
2.7	Quantum Chromodynamics	11
2.8	Standard Model Calculation of the Higgs Mass	13
2.9	Experimental Bounds on the Higgs Mass	13
2.10	Standard Model Particles and superpartners	14
2.11	Supersymmetric Calculation of the Higgs Mass	15
2.12	Supersymmetry Decay Chains for Different Breaking Mechanisms	17
3.1	Large Hadron Collider Layout	21
3.2	Cross Section of a LHC Magnet	22
3.3	External View of a LHC Magnet	23
3.4	Eight Sections of the LHC	24
3.5	The LHC Injection Chain	25

		ix
3.6	Compact Muon Solenoid Detector	26
3.7	Solenoid Magnet	28
3.8	Tracker Layout	29
3.9	Pixel Detector Module	30
3.10	Silicon Strip Detector Module	31
3.11	Electromagnetic Calorimeter Sections	32
3.12	Electromagnetic Calorimeter Crystals and Photodetectors	33
3.13	Hadronic Calorimeter Layout	34
3.14	Muon System Layout	35
3.15	L-1 Trigger Decision Tree	36
5.1	Isolation Cones	41
5.2	GGM SUSY Cross Sections	47
6.1	Invariant Mass Plots for $\gamma\gamma$, $e\gamma$ and ee Datasets	53
7.1	diEM P_T Spectra of the $\gamma\gamma$, ff and ee Datasets	56
7.2	Comparison of ff of ee Control Samples used for QCD Background	
	Modelling	57
7.3	$\not\!\!E_T$ Spectra of the $\gamma\gamma,ff,e\gamma$ and ee Datasets	59
8.1	K-Factors	62
8.2	PDF Uncertainties	63
8.3	Acceptance * Efficiency Uncertainties	65
9.1	Upper Limit Cross Sections for GGM SUSY	72
9.2	Exclusion Contours for GGM SUSY	73

10.1	Event Displays for Observed Event	75
C.1	Average Number of Jets and Acceptance Times Efficiency in GGM SUSY Monte Carlo	85
D.1	Comparison of ECAL Isolation in Data and MC	87
D.2	Comparison of HCAL Isolation in Data and MC	88
D.3	Comparison of H/E Isolation in Data and MC	89
D.4	Comparison of Track Isolation in Data and MC	90
D.5	Comparison of $\sigma_{i\eta i\eta}$ in Data and MC	91
E.1	Spike Cleaning Techniques	93
F.1	$ \not\!\!E_T $ Spectra of the $e\gamma$ and Standard Model Backgrounds	95

List of Tables

4.1	List of datasets and raw triggers in the 35.5 pb^{-1} data sample	37
4.2	List of triggers used to accumulate the events in the $35.5~\mathrm{pb^{-1}}$ data	
	sample as well as the runs and luminosities for which they were used.	38
5.1	List of datasets and event yields for $35.5 \ pb^{-1}$	45
6.1	Summary of integrals and errors from fitting the Z mass in the ee , $e\gamma$,	
	and $\gamma\gamma$ spectra	51
7.1	Event Yields for $\gamma\gamma$, ff , $e\gamma$ and ee Datasets with $\not\!\!E_T \geq 50~{ m GeV}$	60
8.1	Effect of 10% Jet Energy Uncertainty on Expected Event Yields	66
9.1	Parameters for Upper Limit Calculation	70
9.2	Upper limits for two GGM SUSY points for varying background un-	
	certainty models	70
B.1	List of CMSSW datasets comprising the Run 2010A and Run 2010B	
	datasets	83

Glossary

 E_T transverse energy.

 $\not\!\!E_T$ missing transverse energy.

 P_T transverse momentum.

APDs avalanche photo diodes.

CERN European Center for Nuclear Research.

CL confidence limit.

CMS Compact Muon Solenoid.

ECAL electromagnetic calorimeter.

EM electromagnetic.

EW electroweak.

GGM general gauge-mediated.

HCAL hadronic calorimeter.

HLT high level trigger.

JPT jet plus track.

LHC Large Hadron Collider.

LSP lightest supersymmetric particle.

NLO next-to-leading-order.

 ${\bf NLSP}\,$ next to lightest supersymmetric particle.

QCD quantum chromodynamics.

QED quantum electrodynamics.

SM standard model.

SUSY supersymmetry.

VPTs vacuum photo diodes.

WIMP weakly interacting massive particle.

1 Introduction

The standard model (SM) of particle physics, after nearly 40 years of testing and prediction, has proven to be a robust model of the subatomic world. However, it is known to be incomplete. For example, the SM does not explain the breaking mechanism for electroweak symmetry that gives mass to the W and Z gauge bosons nor can it account for observed neutrino oscillations. In particular, the Higgs boson, predicted by the SM and playing a crucial role in symmetry breaking, has not yet to be observed and would have a quadratically divergent mass due to radiative corrections (see section 2.2.1). One possible solution to this problem is a theory known as supersymmetry (SUSY). SUSY is a symmetry that states for every spin $\frac{1}{2}$ fermion, there is a spin 0 superpartner and for every spin 1 gauge boson there is spin $\frac{1}{2}$ superpartner. These additional particles provide the quantum corrections needed to reconcile the expected mass of the Higgs boson with the theoretical and experimental bounds.

Search for experimental evidence of SUSY has been on going at the Tevatron, located at Fermi National Laboratory outside of Chicago, Illinois, for many years. Unfortunately, the masses of these supersymmetric particles appear to be too large to be seen in 2 TeV center of mass energy proton-antiproton collisions. However, on March 30, 2010 the Large Hadron Collider (LHC) located at European Center for Nuclear

Research (CERN) in Geneva, Switzerland, began to produce proton-proton interactions at a center of mass collision energy of 7 TeV. The 7 TeV collision energy opens a whole new realm of physics exploration and brings the discovery of supersymmetric particles within reach. The Compact Muon Solenoid (CMS) detector, one of the two large multipurpose detectors at the LHC, was ready and began recording data (see figure 1.1). An event display for the first recorded collision by CMS is shown in figure 1.2.

Figure 1.1: CMS's Total Integrated Luminosity - Total integrated luminosity delivered by the LHC and recorded by the CMS detector in 2010.

$$L = fn \frac{N_1 N_2}{A} \tag{1.1}$$

¹Luminosity is a measurement of the number of particles per unit area per unit time times the opacity of the target measured in $barns^{-1} * seconds^{-1}$. In the case of the LHC, the luminosity can be expressed as

Figure 1.2: Event Display of CMS's First Recorded Collision - An event display of CMS's first recorded collision at 7 TeV on March 30, 2010.

This analysis performs one of the first experimental searches for supersymmetry at 7 TeV. In particular, a search for the general gauge-mediated (GGM) model of supersymmetry is outlined and performed on the first $35.5 \ pb^{-1}$ of data to be recorded at the LHC. While discovery cannot yet be claimed, one event matching the GGM signature was found hinting it might be right around the corner. In the meanwhile, an upper limit has been set on the cross-section of the GGM model and a 95% confidence limited (CL) exclusion region on the neutralino, squark and gluino masses has been produced. A paper [1] has been published based on this analysis which can be found at http://arxiv.org/abs/1103.0953.

where f is the revolution frequency, n is the number of bunches in one beam, N_i is number of particles per bunch in beam i, and A is the cross section of the beam. The total integrated luminosity is the integral of luminosity with respect to time and is traditionally used to characterize the size of a dataset.

2 Theory

2.1 The Standard Model

In the 1970's a unified theory of particle physics took form. This theory, known as the standard model (SM) [2, 3, 4], brought together the quantum electrodynamics (QED), the weak interaction, and quantum chromodynamics (QCD) theories into one internally consistent model of all known particles and their interactions. The quarks, leptons, and gauge bosons observed are the fundamental particles of the SM. Their properties, which are not predicted by the SM, are outlined in figure 2.1. For each particle in the SM there is an anti-particle that differs in that it possesses either the opposite electric charge.

Quarks (spin=1/2):	Name: Charge: Mass:	$ \begin{array}{r} \text{down} \\ -\frac{1}{3} \\ 0.005 \end{array} $	$ \begin{array}{r} \text{up} \\ \frac{2}{3} \\ 0.002 \end{array} $	strang - 0	$\frac{1}{3}$	m bo $\frac{2}{3}$	ttom $-\frac{1}{3}$ 5	$ top $ $ \frac{\frac{2}{3}}{3} $ $ 173.1 $
Leptons (spin=1/2):	Name: Charge: Mass:	e^{-} -1 0.000511		$ u_e $ $ 0 $ $ 0 $	μ ⁻ -1 0.106	$\begin{array}{c} \nu_{\mu} \\ 0 \\ \sim 0 \end{array}$	$ \begin{array}{c} \tau^-\\ -1\\ 1.777 \end{array} $	$\begin{array}{c} \nu_{\tau} \\ 0 \\ \sim 0 \end{array}$
Gauge bosons (spin=1):	Name: Charge: Mass:	photon	$\begin{pmatrix} \gamma \\ 0 \\ 0 \end{pmatrix}$	W^{\pm} ± 1 80.4	Z^0 0 91.2	glı	uon (g) 0 0	_

Figure 2.1: Standard Model Particles - Table of spin $\frac{1}{2}$ and spin 1 particles comprising the standard model. All masses in GeV. (Proton mass = 0.938 GeV.) Not shown: antiparticles of quarks, leptons.

2.1.1 The Standard Model Particles

2.1.1.1 Fermions

The first category of SM particles are those with spin $\frac{1}{2}$, these particles are known as fermions. Fermions are further broken down based on their interactions with other particles and their physical properties. All fermions interact via the weak force and possess a property known as weak isospin. Fermions that do not have strong interactions are known as leptons and have an integer electric charge. Fermions that interact with weak, electromagnetic and strong forces are known as quarks, they have strong color charge (see section 2.1.2.3), weak isospin and fractional electric charge. Fermions are also divided into generations. The first generation, comprised of the up, down, electron and electron neutrino are the lightest particles and thus do not decay. Everyday matter is comprised of electrons, protons and neutrons where the proton is made up of two up quarks and a down quark and the neutron is made up of one up

quark and two down quarks.

2.1.1.2 Gauge Bosons

The second category of particles are those with spin 1, these particles are known as gauge bosons. Gauge bosons serve as the mediators of the electromagnetic, weak and strong forces. The electromagnetic force is mediated by the massless and chargeless photon and described by QED. The weak force is mediated by three massive particles known as the W^+ , W^- and the Z^0 . These three particles coupled with the photon are combined written together as one force known as the electroweak force. Finally, the strong force is mediated by eight massless self interacting gluons described by QCD. More details of the SM forces can be found in section 2.1.2.

2.1.1.3 Higgs Boson

The final particle of the SM is the yet undiscovered spin 0 scalar known as the Higgs boson. The experimental collaborations comprising both the LHC and the Tevatron have been putting great effort into the discovery of this particle and the determination of its mass (see section 2.2.1). The coupling constants of the Higgs boson to the other fundamental particles determine a particle's mass. For example, the top quark has an especially strong Higgs coupling and is thus very massive.

2.1.2 The Standard Model Forces

The standard model has three forces each governed by a fundamental theory of nature and mediated by gauge bosons. While QED, the weak interaction and QCD are well modelled, a satisfactory theory of quantum gravity has yet to be worked out. A summary of particle interactions can be found in figure 2.2.

Figure 2.2: Summary of Standard Model Interactions - Summary of Standard Model particle interactions and their mediators.

2.1.2.1 Quantum Electrodynamics

QED describes the interaction of electrically charged particles through the meditation of a chargeless photon. It is simplest of all the forces to model and can be reduced to combinations of the Feynman diagrams shown in figure 2.3. It states that a charged particle, represented as e, can emit or absorb a photon. While simple, all QED