MAT

1. termín 2018/2019

skupina C

(žltý papier)

9. január 2019

1 príklad (10b)

 ${\bf V}$ jazyce teorie grupoidů s funkčním symbolem f uveďte formuli, která je negací zákona o krácení převedenou do prenexního tvaru.

2 príklad (15b)

Buď L jazyk s rovností, unárním funkčním symbolem f a ternárním predikátovým symbolem p. Uvažujme formule: $\varphi \equiv p(x,y,z) \rightarrow p(z,y,x), \ \chi \equiv (x,y,x) \rightarrow x = y, \ \psi \equiv p(x,f(x),f(f(x)))$ a teorii $T = \{\varphi,\chi,\psi\}.$

- (1) Nechť \mathcal{M} je realizace jazyka L, jejímž univerzem je množina \mathbb{R} všech reálných čísel, kde $f_{\mathcal{M}}(a) = a^2$ a $p_{\mathcal{M}}(a,b,c) \Leftrightarrow a \leq b \leq c$. Rozhodněte a) zda $\mathcal{M} \models \varphi$, b) při jakém ohodnocení proměnných e platí $\mathcal{M} \models \chi[e]$, c) zda $\mathcal{M} \models \neg \psi$.
- (2) V realizaci M navrhnete univerzum \mathbb{R} nějakou jeho prodmožinu tak, aby vznikla realizace \mathcal{M}' , pro kterou bude platit $\mathcal{M}' \models T$.

3 príklad (15b)

Uvažujme grupoid $\mathcal{A}=(\mathbb{Z},*)$, kde $x*y=\lfloor\frac{x+y}{2}\rfloor$ a $\lfloor x\rfloor$ značí dolní celou část reálného čísla x (tj. největší celé číslo y s vlastností $y\leq x$). Dále uvažujme grupoid $\mathcal{B}=(\mathbb{R},\star)$ kde $x\star y=\frac{x+y}{2}$.

- (1) Popište podgrupoid grupoidu \mathcal{A} generovaný množinou $\{-2,5\}$.
- (2) Určete nějaký podgrupoid grupoidu \mathcal{B} , který je homomorfním obrazem grupoidu \mathcal{A} .

4 príklad (15b)

Napište tabulku operace násobení v GF(4). Jako ireducibilní polynom použijte $x^2 + x + 1$ a prvky tělesa GF(4) vyjádřete v tabulce jako vektory se souřadnícemi v bázi $\{1, \alpha\}$, kde α je primitivní prvek.

5 príklad (10b)

Buď ρ binární relace na množine X a pro libovolné $x,y\in X$ položme

$$d(x,y) = \begin{cases} 3, & \text{jestliže } x\rho y, \\ 0, & \text{jestliže } \neg (x\rho y). \end{cases}$$

Určete nutnou a postačující podmínku (vlastnosť relace ρ) pro to, aby d byla metrika na množine X.

6 príklad (15b)

V souvislém rovinném grafu mají všechny uzly stejný stupeň, který je sudý, a počet buněk je 98. Určete počet hran tohoto grafu.