FINAL CODE

Team ID	PNT2022TMID19640
Project Name	Real-time river water quality monitoring and control system

CODE:

Import common libraries import numpy as np import pandas as pd

import matplotlib.pyplot as plt

Import the PyGeohydro libaray tools import pygeohydro as gh

from pygeohydro import NWIS, plot

Use the national water info system(NWIS) nwis = NWIS()

Specify date range of interest

dates = ("2020-01-01", "2020-12-31")

```
# Filter stations to have only those with proper dates
stations = info box[(info box.begin date <= dates[0]) &
(info box.end date >= dates[1])].site no.tolist()
     Remove duplicates by converting to
#
a set stations = set(stations)
# Specify characteristics of interest
select_attributes = ['CAT_BASIN_AREA', 'CAT_ELEV_MAX',
'CAT_STREAM_SLOPE']
# Initialize a storage matrix
nldi data = np.zeros((len(flow data.columns), len(select attributes)))
     Loop through all gages, and request NLDI data near each
#
gage for i, st in enumerate(flow data.columns):
  # Navigate up all flowlines from gage
  flowlines = NLDI().navigate byid(fsource = 'nwissite',
                    fid = f'\{st\}',
                    navigation="upstreamTributaries",
                    source = 'flowlines',
                    distance = 10)
```

```
# Get the nearest comid
station_comid = flowlines.nhdplus_comid.to_list()[0]

# Source NLDI local data
nldi_data[i,:] = NLDI().getcharacteristic_byid(station_comid,
"local", char_ids = select_attributes)
```