SpiNNaker-based implementation of visual systems

Garibaldi Pineda García

Supervisor: Stephen B. Furber

Contents

1	Inti	roduction	4		
	1.1	Neural codes and vision	5		
	1.2	Common cameras as spike train sources	5		
2	Neural models and spike codes				
	2.1	Introduction	7		
	2.2	Neurons and responses	7		
	2.3	Coding schemes	7		
	2.4	Conclusions	7		
3	Retinal models and their implementation				
	3.1	Introduction	9		
	3.2	Retinal structure	9		
	3.3	Retinal models	9		
	3.4	Spike coding	9		
	3.5	Conclusions	9		
4	Neuromorphic hardware/SpiNNaker				
	4.1	Introduction	11		
	4.2	Classic computing	11		
	4.3	Neuromorphic trends	11		
	4.4	Event-based model	11		
	4.5	SpiNNaker	11		
	4.6	Conclusions	11		
5	Rank-ordered encoded image benchmarking				
	5.1	Introduction	13		
	5.2	Dataset creation	13		
	5.3	Classification algorithms	13		
	5.4	SpiNNaker implementation	13		
	5.5	Results			

	5.6	Conclusions	13
6	Cor	nclusions and plans	14
	6.1	Conclusion	15
	6.2	Further work	15
	6.3	Plans for second and third year	15

Chapter 1 Introduction

- 1.1 Neural codes and vision
- 1.2 Common cameras as spike train sources

Neural models and spike codes

- 2.1 Introduction
- 2.2 Neurons and responses
- 2.3 Coding schemes
- 2.4 Conclusions

Retinal models and their implementation

- 3.1 Introduction
- 3.2 Retinal structure
- 3.3 Retinal models
- 3.4 Spike coding
- 3.5 Conclusions

Neuromorphic hardware/SpiNNaker

- 4.1 Introduction
- 4.2 Classic computing
- 4.3 Neuromorphic trends
- 4.4 Event-based model
- 4.5 SpiNNaker
- 4.6 Conclusions

Rank-ordered encoded image benchmarking

- 5.1 Introduction
- 5.2 Dataset creation
- 5.3 Classification algorithms
- 5.4 SpiNNaker implementation
- 5.5 Results
- 5.6 Conclusions

Chapter 6 Conclusions and plans

- 6.1 Conclusion
- 6.2 Further work
- 6.3 Plans for second and third year

Bibliography