Logistics systems planning I Optimization of logistics systems Transportation planning—Shortest path problems

Univ.-Prof. Dr. Michael Schneider

Deutsche Post Chair – Optimization of Distribution Networks (DPO)
RWTH Aachen University

 $\verb|schneider@dpo.rwth-aachen.de|\\$

Course agenda

- Fundamentals
- Transportation planning
 - Introduction
 - Shortest path problems
 - Minimum spanning tree problem
 - Traveling salesman problem
 - Vehicle routing problems
 - Arc routing problems
- Warehouse planning
- 4 Introduction to location planning

Problem definition and applications Network flow models A generic shortest path algorithm Pulling and reaching algorithm

Goals of the section:

- classify types of shortest path problems
- know LP formulations
- understand optimality conditions and a generic shortest path algorithm
- know prerequisites of different algorithms
- manually carry out the algorithms

Agenda

- Shortest path problems Part I
 - Problem definition and applications
 - Network flow models
 - A generic shortest path algorithm
 - Pulling and reaching algorithm

Network flow models A generic shortest path algorithm Pulling and reaching algorithm

Shortest path problem – real

,ÄúWhich is the shortest/fastest/cheapest path from A to B,Äù

Network flow models A generic shortest path algorithm Pulling and reaching algorithm

Shortest path problems – Applications

- Route planners: software or web services to plan trips
- Logistics systems: efficient design of distribution systems (shortest or fastest route in a transportation system)
- Base data: geographical information systems (GIS) provide distance matrices as input data for route planning. Knowledge of spatial and temporal distances is a prerequisite for the majority of advanced planning problems in transportation
- Problem structure: Shortest path problems as subproblems or auxiliary problems in many other optimization problems (e.g., vehicle routing, lot sizing, ...)

Weight or length of a walk

Length of a walk

In a weighted digraph (V, A, c_{ij}) , the length of a walk $P = (v_1, a_1, v_2, a_2, \dots, v_p)$ is defined as

$$c(P) := \sum_{i=1}^{p-1} c_{a_i} = \sum_{i=1}^{p-1} c_{v_i, v_{i+1}}.$$

- Negative weights natural in many applications: revenue/costs, column generation, Lagrangian relaxation
- If some weights $c_{ij} < 0$ (negative), walks with c(P) < 0 can occur. It is then possible that no walk P with minimum length between s and t exists.

Network flow models A generic shortest path algorithm Pulling and reaching algorithm

Example: Cycles of negative length

- \blacksquare Cycle $C_1 = (2, 4, 3, 2)$ with length 0
- Cycle $C_2 = (2, 4, 6, 3, 2)$ with length -1, i.e., cycle of negative length
- No shortest walk from s = 1 to t = 6 exists!
 - walk $K_1 = (1, 4, 6)$ has length 4.
 - walk $K_2 = (1, 4, 6, 3, 2, 4, 6)$ has length 4 1 = 3
 - walk $K_3 = (1, \overline{4, 6, 3, 2, 4}, 6, 3, 2, 4, 6)$ has length 4 2 = 2
 - walk $K_4 = (1, \frac{\overline{4,6,3,2,4,6,3,2,4},6,3,2,4}{6,3,2,4,6})$ has length 4-3=1 etc.

Network flow models A generic shortest path algorithm Pulling and reaching algorithm

Cycles of negative length

- Finite digraphs contain a finite number of paths \rightarrow the problem of finding a shortest path is always well-defined.
- Example on last slide: (1, 3, 2, 4, 6) is a shortest 1-6-path with length -2.

Shortest path – problem variants

- Different variants: Find (a) shortest path(s)
 - \blacksquare between node s and node t (s and t given)
 - between node s and all other nodes in the graph $t \neq s$ (s given)
 - \blacksquare between all pairs of nodes (s, t)
- Algorithms to solve shortest path problems have different prerequisites:
 - arbitrary vs. non-negative arc weights
 - digraphs with vs. without cycles
 - existence of cycles of negative length

Agenda

- Shortest path problems Part I
 - Problem definition and applications
 - Network flow models
 - A generic shortest path algorithm
 - Pulling and reaching algorithm

A generic shortest path algorithm Pulling and reaching algorithm

SPP models - problem definition

- Find a shortest (cost-minimal) path between two nodes in a graph
- Given:
 - weighted digraph D = (V, A, c) with length c_{ii} for all arcs $(i, i) \in A$
 - start node (source) $s \in V$
 - destination node (=sink) $t \in V$
- We seek:
 - \blacksquare the information which arcs (i, j) are contained in the shortest path
 - \rightarrow decision variables $x_{ii} \in \{0, 1\}$
 - \blacksquare equivalent to $0 < x_{ii} < 1$ or $x_{ii} > 0$
- Prerequisite for following models: no cycles of negative length in $D = (V, A, c) \rightarrow$ follows directly from non-negative arc weights $c_{ii} > 0$ or if the digraph is acyclic

A generic shortest path algorithm Pulling and reaching algorithm

Shortest path problem – model I

- Idea: transshipment problem with
 - start $s \in V$ with supply of 1 unit
 - \blacksquare destination node $t \in V$ with demand of 1 unit
 - all other nodes are transshipment nodes; no capacity constraints

$$z_{SP} = \min \sum_{(i,j) \in A} c_{ij} x_{ij} \tag{1}$$

s.t.
$$\sum_{(i,j)\in\delta^{+}(i)}^{(i,j)\in A} x_{ij} - \sum_{(h,i)\in\delta^{-}(i)} x_{hi} = \begin{cases} +1 & i = s \\ -1 & i = t \\ 0 & s, t \neq i \in V \end{cases}$$

$$x_{ij} \geq 0 \text{ (or } \in \{0,1\}) \quad \forall (i,j) \in A$$
 (3)

(1) Minimize length of path; (2) flow conservation; (3) NNC

Shortest path problems - Part I

Problem definition and applications Network flow models A generic shortest path algorithm Pulling and reaching algorithm

Example model I

All *s-t*-paths [length]:

Model (explicit):

12

A generic shortest path algorithm Pulling and reaching algorithm

Shortest path problem - model II

- Model to determine simultaneously all shortest paths from a given node $s \in V$ to all other nodes $v \in V$, $v \neq s$
- Prerequisite: no cycles of negative length and D = (V, A) is connected (each node is reachable from s)

Model:

$$\min \sum_{(i,j)\in A} c_{ij} x_{ij} \tag{4}$$

s.t.
$$\sum_{(i,j)\in\delta^{+}(i)} x_{ij} - \sum_{(h,i)\in\delta^{-}(i)} x_{hi} = \begin{cases} |V|-1 & i=s \\ -1 & i\in V, i\neq s \end{cases}$$
 (5)

$$x_{ij} \ge 0 \text{ (bzw. } \in \mathbb{Z}_+) \quad \forall (i,j) \in A$$
 (6)

LSP / OLS

Shortest path problem - Solution model II

Solution for source s and resulting shortest paths tree:

Question: Which values do the x_{ij} of the blue arcs take?

$$x_{s1} = 9, x_{12} = 1, x_{15} = 7, x_{56} = 6, x_{63} = 2 \dots x_{79} = 1$$

DPO LSP / OLS

A generic shortest path algorithm Pulling and reaching algorithm

Shortest paths tree

- In a shortest path tree, the unique path from s to node i corresponds to the sought-after shortest path from s to i
- Node pred(i) is the predecessor node of node i in the corresponding shortest path
- To determine all shortest paths from source s to all nodes of the digraph, knowledge of the predecessor node pred(i) for $i \in V \setminus \{s\}$ is sufficient. The shortest path to node *j* results from .Äúreading backwards from destination to start.Äù by means of the predecessor function $pred(\cdot)$
- Start sequences of shortest paths are shortest paths themselves

Agenda

- Shortest path problems Part I
 - Problem definition and applications
 - Network flow models
 - A generic shortest path algorithm
 - Pulling and reaching algorithm

Shortest path algorithms

Different prerequisites

- arbitrary vs. non-negative arc weights
- digraphs with vs. without cycles
- lacktriangle existence of cycles of negative length ightarrow in the following, we assume that such cycles do not occur

Algorithms

- Pulling and reaching algorithm for digraphs without cycles
- Dijkstra algorithm for digraphs with non-negative arc weights, i.e., $c_{ii} \ge 0$ for all $(i, j) \in A$
- FIFO algorithm for arbitrary digraphs
- Floyd-Warshall algorithm to determine shortest paths between all pairs of nodes for arbitrary digraphs

LSP / OLS

Labeling algorithms I

- Labeling algorithms are often used to solve shortest path problems
- We first consider s-to-all shortest path problems
- For each node $i \in V$, a label d(i) is
 - \blacksquare the length of an (arbitrary) path from s to i, or
 - **a** an upper bound for the length of such a path (also $d(i) = \infty$ is allowed)

Labeling algorithms II

If the inequality $d(j) > d(i) + c_{ij}$ holds for an arc $(i,j) \in A$, we use the following update to get a new label for node j

$$d(j) := d(i) + c_{ij}$$

 $pred(j) := i$

Labeling algorithms III

- Labeling algorithms are iterative procedures
- Start with upper bounds d(i) for the lengths of shortest paths from the source s to the nodes i
- Successively decrease the values d(j) (\rightarrow update) until they correspond to the actual length of a shortest path
- It holds d(s) := 0, and, in general, $d(i) := \infty$ for $i \in V, i \neq s$ at the beginning

Path optimality conditions I

Path optimality conditions

Given a weighted digraph $D = (V, A, c_{ii})$ and a set of labels d(i), $i \in V$, the following holds:

- \blacksquare for each node $v \in V$, d(v) is the length of a shortest path from s to v, iff
- \blacksquare for all arcs $(i, j) \in A$, the labels satisfy the path optimality conditions

$$d(j) \leq d(i) + c_{ij}.$$

Path optimality conditions

Conditions (Path-Opt) are optimality conditions for labels d(i), i.e., their validity implies that the labels specify the lengths of the shortest paths.

Proof: Assume that conditions (Path-Opt) are fulfilled for labels d(i). We have to show that each label d(i) is also a lower bound for the length of an arbitrary path from s to j. For such a path $P = (s = i_0, i_1, \dots, i_l = i)$, the following holds:

$$c(P) = \sum_{k=1}^{L} c_{i_{k-1}, i_{k}}$$

$$\geq \sum_{k=1}^{L} (d(i_{k}) - d(i_{k-1}))$$

$$= d(i_{L}) - d(i_{0}) = d(j) - d(s) = d(j).$$

Because path P can also be a shortest path, d(i) is an upper and lower bound for the length of a shortest path at the same time.

Generic shortest path algorithm

Algorithm 1: Generic algorithm

```
// Initialization
SET d(s) := 0, pred(s) := undef
SET d(j) := \infty for all j \in V \setminus \{s\}
// Loop
while optimality conditions violated do

SELECT arc (i,j) \in A with d(j) > d(i) + c_{ij}
SET d(j) := d(i) + c_{ij}
SET pred(j) := i
// Output: predecessor pred(\cdot) and distances d(\cdot)
```

Different shortest path algorithms only differ in the selection rule for arcs. Typically:

- \blacksquare outer loop over nodes $i \in V$
- inner loop over all arcs $(i,j) \in \delta^+(i)$ [or $(j,i) \in \delta^-(i)$]

Label setting vs. label correcting

- Label setting algorithms (LSA)
 - in each iteration (outer loop) the label of one node is fixed to its final value. This is achieved by means of the node selection rule
 - potentially several labels are modified within one iteration of the outer loop
 - prerequisites: acyclic graph or non-negative arc weights
- Label correcting algorithms (LCA)
 - can modify all labels multiple times until the optimality conditions simultaneously hold for all arcs $(i,j) \in A$
 - often use simpler selection rules compared to LSA → potentially better average-case performance, but usually inferior concerning worst-case performance
 - LCA have no prerequisites concerning the weighted digraph (besides that no cycles of negative length are allowed)

Agenda

- Shortest path problems Part I
 - Problem definition and applications
 - Network flow models
 - A generic shortest path algorithm
 - Pulling and reaching algorithm

Acyclic graphs and topological sorting I

■ In acyclic digraphs, nodes can be presorted such that label setting algorithms to solve the shortest path problem with source s require $\mathcal{O}(|A|)$ steps

Topological sorting

A sorting (v_1, v_2, \dots, v_m) of all nodes of digraph D is called topological sorting if only arcs from a node with smaller index to a node with larger index exist. Formally:

$$(v_i, v_j) \in A \Rightarrow i < j.$$

Acyclic graphs and topological sorting II

- Iterative procedure to generate topological sorting
 - remove randomly one of the nodes without predecessor together with all incident arcs
 - 2 repeat until no node can be removed anymore
- In an acyclic graph, the procedure ends with an empty graph (with 0 nodes). Otherwise a subgraph exists, in which each node has at least one predecessor.
- A digraph can be topologically sorted iff it is acyclic

Acyclic graphs and topological sorting: Example

Topological sorting:

Acyclic graphs and topological sorting III

- Assume that nodes $V = \{1, 2, \dots, m\}$ are already topologically sorted, and the labels d(i) with i = 1, ..., k of the first k nodes satisfy the optimality conditions. Then:
 - \blacksquare the labels d(i) of i = 1, ..., k are not modified anymore because $d(i) > d(i) + c_{ii}$ can only hold for nodes i > k
 - \blacksquare only labels for nodes $k+1,\ldots,m$ must be set
 - \blacksquare in particular: for node i = k + 1, all potential predecessors possess their final evaluation
- These observations lead directly to the so-called pulling algorithm

Pulling algorithm

```
Nodes V = \{s = 1, 2, ..., m\} are already topologically sorted as (s = 1, 2, ..., m).
```

Algorithm 2: Pulling algorithm

Pulling algorithm: Example

Node j	Predecessor $\delta^-(j)$	$d(i) + c_{ij}$	d(j)	pred(j)		
(Initialization)						
1	_ '		d(1) = 0	pred(1) = undef		
(Loop)						
2	(1, 2)	2	d(2) = 2	pred(2) = 1		
3	(1,3),(2,3)	8, 9	d(3) = 8	pred(3) = 1		
4	(1,4),(2,4)	5, 4	d(4) = 4	pred(4) = 2		
5	(2,5),(3,5)	10, 11	d(5) = 10	pred(5) = 2		
6	(3,6), (4,6), (5,6)	14, 16, 13	d(6) = 13	pred(6) = 5		
7	(3,7), (5,7), (6,7)	12, 17, 15	d(7) = 12	pred(7) = 3		

Reaching algorithm

```
Nodes V = \{s = 1, 2, ..., m\} are already topologically sorted as
(s = 1, 2, \ldots, m).
```

Algorithm 3: Reaching algorithm

```
// Initialization
SET d(s) := 0, pred(s) := undef
SET d(i) := \infty for all i \in V \setminus \{1\}
// Loop
for i = 1, \ldots, m-1 do
     for (i, j) \in \delta^+(i) do
    if d(j) > d(i) + c_{ij} then
SET d(j) := d(i) + c_{ij}
SET pred(j) := i
    Output: predecessor pred(\cdot) and distances d(\cdot)
```

DPO

Reaching algorithm: Example

Node i	Successor $\delta^+(i)$	$d(i) + c_{ij}$	modified $d(j)$	pred(j)
(Initialization)		d(1) = 0	pred(1) = undef	
(Loop)	ŕ		, ,	. , ,
ì	(1, 2), (1, 3), (1, 4)	2, 8, 5	d(2) = 2, d(3) = 8, d(4) = 5	pred(2) = 1, pred(3) = 1, pred(4) = 1
2	(2,3), (2,4), (2,5)	9, 4, 10	d(4) = 4, d(5) = 10	pred(4) = 2, pred(5) = 2
3	(3,5), (3,6), (3,7)	11, 14, 12	d(6) = 14, d(7) = 12	pred(6) = 3, pred(7) = 3
4	(4, 6)	16	.,,,,,	. ()
5	(5, 6), (5, 7)	13, 17	d(6) = 13	pred(6) = 5
6	(6, 7)	15	• •	. , ,
7				