Probabilidad

Victoria Torroja Rubio 8/9/2025

Índice general

1. Estructuras sobre las partes de un conjunto

Profesora: Elena Landáburu

Correo: elenalan@ucm.es

Despacho: 409 Evaluación:

■ 80 % Examen final (común para todos los grupos)

■ 20 % Evaluación continua (ejercicios a entregar en clase)

Bibliografía: Teoría de la probabilidad de Pilar Ibarrola

Temas:

- ullet Estructuras sobre las partes de un cojunto (límites, álgebra, σ -álgebras).
- Probabilidad (sucesos, probabilidad condicionada, teorema de la probabilidad total y teorema de Bayes).
- Variables aleatorias unidimensionales (discretas, absolutamente continuas, mixtas).
- Modelos de probabilidad (discretos, continuos).
- Variables aleatorias bidimensionales (discretas, continuas).
- Regresión y correlación.
- Convergencia de sucesiones de variables aleatorias.

Capítulo 1

Estructuras sobre las partes de un conjunto

Sea Ω un cojunto fijo que en lo sucesivo se denominará **espacio total**. Consideramos el conjunto $\mathcal{P}(\Omega)$ de las partes de Ω .

Recibirá el nombre de sucesión de conjuntos toda aplicación de \mathbb{N} en $\mathcal{P}(\Omega)$ y se representará por $\{A_n\}_{n\in\mathbb{N}}\subset\mathcal{P}(\Omega)$.

Definición 1.1 (Límite inferior). Se denomina **límite inferior** de la sucesión $\{A_n\}_{n\in\mathbb{N}}$ y se representa por líminf A_n al conjunto de los puntos de Ω que pertenecen a todos los A_n , excepto a lo sumo a un número finito de ellos.

Podemos apreciar que también se puede definir el límite inferior como el conjunto de puntos de Ω cuyos elementos pertenecen a todos los A_n desde un n en adelante.

Definición 1.2 (Límite superior). Se denomina límite superior de la sucesión $\{A_n\}_{n\in\mathbb{N}}$ y se representa por lím sup A_n , al conjunto de los puntos de Ω que pertenecen a infinitos A_n .

Observación. Podemos observar que las definiciones anteriores caracterizan a dos conjuntos que pueden ser distintos. En efecto, si $x \in \{A_{2n}\}_{n \in \mathbb{N}}$, tenemos que $x \in \limsup A_n$ pero $x \notin \liminf A_n$.

Proposición 1.1. Sea $\{A_n\}_{n\in\mathbb{N}}$ una sucesión de conjuntos. Se cumple:

$$\liminf A_n = \bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty} A_n, \quad \limsup A_n = \bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} A_n.$$

Demostración. (i) Demostramos la primera igualdad. En primer lugar, si $x \in \lim\inf A_n$ tenemos que existe $N \in \mathbb{N}$ tal que $\forall n \geq N, x \in A_n$, así, $x \in \bigcap_{n=N}^{\infty} A_n$. De esta forma,

$$x\in\bigcup_{k=1}^\infty A_n$$
. Por tanto, lím ínf $A_n\subset\bigcup_{k=1}^\infty\bigcap_{n=k}^\infty A_n$. Recíprocamente, si $x\in\bigcup_{k=1}^\infty\bigcap_{n=k}^\infty A_n$ tenemos que existe un $N\in\mathbb{N}$ tal que $\forall n\geq N,\,x\in\bigcap_{n=N}^\infty A_n$. Es decir, tenemos que a partir de un número $N,\,x$ pertenece a todos los A_n , por lo que $x\in$ lím ínf A_n . De esta manera $\bigcup_{n=1}^\infty\bigcap_{n=k}^\infty A_n\subset$ lím ínf A_n y queda demostrada la igualdad.

(ii) Si $x \in \limsup A_n$, tenemos que x pertenece a infinitos A_n , por lo que para cualquier $n_0 \in \mathbb{N}$, existe $n \geq n_0$ tal que $x \in A_n$. Así, tenemos que $\forall k \in \mathbb{N}, x \in \bigcup A_n$, es decir,

$$x \in \bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} A_n$$
. Así, queda demostrado que lím sup $A_n \subset \bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} A_n$. Recíprocamente, si $x \in \bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} A_n$, tenemos que $\forall k \in \mathbb{N}, \ x \in \bigcup_{n=k}^{\infty} A_n$, por lo que debe ser que x está en infinitos A_n , es decir, $x \in \text{lím sup } A_n$. Así, $\bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} A_n \subset \text{lím sup } A_n$ y queda

si
$$x \in \bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} A_n$$
, tenemos que $\forall k \in \mathbb{N}, x \in \bigcup_{n=k}^{\infty} A_n$, por lo que debe ser que x

demostrada la igualdad.

Proposición 1.2. Para toda sucesión $\{A_n\}_{n\in\mathbb{N}}\subset\mathcal{P}\left(\Omega\right)$ se verifica que lím ínf $A_n\subset\mathbb{N}$ $\limsup A_n$.

Demostración. Si $x \in \text{lím inf } A_n$, tenemos que x pertenece a todos los A_n sin, como mucho, un número finito de ellos. Por tanto, es trivial que $x \in \limsup A_n$, puesto que pertenece a infinitos A_n .

Definición 1.3 (Sucesión convergente). Se dice que una sucesión $\{A_n\}_{n\in\mathbb{N}}\subset\mathcal{P}(\Omega)$ es **convergente** si lím ínf $A_n =$ lím sup A_n , y en este caso el límite de la sucesión es

$$\lim_{n\to\infty} A_n = \liminf A_n = \limsup A_n.$$

Definición 1.4 (Sucesión monótona). La sucesión $\{A_n\}_{n\in\mathbb{N}}$ es monótona creciente o **expansiva** si $\forall n \in \mathbb{N}$ se tiene que $A_n \subset A_{n+1}$.

Similarmente, la sucesión $\{A_n\}_{n\in\mathbb{N}}$ es monótona decreciente o contractiva si $\forall n\in\mathbb{N}$ \mathbb{N} se tiene que $A_n \supset A_{n+1}$.

Proposición 1.3. Toda sucesión monótona creciente o decreciente tiene límite.

Demostración. Como hemos visto antes, dado que $\liminf A_n \subset \limsup A_n$ para cualquier $\{A_n\}_{n\in\mathbb{N}}$, basta con demostrar que el límite superior es subconjunto del límite inferior.

(i) Supongamos primero que la sucesión $\{A_n\}_{n\in\mathbb{N}}\subset\mathcal{P}\left(\Omega\right)$ es decreciente. Así, tenemos que $\forall n\in\mathbb{N},\ A_n\subset A_{n-1}$. De esta manera, si $x\in\lim\sup A_n$, tenemos que existe una subsucesión $\{A_{n_j}\}_{j\in\mathbb{N}}$ tal que $x\in A_{n_j},\ \forall j\in\mathbb{N}$. Así, para cualquier $k\in\mathbb{N}$, podemos coger $n_j\in\mathbb{N}$ suficientemente grande tal que $n_j\geq k$. Así, tenemos que, por ser la sucesión decreciente,

$$A_{n_i} \subset A_{n_i-1} \subset \cdots \subset A_k \subset \cdots \subset A_1$$
.

De esta manera, está claro que $x \in A_k$. Así, hemos demostrado que x pertenece a todos los A_k , por lo que $x \in \liminf A_n$ y la sucesión converge.

(ii) Supongamos que la sucesión $\{A_n\}_{n\in\mathbb{N}}$ es creciente, es decir, $\forall n\in\mathbb{N}$ se tiene que $A_n\subset A_{n+1}$. Entonces, si $x\in \limsup A_n$ tenemos que existe una subsucesión $\{A_{n_j}\}_{j\in\mathbb{N}}$ tal que x pertenece a todos los A_{n_j} . Así, para n_1 tenemos que

$$x \in A_{n_1} \subset A_{n_1+1} \subset \cdots$$
.

De esta manera, x pertenece a todos los A_n salvo excepto a un número finito de ellos. Por tanto, $x \in \liminf A_n$ y lím sup $A_n \subset \liminf A_n$, por lo que la sucesión converge.

Definición 1.5 (Semianillo). Dado el espacio total Ω , una clase $\mathcal{C} \subset \mathcal{P}(\Omega)$ tiene una estructura de **semianillo** si

- (a) $\emptyset \in \mathcal{C}$.
- **(b)** $\forall A, B \in \mathcal{C}, A \cap B \in \mathcal{C}.$
- (c) $\forall A, B \in \mathcal{C}$ existe una sucesión finita $C_1, \ldots, C_n \in \mathcal{C}$ con $C_i \cap C_j = \emptyset$, $\forall i \neq j$ tal que $A B = \bigcup_{1 \leq j \leq n} C_j$.

Proposición 1.4. 1. $\forall B \in \mathcal{C}, \forall C_1, \dots, C_n \in \mathcal{C}, \exists A_1, \dots, A_m \in \mathcal{C} \text{ con } A_i \cap A_j = \emptyset, \forall i \neq j \text{ tales que}$

$$B - \bigcup_{i=1}^{n} C_i = \bigcup_{j=1}^{m} A_j.$$

2. Cualesquiera que sean $C_1, \ldots, C_n \in \mathcal{C}, \exists A_1, \ldots, A_m \in \mathcal{C} \text{ con } A_i \cap A_j = \emptyset, \forall i \neq j$ tales que

$$\bigcup_{i=1}^{n} C_i = \bigcup_{j=1}^{m} A_j.$$

3. Cualesquiera que sean $C_1, \ldots, C_n \in \mathcal{C}$ se tiene que $C_1 \cap C_2 \cap \cdots \cap C_n \in \mathcal{C}$.

Demostración. Sea $\mathcal{C} \subset \mathcal{P}(\Omega)$ un semianillo.

1. Si $B, C_1, \ldots, C_n \in \mathcal{C}$, tenemos que

$$B - \bigcup_{1 \le i \le n} C_i = B - (C_1 \cup C_2 \cup \dots \cup C_n) = (B - C_1) \cap (B - C_2) \cap \dots \cap (B - C_n)$$

2. Aplicando que $\emptyset \in \mathcal{C}$ y (c), tenemos que $\exists A_1, \ldots, A_m \in \mathcal{C}$, con $A_i \cap A_j = \emptyset$, $i \neq j$, tales que

$$\bigcup_{1 \le i \le n}.$$

Definición 1.6 (Anillo). Dado el espacio total Ω , una clase $\mathcal{R} \subset \mathcal{P}(\Omega)$ tiene estructura de **anillo** si

- (a) $\forall A, B \in \mathcal{R}, A \cap B \in \mathcal{R}.$
- **(b)** $\forall A, B \in \mathcal{R}, A\Delta B = (A B) \cup (B A).$

Proposición 1.5. 1. $\forall A_1, \dots, A_n \in \mathcal{R}$ se tiene que $\bigcup_{1 \leq i \leq n} A_i \in \mathcal{R}$.

- 2. $\forall A, B \in \mathcal{R}$ se tiene que $A B \in \mathcal{R}$.
- 3. Todo anillo es semianillo.
- 4. La intersección de anillos es un anillo.

Definición 1.7 (Álgebra). Dado el espacio total Ω , una clase $\mathcal{Q} \subset \mathcal{P}(\Omega)$ tiene una estructura de **álgebra** si

- (a) $\Omega \in \mathcal{Q}$.
- (b) $\forall A \in \mathcal{Q}, A^c \in \mathcal{Q}.$
- (c) $A, B \in \mathcal{Q}, A \cup B \in \mathcal{Q}.$

Proposición 1.6. 1. $\forall A, B \in \mathcal{Q}$ se tiene que $A \cap B \in \mathcal{Q}$.

- 2. $\forall A, B \in \mathcal{Q}$ se tiene que $A B \in \mathcal{Q}$.
- 3. $\forall A, B \in \mathcal{Q}$ se tiene que $A\Delta B \in \mathcal{Q}$.
- 4. Para cualquier sucesión finita A_1, \ldots, A_n con $A_i \in \mathcal{Q}, i = 1, \ldots, n$, se tiene que $\bigcup_{1 \le i \le n} A_i \in \mathcal{Q}.$
- 5. Todo álgebra es un anillo.

Demostración. 1. Aplicando (b) y (c) tenemos que

$$A \cap B = (A^c \cup B^c)^c \in \mathcal{Q}.$$

2. Aplicando (b) y el apartado anterior tenemos que

$$A - B = A \cap B^c \in \mathcal{Q}$$
.

3. Aplicando los dos apartados anteriores, está claro que

$$A\Delta B = (A \cup B) - (A \cap B) \in \mathcal{Q}.$$

- 4. Se deduce por inducción a partir de (c).
- 5. Ya hemos visto que se cumple (a), tenemos que ver que se cumple (b).

Definición 1.8 (σ-álgebra). Dado el espacio total Ω , una clase $\mathcal{A} \subset \mathcal{P}(\Omega)$ tiene estructura de σ-álgebra si

- (a) $\Omega \in \mathcal{A}$.
- (b) $\forall A \in \mathcal{A} \Rightarrow A^c \in \mathcal{A}$.
- (c) Dada cualquier sucesión $\{A_n\}_{n\in\mathbb{N}}\in\mathcal{A}$ verifica $\bigcup_{n\in\mathbb{N}}A_n\in\mathcal{A}$.

Proposición 1.7. 1. $\emptyset \in \mathcal{A}$.

- 2. Para cualquier sucesión $\{A_n\}_{n\in\mathbb{N}}$ con $A_n\in\mathcal{A}$ para todo $n\in\mathbb{N}$, se tiene que $\bigcap_{n\in\mathbb{N}}A_n\in\mathcal{A}.$
- 3. Para cualquier sucesión finita A_1,\ldots,A_n con $A_i\in\mathcal{A},\ i=1,\ldots,n,$ se tiene que $\bigcup_{1\leq i\leq n}A_i\in\mathcal{A}.$
- 4. Para cualquier sucesión finita A_1, \ldots, A_n con $A_i \in \mathcal{A}, i = 1, \ldots, n$, se tiene que $\bigcap_{1 \le i \le n} A_i \in \mathcal{A}.$
- 5. Toda σ -álgebra es un álgebra.
- 6. Todo álgebra con un número finito de elementos es σ -algebra.
- 7. Toda σ -álgebra es cerrada respecto de la operación paso al límite para cualquier sucesión.
- 8. La intersección de $\sigma\text{-algebras}$ definidas sobre el mismo espacio total es una $\sigma\text{-}$ álgebra.
- 9. Dada una clase $\mathcal{B} \subset \mathcal{P}(\Omega)$ existe una mínima σ -álgebra que la contiene. Esta será la intersección de todas las σ -álgebras que contengan a \mathcal{B} . Se indicará por $\sigma(\mathcal{B})$.

Demostración. 1. Por (a) y (b) tenemos que $\Omega^c = \emptyset \in \mathcal{A}$.

2. Aplicando (b) y (c), tenemos que

$$\bigcap_{n\in\mathbb{N}}A_n=\left(\bigcup_{n\in\mathbb{N}}A_n^c\right)^c\in\mathcal{A}.$$

En efecto, tenemos que $A_n^c \in \mathcal{A}$ para cada $n \in \mathbb{N}$, por lo que $\bigcup_{n \in \mathbb{N}} A_n^c \in \mathcal{A}$ y su complementario también pertenece a \mathcal{A} .

3. Podemos coger la sucesión $\{A_m\}_{m\in\mathbb{N}}$ tal que $A_m=A_m$ con $1\leq m\leq n,$ y $A_m=\bigcup_{1\leq i\leq n}A_i$ para m>n. Así, está claro que, aplicando (c),

$$\bigcup_{m \in \mathbb{N}} A_m = \bigcup_{1 \le i \le n} A_i \in \mathcal{A}.$$

- 4. Se demuestra de forma análoga al apartado anterior.
- 5. Basta demostrar la condición (c), que es cierto por lo demostrado en 3.

6.

7. Dada una sucesión $\{A_n\}_{n\in\mathbb{N}}\subset\mathcal{P}\left(\Omega\right)$ tal que $A_n\in\mathcal{A},\ \forall n\in\mathbb{N},$ es trivial que si existe $\lim_{n\to\infty}A_n$ debe ser que $\lim_{n\to\infty}A_n=\limsup A_n$. Así, por lo demostrado anteriormente,

$$\limsup A_n = \bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} A_n \in \mathcal{A}.$$

8. Está claro que se cumplen (a) y (b).

Observación. La unión de dos σ -álgebras puede no ser σ -álgebra.

Definición 1.9 (Clase monótona). Dado el espacio total Ω , una clase $\mathcal{M} \subset \mathcal{P}(\Omega)$ tiene estructura de clase monótona si y solo si es cerrada bajo la operación paso al límite para sucesiones monótonas de subconjuntos de \mathcal{M} .

- **Proposición 1.8.** 1. La intersección de dos clases monótonas, del mismo espacio total es otra clase monótona.
 - 2. La intersección de una familia arbitraria de clases monótonas es clase monótona.
 - 3. Dada una clase $\mathcal{B} \subset \mathcal{P}(\Omega)$ siempre existirá una mínima clase monótona que contenga a \mathcal{B} . Se denotará por $\mathcal{M}(\mathcal{B})$. Será la intersección de todas las clases monótonas que contengan a \mathcal{B} .
 - 4. Toda σ -álgebra es clase monótona.
 - 5. Toda clase monótona que sea álgebra, es σ -álgebra.
 - 6. $\mathcal{A} \subset \mathcal{P}(\Omega)$ es σ -álgebra si y solo si $\mathcal{A} \subset \mathcal{P}(\Omega)$ es álgebra y clase monótona.

Definición 1.10. La σ -álgebra engendrada por una clase $\mathcal{B} \subset \mathcal{P}(\Omega)$ es la σ -álgebra más pequeña que contiene a \mathcal{B} que se representa por $\sigma(\mathcal{B})$.

Definición 1.11 (Espacio medible). Al par (Ω, \mathcal{A}) , donde $\mathcal{A} \subset \mathcal{P}(\Omega)$ es una σ -álgebra se le denomina **espacio medible** o **espacio probabizable**. A los elementos de \mathcal{A} se les llama conjuntos medibles.