

Abstract DE 3722893 C1

Spring with spiral-shaped spring arms

A spring with a spring spider type, hollowcylindrical, stiff spring core (1.5) from which spring arms (1.1 to 1.4) extend outwards in a spiral fashion has, through an adhesively joined bond of its outer end to or with a stiff spring frame (1.6), the form of a single-piece spring washer with an elastic element with spiral-shaped gaps (3.1 to 3.4) of equal lengths, each decreasing from its center to the spring core (1.5) and spring frame (1.6), and whose gap endings on the side of the core and the frame are arranged over the washer circumference in such a way that they are uniformly displaced.

BEST AVAILABLE COPY

⑯ BUNDESREPUBLIK

DEUTSCHLAND

DEUTSCHES
PATENTAMT

Patentschrift

⑮ DE 3722893 C1

⑯ Int. Cl. 4:
F16F 1/36

DE 3722893 C1

⑰ Aktenzeichen: P 37 22 893.5-12
⑱ Anmeldetag: 10. 7. 87
⑲ Offenlegungstag: —
⑳ Veröffentlichungstag der Patenterteilung: 9. 6. 88

Innerhalb von 3 Monaten nach Veröffentlichung der Erteilung kann Einspruch erhoben werden

⑷ Patentinhaber:

Messerschmitt-Bölkow-Blohm GmbH, 8012
Ottobrunn, DE

⑷ Erfinder:

Hahn, Michael, 8012 Ottobrunn, DE; Maier, Georg,
8254 Isen, DE

⑶ Für die Beurteilung der Patentfähigkeit
in Betracht gezogene Druckschriften:

DE-PS 8 93 296
DE-OS 32 38 099
DE-OS 21 00 831

⑸ Feder mit spiralförmigen Federarmen

Eine Feder mit nach Art einer Federspinne von einem hohlyzylindrischen, steifen Federkern (1.5) aus spiralförmig nach außen sich erstreckenden Federarmen (1.1 bis 1.4) hat durch eine stoffschlüssige Vereinigung ihrer Außenenden zu oder mit einem steifen Federrahmen (1.6) die Gestalt einer einstückigen Federringsscheibe mit einem Federkörper mit spiralförmigen, gleich langen Spalten (3.1 bis 3.4), welche jeweils von ihrem Zentrum zum Federkern (1.5) und Federrahmen (1.6) hin abnehmen, und deren Spaltenden kern- und rahmenseitig über den Ringscheibenumfang gleichmäßig versetzt angeordnet sind.

DE 3722893 C1

BEST AVAILABLE COPY

ZEICHNUNGEN BLATT 1

Nummer: 37 22 893
Int. CL⁴: F 16 F 1/36
Veröffentlichungstag: 9. Juni 1988

FIG. 1

FIG. 2

FIG. 3

BEST AVAILABLE COPY

Patentansprüche

1. Feder mit nach Art einer Federspinne von einem hohlzylindrischen, steifen Federkern aus spiralförmig nach außen sich erstreckenden Federarmen in stoffschlüssiger Vereinigung ihrer Außenenden zu oder mit einem steifen Federrahmen unter Bildung einer einstückigen Fedarringscheibe mit einem Federkörper mit spiralförmigen, gleich langen Spalten, welche jeweils von ihrem Zentrum zum Federkern und Federrahmen hin abnehmen, und deren Spaltenden kern- und rahmenseitig über den Ringscheibenumfang gleichmäßig versetzt angeordnet sind, gekennzeichnet durch einen Faserstoffaufbau aus Fasern unidirektionaler Orientierung in Erstreckungsrichtung der einzelnen Federarme (1.1 bis 1.4), wobei die beiden jeweils vereinigten Federarmenden durch eine Schärfung bis zum freigegebenen Spalt (3.1, 3.2, 3.3 bzw. 3.4) einander überlappend zusammengefügt sind.
2. Feder nach Anspruch 1, gekennzeichnet durch einen mehrlagigen Faserstoffaufbau aus wenigstens einer Lage (1) der Federarme (1.1 bis 1.4) jeweils zwischen zwei Lagen (2) von Fasern in kreuzweiser Orientierung in der Ringscheibene-

Lagenanzahl folgt von innen nach außen grundsätzlich jeweils auf eine Lage mit Kernlagenstruktur eine Lage mit Decklagenstruktur. Während für die einzelne Decklage 2 eine kreuzweise Faserorientierung in der Ringscheibene vorgesehen ist und sie folglich ein nach der in Fig. 1 dargestellten Federgestalt aus einem Gewebelaminat o. dgl. gestanztes Bauteil sein kann, ist die Kernlage 1 gemäß Fig. 3, als der eigentliche (im wesentlichen die Federwirkung erbringende) Federkörper, eine aus den in den Fig. 4 bis 7 dargestellten spiralförmigen Einzelteilen 1.1.1 bis 1.4.1 jeweils gleicher Größe zusammengesetzte Baueinheit. Dabei weisen diese z. B. in einfacher Faserlegetechnik vorgeformten Einzelteile 1.1.1 bis 1.4.1 eine unidirektionale Faserorientierung in Erstreckungsrichtung auf. Um hieraus die in Fig. 1 und 3 dargestellte Federgestalt bilden zu können, sind gemäß Fig. 3 die Unidirektionalfaserstoff-Einzelteile 1.1.1 bis 1.4.1 in der in Fig. 4 bis 7 dargestellten Lage so zusammengesetzt, daß aus der stoffschlüssigen Vereinigung ihrer Innenseiten ein hohlzylindrischer, steifer Federkern 1.5 und aus der stoffschlüssigen Vereinigung ihrer Außenenden ein steifer Federrahmen 1.6 resultiert. Dazwischen verbleiben spiralförmige, gleich lange Federarme 1.1 bis 1.4 (Fig. 1) infolge spiralförmiger Spalte 3.1 bis 3.4, welche jeweils von ihrem Zentrum aus zum Federkern 1.5 und Federrahmen 1.6 hin abnehmen, und deren Spaltenden kern- bzw. rahmenseitig über den (Feder-)Ringscheibenumfang gleichmäßig, im Beispieldfall um 90° versetzt angeordnet sind. Die dargestellte Form der Spalte 3.1 bis 3.4 ergibt sich zwangsläufig beim Verbund der Unidirektionalfaserstoff-Einzelteile 1.1.1 bis 1.4.1 infolge einer überlappten Fügung ihrer Enden durch eine (in Fig. 3 durch Strichlinien angedeutete) Schärfung bis zum jeweils freigegebenen Spalt 3.1, 3.2, 3.3 bzw. 3.4.

Für diesen Aufbau der Kernlage 1 erfüllen die Decklagen 2 (Fig. 2) im wesentlichen eine stützende und den Verbund der Einzelteile 1.1 bis 1.4 sichernde Funktion, sind also hinsichtlich einer Federwirkung nahezu vernachlässigbar. Da der Faserstoffverbund der Federringsscheibe gemäß der Erfindung allein durch Stoffschlüß gesichert wird bzw. ohne gesonderte Verbindungsmittel zur Bewirkung von Kraft- und/oder Formschluß auskommt, erfüllt die Federringsscheibe in hohem Maße die Forderung nach einer kompakten Bauform bzw. geringem Raumbedarf und ist dabei durch die Möglichkeit der Bestimmung der Federeigenschaften je nach Wahl von Breite, Dicke und Radius der Einzelteile 1.1.1 bis 1.4.1 einem breiten Anwendungsspektrum zugänglich.

Hierzu 2 Blatt Zeichnungen

Beschreibung
Die Erfindung betrifft eine Feder gemäß dem Oberbegriff des Patentanspruchs 1.

Einer derartigen zumeist in feinmechanischen Werkzeugen von Meß- und Regelgeräten verwendeten Feder, beispielsweise gemäß der DE-OS 21 00 831 oder DE-PS 8 93 296 ein Stanzeil aus Federblech, ist bisher die Ausbildung als Faserverbundkunststoffkörper verwehrt, u. a. weil für die dann einzeln zu fertigenden Federbauelemente eine entsprechend feine (raumsparende) und dennoch sichere Verbindungstechnik fehlt.

Der Erfindung liegt die Aufgabe zugrunde, eine Feder der eingangs genannten Art für den sinnvollen Einsatz von faserverstärktem Kunststoff so auszubilden, daß eine relativ einfache Fertigung verbürgt ist.

Diese Aufgabe ist gemäß dem Kennzeichen des Patentanspruchs 1 gelöst. Die Erfindung ermöglicht den Faserstoffaufbau einer Federringsscheibe unter gänzlicher Vermeidung von festigkeitsmindernden Unterteilungen im Wege der Beschränkung auf die Verbindungsicherheit Stoffschlüß. Dies wird durch die in den Unteransprüchen gekennzeichneten Ausgestaltungen der Erfindung weiter verdeutlicht, welche zudem die Nutzungsmöglichkeit von bewährten einfachen FVK-Fertigungstechniken sicherstellen.

Nachfolgend wird ein Ausführungsbeispiel der Erfindung anhand der Zeichnung erläutert. Diese zeigt in

55

Fig. 1 in der Draufsicht eine Federringsscheibe,
Fig. 2 einen vergrößerten Schnitt nach Schnittlinie II-II der Fig. 1.

Fig. 3 die Kernlage gemäß Fig. 2 in der Draufsicht gemäß Fig. 1.

60

Fig. 4 bis 7 je ein Einzelteil der Kernlage gemäß Fig. 3.

Die Federringsscheibe gemäß Fig. 1, z. B. zur Lage-

65

rung eines schwingungsfähigen Bauteils, ist gemäß Fig. 2 ein mehrlagiger Körper aus Faserverbundkunststoff, wie Glasfasern in einer Harz- o. dgl. Bindungsmasse. Der Lagenaufbau weist mindestens eine Kernlage 1 gemäß Fig. 3 mit zwei Decklagen 2 auf; bei größerer

VUNGEN BLATT 2

Nummer: 37 22 893
Int. Cl.4: F 16 F 1/36
Veröffentlichungstag: 9. Juni 1988

FIG. 4

FIG. 5

FIG. 6

FIG. 7

BEST AVAILABLE COPY