NAMA: Dody setiawan NIM:24241007 MATA KULIAH:STRUKTUR DATA

Praktek 1

```
# Praktek 1 : Membuat array
# impor library numpy
import numpy as np

# membuat array dengan numpy
nilai_siswa = np.array([85, 55, 40, 90])

# akses data pada array
print(nilai_siswa[3])
```

Output:

90

Baris 1:

bahwa baris berikutnya akan mengimpor library NumPy, yang digunakan untuk operasi dan array.

Baris 2:

Mengimpor library NumPy dan memberi alias np supaya lebih ringkas saat digunakan. Setelah Bisa menggunakan np.array() untuk membuat array,bukan menulis numpy.array().

Baris 3:

menjelaskan bahwa baris di bawah akan membuat array menggunakan NumPy.

Baris 4:

Membuat sebuah array NumPy berisi nilai siswa: 85, 55, 40, dan 90. Array ini disimpan dalam Variable.

Penjelasan ouputnya:

Program mencetak 90 ke layar karena itu adalah nilai pada indeks ke-3 dari array cara perhitunganya dari nol mulai dari indeks tersebut maka hasil akhirnya 90.

Praktek 2

```
# impor libaray numpy
import numpy as np
# membuat array dengan numpy
nilai_siswa_1 = np.array([75, 65, 45, 80])
nilai_siswa_2 = np.array([[85, 55, 40], [50, 40, 99]])
# cara akses elemen array
print(nilai_siswa_1[0])
print(nilai_siswa_2[1][1])
# mengubah nilai elemen array
nilai_siswa_1[0] = 88
# mengubah nilai elemen array
nilai_siswa_1[0] = 88
nilai_siswa_2[1][1] = 70
# cek perubahannya dengan akses elemen array
print(nilai_siswa_1[0])
print(nilai_siswa_2[1][1])
# Cek ukuran dan dimensi array
print("Ukuran Array : ", nilai_siswa_1.shape)
print("Ukuran Array : ", nilai_siswa_2.shape)
 Outputnya:
75
40
88
Ukuran Array: (4,)
Ukuran Array: (2, 3)
Dimensi Array : 2
Penjelasannya:
```

i enjerasanny

Baris 1

yang menunjukkan bahwa baris selanjutnya akan mengimpor library NumPy

Baris 2

Mengimpor library NumPy dan memberinya alias np agar lebih ringkas saat digunakan dalam Kode.

Baris 3

bahwa kita akan membuat array menggunakan NumPy.

Baris 4

Membuat array 1 dimensi dengan 4 elemen, lalu disimpan ke variabel nilai siswa 1.

Baris 5

Membuat array 2 dimensi (seperti matriks 2x3) yang disimpan dalam nilai_siswa_2.

Baris 6

Yang menandai bahwa kita akan mengakses nilai-nilai dalam array.

Baris 7

Menampilkan elemen pertama dari nilai siswa 1, yaitu 75.

Baris 8

Menampilkan baris ke-2, kolom ke-2 dari nilai siswa 2, yaitu 40.

Baris 9 bahwa kita akan mengubah isi array.

Baris 10

Mengubah elemen pertama dari nilai siswa 1 menjadi 88

Baris 11

Mengubah elemen baris ke-2, kolom ke-2 dari nilai siswa 2 menjadi

70. **Baris 12** bahwa kita akan melihat apakah perubahan berhasil.

Baris 13

Menampilkan elemen pertama dari nilai siswa 1 yang sekarang sudah diubah menjadi 88.

Baris 14

Menampilkan nilai pada nilai_siswa_2[1][1] yang sekarang menjadi 70.

Baris 15 bahwa kita akan mengecek bentuk dan dimensi array.

Baris 16

Menampilkan ukuran (jumlah elemen per dimensi) dari nilai siswa 1.

Hasil: $(4,) \rightarrow \text{array 1 dimensi dengan 4 elemen.}$

Raris 17

Menampilkan ukuran dari nilai siswa 2.

Hasil: $(2, 3) \rightarrow \text{array 2 dimensi, 2 baris dan 3 kolom.}$

Baris 18

Menampilkan jumlah dimensi dari nilai_siswa_2, yaitu 2 (karena bentuknya seperti tabel/baris-Kolom).

Praktek 3

```
# impor library numpy
import numpy as np

# membuat array
a = np.array([1, 2, 3])
b = np.array([4, 5, 6])

# menggunakan operasi penjumlahan pada 2 array
print(a + b)  # array([5, 7, 9])

# Indexing dan Slicing pada Array
arr = np.array([10, 20, 30, 40])
print(arr[1:3])  # array([20, 30])
```

Outputnya:

```
[5 7 9]
[20 30]
10
20
30
40
```

Penjelasannya:

Baris 1

Komentar yang menjelaskan bahwa library NumPy akan diimpor.

Baris 2

Mengimpor library NumPy dan memberi alias np supaya lebih singkat saat digunakan.

```
3 bahwa kita akan membuat array
```

NumPy.

Baris 4

Membuat array a dengan elemen [1, 2, 3].

Baris 5

Membuat array b = np.array([4, 5, 6]**Baris**

6

bahwa kita akan melakukan penjumlahan antar array

Baris 7

Menambahkan array a dan b secara elemen (element-wise):

$$[1+4, 2+5, 3+6] \rightarrow [5, 7, 9].$$

Baris 8 bahwa baris berikut akan menunjukkan teknik mengambil sebagian

isi array. Baris 9

Membuat array arr dengan 4 elemen: [10, 20, 30, 40]

Baris 10

Mengambil elemen dari indeks ke-1 hingga sebelum ke-3 (slicing):

 $arr[1:3] \rightarrow [20, 30]$. Baris 11 bahwa kita akan melakukan iterasi

(perulangan) pada elemen array Baris 12-13

for x in arr:

print(x)

Melakukan loop untuk mencetak setiap elemen dalam array arr.

Praktek 4

Metode Traversal

```
# membuat array
arr = [1, 2, 3, 4, 5]

# Linear Traversal ke tiap elemen arr
print("Linear Traversal: ", end=" ")
for i in arr:
    print(i, end=" ")
print()
```

Outputnya:

```
Linear Traversal: 1 2 3 4 5

** Process exited - Return Code: 0 **

Press Enter to exit terminal
```

Penjelasannya:

Baris 1

Komentar yang menjelaskan bahwa kamu akan membuat array (dalam bentuk list di Python, Bukan numpyarray).

Baris 2

Membuat list bernama arr yang berisi lima elemen: [1, 2, 3, 4, 5].

Baris 3

Komentar bahwa kamu akan melakukan traversal linear, yaitu mengunjungi dan memproses Elemen satu persatu dari ke kiri ke kanan.

Baris 4

Mencetak teks "Linear Traversal: " tanpa pindah ke baris baru (karena end=" " membuat kursor Tetap dibaris yang sama dan menambahkan spasi). **Baris 5–6**

for i in arr: print(i, end=" print(i, end=" ") mencetak setiap elemen diikuti oleh spasi, bukan pindah baris.

Baris 7

Mencetak baris kosong untuk pindah ke baris baru setelah selesai Mencetak semua elemen baru.

Linear Traversal: 1 2 3 4 5

Teks "Linear Traversal: " dicetak terlebih dahulu.

Kemudian setiap elemen 1 2 3 4 5 dicetak di baris yang sama, dipisahkan oleh spasi. Setelah selesai, baris kosong ditambahkan dengan print() untuk menjaga format tampilan.

Praktek 5

```
# membuat array
arr = [1, 2, 3, 4, 5]

# Reverse Traversal dari elemen akhir
print("Reverse Traversal: ", end="")
for i in range(len(arr) - 1, -1, -1):
    print(arr[i], end=" ")
print()

Outputnya:
Reverse Traversal: 5 4 3 2 1

** Process exited - Return Code: 0 **
Press Enter to exit terminal
```

Penjelasannya:

Baris 1

Komentar bahwa kamu akan membuat array (list) di baris berikutnya.

Baris 2

Membuat list arr yang berisi lima elemen dari 1 sampai 5.

Baris 3

Komentar bahwa kamu akan mencetak elemen dari list arr secara terbalik (dari belakang Ke depan.

Baris 4

Mencetak teks "Reverse Traversal: " tanpa pindah baris karena end="" menjaga agar output Selanjutnya dicetak dibaris yang sama. **Baris 5** len(arr) - $1 = 4 \rightarrow$ indeks terakhir (karena jumlah elemen 5 dan indeks mulai dari 0). -1 adalah batas akhir (exclusive) \rightarrow berarti iterasi akan berhenti sebelum mencapai indeks -1, Alias berhenti di 0

```
-1 adalah langkah (step) \rightarrow artinya mundur satu per satu. Jadi, range(4, -1, -1) menghasilkan urutan indeks: 4, 3, 2, 1, 0
```

Untuk setiap indeks i, ambil elemen arr[i] lalu cetak di baris yang sama, dipisahkan dengan spasi.

Baris7

Pindah ke baris baru setelah mencetak semua elemen, agar output rapi.

Penjelasan outputnya:

Reverse Traversal: 5 4 3 2 1

Program mencetak elemen dari indeks terakhir (arr[4] = 5) sampai indeks pertama (arr[0] = 1)

Secara mundur

Semuanya dicetak dalam satu baris setelah teks "Reverse Traversal: ".

Praktek 7

```
# membuat array
arr = [1, 2, 3, 4, 5]

# mendeklarasikan nilai awal
n = len(arr)
i = 0

print("Linear Traversal using while loop: ", end=" ")
# Linear Traversal dengan while
while i < n:
    print(arr[i], end=" ")
    i += 1
print()</pre>
```

Outputnya:

```
Linear Traversal using while loop: 1 2 3 4 5

** Process exited - Return Code: 0 **

Press Enter to exit terminal
```

Penjelasannya:

Baris 1 bahwakamuakanmembuat

array (list).

Baris 2

Membuat list arrberisi 5 elemen: [1, 2, 3, 4, 5]. **Baris 3** bahwavariabel-variabelawalakandidefinisikan. **Baris 4** n menyimpanpanjang (jumlahelemen) dari array arr, yaitu 5.

Baris 5

Variabelidigunakansebagaiindeksawaluntukperulangan. Dimulaidari 0 (indekspertama

Array. Baris 6

Mencetaktekspembuka, tanpapindah baris, karena end=" " menjaga agar output berikutnya Tetep di baris yang sama

7 akanmenggunakanperulangan while untuk traversal.

Baris 8–10

```
Perulanganakanberjalanselamaikurangdari n (panjang array).
arr[i] mencetakelemenke-idari array. end=" " agar semuaelemendicetakdalamsatu baris, dipisahkanspasi.
i += 1 menaikkanindeks agar pindahkeelemenberikutnya.
Loop inimencetak 1 2 3 4 5
```

Baris 11

Pindahke baris barusetelahselesaimencetakelemen array.

Penjelasanoutputnya:

Linear Traversal using while loop: 1 2 3 4 5

Program menelusuri list darielemenpertamahinggaterakhirmenggunakan while, dan Mencetaksemuaelemensecaraberurutan.

Praktek 8

```
# membuat array
arr = [1, 2, 3, 4, 5]

# mendeklarasikan nilai awal
start = 0
end = len(arr) - 1

print("Reverse Traversal using while loop: ", end=" ")
# Reverse Traversal dengan while
while start < end:

    arr[start], arr[end] = arr[end], arr[start]
    start += 1
    end -= 1
print(arr)</pre>
```

Outputnya:

```
Reverse Traversal using while loop: [5, 4, 3, 2, 1]

** Process exited - Return Code: 0 **

Press Enter to exit terminal
```

Penjelasannya:

Baris 1 membuatsebuah array (list).

Baris 2

Membuat list bernamaarrberisielemen [1, 2, 3, 4, 5].

Baris 3 menetapkanvariabelawaluntukindeks traversal.

4–5 start disetkeindekspertama (0).

end disetkeindeksterakhir (len(arr) - 1 = 4).

Variabeliniakandigunakanuntukmenukarelemendariujungketengah.

Baris 6

Mencetaktekssebagaiketerangan, tanpapindahke baris baru (end=" ").

Baris 7 melakukanpembalikanisi array denganperulangan while.

Baris 8–11

Loop akanterusberjalanselama start < end.

Di dalam loop:

Elemen pada posisi start dan end ditukar (swap).

Kemudian start majukekanan (+1) dan end mundurke kiri (-1). Proses inimembalikurutanelemendariluarkedalam.

```
1. start=0, end=4: tukar 1 dan 5 \rightarrow [5, 2, 3, 4, 1] 2. start=1, end=3: tukar 2 dan 4 \rightarrow [5, 4, 3, 2, 1]
```

3. start=2, end=2: kondisi start < end sudahtidakterpenuhi, loop berhenti.

Baris 12

Mencetakisi array setelahdibalik. Hasil akhirnya:

```
[5, 4, 3, 2, 1]
```

Penjelasanoutputnya:

Reverse Traversal using while loop: [5, 4, 3, 2, 1]

Array awal [1, 2, 3, 4, 5] dibalikurutannyamenjadi [5, 4, 3, 2, 1].

Proses inidisebut reverse in-place karenadilakukanlangsung di array yang samatanpa Membuat array baru.

Praktek 9

```
# membuat array
arr = [12, 16, 20, 40, 50, 70]

# cetak arr sebelum penyisipan
print("Array Sebelum Insertion : ", arr)

# cetak panjang array sebelum penyisipan
print("Panjang Array : ", len(arr))

# menyisipkan array di akhir elemen menggunakan .append()
arr.append(26)

# cetak arr setelah penyisipan
print("Array Setelah Insertion : ", arr)

# cetak panjang array setelah penyisipan
print("Panjang Array : ", len(arr))
```

Outputnya:

```
Array Sebelum Insertion : [12, 16, 20, 40, 50, 70]
Panjang Array : 6
Array Setelah Insertion : [12, 16, 20, 40, 50, 70, 26]
Panjang Array : 7
```

Penjelasannya: Baris 1 membuat array

(dalam Python disebut list).

Baris 2

Membuat list arrdengan 6 elemenangka: [12, 16, 20, 40, 50, 70]

Baris 3 mencetakisi array sebelumelemenbarudisisipkan.

Baris 4

Mencetakisi list arrsebelumadaperubahan:

Output:

Array SebelumInsertion: [12, 16, 20, 40, 50, 70] **Baris** 5 mencetakjumlahelemen list sebelumpenambahan.

Baris 6

Menggunakanlen(arr) untukmenghitungjumlahelemen, yaitu 6.

Output:

Panjang Array: 6 Baris 7 menambahkanelemen di akhir

list denganfungsi .append().

Baris 8

Menambahkanangka 26 keakhir list arr.

List berubahmenjadi: [12, 16, 20, 40, 50, 70, 26]

Baris 9 mencetak array

setelahpenambahanelemen.

Baris 10

Mencetakisi array setelahpeambahan output: array setelahinsertion : [12, 16, 20, 40, 50, 70, 26] **Baris 11** mencetakjumlahelemensetelahpenambahan.

Baris 12

Mencetakjumlahelemensaatini, yaitu 7.

Output:

Panjang Array: 7

Penjelasanoutputnya:

Array sebeluminsertion:[12, 16, 20, 40, 50, 70]

Panjang Array: 6

Array SetelahInsertion: [12, 16, 20, 40, 50, 70, 26]

Panjang Array: 7

Praktek 10

```
# membuat array
arr = [12, 16, 20, 40, 50, 70]

# cetak arr sebelum penyisipan
print("Array Sebelum Insertion : ", arr)

# cetak panjang array sebelum penyisipan
print("Panjang Array : ", len(arr))

# menyisipkan array pada tengah elemen menggunakan .insert(pos, x)
arr.insert(4, 5)

# cetak arr setelah penyisipan
print("Array Setelah Insertion : ", arr)

# cetak panjang array setelah penyisipan
print("Panjang Array : ", len(arr))
```

Outputnya:

```
Array Sebelum Insertion: [12, 16, 20, 40, 50, 70]
Panjang Array: 6
Array Setelah Insertion: [12, 16, 20, 40, 5, 50, 70]
Panjang Array: 7
```

Penjelasannya:

Baris 1 membuat array (dalam Python disebut list).

Baris 2

Membuat list arrdengan 6 elemenangka: [12, 16, 20, 40, 50, 70]

Baris 3 mencetakisi array sebelumelemenbarudisisipkan.

Baris 4

Mencetakisi list arrsebelumadaperubahan:

Output:

Array SebelumInsertion: [12, 16, 20, 40, 50, 70] **Baris** 5 mencetakjumlahelemen list sebelumpenambahan.

Baris 6

Menggunakanlen(arr) untukmenghitungjumlahelemen, yaitu 6.

Output

Panjang Array : 6 **Baris** 7 menambahkanelemen di akhir list denganfungsi .append().

Baris 8

Menambahkanangka 26 keakhir list arr.

List berubahmenjadi: [12, 16, 20, 40, 50, 70, 26]

Baris 9 mencetak array

setelahpenambahanelemen.

Baris 10

Mencetakisi array setelahpeambahan output: array setelahinsertion: [12, 16, 20, 40, 50, 70, 26]

Baris

11

mencetakjumlahelemensetelahpenambahan.

Baris 12

Mencetakjumlahelemensaatini, yaitu 7.

Output:

Panjang Array: 7

Penjelasanoutputnya:

Array sebeluminsertion:[12, 16, 20, 40, 50, 70]

Panjang Array: 6

Array SetelahInsertion: [12, 16, 20, 40, 50, 70, 26]

Panjang Array: 7

Praktek 11

```
# membuat array
a = [10, 20, 30, 40, 50]
print("Array Sebelum Deletion : ", a)
# menghapus elemen array pertama yang nilainya 30
a.remove(30)
print("Setelah remove(30):", a)
# menghapus elemen array pada index 1 (20)
popped_val = a.pop(1)
print("Popped element:", popped_val)
print("Setelah pop(1):", a)
# Menghapus elemen pertama (10)
del a[0]
print("Setelah del a[0]:", a)
```

Output

```
Array Sebelum Deletion: [10, 20, 30, 40, 50]
Setelah remove(30): [10, 20, 40, 50]
Popped element: 20
Setelah pop(1): [10, 40, 50]
Setelah del a[0]: [40, 50]
```

Penjelasan:

Baris 1 membuat sebuah list

bernama a.

Isinya: [10, 20, 30, 40, 50].

Baris 2

Menampilkan isi list a sebelum ada perubahan.

Baris 3

Fungsi remove() digunakan untuk menghapus elemen berdasarkan nilai, bukan berdasarkan posisi. Python akan mencari nilai 30 dalam list, lalu menghapus elemen

Baris 4

Menampilkan isi list setelah nilai 30 dihapus.

Baris 5

- Fungsi pop() digunakan untuk menghapus elemen berdasarkan indeks dan mengembalikannya.
- pop(1) artinya hapus elemen pada indeks ke1, yaitu 20.
- Nilai yang dihapus disimpan dalam variabel popped_val.

Baris 6

Menampilkan nilai yang dihapus dengan pop().

Menampilkan isi list setelah pop(1) dilakukan.

Baris:

- del adalah keyword untuk menghapus sesuatu.
- del a[0] artinya menghapus elemen pada indeks ke-0, yaitu 10.

Baris 9

Menampilkan isi list setelah elemen pertama dihapus.

Praktek12:

Outputnya:

9

Penjelasannya:

Baris 1:

- mengimpor library numpy dan memberinya alias np.
- numpy adalah library Python yang sangat kuat untuk manipulasi array dan operasi matematika tingkat lanjut, terutama untuk data berbentuk matriks atau yektor.

Baris 2-5:

- membuat array 2 dimensi (disebut juga matriks) menggunakan np.array().
- Matriks ini memiliki bentuk (shape) 3 baris × 3 kolom.

Baris 6:

- mencetak nilai pada baris ke-2 dan kolom ke-2 dari matriks.
- Karena indeks di Python dimulai dari 0, maka: □
 matriks_np[2] mengacu ke baris ketiga →
 [7, 8, 9]
- matriks_np[2][2] mengacu ke elemen ketiga dalam baris tersebut → 9

Praktek 13:

```
# Program penjumlahan matriks yang dibuat dari list
X = [[12,7,3],
    [4,5,6],
    [7,8,9]]
Y = [[5,8,1],
    [6,7,3],
    [4,5,9]]
result = [[0,0,0],
         [0,0,0],
         [0,0,0]]
# proses penjumlahan dua matriks menggunakan nested loop
# mengulang sebanyak row (baris)
for i in range(len(X)):
  # mengulang sebanyak column (kolom)
  for j in range(len(X[0])):
       result[i][j] = X[i][j] + Y[i][j]
print("Hasil Penjumlahan Matriks dari LIST")
# cetak hasil penjumlahan secara iteratif
for r in result:
  print(r)
```

Output:

```
Hasil Penjumlahan Matriks dari LIST [17, 15, 4] [10, 12, 9] [11, 13, 18]
```

Penjelasannya:

Baris 1

Komentar yang menjelaskan tujuan program, yaitu penjumlahan matriks dari list.

Baris 2–4

Membuat matriks X berukuran 3x3 sebagai list bersarang (list of lists).

Baris 5-7

Membuat matriks Y berukuran 3x3 dengan nilai berbeda dari X.

Baris 8-10

Membuat matriks result berisi nol (3x3) yang akan diisi dengan hasil penjumlahan X + Y.

Baris 11

Komentar yang menjelaskan proses penjumlahan dilakukan dengan nested loop.

Baris 12

Loop pertama: mengulang setiap baris (i) dari matriks. **Baris**

Loop kedua di dalamnya: mengulang setiap kolom (j) dari baris.

Baris 14

Menjumlahkan elemen pada posisi [i][j] dari X dan Y, lalu disimpan ke result[i][j].

Baris 15

Mencetak teks keterangan bahwa hasil penjumlahan akan ditampilkan.

Loop untuk membaca setiap baris dalam matriks result.

Baris 17

Mencetak setiap baris hasil penjumlahan.

Praktek 14

```
# Praktek 14 : Operasi Penjumlahan Matriks dengan numpy
# impor library numpy
import numpy as np
# Membuat matriks dengan numpy
X = np.array([
    [12,7,3],
    [4,5,6],
    [7,8,9]])
Y = np.array(
    [[5,8,1],
    [6,7,3],
    [4,5,9]])
# Operasi penjumlahan dua matrik numpy
result = X + Y
# cetak hasil
print("Hasil Penjumlahan Matriks dari NumPy")
print(result)
```

Output:

```
Hasil Penjumlahan Matriks dari NumPy
[[17 15 4]
[10 12 9]
[11 13 18]]
```

Penjelasan:

Baris 1

Impor library NumPy sebagai np.

Baris 2-5

Membuat matriks X berukuran 3x3 menggunakan np.array.

Baris 6-9

Membuat matriks Y berukuran 3x3 menggunakan

np.array. Baris 10

Menjumlahkan dua matriks (X + Y) dan menyimpan hasilnya di result.

Baris 11

Komentar bahwa hasil akan dicetak.

Baris 12

Mencetak keterangan "Hasil Penjumlahan Matriks dari NumPy".

Baris 13

Mencetak isi dari result, yaitu hasil penjumlahan matriks X dan Y.

Praktek 15

```
1 # impor library numpy
   import numpy as np
   # Membuat matriks dengan numpy
4
5 + X = np.array([
        [12,7,3],
        [4,5,6],
7
        [7,8,9]])
8
9
  Y = np.array(
10
        [[5,8,1],
11
12
        [6,7,3],
13
        [4,5,9]])
 14
    # Operasi pengurangan dua matrik numpy
 15
    result = X - Y
 17
 18 # cetak hasil
 19 print("Hasil Pengurangan Matriks dari NumPy")
 20 print(result)
```

Output:

```
Hasil Pengurangan Matriks dari LIST
[[ 7 -1 2]
[-2 -2 3]
[ 3 3 0]]
```

Penjelasan:

Baris 1

Impor library NumPy sebagai np.

Baris 2-5

Membuat matriks X 3x3 menggunakan np.array.

Baris 6-9

Membuat matriks Y 3x3 menggunakan np.array.

Baris 10

Melakukan operasi pengurangan elemen-elemen matriks:

X - Y, hasil disimpan di result.

Baris 11

Komentar untuk memberi tahu bahwa hasil akan

dicetak. Baris 12

Mencetak teks: "Hasil Pengurangan Matriks dari NumPy".

Baris 13

Mencetak isi result, yaitu hasil dari X - Y.

Praktik 16:

```
1 # impor library numpy
2 import numpy as np
3
4 # Membuat matriks dengan numpy
5 * X = np.array([
6
        [12,7,3],
7
        [4,5,6],
8
        [7,8,9]])
9
10 Y = np.array(
        [[5,8,1],
11
12
        [6,7,3],
        [4,5,9]])
13
14
15 # Operasi perkalian dua matrik numpy
16 result = X * Y
17
18 # cetak hasil
19 print("Hasil Perkalian Matriks dari NumPy")
20 print(result)
```

Output:

```
Hasil Perkalian Matriks dari LIST
[[60 56 3]
[24 35 18]
[28 40 81]]
```

Penjelasan:

Baris 1

Impor library NumPy sebagai np.

Baris 2-5

Membuat matriks X berukuran 3x3 menggunakan np.array.

Baris 6-9

Membuat matriks Y berukuran 3x3 menggunakan np.array. **Baris 10**

Melakukan perkalian elemen per elemen (disebut juga *element-wise multiplication*) antara X dan Y, hasil disimpan di result.

Baris 11

Komentar penjelas bahwa hasil akan dicetak. Baris

12

Mencetak teks keterangan: "Hasil Perkalian Matriks dari NumPy".

Baris 13

Mencetak result, yaitu hasil dari X * Y (bukan perkalian matriks biasa, tapi perkalian per elemen).

Praktek 17

```
1 # Praktek 17 : Operasi Pembagian Matriks dengan numpy
2 # impor library numpy
3
   import numpy as np
4
   # Membuat matriks dengan numpy
5
6 + X = np.array([
7
       [12,7,3],
8
        [4,5,6],
        [7,8,9]])
9
10
11 Y = np.array(
       [[5,8,1],
12
       [6,7,3],
13
        [4,5,9]])
14
15
   # Operasi pembagian dua matrik numpy
16
   result = X / Y
17
18
19 # cetak hasil
20 print("Hasil Pembagian Matriks dari NumPy")
21 print(result)
```

Output:

```
Hasil Pembagian Matriks dari LIST
[[2.4 0.875 3. ]
[0.66666667 0.71428571 2. ]
[1.75 1.6 1. ]]
```

Penjelasan:

Baris 1

Komentar: Menjelaskan bahwa ini adalah praktek operasi pembagian matriks dengan NumPy.

Baris 2

Impor library NumPy sebagai np.

Baris 3-6

Membuat matriks X berukuran 3x3 menggunakan

np.array. Baris 7-10

Membuat matriks Y berukuran 3x3 menggunakan

np.array. Baris 11

Melakukan pembagian elemen per elemen antara X dan Y menggunakan X / Y, hasil disimpan di result.

Baris 12

Komentar: Akan mencetak hasil pembagian. Baris

13

Mencetak teks: "Hasil Pembagian Matriks dari NumPy".

Baris 14

Mencetak result, yaitu hasil pembagian elemenelemen X dibagi Y.

Praktek 18

```
1 # impor library numpy
 2 import numpy as np
3
 4 # membuat matriks
 5 - matriks_a = np.array([
        [1, 2, 3],
 6
        [4, 5, 6],
7
        [7, 8, 9]
 8
   ])
9
10
11 # cetak matriks
12 print("Matriks Sebelum Transpose")
13
   print(matriks_a)
14
15 # transpose matriks_a
16 balik = matriks_a.transpose()
17
18 # cetak matriks setelah dibalik
19 print("Matriks Setelah Transpose")
20 print(balik)
```

Output:

```
Matriks Sebelum Transpose

[[1 2 3]

[4 5 6]

[7 8 9]]

Matriks Setelah Transpose

[[1 4 7]

[2 5 8]

[3 6 9]]
```

Penjelasan:

Baris 1

Impor library NumPy sebagai np.

Baris 2-5

Membuat matriks matriks_a berukuran 3x3 menggunakan np.array.

Baris 6

Akan mencetak isi matriks sebelum transpose. **Baris** 7

Mencetak teks "Matriks Sebelum Transpose".

Baris 8

Mencetak isi matriks_a (sebelum di-transpose). **Baris**

Melakukan transpose (membalik baris jadi kolom) dengan matriks_a.transpose() dan menyimpannya ke variabel balik.

Baris 10

Komentar: Akan mencetak matriks setelah ditranspose.

Baris 11

Mencetak teks "Matriks Setelah Transpose".

Baris 12

Mencetak isi matriks balik, yaitu hasil dari transpose.

```
1 # impor library numpy
2 import numpy as np
3
4 # membuat array 1 dimensi
5 arr_1d = np.array([50, 70, 89, 99, 103, 35])
7 # cetak matriks sebelum reshape
8 print("Matriks Sebelum Reshape")
9 print(arr_1d)
10 print("Ukuran Matriks : ", arr_1d.shape)
11 print("\n")
12
13 # mengubah matriks menjadi ordo 3 x 2
    ubah = arr_1d.reshape(3, 2)
14
15
16 # cetak matriks setelah reshape ke ordo 3 x 2
17 print("Matriks Setelah Reshape")
18 print(ubah)
19 print("Ukuran Matriks : ", ubah.shape)
```

Output:

```
Matriks Sebelum Reshape
[ 50 70 89 99 103 35]
Ukuran Matriks : (6,)

Matriks Setelah Reshape
[[ 50 70]
  [ 89 99]
  [103 35]]
Ukuran Matriks : (3, 2)
```

Penjelasan:

Baris 1

Impor library NumPy sebagai np.

Baris 2

Membuat array 1 dimensi arr_1d berisi 6 elemen. **Baris** 3

Komentar: Akan mencetak array sebelum diubah bentuknya.

Baris 4

Mencetak teks "Matriks Sebelum Reshape".

Baris 5

Mencetak isi array arr 1d.

Baris 6

Mencetak ukuran array menggunakan .shape \rightarrow hasilnya (6,).

Baris 7

Mencetak baris kosong (newline) untuk pemisah tampilan.

Baris 8

Melakukan reshape array 1 dimensi menjadi matriks berukuran 3 baris \times 2 kolom, disimpan dalam ubah.

Komentar: Akan mencetak hasil setelah reshape ke ordo 3×2 .

Baris 10

Mencetak teks "Matriks Setelah Reshape".

Baris 11

Mencetak isi array setelah reshape (ubah).

Baris 12

Mencetak ukuran array hasil reshape dengan .shape, yaitu (3, 2).

Praktek 20

Output:

```
Vektor Baris
[1 2 3]
vektor Kolom
[[1]
[2]
[3]]
Vektor Kolom dengan transpose()
[[1]
[2]
[3]]
```

Penjelasan:

Baris 1

Impor library NumPy sebagai np.

Baris 2

Membuat vektor baris vek 1, yaitu array 1D [1, 2, 3].

Baris 3-5

Membuat vektor kolom vek_2 dengan bentuk 3×1 menggunakan list bersarang.

Baris 6

Membuat vek_3 dengan cara reshape dari array 1D menjadi bentuk (3,1) — vektor kolom juga.

Baris 7

Mencetak teks "Vektor Baris". Baris

8

Mencetak isi vek 1.

Baris 9

Mencetak teks "Vektor Kolom".

Baris 10 Mencetak isi vek 2.

Baris 11

Mencetak teks "Vektor Kolom dengan transpose()".

Baris 12 Mencetak isi vek 3.

Praktek 21

```
1 # impor library numpy
 2 import numpy as np
 4 # membuat matriks
 5 - matriks_a = np.array([
 6
        [1, 2, 3],
        [4, 5, 6],
 7
 8
        [7, 8, 9]
    1)
 9
10
11 # cetak matriks awal
12
    print("Matriks Awal")
13 print(matriks_a)
14 print("Ukuran : ", matriks_a.shape)
15 print("\n")
16
17 # ubah matriks menjadi vektor
    jd_vektor = matriks_a.flatten()
18
19
 20 # cetak vektor
21 print("Hasil Konversi Matriks ke Vektor")
22 print(jd_vektor)
23 print("Ukuran : ", jd_vektor.shape)
```

Output:

```
Matriks Awal
[[1 2 3]
  [4 5 6]
  [7 8 9]]
Ukuran : (3, 3)

Hasil Konversi Matriks ke Vektor
[1 2 3 4 5 6 7 8 9]
Ukuran : (9,)
```

Penjelasan:

Baris 1

Impor library NumPy sebagai np.

Baris 2-5

Membuat matriks matriks_a berukuran 3×3 menggunakan np.array.

Baris 6

Komentar bahwa matriks awal akan ditampilkan.

Baris 7

Mencetak teks "Matriks Awal".

Baris 8

Mencetak isi dari matriks a.

Mencetak ukuran matriks menggunakan .shape, hasilnya (3, 3).

Baris 10

Mencetak newline (\n) untuk pemisah visual di output. **Baris 11**

Mengubah matriks menjadi vektor 1 dimensi menggunakan .flatten(), disimpan ke variabel jd_vektor.

Baris 12

Komentar bahwa hasil konversi akan dicetak.

Baris 13

Mencetak teks "Hasil Konversi Matriks ke Vektor". Baris

14

Mencetak isi jd_vektor, hasil dari flatten().

Baris 15

Mencetak ukuran jd_vektor dengan .shape, hasilnya (9,)

→ berarti vektor 1 dimensi dengan 9 elemen.