ДЗ №3 по дискретной математике Вариант 81 Выполнил Чураков А. А РЗ131

Исходный граф

V/V	e1	e2	e3	e4	e5	e6	e7	e8	e9	e10	e11	e12	
e1	0	2		2		4	3	5				5	
e2	2	0		3	1					4			
e3			0	4	4		2			4	1	4	
e4	2	3	4	0			2		1	4	2		
e5		1	4		0				1		3		
e6	4					0		1	3	5		1	
e7	3		2	2			0		2			3	
e8	5					1		0		5			
e9				1	1	3	2		0		3		
e10		4	4	4		5		5		0	1		
e11			1	2	3				3	1	0	3	
e12	5		4			1	3				3	0	
	e1	e2	- e3	3 6	24	e5	e6	e7	_ e8	e9	e10	e11	e12
e1	0	2		_	2		4	3	5				5
e2	2	0		_	3	1					4		
e3			0	-	4	4		2			4	1	4
e4	2	3	4	_	0	_		2		1	4	2	
e5		1	4			0			1	1	-	3	1
e6 e7	3		2	+	2		0	0	1	2	5		3
e8	<u>5</u>		2	+	_		1	U	0		5		3
e9				+	1	1	3	2	+ 0	0	+	3	
e10		4	4	_	4	-	5		5	+	0	1	+
e11			1	_	2	3	-			3	1	0	3
e12	5		4	-			1	3				3	0

Найти (s-t) путь с наибольшей пропускной способностью

Воспользуемся алгоритмом Франка-Фриша

1. Проведём разрез К₁

Найдём $Q_1 = max[q_{ij}] = 5$.

Закорачиваем все рёбра графа $(x_i,\,x_j)$ с $q_{ij} \geq Q_1$

Это ребра (e1, e8), (e1, e12), (e6, e10), (e8, e10). Получаем граф G1

Вершины s-t объединены.

Пропускная способность искомого (s-t) пути Q(P) = Q1 = 5.

Сам путь: 1->12.

Построим граф, вершины которого — вершины исходного графа G, а рёбра - рёбра с пропускной способностью $q_i = Q(P) = 5$.

