Operating Systems

Using Tanenbaum's Modern Operating Systems (3rd edition)

© 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

What is Operating System?

What is Operating System?

- OS as an Extended machine ("Top-down" view) –
 hides the hardware and presents a nice, clean,
 elegant and consistent interface (abstraction):
 - Define and implement abstractions.
 - Use these abstractions to solve problems.
- OS as a Resource manager ("Bottom-up" view)
 - Manage all the components of the system:
 Processors, Memories, I/O devices, etc...
 - Share resource time & space

Operating System (I)

Operating System (II)

Standard API

- API Application Programmer's Interface
- Standard API enables a program or a project to be written to any HW.
- The OS supplies standard API across multiple HW platforms (i.e. system calls, system utilities, GUI).

OS History Overview

1st generation (1945-1955)

- During World War II, the first vacuum tube computers were built in American and European universities.
- **Von Neumann** (1940) created basic modern computer architecture (HW).
- Programming was first hard wiring of plug boards, and later (1950s) used (Hollerith) punch cards.

©Creative Commons by Alex Katz

First generation

Electronic Numerical Integrator And Computer (ENIAC)

2nd generation (1955-1965)

- Computers became reliable enough to be manufactured and sold.
 - New jobs created: designers, operators, programmers, maintainers...
 - The new multi-million dollar machines are called mainframes
 - A programmer would punch the code (ASM/Fortran) on cards, creating a job, hand it to the operator, who was feeding it to machine.
- Batch-system running a collection of jobs.
 - Bugs where a waste of everyone's time.
 - Actual computing took only small percent of the time
 - Used mostly for scientific & engineering calculations.

An early Batch system

Figure 1-3. An early batch system.

- (a) Programmers bring cards to 1401.
- (b) 1401 reads batch of jobs onto tape
- (c) Operator carries input tape to 7094
- (d) 7094 does computing
- (e) Operator carries output tape to 1401
- (f) 1401 prints output.

A typical Batch job

Figure 1-4. Structure of a typical batch job.

3rd generation (1965-1980)

- IBM System/360 (which used ICs):
 - Spooling
 - Multiprogramming
 - Timesharing
- Growth of minicomputers:
 - PDP-1 ('61) 4K memory, 18 bits, \$120K per machine.
 - PDP-11('70) First mini-computer time-sharing and real-time systems, running different OS's
 - VAX/VMS ('78) First virtual memory system
- Birth of Unix (mid-70's) in AT&T Bell Labs

Spooling

(Simultaneous Peripheral Operation On-Line)

The Problem:

 The fast CPU was blocked most of the time on a slow printer, and on even slower human loading cards.

The Solution:

- The cards could be cashed (from card to magnetic tape or disk) using a device that works in parallel with the CPU.
- Today:
 - Buffer I/O.
 - CPU writes to a fast memory buffer, then the DMA performs transfer of the data to/from a slow device.

Multi-programming

- Obtaining a resource may take much more than the work.
- CPU utilization could be improved, if the CPU could run another task when one is blocked.
- Memory could be segmented to fit more than one task at a time.
- Special HW kept one program from interfering with other.

Multiprogramming Issues

- Resource and memory sharing:
 - Protect (HW guaranteed) one task from another task overwriting its memory or compromising its security.
 - Use of resources that need exclusive access (i.e. printer).
- Quality of service:
 - Serve many tasks with various needs and priorities.
 - Deadlock and starvation.
- Simulate multi programming using a single processor.
 - Time-slicing considerations.

Time-Sharing

Why?

Interactive systems need rapid response to user command.

How?

 By letting task run only for a quantum of time and not until blocking/termination.

Birth of UNIX

- The MULTICS system by MIT lead the way to development of the PDP-11 machine and UNIX (70's):
 - System-V from AT&T.
 - BSD UNIX from Berkeley.
- IEEE developed a standard known as POSIX, defining a minimal set of system calls, that UNIX should support

MINIX (1987 A.S.Tanenbaum) was the base to Linux.

4th generation (1980-present)

- Intel come out with the first general purpose micro-CPU – 8080 ('74).
 - Digital Research wrote an OS called CP/M ('77) running on 8080.
- IBM designed the IBM PC and found Bill Gates as the only one willing to write an operating system for it.
 - Bill Gates founded a small garage company to write the MS-DOS operating system for the new computer, today known as Microsoft ('80).
- IBM PC/AT x86 ('83).

4th generation (II)

User friendly GUI

- Apple Macintosh.
- Windows (85'-95') GUI on top of MS-DOS.
- Windows 95, 98: Stand-alone OS, 16-bit based.
- Windows NT: rewrite from scratch, 32-bit based, many ideas from other OS (VAX/VMS).
- Windows 2000: WIN-NT Ver. 5.0 ('99).
- Windows XP: WIN 2000 upgrade ('01) the first really stable version of Windows
- Windows Vista, 7: New GUI, many user programs ('07)
- Windows 8: going for the touch interface
- Windows 10: unify PC & Tablet

Types of OS

Typical Environments

- Batch systems:
 - A task is running without any interactive user action.
 - What is optimized here ?
 - The computer time => maximum throughput.
- Interactive systems:
 - What is optimized here ?
 - The user interaction=> minimum response time.
- Real-Time systems:
 - Meeting the deadlines.

Basic Terms

Inside OS

Process:

- A program in execution.
- Has its own address space: code + data.
- PCB: PC, SP, PSW, etc....

• Kernel:

- Main part of the OS.
- Management: Interrupt, Scheduling, Memory.
- Shell:
 - The UNIX command interpreter OS interface.
- System calls:
 - Process request for OS service: open(),read()...

Types of OS

- Multi-Processor (multi-core) :
 - Tightly-coupled same clock, shared memory.
 - SMP OS may run on each core.
 - ASMP OS may run on the master, other cores are slaves.
- Personal Computers OS:
 - Single user services: Windows, Linux, Macintosh.
- Server OS
 - Without graphical user interface
- Real-Time OS:
 - Hard R/T Military applications.
 - Soft R/T Digital audio, MM: RMX.
- Embedded OS:
 - Optimized for small HW and needs: VxWorks, Windows Embedded,...

ASMP – Asymmetric Multi-Processing

SMP – Symmetric Multi-Processing

Homework + Interview Questions

- 1. What are the roles & responsibilities of the Operating System?
- Explain the following terms. What kind of problems each is trying to solve:
 - Spooling
 - Time Sharing
 - Multi-Programming
- 3. Explain the 3 types of OS:
 - Batch
 - Interactive
 - Real-Time