

Overview

- Decision Trees
- Random Decision Forests
- Decision Trees and Random Forests in Orange

Classification Problem (blue or green?)

- Train instances
 - blue and green
- Test instance
 - gray
- Classifier induced from the data defines decision boundaries

Decision Trees

Decision Trees take one feature at a time and test a binary condition
For instance: is the feature larger than 0.5?
If the answer is YES, grow a node to the left
If the answer is NOW grow a node to the right

This results in the following decision Boundary

Decision Tree grows with each level of questions

- Each node (box) of the decision tree tests a condition on a feature
- The order of features is important
- It is like playing "20 questions"
 - "Guess the person": it is better to start with the question "Is she female?", rather than with "Is it Marie?"
 - The reason is that the answer to the first question maximises the information ("entropy") gained from the answer.*
- In decision trees the order of features to be tested is determined by means of information theory (ID3 algorithm)

^{*} Alternative: *Gini impurity* is a measure of how often a randomly chosen element from the data set would be incorrectly labeled if it were randomly labeled.

Decision Tree

test instance

Reproduced from: https://shapeofdata.wordpress.com/2013/07/02/decision-trees/

Each test (box) adds a decision boundary

Reproduced from: https://shapeofdata.wordpress.com/2013/07/02/decision-trees/

Adding another decision boundary

Reproduced from: https://shapeofdata.wordpress.com/2013/07/02/decision-trees/

Complexity of the induced model

- The complexity of the model induced by a decision tree is determined by the depth of the tree
- Increasing the depth of the tree increases the number of decision boundaries
- All decision boundaries are perpendicular to the feature axes, because at each node a decision is made about a single feature

Random Decision Forests

From one tree to many

Classification and Regression with RDFs

- Classification: the mode of the classes outputted by the trees.
- Regression: the mean of the values outputted by the trees.

Complexity of Random Decision Forests

- The complexity of RDFs is determined by the number of trees (and their depths)
- In some decision forests trees are induced on the same complete set of features
- In random decision forests, trees are induced on randomly selected subsets of features

Inducing and Visualising a Tree

Evaluating and Comparing Tree and Forest

Performance Measure: Classification Accuracy

