Ajuste del control semafórico automático.

Gabriel Luque (gabriel@lcc.uma.es)

Transporte y Tráfico

Contenido

Introducción

- Problemática
- Soluciones
- Propuesta

Ajuste Semafórico

- Conceptos Previos
- Sistemas actuales
- Sistema automático propuesto

Resolviendo

- Modelado
- Datos y realismo

Algoritmos

- Implementando una propuesta
- Algoritmos evolutivos
- Multi-objetivo

Introducción

Problemática

Soluciones

Propuesta

Problemática

- Evolución de las ciudades
 - Actualmente, la mayor parte de la población mundial vive en grandes ciudades
 - Se espera que en un futuro próximo el 80% de la población mundial resida en una gran ciudad
- ◆ Esto produce una gran cantidad de nuevos retos y problemas como los relativos al excesivo tráfico de vehículos:
 - Atascos
 - Contaminación
 - Seguridad
 - **...**

Posibles soluciones

- ◆ Soluciones "clásicas":
 - Infraestructuras
 - Promocionar el transporte público u otros (bicicletas)
 - Promover el uso compartido del vehículo (VAO)
 - Limitar el acceso a vehículos
- Soluciones "inteligentes": uso más eficiente y efectivo de lo que se dispone
 - Ofrecer información precisa y actual al usuario para la toma de decisiones (tráfico, plazas de aparcamiento disponibles, ...)
 - Toma de decisiones automatizadas: rutas adaptables y/o personalizadas
 - Mejor ajuste de los elementos actuales: rutas y frecuencia del transporte público, ajuste de los semáforos, ...

Propuesta

Ajuste inteligente de los tiempos de los semáforos de forma automática

- Menos atascos
- Menos esperas
- Rutas más rápidas
- Menos contaminación

Ajuste Semafórico

Conceptos Previos

Sistemas actuales

Sistema automático propuesto

Conceptos previos

- Se debe conocer bien los elementos que intervienen en el problema a resolver
- Múltiples fuentes de información:
 - Reglamentos internacionales. Ej (U.S. Transport Deparment):
 - Manual on Uniform Traffic Control Devices (862 páginas)
 - Traffic Signal Timing Manual (274 páginas)
 - Reglamentos nacionales. Ej (DGT):
 - Regulación semafórica (32 páginas)
 - Cruces semafóricos y sincronismo (32 páginas)
 - Personal especializado (gestores de tráfico)
 - Literatura científica
- Filtrado de la información

Conceptos previos

- ♦ Definiciones importantes:
 - Cruce semafórico
 - Ciclo (y tiempo de ciclo)
 - Fase (y tiempo de fase)
 - Plan semafórico

Cruce semafórico

Conceptos previos

Otra información útil:

- Se puede modificar tanto el tiempo de ciclo como el de fase
- No se pueden cambiar las fases
- Tiempos de ciclo: 60-120 segundos
- Fases amarillas (de precaución antes de rojo): 4 segundos
- Existen tiempos mínimo de fase (ejemplo: las fases para peatones -rojas y algunas amarillas- debe dar tiempo a cruzar la calle a una persona que vaya a 1m/s)
- Promocionar olas verdes en grandes avenidas
- Planes dependiente del tráfico (hora/tipo de día/estación)

Ola verde

Cómo se configuran actualmente

◆ Ubicación/tipo:

- Los reglamentos fija dónde colocar los semáforos obligatorios
- También ofrece otras ubicaciones no obligatorias pero sí recomendadas

◆ Definición de las fases:

Fijadas por el reglamento

Duración de ciclo/fase:

- Definido por el gestor atendiendo a restricciones
- Habitualmente se hace manualmente por cruce (y en algunos casos por avenida)
- Basado en la experiencia y conocimiento acumulado
- Hay sistemas dinámicos (reaccionan ante el tráfico actual).
 Problema: cambios rápidos que no mejoran el tráfico

Cómo se configuran actualmente

Cómo se configuran actualmente

- Generan varios planes semafóricos que se eligen atendiendo:
 - Estación (verano invierno)
 - Día de la semana
 - Franja horaria (de 3 a 9)

SELECCIÓN HORARIA - VERANO 2015										
AUD 41 ADADADI E										
			SUB 1 LABORABLE							
Hora	Plan	Ciclo	Sentido							
0:00	12	80	Oeste							
2:00	13	70	Oeste							
5:00	12	80	Oeste							
6:30	20	115	Oeste-Simultáneo (118 a 115)							
11:00	5	110	Oeste							
16:00	2	115	Oeste							
20:30	5	110	Oeste							
22:30	7	100	Oeste							
	SUB 1 SABADO									
Hora	Plan	Ciclo	Sentido							
0:00	7	100	Oeste							
3:00	12	80	Oeste							
10:00	5	110	Oeste							
14:00	7	100	Oeste							
17:30	5	110	Oeste							
22:30	7	100	Oeste							
			SUB 1 DOMINGO							
Hora	Plan	Ciclo	Sentido							
0:00	7	100	Oeste							
3:00	12	80	Oeste							
10:00	11	90	Oeste							
11:30	10	95	Oeste							
16:00	7	100	Oeste							
17:00	20	115	Oeste							
22:30	7	100	Oeste							

Cruce: 01010 PLAN: Actual: 003 PLAN: Descripción: Juan Sebastián Elcano - c/ Vicente Espinel

	- 1	PLAN:	Actual: 0	03		ESTRU	CTUR	A: 1	CICLO	0: 100				DE	SFASE:	60		-
FASE					1			2.00	2	444			1	2000	3	77-300	2	
IMPULS								44		62	3			77		92		100
POSICIO					2000			- 3	(,==55	3		2 5	- 0				3 6	
DURAC	ON				44				18		3 3	3 3	6	8	15		2 3	3
TIEMPO	4.0		10		20	30		40	50	60		10	ď		80	90		1
	5											77	107	,,,	,,,,,	,,,,	77	77
	1										-/	2	2//	1/2		////	17/1	1/2
												77	W	//			No.	
	2											22	2//	//				L
8		1111	1111	///	////	11111	///	11111	,,,,,,,,	7777	111	7					50.00	V
GRUPOS	3	////	////		////	/////	////	/////	////////	////	111	4	+	-				1/
	ı, ji	1111	1111	777	1111	11111	7777	11111	///////	7777	111	77			101010101			V
	4	/////	////	///	////	/////	////	////	////////	////	///	2/	4					1/
	2											77	NI)	11/	11111	////	111	77
	5											//	///	///	////	////	111	1/
	6											/			/////		11/1	1
												1						
			30			2000			J 2015 J 100 S 47 O - 4 O - 547		Vi.	Vi.	15	N. 9707 N	- 940 (500.00	DEW.	inir	ŭ. 3
Ap.	agado		_	_	ar Intermit		E		Int. Rápido / Ámba		ección		-		ipido / Amb			
Ve						de (salida v	erde)		Ambar Int. Protect	ción					Doble (salid			
	har		Z	No.	e Intermite	ante Rojo	2	Verde					Verd	e / Amt	oar Int. Dob	ie (salida r	oja)	
Ro					/ Ambar			Roje i										
Ve	de Into	rmitente R	apido	Ven	e/Ambar li	nt. Protecció	or no	Amba	r Int. Doble (salida	rojo)								

15 entido)este)este)este ineo (118 a 115))este)este)este)este entido)este)este)este)este)este)este entido)este)este)este)este)este)este)este

Sistema propuesto

- Generar de forma automática los tiempos de ciclo y fase:
 - Esos tiempos deben respetar las restricciones
- ◆ Considerar simultáneamente todos los semáforos de la ciudad o del área definida por el centro de control de tráfico
- Obtener diferentes planes (offline) atendiendo a las intensidad de tráfico
- ◆ El objetivo final es obtener un tráfico más fluido y que produzca menos contaminación

Resolución

Modelado

Datos y realismo

Modelado del problema

- ◆ Dada la siguiente <u>información</u>:
 - Los cruces semafóricos a mejorar (localización, fases)
 - Y el tráfico (o tipo de tráfico existente)
- ◆ El objetivo es: <u>encontrar</u> la <u>configuración</u> (<u>solución</u>) para los tiempos de fase y ciclo que <u>mejore</u> el resto de soluciones existentes
- Dificultades:
 - ¿Qué es computacionalmente una solución (representación)?
 - ¿Qué es ser mejor (punto de vista numérico)?
 - ¿De dónde obtenemos la información?
 - ¿Cómo encontramos la mejor?

Cómo representar una solución

- Existen múltiples formas de representarla
- Vector de naturales:
 - Cada valor representa una fase

Cómo representar una solución

- Existen múltiples formas de representarla
- Vector de naturales:
 - Cada valor representa una fase

Cómo representar una solución

- ◆ Restricciones que no cumple por defecto:
 - Fases amarillas a 4
 - Ciclos > 60 y < 120</p>
 - Promoción de olas verdes
- Otras representaciones alternativas:
 - Añadir offset
 - Cada cruce: tiempo de ciclo + porcentaje que ocupa cada fase
 - Reducir el número de semáforos:
 - Agrupación de cruces en grupos
 - Solo se optimiza uno del grupo
 - El resto se ponen como desplazamiento de la optimizada
 - Otras?

Cómo evaluar una solución

- Necesitamos un valor numérico (o varios) que nos permita comparar soluciones
- ♦ Sistema muy complejo
 - No existen modelos matemáticos para calcularlo
 - Uso de simuladores
- ◆ SUMO (Simulator of Urban Mobility)
 - Recibe un mapa, rutas de vehículos y la configuración de los semáforos
 - Devuelve estadísticas de la simulación

Cómo evaluar una solución

Valores devueltos:

- Números de vehículos que llegaron a su destino
- Duración media de las rutas
- Emisiones (CO2, CO, NOx, PMx, HC, ...)
- Tiempo de espera

Objetivo a optimizar:

- Cada uno independientemente
- Combinación de varios
- Varios simultáneamente
- ¿Otros? (Olas verdes, ...)

Dificultad

SUMO devuelve estadísticas de vehículos que acaban su ruta

Cómo evaluar una solución

- Valores devueltos:
 - Números de vehículos que llegaron a su destino

- Dificultad
 - SUMO devuelve estadísticas de vehículos que acaban su ruta

Datos y realismo

◆ Para que el sistema sea útil, los datos usados durante las simulaciones deben ser lo más realistas posibles

Datos necesarios:

- Mapa de la ciudad a optimizar
- Situación de los semáforos y cruces semafóricos
- Rutas de vehículos atendiendo a diferentes niveles de tráfico
- Otras restricciones del sistema/problema

Origen de los datos:

- Mapas: OpenStreetMap
- Semáforos: Centro de control de tráfico
- Rutas: Área de Movilidad/tránsito

Datos y realismo

- Dificultades: Mapas y semáforos:
 - Mapas no completos: faltan calles, sentidos, semáforos
 - Conversión (OSM => SUMO) no del todo correcta
 - Corrección manual de los mapas. Proceso muy laborioso
- Dificultades: Rutas:
 - No suficiente detalle
 - Formato no automatizable
 - Conversión de intensidad de tráfico a rutas complejo.

Intensidad de vehículos Mayo-Agosto 2015

PM	Ubicación	I.M.D.L	I.M.D.S.	I.M.D.D.	I.M.H.P.L.	H.P.L.M.	I.M.H.P.S.	H.P.S.M.	I.M.H.P.D.	H.P.D.M.
1	Avda. Juan Sebastián Elcano - Este	2.004	1.636	1.388	169	12:00	149	12:00	138	13:00
2	Avda. Juan Sebastián Elcano - Oeste	20.383	17.890	15.186	1.465	8:00	1.278	21:00	1.236	21:00
3	Bolivia - Este	16.775	15.174	12.698	1.413	14:00	1.250	14:00	1.091	13:00
4	P.M. Pablo Ruiz Picasso - Este	19.376	15.574	12.631	1.908	14:00	1.337	14:00	1.044	13:00
5	P.M. Pablo Ruiz Picasso - Oeste	28.829	23.675	20.368	2.192	8:00	1.632	21:00	1.582	21:00
6	Pso. Reding - Este	8.528	6.767	5.296	687	14:00	554	14:00	418	13:00
7	Pso. Reding - Oeste	6.987	5.930	4.655	546	9:00	445	12:00	342	21:00
8	Victoria - Sur *	5.874	5.255	4.285	419	8:00	443	22:00	319	22:00
9	Victoria - Norte *	6.474	5.888	4.923	483	14:00	454	22:00	360	22:00
10	Túnel Alcazaba - Este	15.870	14.744	12.561	973	8:00	849	14:00	701	1:00

Algoritmos

Implementando una propuesta

Algoritmos evolutivos

Multi-objetivo

- ◆ Código en C++
- ◆ Instancias para probar

	2 intersecciones	Málaga	París			
Cruces	2	42	70			
Fases	16	172	378			
# vehículos	500	266	. 1200			

Pocas fases y tráfico => más sencilla

Muchas fases y tráfico => más compleja

- Clase cinstance: manejo de los datos:
 - Constructor: lee los ficheros
 - getNumberOfTLlogics(): número de cruces
 - getPhases(): fases del cruce j
- ♦ Solución: vector<unsigned>
- Poniéndolo junto: solución aleatoria (o casi)

- ♦ Interacción con sumo-wrapper. Tres ficheros:
 - Fichero de instancia: instancia
 - Fases de semáforos: duración de las fases (fichero de números)
 - Resultados de la simulación: estadísticas (sexta línea => fitness)
- ◆ Poniéndolo junto: Random Search

```
c.read(argv[1]);
steps = atoi(argv[2]);
command = "./sumo-wrapper " + string(argv[1]) + " " + "tl.txt result.txt";
generateSolution(solution, c);
writeSolutionFile(solution, c);
system(command.c str());
readFitnessFile(fitness);
best sol = solution: best fit = fitness:
cout << fitness << endl:
for(int i = 1; i < steps; i++)</pre>
        generateSolution(solution, c);
        writeSolutionFile(solution, c);
        system(command.c str());
        readFitnessFile(fitness);
cout << fitness << endl:
        if(fitness < best fit)</pre>
                 best sol = solution;
                 best fit = fitness;
cout << "Best solution: " << endl;</pre>
for(int i = 0; i < c.getTotalNumberOfPhases(); i++)</pre>
        cout << best sol[i] << " ";
cout << endl << "Fitness: " << best fit << endl;</pre>
```

números)

> fitness)

Ejercicios iniciales

- 1. Descargue el código de https://github.com/GabJL/TLO
- 2. Compile el código:
 - cd TLO-master/code # Muévase al directorio code
 - make # Compilación
- 3. En el código se facilita una búsqueda aleatoria (RS). Pruébela usando la instancia de malaga:
 - cp RS sumo-wrapper .. # Desde el directorio code copie los ficheros
 - cd .. # Muévase al directorio raíz del proyecto
 - ./RS instanceFiles/malaga.txt 10 # Ejecución con 10 iteraciones
- 4. ¿Si hace una segunda ejecución obtenemos el mismo resultado? ¿Cómo analizar estos datos?
- 5. Ejecute las 3 instancias con 5 iteraciones, ¿qué parámetro cree que influye más en la duración de la ejecución?

	2 intersecciones	Málaga	París
Cruces	2	42	70
Fases	16	172	378
# vehículos	500	266	1200

Técnicas de Optimización

- ◆ Métodos de escalada (hill climbing)
 - 1. Parte de una solución inicial (generalmente aleatoria)
 - 2. Se analiza el vecindario
 - 3. Se elige el mejor vecino y se reemplaza la solución actual
 - 4. Se vuelve al paso 2

♦ Vecindario:

- Soluciones "cercanas" en el espacio de búsqueda
- Problemas para examinar todo el vecindario => Se examina hasta encontrar una mejor (o igual) que la actual

Ejercicios: métodos de escalada

Siempre trabajaremos con la instancia de malaga y 80 evaluaciones

- 6. ¿Qué es una solución vecina de una para este problema? Piense una operación que a partir de una solución permita obtener una solución en su vecindario.
- 7. Copie el código de RS a HC y modifíquelo siguiendo el siguiente esquema:
 - Cree una nueva función que a partir de una solución, calcule aleatoria una del vecindario
 - En cada iteración del algoritmo, genere un vecino de la solución actual
 - Si el vecino es mejor que la actual, reemplace la actual por el vecino
- 8. Híbrido RS+HC 1 (rshc1): Cree un nuevo código con el siguiente comportamiento:
 - Genere 20 soluciones aleatorias
 - Aplique HC a la mejor solución (60 evaluaciones)
- 9. Híbrido RS+HC 2 (rshc2): Cree un nuevo código con el siguiente comportamiento:
 - Genere una solución aleatoria
 - Aplique HC a esa solución hasta que converja (en 4 pasos no encontró un vecino mejor)
 - Reinicie la solución volviendo al inicio hasta completar el máximo de evaluaciones

Técnicas de Optimización

Inspiradas en la naturaleza

Técnicas de Optimización

- ◆ Variable Neighborhood Search (VNS)
 - 1. Se definen K vecindarios (de más reducido a más amplio): V_1 , V_2 , ..., V_k
 - 2. Parte de una solución inicial (generalmente aleatoria)
 - 3. N = 1
 - 4. Se busca el mejor vecino usando el vecindario V_N
 - Si es mejor que la actual, se reemplaza la actual por la nueva

y N = 1

- Si es peor, N++
- 5. Se vuelve al paso 4

Algoritmos Evolutivos

- Basados en la evolución natural de Darwin
- ◆ Algoritmo poblacional (maneja múltiple soluciones)
- Tres pasos principales:
 - Selección
 - Reproducción (cruce y mutación)
 - Remplazo
- Múltiples familias de acuerdo a cómo realizan esos pasos:
 - Algoritmos Genéticos (GA),
 - Programación Genética (PG),
 - Estrategias Evolutivas (ES),
 - ...

Algoritmos Evolutivos

Algoritmos Evolutivos

Ejercicios: VNS y GA

Siempre trabajaremos con la instancia de malaga y 80 evaluaciones

- 10. Partiendo de alguno de los anteriores implemente un VNS básico:
 - Al igual que en uno anterior, considere que no hay vecinos mejores si en 3 pasos no fue capaz de generar uno mejor
- 11. En el código facilitado hay un ssGA implementado a falta de los operaciones de mutación y recombinación. Complételos:
 - Como mutación use algún esquema usado en los anteriores
 - Como recombinación implemente el cruce en un punto (solo debe generar una solución ya que usamos un estado estacionario)
- 12. Modifique la recombinación para que tenga en cuenta de no "cortar" en medio de la planificación de un semáforo
- 13. Piense e implemente algún otro operador de recombinación no basado en puntos de corte.

Ajuste del control semafórico automático.

Transporte y Tráfico

