In [1]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

pd.set_option('display.max_columns', 80)
```

In [2]:

```
1 df = pd.read_csv('zindi training.csv')
2 df.head(5)
```

Out[2]:

	TransactionId	BatchId	Accountld	SubscriptionId	Customerld	Cur
0	TransactionId_76871	BatchId_36123	AccountId_3957	SubscriptionId_887	CustomerId_4406	
1	TransactionId_73770	BatchId_15642	AccountId_4841	SubscriptionId_3829	CustomerId_4406	
2	TransactionId_26203	BatchId_53941	AccountId_4229	SubscriptionId_222	CustomerId_4683	
3	TransactionId_380	BatchId_102363	AccountId_648	SubscriptionId_2185	CustomerId_988	
4	TransactionId_28195	BatchId_38780	AccountId_4841	SubscriptionId_3829	CustomerId_988	
4						•

In [3]:

1 df.shape

Out[3]:

(95662, 16)

```
In [4]:
```

```
1 df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 95662 entries, 0 to 95661
Data columns (total 16 columns):
     Column
                           Non-Null Count Dtype
0
    TransactionId
                           95662 non-null
                                            object
1
     BatchId
                           95662 non-null
                                            object
 2
    AccountId
                           95662 non-null
                                            object
 3
    SubscriptionId
                           95662 non-null
                                            object
 4
    CustomerId
                           95662 non-null
                                            object
 5
    CurrencyCode
                           95662 non-null
                                            object
 6
    CountryCode
                           95662 non-null
                                            int64
 7
    ProviderId
                           95662 non-null
                                            object
 8
    ProductId
                           95662 non-null
                                            object
 9
    ProductCategory
                           95662 non-null
                                            object
10
    ChannelId
                           95662 non-null
                                            object
    Amount
                                            float64
 11
                           95662 non-null
 12
    Value
                           95662 non-null
                                            int64
 13
     TransactionStartTime
                           95662 non-null
                                            object
 14
   PricingStrategy
                           95662 non-null
                                            int64
15 FraudResult
                           95662 non-null
                                            int64
dtypes: float64(1), int64(4), object(11)
memory usage: 11.7+ MB
```

In [5]:

```
categorical = [var for var in df.columns if df[var].dtype=='0']
print('There are {} categorical variabes \n'.format(len(categorical)))
print('They are: ', categorical)
```

There are 11 categorical variabes

```
They are: ['TransactionId', 'BatchId', 'AccountId', 'SubscriptionId', 'Cust omerId', 'CurrencyCode', 'ProviderId', 'ProductId', 'ProductCategory', 'Chan nelId', 'TransactionStartTime']
```

In [6]:

```
1 df[categorical].head()
```

Out[6]:

	TransactionId	BatchId	Accountid	SubscriptionId	CustomerId	Cui
0	TransactionId_76871	BatchId_36123	AccountId_3957	SubscriptionId_887	CustomerId_4406	
1	TransactionId_73770	BatchId_15642	AccountId_4841	SubscriptionId_3829	CustomerId_4406	
2	TransactionId_26203	BatchId_53941	AccountId_4229	SubscriptionId_222	CustomerId_4683	
3	TransactionId_380	BatchId_102363	AccountId_648	SubscriptionId_2185	CustomerId_988	
4	TransactionId_28195	BatchId_38780	AccountId_4841	SubscriptionId_3829	CustomerId_988	
4						•

```
In [7]:
```

```
1 df[categorical].isnull().sum()
```

Out[7]:

TransactionId 0 BatchId 0 AccountId 0 SubscriptionId 0 CustomerId CurrencyCode 0 ProviderId 0 ProductId 0 ProductCategory 0 ChannelId 0 TransactionStartTime

dtype: int64

In [8]:

```
for var in categorical:
    print(var, 'contains', len(df[var].unique()), 'unique values')
```

TransactionId contains 95662 unique values
BatchId contains 94809 unique values
AccountId contains 3633 unique values
SubscriptionId contains 3627 unique values
CustomerId contains 3742 unique values
CurrencyCode contains 1 unique values
ProviderId contains 6 unique values
ProductId contains 23 unique values
ProductCategory contains 9 unique values
ChannelId contains 4 unique values
TransactionStartTime contains 94556 unique values

In [9]:

```
1 df['TransactionStartTime'] = pd.to_datetime(df['TransactionStartTime'])
```

In [10]:

```
1 df['Year'] = df['TransactionStartTime'].dt.year
2 df['Year'].head()
```

Out[10]:

- 0 2018
- 1 2018
- 2 2018
- 3 2018
- 4 2018

Name: Year, dtype: int64

```
In [11]:
```

```
1 df['Month'] = df['TransactionStartTime'].dt.month
2 df['Month'].head()
```

Out[11]:

```
0 11
```

- 1 11
- 2 11
- 3 11
- 4 11

Name: Month, dtype: int64

In [12]:

```
#extract the day

df['day'] = df['TransactionStartTime'].dt.day
df['day'].head()
```

Out[12]:

```
0 15
```

- 1 15
- 2 15
- 3 15
- 4 15

Name: day, dtype: int64

In [13]:

```
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 95662 entries, 0 to 95661
Data columns (total 19 columns):
#
     Column
                           Non-Null Count Dtype
     _ _ _ _ _ _
    TransactionId
                                            object
0
                           95662 non-null
1
    BatchId
                           95662 non-null
                                            object
 2
    AccountId
                           95662 non-null
                                            object
 3
    SubscriptionId
                           95662 non-null
                                            object
 4
    CustomerId
                           95662 non-null
                                            object
 5
    CurrencyCode
                           95662 non-null
                                            object
6
    CountryCode
                           95662 non-null
                                            int64
7
    ProviderId
                           95662 non-null
                                            object
 8
    ProductId
                           95662 non-null
                                            object
 9
    ProductCategory
                           95662 non-null
                                            object
10
    ChannelId
                           95662 non-null
                                            object
    Amount
                                            float64
11
                           95662 non-null
    Value
12
                           95662 non-null
                                            int64
                                            datetime64[ns, UTC]
 13
    TransactionStartTime
                           95662 non-null
 14
    PricingStrategy
                           95662 non-null
                                            int64
 15
    FraudResult
                           95662 non-null
                                            int64
 16
    Year
                           95662 non-null
                                            int64
 17
    Month
                           95662 non-null
                                            int64
18
    day
                           95662 non-null int64
dtypes: datetime64[ns, UTC](1), float64(1), int64(7), object(10)
memory usage: 13.9+ MB
In [14]:
```

```
df.drop('TransactionStartTime',axis = 1, inplace=True)
2
  df
```

Out[14]:

	TransactionId	Batchld	AccountId	SubscriptionId	CustomerId				
0	TransactionId_76871	BatchId_36123	AccountId_3957	SubscriptionId_887	CustomerId_4406				
1	TransactionId_73770	BatchId_15642	AccountId_4841	SubscriptionId_3829	CustomerId_4406				
2	TransactionId_26203	BatchId_53941	AccountId_4229	SubscriptionId_222	CustomerId_4683				
3	TransactionId_380	BatchId_102363	AccountId_648	SubscriptionId_2185	CustomerId_988				
4	TransactionId_28195	BatchId_38780	AccountId_4841	SubscriptionId_3829	CustomerId_988				
95657	TransactionId_89881	BatchId_96668	AccountId_4841	SubscriptionId_3829	CustomerId_3078				
95658	TransactionId_91597	BatchId_3503	AccountId_3439	SubscriptionId_2643	CustomerId_3874				
95659	TransactionId_82501	BatchId_118602	AccountId_4841	SubscriptionId_3829	CustomerId_3874				
95660	TransactionId_136354	BatchId_70924	AccountId_1346	SubscriptionId_652	CustomerId_1709				
95661	TransactionId_35670	BatchId_29317	AccountId_4841	SubscriptionId_3829	CustomerId_1709				
95662 ı	95662 rows × 18 columns								

In [15]:

```
#we'll extraxt the categorical features again since we have modified our data
categorical = [var for var in df.columns if df[var].dtype=='0']

print('There are {} categorical variabes \n'.format(len(categorical)))

print('They are: ', categorical)
```

There are 10 categorical variabes

```
They are: ['TransactionId', 'BatchId', 'AccountId', 'SubscriptionId', 'Cust omerId', 'CurrencyCode', 'ProviderId', 'ProductId', 'ProductCategory', 'Chan nelId']
```

In [16]:

```
1 df[categorical].isnull().sum()
```

Out[16]:

```
TransactionId
                    0
BatchId
                    0
AccountId
                    0
SubscriptionId
                    0
CustomerId
                    0
CurrencyCode
                    0
ProviderId
                    0
ProductId
                    0
ProductCategory
ChannelId
                    0
dtype: int64
```

In [17]:

```
1 len(df.TransactionId.unique())
```

Out[17]:

95662

In [18]:

```
1 #let's get dummies for this columns
```

- providerId_dummy = pd.get_dummies(df.ProviderId, drop_first=True)
- 3 providerId_dummy

Out[18]:

	ProviderId_2	ProviderId_3	ProviderId_4	ProviderId_5	ProviderId_6
0	0	0	0	0	1
1	0	0	1	0	0
2	0	0	0	0	1
3	0	0	0	0	0
4	0	0	1	0	0
•••					
95657	0	0	1	0	0
95658	0	0	0	0	1
95659	0	0	1	0	0
95660	0	0	0	0	1
95661	0	0	1	0	0

95662 rows × 5 columns

In [19]:

- 1 productId_dummy = pd.get_dummies(df.ProductId, drop_first=True)
- 2 productId_dummy

Out[19]:

	ProductId_10	ProductId_11	ProductId_12	ProductId_13	ProductId_14	ProductId_15	Pr
0	1	0	0	0	0	0	
1	0	0	0	0	0	0	
2	0	0	0	0	0	0	
3	0	0	0	0	0	0	
4	0	0	0	0	0	0	
		•••			***		
95657	0	0	0	0	0	0	
95658	1	0	0	0	0	0	
95659	0	0	0	0	0	0	
95660	0	0	0	0	0	0	
95661	0	0	0	0	0	0	

95662 rows × 22 columns

In [20]:

- 1 ProductCategory_dummy = pd.get_dummies(df.ProductCategory, drop_first=True)
- 2 ProductCategory_dummy
- 3

Out[20]:

	data_bundles	financial_services	movies	other	ticket	transport	tv	utility_bill
0	0	0	0	0	0	0	0	0
1	0	1	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	1
4	0	1	0	0	0	0	0	0
95657	0	1	0	0	0	0	0	0
95658	0	0	0	0	0	0	0	0
95659	0	1	0	0	0	0	0	0
95660	0	0	0	0	0	0	1	0
95661	0	1	0	0	0	0	0	0

95662 rows × 8 columns

In [21]:

```
ChannelId_dummy = pd.get_dummies(df.ChannelId, drop_first=True)
ChannelId_dummy
3
```

Out[21]:

	Channelld_2	Channelld_3	Channelld_5
0	0	1	0
1	1	0	0
2	0	1	0
3	0	1	0
4	1	0	0
95657	1	0	0
95658	0	1	0
95659	1	0	0
95660	0	1	0
95661	1	0	0

95662 rows × 3 columns

In [22]:

```
PricingStrategy_dummy = pd.get_dummies(df.PricingStrategy, drop_first=True)
PricingStrategy_dummy
3
```

Out[22]:

	1	2	4
0	0	1	0
1	0	1	0
2	0	1	0
3	0	1	0
4	0	1	0
95657	0	1	0
95658	0	1	0
95659	0	1	0
95660	0	1	0
95661	0	1	0

95662 rows × 3 columns

In [23]:

```
#we'll extraxt the numerical features
numerical = [var for var in df.columns if df[var].dtype!='0']

print('There are {} numerical variabes \n'.format(len(numerical)))

print('They are: ', numerical)
```

There are 8 numerical variabes

```
They are: ['CountryCode', 'Amount', 'Value', 'PricingStrategy', 'FraudResult', 'Year', 'Month', 'day']
```

In [24]:

```
plt.figure(figsize=(15,10))
 2
   plt.subplot(2,2,1)
 3
 4
   fig = df.boxplot(column='Amount')
 5
   fig.set_ylabel('Amount')
 7
   plt.subplot(2,2,2)
   fig = df.boxplot(column='Value')
8
9
   fig.set_ylabel('Value')
10
11
   plt.subplot(2,2,3)
   fig = df.boxplot(column='PricingStrategy')
12
13
   fig.set_ylabel('WindSpeed9am')
14
   plt.subplot(2,2,4)
15
   fig = df.boxplot(column='FraudResult')
16
   fig.set_ylabel('FraudResult')
```

Out[24]:

Text(0, 0.5, 'FraudResult')

In [25]:

```
#set figure size
   plt.figure(figsize=(15,10))
 2
 3
 4
   plt.subplot(2,2,1)
 5
   fig = df.Amount.hist()
   fig.set_ylabel('Amount')
 7
 8
   plt.subplot(2,2,2)
9
   fig = df.Value.hist()
10
   fig.set_ylabel('Value')
11
12
13
   plt.subplot(2,2,3)
14
   fig = df.PricingStrategy.hist()
   fig.set_ylabel('PricingStrategy')
15
16
17
   plt.subplot(2,2,4)
   fig = df.FraudResult.hist()
18
   fig.set_ylabel('FraudResult')
```

Out[25]:

Text(0, 0.5, 'FraudResult')

In [26]:

```
1  new_df = df['BatchId'].str.split('_',n=1,expand = True)
2  df['BatchId'] = new_df[1].astype(int)
```

In [27]:

```
1  new_df1 = df['CustomerId'].str.split('_',n=1,expand = True)
2  df['CustomerId'] = new_df[1].astype(int)
```

In [28]:

```
1  new_df = df['TransactionId'].str.split('_',n=1,expand = True)
2  df['TransactionId'] = new_df[1].astype(int)
```

In [29]:

```
new_df = df['AccountId'].str.split('_',n=1,expand = True)

df['AccountId'] = new_df[1].astype(int)
```

In [30]:

```
new_df = df['SubscriptionId'].str.split('_',n=1,expand = True)

df['SubscriptionId'] = new_df[1].astype(int)
```

In [31]:

```
1  new_df = df['ProviderId'].str.split('_',n=1,expand = True)
2  df['ProviderId'] = new_df[1].astype(int)
```

In [32]:

```
1  new_df = df['ProductId'].str.split('_',n=1,expand = True)
2  df['ProductId'] = new_df[1].astype(int)
```

In [33]:

```
1  new_df = df['ChannelId'].str.split('_',n=1,expand = True)
2  df['ChannelId'] = new_df[1].astype(int)
```

In [45]:

1 df

Out[45]:

	TransactionId	Batchld	Accountld	SubscriptionId	CustomerId	CurrencyCode	CountryC
0	76871	36123	3957	887	36123	UGX	:
1	73770	15642	4841	3829	15642	UGX	:
2	26203	53941	4229	222	53941	UGX	
3	380	102363	648	2185	102363	UGX	
4	28195	38780	4841	3829	38780	UGX	•

95657	89881	96668	4841	3829	96668	UGX	· •
95658	91597	3503	3439	2643	3503	UGX	•
95659	82501	118602	4841	3829	118602	UGX	· •
95660	136354	70924	1346	652	70924	UGX	•
95661	35670	29317	4841	3829	29317	UGX	

95662 rows × 18 columns

In [47]:

df.drop(['CurrencyCode','CountryCode',], axis = 1, inplace = True)
df.head()

Out[47]:

	TransactionId	BatchId	AccountId	SubscriptionId	CustomerId	ProviderId	ProductId	Produc
0	76871	36123	3957	887	36123	6	10	
1	73770	15642	4841	3829	15642	4	6	financi
2	26203	53941	4229	222	53941	6	1	
3	380	102363	648	2185	102363	1	21	
4	28195	38780	4841	3829	38780	4	6	financi
4								>

In [48]:

```
#getting dummies for some columns that are categorical
selected_categorical_columns = ["ProviderId", "ProductId", "ProductCategory", "ChannelId"
new_df = pd.get_dummies(df, columns= selected_categorical_columns, drop_first = True)
new_df.head()
```

Out[48]:

	TransactionId	BatchId	Accountid	SubscriptionId	CustomerId	Amount	Value	FraudResult
0	76871	36123	3957	887	36123	1000.0	1000	0
1	73770	15642	4841	3829	15642	-20.0	20	0
2	26203	53941	4229	222	53941	500.0	500	0
3	380	102363	648	2185	102363	20000.0	21800	0
4	28195	38780	4841	3829	38780	-644.0	644	0
4								>

In [49]:

```
1 new_df.shape
```

Out[49]:

(95662, 52)

In [50]:

```
1 #split data into target and feature
2
3 X = new_df.drop(['FraudResult'], axis =1)
4 y= new_df['FraudResult']
```

In [72]:

```
#split into test and train data

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=
```

In [73]:

```
1
2 X_train.shape, X_test.shape
```

Out[73]:

```
((76529, 51), (19133, 51))
```

In [74]:

1 X_train

Out[74]:

	TransactionId	Batchld	Accountld	SubscriptionId	CustomerId	Amount	Value	Year	M
66339	140085	114864	4841	3829	114864	-50.0	50	2019	
87279	64558	39429	3981	910	39429	1000.0	1000	2019	
40582	134904	1673	135	3595	1673	15000.0	16650	2018	
58655	95030	133112	4840	3829	133112	-1000.0	1000	2019	
87335	75383	7649	4841	3829	7649	-50.0	50	2019	
	•••								
21243	1505	124507	575	4369	124507	2000.0	2000	2018	
45891	68325	94167	4841	3829	94167	-50.0	50	2018	
42613	62369	85767	571	873	85767	1500.0	1500	2018	
43567	1639	36597	2123	1456	36597	2000.0	2000	2018	
68268	83620	99997	2659	3327	99997	1000.0	1000	2019	

76529 rows × 51 columns

In [71]:

1 X_test

Out[71]:

```
array([[0.64961075, 0.84289658, 0.17210744, ..., 0. , 0. , 0. , 1. ],
        [0.84885002, 0.17318516, 0.85247934, ..., 0. , 1. , 0. ],
        [0.88152572, 0.36934935, 0.03904959, ..., 0. , 1. , 0. ],
        [0.96174327, 0.23050726, 0.6142562 , ..., 0. , 1. , 0. ],
        [0.78433045, 0.4117297 , 0.54690083, ..., 0. , 1. , 0. ],
        [0.75759838, 0.49365119, 0.50454545, ..., 0. , 1. , 0. ]])
```

In [56]:

```
1 X_train.dtypes
Out[56]:
TransactionId
                                          int32
BatchId
                                          int32
AccountId
                                          int32
SubscriptionId
                                          int32
CustomerId
                                          int32
Amount
                                        float64
                                          int64
Value
Year
                                          int64
Month
                                          int64
                                          int64
day
ProviderId 2
                                          uint8
ProviderId 3
                                          uint8
ProviderId 4
                                          uint8
ProviderId 5
                                          uint8
ProviderId 6
                                          uint8
ProductId 2
                                          uint8
ProductId 3
                                          uint8
ProductId 4
                                          uint8
In [76]:
    #feature scaling
 2
 3
    from sklearn.preprocessing import MinMaxScaler
    scaler= MinMaxScaler()
 4
 5
 6 X_train = scaler.fit_transform(X_train)
    X_test = scaler.fit_transform(X_test)
```

In [63]:

1 X_train

Out[63]:

```
array([[0.99576343, 0.82343664, 1. , ..., 0.
                                                            , 1.
        0.
                  ],
       [0.45889252, 0.28264906, 0.82231405, ..., 0.
                                                            , 0.
                  ٦,
       [0.95893517, 0.01197927, 0.02768595, ..., 0.
                                                            , 1.
       0.
                  ],
       [0.44333239, 0.61484253, 0.1177686 , ..., 0.
                                                            , 1.
       [0.01164345, 0.26234667, 0.43842975, ..., 0.
                                                            , 1.
                  ],
       [0.59439153, 0.71685628, 0.54917355, ..., 0.
                                                            , 1.
        0.
                  ]])
```

```
In [64]:
```

```
1 X_test
```

Out[64]:

```
array([[0.64961075, 0.84289658, 0.17210744, ..., 0. , 0. , 0. , 1. ], [0.84885002, 0.17318516, 0.85247934, ..., 0. , 1. , 0. ], [0.88152572, 0.36934935, 0.03904959, ..., 0. , 1. , 0. ], ..., [0.96174327, 0.23050726, 0.6142562 , ..., 0. , 1. , 0. ], [0.78433045, 0.4117297 , 0.54690083, ..., 0. , 1. , 0. ], [0.75759838, 0.49365119, 0.50454545, ..., 0. , 1. , 0. ]])
```

In [75]:

```
1 cols = X_train.columns
```

In [79]:

```
1 X_test = pd.DataFrame(X_test, columns=[cols])
2 X_test
```

Out[79]:

	TransactionId	Batchld	Accountld	SubscriptionId	CustomerId	Amount	Value	Yea
0	0.649611	0.842897	0.172107	0.777203	0.842897	0.092258	0.000203	1.
1	0.848850	0.173185	0.852479	0.876707	0.173185	0.092176	0.000112	1.
2	0.881526	0.369349	0.039050	0.392015	0.369349	0.092258	0.000203	0.
3	0.086950	0.909783	0.999793	0.791684	0.909783	0.091981	0.000101	1.
4	0.192229	0.127887	0.326033	0.169425	0.127887	0.092166	0.000101	1.
19128	0.948576	0.287148	0.820248	0.320025	0.287148	0.092258	0.000203	1.
19129	0.548726	0.905682	1.000000	0.791684	0.905682	0.091613	0.000507	1.
19130	0.961743	0.230507	0.614256	0.476210	0.230507	0.092248	0.000192	1.
19131	0.784330	0.411730	0.546901	0.270790	0.411730	0.092166	0.000101	1.
19132	0.757598	0.493651	0.504545	0.729003	0.493651	0.092258	0.000203	0.

19133 rows × 51 columns

In []:

1

```
In [78]:
```

```
1 X_train = pd.DataFrame(X_train, columns=[cols])
2 X_train
```

Out[78]:

	TransactionId	BatchId	AccountId	SubscriptionId	CustomerId	Amount	Value	Yea
0	0.995763	0.823437	1.000000	0.791684	0.823437	0.083483	0.000005	1.
1	0.458893	0.282649	0.822314	0.187836	0.282649	0.083581	0.000101	1.
2	0.958935	0.011979	0.027686	0.743277	0.011979	0.084879	0.001685	0.
3	0.675498	0.954255	0.999793	0.791684	0.954255	0.083395	0.000101	1.
4	0.535840	0.054821	1.000000	0.791684	0.054821	0.083483	0.000005	1.
76524	0.010691	0.892567	0.118595	0.903393	0.892567	0.083673	0.000202	0.
76525	0.485670	0.675061	1.000000	0.791684	0.675061	0.083483	0.000005	0.
76526	0.443332	0.614843	0.117769	0.180182	0.614843	0.083627	0.000152	0.
76527	0.011643	0.262347	0.438430	0.300786	0.262347	0.083673	0.000202	0.
76528	0.594392	0.716856	0.549174	0.687836	0.716856	0.083581	0.000101	1.

76529 rows × 51 columns

In [80]:

```
#Model training
from sklearn.linear_model import LogisticRegression

logreg = LogisticRegression(solver='liblinear', random_state=0)

logreg.fit(X_train, y_train)
```

Out[80]:

LogisticRegression(random_state=0, solver='liblinear')

In [81]:

```
1 #test data
2 y_pred_test = logreg.predict(X_test)
```

In [82]:

```
1 y_pred_test
```

Out[82]:

```
array([0, 0, 0, ..., 0, 0, 0], dtype=int64)
```

```
In [83]:
```

```
1 #probability of getting zero, i.e , no fraud
2
3 logreg.predict_proba(X_test)[:,0]
```

Out[83]:

```
array([0.99753105, 0.99977752, 0.99987278, ..., 0.99418927, 0.99983678, 0.9998944 ])
```

In [84]:

```
#check for accuracy

from sklearn.metrics import accuracy_score

print('Model accuracy score(test): ', accuracy_score(y_test, y_pred_test))
```

Model accuracy score(test): 0.998484294151466

In [85]:

```
1 y_pred_train = logreg.predict(X_train)
2
3 print('Model accuracy score(train): ', accuracy_score(y_train, y_pred_train))
```

Model accuracy score(train): 0.99820982895373

In [86]:

```
#model accuracy metrics for logistic regression
print('Training set score: ', logreg.score(X_train, y_train))
print('Test set score: ', logreg.score(X_test, y_test))
```

Training set score: 0.99820982895373 Test set score: 0.998484294151466

In [87]:

```
1 #check null accuracy
2 null_acuracy = 22726/(len(y_test))
```

In [88]:

```
1 null_acuracy
```

Out[88]:

1.1877907280614646

In [89]:

```
from sklearn.metrics import confusion_matrix
cm =confusion_matrix(y_test, y_pred_test)
```

In [90]:

```
1 ca
```

Out[90]:

In [91]:

```
print('True positives (TP) = ', cm[0,0])
print('False positives (FP)= ', cm[0, 1])
print('False Negatives (FN)= ', cm[1, 0])
print('True Negatives (TN))= ', cm[1, 1])
```

```
True positives (TP) = 19098
False positives (FP)= 0
False Negatives (FN)= 29
True Negatives (TN))= 6
```

In [92]:

```
#visualze with heatmap
from sklearn.metrics import ConfusionMatrixDisplay
disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=logreg.classes_)
```

In [93]:

```
1 disp.plot()
```

Out[93]:

<sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay at 0x17aff87c
490>

In [94]:

```
from sklearn.metrics import classification_report

#classification_report(y_test, y_pred_test)
```

```
In [95]:
 1 #new_df
In [42]:
   #new_df2 = new_df.drop(['CurrencyCode','CountryCode'],axis = 1, inplace=True)
In [44]:
 1 #print(new_df2)
None
In [ ]:
    #split data into target and feature
 1
   #X = new_df.drop(['CurrencyCode','CountryCode','FraudResult'], axis =1)
 3
    #y= new_df['FraudResult']
In [96]:
 1 | print(classification_report(y_test, y_pred_test))
              precision
                            recall f1-score
                                                support
                              1.00
                                        1.00
                                                  19098
           0
                   1.00
           1
                   1.00
                              0.17
                                        0.29
                                                     35
                                        1.00
                                                  19133
    accuracy
  macro avg
                   1.00
                              0.59
                                        0.65
                                                  19133
weighted avg
                   1.00
                              1.00
                                        1.00
                                                  19133
In [ ]:
 1
```

```
In [ ]:
 1 #split into test and train data
 2
 3
    from sklearn.model_selection import train_test_split
 4
   X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=
In [ ]:
    #check the shapeof our split
    #X_train.shape, X_test.shape
 3
 4
In [ ]:
 1
In [ ]:
 1
In [ ]:
   #X_train = pd.concat([X_train,ProductCategory_dummy, productId_dummy,providerId_dummy,0
 2
 3
In [ ]:
 1
```

In []:	
1	
In []:	
1	
In []:	
1	
In []:	
1	
In []:	
1	
In []:	
1	
In []:	
1	
In []:	
1	
In []:	
1	
In []:	
1	
In []:	
1	
In []:	
1	
In []:	
1	
In []:	
1	

In []:	
1	
In []:	
1	
In []:	
1	
In []:	
1	
<pre>In []:</pre>	
1	
In []:	
1	
In []:	
1	
T- [].	
In []:	
1	
In []:	
1	
In []:	
1	