

EVALUATE THE DASK DISTRIBUTED COMPUTING FRAMEWORK IN RESPECT TO VARIOUS SCIENTIFIC COMPUTING TASKS

EERO VAINIKKO

ARTJOM LIND

JEYHUN ABBASOV

Course Coordinator

Topic Supervisor

Student

Agenda

Recap: Dask & Its Data Structures

Recap: Experiment 1

Experiment 2

Discussion

Recap: Dask & Its Data Structures

Dask is a flexible library for parallel computing, Python-based Big Data engine.

Dask has *five main data structures*:

Dask Array

is used for the processing of large arrays, provides a distributed clone of the NumPy library

Dask DataFrame

is used to process a large amount of tabular data, parallel composition of Pandas Dataframe

Dask Bag

is a parallel collection of Python objects, like Spark's RDD. offers a programming abstraction similar to the PyToolz library

Dask Delayed

is used for processing arbitrary tasks that don't fit in above APIs.

Futures

is used for processing arbitrary tasks, similar to Delayed. but they operate in real-time ratherthan lazily.

Recap: Experiment 1

Comparison of Dask and other popular Python Frameworks such as Pandas(as a baseline), Modin(Ray), Vaex.

Expertiment 1 - Setup

Baseline

Pandas

Dataset

• The r/place Parquet dataset - 12GB (22GB uncompressed)

Setup

- Processor: Intel(R) Core(TM) i5-8250U CPU @ 1.60GHz 1.80 GHz
- Number of cores: 4
- Memory: 16.0 GB
- Hard Disk: 250 GB

Tests

- Test 1. Reading in the file. Speed comparison
- Test 2. Compute metrics of a column: (mean, std)
- Test 3. Finding the unique value of a column
- Test 4. Cumulative sum of a column
- Test 5. Groupby Aggregation

Test 1. Reading in the file. Speed comparison

Test 2. Compute metrics of a column: (mean, std)

Test 3. Finding the unique value of a column

Test 4. Cumulative sum of a column

Test 5. Groupby Aggregation

Experiment 2

Comparison of Apache Spark and Dask Big Data engines in processing neuroimaging pipelines application.

Expertiment 2 - Setup

Application

• Incrementation Application

Setup

- Processor: Intel Xeon Gold 6130, c8-30gb-186, cloud instances with 8 VCPUs
- Memory: 30 GB at 2666MHz
- Hard Disk: CentOS 7.5.1804
- Programming Language: Python

Dataset

- BigBrain a three-dimensional image of a human brain with voxel intensities ranging from 0 to 65,535 (Total data size: 81GB)
- Splitted: 30 blocks 2.7GB, 125 blocks 0,6GB, 750 blocks 0.1GB

Tests

- Test 1. Number of workers (1, 2, 4, 8)
- Test 2. Number of blocks (30, 125, 750)
- Test 3. Number of iterations (1, 10, 100)
- Test 4. Sleep delays (1, 4, 16, 64)

Experiment 2 - Application

Incrementation Application -

reads blocks of the BigBrain image from the shared file system, increments the intensity value of each voxel by 1 to avoid caching effects, *sleeps* for a configurable amount of time to emulate more compute intensive processing, repeats his process for a specified number of iterations, and finally writes the result as a image back to the shared filesystem.

Algorithm Incrementation

```
Require: x, a sleep delay in float
Require: file, a file containing a BigBrain block
Require: fs, NFS mount to write image to
Read block from file
for each i \in iterations do
for each block \in image do
block \leftarrow block + 1
Sleep x
end for
end for
Write block to fs
```

Test 1. Number of workers (1, 2, 4, 8)

Test 2. Number of blocks (30, 125, 750)

Test 3. Number of iterations (1, 10, 100) - Makespan

Test 4. Sleep delays (1, 4, 16, 64)

Discussion

Presented a evaulation of Dask

Overall, the results show no substantial performance difference between the engines/frameworks

The exp2 results suggest that future research should focus on strategies to reduce the impact of data transfers on applications.

References

[1] A performance comparison of Dask and Apache Spark for data-intensive neuroimaging pipelines

M. Dugr´e, V. Hayot-Sasson and T. Glatard, "A Performance Comparison of Dask and Apache Spark for Data-Intensive Neuroimaging Pipelines," 2019 IEEE/ACM Workflows in Support of Large-Scale Science (WORKS), 2019, pp. 40-49, doi: 10.1109/WORKS49585.2019.00010.

[2] Evaluate the Dask distributed computing framework in respect to various scientific computing tasks

https://github.com/abbcyhn/ut-3-seminar