

PVMCF Data Explorer

CTSD Brent Thompson
Summer 2025
CEN 4930 Sem in Advanced Software Development
Professor Corey Leong

About the Project

 Full stack software for EDA in photovoltaic research.

 SQLite database backend for speed and reliability.

 Reactive Shiny Python front end for viewing module data.

Languages and tools

Local Databases

- SQLite Databases indexing local file system.
- Primary keys of Module ID and measurement ID used to track modules.
- Backed up to Postgres each night.

Python Classes

- Libraries used include; shiny, pandas, SQLalchemy, matplotlib, logging, io, os.
- Custom python classes for database connectivity and automation.
- Workflows as python scripts for curating data and visualizations.

Implementation

- Project is implemented using the UV python package manager.
- The software is designed to run off the database located at FSEC.
- The program is used through the local web browser.

- Integrating the Postgres database from the cloud was considered.
- Local databases were used to ensure speed and reactivity.

Findings and Results

- Generating experimental datasets can be done 99% faster than prior methods.
- Human error is reduced to only the module-id selection step.

- Decreased technical burden and speed for plotting IV results of modules by over 95%.
- Identifying outliers and bad measurements occurs much faster.
- Graphs for studies can be produced instantly, alongside the measurements.

Technical Challenges

- Using Postgres to retrieve data slowed down the application, and prevented reactivity for large datasets(VCAD)
 - Firewall/Network problems exist at the organization level.
- Data pulled from Postgres has no PII, which is needed to perform make/model level data science.
 - Technical complexity to rejoin cleaned data was not justified for a locally running program collecting the raw data.
- Python versioning and dependency issues.
 - Lab computer is running python 3.7
 - Solved using virtual environments.

Successes and Disappointments

Successes

- Having the ability to plot as measurements are preformed, without any knowledge of plotting or data management.
- o Identifying outliers that exist in a graph and visualizing when the occur.

Disappointments

- Not being able to integrate Postgres in an efficient manner.
- Missing plotting features for identifying individual points on the graph.

Project Do Over

- More time would have been spent in the automated visualization.
 - Features for single point selection.
 - Option to select all from a model.
- Exploration of Python front end frameworks Streamlit / Marimo.
- Utilization of a complied version of python to create an exe.
- Starting sooner and having milestones completed earlier.

Thank you

- Thank you viewers for time
- Thank you professor for direction
- Thank you MDS3 for funding the work

Florida-Solar-Energy-Center/PVMCF-Data-Explorer: Bespoke data curation tool for the Photovoltaic Module Characterization Facility

