Regresión lineal simple

Regresión lineal múltiple Bioestadístic

Regresión lineal simple

Regresión lineal múltiple

Regresión lineal simple

Regresión lineal simple

Problema básico

Mínimos cuadrados Coef. de determinación Int. de confianza

Regresión lineal múltiple

Problema básico

La tabla siguiente nos da las alturas (en cm) y el VEF (en litros) de 20 estudiantes varones

Altura	VEF	Altura	VEF	Altura	VEF
164.0	3.54	172.0	3.78	178.0	2.98
167.0	3.54	174.0	4.32	180.7	4.80
170.4	3.19	176.0	3.75	181.0	3.96
171.2	2.85	177.0	3.09	183.1	4.78
171.2	3.42	177.0	4.05	183.6	4.56
171.3	3.20	177.0	5.43	183.7	4.68
172.0	3.60	177.4	3.60		

Regresión lineal simple

Problema básico Mínimos cuadrados Coef. de determinación Int. de confianza

Regresión lineal múltiple

Regresión lineal simple

Problema básico

Mínimos cuadrados

Coef. de determinación

Int. de confianza

Regresión lineal múltiple

Regresión lineal simple

Problema básico

Mínimos cuadrados

Coef. de determinación

Int. de confianza

Regresión lineal múltiple

Tenemos pares de observaciones de dos variables X, Y:

$$(x_i, y_i)_{i=1,2,...,n}$$

- La variable (no necesariamente aleatoria) X es la variable independiente
- La variable aleatoria Y es la variable dependiente

Queremos encontrar la relación lineal

$$Y = b_0 + b_1 X$$

que mejor explique los valores de Y en función de los de X

Regresión lineal simple

Problema básico

Mínimos cuadrados

Coef. de determinación

Int. de confianza

Regresión lineal múltiple

Regresión lineal simple

Suponemos que (en la vida real)

$$\mu_{Y|x} = \beta_0 + \beta_1 x$$

donde

- $Y|_X$ es la v.a. Y restringida a los individuos en los que X vale x
- $\mu_{Y|X}$ es el valor esperado de Y cuando X vale x
- β_0 (término independiente) y β_1 (pendiente) son parámetros que queremos estimar

(Porque... si no creemos que esta relación existe, ¿para qué vamos a buscar una expresión de Y lineal en X?)

simple Problema básico

Mínimos cuadrados Coef. de determinación Int. de confianza

Regresión lineal múltiple

Regresión lineal simple

Con una muestra $(x_i, y_i)_{i=1,...,n}$, calcularemos estimaciones b_0 y b_1 de β_0 y β_1

Esto nos dará la recta de regresión para nuestra muestra:

$$\widehat{y}=b_0+b_1x$$

Esta recta sirve, por ejemplo, para, dado un valor x_0 de X, estimar el valor (esperado)

$$\widehat{y}_0 = b_0 + b_1 x_0$$

de Y sobre un individuo para el que X valga x_0

Regresión lineal simple

Problema básico Mínimos cuadrados

Coef. de determinación Int. de confianza

Regresión lineal múltiple

Mínimos cuadrados

Dados b_0 , b_1 , el residuo, o error, *i*-ésimo del modelo $\widehat{y} = b_0 + b_1 x$ es

$$e_i = y_i - b_0 - b_1 x_i$$

Regresión lineal múltiple

Mínimos cuadrados

Los estimadores por mínimos cuadrados de β_0 y β_1 son los valores b_0 , b_1 que minimizan la suma de los cuadrados de los errores: es decir, tales que

$$\sum_{i=1}^{n} (y_i - b_0 - b_1 x_i)^2 \qquad \text{sea mínimo}$$

Derivando, igualando a 0, operando etc. obtenemos

Teorema

Los estimadores por mínimos cuadrados b_0 y b_1 de β_0 y β_1 son

$$b_1 = \frac{\widetilde{s}_{xy}}{\widetilde{s}_{.z}^2}, \quad b_0 = \overline{y} - b_1 \overline{x}$$

Coef de determinación Int. de confianza

Regresión lineal múltiple

Mínimos cuadrados

La recta de regresión por mínimos cuadrados de Y en función de X se calcula con $lm(y^x)$

Sus coeficientes b_0 y b_1 son $lm(y^x)$ \$coefficients

```
> Alturas=c(164.0,167.0,170.4,171.2,171.2,
   171.3.172.0.172.0.174.0.176.0.177.0.
   177.0,177.0,177.4,178.0,180.7,181.0,
   183.1,183.6,183.7)
> VEF = c(3.54, 3.54, 3.19, 2.85, 3.42, 3.20, 3.78,
   3.60,4.32,3.75,3.09,4.05,5.43,3.60,
   2.98,4.80,3.96,4.78,4.56,4.68)
> lm(VEF~Alturas)$coefficients
(Intercept) Alturas
-9.19038879 0.07438926
```

Obtenemos la recta

$$\widehat{\text{VEF}} = -9.1904 + 0.0744 \cdot \text{Alturas}$$

```
Rio octadíctica
```

Mínimos cuadrados

Comprobemos el teorema

Regresión lineal simple

Problema básico

Coef. de determinación Int. de confianza

Regresión lineal múltiple

```
> lm(VEF~Alturas)$coefficients
(Intercept) Alturas
-9.19038879 0.07438926
> b1=cov(Alturas, VEF)/var(Alturas)
> b1
[1] 0.07438926
> b0=mean(VEF)-b0*mean(Alturas)
> b0
```

¿Qué VEF esperamos en un estudiante de 175 cm?

```
> round(b0+b1*175,2)
[1] 3.83
```

[1] -9.190389

Rioestadístic

Regresión lineal simple
Problema básico

Mínimos cuadrados

Coef. de determinación

Int. de confianza

Regresión lineal múltiple

¡Cuidado!

Los cálculos involucrados en la regresión lineal son muy poco robustos: los redondeos pueden influir mucho en el resultado final

En http://en.wikipedia.org/wiki/simple_ linear_regression encontraréis un ejemplo detallado de una regresión de peso en función de altura

Si la calculamos en pulgadas y la pasamos a metros redondeando a cm da

$$\hat{y} = 61.675x - 39.746$$

Si primero traducimos las pulgadas a metros redondeando a cm y calculamos la recta de regresión, da

$$\hat{y} = 61.272x - 39.062$$

Propiedades

Regresión lineal simple

Problema básico Mínimos cuadrados

Coef. de determinación Int. de confianza

Regresión lineal múltiple • La recta de regresión pasa por el par de medias muestrales $(\overline{x}, \overline{y})$:

$$b_0 + b_1 \overline{x} = \overline{y}$$

 La media de los valores estimados es igual a la media de los observados:

$$\overline{\widehat{y}} = \overline{y}$$

Rinestadístic

Regresión lineal simple Problema básico Mínimos cuadrados

Coef. de determinación Int. de confianza

Regresión lineal múltiple

Coeficiente de determinación

Siguiendo la filosofía ANOVA, entendemos que $\widehat{y} = b_0 + b_1 x$ es una buena aproximación de y como función lineal de x cuando la variabilidad de \widehat{y} explica mucha parte de la variabilidad de y

Se cuantifica con el coeficiente de determinación R^2 . Con R se calcula con summary($lm(y^x)$)\$r.squared

 R^2 toma valores entre 0 y 1, y cuánto más se acerca a 1, mayor se considera el ajuste de la recta de regresión a la muestra

Coeficiente de determinación

```
Regresión lineal
simple
Problema básico
Mínimos cuadrados
```

Coef. de determinación

Int. de confianza

Regresión lineal múltiple

```
> plot(Datos,pch=19)
> abline(lm(VEF~Alturas), col="red")
```



```
> summary(lm(VEF~Alturas))$r.squared
[1] 0.3379069
```

Regresión lineal múltiple

Coeficiente de determinación

Sean:

- $SS_T = \sum_{i=1}^n (y_i \overline{y})^2 = (n-1) \cdot \widetilde{s}_y^2$: suma total de cuadrados
- $SS_R = \sum_{i=1}^n (\widehat{y}_i \overline{y})^2 = (n-1) \cdot \widetilde{s}_{\widehat{y}}^2$: suma de cuadrados de la regresión
- $SS_E = \sum_{i=1}^{n} e_i^2$: suma de cuadrados de los errores

Teorema

En una regresión lineal por mínimos cuadrados, se tiene que

$$SS_T = SS_R + SS_E$$

Coeficiente de determinación

El coeficiente de determinación de una regresión lineal es

$$R^2 = \frac{SS_R}{SS_T} = \frac{\widetilde{s}_{\widehat{y}}^2}{\widetilde{s}_y^2}$$

Por lo tanto, R^2 es la fracción de la varianza de y que queda explicada por la varianza de \hat{y}

Además, operando, se tiene:

Teorema

En una regresión lineal por mínimos cuadrados, $R^2 = r_{xx}^2$

Cuánto más se acerca R^2 (y por lo tanto r_{xy}) a 1, más se acercan los puntos (x_i, y_i) a una recta: la de regresión

```
Bioestadístic
```

Regresión lineal simple Problema básico Mínimos cuadrados

Coef. de determinación Int. de confianza

Regresión lineal múltiple

¡Cuidado!

No es conveniente valorar la bondad del modelo solo con el valor de R^2 . Añadid un gráfico.

Considerad los cuatro conjuntos de pares $(x_i, y_i)_{i=1,\dots,11}$ contenidos en el dataframe anscombe de R:

```
> str(anscombe)
'data frame': 11 obs. of 8 variables:
$ x1: num 10 8 13 9 11 14 6 4 12 7 ...
$ x2: num 10 8 13 9 11 14 6 4 12 7 ...
$ x3: num 10 8 13 9 11 14 6 4 12 7 ...
$ x4: num 8 8 8 8 8 8 8 19 8 8 ...
$ y1: num 8.04 6.95 7.58 8.81 8.33 ...
$ y2: num 9.14 8.14 8.74 8.77 9.26 8.1 6.13
   3.1 ...
$ y3: num 7.46 6.77 12.74 7.11 7.81 ...
$ y4: num 6.58 5.76 7.71 8.84 8.47 7.04 5.25
    12.5 ...
```

```
Bioestadístic
```

Regresión lineal simple Problema básico Mínimos cuadra<u>dos</u>

Coef. de determinación Int. de confianza

Regresión lineal múltiple

¡Cuidado!

Calculemos los R^2 de las regresiones

```
> summary(lm(y1~x1,data=anscombe))$r.squared [1] 0.6665425
> summary(lm(y2~x2,data=anscombe))$r.squared [1] 0.6665425
> summary(lm(y3~x3,data=anscombe))$r.squared [1] 0.6665425
> summary(lm(y4~x4,data=anscombe))$r.squared [1] 0.6665425
```

¡Cuidado!

Regresión lineal simple Problema básico Mínimos cuadrados

Coef. de determinación

Int. de confianza

Regresión lineal múltiple

Pero los cuatro gráficos son:

Más propiedades

Si todas las vv.aa. error, o residuo,

$$\mathbf{E}_{x_i} = (Y|x_i) - \beta_0 - \beta_1 x_i$$

son normales de media 0 y la misma varianza, e incorreladas dos a dos:

- $E(b_0) = \beta_0 \text{ y } E(b_1) = \beta_1$
- Entre todos los estimadores insesgados de β_0 y β_1 , b_0 y b_1 son los que tienen menor error estándar
- (Unos estadísticos relacionados con) b_0 y b_1 tienen distribuciones conocidas, que permiten calcular intervalos de confianza para β_0 , β_1 y $\mu_{Y|x_0}$ usando la t de Student

Rinestadístic

Regresión lineal simple Problema básico Mínimos cuadrados Coef. de determinación

Int. de confianza

Regresión lineal múltiple

Con R obtenemos mucha información

```
> summary(lm(VEF~Alturas))
Call:
lm(formula = VEF ~ Alturas)
Residuals:
    Min 1Q Median 3Q Max
-1.07090 -0.32367 0.03446 0.31797 1.45349
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -9.19039 4.30644 -2.134 0.04684 *
Alturas 0.07439 0.02454 3.031 0.00719 **
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.
   0.1 ' 1
Residual standard error: 0.5892 on 18 degrees of
   freedom
Multiple R-squared: 0.3379, Adjusted R-squared: 0.3011
F-statistic: 9.187 on 1 and 18 DF, p-value: 0.007185
```

Bioestadístic

Regresión lineal simple Problema básico Mínimos cuadrados Coef. de determinación Int. de confianza

Regresión lineal múltiple

¿Tiene sentido una regresión lineal?

Si $\beta_1=0$, el modelo de regresión lineal no tiene sentido: significa que $\mu_{Y|x}=b_0$ para todo x, es decir, que Y no depende de X

El p-valor del contraste

$$\begin{cases} H_0: \beta_1 = 0 \\ H_1: \beta_1 \neq 0 \end{cases}$$

es el valor de la columna Pr(>|t|) y fila correspondiente a la variable independiente (y, para la regresión lineal simple, también el p-value de la última fila)

En el ejemplo anterior vale 0.007185, lo que nos permite concluir que $\beta_1 \neq 0$

```
Rioestadístic
```

Regresión lineal simple Problema básico Mínimos cuadrados Coef. de determinación

Int. de confianza

Regresión lineal
múltiple

Intervalos de confianza

Los IC 95% para β_0 y β_1 se obtienen con la función confint(lm(y~x))

Con el IC 95% de β_1 también podemos contrastar si $\beta_1=0$ o no

En este caso, el IC 95% va de 0.023 a 0.126, no contiene el 0

```
Rioestadístic
```

Regresión lineal simple Problema básico Mínimos cuadrados Coef. de determinación

Int. de confianza

Regresión lineal múltiple

Intervalos de confianza

El IC 95% para $\mu_{Y|x_0}$ se obtiene con la construcción siguiente:

```
> Altura.nueva=data.frame(Alturas=175)
> predict.lm(lm(VEF~Alturas), Altura.nueva,
    interval="confidence")
    fit lwr upr
1 3.827732 3.550234 4.10523
```

El IC 95% para $\mu_{Y|x_0}$ es más ancho cuánto más se aleja x_0 de \overline{x} (la estimación $\mu_{Y|\overline{x}} = \overline{y}$ es muy "segura")

Bioestadístic

Regresión lineal simple

Regresión lineal múltiple

Anova

Problema básico Coef. de determinación Int. de confianza

Regresión lineal múltiple

Pio ostadística

Regresión lineal simple

Regresión lineal múltiple

Problema básico

Coef. de determinación

Int. de confianza

Regresión lineal múltiple

Tenemos ahora k variables independientes X_1, \ldots, X_k (no necesariamente aleatorias) y una variable dependiente Y

Suponemos que (en la vida real)

$$\mu_{Y|x_1,\dots,x_k} = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k$$

donde

- $Y|x_1,...,x_k$ es la v.a. Y restringida a los individuos en los que X_1 vale x_1 , X_2 vale x_2 ,..., y X_k vale x_k
- $\mu_{Y|x_1,...,x_k}$ es el valor esperado de Y cuando X_1 vale x_1 , X_2 vale $x_2,...$, y X_k vale x_k
- $\beta_0, \beta_1, \dots, \beta_k$ son parámetros que queremos estimar a partir de una muestra

$$(x_{i1}, x_{i2}, \ldots, x_{ik}, y_i)_{i=1,\ldots,n}$$

Regresión lineal simple

Regresión lineal múltiple Problema básico

Coef. de determinación Int. de confianza

Ejemplo

Se postula que la altura de un bebé (Y) es una función lineal de su edad en días (X_1) , su altura al nacer en cm (X_2) , su peso en kg al nacer (X_3) y el aumento en % de su peso actual respecto de su peso al nacer (X_4)

El modelo que suponemos es

$$\mu_{Y|x_1,x_2,x_3,x_4} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4$$

Ejemplo 3

Regresión lineal simple

Regresión lineal múltiple

Problema básico

Coef. de determinación Int. de confianza Anova En una muestra de n = 9 niños, los resultados fueron:

У	<i>x</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄
57.5	78	48.2	2.75	29.5
52.8	69	45.5	2.15	26.3
61.3	77	46.3	4.41	32.2
67	88	49	5.52	36.5
53.5	67	43	3.21	27.2
62.7	80	48	4.32	27.7
56.2	74	48	2.31	28.3
68.5	94	53	4.3	30.3
69.2	102	58	3.71	28.7

Queremos estimar $\beta_0, \beta_1, \beta_2, \beta_3, \beta_4$ a partir de esta muestra

Regresión lineal múltiple

Regresión lineal simple

Regresión lineal múltiple

Problema básico

Coef. de determinación

Int. de confianza

Anova

Sean b_0, \ldots, b_k estimaciones de β_0, \ldots, β_k

Definen la función de regresión lineal para nuestra muestra:

$$\widehat{y} = b_0 + b_1 x_1 + \dots + b_k x_k$$

El residuo, o error, i-ésimo de este modelo es

$$e_i = y_i - (b_0 + b_1 x_{i1} + \cdots + b_k x_{ik})$$

Los estimadores por mínimos cuadrados de $\beta_0, \beta_1, \dots, \beta_k$ son los valores b_0, b_1, \dots, b_k que minimizan

$$\sum_{i=1}^n e_i^2 = \sum_{i=1}^n (y_i - b_0 - b_1 x_{i1} - \dots - b_k x_{ik})^2.$$

Regresión lineal múltiple

Regresión lineal simple

Regresión lineal múltiple

Problema básico

Coef. de determinación Int. de confianza Anova Con R se calculan con

- $lm(y^X)$ \$coefficients, donde X es la matriz de columnas x_1, \ldots, x_k ; o
- lm(y~x1+...+xk,data=...)\$coefficients, donde ahora y, x₁,...,x_k son columnas del dataframe que indicamos en data

Ejemplo

```
Regresión lineal simple
```

Regresión lineal múltiple

Coef. de determinación Int. de confianza

Anova

```
> X = matrix(c(78,48.2,2.75,29.5,69,45.5,
2.15,26.3,77,46.3,4.41,32.2,88,49,5.52,
36.5,67,43,3.21,27.2,80,48,4.32,27.7,74,
48,2.31,28.3,94,53,4.3,30.3,102,58,3.71,
28.7), nrow=9, byrow=TRUE,
dimnames=list(NULL,c("x1","x2","x3","x4")))
> y=c(57.5,52.8,61.3,67,53.5,62.7,56.2,68.5,
69.2)
> cbind(y,X)
           x1 x2 x3 x4
 [1.] 57.5 78 48.2 2.75 29.5
 [2,] 52.8 69 45.5 2.15 26.3
 [3.] 61.3 77 46.3 4.41 32.2
 [4,] 67.0 88 49.0 5.52 36.5
 [5.] 53.5
           67 43.0 3.21 27.2
 [6,] 62.7 80 48.0 4.32 27.7
 [7,] 56.2 74 48.0 2.31 28.3
 [8,] 68.5 94 53.0 4.30 30.3
 [9,] 69.2 102 58.0 3.71 28.7
```

Ejemplo

Regresión lineal simple

Regresión lineal múltiple

Coef. de determinación Int. de confianza

La función lineal estimada es

$$\hat{y} = 7.1475 + 0.1001x_1 + 0.7264x_2 + 3.0758x_3 - 0.03x_4$$

Propiedades

Regresión lineal simple

Regresión lineal múltiple

Problema básico

Coef. de determinación Int. de confianza Anova • La recta de regresión pasa por el vector de medias muestrales $(\overline{x}_1, \overline{x}_2, \dots, \overline{x}_k, \overline{y})$:

$$\overline{y} = b_0 + b_1 \overline{x}_1 + \cdots + b_1 \overline{x}_k$$

 La media de los valores estimados es igual a la media de los observados:

$$\overline{\widehat{y}} = \overline{y}$$

Coeficiente de determinación

Regresión lineal simple

Regresión lineal múltiple

Coef. de determinaci

Int. de confianza

Sean:

• $SS_T = \sum_{i=1}^n (y_i - \overline{y})^2 = (n-1) \cdot \widetilde{s}_y^2$: suma total de cuadrados

- $SS_R = \sum_{i=1}^n (\widehat{y}_i \overline{y})^2 = (n-1) \cdot \widehat{s}_{\widehat{y}}^2$: suma de cuadrados de la regresión
- $SS_E = \sum_{i=1}^{n} e_i^2$: suma de cuadrados de los errores

Teorema

En una regresión lineal múltiple por mínimos cuadrados, se tiene que

$$SS_T = SS_R + SS_E$$

Regresión lineal múltiple

Problema básico

de determinación

Int. de confianza

Coeficiente de determinación

El coeficiente de determinación de una regresión lineal múltiple es

$$R^2 = \frac{SS_R}{SS_T} = \frac{s_{\widehat{y}}^2}{s_y^2}$$

Representa la fracción de la varianza de y que es explicada por la varianza de \hat{y}

El coeficiente de correlación múltiple de y respecto de X_1, \ldots, X_k es

$$R = \sqrt{R^2}$$

Regresión lineal múltiple

Problema básico

Int. de confianza Anova

Coeficiente de determinación

 R^2 siempre crece con el número k de variables independientes, incluso si las variables que añadimos no sirven para nada

Para tenerlo en cuenta, en lugar de usar R^2 , se usa el coeficiente de determinación ajustado

$$R_{adj}^2 = 1 - (1 - R^2) \frac{n - 1}{n - k - 1}$$

Si queremos comparar dos modelos lineales para una misma variable dependiente y diferentes conjuntos de variables independientes con diferentes números de variables, no hay que comparar los R^2 , sino los R^2_{adj} : a mayor valor de R^2_{adj} , mejor es el modelo

Ejemplo

Regresión lineal simple

Regresión lineal múltiple

Coef. de determinación

Int. de confianza

```
> summary(lm(y~X))
Residual standard error: 0.861 on 4 degrees
   of freedom
Multiple R-squared: 0.9908,
   Adjusted R-squared: 0.9815
F-statistic: 107.3 on 4 and 4 DF,
   p-value: 0.0002541
> summary(lm(y~X))$r.squared
[1] 0.9907683
> summary(lm(y~X))$adj.r.squared
[1] 0.9815367
```

$$R^2 = 0.9908, \quad R_{adi}^2 = 0.9815$$

Regresión lineal simple

Regresión lineal múltiple

Problema básico

Coef. de determinación

Int. de confianza Anova

Ejemplo

¿Sería mejor el modelo si no tuviéramos en cuenta X_4 (el aumento de peso en %)?

```
> X1X2X3=X[,1:3]
> summary(lm(y~X1X2X3))$adj.r.squared
[1] 0.9851091
```

Tomando las variables independientes X_1, X_2, X_3, X_4 , obtenemos $R_{adj}^2 = 0.9815$, y tomando solo X_1, X_2, X_3 , obtenemos $R_{adj}^2 = 0.9851$

El modelo es mejor si no tenemos en cuenta X_4

Más propiedades

Regresión lineal

Regresión lineal múltiple Problema básico Coef, de determinación

Int. de confianza

Si todas las vv.aa. error, o residuo,

$$\underline{E}_{\underline{x}_i} = (Y|\underline{x}_i) - (\beta_0 + \beta_1 x_{i1} + \dots + \beta_k x_{ik})$$

(donde $\underline{x}_i = (x_{i1}, \dots, x_{ik})$) son normales de media 0 y la misma varianza, e incorreladas dos a dos, de nuevo:

- $E(b_i) = \beta_i$, para todo i = 0, ..., k
- Entre todos los estimadores insesgados de los β_i , los b_i son los que tienen menor error estándar
- (Unos estadísticos relacionados con) los b_i tienen distribuciones conocidas, que permiten calcular intervalos de confianza para cada β_i y para $\mu_{Y|\underline{x}_0}$ usando la t de Student

```
Ricostadístic
```

Regresión lineal simple
Regresión lineal

múltiple

Problema básico

Coef. de determinación

Int. de confianza

Anova

Intervalos de confianza

Los IC 95% para los β_i se obtienen con la función confint(lm(y~x1+...+xk,data=...))

```
> DatosYX=data.frame(y,X)

> confint(lm(y~x1+x2+x3+x4,data=DatosYX))

2.5 % 97.5 %

(Intercept) -38.5516748 52.8467396

x1 -0.8430889 1.0432778

x2 -1.4555952 2.9084299

x3 0.1350854 6.0165886

x4 -0.4922156 0.4321313
```

Pio octodíctic

Regresión lineal simple

Regresión lineal múltiple Problema básico

Coef. de determinación

Int. de confianza

Anova

Intervalos de confianza

El IC 95% para $\mu_{Y|\underline{\mathsf{x}_0}}$ se obtiene con la construcción siguiente

Rinestadístic

Regresión lineal simple

Regresión lineal múltiple Problema básico

Coef. de determinación Int. de confianza

Anova

¿Tiene sentido una regresión lineal?

Cómo en el caso simple, nos interesa el contraste

$$\begin{cases} H_0: \beta_1 = \beta_2 = \dots = \beta_k = 0 \\ H_1: \text{hay algún } \beta_i \neq 0 \end{cases}$$

Si la hipótesis nula es verdadera, $\mu_{Y|x_1,...,x_k} = \beta_0$ no depende de $X_1,...,X_k$, no tiene sentido la regresión lineal

Rioestadístic

Regresión lineal simple

Regresión lineal múltiple Problema básico Coef, de determinación

Int. de confianza

Anova

¿Tiene sentido una regresión lineal?

Esto se puede mirar con k contrastes

$$\begin{cases} H_0: \beta_i = 0 \\ H_1: \beta_i \neq 0 \end{cases}$$

usando un estadístico adecuado que sigue una ley t de Student (bajo las suposiciones sobre las vv.aa. E_{x_i}). Sus p-valores se obtienen en la columna Pr(>|t|) de la tabla Coefficients del resultado del summay(lm(...)).

También se pueden usar los IC 95% para los β_i

Ejemplo

```
Regresión lineal simple
```

```
Regresión lineal
múltiple
Problema básico
Coef. de determinación
Int. de confianza
```

Anova

```
> summary(lm(v^x1+x2+x3+x4,data=DatosYX))
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
                     16.45961
                                0.434
                                        0.6865
(Intercept)
            7.14753
x 1
            0.10009
                      0.33971 0.295 0.7829
x^2
            0.72642
                      0.78590 0.924 0.4076
x3
            3.07584
                      1.05918 2.904 0.0439 *
x4
           -0.03004
                      0.16646 -0.180 0.8656
                      0.001 '**' 0.01 '*' 0.05 '.'
Signif. codes:
   0.1 ' 1
. . .
```

Pero son k contrastes, y no independientes, por lo tanto garantizar el nivel de significación global es complicado

ANOVA en la regresión lineal

Regresión lineal simple

Regresión lineal múltiple Problema básico Coef. de determinación Int. de confianza

Anova

Otra posibilidad es emplear un ANOVA:

Si

$$\beta_1 = \beta_2 = \dots = \beta_k = 0,$$

entonces

$$\mu_{Y|\underline{\mathsf{x}}_1} = \dots = \mu_{Y|\underline{\mathsf{x}}_k} (=\beta_0)$$

Por lo tanto, si en el contraste

$$\begin{cases} H_0: \mu_{Y|\underline{x}_1} = \dots = \mu_{Y|\underline{x}_k} \\ H_1: \text{no es verdad que.} \dots \end{cases}$$

rechazamos la hipótesis nula, podemos rechazar que $\beta_1 = \beta_2 = \cdots = \beta_k = 0$ y el modelo tendrá sentido

ANOVA en la regresión lineal

Regresión lineal simple

Regresión lineal múltiple Problema básico Coef. de determinación Int. de confianza

Anova

El p-valor de este ANOVA se da en la última fila del summary(lm(...))

```
> summary(lm(y~X))
...
Residual standard error: 0.861 on 4 degrees
   of freedom
Multiple R-squared: 0.9908,
   Adjusted R-squared: 0.9815
F-statistic: 107.3 on 4 and 4 DF,
   p-value: 0.0002541
```