

Text Classification for Data Loss Prevention

Michael Hart, Pratyusa Manadhata, Rob Johnson

Symantec Research Laboratory

Data Loss has become a serious problem

Data breaches cost an average of \$6.6 million to an organization

Almost 500 million records with personal info have been leaked

since 2005

Recent targets: CIA, RSA, Senate.gov

- WikiLeaks
 - 250K State Department cables
 - > 70K Afghanistan War reports
 - And have a "contingency plan"
- Hacker gangs
 - Lulz Sec and Anonymous

RECORDS	DATE	ORGANIZATIONS
19,799	2011-07-20	Swedish Medical Center
<u>0</u>	2011-07-20	Policía Nacional de Colombia (Colombia National Police)
<u>0</u>	2011-07-19	Mountain Mike's Pizza
<u>0</u>	2011-07-18	REWE Group
4,827	2011-07-18	Unknown Organization, JL Audio, Inc.
2,021	2011-07-18	Beth Israel Deaconess Medical Center
		Unknown Organization, Federal Emergency
<u>340</u>	2011-07-17	Management Agency, Williams Chevrolet Inc. Customers
<u>188</u>	2011-07-17	Haartman Hospital
<u>25</u>	2011-07-16	Kirklees Council
0	2011-07-16	Meath Council

Largest Incidents

RECORDS	DATE	ORGANIZATIONS
130,000,000	2009-01-20	Heartland Payment Systems, Tower Federal Credit Union, Beverly National Bank
94,000,000	2007-01-17	TJX Companies Inc.
90,000,000	1984-06-01	TRW, Sears Roebuck
77,000,000	2011-04-26	Sony Corporation
40,000,000	2005-06-19	CardSystems, Visa, MasterCard, American Express
32,000,000	2009-12-14	RockYou Inc.
26,500,000	2006-05-22	U.S. Department of Veterans Affairs
25,000,000	2007-11-20	HM Revenue and Customs, TNT
24,600,000	2011-05-02	Sony Online Entertainment, Sony Corporation
<u>17,000,000</u>	2008-10-06	T-Mobile, Deutsche Telekom

From datalossdb.org

Protecting Data

Туре	Description	DLP goal
Data-at-rest	Information stored on enterprise devices such as document management systems, email servers and file servers.	Scan data, identify unsecured confidential information and report.
Data-in-motion	Enterprise data contained in outbound network traffic such as emails, instant messages and web traffic.	Block transmission of sensitive data.
Data-in-use	Data currently used at the end point such as Outlook, http, https, print and file to USB.	Prevent unauthorized usage of data (e.g. copying to a thumb drive).

Why Machine Learning for Data Loss Prevention?

- Need for more effective approaches to stop data breaches
- Downsides to current approaches
 - Impossible to describe all CI entirely in rule based formats
 - Potentially large number of documents that constantly evolve
 - Requires allowing IT staff access to sensitive materials
- Text classification
 - Long history of research and many different techniques
 - Handles unstructured data
 - Requires minimal supervised interaction
- Goal: automatically learn what is secret

Our use case scenario

- Build message classifier for outgoing messages
- Train on examples of private and public messages
- Use classifier to detect outgoing messages with private data
- Block or log outgoing messages with private data

Performance Metrics

- Achieve a high recall on confidential (secret) documents
- Maintain a low false positive rate on both:
 - Company media (public) documents
 - Non-enterprise (NE) documents
- Constraints
 - Scale well
 - Require no metadata
 - Be agnostic to message type

Baseline Approach

- Simply train a standard classifier on confidential and public documents
- Employed a search for classifiers with WEKA
 - Best classifier: SVM with a linear kernel
 - Best features: Unigrams with binary weights

Potential issues with enterprise training data

- Suffer from high FP on NE documents
- Can weight common words strongly towards secret
 - Example words: Policy, Police, Procedure, 1, Afghanistan
 - Feature behavior for public documents absent in training set
- 40% of classifiers were biased towards the secret class
 - Performed poorly for instances inadequately represented in vector space
- Underlying problem
 - Can the organization even describe what is not secret?

Addressing inadequate training data (Step 1)

- Better learn what is secret by supplementing
 - Add 10K supplemental instances from Wikipedia to the training set
 - Key point: do **not** expand feature set
 - Gives classifier more representative training set
 - Better learn which features correlate with secret
- Adjust the classifier
 - Adding more instances increases false negative rate
 - Adjust decision plane within 10% of the closest TN
- Call this classifier SA_{private}

Effect of supplementation

Public False Positive Rate

False Negative Rate

NE False Positive Rate

Effect of adjustment

Public False Positive Rate

False Negative Rate

NE False Positive Rate

Correcting for mistakes (Step 2)

- In some cases
 - Still observe FPs by NEs
 - Increased FP rate on public
 - Classifier more sensitive to knowledge domain than secret
- Train a second classifier with new features
 - Eliminate NE false positives by measuring the topical relatedness of documents
 - Address *public* false positives by learning what *public* means using an SA_{public} classifier
 - Change the classification decision from secret, ¬secret to secret, public and NE

Targeting NE false positives

- Related documents should share similar language
 - Measure amount of new vocabulary contained in document
- Introduce new attribute: xtra.info_{class} where
 - class in {secret,public}
 - Percentage of words in document that exist in the document, but not in any document labeled class
 - Only consider words with a document frequency less than 0.5%

Hypothesis

A document in class should have a lower xtra.info_{class}

$xtra.info_{secret}$ comparison for NE and secret

xtra.info _{secret}	Dyncorp	Enron	Google	Mormon	TM
secret	0.54 (0.10)	0.83 (0.09)	0.70 (0.15)	0.49 (0.15)	0.66 (0.11)
NE	0.96 (0.03)	0.99 (0.02)	0.98 (0.04)	0.95 (0.08)	0.99 (0.02)

Why three classes?

- NE and public false positives are topically dissimilar
- Grouping together increases the variance in
 - xtra.info attributes
 - SA_{public} classifier
- Change the decision to NE, secret, public
- Increase separability between *secret* and *NE* for xtra-info_{private} attribute
- Observe decrease in mislabeling of *public* documents as *secret*

SVM output + xtra.info $_{private}$ for Dyncorp

Review: DLP pipeline

Corpora for DLP

Dataset	Source of Sensitive Documents	Source of Public Documents	Description
Dyncorp	WikiLeaks	www.dyncorp.com	23 private documents leaked from the military contractor Dyncorp
TM	WikiLeaks	www.alltm.org, www.tmscotland.org	102 documents from high ranking officials in the Transcendental Meditation movement
Mormon	WikiLeaks	www.lds.org	Private Mormon handbook split into 1000 word chunks
Enron	Enron Email dataset	Enron's former website via the Wayback Machine	399 emails labeled by Hearst et al. as business- related
Google	Google Product blogs	Google PR Blogs	Label product-related posts as private and public relations posts as public
Wikipedia		English Wikipedia	10K randomly selected articles for false positive detection
Brown Corpus		Press releases, reviews and books	500 texts selected to represent modern American English
Reuters-21758		Reuters News Service	10788 news items published by the news service

Results: Error rates

False positive rate on other NE corpora

Outstanding research questions

- Given a set of documents, how well will it work in deployment?
 - If it performs poorly, can I fix it?
- What about sensitive documents that are not classified well?
 - Likely scenario: new project initial documents
- What if I am given a large number of diverse documents?
- Intra-organizational DLP?
- What about this document is confidential?
 - Can we highlight, redact, sanitize?
- Sensitivity score?
- What can I do for my Smartphone?

Conclusion

- An algorithm to train text classifiers for DLP
 - Enhance the text classification process to prevent data loss
 - Add supplemental examples to better understand what is secret
 - First step filters out majority of FPs generated by non-enterprise documents
 - Employs a second classifier with contextual information
- Approach motivated by understanding and modeling the data
 - Confidential documents do contain publically known entities
 - Are the salient features
 - But can cause false positives
 - It is the relationship between these entities that must be protected

Thank you!

Michael Hart
Michael_Hart@symantec.com

Copyright © 2011 Symantec Corporation. All rights reserved. Symantec and the Symantec Logo are trademarks or registered trademarks of Symantec Corporation or its affiliates in the U.S. and other countries. Other names may be trademarks of their respective owners.

This document is provided for informational purposes only and is not intended as advertising. All warranties relating to the information in this document, either express or implied, are disclaimed to the maximum extent allowed by law. The information in this document is subject to change without notice.