Introduction to Choice Modeling

Data Science, General Assemb.ly

Nir Kaldero

University of California, Berkeley

Wednesday, 7 May, 2014

- Introduction to (applied) Choice Modeling
 - Learning how to leverage data & use predictive models
 - Takeaway: understand behavioral patterns & decision making process
- Discrete Choice Models
 - LPM Linear Probability Model
 - Non-Linear Probability Models:
 - Logit (Log-Normal dist.)
 - Probit (normal dist.)
 - Nested-Logit
 - Random Coefficient (RD)
 - BLP
 -
- Practical Example
 - Motivation in Real-World Interface

How can we explain changes and differences between the choices we make – everyday?

Choices?:

- Whether I decide to work (be employed), or not?
- Whether I decide to purchase 2% milk vs. non-fat milk?
- Whether a firm decides to adopt a new technology?
- Whether I decide to get married?
- Whether Apple should invest in a new feature (or improve a current one)?

All of these are important everyday choices we want to understand

What can we do?

- We can try to understand how decisions are made (what drives our decision to choose, behave, or act in a certain way..)
- We can try to understand how different features/attributes affect our decisions or our behavior

We will be able to make recommendations, create strategy, and polices

Example: Buy iPhone vs. Android?

How different attributes (e.g.: screen, design,.) or features (e.g.: Siri, Touch-Screen) affect our decision to buy an iPhone or other (Android)

Seems to be important for manufactures, marketers, and developers

MOTIVATION

In order to answer these questions we need to understand agents' behavior (e.g.: consumers, firms, policies)

- → we need to define and estimate Choice Models –Discrete (binary) or Continues
- We will focus on Discrete Choice Models
- Discrete Choice Models A binary Choice:
 - All of these questions deal with binary choices -0 or I (notation: outcome $\equiv y = (0,1)$)
 - Examples:
 - \bullet Be employed, or not? \rightarrow emp(0,1)
 - ♦ Decided to purchase 2% milk or non-fat milk? \rightarrow milk2%(0,1)
 - \bullet Firm decided to adopt a new technology? \rightarrow platform(0,1)
 - * Get married? \rightarrow married(0,1)

FROM THEORY TO EMPIRICS

A Fresh Reminder:

- We are living in a new era! Big Data
- There are things we know ($\mathcal{X} \not k$) and there are some that we don't know (\mathcal{U})
- OLS regression : $y = \beta \downarrow 0 + \beta \downarrow 1 \ x \downarrow 1 + \beta \downarrow 2 \ x \downarrow 2 + \beta \downarrow 3 \ x \downarrow 3 \ \dots + \beta \downarrow k \ x \downarrow k + u \uparrow error_{\text{outcome}}$ Un-known information for the econometrician

What are we trying to do? -Best Approximation

We want to find a linear line which is the best approximation (prediction) given all the data we have

- The method? We minimize the 'error-term'/'residual' (distance between the points) : $MIN(u12) = MIN((y-x\beta)12)$
- OLS is a linear regression the effect of the estimated parameters ($\beta \downarrow k$) on the outcome ($\mathcal Y$) is linear (i.e., constant)
- How do we interpret the results? one unit change in $~\mathcal{X}\mathcal{J}k~$ (increase/decrease) will change $~\mathcal{Y}$ by $~\mathcal{\beta}\mathcal{J}k~$ ('linearity')

MODELS OF DISCRETE CHOICE

Three common models:

- LPM Linear Probability Model
- Non-Linear Models (Advanced)
- Probit (assuming Normal dist.)
- Logit (assuming Log-Normal dist.)
- Each model has its own features (assumptions)
- Each model has its own pros and cons

The most important question in the industry (also in academia): How to choose the 'right' model?

A: depends on the assumptions we make on the distribution of the error-term (Log, Normal, etc.)

Example: It is known that income (proxy for employment) is Log-Normal distributed (Why?)

MODELS OF DISCRETE CHOICE – LPM

LPM - Linear Probability Model

In general the empirical model is:

$$y \downarrow it = \beta \downarrow 0t + \beta \downarrow 1t \ x \downarrow 1t + \beta \downarrow 2t \ x \downarrow 2t + \beta \downarrow 3t \ x \downarrow 3t \ \dots, \beta \downarrow kt \ x \downarrow 3t + u \downarrow it \ ; Where: y \downarrow it = 0 \ r \ 0$$

 \rightarrow The LPM is a simple OLS regression with a binary dependent variable $y \downarrow it = emp(1,0)$

Why to choose this model:

- Pros: Easy to estimate and compute ©
- It's generally accepted that the unknown information (unobserved to us) is normally distributed across our sample
 - Intuition: Choices are made in a random way (with a mean of 0 on average)

Assumptions:

Exogenous – no correlation between $x \downarrow k$ (the variables) and the error-term $u \downarrow it \rightarrow corr(x \downarrow k$, u)=0

If
$$Corr(x \downarrow k, u) \neq 0 \rightarrow$$
 the estimators $(\beta \downarrow k)$ are biased!

8 2. The error-term is normally distributed ($u\sim normal(\mu,\sigma 12)$)

MODELS OF DISCRETE CHOICE - LPM

In Practice - Since $y \downarrow it$ is now a binary choice (1,0):

- The outcome (\mathcal{Y}) gets a probability interpretation (different from OLS)
- We should define the 'Probability of Success' Prob(y=1) based on our inte

How should we interpret the estimated coefficients (results - betas)?

 $\beta \downarrow k$ is the expected change in the probability of 'success' - $Prob(y \downarrow i =$

$$\beta \downarrow k = \partial Prob(y \downarrow i = 1 \mid X) / \partial x \downarrow j \text{ where } x \downarrow j \in X$$

beta = slope

alpha = intercept

The effect of $\beta \downarrow k$ is linear on the outcome ($\mathcal Y$) and from here the name – LPM

Some bad news:

The expected (predicted) probability is not necessarily defined between 0-1 (does not make sense..)

LPM - REAL EXAMPLE

Question: How do having children affect married women's choice to work (be employed)?

 Seems to be an important question in order to understand unemployment rate and to define optimal strategies/policies

Data – Israeli Labour Force Survey for the years 1985-2010 (a panel data – time series)

- Notation: Observation $\rightarrow i$; Year $\rightarrow t$
- Variables: $x \downarrow k$
 - year year of the survey
 - 2. Sex male (1), female (0)
 - 3. Age
 - 4. Marital status (I = married, 2= divorced, 3= widow, 4= single, 5= married live alone)
 - 5. Schooling years of education
 - 6. Working_hours number of hours at work (per week)
 - 7. emp I (yes) 0 (no) [if working_hours > 10 a week)]
 - 8. .
 - 9. Controls (demographics), etc

We need to choose from this huge data-set only: married women who have children

LPM - REAL EXAMPLE

We will use python in order to run an OLS simple regression with binary dependent variable - LPM model:

Source	ss	df :	MS	Nu F (mber of obs = 7, 22760) =	
Model	796.424037	7 113.7	74862		ob > F =	0.0000
Residual	4880.18313	22760 .2144	19294	R-:	squared =	0.1403
				Ad	j R-squared =	0.1400
Total	5676.60717 2	22767 .2493	34878	Ro	ot MSE =	.46305
	_					
emp10	Coef.	Std. Err.	τ	P> T	[95% Conf.	Interval]
schooling	.0317368	.0007409	42.84	0.000	.0302846	.0331891
age	.0617393	.0028811	21.43	0.000	.0560922	.0673864
age_sq	0007611	.000032	-23.81	0.000	0008238	0006985
children_0_4	0710904	.0048222	-14.74	0.000	0805422	0616386
children_5_9	0391121	.0043027	-9.09	0.000	0475458	0306785
children_10_14	0485788	.0044201	-10.99	0.000	0572426	039915
children_15_17	0499378	.0064346	-7.76	0.000	06255	0373256
_cons	9485538	.0620296	-15.29	0.000	-1.070136	8269716

- All the variables are statistically significant (p-value)
- All variables are consistent with our intuition (signs)
- How to interpret the results? (recall):
 - Each additional schooling year increases the *probability* of being employed by 3.2 biases point (0.317)
 - Having children between the ages of 0-4 decrease the probability of being employed by 7.1% (- 0.710)

This model – Discrete Choice – can help us understand our behavior in real life circumstances

LPM - EXAMPLE (AND SOME PROBLEMS..)

Problems with LPM model:

Variable	Obs	Mean	Std. Dev.	Min	Max
emp10 emp_hat	22768 22768	.5260014 .5260014	.4993344 .1870334 (4886191	1.172533

The predicted probability is not necessarily defined between 0-1

Why? For some observations that prediction of the model result is : $y \downarrow it \equiv emp \downarrow it < 0$ or em

$$p \downarrow it > 1$$

- Another disadvantage of the LPM Heteroscedasticity:
 - The variance across agents (observations) changes across our sample
 - Some observations ('agents') have different variabilities (std.) from others
 - Heteroscedasticity can invalidate statistical tests of significance
 - The estimators are not biased!

-We can easily fix this in python

LPM - CONCLUSIONS

LPM -

- Easy to estimate (OLS regression)
- The predicted ('expected') probability is not necessarily between 0-1
- The effect of the parameters ($\beta\downarrow it$) on the expected/predicted probability is constant (each change in $\chi\downarrow it$ will increase/decrease the probability in a constant fashion)

How can we overcome these crucial issues?

- There are more sophisticated models of discrete choice such as:
 - Probit (assuming standard normal distribution)
 - Logit (assuming standard log-normal distribution)

PROBIT/LOGIT MODEL

The general model (like LPM) tries to predict the 'probability of success':

$$Prob(y \downarrow it = 1 \mid x \downarrow j) = Prob(y \downarrow it = 1 \mid x1, x2, x3, x4, ..., x \downarrow k)$$

The general form of the model is: $Proby \downarrow it = 1X = G(\beta \downarrow 0 + \beta \downarrow 1 \ x \downarrow 1 + \beta \downarrow 2 \ x 2$, ..., +

$$\beta \downarrow k x \downarrow k$$
)

- In order to ensure that the predicted values will be between 0-1 $(0 < Prob(\cdot) < 1)$ we need to choose a function (G(Z)) that satisfies this constrain
 - G(Z) can also be a non-linear function (the effect of the $\beta \downarrow it$ varies across observations)

There are two useful functions:

- The logistic function (Logit Model)
- The standard normal function (Probit Model)

PROBIT/LOGIT MODEL

Functions properties

Logit

- In the logit model the function (G(Z)):

$$G(z) = e \uparrow x \beta / 1 + e \uparrow x \beta$$

This is the CDF of the standard logistic distribution function

Probit

- In the Probit model the function $(\mathcal{G}(Z))$:

$$G(z) = \int -\infty \uparrow z \# \phi(v) dv = \theta(z)$$
And $\phi(z) = 2\pi \uparrow -1/2 \exp(-z \uparrow 2/2)$
This is the CDF of the standard normal distribution function

Both functions are:

- Increasing
- ~Equal to 0 when Z goes to $-\infty$
- ~Equal to I when Z goes to ∞
- Symmetry around 0 : 1 G(z) = G(z)

In general we can present logit/probit models as a sub-section of latent variable: $y \uparrow * = \beta \downarrow 0 + x \beta + u$, y=1 if $[y \uparrow *]$

ESTIMATION (IN PRACTICE)

These models are not linear (the functions) \rightarrow we cannot estimate them using OLS methodology

How do we do it? – using Maximum Likelihood Estimation process

The log-likelihood of the observations in the sample is:

$$\log L(\beta; y \downarrow 1, x \downarrow 1, y \downarrow 2, x \downarrow 2, y \downarrow 3, x \downarrow 3, \dots, y \downarrow n, x \downarrow n) = \sum_{i=1}^{n} \lim \{y \downarrow i \log [G(x \downarrow i \beta)] + (1 - y \downarrow i) \log [1 - G(x \downarrow i \beta)]\}$$

- The function is non-linear and so there is no close form solution (analytic) for the estimators. We are using numeric estimation in order to compute the values of each $\beta \downarrow k$
- The intuition behind the process:
 - Start with a random 'guess' about the magnitude of the coefficients $(\beta \downarrow k)$
 - 2. Compute the log-likelihood function (from above)
 - 3. With respect to the sign of the first derivative we choose another close 'guess' (higher or lower value) and compute once again the log-likelihood
 - 4. Continue (2-3) until you reach the point at which there is no change in the result of the log-likelihood expression formula (converge)

ESTIMATION - IN PRACTICE

In order to compute the Logit Model in Python use (Lab):

 $Prob(y \downarrow i = emp(1)) = \beta \downarrow 0 + \beta \downarrow 1 \ schooling + \beta \downarrow 2 \ age + \beta \downarrow 3 \ (age) \uparrow 2 + \beta \downarrow 4$

```
7 /7 70
Iteration 0: log likelihood = -15750.775
Iteration 1: log likelihood = -13979.924
Iteration 2: log likelihood = -13960.74
Iteration 3: log likelihood = -13960.718
Iteration 4: log likelihood = -13960.718
```

Logistic regression

Number of obs LR chi2(7) 3580.11 Prob > chi2 0.0000 Log likelihood = -13960.718Pseudo R2 0.1136

emp10	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
schooling	.1644975	.0041895	39.26	0.000	.1562863	.1727087
age	.2820811	.0136117	20.72	0.000	.2554026	.3087596
age_sq	0035001	.0001516	-23.09	0.000	0037973	003203
children_0_4	3870174	.0240956	-16.06	0.000	4342438	3397909
children_5_9	2057233	.0207747	-9.90	0.000	246441	1650056
children_10_14	2434284	.0211916	-11.49	0.000	2849632	2018935
children_15_17	2569445	.0308171	-8.34	0.000	3173451	196544
_cons	-6.805008	.2963469	-22.96	0.000	-7.385837	-6.224178

- Some questions:
 - Which coefficient is/are significant? Consistent with our intuition?
 - What is the [expected] probability that a women with 16 years of schooling, in the age of 31, and with 0-4 years old children – will go to work (be employed)?

22768

ESTIMATION - IN PRACTICE [EXPECTED PROB]

What is the [expected] probability that a women with 16 years of schooling, in the age of 31, and with 0-4 years old children – will go to work (be employed)?

In order to compute y we need to calculate the logistic G(z) function: $G(z) = e^{\uparrow}x\beta/1 + e^{\uparrow}x\beta$

$$y \downarrow i = G(z) = e \uparrow x \beta / 1 + e \uparrow x \beta = e \uparrow (\beta \downarrow 0 + \beta \downarrow s chooling 16 + \beta \downarrow age 31 + \beta \downarrow age sqr 31 \uparrow 2 + \beta \downarrow child 04$$

$$1) / 1 + e \uparrow (\beta \downarrow 0 + \beta \downarrow s chooling 16 + \beta \downarrow age 31 + \beta \downarrow age sqr 31 \uparrow 2 + \beta \downarrow child 04 1) = 0.8236$$

$$y \downarrow i = G(z) = e^{\uparrow} x \beta / 1 + e^{\uparrow} x \beta = e^{\uparrow} (\beta \downarrow 0 + \beta \downarrow schooling 16 + \beta \downarrow age 45 + \beta \downarrow age sqr 45 \uparrow 2 + \beta \downarrow child 04$$

$$1) / 1 + e^{\uparrow} (\beta \downarrow 0 + \beta \downarrow schooling 16 + \beta \downarrow age 45 + \beta \downarrow age sqr 45 \uparrow 2 + \beta \downarrow child 04 1) = 0.8538$$

$$\underbrace{-(-6.0805 + 16 \times 0.1644 + 31 \times 0.282 + 31^2 \times (-0.0035) + 1 \times (-0.387))}_{1 + \exp(-6.0805 + 16 \times 0.1644 + 31 \times 0.282 + 31^2 \times (-0.0035) + 1 \times (-0.387))}$$

INTERPRETING THE RESULTS (LOGIT)

- Since $y \downarrow i = f(0,1)$ we cannot interpret the estimators/coefficients $\beta \downarrow i$ as we did in the simple OLS model.
 - Recall (OLS): one unite change (+/- I) in $\mathcal{X}\!\!\downarrow\!\! i$ increases/decreases the outcome $\mathcal{Y}\!\!\downarrow\!\! i$ by $\beta\!\!\downarrow\!\! i$
- - However, the sign of the estimators $(\beta_{\dot{-}}i)$ can be interpret immediately always in the same direction
- There are 4 types of variables, and therefore there are 4 cases for interpreting the coefficients:
 - Case I: $x \not \downarrow i$ is a continues variable (think about angles (0° -360°), age, incme...)
 - You need to compute the direct effect (or 'odds ratio')

$$\beta \downarrow j = \partial Prob(y=1)/\partial x \downarrow j = \partial G(\beta \downarrow 0 + x\beta)/\partial x \downarrow j = g(\beta \downarrow 0 + x\beta) \cdot \beta \downarrow j,$$
where $g(z)$ in logit equals to: $g(z) = e^{\uparrow}\beta \downarrow 0 + x\beta/(1 + e^{\uparrow}x\beta) \uparrow 2$

Pay attention that in this model the effect of a singular estimator $(\beta \downarrow j)$ depends on all other estimators in the regression $(\beta \downarrow 0 + x\beta)$, where $x\beta = \beta \downarrow 1$ $x \downarrow 1 + \beta \downarrow 2$ $x \downarrow 2$

INTERPRETING THE RESULTS (LOGIT)

- Case II: $\mathcal{X} \downarrow \hat{l}$ is a dummy (binary) variable (insurance (1,0))
 - You need to compute the difference between $|x \downarrow i| (=1) x \downarrow i| (0) |$ $\beta \downarrow j = \partial Prob(y=1)/\partial x \downarrow 1 = G(\beta \downarrow 0 + \beta \downarrow 1 + \beta \downarrow j| x \downarrow j|) G(\beta \downarrow 0 + 0 + \beta \downarrow j| x \downarrow j|)$

where
$$G(z)$$
 in logit equals to: $G(z) = e^{\uparrow}x\beta / 1 + e^{\uparrow}x\beta$ [CDF]

There are many more cases of course.. Python can do the job for

Let's go back to our example -

	LPM	logit	probit
schooling	0.032	0.164	0.098
age	0.062	0.282	0.173
age_sq	-0.001	-0.004	-0.002
children_0_4	-0.071	-0.387	-0.234
children_5_9	-0.039	-0.206	-0.124
children_10_14	-0.049	-0.243	-0.147
children_15_17	-0.050	-0.257	-0.156
_cons	-0.949	-6.805	-4.133

The sign of the coefficients are all the same (direction)

-We-cannot intuitively interpret the magnitude of the coefficients in the logit/probit-models-----

ESTIMATION (& FITNESS)

We can see that we overcome the biggest issue with the LPM model ($0 > Prob(\cdot) < 1$):

Variable	Obs	Mean	Std. Dev.	Min	Max
emp10	22768	.5260014	.4993344	0	1
emp_lpm	22768	.5260014	.1870334	4886191	1.172533
emp_logit	22768	.5260014	.1901581	.0052596	.9680831
emp_probit	22768	.5247376	.1885883	.0008062	.9791964

Employment Rate of Married Femaels, 2010 - Actual and Predicted

Employment Rate of Married Femaels, 2010 - Actual and Predicted

age

EXAMPLE & CONCLUSIONS

Discrete Choice Models are very useful in order to understand (and predict) consumers' behavior

Allowing us to create Optimal Strategies

Suppose you are the Head of Marketing at Target

- You want to understand why consumers are choosing 2% milk vs. fat-milk? (effects on revenues, promotions, demand, prices, etc.)
- You Have the Data! (e.g.: purchases, product's attributes, expenses, # time-bought..)
- You can use Discrete Choice Models (y=milk2%(1,0)|x) in order to better understand your consumers \rightarrow predict their behavior
- It has a large effect on defining Optimal Strategies (Operational, Marketing, etc.)
 - Tailored Promotions (and discounts shifting demand)
 - Psychological Manipulations (buy I pay 3\$, buy 2 pay 6\$ buying in bundle)
 - "Healthier Campaigns" converting consumers to buying healthier products
 - Large effect on revenues and operations

LAB