Навигация в синтетических пространствах

Студент гр. 5057/2 Руцкий Владимир

23.10.2010

Задача навигации

- Дано:
 - 1. Рабочее пространство W
 - 2. Интеллектуальный агент (или несколько)
 - 3. Начальная А и конечная В точки из W
- Требуется:

Найти путь для агента из АвВ

Сложность решения и разработка эффективного алгоритма зависят от:

- характеристик рабочего пространства,
- характеристик интеллектуальных агентов,
- требований к путю

Требования к путю

- Найти кратчайший путь
- Найти путь близкий к кратчайшему
- Найти (кратчайший) путь, проходящий через определённый набор точек

- Также возможно:
 - Найти объект обладающий определёнными свойствами в пространстве точка В не дана, её надо найти
 - Найти путь для движения набора агентов в формации (движение отряда)

Рабочее пространство

- Размерность и топология пространства
 - 2D, 3D, d3D
- Взвешенность
 - Различная стоимость прохождения через различные участки
- Постоянность пространства в процессе решения задачи:
 - статическое пространство
 - динамическое пространство
 - движущиеся препятствия

Интеллектуальные агенты

- Сведения агента о пространстве
 - всё пространство
 - локальная область
- Количество агентов
- Коммуникация агентов
 - Разделение между агентами информации о пространстве
- Ограничения памяти агента
 - Может ли агент хранить информацию о всём исследованном пространстве
- Число степеней свободы агента
 - Может ли агент поворачиваться или менять свою форму

Дополнительные ограничения

- Геометрические
 - Агент имеет определённую геометрическую форму
- Кинематические
 - Поворота агента занимает время
 - Невозможность поворота в некоторых случаях
 - Например, автомобиль может поворачиваться только двигаясь

Сложность задачи

- В большинстве реальных постановок NPполные или NP-трудные
 - 2D, полигональные препятствия $O(N^2)$
 - 3D, препятствия тетраэдры NP-трудная

Упрощение задач навигации

- Сведение к меньшим размерностям
 - 3D -> 2D / d3D
- Снятие геометрических ограничений
 - агент материальная точка

Характеристики рассматриваемых задач

Рассмотрим:

- 2D
- Полигональные препятствия
- Один агент
- Цель: найти близкий к кратчайшему путь из А в В

Решение задачи. Методы, ориентированные на агента

- Агент не обладает знаниями о всём пространстве
- Агент «видит» небольшую окрестность рядом с собой
 - Тактильная информация о пространстве движение до столкновения

GoStraight

- Работает в отсутствие препятствий
- Используется как процедура в более сложных алгоритмах

LHT/RHT (1)

- Left (Right) Hand Traverse обход препятствия по левой (правой) руке:
 - Идём к цели до встречи с препятствием
 - Обходим препятствие с правой стороны

LHT/RHT (2)

• Не всегда работает

CT

- Conditional Traverse аналогично LHT/RHT, но с выбором направления обхода
 - Например, по вектору нормали к препятствию
- Позволяет выбрать чуть более реалистичный обход

BUG1

- Обход препятствия до точки, ближайшей к цели
- Гарантированно находит путь

BUG2

- Обход препятствия до точки выхода луча из препятствия
- Гарантированно находит путь

Решение задачи. Методы, ориентированные на пространство

- Агенту известно всё пространство
- Решение:
 - 1. Построить граф, моделирующий свойства достижимости
 - 2. Найти путь в графе
 - 3.По возможности сократить путь (если он приближенный)

Road Graph

- Построим между препятствиями граф дорог
- Добавим в граф путь между A и ближайшей «дорогой», путь между B и ближайшей «дорогой»
- Найдём путь между А и В в построенном графе.

Как построить граф дорог?

Road Graph. Трапецоидальная карта (1)

- Построим трапецоидальную карты по рёбрам препятствий и удалим трапеции, лежащие внутри препятствий
 - Основания трапеций вертикальные отрезки, содержащие вершины препятствий
 - Боковые грани трапеций отрезки препятствий

Road Graph. Трапецоидальная карта (2)

- Построим граф по трапециям
 - Вершины в центрах трапеций и на серединах оснований
 - Рёбра внутри трапеций (внутри одной трапеции поиск пути тривиален)

Visibility Graph

- Построим граф:
 - вершины вершины препятствий (плюс точки А и В)
 - соединим рёбрами видимые вершины
- Находит кратчайший путь

Метод декомпозиции

- Разбиваем свободное пространство на ячейки такие, что поиск пути между точками внутри ячейки тривиален
 - Например, ячейки выпуклые или звёздные полигоны
- Ячейка вершина. Смежные ячейки соединены ребром

Метод потенциалов

- Вводится потенциальное поле: P(v) = G(v) + O(v)
 - G(v) убывает с приближением v к цели
 - O(v) возрастает при приближении к препятствию
- Поиск пути градиентный спуск
- Не всегда работает: возможно возникновение локальных минимумов

Выводы

- Рассмотрены две категории алгоритмов поиска пути между двумя точками в 2D агентом-материальной точкой:
 - ориентированные на агента,
 - ориентированные на пространство

Источники

- С.Ю. Жуков. «Навигация интеллектуальных агентов в сложных синтетических пространствах» Диссертация на соискание ученой степени кандидата физикоматематических наук, СПбГТУ, 2000.
- Материалы сайта http://wikipedia.org/

Спасибо за внимание!