

REDES DE COMPUTADORES

UNIDADE 7 – Métodos de Detecção de Erros (Aula 11 – Técnicas Convencionais e CRC)

Prof. Ivan Nunes da Silva

1. Métodos de Detecção de Erros

1.1 Erros na Transmissão de Dados

- Na conexão inter-redes, a transmissão de dados estão sujeitas a erros.
- Raios, surtos de energia e outras interferência eletromagnéticas podem introduzir correntes elétricas indesejadas nos componentes ou fios usados para comunicação.
- A interferência que é séria (especialmente raio) pode causar danos permanentes ao equipamento de rede.
- Uma pequena mudança no sinal elétrico pode fazer com que o receptor interprete mal um ou mais bits de dados.
- A interferência pode destruir completamente um sinal, significando que, embora o remetente transmita, o receptor não detecta a chegada de quaisquer dados.
- A interferência em um circuito de transmissão completamente inativo pode criar o efeito oposto, embora o remetente não transmita qualquer coisa, um receptor poderia interpretar a interferência lida como uma seqüência válida de bits ou caracteres.

1.2 Bits de Paridade e Verificação de Paridade

- Processo de Verificação de Paridade
 - Mecanismo faz com que o remetente compute um bit adicional, denominado de bit de paridade (parity bit), e anexe-o a cada caractere antes do envio.
 - Após todos os bits de um caracter serem recebidos, o receptor remove o bit de paridade.
 - Receptor executa a mesma computação que o remetente e verifica se o resultado está de acordo com o valor de bit de paridade.
 - 4. A computação de paridade é escolhida de forma que se um dos bits do caracter é danificado em trânsito, a computação do receptor não concordará com o bit de paridade e o receptor indicará que aconteceu um erro.
 - 5. Existem duas formas de paridade, ou seja, par e ímpar.
 - Ambos remetente e receptor devem concordar em qual forma será utilizada.

1

1. Métodos de Detecção de Erros

1.2 Bits de Paridade e Verificação de Paridade

- Processo de Computação da Paridade
 - Paridade Par → remetente fixa o bit de paridade para 0 ou 1 de forma que faça o número total de bits (inclusive o bit de paridade) um número par. Exemplos:
 - 01001010 → Bit de Paridade = 1 (Caracter contem um número ímpar de bits 1.
 - 01011010 → Bit de Paridade = 0 (Caracter já contem um número par de bits 1.
 - Paridade Ímpar → remetente fixa o bit de paridade para 0 ou 1 de forma que faça o número total de bits 1 (inclusive o bit de paridade) um número ímpar. Exemplos:
 - 11011010 → Bit de Paridade = 0 (Caracter já contem um número ímpar de bits 1.
 - 01110001 → Bit de Paridade = 1 (Caracter contem um número par de bits 1.
 - A Paridade não detecta erros de transmissão que mudam um número par de bits.

1.3 Detectando Erros com CheckSum

- Características de Detecção de Erro com CheckSum
 - Muitos sistemas de rede enviam um CheckSum junto com cada pacote para ajudar o receptor a detectar erros.
 - Para calcular um CheckSum, o remetente trata os dados como uma seqüência de números e computa sua soma.
 - Os dados não são restritos a valores inteiros, podendo conter caracteres, números em ponto flutuante ou uma imagem.
 - O sistema de redes trata os dados meramente como um uma seqüência de inteiros com o propósito de calcular o CheckSum.

5

1. Métodos de Detecção de Erros

1.3 Detectando Erros com CheckSum

- Vantagens da Detecção de Erro com CheckSum
 - As principais vantagens derivam do tamanho e da facilidade de computação dos CheckSums.
 - O tamanho pequeno do CheckSum significa que o custo de transmissão do CheckSum é normalmente muito menor do que o custo de transmitir os dados.
 - O CheckSum só exige adição e o processamento necessário para criar ou verificar um CheckSum é pequeno.
 - A maioria das redes que empregam uma técnica de CheckSum usam um CheckSum de 16 ou 32 bits e geram CheckSum único para o pacote inteiro.

1.3 Detectando Erros com CheckSum

Desvantagens da Detecção de Erro com CheckSum

- Tem a desvantagem de não detectar todos os erros comuns.
- Por exemplo, a tabela abaixo mostra que um *CheckSum* não é suficiente para detectar erros de transmissão que inverte o segundo bit em cada um dos quatro bits enviados.

Item de Dados em Binário	Valor do Checksum	Item de Dados em Binário	Valor do Checksum
0001	1	0011	3
0010	2	0000	0
0011	3	0001	1
0001	1	0011	3
totais	7		7

 Para estender o exemplo para um pacote inteiro, imagine que os quatro itens modificados acontecem no meio de vários outros.

1. Métodos de Detecção de Erros

1.4 Detectando Erros com CRC

Características da Técnica:

- Mecanismo baseado em códigos de Verificação de Redundância Cíclica (Cyclic Redundancy Checks).
- Técnica que permite detectar erros em múltiplos bits (erros por rajada).
- É provado matematicamente que a CRC consegue detectar mais erros que um *CheckSum*.
- Dada uma mensagem de n bits, em lugar de se acrescentar
 1 bit de paridade será adicionada uma seqüência de k bits denominada FCS (Frame Check Sequence).
- O FCS é determinado por um polinômio gerador P(x) tal que os n+k bits transmitidos sejam divisíveis por P(x).

•	7 octets	14	6 octets	Н	6 octets	•	2]	46 -1500 octets	4 octets
	Preamble		Destination Address		Source Address		Len gth	Data	FCS
Start Frame Delimiter -								CRC calculation frame length	—

1.4 Detectando Erros com CRC

- Passos do Mecanismo CRC (Parte I):
 - O transmissor acrescenta o FCS e o receptor verifica se a Mensagem acrescida do FCS é divisível por P(x) com resto zero. Caso não seja, ocorreu erro de transmissão.
 - Sendo M a mensagem de n bits a ser transmitida, esta mensagem pode ser considerada como um polinômio M(x) de grau n-1 que possui o termo xⁱ se o i-ésimo bit de M é 1.
 - Como por exemplo:

Se M = 1010001101
Então n = 10 e M(x) =
$$x^9 + x^7 + x^3 + x^2 + 1$$

+1

1. Métodos de Detecção de Erros

1.4 Detectando Erros com CRC

- Passos do Mecanismo CRC (Parte II):
 - Considera-se uma seqüência de k bits correspondente a um Polinômio Gerador P(x) de grau k-1 como o seguinte:

Se P = 110101
Então k = 6 e
$$P(x)$$
 = $x^5 + x^4 + x^2 + 1$

- O Polinômio Gerador P(X) de grau r=k-1 deve ser conhecido tanto pelo transmissor como pelo receptor.
- Deve-se calcular F(x) tal que o quadro T(x) a ser transmitido:

 $T(x) = x^r \cdot M(x) + F(x)$, seja então divisível por P(x).

F(x) pode ser obtido como o resto da divisão de x^r.M(x) por P(x).

1.4 Detectando Erros com CRC

- Algoritmo Para Geração da Soma Verificadora (FCS) e do Quadro Completo de Transmissão T(x):
 - 1. Definir a cadeia **M** de **n** bits a ser transmitida.
 - 2. Montar o polinômio **M(x)** de grau **n-1** a partir de **M**, sendo que os bits de **M** corresponde aos coeficientes de **M(x)**.
 - Definir a cadeia P de k bits que gerará o polinômio gerador P(x).
 - 4. Obter o polinômio **P(x)** de grau **r = k-1** a partir de **P**, sendo que os bits de **P** corresponde aos coeficientes de **P(x)**.
 - 5. Obter o quadro completo **T(x)** a ser transmitido, o qual é formado por **T(x)** = **x**^r.**M(x)** + **F(x)**, onde **F(x)** é o **Frame Check Sequence** (FCS) de grau **r-1** (que contem então **r** bits), sendo dado pelo resto da divisão de **x**^r.**M(x)** por **P(x)**.
 - 6. Transmitir o quadro **T** que é formado pela cadeia original **M** concatenada com a cadeia **F** representando o FCS.

1. Métodos de Detecção de Erros

1.4 Detectando Erros com CRC

- Algoritmo Para Recepção do Quadro Completo T(x) e Verificação de Ocorrência de Erro:
 - Reconstituir o polinômio T(x) a partir do quadro de bits T que foi transmitido.
 - 2. Obter o polinômio $\mathbf{R}(\mathbf{x})$ que é dado pela divisão do polinômio $\mathbf{T}(\mathbf{x})$ por $\mathbf{P}(\mathbf{x})$.
 - Se R(x) for um polinômio nulo, então não houve erros durante a transmissão; caso contrário, houve erros durante a transmissão.
 - Se não houve erros, a cadeia M de bits originais poderá ser obtida a partir de T, bastando retirar os k bits mais a direita do quadro total T.