UC Berkeley Math 228B, Spring 2020 Problem Set 5 DUE DATE: May 2, 2020

Suncica Canic

April 20, 2020

1. Let K be a triangle with vertices a^i , i = 1, 2, 3, and let a^{ij} , i < j, denote the midpoints of the sides of K. Prove that $v \in \mathbb{P}^2(K)$ is uniquely determined by the following degrees of freedom:

$$v(a^i), i = 1, 2, 3,$$

 $v(a^{ij}), i, j = 1, 2, 3, i < j.$

Also show that the functions in the corresponding finite element space V_h are continuous.

2. Consider the Neumann problem:

- (a) Is it true that if u is a solution of (1) then so is u + c for any constant c?
- (b) Will the following condition guarantee uniqueness:

$$\int_{\Omega} u \ dx = 0?$$

Prove your statement.

(c) Give a variational formulation of

$$\begin{cases} \Delta u &= f \text{ in } \Omega, \\ \frac{\partial u}{\partial n} &= g, \text{ on } \Gamma, \\ \int_{\Omega} u \, dx &= 0, \end{cases}$$

using the space

$$V = \{ v \in H^1(\Omega) : \int_{\Omega} u \ dx = 0 \},$$

and prove that the classical elliptic problem conditions are satisfied:

- 1. $a(\cdot, \cdot)$ is symmetric,
- 2. $a(\cdot, \cdot)$ is continuous,
- 3. $a(\cdot, \cdot)$ is V-elliptic,
- 4. L is continuous.

3. Let V_h be a finite element space of a triangulation T_h of the domain $\Omega \subset \mathbb{R}^d$, where T_h satisfies:

$$||u - \pi_h u||_{L^2(\Omega)} \le Ch^{r+1} |u|_{H^{r+1}(\Omega)},$$

Here $\pi_h u$ is a polynomial interpolant of u of degree $r \geq 1$, and $|u|_{H^{r+1}(\Omega)}$ is the seminorm

$$|u|_{H^{r+1}(\Omega)} = \left(\sum_{|\alpha|=r+1} \int_{\Omega} |D^{\alpha}u|^2 dx\right)^{1/2}.$$

Given $u \in L^2(\Omega)$ let $u_h \in V_h$ be the $L^2(\Omega)$ -projection of u onto V_h , i.e.,

$$(u_h, v) = (u, v), \forall v \in V_h,$$

where (\cdot, \cdot) is the scalar product in $L^2(\Omega)$. Prove the following two statements:

- 1. $||u u_h||_{L^2(\Omega)} \le \inf_{v \in V_h} ||u u_h||_{L^2(\Omega)} \le Ch^{r+1} |u|_{H^{r+1}(\Omega)};$
- 2. $||u_h||_{L^2(\Omega)} \le ||u||_{L^2(\Omega)}$.

Project Submission: Submit your pdf file with the solutions on bCourses.