Thompson Sampling for Bandit Convex Optimisation

Alireza Bakhtiari¹ Tor Lattimore² Csaba Szepesvári^{1,2}

University of Alberta¹ & Google DeepMind²

COLT 2025

Paper in One Slide

- Goal: Understand how Thompson Sampling (TS) behaves in bandit convex optimization (BCO).
- Positive:
 - $\mathsf{BReg}_n(\mathsf{TS}) = \widetilde{O}(\sqrt{n})$ in 1-D convex bandits.
 - BReg_n(TS) = $\widetilde{O}(d^{2.5}\sqrt{n})$ for *d-D monotone convex ridge* losses.
- Negative:
 - TS can suffer $\Omega(\exp(d))$ regret for general d-D convex losses.
 - Classical info-ratio tricks \Rightarrow no better than $\widetilde{\Omega}(d^{1.5}\sqrt{n})$ for general stochastic & adversarial BCO.

- Convex action set $\mathcal{K} \subset \mathbb{R}^d$.
- ullet ${\mathcal F}$ be a set of convex functions from ${\mathcal K}$ to [0,1].
- ξ is a known prior on \mathcal{F} .

¹The Bernoulli noise assumption is just for convenience.

- Convex action set $\mathcal{K} \subset \mathbb{R}^d$.
- ullet ${\mathcal F}$ be a set of convex functions from ${\mathcal K}$ to [0,1].
- ξ is a known prior on \mathcal{F} .
- At round t:
 - **1** Learner plays $X_t \in \mathcal{K}$.
 - ② Observes scalar loss $Y_t \in \{0,1\}$.

¹The Bernoulli noise assumption is just for convenience.

- Convex action set $\mathcal{K} \subset \mathbb{R}^d$.
- ullet ${\mathcal F}$ be a set of convex functions from ${\mathcal K}$ to [0,1].
- ξ is a known prior on \mathcal{F} .
- At round t:
 - **1** Learner plays $X_t \in \mathcal{K}$.
 - ② Observes scalar loss $Y_t \in \{0,1\}$.
- $\mathbb{E}[Y_t|X_1,Y_1,\cdots,X_t,f]=f(X_t)$, where $f\in\mathcal{F}$ is convex.

¹The Bernoulli noise assumption is just for convenience.

- Convex action set $\mathcal{K} \subset \mathbb{R}^d$.
- \mathcal{F} be a set of convex functions from \mathcal{K} to [0,1].
- ξ is a known prior on \mathcal{F} .
- At round t:
 - **1** Learner plays $X_t \in \mathcal{K}$.
 - ② Observes scalar loss $Y_t \in \{0, 1\}$.
- $\mathbb{E}[Y_t|X_1,Y_1,\cdots,X_t,f]=f(X_t)$, where $f\in\mathcal{F}$ is convex.
- \mathcal{A} (learner) is a mapping from histories & prior to \mathcal{K} .

¹The Bernoulli noise assumption is just for convenience.

- Convex action set $\mathcal{K} \subset \mathbb{R}^d$.
- \mathcal{F} be a set of convex functions from \mathcal{K} to [0,1].
- ξ is a known prior on \mathcal{F} .
- At round t:
 - **1** Learner plays $X_t \in \mathcal{K}$.
 - ② Observes scalar loss $Y_t \in \{0, 1\}.^1$
- $\mathbb{E}[Y_t|X_1,Y_1,\cdots,X_t,f]=f(X_t)$, where $f\in\mathcal{F}$ is convex.
- ullet ${\cal A}$ (learner) is a mapping from histories & prior to ${\cal K}$.
- Bayesian Regret

$$\mathsf{BReg}_n(\mathcal{A},\xi) = \mathbb{E}\left[\sup_{x \in \mathcal{K}} \sum_{t=1}^n (f(X_t) - f(x))\right],$$

where $f \sim \xi$.

¹The Bernoulli noise assumption is just for convenience.

Thompson Sampling for BCO

Algorithm 1 Thompson Sampling

- 1: Prior ξ over convex losses.
- 2: **for** t = 1, ..., n **do**
- 3: Sample $f_t \sim \mathbb{P}(f = \cdot | X_1, Y_1, \dots, X_{t-1}, Y_{t-1})$
- 4: Play $X_t \in \arg\min_{x \in \mathcal{K}} f_t(x)$ and observe Y_t
- 5: end for
 - Our analysis studies how

$$\mathsf{BReg}^{\mathrm{TS}}(\mathcal{F}) = \sup_{\xi \in \mathcal{P}(\mathcal{F})} \mathsf{BReg}_n(\mathrm{TS}, \xi),$$

behaves for various natural classes of convex functions \mathcal{F} .

Upper bounds - main results

• Positive results for two sets of functions $f: \mathcal{K} \to [0,1]$:

 $\mathcal{F}_{\scriptscriptstyle{\mathrm{b1}}}$: $\mathcal{K}\subset\mathbb{R}$ and f is a 1-Lip and bounded convex function,

 $\mathcal{F}_{\text{blrm}}: \mathcal{K} \subset \mathbb{R}^d \text{ and } f(x) = \ell(\langle x, \theta \rangle) \text{ for some } \theta \in \mathbb{R}^d \text{ and a convex 1-Lip bounded } monotone } \ell: \mathbb{R} \to \mathbb{R}.$

Upper bounds – 1-D convex functions

TS achieves

$$\mathsf{BReg}^{\mathrm{TS}}(\mathcal{F}_{\mathtt{bl}}) = \widetilde{O}(\sqrt{n}),$$

And

$$\mathsf{BReg}^{\scriptscriptstyle{\mathrm{TS}}}(\mathcal{F}_{\scriptscriptstyle{\mathtt{blrm}}}) \ = \ \widetilde{\mathit{O}}(\mathit{d}^{2.5}\sqrt{\mathit{n}}) \, .$$

Upper bounds - analysis

(Generalized) Information Ratio (IR)

- Let $x_g = \operatorname{argmin}_{x \in \mathcal{K}} g(x)$. (analysis is really about x_f and $f(x_f)$.)
- Let $(F_1, F_2) \sim \xi \otimes \xi$ and $\bar{f} = \mathbb{E}[F_1]$.
- Define

$$\Delta(\xi) = \mathbb{E}[\bar{f}(x_{F_1}) - F_1(x_{F_1})] \quad \text{and} \quad \mathcal{I}(\xi) = \mathbb{E}[(F_1(x_{F_2}) - \bar{f}(X_{F_2}))^2].$$

Generalized IR

Define generalized information ratio associated with π as

$$\text{IR}(\mathcal{F}) = \left\{ (\alpha, \beta) \in \mathbb{R}^2_+ : \Delta(\xi) \leq \alpha + \sqrt{\beta \mathcal{I}(\xi)} \;, \forall \xi \in \mathcal{P}(\mathcal{F}) \right\} \;.$$

• $(0, \beta) \in IR(\mathcal{F}) \Rightarrow \Delta(\xi)^2/\mathcal{I}(\xi) \leq \beta$.

Proposition 1 – regret bound through IR

Suppose that $\mathcal{F} \in \{\mathcal{F}_{\mathtt{bl}}, \mathcal{F}_{\mathtt{blrm}}\}$ and $(\alpha, \beta) \in \mathrm{IR}(\mathcal{F})$. Then, the regret of TS is at most

$$\mathsf{BReg}_n(\mathsf{TS},\xi_0) \leq n\alpha + O\left(\sqrt{\beta nd\log(n\operatorname{\mathsf{diam}}(\mathcal{K}))}\right)$$
.

Proposition 1 – regret bound through IR

Suppose that $\mathcal{F} \in \{\mathcal{F}_{\mathtt{bl}}, \mathcal{F}_{\mathtt{blrm}}\}$ and $(\alpha, \beta) \in \mathrm{IR}(\mathcal{F})$. Then, the regret of TS is at most

$$\mathsf{BReg}_n(\mathsf{TS},\xi_0) \leq n\alpha + O\left(\sqrt{\beta nd\log(n\operatorname{diam}(\mathcal{K}))}\right)$$
.

It remains to bound the IR of TS.

Proposition 1 – regret bound through IR

Suppose that $\mathcal{F} \in \{\mathcal{F}_{\mathtt{bl}}, \mathcal{F}_{\mathtt{blrm}}\}$ and $(\alpha, \beta) \in \mathrm{IR}(\mathcal{F})$. Then, the regret of TS is at most

$$\mathsf{BReg}_n(\mathsf{TS},\xi_0) \leq n\alpha + O\left(\sqrt{\beta nd\log(n\operatorname{diam}(\mathcal{K}))}\right)$$
.

Proposition 2 – TS-IR Partitioning

If $\exists k, m \in \mathbb{N}$ such that for all $\tilde{f} \in \text{conv}(\mathcal{F})$ there is $\mathcal{F} = \bigcup_{i=1}^{m} \mathcal{F}_i$ for which

$$\sup_{f \in \mathcal{F}_i} (\tilde{f}(x_f) - f(x_f)) \leq \alpha + \sqrt{\beta \underbrace{\inf_{f_1, \dots, f_k \in \mathcal{F}_i} \sum_{j \neq l \in [k]} (f_j(x_{f_l}) - \tilde{f}(x_{f_l}))^2}_{\text{DIS}(\mathcal{F}_i, k)}},$$

for all i, then $(\alpha, k(k-1)m\beta) \in IR(\mathcal{F})$.

Proposition 1 – regret bound through IR

Suppose that $\mathcal{F} \in \{\mathcal{F}_{\mathtt{bl}}, \mathcal{F}_{\mathtt{blrm}}\}$ and $(\alpha, \beta) \in \mathrm{IR}(\mathcal{F})$. Then, the regret of TS is at most

$$\mathsf{BReg}_n(\mathsf{TS},\xi_0) \leq n\alpha + O\left(\sqrt{\beta nd \log(n \operatorname{diam}(\mathcal{K}))}\right).$$

Proposition 2 – TS-IR Partitioning

If $\exists k, m \in \mathbb{N}$ such that for all $\tilde{f} \in \mathsf{conv}(\mathcal{F})$ there is $\mathcal{F} = \cup_{i=1}^m \mathcal{F}_i$ for which

$$\left(\sup_{f\in\mathcal{F}_i}(\tilde{f}(x_f)-f(x_f))\right)\leq \alpha+\left[\beta\inf_{f_1,\ldots,f_k\in\mathcal{F}_i}\sum_{j\neq l\in[k]}(f_j(x_{f_i})-\tilde{f}(x_{f_i}))^2\right],$$

worst case *average* regret within \mathcal{F}_i

for all i, then $(\alpha, k(k-1)m\beta) \in IR(\mathcal{F})$.

Proposition 1 – regret bound through IR

Suppose that $\mathcal{F} \in \{\mathcal{F}_{\mathtt{bl}}, \mathcal{F}_{\mathtt{blrm}}\}$ and $(\alpha, \beta) \in \mathrm{IR}(\mathcal{F})$. Then, the regret of TS is at most

$$\mathsf{BReg}_n(\mathsf{TS},\xi_0) \leq n\alpha + O\left(\sqrt{\beta nd \log(n \operatorname{diam}(\mathcal{K}))}\right).$$

Proposition 2 – TS-IR Partitioning

If $\exists k, m \in \mathbb{N}$ such that for all $\tilde{f} \in \mathsf{conv}(\mathcal{F})$ there is $\mathcal{F} = \cup_{i=1}^m \mathcal{F}_i$ for which

$$\sup_{f \in \mathcal{F}_{i}} (\tilde{f}(x_{f}) - f(x_{f})) \leq \alpha + \left(\inf_{f_{1}, \dots, f_{k} \in \mathcal{F}_{i}} \sum_{j \neq l \in [k]} (f_{j}(x_{f_{i}}) - \tilde{f}(x_{f_{i}}))^{2} \right)$$
worst case average regret within \mathcal{F}_{i}

TS minimum inf. gain (discrepancy)

for all i, then $(\alpha, k(k-1)m\beta) \in IR(\mathcal{F})$.

Theorem 3 - IR bound for 1-D

Suppose that d=1 and $\alpha \in (0,1)$. Then $(\alpha,10^4 \lceil \log(1/\alpha) \rceil) \in IR(\mathcal{F}_{b1})$.

Proof sketch:

- **①** Use the partitioning lemma \Rightarrow partition based on x_f and $f(x_f)$.
- **②** Group functions with similar gaps (average regret) in \mathcal{F}_i :

Similar gaps:
$$\tilde{f}(x_f) - f(x_f) \in [\epsilon, 2\epsilon]$$
, \tilde{f} monotone: $x_{\tilde{f}} \leq x_f \Rightarrow \tilde{f}$ (begin 1-D is crucial here).

3 Prove that DIS $(\mathcal{F}_i, k) \geq c^2 \epsilon_i^2$:

$$\text{dis}(\mathcal{F}_i,k) = \inf_{f_1,\dots,f_k \in \mathcal{F}_i} \sum_{j \neq l \in [k]} (f_j(x_{f_i}) - \tilde{f}(x_{f_i}))^2 \geq c^2 \epsilon_i^2 \ .$$

Proof sketch:(proof by contradiction)

• Fix $k = 4, c \approx 1/16$, suppose that

$$\inf_{f_1,f_2,f_3,f_4 \in \mathcal{F}_i} \sum_{j \neq l \in [4]} (f_j(x_{f_l}) - \tilde{f}(x_{f_l}))^2 \leq c^2 \epsilon_i^2 \Rightarrow |f_j(x_{f_l}) - \tilde{f}(x_{f_l})| \leq c \epsilon_i, \forall j \neq l \in [4].$$

• WLOG, suppose that $x_{\tilde{f}} \leq x_1 \leq x_2 \leq x_3 \leq x_4$, for $x_i \triangleq x_{f_i}$.

Proof sketch:(proof by contradiction)

• Fix k = 4, $c \approx 1/16$, suppose that

$$\forall j \neq l \in [4], |f_j(x_{f_l}) - \tilde{f}(x_{f_l})| \leq c\epsilon_i.$$

Proof sketch:(proof by contradiction)

• Fix k = 4, $c \approx 1/16$, suppose that

$$\forall j \neq l \in [4], |f_j(x_{f_l}) - \tilde{f}(x_{f_l})| \leq c\epsilon_i.$$

Proof sketch:(proof by contradiction)

• Fix $k = 4, c \approx 1/16$, suppose that

$$\forall j \neq l \in [4], |f_j(x_{f_l}) - \tilde{f}(x_{f_l})| \leq c\epsilon_i.$$

Proof sketch:(proof by contradiction)

• Fix $k = 4, c \approx 1/16$, suppose that

$$\forall j \neq l \in [4], |f_j(x_{f_l}) - \tilde{f}(x_{f_l})| \leq c\epsilon_i.$$

Proof sketch:(proof by contradiction)

• Fix k = 4, $c \approx 1/16$, suppose that

$$\forall j \neq l \in [4], |f_j(x_{f_l}) - \tilde{f}(x_{f_l})| \leq c\epsilon_i.$$

Proof sketch:(proof by contradiction)

• Fix $k = 4, c \approx 1/16$, suppose that

$$\forall j \neq l \in [4], |f_j(x_{f_l}) - \tilde{f}(x_{f_l})| \leq c\epsilon_i.$$

Proof sketch:(proof by contradiction)

• Fix k = 4, $c \approx 1/16$, suppose that

$$\forall j \neq l \in [4], |f_j(x_{f_l}) - \tilde{f}(x_{f_l})| \leq c\epsilon_i.$$

Theorem 7 – IR bound in d-D

$$(\alpha, \beta \lceil \log(1/\alpha) \rceil) \in \mathrm{IR}(\mathcal{F}_{\mathtt{blrm}})$$
 whenever $\alpha \in (0,1)$ and

$$\mathsf{BReg}^{\scriptscriptstyle{\mathrm{TS}}}(\mathcal{F}_{\scriptscriptstyle{\mathtt{blrm}}}) \ = \ \widetilde{\mathit{O}}\!\left(\mathit{d}^{2.5}\sqrt{\mathit{n}}\right).$$

 $f(x,y)=e^{x+y}$ — a convex ridge function with $\theta=(1,1)$ and $\ell(t)=e^t$.

Lower bounds – main results

The following lower bounds share the same construction.

Lower Bound 4

When $\mathcal{K}=\mathbb{B}_1\subset\mathbb{R}^d$, there exists a prior ξ on $\mathcal{F}_{ t b1}$ such that

$$\mathsf{BReg}_n(\mathsf{TS}) \, \geq \, \tfrac{1}{2} \, \mathsf{min} \big\{ n, \, \, \frac{1}{4} e^{\Omega(d/32)} \big\}.$$

Lower Bound 2

Suppose that $\mathcal{K}=\mathbb{B}_1\subset\mathbb{R}^d$ and d>256. Then there exists a prior ξ on $\mathcal{F}_{\mathbb{N}_1}$ such that

$$\Delta(\pi,\xi) \geq 2^{-19} \frac{d}{\log(d)} \sqrt{\mathcal{I}(\pi,\xi)},\,$$

for all policies π on K.

Lower bound 2 shows that for general convex losses in \mathbb{R}^d the classical info-ratio machinery cannot give regret better than the known $\widetilde{O}(d^{1.5}\sqrt{n})$.

Lower bounds – construction

- Idea:
 - **1** All $f_{\theta} \sim \xi$ are mostly equal to a fixed f on \mathbb{B}_1 .
 - Uniform prior and no noise!
- TS lower bound:
 - **1** TS plays on the "perimeter" \mathbb{S}_1 where the minimizers are.
 - 2 Suffers constant regret for exp(d) rounds.
- IR lower bound:
 - Radial symmetry.
 - ② Optimize for r in $\frac{\Delta(r)^2}{\mathcal{I}(r)}$:
 - ① Closer to 0, very low inf. with good prob.
 - ② Closer to S_1 , high inf. with very low prob.

Paper in One Slide

- Goal: Understand how Thompson Sampling (TS) behaves in bandit convex optimization (BCO).
- Positive:
 - $\mathsf{BReg}_n(\mathsf{TS}) = \widetilde{O}(\sqrt{n})$ in 1-D convex bandits.
 - BReg_n(TS) = $\widetilde{O}(d^{2.5}\sqrt{n})$ for d-D monotone convex ridge losses.
- Negative:
 - TS can suffer $\Omega(\exp(d))$ regret for general d-D convex losses.
 - Classical info-ratio tricks \Rightarrow no better than $\widetilde{O}(d^{1.5}\sqrt{n})$ for general stochastic & adversarial BCO.

Thanks!