МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Факультет прикладной математики и информатики

Кафедра математического моделирования и анализа данных

ЦУРАНОВ НИКИТА ВАСИЛЬЕВИЧ

СТАТИСТИЧЕСКИЙ АНАЛИЗ ВРЕМЕННЫХ РЯДОВ С ПОМОЩЬЮ ВЕЙВЛЕТ ПРЕОБРАЗОВАНИЙ

Курсовая работа Студента 3 курса 7 группы

Руководитель
Лобач Виктор Иванович
доцент кафедры ММАД
канд. физ.-мат. наук

Содержание

	Введение	3
1	Вейвлеты Хаара и их свойства	4
2	Преобразование Фурье и вейвлет-преобразование	5
3	Задачи анализа и синтеза	6
	3.1 Задача анализа	6
	3.2 Задача синтеза	8
4	Компьютерные эксперименты	9
	4.1 Преимущество временных рядов перед преобразованием Фурье	9
	4.2 Сглаживание и сжатие временных рядов	10
	4.3 Исследование стационарности временных рядов	10
	4.4 Преимущества вейвлет-преобразования во временной	
	области	13
	Заключение	16
	Приложение	18

Введение

Вейвлет-преобразование представляет собой синтез идей, которые возникли за многие годы из разных областей, таких как математика и обработка сигналов. Вообще говоря, вейвлет-преобразование — это инструмент, который делит данные, функции или операторы на разные частотные компоненты, а затем изучает каждый компонент с разрешением, соответствующим его масштабу^[1].

Таким образом, вейвлет-преобразование используется для обеспечения экономного и информативного математическое представление многих объектов, представляющих интерес^[2]. В настоящее время многие компьютерные программные пакеты содержат быстрые и эффективные алгоритмы для преобразования вейвлетов. Благодаря такой легкой доступности вейвлеты быстро завоевали популярность среди ученых и инженеров, как в области теоретических исследований, так и в области применения. Прежде всего, вейвлеты широко применяются в таких областях компьютерных наук, как обработка изображений, компьютерное зрение, управление сетями и анализ данных. За последнее десятилетие интеллектуальный анализ данных или базы данных обнаружения знаний стали важной областью как в академия и в промышленности. Интеллектуальный анализ данных - это процесс автоматического извлечения новых полезных и понятных шаблонов из большой коллекции данных.

Теория вейвлетов, естественно, может сыграть важную роль в анализе данных, поскольку она хорошо обоснована и имеет очень практическое применение. У вейвлетов есть много благоприятных свойств, таких как исчезающие моменты, иерархическая структура с разложением по иерархии и многоразрешению, линейная временная и пространственная сложность преобразований, декоррелированные коэффициенты и широкий спектр базовых функций. Эти свойства могут обеспечить значительно более эффективные и эффективные решения многих проблем анализа данных. Вопервых, вейвлеты могут обеспечивать представление данных, которые делают процесс сбора данных более эффективным и точным. Во-вторых, вейвлеты могут быть включены в ядро многих алгоритмов сбора данных.

Хотя стандартные вейвлет-приложения в основном используются для данных, которые имеют временную / пространственную локализацию (например, временные ряды, данные потоков и данные изображений), вейвлеты также успешно применяются в различных областях при извлечении данных. На практике широкое разнообразие методов, связанных с вейвлетами, было применено для решения целого ряда проблем интеллектуального анализа данных.

В этой работе представляются необходимые математические основы для понимания и использования вейвлетов, а также краткий обзор исследований вейвлетприложений

1 Вейвлеты Хаара и их свойства

Рассмотрим основные характеристики вейвлетов Хаара. Материнская функция^[3] задается следующим образом:

$$\psi(x) = \begin{cases} 1, & x \in [0, 0.5) \\ -1, & x \in [0.5, 1) \\ 0, & \text{иначе} \end{cases}$$

Масштабирующая функция определяется как:

$$\phi(x) = \begin{cases} 1, & x \in [0, 1) \\ 0, & \text{иначе} \end{cases}$$

Система базисных вейвлетов получается путем растяжения и смещения материнского вейвлета:

$$\psi_{a,b}(x) = 2^{\frac{a}{2}}\psi(2^a t - b); a \in N_0, b = 0...2^a - 1$$

Свойства вейвлетов^[4]:

• $\psi(x)$ абсолютно интегрируемая и принадлежит L^2 :

$$\int_{-\infty}^{\infty} |\psi(x)| dx < \infty$$
 и $\int_{-\infty}^{\infty} |\psi(x)|^2 dx < \infty$

• Среднее равно нулю, а норма равна единице:

$$\langle f,g \rangle = \int_{-\infty}^{\infty} f(x)g(x)dx$$
 — скалярное произведение в L^2

$$\int_{-\infty}^{\infty} \psi(x) dx = 0 \text{ и } \int_{-\infty}^{\infty} \psi(x)^2 dx = 1$$

• Вейвлеты Хаара так же является ортонормированными:

$$\langle \psi_{a,b}(x), \psi_{i,j}(x) \rangle = \begin{cases} 1, & a,b=i,j \\ 0, & \text{иначе} \end{cases}$$

2 Преобразование Фурье и вейвлет-преобразование

Преобразование Фурье[5] функции вещественной переменной задается формулой:

$$\hat{f}(w) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{-ixw} dx$$

Формула обращения:

$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{f}(w) e^{ixw} dw$$

В контексте анализа временных рядов, которые можно рассматривать как сигналы, преобразование Фурье позволяет перевести сигнал из временного представления в частотное.

Но у преобразования Фурье есть недостаток. Т.к. мы получаем только частотный спектр, то результат преобразования для суммы двух синусоид и синусоиды, переходящей в другую, (с теми же частотами и на таком же временном промежутке) будет неотличим (преобразование Фурье используется только для периодичных функций).

Если нам нужно больше, чем просто анализ спектра частот, то существует оконное преобразование Фурье, а также вейвлет-анализ.

Вейвлет-преобразование $W(a,b) = \int_{-\infty}^{\infty} f(x)\psi_{a,b}(x)dx$ отличается от преобразования Фурье выбором анализирующей функции. Но для разложения в ряд Фурье мы накладывали условие ортогональности, и благодаря этому мы раскладывали функцию по заданному базису. С вейвлетами, в общем случае, мы так сделать не можем, но мы можем посмотреть насколько заданная функция похожа на наш вейвлет в заданный момент времени. Момент времени задается через растяжение и смещение анализирующей функции, а схожесть определяется величиной коэффициента.

Вейвлет Хаара обладает ортогональностью, а значит мы можем провести разложение по вейвлет-базису. С этим мы подходим к задаче анализа.

3 Задачи анализа и синтеза

3.1 Задача анализа

Задана анализа состоит в получении коэффициентов разложения. Для работы будем использовать вейвлеты Хаара. Формулы для непрерывного преобразования:

$$c_{a,b} = \int_{-\infty}^{\infty} x(t)\psi_{a,b}(t)dt; \ s = \int_{-\infty}^{\infty} x(t)\phi(t)dt$$

 $a \in N_0, b = 0...2^a - 1, a = 0...M$, где М — количество уровней разложения

Данные формулы работают для разложения функции на промежутке [0, 1). Для разложения на ином промежутке можно расширить базис:

- Введение в базис дополнительных членов (полученных большим смещением). Таким образом можем получить промежуток [0, n), где $n \in N$
- Сдвиг материнского вейвлета $\psi'(t) = \psi(t-C)$ даст промежуток [C, C+1)
- \bullet Растяжение материнского вейвлета $\psi'(t)=\psi(tC)$ дает промежуток [0,C)

Восстановление непрерывной функции на отрезке [0, 1] с 4 уровнями

Восстановление функции на отрезке [0.5, 1.5] через смещение материнского вейвлета и масштабирующей функции

Восстановление функции на отрезке [0, 2] полученное расширением базиса

Восстановление функции на отрезке [0, 1.5] через растяжение материнского вейвлета и масштабирующей функции

А сам базис Хаара на отрезке [0, 1] выглядит так:

Но на практике мы обычно имеем дело с дискретными сигналами. Рассмотрим дискретное вейвлет-преобразование.

Обычно размер данных о сигнале равен степени двойки для упрощения вычислений, тогда пусть сигнал задается как значения $X_n=x_0,...,x_n$, где $n=2^k-1$. Рассмотрим x_i :

$$x_i = \frac{1}{2}x_i + \frac{1}{2}x_i - \frac{1}{2}x_{i-1} + \frac{1}{2}x_{i-1} = \frac{x_i + x_{i-1}}{2} + \frac{x_i - x_{i-1}}{2}$$

 Γ де $\frac{x_i+x_{i-1}}{2}$ — аппроксимация сигнала, а $\frac{x_i-x_{i-1}}{2}$ — а детализация. Такое разложение сигнала можно использовать рекуррентно:

$$X = A^{0}, A^{k+1} = \left[\frac{A_{2i}^{k} + A_{2i+1}^{k}}{2}\right], D^{k+1} = \left[\frac{A_{2i}^{k} - A_{2i+1}^{k}}{2}\right]; i < n_{k+1}, n_{k+1} = \frac{n_{k}}{2}$$

Этот метод позволяет получить разложение без потери точности и без вычисления самих вейвлетов, а за счет рекурсии работает асимптотически за $O(n \log(n))$. Также позволяет упростить сам сигнал, оставляя просто аппроксимацию.

3.2 Задача синтеза

Задача синтеза состоит в восстановлении сигнала по полученным коэффициентам. По тем формулам для вейвлета Хаара, что мы определили в 3.1 получаем:

- Для непрерывного: $x(t) = s\phi(t) + \sum_{a=0}^M \sum_{b=0}^{2^a} c_{a,b}\phi_{a,b}(t)$ по аналогии с рядами Фурье
- ullet Для дискретного: $A^{k-1} = \left[A_i^k + D_i^k, A_i^k D_i^k
 ight], i < n_k$

Рассмотрим восстановление сигналов различных уровней:

4 Компьютерные эксперименты

4.1 Преимущество временных рядов перед преобразованием Фурье

Преобразование Фурье можно использовать либо только для периодических сигналов, либо для определения частот.

Рассмотрим 2 примера:

Continuous wavelet transform

Конкатенация двух синусоид:

Как мы можем увидеть, отличия в преобразовании Фурье вызваны только различными шумами и величиной пиков, различия же вейвлет коэффициентов видны даже визуально. Но все же существует оконное преобразование Фурье позволяющее частично избавиться от этого недостатка.

4.2 Сглаживание и сжатие временных рядов

При предсказывании временных рядов нам хочется искать закономерности, а не пытаться предсказать шум. Вейвлет преобразование позволяет сгладить данные и при этом уменьшить размерность.

Но снизить размер данных можно не только выбросив высокие частоты. Преобразование Хаара лучше поддается кодировке, что позволяет еще больше уменьшить размер.

4.3 Исследование стационарности временных рядов

Стационарность — свойство процесса не менять свои характеристики со временем.

• Временной ряд справа не является стационарным, т.к. растет мат. ожидание, т.е. существует тренд.

• В этом случае у ряда растет дисперсия.

• На последнем графике видно, что данные сжимаются друг к другу, т.е. есть непостоянство ковариаций.

Коэффициенты непрерывного преобразования можно использовать для определения стационарности. Для сравнения будем использовать статистический тест Дики-Фуллера.

 ${adf: -3.481848853184378} \\ p-value: 0.008465675598229853 \\ Critical values: '1%': -3.436, '5%': -2.864, '10%': -2.568 \\$

Для данного ряда выражена периодичность, причем эта же периодичность прослеживается и в коэффициентах.

 $adf: -2.903023162949968 \\ p-value: 0.0449975725101061 \\ Critical values: '1%': -3.436, '5%': -2.864, '10%': -2.568 \\$

Тут периодичность не так ярко выражена, но все еще хорошо видна в коэффициентах, при этом Тест говорит, что ряд не стационарен.

p-value: 0.015976475379125093Critical values: '1%': -3.436, '5%': -2.864, '10%': -2.568

adf: -3.276199205944301

Данный ряд выглядит вполне стационарным, о чем нам говорит и статистический тест, но на вейвлет-коэффициентах можно увидеть наличие тренда.

adf: -3.5973135357984862 p-value: 0.005812595366803051 Critical values: '1%': -3.436, '5%': -2.864, '10%': -2.568

По этим коэффициентам можно определить наличие параболического тренда

p-value: 5.39587787602044e-07 Critical values: '1%': -3.436, '5%': -2.864, '10%': -2.568

Хоть тест говорит, что ряд стационарен, но мы наблюдаем увеличение дисперсии

4.4 Преимущества вейвлет-преобразования во временной области

Проведем сравнение обычного статистического анализа на наборе данных о травматизме в 2015 году.

После статистического анализа мы можем сказать, что:

Всего было:

• В понедельник : 49868 случаев

• В вторник : 46629 случаев

• В среду: 46727 случаев

• В четверг : 46798 случаев

• В пятницу : 45269 случаев

• В субботу: 49408 случаев

• В воскресенье : 50140 случаев

В среднем было:

• В понедельник : 959 случаев

• В вторник : 897 случаев

• В среду: 899 случаев

• В четверг : 883 случаев

• В пятницу: 871 случаев

• В субботу: 950 случаев

• В воскресенье : 964 случаев

Проведем разложение на этих данных:

Статистические данные позволяют узнать общую информацию.

Черные пятна на спектрограмме соответствуют всплескам. По коэффициентам можно сказать, что, например, в воскресенье большинство случаев соответствуют апрелю-маю, а в четверг — середине года. Также по данным мы можем увидеть, что внутри года закономерности не наблюдается.

Заключение

В курсовой работе получены следующие основные результаты:

- Изучены свойства вейвлетов, в частности вейвлетов Хаара
- Приведены математические основы для работы с вейвлетами
- Проведены компьютерные эксперименты по работе с дискретными и непрерывными вейвлетами, а в частности:
 - Проведено сравнение с преобразованием Фурье
 - Рассмотрено сглаживание и сжатие временных рядов
 - Проведено исследование стационарности

Список литературы

- [1] I. Daubechies. Ten Lectures on Wavelets / I. Daubechies // Capital City Press, Montpelier, Vermont - 1992
- [2] F. Abramovich, Wavelet analysis and its statistical applications / F. Abramovich, T. Bailey, and T. Sapatinas // JRSSD, (48):1–30 2000
- [3] Wavelet transform Wikipedia [Электронный ресурс]. Режим доступа: https://en.wikipedia.org/wiki/Wavelet-transform, свободный.
- [4] Haar wavelet Wikipedia [Электронный ресурс]. Режим доступа: https://en.wikipedia.org/wiki/Haar-wavelet, свободный.
- [5] Fourier transform Wikipedia [Электронный ресурс]. Режим доступа: https://en.wikipedia.org/wiki/Fourier-transform
- [6] Pedro A. Morettin. A wavelet analysis for time series / Pedro A. Morettin , Chang Chiann // Journal of Nonparametric Statistics 2007
- [7] Charles K. Chui. An Introduction to Wavelets / Charles K. Chui // Texas AM University, College Station, Texas 2001
- [8] Tao Li. A Survey on Wavelet Applications in Data Mining / Tao Li, Qi Li, Shenghuo Zhu, Mitsunori Ogihara // ACM SIGKDD Explorations Newsletter 2002

Приложение

```
import pywt
import numpy as np
import pandas as pd
import statsmodels.api as sm
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings('ignore')
np.random.seed(0)
X \text{ range} = np.arange(1000)
def describe (signal):
    plt. figure (figsize = (16, 10))
    signal with noise = signal + np.random.normal(0, 1, len(signal))
    plt.subplot(3, 1, 1)
    plt.plot(signal_with_noise, 'gray', label='noised_signal')
    plt.plot(signal, 'black', label='pure_signal', linewidth=2)
    plt.xticks(()), plt.yticks(())
    plt.title('Signal')
    plt.legend()
    plt.subplot(3, 1, 2)
    plt.plot(np.abs(np.fft.rfft(signal_with_noise)), 'black')
    plt.title('Fourier_transform')
    plt.xticks(()), plt.yticks(())
    ax = plt.subplot(3, 1, 3)
    coef, freqs=pywt.cwt(signal,np.arange(1, 120), 'mexh')
    ax.matshow(coef, cmap='Greys')
    plt.title('Continuous_wavelet_transform')
    plt.xticks(()), plt.yticks(())
    plt.show()
\operatorname{describe}(\operatorname{np.sin}(X_{\operatorname{range}} / 23) + 2 * \operatorname{np.sin}(X_{\operatorname{range}} / 10))
describe (np.append (np.sin (X range [::2] / 23),
               2 * np. sin (X range [::2] / 10)))
```

```
from scipy import integrate
class wavelet_series:
     def \__init\__(self, g, levels=8):
          self.levels = levels
          mother wavelet = lambda x: 0 if x < 0
                                           1 	ext{ if } x < 0.5 	ext{ else}
                                          -1 if x < 1
                                                            else 0
          self.scaling = lambda x: 1 if 0 <= x < 1 else 0
          self.basis = [[
               (lambda i , j : lambda x :
                    2 ** (i / 2) * mother_wavelet(2**i * x - j))(i, j)
          for j in range(2 ** i) for i in range(levels)
          self.coef = [[
               integrate.quad(lambda x: g(x) * self.basis[i][j](x), 0, 1)[0]
          for j in range(2 ** i) for i in range(levels)
          self.scaling_coef = integrate.quad(
              lambda x: g(x) * self.scaling(x), 0, 1)[0]
    def __call__(self , point):
          value = 0
          for i in range(self.levels):
               for j in range (2 ** i):
                    value += self.coef[i][j] * self.basis[i][j](point)
          return value + self.scaling_coef * self.scaling(point)
g = lambda x: np.exp(x / 3) * np.sin(3 * x) + 3
xs = np. linspace (1e-8, 1 - 1e-8, 1000)
plt. figure (figsize = (16, 8))
for i in range (1, 7):
     f = wavelet series(g, i)
     plt.subplot(2, 3, i)
     \begin{array}{ll} \operatorname{plt.plot}\left(xs\right), & \operatorname{list}\left(\operatorname{map}(g\,,\,xs\,)\right), & \operatorname{'grey'}, & \operatorname{label='exp}(x/3) \cup \sin(3x) \cup + \cup 3') \\ \operatorname{plt.plot}\left(xs\right), & \operatorname{list}\left(\operatorname{map}(f\,,\,xs\,)\right), & \operatorname{'black'}, \end{array}
                label='Wavelet-transform_level_%d' % i)
     plt.legend()
     if i == 5:
          plt .xlabel('Continues_Haar_transform')
plt.show()
```

```
def decomposition (signal, wavelet='Haar'):
    wavelet = pywt.Wavelet(wavelet)
    signal with noise = signal + np.random.normal(0, 0.2, len(signal))
    plt. figure (figsize = (16, 8))
    plt.subplot(2, 2, 1)
    plt.plot(signal, 'black', label='pure_signal')
    plt.plot(signal with noise, 'gray',
             label='noised_signal', linewidth=0.5)
    plt.legend()
    coefs = pywt.wavedec(signal with noise, wavelet, level=8)
    plt.subplot(2, 2, 2)
    plt.plot(pywt.waverec(coefs, wavelet), 'black',
             label='Full_recovery_(8_levels)', linewidth=0.5)
    plt.legend()
    plt.subplot(2, 2, 3)
    plt.plot(pywt.waverec(coefs [:-2], wavelet), 'black',
             label='6_levels_recovery', linewidth=0.5)
    plt.legend()
    plt.subplot(2, 2, 4)
    plt.plot(pywt.waverec(coefs [:-5], wavelet), 'black',
             label='3\_levels\_recovery', linewidth=0.5)
    plt.legend()
    plt.show()
decomposition(g(np.linspace(0, 3, 250)))
def Show Series (series, wavelet='mexh'):
    test = sm.tsa.adfuller(series)
    plt. figure (figsize = (16, 3))
    plt.plot(series, 'Grey', linewidth = 0.5)
    plt.xticks(())
    plt.yticks(())
    if test[0] > test[4]['5\%']:
        plt.title('Non-stationary_series_by_Dickey-Fuller_test')
    else:
        plt.title('Stationary_series_by_Dickey-Fuller_test')
    coef, freqs = pywt.cwt(series ,np.arange(1, 200), wavelet)
    plt.matshow(coef, cmap='Greys')
```

```
plt.xticks(())
   plt.yticks(())
   plt.show()
print('adf: ', test[0])
print('p-value:_', test[1])
print('Critical_values: ', test[4])
noise = np.random.normal(0, 1, 1000)
x range = np.arange (1000)
ShowSeries (np. \sin(x \text{ range } / 30) +
          noise)
ShowSeries (np. sin (x range / 50) +
          np.sin(x\_range / 25 - 5) +
          noise)
ShowSeries (np. \sin (x \text{ range } / 50) +
          np.sin(x_range / 25 - 2) +
          x\_range / 500 +
          noise *1.3)
ShowSeries (np. \sin (x_range / 30 + 2) +
          np.sin(x\_range / 15) +
          ((x_range - len(x_range) / 2) / 300)**2 +
          noise)
ShowSeries ((np. sin (x range / 20)) * (x range + len (x range))**2 +
          noise * 1e6)
df = pd.read csv('nss15.csv')
time = pd.to datetime(df.treatmentDate, format='\%m/\%d/\%Y')
timeseries = pd. Series (np. ones (len (time)), index=sorted (time),
                     dtvpe=np.int64)
                . resample ( 'D' ) . sum( )
from scaleogram import cws
timeseries.index = pd. Series (timeseries.index)
                     .apply(lambda day: day.weekday())
dayweeks = [ 'понедельник', 'вторник', 'среду', 'четверг',
           'пятницу', 'субботу', 'воскресенье']
```

```
for i in range (7):
    print('B_{:12s}:_{}_случаев'. format(
               dayweeks[i], timeseries[i].sum()))
for i in range (7):
    print ( 'B_{:12s}:_{}_случаев '. format (
               dayweeks [i], round (timeseries [i].mean())))
plt. figure (figsize = (16, 16), dpi = 600)
for i in range (6):
    ax = plt.subplot(3, 2, i + 1)
    cws(timeseries[i], cmap='Greys', ax=ax, clim=[0, 60],
         title='Данные_травматизма_в_%s' % dayweeks [i])
    plt.show()
plt. figure (figsize = (16, 4))
ax = plt.subplot(1, 1, 1)
cws(timeseries[6], cmap='Greys', ax=ax, clim=[0, 60],
    title='Данные_травматизма_в_%s' % dayweeks[i])
plt.show()
```