Probability and Statistics

3 - Discrete Random Variables

Stefan Heiss

Technische Hochschule Ostwestfalen-Lippe Dep. of Electrical Engineering and Computer Science

November 10, 2023

Skewness and Kurtosis

Definition (3.39)

Let X be a random variable with m = E(X) and $\sigma^2 = Var(X) > 0$. The third and fourth moment of the normalized random variable defined by X are the skewness and kurtois of X:

$$skew(X) := E\left(\left(\frac{X-m}{\sigma}\right)^3\right)$$

$$\operatorname{kurt}(X) := E\left(\left(\frac{X-m}{\sigma}\right)^4\right)$$

The skewness measures the lack of symmetry, while the kurtosis measures the fatness in the tails of the pdf of X.

Skewness and Kurtosis

Lemma (3.40)

(i) skew(X) =
$$\frac{E(X^3) - 3m\sigma^2 - m^3}{\sigma^3}$$

(ii) kurt(X) =
$$\frac{E(X^4) - 4mE(X^3) + 6m^2\sigma^2 + 3m^4}{\sigma^4}$$

Markov's inequality

Theorem (3.41)

If X is a nonnegative random variable and a > 0, then:

$$\Pr(X \ge a) \le \frac{E(X)}{a}$$

P1:
$$E(X) = \sum_{X \in \mathbb{R}^+} x \cdot P_X(x) \ge \sum_{X \ge a_1} x \cdot P_X(x) \ge \sum_{X \ge a_1} P_X(x)$$

$$= a \cdot P_r(X \ge a_1)$$

$$= a \cdot P_r(X \ge a_1)$$

Chebyshev's inequality

Theorem (3.42)

If X is a random variable and
$$a>0$$
, then: $\Pr(|X|\geq a)\leq \frac{E(X^2)}{a^2}$

Furthermore, if
$$m = E(X)$$
 is finite, then: $\Pr(|X - m| \ge a) \le \frac{Var(X)}{a^2}$

(ii)
$$Pr(|X-m| \ge a) \le \frac{E(|X-m|^2)}{a^2} = \frac{Var(X)}{a^2}$$

Weak law of large numbers

Theorem (3.43)

Let $X_1, X_2, ...$ be a sequence of <u>uncorrelated</u> random variables with a common mean $\underline{m} = E(X_i)$ and a common variance $\sigma^2 = Var(X_i)$ for all $i \in \mathbb{N}$. For every $n \in \mathbb{N}$ the sample mean of the first $n X_i$'s is defined by:

$$M_n := \frac{X_1 + X_2 + \cdots + X_n}{n} \qquad \qquad \mathcal{E}(M_n) = \frac{A}{n} \sum_{i=1}^{n} \mathcal{E}(X_i)$$

Then for any $\varepsilon > 0$:

$$\Pr\left(|M_n - m| \ge \varepsilon\right) \le \frac{\sigma^2}{n\varepsilon^2} \longrightarrow 0 \quad \text{for } n \to \infty$$

$$\Pr\left(|M_n - m| \ge \varepsilon\right) = \Pr\left(|M_n - E(M_n)| \ge \varepsilon\right)$$

$$\le \frac{1}{\varepsilon^2} \operatorname{Var}(M_n) \qquad (3.42) \text{Liij}$$

$$= \frac{1}{n^2 \varepsilon^2} \operatorname{Var}\left(\sum_{i=1}^n X_i\right)$$

$$= \frac{1}{n^2 \varepsilon^2} \sum_{i=1}^n \operatorname{Var}(X_i) \qquad \text{uncorollaked}$$

$$= \frac{\sigma^2}{n \varepsilon^2}$$

Weak law of large numbers

How often must a fair coin be flipped such that, with a probability $p \ge 0.98$, "heads" show up in 49%–51% of all cases?

$$P_{r}\left(0.4364_{n} \leq 0.5A\right) \geq 0.38$$

$$P_{r}\left(|H_{n} - 0.5| \geq 0.0A\right) \leq 0.02$$

$$\frac{\wedge 1}{n \epsilon^{2}} = \frac{//4}{n \cdot (0.04)^{2}} \leq 0.02$$

$$0 \geq \frac{4}{4} \cdot A_{0,000} \cdot \frac{400}{n} = A \geq 7.000$$

Selected Discrete Probability Distributions

- Uniform Distributions
- Bernoulli Distributions
- Binomial Distributions
- Geometric Distributions
- Negative Binomial Distributions
- Poisson Distributions
- Hypergeometric Distributions

Poisson approximation of binomial probabilities

For small values of p ($p \lesssim 0.01$), the binomial distribution can be approximated by the Poisson distribution with mean $\lambda = np$.

To be more accurate:

Theorem (3.59)

If $(p_n)_{n\in\mathbb{N}}$ is a sequence of numbers with $p_n\in(0,1)$ and

$$\lim_{n\to\infty} n \cdot p_n = \lambda$$

for some $\lambda \in \mathbb{R}$, then the sequence of binomial distributions $\operatorname{binomial}(n, p_n)$ converges to the Poisson distribution $\operatorname{Poisson}(\lambda)$.

Proof of (3.59)

$$p_{\text{binomial}(n,p_n)}(i) = \binom{n}{i} \cdot p_n^i (1-p_n)^{n-i}$$

$$= \frac{n(n-1)\cdots(n-(i-1))}{i!} \cdot p_n^i (1-p_n)^{n-i}$$

$$= \frac{(np_n)^i}{i!} \cdot \frac{n(n-1)\cdots(n-(i-1))}{n^i} \cdot (1-p_n)^{n-i}$$

$$= \frac{(np_n)^i}{i!} \cdot \left(1-\frac{1}{n}\right)\cdots\left(1-\frac{i-1}{n}\right)\cdot (1-p_n)^{-i}\left(1-\frac{np_n}{n}\right)^n$$

$$\to \frac{\lambda^i}{i!} \cdot e^{-\lambda} \qquad \text{for } n \to \infty$$

Poisson approximation of binomial probabilities

Theorem (3.60)

Let $n \in \mathbb{N}$ and $p \in (0,1)$. Then:

$$\sum_{i=0}^{\infty} \left| p_{\text{binomial}(n,p)}(i) - p_{\text{Poisson}(n\cdot p)}(i) \right| \leq 2np^2$$

Hypergeometric Random Variables

Assume, a total number of N entities are given containing D defective elements. Furthermore assume that $n \leq N$ elements are drawn randomly without replacement. Let $X_i = 1$ if the i'th element drawn is defective and $X_i = 0$ otherwise. Then $X = X_1 + \cdots + X_n$ is a hypergeometric random variable:

Hypergeometric Random Variables

Assume, a total number of N entities are given containing D defective elements. Furthermore assume that $n \leq N$ elements are drawn randomly without replacement. Let $X_i = 1$ if the i'th element drawn is defective and $X_i = 0$ otherwise. Then $X = X_1 + \cdots + X_n$ is a hypergeometric random variable:

Definition (3.62)

A hypergeometric random variable is a random variable X having a distribution given by

$$p_X(i) := \frac{\binom{D}{i}\binom{N-D}{n-i}}{\binom{N}{n}} \quad \text{for } i = 0, 1, \dots, n,$$

$$\underset{n}{\text{total possible samples of size ne}}$$

where $N, D, n \in \mathbb{N}$ are fixed parameters with $D \leq N$ and $n \leq N$. This may be denoted by $X \sim \operatorname{hypergeometric}(N, D, n)$.

Hypergeometric Random Variables

Lemma (3.63)

If $X \sim \text{hypergeometric}(N, D, n)$ and $p := \frac{D}{N}$, then:

(i)
$$E(X) = \frac{nD}{N} = np$$

(ii)
$$Var(X) = \frac{nD(N-D)}{N^2} \left(1 - \frac{n-1}{N-1}\right) = np(1-p) \cdot \left(1 - \frac{n-1}{N-1}\right)$$

(i)
$$E(X) = E(X_1 + \dots + X_n) = E(X_1) + \dots + E(X_n) = n \frac{D}{N}$$

(i)
$$E(X) = E(X_1 + \dots + X_n) = E(X_1) + \dots + E(X_n) = n \frac{D}{N}$$

(ii)
$$Var(X) = \sum_{i=1}^{n} Var(X_i) + 2 \cdot \sum_{1 \le i < j \le n} Cov(X_i, X_j)$$
$$= n \cdot \frac{D}{N} \cdot \frac{N-D}{N} + 2 \cdot \sum_{1 \le i < j \le n} Cov(X_i, X_j)$$

(i)
$$E(X) = E(X_1 + \dots + X_n) = E(X_1) + \dots + E(X_n) = n \frac{D}{N}$$

(ii)
$$Var(X) = \sum_{i=1}^{n} Var(X_i) + 2 \cdot \sum_{1 \le i < j \le n} Cov(X_i, X_j)$$
$$= n \cdot \frac{D}{N} \cdot \frac{N - D}{N} + 2 \cdot \sum_{1 \le i \le n} Cov(X_i, X_j)$$

For $i \neq j$, $X_i \cdot X_j$ is a Bernoulli variable with:

$$Pr(X_i \cdot X_j = 1) = \frac{D(D-1)}{N(N-1)}$$

Therefore

$$Cov(X_i, X_j) = E(X_i X_j) - E(X_i) E(X_j)$$

= $\frac{D(D-1)}{N(N-1)} - \left(\frac{D}{N}\right)^2 = \frac{-D(N-D)}{N^2(N-1)}$

Therefore

$$Cov(X_i, X_j) = E(X_i X_j) - E(X_i) E(X_j)$$

= $\frac{D(D-1)}{N(N-1)} - \left(\frac{D}{N}\right)^2 = \frac{-D(N-D)}{N^2(N-1)}$

and it follows that:

$$Var(X) = \frac{n D(N-D)}{N^2} - 2\binom{n}{2} \frac{D(N-D)}{N^2(N-1)} = \frac{n D(N-D)}{N^2} \left(1 - \frac{n-1}{N-1}\right)$$