Food Prices

Final Project

Data Analytics Boot Camp '19

Blanca Chavarría | Nancy Torres | Rubén Colmenares | Yozgart Álvarez

Overview

- » How much does basic food products cost?
- » Which countries produces them?
- » How much do the prices change over time?

These are some questions we posed for our project and inspired us for the following analysis.

Datasets

- » FAO, yearly North America prices from 2000 to 2017 Mexico's Trade from 1986 to 2016 – Mexico's Production from 1961 to 2017
- » INEGI, monthly average Mexico prices for 2011 2017

Approach

Technologies used for the project

- » Python
- » Pandas
- » Matplotlib
- » Scikit-Learn
- » Statsmodels
- » HTML / CSS / Bootstrap
- » JavaScript
- » Amazon AWS
- » Tableau

Tomato price prediction with ARIMA

- » Goal. Predict the price per kg. of tomato (saladette) in CDMX
- » Data. Prices by INEGI from 2011 to 2017
- » Algorithm. ARIMA as it is meant for time series, requires more than 50 observations that is why the information is per month
- » **Results**. An ARIMA model that can predict prices for future months for the short term

ARIMA Model Results

	Dep. Variable:	D.Precio promedio	No. Observations:			
	Model:	ARIMA(3, 1, 1)	Log Likelihood	-161.		
	Method:	css-mle	S.D. of innovations	3		
	Date:	Fri, 09 Aug 2019	AIC	334		
	Time:	14:09:08	BIC	346		
	Sample:	1	HQIC	339		

	coef	std err	z	P> z	[0.025	0.975]
const	0.0151	0.018	0.825	0.413	-0.021	0.051
ar.L1.D.Precio promedio	-0.2326	0.142	-1.638	0.107	-0.511	0.046
ar.L2.D.Precio promedio	-0.3430	0.131	-2.622	0.011	-0.599	-0.087
ar.L3.D.Precio promedio	-0.0320	0.150	-0.214	0.831	-0.325	0.261
ma.L1.D.Precio promedio	-0.9999	0.047	-21.377	0.000	-1.092	-0.908

	Real	Imaginary	Modulus	Frequency		
1.1	-0.2054	-1.7289j	1.7411	-0.2688		
2.2	-0.2054	+1.7289j	1.7411	0.2688		
₹.3	-10.2977	-0.0000j	10.2977	-0.5000		
. 1	1 8881	+0 00001	1 8881	0 0000		

Tomato price prediction with LSTM

- » Goal. Predict whether prices will be going up or going down using Machine Learning
- » Data. Prices reported by Mexico to the FAO from 1991 to 2017
- » Algorithm. LSTM are well suited to learn from important experiences that have very longtime lags in between; includes memory states that decide what information should be propagated further at each timestep
- » Results. On average the Hyper tuned Bidirectional model using GridSearchCV was better (the difference between the actual and the predicted values was smaller)

 f_t is the forget gate

