

D. Větrlaté turbíny (Wind Turbines)

Název úlohy	Větrlaté turbíny (Wind Turbines)
Časový limit	4 sekund
Paměťový limit	1 gigabajt

Anna dostala za úkol navrhnout elektroinstalaci pro novou větrnou elektrárnu u Severního moře, která se skládá z N turbín očíslovaných $0,1,\ldots,N-1$. Jejím cílem je zajistit, aby všechny turbíny byly připojeny k břehu co nejlevněji.

Anna má seznam M potenciálních připojení, z nichž každé propojuje dvě větrné turbíny a má danou cenu. Kromě toho se blízké město zavázalo uhradit náklady na připojení po sobě jdoucích turbín v intervalu $[\ell,r]$ k pobřeží. To znamená, že každá turbína t v tomto rozsahu ($\ell \leq t \leq r$) je zdarma přímo připojena k pobřeží. Pokud jsou vybudována všechna potenciální spojení, existuje způsob, jak se k jakékoli větrné turbíně dostat z jakékoli jiné větrné turbíny. To znamená, že jakmile je jedna z větrných turbín připojena k břehu, je možné přenést veškerou energii na břeh. Více připojení k břehu samozřejmě může vést k nižším celkovým nákladům. Upozorňujeme, že bezplatné spoje jsou jedině přímé spoje na břeh.

Anniným úkolem je vybrat podmnožinu potenciálních spojení tak, aby se minimalizovaly náklady na ně a zároveň se zajistilo, že každá větrná turbína dosáhne břehu (možná prostřednictvím jiných větrných turbín).

Aby se mohlo lépe rozhodnout, tak město poskytne Anně Q možných scénářů pro interval $[\ell,r]$. Město žádá Annu o výpočet minimálních nákladů pro každý z těchto různých scénářů.

Vstup

První řádek vstupu obsahuje tři celá čísla, N, M a Q.

Následuje M řádků, každý obsahující tři celá čísla, u_i , v_i a c_i . i-tý řádek popisuje potenciální spojení mezi větrnými turbínami u_i a v_i s cenou c_i . Tato spojení jsou neorientovaná a spojují dvě různé turbíny. Žádné dvě spojení nespojují stejnou dvojici turbín. Je zaručeno, že pokud jsou vybudována všechna potenciální spojení, je jakákoli větrná turbína dosažitelná z jakékoli jiné (přímo či nepřímo).

Následující řádky Q obsahují dvě celá čísla, ℓ_i a r_i , která popisují scénář, kdy se pobřeží napojuje na větrné turbíny $\ell_i, \ell_i+1, \ldots, r_i$. Všimněte si, že $r_i=\ell_i$ může být, když se pobřeží napojuje na jednu větrnou turbínu.

Výstup

Vypište Q řádků, jeden řádek pro každý scénář, z nichž každý obsahuje jedno celé číslo, a to minimální náklady na propojení turbín tak, aby každá turbína mohla dodávat svou energii na břeh.

Omezení a bodování

- $2 \le N \le 100000$.
- $1 \le M \le 100\,000$.
- $1 \le Q \le 200\,000$.
- $0 \le u_i, v_i < N 1$.
- ullet $u_i
 eq v_i$, a mezí každým párem je maximálně jedno spojení
- $1 \le c_i \le 10^9$.
- $0 \le \ell_i \le r_i \le N 1$.

Vaše řešení bude testováno na několika sadách testů, z nichž každá má hodnotu určitého počtu bodů. Každá sada obsahuje několik testovacích případů. Abyste získali body za sadu, musíte vyřešit všechny testovací případy v dané sadě testů.

Sada	Body	Omezení
1	8	$M=N-1$ a i -tá hraná splňuje $v_i=i$ a $u_i=i+1$, tedy turbíny tvoří cestu $0\leftrightarrow 1\leftrightarrow 2\leftrightarrow\ldots\leftrightarrow N-1$
2	11	$N, M, Q \leq 2000$ a $\sum (r_i - \ell_i + 1) \leq 2000$
3	13	$r_i = \ell_i + 1$ pro všechna i
4	17	$1 \leq c_i \leq 2$ pro všechna i , tedy každé spojení má cenu buď 1 nebo 2
5	16	$\sum (r_i-\ell_i+1) \leq 400000$
6	14	$\ell_i=0$ pro každé i
7	21	Žádné další omezení

Ukázkové příklady

V prvním ukázkovém příkladu máme následující graf.

Musíme vypočítat tři možné scénáře: V prvním scénáři je turbína 1 jediná s připojením k břehu. V tomto případě musíme zachovat všechna připojení kromě připojení mezi turbínou 0 a turbínou 2, což dává celkové náklady 2+3+6+3=14. V dalším scénáři jsou turbíny 3 a 4 připojeny k břehu. V tomto případě ponecháme připojení (1,0), (1,2) a (2,4), což dává cenu 8. Ve třetím scénáři jsou všechny turbíny kromě turbíny 0 připojeny k břehu. V tomto případě stačí tuto turbínu připojit pouze k jiné turbíně, což provedeme volbou připojení (0,1). Řešení scénářů jsou uvedena níže:

První a šestý ukázkový příklad splňují omezení sad 2, 5 a 7. Druhý a sedmý ukázkový příklad splňují omezení sad 1, 2, 5 a 7. Třetí ukázkový příklad splňuje omezení sad 2, 3, 5 a 7. Čtvrtý ukázkový příklad splňuje omezení sad 2, 4, 5 a 7. Pátý ukázkový příklad splňuje omezení sad 2, 5, 6 a 7.

Input	Output
5 5 3 1 0 2 0 2 5 1 2 3 3 0 6 2 4 3 1 1 3 4 1 4	14 8 2
5 4 4 0 1 3 1 2 1 2 3 5 3 4 2 0 4 2 3 2 4 2 2	0 6 4 11
7 7 4 6 4 3 1 4 5 3 2 4 0 3 2 5 2 3 4 0 1 1 3 1 0 1 2 3 4 5 5 6	12 10 10 10

Input	Output
7 7 3	5
2 6 1	4
1 0 1	6
0 5 1	
1 2 2	
3 4 1	
5 3 1	
5 4 1	
5 6	
1 3	
3 4	
7 7 4	7
6 4 3	0
1 4 5	12
3 2 4	6
0 3 2	
5 2 3	
4 0 1	
1 3 1	
0 3	
0 6	
0 1	
0 4	

Input	Output
9 13 4	1
0 1 1	14
2 0 3	22
1 2 4	24
5 4 4	
2 5 6	
3 1 7	
8 1 4	
6 3 9	
0 3 5	
3 5 3	
4 3 2	
6 2 4	
7 8 5	
1 8	
4 7 6 7	
6 7	
1 2	
6 5 1	500000000
0 1 100000000	
1 2 1000000000	
2 3 1000000000	
3 4 1000000000	
4 5 1000000000 1 1	
1 1	