2. The formulaic/set builder method: give a formula that generates all elements of the set.

$$A = \{x \in \mathbb{N} \mid 0 \le x \land x \le 5\} = \{0, 1, 2, 3, 4, 5\} = \{x \in \mathbb{N} : 0 \le x \land x \le 5\}$$

Using \mathbb{N} and the set-builder method, we can define:

$$\mathbb{Z} = \{ m - n \mid \forall m, n \in \mathbb{N} \}$$

n=0 and m any natural number \Rightarrow we generate all of N

m=0 and n any natural number \Rightarrow we generate all negative integers $\mathbb{Q} = \{ \frac{p}{q} \mid p, q \in \mathbb{Z} \land q \neq 0 \}$

Definition: A set A is called finite if it has a finite number of elements; otherwise, it is called infinite.

Set Operations 3.2

Task: Understand how to represent sets by Venn diagrams. Understand set union, intersection, complement, and difference.

Definition: Let A, B be sets. A is a <u>subset</u> of B if all elements of A are elements of B, i.e. $\forall x (x \in A \to x \in B)$. We denote that A is a subset of B by $A \subseteq B$

Example: $\mathbb{N} \subseteq \mathbb{Z}$

Definition: Let A, B be sets. A is a proper subset of B if $A \subseteq B \land A \neq B$, i.e. $A \subseteq B \land \exists x \in B \ s.t. \ x \notin A.$

Notation: $A \subset B$

Example: $\mathbb{N} \subset \mathbb{Z}$ since $\exists (-1) \in \mathbb{N}$

NB: $\forall A \text{ a set}, \emptyset \subseteq A$

Recall: $B \subseteq C$ means $\forall x (x \in B \to x \in C)$, but \emptyset has no elements, so in $\emptyset \subseteq A$ the quantifier \forall operates on a domain with no elements. Clearly, we need to give meaning to \exists and \forall on empty sets.

Boolean Convention

 \forall is true on the empty set } Consistent with common sense \exists is false on the empty set

Definition: Let A, B be two sets. The <u>union</u> $A \cup B = \{x \mid x \in A \lor x \in B\}$

Definition: Let A, B be two sets. The <u>intersection</u> $A \cap B = \{x \mid x \in A \land x \in B\}$

Definition: Let A, B be sets. A and B are called disjoint if $A \cap B = \emptyset$

Definition Let A, B be two sets. $A - B = A \setminus B = \{a \mid x \in A \land x \notin B\}$

 $A = \{1, 2, 5\}$ $B = \{1, 3, 6\}$ **Examples:** $A \cup B = \{1, 2, 3, 5, 6\}$ $A \cap B = \{1\}$

Definition: Let A, U be sets s.t. $A \subseteq U$. The <u>complement</u> of A in $U = U \setminus A = A^C = \{x \mid x \in U \land x \notin A\}$ **Remark:** The notation A^C is unambiguous only if the universe U is clearly defined or understood.