Teoria degli Automi e Calcolabilità a.a. 2022/23 Prova scritta 12 settembre 2023

Esercizio 1 Minimizzare il seguente DFA, descrivendo in modo preciso i passaggi effettuati:

Soluzione Inizialmente si hanno le due classi di equivalenza DEAD (non finale) e tutti gli altri stati (finali). Possiamo distinguere B dagli altri stati finali perché leggendo a è l'unico che va in uno stato non finale, quindi otteniamo le classi di equivalenza $\{DEAD\}$, $\{B\}$ e $\{A,C,D,E\}$. Ora possiamo distinguere A da C, D, E perché leggendo a si va in $\{B\}$, mentre per gli altri tre stati si va in $\{A,C,D,E\}$. A questo punto non possiamo distinguere ulteriormente perché anche leggendo b da C, D, E si resta in $\{C,D,E\}$. L'automa minimo è quindi:

		a	b
$\rightarrow *\{ \bot$	4}	$\{B\}$	$\{C, D, E\}$
*{B	}	$\{DEAD\}$	$\{C, D, E\}$
$*\{C,D\}$	$,E\}$	$\{C, D, E\}$	$\{C, D, E\}$
$\{DEA$	D }	$\{DEAD\}$	$\{DEAD\}$

Esercizio 2 Provare che il linguaggio $\{0^n 1^k 0^n \mid k \text{ dispari}, n > 0\}$ non è regolare.

Soluzione Possiamo dimostrarlo utilizzando il pumping lemma. Infatti, preso n > 0 arbitrario¹, consideriamo la stringa $0^n 10^n$ che appartiene al linguaggio ed è di lunghezza $\geq n$. Decomponenendo questa stringa come uvw con $|uv| \leq n$ e $v \neq \epsilon$, si ha che sicuramente le stringhe u e v contengono solo 0. Allora la stringa uv^0w contiene un numero di 0 strettamente minore di quello in uvw, quindi non appartiene al linguaggio.

Esercizio 3 Dare un automa a pila che riconosca (per pila vuota) il linguaggio dell'esercizio precedente. È possibile dare un automa deterministico?

Soluzione Una soluzione è la seguente:

 $^{^{1}}$ Per n=0 possiamo prendere la stringa 010.

Questo automa è deterministico.

Esercizio 4 Si classifichino i seguenti problemi (ricorsivo, ricorsivamente enumerabile ma non ricorsivo, non ricorsivamente enumerabile), giustificando le risposte.

- 1. Determinare se un programma restituisce (per qualche input) uno 0 in output. Questo problema ($\{x \mid \phi_x(y) = 0 \text{ per qualche } y\}$) non è ricorsivo per il teorema di Rice (estensionale e non banale). È ricorsivamente enumerabile in quanto è possibile eseguire il programma per tutti i possibili input con la tecnica a zig-zag e se per qualche input il programma restituisce 0 questo sarà trovato.
- 2. Determinare se un programma non restituisce mai uno 0 in output. Analgamente al caso precedente questo problema ($\{x \mid \phi_x(y) > 0 \text{ per ogni } y\}$) non è ricorsivo per il teorema di Rice (estensionale e non banale). Non è ricorsivamente enumerabile in quanto è il complementare del precedente che lo è.
- 3. Determinare se un programma (assumiamo sia una macchina di Turing) ha solo mosse che spostano a sinistra.
 Questo problema è ricorsivo in quanto è possibile dare un algoritmo che esamina (il codice = tabella di transizione di) una macchina e controlla se esistono mosse che spostano a sinistra.

Esercizio 5 Siano \mathcal{P} e \mathcal{Q} due insiemi ricorsivamente enumerabili, e indichiamo con $\mathcal{A}^k_{\mathcal{P}}$ l'esecuzione di k passi dell'algoritmo che semidecide \mathcal{P} , e analogamente per \mathcal{Q} . Si descriva in pseudocodice un algoritmo che semidecide $\mathcal{P} \cup \mathcal{Q}$.

```
input x  \begin{array}{l} k = 0 \\ \text{while(true)} \\ \text{if } (\mathcal{A}^k_{\mathcal{P}}(\mathbf{x}) \text{==} 1) \ || \ \mathcal{A}^k_{\mathcal{Q}}(\mathbf{x}) \text{==} 1) \ \text{return 1} \\ k++ \end{array}
```