AARHUS SCHOOL OF ENGINEERING

ELECTRONIC ENGINEERING E4PRJ

Detaljeret Hardware Design

Author:
Nicolai GLUD
Johnny KRISTENSEN
Rasmus LUND-JENSEN
Mick HOLMARK
Jacob ROESEN

4. december 2012

Indholdsfortegnelse

Kapite	l 1 Indledning	3
	1.0.1 Formål	3
	1.0.2 Reference dokumentation	
Kapite	l 2 RS232	4
Kapite	1 3 Strømforsyning	5
3.1	Overordnet design	5
Kapite	I 4 VBTE	6
4.1	Overordnet design	6
	4.1.1 Blokke	6
4.2	Nedbrydning af blokke	8
	4.2.1 PSoC5	8
	4.2.2 Transmitter kreds	10
Kapite	1 5 SM	11
5.1	Overordnet design	11

Indledning

Dette dokument beskriver det detaljerede HW-design for BROS, som er fastlagt ud fra dokumenterne kravspecifikation og systemarkitektur.

1.0.1 Formål

Formålet med dokumentet er:

- At fastlægge systemets detaljerede hardwarestruktur ud fra kravene specificeret i kravsspecifikationen. Derudover beskrivelsen af hardwarekomponenterne og deres grænseflader beskrevet i systemarkitektur-dokumentet.
- At fastlægge systemets hardwareblokke og deres indbyrdes interaktioner.
- At beskrive de enkelte hardwareblokkes funktion og opbygning.

1.0.2 Reference dokumentation

- Kravspecifikation for projektet.
- Systemarkitektur-dokument.

RS232 2

 $\det \, \operatorname{er} \, \operatorname{en} \, \operatorname{hest} \, \det \, \operatorname{bruger} \, \operatorname{rs}232$

Strømforsyning 3

Strømforsyningen er opbygget som en uniserval forsyning der levere 12V 1A og / eller 5V 0.5A. Strømforsyningen bruges af delmodulerne: SM og VBTE

3.1 Overordnet design

vbte 4

Følgende afsnit beskriver VBTE'ens hardware i de enkelte blokke, grænsefladerne derimellem samt funktionen af blokkene. Derudover er der implementeret et testdisplay samt mulighed for manuelt at indstille I2C adressen. Disse er kun ment til test og er derfor ikke dokumenteret.

4.1 Overordnet design

Nedenfor ses det overordnede hardware blokdiagram. Herefter følger en beskrivelse af de forskellige blokke samt signaler.

Figur 4.1. Overordnet blokdiagram for VBTE hardware

4.1.1 Blokke

Nedenfor beskrives de enkelte blokke illustreret på Figur 4.1

PSoC5

PSoC'en er den centrale del af VBTE'en og står for styringen af hele VBTE'en. Den består af:

- MicroController
- PGA
- Mixer
- Timer

- Clocks
- I2C
- Delta-Sigma ADC
- Kontrolregister

PSoC'en er et færdigkøbt produkt og for detaljer om de enkelte blokke heri henvises der til databladet for PSoC5.

DC-DC powersuply 5V

Se powersuply afsnittet.

DC-DC powersuply 12V

Se powersuply afsnittet.

Transmitterkreds

Transmitterkredsen består af en MOSFET samt en keramisk ultralyds transmitter(Model: 400ST). Kredsen bliver drevet af 12V powersuply. 1

Reciverkreds

Recierkredsen består af en keramisk ultralyds reciver(Model: 400SR).

Ventilkreds

Ventilkredsen består af en MOSFET samt en ventil(Model: EV210A-1.2 og EV210A-4.5)

 $^{^1\}mathsf{FiXme}$ Note: Skal ligge i opbygningen af blokken i stedet for her

BROS 4. VBTE

4.2 Nedbrydning af blokke

Nedenfor følger nedbrydningen af de enkelte blokke med henblik på at designe de enkelte dele til systemet. Nedbrydningen sker for at gøre designet nemmere og mere overskueligt.

4.2.1 PSoC5

På Figur 4.2 ses HW-designet internt på PSoC'en. De enkelte blokke bliver beskrevet efterfølgende.

Figur 4.2. PSoC5 blokdiagram

Signalbeskrivelser:

For signalbeskrivelser se tabel 4.1. ²

²FiXme Note: OPDATER TABELLEN!!!!

Signal navn	Type	Spænding	Beskrivelse							
Receiver_in	Analog (AC =	Ligger fra ca	Spænding genereret i ultra-							
	40kHz)	0.01V til 0.3V	lydsreceiveren.							
Transmitter_out	Analogt (AC =	0V til 5V	Signal der skal styre ultra-							
	40kHz)		lydstransmitteren							
Vent_1	Digitalt	0V til 5V	Signal der skal styre ven-							
			tilen til at lukke vand ind							
			med.							
Vent_2	Digitalt	0V til 5V	Signal der skal styre ven-							
			tilen til at lukke vand ud							
			med.							
SDA	Digitalt	0V til 5V	Et digitalt signal mellem							
			VBTE og SM hvor I2C							
			data læses fra.							
SCL	Digitalt	0V til 5V	Digitalt clocksignal til I2C.							
Add_set	Digitalt	0V til 5V	Digitalt signal til at sætte							
			I2C adressen.							
Add_LSB	Digitalt	0V til 5V	Digitalt signal til at sætte							
			LSB i I2C adressen.							
Add_LSB+1	Digitalt	0V til 5V	Digitalt signal til at sætte							
			LSB i I2C adressen.							

Tabel 4.1. Tabel over signaler i PSoC blokken

Blokbeskrivelser:

Timer

Timeren skal holde øje med tiden. Dette skal ske ved at timeren skal køre hele tiden. Der bliver læst timerværdien når et burst bliver sendt og når et burst bliver modtaget. Timeren skal derfor have en forholdsvis hurtig clock for at kunne gøre afstandsmålingen hurtig nok.

I2C kreds

I2C kredsen skal stå for I2C interfacet mellem SM og KI. I2C protokollen kører 5V og med pull-up modstande. Denne del håndteres dog på SM. I2C'en benytter standard I2C protokol, og for yderligere info om data henvises der til *Systemarkitektur/protokoller/I2C*.

Receiver Driver

Receiver driveren modtager signalet fra ultralydsrecieveren. Signalet skal, når det modtages, løftes op til 2.5V for at det kan anvendes på PSoC'en samt forstærkes. Det er vigtigt at signalet bliver tydeligt nok til at man kan være sikker på at man har modtaget en detektion.

BROS 4. VBTE

Transmitter Driver

Det er vigtigt ved transmitteren at frekvensen ligger ret præcist da den dæmper rigtigt meget ikke ret langt væk fra 40kHz. For at timingen skal virke skal der også laves så der kan stoppes når der er sendt 10 perioder.

Ventil Driver

Ventil driveren er den mest simple driver. Denne skal blot bære et digitalt signal til ON og OFF på hhv. ventilen til at lukke vand ind og ventilen til at lukke vand ud.

4.2.2 Transmitter kreds

På figuren 4.3 ses nedbrydningen af Transmitter kreds-blokken. De enkelte blokke i denne kreds beskrives efterfølgende.

Figur 4.3. På figuren ses transmitter blokken nedbrudt

Signalbeskrivelser

Signalerne internt i transmitter kredsen ses i tabel 4.2

Signal navn	Type	Spænding	Beskrivelse
Trans_kontrol	Digitalt	0V - 5V	Modtages fra PSoC'en og
			skal omsættes til en stør-
			re spænding over ultralyd-
			stransmitteren.
Trans_out	Analogt (lyd)	120dB	Dette signal er lyden fra
			ultralydstransmitteren der
			sendes mod vandet og re-
			flekteres tilbage til receive-
			ren.
12V forsyning	Analogt DC	12V±0.1V	12V forsyning der leveres
			for powersupplyen beskre-
			vet under powersupply.
GND	Ground	0V	Ground i systemet

Tabel 4.2. Tabel over signaler i Transmitterblokken

SM 5

Følgende afsnit beskriver SM'ens hardware i de enkelte blokke, grænsefladerne derimellem samt funktionen af blokkene.

5.1 Overordnet design

Nedenfor ses det overordnede hardware blokdiagram. Herefter følger en beskrivelse af de forskellige blokke samt signaler.

BROS 5. SM

\mathbf{R}	6 1	++	മി	احا	ρr
11			t i		

Note:	Skal l	igge i	opby	gnin	gen	af	blok	keı	ı i	stee	det	for	r he	er.							7
Note:	OPD	ATER	ТАЕ	3ELI	ΈN	!!!!															8