CH 2 — Sequence and Limits

Luke Lu • 2025-09-17

Triangle Inequality

$$|x - y| \le |x - z| + |z - y|$$

for $x, y, z \in \mathbb{R}$

Idea: the straight-line distance is shortest.

Without loss of generality assume $x \leq y$; swapping x, y preserves the statement.

Number-line proof by cases:

- Case $1 \ z \le x \le y$: $|x y| \le |z y| \le |x z| + |z y|$
- Case $2 x \le z \le y$: |x y| = |x z| + |z y|
- Case 3 $x \le y \le z$: $|x y| \le |x z| + |z y|$

Triangle Inequality 2

For all $a, b \in \mathbb{R}$

$$|a+b| \le |a| + |b|$$

Proof:

apply the triangle inequality to x = a, y = -b, z = 0.

Quick check

Is
$$|a-b| \leq |a| - |b|$$
 for all a, b ?

No

Example:

$$a = 10, b = -9$$
 gives $|10 - (-9)| = 19$, while $|10| - |-9| = 1$

Hence this statement is false.

Interval translations

1.
$$|x-a| < \delta \Rightarrow x \in (a-\delta, a+\delta)$$

2.
$$|x-a| \le \delta \Rightarrow x \in [a-\delta, a+\delta]$$

3.
$$0 \le |x-a| \le \delta \Rightarrow x \in (a-\delta,a) \cup (a,a+\delta)$$

Practice

1) Solve
$$|2x - 5| < 3$$

$$-3 < 2x - 5 < 3 \Rightarrow 1 < x < 4$$

Answer: $x \in (1,4)$

2) Solve
$$2 < |x+7| \le 3$$

Split into
$$|x+7| > 2$$
 and $|x+7| \le 3$

Answer:
$$x \in [-10, -9) \cup (-5, -4]$$

3) Solve
$$\frac{|x+2|}{|x-2|} > 5$$

Consider regions $(-\infty, -2)$, (-2, 2), $(2, \infty)$ and track signs of x+2 and x-2

Answer: $x \in (\frac{4}{3}, 2) \cup (2, 3)$

Infinite Sequences

A sequence is an ordered list $a_1, a_2, a_3, ...$; write $\{a_n\}_{n=1}^{\infty}$

A subsequence chooses indices $n_1 < n_2 < \ldots$, yielding a_{n_1}, a_{n_2}, \ldots

The tail with cutoff k is $a_k, a_{k+1}, a_{k+2}, \dots$

Convergence (definition)

IMPORTANT

We say $\lim_{n\to\infty}a_n=L$ if for every $\varepsilon>0$ there exists N such that $n>N\Rightarrow |a_n-L|<\varepsilon$

Examples

1) Show
$$\lim_{n\to\infty} \frac{1}{\sqrt[3]{n}} = 0$$

Choose
$$N = \frac{1}{\varepsilon^3}$$

Then
$$n>N\Rightarrow |\frac{1}{\sqrt[3]{n}}|<\varepsilon$$

2) Show
$$\lim_{n\to\infty} \frac{3n^2+2n}{4n^2+n+1} = \frac{3}{4}$$

Estimate |
$$\frac{3n^2+2n}{4n^2+n+1}-\frac{3}{4}$$
 | $\leq \frac{5}{16n+4}$

Pick
$$N>\frac{5}{16\varepsilon}-\frac{1}{4}$$

Theorem (Equivalent definitions of the limit of a sequence)

IMPORTANT

For a sequence (a_n) and a number L, the following are equivalent

- 1) $\lim_{n\to\infty} a_n = L$
- 2) For every $\varepsilon>0$, the interval $(L-\varepsilon,L+\varepsilon)$ contains a tail of $\{a_n\}$
- 3) For every $\varepsilon>0$, only finitely many n satisfy $|a_n-L|\geq \varepsilon$
- 4) Every interval (a,b) containing L contains a tail of $\{a_n\}$
- 5) Given any interval (a,b) containing L, only finitely many terms of $\{a_n\}$ lie outside (a,b)

Example 1

Show
$$\lim_{n\to\infty} \frac{1}{\sqrt[3]{n}} = 0$$

Side work:

$$\mid \frac{1}{\sqrt[3]{n}}\mid <\varepsilon \Rightarrow \frac{1}{\sqrt[3]{n}}<\varepsilon \Rightarrow \sqrt[3]{n}>\frac{1}{\varepsilon} \Rightarrow n>\frac{1}{\varepsilon^3}$$

Proof

Let
$$\varepsilon>0$$
 and choose $N=\frac{1}{\varepsilon^3}$

If
$$n>N$$
 then $\mid \frac{1}{\sqrt[3]{n}}\mid <\frac{1}{\sqrt[3]{N}}=\frac{1}{\sqrt[3]{\frac{1}{\varepsilon^3}}}=\varepsilon$

Example 2

Prove
$$\lim_{n \to \infty} \frac{3n^2 + 2n}{4n^2 + n + 1} = \frac{3}{4}$$

Rough work

$$\mid \frac{3n^2 + 2n}{4n^2 + n + 1} - \frac{3}{4} \mid = \frac{|5n - 3|}{16n^2 + 4n + 4} \le \frac{5n}{16n^2 + 4n} = \frac{5}{16n + 4}$$

Proof

Given
$$\varepsilon > 0$$
, pick $N = \frac{5}{16\varepsilon} - \frac{1}{4}$

Then for n > N

$$\mid \frac{3n^2 + 2n}{4n^2 + n + 1} - \frac{3}{4} \mid < \frac{5}{16n + 4} \le \frac{5}{16N + 4} < \varepsilon$$

Limits

Thinking quesiton:

Can a sequence converge to two different limits $L \neq M$?

No, we are saying then $\varepsilon < \frac{|L-M|}{2}$

If $a_n \to L$ a tail of the sequence lies in $(L - \varepsilon, L + \varepsilon)$ so only finite many terms can lie in the interval $(M - \varepsilon, M + \varepsilon)$, that is $a_n \nrightarrow M$

IMPORTANT

Theorem (Uniqueness of Limits):

Let $\{a_n\}$ be a sequence. If $\{a_n\}$ has limit L, then the value L is unique.

We say that a sequence **diverges to \infty** if for every m>0, there exists $N\in\mathbb{N}$ such that for all $n>N, a_n>m$.

We say that a sequence **diverges to** ∞ if any interval of the form (m, ε) for some m > 0 contains a tail of $\{a_n\}$. We write that $\lim_{n\to\infty} a_n = \infty$

We say that a sequence **diverges to** $-\infty$ if for every m<0, there exists $N\in\mathbb{N}$ such that for all $n>N, a_n< m$

We say that a sequence **diverges to** $-\infty$ if any interval of the form (m,ε) for some m<0 contains a tail of $\{a_n\}$. We write that $\lim_{n\to\infty}a_n=-\infty$

Thinking questions:

- 1. If a seuquce consists of non-negative terms, is the limit non-negative? ANS: YES Suppose not, then $a_n \to L$, $a_n > 0$, $\forall n$. Consider $\varepsilon < \frac{|L|}{2}$. Then $(L \varepsilon, L + \varepsilon)$ only contains negative numbers, so it can't include a tail of a_n , contradiction.
- 2. If a sequence consists of positive terms, is the limit positive? ANS: NO, consider the sequence $\left\{\frac{1}{n}\right\}$, $\lim_{n\to\infty}\frac{1}{n}=0$

Examples: Prove that $\lim_{n\to\infty}$ Let m>0 and consider the interval m,∞ . If $n>\sqrt[3]{m}$ then $n^3>m$ and ao $n^3\in(m,\infty)$. So choose $k=\left\lceil \sqrt[3]{m}\right\rceil+1$, then the tails lies in (m,∞)

Limit Laws

IMPORTANT

Let $\{a_n\}, \{b_n\}$ be sequences with $\lim_{n\to\infty} a_n = a$, $\lim_{n\to\infty} b_n = b$ for some $a,b\in\mathbb{R}$ then:

- 1. For any $c \in \mathbb{R}$, if $a_n = c$ for all n then c = a
- 2. For any $c \in \mathbb{R}$, if $\lim_{n \to \infty} ca_n = ca$
- 3. $\lim_{n\to\infty} (a_n + b_n) = a + b$
- 4. $\lim_{n\to\infty} a_n b_n = ab$
- 5. $\lim_{n\to\infty} \frac{a_n}{b_n} = \frac{a}{b}$ if $b \neq 0$
- 6. If $a_n \geq 0$ for all n and $\alpha > 0$, then $\lim_{n \to \infty} a_n^{\alpha} = a^{\alpha}$
- 7. For any $k \in \mathbb{N}$, $\lim_{n \to \infty} a_{n+k} = a$

Prove the Sum of Sequences Rule

Proof

$$\begin{split} &a_n \to a, b_n \to b \\ &\forall \varepsilon > 0, \exists M, N \in \mathbb{R}, \forall n > M, n > N, |a_n - a| < \varepsilon, |b_n - b| < \varepsilon \\ &|(a_n + b_n) - (a + b)| = |(a_n - a) + (b_n - b)| \leq |a_n - a| + |b_n + b| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \end{split}$$

IMPORTANT

Tandem Convergence Theorem:

If
$$\lim_{n \to \infty} \frac{a_n}{b_n}$$
 exists and $\lim_{n \to \infty} b_n = 0$, then $\lim_{n \to \infty} a_n = 0$

Examples:

Evaluate the following limits

1)
$$\lim_{n\to\infty} \frac{3n^2 + 2n}{4n^2 + n + 1} = \lim_{n\to\infty} \frac{n^2(3 + \frac{2}{n})}{n^2(4 + \frac{1}{n} + \frac{1}{n^2})} = \lim_{n\to\infty} \frac{3 + \frac{2}{n}}{4 + \frac{1}{n} + \frac{1}{n^2}} = \frac{\lim_{n\to\infty} 3 + \lim_{n\to\infty} \frac{2}{n}}{\lim_{n\to\infty} 4 + \lim_{n\to\infty} \frac{1}{n} + \lim_{n\to\infty} \frac{1}{n^2}} = \frac{3 + 0}{4 + 0 + 0} = \frac{3}{4}$$

2)
$$\lim_{n \to \infty} \sqrt{n^2 + n} - n$$
 , We have indeterminate form $[\infty - \infty]$

$$=\lim_{n\to\infty}\sqrt{n^2+n}-n\cdot\frac{\sqrt{n^2+n}+n}{\sqrt{n^2+n}+n}=\lim_{n\to\infty}\frac{n^2+n-n^2}{\sqrt{n^2+n}+n}=\lim_{n\to\infty}\frac{n}{n\left(\sqrt{1+\frac{1}{n}}+1\right)}=\lim_{n\to\infty}\frac{1}{\sqrt{1+\frac{1}{n}}+1}=\frac{1}{\sqrt{1+\lim_{n\to\infty}\frac{1}{n}}+1}=\frac{1}{1+0+1}=\frac{1}{2}$$

3) Let the sequence $\{a_n\}$ be defined recursively by $a_1=16$ and for all n>2, $a_n=\frac{1}{2}\Big(a_{n-1}+\frac{260}{a_{n-1}}\Big)$. Given that $\lim_{n\to\infty}a_n$ exists, compute is value

$$\begin{split} &\lim_{n\to\infty}a_n=\lim_{n\to\infty}\frac{1}{2}\Big(a_{n-1}+\frac{260}{a_{n-1}}\Big)=\frac{1}{2}\Big(\lim_{n\to\infty}a_{n-1}+\frac{260}{\lim_{n\to\infty}}a_{n-1}\Big)\\ &=\frac{1}{2}\Big(\lim_{n\to\infty}a_n+\frac{260}{\lim_{n\to\infty}}a_n\Big) \end{split}$$

Let
$$L=\lim_{n o\infty}a_n$$
, then $L=\frac{1}{2}\big(L+\frac{260}{L}\big)\Leftrightarrow L^2=\frac{1}{2}L^2+260\Leftrightarrow L\pm\sqrt{260}$

Since a_n consists of non-negative terms, thus its limit converges to a value that is non-negative. Thus, $\lim_{n\to\infty}a_n=\sqrt{260}$

IMPORTANT

Squeeze Theorem:

If $a_n \geq b_n \geq c_n$ for all $n \in \mathbb{N}$ with $n \geq M$ for some $M \in \mathbb{R}$ and $\lim_{n \to \infty} a_n = L = \lim_{n \to \infty} c_n$ for some $L \in \mathbb{R}$, then $\lim_{n \to \infty} b_n = L$

Proof

Since
$$\lim_{n \to \infty} a_n = L = \lim_{n \to \infty} c_n$$
 for any $\varepsilon > 0$, $\exists N_a, N_c \in \mathbb{R} : n > N_a, n > N_c$. $|a_n - L| < \varepsilon$, $|c_n - L| < \varepsilon$. Let $N = \max(N_a, N_c)$ but $a_n \ge b_n \ge c_n$, so $a_n \in (L - \varepsilon, L + \varepsilon), b_n \in (L - \varepsilon, L + \varepsilon)$, $c_n \in (L - \varepsilon, L + \varepsilon)$ $\therefore \lim_{n \to \infty} b_n = L$

$$\begin{array}{l} \text{4) } \lim_{n\to\infty}\frac{\sin(n)}{n} \\ -1\leq \sin(n)\leq 1 \text{ for any } n\in\mathbb{N} \text{, so } -\frac{1}{n}\leq \frac{\sin(n)}{n}\leq \frac{1}{n}, \forall n\in\mathbb{N} \\ \lim_{n\to\infty}-\frac{1}{n}=\lim_{n\to\infty}\frac{1}{n}=0 \\ \text{By Squeeze Theorem, } \lim_{n\to\infty}\frac{\sin(n)}{n}=0 \end{array}$$

5)
$$\lim_{n\to\infty} \frac{4+(-1)^n}{n^3+n^2-1}$$

$$\begin{split} \frac{3}{n^3+n^2-1} & \leq \frac{4+(-1)^n}{n^3+n^2-1} \leq \frac{5}{n^3+n^2-1} \\ \lim_{n \to \infty} \frac{3}{n^3+n^2-1} & = \lim_{n \to \infty} \frac{5}{n^3+n^2-1} = 0 \end{split}$$

By Squeeze Theorem,
$$\lim_{n\to\infty}\frac{4+(-1)^n}{n^3+n^2-1}=0$$

$$\lim_{n\to\infty}\frac{4+(-1)^n+(-1)^{n^2+n+2}}{n^3+n^2+100}$$
 can be solved similarly