

A64FX®

Microarchitecture Manual

日本語

Copyright© 2020 Fujitsu Limited, 4-1-1 Kamikodanaka, Nakahara-ku, Kawasaki, 211-8588, Japan. All rights reserved.

This product and related documentation are protected by copyright and distributed under licenses restricting their use, copying, distribution, and decompilation. No part of this product or related documentation may be reproduced in any form by any means without prior written authorization of Fujitsu Limited and its licensors, if any.

The product(s) described in this book may be protected by one or more U.S. patents, foreign patents, or pending applications.

improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time.

TRADEMARKS

Fujitsu and the Fujitsu logo are trademarks of Fujitsu Limited.

This publication is provided "as is" without warranty of any kind, either express or implied, including, but not limited to, the implied warranties of merchantability, fitness for a particular purpose, or noninfringement.

This publication could include technical inaccuracies or typographical errors. Changes are periodically added to the information herein; these changes will be incorporated in new editions of the publication. Fujitsu Limited may make

改版履歴

変更日	版数	変更内容
2020/02/28	1.0	First Release.
2020/04/28	1.1	Correct typos.
2020/07/31	1.2	Update the following chapters and sections: 6.5.1. Merging predication 7.8.1. Multiple Structures 命令 7.8.2. Gather load / Scatter store 命令 9.6. Zero fill 16. 命令属性/レイテンシ一覧: Extra μOP およびレイテンシの表記方法について
2020/10/31	1.3	Update and modify the following chapter: ・16. 命令属性/レイテンシ一覧: ARMv8 Base & SVE instructions
2021/03/31	1.4	Update and modify the following chapter and section:
2021/06/30	1.5	Update and modify the following sections: • 7.8.2. Gather load / Scatter store 命令 • 11.5.2. Stream detect mode の動作 • 12.2. セクタ・キャッシュの動作
2021/09/30	1.6	Update and modify the following section: 14.1. Instruction Mix Change the following sections: 9.2.2. L2 キャッシュの構成 9.5. Move-In Bypass 10.2. メモリ・アクセス性能
2022/05/31	1.7	Update and modify the following sections: ・2.7. オペランド・バイパス ・14. Performance Monitoring Events ・16. 命令属性/レイテンシ一覧: SVE instructions
2022/07/31	1.8	Update and modify the following section: ・16. 命令属性/レイテンシ一覧: SVE instructions

Release Notes

Fixes

- In Table 16-3, the latency description of FADDA is updated to correct the imprecise description.
- In Table 16-3, the latency description of FADDV is updated to correct the imprecise description.
- In Table 16-3, the pipeline description of FADDV is updated to correct the imprecise description.

目次

1.	はじ	めに	.13
	1.1.	A64FX プロセッサの概要	13
	1.2.	A64FX プロセッサの諸元	14
	1.3.	A64FX プロセッサのブロック	
2.	アウ	ト・オブ・オーダ・アーキテクチャ	.16
	2.1.	アーキテクチャ概要	16
	2.2.	マイクロ・オペレーション命令	17
	2.3.	オペレーション・フロー	18
	2.4.	アウト・オブ・オーダ・リソース	18
	2.5.	パイプライン・ステージ	20
	2.6.	命令実行レイテンシ	23
	2.7.	オペランド・バイパス	23
	2.8.	リソースの割り当てと解放	27
	2.9.	レイテンシ切り替え	27
3.	命令	フェッチ	.29
	3.1.	命令フェッチ・ステージの概略	29
	3.2.	分岐予測機構	30
		3.2.1. Small Taken Chain Predictor (S-TCP)	
		3.2.2. Loop Prediction Table (LPT)	
		3.2.4. Branch Target Buffer (BTB)	32
	2.2	3.2.5. Return Address Stack (RAS)	
	3.3.	分岐予測の組み合わせ	
	3.4.	ショート・ループ検出	33
4.	命令	デコードと命令コミット	.34
	4.1.	マイクロ・オペレーション命令	
	4.2.	マルチ・オペレーション	
	4.3.	MOVPRFX 命令の Pack 処理	
	4.4.	命令デコード	
		4.4.1. プリデコード	
		4.4.2. デコード	39
	4.5.	命令コミット	
	4.6	4.5.1. No Exception Mode	
	4.6.	パイプライン・フラッシュ	
	4.7.	特殊な命令制御	
5.		ディスパッチ	
	5.1.	リザベーション・ステーション	
	5.2.	命令のディスパッチ属性	
	5.3.	命令の依存関係の検出	44

	5.4.	命令ディ	ィスパッチ動作	45
6.	命令	実行		48
	6.1.	命令発行	Ţ	48
	6.2.	実行パイ	イプライン	48
	6.3.	ブロッキ	キング制御	50
	6.4.	物理レシ	ブスタ・ファイル	50
	6.5.	特殊な命	6令制御	51
		6.5.1.	Merging Predication	51
		6.5.2.	レジスタ間転送	51
		6.5.3.	非正規化数の演算	52
7.	メモ	リ・ア	クセス	53
	7.1.	ロード/	⁄ストア・パイプラインの概要	53
	7.2.	ロード/	[/] ストアの基本処理	55
		7.2.1.	ロード命令	56
		7.2.2.	ストア命令	56
	7.3.		rt / Store Port	
		7.3.1.	Virtual Fetch Port / Virtual Store Port	
	7.4.	7.3.2.	Fetch Port / Store Port の割り当て数	
	7. 4 . 7.5.		/ ストアのアウト・オブ・オーダ実行	
	7.5.	7.5.1.	Store Fetch Bypass	
		7.5.2.	アウト・オブ・オーダ実行の制約	
	7.6.	パイプラ	ライン競合	63
	7.7.		/ュ・ライン・クロス	
	7.8.		コード/ストア命令の動作	
		7.8.1.	Multiple Structures 命令	
		7.8.2.	Gather load / Scatter store 命令	
Q	アド	レマ変	換機構	72
0.	8.1.		on Lookaside Buffer (TLB)	
	8.2.		on table cache	
0	4.4	w 32 =	アーキテクチャ	72
9.				
	9.1.		ノュ、メモリ階層の構造	
	9.2.		ノュの基本構成	
		9.2.1.	L1 キャッシュの構成	
		9.2.2.	L2 キャッシュの構成	
	9.3.		ンュ・コヒーレンス・プロトコル	
	9.4. 9.5.		/ Move-Out	
	9.6.		D)puss	
10.	Men	iory Ac	ccess Controller	79
. V•	10.1.	•	Access Controller の構成	
		-	・アクセス性能	
11.	デー	タ・プ	[°] リフェッチ	80
	11.1.	プリフェ	ェッチの動作概要	80
	11.2.	プリフェ	ェッチ・アクセスのタイプ	82

	11.3.	プリフェッチ・アクセスの信頼度	82
	11.4.	ソフトウェア・プリフェッチ	83
		11.4.1. プリフェッチ命令の分類	83
		11.4.2. ソフトウェア・プリフェッチの属性	84
	11.5.	ハードウェア・プリフェッチ	84
		11.5.1. ハードウェア・プリフェッチのための資源	84
		11.5.2. Stream detect mode の動作	85
		11.5.3. Prefetch injection mode の動作	86
		11.5.4. ハードウェア・プリフェッチ・アシスト機能	87
		11.5.5. ハードウェア・プリフェッチのキャッシュ階層属性	88
	11.6.	Prefetch injection mode の使用例	88
12.	セク	タ・キャッシュ	90
	12.1.	セクタ・キャッシュの概要	90
	12.2.	セクタ・キャッシュの動作	90
13.	ハー	・ドウェア・バリア	92
14.	Perf	formance Monitor Events	93
	14.1.	Instruction Mix	
	14.2.	FLOPS	
	14.3. 14.4.	Hardware Resource Monitor Events	
1 =		,	
15.	リン	ース一覧	101
16.	命令	・属性/レイテンシ一覧	103
	16.1.	THE TO BUSE MELICIPATION	
	16.2.	ARMv8 SIMD&FP instructions	
	16.3.	SVE instructions	

図一覧

Figure 1-1	Main Functional Blocks on A64FX Processor Chip	15
Figure 2-1	Overall Illustration of Stages	
Figure 2-2	Integer Operation Pipeline Stages	21
Figure 2-3	SIMD&FP and SVE Operation Pipeline Stages	21
Figure 2-4	Predicate Operation Pipeline Stages	21
Figure 2-5	Branch Pipeline Stages	21
Figure 2-6	Load/Store Pipeline Stages	22
Figure 2-7	Example of Conflict Between C Stages of Instructions with Different Latencies	27
Figure 2-8	Example of Latency Changing	28
Figure 3-1	Instruction Fetch Stage	29
Figure 3-2	Bubbles Due to Instructions Following Taken Branch Instruction	
Figure 3-3	Chain Structure Consisting of Multiple Taken Branch Instructions	31
Figure 3-4	Histories of Conditional Branches and Weights	
Figure 3-5	Prediction Equation for Conditional Branch Instruction B ₀	32
Figure 3-6	Outline of Branch Target Buffer (BTB)	32
Figure 4-1	Example of Efficient Packing with MOVPRFX	35
Figure 4-2	Example of Inefficient Packing Due to Instruction Order	36
Figure 4-3	Instruction Decode Stage	36
Figure 4-4	Restriction on Taken Branch Instruction When Splitting μOP Instructions	38
Figure 4-5	Restriction Related to Three or More μOP Splits Resulting from μOP Instruction Splitting	38
Figure 4-6	Restriction on μOP Instruction Splitting for Sequential Decode	39
Figure 4-7	CSE Structure	
Figure 5-1	Example of Two Instructions That Have Dependency in Same Decode Window	
Figure 5-2	Example of Two Instructions That Have Dependency Across Different Decode Windows	
Figure 5-3	Allocation Table Selection Rule for Instructions with RSX Attribute	
Figure 5-4	Allocation Table Selection Rule for Instructions with RSE or RSA Attribute	47
Figure 6-1	Outline of Execution Unit	
Figure 6-2	Connection Relationship Between Physical Register Files and Execution Pipelines	
Figure 6-3	Flow Time Chart of Transfer Instruction from General-Purpose Register to Floating-Point Register	
Figure 6-4	Flow Time Chart of Transfer Instruction from Floating-Point Register to General-Purpose Register	
Figure 7-1	Outline of Load/Store Unit	
Figure 7-2	Relationship Between VFP/VSP and RFP/RSP	
Figure 7-3	Store Data Write from SP to WB	
Figure 7-4	Example of active/inactive in ST1B (Contiguous)	
Figure 7-5	Illustration of Splitting LD3D (multiple structures) Instruction Flow	
Figure 7-6	Requests of Gather Instruction	
Figure 7-7	Requests of Scatter Instruction	
Figure 7-8	Effective Address Generation for Gather Instruction	
Figure 7-9	Summary of Elements for Gather Instruction	
Figure 9-1	L2 Caches and Memory Levels	
Figure 9-2	Connection Between L1 and L2 Caches.	
Figure 9-3	Basic Zero Fill Process	
0	Zero Fill Process When L1D Cache Contains Data	
Figure 11-1	Operation-Flows for Demand Access and Prefetch Access	
Figure 11-2	Hardware Prefetch Behavior in Stream Detect Mode	
Figure 11-3	Usage Example of Prefetch Injection Mode	
Figure 12-1	L1D/L2 Sector Cache	
Figure 12-2	Example of Sector Cache Capacity Adjustment (1)	
Figure 12-3	Example of Sector Cache Capacity Adjustment (2)	
Figure 13-1	Hardware Barrier Resources	
Figure 13-2	Sample Code for Synchronization Processing	92

表一覧

Table 1-1	A64FX Processor Specifications	
Table 1-2	Correspondence Between Processor Chip Block Markings and Functional Units	
Table 2-1	Out-of-Order Resources	
Table 2-2	Correspondence Between Pipeline Stage Symbols and Operations	20
Table 2-3	Execution Start and Completion Stages for Each Instruction in Each Pipeline	23
Table 2-4	Penalties for Operand Bypass Between µOP Instructions	24
Table 2-5	Penalties for Operand Bypass Between µOP Instructions (FTMAD Instruction)	26
Table 2-6	Out-of-Order Resource Allocation and Release Stages	
Table 2-7	Instructions Whose Latency Changed, and Their Latencies	28
Table 3-1	Branch Predictors of Branch Prediction Mechanism	30
Table 3-2	Relationship Between Predictors Used for Branch Prediction and Prediction Result Adoption Rankings	33
Table 4-1	Relation Between Instructions and Quantities of Allocated Resources	39
Table 4-2	FPCR Register When No Exception Mode Is Enabled	
Table 5-1	Number of Entries and Connected Execution Pipelines of Each RS	43
Table 5-2	Attributes of Instructions and Operation-Flows	
Table 5-3	Instructions That Require TOR	44
Table 5-4	Allocation Table for Instructions with RSX Attribute	
Table 5-5	Allocation Table for Instructions with Either RSE or RSA Attribute	
Table 6-1	Execution Pipelines	49
Table 7-1	Latencies of Load/Store Instructions	
Table 7-2	Data Length and Merge Function Availability for Each Instruction Managed by WB Entry	60
Table 7-3	SFB Availability for Each Combination of Load and Store Instructions	
Table 7-4	Specific Instructions of Each Group Shown in SFB Availability Table	
Table 7-5	ST0 Flow Conditions	
	Required Number of Flows for µOP Instructions Split from Architecture Instruction to Send to Load/Stor	re
	N. 1. C. ODI	
	Number of µOP Instructions and Number of Allocated FP/SP Entries for Each Gather/Scatter Instruction	
Table 8-1	TLB Specifications	
Table 8-2	Table Cache Specifications	
Table 9-1	Bus Throughput	
Table 9-2	L1 Cache Specifications	
Table 9-3	L2 Cache Specifications	
Table 9-4	Details of MESI Protocol	
Table 9-5	Quantity of Queue Resources at Each Cache Level	
Table 10-1	Specifications of HBM2 Supported by A64FX	/9
Table 10-2	Quantity of Scheduler Resources for HBM2	
Table 10-3	A64FX Memory Access Performance	
Table 11-1	Classifications and Mnemonics of Prefetch Instructions	
Table 11-2	Correspondence Between Prefetch Instruction Options, Cache Levels, and States	
Table 11-3	Correspondence Between pf_func[0] Bit and Software Prefetch Reliableness	
Table 11-4	Control Register Configuration Example	
Table 14-1	Performance Events for Instruction Mix	
Table 14-2	Formulas for Other (Instruction Mix)	
Table 14-3	Performance Events for FLOPS	
Table 14-4	Performance Events for Hardware Resource Monitoring	.96
Table 14-5	Method to Calculate Hardware Performance Indicators at Program Execution	
Table 14-6	Performance Events for Cycle Accounting	
Table 14-7	Formulas for Other (Cycle Accounting)	
Table 15-1	Out-of-Order Resources	
Table 15-2	Resources for Branch Misprediction Mechanism	
Table 15-3	Resources for Memory Management Unit	
Table 15-4	Resources for L1/L2 Cache	
Table 16-1	Instruction Attributes/Latency (ARMv8)	
Table 16-2 Table 16-3	Instruction Attributes/Latency (ARMv8 SIMD&FP)	
Table 16-3	Instruction Attributes/Latency (SVF)	129

Preface

本書は、A64FX プロセッサのマイクロ・アーキテクチャの解説、およびソフトウェア・チュ ーニングのための参考情報を提供することを目的としている。

本書の執筆においては以下の文書を参考にしている。これらの文書にて定義されている用語に ついては、特に注釈なしに使用している。

- A64FX 論理仕様書(2020年6月公開予定)
- ARM® Architecture Reference Manual (ARMv8, ARMv8.1, ARMv8.2, ARMv8.3)
- ARM® Architecture Reference Manual Supplement The Scalable Vector Extension

Typographical and Notational Conventions

本書における表現規則を以下にまとめる。

アセンブラ表記

アセンブラのシンタックスは ARM® Architecture Reference Manual (以下、ARM Manual) に準拠し、すべて Consolas かつ小文字で記述する。

命令表記

命令の表記は基本的に ARM Manual に準拠し、Times New Roman、かつ大文字で記述す る。ただし、命令属性/レイテンシ一覧表のみ Cambria で記述する。また、複数の命令を グループとして表現するために正規表現のような命令名の展開表現を導入する。

命令の展開表記は以下の通りとする。

アスタリスク 任意の文字列に展開される。長さ0の文字列を含む。

する。

[and] ブラケット []内の文字列のうち、いずれか1文字に展開される。[]内の-(ハイフン) は文字範囲を表し、範囲内の1文字に展開される。

カーリーブラケット {} 内の | (パイプ) で区切られた文字列のうち、いずれか1つ に展開される。| の前後に文字列がないときは Null 文字列を表現

命令の区分 (class) 表記

命令名のみで区別できない命令がある。例えば、ADD 命令には Base Instruction に属す る ADD (extended register)、ADD (immediate)、ADD (shifted register)、SIMD&FP に属する ADD (vector)、SVE に属する ADD (immediate)、ADD (vectors, predicated)、ADD (vectors, unpredicated)の 7 命令が存在する。これらの命令を表記する場合は ARM Manual に従って () で修飾する。また、Base Instructions に属する ADD 命令すべてを表す場合には ADD (base) のように区分名 (class) を用いて表記する。

Variant 表記

ハードウェアの振る舞いは、命令の動作のほかにデータ型にも影響される。特に、 SIMD&FP、SVE 命令には同一の命令でありながらも、データ型によってハードウェアの 動作やオペレーション数が大きく異なるものが存在する。そのため、必要に応じて Variant の修飾を付加する。Variant は以下に示すように命令表記の後方に - (ハイフン) を置き、 続けて記述する。Variant の表記は命令の区分によって異なるが、原則としてデータ型を表 すレジスタ表記としている。

例)

: ADD (immediate) - W Base instruction SIMD&FP instruction : FADD (scalar) - [HS]

FADD (vector) - {8B|16B}

SVE instruction : ADD (immediate) - [SD]

Terminology

命令 (Instruction)

ARMv8 Manual C6.2 章「Alphabetical list of A64 base instructions」、および SVE Manual 5 章「SVE Instruction Set」において定義されている個々の Instruction を指す。ARMv8 Manual と同様に命令の型 (form) の違いを () 表記にて区別する。命令の型の違いを区別 しない場合は、前述の命令区分表記に従って()を省略する、または区分名表記を用い る。また、μOP 命令と明示的に区別する必要がある場合にはアーキテクチャ命令と表現す

μOP 命令 (μOP instruction)

プロセッサによりデコードされた命令の形式を指す。基本的にプロセッサのアウト・オ ブ・オーダ実行エンジンでは、すべての操作を μOP 命令として取り扱う。

整数命令 (Integer instruction)

ARMv8 Manual にて A64 Base Instruction として定義される命令を指す。主に整数値を扱 うことから本書では整数命令と呼称する。

SIMD&FP 命令 (SIMD&FP instruction)

ARMv8 Manual にて A64 Advanced SIMD and Floating-point Instruction として定義される 命令を指す。

SVE 命令 (SVE instruction)

SVE Manual にて定義される命令を指す。

Variant

同一命令でレジスタ・サイズ、または要素あたりのデータ・サイズを複数指定できるこ との表現である。Variant は命令の区分ごとに指し示す意味が異なることに注意しなければ ならない。

整数命令には 32-bit variant と 64-bit variant があり、variant 表記ではそれぞれ W, X とす る。

SIMD&FP 命令にはレジスタ・サイズそのものを表すものと、要素あたりのデータ・サ イズを表すものがある。例えば、FADD (scalar) の Variant はレジスタ・サイズを示し、 FADD (vector) の Variant は要素あたりのデータ・サイズを示している。

SVE 命令では演算の要素あたりのデータ・サイズと、メモリ・アクセス・サイズをそれ ぞれ独立して指定できる。そのため、演算のデータ・サイズ variant を esize、メモリ・ア クセス・サイズを memsize として表現する。

整数命令と SIMD&FP 命令の esize と memsize の variant は基本的には一致しているが、 どちらか一方に言及する場合には esize、memsize を明記する。

Vector Length (VL)

SVE Manual にて定義されている Vector Length そのものを指す。本書では Vector Length は bit 数にて表現する。

ベクトル・データ長

SIMD&FP 命令と SVE 命令における有効レジスタ・サイズ、または、メモリ・アクセス のサイズの総称である。

Element 数

SIMD&FP 命令と SVE 命令におけるベクトル・データ長を esize、または memsize で除した数を指す。すなわち、ベクトル・データ内の要素数に相当する。

演算命令

命令の入力オペランドと出力オペランドが同一のレジスタ・ファイルに閉じている命令を指す。算術演算、論理演算、ビット演算の命令などが該当する。広義では MOV 命令などの転送命令も含む。ただし、本書では異なるレジスタ・ファイル間における転送命令は演算命令として扱わない。

ロード/ストア命令

メモリ空間からレジスタにデータを転送する命令をロード命令、レジスタからメモリ空間にデータを転送する命令をストア命令とする。

命令ディスパッチ

デコーダからリザベーション・ステーションにオペレーション・フローを割り当てる動作である。

命令発行

リザベーション・ステーションから実行パイプラインにオペレーション・フローを投入 することである。

実行完了

アーキテクチャ命令、 μ OP 命令、オペレーション・フローの実行が完了した状態を示す。投機状態の完了を含む。

命令コミット

アーキテクチャ命令が実行完了し、かつ投機状態を確定しプロセッサのアーキテクチャ・ステイトを更新することである。本書では実行完了と明確に区別して表現する。

オペレーション・フロー、オペレーション・リクエスト

μΟΡ 命令を実行するためのパイプラインの動作そのものを指す。プロセッサはオペレーション・フローを組み合わせて μΟΡ 命令を実行する。ハードウェア資源を消費する最小限の単位である。また、μΟΡ 命令のように単にアーキテクチャ命令から派生した物を表すだけでなく、キャッシュ・アクセスやメモリ・アクセスの処理単位も表す。オペレーション・フローとオペレーション・リクエストの明確な区別はないが、フローの生成元と実行先に着目するときに、オペレーション・リクエストと表現する場合がある。なお、これらはフロー、リクエストに省略表記される場合がある。

はじめに 1

A64FX プロセッサの概要 1.1.

A64FX プロセッサ (以下、A64FX と記述する) は High Performance Computing (HPC) 向けに設 計され、ARMv8-A architecture profile、および Scalable Vector Extension for ARMv8-A に準拠したア ウト・オブ・オーダ実行型スーパースカラ・プロセッサである。プロセッサは冗長コアを含む 52 個のプロセッサ・コア、HBM2 に対応したメモリ・コントローラ、Tofu-D インターコネクト のコントローラ、PCI-Express Gen3 対応ルート・コンプレックスを集積している。

A64FX は HPC 向けにいくつかの特徴的なアーキテクチャを採用している。

Scalable Vector Extension

A64FX は ARM 命令セットアーキテクチャのベクトル拡張である Scalable Vector Extension (SVE) をサポートする。SVE は命令セットとして 2,048 bits までの Vector Length が定義されてい る一方で、ハードウェアに実装する Vector Length は 128 bits の倍数から選択できることを特徴と する。A64FX では 128 / 256 / 512 bits の Vector Length をサポートする。

Core Memory Group

A64FX はその内に 13 個のプロセッサ・コア、独立した L2 キャッシュ、独立したメモリ・コ ントローラからなる Core Memory Group (CMG) と呼ばれるグループを持つ。プロセッサは4つ の CMG を持ち、CMG 間は Non-Uniform Memory Access (NUMA) 構成である。物理メモリ空間 はそれぞれ分割されており、キャッシュ・コヒーレンスはハードウェアによって暗黙に保証され る。

セクタ・キャッシュ

キャッシュを way 単位で仮想的に分割し、命令レベルで使用できる領域を指定できる機能で ある。プログラムはタグド・アドレスを使用することで領域を指定できる。L1 キャッシュは 4 セクタ、L2 キャッシュは 2 セクタを 2 グループ持っている。

ハードウェア・バリア

ソフトウェアのプロセス、またはスレッド間の同期をハードウェアでサポートする機能であ る。この機能により、メモリ・アクセスを行わずに同期処理ができる。

ハードウェア・プリフェッチ・アシスト

ハードウェア・プリフェッチの振る舞いをプログラムから制御できる機能である。プログラム はシステムレジスタとタグド・アドレスを用いてハードウェアのプリフェッチ機構に情報を与え ることができる。

High Bandwidth Memory

メインメモリに High Bandwidth Memory Gen2 (HBM2) を採用し、非常に高いメモリ帯域を提供している。

1.2. A64FX プロセッサの諸元

A64FX プロセッサの主な諸元を Table 1-1 に示す。

Table 1-1 A64FX Processor Specifications

	Specification
Number of processor cores	52 (13 cores / CMG)
Number of CMGs	4
L1I cache size	64 KiB / 4-way
L1D cache size	64 KiB / 4-way
L2 cache size	32 MiB / 16-way (8 MiB / CMG)
Cache-line size	256 bytes
Memory controller	4 (1 MAC / CMG)
Interconnect	Tofu-D
I/O	PCI-Express Gen3 16 Lanes
Instruction set architecture	ARMv8-A, ARMv8.1, ARMv8.2, ARMv8.3 (*1), SVE
SVE-implemented Vector Length	128 / 256 / 512 bits

(*1) ARMv8.3 supports only complex-number supported instructions.

1.3. A64FX プロセッサのブロック

A64FX プロセッサ・チップ上の主要な機能ブロックを Figure 1-1 に、各ブロックの表示と機能 ユニットとの対応関係を Table 1-2 に示す。

Figure 1-1 Main Functional Blocks on A64FX Processor Chip

Table 1-2 Correspondence Between Processor Chip Block Markings and Functional Units

Block Marking in Figure	Functional Unit
Core	Processor core
L2	L2 cache
ICC	Tofu-D interconnect controller
PCIe	PCI-Express Gen3 root complex
RT	Routing controller between CMGs
MAC	Memory controller
GIC	Interrupt controller

アウト・オブ・オーダ・アーキテクチャ

本章では A64FX プロセッサ・コアの基本的なアーキテクチャについて説明する。

2.1. アーキテクチャ概要

A64FX の基本的なパイプラインとステージの概要を Figure 2-1 に示す。A64FX は大きく 5 つの機能ステージにわけることができる。

Figure 2-1 Overall Illustration of Stages

命令フェッチ・ステージ (Instruction fetch stage)

LII キャッシュ、L1-ITLB、L2-ITLB、分岐予測機構、命令フェッチの制御モジュールから構成される。命令フェッチ・ユニットは LII キャッシュから最大 8 命令を同時にフェッチすることができる。分岐予測機構は 1 サイクルあたり最大 4 つの分岐命令について分岐方向を予測し、最大1 つの Taken 分岐命令について分岐先を予測する。フェッチされた命令は Instruction Buffer (IBUFF) に一時的に保存される。

デコード・ステージ (Decode stage)

IBUFF から 1 サイクルあたり通常で最大 4 命令、MOVPRFX 命令を含むときは最大 6 命令を 取得してデコードを行う。取得したアーキテクチャ命令は内部命令形式である μOP 命令にデコ ードされる。基本的に1つのアーキテクチャ命令は1つの μOP 命令に分解されるが、複雑なオ ペレーションを要するアーキテクチャ命令は複数の μOP 命令に分解される。一方で、MOVPRFX 命令は被修飾命令と Pack 処理され、あたかも1つのアーキテクチャ命令であるかのようにデコ ードされる。デコードされた μOP 命令はイン・オーダにオペレーション・フローとしてリザベ ーション・ステーションにディスパッチされる。

実行ステージ (Execution stage)

実行パイプラインのグループごとに5つのリザベーション・ステーション (RS) が実装されて いる。RS にディスパッチされたオペレーション・フローは RS によってスケジューリングさ れ、アウト・オブ・オーダで発行される。実行パイプラインは次のパイプラインから構成され る。主に整数演算を行う整数演算系パイプライン (EXA / EXB)、SIMD&FP および SVE 命令の演 算を行う浮動小数点演算系パイプライン (FLA/FLB)、Predicate 命令の演算を行う Predicate 演算 系パイプライン (PR)、ロード/ストア命令のアドレス生成と一部の整数演算を行うアドレス演 算系パイプライン (EAGA/EAGB)、分岐命令を実行する分岐実行パイプラインである。

ロード/ストア・ステージ (Load / store stage)

L1D キャッシュ、L1-DTLB、L2-DTLB、2本のロード/ストア・パイプラインで構成される。 アドレス演算系パイプラインはロード/ストア・パイプラインに直接結合されている。ロード/ ストア・パイプラインは同時に2つのロード・オペレーション・フロー、または1つのストア・ オペレーション・フローを実行できる。

コミット・ステージ (Commit stage)

実行結果の例外確認、分岐予測結果の確認など命令の完了判定を行う。実行が完了した μOP 命令はイン・オーダでコミットされる。アーキテクチャ命令と対になる全ての μOP 命令がコミ ットすると、プロセッサのアーキテクチャ・ステイトを更新する。1 サイクル当たり最大 4 つの μOP命令をコミットできる。

マイクロ・オペレーション命令 2.2.

A64FX ではアーキテクチャ命令は内部命令形式であるマイクロ・オペレーション命令 (μOP 命 令) にデコードされる。μOP 命令はハードウェアの命令実行に適した命令単位である。複雑なア ーキテクチャ命令は複数の μOP 命令に分解される。一方で、ハードウェアのオペレーションに 最適になるように、いくつかのアーキテクチャ命令は1つの μOP 命令に結合される。アーキテ クチャ命令の分解数は命令属性/レイテンシ一覧表に記載されている。

1つのアーキテクチャ命令から 2つ以上の μOP 命令に分解されるデコードには、標準的なデコ ードと、ディスパッチ、コミット、およびリソース割り当てに制限があるシーケンシャル・デコ ードの2種類がある。シーケンシャル・デコードでデコードされるか否かはデコード元のアーキ テクチャ命令によって決まる。

2.3. オペレーション・フロー

オペレーション・フローは μ OP 命令を実行するための回路動作そのものであり、実行エンジンのパイプライン処理の最小単位である。 μ OP 命令はオペレーション・フローの組み合わせによって実行される。つまり、実行ステージとロード/ストア・ステージの処理単位はすべてオペレーション・フローである。 μ OP 命令はデコーダからリザベーション・ステーションにディスパッチされるときにオペレーション・フローに変換される。また、オペレーション・フローは単に μ OP 命令の派生物ではなく、ハードウェアが自発的に生成するものも含む。例えば、ハードウェア・プリフェッチや、キャッシュ・ミスの処理のためのオペレーション・フローなどである。

2.4. アウト・オブ・オーダ・リソース

主なアウト・オブ・オーダ実行のためのリソースとその数を Table 2-1 に示す。

Table 2-1 Out-of-Order Resources

Resource	Quantity of Resource								
Commit Stack Entry (CSE)	128 entries								
Group ID (GID)	32 entries								
General-purpose physical register (GPR)	96 entries	Architecture register	32 entries						
General-purpose physical register (GPK)	90 entries	Renaming register	64 entries						
Floating-point physical register (FPR)	128 entries	Architecture register	32 entries						
Froating-point physical register (FPK)	128 entries	Renaming register	96 entries						
Duradicate abusical accietas (DDD)	48 entries	Architecture register	16 entries						
Predicate physical register (PPR)	46 entries	Renaming register	32 entries						
Reservation Station for EAG (RSA)	10 entries x 2 (split)								
Reservation Station for EXE (RSE) (shared by Integer, SIMD&FP, SVE)	20 entries x 2 (split)								
Reservation Station for Branch (RSBR)	19 entries								
Temporary Operand Register (TOR)	3 entries								
Established (ED)	Virtual	160 entries							
Fetch Port (FP)	Real	Real 40 entries							
Store Dort (SD)	Virtual	192 entries							
Store Port (SP)	Real								
Write Buffer (WB)	8 entries								

それぞれのリソースの主な機能は以下の通りである。

Commit Stack Entry (CSE)

アウト・オブ・オーダで実行された命令をプログラム・オーダにリオーダするためのリ ソースである。アーキテクチャ命令は uOP 命令にデコードされて CSE のエントリに割り 当てられる。

Group ID (GID)

μOP 命令のディスパッチ・グループを管理する ID である。1GID あたり最大 4μOP 命令 が割り当てられる。

General-purpose physical register (GPR)

ARM Manual における汎用レジスタに割り当てられるアーキテクチャ・レジスタとリネ ーミング・レジスタの物理的実体である。

Floating-point physical register (FPR)

ARM Manual における SIMD&FP レジスタと、SVE Manual におけるベクトルレジスタ に割り当てられるアーキテクチャ・レジスタとリネーミング・レジスタの物理的実体であ る。

Predicate physical register (PPR)

ARM Manual における Predicate レジスタに割り当てられるアーキテクチャ・レジスタと リネーミング・レジスタの物理的実体である。

Reservation Station for EAG (RSA)

EAGA/EAGBパイプラインで実行されるオペレーション・フローを一時的に保存し、 アウト・オブ・オーダで発行するためのスケジューラである。

Reservation Station for EXE (RSE)

EXA / EXB / FLA / FLB / PR パイプラインで実行されるオペレーション・フローを一時 的に保存し、アウト・オブ・オーダで発行するためのスケジューラである。

Reservation Station for BRanch (RSBR)

分岐命令のオペレーション・フローを一時的に保存し、アウト・オブ・オーダで実行す るためのスケジューラである。

Temporary Operand Register (TOR)

命令フェッチステージからプログラム・カウンタ (PC) の値を実行ステージに転送する ためのレジスタである。基本的には PC 相対の命令と Branch and Link 命令のみで使用され る。

Fetch Port (FP)

ロード/ストア命令の実行順序を管理するためのリソースである。A64FX では Virtual Fetch Port (VFP) と呼ばれる機能が新たに導入された。VFP に対して、本来の機能を持つ Fetch Port を Real Fetch Port (RFP) と呼ぶ。

Store Port (SP)

ストア命令の実行順序を管理するためのリソースである。Fetch Port と同様に Virtual Store Port (VSP) と Real Store Port (RSP) がある。

Write Buffer (WB)

コミット後のストアデータを、LID キャッシュに書き込むまで一時的に保存するリソー スである。

2.5. パイプライン・ステージ

アウト・オブ・オーダ実行におけるパイプライン・ステージについて記述する。パイプライ ン・ステージは実行パイプラインとそのパイプラインで実行される命令、演算、ロード/ストア の種別により異なる。

主なパイプラインステージのオペレーションを Figure 2-2 から Figure 2-6 に示す。なお、図中 のステージ表記とオペレーションの対応関係は Table 2-2 の通りである。

Table 2-2 Correspondence Between Pipeline Stage Symbols and Operations

Stage Symbol	Operation
Common to all pipelines	
D, DT	Instruction decode
P, PT	Instruction scheduling
B*	Physical register read
С	Commit
W, W2	Architecture register update
Specific to operation pipelines	
Xn	Operation execution (The number of stages varies depending on the instruction.)
U, UT*	Operation result update
EXP	Exception judgment
Specific to branch execution pipeline	
BS	Scheduling
BR	Branch direction judgment
BC	Branch direction determination
Specific to load/store pipelines	
A	Effective address generation
Т	Tag and TLB access
M, B, XT, XM, XB	Data access
R, RT*	Result out
W3 - W5	WB write

	1	2	3	4	5	6	7	8	9	10	11
	D	DT									
Integer			P	PT	В1	В2	X	U	UT		
								C	W	W2	

Figure 2-2 Integer Operation Pipeline Stages

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
SIMD&FP/ SVE	D	DT	P	PT	PT2	PT3	B1	B2	X1	X2	X3	X4	X5	X6	X7	X8	X9	U	UT	UT2	EXP	С	W	W2

Figure 2-3 SIMD&FP and SVE Operation Pipeline Stages

	1	2	3	4	5	6	7	8	9	10	11	12	13	14
	D	DT												
Predicate			P	PT	PT2	В1	B2	X1	X2	X3	U	UT		
											C	W	W2	
	D	DT												
Predicate (update NZCV)			P	PT	PT2	В1	B2	X1	X2	Х3	U	UT		
												С	W	W2

Figure 2-4 Predicate Operation Pipeline Stages

	1	2	3	4	5	6	7	8	9	10	11	12	13
	D	DT											
Unconditional branch			BS	ВС									
					C	W							
	D	DT											
Conditional branch			BS	BR	ВС								
						C	W						
	D	DT											
Unconditional indirect branch			P	PT	В1	B2	X	U	UT				
Onconditional indirect branch			BS							BR	ВС		
												С	W
	D	DT											
Commons & humah			P	PT	В1	B2	X	U	UT				
Compare & branch			BS							BR	ВС		
												C	W

Figure 2-5 Branch Pipeline Stages

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
	D	DT																				
Integer load			P	PT	B1	B2	X															
							A	Т	M	В	R	RT	RT2	RT3								
	D	DT												С	W	W2						
	ע	ועו	P	PT	B1	B2	X															
Integer store			P	PT	B1	B2	A	Т	M	В	R	RT	RT2	RT3								
														С	w	W2	W3	W4	W5			
	D	DT																				
SIMD&FP/SVE			P	PT	В1	B2	X															
load (short)							A	Т	M	В	R	RT	RT2	RT3								
														С	W	W2						
	D	DT																				
SIMD&FP/SVE load (long)			P	PT	B1	B2	X	_	.,	-		70.6	***	_	D.T.	D.T.2	D.T.2					
							A	Т	M	В	XT	XM	XB	R	RT	RT2	RT3	W	W2			
	D	DT															C	VV	W Z			
SIMD&FP/SVE			P	PT	B1	B2	X															
store (short)			P	PT	В1	B2	A	Т	M	В	R	RT	RT2	RT3								
														С	W	W2	W3	W4	W5			
	D	DT																				
SIMD&FP/SVE			P	PT	В1	B2	X															
store (long)			P	PT	В1	B2	A	Т	M	В	XT	XM	XB	R	RT	RT2						
																	С	W	W2	W3	W4	W5
	D	DT	P	рт	D1	D2	v															
Predicate load			P	PT	В1	B2	X A	Т	M	В	хт	XM	XB	R	RT	RT2	RT3					
							11		.,,		211	71111	ALD	10	101	1612	С	W	W2			
	D	DT																				
D. II.			P	PT	В1	B2	X															
Predicate store			P	PT	В1	B2	A	Т	M	В	XT	XM	ХВ	R	RT	RT2	RT3					
																	С	W	W2	W3	W4	W5

Figure 2-6 Load/Store Pipeline Stages

命令実行レイテンシ 2.6.

命令実行の基本レイテンシは、上記パイプライン・ステージの演算ステージの演算開始から演 算完了、または、ロード/ストア・ステージのメモリ・アクセス開始からアクセス完了のステー ジ数で決定される。Table 2-3 に各パイプラインと各命令における実行開始と、完了のステージに ついてまとめる。また各命令のレイテンシは命令属性/レイテンシ一覧に記載されている。

Table 2-3 Execution Start and Completion Stages for Each Instruction in Each Pipeline

Pipeline	Instruction	Start Stage	Completion Stage
EXA / EXB		v	V
EAGA / EAGB	(Operation instruction only)	X	Xn
FLA / FLB		X1	Xn
PR		X1	X3
	Integer load	A	R
Load / Store	SIMD&FP / SVE load	A	RT3
	Predicate load	A	RT

ストア命令は実行完了がコミット後になることから、一般的な実行レイテンシとは異なるため ここでは省略する。

EXA/EXB、EAGA/EAGB、FLA/FLB の各パイプラインは、命令のオペレーションの内容に よってステージ数が異なるため Xn と表現している。

オペランド・バイパス 2.7.

オペランド・バイパスとは、後続命令のオペランドが先行命令の実行結果に依存するとき、先 行命令で生成された値をレジスタを経由せずに後続命令に渡すことをいう。基本的には、前述の Table 2-3 にある完了ステージの直後に次の命令の開始ステージが接続されるようにバイパスの経 路が実装されている。しかし、実行パイプラインや命令の組み合わせによってはペナルティなく バイパスできない場合がある。パイプラインや命令の種類に依存するオペランドの組み合わせで 決まるペナルティ・サイクルを Table 2-4 に示す。表の縦軸はオペランドを生成する命令、横軸 はそのオペランドを入力とする命令を表す。

Table 2-4 Penalties for Operand Bypass Between μOP Instructions

	Consumer	EXA EXB EAGA/PIPE0													FLA	FLB	PR			
Producer		Integer operation	Integer operation	Integer operation	Integer load	Integer store	SIMD&FP/SVE load	SIMD&FP/SVE store	Predicate load	Predicate store	Integer operation	Integer load	Integer store	SIMD&FP/SVE load	SIMD&FP/SVE store	Predicate load	Predicate store	SIMD&FP/SVE operation	SIMD&FP/SVE operation	Predicate operation
	Integer operation	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	-	-	-
EXA	Integer operation (update NZCV)	0	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	7	7	6
	Integer operation	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	-	-	-
EXB	Integer operation (update NZCV)	1	0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	7	7	6
	Integer operation	1	1	0	0	0	0	0	0	0	1	1	1	1	1	1	1	-	-	-
	Integer load	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	-	-
	Integer store	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	SIMD&FP/SVE load (short)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	0	-
EAGA / PIPE0	SIMD&FP/SVE load (long)	-	-	-	-	-	1	1	-	-	-	-	-	-	-	-	-	0	0	-
	SIMD&FP/SVE store (short)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	SIMD&FP/SVE store (long)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Predicate load	-	-	-	-	-	0	0	-	-	-	-	-	0	0	-	-	3	3	1
	Predicate store	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Integer operation	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	-	1	-
	Integer load	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	-	-
	Integer store	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	SIMD&FP/SVE load (short)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	0	-
EAGB / PIPE1	SIMD&FP/SVE load (long)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	0	-
	SIMD&FP/SVE store (short)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	SIMD&FP/SVE store (long)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	i	-
	Predicate load	-	-	-	-	-	0	0	-	-	-	-	-	0	0	-	-	3	3	1
	Predicate store	-	-	-	-	-	1	1	-	-	-	-	-	-	-	-	-	- 1	- 1	-

	Consumer	EXA	EXB	EAG	A / PII	PE0					EAG	B / PI	PE1					FLA	FLB	PR
Producer		Integer operation	Integer operation	Integer operation	Integer load	Integer store	SIMD&FP/SVE load	SIMD&FP/SVE store	Predicate load	Predicate store	Integer operation	Integer load	Integer store	SIMD&FP/SVE load	SIMD&FP/SVE store	Predicate load	Predicate store	SIMD&FP/SVE operation	SIMD&FP/SVE operation	Predicate operation
	Predicate operation	-	-	-	-	-	1	1	-	-	-	-	-	1	0	-	-	3	3	0
PR	Predicate operation (update NZCV)	6	6	-	-	- 1	-	1	-	-	-	1	- 1	-	-	-	-	8	8	7
	SIMD&FP/SVE operation	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	0	-
FLA	SIMD&FP/SVE operation (update NZCV)	5	5	-	-	1	-	1	-	-	-	1	1	-	-	-	1	0	0	6
	SVE CMP instruction (update PR)	-	-	-	-	-	2	2	-	-	-	-	-	2	2	-	-	1	1	2
	SVE CMP instruction (update NZCV)	9	9	-	-	-	-	-	-	-	-	-	-	-	-	-	-	11	11	10
ELD	SIMD&FP/SVE operation	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	0	-
FLB	SIMD&FP operation (update NZCV)	5	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	0	6

基本的にペナルティ・サイクルは命令の種類、および生成側と入力側のパイプラインの組み合 わせで決まる。また、いくつかの命令では複数のオペランドで依存を持つことができる。例え ば、整数演算では汎用レジスタと NZCV レジスタへ同時に出力する命令がある。このとき、後 続の命令が汎用レジスタのオペランドに依存するときと、NZCV レジスタのオペランドに依存す るときではペナルティ・サイクルが異なる。SVE 命令は基本的に浮動小数点レジスタと Predicate レジスタを入力オペランドとする。このとき、どちらのオペランドが先行命令に依存するかによ ってペナルティ・サイクルが異なる。Table 2-4 の生成命令側にはオペランドの種類の組み合わせ についても記述している。入力の命令側はそれに対応するオペランドが入力となる。

なお、FTMAD 命令については上記のルールに当てはまらず、オペランドを生成する命令によ ってペナルティ・サイクルが変化する。FTMAD 命令のペナルティ・サイクルを Table 2-5 に示 す。

Table 2-5 Penalties for Operand Bypass Between μOP Instructions (FTMAD Instruction)

	FTMAD
SVE load (Long)	0
FTSMUL	0
Other floating-point operation instruction	1

2.8. リソースの割り当てと解放

アウト・オブ・オーダ・リソースは命令実行の度に割り当てられ、実行が終了すると解放される。それぞれのリソースの割り当てステージ、および解放ステージについて Table 2-6 に示す。

Table 2-6 Out-of-Order Resource Allocation and Release Stages

Resource		Allocation Stage	Release Stage	Supplemental Remarks
CSE		D	W	
General-p	urpose renaming register	D	W2	The resource is allocated and released in order
Floating-p	oint renaming register	D	W2	The resource is allocated and released in order.
Predicate	renaming register	D	W2	
D.G.E.	EXA / EXB pipeline	D	B1, B2, X, X+1	The release stage depends on the operand bypass timing. The resource is released out of order
RSE	FLA / FLB pipeline	D	PT2, PT3, PT3+1	The release stage depends on the operand bypass timing. The resource is released out of order.
D.C.	Load/Store instruction	D	B2, A, A+1	The release stage depends on the operand bypass timing. The resource is released out of order.
RSA	Integer operation instruction	D	B1, B2, X, X+1	The release stage depends on the operand bypass timing. The resource is released out of order.
Virtual FP		D	Same as for Real FP	
Virtual SP	,	D	Same as for Real SP	The resource is allocated in order.
Real FP	Integer load / store, SIMD&FP load / store, SVE load / store (excluding predicate)	B1	RT3	The resource is released in order and without waiting for commit.
	Predicate load / store	1	RT3]
P 10F	Integer store	В1		
Real SP	SIMD&FP / SVE store	PT2	W5	The resource is released in order after commit.

2.9. レイテンシ切り替え

同一のパイプラインを通過するオペレーションであっても、命令の種類によってレイテンシが異なる。このようなとき、Figure 2-7 に示すように複数の命令について、パイプラインへの投入タイミングが異なっていても後方のステージ (C, W) においてオペレーションが衝突してしまうことがある。このような状態はパイプラインとして成立し得ないため、A64FX では Figure 2-8 に示すように実行ステージにおけるレイテンシを切り替えることで衝突を回避している。

	1	2	3	4	5	6	7	8	9	10	11
Preceding instruction	X1	X2	Х3	X4	X5	X6	X7	X8	X9	С	W
Following instruction						X1	X2	Х3	X4	С	W

Figure 2-7 Example of Conflict Between C Stages of Instructions with Different Latencies

	1	2	3	4	5	6	7	8	9	10	11	12	13
Preceding instruction	X1	X2	Х3	X4	X5	X6	X7	X8	X9	С	W		
Following instruction						X1	X2	X3	X4	С Х5	- W X6	С	W

Figure 2-8 Example of Latency Changing

レイテンシ切り替えが行われる命令の種類と、切り替え後のレイテンシの一覧を Table 2-7 に 示す。

Table 2-7 Instructions Whose Latency Changed, and Their Latencies

	Basic Latency	Latency After Change
	4	6 or 9
Instruction executed in floating-point operation pipeline	6	9
	9	No change
	5	8
Load instruction	8	11
Load IIISHUCHOII	9	No change
	11	No change

命令フェッチ 3.

命令フェッチ・ステージの概略 3.1.

命令フェッチ・ステージは、LIIキャッシュから命令をフェッチしてデコード・ステージに命 令を供給する。命令フェッチ・ステージには LII キャッシュ、L1-ITLB、分岐予測機構が含まれ る。命令フェッチ・ステージの概略を Figure 3-1 に示す。IFEAG はプログラム・カウンタ (PC) を更新する加算器である。PC は分岐予測機構と LI-ITLB、LII キャッシュに送られる。分岐予測 結果による PC、または IFEAG による PC のどちらかを基に L1-ITLB と L1I キャッシュにアクセ スし、命令を読み出す。命令の読み出しはアライメントされた32バイト単位で行われ、読み出 された命令イメージのまま Instruction Buffer (IBUFF) に保存される。IBUFF は6エントリで構成 され、1 エントリあたり 32 バイト (8 命令) を格納できる。

Figure 3-1 Instruction Fetch Stage

分岐予測機構は分岐命令の分岐方向と分岐先アドレスを予測する。フェッチされる命令列に "Taken"と予測される分岐命令が含まれる場合、次の命令フェッチ先は予測された分岐先アドレ スである。基本的な分岐予測機構のアクセス・レイテンシは3サイクルである。このとき、 Figure 3-2 に示すように Taken 分岐命令の後続命令のフェッチがキャンセルされるためにバブル が発生する。

Figure 3-2 Bubbles Due to Instructions Following Taken Branch Instruction

分岐予測機構 3.2.

A64FX の分岐予測機構は Table 3-1 に示す分岐予測器から構成される。

Role **Branch Predictor** Small Taken Chain Predictor (S-TCP) Branch direction & Branch target address prediction Branch Weight Table (BWT) Branch direction prediction Loop Prediction Table (LPT) Return Address Stack (RAS) Branch target address prediction Branch Target Buffer (BTB)

Table 3-1 Branch Predictors of Branch Prediction Mechanism

このうち、BWT と BTB が主たる分岐予測機構であり、これらを組み合わせて分岐方向と分岐 先アドレスを予測する。BWT は Global History Register (GHR) と組み合わせることで Piecewise linear 方式のアルゴリズムを用いて予測する。S-TCP は Taken 分岐命令の分岐先アドレスを記憶 するための小容量、かつ短レイテンシなバッファであり、ループ構造を特定したときに予測をす る。LPT はカウンタ方式のローカル分岐予測器で、ループ構造における継続判定を行う条件分岐 命令のような、分岐方向が同方向である回数を予測する。RAS はサブルーチンからのリターン アドレスに関する予測器である。以降、各分岐予測器について詳細を記述する。

Small Taken Chain Predictor (S-TCP) 3.2.1

Small Taken Chain Predictor (S-TCP) は Taken 分岐命令によるプログラム実行パスのチェーンを 検出し、予測をする機構である。Figure 3-3 に示すように、S-TCP は複数の Taken 分岐命令の実 行パスからなるチェーン構造を検出する。このチェーンがループを形成し、実行の反復が一定回 数を超えると検出した実行パスに従って命令フェッチを指示する。S-TCP は 4 つの Taken 分岐命 令の分岐先アドレスを保存できる。S-TCP は Not taken 分岐命令の情報を保存しないため、チェ ーンに含まれる Not taken 分岐の命令数に制限はない。

Figure 3-3 Chain Structure Consisting of Multiple Taken Branch Instructions

S-TCP は予測ミスが発生しても直ちに検出した情報を削除しない。つまり、再度同一の実行パ スの命令をフェッチすると S-TCP による予測を再開する。

また、S-TCPへは1サイクルでアクセスできることから命令フェッチ時のパイプライン・バブ ルは発生しない。

Loop Prediction Table (LPT) 3.2.2.

Loop Prediction Table (LPT) はカウンタ方式のローカル履歴分岐方向予測器である。条件分岐命 令の Taken または Not taken が連続した回数を記録し、その履歴を基に分岐方向を予測する。LPT は8エントリで構成され、分岐命令を8命令まで記録できる。

3.2.3. Branch Weight Table (BWT)

Branch Weight Table (BWT) は Global History Register (GHR) と組み合わせ、Piecewise linear ア ルゴリズムを用いて予測をする。BWT は Piecewise linear における重みテーブルであり、2,048 エ ントリ構成をとる。予測には Figure 3-4 に示すように、条件分岐の履歴、および過去の分岐命令 実行時に算出した重みの履歴を使用する。2つの履歴はいずれもグローバルな履歴である。条件 分岐の履歴は Taken 時に"1"、Not taken 時に"-1"の 2 値をとる。重み (W) は符号付き整数で ある。Figure 3-4 に示すような条件分岐、および重みの履歴があるとき、条件分岐命令 B_0 は Figure 3-5 (Eq.1) の結果 P として予測される。P が 0 以上のときは "Taken"、0 未満のときは "Not taken"と予測する。その後、分岐命令が実行されて分岐の結果が判明すると重みの履歴を 更新する。重み履歴の更新は予測がミスしたときのみ行われる。例えば、分岐予測 Boの予測が "Taken" であったのに対して実行結果が "Not taken" であったときは Figure 3-5 (Eq.2) で示すよ うな重みの更新式が使われる。

Figure 3-4 Histories of Conditional Branches and Weights

$$\begin{split} &(\underline{Eq.1}) \, \underline{Predicted \, threshold} \\ &P = W_0 + N_1 W_1 + T_2 W_2 + T_3 W_3 + N_4 W_4 + T_5 W_5 + \\ & \cdot \cdot \cdot \cdot + N_{n-1} W_{n-1} + T_n W_n \end{split}$$

$$&(\underline{Eq.2}) \, \underline{Update \, weights \, of \, the \, conditional \, branch \, instruction \, \underline{B0}} \\ &[W_0 \, W_1 \, W_2 \, W_3 \, W_4 \, W_5 \, \cdot \cdot \cdot \cdot \, W_{n-1} \, W_n] = \\ &[W_0 \, W_1 \, W_2 \, W_3 \, W_4 \, W_5 \, \cdot \cdot \cdot \cdot \, W_{n-1} \, W_n] + \\ &[T_c \, N_1 \, T_2 \, T_3 \, N_4 \, T_5 \, \cdot \cdot \cdot \cdot \, N_{n-1} \, T_n] \, * \, N_0 \\ &* \, Tc \, is \, constant. \end{split}$$

Figure 3-5 Prediction Equation for Conditional Branch Instruction Bo

なお、本マニュアルでは単純化のために予測結果を"Taken"、"Not taken"としているが、実装 されている予測機構は Agree Prediction 方式である。

3.2.4. Branch Target Buffer (BTB)

Branch Target Buffer (BTB) は相対分岐命令と間接分岐命令の分岐先アドレスを記録するバッフ ァである。BTB は 4-way、2,048 エントリの構成である。相対分岐命令については分岐先アドレ スが静的に決まるため、過去1回分の分岐先履歴のみ保存する。間接分岐命令については分岐先 アドレスが動的に変化する可能性があるため、複数の分岐先履歴を保存して予測をする Rehash と呼ばれる機構を採用している。Figure 3-6 に示すように、BTB のインデックスに対して分岐方 向履歴と分岐先履歴を用いてハッシュを行う。これによって動的に変化する分岐先アドレスを予 測できるようにしている。

Figure 3-6 Outline of Branch Target Buffer (BTB)

Return Address Stack (RAS) 3.2.5.

Return Address Stack (RAS) はサブルーチン・コール時にリターンアドレスを保存するスタック である。BL、BLR 命令実行時にリターンアドレスを記録し、RET 命令のフェッチ時に参照す る。RAS は8エントリ構成をとる。RAS のアクセスサイクルは2サイクルであり、BTB より短

分岐予測の組み合わせ 3.3.

前述のように、A64FX では複数の予測器を組み合わせて分岐命令の予測を行う。分岐命令の 種類と使用される予測器、さらに予測結果の採用順位を Table 3-2 に示す。

Indirect Branch Instruction. **Adoption Ranking Conditional Branch Instruction Unconditional Relative Branch Instruction** High S-TCP S-TCP LPT, BTB RAS BWT, BTB BTB Low

Table 3-2 Relationship Between Predictors Used for Branch Prediction and Prediction Result Adoption Rankings

S-TCP はその動作の特徴から間接分岐命令、条件分岐命令に関係なく分岐先を予測する。さら に、アクセス・レイテンシも最も短いことから予測結果は最優先で採用される。LPT と BWT は 分岐方向予測のみを行い、"Taken"と予測したときには BTB が予測した分岐先を使用する。LPT と BWT では LPT による予測結果が優先される。

間接分岐における RAS と BTB では RAS の結果が優先される。ただし、RAS はサブルーチン のリターン命令のみ予測するのに対して、BTB は全ての分岐命令について学習を行う。

ショート・ループ検出 3.4.

A64FXではショート・ループ検出と呼ばれる機構を実装している。この機構は IBUFF に保存 されている命令列の中でループ構造を検出する機構である。ショート・ループを検出すると命令 キャッシュからの読み出しを停止し、IBUFF から命令を供給できる。IBUFF からの命令供給時 には Taken 分岐後続命令の読み出しペナルティはなく、パイプラインのバブルは発生しない。

ショート・ループの検出条件は以下の通りである。

- ループを構成する命令列全体が IBUFF に収まること。前述の通り、IBUFF には 48 命令を保存できるが、命令列のアライメント制約があることに注意が必要である。
- ループ内のすべての分岐命令の分岐方向が一定であること。ループ内には複数の分 岐命令を含むことができる。

上記の条件を満たし、ループの反復回数がしきい値以上になると IBUFF からの命令供給を開 始する。また、ショート・ループ内の分岐命令の方向が変化した場合は命令供給を終了し、命令 キャッシュからの読み出しを再開する。

4. 命令デコードと命令コミット

4.1. マイクロ・オペレーション命令

A64FX では、アーキテクチャ命令はハードウェア固有の内部形式の μ OP 命令としてデコードされる。 μ OP 命令は、リネーミング・レジスタ、CSE、FP、SP などの割り当ての基本単位となる。 μ OP 命令は 1 つのアーキテクチャ命令から複数に分解され生成されるものと、複数のアーキテクチャ命令を結合して 1 つの μ OP 命令として生成されるものがある。 μ OP 命令の分解数は命令属性/レイテンシ一覧に記載している。アーキテクチャ命令の結合は 4.3 章にて説明している。

1つのアーキテクチャ命令から 2 つ以上の μ OP 命令への分解には、通常デコードとシーケンシャル・デコードの 2 種類がある。シーケンシャル・デコードとは、命令のディスパッチ、コミット、および GID の割り当てに制限があるデコードである。通常デコードは、同時に複数のアーキテクチャ命令をデコードし、複数の μ OP 命令をディスパッチできる。それに対して、シーケンシャル・デコードは 1 つのアーキテクチャ命令のみデコードし、 μ OP 命令を逐次的にディスパッチする。また、1 つの GID に 1 つの μ OP 命令しか割り当てることができない。シーケンシャル・デコードになる命令は命令属性/レイテンシ一覧に記載されている。

4.2. マルチ・オペレーション

μΟΡ 命令はオペレーション・フローにて実行される。必要なオペレーション・フロー数は μΟΡ 命令の複雑さに依存する。例えば、単純な整数演算などは 1 フローで実行できるが、ADD (shifted register) 命令のような算術演算とシフトが組み合わさっている操作は、演算時に分割され複数のフローで実行される。また、NOP 命令などオペレーションが不要なものは 0 フロー (オペレーションが存在しない) となる。一方で SVE の Gather load 命令などは複雑であり、少数のアドレス生成・フローと多数のメモリ・アクセス・フローにて実行される。それぞれのパイプライン・ステージにて本質的な実行に必要なフロー数が異なることと、A64FX ではリソースの消費を抑制することをねらいとしてオペレーション・フローの分割はできるだけ下流のステージで行うアーキテクチャとなっている。オペレーション・フローの分割は以下のパイプラインステージにて行われる。

デコード・ステージ

 μ OP 命令をリザベーション・ステーションにディスパッチするときに分割される。主に命令実行のために機能が異なる実行パイプラインでの処理が必要な命令などが対象である。代表例としてストア命令がある。ストア命令は、RSA にディスパッチされる実効アドレスを計算するフローと、RSE にディスパッチされるデータ転送フローの 2 つに分割される。

実行ステージ

リザベーション・ステーションから実行パイプラインへ発行されるときに分割される。複数の 異なる演算を繰り返し行う命令が対象である。代表例として ADD (shifted register) 命令がある。 ADD 命令の μOP 命令はディスパッチ時は1フローに変換されるだけだが、リザベーション・ス テーションから実行パイプラインへ発行されるときにシフト操作を行うフローと加算を行うフロ ーの2つに分割される。

ロード/ストア・ステージ

ロード/ストア・ステージにてロード/ストアを実行するときに分割される。Gather / Scatter 命令や Multiple structures 命令のような離散的なメモリ空間にアクセスする命令が対象である。

MOVPRFX 命令の Pack 処理 4.3.

A64FX では MOVPRFX 命令は基本的に後続の被修飾命令と結合させ、あたかも被修飾命令が 非デストラクティブ命令であるかのように振る舞うようにデコードされる。この結合処理を Pack 処理と呼ぶ。Pack 処理はプリデコードの第1ステージにて行われ、その後に μOP 命令分解 を行う。すなわち、MOVPRFX 命令の有無はデコード時の μOP 命令数に影響を与えない。μOP 命令の分解数は被修飾命令の属性のみで決まる。

一方で、MOVPRFX 命令の Pack 処理には並列処理数に以下の制約がある。

loop:

b.ne

loop

- プリデコーダの第1ステージへの入力は、1サイクルあたり最大6命令。
- プリデコーダの第1ステージでのPack 処理は、1サイクルあたり最大3組。
- プリデコーダの第1ステージからの出力は、Pack 処理後の命令数で最大4命 令。

これらの制約から、プログラムにおけるアーキテクチャ命令の並びによってはプリデコードの スループットが低下することがある。一例を Figure 4-1、Figure 4-2 に示す。

movprfx z0.d, p0/m, z1.d fmad z1.d, p0/m, z2.d, z3.d add z1.d, p0/m, z4.d 4 insts movprfx z10.d, p0/m, z11.d decoded fmad z11.d, p0/m, z12.d, z13.d z11.d, p0/m, z14.d add movprfx z5.d, p5/m, z6.d fmad z6.d, p5/m, z7.d, z8.d sub z6.d, p5/m, z9.d 4 insts. decoded movprfx z15.d, p5/m, z16.d fmad z16.d, p5/m, z17.d, z18.d sub z16.d, p5/m, z19.d

Figure 4-1 Example of Efficient Packing with MOVPRFX

Figure 4-2 Example of Inefficient Packing Due to Instruction Order

Figure 4-1、Figure 4-2 に示すように、同じ命令数をデコードするときであっても MOVPRFX 命令と被修飾命令の並びによってスループットが異なる。命令スケジューリングに自由度があるときは上記の制約を考慮することを推奨する。

4.4. 命令デコード

A64FX の命令デコード・ステージのパイプラインステージ概要を Figure 4-3 に示す。デコーダは IBUFF から命令を取得し、 μ OP 命令にデコードしてアウト・オブ・オーダ・リソースへの割り当てを行う。

Figure 4-3 Instruction Decode Stage

4.4.1. プリデコード

プリデコードは PD1 ステージから PD3 ステージにて行われる。プリデコードでは主に MOVPRFX 命令の Pack 処理、μOP 命令への分解が行われる。PD1 ステージはアーキテクチャ命 令で 6 命令幅の Pre-decode Instruction Windows Register (PIWR) を持ち、IBUFF から入力を受け付 ける。PD2 ステージでは μOP 命令分解を行う。分解による命令数増加を吸収するために μOP 命 令で7命令幅の命令レジスタを持つ。PD3 ステージは後段のデコーダへの出力であり、μOP 命令 で4命令幅の命令レジスタを持つ。

まず、プリデコーダは PD1 ステージにて IBUFF から命令を取り出して PIWR に格納する。 IBUFF からの読み出しは任意のアドレスからエントリをまたいで行うことができる。読み出され た命令は IBUFF からクリアされる。なお、IBUFF からの読み出しには以下の制限がある。

- 4.3 章で説明した MOVPRFX 命令の Pack 処理における制約。Pack 処理は PD1 ス テージで行われ、この制約を満たすように命令を読み出す。
- 分岐命令は一度に複数個読み出し可能であるが、"Taken" と予測された分岐命令 は1命令のみ。
- Taken 予測された分岐命令の分岐先は同時に読み出せない。

PD1 ステージにて Pack 処理が行われた命令は、PD2 ステージから PD3 ステージにかけて μOP 命令分解が行われる。μOP 命令分解には以下の制約がある。

- Taken 分岐命令は PD3 において最後尾に配置される。
- 1つのアーキテクチャ命令から 3 つ以上の μOP 命令に分解されるとき、その μOP 命令の組はPD3において最前列から配置されなければならない。

シーケンシャル・デコードのときは D ステージにて μOP 命令の展開が行われる。このとき、 シーケンシャル・デコード対象の命令は最後尾に配置されなければならない制約があるため、 PD2 ステージから PD3 ステージに送られる時点で、対象の命令が 1 命令かつ最後尾に配置され るように命令列が切られる。

それぞれの例を Figure 4-4 から Figure 4-6 に示す。

TB: Taken branch instruction.

Figure 4-4 Restriction on Taken Branch Instruction When Splitting µOP Instructions

Figure 4-5 Restriction Related to Three or More μOP Splits Resulting from µOP Instruction Splitting

Figure 4-6 Restriction on µOP Instruction Splitting for Sequential Decode

4.4.2. デコード

Dステージから DT ステージにてデコードが行われる。デコードにおいては、主にアウト・オ ブ・オーダ・リソースの割り当てと、後述するリザベーション・ステーションへのディスパッチ が行われる。

デコーダは GID、CSE、物理レジスタの割り当て、および VFP、VSP の割り当てをする。デコ ーダには前段のプリデコーダから 1 サイクルあたり最大 4 つの μOP 命令が送り込まれる。この 入力された μOP 命令の組をディスパッチ・グループと呼び、この単位でリソースが割り当てら れる。主な命令とリソースの割り当て数との関係を Table 4-1 に示す。

Resource	Allocation Unit	Instruction Type
GID	Dispatch group	All instructions
CSE	μOP instruction	All instructions
Physical register	μOP instruction	Instructions that have destination registers
VFP/VSP	Processing unit for load/store unit	Load/Store instructions

Table 4-1 Relation Between Instructions and Quantities of Allocated Resources

Table 4-1 に示すように、GID はディスパッチ・グループ単位で割り当てられる。一方で、CSE の 4 エントリあたり GID は 1 つという制約がある。ディスパッチ・グループが 4μOP 命令未満で あった場合、CSE には未使用エントリがある状態で GID が割り当てられる。

FP、SP の割り当て数はロード/ストア・ユニットでの処理単位である。詳細は 7.3 章にて説 明する。

アウト・オブ・オーダ・リソースの割り当てが完了すると、μOP 命令はリザベーション・ステーションへディスパッチされる。

4.5. 命令コミット

コミット・ステージでは投機的に実行された命令の確定が行われる。分岐命令の分岐パス検証や例外の有無検証などを行い、命令を完了させてよいと判定すればプログラム・オーダでコミットを行い、プロセッサのアーキテクチャ・ステートを確定する。Figure 4-7 に示すように、CSE は 4 エントリ単位でグループ化され、グループ単位で GID が割り当てられている。CSE への μ OP 命令の割り当ては GID 単位で行われることから、CSE の解放、すなわち命令コミットも GID 単位で実施される。

Figure 4-7 CSE Structure

命令コミットはプログラム・オーダでなされるため、CSE内の最も古い命令がある CSE グループから行われる。命令コミットの動作は以下の通りである。

- 同時にコミットできる GID は1つ。すなわち、CSE グループをまたいでのコミットはできない。
- 同一 GID が割り当てられた複数個の μOP 命令は同時にコミットできる。
- コミットできる GID に属する中で最も古い μOP 命令は、同一 GID 内のより新しい μOP 命令の実行終了を待たずにコミットできる。
- 複数個の Taken 分岐命令は同時にコミットできない。
- 分岐命令が予測ミスしていたときは、その分岐命令までコミットし後続の命令を 破棄する。
- 1 つのアーキテクチャ命令が複数個の μ OP 命令に分解された場合、コミット自体は μ OP 命令単位で可能である。ただし、PC は最後の μ OP 命令がコミットされた時点で更新される。

No Exception Mode 4.5.1.

A64FX では浮動小数点演算の例外の割り込みが通知されない設定のときにコミットを可能な 限り前倒しする機能を実装している。これによりパイプライン・ステージ全体を短くし、アウ ト・オブ・オーダのリソースの占有時間を短縮している。FPCR システムレジスタの設定が Table 4-2 のときに No Exception Mode となる。

Table 4-2 FPCR Register When No Exception Mode Is Enabled

FPCR Register Field	Field Value
FZ, FZ16	1
IDE, IXE, UFE, OFE, DZE, IOE	0

4.6. パイプライン・フラッシュ

コミット・ステージにおける命令完了判定の結果、命令の実行結果が正しくないと判断したと きはパイプライン・フラッシュが発生する。パイプライン・フラッシュには以下の2種類があ る。

非同期フラッシュ

分岐予測ミス時に発生する。分岐予測ミスした場合、後続の命令は誤ったプログラム・パスの 命令であることから命令コミットできない。したがって、後続命令は破棄される。分岐予測ミス は分岐命令が実行された時点、すなわち実行ステージで判明される。分岐予測ミスが判明する と、はじめにフロントエンドのフラッシュが行われ、正しいパスの命令フェッチが開始される。 新しくフェッチされた命令はデコードされ、Dステージで待機する。次に、分岐ミスした命令と それに先行する命令がすべてコミットしていることが確認されと、バックエンドのフラッシュが 行われる。バックエンドのフラッシュが完了すると命令のディスパッチが再開される。

同期フラッシュ

トラップ、例外発生、ロード/ストアの順序保証違反などによって発生する。これらの事象が 発生すると後続命令は誤った実行結果になることから命令コミットできない。これらの事象は命 令コミット時に判定されることから、命令コミットの時点でフロントエンドとバックエンドの両 方のパイプラインがフラッシュされる。その後、プロセッサが正しい状態になれば命令のフェッ チが再開される。同期フラッシュは、非同期フラッシュと異なってフロントエンドのフラッシュ を事前に行えないため、命令フェッチとデコード処理を隠ぺいできない。そのため、分岐予測ミ スによる非同期フラッシュより命令の実行再開までに要するペナルティが大きい。

4.7. 特殊な命令制御

アーキテクチャ命令の中には、レジスタやメモリ以外のプロセッサのアーキテクチャ・ステイ トを経由して依存が作られるものがある。これらの命令は先行命令が確実にコミットしている状 態で実行されなければならない。また、その後続命令の実行は、先行命令が確実に完了している

ことが保証されていなければならない。これらの動作を保証するために、命令デコードと命令コミットには次の2つの特殊な命令制御がある。

Pre-Sync

この制御の対象である命令は、直前の命令がコミットされるまでデコード・ステージに留め られる。

Post-Sync

この制御の対象である命令は、その命令がコミットされるまで後続命令をデコード・ステージに留める。

これらの命令制御は制御が必要なアーキテクチャ命令のみで行われる。制御対象の命令は命 令属性/レイテンシ一覧に記載されている。

命令ディスパッチ 5

デコードステージでは、アウト・オブ・オーダ・リソースへの割り当ての他にリザベーショ ン・ステーション (RS) へのディスパッチ・スケジューリングを行う。A64FX には複数の RS が あるが、各RSに接続されている実行パイプラインの機能が異なるため、命令種と命令間の依存 関係を考慮の上でスケジューリングされる。

リザベーション・ステーション 5.1.

デコードされた μOP 命令はオペレーション・フローとしてリザベーション・ステーション (RS) にディスパッチされる。RS は実行可能、かつ実行パイプラインに割り当て可能な命令のう ち最も古い命令から順にアウト・オブ・オーダで命令を発行する。A64FX の RS は 5 分割されて おり、それぞれに異なる実行パイプラインが接続されている。各 RS について各々のエントリ 数、および接続される実行パイプラインを Table 5-1 に示す。

		1
RS	Number of Entries	Execution Pipeline
RSE0	20	EXA, FLA, PR
RSE1	20	EXB, FLB
RSA0	10	EACA EACD
RSA1	10	EAGA, EAGB
RSBR	19	BR

Table 5-1 Number of Entries and Connected Execution Pipelines of Each RS

RSEO/RSE1 は実行パイプラインの接続関係から互いの実行パイプラインに命令を発行できな いが、RSA0/RSA1は互いの実行パイプラインに命令を発行できる。RS のエントリは CSE や FP /SP などのアウト・オブ・オーダ・リソースとは異なり、命令が発行されると解放される。割り 当てと解放のステージについては 2.8 章の Table 2-6 に記述している。

各 RS は 2 つの書き込みポートと 2 つの発行ポートをそれぞれ持つ。そのため同一の RS にデ ィスパッチできる命令は 2 命令に制限される。同様に同一の RS から発行できる命令は 2 命令ま でとなる。

命令のディスパッチ属性 5.2.

A64FX では RS と実行パイプラインの接続関係から、オペレーション・フローの種類によって ディスパッチできる RS に制限がある。例えば、EXA パイプラインでしか実行できないオペレー ションは RSEO にしかディスパッチできない。このため、オペレーション・フローのディスパッ チ先はオペレーション・フローが実行可能なパイプラインと強い結びつきがある。本章ではディ スパッチ動作の説明のため、オペレーション・フローのディスパッチ可能な RS を属性として

Table 5-2 のように定義する。なお、アーキテクチャ命令とオペレーション・フローとその実行パイプラインの関連については命令属性/レイテンシ一覧に記載している。

Table 5-2 Attributes of Instructions and Operation-Flows

Attribute	Dispatch-Enabled RS	Destination Execution Pipeline
RSX	RSE0, RSE1, RSA0, RSA1	EXA, EXB, EAGA, EAGB
RSE	RSE0, RSE1	EXA, EXB, FLA, FLB
RSA	RSA0, RSA1	EAGA, EAGB
RSE0 only	RSE0	EXA, FLA, PR
RSE1 only	RSE1	EXB, FLB

また、ディスパッチに必要なリソースとして RS のほかに Temporary Operand Register (TOR) を要する命令がある。TOR はプログラム・カウンタから演算器にオペランドを中継するレジスタである。TOR が必要な命令を Table 5-3 に示す。

Table 5-3 Instructions That Require TOR

Attribute	Instruction
TOR	LDR{SW } (literal) ADR{P } BL{R } MRS

5.3. 命令の依存関係の検出

2.7章で述べたように、A64FXでは異なる実行パイプライン間でオペランド・バイパスが行われる際にペナルティが生じる。特に整数演算命令は本来の演算レイテンシに対するペナルティの割合が大きいことから、命令間でオペランド依存があるときには可能な限り同じ実行パイプラインに発行することが望ましい。これを実現するため、A64FXはデコード時に命令間のオペランドの依存関係を検出している。デコーダは以下の条件がすべて成立したときに命令間に依存があると判断する。

- EXA, EXB, EAGA, EAGB パイプラインで実行される算術演算命令、論理演算命令、シフト命令である。
- 連続する前後2命令間のオペランドに依存関係がある、もしくは2命令ともに NZCV レジスタを使用している。
- 後続側の命令が RSX 属性、または RSE 属性である。

命令間の依存関係を検出すると、対象の命令は Dependence グループを形成する。依存関係の 検出は常に前後 2 命令間で行われるため、Figure 5-1 に示すように連続する命令間で依存関係が あるときに Dependence グループが形成される。また、Figure 5-2 に示すようにデコード・ウィン ドウが異なる 2 命令間においてはデコード・ウィンドウのスロット 0 の命令と、1 つ前のデコー ド・ウィンドウのスロット 3 の命令に限って依存関係を検出して Dependence グループを形成で きる。

Figure 5-1 Example of Two Instructions That Have Dependency in Same Decode Window

Figure 5-2 Example of Two Instructions That Have Dependency **Across Different Decode Windows**

命令ディスパッチ動作 5.4.

μOP 命令は、CSE、リネーミングレジスタ、VFP、VSP の割り当てが完了すると、オペレーシ ョン・フローとして、RS にディスパッチされる。このときフローの分割が行われる命令もあ る。RSへのディスパッチは、ディスパッチ属性や Dependence グループ、RS の使用エントリ数 などを考慮して割り振りが決定される。デコーダは前述した命令のディスパッチ属性ごとに RS 割り振りルールを持っており、そのルールを使って基本となる RS の割り当て先を決定する。そ れぞれの割り振りルールについてまとめる。

RSX 属性命令

RSX 属性の命令は、RSE0/1、RSA0/1 のどの RS にもディスパッチできる。RS への振り分け は Table 5-4 に示すようにデコーダのスロットごとに割り当て先を決めるテーブルに基づいて行 われる。このテーブルには、RSの使用数のバランスをとるため5つの割り振りパターンが用意 されている。表中の RSEm/f は、RSE0/1 のうち空エントリ数が多いほうが RSEm、少ないほう が RSEf ということを意味している。RSA についても同様である。

Table 5-4 Allocation Table for Instructions with RSX Attribute

	Table 1	Table 2	Table 3	Table 4	Table 5
Slot 0	RSEm	RSEm	RSAm	RSEm	RSAm
Slot 1	RSEm	RSEf	RSAf	RSEf	RSAf
Slot 2	RSEm	RSEm	RSAm	RSAm	RSEm
Slot 3	RSEm	RSEf	RSAf	RSAf	RSEf

このテーブルは RS の空エントリを考慮して選択される。選択のルールは以下の条件と Figure 5-3 に示す条件の組み合わせで決まる。

- 条件1: RSA0/1 双方に空きが無く、RSE0/1 双方に空きがある。または、RSE0/1 の 空きの合計数から RSA0/1 の空きの合計数を差し引いた数がしきい値以上。
- 条件2: RSE0/1 双方に空きが無く、RSA0/1 双方に空きがある。または、RSA0/1 の 空きの合計数から RSE0/1 の空きの合計数を差し引いた数がしきい値以上。
- 条件3:RSE0/1の空き数の差分がしきい値以上。
- 条件 4: RSE0/1 のどちら一方が、RSBR を除く RS の中で最も空き数が多い。

Figure 5-3 Allocation Table Selection Rule for Instructions with RSX Attribute

RSE 属性命令と RSA 属性命令

これらの属性の命令は、それぞれ RSEと RSA にしかディスパッチできない命令である。その ため、それぞれの RS の 0 番か 1番に割り当て先を決定すればよい。Table 5-5 に割り振りテーブ ルを示す。

Table 5-5 Allocation Table for Instructions with Either RSE or RSA Attribute

	Table 6	Table 7
Slot 0		RS{E A}0
Slot 1	DC (EIA)	RS {E A}1
Slot 2	RS{E A}m	RS {E A}0
Slot 3		RS{E A}1

割り振りテーブルの選択は条件5と Figure 5-4 の組み合わせで選択される。

条件 5: RSEm / RSAm に空きがあり、かつ RSEf / RSAf に空きがない。

Figure 5-4 Allocation Table Selection Rule for Instructions with RSE or RSA Attribute

RSE0 only 属性命令と RSE1 only 属性命令

これらの属性の命令は割り当て可能な RS が1つしかないため、割り振りテーブルはなく、属 性が示す RS にそのまま割り当てられる。

Dependence グループの命令

Dependence グループを作る命令は、グループの先頭の命令のみ命令属性に基づいた割り当て が行われる。後続命令は先頭命令と同じ RS に暗黙に割り当てが決定される。

デコード・ステージの各スロットの命令は、個別に上記の割り振りルールに基づいて割り当て RSが決定される。そのため、デコード・ステージ全体では3命令以上の命令が同一のRSに割 り当てられることがある。各RSは2つの書き込みポートしか持っていないため、同一サイクル に2命令までしかディスパッチできない。この場合、初めの2命令のみディスパッチを行い、残 りの命令はディスパッチされない。改めて次のサイクルでディスパッチされることになる。

また、TOR を使用する命令は TOR に空エントリがなければならず、かつ、同一サイクルに1 命令しかディスパッチできないという制約がある。

6. 命令実行

リザベーション・ステーション (RS) にディスパッチされたオペレーション・フローは、アウト・オブ・オーダにスケジューリングされ実行パイプラインに発行される。発行されたフローは実行パイプラインに実装されている演算器で実行される。命令実行とは、広義ではロード/ストア命令のメモリ・アクセスまで含むが、本章では演算命令の演算を行うパイプライン、およびロード/ストア命令の実効アドレス演算パイプラインのアドレス演算ステージ部分を実行パイプラインとして取り扱う。

6.1. 命令発行

オペレーション・フローはソース・オペランドが利用可能になるまで RS にて待機する。ソース・オペランドが利用可能になったフローは実行可能状態に遷移する。RS は実行可能なフローの中からより古く、かつ、発行先のパイプラインが使用可能なものを選択して発行する。これは RSA でスケジューリングされるロード/ストアのオペレーション・フローも同様である。オペレーション・フローの発行は基本的に RSEO、RSE1、RSA が独立に制御されるが、複数の実行パイプラインが連携してフローを実行する必要があるときは同期制御を行う。また、RSAO、RSA1 はそれぞれ EAGA/EAGB パイプラインに投入できるため、常に互いに同期して制御している。また、実行ステージでのオペレーション・フロー分割の対象のフローはこの時に分割される。

すなわち、RSの1エントリから2つ以上のフローが発行される動作となる。

6.2. 実行パイプライン

実行パイプラインと主な演算器の組み合わせを Table 6-1 に示す。実行パイプラインは大きく 5 系統に分けられ、それぞれのパイプラインには演算器群である演算ユニットが配置されている。

Table 6-1 Execution Pipelines

Pipeline Group	Pipeline	Function			
Total and a simple state of the same state of th	EXA	Arithmetic & logic, shift, multiplication			
Integer operation pipelines	EXB	Arithmetic & logic, shift, division			
A.11	EAGA				
Address calculation pipelines	EAGB	Address calculation, arithmetic & logic			
Floating-point operation pipelines	FLA	Integer arithmetic & logic, shift, floating-point arithmetic & multiply-add, floating-point division, crypto calculation, vector address calculation			
	FLB	Integer arithmetic & logic, shift, floating-point arithmetic & multiply-add			
Predicate operation pipeline	PR	Predicate manipulation			
Branch pipeline	BR				

整数演算系パイプラインは主に整数命令の演算を担当する。アドレス演算系パイプラインには 実効アドレス生成のための演算器と、部分的な機能を持った整数 ALU (Arithmetic Logic Unit) が 実装されており、整数演算命令の一部を実行できる。浮動小数点演算系は SIMD&FP と SVE の 演算命令を実行できる。

Figure 6-1 に示すように、各演算パイプラインはそれぞれリザベーション・ステーション (RS) に割り当てられている。基本的に各パイプラインは独立して動作するが、EXA パイプラインと PR パイプラインは RSE0 の発行ポートを共有することから同時に命令を投入できないという制 約がある。

アドレス演算系のパイプラインは、ロード/ストア・パイプラインに接続されていて、ロード /ストア命令の実効アドレスの演算結果は直接ロード/ストア・パイプラインに送られる。

Figure 6-1 Outline of Execution Unit

6.3. ブロッキング制御

いくつかのオペレーション・フローにはパイプライン処理できないものがある。このための制御をブロッキングと呼ぶ。ブロッキング制御にはパイプライン・ブロッキングと演算ブロッキングがある。パイプライン・ブロッキングとは、あるパイプラインにおいて演算を実行しているとき、それが終了するまで後続の命令発行を受け付けない制御である。演算ブロッキングとは、演算ブロッキングの属性を持つ命令を実行しているとき、それが終了するまで同じ演算ブロッキング属性の命令発行を受け付けない制御である。パイプライン・ブロッキングではそのパイプラインにいかなる後続命令も発行できないのに対し、演算ブロッキングでは発行できない後続命令は演算ブロッキング型の命令のみであるという点で異なる。例えば、演算ブロッキング型であるSDIV命令は実行に9~42 サイクルを要する。このとき、実行完了まで演算ブロッキング型の命令は発行できないが、他の命令であれば発行できる。命令ごとのブロッキング属性は命令属性/レイテンシー覧表に記載している。

6.4. 物理レジスタ・ファイル

A64FX の物理レジスタ・ファイルは、アーキテクチャ・レジスタの種類ごとに分けられて実装されている。各物理レジスタ・ファイルの読み出しポート、書き込みポートと実行パイプラインの接続関係を Figure 6-2 に示す。

Figure 6-2 Connection Relationship Between Physical Register Files and Execution Pipelines

特殊な命令制御 6.5.

Merging Predication 6.5.1.

Merging predication 指示の SVE 命令は Predicate レジスタの条件によってディスティネーショ ン・レジスタを部分的に更新することができる。このとき、Inactive な要素は前値が保持され る。A64FXでは、この前値保持の操作を演算結果の出力とディスティネーション・レジスタと の各要素の選択的結合操作として実装している。そのため、デストラクティブ命令と同様にディ スティネーション・レジスタがソース・オペランドとしても使用されることに注意が必要であ る。なお、MOVPRFX 命令の修飾にて Zeroing predication を指示することで、ディスティネーシ ョン・レジスタのソース・オペランドとしての使用を抑止することができる。

一方で 4.3 章での説明のように、A64FX では MOVPRFX 命令に修飾された命令は Pack 処理さ れて1つのアーキテクチャ命令としてデコードされる。Pack 処理された命令の μOP 命令分解数 は基本的に被修飾のアーキテクチャ命令の分解数に等しい。しかしながら、この修飾で Merging predication が指定されているときに限り、追加の μOP 命令が生成される場合がある。これは、前 述のようにディスティネーション・レジスタの読み出しが必要になり、被修飾の命令によっては Pack 処理後のソース・オペランド数が 1 命令あたりの同時レジスタ読み出し数の上限を超えて しまうためである。このような場合、レジスタ読み出しのための μOP 命令を追加生成すること でレジスタ読み出し数の制限を回避している。追加されるレジスタ読み出し μOP 命令は最大で $1\mu OP$ 命令であり、実行レイテンシは 4 サイクルである。この μOP 命令は演算の最終 μOP 命令 との間に依存関係があることに注意が必要である。MOVPRFX 命令に修飾され、かつ Merging predicaion 指示のときに μOP 命令が追加される命令は命令属性/レイテンシ一覧に記載されてい る。

レジスタ間転送 6.5.2.

汎用レジスタ、浮動小数点レジスタ、Predicate レジスタを横断的に使用する命令は、それぞれ のレジスタの値を転送するために特殊な制御が必要である。これは、各物理レジスタの読み出し ポートと書き込みポートがすべての実行パイプライン系統に接続していないためである。そのた め、複数のパイプライン系統を同期させて転送を処理している。レジスタの組み合わせと転送方 向により制御が異なるため、例を用いて説明する。

汎用レジスタから浮動小数点レジスタへの転送

FMOV (general) 命令、SCVTF 命令などにおいて、ソース・レジスタに汎用レジスタ、ディス ティネーション・レジスタに SIMD&FP レジスタを指定したときの動作である。これらの命令 は、汎用物理レジスタからソース・オペランドを読み出す EXA で実行されるオペレーション・ フロー (EXA フロー) と、浮動小数点物理レジスタにオペランドを書き込む FLA で実行される オペレーション・フロー (FLA フロー) に分割されて実行される。フロー実行のタイムチャート を Figure 6-3 に示す。

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
EXA flow	D	DT	P	PT	В1	В2	X												
FLA flow					P	PT	PT2	PT3	В1	B2	X1	X2	Х3	X4	X5	X6	U C	UT W	W2

Figure 6-3 Flow Time Chart of Transfer Instruction from General-Purpose Register to Floating-Point Register

浮動小数点レジスタから汎用レジスタへの転送

FMOV (general) 命令、FCVTZ* 命令などにおいて、ソース・レジスタに SIMD&FP レジス タ、ディスティネーション・レジスタに汎用レジスタを指定したときの動作である。これらの命 令はロード/ストア・パイプラインを使ってオペランドが転送される。FLA にて実行される浮動 小数点物理レジスタからソース・オペランドを読み出すオペレーション・フロー (FLA フロー) と、ロード/ストア・パイプラインにて実行される汎用物理レジスタにオペランドを書き込む LD フローの2つに分割されて実行される。LD フローは0/1番のどちらのパイプラインでも実 行できる。フロー実行のタイムチャートを Figure 6-4 に示す。なお、FLA フローと LD フローは 実際は非同期であるため、LDフローはさらに後方のタイミングで実行される可能性がある。

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
FLA flow	D	DT	P	PT	PT2	PT3	B1	B2	X	U	UT	UT2	UT3	UT4									
1st LD flow			P	PT	В1	В2	A	T	M	В	R	RT											
2 nd LD flow														A	Т	M	В	R	RT	RT2	С	W	W2

Figure 6-4 Flow Time Chart of Transfer Instruction from Floating-Point Register to General-Purpose Register

非正規化数の演算 6.5.3.

A64FX では浮動小数点表現の非正規化数の演算を特殊なプロセッサ・モードを用いてハード ウェアで実行している。このため、非正規化数の演算におけるレイテンシ、スループットは正規 化数の演算のそれとは全く異なる。一例として、倍精度の FADD (scalar) 命令のレイテンシは約 90 サイクルである。このモードでは各演算処理が完全にイン・オーダ、かつブロッキング化さ れるため、演算のオペレーション・フロー数に比例して実行時間が増加する。

メモリ・アクセス 7.

メモリ・アクセスはロード/ストア・パイプラインにて処理される。リザベーション・ステー ションから発行されたロード/ストアのオペレーション・フローは、実効アドレスを計算されて ロード/ストア・パイプラインに投入される。ロード/ストア・パイプラインは仮想アドレス変 換を行って LID キャッシュヘアクセスし、ロードのオペレーション・フローならばデータを読 み出し、ストアのオペレーション・フローならばデータを書き込む。また、ロード/ストア・パ イプラインはキャッシュミス時の処理も取り扱う。

ロード/ストア・パイプラインの概要 7.1.

ロード/ストア・パイプラインの主な構成モジュール、およびパイプライン・ステージを Figure 7-1 に示す。

Figure 7-1 Outline of Load/Store Unit

図中の各モジュールの役割を以下にまとめる。

Fetch port (FP)

ロード/ストア命令の実行順序を管理するためのキューである。命令の順序のみを管理 する Virtual Fetch Port (VFP) と、ロード/ストアのアクセス順序も管理する Real Fetch Port (RFP) が実装されている。VFP にはデコード時にロード/ストア命令がインオーダで割り 当てられる。RFP にはロード/ストアのオペレーション・フローが発行されるときに、ア ウト・オブ・オーダで割り当てられる。VFP、RFP ともに命令の実行が完了した時点で解 放可能となり、イン・オーダで解放される。

Store port (SP)

ストア命令の実行順序とストア・データを管理するためのキューである。命令の順序の みを管理する Virtual Store Port (VSP) と、ロード/ストアのアクセス順序も管理する Real Store Port (RSP)が実装されている。VSP にはデコード時にストア命令がインオーダで割り 当てられる。RSPにはストアのオペレーション・フローが発行されるときに、アウト・オ ブ・オーダで割り当てられる。VSP、RSPともにストア命令がコミットし、ストア・デー タが Write buffer に書き込まれると解放される。

Write buffer (WB)

SP にあるストア・データを L1D キャッシュに書き込む前に一時的に保持するバッファ である。ストア命令のコミット動作と L1D キャッシュへの書き込み動作を分離するため に設けられている。

L1-DTLB

データ・アクセスに必要なアドレス変換情報を保持する1次 TLB である。

L2-DTLB

データ・アクセスに必要なアドレス変換情報を保持する2次 TLB である。パイプライ ン上には現れないが、ロード/ストア・ユニット内に実装されている。

L1D キャッシュ

L1D キャッシュのデータとタグ情報を保持する RAM である。

EAGA, EAGB

ロード/ストア命令の実効アドレスを生成する演算器である。演算ユニットに区分され るが、パイプラインステージ上ではPステージに位置する。

ロード/ストア・ユニットにおいては2本(0番、1番)のパイプラインが実装されている。2 本のパイプラインは基本的には同様の機能を有しているが、L1D キャッシュへの書き込みリクエ スト処理については1番パイプラインのみが処理できる。

ロード/ストアのパイプラインはショートとロングの2つの動作モードを持っている。これら の動作モードは、基本的には命令によって決まっている。各命令の動作モードと各ロード命令の load-to-use レイテンシを Table 7-1 に示す。ただし、2.9 章のレイテンシ切り替えで述べたよう に、オペレーション・フローが後方ステージで衝突する場合にはレイテンシ切り替えが発生す る。

Table 7-1 Latencies of Load/Store Instructions

Instruction	Functional Mode	Load-to-Use Latency	After Latency Change
Integer load instruction	Short	5 cycles	8 cycles
Integer store instruction	Short	-	-
SIMD&FP load instruction	Short	8 cycles	11 cycles
SIMD&FP store instruction	Short	-	-
SVE load instruction, and part of SIMD&FP instructions	Long	11 cycles	-
SVE store instruction	Long	-	-
Predicate load instruction	Long	9 cycles	-
Predicate store instruction	Long	-	-

ロード/ストアの基本処理 7.2.

ロード/ストア・パイプラインは、主にロード/ストア命令のメモリ・アクセスと LID キャ ッシュのデータ・フィル/ライトバックを処理する。これらは以下の基本的なオペレーション・ フローで処理される。

LD フロー

ロード命令のメモリ・アクセスを行うフローである。仮想アドレス変換とLID キャッ シュへのアクセスのすべての操作を行う。

STO フロー

ストア命令の仮想アドレス変換と、L1D キャッシュのタグアクセスを行うフローであ る。LID キャッシュへのデータの書き込みは行わない。タグにアクセスすることでLID キャッシュのヒットチェックを行う。

ST2 フロー

ストアデータをL1D キャッシュに書き込むフローである。1番パイプラインでのみ実 行できる。

MI フロー

データ・フィルのための Move-In 操作を行うフローである。1 キャッシュラインの Move-In に 4 フローを必要とする。0/1 番の両パイプラインが同期して 2 フローずつ実行 する。

MO フロー

ライトバックのための Move-Out 操作を行うフローである。基本的に 1 キャッシュライ ンの Move-Out に 4 フローを必要とする。ただし、ライトバック対象のキャッシュライン が clean であるときは2フローになる。0/1番 の両パイプラインが同期して2フローず つ、または1フローずつ実行する。

7.2.1. ロード命令

ロード命令の基本動作について説明する。

- 1. ロード命令が μ OP 命令にデコードされて VFP のエントリに割り当てられる。ロード μ OP 命令は 1 つの LD フローとして RSA にディスパッチされる。
- 2. LD フローが実行可能になると RSA から発行される。EAGA / EAGB にて実効アドレスが 計算され、0/1 番パイプラインに投入される。
- 3. EAGA/EAGB から投入された LD フローは、調停スケジューラにて選択されるとペナル ティなく 0/1 番パイプラインに投入される。同時に RFP のエントリに実効アドレスを書き込む。0/1 番パイプラインには EAGA/EAGB だけでなく RFP と WB も接続されており、それらのオペレーション・フローも実行する。どのオペレーション・フローを実行するかを調停スケジューラが決定する。
- 4. "3." において、EAGA / EAGB から投入された LD フローがスケジューラに選択されなかったときは 0/1 番パイプラインに投入されない。LD フローは RFP に実行可能状態で待機する。
- 5. LD フローは 0/1 番パイプラインにて L1-DTLB でアドレス変換を行いつつ、L1D キャッシュのタグとデータを読み出す。L1-DTLB と L1D キャッシュにヒットすれば、所定のパイプライン・ステージに沿ってデータを読み出し、レジスタにデータを書き込む。LD フローの実行は完了する。
- 6. "5." にて L1-DTLB にヒットしないときは、L2-DTLB と Translation Table を段階的に検索 し、仮想アドレス変換情報を取得する。L1D キャッシュミスのときは下位のキャッシュ 階層からデータを取得しデータ・フィルを行う。このとき、MI フローと MO フローが実 行される。
- 7. L1-DTLB、または L1D キャッシュ・ミスが解決すると、再度 RFP から LD フローが 0/1 番パイプラインに投入されて実行される。
- 8. LD フローが実行完了するとロード μOP 命令はコミット可能となる。VFP、RFP のエント リはコミットを待たず、先行のロードが完了していれば解放される。

LD フローの処理は L1-DTLB と L1D キャッシュにヒットする限り、基本的に 1 フローで完了する。しかし、キャッシュ・ミスが発生するとパイプラインへの再投入が必要になるため、LD フローは複数回実行される。また、後述の Multiple Structures 命令や Gather / Scatter 命令はアドレスパターンにより、キャッシュにヒットするときでも複数のフローに分割され実行される。

7.2.2. ストア命令

ストア命令の基本動作を説明する。

- 1. ストア命令は μOP 命令にデコードされ、VFP と VSP の各エントリに割り当てられる。ストア μOP 命令は ST0 フローとデータ転送フローに分けられてディスパッチされる。ST0フローは RSA にディスパッチされる。データ転送フローはストア命令特有のフローで、ストアデータをレジスタから RSP に転送するためのものある。データ転送フローは RSE0 にディスパッチされる。
- 2. データ転送フローは実行可能になると RSEO から発行される。このデータ転送フローの 実行は STO フローとは非同期であり、どちらが先に実行されるかは決まっていない。

- 3. STO フローが実行可能になると RSA から発行される。EAGA / EAGB にて実効アドレス が計算され、0/1 番パイプラインに投入される。
- 4. EAGA / EAGB から投入された STO フローは、調停スケジューラにて選択されると 0/1 番パイプラインに投入される。同時に RFP と RSP のエントリに実効アドレスを書き込む。
- 5. "4"において STO フローが調停スケジューラに選択されなかったときは、0/1番パイプラインに投入されずに STO フローは RFP に実行可能状態で待機する。
- 6. STO フローは 0/1 番パイプラインにて L1-DTLB でアドレス変換を行いつつ、L1D キャッシュのタグ読み出しのみを行う。L1-DTLB にヒットすれば、アドレス変換後の物理アドレスを SP に保存する。L1D キャッシュにヒットしないときは、下位のキャッシュ階層にデータ要求のリクエストを起動する。どちらの場合でも STO フローの実行は完了する
- 7. "6" において L1-DTLB にヒットしないときは、L2-DTLB と Translation Table を段階的に 検索し、仮想アドレス変換情報を取得する。取得後に ST0 フローを再投入する。
- 8. "6"において起動されたデータ要求のリクエストは、STO フローの実行とは独立にキャッシュ・ミスの処理を行う。このとき、MI フローと MO フローが実行されてデータ・フィルが行われる。
- 9. ST0 フローとデータ転送フローの実行が完了すると、ストア μ OP 命令はコミット可能となる。ストア μ OP 命令がコミットされると、RSP からストアの物理アドレスとデータがWB に移される。
- 10. WB から ST2 フローが起動されて 1 番パイプラインに投入される。L1D キャッシュにヒットするとデータ書き込みを行い ST2 フローの実行が完了する。
- 11. "10" において L1D キャッシュ・ミスが発生したときは、再度キャッシュ・ミスの処理を 行う。キャッシュ・ミスが解決されると ST2 フローを再投入してデータ書き込みを行 う。

ストア命令は STO フローではデータ書き込みが行われず、命令のコミット後に ST2 フローで書き込みを行う。さらに、STO フローと ST2 フローのそれぞれで L1D キャッシュミスが発生する可能性があることに注意が必要である。

7.3. Fetch Port / Store Port

7.3.1. Virtual Fetch Port / Virtual Store Port

A64FX では本来の機能を持つ Fetch Port / Store Port に加えて、Virtual Fetch Port (VFP) / Virtual Store Port (VSP) が実装されている。VFP / VSP はロード/ストア命令のプログラム・オーダのみを管理する。それに加えて Fetch Port / Store Port はロード/ストアのアドレスを保持してメモリ・アクセスの実行順序も管理する。本書では Virtual Fetch Port / Virtual Store Port と区別するため、本来の Fetch Port / Store Port を Real Fetch Port (RFP) / Real Store Port (RSP) と記述する。VFP / VSP と RFP / RSP の関係を Figure 7-2 に示す。RFP / RSP には VFP / VSP の一部のウィンドウがマップされている。RFP / RSP へのマップは、ロード/ストアのオペレーション・フローがリザベーション・ステーションから発行されるときに行われる。RFP / RSP のエントリ数以上はマップできないため、その時は命令発行が制限される。VFP / VSP はデコード時に割り当てられるのに対して、RFP / RSP は命令実行時にマッピングされていればよいため、命令のデコード時に必要

な RFP/RSP を削減できる。これによって RFP/RSP のエントリ不足に起因するデコード時のストールを回避している。

Figure 7-2 Relationship Between VFP/VSP and RFP/RSP

7.3.2. Fetch Port / Store Port の割り当て数

FP/SP の割り当て数は命令種によって決まっている。基本的にロード命令は $1 \mu OP$ 命令に対して FP の $1 \times V$ トリが割り当てられる。ストア命令は $1 \mu OP$ 命令に対して FP と SP のそれぞれ $1 \times V$ トリが割り当てられる。一方で、SVE の Gather / Scatter 命令及び SVE の LD[234][BH] / ST[234][BH]命令は $1 \mu OP$ 命令に対して複数の FP/SP のエントリが割り当てられる。各命令の FP/SP の割り当て数は命令属性/レイテンシー覧表に記載している。

7.4. Write Buffer

A64FXではコミットしたストア命令のデータはWBに移され、その後スケジューラによって任意のタイミングでL1Dキャッシュに書き込まれる。これは、命令コミットとキャッシュへの書き込みという2つの操作を分離することで、コミットのストールを削減するねらいがある。WBは基本的に1エントリあたり64バイトであり、全8エントリから構成される。L1Dキャッシュへ書き込む直前のデータを保持することから、SPとは異なり、アドレスのアライメントに関して制約がある。WBに保持されるデータは、そのサイズに応じて適切なアドレス・アライメントをとる必要がある。アライメント制約に起因して、WBにデータを書き込む際にデータ・マージ、またはデータ・スプリットと呼ばれる操作が発生する場合がある。

データ・マージ、データ・スプリットの一例を Figure 7-3 に示す。WB が 64 バイト長の書き込みデータを保持するとき、アライメントは 64 バイトである必要がある。ストア・データのアドレスが 64 バイト・アライメントでない場合には、データは 64 バイト境界でスプリットされてから WB に書き込まれる。反対に、SP からストア・データを書き込む時点で先行するエントリに空きがある場合には、そのエントリに対して部分的にデータを書き込んだ上でマージすることができる。マージは複数回行えるため、データ長が小さい命令は L1D キャッシュへの書き込み回

数が相対的に少なくなることがある。なお、WBマージはメモリ・オーダリングの制約内で行う ため、上記条件を満たしていても行われない場合もある。

Figure 7-3 Store Data Write from SP to WB

WBのエントリが管理するデータ長とマージ機能の動作は命令によって異なる。関係を Table 7-2 に示す。

Table 7-2 Data Length and Merge Function Availability for Each Instruction Managed by WB Entry

	Instruction	Data Length	Merging
Integer instruction	STLR*, STNP, STP, STR*, STTR*, STUR*	16 bytes	✓
	STNP, STP, STR, STUR	16 bytes	✓
	ST[1234] (single structure)	16 bytes	✓
SIMD&FP instruction	ST1 (multiple structures) - {1D 2D 2S 4H 8B}	16 bytes	✓
	ST1 (multiple structures) - {4S 8H 16B}	64 bytes	✓
	ST[234] (multiple structures)	64 bytes	✓
	ST1[BHWD] (contiguous)	64 bytes	✓
	ST1[BHWD] (scatter)	64 bytes	✓
SVE instruction	ST[234][BH]	64 bytes	✓
	ST[234][WD]	128 bytes	
	STR (vector), STR (predicate)	64 bytes	

7.5. ロード/ストアのアウト・オブ・オーダ

実行

A64FXではロード/ストア命令を基本的にはアウト・オブ・オーダで実行している。一方 で、メモリ依存のあるストア命令とロード命令は依存関係を検出した上で正しい順序で実行しな ければならない。メモリ依存のあるストア命令とロード命令は基本的に以下の2つの動作で順序 保証をしている。

Store Fetch Interlock (SFI)

先行するストア命令の LID キャッシュ書き込み、すなわち ST2 フローの完了まで後続 のロード命令の実行を待たせる動作である。先行ストア命令の物理アドレスが確定してい るときは、後続のロード命令の LD フローは 0/1番パイプラインに投入される。先行スト アのアドレスとの一致を検出すると実行をキャンセルし、LD フローは RFP でストアの完 了まで待機する。

パイプライン・フラッシュ

先行ストア命令の物理アドレスが未確定のときの動作である。先行ストア命令の物理ア ドレスが未確定の状態では後続のロード命令とのメモリ依存を検出できないため、後続の ロード命令のLDフローは投機的に実行される。その後、先行ストア命令のST0フローの 実行時に実行済みのロード命令のアドレスと比較する。これにより、メモリ依存が検出さ れるとストア命令のコミット時にパイプライン・フラッシュを行い、ロード命令は再実行 される。

Store Fetch Bypass 7.5.1.

前述のように、Store Fetch Interlock (SFI) はストア命令が完全に完了するまで後続のロード命 令の実行を止めてしまうことから性能への影響が大きい。このペナルティを緩和するために Store Fetch Bypass (SFB) が実装されている。SFBとは、後続のロード命令が先行ストア命令デー

タを SP または WB から読み出す機能である。この機能により、ロード命令はストア命令の完了 を待たずに実行することができる。ただし、SFB はハードウェアの実装制約からすべてのロード 命令とストア命令の組み合わせで実行できるわけではない。SFB が可能な組み合わせを Table 7-3 と Table 7-4 に示す。また、前述のように WB はアドレスのアライメントに制約があり、かつ 2 エントリをまたいでのバイパス・データの読み出しができないことから、SFB を実行させるには バイパス対象のデータが1エントリに収まっている必要がある。

Table 7-3 SFB Availability for Each Combination of Load and Store Instructions

Load Instruction Store Instruction		LD (2-1)	LD (2-2)	LD (4-1)	LD (4-2)	LD (8-1)	LD (8-2)	LD (16)	LD (32)	LD (64)
ST (1)	✓									
ST (2-1)	✓	✓								
ST (2-2)			✓							
ST (4-1)	✓	✓		✓						
ST (4-2)					✓					
ST (8-1)	✓	✓		✓		✓				
ST (8-2)							✓			
ST (16)								✓		
ST (32)									✓	
ST (64)										✓

Table 7-4 Specific Instructions of Each Group Shown in SFB Availability Table

Group Name	Instruction	Group Name	Instruction
LD (1)	Length = 1 byte LDR*B (general) LDTR*B (general) LDR (SIMD&FP) – B LDUR (SIMD&FP) – B	ST (1)	Length = 1 byte STRB (general) STR (SIMD&FP) – B STUR (SIMD&FP) – B
LD (2-1)	Length = 2 bytes LDR*H (general) LDTR*H (general) LDR (SIMD&FP) – H LDUR (SIMD&FP) – H	ST (2-1)	Length = 2 bytes STRH (general) STR (SIMD&FP) – H STUR (SIMD&FP) – H
LD (2-2)	Length = 2 bytes LDR (predicate) : VL = 128-bit	ST (2-2)	Length = 2 bytes STR (predicate) : VL = 128-bit
LD (4-1)	Length = 4 bytes LDR (general) – W LDTR (general) – W LDR (SIMD&FP) – S LDUR (SIMD&FP) – S	ST (4-1)	Length = 4 bytes STR (general) – W STR (SIMD&FP) – S STUR (SIMD&FP) – S
LD (4-2)	Length = 4 bytes LDR (predicate) : VL = 256-bit	ST (4-2)	Length = 4 bytes STR (predicate) : VL = 256-bit
LD (8-1)	Length = 8 bytes LDR (general) – X LDTR (general) – X LDR (SIMD&FP) – D LDUR (SIMD&FP) – D LD1 (multiple structure, 1 register) - {8B 4H 2S 1D}	ST (8-1)	Length = 8 bytes STR (general) – X STR (SIMD&FP) – D STUR (SIMD&FP) – D ST1 (multiple structure, 1 register) - {8B 4H 2S 1D}
LD (8-2)	Length = 8 bytes LDR (predicate) : VL = 512-bit	ST (8-2)	Length = 8 bytes STR (predicate) : VL = 512-bit
LD (16)	Length = 16 bytes LDR (vector) : VL = 128-bit	ST (16)	Length = 16 bytes STR (vector) : VL = 128-bit
LD (32)	Length = 32 bytes LDR (vector) : VL = 256-bit	ST (32)	Length = 32 bytes STR (vector) : VL = 256-bit
LD (64)	Length = 64 bytes LDR (vector): VL = 512-bit	ST (64)	Length = 64 bytes STR (vector) : VL = 512-bit

7.5.2. アウト・オブ・オーダ実行の制約

ロード/ストア命令は、ロード/ストアの対象アドレスが異なっていれば基本的にアウト・オ ブ・オーダで実行しても構わない。しかしながら、ハードウェアの実装制約からアドレス一致の 検出は理想的にはなっていない。そのため、いくつかの条件において疑似的にメモリ依存を検出 してしまい、アウト・オブ・オーダ実行の制限が発生する。以下にその条件をまとめる。

Predicate 修飾のロード/ストア命令の inactive 要素における制約 メモリ依存の検出はロード/ストア命令のすべての要素が active と扱われる。そのた め、本来 inactive な要素のアドレス間で疑似メモリ依存が発生する。例外的に、ストア命 令の要素がすべて inactive の時にはストア操作そのものが省略されることから疑似メモリ 依存は発生しない。

Gather load 命令における制約

Gather load 命令の2ペアの要素のオペレーション・フローが分割されずに実行されると き、その2ペアが含まれるキャッシュ・ラインの全体がメモリ依存の検出単位となる。 本来の2要素のアクセス以外の範囲で疑似メモリ依存が発生する。

memsize が 4 バイト未満のロード/ストア命令における制約

SIMD&FP の Vector ロード/ストア命令と SVE のロード/ストア命令では、メモリ依存 の検出は4バイト境界単位で行われる。アクセスの先頭アドレスと終端アドレスがそれ ぞれ4バイト境界になるように拡張される。そのため、その拡張された部分で疑似メモ リ依存が発生する。

Multiple Structures 命令における制約

7.8.1 章での説明の通り、Multiple Structures 命令のメモリ・アクセスはレジスタ単位で行 われる。これらのメモリ・アクセスの空間は memsize と Element 数、レジスタ数の積と して取り扱われる。さらに、メモリ依存の検出がキャッシュ・ラインとなる。アクセス 空間に含まれるキャッシュ・ラインがすべて検出対象となる。そのため、本来のアクセ ス範囲以外で疑似メモリ依存が発生する。また、SVE の LD[234] / ST[234]においては、 常に Vector Length が 512-bit であるとして扱われる。

4KiB 境界をまたぐロード/ストア命令における制約

少なくとも memsize の単位でアライメントされているロード/ストア命令が 4KiB 境界を またいでアクセスするときは、メモリ依存が完全な物理アドレスで検出されない。その ため、物理アドレスが異なるときであっても疑似メモリ依存が発生する場合がある。

インフライト中のロード/ストア命令における制約

ロード/ストア・パイプラインをインフライト中のロード/ストア命令間のメモリ依存 は完全な物理アドレスで行われない。そのため、物理アドレスが異なるときでも疑似メ モリ依存が発生する場合がある。この制約はオペレーション・フローが FP, WB に待機し ているときには発生しない。

ストア命令の L1D キャッシュ・ミスにおける制約

ストア命令が LID キャッシュ・ミスをすると、その後続のロード命令はメモリ依存の検 出が完全な物理アドレスでは行われない。そのため、物理アドレスが異なるときでも疑 似メモリ依存が発生する場合がある。この制約はストア命令のキャッシュ・ミスが解決 すると解消される。

7.6. パイプライン競合

ロード/ストア・パイプラインの0番パイプラインと1番パイプラインは機能に差がある。そ のため、それぞれのパイプラインで任意のオペレーション・フローを実行することはできず、実 行可能なパイプラインに制約があるフローがある。また、フローの組み合わせによっては0番パ イプラインと1番パイプラインに同時に投入できないものがある。各オペレーション・フローの パイプラインの使用条件は以下の通りである。

● MIフロー、MOフロー

これらのフローは必ず2フローをペアとして0番パイプラインと1番パイプラインにて同 時に実行される。すなわち、その他のフローと同時に実行されることはない。

● LDフロー

0番パイプラインと1番パイプラインの両方で実行できる。ただし、ST2 フローとは同時に実行できない。

ST0 フロー

0番パイプラインと1番パイプラインの両方で実行できる。一部のストア命令の ST0 フローは ST2 フローと同時に実行できる。

ST2 フロー

1番パイプラインのみでしか実行できない。このとき、0番パイプラインは一部のストア 命令の ST0 フローしか同時に実行できない。

ST2 フローと同時に実行できるオペレーション・フローは ST0 フローのみである。ただし、 実装制約などからすべてのストア命令の ST0 フローが実行できるわけではない。ST2 フローと 同時に実行可能なストア命令とその条件を Table 7-5 に示す。

Table 7-5 ST0 Flow Conditions

	Instruction	Condition		
Integer instruction	$ST\{T U \}R - X$ $STP\{N \}P - X$			
SIMD&FP instruction	ST{U }R - [DQ] ST{N }P - [DQ] ST1 (single structure) - D ST1 (multiple structures) ST[234] (single structure) - D	Addresses are at least 8-byte aligned.		
	ST[1234]D (contiguous) STR (vector) STR(predicate) : VL = 512-bit			
	ST1B (contiguous)	Addresses are at least 8-byte aligned and all of Element[8n] – Element[8n+7] are either active or inactive. Figure 7-4 shows an example.		
SVE instruction	ST1H (contiguous)	Addresses are at least 8-byte aligned and all of Element[4n] – Element[4n+3] are either active or inactive.		
	ST1W (contiguous)	Addresses are at least 8-byte aligned and both Element[2n] and Element[2n+1] are either active or inactive.		
	ST1[BHW] (scatter)	When Element[n] is inactive, the ST0 flow corresponding to this element can be executed simultaneously.		
	ST1D (scatter)	When the address in Element[n] is at least 8-byte aligned or its element is inactive, the ST0 flow corresponding to this element can be executed simultaneously.		

Figure 7-4 Example of active/inactive in ST1B (Contiguous)

キャッシュ・ライン・クロス 77

ロード命令の中には、少なくとも memsize と同じアドレス・アライメントが保証されていると きであってもメモリ・アクセスの範囲が2つのキャッシュ・ラインにまたがるときがある。その ようなメモリ・アクセスをキャッシュ・ライン・クロス (ライン・クロス) と呼ぶ。

ライン・クロスにおいては、両方のキャッシュ・ラインがキャッシュ・ヒットする限りペナル ティは発生しない。このとき、LD フローは 1 フローで完了する。一方で、キャッシュ・ミスが 発生したときは、キャッシュ・ミスとなったキャッシュ・ラインが片方のみの場合であっても、 そのLDフロー全体がキャッシュ・ミスとして扱われる。また、両方のキャッシュ・ラインでキ ャッシュ・ミスが発生したときは、2つのキャッシュ・ミスの処理を同時に起動できる。

なお、ライン・クロスはロード命令のみに発生する。ストア命令の場合、WB にて書き込みの アドレスがアライメントされるためである。

特殊なロード/ストア命令の動作 7.8.

Multiple Structures 命令 7.8.1.

SIMD&FP の LD[234] (multiple structures) / ST[234] (multiple structures)、および SVE の LD[234][BHWD] / ST[234][BHWD] 命令の動作について説明する。なお、命令の仕様上の表記と しては LD1/ST1 (multiple structure) も Multiple structures 命令に属するが、命令の動作の違いから 本節での説明の対象にならない。

デコード・ステージ分解と実行ステージ分解

Multiple structures 命令は 1 命令で複数のデスティネーション・レジスタを持つ命令である。こ れらの命令はデコード・ステージにて複数の μOP 命令にデコードされる。基本的にはデスティ ネーション・レジスタ数分の μOP 命令に分解される。アドレッシング・モードによっては、さ らにアドレス生成のための補助的な μOP 命令が追加されることもある。この補助 μOP 命令はア ドレス演算のみを行い、メモリ・アクセスは行わないためロード/ストア・ユニットには送られ ない。

ロード/ストア・ユニットに送られる μOP 命令はメモリ・アクセスのための μOP 命令のみで ある。基本的にはデスティネーション・レジスタ数と同一であるが、LD[234][BH] / ST[234][BH] 命令に限っては実行ステージにおいてさらに4分割される。各命令のロード/ストア・ユニット に送られるのに必要なフロー数を Table 7-6 に示す。このフロー数は実質 FP/SP の割り当て数に 等しい。それぞれの分解数は命令属性/レイテンシ一覧表に記載している。

Table 7-6 Required Number of Flows for μOP Instructions Split from Architecture Instruction to Send to Load/Store

Architecture Instruction	Required Number of Flows
LD2 (multiple structures) LD2[WD] ST2 (multiple structures) ST2[WD]	2
LD3 (multiple structures) LD3[WD] ST3 (multiple structures) ST3[WD]	3
LD4 (multiple structures) LD4[WD] ST4 (multiple structures) ST4[WD]	4
LD2[BH] / ST2[BH]	8
LD3[BH] / ST3[BH]	12
LD4[BH] / ST4[BH]	16

ロード/ストア・ステージ分解

LD[234][WD] / ST[234][WD] 命令では、ロード/ストア・ユニットに送られたメモリ・アクセ スのフローは、アクセス・アドレスのパターンに応じてさらに分解される。LD[234][WD]/ ST[234][WD] 命令のメモリ・アクセスはデスティネーション・レジスタ単位で行われる。つま り、1 フローあたりのメモリ・アクセスの空間はレジスタのベクトル・データ長より広く、さら に LID キャッシュの読み出し幅より広くなることがある。LID キャッシュの読み出し幅は 128 バイト、かつ 128 バイト・アライメントである。128 バイト境界をまたぐフローは逐次に分割さ れ実行される。このとき、それぞれのフローは先行フローの完了を待たなければならず、かつ先 行フローの完了から後続フローのパイプライン投入まで少なくとも5サイクルのペナルティが発 生する。

一例として LD3D (multiple structures) 命令のフロー分割イメージを Figure 7-5 に示す。

ld3d {z3.d, z4.d, z5.d}, p3/z, [x10, #0 mul v1]

Figure 7-5 Illustration of Splitting LD3D (multiple structures) Instruction Flow

Gather load / Scatter store 命令 7.8.2.

SVE の Gather load 命令 (以降、Gather 命令) と Scatter store 命令 (以降、Scatter 命令) は 1 命 令で複数の離散したアドレスに対してメモリ・アクセスする命令である。実効アドレスのソー ス・オペランドの一方がベクトル・レジスタ上にあることから、実効アドレスは浮動小数点演算 系パイプラインで計算される。そのため、整数のロード/ストア命令や SVE の Contiguous ロー ド/ストア命令とは異なるハードウェア動作となる。

デコード

Gather / Scatter 命令は通常のロード/ストア命令と異なり、1 μOP 命令に対して複数の FP / SP のエントリが割り当てられる。これは Element ごとにメモリ・アクセスが独立していることか ら、ロード/ストア・ユニットの処理も Element ごとに独立するためである。Gather 命令におい ては、ロード命令にも関わらず SP のエントリが割り当てられることに注意が必要である。この ように特殊な FP/SP の割り当てをすることから、デコーダは同一サイクルに Gather/Scatter 命 令のいずれか1命令のみしかデコードできないという制約がある。その他の命令もデコードでき ない点でシーケンシャル・デコードより強い制約となる。Gather / Scatter 命令に属する各命令の μOP 数と FP / SP の割り当て数との関係を Table 7-7 に示す。

101 Each Gather/Seatter first uction				
	Number of µOP Instructions	FP	SP	
LD1[BHW] (Gather) - S	1	8	1	
LD1[BHWD] (Gather) - D	1	4	1	
ST1[BHW] (Scatter) - S	8	16	16	
ST1[BHWD] (Scatter) - D	4	8	8	

Table 7-7 Number of μOP Instructions and Number of Allocated FP/SP Entries for Each Gather/Scatter Instruction

Gather 命令においては1アーキテクチャ命令は1μOP 命令にデコードされるが、FP/SP は Figure 7-6 に示すように複数のエントリが割り当てられる。Gather μOP 命令は実効アドレスを計 算する FLA パイプラインに接続する RSE0 にディスパッチされる。Gather 命令におけるリクエ ストのイメージを Figure 7-6 に示す。

> ld1d z1.d, p3/z, [x1, z2.d] Only 1 architecture inst. Decoder Request for calculating effective address (through FLA). FP SP **CSE** RSE0 RSE1 **RSA** 4 entries are 1 entry is 1 μOP inst. is assigned. assigned. assigned.

Figure 7-6 Requests of Gather Instruction

Scatter 命令においては 1 アーキテクチャ命令は Element 数に応じて 4 μOP 命令、または 8 μOP 命令にデコードされる。FP/SP は Element 数と同数のエントリが割り当てられる。Scatter 命令は Gather 命令とは異なり、複数の実効アドレス演算のためのリクエストが RSE0 にディスパッチさ れる。さらに、ベクトル・レジスタからストアデータを SP に転送するリクエストも RSE0 にリ クエストされる。Scatter 命令のリクエストのイメージを Figure 7-7 に示す。

st1d z1.d, p3, [x1, z2.d]

Figure 7-7 Requests of Scatter Instruction

なお、アドレッシングが"vector plus immediate"のときは即値がデコーダから直接 FLA に渡さ れるため、汎用レジスタからベース・オペランドを転送するリクエストは省略される。

実効アドレス演算

Gather / Scatter 命令の実効アドレス演算の概要を Figure 7-8 に示す。実効アドレスの生成は通 常のロード/ストア命令のそれとは異なり、ベクトル演算器で計算される。ただし、実効アドレ スを計算できるのは FLA パイプラインのみである。アドレッシングが"scalar plus vector"のと きは汎用レジスタから FLA 演算器にベース・オペランドを転送する必要がある。この転送は汎 用レジスタから EXA パイプラインを経由して行われる。FLA 演算器で計算された実効アドレス は FP と SP に分けられて一時保存される。このとき、FP の書き込みポートにおける競合のため に、他の命令の EAGA / EAGB パイプラインへの発行は制限される。

Gather 命令では実効アドレスを FP と SP に分けて保存する。それに対して、Scatter 命令では 各 Element の実効アドレスは個別に FP / SP のエントリに保存される。また、Scatter 命令ではべ クトル・レジスタからストアデータを転送する必要があり、このリクエストも FLA パイプライ ンを使って処理される。

Figure 7-8 Effective Address Generation for Gather Instruction

メモリ・アクセス

Gather / Scatter 命令は各 Element が個別のメモリ・アドレスを指すため、基本的に各 Element は個別のメモリ・アクセスとして扱われる。特に Scatter 命令はオーダリングに制約があるため、各 Element は完全に個別のストアのフローとして分解され処理される。つまり、8 Elements 時には 8 つの個別ストアに、16 Elements 時には 16 個の個別ストアとして処理される。個々のフローや操作は通常ストア命令の基本処理と同様である。

一方で、Gather 命令はフロー数削減の観点から分解は2段階で行われる。まず、ベクトルの Element において先頭から2ペアずつに分割される。さらに2ペアはアクセスするアドレス空間 が同一の128 バイト境界の128 バイト空間に収まっていないときに分割される。反対に同一空間 に収まっていれば分割されない。Gather 命令のメモリ・アクセスの遷移を Figure 7-9 に示す。フローの分割が行われた場合、Multiple Structures 命令と同様に後続フローの実行は先行フローの完了を待たなければならず、かつ後続フローの実行までに少なくとも5サイクルのペナルティが発生する。

ld1d z2.d, p3/z, [x0, z1.d]

Figure 7-9 Summary of Elements for Gather Instruction

また、これらの2ペアの両方の Element が Inactive の場合はメモリ・アクセスのフローそのも のが削除される。A64FX では Gather 命令の 2 ペアずつの実行の機能を Combined Gather 機能と称 している。

アドレス変換機構 8.

Translation Lookaside Buffer (TLB) 8.1.

A64FX の TLB 構成を Table 8-1 に示す。TLB は命令用とデータ用が実装されており、それぞれ が L1-TLB と L2-TLB の 2 階層になっている。L1-TLB はフル・アソシアティブ構造で、入れ替 えアルゴリズムには FIFO 方式を採用する。L2-TLB は 4-way のセット・アソシアティブ構造 で、入れ替えアルゴリズムには LRU 方式を採用する。

また、A64FXのTLBはContiguous bitをサポートする。Contiguous bitがセットされている Page は1エントリで変換情報を保存している。

		For Instruction	For Data
L1	Association method	Full associative	Full associative
	Number of entries	16 entries	16 entries
	Replacement algorithm	FIFO	FIFO
L2	Association method	4-way set associative	4-way set associative
	Number of entries	1,024 entries	1,024 entries
	Replacement algorithm	LRU	LRU

Table 8-1 TLB Specifications

Translation table cache 8.2.

Translation table は多段のツリー構造をとり、Block / Page descriptor を得るために複数回のメモ リ・アクセスを要する。このメモリ・アクセス時間を短縮することを目的として、Table descriptor を一時保存する Translation table cache が実装されている。Translation table cache は処理 時間の短縮を目的とする点で TLB と類似するが、TLB が Table walk そのものの発生を抑止する ことを目的としているのに対して、Translation table cache は Table walk 中のメモリ・アクセスに よって発生するレイテンシを削減することを目的としているという違いがある。

Translation table cache は Table 8-2 に示すようにフル・アソシアティブ構造をとるバッファであ る。エントリ数は 16 で、各エントリにて Table descriptor を保持する。なお、Table cache に保存 される Table descriptor は 2 ステージ変換のうち Stage-1 のものだけであり、Stage-2 のものは保存 されない。

		•
	Association method	Full associative
Translation table cache	Number of entries	16 entries
	Replacement algorithm	LRU

Table 8-2 Table Cache Specifications

9. キャッシュ・アーキテクチャ

A64FX はオンチップで 2 階層構成のキャッシュを持つ。L1 キャッシュはプロセッサ・コア単位で実装されており、命令用とデータ用の 2 種類がある。L2 キャッシュは CMG 単位で実装されており、命令とデータで共有する。各キャッシュ間のデータはハードウェアによってコヒーレンスが保証される。

9.1. キャッシュ、メモリ階層の構造

Figure 9-1 に示すように、L2 キャッシュとメモリ階層は 4 つの CMG から構成される。CMG 間は ccNUMA(cache coherent NUMA) アーキテクチャを採用している。メモリは CMG 内の L2 キャッシュとのみ接続され、CMG ごとに物理アドレス空間は分割されている。L2 キャッシュからの Read / Write リクエストは、MAC (Memory Access Controller) を介してメモリに送られる。L2 キャッシュと MAC との間には Move In Buffer (MIB) と呼ばれるバッファがあり、MAC へのインフライトのリクエストを管理する。

Figure 9-1 に示すように、CMG 間は L2 キャッシュ階層にてリング構造で接続される。L2 キャッシュ間はハードウェアによりコヒーレンスが保証される。L2 キャッシュ同士は方向の違う二重のバスで接続されている。

Figure 9-1 L2 Caches and Memory Levels

Figure 9-2 に示すように、L1I/L1D キャッシュはプロセッサ・コアごとに実装され、CMG内の L2 キャッシュと一対一で接続される。CMG 内の L1I/L1D キャッシュは同じ CMG の L2 キャッシュを共有し、L1I/L1D キャッシュのデータは L2 キャッシュに包含される。L1D キャッシュと L2 キャッシュは上下方向が独立したバスで接続されている。L1D キャッシュと L2 キャッシュの間には MIB に加えて MOB (Move Out Buffer) がある。L1D キャッシュは Move-In のリクエストと Move-Out のリクエストを非同期に管理する構造をとっており、別々のキューが実装され

ている。Table 9-1 に主なバスの帯域をまとめる。バスの接続先により実装単位が異なることに注意が必要である。

Figure 9-2 Connection Between L1 and L2 Caches

Table 9-1 Bus Throughput

	Direction	Bus Throughput
LID	L2 to L1D	64 bytes / cycle (per Core)
L1D	L1D to L2	32 bytes / cycle (per Core)
	L2 to L1D	512 bytes / cycle (per CMG)
L2	L1D to L2	256 bytes / cycle (per CMG)
L2	L2 to L2	64 bytes / cycle (per Ring)
	Memory to L2	128 bytes / cycle (per CMG)
L2	L2 to Memory	64 bytes / cycle (per CMG)

9.2. キャッシュの基本構成

9.2.1. L1 キャッシュの構成

L1 キャッシュの主な構成を Table 9-2 に示す。L1D キャッシュは命令の種類によってアクセス・レイテンシが 5 サイクルから 11 サイクルまで変化する。L1D キャッシュは同時に 2 つのロード、または 1 つのストアを受け付ける。

Table 9-2 L1 Cache Specifications

		For Instruction	For Data
	Association method	4-way set associative	4-way set associative
	Capacity	64 KiB	64 KiB
			5 cycles(integer)
L1 cache	Hit latency (load-to-use)	4 cycles	8 cycles (SIMD&FP / SVE in short mode)
			11 cycles (SIMD&FP / SVE in long mode)
	Line size	256 bytes	256 bytes
	Write method		Writeback
	Index tag	Virtual index and physical tag (VIPT)	Virtual index and physical tag (VIPT)
	Index formula	index_A = (A mod 16,384) / 256	index_A = (A mod 16,384) / 256
	Protocol	SI state	MESI state

ページ・サイズの選択によっては L1 キャッシュでシノニム問題が発生する。L1 キャッシュは 容量 64 KiB の 4-way セット・アソシアティブ方式であることから、そのインデックスは 16 KiB 空間をとる。このとき、ページとして 4 KiB page を選択しているとアドレスの bits[13:12] にお いてシノニムが起こりうる。A64FX はハードウェアによってシノニムを回避するようになって いる。

L2 キャッシュの構成 9.2.2.

L2 キャッシュの構成を Table 9-3 に示す。L2 キャッシュはプロセッサ・コアとキャッシュとの 位置関係によってアクセス・レイテンシが異なる。L2 キャッシュはプロセス間のインデックス 競合を緩和するためにインデックスをハッシュしている。また、2バンク構成になっており、物 理アドレスのうち bit[8]でインターリーブしている。

Table 9-3 L2 Cache Specifications

		For instruction and data (by shared)	
	Association method	16-way set associative	
	Capacity	8 MiB	
	Hit latency (load-to-use) 46 to 56 cycles		
L2 cache (shared by	Line size	256 bytes	
instruction & data)	Write method	Writeback	
	Index and tag	Physical index and physical tag (PIPT)	
	Index formula	index <10:0> = ((PA<36:34> xor PA<32:30> xor PA<31:29> xor PA<27:25> xor PA<23:21>) << 8) xor PA<18:8>	
	Protocol	MESI state	

9.3. キャッシュ・コヒーレンス・プロトコル

A64FXでは各キャッシュ間のコヒーレンスはハードウェアによって保証される。一貫性のプロトコルには一般的な MESI プロトコルを採用している。MESI プロトコルの各ステートと、そのステートになりうる主な要因を Table 9-4 に示す。

Table 9-4 Details of MESI Protocol

Cond	ition	State	Possible Cause of State	
М	Modified	Data has been modified from main memory values (Dirty). Other caches at the same level do not have the data.	Data filling due to a store demand request. Stored in a cache line in the E/S state.	
E	Exclusive	Data matches main memory values (Clean). Other caches at the same level do not have the data.	Data filling due to a load demand request while other caches do not have the data. Data filling due to prefetch access with a predefined type attribute while other caches do not have the data.	
S	Shared	Data matches main memory values (Clean). Other caches at the same level also have the data.	Load demand request in the E state, or data fill request due to prefetch access with the Read attribute.	
I	Invalid	A cache line is invalid.	Other caches request data when the data in the E/M state. Data writeback.	

9.4. Move-In / Move-Out

あるキャッシュ階層へのデータ・フィル/ライトバックは、キャッシュに対する Move-In、Move-Out と呼ばれる操作で行われる。Move-In、Move-Out 操作の定義を以下にまとめる。

Move-In

そのキャッシュ階層に対してデータ書き込み、タグの書き込み、ステートの状態を更新 し、データのコヒーレンスとメモリ・オーダリングの整合性を確定する操作である。

Move-Out

そのキャッシュ階層においてデータの読み出し、タグのステート無効化を行い、データ のコヒーレンスとメモリ・オーダリングの整合性を確定する操作である。

データ・フィル/ライトバックは Move-In / Move-Out 操作を組み合わせて行われる。あるキャ ッシュ階層における基本的なキャッシュ・ミスの処理は以下の通りである。

- 1. 上位階層からリクエストを受け取り、自キャッシュ階層に該当アドレスのデータ があるか否かをチェックする。
- 2. キャッシュ・ミスが確定すると、受けたリクエストを MIB に登録し、さらに下位 のキャッシュ、メモリ階層に伝達する。
- 3. 自キャッシュ階層にデータ・フィルするための空きラインが無い場合、古いデー タを Move-Out する。
- 下位のキャッシュ、メモリ階層からデータの応答があると自キャッシュ階層に Move-In する。
- Move-In したデータを読み出し、リクエスト要求元である上位階層にデータを応答 する。

L1 キャッシュ、L2 キャッシュともに複数のキャッシュ・ミスの処理をインフライトできる。 インフライト中の Move-In / Move-Out を管理するための資源が、それぞれ Move-In Buffer (MIB) と Move-Out Buffer (MOB) である。各キャッシュ階層の資源数を Table 9-5 に示す。

Queue Type **Number of Entries** MIB 3 entries / core L1I cache MOB MIB 12 entries / core L1D cache MOB 4 entries / core MIB 256 entries / CMG L2 cache Store Lock Register 244 entries / CMG

Table 9-5 Quantity of Queue Resources at Each Cache Level

L2 キャッシュにおいては Move-Out データは直接 MAC へ送出されるため、MOB は存在しな い。一方で、読み書きの整合性を保証するために Move-Out 操作中であることを示す Store Lock Register が実装されている。このレジスタのエントリ数がライトバックにおけるインフライト数 の上限を決定している。

Move-In Bypass 9.5.

前節で述べたように、キャッシュ・ミスした対象データを上位階層のキャッシュに応答できる のは Move-In が完了した後である。しかし、Move-In 完了までデータ応答を待つと、その分だけ メモリ・アクセスに時間を要する。これを短縮するために、A64FXでは Move-In の完了を待た ずに上位のキャッシュ階層にデータを応答する Move-In Bypass 機能を実装している。ただし、 L1D キャッシュにおいては本機能を有していない。`

9.6. Zero fill

ARMv8 命令セットにはキャッシュ・メンテナンス命令として DC ZVA 命令が定義されている。この命令は、命令で指示した仮想アドレスを含むブロックに対してゼロデータを書き込む。A64FX では、DC ZVA 命令は L2 キャッシュ階層に対してゼロデータ書き込みを行う。DCZID_EL0 システム・レジスタが示すブロックサイズはキャッシュ・ライン・サイズと同じである。Figure 9-3 に示すように、プロセッサ・コアで DC ZVA 命令が実行されるとロード/ストア・ユニットを経由して L2 キャッシュにゼロデータ書き込みのリクエストが送られる。L2 キャッシュは DC ZVA リクエストを受け取ると、指定のアドレスに対応するキャッシュ・ラインを確保してゼロデータ書き込みをする。

Figure 9-3 Basic Zero Fill Process

L2 キャッシュに指定アドレスのデータが存在しない場合であってもキャッシュ・ミスとはならず、メモリからのデータ・フィル操作は行われない。また、L1D キャッシュに指定されたアドレスのデータが存在するときは Figure 9-4 に示すように L1D キャッシュのデータが L2 キャッシュにライトバックされた後にゼロデータ書き込みが行われる。

Figure 9-4 Zero Fill Process When L1D Cache Contains Data

このように、DC ZVA 命令は一般的なストア命令とは異なり、メモリから L2 キャッシュへの データ・フィル操作を省略する。これによってメモリ空間への書き込み時におけるメモリ帯域の 消費を抑え、実効メモリ帯域を改善することができる。

10. Memory Access Controller

Memory Access Controller の構成 10.1.

Memory Access Controller (MAC) はメイン・メモリの読み書きを行うユニットである。A64FX はメイン・メモリに第2世代の High Bandwidth Memory (HBM2) を採用している。MAC は各 CMG に1つずつ実装され、それぞれが HBM2 の1チップと P2P で接続される。

A64FX の MAC がサポートする HBM2 の諸元を Table 10-1 に示す。

Table 10-1 Specifications of HBM2 Supported by A64FX

	Specification
Memory standard	HBM Gen2
Memory capacity	8 GiB (8Gib x8 stacks) / 1MAC
Data rate	2 Gbps

MAC は HBM2 の規格に準拠しつつ最大限のスループットを得るために、アクセス順序を制御 するためのスケジューラを持つ。スケジューラのリソース数を Table 10-2 に示す。

Table 10-2 Quantity of Scheduler Resources for HBM2

	Quantity of Resources
Scheduler queue size	244 entries / MAC

10.2. メモリ・アクセス性能

A64FX の基本的なメモリ・アクセス性能を Table 10-3 に示す。なお、性能値は CMG あたりの 性能である。

Table 10-3 A64FX Memory Access Performance

		Memory Access Performance
Local memory latency	Shortest core	135.5 ns (@ CPU 2GHz)
(load-to-use)	Longest core	144.5 ns (@ CPU 2GHz)
Read throughput	Peak	256 GB/s (per MAC) (@ CPU 2GHz)
Write throughput	Peak	128 GB/s (per MAC) (@ CPU 2GHz)

11. データ・プリフェッチ

プリフェッチとは、近い将来に利用が予測されるデータを事前にキャッシュに読み込んでおくことで性能向上を図る動作である。プリフェッチには専用命令で明示的にデータをキャッシュに読み出すソフトウェア・プリフェッチと、ハードウェアがアドレスを自動的に予測して読み出しをするハードウェア・プリフェッチの2種類がある。A64FXは両方のプリフェッチ方式に対応し、さらにプリフェッチの動作を細かく制御するためのハードウェア・プリフェッチ・アシスト機能を実装している。

11.1. プリフェッチの動作概要

本節ではプリフェッチのハードウェア動作について説明する。まず、説明を容易にするために 以下の用語について定義する。

ソフトウェア・プリフェッチ

アーキテクチャ命令による明示的なプリフェッチ指示である。

ハードウェア・プリフェッチ

ハードウェアのアドレス予測機構に基づいたプリフェッチ指示である。

デマンド・アクセス

ロード/ストア命令など、レジスタとメモリ空間との間でデータの移動があるメモリ・ アクセスの概念である。

プリフェッチ・アクセス

プリフェッチ命令およびハードウェア・プリフェッチによって生成されるメモリ空間へのメモリ・アクセスの概念である。プリフェッチ・アクセスにはどのキャッシュ階層にデータ・フィルするかという情報、アクセスのタイプ、アドレスの信頼度を示す情報が含まれている。

デマンド・フロー

オペレーション・フローのうち、レジスタやキャッシュ、メモリの各階層間でデータのやり取りを伴うものを指す。例えば、ロード命令のLDフローはロード/ストア・パイプラインのデマンド・フローそのものである。LDフローはレジスタにデータを書き込むからである。同様に、L2キャッシュのパイプラインのオペレーション・フローのうちL1キャッシュにデータを返答する必要のあるものがデマンド・フローである。

プリフェッチ・フロー

デマンド・フローに対して、レジスタやキャッシュ、メモリの各階層間でデータのやり取りが不要なものを指す。例えば、プリフェッチ命令のオペレーション・フローはレジスタにデータを書き込む必要がないため、ロード/ストア・パイプラインにとってはプリフェッチ・フローとなる。同様に、L2キャッシュのパイプラインにとってL1キャッシュにデータを返答する必要のないものがプリフェッチ・フローである。

デマンドおよびプリフェッチ・アクセスと、それによって生成されるオペレーション・フロー の関係を Figure 11-1 に示す。

Figure 11-1 Operation-Flows for Demand Access and Prefetch Access

ロード/ストア命令のアクセスはすべてデマンド・アクセスであり、それらの処理のためのオ ペレーション・フローはすべてデマンド・フローである。ロード/ストア命令は最終的にレジス タにデータを読み込む、またはレジスタからデータを書き込む必要があり、L2 キャッシュや MAC はデータを返答する必要があるからである。

一方、プリフェッチ・アクセスの処理のためのオペレーション・フローは各キャッシュ階層に て種類が分かれる。例えば、ソフトウェア・プリフェッチによる L1D キャッシュへのプリフェ ッチ・アクセスはロード/ストア・パイプラインにとってはプリフェッチ・フローであるが、L2 キャッシュのパイプラインにとってはデマンド・フローとなる。L1D キャッシュにデータを返答 する必要があるためである。

また、ソフトウェア・プリフェッチとハードウェア・プリフェッチではロード/ストア・パイ プラインにおける必要なオペレーション・フローが異なる点に注意が必要である。ソフト・ウェ ア・プリフェッチは命令であるため、そのオペレーション・フローはロード命令のLDフローの ように実行パイプラインやロード/ストア・パイプラインを通過する。つまり、それらのパイプ ラインのリソースを消費する。一方、ハードウェア・プリフェッチによるプリフェッチ・アクセ スは実行パイプラインとロード/ストア・パイプラインに対するオペレーション・フローが不要 である。L2 キャッシュのパイプラインに直接オペレーション・フローを投入するからである。 ただし、データ・フィル/ライトバックための MI フロー、MO フローは必要になることに注意 が必要である。

プリフェッチにはデマンド・アクセスとの間に距離 (Distance) と呼ばれる概念がある。プリ フェッチの目的はデマンド・アクセスのレイテンシを隠ぺいすることであるが、これを達成する ためにはデマンド・アクセスと同じアドレスに対して時間軸方向に先行してプリフェッチをする 必要がある。例えば、Nサイクルのデマンド・アクセスのレイテンシを隠ぺいするためにはデマ ンド・アクセスが生成される N サイクル以上前にプリフェッチをする必要がある。この時間差 がプリフェッチの距離である。特に、メモリ・アクセスが連続アクセスの場合には距離をアドレ ス空間方向に置き換えることができる。例えば、デマンド・アクセスが A のときにアドレス

A+Pへのプリフェッチをする。そして、デマンド・アクセスが A+P に到達したときにアドレス A+Pへのデマンド・アクセスがキャッシュ・ヒットすればデマンド・アクセスのレイテンシ N を隠ぺいできたといえる。このときのアドレスの差 P が距離である。本ガイドではアドレス空間 方向の距離をプリフェッチ距離として扱う。

11.2. プリフェッチ・アクセスのタイプ

プリフェッチ・アクセスに付加される情報のひとつに「タイプ」がある。タイプとはプリフェッチされたデータがロードのためであるか、ストアのためであるかを示す情報であり、"Read"と "Write"の2種類がある。ハードウェアはタイプ情報を利用してデータ・フィル時のキャッシュ・ステートを決める。

11.3. プリフェッチ・アクセスの信頼度

プリフェッチ・アクセスに付加される情報のひとつに「信頼度」がある。信頼度とは生成されたプリフェッチ・リクエストを処理する優先度を決定するための指標であり、"Strong"と"Weak"の2種類がある。A64FXでは、ソフトウェア・プリフェッチはタグド・アドレスとシステム・レジスタを組み合わせて、ハードウェア・プリフェッチはシステム・レジスタを用いてプリフェッチ・アクセスごとに信頼度を個別設定できる。設定された信頼度はプリフェッチ・フローにも適用される。

Strong 属性のプリフェッチ・フロー

ハードウェアはプリフェッチ・アクセスを可能な限り正しく完了させようとする。例えば、生成されたプリフェッチ・フローをメモリ階層まで伝達するための資源が不足している場合には資源に空きが生じるまで待機する。このとき、後続のロード/ストア命令に影響がある場合であってもフローが削除されることはなく、プリフェッチ・アクセスは最後まで実行される。ただし、ソフトウェア・プリフェッチにおいては TLB ミス、または Page fault が発生した時点でプリフェッチ・リクエストは削除される。このとき、プリフェッチ・アクセスの元となったプリフェッチ命令は NOP 命令として扱われる。ハードウェア・プリフェッチにおいては TLB ミスした時点でプリフェッチ・アクセスが停止し、PFQ もクリアされる。Strong 属性のプリフェッチ・アクセスはロード/ストア・パイプラインをひっ迫させる場合もあるので、プリフェッチしたデータが確実に使われる場合にのみ使うことを推奨する。なお、プリフェッチ命令の動作については A64FX 論理仕様書を参照のこと。

Weak 属性のプリフェッチ・フロー

ハードウェアは資源に余裕があればプリフェッチ・アクセスを正しく完了させるが、資源に余裕がなければ生成されたプリフェッチ・リクエストは削除される。基本的にデマンド・フローやStrong 属性のプリフェッチ・フローの処理が優先される。

11.4. ソフトウェア・プリフェッチ

ソフトウェア・プリフェッチはプリフェッチ命令によって明示的にプリフェッチ・アクセスを する。プリフェッチ命令はオペランド部でプリフェッチ・アクセスに必要なプリフェッチ・アド レス、データ・フィル先のキャッシュ階層、キャッシュ・ステートを制御できる。A64FX は独 自の HPC 向け機能拡張として、タグド・アドレスを用いてハードウェアの振る舞いを制御でき る HPC タグド・アドレス・オーバーライド機能を実装している。

11.4.1. プリフェッチ命令の分類

プリフェッチ命令には大きく分けて ARMv8 プリフェッチ命令、SVE Contiguous プリフェッチ 命令、SVE Gather プリフェッチ命令の3種類がある。各々の定義と特徴を以下に示す。

ARMv8 プリフェッチ命令

オペランドで指定したプリフェッチ・アドレスに対してプリフェッチ・アクセスをさせ る命令である。ハードウェアは指定されたアドレスを含むキャッシュ・ライン単位でメモ リからデータ・フィルする。なお、ARMv8 プリフェッチ命令のデータサイズはバイト型 と解釈されるため、キャッシュ・ライン境界をまたぐ現象は発生しない。

SVE Contiguous プリフェッチ命令

オペランドで指定したアドレスを先頭に、そこから SVE ベクトル・データ長を加算し たアドレスまでの範囲に対してプリフェッチ・アクセスをさせる命令である。ハードウェ アは先頭から終端までの範囲のアドレスを含むキャッシュ・ライン単位でメモリからデー タ・フィルする。プリフェッチの先頭と終端アドレスが別のキャッシュ・ラインに属する 場合には両方のメモリブロックをフィルする。

SVE Gather プリフェッチ命令

離散アクセス命令(Gather / Scatter) と同様のアドレッシング・モードをサポートする命 令である。一命令で複数のアドレスに対してプリフェッチ・アクセス行うことができる。 個々のアドレスに対する基本的な動作は ARMv8 プリフェッチ命令と同様である。

各プリフェッチ命令の分類とニーモニックの対応を Table 11-1 に示す。

Table 11-1 Classifications and Mnemonics of Prefetch Instructions

Classification Mnemonic		Description	
	PRFM (immediate)	Prefetch instructions that support consecutive	
ADM-0 Call instruction	PRFM (literal)		
ARMv8 prefetch instruction	PRFM (register) load/store (without consideration of line cre		
	PRFM (unscaled offset)		
CVE	PRF[BHWD] (scalar plus immediate)	Prefetch instructions that support consecutive	
SVE contiguous prefetch instruction	PRF[BHWD] (scalar plus scalar)	load/store (with consideration of line cross)	
CVEth	PRF[BHWD] (scalar plus vector)	Prefetch instructions that support discrete access	
SVE gather prefetch instruction	PRF[BHWD] (vector plus immediate)	instructions (gather/scatter)	

11.4.2. ソフトウェア・プリフェッチの属性

プリフェッチ命令では第1オペランドにプリフェッチ・オプションを指定することができる。 オプションには Type、Target、Policy の 3 項目があり、Type と Target の組み合わせによって Table 11-2 に示すようにデータ・フィル先のキャッシュ階層とキャッシュ・ステートを制御でき る。A64FXではPolicyはハードウェア制御に使用していないため、ハードウェアの動作に影響 しない。

Table 11-2 Correspondence Between Prefetch Instruction Options, Cache Levels, and States

-		Target		
		L1	L2	L3
ı	PLI	NOP	NOP	NOP
Туре	PLD	L1D / S or E	L2 / S or E	NOP
	PST	L1D/E	L2 / E	NOP

また、プリフェッチ命令のタグド・アドレス部のうち pf func[0] ビットを利用することでソフ トウェア・プリフェッチの信頼度を制御できる。ビット・フィールドと信頼度の関係を Table 11-3 に示す。ビットフィールドについては A64FX 論理仕様書を参照のこと。

Table 11-3 Correspondence Between pf func[0] Bit and Software Prefetch Reliableness

pf_func[0]	Software Prefetch Reliableness
0	Strong
1	Weak

11.5. ハードウェア・プリフェッチ

A64FX はハードウェアによって近い将来アクセスするであろうアドレスを予測してプリフェ ッチ・アクセスをする機能を持つ。これら機能を総称してハードウェア・プリフェッチと呼ぶ。 A64FX のハードウェア・プリフェッチは連続アクセス・ストリームに対してアドレス予測がで きる。ハードウェア・プリフェッチには "Stream detect mode" と "Prefetch injection mode" の 2 種類のモードがある。

11.5.1. ハードウェア・プリフェッチのための資源

ハードウェアは PFQ (Pre-Fetch Queue) と呼ばれるアドレス予測、およびプリフェッチ・アク セスを行うための資源を持つ。PFO は各プロセッサ・コア内部にあり、プロセッサ・コアあたり 16 エントリを有する。PFO には予測アドレス、プリフェッチ距離、予測のためのアドレスオフ セットが保存される。

予測アドレスとは将来デマンド・アクセスすると思われるアドレスを指す。ハードウェアが事 前に用意した予測アドレスと実際のデマンド・アクセスのアドレスが一致したとき、PFQ はその アドレスにプリフェッチ距離を加算したアドレスに対してプリフェッチ・アクセスをする。その 後、さらにアドレス・オフセットを加算して予測アドレスを更新する。この動作を繰り返すこと でプリフェッチ・アクセスが継続する。

Stream detect mode の動作 11.5.2.

ハードウェア・プリフェッチの2つのモードのうち、"Stream detect mode"の動作について説 明する。Stream detect mode では、連続アクセスストリームを自動で検出してプリフェッチ・ア クセスをする。Stream detect mode であるときのハードウェア・プリフェッチ動作イメージを Figure 11-2 に示す。

Figure 11-2 Hardware Prefetch Behavior in Stream Detect Mode

ストリームの検出と PFQ への登録

PFQ はデマンド・アクセスにおける L1D キャッシュ・ミスを監視する。キャッシュ・ミスが 起こると、デマンド・アドレスを基に予測アドレスを生成して PFO に登録することでデマン ド・アクセスのストリームが昇順か降順かを判定しようとする (Figure 11-2 (1))。引き続きデマ ンド・アクセスが行われると、デマンド・アドレスと先程 PFQ に登録した予測アドレスとを比 較してストリーム方向を決定する (Figure 11-2 (2))。ストリーム方向が決定すると PFQ の予測ア

ドレスを更新し、新たにプリフェッチ距離、アドレス・オフセットも登録してデマンド・アクセ スを追従し始める。プリフェッチ距離、アドレス・オフセットは昇順の時はプラス値、降順のと きはマイナス値として登録される。最初に登録されるプリフェッチ距離、およびオフセットの絶 対値はそれぞれ 256 バイトである (Figure 11-2 (3))。

プリフェッチ・アクセスの生成

PFQ は予測アドレスと一致するデマンド・アクセスを検出するとプリフェッチ・アクセスを発 行する (Figure 11-2 (4))。プリフェッチ・アクセスを指示すると PFO は予測アドレスにオフセッ トを加算して予測アドレスを更新する (Figure 11-2 (5))。 デマンド・アクセスの追従を始めた時 から一定期間、PFQは2キャッシュ・ライン分のL1、L2プリフェッチ・アクセスを指示する。 また、プリフェッチ・アクセスをする度にプリフェッチ距離を256バイトずつ加算することでプ リフェッチ距離を伸長する。

プリフェッチ・アクセスの定常生成

同一の PFO によるプリフェッチ・アクセス指示を繰り返すと、やがてプリフェッチ距離は L1 から L2 へと段階的に最大値に到達する。プリフェッチ距離が最大値に到達すると、PFQ はプリ フェッチ・アクセスの指示を1キャッシュ・ライン分に切り替える。同時にプリフェッチ距離の 伸長も停止する(Figure 11-2 (6))。以後、予測アドレスと一致するデマンド・アクセスが続く限り はこの状態を継続する。

なお、A64FX の Stream detect mode ではデマンド・アクセスとプリフェッチ・アクセスのアド レスはキャッシュ・ライン単位に丸められる。すなわち、アクセス・アドレスの下位 7 ビットは 無視される。これにより、完全に連続なストリーム・アクセスでなくともキャッシュ・ライン単 位で連続であればプリフェッチ・アクセスを発行できる。

11.5.3. Prefetch injection mode の動作

ハードウェア・プリフェッチの2つのモードのもう一方が "Prefetch injection mode" である。 Prefetch injection mode はプリフェッチ制御用レジスタを使ってロード/ストア命令のアクセスの 特徴を設定し、それを用いてハードウェア・プリフェッチを行う。Prefetch injection mode はさら に PFQ ALLOCATE モードと PFQ NOALLOCATE モードにわかれる。

PFQ ALLOCATE モード

本モードの動作は基本的に Stream detect mode と同様である。デマンド・アクセスの L1D キャ ッシュ・ミスを監視し、キャッシュ・ミスが発生すると PFQ に予測アドレス、プリフェッチ距 離、オフセットを登録する。ただし、予測アドレス、プリフェッチ距離、オフセットがシステ ム・レジスタの設定値から算出されるという点で Stream detect mode と異なる。PFQ ALLOCATE モード下におけるハードウェア・プリフェッチは以下の2ステップで行われる。

1. ストリームの検出

対象とするストリームのデマンド・アクセスが LID キャッシュ・ミスすると、そのデマ ンド・アクセスのアドレスにオフセットを加算した値を予測アドレスとする。プリフェ ッチ距離とオフセットはシステム・レジスタに設定された値が使われる。

2. プリフェッチ・アクセスの生成

予測アドレスがデマンド・アクセスのアドレスと一致すると、そのアドレスにプリフェ ッチ距離を加算したアドレスに対してプリフェッチ・アクセスを指示する。さらに、予 測アドレスにオフセットを加算して更新する。ただし、プリフェッチ距離は初期値が保 持され伸長しない。

PFO NOALLOCATE モード

本モードは PFO でアクセスの L1D キャッシュ・ミスの監視をせず、対象とするストリームの デマンド・アクセスが発生した時点でプリフェッチ・アクセスを指示する。プリフェッチ・アク セスの対象はデマンド・アクセスのアドレスにプリフェッチ距離を加算したアドレスである。本 モードは無条件でプリフェッチ・アクセスを生成するため、デマンド・アクセスがキャッシュ・ ヒットするときでもプリフェッチ・アクセスが発生する。一方、PFQ による監視を行わないこと から PFO を消費しないという利点がある。

11.5.4. ハードウェア・プリフェッチ・アシスト機能

A64FX はハードウェア・プリフェッチの利便性を高めるために、ハードウェア・プリフェッ チの動作をコントロールするインタフェースとしてハードウェア・プリフェッチ・アシスト機能 を持つ。

Stream detect mode の場合

Stream detect mode ではタグド・アドレスとシステム・レジスタを使うことで以下のようにプ リフェッチ動作を制御できる。

- プリフェッチの無効化
 - タグド・アドレスを用いて命令ごとに PFQ の監視対象とするか否かを設定できる。PFQ の監視対象から外れた命令からはプリフェッチ・アクセスは生成されない。
- プリフェッチ・アクセスのキャッシュ階層属性の指定 タグド・アドレスを用いて指定したキャッシュ階層属性を持つプリフェッチ・アクセス を指示できる。キャッシュ階層属性は L1D キャッシュ、L2 キャッシュ、両方の 3 つから 選択できる。
- プリフェッチ・アクセスの信頼度属性の指定 システム・レジスタを経由することで PFQ が生成するプリフェッチ・リクエストの信頼 度属性を指定できる。信頼度属性は Strong 属性、Weak 属性の 2 つから選択できる。
- PFO の最大プリフェッチ距離の指定 システム・レジスタを経由することで PFQ のプリフェッチ距離の最大値を指定できる。

Prefetch injection mode の場合

Prefetch injection mode では Stream detect mode の機能に加えて以下のようにプリフェッチ動作 を制御できる。

- ストリーム番号の付加 タグド・アドレスを用いて命令ごとにストリーム番号を付加できる。基本的にストリー ム単位で Stream detect mode 機能を指示できる。
- ストリームごとのプリフェッチ距離の指定 システム・レジスタを使ってストリーム番号ごとにプリフェッチ距離を指定できる。
- ストリームごとのオフセットの指定 システム・レジスタを使ってストリーム番号ごとにオフセットを指定できる。

11.5.5. ハードウェア・プリフェッチのキャッシュ階層 属性

プリフェッチ・アクセスに付加される情報のひとつにキャッシュ階層の属性がある。キャッシ ュ階層属性とはプリフェッチ先がどのキャッシュ階層かを示すものであり、プログラムの高速化 のためには適切な階層属性を持ったプリフェッチ・アクセスをする必要がある。不要なプリフェ ッチ・アクセスをすることはハードウェア・リソースの浪費につながる。

ハードウェア・プリフェッチの場合、最適なキャッシュ階層属性はハードウェアが自動で決定 する。基本的に PFQ は L1D キャッシュ属性を持つプリフェッチ・アクセスと、L2 キャッシュ属 性を持つプリフェッチ・アクセスの両方を指示する。このとき、L2 キャッシュ属性を持ったプ リフェッチ・アクセスが L2 キャッシュにおいてキャッシュ・ヒットを繰り返すと、PFQ は L2 キャッシュ属性を持つプリフェッチ・アクセスを停止する。ただし、L1D キャッシュ属性を持っ たプリフェッチ・アクセスが L2 キャッシュ・ミスを起こすと、PFQ は L2 キャッシュ属性を持 つプリフェッチ・アクセスを再開させる。

Prefetch injection mode の使用例 11.6.

Prefetch injection mode の特徴のひとつがオフセットをソフトウェアで指定できることである。 この機能を使うことでキャッシュ・ライン・サイズを超えるストライド・アクセスに対してプリ フェッチ・アクセスを生成することができる。Figure 11-3 にプログラム例を、Table 11-4 に制御 レジスタの構成例を示す。タグド・アドレスと制御レジスタの仕様は A64FX 論理仕様書に記述 されている。

```
Sample code
       int i;
       double y[N], x[N*64];
       assert (N > 0);
       for (i = 0; i < N; i ++) {
            y[i] = x[i*64];
                                 /* accesses the array x with stride of 512 bytes width. */
       }
Sample assembly code
       mov
                    x0,#N
       adr
                    x1,y
                                                  /\!/ sets the address of array y.
       adr
                    x2,x
                                                  // sets the address of array x.
                    x2,x2,#(8<<60)
       orr
                                                  // merges base address and tagged
                                                  address which assigns the stream to
                                                  control#0 register.
  loop:
       ldr
                    d0,[x2]
       str
                    d0,[x1]
       \operatorname{\mathsf{add}}\nolimits
                    x2,x2,#512
       add
                    x1,x1,#8
       subs
                    x0,x0,#1
```

Figure 11-3 Usage Example of Prefetch Injection Mode

Table 11-4 Control Register Configuration Example

System Register	Bit Field	Set Value	Description
	V	1	Enables the control register.
	L1W	0	Sets the L1 prefetch attribute to Strong.
	L2W	0	Sets the L2 prefetch attribute to Strong.
IMP PF INJECTION CTRL0 EL0	A	1	Sets PFQ_ALLOCATE mode.
INT_IT_INVECTION_CIREV_EEV	Т	0	Sets the prefetch attribute to PLD.
	sww	0	This is an instruction for software prefetch. It does not matter whether the value is 0 or 1 in this example.
	PFQ_OFFSET	512	Sets the same value as the stride width.
IMP DE INJECTION DISTANCEO ELO	L1PF_DISTANCE	1,024	Sets the L1 prefetch distance.
IMP_PF_INJECTION_DISTANCE0_EL0	L2PF_DISTANCE	10,240	Sets the L2 prefetch distance.

x0,loop

b.gt

なお、プリフェッチ・アクセスの信頼度、PFQ_ALLOCATE / PFQ_NOALLOCATE モード、お よびプリフェッチ距離はプログラムの特性に合わせて適切に決定する必要がある。

12. セクタ・キャッシュ

12.1. セクタ・キャッシュの概要

セクタ・キャッシュとは、キャッシュの領域を区分けし、命令単位、またはプロセッサ・コア単位で使用する区域を選択できる機能である。ソフトウェアがキャッシュの使用をより細粒度に制御する方法を提供することを目的としている。A64FXでは区分けされた各々の領域をセクタと呼ぶ。セクタはシステム・レジスタを介してキャッシュの way 単位で任意の容量に区分けできる。本機能はL1D キャッシュと L2 キャッシュに実装されている。Figure 12-1 に示すように、L1D キャッシュには命令単位で指示できるセクタが 4 領域ある。L2 キャッシュにも 4 領域のセクタがあるが、プロセッサ・コア単位で指示できるセクタが 2 領域、命令単位で指示できるセクタが 2 領域という階層構造をとる。L1D キャッシュの 4 セクタは、L2 キャッシュにおいては同一のセクタグループ内の 2 セクタにマップされる。また、セクタの領域はそれぞれの CMG に閉じている。命令単位のセクタの指示にはタクド・アドレスを用いる。プロセッサ・コア単位の指定にはシステム・レジスタを用いる。タグド・アドレス、およびシステム・レジスタの仕様は A64FX 論理仕様書を参照のこと。

Figure 12-1 L1D/L2 Sector Cache

12.2. セクタ・キャッシュの動作

セクタ・キャッシュのセクタの容量は、各セクタに割り当てられる最大 way 数にて指示される。また、セクタ容量はプログラム実行中に動的に変更できる。ハードウェアはセクタ容量が変更されると、それぞれのキャッシュ・ラインへデータ・フィルする機会に容量調整を行い、徐々に指定されたセクタ容量に近づける制御を行う。Figure 12-2、Figure 12-3 に例を示す。Figure 12-2 は要求セクタ容量に対してセクタ 0 側の使用量が少ない例である。セクタ 0 の指定があるロード命令が実行されるとセクタ 1 側のデータがライトバックされることで容量が調整される。対して、Figure 12-3 はセクタ 1 側の使用量が多いときにセクタ 1 の指定があるロード命令が実行さ

れる例である。この場合、セクタ0の使用量が減少しないようにセクタ1側のデータがライトバ ックされる。

Current Sector 0 Sector 1 Current Sector 0 2 ways 3 5 2 4 6 n Sector 1 n-2 ways

(*) Numbers show LRU

Figure 12-2 Example of Sector Cache Capacity Adjustment (1)

Specified

n-3 ways

3 ways

(*) Numbers show LRU

Figure 12-3 Example of Sector Cache Capacity Adjustment (2)

13. ハードウェア・バリア

ハードウェア・バリアはソフトウェアのプロセス、またはスレッド間の同期をハードウェアでサポートする機能である。Figure 13-1 に示すように、各 CMG 内に専用のシステム・レジスタがあり、それを介して同期処理を行う。システム・レジスタは L2 キャッシュ内に実装されているため、同期処理のためのレジスタ・アクセスは L2 キャッシュ・ヒットと同程度の応答時間になる。また、システム・レジスタそのものがバリア変数となってハードウェアがレジスタ操作のアトミック性を保証するため、変数の操作のための排他処理が不要である。これらの特徴によってプログラムの簡素化、同期処理の高速化を狙っている。

なお、ハードウェア・バリアのリソースは CMG 単位で実装されているため、CMG 間を横断した同期処理はサポートしていない。Figure 13-2 に同期処理のためのサンプルコードを示す。ハードウェア・バリアの詳細な仕様は A64FX 論理仕様書を参照のこと。

Figure 13-1 Hardware Barrier Resources

```
#define
             BARRIER_LBSY_SYNC_W1_EL0
                                               S3_3_C15_C15_1
#define
             BARRIER_BST_SYNC_W1_EL0
                                               S3_3_C15_C15_1
             x2, BARRIER LBSY SYNC W1 EL0
                                                    // Load LBSY to x2
mrs s
             x1, x2, #0x1
eor
msr_s
             BARRIER_BST_SYNC_W1_EL0, x1
                                                     // Write ~LBSY to BST
sevl
                                                     // EVENT register clear
wfe
loop:
   wfe
                                                     // Sleep
            x2, BARRIER_LBSY_SYNC_W1_EL0
   mrs_s
             x2, x1
                                                     // Compare x2 (= LBSY) and x1 (= ^{\sim}LBSY)
   cmp
                                                     // Reload LBSY to x2 if LBSY != ~LBSY
   h.ne
             loop
```

Figure 13-2 Sample Code for Synchronization Processing

Performance Monitor Events 14.

プロセッサにはプログラムの動的なふるまいを観測するために Performance Monitoring Unit (PMU) が実装されている。A64FX は ARMv8 Manual、および SVE Manual に定義されている Event の他に、独自の Event を実装している。これらの Event は各 Event を直接的な意味で利用す るだけでなく、複数の Event を組み合わせることでソフトウェアの性能解析を補助する指標を算 出できるように設計されている。本章ではそれらの指標の作成方法について説明する。なお、各 Event の詳細仕様は A64FX PMU events 仕様書に記載されている。

14.1. **Instruction Mix**

プログラム実行時の動的な命令頻度分布を算出するための Event を Table 14-1 にまとめる。 Instruction Mix のためのすべての Event は、アーキテクチャ命令のコミットを数え上げる実装に なっている。これらの Event が数える命令群には包含関係があり、これらを組み合わせることで Event が定義されてない命令群の頻度を算出できる。Event の包含関係は Table 14-1 の Event 名の 列においてインデントの深さで表されている。また、Otherと表記されている行は実際の Event ではなく、いくつかの Event を組み合わせて算出される項目である。算出式は Table 14-2 に示す とおりである。なお、SVE_MATH_SPEC event は INST_SPEC event に含まれないことに注意が必 要である。

Table 14-1 Performance Events for Instruction Mix

Event for Instruction Mix		Target of Counting by Event	
INS	T_SPEC	全命令	
	FP_SPEC	浮動小数点演算に分類されるすべての命令	
	FP_FMA_SPEC	FMA 系の演算命令	
	FP_RECPE_SPEC	逆数近似命令と逆数平方根近似命令	
	Others (Basic FP operations)	一般的な浮動小数点演算命令	
	FP_CVT_SPEC	浮動小数点精度変換命令(汎用レジスタの値との変換も含む)	
	FP_MV_SPEC	浮動小数点レジスタを使用する転送命令(汎用レジスタも含む)	
	ASE_SVE_INT_SPEC	浮動小数点レジスタを使用する整数演算命令	
	PRD_SPEC	Predicate レジスタを使用する演算命令	
	LD_SPEC	すべてのロード命令	
	BASE_LD_REG_SPEC	汎用レジスタへのロード命令	
	ASE_SVE_LD_SPEC	浮動小数点レジスタへのロード命令	
	FP_LD_SPEC	浮動小数点レジスタへのスカラ型のロード命令	
	Others (All vector loads)	浮動小数点レジスタへのベクトル型のロード命令	
	SVE_LDR_REG_SPEC	SVE のすべての LDR 命令	

Event for Instruction Mix	Target of Counting by Event
SVE_LDR_PREG_SPEC	SVE LDR (predicate) 命令
Others (LDR vector)	SVE LDR (vector) 命令
BC_LD_SPEC	浮動小数点レジスタへの Replicate と Broadcast ロード命令 (LD1R 命令)
ASE_SVE_LD_MULTI_SPEC	浮動小数点レジスタへの Multiple structure ロード命令 (LD[234]*命令)
SVE_LD_GATHER_SPEC	SVE Gather load 命令
SVE_LDFF_SPEC	SVE first-fault と non-fault ロード命令
Others (Basic vector loads)	浮動小数点レジスタへの一般的なベクトル型のロード命令
ST_SPEC	すべてのストア命令
BASE_ST_REG_SPEC	汎用レジスタからのストア命令
ASE_SVE_ST_SPEC	浮動小数点レジスタからのストア命令
FP_ST_SPEC	浮動小数点レジスタからのスカラ型のストア命令
Others (All vector stores)	浮動小数点レジスタからのベクトル型のストア命令
SVE_STR_REG_SPEC	SVE のすべての STR 命令
SVE_STR_PREG_SPEC	SVE STR(predicate)命令
Others (STR vector)	SVE STR(vector)命令
ASE_SVE_ST_MULTI_SPEC	浮動小数点レジスタからの Multiple structure ストア命令 (ST[234]*命令)
SVE_ST_SCATTER_SPEC	SVE Scatter store 命令
Others (Basic vector stores)	浮動小数点レジスタからの一般的なベクトル型のストア命令
PRF_SPEC	すべてのプリフェッチ命令
SVE_PRF_GATHER_SPEC	SVE gather prefetch 命令
SVE_PRF_CONTIG_SPEC	SVE contiguous prefetch 命令
Others (Prefetch in base inst.)	Base instruction プリフェッチ
DCZVA_SPEC	DC ZVA 命令
BR_PRED	すべての分岐命令
CRYPTO_SPEC	すべての暗号命令
SVE_MOVPRFX_SPEC	SVE MOVPRFX 命令
Others (Base insts. excluding load/store)	ロード/ストア命令を除く、Base instruction に属する命令
Event Independent of Inclusion Relationship	
SVE_MATH_SPEC	SVE 数学関数補助命令

Table 14-2 Formulas for Other (Instruction Mix)

Item	Formula
Basic FP operations	FP_SPEC – (FP_FMA_SPEC – FP_RECPE_SPEC)
All vector loads	ASE_SVE_LD_SPEC - FP_LD_SPEC
LDR vector	SVE_LDR_REG_SPEC - SVE_LDR_PREG_SPEC
Basic vector loads	ASE_SVE_LD_SPEC - (FP_LD_SPEC + SVE_LDR_REG_SEPC + BC_LD_SPEC + ASE_SVE_LD_MULTI_SPEC + SVE_LD_GATHER_SPEC + SVE_LDFF_SPEC)
All vector stores	ASE_SVE_ST_SPEC - FP_ST_SPEC
STR vector	SVE_STR_REG_SPEC - SVE_STR_PREG_SPEC
Basic vector stores	ASE_SVE_ST_SPEC - (FP_ST_SPEC + SVE_STR_REG_SPEC + ASE_SVE_ST_MULTI_SPEC + SVE_ST_SCATTER_SPEC)
Prefetch in base instruction	PRF_SPEC - (SVE_PRF_GATHER_SPEC + SVE_PRF_CONTIG_SPEC)
Base insts. excluding load/store	INST_SPEC - (FP_SPEC + FP_CVT_SPEC + FP_MV_PSEC + ASE_SVE_INT_SPEC + PRD_SPEC + LD_SPEC + ST_SPEC + PRF_SPEC + DCZVA_SPEC + BR_PRED + CRYPTO_SPEC + SVE_MOVPRFX_SPEC)

14.2. FLOPS

Floating operations per second (FLOPS) を算出するための Event を Table 14-3 にまとめる。これ らの Event はコミットされた命令の浮動小数点演算数を数え上げる。 Event のうち SVE 命令に関 するものは 128 bits 単位の演算数しか数えないことから、プログラム実行時の Vector Length の影 響を受けない。したがって、正しい演算数は実行時の Vector Length を考慮して算出しなければ ならない。また、FMA系の演算は要素あたり2演算として数える。

PMU は PE 単位の資源であることから、Event で測定される演算数は PE 単位である。したが って、並列実行時の総演算数を算出するときはジョブモデルなどの考慮が必要である。また、 FLOPS は単位時間あたりの演算数であるため、プログラム実行中のプロセッサ動作周波数とプ ログラムの実行時間の外部パラメータを別途必要とする。実行時間を高精度で求めるには、同時 に取得した CPU_CYCLES event を使用することを推奨する。

Table 14-3 Performance Events for FLOPS

Performance Event	Description of Event
FP_SCALE_OPS_SPEC	SVE 命令の各命令の要素数を考慮した 128 bits あたりの演算数
FP_FIXED_OPS_SPEC	SIMD&FP 命令の要素数を考慮した演算数
FP_HP_SCALE_OPS_SPEC	FP_SCALE_OPS_SPEC のうち、半精度演算のみの演算数
FP_HP_FIXED_OPS_SPEC	FP_FIXED_OPS_SPEC のうち、半精度演算のみの演算数
FP_SP_SCALE_OPS_SPEC	FP_SCALE_OPS_SPEC のうち、単精度演算のみの演算数
FP_SP_FIXED_OPS_SPEC	FP_FIXED_OPS_SPEC のうち、単精度演算のみの演算数
FP_DP_SCALE_OPS_SPEC	FP_SCALE_OPS_SPEC のうち、倍精度演算のみの演算数
FP_DP_FIXED_OPS_SPEC	FP_FIXED_OPS_SPEC のうち、倍精度演算のみの演算数

Hardware Resource Monitor Events 14.3.

プロセッサの基本的なリソースの振る舞いを観測するための Event を Table 14-4 にまとめる。 これらの Event はキャッシュ・ミスや分岐予測ミスなど、プログラム実行時の動的なハードウェ アの動作を数え上げる。

Table 14-4 Performance Events for Hardware Resource Monitoring

Performance Event	Description of Event
BR MIS PRED	分岐予測ミスによるパイプライン・フラッシュの回数
L1I_CACHE_REFILL	LII キャッシュ・ミスの回数
L1D_CACHE_REFILL	LID キャッシュ・ミスの回数
L1D_CACHE_REFILL_DM	デマンド・アクセスに起因する L1D キャッシュ・ミスの回数
L1D_CACHE_REFILL_PRF	プリフェッチ・アクセスに起因する L1D キャッシュ・ミスの回数
L1D_CACHE_REFILL_HWPRF	ハードウェア・プリフェッチ・アクセスに起因する LID キャッシュ・ミスの回数
L1D_CACHE_WB	LID キャッシュからのライトバックの回数
L1_MISS_WAIT	LID キャッシュ・ミス処理のサイクル当たりのインフライト数の積 算値 (= 1 サイクル毎に LID キャッシュの MIB 使用数を積算した値)
L2D_CACHE_REFILL	L2 キャッシュ・ミスの回数
L2D_CACHE_REFILL_DM	デマンド・フローに起因する L2 キャッシュ・ミスの回数
L2D_CACHE_REFILL_PRF	プリフェッチ・フローに起因する L2 キャッシュ・ミスの回数
L2D_CACHE_REFILL_HWPRF	プリフェッチ・フローの内、ハードウェア・プリフェッチに起因する L2 キャッシュ・ミスの回数
L2D_CACHE_WB	L2 キャッシュからのライトバックの回数
L2_MISS_WAIT	L2 キャッシュ・ミス処理のサイクル当たりのインフライト数の積算値 (= 1 サイクル毎に L2 キャッシュの MIB 使用数を積算した値)
L1I_TLB_REFILL	L1-ITLB ミスの回数
L1D_TLB_REFILL	Li-DTLB ミスの回数
L2I_TLB_REFILL	L2-ITLB ミスの回数
L2D_TLB_REFILL	L2-DTLB ミスの回数
EFFECTIVE_INST_SPEC	MOVPRFX 命令を除く、コミットしたアーキテクチャ命令数
BR_PRED	コミットした分岐命令数
CPU_CYCLES	PE のサイクル数

Table 14-4の Event を利用することで、プログラム実行時のハードウェアの性能指標を算出す ることができる。Table 14-5 にまとめる

Table 14-5 Method to Calculate Hardware Performance Indicators at Program Execution

Indicator	Formula	
Cycles per Instruction (CPI)	CPU_CYCLES / EFFECTIVE_INST_SPEC	
分岐予測ミス率	BR_MIS_PRED / EFFECTIVE_INST_SPEC	
LII キャッシュ・ミス率	LII_CACHE_REFILL / EFFECTIVE_INST_SPEC	
L1D キャッシュ・ミス率	L1D_CACHE_REFILL / EFFECTIVE_INST_SPEC	
デマンド・アクセスに起因する L1D キャッシュ・ミ ス率	L1D_CACHE_REFILL_DM / EFFECTIVE_INST_SPEC	
プリフェッチ・アクセスに起因する LID キャッシュ・ミス率	L1D_CACHE_REFILL_PRF / EFFECTIVE_INST_SPEC	
ハードウェア・プリフェッチが生成したプリフェッ チ・アクセスに起因する L1D キャッシュ・ミス率	LID_CACHE_REFILL_HWPRF / EFFECTIVE_INST_SPEC	
ソフトウェア・プリフェッチ・アクセスに起因する LID キャッシュ・ミス率	(LID_CACHE_REFILL_PRF - LID_CACHE_REFILL_HWPRF) / EFFECTIVE_INST_SPEC	
L2 キャッシュ・ミス率	L2D_CACHE_REFILL / EFFECTIVE_INST_SPEC	
デマンド・フローに起因する L2 キャッシュ・ミス率	L2D_CACHE_REFILL_DM / EFFECTIVE_INST_SPEC	
プリフェッチ・フローに起因する L2 キャッシュ・ミ ス率	L2D_CACHE_REFILL_PRF / EFFECTIVE_INST_SPEC	
ハードウェア・プリフェッチが生成したプリフェッ チ・フローに起因する L2 キャッシュ・ミス率	L2D_CACHE_REFILL_HWPRF / EFFECTIVE_INST_SPEC	
ソフトウェア・プリフェッチが生成したプリフェッ チ・フローに起因する L2 キャッシュ・ミス率	(L2D_CACHE_REFILL_PRF - L2D_CACHE_REFILL_HWPRF) / EFFECTIVE_INST_SPEC	
L1D キャッシュ・ミス処理の平均レイテンシ	L1_MISS_WAIT / L1D_CACHE_REFILL	
L2 キャッシュ・ミス処理の平均レイテンシ	L2_MISS_WAIT / L2D_CACHE_REFILL	
LID キャッシュ・ミス処理の平均アウトスタンディン グ数	L1_MISS_WAIT / CPU_CYCLES	
L2 キャッシュ・ミス処理の平均アウトスタンディン グ数	L2_MISS_WAIT / CPU_CYCLES	
L1-ITLB ミス率	L1I_TLB_REFILL / EFFECTIVE_INST_SPEC	
LI-DTLB ミス率	L1D_TLB_REFILL / EFFECTIVE_INST_SPEC	
L2-ITLB ミス率	L21_TLB_REFILL / EFFECTIVE_INST_SPEC	
L2-DTLB ミス率	L2D_TLB_REFILL / EFFECTIVE_INST_SPEC	
L1D キャッシュと L2 キャッシュ間の双方向実効バン ド幅	(L1D_CACHE_REFILL + L1D_CACHE_WB) * 256 * Processor frequency / CPU_CYCLES	
L2 キャッシュとメモリ間の双方向実効バンド幅	(L2D_CACHE_REFILL + L2D_CACHE_WB) * 256 * Processor frequency / CPU_CYCLES	

14.4. Cycle Accounting

プロセッサの性能指標の一つである Cycle Per Instruction (CPI) とは、プロセッサが 1 命令を実 行するのに費やした平均的な CPU サイクルである。この CPI は命令を実行するための様々なオ ペレーション・フローの処理時間、例えば演算やメモリ・アクセスの時間が積み重なったものと 考えることができる。CPI をこれらの個別の処理時間の積み上げとして表すことを Cycle Accounting と呼ぶ。A64FX は Cycle Accounting のための Event を実装している。Table 14-6 にま とめる。これらの Event も Instruction Mix で使われる Event と同様に計測する対象に包含関係が ある。"Other" は Event を組み合わせて算出できる項目であり、算出式を Table 14-7 にまとめ る。

Table 14-6 Performance Events for Cycle Accounting

ents for Cycle Accounting	Target of Counting by Event
PU_CYCLES	CPU クロック・サイクル
0INST_COMMIT	命令コミット数が "0" であるサイクル
LD_COMP_WAIT	CSE の最も古い命令がメモリ・アクセス完了待ちでコミットできないサイクル
LD_COMP_WAIT_EX	LD_COMP_WAIT のうち、Base inst. に属する命令が要因であるーイクル
LD_COMP_WAIT_L2_MISS	LD_COMP_WAIT のうち、L2 キャッシュ・ミス中のサイクル
LD_COMP_WAIT_L2_MISS_EX	LD_COMP_WAIT_L2_MISS のうち、Base inst. に属する命令が要因であるサイクル
Other (ld_comp_wait_l2_miss_fl)	LD_COMP_WAIT_L2_MISS のうち、SIMD&FP と SVE 命令に属る命令が要因であるサイクル
LD_COMP_WAIT_L1_MISS	LD_CIMP_WAIT のうち、L1D キャッシュ・ミス、かつ L2 キャッシュ・ヒット中のサイクル (厳密には L2 キャッシュ・ミス時の L2 キャッシュ・ミスが確定するまでのサイクルも含まれる)
LD_COMP_WAIT_L1_MISS_EX	LD_COMP_WAIT_L1_MISS のうち、Base inst. に属す命令が要因であるサイクル
Other (ld_comp_wait_l1_miss_fl)	LD_COMP_WAIT_L1_MISS のうち、SIMD&FP と SVE 命令に属る命令が要因であるサイクル
LD_COMP_WAIT_PFP_BUSY	LD_COMP_WAIT のうち、L2 キャッシュのプリフェッチ処理リース不足のためにメモリ・メモリアクセス命令がコミットできないサイクル (プロフェッチ・フローが処理できず、フローの生成元の命令がミットできない事象を表す)
LD_COMP_WAIT_PFP_BUSY_EX	LD_COMP_WAIT_PFP_BUSY のうち、Base inst. に属する命令が 要因であるサイクル
LD_COMP_WAIT_PFP_BUSY_SWPF	LD_COMP_WAIT_PFP_BUSY のうち、ソフトウェア・プリフェッチ命令が要因であるサイクル
Other (ld_comp_wait_pfp_busy_fl)	LD_COMP_WAIT_PFP_BUSY のうち、SIMD&FP と SVE 命令が 因であるサイクル
Other (ld_comp_wait_ll_hit)	LD_COMP_WAIT のうち、L1D キャッシュ・ヒット中のサイクル (厳密には L1D キャッシュ・ミス時の L1D キャッシュ・ミスが確定するまでのサイクルも含まれる)

Events for Cycle Accounting	Target of Counting by Event
Other (ld_comp_wait_l1_hit_ex)	ld_comp_wait_11_hit のうち、Base inst. に属する命令が要因であるサイクル
Other (ld_comp_wait_l1_hit_fl)	ld_comp_wait_ll_hit のうち、SIMD&FP と SVE 命令に属する命令 が要因であるサイクル
EU_COMP_WAIT	CSE の最も古い命令が演算完了待ちでコミットできないサイクル
FL_COMP_WAIT	EU_COMP_WAIT のうち、SIMD&FP と SVE 命令に属する命令が 要因であるサイクル
Other (ex_comp_wait)	EU_COMP_WAIT のうち、Base inst. に属する命令が要因であるサイクル
BR_COMP_WAIT	CSE の最も古い命令が分岐命令で、分岐方向の確定待ちでコミットできないサイクル
ROB_EMPTY	CSE が空のために命令がコミットできないサイクル(命令がデコードステージ以降に存在していない状態)
ROB_EMPTY_STQ_BUSY	CSE が空、かつ Virtual SP がフルの状態のために命令がコミット できないサイクル (Virtual SP がフルのためデコードが止まっている状態)
WFE_WFI_CYCLE	WFE 命令、または WFI により PE の動作が停止しているサイクル (並列プログラムでは同期待ちの時間として現れる)
Other (rob_empty_not_stq_busy)	その他の要因で CSE が空のために命令がコミットできないサイクル (主に、命令フェッチ待ちの時間として現れる)
UOP_ONLY_COMMIT	μOP 命令のみがコミットされたサイクル (2 μOP 命令以上にデコードされたアーキテクチャ命令においては、最後の μOP 命令のコミットがアーキテクチャ命令としてのコミットを意味するため、μOP 命令のみのコミットという状態がある)
SINGLE_MOVPRFX_COMMIT	Pack されなかった MOVPRFX 命令のみがコミットしたサイクル
Other (0inst_commit_other)	その他の要因で命令がコミットできなったサイクル
IINST_COMMIT	命令コミット数が "1" であるサイクル
2INST_COMMIT	命令コミット数が "2" であるサイクル
3INST_COMMIT	命令コミット数が "3" であるサイクル
4INST_COMMIT	命令コミット数が "4" であるサイクル
Event Independent of Inclusion Relationship	<u> </u>
LD_COMP_WAIT_EX	LD_COMP_WAIT のうち、Base inst. に属する命令が要因であるサイクル

Table 14-7 Formulas for Other (Cycle Accounting)

Item	Formula
ld_comp_wait_l2_miss_fl	LD_COMP_WAIT_L2_MISS - LD_COMP_WAIT_L2_MISS_EX
ld_comp_wait_l1_miss_fl	LD_COMP_WAIT_L1_MISS - LD_COMP_WAIT_L1_MISS_EX
ld_comp_wait_pfp_busy_fl	LD_COMP_WAIT_PFP_BUSY - (LD_COMP_WAIT_PFP_BUSY_EX + LD_COMP_WAIT_PFP_BUSY_SWPF)
ld_comp_wait_l1_hit	LD_COMP_WAIT - (LD_COMP_WAIT_L2_MISS + LD_COMP_WAIT_L1_MISS + LD_COMP_WAIT_PFP_BUSY)
ld_comp_wait_l1_hit_ex	LD_COMP_WAIT_EX -(LD_COMP_WAIT_L2_MISS_EX + LD_COMP_WAIT_L1_MISS_EX + LD_COMP_WAIT_PFP_BUSY_EX)
ld_comp_wait_l1_hit_fl	ld_comp_wait_l1_hit - ld_comp_wait_l1_hit_ex
ex_comp_wait	EU_COMP_WAIT - FL_COMP_WAIT
rob_empty_not_stq_busy	ROB_EMPTY - (ROB_EMPTY_STQ_BUSY + WFE_WFI_CYCLE)
0inst_commit_other	0INST_COMMIT - (UOP_ONLY_COMMIT + SINGLE_MOVPRFX_COMMIT + LD_COMP_WAIT + EU_COMP_WAIT + BR_COMP_WAIT + ROB_EMPTY)

15. リソース一覧

この章では A64FX のハードウェア・リソースを一覧にまとめる。

Table 15-1 Out-of-Order Resources

Resource	Quantity of Re	source	
Commit stack entry (CSE)	128 entries		
Group ID (GID)	32 entries		
Constitution (CDD)		Architecture register	32 entries
General-purpose physical register (GPR)	96 entries	Renaming register	64 entries
Election as introducing local transfer (EDD)	120	Architecture register	32 entries
Floating-point physical register (FPR)	128 entries	Renaming register	96 entries
	48 entries	Architecture register	16 entries
Predicate physical register (PPR)		Renaming register	32 entries
Reservation station for EAG (RSA)	10 entries x 2 (split)		
Reservation station for EXE (RSE) (shared by Integer, SIMD&FP, SVE)	20 entries x 2 (split)		
Reservation station for branch (RSBR)	19 entries		
Temporary operand register (TOR)	3 entries		
E (1 (FP)	Virtual	160 entries	
Fetch port (FP)	Real 40 entries		
Store port (SP)	Virtual	192 entries	
	Real	24 entries	
Write buffer (WB)	8 entries		

Table 15-2 Resources for Branch Misprediction Mechanism

Resource	Quantity of Resource
Instruction Buffer (IBUFF)	6 entries
Small Taken Chain Predictor (S-TCP)	4 entries
Loop Prediction Table (LPT)	8 entries
Branch Weight Table (BWT)	2,048 entries
Branch Target Buffer (BTB)	2,048 entries (4-way set associative)
Return Address Stack (RAS)	8 entries

Table 15-3 Resources for Memory Management Unit

Resource	Quantity of Resource
L1-ITLB	16 entries (full associative)
L1-DTLB	16 entries (full associative)
L2-ITLB	1,024 entries (4-way set associative)
L2-DTLB	1,024 entries (4-way set associative)
Translation Table Cache	16 entries (full associative)

Table 15-4 Resources for L1/L2 Cache

Resource	Quantity of Resource
L1I cache	64 KiB (4-way set associative)
L1D cache	64 KiB (4-way set associative)
L2 unified cache	8 MiB (16-way set associative)
L1I MIB	3 entries/core
L1D MIB	12 entries/core
L1D MOB	4 entries/core
L2 MIB	256 entries/CMG
L2 Store lock register	244 entries/CMG

16. 命令属性/レイテンシ一覧

A64FX がサポートする全命令のレイテンシ一覧を ARMv8 (Table 16-1)、ARMv8 SIMD&FP (Table 16-2)、SVE (Table 16-3) に分けてそれぞれ示す。 各表の列項目について説明する。

• Instruction, Alias

命令のリストである。Alias 命令は元になる命令のサブセットとして表記している。

Control option

同一命令において、異なるハードウェアの動作となるときの条件を示している。基本的にアセンブラ・シンタックスで条件を表現している。 Variant を区別するときは、ディスティネーション・オペランドのレジスタ・サイズで表記している。

ディスティネーション・オペランドで区別できないときは、ソース・オペランドで表記している。

VL

Control option に VL が影響するときに区別を表記している。空欄であるときはハードウェアの動作は VL の影響を受けないことを意味している。

Number of μOP

デコード時に分解される μOP 命令の数である。μOP 命令については 4.1 章を参照のこと。

Sequential decode

シーケンシャル・デコードの対象命令であることを示す。シーケンシャル・デコードについては4.1章を参照のこと。

• Pre-sync, Post-sync

Pre-sync および Post-sync 制御の対象命令であることを示す。Sync 制御については 4.7 章を参照のこと。

Pack

MOVPRFX 命令にて修飾されたときに Pack 処理が可能な命令を示す。Pack 処理については 4.3 章を参照のこと。

Extra μOP

MOVPRFX 命令による修飾、かつ Merging predication のときに μOP 命令が追加される命令であることを示す。Merging predication については 6.5.1 章を参照のこと。

Blocking

命令実行時にブロッキング制御される命令であることを示す。

パイプライン・ブロッキングされる命令は"P", 演算ブロッキングされる命令は"E"と表記している。ブロッキング制御については 6.3 章を参照のこと。

Latency

命令の実行レイテンシを表す。基本的には μOP 命令単位で表記している。

ロード命令においては、L1Dキャッシュ・ヒット時のレイテンシとしている。

また、ロード/ストア・ステージにおけるオペレーション・フロー分割はアクセスの性質、例えばアドレス・アライメントやデータ長などに依存するため、本一覧では処理に必須の最初のフローのみを計上している。 表記ルールは以下の通りである。

- µOP 命令間の分離記号は"/"である。
- **■** μ OP 命令間に依存関係があるときは、先行する依存対象 μ OP 命令の相対位置を [] で囲んだ左上付き表記で表す。 例えば、" $1/2/^{[1,2]4}/2$ " という表記があれば、3 番目の μ OP 命令の入力は一つ前と二つ前の μ OP 命令の出力であることを示している。
- ()表記はグループ化を表す。さらに、()xN表記はグループの展開表記であり、()内をN回展開すること意味する。 例えば、"(1/2)x3"は "1/2/1/2"に、"1/(2/11/4)x2"は "1/2/11/4" に展開される。
- 複雑な依存関係がある命令は、位置表記もグループ化する。

例えば、"1/[1]2/[2]2/[3]2"は、先頭のレイテンシ1の μ OP 命令に後続のすべての μ OP 命令が依存している。 このとき、1/[1/2/3](2) x 3 とグループ化して展開表記とする。

μOP 命令には複数オペレーション・フローに分解されるものがある。複数オペレーション・フローが組み合わさったときの表記ルールは以下の通りである。マルチ・オペレーションについては 4.2 章を参照のこと。 また、オペレーション・フロー間の依存関係は前後フローのみのため、オペレーション・フローにおける依存関係の位置表示はない。

- デコード・ステージにて分解されたオペレーション・フローに依存関係がなく、複数のパイプラインで独立して実行されるときは","区切りで並べて表記する。
- デコード・ステージにて分解されたオペレーション・フローに依存関係がありながらも、複数のパイプラインで実行されるときは";"区切りで連結して表記する。
- 実行ステージにて分解されたオペレーション・フローに依存関係があり、オペレーション・フローが逐次に実行されるときは、"+"区切りで連結して表記する。
- Pipe() 関数表記は Gather load / Scatter store, Multiple structures load / store のための特別な表記である。

Pipe(L, N) はレイテンシ L のフローを、N 回連続して毎サイクル発行することを表している。フロー間には依存がないためパイプライン実行される。

Pipeline

オペレーション・フローを実行するパイプラインを表す。実行パイプラインについては 6.2 章を参照のこと。

表記ルールはレイテンシ表記を基本とし、以下のルールを追加する。

- オペレーション・フローを実行可能なパイプラインが複数あるときは、*(ワイルドカード)と |(論理和)を使って表記する。
 - 例えば、EX* | EAG* は EX (整数演算系) パイプラインと EAG (アドレス演算系) のいずれのパイプラインでも実行できることを表している。

また、(EXA+EXA) | (EXB+EXB) は、オペレーション・フローの1番目と2番目に依存があり、両方ともEXAパイプラインで実行、または両方ともEXBパイプラインで実行することを表している。

- いくつかのオペレーション・フローの組み合わせでは、バイパス・ペナルティが静的に加えられる。
 - このようなときは、バイパスが発生するパイプライン間に"+ NULL+"を挿入し、かつレイテンシ表記も同じ位置にバイパス・ペナルティのレイテンシが表記されている。

例えば、レイテンシ表記が "1+3+6" でパイプライン表記が "EXA + NULL + FLA" であるときは、中央の 3 サイクルがバイパス・ペナルティである。

- Pipe() 関数表記はレイテンシ表記と同様に、Gather load / Scatter store, Multiple structures load / store のための特別な表記である。
 - Pipe(P, N) はパイプライン Pに N回フローが発行されることを表している。

なお、Gather load / Scatter store は一つのオペレーション・フローが EAGA と EAGB の両方を使用するため、使用するパイプラインは"EAGA & EAGB" と表記している。

- Number of FP
 - ロード/ストア命令に割り当てられる Fetch Port 数である。Fetch Port については 7.3 章を参照のこと。
- Number of SP
 - ロード/ストア命令に割り当てられる Store Port 数である。Fetch Port については 7.3 章を参照のこと。
- FLOPS
 - 命令の Performance Event で数え上げられる Element あたりの浮動小数点演算数である。

本項目が空欄であるときは "0" FLOPS として扱われる。Performance Event での FLOPS 算出については 14.2 章を参照のこと。

16.1. ARMv8 Base instructions

Table 16-1 Instruction Attributes/Latency (ARMv8)

Instruction	Alias	Control option	# of μOP	Seq. decode	Pre- sync	Post	Blockir	Latency	Pipeline	# of FP	# of SP
ADC			1					1	EX*		
ADCS			1					1	EX*		
ADD (extended register)		<pre><amount> = 0 && (If sf = 0 Then</amount></pre>	1					1	EX* EAG*		
			1				P	1+1	(EXA + EXA) (EXB + EXB)		
ADD (immediate)	MOV (to/from SP)		1					1	EX* EAG*		
			1					1	EX* EAG*		
ADD (shifted register)		<amount> = 0</amount>	1					1	EX* EAG*		

Instruction	Alias	Control option	# of μOP	Seq. decode	Pre	e- Post-	Blocking	Latency	Pipeline	# of FP	# of SP
		<amount> = [1-4] && <shift>=LSL</shift></amount>	1				P	1+1	(EXA + EXA) (EXB + EXB)		
			1				P	2+1	(EXA + EXA) (EXB + EXB)		
ADDS (extended register)	CMN (extended register)	<amount> = 0</amount>	1					1	EX*		
			1				P	1+1	(EXA + EXA) (EXB + EXB)		
		<pre><amount>=0 && (If sf = 0 Then</amount></pre>	1					1	EX*		
			1				P	1+1	(EXA + EXA) (EXB + EXB)		
ADDS (immediate)	CMN (immediate)		1					1	EX*		
			1					1	EX*		
ADDS (shifted register)	CMN (shifted register)	<amount> = 0</amount>	1					1	EX*		
		<amount> = [1-4] && <shift> = LSL</shift></amount>	1				P	1+1	(EXA + EXA) (EXB + EXB)		
			1				P	2+1	(EXA + EXA) (EXB + EXB)		
		<amount> = 0</amount>	1					1	EX*		
		<amount> = [1-4] && <shift> = LSL</shift></amount>	1				P	1+1	(EXA + EXA) (EXB + EXB)		
			1				P	2+1	(EXA + EXA) (EXB + EXB)		
ADR			1					1	EAGB		
ADRP			1					1	EAGB		
AND (immediate)			1					1	EX* EAG*		
AND (shifted register)		<amount> = 0</amount>	1					1	EX* EAG*		
			1				P	2+1	(EXA + EXA) (EXB + EXB)		
ANDS (immediate)	TST (immediate)		1					1	EX*		
			1					1	EX*		
ANDS (shifted register)	TST (shifted register)	<amount> = 0</amount>	1					1	EX*		
			1				P	2+1	(EXA + EXA) (EXB + EXB)		
		<amount> = 0</amount>	1					1	EX*		
			1				P	2+1	(EXA + EXA) (EXB + EXB)		
ASRV	ASR (register)		1					2	EX*		
B.cond			1					NA	BR		
В			1					NA	BR		
BFM	BFC		4	✓				2 / [1]1 / 1 / [1,2]1	EX* / EX* / EX* / EX*		
	BFI		4	✓				2 / [1]1 / 1 / [1,2]1	EX* / EX* / EX* / EX*		
	BFXIL		4	✓				2 / [1] 1 / 1 / [1,2] 1	EX* / EX* / EX* / EX*		
			4	✓				2 / [1] 1 / 1 / [1,2] 1	EX* / EX* / EX* / EX*		
BIC (shifted register)		<amount> = 0</amount>	1		-			1	EX* EAG*		
			1				P	2+1	(EXA + EXA) (EXB + EXB)		
BICS (shifted register)		<amount> = 0</amount>	1			_		1	EX*		
			1		-		P	2+1	(EXA + EXA) (EXB + EXB)		
									(

Instruction	Alias	Control option	# of μOP	Seq. decode	Pre- sync	Post- sync	Blocki	Latency	Pipeline	# of FP	# of SP
BL			1					1	EAGB, BR		
BLR			1					1, NA, NA	EAGB, EXA, BR		
BR			1					1, NA	EXA, BR		
BRK			2	✓	✓	✓		NA / NA	/		
CAS{ A AL L}			3	✓				1 / 5;1 / [2]1	EAG* / EAGA; EXA / EXA	1	1
CAS{ A AL L}B			3	✓				1 / 5;1 / [2]1	EAG* / EAGA; EXA / EXA	1	1
CAS{ A AL L}H			3	✓				1 / 5;1 / [2]1	EAG* / EAGA; EXA / EXA	1	1
CASP{ A AL L}			7	✓				1 / 5; ^[1] 1 / 1 / ^[2] 1 / 5; ^[4] 1 / 1 / ^[2] 1	EAG* / EAGA; EXA / EXA / EAG* / EAGA; EXA / EXA / EAG*	2	2
CBNZ			1					1	EX*		
CBZ			1					1	EX*		
CCMN (immediate)			1				P	1+1	(EXA + EXA) (EXB + EXB)		
CCMN (register)			1				P	1+1	(EXA + EXA) (EXB + EXB)		
CCMP (immediate)			1				P	1+1	(EXA + EXA) (EXB + EXB)		
CCMP (register)			1				P	1+1	(EXA + EXA) (EXB + EXB)		
CLREX			2	✓				NA / NA	/ EAGA	1	
CLS			1					2	EX*		
CLZ			1					2	EX*		
CRC32B			1				Е	10	EXB		
CRC32H			1				Е	10	EXB		
CRC32W			1				Е	12	EXB		
CRC32X			1				Е	20	EXB		
CRC32CB			1				Е	10	EXB		
CRC32CH			1				Е	10	EXB		
CRC32CW			1				Е	12	EXB		
CRC32CX			1				Е	20	EXB		
CSEL			1					1	EX*		
CSINC	CINC		1					1	EX*		
	CSET		1					1	EX*		
			1					1	EX*		
CSINV	CINV		1					1	EX*		
	CSETM		1					1	EX*		
			1					1	EX*		
CSNEG	CNEG		1					1	EX*		
			1					1	EX*		
DCPS1			2	\	✓	✓		NA / NA	/		
DCPS2			2	√	✓	✓		NA / NA	/		
DCPS3			2	√	✓	✓		NA / NA	/		
DMB			2	√				NA / NA	/ EAGA	1	
DRPS			2	✓	✓	✓		NA / NA	/		

Instruction	Alias	Control option	# of μOP	Seq.	Pre- e sync	Post	Blocki	ng Latency	Pipeline	# of FP	# of SP
DSB			2	√				NA / NA	/ EAGA	1	
EON (shifted register)		<amount> = 0</amount>	1					1	EX* EAG*		
			1				P	2+1	(EXA + EXA) (EXB + EXB)		
EOR (immediate)			1					1	EX* EAG*		
EOR (shifted register)		<amount> = 0</amount>	1					1	EX* EAG*		
			1				P	2+1	(EXA + EXA) (EXB + EXB)		
ERET			2	✓	✓	✓		NA / NA	/		
EXTR	ROR (immediate)		1					2	EX*		
			3	✓				2 / 2 / [1,2]1	EX* / EX* / EX*		
HINT	NOP		1					NA			
	YIELD		6	✓	✓	✓		NA / NA / NA / NA / NA	////		
	WFE		2	✓	✓	✓		NA / NA	/		
	WFI		2	✓	✓	✓		NA / NA	/		
	SEV		2	✓	✓	✓		NA / NA	/		
	SEVL		2	✓	✓	✓		NA / NA	/		ı
	ESB		2	✓		✓		NA / NA	/ EAGA	1	
HLT			2	✓	✓	✓		NA / NA	/		
HVC			2	✓	✓	✓		NA / NA	/		
ISB			2	✓		✓		NA / NA	/ EAGA	1	
LDADD	STADD		4	✓				1 / ^[1] 5 / ^[1] 1 / ^[1] NA	EAG* / EAGA / EXA / EXA	1	1
			4	✓				1 / [1]5 / [1]1 / [1]NA	EAG* / EAGA / EXA / EXA	1	1
LDADDA			4	✓				1 / ^[1] 5 / ^[1] 1 / ^[1] NA	EAG* / EAGA / EXA / EXA	1	1
LDADDAB			4	✓				1 / ^[1] 5 / ^[1] 1 / ^[1] NA	EAG* / EAGA / EXA / EXA	1	1
LDADDAH			4	✓				1 / [1]5 / [1]1 / [1]NA	EAG* / EAGA / EXA / EXA	1	1
LDADDAL			4	✓				1 / [1]5 / [1]1 / [1]NA	EAG* / EAGA / EXA / EXA	1	1
LDADDALB			4	✓				1 / ^[1] 5 / ^[1] 1 / ^[1] NA	EAG* / EAGA / EXA / EXA	1	1
LDADDALH			4	✓				1 / [1]5 / [1]1 / [1]NA	EAG* / EAGA / EXA / EXA	1	1
LLDADDB	STADDB		4	√				1 / [1]5 / [1]1 / [1]NA	EAG* / EAGA / EXA / EXA	1	1
			4	✓				1 / ^[1] 5 / ^[1] 1 / ^[1] NA	EAG* / EAGA / EXA / EXA	1	1
LDADDH	STADDH		4	√				1 / [1]5 / [1]1 / [1]NA	EAG* / EAGA / EXA / EXA	1	1
			4	√				1 / ^[1] 5 / ^[1] 1 / ^[1] NA	EAG* / EAGA / EXA / EXA	1	1
LDADDL	STADDL		4	√				1 / ^[1] 5 / ^[1] 1 / ^[1] NA	EAG* / EAGA / EXA / EXA	1	1
			4	√	+			1 / ^[1] 5 / ^[1] 1 / ^[1] NA	EAG* / EAGA / EXA / EXA	1	1
LDADDLB	STADDLB		4	√	+			1 / ^[1] 5 / ^[1] 1 / ^[1] NA	EAG* / EAGA / EXA	1	1
LDADDLR			4	√	+			1 / [1]5 / [1]1 / [1]NA	EAG* / EAGA / EXA	1	1
LDADDLH	STADDLH		4	√	+		1	1 / ^[1] 5 / ^[1] 1 / ^[1] NA	EAG* / EAGA / EXA / EXA	1	1
			4	√	+		1	1 / ^[1] 5 / ^[1] 1 / ^[1] NA	EAG* / EAGA / EXA / EXA	1	1
LDAR			1	<u> </u>	+			5	EAGA	1	
IDIN.			1					<u> </u>	DATA.	1	

Instruction	Alias	Control option	# of µOP	Seq. decode	Pre- sync	Post- sync	Blocking	Latency	Pipeline	# of FP	# of SP
LDARB			1					5	EAGA	1	
LDARH			1					5	EAGA	1	
LDAXP			3	✓				1 / [1]5 / [2]5	EAG* / EAGA / EAGA	3	
LDAXR			1					5	EAGA	1	
LDAXRB			1					5	EAGA	1	
LDAXRH			1					5	EAGA	1	
LDCLR	STCLR		4	✓				1 / [1]5 / [1]1 / [1]NA	EAG* / EAGA / EXA / EXA	1	1
			4	✓				1 / [1]5 / [1]1 / [1]NA	EAG* / EAGA / EXA / EXA	1	1
LDCLRA			4	✓				1 / [1]5 / [1]1 / [1]NA	EAG* / EAGA / EXA / EXA	1	1
LDCLRAB			4	✓				1 / [1]5 / [1]1 / [1]NA	EAG* / EAGA / EXA / EXA	1	1
LDCLRAH			4	✓				1 / [1]5 / [1]1 / [1]NA	EAG* / EAGA / EXA / EXA	1	1
LDCLRAL			4	✓				1 / [1]5 / [1]1 / [1]NA	EAG* / EAGA / EXA / EXA	1	1
LDCLRALB			4	✓				1 / ^[1] 5 / ^[1] 1 / ^[1] NA	EAG* / EAGA / EXA / EXA	1	1
LDCLRALH			4	✓				1 / [1]5 / [1]1 / [1]NA	EAG* / EAGA / EXA / EXA	1	1
LDCLRB	STCLRB		4	✓				1 / ^[1] 5 / ^[1] 1 / ^[1] NA	EAG* / EAGA / EXA / EXA	1	1
			4	✓				1 / ^[1] 5 / ^[1] 1 / ^[1] NA	EAG* / EAGA / EXA / EXA	1	1
LDCLRH	STCLRH		4	✓				1 / ^[1] 5 / ^[1] 1 / ^[1] NA	EAG* / EAGA / EXA / EXA	1	1
			4	✓				1 / [1]5 / [1]1 / [1]NA	EAG* / EAGA / EXA / EXA	1	1
LDCLRL	STCLRL		4	✓				1 / [1]5 / [1]1 / [1]NA	EAG* / EAGA / EXA / EXA	1	1
			4	✓				1 / [1]5 / [1]1 / [1]NA	EAG* / EAGA / EXA / EXA	1	1
LDCLRLB	STCLRLB		4	✓				1 / ^[1] 5 / ^[1] 1 / ^[1] NA	EAG* / EAGA / EXA / EXA	1	1
			4	✓				1 / ^[1] 5 / ^[1] 1 / ^[1] NA	EAG* / EAGA / EXA / EXA	1	1
LDCLRLH	STCLRLH		4	✓				1 / [1]5 / [1]1 / [1]NA	EAG* / EAGA / EXA / EXA	1	1
			4	✓				1 / ^[1] 5 / ^[1] 1 / ^[1] NA	EAG* / EAGA / EXA / EXA	1	1
LDEOR	STEOR		4	✓				1 / ^[1] 5 / ^[1] 1 / ^[1] NA	EAG* / EAGA / EXA / EXA	1	1
			4	✓				1 / ^[1] 5 / ^[1] 1 / ^[1] NA	EAG* / EAGA / EXA / EXA	1	1
LDEORA			4	✓				1 / ^[1] 5 / ^[1] 1 / ^[1] NA	EAG* / EAGA / EXA / EXA	1	1
LDEORAB			4	✓				1 / ^[1] 5 / ^[1] 1 / ^[1] NA	EAG* / EAGA / EXA / EXA	1	1
LDEORAH			4	✓				1 / ^[1] 5 / ^[1] 1 / ^[1] NA	EAG* / EAGA / EXA / EXA	1	1
LDEORAL			4	✓				1 / [1]5 / [1]1 / [1]NA	EAG* / EAGA / EXA / EXA	1	1
LDEORALB			4	✓				1 / [1]5 / [1]1 / [1]NA	EAG* / EAGA / EXA / EXA	1	1
LDEORALH			4	✓				1 / [1]5 / [1]1 / [1]NA	EAG* / EAGA / EXA / EXA	1	1
LDEORB	STEORB		4	√				1 / ^[1] 5 / ^[1] 1 / ^[1] NA	EAG* / EAGA / EXA	1	1
			4	√				1 / ^[1] 5 / ^[1] 1 / ^[1] NA	EAG* / EAGA / EXA	1	1
LDEORH	STEORH		4	√				1 / [1]5 / [1]1 / [1]NA	EAG* / EAGA / EXA / EXA	1	1
			4	√				1 / [1]5 / [1]1 / [1]NA	EAG* / EAGA / EXA / EXA	1	1
LDEORL	STEORL		4	√				1 / ^[1] 5 / ^[1] 1 / ^[1] NA	EAG* / EAGA / EXA / EXA	1	1
			4	√				1 / ^[1] 5 / ^[1] 1 / ^[1] NA	EAG* / EAGA / EXA / EXA	1	1
			4	V				1/-3/-1/-MA	ENG / ENGA / ENA / ENA	1	1

Instruction	Alias	Control option	# o μΟ!	f Seq.	Pre e syn	Post	Blocking	Latency	Pipeline	# of FP	# of SP
LDEORLB	STEORLB		4	✓				1 / [1]5 / [1]1 / [1]NA	EAG* / EAGA / EXA / EXA	1	1
			4	✓				1 / [1]5 / [1]1 / [1]NA	EAG* / EAGA / EXA / EXA	1	1
LDEORLH	STEORLH		4	✓				1 / [1]5 / [1]1 / [1]NA	EAG* / EAGA / EXA / EXA	1	1
			4	✓				1 / [1]5 / [1]1 / [1]NA	EAG* / EAGA / EXA / EXA	1	1
LDLAR			1					5	EAGA	1	
LDLARB			1					5	EAGA	1	
LDLARH			1					5	EAGA	1	
LDNP			2					5/5	EAG* / EAG*	2	
LDP		Post-index	3					5/5/1	EAG* / EAG* / EX* EAG*	2	
		Pre-index	3					5/5/1	EAG* / EAG* / EX* EAG*	2	
		Signed offset	2					5/5	EAG*/EAG*	2	
LDPSW		Post-index	3					5/5/1	EAG* / EAG* / EX* EAG*	2	
		Pre-index	3					5/5/1	EAG* / EAG* / EX* EAG*	2	
		Signed offset	2					5/5	EAG*/EAG*	2	
LDR (immediate)		Post-index	2					5/1	EAG* / EX* EAG*	1	
		Pre-index	2					5/1	EAG* / EX* EAG*	1	
		Unsigned offset	1					5	EAG*	1	
LDR (literal)			1					5	EAGB	1	
LDR (register)			1					5	EAG*	1	
LDRB (immediate)		Post-index	2					5/1	EAG* / EX* EAG*	1	
		Pre-index	2					5/1	EAG* / EX* EAG*	1	
		Unsigned offset	1					5	EAG*	1	
LDRB (register)			1					5	EAG*	1	
LDRH (immediate)		Post-index	2					5/1	EAG* / EX* EAG*	1	
		Pre-index	2					5/1	EAG* / EX* EAG*	1	
		Unsigned offset	1					5	EAG*	1	
LDRH (register)			1					5	EAG*	1	
LDRSB (immediate)		Post-index	2					5/1	EAG* / EX* EAG*	1	
		Pre-index	2					5/1	EAG* / EX* EAG*	1	
		Unsigned offset	1					5	EAG*	1	
LDRSB (register)			1					5	EAG*	1	
LDRSH (immediate)		Post-index	2					5/1	EAG* / EX* EAG*	1	
		Pre-index	2					5/1	EAG* / EX* EAG*	1	
		Unsigned offset	1					5	EAG*	1	
LDRSH (register)			1					5	EAG*	1	
LDRSW (immediate)		Post-index	2					5/1	EAG* / EX* EAG*	1	
		Pre-index	2					5/1	EAG* / EX* EAG*	1	
		Unsigned offset	1	1			1	5	EAG*	1	
LDRSW (literal)			1					5	EAGB	1	

Instruction	Alias	Control option	# of μOP	Seq. decode	Pre- sync	Post-	Bloo	cking	Latency	Pipeline	# of FP	# of SP
LDRSW (register)			1						5	EAG*	1	
LDSET	STSET		4	√					1 / [1]5 / [1]1 / [1]NA	EAG* / EAGA / EXA / EXA	1	1
			4	√					1 / ^[1] 5 / ^[1] 1 / ^[1] NA	EAG* / EAGA / EXA / EXA	1	1
LDSETA			4	√					1 / [1]5 / [1]1 / [1]NA	EAG* / EAGA / EXA / EXA	1	1
LDSETAB			4	√					1 / [1]5 / [1]1 / [1]NA	EAG* / EAGA / EXA / EXA	1	1
LDSETAH			4	✓					1 / ^[1] 5 / ^[1] 1 / ^[1] NA	EAG* / EAGA / EXA / EXA	1	1
LDSETAL			4	✓					1 / [1]5 / [1]1 / [1]NA	EAG* / EAGA / EXA / EXA	1	1
LDSETALB			4	✓					1 / [1]5 / [1]1 / [1]NA	EAG* / EAGA / EXA / EXA	1	1
LDSETALH			4	✓					1 / [1]5 / [1]1 / [1]NA	EAG* / EAGA / EXA / EXA	1	1
LDSETB	STSETB		4	✓					1 / [1]5 / [1]1 / [1]NA	EAG* / EAGA / EXA / EXA	1	1
			4	✓					1 / [1]5 / [1]1 / [1]NA	EAG* / EAGA / EXA / EXA	1	1
LDSETH	STSETH		4	✓					1 / ^[1] 5 / ^[1] 1 / ^[1] NA	EAG* / EAGA / EXA / EXA	1	1
			4	√					1 / [1]5 / [1]1 / [1]NA	EAG* / EAGA / EXA / EXA	1	1
LDSETL	STSETL		4	✓					1 / [1]5 / [1]1 / [1]NA	EAG* / EAGA / EXA / EXA	1	1
			4	✓					1 / ^[1] 5 / ^[1] 1 / ^[1] NA	EAG* / EAGA / EXA / EXA	1	1
LDSETLB	STSETLB		4	√					1 / [1]5 / [1]1 / [1]NA	EAG* / EAGA / EXA / EXA	1	1
			4	√					1 / [1]5 / [1]1 / [1]NA	EAG* / EAGA / EXA / EXA	1	1
LDSETLH	STSETLH		4	√					1 / [1]5 / [1]1 / [1]NA	EAG* / EAGA / EXA / EXA	1	1
			4	✓					1 / [1]5 / [1]1 / [1]NA	EAG* / EAGA / EXA / EXA	1	1
LDSMAX	STSMAX		4	√					1 / ^[1] 5 / 1+ ^[1] 1 / ^[1] NA	EAG* / EAGA / EXA+EXA / EXA	1	1
			4	✓			//	/ P /	1 / [1]5 / 1+[1]1 / [1]NA	EAG* / EAGA / EXA+EXA / EXA	1	1
LDSMAXA			4	√			//	/ P /	1 / [1]5 / 1+[1]1 / [1]NA	EAG* / EAGA / EXA+EXA / EXA	1	1
LDSMAXAB			4	√			//	/ P /	1 / ^[1] 5 / 1+ ^[1] 1 / ^[1] NA	EAG* / EAGA / EXA+EXA / EXA	1	1
LDSMAXAH			4	✓			//	/ P /	1 / [1]5 / 1+[1]1 / [1]NA	EAG* / EAGA / EXA+EXA / EXA	1	1
LDSMAXAL			4	✓			//	/ P /	1 / [1]5 / 1+[1]1 / [1]NA	EAG* / EAGA / EXA+EXA / EXA	1	1
LDSMAXALB			4	√			//	/ P /	1 / ^[1] 5 / 1+ ^[1] 1 / ^[1] NA	EAG* / EAGA / EXA+EXA / EXA	1	1
LDSMAXALH			4	✓			//	/ P /	1 / [1]5 / 1+[1]1 / [1]NA	EAG* / EAGA / EXA+EXA / EXA	1	1
LDSMAXB	STSMAXB		4	✓					1 / [1]5 / 1+[1]1 / [1]NA	EAG* / EAGA / EXA+EXA / EXA	1	1
			4	✓			//	/ P /	1 / ^[1] 5 / 1+ ^[1] 1 / ^[1] NA	EAG* / EAGA / EXA+EXA / EXA	1	1
LDSMAXH	STSMAXH		4	√					1 / [1]5 / 1+[1]1 / [1]NA	EAG* / EAGA / EXA+EXA / EXA	1	1
			4	√			//	/ P /	1 / [1]5 / 1+[1]1 / [1]NA	EAG* / EAGA / EXA+EXA / EXA	1	1
LDSMAXL	STSMAXL		4	√				\dashv	1 / [1]5 / 1+[1]1 / [1]NA	EAG* / EAGA / EXA+EXA / EXA	1	1
			4	√			//	/ P /	1 / [1]5 / 1+[1]1 / [1]NA	EAG* / EAGA / EXA+EXA / EXA	1	1
LDSMAXLB	STSMAXLB		4	√				\dashv	1 / [1]5 / 1+[1]1 / [1]NA	EAG* / EAGA / EXA+EXA / EXA	1	1
			4	√			//	/ P /	1 / ^[1] 5 / 1+ ^[1] 1 / ^[1] NA	EAG* / EAGA / EXA+EXA / EXA	1	1
LDSMAXLH	STSMAXLH		4	√				\dashv	1 / [1]5 / 1+[1]1 / [1]NA	EAG* / EAGA / EXA+EXA / EXA	1	1
			4	√			//	/ P /	1 / ^[1] 5 / 1+ ^[1] 1 / ^[1] NA	EAG* / EAGA / EXA+EXA / EXA	1	1

Instruction	Alias	Control option	# of µOP	Seq. decode	Pre- sync	Post-	Blocking	Latency	Pipeline	# of FP	# of SP
LDSMIN	STSMIN		4	✓				1 / [1]5 / 1+[1]1 / [1]NA	EAG* / EAGA / EXA+EXA / EXA	1	1
			4	✓			//P/	1 / [1]5 / 1+[1]1 / [1]NA	EAG* / EAGA / EXA+EXA / EXA	1	1
LDSMINA			4	✓			//P/	1 / [1]5 / 1+[1]1 / [1]NA	EAG* / EAGA / EXA+EXA / EXA	1	1
LDSMINAB			4	✓			//P/	1 / [1]5 / 1+[1]1 / [1]NA	EAG* / EAGA / EXA+EXA / EXA	1	1
LDSMINAH			4	✓			//P/	1 / [1]5 / 1+[1]1 / [1]NA	EAG* / EAGA / EXA+EXA / EXA	1	1
LDSMINAL			4	✓			//P/	1 / [1]5 / 1+[1]1 / [1]NA	EAG* / EAGA / EXA+EXA / EXA	1	1
LDSMINALB			4	✓			//P/	1 / [1]5 / 1+[1]1 / [1]NA	EAG* / EAGA / EXA+EXA / EXA	1	1
LDSMINALH			4	✓			//P/	1 / [1]5 / 1+[1]1 / [1]NA	EAG* / EAGA / EXA+EXA / EXA	1	1
LDSMINB	STSMINB		4	✓				1 / ^[1] 5 / 1+ ^[1] 1 / ^[1] NA	EAG* / EAGA / EXA+EXA / EXA	1	1
			4	✓			//P/	1 / [1]5 / 1+[1]1 / [1]NA	EAG* / EAGA / EXA+EXA / EXA	1	1
LDSMINH	STSMINH		4	✓				1 / [1]5 / 1+[1]1 / [1]NA	EAG* / EAGA / EXA+EXA / EXA	1	1
			4	✓			//P/	1 / ^[1] 5 / 1+ ^[1] 1 / ^[1] NA	EAG* / EAGA / EXA+EXA / EXA	1	1
LDSMINL	STSMINL		4	✓				1 / [1]5 / 1+[1]1 / [1]NA	EAG* / EAGA / EXA+EXA / EXA	1	1
			4	✓			//P/	1 / [1]5 / 1+[1]1 / [1]NA	EAG* / EAGA / EXA+EXA / EXA	1	1
LDSMINLB	STSMINLB		4	√				1 / [1]5 / 1+[1]1 / [1]NA	EAG* / EAGA / EXA+EXA / EXA	1	1
			4	✓			//P/	1 / [1]5 / 1+[1]1 / [1]NA	EAG* / EAGA / EXA+EXA / EXA	1	1
LDSMINLH	STSMINLH		4	✓				1 / ^[1] 5 / 1+ ^[1] 1 / ^[1] NA	EAG* / EAGA / EXA+EXA / EXA	1	1
			4	✓			//P/	1 / [1]5 / 1+[1]1 / [1]NA	EAG* / EAGA / EXA+EXA / EXA	1	1
LDTR			1					5	EAG*	1	
LDTRB			1					5	EAG*	1	
LDTRH			1					5	EAG*	1	
LDTRSB			1					5	EAG*	1	
LDTRSH			1					5	EAG*	1	
LDTRSW			1					5	EAG*	1	
LDUMAX	STUMAX		4	√				1 / [1]5 / 1+[1]1 / [1]NA	EAG* / EAGA / EXA+EXA / EXA	1	1
			4	✓			//P/	1 / ^[1] 5 / 1+ ^[1] 1 / ^[1] NA	EAG* / EAGA / EXA+EXA / EXA	1	1
LDUMAXA			4	✓			//P/	1 / ^[1] 5 / 1+ ^[1] 1 / ^[1] NA	EAG* / EAGA / EXA+EXA / EXA	1	1
LDUMAXAB			4	✓			//P/	1 / ^[1] 5 / 1+ ^[1] 1 / ^[1] NA	EAG* / EAGA / EXA+EXA / EXA	1	1
LDUMAXAH			4	✓			//P/	1 / ^[1] 5 / 1+ ^[1] 1 / ^[1] NA	EAG* / EAGA / EXA+EXA / EXA	1	1
LDUMAXAL			4	✓			//P/	1 / ^[1] 5 / 1+ ^[1] 1 / ^[1] NA	EAG* / EAGA / EXA+EXA / EXA	1	1
LDUMAXALB			4	✓			//P/	1 / ^[1] 5 / 1+ ^[1] 1 / ^[1] NA	EAG* / EAGA / EXA+EXA / EXA	1	1
LDUMAXALH			4	✓			//P/	1 / [1]5 / 1+[1]1 / [1]NA	EAG* / EAGA / EXA+EXA / EXA	1	1
LDUMAXB	STUMAXB		4	✓				1 / [1]5 / 1+[1]1 / [1]NA	EAG* / EAGA / EXA+EXA / EXA	1	1
			4	√			//P/	1 / [1]5 / 1+[1]1 / [1]NA	EAG* / EAGA / EXA+EXA / EXA	1	1
LDUMAXH	STUMAXH		4	√				1 / [1]5 / 1+[1]1 / [1]NA	EAG* / EAGA / EXA+EXA / EXA	1	1
			4	✓			//P/	1 / [1]5 / 1+[1]1 / [1]NA	EAG* / EAGA / EXA+EXA / EXA	1	1
LDUMAXL	STUMAXL		4	√				1 / [1]5 / 1+[1]1 / [1]NA	EAG* / EAGA / EXA+EXA / EXA	1	1
			4	✓			//P/	1 / [1]5 / 1+[1]1 / [1]NA	EAG* / EAGA / EXA+EXA / EXA	1	1

Instruction	Alias	Control option	# of μOP	Seq. decode	Pre- sync	Post- sync	Blocking	Latency	Pipeline	# of FP	# of SP
LDUMAXLB	STUMAXLB		4	√				1 / [1]5 / 1+[1]1 / [1]NA	EAG* / EAGA / EXA+EXA / EXA	1	1
			4	✓			//P/	1 / [1]5 / 1+[1]1 / [1]NA	EAG* / EAGA / EXA+EXA / EXA	1	1
LDUMAXLH	STUMAXLH		4	✓				1 / [1]5 / 1+[1]1 / [1]NA	EAG* / EAGA / EXA+EXA / EXA	1	1
			4	✓			//P/	1 / [1]5 / 1+[1]1 / [1]NA	EAG* / EAGA / EXA+EXA / EXA	1	1
LDUMIN	STUMIN		4	✓				1 / [1]5 / 1+[1]1 / [1]NA	EAG* / EAGA / EXA+EXA / EXA	1	1
			4	✓			//P/	1 / [1]5 / 1+[1]1 / [1]NA	EAG* / EAGA / EXA+EXA / EXA	1	1
LDUMINA			4	✓			//P/	1 / [1]5 / 1+[1]1 / [1]NA	EAG* / EAGA / EXA+EXA / EXA	1	1
LDUMINAB			4	✓			//P/	1 / [1]5 / 1+[1]1 / [1]NA	EAG* / EAGA / EXA+EXA / EXA	1	1
LDUMINAH			4	✓			//P/	1 / [1]5 / 1+[1]1 / [1]NA	EAG* / EAGA / EXA+EXA / EXA	1	1
LDUMINAL			4	✓			//P/	1 / [1]5 / 1+[1]1 / [1]NA	EAG* / EAGA / EXA+EXA / EXA	1	1
LDUMINALB			4	✓			//P/	1 / [1]5 / 1+[1]1 / [1]NA	EAG* / EAGA / EXA+EXA / EXA	1	1
LDUMINALH			4	✓			//P/	1 / [1]5 / 1+[1]1 / [1]NA	EAG* / EAGA / EXA+EXA / EXA	1	1
LDUMINB	STUMINB		4	✓				1 / [1]5 / 1+[1]1 / [1]NA	EAG* / EAGA / EXA+EXA / EXA	1	1
			4	✓			//P/	1 / [1]5 / 1+[1]1 / [1]NA	EAG* / EAGA / EXA+EXA / EXA	1	1
LDUMINH	STUMINH		4	✓				1 / [1]5 / 1+[1]1 / [1]NA	EAG* / EAGA / EXA+EXA / EXA	1	1
			4	✓			//P/	1 / [1]5 / 1+[1]1 / [1]NA	EAG* / EAGA / EXA+EXA / EXA	1	1
LDUMINL	STUMINL		4	✓				1 / [1]5 / 1+[1]1 / [1]NA	EAG* / EAGA / EXA+EXA / EXA	1	1
			4	✓			//P/	1 / [1]5 / 1+[1]1 / [1]NA	EAG* / EAGA / EXA+EXA / EXA	1	1
LDUMINLB	STUMINLB		4	✓				1 / [1]5 / 1+[1]1 / [1]NA	EAG* / EAGA / EXA+EXA / EXA	1	1
			4	✓			//P/	1 / [1]5 / 1+[1]1 / [1]NA	EAG* / EAGA / EXA+EXA / EXA	1	1
LDUMINLH	STUMINLH		4	✓				1 / ^[1] 5 / 1+ ^[1] 1 / ^[1] NA	EAG* / EAGA / EXA+EXA / EXA	1	1
			4	✓			//P/	1 / ^[1] 5 / 1+ ^[1] 1 / ^[1] NA	EAG* / EAGA / EXA+EXA / EXA	1	1
LDUR			1					5	EAG*	1	
LDURB			1					5	EAG*	1	
LDURH			1					5	EAG*	1	
LDURSB			1					5	EAG*	1	
LDURSH			1					5	EAG*	1	
LDURSW			1					5	EAG*	1	
LDXP			3	✓				1 / [1]5 / [2]5	EAG* / EAGA / EAGA	3	
LDXR			1					5	EAGA	1	
LDXRB			1					5	EAGA	1	
LDXRH			1					5	EAGA	1	
LSLV	LSL (register)		1					2	EX*		
LSRV	LSR (register)		1					2	EX*		
MADD	MUL		1					5	EXA		
			2					5 / [1]1	EXA / EXA		
MOVK			1					1	EX* EAG*		

Instruction	Alias	Control option	# of μOP	Seq.	Pre- sync	Post- sync	Blocking	Latency	Pipeline	# of FP	# of SP
MOVN	MOV (inverted wide immediate)		1					1	EX* EAG*		
			1					1	EX* EAG*		
MOVZ	MOV (wide immediate)		1					1	EX* EAG*		
			1					1	EX* EAG*		
MRS (*1)			2	✓	√						
MSR (immediate) (*1)			2	✓		√					
MSR (register) (*1)			2	✓		√					
MSUB	MNEG		2					5 / [1]1	EXA / EXA		
			2					5 / [1]1	EXA / EXA		
ORN (shifted register)	MVN	<amount> = 0</amount>	1					1	EX* EAG*		
			1				P	2+1	(EXA + EXA) (EXB + EXB)		
		<amount> = 0</amount>	1					1	EX* EAG*		
			1				P	2+1	(EXA + EXA) (EXB + EXB)		
ORR (immediate)	MOV (bitmask immediate)		1					1	EX* EAG*		
			1					1	EX* EAG*		
ORR (shifted register)	MOV (register)	<amount> = 0</amount>	1					1	EX* EAG*		
			1				P	2+1	EX* + EX*		
		<amount> = 0</amount>	1					1	EX* EAG*		
			1				P	2+1	(EXA + EXA) (EXB + EXB)		
PRFM (immediate)			1					NA	EAG*	1	
PRFM (literal)			1					NA	EAGB	1	
PRFM (register)			1					NA	EAG*	1	
PRFM (unscaled offset)			1					NA	EAG*	1	
RBIT			1					1	EX* EAG*		
RET			1					1	EXA		
REV	REV64		1					1	EX* EAG*		
REV16			1					1	EX* EAG*		
REV32			1					1	EX* EAG*		
RORV	ROR (register)		1					2	EX*		
SBC	NGC		1					1	EX*		
			1					1	EX*		
SBCS	NGCS		1					1	EX*		
			1		\vdash			1	EX*		
SVC			2	√	√	√		NA / NA	/		
SBFM	ASR (immediate)	<shift> = 0</shift>	1	 	 	Ť		1	EX*		
			1					2	EX*		
	SBFIZ		1				P	2+1	(EXA + EXA) (EXB + EXB)		
	SBFX		1		1		P	2+1	(EXA + EXA) (EXB + EXB)		
	ODI A		1					2.1	[CHAI - BAI] [(BAD - BAD)		

Instruction	Alias	Control option	# of μOP	Seq.	Pre- le sync	Pos syn	t- c Bloc	cking	Latency	Pipeline	# of FP	# of SP
	SXTB		1					\Box	1	EX*		
	SXTH		1						1	EX*		
	SXTW		1						1	EX*		
			1				I	P	2+1	(EXA + EXA) (EXB + EXB)		
SDIV		sf = 0	1				I	Е	n (9-26)	EXB		
		sf = 1	1				I	Е	n (9-42)	EXB		
SMADDL	SMULL		1						5	EXA		
			2						5 / [1]1	EXA / EXA		
SMC			2	✓	✓	√			NA / NA	/		
SMSUBL	SMNEGL		2						5 / [1]1	EXA / EXA		
			2						5 / [1]1	EXA / EXA		
SMULH			1						5	EXA		
STLLR			1		+		+	\dashv	NA, NA	EAG*, EXA	1	1
STLLRB			1						NA, NA	EAG*, EXA	1	1
STLLRH			1						NA, NA	EAG*, EXA	1	1
STLR			1						NA, NA	EAG*, EXA	1	1
STLRB			1						NA, NA	EAG*, EXA	1	1
STLRH			1				+		NA, NA	EAG*, EXA	1	1
STLXP			7	✓					1 / 8;[1]1 / 1 / [2]1 / 8;[4]1 / 1 / [2]1	EAG* / EAGA; EXA / EXA / EAG* / EAGA; EXA / EXA / EAG*	2	2
STLXR			3	✓					1 / 8;1 / ^[2] NA	EAG* / EAGA; EXA / EXA	1	1
STLXRB			3	✓					1 / 8;1 / ^[2] NA	EAG* / EAGA; EXA / EXA	1	1
STLXRH			3	✓					1 / 8;1 / ^[2] NA	EAG* / EAGA; EXA / EXA	1	1
STNP			2						NA, NA / NA, NA	EXA, EAG* / EXA, EAG*	2	2
STP		Post-index	3						NA, NA / NA, NA / 1	EAG*, EXA / EAG*, EXA / EX* EAG*	2	2
		Pre-index	3						NA, NA / NA, NA / 1	EAG*, EXA / EAG*, EXA / EX* EAG*	2	2
		Signed offset	2						NA, NA / NA, NA	EAG*, EXA / EAG*, EXA	2	2
STR (immediate)		Post-index	2						NA, NA / 1	EAG*, EXA / EX* EAG*	1	1
		Pre-index	2						NA, NA / 1	EAG*, EXA / EX* EAG*	1	1
		Unsigned offset	1						NA, NA	EAG*, EXA	1	1
STR (register)			1						NA, NA	EAG*, EXA	1	1
STRB (immediate)		Post-index	2						NA, NA / 1	EAG*, EXA / EX* EAG*	1	1
		Pre-index	2						NA, NA / 1	EAG*, EXA / EX* EAG*	1	1
		Unsigned offset	1						NA, NA	EAG*, EXA	1	1
STRB (register)			1						NA, NA	EAG*, EXA	1	1
STRH (immediate)		Post-index	2				1		NA, NA / 1	EAG*, EXA / EX* EAG*	1	1
		Pre-index	2				†	\dashv	NA, NA / 1	EAG*, EXA / EX* EAG*	1	1
		Unsigned offset	1		1		†	\dashv	NA, NA	EAG*, EXA	1	1
STRH (register)			1						NA, NA	EAG*, EXA	1	1
STTR			1					\dashv	NA, NA	EAG*, EXA	1	1

Instruction	Alias	Control option	# of μOP	Seq. decode	Pre-	- Post-	Blockin	g Latency	Pipeline	# of FP	# of SP
STTRB			1					NA, NA	EAG*, EXA	1	1
STTRH			1					NA, NA	EAG*, EXA	1	1
STUR			1					NA, NA	EAG*, EXA	1	1
STURB			1					NA, NA	EAG*, EXA	1	1
STURH			1					NA, NA	EAG*, EXA	1	1
STXP			7	✓				1 / 8;[1] 1 / 1 / [2] 1 / 8;[4] 1 / 1 / [2] 1	EAG* / EAGA; EXA / EXA / EAG* / EAGA; EXA / EXA / EAG*	2	2
STXR			3	√				1 / 8;1 / ^[2] NA	EAG* / EAGA; EXA / EXA	1	1
STXRB			3	√				1 / 8;1 / ^[2] NA	EAG* / EAGA; EXA / EXA	1	1
STXRH			3	√				1 / 8;1 / ^[2] NA	EAG* / EAGA; EXA / EXA	1	1
SUB (extended register)		<pre><amount> = 0 && (If sf = 0 Then <extend> = {LSL UXTW UXTX SXTW SXTX} Else <extend> = {UXTX SXTX})</extend></extend></amount></pre>	1					1	EX* EAG*		
			1				P	1+1	(EXA + EXA) (EXB + EXB)		
SUB (immediate)			1					1	EX* EAG*		
SUB (shifted register)	NEG (shifted register)	<amount> = [1-4] && <shift> = LSL</shift></amount>	1				P	1+1	(EXA + EXA) (EXB + EXB)		
		<amount> == 0</amount>	1					1	EX* EAG*		
			1				P	2+1	(EXA + EXA) (EXB + EXB)		
		<amount> = 0</amount>	1					1	EX* EAG*		
		<amount> = [1-4] && <shift> = LSL</shift></amount>	1				P	1+1	(EXA + EXA) (EXB + EXB)		
			1				P	2+1	(EXA + EXA) (EXB + EXB)		
SUBS (extended register)	CMP (extended register)	<amount> = 0</amount>	1					1	EX*		
			1				P	1+1	(EXA + EXA) (EXB + EXB)		
		<pre><amount> = 0 && (If sf = 0 Then <extend> = {LSL UXTW UXTX SXTW SXTX} Else <extend> = {UXTX SXTX})</extend></extend></amount></pre>	1				P	1+1	(EXA + EXA) (EXB + EXB)		
SUBS (immediate)	CMP (immediate)		1					1	EX*		
			1		1		1	1	EX*		
SUBS (shifted register)	CMP (shifted register)	<amount> = 0</amount>	1					1	EX*		
		<amount> = [1-4] && <shift> = LSL</shift></amount>	1				P	1+1	(EXA + EXA) (EXB + EXB)		
			1				P	2+1	(EXA + EXA) (EXB + EXB)		
	NEGS	<amount> = 0</amount>	1			+	1	1	EX*		
		<amount> = [1-4] && <shift> = LSL</shift></amount>	1				P	1+1	(EXA + EXA) (EXB + EXB)		
			1				P	2+1	(EXA + EXA) (EXB + EXB)		
		<amount> = 0</amount>	1			+	1	1	EX*		
		<amount> = [1-4] && <shift> = LSL</shift></amount>	1				P	1+1	(EXA + EXA) (EXB + EXB)		
			1			+	P	2+1	(EXA + EXA) (EXB + EXB)		
SWP{ A AL L}			1			1	+	NA, NA	EAGA, EXA	1	1

Instruction	Alias	Control option	# of μOP	Seq. decode	Pre- sync	Post- sync	Blocking	Latency	Pipeline	# of FP	# of SP
SWP{ A AL L}B			1					NA, NA	EAGA, EXA	1	1
SWP{ A AL L}H			1					NA, NA	EAGA, EXA	1	1
SYS	AT		1					NA, NA	EAGA, EXA	1	1
	DC		1					NA, NA	EAGA, EXA	1	1
	IC		1					NA, NA	EAGA, EXA	1	1
	TLBI		1					NA, NA	EAGA, EXA	1	1
			1					NA, NA	EAGA, EXA	1	1
SYSL			2	✓				NA / NA	/		
TBNZ			1					1	EX*		
TBZ			1					1	EX*		
UBFM	LSL (immediate)	<shift> = [1-4]</shift>	1					1	EX*		
			1					2	EX*		
	LSR (immediate)	<shift> = 0</shift>	1					1	EX*		
			1					2	EX*		
	UBFIZ		1				P	2+1	(EXA + EXA) (EXB + EXB)		
	UBFX		1				P	2+1	(EXA + EXA) (EXB + EXB)		
	UXTB		1					1	EX*		
	UXTH		1					1	EX*		
		If sf = 1 Then immr == '000000' && imms == '011111'	1					1	EX*		
			1				P	2+1	(EXA + EXA) (EXB + EXB)		
UDIV		sf = 0	1				Е	n (9-25)	EXB		
		sf = 1	1				Е	n (9-41)	EXB		
UMADDL	UMULL		1					5	EXA		
			2					5 / [1]1	EXA / EXA		-
UMSUBL	UMNEGL		2					5 / [1]1	EXA / EXA		
			2					5 / [1]1	EXA / EXA		
UMULH			1					5	EXA		

^(*1) MRS / MSR 命令はアクセスするシステム・レジスタにより制御が異なる。

16.2. ARMv8 SIMD&FP instructions

Table 16-2 Instruction Attributes/Latency (ARMv8 SIMD&FP)

Instruction	Alias	Control option	# of μOP	Seq. decode	Pre-	Post- sync	Blocking	Latency	Pipeline	# of FP	# of SP	FLOPS
ABS			1					4	FL*			
ADD (vector)			1					4	FL*			
ADDHN, ADDHN2			2	√				4 / [1]6	FL* / FLB			
ADDP (scalar)			2	√				6 / [1]4	FLA / FL*			
ADDP (vector)			3	√				6 / 6 / [1,2]4	FLA / FLA / FL*			
ADDV			6	√				4 / [1]4 / [1]6 / [1,2]4 / [1]4 / [1]4	FL* / FL* / FLA / FL* / FL*			
AESD			1				Е	8	FLA			
AESE			1				Е	8	FLA			
AESIMC			1				Е	8	FLA			
AESMC			1				Е	8	FLA			
AND (vector)			1					4	FL*			
BIC (vector, immediate)			1					4	FLA			
BIC (vector, register)			1					4	FL*			
BIF			1					1+4	FL* + FL*			
BIT			1					1+4	FL* + FL*			
BSL			1					1+4	FL* + FL*			
CLS (vector)			1					4	FLA			
CLZ (vector)			1					4	FLA			
CMEQ (register)			1					4	FL*			
CMEQ (zero)			1					4	FL*			
CMGE (register)			1					4	FL*			
CMGE (zero)			1					4	FL*			
CMGT (register)			1					4	FL*			
CMGT (zero)			1					4	FL*			
CMHI (register)			1					4	FL*			
CMHS (register)			1					4	FL*			
CMLE (zero)			1					4	FL*			
CMLT (zero)			1					4	FL*			
CMTST			1					4	FL*			
CNT			1					4	FLB			
DUP (element)	MOV (scalar)		1					6	FLA			
DUP (general)			1					1+3+6	EXA + NULL + FLA			
EOR (vector)			1					4	FL*			
EXT			1					6	FLA			
FABD			1					9	FL*			1
FABS (scalar)			1					4	FL*			

Instruction	Alias	Control option	# of μOP	Seq. decode	Pre-	Post- sync	Blocking	Latency	Pipeline	# of FP	# of SP	FLOPS
FABS (vector)			1					4	FL*			
FACGE			1					4	FL*			
FACGT			1					4	FL*			
FADD (scalar)			1					9	FL*			1
FADD (vector)			1					9	FL*			1
FADDP (scalar)			2	✓				6 / [1]9	FLA / FL*			1
FADDP (vector)			3	✓				6 / 6 / [1,2]9	FLA / FLA / FL*			1
FCADD			2					6 / [1]9	FLA / FLB			1
FCCMP			1					4	FL*			
FCCMPE			1					4	FL*			
FCMEQ (register)			1					4	FL*			
FCMEQ (zero)			1					4	FL*			
FCMGE (register)			1					4	FL*			
FCMGE (zero)			1					4	FL*			
FCMGT (register)			1					4	FL*			
FCMGT (zero)			1					4	FL*			
FCMLA			3					6 / 6 / [1,2]9	FLA / FLA / FL*			2
FCMLA (by element)			3					6 / 6 / [1,2]9	FLA / FLA / FL*			2
FCMLE (zero)			1					4	FL*			
FCMLT (zero)			1					4	FL*			
FCMP			1					4	FL*			
FCMPE			1					4	FL*			
FCSEL			1					4	FL*			
FCVT			1					9	FL*			
FCVTAS (scalar)			1					9+1;15	FLA + NULL; EAG*	1	1	
FCVTAS (vector)			1					9	FL*			
FCVTAU (scalar)			1					9+1;15	FLA + NULL; EAG*	1	1	
FCVTAU (vector)			1					9	FL*			
FCVTL, FCVTL2		<ta> = 4S</ta>	2					6 / [1]9	FLB / FL*			
		<ta> = 2D</ta>	1					6	FLB			
FCVTMS (scalar)			1					9+1;15	FLA + NULL ; EAG*	1	1	
FCVTMS (vector)			1					9	FL*			
FCVTMU (scalar)			1					9+1;15	FLA + NULL; EAG*	1	1	
FCVTMU (vector)			1					9	FL*			
FCVTN, FCVTN2			2					9 / [1]6	FL* / FLA			
FCVTNS (scalar)			1					9+1;15	FLA + NULL; EAG*	1	1	
FCVTNS (vector)			1					9	FL*			
FCVTNU (scalar)			1					9+1;15	FLA + NULL; EAG*	1	1	
FCVTNU (vector)			1					9	FL*			

Instruction	Alias	Control option	# of μOP	Seq. decode	Pre- sync	Post- sync	Blocking	Latency	Pipeline	# of FP	# of SP	FLOPS
FCVTPS (scalar)			1					9+1;15	FLA + NULL; EAG*	1	1	
FCVTPS (vector)			1					9	FL*			
FCVTPU (scalar)			1					9+1;15	FLA + NULL; EAG*	1	1	
FCVTPU (vector)			1					9	FL*			
FCVTXN, FCVTXN2		Scalar	1					9	FL*			
		Vector	2					9 / [1]6	FL* / FLA			
FCVTZS (scalar, fixed-point)			1					9+1;15	FLA + NULL; EAG*	1	1	
FCVTZS (scalar, integer)			1					9+1;15	FLA + NULL; EAG*	1	1	
FCVTZS (vector, fixed-point)			1					9	FL*			
FCVTZS (vector, integer)			1					9	FL*			
FCVTZU (scalar, fixed-point)			1					9+1;15	FLA + NULL; EAG*	1	1	
FCVTZU (scalar, integer)			1					9+1;15	FLA + NULL; EAG*	1	1	
FCVTZU (vector, fixed-point)			1					9	FL*			
FCVTZU (vector, integer)			1					9	FL*			
FDIV (scalar)		<r> = H</r>	1				Е	38	FLA			1
		<r> = S</r>	1				Е	29	FLA			
		<r> = D</r>	1				Е	43	FLA			
FDIV (vector)		<t> = {4H 8H}</t>	1				Е	38	FLA			1
		$ = \{2S 4S\}$	1				Е	29	FLA			1
		<t> = 2D</t>	1				Е	43	FLA			
FMADD			1					9	FL*			2
FMAX (scalar)			1					4	FL*			
FMAX (vector)			1					4	FL*			
FMAXNM (scalar)			1					4	FL*			
FMAXNM (vector)			1					4	FL*			
FMAXNMP (scalar)			2	✓				6 / [1]4	FLA / FL*			
FMAXNMP (vector)			3	✓				6 / 6 / [1,2]4	FLA / FLA / FL*			
FMAXNMV		<t> = {4H 8H}</t>	7	✓				4 / ([1]6 / [1,2]4) x 3	FL* / (FLA / FL*) x 3			
		<t> = 4S</t>	5	√				4 / ([1]6 / [1,2]4) x 2	FL* / (FLA / FL*) x 2			
FMAXP (scalar)			2	✓				6 / [1]4	FLA / FL*			
FMAXP (vector)			3	✓				6 / 6 / [1,2]4	FLA / FLA / FL*			
FMAXV		<t>= {4H 8H}</t>	7	√				4 / ([1]6 / [1,2]4) x 3	FL* / (FLA / FL*) x 3			
		<t> = 4S</t>	5	✓				4 / ([1]6 / [1,2]4) x 2	FL* / (FLA / FL*) x 2			
FMIN (scalar)			1	-				4	FL*			-
FMIN (vector)			1					4	FL*			
FMINNM (scalar)			1					4	FL*			-
FMINNM (vector)			1					4	FL*			
FMINNMP (scalar)			2	✓				6 / [1]4	FLA / FL*			-
FMINNMP (vector)			3	√				6 / 6 / [1,2]4	FLA / FLA / FL*			
Thirtien (vector)		_1	,	٧				0/0/	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			

Instruction	Alias	Control option	# of μOP	Seq. decode	Pre-	- Post-	Blocking	Latency	Pipeline	# of FP	# of SP	FLOPS
FMINNMV		<t> = {4H 8H}</t>	7	√				4 / ([1]6 / [1,2]4) x 3	FL* / (FLA / FL*) x 3			
		<t> = 4S</t>	5	✓				4 / ([1]6 / [1,2]4) x 2	FL* / (FLA / FL*) x 2			-
FMINP (scalar)			2	✓				6 / [1]4	FLA / FL*			
FMINP (vector)			3	✓				6 / 6 / [1,2]4	FLA / FLA / FL*			
FMINV		<t>= {4H 8H}</t>	7	✓				4 / ([1]6 / [1,2]4) x 3	FL* / (FLA / FL*) x 3			
		<t> = 4S</t>	5	✓				4 / ([1]6 / [1,2]4) x 2	FL* / (FLA / FL*) x 2			
FMLA (by element)			2	✓				6 / [1]9	FLA / FL*			2
FMLA (vector)			1					9	FL*			2
FMLS (by element)			2	✓				6 / [1]9	FLA / FL*			2
FMLS (vector)			1					9	FL*			2
FMOV (vector, immediate)			1					4	FLA			
FMOV (register)			1					4	FL*			
FMOV (general)		{Wn Xn} to {Hd Sd Dd Vd}	1					1+3+6	EXA + NULL + FLA			
		{Hn Sn Dn} to {Wd Xd}	1					1;13	FLA; EAG*	1	1	
		Vn.D[1] to Xd	1					6+1;18	FLA + NULL ; EAG*	1	1	
FMOV (scalar, immediate)			1					4	FLA			-
FMSUB			1					9	FL*			2
FMUL (by element)			2	✓				6 / [1]9	FLA / FL*			1
FMUL (scalar)			1					9	FL*			1
FMUL (vector)			1					9	FL*			1
FMULX (by element)			2	√				6 / [1]9	FLA / FL*			1
FMULX			1					9	FL*			1
FNEG (scalar)			1					4	FL*			
FNEG (vector)			1					4	FL*			
FNMADD			1					9	FL*			2
FNMSUB			1					9	FL*			2
FNMUL			1					9	FL*			1
FRECPE			1					4	FL*			
FRECPS			1					9	FLA			1
FRECPX			1					4	FL*			
FRINTA (scalar)			1					9	FL*			
FRINTA (vector)			1					9	FL*			
FRINTI (scalar)			1					9	FL*			
FRINTI (vector)			1					9	FL*			
FRINTM (scalar)			1					9	FL*			
FRINTM (vector)			1					9	FL*			
FRINTN (scalar)			1					9	FL*			
FRINTN (vector)			1					9	FL*			
FRINTP (scalar)			1					9	FL*			

Instruction	Alias	Control option	# of µOP	Seq. decode	Pre-	Post- sync	Blocking	Latency	Pipeline	# of FP	# of SP	FLOPS
FRINTP (vector)			1					9	FL*			
FRINTX (scalar)			1					9	FL*			
FRINTX (vector)			1					9	FL*			
FRINTZ (scalar)			1					9	FL*			
FRINTZ (vector)			1					9	FL*			
FRSQRTE			1					4	FL*			
FRSQRTS			1					9	FLA			1
FSQRT (scalar)		<r> = H</r>	1				Е	38	FLA			1
		<r> = S</r>	1				Е	29	FLA			1
		<r> = D</r>	1				Е	43	FLA			1
FSQRT (vector)		<t> = {4H 8H}</t>	1				Е	38	FLA			1
		<t> = {2S 4S}</t>	1				Е	29	FLA			1
		<t> = 2D</t>	1				Е	43	FLA			1
FSUB (scalar)			1					9	FL*			1
FSUB (vector)			1					9	FL*			1
INS (element)	MOV (element)		1					6	FLA			
INS (general)	MOV (from general)		1					1+3+6	EXA + NULL + FLA			
LD1 (multiple structures)		No offset 1 register <t> = {8B 4H 2S 2D 1D}</t>	1					8	EAG*	1		
		No offset 1 register <t> = {16B 8H 4S}</t>	1					11	EAG*	1		
		No offset 2 registers <t> = {8B 4H 2S 2D 1D}</t>	2					8/8	EAG* / EAG*	2		
		No offset 2 registers <t> = {16B 8H 4S}</t>	2					11 / 11	EAG* / EAG*	2		
		No offset 3 registers <t> = {8B 4H 2S 2D 1D}</t>	3					8/8/8	EAG* / EAG* / EAG*	3		
		No offset 3 registers <t> = {16B 8H 4S}</t>	3					11/11/11	EAG* / EAG* / EAG*	3		
		No offset 4 registers <t> = {8B 4H 2S 2D 1D}</t>	4					8/8/8/8	EAG* / EAG* / EAG*	4		
		No offset 4 registers <t> = {16B 8H 4S}</t>	4					11/11/11/11	EAG* / EAG* / EAG*	4		
		Post-index 1 register <t> = {8B 4H 2S 2D 1D}</t>	2					8/1	EAG* / EAG*	1		
		Post-index 1 register <t> = {16B 8H 4S}</t>	2					11/1	EAG* / EAG*	1		
		Post-index 2 registers <t> = {8B 4H 2S 2D 1D}</t>	3					8/8/1	EAG* / EAG* / EAG*	2		
		Post-index 2 registers <t> = {16B 8H 4S}</t>	3					11/11/1	EAG* / EAG* / EAG*	2		
		Post-index 3 registers <t> = {8B 4H 2S 2D 1D}</t>	4					8/8/8/1	EAG* / EAG* / EAG*	3		
		Post-index 3 registers <t> = {16B 8H 4S}</t>	4					11/11/11/1	EAG* / EAG* / EAG*	3		
		Post-index 4 registers <t> = {8B 4H 2S 2D 1D}</t>	5					8/8/8/8/1	EAG* / EAG* / EAG* / EAG*	4		
		Post-index 4 registers <t> = {16B 8H 4S}</t>	5					11/11/11/1	EAG* / EAG* / EAG* / EAG*	4		-
LD1 (single structure)		No offset	2	√				8/6	EAG* / FLA	1		
		Post-index	3	√				8/6/1	EAG* / FLA / EAG*	1		
LD1R		No offset	1					8	EAG*	1		
		Post-index	2					8/1	EAG* / EAG*	1		
LD2 (multiple structures)		No offset	2					11 / 11	EAG* / EAG*	2		
		Post-index	3					11/11/1	EAG* / EAG* / EAG*	2		

Instruction	Alias	Control option	# of μOP	Seq.	Pre e syn	Post-	Blocking	Latency	Pipeline	# of FP	# of SP	FLOPS
LD2 (single structure)		No offset	4	✓				(8 / 6) x 2	(EAG* / FLA) x 2	2		
		Post-index	5	✓				(8 / 6) x 2 / 1	(EAG* / FLA) x 2 / EAG*	2		1
LD2R		No offset	2					8 / 8	EAG*/EAG*	2		
		Post-index	3					8/8/1	EAG* / EAG* / EAG*	2		
LD3 (multiple structures)		No offset	3					11 / 11 / 11	EAG* / EAG* / EAG*	3		
		Post-index	4					11 / 11 / 11 / 1	EAG* / EAG* / EAG* / EAG*	3		
LD3 (single structure)		No offset	6	✓				(8 / 6) x 3	(EAG* / FLA) x 3	3		
		Post-index	7	✓				(8 / 6) x 3 / 1	(EAG* / FLA) x 3 / EAG*	3		
LD3R		No offset	3					8/8/8	EAG* / EAG* / EAG*	3		
		Post-index	4					8/8/8/1	EAG* / EAG* / EAG* / EAG*	3		
LD4 (multiple structures)		No offset	4					11 / 11 / 11 / 11	EAG* / EAG* / EAG* / EAG*	4		
		Post-index	5					11/11/11/11/1	EAG* / EAG* / EAG* / EAG*	4		
LD4 (single structure)		No offset	8	√				(8 / 6) x 4	(EAG* / FLA) x 4	4		
		Post-index	9	√				(8 / 6) x 4 / 1	(EAG* / FLA) x 4 / EAG*	4		
LD4R		No offset	4					8/8/8/8	EAG* / EAG* / EAG* / EAG*	4		
		Post-index	5					8/8/8/8/1	EAG* / EAG* / EAG* / EAG*	4		
LDNP (SIMD&FP)			2					8/8	EAG* / EAG*	2		
LDP (SIMD&FP)		Post-index	3					8/8/1	EAG* / EAG* / EX* EAG*	2		
		Pre-index	3					8/8/1	EAG* / EAG* / EX* EAG*	2		
		Signed offset	2					8/8	EAG* / EAG*	2		
LDR (immediate, SIMD&FP)		Post-index	2					8/1	EAG* / EX* EAG*	1		
		Pre-index	2					8/1	EAG* / EX* EAG*	1		
		Unsigned offset	1					8	EAG*	1		
LDR (literal, SIMD&FP)			1					8	EAGB	1		
LDR (register, SIMD&FP)			1					8	EAG*	1		
LDUR (SIMD&FP)			1					8	EAG*	1		
MLA (by element)			2	√				6 / [1]9	FLA / FL*			
MLA (vector)			1					9	FL*			1
MLS (by element)			2	√				6 / [1]9	FLA / FL*			
MLS (vector)			1					9	FL*			
MOVI			1		+			4	FLA			
MUL (by element)			2	√				6 / [1]9	FLA / FL*			1
MUL (vector)			1		1			9	FL*			+-
MVNI			1		-			4	FLA			+
NEG (vector)			1					4	FL*			
NOT	MVN		1		+			4	FL*			+
ORN (vector)			1		+			4	FL*			+
ORR (vector, immediate)			1		1			4	FLA			+-
ORR (vector, register)	MOV (vector)	 	1		+		+	4	FL*			+

Instruction	Alias	Control option	# of μOP	Seq. decode	Pre-	Post- sync	Blocking	Latency	Pipeline	# of FP	# of SP	FLOPS
			1					4	FL*			
PMUL			1				Е	8	FLA			
PMULL, PMULL2			1				Е	8	FLA			
RADDHN, RADDHN2			3	✓				4 / [1]4 / [1]6	FL* / FL* / FLB			
RBIT (vector)			1					4	FL*			
REV16 (vector)			1					4	FL*			
REV32 (vector)			1					4	FL*			
REV64			1					4	FL*			
RSHRN, RSHRN2			3	✓				4 / [1]4 / [1]6	FL* / FL* / FLB			
RSUBHN, RSUBHN2			3	✓				4 / [1]4 / [1]6	FL* / FLA / FLB			
SABA			2	✓				4 / [1]4	FL* / FL*			
SABAL, SABAL2			4	✓				6 / 6 / [1,2]4 / (1)4	FLB / FLB / FL* / FL*			
SABD			1					4	FL*			
SABDL, SABDL2			3	√				6 / 6 / [1,2]4	FLB / FLB / FL*			
SADALP			3	✓				6 / [1]4 / [1]4	FLB / FL* / FL*			
SADDL, SADDL2			3					6 / 6 / [1,2]4	FLB / FLB / FL*			
SADDLP			2	√				6 / [1]4	FLB / FL*			
SADDLV			6	√				4 / [1]4 / [1]6 / [1,2]4 / [1]4 / [1]4	FL* / FL* / FLA / FL* / FL*			
SADDW, SADDW2			2	√				6 / [1]4	FLB / FL*			
SCVTF (scalar, fixed-point)			1					1+3+9	EXA + NULL + FLA			
SCVTF (scalar, integer)			1					1+3+9	EXA + NULL + FLA			
SCVTF (vector, fixed-point)			1					9	FL*			
SCVTF (vector, integer)			1					9	FL*			
SHA1C			1				Е	1+11	FLA + FLA			
SHA1H			1				Е	8	FLA			
SHA1M			1				Е	1+11	FLA + FLA			
SHA1P			1				Е	1+11	FLA + FLA			
SHA1SU0			1				Е	1+8	FLA + FLA			
SHA1SU1			1				Е	8	FLA			
SHA256H2			1				Е	1+11	FLA + FLA			
SHA256H			1				Е	1+11	FLA + FLA			
SHA256SU0			1				Е	8	FLA			
SHA256SU1			1				Е	1+8	FLA + FLA			
SHADD			1					4	FL*			
SHL			1					4	FL*			
SHLL, SHLL2			2					6 / [1]4	FLB / FL*			
SHRN, SHRN2			2	✓				4 / [1]6	FL* / FLB			
SHSUB			1					4	FL*			

Instruction	Alias	Control option	# of μOP	Seq. decode	Pre-	Post- sync	Blocking	Latency	Pipeline	# of FP	# of SP	FLOPS
SLI			3	✓				4 / 4 / [1,2]4	FL* / FLA / FL*			
SMAX			1					4	FL*			
SMAXP			3	✓				6 / 6 / [1,2]4	FLA / FLA / FL*			
SMAXV			6	✓				4 / [1]6 / [1,2]4 / [1]4 / [1]4 / [1]4	FL* / FLA / FL* / FL* / FL*			
SMIN			1					4	FL*			
SMINP			3	✓				6 / 6 / [1,2]4	FLA / FLA / FL*			
SMINV			6	✓				4 / [1]6 / [1,2]4 / [1]4 / [1]4 / [1]4	FL* / FLA / FL* / FL* / FL*			
SMLAL, SMLAL2 (by element)		<ta> = 4S</ta>	4	✓			//E/	6 / 6 / [1,2]8 / [1]4	FLB / FLA / FLA / FL*			
		<ta> = 2D</ta>	3	✓				6 / 6 / [1,2]9	FLB / FLA / FL*			
SMLAL, SMLAL2 (vector)		<ta> = {8H 4S}</ta>	4	√			//E/	6 / 6 / [1,2]8 / [1]4	FLB / FLB / FLA / FL*			
		<ta> = 2D</ta>	3	✓				6 / 6 / [1,2]9	FLB / FLB / FL*			
SMLSL, SMLSL2 (by element)		<ta> = 4S</ta>	4	✓			//E/	6 / 6 / [1,2]8 / [1]4	FLB / FLA / FLA / FL*			
		<ta> = 2D</ta>	3	√				6 / 6 / [1,2]9	FLB / FLA / FL*			
SMLSL, SMLSL2 (vector)		<ta> = {8H 4S}</ta>	4	√			//E/	6 / 6 / [1,2]8 / [1]4	FLB / FLB / FLA / FL*			
		<ta> = 2D</ta>	3	√				6 / 6 / [1,2]9	FLB / FLB / FL*			
SMOV			1					6+1+18	FLA + NULL + EAG*	1	1	
SMULL, SMULL2 (by element)		<ta> = 4S</ta>	3	✓			/ / E	6 / 6 / [1,2]8	FLB / FLA / FLA			
		<ta> = 2D</ta>	3	√				6 / 6 / [1,2]9	FLB / FLA / FL*			
SMULL, SMULL2 (vector)		<ta> = {8H 4S}</ta>	3	✓			/ / E	6 / 6 / [1,2]8	FLB / FLB / FLA			
		<ta> = 2D</ta>	3	√				6 / 6 / [1,2]9	FLB / FLB / FL*			
SQABS			1					4	FL*			
SQADD			1					4	FL*			
SQDMLAL, SQDMLAL2 (by element)		Scalar <va> = S</va>	4	✓			//E/	6 / 6 / [1,2]8 / [1]4	FLB / FLA / FLA / FL*			
		Scalar <va> = D</va>	3	✓				6 / [1]9 / [1]4	FLA / FL* / FL*			
		Vector <ta> = 4S</ta>	4	✓			//E/	6 / 6 / [1,2]8 / [1]4	FLB / FLA / FLA / FL*			
		Vector <ta> = 2D</ta>	4	√				6 / 6 / [1,2]9 / [1]4	FLB / FLA / FL* / FL*			
SQDMLAL, SQDMLAL2 (vector)		Scalar <va> = S</va>	4	✓			//E/	6 / 6 / [1,2]8 / [1]4	FLB / FLB / FLA / FLA			
		Scalar <va> = D</va>	2	✓				9 / [1]4	FL* / FL*			
		Vector <ta> = 4S</ta>	4	✓			//E/	6 / 6 / [1,2]8 / [1]4	FLB / FLB / FLA / FLA			
		Vector <ta> = 2D</ta>	4	√				6 / 6 / [1,2]9 / [1]4	FLB / FLB / FL* / FL*			
SQDMLSL, SQDMLSL2 (by element)		Scalar <va> = S</va>	4	√			//E/	6 / 6 / [1,2]8 / [1]4	FLB / FLA / FLA / FL*			
		Scalar <va> = D</va>	3	√				6 / [1]9 / [1]4	FLA / FL* / FL*			
		Vector <ta> = 4S</ta>	4	√			//E/	6 / 6 / [1,2]8 / [1]4	FLB / FLA / FLA / FL*			
		Vector <ta> = 2D</ta>	4	√				6 / 6 / [1,2]9 / [1]4	FLB / FLA / FL* / FL*			
SQDMLSL, SQDMLSL2 (vector)		Scalar <va> = S</va>	4	√			//E/	6 / 6 / [1,2]8 / [1]4	FLB / FLB / FLA / FLA			
		Scalar <va> = D</va>	2	√				9 / [1]4	FL* / FL*			
		Vector <ta> = 4S</ta>	4	√			//E/	6 / 6 / [1,2]8 / [1]4	FLB / FLB / FLA / FLA			
		Vector <ta> = 2D</ta>	4	√				6 / 6 / [1,2]9 / [1]4	FLB / FLB / FL* / FL*			+

Instruction	Alias	Control option	# of μOP	Seq.	Pre syn	Post- c sync	Blocking	Latency	Pipeline	# of FP	# of SP	FLOPS
SQDMULH (by element)		Scalar <v> = H, Vector <t> = {4H 8H}</t></v>	2	√			/ E	6 / [1]8	FLA / FLA			
		Scalar <v> = S, Vector <t> = {2S 4S}</t></v>	2	✓				6 / [1]9	FLA / FL*			
SQDMULH (vector)		Scalar <v> = H, Vector <t> = {4H 8H}</t></v>	1				Е	8	FLA			
		Scalar <v> = S, Vector <t> = {2S 4S}</t></v>	1					9	FL*			
SQDMULL, SQDMULL2 (by element)		Scalar <va> = S</va>	3	✓			//E	6 / 6 / [1,2]8	FLB / FLA / FLA			
		Scalar <va> = D</va>	2	✓				6 / [1]9	FLA / FL*			
		Vector <ta> = 4S</ta>	3	✓			//E	6 / 6 / [1,2]8	FLB / FLA / FLA			
		Vector <ta> = 2D</ta>	3	✓				6 / 6 / [1,2]9	FLB / FLA / FL*			
SQDMULL, SQDMULL2 (vector)		Scalar <va> = S</va>	3	✓			//E	6 / 6 / [1,2]8	FLB / FLB / FLA			
		Scalar <va> = D</va>	1					9	FL*			
		Vector <ta> = 4S</ta>	3	✓			//E	6 / 6 / [1,2]8	FLB / FLB / FLA			
		Vector <ta> = 2D</ta>	3	✓				6 / 6 / [1,2]9	FLB / FLB / FL*			
SQNEG			1					4	FL*			
SQRDMLAH (by element)		Scalar <v> = H, Vector <t> = {4H 8H}</t></v>	2	✓			/ E	6 / 1+[1]8	FLA / FLA + FLA			
		Scalar $<$ V $> =$ S, Vector $<$ T $> =$ {2S 4S}	2	✓				6 / [1]9	FLA / FL*			
SQRDMLAH (vector)		Scalar <v> = H, Vector <t> = {4H 8H}</t></v>	1				Е	1+8	FLA + FLA			
		Scalar <v> = S, Vector <t> = {2S 4S}</t></v>	1					9	FL*			
SQRDMLSH (by element)		Scalar <v> = H, Vector <t> = {4H 8H}</t></v>	2	✓			/ E	6 / 1+[1]8	FLA / FLA + FLA			
		Scalar <v> = S, Vector <t> = {2S 4S}</t></v>	2	✓				6 / [1]9	FLA / FL*			
SQRDMLSH (vector)		Scalar <v> = H, Vector <t> = {4H 8H}</t></v>	1				Е	1+8	FLA + FLA			
		Scalar <v> = S, Vector <t> = {2S 4S}</t></v>	1					9	FL*			
SQRDMULH (by element)		Scalar <v> = H, Vector <t> = {4H 8H}</t></v>	2	✓			/ E	6 / [1]8	FLA / FLA			
		Scalar <v> = S, Vector <t> = {2S 4S}</t></v>	2	✓				6 / [1]9	FLA / FL*			
SQRDMULH (vector)		Scalar <v> = H, Vector <t> = {4H 8H}</t></v>	1				Е	8	FLA			
		Scalar <v> = S, Vector <t> = {2S 4S}</t></v>	1					9	FL*			
SQRSHL			2	✓				6 / [1]4	FLB / FL*			
SQRSHRN, SQRSHRN2			3	✓				4 / [1]4 / [1]6	FL* / FL* / FLB			
SQRSHRUN, SQRSHRUN2			3	✓				4 / [1]4 / [1]6	FL* / FL* / FLB			
SQSHL (immediate)			1					6	FLB			
SQSHL (register)			1					6	FLB			
SQSHLU			1					6	FLB			
SQSHRN, SQSHRN2			2	✓				4 / [1]6	FL* / FLB			
SQSHRUN, SQSHRUN2			2	√				4 / [1]6	FL* / FLB			
SQSUB			1					4	FL*			
SQXTN, SQXTN2			1					6	FLB			
SQXTUN, SQXTUN2			1					6	FLB			
SRHADD			1					4	FL*			
SRI			3	✓				4 / 4 / [1,2]4	FL* / FLA / FL*			

Instruction	Alias	Control option	# ο: μΟΙ	f Seq.	Pre-	- Post-	Blocking	Latency	Pipeline	# of FP	# of SP	FLOPS
SRSHL			2	✓				6 / [1]4	FLB / FL*			
SRSHR			2	✓				4 / [1]4	FL* / FL*			
SRSRA			3	√				4 / [1]4 / [1]4	FL* / FL* / FL*			
SSHL			1					6	FLB			
SSHLL, SSHLL2	SXTL, SXTL2		2					6 / [1]4	FLB / FL*			
			2					6 / [1]4	FLB / FL*			
SSHR			1					4	FL*			
SSRA			2	√				4 / [1]4	FL* / FL*			
SSUBL, SSUBL2			3					6 / 6 / [1,2]4	FLB / FLB / FL*			
SSUBW, SSUBW2			2	√				6 / [1]4	FLB / FL*			
ST1 (multiple structures)		No offset 1 register	1					NA, NA	EAG*, FLA	1	1	
		No offset 2 registers	2					(NA, NA) x 2	(EAG*, FLA) x 2	2	2	
		No offset 3 registers	3					(NA, NA) x 3	(EAG*, FLA) x 3	3	3	
		No offset 4 registers	4					(NA, NA) x 4	(EAG*, FLA) x 4	4	4	
		Post-index 1 register	2					NA, NA / 1	EAG*, FLA / EAG*	1	1	
		Post-index 2 registers	3					(NA, NA) x 2 / 1	(EAG*, FLA) x 2 / EAG*	2	2	
		Post-index 3 registers	4					(NA, NA) x 3 / 1	(EAG*, FLA) x 3 / EAG*	3	3	
		Post-index 4 registers	5					(NA, NA) x 4 / 1	(EAG*, FLA) x 4 / EAG*	4	4	
ST1 (single structure)		No offset	1					NA, NA	EAG*, FLA	1	1	
		Post-index	2					NA, NA / 1	EAG*, FLA / EAG*	1	1	
ST2 (multiple structures)		No offset	2					(NA, NA) x 2	(EAG*, FLA) x 2	2	2	
		Post-index	3					(NA, NA) x 2 / 1	(EAG*, FLA) x 2 / EAG*	2	2	
ST2 (single structure)		No offset	2					(NA, NA) x 2	(EAG*, FLA) x 2	2	2	
		Post-index	3					(NA, NA) x 2 / 1	(EAG*, FLA) x 2 / EAG*	2	2	
ST3 (multiple structures)		No offset	3					(NA, NA) x 3	(EAG*, FLA) x 3	3	3	
		Post-index	4					(NA, NA) x 3 / 1	(EAG*, FLA) x 3 / EAG*	3	3	
ST3 (single structure)		No offset	3					(NA, NA) x 3	(EAG*, FLA) x 3	3	3	
		Post-index	4					(NA, NA) x 3 / 1	(EAG*, FLA) x 3 / EAG*	3	3	
ST4 (multiple structures)		No offset	4					(NA, NA) x 4	(EAG*, FLA) x 4	4	4	
		Post-index	5					(NA, NA) x 4 / 1	(EAG*, FLA) x 4 / EAG*	4	4	
ST4 (single structure)		No offset	4					(NA, NA) x 4	(EAG*, FLA) x 4	4	4	
		Post-index	5					(NA, NA) x 4 / 1	(EAG*, FLA) x 4 / EAG*	4	4	
STNP (SIMD&FP)			2					(NA, NA) x 2	(EAG*, FLA) x 2	2	2	
STP (SIMD&FP)		Post-index	3					(NA, NA) x 2 / 1	(EAG*, FLA) x 2 / EX* EAG*	2	2	
		Pre-index	3					(NA, NA) x 2 / 1	(EAG*, FLA) x 2 / EX* EAG*	2	2	
		Signed offset	2					(NA, NA) x 2	(EAG*, FLA) x 2	2	2	
STR (immediate, SIMD&FP)		Post-index	2					NA, NA / 1	EAG*, FLA / EX* EAG*	1	1	
		Pre-index	2					NA, NA / 1	EAG*, FLA / EX* EAG*	1	1	
		Unsigned offset	1					NA, NA	EAG*, FLA	1	1	

Instruction	Alias	Control option	# of μOP	Seq. decode	Pre-	- Post-	Blocking	Latency	Pipeline	# of FP	# of SP	FLOPS
STR (register, SIMD&FP)			1					NA, NA	EAG*, FLA	1	1	
STUR (SIMD&FP)			1					NA, NA	EAG*, FLA	1	1	
SUB (vector)			1					4	FL*			
SUBHN, SUBHN2			2	✓				4 / [1]6	FL* / FLB			
SUQADD			1					4	FL*			
TBL		Single register table	1					6	FLB			
		Tow register table	3	√				6 / 6 / [1,2]4	FLB / FLB / FL*			
		Three register table	5	√				6 / (6 / [1,2]4) x 2	FLB / (FLB / FL*) x 2			
		Four register table	7	√				6 / (6 / ^[1,2] 4) x 3	FLB / (FLB / FL*) x 3			
TBX		Single register table	3	√				6 / 6 / [1,2]4	FLB / FLB / FL*			
		Tow register table	5	√				6 / (6 / ^[1,2] 4) x 2	FLB / (FLB / FL*) x 2			
		Three register table	7	√				6 / (6 / ^[1,2] 4) x 3	FLB / (FLB / FL*) x 3			
		Four register table	9	√				6 / (6 / ^[1,2] 4) x 4	FLB / (FLB / FL*) x 4			
TRN1			1					6	FLA			
TRN2			1					6	FLA			
UABA			2	√				4 / [1]4	FL* / FL*			
UABAL, UABAL2			4	√				6 / 6 / [1,2]4 / [1]4	FLB / FLB / FL* / FL*			
UABD			1					4	FL*			
UABDL, UABDL2			3	√				6 / 6 / [1,2]4	FLB / FLB / FL*			
UADALP		<ta> = {4H 8H 2S 4S}</ta>	1					6	FLB			
		<ta> = {1D 2D}</ta>	3	√				6 / [1]4 / [1]4	FLB / FL* / FL*			
UADDL, UADDL2			3					6 / 6 / [1,2]4	FLB / FLB / FL*			-
UADDLP			2	√				6 / [1]4	FLB / FL*			
UADDLV			6	√				4 / [1]4 / [1]6 / [1,2]4 / [1]4 / [1]4	FL* / FL* / FLA / FL* / FL*			-
UADDW, UADDW2			2	√				6 / [1]4	FLB / FL*			-
UCVTF (scalar, fixed-point)			1					1+3+9	EXA + NULL + FLA			
UCVTF (scalar, integer)			1					1+3+9	EXA + NULL + FLA			+
UCVTF (vector, fixed-point)			1					9	FL*			
UCVTF (vector, integer)			1					9	FL*			
UHADD			1	-				4	FL*			+
UHSUB			1	-				4	FL*			+
UMAX			1	-				4	FL*			+
UMAXP			3	√				6 / 6 / [1,2]4	FLA / FLA / FL*			+
UMAXV			6	✓				4 / [1]6 / [1]4 / [1,2]4 / [1]4 / [1]4	FL* / FLA / FL* / FL* / FL*			+
UMIN			1					4	FL*			+
UMINP			3	√				6 / 6 / [1,2]4	FLA / FLA / FL*			+
UMINV			6	√ ·				4 / [1]6 / [1]4 / [1,2]4 / [1]4 / [1]4	FL* / FLA / FL* / FL* / FL*			+
UMLAL, UMLAL2 (by element)		<ta> = 4S</ta>	4	√ ·		+	//E/	6 / 6 / [1,2]8 / [1]4	FLB / FLA / FLA / FL*			+
, , , , , , , , , , , , , , , , , , , ,		<ta> = 2D</ta>	3	√			' ' '	6 / 6 / [1,2]9	FLB / FLA / FL*			

Instruction	Alias	Control option	# of μOP	Seq.	Pre syn	Post- c sync	Blocking	Latency	Pipeline	# of FP	# of SP	FLOPS
UMLAL, UMLAL2 (vector)		<ta> = {8H 4S}</ta>	4	✓			//E/	6 / 6 / [1,2]8 / [1]4	FLB / FLB / FLA / FL*			
		<ta> = 2D</ta>	3	✓				6 / 6 / [1,2]9	FLB / FLB / FL*			
UMLSL, UMLSL2 (by element)		<ta> = 4S</ta>	4	✓			//E/	6 / 6 / [1,2]8 / [1]4	FLB / FLA / FLA / FL*			
		<ta> = 2D</ta>	3	✓				6 / 6 / [1,2]9	FLB / FLA / FL*			
UMLSL, UMLSL2 (vector)		<ta> = {8H 4S}</ta>	4	✓			//E/	6 / 6 / [1,2]8 / [1]4	FLB / FLB / FLA / FL*			
		<ta> = 2D</ta>	3	✓				6 / 6 / [1,2]9	FLB / FLB / FL*			
UMOV	MOV (to general)		1					6+1+18	FLA + NULL + EAG*	1	1	
			1					6+1+18	FLA + NULL + EAG*	1	1	
UMULL, UMULL2 (by element)		<ta> = 4S</ta>	3	✓			/ / E	6 / 6 / [1,2]8	FLB / FLA / FLA			1
		<ta> = 2D</ta>	3	✓				6 / 6 / [1,2]9	FLB / FLA / FL*			
UMULL, UMULL2 (vector)		<ta> = {8H 4S}</ta>	3	✓			//E	6 / 6 / [1,2]8	FLB / FLB / FLA			
		<ta> = 2D</ta>	3	✓				6 / 6 / [1,2]9	FLB / FLB / FL*			
UQADD			1					4	FL*			
UQRSHL			2	√				6 / [1]4	FLB / FL*			
UQRSHRN, UQRSHRN2			3	√				4 / [1]4 / [1]6	FL* / FL* / FLB			
UQSHL (immediate)			1					6	FLB			
UQSHL (register)			1					6	FLB			
UQSHRN, UQSHRN2			2	√				4 / [1]6	FL* / FLB			
UQSUB			1					4	FL*			+
UQXTN, UQXTN2			1					6	FLB			+
URECPE			1					4	FL*			
URHADD			1					4	FL*			+
URSHL			2	√				6 / [1]4	FLB / FL*			
URSHR			2	√				4 / [1]4	FL* / FL*			+
URSQRTE			1					4	FL*			+
URSRA			3	√				4 / [1]4 / [1]4	FL* / FL* / FL*			+
USHL			1					6	FLB			+
USHLL, USHLL2	UXTL, UXTL2		2					6 / [1]4	FLB / FL*			+
			2					6 / [1]4	FLB / FL*			+
USHR			1					4	FL*			+
USQADD			1					4	FL*			+
USRA			2	√	+			4 / [1]4	FL* / FL*			+
USUBL, USUBL2			3		+			6 / 6 / [1,2]4	FLB / FLB / FL*			+
USUBW, USUBW2			2	√	+			6 / [1]4	FLB / FL*			+
UZP1			1		+		-	6	FLA			+
UZP2			1					6	FLA			+
XTN, XTN2			1					6	FLB			+
ZIP1			1					6	FLA			+
ZIP2			1		+		ļ	6	FLA			+

16.3. SVE instructions

Table 16-3 Instruction Attributes/Latency (SVE)

Instruction	Alias	Control option	VL	# of μOP	Seq. decode	Pre- sync	Post- sync	Pack	Extra µOP	Blocking	Latency	Pipeline	# of FP	# of SP	FLOPS
ABS				1				√			4	FL*			
ADD (immediate)				1				✓			4	FL*			
ADD (vectors, predicated)				1				✓	✓		4	FL*			
ADD (vectors, unpredicated)				1							4	FL*			
ADDPL				1							1	EX*			
ADDVL				1							1	EX*			
ADR		Packed offsets		1							1+4	FLA + FLA			
				1							4	FLA			
AND (immediate)	BIC (immediate)			1				✓			4	FLA			
AND (predicates)	MOV (predicate, predicated, zeroing)			1							3	PRX			
				1							3	PRX			
AND (vectors, predicated)				1				✓	✓		4	FL*			
AND (vectors, unpredicated)				1							4	FL*			
ANDS (predicates)	MOVS (predicated)			1							3	PRX			
				1							3	PRX			
ANDV		<v> = B</v>		10	✓						4 / ([1]6 / [1,2]4) x 3 / [1]4 / [1]4 / [1]4	FL* / (FLA / FL*) x 3 / FL* / FL* / FL*			
		<v> = H</v>		9	✓						4 / ([1]6 / [1,2]4) x 3 / [1]4 / [1]4	FL* / (FLA / FL*) x 3 / FL* / FL*			
		<v> = S</v>		8	✓						4 / ([1]6 / [1,2]4) x 3 / [1]4	FL* / (FLA / FL*) x 3 / FL*			
		<v> = D</v>	128	3	✓						4 / [1]6 / [1,2]4	FL* / FLA / FL*			
			256	5	√						4 / ([1]6 / [1,2]4) x 2	FL* / (FLA / FL*) x 2			
			512	7	√						4 / ([1]6 / [1,2]4) x 3	FL* / (FLA / FL*) x 3			•
ASR (immediate, predicated)				1				✓	✓		4	FL*			
ASR (immediate, unpredicated)				1							4	FL*			
ASR (vectors)				1				✓	✓		4	FL*			
ASR (wide elements, predicated)				1				✓	✓		4	FL*			
ASR (wide elements, unpredicated)				1							4	FL*			
ASRD				2	✓			✓	✓		4 / [1]4	FLA / FL*			
ASRR				1				✓	✓		4	FL*			
BIC (predicates)				1							3	PRX			
BIC (vectors, predicated)				1				✓	✓		4	FL*			
BIC (vectors, unpredicated)				1							4	FL*			
BICS (predicates)				1							3	PRX			
BRKA				1							3	PRX			
BRKAS				1							3	PRX			
BRKB				1							3	PRX	1		

Instruction	Alias	Control option	VL	# of μOP	Seq. decode	Pre- sync	Post- sync	Pack	Extra µOP	Blocking	Latency	Pipeline # of	FP # o	of SP	FLOPS
BRKBS				1							3	PRX			
BRKN				1							3	PRX			
BRKNS				1							3	PRX			
BRKPA				1							3	PRX			
BRKPAS				1							3	PRX			
BRKPB				1							3	PRX			
BRKPBS				1							3	PRX			
CLASTA (scalar)				1							1+3+6+1+18	EXA + NULL + EAG* + NULL + FLA 1		1	
CLASTA (SIMD&FP scalar)				1							6	FLA			
CLASTA (vectors)				1				✓			6	FLA			
CLASTB (scalar)				1							1+3+6+1+18	EXA + NULL + EAG* + NULL + FLA 1		1	
CLASTB (SIMD&FP scalar)				1							6	FLA			
CLASTB (vectors)				1				✓			6	FLA			
CLS				1				✓			4	FLA			
CLZ				1				✓			4	FLA			
CMPEQ (immediate)				1							4	PRX, FLA			
CMPEQ (vectors)				1							4	PRX, FLA			
CMPEQ (wide elements)				1							4	PRX, FLA			
CMPGE (immediate)				1							4	PRX, FLA			
CMPGE (vectors)	CMPLE (vectors)			1							4	PRX, FLA			
CMPGE (wide elements)				1							4	PRX, FLA			
CMPGT (immediate)				1							4	PRX, FLA			
CMPGT (vectors)	CMPLT (vectors)			1							4	PRX, FLA			
CMPGT (wide elements)				1							4	PRX, FLA			
CMPHI (immediate)				1							4	PRX, FLA			
CMPHI (vectors)	CMPLO (vectors)			1							4	PRX, FLA			
CMPHI (wide elements)				1							4	PRX, FLA			
CMPHS (immediate)				1							4	PRX, FLA			
CMPHS (vectors)	CMPLS (vectors)			1							4	PRX, FLA			
CMPHS (wide elements)				1							4	PRX, FLA			
CMPLE (immediate)				1							4	PRX, FLA			
CMPLE (wide elements)				1							4	PRX, FLA			
CMPLO (immediate)				1							4	PRX, FLA			1
CMPLO (wide elements)				1							4	PRX, FLA			1
CMPLS (immediate)				1							4	PRX, FLA			1
CMPLS (wide elements)			1	1							4	PRX, FLA			
CMPLT (immediate)				1							4	PRX, FLA			
CMPLT (wide elements)				1							4	PRX, FLA			1
CMPNE (immediate)		1		1							4	PRX, FLA			

Instruction	Alias	Control option	VL	# of μOP	Seq. decode	Pre- sync	Post- sync	Pack	Extra µOP	Blocking	Latency	Pipeline # of FP	# of SI	P FLOPS
CMPNE (vectors)				1							4	PRX, FLA		
CMPNE (wide elements)				1							4	PRX, FLA		
CNOT				1				✓			4	FL*		
CNT				1				✓			4	FLB		
CNTB				1							1	EX*		
CNTD				1							1	EX*		
CNTH				1							1	EX*		
CNTP				1							3+2+1	PRX + NULL + EXA		
CNTW				1							1	EX*		
COMPACT				1							6	FLA		
CPY (immediate)	FMOV (zero, predicated)			1				✓			4	FLA		
	MOV (immediate, predicated)			1				✓			4	FLA		
CPY (scalar)	MOV (scalar, predicated)			1				✓			1+3+4	EXA + NULL + FLA		
CPY (SIMD&FP scalar)	MOV (SIMD&FP scalar, predicated)			1				✓			6	FLA		
CTERMEQ				1						Е	1+1	EX* + EX*		
CTERMNE				1						Е	1+1	EX* + EX*		
DECB				1							1	EX*		
DECD (scalar)				1							1	EX*		
DECD (vector)				1				✓			4	FL*		
DECH (scalar)				1							1	EX*		
DECH (vector)				1				✓			4	FL*		
DECP (scalar)				2							3+2+1 / [1]1	PRX+NULL+EXA / EXB		
DECP (vector)				1				✓			3+5+4	PRX + NULL + FLA		
DECW (scalar)				1							1	EX*		
DECW (vector)				1				✓			4	FL*		
DUP (immediate)	FMOV (zero, unpredicated)			1							4	FLA		
	MOV (immediate, unpredicated)			1							4	FLA		
DUP (indexed)	MOV (SIMD&FP scalar, unpredicated)			1							6	FLA		
				1							6	FLA		
DUP (scalar)	MOV (scalar, unpredicated)			1							1+3+4	EXA + NULL + FLA		
DUPM	MOV (bitmask immediate)			1							4	FLA		
				1							4	FLA		
EOR (immediate)	EON			1				✓			4	FLA		
EOR (predicates)	NOT (predicate)			1							3	PRX		
				1							3	PRX		
EOR (vectors, predicated)				1				✓	✓		4	FL*		
EOR (vectors, unpredicated)				1							4	FL*		

Instruction	Alias	Control option	VL	# of μOP	Seq. decode	Pre- sync	Post- sync	Pack	Extra µOP	Blocking	Latency	Pipeline # of F	# of Si	P FLOPS
EORS	NOTS			1							3	PRX		
				1							3	PRX		
EORV		<v> = B</v>		10	✓						4 / ([1]6 / [1,2]4) x 3 / [1]4 / [1]4 / [1]4	FL* / (FLA / FL*) x 3 / FL* / FL* / FL*		
		<v> = H</v>		9	✓						4 / ([1]6 / [1,2]4) x 3 / [1]4 / [1]4	FL* / (FLA / FL*) x 3 / FL* / FL*		
		<v> = S</v>		8	✓						4 / ([1]6 / [1,2]4) x 3 / [1]4	FL* / (FLA / FL*) x 3 / FL*		
		<v> = D</v>	128	3	✓						4 / [1]6 / [1,2]4	FL* / FLA / FL*		
			256	5	✓						4 / ([1]6 / [1,2]4) x 2	FL* / (FLA / FL*) x 2		_
			512	7	✓						4 / ([1]6 / [1,2]4) x 3	FL* / (FLA / FL*) x 3		
EXT				1				✓			6	FLA		
FABD				1				✓			9	FL*		1
FABS				1				✓			4	FL*		
FACGE	FACLE			1							4	FLA		
FACGT	FACLT			1							4	FLA		
FADD (immediate)				1				✓			9	FLA		1
FADD (vectors, predicated)				1				✓			9	FL*		1
FADD (vectors, unpredicated)				1							9	FL*		1
FADDA		<v> = H</v>	128	15	✓						9 / 6 / ([1,2]9 / [2]6) x 6 / [1,2]9	FL* / FLA / (FL* / FLA) x 6 / FL*		1
			256	31	✓						9 / 6 / ([1,2]9 / [2]6) x 14 / [1,2]9	FL* / FLA / (FL* / FLA) x 14 / FL*		
			512	63	✓						9 / 6 / ([1,2]9 / [2]6) x 30 / [1,2]9	FL* / FLA / (FL* / FLA) x 30 / FL*		
		<v> = S</v>	128	7	✓						9 / 6 / ([1,2]9 / [2]6) x 2 / [1,2]9	FL* / FLA / (FL* / FLA) x 2 / FL*		
			256	15	✓						9 / 6 / ([1,2]9 / [2]6) x 6 / [1,2]9	FL* / FLA / (FL* / FLA) x 6 / FL*		
			512	31	✓						9 / 6 / ([1,2]9 / [2]6) x 14 / [1,2]9	FL* / FLA / (FL* / FLA) x 14 / FL*		
		<v> = D</v>	128	3	✓						9 / 6 / [1,2]9	FL* / FLA / FL*		
			256	7	✓						9 / 6 / ([1,2]9 / [2]6) x 2 / [1,2]9	FL* / FLA / (FL* / FLA) x 2 / FL*		
			512	15	✓						9 / 6 / ([1,2]9 / [2]6) x 6 / [1,2]9	FL* / FLA / (FL* / FLA) x 6 / FL*		
FADDV		<v> = H</v>	128	7	✓						4 / ([1]6 / [1,2]9) x 3	FL* / (FLA / FL*) x 3		1
			256	9	√						4 / ([1]6 / [1,2]9) x 4	FL* / (FLA / FL*) x 4		-
			512	11	√						4 / ([1]6 / [1,2]9) x 5	FL* / (FLA / FL*) x 5		-
		<v> = S</v>	128	5	√						4 / ([1]6 / [1,2]9) x 2	FL* / (FLA / FL*) x 2		=
			256	7	√						4 / ([1]6 / [1,2]9) x 3	FL* / (FLA / FL*) x 3		-
			512	9	✓						4 / ([1]6 / [1,2]9) x 4	FL* / (FLA / FL*) x 4		7
		<v> = D</v>	128	3	✓						4 / [1]6 / [1,2]9	FL* / FLA / FL*		
			256	5	✓	1			†		4 / ([1]6 / [1,2]9) x 2	FL* / (FLA / FL*) x 2		7
			512	7	✓	1			†		4 / ([1]6 / [1,2]9) x 3	FL* / (FLA / FL*) x 3		7
FCADD				2		1		1	1		6 / [1]9	FLA / FLB		1
FCMEQ (vectors)				1		1		1	+		4	FLA		+
FCMEQ (zero)				1		1		1	1		4	FLA		
FCMGE (vectors)	FCMLE (vectors)			1				1	1		4	FLA		1

Instruction	Alias	Control option	VL	# of μOP	Seq. decode	Pre- sync	Post- sync	Pack	Extra µOP	Blocking	Latency	Pipeline	# of FP # of SP	FLOPS
FCMGE (zero)				1							4	FLA		
FCMGT (vectors)	FCMLT (vectors)			1							4	FLA		
FCMGT (zero)				1							4	FLA		
FCMLA (indexed)				3							6 / 6 / [1,2]9	FLA / FLA / FL*		2
FCMLA (vectors)				3							6 / 6 / [1,2]9	FLA / FLA / FL*		2
FCMLE (zero)				1							4	FLA		
FCMLT (zero)				1							4	FLA		
FCMNE (vectors)				1							4	FLA		
FCMNE (zero)				1							4	FLA		
FCMUO				1							4	FLA		
FCPY	FMOV (immediate, predicated)			1				√			4	FLA		
FCVT				1				✓			9	FL*		
FCVTZS				1				✓			9	FL*		
FCVTZU				1				✓			9	FL*		
FDIV		<t> = H</t>	128	1				✓	✓	Е	38	FLA		1
			256	1				✓	✓	Е	70	FLA		
			512	1				✓	✓	Е	134	FLA		
		<t> = S</t>	128	1				✓	✓	Е	29	FLA		
			256	1				✓	✓	Е	52	FLA		
			512	1				✓	✓	E	98	FLA		
		<t> = D</t>	128	1				✓	✓	Е	43	FLA		
			256	1				✓	✓	Е	80	FLA		
			512	1				✓	✓	Е	154	FLA		
FDIVR		<t> = H</t>	128	1				✓	✓	Е	38	FLA		1
			256	1				✓	✓	Е	70	FLA		
			512	1				✓	✓	Е	134	FLA		
		<t> = S</t>	128	1				✓	✓	Е	29	FLA		
			256	1				✓	✓	Е	52	FLA		
			512	1				✓	✓	Е	98	FLA		
		<t> = D</t>	128	1				✓	✓	Е	43	FLA		
			256	1				✓	✓	Е	80	FLA		
			512	1				✓	✓	Е	154	FLA		
FDUP	FMOV (immediate, unpredicated)			1							4	FLA		
FEXPA				1							4	FL*		
FMAD				1				✓	✓		9	FL*		2
FMAX (immediate)				1				✓	✓		4	FLA		
FMAX (vectors)				1				✓	✓		4	FL*		
FMAXNM (immediate)				1				✓	✓		4	FLA		

Instruction	Alias	Control option	VL	# of μOP	Seq.	Pre- sync	Post-	Pac	k Extr μΟΙ	a Blocki	g Latency	Pipeline # of Fi	# of SP	FLOPS
FMAXNM (vectors)				1				√	✓		4	FL*		
FMAXNMV		<v> = H</v>	128	7	√						4 / ([1]6 / [1,2]4) x 3	FL* / (FLA / FL*) x 3		
			256	9	√						4 / ([1]6 / [1,2]4) x 4	FL* / (FLA / FL*) x 4		1
			512	11	√						4 / ([1]6 / [1,2]4) x 5	FL* / (FLA / FL*) x 5		1
		<v> = S</v>	128	5	√						4 / ([1]6 / [1,2]4) x 2	FL* / (FLA / FL*) x 2		1
			256	7	✓						4 / ([1]6 / [1,2]4) x 3	FL* / (FLA / FL*) x 3		1
			512	9	✓						4 / ([1]6 / [1,2]4) x 4	FL* / (FLA / FL*) x 4		1
		<v> = D</v>	128	3	✓						4 / [1]6 / [1,2]4	FL* / FLA / FL*		1
			256	5	✓						4 / ([1]6 / [1,2]4) x 2	FL* / (FLA / FL*) x 2		1
			512	7	√						4 / ([1]6 / [1,2]4) x 3	FL* / (FLA / FL*) x 3		1
FMAXV		<v> = H</v>	128	7	√						4 / ([1]6 / [1,2]4) x 3	FL* / (FLA / FL*) x 3		
			256	9	✓						4 / ([1]6 / [1,2]4) x 4	FL* / (FLA / FL*) x 4		1
			512	11	√						4 / ([1]6 / [1,2]4) x 5	FL* / (FLA / FL*) x 5		1
		<v> = S</v>	128	5	√						4 / ([1]6 / [1,2]4) x 2	FL* / (FLA / FL*) x 2		1
			256	7	√						4 / ([1]6 / [1,2]4) x 3	FL* / (FLA / FL*) x 3		1
			512	9	√						4 / ([1]6 / [1,2]4) x 4	FL* / (FLA / FL*) x 4		1
		<v> = D</v>	128	3	√						4 / [1]6 / [1,2]4	FL* / FLA / FL*		1
			256	5	√						4 / ([1]6 / [1,2]4) x 2	FL* / (FLA / FL*) x 2		1
			512	7	√						4 / ([1]6 / [1,2]4) x 3	FL* / (FLA / FL*) x 3		1
FMIN (immediate)				1				√	✓		4	FLA		
FMIN (vectors)				1				√	✓		4	FL*		
FMINNM (immediate)				1				✓	✓		4	FLA		
FMINNM (vectors)				1				✓	✓		4	FL*		
FMINNMV		<v> = H</v>	128	7	√						4 / ([1]6 / [1,2]4) x 3	FL* / (FLA / FL*) x 3		
			256	9	√						4 / ([1]6 / [1,2]4) x 4	FL* / (FLA / FL*) x 4		
			512	11	√						4 / ([1]6 / [1,2]4) x 5	FL* / (FLA / FL*) x 5		
		<v> = S</v>	128	5	√						4 / ([1]6 / [1,2]4) x 2	FL* / (FLA / FL*) x 2]
			256	7	✓						4 / ([1]6 / [1,2]4) x 3	FL* / (FLA / FL*) x 3		
			512	9	√						4 / ([1]6 / [1,2]4) x 4	FL* / (FLA / FL*) x 4]
		<v> = D</v>	128	3	✓						4 / [1]6 / [1,2]4	FL* / FLA / FL*		1
			256	5	✓						4 / ([1]6 / [1,2]4) x 2	FL* / (FLA / FL*) x 2		1
			512	7	√						4 / ([1]6 / [1,2]4) x 3	FL* / (FLA / FL*) x 3		1
FMINV		<v> = H</v>	128	7	√						4 / ([1]6 / [1,2]4) x 3	FL* / (FLA / FL*) x 3		
			256	9	√						4 / ([1]6 / [1,2]4) x 4	FL* / (FLA / FL*) x 4		1
			512	11	√						4 / ([1]6 / [1,2]4) x 5	FL* / (FLA / FL*) x 5		1
		<v> = S</v>	128	5	✓						4 / ([1]6 / [1,2]4) x 2	FL* / (FLA / FL*) x 2		1
			256	7	√						4 / ([1]6 / [1,2]4) x 3	FL* / (FLA / FL*) x 3		=
			512	9	√						4 / ([1]6 / [1,2]4) x 4	FL* / (FLA / FL*) x 4		1

Instruction	Alias	Control option	VL	# of μOP	Seq. decode	Pre- sync	Post- sync	Pack	Extra µOP	Blocking	Latency	Pipeline	# of FP	# of SP	FLOPS
		<v> = D</v>	128	3	√						4 / [1]6 / [1,2]4	FL* / FLA / FL*			
			256	5	✓						4 / ([1]6 / [1,2]4) x 2	FL* / (FLA / FL*) x 2			1
			512	7	✓						4 / ([1]6 / [1,2]4) x 3	FL* / (FLA / FL*) x 3			1
FMLA				1				✓	✓		9	FL*			2
FMLA (indexed)				2							6 / [1]9	FLA / FLB			2
FMLS				1				✓	✓		9	FL*			2
FMLS (indexed)				2							6 / [1]9	FLA / FLB			2
FMSB				1				✓	✓		9	FL*			2
FMUL (immediate)				1				✓			9	FLA			1
FMUL (indexed)				2							6 / [1]9	FLA / FLB			1
FMUL (vectors, predicated)				1				✓			9	FL*			1
FMUL (vectors, unpredicated)				1							9	FL*			1
FMULX				1				✓			9	FL*			1
FNEG				1				✓			4	FL*			
FNMAD				1				✓	✓		9	FL*			2
FNMLA				1				✓	✓		9	FL*			2
FNMLS				1				✓	✓		9	FL*			2
FNMSB				1				✓	✓		9	FL*			2
FRECPE				1							4	FL*			
FRECPS				1							9	FLA			1
FRECPX				1				✓			4	FL*			
FRINTA				1				✓			9	FL*			
FRINTI				1				✓			9	FL*			
FRINTM				1				✓			9	FL*			
FRINTN				1				✓			9	FL*			
FRINTP				1				✓			9	FL*			
FRINTX				1				✓			9	FL*			
FRINTZ				1				✓			9	FL*			
FRSQRTE				1							4	FL*			
FRSQRTS				1							9	FLA			1
FSCALE				1				✓			9	FL*			1
FSQRT		<t> = H</t>	128	1				✓		Е	38	FLA			1
			256	1				✓		Е	70	FLA			
			512	1				√		Е	134	FLA			
		<t> = S</t>	128	1				✓		Е	29	FLA			
			256					✓		Е	52	FLA			
			512	1				√		Е	98	FLA			
		<t> = D</t>	128	1				✓		Е	43	FLA			
			256	1				✓		Е	80	FLA			

Instruction	Alias	Control option	VL	# of μOP	Seq. decode	Pre- sync	Post- sync	Pack	Extra µOP	Blocking	Latency	Pipeline	# of FP #	of SP	FLOPS
			512	1				√		Е	154	FLA			
FSUB (immediate)				1				✓			9	FLA			1
FSUB (vectors, predicated)				1				✓			9	FL*			1
FSUB (vectors, unpredicated)				1							9	FL*			1
FSUBR (immediate)				1				✓			9	FLA			1
FSUBR (vectors)				1				✓			9	FL*			1
FTMAD				1				√			9	FL*			2
FTSMUL				1							9	FL*			1
FTSSEL				1							4	FL*			
INCB				1							1	EX*			-
INCD (scalar)				1							1	EX*			-
INCD (vector)				1				✓			4	FL*			-
INCH (scalar)				1							1	EX*			
INCH (vector)				1				✓			4	FL*			
INCP (scalar)				2							3+2+1 / [1]1	PRX+NULL+EXA / EXB			
INCP (vector)				1				√			3+5+4	PRX + NULL + FLA			
INCW (scalar)				1							1	EX*			
INCW (vector)				1				✓			4	FL*			
INDEX (immediate, scalar)		<t> = {B H}</t>		2							1+3+4 / 1+3+[1]9	EXA+NULL+FLA / EXA+NULL+FLA			
		<t> = {S D}</t>		1							1+3+9	EXA + NULL + FLA			
INDEX (immediates)		<t> = {B H}</t>		2							4 / [1]9	FLA / FLA			
		<t> = {S D}</t>		1							9	FLA			
INDEX (scalar, immediate)		<t> = {B H}</t>		2							1+3+4 / 1+3+[1]9	EXA+NULL+FLA / EXA+NULL+FLA			
		<t> = {S D}</t>		1							1+3+9	EXA + NULL + FLA			
INDEX (scalars)		<t> = {B H}</t>		3							1+3+4 / 1+3+4 / [1,2]9	EXA+NULL+FLA / EXA+NULL+FLA / FLB			
		<t> = {S D}</t>		2							1+3+4 / [1]9	EXA+NULL+FLA / FLA			
INSR (scalar)				1				√			1+3+6	EXA + NULL + FLA			-
INSR (SIMD&FP scalar)				1				✓			6	FLA			
LASTA (scalar)				1							6+1+18	FLA + NULL + EAG*	1	1	
LASTA (SIMD&FP scalar)				1							6	FLA			
LASTB (scalar)				1							6+1+18	FLA + NULL + EAG*	1	1	
LASTB (SIMD&FP scalar)				1							6	FLA			
LD1B (scalar plus immediate)				1							11	EAG*	1		
LD1B (scalar plus scalar)				1							11	EAG*	1		
LD1B (scalar plus vector)		32-bit unscaled offset		1							1+3+1+4+Pipe(11, 4)	EXA + NULL + FLA + FLA + Pipe((EAGA & EAGB), 4)	8	1	
			1	1							1+3+4+Pipe(11, 2)	EXA + NULL + FLA + Pipe((EAGA & EAGB), 2)	4	1	
LD1B (vector plus immediate)		32-bit element		1							1+4+Pipe(11, 4)	FLA + FLA + Pipe((EAGA & EAGB), 4)	8	1	
				1							4+Pipe(11, 2)	FLA + Pipe((EAGA & EAGB), 2)	4	1	
LD1D (scalar plus immediate)				1							11	EAG*	1		

Instruction	Alias	Control option	VL	# of μOP	Seq. decode	Pre- sync	Post- sync	Pack	Extra µOP	Blocking	Latency	Pipeline	# of FP	# of SP	FLOPS
LD1D (scalar plus scalar)				1							11	EAG*	1		
LD1D (scalar plus vector)				1							1+3+4+Pipe(11, 2)	EXA + NULL + FLA +Pipe((EAGA & EAGB), 2)	4	1	
LD1D (vector plus immediate)				1							4+Pipe(11, 2)	FLA + Pipe((EAGA & EAGB), 2)	4	1	
LD1H (scalar plus immediate)				1							11	EAG*	1		
LD1H (scalar plus scalar)				1							11	EAG*	1		
LD1H (scalar plus vector)		32-bit scaled offset, 32-bit unscaled offset		1							1+3+1+4+Pipe(11, 4)	EXA + NULL + FLA + FLA + Pipe((EAGA & EAGB), 4)	8	1	
				1							1+3+4+Pipe(11, 2)	EXA + NULL + FLA + Pipe((EAGA & EAGB), 2)	4	1	
LD1H (vector plus immediate)		32-bit element		1							1+4+Pipe(11,4)	FLA + FLA + Pipe((EAGA & EAGB), 4)	8	1	
				1							4+Pipe(11, 2)	FLA + Pipe((EAGA & EAGB), 2)	4	1	
LD1RB				1							11	EAG*	1		
LD1RD				1							11	EAG*	1		
LD1RH				1							11	EAG*	1		
LD1RQB (scalar plus immediate)				1							11	EAG*	1		
LD1RQB (scalar plus scalar)				1							11	EAG*	1		
LD1RQD (scalar plus immediate)				1							11	EAG*	1		
LD1RQD (scalar plus scalar)				1							11	EAG*	1		
LD1RQH (scalar plus immediate)				1							11	EAG*	1		
LD1RQH (scalar plus scalar)				1							11	EAG*	1		
LD1RQW (scalar plus immediate)				1							11	EAG*	1		
LD1RQW (scalar plus scalar)				1							11	EAG*	1		
LD1RSB				1							11	EAG*	1		
LD1RSH				1							11	EAG*	1		
LD1RSW				1							11	EAG*	1		
LD1RW				1							11	EAG*	1		
LD1SB (scalar plus immediate)				1							11	EAG*	1		
LD1SB (scalar plus scalar)				1							11	EAG*	1		
LD1SB (scalar plus vector)		32-bit unscaled offset		1							1+3+1+4+Pipe(11, 4)	EXA + NULL + FLA + FLA + Pipe((EAGA & EAGB), 4)	8	1	
				1							1+3+4+Pipe(11, 2)	EXA + NULL + FLA + Pipe((EAGA & EAGB), 2)	4	1	
LD1SB (vector plus immediate)		32-bit element		1							1+4+Pipe(11, 4)	FLA + FLA + Pipe((EAGA & EAGB), 4)	8	1	
				1							4+Pipe(11, 2)	FLA + Pipe((EAGA & EAGB), 2)	4	1	-
LD1SH (scalar plus immediate)				1							11	EAG*	1		
LD1SH (scalar plus scalar)				1							11	EAG*	1		
LD1SH (scalar plus vector)		32-bit scaled offset, 32-bit unscaled offset		1							1+3+1+4+Pipe(11, 4)	EXA + NULL + FLA + FLA + Pipe((EAGA & EAGB), 4)	8	1	
				1							1+3+4+Pipe(11, 2)	EXA + NULL + FLA + Pipe((EAGA & EAGB), 2)	4	1	1
LD1SH (vector plus immediate)		32-bit element		1							1+4+Pipe(11, 4)	FLA + FLA + Pipe((EAGA & EAGB), 4)	8	1	
				1							4+Pipe(11, 2)	FLA + Pipe((EAGA & EAGB), 2)	4	1	1
LD1SW (scalar plus immediate)				1							11	EAG*	1		
LD1SW (scalar plus scalar)				1							11	EAG*	1		

Instruction	Alias	Control option	VL	# of μOP	Seq. decode	Pre- sync	Post- sync	Pack	Extra µOP	Blocking	Latency	Pipeline	# of FP	# of SP	FLOPS
LD1SW (scalar plus vector)				1							1+3+4+Pipe(11, 2)	EXA + NULL + FLA + Pipe((EAGA & EAGB), 2)	4	1	
LD1SW (vector plus immediate)				1							4+Pipe(11, 2)	FLA + Pipe((EAGA & EAGB), 2)	4	1	
LD1W (scalar plus immediate)				1							11	EAG*	1		
LD1W (scalar plus scalar)				1							11	EAG*	1		
LD1W (scalar plus vector)		32-bit scaled offset, 32-bit unscaled offset		1							1+3+1+4+Pipe(11, 4)	EXA + NULL + FLA + FLA + Pipe((EAGA & EAGB), 4)	8	1	
				1							1+3+4+Pipe(11, 2)	EXA + NULL + FLA + Pipe((EAGA & EAGB), 2)	4	1	
LD1W (vector plus immediate)		32-bit element		1							1+4+Pipe(11, 4)	FLA + FLA + Pipe((EAGA & EAGB), 4)	8	1	
				1							4+Pipe(11, 2)	FLA + Pipe((EAGA & EAGB), 2)	1	1	
LD2B (scalar plus immediate)				3							1 / [1/2]((Pipe(11, 4)) x 2	EAG* / (Pipe(EAGA, 4) Pipe(EAGB, 4)) x 2	8		
LD2B (scalar plus scalar)				3							1 / [1/2]((Pipe(11, 4)) x 2	EAG* / (Pipe(EAGA, 4) Pipe(EAGB, 4)) x 2	8		
LD2D (scalar plus immediate)				2							11 / 11	EAG* / EAG*	2		
LD2D (scalar plus scalar)				3							1 / ^[1/2] (11) x 2	EAG* / (EAG*) x 2	2		
LD2H (scalar plus immediate)				3							1 / [1/2]((Pipe(11, 4)) x 2	EAG* / (Pipe(EAGA, 4) Pipe(EAGB, 4)) x 2	8		
LD2H (scalar plus scalar)				3							1 / [1/2]((Pipe(11, 4)) x 2	EAG* / (Pipe(EAGA, 4) Pipe(EAGB, 4)) x 2	8		
LD2W (scalar plus immediate)				2							11/11	EAG* / EAG*	2		
LD2W (scalar plus scalar)				3							1 / [1/2](11) x 2	EAG* / (EAG*) x 2	2		
LD3B (scalar plus immediate)				4							1 / [1/2/3]((Pipe(11, 4)) x 3	EAG* / (Pipe(EAGA, 4) Pipe(EAGB, 4)) x 3	12		
LD3B (scalar plus scalar)				4							1 / [1/2/3]((Pipe(11, 4)) x 3	EAG* / (Pipe(EAGA, 4) Pipe(EAGB, 4)) x 3	12		
LD3D (scalar plus immediate)				3							11/11/11	EAG* / EAG* / EAG*	3		
LD3D (scalar plus scalar)				4							1 / [1/2/3](11) x 3	EAG* / (EAG*) x 3	3		
LD3H (scalar plus immediate)				4							1 / [1/2/3]((Pipe(11, 4)) x 3	EAG* / (Pipe(EAGA, 4) Pipe(EAGB, 4)) x 3	12		
LD3H (scalar plus scalar)				4							1 / [1/2/3]((Pipe(11, 4)) x 3	EAG* / (Pipe(EAGA, 4) Pipe(EAGB, 4)) x 3	12		
LD3W (scalar plus immediate)				3							11/11/11	EAG* / EAG* / EAG*	3		
LD3W (scalar plus scalar)				4							1 / [1/2/3](11) x 3	EAG* / (EAG*) x 3	3		
LD4B (scalar plus immediate)				5							1 / [1/2/3/4]((Pipe(11, 4)) x 4	EAG* / (Pipe(EAGA, 4) Pipe(EAGB, 4)) x 4	16		
LD4B (scalar plus scalar)				5							1 / [1/2/3/4]((Pipe(11, 4)) x 4	EAG* / (Pipe(EAGA, 4) Pipe(EAGB, 4)) x 4	16		
LD4D (scalar plus immediate)				4							11/11/11/11	EAG* / EAG* / EAG* / EAG*	4		
LD4D (scalar plus scalar)				5							1 / [1/2/3/4](11) x 4	EAG* / (EAG*) x 4	4		
LD4H (scalar plus immediate)				5							1 / [1/2/3/4]((Pipe(11, 4)) x 4	EAG* / (Pipe(EAGA, 4) Pipe(EAGB, 4)) x 4	16		
LD4H (scalar plus scalar)				5							1 / [1/2/3/4]((Pipe(11, 4)) x 4	EAG* / (Pipe(EAGA, 4) Pipe(EAGB, 4)) x 4	16		
LD4W (scalar plus immediate)				4							11/11/11/11	EAG* / EAG* / EAG* / EAG*	4		
LD4W (scalar plus scalar)				5							1 / [1/2/3/4](11) x 4	EAG* / (EAG*) x 4	4		
LDFF1B (scalar plus scalar)				1							11	EAG*	1		
LDFF1B (scalar plus vector)		32-bit unscaled offset		1							1+3+1+4+Pipe(11, 4)	EXA + NULL + FLA + FLA + Pipe((EAGA & EAGB), 4)	8	1	
				1							1+3+4+Pipe(11, 2)	EXA + NULL + FLA + Pipe((EAGA & EAGB), 2)	4	1	1
LDFF1B (vector plus immediate)		32-bit element		1							1+4+Pipe(11, 4)	FLA + FLA + Pipe((EAGA & EAGB), 4)	8	1	
				1							4+Pipe(11, 2)	FLA + Pipe((EAGA & EAGB), 2)	4	1	1
LDFF1D (scalar plus scalar)			1	1							11	EAG*	1		

Instruction	Alias	Control option	VL	# of μOP	Seq. decode	Pre- sync	Post- sync	Pack	Extra µOP	Blocking	Latency	Pipeline	# of FP	# of SP FLOPS
LDFF1D (scalar plus vector)				1							1+3+4+Pipe(11, 2)	EXA + NULL + FLA + Pipe((EAGA & EAGB), 2)	4	1
LDFF1D (vector plus immediate)				1							4+Pipe(11, 2)	FLA + Pipe((EAGA & EAGB), 2)	4	1
LDFF1H (scalar plus scalar)				1							11	EAG*	1	
LDFF1H (scalar plus vector)		32-bit scaled offset, 32-bit unscaled offset		1							1+3+1+4+Pipe(11, 4)	EXA + NULL + FLA + FLA + Pipe((EAGA & EAGB), 4)	8	1
				1							1+3+4+Pipe(11, 2)	EXA + NULL + FLA + Pipe((EAGA & EAGB), 2)	4	1
LDFF1H (vector plus immediate)		32-bit element		1							1+4+Pipe(11, 4)	FLA + FLA + Pipe((EAGA & EAGB), 4)	8	1
				1							4+Pipe(11, 2)	FLA + Pipe((EAGA & EAGB), 2)	4	1
LDFF1SB (scalar plus scalar)				1							11	EAG*	1	
LDFF1SB (scalar plus vector)		32-bit unscaled offset		1							1+3+1+4+Pipe(11, 4)	EXA + NULL + FLA + FLA + Pipe((EAGA & EAGB), 4)	8	1
				1							1+3+4+Pipe(11, 2)	EXA + NULL + FLA + Pipe((EAGA & EAGB), 2)	4	1
LDFF1SB (vector plus immediate)		32-bit element		1							1+4+Pipe(11, 4)	FLA + FLA + Pipe((EAGA & EAGB), 4)	8	1
				1							4+Pipe(11, 2)	FLA + Pipe((EAGA & EAGB), 2)	4	1
LDFF1SH (scalar plus scalar)				1							11	EAG*	1	
LDFF1SH (scalar plus vector)		32-bit scaled offset, 32-bit unscaled offset		1							1+3+1+4+Pipe(11, 4)	EXA + NULL + FLA + FLA + Pipe((EAGA & EAGB), 4)	8	1
				1							1+3+4+Pipe(11, 2)	EXA + NULL + FLA + Pipe((EAGA & EAGB), 2)	4	1
LDFF1SH (vector plus immediate)		32-bit element		1							1+4+Pipe(11, 4)	FLA + FLA + Pipe((EAGA & EAGB), 4)	8	1
				1							4+Pipe(11, 2)	FLA + Pipe((EAGA & EAGB), 2)	4	1
LDFF1SW (scalar plus scalar)				1							11	EAG*	1	
LDFF1SW (scalar plus vector)				1							1+3+4+Pipe(11, 2)	EXA + NULL + FLA + Pipe((EAGA & EAGB), 2)	4	1
LDFF1SW (vector plus immediate)				1							4+Pipe(11, 2)	FLA + Pipe((EAGA & EAGB), 2)	4	1
LDFF1W (scalar plus scalar)				1							11	EAG*	1	
LDFF1W (scalar plus vector)		32-bit scaled offset, 32-bit unscaled offset		1							1+3+1+4+Pipe(11, 4)	EXA + NULL + FLA + FLA + Pipe((EAGA & EAGB), 4)	8	1
				1							1+3+4+Pipe(11, 2)	EXA + NULL + FLA + Pipe((EAGA & EAGB), 2)	4	1
LDFF1W (vector plus immediate)		32-bit element		1							1+4+Pipe(11, 4)	FLA + FLA + Pipe((EAGA & EAGB), 4)	8	1
				1							4+Pipe(11, 2)	FLA + Pipe((EAGA & EAGB), 2)	4	1
LDNF1B				1							11	EAG*	1	
LDNF1D				1							11	EAG*	1	
LDNF1H				1							11	EAG*	1	
LDNF1SB				1							11	EAG*	1	
LDNF1SH				1							11	EAG*	1	
LDNF1SW		1		1							11	EAG*	1	
LDNF1W				1							11	EAG*	1	
LDNT1B (scalar plus immediate)				1							11	EAG*	1	
LDNT1B (scalar plus scalar)				1							11	EAG*	1	
LDNT1D (scalar plus immediate)				1							11	EAG*	1	
LDNT1D (scalar plus scalar)				1							11	EAG*	1	
LDNT1H (scalar plus immediate)				1							11	EAG*	1	

Instruction	Alias	Control option	VL	# of μOP	Seq. decode	Pre- sync	Post- sync	Pack	Extra µOP	Blocking	Latency	Pipeline #	of FP	# of SP	FLOPS
LDNT1H (scalar plus scalar)				1							11	EAG*	1		
LDNT1W (scalar plus immediate)				1							11	EAG*	1		
LDNT1W (scalar plus scalar)				1							11	EAG*	1		
LDR (predicate)				1							11	EAGA	1		
LDR (vector)				1							11	EAGA	1		
LSL (immediate, predicated)				1				✓	✓		4	FL*			
LSL (immediate, unpredicated)				1							4	FL*			
LSL (vectors)				1				✓	✓		4	FL*			
LSL (wide elements, predicated)				1				✓	✓		4	FL*			
LSL (wide elements, unpredicated)				1							4	FL*			
LSLR				1				✓	✓		4	FL*			
LSR (immediate, predicated)				1				✓	✓		4	FL*			
LSR (immediate, unpredicated)				1							4	FL*			
LSR (vectors)				1				✓	✓		4	FL*			
LSR (wide elements, predicated)				1				√	✓		4	FL*			
LSR (wide elements, unpredicated)				1							4	FL*			
LSRR				1				✓	√		4	FL*			
MAD				1				✓	√		9	FL*			
MLA				1				✓	√		9	FL*			
MLS				1				✓	✓		9	FL*			
MOVPRFX (predicated)				1							4	FL*			
MOVPRFX (unpredicated)				1							4	FL*			
MSB				1				✓	✓		9	FL*			
MUL (immediate)				1				✓			9	FLA			
MUL (vectors)				1				✓			9	FL*			
NAND				1							3	PRX			
NANDS				1							3	PRX			
NEG				1				✓			4	FL*			
NOR				1							3	PRX			
NORS				1							3	PRX			
NOT (vector)				1				✓			4	FL*			
ORN (predicates)				1							3	PRX			
ORNS				1							3	PRX			
ORR (immediate)	ORN (immediate)			1				✓			4	FLA			
ORR (predicates)	MOV (predicate, unpredicated)			1								PRX			
				1							3	PRX			
ORR (vectors, predicated)				1				✓	✓		4	FL*			
ORR (vectors, unpredicated)	MOV (vector, unpredicated)			1							4	FL*			

Instruction	Alias	Control option	VL	# of μOP	Seq. decode	Pre- sync	Post- sync	Pack	Extra µOP	Blocking	Latency	Pipeline	# of FP	# of SP FLOPS
				1							4	FL*		
ORRS	MOVS (unpredicated)			1							3	PRX		
				1							3	PRX		
ORV		<v> = B</v>		10	√						4 / ([1]6 / [1,2]4) x 3 / [1]4 / [1]4 / [1]4	FL* / (FLA / FL*) x 3 / FL* / FL* / FL*		
		<v> = H</v>		9	√						4 / ([1]6 / [1,2]4) x 3 / [1]4 / [1]4	FL* / (FLA / FL*) x 3 / FL* / FL*		
		<v> = S</v>		8	√						4 / ([1]6 / [1,2]4) x 3 / [1]4	FL* / (FLA / FL*) x 3 / FL*		
		<v> = D</v>	128	3	√						4 / [1]6 / [1,2]4	FL* / FLA / FL*		
			256	5	√						4 / ([1]6 / [1,2]4) x 2	FL* / (FLA / FL*) x 2		
			512	7	√						4 / ([1]6 / [1,2]4) x 3	FL* / (FLA / FL*) x 3		
PFALSE				1							3	PRX		
PFIRST				1							3	PRX		
PNEXT				1							3	PRX		
PRFB (scalar plus immediate)				1							NA	EAG*	1	
PRFB (scalar plus scalar)				1							NA	EAG*	1	
PRFB (scalar plus vector)		32-bit scaled offset		1							1+3+1+4+Pipe(NA, 4)	EXA + NULL + FLA + FLA + Pipe((EAGA & EAGB), 4)	8	1
				1							1+3+4+Pipe(NA, 2)	EXA + NULL + FLA + Pipe((EAGA & EAGB), 2)	4	1
PRFB (vector plus immediate)		32-bit element		1							1+4+Pipe(NA, 4)	FLA + FLA + Pipe((EAGA & EAGB), 4)	8	1
				1							4+Pipe(NA, 2)	FLA + Pipe((EAGA & EAGB), 2)	4	1
PRFD (scalar plus immediate)				1							NA	EAG*	1	
PRFD (scalar plus scalar)				1							NA	EAG*	1	
PRFD (scalar plus vector)		32-bit scaled offset		1							1+3+1+4+Pipe(NA, 4)	EXA + NULL + FLA + FLA + Pipe((EAGA & EAGB), 4)	8	1
				1							1+3+4+Pipe(NA, 2)	EXA + NULL + FLA + Pipe((EAGA & EAGB), 2)	4	1
PRFD (vector plus immediate)		32-bit element		1							1+4+Pipe(NA, 4)	FLA + FLA + Pipe((EAGA & EAGB), 4)	8	1
				1							4+Pipe(NA, 2)	FLA + Pipe((EAGA & EAGB), 2)	4	1
PRFH (scalar plus immediate)				1							NA	EAG*	1	
PRFH (scalar plus scalar)				1							NA	EAG*	1	
PRFH (scalar plus vector)		32-bit scaled offset		1							1+3+1+4+Pipe(NA, 4)	EXA + NULL + FLA + FLA + Pipe((EAGA & EAGB), 4)	8	1
				1							1+3+4+Pipe(NA, 2)	EXA + NULL + FLA + Pipe((EAGA & EAGB), 2)	4	1
PRFH (vector plus immediate)		32-bit element		1							1+4+Pipe(NA, 4)	FLA + FLA + Pipe((EAGA & EAGB), 4)	8	1
				1							4+Pipe(NA, 2)	FLA + Pipe((EAGA & EAGB), 2)	4	1
PRFW (scalar plus immediate)				1							NA	EAG*	1	
PRFW (scalar plus scalar)				1							NA	EAG*	1	
PRFW (scalar plus vector)		32-bit scaled offset		1							1+3+1+4+Pipe(NA, 4)	EXA + NULL + FLA + FLA + Pipe((EAGA & EAGB), 4)	8	1
				1							1+3+4+Pipe(NA, 2)	EXA + NULL + FLA + Pipe((EAGA & EAGB), 2)	4	1
PRFW (vector plus immediate)		32-bit element		1							1+4+Pipe(NA, 4)	FLA + FLA + Pipe((EAGA & EAGB), 4)	8	1
				1							4+Pipe(NA, 2)	FLA + Pipe((EAGA & EAGB), 2)	4	1
PTEST				1							3	PRX		
PTRUE				1							3	PRX		
PTRUES				1							3	PRX		

Instruction	Alias	Control option	VL	# of µOP	Seq. decode	Pre- sync	Post- sync	Pack	Extra µOP	Blockin	Latency	Pipeline	# of FP # of SP	FLOPS
PUNPKHI				1							3	PRX		
PUNPKLO				1							3	PRX		
RBIT				1				✓			4	FL*		
RDFFR (predicated)				1							3	PRX		
RDFFR (unpredicated)				1							3	PRX		
RDFFRS				1							3	PRX		
RDVL				1							1	EX*		
REV (predicate)				1							3	PRX		
REV (vector)				1							6	FLA		
REVB				1				✓			4	FL*		
REVH				1				✓			4	FL*		
REVW				1				✓			4	FL*		
SABD				1				✓	✓		4	FL*		
SADDV		<t> = B</t>		11	√						4 / [1]4 / ([1,2]4 / [1]6) x 3 / [1,2]4 / [1]4 / [1]4	FL* / FL* / (FL* / FLA) x 3 / FL* / FL* / FL*		
		<t> = H</t>		10	√						4 / [1]4 / ([1,2]4 / [1]6) x 3 / [1,2]4 / [1]4	FL* / FL* / (FL* / FLA) x 3 / FL* / FL*		
		<t> = S</t>	128	5	√						4 / [1]4 / [1,2]4 / [1]6 / [1,2]4	FL* / FL* / FL* / FLA / FL*		
			256	7	✓						4 / [1]4 / ([1,2]4 / [1]6) x 2 / [1,2]4	FL* / FL* / (FL* / FLA) x 2 / FL*		
			512	9	√						4 / [1]4 / ([1,2]4 / [1]6) x 3 / [1,2]4	FL* / FL* / (FL* / FLA) x 3 / FL*		
SCVTF				1				✓			9	FL*		
SDIV		<t> = S</t>	128	1				✓	✓	Е	33	FLA		
			256	1				✓	✓	Е	60	FLA		
			512	1				✓	✓	Е	114	FLA		
		<t> = D</t>	128	1				✓	✓	Е	49	FLA		
			256	1				✓	✓	Е	92	FLA		
			512	1				✓	✓	Е	178	FLA		
SDIVR		<t> = S</t>	128	1				✓	✓	Е	33	FLA		
			256	1				✓	✓	Е	60	FLA		
			512	1				✓	✓	Е	114	FLA		
		<t> = D</t>	128	1				✓	✓	Е	49	FLA		
			256	1				✓	✓	Е	92	FLA		
			512	1				✓	✓	Е	178	FLA		
SDOT (indexed)				2							6 / [1]9	FLA / FLB		
SDOT (vectors)				1							9	FL*		
SEL (predicates)	MOV (predicate, predicated, merging)			1							3	PRX		
		ļ	1	1							3	PRX		
SEL (vectors)	MOV (vector, predicated)		_	1							4	FL*		
			1	1							4	FL*		
SETFFR				1							NA			
SMAX (immediate)				1				✓			4	FLA		

Instruction	Alias	Control option	VL	# of μOP	Seq. decode	Pre- sync	Post- sync	Pack	Extra µOP	Blocking	Latency	Pipeline	# of FP # of SP FI
SMAX (vectors)				1				✓	✓		4	FL*	
SMAXV		<v> = B</v>		10	✓						4 / ([1]6 / [1,2]4) x 3 / [1]4 / [1]4 / [1]4	FL* / (FLA / FL*) x 3 / FL* / FL* / FL*	
		<v> = H</v>		9	✓						4 / ([1]6 / [1,2]4) x 3 / (1)4 / (1)4	FL* / (FLA / FL*) x 3 / FL* / FL*	
		<v> = S</v>		8	✓						4 / ([1]6 / [1,2]4) x 3 / [1]4	FL* / (FLA / FL*) x 3 / FL*	
		<v> = D</v>	128	3	✓						4 / [1]6 / [1,2]4	FL* / FLA / FL*	
			256	5	✓						4 / ([1]6 / [1,2]4) x 2	FL* / (FLA / FL*) x 2	
			512	7	✓						4 / (11)6 / (1,2)4) x 3	FL* / (FLA / FL*) x 3	
SMIN (immediate)				1				✓			4	FLA	
SMIN (vectors)				1				✓	✓		4	FL*	
SMINV		<v> = B</v>		10	√						4 / ([1]6 / [1,2]4) x 3 / [1]4 / [1]4 / [1]4	FL* / (FLA / FL*) x 3 / FL* / FL* / FL*	
		<v> = H</v>		9	✓						4 / ([1]6 / [1,2]4) x 3 / [1]4 / [1]4	FL* / (FLA / FL*) x 3 / FL* / FL*	
		<v> = S</v>		8	✓						4 / ([1]6 / [1,2]4) x 3 / [1]4	FL* / (FLA / FL*) x 3 / FL*	
		<v> = D</v>	128	3	✓						4 / [1]6 / [1,2]4	FL* / FLA / FL*	
			256	5	√						4 / ([1]6 / [1,2]4) x 2	FL* / (FLA / FL*) x 2	
			512	7	✓						4 / ([1]6 / [1,2]4) x 3	FL* / (FLA / FL*) x 3	
SMULH				1				✓			9	FL*	
SPLICE				1				✓			6	FLA	
SQADD (immediate)				1				√			4	FL*	
SQADD (vectors)				1							4	FL*	
SQDECB				1						P	1+1	(EXA + EXA) (EXB + EXB)	
SQDECD (scalar)				1						P	1+1	(EXA + EXA) (EXB + EXB)	
SQDECD (vector)				1				✓			4	FL*	
SQDECH (scalar)				1						P	1+1	(EXA + EXA) (EXB + EXB)	
SQDECH (vector)				1				√			4	FL*	
SQDECP (scalar)				2						/ P	3+2+1 / 1+[1]1	PRX + NULL + EXA / EXB + EXB	
SQDECP (vector)				1				√			3+5+4	PRX + NULL + FLA	
SQDECW (scalar)				1						P	1+1	(EXA + EXA) (EXB + EXB)	
SQDECW (vector)				1				√			4	FL*	
SQINCB				1						P	1+1	(EXA + EXA) (EXB + EXB)	
SQINCD (scalar)				1						P	1+1	(EXA + EXA) (EXB + EXB)	
SQINCD (vector)				1				√			4	FL*	
SQINCH (scalar)				1						P	1+1	(EXA + EXA) (EXB + EXB)	
SQINCH (vector)				1				√			4	FL*	
SQINCP (scalar)				2					1	/ P	3+2+1 / 1+[1]1	PRX + NULL + EXA / EXB + EXB	
SQINCP (vector)				1				√	1		3+5+4	PRX + NULL + FLA	
SQINCW (scalar)				1					1	P	1+1	(EXA + EXA) (EXB + EXB)	
SQINCW (vector)				1				√	†		4	FL*	
SQSUB (immediate)				1				√	1		4	FL*	
SQSUB (vectors)				1					1		4	FL*	

Instruction	Alias	Control option	VL	# of μOP	Seq. decode	Pre- sync	Post- sync	Pack	Extra μΟΡ	Blocking	Latency	Pipeline	# of FP	# of SP	FLOPS
ST1B (scalar plus immediate)				1							NA, NA	EAG*, FLA	1	1	
ST1B (scalar plus scalar)				1							NA, NA	EAG*, FLA	1	1	
ST1B (scalar plus vector)		32-bit unscaled offset		8							(1+3+4+Pipe(NA, 2) / 1+3+NA) x 4	(EXA + NULL + FLA + Pipe((EAGA & EAGB), 2) / EXA + NULL + FLA) x 4	16	16	
				4							(1+3+4+Pipe(NA, 2) / 1+3+NA) x 2	(EXA + NULL + FLA + Pipe((EAGA & EAGB), 2) / EXA + NULL + FLA) x 2	8	8	
ST1B (vector plus immediate)		32-bit element		8							(4+Pipe(NA, 2) / NA) x 4	(FLA + FLA + Pipe((EAGA & EAGB), 2) / FLA) x 4	16	16	
				4							(4+Pipe(NA, 2) / NA) x 2	(FLA + Pipe((EAGA & EAGB), 2) / FLA) x 2	8	8	
ST1D (scalar plus immediate)				1							NA, NA	EAG*, FLA	1	1	
ST1D (scalar plus scalar)				1							NA, NA	EAG*, FLA	1	1	
ST1D (scalar plus vector)				4							(1+3+4+Pipe(NA, 2) / 1+3+NA) x 2	(EXA + NULL + FLA + Pipe((EAGA & EAGB), 2) / EXA + NULL + FLA) x 2	8	8	
ST1D (vector plus immediate)				4							(4+Pipe(NA, 2) / NA) x 2	(FLA + Pipe((EAGA & EAGB), 2) / FLA) x 2	8	8	
ST1H (scalar plus immediate)				1							NA, NA	EAG*, FLA	1	1	
ST1H (scalar plus scalar)				1							NA, NA	EAG*, FLA	1	1	
ST1H (scalar plus vector)		32-bit scaled offset, 32-bit unscaled offset		8							(1+3+4+Pipe(NA, 2) / 1+3+NA) x 4	(EXA + NULL + FLA + Pipe((EAGA & EAGB), 2) / EXA + NULL + FLA) x 4	16	16	
				4							(1+3+4+Pipe(NA, 2) / 1+3+NA) x 2	(EXA + NULL + FLA + Pipe((EAGA & EAGB), 2) / EXA + NULL + FLA) x 2	8	8	
ST1H (vector plus immediate)		32-bit element		8							(4+Pipe(NA, 2) / NA) x 4	(FLA + FLA + Pipe((EAGA & EAGB), 2) / FLA) x 4	16	16	
				4							(4+Pipe(NA, 2) / NA) x 2	(FLA + Pipe((EAGA & EAGB), 2) / FLA) x 2	8	8	
ST1W (scalar plus immediate)				1							NA, NA	EAG*, FLA	1	1	
ST1W (scalar plus scalar)				1							NA, NA	EAG*, FLA	1	1	
ST1W (scalar plus vector)		32-bit scaled offset, 32-bit unscaled offset		8							(1+3+4+Pipe(NA, 2) / 1+3+NA) x 4	(EXA + NULL + FLA + Pipe((EAGA & EAGB), 2) / EXA + NULL + FLA) x 4	16	16	
				4							(1+3+4+Pipe(NA, 2) / 1+3+NA) x 2	(EXA + NULL + FLA + Pipe((EAGA & EAGB), 2) / EXA + NULL + FLA) x 2	8	8	
ST1W (vector plus immediate)		32-bit element		8							(4+Pipe(NA, 2) / NA) x 4	(FLA + Pipe((EAGA & EAGB), 2) / FLA) x 4	16	16	
				4							(4+Pipe(NA, 2) / NA) x 2	(FLA + Pipe((EAGA & EAGB), 2) / FLA) x 2	8	8	
ST2B (scalar plus immediate)				3							1 / [1/2](Pipe(NA, 4), Pipe(NA, 4)) x 2	EAG* / ((Pipe(EAGA, 4) Pipe(EAGB, 4)), Pipe(FLA, 4)) x 2	8	8	
ST2B (scalar plus scalar)				3							1 / [1/2](Pipe(NA, 4), Pipe(NA, 4)) x 2	EAG* / ((Pipe(EAGA, 4) Pipe(EAGB, 4)), Pipe(FLA, 4)) x 2	8	8	
ST2D (scalar plus immediate)				2							NA,NA / NA,NA	EAG*, FLA / EAG*, FLA	2	2	
ST2D (scalar plus scalar)				3							1 / [1/2](NA,NA) x 2	EAG* / (EAG*, FLA) x 2	2	2	
ST2H (scalar plus immediate)				3							1 / [1/2](Pipe(NA, 4), Pipe(NA, 4)) x 2	EAG* / ((Pipe(EAGA, 4) Pipe(EAGB, 4)), Pipe(FLA, 4)) x 2	8	8	
ST2H (scalar plus scalar)				3							1 / [1/2](Pipe(NA, 4), Pipe(NA, 4)) x 2	EAG* / ((Pipe(EAGA, 4) Pipe(EAGB, 4)), Pipe(FLA, 4)) x 2	8	8	
ST2W (scalar plus immediate)				2							NA,NA / NA,NA	EAG*, FLA / EAG*, FLA	2	2	
ST2W (scalar plus scalar)				3							1 / [1/2](NA,NA) x 2	EAG* / (EAG*, FLA) x 2	2	2	
ST3B (scalar plus immediate)				4							1 / [1/2/3](Pipe(NA, 4), Pipe(NA, 4)) x 3	EAG* / ((Pipe(EAGA, 4) Pipe(EAGB, 4)), Pipe(FLA, 4)) x 3	12	12	
ST3B (scalar plus scalar)				4							1 / [1/2/3](Pipe(NA, 4), Pipe(NA, 4)) x 3	EAG* / ((Pipe(EAGA, 4) Pipe(EAGB, 4)), Pipe(FLA, 4)) x 3	12	12	
ST3D (scalar plus immediate)				3							NA,NA / NA,NA / NA,NA	(EAG*, FLA) x 3	3	3	
ST3D (scalar plus scalar)				4							1 / ^[1/2/3] (NA,NA) x 3	EAG* / (EAG*, FLA) x 3	3	3	
ST3H (scalar plus immediate)				4							1 / [1/2/3](Pipe(NA, 4), Pipe(NA, 4)) x 3	EAG* / ((Pipe(EAGA, 4) Pipe(EAGB, 4)), Pipe(FLA, 4)) x 3	12	12	
ST3H (scalar plus scalar)				4							1 / [1/2/3](Pipe(NA, 4), Pipe(NA, 4)) x 3	EAG* / ((Pipe(EAGA, 4) Pipe(EAGB, 4)), Pipe(FLA, 4)) x 3	12	12	

Instruction	Alias	Control option	VL	# of μOP	Seq. decode	Pre- sync	Post- sync	Pack	Extra µOP	Blocking	Latency	Pipeline	# of FP	# of SP	FLOPS
ST3W (scalar plus immediate)				3							NA,NA / NA,NA / NA,NA	EAG*, FLA / EAG*, FLA / EAG*, FLA	3	3	
ST3W (scalar plus scalar)				4							1 / [1/2/3](NA,NA) x 3	EAG* / (EAG*, FLA) x 3	3	3	
ST4B (scalar plus immediate)				5							1 / [1/2/3/4](Pipe(NA, 4), Pipe(NA, 4)) x 4	EAG* / ((Pipe(EAGA, 4) Pipe(EAGB, 4)), Pipe(FLA, 4)) x 4	16	16	
ST4B (scalar plus scalar)				5							1 / [1/2/3/4](Pipe(NA, 4), Pipe(NA, 4)) x 4	EAG* / ((Pipe(EAGA, 4) Pipe(EAGB, 4)), Pipe(FLA, 4)) x 4	16	16	
ST4D (scalar plus immediate)				4							NA,NA / NA,NA / NA,NA / NA,NA	EAG*, FLA / EAG*, FLA / EAG*, FLA / EAG*, FLA	4	4	
ST4D (scalar plus scalar)				5							1 / [1/2/3/4](NA,NA) x 4	EAG* / (EAG*, FLA) x 4	4	4	
ST4H (scalar plus immediate)				5							1 / [1/2/3/4](Pipe(NA, 4), Pipe(NA, 4)) x 4	EAG* / ((Pipe(EAGA, 4) Pipe(EAGB, 4)), Pipe(FLA, 4)) x 4	16	16	
ST4H (scalar plus scalar)				5							1 / [1/2/3/4](Pipe(NA, 4), Pipe(NA, 4)) x 4	EAG* / ((Pipe(EAGA, 4) Pipe(EAGB, 4)), Pipe(FLA, 4)) x 4	16	16	
ST4W (scalar plus immediate)				4							NA,NA / NA,NA / NA,NA / NA,NA	EAG*, FLA / EAG*, FLA / EAG*, FLA / EAG*, FLA	4	4	
ST4W (scalar plus scalar)				5							1 / [1/2/3/4](NA,NA) x 4	EAG* / (EAG*, FLA) x 4	4	4	
STNT1B (scalar plus immediate)				1							NA, NA	EAG*, FLA	1	1	
STNT1B (scalar plus scalar)				1							NA, NA	EAG*, FLA	1	1	
STNT1D (scalar plus immediate)				1							NA, NA	EAG*, FLA	1	1	
STNT1D (scalar plus scalar)				1							NA, NA	EAG*, FLA	1	1	
STNT1H (scalar plus immediate)				1							NA, NA	EAG*, FLA	1	1	
STNT1H (scalar plus scalar)				1							NA, NA	EAG*, FLA	1	1	
STNT1W (scalar plus immediate)				1							NA, NA	EAG*, FLA	1	1	
STNT1W (scalar plus scalar)				1							NA, NA	EAG*, FLA	1	1	
STR (predicate)				1							NA, NA	EAGA, PRX	1	1	
STR (vector)				1							NA, NA	EAGA, FLA	1	1	
SUB (immediate)				1				✓			4	FL*			
SUB (vectors, predicated)				1				✓	✓		4	FL*			
SUB (vectors, unpredicated)				1							4	FL*			
SUBR (immediate)				1				✓			4	FLA			
SUBR (vectors)				1				✓	✓		4	FL*			
SUNPKHI				1							6	FLA			
SUNPKLO				1							6	FLA			
SXTB				1				✓			4	FL*			
SXTH				1				✓			4	FL*			
SXTW				1				✓			4	FL*			
TBL				1							6	FLA			
TRN1 (predicates)				1							3	PRX			
TRN1 (vectors)				1							6	FLA			
TRN2 (predicates)				1							3	PRX			
TRN2 (vectors)				1							6	FLA			
UABD				1				√	✓		4	FL*			
UADDV		<t> = B</t>		11	✓						4 / [1]4 / ([1,2]4 / [1]6) x 3 / [1,2]4 / [1]4 / [1]4	FL* / FL* / (FL* / FLA) x 3 / FL* / FL* / FL*			
		<t> = H</t>		10	✓						4 / (1)4 / ([1,2]4 / [1]6) x 3 / [1,2]4 / [1]4	FL* / FL* / (FL* / FLA) x 3 / FL* / FL*			
		<t> = {S D}</t>	128	5	✓						4 / [1]4 / [1,2]4 / [1]6 / [1,2]4	FL* / FL* / FL* / FLA / FL*			

Instruction	Alias	Control option	VL	# of μOP	Seq. decode	Pre- sync	Post- sync	Pack	Extra µOP	Blockin	g Latency	Pipeline # of Fl	# of SI	P FLOPS
			256	7	✓						4 / [1]4 / ([1,2]4 / [1]6) x 2 / [1,2]4	FL* / FL* / (FL* / FLA) x 2 / FL*		
			512	9	√						4 / [1]4 / ([1,2]4 / [1]6) x 3 / [1,2]4	FL* / FL* / (FL* / FLA) x 3 / FL*		
UCVTF				1				✓			9	FL*		
UDIV		<t> = S</t>	128	1				✓	✓	Е	33	FLA		
			256	1				✓	✓	Е	60	FLA		
			512	1				✓	✓	Е	114	FLA		
		<t> = D</t>	128	1				✓	✓	Е	49	FLA		
			256	1				✓	✓	Е	92	FLA		
			512	1				✓	✓	Е	178	FLA		
UDIVR		<t> = S</t>	128	1				✓	✓	Е	33	FLA		
			256	1				✓	✓	Е	60	FLA		
			512	1				✓	✓	Е	114	FLA		
		<t> = D</t>	128	1				✓	✓	Е	49	FLA		
			256	1				✓	✓	Е	92	FLA		
		512	1				✓	✓	Е	178	FLA			
UDOT (indexed)				2							6 / [1]9	FLA / FLB		
UDOT (vectors)				1							9	FL*		
UMAX (immediate)				1				✓			4	FLA		
UMAX (vectors)				1				✓	✓		4	FL*		
UMAXV		<v> = B</v>		10	✓						4 / ([1]6 / [1,2]4) x 3 / [1]4 / [1]4 / [1]4	FL* / (FLA / FL*) x 3 / FL* / FL* / FL*		
		<v> = H</v>		9	✓						4 / ([1]6 / [1,2]4) x 3 / [1]4 / [1]4	FL* / (FLA / FL*) x 3 / FL* / FL*		
		<v> = S</v>		8	√						4 / ([1]6 / [1,2]4) x 3 / [1]4	FL* / (FLA / FL*) x 3 / FL*		
		<v> = D</v>	128	3	✓						4 / [1]6 / [1,2]4	FL* / FLA / FL*		_
			256	5	√						4 / ([1]6 / [1,2]4) x 2	FL* / (FLA / FL*) x 2		
			512	7	√						4 / ([1]6 / [1,2]4) x 3	FL* / (FLA / FL*) x 3		
UMIN (immediate)				1				√			4	FLA		
UMIN (vectors)				1				√	√		4	FL*		
UMINV		<v> = B</v>		10	√						4 / ([1]6 / [1,2]4) x 3 / [1]4 / [1]4 / [1]4	FL* / (FLA / FL*) x 3 / FL* / FL* / FL*		
		<v> = H</v>		9	✓						4 / ([1]6 / [1,2]4) x 3 / [1]4 / [1]4	FL* / (FLA / FL*) x 3 / FL* / FL*		
		<v> = S</v>		8	√						4 / ([1]6 / [1,2]4) x 3 / [1]4	FL* / (FLA / FL*) x 3 / FL*		-
		<v> = D</v>	128	3	✓	+			+		4 / [1]6 / [1,2]4	FL* / FLA / FL*		-
			256	5	√	+					4 / ([1]6 / [1,2]4) x 2	FL* / (FLA / FL*) x 2		-
			512		√	1			1		4 / ([1]6 / [1,2]4) x 3	FL* / (FLA / FL*) x 3		-
UMULH				1	<u> </u>	+		√	+		9	FL*		
UQADD (immediate)				1	-	+		√	+		4	FL*		+
UQADD (vectors)				1		+		+ •	+		4	FL*		+
				1	-	+			+	P	1+1			+
					-	+		+	+	P				+
UQDECB UQDECD (scalar)				1						P P	1+1 1+1	(EXA + EXA) (EXB + EXB) (EXA + EXA) (EXB + EXB)	-	

Instruction	Alias	Control option	VL	# of μOP	Seq. decode	Pre- sync	Post- sync	Pack	Extra µOP	Blocking	Latency	Pipeline	# of FP	# of SP	FLOPS
UQDECD (vector)				1				√			4	FL*			
UQDECH (scalar)				1						P	1+1	(EXA + EXA) (EXB + EXB)			
UQDECH (vector)				1				✓			4	FL*			
UQDECP (scalar)				2						/ P	3+2+1 / 1+[1]1	PRX + NULL + EXA / EXB + EXB			
UQDECP (vector)				1				✓			3+5+4	PRX + NULL + FLA			
UQDECW (scalar)				1						P	1+1	(EXA + EXA) (EXB + EXB)			
UQDECW (vector)				1				✓			4	FL*			
UQINCB				1						P	1+1	(EXA + EXA) (EXB + EXB)			
UQINCD (scalar)				1						P	1+1	(EXA + EXA) (EXB + EXB)			
UQINCD (vector)				1				✓			4	FL*			
UQINCH (scalar)				1						P	1+1	EX* + EX*			
UQINCH (vector)				1				✓			4	FL*			
UQINCP (scalar)				2						/ P	3+2+1 / 1+[1]1	PRX + NULL + EXA / EXB + EXB			
UQINCP (vector)				1				✓			3+5+4	PRX + NULL + FLA			
UQINCW (scalar)				1						P	1+1	(EXA + EXA) (EXB + EXB)			
UQINCW (vector)				1				✓			4	FL*			
UQSUB (immediate)				1				✓			4	FL*			
UQSUB (vectors)				1							4	FL*			
UUNPKHI				1							6	FLA			
UUNPKLO				1							6	FLA			
UXTB				1				✓			4	FL*			
UXTH				1				✓			4	FL*			
UXTW				1				✓			4	FL*			
UZP1 (predicates)				1							3	PRX			
UZP1 (vectors)				1							6	FLA			
UZP2 (predicates)				1							3	PRX			
UZP2 (vectors)				1							6	FLA			
WHILELE				1							1+3	EXA + PRX			
WHILELO				1							1+3	EXA + PRX			
WHILELS				1							1+3	EXA + PRX			
WHILELT				1							1+3	EXA + PRX			
WRFFR				2	✓	✓	√				NA / 3	/ PRX			
ZIP1 (predicates)				1							3	PRX			
ZIP1 (vectors)				1							6	FLA			
ZIP2 (predicates)				1							3	PRX			
ZIP2 (vectors)				1							6	FLA			