LaPIS Diagnostic Test Workbook - Mathematics

Name : Navajeevan S

Class: 7

Section : C

School : AKV Public School

Login ID : AKV177

Navajeevan S's Performance Report

Score: 18/40 Percentage: 45.0%

Navajeevan S's Study Planner

Date	Topics Planned	Q. Numbers	Teacher Remark	Teacher Sign	Parent Sign
		Teacher's Fe	edback to Student		
_					
	Class Teacher S	Signature	Princi	ipal Signature	

Basic arithmetic

Topics to be Improved					
Types of angles	Identification of types of angles				

Hi, here in this video you will learn Types of Angles

Question: 1

Find the angles.

Answer:

The angle ranges from ____° to ____°.

The angle perpendicular to 0° is $___{\circ}$.

The straight line measures $__$ °.

Question: 2

The angle formed between the directions

(i) West and East is _____ angle.

(ii) North and East is angle.
(iii) East and South is angle.
$\underline{Answer:}$
The angle formed between West and East is° and it is called angle.
The angle formed between North and East is° and it is called angle.
The angle formed between East and South is° and it is called angle.
$\underline{Question:\ 3}$
The addition of straight angle and right angle is angle.
Answer:
The measurement of straight angle is°
The measurement of right angle is°.
Straight angle + Right angle = + = =
It is called as angle.

Mensuration

Topics to be Improved			
Perimeter Perimeter of triangle			
Area	Area of rectangle		

.....

Hi, here in this video you will learn **Perimeter**

Question: 4

Highlight the perimeter in the given image.

A	ne	211	01	n.
\mathbf{H}	เมอ	TU)	e:	

Perimeter is the _____ (outer / inner) boundary of the shape

Question: 5

Find the perimeter of the given figure.

Answer:

Sides of the given shape = _____

Perimeter of a shape is _____ (sum / difference) of _____ (all/ opposite) sides.

Perimeter of the given shape = _____ Question: 6 Find the length of the rectangular floor if its perimeter is 60 ft and breadth is 3 ft. Answer: Perimeter = ____ | Breadth = ____ Shape of the floor is _____ and its perimeter formula is _____. Given: floor perimeter = ______, and breadth = ______. Therefore, length of the rectangular floor is ______. Hi, here in this video you will learn **Area** Question: 7 Find which of the shaded portion in the given shape represent it's area. Answer: Given figure is ______ in shape. Area is the _____ (inside/ outside/ boundary) of a shape. Find the area of a rectangular garden whose dimension is 25 ft in length and 20 ft in breadth. Answer:

The garden is in	shape.		
Length of garden is as	nd breadth of gar	den is	
Formula for area of the shape	=		
The area of garden $=$. x =	$ __ cm^2 $	
Question: 9			
Shade the possible dimension	of the door whose	e area is $500 m^2$	
$\boxed{50 \ m \ \times \ 10 \ m}$	25 m × 25 m	$\boxed{25 \ m \ \times \ 20 \ m}$	$\boxed{ 30 \ m \ \times \ 20 \ m }$

$\underline{Answer:}$

Door is _____ in shape. Area of the _____ shaped door is ____.

Dimensions	Length	Breadth	Area
$50 \text{m} \times 10 \text{m}$			
$25 \text{m} \times 25 \text{m}$			
$25 \text{m} \times 20 \text{m}$			
$30 \text{m} \times 20 \text{m}$			

Therefore, possible dimension of the door whose area is 500 m^2 is/are _____

Data handling

		Г	opics to	o be Imp	roved		
Arithmetic me and median	ean, mode	Mean,	Median	and Mod	e		
							. ENCORE
Hi, here in thi	s video you	ı will le	earn M	Iean, M	[edian,]	Mode	
Question: 10							
Find the mode of	the following	data: 5	, 15, 23,	5, 32, 44	72, 55, 6,	3, 5, 65, 45,	67, 24, 19 and 98.
$\underline{Answer:}$							
Mode is the numb	er that occur	s		_ (frequer	ntly / rarel	y) in a given	list of observations.
Arranging the dat		_					
				•	~		
Question: 11							
Which shape cont	ains median o	of the gi	ven data	3, 5, 6, 2	2, 7, 9, 6, 4	and 1	
	1	\	5		6	9	
$\underline{Answer:}$							
Median is theascending or descending the given	ending order.		•				is arranged in
Central value of the							of a data.
Question: 12				• • • • • • • •			
	Marks scored		100	90	80	70	

Number of students | 4

5

2

1

Answer	:

Mean = _______of all observation ______, number of observation = ______, number of observation = ______.

Therefore, mean = ______.

Arrange the data in ascending order : ______.

Here, median = $\underline{\hspace{1cm}}$, mode = $\underline{\hspace{1cm}}$.

Geometry

Topics to be Improved				
Transversal angle made by transversal	Basics of Transversal angle			
Criteria for congruence of triangle	Idenfication of criteria of congruence of triangles			
Angle sum property of triangle	Angle sum property of triangle			
Right angle triangle and pythagoras property	Basics of Pythagoras property			
Faces vertex and edges	Idenfication of faces, edges and vertices			
Sum of lengths of two sides of a triangle	Sum of two sides of a triangle			

Hi, here in this video you will learn Basics of Transversal angle

Question:	13
a account	

.....

Answer:

A line that intersects two or more lines at distinct points is called a _____ (transversal/Intersecting line).

Angle that lies on different vertices and on the opposite sides of transversal is _____ angles.

Angle that lies on different vertices and on the same sides of transversal is _____ angles. Therefore, $\angle 1$ and $\angle 7$ are _____

.....

Question: 14

Find the transversal, alternate angles and corresponding angles in a given diagram.

Answer:

A line that intersects two or more lines at distinct points is called a _____ (transversal/Intersecting line).

In a given diagram, _____ is a transversal line. (BF/AD/CE)

Alternate angles	Corresponding angles
\angle a and \angle g, \angle b and \angle h,	$\angle a$ and $\angle e$, $\angle b$ and $\angle f$,

......

Question: 15

Find $\angle e$ and $\angle g$ if $\angle a = 30^{\circ}$.

Answer:

When parallel lines cut by a transversal,

- (i) Alternate angles are _____ (equal / not equal).
- (ii) Corresponding angles are _____ (equal / not equal).

Here, alternate a	O .					
Hi, here in the	his video yo	u will learn	Criteri	a of congruen	ce	
Question: 16						
Circle the group	s that contain	congruent im	ages.			
			7		<u> </u>	
Answer:						
(identical/non-id	dentical) in sh	apes and size.		ey arecongruent/not cong		
Question: 17						
				sponding sides of the SA/SAS) criteria .	he other	triangle, then two
Answer:						
				ruent) if they are id		n shapes and size.
	_	` '		of the triangle are e other triangle.		(equal/
		, ,		and ne included angle o		· -
				les and gles and the includ		
	SSS	sides	and	angles are equal		
	SAS	sides	and	angles are equal		
	ASA	sides	and	angles are equal		
0 11 1-						
Question: 18						
The triangles LN	NM and PRQ	are congruent	by SAS ci	riteria. Then find t	ne side P	K

Answer:

The given two triangles satisfy ______ criteria of congruence. By SAS congruence criteria, MN = _____, ____ and $\angle N$ = _____ The side MN=8 cm in ΔLNM is equal to the side _____ in ΔPRQ The common included angle in Δ LNM and ΔPRQ are _____ The side PR is equal to the side in _____ ΔLNM . Therefore, length of side PR = _____

Hi, here in this video you will learn Angle sum property

Question: 19

Sum of the angles of triangle is _____.

Answer:

$$\angle A + \angle B + \angle C = \underline{\hspace{1cm}}$$

Angle sum formula = $(n-2) \times 180^{\circ}$, n = number of sides

Triangle has _____ sides.

Sum of the angles of triangle = $(\underline{} - 2) \times 180^{\circ} = \underline{}$

Question: 20

Which of the following triangle satisfy the angle sum property.

Question: 22..... In a right angled triangle, square of the _____ = sum of the squares of the legs.

Answer:

Pythagoras theorem is only applicable for _	triangle.
Longest side of the triangle is	(hypotenuse/ legs) and other two sides are called
(hypotenuse/ legs).	
Pythagoras theorem states that	

Question: 23

Find the hypotenuse of the triangle ABC if base is 12 m and altitude is 5 m.

Answer:

Pythagoras theorem states that square of the _____ = sum of the squares of its

Given: Base = _____, Altitude = _____,

Base and altitude are _____ (hypotenuse/ legs) of the triangle.

By Pythagoras theorem,
$$(____)^2 = (____)^2 + (____)^2$$

 $= ___ + ___$

Therefore, hypotenuse of the triangle is _____.

Question: 24

Find the length of the rectangle, if breadth is 3 cm and diagonal is 5 cm.

Answer:

Pythagoras theorem states that square on the _____ = sum of the squares on

Is Pythagoras theorem applicable in rectangle? ____ (yes/ no).

 $Given: breadth = \underline{\hspace{1cm}}, length of diagonal = \underline{\hspace{1cm}}$

Therefore, diagonal of the rectangle is _____

Hi, here in this video you will learn Basics of 3D model

Question: 25

A point at which two or more lines segments meet is called _____(Vertex/ edges/ faces).

Answer:

has two end point (line/line segment/ray).

A ______is a point where two or more line segments meet(Vertex/ edges/ faces). Mark the vertices in the diagram,

Question: 26 Mark and find the number of vertices, edges and faces in a cube.
$\underline{Answer:}$
Mark the vertex, edges and faces in a cube.
Count the number of vertex, edges and faces in a cube. Cube have vertices, edges and faces.
Question: 27
How many vertices, edges and faces does dices have?

The shape of dice is _____.

Dices have _____ vertices, _____ edges and _____ faces.

Hi, here in this video you will learn Sum of the length of sides of the triangle

Question: 28

Find the greatest distance to reach C from A in the given diagram.

Answer:

The sides of the given triangle are _____

The possible way to reach point C from point A are _____ and AB then to

Side AC = _____

Side AB + BC = _____ + ___ = ____

Therefore, the greatest distance to reach C from A in the given diagram is ______.

Question: 29

_____ (Sum of / Difference between) the length of any two sides of a triangle is smaller than the length of the third side.

......

Answer:

There are ______ sides in a triangle.

The sum of the two sides of a triangle is ______ than the other side of the triangle.

The difference of the two sides of a triangle is ______ than the other side of the triangle.

Example: In triangle XYZ,

 $\underline{Question \colon 30}$

The lengths of two sides of a triangle are 7 cm and 10 cm. Between which two numbers can length of the third side fall?

......

Answer:

The sum of the two sides of a triangle is	than the third side of the triangle.
Therefore, the third side should be	_(less/ greater) than sum of other two sides.
Here, sum of the two sides $=$ $+$ $+$	=
Therefore, the length of the third side is less than	
The difference of the two sides of a triangle is	than the third side of the
triangle.	
Therefore, the third side should be	_(less/ greater) than sum of other two sides.
Here, difference of the two sides =	=
Therefore, the length of the third side is greater to	nan
refere length of the third side is greater than	but loss than
erore, rength of the third side is greater than	but less than
	Therefore, the third side should be + _ Here, sum of the two sides = + _ Therefore, the length of the third side is less than The difference of the two sides of a triangle is

Number system

Topics to be Improved				
Introduction to rational numbers	Basics of rational numbers			
Exponents	Solving exponents			
Fractions	Multiplication of fractions, Division of fraction			
Operations on rational numbers	Division of rational numbers			
Positive and negative rational numbers	Identification of positive rational numbers			

Hi, here in this video you will learn Basics of rational numbers

Question: 31

The numbers in the diagram represents_

1	nswer	٠.
71	nswei	

0,	4,5	,2,3	,1	are	nun	nbers.
1	0	2	1			- 1

The combination of these circles are called ______.

 $\frac{1}{49},\,\frac{1}{2},\,\frac{8}{27},\,\frac{11}{5},\,\frac{13}{75}$ are ______. Combination of all three circles are called as ______ numbers.

Question: 32

Shade the correct form of rational numbers.
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
Answer:
Rational number can be expressed as, where both numerator and denominator are (integer/ not a integer), denominator is equal to (zero/ one/ any integer other than zero).
Question: 33
Circle the number which is not a rational number. $\frac{-5}{-8} \frac{-3}{2} \frac{12}{-6} \frac{0}{-9} 256 \frac{4}{0}$
Answer:
Rational number can be expressed as, where both numerator and denominator are(integer/ not a integer), denominator is equal to (zero/ one/ any integer other than zero). Here, is/are rational number and is/are not a rational number.
Hi, here in this video you will learn Exponents and power
Question: 34
Find the exponential form of 1000.
<u>Answer:</u> (Exponents/Base) tells us how many times a number should be multiplied by itself to get the desired result. Exponents is also called as (Base / Power).
1000 can be written as = $10 \times $ $\times $ 10 is raised to the power of = (10)
Question: 35 Find the value of $(-2)^3$
Find the value of $(-2)^3$. Answer:
(Exponents/Base) tells us how many times a number should be multiplied by itself

to get the desired result.

In this exponential form $(-2)^3$, base = ____, power = ____. $(-2)^3$ = ____ × ___ = ___.

Question: 36

- (i) Tenth power of 100 is $((10)^{100})$ or $(100)^{10}$).
- (ii) k is raised to the power of 5 is $((k)^5)$ or $(5)^k$.

Answer:

Exponential form = (Base)—

- (i) Tenth power of 100: Base = ____, Power/Exponents = ____, exponential form = ____.
- (ii) k is raised to the power of 5: Base = ____, Power/Exponent = ____, exponential form = ____.

Hi, here in this video you will learn Multiplication on fractions

Question: 37

Fill the boxes

$$2+4+\frac{6}{2} = \frac{2}{\square} + \frac{4}{\square} + \frac{3}{\square} = \frac{\square}{\square} = 9$$

Answer:

The whole number can be expressed in fraction with denominator equal to $___$ (zero/one). Therefore, 2 can be written as $___$ in fraction.

4 can be written as _____ in fraction.

$$2 + 4 + \frac{6}{2} = \frac{2}{1} + \frac{4}{\square} + \dots = \frac{2}{1} + \frac{4}{\square} + \frac{3}{\square} = \frac{\square}{\square} = 9$$

Question: 38

There are 400 students in a school. Find the number of girls, if three sixteenth of the students are girls.

Answer:

Total number of students = _____

Fraction of students who are girls = _____

Number of girls = \times = = =

Question: 39

Solve : $2\frac{7}{4} \times \frac{2}{3}$

Answer:

 $2\frac{7}{4}$ is a _____ (proper / mixed) fraction. Here, 2 is _____, 7 is ____ and 4 is _____

To convert mixed fraction into improper fraction, $\frac{\text{(Whole} \times \underline{\hspace{1cm}}) + \text{Numerator}}{\text{Denominator}}$ Improper fraction of $2\frac{7}{4} = \underline{\hspace{1cm}}$

$$2\frac{7}{4} \times \frac{2}{3} = \boxed{ } \times \frac{2}{3} = \boxed{ }$$

Hi, here in this video you will learn **Division on fractions**

Question: 40

Find the shape which contains the improper fraction of $5\frac{2}{7}$.

......

Answer:

 $5\frac{2}{7}$ is a _____ (proper/mixed) fraction. Here, 5 is _____ , 2 is _____ and 7 is _____

To convert mixed fraction into improper fraction, $\frac{(\text{Whole} \times \underline{\hspace{1cm}}) + \text{Numerator}}{\text{Denominator}})$

$$5 \frac{2}{7} = \frac{(--- \times ---) + ----}{7} = \frac{\square}{\square}$$

Question: 41

Solve: $\frac{1}{3} \div \frac{14}{3}$

Answer:

To divide a fraction by another fraction, multiply the dividend by $___$ (same / reciprocal) of the divisor. Here, dividend = $___$ and divisor = $___$.

1		14	=	1	×		=	
3	•	3		3	^	\Box		

......

.....

.....

Question: 42

Find the half of the fraction $\frac{12}{40}$.

Answer:

To find half of a number, divide the number by _____

$$\frac{12}{40} \div \underline{\qquad} = \frac{12}{40} \times \underline{\qquad} = \underline{\qquad}$$

Then the answer is _____

Hi, here in this video you will learn **Operation on rational numbers**

Question: 43

Fill in the boxes to make the given expression correct.

$$\frac{1}{5} \div \frac{14}{15} = \frac{1}{\square} \times \square$$

Answer:

When any fraction is divided by a fraction, we multiply the dividend by the ______ (same/reciprocal) of the divisor.

Here, dividend = ____ and divisor = ____

$$\frac{1}{5} \div \frac{14}{15} = \frac{1}{\square} \times \square = \square$$

Question: 44

Solve: $\frac{18}{7} \div 0.6$

Answer:

Fraction form of 0.6 =______,

when any fraction is divided by a fraction, we multiply the dividend by the $___$ (same/reciprocal) of the divisor. Here, dividend = $___$ and divisor = $___$.

$$\frac{18}{7} \div \boxed{\square} = \frac{18}{7} \times \boxed{\square} = \boxed{\square}$$

Question: 45

Find the missing number in the expression $\frac{8}{3} \div \frac{16}{\square} = 2$

Answer:

$$\frac{8}{3} \div \frac{16}{\square} = 2$$

$$\frac{8}{3} \times \frac{\square}{16} = 2$$

Transposing 8/3 to RHS,

$$\frac{\square}{16} = 2 \square \frac{8}{3}$$

$$\frac{\square}{16} = 2 \times \boxed{\square}$$

$$\frac{\square}{16} = \frac{\square}{\square}$$

Transposing 16 to other side, the result is _____

Hi, here in this video you will learn **Positive and Negative rational numbers**

Question: 46

Segregate positive and negative rational number.

• If both the numerator and the denominator of a rational number are (positive/negative), then it is positive rational number.
• If either the numerator and the denominator of a rational number are negative, then it is (positive/negative) rational number.
In the given circle, positive rational numbers are and negative rational numbers are
Question:~47
$\frac{-3}{-4}$ is a (positive /negative / neither positive nor negative) rational number.
$\underline{Answer:}$
-3 is a number, -4 is a number. Division of $\frac{-3}{-4} = \boxed{}$ and this rational number. (Positive / Negative / Neither positive nor negative rational number)
Question:~48
The product of a positive rational number and a negative rational number isrational number. (Positive/ Negative/ neither positive nor negative)
Answer:
Examples for positive rational numbers: Examples for negative rational numbers: Positive rational number × Negative rational number = × = and this is rational number

Comparing Quantities

Topics to be Improved	
Equivalent ratios	Basic of proportion
Simple interest	Calculation of simple interest

Hi, here in this video you will learn Basics of proportion	
Question: 49	
If a:b and c:d are equivalent ratio, then it can be expressed as	
Answer:	
A (proportion / ratio) is used to express (one/two) equivalent restandard form to express proportion is	atios.
Question: 50	

Find the ratio of shaded part to unshaded part of A and B. Are the two ratios equivalent ?

Answer:

Shaded part of $A = \underline{\hspace{1cm}}$, Unshaded part of $A = \underline{\hspace{1cm}}$.
Ratio of shaded to unshaded parts of A is Fractional form =
Shaded part of $B = \underline{\hspace{1cm}}$,
Unshaded part of $B = \underline{\hspace{1cm}}$.
Ratio of shaded to unshaded parts of B is
Fractional form $=$
Fraction form of A (equal/ not equal) to Fraction form of B.
Question: 51

If a: b:: c: d is proportion, shade the correct expression

$=$ $\frac{bc}{d}$

Answer:

Hi, here in this video you will learn Simple Interest
then $a = \underline{\hspace{1cm}}$ and $c = \underline{\hspace{1cm}}$
Therefore, $a \times d = \underline{\hspace{1cm}},$
terms.
In proportion, product of extreme terms is (equal to/ not equal to) product of middle
First and fourth term are called and second and third term are called
or $\underline{\hspace{1cm}} = \underline{\hspace{1cm}}$ (in fraction).
Two equivalent ratio which are proportion, it can be written as a: b:: c: d

Question: 52

Match the following.

Column A	
i	Principle(P)
ii	Amount (A)
iii	Rate (R)
iv	Time period (T)

Column B	
a	Interest calculated based on this
b	Total sum you borrow
С	Number of years
d	Total sum with interest

Answer:

Formula for calculating simple interest $=$
Interest calculated based on
Total sum you borrow is known as
Number of years is Total sum with interest is

Question: 53

Sara deposited Rs.1200 in a bank. After three years, she received Rs.1320. Find the interest she earned.

Answer:

C:			
Given:			
$Amount = \underline{\hspace{1cm}}$	$_{}$, Principle = $_{}$	$\underline{\hspace{1cm}}$, Time period = $\underline{\hspace{1cm}}$	 •
If Amount and p	rinciple is given, then formula for	calculating interest is	·
$Interest = \underline{\hspace{1cm}}$	=		
Question: 54			

The simple interest on Rs.5000 for 3 years is Rs.1350. Find the rate of interest.

$\underline{Answer:}$

 $Interest = \underline{\hspace{1cm}}, Time \ period = \underline{\hspace{1cm}}, Principal = \underline{\hspace{1cm}}.$

Rate of interest $= \frac{\underline{} \times 100}{\text{Principal x}}$

Substituting values in the formula,

Rate of interest $= \frac{\underline{\qquad} x \ 100}{\text{Principal x} \underline{\qquad}}$

Rate of interest = ______

Therefore, the rate of interest is _____ %

Algebra

Topics to be Improved		
Terms of an expression	Identification of terms in an expression	
subtraction of algebraic expressions	subtraction of algebraic expressions	
Basics of simple equation	Solving of simple equation	
Addition and subtraction of algebraic expressions	Like terms and Unlike terms	

Hi, here in this video you will learn Terms of an expression

Question: 55

Separate the variables and constants for all the terms given in the box

Answer:

In algebraic expression, variables are represented by _____ and Constant is a

Terms	Constants	Variables

Question: 56

Mark the expression that contains two terms.

$$3x + 5$$
 $12a$ $4xy$ $12a + b + 1$ $7m + 0$

Answer:

The terms in the expression 3x + 5 is/are _____.

The terms in the expression 12a is/are _____.

The terms in the expression $4xy$ is/are The terms in the expression $12a + b + 1$ is/are The terms in the expression $7m + 0$ is/are
Question: 57
Shade the outline of circle that contains the term of the given expression.
$6m^2 - 7mn + nl$
(m^2) $(7mn)$ $(6m^2)$ $(-7mn)$ (mn) (mn)
$\underline{Answer:}$
In algebraic expression, (variables/ terms) are connected together with operations of addition.
Here,, are the terms of the given expression.
Hi, here in this video you will learn Subtraction on expression Question: 58
Find the sum of two expressions $a + b + c$ and $b + c + d$
-
Answer:
The given two expressions are and The two terms will get added only if they are(Like/ Unlike) terms. The sum of two expressions = + The answer is
Question: 59

	School A	School B
Number of boys	100b	250b
Number of girls	150g	200g
Number of teachers	25t	45t

- (i) Total number of boys in school A and B is _____
- (ii) Total number of students in school B is _____
- (iii) How many more teachers are there in school B than school A? _____

Answer:

(i) Number of boys in school $A = \underline{\hspace{1cm}}$,

Number of boys in school $B = \underline{\hspace{1cm}}$

Total number of boys in school A and school B is _____ + ___ = ____

(ii) Number of boys in school $B = \underline{\hspace{1cm}}$,

Number of girls in school $B = \underline{\hspace{1cm}}$

Total number of students in school B is $___$ + $___$ = $___$.

(iii) Number of teachers more in school B than school A = Teachers in school B - Teachers in school A = $__$.

Question: 60

Solve the following:

$$\begin{array}{r}
 3a - 5b \\
 \hline
 (-) \quad 5a - 7b \\
 -2a - \underline{\hspace{1cm}}
 \end{array}$$

Answer:

The two terms will get added only if they are _____ (like/unlike) terms.

$$\begin{array}{c|c}
13x + \underline{\hspace{1cm}} \\
(+) & 12x + 10y \\
\underline{\hspace{1cm}} + 25y
\end{array}$$

.....

......

 Hi , here in this video you will learn $\operatorname{\mathbf{Solving}}$ an $\operatorname{\mathbf{equation}}$

Question: 61

If ©=5, then 5 © +5 =

Answer:

The value of the given smiley © is _____.

Substituting the value in the expression $= 5(\underline{\hspace{1cm}}) + 5 = \underline{\hspace{1cm}} + \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$.

 $\underline{\textit{Question: 62}}$

Which of the following number can be placed in the box to make the equation correct (-2, -1, 0, 1, 2)

$$7 \boxed{} + 3 = -4$$

 $\underline{Answer:}$

The given equation is 7..... +3 =-4 Substitute the values (-2, -1, 0, 1, 2) in the circle, $7 \times$ ____+3= ____

$7 \times$	∟3	_	
1 ^	 ⊏ാ		

$$7 \times __+3 = __$$

$$7 \times \underline{\hspace{1cm}} +3 = \underline{\hspace{1cm}}$$

Therefore, ______ is the number that can be placed in a box to make the equation correct.

$Question:\ 63$

Arrange the terms in the descending order when the value of x is 2. $2x 5x \times 1 x + 3 2x - 4 \frac{1}{5}x$

Answer:

The given expression are _____.

The value of x is _____.

substituting value of x

$$2x = 2 \times \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$$

$$x + 3 = \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$$

$$5x \times 1 = 5 \times \underline{\hspace{1cm}} \times 1 = \underline{\hspace{1cm}}$$

$$2x - 4 = 2 \times \underline{\hspace{1cm}} - 4 = \underline{\hspace{1cm}}$$

$$\frac{1}{2}x = \frac{1}{2} \times \underline{\qquad} = \underline{\qquad}$$

Arranging in descending order: ____, ____, ____, ____, ____.

Their respective algebraic terms are _____, ____, ____, ____,

Hi, here in this video you will learn Addition on expression

Question: 64

Shade the like terms.

.....

Answer:

Given terms are _____

Two or more term have _____ (same/ different) variables is called like terms.

Here, like terms are _____

 $\underline{Question:~65}$

Complete the expression $7r^2 + r \Box - 2 \Box = \underline{} r^2$

Answer:

_____ (Like / Unlike) terms can be added or subtracted.

$$_{7r^2+ r} \square_{-2} \square = (_{7} + \underline{ } - _{2})_{r^2} = \underline{ }$$

Question: 66

Sam have 3a chocolates and 9y icecream. Ram have 7a chocolates and 5y icecream.

- (i) Total chocolates Ram and Sam have : _____.
- (ii) How many icecreams Sam have more than Ram : ______ .

Answer:

	Chocolates	Icecream
Sam		
Ram		

(i) Total chocolates Ram and Sam have :

Ram's chocolate + Sam's chocolates = $___$ + $___$ = $__$

(ii) How many icecreams Sam have more than Ram:

_____ icecream - ____ icecream = ____ - __ = ___