

Neural Network & Deep Learning

Single-Layer Recurrent Network

CSE & IT Department
School of ECE
Shiraz University

Recurrent Neural Networks

Recurrent Neural Nets (RNN)

RNNs are characterized by

- Connection graph of network has cycles
 - Output of a neuron can influence inputs
- There are no natural input and output nodes
- Initially, each neuron has a given input state
- Neurons change state, using some update rules
- Network evolves until some stable situations reach
- Resulting state is output of network

Pattern Recognition

RNNs can be used for pattern recognition

- Stable states represent patterns to be recognized
- Initial state is a noisy or mutilated version of one pattern
- Recognition process consists of network evolving from its initial state to a stable state
- Some patterns:

Noisy pattern

Recognized pattern

Physical Analogy

A Physical Analogy with Memory

- Bowl and ball: a system with a stable energy state
- Ball-bowl system settles in an energy minimum at equilibrium

- Resting state is a stable state because system remains there, so it remembers bottom of bowl
- Ball will come to rest at local memory closest to its initial position (with minimum energy)

memories: \vec{x}_1 \vec{x}_2 \vec{x}_3

 So, system can store a set of patterns (with minimum energy) and recalls that which is closest to its initial cue

Store and Retrieve in RNN

In RNNs

- System is completely described by
 - a state vector $\vec{y}(t) = \langle y_1(t), y_2(t), ..., y_n(t) \rangle$
 - a scalar variable E(t) as energy function
- A set of stable states \vec{y}_1 , \vec{y}_2 , ..., \vec{y}_m associated with energy minima, $E_1, E_2, ..., E_m$ are defined as stored patterns or memories (storing process)
- System evolves in time from any arbitrary starting state $\vec{y}(0)$ with initial energy E(0) to one of stable state \vec{y}_i with energy E_i when $E_i \leq E(0)$ (recall process)

Store and Retrieve in RNN

In RNNs

- A state \vec{y}_k is called a stable state, if and only if, update rule does not lead to a different state: $\vec{y}_k(t+1) = \vec{y}_k(t)$
- In bipolar encoding, if \vec{y}_k is stable, $-\vec{y}_k$ is also stable
- Some combinations of stable states can also be stable
- Moreover, there can be more complicated stable states that are not related to the stored states
- Besides desired stable states, network can have additional undesired (spurious) stable states

Hebb rule in RNN

Hebb rule: $\begin{cases} \text{if } w_{ij} > 0, \ Y_i \text{ and } Y_j \text{ tend to take } y_i = y_j \\ \text{if } w_{ij} < 0, \ Y_i \text{ and } Y_j \text{ tend to take } y_i \neq y_j \end{cases}$

Internode energy: $e_{ij} = -w_{ij} y_i y_j$: for bipolar representation

$$\begin{cases} \text{if } w_{ij} > 0 \text{ , } e_{ij} = \begin{cases} -w_{ij} < 0 \text{ , when } y_i = y_j & \Rightarrow \text{ energy : minimum} \\ w_{ij} > 0 \text{ , when } y_i \neq y_j & \Rightarrow \text{ energy : maximum} \end{cases} \\ \text{if } w_{ij} < 0 \text{ , } e_{ij} = \begin{cases} w_{ij} < 0 \text{ , when } y_i \neq y_j & \Rightarrow \text{ energy : minimum} \\ -w_{ij} > 0 \text{ , when } y_i \neq y_j & \Rightarrow \text{ energy : minimum} \end{cases}$$

-

Energy in RNN

Energy of whole network

$$E = \sum_{i} \sum_{j} e_{ij} = -\sum_{i} \sum_{j} w_{ij} y_{i} y_{j} \xrightarrow{w_{ij} = w_{ji}}$$

$$E = -\frac{1}{2} \sum_{i} \sum_{j} w_{ij} \ y_{i} \ y_{j} = -\frac{1}{2} \vec{y}^{T} W \vec{y}$$

Since W is symmetric: $E = -\sum_{i} \sum_{j < i} w_{ij} y_i y_j$

At time t: $E(t) = -\sum_{i} \sum_{j < i} w_{ij} y_i(t) y_j(t)$

Energy before firing Y_k

$$E(t) = -\sum_{i} \sum_{j < i} w_{ij} y_{i}(t) y_{j}(t) - \sum_{i} w_{ik} y_{i}(t) y_{k}(t) = S(t) - y_{k}(t) y_{-}in_{k}(t)$$

$$j \neq k$$

Energy after firing Y_k

$$E(t+1) = S(t+1) - y_k(t+1) y_i in_k(t+1) = S(t) - y_k(t+1) y_i in_k(t)$$

So,
$$\Delta E = E(t+1) - E(t) = -y_i n_k(t) \{y_k(t+1) - y_k(t)\} = -y_i n_k(t) \Delta y_k$$

-

Energy in RNN

- $\Delta E = -y_i i n_k(t) \Delta y_k$
- Since Y_k is chosen to be fired

$$\begin{cases} \text{if } y_in_k(t) \ge 0 \implies y_k(t+1) = 1, \text{ if } y_k(t) = \begin{cases} -1 \\ 1 \end{cases} \implies \Delta y_k \ge 0 \implies \Delta E \le 0 \\ \text{if } y_in_k(t) < 0 \implies y_k(t+1) = -1, \text{ if } y_k(t) = \begin{cases} -1 \\ 1 \end{cases} \implies \Delta y_k \le 0 \implies \Delta E \le 0 \end{cases}$$

- So, net energy decreases or stays the same for any node selected to fire
- For lower bound of E (when $y_i = y_j$ for all nodes), $E_{min} = -\sum_i \sum_{j < i} w_{ij}$

Hopfield Net

Discrete Hopfield Net

- Originally used as content-addressable memory
- A continues-valued version of it can be used for pattern association
- An iterative AAM net with bipolar encoding
- A fully interconnected recurrent net with no connection from a neuron to itself
- Each neuron continues to receive an external signal in addition to signals from other units

Discrete Hopfield Net

- If a Hopfield network has n neurons \rightarrow state of network at time t is $\vec{y}(t) \in \{-1,1\}^n$ with components $y_i(t)$ that describe state of neuron Y_i at time t
- Since time is discrete $(t \in \mathcal{N})$, state of network at time t+1 will depend on sign of total input at time t

$$y_i(t+1) = f(y_in_i(t)) = sgn(y_in_i(t))$$

- Update strategies of net states:
 - Asynchronous update
 - Synchronous update

Weights of Hopfield Net

Using Hebb rule for pattern association:

$$\vec{s}(p) = \langle s_1(p), ..., s_i(p), ..., s_n(p) \rangle,$$

 $(p = 1, ..., P)$

$$W = \{w_{ij}\}, \quad w_{ij} = \begin{cases} \sum_{p=1}^{P} s_i(p) s_j(p), & \text{if } i \neq j \\ 0 & \text{if } i = j \end{cases}$$

- The weight matrix is symmetric ($w_{ij} = w_{ji}$) and has a zero diagonal
- Each neuron uses sign activation function:

$$y_i = f(y_{-}in_i) = sgn(y_{-}in_i) = \begin{cases} 1, & \text{if } y_{-}in_i > 0 \\ 0, & \text{if } y_{-}in_i = 0 \\ -1, & \text{if } y_{-}in_i < 0 \end{cases}$$

Hopfield Net State Update

- Asynchronous update rule
 - Only one neuron (selected randomly) at a time is allowed to change its state
 - Select neuron Y_i (randomly) for update

$$y_{-}in_{i}(t) = x_{i} + \sum_{j=1}^{n} y_{j}(t) w_{ji} = x_{i} + \vec{w}_{.i}^{T} \vec{y}$$
$$y_{i}(t+1) = \operatorname{sgn}(y_{-}in_{i}(t)) = \operatorname{sgn}(x_{i} + \vec{w}_{.i}^{T} \vec{y})$$

• For each neuron Y_i except Y_i

$$y_j(t+1) = y_j(t)$$

- Synchronous update rule
 - All neurons are allowed to change their state simultaneously

$$\overrightarrow{y_{-}in}(t) = \overrightarrow{x} + W \ \overrightarrow{y}(t)$$

$$\overrightarrow{y}(t+1) = sgn(\overrightarrow{y_{-}in}(t))$$

Recall in Hopfield Net

Recalling with Hopfield net (asynchronous update) for input vector \vec{x}

1. Set initial activations of net to external input vector

$$y_i = x_i$$
, $(i = 1, ..., n)$

- 2. While activations of net are not converged
 - 2.1. For each neuron Y_i (randomly selected)
 - 2.1.1. Compute net input

$$y_{i}n_{i} = x_{i} + \sum_{j=1}^{n} y_{i} w_{ji} = x_{i} + \overrightarrow{w}_{i}^{T} \overrightarrow{y}$$

2.1.2. Determine output signal

$$y_i = f(y_i i n_i) = sgn(y_i i n_i)$$

- 2.1.3. Broadcast value of y_i to all other neurons
- 3. Stop
- Input vector \vec{x} :
 - Is known if net converges to a stable state as a stored vector
 - Is unknown if net converges to a not stored vector

Recall in Hopfield Net

Example:
$$\vec{s} = \{ <1, 1, -1, -1 >, <1, -1, 1, -1 > \}$$

An input vector with one missed component: $\vec{x} = <1, 1, 0, -1>$

$$\Rightarrow$$
 $\vec{y}(0) = <1,1,0,-1>$

Asynchronous update:

Updating
$$Y_2$$
: $y_i n_2(0) = 1 + \begin{bmatrix} 1 & 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ -2 \\ 0 \end{bmatrix} = 1 \implies y_2(1) = 1$

Updating
$$Y_4$$
: $y_i n_4(0) = -1 + \begin{bmatrix} 1 & 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} = -3 \Rightarrow y_4(1) = -1$

Recall in Hopfield Net

Updating
$$Y_1: y_i n_1(0) = 1 + [1 \ 1 \ 0 \ -1] \begin{vmatrix} 0 \\ 0 \\ 0 \\ -2 \end{vmatrix} = 3 \implies y_1(1) = 1$$

Updating
$$Y_3$$
: $y_i in_3(0) = 0 + [1 \ 1 \ 0 \ -1] \begin{vmatrix} 0 \\ -2 \\ 0 \\ 0 \end{vmatrix} = -2 \implies y_3(1) = -1$

$$\Rightarrow \vec{y}(1) = <1, 1, -1, -1 >$$
, Updating $Y_1, Y_2, Y_3, Y_4 \Rightarrow \vec{y}(2) = <1, 1, -1, -1 >$

$$\vec{x} = <1, 1, 0, -1> \implies \vec{y}(0) = <1, 1, 0, -1>$$

Synchronous update:

$$\overrightarrow{y_in}(0) = \vec{x} + W \ \vec{y}(0) = \begin{bmatrix} 1\\1\\0\\-1 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0-2\\0 & 0-2 & 0\\0-2 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1\\1\\0\\-2 & 0 \end{bmatrix} = \begin{bmatrix} 3\\1\\-2\\-3 \end{bmatrix}$$

$$\Rightarrow \vec{y}(1) = sgn(\overrightarrow{y_in}(0)) = [1 \ 1 \ -1 \ -1]^T$$

States in Hopfield Net

Ex.:
$$\vec{s} = \{ < 1, 1, -1, -1 > \} \implies -\vec{s} = \{ < -1, -1, 1, 1 > \}$$

$$y_i(t+1) = \operatorname{sgn}(x_i + \vec{w}_{.i}^T \vec{y})$$

$$W = \begin{bmatrix} 0 & 1 - 1 - 1 \\ 1 & 0 - 1 - 1 \\ -1 - 1 & 0 & 1 \\ -1 - 1 & 1 & 0 \end{bmatrix}$$

3	$v_1(t)$	$y_2(t)$	$y_3(t)$	$y_4(t)$	state	$y_1(t+1)$	$y_2(t+1)$	$y_3(t+1)$	$y_4(t+1)$	state
	-1	-1	-1	-1	0	1	1	-1	-1	12
	-1	-1	-1	1	1	-1	-1	1	1	3
	-1	-1	1	-1	2	-1	-1	1	1	3
4	-1	-1	1	1	3	-1	-1	1	1	3
	-1	1	-1	-1	4	1	1	-1	-1	12
	-1	1	-1	1	5	1	1	-1	-1	12
	-1	1	1	-1	6	1	1	-1	-1	12
	-1	1	1	1	7	-1	-1	1	1	3
	1	-1	-1	-1	8	1	1	-1	-1	12
	1	-1	-1	1	9	-1	-1	1	1	3
	1	-1	1	-1	10	-1	-1	1	1	3
	1	-1	1	1	11	-1	-1	1	1	3
	1	1	-1	-1	12	1	1	-1	-1	12
	1	1	-1	1	13	1	1	-1	-1	12
	1	1	1	-1	14	1	1	-1	-1	12
	1	1	1	1	15	-1	-1	1	1	3

States in Hopfield Net

Ex.:
$$\overrightarrow{s_1} = \{ < 1, 1, -1, -1 > \} \implies -\overrightarrow{s_1} = \{ < -1, -1, 1, 1 > \}$$

 $\overrightarrow{s_2} = \{ < 1, 1, 1, -1 > \} \implies -\overrightarrow{s_2} = \{ < -1, -1, -1, 1 > \}$
 $W = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$

1	$y_1(t)$	$y_2(t)$	$y_3(t)$	$y_4(t)$	state	$y_1(t+1)$	$y_2(t+1)$	$y_3(t+1)$	$y_4(t+1)$	state
	-1	-1	-1	-1	0	-1	-1	-1	1	1
i .	-1	-1	-1	1	1	-1	-1	-1	1	1
	-1	-1	1	-1	2	-1	-1	1	1	3
(-1	-1	1	1	3	-1	-1	1	1	3
	-1	1	-1	-1	4	1	1	-1	-1	12
	-1	1	-1	1	5	-1	-1	-1	1	1
	-1	1	1	-1	6	1	1	1	-1	14
	-1	1	1	1	7	1	1	1	-1	14
	1	-1	-1	-1	8	1	1	-1	-1	12
	1	-1	-1	1	9	-1	-1	1	1	3
	1	-1	1	-1	10	-1	-1	-1	1	1
	1	-1	1	1	11	-1	-1	1	1	3
	1	1	-1	-1	12	1	1	-1	-1	12
	1	1	-1	1	13	1	1	-1	-1	12
	1	1	1	-1	14	1	1	1	-1	14
	1	1	1	1	15	1	1	1	-1	14

Energy in Hopfield Net

 In Hopfield net (asynchronous updating), an energy function is defined to prove that net will converge to a stable set of activation, provided diagonal weights are set to zero

$$E = -\frac{1}{2} \sum_{i} \sum_{j} w_{ij} y_{i} y_{j} = -\sum_{i} \sum_{j < i} w_{ij} y_{i} y_{j}$$

Energy in Hopfield Net

Example:

$$\vec{s} = \langle -1, -1, 1, 1 \rangle$$
 , $W = \begin{bmatrix} 0 & 1 - 1 - 1 \\ 1 & 0 - 1 - 1 \\ -1 - 1 & 0 & 1 \\ -1 - 1 & 1 & 0 \end{bmatrix}$

$$E = -w_{12} y_1 y_2 - w_{13} y_1 y_3 - w_{14} y_1 y_4 - w_{23} y_2 y_3 - w_{24} y_2 y_4 - w_{34} y_3 y_4$$

= $-y_1 y_2 + y_1 y_3 + y_1 y_4 + y_2 y_3 + y_2 y_4 - y_3 y_4$

$$\vec{y}(0) = <-1, -1, -1, 1> \implies E(0) = -1 + 1 - 1 + 1 - 1 + 1 = 0$$

 $\vec{y}(1) = <-1, -1, 1, 1> \implies E(1) = -1 - 1 - 1 - 1 - 1 = -6$

$$\vec{y}(0) = <-1, -1, -1, -1> \implies E(0) = -1 + 1 + 1 + 1 + 1 - 1 = 2$$

 $\vec{y}(1) = <0, 1, -1, -1> \implies E(1) = 0 + 0 + 0 - 1 - 1 - 1 = -3$
 $\vec{y}(2) = <1, 1, -1, -1> \implies E(2) = -1 - 1 - 1 - 1 - 1 = -6$

Capacity of Hopfield Net

• Not guaranteed a Hopfield net with this weight matrix has vectors $\vec{s}(p) = \langle s_1(p), ..., s_i(p), ..., s_n(p) \rangle, (p = 1, ..., P)$ as its stable states

$$W = \{w_{ij}\}, \ w_{ij} = \begin{cases} \sum_{p=1}^{P} s_i(p) \ s_j(p) & \text{if } i \neq j \\ 0 & \text{if } i = j \end{cases}$$

- Disturbance caused by other vectors is called crosstalk
- Closer vectors are, larger crosstalk is
- So, how many vectors can be stored in a Hopfield net before crosstalk gets overhand

Storage capacity of Hopfield net with n neurons:

- For binary patterns: $P \approx 0.15 n$
- For bipolar patterns: $P \approx \frac{n}{2 \ln n}$

$$n = 100 \implies \begin{cases} \text{binary: } P \approx 15 \\ \text{bipolar: } P \approx 11 \end{cases}$$