Data Science – Machine Learning – Regression Cost functions

15. Data Science – Machine Learning – Regression Cost functions

Contents

1. Cost Functions for Regression	2
2. Types of regression metrics	
3. Distance Based Error	
4. Mean Squared Error	
5. Root Mean Squared Error	
6. Mean Absolute Error	7
7 Formulas	9

15. Data Science - Machine Learning - Regression Cost functions

1. Cost Functions for Regression

- ✓ In regression, the model predicts an output value for each training data during the training phase.
- ✓ The cost functions for regression are calculated on distance-based error.

2. Types of regression metrics

- ✓ There are three metrics in regression,
 - Mean Squared Error (MSE).
 - Root Mean Squared Error (RMSE)
 - Mean Absolute Error (MAE)

3. Distance Based Error

✓ Assuming that for a given set of input data, the actual output was y and our regression model predicts y' then the error in prediction is calculated as

✓ This also known as distance-based error and it forms the basis of cost functions that are used in regression models.

Data Science – Machine Learning – Regression Cost functions

4. Mean Squared Error

- ✓ The MSE is calculated as the mean of the squared differences between predicted and expected target values in a dataset.
- ✓ This value never be negative, since we are always squaring the errors.

MSE =
$$\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

Program Means Squared Error

Name demo1.py

from sklearn.metrics import mean_squared_error

mse_value = mean_squared_error(expected, predicted)

print(mse_value)

Output

0.350000000000000003

5. Root Mean Squared Error

- ✓ The Root Mean Squared Error, or RMSE, is an extension of the mean squared error.
 - o RMSE = sqrt(MSE)

Program Name

Root Means Squared Error

demo2.py

from sklearn.metrics import mean_squared_error

rmse_value = mean_squared_error(expected, predicted, squared
= False)

print(rmse_value)

Output

0.5916079783099616

6. Mean Absolute Error

✓ MAE, average absolute difference between predicted and actual values.

Data Science – Machine Learning – Regression Cost functions

7. Formulas

Mean squared error	$ ext{MSE} = rac{1}{n} \sum_{t=1}^n e_t^2$
Root mean squared error	$\text{RMSE} = \sqrt{\frac{1}{n} \sum_{t=1}^{n} e_t^2}$
Mean absolute error	$ ext{MAE} = rac{1}{n} \sum_{t=1}^n e_t $