Game Engineering und Simulation

Alexander Hofmann

Machine Learning – Naïve Bayes

Die Besten. Seit 1994. www.technikum-wien.at

Naïve Bayes

- Einer der wichtigsten Klassifizierungsalgorithmen
- Über die Frequenztabelle wird eine Wahrscheinlichkeit Tabelle aufgebaut
- Ein neuer Datensatz wird über den Satz von Bayes klassifiziert
 - Es werden die Wahrscheinlichkeiten für alle Klassen berechnet, auf Grund der vorliegenden Daten des neuen Datensatzes
 - Die Klasse mit der größten Wahrscheinlichkeit wird genommen
- Funktioniert nur für echt unabhängige Attribute! ("naïvely assumes independence")
- Einfache Verarbeitung von sehr großen Datenmengen
- Unterschieden wird der Umgang mit Namens- und Zahlenwerten

Satz von Bayes

$$P(c|x) = \frac{P(x|c)P(c)}{P(x)}$$

c ... Classifier value

x ... *Attribute value*

Klassifikation

- Neuer Datensatz kommt rein:
 - Outlook = sunny (der Rest fehlt) wie klassifizieren?

$$P(c|x) = \frac{P(x|c)P(c)}{P(x)}$$

$$P(x|c) = P(sunny|yes) = \frac{2}{9} = 0.22$$

$$P(c) = P(yes) = \frac{9}{14} = 0.64$$

$$P(x) = P(sunny) = \frac{5}{14} = 0.36$$

$$P(c|x) = P(yes|sunny) = \frac{0.22 * 0.64}{0.36} = 0.39$$

$$P(c|x) = P(no|sunny) = \frac{0.6 * 0.36}{0.36} = 0.61$$

Likelihood Table		Pl		
		yes	no	P(x)
Outlook	sunny	2/9	3/5	5/14
	overcast	4/9	0/5	4/14
	rainy	3/9	2/5	5/14
	P(c)	9/14	5/14	

Remember again?

Outlook	Temperature	Humidity	Windy	Play
sunny	hot	high	false	no
sunny	hot	high	true	no
overcast	hot	high	false	yes
rainy	mild	high	false	yes
rainy	cool	normal	false	yes
rainy	cool	normal	true	no
overcast	cool	normal	true	yes
sunny	mild	high	false	no
sunny	cool	normal	false	yes
rainy	mild	normal	false	yes
sunny	mild	normal	true	yes
overcast	mild	high	true	yes
overcast	hot	normal	false	yes
rainy	mild	high	true	no

Frequency & Likelihood Table

Outlook

Frequency Table		Play				
		yes	no			
Outlook	sunny	2		3		5
	overcast	4		0		4
	rainy	3		2		5
		9		5		
Likoliho	od Table	Pla	ay			
LIKEIIIIO	ou rable	yes	no			
	sunny	2/9	3/5		5/14	
Outlook	overcast	4/9	0/5		4/14	
	rainy	3/9	2/5		5/14	
		9/14	5/14			
l ikaliho	nd Tahla	Play				
LIKCIIIIO	Likelihood Table		no			
	sunny	0,22	0,6		0,36	
Outlook	overcast	0,44	0		0,29	
	rainy	0,33	0,4		0,36	
		0,64	0,36			

Frequency & Likelihood Table

Temp

Frequency Table	Play			
Trequency rable	yes	no		
cool	3		1	4
Temp mild	4		2	6
hot	2		2	4
	9		5	
Likelihood Table	Pla	ay		
Likelinood rabie	yes	no		
cool	3/9	1/5	4/14	
Temp mild	4/9	2/5	6/14	
hot	2/9	2/5	4/14	
	9/14	5/14		
Likelihood Table	Play			
Likelinood Table	yes	no		
cool	0,33	0,20	0,29	
Temp mild	0,44	0,40	0,43	
hot	0,22	0,40	0,29	
	0,64	0,36		

Frequency & Likelihood Table

Humidity

Frequency Table		Pl	ay		
		yes	no		
Humidity	normal	6		1	7
Trufficity	high	3		4	7
		9		5	
l ikeliho	od Table	Pl	ay		
LINCIIIIO	od rabic	yes	no		
Humidity	normal	6/9	1/5	7/14	
Trainialty	high	3/9	4/9	7/14	
		9/14	5/14		
Likelihood Table		PI	ay		
		yes	no		
Humidity	normal	0,67	0,20	0,50	
	high	0,33	0,44	0,50	
		0,64	0,36		

Frequency & Likelihood Table Windy

Frequency Table		Pl	ay		
		yes	no		
Windy	true	3		3	6
vviilay	false	6		2	8
		9		5	
Likeliho	od Table	Pl	ay		
LIKOIIIIO	od Table	yes	no		
Windy	true	3/9	3/5	6/14	
vviiiay	false	6/9	2/5	8/14	
		9/14	5/14		
Likeliho	Likelihood Table		ay		
LINGIIIIO			no		
Windy	true	0,33	0,60	0,43	
vviilay	false	0,67	0,40	0,57	
		0,64	0,36		

Klassifikation

Neuer Datensatz kommt rein:

```
x_1 \dots Outlook = rainy, x_2 \dots Temp = mild, x_3 \dots Humidity = normal, x_4 \dots Windy = true
```

Klassifikation?

Naïve Bayes

Likelihood:
$$P(c|X) = P(x_1|c) * P(x_2|c) * \cdots * P(x_n|c) * P(c)$$

Normalisiert ergibt sich die Wahrscheinlichkeit

$$P(c|X) = \frac{P(c) * \prod_{i=0}^{n} P(x_i|c)}{P(X)}$$

Naïve Bayes

 $x_1 \dots Outlook = rainy, x_2 \dots Temp = mild, x_3 \dots Humidity = normal, x_4 \dots Windy = true$

$$P(yes|X) = \frac{P(x_1|yes) * P(x_2|yes) * P(x_3|yes) * P(x_4|yes) * P(yes)}{P(X)} = \frac{\frac{3}{9} * \frac{4}{9} * \frac{6}{9} * \frac{2}{9} * \frac{9}{14}}{\left(\frac{3}{9} * \frac{4}{9} * \frac{6}{9} * \frac{3}{9} * \frac{9}{14}\right) + \left(\frac{2}{5} * \frac{2}{5} * \frac{1}{5} * \frac{3}{5} * \frac{5}{14}\right)}$$

$$= 0.67$$
yes

$$P(no|X) = \frac{P(x_1|no) * P(x_2|no) * P(x_3|no) * P(x_4|no) * P(no)}{P(X)} = \frac{\frac{2}{5} * \frac{2}{5} * \frac{1}{5} * \frac{3}{5} * \frac{5}{14}}{\left(\frac{3}{9} * \frac{4}{9} * \frac{6}{9} * \frac{3}{9} * \frac{9}{14}\right) + \left(\frac{2}{5} * \frac{2}{5} * \frac{1}{5} * \frac{3}{5} * \frac{5}{14}\right)} = 0.33$$

Numerical Values

- Diskretisieren
 - 1R (Attribut nach values sortieren, bei jedem Klassenwechsel neuer Range)
 64 65 68 69 70 71 72 72 75 75 80 81 83 85

yes no yes yes yes no no yes yes yes no yes yes no 66.5<x<70.5

- Optional auch mit Mindestgröße (z.B. 2)
- Equal-width binning, equal-frequency binning, proportional kinterval discretization (unsupervised)
- Entropy-based discretization (+with MDL stopping) (supervised)
- Error-based discretization

Numeric Values in Naïve Bayes

- Wir gehen von einer Normalverteilung oder Gauß'schen Verteilung aus
- Probability density function:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} * e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

$$x \dots zu \ testender \ Wert$$

 σ ... Standardabweichung

μ ... Mittelwert

Beispiel:

$$f(temp = 66|yes) = \frac{1}{6.2 * \sqrt{2\pi}} * e^{-\frac{(66-73)^2}{2*6,2^2}} = 0,034$$

$$f(temp = 66|no) = \frac{1}{7.9 * \sqrt{2\pi}} * e^{-\frac{(66-74.6)^2}{2*7.9^2}} = 0,0279$$

$$P(temp = 66|yes) = \frac{0,034}{0,034 + 0,0279} = 0,549$$

$$P(temp = 66|no) = \frac{0,0279}{0.034 + 0.0279} = 0,451$$

Numeric Values in Naïve Bayes

 Die probalitiy density function kann im Naïve Bayes Classifier verwendet werden

 $x_1 \dots Outlook = rainy, x_2 \dots Temp = 66, x_3 \dots Humidity = normal, x_4 \dots Windy = true$

$$P(yes|X) = \frac{\frac{2}{9} * 0.034 * \frac{6}{9} * \frac{3}{9} * \frac{9}{14}}{\left(\frac{2}{9} * 0.034 * \frac{6}{9} * \frac{3}{9} * \frac{9}{14}\right) + (\frac{3}{5} * 0.0279 * \frac{1}{5} * \frac{3}{5} * \frac{5}{14})} = 0,6$$

$$P(no|X) = \frac{\frac{3}{5} * 0,0279 * \frac{1}{5} * \frac{3}{5} * \frac{5}{14}}{\left(\frac{2}{9} * 0,034 * \frac{6}{9} * \frac{3}{9} * \frac{9}{14}\right) + \left(\frac{3}{5} * 0,0279 * \frac{1}{5} * \frac{3}{5} * \frac{5}{14}\right)} = 0,4$$

Multinominal Naïve Bayes Document Classification,

- spam or ham data collection
 - spam XXXMobileMovieClub: To use your credit, click the WAP link in the next txt message or click here>> http://wap. xxxmobilemovieclub.com?n=QJKGIGHJJGCBL
 - ham I HAVE A DATE ON SUNDAY WITH WILL!!
- Wörter, die darin vorkommen, klassifizieren die Dokumente (Binär: kommt vor, kommt nicht vor)
- Mehrfachvorkommen sind auch ein interessantes Attribut
- Multinominal Naïve Bayes

Multinominal Naïve Bayes

Document Classification

 $n \dots Anzahl\ der\ Vorkommen\ eines\ Wortes\ einer\ Instanz$ $N = n_1 + n_2 + \dots + n_k$ $P_1, P_2, \dots, P_k \quad Wahrscheinlichkeiten, dass\ ein\ Wort\ i\ in\ einer$ $Instanz\ der\ Klasse\ c\ vorkommt$

$$P(x|c) = N! * \prod_{i=1}^{k} \frac{P_i^{n_i}}{n_i!}$$

Multinominal Naïve Bayes

Document Classification

Beispiel:

2 Wörter (credit, date), $P_1(credit, spam) = 75\%, P_2(date, spam) \\ = 25\%, 1 \ neu \ zu \ klassifizierende \ Instanz \ \{date, credit, date\}, \\ Länge \ N = 3$

$$P(\{credit, credit\} | spam) = 3! * \frac{0.75^{3}}{3!} * \frac{0.25^{0}}{0!} = \frac{27}{64} = 0.42$$

$$P(\{credit, credit, date\} | spam) = 3! * \frac{0.75^{2}}{2!} * \frac{0.25^{1}}{1!} = \frac{27}{64} = 0.42$$

$$P(\{credit, date, date\} | spam) = 3! * \frac{0.75^{1}}{1!} * \frac{0.25^{2}}{2!} = \frac{9}{64} = 0.14$$

$$P(\{date, date, date\} | spam) = 3! * \frac{0.75^{0}}{0!} * \frac{0.25^{3}}{0!} = \frac{1}{64} = 0.016$$