Lotka-Volterra a 3 specie

Simone Brusatin

Introduzione

Consideriamo un modello di Lotka-Volterra a 3 specie. La specie N_1 sarà una preda assoluta, la specie N_3 sarà predatore assoluto, mentre la specie N_2 sarà preda di N_3 e predatore di N_1 . Otteniamo il sistema:

$$\begin{cases} \frac{d}{dt}N_1 = \epsilon_1 N_1 - \gamma_{12} N_1 N_2 - \gamma_{13} N_1 N_3 \\ \frac{d}{dt}N_2 = \epsilon_2 N_2 + \gamma_{21} N_2 N_1 - \gamma_{23} N_2 N_3 \\ \frac{d}{dt}N_3 = \epsilon_3 N_3 + \gamma_{31} N_3 N_1 + \gamma_{32} N_3 N_2 \end{cases}$$

Dove ϵ_i sono i tassi di crescita e $\gamma_{j,k} > 0$ i tassi di incontro In particolare supporremo che le popolazioni delle specie predatorie, se prese isolate, diminuiscano: $\epsilon_2, \epsilon_3 < 0$, mentre la specie preda cresce: $\epsilon_1 > 0$.

Equilibri

Per comodità riscriaviamo il sistema come

$$\begin{cases} \frac{d}{dt}N_1 = N_1(\epsilon_1 - \gamma_{12}N_2 - \gamma_{13}N_3) \\ \frac{d}{dt}N_2 = N_2(\epsilon_2 + \gamma_{21}N_1 - \gamma_{23}N_3) \\ \frac{d}{dt}N_3 = N_3(\epsilon_3 + \gamma_{31}N_1 + \gamma_{32}N_2) \end{cases}$$

Troviamo gli equilibri del sistema: Abbiamo il punto di equilibrio banale:

$$x_e^0 = (0, 0, 0)$$

Nel caso $N_1=0$ ho l'equilibrio:

$$x_e^1 = \left(0, -\frac{\epsilon_3}{\gamma_{32}}, \frac{\epsilon_2}{\gamma_{23}}\right)$$

Nel caso $N_2 = 0$ ho l'equilibrio:

$$x_e^2 = \left(-\frac{\epsilon_3}{\gamma_{31}}, 0, \frac{\epsilon_1}{\gamma_{13}}\right)$$

Nel caso $N_3 = 0$ ho l'equilibrio:

$$x_e^3 = \left(-\frac{\epsilon_2}{\gamma_{21}}, \frac{\epsilon_1}{\gamma_{12}}, 0\right)$$

Notiamo che il punto x_e^1 è da escludere in quanto la terza componente è negativa $(\epsilon_2 < 0)$, e non possiamo considerare le popolazioni negative.

Consideriamo adesso il caso $N \neq 0$, dove $N = (N_1, N_2, N_3)^T$ devo risolvere il sistema:

$$\begin{cases} \epsilon_1 - \gamma_{12} N_2 - \gamma_{13} N_3 = 0 \\ \epsilon_2 + \gamma_{21} N_1 - \gamma_{23} N_3 = 0 \\ \epsilon_3 + \gamma_{31} N_1 + \gamma_{32} N_2 = 0 \end{cases}$$

in forma matriciale: $AN = -\epsilon$ dove

$$\epsilon = (\epsilon_1, \epsilon_2, \epsilon_3)^T \text{ e } A = \begin{pmatrix} 0 & -\gamma_{12} & -\gamma_{13} \\ \gamma_{21} & 0 & -\gamma_{23} \\ \gamma_{31} & \gamma_{32} & 0 \end{pmatrix}$$

Per il teorema di Cramer:

$$AN = -\epsilon$$
 ha una sola soluzione $\Leftrightarrow det(A) = \gamma_{12}\gamma_{23}\gamma_{31} - \gamma_{21}\gamma_{32}\gamma_{13} \neq 0$

Studiamo questo caso. Il teorema ci fornisce tale soluzione: $N_j = \frac{det(A_j)}{det(A)}$ da cui otteniamo l'equilibrio

$$x_e^* = \frac{-1}{\det(A)} \Big(\epsilon_1 \gamma_{23} \gamma_{32} - \epsilon_2 \gamma_{13} \gamma_{32} + \epsilon_3 \gamma_{12} \gamma_{23}, -\epsilon_1 \gamma_{23} \gamma_{31} + \epsilon_2 \gamma_{13} \gamma_{31} - \epsilon_3 \gamma_{13} \gamma_{21}, \epsilon_1 \gamma_{21} \gamma_{32} - \epsilon_2 \gamma_{31} \gamma_{12} + \epsilon_3 \gamma_{12} \gamma_{21} \Big)$$

Quest'ultimo affinché sia ammissibile deve trovarsi nel primo ottante e andrà dunque valutato caso a caso. E' interessante osservare che nel caso che x_e^* non sia amissibile, una specie è destinata ad estinguersi.

Analizziamo ora il caso in cui il determinante della matrice dei coefficente si annulli. Con operazioni elementari sulle righe ottengo il sistema:

$$\begin{pmatrix} \gamma_{21} & 0 & -\gamma_{23} \\ 0 & -\gamma_{12} & -\gamma_{13} \\ 0 & 0 & \frac{\gamma_{12}\gamma_{23}\gamma_{31} - \gamma_{13}\gamma_{32}\gamma_{21}}{\gamma_{21}\gamma_{12}} \end{pmatrix} \cdot N = \begin{pmatrix} -\epsilon_2 \\ -\epsilon_1 \\ -\epsilon_3 + \frac{\gamma_{31}}{\gamma_{21}}\epsilon_2 - \frac{\gamma_{32}}{\gamma_{12}}\epsilon_1 \end{pmatrix}$$

Ma dato che $det(A) = \gamma_{12}\gamma_{23}\gamma_{31} - \gamma_{21}\gamma_{32}\gamma_{13} = 0$ il sistema ha soluzioni sse

$$-\epsilon_3 + \frac{\gamma_{31}}{\gamma_{21}}\epsilon_2 - \frac{\gamma_{32}}{\gamma_{12}}\epsilon_1 = 0 \tag{1}$$

date da

$$\left(\frac{-\epsilon_2 + \gamma_{23}N_3}{\gamma_{21}}, \frac{\epsilon_1 - \gamma_{13}N_3}{\gamma_{12}}, N_3\right)$$

Spazio delle fasi

Studiamo le orbite.

Nel caso in cui una specie va estinguendosi, da un certo tempo T in poi il modello risulterà un modello di Lotka-Volterra classico, senza la specie estinta. La curva "intera" non è chiusa, ma se considerata da T in poi lo è. Prima del

tempo T le orbite discenderanno verso la curva chiusa del modello classico.

Se ci troviamo nel caso in cui il determinante della matrice dei tassi d'incontro è nullo, ed è rispettata a condizione (1), le orbite sono curve chiuse.

Nella prima figura vediamo l'orbita nel caso di coesistenza tra le specie, nella seconda vediamo il caso di estinzione di una specie.

Esempi

Vediamo qualche modello.

Estinzione determinata dai tassi

Con i valori

$$\begin{array}{lll} \epsilon_1 = 1/8 & \gamma_{12} = 1/250 & \gamma_{13} = 1/400 \\ \epsilon_2 = -1/8 & \gamma_{21} = 1/100 & \gamma_{23} = 1/200 \\ \epsilon_3 = -1/6 & \gamma_{31} = 1/200 & \gamma_{32} = 1/200 \end{array}$$

In questo caso ho come punti di equilibrio:

$$x_e^2 = \left(\frac{100}{3}, 0, 50\right) e x_e^3 = \left(\frac{25}{2}, \frac{125}{4}, 0\right)$$

Qui l'equilibrio x_e^* ha una componente negativa, dunque non è accetabile. Il punto x_e^3 non è stabile, mentre x_e^2 sì. Dunque la specie ad estinguersi sarà N_2 , la specie mista.

Utilizzando invece i valori

$$\begin{array}{lll} \epsilon_1 = 1/8 & \gamma_{12} = 1/250 & \gamma_{13} = 1/400 \\ \epsilon_2 = -1/8 & \gamma_{21} = 1/100 & \gamma_{23} = 1/200 \\ \epsilon_3 = -1/6 & \gamma_{31} = 1/400 & \gamma_{32} = 1/300 \end{array}$$

Otteniamo come equlibri i punti:

$$x_e^2 = \left(\frac{200}{3}, 0, 50\right)$$
e $x_e^3 = \left(\frac{25}{2}, \frac{125}{4}, 0\right)$

Qui x_e^3 è stabile mentre x_e^2 no. Dunque ad estinguersi sarà la specie N_3 , quella super-predatoria. Anche in questo caso x_e^* non è ammissibile in quanto ha una componente negativa.

Estinzione determinata dalle popolazioni

E' interessante osservare che l'estinzione delle specie non dipende solo dai tassi ma anche dalle dimensioni delle popolazioni. Ad esempio considerando i valori dei tassi dati dalla tabella:

$$\begin{array}{lll} \epsilon_1 = 1/2 & \gamma_{12} = 1/100 & \gamma_{13} = 1/150 \\ \epsilon_2 = -1/20 & \gamma_{21} = 1/250 & \gamma_{23} = 1/100 \\ \epsilon_3 = -1/2 & \gamma_{31} = 1/150 & \gamma_{32} = 1/200 \end{array}$$

Ho gli equilibri, entrambi stabili:

$$x_e^2 = \left(75, 0, 75\right) e x_e^3 = \left(\frac{25}{2}, 50, 0\right)$$

Qui l'equilibrio x_e^* è ammissibile. !!!!!!!! Ed è un punto di sella A determinare quale specie saranno dunque le popolazioni/dati iniziali. Ad esempio con

$$N_1 = 40, N_2 = 50, N_3 = 20 \text{ e } N_1 = 60, N_2 = 80, N_3 = 15$$

Ho che ad estinguersi saranno rispettivamente la seconda e la terza specie.

Equilibri infiniti

Vediamo un esempio dove le specie coesistono: ovvero la matrice dei coefficienti γ_{ij} deve avere determinante nullo, per esempio con una matrice antisimmetrica, e i valori ϵ_i devono rispettare (1). Ad esempio possiamo usare i valori

$$\begin{array}{lll} \epsilon_1 = 1/4 & \gamma_{12} = 1/200 & \gamma_{13} = 1/200 \\ \epsilon_2 = -1/4 & \gamma_{21} = 1/200 & \gamma_{23} = 1/200 \\ \epsilon_3 = -1/2 & \gamma_{31} = 1/200 & \gamma_{32} = 1/200 \end{array}$$

Notiamo che modificando, anche leggermente, si devolve a uno dei casi precedenti.

Bibliografia

- S. Hsu, S. Ruan e T. Yang: "Analysis of three species Lotka–Volterra food web models with omnivory"
- G. Tondo: "Appunti delle lezioni 2021-2022"
- S. Artioli: "Dinamica delle popolazioni: modelli deterministici di Lotka-Volterra"