

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CANDIDATE NAME		
CENTRE NUMBER	CANDIDATE NUMBER	

739394346

PHYSICS 0625/22

Paper 2 Core May/June 2011

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

You may lose marks if you do not show your working or if you do not use appropriate units. Take the weight of 1 kg to be 10 N (i.e. acceleration of free fall = $10 \,\text{m/s}^2$).

The number of marks is given in brackets [] at the end of each question or part question.

1 hour 15 minutes

1 The volume of a stone is to be found using the equipment illustrated in Fig. 1.1.

Fig. 1.1

The following five steps are intended to describe how the volume of the stone is found.

Complete the sentences by adding appropriate words.

(a)	Pour some into the measuring cylinder.	[1]
(b)	Take the reading of the from the scale on the measuring cylinde	r. [1]
(c)	Carefully put into the measuring cylinder.	[1]
(d)	Take the new reading of the from the scale on the measuring cylin	der. [1]
(e)	Calculate the volume of the stone by	
		. [2]
	[Tota	al: 6]

Energy may be transferred from one place to another by means of conduction, cradiation.	convection or
Which process is involved when energy is transferred through	
(a) a solid,	[1]
(b) a liquid, and	[2]
(c) a vacuum?	[1]
	[Total: 4]
Solar panels are fitted to the roof of a house.	
Describe briefly what they do.	
	[3]
	[Total: 3]
	radiation. Which process is involved when energy is transferred through (a) a solid, (b) a liquid, and (c) a vacuum? Solar panels are fitted to the roof of a house. Describe briefly what they do.

4 Fig. 4.1 shows how the speed of an object varies during a period of 30 s.

Fig. 4.1

- (a) State the speed of the object
 - (i) at the start of the 30s,

(ii) at the end of the 30 s.

(b) Describe what is happening to the speed during the period

(ii) 10s – 25s,

(c)	Determine the distance travelled in the last 5 s.
	distance = m [3]
(d)	The total distance travelled in the 30 s is 750 m.
	Calculate the average speed of the object during the 30 s.
	average speed = m/s [3]
	[Total: 11]

5 (a) Fig. 5.1 shows a girl looking at her reflection in a mirror on the wall. The reflecting surface of the mirror is the surface in contact with the wall.

Fig. 5.1

On Fig. 5.1,

- (i) put a small X where the image of the girl's eye is positioned, [2]
- (ii) carefully draw lines to find the lowest part of her body that she can see reflected in the mirror. Mark clearly the portion of her body that she cannot see. [3]

(b) A helicopter is hovering over a harbour. The pilot can see the waves arriving from out at sea. The waves hit the harbour wall at an angle, as shown in Fig. 5.2.

Fig. 5.2

The waves are reflected when they hit the harbour wall.

Carefully complete Fig. 5.2 to show the reflected parts of the first two waves to hit the wall.

[3]

[Total: 8]

5	(a)	The	e temperature of a block of iron is increased.
		Sta	te what happens to
		(i)	the energy of the atoms due to their vibrations,
			[1]
		(ii)	the average separation of the atoms,
			[1]
		(iii)	the density of the iron.
		(,	the density of the front.
			[1]
	(b)		en concrete roads are made, the concrete is laid in sections, with gaps between the tions. The gaps are then filled with a soft material, called pitch. This is shown in Fig. 6.1.
			concrete
			Fig. 6.1
		Sug	gest why the concrete is laid in sections like this.
			[2]

[Total: 5]

7	(a)	Stat	te what an electric current consists of.
	(b)	(i)	What name do we give to materials in which it is easy to create an electric current?
		(ii)	State one example of such a material. [2]
	(c)	(i)	What name do we give to materials in which it is difficult to create an electric current?
		(ii)	State one example of such a material. [2]
			[2]
			[Total: 6]

8 The components in Fig. 8.1 are connected in a circuit.

Fig. 8.1

(a)	Com	plete	the	following	sentence
-----	-----	-------	-----	-----------	----------

The components in the circuit of Fig. 8.1 are connected in with each other.

- **(b)** On Fig. 8.1, draw
 - (i) an arrow to show the direction of the conventional current in the circuit,
 - (ii) a voltmeter connected to measure the potential difference across R. [2]
- **(c) (i)** State the name of the component represented by this symbol:

.....

(ii) What is the purpose of this component in the circuit?

(d)													
	(i)			-		tom amme	ter.						
	(ii)	Calcula	te the	resistai	nce of	R.							
						res	istance	e =					
(e)	A pie	ece of lo	w resi	stance	wire is	carelessly	allowe	ed to d	connec	t P and	Q.		
	State	e which	compo	onent c	ould be	e damaged	when	this h	appens	S.			
												_	
(a)	State	e two ac	lvantad	ges tha	t electi	romagnets	have, o	compa	ared wi	th pern	nanent r		
(a)						romagnets				-		magnet	S.
(a)						romagnets				-		magnet	S.
(a)	1					-						magnet	S.
	1 2 Tick		x in e	ach of								magnet	
(b)	1 2 Tick stron	one bongest elector	x in e	ach of		olumns bel	ow, to				uld be u	magnets	s.
(b)	1 2 Tick stron	one bo	x in e	ach of		olumns bel	ow, to				uld be u	magnets	s.
(b)	1 2 Tick stron	one bongest electory	x in e	ach of		olumns bel	ow, to				uld be u	magnets	s.
(b)	1 2 Tick stron	one bongest electrons 1 column 1 coil	x in e	ach of		colum type of	ow, to				colum	magnets	s.
(b)	1 Z Tick stron	one bongest electory column 1 er of turn coil turns	x in e	ach of		colum type of	ow, to				colum curre	magnets	s.

[Total: 4]

10

A s	portsman is feared to have broken a leg, and is taken to hospital to have his leg X-rayed.
(a)	Complete the following sentence about X-rays.
	X-rays are a form of radiation that have
	very wavelengths. [2]
(b)	In the hospital, what is used to detect the X-rays and produce an image of the bones of the leg?
	[1]
(c)	Describe the properties of X-rays that enable an image to be produced, which distinguishes between bones and flesh.
	[2]
(d)	State one precaution taken by the technicians who operate the X-ray machines.
	[1]
	[Total: 6]

[Total: 9]

11 Fig. 11.1 shows a tube for producing cathode rays, connected to two voltage supplies and switches.

Fig. 11.1

(a)	Whi	ich switch has to be closed in order to make the filament release electrons?
(b)		Explain why closing the switch in (a) makes the filament release electrons.
	(ii)	What name do we give to this means of electron release?
(-)	Ctot	to and symbols what will begreen to the relegand electrons when both switches are closed
(c)		te and explain what will happen to the released electrons when both switches are closed.
		[3]

12 A radioactive source, which emits beta-particles, is used as shown in Fig. 12.1 to detect whether cartons on a conveyor belt have the required volume of pineapple juice in them.

Fig. 12.1

(a)	State wny an aipna-e	Ū		this application.
				[1]
(b)	State why a gamma-	emitting source would	I not be suitable for	this application.
				[1]
(c)	The factory has a cho	oice of two beta-emitt		
		source	half-life	
		barium-139	85 minutes	
		strontium-90	28 years	
	State, giving your rea	sons, which of these s	sources is the most	suitable for this application.

.....[2]

(d) The equipment is set to give a reading of 200 counts/s when there is a carton with the correct amount of pineapple juice between the source and the detector.

Tick the appropriate boxes to indicate what reading would be expected in each situation.

	reading				
	more than 200 counts/s	200 counts/s	less than 200 counts/s		
carton containing too little juice					
carton containing too much juice					
no carton at all					

[3]

[Total: 7]

16

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.