

Mark Scheme (Results)

January 2020

Pearson Edexcel International A Level in Statistics S2 (WST02) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2020
Publications Code WST02_01_MS_2001*
All the material in this publication is copyright
© Pearson Education Ltd 2020

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. Ignore wrong working or incorrect statements following a correct answer.

Question Number	Scheme			ırks	
1 (a)	$P(H=6) = \frac{e^{-4}4^6}{6!}$ or $P(H \le 6) - P(H \le 5) = 0.8893 - 0.7851$				
		= 0.10419 $= 0.1042$ awrt <u>0.104</u>	A1		
(1.)	$J \sim Po(8)$	2)	D1	(2)	
(b)	`	$-P(J \le 2) = 0.4530 - 0.0138$	B1 M1		
	1 (3 = 7)	= 0.4392 awrt 0.439	A1		
		0.1372	711	(3)	
(c)	$K \sim N(2)$	· · · · · · · · · · · · · · · · · · ·	M1		
	P(K > 3)	$0) \approx P\left(Z > \frac{30.5 - 28}{\sqrt{28}}\right)$	M1M	11A1	
		= P(Z > 0.4724)			
		=1-0.6808			
		$= 0.3192 \text{ (calc } 0.3183)$ awrt $\underline{0.319/0.318}$	A1	(5)	
(d)(i)	The p(ro	bability)/0.97 is not small oe	B1	(5)	
	1			(1)	
(ii)	$L \sim \text{Po}(3)$	·	B1		
	$P(L \le 4)$	= 0.8153 awrt <u>0.815</u>	M1A		
		Notes	Tota	(3) al 14	
		Correct answers imply all marks in each part of this question.	100		
1(a)	M1	Allow any value for lambda $\frac{e^{-\lambda}\lambda^6}{6!}$ or $P(H \le 6) - P(H \le 5)$			
	A1	6! awrt 0.104			
(1.)		Writing Po(8). This may be implied by a correct answer or sight of awrt 0.453	or aw	rt	
(b)	B 1	0.0138 or awrt 0.0424 or awrt 0.313			
	M1	$P(J \le 7) - P(J \le 2)$ oe or (awrt 0.453 – awrt 0.0138)			
	A1 awrt 0.439 Using normal approximation with mean = variance = 28 (May be seen in standard)				
(c)	M1	which takes priority) or writing N(28,28)	darais		
		$\pm \left(\frac{30.5 \text{ or } 30 \text{ or } 29.5 - \text{ their mean}}{\text{their sd}}\right)$			
	M1	their sd			
		If they have not given a mean and a variance, they must be correct here.			
	M1 Writing or using a continuity correction 30±0.5 A1 Correct standardisation with 30.5 or awrt 0.47				
	A1 Correct standardisation with 30.5 or awrt 0.47 A1 awrt 0.319/0.318				
	B1	Probability is not small (too large). Allow mean ≠ variance.			
(d)(i)		Do not allow e.g. 'np too large/ $np > 10$ ' on its own.			
		Ignore extraneous non-contradictory comments.			
(ii)	B1	Writing or using Po(3)			
	M1	Writing or using $P(L \le 4)$ oe			
	A1	awrt 0.815			

Question		Scheme		Marks	
2(a)		$E \sim B(6, 0.35)$			
(i)	$P(E = 2) = P(E \le 2) - P(E \le 1)$ or $\binom{6}{2} \cdot 0.35^2 \cdot (1 - 0.35)^4$			M1	
	= 0.	6471-0.3191			
	= 0.3	328	awrt 0.328	A1	
(ii)	$P(E \ge 4)$	$=1-P(E \le 3) \text{ or } 1-0.8826$		M1	
		= 0.1174	awrt 0.117	A1	
2.					
(b)		$0.35 H_1: p > 0.35$		B1	
	$L \sim B(5)$		≥ 24) = 0.0396	M1	
			≥ 23) = 0.071		
			R L≥24	A1	
		o or Significant or 25 does lie in the critical region	4° / 1 C	dM1	
		evidence to support Kiyoshi's belief on <u>or</u> that the	proportion/number oe of	A1cso	
	large eg	gs has increased after adding the supplement		(5)	
(c)	Expected	l profit before supplement = "0.1174"×1.20	+(1-"0.1174")×0.60	M1	
(=)	T	= (£)0.67044		1,1,1	
	$P(X \ge 4$) = 0.2553	awrt 0.255	B1	
	Expected	I profit per box after supplement = "0.2553" \times 1.20+(1-"0.2533")×0.60-"0.67044"	M1	
	= (£)0.08274				
	OR Expected profit per box after supplement = " 0.2553 "× $1.20 + (1 - 0.2553$ ")× $0.60 - 0.10$				
	=(£)0.65318				
	Kiyoshi should not continue to add the supplement (as $0.0827 < 0.10$ or $0.653 < 0.67[0]$)			A1cso	
				(5)	
		Notes		Total 15	
2(a)	B1	Using or writing B(6,0.35) in either part			
(i)	M1	(6-1)4			
(1)					
(i)			$(C_2)0.35(1-0.35)$ oe		
(ii)	A1 M1	Using or writing $P(E \le 2) - P(E \le 1)$ oe or writing (awrt 0.328 Either writing or using $P(E \ge 4)$ or $1 - P(E \le 3)$ or $P(E \le 3)$		oe	
	A1	awrt 0.328 Either writing or using $P(E \ge 4)$ or $1 - P(E \le 3)$ or F awrt 0.117 (Correct answers imply all previous	P(E=4) + P(E=5) + P(E=6)	oe	
	A1 M1 A1 B1	awrt 0.328 Either writing or using $P(E \ge 4)$ or $1 - P(E \le 3)$ or F awrt 0.117 (Correct answers imply all previous Both hypotheses correct with p or π	P(E=4) + P(E=5) + P(E=6)	oe	
(ii)	A1 M1 A1	awrt 0.328 Either writing or using $P(E \ge 4)$ or $1 - P(E \le 3)$ or Eawrt 0.117 (Correct answers imply all previor Both hypotheses correct with p or π Writing or using $L \sim B(50, 0.35)$ and $1 - P(L \le 24)$	P(E = 4) + P(E = 5) + P(E = 6) of us marks in part (a))	oe	
(ii)	A1 M1 A1 B1	awrt 0.328 Either writing or using $P(E \ge 4)$ or $1 - P(E \le 3)$ or F awrt 0.117 (Correct answers imply all previor Both hypotheses correct with p or π Writing or using $L \sim B(50, 0.35)$ and $1 - P(L \le 24)$ or writing $P(L \ge 24) = 0.0396$ or $P(L \ge 23) = 0.071$ I	P(E=4) + P(E=5) + P(E=6) as marks in part (a))		
(ii)	A1 M1 A1 B1 M1	awrt 0.328 Either writing or using $P(E \ge 4)$ or $1 - P(E \le 3)$ or F awrt 0.117 (Correct answers imply all previor Both hypotheses correct with p or π Writing or using $L \sim B(50, 0.35)$ and $1 - P(L \le 24)$ or writing $P(L \ge 24) = 0.0396$ or $P(L \ge 23) = 0.071$ I Condone use of normal approx $M \sim N(17.5, \text{ awrt } 11.4)$	P(E=4) + P(E=5) + P(E=6) as marks in part (a))		
(ii)	A1 M1 A1 B1 M1	awrt 0.328 Either writing or using $P(E \ge 4)$ or $1 - P(E \le 3)$ or $E = 1$ awrt 0.117 (Correct answers imply all previor Both hypotheses correct with $E = 1$ or $E = 1$ writing or using $E = 1$ and $E = 1$ and $E = 1$ or writing $E = 1$ awrt 0.0396 or $E = 1$ or $E = 1$ Condone use of normal approx $E = 1$ awrt 0.0207 or $E = 1$ allow any letter	P(E = 4) + P(E = 5) + P(E = 6) as marks in part (a)) eading to a CR. and $1 - P(M < 24.5)$ for the M		
(ii)	A1 M1 A1 B1 M1	awrt 0.328 Either writing or using $P(E \ge 4)$ or $1-P(E \le 3)$ or E awrt 0.117 (Correct answers imply all previous Both hypotheses correct with P or T Writing or using $L \sim B(50, 0.35)$ and $1-P(L \le 24)$ or writing $P(L \ge 24) = 0.0396$ or $P(L \ge 23) = 0.071$ Condone use of normal approx $M \sim N(17.5)$, awrt 11.4) awrt 0.0207 or $L \ge 24$ allow any letter dep on previous E being awarded for a correct statem of their probability or E Do not allow contradicting	eading to a CR. and $1 - P(M < 24.5)$ for the M ent (condone Accept H ₁) g non-contextual comments.		
(ii)	A1 M1 A1 B1 M1	awrt 0.328 Either writing or using $P(E \ge 4)$ or $1-P(E \le 3)$ or E awrt 0.117 (Correct answers imply all previous Both hypotheses correct with P or T Writing or using $L \sim B(50, 0.35)$ and $1-P(L \le 24)$ or writing $P(L \ge 24) = 0.0396$ or $P(L \ge 23) = 0.071$ Condone use of normal approx $M \sim N(17.5)$, awrt 11.4) awrt 0.0207 or $L \ge 24$ allow any letter dep on previous E being awarded for a correct statem of their probability or E Do not allow contradicting All previous marks must be awarded. A correct statem	eading to a CR. and $1 - P(M < 24.5)$ for the M ent (condone Accept H ₁) g non-contextual comments.		
(ii) (b)	A1 M1 A1 B1 M1 A1 dM1	awrt 0.328 Either writing or using $P(E \ge 4)$ or $1-P(E \le 3)$ or E awrt 0.117 (Correct answers imply all previous Both hypotheses correct with p or π Writing or using $L \sim B(50, 0.35)$ and $1-P(L \le 24)$ or writing $P(L \ge 24) = 0.0396$ or $P(L \ge 23) = 0.071$ Condone use of normal approx $M \sim N(17.5, \text{ awrt } 11.4)$ awrt 0.0207 or $L \ge 24$ allow any letter depon previous $E = 1.000$ being awarded for a correct statem of their probability or $E = 1.000$ not allow contradicting All previous marks must be awarded. A correct statem $E = 1.000$ NB award M1A1 for a correct contribution.	eading to a CR. and $1 - P(M < 24.5)$ for the M ent (condone Accept H ₁) ag non-contextual comments. ent in context. extual statement on its own.	1	
(ii)	A1 M1 A1 B1 M1	awrt 0.328 Either writing or using $P(E \ge 4)$ or $1-P(E \le 3)$ or E awrt 0.117 (Correct answers imply all previous Both hypotheses correct with P or T Writing or using $L \sim B(50, 0.35)$ and $1-P(L \le 24)$ or writing $P(L \ge 24) = 0.0396$ or $P(L \ge 23) = 0.071$ Condone use of normal approx $M \sim N(17.5)$, awrt 11.4) awrt 0.0207 or $L \ge 24$ allow any letter dep on previous E being awarded for a correct statem of their probability or E Do not allow contradicting All previous marks must be awarded. A correct statem	eading to a CR. and $1 - P(M < 24.5)$ for the M ent (condone Accept H ₁) ag non-contextual comments. ent in context. extual statement on its own.	1	
(ii) (b)	A1 M1 A1 B1 M1 A1 dM1 A1cso Note:	awrt 0.328 Either writing or using $P(E \ge 4)$ or $1 - P(E \le 3)$ or $E = 1$ awrt 0.117 (Correct answers imply all previous Both hypotheses correct with $E = 1$ or $E = 1$ writing or using $E = 1$ and $E = 1$ and $E = 1$ or writing $E = 1$ and $E = 1$ and $E = 1$ or writing $E = 1$ and $E = 1$ awrt 0.0207 or $E = 1$ allow any letter depon previous marks must be awarded. A correct statem Need bold words. NB award M1A1 for a correct content Some candidates may multiply by $E = 1$ or an integer so allow contradicting and $E = 1$ and $E = 1$ and $E = 1$ and $E = 1$ are the second previous marks must be awarded. A correct statem Need bold words. NB award M1A1 for a correct content Some candidates may multiply by $E = 1$ or an integer so allow contradicting the second previous marks must be awarded.	eading to a CR. and $1 - P(M < 24.5)$ for the M ent (condone Accept H ₁) ag non-contextual comments. ent in context. extual statement on its own.	1	
(ii) (b) (c) Allow £ or pence	A1 M1 A1 B1 M1 A1 dM1 A1cso Note: M1 B1	awrt 0.328 Either writing or using $P(E \ge 4)$ or $1-P(E \le 3)$ or E awrt 0.117 (Correct answers imply all previous Both hypotheses correct with P or T Writing or using $L \sim B(50, 0.35)$ and $1-P(L \le 24)$ or writing $P(L \ge 24) = 0.0396$ or $P(L \ge 23) = 0.071$ Condone use of normal approx $M \sim N(17.5)$, awrt 11.4) awrt 0.0207 or $L \ge 24$ allow any letter dep on previous E being awarded for a correct statem of their probability or E Do not allow contradicting All previous marks must be awarded. A correct statem E Need bold words. E NB award M1A1 for a correct contradiction E Some candidates may multiply by E or an integer so a "their (ii) ×1.20 + (1-"their(ii)") × 0.60	eading to a CR. and $1 - P(M < 24.5)$ for the M ent (condone Accept H ₁) g non-contextual comments. ent in context. extual statement on its own. llow these multiples throughou	1 t.	
(ii) (b) (c) Allow £ or pence in part	A1 M1 A1 B1 M1 A1 dM1 A1cso Note: M1	awrt 0.328 Either writing or using $P(E \ge 4)$ or $1-P(E \le 3)$ or E awrt 0.117 (Correct answers imply all previous Both hypotheses correct with P or T Writing or using $L \sim B(50, 0.35)$ and $1-P(L \le 24)$ or writing $P(L \ge 24) = 0.0396$ or $P(L \ge 23) = 0.071$ Condone use of normal approx $M \sim N(17.5)$, awrt 11.4) awrt 0.0207 or $L \ge 24$ allow any letter dep on previous E being awarded for a correct statem of their probability or E Do not allow contradicting All previous marks must be awarded. A correct statem Need bold words. NB award M1A1 for a correct contradiction E Some candidates may multiply by E or an integer so a "their (ii) ×1.20 + E (1-"their(ii)") × 0.60 awrt 0.255	eading to a CR. and $1 - P(M < 24.5)$ for the M ent (condone Accept H ₁) g non-contextual comments. nent in context. extual statement on its own. llow these multiples throughou $p'' \times 1.20 + (1 - "p'') \times 0.60 - 0$	1 t.	
(ii) (b) (c) Allow £ or pence	A1 M1 A1 B1 M1 A1 dM1 A1cso Note: M1 B1	awrt 0.328 Either writing or using $P(E \ge 4)$ or $1-P(E \le 3)$ or $F(E)$ awrt 0.117 (Correct answers imply all previous Both hypotheses correct with $P(E)$ or $P(E)$ writing or using $P(E)$ and $P(E)$ and $P(E)$ or writing $P(E)$ and $P(E)$ and $P(E)$ and $P(E)$ are using $P(E)$ are using $P(E)$ and $P(E)$ are using $P(E)$ are using $P(E)$ and $P(E)$ are using $P(E)$ and $P(E)$ are using $P(E)$ are using $P(E)$ and $P(E)$ are using $P(E)$ are using $P(E)$ and $P(E)$ are using $P(E)$ and $P(E)$ are using $P(E)$ are using $P(E)$ and $P(E)$ are using $P(E)$ are using $P(E)$ and $P(E)$ are using $P(E)$ and $P(E)$ are using $P(E)$ and $P(E)$ are using $P(E)$ are using $P(E)$ and $P(E)$ are using $P(E)$ are using $P(E)$ and $P(E)$ are using $P(E)$ and $P(E)$ are using $P(E)$ are using $P(E)$ and $P(E)$ are using $P(E)$ and $P(E)$ are using $P(E)$ are using $P(E)$ and $P(E)$ are using $P(E)$ are using $P(E)$ and $P(E)$ are using $P(E)$ and $P(E)$ are using $P(E)$ are using $P(E)$ and $P(E)$ are using $P(E)$ are using $P(E)$ and $P(E)$ are using $P(E)$ are using $P(E)$ are using $P(E)$ and $P(E)$ are using $P(E)$ and $P(E)$ are using $P(E)$ are using $P(E)$ and $P(E)$ are using $P(E)$ are using $P(E)$ are using $P(E)$ and $P(E)$ are using $P(E)$ are using $P(E)$ are using $P(E)$ and $P(E)$ are using $P(E$	eading to a CR. and $1 - P(M < 24.5)$ for the M ent (condone Accept H ₁) g non-contextual comments. nent in context. extual statement on its own. llow these multiples throughou $p'' \times 1.20 + (1 - "p'') \times 0.60 - 0$	1 t.	

Question Number		Scheme	Marks
3(a)	3 4		B1
			(1)
(b)	$E(T) = \frac{5}{2}$	$\frac{50+2k}{2}[=25+k]$	B1
	Var(<i>T</i>) =	$=\frac{(4k)^2}{12} \left[= \frac{4k^2}{3} \right]$	B1
	$E(T^2)=$	$\frac{4k^2}{3} + (25+k)^2$	M1
	$\frac{7k^2}{3} + 6k$	25 + 50k = 918.76	
	$7k^2 + 15$	0k - 881.28 = 0	dM1
	$k = \frac{-150 \pm x}{x}$	$\sqrt{150^2 + 4 \times 7 \times 881.28}$	dM1
	k = 4.8 o	14	A1
	<i>N</i> 1.00	e omy	(6)
(c)	P(T < 25)	$5) = \frac{1}{4}$	B1
	B(50, 0.2	25)	
	$P(X \ge 2)$	$(0) = 1 - P(X \le 19)$	M1
		=1-0.9861	
		= 0.0139 awrt 0.0139	A1
	-		(3)
		Notes	Total 10
(a)	B1	0.75 oe	
(b)	B1	$E(T) = \frac{50 + 2k}{2} [= 25 + k]$ allow equivalent unsimplified expressions	
	B1	$Var(T) = \frac{(4k)^2}{12} \left[= \frac{4k^2}{3} \right]$ allow equivalent unsimplified expressions	
	M1	Using $Var(T) + [E(T)]^2$ oe e.g. $\frac{4k^2}{3} = E(T^2) - (25 + k)^2$	
	dM1 Dependent on previous M being awarded. Substituting $E(T^2) = 918.76$, multiplying out		
	and combining like terms leading to a $3TQ = 0$		
	dM1 Dependent on previous M being awarded. A correct method for solving their quadratic – use of formula (allow one slip), completing the square, factorising.		
	- use of formula (allow one shp), completing the square, factorising. A1 Must have 4.8 oe on its own as answer (must reject $k = -26.2$ if seen)		
		4.8 on its own scores 6 out of 6.	
	ALT	For first 4 marks in (b)	
		$\int_{25-k}^{25+3k} t^2 \left(\frac{1}{4k}\right) dt = \left[\frac{t^3}{12k}\right]_{25-k}^{25+3k} \to \frac{(25+3k)^3}{12k} - \frac{(25-k)^3}{12k} = 918.76$	
		B2 for correct integral (ignore limits), M1 for attempt at integration $t^2 \rightarrow t^3$, dM1 for limits and = 918.76, then follow main scheme	r use of
(c)	B1 M1	0.25 Writing a pusing 1 P($V < 10$)	
		Writing or using $1 - P(X \le 19)$	
	A1	awrt 0.0139	

Question Number	Scheme	Marks
4(a)	$\int_{1}^{2} \frac{1}{3} dt + \int_{2}^{4} k(4t^{2} - t^{3}) dt = 1$	M1
	$\left[\frac{1}{3}t\right]_{1}^{2} + \left[k\left(\frac{4t^{3}}{3} - \frac{t^{4}}{4}\right)\right]_{2}^{4} = 1$	A1
	$\frac{1}{3} + k \left(\frac{64}{3} - \frac{20}{3} \right) = 1$ or $\frac{44}{3}k = \frac{2}{3}$ leading to $k = \frac{1}{22}$	A1cso
(b)	[f(r)]	(3)
(b)	$ \begin{bmatrix} f(t) \\ [4/11] \\ [1/3] \end{bmatrix} $	B1(shape) dB1 (labels)
	1 2 4 [t]	(2)
		(2)
(c)	$\frac{\mathrm{df}(t)}{\mathrm{d}t} = k\left(8t - 3t^2\right)$	B1
	$8t - 3t^2 = 0$	M1
	$8t - 3t^2 = 0$ $t = \frac{8}{3} \text{ only}$ $awrt 2.67$	A1
		(3)
(d)	$\int_{1}^{t} \frac{1}{3} dx = \left[\frac{x}{3}\right]_{1}^{t}$	M1
	$F(2) + \int_{2}^{t} \frac{1}{22} (4x^{2} - x^{3}) dt = \frac{1}{3} + \left[\frac{4x^{3}}{66} - \frac{x^{4}}{88} \right]_{2}^{t}$ $Or \int \frac{1}{22} (4t^{2} - t^{3}) dt = \frac{2t^{3}}{33} - \frac{t^{4}}{88} + C \text{ and } F(4) = 1$	M1
	$F(t) = \begin{cases} 0 & t < 1 \\ \frac{1}{3}t - \frac{1}{3} & 1 \le t < 2 \\ \frac{2t^3}{33} - \frac{t^4}{88} + \frac{1}{33} & 2 \le t \le 4 \\ 1 & \text{otherwise} \end{cases}$	A1 A1 A1
		(5)
(e)	P(T>3) = 1 - F(3)	
	$=1-\left[\frac{4\times3^{3}}{66}-\frac{3^{4}}{88}+\frac{1}{33}\right]$	M1
	$= \frac{67}{264} \text{ or } 0.2537$ awrt 0.254	A1
		(2)
		Total 15

		Notes				
4(a)	M1	Adding the two integrals together with correct limits and setting = 1 (may be done in stages) Allow $\frac{1}{3}$ instead of first integral				
	A1	Correct integration (again allow $\frac{1}{3}$ instead of first integration)				
	A1cso	Must have at least one line of working before the given answer and no errors				
(b)	B1 dB1	Correct shape with correct curvature Horizontal line, then quadratic (increasing then decreasing as <i>t</i> increases) starting above horizontal line and finishing on horizontal axis. The sketch is not continuous. There should be no solid vertical lines. Fully correct with 1, 2 and 4 each labelled at appropriate place on horizontal axis (Ignore				
		vertical labelling).				
		e.g. (b) (c) (d) (d) (d) (d) (e.g.) (e.g.) (d) (e.g.) (e.g.) (e.g.) (f) (h) (h) (h) (h) (h) (h) (h				
(2)						
(c)	B1	For $k(8t-3t^2)$				
	M1	Putting their differential = 0 ignore missing k				
	A1	Allow awrt 2.67 only				
(d)	M1	For $\int_{1}^{t} \frac{1}{3} dx$ with attempt to integrate. Must have correct limits. Or for integration with +C				
	M1	and use of F(1) = 0 For F(2) + $\int_2^t \frac{1}{22} (4x^2 - x^3) dx$ and attempt to integrate or				
		$\int \frac{1}{22} (4t^2 - t^3) dt = \frac{4t^3}{66} - \frac{t^4}{88} + C \text{ and using } F(4) = 1 \text{ or } F(2) = \frac{1}{3} - \text{must attempt to}$ integrate, have + C				
	A1	For 2^{nd} line of cdf oe (allow < instead of \leq and vice versa ditto > and \geq) (allow any				
		letter to be used for this A1 mark) For 3rd line of cdf oe (allow < instead of \leq and vice versa ditto > and \geq) (allow any				
	A1	letter to be used for this A1 mark)				
	A1	All correct and in terms of t including $F(t)$. Allow the otherwise to be for any of the parts but there must be only one. (allow < instead of \leq and vice versa ditto > and \geq)				
(e)	M1	Attempting to find $1 - F(3)$ with attempt to use 3^{rd} line of their $F(t)$ or $\int_{3}^{4} k(4t^2 - t^3) dt$				
	A1	Attempting to find $1 - F(3)$ with attempt to use 3^{rd} line of their $F(t)$ or $\int_3^2 k(4t^2 - t^3) dt$ $\frac{67}{264}$ oe or awrt 0.254				
	i	1				

Question Number		Scheme	Marks			
5(a)	<i>X</i> ~ Po(4)	M1			
	$P(X = 0) = 0.0183$ $P(X \ge 8) = 0.0511$					
	,	$P(X \ge 9) = 0.0214$				
1	CR X =	0 oe $X \ge 9$ oe	A1A1			
			(3)			
(b)	3.97%		B1			
(0)	3.7770		(1)			
(c)	6 is not	in the critical region – the data collected are consistent with Chri				
			(1)			
(d)	$\lambda = \frac{2n}{9}$		B1			
İ		= 0) > 0.9	M1			
	$1-e^{-\frac{2n}{9}}$	·				
ı						
	$e^{-\frac{2n}{9}} < 0$.1				
	n = 10 as	and $e^{\frac{-2n}{9}} = 0.1083$ or $-\frac{2n}{9} < \ln 0.1$	dM1			
		9				
	n = 11	$e^{-\frac{2n}{9}} = 0.08677$				
	Therefore $n = 11$		A1 cao			
	YY 4 40 YY 40 40		(4)			
(e)		10 $H_1: \lambda < 10$	B1 B1			
	$[W \sim Po(10) \ P(W \le 5) =] \ 0.0671 \ \text{or} \ CR \ W \le 4$					
	Do not reject H ₀ or insignificant or 5 does not lie in the critical region					
	There is no significant evidence that the mean number/ rate of whales has decreased.					
	nas deci	easeu.	(4)			
			Total 13			
		Notes	1			
(a)	Writing or using Po(4) (may be implied by one correct CR) A1 Both tails $X = 0$ (allow $X \le 0$) or $[18 \ge]X \ge 9$ (allow $X > 8$) Allow any letters in place of $X = 0$.					
	711	Both tails $X = 0$ oe, $[18 \ge] X \ge 9$ oe Allow any letters in place SC: $P(X = 0)$ and $P(X \ge 9)$ as final answer to score M1A1A0.	7 OI 71			
(b)	B 1	awrt 3.97% or awrt 0.0397				
(c)	B1ft	Supports this claim and correct reason. Allow a correct f.t. statemer CR	nt and reason based on their			
(d)	B 1	writing or using $\frac{2n}{9}$				
	M1	M1 May be implied by $P(Y=0) < 0.1$ (Allow = in place of <)				
	dM1	Dep on previous M mark for solving $e^{-\lambda} < 0.1$. This may be impli	ed by $n = \text{awrt } 10.4$			
		Allow for a trial of any <i>n</i> value or " $-\frac{2n}{9}$ " < $\ln 0.1$ (condone $\frac{2n}{9}$ =	2.5) (Allow = in place of <)			
	A1	11 cao (Do not allow $n \ge 11$)				
(e)	B 1	Both hypotheses with λ or μ (Allow $H_0: \lambda = 2$ $H_1: \lambda < 2$)	2)			
	B 1	awrt 0.0671 or $W \le 4$				
	M1	Correct statement – ft their probability or CR Do not allow contr	adicting non-contextual			
	1411	comments				

Question Number	Scheme			Marks	
6(a)	$E(X^2) =$	$= \int_{-1}^{1} \frac{1}{8} \left(x^4 + 2x^3 + x^2 \right) dx + \int_{1}^{\frac{11}{3}} \frac{1}{4} x^2 dx$			M1
		$= \left[\frac{1}{8} \left(\frac{x^5}{5} + \frac{2x^4}{4} + \frac{x^3}{3}\right)\right]_{-1}^{1} + \left[\frac{x^3}{12}\right]_{1}^{\frac{11}{3}}$			A1
	:	$=\frac{1684}{405}$			
	Var(X)	$= \frac{1684}{405} - \left(\frac{31}{18}\right)^2$			dM1
		$= \frac{1931}{1620} \text{ or } 1.1919$		awrt <u>1.19</u>	A1
	(1) •-051,			(4) M1
(b)	P(X < -	$\frac{-\frac{1}{2} = \int_{-1}^{-0.5} \frac{1}{8} (x^2 + 2x + 1) dx}{\left(\frac{1}{2}\right) = \frac{2}{3} + \int_{0.5}^{1} \frac{1}{8} (x^2 + 2x + 1) dx} $ or 1-	$\int_{-0.5}^{0.5} \frac{1}{8} (x^2 + 2x + 1) dx$ (gets		1,21
	$ P\left(X > \frac{1}{2}\right) $	$\left(\frac{1}{2}\right) = \frac{2}{3} + \int_{0.5}^{1} \frac{1}{8} (x^2 + 2x + 1) dx$ M2)	o .		M1
	_	$\left[-\frac{1}{2}\right] = \left[\frac{x^3}{24} + \frac{x^2}{8} + \frac{x}{8}\right]_{-1}^{-0.5} \text{ or } P\left(X > \frac{1}{2}\right)$	$\left(\frac{1}{2}\right) = \frac{2}{3} + \left[\frac{x^3}{24} + \frac{x^2}{8} + \frac{x}{8}\right]_{0.5}^{1}$		A1
	$\mathbf{or} 1 - \left[\frac{x^3}{24} + \frac{x^2}{8} + \frac{x}{8} \right]_{0.5}^{0.5}$				
	$= \frac{83}{96} \text{ or } 0.8645$		awrt <u>0.865</u>	A1	
					(4)
		Not	es		Total 8
		In parts (a) and (b) a correct ans	• •		
(a)	For attempt at $\int x^2 f(x) dx$ for both parts of $f(x)$ added and attempt to integrate $x^n \to x^{n+1}$ A1 Correct algebraic integration (ignore limits). This mark cannot be implied. dM1 dep on previous M1 for "an expression for their $E(X^2)$ " – $[E(X)]^2$ Values must be substituted here awrt 1.19				
(b)		Main scheme method	Alternative method using $F(x)$		
(0)	M1	$\int_{-1}^{-0.5} \frac{1}{8} (x^2 + 2x + 1) dx \text{ oe}$	$\int_{-1}^{x} \frac{1}{8} (t^2 + 2t + 1) dt \text{or} \int_{-1}^{1} \frac{1}{8} (x^2 + 2t + 1) dt$		with + C
	M1	$\frac{2}{3} + \int_{0.5}^{1} \frac{1}{8} (x^2 + 2x + 1) dx$ oe	Use of $F(-0.5) + (1 - F(0.5))$	oe	
	NB	$\int_{-0.5}^{0.5} \frac{1}{8} \left(x^2 + 2x + 1 \right) dx \text{ gets M2}$	Note: $F(-0.5) = \frac{1}{192}$ and $F(0.5) = \frac{1}{192}$	$5) = \frac{9}{64}$	
	A1	One correct integration (may be implied by $\frac{1}{192}$, $\frac{9}{64}$ or $\frac{55}{64}$)	$F(x) = \frac{1}{8} \left(\frac{x^3}{3} + x^2 + x + \frac{1}{3} \right) \text{ (fr)}$	com - 1 < x < 1	(1)
	A1	$\frac{83}{96}$ or awrt 0.865 must come from	correct working and dependen	t on all previ	ous marks.

