

Aula #23

Execução de Projeto & Class Imbalance

Gabriel Cypriano 23/jun/2018

Genuínas: 0

• Fraudulentas: 1

- 285 mil transaçãoes
- 2 dias
- Na Europa em setembro/2013

- Amount: valor da transação
- Time: tempo da transação (em segundos) relativo à primeira transação do dataset

- As outras features são anonimizadas
- Análise exploratória básica e foco em modelagem

Familiarização com o dataset

Discussão

Qual métrica utilizar?

Accuracy Paradox

Predictive models with a given level of accuracy may have greater predictive power than models with higher accuracy.

How many selected items are relevant?

How many relevant items are selected?

T

$F_1 = 2 * \frac{precision * recall}{precision + recall}$

Manipulação dos dados

Treinar modelo e obter scores

T

Definir ponto de corte ideal

Criar predições finais utilizando o ponte de corte

Complementar avaliação com classification report e matriz de confusão

Apresentações

Intervalo

Congrats!

Resampling

Oversampling minority class

Undersampling majority class

Random Oversampling

Random Undersampling

Balanced Bagging

SMOTE (Synthetic Oversampling)

Pacote imblearn

- RandomOverSampler
- RandomUnderSampler
- SMOTE
- EasyEnsemle & BalancedBaggingClassifier

Algoritmos com suporte a balanceamento

• LogisticRegressionClassifier &

RandomForestClassifier

- o setar class weight='balanced'
- XGBoostClassifier
 - o setar scale_pos_weight=sum(negative cases) /
 sum(positive cases)

DÚVIDAS?

