Math 214: Differentiable Manifolds

Professor: Richard Bamler, Spring 2021 Scribe: Vishal Raman

Contents

1	January 19th, 2021	
	1.1 Topology Review	
	1.2 Smooth Manifolds	
2	January 21st, 2021	
	2.1 Coordinate Charts	
	2.2 Connectivity	
	2.3 Local Compactness and Paracompactness	

§1 January 19th, 2021

§1.1 Topology Review

Definition 1.1 (Topological Space). $(X, O_X \subset \mathcal{P}(X))$, where $A \in O_x$ are the open sets which satisfy the following:

- 1. $\emptyset, X \in O_X$.
- 2. $A, B \in O_X$ implies $A \cap B \in O_X$
- 3. $A_i \in O_X$, $i \in I$, then $\bigcup_{i \in I} A_i \in O_X$.

We say that $A \subset X$ is closed if $X \setminus A$ is open. $U \subset X$ is a neighborhood of $p \in X$ if $\exists A$ such that $p \in A \subset U$.

Example 1.2

Take a metric space (X, d). The topology is generated as follows: $A \subset X$ is open if $\forall p \in A, \exists r > 0$ such that $B_r(p) \subset A$.

Definition 1.3. $\mathcal{B} \subset \mathcal{P}(X)$ is called a **basis** for the topology on X if for every subset $A \subset X$, A is open if and only if A is a union of elements of \mathcal{B} .

Example 1.4

For a Euclidean space, $\mathcal{B} = \{B_r(x) \subset \mathbb{R}^n : r \in \mathbb{Q}, r > 0, x \in \mathbb{Q}^n\}$ is a basis for the topology. Note that this basis is countable, so \mathbb{R}^n is 2nd countable.

Let (X, O_X) , (Y, O_Y) be topological spaces.

Definition 1.5. A function $\varphi: X \to Y$ is continuous if for any open subset $B \subset Y$, $\varphi^{-1}(B) \subset X$ is open.

Definition 1.6. $\varphi: X \to Y$ is a homeomorphism if it is a continuous bijection whose inverse is continuous.

Definition 1.7. Let $Y \subset X$ a topological space. We set $O_Y = \{A \cap Y : A \in O_X\}$.

Example 1.8

The subspace topology is the coarsest topology so that the inclusion map $Y \to X$ is continuous (also called the initial topology).

Example 1.9

 $\mathbb{R} \times \{0\} \subset \mathbb{R}^2$ has the same topology as \mathbb{R} . In other words, it is clear that $\mathbb{R} \approx \mathbb{R} \times \{0\}$, where the approximate sign indicates a homeomorphism.

Theorem 1

(Topological Invariance of Dimension) If we take \mathbb{R}^m , \mathbb{R}^n with open subsets $U \subset \mathbb{R}^m$ and $V \subset \mathbb{R}^n$. If we have $\varphi : U \to V$ a homeomorphism, then we must have m = n.

The proof is beyond the scope of the class, but uses homology groups.

Definition 1.10. Given a topological space X, X is called locally Euclidean (of dimension n) at $p \in X$ if there is an open neighborhood about $p \in U \subset X$ that is homeomorphic to an open subset of \mathbb{R}^n .

Lemma 1.11

The n is uniquely determined by p.

Proof. Assume that X was locally Euclidean at p of dimensions n_1, n_2 . There are neighborhoods $p \in U_i \subset X$ and homeomorphisms $\varphi_i : U_i \to \widehat{U}_i \subset \mathbb{R}^{n_i}$. Consider the image of $U_1 \cap U_2$ under both homeomorphisms. If we take $\varphi_2 \circ \varphi_1^{-1} : \varphi(U_1 \cap U_2) \to \varphi_2(U_1 \cap U_2)$, a homeomorphism, so it follows that $n_1 = n_2$ by Topological Invariance of Dimension. \square

Definition 1.12. A space X is **Hausdorff** if for any $p, q \in X$, $p \neq q$ there exists open subsets U, V with $p \in U$, $q \in V$ so that $U \cap V = \emptyset$.

Exercise 1.13. For any $p, q \in X$, if there is a separating continuous function $f: X \to \mathbb{R}$ such that $f(p) \neq f(q)$, then X is Hausdorff.

Definition 1.14. $K \subset X$ is compact if every open cover of K has a finite subcover.

Some useful facts, a subspace of a Hausdorff space is Hausdorff, Hausdorff + Compact implies Closed, $\varphi: X \to Y$ continuous, K is compact, then $\varphi(K)$ is compact. We can use these to show that for $\varphi: X \to Y$ with X compact, Y Hausdorff with φ continuous, bijective, then φ is a homeomorphism.

§1.2 Smooth Manifolds

Definition 1.15. A topological space M is called an n-dimensional **topological manifold** if M satisfies the following:

- M is locally Euclidean at any point,
- M is Hausdorff,
- *M* is second countable.

Example 1.16 (Manifold - Hausdorff)

Suppose we drop the Hausdorff condition. Take $X = (\mathbb{R} \times \{0,1\}) \setminus \sim$, where $(x,0) \sim (x,1)$ if x < 0. Consider the quotient map $\pi : \mathbb{R} \times \{0,1\} \to X$. Call $A \subset X$ open iff $\pi^{-1}(A)$ is open. Each branch of the line are open subsets, each homeomorphic to \mathbb{R} .

Example 1.17 (Manifold - Second Countable)

Take an uncountable subset S equipped with the discrete topology. Set $X = S \times \mathbb{R}$. A more interesting example called the "long line" is as follows:

Lemma 1.18

There is an uncountable, well-ordered set S such that S has a maximal element $\Omega \in S$ and for all $\alpha \in S$, $\alpha \neq \Omega$, the set $\{x \in S | x < \alpha\}$ is countable.

Now, set $X = (-\infty, 0) \cup S \times [0, 1)$ under the lexicographic ordering. This turns out to be Hausdorff and locally Euclidean but not second countable.

Exercise 1.19. If M is 0-dimensional topological manifold, then M is a finite or countable set equipped with the discrete topology.

Exercise 1.20. If M^n is a top. manifold and $M' \subset M^n$ is open, then M' is an n-dimensional top. manifold.

Example 1.21

Take $S^1 \subset \mathbb{R}^2$, a circle. This is a 1-dimensional topological manifold.

- It is easy to show that S^1 is Hausdorff and second countable.
- Define $U_i^+ = \{(x_1, x_2) \in S^1 | x_i > 0\}$. We similarly define U_i^- . Then S^1 is the union of all the intervals. We can construct the map $\varphi_i^+ : U_i^+ \to (-1, 1)$ by projecting onto the corresponding axis. This is a homeomorphism.

§2 January 21st, 2021

§2.1 Coordinate Charts

Definition 2.1. A coordinate chart on M is a pair (U, φ) where $U \subset M$ is open and $\varphi: U \to \widehat{U}$ is a homeomorphism to an open subset $\widehat{U} \subset \mathbb{R}^n$.

Remark 2.2. We can actually drop the condition that \widehat{U} is open, but the proof of this requires the notion of homology.

We will often write $\varphi(p) = (\varphi^1(p), \varphi^2(p), \dots, \varphi^n(p))$, which are local coordinates. A way to think about a coordinate chart is just a set of scalar functions, which are the coordinate functions.

Theorem 2

Take $V \subset \mathbb{R}^n$ open, $F: V \to \mathbb{R}^k$ continuous. We claim the graph

$$\Gamma(F) = \{(x, F(x)) : x \in \mathbb{R}^n\} \subset \mathbb{R}^{n+k}$$

is a manifold.

Proof. Take $(\Gamma(F), \varphi)$, where φ is the projection of the graph onto \mathbb{R}^n . It is clear that $\Gamma(F) \cong V$.

Example 2.3

Take $S^n = \{x \in \mathbb{R}^{n+1:|x|=1} \subset \mathbb{R}^{n+1}\}$. We claim this is a manifold.

Define $U_i^+ = \{(x^1, \dots, x^{n+1}) : x_i > 0\}$. Similarly define U_i^- . It is clear that M is the union of all the U_i^+ 's and U_i^- 's. Note that U_i^\pm is the graph of the map from $B^n(0,1) \to \mathbb{R}$ given by $y \mapsto \pm \sqrt{1-|y|^2}$. It follows that S^n is a topological manifold.

Example 2.4 (Projective Space)

We define $\mathbb{R}P^n = (\mathbb{R}^{n+1} \setminus \{0\})/\sim$, where the equivalence relation is defined by $x \sim y$ if $x = \lambda y$ for some $\lambda \neq 0$. We can also view this as a set of lines through the origin. The quotient space is equipped with a projection map $\pi : \mathbb{R}^{n+1} \setminus \{0\} \to \mathbb{R}P^n$. We can then use the Quotient topology: $A \subset \mathbb{R}P^n$ is open if $\pi^{-1}(A)$ is open.

We write $[(x_1, \ldots, x^{n+1})] = [x^1 : \cdots : x^{n+1}]$. One should check that $\mathbb{R}P^n$ is Hausdorff and second countable. We show that $\mathbb{R}P^n$ is locally Euclidean.

Define $U_i^* = \{x \in \mathbb{R}^{n+1} \setminus \{0\} : x_i \neq 0\}$ and let $U_i = \pi(U_i^*)$. Note that

$$U_i = \{ [x^1 : \dots : x^{n+1}] : x^i \neq 0 \} = \{ [\frac{x^1}{x^i} : \dots : 1 : \frac{x^{n+1}}{x^i}] : x^i \neq 0 \}$$

and furthermore

$$U_i = \{ [x^1 : \dots : 1 : \dots : x^{n+1}] \}.$$

If we define
$$\varphi_i^*: U_i^* \to \mathbb{R}^n$$
 given by $(x^1, \dots, x^{n+1}) \mapsto \left(\frac{x^1}{x^i}, \dots, \frac{x^{n+1}}{x^i}\right)$.

We claim that there exists a continuous map $\varphi_i: U_i \to \mathbb{R}^n$ so that the corresponding commutative diagram commutes: this is just the natural map associated to the quotient.

Furthermore, φ_i is a homeomorphism with inverse $(x^1, \dots, \widehat{x^i}, \dots, x^{n+1}) \mapsto [x^1 : \dots : 1 : \dots : x^{n+1}].$

§2.2 Connectivity

Given a topological space X, we have the following definitions:

Definition 2.5. X is connected if the only subsets that are open and closed are \emptyset , X.

Definition 2.6. A space is path-connected if for any $p, q \in X$ there is a continuous path between them.

Theorem 3

If M^n is a topological manifold, M is connected if and only if M is path connected.

Proof. It suffices to show the forward direction. The proof is the same in the case of open subsets of \mathbb{R}^n .

§2.3 Local Compactness and Paracompactness

Proposition 2.7

Given M^n , for all $p \in M$, there exists a compact neighborhood i.e. M is locally compact.

Let X be a topological space.

Definition 2.8. An exhaustion by compact subsets is an increasing sequence of subsets $K_1 \subset K_2 \subset \cdots \subset X$ such that K_i is compact and $K_i \subset \operatorname{Int}(K_{i+1})$ and $\bigcup_i K_i = X$.

Remark 2.9. This also implies that $X = \bigcup_i \operatorname{Int}(K_i)$. If $K^i \subset X$ is some other compact subset, there is some j such that $K^i \subset \operatorname{Int}(K_j)$.

Proposition 2.10

If X is second countable, and locally compact, Hausdorff, then X has an exhaustion by compact subsets.

Proof. First, take \mathcal{B} a countable basis for the topology of X. Take $\mathcal{B}' = \{B \in \mathcal{B} : \overline{B} \text{ compact}\}$, which is still a basis for the topology. Call these sets $\{U_1, U_2, \ldots\}$. Choose $K_1 = \overline{U_1}$. For K_2 , cover K_1 with possibly several U_i such that $K_1 \subset U_1 \cup \cdots \cup U_{m_2}$ so that $K_2 = \overline{U_1} \cup \cdots \cup \overline{U_{m_2}}$, which is compact. We continue this process to form an exhaustion.

Definition 2.11. Take $\mathcal{U} \subset \mathcal{P}(X)$. This is a cover of X if $X = \bigcup_{U \in \mathcal{U}} U$. A collection is called locally finite if every $p \in X$ has a neighborhood $p \in W \subset X$ such that W only intersects finitely many $U \in \mathcal{U}$.

Definition 2.12. A collection of subsets \mathcal{V} is called a refinement of some other collection \mathcal{U} if for every $V \in \mathcal{V}$ there is $U \in \mathcal{U}$ such that $V \subset U$.

Definition 2.13. X is called paracompact if every open cover has a locally finite refinement.

Theorem 4

Every topological manifold is paracompact.