Lecture 01: Propositional Logic Basics

Jingjin Yu | Computer Science @ Rutgers

Outline

- Motivation
- Propositions
- Operations
 - Negation, conjunctions, disjunctions
 - Conditional statements, bidirectional statements
- Bit operations
- Some applications

Motivation

- Propositional logic in computer science?
 - Goal: enable formal & rigorous reasoning for computing
 - Why: making sure programs are correct
 - How: proofs through logical inferences
- ► The **basics** are important!
 - Definitions
 May need further definitions!
 - Ex: A triangle is polygon with three edges and three vertices
 - Axioms
 - **Ex**: For every two points A and B, there exists a line containing both
 - Theorems
 - Ex: Pythagorean theorem

Propositional Logic

Copyrighted Material – Do Not Distribute

General logic

Logic (short for logical systems) provides meanings (true or

false) to mathematical statements

- Applications in computer science
 - Design of computer circuits
 - Computer programs
 - E.g. conditional statements

...

Propositional logic

- A relatively simple but foundational logical system, with which we begin our study of discrete math
- Basic element: propositions (like numbers in arithmetic)

Proposition

- ▶ \mathbf{Def}^n : A **proposition** is a declarative sentence that is either true or false, but not both.
- **Ex**:
 - Propositions (true or false?)
 - Toronto is the capital of Canada.
 - 1 + 1 = 2
 - $3 \times 7 = 20$
 - Non-propositions
 - What time is it?
 - Do not sleep while listening to the video!
 - x + 1 = 2
 - \triangleright What about: $x^3 + y^3 = z^3$ for x, y, z as positive integers?

Proposition Variables

- Propositions may be represented using variables
 - \triangleright Ex: p = "1 + 1 = 2"
 - \triangleright Ex: q = "Toronto is the capital of Canada"
 - \triangleright Generally, uses p, q, r, ... to denote propositions
- True and false
 - \triangleright Also, we often use T for true and F for false
 - \triangleright Note that true and false are also propositions
 - ullet Ex: r = T
- With propositions, we can build compound propositions

Liar Paradox

- \blacktriangleright What about the sentence: This current statement is false.
 - If the statement is false, then the sentence is true?
 - If the statement is true, then the sentence if false?
 - So, is the sentence true or false?
- ► This is mostly a language artifact
 - Think about it
 - Then read: https://en.wikipedia.org/wiki/Liar_paradox

Negations

- ▶ **Def**ⁿ: Let p be a proposition, the **negation** of p, denoted $\neg p$ (not p), is the statement "it is not the case that p".
 - Ex: negate "Michael's PC runs Linux"
 - Negation: "It is not the case that Michael's PC runs Linux"
 - Simplification: "Michael's PC does not run Linux"
 - Ex: negate "Ada's phone has at least 256GB of memory."
 - Negation: "It is not the case that Ada's phone has at least 256GB of memory."
 - Simplification: "Ada's phone has less than 256GB of memory."

Truth Table: a First Look

- ► Truth table lists the truth values of a compound proposition based on the truth value(s) of its component proposition(s)
 - \triangleright Negation, $\neg p$, is a compound proposition
 - \Box It contains a single component proposition, p
 - ullet Its truth table then has two columns p, $\neg p$
 - ullet With a single component, it has 2^1 "data" rows

p	$\neg p$
T	F
F	T

- For a compound proposition with k components, e.g., $P(p_1, ..., p_k)$, its truth table has 2^k data rows.
- \triangleright Truth tables we will see often have four data rows (k=2)

Conjunction and Disjunctions

Copyrighted Material De Not Plstvibute

- ▶ **Def**ⁿ: Let p and q be propositions. The **conjunction** of p and q, denoted by $p \land q$, is the proposition "p and q". $p \land q$ is true if and only if p is true and q is true
- ▶ **Def**ⁿ: Let p and q be propositions. The **disjunction** of p and q, denoted by $p \lor q$, is the proposition "p or q". $p \lor q$ is false if and only if p is false and q is false

 - "or" in English is may be inclusive or exclusive.
 - "Exclusive or" in logic is denoted as "⊕"
 - Not frequently used

Truth Table and an Example for ∧ and ∨

Copyrighted Material – Do Not Distribute

 \blacktriangleright Truth table for \land , \lor , and \bigoplus directly from definitions

p	q	$p \wedge q$	$p \lor q$	$p \oplus q$
T	T	T	T	F
T	F	F	T	T
F	T	F	T	T
F	F	F	F	F

- **Ex**: p: "Tom is sleeping", q: "Tom wears a baseball hat".
 - Conjunction: Tom wears a baseball hat and is sleeping
 - Disjunction: Tom wears a baseball hat or Tom is sleeping
 - True if either or both of "Tom is sleeping" and "Tom wears a baseball hat" hold

Conditional Statements

- ▶ **Def**ⁿ: Let p and q be propositions. The **conditional statement** " $p \rightarrow q$ " is the proposition "if p, then q". $p \rightarrow q$ is false if and only if p is true and q is false
 - $\triangleright p$ is the **hypothesis**, q is the **consequence**
- Ex: "If I am elected, (then) I will lower taxes"
- Ex: "If you get 100%, (then) you will get an A"
- Equivalent statements that you may see
 - \triangleright "p implies q"
 - \triangleright "p only if q"
 - \triangleright "q if p"
 - \triangleright "q follows from p"

Related Statements and Truth Table

Copyrighted Material – Do Not Distribute

ightharpoonup Statements related to the conditional $p \to q$

 \triangleright Converse: $q \rightarrow p$

 \triangleright Contrapositive: $\neg q \rightarrow \neg p$

 \triangleright Inverse: $\neg p \rightarrow \neg q$

The truth table

p	q	$p \rightarrow q$	$q \rightarrow p$	$\neg q \rightarrow \neg p$	$\neg p \rightarrow \neg q$
T	T	T	T	T	T
T	F	F	T	F	T
F	T	T	F	T	F
F	F	T	T	T	T

- \triangleright Observe that $p \rightarrow q$ and $\neg q \rightarrow \neg p$ are the same
- \triangleright Note that $p \rightarrow q$ is the same as $\neg p \lor q$

From Conditional to Related Statements

- **Ex**: "The home team wins whenever it is raining"
 - ▶ First, we need to break the conditional into components
 - p: "it rains", q: "the home team wins"
 - Converse
 - "If the home team wins, then it rains"
 - Contrapositive
 - "If the home team does not win, then it is not raining"
 - Inverse:
 - "If it is not raining, then the home team does not win"

Bidirectional Statement

- ▶ **Def**ⁿ: Let p and q be propositions. The **bidirectional statement** " $p \leftrightarrow q$ " is the proposition "p if only if q". $p \leftrightarrow q$ is true if and only if p and q take the same truth value
- Also known as "p is necessary and sufficient for q"
- Truth table

p	q	$p \leftrightarrow q$
T	T	T
T	F	F
F	T	F
F	F	T

Evaluation of Compound Statements

- ▶ Precedence: \neg > \land > \lor > \rightarrow > \leftrightarrow
 - ➤ To avoid confusion, can always add parenthesis "()" to provide priority
- We may always use truth table to evaluate
- ightharpoonup Ex: $(p o \neg q) o (p \land q)$

p	q	$\neg q$	$p \rightarrow \neg q$	$p \wedge q$	$(p \to \neg q) \to (p \land q)$
T	T				
T	F				
F	T				
F	F				

Bit Operations

- A bit is a symbol with two values, 0 or 1
 - Perfect for representing propositions
 - ho Set 0 = false, 1 = true
- Computer bit operations allow logical operations using bits, which can be done in parallel
- **Ex**:

	1011 0110
	0001 1101
Bitwise OR	1011 1111
Bitwise AND	0001 0100
Bitwise XOR	1010 1011

Applications

- **Ex**: Modular representation of texts, e.g., English
 - "You can access internet from campus if you are a CS student or you are not a freshman"
 - p: "You are a CS student"
 - q: "You are not a freshman"
 - r: "You can access internet from campus"
 - The sentence is then " $(p \lor q) \rightarrow r$ "
- Ex: Design and verification of logic circuits

