Model Assumptions and Diagnostics

QQ-plots

QQ-plots

QQ-plots

QQ-plots

Diagnostics

- QQ plot within each group
- \bullet QQ plot of all residuals, $y_{ti} \bar{y}_{t\cdot}$
- \bullet Plot residuals, $y_{ti} \bar{y}_{t\cdot},$ against fitted values, $\bar{y}_{t\cdot}.$
- Plot SD versus mean for each group.
- Plot the residuals against other factors.

Order of measurements, weight or age of mouse, etc.

Example

ANOVA Tables

Original scale / 1000:

source	SS	df	MS	F	P-value
between strains	33	20	1.69	1.70	0.042
within strains	124	125	0.99		
total	157	145			

log₁₀ scale:

source	SS	df	MS	F	Р
between strains	3.35	20	0.167	2.25	0.0036
within strains	9.29	125	0.074		
total	12.63	145			

Residuals

QQ plots of all residuals

Residuals vs fitted values

SDs vs means

Homogeneity of variances

One of the ANOVA assumptions was homogeneity of the group variances. This can formally be tested with Bartlett's test.

Assume we have k treatment groups.

nt number of cases in treatment group t.

N number of cases (overall).

Y_{ti} response i in treatment group t.

 \bar{Y}_{t} average response in treatment group t.

 S_t^2 the sample variance in treatment group t.

Bartlett's test

We want to test $H_0: \sigma_1^2 = \cdots = \sigma_k^2$ versus $H_a: H_0$ is false.

• Calculate the pooled sample variance:

$$S^2 = \frac{\sum_{t} (n_t - 1) \times S_t^2}{\sum_{t} (n_t - 1)} = \frac{\sum_{t} (n_t - 1) \times S_t^2}{N - k}$$

Calculate the test statistic

$$\textit{X}^2 \text{=} (N-k) \times log(S^2) - \sum_t (n_t - 1) \times log(S_t^2)$$

• Calculate the following correction factor:

$$C{=}1 + \frac{1}{3(k-1)} \left[\sum_t \frac{1}{n_t-1} - \frac{1}{\sum_t (n_t-1)} \right]$$

If H₀ is true, then

$$\chi^2/C \sim \chi^2(df=k-1)$$

Example

- For the example data, there are 21 strains with between 5 and 10 observations per strain.
- The pooled sample variance on original scale / 1000 is 0.99.
- The pooled sample variance on log₁₀ scale is 0.074.
- The test statistics were 79.9 and 34.0.
- The correction factor ended up being 1.07.
- Thus we look at the values 79.9 / 1.07 = 74.8 and 34.0 / 1.07 = 31.8.
- Since there are 21 strains, we refer to the $\chi^2(df = 20)$ distribution.
- \bullet We end up with P-values of 2.9 \times 10⁻⁸ and 0.045.
- → The R function bartlett.test() can be used to do these calculations.