

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

E5 Kern- und Teilchenphysik WiSe 17/18 – Übungsblatt 3

Besprechung: 21.11.2017 bis 27.11.2017

Studierende im Studiengang Lehramt Gymnasium lösen bitte die Aufgaben 1 und 2. Studierende aller anderen Studiengänge lösen bitte alle Aufgaben.

1. Altersbestimmung mit der Radiocarbon (14C) Methode (Staatsexamensaufgabe)

Nach einer chemischen Analyse enthält ein Holzsplitter eines archäologischen Fundes 1.2 g Kohlenstoff. Mit einem Zählrohr registriert man 845 Zerfälle/Stunde. Ziel dieser Aufgabe ist es, das Alter des Holzsplitters zu bestimmen.

Nehmen Sie dabei folgendes an:

i, Zum Zeitpunkt des Absterbens des Baumes, aus dem der Holzsplitter stammt, betrug in der Atmosphäre das Verhältnis

$$\frac{Anzahl~^{12}C-Atome}{Anzahl~^{14}C-Atome} = 7.85 \times 10^{11} .$$

- ii, Die Halbwertszeit von $^{14}\mathrm{C}$ beträgt $t_{1/2}=5730\,\mathrm{a}$.
- iii, Die molare Masse von ¹²C beträgt definitionsgemäß 12 g/mol.
- iv, Das Zählrohr umschließt den Holzsplitter vollständig und hat eine Effizienz von 100% d.h. es registriert alle Zerfälle im Splitter.
- (a) Stellen Sie die Differentialgleichung für den radioaktiven Zerfall auf und leiten Sie das radioaktive Zerfallsgesetz her.
- (b) Gewinnen Sie daraus den Zusammenhang zwischen der Zerfallskonstanten λ und der Halbwertszeit $t_{1/2}$.
- (c) Erklären Sie in Worten das Prinzip der ¹⁴C-Methode.
- (d) Berechnen Sie die Anzahl der ¹²C-Atome im Splitter. Berechnen Sie dann die beim Absterben des Baumes im Holzsplitter vorhandene Anzahl von ¹⁴C-Atomen und deren Anzahl heute bei der Untersuchung mit dem Zählrohr sowie das Alter des Holzsplitters.

2. β -Zerfall des Tritiums

Tritium ${}_{1}^{3}$ H ist mit $B({}_{1}^{3}$ H) = 8.4818 MeV stärker gebunden als ${}_{2}^{3}$ He mit $B({}_{2}^{3}$ He) = 7.7181 MeV.

- (a) Wieso kann ${}_{1}^{3}H$ trotzdem durch β -Zerfall in ${}_{2}^{3}He$ übergehen?
- (b) Bestimmen Sie die β -Grenzenergie E_0 und die maximale Rückstoßenergie von 3_2 He für den Fall einer verschwindenden Neutrinomasse $m_{\nu}=0$! Wieso können Sie hier nicht-relativistisch rechnen?

(Lösung: $E_0 = 18.6 \text{ keV}$, $E({}_{2}^{3}\text{He}) = 3.3 \text{ eV}$)

(c) Wie ändert sich E_0 , wenn das Elektronneutrino v_e eine Masse $m_v > 0$ hat?

Anmerkung: Mit Hilfe der sogenannten *Kurie-Darstellung* versucht man aus dem β -Spektrum des Tritiums die Masse des Elektronneutrinos zu bestimmen. Die mit dieser Methode erhaltene derzeitige Obergrenze (bei 95% Konfidenz) beträgt $m_{\nu} < 2.2 \text{ eV/c}^2$.

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

E5 Kern- und Teilchenphysik WiSe 17/18 – Übungsblatt 3

3. α -Zerfall von 210 Po (Freiwillig für Lehramtsstudierende)

Betrachten Sie den α -Zerfall von ²¹⁰Po in ²⁰⁶Pb:

$$^{210}_{84}$$
Po $\rightarrow ^{206}_{82}$ Pb + α .

- (a) Berechnen Sie die beim Zerfall freiwerdende Energie Q_{α} .
- (b) Wie groß ist die kinetische Energie des α -Teilchens unter Berücksichtigung des Kernrückstoßes?

Hinweis:

 $M(^{210}_{84}Po) = 209.9828741\,\mathrm{u}$, $M(^{11}_{82}Pb) = 205.9744657\,\mathrm{u}$, $M(^{4}_{2}He) = 4.0026033\,\mathrm{u}$, $1\,\mathrm{u} = 931.494\,\mathrm{MeV/c^2}$. $M(\dots)$ bezeichnet hierbei die jeweilige **Atommasse**.