인공지능의 이해 - 인공지능이란?

지 준 교수 Al 응용학과, Hansung University

What is AI (Artificial Intelligence, 인공지능)

인공(Artificial) + 지능(Intelligence)

지능이란? ⇒ 튜링테스트 - 초기의 지능 정의방법, 실험을 통한 방법

튜링 테스트의 수행 방법

- 1) 인간과 기계를 다른 공간에 배치
- 2) 질문자는 그들과 텍스트로 대화를 나눈다. (질문자는 어느 공간에 누가 있는지 알지 못한다.)
- 3) 대화를 통해 질문자가 인간과 기계를 구분하지 못하게 되면, 기계가 지능을 가졌다고 판단

What is AI (Artificial Intelligence; 인공지능)

정의

- <u>인간지능</u>과 유사한 기능을 가진 기계
- 인공적인 <u>장치들이 가지는 지능</u>을 연구하는 분야
- 인공지능은 따라야 할 정확한 규칙을 설명하기 어려운 인지 능력을 디지털화하는데 매우 유용합니다. (예: 걷기, 자전거 타기, etc.)

발전과정에 따른 AI의 세 종류

- / 약한 인공지능(Weak AI) -협의 인공지능(Artificial Narrow Intelligence: ANI)
- 강한 인공지능(Strong AI) -범용 인공지능(Artificial General Intelligence: AGI)

3 Types of Artificial Intelligence

Weak Al

Strong Al

Super Al

Artificial Narrow Intelligence (ANI)

Artificial General Intelligence (AGI)

Stage-1

Machine Learning

 Specialises in one area and solves one problem

현재(NOW)

Stage-2

[이해]

Machine Intelligence

 Refers to a computer that is as smart as a human across the board Artificial Super Intelligence (ASI)

Stage-3

[자각]

Machine Consciousness

 An intellect that is much smarter than the best human brains in practically every field

<u>초 지능(Super Intelligence)</u>

- 초 지능은 기계의 인지 능력이 인간의 능력을 능가하는 상태입니다. 그것은 "거의 모든 관심 영역에서 인간의 인지 능력을 크게 능가하는 지능"을 가진 유기체입니다.
- 일부 연구자들은 미래의 특정 시점에서 기계가 인간보다 더 똑똑 할 것이라고 예측하고 믿습니다. 이것은 2050 년에서 2100 년 사이 어딘가에서 일어날 수 있습니다.
- 이 상태에 결코 도달하지 않을 것이라고 주장하는 연구자는 거의 없습니다. 그러나 이 주제에 익숙한 대부분의 연구자들에게는 초 지능에 도달 할 수 있을 지가 문제가 아니라, **언제 도달할 지를 문제로 보고 있습니다.**

초 지능(Super Intelligence)

- **최상**의 시나리오 초 지능은 미래의 풍요와 평등 (특이점 Singularity) 으로 이어질 것입니다.
- **최악**의 시나리오 초 지능이 악하기 때문이 아니라 단순히 인간이 목표를 달성하는 데 방해가 되기 때문에 (인간의 인지 능력을 능가하여 더 이상 이해할 수 없는 목표) 인류의 멸종으로 이어질 것입니다.

(From The Movie "Terminator")

Strong AI (범용인공지능; General AI, AGI)

- 강한 인공지능(범용 인공지능)은 **기계가 <u>인간과 동일한</u> 인지 능력**을 가짐을 의미합니다.
- 범용인공지능에 도달 할 시점에 대해 연구자들 사이에 논쟁이 있지만, 곧 도달 할 것으로 예측되고 있습니다. ChatGPT 와 같은 현재의 초거대 언어모델이 그 가능성을 보여주고 있습니다.
- 지능은 변화하는 환경에 더 잘 대처하기 위해 유기체가 효과적으로 적응할 수 있는 능력과 밀접한 관련이 있습니다. 적응은 자신을 변화시킬뿐만 아니라 환경을 변화시키는 것 또한 의미합니다.
- 범용 인공지능(및 <u>인간</u>)의 주요 특징은 다음과 같습니다. ⇒ 학습, 기억, 추론 및 추상화, 문제 해결, 발산적 사고, 수렴적 사고, 감성 지능, 생각 속도 등.

Weak AI (협의인공지능 Narrow AI)

- 약한 AI는 매우 구체적인 사용 사례에 중점을 둡니다. 이는 AI (현재의 딥러닝 기술이 주로 사용됨)가 매우 특정한 목적을 위해 훈련되었음을 의미합니다. 따라서 AI는 훈련된 이벤트만 처리 할 수 있습니다.
- 강한 AI와 달리 약한 AI의 학습 능력은 매우 제한적입니다. 특정 사용 사례의 경계 안에서 학습을 할 수 있습니다 (예 : 음성 인식을 위한 약한 AI는 훈련된 언어와 동일한 언어의 새로운 방언을 이해하는 속도를 향상시킬 수 있으나, 다른 언어를 배우려면 사람의 입력이 필요합니다.)
- 일반적인 협의 AI 사용 사례 : **자연어 인식 및 처리**, **자율 주행**, **시각적** 이미지 인식 및 해석, 사이버 보안의 침입 탐지, 인간 활동 인식 등.

Rate of Computer "Intelligence"

Time

Review

3 Types of Artificial Intelligence

Weak Al

Strong Al

Super Al

Artificial Narrow Intelligence (ANI)

Artificial General Intelligence (AGI)

Stage-2

[이해]

Machine Intelligence

 Refers to a computer that is as smart as a human across the board Artificial Super Intelligence (ASI)

Stage-3

[자각]

Machine Consciousness

 An intellect that is much smarter than the best human brains in practically every field

현재(NOW)

 Specialises in one area and solves one problem

Alexa

● **머신러닝은 AI** 분야에서 최근 몇 년 동안 협의 인공지능의 발전을 이끄는 핵심 기술이었습니다. 컴퓨터가 인식 성능을 향상시키기 위해 <u>관찰, 데이터 및 예제를 통해 학습 할 수 있도록 하는 도구 및 방법 모음</u>입니다. 전통적인 프로그래밍에서 필요한 작업을 실행하는 방법(rule)에 대한 단계별 설명이 필요하지 않습니다.

Types of Machine Learning मर्थियप्री इने उ Machine Learning でする Supervised Unsupervised Reinforcement 군집화 회귀 보상 (Clustering) (Regression) (Reward) 연관규칙 이상탐지 분류 (Association (Anormaly (Classification) Rules) detection)

● 지도 학습 (Supervised Learning) [감독학습] 은 과거 데이터를 기반으로 새로운 결과를 예측하는 것입니다. 지도 학습 모델은 과거 데이터 입력과 출력 간의 상관 관계를 찾으려고 시도합니다. (e.g. 주택 가격 예측, 이미지에서 객체 찾기 및 문서 번역이 포함될 수 있습니다.)

(Image by Western Digital)

● 비지도 학습 (Unsupervised Learning)
[무감독학습]은 데이터를 설명하는 것입니다.
이 모델은 데이터 자체 속성에 따라 통계
분석을 사용하여 데이터에서 패턴을
찾습니다. (e.g. 판매 데이터 또는 문서 분류에서 새로운 고객 분류를 찾을 수 있습니다.)

● 강화학습 (Reinforcement Learning)은 시행 착오를 통해 자체 성능을 지속적으로 개선하려는 역동적인 모델을 제공합니다. 시간이 지남에 따라 모델은 전략을 개선하고 게임을 하는 사람과 마찬가지로 성능이 점점 좋아집니다. (e.g. 주식 거래 및 재고 관리가 포함됩니다.)

Atari Breakout Game Deep Q Network Learning

Types of Machine Learning

지도학습 (Supervised Learning)

지도 학습에는 두 가지 유형이 있습니다. 분류는 데이터를 분리하고, 회귀는 데이터에 맞추는 겁니다.

- 분류(classification): 주어진 관측치 / 입력에 대한 범주형(categorical)
 반응 값을 예측하는 알고리즘. 불연속(이산적, discrete) 값을 예측합니다.
 전제 조건은 응답 값을 <u>개별 클래스로 분할</u> 할 수 있어야 한다는 것입니다.
 전형적인 예는 필기 문자와 숫자의 분류입니다 (예: 우편으로 편지에
 쓰여진 주소를 자동해석하는 데 사용) 불인속 = 점수
- 회귀(regression): 주어진 관측치 / 입력에 대한 수치적 연속(continuous) 반응 값을 예측하는 알고리즘입니다. 지속적인 가치를 예측할 것입니다. (예: 위치, 크기, 연령 등을 기반으로 주택 가격을 예측하는 것입니다.) 연속=44

분류 (Classification)

Figure 7.1: Heights and weights of dogs taken from three varieties

회귀 (Regression)

Housing price prediction.

비지도학습 (Unsupervised Learning)

비지도 학습 방법은 충분한 라벨링 된 훈련 데이터를 얻기가 어렵거나, 너무 비싼 경우에 적합합니다. 레이블이 지정된 학습 데이터를 알고리즘에 제공하지 않습니다. 대신 알고리즘이 **자체적으로 데이터를 분류 / 분리**하는 방법을 찾습니다. 자세강 안한 데이터를 제공

- 군집화 (Clustering): 개체들이 주어졌을 때, 개체들을 몇 개의 클러스터(부분 그룹)으로 나누는 과정을 의미합니다.
- <u>연관 규칙</u> (Association Rules): 어떤 항목이 어떤 항목을 동반하여 등장하는 지에 대한 연구이다. 주로 유통 거래 데이터 구매항목들 사이의 연관성에 대해 규칙을 추론하였기 때문에, 장바구니 분석이라고 불리기도 한다. 마代스 산 사람은 의자도 샀다.
- 이상 감지 : 주어진 데이터 세트 내에서 이상치/이상을 찾는 알고리즘입니다. (e.g. 은행 거래에서 사기 행위를 식별하는 것입니다. 유럽과 미국을 여행하는 동안 상대적으로 적은 금액으로 많은 거래가 있는 경우 나이지리아에서 미화 10,000 달러의 거래가 의심 될 수 있습니다.)

군집화 (Clustering)

연관규칙 (Association Rule)

이상 감지 (Anomaly detection)

강화학습 (Reinforcement Learning)

강화 학습은 시간이 지남에 따라 보상을 극대화하기 위해 특정 환경 내에서 행동 공간에서 행동을 선택하는 방법을 에이전트에게 가르치는 기계 학습의 한 분야입니다.

강화 학습에는 네 가지 필수 요소가 있습니다.

- 1. <u>에이전트(</u>Agent) : 지정한 작업을 수행하기위한 목적으로 훈련하는 프로그램입니다.
- 2. **환경(Environment)**: 에이전트가 작업을 수행하는 실제 또는 가상 세계입니다.
- 3. 동작(Action): 에이전트가 수행 한 이동으로 환경의 상태가 변경됩니다.
- 4. 보상(Reward): 긍정적이거나 부정적인 행동에 대한 평가.

강화 학습을 위한 기본 설정은 환경(Environment)과 상호 작용하는 에이전트(Agent)로 구성됩니다. 에이전트는 주어진 상황(State)에서 상호 작용으로부터 받는 긍정적/부정적 피드백을 기반으로 특정 행동(Action)에 대한 보상(Reward)이 이루어지므로 유리한 행동이 강화되도록 정책(Policy)이라고 부르는 최상의 전략을 스스로 학습합니다.

보상응용 사례

[웹 페이지에서 광고 게재 위치 결정]

- 에이전트: 페이지에 적합한 광고 수를 결정하는 프로그램입니다.
- 2. 환경: 웹 페이지.
- 3. 동작: 세 가지 중 하나: (1) 페이지에 다른 광고를 게재합니다. (2) 페이지에서 광고 드롭; (3) 추가하거나 제거하지 않습니다.
- 4. 보상: 수익이 증가하면 긍정적입니다. 수익이 떨어지면 음수입니다.

[걷는 로봇 제어]

- 5. 에이전트: 보행 로봇을 제어하는 프로그램입니다.
- 6. **환경**: 현실 세계.
- 7. **액션**: 4 개의 움직임 중 1 개 (1) 앞으로 (2) 뒤로 (3)왼쪽 (4) 오른쪽.
- 8. **보상**: 목표 목적지에 도달하면 긍정적입니다. 시간을 낭비하거나 잘못된 방향으로 가거나 넘어 질 때 부정적입니다.

Types of Machine Learning

Abbreviations: SVM — Support Vector Machine, CNN — Convolutional Neural Network, RNN — Recurrent Neural Network, LSTM — Long Short-Term Memory, GRU — Gated Recurrent Units, MLP — Multilayer Perceptron, RNTN — Recursive Neural Tensor Network GAN — General Adversarial Network, PCA — Principal Component Analysis, SOM — Self-Organizing Map, RBM — Restricted Boltzmann Machine, SARSA — State-Action-Reward-State-Action, DQN — Deep Q Network, A3C — Asynchronous Advantage Actor Critic

WHY IS DEEP LEARNING HOT NOW?

923/5

Three Driving Factors...

3

Big Data Availability

New DL Techniques

GPU acceleration

facebook

350 millions images uploaded per day

Walmart ≒

 2.5 Petabytes of customer data hourly

You Tube

100 hours of video uploaded every minute

