SKILL Development of Parameterized Cells

Version 5.1.41

Lecture Manual

October 15, 2004

 $\hbox{@ }1990\mbox{-}2004$ Cadence Design Systems, Inc. All rights reserved.

Printed in the United States of America.

Cadence Design Systems, Inc., 555 River Oaks Parkway, San Jose, CA 95134, USA

Cadence Trademarks

1st Silicon Success® First Encounter®
Allegro® FormalCheck®
AssuraTM HDL-ICE®
BlackTie® IncisiveTM
BuildGates® IP GalleryTM
Cadence® (brand and logo) Nano EncounterTM

CeltICTM NanoRouteTM
ClockStorm® NC-Verilog®

ClockStorm® NC-Verilog® SourceLink® online customer support
CoBALTTM OpenBook® online documentation library SPECCTRA®
Concept® Orcad® SPECCTRAQuest®

OPlace®

 $SeismIC^{TM}$

Spectre®

UltraSim®

Verilog®

Virtuoso®

Verifault-XL®

VoltageStorm®

TtME®

SignalStorm®

Silicon Design ChainTM

Silicon Ensemble®

SoC EncounterTM

Quest®

Concept[®] Orcad® Conformal® Orcad Capture® Connections® Orcad Layout® PacifICTM Design Foundry® Diva® PalladiumTM Dracula® Pearl® EncounterTM PowerSuiteTM Fire & Ice® PSpice®

Other Trademarks

All other trademarks are the exclusive property of their respective owners.

Confidentiality Notice

No part of this publication may be reproduced in whole or in part by any means (including photocopying or storage in an information storage/retrieval system) or transmitted in any form or by any means without prior written permission from Cadence Design Systems, Inc. (Cadence).

Information in this document is subject to change without notice and does not represent a commitment on the part of Cadence. The information contained herein is the proprietary and confidential information of Cadence or its licensors, and is supplied subject to, and may be used only by Cadence's customer in accordance with, a written agreement between Cadence and its customer. Except as may be explicitly set forth in such agreement, Cadence does not make, and expressly disclaims, any representations or warranties as to the completeness, accuracy or usefulness of the information contained in this document. Cadence does not warrant that use of such information will not infringe any third party rights, nor does Cadence assume any liability for damages or costs of any kind that may result from use of such information.

RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013.

UNPUBLISHED This document contains unpublished confidential information and is not to be disclosed or used except as authorized by written contract with Cadence. Rights reserved under the copyright laws of the United States.

Table of Contents SKILL Development of Parameterized Cells

Module 1	Introduction to Parameterized Cells	
	Course Objectives	1-3
	Audience	
	Agenda	1-7
	Curriculum Planning	1-11
	Product Documentation	1-13
	Customer Support	1-15
	What Is a Parameterized Cell?	1-17
	Creating a Pcell	1-19
	Advantages of SKILL Pcells	1-21
	Pcell Example	1-23
	Pcell Layout Examples	1-25
	SKILL Pcells and Relative Object Design	1-27
Module 2	Introduction to Relative Object Design	
	Module Objectives	2-3
	What Is Relative Object Design?	2-5
	Why Relative Object Design?	2-7
	ROD Concepts	2-9
	Named Objects	2-11
	Named Object Example	2-13
	Accessing an Object Without ROD	2-15
	Object Handles	2-17
	System-Defined Handles	2-19
	User-Defined Handles	2-21
	Object Alignment	2-23
	Connectivity	2-25
	Creating Nets and Pins Without ROD	2-27
	Multipart Paths	2-29
	Multipart Path Example: Bus	2-31
	Multipart Path Example: Guard-Ring	
	ROD Object ID	
	ROD Object Structure	
	ROD Object Structure Example	
	Example: Accessing Handles	

	Creating ROD Objects	2-43
	Creating Multipart Paths	2-45
	Lab Overview	2-47
Module 3	Exploring Relative Object Design	
	Module Objectives	3-3
	Handles for Width and Length	3-5
	Multipart Path Bounding Boxes	3-7
	Path and Polygon Segments	3-9
	Rectangle Segments	3-11
	Segment Point Handles	3-13
	Polygon Segment Point Handles	3-15
	Segment Point Handles for Paths	3-17
	Point Handles for Multisegment Paths	3-19
	Point Handles for Extended-Type Paths	
	Segment Length Handles	
	Segment Length Handles for Multisegment Paths	
	Relative Object Design Functions	
	rodCreateRect	
	rodCreateRect ?subRectArray Option	3-31
	rodCreatePolygon	
	rodCreatePath	3-35
	rodCreatePath: Master Path Arguments	
	rodCreatePath with Offset Subpath	
	rodCreatePath with Enclosed Subpath	
	rodCreatePath with Subrectangles	
	ROD Connectivity Arguments	
	Creating Objects from Other Objects	
	rodAlign	
	Lab Overview	
Module 4	Creating and Using SKILL Parameterized Cells	
	Module Objectives	4-3
	How Pcells Function	4-5
	Defining Parameter Values	4-7
	Creating a SKILL Pcell	4-9
	pcDefinePCell Syntax	4-11
	Using the pcCellView Variable	
	SKILL Pcell Example	

	Using the SKILL Operator ~> with Pcells	4-17
	Creating Instances Within Pcells	4-19
	Accessing Technology File Data	4-21
	Safety Rules for Creating SKILL Pcells	4-23
	Supported SKILL Functions for Pcells	4-25
	What to Avoid When Creating Pcells	4-27
	Debugging Pcells	4-31
	Pcell Debugging Techniques	4-33
	Incremental Composition	4-35
	Interactive Trials	4-37
	Visibility by Global Variables	4-39
	Visibility by Labels	4-41
	Lab Overview	4-43
Module 5	Going Further with SKILL Pcells	
	Module Objectives	
	Using Component Description Format	
	CDF Example	
	Parameter Precedence	
	Adding CDF Parameters	
	Stretchable Pcells	
	Example: rodAssignHandleToParameter	
	Interactive Feedback	
	Controlling Parameter Values	
	Lab Overview	
	Sample Pcells	5-23
	Concepts in Sample Pcells	5-25
	Pcell Code Encapsulation	
	Advantages of Code Encapsulation	
	Disadvantages of Code Encapsulation	
	Automatic Abutment in Virtuoso XL	
	Abutment Requirements	
	Abutment Automatic Spacing in Virtuoso XL	5-37
	Setting Up Cells for Abutment	5-39
	Abutment Function	5-41
	Abutment Function Return Values	5-43
	Auto-Abutment Action Sequence	
	Auto-Abutment Process	5-47
	Abutment Facts	5-49
	Abutment Fiction	5-51

	Multiple Abutment Pins	5-53
	Lab Overview	5-55
Module 6	Creating and Using Qcells (Optional)	
	Module Objectives	6-3
	Qcell Overview	6-5
	Qcell and Pcell Comparison	6-7
	Qcell Functionality	6-9
	Defining and Installing Qcells—Overview	6-11
	Qcell cdsMos—Layers	6-13
	Qcell cdsVia—Layers	6-21
	Qcell Guard-Ring—Overview	6-27
	Qcell Guard-Ring—Rules	6-31
	Qcell Guard-Ring—Parameter Defaults	6-33
	Qcell—Rules Browser	6-35
	Qcell—View Device Configuration	6-37
	Qcells—Create Device	6-39
	Qcells—Create Guard-Ring	
	Editing Placed Qcells	6-43
	Lab Overview	6-47
Appendix .	A Technology File and Translator Information Module Objectives	A-3
	DFII Technology Files—Controls	
	DFII Technology Files—layerRules	
	DFII Technology Files—physicalRules	A-11
	DFII Technology Files—electricalRules	A-15
	DFII Technology File—Devices	A-17
	DFII Technology File—lxRules	A-23
	DFII Technology File—lxRules—MPPs	A-27
	VCAR Rules	A-33
	VCAR Rules—Layers	A-35
	VCAR Rules—Layers Example	A-37
	VCAR Rules—Vias	A-39
	VCAR Rules—Via Example	A-41
	VCAR Rules—Equivalent Layers	A-43
	VCAR Rules—Boundary Layers	A-45
	VCAR Rules—Scopes	A-47
	VCAR Rules—Scopes Example	A-49

VCAR Rules—Keepouts	A-51
VCAR Rules—Keepouts Example	A-55
VCAR Rules—Conductors	A-57
VCAR Rules—Conductors Example	A-59