Binaire

Les ordinateurs ne font pas les calculs avec les chiffres décimaux de 0 à 9. En effet, ce sont des appareils électroniques avec deux états privilégiés : soit il y a du courant, soit il n'y a en a pas. L'ordinateur travaille donc avec seulement deux chiffres 1 et 0.

Activité 1.

1. Puissances de 10.

On note 10^n pour $10 \times 10 \times \cdots \times 10$ (avec *n* facteurs). Par exemple, $10^3 = 10 \times 10 \times 10 = 1000$. Complète le tableau suivant :

10^{7}	10^{6}	10^{5}	10^{4}	10^3	10^2	10^1	10^{0}
•••	•••	•••	•••	•••		10	1

2. Base 10.

L'écriture habituelle des entiers se fait dans le système décimal (en base 10). Par exemple, 365 c'est $3 \times 100 + 6 \times 10 + 5 \times 1$:

(on voit bien que 3 est le chiffre des centaines, 6 celui des dizaines et 5 celui des unités).

Autre exemple : $1203 = 1 \times 1000 + 2 \times 100 + 0 \times 10 + 3 \times 1$.

1	2	0	3
1000	100	10	1

Décompose 24834 et 129071 en base 10 comme ci-dessus.

3. Puissances de 2.

On note 2^n pour $2 \times 2 \times \cdots \times 2$ (avec n facteurs). Par exemple, $2^3 = 2 \times 2 \times 2 = 8$. Complète le tableau suivant :

2^7	2^{6}	2^5	2^{4}	2^{3}	2^2	2^1	2^0
				•••	•••	2	1

4. Base 2.

Tout entier admet une écriture en base 2. Par exemple, 1.1.0.0.1 (prononce 1, 1, 0, 0, 1) est l'écriture binaire de l'entier 25. Comment fait-on ce calcul à partir de son écriture en base

BINAIRE 2

2? C'est comme pour la base 10, mais en utilisant les puissances de 2!

1	1	0	0	1
16	8	4	2	1

Donc l'écriture 1.1.0.0.1 en base 2 représente l'entier :

$$1 \times 16 + 1 \times 8 + 0 \times 4 + 0 \times 2 + 1 \times 1 = 16 + 8 + 1 = 25.$$

Calcule l'entier dont l'écriture binaire est :

- 1.0.1
- 1.0.1.1
- 1.1.0.0.0
- 1.0.1.0.1.1
- 1.1.1.0.1.0.1

Activité 2.

- 1. Trouve l'écriture binaire des entiers de 1 à 20. Par exemple, l'écriture binaire de 13 est 1.1.0.1.
- 2. Comment reconnais-tu à partir de son écriture binaire qu'un entier est pair?
- 3. Explique la blague favorite des informaticiens : « Il y a 10 catégories de personnes, celle qui connaît le binaire et celle qui ne le connaît pas ! ».

Voici une méthode générale pour calculer l'écriture binaire d'un entier :

- On part de l'entier dont on veut l'écriture binaire.
- On effectue une suite de divisions euclidiennes par 2 :
 - à chaque division, on obtient un reste qui vaut 0 ou 1;
 - on obtient un quotient que l'on divise de nouveau par 2, on s'arrête quand ce quotient est nul.
- On lit l'écriture binaire comme la suite des restes, mais en partant du dernier reste.

Exemple.

Calcul de l'écriture binaire de 13.

- On divise 13 par 2, le quotient est 6, le reste est 1.
- On divise 6 (le quotient précédent) par 2 : le nouveau quotient est 3, le nouveau reste est 0.
- On divise 3 par 2 : quotient 1, reste 1.
- On divise 1 par 2 : quotient 0, reste 1.
- C'est terminé (le dernier quotient est nul).
- Les restes successifs sont 1, 0, 1, 1. On lit l'écriture binaire à l'envers c'est 1.1.0.1.

Exemple.

Écriture binaire de 57.

Les restes successifs sont 1, 0, 0, 1, 1, 1, donc l'écriture binaire de 57 est 1.1.1.0.0.1.

Activité 3.

Calcule l'écriture binaire des entiers suivants :

- 28
- 39
- 99
- 175
- 255
- 256