Общие методы для более быстрого обучения и более эффективных моделей

Егор Швецов

tg: @dalime e-mail: e.shvetsov@skoltech.ru

>>> Кейсы

<u>Размер данных:</u> датасеты часто превышают емкость локального дискового хранилища, поэтому нужны распределенные системы хранения и эффективный доступ к сети.

Скорость передачи данных: ограниченная скорость I/O.

<u>Аугментация и перемешивание:</u> данные для обучения необходимо перемешивать и аугментировать.

<u>Масштабируемость:</u> пользователи часто хотят разрабатывать и тестировать небольшие наборы данных, а затем быстро масштабировать их до больших наборов данных.

- WebDataset
- TFRecord
- MXNet RecordIO
- FFCV

- Разобьем датасет на шарды
- Соберем все в один файл

Возможность поиска/индексируемость

Хороший формат данных должен также изначально поддерживать быстрый доступ только к определенному подмножеству данных.

FFCV — библиотека для простого и быстрого обучения моделей машинного обучения.

FFCV ускоряет обучение модели за счет устранения (часто незаметных) узких мест в загрузке данных из процесса обучения.

В частности:

- Эффективный формат хранения файлов
- Кеширование
- Предварительная загрузка
- Асинхронная передача данных
- JIT-компиляция для загрузки данных

ImageNet ResNet-50 75% за 20 минут на одной машине.

Пример применения профилировки и дальше

Для определения медленных участков кода провели профилировку. Нашли два слабых места: sklearn-метрики и загрузка данных. Первая проблема ощущалась наиболее остро — сильно замедляла обучение со временем (рисунки до/после оптимизации ниже, ускорение с ~350 до ~46 ms). Решением первой проблемы был переход к torchmetrics, второй — webdataset. Переход к torchmetrics обусловлен также тем, что эта библиотека поддерживает ddp, mixed precision и работу на GPU.

Для ускорения обучения были имплементированы <u>multi-gpu-</u> и <u>ddp</u>-методы.

<u>Multi-дри</u> подразумевает обучение одной архитектуры на одной видеокарте.

<u>DDP</u> (distribute data parallel) — обучение одной модели на нескольких видеокартах путем распределения батча между видеокартами.

DDP нужен, когда <u>multi-дри</u> нельзя использовать, например в методе Diff NAS.

Также для ускорения заменили <u>torch nn.LayerNorm</u> на арех <u>FusedLayerNorm</u> om Nvidia и onmuмизаторы SGD и ADAM на <u>FusedSGD</u> и <u>FusedADAM</u>, которые быстрее.

ссылка

Onmuмизация по памяти с mixed precision и FusedLayerNorm на примере gamacema amex и трансформера

Dataset	Model	Mixed Precision	FusionLayerNorm	Batch	GPU mem	Saved mem
amex	EncoderDecoderModel	False	False	512	4.0 GB	0 GB
amex	EncoderDecoderModel	True	False	512	4.4 GB	- 0.4 GB
amex	EncoderDecoderModel	<u>True</u>	<u>True</u>	512	2.9 GB	1.1 GB
amex	EncoderDecoderModel	False	False	1024	6.9 GB	0 GB
amex	EncoderDecoderModel	<u>True</u>	False	1024	7.8 GB	- 0.9 GB
amex	EncoderDecoderModel	True	True	1024	4.7 GB	2.3 GB

Вывод: переход от ADAM к FusedADAM дает ускорение до 30%, а замена <u>LayerNorm</u> сильно уменьшает потребляемую видеокартой память (из-за особенности реализации архитектуры трансформера) для mixed precision. На следующих слайдах будут результаты ускорения.

Onmuмизация по времени с использованием FusedAdam на примере gamacema amex и трансформера

Dataset	Model	Mixed Precision	FusedAdam	Batch	time/epoch	Speedup
amex	EncoderDecoderModel	False	False	512	498 sec	0 %
amex	EncoderDecoderModel	True	False	512	387 sec	22 %
amex	EncoderDecoderModel	True	True	512	342 sec	<u>31 %</u>
amex	EncoderDecoderModel	False	False	1024	380 sec	0 %
amex	EncoderDecoderModel	True	False	1024	320 sec	16 %
amex	EncoderDecoderModel	True	True	1024	280 sec	26 %

Вывод: переход от ADAM к FusedADAM дает ускорение до 30%, а замена <u>LayerNorm</u> сильно уменьшает потребляемую видеокартой память (из-за особенности реализации архитектуры трансформера) для mixed precision. На следующих слайдах будут результаты ускорения.

>>> Корсеты

Fashion MNIST Cifar 10

- [1] Apricot: Submodular selection for data summarization in Python
- [2] Estimating Example Difficulty Using Variance of Gradients
- [3] Coresets for Data-efficient Training of Machine Learning Models
- [4] Coresets for Robust Training of Deep Neural Networks against Noisy Labels
- [5] <u>Using Small Proxy Datasets to Accelerate Hyperparameter Search</u>
- [6] Rethinking Differentiable Search for Mixed-Precision Neural Networks
- [7] ESTIMATING EXAMPLE DIFFICULTY USING VARIANCE OF GRADIENTS
- [8] Selection via Proxy: Efficient Data Selection for Deep Learning
- [9] Estimating Training Data Influence by Tracing Gradient Descent
- [10] An Empirical Study of Example Forgetting during Deep Neural Network Learning
- [11] Introduction to Core-sets: an Updated Survey
- [12] Core-set Sampling for Efficient Neural Architecture Search
- [13] The Implicit Bias of Gradient Descent on Separable Data

>>> JIT — trace — compile & repeat

Compiler	Interpreter
Компилятор работает со всем кодом сразу	Работает с кодом по мере того как читает его
Компилятор генерирует машинный код	Не создает промежуточного представления в виде машинного кода
Компилятор nogxogum для продакшена	Хорошо подходит для быстрой разработки

Go go version go1.7.5 Rust rustc version 1.18.0 VB.NET mono version 4.4.2.0 (vb. mono version 4.4.2.0 (mi Java javac version 1.8.0_131 JavaScript node version 6.10.3 Perl perl version 5.24.1	Programming Languages	Compilers and Interpreters version
C# mono version 4.4.2.0 (mi Java javac version 1.8.0_131 JavaScript node version 6.10.3 Perl perl version 5.24.1	Go	
Perl perl version 5.24.1	C#	mono version 4.4.2.0 (vbnc mono version 4.4.2.0 (mics) javac version 1.8.0_131
PHP php version 7.0.19 Python python version 2.7.13 R Rscript version 3.3.3 Ruby ruby version 2.3.3p222 Swift swift version 3.0.2	Perl PHP Python R Ruby	perl version 5.24.1 php version 7.0.19 python version 2.7.13 Rscript version 3.3.3 ruby version 2.3.3p222

Compiler	Interpreter
Компилятор работает со всем кодом сразу	Работает с кодом по мере того как читает его
Компилятор генерирует машинный код	Не создает промежуточного представления в виде машинного кода
Компилятор подходит для продакшена	Хорошо подходит для быстрой разработки

Programming	Compilers and
Languages	Interpreters version
C, C++	gcc version 6.3.1 20161221-
Go	go version go1.7.5
Rust	rustc version 1.18.0
vв.neт	mono version 4.4.2.0 (vbnc)
C#	mono version 4.4.2.0 (mics)
Java	javac version 1.8.0_131
JavaScript Perl PHP Python R Ruby Swift	node version 6.10.3 perl version 5.24.1 php version 7.0.19 python version 2.7.13 Rscript version 3.3.3 ruby version 2.3.3p222 swift version 3.0.2

Compiler	Interpreter
Компилятор работает со	Работает с кодом по мере того
всем кодом сразу	как читает его
Компилятор генерирует машинный код	Не создает промежуточного представления в виде машинного кода
Компилятор подходит	Хорошо подходит для быстрой
для продакшена	разработки

	Programming Languages	Compilers and Interpreters version
Compiled	C, C++ Go Rust	gcc version 6.3.1 20161221- go version go1.7.5 rustc version 1.18.0
Semi- Compiled	VB.NET C# Java	mono version 4.4.2.0 (vbnc) mono version 4.4.2.0 (mics) javac version 1.8.0_131
Interpreted	JavaScript Perl PHP Python R Ruby Swift	node version 6.10.3 perl version 5.24.1 php version 7.0.19 python version 2.7.13 Rscript version 3.3.3 ruby version 2.3.3p222 swift version 3.0.2

Компиляторы

Компиляторы преобразуют код языка высокого уровня в машинный код за один сеанс.

- (1) <u>Компиляторам может потребоваться некоторое время</u>, поскольку им приходится сразу транслировать код высокого уровня на машинный язык более низкого уровня, а затем сохранять исполняемый объектный код в памяти.
- (2) <u>Компилятор создает машинный код, который выполняется на процессоре с определенной архитектурой</u> набора инструкций (ISA), которая зависит от процессора. Например, вы не сможете скомпилировать код для х86 и запустить его на архитектуре MIPS без специального компилятора.
- (3) <u>Компиляторы также зависят от платформы.</u> То есть компилятор может преобразовать, например, С++ в машинный код, предназначенный для платформы, на которой работает ОС Linux. Однако кросс-компилятор может генерировать код для платформы, отличной от той, на которой он работает сам.

Интерпретоторы

Существует несколько типов интерпретаторов:

- Синтаксически управляемый интерпретатор, то есть интерпретатор абстрактного синтаксического дерева (AST)
- Интерпретатор байт-кода и многопоточный интерпретатор.
- JIT-интерпретатор (разновидность гибридного интерпретатора или компилятора) и некоторые другие

Примеры языков программирования, использующих интерпретаторы: Python, Ruby, Perl и PHP.

Just-in-time (компиляция «точно в срок»)— это метод повышения производительности интерпретируемых программ. Во время выполнения программа может быть скомпилирована в нативный код для повышения производительности.

Статическая компиляция преобразует код в язык для конкретной платформы. **Интерпретатор непосредственно выполняет исходный код.**

JIT-компиляция пытается использовать преимущества обоих. Пока интерпретируемая программа выполняется, JIT-компилятор анализирует код и компилирует его в машинный код.

В зависимости от компилятора это преобразование может выполняться для небольшого участка кода или для всего кода.

Что важно понимать о JIT-компиляции: она скомпилирует байт-код в инструкции машинного кода работающей машины. Это означает, что полученный машинный код оптимизирован для архитектуры ЦП работающей машины.

Динамический анализ делает JIT эффективным:

Hanpuмер, он запускает код и видит, что он использует только целые числа, поэтому мы можем оптимизировать эту часть.

Получается, у него больше информации, чем у компилятора.

Динамический анализ делает JIT эффективным:

Например, он запускает код и видит, что он использует только целые числа, поэтому мы можем оптимизировать эту часть.

Получается, у него больше информации, чем у компилятора.

Динамический анализ делает JIT эффективным:

Например, он запускает код и видит, что он использует только целые числа, поэтому мы можем оптимизировать эту часть.

Получается, у него больше информации, чем у компилятора.

```
diff?@droid: time python3 add_random.py 5
0.044
diff?@droid: time pypy3 add_random.py 5
0.897
diff?@droid:

def my_add(x,y):
    return x+y

a = 0
w = ''
for _ in range(int(10**s)):
    if random.random() > 0.5:
        w+=my_add('a','b')
    else:
        a +=my_add(1,1)
```

So, JIT is always better?

When compilation happens	At runtime, just before code is executed	Before runtime (e.g., during build/deployment)
Startup time	Slower initial startup (due to compilation overhead)	Faster startup (code is already compiled)
Peak performance	Can be very high (uses runtime profiling to optimize hot paths)	Good, but may miss runtime-specific optimizations
Memory usage	Higher (needs to store both bytecode and compiled native code)	Lower (only native code is needed)
Portability	High (distributes platform-independent bytecode)	Lower (must compile for each target platform)
Optimization opportunities	Can use actual runtime data (e.g., which branches are taken)	Limited to static analysis and assumptions

А что мы вообще хотим от наших компиляторов?

К чему это все?

- Хотим научиться переносить код в другую среду выполнения (любую).
- Хотим адаптировать код под актуальное железо (любое)
- Хотим адаптировать код в принципе (чуть позже о том, как)
- Хотим избавиться от Python GIL
- Хотим, чтобы это было удобно

В итоге, коллеги вдохновились тем что есть в других языках и решили сделать что-то похожее для торча.

Глобальная блокировка интерпретатора Python (GIL)

Thread 1 Running Thread 2 Running Waiting Waiting Executing Executing for lock for lock Thread 2 Thread 1 Thread 2 Locked Locked Python Interpreter Python Interpreter CPU CPU

Dynamic control flow	Когда выполнение зависит от данных if x[0] == 4: x += 1
Tracing	Метод экспорта. Он запускает модель с определенными входными данными и «отслеживает/записывает» все выполняемые операции в граф
Scripting	Еще один способ экспорта. Он анализирует исходный код модели на Python и компилирует код в граф
TorchScript	Когда говорят TorchScript обычно имеют в виду graph-based intermediate representation (IR)
torch.jit.trace	При использовании torch.jit.trace вы предоставляете свою модель и образец входных данных в качестве аргументов. Входные данные будут передаваться через модель, как при обычном запуске, выполненные операции будут отслеживаться и записываться в TorchScript. Логическая структура будет заморожена в пути, выбранном во время выполнения
	= Fails to capture dynamic control flow ==
torch,jit.script	При использовании torch.jit.script вы просто указываете свою модель в качестве аргумента. TorchScript - IR будет сгенерирован в результате статической проверки содержимого nn.Module (рекурсивно).
	== Not all Python features are supported ==
torch.fx.symbolic_trace	torch.fx — это платформа для Python-to-Python преобразований кода PyTorch. TorchScript, с другой стороны, больше ориентирован на перемещение программ PyTorch за пределы Python для целей развертывания.
(другой зверь, но тоже рядом)	В этом смысле FX и TorchScript ортогональны друг другу и даже могут быть составлены друг из друга (например, преобразовывать программы PyTorch с помощью FX, а затем экспортировать их в TorchScript для развертывания).
	Одно из применений torch.fx — это создание графа вычислений и манипуляция этим графом

Собственно и все

graph-based intermediate representation (IR)

CODE torch.jit.trace тorchScript Компилируем в граф

```
@torch.jit.script
def foo(len):
    # type: (int) ->
torch.Tensor
    rv = torch.zeros(3, 4)
    for i in range(len):
        if i < 10:
            rv = rv - 1.0
        else:
            rv = rv + 1.0
        return rv
print(foo.graph)</pre>
```

```
graph(%len.1 : int):
 %24 : int = prim::Constant[value=1]()
 %17 : bool = prim::Constant[value=1]() # test.py:10:5
 %12 : bool? = prim::Constant()
 %10 : Device? = prim::Constant()
 %6 : int? = prim::Constant()
 %1 : int = prim::Constant[value=3]() # test.py:9:22
 %2 : int = prim::Constant[value=4]() # test.py:9:25
 %20 : int = prim::Constant[value=10]() # test.py:11:16
 %23 : float = prim::Constant[value=1]() # test.py:12:23
  %4 : int[] = prim::ListConstruct(%1, %2)
 %rv.1 : Tensor = aten::zeros(%4, %6, %6, %10, %12) # test.py:9:10
 %rv : Tensor = prim::Loop(%len.1, %17, %rv.1) # test.py:10:5
   block0(%i.1 : int, %rv.14 : Tensor):
     %21 : bool = aten::lt(%i.1, %20) # test.py:11:12
     %rv.13 : Tensor = prim::If(%21) # test.py:11:9
       block0():
         %rv.3 : Tensor = aten::sub(%rv.14, %23, %24) # test.py:12:18
          -> (%rv.3)
       block1():
         %rv.6 : Tensor = aten::add(%rv.14, %23, %24) # test.py:14:18
          -> (%rv.6)
      -> (%17. %rv.13)
  return (%rv)
```

В чем все-таки разница?

torch.jit.trace

torch.jit.script

А когда нам лучше «поймать» граф вычислений? torch.jit.script фиксирует как операции, так и полную условную логику вашей модели.

Но только в случае, если ваша модель не использует не-<u>Pytorch функционанал</u> и ее логика ограничена <u>поддерживаемым подмножеством функций и синтаксиса Python</u>.

Если что-то не поддерживается или не стандартно, то нам надо переписывать код, это работает в большинстве случаев.

Поддерживает только статическую типизацию.

torch.jit.trace не учитывает динамически меняющуюся структуру, которая зависит от входных данных. Может сгенерировать код только по одному графу вычислений и не выдать ошибок.

```
def f1(x, y):
   if x.sum() < 0:
      return -y
   return our_lib.squeeze(y)</pre>
```

torch.jit.trace запомнит только один путь

torch.jit.script не будет работать с какой-то непонятной библиотекой, если она не на чистом Python или Pytorch. Например, часть Scipy на C++.

Ключевые различия

	torch.jit.script	torch.jit.trace	torch.compile
Цель	Экспорт моделей с динамической логикой	Экспорт статических моделей	Оптимизация скорости выполнения (во время работы)
Обрабатывает условные конструкции/циклы	Да (статический анализ кода)	Нет (записывает один путь выполнения)	Да (через PyTorch Dynamo)
Сериализуемый	Да (для деплоя)	Да (для деплоя)	Нет
Пример использования	Деплой вне Python (С++, мобильные устройства). Ускорение инференса.	Статические модели. Ускорение инференса.	Ускорение обучения/инференса
Представление	graph-based intermediate representation (IR)	graph-based intermediate representation (IR)	Torch FX

Pytorch 2.0 - Torch Dynamo

Разобьет граф вычислений на кусочки, будет работать только с тем, с чем может.

Как происходит оптимизация?

Vertical Fusion

Horizontal Fusion

Источник

Vertical Fusion

Horizontal Fusion

Источник

Vertical Fusion

Horizontal Fusion

Источник

- Fusion
- Оптимизация графа
- Оптимизация памяти (Buffer Reuse)
- Алгебраическое переписывание
- Развертывание цикла
- Автоматическое размещение работы
- Выполнение вне очереди
- Многопоточность

```
from transformers import BertModel, BertTokenizer, BertConfig
import torch
enc = BertTokenizer.from_pretrained("google-bert/bert-base-uncased")
# Tokenizing input text
text = "[CLS] Who was Jim Henson ? [SEP] Jim Henson was a puppeteer [SEP]"
tokenized_text = enc.tokenize(text)
# Masking one of the input tokens
masked index = 8
                                                                                          Pytorch
tokenized_text[masked_index] = "[MASK]"
indexed_tokens = enc.convert_tokens_to_ids(tokenized_text)
segments_ids = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1]
                                                                                          TorchScript
# Creating a dummy input
tokens_tensor = torch.tensor([indexed_tokens])
segments_tensors = torch.tensor([segments_ids])
dummy_input = [tokens_tensor, segments_tensors]
# Initializing the model with the torchscript flag
# Flag set to True even though it is not necessary as this model does not have an LM Head.
config = BertConfig(
    vocab_size_or_config_json_file=32000.
    hidden_size=768,
    num hidden lavers=12.
    num_attention_heads=12.
    intermediate_size=3072.
    torchscript=True.
# Instantiating the model
model = BertModel(config)
# The model needs to be in evaluation mode
model.eval()
# If you are instantiating the model with *from_pretrained* you can also easily set the TorchScript flag
model = BertModel.from_pretrained("google-bert/bert-base-uncased", torchscript=True)
# Creating the trace
traced_model = torch.jit.trace(model, [tokens_tensor, segments_tensors])
torch.jit.save(traced_model, "traced_bert.pt")
```

Скорость на СРИ в

mc

86.23

81.57

Скорость на GPU в

mc

16.49

10.54

BERT

```
1 from transformers import BertTokenizer, BertModel
     import numpy as np
     import torch
     from time import perf_counter
     def timer(f, *args):
 8
         start = perf_counter()
        f(*args)
 9
         return (1000 * (perf counter() - start))
10
11
     script_tokenizer = BertTokenizer.from_pretrained('bert-base-uncased', torchscript=True)
     script_model = BertModel.from_pretrained("bert-base-uncased", torchscript=True)
14
15
     # Tokenizing input text
     text = "[CLS] Who was Jim Henson ? [SEP] Jim Henson was a puppeteer [SEP]"
     tokenized_text = script_tokenizer.tokenize(text)
19
      Masking one of the input tokens
     masked index = 8
22
     tokenized_text[masked_index] = '[MASK]'
24
     indexed_tokens = script_tokenizer.convert_tokens_to_ids(tokenized_text)
26
     segments_ids = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1]
27
28
     # Creating a dummy input
     tokens_tensor = torch.tensor([indexed_tokens])
     segments_tensors = torch.tensor([segments_ids])
TorchScript-BERT-Example1.1.py hosted with ♥ by GitHub
                                                                                     view raw
```

```
# Example 1.1 BERT on CPU

anative_model = BertModel.from_pretrained("bert-base-uncased")

np.mean([timer(native_model,tokens_tensor,segments_tensors) for _ in range(100)])

# Example 1.2 BERT on GPU

# Both sample data model need be on the GPU device for the inference to take place

anative_gpu = native_model.cuda()

tokens_tensor_gpu = tokens_tensor.cuda()

segments_tensors_gpu = segments_tensors.cuda()

np.mean([timer(native_gpu,tokens_tensor_gpu,segments_tensors_gpu) for _ in range(100)])

TorchScript-BERT-PyTorch-Example1-2.py hosted with ♥ by GitHub

view raw
```

```
# Example 2.1 torch.jit.trace on CPU

traced_model = torch.jit.trace(script_model, [tokens_tensor, segments_tensors])

np.mean([timer(traced_model,tokens_tensor,segments_tensors) for _ in range(100)])

# Example 2.2 torch.jit.trace on GPU

traced_model_gpu = torch.jit.trace(script_model.cuda(), [tokens_tensor.cuda(), segments_100])

np.mean([timer(traced_model_gpu,tokens_tensor.cuda(),segments_tensors.cuda()) for _ in range(100)])

TorchScript-Script-Example-1.3.py hosted with ♥ by GitHub
view raw
```


Источник картинки: deci.ai

ONNX предоставляет стандартизированный формат для моделей глубокого обучения. Это позволяет легко использовать их в различных средах и платформах. Часто ONNX применяют для обеспечения плавного перехода моделей между различными средами.

ONNX Runtime	Открытый исходный код, первоначально созданный Microsoft u Facebook	Может использоваться как интерфейс высокого уровня для TensorRT и OpenVino
TensorRT	Nvidia	Этот инструмент, разработанный для графических процессоров NVIDIA, максимизирует пропускную способность и эффективность. Он оптимизирует нейронные сети путем объединения слоев, выбора эффективных форматов данных и использования арифметики с пониженной точностью (FP16)
OpenVino	Intel	OpenVINO, разработанный Intel, специализируется на оптимизации моделей глубокого обучения для оборудования Intel, особенно процессоров. Это важнейший инструмент для повышения производительности моделей, в которых ресурсы графического процессора недоступны или ограниченны

Нам нужны промежуточные представления, чтобы импортировать модель в другую среду выполнения:

ONNX, Tensor RT, OvenVino u mak ganee.

И один из вариантов это сделать — как раз через torch.jit.trace.

Memog	Ускорение инференс	
torch.compile (Torch Dynamo)	~ 1.5 x (CPU u GPU)	
ONNX Runtime + NVIDIA Triton server	~ 2-4 x (CPU u GPU)	
Nvidia TensorRT + NVIDIA Triton server	~ 5–10 х (только GPU)	

Memog	Ускорение на обучении	
torch.compile (Torch Dynamo)	~1.25	
TorchScript	~1.25	
ONNX Runtime	~ 1.5	
TensorRT	Только инференс	

	TensorRT	ONNX
Лицензия	Apache 2.0 (optimization engine is closed source)	MIT
Легкость использования	Сложна	Терпимо
Документация	Разбросано по кусочкам	Становится лучше
Перформанс	Отличный	Хорошее

SOURCE