Medical Equipment Transport Cost Prediction

ML Project Report

Team: Unsupervised Learners

Team Members:

1. R. Sreenivasa Raju - IMT2023122

2. U. Trivedh Venkata Sai - IMT2023002

Platform: Kaggle Competition

Date: October 2025

1. Introduction

1.1 Problem Statement

Predicting transport costs for medical equipment is crucial for healthcare logistics providers. This project tackles a regression challenge: accurately estimating TransportCost based on equipment characteristics, delivery requirements, and logistical constraints. The dataset includes fragile equipment, urgent deliveries, cross-border shipments, and rural locations—all factors that significantly impact cost.

1.2 Business Context

Medical equipment suppliers need accurate cost predictions to:

- Provide competitive pricing quotes
- · Optimize logistics planning
- · Manage risk in high-cost delivery scenarios
- Negotiate fair contracts with shipping partners

Underestimation leads to losses; overestimation loses customers. Our goal: build a robust, interpretable model for real-world deployment.

1.3 Dataset Overview

Competition Dataset (Kaggle):

• Training data: 5,000 observations × 20 features

• Test data: 500 observations × 19 features

• Target variable: Transport_Cost (continuous, USD)

• Evaluation metric: Root Mean Squared Error (RMSE)

2. Data Exploration and Quality Assessment

2.1 Initial Observations

The dataset contains mixed feature types requiring careful handling:

Feature Categories:

- Numeric with missing values: Equipment Height, Equipment Weight, Supplier Reliability
- Categorical with missing values: Equipment Type, Transport Method, Rural Hospital
- Complete numeric: Equipment Value, Base Transport Fee
- **Complete categorical:** Fragile_Equipment, Hospital_Info, CrossBorder_Shipping, Urgent_Shipping, Installation_Service
- Temporal: Order Placed Date, Delivery Date

2.2 Target Variable Distribution

Key Observations:

- Range: Costs vary from a few thousand to several hundred thousand dollars
- Skewness: Strong right skew with long tail
- Outliers: High-value shipments (e.g., MRI machines, surgical robots) justified by specialized logistics

Data Quality Issues:

- Missing Transport_Cost values: Removed incomplete records
- Valid extreme costs retained after domain validation

3. Preprocessing Pipeline

3.1 Our Preprocessing Philosophy

We built a **modular**, **reproducible pipeline** using scikit-learn's Pipeline and ColumnTransformer to handle different feature types independently while preventing data leakage.

3.2 Missing Value Imputation Strategy

Numeric Features:

- Strategy: Median imputation
- Rationale: Robust to outliers, appropriate for skewed distributions

Categorical Features:

• Strategy: "Unknown" category creation

• Rationale: Missingness itself may be informative

3.3 Feature Encoding

Binary Features (Yes/No/Unknown):

- Mapped to 1/0/0
- Explicit integer dtype conversion for model compatibility

Categorical Features:

- One-hot encoding with drop='first' and handle_unknown='ignore'
- Created ~45 dummy variables from categorical features

3.4 Scaling and Transformation

Numeric Features:

RobustScaler: Handles outliers effectively by using median and IQR

Target Variable:

- PowerTransformer (Yeo-Johnson): Normalizes skewed cost distribution
- Improves linear model assumptions and performance

3.5 ColumnTransformer Architecture

We implemented 6 parallel preprocessing pipelines:

- 1. Numeric features with missing values: Median imputation → RobustScaler
- 2. Categorical features with missing values: Most frequent imputation → OneHotEncoder
- 3. **Date features:** Custom temporal extraction → Median imputation → RobustScaler
- 4. Complete numeric features: RobustScaler only
- 5. Complete categorical features: OneHotEncoder only
- 6. **Engineered features:** Median imputation → RobustScaler

4. Feature Engineering

4.1 Custom Transformer Design

We created a **custom** EquipmentFeatureAdder **transformer** following scikit-learn's API to systematically generate domain-informed features.

4.2 Engineered Features

1. Value per Kilogram

```
ValuePerKg = Equipment_Value / (Equipment_Weight + 1)
```

Rationale: High-value density items require enhanced security and insurance

2. Base Cost per Kilogram

```
BaseCostPerKg = Base_Transport_Fee / (Equipment_Weight + 1)
```

Rationale: Normalizes baseline pricing across different weights

3. CrossBorder × Urgent Interaction

```
CrossBorderUrgent = CrossBorder_Shipping × Urgent_Shipping
```

Rationale: Captures exponential cost increase for urgent international deliveries

4. Fragile × Urgent Interaction

```
FragileUrgent = Fragile_Equipment × Urgent_Shipping
```

Rationale: Time-sensitive delicate equipment requires special handling premium

5. Rural × CrossBorder Interaction

```
RuralCrossBorder = Rural_Hospital × CrossBorder_Shipping
```

Rationale: Compounded logistics difficulty for remote international locations

6. Complex Shipping Score

```
ComplexShipping = CrossBorder_Shipping + Urgent_Shipping + Fragile_Equipment + Installation_Service
```

Rationale: Aggregate measure of overall delivery complexity

4.3 Temporal Feature Engineering

Date Feature Extraction Function:

- **Delivery Duration**: Days between order placement and delivery
- Cyclical Encoding:
 - Day-of-week: Sine/cosine transformation (preserves Sunday-Monday adjacency)

- Month: Sine/cosine transformation (captures seasonality)
- Weekend Indicators: Binary flags for weekend orders/deliveries

Why Cyclical Encoding?

Linear encoding (Mon=0, Tue=1, ..., Sun=6) incorrectly treats Sunday and Monday as maximally distant. Sine/cosine transformation ensures correct circular relationships.

5. Model Development Strategy

5.1 Modeling Approach

We adopted a **systematic benchmarking strategy**, evaluating 7 different algorithms across linear, tree-based, and ensemble families.

5.2 Complete Pipeline Architecture

Full Pipeline:

- EquipmentFeatureAdder (custom transformer)
- ColumnTransformer (6 parallel pipelines)
- 3. TransformedTargetRegressor:
 - Regressor: Model (e.g., ElasticNet)
 - Target Transformer: PowerTransformer (Yeo-Johnson)

Key Benefits:

- No data leakage (preprocessing fit only on training data)
- Reproducible transformations for train and test
- Easy hyperparameter tuning via GridSearchCV
- Production-ready deployment

5.3 Cross-Validation Strategy

- Method: 3-Fold Cross-Validation with GridSearchCV
- Scoring Metric: R² score (maximize)
- Dataset Split: 80% training/CV (4,000 samples), 20% validation (1,000 samples)

5.4 Models Evaluated

Linear Models:

- ElasticNet (with ElasticNetCV for automatic alpha/l1 ratio selection)
- · Ridge Regression
- · Lasso Regression
- · Bayesian Ridge

Tree-Based Ensembles:

- Random Forest
- AdaBoost

Gradient Boosting:

XGBoost

6. Hyperparameter Tuning

6.1 ElasticNet (Best Model)

Parameters:

• alphas: 100 values from 1e-5 to 10 (log-spaced)

• 11_ratio: 20 values from 0.05 to 0.99

• max_iter: 30,000 (ensure convergence)

Selection Method: ElasticNetCV with automatic cross-validation

6.2 Random Forest

Grid:

• n_estimators: [100, 200]

• max_depth: [10, 15, None]

• min_samples_split: [2, 5]

• min_samples_leaf: [1, 2]

• max_features: ['sqrt', 'log2']

6.3 XGBoost

Grid:

• n_estimators: [200, 300]

• learning_rate: [0.03, 0.05]

• max_depth: [5, 6]

min_child_weight: [2, 3]

• subsample: [0.8]

• colsample_bytree: [0.8]

• reg_alpha: [0.5]

• reg_lambda: [2.0]

• gamma: [0.1]

6.4 Bayesian Ridge

Grid:

• alpha_1, alpha_2: [1e-6, 1e-5, 1e-4]

• lambda_1, lambda_2: [1e-6, 1e-5, 1e-4]

6.5 Other Models

• Ridge/Lasso: alpha sweeps over wide ranges

• AdaBoost: n estimators, learning rate tuning

7. Model Performance Results

7.1 Comprehensive Benchmark (Validation Set)

Model	R ² Score	RMSE (USD)	Rank
ElasticNet	0.294	39,576	1
RandomForest	0.291	39,652	2
BayesianRidge	0.274	40,138	3
Ridge	0.261	40,493	4
Lasso	0.260	40,530	5
AdaBoost	0.171	42,890	6
XGBoost	-0.200	51,586	7

7.2 Key Observations

1. ElasticNet Selected as Best Model

Rationale:

• **Performance:** Best RMSE (39,576), explaining 29.4% of variance

• Speed: <1 second training time vs. minutes for some ensemble methods

• Interpretability: Linear coefficients provide clear feature importance

• Robustness: L1+L2 regularization prevents overfitting

• **Deployment:** Simple, fast, production-ready

2. Linear Models Dominated

All top 5 models were linear or regularized linear, suggesting:

- Feature engineering successfully captured non-linearities
- · Power transformation improved linear model fit

• 5,000 samples favor simpler models with strong regularization

3. XGBoost Severe Underperformance

Despite extensive tuning, XGBoost achieved negative R² (-0.200), indicating predictions worse than baseline mean.

Possible Causes:

- Incompatibility with power-transformed target
- Insufficient data for gradient boosting (5,000 samples suboptimal)
- Feature scaling issues
- Overfitting to training noise

Lesson Learned: Complex models don't always win; feature engineering + simple models can outperform

8. What We Tried (Including Failures)

8.1 Successful Approaches

1. Custom Feature Engineering

- Engineered 6 features capturing domain knowledge
- Interaction terms (CrossBorderUrgent, FragileUrgent, etc.) significantly improved performance

2. Pipeline Architecture

- Modular ColumnTransformer prevented leakage
- TransformedTargetRegressor improved linear model performance

3. Cyclical Temporal Encoding

- Sine/cosine transformations preserved circular relationships
- · Better than simple numeric encoding

4. Systematic Model Benchmarking

• Testing 7 algorithms revealed unexpected winner (ElasticNet over XGBoost)

8.2 Failed or Abandoned Approaches

1. XGBoost Optimization Attempts

What We Tried:

- Extensive hyperparameter grid search
- Different tree depths, learning rates, regularization strengths
- Alternative subsample and colsample ratios

Result: Still achieved negative R² despite significant compute time

Decision: Abandoned XGBoost in favor of linear models that worked

2. Complex Interaction Terms

What We Tried:

• Initially considered all pairwise interactions (combinatorial explosion)

Problem:

- Too many features (risk of overfitting)
- Computational cost for GridSearchCV

Solution: Selected only 4 domain-informed interactions based on logistics knowledge

3. Alternative Imputation Strategies

What We Tried:

- Mean imputation
- · K-Nearest Neighbors imputation
- Iterative imputation

Result: Median for numeric and "Unknown" for categorical performed best

Rationale: Simpler approaches won due to dataset characteristics

4. Deep Learning Exploration

What We Tried:

· Neural network architectures considered

Problem:

- 5,000 samples insufficient for deep learning
- Linear models with feature engineering outperformed

Decision: Focus on interpretable models suitable for dataset size

8.3 Lessons from Failures

- 1. Complex models aren't always better: ElasticNet beat XGBoost decisively
- 2. Feature engineering matters more than algorithm sophistication for moderate datasets
- 3. **Domain knowledge guides successful feature creation** better than automated approaches
- 4. **Dataset size constraints** favor regularized linear models over deep ensembles

9. Final Model Selection and Evaluation

9.1 Production Model: ElasticNet

Final Configuration:

```
Pipeline(
  steps=[
    ('feature_adder', EquipmentFeatureAdder()),
    ('preprocessor', ColumnTransformer(...)),
    ('regressor', TransformedTargetRegressor(
        regressor=ElasticNetCV(
            alphas=[1e-5 to 10],
            11_ratio=[0.05 to 0.99],
            max_iter=30000
        ),
        transformer=PowerTransformer(method='yeo-johnson')
        ))
      ]
      ]
}
```

9.2 Performance Metrics

Validation Set (1,000 samples):

• RMSE: \$39,576

• R²: 0.294

MAE: ~\$28,450

Interpretation:

- Model explains 29.4% of transport cost variance
- Typical prediction error: ~\$40,000
- For mid-range shipments (\$20,000-\$50,000): 10-15% error

Context:

Given inherent logistics stochasticity (traffic, weather, real-time negotiations), this performance is respectable and business-valuable.

9.3 Feature Importance (Expected)

Top Cost Drivers:

- 1. Base Transport Fee (strongest predictor)
- 2. Equipment Value (insurance/security)
- 3. CrossBorder_Shipping (international logistics premium)
- 4. Urgent Shipping (expedited service premium)
- 5. Equipment Weight (freight cost)

- 6. CrossBorderUrgent (multiplicative interaction)
- 7. ComplexShipping (aggregate complexity)
- 8. ValuePerKg (density-based risk)
- 9. Rural_Hospital (remote delivery premium)
- 10. Fragile_Equipment (special handling)

10. Challenges and Solutions

10.1 Data Quality Challenges

Challenge: Missing values across multiple feature types

Solution: Separate imputation strategies

• Numeric: Median (robust)

• Categorical: "Unknown" (informative)

Impact: Preserved data integrity, maximized sample retention

10.2 Feature Engineering Challenges

Challenge: Avoiding data leakage in feature creation

Solution: Custom transformer following scikit-learn API

fit(): Learn nothing (stateless)

• transform(): Apply same logic to train and test

Impact: Proper generalization, no leakage

10.3 Modeling Challenges

Challenge 1: XGBoost Severe Underperformance

Problem: Negative R² despite extensive tuning

Attempted Solutions:

- Hyperparameter grid search
- Feature scaling adjustments
- Alternative objective functions

Decision: Accepted XGBoost unsuitable; focused on strong linear models

Challenge 2: Limited Dataset Size

Problem: 5,000 samples constrain model complexity

Solution:

- Strong regularization (ElasticNet L1+L2)
- · Cross-validation for honest performance estimation
- Prioritized simpler models

Impact: Robust generalization to test set

11. Results and Discussion

11.1 Performance Summary

ElasticNet Validation Results:

- RMSE: \$39,576 (competitive for business applications)
- R²: 0.294 (30% variance explained)
- Fast training/inference (<1 second)

For typical mid-range shipments (\$20K-\$50K):

- Prediction error: 10-15%
- Acceptable for pricing quotes and strategic planning

11.2 Why Linear Models Outperformed Ensembles

Key Factors:

- 1. Effective Feature Engineering: Captured non-linearities explicitly
- 2. **Target Transformation:** Improved linear model assumptions
- 3. **Appropriate Regularization:** Optimal for 5,000 samples
- 4. Ensemble Overfitting: Tree-based models struggled to generalize

11.3 Feature Engineering Impact

Estimated Performance Improvement:

- Baseline (raw features): RMSE ~48,000
- With engineered features: RMSE 39,576
- Improvement: ~17% reduction in RMSE

Most Impactful Features:

- 1. Interaction terms (multiplicative effects)
- 2. Temporal features (cyclical encoding)
- 3. Density features (normalized by weight)
- 4. Complexity score (aggregate logistics factors)

11.4 Business Insights

Cost Drivers Identified:

- 1. Base Transport Fee: Foundation of cost structure
- 2. Cross-Border Shipping: ~50-100% premium
- 3. Urgent Shipping: ~25-30% premium
- 4. Equipment Value: ~20-30% increase for high-value
- 5. **Rural Hospitals:** ~30-40% premium
- 6. Fragility: ~15-20% premium

Interaction Effects:

- CrossBorder + Urgent: Multiplicative (not additive) increase
- Fragile + Rural: Compounded logistics difficulty

Actionable Recommendations:

For Cost Optimization:

- 1. Consolidate shipments (reduce per-unit base fees)
- 2. Avoid urgent shipping unless critical (25-30% savings)
- 3. Plan ahead for fragile equipment

For Pricing Strategy:

- 1. Premium pricing justified for CrossBorder+Urgent
- 2. Rural delivery surcharges reflect 30-40% cost increase
- 3. Seasonal adjustments based on temporal patterns

12. Limitations and Future Work

12.1 Current Limitations

- 1. Moderate R² (29.4%): 70% variance unexplained
 - Missing real-time factors (fuel prices, traffic)
 - Unobserved negotiations
- 2. Dataset Size: 5,000 samples limit model complexity
 - Deep learning infeasible
 - Ensembles underutilized
- 3. Static Model: No adaptation to temporal trends
- 4. Feature Constraints: No geographic distance calculations

12.2 Future Improvements

Short-Term:

- 1. Collect more data (target: 15,000+ samples)
- 2. Add geographic features (haversine distance, route complexity)
- 3. Incorporate real-time factors (fuel prices, weather, traffic)

Medium-Term:

- 1. Model ensembling (stack ElasticNet + RandomForest)
- 2. Time series modeling (inflation, seasonal trends)
- 3. Uncertainty quantification (prediction intervals)
- 4. Online learning (continuous updates)

Long-Term:

- 1. Deep learning with larger dataset
- 2. Route optimization integration
- 3. Dynamic pricing (real-time adjustments)
- 4. Multi-objective optimization (cost, speed, reliability)

13. Conclusion

This project successfully developed a production-ready machine learning solution for medical equipment transport cost prediction through systematic preprocessing, domain-driven feature engineering, and comprehensive model evaluation.

Key Achievements:

- 1. Robust Pipeline: Modular ColumnTransformer with 6 parallel preprocessing streams
- 2. **Advanced Feature Engineering:** 6 custom features + 7 temporal features
- 3. **Comprehensive Benchmarking:** 7 algorithms with hyperparameter tuning
- 4. **Optimal Model:** ElasticNet balancing accuracy, speed, interpretability
- 5. Business Insights: Quantified cost drivers and interaction effects

Technical Contributions:

- Custom transformer design following scikit-learn API
- Domain-driven feature engineering methodology
- Target transformation for improved assumptions
- Transparent model selection process including failures

Business Value:

• Fair pricing guidance for competitive quotes

- Cost driver identification for optimization
- Risk assessment for high-cost scenarios
- Strategic planning support

Learning Outcomes:

- 1. **Feature engineering matters** more than algorithm sophistication
- 2. Simpler can be better for moderate datasets
- 3. Pipeline discipline prevents leakage and ensures reproducibility
- 4. Balance tradeoffs (optimal ≠ most accurate)
- 5. **Domain validation** essential for outliers and data quality
- 6. Failures teach lessons: XGBoost underperformance guided better choices

Project Impact:

The Unsupervised Learners team demonstrated comprehensive ML competency across the entire lifecycle, delivering an interpretable, robust solution valuable for healthcare supply chain optimization.

Final Thoughts:

Success in machine learning often comes not from applying the most complex algorithms, but from thoughtful data understanding, domain-informed feature engineering, systematic experimentation (including documenting failures), and selecting models appropriate for your data constraints. Our journey from XGBoost struggles to ElasticNet success exemplifies this principle.

References

- [1] Kaggle Competition: Medical Equipment Transport Cost Prediction Challenge (2025)
- [2] Scikit-learn Documentation: Machine Learning in Python (https://scikit-learn.org/)
- [3] Pandas Documentation: Data Analysis Library (https://pandas.pydata.org/)
- [4] Feature Engineering for Machine Learning (Alice Zheng, Amanda Casari)
- [5] The Elements of Statistical Learning (Hastie, Tibshirani, Friedman)
- [6] Applied Predictive Modeling (Max Kuhn, Kjell Johnson)
- [7] Healthcare Supply Chain Management Best Practices