CONCAST TELECOM CONSUMER COMPLAINTS ANALYSIS

Sushrut Kalyan Patnaik

Data Dictionary

• Ticket #: Ticket number assigned to each complaint

• Customer Complaint: Description of complaint

Date: Date of complaintTime: Time of complaint

Received Via: Mode of communication of the complaint

City: Customer city
State: Customer state
Zip code: Customer zip
Status: Status of complaint
Filing on behalf of someone

ANALYSIS TASK

- 1. Import data into R environment.
- 2. Provide the trend chart for the number of complaints at monthly and daily granularity levels.
- 3. Provide a table with the frequency of complaint types.
- **4.** Which complaint types are maximum i.e., around internet, network issues, or across any other domains.
 - a. Create a new categorical variable with value as Open and Closed. Open & Pending is to be categorized as Open and Closed & Solved is to be categorized as Closed.
 - **b.** Provide state wise status of complaints in a stacked bar chart. Use the categorized variable from Q3. Provide insights on:
 - i. Which state has the maximum complaints
 - ii. Which state has the highest percentage of unresolved complaints
- **5.** Provide the percentage of complaints resolved till date, which were received through the Internet and customer care calls.

Use the required library/packages for your code.

library(dplyr) # Data frame manipulation
library(applet2) # Data visualization package

library(dplyr) # Data frame manipulation library(ggplot2) # Data visualization package library(stringi) # String/text/natural language processing library(tidyverse) # Collection of required Data Science R packages library(lubridate) # Deal with Date-Time data

You can read you source file from anywhere from you PC. I prefer to use below. comcast_data = read.csv (choose. files ()) #File: Comcast Telecom Complaints data.csv

View sample or complete data and Structure of the data set head(comcast_data) # First 5 record from data set tail(comcast_data) # Last 5 records from data set View(comcast_data) # Complete data set like Tabular view str(comcast_data) # Structure of the data set

Check if there is any missing data point any(is.na(comcast_data)) # False is NA/blank is available and vice versa

Convert the DATE to one format comcast_data\$Date = dmy(comcast_data\$Date)

2. Provide the trend chart for the number of complaints at monthly and daily granularity levels:

```
# Filter for observations daily
comcast_daily = dplyr::summarise(group_by(comcast_data,Date), Count = n())
View(comcast_daily)

# Filter for observations monthly
```

comcast_monthly = dplyr::summarise(group_by(comcast_data, Month = as.integer(month(Date))), Count = n())
comcast_monthly.Total = arrange(comcast_monthly, Month)
View(comcast_monthly)

comcast_monthly\$Month = month.name[comcast_monthly\$Month]
comcast_monthly\$Month <- as.character(comcast_monthly\$Month)</pre>

```
comcast_monthly$Month <- factor(comcast_monthly$Month , levels = comcast_monthly$Month )

# Display the monthly complaints
View(comcast_monthly)

# Plotting the number of complaints per day

ggplot_daily = ggplot(comcast_daily, aes(x = comcast_daily$Date, y = comcast_daily$Count)) +
    geom_point(col = "red", size = 1.5) +
    geom_line(col = 'blue', linetype = "dashed", size = .75) +
    xlab("Date")+
    ylab("No. of Complaints") +
    ggtitle("Number of complaints per Day") +
```

Number of complaints per Day

Plotting the number of complaints per Month

theme(plot.title = element_text(hjust = 0.5))

```
ggplot_monthly = ggplot(comcast_monthly, aes(x = comcast_monthly$Month, y =
comcast_monthly$Count, group = 1)) +
geom_point(col = "red", size = 1.5) +
geom_line(col = 'blue', linetype = "dashed", size = .75) +
xlab("Months")+
ylab("No. of Complaints") +
ggtitle("Number of complaints per Month") +
theme(plot.title = element_text(hjust = 0.5))
```


3. Provide a table with the frequency of complaint types:

names(comcast_data)<-gsub(pattern = '\\.',replacement =
"",x=names(comcast_data))</pre>

names(comcast_data)

network_complaint = contains(comcast_data\$CustomerComplaint, match =
'network', ignore.case = T)

internet_complaint = contains(comcast_data\$CustomerComplaint, match =
'internet', ignore.case = T)

bill_complaint = contains(comcast_data\$CustomerComplaint, match = 'bill', ignore.case = T)

email_complaint = contains(comcast_data\$CustomerComplaint, match = 'email',
ignore.case = T)

charge_complaint = contains(comcast_data\$CustomerComplaint, match = 'charge', ignore.case = T)

speed_complaint = contains(comcast_data\$CustomerComplaint, match = 'speed',
ignore.case = T)

#datacap_complaint = contains(comcast_data\$CustomerComplaint, match = 'data cap', ignore.case = T)

```
ignore.case = T)
comcast_data$ComplaintType[network_complaint] = "Network"
comcast_data$ComplaintType[internet_complaint] = "Internet"
comcast_data$ComplaintType[bill_complaint] = "Bill"
comcast_data$ComplaintType[email_complaint] = "e-Mail"
comcast_data$ComplaintType[charge_complaint] = "Charge"
comcast_data$ComplaintType[speed_complaint] = "Speed"
#comcast_data$ComplaintType[datacap_complaint] = "Data Cap"
comcast_data$ComplaintType[data_complaint] = "Data"
comcast_data$ComplaintType[-
c(network_complaint,internet_complaint,bill_complaint,
               email_complaint,charge_complaint,speed_complaint,
               data_complaint)] = "Others"
complaint_frequency = table(comcast_data$ComplaintType)
complaint_frequency
View(complaint_frequency)
freq = c(348,122,219,15,355,2,973,190)
lab = c("Bill", "Charge", "Data", "e-Mail", "Internet", "Network", "Others", "Speed")
par(mfrow = c(1,2))
pie3D(complaint_frequency,
   labels = complaint_frequency,
   radius = 1,
   height = 0.1,
   border = "white",
```

data_complaint = contains(comcast_data\$CustomerComplaint, match = 'data',

```
explode = 0.2,

main = "Pie Chart of Frequency of complaint types")+

theme(plot.title = element_text(hjust = 0.5))

pie3D(freq,

labels = lab,

radius = 1,

height = 0.1,

border = "white",

explode = 0.2)
```

art of Frequency of complain

From the above table we can see that the Others and 2nd largest is Internet type complaints are maximum.

4. Which complaint types are maximum i.e., around internet, network issues, or across any other domains:

a. Create a new categorical variable with value as Open and Closed. Open & Pending is to be categorized as Open and Closed & Solved is to be categorized as Closed:

```
names(comcast_data)
str(comcast_data)
unique(comcast_data$Status)

open <- ( comcast_data$Status == "Open" | comcast_data$Status == "Pending")

closed <- (comcast_data$Status == "Closed" | comcast_data$Status == "Solved")

comcast_data$ComplaintStatus[open] <-"Open"
comcast_data$ComplaintStatus[closed]<- "Closed"

comcast_data_1 <- group_by(comcast_data,State,ComplaintStatus)
status_data<- dplyr::summarise(comcast_data_1,Count = n())

View(chart_data)
```

- **b.** Provide state wise status of complaints in a stacked bar chart. Use the categorized variable from Q3. Provide insights on:
 - i. Which state has the maximum complaints: # plot the Ticket Status Distribution per States chart p1 <- ggplot(status_data, aes(x =status_data\$State, y = status_data\$Count)) + geom_bar(stat="identity", color= "#60ff20", fill= "black", width = .8)+ #geom_text(aes(y = status_data\$Count, #label=status_data\$Count, #group=status_data\$ComplaintStatus), vjust = 1, nudge_y = 40, #angle = 45, col = "blue", size = 4)+theme(axis.text.x = element_text(angle = 90), axis.title.y = element text(size = 15), $axis.title.x = element_text(size = 15),$ title = element_text(size = 16,colour = "red"), plot.title = element text(hjust = 0.5))+ labs(title = "Total Number of Ticket Status Distribution per States", x = "States",y = "No. of Tickets", fill= "Status") рl

otal Number of Ticket Status Distribution per §

ii. Which state has the highest percentage of unresolved complaints

```
State_by_Complian = comcast_data %>% filter(ComplaintStatus ==
"Open") %>%
 group_by(State) %>% summarise(NumberOfComplian = n())
str(State_by_Complian)
ggplot(State_by_Complian, aes(x = State_by_Complian$State, y =
State_by_Complian$NumberOfComplian, group = 1))+
 geom_point(col = "red", size = 1.5) +
 geom_line(col = 'blue', linetype = "dashed", size = .75) +
 xlab("State")+
 ylab("No. of unresolved complaints") +
 ggtitle ("Highest % of unresolved complaints by State") +
 theme(axis.text.x = element_text(angle = 90),
    axis.title.y = element_text(size = 15),
    axis.title.x = element_text(size = 15),
    title = element_text(size = 16,colour = "red"),
    plot.title = element_text(hjust = 0.5))
```


5. Provide the percentage of complaints resolved till date, which were received through the Internet and customer care calls:

```
cs_total = comcast_data %>%

group_by(comcast_data$ComplaintStatus) %>%

summarise(NumOfComplaintStatus = n())

cs_total

A = cs_total$NumOfComplaintStatus

Percentage = round((A/sum(A))*100,1)

lbl = paste(cs_total$`comcast_data$ComplaintStatus`," ", Percentage,"%", sep = " ")

pie3D(A, labels = lbl,
    height = 0.1,
    border = "white",
    explode = 0.1,
    main = "Pie Chart of Complaints resolved v/s unresolved")+
```

Pie Chart of Complaints resolved v/s unresolved

Pie chart we can clearly see that there is total **76.8%** Complaints **resolved**.

unique(comcast_data\$ReceivedVia)

unique(comcast_data\$ComplaintStatus)

Internet = comcast_data %>%

filter(comcast_data\$ReceivedVia == 'Internet', comcast_data\$ComplaintStatus == 'Closed') %>%

summarise(NumOfComplaints = n())

Internet_Percent =
round((Internet\$NumOfComplaints/sum(cs_total\$NumOfComplaintStatus)*100),1)

CCC = comcast_data %>%

```
filter(comcast_data$ReceivedVia == 'Customer Care Call',
comcast_data$ComplaintStatus == 'Closed') %>%
summarise(NumOfComplaints = n())

CCC_Percent =
round((CCC$NumOfComplaints/sum(cs_total$NumOfComplaintStatus)*100),1)
```

From **76.75%** resolved Complaints, **37.9%** complaints are **Internet** type while **38.8%** are **Customer Care Call** type.