Numerical Linear Algebra Homework

Kevin Smith

Least Squares Solutions

Basic Least Squares

The solution to the least squares problem for matrix $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$ and vector

$$b = \begin{bmatrix} 7 \\ 8 \\ 9 \end{bmatrix}$$
 is:

$$x = \begin{bmatrix} -6\\6.5 \end{bmatrix}$$

However, this result did not pass the test case due to a relative error of 3.49857113690718.

Incremental Least Squares

The solution to the incremental least squares problem for the same A and b is:

$$x = \begin{bmatrix} -6\\6.5 \end{bmatrix}$$

This result passed all test cases.

Regularized Least Squares

The solution to the regularized least squares problem for $n=10,\,\lambda=10,$ and random b is:

$$x = \begin{bmatrix} 0.6148 \\ 0.6108 \\ 0.5971 \\ 0.6048 \\ 0.5995 \\ 0.6423 \\ 0.6708 \\ 0.6836 \\ 0.6858 \\ 0.7112 \end{bmatrix}$$

This result passed all test cases.

Signal Reconstruction Analysis

The following graphs show the reconstruction of the signal for different values of n and λ :

Figure 1: Signal reconstruction for n = 100

Figure 2: Signal reconstruction for n=200

Figure 3: Signal reconstruction for n=300

Figure 4: Signal reconstruction for n=400

Figure 5: Signal reconstruction for n=500