Jassey-Jabarr Fisayo

ITAI 3377: A.I. at the Edge & IIOT

Professor: Patricia McManus

February 4, 2025

Simulation Documentation: Deploying a Simple AI Model on a Simulated Edge Device

Setup

The project was executed using Google Colab to avoid local installation complexities. No manual installation of Python or TensorFlow was required, as Colab provides pre-installed versions. The environment was initialized with a new Colab notebook. The Edge Impulse CLI was installed on a local machine by downloading Node.js and running `npm install -g edge-impulse-cli` in the terminal. The MNIST dataset was loaded directly in Colab, and a lightweight CNN was trained. The model was converted to TFLite format within Colab, and the resulting `model.tflite` file was downloaded and uploaded to Edge Impulse via its web interface for deployment.

Deployment Process

The CNN model was defined with a simplified architecture: a `Conv2D` layer (16 filters, 3x3, ReLU activation), `MaxPooling2D` (2x2), `Flatten`, and two `Dense` layers (64 units, ReLU; 10 units, softmax). Training used 3 epochs with the Adam optimizer and sparse categorical cross-entropy loss. Post-training, the model was converted to TFLite using `tf.lite.TFLiteConverter.from_keras_model(model).convert()`, reducing its size for edge compatibility. The `model.tflite` file was uploaded to Edge Impulse's web platform, where it was deployed on a simulated edge device. The deployment included setting up an input processing pipeline for real-time inference.

Testing and Validation

Testing was conducted using Edge Impulse's simulator with MNIST test samples. Inference results showed an accuracy of approximately 97%, consistent with the training validation accuracy. Latency averaged 15-20 milliseconds per inference, and memory usage was approximately 4.2MB, as observed during simulation. The training output (see attached screenshot) indicates:

- Training accuracy: 98.79%

- Validation accuracy: 97.99%

- Validation loss: 0.0610 (after 3 epochs)

The model was reshaped with `x_train = x_{train} .reshape((-1, 28, 28, 1))` and normalized (`x_train = x_{train} / 255.0`) to optimize input for the CNN. A warning about `input_shape` was noted but resolved by ensuring proper input dimensions. Screenshots of the training output and Edge Impulse inference dashboard are included for reference.

Results

- Accuracy: 97-98% across training, validation, and inference phases.
- Latency: 15-20 ms per inference, suitable for real-time applications.
- - Memory Usage: 4.2MB, optimized for edge devices.

Observations: The model performed reliably, with minor discrepancies between development and simulated environments due to resource constraints. Batch processing and data normalization improved stability.

Conclusion

The deployment successfully demonstrated edge AI capabilities using a simulated device. The process highlighted the importance of model optimization (e.g., reducing filters to 16, limiting epochs to 3) for performance on resource-limited hardware. Future iterations could explore advanced optimization or real hardware testing.

Snap shot

