

$$L_1 u = -\sum_{i,j=1}^n a_{ij}(x,t) \frac{\partial^2}{\partial x_i \partial x_j} + \sum_{i=1}^n b_i(x,t) \frac{\partial u}{\partial x_i}$$

und $L_2u = L_1u + c(x,t)u$, für eine symmetrische und gleichmäßig elliptische Matrix $A = (a_{ij}(x,t)) \in \mathbb{R}^{n \times n}$ mit $a_{ij} \in C(\overline{G})$, einen Vektor $b = (b_i(x,t)) \in \mathbb{R}^n$ und $c \in C(\overline{G})$. Zeigen Sie:

- (i) Für $u \in C_1^2(G) \cap C(\overline{G})$ mit $u_t + L_2 u \leq 0$ in G und $u \leq 0$ auf Γ , dass $u \leq 0$ in G. **Hinweis:** Beachten Sie, dass c negative Werte annehmen darf. Welche Differentialungleichung erfüllt $v = e^{\lambda t}u$?
- (ii) Für $u, v \in C_1^2(G) \cap C(\overline{G})$ und eine stetig differenzierbare Funktion f = f(x, t, u) mit $u_t + L_1 u + f(x, t, u) \leq v_t + L_1 v + f(x, t, v)$ in G und $u \leq v$ auf Γ gilt u < v in G.
- (iii) Für eine stetig differenzierbare Funktion f = f(x, t, u) gilt, dass das Anfangsrandwertproblem für die Differentialgleichung

$$\begin{cases} u_t + L_1 u + f(x, t, u) = 0 & \text{in } G, \\ u(\cdot, 0) = u_0 & \text{in } \Omega, \\ u = g & \text{auf } \partial\Omega \times (0, T), \end{cases}$$

$$u_t = \Delta u + \lambda u - u^3$$
 für $(x, t) \in \Omega \times (0, \infty)$,

für $u(x,t) \in \mathbb{R}$ auf einem beschränkten Gebiet $\Omega \subset \mathbb{R}^n$ mit glattem Rand $\partial \Omega$ und einem negativen Parameter λ .

(i) Bestimmen Sie die räumlich homogenen Lösungen u=u(t) und untersuchen Sie deren asymptotisches Verhalten für $t\to\infty$.

Hinweis: Die räumlich homogenen Lösungen erfüllen eine gewöhnliche DGl. Bestimmen Sie die Stationärzustände dieser DGl und deren Stabilität.

(ii) Betrachten Sie das ARWP mit der Randbedingung

$$u(x,t) = 0 \text{ für } (x,t) \in \partial\Omega \times (0,\infty),$$

und beschränkten Anfangsdaten

$$m \le u(x,0) \le M$$
 für alle $x \in \Omega$.

Zeigen Sie, dass klassische Lösungen u(x,t) des ARWP und die räumlich homogenen Lösungen $\underline{u}(t)$ bzw. $\overline{u}(t)$ von dem ARWP mit Anfangsbedingungen $\underline{u}(0) = \min\{0, m\}$ bzw. $\overline{u}(0) = \max\{0, M\}$ die Ungleichungen

$$\underline{u}(t) \leq u(x,t) \leq \overline{u}(t) \ \text{ für } x \in \Omega \,,\, t \geq 0 \,,$$

erfülllen.

(iii) Was können Sie aus diesen Ungleichungen für das zeitlich asymptotische Verhalten von klassischen Lösungen u(x,t) des ARWP schließen?

$$\begin{cases} u_t - \Delta u + cu = 0 & \text{in} \quad \Omega \times (0, \infty), \\ u = 0 & \text{auf} \quad \partial \Omega \times (0, \infty), \\ u(\cdot, 0) = u_0 & \text{in} \quad \Omega, \end{cases}$$

wobei $u_0 \geq 0$ in Ω und $c \in L^{\infty}(\Omega)$. Zeigen Sie: $u \geq 0$ in $\Omega \times (0, \infty)$. Achtung: c ist also nicht notwendig nichtnegativ!

ment noweness. Welche Differentialgleichung löst
$$v = \exp(\lambda t)u^2$$
 $v = e^{2\epsilon}u$ where $v_{\epsilon} = \lambda e^{2t}u + e^{2t}u_{\epsilon} = \lambda v + e^{2t}(\lambda u - \epsilon u) = \lambda u - (\epsilon + 1)v$

show mit $L := \Delta t + \epsilon \text{ spl.}$ $v_{\epsilon} + 2 \neq 0$

und regge, $c \in L^{\alpha}(\Omega)$ pill film λ have, v_{ϵ} such that v_{ϵ} is shown relievable. Maximum reprincipe, but (0.11)
 v_{ϵ} v_{ϵ}

