Oct. 2, 2018

Instructors: Zachary Abel, Erik Demaine, Jason Ku

Lecture 8: Direct Access & Hashing

Review

Set Interface	Operation, Worst Case $O(\cdot)$								
	Set	Dynamic (D)		Order (O)		D+O	Space		
Data Structure	find(k)	insert(x)	delete(k)	find_	find_	delete_	$\sim \times n$		
Implementation				next(k)	max()	max()			
Unsorted Array	n	n	n	n	n	n	1		
Linked List	n	1	n	n	n	n	3		
Dynamic Array	n	$1_{(a)}$	n	n	n	n	4		
Sorted Array	$\lg n$	n	n	$\lg n$	1	n	1		
Max-Heap	n	$\lg n_{(a)}$	n	n	1	$\lg n$	1		
Balanced BST	$\lg n$	$\lg n$	$\lg n$	$\lg n$	(1)	$\lg n$	5		

- AVL Trees have $O(\log n)$ performance across operations
- Really good! Recall $\log n \le w \le 64$ for most computers, but still not constant
- Idea! Search is a very common operation. Can we find (k) better than $O(\log n)$?
- Answer is no (lower bound)! (But sometimes, yes...!?)

Comparison Model

- Can only differentiate between items via comparisons
- Comparisons are $<, \le, >, \ge, =, \ne$, outputs are binary: True or False
- Comparable items: black boxes only supporting comparisons between pairs
- Goal: Store a set of *n* comparable items, support find (k) operation
- Running time is **lower bounded** by # comparisons performed, so count comparisons!

Decision Tree

- Any algorithm can be viewed as a **decision tree** of operations performed
- For a comparison algorithm, the decision tree is binary (**draw example**)
- An internal node represents a binary comparison, branching either True or False
- A leaf represents algorithm termination, resulting in an algorithm output
- A root-to-leaf path represents an execution of the algorithm on some input
- Need at least one leaf for each **algorithm output**, so search requires $\geq n+1$ leaves

Comparison Search Lower Bound

- What is worst case running time of a comparison search algorithm?
- ullet \geq # comparisons made by algorithm \geq length of any root-to-leaf path in decision tree
- What is minimum height of any binary tree on $\geq n+1$ nodes?
- Minimum height when binary tree is complete (like a heap's tree)
- Height $\geq \lceil \lg n \rceil 1 = \Omega(\log n)$, thus running time of any comparison sort is also $\Omega(\log n)$
- Sorted array and AVL Trees achieve this bound! Yay!
- Actually, height of any tree with max branching factor b = O(1) is at least $\Omega(\log_b n)$
- For faster, need an operation that allows super-constant $\omega(1)$ branching factor. How??

Direct Access Array

- Exploit Word-RAM O(1) time random access indexing! Linear branching factor!
- Associate a meaning to each index of array (like heap, but simpler)
- ullet Idea! Give each item unique integer key k in $\{0,\ldots,u-1\}$, store item at array index k
- Anything in computer memory is a binary integer, or use (static) 64-bit address in memory
- If keys fit in O(1) words, i.e. $k \in O(\log n)$, worst-case O(1) dynamic set operations! Yay!
- But space O(u), so really bad if $n \ll u$... :(
- Example: if keys are ten-letter names, for one bit per name, requires $26^{10} \approx 17.6 \text{ TB}$ space
- How can we use less space?

Hashing

- Idea! If $n \ll u$, map keys to a smaller range $m = \Theta(n)$ and use smaller direct access array
- Hash function: $h(k):\{0,\ldots,u-1\}\to\{0,\ldots,m-1\}$ (also hash map)
- Direct access array called **hash table**, h(k) called the **hash** of key k
- Recall $w \ge \lg n$: so hash fits in O(1) words, O(1) time to compare
- If $m \ll u$, no hash function is injective by pigeonhole principle
- Exists keys a, b such that $h(a) = h(b) \rightarrow \textbf{Collision}!$:(
- Can't store both items at index h(a), so where to store? Either:
 - store somewhere else in the array (**open addressing**)
 - store in another data structure supporting dynamic set interface (**chaining**)

Chaining

- Idea! Store collisions in another data structure (a chain)
- If keys roughly evenly distributed over indices, chain size is $n/m = n/\Omega(n) = O(1)!$
- If chain has O(1) size, all operations take O(1) time! Yay!
- If not, many items may map to same location, e.g. h(k) = c, chain size is $\Theta(n)$:(
- Need good hash function! So what's a good hash function?

Hash Functions

Division (bad): $h(k) = (k \mod m)$

- Heuristic, good when keys are uniformly distributed!
- m should avoid symmetries of the stored keys
- Large primes far from powers of 2 and 10 can be reasonable
- Python uses this with some additional complexity
- If $u \gg n$, every hash function will have some input set that will a create O(n) size chain
- Idea! Don't use a fixed hash function! Choose one randomly (but carefully)!

Universal (good): $h_{ab}(k) = (((ak + b) \mod p) \mod m)$

- Hash Family $\mathcal{H}(p,m) = \{h_{ab} \mid a,b \in \{1,\ldots,p-1\}\}$
- Parameterized by a fixed prime p > u, with a and b chosen from range $\{1, \ldots, p\}$
- \mathcal{H} is a **Universal** family: $\Pr_{h \in \mathcal{H}} \{ h(k_i) = h(k_j) \} \le 1/m \quad \forall k_i \ne k_j \in \{0, \dots, u-1\}$
- X_{ij} indicator random variable over $h \in \mathcal{H}$: $X_{ij} = 1$ if $h(k_i) = h(k_j)$, $X_{ij} = 0$ otherwise
- Size of chain at index $h(k_i)$ is random variable $X_i = \sum_j X_{ij}$
- Expected size of chain at index $h(k_i)$

$$\mathbb{E}_{h \in \mathcal{H}} \{X_i\} = \mathbb{E}_{h \in \mathcal{H}} \left\{ \sum_{j} X_{ij} \right\} = \sum_{j} \mathbb{E}_{h \in \mathcal{H}} \{X_{ij}\} = 1 + \sum_{j \neq i} \mathbb{E}_{h \in \mathcal{H}} \{X_{ij}\}$$

$$= 1 + \sum_{j \neq i} (1) \Pr_{h \in \mathcal{H}} \{h(k_i) = h(k_j)\} + (0) \Pr_{h \in \mathcal{H}} \{h(k_i) \neq h(k_j)\}$$

$$\leq 1 + \sum_{j \neq i} 1/m = 1 + (n-1)/m$$

- Since $m=\Omega(n)$, load factor $\alpha=n/m=O(1)$, so O(1) in expectation!
- If n/m far from 1, rebuild with new random hash function for new size m
- Same analysis as dynamic arrays, cost can be amortized over many dynamic operations
- So a hash table can implement dynamic set operations in expected amortized O(1) time! :)

Set Interface	Operation, Worst Case $O(\cdot)$								
	Set	Dynamic (D)		Order (O)		D+O	Space		
Data Structure	find(k)	insert(x)	delete(k)	find_	find_	delete_	$\sim \times n$		
Implementation				next(k)	max()	max()			
Unsorted Array	n	n	n	n	n	n	1		
Linked List	n	1	n	n	n	n	3		
Dynamic Array	n	$1_{(a)}$	n	n	n	n	4		
Sorted Array	$\lg n$	n	n	$\lg n$	1	n	1		
Max-Heap	n	$\lg n_{(a)}$	n	n	1	$\lg n$	1		
Balanced BST	$\lg n$	$\lg n$	$\lg n$	$\lg n$	(1)	$\lg n$	5		
Direct Access	1	1	1	u	u	u	u/n		
Hash Table	$1_{(e)}$	$1_{(e,a)}$	$1_{(e,a)}$	n	n	n	4		