

Amendments to the Claims:

This listing of claims will replace all prior versions, and listings of claims in the application:

Listing of Claims:

- (withdrawn) A thin-film magnetic head comprising:
 magnetic layers each containing two or more elements of Co, Ni, and Fe;
 wherein a magnetic layer, of said magnetic layers, contains Co, Ni, and Fe,
 with 20 ≤ Co ≤ 40 wt%, 0 < Ni ≤ 2 wt%, and 60 ≤ Fe ≤ 80 wt%, and has a saturation
 magnetic flux density of 23,000 gauss or more, and the thickness of said magnetic layer is
 3µm or more.
 - 2. (canceled)
- 3. (previously presented) A process for production of a thin-film magnetic head as defined in claim 1, wherein the magnetic layers are formed in a plating bath containing saccharin sodium as a stress relaxing agent.
- 4. (original) A process for production of a thin-film magnetic head as defined in claim 3, wherein the plating bath contains saccharin sodium in an amount of 0.5-2 g/L.
- 5. (withdrawn) A thin-film magnetic head of write-read separate type in which a read element is a magneto-resistive effect element and a write element is an inductive magnetic head,

wherein upper and lower magnetic cores of a write head partly or entirely have magnetic layers consisting of magnetic films each containing two or more elements of Co, Ni, and Fe, a magnetic layer, of the magnetic layers, is composed of a magnetic film, which is a soft magnetic thin film containing CoNiFe, with $20 \le \text{Co} \le 40 \text{ wt}\%$, $0 < \text{Ni} \le 2 \text{ wt}\%$, and $60 \le \text{Fe} \le 80 \text{ wt}\%$, and having a saturation magnetic flux density of 23,000 gauss or more, and the thickness of the magnetic layer is $3\mu\text{m}$ or more.

Appl. No. 10/665,910 Amdt. dated March 2, 2005 Reply to Office Action of February 2, 2005

- 6. (withdrawn) A thin-film magnetic head as defined in claim 1, wherein said magnetic layer is the nearest layer to said magnetic gap of said magnetic layers.
- 7. (withdrawn) A thin-film magnetic head as defined in claim 5, wherein said magnetic layer is the nearest layer to said magnetic gap of said magnetic layers.
- 8. (previously presented) A method for producing a thin-film magnetic head, comprising:

forming a magnetic core having magnetic layers; and forming a magnetic gap film facing said magnetic core;

wherein a magnetic layer, of said magnetic layers, is formed by electroplating in a plating bath having pH value of 2 or less;

wherein said magnetic layer contains Co, Ni, and Fe, with $20 \le Co \le 40$ wt%, $0 < Ni \le 2$ wt%, and $60 \le Fe \le 80$ wt%, and has a saturation magnetic flux density of 23,000 gauss or more.

- 9. (previously presented) A method for producing a thin-film magnetic head as defined in claim 8, wherein said magnetic core includes an upper magnetic core and a lower magnetic core.
- 10. (previously presented) A method for producing a thin-film magnetic head as defined in claim 9, wherein either of said upper magnetic core or said lower magnetic core has said magnetic layer.
- 11. (previously presented) A method for producing a thin-film magnetic head as defined in claim 8, wherein said magnetic layer is the nearest layer to said magnetic gap of said magnetic layers.