Derivatives

John Hohman and Nathan James

Table of Contents

Derivative Rules

7 Numerical Methods

8 Special Cases

9 L'Hôpital's rule

10 Examples

11 Proofs

13 Next week/Project

What is a Derivative?

A derivative is an instantaneous rate of change relative to the infinitesimal values around a point.

$$\lim_{h\to 0} \left[\frac{f(x+h) - f(x)}{h} \right] = \lim_{dx\to 0} \left[\frac{f(x+dx) - f(x)}{dx} \right] = \frac{dy}{dx} = \frac{\Delta y}{\Delta x} = f'(x) = Df(x) = D_x f$$

Pierre de Fermat

Derivative Rules

Power Rule: $\frac{d}{dx}[x^n] = nx^{n-1}$, where $n \in \mathbb{R}$

Constant Rule: $\frac{d}{dx}[c] = 0$, where c is a constant

Sum Rule: $\frac{d}{dx} \big[f(x) + g(x) \big] = \frac{d}{dx} f(x) + \frac{d}{dx} g(x)$

Product Rule: $\frac{d}{dx}[f(x) \cdot g(x)] = f'(x)g(x) + f(x)g'(x)$

Quotient Rule: $\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{f'(x)g(x) - f(x)g'(x)}{\left(g(x) \right)^2}, \quad g(x) \neq 0$

Chain Rule: $\frac{d}{dx} [f(g(x))] = f'(g(x)) \cdot g'(x)$

Derivatives

Rates Displayed

Numerical Methods Euler's Method

h is the step size, for our purposes use h = 1/(num_time_points) t is the index of y_n value

Aspect	Forward Euler	Backward Euler	Trapezoid Method	
Type	Explicit (direct computation)	Implicit (requires solving equations)	Implicit	
Stability	Less stable for stiff problems	More stable, suitable for stiff ODEs	More stable, suitable for stiff ODEs	
Accuracy	First-order accurate	First-order accurate	Second-order accurate	
Ease of Implementation	Simple	More computationally demanding	Requires solving equations, but more accurate	
Formula	$y_{n+1} = y_n + h \cdot f(t_n, y_n)$	$y_{n+1} = y_n + h \cdot f(t_{n+1}, y_{n+1})$	$y_{n+1} = y_n + \frac{h}{2} (f(t_n, y_n) + f(t_{n+1}, y_{n+1}))$	

I will cover Runge-Kutta Methods at a later date, during stability region discussions

Special Cases

$egin{aligned} rac{d}{dx}[e^x] &= e^x \ rac{d}{dx}[a^x] &= a^x \ln a \end{aligned}$	$\frac{d}{dx}[\sin x] = \cos x$ $\frac{d}{dx}[\cos x] = -\sin x$	$rac{d}{dx}[rcsin x] = rac{1}{\sqrt{1-x^2}}$ $rac{d}{dx}[rccos x] = rac{-1}{\sqrt{1-x^2}}$		$\frac{d}{dx}[\operatorname{arsinh} x] = \frac{1}{\sqrt{x^2 + 1}}$ $\frac{d}{dx}[\operatorname{arcosh} x] = \frac{1}{\sqrt{x^2 - 1}}$
$rac{d}{dx}[\ln x] = rac{1}{x}$	$\frac{d}{dx}[\tan x] = \sec^2 x$	$\frac{d}{dx}[\arctan x] = \frac{1}{1+x^2}$	$\frac{d}{dx}[\tanh x] = \mathrm{sech}^2 x$	$rac{d}{dx}[\operatorname{artanh} x] = rac{1}{1-x^2}$
$\frac{d}{dx}[\log_a x] = \frac{1}{x \ln a}$ $d = \begin{cases} 1 & x > 0 \\ 1 & x < 0 \end{cases}$	d .	$\frac{d}{dx}[\arccos x] = \frac{-1}{ x \sqrt{x^2 - 1}}$	$\frac{d}{dx}[\operatorname{csch} x] = -\operatorname{csch} x \operatorname{coth} x$	
$\frac{d}{dx}[x] = \begin{cases} 1 & x > 0 \\ -1 & x < 0 \\ 0 & x = 0 \end{cases}$	$\frac{d}{dx}[\cot x] = -\csc^2 x$	$\frac{d}{dx}[\operatorname{arccot} x] = \frac{-1}{1+x^2}$	$\frac{d}{dx}[\coth x] = -\operatorname{csch}^2 x$	$\frac{d}{dx}[\operatorname{arcoth} x] = \frac{1}{1 - x^2}$

L'Hôpital's rule

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}, \quad \text{provided } \lim_{x \to a} \frac{f'(x)}{g'(x)} \text{ exists.}$$

Conditions for L'Hôpital's Rule:

- $\lim_{x\to a} f(x) = \lim_{x\to a} g(x) = 0$ (indeterminate form $\frac{0}{0}$) or $\pm \infty$.
- $g'(x) \neq 0$ near a.
- f'(x) and g'(x) are continuous near a.

Derivative Examples

$$\frac{d}{dx}2^x$$

2.

$$\frac{d}{dx}\log(42^3)$$

3.

$$\frac{d}{dx}\ln(\sin(x)) + 5$$

4

$$\lim_{x \to 1} \frac{\sin(\pi x)}{1 - x^2}$$

5.

$$\frac{d}{dx}\frac{\sin(\pi x)}{1-x^2}$$

6.

$$\frac{d}{dx} 2x \tan(x)$$

7

$$\frac{d}{dx}\sec(x^2 - e^x)$$

8.

$$\lim_{x \to 1} \frac{1}{1 + x^2}$$

Proof Time!

Let us prove the chain rule!

Next Week -

We're going to find the area of Integrals, and sum up new knowledge!

Code Project -

```
Goal 1: Implement the Trapezoid Method for solving ordinary differential equations
Goal 2: Approximate the true functions
```

Data is provided in the github under topic/lesson_2/projects/

Push your code as [Your_name]_project_2.[file_extention]