РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫ НАРОДОВ

Факультет физико-математических и естественных наук Кафедра прикладной информатики и теории вероятностей

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ № <u>13</u>

дисциплина: Моделирование информационных процессов

Студент: Худицкий Василий

Олегович

Группа: НКНбд-01-19

МОСКВА

20<u>22</u> г.

Постановка задачи

Рис. 1Сеть для выполнения домашнего задания

- 1. Используя теоретические методы анализа сетей Петри, проведите анализ сети, изображённой на рис. 1 (с помощью построения дерева достижимости). Определите, является ли сеть безопасной, ограниченной, сохраняющей, имеются ли тупики.
 - 2. Промоделируйте сеть Петри (см. рис. 1) с помощью CPNTools.
- 3. Вычислите пространство состояний. Сформируйте отчёт о пространстве состояний и проанализируйте его. Постройте граф пространства состояний.

Выполнение работы

1. Построение дерева достижимости и анализ сети

С помощью draw.io построил дерево достижимости (рис. 2) сети, изображённой на рис. 1.

Рис. 2Дерево достижимости сети Петри

Анализ сети:

Сеть является безопасной и ограниченной, так как число фишек в каждой позиции не может превысить 1.

Сеть не является сохраняющей, так как она теряет фишки в переходе Т5 и порождает фишки в переходе Т6.

Тупики в сети отсутствуют.

2. Моделирование сети Петри с помощью CPNTools

В меню деклараций задал все необходимые типы фишек, выражения для дуг (рис. 3).

```
▼Declarations
Standard declarations
▼colset RAM = unit with memory;
colset B1 = unit with storage1;
colset B2 = unit with storage2;
colset B1xB2 = product B1*B2;
var ram:RAM;
var b1:B1;
var b2:B2;
```

Рис. ЗДекларации для модели

Нарисовал в CPN Tools граф сети, подписал все дуги и состояния. В результате получил работающую модель (рис. 4).

Рис. 4Модель сети Петри (см. рис. 1)

Запустил симуляцию, на тридцатом шаге получил результат, представленный на рис. 5.

Рис. 5Симуляция на шаге 30

3. Вычисление и анализ пространства состояний

С помощью панели пространства состояний (State Space) получил отчёт, представленный ниже.

```
CPN Tools state space report for:
/home/openmodelica/mip/lab-cpntools/lab13.cpn
Report generated: Sat Jun 4 15:29:39 2022
Statistics
  State Space
     Nodes: 5
     Arcs: 10
     Secs: 0
     Status: Full
  Scc Graph
    Nodes: 1
     Arcs: 0
     Secs: 0
 Boundedness Properties
______
  Best Integer Bounds
                             Upper Lower
                     1
1
1
1
1
     New Page'P1 1
                            1
     New Page'P2 1
     New Page 'P3 1
                                         0
     New Page'P4 1
                                         0
     New Page'P5 1
                                         0
     New Page'P6 1
  Best Upper Multi-set Bounds
    New_Page'P1 1 1`memory
New_Page'P2 1 1`storage1
New_Page'P3 1 1`storage2
New_Page'P4 1 1`storage1
New_Page'P5 1 1`storage2
New_Page'P6 1 1`storage1,storage2)
  Best Lower Multi-set Bounds
    New_Page'P1 1 1`memory
New_Page'P2 1 empty
New_Page'P3 1 empty
New_Page'P4 1 empty
New_Page'P5 1 empty
New_Page'P6 1 empty
 Home Properties
-----
  Home Markings
     All
```

Liveness Properties

```
Dead Markings
None

Dead Transition Instances
None

Live Transition Instances
All
```

Fairness Properties

```
New_Page'T1 1 No Fairness
New_Page'T2 1 No Fairness
New_Page'T3 1 No Fairness
New_Page'T4 1 No Fairness
New_Page'T5 1 Just
New_Page'T6 1 Fair
```

Анализ пространства состояний:

- 1. Граф пространства состояний состоит из 5 узлов и 10 дуг, значит для данной сети возможно 5 состояний и 10 различных переходов между ними.
- 2. В Boundedness Properties представлены крайние границы значений для каждой позиции в схеме в блоке Best Integer Bounds. В Multi-set Bounds содержатся данные для мультимножеств раздельно по блокам «верхние» и «нижние».
- 3. Для данной сети все маркировки являются домашними, потому что для установленной начальной маркировки сети мы можем достичь всех маркировок из всех достижимых маркировок.
- 4. В данной сети отсутствуют тупиковые маркировки, потому что при любой маркировке есть доступный переход.
- 5. В Fairness Properties мы видим, что переход Т5 just, потому что он обязателен для того, чтобы получить бесконечную последовательность. Переход t6 fair, поскольку он всегда используется, если активирован.

После анализа с помощью панели State Space построил граф пространства состояний (рис. 6-7).

Рис. 6Граф пространства состояний

Рис. 7Подробная информация о состояниях

Заключение

В ходе выполнения лабораторной работы для сети Петри, представленной на рис. 1, было построено и проанализировано дерево достижимости, была построена модель данной сети в CPNTools. Также было проанализировано и пространство состояний и построен его граф.