Motivation Methodology Experimental Setup Results Discussio

Fast percolation

Reminder

Percolation is the study of the global connection behaviour of a network when removin a certain fraction of its nodes, measured in the (relative) size of the larges connected component.

- Goal: learn a way of informed percolation which optimally disconnects a network (remove minimum amount of nodes with maximum effect)
- Useful for preventing desease spreading, or to find critical nodes in the network

Setting up a model

We attach to each node a Bernoulli random variable of failure:

$$\hat{\mathbf{p}}_i = \sigma(\mathbf{w}^T \cdot \mathbf{info}_i)$$

$$\mathbf{Fail}_i(\varphi) \sim \mathsf{Bernoulli}\left(\hat{\mathbf{p}}_i \, rac{\varphi}{rac{1}{n} \sum_i \hat{\mathbf{p}}_i}
ight)$$

where σ is the logistic function, **info** is a vector of local information (eg., degree), and **w** the weighting of this information (a logistic model, sort of).

The value φ varies in [0; 1] and describes the expected fraction of failing nodes. The individual probabilities are scaled accordingly.

- Minimize the area under the percolation curve with respect to the weights w
- This involves sampling the curves (several times) at each parameter evaluation
- This is expensive, so I used simulated annealing it requires the least amount of evaluations of the loss function
- Compare some different network types:

	Facebook		Traffic		Random	
	Train	Test	Train	Test	Train	Test
Vertices	572	347	7388	13389	2000	2000
Edges	3192	2519	10591	21246	5000	5000
Density	0.0195	0.0419	0.0004	0.0002	\approx 0.	0025

phase - baseline - optimized

Motivation	Methodology	Experimental Setup	Results	Discussion