

Inteligencia Artificial

Unidad 3: Razonamiento basado en conocimiento

TEMA 4: Lógica computacional en la I.A.

Módulo 2: Lógica de Primer Orden

MÓDULO 2: Lógica de Primer Orden

Unidad 3

Razonamiento basado en conocimiento

TEMA 4: Lógica computacional en I.A.

- 1. Lógica Proposicional vs Lógica de Primer Orden
- 2. Definición de Lógica de Primer Orden (LPO)
- 3. Sintaxis Símbolos y Cuantificadores
- 4. Ejemplos de aplicación

1. Lógica Proposicional vs Lógica de Primer Orden

Truth Tables for $\neg p \lor q$ and $p \to q$.				
p	q	¬p	¬р∨q	$p \rightarrow q$
Т	Т	F	Т	Т
Т	F	F	F	F
F	Т	Т	Т	Т
F	F	T	T	Т

LÓGICA PROPOSICIONAL

- Expresamos conocimiento mediante enunciados declarativos (pueden ser verdaderos o falsos).
- Las proposiciones representan hechos que se dan o no en la realidad.

3. LP <u>no es suficiente</u> para representar oraciones complejas, tiene un poder expresivo muy limitado.

LÓGICA DE PRIMER ORDEN

- 1. Expresamos conocimiento mediante enunciados declarativos (pueden ser verdaderos o falsos).
- 2. No solo se utilizan proposiciones para representar hechos que se dan o no en la realidad.
 - Adicionalmente, utiliza **objetos** y **relaciones** entre ellos para explicar la realidad.
- 3. La lógica de primer orden es más poderosa y suficiente para representar oraciones complejas.

Es una extensión de la lógica proposicional

1. Lógica Proposicional vs Lógica de Primer Orden

- 1. <u>Todos</u> los humanos son inteligentes
 - 2. A Sandro <u>le gusta</u> el voleibol

2. Definición de Lógica de Primer Orden

Definición de la Lógica de Primer Orden

- Es otra forma de representación del conocimiento en la Inteligencia Artificial.
- Representa las declaraciones del lenguaje natural de una manera concisa.
- La lógica de primer orden es un <u>lenguaje poderoso</u> que desarrolla <u>información sobre los objetos</u> de una manera más fácil y también puede expresar la <u>relación entre esos objetos</u>.
- La lógica de primer orden también se conoce como lógica de predicado o lógica de predicado de primer orden.
- La lógica de primer orden, adicionalmente a los hechos, incorpora la noción de objetos, relaciones y funciones.

2. Definición de Lógica de Primer Orden

Lógica de Primer Orden

OBJETOS

Letras: Z, X, colores, gente, nombres, lugares...

RELACIONES

Relación unaria:

- Es adyacente
- Es redondo
- Es azul...

n-cualquier relación:

- la hermana de
- hermano de
- tiene color
- se interpone entre...

FUNCIONES

- quinta entrada
- mejor amigo
- fin de
- Inicio de
- Peor resultado...

Modelo lógico: LOGICA DE PRIMER ORDEN

SINTAXIS

- Los elementos sintácticos básicos de la lógica de primer orden son los símbolos. Comienzan con una letra mayúscula.
- Escribimos declaraciones en notación abreviada utilizando:

Constantes	1, 2, A, Pedro, Perú, Gato, Enero,	
Variables	x, y, z, a, b,	
Predicados	Hermano, Padre,>,	
Función	Promedio, CabezaDe,	
Conectivas	\land , \lor , \neg , \Rightarrow , \Leftrightarrow	
Igualdad	==	
Cuantificador	∀,∃	

Representan <u>objetos</u>

Representan <u>relaciones</u>

Representan <u>funciones</u>

Modelo lógico: LOGICA DE PRIMER ORDEN

SINTAXIS

SENTENCIAS ATOMICAS

(simples)

 Se forman a partir de un símbolo de predicado seguido de un paréntesis con una secuencia de términos.

Predicado (término1, término2,, término n)

Ejemplos:

Vero y Luis son hermanos: => Hermanos (Vero, Luis)

Sócrates es un gato: => gato (Sócrates)

SENTENCIAS COMPLEJAS

(compuestas)

- Las sentencias complejas se forman combinando sentencias atómicas usando conectivos.
- Las sentencias en LPO se pueden dividir en dos partes:
- 1. Sujeto: El tema o asunto es la parte principal de la declaración.
- **2. Predicado:** se puede definir como una relación, que une dos sentencias en una declaración.

Ejemplo:

Modelo lógico: LOGICA DE PRIMER ORDEN

CUANTIFICADORES

- Son utilizados para expresar las propiedades de colecciones enteras de objetos.
- Son los símbolos que permiten determinar o identificar el rango y alcance de la variable en la expresión lógica.
- Existen 2 tipos de cuantificadores:

CUANTIFICADOR UNIVERSAL

(para todos, todos, todo)

CUANTIFICADOR EXISTENCIAL

(para algunos, al menos uno)

Modelo lógico: LOGICA DE PRIMER ORDEN

CUANTIFICADOR UNIVERSAL (para todos, todos, todo)

- Expresa que el enunciado dentro de su alcance es verdadero para todo o cada una de las instancias de algo.
- El cuantificador universal está representado por un **símbolo ∀**, que se asemeja a una A.

Si x es una variable, entonces \forall x se lee como:

Para todo 'x' / Por cada 'x'

• En el cuantificador universal usamos la implicación "→".

Ejemplo en lenguaje natural:

Todos los hombres beben cerveza.

Notación corta en Lógica de Primer Orden

 $\forall x \text{ hombre } (x) \rightarrow \text{beber } (x, \text{cerveza})$

Para todos los x donde x es un hombre que entonces beben cerveza. (todas o cada una de las instancias que sean verdaderas)

Modelo lógico: LOGICA DE PRIMER ORDEN

CUANTIFICADOR EXISTENCIAL (para algunos, al menos uno)

- Expresa que el enunciado dentro de su alcance es verdadero para al menos una instancia de algo.
- Se denota mediante el **operador lógico 3**, que se asemeja a la E invertida.

Si x es una variable, entonces $\exists x \circ \exists (x)$ se lee como:

Existe una 'x' / Para algunos 'x' / Por al menos una 'x'

• En el cuantificador existencial siempre usamos Y o el símbolo de conjunción (Λ).

Ejemplo en lenguaje natural:

Algunos niños son inteligentes.

Notación corta en Lógica de Primer Orden

 $\exists x$: niños (x) \land inteligente (x)

Hay algunas x donde x es un niño **y** que es inteligente. (algunas de las instancias que sean verdaderas)

Modelo lógico: LOGICA DE PRIMER ORDEN

ANIDAR CUANTIFICADORES

• Las sentencias compuestas o complejas pueden contener múltiples cuantificadores

Ejemplos:

"Los hermanos son parientes"

 $\forall x \ \forall y \ \text{Hermano}(x,y) \Rightarrow \text{Pariente}(x,y)$

Pariente es una relación simétrica $\forall x,y \; \text{Pariente}(x,y) \Leftrightarrow \text{Pariente}(y,x)$

"Todo el mundo ama a alguien"

 $\forall x \exists y Ama(x,y)$

"Hay alguien que es amado por todos"

 $\exists y \ \forall x \ Ama(x,y)$

Modelo lógico: LOGICA DE PRIMER ORDEN

NEGAR CUANTIFICADORES

• Los cuantificadores (\forall, \exists) están íntimamente conectados el uno al otro mediante la **negación**.

Ejemplos:

"A todo el mundo no les gustan las espinacas" ≡
"No existe alguien a quien le gusten"

 $\forall x \neg Gusta(x, Espinacas) \equiv \neg \exists x Gusta(x, Espinacas)$

"A todo el mundo le gusta el helado" ≡
"No hay nadie a quien no le guste el helado"

 $\forall x \, \text{Gusta}(x, \, \text{Helado}) \equiv \neg \exists x \, \neg \, \text{Gusta}(x, \, \text{Helado})$

Modelo lógico: LOGICA DE PRIMER ORDEN

CONDICION DE IGUALDAD

• Se puede utilizar el símbolo de igualdad para construir enunciados describiendo que dos términos se refieren al mismo objeto.

• Se puede utilizar con la negación para insistir en que dos términos no son el mismo objeto.

"Ricardo tiene al menos dos hermanos"

 \exists x,y Hermano(x, Ricardo) \land Hermano(y, Ricardo) $\land\neg$ (x = y)

Modelo lógico: LOGICA DE PRIMER ORDEN

INTERPRETACION

 Se tiende a especificar qué objetos, relaciones y funciones son referenciados mediante símbolos de constante, predicado y función.

Padre(Juan) = Enrique

Interpretación: Padre es la función que cumple Enrique (objeto relacionado exactamente con otro objeto).

"Ricardo tiene al menos dos hermanos"

Interpretación: Hermanos se refiere a la "relación de hermandad".

Modelo lógico: LOGICA DE PRIMER ORDEN

Propiedades de los Cuantificadores

- En el cuantificador universal, $\forall x \forall y$ es similar a $\forall y \forall x$.
- En el cuantificador existencial, **∃x∃y** es similar a **∃y∃x**.
- ∃x∀y NO es similar a ∀y∃x.

(1) Manzanas verdes

Lenguaje Natural	LPO
Al menos un x es P	∃х Р(х)
Todos los x son P	∀x P(x)
Algunos x son P	∃х Р(х)
No todos los x son P	∃x ¬P(x)
Ningún x es P	∀x ¬P(x)

 $\exists x$: manzanas (x) \land verdes (x)

Algunas x donde x es una manzana y que es verde.

(algunas de las instancias que sean verdaderas)

Es lo mismo decir: A(x) = "x es una manzana"

G(x) = "x es verde"

Ambos son predicados unarios

 $\exists x: (A(x) \land G(x))$

(2) Manzanas verdes

Lenguaje Natural	LPO
Al menos un x es P	∃х Р(х)
Todos los x son P	∀x P(x)
Algunos x son P	∃х Р(х)
No todos los x son P	∃x ¬P(x)
Ningún x es P	∀x ¬P(x)

Todas las manzanas son verdes

 $\forall x : manzanas (x) \rightarrow verdes (x)$

Todas las x donde x es una manzana **que entonces** son verdes.

(todas o cada una de las instancias que sean verdaderas)

(3) Manzanas verdes

Lenguaje Natural	LPO
Al menos un x es P	∃х Р(х)
Todos los x son P	∀x P(x)
Algunos x son P	∃х Р(х)
No todos los x son P	∃x ¬P(x)
Ningún x es P	∀x ¬P(x)

 $\forall x : manzanas (x) \rightarrow \neg verdes (x)$

Todas las x donde x es una manzana **que entonces** no son verdes.

(todas o cada una de las instancias que sean verdaderas)

(4) Restaurantes, cines y canchita

Debemos convertir el siguiente enunciado:

"No hay ningún restaurante que venda canchita, pero los cines sí".

Solución: Reescribimos dicho enunciado en varias sentencias

- 1. Si x es un restaurante, entonces x no vende canchita y
- 2. Si x es un cine, entonces vende canchita y
- 3. Si x es un restaurante, entonces x no es un cine y
- 4. Si x es un cine, entonces x no es un restaurante

Cuántos predicados reconocemos?

Tenemos:

La variable "x" y 3 predicados

R(x) = "x es un restaurante"

C(x) = "x es un cine"

P(x) = "x vende canchita"

Esto nos permite convertir la oración en lenguaje natural en una de lógica de primer orden.

1.
$$R(x) \Rightarrow \neg P(x)$$

2.
$$C(x) \Rightarrow P(x)$$

3.
$$R(x) \Rightarrow \neg C(x)$$

4.
$$C(x) \Rightarrow \neg R(x)$$

$$\forall x ((R(x) \Rightarrow \neg P(x)) \land (C(x) \Rightarrow P(x)) \land (R(x) \Rightarrow \neg C(x)) \land (C(x) \Rightarrow \neg R(x)))$$

PREGUNTAS

Dudas y opiniones