МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра ИС

ОТЧЁТ О ПРОВЕДЕНИИ ИССЛЕДОВАНИЯ

по дисциплине «Интеллектуальный анализ данных»

ТЕМА: зависимость между наличием диабета и медицинских показателей в крови

Студент гр. 0374	Подтергера А.А.
Преподаватель	Татчина Я.А

Санкт-Петербург

Целью исследования является выявление взаимосвязей и зависимостей, следовательно будет применён описательный анализ данных.

Будет проведено исследование наличия диабета у человека от значений разных показателей в крови и наличием вредных привычек. Набор данных, за-имствованных с интернет-ресурса https://www.kaggle.com

Данные имеют следующий тип:

Название столбца	Тип	Описание
	данных	
gender	object	Пол пациента: Male, Female, Other.
	(строка)	
age	float	Возраст пациента в годах.
hypertension	int $(0/1)$	Наличие гипертонии: 0 — нет, 1 — да.
heart_disease	int $(0/1)$	Наличие сердечного заболевания: 0 — нет, 1
		— да.
smoking_history	object	История курения: - never — не курил - former
	(строка)	— курил раньше - current — курит сейчас -
		ever — когда-либо курил - not current — не
		курит сейчас - No Info — нет информации
bmi	float	Индекс массы тела (Body Mass Index),
		рассчитывается как вес (кг) / рост 2 (м 2).
		Нормой считается 18.5–24.9.
HbA1c_level	float	Уровень гликированного гемоглобина
		(HbA1c), обычно в диапазоне 4.0–14.0.
		Показатель среднего уровня сахара в крови за
		2-3 месяца.
blood_glucose_level	float или	Уровень глюкозы в крови в мг/дл. Нормой
	int	считается около 70–140 мг/дл.
diabetes	int (0/1)	Целевой признак: наличие диабета. 1 —
		диабет есть, 0 — нет.

Рассмотрим набор данных с количеством записей в 100 000:

		⇒ smoking_history			123 blood_glucose_level ÷	
0 Female	80.0	1 never	25.19			
1 Female	54.0					
2 Male	28.0					
3 Female	36.0		23.45	5.0		
4 Male	76.0	1 current	20.14	4.8		

Рисунок 1 – Первые 5 записей

Рисунок 2 – Первичный анализ

Первичный анализ данных показал, что все признаки в датасете заполнены — пропусков нет. Типы данных соответствуют содержимому: числовые признаки представлены числами с плавающей точкой или целыми, категориальные — строками.

Категориальные признаки пол (gender) и историю курения (smoking_history), каждый из которых содержит несколько уникальных значений. Числовые признаки, такие как возраст, индекс массы тела, уровень гликированного гемоглобина и уровень глюкозы в крови, имеют широкий

диапазон значений и пригодны для анализа. Целевой признак — наличие диабета (diabetes)(да/нет).

Датасет готов для дальнейшего анализа: визуализации, выявления закономерностей.

Рисунок 3 – Количество людей разного возраста

В датасете распределение людей по возрасту **неравномерное**. Больше всего наблюдений приходится на взрослых и пожилых людей — основную часть выборки составляют пациенты в возрасте от примерно 30 до 70 лет.

Это значит, что данные смещены в сторону пожилого возраста, что логично, поскольку риск диабета и сопутствующих заболеваний возрастает с возрастом.

Рисунок 4 – Тепловая карта

Наибольшая корреляция с диабетом наблюдается у признаков:

- **blood_glucose_level** положительная корреляция: чем выше уровень сахара в крови, тем выше вероятность наличия диабета.
- **HbA1c_level** также положительная связь: повышенный уровень гликированного гемоглобина характерен для диабетиков.
- **age** умеренно положительная корреляция: риск диабета возрастает с возрастом.

Слабая или отсутствующая корреляция у признаков:

• **gender**, **smoking_history**, **bmi** — слабо связаны напрямую с диабетом, но могут иметь опосредованное влияние в комбинации с другими признаками.

• hypertension и heart_disease имеют слабую положительную корреляцию с диабетом.

Далее выполним нормализацию значений по курению. Заменим значения курящих на 1, в ином случае 0, 2 - нет информации.

Рисунок 5 – Процент курящих мужчин и женщин

Мужчины, согласно анализу курят больше.

Построим диаграмму для визуализации:

Рисунок 6 – Процент курящих мужчин и женщин

Столбца Other не видно из-за очень низкого количества людей этой группы.

```
print(df[df['smoking_history'] == 0]['age'].mean())
print(df[df['smoking_history'] == 1]['age'].mean())
print(df[df['smoking_history'] == 2]['age'].mean())

# средний возраст курящих и некурящих
# 0 - не курят, 1 - курят или курили, 2 - нет инфо
✓ [81] 37ms

44.480930142987816
50.329497394223125
33.538036631672995
```

Рисунок 7 – Средний возраст курящих и некурящих

Вычислим корреляцию и построим диаграмму рассеяния. Выводы совпадают с выводами, сделанными по тепловой карте.

Рисунок 8 – Корреляция

Рисунок 9 – Pacnpeделение по blood_glucose_level

Рисунок 10 – Распределение по bmi

Рисунок 11 – Распределение по аде

Рисунок 12 – Распределение по HbA1c_level

1. age (возраст)

- Медиана: находится в районе среднего возраста (около 45–50 лет).
- **Ящик**: показывает, что основная часть наблюдений (50%) находится между примерно 30 и 60 годами.
- Усы: охватывают молодых (около 20 лет) и пожилых (до 80+).
- Выбросы: незначительные, в основном в пожилом возрасте.

Вывод: возраст распределён с перекосом к взрослым и пожилым людям.

2. bmi (индекс массы тела)

- Медиана: немного выше нормы (в районе 27–30).
- Ящик: большая часть значений избыточный вес или лёгкое ожирение.
- Выбросы: есть пациенты с экстремально высоким ИМТ (>50), что отражает ожирение высокой степени.

Вывод: большинство имеют ИМТ выше нормы, что повышает риск диабета.

3. HbA1c level (гликированный гемоглобин)

- **Медиана**: ближе к норме (около 5.5–6.0).
- Ящик: указывает на нормальные и пограничные уровни у большинства людей.
- Выбросы: высокие значения (7.0–10.0) указывают на диабет.

Вывод: основная масса пациентов с нормальным или чуть повышенным уровнем.

4. blood glucose level (уровень глюкозы в крови)

- Медиана: в верхней части нормы или выше.
- Ящик: значения широко варьируются, много пациентов с повышенным уровнем.
- Выбросы: выраженные особенно при уровнях сахара >200.

Построим диаграмму наличия сердечных заболеваний у людей с диабетом и высоким уровнем сахара.

Рисунок 13 – Наличие сердечных заболеваний у людей с диабетом и высоким уровнем сахара

Делаем, вывод, не у всех людей с диабетом есть сердечные заболевания.