Conjugacy of One Dimensional Map

Dyi-Shing Ou Advisor: Professor Ken Palmer

Department of mathematics, National Taiwan University

2009 NCTS Workshop on Dynamical Systems

Conjugacy

 A way to say that two systems are equivalent is by obtaining a conjugacy map between them.

 $f: I \rightarrow I$ and $g: J \rightarrow J$ are continuous maps.

1 A continuous function $h: I \rightarrow J$ is said to be a topological semi-conjugacy of f to g if

$$h \circ f = g \circ h$$
.

2 In addition, if *h* is bijective, then *h* is said to be a topological conjugacy of *f* and *g*.

Conjugacy

 Conjugacy maps preserves the characteristic between two dynamical system.

Consider ([0,1], f) and ([0,1], T_2), if p is a periodic point of f with period 3. Then,

$$T_2^3 \circ h(p) = h \circ f^3(p) = h(p).$$

h(p) is a periodic point of T_2 with period 3.

Conjugacy

- Milnor had proved the existance of the semi-conjugacy from a piecewise monotone map to a piecewise linear map.
 - Milnor & Thurston, Dynamical systems: proceedings of the special year held at the University of Maryland, College Park, 1986-87, Springer, 1988, On iterated maps of the interval, pp. 465-563.
- Banks had given a construction of the semi-conjugacy map from a 2-modal(unimodal) map to the tent map, which can computed numerically.
 - Banks & Dragan, Chaos: A mathematical introduction. Cambridge university press, 2003.

n-modal maps

A (strictly) *n*-modal map f is a continuous map on the interval [0,1] with a partition $0 = z_0 < z_1 < ... < z_n = 1$ such that

- $f(z_{2i}) = 0$ and $f(z_{2i+1}) = 1$, and
- ② f is (strictly) increasing on $[z_{2i}, z_{2i+1}]$ and (strictly) decreasing on $[z_{2i+1}, z_{2i+2}]$.

An example of a 4-modal map.

The generalized tent maps

A generalized tent map $T_n : [0,1] \rightarrow [0,1]$ is defined as

$$T_n(x) = \begin{cases} n(x - \frac{2i}{n}) & \text{if } x \in \left[\frac{2i}{n}, \frac{2i+1}{n}\right]; \\ 1 - n(x - \frac{2i+1}{n}) & \text{if } x \in \left[\frac{2i+1}{n}, \frac{2i+2}{n}\right]. \end{cases}$$

An example of T_3 .

The main result

Theorem

Assume that f is a n-modal map on [0,1] and T_n is the tent map. Then there exists an unique semi-conjugacy h of f to T_n such that h(0) = 0, h(1) = 1 and h is increasing. That is, $h \circ f = T_n \circ h$.

The approximated semi-conjugacy is constructed by matching the orbits. We match "the inverse orbits" of 0 and 1.

Let

$$D_g = \{x \in [0,1] : \exists k \text{ such that } g^k(x) = 0 \text{ or } 1\}.$$

Then,

A 3-modal map $f(x) = x(3-4x)^2$. A partition is given as:

$$z_0 = 0, z_1 = \frac{1}{4}, z_2 = \frac{3}{4}, z_3 = 1.$$

Step 1: m = 1 f(x) = 0 for $x = z_0, z_2$. $T_3(x) = 0$ for $x = 0, \frac{2}{3}$. f(x) = 1 for $x = z_1, z_3$. $T_3(x) = 1$ for $x = \frac{1}{3}, 1$.

Step 2: m = 2

$$f(x) = d_1$$
 for $x = d_{01}, d_{12}, d_{21}$. $T_3(x) = t_1$ for $x = t_{01}, t_{12}, t_{21}$.

$$f(x) = d_2$$
 for $x = d_{02}, d_{11}, d_{22}$. $T_3(x) = t_1$ for $x = t_{02}, t_{11}, t_{22}$.

Step 3: m = 3

We map the solutions of $f(x) = d_{01}, d_{02}, d_{11}, d_{12}, d_{21}, d_{22}$ to the solutions of $T_3(x) = t_{01}, t_{02}, t_{11}, t_{12}, t_{21}, t_{22}$ as the similarly way.

Definition of the approximated semi-conjugacy

$$t_a = \sum_{i=1}^{l(a)} a_i \frac{1}{n^i}$$
.
 d_a is defined by solving $f(d_a) = d_{\tilde{a}}$.

The approximated semi-conjugacy $h_m : [0,1] \to [0,1]$ is defined to be piecewise linear with turning points $h_m(d_a) = t_a$.

Fact

- \bullet h_m is increasing.
- 2 The limit $h = \lim_{m \to \infty} h_m$ exists and h is the unique semi-conjugacy.

Algorithm for numerical implement

- **1** Give a function f with its turning points $z_1, ..., z_{n-1}$ and the number of iterations k.
- 2 Set m = 1, $z_0 = 0$, $z_n = 1$ and $d_0 = 0$, $d_1 = z_1$, $d_2 = z_2$,..., $d_{n-1} = z_{n-1}$.
- **3** Set $\tilde{d}_{in} = d_i$ for $i = 0, ..., n^m 1$.
- **4** For each $i = 0, ..., n^m 1$, if i does not divide n, then
 - set $\tilde{d}_{jn^{m-1}+i}$ be the solution of $f(x) = d_i$ on $[z_j, z_{j+1})$ for j = 0, 2, ... < n, and
 - 2 set $\tilde{d}_{jn^{m-1}+j-i}$ be the solution of $f(x) = d_i$ on $[z_j, z_{j+1})$ for j = 1, 3, ... < n.
- 6 Redo steps 3 to 5 until m = k.
- **7** For $i = 0, ..., n^k$, set $t_i = \frac{i}{n^k}$.
- Output the data $\{(d_i, t_i)\}_{i=0}^{\eta^k}$. The points constructs the piecewise linear approximation of the semi-conjugacy map.

The running time for each m is of order $O(n^m)$.

Numerical results for the 3-modal map $f(x) = x(3-4x)^2$.

The approximated semi-conjugacy h_m .

The comparison of $h_m \circ f \circ h_m^{-1}$ with T_3 .

We know that $h^{-1}(x) = \frac{1}{2}(1 - \cos \pi x) = \sin^2(\frac{\pi}{2}x)$.

m	CPU(s)	$-\log_3$	$h_m - h$	$-\log_3$	$h_m^{-1} - h^{-1}$	$-\log_3$	$h_m\circ f\circ h_m^{-1}-T_3$	$-\log_3$
1			7.75×10^{-2}	2.33	5.82×10^{-2}	2.59	2.32×10^{-1}	1.33
2	0.000014	10.15	2.75×10^{-2}	3.27	7.48×10^{-3}	4.46	7.43×10^{-2}	2.37
3	0.000034	9.35	9.19×10^{-3}	4.27	8.45×10^{-4}	6.44	2.47×10^{-2}	3.37
4	0.000115	8.25	1.94×10^{-3}	5.69	9.40×10^{-5}	8.44	8.23×10^{-3}	4.37
5	0.000343	7.26	3.29×10^{-4}	7.30	1.05×10^{-5}	10.44	2.74×10^{-3}	5.37
6	0.00101	6.28	6.72×10^{-5}	8.75	1.16×10^{-6}	12.44	9.15×10^{-4}	6.37
7	0.00302	5.28	8.41×10^{-6}	10.64	1.29×10^{-7}	14.44	3.05×10^{-4}	7.37
8	0.00767	4.43	2.10×10^{-6}	11.90	1.43×10^{-8}	16.44	1.02×10^{-4}	8.37
9	0.0225	3.45	4.73×10^{-7}	13.26	1.59×10^{-9}	18.44	3.39×10^{-5}	9.37
10	0.0681	2.45	4.23×10^{-8}	15.45	1.77×10^{-10}	20.44	1.13×10^{-5}	10.37
11	0.202	1.46	1.28×10^{-8}	16.54	1.97×10^{-11}	22.44	3.76×10^{-6}	11.37
12	0.584	0.49	3.34×10^{-9}	17.77	2.18×10^{-12}	24.44	1.25×10^{-6}	12.37
13	1.73	-0.50	6.02×10^{-10}	19.33	2.43×10^{-13}	26.44	4.18×10^{-7}	13.37
14	5.52	-1.56	9.36×10^{-11}	21.02	2.70×10^{-14}	28.44	1.39×10^{-7}	14.37
15	19.5	-2.71	1.52×10^{-11}	22.67	3.63×10^{-14}	28.17	4.65×10^{-8}	15.37
16	51.9	-3.60	4.15×10^{-12}	23.86	6.52×10^{-14}	27.64	1.39×10^{-8}	16.37
	O(3 ^r	^m)	O(3 ⁻	^m)	O(3 ⁻²	^m)	O(3 ^{-m})	

Table: The progressing time and error versus the number of iterations.

A 2-modal map $f(x) = 16x^2(1-x)^2$.

The tent map T_2

т	CPU(s)	$-\log_2$	$h_m - h_{m-1}$	- log ₂	$h_m^{-1} - h_{m-1}^{-1}$	-log ₃	$h_m \circ f \circ h_m^{-1} - T_2$	- log ₃
1							1.30×10^{-1}	2.95
2	0.0000106	16.52	2.05×10^{-2}	5.61	2.04×10^{-2}	5.61	1.00×10^{-1}	3.32
3	0.0000132	16.21	3.62×10^{-2}	4.79	3.93×10^{-2}	4.67	7.27×10^{-2}	3.78
4	0.0000207	15.56	3.35×10^{-2}	4.90	4.68×10^{-2}	4.62	4.60×10^{-2}	4.44
5	0.0000365	14.74	2.25×10^{-2}	5.48	4.81×10^{-2}	4.38	2.64×10^{-2}	5.25
6	0.0000657	13.89	1.31×10^{-2}	6.25	4.83×10^{-2}	4.37	1.42×10^{-2}	6.13
7	0.0001341	12.86	7.11×10^{-3}	7.14	4.81×10^{-2}	4.38	7.43×10^{-3}	7.07
8	0.0002510	11.96	3.71×10^{-3}	8.07	4.81×10^{-2}	4.38	3.80×10^{-3}	8.04
9	0.0004672	11.06	1.90×10^{-3}	9.04	4.81×10^{-2}	4.38	1.92×10^{-3}	9.02
10	0.0009223	10.08	9.62×10^{-4}	10.02	4.81×10^{-2}	4.38	9.68×10^{-4}	10.01
11	0.0017604	9.15	4.84×10^{-4}	11.01	4.81×10^{-2}	4.38	4.86×10^{-4}	11.01
12	0.0032727	8.26	2.43×10^{-4}	12.01	4.81×10^{-2}	4.38	2.43×10^{-4}	12.00
13	0.0064051	7.29	1.22×10^{-4}		4.81×10^{-2}	4.38	1.22×10^{-4}	13.00
14	0.0122889	6.35	6.10×10^{-5}	14.00	4.81×10^{-2}	4.38	6.10×10^{-5}	14.00
15	0.0238768	5.39	3.05×10^{-5}	15.00	4.81×10^{-2}	4.38	3.05×10^{-5}	15.00
16	0.0518212	4.27	1.53×10^{-5}	16.00	4.81×10^{-2}	4.38	1.52×10^{-5}	16.00
	O(2 ^m)		O(2 ^{-m})		х		O(2 ^{-m})	

Table: The progressing time and error versus the number of iterations.

The error analysis

conditions	convergence rate	
$h\in C$	$O(n^{-m})$	
$h \in C^2, h'(x) \neq 0$	$O(n^{-2m})$	
$h \in C^2, h'(x) \neq 0$	O(n ^{-m})	
$h^{-1} \in C^2$	$O(n^{-2m})$	
$h^{-1} \in C^2$	O(n ^{-m})	
$h \in C$	O(n ^{-m})	
	$h \in C$ $h \in C^{2}, h'(x) \neq 0$ $h \in C^{2}, h'(x) \neq 0$ $h^{-1} \in C^{2}$ $h^{-1} \in C^{2}$	

$$h'_m$$
 converges in $O(n^{-m}) \Longrightarrow h_m$ converges in $O(n^{-2m})$ h_m^{-1} converges in $O(n^{-2m})$

Equivalent conditions for the existence of conjugacy

A continuous map $f: I \to I$ is said to be topologically transitive if for any pair of open subintervals (U, V) of I, there exists k > 0 such that $f^k(U) \cap V \neq \emptyset$.

Theorem

Assume that f is a n-modal map and h is the semi-conjugacy of f to T_n . Then the following conditions are equivalent:

- \bullet h is the conjugacy of f to T_n ,
- **2** {the sequence d that we had constructed} is dense in [0,1],
- 3 f is topological transitive.
 - Coincide with Parry's theorem.(1966)
 - Gives a connection with the chaotic behavior.

Applications

The trajectory of the invatiant Cantor set for the logistic map

- A set Λ is said to be invariant under the map f if $f(\Lambda) \subset \Lambda$.
- The logistic map is defined as $I_{\mu}(x) = \mu x(1-x)$ for a parameter $\mu \in [0, \infty)$.
- The bounded orbits Λ_{μ} of I_{μ} forms an invariant cantor set.

Applications

The trajectory of the invatiant Cantor set for the logistic map

The result is similar as Chen's result.

 Y.-C. Chen, "Family of invariant cantor sets as orbits of differential equations," International Journal of Bifurcation and Chaos, vol. 18, no. 7, pp. 1825–1843, 2008.

Applications

The invariant measure for a *n*-modal map

Assume that (X, Σ, μ) is a measure space. We say that $T: X \to X$ is called a measure preserving transformation (mpt) if $T^{-1}(\Sigma) \subset \Sigma$ and

$$\mu(T^{-1}E) = \mu(E)$$

for every $E \in \Sigma$.

Theorem

Assume that f is a n-modal map with semi-conjugacy h to T_n and v is the Borel measure generated by the cumulative distribution h.

(i.e.
$$v(a,b] = h(b) - h(a)$$
.)

Then, f preserves the measure ([0,1], \mathcal{B} , v).