Universidad de O'Higgins - Escuela de Ingeniería

Profesores: Alfonso Ehijo

Ayudante de Cátedra: Alan Molina Ayudante Corrector: Isidora Salgado

COM3201 Computación Gráfica y Aplicaciones - Semestre Otoño -

2025

${ m COM3201~Computaci\'on~Gr\'afica~y~Aplicaciones}$ - Oto $\~{ m 000}$

Tarea N°1 Plazo de entrega: Martes 13 de Mayo, 23:59 hrs.

Objetivos

- Diseñar programas utilizando Qt-Designer.
- Escribir programas para el desarrollo de Interfaces Gráficas de Usuario (GUI) en Python.
- Realizar procesamientos básicos de imágenes usando Python.

Problema

Se solicita implementar una interfaz gráfica que permita visualizar y procesar digitalmente imágenes de video para la detección de rostros. Un ejemplo de interfaz gráfica se muestra en la Fig. 1.

Figura 1: Interfaz gráfica base para la tarea diseñada en Qt Designer.

La interfaz gráfica debe realizar lo siguiente:

1. Capturar imágenes RGB (Red, Green, Blue) desde una cámara (por ejemplo, webcam).

Figura 1: Captura de pantalla

- 2. Seleccionar el tipo de imagen a visualizar (RGB, escala de grises o binaria) mediante un QComboBox. En el caso de la imagen binaria, deberá utilizar un umbral ajustable mediante un QSlider.
- 3. Mostrar el histograma actual de la captura de la cámara en escala de grises.

Figura 2: Escala de grises

4. Mostrar el histograma actual de la captura de la cámara en binaria.

Figura 3: Binario

5. Aplicar un detector de rostros con color azul en la imagen actual utilizando las herramientas disponibles de las bibliotecas de Python (por ejemplo, OpenCV)¹.

Figura 4: Detector de rostro

- 6. Cerrar el programa desde la barra de menú.
- 7. Los siguientes pasos son para la importación de imágenes.

¹Tutorial de detección de rostros: https://realpython.com/face-detection-in-python-using-a-webcam/Detector: https://github.com/kipr/OpenCV/tree/master/data/haarcascades

8. Desde la barra superior izquierda desplegar un menú con la opción de abrir imagen desde una carpeta y mostrarla en el recuadro izquierdo.

Figura 5: Menú con opciones

Figura 6: Imagen cargada

9. Reajustar el tamaño de la imagen a un determinado número de FILAS (F) y COLUMNAS (C) con un Qslider para escalar.

Figura 7: Imagen Escalada

10. Implementar una Qslider para poder manipular la imagen en el eje Y.

Figura 8: Traslación eje Y

11. Implementar una Qslider para poder manipular la imagen en el eje X.

Figura 9: Traslación eje X

12. Implementar una Qslider para poder manipular la imagen aplicando una rotación en torno al centro de la imagen.

Figura 10: Imagen Rotada

Bonus

Seleccionar alguna de las siguientes opciones:

- Aplicar un detector de objeto encerrándolo en un cuadrado/rectángulo de color rojo este vaya ajustando la forma figura si se mueve el objeto delante de la cámara.
- Habilitar/Deshabilitar widgets de acuerdo al funcionamiento del programa, por ejemplo, si la imagen esta en binario se mantiene "presionado. el botón y se activan los demás botones para poder cambiar a RGB o Binario.
- Manejo de errores en el hacia el usuario con pantallas de respuesta y como solucionarlas a nivel de usuario.
- Aplicar algún procesamiento a la imagen (por ejemplo, suavizamiento, detección de bordes).

■ Mejorar el aspecto de la interfaz para lograr hacerla intuitiva, moderna y/o más funcional.

Observación: Este bonus solo se aplica en esta tarea, considerando que la nota máxima es un 7.0. Se debe indicar al comienzo del código (comentario) la actividad desarrollada.

Instrucciones de entrega

La tarea es grupal (mínimo 3 integrantes, máximo 4 integrantes). Suba todos los archivos necesarios para la revisión de su tarea (informe y códigos) a U-Campus antes del **Martes 13 de Mayo**, en un archivo comprimido, indicando el número del grupo (ejemplo, grupo1.zip, grupo2.zip, etc). En su entrega final, debe incluir un breve comentario indicando cómo ejecutar su programa.

Cualquier herramienta, habilidad o conocimiento que requieran para resolver esta evaluación, usted deberá: "Aprenderla MUY rápido y Aplicarla MÁS rápido todavía".

Deberá registrar su grupo por el foro de U-Campus antes del **Viernes 3 de Mayo**. En caso contrario, se le asignará un grupo. Es su responsabilidad verificar el correcto envío de todos los archivos a la plataforma. Si tiene algún inconveniente, se habilitará un foro en U-Campus para dudas de la tarea. La copia total o parcial será calificada con la nota mínima según lo indica el reglamento.

Informe

El informe en formato IEEE debe incluir al menos:

- Título: Representativo de la temática de la tarea (no utilizar "tarea 1.º similar).
- Integrantes: Escuela, universidad, ciudad, país. Correo electrónico (opcional).
- Resumen: Breve contexto del problema, objetivos/contribución, materiales y métodos, resultados y conclusión más relevante.
- Palabras claves: Mínimo tres, ordenadas alfabéticamente y separadas por coma.
- Introducción: Contexto y problema identificado. Idealmente citar trabajos del estado del arte. Descripción de la solución, objetivos y principalmente la contribución del trabajo. Breve descripción de los materiales y métodos. Temario de los contenidos por sección (opcional).
- Materiales y métodos: Descripción de los materiales (datos, software, hardware, etc) y de la metodología del trabajo (incluye diagramas, ecuaciones, algoritmos, etc).
- Resultados: Presentar los resultados y breve descripción de los principales hallazgos. Las figuras y tablas deben aparecer después de haber sido mencionadas en el texto.
- Conclusiones: Incluir un breve sumario del trabajo. Presentar las principales conclusiones del trabajo de acuerdo a todos los resultados presentados. Puede presentar trabajo futuro (mejoras al trabajo actual).
- Referencias: Toda referencia debe ser citada. Las referencias deben cumplir el siguiente formato.

Cada elemento en el enunciado debe ser abordado en el informe. Su extensión máxima es de **10 páginas**, en formato .pdf y de doble columna de la IEEE (template subido a U-Campus).

Importante: La evaluación de la tarea considerará el correcto funcionamiento del programa, la inclusión de los resultados de los pasos pedidos en el informe, la calidad de los experimentos realizados y de su análisis, la inclusión de las partes importantes del código en el informe, así como la forma, prolijidad y calidad del mismo.