Complex Analysis Reference Sheet

Stuyvesant Class of 2022

Nate Strout, Joshua Yagupsky, Francis Zweifler

Created February 15th, 2022

Complex Calculus, Mr. Stern

Contents

1	THE COMPLEX NUMBER SYSTEM					
	1.1	The Algebra of Complex Numbers	4			
	1.2	The Geometry of Complex Numbers	4			
		1.2.1 Möbius Transformations and the Riemann Sphere	4			
2	COMPLEX FUNCTIONS					
	2.1	The Complex Exponential	4			
	2.2	Complex Trigonometry	4			
	2.3	The Argument Functions and Complex Logarithm	4			
3	TOPOLOGY OF $\mathbb C$					
	3.1	Neighborhoods, Open and Closed Sets	4			
		3.1.1 Accumulation Points and the Closure of a Set	4			
	3.2	Connectedness and Compactness	4			
	3.3	Sequences in \mathbb{C} , Limits of Sequences	4			
	3.4	Limits of Functions, Continuity	4			
		3.4.1 Continuous Images of Connected and Compact Sets	4			
4	COMPLEX DIFFERENTIATION 4					
	4.1	Differentiability and Analyticity	4			
		4.1.1 The Cauchy-Riemann Equations	4			
	4.2	Rules for Derivatives	4			
	4.3	Conformal Maps	4			
5	COMPLEX INTEGRATION					
	5.1	Real Integrals of Complex Functions	4			
	5.2	Contours and Contour Integration	4			
		5.2.1 Contour Parameterization	4			
	5.3	Introduction to Cauchy's Theorem	4			
		5.3.1 Tile-Centered Regions and the "Not Too Bad" Condition	4			
	5.4	Cauchy's Integral Formula	4			
6	PROPERTIES OF ANALYTIC FUNCTIONS					
	6.1	Taylor Series	4			

6.2	Meron	norphic Functions, Classification of Singularities	4
	6.2.1	Properties of Essential Singularities	4

1 THE COMPLEX NUMBER SYSTEM

- 1.1 The Algebra of Complex Numbers
- 1.2 The Geometry of Complex Numbers
- 1.2.1 Möbius Transformations and the Riemann Sphere

2 COMPLEX FUNCTIONS

- 2.1 The Complex Exponential
- 2.2 Complex Trigonometry
- 2.3 The Argument Functions and Complex Logarithm

3 TOPOLOGY OF $\mathbb C$

- 3.1 Neighborhoods, Open and Closed Sets
- 3.1.1 Accumulation Points and the Closure of a Set
- 3.2 Connectedness and Compactness
- 3.3 Sequences in \mathbb{C} , Limits of Sequences
- 3.4 Limits of Functions, Continuity
- 3.4.1 Continuous Images of Connected and Compact Sets

4 COMPLEX DIFFERENTIATION

- 4.1 Differentiability and Analyticity
- 4.1.1 The Cauchy-Riemann Equations
- 4.2 Rules for Derivatives
- 4.3 Conformal Maps

5 COMPLEX INTEGRATION

- 5.1 Real Integrals of Complex Functions
- 5.2 Contours and Contour Integration
- 5.2.1 Contour Parameterization
- 5.3 Introduction to Cauchy's Theorem