

Deteksi Penyakit Glaukoma pada Citra Fundus Retina Mata Menggunakan Adaptive Thresholding dan Support Vector Machine

AHMAD MUSTOFA 5112100100

Dosen Pembimbing Prof. Ir. Handayani Tjandrasa, M.Sc., Ph.D. Bilqis Amaliah, S.Kom., M.Kom.

Pendahuluan

Perancangan & Implementasi

Skenario Uji Coba

Kesimpulan & Saran

Latar Belakang

- Glaukoma merupakan penyebab terbanyak kedua dari kebutaan setelah katarak.
- Kebutaan akibat glaukoma tidak dapat disembuhkan.
- Glaukoma dapat dikenali dengan menganalisa keberadaan optic disk, optic cup, dan pembuluh darah pada citra retina mata.

Teknologi Sepuluh Nopember Rumusan Masalah

- Bagaimana melakukan segmentasi optic disk, optic cup, dan pembuluh darah dari citra retina mata?
- Bagaimana sistem dapat mendeteksi penderita glaukoma dari citra retina mata?

Batasan Masalah

- Kelas retina mata yang dapat diklasifikasi adalah kelas mata normal dan kelas mata glaukoma.
- Implementasi program dilakukan pada lingkungan komputer desktop dengan menggunakan matlab.

Tujuan

- Merancang dan membuat aplikasi yang bisa melakukan segmentasi optic cup, optic disc, dan pembuluh darah dari citra retina mata.
- Merancang dan membuat aplikasi yang bisa mendeteksi penderita glaukoma dari citra retina mata.

Pendahuluan

Perancangan & Implementasi

Skenario Uji Coba

Kesimpulan & Saran

Deskripsi Data

- Dataset diambil dari database RIM-ONE.
- Dataset terdiri dari 120 citra retina mata yang terdiri dari 56 mata normal dan 64 mata glaukoma.

a. Mata glaukoma

b. Mata normal

Diagram Alir Implementasi Secara Umum

Teknologi Sepuluh Nopember Tahap Preprocessing Data

• Tahap preprocessing terbagi menjadi 2 bagian, yaitu preprocessing pembuluh darah, dan preprocessing optic cup dan optic disk.

Tahap Preprocessing Pembuluh Darah

Tahap Preprocessing Optic Condon Optic Disk

end for

return I

10

11

13

14

15

Teknologi Sepuluh Nopember Tahap Segmentasi

• Tahap segmentasi terbagi menjadi 3 bagian, yaitu segmentasi optic disk, segmentasi optic cup, dan segmentasi pembuluh darah.

Tahap Segmentasi Optic Disk

Tahap Segmentasi Optic Cup

Tahap Segmentasi Pembuluh Darah

Tahap Ekstraksi Fitur

- 1. Cup to Disk Ratio
- 2. ISNT Pembuluh Darah
- 3. ISNT Neuro Retinal Rim

Tahap Ekstraksi Fitur CDR Teknologi Sepuluh Nopember (Cup to Disk Ratio)

- 1. Merupakan rasio jejari dari optic cup dan jejari optic disk.
- 2. Dapat dihitung dengan rumus:

 $CDR = \sqrt{Area\ of\ optic\ cup/Area\ of\ optic\ disk}$

Tahap Ekstraksi Fitur Teknologi Sepuluh Nopember Tahap Ekstraksi Fitur ISNT Pembuluh Darah

• ISNT adalah 4 region pada optic disk, yaitu Inferior, Superior, Nasal, dan

Temporal.

• Fitur ISNT pembuluh darah didapatkan dengan rumus:

 $ISNT = \frac{Luas\ pembuluh\ darah\ pada\ quadran\ inferior +\ Luas\ pembuluh\ darah\ pada\ quadran\ superior}{Luas\ pembuluh\ darah\ pada\ quadran\ nassal +\ Luas\ pembuluh\ darah\ pada\ quadran\ temporal}$

Tahap Ekstraksi Fitur ISNT Neuro Retinal RIM

• Neuro Retinal RIM adalah daerah optic disk yang bukan merupakan optic

• Fitur ISNT NRR didapatkan dengan rumus :

 $ISNT = \frac{Luas\ NRR\ pada\ quadran\ inferior +\ Luas\ NRR\ pada\ quadran\ superior}{Luas\ NRR\ pada\ quadran\ nassal +\ Luas\ NRR\ pada\ quadran\ temporal}$

Tahap Klasifikasi

Klasifikasi dilakukan dengan menggunakan SVM

Pendahuluan

Perancangan & Implementasi

Skenario Uji Coba

Kesimpulan & Saran

Teknologi Sepuluh Nopember Skenario Uji Coba

• Perhitungan performa meliputi:

$$- akurasi = \frac{TP + TN}{TP + TN + FP + FN}$$

$$- presisi = \frac{TP}{TP + FP}$$

amaitimitas —	TP
– sensitivitas =	
	TP+FN

		Prediksi	
		1	0
Aktual -	1	TP	FN
	0	FP	TN

 Hasil perhitungan merupakan nilai rata-rata performa dari 5 kali uji coba dengan menggunakan 10-folds cross validation.

Teknologi Sepuluh Nopember Skenario Uji Coba 1

- Segmentasi optic cup dengan dan tanpa Histogram Smoothing
- Fungsi kernel SVM = Linear, SVM method = SMO

AKURASI

Institut Teknologi Sepuluh Nopember Skenario Uji Coba 1

Institut Teknologi Sepuluh Nopember Skenario Uji Coba 2

- Variasi SVM method
 - a. SMO (Sequential Minimum Optimization)
 - b. LS (Least Squares)
 - c. QP (Quadratic Programming)

AKURASI

PRESISI

Institut Teknologi Sepuluh Nopember Skenario Uji Coba 2

Institut Teknologi Sepuluh Nopember Skenario Uji Coba 3

- Variasi fungsi kernel
 - a. Linear
 - b. Quadratic
 - c. Polynomial orde 3
 - d. RBF (Gaussian Radial Basis Function)

AKURASI

Pendahuluan

Perancangan & Implementasi

Skenario Uji Coba

Kesimpulan & Saran

Kesimpulan

- Keberadaan pembuluh darah dan pantulan cahaya dapat mengganggu proses segmentasi optic disk dan optic cup.
- Proses smoothing histogram dapat meningkatkan performa sistem sebesar 5%.
- Metode pencarian hyperplane yang menghasilkan performa terbaik pada support vector machine adalah sequential minimal optimization.
- Fungsi kernel yang menghasilkan performa terbaik pada support vector machine adalah fungsi kernel linear.

- Perlu dikembangkan metode untuk menangani noise pantulan cahaya pada citra retina mata.
- Perlu dikembangkan metode penghilangan pembuluh darah yang lebih baik pada segmentasi optic cup.
- Diperlukan penelitian lebih lanjut untuk mendapatkan fitur lain yang lebih baik daripada fitur yang digunakan dalam tugas akhir ini.

38 29 July 2016 Tugas Akhir - KI141502

Terima Kasih

Teknologi Sepuluh Nopember K-Fold Cross Validation

- Dataset dibagi secara acak menjadi K bagian berukuran sama
- Satu bagian digunakan sebagai data uji, dan K-1 bagian lainnya digunakan sebagai data latih.
- Proses tersebut diulang sebanyak K kali.
- Masing-masing bagian digunakan tepat satu kali sebagai data uji.

Institut Teknologi Sepuluh Nopember Median Filter

• Pseudocode:

1	MedianFiltering(I,size)
2	foreach p = pixels in I
3	<pre>p = median(part(I(position(p).x - size, position(p).y + size))</pre>
4	end foreach
5	return I

Institut Teknologi Sepuluh Nopember Bottom Hat Transformation

• Rumus:

$$B_{hat}(I) = ((I \oplus b) \ominus b) - I$$

dimana ⊕ adalah operasi dilasi dan ⊝ adalah operasi erosi.

Institut Teknologi Sepuluh Nopember Otsu Thresholding

- Metode segmentasi berbasis clustering sehingga didapatkan batas yang dapat dijadikan acuan untuk melakukan segmentasi pada suatu citra.
- Jumlah kelas yang dapat ditangani hanya 2, yaitu objek dan background.

$$\sigma_b^2(t) = \omega_0(t)\omega_1(t)[\mu_0(t) - \mu_1(t)]^2 \text{ dimana } \omega_0(t) = \sum_0^{t-1} p(i) \text{ dan } \omega_1(t) = \sum_t^{255} p(i)$$
 serta $\mu_0(t) = \frac{\sum_0^{t-1} ip(i)}{\omega_0} \text{ dan } \mu_1(t) = \frac{\sum_t^{255} ip(i)}{\omega_1} \text{ dengan } p(i) = \frac{histogram(i)}{jumlah \ pixel}$

Pseudocode:

Hitung histogram dan peluang dari setiap level intensitas

Inisialisasi nilai awal $\omega_i(0) dan \mu_i(0)$

For t = 1 to 256

Update $\omega_i \, dan \, \mu_i$

Hitung $\sigma_h^2(t)$

Pilih t dengan nilai $\sigma_b^2(t)$ maksimum

Suport Vector Machine (SVM)

• Mencari hyperplane yang optimal dilakukan dengan persamaan

$$\frac{1}{2}||w||^2 + C\sum_{i=1}^n \xi_i$$

 Persamaan di atas dapat dipecahkan dengan teknik komputasi Lagrange Multiplier

$$L(w,b,\alpha) = \frac{1}{2}||w||^2 - \sum_{i=1}^{n} \alpha_i (y_i((x_i.w+b)-1))$$

• Persamaan Lagrange dapat dimodifikasi sebagai maksimalisasi yang hanya mengandung α

Suport Vector Machine (SVM)

• Persamaan Lagrange dapat dimodifikasi sebagai maksimalisasi yang hanya mengandung α

$$\sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j x_i x_j$$

$$\alpha_i \ge 0 \ (i = 1, 2, ..., n) \sum_{i=1}^{n} \alpha_i y_i = 0$$

Teknologi Sepuluh Nopember Suport Vector Machine (SVM)

- SVM pada dasarnya adalah sebuah model klasifikasi linear, namun bisa digunakan untuk melakukan klasifikasi non-linear menggunakan kernel trick.
- Kernel trick dilakukan dengan cara melakukan transformasi ruang data asli menjadi ruang data dengan dimensi lebih tinggi.

Jenis kernel	Definisi
Polynomial	$K(x_i, x_j) = (x_i, x_j + 1)^p$
Gaussian	$K(x_i, x_j) = \exp(\frac{ x_i - x_j ^2}{2\gamma^2})$

Persamaan hyperplane

$$f(\Phi(x)) = \sum_{i=1,x_i \in SV}^n \alpha_i y_i K(x,x_i) + b$$

Least Squares

 Salah satu variasi metode untuk menyelesaikai komputasi Quadratic Programming pada SVM

$$L(w, b, e, \alpha) = \frac{1}{2} ||w||^2 - \sum_{i=1}^{n} \alpha_i (y_i ((x_i, w + b) - 1 + e_i))$$

dimana e_i adalah nilai least squares dari y_i, x_i .

- Salah satu variasi metode untuk menyelesaikai komputasi Quadratic Programming pada SVM
- Dilakukan dengan memecah komputasi *Quadratic Programming* menjadi beberapa sub kecil. Sehingga kompleksitas komputasi *Quadratic Programming* pada SVM dapat direduksi.