

					Pri	ntec	l Pa	ge: 1	of 2	
				Sub	ject	Co	de: l	KAS	303	
Roll No:										

BTECH (SEM III) THEORY EXAMINATION 2021-22 MATHEMATICS-III

Time: 3 Hours Total Marks: 100

Notes:

- Attempt all Sections and Assume any missing data.
- Appropriate marks are allotted to each question, answer accordingly.

SECT	ION-A	Attempt All of the following Questions in brief	Marks(10 X2=20)	CO	
Q1(a)	Find the I	Laplace transform of $\int_0^t e^{-t} \cos t dt$.		1	
Q1(b)	Evaluate:	$L^{-1}(\frac{e^{-2p}}{p^2}).$		1	
Q1(c)	State Modulation theorem.				
Q1(d)	Find the Z-transform of $f(k) = \frac{1}{k}, \ k \ge 1.$				
Q1(e)	Prove that	the statement $(p \rightarrow q) \rightarrow (p \land q)$ is a contingency.		3	
Q1(f)	Show that	every sub-group H of an abelian group G is normal		3	
Q1(g)	How man	y bit strings of length 8 either start with 1 or end with	n two bits 00?	4	
Q1(h)	Given $f(x)$	$f(x) = 3x - 2$, find $f^{-1}(x)$.		4	
Q1(i)	Define Ma	aximal element and Minimal element of Poset.		5	
Q1(j)	Prove the	Boundedness (NULL) law i.e. $a * 0 = 0$.		5	

SECT	ION-B	Attempt ANY THREE of the following Questions Marks(3X10=	=30) CO
Q2(a)	Solve the	following simultaneous equations by Laplace transform $3\frac{dx}{dt} - y = 2$	2t, 1
	$\frac{dx}{dt} + \frac{dy}{dt} -$	y = 0 with the conditions $x(0) = 0$, $y(0) = 0$.) *
Q2(b)	i)	Find the Fourier transform of $F(x) = \begin{cases} 1, & x < a \\ 0, & x > a \end{cases}$. Hence evaluate	2
		$\int_0^\infty \frac{\sin p}{p} \ dp.$	
	ii)	Using Parseval's identity, show that $\int_0^\infty \frac{x^2}{(a^2+x^2)(b^2+x^2)} dx = \frac{\pi}{2(a+b)}.$	
		Hence find $\int_0^\infty \frac{x^2}{(x^2+1)^2} dx$.	
Q2(c)		a ring $(R, +, *)$ defined by $a * a = a$. Determine whether the ring is	3
	commutat	ive or not.	
Q2(d)	Solve the	difference equation $y_K - y_{K-1} - 6y_{K-2} = -30$.	4
		Given that $y_0 = 20$, $y_1 = -5$.	
Q2(e)	In a Boole	en algebra B if $b + a = c + a$ and $b + a' = c + a'$ then $b = c$. Also if	f 5
		and $ba' = ca'$ then $b = c$.	
	•		•

	ION-C	Attempt ANY ONE following Question	Marks (1 X10=10)	CO			
Q3(a)	Draw the graph and find the Laplace transform of the triangular wave function of						
	period of 2	$2c \text{ given by } f(t) = \begin{cases} t, & 0 < t \le c \\ 2c - t & c < t < 2c \end{cases}$					
	Prove that		t]	1			

SECT	ION-C	Attempt ANY ONE following Question	Marks (1X10=10)	CO
Q4(a)	Determine	the distribution of temperature in the semi-infinite	$medium x \ge 0 when$	2
	the end <i>x</i> temperatu	= 0 is maintained at zero temperature and the initial re is $F(x)$.	distribution of	
Q4(b)	Solve by Z	Z-transform the difference equation $y_{k+2} + 6y_{k+1} +$	$9y_k = 2^k;$	2
	$y_0 = y_1 =$: 0.		

					Pri	ntec	l Pa	ge: 2	2 of 2	,
				Sub	ject	Co	de: l	KAS	303	,
Roll No:										

BTECH (SEM III) THEORY EXAMINATION 2021-22 MATHEMATICS-III

SECT	ION-C Attempt ANY ONE following Question	Marks (1X10=10)	CO
Q5(a)	Consider the following argument and determine whether it is	valid.	3
	Either I will get good marks or I will not graduate. If I did not	graduate I will go to	
	Canada. I get good marks. Thus, I would not go to Canada.		
Q5(b)	Translate the following into symbolic form and test the validition	ty of the argument.	3
	If 6 is even then 2 does not divide 7. Either 5 is not prime or 2	divides 7. But 5 is	
	prime, therefore ,6 is odd.		

SECT	ION-C Attempt ANY ONE following Question	Marks (1X10=10)	CO	
Q6(a)	Among the first 1000 positive integers:		4	
	(a) Determine the integers which are not divisible by 5, nor by 7, nor by 9.			
	(b) Determine the integers divisible by 5, but not by 7,	not by 9.		
Q6(b)	Prove by Mathematical Induction $\frac{1}{1.3} + \frac{1}{3.5} + \frac{1}{5.7} + \cdots$	$+\frac{1}{(2n-1).\ (2n+1)} = \frac{n}{2n+1}.$	4	

SECT	ION-C	Attempt ANY ONE following Question Marks (1X10=10)	CO
	· · · · · · · · · · · · · · · · · · ·	y Lattice, then for any $a, b, c \in L$. Prove the following:	5
	(i)	$a \lor a = a$. (ii) $a \lor b = b \lor a$ (iii) $a \lor (b \lor c) = (a \lor b) \lor c$	
		(iv) $a \lor (a \land b) = a$.	N.C.
Q7(b)	For two po	osets A and B:	5
	(i)	Show that if $f: A \to B$ is an order preserving, then f is one to one.	
	(ii)	Show that if $f: A \to B$ is an order isomorphism, then there is an order	•
		isomorphism $g: B \to A$.	
		N. S	
		· · · · · · · · · · · · · · · · · · ·	
		73.7A.3A	
		201	
		26.Mai.2022	