POWERS OF PATHS IN TOURNAMENTS

Nemanja Draganić, François Dross, Jacob fox, <u>António Girão</u>, Frédéric Havet, Dániel Korándi, William Lochet, David Munhá Correia, Alex scott, Benny Sudakov

?הוכיח? מה אנחנו רוצים להוכיח?

- שכל טורניר מכיל את החזקה ה k של מסלול מכוון
 מגודל לינארי
- פתרון מלא כאשר k=2 שהוא מסלול מכוון באורך

$$\left\lceil \frac{2n}{3} \right\rceil - 1$$

מהו טורניר?

טורניר הוא גרף שלם מכוון.

כלומר בין כל קודקוד לכל קודקוד קיימת צלע והצלעות הן מכוונות.

אם קיימת צלע מכוונת – IJ אז בהכרח הצלע- IJ אינה נמצאת, כלומר זהו גרף ללא צלעות כפולות.

החזקה ה – K של מסלול מכוון

 $ec{P}_l$ - יהי מסלול המסלול אותם $ec{P}_l={
m v}_0, {
m v}_1\dots {
m v}_l$ של המסלול יהי מסלול יהי $ec{P}_l^k$ על אותם הקודקודים אותם $ec{v}_0, v_1\dots v_l$ אשר מכיל את הצלע המכוונת י v_iv_j אם ורק אם יורק אם

?איך מוכיחים

- כדי להוכיח נראה שני חסמים, חסם תחתון וחסם עליון.
- שני החסמים יהיו לינאריים ב n ולכן המסלול יהיה באורך לינארי.
- k = 2 לבסוף נראה את הפתרון השלם עבור •

למה 4

חזור

$$\frac{\left(1-\frac{1}{2k+1}|B|\right)}{2}$$
 - יש לפחות A – יש לפחות ב outneighbours

אז – A מכילה תת קבוצה – A' מגודל – א שיש לה לפחות A – א מכילה תת קבוצה – B – מטותפים ב outneighbours $(2k+1)2^{2k}$ -

למה 4 הוכחה

הוכחה: נניח בשלילה שלא קיימת תת קבוצה – A' לכן כל תת הוכחה: נניח בשלילה שלא קיימת תת קבוצה A- ב k- א ב A- ב A- ב וnneighbourhood A- ב A- ב

 $v \in B$ - של קודקוד inneighbours – מספר ה $d^-(v)$ - נגדיר .A – שיש ב

מזה נובע משוואה **– (1)**

(1)
$$\binom{2k+1}{k} \cdot (2k+1)2^{2k} = \binom{|A|}{k} \cdot (2k+1)2^{2k} > \sum_{v \in B} \binom{d^-(v)}{k}$$

למה 4 הוכחה

משוואה – (2) נובעת ישירות מבניית הגרף.

(2)
$$\Sigma_{v \in B} d^-(v) \ge |A| \cdot \frac{\left(1 - \frac{1}{2k+1}\right)|B|}{2} = \frac{(2k+1)\left(\frac{2k}{2k+1}\right)|B|}{2} = \frac{2k|B|}{2} = k|B|$$

למה 4 הוכחה

(3)
$$\Sigma_{v \in B} {d^{-}(v) \choose k} \ge |B| \cdot {\frac{\Sigma_{v \in B} d^{-}(v)}{|B|} \choose k} = |B| \ge 2^{4k+4}k$$

(1)
$$\binom{2k+1}{k} \cdot (2k+1)2^{2k} = \binom{|A|}{k} \cdot (2k+1)2^{2k} > \sum_{v \in B} \binom{d^-(v)}{k}$$

ומשוואה – (3) נובעת מאי-שוויון ינסן.

כיוון שמשוואה - (3) סותרת את – (1) הגענו לסתירה מההנחה היחידה שעשינו ש – 'A' לא קיימת, ולכן היא בהכרח קיימת.

טענת עזר 1

uw – טורניר טרנזיטיבי: טורניר שבו אם – uv,vw הן צלעות אז היא גם צלע.

טענה: כל טורניר על - 2^m קודקודים מכיל תת טורניר טרנזיטיבי בגודל m+1-

טענת עזר 1

טורניר טרנזיטיבי: טורניר שבו אם – טי,יע הן צלעות אז – ww – היא גם צלע.

הדרך למצוא את אותו תת טורניר היא להתחיל מקודקוד עם דרגה יוצאת של לפחות - 2^{m-1} ולעבור על כל השכנים שלו רקורסיבית.

דרך זו יוצרת לנו טורניר ללא מעגלים ולפי משפט שטורניר הוא טרנזיטיבי אם ורק אם הוא חסר מעגלים נובע שהטורניר הוא טרנזיטיבי.

חסם תחתון

נסדר את הקודקודים – 0,1,...n-1 כך שיהיו כמה שיותר צלעות מהצורה – JJ כך ש – J>l נקרא לסידור הזה סידור חציון.

 $\{\text{I...J-1}\}$ – סידור של קודקודים מj (I,J) – ונגדיר סידור של j - כאשר כאשר $j \leq i < j \leq n$ - כאשר

.2 בעזרת טענה

טענה 2

עבור כל תת קבוצה $A^*\subseteq [i-t,i)$ מגודל $A^*\subseteq A^*$ קיים $A'\subseteq A^*$ וקבוצה $i+t\le j< i+(2k+1)t$ - אינדקס אינדקס A'=a מהווה טורניר טרנזיטיבי ולקודקודים שלה A'=a יש לפחות A'=a outneighbours a

טענה 2 הוכחה

(1)
$$kt = 2^{4k+4}k^2 = \frac{2k+1}{2k+1} \cdot 2^{4k+4}k^2 = \frac{\frac{(2k+1)\cdot 2\cdot k}{2k+1}(2^{4k+4}k)}{2}$$

= $(1 - \frac{1}{2k+1})|B|/2$

$$2k+1$$
 - מגודל $A\subseteq A^*$ - מגודל תת קבוצה קיימת תת קבוצה אוכחה: קיימת עזר 1.

$$v\in A$$
 - יהי $B=[i,i+(2k+1)t)$ אז לכל קודקוד outneighbours $kt=\left(1-\frac{1}{2k+1}\right)|B|/2$ – יש לפחות B-ב-B

טענה 2 הוכחה

מחרת ל – v היה יותר מ – v היה יותר מ – v היה יותר מ – v היינו יכולים להזיז את – v להיות האחרון בסדר – i כך ש – i כך ש – i כך ש – i כך ש – i בסתירה לבחירה שלנו שממקסמת את מספר הצלעות מהצורה הזאת.

טענה 2 הוכחה

 $A'\subseteq {\rm A}$ - כעת נפעיל את למה 4, כלומר קיימת תת קבוצה - outneighbours $(2k+1)2^{2k}$ - עם לפחות - ${\rm B}$ – משותפים ב

כעת נוכל לחלק את – B ל – 2k+1 חלקים מגודל – t וכך נוכל לחלק את ה – t מהטענה כך שב – t יהיו לפחות נוכל לבחור את ה – t משותפים ב t outneighbours t 2t

 $i_0=2^{2k}, A_0=[0,2^{2k})$ - יהי $n\geq 2^{2k}$ - נניח ש $i=i_0, A^*=A_0$ - עם $i=i_0, A^*=A_0$ - כעת נפעיל את טענה $i=i_0, A^*=A_0$ - עם $i=i_0, A^*=A_0$ - מגודל $i=i_0, A^*=A_0$ - מגודל $i=i_0, A^*=A_0$ - מגודל $i=i_0, A^*=A_0$ - הוא נקבל $i=i_0, A^*=A_0$ - מגודל $i=i_0, A^*=A_0$ - מגודל $i=i_0, A^*=A_0$ - הוא טורניר טרנזיטיבי ולכן נקבל את החזקה ה $i=i_0, A^*=A_0$ - טורניר טרנזיטיבי ולכן נקבל את החזקה ה $i=i_0, A^*=A_0$ - של המסלול $i=i_0, A^*=A_0$ - יהי $i=i_0, A^*=A_0$ - של המסלול $i=i_0, A^*=A_0$ - יהי $i=i_0, A^*=A_0$

 $i_0+t\leq j\leq \overline{i_0+(2k+1)t}$ - כעת לפי טענה A' – 2 מכילה לפחות - outneighbours משותפים ב [j-t,j)-(j-t,j) כעת נגדיר אונבחר A_1 להיות כל ה A_2 ה A_3 ה outneighbours המשותפים.

- בשלב s נפעיל את טענה 2 שוב עם A_s - בי למצוא את החזקה של המסלול י v_{sk} ... $v_{(s+1)k-1}$ בי i_s בי למצוא את החזקה של המסלול י i_s בי i_s בי i_s בי i_s בי i_s בשל בי i_s בי למצוא את החזקה של המסלול י i_s בי i_s

(1)
$$n - (2k+1)t \le 2^{2k} + L(2k+1)t$$

 $\rightarrow n \le 2^{2k} + L(2k+1)t + (2k+1)t$
 $\rightarrow n \le (2k+1)t + L(2k+1)t + (2k+1)t$
 $= 2(2k+1)t + L(2k+1)t$
 $= (L+2)(2k+1)t$

$$A_L$$
 - כעת התהליך הזה עד שלב – L עם $L-1$ עם התהליך הזה עד שלב הזה עד שלב – $2k+1$ מטענת עזר 1 חייב להכיל טורניר טרנזיטיבי מגודל $n-(2k+1)t < i_L \le 2^{2k} + L(2k+1)t -$ לכן $n-(2k+1)t - 1$ לפי משוואה $n \le (L+2)(2k+1)t - 1$

$$(L+2)k \geq rac{kn}{(2k+1)t} \geq rac{n}{2^{4k+6}k}$$
 - מאורך $v_{Lk} \dots v_{(L+2)k}$ - המסלול שקיבלנו הוא $k-1$ שלו מוכלת בטורניר.

למעשה הוכחנו גם שהטורניר מכיל את כל הצלעות

$$\left| rac{a}{k}
ight| + 1 \geq \left| rac{b}{k}
ight|$$
 - וגם $a < b$ - מהצורה $v_a v_b$ כך ש

(1)
$$n < (L+2)(2k+1)t$$

 $\rightarrow (L+2)k > \frac{kn}{(2k+1)t} \ge \frac{kn}{(2k+1)(2^{4k+4}k)}$
 $\ge \frac{kn}{k(2^{4k+5}k+2^{4k+4})} \ge \frac{n}{2^{4k+6}k}$

חסם עליון

יהי - $l_k(n)$ המספר הגדול ביותר כך שכל טורניר בעל המספר הגדול ביותר לאת החזקה של מסלול על l קודקודים.

כמו כן ניתן להגיד באופן שקול ש $l_k(n)$ הוא המספר הקטן ביותר n – כך שקיים טורניר עם n – כך שקיים טורניר עם

ראשית נראה ש $l_k(n)$ - ראשית נראה ש

 $l_k(n+m) \le l_k(n) + l_k(m)$ - כלומר

למה 5

 $k,n,m \geq 1-$ נוכיח ש $l_k(n+m) \leq l_k(n) + l_k(m)$ עבור

הוכחה: יהיו - T_1, T_2 טורנירים על – n, m קודקודים בהתאמה, כך שהם לא מכילים את החזקה ה – k של מסלול באורך - $l_k(n), l_k(m)$ בהתאמה.

יהי – T טורניר עם – m קודקודים וחיבור כל הצלעות מT ל T אז כל k – טורניר עם ב T חייבת להיות חיבור של חזקה של מסלול ב T חייבת להיות חיבור של חזקה אורך של מסלול ב T של מסלול מT עם החזקה של מסלול מT ולכן האורך שלו חייב להיות לכל היותר: T_1 עם החזקה T_1 של מסלול מ T_2 ולכן האורך שלו חייב להיות לכל היותר: T_1 עם החזקה T_1 של מסלול מ T_2 ולכן האורך שלו חייב להיות לכל היותר: T_1 עם החזקה T_1 של מסלול מ T_2 ולכן האורך שלו חייב להיות לכל היותר:

למה 6

$$l_kig(2^{k-1}ig)<rac{k(k+1)}{2}$$
 - דלכל - $k\geq 5$ - לכל

בהסתברות אחידה.

. נשים לב של -
$$\overrightarrow{P_{l-1}^k}$$
 יש - $I=1$ צלעות. אונחה: יהי - $I=1$ בא נשים לב של הוכחה: יהי - I טורניר רנדומלי עם - I צלעות כך שהצלעות שלו מכוונות לכיוון מסוים

$$\left(rac{1}{2}
ight)^{kl-l}$$
 – היא $\overrightarrow{P_l^k}$ - ההסתברות שיהיו l - קודקודים ווא $v_0 \dots v_{l-1}$ – הודקודים וואסתברות שיהיו

למה 6 המשך

$$k = 5, l = 15, n = 16$$

 $lk - l = 15 \cdot 5 - 15 = 60$

$$(l-1-k)k + \sum_{i=1}^{k} i = lk - k^2 - k + \frac{k(k+1)}{2}$$

$$= \frac{2lk - 2k^2 - 2k + k^2 + k}{2} = \frac{2lk - k^2 - k}{2}$$

$$= \frac{2lk}{2} - \frac{k(k+1)}{2} = lk - l$$

למה 6 המשך

T – יש אפשרוית לבחור קבוצת קודקודים מגודל אז ההסתברות ש אפשרוית לבחור קבוצת קודקודים מגודל או k – מכיל את החזקה ה k – של מסלול מאורך ווער איז איז החזקה ה

(1)
$$n^l \cdot \left(\frac{1}{2}\right)^{kl-l} = (2^{k-1})^{\frac{k(k+1)}{2}} \cdot \left(\frac{1}{2}\right)^{k\left(\frac{k(k+1)}{2}\right) - \left(\frac{k(k+1)}{2}\right)}$$

= $2^{(k-1)\left(\frac{k(k+1)}{2}\right)} \cdot 2^{-(k-1)\left(\frac{k(k+1)}{2}\right)} = 2^0 = 1$

$$\binom{n}{l}\cdot l!\cdot \left(rac{1}{2}
ight)^{kl-l} < n^l\cdot \left(rac{1}{2}
ight)^{kl-l} = 1$$
לכן בהסתברות חיובית – T לא מכיל את לכן בהסתברות חיובית

$$l_k(2k-1) \le l-1 < \frac{k(k+1)}{2}$$
 - ולכן

נשים לב כי $l_k(n)$ היא פונקציה מונוטונית עולה.

$$l_k(n) \leq \left\lceil \frac{n}{2^{k-1}} \right\rceil \cdot l_k \left(2^{k-1} \right) \leq \left(\frac{n}{2^{k-1}} + 1 \right) \left(\frac{k(k+1)}{2} - 1 \right) \leq \frac{k(k+1)n}{2^k}$$
- כעת מלמה 5 ולמה 6 נסיק כי $n \geq k(k+1)2^k - 1$

 $\left\lceil rac{2n}{3}
ight
ceil - 1$ - כעת נוכיח שכל טורניר מכיל את החזקה ה2-2 של מסלול מאורך

$$l_2(n) = \left\lceil \frac{2n}{3} \right\rceil$$
 - או במילים אחרות

$$l_2(1)=1, l_2(2)=l_2(3)=2$$
 - ראשית נשים לב ש

$$l_2(n) \leq \lceil 2n/3 \rceil$$
 - ונוכיח באינדוקציה ש

$$l_2(3) = 2 \le 3$$
 - בסיס האינדוקציה

 ${\sf n}$ – כעת נניח שהטענה נכונה עד n-1 ונוכיח עבור

$$l_2(n) = l_2(n-3+3) \le l_2(n-3) + l_2(3) \le \left\lceil \frac{2(n-3)}{3} \right\rceil + 2 \le \left\lceil \frac{2n}{3} \right\rceil$$
 הנחת האינדוקציה למה 5

זה מוכיח את החסם העליון

 $\left[rac{2n}{3}
ight]$ - בשביל להראות ש $\left[rac{2n}{3}
ight] = \left[rac{2n}{3}
ight]$ נראה שהחסם התחתון גם הוא שווה ל

טענה 3

לכל סידור חציון של טורניר מתקיימות התכונות הבאות:

.כל הצלעות מהצורה - $x_i x_{i+1}$ נמצאות בטורניר (a)

אם - $x_i x_{i-2}$ היא צלע בטורניר אז "סיבוב" המשולש - $x_{i-1} x_i$ נותן את סידורי החציון הבאים (b) אם - $x_1, \dots, x_{i-3}, x_i, x_{i-2}, x_{i-1}, x_{i+1}, \dots, x_n$ וגם - $x_1, \dots, x_{i-3}, x_i, x_i, x_{i-2}, x_{i+1}, \dots, x_n$

 x_{i+1} - של inneighbour – אם x_{i-2}, x_{i-1}, x_i הוא כל אחד מהקודקודים (c) אם סטורניר אז כל אחד מהקודקודים סטורניר אז כל אחד מהם הוא x_{i+2} - של outneighbour של

טענה 3 הוכחה

forward edges – מתקיימת כי אחרת היינו יכולים להחליף בין - x_i ל - x_{i+1} כדי למקסם את ה (a) – מתקיימת כי אחרת היינו יכולים להחליף בין בין - x_i ל - בסתירה לסידור שלנו.

forward edges – תכונה (b) מתקיימת כי "סיבוב" המשולש אולש x_{i-2},x_{i-1},x_i לא משפיעים על מספר הforward edges – תמיד יהיו שני

טענה 3 הוכחה

$$x_{i}, x_{i-2}, x_{i-1}, x_{i+1}$$

$$x_{i-1}, x_{i}, x_{i-2}, x_{i+1}$$

$$x_{i-1}, x_i, x_{i-2}, x_{i+1}$$

$$x_{i-2}, x_{i-1}, x_i, x_{i+1}$$

(a) – אחרת הייתה לנו ש x_{i-1} , הן inneighbours של x_{i+1} אחרת הייתה לנו סתירה ל x_{i-1} , הן (a),(b) – תכונות

 x_{i+2} - של outneighbours כעת נניח בשלילה ששתיים מהקודקודים x_i, x_{i-2}, x_{i-1} הם

אז אם נסובב את - x_i, x_{i+1}, x_{i+2} נוכל לקבל - $x_i, x_{i+1}, x_{i+2}, x_{i+1}$ וזה סותר את - (a). ולכן חייב להיות x_{i+2} - של outneighbour שהוא מ x_{i-2}, x_{i-1}, x_i של מינתר קודקוד אחד מ

 $x_{i+2}x_i$ - הוא אינדקס רע בסידור חציון אחת $x_1, \dots x_n$ אם $x_1, \dots x_{i-2}$ היא צלע וגם לפחות אחת מ $x_{i+2}x_i$ היא גם צלע. $x_{i+2}x_{i-1}$

נשתמש בלמה 7 כדי להוכיח את הטענה המרכזית.

למה 7 הוכחה

למה 7 הוכחה

 x_{i+1} - של inneighbour כמו כן מ x_{i-2}', x_{i-1}', x_i' הוא שכל אחד של (c) – כמו כן מ

 $x_{i-1}^{\prime}, x_i^{\prime}$ של outneighbours לכן גם - x_{i+1} וגם x_{i+1} - הם

ולכן אף אחד מ – i,i+1,i+2 הוא לא אינדקס רע בסידור החדש ולכן האינדקס הרע קטן יותר i בסתירה להנחה.

 $l_2(n) \geq \left\lceil \frac{2n}{3} \right\rceil$ - כעת נוכיח שאכן

רעים רעים אינדקסים רעים x_1, \dots, x_n - קודקודים וסידור חציון ח

ויהי - $x_i x_{i-2}$ - יכך ש - ויהי ווע קבוצה של אינדקסים - להיות קבוצה $I = \{i_1 < i_2 < \dots < i_k\}$ ויהי

אז נראה ש - $x_{i_1} \dots x_{i_k}$ הוא מסלול מכוון על - $\left\lceil \frac{2n}{3} \right\rceil$ - קודקודים שהחזקה ה $x_{i_1} \dots x_{i_k}$ - מוכלת בטורניר.

I - כן נמצאים ב i,i+1 – אז ו+2 כן נמצאים ב i+2 ראשית נראה שאם

- אם x_i, x_{i+1}, x_{i+2} את x_{i+1}, x_{i+2} היא צלע ואז נוכל "לסובב" את $x_{i+1}, x_{i+1}, x_{i+2}$ להיות x_{i+1}, x_{i+1} להיות ב $x_{i+1}, x_{i+2}, x_{i+1}$ לפי $x_{i+1}, x_{i+2}, x_{i+1}$ חייבת להיות צלע ולכן הצלע $x_{i+1}, x_{i+2}, x_{i+2}$ חייבת להיות $x_{i+1}, x_{i+2}, x_{i+2}$ חייבת להיות $x_{i+2}, x_{i+2}, x_{i+2}$ נמצאת.

I - ולכן גם i – נמצאת ב

 $\left| \frac{2n}{3} \right|$ - מכל האמור לעיל אנחנו כבר רואים שאורך המסלול הוא לכל הפחות

$$\{i_1 = 1, i_2 = 2, i_3 = 3, i_4 = 4, i_5 = 5, i_6 = 7, i_7 = 8, \dots, i_k\}$$

 $\{\dots i_5 = 5, i_6 = 6, i_7 = 8, \dots, i_k\}$

כעת רק נותר לבדוק האם - $x_{i_{j-2}}x_{i_j}$, הן צלעות בטורניר.

 $\overline{i_j-3} \le i_{j-2} < i_{j-1} < i_j$ לפי מה שאמרנו קודם אנחנו יודעים ש

I - ו - $x_{i_j-2}x_{i_j}$ היא צלע מההגדרה של (a) היא צלע מ $x_{i_j-1}x_{i_j}$

 $i_{j-2} = i_j - 3$ - אז כל מה שנותר להראות הוא ש $x_{i_j-2} x_{i_j}$ היא צלע כאשר

 $x_i x_{i-2}$ - כלומר הצלע I - במקרה זה קיים אינדקס i כך שi כך שi כך שהוא לא בi כלומר הצלע בטורניר.

אז נחלק לשני מקרים אפשריים:

(c) – היא צלע מתכונה
$$x_{i_{j-2}}\,x_{i_j}$$
 - אם - $i=i_j-1$ - אם

ואם -i - אז x_{ij-2} אז x_{ij} - אז אינדקס רע $i=i_j-2$ היא צלע כי

. מהבנייה שלנו ולכן אסור שהצלע $x_{i_j} x_{i_{j-2}}$ תהיה

 $\{i_1 = 1, i_2 = 2, i_3 = 3, i_4 = 4, i_5 = 5, i_6 = 7, i_7 = 8, \dots, i_k\}$

 $\{\dots i_5 = 5, i_6 = 6, i_7 = 8, \dots, i_k\}$

סיכום

$$l_2(n)=\left\lceil rac{2n}{3}
ight
ceil$$
 - הוכחנו ש $\left\lceil rac{2n}{3}
ight
ceil \leq l_2(n) \leq \left\lceil rac{2n}{3}
ight
ceil$ ולכן בסך הכל

 $\left\lceil rac{2n}{3}
ight
ceil - 1$ - קודקודים מוכל החזקה ה -2 של מסלול מאורך n – כלומר שבכל טורניר בעל הn קודקודים מוכל החזקה הכללי.

תודה רבה למי שהקשיב!