Quiz II (10 pts)

Burak Ekici

Assigned: April the 21st, 20h15

Duration : 60 minutes

Q1. (7 pts) Let $\alpha = wz(xyw)^*x$ and $\beta = wzx(ywx)^*$ be a pair of regular expressions defined over the alphabet $\Sigma = \{x, y, z, w\}$. Decide whether $\alpha \equiv \beta$ employing derivatives and bisimulation. Justify your reasoning.

A1. We start with partially deriving the expression α with respect to the characters x, y, z and w until no new expression is generated:

CAPICSSI	on is generated.		
$(\alpha)_{x}$	= Ø	$(\alpha)_y = \emptyset$	$(\alpha)_z = \emptyset$
$(\alpha)_{W}$	$= \varepsilon z(xyw)^*x$		
	$= z(xyw)^*x =: \alpha_1$		
(α_1)	= Ø	$(\alpha_1)_y = \emptyset$	$(\alpha_1)_z = \varepsilon(xyw)^*x$
(α1)χ	- 9	(GI)y – E	
(~)	Ø		$= (xyw)^*x =: \alpha_2$
$(\alpha_1)_w$	= 0		
	(4)+) (3	() ~	<i>.</i>
$(\alpha_2)_x$	- X	$(\alpha_2)_y = \emptyset$	$(\alpha_2)_Z = \emptyset$
	$= (xyw)_X(xyw)^*x + \varepsilon$		
	$= \varepsilon y w (x y w)^* x + \varepsilon$		
	= $yw(xyw)^*x + \varepsilon =: \alpha_3$		
$(\alpha_2)_w$	= Ø		
$(\alpha_3)_x$	= Ø	$(\alpha_3)_y = (yw(xyw)^*x)_y + (\varepsilon)_y$	$(\alpha_3)_z = \emptyset$
· •		$= \varepsilon w(xyw)^*x + \emptyset$. 372
		$= w(xyw)^*x =: \alpha_4$	
(a-)	= Ø	- $w(xyw) x = 0.04$	
$(\alpha_3)_w$			
()	a	() ~	()
$(\alpha_4)_X$	= Ø	$(\alpha_4)_y = \emptyset$	$(\alpha_4)_Z = \emptyset$
$(\alpha_4)_{W}$	$= \varepsilon(xyw)^*x$		
	$= (xyw)^*x = \alpha_2$		
$(\emptyset)_{\chi}$	= Ø	$(\emptyset)_y = \emptyset$	$(\emptyset)_Z = \emptyset$
$(\emptyset)_{W}$	= Ø		

We apply the same procedure above for the expression β :

$$(\beta)_{\chi} = \emptyset$$

$$(\beta)_{w} = \varepsilon z x (ywx)^{\star}$$

$$(\beta)_V = Q$$

$$(\beta)_Z = \emptyset$$

$$(\beta_1)_X = \emptyset$$

$$(\beta_1)_y = \emptyset$$

$$(\beta_1)_z = \varepsilon x (ywx)^*$$

= $x(ywx)^* =: \beta_2$

$$(\beta_1)_w = \emptyset$$

$$(\beta_2)_x = \varepsilon(ywx)^*$$

$$= (ywx)^* =: \beta_3$$

 $= zx(ywx)^* =: \beta_1$

$$(\beta_2)_w = \emptyset$$

$$(\beta_2)_y = \emptyset$$

$$(\beta_2)_z = \emptyset$$

$$(\beta_3)_X = (ywx)_X (ywx)^*$$

$$= \emptyset(ywx)^*$$

$$(\beta_3)_w = (ywx)_w(ywx)^*$$

= $\emptyset(ywx)^*$

$$(\beta_3)_y = (ywx)_y(ywx)^*$$

= $\varepsilon wx(ywx)^*$

$$= wx(ywx)^* =: \beta_4$$

$$(\beta_3)_z = (ywx)_z(ywx)^*$$

= $\emptyset(ywx)^*$

$$(\beta_4)_X = \emptyset$$

$$(\beta_4)_w = \varepsilon x (ywx)^*$$

$$= x(ywx)^* = \beta_2$$

$$(\beta_4)_V = \emptyset$$

$$(\beta_4)_Z = \emptyset$$

$$(\emptyset)_X = \emptyset$$

$$(\emptyset)_{W} = \emptyset$$

$$(\emptyset)_{V} = \emptyset$$

$$(\emptyset)_Z = \emptyset$$

We have the following derivative tables:

	x	y	z	w	
α	Ø	Ø	Ø	α_1	1
α_1	Ø	Ø	α_2	Ø	1
α_2	<i>α</i> ₃	Ø	Ø	Ø	1
α_3	Ø	α_4	Ø	Ø	1
α_4	Ø	Ø	Ø	α_2	1
Ø	Ø	Ø	Ø	Ø	1

	x	у	z	w	
β	Ø	Ø	Ø	β_1	1
eta_1	Ø	Ø	β_2	Ø	1
β_2	β ₃	Ø	Ø	Ø	1
$oldsymbol{eta}_3$	Ø	β_4	Ø	Ø	↓
eta_4	Ø	Ø	Ø	β_2	1
Ø	Ø	Ø	Ø	Ø	1

Therefore, the fact that $\alpha \equiv \beta$ follows by the bisimulation \sim that satisfies

$$L(\alpha) \sim L(\beta)$$

$$L(\alpha_1) \sim L(\beta_1)$$

$$L(\alpha_2) \sim L(\beta_2)$$

$$L(\alpha_3) \sim L(\beta_3)$$

$$L(\alpha_4) \sim L(\beta_4)$$

$$L(\emptyset) \sim L(\emptyset).$$

Q2. (3 pts) Simplify the regular expression

$$\alpha := (x^*y)^* + (x^*(yx^*)z)^*(x^*y)^*xx^* + \varepsilon$$

defined over the alphabet $\Sigma = \{x, y, z\}$ as much as possible benefiting Kleene Algebra axioms and rules (A.1) – (A.17). Clearly show simplification steps.

A2.

Lemma. $\forall x \in \Sigma, xx^* = x^*x.$

Proof.

$$xx^* = x(\varepsilon x)^*$$
 (by A.7)
= $(x\varepsilon)^*x$ (by A.17)
= x^*x (by A.8)

Therefore,

$$\alpha := (x^*y)^* + (x^*(yx^*)z)^*(x^*y)^*xx^* + \varepsilon$$

$$= (x^*y)^* + (x^*(yx^*)z)^*(x^*y)^*x^*x + \varepsilon \text{ (by the lemma above)}$$

$$= (x^*y)^* + (x^*(yx^*)z)^*x^*(yx^*)^*x + \varepsilon \text{ (by A.17)}$$

$$= (x^*y)^* + (x + (yx^*)z)^*(yx^*)^*x + \varepsilon \text{ (by A.16)}$$

Important Notice:

- Collaboration is strictly and positively prohibited; lowers your score to 0 if detected.
- Any submission after 60 minutes will NOT be accepted. Please beware and respect the deadline!
- All handwritten answers should somehow be scanned into a single pdf file, and only then submitted. Make sure that your handwriting is decent and readable.