Numerical Optimization, 2023 Fall Homework 3

Name: Zhou Shouchen Student ID: 2021533042

Due 23:59 (CST), Nov. 16, 2023

Problem 1. Prove the dual of the dual of a linear programming (standard form) is itself. [25pts]

We can prove this with the help of the Duality Scheme.

Consider a linear programming that is in standard form:

$$\min_{\boldsymbol{x}} \quad \boldsymbol{c}^{T} \boldsymbol{x}$$
s.t. $A\boldsymbol{x} = \boldsymbol{b}$ (1)
$$\boldsymbol{x} \ge \mathbf{0}$$

The Lagrangian of the above linear programming is $L(x, \lambda) = c^T x - \lambda^T (Ax - b)$.

Since for the primal question, the variables are $x \ge 0$, so for $x_i \ge 0$, the dual constrain is that:

$$a_i^T \lambda \leq c_i$$

where a_i is the *i*-th column of A.

So for the dual problem, the constrains are $A^T \lambda \leq c$.

And since for the primal question, the constrain it that $A\mathbf{x} = \mathbf{b}$, i.e. $\sum_{j=1}^{n} a_{ij}x_j = b_i$. So for the dual question, the variables λ is free.

So the dual problem is that:

$$\max_{\lambda} \lambda^{T} b$$
s.t. $A^{T} \lambda \leq c$ (2)
$$\lambda \text{ is free}$$

To easily get the dual of the dual problem, we can first convert the objective function of the dual problem to a minimization problem. And take $M = A^T$, the dual problem becomes:

$$\min_{\lambda} \quad \lambda^{T}(-b)$$
s.t. $M\lambda \leq c$

$$\lambda \text{ is free}$$
(3)

The Lagrangian of the dual problem is:

$$L(\boldsymbol{\lambda}, \boldsymbol{y}) = \boldsymbol{\lambda}^T(-\boldsymbol{b}) - \boldsymbol{y}^T(M\boldsymbol{\lambda} - \boldsymbol{c})$$

Since for the dual question, the variables are λ is free, so for λ_i is free, the dual of the dual constrain is that:

$$m_i^T \boldsymbol{\lambda} = (-\boldsymbol{b})_i = -b_i$$

where m_i is the *i*-th column of M.

So for the dual problem, the constrains are

$$M^T y = -b$$

And since for the dual question, the constrain it that $M\lambda \leq c$, i.e. $\sum_{j=1}^{n} m_{ij}\lambda_{j} \leq c_{i}$. so for the dual question, the variables are $y \leq 0$.

So the dual of the dual problem is that:

$$\max_{\boldsymbol{y}} \quad \boldsymbol{c}^T \boldsymbol{y}$$

s.t. $M^T \boldsymbol{y} = -\boldsymbol{b}$ (4)
$$\boldsymbol{y} \leq \boldsymbol{0}$$

We can take $\boldsymbol{x} = -\boldsymbol{y}$. And since $M = A^T$, so $M^T = (A^T)^T = A$.

Consider the objective function is

$$\max_{\boldsymbol{y}} \quad \boldsymbol{c}^T \boldsymbol{y}$$

We can convert it into a minimization problem by taking -y as the variable. i.e.

$$\min_{oldsymbol{y}} \quad oldsymbol{c}^T(-oldsymbol{y})$$

And since we have x = -y, so we can convert the above minimization problem into:

$$\min_{\boldsymbol{x}} \quad \boldsymbol{c}^T \boldsymbol{x}$$

And for the first constrain, we have:

$$M^T y = -b$$

Since $M^T = A$, and move the "-" from the right to the left, we have:

$$A(-y) = b$$

i.e.

$$Ax = b$$

For the second constrain, we have:

$$y \leq 0$$

We can convert it into:

$$-y \ge 0$$

i.e.

$$oldsymbol{x} \geq oldsymbol{0}$$

So with the convertions above, we can get that the dual of the dual problem is that:

$$\min_{x} c^{T}x$$
s.t. $Ax = b$

$$x > 0$$
(5)

Which is exactly same with the primal problem.

So above all, the dual of the dual of a linear programming (standard form) is itself.

Problem 2. Prove the dual objective increases after a pivot of the dual simplex method. [25pts]

Consider the dual simplex method.

Suppose that the current state is feasible, and after the pivot, it is also feasible.

Then for the pivot process, we have:

 $r^T \geq 0$ always satisfies, this is to make sure the dual problem is feasible.

As for choosing the pivot element, we choose the p-th row s.t. the current b_p in the tableau is nagetive. i.e. $b_p < 0$.

Suppose that the p-th row is $y_{p1}, y_{p2}, \cdots, y_{pn}, b_p$, and we choose the pivot element a_{pq} .

s.t.
$$\hat{\epsilon} = \frac{r_q}{-y_{pq}} = \min\{\frac{r_i}{-y_{pi}} \mid a_{pi} < 0, i = 1, \dots, n\}.$$

Then we pivot with y_{pq} , and we need to update the tableau to make the r_q become 0 by:

Let the last line of the simplex tableau adds $\hat{\epsilon}$ times the p-th row.

So we have

$$r'_{q} = r_{q} + \hat{\epsilon}y_{pq} = r_{q} + \frac{r_{q}}{-y_{pq}}y_{pq} = 0$$

$$-f' = -f + \hat{\epsilon}b_p = -f + \frac{r_q}{-y_{pq}}b_p$$

We know that the lower-right corner if -f, where f is the dual objective value of the dual problem. So after the pivot, the lower-right corner becomes:

$$-f' = -f - \frac{r_q}{y_{pq}} b_p$$

Since $r_q > 0, y_{pq} < 0, b_p < 0$, so $\frac{r_q}{y_{pq}} b_p > 0$ So

$$-f = -f - \frac{r_q}{y_{pq}}b_p < -f'$$

i.e.

So above all, the dual objective increases after a pivot of the dual simplex method.

Problem 3. Let $L(x, \lambda)$ be the Lagrangian of a linear programming problem, and (x^*, λ^*) be the optimal primal-dual solution. Prove that

$$L(\boldsymbol{x}, \boldsymbol{\lambda}^*) \ge L(\boldsymbol{x}^*, \boldsymbol{\lambda}^*) \ge L(\boldsymbol{x}^*, \boldsymbol{\lambda}),$$

for any primal feasible x and dual feasible $\lambda.[25 pts]$

Suppose that the primal problem is that:

$$\min_{\boldsymbol{x}} \quad \boldsymbol{c}^{T} \boldsymbol{x}$$
s.t. $A\boldsymbol{x} = \boldsymbol{b}$ (6)
$$\boldsymbol{x} \ge 0$$

And the dual problem is that:

$$\max_{\lambda} \lambda^{T} b$$
s.t. $A^{T} \lambda \leq c$ (7)
$$\lambda \geq 0$$

And the Lagrangian of the primal problem is that:

$$L(\boldsymbol{x}, \boldsymbol{\lambda}) = \boldsymbol{c}^T \boldsymbol{x} - \boldsymbol{\lambda}^T (A\boldsymbol{x} - \boldsymbol{b})$$

Since (x^*, λ^*) is the optimal primal-dual solution, so we have: We can So $c^Tx^* \le c^Tx$ Problem 4. Construct a linear programming problem for which both the primal and the dual problem has no feasible solution. [25pts]

Construct a linear programming problem that is:

$$\min_{x_1, x_2} \quad x_1 - 2x_2$$
s.t.
$$x_1 - x_2 \le 1$$

$$x_1 - x_2 \ge 2$$

$$x_1, x_2 \le 0$$
(8)

Since it is impossible to satisfy $x_1 - x_2 \le 1$ and $x_1 - x_2 \ge 2$ at the same time, so the primal problem has no feasible solution.

And the dual problem is that:

$$\max_{\lambda_1, \lambda_2} \quad \lambda_1 + 2\lambda_2$$
s.t.
$$\lambda_1 + \lambda_2 \le 1$$

$$-\lambda_1 - \lambda_2 \le -2$$

$$\lambda_1 \le 0, \lambda_2 \ge 0$$

$$(9)$$

The second constrain $-\lambda_1 - \lambda_2 \le -2$ can be written as $\lambda_1 + \lambda_2 \ge 2$.

Since it is impossible to satisfy $\lambda_1 + \lambda_2 \leq 1$ and $\lambda_1 + \lambda_2 \geq 2$ at the same time, so the dual problem has no feasible solution.

So above all, the above construction's primal and dual problem has no feasible solution.