Airline Customer Segmentation

A project by Rafif

Project Overview

Goal

To create a customer segmentation using the LRFMC model and to give business recommendations based on the results.

Dataset

This project uses the airline customer dataset from **Kaggle**.

Focus

- End-to-end project on clustering (unsupervised ML).
- LRFMC model for customer segmentation.
- Finding the optimal number of clusters: elbow method and silhouette score.

Dataset

Contains 23 columns:

Flight information:

- LOAD_TIME: The end time of the observation window (observation window: time period of observation)
- FLIGHT COUNT: Number of flights in the observation window
- SUM YR 1 : Fare revenue
- SUM YR 2 : Votes prices
- . SEG KM SUM: Total flight kilometers in the observation window
- . LAST FLIGHT DATE: Last flight date
- . LAST TO END: The time from the last flight to the end of the observation window
- AVG INTERVAL : Average flight time interval
- MAX INTERVAL : Maximum flight interval
- avg discount : Average discount rate

Basic customer information:

- MEMBER NO : Membership card number (ID)
- FFP DATE : Membership join date
- FIRST FLIGHT DATE: First flight date
- GENDER : Gender
- FFP TIER: Membership card level
- WORK CITY: The city where the customer works
- WORK_PROVINCE: The province where the customer works
- WORK_COUNTRY: The country where the customer works
- AGE : Age

Integral information

- BP SUM : Total basic integral
- EXCHANGE COUNT: Number of points exchanged
- Points Sum: Total cumulative points
- Point_NotFlight: points not used by the customer

Data Preprocessing

Data Preprocessing

Missing values:

	columns	missing values	pct
0	WORK_PROVINCE	3248	5.157
1	WORK_CITY	2269	3.602
2	SUM_YR_1	551	0.875
3	AGE	420	0.667
4	SUM_YR_2	138	0.219
5	WORK_COUNTRY	26	0.041
6	GENDER	3	0.005

 Mostly from work_province and work_city.

 In total, only ~8% of the records have missing values.

• Drop them all.

Data Preprocessing

- Standard data cleaning for aviation dataset (Tao, 2020):
 - Discard the records where the fare (SUM_YR_1 or SUM_YR_2) is empty.
 - Discard records where the fare is 0, the average discount rate is non-0 <u>and</u> the total flying kilometres is greater than 0.
- There are 58015 records left to be analyzed further.

	MEMBER_NO	FFP_DATE	FIRST_FLIGHT_DATE	GENDER	FFP_TIER	WORK_CITY
0	54993	11/2/2006	12/24/2008	Male	6	
2	55106	2/1/2007	8/30/2007	Male	6	20
3	21189	8/22/2008	8/23/2008	Male	5	Los Angeles
4	39546	4/10/2009	4/15/2009	Male	6	guiyang
5	56972	2/10/2008	9/29/2009	Male	6	guangzhou

Exploratory Data Analysis

EDA

Categorical columns:

 Most customers are male, working in Guangzhou, Guangdong, China.

EDA

Date columns (only for FFP_DATE) \rightarrow most members joined in 2012 and in March (not necessarily the same year)

EDA

Numerical columns:

• Strongest correlation between BP_SUM and SEG_KM_SUM, and BP_SUM and Points Sum.

 More total distance → more points (point system based on distance).

- The RFM model is often used in customer segmentation problems:
 - \circ Recency (R) \rightarrow time interval since the last visit/flight
 - Frequency (F) → total number of visits/flights
 - Monetary (M) → total money spent, or total mileage accumulated (for aviation dataset)
- For aviation dataset, two additional features are added (Chen and Wang, 2022):
 - \circ Loyalty (L) \rightarrow relationship length (how long a customer has been a member)
 - \circ Cabin (C) \rightarrow average discount price. Larger = higher class in flights
- Ideal customers: high LFMC, low R.
- Using 6 features from the original dataset to extract the LRFMC values: FFP_DATE,
 LOAD_TIME, LAST_TO_END, FLIGHT_COUNT, SEG_KM_SUM, and avg_discount.

 R correlates negatively with the others (especially F)→ those who haven't flown in a while rarely flies.

 The F and M contain a lot of outliers and are heavily skewed, not good for K-means → transform to log units.

M (km)

1.25 1.50

F [times]

1.75 2.00

5.0

0.50

3.0

3.5

4.0

M [km]

0.75 1.00

• Scaling with sklearn's StandardScaler \rightarrow mean of 0, variance of 1.

	L	R	F	M	C
0	2706	1	2.322219	5.763965	0.961639
2	2615	11	2.130334	5.452878	1.254676
3	2047	97	1.361728	5.449225	1.090870
4	1816	5	2.181844	5.491261	0.970658
5	2241	79	1.963788	5.469211	0.967692

Finding the optimal number of clusters (k value): elbow method

 Plot of inertia or within-cluster sum-of-squares (WCSS) vs. k-value

 Optimal k → the "elbow point". After this point, the inertia decreases linearly (not much improvement, overfitting).

 k=6 seems to be the optimal k, but not very convincing since there is no clear sudden change.

- Another method: silhouette score ightarrow uses mean intra-cluster distance a and nearest-cluster distance b for each point.
- For a sample/point, the silhouette coefficient is

$$\frac{b-a}{\max(a,b)}$$

- If $b\gg a$, the nearest-cluster distance is much larger than the cluster size \to the clusters are well-separated, the score is ~1.
- If $b \ll a$, the cluster size is much larger than the distance to the nearest cluster \rightarrow the clusters are mixed together, the score is \sim -1.
- Therefore the range is [-1,1]. Score of 1 is good, -1 is bad.

- Silhouette plot: plotting the silhouette score for each point in each cluster, in increasing order.
 - X-axis: silhouette score.
 - Y-axis: cluster member. Thicker = more members in the cluster.
- What we want:
 - Red line (average score) is inside the triangles and as high as possible.
 - The thickness are similar (equal composition in all clusters).

• k=6 yields the largest silhouette score.

Cluster 4 has very few members→ outlying customers?

• Using k=6 as our benchmark model.

 Visualization with PCA along 2 main PC's → the clusters are very mixed.

 Expected since the average silhouette score is only 0.23 and no signs of multimodality in any of the LRFMC features.

Cluster Analysis

Cluster Analysis

• Create 'snake plot' \rightarrow median of the LRFMC for each cluster.

- L is grouped into 3: long-time, intermediate-time, and new members.
- R is grouped into 2: low and high.
- F and M are unique for each cluster.
- c is grouped into 2: high and low.

	cluster	member
0	2	14134
1	0	9346
2	4	8687
3	3	8271
4	1	8138
5	6	7498
6	5	1941

Cluster 2 is the largest, 5 is the smallest.

- Low L, low R, high FM, low C.
- New members with high consumption → high-value, potential loyal customers.
- Focus on increasing satisfaction and loyalty: extra discounts, free tickets after a certain accumulated mileage, etc.

- High L, low R, low FM, low C→ long-time members that rarely use our service.
- Low-value customers.
- Encourage consumption? Also may not worth the effort.

- Very high R → churned customers.
- Low-value customers.
- Attract them back? May not worth the effort.
- Interesting to hear their feedback (if they respond!).

- High L, low R, very high FM, low C.
- Our ideal customers → high value, loyal.
- Retain their satisfaction and loyalty with extra service: free food, souvenirs, extra discount for higher seat class.

- High C → uses high class seats, e.g. first/business class (Wang and Chen, 2022).
- Potential VIP customers.
- Differentiated management and one-to-one marketing.

- Low L, moderate R, average FM, low C.
- New members with uncertain status .
- May need to wait to see how they develop.
- Encourage consumption by increasing discount.

Cluster Analysis: Recommendations

- Implement membership levels: VIP, platinum, diamond, gold, silver, ordinary member, with increasing benefits.
- Point system to obtain higher membership level. Customers can gather points from flight count or accumulated mileage.
- These points expire after a certain period \rightarrow pushing consumption. Give reminders before the points expire.
- Differentiated management and one-to-one marketing for the VIP, potential, and loyal customers → increase sense of belonging.
- Questionnaire to gain feedback from the low-value customers. If too much effort, just stop promoting to them to cut spending.

Case k=5 and k=7

Case k=5

• Testing out different k-value to see the results. Reducing the cluster to k=5.

	cluster	member
0	3	15510
1	2	13303
2	1	10560
3	0	9537
4	4	9105

• We lose the potential VIP customers.

Not optimal to use.

Case k=7

• Increasing the cluster to k=7.

	cluster	member
0	2	14134
1	0	9346
2	4	8687
3	3	8271
4	1	8138
5	6	7498
6	5	1941

- A new segment with very low C.
- The other LRFM features are redundant with cluster 4.
- Not worth implementing, overfitting.

Conclusions

- We use the LRFMC model: loyalty, recency, frequency, monetary, and cabin to create customer segmentation for aviation dataset.
- Using the elbow method in combination with the silhouette score to determine optimum k, we get k=6 as our benchmark model.
- We recommend implementing increasing membership level and point system to push consumption and increase loyalty.
- By omitting an additional cluster (k=5), we lose the potential VIP customers. By adding an additional cluster (k=7), we don't gain much information.

References

- RFM Segmentation in E-Commerce: https://towardsdatascience.com/rfm-segmentation-in-e-commerce-e0209ce8fcf6 by Pararawendy Indarjo (Towards Data Science).
- RFM Model for Customer Value of Air Company:
 https://www.kaggle.com/code/vinzzhang/rfm-model-for-customer-value-of-air-company/data?select=air_data.csv by Vincent Zhang (Kaggle).
- Customer modeling and analysis of civil aviation industry based on Python data analysis: https://pythonmana.com/2021/12/202112130116081138.html by user Mr. thirteen Po (pythonmana).
- Chen, T. & Wang, P. (2022). IJRES vol. 10 issue 4 pp. 05-13.
- Tao, Y. (2020). ICPCSEE 2020. Communications in Computer and Information Science, vol 1257. Springer, Singapore. https://doi.org/10.1007/978-981-15-7981-3_7

Also check out the notebook in my GitHub:

https://github.com/mrafifrbbn/airline_customer_segmentation

Contact me on LinkedIn:

https://www.linkedin.com/in/mrafifrbbn/

Fin