Weekly Homework 5

Jingcheng Lu 42326170 cs206p: Scientific Computing

February 15, 2018

Problem 1.

For problem 1-4, the code is displayed in the appendix section.

Problem 2.

Q: Why dont we want to try it for $\exp(x)$?

A: Cause the image of $\exp(x)$ doesn't cross the x-axle, it doesn't have root. There is no x for $\exp(x)$ to equal 0.

Result of Problem 2:

For funtion funsin: The zero of x occurs at x=0.000000 Loop 6 times For funtion funcos: The zero of x occurs at x=1.570796 Loop 5 times For funtion funtan: The zero of x occurs at x=0.000000 Loop 6 times For funtion funlog: The zero of x occurs at x=1.000000 Loop 1 times For funtion funpow2: The zero of x occurs at x=0.000000 Loop 213 times For funtion funpow3: The zero of x occurs at x=0.000000 Loop 362 times

Problem 3.

In this problem, I use 3 stop criterion:

SC1. number of iterations > MAX-ITERATION-TIMES SC2.

$$|x_{k+1} - x_k| < \varepsilon$$

SC3.

$$|f(x_{k+1}) - 0| < \varepsilon$$

Result of Problem 3:

SC1:

For Funtion funsin and Stop Criterion 1: The zero of x occurs at x = 0.000000 Loop 100001 times

For Funtion funcos and Stop Criterion 1: The zero of x occurs at x = 1.570796 Loop 100001 times

For Funtion funtan and Stop Criterion 1: The zero of x occurs at x = 0.000000 Loop 100001 times

For Funtion funlog and Stop Criterion 1: The zero of x occurs at x = 1.000000 Loop 100001 times

For Funtion funpow2 and Stop Criterion 1: The zero of x occurs at x = 0.000000 Loop 100001 times

For Funtion funpow3 and Stop Criterion 1: The zero of x occurs at x = 0.000000 Loop 100001 times

SC2:

For Funtion funsin and Stop Criterion 2: The zero of x occurs at x=0.000000 Loop 6 times For Funtion funcos and Stop Criterion 2: The zero of x occurs at x=1.570796 Loop 5 times For Funtion funtan and Stop Criterion 2: The zero of x occurs at x=0.000000 Loop 6 times For Funtion funlog and Stop Criterion 2: The zero of x occurs at x=1.000000 Loop 1 times For Funtion funpow2 and Stop Criterion 2: The zero of x occurs at x=0.000000 Loop 67 times

For Funtion funpow3 and Stop Criterion 2: The zero of x occurs at x = 0.000000 Loop 112 times

SC3:

For Funtion funsin and Stop Criterion 3: The zero of x occurs at x = 0.000000 Loop 5 times For Funtion funcos and Stop Criterion 3: Exceed limit time

For Funtion funtan and Stop Criterion 3: The zero of x occurs at x=0.000000 Loop 5 times For Funtion funlog and Stop Criterion 3: The zero of x occurs at x=1.000000 Loop 1 times For Funtion funpow2 and Stop Criterion 3: The zero of x occurs at x=0.000000 Loop 34 times

For Funtion funpow3 and Stop Criterion 3: The zero of x occurs at x = 0.000000 Loop 38 times

Problem 4.

In this problem, I use the SC2 described above.

Result for problem 4:

For Funtion funcosp1 and Stop Criterion 2: The zero of x occurs at x = 3.141593 Loop 27 times

It takes more times to converge when compared to cos(x). Increase the base make the function's root away from 1, so it's harder to converge.

Problem 5.

In this problem, I use the combination of 3 stop criterion list above.

Result for problem 5:

For Funtion funpow2: The zero of x occurs at x = 0.000000 Loop 1 times m = 2.000000

For Funtion funpow3: The zero of x occurs at x = 0.000000 Loop 1 times m = 3.000000

For Funtion funcosp1: The zero of x occurs at x = 3.141593 Loop 5 times m = 2.014195

From the result, we can conclude that the number of loop is much smaller then in problem 1 to 4.

A Code for P1-P2

```
import math
E = 1e-64
TIME MAX = 1000
def genfun():
     \mathbf{def} funsin(x):
          return math.sin(x)
     \mathbf{def} \ \mathrm{funcos}(\mathbf{x}):
          return math.cos(x)
     def funtan(x):
          return math.tan(x)
     \mathbf{def} funlog(x):
          return math. log(x)
     \mathbf{def} funpow2(x):
          return math.pow(x, 2)
     \mathbf{def} funpow3(x):
          return math.pow(x,3)
     return (funsin, funcos, funtan,
     funlog, funpow2, funpow3)
def gendfun():
     def funsin(x):
          return math.cos(x)
     \mathbf{def} \ \mathrm{funcos}(\mathbf{x}):
          return -1.0 * math.sin(x)
     def funtan(x):
          return 1/\text{math.pow}(\text{math.cos}(x), 2)
     def funlog(x):
          return 1/x
     def funpow2(x):
          return 2*x
     def funpow3(x):
          return 3*math.pow(x,2)
     return (funsin, funcos, funtan,
     funlog, funpow2, funpow3)
\mathbf{def} \ \mathrm{my\_zero}(\mathrm{x0},\mathrm{f},\mathrm{fp}):
     x0 = float(x0)
     time=0
     while True: #time<=TIME_MAX:
          time += 1
```

```
x1 = x0 - f(x0)/fp(x0)
if abs(x1-x0)<E:
    return x1, time
else:
    x0 = x1
return x0, time

if --name_- == "--main_-":

for i in range(6):
    zero, time = my_zero(1.0, genfun()[i], gendfun()[i])
    print "For_funtion_%s:\t_The_zero_of_xx_occurs_at_x=_%f_\t_tLoop_%d_time</pre>
```

B Code for P3-P4

```
import math
E = 1e-20
TIME\_MAX = 100000
def genfun():
     def funsin(x):
          return math.sin(x)
     \mathbf{def} funcos(x):
          return math. \cos(x)
     def funtan(x):
          return math.tan(x)
     \mathbf{def} funlog(x):
          return math. log(x)
     \mathbf{def} funpow2(x):
          return math.pow(x,2)
     \mathbf{def} funpow3(x):
          return math.pow(x,3)
     def funcosp1(x):
          return math. \cos(x)+1
     return (funsin, funcos, funtan,
     funlog, funpow2, funpow3, funcosp1)
def gendfun():
     \mathbf{def} \ \mathrm{funsin}(\mathbf{x}):
          return math. \cos(x)
     \mathbf{def} \ \mathrm{funcos}(\mathbf{x}):
          return -1.0 * math.sin(x)
     def funtan(x):
          return 1/\text{math.pow}(\text{math.cos}(x), 2)
```

```
\mathbf{def} funlog(x):
         return 1/x
    \mathbf{def} funpow2(x):
         return 2*x
    \mathbf{def} funpow3(x):
         return 3*math.pow(x,2)
    \mathbf{def} funcosp1(x):
         return -1*math.sin(x)
    return (funsin, funcos, funtan,
    funlog, funpow2, funpow3, funcosp1)
\mathbf{def} \ \mathrm{my\_zero} (\mathrm{x0}, \mathrm{f}, \mathrm{fp}, \mathrm{sc} = 2):
    x0 = float(x0)
    time=0
    issc1 = False if sc==1 else True
    while issc1 or time<=TIME_MAX:
         time += 1
         x1 = x0 - f(x0)/fp(x0)
         if sc==2 and abs(x1-x0) < E:
              return x1, time
         if sc==3 and abs(f(x1)) < E:
              return x1, time
         if time>TIME_MAX:
              return x1, time
         x0 = x1
    return x0, time
if _-name_- = "_-main_-":
    # Q3
    \# for i in range (6):
           for sc in range (1,4):
                zero, time = my\_zero(1.0, genfun()[i], gendfun()[i], sc)
                print "For Funtion %s and Stop Criterion %d:\ t The zero of x of
    zero, time = my_zero(1.0, genfun()[6], gendfun()[6], 2)
    print "For_Funtion_%s_and_Stop_Criterion_%d:\t_The_zero_of_x_occurs_at_x=
```

C Code for P5

```
import math E = 1e-20
```

```
TIMEMAX = 100000
def genfun():
    \mathbf{def} funpow2(x):
         return math.pow(x,2)
    def funpow3(x):
         return math.pow(x,3)
    def funcosp1(x):
         return math. \cos(x)+1
    return (funpow2, funpow3, funcosp1)
def gendfun():
    \mathbf{def} funpow2(x):
         return 2*x
    def funpow3(x):
         return 3*math.pow(x,2)
    def funcosp1(x):
         return -1*math.sin(x)
    return (funpow2, funpow3, funcosp1)
def genddfun():
    \mathbf{def} funpow2(x):
         return 2
    def funpow3(x):
         return 6 * x
    def funcosp1(x):
         return -1 * math.cos(x)
    return (funpow2, funpow3, funcosp1)
\mathbf{def} calM (x0, f, fp, ffp):
    a = pow(fp(x0), 2)
    b=f(x0) * ffp(x0)
    m=a/(a-b)
    return m
def my_zero(x0, f, fp, ffp, calM):
    x0 = float(x0)
    time=0
    m = calM(x0, f, fp, ffp)
    while time<=TIME_MAX:
         \#print m
```

```
time += 1
    x1 = x0 - ((m * f(x0))/fp(x0))
    if abs(x1-x0)<E or abs(f(x1))<E:
        return x1, time, m

x0 = x1
    m = calM(x0, f, fp, ffp)

return x0, time, m

if -_name__ == "_-main__":
    for i in range(3):
        zero, time, m = my_zero(1.0, genfun()[i], gendfun()[i], genddfun()[i]
        print "For_Funtion_%s:\t_The_zero_of_x_occurs_at_x=_%f_\t_Loop_%d_time</pre>
```