Departamento de Matemática da Universidade de Aveiro

Cálculo II - Agrupamento 4

Folha de exercícios

Ano letivo 2016/2017 (2º Semestre)

1.3 Derivadas, gradientes e diferenciais - parte 2

- 1. Para cada uma das funções seguintes determine o diferencial no ponto indicado e a linearização numa vizinhança do mesmo ponto, após garantida a diferenciabilidade no ponto em questão:
 - (a) $f(x,y) = \sin(xy)$, (0,1);
 - (b) f(x, y, z) = xyz, (1, 1, 1);
 - (c) $f(x, y, z) = \sqrt[4]{x^2 + y^2 + z^2}$, (1, 0, 0);
 - (d) $f(x, y, z) = xy^3 + \cos(\pi z)$, (1, 3, 1);
 - (e) $f(x, y, z) = x^2 y^2 z^2 + xyz$, (1, 1, 0).
- 2. Usando a regra da cadeia, calcule a expressão das derivadas $\frac{dz}{dt}$ ou $\frac{dw}{dt}$ nos pontos de diferenciabilidade das funções z de t ou w de t respetivamente:
 - (a) $z = x^2 + 2y^2$, $x = \sin(t)$, $y = \cos(t)$;
 - (b) $z = \arctan\left(\frac{dz}{dt}\right)$, $x = \ln(t)$, $y = e^t$;
 - (c) $z = \tan\left(\frac{x}{y}\right)$, x = t, $y = e^t$;
 - (d) $z = e^{xy}$, x = 3t + 1, $y = t^2$;
 - (e) $z = x^2 \cos(y) x$, $x = t^2$, $y = \frac{1}{t}$;
 - (f) $z = \ln(x) + \ln(y) + xy$, $x = e^t$, $y = e^{-t}$;
 - (g) w = xyz, $x = t^2$, $y = t^3$, $z = t^4$;
 - (h) $w = e^{-x}y^2\sin(z)$, x = t, y = 2t, z = 3t;
 - (i) $w = x^2 + y^2 + z^2$, $x = e^t$, $y = e^t \cos(t)$, $z = e^t \sin(t)$;
 - (j) $w = \frac{x^2 + y^2}{1 + x^2 + y^2 + z^2}$, $x = \cos(t)$, $y = \sin(t)$, $z = e^t$;
 - (k) $w = \frac{x+y+z}{x^2+y^2+z^2}$, $x = \cos(t)$, $y = \sin(t)$, $z = e^t$.
- 3. Seja $z=f\left(\frac{bx^2}{2}-\frac{ay^3}{3}\right)$, onde f é diferenciável e $a,b\in\mathbb{R}$. Mostra que então f satisfaz a equação

$$ay^2 \frac{\partial z}{\partial x} + bx \frac{\partial z}{\partial y} = 0.$$

1