The find
$$\Omega$$
, Ω minimize the error

The the whole derivative with respect to Ω , Ω to find the whole Ω .

The coverage Ω is Ω .

The whole Ω is Ω .

The coverage Ω is Ω is Ω .

The coverage Ω is Ω is Ω .

The cove

$$\begin{cases}
S_1 = \omega_{X_1} + b + \varepsilon_1 \\
\varepsilon_1 \sim N(0, \sigma^2)
\end{cases}$$

$$E[\Omega] = b$$

(4) Finding the variance
$$\Omega = \sum_{i=1}^{\infty} (x_i - x)^2$$

$$\Omega = \sum_{i=1}^{\infty} (x_i - x)^2$$

$$= ((ux_i + b + \epsilon_i) - \delta_i)$$

$$= u + \sum_{i=1}^{\infty} (x_i - x)^2$$

$$= u + 1 + \sum_{i=1}^{\infty} (x_i - x)^2$$

$$= u + 1 + \sum_{i=1}^{\infty} (x_i - x)^2$$

$$= u + 1 + \sum_{i=1}^{\infty} (x_i - x)^2$$

$$= u + 1 + \sum_{i=1}^{\infty} (x_i - x)^2$$

$$= u + 1 + \sum_{i=1}^{\infty} (x_i - x)^2$$

$$= (u + 1) + \sum_{i=1}^{\infty} (x_i - x)^2$$

$$= (u + 1) + \sum_{i=1}^{\infty} (x_i - x)^2$$

$$= (u + 1) + \sum_{i=1}^{\infty} (x_i - x)^2$$

$$= (u + x)^2$$

$$= (u +$$

Preduce some error on
$$\mathbb{N}$$

minimize the error on \mathbb{N} when $\mathbb{N} = \mathbb{E}[\mathbb{N}]$
 $Var(\mathbb{O}) = \frac{S^2}{m * Var(\mathbb{N})}$

$$= \frac{S^2}{m * Var(\mathbb{N})} = \frac{S^2}{m * Var(\mathbb{N})} + \frac{S^2}{m * Var(\mathbb{N})} =$$

CS 536: Regression and Error

5)

```
import numpy as np
from sympy.stats import E
def mean(x):
    return sum(x)/len(x)
def var(x):
    m = mean(x)
    all = 0
    for i in x:
        all +=(i-m)**2
    return all/len(x)
def cov(x,y):
    mx = mean(x)
    my = mean(y)
    aĺl = 0
    for i in range(len(x)):
        all += ((x[i]-mx)*(y[i]-my))
    return all/len(x)
m = 200
w = 1
b = 5
sd = 0.1
w all = []
w_shift = []
b_all = []
b shift = []
for l in range(1000):
    x = np.random.uniform(100, 102, m)
    y = np.zeros(m)
    e = np.random.normal(0, np.sqrt(sd), m)
    for i in range(len(x)):
        y[i] = (w * x[i]) + b + e[i]
    w_star = cov(x,y)/var(x)
    b_star = mean(y)-(w_star*mean(x))
    w_all.append(w_star)
    b_all.append(b_star)
    x_bar = np.zeros(m)
    for i in range(len(x)):
        x_bar[i] = x[i]-101
    w_star_shift = cov(x_bar,y)/var(x_bar)
    b_star_shift = mean(y) - (w_star_shift*mean(x_bar))
    w_shift.append(w_star_shift)
    b_shift.append(b_star_shift)
print("Mean of w: " + str(mean(w all)))
```

```
print("Mean of w: " + str(mean(w_all)))
print("Variance of w: " + str(var(w_all)))
print("Mean of b: " + str(mean(b_all)))
print("Variance of b: " + str(var(b_all)))
print("Mean of w after data shifting: " + str(mean(w_shift)))
print("Variance of w after data shifting: " + str(var(w_shift)))
print("Mean of b after data shifting: " + str(mean(b_shift)))
print("Variance of b after data shifting: " + str(var(b_shift)))
```

CS 536: Regression and Error

Mean of w: 1.0045718203834721

Variance of w: 0.0013528551785233244

Mean of b: 4.5380798086577565 Variance of b: 13.79868224777027

Mean of w after data shifting: 1.0045718203834721

Variance of w after data shifting: 0.0013528551785233248

Mean of b after data shifting: 105.99983366738844

Variance of b after data shifting: 0.0005059696193896366

The results make sense and agrees with the above limiting expression, shifting the data doesn't affect w but affect b

CS 536: Regression and Error

6) The linear model is trying to minimize the training error, when the data is shifted the model still gives a straight line shifted on the x-axis for all the points, the y-axis is still the same and the positions of each point to each other and so no change happened on the slope of the linear model

assume the first dimension in X is
$$\frac{1}{2}$$

$$X = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ 1 & x_3 \end{bmatrix} \qquad \sum_{z=x}^{\infty} \sum_{x_1, x_2}^{\infty} \sum_{x_2, x_3}^{\infty} \sum_{x_4, x_5}^{\infty} \sum_{x_4,$$

after recentering in $\lambda_1 = \frac{1}{2} * (1 + E(x^{12})) - \sqrt{(1 + E(x^{12}))^2 - 4var(x^1)}$ $\lambda_2 = \frac{1}{2} * (1 + E(x^{12})) + \sqrt{(1 + E(x^{12}))^2 - 4var(x^1)}$

analyzing this for x' = x - y $\lambda_1 = \frac{1}{2} * (1 + E[(x-y)^2]) - [(1 + E[(x-y)^2]^2 - 4 \cdot v \cdot (x-y)]$ $\lambda_2 = \frac{1}{2} * (1 + E[(x-y)^2]) + [(1 + E[(x-y)^2]^2 - 4 \cdot v \cdot (x-y)]$

k = \frac{\sqrt{2}}{\sqrt{1}} = \sqrt{2} and with \mathred{M} = \text{ECX] \qqrt{2} \qqrt{1} \qqrt{1}

 $k = \frac{1 + \left[1 - \frac{4 \text{var}(x)}{(1 + \text{var}(x))^2}\right]}{(1 + \text{var}(x))^2} = \frac{1}{\text{var}(x)} \text{ the numeration of the solve}}$ $1 - \left[1 - \frac{4 \text{var}(x)}{(1 + \text{var}(x))^2}\right]$ the solve.

this prove that the condition number is minimized

1 KI- RV2

To Programme

ST-RS