

Determine missing information,

- 1. Using probabilistic methods
- 2. Using RF-Rec predictors

User 1	?	5	3	4	2
User 2	4	1	5	?	5
User 3	5	?	4	2	5
User 4	1	5	3	5	?

1. X = (Item2=5, Item3=3, Item4=4, Item5=2)

P(X|Item1=2) = P(Item2=5| Item1=2) x P(Item3=3| Item1=2) x P(Item4=4| Item1=2) x P(Item5=2| Item1=2)

P(X|Item1=3)

P(X|Item1=4)

P(X|Item1=5)

2.

f(user1, 1) = Count value 1 in User1 = 0	f(item1, 1) = Count value 1 in Item1 = 1
f(user1, 2) = Count value 2 in User1 = 1	f(item1, 2) = Count value 2 in Item1 = 0
f(user1, 3) = Count value 3 in User1 = 1	f(item1, 3) = Count value 3 in Item1 = 0
f(user1, 4) = Count value 4 in User1 = 1	f(item1, 4) = Count value 1 in Item1 = 1
f(user1, 5) = Count value 5 in User1 = 1	f(item1, 5) = Count value 1 in Item1 = 1

argmax f(user1, x) x f(item1, x) \rightarrow 4 or 5

f(user2, 1) = Count value 1 in User2 =	f(item4, 1) = Count value 1 in Item4 =
f(user2, 2) = Count value 2 in User2 =	f(item4, 2) = Count value 2 in Item4 =
f(user2, 3) = Count value 3 in User2 =	f(item4, 3) = Count value 3 in Item4 =
f(user2, 4) = Count value 4 in User2 =	f(item4, 4) = Count value 1 in Item4 =
f(user2, 5) = Count value 5 in User2 =	f(item4, 5) = Count value 1 in Item4 =

	ltem1	Item2	Item3	Item4	Item5	
Alice	5	3	4	4	?	
User1	3	1	2	3	3	#
User2	4	3	4	3	5	4
User3	3	3	1	5	4	4
User4	1	5	5	2	1	4

User filtering

$$\overline{r}_{Alice} = \frac{5+3+4+4}{4} = 4$$

$$\overline{r}_{User1} = \frac{3+1+2+3}{4} = 2.25$$

$$sim(Alice,User1) = \frac{(5-4)(3-2.25)+(3-4)(1-2.25)+...}{\sqrt{(5-4)^2+(3-4)^2+...}\times\sqrt{(3-2.25)^2+(1-2.25)^2+...}}$$

$$pred\left(Alice, Item5\right) = \overline{r}_{Alice} + \frac{0.85\left(3 - 2.25\right) + 0 \times \left(5 - \frac{4 + 3 + 4 + 3}{4}\right) + \dots}{0.85 + 0 + \dots}$$

Item filtering

$$\overline{r}_{ltem5} = \frac{3+5+4+1}{4} = 3.25$$

$$\overline{r}_{ltem1} = \frac{3+4+3+1}{4} = 2.75$$

$$sim(\text{Item 5}, \text{Item 1}) = \frac{(3-3.25)(3-2.75) + (5-3.25)(4-2.75) + \dots}{\sqrt{(3-3.25)^2 + (5-3.25)^2 + \dots} \times \sqrt{(3-2.75)^2 + (4-2.75)^2 + \dots}}$$

• Step 1: The forward pass

$$\begin{cases} z_1^{(2)} = \theta_1^{(1)} a_1^{(1)} + \theta_2^{(1)} a_2^{(1)} + \theta_5^{(1)} = 0.15 * 0.05 + 0.2 * 0.1 + 0.85 = 0.3775 \\ a_1^{(2)} = \frac{1}{1 + e^{-z_1^{(2)}}} = \frac{1}{1 + e^{-0.3775}} = 0.592 \end{cases}$$

$$\begin{cases}
z_2^{(2)} = \theta_3^{(1)} a_1^{(1)} + \theta_4^{(1)} a_2^{(1)} + \theta_5^{(1)} \\
a_2^{(2)} = \frac{1}{1 + e^{-z_2^{(2)}}} = 0.596
\end{cases}$$

$$\begin{cases}
z_1^{(3)} = \theta_1^{(2)} a_1^{(2)} + \theta_2^{(2)} a_2^{(2)} + \theta_5^{(2)} \\
a_1^{(3)} = \frac{1}{1 + e^{-z_1^{(3)}}} = 0.751 \\
z_2^{(3)} = \theta_3^{(2)} a_1^{(2)} + \theta_4^{(2)} a_2^{(2)} + \theta_5^{(2)} \\
a_2^{(3)} = \frac{1}{1 + e^{-z_2^{(3)}}} = 0.772
\end{cases}$$

• Step 2: Calculating Cost function

$$J\left(\mathbf{a}^{(3)}\right) = \sum \frac{1}{2} \left(t \arg et - a^{(3)}\right)^2 = \frac{1}{2} \left(t \arg et - a^{(3)}_1\right)^2 + \frac{1}{2} \left(t \arg et - a^{(3)}_2\right)^2 = \frac{1}{2} \left(0.01 - 0.751\right)^2 + \frac{1}{2} \left(0.99 - 0.772\right)^2 = 0.298$$

• Step 3: The Back Propagation

o Now, you need to calculate $\frac{\partial J}{\partial \theta_1^{(2)}}$ to update $\theta_1^{(2)}$ by gradient descent

$$\frac{\partial J}{\partial \theta_{1}^{(2)}} = \frac{\partial J}{\partial a_{1}^{(3)}} \frac{\partial a_{1}^{(3)}}{\partial z_{1}^{(3)}} \frac{\partial z_{1}^{(3)}}{\partial \theta_{1}^{(2)}}$$

$$\frac{\partial J}{\partial a_{1}^{(3)}} = -\frac{1}{2} 2 \left(t \arg et - a_{1}^{(3)} \right) = -\left(0.01 - 0.751 \right) = 0.74$$

$$a_1^{(3)} = \frac{1}{1 + e^{-z_1^{(3)}}} \to \frac{\partial a_1^{(3)}}{\partial z_2^{(3)}} = a_1^{(3)} \left(1 - a_1^{(3)} \right) = 0.75 \left(1 - 0.75 \right) = 0.186$$

$$z_1^{(3)} = \theta_1^{(2)} a_1^{(2)} + \theta_2^{(2)} a_2^{(2)} + \theta_5^{(2)} \to \frac{\partial z_1^{(3)}}{\partial \theta_1^{(2)}} = a_1^{(2)} = 0.592$$

$$\rightarrow \frac{\partial J}{\partial \theta_1^{(2)}} = \frac{\partial J}{\partial a_1^{(3)}} \frac{\partial a_1^{(3)}}{\partial z_1^{(3)}} \frac{\partial z_1^{(3)}}{\partial \theta_1^{(2)}} = 0.74 * 0.186 * 0.592 = 0.082$$

$$\rightarrow \theta_1^{(2)} = \theta_1^{(2)} - \frac{\partial J}{\partial \theta_1^{(2)}}$$

- O Similarly, you can calculate all $\theta^{(2)}$
- o However, When calculating the $\theta^{(1)}$, you need more calculation

$$_{\bigcirc} \quad \frac{\partial J}{\partial \theta_{\mathrm{l}}^{(1)}} = \frac{\partial J}{\partial a_{\mathrm{l}}^{(2)}} \frac{\partial a_{\mathrm{l}}^{(2)}}{\partial z_{\mathrm{l}}^{(2)}} \frac{\partial z_{\mathrm{l}}^{(2)}}{\partial \theta_{\mathrm{l}}^{(1)}}$$

$$\frac{\partial J}{\partial a_{1}^{(2)}} = \frac{\partial J\left(a_{1}^{(3)}\right)}{\partial a_{1}^{(2)}} + \frac{\partial J\left(a_{2}^{(3)}\right)}{\partial a_{1}^{(2)}} = \left(\frac{\partial J\left(a_{1}^{(3)}\right)}{\partial z_{1}^{(3)}} \frac{\partial z_{1}^{(3)}}{\partial a_{1}^{(2)}} + \frac{\partial J\left(a_{2}^{(3)}\right)}{\partial z_{1}^{(3)}} \frac{\partial z_{2}^{(3)}}{\partial a_{1}^{(2)}}\right) = \left(0.13 * 0.4 + \left(-0.019\right)\right) = 0.0363$$

$$a_1^{(2)} = \frac{1}{1 + e^{-z_1^{(2)}}} \rightarrow \frac{\partial a_1^{(2)}}{\partial z_1^{(2)}} = a_1^{(2)} \left(1 - a_1^{(2)}\right) = 0.59 \left(1 - 0.759\right) = 0.241$$

$$z_1^{(2)} = \theta_1^{(1)} a_1^{(1)} + \theta_2^{(1)} a_2^{(1)} + \theta_5^{(1)} \longrightarrow \frac{\partial z_1^{(2)}}{\partial \theta_1^{(1)}} = a_1^{(1)} = 0.05$$

$$\rightarrow \frac{\partial J}{\partial \theta_1^{(1)}} = \frac{\partial J}{\partial a_1^{(2)}} \frac{\partial a_1^{(2)}}{\partial z_2^{(2)}} \frac{\partial z_1^{(2)}}{\partial \theta_1^{(1)}} = 0.0363 * 0.241 * 0.05 = 0.0004$$

$$\rightarrow \theta_1^{(1)} = \theta_1^{(1)} - \frac{\partial J}{\partial \theta_1^{(1)}}$$

 $\hat{\theta}_{A}^{(1)} \approx \frac{21.3}{21.3 + 8.6} \approx 0.71$ $\hat{\theta}_{B}^{(1)} \approx \frac{11.7}{11.7 + 8.4} \approx 0.58$ M-step

• Given the dataset, calculate Naïve Bayes to find the class of **last row**

Example	Sky	AirTemp	Humidity	Wind	Water	Forecast	EnjoySport
1	Sunny	Warm	Normal	Strong	Warm	Same	Yes
2	Sunny	Warm	High	Strong	Warm	Same	Yes
3	Rainy	Cold	High	Strong	Warm	Change	No
4	Sunny	Warm	High	Strong	Cool	Change	Yes
5	Cloudy	Warm	High	Weak	Cool	Same	Yes
6	Cloudy	Cold	High	Weak	Cool	Same	No

0	$P(C_i) \cdot \langle$	P(class = yes) =	0	_
Ü	1 (01).	P(class = 'no') =	$\frac{2}{6} =$	$\frac{1}{3}$
			O	5

 $\int_{\mathcal{D}(a,l,n,n,n)} 4 2$

$$\circ P(Sky='Sunny' | class = 'No') = 0$$

O Notice: value 'Low' is not in 'Humidity', so P(Humidity= 'Low' | class= 'Yes') =0

Same

Same

o P(Humidity= 'Low'| class= 'No')=0

Sunny

Warm

Warm

• Put X = (Sunny, Warm, Low, Strong, Cool, Same)

Strong

Strong

Warm

Cool

- O P(X | Class = 'Yes') = P(Sky= 'Sunny' | class = 'Yes') * P(AirTemp= 'Warm' | class = 'Yes') * P(Humidity= 'Low' | class = 'Yes') * P(Wind= 'Strong' | class = 'Yes') * P(Water= 'Cool' | class = 'Yes') * P(Forecast= 'Same' | class = 'Yes')
- O P(X | Class = 'No) = P(Sky= 'Sunny' | class = 'No) * P(AirTemp= 'Warm' | class = 'No) * P(Humidity= 'Low' | class = 'No) * P(Wind= 'Strong' | class = 'No) * P(Water= 'Cool' | class = 'No) * P(Forecast= 'Same' | class = 'No)
- O Compare: P(X | Class = 'Yes') * P(Class = 'Yes) and P(X | Class = 'No') * P(Class = 'No'). Choose Class max

mpg	cylinders	displacement	horsepower	weight	acceleration	model-year	maker
good	4	low	low	low	high	75to78	Asia
bad	6	medium	medium	medium	medium	70to74	America
bad	4	medium	medium	medium	low	75to78	Europe
bad	8	high	high	high	low	70to74	America
bad	6	medium	medium	medium	medium	70to74	America
bad	4	low	medium	low	medium	70to74	America
bad	4	low	medium	low	low	70to74	Asia
bad	8	high	high	high	low	75to78	America
bad	8	high	high	high	low	70to74	America
good	8	high	medium	high	high	79to83	America
bad	8	high	high	high	low	70to74	America
good	4	low	low	low	low	79to83	America
bad	6	medium	medium	medium	high	75to78	America
good	4	medium	low	low	low	79to83	America
good	4	low	low	medium	high	79to83	America
bad	8	high	high	high	low	70to74	America
good	4	low	medium	low	medium	75to78	Europe
bad	5	medium	medium	medium	medium	75to78	Europe

Iteration #1:

Entropy(S) =
$$-p_{good} \log_2(p_{good}) - p_{bad} \log_2(p_{bad}) = -\frac{6}{18} \log_2(\frac{6}{18}) - \frac{12}{18} \log_2(\frac{12}{18}) = 0.91$$

Gain(S, cylinders) =

$$Entropy(S) - \sum_{v \in (4,5,6,8)} (S_v / S) Entropy(S_v) = Entropy(S) - \left[\frac{8}{18} Entropy(S_4) + \frac{1}{18} Entropy(S_5) + \frac{3}{18} Entropy(S_6) + \frac{6}{18} Entropy(S_8) \right]$$

$$= 0.91 - \left[\frac{8}{18} \times \left(-\frac{5}{8} \log_2 \frac{5}{8} - \frac{3}{8} \log_2 \frac{3}{8} \right) + 0 + 0 + \frac{6}{18} \times \left(-\frac{5}{6} \log_2 \frac{5}{6} - \frac{1}{6} \log_2 \frac{1}{6} \right) \right] = 0.27$$

Gain(S, displacement) =

$$Entropy(S) - \sum_{v \in (low.medium,high)} \frac{S_v}{S} Entropy(S_v) = 0.91 - \left[\frac{6}{18} Entropy(S_{low}) + \frac{6}{18} Entropy(S_{medium}) + \frac{6}{18} Entropy(S_{high})\right] = 0.17$$

Gain(S, horsepower) =

$$Entropy(S) - \sum_{v \in (low.medium,high)} \frac{S_v}{S} Entropy(S_v) = 0.91 - \left[\frac{4}{18} Entropy(S_{low}) + \frac{9}{18} Entropy(S_{medium}) + \frac{5}{18} Entropy(S_{high})\right] = 0.52$$

Gain(S, weight) =

$$Entropy(S) - \sum_{v \in (low, medium, high)} \frac{S_v}{S} Entropy(S_v) = 0.91 - \left[\frac{6}{18} Entropy(S_{low}) + \frac{6}{18} Entropy(S_{medium}) + \frac{6}{18} Entropy(S_{high})\right] = 0.17$$

Gain(S, acceleration) =

$$Entropy\left(S\right) - \sum_{v \in (low.medium,high)} \frac{S_v}{S} Entropy\left(S_v\right) = 0.91 - \left[\frac{9}{18} Entropy\left(S_{low}\right) + \frac{5}{18} Entropy\left(S_{medium}\right) + \frac{4}{18} Entropy\left(S_{high}\right)\right] = 0.15$$

Gain(S, model-year) =

$$Entropy(S) - \sum_{v \in (70 \text{ to } 74.75 \text{ to } 78,79 \text{ to } 83)} \frac{S_v}{S} Entropy(S_v) = 0.91 - \left[\frac{8}{18} Entropy(S_{70 \text{ to } 74}) + \frac{6}{18} Entropy(S_{75 \text{ to } 78}) + \frac{4}{18} Entropy(S_{79 \text{ to } 83}) \right] = 0.61 - \left[\frac{8}{18} Entropy(S_{70 \text{ to } 74}) + \frac{6}{18} Entropy(S_{75 \text{ to } 78,79 \text{ to } 83)} + \frac{4}{18} Entropy(S_{79 \text{ to } 83}) \right] = 0.61 - \left[\frac{8}{18} Entropy(S_{70 \text{ to } 74,75 \text{ to } 78,79 \text{ to } 83)} + \frac{4}{18} Entropy(S_{79 \text{ to } 83)} + \frac{4}{18} Entro$$

Gain(S, maker) =

$$Entropy(S) - \sum_{v \in (Asia, \text{Europe}, \text{America})} \frac{S_v}{S} Entropy(S_v) = 0.91 - \left[\frac{2}{18} Entropy(S_{Asia}) + \frac{3}{18} Entropy(S_{Europe}) + \frac{13}{18} Entropy(S_{America})\right] = 0.005$$

→ Choose model-year to split

Dataset after iteration #1:

mpg	cylinders	displacement	horsepower	weight	acceleration	model-year	maker
good	4	low	low	low	high	75to78	Asia
bad	4	medium	medium	medium	low	75to78	Europe
bad	8	high	high	high	low	75to78	America
bad	6	medium	medium	medium	high	75to78	America
good	4	low	medium	low	medium	75to78	Europe
bad	5	medium	medium	medium	medium	75to78	Europe

Iteration #2:

Entropy(S) =
$$-p_{good} \log_2(p_{good}) - p_{bad} \log_2(p_{bad}) = 0.91$$

Gain(S, cylinders) =

$$Entropy(S) - \sum_{v \in (4.5,6.8)} (S_v / S) Entropy(S_v) = Entropy(S) - \left[\frac{3}{6} Entropy(S_4) + \frac{1}{6} Entropy(S_5) + \frac{1}{6} Entropy(S_6) + \frac{1}{6} Entropy(S_8) \right] = 0.45$$

Gain(S, displacement) =

$$Entropy(S) - \sum_{v \in (low.medium, high)} \frac{S_v}{S} Entropy(S_v) = 0.91 - \left[\frac{2}{6} Entropy(S_{low}) + \frac{3}{6} Entropy(S_{medium}) + \frac{1}{6} Entropy(S_{high})\right] = 0.91$$

→ Don't need to calculate another features because Gain(S, displacement) is the highest Gain you can obtain, so choose Displace to split

• The decision tree is not overfitting because Model-year is categorized rather than continuous. Therefore, you don't need to use Pruning technique

However, if test data point has model-year values which is less than 70 or greater than 83, your decision tree built above cannot predict