Blatt 6

Ausgabe: Di, 4.06.19

Besprechung: Di, 11.06.19

Ubungsbetreuung: Seraina Glaus (seraina.glaus@kit.edu) (Raum 12/08 - Geb. 30.23)

Aufgabe 1: Streuprozess - Compton-Effekt

Ein Photon streut an einem ruhenden Elektron und überträgt dabei Energie und Impuls auf das Elektron. In dieser Aufgabe soll nun die Energie E'_{γ} des Photons nach der Streuung in Abhängigkeit des Streuwinkels Θ_{γ} mittels Energie-Impuls-Vektoren p^{μ} bestimmt werden. Diese sind gegeben durch Energie E und Impuls \vec{p} des Teilchens $p^{\mu} = (E/c, \vec{p})$.

Das Quadrat der Energie-Impuls-Vektoren ist invariant unter Lorentz-Transformationen und gegeben durch die invariante Ruhemasse des Teilchens m_0 gemäß

$$p^2 = p_\mu p^\mu = m_0^2 c^2 = \frac{E^2}{c^2} - \vec{p}^2$$
.

- (a) Nutzen Sie die Energie-Impulserhaltung ausgedrückt durch p^{μ} aus, um die Energie des Photons nach dem Stoß zu bestimmen. Gehen Sie wie folgt vor:
 - (i) Lösen Sie die Gleichung der Energie-Impuls-Vektoren des Elektrons p_e^{μ} und des Photons p_{γ}^{μ} vor dem Stoß und des Elektrons $p_e'^{\mu}$ und des Photons $p_{\gamma}'^{\mu}$ nach dem Stoß nach $p_e^{\prime\mu}$ auf.
 - (ii) Quadrieren Sie die resultierenden Energie-Impuls-Vektoren auf beiden Seiten der Gleichung und verifizieren Sie, dass die Energie des auslaufenden Photons E'_{γ} als Funktion der Elektronmasse m_e , des Streuwinkels Θ_{γ} und der Energie des einlaufenden Photons E_{γ} durch

$$E'_{\gamma} = E_{\gamma} \cdot \left(1 + \frac{E_{\gamma}}{m_e c^2} \left(1 - \cos \Theta_{\gamma}\right)\right)^{-1}$$

gegeben ist. Hinweis: Es gilt $\vec{p}_{\gamma}\vec{p}'_{\gamma} = |\vec{p}_{\gamma}||\vec{p}'_{\gamma}|\cos\Theta_{\gamma}$. Die Ruhemasse des Photons ist $m_{\gamma} = 0$, damit können Sie $|\vec{p}_{\gamma}|$ direkt als Funktion von E_{γ} ausdrücken.

(b) Die Energie eines Photons ist durch seine Wellenlänge λ gemäß $E_{\gamma}=2\pi\hbar c/\lambda$ gegeben. Bestimmen Sie die Differenz der Wellenlängen $\Delta \lambda = \lambda' - \lambda$.

Aufgabe 2: Dopplereffekt

Einem Raumschiff S', welches sich mit der konstanten Geschwindigkeit v von der Erde S wegbewegt, werden in periodischen Abständen T_0 Radiosignale hinterhergesandt und von diesem wieder zur Erde zürück. Zeige, dass

- (a) die Signale aus der Sicht der Erde in Perioden von $T_1 = \frac{T_0}{1 \frac{v}{c}}$ bei dem Raumschiff ankommen.
- (b) die Signale aus der Sicht des Raumschiffs in Perioden von $T_1' = T_0 \sqrt{\frac{c+v}{c-v}}$ bei dem Raumschiff ankommen.
- (c) die Signale aus der Sicht der Erde in Perioden von $T_2 = T_0 \frac{c+v}{c-v}$ auf der Erde ankommen.

Aufgabe 3: Lorentz-Transformation: Der Einstein-Zug

Der Einstein-Zug S' bewegt sich in positive x-Richtung mit der Geschwindigkeit $v=0.6\,c$ zum Bahnhof S, so dass die Ursprünge der Koordinatensysteme am Zugende (x'=0) bzw. der hinteren Bahnsteigkante (x=0) zur Zeit t=t'=0 in Deckung sind. S' gibt zur Zeit t'=0 einen Schuss in positive x'-Richtung auf die Lokomotive ab. Er stellt fest, dass das Geschoss eine Geschwindigkeit von $u'=0.8\,c$ hat und in die Lokomotive einschlägt. Anschliessend bestimmt er die Länge des Zuges zu s'=3 Lichtsekunden.

- (a) Welche Zuglänge s misst S?
- (b) Welche Laufzeit Δt misst S für das Geschoss?
- (c) Welche Geschwindigkeit u misst S für das Geschoss?