CONIC SECTIONS

EE24BTECH11035 - KOTHAPALLI AKHIL

G .COMPREHENSION QUESTIONS

- 1) The equation of the locus of the point whose distances from the point \mathbf{P} and the line AB are equal, is
- 1) $9x^2 + y^2 6xy 54x 62y + 241 = 0$
- 2) $x^2 + 9y^2 + 6xy 54x 62y 241 = 0$
- 3) $9x^2 + 9y^2 6xy 54x 62y 241 = 0$
- 4) $x^2 + y^2 2xy + 27x + 31y 120 = 0$

A. Passage 4

1) Let PQ be a focal chord of the parabola $y^2 =$ 4ax. The tangents to the parabola at **P** and **Q** meet at a point lying on the line y = 2x + a, a > 0Length of the chord PQ is

(JEE Adv.2013)

- a) 7*a*
- b) 5*a*
- c) 2a
- d) 3a
- 2) If chord PQ subtends an angle θ at the vertex of $y^2 = 4ax$ (JEE Adv.2013)

 - a) $\frac{2}{3}\sqrt{7}$ b) $\frac{-2}{3}\sqrt{7}$ c) $\frac{2}{3}\sqrt{5}$ d) $\frac{-2}{3}\sqrt{5}$

B. Passage 5

Let a,r,s,t be nonzero real numbers. Lets $P(at^2, 2as), Q, R(as^2, 2as)$ be distinct points on the parabola $y^2 = 4ax$.suppose that PQ is the focal chord and lines QR and PK are parallel, where K is the point (2a, 0)

- 1) The value of r is
- (JEE Adv.2014)

- a) $\frac{-1}{}$
- b) $\frac{t^2+1}{t^2+1}$
- c) $\frac{1}{t}^t$
- 2) If st = 1, then the tangent at **P** and the normal at M to the parabola meet at a point whose ordinate is

C. Passage 6

Let $\mathbf{F_1}(x_1,0)$ and $\mathbf{F_2}(x_2,0)$ for $x_1 < 0$ and $x_2 > 0$, be the focii of the ellipse $\frac{x^2}{9} + \frac{y^2}{8} = 1$. Suppose a parabola having vertex at the origin and focus at \mathbf{F}_2 intersects the ellipse at point \mathbf{M} in the first quadrant and the point N in the first quadrant.

1

- 1) The orthocentre of the triangle F_1MN is (JEE Adv. 2016)
 - a) $(\frac{-9}{10}, 0)$ b) $(\frac{2}{3}, 0)$

 - c) (9/10, 0)
 - d) $(\frac{2}{3}, \sqrt{6})$
- 2) If the tangents to the ellipse at **M** and **N** meet at **R** and the normal to the parabola at **M** meets the X-Axis at **Q**, the the ratio of area of the triangle MQR to the area of the quadrilateral MF_1NF_2 is (JEE Adv.2016)
 - a) 3:4
 - b) 4:5
 - c) 5:8
 - d) 2:3

H. ASSERTION AND REASON TYPE QUES-**TIONS**

- 1) STATEMENT-1: The curve $y = \frac{-x^2}{2} + x + 1$ is symmetric with respect to the line x =1.because STATEMENT-2: A Parabola is symmetric about its axis. (2007-3)marks)
 - a) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1
 - b) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
 - c) Statement-1 is True, Statement-2 is False
 - d) Statement-1 is False, Statement-2 is True

I. INTEGER VALUE CORRECT TYPE

- 1) The line 2x + y = 1 is the tangent to the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$. If this line passes through the point of intersection of the nearest directrix and the X-axis, then the eccentricity of the hyperbola is (2010)
- 2) Consider the parabola $y^2 = 8x$. Let Δ_1 be the area of the triangle formed by the end points of its latus rectum and the point $\mathbf{P}(\frac{1}{2}, 2)$ on the parabola and Δ_2 be the area of the triangle formed by drawing tangents at \mathbf{P} and at the end points of the latus rectum. Then $\frac{\Delta_1}{\Delta_2}$ is (2011)
- 3) Let **S** be the focus of the parabola $y^2 = 8x$ and let PQ be the common chord of the circle $x^2 + y^2 2x 4y = 0$ and the given parabola. The area of the triangle PQS is (2012)
- 4) A Vertical line passing through point (h, 0) intersects the ellipse at the points **P** and **Q**. Let the tangents to the ellipse at **P** and **Q** meet at the points **R**.If $\Delta(h)$ = area of the triangle PQR, Δ_1 = ma then (JEE Adv.2013)
 - a) g(x) is continuous but not differentiable at a
 - b) g(x) is differentiable on R
 - c) g(x) is continuous but not differentiable at b
 - d) g(x) is continuous and differentiable either(a) or (b) but not both
- 5) If the normal of the parabola $y^2 = 4x$ drawn at the end points of its latusrectum are the tangents of th circle $(x 3)^2 + (y + 2)^2 = r^2$, then the value of r^2 is (JEE Adv.2015)
- 6) Let the curve C be the mirror image of the parabola $y^2 = 4x$ with respect to the line x + y + 4 = 0. If **A** and **B** are the points of the intersection of C with the line y = -5, then the distance between **A** and **B** is (JEE Adv.2015)
- 7) Suppose that the focii of the ellipse $\frac{x^2}{9} + \frac{y^2}{5} = 1$ are $(f_1,0)$ and $(f_2,0)$ where $f_1 > 0$ and $f_1 < 0$.Let P_1 and P_2 be two parabolas with a common vertex at (0,0) and with foci at $(f_1,0)$ and $(2f_2,0)$,respectively. Let T_1 be a tangent to P_1 which passes through $(2f_2,0)$ and T_2 be a tangent to P_2 which passes through $(f_1,0)$.If m_1 is the slope of T_1 and m_2 is the slope of T_2 ,then the value of (JEE Adv. 2015)