(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2002 年3 月14 日 (14.03.2002)

PCT

(10) 国際公開番号 WO 02/21203 A1

(51) 国際特許分類7:

H04B 10/17, H01S 3/10, 3/30

G02F 1/35,

(OHSHIMA, Chihiro) [JP/JP]. 菅谷 靖 (SUGAYA, Yasushi) [JP/JP]; 〒211-8588 神奈川県川崎市中原区上 小田中4丁目1番1号 富士通株式会社内 Kanagawa (JP).

(21) 国際出願番号:

PCT/JP00/06101

(22) 国際出願日:

2000年9月7日(07.09.2000)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(84) 指定国 (広域): ヨーロッパ特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

(74) 代理人: 笹島富二雄(SASAJIMA, Fujio); 〒105-0001 東京都港区虎ノ門1丁目19番5号 虎ノ門1丁目森ピル

(71) 出願人 (米国を除く全ての指定国について): 富士通 株式会社 (FUJITSU LIMITED) [JP/JP]; 〒211-8588 神 奈川県川崎市中原区上小田中4丁目1番1号 Kanagawa (JP).

添付公開書類:

国際調査報告書

Tokyo (JP).

(81) 指定国 (国内): JP, US.

(72) 発明者: および

(75) 発明者/出願人 (米国についてのみ): 大嶋千裕

2文字コード及び他の略語については、定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

(54) Title: OPTICAL AMPLIFIER AND OPTICAL COMMUNICATION SYSTEM

(54) 発明の名称: 光増幅装置および光通信システム

(RAMAN AMPLIFYING MEDIUM) (ラマン増幅単体) 励起光 計算制制部 OSC紫複館 計算制御部

A...WDM LIGHT

B...RAMAN PUMPING LIGHT

10...PUMPING LIGHT SOURCE

14...CALCULATION CONTROL SECTION

31...CALCULATION CONTROL SECTION

41...OSC MONITORING SECTION

(57) Abstract: An optical amplifier incorporating a Raman amplifier for outputting a light beam the signal-to-noise ratio of which is prevented from degrading and which has improved transmission characteristics for signal light, comprises first optical amplifying means for Raman-amplifying a signal light by supplying pumping light to a Raman amplifying medium, second optical amplifying means for amplifying the signal light outputted from the first optical amplifying means, control means for controlling the operation of the first or second optical amplifying means so that the signal-to-noise ratio of the signal light outputted from the second optical amplifying means is almost constant. The control means determines the signal-to-noise of the output light outputted from the second amplifying means on the basis of the noise light

component due to the Raman amplification calculated from the Raman pumping light power and the signal information on the preceding stage optical amplifier and the noise light component calculated from the power of light inputted to the second optical amplifying means and the signal information on the preceding stage optical amplifier and controls the output preset levels of the first and second optical amplifying means so that the signal-to-noise ratio is almost constant irrespective of the wavelength of the signal light. An optical transmission system is also disclosed.

(57) 要約:

本発明は、ラマン増幅器を組み合わせた光増幅装置における出力光の信号対雑音比の劣化を防止し、信号光の伝送特性を向上させた光増幅装置および光通信システムを提供することを目的とする。このため、本発明による光増幅装置は、ラマン増幅媒体に励起光を供給することで信号光をラマン増幅する第1光増幅手段と、該第1光増幅手段から出力される信号光を増幅する第2光増幅手段と、第2光増幅手段から出力される信号光の信号対雑音比がほぼ一定となるように、第1または第2光増幅手段の動作状態を制御する制御手段を備えて構成される。該制御手段は、ラマン励起光パワーおよび前段の光増幅装置における信号情報に応じて算出したラマン増幅による雑音光成分と、第2光増幅手段への入力光パワー前段の光増幅装置における信号情報に応じて算出した雑音光成分とを基に、第2光増幅手段の出力光についての信号対雑音比を求め、該信号対雑音比が信号光の波長数に拘わらずほぼ一定になるように、第1、2光増幅手段の出力設定レベルなどを制御する。

1 明 細 書

光増幅装置および光通信システム

技術分野

本発明は、ラマン増幅器の組み合わせにより信号光の増幅を行う光増幅装置およびそれを用いた光通信システムに関する。

背景技術

一般的な光通信システムでは、例えば図9の下段に示すように、送信局(OS)と受信局(OR)の間が伝送路で接続されるとともに、該伝送路上には所要の間隔で複数の光中継器が配置され、信号光が送信局から受信局に中継伝送される。この光通信システムの各光中継器には、例えばエルビウムドープ光ファイバ増幅器(EDFA)などを用いた光増幅装置が設けられていて、波長の異なる複数の光信号を含んだ波長多重(WDM)信号光が一括して増幅される。

上記のようなEDFAを用いた光増幅装置では、入力された信号光の増幅に伴って自然放出(ASE: Amplified Spontanious Emission)光が発生し、そのASE光が、増幅された信号光に加算されて出力される。また、上記の光増幅装置では、1波長あたりの出力光が所定値となるように出力一定動作(ALC)する場合、トータル出力光パワーが一定になるような制御が行われる。このため、EDFAを用いた光増幅装置では、一定のレベルに制御すべき信号光成分に対してASE光成分が誤差成分となり、この誤差成分によって、光増幅装置から出力される信号光の1波長あたりの光パワーは減少することになる。

したがって、上記のような光通信システムでは、図9の上段に示すように、WDM信号光が光増幅装置で中継増幅されるごとに次段(図ではk段目)の光増幅装置への入力信号光パワーが減少して、受信局側における光SN比が劣化してまうという問題があった。一般に、WDM光通信システムで用いられる光増幅装置は広帯域特性であるため、WDM信号光の波長数を例えば1波として使用すると、ASE光による信号光パワーの減少量は大きなものとなってしまう。このような

2

信号光波長数が少ないときの信号光パワーの減少に対処するためには、例えば、 少数波長時の信号対雑音比(SNR)の劣化をあらかじめ見込んでシステムを設 計する方法が考えられる。しかし、この場合にはシステムゲインが減少して伝送 可能距離が減少してしまうという問題が生じる。

上記の問題を防ぐため、従来の光通信システムでは、例えば、光増幅装置の雑音指数 (NF)、入力光パワー、帯域幅および信号光の波長数に関する情報を用いてASE光パワーを算出し、そのASE光パワーに相当する分だけ光増幅装置の出力光設定レベルを増加させる、いわゆるASE補正が行われてきた(図9の上段を参照のこと)。

ところで、近年、EDFAとラマン増幅器とを組み合わせることで、光増幅帯域の拡大や中継損失の低減等を図った光増幅装置の開発が進められている。このようなラマン増幅を利用した光増幅装置では、前述のASE光に加えてラマン増幅に起因した雑音光が発生し、増幅された信号光に加算されて出力されるようになる。

上記のラマン増幅による雑音光は、信号光が入力されていない状態でラマン励起光だけを増幅媒体に入射した場合にも発生する雑音光であって、一般的にはポンプ光によるラマン散乱光などと呼ばれているものである。ここでは、EDFAで発生する自然放出(ASE)光に対し、ラマン増幅器で発生する上記雑音光を自然ラマン散乱(ASS: Amplified Spontanious Raman Scattering)光と呼ぶことにする。

このようなASS光の発生および累積は、光通信システムにおいて上述したASE光の場合と同様の問題を生じさせることになる。EDFAおよびラマン増幅器を組み合わせた光増幅装置に対して、前述した従来のASE補正を適用しただけでは、受信局側における光SN比の劣化を防ぐことは難しく、ASS光の影響をも考慮した補正を行う必要がある。

本発明は上記の点に着目してなされたもので、ラマン増幅器を組み合わせた光 増幅装置における出力光の信号対雑音比の劣化を防止し、信号光の伝送特性を向 上させた光増幅装置および光通信システムを提供することを目的とする。

発明の開示

上記の目的を達成するため、本発明による光増幅装置の第1の態様は、ラマン増幅媒体に励起光を供給することでラマン増幅媒体を伝搬する信号光をラマン増幅する第1光増幅手段と、該第1光増幅手段から出力される信号光を増幅する第2光増幅手段とを備えた光増幅装置において、第2光増幅手段から出力される信号光の信号対雑音比がほぼ一定となるように、第1光増幅手段および第2光増幅手段の少なくとも一方の動作状態を制御する制御手段を備えて構成されるものである。具体的には、第2光増幅手段から出力される信号光の信号対雑音比が、第1光増幅手段で発生する雑音量に関係なくほぼ一定に制御されてもよく、また、信号光の波長数に関係なくほぼ一定に制御されても構わない。

かかる構成では、第1光増幅手段におけるラマン増幅の動作状態、若しくは、 第2光増幅手段における光増幅の動作状態、または、それら両方の動作状態が制 御手段によって調整されることで、第2光増幅手段から出力される信号光の信号 対雑音比がほぼ一定に制御されるようになる。これにより、第1、2光増幅手段 で発生する雑音光の影響による信号対雑音比の劣化を防止することが可能になる。

また、本発明による光増幅装置の第2の態様は、ラマン増幅媒体に励起光を供給することでラマン増幅媒体を伝搬する信号光をラマン増幅する第1光増幅手段と、該第1光増幅手段から出力される信号光を増幅する第2光増幅手段とを備え、第1および第2光増幅手段の少なくとも一方の出力光が予め定めた出力設定レベルに制御される光増幅装置において、ラマン増幅媒体に供給される励起光パワーを検出する検出手段と、該検出手段の検出結果を基に第1光増幅手段による雑音光成分を計算する計算手段と、該計算手段の計算結果に基づいて出力設定レベルの補正を行い、出力光に含まれる1波長あたりの信号光パワーが信号光の波長数に拘わらず一定に保たれるようにする出力設定レベル補正手段と、を備えて構成されるものである。

かかる構成では、検出手段で検出したラマン増幅用の励起光パワーを基に、第 1光増幅手段による雑音光成分、すなわち、自然ラマン散乱(ASS)光のパワーが計算手段で計算される。そして、計算されたASS光パワーに基づいて、第 1、2光増幅手段の一方または両方について予め定められた出力設定レベルの補

4

正が出力設定レベル補正手段によって行われる。これにより、補正された出力設定レベルに従って制御された出力光に含まれる1波長あたりの信号光パワーが信号光の波長数に拘わらず一定に保たれるようになり、したがって、信号光の信号対雑音比をほぼ一定に制御できるようになる。

また、本発明による光増幅装置の第3の態様は、ラマン増幅媒体に励起光を供給することでラマン増幅媒体を伝搬する信号光をラマン増幅する第1光増幅手段と、該第1光増幅手段から出力される信号光を増幅する第2光増幅手段とを備えた光増幅装置において、ラマン増幅媒体に供給される励起光パワーを検出する検出手段と、該検出手段の検出結果を基に第1光増幅手段による雑音光成分を計算する計算手段と、該計算手段の計算結果を第2光増幅手段に伝達する伝達手段と、を備えて構成されるものである。

かかる構成では、検出手段で検出したラマン増幅用の励起光パワーを基に、第 1光増幅手段による雑音光成分、すなわち、自然ラマン散乱(ASS)光のパワーが計算手段で計算され、その計算結果が伝達手段によって第2光増幅手段に伝達されるようになる。これにより、第2光増幅手段においてASS光の影響を考慮した出力補正を行うことが可能になる。

上述した第1の態様の光増幅装置についての具体的な構成として、制御手段は、ラマン増幅媒体に供給される励起光パワーを検出する励起光パワー検出部と、第2光増幅手段への入力光パワーを検出する入力光パワー検出部と、前段の光増幅装置における信号対雑音比に関する情報を受信する制御情報受信部と、励起光パワー検出部の検出結果および制御情報受信部の受信情報に応じて算出した第1光増幅手段による雑音光成分、並びに、入力光パワー検出部の検出結果および制御情報受信部の受信情報に応じて算出した第2光増幅手段による雑音光成分に基づいて、第2光増幅手段から出力される信号光の信号対雑音比を求め、該信号対雑音比に応じて、第1光増幅手段および第2光増幅手段の少なくとも一方の動作状態を制御する計算制御部と、を備えるようにしてもよい。

かかる構成では、計算制御部において、励起光パワー検出部により検出したラマン励起光パワーと制御情報受信部で受信された前段の光増幅装置における信号 対雑音比に関する情報(信号光についての信号対雑音比および波長多重数を含む のが好ましい)とに応じて、ラマン増幅による雑音光成分の発生量が算出され、また、入力光パワー検出部により検出した第2光増幅手段への入力光パワーと制御情報受信部の受信情報とに応じて、第2光増幅手段の増幅作用による雑音光成分の発生量が算出される。そして、算出された各雑音光成分を基に、第2光増幅手段から出力される信号光の信号対雑音比が求められ、該信号対雑音比に応じて、第1光増幅手段および第2光増幅手段の少なくとも一方の動作状態が調整され、第2光増幅手段から出力される信号光の信号対雑音比がほぼ一定に制御されるようになる。

さらに、上記の光増幅装置の制御手段については、第1光増幅手段または第2 光増幅手段が、出力光のトータルパワーを一定に制御する出力一定制御部を有す るときには、該出力一定制御部の出力設定レベルを制御するようにしてもよい。 また、制御手段は、第2光増幅手段における増幅利得の設定を制御するようにし ても構わない。

加えて、上記の光増幅装置の第2光増幅手段については、希土類元素ドープファイバを用いた光ファイバ増幅器を備えるようにしてもよい。この場合の具体的な構成としては、増幅波長帯域の略等しい複数の光増幅部を直列に接続したり、あるいは、増幅波長帯域の異なる複数の光増幅部を並列に接続したりすることが可能である。上記のような構成では、制御手段において、希土類元素ドープファイバを用いた光ファイバ増幅器による自然放出光(ASE光)の発生量が算出されることになる。

本発明による光通信システムは、上述したような光増幅装置を備えた複数の光中継局が、送信局と受信局とを接続する伝送路上に配置されたものである。かかる構成では、信号対雑音比がほぼ一定に制御された信号光が光中継局から出力され中継伝送されるようになるため、受信局において優れた受信感度を得ることが可能となる。

図面の簡単な説明

図1は、本発明の第1実施形態にかかる光通信システムの要部構成を示すプロック図である。

図2は、本発明の第1実施形態におけるEDFAの具体的な構成の一例を示す ブロック図である。

図3は、ラマン増幅時に雑音成分となる、励起光による自然ラマン散乱光のトータルパワーとラマン増幅用の励起光パワーとの関係を示す図である。

図4は、本発明の第1実施形態における出力補正の概念を説明する図である。

図5は、本発明の第1実施形態に関連して、ラマン増幅用励起光のモニタ方法 を代えた他の構成例を示す図である。

図6は、本発明の第1実施形態に関連して、光中継局内にラマン増幅媒体を備 えた他の構成例を示す図である。

図7は、第2実施形態にかかる光通信システムの要部構成を示すブロック図である。

図8は、第3実施形態にかかる光通信システムに用いられる光中継局の要部構成を示すプロック図である。

図9は、従来の光通信システムにおけるASE補正の概念を説明する図である。

発明を実施するための最良の形態

以下に、本発明に係る光増幅装置および光通信システムの実施形態を添付図面 に基づいて説明する。

図1は、本発明の第1実施形態にかかるWDM光通信システムの要部構成を示すプロック図である。

図1において、本実施形態のWDM光通信システムは、送信局(OS)1と受信局(OR)2の間が伝送路3で接続され、該伝送路3上には所要の間隔でn個の光中継器 $4_1, \dots, 4_{k-1}, 4_k, \dots, 4_n$ が配置されていて、WDM信号光が送信局1から受信局2に中継伝送される。

送信局1は、波長の異なる複数の光信号を合波したWDM信号光を発生して伝送路3に送信する一般的な光送信端局である。受信局2は、送信局1から伝送路3および光増幅装置4₁~4_nを介して伝送されるWDM信号光を受け、各波長の光信号に分波して受信処理を行う一般的な光受信端局である。

伝送路3は、送信局1、各光中継局41~4 および受信局2の間をそれぞれ

· 7

接続してWDM信号光を伝搬する。また、各中継区間の伝送路3には、受信側に 位置する光中継局の信号光入力端から出力される励起光が供給され、各々の区間 の伝送路3がラマン増幅媒体として機能する。

各光中継局 $4_1 \sim 4_n$ は、本発明を適用した光増幅装置をそれぞれ備え、該光増幅装置は、ラマン増幅器(第1光増幅手段)と、希土類元素ドープ光ファイバ増幅器としての例えばEDFA(第2増幅手段)とを組み合わせた基本構成を有する。図1には、k段目の光中継局 4_k 内の光増幅装置について具体的な構成が示してある。なお、k段目以外の他の光中継局内の光増幅装置の構成も同一である。ここでは、本発明を適用した光増幅装置が各光中継局 $4_1 \sim 4_n$ に備えられる構成としたが、本発明による光通信システムはこれに限らず、複数の各光中継局のうちの少なくとも1つに対して、本発明を適用した光増幅装置が備えられるような構成であってもよい。

各光中継局 4_1 ~ 4_n の光増幅装置は、例えば、ラマン増幅器側の構成要素として、励起光源10、光カプラ11, 12, 16、受光器 (PD) 13, 15 および計算制御部14を有し、EDFA側の構成要素として、EDFA20、受光器 (PD) 30 および計算制御部31を有し、各光中継局間で送受信される監視制御信号 (OSC) を処理するための構成要素として、光カプラ40, 42 およびOSC監視部41を有する。

励起光源10は、伝送されるWDM信号光の波長帯域に対応させて予め設定された波長を有するラマン増幅用の励起光(以下、ラマン励起光とする)を発生し、光カプラ11,12を介して伝送路3に供給される。光カプラ11は、励起光源10から出力されるラマン励起光の一部を分岐してPD13に伝えるものである。光カプラ12は、光カプラ11を通過したラマン励起光を信号光入力端から伝送路3に供給するとともに、伝送路3からのWDM信号光を通過させてEDFA20側に伝えるものである。ここでは、ラマン励起光がWDM信号光とは逆方向に伝搬することになり、信号光入力端に接続される伝送路3がラマン増幅媒体となって、伝送路3を伝搬するWDM信号光がラマン増幅される、いわゆる分布ラマン増幅器(DRA: Distributed Raman Amplifier)が構成される。

光カプラ16は、光カプラ12とEDFA20の間に配置され、ラマン増幅さ

8

れたWDM信号光の一部を分岐してPD15に伝えるものである。PD15は、 光カプラ16の分岐光を基に、ラマン増幅されたWDM信号光のパワーを監視し、 その結果を計算制御部14に出力する。また、PD13は、光カプラ11の分岐 光を基に、励起光源10から出力されるラマン励起光のパワーを監視し、その結 果を計算制御部14に出力する。なお、PD15をEDFA20の入力光パワー を監視するPD30で代用し、その監視結果を計算制御部14に出力することも 可能である。

計算制御部14は、PD13からのラマン励起光パワーを基に、ラマン増幅による雑音成分となる自然ラマン散乱光(ASS光)のトータルパワーを算出し、さらに、その結果およびOSC監視部41から送られてくる各種情報を用いて、ASS光に対応した補正比率および出力補正量を計算する。そして、計算制御部14は、計算した出力補正量に従って、励起光源10の駆動状態を調整するとともに、その計算結果をEDFA側の計算制御部31に伝える。ここでは、計算制御部14が、計算手段、出力設定レベル補正手段および伝達手段としての機能を備えることになる。なお、計算制御部14における計算方法および励起光源10の調整方法については後述する。

EDFA20は、光カプラ12,40を通過したWDM信号光を所要のレベルまで増幅して出力する一般的な構成のEDFAである。図2は、EDFA20の具体的な構成の一例を示すブロック図である。

図2の構成例に示すEDFA20は、例えば、エルビウムドープファイバ(EDF)を用いた2つの光増幅部を直列に接続するとともに、前段の光増幅部および後段の光増幅部の段間に、可変光減衰器(VOA)27および分散補償ファイバ(DCF)28をそれぞれ挿入した構成からなる。

前段の光増幅部は、EDF21A、励起光源(LD)22A、光カプラ23A, 24A,24A、受光器(PD)25A,25A、およびAGC回路26Aを 有する。EDF21Aは、入力端子INおよび光カプラ24A,23Aを通過し たWDM信号光が入力される。このEDF21Aには、励起光源22Aからの励 起光が光カプラ23Aを介して供給され励起状態とされる。励起光源22Aで発 生する励起光の波長帯は、例えば、1550nm帯のWDM信号光に対して、9

80 nm帯や1480 nm帯などに設定される。この励起光源22Aの駆動状態は、AGC回路26Aによって制御される。AGC回路26Aには、光カプラ24AおよびPD25Aによって検出される前段光増幅部への入力光パワーと、光カプラ24A、およびPD25A、によって検出される前段光増幅部からの出力光パワーとが伝えられ、前段の光増幅部における利得が一定になるように励起光源22Aで発生する励起光パワーの自動制御が行われる。

後段の光増幅部は、EDF21B、励起光源(LD) 22B、光カプラ23B, 24B, 24B'、受光器 (PD) 25B, 25B' およびAGC回路26Bを有し、これらの各部分は前段の光増幅部の対応する部分と同様である。

可変光減衰器27は、前段の光増幅部から出力されるWDM信号光を減衰させて分散補償ファイバ28に出力する。この可変光減衰器27の光減衰量は、ALC回路27aには、光力プラ27bおよび受光器27cによって検出される後段光増幅部からの出力光パワーが伝えられ、EDFA20からのトータル出力光パワーが設定レベルに従って一定となるように可変光減衰器27の光減衰量の自動制御が行われる。分散補償ファイバ28は、光中継局に接続される伝送路3の波長分散特性を補償するものである。

PD30(図1)は、上記のようなEDFA20に入力される入力光パワーを監視し、その結果を計算制御部31に出力する。なお、PD30は図2のPD25Aで代用することも可能である。計算制御部31は、PD30から伝えられるEDFA20への入力光パワー、ラマン増幅器側の計算制御部14における計算結果およびOSC監視部41から送られてくる各種情報を用いて、ASS光およびASE光に対応した補正比率および出力補正量を算出して、その出力補正量に従ってEDFA20の駆動状態を調整する。なお、計算制御部31における計算方法およびEDFA20の調整方法については後述する。

OSC監視部41は、WDM信号光に合波されて前段の光中継局から送られてくる監視制御信号を、例えば、EDFA20の前段に挿入された光カプラ40で抽出し、該監視制御信号に含まれる前段の光中継局における補正比率およびWDM信号光の波長数等に関する情報を識別して、それらの情報を各計算制御部14,31にそれぞれ伝える。また、OSC監視部41は、計算制御部31で算出され

た自局における補正比率およびWDM信号光の波長数等に関する情報を含んだ監視制御信号を生成し、EDFA20の後段に挿入された光カプラ42を介してWDM信号光に合波して、次段の光中継局に伝送する。

次に、第1実施形態の作用について説明する。

まず、各光中継局 4_1 ~ 4_n の計算制御部14,31における計算方法を具体的に説明する。

ラマン増幅器側の計算制御部14では、前述したように、ラマン励起光のパワーを基にASS光のトータルパワーを算出し、ASS光に対応した補正比率および出力補正量が計算される。ラマン増幅によって発生するASS光(雑音成分)のトータルパワーは、ラマン励起光のパワーに対して、例えば図3に示すような関係に従って変化することが実験的に確認されている。このような関係を真数値で数式化すると、ASS光のトータルパワーAss[mW]は、次の(1)式で表すことが可能である。

$$Ass = m_1 \cdot 10^{\frac{\underline{a_{11} \cdot Pu_1 + a_{10}}}{10}} + m_2 \cdot 10^{\frac{\underline{a_{21} \cdot Pu_2 + a_{20}}}{10}} + \cdots + m_i \cdot 10^{\frac{\underline{a_{i1} \cdot Pu_i + a_{i0}}}{10}} \dots (1)$$

ただし、 $Pu_1 \sim Pu_1$ は、ラマン増幅用の波長の異なる励起光源が i 個設けられている場合(本実施形態では i=1)における各励起光源で発生するラマン励起光パワー [mW] であり、 $m_1 \sim m_1$ は、各励起光源に対応した重み付け定数であり、 a_{11} , $a_{10} \sim a_{11}$, a_{10} は、図3に示したような関係を1次関数で近似したときの定数(算出式係数)である。なお、ここではASS光のトータルパワーとラマン励起光のパワーの関係を1次関数で近似するようにしたが、2次以上の関数で近似して精度を高めることも可能である。

上記(1)式の関係に従い、PD13で測定されたラマン励起光パワーを用いてASS光のトータルパワーAssが算出されると、次に、自局(例えばk段目とする)におけるASS光に対応した補正比率 b_k の算出が行われる。この補正比率 b_k は、ラマン増幅の雑音光成分(ASS光成分)と信号光成分との比を表すものであり、ラマン増幅に対応した光SN比の逆数に相当する値となる。具体

PCT/JP00/06101 WO 02/21203

11

的に補正比率bょは、OSC監視部41から伝えられる前段の光中継局における 補正比率 b * - 1、WDM信号光の波長数wave、ラマン増幅器に予め設定して おいた帯域幅BW、およびPD15で測定されるラマン増幅されたWDM信号光 のトータルパワー(EDFA20へのトータル入力光パワー)PTinを用いて、 次の(2)式で表される。

$$b_{k} = \frac{ASS \cdot wave \cdot \left(\frac{0.1}{BW} + \frac{d_{k-1}}{wave}\right)}{10^{PTin/10} - ASS} \dots (2)$$

上記(2)式に従い算出した補正比率 b,は、EDFA 20の計算制御部 31 に伝えられる。また、ラマン増幅器側の計算制御部14では、算出した補正比率 b,を用いてラマン増幅器の出力補正量E,の計算が行われる。この出力補正量 Ekは、ASS光の発生による信号光成分の減少分に対応した補正量であって、 次の(3)式に示す関係を用いて計算される。

$$E_{k}=10 \cdot \log \left(1 + \frac{(d_{k-1} + b_{k}) \cdot 10 \cdot BW}{\text{wave}}\right) \dots (3)$$

上記(3)式に従い算出した出力補正量E、により、計算制御部14において、 ラマン増幅器の動作状態が制御される。具体的には、PD15のモニタ結果に従 って、ラマン増幅されたWDM信号光のトータルパワーが予め定めた出力設定レ ベルで一定となるように励起光源10の駆動状態が制御されているような場合に おいては、出力補正量E、に対応させて上記の出力設定レベルが調整される。こ れにより、ラマン増幅器としてのトータル出力光パワーが雑音光の発生による影 響を補正したレベルで一定になるように、励起光源10の駆動状態が制御される ようになる。

一方、EDFA側の計算制御部31では、PD30で測定されるEDFA20 のトータル入力光パワーPTinおよび予め測定して記憶させておいたEDFA 20の雑音指数NF等を用いて、EDFA20の雑音成分(ASE光)に対応し た補正比率cょが算出される。そして、算出した補正比率cょと、ラマン増幅器 側の計算制御部14で算出された補正比率b、およびOSC監視部41から伝え

られる前段の光中継局における補正比率 d_{k-1} とを用いて、自局全体における補正比率 d_k の計算が行われる。

12

補正比率 c_k の算出にあたっては、まず、OSC監視部41から伝えられる補正比率 d_{k-1} を用いて、前段の光中継局 4_{k-1} におけるEDFAの出力補正量Ek-1, が、次の(4)式の関係を用いて計算される。

$$E_{k-1}' = 10 \cdot log \left(1 + \frac{d_{k-1} \cdot 10 \cdot BW}{wave}\right) \dots (4)$$

なお、出力補正量 E_{k-1} 'および補正比率 d_{k-1} の初期値 E_0 'および d_0 は共に 0 である。

上記(4)式により、光中継局 4_{k-1} におけるEDFAの出力補正量 E_{k-1} 、が計算されると、ASE光に対応した補正比率 c_k が、次の(5)式の関係を用いて計算される。

$$c_{k} = 10^{\frac{NF_{k} - PTin(k) + 10 \cdot log(wave) + E_{k-1}' - x}{10}} \dots (5)$$

ただし、xはバンドにより異なる定数である。

補正比率 c_k が計算されると、自局全体における補正比率 d_k が、次の(6) 式の関係を用いて計算される。

$$d_{k} = d_{k-1} + b_{k} + c_{k} \cdots (6)$$

上記(6)式に従い算出した補正比率 d_k は、OSC監視部 41に伝えられ、 k 段目の光中継局 4_k における補正比率 d_k として、WDM信号光の波長数等の 情報とともに監視制御信号に載せて次段の光中継局に伝送される。また、EDF A側の計算制御部 31 では、算出した補正比率 d_k を用いてEDFAの出力補正 d_k を用いてEDFAの出力補正 d_k の計算が行われる。この出力補正 d_k は、ASS光およびASE光の 発生による信号光成分の減少分に対応した補正量であって、次の(7)式に示す 関係を用いて計算される。

$$E_{k}' = 10 \cdot \log \left(1 + \frac{d_{k} \cdot 10 \cdot BW}{wave} \right) \dots (7)$$

上記(7)式に従い算出した出力補正量 E_k , により、計算制御部31において、EDFA20の動作状態が制御される。具体的に計算制御部31では、出力

補正量E_k'に対応させて、ALC回路27a(図2)の出力設定レベルが調整される。これによりEDFA20のトータル出力光パワーがASS光およびASE光の発生による影響を補正したレベルで一定になるように、可変光減衰器27の光減衰量が制御される。なお、可変光減衰器27の可変範囲を超えるようなレベル調整が必要になった場合には、前段光増幅部若しくは後段光増幅部のAGC回路26A,26Bの設定利得を調整して、励起光源22A,22Bの駆動状態を制御すればよい。

図4は、本WDM光通信システムにおける出力補正の概念を光中継局 4_k に着目して説明した図である。

図4に示すように、前段の光中継局 4_{k-1} からは、図の上段左側に表したような状態のWDM信号光が伝送路3に出力される。そして、伝送路3を伝搬したWDM信号光は分布ラマン増幅されて光中継局 4_k に送られる。このとき、光中継局 4_k のEDFA20に入力されるWDM信号光は、図の上段中央に表したようにラマン増幅による雑音成分(ASS光)が累積することになる。さらに、EDFA20で増幅されたWDM信号光は、図の上段右側に表したようにEDFA20による雑音成分(ASE光)が累積することになる。このようなASS光およびASE光の発生に対して、本実施形態では、算出した出力補正量 E_k および E_k 、に従ってラマン増幅器およびEDFA20の各出力設定レベルがそれぞれ調整される。これにより、ASS光およびASE光が発生しても光中継局 4_k から出力されるWDM信号光についての光SN比を、信号光の波長数やラマン増幅器で発生する雑音量に関係なくほぼ一定にする自動制御が行われるようになる。

このように第1実施形態のWDM光通信システムによれば、各光中継局4₁~4_n内のラマン増幅器およびEDFAを組み合わせた光増幅装置について、ラマン励起光パワーを基にASS光のパワーを算出し、該ASS光パワーの情報を反映させた出力補正を行うようにしたことで、各光中継局4₁~4_nから出力されるWDM信号光についてのSN比が、信号光の波長数やラマン増幅器で発生する雑音量に関係なくほぼ一定に制御されるようになるため、受信局2における光SN比の劣化を回避することが可能になる。これにより、WDM光通信システムにおける伝送特性の向上を図ることができ、受信局2おいて優れた受信感度を得る

ことが可能となる。

なお、上述した第1実施形態では、ラマン増幅器およびEDFAの両方について出力補正量を計算し、各々の出力設定レベルを調整するようにしたが、本発明はこれに限らず、算出した補正比率 d_k に応じて、ラマン増幅器側の出力設定レベルまたはEDFA側の出力設定レベルのいずれかを調整するようにしてもよい。

また、各光中継局4₁~4_nについて、励起光源10の前方から出射されるラマン励起光の一部を光力プラ11で分岐してPDで受光するようにしたが、これ以外にも、例えば図5に示すように、励起光源10をLDとした場合に該LDに内蔵されているPD13'を用いてラマン励起光を監視し、その結果を計算制御部14に伝えるようにしてもよい。PD13'においてLDの後方から出射される光のパワーを検出することによって、LDの前方から出射される励起光のパワーを測定することが可能である。このような構成によりラマン励起光をモニタすることで、光力プラ11を設ける必要がなくなるため、より大きなパワーのラマン励起光を伝送路に供給することが可能になる。

さらに、各光中継局間を接続する伝送路3をラマン増幅媒体とする構成としたが、本発明はこれに限らず、例えば図6に示すように、光中継局4_kの信号光入力端とラマン励起光が合波される光カプラ12との間に、ラマン増幅媒体17を挿入するようにしてもよい。挿入するラマン増幅媒体17としては、励起効率の高いモードフィールド径の小さな光ファイバを用いることが好ましい。次に、本発明の第2実施形態について説明する。

図7は、第2実施形態にかかるWDM光通信システムの要部構成を示すプロック図である。ただし、第1実施形態の構成と同じ部分には、同一の符号が付してあり、以下同様とする。

図7において、本WDM光通信システムの構成が上述の図1に示した第1実施 形態の構成と異なる点は、各光中継局 $4_1 \sim 4_n$ について、波長の異なる複数 (図では1 個) の励起光源 $10_1 \sim 10_1$ を設け、各励起光源 $10_1 \sim 10_1$ で発 生する各々のラマン励起光をWDMカプラ18で合波した後に、光カプラ12を 介して伝送路3に供給するようにするとともに、励起光源 $10_1 \sim 10_1$ で発生 する各々のラマン励起光の一部を光カプラ $11_1 \sim 11_1$ で分岐して受光器(P

D) 13₁~13₁で監視し、それぞれの監視結果を計算制御部50に送るよう にした点である。上記の計算制御部50は、第1実施形態において用いたラマン 増幅器側の計算制御部14およびEDFA側の計算制御部31の各機能を1つに まとめたものであって、第1実施形態の場合と同様の計算処理を実行し、その計 算結果に従って、励起光源10、~10、の駆動状態およびEDFA20の駆動 状態がそれぞれ制御される。

上述した点以外の第2実施形態の各構成およびその動作については、第1実施 形態の場合と同様であるためここでの説明を省略する。

このように第2実施形態では、波長の異なる複数の励起光源10、~10、を 組み合わせてラマン励起光を発生するような構成についても、各波長のラマン励 起光のパワーをモニタすることで、上述の(1)式を用いてラマン増幅による雑 音成分を算出することができるため、第1実施形態の場合と同様の効果を得るこ とが可能である。

なお、上記の第2実施形態では、ラマン増幅器側およびEDFA側の各計算制 御部を1つにまとめるようにしたが、第1実施形態の場合と同様にラマン増幅器 側およびEDFA側についてそれぞれ個別に計算制御部を設けるようにしてもよ VY.

また、励起光源10、~10、の前方から出射される各ラマン励起光の一部を 光カプラ11、~11、で分岐してPD13、~13、で受光するようにしたが、 上述の図5に示した場合と同様にして、励起光源の後方から出射される光をモニ タするようにしてもよい。あるいは、WDMカプラ18で合波されたラマン励起 光の一部を分岐し、該分岐光を狭帯域の光フィルタ等を用いて各波長成分に分波 して光パワーをモニタするようにしても構わない。

次に、本発明の第3実施形態について説明する。第3実施形態では、例えば、 波長帯域を1550nm帯としたいわゆるCバンドのWDM信号光と、波長帯域 を1580nm帯としたいわゆるLバンドのWDM信号光とが一括して伝送され るWDM光通信システムについて考える。

図8は、第3実施形態にかかるWDM光通信システムに用いられる光中継局の 要部構成を示すプロック図である。図には、k段目の光中継局4kの具体的な構

成のみが示してあるが、他の光中継局の構成もこれと同様である。

図8において、光中継局 4_k は、上述の図7に示した第2実施形態で用いた光中継局 4_k について、EDFA側の構成をCバンドおよびLバンドにそれぞれ対応した構成を有するようにしたものである。具体的には、光中継局 4_k に入力し光カプラ12を通過したWDM信号光が、WDMカプラ51によりCバンドとLバンドに分波される。CバンドのWDM信号光は、光カプラ40c,33cを介してCバンド用EDFA20cに送られて増幅され、LバンドのWDM信号光は、光カプラ40c,33cを介してLバンド用EDFA20cに送られて増幅される。Cバンド用EDFA20cの出力光およびLバンド用EDFA20cの出力光は、それぞれ光カプラ42cおよび光カプラ42cを介してWDMカプラ52に送られ合波された後に伝送路3に出力される。Cバンド用EDFA20cおよびLがよるであるようにしてもよい。

また、Cバンド用EDFA20_cへの入力光の一部が光力プラ33_cで分岐され、該分岐光のパワーが受光器(PD)30_cで監視され、その結果が計算制御部50に伝えられる。これと同様にして、Lバンド用EDFA20_Lへの入力光の一部も光力プラ33_Lで分岐され、該分岐光のパワーが受光器(PD)30_Lで監視され、その結果が計算制御部50に伝えられる。なお、ここでは、上述の第2実施形態で用いたPD15がPD30_c,30_Lで代用され、光力プラ16が光力プラ33_c,33_Lでされているものとする。

さらに、本実施形態では、Cバンドに対応した監視制御信号とLバンドに対応した監視制御信号とがWDM信号光にそれぞれ合波されて、各光中継局間を伝送されるものとする。光中継局 4_k では、前段の光中継局 4_{k-1} から送られてくるCバンドに対応した監視制御信号を受信処理するために、例えば、WDMカプラ51のCバンド出力端と光カプラ33cとの間に光カプラ40cを設け、該光カプラ40cで抽出されたCバンドの監視制御信号がOSC監視部41に送られる。また、Lバンドの監視制御信号についても、例えば、WDMカプラ51のLバンド出力端と光カプラ33cとの間に光カプラ40cを設け、該光カプラ40cで抽出されたLバンドの監視制御信号がOSC監視部41に送られる。OSC監視部

17

41では、CバンドおよびLバンドのそれぞれについて、監視制御信号に含まれる、前段の光中継局における補正比率およびWDM信号光の波長数等に関する情報を識別し、それらの情報を計算制御部50に伝える。また、OSC監視部41は、計算制御部50で算出された自局における各バンドに対応した補正比率およびWDM信号光の波長数等に関する情報を含んだ監視制御信号を生成する。そして、Cバンドの監視制御信号は、Cバンド用EDFA20cの後段に挿入された光カプラ42cを介してCバンドのWDM信号光に合波され、Lバンドの監視制御信号は、Lバンド用EDFA20lの後段に挿入された光カプラ42cを介してLバンドのWDM信号光に合波され、Lバンドの監視制御信号は、Lバンド用EDFA20lの後段に挿入された光カプラ42lを介してLバンドのWDM信号光に合波される。なお、各バンドの監視制御信号の光波長は、ここでは対応するバンドの外方に配置されているものとする。

$$\begin{split} Ass_{C} &= cm_{1} \cdot 10 \frac{cd_{2} \cdot (cp_{1} \cdot Pu_{1})^{2} + cd_{1} \cdot (cp_{1} \cdot Pu_{1} - d_{12} \cdot cp_{1}^{2} \cdot Pu_{1}^{2} \cdot cp_{2} \cdot Pu_{2} - d_{31} \cdot cp_{3} \cdot Pu_{3} \cdot cp_{1}^{2} \cdot Pu_{1}^{2}) + cd_{0}}{10} \\ &+ cm_{2} \cdot 10 \frac{cd_{2} \cdot (cp_{2} \cdot Pu_{2})^{2} + cd_{1} \cdot (cp_{2} \cdot Pu_{2} - d_{23} \cdot cp_{2}^{2} \cdot Pu_{2}^{2} \cdot cp_{3} \cdot Pu_{3} + d_{12} \cdot cp_{1} \cdot Pu_{1} \cdot cp_{2}^{2} \cdot Pu_{2}^{2}) + cd_{0}}{10} \\ &+ cm_{3} \cdot 10 \frac{cd_{2} \cdot (cp_{3} \cdot Pu_{3})^{2} + cd_{1} \cdot (cp_{3} \cdot Pu_{3} + d_{31} \cdot cp_{3}^{2} \cdot Pu_{3}^{2} \cdot cp_{1} \cdot Pu_{1} + d_{23} \cdot cp_{2} \cdot Pu_{2} \cdot cp_{3}^{2} \cdot Pu_{3}^{2}) + cd_{0}}{10} \end{split}$$

18

$$Ass_{L} = lm_{1} \cdot 10^{\frac{ld_{2} \cdot (lp_{1} \cdot Pu_{1})^{2} + ld_{1} \cdot (lp_{1} \cdot Pu_{1} - d_{12} \cdot lp_{1}^{2} \cdot Pu_{1}^{2} \cdot lp_{2} \cdot Pu_{2} - d_{31} \cdot lp_{3} \cdot Pu_{3} \cdot lp_{1}^{2} \cdot Pu_{1}^{2}) + ld_{0}}{10}$$

$$+ lm_2 \cdot 10^{\frac{ld_2 \cdot (lp_2 \cdot Pu_2)^2 + ld_1 \cdot (lp_2 \cdot Pu_2 - d_{23} \cdot lp_2^2 \cdot Pu_2^2 \cdot lp_3 \cdot Pu_3 + d_{12} \cdot lp_1 \cdot Pu_1 \cdot lp_2^2 \cdot Pu_2^2) + ld_0}{10}}$$

$$+ lm_3 \cdot 10^{\underline{ld_2 \cdot (lp_3 \cdot Pu_3)^2 + ld_1 \cdot (lp_3 \cdot Pu_3 + d_{31} \cdot lp_3^2 \cdot Pu_3^2 \cdot lp_1 \cdot Pu_1 + d_{23} \cdot lp_2 \cdot Pu_2 \cdot lp_3^2 \cdot Pu_3^2) + ld_0}}{10}$$

 $...(1_{L})$

ただし、 $Pu_1 \sim Pu_3$ は、各励起光源で発生するラマン励起光パワー、 $cm_1 \sim cm_3$, $lm_1 \sim lm_3$ は重み付け係数、 $cd_0 \sim cd_2$, $ld_0 \sim ld_2$ は算出式係数、 $cp_1 \sim cp_3$, $lp_1 \sim lp_3$ は実効ポンプ係数、 d_{12} , d_{23} , d_{31} はポンプ間ラマン係数である。

上記(1_c)式および(1_L)式に従って、各バンドごとのASS光のトータルパワーAssc, AssLが計算されると、上述した(2)式を用いて(ただし、AssをAsscまたはAssLとする)、各バンドごとについてのラマン増幅の雑音成分に対応した補正比率 $b_{k(c)}$, $b_{k(L)}$ が算出される。さらに、(3) 式を用いて、各バンドごとについてのラマン増幅器の出力補正量 $E_{k(c)}$, $E_{k(L)}$ が計算される。そして、計算された出力補正量 $E_{k(C)}$, $E_{k(L)}$ に従って、各励起光源の駆動状態が調整され、ラマン増幅されたWDM信号光のトータルパワーがASS光の影響を補正したレベルで一定に制御されるようになる。

また、計算制御部 5 0 では、上述した(4)(5)式を用いて、各バンド用EDFAの雑音成分に対応した補正比率 $c_{k(C)}$, $c_{k(L)}$ が算出され、(6)式を用いて、各バンドごとの自局全体における補正比率 $d_{k(C)}$, $d_{k(L)}$ が算出される。さらに、(7)式を用いて各バンド用EDFAの出力補正量 $E_{k(C)}$ ', $E_{k(L)}$ 'が計算される。そして、計算された出力補正量 $E_{k(C)}$ ', $E_{k(L)}$ ' に従って、Cバンド用EDFA 2 0 $_{c}$ およびLバンド用EDFA 2 0 $_{L}$ の駆動状態がそれぞれ制御されるようになる。

このように第3実施形態によれば、CバンドおよびLバンドの各WDM信号光が一括して伝送されるWDM光通信システムについても、各バンドにそれぞれ対応させて出力補正を行うようにしたことで、各光中継局4,~4,から出力され

るC、LバンドのWDM信号光についてのSN比が、信号光の波長数やラマン増幅器で発生する雑音量に関係なくほぼ一定に制御されるようになるため、受信局2における光SN比の劣化を回避することが可能になる。これにより、WDM光通信システムにおけるC、Lバンドの伝送特性の向上を図ることができ、受信局2おいて優れた受信感度を得ることが可能となる。

なお、上記の第3実施形態でも、計算部を1つにまとめるようにしたが、ラマン増幅器側およびEDFA側についてそれぞれ個別に計算制御部を設けるようにしてもよく、さらに、Cバンド用EDFAとLバンド用EDFAのそれぞれについても個別に計算制御部を設けるようにしても構わない。また、ラマン励起光のモニタ方法は、励起光源の後方から出射される光をモニタするようにしても、あるいは、合波後のラマン励起光の一部を狭帯域の光フィルタ等を用いて再度各波長成分に分波し光パワーをモニタするようにしても構わない。

また、上述した第1~第3実施形態では、EDFAの具体的な構成として、前 段増幅部および後段増幅部を有する2段増幅構成を例示したが、本発明に用いら れるEDFAの構成はこれに限定されるものではなく、1段あるいは3段以上の 増幅構成とすることが可能である。

産業上の利用可能性

本発明は、光通信に用いられる光増幅装置、各種の光通信システムについて産業上の利用可能性が大であり、特に、ラマン増幅器の組み合わせによりWDM信号光の増幅を行う光増幅装置、および、そのような光増幅装置を用いたWDM光通信システムなどに対して有用である。

20

請求の範囲

1. ラマン増幅媒体に励起光を供給することで前記ラマン増幅媒体を伝搬する 信号光をラマン増幅する第1光増幅手段と、該第1光増幅手段から出力される信 号光を増幅する第2光増幅手段とを備えた光増幅装置において、

前記第2光増幅手段から出力される信号光の信号対雑音比がほぼ一定となるように、前記第1光増幅手段および前記第2光増幅手段の少なくとも一方の動作状態を制御する制御手段を備えて構成されたことを特徴とする光増幅装置。

2. ラマン増幅媒体に励起光を供給することで前記ラマン増幅媒体を伝搬する 信号光をラマン増幅する第1光増幅手段と、該第1光増幅手段から出力される信 号光を増幅する第2光増幅手段とを備え、前記第1光増幅手段および前記第2光 増幅手段の少なくとも一方の出力光が予め定めた出力設定レベルに制御される光 増幅装置において、

前記ラマン増幅媒体に供給される励起光パワーを検出する検出手段と、

該検出手段の検出結果を基に前記第1光増幅手段による雑音光成分を計算する 計算手段と、

該計算手段の計算結果に基づいて前記出力設定レベルの補正を行い、前記出力 光に含まれる1波長あたりの信号光パワーが信号光の波長数に拘わらず一定に保 たれるようにする出力設定レベル補正手段と、

を備えて構成されたことを特徴とする光増幅装置。

3. ラマン増幅媒体に励起光を供給することで前記ラマン増幅媒体を伝搬する 信号光をラマン増幅する第1光増幅手段と、該第1光増幅手段から出力される信 号光を増幅する第2光増幅手段とを備えた光増幅装置において、

前記ラマン増幅媒体に供給される励起光パワーを検出する検出手段と、

該検出手段の検出結果を基に前記第1光増幅手段による雑音光成分を計算する 計算手段と、

該計算手段の計算結果を前記第2光増幅手段に伝達する伝達手段と、

を備えて構成されたことを特徴とする光増幅装置。

4. 請求項1に記載の光増幅装置であって、

21

前記第2光増幅手段から出力される信号光の信号対雑音比は、前記第1光増幅 手段で発生する雑音量に関係なくほぼ一定に制御されることを特徴とする光増幅 装置。

5. 請求項1に記載の光増幅装置であって、

前記第2光増幅手段から出力される信号光の信号対雑音比は、信号光の波長数に関係なくほぼ一定に制御されることを特徴とする光増幅装置。

6. 請求項1に記載の光増幅装置であって、

前記制御手段は、前記ラマン増幅媒体に供給される励起光パワーを検出する励起光パワー検出部と、

前記第2光増幅手段への入力光パワーを検出する入力光パワー検出部と、

前段の光増幅装置における信号対雑音比に関する情報を受信する制御情報受信部と、

前記励起光パワー検出部の検出結果および前記制御情報受信部の受信情報に応じて算出した前記第1光増幅手段による雑音光成分、並びに、前記入力光パワー 検出部の検出結果および前記制御情報受信部の受信情報に応じて算出した前記第 2光増幅手段による雑音光成分に基づいて、前記第2光増幅手段から出力される 信号光の信号対雑音比を求め、該信号対雑音比に応じて、前記第1光増幅手段および前記第2光増幅手段の少なくとも一方の動作状態を制御する計算制御部と、 を備えたことを特徴とする光増幅装置。

7. 請求項6に記載の光増幅装置であって、

前記制御情報受信部の受信情報は、前段の光増幅装置から出力される信号光についての信号対雑音比および波長多重数を含むことを特徴とする光増幅装置。

8. 請求項7に記載の光増幅装置であって、

前記第2光増幅手段から出力される信号光について、前記計算制御部で求められた信号対雑音比および波長多重数を含む情報を後段の光増幅装置に送信する制御情報送信部を備えたことを特徴とする光増幅装置。

9. 請求項6に記載の光増幅装置であって、

前記励起光パワー検出部は、励起光源の前方から出射される光を基に励起光パワーを検出することを特徴とする光増幅装置。

22

10. 請求項6に記載の光増幅装置であって、

前記励起光パワー検出部は、励起光源の後方から出射される光を基に励起光パワーを検出することを特徴とする光増幅装置。

11. 請求項1に記載の光増幅装置であって、

前記第2光増幅手段が、出力光のトータルパワーを一定に制御する出力一定制御部を有するとき、前記制御手段は、前記出力一定制御部の出力設定レベルを制御することを特徴とする光増幅装置。

12. 請求項1に記載の光増幅装置であって、

前記制御手段は、前記第2光増幅手段における増幅利得の設定を制御すること を特徴とする光増幅装置。

13. 請求項1に記載の光増幅装置であって、

前記第1光増幅手段が、出力光のトータルパワーを一定に制御する出力一定制御部を有するとき、前記制御手段は、前記出力一定制御部の出力設定レベルを制御することを特徴とする光増幅装置。

14. 請求項1に記載の光増幅装置であって、

前記第2光増幅手段は、希土類元素ドープファイバを用いた光ファイバ増幅器 を備えたことを特徴とする光増幅装置。

15. 請求項14に記載の光増幅装置であって、

前記第2光増幅手段は、増幅波長帯域の略等しい複数の光増幅部を直列に接続 した構成を有することを特徴とする光増幅装置。

16. 請求項14に記載の光増幅装置であって、

前記第2光増幅手段は、増幅波長帯域の異なる複数の光増幅部を並列に接続した構成を有することを特徴とする光増幅装置。

- 17. 請求項1に記載の光増幅装置を備えた複数の光中継局が、送信局と受信局とを接続する伝送路上に配置されたことを特徴とする光通信システム。
- 18. ラマン増幅媒体に励起光を供給することで前記ラマン増幅媒体を伝搬する信号光をラマン増幅する第1光増幅手段と、該第1光増幅手段から出力される信号光を増幅する第2光増幅手段と有する複数の光中継局を備えて構成された光通信システムであって、

23

前段の光中継局における信号対雑音比に関する情報が後段の光中継局に伝送されるとともに、各光中継局では、出力信号光の信号対雑音比がほぼ一定となるように、前記第1光増幅手段および前記第2光増幅手段の少なくとも一方の動作状態が制御されることを特徴とする光通信システム。

19. 請求項18に記載の光通信システムであって、

前記第2光増幅手段から出力される信号光の信号対雑音比は、前記第1光増幅 手段で発生する雑音量に関係なくほぼ一定に制御されることを特徴とする光通信 システム。

20. 請求項18に記載の光通信システムであって、

前記第2光増幅手段から出力される信号光の信号対雑音比は、信号光の波長数 に関係なくほぼ一定に制御されることを特徴とする光通信システム。

1/9

X

2/9

3/9

図3

<u>図</u>い

6/9

図6

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP00/06101

A. CLASSIFICATION OF SUBJECT MATTER Int.Cl ⁷ G02F1/35, H04B10/17, H01S3/10, H01S3/30						
According to	According to International Patent Classification (IPC) or to both national classification and IPC					
	SEARCHED					
Minimum do Int.	Minimum documentation searched (classification system followed by classification symbols) Int.Cl ⁷ G02F1/35, H04B10/17, H01S3/10, H01S3/30					
Jits	Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Jitsuyo Shinan Koho 1922-1996 Toroku Jitsuyo Shinan Koho 1994-2000					
Koka	i Jitsuyo Shinan Koho 1971-2000	Jitsuyo Shinan Toroku K	ono 1996-2000			
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) WPI (DIALOG), INSPEC (DIALOG), JOIS (JICST FILE)						
C. DOCU	MENTS CONSIDERED TO BE RELEVANT					
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.			
A	EP 1018666 A (The Furukawa Elect 12 July, 2000 (12.07.00), Par. No. [0059]; Fig. 9 & JP, 2000-98433, A		1 - 20			
A	JP 11-112434 A (Nippon Telegr. 23 April, 1999 (23.04.99), Full text; Figs. 1 to 7 (Famil		1 - 20			
A	JP 8-122835 A (Nippon Telegr. & 17 May, 1996 (17.05.96), Par. No. [0025]; Figs. 4, 6 (1		1 - 20			
A	JP 10-22931 A (Nippon Telegr. & 23 January, 1998 (23.01.98), Par. Nos. [0014] to [0021]; Fig (Family: none)		1 - 20			
□ Further	r documents are listed in the continuation of Box C.	See patent family annex.				
	categories of cited documents:	"T" later document published after the inte priority date and not in conflict with the	rnational filing date or			
conside	ent defining the general state of the art which is not red to be of particular relevance	understand the principle or theory und	erlying the invention			
date	document but published on or after the international filing ent which may throw doubts on priority claim(s) or which is	"X" document of particular relevance; the considered novel or cannot be considered step when the document is taken alone	red to involve an inventive			
cited to	establish the publication date of another citation or other reason (as specified)	"Y" document of particular relevance; the considered to involve an inventive step	claimed invention cannot be			
"O" docum	ent referring to an oral disclosure, use, exhibition or other	combined with one or more other such combination being obvious to a person	documents, such			
	ent published prior to the international filing date but later e priority date claimed	"&" document member of the same patent				
Date of the	Date of the actual completion of the international search 30 November, 2000 (30.11.00) Date of mailing of the international search report 19 December, 2000 (19.12.00)					
Name and mailing address of the ISA/ Japanese Patent Office		Authorized officer				
		m t dans No				
Pacsimile No.		Telephone No.				

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP00/06101

Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No				
Conference Proceedings, LEOS'97, 10th Annual Meeting, IEEE Lasers and Electro-Optics Society 1997 Annual Meeting, Vol.1, pages 224-225, (1997), P.B.Hansen, "Remote Amplification in Optical Transmission Systems"	1 - 20				
IEEE Photonics Technology Letters, Vol.11, NO.7, pages 886-888, (1999), S.Kawai et al., "Wide-Bandwidth and Long-Distance WDM Transmission Using Highly Gain-Flattened Hybrid Amplifier"	1 - 20				
24th European Conference on Optical Communication, ECOC'98, Vol.1, pages 51-52, (1998), H.Masuda et al., "Wide-band and low noise optical amplification using distributed Raman amplifiers and erbium-doped fiber	1 - 20				
ambiliters	' ;				
	:				
·					
	Conference Proceedings, LEOS'97, 10th Annual Meeting, IEEE Lasers and Electro-Optics Society 1997 Annual Meeting, Vol.1, pages 224-225, (1997), P.B.Hansen, "Remote Amplification in Optical Transmission Systems" IEEE Photonics Technology Letters, Vol.11, No.7, pages 886-888, (1999), S.Kawai et al., "Wide-Bandwidth and Long-Distance WDM Transmission Using Highly Gain-Flattened Hybrid Amplifier" 24th European Conference on Optical Communication, ECOC'98, Vol.1, pages 51-52, (1998), H.Masuda et al., "Wide-band and low noise optical amplification using				

国際調査報告

A. 発明の属する分野の分類(国際特許分類(IPC))

Int. Cl'

G02F1/35, H04B10/17, H01S3/10, H01S3/30

調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. Cl' G02F1/35, H04B10/17, H01S3/10, H01S3/30

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報

1922-1996年

日本国公開実用新案公報

1971-2000年

日本国登録実用新案公報

1994-2000年

日本国実用新案登録公報

1996-2000年

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

WPI (DIALOG) , INSPEC (DIALOG) , JOIS (JICSTファイル)

C. 関連すると認められる文献

_ · · · ///////////////////////////////	D C 195-3 24-0 24 197	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
A	EP, 1018666, A (The Furukawa Electric Co., Ltd.) 12.7月.2000 (12.07.00), 段落番号[0059], 第9図 & JP, 2000-98433, A	1 - 20
A	JP, 11-112434, A(日本電信電話株式会社)23.4月.1999(23.04.99) 全文, 第1-7図(ファミリーなし)	1 - 20
A	JP,8-122835,A(日本電信電話株式会社)17.5月.1996(17.05.96) 段落番号【0025】,第4,6図(ファミリーなし)	1 - 20

x C欄の続きにも文献が列挙されている。

パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公安されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「O」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

- の日の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日

30.11.00

国際調査報告の発送日

191200

国際調査機関の名称及びあて先

日本国特許庁 (ISA/JP)

郵便番号100-8915 東京都千代田区霞が関三丁目4番3号 特許庁審査官 (権限のある職員)

2X 9813

電話番号 03-3581-1101 内線 3293

国際調査報告

C (続き).	関連すると認められる文献	関連する
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	請求の範囲の番号
A	JP, 10-22931, A (日本電信電話株式会社) 23.1月.1998 (23.01.98) 段落番号【0014】- 【0021】, 第1-4図(ファミリーなし)	1 - 20
A	Conference Proceedings. LEOS'97, 10th Annual Meeting. IEEE Lasers and Electro-Optics Society 1997 Annual Meeting, Vol. 1, pp. 224-225 (1997) P.B. Hansen, "Remote Amplification in Optical Transmission Systems"	1 - 20
A	IEEE Photonics Technology Letters, Vol. 11, No. 7, pp. 886-888 (1999) S. Kawai et al., "Wide-Bandwidth and Long-Distance WDM Transmission Using Highly Gain-Flattened Hybrid Amplifier"	1 - 20
A	24th European Conference on Optical Communication. ECOC'98, Vol. 1, pp. 51-52 (1998) H. Masuda et al., "Wide-band and low noise optical amplification using distributed Raman amplifiers and erbium-doped fiber amplifiers"	1 - 20
		,
١		·
	·	
	·	