Numerické metody — aproximace funkcí

Mirko Navara http://cmp.felk.cvut.cz/~navara/ katedra kybernetiky FEL ČVUT Karlovo náměstí, budova G, místnost 104a

https://moodle.fel.cvut.cz/courses/B4B01NUM

4. října 2023

Obsah

1	\mathbf{AP}	ROXIMACE FUNKCÍ	11				
	1.1	Typické úlohy					
		1.1.1 Aproximace funkcí v ekonomii					
		1.1.2 Aproximace funkcí v teorii pravděpodobnosti a matematické analýze	11				
		1.1.3 Aproximace funkcí v elektrotechnice	11				
		1.1.4 Základní úloha aproximace	12				
	1.2	Interpolace	13				
		1.2.1 Prostá interpolace	13				
	1.3	Interpolace polynomem	14				
		1.3.1 Lagrangeova konstrukce interpolačního polynomu	15				
		1.3.2 Newtonova konstrukce interpolačního polynomu	17				
		1.3.3 Nevillův algoritmus	18				
		1.3.4 Chyba aproximace interpolačním polynomem	19				
		1.3.5 Čebyševovy polynomy	22				
		1.3.6 Příklad použití interpolačního polynomu na reálných datech	25				
		1.3.7 Hermitův interpolační polynom	25				
		1.3.8 Aproximace Taylorovou řadou	27				
	1.4	Interpolace spliny	29				
		1.4.1 Kubický spline	29				
		1.4.2 Příklad použití splinu na reálných datech	32				
	1.5	Metoda nejmenších čtverců	32				
		1.5.1 Řešení aproximace podle kritéria nejmenších čtverců	33				
		1.5.2 Ortogonalizace	34				
		1.5.3 Aproximace goniometrickým polynomem	36				
		1.5.4 Čebyševova aproximace polynomem	36				
	1.6	Dodatek: Přehled značení	38				
2	NU	MERICKÁ DERIVACE	39				
	2.1	Formulace problému	36				
	2.2	Chyba numerické derivace	40				
	2.3	Odhady chyb numerické derivace	40				
	2.4	Doporučená délka kroku	41				
3	RIC	RICHARDSONOVA EXTRAPOLACE					
	3.1	Obecný princip Richardsonovy extrapolace	43				
	3.2	Využití Richardsonovy extrapolace v numerické derivaci					
	3.3	Dodatek: Přehled značení	45				

4]	NUMERICKÁ INTEGRACE	4 6
ָרָ ני ני ני	Newtonovy-Cotesovy vzorce 5.1 Metoda levých obdélníků	47 48 48
	Odhad chyby numerické integrace 3.1 Řád metod integrace	5 0
7	Gaussova metoda integrace	51
8]	Richardsonova extrapolace	53
9]	Richardsonova extrapolace při integraci	5 3
10]	Rombergova metoda	5 6
11]	Praktické stanovení počtu intervalů	57
13 I 13 I 11 11 11 11 11 11 11 11 11 11 11 11 1	NUMERICKÉ ŘEŠENÍ NELINEÁRNÍCH ROVNIC 13.1 Formulace problému 13.2 Metoda půlení intervalu neboli bisekce 13.3 Metoda regula falsi 13.4 Univerzální odhad chyby 13.5 Metoda sečen 13.6 Newtonova metoda (metoda tečen) 13.6.1 Odhad chyby Newtonovy metody 13.6.2 Konvergence Newtonovy metody 13.6.3 Náhrada derivace numerickým odhadem 13.7 Rychlost konvergence (řád metody) 13.7.1 Řád Newtonovy metody 13.7.2 Řád metody regula falsi 13.8 Kombinace startovacích a zpřesňujících metod 13.9 Metoda prosté iterace (MPI) 13.9.1 Kontraktivní funkce	58 58 61 62 62 62 63 64 64 65 66 67 71 72 73 73 74 75 75 76

14 NU	JMERICKÉ ŘEŠENÍ SOUSTAV LINEÁRNÍCH ROVNIC	78
14.	1 Formulace úlohy a její obtíže	78
	14.1.1 Druhy problémů	78
	14.1.2 Špatná podmíněnost	78
	14.1.3 Zdroje chyb	79
14.5	2 Přímé metody	79
	14.2.1 Gaussova eliminace (GEM)	79
	14.2.2 Výběr hlavního prvku	
	14.2.3 Gaussova-Jordanova redukce	80
	14.2.4 LU-rozklad	80
	14.2.5 Výpočet inverzní matice	81
	14.2.6 Výpočet determinantu	
	14.2.7 Zpřesnění výsledků pomocí rezidua	82
14.3	3 Iterační metody	
	14.3.1 Normy vektorů a matic	
	14.3.2 Vlastní čísla a spektrální poloměr	86
	14.3.3 Výpočet vlastních čísel	
	14.3.4 Maticové iterační metody	87
	14.3.5 Jacobiova iterační metoda (JIM)	
	14.3.6 Gaussova-Seidelova iterační metoda (GSM)	
	14.3.7 Superrelaxační metoda (SOR – Successive OverRelaxation method)	
14.4	4 Jaký postup volit?	
	5 Dodatek: Přehled značení	

1 APROXIMACE FUNKCÍ

1.1 Typické úlohy

1.1.1 Aproximace funkcí v ekonomii

Úloha: Odhadněte rychlost růstu průmyslové výroby v posledním období a nejlépe i v blízké budoucnosti.

Úloha: Ze známých hodnot burzovních indexů do dnešního dne odhadněte jejich zítřejší hodnoty.

1.1.2 Aproximace funkcí v teorii pravděpodobnosti a matematické analýze

Úloha: Náhodná veličina s normovaným normálním rozdělením je popsána distribuční funkcí

$$\Phi(u) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{u} \exp\left(\frac{-t^2}{2}\right) \, \mathrm{d}t \, .$$

(Čistý) matematik: To je transcendentní funkce.

Numerický matematik: Numerická integrace dá přibližný výsledek s požadovanou přesností.

(Ve skutečnosti i exponenciální funkce je počítána jen numericky, procesor sám umí jen 4 základní početní úkony.)

Pro rychlejší opakovaný výpočet si připravíme tabulku Gaussova integrálu.

1.1.3 Aproximace funkcí v elektrotechnice

Úloha: Ze známého napětí baterie (v mobilu, v počítači) odhadněte zbývající kapacitu. Vycházíme z konečně mnoha hodnot, ale aproximaci chceme použít na celém intervalu. Zde navíc chceme, aby byla monotónní.

Úloha: Máme nakreslit V-A charakteristiku diody na základě naměřených dat:

Úloha: Digitální obrázek zvětšíme, popř. otočíme. Změní se počet pixelů, popř. i jejich orientace.

Motivační úlohy na aproximaci

- Úloha 1: Závislost směnného kursu na čase na základě údajů z burzy.
- Úloha 2: Rychlý odhad Gaussova integrálu (distribuční funkce normálního rozdělení) s využitím tabulkových hodnot.
- Úloha 3: V-A charakteristika diody na základě naměřených hodnot.
- Úloha 4: Teploty naměřené na meteorologické stanici.

Data jsou vždy diskrétní (konečná). Rozlišujeme:

- 1. aproximaci spojité funkce pomocí konečných dat (1. zápočtová úloha),
- 2. nalezení funkce s malým počtem parametrů, která přibližně odpovídá datům (2. zápočtová úloha).

1.1.4 Základní úloha aproximace

Dáno:

vektor $\vec{x} = (x_0, \dots, x_{n-1}) \in \mathbb{R}^n$ určující n (různých) uzlových bodů, vektor $\vec{y} = (y_0, \dots, y_{n-1}) \in \mathbb{R}^n$ požadovaných hodnot v uzlových bodech, množina funkcí \mathcal{F} , které smíme použít k aproximaci (definovaných alespoň v bodech x_0, \dots, x_{n-1}). Úkol: vybrat funkci $\varphi \in \mathcal{F}$ tak, aby vektor $\varphi(\vec{x}) = (\varphi(x_0), \dots, \varphi(x_{n-1})) \in \mathbb{R}^n$ byl "co nejbližší" danému vektoru \vec{y} .

Blokové schema obecné aproximace

Předpoklad: \mathcal{F} je lineární obal k známých, tzv. aproximačních funkcí $\varphi_0, \ldots, \varphi_{k-1}, k \leq n$:

$$\mathcal{F} = \operatorname{Lin}\{\varphi_0, \dots, \varphi_{k-1}\} = \left\{ \sum_{j < k} c_j \, \varphi_j : c_j \in \mathbb{R} \right\}.$$

Zbývá určit vektor reálných koeficientů $\vec{c} = (c_0, \dots, c_{k-1})$ lineární kombinace

$$\varphi = \sum_{j < k} \mathbf{c_j} \, \varphi_j \, .$$

Vektorová formulace aproximační úlohy

Aproximační funkce jsou reprezentovány vektory $\varphi_j(\vec{x}) = (\varphi_j(x_0), \dots, \varphi_j(x_{n-1})), \ j = 0, \dots, k-1$. (Žádné jiné jejich hodnoty do aproximační úlohy nevstupují.) Pro výslednou aproximaci platí

$$\varphi(\vec{x}) = \sum_{j < k} c_j \, \varphi_j(\vec{x}) \,,$$

neboli k \vec{y} hledáme "co nejbližší" vektor $\varphi(\vec{x})$ z lineárního obalu **známých** vektorů $\varphi_0(\vec{x}), \dots, \varphi_{k-1}(\vec{x})$.

Blokové schema obecné aproximace lineární kombinací

1.2 Interpolace

Speciální případ aproximace, kdy požadujeme přesnou shodu v uzlových bodech.

Dáno:

vektor $\vec{x} = (x_0, \dots, x_{n-1}) \in \mathbb{R}^n$ určující n (různých) uzlových bodů, vektor $\vec{y} = (y_0, \dots, y_{n-1}) \in \mathbb{R}^n$ požadovaných hodnot v uzlových bodech, množina funkcí \mathcal{F} , které smíme použít k aproximaci (definovaných alespoň v bodech x_0, \dots, x_{n-1}).

Hledáme: $\varphi \in \mathcal{F}$ splňující $\varphi(\vec{x}) = \vec{y}$, tj.

$$\varphi(x_i) = y_i$$
, $i = 0, \ldots, n-1$.

Předpoklad: $\mathcal{F} = \operatorname{Lin}\{\varphi_0, \dots, \varphi_{k-1}\} = \left\{ \sum_{j < k} c_j \, \varphi_j : c_j \in \mathbb{R} \right\}.$ Ve vektorové formulaci: $\varphi(\vec{x}) = \sum_{j < k} c_j \, \varphi_j(\vec{x}) = \vec{y}.$

1.2.1 Prostá interpolace

Dosazením dostáváme

$$\sum_{j < k} c_j \varphi_j(x_i) = y_i, \qquad i = 0, \dots, n - 1,$$

což je soustava k lineárních rovnic pro neznámé c_0, \ldots, c_{n-1} .

Pro jednoznačnost řešení potřebujeme k=n a navíc, aby aritmetické **vektory** $\varphi_j(\vec{x})=(\varphi_j(x_0),\ldots,\varphi_j(x_{n-1})), \quad j=0,\ldots,n-1$, byly lineárně nezávislé. (To lze pokazit, i když **funkce** $\varphi_0,\ldots,\varphi_{n-1}$ jsou lineárně nezávislé. Záleží i na volbě uzlových bodů.)

Složitost výpočtu $\propto n^3$, u speciálních úloh dosáhneme menší.

Blokové schema obecné prosté interpolace

1.3 Interpolace polynomem

Interpolujeme polynomem stupně < n, neboli $\leq n-1$. Má právě n koeficientů, což potřebujeme pro existenci a jednoznačnost řešení. Za bázi prostoru těchto polynomů můžeme volit $\varphi_j(t)=t^j, \quad j=0,\ldots,n-1$. Jiná báze může být výhodnější.

Výhody interpolace polynomem

- Jediné, co počítač umí rychle, jsou 4 základní aritmetické operace, tedy kromě polynomů už jen racionální funkce.
- Polynomy lze snadno integrovat, derivovat...
- Řešitelnost:

Věta 1.1 Interpolační úlohu s n různými uzlovými body řeší právě jeden polynom stupně < n.

• Univerzálnost:

Věta 1.2 (Weierstrassova) Nechť f je spojitá funkce na uzavřeném intervalu I a nechť je dáno číslo $\varepsilon > 0$. Pak existuje polynom φ takový, že

$$\forall t \in I : |f(t) - \varphi(t)| \le \varepsilon.$$

Nevýhody interpolace polynomem

- Weierstrassova věta neříká nic o potřebném stupni polynomu, takže výsledek nemusí být použitelný.
- Velmi málo skutečných závislostí je polynomiálních.

Lze řešit prostou interpolací, ale se složitostí $\propto n^3$; jde to lépe.

"Vodorovná linearita" - interpolace lineárním polynomem

Dvěma body $(x_i, y_i), (x_j, y_j)$ prokládáme lineární funkci φ . Její hodnota v bodě t je váženým průměrem y_i, y_j , kde váhy jsou nepřímo úměrné vzdálenostem $t - x_i, x_j - t$:

$$x_{i} \mapsto \varphi(x_{i}) = y_{i},$$

$$x_{j} \mapsto \varphi(x_{j}) = y_{j},$$

$$t = \frac{\frac{x_{i}}{t-x_{i}} + \frac{x_{j}}{x_{j}-t}}{\frac{1}{t-x_{i}} + \frac{1}{x_{j}-t}} \mapsto \varphi(t) = \frac{\frac{y_{i}}{t-x_{i}} + \frac{y_{j}}{x_{j}-t}}{\frac{1}{t-x_{i}} + \frac{1}{x_{j}-t}},$$

$$t = \frac{(x_{j}-t)x_{i} + (t-x_{i})x_{j}}{x_{j}-x_{i}} \mapsto \varphi(t) = \frac{(x_{j}-t)y_{i} + (t-x_{i})y_{j}}{x_{j}-x_{i}}.$$

$$(1)$$

Odvození vyžadovalo $t \notin \{x_i, x_i\}$, ale výsledek platí vždy.

1.3.1 Lagrangeova konstrukce interpolačního polynomu

1. Pro $j=0,\ldots,n-1$ vyřešíme speciální případ, kdy j-tá složka vektoru \vec{y} je jednotková, ostatní nulové; výsledkem je polynom ϱ_j ,

$$\varrho_j(x_i) = \delta_{ij} = \begin{cases} 1 & \text{pro } i = j, \\ 0 & \text{pro } i \neq j. \end{cases}$$

 $(\delta_{ij} \text{ je tzv. Kroneckerovo delta})$

Polynom ϱ_j stupně $\leq n-1$ má n-1 kořenů $x_0,\ldots,x_{j-1},\,x_{j+1},\ldots,x_{n-1};$

$$\varrho_j(t) = e_j(t - x_0) \dots (t - x_{j-1})(t - x_{j+1}) \dots (t - x_{n-1})$$

$$= e_j \prod_{i < n, i \neq j} (t - x_i),$$

kde e_j určíme ze vztahu $\varrho_j(x_j) = 1$:

$$e_j = \frac{1}{\prod\limits_{i < n, i \neq j} (x_j - x_i)}, \qquad \varrho_j(t) = \frac{\prod\limits_{i < n, i \neq j} (t - x_i)}{\prod\limits_{i < n, i \neq j} (x_j - x_i)}.$$

2. Obecné řešení úlohy interpolace polynomem je lineární kombinace

$$\varphi = \sum_{j < n} y_j \, \varrho_j \,,$$

$$\varphi(t) = \sum_{j < n} y_j \, \varrho_j(t) = \sum_{j < n} y_j \, \frac{\prod\limits_{i < n, i \neq j} (t - x_i)}{\prod\limits_{i < n, i \neq j} (x_j - x_i)} \,.$$

Kontrola:

$$\varphi(x_i) = \sum_{j < n} y_j \, \varrho_j(x_i) = \sum_{j < n} y_j \, \delta_{ij} = y_i \,.$$

Myšlenka Lagrangeovy konstrukce interpolačního polynomu je použitelná i pro obecnější úlohy.

Blokové schema Lagrangeovy konstrukce interpolačního polynomu

"Svislá linearita" aproximační úlohy (v nezávislé proměnné)

Většinou předpokládáme linearitu výstupu (princip superpozice), což zajistí nezávislost řešení na zvoleném lineárním měřítku.

Pak jakékoli řešení aproximační úlohy musí **lineárně** záviset na složkách aritmetického vektoru $\vec{y} = (y_0, \dots, y_{n-1})$. Vstupní vektor $\vec{y} = (y_0, \dots, y_{n-1})$ je lineární kombinací vektorů **standardní báze**,

$$\vec{y} = y_0 \underbrace{(1, 0, \dots, 0)}_{\vec{e_0}} + y_1 \underbrace{(0, 1, 0, \dots, 0)}_{\vec{e_1}} + \dots + y_{n-1} \underbrace{(0, \dots, 0, 1)}_{\vec{e_{n-1}}} = \sum_{j < n} y_j \vec{e_j}.$$

Výsledná aproximace bude lineární kombinací (se stejnými koeficienty y_0, \ldots, y_{n-1}) funkcí ϱ_j , které řeší aproximační úlohu se vstupy $\vec{e_j}$,

$$\begin{split} \vec{e}_0 &= (1,0,0,\dots,0) &\mapsto \varrho_0\,, \\ \vec{e}_1 &= (0,1,0,\dots,0) &\mapsto \varrho_1\,, \\ && \cdots \\ \vec{e}_{n-1} &= (0,0,\dots,0,1) &\mapsto \varrho_{n-1}\,, \\ \vec{y} &= \sum\limits_{j < n} y_j \, \vec{e}_j &\mapsto \sum\limits_{j < n} y_j \, \varrho_j = \varphi\,. \end{split}$$

Funkce $\varrho_0, \varrho_1, \dots, \varrho_{n-1}$ nám poskytují plnou informaci o řešení úlohy pro libovolné $\vec{y} = (y_0, \dots, y_{n-1})$. **Poznámka**: Pro interpolaci jsou $\vec{e}_0, \dots, \vec{e}_{n-1}$ vektory hodnot funkcí $\varrho_0, \dots, \varrho_{n-1}$,

$$\vec{e}_j = (\varrho_j(x_0), \dots, \varrho_j(x_{n-1})).$$

Pro obecnou aproximaci to tak být nemusí, ale uvedené důsledky linearity zůstávají v platnosti.

Nedostatky Lagrangeovy konstrukce interpolačního polynomu

Složitost $\propto n^2$, a to i pro výpočet jedné hodnoty, pokud výsledek neupravíme.

Při aproximaci vývoje na burze dostáváme průběžně nová data.

Musíme kvůli tomu počítat vše znova?

(Některé mezivýsledky lze použít, pokud jsme si je nezapomněli zaznamenat.)

Lze však vyjít z předchozího výsledku a ten jen opravit o určitý polynom:

1.3.2 Newtonova konstrukce interpolačního polynomu

Jedná se stále o stejný polynom.

Konstantní polynom $d_0 = y_0$ má správnou hodnotu v uzlovém bodě x_0 .

Hledaný polynom φ dostaneme přičtením vhodného polynomu ω_0 nulového v x_0 : $t \mapsto (t - x_0) \omega_0(t)$, kde ω_0 je polynom stupně $\leq n - 2$:

$$\varphi(t) = d_0 + (t - x_0) \, \omega_0(t) \,, \qquad d_0 = y_0 \,, \qquad \omega_0(x_i) = \frac{y_i - d_0}{x_i - x_0} \,, \qquad i > 0 \,, \\ \omega_0(t) = d_1 + (t - x_1) \, \omega_1(t) \,, \qquad d_1 = \omega_0(x_1) \,, \qquad \omega_1(x_i) = \frac{\omega_0(x_i) - d_1}{x_i - x_1} \,, \qquad i > 1 \,, \\ \omega_1(t) = d_2 + (t - x_2) \, \omega_2(t) \,, \qquad d_2 = \omega_1(x_2) \,, \qquad \omega_2(x_i) = \frac{\omega_1(x_i) - d_2}{x_i - x_2} \,, \qquad i > 2 \,, \\ \omega_2(t) = d_3 + (t - x_3) \, \omega_3(t) \,, \qquad d_3 = \omega_2(x_3) \,, \qquad \omega_3(x_i) = \frac{\omega_2(x_i) - d_3}{x_i - x_3} \,, \qquad i > 3 \,, \\ \ldots \\ \omega_{n-3}(t) = d_{n-2} + (t - x_{n-2}) \, \omega_{n-2}(t) \,, \qquad d_{n-2} = \omega_{n-3}(x_{n-2}) \,, \qquad \omega_{n-2}(x_i) = \frac{\omega_{n-3}(x_i) - d_{n-2}}{x_i - x_{n-2}} \,, \qquad i > n - 2 \,, \\ \omega_{n-2}(t) = d_{n-1} = \omega_{n-2}(x_{n-1}) \,.$$

Zpětným dosazením dostaneme

$$\varphi(t) = d_0 + (t - x_0) \cdot [d_1 + (t - x_1) \cdot [d_2 + \dots (t - x_{n-3}) \cdot [d_{n-2} + (t - x_{n-2}) \cdot d_{n-1}] \dots]].$$

$$\varphi(t) = d_0 + (t - x_0) d_1 + (t - x_0) (t - x_1) d_2 + \dots + d_{n-1} \prod_{i < n-1} (t - x_i)$$

$$= \sum_{j < n} d_j \prod_{i < j} (t - x_i).$$

Složitost výpočtu koeficientů $\propto n^2$, výpočtu jedné funkční hodnoty podle prvního, neroznásobeného vzorce $\propto n$.

Blokové schema Newtonovy konstrukce interpolačního polynomu

1.3.3 Nevillův algoritmus

Nezajímají nás koeficienty, pouze hodnota interpolačního polynomu pro jediný argument t.

Jedním bodem (x_i, y_i) proložíme konstantní polynom y_i . Dva body (x_i, y_i) , (x_{i+1}, y_{i+1}) lineárně interpolujeme, hodnota v t je dle (1):

$$y_{i..i+1} = \frac{(x_{i+1} - t) y_i + (t - x_i) y_{i+1}}{x_{i+1} - x_i},$$

což je správně pro $t \in \{x_i, x_{i+1}\}.$

Rekurentní postup: Obecněji pro j < k označme $y_{j..k}$ hodnotu v bodě t interpolačního polynomu proloženého body $(x_j, y_j), \ldots, (x_k, y_k)$. Závisí na počáteční volbě t; pro $t \in \{x_j, \ldots, x_k\}$ by byl $y_{j..k}$ správný výsledek. Speciálně:

 $y_{i+1..i+m}$ by vyšlo správně pro $t \in \{x_{i+1}, \dots, x_{i+m-1}\}$ a pro $t = x_{i+m},$ $y_{i..i+m-1}$ by vyšlo správně pro $t \in \{x_{i+1}, \dots, x_{i+m-1}\}$ a pro $t = x_i,$ $y_{i..i+m}$ by vyšlo správně pro $t \in \{x_{i+1}, \dots, x_{i+m-1}\}$ a pro $t = x_i, t = x_{i+m};$ dostaneme ho lineární interpolací mezi x_i a x_{i+m} dle (1):

$$y_{i..i+m} = \frac{(x_{i+m} - t) y_{i..i+m-1} + (t - x_i) y_{i+1..i+m}}{x_{i+m} - x_i}$$
.

Počítáme pro všechna $i=0,\dots,n-1-m$ (vnitřní cyklus); $m=1,\dots,n-1$ (vnější cyklus); $y_{0..n-1}$ je výsledek. Složitost $\propto n^2$.

Blokové schema Nevillova algoritmu

Numerické chyby Nevillova algoritmu lze dále omezit, budeme-li místo hodnot interpolačních polynomů počítat s jejich rozdíly,

$$\begin{array}{rcl} C_{i,m} & = & y_{i..i+m} - y_{i..i+m-1} \,, \\ D_{i,m} & = & y_{i..i+m} - y_{i+1..i+m} \,, \end{array}$$

které lze počítat podle rekurentních vzorců

$$C_{i,m} = \frac{(t - x_i) (C_{i+1,m-1} - D_{i,m-1})}{x_{i+m} - x_i},$$

$$D_{i,m} = \frac{(t - x_{i+m}) (C_{i+1,m-1} - D_{i,m-1})}{x_{i+m} - x_i}$$

a výsledek např. jako

$$y_{0..n-1} = y_0 + \sum_{m=1}^{n-1} C_{0,m}$$
.

1.3.4 Chyba aproximace interpolačním polynomem

Upravená úloha: Aproximujeme funkci f;

 \vec{x} je vektor uzlových bodů,

 $\vec{y} = f(\vec{x})$ je vektor požadovaných hodnot v uzlových bodech.

Proložíme interpolační polynom φ .

Zajímá nás hodnota $\varphi(u)$ v libovolném bodě u a její chyba $f(u) - \varphi(u)$.

Odvození chyby aproximace interpolačním polynomem

Chyba metody $f-\varphi$ je v uzlových bodech nulová, zkoumáme její hodnotu $f(u)-\varphi(u)$ v bodě $u \notin \{x_0, \ldots, x_{n-1}\}$. V duchu Newtonovy konstrukce najdeme interpolační polynom ψ_u stupně n, který správně interpoluje i v bodě u: k φ přičteme "vhodný násobek" polynomu W stupně n s uzlovými body x_0, \ldots, x_{n-1} ,

$$\psi_u = \varphi + P_u \underbrace{\prod_{i < n} (t - x_i)}_{W(t)}.$$

(Polynom ψ_u závisí na volbě bodu u.)

"Vhodný násobek" P_u splňuje $\psi_u(u) = f(u)$, takže provedená oprava v bodě u je právě chyba interpolace polynomem φ :

$$f(u) - \varphi(u) = \psi_u(u) - \varphi(u) = P_u W(u),$$

$$P_u = \frac{f(u) - \varphi(u)}{W(u)}.$$

Funkce f, ψ_u jsou si "blízké", máme

 $\geq n+1$ kořen
ů u,x_0,\dots,x_{n-1} funkce $f-\psi_u,$ mezi každými dvěma (aspoň jeden) k
ořen derivace,

 $\geq n$ kořenů funkce $(f - \psi_u)'$,

 $\geq n-1$ kořenů funkce $(f-\psi_u)''$,

. . .

 ≥ 1 kořen funkce $(f - \psi_u)^{(n)} = f^{(n)} - \psi_u^{(n)}$, označme jej ξ_u (závisí na u).

(Potřebovali jsme spojité derivace do řádu n.) Budeme potřebovat n-tou derivaci polynomu

$$\psi_u(t) = \varphi(t) + P_u \prod_{i < n} (t - x_i) = \underbrace{\varphi(t)}_{\text{polynom stupn} \check{e} < n} + P_u \left(t^n + \underbrace{\cdots}_{\text{polynom stupn} \check{e} < n} \right),$$

$$\psi_u^{(n)}(t) = P_u(t^n)^{(n)} = P_u n!$$
.

Využijeme

$$0 = f^{(n)}(\xi_u) - \psi_u^{(n)}(\xi_u) = f^{(n)}(\xi_u) - \underbrace{f(u) - \varphi(u)}_{W(u)} n!,$$

$$f(u) - \varphi(u) = \frac{f^{(n)}(\xi_u)}{n!} W(u),$$

$$|f(u) - \varphi(u)| = \frac{|f^{(n)}(\xi_u)|}{n!} |W(u)|,$$

kde $|f^{(n)}(\xi_u)|$ nahradíme horním odhadem na uzavřeném intervalu $I \supseteq \{u, x_0, \dots, x_{n-1}\}: M_n \ge \max_{t \in I} |f^{(n)}(t)|$,

$$|f(u) - \varphi(u)| \leq \frac{M_n}{n!} |W(u)|.$$

Pomocí horního odhadu $\overline{w} \geq \max_{t \in I} |W(t)|$ dostaneme odhad chyby nezávislý na u:

$$|f(u) - \varphi(u)| \le \frac{M_n}{n!} \, \overline{w} \,.$$

Předpoklad: f má spojité derivace do řádu n na uzavřeném intervalu $I \supseteq \{u, x_0, \dots, x_{n-1}\}.$

Co můžeme ovlivnit

- 1. Počet uzlových bodů \implies koeficient $\frac{1}{n!}$ \odot , ale i M_n \odot .
- 2. Interval I, ale musí obsahovat $\{u, x_0, \dots, x_{n-1}\}$, to lze jen pokazit, když u bude "daleko" \odot ; rozlišujeme:

- **extrapolaci**, kdy aproximujeme mimo interval $\langle \min_i x_i, \max_i x_i \rangle$,
- interpolaci (v užším smyslu), kdy aproximujeme na intervalu $\langle \min_i x_i, \max_i x_i \rangle$.
- 3. Rozložení uzlových bodů $\implies \overline{w}$ © .

Příklad:

Ad 1. Počet uzlových bodů

		J	exp	l In
		$ f^{(n)}(u) $	$\exp(u)$	$\frac{(n-1)!}{u^n}$
		argmax	2	1/2
r	i	$\frac{M_n}{n!}$	$\frac{\exp(2)}{n!}$	$\frac{2^n}{n}$
2	2	$\frac{M_2}{2!}$	3.7	2
4	4	$\frac{\overline{M_4}}{4!}$	0.31	4
8	3	$\frac{M_8}{8!}$	$1.8 \cdot 10^{-4}$	32
1	6	$\frac{M_{16}}{16!}$	$3.5 \cdot 10^{-13}$	4096
			©	☺

 $I = \langle 1/2, 2 \rangle$

Ad 2. Extrapolace

•				
	f	exp	\ln	
	$ f^{(n)}(u) $	$\exp(u)$	$\frac{(n-1)!}{u^n}$	
	argmax	3	1/10	
n	$\frac{M_n}{n!}$	$\frac{\exp(3)}{n!}$	$\frac{10^n}{n}$	
2	$\frac{M_2}{2!}$	10	50	
4	$\frac{M_4}{4!}$	0.84	2500	
8	$\frac{M_8}{8!}$	$5\cdot 10^{-4}$	$1.25\cdot 10^7$	
16	$\frac{M_{16}}{16!}$	10^{-12}	$6.25 \cdot 10^{14}$	
		©	88	

 $I=\langle 1/10,3\rangle$

Zbývá:

Ad 3. Rozložení uzlových bodů

Chyba aproximace interpolačním polynomem

1.3.5 Čebyševovy polynomy

$$\gamma_j(t) = \cos(j \arccos t), \qquad j = 0, 1, 2, \dots$$

Počítají se z rekurentního vztahu

$$\begin{split} \gamma_0(t) &= 1 = \cos(0\,\arccos t), \\ \gamma_1(t) &= t = \cos(1\,\arccos t), \\ \gamma_j(t) &= 2\,t\,\gamma_{j-1}(t) - \gamma_{j-2}(t), \qquad j \geq 2\,, \\ \cos\alpha + \cos\beta &= 2\,\cos\frac{\alpha-\beta}{2}\,\cos\frac{\alpha+\beta}{2}\,, \quad \alpha := j\theta\,, \quad \beta := (j-2)\theta\,, \\ \cos j\theta + \cos(j-2)\theta &= 2\,\cos\theta\,\cos(j-1)\theta\,, \\ \cos j\theta &= 2\,\cos\theta\,\cos(j-1)\theta - \cos(j-2)\theta\,, \quad \theta := \arccos t\,, \\ \underbrace{\cos(j\,\arccos t)}_{\gamma_j(t)} &= 2t\,\underbrace{(\cos(j-1)\arccos t)}_{\gamma_{j-1}(t)} - \underbrace{\cos((j-2)\arccos t)}_{\gamma_{j-2}(t)}\,. \end{split}$$

Obor hodnot funkcí $\gamma_j, j \geq 1$, na intervalu $\langle -1, 1 \rangle$ je $\langle -1, 1 \rangle$. Kořeny z_0, \dots, z_{j-1} jsou řešení rovnice

$$\cos(j \arccos z_k) = 0,$$

$$j \arccos z_k = \frac{\pi}{2} + k\pi,$$

$$\arccos z_k = \frac{1}{j} \left(\frac{\pi}{2} + k\pi\right) \in \langle 0, \pi \rangle,$$

$$z_k = \cos\left(\frac{\pi}{j} \left(k + \frac{1}{2}\right)\right), \qquad k = 0, 1, \dots, j - 1.$$

Pro j = n dostáváme doporučené kosinové rozdělení uzlových bodů na intervalu $\langle -1, 1 \rangle$; obecně na $\langle a, b \rangle$

$$x_k = \frac{b+a}{2} + \frac{b-a}{2} z_k = \frac{b+a}{2} + \frac{b-a}{2} \cos \frac{\pi(k+\frac{1}{2})}{n}, \quad k = 0, \dots, n-1.$$

Pokud požadujeme, aby byly uzlové body v krajních bodech intervalu, můžeme vzorec modifikovat:

$$x_k = \frac{b+a}{2} + \frac{b-a}{2} \cos \frac{\pi k}{n-1}, \quad k = 0, \dots, n-1.$$

Chyba aproximace při kosinovém rozdělení uzlových bodů

Motivační úloha - interpolační polynom

Vliv lokálních změn na interpolační polynom

Vliv lokálních změn na interpolační polynom

1.3.6 Příklad použití interpolačního polynomu na reálných datech

Vyjdeme z motivační úlohy (teplota pacienta) a vybrané hodnoty proložíme interpolačním polynomem.

$$\varphi(1439.5) \doteq 23.67$$
 ©

$$\varphi(1439.5) \doteq 8.38 \cdot 10^4 \qquad © \odot$$

$$\varphi(1439.5) \doteq 3.99 \cdot 10^{48}$$
 ©©

Při použití všech 1440 bodů

$$\varphi(1439.5) \doteq -3.37 \cdot 10^{2315} \qquad \textcircled{2} \textcircled{2}$$

⇒ hrubá síla nic neřeší, vyhněme se použití polynomů velkého stupně.

1.3.7 Hermitův interpolační polynom

Příklad: Dáno: $x_0=0, \quad x_1=1; \quad y_{0,0}=1, \quad y_{1,0}=2, \quad y_{0,1}=3, \quad y_{1,1}=4.$ **Hledáme:** polynom $\varphi(t)=c_0+c_1t+c_2t^2+c_3t^3,$ splňující

$$\varphi(x_0) = y_{0,0}, \qquad \qquad \varphi(x_1) = y_{1,0}, \qquad \qquad \varphi'(x_0) = y_{0,1}, \qquad \qquad \varphi'(x_1) = y_{1,1},
\varphi(0) = 1, \qquad \qquad \varphi(1) = 2, \qquad \qquad \varphi'(0) = 3, \qquad \qquad \varphi'(1) = 4.$$

$$\varphi(t) = 1 + 3t - 7t^2 + 5t^3.$$

Jiný postup: Stejně jako u Lagrangeovy konstrukce interpolačního polynomu můžeme sestrojit nejdříve polynomy $\eta, \varrho, \sigma, \tau$ stupně 3, splňující

ψ	$\psi(0)$	$\psi(1)$	$\psi'(0)$	$\psi'(1)$
η	1	0	0	0
ϱ	0	1	0	0
σ	0	0	1	0
$\mid \tau \mid$	0	0	0	1

Výsledek je jejich lineární kombinace se známými koeficienty:

$$\varphi = y_{0,0} \eta + y_{1,0} \varrho + y_{0,1} \sigma + y_{1,1} \tau$$

= $1\eta + 2\varrho + 3\sigma + 4\tau$.

Polynomy řešící dílčí úlohy:

 η má dvojnásobný kořen 1, je tedy tvaru

$$\eta(t) = (at + b) (t - 1)^2,$$

kde a, b určíme z hodnot v 0:

$$\eta(0) = b = 1
\eta'(0) = a - 2b = 0$$

$$a = 2, \qquad b = 1, \qquad \eta(t) = (2t+1)(t-1)^2$$

$$\boxed{\begin{array}{ccc} \varrho(0) & \varrho(1) & \varrho'(0) & \varrho'(1) \\ \hline 0 & 1 & 0 & 0 \end{array}}$$

 ϱ má dvojnásobný kořen 0, je tedy tvaru

$$\varrho(t) = (a^*t + b^*) t^2,$$

kde a^*, b^* určíme z hodnot v 1:

$$\varrho(1) = a^* + b^* = 1
\varrho'(1) = 3a^* + 2b^* = 0$$

$$a^* = -2, \quad b^* = 3, \quad \varrho(t) = (-2t + 3) t^2$$

$$\boxed{\frac{\sigma(0) \quad \sigma(1) \quad \sigma'(0) \quad \sigma'(1)}{0 \quad 0 \quad 1 \quad 0}}$$

 σ má dvojnásobný kořen 1 a jednoduchý kořen 0, je tedy tvaru

$$\sigma(t) = ct (t-1)^2,$$

kde c určíme z derivace v 0:

$$\sigma'(0) = c = 1$$
$$\sigma(t) = t (t - 1)^2$$

$\tau(0)$	$\tau(1)$	$\tau'(0)$	$\tau'(1)$
0	0	0	1

 τ má dvojnásobný kořen 0 a jednoduchý kořen 1, je tedy tvaru

$$\tau(t) = c^* t^2 (t - 1),$$

kde c^* určíme z derivace v 1:

$$\tau'(1) = c^* = 1$$

 $\tau(t) = t^2 (t - 1)$

 φ dostaneme jako lineární kombinaci $\eta, \varrho, \sigma, \tau,$

$$\varphi = y_{0,0} \, \eta + y_{1,0} \, \varrho + y_{0,1} \, \sigma + y_{1,1} \, \tau$$

1.3.8 Aproximace Taylorovou řadou

(přesněji Taylorovým polynomem)

Speciální případ Hermitova interpolačního polynomu s jediným uzlovým bodem, v němž je zadáno prvních n derivací (včetně nulté).

Úloha: Dáno:

Uzlový bod x_0 ,

 $n \text{ hodnot } y_{0,0}, y_{0,1}, \dots, y_{0,n-1} \in \mathbb{R}.$

Hledáme: polynom φ stupně < n takový, že

$$\varphi^{(j)}(x_0) = y_{0,j}, \quad j = 0, \dots, n-1.$$

Řešení je ve tvaru

$$\varphi = \sum_{j < n} y_{0,j} \, \varrho_j \,, \qquad \varrho_j^{(i)}(x_0) = \delta_{ij} \,, \qquad \varrho_j(t) = \frac{1}{j!} \, (t - x_0)^j \,,$$
$$\varphi(t) = \sum_{j < n} \frac{y_{0,j}}{j!} \, (t - x_0)^j \,.$$

Pokud jsou $y_{0,0}, y_{0,1}, \dots, y_{0,n-1}$ hodnoty derivací nějaké funkce f v bodě x_0 , tj. $y_{0,j} = f^{(j)}(x_0)$, pak φ je konečná Taylorova řada se středem x_0 :

$$\varphi(t) = \sum_{j < n} \frac{f^{(j)}(x_0)}{j!} (t - x_0)^j.$$

Pokud f má na intervalu $I(u, x_0)$ spojitou derivaci řádu n, pak

$$f(u) - \varphi(u) = \frac{f^{(n)}(\xi_u)}{n!} (u - x_0)^n,$$

kde $\xi_u \in I(u, x_0)$,

$$|f(u) - \varphi(u)| \le \frac{M_n}{n!} |(u - x_0)^n|.$$

Jediný rozdíl od chyby interpolačního polynomu je, že polynom W(u) s kořeny x_0, \ldots, x_{n-1} je nahrazen polynomem $(u-x_0)^n$ (stejného stupně) s n-násobným kořenem x_0 . Aproximace Taylorovou řadou je velmi přesná v okolí x_0 , na úkor chyby ve vzdálenějších bodech.

Aproximace Taylorovým polynomem

Aproximace exponenciály (červeně) Taylorovými polynomy stupňů 5, 10, 15 pro kladné argumenty.

Aproximace exponenciály (červeně) Taylorovými polynomy stupňů 5, 10, 15 pro záporné argumenty.

Aproximace exponenciály (červeně) Taylorovými polynomy stupňů 5, 10, 15 pro kladné i záporné argumenty.

1.4 Interpolace spliny

Nevýhoda interpolace polynomem: malá změna vstupní hodnoty v jednom uzlovém bodě může zásadně ovlivnit výsledné hodnoty v místech značně vzdálených.

Spline je funkce po částech polynomiální. (Je dána různými polynomy nízkého stupně na jednotlivých intervalech.)

Nejjednodušším případem je náhrada po částech lineární funkcí, "lomenou čarou", lineární spline.

1.4.1 Kubický spline

Úloha: Dáno:

vektor $\vec{x} = (x_0, \dots, x_{n-1}) \in \mathbb{R}^n$ určující n uzlových bodů vzestupně uspořádaných,

vektor $\vec{y} = (y_0, \dots, y_{n-1}) \in \mathbb{R}^n$ požadovaných hodnot v uzlových bodech,

Hledáme: funkci φ , definovanou na intervalu $\langle x_0, x_{n-1} \rangle$, splňující:

- $\bullet \quad \varphi(x_i) = y_i, \qquad i = 0, \dots, n-1 \ ,$
- φ se na intervalu $\langle x_{i-1}, x_i \rangle$ shoduje s nějakým polynomem φ_i stupně nejvýše 3, $i=1,\ldots,n-1$,
- φ má na intervalu $\langle x_0, x_{n-1} \rangle$ spojitou první a druhou derivaci.

(Toto zadání bude nutné ještě upřesnit.) Spojitost derivací stačí zajistit v bodech x_1, \ldots, x_{n-2} :

$$\varphi'_{i}(x_{i}) = \varphi'_{i+1}(x_{i}), \qquad i = 1, \dots, n-2,$$

 $\varphi''_{i}(x_{i}) = \varphi''_{i+1}(x_{i}), \qquad i = 1, \dots, n-2.$

Předpokládejme, že známe hodnoty $c_i = \varphi'(x_i) = \varphi'_i(x_i) = \varphi'_{i+1}(x_i)$, $i = 0, \ldots, n-1$. Tím bude zajištěna spojitost φ' , zbývá zajistit spojitost φ'' .

Polynomy φ_i , $i=1,\ldots,n-1$, lze najít stejně jako Hermitův interpolační polynom v předchozí úloze, pouze uzlové body jsou x_{i-1},x_i místo 0,1.

Obecný případ dostaneme lineární transformací $u \in (0,1)$ na $t \in (x_{i-1},x_i)$:

$$t = x_{i-1} + (x_i - x_{i-1}) u$$
, $u = \frac{t - x_{i-1}}{x_i - x_{i-1}}$.

Na druhých derivacích se to projeví např.

$$\begin{split} &\eta_i(t) = \eta(u) \,, \\ &\frac{\mathrm{d}\eta_i}{\mathrm{d}t} = \frac{\mathrm{d}\eta}{\mathrm{d}u} \cdot \frac{\mathrm{d}u}{\mathrm{d}t} \,, \\ &\eta_i'(t) = \frac{\eta'(u)}{x_i - x_{i=1}} \,, \\ &\eta_i''(t) = \frac{\eta''(u)}{(x_i - x_{i=1})^2} \,. \end{split}$$
 (nekorektní Leibnizova notace)

Na intervalu $\langle x_{i-1}, x_i \rangle$, $i = 1, \ldots, n-1$, dostáváme

$$\varphi_i(t) = y_{i-1} \, \eta_i(t) + y_i \, \varrho_i(t) + \overbrace{\varphi'(x_{i-1})}^{c_{i-1}} \, \sigma_i(t) + \overbrace{\varphi'(x_i)}^{c_i} \, \tau_i(t) \,,$$

kde $\eta_i, \varrho_i, \sigma_i, \tau_i$ jsou polynomy stupně nejvýše 3 (určené stejně jako polynomy $\eta, \varrho, \sigma, \tau$ v úloze na Hermitův interpolační polynom).

Můžeme vyčíslit jejich druhé derivace:

$$\eta''(0) = -6, \qquad \varrho''(0) = 6, \qquad \sigma''(0) = -4, \qquad \tau''(0) = -2,$$

$$\eta''_{i+1}(x_i) = \frac{-6}{(x_{i+1} - x_i)^2}, \quad \varrho''_{i+1}(x_i) = \frac{6}{(x_{i+1} - x_i)^2}, \quad \sigma''_{i+1}(x_i) = \frac{-4}{(x_{i+1} - x_i)^2}, \quad \tau''_{i+1}(x_i) = \frac{-2}{(x_{i+1} - x_i)^2},$$

$$\eta''(1) = 6, \qquad \varrho''(1) = -6, \qquad \sigma''(1) = 2, \qquad \tau''(1) = 4,$$

$$\eta''_{i}(x_i) = \frac{6}{(x_i - x_{i-1})^2}, \qquad \varrho''_{i}(x_i) = \frac{-6}{(x_i - x_{i-1})^2}, \qquad \sigma''_{i}(x_i) = \frac{2}{(x_i - x_{i-1})^2}, \qquad \tau''_{i}(x_i) = \frac{4}{(x_i - x_{i-1})^2}.$$

Zbývá určit $c_i = \varphi'(x_i)$; pro i = 1, ..., n-2 máme

$$y_{i-1} \eta_{i}''(x_{i}) + y_{i} \varrho_{i}''(x_{i}) + \overbrace{\varphi'(x_{i-1})}^{c_{i-1}} \sigma_{i}''(x_{i}) + \overbrace{\varphi'(x_{i})}^{c_{i}} \tau_{i}''(x_{i}) =$$

$$= y_{i} \eta_{i+1}''(x_{i}) + y_{i+1} \varrho_{i+1}''(x_{i}) + \overbrace{\varphi'(x_{i})}^{c_{i}} \sigma_{i+1}''(x_{i}) + \overbrace{\varphi'(x_{i+1})}^{c_{i+1}} \tau_{i+1}''(x_{i}),$$

$$(2)$$

$$\frac{6y_{i-1} - 6y_i + 2\varphi'(x_{i-1}) + 4\varphi'(x_i)}{(x_i - x_{i-1})^2} = \frac{-6y_i + 6y_{i+1} - 4\varphi'(x_i) - 2\varphi'(x_{i+1})}{(x_{i+1} - x_i)^2},$$

$$\frac{2}{(x_{i}-x_{i-1})^{2}} \overbrace{\varphi'(x_{i-1})}^{c_{i-1}} + \frac{4}{(x_{i}-x_{i-1})^{2}} \overbrace{\varphi'(x_{i})}^{c_{i}} +
+ \frac{4}{(x_{i+1}-x_{i})^{2}} \overbrace{\varphi'(x_{i})}^{c_{i}} + \frac{2}{(x_{i+1}-x_{i})^{2}} \overbrace{\varphi'(x_{i+1})}^{c_{i+1}} = \frac{-6y_{i-1}+6y_{i}}{(x_{i}-x_{i-1})^{2}} + \frac{-6y_{i}+6y_{i+1}}{(x_{i+1}-x_{i})^{2}},$$

to je n-2 lineárních rovnic o n neznámých.

Zbývají 2 volitelné parametry. Obvykle se volí $\varphi''(x_0) = \varphi''(x_{n-1}) = 0$, tzv. **přirozený spline** (angl. natural spline). To znamená, že v (2) pro i = 0, resp. n - 1, nahradíme (nedefinovanou) levou, resp. pravou, stranu nulou.

Další možnosti, které v současnosti podporuje Maple:

$$\varphi'(x_0) = \varphi'(x_{n-1}), \qquad \qquad \varphi''(x_0) = \varphi''(x_{n-1}), \qquad \qquad \text{(endpoints='periodic')},$$

spojitost 3. derivace v x_1, x_{n-2} (endpoints='notaknot'),

nebo explicitní zadání první derivace v krajních bodech, popř. jakýchkoli podobných podmínek v požadovaném počtu.

Tyto volby se projeví pouze na okrajích intervalu.

Blokové schema interpolace spliny

Výpočet má dvě části:

- 1. Výpočet koeficientů $c_i = \varphi'(x_i), i = 0, \dots, n-1$ (složitost nejvýše $\propto n^3$).
- 2. Výpočet funkční hodnoty (složitost $\propto \ln n$).

Matice soustavy je **třídiagonální** a koeficienty na diagonále jsou největší z řádku.

Jsou-li navíc uzlové body ekvidistantní, je matice soustavy symetrická.

(Obojí lze využít pro efektivnější řešení.)

Spliny nelze extrapolovat! ©

Přesto to většina implementací dovoluje.

Poznámka: Volba rozdělení má v případě interpolace splinem výrazně menší vliv.

Vliv lokálních změn na spline

1.4.2 Příklad použití splinu na reálných datech

Vyjdeme z motivační úlohy (teplota pacienta) a vybrané hodnoty proložíme splinem.

V-A charakteristika diody

1.5 Metoda nejmenších čtverců

Úloha: Dáno:

vektor $\vec{x} = (x_0, \dots, x_{n-1}) \in \mathbb{R}^n$ určující n uzlových bodů (**ne nutně různých**), vektor $\vec{y} = (y_0, \dots, y_{n-1}) \in \mathbb{R}^n$ **žádoucích** hodnot v uzlových bodech, k funkcí $\varphi_0, \dots, \varphi_{k-1}, k \leq n$, definovaných alespoň ve všech uzlových bodech.

Hledáme: koeficienty $c_0, \ldots, c_{k-1} \in \mathbb{R}$ lineární kombinace funkcí φ_j

$$\varphi = \sum_{j < k} c_j \, \varphi_j$$

takové, abychom minimalizovali výraz

$$H_2 = \sum_{i < n} (\varphi(x_i) - y_i)^2 = \sum_{i < n} \left(\sum_{j < k} c_j \, \varphi_j(x_i) - y_i \right)^2$$

Modifikovaná kritéria

$$H_{2w} = \sum_{i \le n} w_i \left(\varphi(x_i) - y_i \right)^2$$

řeší se analogicky (Maple podporuje),

$$H_1 = \sum_{i < n} |\varphi(x_i) - y_i|$$

nevede na jednoznačné řešení, neužívá se,

$$H_0 = \max_{i < n} |\varphi(x_i) - y_i|$$

řeší se (tzv. Čebyševova aproximace), ale je obtížnější.

1.5.1 Řešení aproximace podle kritéria nejmenších čtverců

 $V \mathbb{R}^n$ zavedeme skalární součin vektorů $\vec{u} = (u_0, \dots, u_{n-1}), \ \vec{v} = (v_0, \dots, v_{n-1}):$

$$\vec{u} \cdot \vec{v} = \sum_{i < r} u_i \cdot v_i.$$

Máme aproximovat vektor \vec{y} lineární kombinací $\varphi(\vec{x}) = \sum\limits_{j < k} c_j \, \varphi_j(\vec{x}),$ kritérium je $H_2 = (\varphi(\vec{x}) - \vec{y}) \cdot (\varphi(\vec{x}) - \vec{y}) = \|\varphi(\vec{x}) - \vec{y}\|^2$.

Řešení: Kolmý průmět splňuje soustavu podmínek (pro $m=0,\ldots,k-1$)

$$\begin{aligned} (\varphi(\vec{x}) - \vec{y}) &\perp & \varphi_m(\vec{x}) \,, \\ (\varphi(\vec{x}) - \vec{y}) \cdot \varphi_m(\vec{x}) &= & 0 \,, \\ \varphi(\vec{x}) \cdot \varphi_m(\vec{x}) &= & \vec{y} \cdot \varphi_m(\vec{x}) \,. \end{aligned}$$

Tedy $\varphi(\vec{x})$ se vzhledem ke skalárním součinům s vektory $\varphi_m(\vec{x})$ chová stejně jako \vec{y} .

$$\left(\sum_{j < k} \mathbf{c}_{j} \, \varphi_{j}(\vec{x})\right) \cdot \varphi_{m}(\vec{x}) = \vec{y} \cdot \varphi_{m}(\vec{x}),
\sum_{j < k} \mathbf{c}_{j}(\varphi_{j}(\vec{x}) \cdot \varphi_{m}(\vec{x})) = \vec{y} \cdot \varphi_{m}(\vec{x}), \qquad m = 0, \dots, k - 1;$$

soustava lineárních rovnic pro neznámé c_0,\dots,c_{k-1} (soustava normálních rovnic).

Speciální případ: aproximujeme polynomem stupně < k, můžeme volit $\varphi_j(t) = t^j$,

$$\varphi_j(\vec{x}) \cdot \varphi_m(\vec{x}) = \sum_{i < n} x_i^j \cdot x_i^m = \sum_{i < n} x_i^{j+m}.$$

Blokové schema obecné aproximace metodou nejmenších čtverců

Motivační úloha - metoda nejmenších čtverců

Aproximace V-A charakteristiky diody lineární kombinací konstanty a dvou exponenciál s vhodnými základy.

1.5.2 Ortogonalizace

V podprostoru $P = \text{Lin}\{\varphi_0(\vec{x}), \dots, \varphi_{k-1}(\vec{x})\}$ najdeme ortogonální bázi $(\psi_0(\vec{x}), \dots, \psi_{k-1}(\vec{x})),$

$$\psi_j(\vec{x}) \cdot \psi_m(\vec{x}) = 0 \text{ pro } j \neq m.$$

Ortogonalita závisí nejen na funkcích $\varphi_0, \dots, \varphi_{k-1}$, ale i na volbě uzlových bodů! Hledáme řešení ve tvaru $\varphi = \sum_{j < k} d_j \, \psi_j$, kde $d_j, \, j = 0, \dots, k-1$ jsou souřadnice vzhledem k nové bázi. Matice

soustavy normálních rovnic je diagonální:

$$\begin{aligned} d_j \left(\psi_j(\vec{x}) \cdot \psi_j(\vec{x}) \right) &= \quad \vec{y} \cdot \psi_j(\vec{x}) \,, \qquad j = 0, \dots, k - 1, \\ d_j &= \frac{\vec{y} \cdot \psi_j(\vec{x})}{\psi_j(\vec{x}) \cdot \psi_j(\vec{x})} &= \quad \frac{\vec{y} \cdot \psi_j(\vec{x})}{\|\psi_j(\vec{x})\|^2} \,, \qquad j = 0, \dots, k - 1. \end{aligned}$$

Navíc lze volit vektory $\psi_i(\vec{x})$ jednotkové, pak vyjde jednotkový i jmenovatel.

Gramova-Schmidtova ortogonalizace

Z báze $(\vec{\varphi}_0,\ldots,\vec{\varphi}_{k-1})$ vytvoříme ortogonální bázi $(\psi_0(\vec{x}),\ldots,\psi_{k-1}(\vec{x}))$:

(Komu vadí maticový zápis pro vektory, může je nahradit řádky matice.)

1.5.3 Aproximace goniometrickým polynomem

(konečnou Fourierovou řadou)

Aproximace metodou nejmenších čtverců, přičemž aproximační funkce jsou

1,
$$\cos 2\pi \frac{t}{T}$$
, $\sin 2\pi \frac{t}{T}$, $\cos 4\pi \frac{t}{T}$, $\sin 4\pi \frac{t}{T}$, ...

Pro ekvidistantní uzlové body na intervalu délky T,

$$x_i = a + i \frac{T}{n}, \qquad i = 0, \dots, n - 1$$

jsou vektory $\varphi_i(\vec{x})$ (kterých smí být nejvýše n) ortogonální.

Pro ortogonální funkce je složitost $\propto k n$.

Pro k = n dostáváme $\propto n^2$.

Rychlá Fourierova transformace (Fast Fourier Transform, FFT) dále snižuje složitost na $\propto n \ln n$.

K tomu vyžaduje navíc $n=2^m$, jinak efektivita klesá.

Použití: Aproximace periodických a "téměř periodických" průběhů, zejména akustických, ale např. i obrazových; komprese mp3 a jpeg.

Rozklad na frekvence dovoluje další zpracování, digitální filtraci, rozpoznávání atd.

1.5.4 Čebyševova aproximace polynomem

Úloha: Dáno:

omezený interval I, spojitá funkce f na I,

 $k \in \mathbb{N}$

Hledáme: polynom φ stupně menšího než k takový, abychom minimalizovali výraz

$$H_0 = \max_{t \in I} |\varphi(t) - f(t)|.$$

To se také dělá, ale je to mnohem pracnější. Častěji se používá modifikovaná aproximace metodou nejmenších čtverců:

Čebyševova aproximace polynomem

Pro jednoduchost na intervalu $I = \langle -1, 1 \rangle$; zobecnění na interval $\langle a, b \rangle$ dostaneme lineární transformací

$$x = \frac{b+a}{2} + \frac{b-a}{2}z,$$

inverzní transformace je

$$z = \frac{x - \frac{b+a}{2}}{\frac{b-a}{2}}.$$

Za bázi prostoru všech polynomů stupně < k volíme Čebyševovy polynomy.

Pokud můžeme, volíme $n \ge k$ uzlových bodů $x_0, \ldots, x_{n-1} \in \langle -1, 1 \rangle$ jako kořeny Čebyševova polynomu stupně n, tj. s kosinovým rozdělením:

$$x_i = \cos\left(\frac{\pi}{n}\left(i + \frac{1}{2}\right)\right), \quad i = 0, \dots, n - 1.$$

Pro k=n dostaneme interpolační polynom (s doporučeným kosinovým rozdělením uzlových bodů). Řešení pro k < n se od interpolačního polynomu liší zanedbáním členů vyššího řádu. Koeficienty c_k, \ldots, c_{n-1} bývají malé. (Závisí ovšem na vyšších derivacích aproximované funkce!) Chyba v uzlových bodech je proto omezena výrazem

$$|\varphi(x_i) - f(x_i)| \le \sum_{j=k}^{n-1} |c_j|.$$

Poznámky o Čebyševově aproximaci

- $\bullet\,$ Neoptimalizujeme přesně kritérium $H_0,$ ale výsledek se od optimálního řešení příliš neliší.
- O chybě mimo uzlové body nelze říci mnoho, přesto lze postup doporučit.
- Rekurentní vzorec lze použít nejen ke stanovení Čebyševových polynomů, ale i přímo k výpočtu jejich hodnot v daném bodě.
- Nedoporučuje se výsledek roznásobovat do standardního tvaru $\varphi(t) = \sum_{j < k} b_j \, t^j$.
- Metodu lze zobecnit i na případ, kdy hledáme aproximaci ve tvaru součinu známé funkce a neznámého polynomu.

1.6 Dodatek: Přehled značení

Popis je zjednodušený a nemusí být přesný, podrobnosti jsou v textu. Značení použité jen lokálně zde není uvedeno.

Značení specifické pro tuto kapitolu

```
n ... počet uzlových bodů
\vec{x} = (x_0, \dots, x_{n-1}) ... vektor uzlových bodů
\vec{y} = (y_0, \dots, y_{n-1}) … vektor požadovaných hodnot v uzlových bodech
f ... aproximovaná funkce, f(x_i) = y_i
\varphi ... aproximující funkce, \varphi \approx f, \varphi(x_i) \doteq y_i
\mathcal{F} ... množina povolených aproximujících funkcí, \varphi \in \mathcal{F}
(\varphi_0,\ldots,\varphi_{k-1}) ... báze prostoru povolených aproximujících funkcí, \mathcal{F}\in\mathrm{Lin}\{\varphi_0,\ldots,\varphi_{k-1}\}
k ... dimenze prostoru povolených aproximujících funkcí, k = \dim \mathcal{F}
\vec{c} = (c_0, \dots, c_{k-1}) \dotsvektor koeficientů lineární kombinace, souřadnice aproximace \varphi vzhledem k bázi (\varphi_0, \dots, \varphi_{k-1}),
\varphi = \sum_{j < k} c_j \, \varphi_j
\varphi(\vec{x}), \varphi_0(\vec{x}), \dots, \varphi_{k-1}(\vec{x}), \psi_0(\vec{x}) apod. ... vektory hodnot funkcí v uzlových bodech x_0, \dots, x_{n-1}, \varphi(\vec{x}) = (\varphi(x_0), \dots, \varphi(x_{n-1}))
apod.
W... polynom použitý v odhadech chyby, W(t) = \prod_{i < n} (t - x_i)
\overline{w} ... horní odhad absolutní hodnoty polynomu W na použitém intervalu
\gamma_j ... Čebyševův polynom řádu j, \gamma_j(t) = \cos(j \arccos t)
y_{i,j} ... požadovaná hodnota j-té derivace v i-tém uzlovém bodě, y_{i,j} = f^{(j)}(x_i) \doteq \varphi^{(j)}(x_i)
T ... perioda aproximované periodické funkce
```

Značení používané podobně v celém předmětu

```
\begin{split} \delta_{ij} & \dots \text{Kroneckerovo delta, } \delta_{ii} = 1, \, \delta_{ij} = 0 \text{ pro } i \neq j \\ \cdot & \dots \text{ skalární součin, } \vec{u} \cdot \vec{v} = \sum_{i < n} u_i \cdot v_i \\ \|.\| & \dots \text{ norma, obvykle euklidovská, } \|\vec{u}\| = \sqrt{\vec{u} \cdot \vec{u}} \\ I(\dots) & \dots \text{ nejmenší interval obsahující čísla (body) v závorce, např. } I(x_0, \dots, x_{n-1}) = \langle \min_i x_i, \max_i x_i \rangle \\ M_j & \dots \text{ horní odhad absolutní hodnoty } j\text{-té derivace aproximované funkce, } |f^{(j)}| \leq M_j \text{ na použitém intervalu} \end{split}
```

Literatura

- [Navara, Němeček] Navara, M., Němeček, A.: Numerické metody. ČVUT, Praha, dotisk 2005.
- [Knuth] Knuth, D.E.: Fundamental Algorithms. Vol. 1 of The Art of Computer Programming, 3rd ed., Addison-Wesley, Reading, MA, 1997.
- [Num. Recipes] Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes (The Art of Scientific Computing). 3rd edition, Cambridge University Press, Cambridge, 2007. http://www.nrbook.com/a/bookcpdf.php
- [Handbook Lin. Alg.] Hogben, L. (ed.): *Handbook of Linear Algebra*. Chapman & Hall/CRC, Boca Raton/London/New York, 2007.