#### Bayesian statistics 2 - The linear model

Frédéric Barraquand (CNRS, IMB)

October 30, 2023

#### What did we learn the last time?

 Bayes theorem applied to random variables representing your data and parameters leads to

$$\mathbb{P}(\theta|data) = \frac{\mathbb{P}(data|\theta)\mathbb{P}(\theta)}{\mathbb{P}(data)}$$

- Bayesian analysis differs essentially from frequentist analysis in that both observations and parameters are assumed to arise from random variables
- Credible intervals are more complicated to compute (for simple models) than confidence intervals but logically more straightforward
- Bayesian and frequentist statistics give similar estimates when *n* is very large, but prior influence grows as sample size decreases.

• T-test.  $Y_i \sim \mathcal{N}(\mu_i, \sigma^2)$  with  $\mu_i = \mu_1 + \delta \times x_i$  and  $x_i = 0$  if in group 1 and  $x_i = 1$  if in group 2  $(\mu_2 = \mu_1 + \delta)$ 

F. Barraquand Bayesian stats 2

3/12

- T-test.  $Y_i \sim \mathcal{N}(\mu_i, \sigma^2)$  with  $\mu_i = \mu_1 + \delta \times x_i$  and  $x_i = 0$  if in group 1 and  $x_i = 1$  if in group 2  $(\mu_2 = \mu_1 + \delta)$
- Linear regression  $Y_i \sim \mathcal{N}(\mu_i, \sigma^2), \ \mu_i = a + bx_i \text{ with } x_i \text{ a covariate (9.6,4.2,...)}$

3/12

F. Barraquand Bayesian stats 2 October 30, 2023

- T-test.  $Y_i \sim \mathcal{N}(\mu_i, \sigma^2)$  with  $\mu_i = \mu_1 + \delta \times x_i$  and  $x_i = 0$  if in group 1 and  $x_i = 1$  if in group 2  $(\mu_2 = \mu_1 + \delta)$
- Linear regression  $Y_i \sim \mathcal{N}(\mu_i, \sigma^2), \ \mu_i = a + bx_i \text{ with } x_i \text{ a covariate (9.6,4.2,...)}$
- (One-way) analysis of variance (aka the T-test with more groups)  $Y_i \sim \mathcal{N}(\mu_i, \sigma^2), \ \mu_i = a + b_1 x_{i1} + b_2 x_{i2} + b_3 x_{i3} \text{ with } x_{i1}, x_{i2}, x_{i3} \text{ binary (0 or 1)}$

F. Barraquand

- T-test.  $Y_i \sim \mathcal{N}(\mu_i, \sigma^2)$  with  $\mu_i = \mu_1 + \delta \times x_i$  and  $x_i = 0$  if in group 1 and  $x_i = 1$  if in group 2  $(\mu_2 = \mu_1 + \delta)$
- Linear regression  $Y_i \sim \mathcal{N}(\mu_i, \sigma^2), \ \mu_i = a + bx_i \text{ with } x_i \text{ a covariate (9.6,4.2,...)}$
- (One-way) analysis of variance (aka the T-test with more groups)  $Y_i \sim \mathcal{N}(\mu_i, \sigma^2)$ ,  $\mu_i = a + b_1 x_{i1} + b_2 x_{i2} + b_3 x_{i3}$  with  $x_{i1}, x_{i2}, x_{i3}$  binary (0 or 1)
- Multiple linear regression ( $x_1$  and  $x_2$  real-valued), ANCOVA ( $x_1$  binary and  $x_2$  real-valued),...  $Y_i \sim \mathcal{N}(\mu_i, \sigma^2)$ ,  $\mu_i = a + b_1 x_{i1} + b_2 x_{i2} + ...$

F. Barraquand Bayesian stats 2

- T-test.  $Y_i \sim \mathcal{N}(\mu_i, \sigma^2)$  with  $\mu_i = \mu_1 + \delta \times x_i$  and  $x_i = 0$  if in group 1 and  $x_i = 1$  if in group 2 ( $\mu_2 = \mu_1 + \delta$ )
- Linear regression  $Y_i \sim \mathcal{N}(\mu_i, \sigma^2), \ \mu_i = a + bx_i \text{ with } x_i \text{ a covariate } (9.6, 4.2, \dots)$
- (One-way) analysis of variance (aka the T-test with more groups)  $Y_i \sim \mathcal{N}(\mu_i, \sigma^2), \ \mu_i = a + b_1 x_{i1} + b_2 x_{i2} + b_3 x_{i3} \text{ with } x_{i1}, x_{i2}, x_{i3} \text{ binary (0 or 1)}$
- Multiple linear regression (x<sub>1</sub> and x<sub>2</sub> real-valued), ANCOVA (x<sub>1</sub> binary and x<sub>2</sub> real-valued),...

$$Y_i \sim \mathcal{N}(\mu_i, \sigma^2), \, \mu_i = a + b_1 x_{i1} + b_2 x_{i2} + \dots$$

All models that can be written

$$Y = X\beta + E$$

where X is called the *design matrix* and  $Y = (Y_i)_{i \in 1:n}, \beta, E$  are vectors.

F. Barraquand

3/12

- T-test.  $Y_i \sim \mathcal{N}(\mu_i, \sigma^2)$  with  $\mu_i = \mu_1 + \delta \times x_i$  and  $x_i = 0$  if in group 1 and  $x_i = 1$  if in group 2  $(\mu_2 = \mu_1 + \delta)$
- Linear regression  $Y_i \sim \mathcal{N}(\mu_i, \sigma^2)$ ,  $\mu_i = a + bx_i$  with  $x_i$  a covariate (9.6,4.2,...)
- (One-way) analysis of variance (aka the T-test with more groups)  $Y_i \sim \mathcal{N}(\mu_i, \sigma^2)$ ,  $\mu_i = a + b_1 x_{i1} + b_2 x_{i2} + b_3 x_{i3}$  with  $x_{i1}, x_{i2}, x_{i3}$  binary (0 or 1)
- Multiple linear regression ( $x_1$  and  $x_2$  real-valued), ANCOVA ( $x_1$  binary and  $x_2$  real-valued),...  $Y_i \sim \mathcal{N}(\mu_i, \sigma^2)$ ,  $\mu_i = a + b_1 x_{i1} + b_2 x_{i2} + ...$

All models that can be written

$$Y = X\beta + E$$

where X is called the *design matrix* and  $Y = (Y_i)_{i \in 1:n}, \beta, E$  are vectors.

Also called the *General Linear Model*, and should not be confused with *GLM* = *Generalized Linear Model*.

◆□▶ ◆□▶ ◆■▶ ◆■▶ ● 釣९@

3/12

#### Using JAGS through R2jags

JAGS = Just Another Gibbs Sampler.

Update on BUGS = Bayesian analysis Using the Gibbs Sampler. (for now we admit what is a Gibbs sampler, will be made clear in lecture 3)

BUGS started in 1989 in the MRC Biostatistics Unit, Cambridge. Followed by WinBUGS, OpenBUGS and now JAGS by Martyn Plummer.

JAGS: essentially identical syntax to BUGS, works on Linux Mac and Windows.

JAGS and WinBUGS are *softwares* that interpret a language.

## Examples coming from Kéry's Introduction to WinBUGS



## Examples coming from Kéry's Introduction to WinBUGS



Falcons, again! (James Audubon drawing).

## Examples coming from Kéry's Introduction to WinBUGS



Peregine falcon. Fastest living stuff on Earth. Photo by Sumeet Moghe

#### Generating body size data

```
1 #Generate two samples of body mass measurements of male peregrines
2 y10 <- rnorm(n = 10, mean = 600, sd = 30) ## Sample of 10 birds
3 y1000 <- rnorm(n = 1000, mean = 600, sd = 30) ## Sample of 1000 birds
4
5 # Plot data
6 xlim = c(450, 750)
7 par(mfrow = c(2,1))
8 hist(y10, col = 'grey', xlim = xlim, main = 'Body mass (g) of 10 male peregrines')
9 hist(y1000, col = 'grey', xlim = xlim, main = ' Body mass (g) of 1000 male peregrines')</pre>
```

#### Generating body size data





#### Body mass (g) of 1000 male peregrines



Male mass distrib= f(sample size)



```
1 ### Analysis using R
2 summary(lm(y1000 ~ 1))
3
4 ###Analysis using JAGS
5 library(R2jags) # Load R2jags
6
7 # Bundle and summarize the data set passed to JAGS
8 str(jags.data <- list(mass = y1000, nobs = length(y1000)))</pre>
```

```
1 # Specify model in BUGS language
2 cat(file = "model.txt", "
3 model {
5 ## Priors
6 population.mean ~ dunif(0,5000)
8 # Normal parameterized by precision
9 precision <- 1 / population.variance</pre>
# Precision = 1/variance
n population.variance <- population.sd * population.sd
population.sd ~ dunif(0,100)
4 ## Likelihood
s for(i in 1:nobs){
   mass[i] ~ dnorm(population.mean, precision)
16
17 }
```

```
1 # Initial values
2 inits <- function()list(population.mean = rnorm(1,600), population.sd =</pre>
     runif(1, 1, 30))
4 # Parameters to be monitored (= to estimate)
5 params <- c("population.mean", "population.sd", "population.variance")</pre>
7 # MCMC settings
8 nc <- 3
                  # Number of chains
9 ni <- 1000
                # Number of draws from posterior (for each chain)
n nb <- 1  # Number of draws to discard as burn-in
nt <- 1
                # Thinning rate
3 # Call JAGS from R, check convergence and summarize posteriors
4 out <- jags(jags.data, inits, parameters=params, model.file="model.txt",
      n.chains=nc, n.thin=nt, n.iter=ni, n.burnin=nb, working.directory
     = qetwd())
```

1 Inference for Bugs model at "model.txt", fit using jags,

1 print(out, dig = 2)

#### And you should then observe

```
2 3 chains, each with 1000 iterations (first 1 discarded)
3 n.sims = 2997 iterations saved
                    mu.vect sd.vect 2.5%
                                              25%
                                                      50%
                                                             75% 97.5% Rhat n.eff
5 population.mean
                  600.37 0.94 598.55 599.74 600.35 600.98 602.26 1.00 2100
6 population.sd
                   31.04 0.69 29.75 30.57 31.02 31.52
                                                                   32.36 1.00 1100
7 population.variance 964.15 42.86 884.85 934.77 962.52 993.42 1047.46 1.00 1100
8 deviance
                    9708.32 2.46 9706.46 9706.96 9707.71 9708.98 9713.51 1.05 3000
O For each parameter, n.eff is a crude measure of effective sample size,
In and Rhat is the potential scale reduction factor (at convergence, Rhat=1).
3 DIC info (using the rule, pD = var(deviance)/2)
PD = 3.0 and DIC = 9711.3
5 DIC is an estimate of expected predictive error (lower deviance is better).
```

#### Now for the t-test

Let's go to the code!

Practicals: ANOVA.