Работа 4.3.2

Дифракция света на ультразвуковой волне в жидкости

Лось Денис (группа 611)

21 февраля 2018

Цель работы: изучение дифракции света на синусоидальной акустической решётке, наблюдение фазовой решётки методом тёмного поля, определение скорости ультразвука в воде, а также периода акустической решётки.

В работе используются: оптическая скамья, осветитель, два длиннофокусных объектива, кювета с жидкостью, кварцевый излучатель с микрометрическим винтом, генератор ультразвуковой частоты, линза, микроскоп.

Введение в теоритическую часть

При прохождении ультразвуковой волны через жидкость в ней возникают периодические оптические неоднородности, обусловленные разницей значений коэффициента преломления в областях сжатия и разрежения. Эти периодические неоднородности играют роль своеобразной дифракционной решётки для проходящего сквозь жидкость света.

При небольших амплитудах звуковой волны показатель преломления жидкости n меняется по закону

$$n = n_0 \left(1 + \alpha \cos Kx \right),\,$$

где $K=2\pi/\Lambda$ — волновое число для ультразвуковой волны (Λ — длина ультразвуковой волны), α — глубина модуляции показателя преломления, определяемая интенсивностью ультразвуковой волны.

Приняв фазу световых колебаний на передней по ходу лучей поверхности жидкости равной нулю, на задней поверхности (z=0) будем иметь

$$\varphi = knL = kn_0L \left(1 + \alpha \cos Kx\right),\,$$

где L — толщина слоя в кювете. k — волновое число для света.

Получается, в плоскости z=0 фаза световых колебаний является периодической функцией координаты, т.е. ультразвуковая волна создаёт в жидкости фазовую дифракционную решётку.

Для зависимости угла поворота волнового фронта световой волны $\Theta(x)$ от координаты x можем записать:

$$\Theta(x) = \frac{dz}{dx} = \frac{1}{k} \frac{d\varphi}{dx} = -K n_0 L \cdot \alpha \sin(Kx)$$

Качественный критерий, при выполнении которого можно пренебречь искривлением световых лучей в кювете, и, следовательно, считать акустическую решётку чисто фазовой:

$$|\Theta(x)_{
m max}|L\ll \Lambda$$
 или $lpha\ll \left(rac{\Lambda}{L}
ight)^2$

В случае слабой фазовой модуляции после прохождения через кювету световое поле представимо в виде совокупности трёх, а в общем случае некоторого большого числа плоских волн, которые распространяются под углами, определяемыми из условия

$$\Lambda \sin \psi_m = m\lambda \quad (m = 0, \pm 1, \pm 2, \dots) \tag{1}$$

При этом каждая из этих волн соответсвует одному из максимумов в дифракционной картине Фраунгофера.

Наблюдение дифракции на акустической решётке

Экпериментальная установка

Схема установки для наблюдения дифракции на акустической решётке изображена на рис.1.

Рис. 1: Схема для наблюдения дифракции на акустической решётке

Источник света Π через светофильтр Φ и конденсор K освещает щель S, которая расположена в фокусе объектива O_1 . Выходящий из объектива параллельный пучок света проходит через кювету C, перпендикулярно направлению распространения ультразвуковых волн, которые возбуждаются пьезокварцевой пластинкой Q, на которую подаётся напряжение ультразвуковой частоты от генератора. В фокальной плоскости F второго объектива O_2 образуется дифракционная картина, наблюдаемая при помощи микроскопа M. Пористая резина Π в данной установке отсутствует, а следовательно, в кювете образуется стоячая волна, что позволяет использовать в данной работе метод тёмного поля.

В данной экспериментальной установке фокусное расстояние объектива O_2

$$f = 30 \, \mathrm{cm}$$

В качестве светофильтра Ф используется красный фильтр с полосой пропускания

$$\lambda = (640 \pm 20) \text{ HM}$$

Методика измерений

В силу малости углом ψ_m формула (1) может быть приведена к виду

$$l_m = mf \frac{\lambda}{\Lambda},\tag{2}$$

где l_m — измеренное на опыте расстояние между m-м и нулевым максимумами, а f — фокусное расстояние объектива O_2 .

Соотвественно предлагается измерить положения нескольких дифракционных максимумов x_m с помощью микрометрического винта микроскопа для нескольких частот УЗ-генератора. Построив график зависимости x_m-x_0 от порядка m дифракционного максимума, по методу наименьших квадратов найти коэффициент наклона полученной прямой $\beta = \Delta x_m/\Delta m = l_m/m$.

Далее для каждой частоты генератора при помощи формулы (2) найти длину ультразвуковой волны $\Lambda = f\lambda/\beta$. Затем рассчитав для каждой частоты скорость распространения ультразвуковой волны $v = \Lambda \cdot \nu$, где ν — частота генератора ультразвуковой частоты, и усреднив полученные результаты, получить искомую скорость ультразвуковой волны v_{y3} .

Погрешность коэффициента наклона β мы определяем согласно методу наименьших квадратов, принимая во внимание тот факт, что, измеряя x_m с помощью микрометрического винта с ценой деления 4 мкм, мы будем иметь для них приборную погрешность Δ_{x_m} , равную 2 мкм. Частоту ультразвукового генератора мы определяем с точностью до 10^{-3} МГц.

Тогда принимая σ за обозначение относительной погрешности рассматриваевых величин получим финальные формулы для рассчёта погрешностей

$$\begin{split} \Delta_{\Lambda} &= \Lambda \cdot \sqrt{\sigma_{\lambda}^2 + \sigma_{\beta}^2} \\ \Delta_{v} &= v \cdot \sqrt{\sigma_{\lambda}^2 + \sigma_{\beta}^2 + \sigma_{\nu}^2} \\ \Delta_{v_{y_3}} &= \frac{1}{n} \cdot \sqrt{\Delta_{v_1}^2 + \dots + \Delta_{v_n}^2} \end{split}$$

Применение метода тёмного поля

Экспериментальная установка

Чтобы получить видимое изображение фазовой акустической решётки, прежде всего необходимо получить в поле зрения микроскопа изображение задней плоскости (считая по ходу световых лучей) кюветы. Достигнуть этого можно с помошью вспомогательной линзы \mathbf{O} , которую необходимо расположить на оптической скамье за фокальной плоскостью объектива O_2 . Данная схема приведена на рис.2. Остальные элементы и их характеристики, изображённые на рис.2. описаны в пояснении к схеме, изображённой на рис.1. Источник света, светофильтр и конденсор здесь не показаны.

Рис. 2: Схема для наблюдения акустической решётки методом тёмного поля

Методика измерений

Прежде чем приступить непосредственно к методу тёмного поля, необходимо найти цену деления окулярной шкалы микроскопа, которая нам потребуется для дальнейших измерений. Для этого, прижав к задней стенке кюветы стеклянную пластинку с миллиметровыми делениями, совместим её деления с делениями окулярной шкалы и определим количество тех и других делений.

Далее закрыв центральный максимум вертикальной нитью и убедившись, что после этого в поле зрения видны тёмные и светлые полосы, будем измерять расстояние между самыми дальними из хорошо видимых тёмных полос, а также просчитывать число промежутков между ними. Согласно теории метода тёмного поля расстояние между тёмными полосами соответствует смещению в плоскости кюветы на $\Lambda/2$. Следовательно, исходя их вышесказанного, длина ультразвуковой волны может быть определена как

$$\Lambda = 2 \, \frac{s \cdot \delta_y}{N},$$

где s — число делений между самыми дальними из хорошо видимых тёмных полос, N — число промежутков между ними, а δ_y — цена деления окулярной шкалы.

Приведём соотвествующие формулы для рассчёта погрешностей определения длины ультразвуковой волны, а также её скорости распространения v_{y_3} .

$$\Delta_{\Lambda} = \Lambda \cdot \sigma_{s}$$

$$\Delta_{v} = v \cdot \sqrt{\sigma_{\Lambda}^{2} + \sigma_{\nu}^{2}}$$

$$\Delta_{v_{y_{3}}} = \frac{1}{n} \cdot \sqrt{\Delta_{v_{1}}^{2} + \dots + \Delta_{v_{n}}^{2}}$$

Ход работы

Наблюдение дифракции на акустической решётке

l_m , дел	m
0	0
39	1
81	2
121	3
-42	-1
-82	-2
-123	-3

Таблица 1: Таблица измерений l_m от m при частоте $\nu=1.221~{
m M}\Gamma$ ц

l_m , дел	m
0	0
43	1
91	2
-48	-1
-92	-2

Таблица 2: Таблица измерений l_m от m при частоте $\nu=1.355~{\rm M}\Gamma$ ц

l_m , дел	m
0	0
37	1
76	2
118	3
-40	-1
-76	-2
-114	-3

Таблица 3: Таблица измерений l_m от m при частоте $\nu=1.136~{\rm M}\Gamma$ ц

Построенные графики

Рис. 3: График зависимости l_m от m при $\nu=1.221$ М Γ ц

Рис. 4: График зависимости l_m от m при $\nu=1.355~{\rm M}\Gamma{\rm m}$

Рис. 5: График зависимости l_m от m при $\nu=1.136$ МГц

Найденные с помощью МНК коэффициенты наклона β

ν, МΓц	β , mm	Δ_{β} , mm	$\sigma_{eta},\%$
1.221	0.1627	0.0009	0.6
1.355	0.1840	0.003	1.6
1.136	0.1539	0.0012	0.8

Рассчитанные длины УЗ-волн для каждой из частот

ν , М Γ ц	Λ , mm	Δ_{Λ} , mm	$\sigma_{\Lambda},\%$	<i>v</i> , м / с	$\Delta_v, { m M} / { m c}$
1.221	1.18	0.04	3.4	1441	49
1.355	1.04	0.04	3.8	1414	54
1.136	1.24	0.04	3.2	1417	45

В результате получившаяся скорость распространения ультразвуковой волны в воде

$$v_{y3} = (1420 \pm 30) \frac{M}{c}$$

Применение метода тёмного поля

Калибровка окулярной шкалы микроскопа

Принимая за a — число делений миллиметровой пластинки, b — число делений окулярной шкалы микроскопа, а за δ_u — цену деления окулярной шкалы, получим

A следовательно, $\delta_y = 76$ мкм.

Определение длины и скорости распространения ультразвуковой волны методом тёмного поля Принимая за s — расстояние между самыми дальними их хорошо видимых в поле зрения тёмных полос, а за N — число промежутков между ними, получим

ν , М Γ ц	s, дел	N	Λ , mm	Δ_{Λ} , mm	$\sigma_{\Lambda},\%$	v, м $/$ с	Δ_v , м / с
1.187	162	20	1.231	0.008	0.6	1461	9
1.292	145	19	1.160	0.008	0.7	1498	9
1.437	150	22	1.036	0.007	0.7	1489	10

В результате получившаяся скорость распространения ультразвука в воде, найденная с помощью метода тёмного поля

$$v_{y3} = (1483 \pm 5) \frac{M}{c}$$

Выводы

В ходе работы нам удалось пронаблюдать явление дифракции световой волны на акустической решётке, создаваемой ультразвуковой волной в воде. Также мы наблюдали непосредственно саму фазовую решётку, используя для этого метод тёмного поля. Как в ходе наблюдения дифракции, так и в ходе наблюдения акустической решётки с помощью метода тёмного поля нами были получены длина ультразвуковой волны при различных частотах, а также скорость распространения ультразвуковой волны в воде. Приведём повторно полученные результаты

$$v_{
m 3B~дифр} = (1420 \pm 30) \, rac{
m M}{
m c}$$
 $v_{
m 3B~T.~ПОЛЕ} = (1483 \pm 5) \, rac{
m M}{
m c}$

Полученные результаты согласуются с известным табличным значением для скорости распространения ультразвуковой волны в воде

$$v_{ ext{табл}} = 1481 \, rac{ ext{M}}{ ext{c}}$$