STŘEDOŠKOLSKÁ ODBORNÁ ČINNOST Obor č. 2: Fyzika

Mechanika rodin planetek s aplikací na rodinu Eunomia

Adam Křivka Jihomoravský kraj

Brno 2018

TODO: Ostatní nutné úvodní stránky pro SOČku \dots

Obsah

1	Úvo	od do nebeské mechaniky	5
	1.1	Pohybové rovnice	Ę
		1.1.1 Rovnice pro dvě tělesa	6
		1.1.2 Rovnice pro N těles	10
	1.2	Orbitální elementy	12
		1.2.1 Oskulační elementy	12
		1.2.2 Střední elementy	14
		1.2.3 Vlastní elementy	15
2	Pla	netky ve sluneční soustavě	17
	2.1	Rodiny planetek	17
		2.1.1 Metody identifikace rodin	17
3	Vla	stnosti rodiny Eunomia	18
	3.1	Fyzikální model pro rodinu Eunomia	19
		3.1.1 Nevratné děje při vývoji	19
	3.2	Nejistoty pozorovaných dat	21
	3.3	(Simulace orbitálního vývoje)	22
	3.4	(Porovnání modelu a pozorování)	22
4	Apl	likace v praxi	23

OBSAH 4

24

5 Budoucí možnosti výzkumu

Úvod do nebeské mechaniky

TODO: Úvod

1.1 Pohybové rovnice

Pohybová rovnice je matematicky zapsaný fyzikální vztah, který popisuje možné pohyby těles v daném prostředí [1]. Řešením pohybové rovnice je funkce, popisující polohu a rychlost každého zkoumaného tělesa v závislosti na čase. Přitom potřebujeme znát počáteční podmínky — polohy a rychlosti těles na začátku. Pohybová rovnice bývá ve tvaru diferenciální rovnice, což je rovnice, která vyjadřuje vztah mezi nějakou funkcí a jejími derivacemi, což je okamžitá změna hodnoty funkce při velmi malé změně argumentu, v našem případě času.

V následující části se pokusíme nalézt řešení pohybové rovnice pro tělesa ve sluneční soustavě. Zákony, jimiž se budou naše tělesa řídit, jsou Newtonův gravitační zákon a Newtonovy

pohybové zákony, které byly poprvé definovány již v roce 1687.

1.1.1 Rovnice pro dvě tělesa

Omezme se nyní na dvě tělesa a nalezněme řešení tzv. problému dvou těles — Keplerovy úlohy. To znamená, že se pokusíme odvodit funkci, popisující polohu a rychlost obou těles v závisloti na čase.

Nacházíme se v inerciální vztažné soustavě, což je taková vztažná soustava, kde platí první Newtonův zákon. Jako bod v klidu si zvolme těžiště soustavy. Pro síly působící na obě tělesa podle Newtonova gravitačního zákona a druhého a třetího pohybového zákona platí

$$\vec{F}_1 = +G \frac{m_1 m_2}{|\vec{r}|^3} \vec{r} = m_1 \vec{a}_1 \tag{1}$$

$$\vec{F}_2 = -G \frac{\dot{m}_1 \dot{m}_2}{|\vec{r}|^3} \vec{r} = m_2 \vec{a}_2, \tag{2}$$

kde G označuje gravitační konstantu, m_1 , m_2 hmotnosti zkoumaných těles, \vec{a}_1 , \vec{a}_2 vektory zrychlení těles (tj. druhé derivace polohových vektorů \vec{r}_1 , \vec{r}_2 podle času) a \vec{r} vektor udávající vzájemnou polohu těles, definovanou jako $\vec{r} = \vec{r}_2 - \vec{r}_1$. Součtem obou rovnic dostáváme

$$\vec{F_1} + \vec{F_2} = m_1 \vec{a_1} + m_2 \vec{a_2} = 0. \tag{3}$$

Vektor popisující polohu těžiště soustavy je $\vec{R} \equiv \frac{m_1 \vec{r}_1 + m_2 \vec{r}_2}{m_1 + m_2}$. Jeho druhou derivací podle času dostáváme zrychlení

$$\frac{\mathrm{d}^2 \vec{R}}{\mathrm{d}t^2} = \frac{m_1 \vec{a_1} + m_2 \vec{a_2}}{m_1 + m_2} = 0,$$

které se podle (3) rovná nule, takže se těžiště soustavy pohybuje konstantní rychlostí.

Nyní se však přesuňme do soustavy neinerciální, kde je první z těles (běžně to hmotnější) nehybné. Řekněme, že nehybné těleso má index 1, tedy nově $\vec{r}_1' = 0$, $\vec{r}_2' = \vec{r}$ (tedy i $\vec{a}_2' = \vec{a}$) a $\vec{r}' = \vec{r}$. Provedli jsme v podstatě transformaci, kdy jsme ke každému vektoru přičetli \vec{r}_1 . Rovnici (1) můžeme přepsat jako

$$\vec{a} = Gm_2 \frac{\vec{r}}{|\vec{r}|^3}$$

$$\frac{\mathrm{d}^2 \vec{r}}{\mathrm{d}t^2} - Gm_2 \frac{\vec{r}}{|\vec{r}|^3} = 0 \tag{4}$$

Často ještě definujeme gravitační paramter soustavy $\mu = Gm_2$.

I přesto, že tato diferenciální rovnice ještě není ve své konečné podobě vhodné k tomu, abychom z ní vyvodili následující vztah, prozradíme, že je jím funkce v polárních souřadnicích, popisující vzdálenost těles $r \equiv |\vec{r}|$ v závisloti na úhlu θ , který svírá přímka procházející oběma tělesy a nějaká zvolená referenční přímka:

$$r(\theta) = \frac{p}{1 + e\cos(\theta - \omega)}. (5)$$

Vztah (5) je obecným předpisem kuželosečky — hyperboly, paraboly, elipsy nebo kružnice; pro naše účely se zaměřme na případ elipsy, kdy se v jednom z jejích ohnisek nachází centrální těleso.

p označuje parametr elipsy, jehož velikost je určena hodnotou μ a pro který platí vztah

$$p = \frac{b^2}{a},\tag{6}$$

kde a označuje délku hlavní poloosy, což je úsečka spojující střed elipsy s jedním z průsečíků elipsy s hlavní osou — přímkou spojující ohniska, a b označuje délku vedlejší poloosy, což je úsečka spojující střed elipsy s průsečíkem elipsy s přímkou kolmou na hlavní poloosu a procházející středem elipsy — vedlejší osou (viz obrázek 1.1).

Dále e, resp. ω jsou integrační konstanty a nazývají se excentricita, resp. argument pericentra. Pro excentricitu platí vztah

Obrázek 1.1: Eliptická oběžná dráha vesmírného tělesa. a označuje délku hlavní poloosy, b délku vedlejší poloosy, F_1 a F_2 označují polohy ohnisek elipsy, přičemž centrální těleso se nachází v bodě F_1 , a P, resp. A označují pericentrum, resp. apocentrum oběžné dráhy, tedy bod nejnižší, resp. nejvyšší vzdálenosti od centrálního tělesa, ω označuje argument pericentra.

$$e = \sqrt{1 - \frac{a^2}{b^2}},\tag{7}$$

a volně řečeno udává, jak moc se elipsa liší od kružnice. Hodnota excentricity se pro eliptické dráhy nachází v intervalu (0,1), kde krajními případy jsou e=0: dráha má tvar kružnice, a e=1: dráha má tvar paraboly.

Argument pericentra je úhel, který svírá hlavní osa s referenční přímkou. Platí pro něj vztah

$$\theta = \omega + f,\tag{8}$$

kde f označuje pravou anomálii, což je úhel, který svírá hlavní osa s průvodičem tělesa (viz obrázek 1.2).

Uvědomme si, že jsme neodvodili závislost polohy tělesa na čase. Tuto závislost určuje Keplerova rovnice:

$$M = E + e\sin E \tag{9}$$

kde M označuje střední anomálii, E excentrickou anomálii (viz obrázek 1.2) a e excentricitu

May-DO: Předělat do jednotného stylu obrázků.

Obrázek 1.2: Ilustrace vztahu mezi excentrickou anomálií E a pravou anomálií f. a, resp. b značí délku hlavní, resp. vedlejší poloosy, P značí polohu tělesa na elipse, C značí střed elipsy, F značí ohnisko, ve kterém se nachází centrální těleso a e značí excentricitu (vymazat??)

elipsy. Pro E a pravou anomálií f platí vztah

$$\tan\frac{f}{2} = \sqrt{\frac{1+e}{1-e}} \tan\frac{E}{2}.\tag{10}$$

Anomálie mají úhlové jednotky, úhel M ale nemůžeme zkonstruovat, nicméně je významný tím, že je lineárně závislý na čase, neboť je určen vztahem

$$M = nt, (11)$$

kde n označuje střední denní pohyb, jinak řečeno průměrnou úhlovou rychlost. Pokud známe E, můžeme pomocí Keplerovy rovnice snadno spočítat M. Problém spočívá v tom, že nemůžeme vyjádřit E v závisloti na M konečným výrazem, ale pouze nekonečnou řadou nebo jej můžeme aproximovat iteračními nebo numerickými metodami.

(Uvést iterační metodu, můj kód???)

1.1.2 Rovnice pro N těles

Jak vidíme, už i pro dvě tělesa se musíme k získání polohy tělesa v čase uchýlit k numerickým metodám. Ukazuje se, že obecný problém N těles je analyticky neřešitelný¹ a jediné aplikovatelné metody jsou metody přibližné analytické nebo numerické.

Uvažujme nyní N těles — respektive hmotných bodů, které na sebe vzájemně gravitačně působí v souladu s Newtonovým gravitačním zákonem. Pro libovolné těleso, označené indexem $i \in \{1, 2, ..., N\}$, je celková síla F_i , která na něj působí, výslednicí všech gravitačních sil způsobených ostatními tělesy, jak ukazuje následující rovnice.

$$\vec{F}_i = m_i \vec{a}_i = \sum_{\substack{j=1\\j\neq i}}^N G \frac{m_i m_j}{|\vec{r}_i - \vec{r}_j|^3} (\vec{r}_i - \vec{r}_j)$$
(12)

$$\vec{a}_i = \sum_{\substack{j=1\\j\neq i}}^{N} \frac{Gm_j}{|\vec{r}_i - \vec{r}_j|^3} (\vec{r}_i - \vec{r}_j)$$
(13)

kde $\vec{r_i} - \vec{r_j}$ označuje vektor určující vzájemnou polohu těles i a j, konkrétně jde o vektor s počátkem v tělese j a vrcholem v tělese i; ostatní veličiny jsou definované analogicky jako v předchozí části.

Eulerova metoda

I přesto, že se následující integrační metoda v přesných numerických výpočtech zřídka používá, uvádíme ji zde z didaktických důvodů, neboť názorně ilustruje použití numerických metod pro řešení problému N těles. Jak název napovídá, poprvé s ní v 18. století přišel švýcarský matematik Leonhard Euler.

Princip algoritmu spočívá v tom, že v libovolném čase můžeme z (13) vypočítat zrychlení každého tělesa. Pak, po zvolení určitého časového kroku, odpovídajícím způsobem změníme vektor rychlosti. Následně necháme všechna tělesa po dobu časového kroku pohybovat se po přímce konstantní rychlostí. Existují dvě verze Eulerovy metody, dopředná a zpětná, které

¹existují ale nějaká zajímavá speciální řešení, viz [2].

se liší volbou rychlosti, se kterou necháváme pohybovat se po přímce, viz následující přesný popis obou metod a obrázek 1.3.

Mějme zmiňovaných N hmotných bodů, pro které platí (13). Zaměřme se na jeden z nich a označme jeho počáteční polohu $\vec{r}(t_0)$ a počáteční rychlost $\vec{v}(t_0)$. K použití Eulerovy metody potřebujeme znát i počáteční polohy a rychlosti všech ostatních těles v systému. Dále vhodně zvolme velikost časového kroku h. V následujících třech krocích si ukážeme jednu iteraci algoritmu jak pro dopřednou, tak pro zpětnou metodu.

Obrázek 1.3: Ilustrace dopředné (vpravo) a zpětné (vlevo) Eulerovy metody pro dvě tělesa, kdy větší těleso (velká tečka vlevo nahoře) gravitačně působí na menší těleso (malé tečky vpravo). Jsou ukázány první tři iterace. Algoritmus byl doopravdy implementován, s hodnotami: $h = 20 \,\mathrm{dn\mathring{u}}, \, m_1 = 2 \cdot 10^{30} \,\mathrm{kg}, \, G = 6.67 \cdot 10^{-11} \,\mathrm{m^3 kg^{-1} s^{-2}}, \, |\vec{r}| = 1 \,\mathrm{AU}, \, v_0 = 29861 \,\mathrm{ms^{-1}}.$ Vektory jsou přeškálované. Šedá křivka znázorňuje analytické řešení problému dvou těles.

- 1. Nechť je v čase t_k poloha zvoleného bodu $\vec{r}(t_k)$ a rychlost $\vec{v}(t_k)$. Z (13) vypočítáme zrychlení $\vec{a}(t_k)$.
- 2. Položme $t_{k+1} = t_k + h$ a vypočítejme $\vec{v}(t_{k+1}) = \vec{v}(t_k) + h \cdot \vec{a}(t_k)$.

 $^{^2}$ Můžeme porovnat se vzorcem pro rovnoměrný přímočarý pohyb, dobře známým ze středoškolského učiva: $v=v_0+at$, podobně v kroku 3: $s=s_0+vt$

3. Pro dopřednou metodu vypočítejme $\vec{r}(t_{k+1})$ jako $\vec{r}(t_{k+1}) = \vec{r}(t_k) + h \cdot \vec{v}(t_k)$ a pro zpětnou jako $\vec{r}(t_{k+1}) = \vec{r}(t_k) + h \cdot \vec{v}(t_{k+1})$. Poté se vraťme ke kroku 1, tentokrát počítaje v čase t_{k+1} .

Jak můžeme vidět na obrázku 1.3, vypočtená dráha se od té analytické značně vzdaluje. To by samozřejmě řešila volba menší kroku h, ale pro velký počet těles a velkou požadovanou přesnost je algoritmus velmi pomalý.

Jedno z možných vylepšení je volně řečeno průměrování dopředné a zpětné Eulerovy metody — tzv. "leapfrog" metoda. Spočívá v tom, že rychlost počítáme v jedné polovině časového kroku, ne na konci nebo na začátku. Další zpřesnění lze získat tak, že místo pohybu po přímce konstantní rychlostí použijeme lokální eliptickou dráhu, kterou získáme, když zanedbáme všechna ostatní tělesa a uvážíme pouze centrální těleso. Tato integrační metoda se již podobá algoritmu Wisdom–Holman Mapping, jehož ještě zlepšenou verzi využívá integrační balíček SWIFT [3], který budeme v této práci používat. Nutno dodat, že v námi užitém algoritmu ještě započítáváme negravitační jevy, jako Yarkovského jev, YORP jev a náhodné srážky, viz [4].

1.2 Orbitální elementy

K úspěšnému určení a zařazení oběžné dráhy nějakého vesmírného tělesa zavedeme šest elementů dráhy, které budeme v pozdějších sekcích používat k analýze rodin planetek. V sekci 1.1.1 jsme odvodili obecnou rovnici kuželosečky zapsanou v polárních souřadnicích. Ve sluneční soustavě se však s jinými, než s eliptickými dráhami nesetkáme, budeme tedy definovat elementy dráhy pouze pro dráhu eliptickou.

1.2.1 Oskulační elementy

Oskulační elementy popisují takovou oběžnou dráhu tělesa, po které by se pohybovalo kolem centrálního tělesa v problému dvou těles — tedy po zanedbání všech ostatních těles (planet, měsíců, . . .) a negravitačních sil. Svým způsobem tedy zachycují aktuální stav tělesa v rámci

celé soustavy, je tudíž nutno s nimi uvádět i časový údaj — tzv. epochu. Neustále se mění působením perturbací, což jsou jakékoli vnější síly působící na těleso jiné, než gravitační síla centrálního tělesa — např. gravitace ostatních planet, nerovnoměrný tvar centrálního tělesa či Jarkovského efekt, neboli unášení, o kterém budeme hovořit později.

Prvními dvěma elementy jsou hlavní poloosa a excentricita, které určují tvar elipsy (viz obrázek 1.1). Hlavní poloosu značíme a a při studiu sluneční soustavy tento údaj většinou udáváme v astronomických jednotkách — AU, přičemž $1 \, \mathrm{AU} = 149\,597\,870\,\mathrm{km}$, což je střední vzdálenost slunce a Země.

Dalšími dvěma elementy jsou argument pericentra a střední anomálie (viz 1.1.1), které udávají polohu tělesa v rovině oběžné dráhy. Referenčí přímkou je průsečnice roviny dráhy s refereční rovinou — ekliptikou, přesněji řečeno je to polopřímka s počátečním bodem v poloze centrálního tělesa a pomocným bodem ve vzestupné uzlu, což je bod, ve kterém těleso prochází refereční rovinou "zespodu nahoru". Střední anomálie je určená vztahem (11) a udává samotnou polohu tělesa na elipse.

Poslední dvojice elementů, sklon a délka vzestupného uzlu, udává polohu roviny oběžné dráhy v prostoru. Sklon dráhy (cizím slovem inklinace) je orientovaný úhel, který svírá rovina dráhy vzhledem k ekliptice. Znaší se i a většinou se udává ve stupních, někdy se ale uvádí $\sin i$, což je ekvivalentní definice, protože pro $-90^o \le i \le 90^o$ je $\sin i$ jednoznačně určen. Délka vzestupného uzlu je orientovný úhel, který svírá spojnice centrálního tělesa s vzestupným uzlem s referenčím směrem v rovině ekliptiky, za který se ve sluneční soustavě bere směr k jarnímu bodu, což je jeden z průsečíků ekliptiky s rovinou zemského rovníku, jinak řečeno poloha slunce vzhledem k Zemi v okamžiku jarní rovnodennosti.

Výpočet polohy tělesa z elementů dráhy

Skutečnost, že elementů je právě šest, není náhodou, existuje totiž výpočet, kterým lze z polohy a rychlosti tělesa v prostoru, tedy z údajů x, y, z, v_x, v_y, v_z , vypočítat elementy dráhy v prostoru; je tedy logické, že vzniklých údajů musí být zase šest.

Ukažme, pro účely této práce, jak z šesti elementů dráhy vypočítat polohu tělesa x,y,z vzhledem k centrálnímu tělesu.

- 1. Z rovnice (9) nějakou ze jmenovanných metod (aproximačních, iteračních nebo numerických) vypočítáme velikost excentrické anomálie.
- 2. Vztah (10) upravíme a spočteme pravou anomálii f:

$$f = 2\tan^{-1}(\sqrt{\frac{1+e}{1-e}}\tan\frac{E}{2})$$
(14)

3. Pomocí vztahu

$$r = a(1 - e\cos E) \tag{15}$$

vypočítáme velikost r — relativní vzdálenost těles.

4. Pomocí vztahů

$$x = r(\cos\Omega\cos(\omega + f) - \sin\Omega\sin(\omega + f)\cos i) \tag{16}$$

$$y = r(\sin\Omega\cos(\omega + f) + \cos\Omega\sin(\omega + f)\cos i) \tag{17}$$

$$z = r\sin i\sin(\omega + f) \tag{18}$$

vypočítáme x, y, z.

(Uvést kód z Pythonu???)

1.2.2 Střední elementy

Střední elementy jsou elementy dráhy zbavené krátkých periodických perturbací, jako jsou pohyby velkých planet, např. Jupitera nebo Saturnu. Pro jejich výpočet z oskulačních elementů lze použít analytické, numerické nebo také filtrační metody, které jsme v naší práci využili.

Střední elementy odstraňují vliv tzv. rezonancí středního pohybu, což jsou oblasti vesmírného prostoru, ve kterém když se planetka nachází, tvoří poměr její periody s periodou nějaké jiné planety zlomek s nízkým čitatelem a jmenovatelem (viz ??).

Obrázek 1.4: Porovnání oskulační a střední hlavní poloosy pro simluaci jedné planetky po dobu 3.76 miliónů let.

1.2.3 Vlastní elementy

Vlastní elementy jsou elementy dráhy zbavené jak krátkých, tak dlouhých periodických perturbací, mezi které kromě již zmíněných patří navíc sekulární rezonance, které jsou způsobeném závislotí frekvencí precese (změny) argumentu perihélia a délky vzestupného uzlu planetky a nějaké jiné planety.

Vlastní elementy jsou tedy svým způsobem "průměry" pohybu a jsou téměř neměnné ve velkém časovém úseku, ačkoliv působením negravitačních sil — hlavně Jarkovského jevu — se můžou pomale zvětšovat nebo zmenšovat.

Mezi vlastní elementy počítáme pouze vlastní hlavní poloosu — a_p , vlastní excentricitu — e_p a vlastní inklinaci — i_p . Ostatní elementy nemá cenu uvažovat, protože argument perihélia i délka vzestupného uzlu periodicky precedují a střední anomálie je lineárně závislá na čase.

Obrázek 1.5: Porovnání střední a vlastní hlavní poloosy pro simluaci jedné planetky po dobu $3.76\,$ miliónů let.

Planetky ve sluneční soustavě

Rozdělení planetek na hlavní pás, Trojany, Hildy, ...

2.1 Rodiny planetek

Definice — katastrofická srážka, rozptýlení ve střední anomálii, podobnost pouze ve vlastních elementech, přesunout sem kapitoly o Jarkovského jevu, YORPu a náhodných srážkách???

2.1.1 Metody identifikace rodin

Popis HCM (hierarchická shlukovací metoda), v_{cutoff} ,

Rezonance středního pohybu

Nástin výpočtu jejich polohy (je to jednoduché), vysvětlení vlivu na HCM

Rezonance sekulární

Nějaký hezký obrázek (třeba ze složky secres???), dlouhodobý vliv

Vlastnosti rodiny Eunomia

Postup určování rodiny, volba v_{cutoff} , pozadí — [česky] interlopers (ref na později), rozdělení velikostí

Obrázek 3.1: Závislost počtu členů rodiny Eunomia na zvolení hraniční rychlost v_{cutoff} . Počet členů prudce vzroste při přechodu z rychlosti $43\,\mathrm{m/s}$ na $44\,\mathrm{m/s}$, což je způsobené vzdáleností prvního tělesa jiného než mateřského tělesa. Dále vzroste prudce při přechodu z rychlosti $46\,\mathrm{m/s}$ na $47\,\mathrm{m/s}$, což je způsobené splynutím s jinou rodinou.

Obrázek 3.2: Histogram četnosti velikostí planetek, kde veličina N(>D) označuje počet planetek s průměrem větším než D. ???

3.1 Fyzikální model pro rodinu Eunomia

Rozdělení v ae a ai prostoru, vliv rezonancí J8/3 a J13/5, Gaussovy rovnice — elipsa, volba bodu rozpadu ($f = 90^{\circ}$, $\omega + f = 50^{\circ}$).

[česky] Interlopers

Odstranění interlopers, barevné indexy, SLOAN, WISE, ref na Nejistoty veřejných dat.

3.1.1 Nevratné děje při vývoji

Disipační síly, vliv na vývoj v prostoru vlastních elementů, reference na nějaký článek o nové databázi tvarů planetek???

Jarkovského jev

Popis, vysvětelní obrázku aH, vliv na vlastní elementy, účinky kolem rezonancí

Obrázek 3.3: Pozorovaná rodina Eunomia v rovině vlastní hlavní poloosy a_p a vlastní excentricity e_p a v rovině vlastní hlavní poloosy a_p a vlastní inklinace $\sin i_p$. Barvy jsou převzaty z katalogu WISE. J8/3 a J13/5 označují rezonance středního pohybu s Jupiterem. Šedé křivky naznačují výpočet Gaussových rovnic pro hodnoty $f=0^o, 90^o, 180^o$ a $\omega+f=0^o, 50^o, 90^o$, kde nejlepší hodnotou je $f=90^o$ a $\omega+f=50^o$.

YORP jev

Popis, zmínka o Poynting-Robertson efektu???, zesílení Jarkovského jevu

Náhodné srážky

???

Obrázek 3.4: Barevné indexy z katalogu SLOAN (ref článek o tom). Pro vyřazení interlopers byly zvoleny krajní hodnoty $0 \le a^* \le 0.3$ a $-0.3 \le i-z \le 0.3$.

Obrázek 3.5: Barevné indexy z katalogu SLOAN (ref článek o tom). Pro vyřazení interlopers byly zvoleny krajní hodnoty $0.05 \le p_v \le 0.4$.

3.2 Nejistoty pozorovaných dat

???

Následující dvě kapitoly budou napsány až po doběhnutí simulace.

Obrázek 3.6: Rozdělení pozorované rodiny Eunomia v rovině vlastní hlavní poloosy a_p a absolutní hvězdné velikosti H. Lze pozorovat typický tvar V, který je způsobem počátečním rozpadem a vlivem Jarkovského jevu, který je navíc ještě zesílen vlivem YORPu, což způsobuje větší koncentraci malých planetek na okrajích rodiny.

3.3 (Simulace orbitálního vývoje)

Popis experimentu (údaje o výpočetní technice)

3.4 (Porovnání modelu a pozorování)

Aplikace v praxi

K čemu se to hodí: pochopení dějů ve sluneční soustavě, informace o jejím vzniku, katalog rodin planetek nám může říct něco o jejich složení — těžba asteroidů

Budoucí možnosti výzkumu

???

Bibliografie

- [1] Wikipedie. Pohybová rovnice Wikipedie: Otevřená encyklopedie. [Online; navštíveno 28. 11. 2018]. 2018. URL: https://cs.wikipedia.org/wiki/Pohybov%C3%A1_rovnice.
- [2] A. Cohan. "A Figure Eight And other Interesting Solutions to the N-Body Problem". In: (2012). URL: https://sites.math.washington.edu/~morrow/336_12/papers/adrian.pdf.
- [3] H. Levison a M.J. Duncan. SWIFT: A solar system integration software package. URL: http://www.boulder.swri.edu/~hal/swift.html.
- [4] M. Broz et al. "Did the Hilda collisional family form during the late heavy bombardment?" In: (2011). URL: http://sirrah.troja.mff.cuni.cz/yarko-site/tmp/trojans_obrien/r32mig.pdf.