Revisão P1-MM719-PED

Questão 1. Sejam V um espaço vetorial de dimensão finita e $T:V\to V$ uma transformação linear. Mostre que

$$V = Ker(T) \oplus Im(T) \Leftrightarrow Ker(T) = Ker(T^2).$$

Questão 2. Seja V um espaço vetorial de dimensão finita n e $T:V\to V$ um operador linear. Mostre que existe $k\in\mathbb{N}$ tal que

$$V = Ker(T^k) \oplus Im(T^k).$$

Dica: Mostre que existe $k \in \mathbb{N}$ tal que $Im(T^{k+j}) = Im(T^k)$ e $Ker(T^{k+j}) = Ker(T^k)$, para todo j = 0, 1, 2, ...

Questão 3. Verifique a veracidade das afirmações abaixo. Aqui, todos os espaços vetoriais em questão tem dimensão finita.

- () Seja V um espaço vetorial e $P:V\to V$ uma transformação linear. Se $V=Ker(P)\oplus Im(P)$ então P é um operador de projeção.
- () Se $V=V_1\oplus V_2\oplus \cdots V_s$ é uma decomposição em soma direta de subespaços, então existem transformações lineares $T_1,...,T_s:V\to V$ tais que $T_iT_j=0$ se $i\neq j$ e $T_1+\cdots T_s=I$, onde I é a identidade em V.
- () Sejam A e B matrizes $m \times n$ e $n \times m$ respectivamente. Se n < m, então necessariamente $\det(AB) = 0$.

$$(\mathbb{R}^4 \oplus (M_2(\mathbb{R}))^* \oplus \mathcal{P}_3(\mathbb{R}) \oplus (\mathbb{R}^2 \times \mathbb{R}^2)^*)^* \cong M_4(\mathbb{R})$$

Questão 4. Sejam V um espaço vetorial e W_1,W_2 subespaços de V. Mostre que se $V=W_1\oplus W_2$, então $V^*=W_1^0\oplus W_2^0$. Além disso, conclua que $W_1^0\cong W_2^*$ e $W_2^0\cong W_1^*$.

Dica: Para a segunda parte do exercício, para ver que W_1^0 é isomorfo a W_2^* , defina $T:W_1^0\to W_2^*$ por $f\mapsto f_{|W_2}$.

Questão 5. Dada uma matriz $A \in M_{m \times n}(K)$, define-se o posto de A (e denota-se por rank(A)) como sendo a dimensão da imagem do operador linear

$$T_A: K^n \to K^m, \quad x \mapsto Ax.$$

Suponha que rank(A) = r > 0, mostre que r é o maior número tal que A possui uma submatriz $B \in M_r(K)$ com det $B \neq 0$.

Questão 6. Considere o espaço vetorial $V = \mathbb{R}^n$ munido do produto interno usual $\langle \cdot, \cdot \rangle$. Dados $v_1, ..., v_k \in V$, seja $A = (\langle v_i, v_j \rangle)_{ij}$, mostre que

$$\det A \le |v_1|^2 \cdots |v_k|^2$$

onde $|\cdot|$ é a norma induzida de $\langle\cdot,\cdot\rangle$.