Proof of Case 3 in
$$64.3$$
.

Recall $e^{4} = \sum_{n=0}^{\infty} \frac{x^{n}}{(2n)!}$, $\cos x = \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2n}}{(2n)!}$, $\sin x = \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2n}}{(2n)!}$

So, $i^{2} = -1$ Ain $x = \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2n+1}}{(2n)!}$
 $i^{2}m+1 = i(i^{2}m) = (-1)^{m}i$

Euler's formula :
$$e' = \cos x + i \sin x$$

 $PF: e^{ix} = \sum_{n=0}^{\infty} \frac{(ix)^n}{n!} = \sum_{m=0}^{\infty} \frac{(ix)^{2m}}{(2m)!} + \sum_{m=0}^{\infty} \frac{(ix)^{2m+1}}{(2m+1)!}$
Let $n = 2m$. $= \sum_{m=0}^{\infty} \frac{(-1)^m x^{2m}}{(2m)!} + i \sum_{m=0}^{\infty} \frac{(-1)^{2m} x^{2m+1}}{(2m+1)!}$
 $= \cos x + i \sin x$

So,
$$y = e^{(d + \beta i)x}$$

 $= e^{dx} \left(\cos \beta x + i \sin \beta x \right)$
 $= e^{dx} \left(\cos \beta x + i \sin \beta x \right)$
Similar statement for $y = e^{(d - \beta i)x}$

Now, ag"+ by + cy = 0 $AE: am^2 + bm + c = 0$ If the aguar roots are complex (conjugate):

M = 1 : 2: M= d+Bi So $y = C_1 e^{(\alpha + \beta i)} x + C_2 e^{(\alpha - \beta i)} x$ Honever, Complex solution with conglex coefficients. he want real solution Let $C_1 = 1$ and $C_2 = 1$. Then $\begin{aligned}
\cos(-\beta x) &= \cos(\beta x) \\
y &= e^{d x} e^{\beta i x} + e^{d x} e^{-\beta i x} \end{aligned}$ where $C_1 = 1$ and $C_2 = 1$. Then $\begin{aligned}
\cos(-\beta x) &= \cos(\beta x) \\
\cos(-\beta x) &= \cos(\beta x)
\end{aligned}$ = cos(PX) $= e^{\alpha x} (\cos \beta x + i \sin \beta x)$ $+ e^{\alpha x} (\cos \beta x) + i \sin \beta x) = -\sin(\beta x)$ = ex (cospx + i sin px) + ex (cos px - i sin px) = 2 ex cos (Bx). So y = e cos (Bx) is a real solution to the DE. Letting C,=i, Cz=-i, get yz=exx sin (px). So y=ce dx cosfix +cedx sin (Bx).