Безусл мног оптим. Метод полином интерполяции.
 Метод квадратичной интерполяции. Метод Пауэлла.
 метод кубической интерпол (Дэвидона)

Основные определения. Задачей многомерной оптимизации является минимизация функции $U=f(x_1,x_2,...,x_m)$ от m переменных (параметров) $x_1,x_2,...,x_m$. Если нет ограничений на параметры $x_1,...,x_m$, то говорят о глобальной безусловной минимизации, если есть ограничения на параметры $x_1,...,x_m$, то говорят об условной минимизации.

1. Основные определения. Задачей многомерной оптимизации является минимизация функции $U = f(x_1, x_2, ..., x_m) \text{ от m переменных (параметров)}$ $x_1, x_2, ..., x_m. \text{ Если нет ограничений на параметры }$ $x_1, ..., x_m, \text{ то говорят о глобальной безусловной }$ минимизации, если есть ограничения на параметры $x_1, ..., x_m, \text{ то говорят об условной минимизации.}$

Для сокращенного обозначения функции многих переменных удобно использовать векторное $\widehat{T}(\overrightarrow{X}), \text{ при этом подразумевается,}$ что каждой величине \overrightarrow{X} сопоставлен свой единственный набор значений величин $x_1,...,x_m$. В соответствии с этим величину \overrightarrow{X} можно рассматривать как точку (элемент) m-мерного линейного пространства независимых переменных $x_1,...,x_m$. Если в этом пространстве ввести единичные векторы $\widehat{e}_1,...,\widehat{e}_m$, поставленные в соответствие переменным $x_1,...,x_m$, то величину \overrightarrow{X} можно рассматривать как вектор: $\overrightarrow{X} = X_1 \overrightarrow{e}_1,...,X_m \overrightarrow{e}_m$, а операции сложения и вычитания производить по правилу векторов.

Общие критерии останова численных методов оптимизации функции многих переменных

- 1. Достигнута заданная норма градиента: $\left\| \nabla f(x^{(k)}) \right\| \leq \varepsilon$
- 2. Достигнуто предельное количество итераций: $k \geq M$
- 3. Изменение значения функции и текущего приближения к точке оптимума меньше

$$\|x^{(k+1)} - x^{(k)}\| < \varepsilon_{1}$$
 $\|f(x^{(k+1)}) - f(x^{(k)})\| < \varepsilon_{2}$

Полиномиальная (алгебраическая) интерполяция

Если в качестве интерполяционной функции выбран многочлен от од ой переменной: $P(x)=a_0+a_1\cdot x+a_2\cdot x^2+a_3\cdot x^3+...+a_n\cdot x^n$, такая интерполяция называется алгебраической интерполяцией. В этом случае СЛАУ для определения коэффициентов интерполяционного полинома имеет вид:

$$\begin{cases} a_0 + a_1 \cdot x_0 + \dots + a_n \cdot x_0^n = P_0 \\ a_0 + a_1 \cdot x_1 + \dots + a_n \cdot x_1^n = P_1 \\ \dots \\ a_0 + a_1 \cdot x_n + \dots + a_n \cdot x_n^n = P_0 \end{cases}$$

а ее определитель:

$$\begin{vmatrix} 1 & x_0 & x_0^2 & \dots & x_0^n \\ 1 & x_1 & x_1^2 & \dots & x_1^n \\ & & \dots & & \\ 1 & x_n & x_n^2 & \dots & x_n^n \end{vmatrix}$$

отличен от нуля, так как узлы интерполяции попарно различны. Это известный из курса линейной алгебры определитель Вандермонда. Следовательно, решение задачи алгебраической интерполяции всегда существует и единственно.

Прямое решение этой системы никогда не используется в практических вычислениях. При больших **п**система для определения коэффициентов интерполяции оказывается плохо обусловленной. Однако решение этой задачи можно построить другим способом:

$$L_n(x) = \sum_{i=0}^{n} y_i \cdot \prod_{\substack{j=0 \ j \neq i}}^{n} \frac{(x - x_j)}{(x_i - x_j)}$$

Такой вид записи алгебраического интерполяционного полинома называется интерполяционным полиномом в форме Лагранжа. Он удобен для теоретического рассмотрения, но на практике часто оказывается более удобной другая форма представления — полином в форме Ньютона.

Методы квадратичной интерполяции

Пусть известно значение функции f(x) в трех несовпадающих точках x_1, x_2, x_3 . Тогда f(x) может аппроксимирована квадратичным полиномом вида:

$$P(x) = Ax^2 + Bx + C$$

где А,В,С- определяются из уравнения:

$$\begin{array}{l}
\mathbb{I} Ax_{1}^{2} + Bx_{1} + C = f(x_{1}) = f_{1} \\
\mathbb{I} Ax_{2}^{2} + Bx_{2} + C = f(x_{2}) = f_{2} \\
\mathbb{I} Ax_{3}^{2} + Bx_{3} + C = f(x_{3}) = f_{3}
\end{array}$$

После решения этих уравнений получаем:

$$A=[(x_3-x_2)f_1+(x_1-x_3)f_2+(x_2-x_1)f_3]/\Delta$$

$$B = [(x_2^2 - x_3^2)f_1 + (x_3^2 - x_1^2)f_2 + (x_1^2 - x_2^2)f_3]/\Delta$$

$$C \!\!=\!\! [x_2 x_3 (x_3 \!\!-\! x_2) f_1 \!\!+\! x_1 x_3 \ (x_1 \!\!-\! x_3) f_2 \!\!+\! x_2 x_1 \ (x_2 \!\!-\! x_1) f_3] / \Delta$$

$$\Delta = (x_1 - x_2)(x_2 - x_3)(x_3 - x_1)$$

Точка минимума полинома P(x) вычисляется $x_{\min} = -\frac{B}{2A}$, при A > 0

Тогда оценить точку оптимума функции f(x) можно значением \mathbf{X} (оценка оптимальности):

$$\tilde{x} = \frac{1}{2} \frac{(x_2^2 - x_3^2) f_1 + (x_3^2 - x_1^2) f_2 + (x_1^2 - x_2^2) f_3}{(x_2 - x_3) f_1 + (x_3 - x_1) f_2 + (x_1 - x_2) f_3}$$

Алгоритм.

Шаг I. Выбрать три точки
$$x_1 < x_2 < x_3$$
 такие что $f(x_1) > f(x_2)$ и $f(x_2) < f(x_3)$.

Шаг 2. Вычислить точку X, используя формулу определения точки минимума квадратичного полинома.

Шаг 3. Проверить условие окончания поиска. Если

Uиаг 4. Выбрать наилучшую точку (\min_{x_1, x_2, x_3}) или x и две точки по обе стороны от нее. Перейти к шагу 2.

Этот метод имеет недостатки. Если $\phi(x)$ плохо аппроксимирует целевую функцию f(x) в выбранной окрестности, то минимум функции $\phi(x)$ будет плохой оценкой для решения задачи. На практике точка x может оказаться вне начального интервала неопределенности.

Метод квадратичной интерполяции сходится сверхлинейно.

Таким образом, методы исключения интервалов основаны на процедуре простого сравнения значений функции в двух пробных точках. Метод точечного оценивания позволяет определить точку оптимума с помощью полиномиальной аппроксимации. В условиях, когда интервалы сходимости сравнимы между собой, а исследуемая функция является достаточно гладкой и унимодальной, метод точечного оценивания сходится значительно быстрее, методы интервалов. Однако исследовании при изменяющихся функций наиболее надежными являются методы золотого сечения и Фибоначчи.

Метод Пауэлла (квадратичной интерполяции)

Шаг1. Задать начальную точку $^{\mathcal{X}_1}$, величину шага $\Delta x > 0$, $^{\mathcal{E}_1}$ $_{_{\rm I}}$ $^{\mathcal{E}_2}$ - малые положительные числа, характеризующие точность

Шаг 2. Вычислить
$$x_2 = x_1 + \Delta x$$

Шаг 3. Вычислить
$$f(x_1) = f_{1_{\mathsf{H}}} f(x_2) = f_2$$

Шаг 4. Сравнить
$$f(x_1)_c f(x_2)_:$$

а) если
$$f(x_1) > f(x_2)$$
, положить $x_3 = x_1 + 2\Delta x$

$$f(x_1) \le f(x_2)$$
, положить $x_3 = x_1 - \Delta x$

Шаг 5. Вычислить
$$f(x_3) = f_3$$

Шаг б. Найти
$$F_{\min} = \min\{f_1, f_2, f_3\}$$
, $x_{\min} = x_i : f(x_i) = F_{\min}$

Шаг 7. Вычислить точку минимума интерполяционного полинома, построенного по трем точкам:

$$\widetilde{x} = \frac{1}{2} \frac{(x_2^2 - x_3^2) f_1 + (x_3^2 - x_1^2) f_2 + (x_1^2 - x_2^2) f_3}{(x_2 - x_3) f_1 + (x_3 - x_1) f_2 + (x_1 - x_2) f_3}$$

и величину функции $f(\widetilde{x})$. Если знаменатель дроби на некоторой итерации обращается в ноль, то результатом интерполяции является прямая. В этом случае рекомендуется обозначить $x_1 = x_{\min}$ и перейти к шагу 2.

Шаг 8. Проверить выполнение условий окончания:

$$\left| \frac{F_{\min} - f(\widetilde{x})}{f(\widetilde{x})} \right| < \varepsilon_1 \left| \frac{x_{\min} - \widetilde{x}}{\widetilde{x}} \right| < \varepsilon_2$$

Тогда

а) если оба условия выполнены, процедура закончена и $\chi^*\cong \widetilde{\chi}$.

б) если хотя бы одно из условий не выполнено и $\widetilde{x}\in [x_1,x_3]_{, \text{ выбрать наилучшую точку}}(x_{\min \text{ или}})$ и две точки по обе стороны от нее. Обозначить эти точки в естественном порядке и перейти к шагу 6.

в) если хотя бы одно из условий не выполнено и $\widetilde{x} \not\in [x_1, x_3]_{\text{, то положить }} x_1 = \widetilde{x}_{\text{и перейти к шагу 2.}}$

Метод кубической интерполяции (Давидона)

Для кубической интерполяции в методе Давидона используется значение функций и ее производных, вычисленных в точках x_1 , x_2 .

Используется кубический полином следующего вида:

$$P(x) = a_0 + a_1(x - x_1) + a_2(x - x_1)(x - x_2) + a_3(x - x_1)^2(x - x_2)$$

Параметры a_0 , a_1 , a_2 , a_3 подбираются т.о., чтобы значениеP(x) иP'(x) в точках x_1 , x_2 совпадали со значениями f(x) иf'(x).

$$\phi(x) = a_1 + a_2(x - x_1) + a_2(x - x_2) + a_3(x - x_1)^2 + 2a_3(x - x_1)(x - x_2)$$

$$\phi(x) = 0$$

Решение, определяющее стационарную точку кубического полинома выглядит следующим образом:

$$\tilde{x} = \tilde{x}_2$$
, если $\mu < 0$
 $\tilde{x} = \tilde{x}_2 - \mu(x_2 - x_1)$, если $0 \le \mu \le 1$
 \tilde{x}_1 , если $\mu > 1$

$$\mu = \frac{f_{\mathcal{D}} + \omega - z}{f_{\mathcal{D}} - f_{\mathcal{D}} + 2\omega}; \qquad z = \left[\frac{3(f_{\mathcal{D}} - f_{\mathcal{D}})}{x_{\mathcal{D}} - x_{\mathcal{D}}} \right] + f_{\mathcal{D}} + f_{\mathcal{D}}$$

$$\omega = \begin{bmatrix} (z^2 - f_1 f_2)^{\frac{1}{2}}, \text{ если } x_1 < x_2 \\ \vdots - (z^2 - f_1 f_2)^{\frac{1}{2}}, \text{ если } x_1 > x_2 \end{bmatrix}$$

Эта формула гарантирует, что точка $\begin{cal}\widetilde{\times}$ расположена между $x_1,\,x_2.$

Процесс поиска заканчивается, если производная в полученной точке достаточно мала, или процедура становится неэффективной.