

Instituto Tecnológico y de Estudios Superiores de Monterrey Campus Puebla

Actividad 4.3 (Regresión Logística Ajuste)

Equipo 5:

José Manuel Morales Escalante
Josué Ibáñez Santana
Sergio Giles Bracamontes
Ismael Martinez Duran

Materia:

Analítica de datos y herramientas de inteligencia artificial II

Fecha:

27 de abril de 2025

Análisis Profundo de Hallazgos: Comparación entre Reponderación y Oversampling

El análisis detallado de la tabla revela diferencias clave entre los modelos entrenados con **Reponderación** y **Oversampling**, aunque en la mayoría de los casos los resultados son muy similares. Sin embargo, algunos modelos presentan variaciones significativas que merecen atención.

1. Modelos con Diferencias Notables entre Técnicas de Balanceo

Autopush

Precisión Label 1:

o Reponderación: 0.990272

Oversampling: 0.991228 (ligera mejora)

Sensibilidad Label 1:

o Reponderación: 0.335089

Oversampling: 0.371955 (mejoró aproximadamente 3.7%)

Exactitud ("Execitual"):

o Reponderación: 0.337035

• Oversampling: **0.373612** (mejoró aproximadamente 3.7%)

Conclusión:

- Oversampling logra una mejora marginal pero consistente en todas las métricas.
- La sensibilidad sigue siendo baja, lo que sugiere que el modelo sigue teniendo dificultades para detectar casos positivos.

Color Rojo

Precisión Label 1:

o Reponderación: **0.014063**

Oversampling: 0.014634 (ligero aumento)

• Exactitud ("Execitual"):

o Reponderación: 0.587851

Oversampling: 0.604180 (mejoró aproximadamente 1.6%)

Conclusión:

- Aunque la mejora es pequeña, Oversampling consigue un mejor equilibrio general.
- La sensibilidad perfecta (1.0) con precisión extremadamente baja sugiere un sobreajuste hacia la clase mayoritaria.

Color Violeta

Precisión Label 1:

o Reponderación: 0.366972

Oversampling: 0.375415 (mejoró aproximadamente 2.3%)

Sensibilidad Label 1:

o Reponderación: 0.300000

Oversampling: 0.282500 (empeoró aproximadamente 5.8%)

Exactitud ("Execitual"):

o Reponderación: 0.681907

Oversampling: 0.689745 (mejoró aproximadamente 1.1%)

Conclusión:

- Oversampling aumenta la precisión pero reduce la sensibilidad, lo que indica un trade-off.
- La exactitud mejora ligeramente, pero el modelo sigue siendo poco sensible para Label 1.

Color Verde

Sensibilidad Label 1:

o Reponderación: **0.744186**

Oversampling: 0.759690 (mejoró aproximadamente 2.1%)

Exactitud ("Execitual"):

o Reponderación: **0.387329**

• Oversampling: **0.377531** (empeoró aproximadamente 2.5%)

Conclusión:

- Oversampling mejora la detección de Label 1, pero empeora el equilibrio general.
- Esto podría deberse a un sobreajuste en la clase minoritaria.

Minijuego Asteroides

• Sensibilidad Label 1:

o Reponderación: 0.703846

• Oversampling: **0.734615** (mejoró aproximadamente 4.4%)

• Exactitud ("Execitual"):

o Reponderación: 0.335728

Oversampling: 0.306336 (empeoró aproximadamente 8.7%)

Conclusión:

 Oversampling aumenta la sensibilidad pero reduce la exactitud, lo que sugiere que se están introduciendo más falsos positivos.

2. Modelos con Resultados Prácticamente Idénticos

Algunos modelos no muestran diferencias significativas entre técnicas de balanceo, lo que sugiere que el oversampling no aporta mejoras en estos casos:

- Botón correcto (igual en todas las métricas).
- Color azul (ningún cambio).
- Color amarillo (diferencias mínimas, menos del 1%).
- Minijuego restaurantes (diferencias insignificantes).

3. Hallazgos Clave

Problemas Comunes:

- Trade-off entre precisión y sensibilidad:
 - En modelos como color violeta y minijuego asteroides, aumentar la sensibilidad reduce la exactitud, lo que indica que el modelo está clasificando más ejemplos como positivos pero con menor certeza.
- Métricas extremas en ciertos modelos:
 - Autopush tiene precisión casi perfecta (0.99) pero sensibilidad muy baja (aproximadamente 0.35), lo que sugiere que solo predice positivos cuando está muy seguro, pero falla en detectar muchos casos reales.
 - Color rojo tiene sensibilidad perfecta (1.0) pero precisión bajísima (0.014), lo que implica que casi todas las predicciones positivas son incorrectas (alto número de falsos positivos).
- Impacto limitado del oversampling:
 - En la mayoría de los casos, no hay una mejora clara al usar oversampling en lugar de reponderación.
 - Solo en autopush, color rojo y violeta hay diferencias ligeramente favorables al oversampling.

Conclusiones Finales y Recomendaciones

- Priorizar Reponderación en modelos sin diferencias (botón correcto, color azul, amarillo, minijuego restaurantes), ya que oversampling no aporta beneficios.
- 2. **Evaluar técnicas alternativas** (como SMOTE o ajustes de umbral) en modelos con métricas extremas (autopush, color rojo).
- 3. Analizar el trade-off en modelos como color violeta y minijuego asteroides: ¿Es preferible mayor sensibilidad aunque baje la exactitud?
- 4. **Revisar el desbalanceo de clases**, ya que algunos modelos (color rojo) tienen sensibilidad perfecta pero precisión casi nula, lo que sugiere un problema de distribución de clases.

Acción recomendada: Realizar un análisis de curvas ROC y matriz de confusión para entender mejor los falsos positivos/negativos en los modelos más críticos.