Министерство науки и высшего образования Российской Федерации

Калужский филиал

федерального государственного бюджетного образовательного учреждения высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (КФ МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ _ ИУК «Информатика и управление»

КАФЕДРА <u>ИУК4 «Программное обеспечение ЭВМ, информационные</u> технологии»

ЛАБОРАТОРНАЯ РАБОТА №5

«Проверка гипотез»

ДИСЦИПЛИНА: «Методы обработки информации»

Выполнил: студент гр. ИУ	⁄К4-72Б	(Подпись)	(Карельский М.К.)
Проверил:		(Подпись)	(Никитенко У.В.)
Дата сдачи (защиты):			
Результаты сдачи (защить	и): - Балльная	я оценка:	
	- Оценка:		

Вариант 7

Пусть проверяется простая гипотеза относительно параметра распределения H_0 : $\theta = \theta_0$, с заданным уровнем значимости α .

Для нескольких альтернативных гипотез H_1 : $\theta = \theta_{1i}$, при $\theta_{1i} = \theta_0 + i \Delta$ (i = 1,2,3,4,5). Построить графики мощности критерия значимости, если используется выборка (выборка из Π 3-2):

- 1. объема $k_1 = 25$ (любые 25 значений из заданной выборки);
- 2. объема $k_2 = N$ (полный объем исходной выборки)

Используя полученные результаты, построить таблицы "Ошибка II рода и мощность для нескольких альтернативных гипотез с объемом выборки k_i и α " и графики функций мощности критерия для случая 1 и 2.

Листинг:

```
import numpy as np
import matplotlib.pyplot as plt
from scipy import stats
import csv
from prettytable import PrettyTable
def read csv(filename):
   array = []
   with open(filename,encoding='utf-8') as read f:
        file reader = csv.reader(read f)
        for row in file reader:
           array.append(float(row[0]))
    return array
def main(array):
    sample size = len(array)
    sample mean = np.mean(array)
    sample std = np.std(array)
    null hypothesis mean = sample mean - 1
    t statistic = (sample mean - null hypothesis mean) / (sample std /
np.sqrt(sample size))
   p value = 2 * (1 - stats.t.cdf(np.abs(t statistic), df=sample size - 1))
    if p value < alpha:</pre>
       print ("Отвергаем нулевую гипотезу")
   else:
        print("Принимаем нулевую гипотезу")
    alternative hypothesis means = np.linspace(null hypothesis mean,
null hypothesis mean + 5, 5)
   power values = [
        1 - stats.t.cdf((null hypothesis mean - alt mean) / (sample std /
np.sqrt(sample size)), df=sample size - 1)
```

```
for alt mean in alternative hypothesis means
    1
   plt.figure()
   plt.plot(alternative hypothesis means, power values)
    plt.xlabel("Значение альтернативной гипотезы")
   plt.ylabel("Мощность критерия")
    plt.title("График мощности критерия")
    plt.axhline(alpha, color='red', linestyle='--', label=f"Уровень значимости
({alpha})")
    plt.legend()
   plt.show()
   print(p value)
   print(power_values)
    table = PrettyTable()
    table.add column ("Значение параметра распределения",
alternative hypothesis means)
    table.add column("Мощность теста", power values)
    table.add column("Ошибка 2 рода", [1 - power values[i] for i in
range(len(power values))])
    print(table)
array = read csv("Test7.csv")
alpha = 0.1
main(array)
main(array[:25])
```

Результат:

Рис. 1.1. Малая выборка

Значение параметра распределения	Мощность теста	Ошибка 2 рода
-0.5087804456106164	0.5	0.5
0.7412195543893836	0.9999999999975584	2.4416024757556443e-12
1.9912195543893836	1.0	0.0
3.2412195543893834	1.0	0.0
4.491219554389383	1.0	0.0

Рис. 1.2. Малая выборка

Рис. 2.1. Полная выборка

+ Значение параметра распределения	 Мощность теста	
-0.5090559293770681	0.5	0.5
0.7409440706229319	1.0	0.0
1.9909440706229318	1.0	0.0
3.2409440706229318	1.0	0.0
4.490944070622932	1.0	0.0
+	H	+

Рис. 2.2. Полная выборка