

Dalziel High School Chemistry

Name:	•••••••••••••••••••••••••••••••••••••••
Class:	Teacher:

Section	Title	Completed
3.1a	Factors Affecting the Design of a Chemical Process	
3.1b	Calculation of the Mass	
3.1c	Calculations in Reactions That Involve Solutions	
3.1d	Reversible Reactions	
3.1e	Excess Calculations	
3.2a+b	Enthalpy	
3.2c	Hess's Law	
3.2d	Bond Enthalpies	
3.3a	Oxidising & Reducing Agents	
3.3b	Ion-Electron and Redox Equations	
3.4a	Chromatography	
3.4b	Volumetric Titrations	

	Dalziel Highon Chamietmy Salf Evaluation			Tro	iffic Li	ght	
	Higher Chemistry Self-Evaluation		Page	70	-Ser	ร	
7	School Unit 3.1a Factors Affecting Design of a Chemical Process	CHEMISTRY	9	Red	Amber	Gre	
	Industrial processes are designed to:)		
1	a) maximise profit			\odot	\odot	\odot	
	b) minimise the impact on the environment.						
	Factors that influence the design of an industrial process include:						
	a) availability						
	b) sustainability						
2	c) cost of feedstock(s)		\otimes	<u>(:)</u>	\odot		
	d) opportunities for recycling)			
	e) energy requirements	e) energy requirements					
	f) marketability of by-products						
	g) product yield.						
	Environmental issues need to be considered when designing a chemical process.						
	These include:						
3	a) minimising waste			(3)	\odot	\odot	
	b) avoiding the use or production of toxic substances						
	c) designing products which will biodegrade if appropriate.						

The management of the second o	culate the mass of carbon dioxide produced if 5g of calcium carbonate reacts with excess HCl is $1 \times 40 = 40$ C $1 \times 12 = 12$ C $3 \times 16 = 46$ CaCO ₃ + 2HCl CaCl ₂ + H ₂ O + CO ₂ $1 \times 100 = 100$ 1×10	Page	(j:	(i) Amber	(i) Green
The ma masses e.g. calc	$N_{2(g)}$ + $3H_{2(g)}$ \longrightarrow $2NH_{3(g)}$ 1mol 3mol 2mol Ass of products formed from reactants can be calculated using balanced equations and formula collate the mass of carbon dioxide produced if $5g$ of calcium carbonate reacts with excess HCl $3 \text{ in } 1 \times 40 = 40$ $3 \text{ in } 1 \times 40 = 40$ $3 \text{ in } 1 \times 12 = 12$ 3		8	①	©
masses e.g. calc C C The vol	culate the mass of carbon dioxide produced if 5g of calcium carbonate reacts with excess HCl at 1 \times 40 = 40 \times 12 = 12 \times 3 \times 16 = 46 \times 100c \times 1 \times 10				
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		8	①	©
6	lume of a gas can be calculated from the number of moles and vice versa. Iculate the volume of 0.8g of oxygen gas if molar volume = 24litres mol ⁻¹ no. of mol $O_2 = \frac{\text{mass}}{\text{gfm}} = \frac{0.8g}{32g \text{ mol}^{-1}} = 0.025 \text{mol}$ Volume = no. of mol x molar volume = 0.025 mol x 24litres mol ⁻¹ = 0.6litres		8	(1)	©
7 • 1	volume is the same for all gases at the same conditions of temperature and pressure. the volume taken up by 1 mole of a gas is called the molar volume and has units <i>litres mol</i> ¹ molar gas volume is 22.4 litres mol ⁻¹ at STP (standard temperature & pressure i.e. 25°C and 1 atmosphere)		8	(1)	(i)
and pro e.g. Cal comple	alculate the volumes of reactant and product gases from the number of moles of each reactant oduct. culate the final volume and composition of the mixture produced when 100cm^3 of ethane is tely burned in 500cm^3 of oxygen. $C_2H_6(g) + 3\frac{1}{2}O_2(g) \longrightarrow 2CO_2(g) + 3H_2O(l)$ $1 \text{mol} \qquad 3.5 \text{mol} \qquad 2 \text{mol} \qquad 3 \text{mol}$ $1 \text{vol} \qquad 3.5 \text{vol} \qquad 2 \text{vol} \qquad \text{negligible volume}$ $100 \text{cm}^3 \qquad 350 \text{cm}^3 \qquad 200 \text{cm}^3 \qquad - \qquad $		③	①	(i)

	Dalziel	Higher Chemistry Self-Evaluation		Tro	affic Li	ght
	High School	Unit 3.1c Calculations in Reactions That Involve Solutions	Page	Red	Amber	Green
9	High School Unit 3.1c Calculations in Reactions That Involve Solutions Concentration is a measure of how many moles of solute is dissolve in a known volume of solvent. Units of concentration are moles per litre (mol l-1) I can work out quantities of reactants and/or products using one or more of the following: Balanced equations. Concentrations and volumes of solutions. Masses of solutes. e.g. Calculate the mass of calcium carbonate required to completely react with 80cm³ of 0.1mol l-1 hydrochloric acid. no of mol HCl = volume × concentration = 0.08litres × 0.1mol l-1 = 0.008mol CaCO ₃ + 2HCl → CaCl ₂ + H ₂ O + CO ₂ 1mol 2mol 0.004mol 0.008mol 1mol CaCO ₃ = (1x40.1)+(1x12)+(3x16) = 40.1+12+48 = 100.1g mass = no of mol × gfm = 0.004mol × 100.1g mol-1 = 0.4004g e.g. Calculate the concentration of a solution when 5.85g of NaCl is dissolved in 50cm³ water. Calculate the gfm of NaCl Calculate number of moles of NaCl Calculate the concentration Na 1 × 23 = 23			(3)	<u></u>	\odot
	known volu	ume of solvent. Units of concentration are moles per litre (mol l-1)		0		
	I can work					
	the follow	ing:				
		 Balanced equations. 				
		 Concentrations and volumes of solutions. 				
		 Masses of solutes. 				
	e.g. <i>Calculo</i>					
	,					
	no of mol HCl = volume \times concentration = 0.08litres \times 0.1mol l ⁻¹ = 0.008mol					
		$CaCO_3 + 2HCl \rightarrow CaCl_2 + H_2O + CO_2$				
10			(3)	⊕	\odot	
		0.004mol 0.008mol				
	1mol CaCC	$\theta_3 = (1 \times 40.1) + (1 \times 12) + (3 \times 16) = 40.1 + 12 + 48 = 100.1q$				
	_					
	Cl 1 x	$35.5 = 35.5$ $n = \frac{1}{9 \text{fm}} = \frac{1}{58.5} = 0.1 \text{mol } c = \frac{1}{V} = \frac{1}{0.05 \text{litres}} = 2 \text{ mol } r^{-1}$				
		gfm = 58.5g				

		Dalziel	History Chamisture Calf Fredrickian				Tra	ffic L	ight
			Higher Chemistry Selt-Evaluation			Page	70	er	ธ
7		_	Unit 3.1d Reversible Reactions	CHEMISTRY		, age	Red	Amber	Green
	Reversible reactions at tain a state of dynamic equilibrium when the rates of forward and reverse reactions are equal • reversible reactions are reactions where the forward reaction and the reverse reactions both take place at the same time At equilibrium, the concentrations of reactants and products remain constant, • concentrations of reactants and products are unlikely to be equal at equilibrium • the reaction has not stopped at equilibrium and the reverse reaction is to the take place at the same time At equilibrium, the concentrations of reactants and products are unlikely to be equal at equilibrium • the reaction has not stopped at equilibrium and the reverse reaction is to the tender of the tender of the equilibrium position is reached. Le Chatelier's Principle can explain the effect on the equilibrium position of changing pressure: No(g) + 3H ₂ (g)								
11			· · · · · · · · · · · · · · · · · · ·	.,				(\odot
12		revers	ble reactions are reactions where the forward reaction and the reverse rea	ctions both			(3)	\odot	\odot
(16)		take pl	ace at the same time						
40	A.	t equilibrium,	the concentrations of reactants and products remain constant,						
13		 concen 	trations of reactants and products are unlikely to be equal at equilibrium				\odot	\odot	\odot
(17)									
14					ily		(3)	\odot	\odot
								(\vdash
	Le	e Chateller's P		ıre:					
			5. (
			Imoi 3moi 2moi						
			1vol 3vol 2vol						
15a (18b)			4vol of gas \Longrightarrow 2vol of gas				\odot	\odot	\odot
(100)			Increase in Pressure Decrease in Pressure						
				ed	-				
		•	• •	m					
	L.		· · · · · · · · · · · · · · · · · · ·	iranon.					
15b	-		· ·	um shifts to rio	ht				
(18a)	-				_		(3)	\odot	\odot
				um shifts to lef	t				
		Removal of a p	roduct Equilibrium tries to replace removed product Forward reaction favoured Equilibri	um shifts to rig	ht				
	Le	e Chatelier's P	rinciple can explain the effect on the equilibrium position of changing tempe	rature:					
			$N_{2(g)}$ + $3H_{2(g)}$ \Longrightarrow $2NH_{3(g)}$ ΔH =-92.4kJ mo	- ¹					
		Г			7				
15c		6 4 6 1			_		\odot	\odot	\odot
(18c)					-		$ \circ $	\odot	\odot
			· · · · · · · · · · · · · · · · · · ·						
				ii eu	1				
			'	ım					
	Α	catalyst spee	ds up the rate of attainment of equilibrium but does not affect the position	of equilibriu	um				
15c			·	•			(3)	\odot	\odot
(19)			• • •						<u> </u>
	TI		· · ·						
			·						
		_	· · · · · · · · · · · · · · · · · · ·						
			·	مام نمایی میمندم					
				CTION WHICH					
16			·	equilibrium			(3)	\odot	\odot
(20)			re quickly (but does not produce more ammonia at equilibrium)	oquinor ium)	
			ng of unreacted gases						
		•	monia is easily separated from unreacted nitrogen & hydrogen as ammonia h	as a much					
			her boiling point. Unreacted nitrogen & hydrogen are returned to the react						
			l of product						
			noval of ammonia product before equilibrium is achieved means the system t	ried to repl	ace				
		am	monia to try to achieve equilibrium			1			l

17	Percentage yield is a measure of how much of a product is obtained compared to the amount expected if there was complete conversion.	8	<u></u>	©
18 (2.92)	Percentage yields can be calculated from balanced equations and masses of reactants and products: e.g. Calculate the %yield of ester if 2g of methyl ethanoate is formed when 1.6g of methanol is used. methanol + ethanoic acid \rightarrow methyl ethanoate + water $CH_3OH + CH_3COOH \rightarrow CH_3OCOCH_3 + H_2O $	8	(1)	3
19	Costs and percentage yields can be used to work out the cost of the feedstock(s) to produce a given mass of product.	8	(2)	\odot
20	Atom economy measures the proportion of the total mass of all starting materials successfully converted into the desired product. Atom Economy = $\frac{\text{mass of desired products}}{\text{total mass of reactants}} \times 100$	8	(2)	©
21	The atom economy of a reaction can be calculated using correct formula: e.g. calculate the atom economy of $C_9H_8O_4$ in the following reaction. $C_7H_6O_3 + C_4H_6O_3 - C_9H_8O_4 + C_2H_4O_2$ $1 \text{mol} 1 \text{mol} 1 \text{mol}$ $138g 102g 180g$ $atom economy = \frac{\text{mass of desired product}}{\text{total mass of reactants}} \times 100 = \frac{180g}{240g} \times 100 = 75\%$	8	•	0
22 23	Different routes are taken in manufacturing products depending on percentage yield and atom economy: • high percentage yield and a low atom economy results in a lot of waste products being produced • industrial process want efficiency i.e. high percentage yield and high atom economy.	8	<u></u>	③

	Dalziel Highan Chamist	and Call Carlottian		Tro	iffic Li	ght
	High High	ry Self-Evaluation ess Calculations	Page	Red	Amber	Green
24	Excess reactant(s) can be identified and explaine the chemical reaction is over once one of the other reactant in the chemical react	the reactants (the limiting reactant) is used up		8	<u>:</u>	③
25	The cost of excess reactant(s) used in industrial costs can be minimised by having the che			(3)	\odot	\odot
26		ictant in excess and therefore the limiting reactant,		©	(1)	9
27	environmental balance in an industrial process • excess reactants which do not turn into	conomy can be related to the idea of an economic/ products are a waste of resources and money. Id high atom economy are efficient economically environmental considerations		8	①	©

	Dalziel Highen Chemistry Self-Evaluation		Tr	affic Li	ght
	High School Higher Chemistry Self-Evaluation Unit 3.2a+b Enthalpy	Page	Red	Amber	Green
28	Enthalpy (H) is a measure of the energy stored in a chemical. • Enthalpy change is given the symbol ΔH		8	<u></u>	\odot
29 (31)	The enthalpy of combustion of a substance is the amount of energy given out when one mole of a substance burns in excess oxygen.		8	(1)	\odot
30 31 (34)	The enthalpy change for a reaction can be calculated from the data for specific heat capacity, mass and temperature change. • By calculation of how much of 1 mole was burned, the enthalpy of combustion can be calculated e.g. Calculate the enthalpy of combustion of ethanol if 0.92g of ethanol burned to heat up 200cm^3 of water by $6^{\circ}C$. $E_h = c \times m \times \Delta T$ $= 4.18 \times 0.2 \times 6$ $= 5.016 \text{ kJ}$ $1 \text{mol of ethanol } C_2 \text{H}_5 \text{OH} = (2 \times 12) + (6 \times 1) + (1 \times 16)$ $= 24 + 6 + 16$ $= 46g$ $0.92g \text{ ethanol}$ $46g$ 5.016 kJ 5.016 kJ $46g$ 5.016 kJ $46g$ 5.016 kJ $46f$ $46g$ 5.016 kJ $46f$ $46g$ $60g$ 6		(3)	(1)	©

	Dalziel High High Page 11 2 2 11 2 2 11 2 2 11 2 2 2 11 2				affic Li	ght
		Unit 3.2c Hess's Law	Page	Red	Amber	Green
32	Hess's Law: Enthalpy chang	ge for any particular chemical reaction is the same regardless of chemical route taken.		3	<u></u>	©
33	e.g. Calculate th	es can be calculated by application of Hess's Law: ne enthalpy of formation for SiH_4 (2009 Higher question 15b) $Si + 2H_2 \rightarrow SiH_4$ SiH ₄ + 2O ₂ \rightarrow SiO ₂ + 2H ₂ O \triangle H= -1517 kJ Si + O ₂ \rightarrow SiO ₂ \triangle H= -911 kJ H ₂ + $\frac{1}{2}$ O ₂ \rightarrow H ₂ O \triangle H= -286 kJ 1 SiO ₂ + 2H ₂ O \rightarrow SiH ₄ + 2O ₂ \triangle H= +1517 kJ 1 SiO ₂ + 2H ₂ O \rightarrow SiO ₂ \triangle H= -911 kJ 2 Si + O ₂ \rightarrow SiO ₂ \triangle H= -911 kJ 3 x2 $2H_2 + O_2 \rightarrow 2H_2O$ \triangle H= -572 kJ add Si + 2H ₂ \rightarrow SiH ₄ \triangle H= +34 kJ		3	①	©
	e.g. calculate the	The enthalpy of formation of ethyne (2007 Higher question 12b)		3	:	3

	Dalziel Highen Chemistry Salf Evaluation		Tro	ffic Li	ght
	High School Unit 3.2d Bond Enthalpies	Page	Red	Amber	Green
34	Molar Bond Enthalpy is the energy required to break one mole of bonds in a substance. e.g. 1mol of C-H bonds requires 412 kJ of energy to break 1mol of C-H bonds releases 412 kJ of energy when formed Mean bond enthalpy can be slightly different or the molar bond enthalpy for a particular substance as the environment the bonds being broken are around have a slight effect on the energy required. The mean bond enthalpy is the average for the bond enthalpy for different substances.				
35	Bond enthalpies can be used to calculate the enthalpy change for reactions in the gas phase e.g. calculate the enthalpy of formation of HCl: $\frac{1}{2}H_{2(g)} + \frac{1}{2}CI_{2(g)} \longrightarrow HCI_{(g)}$ Endothermic Steps: Bond Breaking $\frac{1}{2}\text{mol H-H} \qquad \frac{1}{2} \times +436\text{kJ} = +218\text{kJ}$ $\frac{1}{2}\text{mol Cl-Cl} \qquad \frac{1}{2} \times +243\text{kJ} = +121.5\text{kJ}$ $+339.5\text{kJ} \qquad \qquad -432\text{kJ}$ $\therefore \text{ Enthalpy Change} = +337.5\text{kJ} + (-432\text{kJ}) = -94.5\text{kJ mol}^{-1}$:	8	<u>(1)</u>	©

	Dalziel Higher Chemistry Self-Evaluation				Tro	iffic Li	ght			
	High	"	_	▼			Page	Red	Amber	Green
7	School	l Uni	it 3.3a Oxid	dising & Redu	cing Agents	[CHEMISTRY]		ă	Am	9.0
		An oxidising agent is a substance which accepts electrons								
36a		 oxidising agent oxidises something else 								
37a	 agent itself is reduced and accepts/gains electrons 							8	<u>:</u>	\odot
(37a)		oxidising agents tend to become more negative								
(38a)	e.g. acidifi	acidified permanganate solution is an example of an oxidising agent which gains electrons								
	4 1 .			BH ⁺ + 5e ⁻ Mn ²⁺ +	4H ₂ O					
241				donates electrons						
36b			ent reduces somet	•						
37b	_		is oxidised and lo					(3)	\odot	\odot
(37b)			ents tend to become	ne more positive icing agent which loses	alactrons					
(38b)	e.g. suiprii i	e ions are a		20 504 ²⁻ + 2H						
	Flectronea	ativity can			gain -electrons when the	y form ions:				
	_	•	•		e electrons to become p	•				
					in electrons to become n					
38		Element	Metal/Non-metal	Electronegativity Value	Equation			(3)	<u></u>	\odot
		Potassium	Metal	0.8	K → K ⁺ + e					
	-	Lithium Chlorine	Metal Non-metal	1.0 3.0	$\begin{array}{ccc} & \text{Li} & \rightarrow & \text{Li}^{+} + e \\ \hline & \text{Cl} + e^{-} & \rightarrow & \text{Cl}^{-} \end{array}$	-				
	-	Fluorine	Non-metal	4.0	$\begin{array}{ccc} & CI + e^{-} & \rightarrow & CI \\ \hline & F + e^{-} & \rightarrow & F^{-} \end{array}$					
	Metals can			ney lose electrons as th						
					on allow a reduction reac	tion to take				
			the name reducing a	_				8	<u></u>	
39					ectrons as they form ion	as they form ions				\odot
			ectrons accepted by a non-metal turning into a non-metal ion allow an oxidation							
			• •	ons released by the oxi	dation reaction have a pl	ace to go to				
			me oxidising agent) the strongest reduc	ing agents						
	•		_	itassium, rubidium, caes	sium and francium					
40			the strongest oxidi					8		\odot
			orine, chlorine, bron							
					xidising & reducing ager					
41	• St	•			corner of the electroch	emical series				
42	6.	•	•	itten in data booklet (i.		ta al acosto a		8	\odot	\odot
'-	• 51		<i>3 3</i>	, ,	rner of the electrochem et (i.e. oxidation reactio					
	Acidified o			he following equation:	er (i.e. oxidation reactio	11)				
			•	$H^{+} + 6e^{-} \rightarrow 2Cr^{2}$	3+ + 7H ₂ O					
	• A	idified dick	- ·		ectrons and is reduced i	tself				
43				by the following equation		.50.1		8	\odot	\odot
	'	, ,		d^+ + 5e ⁻ \rightarrow Mn ²⁻						
	• Ac	idified dick		• •	ectrons and is reduced i	tself				
			acts by the followin							
	_		H ₂ O ₂ + 21	$H^{+} + 2e^{-} \rightarrow 2H_{2}$	0					
11	• Ac	idified per		_	ectrons and is reduced i	rself		8	\odot	
44	Carbon Mo	onoxide read	cts by the following	equation:				0	(2)	\odot
			C	$O + H_2O \rightarrow CO_2$	₂ + 2H ⁺ + 2e ⁻					
	• Co	ırbon monox	kide is a reducing ag	ent as it loses electror	ns and is oxidised itself					
	Oxidising o	igents can b	e used as a chemico							
45			thes or hair					8	\odot	\odot
	• Ki	ll fungi and	bacteria and inactiv	ve viruses						

	Dalziel Highen Chemistmy Solf Evaluation		Tro	Traffic Light		
	High High High	Page	Red	Amber	Green	
Y	School Unit 3.3b Ion-Electron and Redox Equations		ă	Am	P	
	Given reactant and product species, ion-electron equations which include H ⁺ (aq) and H ₂ O(1) can be written.					
	1. Write down the main species involved in the reaction					
	$IO_3^- o I_2$					
	2. Balance all atoms except 0 and H					
46	$2IO_3^- \rightarrow I_2$ 3. Add H ₂ O to other side to balance O atoms			(
(41)	3. Add H_2O to other side to balance O atoms $2IO_3^- \rightarrow I_2 + 6H_2O$		8	\odot	\odot	
` ´	4. Add H ⁺ ions to other side to balance H atoms					
	$2IO_3^- + 12H^+ \rightarrow I_2 + 6H_2O$					
	5. Add e ⁻ to most positive side to balance charge					
	$2IO_3^- + 12H^+ + 10e^- \rightarrow I_2 + 6H_2O$					
	Ion-electron equations can be combined to produce redox equations					
	Reduction: $I_2 + 2e^- \rightarrow 2I^-$					
	Oxidation: $2S_2O_3^{2-} \rightarrow S_4O_6^{2-} + 2e^{-}$					
	Redox: $I_2 + 2S_2O_3^{2-} \rightarrow S_4O_6^{2-} + 2I^{-}$					
	Where the electrons do not cancel out, ion-electron equations may have to be multiplied:					
	•					
47						
(39)	$Fe^{2+}\toFe^{3+}+e^{-}$		\odot	\odot	\odot	
(40)						
	2					
	9×5 5Fe²⁺ → 5Fe³⁺ + 5e⁻					
	add and $MnO_4^- + 8H^+ + 5e \rightarrow Mn^{2+} + 4H_2O$					
	cancel down $5Fe^{2+} \rightarrow 5Fe^{3+} + 5e^{2+}$					
	Sie - Sie + Se					
	redox $MnO_4^- + 8H^+ + 5Fe^{2+} \rightarrow Mn^{2+} + 4H_2O + 5Fe^{3+}$			(
(42)	The concentration of a reactant can be calculated from the results of redox titrations.		8	<u>(i)</u>	\odot	
	2008 Higher Question 17c(ii)					
	Oxalic acid is found in rhubarb. The number of moles of oxalic acid in a carton of rhubarb juice can be found by titrating samples of the juice with a solution of potassium permanganate, a					
	powerful oxidising agent. The equation for the overall reaction is:					
	$5(COOH)_2 + 6H^+ + 2MnO_4^- \rightarrow 2Mn^{2+} + 10CO_2 + 8H_2O$					
	In an investigation using a 500 cm³ carton of rhubarb juice, separate 25.0cm³ samples were					
	measured out. Three samples were then titrated with 0.040 mol l ⁻¹ potassium permanganate					
	solution and the average volume of potassium permanganate solution used was 26.9cm ³ .					
	Calculate the number of moles of oxalic acid in the 500 cm³ carton of rhubarb juice.		8	①	\odot	
	no. of mol MnO ₄ ⁻ = $v \times c = 0.0269 \times 0.040 = 0.001076$ mol					
	$5(COOH)_2 + 6H^+ + 2MnO_4^- \rightarrow 2Mn^{2+} + 10CO_2 + 8H_2O$					
	5mol 2 mol					
	0.001076mol x ⁵ / ₂ 0.001076mol					
	= 0.00269mol 0.00269 mol oxalic acid in 25cm³ rhubarb juice					
	$\frac{500}{25} \times 0.00269$ mol oxalic acid in 500cm ³ rhubarb juice					
	= 0.0538mol oxalic acid					
	1					

	Dalziel Higher Chemistry Self-Evaluation			affic L	Ī
	High School Unit 3.4a Chromatography	Page	Red	Amber	Green
48	Chromatography is dependent on the relationship a substance has between the mobile phase and the stationary phase, their relative affinity for the mobile phase and the stationary phase decides how far/fast the substances travels during chromatography • mobile phase is a liquid or a gas which carries the sample through the material. ○ size of molecules and their polarity affect how soluble they are in the mobile phase (and how far they travel in the mobile phase) • stationary phase may be paper, silica gel, or an inert packing material in a column. ○ size and polarity of the compounds may affect their affinity for the stationary phase (how little they travel in the mobile phase)			(2)	©
	I can read and interpret retention/time graphs from results of chromatography				
49	Experiments. (source: 2015 SQA Higher Q4) The band name perfume gives the following gas chromatogras showing varying quantities of different chemicals A tinatool B citronellol C geraniol D eugenol E anisyl atcohol F coumarin D benzyl saticylate The counterfeit brand of perfume contains some but not all peak of the brands name perfume: Retention time/minutes Retention Time (min) A.6 A (linalool) A.6 A (linalool) A.6 A (citronellol) C geraniol D eugenol E anisyl atcohol F counterfeit brand of perfume contains some but not all peak of the brands name perfume: Retention Time (min) A.6 A (linalool) C geraniol C hemical Identified A.6 A (linalool) C geraniol A.6 A (linalool) C geraniol	m 7	(S)	(1)	©
	9.6 E (anisyl alcohol)				
50	Chromatograms can be identified using R_f values lid chromatography tank maximum distance moved by solvent direction of movement of solvent amino acid mixture applied solvent Each chemical in the sample travels a different difference and can be quantified by the R_f value: $R_f = \frac{\text{distance travelled by solve}}{\text{distance travelled by solve}}$		3	:	③

	Dalziel Highen Chemistry Salf Evaluat	ion		Traf	fic Lig	ght
	High High High	I (I I PO	ige .	5 9 9	Amber	Green
T	School Unit 3.4b Volumetric Titration	•	'	¥	Ā	P
51	Volumetric analysis uses exact quantities of a known substance to determine another substance using titration. • an exact volume and concentration of a substance will allow the calc moles of a substance. • using the mole ratio from a balanced equation, the number of moles be calculated • the exact volume of the second substance, measured accurately using calculation of the concentration of the second substance.	culation of the number of of a second substance can	6	3	(1)	©
52	An indicator is a substance which will change colour in response to the chemi • starch indicator for the prescence of iodine (blue/black⇔colourless) • phenolphthalein (pink ↔ colourless) • permanganate is a self-indicating oxidising agent (purple⇔colourless)	s)	(3)	⊕	(3)
53	The end point of a reaction is indicated by a change in colour by an indicator • the reactants have been added in the correct quantities so they are according to the balanced equation and have reacted with each othe	e exacted matched	(3)	(1)	©
54	Titrations and Balanced Redox Equations are used to calculate the concentrative concentration of the other. Question Source: 2014 SQA Higher Q13 The vitamin C content in a fruit drink can be determined by titrating it with $C_6H_8O_6(aq) + I_2(aq) \longrightarrow C_6H_6O_6(aq) + 2H^+(aq) + I_0$ To determine the vitamin C content in a 1-0 litre carton of orange juice, thre samples of the juice were titrated with a 0-00125mol I^{-1} iodine solution. Star determine the endpoint. The following results were obtained from titration of the three I^{-1} iodine solution used I^{-1} iodine solution I^{-1} iodine solution used I^{-1} iodine solution I^{-1} iodine solution. Star I^{-1} iodine solution I^{-1} iodine solution I^{-1} iodi	ee separate 20cm³ rch indicator was used to oles of orange juice.			•	©
55	 dissolve a calculated mass of solid in a volume of deionised water transfer the solution to a standard flask, rinsing the container care make up the solution to the mark on the standard flask, using a drop drops so that the bottom of the meniscus is touching the line on the 	pper for the last few	6	3)	⊕	©
56	Accuracy is an important factor in all titrations • errors may occur in judging the endpoint/colour change accurately/of the surettes and pipettes are more accurate for measuring exact volum to measuring cylinders and beakers are not accurate enough to titrations.	nes of liquid in titrations	(?	3)	⊕	©