An Application of Martingales Components of Erdos-Renyi Graphs

A. Mulgund¹

¹Mathematics, Statistics, and Computer Science University of Illinois at Chicago

June 1, 2022

Table of Contents

- Formulating the Problem
- Useful Theorems
- 3 Creating the Supermartingale
- Expected Change
- 5 Finding the Differential Equation
- **6** Solving the Differential Equations
- Applying Azuma's Inequality

Table of Contents

- Formulating the Problem
- Useful Theorems
- 3 Creating the Supermartingale
- 4 Expected Change
- 5 Finding the Differential Equation
- 6 Solving the Differential Equations
- Applying Azuma's Inequality

Asymptotically Almost Surely

We would like to study discrete stochastic processes and characterize their behavior asymptotically almost surely.

Definition

Let $(X_n : \Omega \to \mathbb{R})_{n \geq 1}$ be a stochastic process and let $(x_n)_{n \geq 1} \subset \mathbb{R}$. Then $X_n = x_n$ asymptotically almost surely if there exists $(\epsilon_n)_{n \geq 1} \subset \mathbb{R}$ so that $\epsilon_n = o(1)$ and

$$\mathbb{P}((1-\epsilon_n)x_n \leq X_n \leq (1+\epsilon_n)x_n) \to 1$$

as $n \to \infty$. It may be abbreviated a.a.s..

Asymptotically Almost Surely

We would like to study discrete stochastic processes and characterize their behavior asymptotically almost surely.

Definition

Let $(X_n : \Omega \to \mathbb{R})_{n \geq 1}$ be a stochastic process and let $(x_n)_{n \geq 1} \subset \mathbb{R}$. Then $X_n = x_n$ asymptotically almost surely if there exists $(\epsilon_n)_{n \geq 1} \subset \mathbb{R}$ so that $\epsilon_n = o(1)$ and

$$\mathbb{P}((1-\epsilon_n)x_n \leq X_n \leq (1+\epsilon_n)x_n) \to 1$$

as $n \to \infty$. It may be abbreviated a.a.s..

We can also say events \mathcal{E}_n a.a.s. if $\mathbb{P}(\mathcal{E}_n) o 1$

• An integer is composite a.a.s.

- An integer is composite a.a.s.
- Consider tossing $m_n = \frac{1}{3}n \log n$ balls into n bins. The number of bins with exactly k balls is a.a.s.

$$\frac{\frac{m_n}{n}^k e^{-m_n/n}}{k!} r$$

- An integer is composite a.a.s.
- Consider tossing $m_n = \frac{1}{3}n \log n$ balls into n bins. The number of bins with exactly k balls is a.a.s.

$$\frac{\frac{m_n}{n}^k e^{-m_n/n}}{k!} n$$

Theorem

Let $\kappa \geq 1$ and $c \in \mathbb{R}^{\geq 0}$. Then a.a.s. the number of connected components of order k, for $1 \leq k \leq \kappa$, in $G_{n,\lfloor cn \rfloor}$ is

$$\frac{k^{k-2}}{k!} (2c)^{k-1} e^{-2kc} n$$

- An integer is composite a.a.s.
- Consider tossing $m_n = \frac{1}{3}n \log n$ balls into n bins. The number of bins with exactly k balls is a.a.s.

$$\frac{\frac{m_n}{n}^k e^{-m_n/n}}{k!} n$$

Theorem

Let $\kappa \geq 1$ and $c \in \mathbb{R}^{\geq 0}$. Then a.a.s. the number of connected components of order k, for $1 \leq k \leq \kappa$, in $G_{n,\lfloor cn \rfloor}$ is

$$\frac{k^{k-2}}{k!} (2c)^{k-1} e^{-2kc} n$$

This theorem is the one we'll focus on proving.

Table of Contents

- Formulating the Problem
- 2 Useful Theorems
- 3 Creating the Supermartingale
- 4 Expected Change
- 5 Finding the Differential Equation
- Solving the Differential Equations
- Applying Azuma's Inequality

To study $G_{n,m}$, we'll instead look at the process of sampling a new edge to add to our graph until we have m steps.

To study $G_{n,m}$, we'll instead look at the process of sampling a new edge to add to our graph until we have m steps.

We'll call this the Erdos-Renyi Process.

To study $G_{n,m}$, we'll instead look at the process of sampling a new edge to add to our graph until we have m steps.

We'll call this the Erdos-Renyi Process.

At each step $0 \le i \le m$, we'll have

• Sigma Field \mathcal{F}_i generated by all the possible first i choices of edges. These will form a filtration.

To study $G_{n,m}$, we'll instead look at the process of sampling a new edge to add to our graph until we have m steps.

We'll call this the Erdos-Renyi Process.

At each step $0 \le i \le m$, we'll have

- Sigma Field \mathcal{F}_i generated by all the possible first i choices of edges. These will form a filtration.
- $G_{n,i}$, the (random) graph we observe after drawing i edges.

To study $G_{n,m}$, we'll instead look at the process of sampling a new edge to add to our graph until we have m steps.

We'll call this the Erdos-Renyi Process.

At each step $0 \le i \le m$, we'll have

- Sigma Field \mathcal{F}_i generated by all the possible first i choices of edges. These will form a filtration.
- $G_{n,i}$, the (random) graph we observe after drawing i edges.
- $Y_k(i)$, the (random) number of components in $G_{n,i}$

Basic Idea

We'll approximate discrete Y_k with continuous $ny_k \in C^2[0,1]$. That is,

$$n(y_k(t_i) + \epsilon_n(t_i)) = Y_k(i)$$

for $t_i = \frac{i}{n}$ and $\epsilon_n = o(y_k(t_i))$.

Basic Idea

We'll approximate discrete Y_k with continuous $ny_k \in C^2[0,1]$. That is,

$$n(y_k(t_i) + \epsilon_n(t_i)) = Y_k(i)$$

for $t_i = \frac{i}{n}$ and $\epsilon_n = o(y_k(t_i))$.

To do this we need

ullet good guesses for y_k and ϵ_n

Basic Idea

We'll approximate discrete Y_k with continuous $ny_k \in C^2[0,1]$. That is,

$$n(y_k(t_i) + \epsilon_n(t_i)) = Y_k(i)$$

for $t_i = \frac{i}{n}$ and $\epsilon_n = o(y_k(t_i))$.

To do this we need

- ullet good guesses for y_k and ϵ_n
- a way to show the that Y_k will a.a.s. not stray far from our approximation.

Azuma-Hoeffding

We will construct a supermartingale out of our deviation of Y_k from our approximation. Then we can apply

Azuma-Hoeffding

We will construct a supermartingale out of our deviation of Y_k from our approximation. Then we can apply

Theorem (Azuma-Hoeffding's Inequality)

Let $(X_n)_{n\geq 0}$ be a supermartingale and suppose there exists real $C\geq 0$ $|X_{n+1}-X_n|\leq C$ a.s. for $n\geq 0$. Then, for all $\lambda\in\mathbb{R}^{\geq 0}$ and $m\geq 1$,

$$\mathbb{P}(X_m - X_0 \ge \lambda) \le \exp\left(-\frac{\lambda^2}{2C^2m}\right)$$

Azuma-Hoeffding

We will construct a supermartingale out of our deviation of Y_k from our approximation. Then we can apply

Theorem (Azuma-Hoeffding's Inequality)

Let $(X_n)_{n\geq 0}$ be a supermartingale and suppose there exists real $C\geq 0$ $|X_{n+1}-X_n|\leq C$ a.s. for $n\geq 0$. Then, for all $\lambda\in\mathbb{R}^{\geq 0}$ and $m\geq 1$,

$$\mathbb{P}(X_m - X_0 \ge \lambda) \le \exp\left(-\frac{\lambda^2}{2C^2m}\right)$$

Since our m=O(n), we only need a $\lambda=\omega(n^{1/2})$. This observation will help guide our choice for ϵ_n .

Taylor's Theorem

We also need to an easy way to analyze discrete time steps in $y_k(t)$ and $\epsilon_n(t)$. Here we can apply

Taylor's Theorem

We also need to an easy way to analyze discrete time steps in $y_k(t)$ and $\epsilon_n(t)$. Here we can apply

Theorem (Taylor's Theorem)

Let $f \in C^2([a,b])$ for $a < b \in \mathbb{R}$. Then there exists $\tau \in (a,b)$ so that

$$f(b) = f(a) + f'(a)(b-a) + \frac{f''(\tau)}{2}(b-a)^2.$$

Taylor's Theorem

We also need to an easy way to analyze discrete time steps in $y_k(t)$ and $\epsilon_n(t)$. Here we can apply

Theorem (Taylor's Theorem)

Let $f \in C^2([a,b])$ for $a < b \in \mathbb{R}$. Then there exists $\tau \in (a,b)$ so that

$$f(b) = f(a) + f'(a)(b-a) + \frac{f''(\tau)}{2}(b-a)^2.$$

A step from i to i+1 amounts to a step of $\frac{1}{n}$ in t, so b-a will be $\frac{1}{n}$. In our computations, this will render the 2nd derivative term negligible.

Table of Contents

- Formulating the Problem
- Useful Theorems
- 3 Creating the Supermartingale
- 4 Expected Change
- 5 Finding the Differential Equation
- Solving the Differential Equations
- Applying Azuma's Inequality

We want to restrict our attention to when Y_k is controlled.

We want to restrict our attention to when Y_k is controlled. If we can show that Y_k becomes less likely to venture out of our "nice" region as $n \to \infty$, then we're good.

We want to restrict our attention to when Y_k is controlled. If we can show that Y_k becomes less likely to venture out of our "nice" region as $n \to \infty$, then we're good.

Let

$$\nu_n^{\pm} := \inf\{i \geq 0 : \pm (Y_k(i) - n(y_k(t_i)) > \epsilon_n(t_i))\}.$$

This is the first time Y_k ventures outside our "nice" zone.

We want to restrict our attention to when Y_k is controlled. If we can show that Y_k becomes less likely to venture out of our "nice" region as $n \to \infty$, then we're good.

Let

$$\nu_n^{\pm} := \inf\{i \geq 0 : \pm (Y_k(i) - n(y_k(t_i)) > \epsilon_n(t_i))\}.$$

This is the first time Y_k ventures outside our "nice" zone.

Define

$$Y_k^{\pm}(i) = Y_k(i \wedge \nu_n^{\pm}) - n(y_k(t_{i \wedge \nu_n^{\pm}}) \pm \epsilon_n(t_{i \wedge \nu_n^{\pm}})).$$

We are freezing Y_k the moment it leaves the nice zone.

We want to restrict our attention to when Y_k is controlled. If we can show that Y_k becomes less likely to venture out of our "nice" region as $n \to \infty$, then we're good.

Let

$$\nu_n^{\pm} := \inf\{i \geq 0 : \pm (Y_k(i) - n(y_k(t_i)) > \epsilon_n(t_i))\}.$$

This is the first time Y_k ventures outside our "nice" zone.

Define

$$Y_k^{\pm}(i) = Y_k(i \wedge \nu_n^{\pm}) - n(y_k(t_{i \wedge \nu_n^{\pm}}) \pm \epsilon_n(t_{i \wedge \nu_n^{\pm}})).$$

We are freezing Y_k the moment it leaves the nice zone.

With the right choice of y_k and ϵ_n , Y_k^+ will be a supermartingale.

Table of Contents

- Formulating the Problem
- Useful Theorems
- 3 Creating the Supermartingale
- 4 Expected Change
- 5 Finding the Differential Equation
- Solving the Differential Equations
- Applying Azuma's Inequality

Let $\Delta Y_k(i) = Y_k(i+1) - Y_k(i)$. Given the first i choices of edges (\mathcal{F}_i) , we have the possible outcomes for the new edge e_{i+1} :

 \bullet e_{i+1} connects a component of size k to one of size that's not k. Then

- e_{i+1} connects a component of size k to one of size that's not k. Then
 - there are $kY_k(i)(n-kY_k(i))$ such edges

- **①** e_{i+1} connects a component of size k to one of size that's not k. Then
 - there are $kY_k(i)(n-kY_k(i))$ such edges
 - $\Delta Y_k(i) = -1$

- e_{i+1} connects a component of size k to one of size that's not k. Then
 - there are $kY_k(i)(n-kY_k(i))$ such edges
 - $\Delta Y_k(i) = -1$
- e_{i+1} connects a component of size k to another component of size k. Then

- e_{i+1} connects a component of size k to one of size that's not k. Then
 - there are $kY_k(i)(n-kY_k(i))$ such edges
 - $\Delta Y_k(i) = -1$
- e_{i+1} connects a component of size k to another component of size k. Then
 - there are $\frac{1}{2}k^2(Y_k(i)-1)Y_k(i)$ such edges

- $oldsymbol{0}$ e_{i+1} connects a component of size k to one of size that's not k. Then
 - there are $kY_k(i)(n-kY_k(i))$ such edges
 - $\Delta Y_k(i) = -1$
- e_{i+1} connects a component of size k to another component of size k. Then
 - there are $\frac{1}{2}k^2(Y_k(i)-1)Y_k(i)$ such edges
 - $\Delta Y_k(i) = -2$

- e_{i+1} connects a component of size k to one of size that's not k. Then
 - there are $kY_k(i)(n-kY_k(i))$ such edges
 - $\Delta Y_k(i) = -1$
- e_{i+1} connects a component of size k to another component of size k. Then
 - there are $\frac{1}{2}k^2(Y_k(i)-1)Y_k(i)$ such edges
 - $\Delta Y_k(i) = -2$
- **3** e_{i+1} connects a component of size j and size k-j. Then

- $oldsymbol{0}$ e_{i+1} connects a component of size k to one of size that's not k. Then
 - there are $kY_k(i)(n-kY_k(i))$ such edges
 - $\Delta Y_k(i) = -1$
- e_{i+1} connects a component of size k to another component of size k. Then
 - there are $\frac{1}{2}k^2(Y_k(i)-1)Y_k(i)$ such edges
 - $\Delta Y_k(i) = -2$
- **3** e_{i+1} connects a component of size j and size k-j. Then
 - there are $jY_j(i)(k-j)Y_{k-j}(i)$ such edges

- **①** e_{i+1} connects a component of size k to one of size that's not k. Then
 - there are $kY_k(i)(n-kY_k(i))$ such edges
 - $\Delta Y_k(i) = -1$
- e_{i+1} connects a component of size k to another component of size k. Then
 - there are $\frac{1}{2}k^2(Y_k(i)-1)Y_k(i)$ such edges
 - $\Delta Y_k(i) = -2$
- **3** e_{i+1} connects a component of size j and size k-j. Then
 - there are $jY_j(i)(k-j)Y_{k-j}(i)$ such edges
 - $\Delta Y_k(i) = 1$

- **1** e_{i+1} connects a component of size k to one of size that's not k. Then
 - there are $kY_k(i)(n-kY_k(i))$ such edges
 - $\Delta Y_k(i) = -1$
- e_{i+1} connects a component of size k to another component of size k. Then
 - there are $\frac{1}{2}k^2(Y_k(i)-1)Y_k(i)$ such edges
 - $\Delta Y_k(i) = -2$
- **3** e_{i+1} connects a component of size j and size k-j. Then
 - there are $jY_j(i)(k-j)Y_{k-j}(i)$ such edges
 - $\Delta Y_k(i) = 1$
- Otherwise, $\Delta Y_k(i) = 0$.

There are $\binom{n}{2} - i$ possible choices for edges.

There are $\binom{n}{2} - i$ possible choices for edges.

Choosing an edge not yet picked has probability

$$\frac{1}{\binom{n}{2}-i} = \frac{2}{n^2+n-2i} \le \frac{2}{n^2} \left(\frac{n^2}{n^2-n}\right) = \frac{2}{n^2} \left(1+O(\frac{1}{n})\right)$$

$$-\frac{2}{n^2}\left(1+O(\frac{1}{n})\right)\left[nkY_k(i)-k^2Y_k(i)^2+k^2Y_k(i)^2-k^2Y_k(i)\right]$$

$$-\frac{2}{n^2}\left(1+O(\frac{1}{n})\right)\left[nkY_k(i)-k^2Y_k(i)^2+k^2Y_k(i)^2-k^2Y_k(i)\right]$$

=\frac{2}{n^2}\left(1+O(\frac{1}{n})\right)\left[nkY_k(i)-k^2Y_k(i)\right]

$$-\frac{2}{n^2}\left(1+O(\frac{1}{n})\right)\left[nkY_k(i)-k^2Y_k(i)^2+k^2Y_k(i)^2-k^2Y_k(i)\right]$$

$$=-\frac{2}{n^2}\left(1+O(\frac{1}{n})\right)\left[nkY_k(i)-k^2Y_k(i)\right]$$

$$=\left(1+O(\frac{1}{n})\right)\left[-2k\frac{Y_k(i)}{n}+k^2\frac{2Y_k(i)}{n^2}\right]$$

$$-\frac{2}{n^{2}}\left(1+O(\frac{1}{n})\right)\left[nkY_{k}(i)-k^{2}Y_{k}(i)^{2}+k^{2}Y_{k}(i)^{2}-k^{2}Y_{k}(i)\right]$$

$$=-\frac{2}{n^{2}}\left(1+O(\frac{1}{n})\right)\left[nkY_{k}(i)-k^{2}Y_{k}(i)\right]$$

$$=\left(1+O(\frac{1}{n})\right)\left[-2k\frac{Y_{k}(i)}{n}+k^{2}\frac{2Y_{k}(i)}{n^{2}}\right]$$

$$\leq\left(1+O(\frac{1}{n})\right)\left[-2k\frac{Y_{k}(i)}{n}+\kappa^{2}\frac{2}{n}\right]$$

$$-\frac{2}{n^{2}}\left(1+O(\frac{1}{n})\right)\left[nkY_{k}(i)-k^{2}Y_{k}(i)^{2}+k^{2}Y_{k}(i)^{2}-k^{2}Y_{k}(i)\right]$$

$$=-\frac{2}{n^{2}}\left(1+O(\frac{1}{n})\right)\left[nkY_{k}(i)-k^{2}Y_{k}(i)\right]$$

$$=\left(1+O(\frac{1}{n})\right)\left[-2k\frac{Y_{k}(i)}{n}+k^{2}\frac{2Y_{k}(i)}{n^{2}}\right]$$

$$\leq\left(1+O(\frac{1}{n})\right)\left[-2k\frac{Y_{k}(i)}{n}+\kappa^{2}\frac{2}{n}\right]$$

$$\leq-2k\frac{Y_{k}(i)}{n}+O(\frac{1}{n})+O(\frac{1}{n^{2}})$$

$$-\frac{2}{n^{2}}\left(1+O(\frac{1}{n})\right)\left[nkY_{k}(i)-k^{2}Y_{k}(i)^{2}+k^{2}Y_{k}(i)^{2}-k^{2}Y_{k}(i)\right]$$

$$=-\frac{2}{n^{2}}\left(1+O(\frac{1}{n})\right)\left[nkY_{k}(i)-k^{2}Y_{k}(i)\right]$$

$$=\left(1+O(\frac{1}{n})\right)\left[-2k\frac{Y_{k}(i)}{n}+k^{2}\frac{2Y_{k}(i)}{n^{2}}\right]$$

$$\leq\left(1+O(\frac{1}{n})\right)\left[-2k\frac{Y_{k}(i)}{n}+\kappa^{2}\frac{2}{n}\right]$$

$$\leq-2k\frac{Y_{k}(i)}{n}+O(\frac{1}{n})+O(\frac{1}{n^{2}})$$

$$=-2k\frac{Y_{k}(i)}{n}+O(\frac{1}{n})$$

First looking at the contribution of cases 1 and 2 to $\mathbb{E}(\Delta Y_k(i)|\mathcal{F}_i)$

$$-\frac{2}{n^{2}}\left(1+O(\frac{1}{n})\right)\left[nkY_{k}(i)-k^{2}Y_{k}(i)^{2}+k^{2}Y_{k}(i)^{2}-k^{2}Y_{k}(i)\right]$$

$$=-\frac{2}{n^{2}}\left(1+O(\frac{1}{n})\right)\left[nkY_{k}(i)-k^{2}Y_{k}(i)\right]$$

$$=\left(1+O(\frac{1}{n})\right)\left[-2k\frac{Y_{k}(i)}{n}+k^{2}\frac{2Y_{k}(i)}{n^{2}}\right]$$

$$\leq\left(1+O(\frac{1}{n})\right)\left[-2k\frac{Y_{k}(i)}{n}+\kappa^{2}\frac{2}{n}\right]$$

$$\leq-2k\frac{Y_{k}(i)}{n}+O(\frac{1}{n})+O(\frac{1}{n^{2}})$$

$$=-2k\frac{Y_{k}(i)}{n}+O(\frac{1}{n})$$

We make use of the fact that $Y_k(i) \leq n$ and $k \leq \kappa$.

$$\frac{2}{n^2} \left(1 + O\left(\frac{1}{n}\right) \right) \frac{1}{2} \sum_{i=1}^{k-1} j Y_j(i) (k-j) Y_{k-j}(i)$$

$$\frac{2}{n^2} \left(1 + O\left(\frac{1}{n}\right) \right) \frac{1}{2} \sum_{j=1}^{k-1} j Y_j(i) (k-j) Y_{k-j}(i)$$

$$= \left(1 + O\left(\frac{1}{n}\right) \right) \sum_{j=1}^{k-1} j (k-j) \frac{Y_j(i)}{n} \frac{Y_{k-j}(i)}{n}$$

$$\frac{2}{n^{2}} \left(1 + O\left(\frac{1}{n}\right) \right) \frac{1}{2} \sum_{j=1}^{k-1} j Y_{j}(i) (k - j) Y_{k-j}(i)
= \left(1 + O\left(\frac{1}{n}\right) \right) \sum_{j=1}^{k-1} j (k - j) \frac{Y_{j}(i)}{n} \frac{Y_{k-j}(i)}{n}
\leq \sum_{j=1}^{k-1} \left[j (k - j) \frac{Y_{j}(i)}{n} \frac{Y_{k-j}(i)}{n} \right] + \kappa^{3} O\left(\frac{1}{n}\right)$$

$$\frac{2}{n^{2}} \left(1 + O\left(\frac{1}{n}\right) \right) \frac{1}{2} \sum_{j=1}^{k-1} j Y_{j}(i) (k - j) Y_{k-j}(i)
= \left(1 + O\left(\frac{1}{n}\right) \right) \sum_{j=1}^{k-1} j (k - j) \frac{Y_{j}(i)}{n} \frac{Y_{k-j}(i)}{n}
\leq \sum_{j=1}^{k-1} \left[j (k - j) \frac{Y_{j}(i)}{n} \frac{Y_{k-j}(i)}{n} \right] + \kappa^{3} O\left(\frac{1}{n}\right)
= \sum_{j=1}^{k-1} \left[j (k - j) \frac{Y_{j}(i)}{n} \frac{Y_{k-j}(i)}{n} \right] + O\left(\frac{1}{n}\right)$$

Next, we look at the contribution of case 3:

$$\frac{2}{n^{2}} \left(1 + O\left(\frac{1}{n}\right) \right) \frac{1}{2} \sum_{j=1}^{k-1} j Y_{j}(i) (k - j) Y_{k-j}(i)
= \left(1 + O\left(\frac{1}{n}\right) \right) \sum_{j=1}^{k-1} j (k - j) \frac{Y_{j}(i)}{n} \frac{Y_{k-j}(i)}{n}
\leq \sum_{j=1}^{k-1} \left[j (k - j) \frac{Y_{j}(i)}{n} \frac{Y_{k-j}(i)}{n} \right] + \kappa^{3} O\left(\frac{1}{n}\right)
= \sum_{i=1}^{k-1} \left[j (k - j) \frac{Y_{j}(i)}{n} \frac{Y_{k-j}(i)}{n} \right] + O\left(\frac{1}{n}\right)$$

where we again use the fact that $Y_j(i), Y_{k-j}(i) \le n$ and $j, k-j \le \kappa$.

Assuming $i < \nu_n^+$, we have that

$$\begin{split} \mathbb{E}(\Delta Y_{k}(i)|\mathcal{F}_{i}, [i < \nu_{n}^{+}]) \\ &= -2k(y_{k}(t_{i}) + \epsilon_{n}(t_{i})) \\ &+ \sum_{i=1}^{k-1} \left[j(k-j)(y_{j}(t_{i}) + \epsilon_{n}(t_{i}))(y_{k-j}(t_{i}) + \epsilon_{n}(t_{i})) \right] + O(\frac{1}{n}) \end{split}$$

Assuming $i < \nu_n^+$, we have that

 $\mathbb{E}(\Delta Y_k(i)|\mathcal{F}_i,[i<\nu_n^+])$

$$= -2k(y_{k}(t_{i}) + \epsilon_{n}(t_{i}))$$

$$+ \sum_{j=1}^{k-1} \left[j(k-j)(y_{j}(t_{i}) + \epsilon_{n}(t_{i}))(y_{k-j}(t_{i}) + \epsilon_{n}(t_{i})) \right] + O(\frac{1}{n})$$

$$\leq -2ky_{k}(t_{i}) + \sum_{j=1}^{k-1} \left[j(k-j)y_{j}(t_{i})y_{k-j}(t_{i}) \right] - 2k\epsilon_{n}(t_{i}) + \epsilon_{n}(t_{i})3k^{3} + O(\frac{1}{n})$$

Assuming $i < \nu_n^+$, we have that

$$\mathbb{E}(\Delta Y_{k}(i)|\mathcal{F}_{i}, [i < \nu_{n}^{+}])$$

$$= -2k(y_{k}(t_{i}) + \epsilon_{n}(t_{i}))$$

$$+ \sum_{j=1}^{k-1} \left[j(k-j)(y_{j}(t_{i}) + \epsilon_{n}(t_{i}))(y_{k-j}(t_{i}) + \epsilon_{n}(t_{i})) \right] + O(\frac{1}{n})$$

$$\leq -2ky_{k}(t_{i}) + \sum_{j=1}^{k-1} \left[j(k-j)y_{j}(t_{i})y_{k-j}(t_{i}) \right] - 2k\epsilon_{n}(t_{i}) + \epsilon_{n}(t_{i})3k^{3} + O(\frac{1}{n})$$

$$\leq -2ky_{k}(t_{i}) + \sum_{j=1}^{k-1} \left[j(k-j)y_{j}(t_{i})y_{k-j}(t_{i}) \right] + \epsilon_{n}(t_{i})3k^{3} + O(\frac{1}{n})$$

Assuming $i < \nu_n^+$, we have that

$$\begin{split} &\mathbb{E}(\Delta Y_{k}(i)|\mathcal{F}_{i}, [i < \nu_{n}^{+}]) \\ &= -2k(y_{k}(t_{i}) + \epsilon_{n}(t_{i})) \\ &+ \sum_{j=1}^{k-1} \left[j(k-j)(y_{j}(t_{i}) + \epsilon_{n}(t_{i}))(y_{k-j}(t_{i}) + \epsilon_{n}(t_{i})) \right] + O(\frac{1}{n}) \\ &\leq -2ky_{k}(t_{i}) + \sum_{j=1}^{k-1} \left[j(k-j)y_{j}(t_{i})y_{k-j}(t_{i}) \right] - 2k\epsilon_{n}(t_{i}) + \epsilon_{n}(t_{i})3k^{3} + O(\frac{1}{n}) \\ &\leq -2ky_{k}(t_{i}) + \sum_{j=1}^{k-1} \left[j(k-j)y_{j}(t_{i})y_{k-j}(t_{j}) \right] + \epsilon_{n}(t_{i})3k^{3} + O(\frac{1}{n}) \end{split}$$

using the fact that $y_k(t) \le 1$ and $0 \le \epsilon_n(t) \le 1$ for sufficiently large n.

Table of Contents

- Formulating the Problem
- Useful Theorems
- 3 Creating the Supermartingale
- Expected Change
- 5 Finding the Differential Equation
- 6 Solving the Differential Equations
- Applying Azuma's Inequality

$$\Delta Y_k^+(i) = \Delta Y_k(i) - \left(y_k(t_i + \frac{1}{n}) - y_k(t_i) + \epsilon_n(t_i + \frac{1}{n}) - \epsilon_n(t_i)\right).$$

$$\Delta Y_k^+(i) = \Delta Y_k(i) - (y_k(t_i + \frac{1}{n}) - y_k(t_i) + \epsilon_n(t_i + \frac{1}{n}) - \epsilon_n(t_i)).$$

Here we use Taylor's Theorem to manage the discrete increment of a continuous function:

$$\Delta Y_k^+(i) = \Delta Y_k(i) - (y_k(t_i + \frac{1}{n}) - y_k(t_i) + \epsilon_n(t_i + \frac{1}{n}) - \epsilon_n(t_i)).$$

Here we use Taylor's Theorem to manage the discrete increment of a continuous function:

$$n(y_k(t_i+\frac{1}{n})-y_k(t_i))=n(\frac{y'_k(t_i)}{n}+\frac{y''_k(\tau)}{n^2})$$

20 / 32

$$\Delta Y_k^+(i) = \Delta Y_k(i) - (y_k(t_i + \frac{1}{n}) - y_k(t_i) + \epsilon_n(t_i + \frac{1}{n}) - \epsilon_n(t_i)).$$

Here we use Taylor's Theorem to manage the discrete increment of a continuous function:

$$n(y_k(t_i + \frac{1}{n}) - y_k(t_i)) = n(\frac{y'_k(t_i)}{n} + \frac{y''_k(\tau)}{n^2})$$
$$= y'_k(t_i) + O(\frac{1}{n})$$

$$\Delta Y_k^+(i) = \Delta Y_k(i) - (y_k(t_i + \frac{1}{n}) - y_k(t_i) + \epsilon_n(t_i + \frac{1}{n}) - \epsilon_n(t_i)).$$

Here we use Taylor's Theorem to manage the discrete increment of a continuous function:

$$n(y_k(t_i + \frac{1}{n}) - y_k(t_i)) = n(\frac{y'_k(t_i)}{n} + \frac{y''_k(\tau)}{n^2})$$
$$= y'_k(t_i) + O(\frac{1}{n})$$

Similarly,

$$n(\epsilon_n(t_i + \frac{1}{n}) - \epsilon_n(t_i)) = \epsilon'_n(t_i) + O(\frac{1}{n})$$

$$\mathbb{E}(\Delta Y_{k}^{+}(i)|\mathcal{F}_{i}, [i < \nu_{n}^{+}])$$

$$= -2ky_{k}(t_{i}) + \sum_{j=1}^{k-1} \left[j(k-j)y_{j}(t_{i})y_{k-j}(t_{i}) \right] - y_{k}'(t_{i})$$

$$+ \epsilon_{n}(t_{i})3k^{3} - \epsilon_{n}'(t_{i}) + O(\frac{1}{n})$$

$$\mathbb{E}(\Delta Y_{k}^{+}(i)|\mathcal{F}_{i}, [i < \nu_{n}^{+}])$$

$$= -2ky_{k}(t_{i}) + \sum_{j=1}^{k-1} \left[j(k-j)y_{j}(t_{i})y_{k-j}(t_{i}) \right] - y_{k}'(t_{i})$$

$$+ \epsilon_{n}(t_{i})3k^{3} - \epsilon_{n}'(t_{i}) + O(\frac{1}{n})$$

lf

$$y'_k(t) = -2ky_k(t) + \sum_{j=1}^{k-1} \left[j(k-j)y_j(t)y_{k-j}(t) \right]$$

$$\mathbb{E}(\Delta Y_{k}^{+}(i)|\mathcal{F}_{i},[i<\nu_{n}^{+}])$$

$$= -2ky_{k}(t_{i}) + \sum_{j=1}^{k-1} \left[j(k-j)y_{j}(t_{i})y_{k-j}(t_{i}) \right] - y_{k}'(t_{i})$$

$$+ \epsilon_{n}(t_{i})3k^{3} - \epsilon_{n}'(t_{i}) + O(\frac{1}{n})$$

lf

$$y'_k(t) = -2ky_k(t) + \sum_{j=1}^{k-1} \left[j(k-j)y_j(t)y_{k-j}(t) \right]$$

and for sufficiently large n,

$$\epsilon_n(t)3k^3 + O(\frac{1}{n}) \le \epsilon'_n(t)$$

21 / 32

$$\mathbb{E}(\Delta Y_{k}^{+}(i)|\mathcal{F}_{i},[i<\nu_{n}^{+}])$$

$$= -2ky_{k}(t_{i}) + \sum_{j=1}^{k-1} \left[j(k-j)y_{j}(t_{i})y_{k-j}(t_{i}) \right] - y_{k}'(t_{i})$$

$$+ \epsilon_{n}(t_{i})3k^{3} - \epsilon_{n}'(t_{i}) + O(\frac{1}{n})$$

lf

$$y'_k(t) = -2ky_k(t) + \sum_{j=1}^{k-1} \left[j(k-j)y_j(t)y_{k-j}(t) \right]$$

and for sufficiently large n,

$$\epsilon_n(t)3k^3 + O(\frac{1}{n}) \le \epsilon'_n(t)$$

then Y_k^+ is a supermartingale.

Table of Contents

- Formulating the Problem
- Useful Theorems
- 3 Creating the Supermartingale
- 4 Expected Change
- 5 Finding the Differential Equation
- **6** Solving the Differential Equations
- Applying Azuma's Inequality

The easier one to address is ϵ_n .

The easier one to address is ϵ_n . Note that

$$3k^3e^{4\kappa^3t} \le 4\kappa^3e^{4\kappa^3t} = \left(e^{4\kappa^3t}\right)'$$

The easier one to address is ϵ_n . Note that

$$3k^3e^{4\kappa^3t} \le 4\kappa^3e^{4\kappa^3t} = \left(e^{4\kappa^3t}\right)'$$

so choosing

$$\epsilon_n(t) = \omega(\frac{1}{n})e^{4\kappa^3t}$$

should do the trick.

The easier one to address is ϵ_n . Note that

$$3k^3e^{4\kappa^3t} \le 4\kappa^3e^{4\kappa^3t} = \left(e^{4\kappa^3t}\right)'$$

so choosing

$$\epsilon_n(t) = \omega(\frac{1}{n})e^{4\kappa^3t}$$

should do the trick.

We'll sort out the $\omega(\frac{1}{n})$ term later when we apply Azuma-Hoeffding.

Addressing $y_k(t)$ is more interesting.

Addressing $y_k(t)$ is more interesting. We want to solve

$$y'_k(t) = -2ky_k(t) + \sum_{j=1}^{k-1} \left[j(k-j)y_j(t)y_{k-j}(t) \right] \ \forall 1 \le k \le \kappa$$

Addressing $y_k(t)$ is more interesting. We want to solve

$$y'_k(t) = -2ky_k(t) + \sum_{j=1}^{k-1} \left[j(k-j)y_j(t)y_{k-j}(t) \right] \ \forall 1 \le k \le \kappa$$

Claim

 $y_k(t) = \frac{k^{k-2}}{k!} (2t)^{k-1} e^{-2kt}$ is the unique solution to the ODE system.

k = 1 can be verified by inspection.

k = 1 can be verified by inspection. For $k \ge 2$, we get

$$-2ky_k + \sum_{j=1}^{k-1} \left[j(k-j)y_j y_{k-j} \right]$$

$$= -2k \frac{k^{k-2}}{k!} (2t)^{k-1} e^{-2kt}$$

$$+ \sum_{j=1}^{k-1} \left[j(k-j) \frac{j^{j-2}}{j!} (2t)^{j-1} e^{-2jt} \frac{(k-j)^{(k-j)-2}}{(k-j)!} (2t)^{(k-j)-1} e^{-2(k-j)t} \right]$$

k=1 can be verified by inspection. For $k \geq 2$, we get

$$-2ky_{k} + \sum_{j=1}^{k-1} \left[j(k-j)y_{j}y_{k-j} \right]$$

$$= -2k\frac{k^{k-2}}{k!} (2t)^{k-1} e^{-2kt}$$

$$+ \sum_{j=1}^{k-1} \left[j(k-j)\frac{j^{j-2}}{j!} (2t)^{j-1} e^{-2jt} \frac{(k-j)^{(k-j)-2}}{(k-j)!} (2t)^{(k-j)-1} e^{-2(k-j)t} \right]$$

$$= -2k\frac{k^{k-2}}{k!} (2t)^{k-1} e^{-2kt} + \sum_{j=1}^{k-1} \left[\frac{j^{j-1}(k-j)^{(k-j)-1}}{j!(k-j)!} (2t)^{k-2} e^{-2kt} \right]$$

25 / 32

k=1 can be verified by inspection. For $k \geq 2$, we get

$$-2ky_{k} + \sum_{j=1}^{k-1} \left[j(k-j)y_{j}y_{k-j} \right]$$

$$= -2k\frac{k^{k-2}}{k!} (2t)^{k-1} e^{-2kt}$$

$$+ \sum_{j=1}^{k-1} \left[j(k-j)\frac{j^{j-2}}{j!} (2t)^{j-1} e^{-2jt} \frac{(k-j)^{(k-j)-2}}{(k-j)!} (2t)^{(k-j)-1} e^{-2(k-j)t} \right]$$

$$= -2k\frac{k^{k-2}}{k!} (2t)^{k-1} e^{-2kt} + \sum_{j=1}^{k-1} \left[\frac{j^{j-1}(k-j)^{(k-j)-1}}{j!(k-j)!} (2t)^{k-2} e^{-2kt} \right]$$

$$= -2k\frac{k^{k-2}}{k!} (2t)^{k-1} e^{-2kt} + (2t)^{k-2} \frac{e^{-2kt}}{k!} \sum_{j=1}^{k-1} \left[\binom{k}{j} j^{j-1} (k-j)^{(k-j)-1} \right]$$

k=1 can be verified by inspection. For $k \geq 2$, we get

$$-2ky_{k} + \sum_{j=1}^{k-1} \left[j(k-j)y_{j}y_{k-j} \right]$$

$$= -2k\frac{k^{k-2}}{k!} (2t)^{k-1} e^{-2kt}$$

$$+ \sum_{j=1}^{k-1} \left[j(k-j)\frac{j^{j-2}}{j!} (2t)^{j-1} e^{-2jt} \frac{(k-j)^{(k-j)-2}}{(k-j)!} (2t)^{(k-j)-1} e^{-2(k-j)t} \right]$$

$$= -2k\frac{k^{k-2}}{k!} (2t)^{k-1} e^{-2kt} + \sum_{j=1}^{k-1} \left[\frac{j^{j-1}(k-j)^{(k-j)-1}}{j!(k-j)!} (2t)^{k-2} e^{-2kt} \right]$$

$$= -2k\frac{k^{k-2}}{k!} (2t)^{k-1} e^{-2kt} + (2t)^{k-2} \frac{e^{-2kt}}{k!} \sum_{j=1}^{k-1} \left[\binom{k}{j} j^{j-1} (k-j)^{(k-j)-1} \right]$$

lf

$$\sum_{j=1}^{k-1} \left[\binom{k}{j} j^{j-1} (k-j)^{(k-j)-1} \right] = 2(k-1)k^{k-2}$$

then product rule proves the claim.

lf

$$\sum_{j=1}^{k-1} \left[\binom{k}{j} j^{j-1} (k-j)^{(k-j)-1} \right] = 2(k-1)k^{k-2}$$

then product rule proves the claim.

To show this, we examine labeled trees over [k].

lf

$$\sum_{j=1}^{k-1} \left[\binom{k}{j} j^{j-1} (k-j)^{(k-j)-1} \right] = 2(k-1)k^{k-2}$$

then product rule proves the claim.

To show this, we examine labeled trees over [k]. For $1 \le j \le k-1$

lacksquare we have $\binom{k}{j}$ choices for subsets $J\subset [k]$ of size |J|=j

lf

$$\sum_{j=1}^{k-1} \left[\binom{k}{j} j^{j-1} (k-j)^{(k-j)-1} \right] = 2(k-1)k^{k-2}$$

then product rule proves the claim.

To show this, we examine labeled trees over [k]. For $1 \le j \le k-1$

- we have $\binom{k}{j}$ choices for subsets $J \subset [k]$ of size |J| = j
- ② we have j^{j-2} choices for labelled trees on J (Cayley's Formula)

lf

$$\sum_{j=1}^{k-1} \left[\binom{k}{j} j^{j-1} (k-j)^{(k-j)-1} \right] = 2(k-1)k^{k-2}$$

then product rule proves the claim.

To show this, we examine labeled trees over [k]. For $1 \le j \le k-1$

- we have $\binom{k}{j}$ choices for subsets $J \subset [k]$ of size |J| = j
- $oldsymbol{0}$ we have j^{j-2} choices for labelled trees on J (Cayley's Formula)
- **3** we have $(k-j)^{k-j-2}$ choices for labelled trees on $[k] \setminus J$

lf

$$\sum_{j=1}^{k-1} \left[\binom{k}{j} j^{j-1} (k-j)^{(k-j)-1} \right] = 2(k-1)k^{k-2}$$

then product rule proves the claim.

To show this, we examine labeled trees over [k]. For $1 \le j \le k-1$

- we have $\binom{k}{j}$ choices for subsets $J \subset [k]$ of size |J| = j
- $oldsymbol{\circ}$ we have j^{j-2} choices for labelled trees on J (Cayley's Formula)
- **3** we have $(k-j)^{k-j-2}$ choices for labelled trees on $[k] \setminus J$
- **4** we have j(k-j) choices for edges between J and $[k] \setminus J$.

lf

$$\sum_{j=1}^{k-1} \left[\binom{k}{j} j^{j-1} (k-j)^{(k-j)-1} \right] = 2(k-1)k^{k-2}$$

then product rule proves the claim.

To show this, we examine labeled trees over [k]. For $1 \le j \le k-1$

- we have $\binom{k}{j}$ choices for subsets $J \subset [k]$ of size |J| = j
- ② we have j^{j-2} choices for labelled trees on J (Cayley's Formula)
- **3** we have $(k-j)^{k-j-2}$ choices for labelled trees on $[k] \setminus J$
- **4** we have j(k-j) choices for edges between J and $[k] \setminus J$.

So in total $\sum_{j=1}^{k-1} \left[\binom{k}{j} j^{j-2} (k-j)^{(k-j)-2} j(k-j) \right]$ choices. After completing all 4 choices, we get a labeled tree on [k].

We can reverse engineer the 4 choices by

We can reverse engineer the 4 choices by

• picking a labeled tree $T \subset [k]$ (k^{k-2} choices)

We can reverse engineer the 4 choices by

- picking a labeled tree $T \subset [k]$ (k^{k-2} choices)
- ② choosing one of the k-1 edges of T, call it e

We can reverse engineer the 4 choices by

- **1** picking a labeled tree $T \subset [k]$ (k^{k-2} choices)
- ② choosing one of the k-1 edges of T, call it e
- removing edge e from T and choosing one of the 2 remaining components as J.

We can reverse engineer the 4 choices by

- **1** picking a labeled tree $T \subset [k]$ (k^{k-2} choices)
- ② choosing one of the k-1 edges of T, call it e
- removing edge e from T and choosing one of the 2 remaining components as J.

So in total $2(k-1)k^{k-2}$ choices. This is completes the proof.

Table of Contents

- Formulating the Problem
- Useful Theorems
- 3 Creating the Supermartingale
- 4 Expected Change
- 5 Finding the Differential Equation
- Solving the Differential Equations
- Applying Azuma's Inequality

So far we've shown that if

So far we've shown that if

•
$$y_k(t) = \frac{k^{k-2}}{k!} (2t)^{k-1} e^{-2kt}$$

So far we've shown that if

•
$$y_k(t) = \frac{k^{k-2}}{k!} (2t)^{k-1} e^{-2kt}$$

•
$$\epsilon_n(t) = \omega(\frac{1}{n})e^{4\kappa^3t}$$

So far we've shown that if

•
$$y_k(t) = \frac{k^{k-2}}{k!} (2t)^{k-1} e^{-2kt}$$

•
$$\epsilon_n(t) = \omega(\frac{1}{n})e^{4\kappa^3t}$$

then $(Y_k^+(i))_{i=0}^{\lfloor cn \rfloor}$ is a supermartingale.

If
$$i < \nu_n^+$$

$$|\Delta Y_k^+(i)| = |\Delta Y_k(i) - (y_k(t_i + \frac{1}{n}) - y_k(t_i) + \epsilon_n(t_i + \frac{1}{n}) - \epsilon_n(t_i))|$$

If
$$i < \nu_n^+$$

$$|\Delta Y_{k}^{+}(i)| = |\Delta Y_{k}(i) - (y_{k}(t_{i} + \frac{1}{n}) - y_{k}(t_{i}) + \epsilon_{n}(t_{i} + \frac{1}{n}) - \epsilon_{n}(t_{i}))|$$

$$= |\Delta Y_{k}(i) - y_{k}'(t_{i}) - \epsilon_{n}'(t_{i}) + O(\frac{1}{n})|$$

If
$$i < \nu_n^+$$

$$\begin{aligned} |\Delta Y_{k}^{+}(i)| &= |\Delta Y_{k}(i) - (y_{k}(t_{i} + \frac{1}{n}) - y_{k}(t_{i}) + \epsilon_{n}(t_{i} + \frac{1}{n}) - \epsilon_{n}(t_{i}))| \\ &= |\Delta Y_{k}(i) - y_{k}'(t_{i}) - \epsilon_{n}'(t_{i}) + O(\frac{1}{n})| \\ &\leq |\Delta Y_{k}(i)| + |y_{k}'(t_{i})| + |\epsilon_{n}'(t_{i})| + O(\frac{1}{n}) \end{aligned}$$

If
$$i < \nu_n^+$$

$$\begin{aligned} |\Delta Y_{k}^{+}(i)| &= |\Delta Y_{k}(i) - (y_{k}(t_{i} + \frac{1}{n}) - y_{k}(t_{i}) + \epsilon_{n}(t_{i} + \frac{1}{n}) - \epsilon_{n}(t_{i}))| \\ &= |\Delta Y_{k}(i) - y_{k}'(t_{i}) - \epsilon_{n}'(t_{i}) + O(\frac{1}{n})| \\ &\leq |\Delta Y_{k}(i)| + |y_{k}'(t_{i})| + |\epsilon_{n}'(t_{i})| + O(\frac{1}{n}) \\ &\leq 2 + O(1) + O(1) + O(\frac{1}{n}) \end{aligned}$$

If
$$i < \nu_n^+$$

$$\begin{aligned} |\Delta Y_k^+(i)| &= |\Delta Y_k(i) - (y_k(t_i + \frac{1}{n}) - y_k(t_i) + \epsilon_n(t_i + \frac{1}{n}) - \epsilon_n(t_i))| \\ &= |\Delta Y_k(i) - y_k'(t_i) - \epsilon_n'(t_i) + O(\frac{1}{n})| \\ &\leq |\Delta Y_k(i)| + |y_k'(t_i)| + |\epsilon_n'(t_i)| + O(\frac{1}{n}) \\ &\leq 2 + O(1) + O(1) + O(\frac{1}{n}) \\ &= O(1) \end{aligned}$$

First we need to show $|\Delta Y_k^+(i)| = O(1)$ a.s. $\forall 0 \le i \le \lfloor cn \rfloor$.

If
$$i < \nu_n^+$$

$$|\Delta Y_{k}^{+}(i)| = |\Delta Y_{k}(i) - (y_{k}(t_{i} + \frac{1}{n}) - y_{k}(t_{i}) + \epsilon_{n}(t_{i} + \frac{1}{n}) - \epsilon_{n}(t_{i}))|$$

$$= |\Delta Y_{k}(i) - y_{k}'(t_{i}) - \epsilon_{n}'(t_{i}) + O(\frac{1}{n})|$$

$$\leq |\Delta Y_{k}(i)| + |y_{k}'(t_{i})| + |\epsilon_{n}'(t_{i})| + O(\frac{1}{n})$$

$$\leq 2 + O(1) + O(1) + O(\frac{1}{n})$$

$$= O(1)$$

Otherwise, Y_k^+ is frozen, so $|\Delta Y_k^+(i)| = 0$

For step $m = \lfloor cn \rfloor$ we want to bound $\mathbb{P}(m \geq \nu_n^+) = \mathbb{P}(Y_k^+(m) > 0)$.

For step $m = \lfloor cn \rfloor$ we want to bound $\mathbb{P}(m \geq \nu_n^+) = \mathbb{P}(Y_k^+(m) > 0)$. We have

$$Y_k^+(0) = Y_k(0) - ny_k(0) - n\epsilon_n(0) = -n\epsilon_n(0)$$

For step $m=\lfloor cn\rfloor$ we want to bound $\mathbb{P}(m\geq \nu_n^+)=\mathbb{P}(Y_k^+(m)>0).$ We have

$$Y_k^+(0) = Y_k(0) - ny_k(0) - n\epsilon_n(0) = -n\epsilon_n(0)$$

SO

$$\mathbb{P}(Y_k^+(m) > 0) = \mathbb{P}(Y_k^+(m) - Y_k^+(0) > n\epsilon_n(0))$$

For step $m = \lfloor cn \rfloor$ we want to bound $\mathbb{P}(m \geq \nu_n^+) = \mathbb{P}(Y_k^+(m) > 0)$. We have

$$Y_k^+(0) = Y_k(0) - ny_k(0) - n\epsilon_n(0) = -n\epsilon_n(0)$$

SO

$$\mathbb{P}(Y_k^+(m) > 0)$$

$$= \mathbb{P}(Y_k^+(m) - Y_k^+(0) > n\epsilon_n(0))$$

$$\leq \exp\left(-\frac{n^2\epsilon_n(0)^2}{2C^2m}\right)$$

For step $m = \lfloor cn \rfloor$ we want to bound $\mathbb{P}(m \geq \nu_n^+) = \mathbb{P}(Y_k^+(m) > 0)$. We have

$$Y_k^+(0) = Y_k(0) - ny_k(0) - n\epsilon_n(0) = -n\epsilon_n(0)$$

SO

$$\mathbb{P}(Y_k^+(m) > 0)$$

$$= \mathbb{P}(Y_k^+(m) - Y_k^+(0) > n\epsilon_n(0))$$

$$\leq \exp\left(-\frac{n^2\epsilon_n(0)^2}{2C^2m}\right)$$

$$\leq \exp\left(-\frac{n\epsilon_n(0)^2}{2C^2}\right)$$

where we absorbed c from $m = \lfloor cn \rfloor$ into C^2 .

For step $m = \lfloor cn \rfloor$ we want to bound $\mathbb{P}(m \geq \nu_n^+) = \mathbb{P}(Y_k^+(m) > 0)$. We have

$$Y_k^+(0) = Y_k(0) - ny_k(0) - n\epsilon_n(0) = -n\epsilon_n(0)$$

SO

$$\mathbb{P}(Y_k^+(m) > 0)$$

$$= \mathbb{P}(Y_k^+(m) - Y_k^+(0) > n\epsilon_n(0))$$

$$\leq \exp\left(-\frac{n^2\epsilon_n(0)^2}{2C^2m}\right)$$

$$\leq \exp\left(-\frac{n\epsilon_n(0)^2}{2C^2}\right)$$

where we absorbed c from m = |cn| into C^2 .

Choosing $\epsilon_n(0) = \omega(n^{-1/2})$, such as $\epsilon_n(t) = n^{-1/3}e^{4\kappa^3t}$, should do the trick. So $\mathbb{P}(m > \nu_n^+) \to 0$

Symmetric Calculation and Wrap-Up

A symmetric calculation for Y_k^- gets us that $\mathbb{P}(m \ge \nu_n^-) \to 0$ as well.

Symmetric Calculation and Wrap-Up

A symmetric calculation for Y_k^- gets us that $\mathbb{P}(m \geq \nu_n^-) \to 0$ as well.

Finally, applying a union bound, we get that

$$\mathbb{P}(\mathit{m} \geq \nu_\mathit{n}^+ \text{ or } \mathit{m} \geq \nu_\mathit{n}^-) \leq \mathbb{P}(\mathit{m} \geq \nu_\mathit{n}^+) + \mathbb{P}(\mathit{m} \geq \nu^-) = \mathit{o}(1) + \mathit{o}(1)$$