In [1]: import pandas as pd
 from sklearn.cluster import KMeans as KM
 import matplotlib.pyplot as plt
 import plotly.express as px
 from sklearn.preprocessing import StandardScaler as SS

In [2]: df=pd.read_csv(r'D:\Mall_Customers.csv')

In [3]: df

Out[3]:

	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
0	1	Male	19	15	39
1	2	Male	21	15	81
2	3	Female	20	16	6
3	4	Female	23	16	77
4	5	Female	31	17	40
195	196	Female	35	120	79
196	197	Fema l e	45	126	28
197	198	Male	32	126	74
198	199	Male	32	137	18
199	200	Male	30	137	83

200 rows × 5 columns

In [4]: | df.describe()

Out[4]:

	CustomerID	Age	Annual Income (k\$)	Spending Score (1-100)
count	200.000000	200.000000	200.000000	200.000000
mean	100.500000	38.850000	60.560000	50.200000
std	57.879185	13.969007	26.264721	25.823522
min	1.000000	18.000000	15.000000	1.000000
25%	50.750000	28.750000	41.500000	34.750000
50%	100.500000	36.000000	61.500000	50.000000
75%	150.250000	49.000000	78.000000	73.000000
max	200.000000	70.000000	137.000000	99.000000

```
In [5]: df.isnull().sum()
Out[5]: CustomerID
                                   0
        Gender
                                   0
        Age
                                   0
        Annual Income (k$)
                                   0
        Spending Score (1-100)
                                   0
        dtype: int64
In [6]: | fea=['Age', 'Annual Income (k$)', 'Spending Score (1-100)']
In [7]: sc=SS()
        sc df=sc.fit transform(df[fea])
In [8]:
        km=KM(n_clusters=5)
        km.fit(sc df)
        C:\Users\nikhil\anaconda3\Lib\site-packages\sklearn\cluster\_kmeans.py:1412:
        FutureWarning: The default value of `n init` will change from 10 to 'auto' in
        1.4. Set the value of `n_init` explicitly to suppress the warning
          super()._check_params_vs_input(X, default_n_init=10)
        C:\Users\nikhil\anaconda3\Lib\site-packages\sklearn\cluster\ kmeans.py:1436:
        UserWarning: KMeans is known to have a memory leak on Windows with MKL, when
        there are less chunks than available threads. You can avoid it by setting the
        environment variable OMP_NUM_THREADS=1.
          warnings.warn(
Out[8]:
                 KMeans
         KMeans(n_clusters=5)
In [9]: df['cluster']=km.labels_
```

```
In [10]: # 3D Plot For KMeans Clustering
px.scatter_3d(df,x='Age',y='Annual Income (k$)',z='Spending Score (1-100)',col
```



```
In [11]: # 2D Plot For Kmeans Clustering
plt.scatter(x=df['Age'],y=df['Annual Income (k$)'],c=df['cluster'])
```

Out[11]: <matplotlib.collections.PathCollection at 0x2467f74d290>

In [12]: plt.scatter(x=df['Age'],y=df['Spending Score (1-100)'],c=df['cluster'])
 plt.show()

In [13]: plt.scatter(x=df['Annual Income (k\$)'],y=df['Spending Score (1-100)'],c=df['cl
plt.show()

