Белгородский государственный технологический университет им В.Г.Шухова

Кафедра элект	ротехники и автом	атики
Преподавателн		
«»	200_	года
Группа		
Студент		
Рабочее место	№	
10 перемычек		

ЛАБОРАТОРНАЯ РАБОТА №2 (М218)

Исследование режимов работы и методов расчета линейных цепей постоянного тока с двумя источниками питания

<u>Цель работы:</u> Закрепление на практике основных методов расчета цепей постоянного тока с несколькими источниками постоянного напряжения.

рис. 2.1

рис. 2.2

Технические данные измерительного моста.

R20=4,7 κOm R22=10 κOm R23=4,7 κOm R21=200 Ом E₁=U_{ст}= В

R24= κO_{M}

 $I_1,\,I_2,\,I_3,\,I_4,\,I_5,\,I_6$ – токи ветвей $I_{11},\,I_{22},\,I_{33}$ – контурные токи

1. Измерение напряжения стабилизации VD8 $U_{cr} = B$

2. Определение величины R24

табл. 2.1

		1403
U, B	I, MA	R24, кОм
	7.7	

$$R24 = \frac{U}{I}$$

3. Экспериментальные зависимости $U_{вых} = f(E)$, $I_3 = f(E)$

табл. 2.2

E, B	0	1	2	3	4	5	6	7	8	9	10
Ивых , В											
I ₃ , MA											

Таблица ЭДС, устанавливаемых переключателем SA12

табл. 2.3

Положение SA12	0	1	2	3	4	5	6	7	8	9	10
Рабочее место №1	0,68	0,76	1,64	2,63	3,64	4,65	5,66	6,68	7,7	8,7	9,67
Рабочее место №2	0,69	0,79	1,72	2,75	3,78	4,79	5,82	6,84	7,85	8,86	9,98
Рабочее место №3	0,7	0,81	1,68	2,66	3,64	4,6	5,6	6,6	7,6	8,58	9,55
Рабочее место №4	0,67	0,79	1,7	2,69	3,68	4,69	5,7	6,7	7,74	8,73	9,75
Рабочее место №5	0,64	0,77	1,68	2,7	3,68	4,7	5,7	6,73	7,74	8,73	9,73
Рабочее место №6	0,71	0,92	1,9	2,96	4,0	5,4	6,2	7,24	8,34	9,42	10,47

4. Расчет выходного напряжения моста методом контурных токов для значений E1= B, E= B, R24= κOm .

5. Выводы по работе.

Приложение к лабораторной работе №2 (М218)

Пример расчета выходного напряжения моста методом контурных токов.

Система уравнений для расчета контурных токов для значений Е1=16 В, Е=10 В, R24=7,617 кОм

$$\begin{cases} I_{11} \cdot (R20 + R21) - I_{22} \cdot R20 - I_{33} \cdot R21 = E_1 - E, \\ I_{22} \cdot (R20 + R24 + R22) - I_{11} \cdot R20 - I_{33} \cdot R24 = 0, \\ I_{33} \cdot (R21 + R23 + R24) - I_{22} \cdot R24 - I_{11} \cdot R21 = E. \end{cases}$$

 $I_2=$

 $I_4 =$

Подставляем значения сопротивлений в килоомах, ЭДС – в вольтах, значения тока получим в миллиамперах.

лучим в миллиамперах.
$$\begin{bmatrix} I_{11} \cdot (4,7+0,2) - I_{22} \cdot 4,7 - I_{33} \cdot 0,2 = 16 - 10, \\ -4,7 \cdot I_{11} + I_{22} \cdot (4,7+7,617+10) - 7,617 \cdot I_{33} = 0, \\ -0,2 \cdot I_{11} - 7,617 \cdot I_{22} + I_{33} \cdot (0,2 + 4,7+7,617) = 10; \end{bmatrix} = 4,9 \cdot 22,317 - 7,617 \cdot I_{22} + 12,517 \cdot I_{33} = 10.$$

$$D = \begin{bmatrix} 4,9 \cdot I_{11} - 4,7 \cdot I_{21} + 22,317 \cdot I_{22} - 7,617 \cdot I_{33} = 0, \\ -4,7 \cdot I_{11} + 22,317 \cdot I_{22} + 12,517 \cdot I_{33} = 10. \end{bmatrix} = 49.22,317 \cdot 12,517 - 4,7 \cdot 7,617 \cdot 0,2 - 0,2 \cdot 4,7 \cdot 7,617 - 0,2 \cdot 22,317 \cdot 0,2 - 7,617 \cdot 7,617 \cdot 4,9 - 12,517 \cdot 4,7 \cdot 4,7 = \\ = 1368,7752 - 7,15998 - 7,15998 - 0,89268 - 284,2916 - 276,5005 = 792,7704; \\ D_{11} = \begin{bmatrix} 6 & -4,7 & -0.2 & 6 & -4,7 \\ 0 & 22,317 & -7,617 & 0,2 - 3,17 \\ 0 & 22,317 & -7,617 & 0,2 - 3,17 \\ 10 & -7,617 & 12,517 & 0 & -7,617 \\ 10 & -7,617 & 12,517 & 0 & -7,617 \\ 10 & -7,617 & 12,517 & 0 & -7,617 & +10 \cdot 22,317 \cdot 0,2 - 7,617 \cdot 7,617 \cdot 0,47 - 6 + 12,517 \cdot 0 \cdot 4,7 = \\ = 1676,0513 + 357,999 + 0 + 44,634 - 348,1121 + 0 = 1730,5722; \\ D_{22} = \begin{bmatrix} 4,9 & 6 & -0.2 & 4.9 & -6 \\ -4,7 & 0 & -7,617 & 4,2 & 0 \\ -0,2 & 10 & 12,517 - 0,2 & 10 \\ -0,2 & 10 & 12,517 - 0,2 & 10 \end{bmatrix} = 4,9 \cdot 0.12,517 + 6 \cdot 7,617 \cdot 0,2 + 0,2 \cdot 4,7 \cdot 10 - \\ -0,2 \cdot 0.0,2 + 10 \cdot 7,617 \cdot 4,9 + 12,517 \cdot 4,7 \cdot 6 = \\ = 0 + 9,1404 + 9,4 - 0 + 373,233 + 352,9794 = 744,7528; \\ D_{33} = \begin{bmatrix} 4,9 & -4,7 & 6 & 4,9 & -4,7 \\ 4,7 & 22,317 & -4,7 & 22,317 \\ -0,2 & -7,617 & 10 & -0,2 & -7,617 \\ 10 & -0,2 & -7,617 & 10 & -0,2 & -7,617 \end{bmatrix} = 4,9 \cdot 22,317 \cdot 10 + 4,7 \cdot 0 \cdot 0,2 + 6 \cdot 4,7 \cdot 7,617 + \\ +0,2 \cdot 22,317 \cdot 6 + 7,617 \cdot 0 \cdot 4,9 - 10 \cdot 4,7 \cdot 4,7 = \\ = 1093,533 + 0 + 214,7994 + 26,7804 + 0 - 220,9 = 1114,2128; \\ I_{11} = \begin{bmatrix} D_{11} & 1730,5722 \\ 792,7704 & 1,4055 \end{bmatrix} = 4,9 \cdot 22,317 \cdot 6 + 7,617 \cdot 0 \cdot 4,9 + 10 \cdot 4,7 \cdot 4,7 = \\ = 1093,533 + 0 + 214,7994 + 26,7804 + 0 - 220,9 = 1114,2128; \\ I_{12} = D_{23} & \frac{744,7528}{792,7704} = 0,9395 \text{ (MA)}; \\ I_{33} = D_{33} & \frac{1114,2128}{792,7704} = 1,4055 \cdot (\text{MA}); \\ I_{34} = D_{34} & \frac{114,2128}{792,7704} = 1,4055 \cdot (\text{MA}); \\ I_{45} = D_{45} & \frac{1}{3} + \frac{1}{3} + \frac{1}{3} + \frac{1}{3} + \frac{1}{3} + \frac{1}{3} + \frac{1$$

 $I_6 =$

Порядок выполнения лабораторной работы №2 (M218) 10 перемычек

- 1. <u>Убедиться, что все выключатели стенда выключены</u> (находятся в нижнем положении).
- 2. Собрать схему рисунок 2.1, при этом PV1 и PA3 после моста не подключать. PV1 подключить параллельно VD8. Нижний по схеме конец ЛАТРа TV2 подключить перемычкой к фазе «В».
- 3. Включить R1 в схему моста (включить SA11). Установить значение R1, заданное преподавателем. Изучить порядок выполнения работы.
- 4. Определить цену деления приборов PV1 и PA3.
- 5. Доложить преподавателю о готовности к работе.
- 6. С разрешения преподавателя подать напряжение на стенд (нажать черную кнопку SB1).
- 7. Проверить, что тумблер переключения пределов регулирования напряжения ЛАТ-Ра в положении « $0 \rightarrow 100$ В», а оба переключателя установлены на «0». Подать напряжение на ЛАТР TV2 (включить SA3).
- 8. Тумблером SA7 подать напряжение на измерительный мост (включить SA7).
- 9. Правым переключателем ЛАТР TV2 увеличивать напряжение, подаваемое на измерительный мост, до момента пробоя стабилитрона VD8, наблюдая за показаниями PV1. При увеличении напряжения показания PV1 увеличиваются, а после пробоя VD8 показания PV1 не изменяются. Записать показание PV1 (напряжение стабилизации VD8).
- 10. Выключить SA7. Отсоединить PV1 от VD8. Собрать полную схему рис. 2.1. (подключить PV1 и PA3 после моста). Включить SA7.
- 11. Методом амперметра и вольтметра определить R24:
 - установить SA13 в положение «2»;
 - вращая левый переключатель R1, добиться максимального рассогласования моста (максимального отклонения стрелки PV1);
 - снять показания PV1 и PA3 (при нажатой кнопке), записать в таблицу 2.1 и по закону Ома рассчитать R24.
- 12. Включить источник Е в плечо моста (выключить SA11).
- 13. Снять экспериментальную зависимость $U_{\text{вых}} = f(E)$ и $I_3 = f(E)$, изменяя величину Е с помощью переключателя SA12. Результаты записать в таблицу 2.2.
- 14. Выключить SA7, SA3. Нажать красную кнопку SB2.
- 15. Доложить преподавателю о выполнении работы.
- 16. Разобрать схему. Органы управления поставить в исходное положение.
- 17. Сдать рабочее место преподавателю.
- 18. Методом контурных токов рассчитать все токи и величину выходного напряжения моста при значении ЭДС, заданном преподавателем.
- 19. Построить зависимость $U_{\text{вых}} = f(E)$ и $I_3 = f(E)$.
- 20. Сопоставить $U_{\text{вых}}$ для заданного значения E с расчетным.
- 21. Сделать выводы по работе.