Conditional gradient methods. Projected Gradient Descent. Frank-Wolfe Method.

Daniil Merkulov

Optimization methods. MIPT

∌ ດ ⊘

Unconstrained optimization

Constrained optimization

$$\min_{x \in \mathbb{R}^n} f(x) \qquad \qquad \min_{x \in S} f(x)$$

• Any point $x_0 \in \mathbb{R}^n$ is feasible and could be a solution.

Gradient Descent is a great way to solve unconstrained problem

$$x_{k+1} = x_k - \alpha_k \nabla f(x_k) \tag{GD}$$

Unconstrained optimization

Constrained optimization

$$\min_{x \in \mathbb{R}^n} f(x)$$

• Any point $x_0 \in \mathbb{R}^n$ is feasible and could be a solution.

$$\min_{x \in S} f(x)$$

• Not all $x \in \mathbb{R}^n$ is feasible and could be a solution.

Gradient Descent is a great way to solve unconstrained problem

$$x_{k+1} = x_k - \alpha_k \nabla f(x_k) \tag{GD}$$

Unconstrained optimization

$$\min_{x \in \mathbb{R}^n} f(x)$$

• Any point $x_0 \in \mathbb{R}^n$ is feasible and could be a solution.

Constrained optimization

$$\min_{x \in S} f(x)$$

- Not all $x \in \mathbb{R}^n$ is feasible and could be a solution.
- The solution has to be inside the set S.

Gradient Descent is a great way to solve unconstrained problem

$$x_{k+1} = x_k - \alpha_k \nabla f(x_k) \tag{GD}$$

Unconstrained optimization

$$\min_{x \in \mathbb{R}^n} f(x)$$

• Any point $x_0 \in \mathbb{R}^n$ is feasible and could be a solution.

Constrained optimization

$$\min_{x \in S} f(x)$$

- Not all $x \in \mathbb{R}^n$ is feasible and could be a solution.
- The solution has to be inside the set S.
- Example:

$$\frac{1}{2}||Ax - b||_2^2 \to \min_{\|x\|_2^2 \le 1}$$

Gradient Descent is a great way to solve unconstrained problem

$$x_{k+1} = x_k - \alpha_k \nabla f(x_k) \tag{GD}$$

Unconstrained optimization

$$\min_{x \in \mathbb{R}^n} f(x)$$

• Any point $x_0 \in \mathbb{R}^n$ is feasible and could be a solution.

Constrained optimization

$$\min_{x \in S} f(x)$$

- Not all $x \in \mathbb{R}^n$ is feasible and could be a solution.
- The solution has to be inside the set S.
- Example:

$$\frac{1}{2}||Ax - b||_2^2 \to \min_{\|x\|_2^2 \le 1}$$

Gradient Descent is a great way to solve unconstrained problem

$$x_{k+1} = x_k - \alpha_k \nabla f(x_k) \tag{GD}$$

Unconstrained optimization

$$\min_{x \in \mathbb{R}^n} f(x)$$

• Any point $x_0 \in \mathbb{R}^n$ is feasible and could be a solution.

Constrained optimization

$$\min_{x \in S} f(x)$$

- Not all $x \in \mathbb{R}^n$ is feasible and could be a solution.
- The solution has to be inside the set S.
- Example:

$$\frac{1}{2}||Ax - b||_2^2 \to \min_{\|x\|_2^2 \le 1}$$

Gradient Descent is a great way to solve unconstrained problem

$$x_{k+1} = x_k - \alpha_k \nabla f(x_k) \tag{GD}$$

Is it possible to tune GD to fit constrained problem?

Yes. We need to use projections to ensure feasibility on every iteration.

The distance d from point $\mathbf{y} \in \mathbb{R}^n$ to closed set $S \subset \mathbb{R}^n$:

$$d(\mathbf{y}, S, \|\cdot\|) = \inf\{\|x - y\| \mid x \in S\}$$

We will focus on Euclidean projection (other options are possible) of a point $\mathbf{y} \in \mathbb{R}^n$ on set $S \subseteq \mathbb{R}^n$ is a point $\operatorname{\mathsf{proj}}_S(\mathbf{y}) \in S$:

$$\operatorname{proj}_{S}(\mathbf{y}) = \frac{1}{2} \underset{\mathbf{x} \in S}{\operatorname{argmin}} \|x - y\|_{2}^{2}$$

• Sufficient conditions of existence of a projection. If $S \subseteq \mathbb{R}^n$ - closed set, then the projection on set S exists for any point.

The distance d from point $\mathbf{y} \in \mathbb{R}^n$ to closed set $S \subset \mathbb{R}^n$:

$$d(\mathbf{y}, S, \|\cdot\|) = \inf\{\|x - y\| \mid x \in S\}$$

We will focus on Euclidean projection (other options are possible) of a point $\mathbf{y} \in \mathbb{R}^n$ on set $S \subseteq \mathbb{R}^n$ is a point $\operatorname{proj}_S(\mathbf{y}) \in S$:

$$\operatorname{proj}_{S}(\mathbf{y}) = \frac{1}{2} \underset{\mathbf{x} \in S}{\operatorname{argmin}} \|x - y\|_{2}^{2}$$

- Sufficient conditions of existence of a projection. If $S \subseteq \mathbb{R}^n$ closed set, then the projection on set S exists for any point.
- Sufficient conditions of uniqueness of a projection. If $S \subseteq \mathbb{R}^n$ closed convex set, then the projection on set S is unique for any point.

എ റ ഉ

The distance d from point $\mathbf{y} \in \mathbb{R}^n$ to closed set $S \subset \mathbb{R}^n$:

$$d(\mathbf{y}, S, \|\cdot\|) = \inf\{\|x - y\| \mid x \in S\}$$

We will focus on Euclidean projection (other options are possible) of a point $\mathbf{y} \in \mathbb{R}^n$ on set $S \subseteq \mathbb{R}^n$ is a point $\operatorname{\mathsf{proj}}_S(\mathbf{y}) \in S$:

$$\operatorname{proj}_S(\mathbf{y}) = \frac{1}{2} \underset{\mathbf{x} \in S}{\operatorname{argmin}} \|x - y\|_2^2$$

- Sufficient conditions of existence of a projection. If $S \subseteq \mathbb{R}^n$ closed set, then the projection on set S exists for any point.
- Sufficient conditions of uniqueness of a projection. If $S \subseteq \mathbb{R}^n$ closed convex set, then the projection on set S is unique for any point.
- If a set is open, and a point is beyond this set, then its projection on this set does not exist.

The distance d from point $\mathbf{y} \in \mathbb{R}^n$ to closed set $S \subset \mathbb{R}^n$:

$$d(\mathbf{y}, S, \|\cdot\|) = \inf\{\|x - y\| \mid x \in S\}$$

We will focus on Euclidean projection (other options are possible) of a point $\mathbf{y} \in \mathbb{R}^n$ on set $S \subseteq \mathbb{R}^n$ is a point $\operatorname{\mathsf{proj}}_S(\mathbf{y}) \in S$:

$$\operatorname{proj}_S(\mathbf{y}) = \frac{1}{2} \underset{\mathbf{x} \in S}{\operatorname{argmin}} \|x - y\|_2^2$$

- Sufficient conditions of existence of a projection. If $S \subseteq \mathbb{R}^n$ closed set, then the projection on set S exists for any point.
- Sufficient conditions of uniqueness of a projection. If $S \subseteq \mathbb{R}^n$ closed convex set, then the projection on set S is unique for any point.
- If a set is open, and a point is beyond this set, then its projection on this set does not exist.
- If a point is in set, then its projection is the point itself.

Projection criterion (Bourbaki-Cheney-Goldstein inequality)

$$\langle \mathbf{y} - \mathsf{proj}_S(\mathbf{y}), \mathbf{x} - \mathsf{proj}_S(\mathbf{y}) \rangle \leq 0 \quad \forall x \in S.$$

Figure 1: Obtuse or straight angle should be for any point $x \in S$

P O 0

 $\bullet \ \ \text{A function} \ f \ \text{is called non-expansive if} \ f \ \text{is} \ L\text{-Lipschitz with} \ L \leq 1^{-1}. \ \ \text{That is, for any two points} \ x,y \in \text{dom} f,$

$$||f(x) - f(y)|| \le L||x - y||$$
, where $L \le 1$.

It means the distance between the mapped points is possibly smaller than that of the unmapped points.

 $^{^{1}\}mbox{Non-expansive}$ becomes contractive if L<1.

 $\bullet \ \ \text{A function} \ f \ \text{is called non-expansive if} \ f \ \text{is} \ L\text{-Lipschitz with} \ L \leq 1^{-1}. \ \ \text{That is, for any two points} \ x,y \in \text{dom} f,$

$$||f(x) - f(y)|| \le L||x - y||$$
, where $L \le 1$.

It means the distance between the mapped points is possibly smaller than that of the unmapped points.

• Projection operator is non-expansive:

$$\|\operatorname{proj}(x) - \operatorname{proj}(y)\|_2 \le \|x - y\|_2.$$

 $^{^{1}\}mbox{Non-expansive becomes contractive if }L<1.$

 $\bullet \ \ \text{A function} \ f \ \text{is called non-expansive if} \ f \ \text{is} \ L\text{-Lipschitz with} \ L \leq 1^{\ 1}. \ \ \text{That is, for any two points} \ x,y \in \text{dom} f,$

$$||f(x) - f(y)|| \le L||x - y||$$
, where $L \le 1$.

It means the distance between the mapped points is possibly smaller than that of the unmapped points.

• Projection operator is non-expansive:

$$\|\mathsf{proj}(x) - \mathsf{proj}(y)\|_2 \le \|x - y\|_2.$$

• Next: variational characterization implies non-expansiveness. i.e.,

$$\langle y - \mathsf{proj}(y), x - \mathsf{proj}(y) \rangle \leq 0 \quad \forall x \in S \qquad \Rightarrow \qquad \|\mathsf{proj}(x) - \mathsf{proj}(y)\|_2 \leq \|x - y\|_2.$$

 $^{^{1}\}mbox{Non-expansive becomes contractive if }L<1.$

Replace x by $\pi(x)$ in Equation 1

Shorthand notation: let $\pi = \text{proj}$ and $\pi(x)$ denotes proj(x).

Begins with the variational characterization / obtuse angle inequality

$$\langle y - \pi(y), x - \pi(y) \rangle \le 0 \quad \forall x \in S.$$

$$\langle y - \pi(y), \pi(x) - \pi(y) \rangle \le 0.$$

(Equation 2)+(Equation 3) will cancel
$$\pi(y) - \pi(x)$$
, not good. So flip the sign of (Equation 3) gives

$$\langle \pi(x) - x, \pi(x) - \pi(y) \rangle < 0.$$

$$-x,\pi(x)$$

(2)

$$\langle y - x, \pi(x) - \pi(y) \rangle \le -\langle \pi(x) - \pi(y), \pi(x) - \pi(y) \rangle$$

$$\langle y - x, \pi(y) - \pi(x) \rangle \ge \|\pi(x) - \pi(y)\|_2^2$$

$$\|(y - x)^\top (\pi(y) - \pi(x))\|_2 \ge \|\pi(x) - \pi(y)\|_2^2$$

Replace y by x and x by $\pi(y)$ in Equation 1

 $\langle x - \pi(x), \pi(y) - \pi(x) \rangle < 0.$

left-hand-side is upper bounded by
$$||y-x||_2||\pi(y)-\pi(x)||_2$$
, we get

$$||y-x||_2 ||\pi(y)-\pi(x)||_2 \ge ||\pi(x)-\pi(y)||_2^2$$
. Cancels $||\pi(x)-\pi(y)||_2$ finishes the proof.

 $\langle u - \pi(u) + \pi(x) - x, \pi(x) - \pi(y) \rangle < 0$

 $\langle y - x + \pi(x) - \pi(y), \pi(x) - \pi(y) \rangle < 0$

Conditional methods

(1)

(3)

(4)

Example: projection on the ball

Find $\pi_S(y) = \pi$, if $S = \{x \in \mathbb{R}^n \mid ||x - x_0|| \le R\}, y \notin S$

Build a hypothesis from the figure: $\pi = x_0 + R \cdot \frac{y - x_0}{\|y - x_0\|}$

Check the inequality for a convex closed set: $(\pi - y)^T(x - \pi) \ge 0$

$$\left(x_0 - y + R \frac{y - x_0}{\|y - x_0\|}\right)^T \left(x - x_0 - R \frac{y - x_0}{\|y - x_0\|}\right) = \begin{array}{c} \text{follows fro} \\ \text{inequality:} \end{array}$$

$$\left(\frac{(y-x_0)(R-\|y-x_0\|)}{\|y-x_0\|} \right)^T \left(\frac{(x-x_0)\|y-x_0\|-R(y-x_0)}{\|y-x_0\|} \right) = \frac{(y-x_0)^T(x-x_0)}{\|y-x_0\|} - R \le \frac{\|y-x_0\|\|x-x_0\|}{\|y-x_0\|}$$

$$\frac{R - \|y - x_0\|}{\|y - x_0\|^2} (y - x_0)^T ((x - x_0) \|y - x_0\| - R (y - x_0)) =$$

$$\frac{R - \|y - x_0\|}{\|y - x_0\|} \left((y - x_0)^T (x - x_0) - R\|y - x_0\| \right) =$$

$$(R - \|y - x_0\|) \left(\frac{(y - x_0)^T (x - x_0)}{\|y - x_0\|} - R \right)$$

The first factor is negative for point selection y. The second factor is also negative, which follows from the Cauchy-Bunyakovsky

$$(y-x_0)^T(x-x_0) \le ||y-x_0|| ||x-x_0||$$

Conditional methods

Example: projection on the halfspace

Find $\pi_S(y) = \pi$, if $S = \{x \in \mathbb{R}^n \mid c^T x = b\}$, $y \notin S$. Build a hypothesis from the figure: $\pi = y + \alpha c$. Coefficient α is chosen so that $\pi \in S$: $c^T \pi = b$, so:

Figure 3: Hyperplane

$$c^{T}(y + \alpha c) = b$$

$$c^{T}y + \alpha c^{T}c = b$$

$$c^{T}y = b - \alpha c^{T}c$$

Check the inequality for a convex closed set: $(\pi - u)^T (x - \pi) > 0$

$$(x - \pi) \ge 0$$

$$(y + \alpha c - y)^{T}(x - y - \alpha c) =$$

$$\alpha c^{T}(x - y - \alpha c) =$$

$$\alpha (c^{T}x) - \alpha (c^{T}y) - \alpha^{2}(c^{T}c) =$$

$$\alpha b - \alpha (b - \alpha c^{T}c) - \alpha^{2}c^{T}c =$$

$$\alpha b - \alpha b + \alpha^{2}c^{T}c - \alpha^{2}c^{T}c = 0 > 0$$

Conditional methods

Idea

$$x_{k+1} = \operatorname{proj}_{S} (x_k - \alpha_k \nabla f(x_k)) \qquad \Leftrightarrow \qquad \begin{aligned} y_k &= x_k - \alpha_k \nabla f(x_k) \\ x_{k+1} &= \operatorname{proj}_{S} (y_k) \end{aligned}$$

Figure 4: Illustration of Projected Gradient Descent algorithm

♥ ი ø

Theorem

Let $f:\mathbb{R}^n \to \mathbb{R}$ be convex and differentiable. Let $S\subseteq \mathbb{R}^n$ d be a closed convex set, and assume that there is a minimizer x^* of f over S; furthermore, suppose that f is smooth over S with parameter L. The Projected Gradient Descent algorithm with stepsize $\frac{1}{L}$ achieves the following convergence after iteration k>0:

$$f(x_k) - f^* \le \frac{L||x_0 - x^*||_2^2}{2k}$$

Theorem

Let $f:\mathbb{R}^n \to \mathbb{R}$ be convex and differentiable. Let $S\subseteq \mathbb{R}^n$ d be a closed convex set, and assume that there is a minimizer x^* of f over S; furthermore, suppose that f is smooth over S with parameter L. The Projected Gradient Descent algorithm with stepsize $\frac{1}{L}$ achieves the following convergence after iteration k>0:

$$f(x_k) - f^* \le \frac{L||x_0 - x^*||_2^2}{2k}$$

Proof

1. Let's prove sufficient decrease lemma, assuming, that $y_k = x_k - \frac{1}{L}\nabla f(x_k)$ and cosine rule $2x^Ty = ||x||^2 + ||y||^2 - ||x - y||^2$:

Theorem

Let $f:\mathbb{R}^n \to \mathbb{R}$ be convex and differentiable. Let $S\subseteq \mathbb{R}^n$ d be a closed convex set, and assume that there is a minimizer x^* of f over S; furthermore, suppose that f is smooth over S with parameter L. The Projected Gradient Descent algorithm with stepsize $\frac{1}{L}$ achieves the following convergence after iteration k > 0:

$$f(x_k) - f^* \le \frac{L||x_0 - x^*||_2^2}{2k}$$

Proof

1. Let's prove sufficient decrease lemma, assuming, that $y_k = x_k - \frac{1}{L}\nabla f(x_k)$ and cosine rule $2x^T y = ||x||^2 + ||y||^2 - ||x - y||^2$:

Smoothness:
$$f(x_{k+1}) \le f(x_k) + \langle \nabla f(x_k), x_{k+1} - x_k \rangle + \frac{L}{2} ||x_{k+1} - x_k||^2$$

Theorem

Let $f: \mathbb{R}^n \to \mathbb{R}$ be convex and differentiable. Let $S \subset \mathbb{R}^n$ d be a closed convex set, and assume that there is a minimizer x^* of f over S; furthermore, suppose that f is smooth over S with parameter L. The Projected Gradient Descent algorithm with stepsize $\frac{1}{L}$ achieves the following convergence after iteration k > 0:

$$f(x_k) - f^* \le \frac{L||x_0 - x^*||_2^2}{2k}$$

Proof

1. Let's prove sufficient decrease lemma, assuming, that $y_k = x_k - \frac{1}{L}\nabla f(x_k)$ and cosine rule $2x^Ty = ||x||^2 + ||y||^2 - ||x - y||^2$:

Smoothness:
$$f(x_{k+1}) \le f(x_k) + \langle \nabla f(x_k), x_{k+1} - x_k \rangle + \frac{L}{2} ||x_{k+1} - x_k||^2$$

Method:
$$= f(x_k) - L\langle y_k - x_k, x_{k+1} - x_k \rangle + \frac{L}{2} ||x_{k+1} - x_k||^2$$

Theorem

Let $f:\mathbb{R}^n \to \mathbb{R}$ be convex and differentiable. Let $S\subseteq \mathbb{R}^n$ d be a closed convex set, and assume that there is a minimizer x^* of f over S; furthermore, suppose that f is smooth over S with parameter L. The Projected Gradient Descent algorithm with stepsize $\frac{1}{L}$ achieves the following convergence after iteration k>0:

$$f(x_k) - f^* \le \frac{L||x_0 - x^*||_2^2}{2k}$$

Proof

1. Let's prove sufficient decrease lemma, assuming, that $y_k = x_k - \frac{1}{L}\nabla f(x_k)$ and cosine rule $2x^T y = ||x||^2 + ||y||^2 - ||x - y||^2$:

Smoothness:
$$f(x_{k+1}) \le f(x_k) + \langle \nabla f(x_k), x_{k+1} - x_k \rangle + \frac{L}{2} ||x_{k+1} - x_k||^2$$

Method:
$$= f(x_k) - L\langle y_k - x_k, x_{k+1} - x_k \rangle + \frac{L}{2} \|x_{k+1} - x_k\|^2$$

Cosine rule:
$$= f(x_k) - \frac{L}{2} \left(\|y_k - x_k\|^2 + \|x_{k+1} - x_k\|^2 - \|y_k - x_{k+1}\|^2 \right) + \frac{L}{2} \|x_{k+1} - x_k\|^2$$

Theorem

Let $f: \mathbb{R}^n \to \mathbb{R}$ be convex and differentiable. Let $S \subset \mathbb{R}^n$ d be a closed convex set, and assume that there is a minimizer x^* of f over S; furthermore, suppose that f is smooth over S with parameter L. The Projected Gradient Descent algorithm with stepsize $\frac{1}{L}$ achieves the following convergence after iteration k > 0:

$$f(x_k) - f^* \le \frac{L||x_0 - x^*||_2^2}{2k}$$

Proof

1. Let's prove sufficient decrease lemma, assuming, that $y_k = x_k - \frac{1}{L}\nabla f(x_k)$ and cosine rule

$$2x^{T}y = ||x||^{2} + ||y||^{2} - ||x - y||^{2}$$

Smoothness: $f(x_{k+1}) \le f(x_k) + \langle \nabla f(x_k), x_{k+1} - x_k \rangle + \frac{L}{2} ||x_{k+1} - x_k||^2$

Method:
$$= f(x_k) - L\langle y_k - x_k, x_{k+1} - x_k \rangle + \frac{L}{2} \|x_{k+1} - x_k\|^2$$
 Cosine rule:
$$= f(x_k) - \frac{L}{2} \left(\|y_k - x_k\|^2 + \|x_{k+1} - x_k\|^2 - \|y_k - x_{k+1}\|^2 \right) + \frac{L}{2} \|x_{k+1} - x_k\|^2$$

$$= f(x_k) - \frac{1}{2L} \|\nabla f(x_k)\|^2 + \frac{L}{2} \|y_k - x_{k+1}\|^2$$

Figure 5: Illustration of Frank-Wolfe (conditional gradient) algorithm

Figure 6: Illustration of Frank-Wolfe (conditional gradient) algorithm

Figure 7: Illustration of Frank-Wolfe (conditional gradient) algorithm

Figure 8: Illustration of Frank-Wolfe (conditional gradient) algorithm

Idea

Figure 9: Illustration of Frank-Wolfe (conditional gradient) algorithm

Idea

Figure 10: Illustration of Frank-Wolfe (conditional gradient) algorithm

⇔ ମ **ଡ**

Figure 11: Illustration of Frank-Wolfe (conditional gradient) algorithm

എറ മ

Idea

$$\begin{aligned} y_k &= \arg\min_{x \in S} f_{x_k}^I(x) = \arg\min_{x \in S} \langle \nabla f(x_k), x \rangle \\ x_{k+1} &= \gamma_k x_k + (1 - \gamma_k) y_k \end{aligned}$$

Figure 12: Illustration of Frank-Wolfe (conditional gradient) algorithm

Convergence

Comparison to PGD

