ASSIGNMENT NUMBER 1, 21.630 Spring 12

Due Wednesday, January 23

1. Let p > 0. For each $n \in \mathbb{N}$ define $f_n : [0, \infty) \to \mathbb{R}$ by

$$f_n(t) = \frac{t^p}{1 + nt^2}.$$

Note that f_n converges pointwise to zero on $[0,\infty)$ (you don't have to show this). For what values of p does f_n converge uniformly to zero? Prove your answer to be correct. For what values of p does f_n not converge uniformly to zero? Prove your answer to be correct.

2. Let $p \in (0,1)$ and define $f: \mathbb{R} \to \mathbb{R}$ by f(x) = 0 if $x \leq 0$, $f(x) = x^p$ if 0 < x < 1, and f(x) = 1 if $x \geq 1$. Find explicitly an infinite family of solutions to the initial value problem

$$\frac{dX}{dt} = f(X)$$

$$X(0) = 0.$$

3. Define $f(t,x) = x \ln(x)$ if x > 0 and f(t,0) = 0. Show that f does not satisfy a Lipschitz condition in x on $D = \{(t,x) : t \text{ is real and } 0 \le x \le e^{-1}\}$. Then show that for every $\alpha \in (0,1)$, f does satisfy a Holder condition in x with exponent α on D. You may use the following fact without proof: For any $p \in (0,1)$ there exists $C_p > 0$ such that $|\ln(z)| \le C_p z^{-p}$ for all $z \in (0,1)$.

4. Define $f:[0,\infty)\times\mathbb{R}\to\mathbb{R}$ by f(t,x)=2t if $x\leq 0,\ f(t,x)=2t-4x/t$ if $0< x< t^2$ and f(t,x)=-2t if $t^2\leq x$. Show that f does not satisfy a Lipschitz condition in x on $[0,\infty)\times\mathbb{R}$. Show that f does satisfy a Holder condition in x with exponent one half on $[0,\infty)\times\mathbb{R}$. Here is one approach to showing the Holder condition: Do the case $0\leq x\leq y\leq t^2$ first. Then (taking $x\leq y$) there are five other cases. Two are trivial and the remaining three may be done by comparison with the first.

5. Define

$$f(x) = \sum_{k=1}^{\infty} \frac{x^k \sin(e^{kx})}{k^k}$$

for all $x \in \mathbb{R}$. Prove that f is continuous on \mathbb{R} .