illiilli CISCO

9 SLAAC 和 DHCPv6

单元目标

模块标题: SLAAC 和 DHCPv6

模块目标: 在 IPv6 网络中配置动态地址分配。

主题标题	主题目标
IPv6 全局单播地址分配	说明 IPv6 主机如何获取自己的 IPv6 配置。
SLAAC	解释 SLAAC 工作原理。
DHCPv6	解释 DHCPv6 工作原理。
配置 DHCPv6 服务器	配置有状态和无状态的 DHCPv6服务器。

9.1 IPv6 GUA 分配

IPv6 GUA 分配 IPv6 主机配置

主机:

- 手动配置
- 动态分配
 - 无状态地址自动配置 (SLAAC)
 - DHCPv6

IPv6 本地链路地址

- 如果选择了<u>动态分配</u>,主机将使用ICMPv6里的RA(Router Advertisement)消息自动配置IPv6地址。
 - · 以太网接口激活时主机会自动创建IPv6本地链路地址。
 - 如果网络中没有路由器主机不会获得IPv6全球单播地址。

```
C:\PC1> ipconfig
Windows IP Configuration
Ethernet adapter Ethernet0:
    Connection-specific DNS Suffix .:
    IPv6 Address. . . . . :
    Link-local IPv6 Address . . . : fe80::fb:1d54:839f:f595%21
    IPv4 Address. . . . : 169.254.202.140
    Subnet Mask . . . . : 255.255.0.0
    Default Gateway . . . . :
C:\PC1>
```

IPv6 GUA 分配

• 启用IPv6的**路由器**默认会定期发送**ICMPv6 RA**,为主机动态创建IPv6地址提供信息。

IPv6 GUA 分配

客户端如何获取 IPv6 GUA 取决于 RA 消息中的设置。

ICMPv6 RA 消息包含以下三个标记:

- A 标记 地址自动配置(Address Autoconfiguration)标记表示要使用无状态地址 自动配置 (SLAAC) 来创建 IPv6 GUA。
- O标记-其他配置(Other Configuration)标记表示其他配置信息可以从无状态 DHCPv6 服务器那里获取。
- M 标记 被管理地址配置(Managed Address Configuration)表示要使用有状态的 DHCPv6 服 务器获取 IPv6 GUA。

RA 消息可以使用 $A \setminus O$ 和 M 标记的不同组合,来通知主机可用的动态可选项。

路由器通告(RA)的内部信息

```
Frame 69: 118 bytes on wire (944 bits), 118 bytes captured (944 bits) on interface 0

    Ethernet II, Src: Cisco_be:90:10 (00:16:c7:be:90:10), Dst: IPv6mcast_00:00:00:01 (33:33:00:00:00:01)

n Internet Protocol Version 6, Src: fe80::216:c7ff:febe:9010 (fe80::216:c7ff:febe:9010), Dst:
☐ Internet Control Message Protocol v6
   Type: Router Advertisement (134)
                                                       RA的源地址
   Code: 0
                                                                                  RA的目的地址
   Checksum: 0x4347 [correct]
   Cur hop limit: 64
 ■ Flags: 0x80
                                                           M比特指示客户端发起DHCPv6的请求消息
    0... = Managed address configuration: Set
    .0.. .... = Other configuration: Not set
     ..O. .... = Home Agent: Not set
                                                           O比特指示客户端启动DHCPv6的无状态过程
     ... 0 0... = Prf (Default Router Preference): Medium (0)
     .... .0.. = Proxy: Not set
     .... ..0. = Reserved: 0
   Router lifetime (s): 1800
   Reachable time (ms): 0
   Retrans timer (ms): 0

■ ICMPv6 Option (Source link-layer address: 00:16:c7:be:90:10)

 ⊞ ICMPv6 Option (MTU: 1500)
 ☐ ICMPv6 Option (Prefix information: 2013:900::/64)
     Type: Prefix information (3)
     Length: 4 (32 bytes)
                                前缀长度信息
    Prefix Length: 64
                                                         A比特指示客户端是否使用此前缀构建IPv6地址
   ∃ Flag: 0xc0
      1... = On-link flag(L): Set
      .1.. .... = Autonomous address-configuration flag(A): Set
      .... = Router address flag(R): Not set
       ...0 0000 = Reserved: 0
                                     有效生命期
    Valid Lifetime: 2592000
    Preferred Lifetime: 604800-
                                                                首选生命期
     Reserved
                                              IPv6地址前缀
    Prefix: 2013:900:: (2013:900::)
```

9.2 SLAAC

无状态地址自动配置 (SLAAC)

G0/1

- SLAAC不需要DHCPv6服务器就能 获得IPv6全球单播地址
- SLAAC的核心是ICMPv6

"Here is your prefix, prefix length, and other information."

IPv6 all-nodes multicast

Stateless Address Autoconfiguration

客户端以自己的本地链路地址fe80::226:b9ff:fe09:6853 为源目的地址为ff02::2发送RS信息。

阶段1: 客户端发送路由器请求(RS), 请求路由器(网关)返回RA消息。

Stateless Address Autoconfiguration

客户端根据地址前缀构建的IPv6地址: 2013:900::226:b9ff:fe09:6853/64

默认网关地址为: fe80::216:c7ff:febe:9010

阶段2: 路由器发送路由器通告(RA), 宣告地址前缀信息和网关的本地链路地址。

SLAAC 工作原理

有两种方法PC1可以创建自己独特的64位接口ID(IID):

- EUI-64 使用48位MAC地址。
- 随机生成。

SLAAC 选项

只有路由器通告

- SLAAC是对Cisco路由器的默 认选项(A=1)。
- 无论是M标志位和O标志是在 RA设置为0。
- 包括前缀,前缀长度, DNS 服务器, MTU和默认网关.

M和O标记重置初始值为0:

- Router(config-if)# no ipv6 nd managed-config-flag
- Router(config-if)# no ipv6 nd other-config-flag

9.3 无状态DHCPv6

无状态 DHCP 选项

A=1, 0=1, M=0

Stateless DHCPv6 Option

路由器通告和DHCPv6

- · 客户使用RA报文的信息处理。
- · 其他配置参数都可以从 DHCPv6服务器。
- O标志为1, M标记为0。
- 配置无状态的DHCP选项: Router(config-if)# ipv6 nd other-config-flag

将路由器配置为无状态 DHCPv6 服务器

Step 1. Enable IPv6 Routing

```
Router(config)# ipv6 unicast-routing
```

Step 2. Configure a DHCPv6 Pool

```
Router(config) # ipv6 dhcp pool pool-name
Router(config-dhcpv6) #
```

Step 3. Configure Pool Parameters

```
Router(config-dhcpv6)# dns-server dns-server-address
Router(config-dhcpv6)# domain-name domain-name
```

Step 4. Configure the DHCPv6 Interface

```
Router(config) # interface type number
Router(config-if) # ipv6 dhcp server pool-name
Router(config-if) # ipv6 nd other-config-flag
```

将路由器配置为无状态 DHCPv6 服务器


```
R1(config) # ipv6 unicast-routing
R1(config) # ipv6 dhcp pool IPV6-STATELESS
R1(config-dhcpv6) # dns-server 2001:db8:cafe:aaaa::5
R1(config-dhcpv6) # domain-name example.com
R1(config-dhcpv6) # exit
R1(config) # interface g0/1
R1(config-if) # ipv6 address 2001:db8:cafe:1::1/64
R1(config-if) # ipv6 dhcp server IPV6-STATELESS
R1(config-if) # ipv6 nd other-config-flag
```

将路由器配置为无状态 DHCPv6 客户端

```
R3(config) # interface g0/1
R3(config-if) # ipv6 enable
R3(config-if) # ipv6 address autoconfig
R3(config-if) #
```


Stateless DHCPv6 Server

DHCPv6 Client

```
R1# show ipv6 dhcp pool
DHCPv6 pool: IPV6-STATELESS
DNS server: 2001:DB8:CAFE:AAAA::5
Domain name: example.com
Active clients: 0
R1#
```

检验无状态 DHCPv6

Stateless DHCPv6 Server

DHCPv6 Client

```
R3# show ipv6 interface g0/1
GigabitEthernet0/1 is up, line protocol is up
 IPv6 is enabled, link-local address is
FE80::32F7:DFF:FE25:2DE1
 No Virtual link-local address(es):
 Stateless address autoconfig enabled
 Global unicast address(es):
    2001:DB8:CAFE:1:32F7:DFF:FE25:2DE1, subnet is
2001:DB8:CAFE:1::/64 [EUI/CAL/PRE]
     valid lifetime 2591935 preferred lifetime 604735
 Joined group address(es):
   FF02::1
   FF02::1:FF25:2DE1
 MTU is 1500 bytes
 ICMP error messages limited to one every 100 milliseconds
 ICMP redirects are enabled
 ICMP unreachables are sent
 ND DAD is enabled, number of DAD attempts: 1
 ND reachable time is 30000 milliseconds (using 30000)
 ND NS retransmit interval is 1000 milliseconds
 Default router is FE80::D68C:B5FF:FECE:A0C1 on
 GigabitEthernet0/1
R3#
```

```
R3# debug ipv6 dhcp detail
   IPv6 DHCP debugging is on (detailed)
R3#
*Feb 3 02:39:10.454: IPv6 DHCP: Sending INFORMATION-REQUEST
to FF02::1:2 on GigabitEthernet0/1
*Feb 3 02:39:10.454: IPv6 DHCP: detailed packet contents
*Feb 3 02:39:10.454: src FE80::32F7:DFF:FE25:2DE1
*Feb 3 02:39:10.454: dst FF02::1:2 (GigabitEthernet0/1)
*Feb 3 02:39:10.454: type INFORMATION-REQUEST(11), xid
12541745
<output omitted>
*Feb 3 02:39:10.454: IPv6 DHCP: Adding server
                      FE80::D68C:B5FF:FECE:A0C1
*Feb 3 02:39:10.454: IPv6 DHCP: Processing options
*Feb 3 02:39:10.454: IPv6 DHCP: Configuring DNS server
                      2001:DB8:CAFE:AAAA::5
*Feb 3 02:39:10.454: IPv6 DHCP: Configuring domain name
                     example.com
*Feb 3 02:39:10.454: IPv6 DHCP: DHCPv6 changes state from
INFORMATION-REQUEST to IDLE (REPLY RECEIVED) on
GigabitEthernet0/1
R3#
```

9.4 有状态DHCPv6

有状态 DHCP

A=0, O=0, M=1

Stateful DHCPv6 Option

只有DHCPv6

- · 客户端不使用的RA报文中的信息。
- 所有的地址和配置信息,必须从有状态DHCPv6服务器获得。
- · 在M标志必须为1:
- Router(config-if)# ipv6 nd managed-config-flag

将路由器配置为有状态 DHCPv6 服务器

Step 1. Enable IPv6 Routing

```
Router(config)# ipv6 unicast-routing
```

Step 2. Configure a DHCPv6 Pool

```
Router(config) # ipv6 dhcp pool pool-name
Router(config-dhcpv6) #
```

Step 3. Configure Pool Parameters

```
Router(config-dhcpv6)# address prefix/length [lifetime valid-lifetime preferred-lifetime | infinite]

Router(config-dhcpv6)# dns-server dns-server-address
Router(config-dhcpv6)# domain-name domain-name
```

Step 4. Configure the DHCPv6 Interface

```
Router(config)# interface type number
Router(config-if)# ipv6 dhcp server pool-name
Router(config-if)# ipv6 nd managed-config-flag
```

将路由器配置为有状态 DHCPv6 服务器

ıı|ııı|ıı

将路由器配置为有状态 DHCPv6 客户端


```
R3(config) # interface g0/1
R3(config-if) # ipv6 enable
R3(config-if) # ipv6 address dhcp
R3(config-if) #
```


检验有状态 DHCPv6

R1# show ipv6 dhcp pool
DHCPv6 pool: IPV6-STATEFUL
Address allocation prefix: 2001:DB8:CAFE:1::/64 valid
4294967295 preferred 4294967295 (1 in use, 0 conflicts)
DNS server: 2001:DB8:CAFE:AAAA::5
Domain name: example.com
Active clients: 1
R1#

Stateless DHCPv6 Server

DHCPv6 Client

```
R1# show ipv6 dhcp binding
Client: FE80::32F7:DFF:FE25:2DE1
DUID: 0003000130F70D252DE0
Username : unassigned
IA NA: IA ID 0x00040001, T1 43200, T2 69120
Address: 2001:DB8:CAFE:1:5844:47B2:2603:C171
preferred lifetime INFINITY, , valid lifetime
INFINITY,
R1#
```

```
R3# show ipv6 interface q0/1
GigabitEthernet0/1 is up, line protocol is up
  IPv6 is enabled, link-local address is
FE80::32F7:DFF:FE25:2DE1
  No Virtual link-local address(es):
 Global unicast address(es):
    2001:DB8:CAFE:1:5844:47B2:2603:C171, subnet is
2001:DB8:CAFE:1:5844:47B2:2603:C171/128
  Joined group address(es):
    FF02::1
    FF02::1:FF03:C171
    FF02::1:FF25:2DE1
 MTU is 1500 bytes
  ICMP error messages limited to one every 100 milliseconds
  ICMP redirects are enabled
  ICMP unreachables are sent
 ND DAD is enabled, number of DAD attempts: 1
 ND reachable time is 30000 milliseconds (using 30000)
  ND NS retransmit interval is 1000 milliseconds
  Default router is FE80::D68C:B5FF:FECE:A0C1 on
 GigabitEthernet0/1
R3#
```

将路由器配置为有状态 DHCPv6 中继代理

配置DHCPv6服务 故障排除任务

Troubleshooting Task 1:	Resolve address conflicts.
Troubleshooting Task 2:	Verify allocation method.
Troubleshooting Task 3:	Test with a static IPv6 address.
Troubleshooting Task 4:	Verify switch port configuration.
Troubleshooting Task 5:	Test from the same subnet or VLAN.

检验路由器 DHCPv6 配置

Stateful DHCPv6 Services

```
R1(config) # ipv6 unicast-routing
R1(config) # ipv6 dhcp pool IPV6-STATEFUL
R1(config-dhcpv6) # address prefix 2001:DB8:CAFE:1::/64 lifetime infinite
R1(config-dhcpv6) # dns-server 2001:db8:cafe:aaaa::5
R1(config-dhcpv6) # domain-name example.com
R1(config-dhcpv6) # exit
R1(config-dhcpv6) # exit
R1(config-if) # ipv6 address 2001:db8:cafe:1::1/64
R1(config-if) # ipv6 dhcp server IPV6-STATEFUL
R1(config-if) # ipv6 nd managed-config-flag
```

Stateless DHCPv6 Services

```
R1(config)# ipv6 unicast-routing
R1(config)# ipv6 dhcp pool IPV6-STATELESS
R1(config-dhcpv6)# dns-server 2001:db8:cafe:aaaa::5
R1(config-dhcpv6)# domain-name example.com
R1(config-dhcpv6)# exit
R1(config)# interface g0/1
R1(config-if)# ipv6 address 2001:db8:cafe:1::1/64
R1(config-if)# ipv6 dhcp server IPV6-STATELESS
R1(config-if)# ipv6 nd other-config-flag
```

SLAAC

R1# show ipv6 interface g0/1 GigabitEthernet0/1 is up, line protocol is up IPv6 is enabled, link-local address is FE80::D68C:B5FF:FECE:A0C1 <output omitted> Hosts use stateless autoconfig for addresses.

Stateless DHCPv6

```
R1# show ipv6 interface g0/1
GigabitEthernet0/1 is up, line protocol is up
IPv6 is enabled, link-local address is
FE80::D68C:B5FF:FECE:A0C1
<output omitted>
Hosts use DHCP to obtain other configuration.
```

Stateful DHCPv6

```
R1# show ipv6 interface g0/1
GigabitEthernet0/1 is up, line protocol is up
IPv6 is enabled, link-local address is
FE80::D68C:B5FF:FECE:A0C1
<output omitted>
Hosts use DHCP to obtain routable addresses.
```

配置DHCPv6服务 **调试 DHCPv6**

```
R1# debug ipv6 dhcp detail
   IPv6 DHCP debugging is on (detailed)
R1#
     3 21:27:41.123: IPv6 DHCP: Received SOLICIT from
*Feb
FE80::32F7:DFF:FE25:2DE1 on GigabitEthernet0/1
*Feb 3 21:27:41.123: IPv6 DHCP: detailed packet contents
*Feb 3 21:27:41.123: src FE80::32F7:DFF:FE25:2DE1
(GigabitEthernet0/1)
*Feb 3 21:27:41.127: dst FF02::1:2
*Feb 3 21:27:41.127: type SOLICIT(1), xid 13190645
*Feb 3 21:27:41.127:
                     option ELAPSED-TIME(8), len 2
*Feb 3 21:27:41.127:
                         elapsed-time 0
*Feb 3 21:27:41.127: option CLIENTID(1), len 10
*Feb 3 21:27:41.127:
                         000
*Feb 3 21:27:41.127: IPv6 DHCP: Using interface pool IPV6-
STATEFUL
*Feb 3 21:27:41.127: IPv6 DHCP: Creating binding for
FE80::32F7:DFF:FE25:2DE1 in pool IPV6-STATEFUL
<output omitted>
```


9.5 单元练习与测验

实验 - 配置 DHCPv6

在本实验中, 您将完成以下目标:

- 第 1 部分:建立网络并配置设备的基本设置
- 第 2 部分: 从 R1 验证 SLAAC 地址分配
- 第 3 部分:在 R1 上配置并验证无状态的 DHCPv6 服务器
- 第 4 部分:在 R1 上配置并验证有状态的 DHCPv6 服务器
- 第 5 部分:在 R2 上配置并验证 DHCPv6 中继

在这个模块中我学到了什么?

- 在路由器上,可以使用接口配置命令ipv6 address ipv6-address/prefix-length 手动配置 IPv6 全局单播地址 (GUA)。
- 在选择自动IPv6编址之后, 主机就会尝试在接口上自动获取和配置IPv6地址信息。
- 在主机启动并且以太网接口处于活动状态时, IPv6 链路本地地址就会自动创建出来。
- 客户端如何获取 IPv6 全局单播地址取决于 RA 消息中的设置。ICMPv6 RA 消息包含三个标记,用于标识主机可用的动态可选项:
 - A标记 这是地址自动配置(Address Autoconfiguration)标记。使用 SLAAC 创建IPv6 GUA。
 - O标记 这是其他配置(Other Configuration)标记。从无状态的 DHCPv6 服务器那里获取其他信息。
 - M标记 这是被管理地址配置(Managed Address Configuration)标记。使用有状态的 DHCPv6 服务器获取 IPv6 全局单播地址。
- SLAAC可以让主机在没有 DHCPv6 服务器提供服务的情况下创建出自己唯一的 IPv6 全局单播地址。SLAAC本身是无状态的,它会使用ICMPv6 RA消息来提供原本由 DHCP 服务器提供的地址信息和其他配置信息。SLAAC可以单独部署,也可以和DHCPv6一起部署。如果配置ipv6 unicast-routing 命令,那么设备默认会使用仅 SLAAC 的方法。
- 若要启用 RA 消息的发送, 路由器必须使用全局配置命令ipv6 unicast-routing 加入 IPv6 全路由器组。使用show ipv6 interface命令验证路由器是否已经启用。
- 所有配置了IPv6 GUA的已启用以太网接口将要开始发送 RA 消息, 消息中的A标记会置位为1, 而O和 M标记则会置为0。这个标记建议客户端使用 RA 中通告的前缀来创建自己的 IPv6 GUA。O=0和M=0这两个标记要求客户端仅使用RA消息中的信息。
- 路由器会每 200 秒发送一次 RA 消息。但是,如果从主机那里接收到了 RS 消息,它也会发送一条 RA 消息。

在这个模块中我学到了什么?

- 如果使用SLAAC, 主机一般会从路由器RA那里获取自己的64位IPv6子网信息。但是, 它必须使用以下两种方法之一生成剩余 64 位接口标识符 (ID): 随机生成或 EUI-64。
- 主机会使用DAD进程来确保这个IPv6 GUA是唯一的。DAD是使用ICMPv6实现的。要执行DAD, 主机会使用一个特殊构造的组播地址发送一条 ICMPv6 邻居请求消息,这个地址称为请求节点组播地址。这个地址会复制主机的最后24位IPv6地址。
- 在 RA 消息中指示了采用无状态或有状态 DHCPv6之后, 这台主机就会开始进行 DHCPv6 客户端/服务器通信。
- 服务器到客户端的 DHCPv6 消息使用 UDP 目的端口 546. 而客户端到服务器的 DHCPv6 消息使用 UDP 目的端口 547。
- 无状态 DHCPv6 选项通知客户端使用 RA 消息中的信息来编址, 但是从 DHCPv6 服务器提供额外配置参数。这称为无状态的 DHCPv6, 因为服务器上不维护任何客户端状态信息。
- 可以使用接口配置命令ipv6 nd other-config-flag 在路由器接口上启用无状态 DHCPv6。这样做会把O标记设置为1。
- 在有状态的DHCPv6中, RA 消息会让客户端从有状态的 DHCPv6 服务器那里获取所有编址信息, 但默认网关地址除外, 因为默认网关是RA的源IPv6链路本地地址。这称为有状态, 因为 DHCPv6 服务器会维护 IPv6 状态信息。
- 可以使用接口配置命令ipv6 nd managed-config-flag 在路由器接口上启用有状态 DHCPv6。这样做会把M标记设置为1。

在这个模块中我学到了什么?

- 思科IOS路由器可以经过配置,提供下面三种类型的DHCPv6服务器服务之一: DHCPv6 服务器、DHCPv6 客户端或 DHCPv6 中继代理。
- 路由器也可以是 DHCPv6 客户端, 并从 DHCPv6 服务器那里获取 IPv6 配置。
- 有状态DHCP服务器可选项要求启用IPv6的路由器告诉主机去联系DHCPv6服务器来获取所有必要的IPv6网络编址信息。
- 要使客户端路由器成为 DHCPv6 路由器, 它需要启用ipv6 unicast-routing , 并且需要拥有IPv6链路本地地址, 这样才能发送和 接收 IPv6 消息。
- 可以使用命令show ipv6 dhcp pool和show ipv6 dhcp binding 验证路由器上的 DHCPv6 操作。
- 如果 DHCPv6 服务器位于不同的网络而不是客户端上, 那么可以使用**ipv6 dhcp relay destination** *ipv6-address* [*interface-type interface-number*] 命令将 IPv6 路由器配置为 DHCPv6 中继代理。这条命令需要在面向 DHCPv6 客户端的接口上进行配置, 并指定到达这台服务器的DHCPv6服务器地址和出站接口。只有在下一跳地址为LLA时, 才需要配置出站接口。
- 使用命令show ipv6 dhcp interface 和 show ipv6 dhcp binding 来验证 DHCPv6 中继代理是否正常工作。

