«DJ» EMI Filter für Schaltnetzteil

Fachbericht

Windisch, 20.04.2019

Hochschule Hochschule für Technik - FHNW

Studiengang Elektro- und Informationstechnik

Auftraggeber Dr. Luca Dalessandro

Betreuer Prof. Dr. Sebastian Gaulocher

Prof. Peter Niklaus Prof. Dr. Richard Gut Dr. Anita Gertiser Pascal Buchschacher

Autoren Gruppe 1

Niklaus Schwegler Lukas von Däniken Pascal Puschmann Simon Rohrer Marco Binder

Version 2.0

Inhaltsverzeichnis

1	Abs	stract	1
2	Ein	leitung	2
	2.1	Ziel	2
	2.2	Vorgehen	2
	2.3	Resultate	2
	2.4	Gliederung	2
3	Soft	zware	3
	3.1	Klassendiagramm	3
	3.2	Ersatzschaltbilder	3
	3.3	GUI	4
		3.3.1 Menu	4
	3.4	Datenverarbeitung	4
	3.5	Datenpräsentation	4
	3.6	Speicherverwaltung	4
4	Test	tkonzept	5
	4.1	Prinzip	5
	4.2	Erwartungen	5
	4.3	Validierung	6
5	Sch	luss	7
6	Anl	nang	8
	6.1	Elektrotechnik	8
		6.1.1 Schaltungsaufbau	8
		6.1.2 Parasitäre Paramter	11
		6.1.3 Gleichtakt	11
		6.1.4 Gegentakt	12
		6.1.5 Insertion loss/ Streuparameter	12
		6.1.6 Kettenmatrix	14
	6.2	Programmieren	16
		6.2.1 MVC-Struktur	16
	6.3	Testkonzept	16

1 Abstract

2 EINLEITUNG

2 Einleitung

Dieser Fachbericht richtet sich primär an die Fachcoaches des Projekts. Um nicht wieder von Null zu beginnen wird vom Wissensstand nach Abgabe des Pflichtenhefts ausgegangen. Sämtliche theoretischen Grundlagen werden im Anhang erläutert, im Text wird jeweils darauf Referenziert

2.1 **Ziel**

Unser Auftrag in diesem Projekt war es eine Software zu programmieren, die das Verhalten von so genannten EMI-Filtern simuliert. Diese werden üblicherweise in Schaltnetzteile verbaut, um zu verhindern, dass Störungen zurück ins Netz gespeist werden. Diese Netzgeräte können nämlich unter Umständen hohe Frequenzen erzeugen, die sich nicht gut mit der Netzfrequenz von 50 Hz vertragen. Der EMI-Filter filtert genau diese hochfrequenten Signale heraus, um zu verhindern, dass andere Geräte, die auch ans Netz angeschlossen werden nicht davon beeinträchtigt sind.

Das Tool soll in der Lage sein den Filter in den Schaltungen Differential Mode und Common Mode zu berechnen. Ausserdem soll das User Interface sehr intuitiv und Bedienungsfreundlich sein, damit man schnell zum Resultat kommt. Des Weiteren kann man seine eigegeben Parameter Speichern und ein Filterprofil anlegen, was man später wieder aufrufen kann. Ein weiterer wichtiger Punkt ist, dass das Programm stabil laufen sollte, ohne dass es zu Ausfällen kommt.

2.2 Vorgehen

Zu Beginn der Arbeit steht eine Recherche über die Grundlagen von EMI-Filtern und Java-Programmierstrukturen. Anhand des Lastenhefts des Auftraggebers und der Recherchen wird ein Pflichtenheft mit Lösungsvorschlägen eruiert. Sobald diese vom Auftraggeber abgesegnet werden beginnt die Umsetzung der Arbeit in Form der Software. Die Funktionen und der Aufbau der fertigen Software wird in diesem Fachbericht ausführliche beschrieben. Die Arbeit am Projekt wird von einem Testkonzept begleitet. Dieses beinhaltet verschiedene Tests um Fehler frühzeitig zu erkennen. Das Endprodukt wird im Rahmen einer Schlussräsentation dem Auftraggeber überreicht.

2.3 Resultate

Als primäres Resultat steht das Hauptprodukt, die Software. Aus dem Vorgehen entstehen weiter die Präsentationen, das Pflichtenheft und der Fachbericht

2.4 Gliederung

Im Kapitel Software ist der Ist-Zustand des Produkts beschrieben. Die Software ist analysiert und detailliert beschrieben. Alle Funktionen sind erläutert und die wichtigsten Zusammenhänge werden aufgezeigt.

Im folgenden Kapitel "Testkonzeptist beschrieben in welcher Form die parallel laufenden Tests durchgeführt werden. Die Erwartungen an die Tests sind dargelegt und in einer analytischen Validierung sind die Testergebnisse aufbereitet.

Das abschliessende Kapitel gibt dann ein Fazit über das Produkt und die Arbeit an sich. Im Anhang befinden sich sämtliche, zum verständnis relevanten theoretischen Grundlagen und diverse Testergebnisse.

3 Software

3.1 Klassendiagramm

Abbildung 3.1: Klassendiagramm \mathbf{wtf}

3.2 Ersatzschaltbilder

Abbildung 3.2: Vereinfachte CM_Schaltung

3 SOFTWARE

Abbildung 3.3: Vereinfachte DM-Schaltung

- 3.3 **GUI**
- 3.3.1 Menu
- 3.4 Datenverarbeitung
- 3.5 Datenpräsentation
- 3.6 Speicherverwaltung

Programmablauf beschreiben?

4 Testkonzept

Wieso, weshalb und Warum

4.1 Prinzip

Unser Testkonzept soll eine einwandfreie Funktion unserer Software garantieren und ein einfache Bedienung ermöglichen. Dies wird durch verschiedene Tests realisiert.

Grundsätzlich wird alles was implementiert wird, noch einmal sorgfältig durchgelesen und im Fall der Software, wird noch mal kontrolliert, ob keine Fehlermeldungen im Code angezeigt werden. Zudem werden die Java Methoden einzeln ausgeführt, um sich über die Funktion zu vergewissern. Dies erfordert ein hohes Mass an Selbstverantwortung. Ausserdem wird so oft wie möglich neu eingefügter Code vom ganzen Team angeschaut, damit alle Teammitglieder die Funktionsweise der Software verstehen. Im Elektrotechnik-Teil ist es sehr wichtig die ausgerechneten Werte zu hinterfragen und auf ihre Richtigkeit zu überprüfen. Dafür wird das Rechenprogramm MATLAB verwendet, weil es eines der umfangreichsten Mathematikprogramme auf dem Markt ist. Je nach Bedarf werden die Fachcoaches kontaktiert, falls noch Unklarheiten bestehen. Diese Kontinuierliche Tests werden von Anfang an durchgeführt, um Folgefehler zu vermeiden, was uns mehr Zeit für Verbesserungen und neue Features gibt. Nach der Projektwoche ist die Version 0.9.5 fertig. Diese wird nach Testprotokoll gründlich getestet. Zunächst wird besprochen, ob man die sich gesteckten Ziele zufriedenstellend erreicht hat. Die Version wird auch dem Auftraggeber Dr. Luca Dalessandro zur Verfügung gestellt, damit er die Möglichkeit hat seine Meinung und Ideen noch einmal einzubringen. Anschliessend beginnt die eigentliche Testphase. Die Software wird zum einen mit einem Kompatibilitätstest gefordert. Bei diesem Test werden Eingaben getätigt, die unsere Software an die Grenzen bringen dürfte. Es werden auch Fehleingaben gemacht, um zu sehen wie die Software darauf reagiert. Ein anderer Aspekt um die Kompatibilität zu prüfen ist, die Verwendung von verschieden Betriebssystemen (Mac OS, WIndows). Um eine saubere Darstellung auf allen Displays zu gewährleisten werden Bildschirme mit unterschiedlichen Auflösungen verwendet (Full HD, 4K). Danach werden die Tests durch dritte Personen durchgeführt. Dabei werden Experten und auch Fachfremde Tester gesucht. Die Fachfremden erhalten eine grundlegende Einführung über EMI-Filter, damit sie verstehen wofür diese Software entwickelt wurde. Über die Funktionsweise der GUI an sich erhalten die Testpersonen jedoch keine Einführung. Damit kann man sehr gut prüfen, wie einfach und intuitiv die Softwarebedienung ist. Dafür wird das bereits erwähnte Testprotokoll verwendet, in das die Testpersonen ihre Meinung und allfällige Anregungen hineinschreiben können. Die Fragebogen werden ausgewertet und anschliessend wird sich im Team über allfällige Änderungen ausgetauscht. Vor der Abgabe wird die Software noch einem Getestet und ein Abnahmeprotokoll erstellt, bis die Software den Weg zum Auftraggeber findet.

4.2 Erwartungen

Zum Testkonzept gehören auch die zu erwartenden Resultate. Damit man eine Vorstellung dafür bekommt, wie die Software auf externe Personen wirkt und man sich besser auf das kommende Feedback einstellen kann. Dies hat den Vorteil, dass man einen Schritt zurück tritt und anders darüber urteilen kann. Wir erwarten 'dass die Tester ein umfangreiches Feedback liefern werden. Besonders die Fachpersonen werden höchst wahrscheinlich einiges zu sagen haben bei dem wir dann nicht alles davon umsetzten können. Die Fachfremden Testpersonen werden Mühe haben zu verstehen, um was es überhaupt bei dieser Software geht. Dafür werden die Fachfremden viel über die Bedienungsfreundlichkeit beifügen, was uns auch sehr weiterhelfen kann.

6 4 TESTKONZEPT

4.3 Validierung

Testergebnisse darstellen und Interpretieren

Ebenfalls wird hier beschrieben welche Werte wir mit der Simulation und mit Matlab erreicht haben

5 Schluss

6 ANHANG

6 Anhang

6.1 Elektrotechnik

6.1.1 Schaltungsaufbau

Das vorgegebene EMI-Filter muss bezüglich der Einfügungsverluste (Insertion Loss) untersucht werden. Die Einfügunsverluste hängen vom Gesamtrauschen der Schaltung ab. Es wird ein Ansatz verwendet, der in der Praxis weit verbreitet ist, bei welchem das Gesamtrauschen in zwei Komponenten unterteilt wird. Man spricht vom Gegen-(=Differential Mode=DM) und Gleichtaktrauschen (=Common Mode=CM). Anhand der vorgegebenen CM- und DM-Äquivalenten Schaltungen (Abbildungen 6.4, 6.5)werden die Einfügungsverluste in Funktion der Frequenz berechnet. Die Berechnungen decken einen Bereich von 0 bis 30MHz ab.

6.1 Elektrotechnik 9

Die Schaltung 6.1 Original Schaltung aufgabenstellung zeigt den Filteraufbau, wie er der Aufgabenstellung zu entnehmen ist. Um das Gegentaktrauschen und das Gleichtaktrauschen bestimmen zu können, werden die beiden Schaltungsäquivalente gebildet.

Abbildung 6.1: Original Schaltung aufgabenstellung

Hierbei müssen die elektrischen Bauelemente, wie Spule und Kondensator mit den passenden parasitären Parameter ergänz werden. In Abbildung ?? und ?? werden die parasitären Parameter von Spule und Kondensator gezeigt.

Abbildung 6.2: Parasiäre Elemente einer Induktivität **aufgabenstellung**

Abbildung 6.3: Parasiäre Elemente einer Kapazität aufgabenstellung

Folgende Schaltungen stellen die CM- und DM-Äquivalenten Schaltungen. Da die Berechnungen in einem Bereich von bis zu 30 MHz gemacht werden, ist es notwendig die parasitären Parameter von Spule und Kondensator miteinzubeziehen.

Abbildung 6.4: CM-Schaltungäquvalent aufgabenstellung

10 6 ANHANG

Abbildung 6.5: DM-Schaltungsäquvalent aufgabenstellung

6.1 Elektrotechnik 11

6.1.2 Parasitäre Paramter

In diesem Unterkapitel werden grundsätzlich die Einflüsse und Eigenschaften von Parasitären Paramentern in Realen Bauteilen, besonders Spule und Kondensator, erklärt

6.1.3 Gleichtakt

In diesem Kapitel ist Schritt für Schritt beschrieben, wie die Gleichtaktschaltung aus der Aufgabenstellung vereinfacht wird. Abbildung 6.6 zeigt die Schaltung aus der Aufgabenstellung. Diese Schaltung ist mit den Komponenten R_w und L_r ergänzt worden, sodass sie symmetrisch ist(siehe Abbildung 6.7). Dies macht es möglich, dass die Schaltung zur Simulation wie folgt vereinfacht werden kann.

Abbildung 6.6: Originale Gleichtaktschaltungaufgabenstellung

Abbildung 6.7: Ergänzte Gleichtaktschaltung

Da der obere und untere Strang identisch sind und es keinen Potentialunterschied zwischen ihnen gibt, kann die Schaltung, wie folgt, zusammen gefasst werden (siehe Abbildung 6.8). Die Schaltung wird entlang der Symmetrie-Achse aufgetrennt. Somit fallen die Kondensatoren C_3 , C_4 , C_{x1} und C_{x2} komplett weg. Die übrigen Komponenten von L_0 bilden eine Parallelschaltung, welche sich durch halbieren der Widerstände und Induktivitäten und verdoppeln der Kapazitäten zusammenfassen lässt. Zusätzlich werden die beiden C_y und C_y' parallel auf das Bezugspotential geschalten. Da C_y und C_y' identisch sind, werden sie wie in Abbildung 6.8 zusammengefasst. Diese vereinfachte Schaltung bildet die Grundlage für die Berechnungen der Software.

 $6 \quad ANHANG$

Abbildung 6.8: Vereinfachte Gleichtaktschaltung

6.1.4 Gegentakt

Beschreibung Differential-Mode und wie man ihn ausrechnet

6.1.5 Insertion loss/ Streuparameter

Folgende Theorieabschnitte wurden überwiegend anhand folgender Quellen zusammengestellt: hftech. Die Einfügungsverluste werden analytisch ermittelt. Im ersten Schritt werden die Berechnungen in MATLAB gemacht. Somit können die Funktionen geplottet werden. Diese Plots werden dann mit Simulationen in MPLAB Mindi verglichen um festzustellen ob diese korrekt sind. Die vollständigen und korrekten Berechnungen können somit in Java implementiert werden. Um die Einfügungsverluste bestimmen zu können, wird das Model der 2-Tore verwendet. Einzelne Schaltungsteile werden in ABCD-Matrixen ?? abgebildet, welche dann durch Kaskadierung der einzelnen ABCD-Matrixen zusammengeführt werden. Die Einfügungsverluste werden aus den Streuparameter?? abgeleitet, welche direkt aus der ABCD-Matrix berechnet werden. Der S-Parameter S₂₁ gibt den Transmissionsgrad der Wellen an, die vom Tor 1 zum Tor2 übertragen wird. Die S-Parameter sind abhängig von den Bezugswiderständen (Innenwiderstand der Quelle sowie Lastwiderstand). In unserem Fall sind die Bezugswiderstände mit 50Ohm gegeben.

$$IL = |H(j\omega)| = 20 * log(\frac{|U_{20}|}{|U_2|})$$
 (6.1)

In der Definition kann das Spannungsverhältnis durch den Streuparameter 6.1.5 (S-Parameter) S_{21} ersetzt werden 6.2.

$$IL = -20 * log(|S_{21}|) \tag{6.2}$$

Dieser Parameter beschreibt den Transmissionsgrad des Filters. Die Einfügungsverluste wären auch mit dem Verhältnis von eingehende zu abegegebene Leistung zu berechnen, jedoch eignet sich diese Methode mehr beim messtechnischen bestimmen der Einfügungsverluste.

Die Streuparameter (S-Parameter) werden in der Hochfrequenztechnik verwendet, um das Verhalten von n-Toren zu beschreiben. Bei einem 2-Tor sind vier Streuparameter von nöten um das Verhalten zu beschreiben. Sie beschreiben die Transmission von Tor 1 zu Tor 2, sowie von Tor 2 zu Tor 1. Des weiteren zeigen sie die Reflexion an den Toren auf. Abbildung 6.9 2-Tor Wellengrössen und Anschlussleitungen **hftech** zeigt die Streuparameter an einem 2-Tor.

6.1 Elektrotechnik 13

Abbildung 6.9: 2-Tor Wellengrössen und Anschlussleitungen hftech

Bei den S-Parameter werden die Eingangs- und Ausgangsgrössen nicht direkt anhand elektrischer Ströme und Spannungen beschrieben. Sie werden mithilfe von Wellengrössen beschrieben, wobei a_i die einlaufenden Wellen sind und b_i die Reflektierenden Wellen. Der Index i stellt den Torindex dar. Formel 6.3 und 6.4 zeigen wie die Wellengrössen a_i sowie b_i definiert sind.

$$a_i = \frac{U_i + R_{Wi}I_i}{2 * \sqrt{R_{Wi}}} \tag{6.3}$$

$$b_i = \frac{U_i - R_{Wi}I_i}{2 * \sqrt{R_{Wi}}} \tag{6.4}$$

Die Wellengrössen gelten nur für den gegebenen Bezugswiderstand $R_{\rm Wi}$. Der Bezugswiderstand kann einerseits der Innenwiderstand der angeschlossenen Quelle sein oder der Lastwiderstand der angeschlossenen Last.

Aus der Abbildung 2.3 lässt sich folgende Streumatrix darstellen (Formel 6.5):

Die Elemente der S-Matrix sind:

$$s_{11} = b_1/a_1$$
 Eingangsreflexionsfaktor bei angepasstem Ausgang (a₂=0) (6.6)

$$s_{12} = b_1/a_2$$
 Rückwärtstransmissionsfaktor bei angepasstem Eingang (a₁=0) (6.7)

$$s_{21} = b_2/a_1$$
 Vorwärtstransmissionsfaktor bei angepasstem Ausgang (a₂=0) (6.8)

$$s_{22} = b_2/a_2$$
 Ausgangsreflexionsfaktor bei angepasstem Eingang (a₁=0) (6.9)

 $6 \quad ANHANG$

6.1.6 Kettenmatrix

Die ABCD-Matrix ist eine weitere gängige Variante, um das Verhalten von 2-Toren zu beschreiben. Diese Variante hat den Vorteil, dass man in Serie geschaltene 2-Tore ohne grossen Aufwand zusammen rechnen kann. Sobald man die einzelnen ABCD-Matrixen gebildet hat und die Schaltung soweit vereinfacht ist, dass nur noch in Serie geschaltene ABCD-Matrixen vorzufinden sind, können diese miteinander multipliziert werden. Das Matrix-Produkt stellt dann die ABCD-Matrix der Gesamtschaltung dar. Folgende gängigen Schaltungen helfen die ABCD-Matrixen der einzelnen Schaltungsteilen zu bilden.

Die Längsimpedanz lässt sich anhand der ABCD-Matrix A_L (Formel 6.10) darstellen

Abbildung 2torTabelle **6.10:** Längsimpedanz

Die Querimpedanz lässt sich anhand der ABCD-Matrix $\mathbf{A}_{\mathbf{Q}}$ (Formel 6.11) darstellen

Die Impedanz eines T-Glieds lässt sich anhand der ABCD-Matrix A_T (Formel 6.12) darstellen

Abbildung 6.12: T-Glied 2torTabelle

Die Impedanz eines π -Glieds lässt sich anhand der ABCD-Matrix A_{π} (Formel 6.13) darstellen

Abbildung 6.13: Pi-Glied 2torTabelle

Wenn die ABCD-Matrix einer Schaltung gebildet wurde, kann diese direkt in die Streuparameter umgewandelt werden. Der s_{21} Parameter kann wie in Formel 6.14 beschrieben, durch

6.1 Elektrotechnik 15

einsetzten der ABCD-Matrix bestimmt werden. Für den Widerstand R_w muss die verwendete Bezugsimpedanz eingesetzt werden.

$$s_{21} = \frac{2}{A_{11} + \frac{A_{12}}{R_w} + A_{21} * R_w + A_{22}}$$
 (6.14)

Die Indexierung der ABCD-Matrix wird in Abbildung 6.15 gezeigt

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \tag{6.15}$$

6 ANHANG

6.2 Programmieren

6.2.1 MVC-Struktur

Hier kommen noch weitere Programmiertechnische Grundlagen, falls diese Nötig sind

6.3 Testkonzept

Testprotokoll Team 1

Name des Testers:		
Datum :		
Softwareversion: 0.9		
Test Art (intern oder extern):		

6.3 Testkonzept 17

Test Übersicht

Software öffnen und schliessen. Schieberegler und Buttons auf die Funktion prüfen. Das Fenster grösser kleiner machen.
Das Aussehen der GUI betrachten. Auf Vollständigkeit testen. (Gesamteindruck)
Kontrollieren, ob der Plot gezeichnet wird. Und Filtertypen gespeichert werden können.
Die Menu-Funktionen testen. Shurtcuts ausprobieren
Fehleingaben machen.
Verschiedene Betriebssysteme und Displays verwenden (falls vorhanden).
Code auf Übersichtlichkeit prüfen. (Experten)

18 6 ANHANG

Test Nr.	Der Test	Bewertung	Anmerkungen (Fehler)	
1.	Software öffnen und schliessen. Schieberegler und Buttons auf die Funktion prüfen. Das Fenster grösser kleiner machen.	Gut Mässig Schlecht		
Kommentar / Verbesserungsvorschlag				

Test Nr.	Der Test	Bewertung	Anmerkungen (Fehler)
2.	Das Aussehen der GUI betrachten.	Gut Mässig Schlecht	

Kommentar / Verbesserungsvorschlag	

6.3 Testkonzept 19

Test Nr.	Der Test	Bewertung	Anmerkungen (Fehler)
3.	Kontrollieren, ob der Plot gezeichnet wird. Und Filtertypen gespeichert werden können.	Gut Mässig Schlecht	

Kommentar I	/ Verbesserungsvorsch	ılag

Test Nr.	Der Test	Bewertung	Anmerkungen (Fehler)
4.	Die Menu-Funktionen testen	Gut Mässig Schlecht	

Kommentar / Verbesserungsvorschlag					

20 6 ANHANG

Test Nr.	Der Test	Bewertung	Anmerkungen (Fehler)
5.	Fehleingaben machen.	Gut Mässig Schlecht	

Kommentar /	Verbesserungsvorschla	ıg
-------------	-----------------------	----

Test Nr.	Der Test	Bewertung	Anmerkungen (Fehler)
6.	Verschiedene Betriebssysteme und Displays verwenden (falls vorhanden).	Gut Mässig Schlecht	

Kommentar / Verbesserungsvorschlag						

6.3 Testkonzept 21

Test Nr.	Der Test	Bewertung	Anmerkungen (Fehler)
7.	Code auf Übersichtlichkeit prüfen.(Experten).	Gut Mässig Schlecht	

Kommentar / Verbesserungsvorschlag		