编译原理

北方工业大学信息学院 School of Information Science and Technology, North China University of Technology 東劼 shujie@ncut.edu.cn

瀚学楼1122,88801615

第四章 语法分析-自上而下分析

第四章 语法分析-自上而下分析

- 本章目录
 - 4.1 语法分析器的功能
 - 4.2 自上而下分析面临的问题
 - 4.3 LL(1)分析法
 - 4.4 递归下降分析程序构造
 - 4.5 预测分析程序
 - 4.6 LL(1)分析中的错误处理

3

第四章 语法分析-自上而下分析

第四章 语法分析-自上而下分析

- 大纲要求
- 掌握: LL(1)分析法的条件,消除左递归的算法,预测分析表的构造。
- 理解: 预测分析程序、递归下降分析程序的设计方法。
- 了解: 语法分析器的功能。

第四章 语法分析-自上而下分析 4.1 语法分析器的功能

4.1 语法分析器的功能

• 语法分析器(Parser)

语言的语法结构是上下文无关文法(context-free)。

语法分析器的**本质**是按文法产生式,识别输入符号串是 否为一个句子。建立一棵与输入符号串相匹配的语法分 析树。

语法分析方法可以分三类:

- 1. 整体分析(universal), Cocke-Younger-Kasami algorithm 和Earleys algorithm;
- 2. 自上而下分析法(top-down)
- 3. 自下而上分析法(bottom-up)

常用的两种方法

7

4.2 自上而下分析 4.2 自上而下分析 面临的问题 第四章 语法分析-自上而下分析 4.2 自上而下分析面临的问题

4.2 自上而下分析面临的问题

• 自上而下分析的方法

深度优先的树访问方式

从根结点开始,递归的访问各个结点的子结点。优先访问离根结点最远的未访问的结点,不一定要从左到右的访问,但可以设定先左后右的方式访问。

深度优先的访问顺序: 0, 1, 3, 4, 2 设定先左后右

9

第四章 语法分析-自上而下分析 4.2 自上而下分析面临的问题

4.2 自上而下分析面临的问题

- 自上而下分析面临的问题
- 问题一:文法存在<mark>左递归</mark>,将使自上而下的分析过程陷入无限循环。

 $P \stackrel{+}{\Rightarrow} Pa$

P无法匹配任何输入串,回溯,重新要求P进行新的匹配

第四章 语法分析-自上而下分析 4.2 自上而下分析面临的问题

4.2 自上而下分析面临的问题

- 自上而下分析面临的问题
- 问题二: <mark>回溯</mark>是一项复杂而费时的工作,须废弃已做的 许多工作,恢复到前面的某一情况,效率很低。

文法中非终结符A的产生式右部称为A的候选式,如果有多个候选式左端第一个符号相同,则语法分析程序无法根据当前输入符号选择产生式,只能试探。若不能匹配,则要回溯。

11

第四章 语法分析-自上而下分析 4.2 自上而下分析面临的问题

4.2 自上而下分析面临的问题

- 自上而下分析面临的问题
- 问题三: 遇终结符匹配成功时,可能时暂时的成功。这就是虚假匹配。

输入串x*y

第四章 语法分析-自上而下分析 4.2 自上而下分析面临的问题

4.2 自上而下分析面临的问题

- 自上而下分析面临的问题
- 问题四:最终报告分析不成功时,难于知道输入串中出错的确切位置。出错位置未知。
- 问题五:带回溯的自上而下分析实际上采用了一种穷尽的试探法,<mark>效率很低</mark>,代价极高。这是一种理论上的方法,实践上价值不大。

13

第四章语法分析-自上而下分析 4.3 LL(1)分析法

4.3 LL(1)分析法

4.3.1 左递归的消除

• 左递归的消除 Elimination of Left Recursion 直接消除见诸于产生式中的左递归: 假定关于非终结符P的产生式为

 $P {\rightarrow} P\alpha \mid \beta$

其中 β 不以P开头, α 不等于 ϵ 。

可以把P的产生式等价地改写为如下的非直接左递归形式:

$$P \rightarrow \beta P'$$

 $P' \rightarrow \alpha P' | \epsilon$

17

第四章 语法分析-自上而下分析 4.3 LL(1)分析法

4.3.1 左递归的消除

• 左递归的消除 Elimination of Left Recursion

$$P \rightarrow P\alpha_1 \mid P\alpha_2 \mid \dots \mid P\alpha_m \mid \beta_1 \mid \beta_2 \mid \dots \mid \beta_n \mid$$

没有βi以P开头

可以把P的产生式改写非直接左递归形式:

$$P \rightarrow \beta_1 P' \mid \beta_2 P' \mid \dots \mid \beta_n P' \mid$$
 可以消除所有左递归吗? $P' \rightarrow \alpha_1 P' \mid \alpha_2 P' \mid \dots \mid \alpha_m P' \mid \epsilon$

4.3.3 LL(1)分析条件

• LL(1) Left-to-right Left-most

第一个L Left-to-right 从左到右扫描输入字符串

第二个L Left-most 最左推导

(1) Lookahead 每次检查一个输入字符

23

第四章 语法分析-自上而下分析 4.3 LL(1)分析法

4.3.3 LL(1)分析条件

• 语法G的LL(1)文法

语法G是LL(1)文法, 当且仅当, $A \rightarrow \alpha \mid \beta$ 是语法G的两 个不同的产生式。并且,满足下列条件: 避免二义性

- 1. α和β导出的字符串的首字符,不能是同一个终结符a;
- 2. α和β中最多只有1个可以导出空字符串,即ε;
- 3. 如果 $β \stackrel{*}{\Rightarrow} ε$,则α导出的字符串的<u>首字符不能是</u> FOLLOW(A)中的终结符。 如果 $\alpha \stackrel{*}{\Rightarrow} \epsilon$,则β也必须符合 同样条件。 E'

 $\{+, \epsilon\}$ {), # }

4.3.3 LL(1)分析条件

• LL(1)文法在语义分析中的作用

LL(1)文法用来构造二维语法分析表M[A, a], 其中A是非终结符, a是终结符或者输入结束符#。

语法分析表M

输入字符中没有ε

非终结符			输入	字符		
结符	i	+	*	()	#
Е	$E \rightarrow TE'$			$E \rightarrow TE'$		
T	$T \rightarrow FT'$	4		$T \rightarrow FT'$		

25

第四章 语法分析-自上而下分析 4.3 LL(1)分析法

4.3.3 LL(1)分析条件

- LL(1)文法在语义分析中的作用
- ① 如果终结符a在FIRST(α)中,则添加A $\rightarrow \alpha$ 到M[A,a]

 $E \rightarrow TE'$ FIRST(TE') = FIRST(T) = {(, i}

M[E,(]和M[E,i]加入表格

语法分析表M

非终			输入	字符		
结符	i	+	*	()	#
Е	$E \rightarrow TE'$	1		$E \to TE'$	- 2	
T	$T \rightarrow FT'$			$T \rightarrow FT'$		

4.3.3 LL(1)分析条件

- 语法G的LL(1)文法
- ② 如果 ϵ 在FIRST(α)中,则对FOLLOW(A)中的每个终结符b,添加A $\rightarrow \alpha$ 到M[A, b]。如果 ϵ 在FIRST(α),同时#在 FOLLOW(A),添加A $\rightarrow \alpha$ 到M[A, #]。

 $E' \rightarrow +TE' \mid \epsilon$ FIRST(+TE') = {+},添加 $E' \rightarrow +TE'$ 到M[E', +] $E' \rightarrow \epsilon$,FOLLOW(E') = {), #},添加 $E' \rightarrow \epsilon$ 到M[E',)]和M[E', #]

非终 结符			输入	字符		
结符	i	+	*	()	#
E'		$E' \rightarrow +TE'$			$E' \rightarrow \varepsilon$	$E' \rightarrow \varepsilon$

27

第四章 语法分析-自上而下分析 4.3 LL(1)分析法

4.3.3 LL(1)分析条件

- 语法G的LL(1)文法
- ③ 除了以上两条以外,如果M[A, a]没有填写任何产生式,则把M[A, a]设为error(通常表现为空白)。

非终			输入	字符		
结符	i	+	*	()	#
E'		$E' \rightarrow +TE'$			$E \rightarrow \varepsilon$	$E \rightarrow \varepsilon$

4.4 递归下降分析程序构造

4.4 递归下降分析程序构造

• 递归下降分析程序构造要求

构造不带回溯的自上而下分析程序
① 要消除文法的左递归性
② 克服回溯

第四章 语法分析-自上而下分析 4.4 递归下降分析程序构造

4.4 递归下降分析程序构造

• 递归下降分析程序构造

当一个文法**满足LL(1)条件**时,我们就可以为它构造一个不带回溯的自上而下分析程序。

这个分析程序是由**一组递归过程**组成的,**每个过程对应 文法的一个非终结符**。

这样的一个分析程序称为递归下降分析器。

31

第四章 语法分析-自上而下分析 4.4 递归下降分析程序构造

4.4 递归下降分析程序构造

• 递归下降分析程序构造

几个全局过程和变量:

ADVANCE 读入IP 指向的输入符号到SYM中,把

输入串指示器IP指向下一个输入符号

SYM IP当前所指的输入符号

ERROR 出错处理程序

第四章 语法分析-自上而下分析 4.4 递归下降分析程序构造

4.4 递归下降分析程序构造

• 递归下降分析程序构造

每个非终结符都有对应的递归过程,在分析过程中, 当需要从某个非终结符出发进行展开(推导)时,就调用 这个非终结符对应的子程序。

非终结符号的分析子程序的**功能**是:用产生式右部符号串来匹配输入串。

假定在开始工作前,输入串指示器IP指向第一个输入符号。当每个子程序工作完毕之后,IP总是指向下一个未处理的符号。

33

第四章 语法分析-自上而下分析 4.4 递归下降分析程序构造

4.4 递归下降分析程序构造

• 递归下降分析程序构造

例如 E'→+TE' | ε

E'有两个候选;

当面临**输入符号**+时,**第一个候选**进入工作; 当面临**任何其它输入符号**时,**第二个候选**进入工作,由 于第二个候选为ε, Ε'就自动认为获得了匹配;

如果使用LL(1)文法,则该判断该输入符号是否属于FIRST(E')。

```
第四章 语法分析-自上而下分析 4.4 递归下降分析程序构造
           4.4 递归下降分析程序构造
• 递归下降分析程序构造
                               PROCEDURE E;
  E \rightarrow TE' \quad E' \rightarrow +TE' \mid \epsilon
                               BEGIN
  T →FT'
             T' \rightarrow *FT' \mid \varepsilon
                                    T; E'
  F \rightarrow (E) \mid i
                               END:
                          PROCEDURE E';
  PROCEDURE T;
                             IF SYM= '+' THEN
  BEGIN
                             BEGIN
       F; T'
                                ADVANCE:
  END;
                               T; E'
                             END;
```

```
第四章 语法分析-自上而下分析 4.4 递归下降分析程序构造
           4.4 递归下降分析程序构造
• 递归下降分析程序构造
                               PROCEDURE F;
                               IF SYM= 'i' THEN
  E \rightarrow TE' \quad E' \rightarrow +TE' \mid \varepsilon
                                  ADVANCE
                               ELSE
  T \rightarrow FT'
              T' \rightarrow *FT' \mid \varepsilon
                                  IF SYM= '(' THEN
  F \rightarrow (E) \mid i
                                  BEGIN
  PROCEDURE T';
                                     ADVANCE;
  IF SYM= '*' THEN
  BEGIN
                                     IF SYM= ')' THEN
    ADVANCE;
                                        ADVANCE
   F; T'
                                     ELSE ERROR
  END;
                                 END
                                 ELSE ERROR; ???
                                                      36
```


第四章语法分析-自上而下分析 4.5 预测分析程序

4.5 预测分析程序

4.5.1 预测分析程序工作过程

Nonrecursive Predictive Parsing

4.5.2 预测分析表的构造

Construction of a Predictive Parsing Table

第四章语法分析-自上而下分析 4.5 预测分析程序
4.5.1 预测分析程序工作过程

第四章 语法分析-自上而下分析 4.5 预测分析程序

4.5.1 预测分析程序工作过程

- 预测分析程序工作过程要点
- ① 分析时,显示的使用栈Stack,而不是隐示的使用递归, 栈底是#(没有待判断符号时在顶部)
- ② 语法分析使用最左推导
- ③ 输入字符也用栈Input存储, 栈底是#(没有输入符号时在 顶部)
- ④ 使用语法分析表M[A, a]

4.5.1 预测分析程序工作过程

- 预测分析程序工作过程中栈的主要操作
- ① 若X=a='#',则宣布分析成功,停止分析过程。
- ② 若X=a ≠ '♯',则宣布匹配成功,把X从STACK 栈顶逐出,使a指向下一个输入符号。
- ③ X是一个非终结符,则查看分析表M。把M[X, a]对应的产生式的右部符号串按反序——推进Stack栈。 (若右部符号为ε,不推任何东西进栈);若M[X, a]中存放着"出错标志",则调用出错诊察程序ERROR。

4.5.1 预测分析程序工作过程

• 语法 $E \to TE'$ $E' \to +TE' \mid \epsilon$

 $T \rightarrow FT'$ $T' \rightarrow *FT' \mid \epsilon$

F →(E) | i 语法分析表M

非终		4	输入	字符		
结符	i	+	*	()	#
Е	$E \rightarrow TE'$			$E \rightarrow TE'$		
E'		$E \rightarrow TE'$			$E' \rightarrow \varepsilon$	$E' \rightarrow \varepsilon$
T	$T \rightarrow FT'$			$T \rightarrow FT'$		
T'		$T' \rightarrow \varepsilon$	$T' \rightarrow *FT'$		$T' \rightarrow \varepsilon$	$T' \rightarrow \varepsilon$
F	$F \rightarrow i$			$F \rightarrow (E)$		

43

$E \rightarrow TE'$	$E' \rightarrow +TE' \mid \varepsilon$	$T \rightarrow FT'$	$T' \rightarrow *FT' \mid \varepsilon$	$F \rightarrow (E) \mid i$

非终			输入	、字符	1.4	
结符	i	+	*	()	#
Е	$E \rightarrow TE$			$E \rightarrow TE'$		
E'		$E \rightarrow TE$			$E' \rightarrow \varepsilon$	$E' \rightarrow \varepsilon$
T	$T \rightarrow FT'$	7		$T \rightarrow FT'$		
T'		$T' \rightarrow \varepsilon$	$T' \rightarrow *FT'$		$T' \rightarrow \varepsilon$	$T' \rightarrow \varepsilon$
F	$F \rightarrow i$			$F \rightarrow (E)$		

输入: i+i*i

尝试找到最左推导

 $E \Rightarrow TE' \Rightarrow FT'E' \Rightarrow i T'E' \Rightarrow i E' \Rightarrow i + TE' \Rightarrow ...$

lm lm lm lm

44

lm

11. 44.			语法分析			- 7		
非终			输	〕人	字符	-1		
结符	i	+	*		()	#
Е	$E \to TE$				$E \rightarrow TE'$			
E'		$E \rightarrow TE'$				E'	$\rightarrow \epsilon$	$E' \rightarrow \varepsilon$
T	$T \rightarrow FT$	7			$T \rightarrow FT$			
T'	H	$T' \rightarrow \varepsilon$	T'→ *F	T'		T'	→ ε	$T' \rightarrow \varepsilon$
F	$F \rightarrow i$				$F \rightarrow (E)$			
① M	[E, i] ②) M[T, i]	② M	1[F,	, i]		- 10	
Ma	tched	Sta	ck		Input			Action
		E#	#		i+i*i#			
		TE	' #		i+i*i#		outp	ut $E \to TE$
		FT'I	₹'#		i+i*i#		outn	ut $T \rightarrow FT$

MATCHED	STACK	INPUT	ACTION
	E\$	id + id * id\$	
	TE'\$	id + id * id\$	output $E \to TE'$
	FT'E'\$	id + id * id\$	output $T \to FT'$
	id $T'E'$ \$	id + id * id\$	output $F \to id$
id	T'E'\$	+ id * id\$	match id
id	E'\$	+ id * id\$	output $T' \to \epsilon$
id	+ TE'\$	+ id * id\$	output $E' \to + TE'$
id +	TE'\$	id*id\$	match +
id +	FT'E'\$	id*id\$	output $T \to FT'$
id +	id $T'E'$ \$	id*id\$	output $F \to id$
id + id	T'E'\$	* id\$	match id
id + id	*FT'E'\$	* id\$	output $T' \to *FT'$
id + id *	FT'E'\$	id\$	match *
id + id *	id $T'E'$ \$	id\$	output $F \to id$
id + id * id	T'E'\$	\$	match id
id + id * id id + id * id	E'\$	\$	output $T' \to \epsilon$
10 + 10 * 10	\$	\$	output $E' \to \epsilon$

4.5.2 预测分析表的构造

• 预测分析表的构造

需要FIRST(α)和FOLLOW(A)

有语法G E→TE' E'→+TE' | ε T→FT' T'→*FT' | ε F→(E) | i

非终结符	FIRST	FOLLOW
Е	{(,i}	{), # }
T	{(,i}	{+,), #}
E'	{+, ε}	{), # }
T'	$\{*,\epsilon\}$	{+,), #}
F	$\{(,i\}$	{ *,+,),#}

	·····································		非终	FIR	ST		FOLLOV	V	
$E \rightarrow C' \rightarrow C$ $E' \rightarrow C \rightarrow C$ $T \rightarrow C$	+ΤΕ' ε		结符 E	{(,			{), #		
	*FT' ε (E) i		T E'	{+,	ε}		{+,), #}	}	
			T' F	{*, {(,	i}		$\{+, \}, \#\}$	# }	
第一章 表M[步,对每 [A, a]	个终结	符a在	FIRST(α)中, ———	把产	生式A -	→α加	1入
非终				输入	字符				
结符	i	+		*	()	#	
E	$E \to TE$		1		$E \rightarrow 1$	TE'	- 2		
E'		$E \rightarrow T$	E						
			-	//					49

有语法 G E→TE′	非终结符	FIRST	FOLLOW
E'→+TE' ε	Е	$\{(,i)\}$	{), # }
T→FT′	T	{ (, i}	{+,), #}
T'→*FT' ε F→(E) i	E'	{+, ε}	{), # }
1 →(E) 1	T'	{*, ε}	{+,), #}
	F	{(,i}	{ *,+,),#}

第二步,如果 ϵ 在FIRST(α)中,则FOLLOW(A)中的每个终结符b,把产生式A $\rightarrow \alpha$ 加入表M[A, b]。如果 ϵ 在FIRST(α)中,同时# ϵ FOLLOW(A)中,把产生式A $\rightarrow \alpha$ 加入表M[A, #]。

非终	输入字符					
结符	i	+	*	()	#
E'		$E \rightarrow TE'$			$E' \rightarrow \varepsilon$	$E' \rightarrow \varepsilon$
T'		$T' \rightarrow \varepsilon$	$T' \rightarrow *FT'$		$T' \rightarrow \varepsilon$	$T' \rightarrow \varepsilon$
						50

4.5.2 预测分析表的构造

• LL(1)文法的证明

如果G是左递归或二义的,那么,M至少含有一个多重定义入口。因此,消除左递归和提取左因子将有助于获得无多重定义的分析表M。

可以证明,一个文法G的预测分析表M不含多重定义入口,当且仅当该文法为LL(1)的。

51

第四章 语法分析-自上而下分析 4.5 预测分析程序

4.5.2 预测分析表的构造

• LL(1)文法的证明

如果G是左递归或二义的,那么,M至少含有一个多重定义入口。因此,消除左递归和提取左因子将有助于获得无多重定义的分析表M。可以证明,一个文法G的预测分析表M不含多重定义入口,当且仅当该文法为LL(1)的。

证明条件:一个文法G,其分析表M不含多重定义入口 (即分析表中无二条以上产生式),则称它是一个LL(1)文法。

4.5.2 预测分析表的构造

• LL(1)文法的证明

例如 文法G(S): $FIRST(S)=\{i, a\}$ $S \rightarrow iCtS \mid iCtSeS \mid a$ $FIRST(S')=\{e, \epsilon\}$ $C \rightarrow b$ $FIRST(C) = \{b\}$ 提取左因子之后,改写成: G'(S): $FOLLOW(S) = \{e, \#\}$ $FOLLOW(S')=\{e, \#\}$ $S \rightarrow iCtSS' \mid a$ $FOLLOW(C) = \{t\}$ $S' \rightarrow eS \mid \epsilon$ $C \rightarrow b$

53

第四章 语法分析-自上而下分析 4.5 预测分析程序

4.5.2 预测分析表的构造

• LL(1)文法的证明

文法G'(S) 不是LL(1)文法

例如 文法G'(S):

 $S \rightarrow iCtSS' \mid a$ $S' \rightarrow eS \mid \epsilon$

 $C \rightarrow b$

 $FIRST(S)=\{i, a\}$ $FIRST(S') = \{e, \epsilon\}$ $FIRST(C)=\{b\}$

 $FOLLOW(S) = \{e, \#\}$ $FOLLOW(S')=\{e, \#\}$ $FOLLOW(C) = \{t\}$

	a	b	e	i	t	#
S	S→a			S→iCtSS′		
S'			S′→ε			S'→ε
		13	S'→ε S'→eS			
С		C→b				

第四章语法分析-自上而下分析 4.6 LL(1)分析中的错误处理
4.6 LL(1)中的错误处理

第四章 语法分析-自上而下分析 4.6 LL(1)分析中的错误处理

4.6 LL(1)分析中的错误处理

- LL(1)分析中的错误情况
- ① 栈顶的终结符与当前输入符号不匹配
- ② 非终结符A处于栈顶,面临的输入符号为a,但分析表M中的M[A,a]为空

问题: 无法弹出终结符或非终结符A, 分析程序不能继续

第四章 语法分析-自上而下分析 4.6 LL(1)分析中的错误处理

4.6 LL(1)分析中的错误处理

• LL(1)分析中的错误解决方法

思想:跳过输入串中的一些符号,直到遇到"同步符号"为止。

方法:建立非终结符A的同步符号集。

57

第四章 语法分析-自上而下分析 4.6 LL(1)分析中的错误处理

4.6 LL(1)分析中的错误处理

- LL(1)分析中的错误解决方法 考虑建立同步符号集的方法:
- ① 把FOLLOW(A)中的所有符号放入非终结符A的同步符号集。
- ② 只用FOLLOW(A)是不够的。例如C语言中的分号是语句的结束符,分号不在FOLLOW(A),如果缺少分号,下一句的开始关键字右可能被跳过。
- ③ 把FIRST(A)中的符号也加入非终结符A的同步符号集, 当FIRST(A)中的一个符号在输入中出现时,则可以根据 A恢复语法分析。

第四章 语法分析-自上而下分析 4.6 LL(1)分析中的错误处理

4.6 LL(1)分析中的错误处理

- LL(1)分析中的错误解决方法 考虑建立同步符号集的方法:
- ④ 如果一个非终结符产生空串,推导ε的产生式可以作为缺省,这样可以推迟某些错误检查,从而减少在错误恢复期间的必须考虑的非终结符
- ⑤ 如果不能匹配栈顶的终结符号,简单的想法是弹出该终结符,并发出一条信息,说明已插入这个终结符,继续语法分析。但是,可能会让该单词符号的同步符号集包含所有其他的单词符号。

59

第四章 语法分析-自上而下分析 4.6 LL(1)分析中的错误处理

4.6 LL(1)分析中的错误处理

· LL(1)分析中的错误处理

当使用的语法是常见语法时,使用FIRST和FOLLOW中的符号组建的同步符号集,处理错误效果很好。

把语法分析表M中空缺的地方,并且属于FOLLOW的终结符,都填上"synch",表明是同步符号集。

第四章 语法分析-自上而下分析 4.6 LL(1)分析中的错误处理

4.6 LL(1)分析中的错误处理

• LL(1)分析中的错误处理

语法分析表M

非终	输入字符					
结符	i	+	*	()	#
Е	$E \rightarrow TE'$			$E \rightarrow TE'$	synch	synch
Ε'		$E \rightarrow TE$			$E' \rightarrow \varepsilon$	$E' \rightarrow \varepsilon$
T	$T \rightarrow FT'$	synch		$T \rightarrow FT'$	synch	synch
T'		$T' \rightarrow \varepsilon$	$T' \rightarrow *FT'$		$T' \rightarrow \varepsilon$	$T' \rightarrow \varepsilon$
F	$T \rightarrow i$	synch	synch	$F \rightarrow (E)$	synch	synch

61

第四章 语法分析-自上而下分析 4.6 LL(1)分析中的错误处理

4.6 LL(1)分析中的错误处理

- LL(1)分析中的错误处理
 - 三种情况的处理方式:
- ① 如果M[A, a]是空的,则忽略输入符号
- ② 如果M[A, a]是"synch",则非终结符A被弹出并准备尝试恢复编译
- ③ 如果Stack栈顶的字符与输入字符不匹配,则弹出Stack 栈顶的字符

	REMARK	
d \$	error, skip)	
d \$	id is in $FIRST(E)$	
d §		
d §		
d		
d		
d		
d	error, $M[F, +] = $ synch	
d		
d		
d		
d		
d		
d	alsals and nonterminals th	
,	3 d. al designed and all designed and al	
-	ably well when expressions	
1	and a more and A not be miscolone and IT;	

第四章语法分析-自上而下分析 第四章 小结 4.1 语法分析器的功能 4.2 自上而下分析面临的问题 4.3 LL(1)分析法 4.4 递归下降分析程序构造 4.5 预测分析程序 4.6 LL(1)分析中的错误处理

第四章 语法分析-自上而下分析

Coursework

4.1考虑下面文法G[S]

S→Aa

A→BB

 $B \rightarrow Sb \mid c$

请消除该文法的左递归。

4.2 试消除下面文法G[A] 中的左递归,并提取公共左因子, 判断改写后的文法是否为LL(1)文法?

A→aABe | a

B→Bb | d

67

第四章 语法分析-自上而下分析

Coursework

4.3 考虑下面文法G1:

 $S \rightarrow a \mid \wedge \mid (T)$

 $T \rightarrow T, S \mid S$

- (1) 消去 G_1 的左递归。然后对每个非终结符,写出不带回溯的递归子程序。
- (2) 经改写后的文法是否是LL(1)的?给出它的预测分析表。

第四章 语法分析-自上而下分析

Coursework

4.4 对下面的文法G:

 $E \rightarrow TE'$

 $E' \rightarrow +E \mid \epsilon$

 $T{
ightarrow}FT'$

 $T' {\rightarrow} T \mid \epsilon$

 $F \rightarrow PF'$

F'→*F' | ε

 $P \rightarrow (E) \mid a \mid b \mid \land$

- (1) 计算这个文法的每个非终结符的FIRST和FOLLOW。
- (2) 证明这个文法是LL(1)的。
- (3) 构造它的预测分析表。
- (4) 构造它的递归下降分析程序。