Col de la Porte

Model: GEOtop v3.0 Compiler: gcc version 4.8.4 (Ubuntu 4.8.4-2ubuntu1~14.04.1) Processor: Intel(R) Core(TM) i7-5500U CPU @ 2.40GHz Author: Stefano Endrizzi (stefano.end@gmail.com),Emanuele Cordano (emanuele.cordano@rendena100.eu) Date: 25-11-2016

Name: ColdelaPorte Description: Simulation 1D over the Col de la Porte dataset to test the capability of GEOotp to simulate snow depth, snow water equivalent, soil temperature.

Results published in: First result with GEOtop v 2.0 are illustrated in the report XXX (Endrizzi et al. (2014), supplementary material). The following simulated variables have been tested against observations:

- Liquid Precipitation Intensity (Rain);
- Solid Precipitation Intensity (Snow);
- Snow Height (Snow Dapth);
- Snow Water Equivalent;
- Soil Temperature at 10 cm depth;
- Soil temparature at 20 cm depth;
- Soil Temparature at 50 cm depth;
- Surface Temparature;
- Albedo.

Simulation duration:

```
 \begin{array}{lll} \mbox{InitDateDDMMYYYYhhmm} & = 01/01/1997 & 00:00 \\ \mbox{EndDateDDMMYYYYhhmm} & = 31/12/2011 & 23:00 \\ \end{array}
```

Output:

PointOutputFile = "output-tabs/surface"

Observations:

Snow heigth mm, Snow Water Equivalent mm(NOT FOUND), T surface C, T soil 10cm C,T soil 20cm C,T soil 50cm C see Morin et al. (2012).

Winter 2001/2002

sim	gof	Psnow_under_canopy.mm.	Prain_under_canopy.mm.	Tsurface.C.	snow_depth.mm.	snow_water
obs	MAE	0.02	0.03	0.00	0.00	
obs	RMSE	0.18	0.24	0.00	0.00	
obs	KGE	0.84	0.89	1.00	1.00	
sim_1	MAE	0.04	0.09	1.77	45.53	
sim_1	RMSE	0.28	0.44	2.73	67.38	
sim_1	KGE	0.53	0.62	0.75	0.84	
sim_2	MAE	0.05	0.11	2.55	42.79	
sim_2	RMSE	0.27	0.50	3.84	68.66	
sim_2	KGE	0.54	0.51	0.75	0.90	
sim_3	MAE	0.05	0.11	2.55	42.79	
sim_3	RMSE	0.27	0.50	3.84	68.66	
sim_3	KGE	0.54	0.51	0.75	0.90	
sim_4	MAE	0.05	0.11	1.93	35.66	
sim_4	RMSE	0.34	0.50	2.72	58.18	
sim_4	KGE	0.36	0.52	0.77	0.92	
sim_5	MAE	0.05	0.11	1.96	32.75	
sim_5	RMSE	0.34	0.50	2.88	53.19	
sim_5	KGE	0.35	0.52	0.74	0.96	
sim_6	MAE	0.05	0.11	2.12	33.01	
sim_6	RMSE	0.35	0.50	3.21	52.25	
sim_6	KGE	0.30	0.52	0.69	0.95	
sim_{2}	MAE	0.04	0.11	1.97	53.33	
sim_{2}	RMSE	0.30	0.50	2.88	78.68	
sim_{2}	KGE	0.56	0.54	0.75	0.80	
sim_8	MAE	0.05	0.11	1.96	32.75	
sim_8	RMSE	0.34	0.50	2.88	53.19	
sim_8	KGE	0.35	0.52	0.74	0.96	

Winter 2002/2003

$\overline{\sin}$	gof	Psnow_under_canopy.mm.	Prain_under_canopy.mm.	Tsurface.C.	snow_depth.mm.	snow_water
obs	MAE	0.03	0.05	0.00	0.00	
obs	RMSE	0.25	0.37	0.00	0.00	
obs	KGE	0.75	0.81	1.00	1.00	
sim_1	MAE	0.07	0.13	1.59	41.62	
sim_1	RMSE	0.40	0.61	2.09	70.42	
sim_1	KGE	0.35	0.48	0.88	0.90	
sim_2	MAE	0.07	0.14	1.82	35.17	
sim_2	RMSE	0.34	0.66	2.57	60.59	
sim_2	KGE	0.46	0.37	0.84	0.93	
sim_3	MAE	0.07	0.14	1.82	35.17	
sim_3	RMSE	0.34	0.66	2.57	60.59	
sim_3	KGE	0.46	0.37	0.84	0.93	
sim_4	MAE	0.08	0.15	1.92	42.58	
sim_4	RMSE	0.45	0.67	2.65	73.21	
sim_4	KGE	0.25	0.37	0.85	0.87	
sim_5	MAE	0.08	0.15	1.87	42.80	
sim_5	RMSE	0.45	0.67	2.59	74.92	
sim_5	KGE	0.25	0.37	0.86	0.86	
sim_6	MAE	0.08	0.15	1.85	42.42	
sim_6	RMSE	0.45	0.67	2.56	74.95	
sim_6	KGE	0.25	0.37	0.87	0.86	
sim_{-7}	MAE	0.07	0.15	1.80	52.91	
sim_{-7}	RMSE	0.40	0.68	2.50	89.37	
sim_{-7}	KGE	0.42	0.40	0.85	0.77	
sim_8	MAE	0.08	0.15	1.87	42.80	
sim_8	RMSE	0.45	0.67	2.59	74.92	
sim_8	KGE	0.25	0.37	0.86	0.86	

Winter 2003/2004

$\overline{\sin}$	gof	Psnow_under_canopy.mm.	Prain_under_canopy.mm.	Tsurface.C.	snow_depth.mm.	snow_water
obs	MAE	0.04	0.04	0.00	0.00	
obs	RMSE	0.28	0.35	0.00	0.00	
obs	KGE	0.75	0.74	1.00	1.00	
sim_1	MAE	0.08	0.10	1.43	66.56	
sim_1	RMSE	0.43	0.55	1.99	91.80	
sim_1	KGE	0.38	0.39	0.90	0.90	
sim_2	MAE	0.08	0.11	1.61	57.29	
sim_2	RMSE	0.41	0.57	2.33	83.30	
sim_2	KGE	0.44	0.33	0.88	0.94	
sim_3	MAE	0.08	0.11	1.61	57.29	
sim_3	RMSE	0.41	0.57	2.33	83.30	
sim_3	KGE	0.44	0.33	0.88	0.94	
sim_4	MAE	0.09	0.11	1.68	64.22	
sim_4	RMSE	0.48	0.58	2.41	88.85	
sim_4	KGE	0.31	0.33	0.87	0.92	
sim_5	MAE	0.09	0.11	1.66	62.61	
sim_{5}	RMSE	0.48	0.58	2.38	86.67	
sim_5	KGE	0.31	0.33	0.87	0.92	
sim_6	MAE	0.09	0.11	1.66	61.65	
sim_6	RMSE	0.48	0.58	2.37	85.53	
sim_6	KGE	0.31	0.33	0.87	0.93	
sim_{-7}	MAE	0.08	0.12	1.64	104.51	
sim_{-7}	RMSE	0.45	0.58	2.34	147.32	
sim_{-7}	KGE	0.42	0.37	0.88	0.71	
sim_8	MAE	0.09	0.11	1.66	62.61	
sim_8	RMSE	0.48	0.58	2.38	86.67	
sim_8	KGE	0.31	0.33	0.87	0.92	

Winter 2004/2005

$\overline{\sin}$	gof	Psnow_under_canopy.mm.	Prain_under_canopy.mm.	Tsurface.C.	snow_depth.mm.	snow_water
obs	MAE	0.03	0.04	0.00	0.00	
obs	RMSE	0.21	0.27	0.00	0.00	
obs	KGE	0.80	0.88	1.00	1.00	
sim_1	MAE	0.06	0.10	1.36	89.82	
sim_1	RMSE	0.32	0.46	1.90	140.73	
sim_1	KGE	0.50	0.61	0.93	0.75	
sim_2	MAE	0.06	0.11	1.70	84.29	
sim_2	RMSE	0.32	0.50	2.45	135.89	
sim_2	KGE	0.52	0.53	0.90	0.77	
sim_3	MAE	0.06	0.11	1.70	84.29	
sim_3	RMSE	0.32	0.50	2.45	135.89	
sim_3	KGE	0.52	0.53	0.90	0.77	
sim_4	MAE	0.07	0.11	1.72	93.94	
sim_4	RMSE	0.35	0.51	2.47	146.20	
sim_4	KGE	0.44	0.53	0.90	0.73	
sim_5	MAE	0.07	0.11	1.69	99.36	
sim_5	RMSE	0.35	0.51	2.41	154.36	
sim_5	KGE	0.44	0.53	0.90	0.71	
sim_6	MAE	0.07	0.11	1.68	99.98	
sim_6	RMSE	0.35	0.51	2.38	155.88	
sim_6	KGE	0.44	0.53	0.91	0.71	
sim_{2}	MAE	0.06	0.11	1.69	44.04	
sim_{-7}	RMSE	0.32	0.51	2.41	79.29	
sim_{-7}	KGE	0.56	0.58	0.90	0.92	
sim_8	MAE	0.07	0.11	1.69	99.36	
sim_8	RMSE	0.35	0.51	2.41	154.36	
sim_8	KGE	0.44	0.53	0.90	0.71	

Winter 2005/2006

sim	gof	Psnow_under_canopy.mm.	Prain_under_canopy.mm.	Tsurface.C.	snow_depth.mm.	snow_water
obs	MAE	0.03	0.04	0.00	0.00	
obs	RMSE	0.25	0.28	0.00	0.00	
obs	KGE	0.72	0.81	1.00	1.00	
sim_1	MAE	0.06	0.08	1.46	49.16	
sim_1	RMSE	0.36	0.42	1.98	75.26	
sim_1	KGE	0.40	0.44	0.94	0.95	
sim_2	MAE	0.07	0.09	1.89	53.49	
sim_2	RMSE	0.38	0.46	2.80	86.55	
sim_2	KGE	0.39	0.34	0.89	0.96	
sim_3	MAE	0.07	0.09	1.89	53.49	
sim_3	RMSE	0.38	0.46	2.80	86.55	
sim_3	KGE	0.39	0.34	0.89	0.96	
sim_4	MAE	0.07	0.09	1.82	52.09	
sim_4	RMSE	0.40	0.46	2.59	80.26	
sim_4	KGE	0.30	0.35	0.90	0.93	
sim_5	MAE	0.07	0.09	1.78	53.81	
sim_5	RMSE	0.40	0.46	2.53	83.45	
sim_5	KGE	0.30	0.35	0.90	0.92	
sim_6	MAE	0.07	0.09	1.77	54.55	
sim_6	RMSE	0.40	0.46	2.51	85.02	
sim_6	KGE	0.30	0.35	0.90	0.92	
sim_{2}	MAE	0.06	0.09	1.76	62.02	
sim_{2}	RMSE	0.36	0.47	2.50	100.93	
sim_{2}	KGE	0.47	0.44	0.91	0.82	
sim_8	MAE	0.07	0.09	1.78	53.81	
sim_8	RMSE	0.40	0.46	2.53	83.45	
sim_8	KGE	0.30	0.35	0.90	0.92	

Winter 2006/2007

$\overline{\sin}$	gof	Psnow_under_canopy.mm.	Prain_under_canopy.mm.	Tsurface.C.	snow_depth.mm.	snow_water
obs	MAE	0.03	0.06	0.00	0.00	
obs	RMSE	0.25	0.44	0.00	0.00	
obs	KGE	0.70	0.80	1.00	1.00	
sim_1	MAE	0.07	0.18	1.55	58.21	
sim_1	RMSE	0.43	0.79	2.06	101.75	
sim_1	KGE	0.13	0.36	0.83	0.38	
sim_2	MAE	0.07	0.20	1.87	36.46	
sim_2	RMSE	0.37	0.82	2.72	63.92	
sim_2	KGE	0.27	0.29	0.70	0.70	
sim_3	MAE	0.07	0.20	1.87	36.46	
sim_3	RMSE	0.37	0.82	2.72	63.92	
sim_3	KGE	0.27	0.29	0.70	0.70	
sim_4	MAE	0.08	0.20	1.81	60.75	
sim_4	RMSE	0.46	0.83	2.50	104.46	
sim_4	KGE	0.06	0.29	0.78	0.35	
sim_5	MAE	0.08	0.20	1.77	65.18	
sim_5	RMSE	0.46	0.83	2.47	112.13	
sim_5	KGE	0.06	0.29	0.79	0.29	
sim_6	MAE	0.08	0.20	1.75	67.36	
sim_6	RMSE	0.46	0.83	2.45	115.51	
sim_6	KGE	0.06	0.29	0.79	0.27	
sim_{-7}	MAE	0.06	0.21	1.73	29.93	
sim_{-7}	RMSE	0.38	0.85	2.43	53.83	
sim_{-7}	KGE	0.37	0.32	0.78	0.76	
sim_8	MAE	0.08	0.20	1.77	65.18	
sim_8	RMSE	0.46	0.83	2.47	112.13	
sim_8	KGE	0.06	0.29	0.79	0.29	

Winter 2007/2008

$\overline{\sin}$	gof	Psnow_under_canopy.mm.	Prain_under_canopy.mm.	Tsurface.C.	snow_depth.mm.	snow_water
obs	MAE	0.04	0.04	0.00	0.00	
obs	RMSE	0.32	0.29	0.00	0.00	
obs	KGE	0.77	0.83	1.00	1.00	
sim_1	MAE	0.09	0.10	1.68	173.70	
sim_1	RMSE	0.44	0.47	2.35	228.65	
sim_1	KGE	0.48	0.49	0.69	0.50	
sim_2	MAE	0.09	0.11	1.98	218.79	
sim_2	RMSE	0.47	0.50	2.78	278.55	
sim_2	KGE	0.46	0.40	0.68	0.37	
sim_3	MAE	0.09	0.11	1.98	218.79	
sim_3	RMSE	0.47	0.50	2.78	278.55	
sim_3	KGE	0.46	0.40	0.68	0.37	
sim_4	MAE	0.10	0.11	2.00	186.14	
sim_4	RMSE	0.49	0.51	2.81	242.24	
sim_4	KGE	0.41	0.41	0.67	0.47	
sim_5	MAE	0.10	0.11	1.94	190.65	
sim_5	RMSE	0.49	0.51	2.74	247.18	
sim_5	KGE	0.41	0.41	0.68	0.45	
sim_6	MAE	0.10	0.11	1.93	193.21	
sim_6	RMSE	0.49	0.51	2.73	249.93	
sim_6	KGE	0.41	0.41	0.68	0.45	
sim_{-7}	MAE	0.08	0.12	1.91	56.26	
sim_{-7}	RMSE	0.45	0.53	2.71	81.27	
sim_{-7}	KGE	0.55	0.47	0.69	0.97	
sim_8	MAE	0.10	0.11	1.94	190.65	
sim_8	RMSE	0.49	0.51	2.74	247.18	
sim_8	KGE	0.41	0.41	0.68	0.45	

Winter 2008/2009

$\overline{\sin}$	gof	Psnow_under_canopy.mm.	Prain_under_canopy.mm.	Tsurface.C.	snow_depth.mm.	snow_water
obs	MAE	0.03	0.02	0.00	0.00	
obs	RMSE	0.24	0.20	0.00	0.00	
obs	KGE	0.74	0.92	1.00	1.00	
sim_1	MAE	0.06	0.08	1.43	66.87	
sim_1	RMSE	0.33	0.45	1.97	112.51	
sim_1	KGE	0.47	0.59	0.85	0.88	
sim_2	MAE	0.06	0.09	1.82	60.05	
sim_2	RMSE	0.34	0.48	2.55	90.57	
sim_2	KGE	0.47	0.51	0.82	0.96	
sim_3	MAE	0.06	0.09	1.82	60.05	
sim_3	RMSE	0.34	0.48	2.55	90.57	
sim_3	KGE	0.47	0.51	0.82	0.96	
sim_4	MAE	0.07	0.09	1.82	63.43	
sim_4	RMSE	0.37	0.49	2.52	104.30	
sim_4	KGE	0.39	0.52	0.81	0.90	
sim_5	MAE	0.07	0.09	1.79	61.20	
sim_{5}	RMSE	0.37	0.49	2.49	100.75	
sim_5	KGE	0.39	0.52	0.81	0.91	
sim_6	MAE	0.07	0.09	1.79	59.79	
sim_6	RMSE	0.37	0.49	2.48	98.27	
sim_6	KGE	0.39	0.52	0.81	0.91	
sim_{-7}	MAE	0.06	0.10	1.76	77.73	
sim_{2}	RMSE	0.35	0.49	2.45	140.81	
sim_{2}	KGE	0.48	0.55	0.83	0.78	
sim_8	MAE	0.07	0.09	1.79	61.20	
sim_8	RMSE	0.37	0.49	2.49	100.75	
sim_8	KGE	0.39	0.52	0.81	0.91	

Winter 2009/2010

$\overline{\sin}$	gof	Psnow_under_canopy.mm.	Prain_under_canopy.mm.	Tsurface.C.	snow_depth.mm.	snow_water
obs	MAE	0.03	0.05	0.00	0.00	
obs	RMSE	0.23	0.32	0.00	0.00	
obs	KGE	0.78	0.83	1.00	1.00	
sim_1	MAE	0.07	0.11	1.71	42.53	
sim_1	RMSE	0.39	0.53	2.27	70.34	
sim_1	KGE	0.34	0.48	0.84	0.86	
sim_2	MAE	0.08	0.12	2.04	65.03	
sim_2	RMSE	0.41	0.59	2.82	99.03	
sim_2	KGE	0.31	0.37	0.80	0.75	
sim_3	MAE	0.08	0.12	2.04	65.03	
sim_3	RMSE	0.41	0.59	2.82	99.03	
sim_3	KGE	0.31	0.37	0.80	0.75	
sim_4	MAE	0.08	0.12	1.99	44.86	
sim_4	RMSE	0.44	0.60	2.75	74.39	
sim_4	KGE	0.23	0.37	0.83	0.84	
sim_{5}	MAE	0.08	0.12	1.96	47.64	
sim_{5}	RMSE	0.44	0.60	2.70	78.76	
sim_{5}	KGE	0.23	0.37	0.83	0.83	
sim_6	MAE	0.08	0.12	1.96	47.99	
sim_6	RMSE	0.44	0.60	2.69	79.29	
sim_6	KGE	0.23	0.37	0.84	0.82	
sim_{2}	MAE	0.07	0.13	1.96	32.97	
sim_{2}	RMSE	0.41	0.60	2.70	55.81	
sim_7	KGE	0.38	0.41	0.82	0.90	
sim_8	MAE	0.08	0.12	1.96	47.64	
sim_8	RMSE	0.44	0.60	2.70	78.76	
sim_8	KGE	0.23	0.37	0.83	0.83	

Winter 2010/2011

$\overline{\sin}$	gof	Psnow_under_canopy.mm.	Prain_under_canopy.mm.	Tsurface.C.	snow_depth.mm.	snow_water
obs	MAE	0.02	0.04	0.00	0.00	
obs	RMSE	0.18	0.33	0.00	0.00	
obs	KGE	0.78	0.83	1.00	1.00	
sim_1	MAE	0.05	0.11	2.10	108.04	
sim_1	RMSE	0.30	0.57	2.71	156.99	
sim_1	KGE	0.29	0.49	0.72	0.30	
sim_2	MAE	0.05	0.13	2.53	132.29	
sim_2	RMSE	0.26	0.61	3.30	192.65	
sim_2	KGE	0.43	0.40	0.72	0.13	
sim_3	MAE	0.05	0.13	2.53	132.29	
sim_3	RMSE	0.26	0.61	3.30	192.65	
sim_3	KGE	0.43	0.40	0.72	0.13	
sim_4	MAE	0.06	0.13	2.45	118.39	
sim_4	RMSE	0.32	0.62	3.17	170.92	
sim_4	KGE	0.23	0.40	0.70	0.22	
sim_5	MAE	0.06	0.13	2.44	120.66	
sim_5	RMSE	0.32	0.62	3.15	174.23	
sim_{5}	KGE	0.23	0.40	0.69	0.21	
sim_6	MAE	0.06	0.13	2.44	121.96	
sim_6	RMSE	0.32	0.62	3.15	176.18	
sim_6	KGE	0.23	0.40	0.68	0.20	
sim_{2}	MAE	0.05	0.13	2.42	75.23	
sim_{2}	RMSE	0.28	0.62	3.13	112.34	
sim_{2}	KGE	0.48	0.43	0.70	0.55	
sim_8	MAE	0.06	0.13	2.44	120.66	
sim_8	RMSE	0.32	0.62	3.15	174.23	
sim_8	KGE	0.23	0.40	0.69	0.21	

References

Endrizzi, S., S. Gruber, M. Dall'Amico, and R. Rigon. 2014. "GEOtop 2.0: Simulating the Combined Energy and Water Balance at and Below the Land Surface Accounting for Soil Freezing, Snow Cover and Terrain Effects." Geoscientific Model Development 7 (6): 2831–57. https://doi.org/10.5194/gmd-7-2831-2014.

Morin, S., Y. Lejeune, B. Lesaffre, J.-M. Panel, D. Poncet, P. David, and M. Sudul. 2012. "An 18-Yr Long (1993â€"2011) Snow and Meteorological Dataset from a Mid-Altitude Mountain Site (Col de Porte, France, 1325 M Alt.) for Driving and Evaluating Snowpack Models." *Earth System Science Data* 4 (1): 13−21. https://doi.org/10.5194/essd-4-13-2012.