MA 322: Scientific Computing

Department of Mathematics Indian Institute of Technology Guwahati

March 22, 2023

Chapter 5: Numerical Differentiations and Initial Value Problems for ODEs

Initial Value Problems (IVPs)

Definition (IVP)

Let $f:D\subset\mathbb{R}^2 o\mathbb{R}$ is continuous. An initial value problem (IVP) is defined as

$$y'=f(x,y) \qquad y(x_0)=Y_0,$$

where (x_0, Y_0) is a point in D.

Definition (Solution of an IVP)

We say that a function Y(x) is a solution on [a, b] of the IVP if $\forall x \in [a, b]$,

- 1. $(x, Y(x)) \in D$.
- 2. $Y(x_0) = Y_0$.
- 3. Y'(x) exists and Y'(x) = f(x, Y(x)).

Initial Value Problems (IVPs)

Example

Consider a general first-order linear DE

$$y' = a_0(x)y + g(x)$$
 $a \le x \le b$

in which the coefficients $a_0(x)$ and g(x) are assumed to be continuous on [a,b]. The domain D for this problem is

$$D = \{(x, y) : a \le x \le b, -\infty < y < \infty\}.$$

The exact solution of this equation can be easily obtained (See MA102 for a revision). A particular case of the above DE is when $a_0(x) = \lambda$. Then the solution is

$$Y(x) = Y_0 e^{\lambda x} + \int_0^x e^{\lambda(x-t)} g(t) dt \qquad 0 \le x < \infty.$$

Direction fields

If Y(x) is a solution that passes through (x_0, Y_0) , then the slope of Y(x) at (x_0, Y_0) is $Y'(x_0) = f(x_0, Y_0)$. Within the domain D of f(x, y), pick a representative set of points (x, y) and then draw a short line segment with slope f(x, y) through each (x, y).

Example

Consider the equation y' = -y. The direction field is shown in the below figure.

Direction fields

Example

Consider the equation $y' = x^2 + y^2$. The direction field is shown in the below figure.

Existence and Uniqueness

Theorem (Existence and uniqueness)

Let f(x,y) be a continuous function of x and y, for all (x,y) in D, and let (x_0,Y_0) be an interior point of D. Assume f(x,y) satisfies the Lipschitz condition

$$|f(x, y_1) - f(x, y_2)| \le K|y_1 - y_2| \qquad \forall (x, y_1), (x, y_2) \in D$$

for some $K \ge 0$. Then for a suitably chosen interval $I = [x_0 - \alpha, x_0 + \alpha]$, there is a unique solution Y(x) on I of the IVP

$$y'=f(x,y) \qquad y(x_0)=Y_0.$$

Existence and Uniqueness

Example

Consider $y' = 1 + \sin(xy)$ with

$$D = \{(x, y) : 0 \le x \le 1, -\infty < y < \infty\}.$$

To compute the Lipschitz constant K, use

$$K = \max_{(x,y) \in D} \left| \frac{\partial f(x,y)}{\partial y} \right|.$$

We can show that K = 1. Thus for (x_0, Y_0) with $0 < x_0 < 1$, there is a solution Y(x) to the associated initial value problem on some interval $[x_0 - \alpha, x_0 + \alpha] \subset [0, 1]$.

Existence and Uniqueness

Example

Discuss the existence of unique solution of the initial value problem,

$$y' = \frac{2x}{a^2}y^2$$
 $y(0) = 1$, $a > 0$.

Stability of the solution

The stability of the solution Y(x) is examined when the initial value problem is changed by a small amount. We consider the perturbed problem

$$y' = f(x, y) + \delta(x)$$

$$y(x_0)=Y_0+\epsilon$$

with the same hypothesis for f(x,y) as in the previous theorem (Existence and uniqueness). Further, we assume that $\delta(x)$ is continuous for all x such that $(x,y) \in D$ for some y. The problem above can be shown to have a unique solution, denoted by $Y(x;\delta,\epsilon)$.

Stability of the solution

Theorem (Stability)

Assume the same hypotheses as in "Existence and uniqueness theorem". Then the problem

$$y' = f(x, y) + \delta(x)$$
 $y(x_0) = Y_0 + \epsilon$

will have a unique solution $Y(x; \delta, \epsilon)$ on the interval $[x_0 - \alpha, x_0 + \alpha]$, some $\alpha > 0$, uniformly for all perturbations ϵ and $\delta(x)$ that satisfy

$$|\epsilon| \le \epsilon_0$$
 $\|\delta\|_{\infty} \le \epsilon_0$

for ϵ_0 sufficiently small. In addition, if Y(x) is the solution of the unperturbed problem, then

$$\max_{|x-x_0| \le \alpha} |Y(x) - Y(x; \delta, \epsilon)| \le k[|\epsilon| + \alpha \|\delta\|_{\infty}]$$

with $k = 1/(1 - \alpha K)$, where K is the Lipschitz constant.