Московский физико-технический институт Физтех-школа прикладной математики и информатики

Алгебра и геометрия БИЛЕТЫ К ЭКЗАМЕНУ

II CEMECTP

Лектор: Штепин Вадим Владимирович

Автор: Головко Денис Проект на Github

Содержание

1. Кольцо многочленов над полем. Наибольший общий делитель. Алгоритм Евклида. Линейное выражение НОД.	2
2. Неприводимость многочленов. Основная теорема арифметики для многочленов	s. 5
3. Корни многочленов. Теорема Безу. Формальная производная. Кратные корни	. 7
4. Лемма Даламбера. Основная теорема алгебры (схема доказательства).	8
5. Инвариантные подпространства. Собственные векторы и собственные значения. Характеристический многочлен и его свойства. Инвариантность следа и определителя матрицы оператора.	9
6. Линейная независимость собственных векторов, имеющих попарно различные собственные значения. Алгебраическая и геометрическая кратности собственного значения. Условия диагонализируемости линейного оператора.	10
7. Приведение матрицы преобразования к треугольному виду. Теорема Гамильтон Кэли (случай, когда характеристический многочлен линейного оператора раскладывается на линейные множители).	a- 13
8. Корневое подпространство линейного оператора. Свойства корневых подпропространств. Разложение пространства в прямую сумму корневых подпространств (случай, когда характеристический многочлен линейного оператора раскладывается на линейные множители).	15
9. Циклические подпространства. Теорема о нильпотентном операторе. Жорданова нормальная форма и жорданов базис линейного оператора. (Теорема существования жорданова базиса).	17
10. Жорданова диаграмма. Метод ее построения без поиска жорданова базиса. Теорема о единственности жордановой нормальной формы с точностью до перестановки клеток.	20
11. Аннулирующий и минимальный многочлен линейного оператора. Связь минимального многочлена с жордановой нормальной формой.	23
12. Норма в линейном пространстве. Норма линейного оператора. Вычисление многочлена и аналитической функции от линейного оператора.	24
13. Линейные рекурренты. Общий вид линейной рекурренты над произвольным полем (случай, когда характеристический многочлен раскладывается на линейные множители).	26

4. Билинейные функции. Координатная запись билинейной функции. Матри ца билинейной функции и ее изменение при замене базиса. Ортогонально дополнение к подпространству относительно симметричной (кососимметричной) билинейной функции и его свойства.	e
5. Симметричные билинейные и квадратичные функции, связь между ними Поляризационное тождество. Метод Лагранжа приведения квадратичной фомы к каноническому виду.	
6. Индексы инерции квадратичной формы в действительном линейном пространстве. Закон инерции. Метод Якоби приведения квадратичной формы диагональному виду.	
7. Положительно определенные квадратичные функции. Критерий Сильвестра. Кососимметрические билинейные функции, приведение их к каноническому виду.	
8. Полуторалинейные формы в комплексном линейном пространстве. Эрмито вы полуторалинейные и квадратичные формы, связь мужду ними. Приведение их к каноническому виду. Закон инерции для эрмитовых квадратичны форм. Критерий Сильвестра.	9-
9. Евклидово и эрмитово пространство. Выражение скалярного произведени в координатах. Матрица Грама системы векторов и ее свойства. Неравенств Коши-Буняковского и треугольника.	
20. Ортонормированные базисы и ортогональные (унитарные) матрицы. Сущо ствование ортонормированного базиса в пространстве со скалярным производением. Изоморфизм евклидовых и эрмитовых пространств. Канонически изоморфизм евклидова пространства и сопряженного к нему.	9-
21. Ортогональное дополнение к подпространству. Задача об ортогональной про екции и ортогональной составляющей. Процедура ортогонализации Грама Шмидта. Объем параллелепипеда.	
22. Преобразование, сопряженное данному. Существование и единственность та кого преобразования, его свойства. Теорема Фредгольма.	a- 50
23. Самосопряженное линейное преобразование. Свойства самосопряженных пробразований. Основная теорема о самосопряженных операторах (существование ортонормированного базиса из собственных векторов).	
24. Ортогональные преобразования и их свойства. Канонический вид ортого нального преобразования. Инвариантные подпространства малых размерно стей для линейного оператора в действительном линейном пространстве.	

25. Полярное разложение линейного преобразования в евклидовом простран-	
стве. Единственность полярного разложения для невырожденного оператора.	54
26. Приведение квадратичной формы в пространстве со скалярным произведе-	
нием к главным осям. Одновременное приведение пары квадратичных форм	
к диагональному виду.	55
27. Унитарные преобразования, их свойства. Канонический вид унитарного пре-	
образования.	56
28. Тензоры типа (p,q) . Тензорное произведение тензоров. Координатная запись	
тензора, изменение координат при замене базиса, тензорный базис.	57
29. Алгебраические операции над тензорами (перестановка индексов, свертка).	
Симметричные и кососимметричные тензоры. Операторы симметрирования	
и альтернирования и их свойства.	60

1. Кольцо многочленов над полем. Наибольший общий делитель. Алгоритм Евклида. Линейное выражение НОД.

Напоминание. Кольцом называется множество R с определенными на нем бинарными операциями сложения $+: R \times R \to R$ и умножения $\cdot: R \times R \to R$, удовлетворяющими следующим условиям:

- $\triangleright (R, +)$ абелева группа, нейтральный элемент в которой обозначается через 0
- $ightharpoonup orall a, b, c \in R : (ab)c = a(bc)$ (ассоциативность умножения)
- $ightarrow \, orall a,b,c\in R: a(b+c)=ab+ac$ и (a+b)c=ac+bc (дистрибутивность умножения относительно сложения)

Напоминание. Полем называется такое коммутативное кольцо $(F, +, \cdot)$, для которого выполнено равенство $F^* = F \setminus \{0\}$.

Определение 1. Последовательность $(a_0, a_1, a_2, \ldots), a_i \in R$ называют финитной если $\exists N : \forall n > N \hookrightarrow a_n = 0$, т.е. если начиная с некоторого номера N все значения a_n равны нулю.

Определение 2. Пусть R – коммутативное кольцо с единицей. *Многочлен* над R – финитная последовательность элементов $A=(a_0,a_1,a_2,\ldots),a_i\in R$. Дополнительно будем использовать обозначение $(A)_i=a_i$.

Определение 3. R[x] – множество многочленов над кольцом R.

Определение 4. Пусть $A, B \in R[x]$, тогда верны следующие свойства:

1.
$$(A+B)_n = (A)_n + (B)_n$$
,

2.
$$(A \cdot B)_n = \sum_{i=0}^n (A)_i \cdot (B)_{n-i}$$
,

3.
$$\lambda \in R (\lambda A)_n = \lambda \cdot (A)_n$$
.

Утверждение 1. Множество всех многочленов R[x] является коммутативным кольцом с 1. $1 = (1, 0, 0, \ldots)$ – нейтральный по умножению многочлен.

Определение 5. Введем обозначения $x=(0,1,0,0,\ldots),$ $x^2=(0,0,1,0,\ldots)$ и т.д. Тогда многочлен $A=(a_0,a_1,a_2,\ldots)$ можно записать как $A=a_0\cdot 1+a_1\cdot x+a_2\cdot x^2+\ldots$

Определение 6. Пусть $P = (a_0, a_1, a_2, \ldots)$ – многочлен. Последний отличный от нуля коэффициент называется *старшим коэффициентом* многочлена. Номер старшего коэффициента называется степенью многочлена и обозначается как $\deg P$.

Замечание. Будем считать, что степень нулевого многочлена и только нулевого многочлена не определена.

Напоминание. Делителями нуля называются такие числа a и b, что $a \neq 0$ и $b \neq 0$ но $a \cdot b = 0$.

Определение 7. Коммутативное кольцо с единицей называется областью целостности или целостным кольцом если оно не имеет делителей нуля.

Утверждение 2. В области целостности выполняется правило сокращения: $ab = ac, a \neq 0 \Rightarrow b = c$.

Доказательство.
$$a(b-c)=0, a \neq 0 \Rightarrow b-c=0.$$

Утверждение 3. Пусть R – коммутативное кольцо c единицей, $A, B \in R[x]$, тогда:

- 1. $deg(A+B) \leq max(deg(A), deg(B)),$
- 2. $deg(A \cdot B) \leq deg(A) + deg(B)$,
- 3. Если вдобавок R область целостности, то $\deg(AB) = \deg(A) + \deg(B)$.

Доказательство. 1. Обозначим $\deg A = a$, $\deg B = b$. Пусть n > max(a,b), тогда $(A+B)_n = (A)_n + (B)_n = 0 + 0 = 0$, а значит $\forall n > max(a,b) \Rightarrow (A+B)_n = 0$. Тогда номер последнего ненулевого элемента не превосходит max(a,b), а значит $deg(A+B) \leqslant max(a,b)$

2. Пусть n > a + b, покажем что $(AB)_n = 0$:

$$(AB)_n = \sum_{i=0}^{a} (A_i)(B_{n-i}) + \sum_{i=a+1}^{n} (A_i)(B_{n-i}) = 0 + 0 = 0$$

В первой сумме $B_{n-i}=0$ во всех слагаемых так как n>a+b, а значит n-i>b для всех i от 0 до a. Во второй сумма во всех слагаемых $A_i=0$ так как i>a на всем диапазоне суммирования. Таким образом обе суммы равны нулю, а значит $(AB)_n=0$.

3. Положим n = a + b, тогда:

$$(AB)_n = \sum_{i=0}^{a-1} (A)_i (B)_{n-i} + (A)_a (B)_b + \sum_{i=a+1}^{a+b} (A)_i (B)_{n-i}$$

Аналогично предыдущему пункту первое и третье слагаемое будут нулевыми. При этом $(A)_i \neq 0$ и $(B)_{n-i} = (B)_b \neq 0$, и в силу целостности $((A)_i(B)_{n-i} \neq 0)$, то есть $(AB)_n \neq 0$. Для больших чем n номеров сумма будет нулевой из предыдущего пункта, а значит $\deg AB = a$.

Теорема 1 (о существовании деления с остатком). Пусть $A, B \in F[x], F$ – none, $B \neq 0$. Тогда:

- 1. Существуют $Q, R \in F[x]$ т.ч. A = QB + R, где R = 0 или $\deg R < \deg B$.
- 2. Многочлены R и Q определены однозначно.

Доказательство.

1. Индукция по $\deg A$:

Пусть A = 0 или $\deg A < \deg B$, тогда очевидно $A = 0 \cdot B + A$.

Пусть теперь $\deg A \geqslant \deg B$, и они равны а и b соответственно. Тогда старшие члены равны $HT(A) = \alpha x^a$ и $HT(B) = \beta x^b$. Подберем моном M такой что $HT(A) = M \cdot HT(B)$, например $M = \frac{\alpha}{\beta} \cdot x^{a-b}$.

Введем обозначение A'=A-MB, $\deg A'<\deg A$ по построению M. По предположению A'=Q'B+R', где R'=0 или $\deg R'<\deg B$. Тогда A=A'+MB=Q'B+MB+R'=(Q'+M)B+R' – искомое разложение.

2. Предположим существуют два разложения $A = Q_1B + R_1 = Q_2B + R_2$, многочлены удовлетворяют условиям.

 $(Q_1-Q_2)B=R_2-R_1$. Предположим $Q_1\neq Q_2$, тогда $\deg((Q_1-Q_2)B)\geqslant \deg(B)$. При этом $\deg(R_2-R_1)<\deg B$, а значит мы пришли к противоречию и $Q_1=Q_2$ и $R_1=R_2$.

 $\overline{\Phi\Pi M M \Phi T M}$, весна 2023

Определение 8. A делится на B, если существует такой многочлен Q что A = QB. Пишут A:B или B|A.

Определение 9. Пусть f(x) и $g(x) \in F[x]$ – не нулевые одновременно многочлены. Многочлен $d(x) \in F[x]$ называется наибольшим общим делителем (НОД, gcd) если:

- 1. d|f, d|g.
- 2. если d' общий делитель f и g, то d'|d.

Иначе говоря, HOД(f,g) — такой общий делитель, который делится на любой общий делитель.

Теорема 2 (алгоритм Евклида, линейное выражение НОД). Пусть $f, g \in F[x]$ и f, g ненулевые одновременно. Тогда существует $d(x) = HOД(f,g) \in F[x]$ и, более того, существуют $u(x), v(x) \in F(x)$, такие что u(x)f(x) + v(x)g(x) = d(x).

Доказательство. Пусть без ограничения общности f(x) = 0, $g(x) \neq 0$. Тогда d(x) = g(x), $d = 0 \cdot f + 1 \cdot g$.

Пусть теперь оба многочлена ненулевые. Тогда можно выполнить цепочку делений многочленов, где на каждом новом шаге делимым и делителем будут становиться делитель и частное предыдущего деления соответственно. Таким образом для каждой пары НОД будет сохраняться, так как если делитель кратен некоторому многочлену, то делимое и частное будут кратны ему одновременно. Первые несколько шагов:

$$f(x) = q_1(x)g(x) + r_1(x),$$

$$g(x) = q_2(x)r_1(x) + r_2(x),$$

$$r_1(x) = q_3(x)r_2(x) + r_3(x).$$

Продолжая действовать так дойдем до последних двух шагов, после которых остаток будет равен нулю. При делении степень остатка меньше степени делителя, а значит, в силу конечности номеров старших членов начальных многочленов, в некоторый момент процесс действительно остановится:

$$r_{n-2}(x) = q_n(x)r_{n-1}(x) + r_n(x),$$

$$r_{n-1}(x) = q_{n+1}(x)r_n(x).$$

Получается, что $HOД(f,g) = r_n$ – последний ненулевой остаток. Проверим:

- 1. $r_n|r_{n-1}, r_n|r_{n-2}, \dots$ Продолжая подниматься наверх, получаем $r_n|f, r_n|g$
- 2. Теперь будем спускаться вниз, пусть d'|f, d'|g. Таким образом мы дойдем до d'|d.

Покажем, что все остатки r_1, r_2, \ldots, r_n являются линейными комбинациями f и g:

$$r_1 = f - q_1 g$$

 $r_2 = g - q_2 r_1 = -q_2 f + (1 + q_1 q_2) g$

Спускаясь вниз и подставляя выражения предыдущих остатков в последующие, получим все разложения. Положим $r_{n-2} = u''f + v''g$ и $r_{n-1} = u'f + v'g$. Тогда:

$$d = r_n = r_{n-2} - q_n r_{n-1} = f(u'' - u'q_n) + g(v'' - v'q_n).$$

Таким образом, все остатки можно выразить через f и g.

2. Неприводимость многочленов. Основная теорема арифметики для многочленов.

Определение 10. Многочлены A и B называются *ассоциироваными* если B|A и A|B, то есть когда верны представления $A = Q_1B$, $B = Q_2A$. При этом:

$$\deg A = \deg Q_1 + \deg B \geqslant \deg B,$$

 $\deg B = \deg Q_2 + \deg A \geqslant \deg A,$

откуда $\deg A = \deg B$, $\deg Q_1 = \deg Q_2 = 0$.

Определение 11. Многочлен $P \in F[x]$ степени больше нуля называется *неприводимым* над полем F, если из P = AB следует $\deg A = 0$ или $\deg B = 0$.

Иначе говоря многочлен называется неприводимым над полем F, если его нельзя разложить в произведение двух многочленов более низких степеней из этого же кольца F[x].

Замечание. Важно над каким полем многочлен является неприводимым, например многочлен x^2+1 является приводимым над полем комплексных чисел \mathbb{C} , но неприводимым над полем действительных чисел \mathbb{R} .

Утверждение 4. Пусть F- поле, $P,Q,R\in F[x]$, многочлен P неприводим и выполнено $P\mid QR.$ Тогда $P\mid Q$ или $P\mid R.$

Доказательство. Предположим, что $P \nmid Q$. Тогда, в силу неприводимости многочлена P, выполнено равенство HOД(P,Q)=1, поэтому существуют многочлены $K,L\in F[x]$ такие, что KP+LQ=1. Умножая обе части равенства на R, получим, что KPR+LQR=R, откуда $P \mid KPR+LQR=R$.

Теорема 3 (основная теорема арифметики для многочлена). Пусть F – поле, $A \in F[x], A \neq 0$. Тогда верны следующие утверждения:

1. Существует разложение А на неприводимые:

$$A = \alpha P_1 P_2 \dots P_n,$$

где $\alpha \in F^*$, P_i неприводимый над F многочлен.

2. Пусть А представляется в виде неприводимых многочленов двумя различными способами:

$$A = \alpha \cdot P_1 P_2 \dots P_n = \beta \cdot Q_1 Q_2 \dots Q_m,$$

 $ho de \ eta \in F^*, \ Q_j$ – неприводимый над F многочлен.

Тогда n=m и существует перестановка $\sigma \in S_n$ такая, что многочлены ассоциированы:

$$P_i \sim Q_j \ (1 \leqslant i \leqslant n), \ \ r\partial e \ j = \sigma(i).$$

Доказательство.

1. Докажем существование разложения на неприводимые множители индукцией по $\deg A$. Если $\deg A=0$, то $A=\alpha$, $\alpha\in F^*$. Пусть A неприводим над F, $\deg A\geqslant 1$. Будем считать, что в таком случае разложение получено (A=P). Пусть теперь A приводим над F, тогда его можно представить в виде $A=B\cdot C$, B, $C\in F[x]$, $\deg B<\deg A$, $\deg C<\deg A$. Тогда к B и C применимо предположение индукции и, перемножая их, получим разложение для A.

2. (Индукция по n) Пусть $A = \alpha P_1 P_2 \dots P_n = \beta Q_1 Q_2 \dots Q_m$. Тогда произведение $Q_1 Q_2 \dots Q_m$: P_n , следовательно, $\exists j: Q_j : P_n$ и $\exists \gamma \in F^*: Q_j = \gamma P_n$ (P_n и Q_j неприводимы). Теперь можно подставить выражение для Q_j в представление для A справа и сократить P_n в обеих частях (корректно, так как кольцо многочленов является областью целостности). По предположению индукции число множителей слева и справа после сокращения совпадает и существует биекция σ между множествами $\{1,\dots,n-1\} \longrightarrow \{1,\dots,j-1,j+1,\dots,n\}$, так что $P_i \sim Q_l$, где $l = \sigma(i)$. Доопределим биекцию $\sigma: \sigma(n) = j, \sigma \in S_n$. Теперь σ удовлетворяет всем условиям, поэтому доказано для n.

3. Корни многочленов. Теорема Безу. Формальная производная. Кратные корни.

Определение 12. Элемент поля F является *корнем* многочлена f, если f(c) = 0.

Теорема 4 (Безу). Скаляр $a \in F$ является корнем многочлена $P \in F[x] \Leftrightarrow (x-a) \mid P$.

Доказательство. Разделим P с остатком на (x-a), то есть выберем $Q, R \in F[x]$ такие, что P = Q(x-a) + R и $\deg R \geqslant 0$. Заметим, что P(a) = R, тогда выполнены равносильности $P(a) = 0 \Leftrightarrow R = 0 \Leftrightarrow (x-a) \mid P$.

Определение 13. Формальной производной многочлена x^n называется $\frac{d}{dx}x^n=n\cdot x^{n-1}$, так же используется обозначение $(x^n)'$. Распространим $\frac{d}{dx}$ на остальные векторы F[x] по линейности. Тогда дифференцирование является линейным опреатором: $\frac{d}{dx}:F[x]\to F[x]$.

Утверждение 5. Формальная производная $\frac{d}{dx}$ удовлетворяет правилу Лейбница:

$$(f \cdot g)' = f' \cdot g + f \cdot g'.$$

Доказательство. Обе части являются линейными по многочленам f и g, поэтому достаточно доказать правило для базисных векторов. Рассмотрим $f = x^m$ и $g = x^l$ – базисные вектора в F[x]. Тогда $(x^m \cdot x^l)' = (x^{m+l})' = (m+l) \cdot x^{m+l-1}$. Так же можно продифференцировать f и g по отдельности: $(x^m)' = m \cdot x^{m-1}$ и $(x^l)' = l \cdot x^{l-1}$. Отсюда очевидно, что равенство действительно выполняется.

Определение 14. Пусть задан многочлен $f \in F[x]$. Корень $c \in F$ называется корнем многочлена f кратности k ($k \in \mathbb{N}$) если f(x) кратно $(x-c)^k$, но f(x) не кратно $(x-c)^{k+1}$.

Теорема 5 (о кратности корня). Пусть F – поле, $f \in F[x]$, $c \in F$ – корень многочлена f. Тогда верно следующее:

- 1. c кратный корень $f \Leftrightarrow f(c) = 0$ и f'(c) = 0.
- 2. c корень кратности $R \Rightarrow f(c) = 0, f'(c) = 0, ..., f^{(R-1)}(c) = 0.$

Доказательство.

1. (а) Необходимость.

По условию f(x) = q(x)(x - c). Продифференцируем f:

$$f'(x) = q'(x)(x - c) + q(x).$$

Тогда f'(c) = q(c). При этом многочлен q(x) кратен (x-c) в силу того, что c - кратный корень f. Таким образом вся производная f' кратна (x-c).

(b) Достаточность.

Пусть f(c) = f'(c) = 0, тогда q(c) = 0, а значит q(x) кратен (x - c).

2. Пусть c – корень кратности R. Тогда многочлен f представим в виде $f = q(x)(x-c)^R$, где $q(c) \neq 0$. Возьмем производную от f:

$$f'(x) = q'(x)(x - c)^{R} + R \cdot q(x)(x - c)^{R-1}.$$

Продолжим брать производные. Тогда для k-производной кратность корня c не меньше R-k.

4. Лемма Даламбера. Основная теорема алгебры (схема доказательства).

Напоминание. $e^{i\varphi} = \cos(\varphi) + i\sin(\varphi)$.

Лемма 1 (Д'Аламбера). Пусть f(x) – многочлен положительной степени из кольца $\mathbb{C}[z]$ и $f(z_0) \neq 0$. Тогда $\forall U_{\varepsilon}(z_0)$ найдется $z \in U_{\varepsilon}(z_0)$, такое что $|f(z)| < |f(z_0)|$.

Доказательство. Зафиксируем $\varepsilon > 0$. Разделим f(z) на $z-z_0$ с остатком: $f(z) = q_1(z)(z-z_0) + r_0$. Мы знаем, что остаток имеет смысл значения многочлена в точке z_0 , то есть $r_0 = f(z_0)$. Разделим теперь q_1 на $z-z_0$ и подставим полученное выражение в выражение для f (здесь $r_1 = q_1(z_0)$). Получаем $f = q_2(z)(z-z_0)^2 + r_1(z-z_0) + r_0$. Продолжим разложение и получим $f(z) = f(z_0) + \frac{f'(z_0)}{1!}(z-z_0) + \frac{f''(z_0)}{2!}(z-z_0)^2 + \dots$ (здесь $r_0 = f(z_0), r_1 = f'(z_0), \dots, r_k = \frac{f^{(k)}(z_0)}{k!}$). Такое разложение напоминает разложение в ряд Тейлора. Обозначим главную часть за $\alpha(z-z_0)^p, \ \alpha \neq 0, \ p \in \mathbb{N}$. Получим $f(z) = f(z_0) + \alpha(z-z_0)^p + o((z-z_0)^p)$. $f(z) = f(z_0) + (z-z_0)^p \left(\alpha + \frac{o((z-z_0)^p)}{(z-z_0)^p}\right)$, где

 $o((z-z_0)^p)$: $(z-z_0)^p$. Так как последнее частное стремится к 0 при z, стремящимся к z_0 , то верно

$$\exists \varepsilon_1 < \varepsilon \ \forall z \in U_{\varepsilon_1}(z_0) \hookrightarrow \left| \frac{o((z-z_0)^p)}{(z-z_0)^p} \right| < \frac{|\alpha|}{2}.$$

$$arg\alpha - \frac{\pi}{6} \leqslant arg(\alpha + \frac{o((z-z_0))^p}{(z-z_0)^p}) \leqslant arg\alpha + \frac{\pi}{6}, \ \alpha \in \left[\alpha_0, \alpha_0 + \frac{\pi}{3}\right].$$

Тогда если $z=z_0+re^{i\varphi}$, где $r=|z|,\,e^{i\varphi}=\cos(\varphi)+i\sin(\varphi)$, то справедливо

$$\arg\left(e^{ip\varphi}\left(\alpha+\frac{o((z-z_0))^p}{(z-z_0)^p}\right)\right)=p\varphi+\alpha_0+\beta\frac{\pi}{3},\ 0\leqslant\beta\leqslant1.$$

Так как φ – любое вещественное число, то теорема доказана.

Теорема 6 (Основная теорема алгебры). Всякий многочлен положительной степени из кольца $\mathbb{C}[x]$ имеет хотя бы один корень, в общем случае комплексный.

Доказательство. Пусть f(x) – многочлены положительной степени. Пусть $A=\inf|f(z)|, z\in\mathbb{C}$. Покажем, что инфимум достигается, то есть существует такое комплексное $z_n\in\mathbb{C}$, что $|f(z_n)|=A$. По определению инфимума существует последовательность z_n такая, что её модуль стремится к конечному A. Из этой последовательности можно извлечь подпоследовательность z_{n_k} такую, что она сходится к z_0 или к бесконечности. Однако второй случай не реализуется, так как иначе $|f(z_{n_k})|$ также сходится к бесконечности. Тогда $\exists \lim_{k\to\infty} z_{n_k} = z_0$, откуда $\exists \lim_{k\to\infty} f(z_{n_k}) = f(z_0)$, а значит, существует предел модуля такой функции, равный $\lim_{k\to\infty} |f(z_{n_k})| = |f(z_0)| = A$. Если оказалось так, что $A\neq 0$, то по лемме Д'Аламбера найдется $z\in U_\varepsilon(z)$ такой что $|f(x)|<|f(z_0)|=A=\inf(|f(z)|)$, что противоречит определению инфимума. Значит, A=0 и $\exists z_0:|f(z_0)|=0$ $\Rightarrow f(z_0)=0$.

5. Инвариантные подпространства. Собственные векторы и собственные значения. Характеристический многочлен и его свойства. Инвариантность следа и определителя матрицы оператора.

Определение 15. Пусть V – линейное пространство, $\varphi:V\to V$. Подпространство $U\leqslant V$ называется *инвариантным*, если выполняется $\forall x\in U\ \varphi(x)\in U$. Другими словами, действие оператора φ на вектор из U не выводит его за пределы U, а значит $\varphi(U)\subset U\Leftrightarrow \varphi(U)\leqslant U$.

Утверждение 6. Пусть $\varphi: V \to V$ – линейный оператор, U – инвариантное подпространство. Тогда в базисе, согласованном с U, оператор φ имеет матрицу с левым нижним углом нулей:

$$\varphi(A) = \left(\frac{A \mid B}{0 \mid C}\right)$$

 $3\partial ec b A \in M_k(F), k = \dim U.$

Доказательство. U инвариантно относительно φ , а значит $\varphi(e_1), \varphi(e_2), \dots \varphi(e_k) \in U$. Тогда для базисного вектора из U ненулевыми могут быть только первые k элементов соответствующего ему столбца.

Замечание. Блок нулей в левом нижнем углу означает, что $\varphi(e_1), \varphi(e_2), \dots \varphi(e_k) \in U$, а значит подпространство U является инвариантным относительно φ .

Определение 16. Пусть $\varphi: V \to V$. Ненулевой вектор $x \in V: \varphi(x) = \lambda x$ называется собственным вектором оператора φ , отвечающим собственному значению λ .

Определение 17. Число $\lambda \in F$ называется собственным значением оператора φ , если $\exists x \in V$: $x \neq 0, \varphi(x) = \lambda x$, то есть если некоторое x отвечает λ .

Определение 18. *Характеристическим многочленом* оператора $\varphi: V \to V$ называется определитель $|A - \lambda E| = \chi_A(\lambda)$, где A – матрица φ в произвольном базисе.

Теорема 7. Верны следующие свойства характеристического многочлена:

- 1. Корни $\chi(\lambda)$ принадлежащие полю F и только они являются собственными значениями φ .
- 2. Многочлен $\chi(\lambda)$ не зависит от выбора базиса.

Доказательство. 1. Пусть λ_0 – корень $\chi_{\varphi}(\lambda) \Leftrightarrow \chi_{\varphi}(\lambda_0) = 0 \Leftrightarrow \det(A - \lambda_0 E) = 0 \Leftrightarrow \text{система}$ $A - \lambda_0 E$ имеет ненулевое решение при $x_0 \neq 0 \Leftrightarrow \varphi x_0 = \lambda_0 x_0 \Leftrightarrow \lambda_0$ – собственное значение φ . В силу равносильных переходов, обратное утверждение тоже верно.

2. Наряду с e выберем базис f, обозначим за S матрицу перехода между ними: $S = S_{e \to f}$. Тогда $\varphi \leftrightarrow A, \ \varphi \leftrightarrow B, \ B = S^{-1}AS$. Верна следующая цепочка равенств:

$$\chi_b(\lambda) = |B - \lambda E| = |S^{-1}AS - \lambda E| = |S^{-1}AS - S^{-1}\lambda ES| = = |S^{-1}(A - \lambda E)S| = |S^{-1}| \cdot |A - \lambda E| \cdot |S| = |A - \lambda E| = \chi_a(\lambda).$$

Таким образом, характеристический многочлен одинаков для всех базисов.

Следствие 1. От выбора базиса не зависят так же коэффициенты характеристического многочлена, в частности detA и trA, поэтому часто пишут $det\varphi$ и $tr\varphi$ соответственно.

6. Линейная независимость собственных векторов, имеющих попарно различные собственные значения. Алгебраическая и геометрическая кратности собственного значения. Условия диагонализируемости линейного оператора.

Определение 19. Пусть λ – собственное значение оператора $\varphi: V \to V$. Собственным подпространством оператора φ , отвечающим λ называется подпространство $V_{\lambda} = \ker(\varphi - \lambda \varepsilon) \leqslant V$.

Определение 20. Подпространства U_1, U_2, \dots, U_n называются линейно независимыми, если из равенства $x_1 + x_2 + \dots + x_n = \bar{0}$, где $x_i \in U_i$, следует, что $x_1 = x_2 = \dots = x_n = 0$.

Теорема 8 (О линейной независимости собственных подпространств, отвечающих попарно различным собственным значениям). Пусть $\varphi: V \to V, \ \lambda_1, \lambda_2, \dots, \lambda_n$ – различные собственные значения. Тогда $V_{\lambda_1}, \dots, V_{\lambda_n}$ линейно независимы.

Доказательство. От противного. Пусть $\exists x_1 \in V_{\lambda_1}, x_2 \in V_{\lambda_2}, \dots, x_n \in V_{\lambda_n}$, не все равные нулю. Назовем эти наборы опровергающими, а его мощностью количество ненулевых векторов. Из всех таких наборов векторов выберем набор наименьшей мощности. Пусть указанный нами набор без ограничения общности – искомый, перенумеруем множества и x_i так, чтобы ненулевыми были первые j векторов. Тогда $x_1 + x_2 + \dots + x_j = 0$, все $x_i \neq 0$, иначе есть набор меньшей мощности. Применим к сумме оператор φ и получим $\lambda_1 x_1 + \lambda_2 x_2 + \dots + \lambda_j x_j$. Умножим изначальную сумму на $-\lambda_1$ и сложим с получившейся. Тогда мы получили набор меньшей мощности, противоречие. \square

Определение 21. Линейный оператор $\varphi:V\to V$ над полем F называется диагонализируемым, если в V существует базис e такой, что A_{φ} – диагональная матрица.

Теорема 9 (критерий диагонализируемости линейного оператора). Пусть $\varphi: V \to V$, V над F. Пусть $\lambda_1, \lambda_2, \ldots, \lambda_k$ – все попарно различные собственные значения, тогда следующие условия эквивалентны:

- 1. $\varphi \partial u$ агонализируем.
- 2. В V существует базис, состоящий из собственных векторов оператора φ .
- 3. $V = V_{\lambda_1} \oplus V_{\lambda_2} \oplus \cdots \oplus V_{\lambda_k}$.

Доказательство.

$1. 1 \Rightarrow 2$

Так как φ диагонализируем, то существует базис, в котором матрица оператора выглядит следующим образом:

$$\left(\begin{array}{cccc}
\lambda_1 & 0 & \dots & 0 \\
0 & \lambda_2 & \dots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \dots & \lambda_n
\end{array}\right)$$

Значит, $\varphi(e_i) = \lambda_i e_i$ для любого i, откуда e_1, \ldots, e_n – собственные векторы для φ . Значит, e – базис из собственных векторов.

$2. \ 2 \Rightarrow 3$

Пусть e — базис из собственных векторов оператора φ . Перегруппируем базисные векторы по собственным значениям:

$$\underbrace{(e_{11},\ldots,e_{1s_1})}_{\lambda_1}\underbrace{(e_{21},\ldots,e_{2s_2})}_{\lambda_2}\ldots\underbrace{(e_{k1},\ldots,e_{ks_k})}_{\lambda_k}$$

 $\langle e_{11}, \dots, e_{1s_1} \rangle \subset V_{\lambda_1}, \dots, \langle e_{k1}, \dots, e_{ks_k} \rangle \subset V_{\lambda_k}$. Откуда $V = V_{\lambda_1} + \dots + V_{\lambda_k}$, но так как собственные подпространства линейно независимы (по 8), то по теореме о характеризации прямой суммы $V = V_{\lambda_1} \oplus V_{\lambda_2} \oplus \dots \oplus V_{\lambda_k}$.

$3. 3 \Rightarrow 1$

Известно, что $V=V_{\lambda_1}\oplus V_{\lambda_2}\oplus \cdots \oplus V_{\lambda_k}$. Выберем в каждом V_{λ_i} базис: e_{i_1},\ldots,e_{is_i} . Тогда, объединяя базисы собственных подпространств, получим базис всего пространства V. При этом по диагонали будут стоять сначала s_1 значений λ_1 , затем s_2 значений λ_2 и так далее. Остальные значения – нули. Значит, φ – диагонализируем.

$$\begin{pmatrix} \lambda_1 & 0 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & \dots & \lambda_1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & \dots & \lambda_n \end{pmatrix}$$

Определение 22. Пусть $\varphi: V \to V, \ \lambda \in F$ – его собственное значение, $\chi_{\varphi}(\lambda) = 0$. Кратность корня λ как корня характеристического многочлена называется алгебраической кратностью собственного значения λ . Обозначение: $alg(\lambda) \geqslant 1$.

Определение 23. Размерность собственного подпространства V_{λ} называется геометрической кратностью собственного значения λ . Обозначение: $geom(\lambda) = \dim V_{\lambda} \geqslant 1$.

Утверждение 7. Пусть $\varphi: V \to V$ и U – инвариантное подпространство относительно φ . Пусть $\psi = \varphi \mid_U$. Тогда $\chi_{\varphi}: \chi_{\psi}$.

Доказательство. Пусть e — базис в V, согласованный с инвариантным подпространством U: $e = (\underbrace{e_1, \ldots, e_k}_{U}, e_{k+1}, \ldots, e_n)$

$$A_{\varphi} = \left(\frac{B \mid C}{0 \mid D}\right)$$

$$\chi_{\varphi}(\lambda) = \det\left(\frac{B - \lambda E \mid C}{0 \mid D - \lambda E}\right) = |B - \lambda E||D - \lambda E| = \chi_{\psi}\chi_{D}.$$

Следствие 2. Для любого собственного значения λ : $geom(\lambda) \leqslant alg(\lambda)$.

$$\psi = \left(\begin{array}{ccc} \lambda & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda \end{array}\right)$$

 $\chi_{\psi} = (\lambda - t)^k$, где $k = \dim V_{\lambda} = geom(\lambda)$. По утверждению 7 χ_{φ} : χ_{ψ} , откуда следует, что χ_{φ} : $(\lambda - t)^k$. Значит, $alg(\lambda) \geqslant geom(\lambda)$.

Теорема 10 (критерий диагонализируемости в терминах алгебраической и геометрической кратностей линейного оператора). Пусть $\varphi:V\to V$, $\dim V=n$. φ – диагонализируем тогда и только тогда, когда

- 1. $\chi_{\varphi}(t)$ разлагается на линейные множители над F. (Далее: φ линейно факторизуем над полем F)
- 2. Для любого собственного значения λ оператора φ выполнено $alg(\lambda) = geom(\lambda)$.

Доказательство.

1. (\Rightarrow) Пусть φ – диагонализируемый, тогда существует базис, в котором матрица оператора φ имеет диагональный вид и по теореме 9 $V = V_{\lambda_1} \oplus V_{\lambda_2} \oplus \cdots \oplus V_{\lambda_k}$. Тогда по свойству прямой суммы:

$$\sum_{i=1}^{k} geom(\lambda_i) = \sum_{i=1}^{k} \dim V_{\lambda_i} = \dim V = n = \deg \chi \geqslant \sum_{i=1}^{k} alg(\lambda_i)$$

С одной стороны, выполнено неравенство выше, но, с другой стороны, по предыдущему следствию $geom(\lambda) \leqslant alg(\lambda)$, откуда верно, что $\forall i: alg(\lambda_i) = geom(\lambda_i)$.

2. (\Leftarrow) Пусть χ – линейно факторизуем над F и $alg(\lambda_i) = geom(\lambda_i)$. Докажем диагонализируемость оператора φ .

$$\dim(V_{\lambda_1} \oplus V_{\lambda_2} \oplus \cdots \oplus V_{\lambda_k}) = \sum_{i=1}^k \dim V_{\lambda_i} = \sum_{i=1}^k geom(\lambda_i) = \sum_{i=1}^k alg(\lambda_i) = n$$

Последнее равенство следует из линейной факторизуемости χ . Отсюда получаем, что $V = V_{\lambda_1} \oplus V_{\lambda_2} \oplus \cdots \oplus V_{\lambda_k}$ – эквивалентное определение диагонализируемости.

7. Приведение матрицы преобразования к треугольному виду. Теорема Гамильтона-Кэли (случай, когда характеристический многочлен линейного оператора раскладывается на линейные множители).

Утверждение 8. Следующие условия на подпространстве U эквивалентны:

- 1. U инвариантно относительно φ .
- 2. $\exists \lambda \in F : U$ инвариантно относительно $\varphi \lambda E$.
- 3. $\forall \lambda \in F : U$ инвариантно относительно $\varphi \lambda E$.

Доказательство.

1. $(1 \Rightarrow 3)$ Возьмем вектор $x \in U$. Тогда верно

$$(\varphi - \lambda E)(x) = \varphi(x) - (\lambda E)(x) \in U.$$

- 2. $(3 \Rightarrow 2)$ Очевидно.
- 3. $(2 \Rightarrow 1)$ По условию $\exists \lambda \in F$:

$$\forall x \in U \ \varphi(x) = (\varphi - \lambda E)(x) + (\lambda E)(x) \in U.$$

Утверждение 9. Пусть $\varphi: V \to V$, φ линейно факторизуем над F и $n = \dim V$. Тогда в V найдется (n-1)-мерное подпространство, инвариантное относительно φ .

Доказательство. Пусть $\chi_{\varphi}(t) = \prod_{i=1}^{n} (\lambda_i - t)$, λ_n – собственное значение для φ , $V_{\lambda_n} = \ker(\varphi - \lambda_n E) \neq \{\overline{0}\}$. Из того, что ядро не пусто, следует, что образ $\operatorname{Im}(\varphi - \lambda_n E) \neq V$, и, значит, $\dim(\operatorname{Im}(\varphi - \lambda_n E)) \leq n-1$. Тогда существует подпространство U такое, что $\dim U = n-1$ и образ $\varphi - \lambda_n E$ лежит в U.

Докажем, что такое подпространство инвариантно. Пусть $x\in U$, то $(\varphi-\lambda_n E)(x)\in {\rm Im}(\varphi-\lambda_n E)\subset U$. Значит, U инвариантно относительно $\varphi-\lambda_n E$, то есть U инвариантно и относительно φ .

Определение 24. Φ *лагом* подпространства над V называется цепочка инвариантных подпространств

$$\{\overline{0}\} = V_0 < V_1 < \dots < V_n = V, \dim V_k = k.$$

Теорема 11 (о приведении линейного оператора к верхнетреугольному виду). Пусть $\varphi: V \to V$, φ линейно факторизуем над F и $n = \dim V$. Тогда в V существует базис e, в котором матрица φ – верхнетреугольная.

$$\left(\begin{array}{ccc}
\lambda_1 & \dots & * \\
\vdots & \ddots & \vdots \\
0 & \dots & \lambda_n
\end{array}\right)$$

Доказательство. Докажем индукцией по n.

1. База n = 1: $\{\overline{0}\} < U_1 = V_1 - \phi$ лаг существует.

2. Шаг индукции: пусть для V с $\dim V < n$ утверждение справедливо. Докажем для V: $\dim V = n$. По утверждению 9 в V найдется $U_{n-1} < V$; $\dim U_{n-1} = n-1$. Рассмотрим функцию $\psi = \varphi \mid_{U_{n-1}}$, тогда по 7 χ_{φ} : χ_{ψ} . Где χ_{φ} раскладывается на n линейных множителей. Очевидно, что тогда характеристический многочлен χ_{ψ} состоит из тех линейных множителей, которые входили в χ_{φ} . Следовательно, χ_{ψ} раскладывается на линейные множители. Тогда к определителю $\psi: U_{n-1} \to U_{n-1}$ применимо предположение индукции:

$$\{\overline{0}\} < U_1 < \dots < U_{n-1} < U_n = V(*)$$

Тут первые n-1 подпространств инвариантны относительно ψ , значит, инвариантны и относительно φ .

Выберем базис e в V, согласованный с разложением (*), где (e_1, \ldots, e_k) – базис в U_k , тогда в матрице базиса e в первой строке будет столбец, согласованный с U_1 , то есть λ_1 и нули снизу, далее столбец, согласованный с U_2 и так далее.

$$\varphi_e = \left(\begin{array}{cccc} \lambda_1 & * & \dots & * \\ 0 & \lambda_2 & \dots & * \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{array}\right)$$

Следствие 3. В условиях предыдущей теоремы $\forall k = 1, \dots, n \hookrightarrow (\varphi - \lambda_k E)(\varphi - \lambda_{k+1} E) \dots (\varphi - \lambda_n E)V \subset U_{k-1}$. (первые несколько скобок – множители χ)

Доказательство.
$$\chi(V) = (\varphi - \lambda_k E) \dots (\varphi - \lambda_{n-1} E) U_{n-1} \subset \dots \subset U_{k-1}$$
.

Теорема 12 (Гамильтона-Кэли). Пусть $\varphi: V \to V$, φ – линейно факторизуем над F, $\chi_{\varphi}(t) \in F[t]$ – характеристический многочлен. Тогда $\chi_{\varphi}(\varphi) = 0$ (нулевой оператор). (Иначе: $A \in M_n(F)$, $\chi_A(t)$ – характеристический многочлен матрицы A, то $\chi_A(A) = 0$).

Доказательство.

Выберем базис e в V, согласованный с флагом инвариантных подпространств. Имеем $\chi_{\varphi}(t) = \prod_{i=1}^n (\lambda_i - t)$. Применим $\chi_{\varphi}(\varphi)$ к пространству V, получим $\chi_{\varphi}(\varphi)V = ((-1)^n \prod_{i=1}^n (\varphi - \lambda_i E)) V$. При k=0 из следствия 3 получаем, что $\chi_{\varphi}(\varphi)V \leqslant \{\overline{0}\}$. Значит, $\chi_{\varphi}(\varphi) = 0$.

Замечание. Теорема Гамильтона-Кэли справедлива для любого линейного оператора над любым полем.

8. Корневое подпространство линейного оператора. Свойства корневых подпространств. Разложение пространства в прямую сумму корневых подпространств (случай, когда характеристический многочлен линейного оператора раскладывается на линейные множители).

Определение 25. $\varphi: V \to V, V$ – линейное пространство над полем $F, \lambda \in f$. Вектор $x \in V$ называют *корневым* для φ , отвечающим $\lambda \in F$, если $\exists k \in \mathbb{N} : (\varphi - \lambda \varepsilon)^k x = 0$.

Определение 26. Число k – высота корневого вектора x, отвечающего λ из F, если k – наименьшее число такое, что $(\varphi - \lambda \varepsilon)^k x = 0$. Будем считать, что нулевой вектор имеет высоту 0.

Определение 27. Подпространство V^{λ} – множество всех корневых векторов для φ , относящихся к λ . V^{λ} называется корневым подпространством для оператора φ относящегося к λ .

Определение 28. Подпространство W называется *дополнительным* к V^{λ} , если их пересечение состоит только из нуля.

Теорема 13 (о свойствах корневых подпространств).

Пусть V^{λ} – корневое подпространство для φ отвечающее λ . Тогда

- 1. V^{λ} инвариантно относительно φ .
- 2. Подпространство V^{λ} имеет единственное собственное значение λ .
- 3. Если W тоже инвариантное относительно φ подпространство, при этом являющееся дополнительным κV^{λ} , то на W оператор $\varphi \lambda \varepsilon$ действует невырожденным образом.

Доказательство.

- 1. Пусть m максимальная высота векторов $x \in V^{\lambda}$, в силу конечномерности V^{λ} такая существует и является конечным числом. Тогда $V^{\lambda} = \ker(\varphi \lambda \varepsilon)^m$.
 - Операторы φ и ε коммутируют с φ , а значит и оператор $(\varphi \lambda \varepsilon)^m$ коммутирует с φ . Таким образом, можно записать $(\varphi \lambda \varepsilon)^m \varphi = \varphi (\varphi \lambda \varepsilon)^m$. Тогда по теореме о коммутирующих линейных операторах получаем, что $\ker (\varphi \lambda \varepsilon)^m$ инвариантно относительно φ .
- 2. Докажем от противного, пусть в V^{λ} найдется ненулевой собственный вектор x с собственным значением $\mu \neq \lambda$, то есть $\varphi(x) = \mu x$. Применим к этому вектору оператор ($\varphi \lambda \varepsilon$):

$$(\varphi - \lambda \varepsilon)x = \varphi(x) - (\lambda \varepsilon)(x) = (\mu - \lambda)x.$$

Тогда при многократном применении получим $(\varphi - \lambda \varepsilon)^m x = (\mu - \lambda)^m x = 0$, так как $x \in V^{\lambda}$ и должен аннулироваться. Тогда $\mu - \lambda = 0$, что дает противоречие.

3. По условию V представляется как $V = V^{\lambda} \oplus W$. При этом подпространства V^{λ} и W инвариантны относительно $(\varphi - \lambda \varepsilon)$. Нам нужно доказать, что $\varphi - \lambda \varepsilon$ невырожден на W, то есть что $\ker(\varphi - \lambda \varepsilon)|_{W} = \{0\}$. Докажем от противного, пусть $\exists x \neq 0$ такое что $x \in \ker(\varphi - \lambda \varepsilon)|_{W}$. Отсюда следует, что вектор x лежит в пространстве W, так как лежит в ядре сужения оператора на это подпространство. Однако $(\varphi - \lambda \varepsilon)x = 0$, а значит $x - \cos$ ственный для φ с собственным значением $x - \cos$ вектор $x - \cos$ так же лежит и в пространстве $x - \cos$ 0. Что приводит к противоречию с тем, что по условию $x - \cos$ 0.

Следствие 4. Корневое подпространство V^{λ} – максимальное по включению инвариантное подпространство, на котором φ имеет единственное собственное значение λ .

Теорема 14 (о разложении пространства V в прямую сумму корневых).

Пусть $\varphi \in \mathcal{L}$, φ – линейно факторизуем над F. Тогда пространство V есть прямая сумма корневых подпространств: $V = V^{\lambda_1} \oplus V^{\lambda_2} \oplus \ldots \oplus V^{\lambda_k}$, где все λ_i попарно различны.

Доказательство. По условию φ линейно факторизуем, а значит $\chi_{\varphi}(t) = \prod_{i=1}^k (\lambda_i - t)^{m_i}$. Много-

члены $(\lambda_i - t)^{m_i}$ попарно взаимно просты из попарной различности λ_i , поэтому по следствию из теоремы о взаимно простых делителях аннулирующего многочлена ¹ можно заключить:

$$V = \ker(\varphi - \lambda_1 \varepsilon)^{m_1} \oplus \ker(\varphi - \lambda_2 \varepsilon)^{m_2} \oplus \cdots \oplus \ker(\varphi - \lambda_k \varepsilon)^{m_k}.$$

При этом $\ker(\varphi - \lambda_i \varepsilon)^{m_i} \subset V^{\lambda_i}$ для всех i, а значит вектор $x \in V$ представим в виде суммы $x = x_1 + \ldots + x_k$, где $x_i \in V^{\lambda_i}$. Отсюда очевидно, что пространство V является суммой подпространств:

$$V = V^{\lambda_1} + V^{\lambda_2} + \dots V^{\lambda_k}.$$

Осталось доказать что $V^{\lambda_i} \subset \ker(\varphi - \lambda_i \varepsilon)^{m_i}$, в таком случае сумма будет прямой. Докажем от противного, пусть существует индекс i такой, что $\ker(\varphi - \lambda_i \varepsilon) \leqslant V^{\lambda_i}$. Тогда найдется вектор $x \in V^{\lambda_i}$ такой, что он не лежит в ядре. Обозначим высоту x за $M > m_i$, тогда:

$$\chi_{\varphi}(\varphi)x = \left(\prod_{j \neq i} (\varphi - \lambda_{j}\varepsilon)^{m_{j}}\right) \cdot (\varphi - \lambda_{i}\varepsilon)^{m_{i}}x = \prod_{j \neq i} ((\varphi - \lambda_{j}\varepsilon)^{m_{j}})x' \neq 0.$$

Если найдется такой j что $(\varphi - \lambda_j \varepsilon)x = 0$, то у x' есть собственное значение λ_j , что приводит к противоречию с пунктом 2 теоремы 13. В противном случае возникает противоречие с $\chi_{\varphi}(\varphi) = 0$ по теореме 12 (Гамильтона-Кэли). Таким образом, $V^{\lambda_i} = \ker(\varphi - \lambda_i \varepsilon)^{m_i}$, а значит V представляется в виде прямой суммы V^{λ_i} :

$$V = V^{\lambda_1} \oplus V^{\lambda_2} \oplus \ldots \oplus V^{\lambda_k}.$$

 $^{^{1}}$ Пусть $\varphi \in \mathcal{L}(V)$, f – аннулирующий многочлен для φ , такой что f раскладывается в произведение $f = f_{1} \cdot f_{2} \dots f_{n}$ попарно взаимно-простых многочленов. Тогда V раскладывется в прямую сумму $V = V_{1} \oplus V_{2} \oplus \dots V_{n}$, где $V_{i} = \ker f_{i}(\varphi)$ – инвариантные подпространства.

9. Циклические подпространства. Теорема о нильпотентном операторе. Жорданова нормальная форма и жорданов базис линейного оператора. (Теорема существования жорданова базиса).

Определение 29. Оператор $\varphi: V \to V$ называется *нильпотентным*, если $\exists k \in \mathbb{N}: \varphi^k = 0$. Наименьшее наутральное число k такое, что $\varphi^k = 0$, $\varphi^{k-1} \neq 0$, называют *индексом нильпотентности* относительно φ .

Определение 30. Пусть φ – нильпотентный и $x \in V$ – вектор, имеющий высоту k. Рассмотрим $U = \langle x, \varphi(x), \dots, \varphi^{k-1}(x) \rangle$. Построенное инвариантное подпространство U называется uиклическим подпространством, порожденным вектором x.

Теорема 15 (о нильпотентном операторе).

Пусть $\varphi: V \to V$ — нильпотентный оператор индекса нильпотентности $k, x \in V$ — ненулевой вектор высоты $k, U = \langle x, \varphi(x), \dots, \varphi^{k-1}(x) \rangle$ — циклическое подпространство, инвариантное φ . Тогда найдется φ —инвариантное пространство W дополнительное κ U такое, что $V = U \oplus W$.

Доказательство.

- 1. Пусть W максимальное φ -инвариантное подпространство в V, такое что $U \cap W = 0$. Предположим что U + W < V. Тогда найдется ненулевой $a \in V$, такой что $a \notin U + W$. Пусть l наименьшее значение для которого $z = \varphi^{l-1}(a) \notin W + U$, $\varphi^l(a) \in W + U$. Такое очевидно найдется так как $a \notin W + U$ и $\varphi^k(a) = 0 \in W + U$. Таким образом в этом пункте мы нашли вектор $z \notin U + W$, такой что $\varphi(z) \in U + W$.
- 2. Пусть $\varphi(z) = \sum_{s=0}^{k-1} \alpha_s \varphi^s(x) + w$, при этом $\varphi^s(x) \in U$, $w \in W$. Тогда:

$$\varphi^{k}(z) = \alpha_0 \varphi^{k-1}(x) + 0 + \dots + 0 + \varphi^{k-1}(w) = 0$$

Тогда $\alpha_0 \varphi^{k-1}(x) + \varphi^{k-1}(w) = 0$. В силу линейной независимости линейных подпространств $\alpha_o \varphi^{k-1}(x) = 0$, $\varphi^{k-1}(w) = 0$. При этом в силу того, что $\varphi^{k-1}(x) \neq 0$, получаем $\alpha_0 = 0$.

3. Введем вектор $y = z - \sum_{s=1}^{k-1} \alpha_s \varphi^{s-1}(x) \notin U + W$ (так как $z \notin U + W$, а сумма принадлежит U). Введем пространство $W' = W + \langle y \rangle$, dim $W' = \dim W + 1$. Покажем что вновь построенное подпространство так же инвариантно φ :

$$\varphi(y) = \varphi(z) - \sum_{s=1}^{k-1} \alpha_s \varphi^s(x) = \varphi(z) - \sum_{s=0}^{k-1} \alpha_s \varphi^s(x) = w \in W.$$

4. Покажем теперь что W' удовлетворяет условию $U \cap W' = 0$. Пусть $0 \neq u \in U \cap W'$, $u \notin U \cap W = \{0\}$. Тогда u предствим в виде $u = \widetilde{w} + \lambda y$, $\lambda \neq 0$. Отсюда $y = \frac{1}{\lambda}u - \frac{1}{\lambda}\widetilde{w} \in U + W$. Значит $U \cap W \neq \{0\}$ – противоречие.

Теорема 16 (о разложении в прямую сумму циклических подпространств для нильпотентного оператора). Пусть $\varphi: V \to V$, зафиксируем индекс нильпотентности k. Тогда существует разложение V в прямую сумму инвариантных циклических подпространств $V = V_1 \oplus V_2 \oplus \ldots \oplus V_s$. При этом количество слагаемых $s = \dim(\ker \varphi) = \dim V_0 = geom(0)$.

Доказательство. Индукция по $n = \dim V$.

- 1. База: $n = 1 \Rightarrow \varphi = 0$, alg(0) = geom(0) = 1.
- 2. Предположение индукции: для пространства V размерности менее n утверждение выполняется. Пусть теперь $\dim V = n$. Тогда существует x высоты k такой что $\varphi^k(x) = 0$, $\varphi^{k-1}(x) \neq 0$. Пусть $U = \langle x, \varphi(x), \dots, \varphi^{k-1}(x) \rangle \varphi$ -инвариантное подпространство. По теореме 15 существует φ -инвариантное подпространство W, такое что $V = U \oplus W$, $\dim W \leqslant n-1$. Тогда W раскладывается в прямую сумму φ -инвариантных циклических подпространств.

Определение 31. Жордановой клеткой, относящейся к $\lambda \in F$, называется следующая матрица:

$$J_k(\lambda) = \begin{pmatrix} \lambda & 1 & 0 & \dots & 0 \\ 0 & \lambda & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda & 1 \\ 0 & 0 & 0 & \dots & \lambda \end{pmatrix}$$

Определение 32. Жордановой матрицей называется блочно-диагональная матрица, по главной диагонали которой идут Жордановы клетки, а остальное заполено нулями:

$$J_k(\lambda) = \begin{pmatrix} J_{k_1}(\lambda_1) & \dots & 0 & 0 \\ \vdots & J_{k_2}(\lambda_2) & \dots & 0 \\ 0 & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & J_{k_n}(\lambda_n) \end{pmatrix}$$

Теорема 17 (Камиль Жордан). Пусть $\varphi: V \to V$, φ – линейно факторизуем над F. Тогда в V существует базис (Жордановый базис), в котором φ имеет Жорданову матрицу.

Замечание. Жорданова матрица определена с точностью до перестановки Жордановых клеток, поэтому базис не единственен в общем случае.

Доказательство. Заметим, что:

1. $V = V^{\lambda_1} \oplus V^{\lambda_2} \oplus \dots V^{\lambda_k}$ (подпространства инвариантны), где $\lambda_1, \dots, \lambda_k$ – все попарно различные собственные значения оператора φ . Тогда в базисе согласованном с таким разложением матрица имеет вид:

$$A = \begin{pmatrix} A_1 & \dots & 0 & 0 \\ \vdots & A_2 & \dots & 0 \\ 0 & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & A_k \end{pmatrix}.$$

2. Для V^{λ_i} оператор $\varphi_{\lambda_i}=\varphi-\lambda_i E$ нильпотентен, а значит V раскладывается в сумму циклических подпространств: $V^{\lambda_i}=\sum_{i=1}^{geom(\lambda_i)}V_{ij}$.

Пусть dim $V_{ij}=k$. Покажем, что на V_{ij} оператор φ в подходящем базисе имеет вид $J_k(\lambda_i)$: Пусть k – индекс нильпотентности φ_{λ_i} на V_{ij} , пусть x – корневой вектор максимальной высоты k.

Рассмотрим базис $\langle \varphi_{\lambda_i}^{k-1}x, \varphi_{\lambda_i}^{k-2}x, \dots, \varphi_{\lambda_i}^1x \rangle$. Обозначим базисные вектора за f_{ij} следующим обра-

$$f_{i1} = \varphi_{\lambda_i}^{k-1},$$

$$f_{i2} = \varphi_{\lambda_i}^{k-2},$$

Подействуем на базис оператором φ_{λ_i} . Под действием этого оператора каждый базисный вектор перейдет в предыдущий (первый перейдет в 0): $\varphi_{\lambda_i}(f_{i1}) = \overline{0}, \dots, \varphi_{\lambda_i}(f_{ik}) = f_{i(k-1)}$. Тогда матрица оператора φ_{λ_i} будет иметь в базисе f вид $J_k(0)$. Тогда $\varphi|_{V_{ij}} = \lambda_1 \varepsilon + J_k(0) = J_k(\lambda_i)$ Мы доказали, что в подходящем базисе сужение на подпростанство имеет вид Жордановой клетки. Тогда из

 $V = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} V_{ij}$ вытекает, что матрица оператора в подходящем базисе (Жордановом базисе)

имеет вид Жордановой матрицы.

10. Жорданова диаграмма. Метод ее построения без поиска жорданова базиса. Теорема о единственности жордановой нормальной формы с точностью до перестановки клеток.

Определение 33. Жордановой диаграммой, соответствующей Жордановой матрице J, называется набор точек на плоскости, изображающих вектора Жорданова базиса. При этом точка с координатой (i,j) изображает вектор f_{ij} Жорданова базиса. Под каждым столбцом Жордановой диаграммы указывается соответствующее векторам этого столбца собственные значения.

Пример. Пусть φ имеет в некотором базисе следующую матрицу:

$$A = \begin{pmatrix} \lambda & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \lambda & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \lambda & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \lambda & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \lambda & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \mu & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & \nu \end{pmatrix}$$

Четыре Жордановы клетки: порядков 2 и 3 с собственным значением λ , порядка 2 с собственным значением μ и порядка 1 с собственным значением ν .

Такая матрица является Жордановой. Начнем выписывать Жорданов базис: f_{11} , f_{12} , f_{13} , f_{21} , f_{22} , f_{31} , f_{32} , f_{41} .

В общем случае, если мы пишем Жорданов базис в виде f_{ij} , коэффициенты означают номер клетки и номер вектора относительно данной клетки соответственно. Теперь вектор f_{ij} можно сопоставить точке на графике с координатами (i,j). Если под каждым столбцом указать соответсвующие векторам столбца собственные значения, то полученный график называется Жордановой диаграммой.

Замечание. Столбцы не обязательно должны быть отсортированы в порядке невозрастания, диаграмма соотвествует конкретной матрице и меняется при перестановке клеток местами.

Утверждение 10 (Свойства Жордановой диаграммы).

1. Соответствие Жордановой матрицы J и Жордановой диаграммы J взаимно однозначно.

- 2. Векторы Жордановой диаграммы, относящиеся к собственному значению λ_i , образуют базис в корневом подпространстве V^{λ_i} .
- 3. Если вектор f_{ij} относится к собственному значению λ_i , то он является корневым вектором, относящимся к λ_i высоты j, то есть $\varphi^j_{\lambda_i} f_{ij} = \overline{0}$, но $\varphi^{j-1}_{\lambda_i} f_{ij} \neq \overline{0}$. На высоте 1 в Жордановой диаграммы находятся собственные векторы оператора φ .
- 4. Если f_{ij} относится к собственному значению λ_j , то $\varphi_{\lambda_i} f_{ij} = f_{i(j-1)}$.
- 5. Каждый столбец в Жордановой диаграмме является изображением циклического подпространства для оператора φ_{λ_i} . Общее число столбцов в Жордановой диаграмме $\sum_{i=1}^k geom(\lambda_i)$.

Утверждение 11. Пусть $\varphi: V \to V$. Тогда справедливы следующие вложения:

- 1. $\ker \varphi^0 \subset \ker \varphi \subset \ker \varphi^2 \subset \dots$
- 2. $\operatorname{Im} \varphi^0 \supseteq \operatorname{Im} \varphi \supseteq \operatorname{Im} \varphi^2 \supseteq \dots$

Причем обе цепочки стабилизируются за конечное число шагов.

Доказательство. Индукция по $n \in \mathbb{Z}_{\geq 0}$:

- 1. База индукции: $\ker \varphi^0 = \ker E = \overline{0} \subset \ker \varphi \ \forall \varphi$ и аналогично $\operatorname{Im} \varphi^0 = \operatorname{Im} E = V \supseteq \operatorname{Im} \varphi \ \forall \varphi$.
- 2. Докажем, что $\ker \varphi^n \subset \ker \varphi^{n+1}$ (где $n \in \mathbb{N}$): Если $x \in \ker \varphi^n$, тогда $\varphi^n x = 0$ и $\varphi^{n+1} x = \varphi(\varphi^n x) = \varphi(\overline{0}) = \overline{0}$. Докажем теперь аналогичное вложение для образов: пусть $y \in \operatorname{Im} \varphi^{n+1}$, тогда существует x, такой что $y = \varphi^{n+1} x = \varphi^n(\varphi(x)) = \varphi^n z \in \operatorname{Im} \varphi^n$. Следовательно, $\operatorname{Im} \varphi^{n+1} \subset \operatorname{Im} \varphi^n$.

Алгоритм (Построение Жордановой диаграммы). Покажем, как это использовать для нахождения Жордановой матрицы. Обозначим размерности ядер за n_i соответственно: dim ker $\varphi^i=n_i$. Выпишем для одного подпространства U_λ все вложенные в него:

$$\{0\} \subset \ker \varphi_{\lambda} = \langle f_{11}, f_{12} \rangle \subset \ker \varphi_{\lambda}^2 = \langle f_{11}, f_{21}, f_{12}, f_{22} \rangle \subset \ker \varphi_{\lambda}^3 = \langle f_{11}, f_{21}, f_{12}, f_{22}, f_{13} \rangle,$$

$$(n_1 = 2, n_2 = 4, n_3 = 5).$$

Тогда число точек в Жордановой диаграмме на высоте j равно $d_j = n_j - n_{j-1}$, откуда для нашего примера соответствующие d равны $d_1 = 2 - 0 = 2$, $d_2 = 4 - 2 = 2$, $d_3 = 5 - 4 = 1$.

Если в корневом пространстве V^{λ} ввести обозначения d_j - число векторов (точек) на высоте j, то $d_j = n_j - n_{j-1}$, где $n_0 = 0$, $n_k = \dim \ker (\varphi - \lambda_i E)^k$. Это работает, потому что при применении оператора j раз обнулятся все векторы на высоте не выше j, тогда при применении на 1 раз меньше обнулятся все, кто ниже, искомое количество - те, кто обнуляется при применении j раз и не обнуляется при применении на 1 раз меньше.

Строим ядра (и образы) до тех пор, пока они не стабилизируются (будут равны).

Теорема 18. Жорданова нормальная форма линейного оператора φ опеределена однозначно с точностью до перестановки Жордановых клеток, стоящих на главной диагонали. Утверждение складывается из двух промежуточных:

1. Сумма порядков клеток, относящихся к собственному значению λ_i , не зависит от выбора Жорданова базиса.

2. Для оператора φ , имеющего единственное собственное значение, порядки Жордановых клеток определяются однозначно.

Доказательство.

- 1. Зафиксируем Жорданов базис и корневое подпростарнство V^{λ_i} и выберем все векторы Жорданова базиса, относящиеся к λ_i . Обозначим $V(\lambda_i) = \langle f_{ij} | f_{ij}$ относящиеся к $\lambda_i \rangle$. Пусть l_i максимальный порядок Жордановых клеток Жордановой матрицы, отвечающих λ_i , $(J_k(\lambda_i) \lambda_i \varepsilon)^{l_i} = 0$. Оператор нильпотентен и за несколько его применений все векторы базса обратятся в 0. Таким образом $(\varphi \lambda_i \varepsilon)^{l_i}|_{V(\lambda_i)} = 0$. $\forall i V(\lambda_i) \subset V^{\lambda_i}$ так как все векторы аннулируются.
 - (a) $V = V^{\lambda_1} \oplus V^{\lambda_2} \oplus \cdots \oplus V^{\lambda_k}$.
 - (b) $V = V(\lambda_1) \oplus V(\lambda_2) \oplus \cdots \oplus V(\lambda_k)$.

По теореме о характеризации прямой суммы второе выражение является прямой суммой, а значит верны вложения и в обратную сторону(из соображений размерности).

2. Пусть единственное собственное значение – 0. Покажем, что размеры клеток в Жордановой нормальной форме определены однозначно. Как было доказано на предыдущих лекциях, из того, что оператор нильпотентен, существует разложение в прямую сумму циклических подпространств.

Длины строк определены однозначно: $d_j = n_j - n_{j-1}, n_j = \dim \ker \varphi^j$. Таким образом порядок клеток тоже можно определить однозначно.

11. Аннулирующий и минимальный многочлен линейного оператора. Связь минимального многочлена с жордановой нормальной формой.

Определение 34. $\varphi: V \to V, P \in F[t]$ называется аннулирующим для оператора φ , если $P(\varphi) = 0$ (иначе говоря: $\forall x \in V \hookrightarrow P(\varphi) = \overline{0}$).

Замечание. Если $\dim V = n$, то у любого φ существует аннулирующий многочлен.

Доказательство. Если φ соответствует матрица A размером n на n и $\dim M_n(F) = n^2$. Тогда если рассмотреть все матрицы вида $E, A, A^2, \dots, A^{n^2}$, то существуют $\alpha_i \in F : \sum_{i=0}^{n^2} \alpha_i A^i = 0$, тогда аннулирующий многочлен выглядит как $P = \sum_{i=0}^{n^2} \alpha_i t^i$.

Определение 35. Аннулирующий многочлен для φ минимальной возможной степени называется *минимальным многочленом* оператора φ и обозначается: μ_{φ} .

Теорема 19. Пусть $\varphi: V \to V$, $\mu(t)$ – минимальный многочлен φ и пусть P(t) – аннулирующий многочлен оператора φ . Тогда $P:\mu$.

Доказательство. Пусть $P(t) = Q(t) \cdot \mu(t) + R(t)$, $\deg R < \deg \mu$ или R = 0. От противного, пусть $R \neq 0$ тогда выразим этот остаток из предыдущего выражения: $R(\varphi) = P(\varphi) - Q(\varphi) \cdot \mu(\varphi) = 0$ – так как аннулирующий и минимальный многочлены зануляются, то и остаток равен нулю. Противоречие. Значит, $\mu(t)|P(t)$.

Следствие 5. Минимальный многочлен линейного оператора φ определяется с точностью до ассоциированности.

Утверждение 12. Пусть матрица отображения имеет вид Жордановой клетки: $J = J_k(\lambda)$. Тогда его минимальный многочлен имеет вид $\mu_j(x) = (x - \lambda)^k$.

Доказательство. Так как матрица отображения имеет вид Жордановой клетки, его характеристический многочлен $\chi_J(x)$ представляется как:

$$\chi_J(x) = (\lambda - x)^k = (-1)^k (x - \lambda)^k \sim (x - \lambda)^k.$$

По теореме 12 Гамильтона-Кэли $\mu_J|\chi_J$, значит $\mu_J(x) = (x-\lambda)^t$, $t \leq k$. Если t < k, то $(J-\lambda\varepsilon)^t \neq 0$, что приводит к противоречию с определением минимального многочлена $\mu_J(J) = 0$. Таким образом t не может быть меньше k, а значит t = k.

12. Норма в линейном пространстве. Норма линейного оператора. Вычисление многочлена и аналитической функции от линейного оператора.

Определение 36. Функция называется *аналитической*, если она представляется сходящимся степенным рядом.

Определение 37. Функция $||\cdot||:V\to\mathbb{R}$ называется нормой если

- 1. ||x|| > 0, если $x \neq 0$,
- 2. $||\lambda x|| = |\lambda| \cdot ||x||$,
- 3. $||x + y|| \le ||x|| + ||y||$.

Определение 38. Последовательность векторов $\{x^m\}$ сходится по норме к x_0 , если $||x^m-x_0|| \to 0$ при $m \to +\infty$.

Определение 39. Ряд $\sum_{m=1}^{+\infty} x^m$ называется *сходящимся*, если он сходится по норме $S^n = \sum_{m=1}^n x^m$.

Определение 40. Ряд $\sum_{m=1}^{+\infty} x^m$ называется *абсолютно сходящимся*, если сходится ряд $\sum_{m=1}^{+\infty} ||x^m||$.

Утверждение 13. Если ряд $\sum_{m=1}^{+\infty} a_m x^m$ сходится абсолютно, то он сходится, и для сумм верно:

$$||\sum_{m=1}^{+\infty} x^m|| \le \sum_{m=1}^{+\infty} ||x^m||.$$

Утверждение 14. Если ряд $\sum_{m=1}^{+\infty} a_m x^m$ сходится абсолютно $u \varphi : \mathbb{N} \to \mathbb{N}$, то ряд $\sum_{m=1}^{+\infty} a_{\varphi(m)} x^{\varphi(m)}$ сходится u для этих двух рядов верно:

$$||\sum_{m=1}^{+\infty} a_{\varphi(m)} x^{\varphi(m)}|| = ||\sum_{m=1}^{+\infty} a_m x^m||$$

Определение 41. Пусть $\varphi: V \to V, V$ конечномерно над \mathbb{R} или \mathbb{C} . Тогда:

$$||\varphi|| \stackrel{\text{def}}{=} \max_{x \neq 0} \frac{||\varphi(x)||}{||x||} = \max_{||x||=1} \frac{||\varphi(x)||}{||x||} = \max_{||x||=1} ||\varphi(x)||.$$

Замечание. Если λ – собственное значение оператора φ , то $||\varphi|| \geqslant \lambda$.

Утверждение 15 (о свойствах нормы оператора).

- 1. Определение 41 опеределяет норму в $\mathcal{L}(V)$.
- 2. $||\varphi(x)|| \leq ||\varphi|| \cdot ||x||$.
- 3. $||\varphi \cdot \psi|| \leq ||\varphi|| \cdot ||\psi||$.

Доказательство.

1. Докажем неравенство треугольника для нормы:

$$||\varphi + \psi|| \stackrel{\text{def}}{=} \max_{x \neq 0} \frac{||(\varphi + \psi)(x)||}{||x||} \leqslant \max_{x \neq 0} \frac{||\varphi(x)|| + ||\psi(x)||}{||x||} \leqslant \max_{x \neq 0} \frac{||\varphi(x)||}{||x||} + \max_{x \neq 0} \frac{||\psi(x)||}{||x||} = ||\varphi|| + ||\psi||$$

2. Докажем непосредственной проверкой:

$$||\varphi(x)|| = \frac{||\varphi(x)||}{||x||}||x|| \leqslant \max_{x \neq 0} \frac{||\varphi(x)||}{||x||}||x|| = ||\varphi|| \cdot ||x||$$

3. Докажем непосредственной проверкой:

$$\begin{split} ||\varphi\cdot\psi|| &= \max_{x\neq 0} \frac{||\varphi\cdot\psi(x)||}{||x||} = \max_{\psi(x)\neq 0} \frac{||\varphi(x)||}{||x||} = \max_{\psi(x)\neq 0} \frac{||\varphi\cdot\psi(x)||}{||\psi(x)||} \cdot \frac{||\psi(x)||}{||x||} \leqslant \\ &\leqslant \max_{\psi(x)\neq 0} \frac{||\varphi\cdot\psi(x)||}{||\psi(x)||} \cdot \max_{\psi(x)\neq 0} \frac{||\psi(x)||}{||x||} \leqslant ||\varphi|| \cdot ||\psi|| \end{split}$$

Теорема 20. Пусть ряд $f(t) = \sum_{m=1}^{+\infty} a_m t^m$ сходится при |t| < R. Тогда ряд $\sum_{m=1}^{+\infty} a_m \varphi^m$ сходится абсолютно для любого оператора $\varphi: ||\varphi|| = R_0 < R$. Более того, $f(\varphi) = \sum_{m=1}^{+\infty} a_m \varphi^m$ - задает линейный оператор в V.

Доказательство. $\forall x \in V$ докажем, что ряд $\sum_{m=1}^{+\infty} a_m \varphi^m(x)$ сходится абсолютно:

$$\sum_m |a_m|\cdot||\varphi^m(x)||\leqslant \sum_m |a_m|\cdot||\varphi^m||\cdot||x||\leqslant$$

$$\leqslant ||x||\sum_m |a_m|\cdot||\varphi^m||=||x||\sum_m |a_m|R_0^m\ -\ \text{сходится при }R_0< R.$$

Ряд
$$f(t) = \sum_m a_m t^m$$
 сходится при $|t| < R$, а значит $\sum_m |a_m| |t|^m$ сходится при $|t| < R$ по теореме Абеля.

Замечание.

$$exp(\varphi) = \varepsilon + \frac{\varphi}{1!} + \dots + \frac{\varphi^n}{n!} + \dots, R = +\infty$$

$$sin(\varphi) = \varphi - \frac{\varphi^3}{3!} + \dots + (-1)^n \frac{\varphi^{2n+1}}{(2n+1)!} + \dots, R = +\infty$$

$$cos(\varphi) = \varepsilon - \frac{\varphi^2}{2!} + \frac{\varphi^4}{4!} - \dots + (-1)^n \frac{\varphi^{2n}}{(2n)!} + \dots, R = +\infty$$

13. Линейные рекурренты. Общий вид линейной рекурренты над произвольным полем (случай, когда характеристический многочлен раскладывается на линейные множители).

Определение 42. Будем рассматривать последовательности $(a_0, a_1, \dots), a_i \in F$. Множество всех таких последовательностей будем обозначать F^{∞} .

Определение 43. Зафиксируем многочлен $p(x) \in F[x]$ степени $S, p(x) = x^s + p_{s-1}x^{s-1} + \ldots + p_1x + p_0$. Линейным рекуррентным соотношением с характеристическим многочленом p(x) называется последовательность a_n такая что $\forall n \in \mathbb{N} \cap \{0\}$ верно:

$$a_{n+s} + p_{s-1}a_{n+s-1} + \ldots + p_1a_{n+1} + p_0a_n = 0, \ p_0 \neq 0.$$

Рекуррентное соотношение выражает a_{n+s} через s предыдущих членов. V_p – множество всех последовательностей, удовлетворяющих рекуррентному соттношению выше.

Утверждение 16. V_p – линейное пространство над F и $\dim V_p = s$.

Доказательство. Если $\{a_n\}$ и $\{b_n\}$ удовлетворяют условию определения 43, то и $\{a_n+b_n\}$ удовлетворяют этому условию. Базис в V_p :

$$e_{0} = (\underbrace{1, 0, 0, \dots, 0}_{S}, -p_{0}, \dots)$$

$$e_{1} = (\underbrace{0, 1, 0, \dots, 0}_{S}, -p_{1}, \dots)$$

$$\dots$$

$$e_{s-1} = (\underbrace{0, 0, 0, \dots, 1}_{S}, -p_{s-1}, \dots)$$

Утверждение 17. Рассмотрим оператор $\varphi: F^{\infty} \to F^{\infty}$, такой что $\varphi(a_0, a_1, \dots, a_n, \dots) = (a_1, a_2, \dots, a_{n-1}, \dots)$. Тогда $V_p = \ker p(\varphi)$.

Доказательство. По определению ядра отображения последовательность $\{b_n\}$ лежит в $\ker p(\varphi)$ тогда и только тогда, когда верно $p(\varphi)(b_n) = (0) \in F^{+\infty}$. При этом имеет место следующая равносильность:

$$(\varphi^{s} + p_{s-1}\varphi^{s-1} + \dots p_{1}\varphi + p_{0}\varepsilon)(b_{n}) = (0) \Leftrightarrow b_{n+s} + p_{s-1}b_{n+s-1} + \dots p_{1}b_{n+1} + p_{0}b_{n} = (0)$$

Второе равенство эквивалентно тому, что $\{b_n\}$ лежит в V_p , а значит верно вложение V_p и $\ker p(\varphi)$ друг в друга в обе стороны.

Замечание. Оператор φ называется оператором левого сдвига. V_p инварианто относительно φ .

Следствие 6. Пусть $\psi_p = \varphi|_{V_p}$. Тогда $p(\psi_p) = 0$.

Доказательство. $p(\varphi)|_{V_p}=0$ так как $V_p=\ker p(\varphi)$.

Утверждение 18. $\mu_{\psi_p}(x) = p(x)$.

Доказательство. Пусть $a_n \in V_p$, тогда $p(\varphi)(a_n) = (0)$. По следствию из утверждения 17 для сужения $\psi_p = p(\varphi)|_{V_p}$ так же верно $\psi_p(a_n) = (0)$, а значит $p(\psi_p)(a_n) = 0$. Таким образом p - аннулирующий многочлен для ψ_p и по теореме 19 $\mu|_p$, где $\mu = \mu_{\psi_p}$. По определению минимального многочлена $\mu(\psi_p) = 0$, тогда и $\mu(\varphi)|_{V_p} = 0$.

Отсюда следует, что V_p вложено в $\ker \mu(\varphi) = V_\mu$ (равенство верно по утверждению 17). Из вложенности $V_p \subset V_\mu$ и кратности $\mu|p$ получаем равенство степеней многочленов $\deg p = \deg \mu$, откуда следует их ассоциированность.

Определение 44. Пусть $p(x) = x^s + p_{s-1}x^{s-1} + \cdots + p_1x + p_0 \in F[x], p_0 \neq 0.$ Сопутствующей матрицей для многочлена p(x) называется матрица размера $s \times s$ вида:

$$\begin{pmatrix} 0 & 1 & 0 & \dots & 0 & 0 \\ 0 & 0 & 1 & \dots & 0 & 0 \\ 0 & 0 & 0 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 0 & 1 \\ -p_0 & -p_1 & -p_2 & \dots & -p_{s-2} & -p_{s-1} \end{pmatrix}$$

Утверждение 19. Пусть $\psi_p = \varphi_p|_{V_p}$. В базисе $(e_0, e_1, \dots, e_{s-1})$ из стандартных последовательностей оператор ψ_p имеет в точности сопутвующую матрицу A_p .

Доказательство.

$$\psi_p(e_0) = (0, 0, \dots, 0, 0, -p_0, \dots) = -p_0 e_{s-1}$$

$$\psi_p(e_1) = (1, 0, \dots, 1, 0, -p_1, \dots) = e_0 - p_1 e_{s-1}$$

$$\dots$$

$$\psi_p(e_i) = (0, 0, \dots, 1, 0, \dots, 0, -p_i, \dots) = e_{i-1} - p_i e_{s-1}$$

При этом для e_i единица стоит на i-1 позиции, $-p_i$ всегда стоит на s-й позиции.

Утверждение 20. $\chi_{\psi_p}(x) = \chi_{A_p}(x) = (-1)^s p(x)$.

Доказательство. Из утверждения 19 следует $\chi_{\varphi_p}(x)=\chi_{A_p}(x)=(-1)^s p(x)$. Докажем наше утверждение по индукции:

1. База s = 2:

$$\begin{vmatrix} -x & 1 \\ -p_0 & x-p_1 \end{vmatrix} = x^2 + p_1 x + p_0$$
 — верно.

2. Пусть $M^{2,3,\dots,s}_{2,3,\dots,s}=(-1)^{s-1}(x^{s-2}+p_{s-1}x^{s-2}+\dots+p_2x+p_1)$, тогда:

$$\chi_{A_p} = -x \cdot (-1)^{s-1} (x^{s-1} + p_{s-1}x^{s-2} + \dots + p_2x + p_1 + (-p_0)(-1)^{s-1} \cdot M =$$

$$= (-1)^s (x^s + p_{s-1}x^{s-1} + \dots + p_0x) + (-1)^s p_0 = (-1)^s (x^s + p_{s-1}x^{s-1} + \dots + p_1x + p_0) = (-1)^s p(x),$$

где матрица M имеет следующий вид:

$$M = \begin{pmatrix} 1 & 0 & \dots & 0 \\ -x & 1 & \dots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & \dots & 1 \end{pmatrix}$$

Теорема 21 (Основная теорема о линейных рекуррентах). Пусть V_p – пространство линейных рекуррент, относящихся κ p(x) и пусть p(x) раскладывается на линейные множители:

 $p(x) = \prod_{i=1}^k (x - \lambda_i)^{l_i}, \ \lambda_i \in F$ - попарно различные. Тогда для любой $\{a_n\}_{n=0}^{\infty} \in V_p$ справедливо представление:

$$a_n = \sum_{i=1}^k \sum_{s=1}^{l_i} c_{is} \cdot C_n^{s-1} \lambda_i^{n+1-s}$$

Доказательство. Ранее было доказано, что $\mu_{\psi_p} \sim \chi_{\psi_p}$. Теперь наша цель разложить пространство в прямую сумму корневых подпространств и найти для каждого циклическое подпространство $\langle b_1^{(i)}, \dots b_{l_i}^{(i)} \rangle$ такое, что:

$$(\varphi - \lambda_i \varepsilon) b_1^{(i)} = 0,$$

$$(\varphi - \lambda_i \varepsilon) b_s^{(i)} = b_{s-1}^{(i)}.$$

Заметим, что если $b_s^{(i)}$ построены, то они дают Жорданов базис в V_p . При этом $l_1+l_2+\dots l_k=s=\dim V_p$. Получаем:

$$\prod_{i=1}^{k} (\varphi - \lambda_i \varepsilon)^{l_i} (b_s^{(i)}) = 0 \Leftrightarrow p(\varphi)(b_s^{(i)}) = 0 \Leftrightarrow b_s^{(i)} \in V_p$$

Для упрощения вычислений отбросим индекс i, считая, что мы всё время работаем с одним и тем же собственным значением.

$$b_1 = (1, \lambda, \lambda^2, \dots, \lambda^n, \dots)$$
$$(\varphi - \lambda \varepsilon)b_1 = (\lambda, \lambda^2, \dots, \lambda^{n+1}, \dots) - (\lambda, \lambda^2, \dots, \lambda^{n+1}, \dots) = 0$$

Таким образом мы доказали, что $b_1=\{\lambda^n\}_{n=0}^\infty$ - собственный вектор. Пусть вектор высоты s-1 построен. Тогда $b_{s-1}=f_{s-1}(n)\lambda^n, b_s=f_s(n)\lambda^n$. Заметим, что:

$$f_s(n+1)\lambda^{n+1} - f_s(n)\lambda^{n+1} - f_{s-1}(n)\lambda^n : \lambda^{n+1}$$
.

Разделим на λ^{n+1} :

$$f_s(n+1) - f_s(n) = \frac{f_{s-1}(n)}{\lambda}.$$

При $\lambda=1$ решением этого уравнения является $f_s(n)=C_n^{s-1}$, что можно доказать самостоятельно в качестве упражнения (на самом деле это следует из формулы $C_n^{s-1}+C_n^s=C_{n+1}^s$). В общем случае будем искать решение в виде квазимногочлена: $f_s(n)=C_n^{s-1}\cdot\lambda^{\alpha(s)}$. Подставим это решение в полученное выше уравнение:

$$C_{n+1}^{s-1}\lambda^{\alpha(s)}+C_n^{s-1}\lambda^{\alpha(s)}=C_n^{s-2}\lambda^{\alpha(s-1)-1}.$$

В силу того, что $C_{n+1}^{s-1}=C_n^{s-1}+C_n^{s-2}$, получаем $\alpha(s)=\alpha(s-1)-1$. В силу того, что при s=1 мы должны получить собственный вектор b_1 , полученный ранее, верно $f_1(n)=1$, а значит $\alpha(1)=0$. Тогда $\alpha(2)=\alpha(1)-1=-1$, и $\alpha(s)=1-s$. Отсюда следует, что $f_s(n)=C_n^{s-1}\lambda^{1-s}$, а значит $b_s=C_n^{s-1}\lambda^{n+1-s}$. Таким образом, мы получили Жорданов базис, отвечающий $\lambda\colon b_1,b_2,\dots,b_l$. \square

14. Билинейные функции. Координатная запись билинейной функции. Матрица билинейной функции и ее изменение при замене базиса. Ортогональное дополнение к подпространству относительно симметричной (кососимметричной) билинейной функции и его свойства.

Определение 45. Пусть V — линейное пространство над F. Функция $f: V \times V \to F$ называется билинейной, если выполняются следующие условия:

- 1. Аддитивность по первому аргументу $f(x_1 + x_2, y) = f(x_1, y) + f(x_2, y)$.
- 2. Линейность по первому аргументу $f(\lambda x, y) = \lambda f(x, y)$.
- 3. Аддитивность по второму аргументу.
- 4. Линейность по второму аргументу.

Определение 46. Если $x,y\in F^n$, то выражение $\sum_{i=1}^n\sum_{j=1}^m a_{ij}x_iy_j$ называется билинейной формой

от координатных столбцов x и y. Билинейная форма сама является билинейной функцией: $F^n imes F$.

Утверждение 21. Если f(x,y) – билинейная функция $V \times V \to F$, то она может быть записана в виде билинейной формы от координат x и y при добавлении коэффициентов $a_{ij} = f(e_i, e_j)$ - значения функции f на базисных векторах.

Доказательство. Пусть f(x,y) - билинейная функция, $e=(e_1,\ldots e_n)$ - базис в V. Запишем разложения векторов x и y по базису:

$$x = \sum_{i=1}^{n} x_i e_i$$

$$y = \sum_{j=1}^{n} y_j e_j$$

Тогда верно следующее:

$$f(x,y) = f(\sum_{i=1}^{n} x_i e_i, \sum_{j=1}^{n} y_j e_j) = \sum_{i=1}^{n} \sum_{j=1}^{n} x_i y_j f(e_i, e_j) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_i y_j$$

Утверждение 22. Пусть f(x,y) – билинейная функция в V. e, e' – базисы в V. A, A' – матрицы билинейной формы f в этих базисах. Тогда $A' = S^T A S$, где S – матрица перехода между e u e'.

Доказательство. Пусть x и y имеют в e координаты α и β соответственно. Было доказано, что $\alpha = S\alpha', \, \alpha' = s^{-1}\alpha, \, \beta = S\beta'.$ Тогда:

$$f(x,y) = x^T A y = \alpha^T A \beta = (S\alpha')^T A (S\beta) = (\alpha')^T S^T A S \beta' = (\alpha')^T A' \beta'.$$

Из последнего равенства сразу следует, что $S^T A S = A'$.

Определение 47. Билинейная функция f(x,y) называется *симметричной* если для всех $x,y \in V$ верно f(x,y) = f(y,x).

Определение 48. Билинейная функция f(x,y) называется *кососимметричной*, если для всех $x,y\in V$ верно:

1.
$$f(x,y) = -f(y,x)$$
,

2.
$$f(x,x) = 0$$
.

Соглашение. Многие утверждения, доказываемые в этом разделе верны и для симметричных и для кососимметричных функций. Чтобы показать, что функция f лежит в B^+ или в B^- будем использовать обозначение $f \in B^{\pm}$.

Определение 49. Пусть $f \in B^{\pm}(V)$. Тогда ядром f является:

$$\ker f = \{x \in V | \forall y \in V \hookrightarrow f(x,y) = 0\} = \{y \in V | \forall x \in V \hookrightarrow f(x,y) = 0\},\$$

где сначала выписано левое ядро, а затем правое ядро, и они равны.

Определение 50. Пусть $U \leq V$. Ортогональным дополнением к U относительно функции $f \in B^{\pm}(V)$ называется подпространство $U^{\perp} = \{ y \in V \mid \forall x \in U \hookrightarrow f(x,y) = 0 \}.$

Определение 51. Подпространство $U \leq V$ назовем невырожденным относительно функции $f \in B^{\pm}(V)$, если сужение f на U невырожденно.

Теорема 22. Пусть $U \leqslant V$, $f \in B^{\pm}(V)$. Тогда U невырожденно относительно f тогда u только тогда V раскладывается в прямую сумму подпространств: $V = U \oplus U^{\perp}$.

Доказательство.

1. Необходимость. Пусть $f|_U$ невырождено. Покажем, что тогда $\ker f|_U = \{0\}$.

$$\ker f|_{U} = \{ y \in U | \forall x \in U \hookrightarrow f(x, y) = 0 \} =$$

$$= \{ y \in V | \forall x \in U \hookrightarrow f(x, y) = 0 \} \cap U = U^{\perp} \cap U = \{ 0 \},$$

где первое равенство получено по определению ядра f над U, а третье по определению ортогонального дополнения. Из соображений размерностей подпространств получим:

$$dim(U+U^{\perp}) = \dim U + \dim U^{\perp} - \dim(U \cap U^{\perp}) =$$

$$= \dim U + \dim U^{\perp} \geqslant \dim U + \dim V - \dim U = \dim V.$$

Так как $U+U^{\perp}\leqslant V$, получаем равенство размерностей $\dim(U+U^{\perp})=\dim V$, а значит и равенство подпространств: $U+U^{\perp}=V$.

По теореме о характеристике прямой суммы получаем $V = U \oplus U^{\perp}$.

2. Пусть $V = U \oplus U^{\perp}$. Но $\ker(f|_U) = U \cap U^{\perp} = \{0\}$, а значит f невырождена на U.

15. Симметричные билинейные и квадратичные функции, связь между ними. Поляризационное тождество. Метод Лагранжа приведения квадратичной формы к каноническому виду.

Определение 52. Пусть $f \in B(V), f : V \times V \to F$. Тогда $\Delta = \{(x, x) \in V \times V\}$ – диагональ в пространстве V.

Определение 53. Пусть $f \in B^+(V)$. *Квадратичной функцией* на V называется произвольное сужение симметричной билинейной функции f на диагональ Δ :

$$q(x) = f(x,y)|_{\Delta} = f(x,x) : V \to F.$$

Соглашение. Будем обозначать как Q(V) множество всех квадратичных функций на V.

Теорема 23. Линейные пространства $B^+(V)$ и Q(V) изоморфны, изоморфизм осуществляет отображение φ сужения на диагональ $\Delta \subset V \times V$.

Доказательство. Пусть $\varphi: B^+(V) \to Q(V)$, переводящее $f(x,x) \in B^+(V)$ в $q(x) \in Q(V)$. Операции сложения и умножения на скаляр сохраняются. Покажем его биективность:

- 1. Отображение φ сюръективно по определению квадратичной функции.
- 2. Проверим инъективность φ . Пусть $\varphi(f) = q$, $\varphi(g) = q$, покажем, что тогда f = g. По определению q(x) = f(x, x), тогда:

$$q(x \pm y) = f(x \pm y, x \pm y) = f(x, x) \pm 2f(x, y) + f(y, y) = q(x) \pm 2f(x, y) + q(y).$$

Аналогично $q(x \pm y) = q(x) \pm 2g(x, y) + q(y)$, откуда:

$$f(x,y) = \frac{1}{4}(q(x+y) - q(x-y)) = g(x,y).$$

Таким образом полученное отображение - биекция, сохраняющая необходимые операции, а значит получен изоморфизм между $B^+(V)$ и Q(V).

Определение 54. Выражение f(x,y) через q(x) и q(y) называется поляризационным тождеством. Обратное отображение $\psi: Q(V) \to B^+(V)$ называется поляризацией, f(x,y) – полярной функцией к q(x).

Определение 55. Базис в V называется *ортогональным* относительно f если для всех $i, j, i \neq j$ верно $a_{ij} = f(e_i, e_j) = 0$.

Теорема 24 (Лагранжа). Всякую билинейную симметричную функцию f и ассоциированную c ней квадратичную функцию подходящим выбором базиса можно привести κ диагональному виду.

Доказательство. Индукция по размерности пространства.

- 1. База: при n=1 матрица уже имеет диагональный вид.
- 2. Предположение индукции: пусть для пространств V размерности меньшей чем n теорема верна. Совершим переход к подпространствам размерности n+1.

Если функция f тождественно нулевая, её матрица так же очевидно диагональная. В случае ненулевой функции f в силу поляризационного тождества функция q так же является ненулевой. Тогда существует вектор e_1 , такой что $q(e_1) = a_{11} = f(e_1, e_1) \neq 0$. Рассмотрим тогда $U = \langle e_1 \rangle$. Тогда $f|_U$ невырождена, а значит $V = U \oplus U^{\perp}$.

По предположению индукции в U^{\perp} найдется ортогональный относительно сужения $f|_{U^{\perp}}$ базис $(e_2, \dots e_n)$. Матрица $A_{U^{\perp}}$ в нем будет иметь вид:

$$A_{U^{\perp}} = \begin{pmatrix} \lambda_2 & 0 & \dots & 0 \\ 0 & \lambda_3 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}$$

В силу того, что U и U^{\perp} образуют прямую сумму, равную всему пространству V, при добавлении в $(e_2, \ldots e_n)$ вектора e_1 получится базис в V, являющийся ортогональным относительно f. Матрица f в базисе $(e_1, e_2, \ldots e_n)$ имеет вид:

$$A = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}$$

При этом коэффициенты в матрице равны $\lambda_i = q(e_i)$.

Определение 56. Пусть $F = \mathbb{R}$. Вид квадратичной функции

$$q(x) = x_1^2 + x_2^2 + \dots + x_p^2 - x_{p+1}^2 - \dots - x_{p+q}^2$$

где $p+q=\operatorname{rk} q$, называется каноническим видом квадратичной функции в V над \mathbb{R} .

Следствие 7. Если $F = \mathbb{R}$, то всякую квадратическую функцию выбором базиса можно привести к каноническому виду выбором базиса.

Алгоритм (Поиск преобразования, приводящего к каноническому виду). В нашем базисе q(x) имеет следующее предстваление:

$$q(x) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_i x_j$$

Его можно преобразовать к виду:

$$q(x) = \frac{1}{a_{11}}(a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n)^2 - \sum_{i=2}^n \sum_{j=2}^n a_{ij}x_ix_j.$$

Сумма после вынесения первого слагаемого не содержит x_1 ни в одном члене. Обозначим тогда $(a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n)$ за ξ_1 , который будет являться первым искомым каноническим вектором. После этого q(x) можно записать как:

$$q(x) = \lambda_1 \xi_1^2 + \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j.$$

Таким образом можно продолжать преобразования суммы до получения разложения в канонический вид:

$$q(x) = \lambda_1 \xi_1^2 + \lambda_2 \xi_2^2 + \dots \lambda \xi_n^n$$

При этом столбцы матрицы S будут являться координатами векторов базиса в каноническом базисе.

16. Индексы инерции квадратичной формы в действительном линейном пространстве. Закон инерции. Метод Якоби приведения квадратичной формы к диагональному виду.

Определение 57. Квадратичная функция q(x) называется положительно определенной (отрицательно опеределенной), если для всех $x \neq 0$ верно q(x) > 0 (q(x) < 0).

Определение 58. Квадратичная функция q(x) называется положительно полуопределенной (отрицательно полуопределенной) если для всех $x \in V$ верно $q(x) \ge 0$ ($q(x) \le 0$).

Соглашение. До конца раздела будем считать что V – поле над пространством действительных чисел.

Определение 59. Пусть e – канонический базис. Представим q(x) как:

$$q(x) = \xi_1^2 + \ldots + \xi_p^2 - \xi_{p+1}^2 - \ldots - \xi_{p+q}^2$$

Числа p и q называются undeксами unepųuu относительно канонического базиса e.

Теорема 25 (Закон инерции). Пусть $q \in Q(V)$, $e - \kappa$ анонический базис в V, p и q - nоложительный и отрицательный индексы инерции относительно базиса e. Тогда верно следующее:

- 1. $p = \max\{\dim U \mid U \leqslant V : q|_U nonoжumeльно onpedeneнa\},$
- 2. $q = \max\{\dim U \mid U \leqslant V : q|_U ompuцательно onpedeлeна\},$
- 3. Индексы p и q не зависят от выбора базиса в V.

Доказательство.

1. Пусть $e = (e_1, e_2, \dots e_n)$. Рассмотрим следующие подпространства V:

$$U_0 = \langle e_1, e_2, \dots e_p \rangle \qquad W_0 = \langle e_{p+1}, e_{p+2}, \dots e_n \rangle.$$

Их размерности равны $\dim U_0 = p$ и $\dim W_0 = n - p$ соответственно.

Пусть $m = \max\{\dim U | U \leqslant V : q|_U$ – положительно определена $\}$.

По построению U_0 верно что $q|_{U_0}$ положительно определена, а значит $m\geqslant p$. Пусть m>p. Тогда по построению m существует $U_1\leqslant V$ такое, что $q|_{U_1}$ положительно определена и $\dim U_1=m$. При этом по формуле Грассмана:

$$\dim(U_1 \cap W_0) = \dim U_1 + \dim W_0 - \dim(U_1 + W_0) = m + n - p - \dim(U_1 + W_0) \geqslant m + n - p - n > 0.$$

Тогда $\exists z \in U_1 \cap W_0$. Однако по построению этих подпространств получим:

$$z \in U_1 \Rightarrow q(z) > 0,$$

 $z \in W_0 \Rightarrow q(z) \leq 0.$

Таким образом предположение m>p приводит к противоречию из-за невозможности существования нетривиального пересечения U_1 и W_0 . Это значит, что m=p.

- 2. Доказательство аналогично первому пункту.
- 3. Истинность утверждения вытекает из первых двух пунктов, так как размерность подпространств не зависит от выбора базисов в них.

Определение 60. Пусть квадратичная билинейная форма q представляется как:

$$q \leftrightarrow \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}$$

 Γ лавным минором Δ_i называется определитель левой верхней подматрицы размера $i \times i$:

$$\Delta_i = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1i} \\ a_{21} & a_{22} & \dots & a_{2i} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \dots & a_{ii} \end{pmatrix}$$

Теорема 26 (Яко́би). Пусть q(x) – квадратичная функция в линейном пространстве над \mathbb{R} , A – её матрица относительно некоторого базиса е в V и пусть $\forall i=1,\dots n$ верно $\Delta_i \neq 0$. Тогда существует базис е' в V такой что в нем q(x) принимает вид:

$$q(x) = \frac{\Delta_0}{\Delta_1} \xi_1^2 + \frac{\Delta_1}{\Delta_2} \xi_2^2 + \dots + \frac{\Delta_{n-1}}{\Delta_n} \xi_n^2, \ \epsilon \partial e \ \Delta_0 = 1.$$

Более того, e' можно выбрать так, что матрица перехода $S = S_{e \to e'}$ является верхнетреугольной.

Доказательство. Индукция по n – размерности пространства V:

1. База n = 1:

В пространстве размерности 1 форма принимает вид $q(x) = a_{11}x_1^2$.

Тогда можно осуществить переход $e_1 o e_1' = \frac{1}{a_{11}} e_1$. Для нового базисного вектора:

$$q(e_1') = f(\frac{e_1}{a_{11}}, \frac{e_1}{a_{11}}) = \frac{1}{a_{11}^2} a_{11} = \frac{1}{a_{11}}.$$

Тогда в новом базисе $q(x) = a_{11}\xi_1 = \frac{1}{\Delta_1}\xi_1^2$, что и требовалось.

2. Пусть теорема справедлива для любого V для которого верно $\dim V < n$.

Рассмотрим пространство V размерности n, и его подпространство $U = \langle e_1, e_2, \dots e_{n-1} \rangle$.

По предположению индукции существует базис $e' = \langle e'_1, e'_2, \dots e'_{n-1} \rangle$ в U такой что q имеет вид:

$$q(x)|_{U} = \frac{\Delta_0}{\Delta_1} \xi_1^2 + \frac{\Delta_1}{\Delta_2} \xi_2^2 + \dots + \frac{\Delta_{n-2}}{\Delta_{n-1}} \xi_{n-1}^2,$$

и матрица перехода от него к нашему базису имеет верхнетреугольный вид:

$$S_{e \to e'} = \begin{pmatrix} S_{11} & S_{12} & \dots & S_{1,n-1} \\ 0 & S_{22} & \dots & S_{2,n-1} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & S_{n-1,n-1} \end{pmatrix}$$

При этом форма $q(x)|_U$ невырождена, так как $\Delta_{n-1} \neq 0$.

Тогда по теореме о невырожденном подпространстве $V=U\oplus U^{\perp}$, где ортогональное дополнение U^{\perp} используется в смысле f ассоциированного с q, $\dim U^{\perp}=1$.

Заметим, что в U^{\perp} есть ненулевой вектор e, для которого верно $f(e_n,e) \neq 0$.

В противном случае для любого вектора $e \in U^{\perp}$ верно $f(e_n,e) = 0$, что значит, что все вектора $e \in U^{\perp}$ перпендикулярны e_n . При этом $e \perp U = \langle e_1, \dots e_n \rangle$, откуда $e \in \ker f$.

Это противоречит тому, что $\dim(\ker f) = \dim V - \operatorname{rk} f = 0$, а значит необходимый нам вектор существует.

Положим $f(e,e_n)=c\neq 0$, тогда $f(e_n,\frac{e}{c})=1$. Пусть $e'_n=\frac{e}{c}\in U^\perp$, откуда $f(e_n,e'_n)=1$.

Покажем, что $e' = \langle e'_1, \dots e'_{n-1}, e'_n \rangle$ – искомый базис.

Рассмотрим матрицу перехода $S=S_{e\to e'}$. Заметим, что $S_{ni}=0$ для всех i< n в силу того, что $e'_i\in U$, а значит при переходе к новому базису вектор e_n не повлияет на него. Таким образом матрица $S_{e\to e'}$ диагональна.

Осталось показать, что в новом базисе форма q имеет необходимый вид. Благодаря предположению индукции мы имеем:

$$q(x)|_{U} = \frac{\Delta_0}{\Delta_1} \xi_1^2 + \frac{\Delta_1}{\Delta_2} \xi_2^2 + \dots + \frac{\Delta_{n-2}}{\Delta_{n-1}} \xi_{n-1}^2.$$

Таким образом необходимо только показать, что коэффициент при ξ_n равен $\frac{\Delta_{n-1}}{\Delta_n}$. Заметим, что этот коэффициент равен $q(e'_n)$.

Вектор e_n' выражается через коэффициенты матрицы перехода и векторы начального базиса:

$$e_n' = S_{1n}e_1 + \dots S_{nn}e_n.$$

Тогда:

$$\begin{cases} f(e_1, e'_n) = 0, \\ f(e_2, e'_n) = 0, \\ \dots \\ f(e_{n-1}, e'_n) = 0, \\ f(e_n, e'_n) = 1. \end{cases}$$

Первые n-1 значений равны 0 в силу того, что $e'_n \in U^{\perp}$, $e_i \in U$.

Тогда $q(e_n')$ можно выразить следующим образом:

$$q(e'_n) = f(e'_n, e'_n) = f(S_{1n}e_1 + \dots + S_{n-1,n}e_{n-1} + S_{nn}e_n, e'_n) =$$

$$= S_{1n} \cdot f(e_1, e'_1) + \dots + S_{nn} \cdot f(e_n, e'_n) = S_{nn}.$$

Выразим S_{nn} из системы выше:

$$\begin{cases} f(e_1, e'_n) = f(e_1, S_{1n}e_1 + \dots S_{nn}e_n) = 0, \\ f(e_2, e'_n) = f(e_2, S_{1n}e_1 + \dots S_{nn}e_n) = 0, \\ \dots \\ f(e_{n-1}, e'_n) = f(e_{n-1}, S_{1n}e_1 + \dots S_{nn}e_n) = 0, \\ f(e_n, e'_n) = f(e_1, S_{1n}e_1 + \dots S_{nn}e_n) = 1. \end{cases}$$

В силу невырожденности q матрица перехода невырождена, а значит и система уравнений невырождена, так как её матрица в точности является матрицей оператора q в базисе e.

Тогда по теореме Крамера для неё существует единственное решение и $S_{nn}=\frac{\Delta_{n-1}}{\Delta_n}.$

Таким образом мы получили диагональную матрицу $S_{e \to e'}$ и необходимое нам представление q в базисе e' для пространства размерности V, что завершает доказательство по индукции.

17. Положительно определенные квадратичные функции. Критерий Сильвестра. Кососимметрические билинейные функции, приведение их к каноническому виду.

Утверждение 23.

- 1. Функция q(x) положительно определена тогда и только тогда когда приводится κ каноническому виду c матрицей E.
- 2. Функция q(x) положительно полуопределена тогда и только тогда когда приводится к каноническому виду с матрицей, не имеющей -1 на главной диагонали.

Доказательство.

1. (а) Необходимость.

Пусть q(x) положительно определена. Рассмотрим канонический базис e. В этом базисе i-й элемент матрицы q равен $a_{ii} = q(e_i) > 0$.

В силу того, что в каноническом базисе матрица может иметь только значения ± 1 и 0 на главной диагонали, получаем $a_{ii}=1$. Таким образом матрица формы q является единичной.

(b) Достаточность.

Пусть q приводится к каноническому виду с E. Тогда в каноническом базисе:

$$q(x) = \xi_1^2 + \ldots + \xi_n^2$$
, где $n = \dim V$.

Это значит, что для всех $x \neq 0$ верно q(x) > 0, так как в каноническом базисе x представляется в виде $x = (\xi_1 \, \xi_2 \, \dots \, \xi_n)^T$. Таким образом q положительно определена.

2. (а) Необходимость.

Пусть q(x) положительно полуопределена. Тогда в каноническом базисе i-й элемент главной диагонали матрицы q равен $a_{ii} = q(x_i) \geqslant 0$, откуда $a_{ii} \in \{0,1\}$.

(b) Достаточность.

Пусть в каноническом базисе $a_{ii} \in \{0,1\}$. Тогда q в нем имеет вид:

$$q(x) = \xi_1^2 + \ldots + \xi_p^2$$
, где $p < \dim V$.

Таким образом для всех x верно $q(x)\geqslant 0,$ что значит, что q положительно полуопределена.

Пемма 2. Пусть $B \in M_n(\mathbb{R})$ – квадратная матрица над полем вещественных чисел. Тогда B положительно определена тогда и только тогда, когда существует невырожденная $A \in M_n(\mathbb{R})$ такая, что $B = A^T A$.

Доказательство.

1. Необходимость.

Пусть B положительно определена. Тогда она является матрицей некоторой квадратичной функции q, что значит, что существует матрица $S = S_{e \to e'}$ такая, что $S^T B S = E$.

Домножим выражение на $(S^T)^{-1}$ слева и на S^{-1} справа и получим $B = (S^T)^{-1}S^{-1}$.

Тогда искомая A существует и равна $A = S^{-1}$.

2. Достаточность.

Пусть $B = A^T A$, $\det A \neq 0$ (в силу невырожденности A). Тогда положим $S = A^{-1}$.

В новом базисе $B' = S^T B S = (A^{-1})^T A^T A A^{-1} = E$, откуда B положительно определена по утверждению 23.

Теорема 27 (Критерий Сильвестра). Пусть $q(x) \in Q(V)$. Тогда верно следующее:

- 1. Форма q(x) положительно определена тогда и только тогда когда для всех i главный минор положителен: $\Delta_i > 0$.
- 2. Форма q(x) отрицательно определена тогда и только тогда когда знаки главных миноров чередуются: $sgn(\Delta_i) = (-1)^i$.

Доказательство.

1. (а) Необходимость.

Пусть B – матрица квадратичной функции q(x) и q положительно определена. Тогда по лемме 2 верно $B = A^T A$, $\det A \neq 0$. В таком случае:

$$|B| = |A^T| \cdot |A| = |A|^2 > 0.$$

(b) Достаточность.

Пусть $\Delta_1 > 0, \dots \Delta_n > 0$. Тогда:

$$q(x) = \frac{\Delta_0}{\Delta_1} \xi_1^2 + \frac{\Delta_1}{\Delta_2} \xi_2^2 + \dots + \frac{\Delta_{n-1}}{\Delta_n} \xi_n^2,$$

что значит, что q(x) положительно определена так как при $x \neq 0$ верно q(x) > 0.

2. Заметим, что если q(x) положительно определена, то -q(x) отрицательно определена. Пусть q(x) определена отрицательно, тогда -q(x) определена положительно. Выпишем её матрицу:

$$\begin{pmatrix} -a_{11} & -a_{12} & \dots & -a_{2n} \\ -a_{21} & -a_{22} & \dots & -a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ -a_{n1} & -a_{n2} & \dots & -a_{nn} \end{pmatrix}$$

Тогда $\Delta_1 = -a_{11} > 0$, откуда $a_{11} < 0$.

Продолжим вычислять миноры:
$$\Delta_2 = \begin{vmatrix} -a_{11} & -a_{12} \\ -a_{21} & -a_{22} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} > 0.$$

Вычисляя аналогично миноры большего размера получим, что знак меняется на каждом шаге, что значит, что $\mathrm{sgn}(\Delta_i) = (-1)^i$.

Напоминание. Билинейная функция f(x,y) называется кососимметричной, если для всех $x,y \in V$ верно:

- 1. f(x,y) = -f(y,x),
- 2. f(x,x) = 0.

Определение 61. Базис $e = \langle e_1, \dots e_n \rangle$ называется *симплектическим* для билинейной формы f(x,y), если для $S = 1, \dots n$ верно:

$$f(e_{2S-1}, e_{2S}) = 1 \Rightarrow f(e_{2S}, e_{2S-1}) = -1,$$

а для остальных значений i, j верно $f(e_i, e_j) = 0$. Матрица в таком случае имеет следующий вид:

$$A_f = \begin{pmatrix} \boxed{A_1} & 0 & \dots & 0 \\ 0 & A_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \boxed{A_m} \end{pmatrix},$$

где для всех i матрица A_i нулевая или имеет вид $A_i = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$.

Теорема 28 (О каноническом виде кососимметричной билинейной функции).

 $Ecnu\ f(x,y)$ – кососимметричная билинейная функция в V, то в V существует симплектический базис.

Доказательство. Докажем по индукции по размерности пространства V.

- 1. Если f(x,y) = 0 для всех x,y, то S = 0 очевидно.
- 2. Если $f \neq 0$, то найдутся векторы e_1, e_2 такие, что $f(e_1, e_2) = c \neq 0$.

Рассмотрим тогда векторы $e_1'=e_1,\,e_2'=\frac{e_2}{c},$ для которых верно $f(e_1',e_2')=1.$

Тогда в V существует невырожденное подпространство $U=\langle e_1',e_2'\rangle$, в котором матрица будет иметь вид $A_{f|_U}=\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$.

По теореме о невырожденном пространстве $V=U\oplus U^{\perp}$. Таким образом если $\dim V=2$, то искомый базис получен. Иначе по предположению индукции искомый базис найдется для U^{\perp} , а значит при объединении с e'_1 и e'_2 получим базис для V.

18. Полуторалинейные формы в комплексном линейном пространстве. Эрмитовы полуторалинейные и квадратичные формы, связь мужду ними. Приведение их к каноническому виду. Закон инерции для эрмитовых квадратичных форм. Критерий Сильвестра.

Определение 62. Если рассматривать V над \mathbb{C} , то в V не бывает положительных функций в привычном нам виде. Для сравнения функции с 0 на комплексных значениях будем считать, что если q(x) > 0, то q(ix) = f(ix, ix) = -f(x, x) = -q(x) < 0.

Определение 63. Полуторалинейными функциями будем называть такие $f: V \times V \to \mathbb{C}$, для которых верны:

- 1. Аддитивность по первому аргументу: $f(x_1 + x_2, y) = f(x_1, y) + f(x_2, y)$,
- 2. Однородность по первому аргументу: $f(\lambda x, y) = \lambda f(x, y)$ для всех $\lambda \in \mathbb{C}$,
- 3. Аддитивность по второму аргументу: $f(x, y_1 + y_2) = f(x, y_1) + f(x, y_2)$.
- 4. $f(x, \lambda y) = \overline{\lambda} f(x, y)$.

Определение 64. Пусть f – полуторалинейная функция на V, e – базис в V, и векторы $x,y \in V$ имеют координаты $x \leftrightarrow (x_1, x_2, \dots x_n)^T$, $y \leftrightarrow (y_1, y_2, \dots y_n)$. Полуторалинейной формой от x, y называют:

$$f(x,y) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_i \overline{y_j} = x^T A \overline{y}.$$

Утверждение 24. Пусть f – полуторалинейная функция e V, e, f – базисы e V, S – матрица перехода $S = S_{e \to f}$ и функция f представляется e базисах V матрицами $f \underset{e}{\leftrightarrow} A$, $f \underset{f}{\leftrightarrow} B$, то $B = S^T A \overline{S}$.

Доказательство. В базисе e функция f выражается как $f(x,y) = x^T A \overline{y}$. При переходе к базису f получим x = Sx', y = Sy'. Тогда:

$$f(x,y) = (Sx')^T A \overline{(Sy')} = (x')^T S^T A \overline{Sy'} = (x')^T B \overline{y'},$$

откуда $B = S^T A \overline{S}$.

Определение 65. Полуторалинейная функция f(x,y) называется эрмитовой (или эрмитовосимметричной) если для всех $x,y\in V$ верно $f(x,y)=\overline{f(y,x)}$. Матрица называется эрмитовосимметричной если $A=\overline{A^T}$.

Замечание. Комплексное сопряжение \overline{A} к матрице A стоит воспринимать как замену всех её элементов на комплексно-сопряженные к ним.

Утверждение 25. Полуторалинейная функция f эрмитова тогда и только тогда, когда в произвольном базисе e е \ddot{e} матрица эрмитова.

Доказательство.

1. Необходимость. Пусть f эрмитова. Тогда верно:

$$a_{ij} = f(e_i, e_j) = \overline{f(e_j, e_i)} = \overline{a_{ji}}.$$

Отсюда следует $A = \overline{A^T}$.

2. Достаточность. Пусть $A = \overline{A^T}$, откуда $A^T = \overline{A}$. Тогда:

$$f(x,y) = (x^T A \overline{y}) = (x^T A \overline{y})^T = \overline{y^T} A^T x = \overline{y^T} A^T \overline{\overline{x}} = \overline{y^T A \overline{x}} = \overline{f(y,x)}.$$

Определение 66. Пусть $\Delta = \{(x,x)|x\in V\}$ – диагональ декартового квадрата. Тогда функция $q:V\to\mathbb{C}$ назвается эрмитовой квадратичной функцией $q(x)=f(x,x)=f|_{\Delta}$, где f – эрмитова симметричная функция.

Теорема 29 (О существовании канонического базиса).

Пусть q — эрмитова квадратичная функция (или соответствующая ей эрмитова симметричная функция f). Тогда в V существует базис e, в котором матрица q(f) диагональна, причем на главной диагонали стоят числа ± 1 и 0.

Идея доказательства. Пусть $q \neq 0$. Тогда в V существует такой ненулевой вектор e_1 , что $q(e_1) \neq 0$. Без ограничения общности можно перейти к $q(e_1) = \pm 1$.

Тогда можно рассмотреть пространство $U = \langle e_1 \rangle$ и ортогональное дополнение к нему, образующие прямую сумму.

Утверждение 26 (Закон инерции для квадратичных эрмитовых функций). Пусть e - произвольный канонический базис для q(x) и пусть p,q - положительнай и отрицательный индексы инерции относительно e. Тогда:

- 1. $p = \max\{\dim U | U \leqslant V : q|_U nonoжительно onepedeneнa\}.$
- 2. $q = \max\{\dim U | U \leqslant V : q|_U ompuцательно onepedeлeнa\}.$
- 3. р и q не зависят от выбора канонического базиса.

Доказательство. Доказательство аналогично билинейному случаю.

Утверждение 27 (Аналог критерия Сильвестра). Пусть $q(x) \in H(V)$ – эрмитова квадратичная функция, A – $e\ddot{e}$ матрица в произвольном базисе, где выполняется условие эрмитовости $\tilde{A}^T = A$. Тогда:

- 1. q(x) положительно определена тогда и только тогда, когда $\Delta_1 > 0, \, \Delta_2 > 0, \, \dots, \, \Delta_n > 0.$
- 2. q(x) отрицательно определена тогда и только тогда, когда $\Delta_1 < 0, \ \Delta_2 > 0, \dots, \ \mathrm{sgn}(\Delta_n) = (-1)^n$.

Доказательство. Доказательство аналогично билинейному случаю.

19. Евклидово и эрмитово пространство. Выражение скалярного произведения в координатах. Матрица Грама системы векторов и ее свойства. Неравенства Коши-Буняковского и треугольника.

Определение 67. Пусть V - линейное пространство над полем действительных чисел. V называется Евклидовым, если на нем определена положительно определенная билинейная симметрическая функция f(x,y). По определению f(x,y) назвается скалярным произведением и обозначается (x,y).

Определение 68. Пусть V - линейное пространство над \mathbb{C} . V называется эрмитовым, если на V определена положительно определенная эрмитова полуторалинейная функция f(x,y). Аналогично с евклидовыми пространствами f(x,y) называется скалярным произведением и обозначается (x,y).

Определение 69. Матрицей Грама системы $a_1, a_2, \dots a_k$ называется матрица

$$\Gamma(a_1, \dots a_n) = \begin{pmatrix} (a_1, a_1) & (a_1, a_2) & \dots & (a_1, a_n) \\ (a_2, a_1) & (a_2, a_2) & \dots & (a_2, a_n) \\ \vdots & \vdots & \ddots & \vdots \\ (a_n, a_1) & (a_n, a_2) & \dots & (a_n, a_n) \end{pmatrix}$$

Теорема 30. 1. Пусть $e_1, e_2, \dots e_n$ - базис в V, $\Gamma = \Gamma(e)$. Тогда $\forall x, y \in V$ верно $(x, y) = x^T \Gamma \tilde{y}$

2. Пусть $a_1, a_2, \dots a_k$ - произвольная система векторов в V. Тогда $|\Gamma(a_1, \dots a_n)| \geqslant 0$, прричем равенство достигается тогда и только тогда, когда система линейно зависима.

Доказательство. 1. $f(x,y) = x^T A \tilde{y} = x^T \Gamma \tilde{y}$.

2. Пусть система линейно независима. Тогда $U = \langle a_1, a_2, \dots a_k \rangle$, $f|_U$ - положительно определена, а значит по критерию Сильвестра $|\Gamma(a_1, \dots a_n)| > 0$.

Пусть теперь система линейно зависима и без ограничения общности $a_k = \lambda_1 a_1 + \cdots + \lambda_{k-1} a_{k-1}$. Тогда нижняя строка будет состоять из нулей в силу того, что $(a_k, a_i) = (\lambda_1 a_1 + \cdots + \lambda_{k-1} a_{k-1}, a_i)$

Теорема 31 (Неравенство Коши-Буняковского). Пусть V - пространство со скалярным произведением, u пусть $x, y \in V$. Тогда

$$|(x,y)|^2 \leqslant (x,x) \cdot (y,y)$$

Доказательство. 1. Пусть x или y - нулевой вектор, тогда 0=0.

2. Пусть $x, y \neq 0$ и коллинеарны, то есть $y = \lambda x$. Тогда

$$|(x, \lambda x)|^2 = |\lambda|^2 |(x, x)|^2 = \lambda \tilde{\lambda} |(x, x)|^2 = (x, x)(y, y)$$

3. Пусть $x,y \neq 0$ и неколлинеарны. Тогда система из x и y линейно независима, а значит по теореме 1:

$$0 < |\Gamma(x,y)| = (x,x)(y,y) - (x,y)(y,x) = (x,x)(y,y) - |(x,y)|^{2}.$$

Следствие 8 (Неравенство треугольника). Для всех $x, y \in V$ верно:

$$|x+y| \leqslant |x| + |y|$$

Доказательство. Неравенство треугольника эквивалентно неравенству
$$(x+y,x+y)\leqslant (x,x)+2\sqrt{(x,x)(y,y)}+(y,y).$$
 $(x,x)+(y,y)+2\Re(x,y)$

20. Ортонормированные базисы и ортогональные (унитарные) матрицы. Существование ортонормированного базиса в пространстве со скалярным произведением. Изоморфизм евклидовых и эрмитовых пространств. Канонический изоморфизм евклидова пространства и сопряженного к нему.

Определение 70. Система векторов $x_1, x_2, \dots x_k$ называется ортогональной тогда и только тогда, когда $(x_i, x_j) = 0$ для всех $i \neq j$.

Определение 71. Система векторов $x_1, x_2, \dots x_k$ называется ортонормированной тогда и только тогда, когда она ортогональна и нормирована. Нормированность означает, что $(x_i, x_i) = 1$ для всех i.

Определение 72. Система подпространств U_1, U_2, \ldots, U_k называется ортогональной тогда и только тогда, когда для любой системы векторов $u_1 \in U_1, u_2 \in U_2, \ldots u_k \in U_k$ верно, что она ортогональна.

Определение 73. Матрица $A \in M_n(\mathbb{R})$ называется ортогональной, если $A^T A = E$, откуда так же $AA^T = E$.

Определение 74. Матрица $A\in M_n(\mathbb{C})$ называется унитарной, если $\tilde{A^T}A=E=A\tilde{A^T}$.

Утверждение 28. Пусть V - пространство со скалярным произведением, e - ортонормированный базис в V, f - произвольный базис в V. Тогда матрица перехода $S = S_{e \to f}$ является ортонональной тогда и только тогда, когда f - ортонормированный базис.

Доказательство. Пусть f(x,y) имеет матрицу Γ . Тогда так как e - ортонормированный базис, $\Gamma(e) = E$. Тогда $\Gamma(f) = S^T \Gamma(e) \tilde{S} = S^T \tilde{S}$.

Утверждение 29. Пусть V - пространство со скалярным произведением. Тогда в нём существует ортонормированный базис.

Доказательство. Пусть f(x,y) = (x,y), тогда для неё существует канонический базис, в котором f имеет матрицу E. $f(e_i,e_j) = (e_i,e_j) = \delta_{ij}$, откуда этот базис - ортонормированный.

Определение 75. Пусть V_1 и V_2 — евклидовы (эрмитовы) пространства. Отображение $\varphi: V_1 \to V_2$ называется изоморфизмом евклидовых (эрмитовых) пространств, если:

- 1. φ изоморфизм линейных пространств V_1 и V_2
- 2. $\forall \overline{u}, \overline{v} \in V_1 : (\overline{u}, \overline{v}) = (\varphi(\overline{u}), \varphi(\overline{v}))$

Теорема 32. Пусть V_1 и V_2 — евклидовы (эрмитовы) пространства. Тогда $V_1 \cong V_2 \Leftrightarrow \dim V_1 = \dim V_2$.

Доказательство.

- \Leftarrow Пусть e_1 , e_2 ортонормированные базисы в V_1 и V_2 , φ линейное отображение такое, что $\varphi(e_1)=e_2$. Тогда φ изоморфизм линейных пространств, причем для любых $\overline{u},\overline{v}\in V_1$, $\overline{u}\leftrightarrow_{e_1}x,\overline{v}\leftrightarrow_{e_1}y$, выполнено $(\overline{u},\overline{v})=x^TE\overline{y}=x^T\overline{y}=(\varphi(\overline{u}),\varphi(\overline{v}))$.
- \Rightarrow Поскольку $V_1\cong V_2$, то они в частности изоморфны как линейные пространства, откуда $\dim V_1=\dim V_2$.

Рассмотрим V — евклидово пространство.

Определение 76. Сопряженным κ V пространством называется пространство линейных функционалов на V. Обозначение — V^* .

Теорема 33. Для каждого $\overline{v} \in V$ положим $f_{\overline{v}}(\overline{u}) := (\overline{v}, \overline{u})$. Тогда сопоставление $\overline{v} \mapsto f_{\overline{v}}$ осуществляет изоморфизм между V и V^* .

Доказательство. Проверим, что заданное сопоставление линейно:

$$f_{\overline{v_1}+\overline{v_2}}(\overline{u}) = (\overline{v_1} + \overline{v_2}, \overline{u}) = (\overline{v_1}, \overline{u}) + (\overline{v_2}, \overline{u}) = f_{\overline{v_1}}(\overline{u}) + f_{\overline{v_2}}(\overline{u})$$
$$f_{\alpha\overline{v}}(\overline{u}) = (\alpha\overline{v}, \overline{u}) = \alpha(\overline{v}, \overline{u}) = \alpha f_{\overline{v}}(\overline{u})$$

Поскольку $\dim V = \dim V^*$ и отображение линейно, то нам достаточно проверить его инъективность, что эквивалентно условию $\forall \overline{v} \in V, \overline{v} \neq \overline{0}: f_{\overline{v}} \neq 0$. Но это условие выполнено в силу положительной определенности скалярного произведения: $\forall \overline{v} \in V, \overline{v} \neq \overline{0}: f_{\overline{v}}(\overline{v}) = (\overline{v}, \overline{v}) > 0$.

21. Ортогональное дополнение к подпространству. Задача об ортогональной проекции и ортогональной составляющей. Процедура ортогонализации Грама-Шмидта. Объем параллелепипеда.

Определение 77. Пусть $U \leq V$. Ортогональным дополнением к U относительно функции $f \in B^{\pm}(V)$ называется подпространство $U^{\perp} = \{ y \in V \mid \forall x \in U \hookrightarrow f(x,y) = 0 \}.$

Утверждение 30. Пусть $U\subset V$, тогда $U^\perp=\psi(U^\circ)$, где U° – аннулятор пространства U в V^*

Доказательство. $y \in U^{\perp} \Leftrightarrow \forall x \in U \hookrightarrow (x,y) = 0 \Leftrightarrow \forall x \in U f_y(x) = 0 \Leftrightarrow f_y \in U^{\circ} \Leftrightarrow \psi(f_y) \in \psi(U^{\circ})$. Значит, мы доказали, что для любого вектора из ортогонального дополнения его образ принадлежит образу аннулятора, а так как в обратную сторону очевидно, то $U^{\perp} = \psi(U^{\circ})$.

Утверждение 31. Свойства ортогонального дополнения:

- 1. $(U^{\perp})^{\perp} = U$
- 2. $(U+W)^{\perp} = U^{\perp}$
- 3. $(U \cap W)^{\perp} = U^{\perp} + W^{\perp}$

Доказательство. 1. $x \in (U^{\perp})^{\perp} \Leftrightarrow \forall y \in U^{\perp}(x,y) = 0$. Но, с другой стороны, $\forall x \in U(x,y) = 0$. Значит, любой вектор из U лежит в $(U^{\perp})^{\perp}$. И из того, что размерности равны, следует равенство пространств: $\dim(U^{\perp})^{\perp} = \dim V - \dim U^{\perp} = \dim V - (\dim V - \dim U) = \dim U$.

2. По утверждению 30:

$$(U+W)^{\perp}=\psi((U+W)^{\circ})=\psi(U^{\circ}\cap W^{\circ})=\psi(U^{\circ}\cap \psi(W^{\circ})=U^{\perp}\cap W^{\circ}$$

Задача (Задача об ортогональной проекции). Пусть V – пространство со скалярным произведением, U – подпространство V. Обозначим размерность V за n, размерность U за k. Тогда сужение на U невырожденной функции f(x,y), являющейся скалярным произведением в V, так же будет являться скалярным произведением u в U.

Пространство V будет представляться как $V = U + U^{\perp}$.

Дан базис в U, вектор $x \in V$. Требуется представить вектор x в виде суммы его проекций $\tilde{x} = \operatorname{pr}_{U} x$ и $\overset{\circ}{x} = \operatorname{ort}_{U} x$ на U и U^{\perp} соответственно.

Алгоритм.

1. Зафиксируем в U ортонормированный базис $e_1, \dots e_k$, достроив его до базиса $e_1, \dots e_n$ в V. Тогда:

$$x = \sum_{i=1}^{k} \alpha_i e_i + \sum_{i=k+1}^{n} \alpha_i e_i.$$

При этом
$$\sum_{i=1}^k \alpha_i e_i \in U, \sum_{i=k+1}^n \alpha_i e_i \in U^\perp$$
. Тогда $\tilde{x} = \sum_{i=1}^k \alpha_i e_i$, откуда $\overset{o}{x} = x - \tilde{x}$.

2. Зафиксируем в U ортогональный базис $e_1, e_2, \dots e_k$, достроив его до ортогонального базиса $e_1, \dots e_n$ в V. Тогда рассмотрим базис e' такой, что $e'_i = \frac{e_i}{|e_i|}$, очевидно являющийся ортонормированным. Тогда

$$\tilde{x} = \sum_{i=1}^{k} (x, e_i') e_i' = \sum_{i=1}^{k} (x, e_i') \frac{e_i}{|e_i|} = \sum_{i=1}^{k} \frac{(x, e_i)}{(e_i, e_i)} e_i = \operatorname{pr}_e x = \frac{(x, e)}{(e, e)} e.$$

3. Зафиксируем произвольный базис $e_1, e_2, \dots e_k$ в U, достроив его до базиса $e_1, \dots e_n$ в V. Тогда необходимые нам векторы выражаются как $\tilde{x} = \sum_{i=1}^k \lambda_i e_i$ и $\overset{o}{x} = x - \tilde{x} = x - \sum_{i=1}^k \lambda_i e_i \perp e_1, \dots, e_k$.

Чтобы получить коэффициенты λ_i запишем следующую систему:

$$\begin{cases} (x - \sum_{i=1}^{k} \lambda_i e_i, e_1) = 0, \\ (x - \sum_{i=1}^{k} \lambda_i e_i, e_2) = 0, \\ \dots \end{cases} \Leftrightarrow \begin{cases} (e_1, e_1)\lambda_1 + (e_2, e_1)\lambda_2 + \dots + (e_k, e_1) = (x, e_1), \\ (e_1, e_2)\lambda_1 + (e_2, e_2)\lambda_2 + \dots + (e_k, e_2) = (x, e_2), \\ \dots \\ (e_1, e_k)\lambda_1 + (e_2, e_k)\lambda_2 + \dots + (e_k, e_k) = (x, e_k). \end{cases}$$
$$(x - \sum_{i=1}^{k} \lambda_i e_i, e_k) = 0.$$

Матрица системы является сужением Γ на U, а значит $|\Gamma|_U(e_1, \ldots, e_k)| > 0$. Таким образом по теореме Крамера система имеет единственное решение.

Теорема 34 (метод Грама-Шмидта). Пусть $(\overline{f_1},\ldots,\overline{f_n})$ — базис в V. Тогда в V существует ортогональный базис $(\overline{e_1},\ldots,\overline{e_n})$ такой, что $\forall k \in \{1,\ldots,n\}: \langle \overline{e_1},\ldots,\overline{e_k} \rangle = \langle \overline{f_1},\ldots,\overline{f_k} \rangle$, причем матрица перехода S — верхнетреугольная c единицами на главной диагонали.

Замечание. Получим явную формулу для $\overline{e_k}$ при всех $k \in \{2, \ldots, n\}$:

$$\overline{e_k} = \overline{f_k} - \operatorname{pr}_{\langle \overline{f_1}, \dots, \overline{f_{k-1}} \rangle} \overline{f_k} = \overline{f_k} - \operatorname{pr}_{\langle \overline{e_1}, \dots, \overline{e_{k-1}} \rangle} \overline{f_k} = \overline{f_k} - \sum_{i=1}^{k-1} \frac{(\overline{f_k}, \overline{e_j})}{||\overline{e_j}||^2} \overline{e_j}$$

Следствие 9. Пусть $(\overline{e_1},\ldots,\overline{e_k})$ — ортогональная система ненулевых векторов из V. Тогда в V существует ортогональный базис $(\overline{e_1},\ldots,\overline{e_n})\supset (\overline{e_1},\ldots,\overline{e_k})$.

Доказательство. Дополним систему $(\overline{e_1},\ldots,\overline{e_k})$ до произвольного базиса и применим метод Грама-Шмидта. Тогда базис станет ортогональным, при этом первые k векторов в нем не изменятся, поскольку $\forall i \in \{1,\ldots,k\}: \overline{e_i} \mapsto \overline{e_i} - \operatorname{pr}_{\langle \overline{e_1},\ldots,\overline{e_{i-1}}\rangle} \overline{e_i} = \overline{e_i}$.

Определение 78. Определеим объем системы векторов по индукции:

- 1. $V_1(x_1) = |x_1|$
- 2. $V_k(x_1, \ldots, x_k) = V_{k-1}(x_1, \ldots, x_{k-1}) \rho(x_k, \langle x_1, \ldots, x_{k-1} \rangle)$

Следствие 10. $V_k(x_1, ..., x_k) \ge 0$, причем равенство достигается только в том случае, когда $\exists i \hookrightarrow \rho(x_k, \langle x_1, ..., x_{k-1} \rangle) = 0$. Что возможно только когда система $\langle x_1, ..., x_{k-1} \rangle$ – линейно зависима.

Утверждение 32. $\rho(U, x) = |\operatorname{ort}_{U} x|$

Доказательство. $|x-u|\geqslant |x\stackrel{\circ}{-}u|$ – по определению. Тогда по теореме Пифагора: $|\stackrel{\circ}{x}-\stackrel{\circ}{u}|=|\stackrel{\circ}{x}|$ – ортогональное дополнение. Значит $\inf_{y\in U}|x-y|\geqslant |\stackrel{\circ}{x}|$ – достигается.

Теорема 35 (о геометрическом свойстве определителя Грама системы векторов). Если x_1, \ldots, x_k – система векторов в пространстве со скалярным произведением, то $(V_k)^2(x_1, \ldots, x_k) = |\Gamma(x_1, \ldots, x_k)|$

Доказательство. Если система x_1, \dots, x_k – линейно зависима, то 0 = 0 – теорема выполняется. Пусть система линейно независима.

1. Покажем, что преобразование Грама-Шмидта не изменяет левую и правую части равенства: для этого возьмем унипотентную матрицу перехода $S: (y_1, \ldots, y_k) = (x_1, \ldots, x_k)S$, тогда:

$$|\Gamma(y_1, \dots, y_k)| = |S^T \Gamma(x_1, \dots, x_k)S| = |\det S|^2 |\Gamma(x_1, \dots, x_k)| = |\Gamma(x_1, \dots, x_k)|$$

2. Теперь покажем равенство квадратов объемов индукцией по k: при k=1 – очевидно, что $y_1=x_1$. Теперь пусть $V_{k-1}(x_1,\ldots,x_{k-1})=V_{k-1}(y_1,\ldots,y_{k-1})$. По определению объема делаем шаг индукции:

$$\rho(x_k, \langle x_1, \dots, x_{k-1} \rangle) = |\operatorname{ort}_{\langle x_1, \dots, x_{k-1} \rangle} x_k| = |\operatorname{ort}_{\langle x_1, \dots, x_{k-1} \rangle} y_k| = |\operatorname{ort}_{\langle y_1, \dots, y_{k-1} \rangle} y_k| = \rho(y_k, \langle y_1, \dots, y_k \rangle)$$

3. Теперь равенство достаточно доказать для ортонормированного базиса:

$$(V_k)^2(y_1, \dots, y_k) = (V_{k-1})^2(y_1, \dots, y_k)\rho^2(y_k, \langle y_1, \dots, y_k \rangle) =$$

$$= (V_{k-1})^2(y_1, \dots, y_k)|y_k|^2 = \sum_{i=1}^k (y_i, y_i) = |\Gamma(y_1, \dots, y_k)|$$

Определение 79. Параллелепипедом, порожденным a_1, a_2, \ldots, a_n , называется множество $P(a_1, \ldots, a_n) = \{\sum_{i=1}^n \alpha_i a_i, \ 0 \leqslant \alpha_i \leqslant 1\}.$

Определение 80. Пусть V – евклидово пространство с определенной ориентацией (базис положительно определен). $V_{or}P(a_1,\ldots,a_n)=\varepsilon V_n(a_1,\ldots,a_n), \varepsilon=\begin{cases} 1,\ \mathrm{ecnu}\ (a_1,\ldots,a_n)\ \mathrm{положит.\ onp.} \\ -1,\ \mathrm{unave} \end{cases}$

22. Преобразование, сопряженное данному. Существование и единственность такого преобразования, его свойства. Теорема Фредгольма.

Определение 81. Пусть $\varphi \in \mathcal{L}(V)$. Для всех $\overline{u}, \overline{v} \in V$ положим $f_{\varphi}(\overline{u}, \overline{v}) := (\varphi(\overline{u}), \overline{v})$.

Определение 82. Пусть $\varphi \in \mathcal{L}(V)$. Оператором, *сопряженным* $\kappa \varphi$, называется оператор $\varphi^* \in \mathcal{L}(V)$ такой, что $f_{\varphi} = g_{\varphi^*}$, то есть $\forall \overline{u}, \overline{v} \in V : (\varphi(\overline{u}), \overline{v}) = (\overline{u}, \varphi^*(\overline{v}))$.

Замечание. Поскольку сопоставления $\varphi \mapsto f_{\varphi} = g_{\varphi^*} \mapsto \varphi^*$ биективны, то сопряженный оператор φ^* существует и единственен.

Замечание. $(\varphi(\overline{u}), \overline{v}) = (\overline{u}, \varphi^*(\overline{v})) \Leftrightarrow A_{\varphi^*} = \Gamma^{-1} A_{\varphi}^T \Gamma.$

Утверждение 33. Сопряженные операторы обладают следующими свойствами:

- 1. $\forall \varphi, \psi \in \mathcal{L}(V) : (\varphi + \psi)^* = \varphi^* + \psi^*$
- 2. $\forall \varphi, \psi \in \mathcal{L}(V) : (\varphi \psi)^* = \psi^* \varphi^*$
- 3. $\forall \varphi \in \mathcal{L}(V) : \varphi^{**} = \varphi$

Доказательство. Доказательство вытекает из свойств матриц соответсвующих операторов. \square

Теорема 36 (Фредгольма). Пусть $\varphi \in \mathcal{L}(V)$. Тогда $\operatorname{Ker} \varphi^* = (\operatorname{Im} \varphi)^{\perp}$.

Доказательство.

- \subset Пусть $\overline{v} \in \operatorname{Ker} \varphi^*$, тогда $\varphi^*(\overline{v}) = \overline{0}$, и $\forall \overline{u} \in V : (\varphi(\overline{u}), \overline{v}) = (\overline{u}, \varphi^*(\overline{v})) = 0 \Rightarrow \overline{v} \in (\operatorname{Im} \varphi)^{\perp}$.
- \supset Заметим, что rk $\varphi = \operatorname{rk} \varphi^* = \dim \operatorname{Im} \varphi = \dim \operatorname{Im} \varphi^*$, тогда $\dim \operatorname{Ker} \varphi^* = \dim (\operatorname{Im} \varphi)^{\perp}$, из чего следует требуемое в силу обратного включения.

23. Самосопряженное линейное преобразование. Свойства самосопряженных преобразований. Основная теорема о самосопряженных операторах (существование ортонормированного базиса из собственных векторов).

Определение 83. Оператор $\varphi \in \mathcal{L}(V)$ называется самосопряженным, если $\varphi^* = \varphi$, то есть $\forall \overline{u}, \overline{v} \in V : (\varphi(\overline{u}), \overline{v}) = (\overline{u}, \varphi(\overline{v})).$

Замечание. Если самосопряженный оператор $\varphi \in \mathcal{L}(V)$ в ортонормированном базисе имеет матрицу A, то $A \leftrightarrow_e \varphi = \varphi^* \leftrightarrow_e A^*$, то есть $A = A^*$ — симметрична в евклидовом случае и эрмитова в эрмитовом случае.

Утверждение 34. Пусть $\varphi \in \mathcal{L}(V)$, и подпространство $U \leqslant V$ инвариантно относительно φ . Тогда U^{\perp} тоже инвариантно относительно φ^* .

Доказательство. Пусть $\overline{v} \in U^{\perp}$. Тогда $\forall \overline{u} \in U : (\overline{u}, \varphi^*(\overline{v})) = (\varphi(\overline{u}), \overline{v}) = (\varphi(\overline{u}), \overline{v}) = 0$ в силу инвариантности U. Значит, $\varphi^*(\overline{v}) \in U^{\perp}$.

Утверждение 35. Пусть $\varphi \in \mathcal{L}(V)$ — самосопряженный. Тогда его характеристический многочлен χ_{φ} раскладывается на линейные сомножители над \mathbb{R} .

Доказательство. Пусть сначала V — эрмитово пространство, $\lambda \in \mathbb{C}$ — корень χ_{φ} . Тогда λ является собственным значением оператора φ с собственным вектором $\overline{v} \in V$, $\overline{v} \neq \overline{0}$, откуда $\lambda ||\overline{v}||^2 = (\varphi(\overline{v}), \overline{v}) = (\overline{v}, \varphi(\overline{v})) = \overline{\lambda} ||\overline{v}||^2$. Значит, $\lambda = \overline{\lambda} \Rightarrow \lambda \in \mathbb{R}$.

Пусть теперь V — евклидово пространство с ортонормированным базисом e, тогда $\varphi \leftrightarrow_e A \in M_n(\mathbb{R})$, $A = A^T$. Рассмотрим U — эрмитово пространство той же размерности с ортонормированным базиом \mathcal{F} и оператор $\psi \in \mathcal{L}(U)$, $\psi \leftrightarrow_{\mathcal{F}} A$. Тогда ψ — тоже самосопряженный, поэтому для χ_{ψ} утверждение выполнено. Остается заметить, что $\chi_{\psi} = \chi_A = \chi_{\varphi}$.

Утверждение 36. Пусть $\varphi \in \mathcal{L}(V)$ — самосопряженный, $\lambda_1, \lambda_2 \in \mathbb{R}$ — два различных собственных значения φ . Тогда $V_{\lambda_1} \perp V_{\lambda_2}$.

Доказательство. Пусть $\overline{v_1} \in V_{\lambda_1}, \overline{v_2} \in V_{\lambda_2}$. Тогда:

$$\lambda_1(\overline{v_1}, \overline{v_2}) = (\varphi(\overline{v_1}), \overline{v_2}) = (\overline{v_1}, \varphi(\overline{v_2})) = \lambda_2(\overline{v_1}, \overline{v_2}) \Rightarrow (\overline{v_1}, \overline{v_2}) = 0 \qquad \Box$$

Теорема 37. Пусть $\varphi \in \mathcal{L}(V)$ — самосопряженный. Тогда в V существует ортонормированный базис e, в котором матрица оператора φ диагональна.

Доказательство. Проведем индукцию по $n:=\dim V$. База, n=1, тривиальна. Пусть теперь n>1. Поскольку корни χ_{φ} вещественны, то у φ есть собственное значение $\lambda_0\in\mathbb{R}$. Пусть $\overline{e_0}\in V$ —соответствующий ему собственный вектор длины 1. Тогда подпространство $U:=\langle\overline{e_0}\rangle^{\perp}$ инвариантно относительно φ , поэтому можно рассмотреть оператор $\varphi|_U\in\mathcal{L}(U)$, который также является самосопряженным. По предположению индукции, в U есть ортонормированный базис из собственных векторов, тогда его объединение с $\overline{e_0}$ дает искомый базис в V.

24. Ортогональные преобразования и их свойства. Канонический вид ортогонального преобразования. Инвариантные подпространства малых размерностей для линейного оператора в действительном линейном пространстве.

Определение 84. Оператор $\varphi \in \mathcal{L}(V)$ называется ортогональным (унитарным), если $\forall \overline{u}, \overline{v} \in V : (\varphi(\overline{u}), \varphi(\overline{v})) = (\overline{u}, \overline{v}).$

Теорема 38. Пусть $\varphi \in \mathcal{L}(V)$. Тогда оператор φ ортогонален (унитарен) $\Leftrightarrow \varphi$ обратим и $\varphi^{-1} = \varphi^*$.

Доказательство. По определению, φ ортогональнен (унитарен) \Leftrightarrow для любых векторов $\overline{u}, \overline{v} \in V$ выполнено $(\overline{u}, \overline{v}) = (\varphi(\overline{u}), \varphi(\overline{v})) = (\overline{u}, (\varphi^*\varphi)(\overline{v}))$. В силу единственности сопряженного оператора, это равносильно равенству $\varphi^*\varphi = \mathrm{id}^* = \mathrm{id}$. Это, в свою очередь, равносильно тому, что φ обратим и $\varphi^{-1} = \varphi^*$.

Утверждение 37. Пусть $\varphi \in \mathcal{L}(V)$ — ортогональный (унитарный), $U \leqslant V$. Тогда U инвариантно относительно $\varphi \Leftrightarrow U^{\perp}$ инвариантно относительно φ .

Доказательство. Поскольку $(U^{\perp})^{\perp} = U$, то достаточно доказать импликацию \Rightarrow . Так как U инвариантно относительно φ , то U^{\perp} инвариантно относительно $\varphi^* = \varphi^{-1}$, то есть $\varphi^{-1}(U^{\perp}) \leqslant U^{\perp}$. Но оператор φ биективен, поэтому $\varphi^{-1}(U^{\perp}) = U^{\perp}$ и $\varphi(U^{\perp}) = U^{\perp}$, откуда U^{\perp} инвариантно относительно φ .

Теорема 39 (о каноническом виде ортогонального оператора). Пусть V - евклидово пространство, $\varphi: V \to V$ - ортогональный оператор. Тогда существует ортонормированный базис e, в котором матрица φ состоит из матриц поворота и единиц на главной диагонали.

$$\varphi = \begin{pmatrix} \hline R(\alpha_1) & 0 & \dots & 0 \\ \hline 0 & R(\alpha_2) & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix},$$

 $\ \ \, \mathcal{J}$ оказательство. $\ \, \varphi$ имеет в V одномерные или двумерные инвариантные подпространства. Пусть U - одномерное подпространство, или, если таких нет, двумерное инвариантное подпространство.

- 1. Пусть $\dim U = 1, \ e \in U, \ |e| = 1.$ Покажем, что в таком случае модуль λ равен единице. В U верно $\varphi(e) = \lambda e$. Тогда $(e,e) = (\varphi(e), \varphi(e)) = \lambda^2(e,e)$. Отсюда $\lambda^2 = 1$, а значит $\lambda = \pm 1$.
- 2. Пусть $\dim V=2,\ (e_1,e_2)$ ортонормированный базис в U. Тогда $A^TA=E$. Найдем вид A. Пусть $A=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Тогда:

$$\begin{pmatrix} a & c \\ b & d \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Получим следующую систему уравнений:

$$a^2 + c^2 = 1(1)$$

$$b^2 + d^2 = 1(2)$$

$$ab + cd = 0(3)$$

Положим

$$a = \cos(\alpha), c = \sin(\alpha), b = -\sin(\beta), d = \cos(\beta)$$

Условия (1) и (2) очевидно выполняются. Проверим (3) и найдем при помощи него связь между углами α и β .

$$-\cos(\alpha)\sin(\beta) + \sin(\alpha)\cos(\beta) = 0$$
$$\sin(\alpha - \beta) = 0 \hookrightarrow \alpha - \beta = \pi k, k \in \mathbb{Z}$$

Рассмотрим случаи:

- (a) $\alpha = \beta$ по модулю 2π .
- (b) $\alpha = \beta + \pi$ по модулю 2π .
- (c) Покажем, что $\alpha + \beta = \pi$ быть не может:

$$\cos(\beta) = \cos(\alpha - \pi) = -\cos(\alpha)$$
$$\sin(\beta) = \sin(\alpha - \pi) = -\sin(\alpha) \Rightarrow A = \begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ \sin(\alpha) & -\cos(\alpha) \end{pmatrix}$$

Где $A^T = A$ и получаем два собственных вектора: $v_1 = (\cos(\frac{\alpha}{2}), \sin(\frac{\alpha}{2}))^T, v_{-1} = (-\sin(\frac{\alpha}{2}), \cos(\frac{\alpha}{2}))^T$ – это противоречит с тем, что нет одномерных инвариантных подпространств.

Теперь пространство V раскладывается в прямую сумму $V = U \oplus U^{\perp}$. По предположению индукции для ортогонального дополнения U теорема верна. Тогда она верна и для всего V.

Утверждение 38. Пусть V — линейное пространство над \mathbb{R} , $\dim V \geqslant 1$, $\varphi \in \mathcal{L}(V)$. Тогда у φ существует одномерное или двумерное инвариантное подпространство.

Доказательство. По основной теореме алгебры, минимальный многочлен μ_{φ} имеет следующий вид:

$$\mu_{\varphi}(x) = \prod_{i=1}^{k} (x - \alpha_i) \prod_{j=1}^{m} (x^2 + \beta_j x + \gamma_j)$$

Поскольку $\mu_{\varphi}(\varphi) = 0$, то хотя бы один из операторов $\varphi - \alpha_i$, $\varphi^2 + \beta_j \varphi + \gamma_j$ — вырожденный. Более того, все они вырожденные в силу минимальности многочлена μ_{φ} . Значит, возможны два случая:

- 1. Если $\varphi-\alpha$ вырожденный, то $\exists \overline{v} \in V, \ \overline{v} \neq \overline{0}$ собственный вектор с собственным значением α , и $\langle \overline{v} \rangle \leqslant V$ искомое подпространство.
- 2. Если $\varphi^2+\beta\varphi+\gamma$ вырожденный, то $\exists \overline{v}\in V,\ \overline{v}\neq \overline{0}: (\varphi^2+\beta\varphi+\gamma)(\overline{v})=\overline{0}.$ Поскольку $\varphi^2(\overline{v})=-\beta\varphi(\overline{v})-\gamma\overline{v},$ то $\langle \overline{v},\varphi(\overline{v})\rangle\leqslant V$ искомое подпространство.

25. Полярное разложение линейного преобразования в евклидовом пространстве. Единственность полярного разложения для невырожденного оператора.

Теорема 40. Пусть $\varphi \in \mathcal{L}(V)$. Тогда существуют $\psi, \Theta \in \mathcal{L}(V)$ такие, что ψ — самосопряженный с неотрицательными собственными значениями, Θ — ортогональный (унитарный), и $\varphi = \psi\Theta$.

Доказательство. Рассмотрим оператор $\eta:=\varphi^*\varphi$, тогда $\eta^*=\varphi^*\varphi=\eta$, то есть η — самосопряженный. Более того, если $\overline{v}\in V\backslash\{\overline{0}\}$ — собственный вектор оператора η с собственным значением $\lambda\in\mathbb{R}$, то $\eta(\overline{v})=\lambda\overline{v}$, тогда $0\leqslant (\varphi(\overline{v}),\varphi(\overline{v}))=(\overline{v},\eta(\overline{v}))=\lambda(\overline{v},\overline{v})\Rightarrow \lambda\geqslant 0$.

Пусть $(\overline{e_1},\ldots,\overline{e_n})$ — ортонормированный базис в V из собственных векторов оператора η с собственными значениями $\lambda_1,\ldots,\lambda_n\geqslant 0$. Положим $\overline{f_i}:=\varphi(\overline{e_i}),\ i\in\{1,\ldots,n\}$. Тогда для любых $i,j\in\{1,\ldots,n\}$ выполнено $(\overline{f_i},\overline{f_j})=(\varphi(\overline{e_i}),\varphi(\overline{e_j}))=(\overline{e_i},\eta(\overline{e_j}))=\lambda_j(\overline{e_i},\overline{e_j})$. Значит, система $(\overline{f_1},\ldots,\overline{f_n})$ ортогональна, и, более того, для любого $i\in\{1,\ldots,n\}$ выполнено $||\overline{f_i}||^2=\lambda_i||\overline{e_i}||^2=\lambda_i$. Будем без ограничения общности считать, что $\lambda_1,\ldots,\lambda_k>0$ и $\lambda_{k+1}=\cdots=\lambda_n=0$. Положим $\overline{g_i}:=\frac{1}{\sqrt{\lambda_i}}\overline{f_i},\ i\in\{1,\ldots,k\}$, и дополним $(\overline{g_1},\ldots,\overline{g_k})$ до ортонормированного базиса $(\overline{g_1},\ldots,\overline{g_n})$. Тогда оператор φ имеет следующий вид: $\overline{e_i}\mapsto \overline{g_i}\mapsto \sqrt{\lambda_i}\overline{g_i}=\overline{f_i}$. Зададим $\psi,\Theta\in\mathcal{L}(V)$ на базисах $(\overline{e_1},\ldots,\overline{e_n})$ и $(\overline{g_1},\ldots,\overline{g_n})$ следующим образом:

$$\Theta : \overline{e_i} \mapsto \overline{g_i}$$

$$\psi : \overline{g_i} \mapsto \sqrt{\lambda_i} \overline{g_i} = \overline{f_i}$$

Таким образом, $\psi\Theta = \varphi$. Наконец, Θ переводит ортонормированный базис $(\overline{e_1}, \dots, \overline{e_n})$ в ортонормированный базис $(\overline{g_1}, \dots, \overline{g_n})$, поэтому Θ — ортогональный (унитарный), а ψ имеет в ортонормированном базисе $(\overline{g_1}, \dots, \overline{g_n})$ диагональный вид, поэтому ψ — самосопряженный.

Замечание. Порядок операторов в композиции несущественен: если $\varphi = \psi \Theta$, то $\varphi^* = \Theta^* \psi^* = \Theta^{-1} \psi$ —теперь ортогональный (унитарный) оператор Θ^{-1} идет перед самосопряженным оператором ψ .

Определение 85. Представление $\varphi \in \mathcal{L}(V)$ в виде $\psi\Theta$ (или в виде $\Theta'\psi'$) с соответствующими требованиями из теоремы выше называется *полярным разложением* φ , а базисы $(\overline{e_1}, \ldots, \overline{e_n})$ и $(\overline{g_1}, \ldots, \overline{g_n})$ из доказательства теоремы — *сингулярными базисами* φ , причем эти базисы одинаковы в случаях $\psi\Theta$ и $\Theta'\psi'$.

Замечание. Геометрический смысл полярного разложения — представление оператора φ в виде композиции движения Θ и растяжения ψ (с неотрицательными коэффициентами) вдоль нескольких взаимно ортогональных осей.

Замечание. Можно показать, что если оператор $\varphi \in \mathcal{L}(V)$ — невырожденный, то полярное разложение φ единственно.

26. Приведение квадратичной формы в пространстве со скалярным произведением к главным осям. Одновременное приведение пары квадратичных форм к диагональному виду.

Теорема 41 (о приведении к главным осям). Пусть V - eвклидово (эрмитово) пространство, $q \in \mathcal{Q}(V)$. Тогда в V существует ортонормированный базис e, в котором q имеет диагональный вид.

Доказательство. Пусть $b \in \mathcal{B}^+(V) - \theta$ -линейная форма, полярная к q. Тогда $\exists \varphi \in \mathcal{L}(V)$ такой, что $b(\overline{u}, \overline{v}) = (\varphi(\overline{u}), \overline{v})$. При этом:

$$(\varphi(\overline{u}),\overline{v})=b(\overline{u},\overline{v})=\overline{b(\overline{v},\overline{u})}=\overline{(\varphi(\overline{v}),\overline{u})}=(\overline{u},\varphi(\overline{v}))$$

Значит, φ — самосопряженный, и в V существует ортонормированный базис e, в котором φ диагонализуем. Тогда если $\varphi \leftrightarrow_e A$, то $b \leftrightarrow_e A^T$ и $q \leftrightarrow_e A^T$, поэтому форма q тоже имеет диагональную матрицу в базисе e.

Замечание. Напротив, если в ортонормированном базисе e матрица формы q диагональна, то и матрица оператора φ диагональна и, следовательно, задана однозначно собственными значениями φ . Значит, диагональный вид q в ортонормированном базисе определен однозначно.

Теорема 42. Пусть V — линейное пространство над \mathbb{R} (над \mathbb{C}), $q_1, q_2 \in \mathcal{Q}(V)$, и q_2 положительно определена. Тогда в V существует такой базис e, в котором матрицы форм q_1 и q_2 диагональны.

Доказательство. Пусть $b-\theta$ -линейная форма, полярная к q_2 . Тогда b можно объявить b скалярным (эрмитовым скалярным) произведением на V. В полученном евклидовом (эрмитовом) пространстве форма q_1 приводится к главным осям в некотором ортонормированном базисе e. Поскольку базис e ортонормированный, то в этом же базисе q_2 имеет диагональный вид E. \square

Замечание. Требование положительной определенности в теореме существенно.

27. Унитарные преобразования, их свойства. Канонический вид унитарного преобразования.

Определение 86. Оператор $\varphi \in \mathcal{L}(V)$ называется *ортогональным* (унитарным), если $\forall \overline{u}, \overline{v} \in V : (\varphi(\overline{u}), \varphi(\overline{v})) = (\overline{u}, \overline{v}).$

Теорема 43. Пусть $\varphi \in \mathcal{L}(V)$. Тогда оператор φ ортогонален (унитарен) $\Leftrightarrow \varphi$ обратим и $\varphi^{-1} = \varphi^*$.

Доказательство. По определению, φ ортогональнен (унитарен) \Leftrightarrow для любых векторов $\overline{u}, \overline{v} \in V$ выполнено $(\overline{u}, \overline{v}) = (\varphi(\overline{u}), \varphi(\overline{v})) = (\overline{u}, (\varphi^*\varphi)(\overline{v}))$. В силу единственности сопряженного оператора, это равносильно равенству $\varphi^*\varphi = \mathrm{id}^* = \mathrm{id}$. Это, в свою очередь, равносильно тому, что φ обратим и $\varphi^{-1} = \varphi^*$.

Утверждение 39. Пусть $\varphi \in \mathcal{L}(V)$ — ортогональный (унитарный), $U \leqslant V$. Тогда U инвариантно относительно $\varphi \Leftrightarrow U^{\perp}$ инвариантно относительно φ .

Доказательство. Поскольку $(U^{\perp})^{\perp} = U$, то достаточно доказать импликацию \Rightarrow . Так как U инвариантно относительно φ , то U^{\perp} инвариантно относительно $\varphi^* = \varphi^{-1}$, то есть $\varphi^{-1}(U^{\perp}) \leqslant U^{\perp}$. Но оператор φ биективен, поэтому $\varphi^{-1}(U^{\perp}) = U^{\perp}$ и $\varphi(U^{\perp}) = U^{\perp}$, откуда U^{\perp} инвариантно относительно φ .

Теорема 44. Пусть V — эрмитово пространство, $\varphi \in \mathcal{L}(V)$ — унитарный. Тогда в V существует ортонормированный базис e, в котором матрица оператора φ диагональна c числами модуля 1 на главной диагонали.

Доказательство. Докажем диагонализуемость оператора φ в ортонормированном базисе индукцией по $n=\dim V$. База, n=1, тривиальна. Пусть теперь n>1. Поскольку у χ_{φ} есть корень над \mathbb{C} , то у φ есть собственный вектор $\overline{e_0}$ длины 1. Тогда $U:=\langle \overline{e_0}\rangle^{\perp}$ инвариантно относительно φ , поэтому можно расмотреть оператор $\varphi|_U\in\mathcal{L}(V)$, который также является унитарным. По предположению индукции, в U есть ортонормированный базис из собственных векторов, тогда объединение с $\overline{e_0}$ дает искомый базис в V.

Покажем теперь, что все собственные значения оператора φ имеют модуль 1. Действительно, если $\overline{v} \in V, \ \overline{v} \neq 0$ — собственный вектор со значением λ , то $(\overline{v}, \overline{v}) = (\varphi(\overline{v}), \varphi(\overline{v})) = |\lambda|^2(\overline{v}, \overline{v}) \Rightarrow |\lambda| = 1.$

28. Тензоры типа (p,q). Тензорное произведение тензоров. Координатная запись тензора, изменение координат при замене базиса, тензорный базис.

Зафиксируем линейное пространство V размерности n над полем F и сопряженное к нему пространство $V^* = \mathcal{L}(V,F)$. Для любых $s,t \in \mathbb{N} \cup \{0\}$ положим $V^s := \underbrace{V \times \cdots \times V}_{s}, \; (V^*)^t :=$

$$\underbrace{V^*\times\cdots\times V^*}_t.$$

Определение 87. Тензором типа (p,q), или p раз контравариантным u q раз ковариантным тензором называется полилинейное отображение $t:(V^*)^p\times V^q\to F$. Все тензоры типа (p,q) образуют линейное пространство над F, обозначение $-\mathbb{T}_q^p(V)$ или $\mathcal{L}(\underbrace{V^*,\ldots,V^*}_p,\underbrace{V,\ldots,V}_q;F)$.

Замечание. Тензор задается однозначно своими значениями на всевозможных комбинациях аргументов из базиса в V и базиса в V^* , то есть на n^{p+q} наборах векторов.

Пример. Рассмотрим несколько тензоров различных типов:

- 1. Тензор типа (0,1) это линейный функционал на V, поэтому $\mathbb{T}_1^0 = V^*$.
- 2. Тензор типа (1,0) это элемент пространства $V^{**}\cong V$, поэтому $\mathbb{T}^1_0\cong V$, причем эти пространства можно отождествить в силу канонического изоморфизма.
- 3. Тензор типа (0,2) это билинейная форма на V, поэтому $\mathbb{T}_2^0 = \mathcal{B}(V)$.
- 4. Тензор типа (1,1) это билинейное отображение $t:V^*\times V\to F$. Зафиксируем $\overline{v}\in V$, тогда $t_{\overline{v}}(f):=t(f,\overline{v})$ линейный функционал на V^* , то есть $t_{\overline{v}}=\overline{u}\in V$. Тензору t можно поставить в соответствие линейный оператор $\varphi\in\mathcal{L}(V),\ \varphi(\overline{v})=t_{\overline{v}}=\overline{u}$. Это соответствие линейно, поскольку t линеен по второму аргументу, и обратимо: $\forall\varphi\in\mathcal{L}(V):\varphi\mapsto t$, где $t\in\mathbb{T}^1_1$ такой, что $t(f,\overline{v})=f(\varphi(\overline{v}))$. Значит, $\mathbb{T}^1_1\cong\mathcal{L}(V)$, причем эти пространства можно отождествить в силу канонического изоморфизма.
- 5. Пусть A алгебра над F. Тогда умножение $\cdot: A \times A \to A$ это билинейное отображение, $\cdot \in \mathcal{L}(A,A;A)$, и ему соответствует тензор $t \in \mathbb{T}_2^1(A)$ следующего вида:

$$t(f, \overline{a_1}, \overline{a_2}) := f(\overline{a_1} \cdot \overline{a_2})$$

Аналогично прошлому примеру, соответствие $\cdot \mapsto t$ линейно и обратимо, поэтому $\mathbb{T}^1_2(A) \cong \mathcal{L}(A \times A, A)$, причем эти пространства можно отождествить в силу канонического изоморфизма.

6. Один из тензоров типа $(0, n), n \in \mathbb{N}, -$ это определитель.

Определение 88. Пусть $t \in \mathbb{T}_q^p$, $t' \in \mathbb{T}_{q'}^{p'}$. Тогда *тензорным произведением* тензоров t и t' называется тензор $t \otimes t' \in \mathbb{T}_{q+q'}^{p+p'}$ следующего вида:

$$t\otimes t'(f_1,\ldots,f_{p+p'},\overline{v_1},\ldots,\overline{v_{q+q'}}):=t(f_1,\ldots,f_p,\overline{v_1},\ldots,\overline{v_q})t'(f_{p+1},\ldots,f_{p+p'},\overline{v_{q+1}},\ldots,\overline{v_{q+q'}})$$

Пример. Рассмотрим несколько тензорных произведений:

1. Пусть $f_1, f_2 \in \mathbb{T}_1^0 = V^*$. Тогда $f_1 \otimes f_2 \in \mathbb{T}_2^0 = \mathcal{B}(V)$, причем $f_1 \otimes f_2(\overline{v_1}, \overline{v_2}) = f_1(\overline{v_1})f_2(\overline{v_2})$ и легко видеть, что rk $f_1 \otimes f_2 \leqslant 1$.

2. Пусть $g \in V^*$, $\overline{u} \in V$. Тогда $g \otimes \overline{u} \in \mathbb{T}^1_1 = \mathcal{L}(V)$, и данному тензору соответствует оператор $\varphi \in \mathcal{L}(V)$ такой, что $\varphi(\overline{v}) = g(\overline{v})\overline{u}$. В частности, $\operatorname{rk} \varphi \leqslant 1$.

Утверждение 40. Тензорное произведение обладает следующими свойствами:

- 1. \otimes линейно по обоим аргументам.
- 2. \otimes ассоциативно, но необязательно коммутативно.

Доказательство. Оба свойства следуют непосредственно из формулы в определении тензорного произведения. В то же время, если, например, $t_1, t_2 \in T_1^0$, то:

$$t_1 \otimes t_2(\overline{v_1}, \overline{v_2}) = t_1(\overline{v_1})t_2(\overline{v_2})$$

$$t_2 \otimes t_1(\overline{v_1}, \overline{v_2}) = t_2(\overline{v_1})t_1(\overline{v_2})$$

Видно, что при $\dim V>0$ можно подобрать такие тензоры и такие векторы, на которых значения выражений выше будут отличаться.

Замечание. Далее в записях будут применяться нижние и верхние индексы, не означающие возведение в степень. Они нужны исключительно для упрощения формул.

Определение 89. Пусть $e = (e_1, \dots, e_n)$ — базис в V. Взаимным (биортогональным) к e базисом называется базис $e^* = (e^1, \dots, e^n)$ в V^* такой, что:

$$\forall i, j \in \{1, \dots, n\} : e^j(e_i) = e_i(e^j) = \delta_i^j = \begin{cases} 0, i \neq j \\ 1, i = j \end{cases}$$

Будем обозначать через $v^j := e^j(\overline{v})$ *j*-ую координату вектора \overline{v} в базисе e, а через $f_i := e_i(f) - i$ -ую координату функционала f в базисе e^* .

Определение 90. Пусть e и e^* — взаимные базисы в V и V^* , $t \in \mathbb{T}_q^p$. Координатами тензора t в базисе e называется набор из следующих величин:

$$t_{j_1,\ldots,j_q}^{i_1,\ldots,i_p}=t(e^{i_1},\ldots,e^{i_p},e_{j_1},\ldots,e_{j_q}),\ i_1,\ldots,i_p,j_1,\ldots,j_q\in\{1,\ldots,n\}$$

Замечание. Как уже было отмечено, тензор $t \in \mathbb{T}_q^p$ однозначно задается своими координатами в неотором базисе. Заметим, что тензор $t = e_{i_1} \otimes \cdots \otimes e_{i_p} \otimes e^{j_1} \otimes \cdots \otimes e^{j_q} \in \mathbb{T}_q^p$ имеет координаты следующего вида:

$$t_{j'_1,\dots,j'_q}^{i'_1,\dots,i'_p} = \delta_{i_1}^{i'_1} \dots \delta_{i_p}^{i'_p} \delta_{j'_1}^{j_1} \dots \delta_{j'_q}^{j_q}$$

Значит, произвольный тензор $t \in \mathbb{T}_q^p$ можно записать в таком виде:

$$t = t_{j_1, \dots, j_q}^{i_1, \dots, i_p} e_{i_1} \otimes \dots \otimes e_{i_p} \otimes e^{j_1} \otimes \dots \otimes e^{j_q}$$

Равенство выше справедливо потому, что значения тензоров в левой и правой части совпадают на всех наборах вида $(e^{i_1}, \dots, e^{i_p}, e_{j_1}, \dots, e_{j_q})$.

Замечание. Как уже было отмечено, тензоры вида $e_{i_1} \otimes \cdots \otimes e_{i_p} \otimes e^{j_1} \otimes \cdots \otimes e^{j_q}$ — это порождающая система в \mathbb{T}_q^p . Более того, она линейно независима, поскольку для каждого тензора вида $e_{i_1} \otimes \cdots \otimes e_{i_p} \otimes e^{j_1} \otimes \cdots \otimes e^{j_q}$ можно выбрать такой набор $(e^{i_1}, \ldots, e^{i_p}, e_{j_1}, \ldots, e_{j_q})$, который обнулит все тензоры системы кроме данного. Значит, эта система образует базис в пространстве \mathbb{T}_q^p .

Теорема 45. Пусть e, e' -базисы $в \ V \$ таки $e, \$ что $e'_j = a^i_j e_i, \ e^k = a^k_i e'^i.$ Тогда преобразование координат тензора $t \in \mathbb{T}_q^p$ при замене базиса имеет следующий вид:

$$t_{j_1,\dots,j_q}^{i_1,\dots,i_p} = a_{i'_1}^{i_1}\dots a_{i'_p}^{i_p}b_{j_1}^{j'_1}\dots b_{j_q}^{j'_q}t_{j'_1,\dots,j'_q}^{i'_1,\dots,i'_p}$$

Доказательство. Для простоты выполним проверку в случае, когда $t \in \mathbb{T}^1_1$, поскольку в общем случае рассуждение аналогично:

$$t = t_j^i e_i \otimes e^j = t_{j'}^{i'} e'_{i'} \otimes e'^{j'} = t_{j'}^{i'} (a_{i'}^i e_i) \otimes (b_j^{j'} e^j) = t_{j'}^{i'} a_{i'}^i b_j^{j'} e_i \otimes e^j$$

Получено разложение тензора t по базису e двумя способами, поэтому $t^i_j = t'^{i'}_{j'} a^i_{i'} b^{j'}_j$. \square

29. Алгебраические операции над тензорами (перестановка индексов, свертка). Симметричные и кососимметричные тензоры. Операторы симметрирования и альтернирования и их свойства.

Определение 91. Сверткой тензора $t \in \mathbb{T}_q^p$ по индексам i_p, j_q называется тензор $t' \in \mathbb{T}_{q-1}^{p-1}$ с координатами следующего вида:

 $\tilde{t}^{i_1,\dots,i_{p-1}}_{j_1,\dots,j_{q-1}}=t^{i_1,\dots,i_{p-1},i}_{j_1,\dots,j_{q-1},i}$

Свертка по другим парам из верхнего и нижнего индексов определяется аналогично.

Пример. Рассмотрим несколько примеров свертки:

- 1. Пусть $\overline{v} \in V$, $u \in V^*$. Тогда свертка тензора $u \otimes \overline{v}$ это скаляр $u(\overline{v})$.
- 2. Пусть $b \in \mathcal{B}(V)$ тензор с координатами $b_{ij}, \overline{u}, \overline{v} \in V$. Тогда скаляр $b(\overline{u}, \overline{v}) = u^i b_{ij} v^j$ получается как двойная, или полная, свертка тензора $\overline{u} \otimes b \otimes \overline{v}$.
- 3. Пусть $\varphi \in \mathcal{L}(V)$ тензор с координатами $\varphi^i_j, \, \overline{v} \in V$. Тогда вектор $\varphi(\overline{v})$ имеет координаты $\varphi^i_j v^j.$
- 4. Пусть $\varphi, \psi \in \mathcal{L}(V)$ тензоры с координатами φ_j^i, ψ_l^k . Тогда тензор $\varphi \circ \psi$ имеет координаты $\varphi_j^i \psi_k^j$.
- 5. Пусть V евклидово пространство, в нем введено скалярное произведение, или метрический тензор, с координатами g_{ij} . Тогда канонический изоморфизм между V и V^* осуществляется сопоставлением $v^i \mapsto v^i g_{ij}$, называемым опусканием индекса. На V^* тоже можно задать скалярное произведение как тензор с координатами g^{ij} , тоже называемый метрическим тензором, позволяющий, наоборот, поднимать индексы. Можно также показать, что $g_{ij}g^{ik} = \delta^i_i$.
- 6. Пусть $\varphi \in \mathcal{L}(V)$ тензор с координатами φ_j^i . Если в пространстве V задано скалярное произведение с координатами g_{ij} , то сопоставление $\varphi_j^i \mapsto \varphi_j^i g_{ik}$ осуществляет это изоморфизм между $\mathcal{L}(V)$ и $\mathcal{B}(V)$.

Определение 92. Пусть $t \in \mathbb{T}_q^p$. Тензор t называется симметричным по первым двум координатам, если для любых функционалов $f_1, \ldots, f_p \in V^*$ и векторов $\overline{v_1}, \ldots, \overline{v_q} \in V$ выполнено $t(f_1, f_2, \ldots, f_p, \overline{v_1}, \ldots, \overline{v_q}) = t(f_2, f_1, \ldots, f_p, \overline{v_1}, \ldots, \overline{v_q})$.

Замечание. Легко видеть, что t симметричен по первым двум верхним индексам \Leftrightarrow его координаты симметричны по первым двум верхним индексам. Симметричность по другим наборам координат одного типа определяется аналогично.

Определение 93. Пусть $t \in \mathbb{T}_0^p$, $\sigma \in S_p$. Будем обозначать через $g_{\sigma}(t)$ такой тензор $g \in \mathbb{T}_0^p$, что $\forall f_1, \ldots, f_p \in V^* : g(f_1, \ldots, f_p) = t(f_{\sigma(1)}, \ldots, f_{\sigma(p)})$.

Замечание. Пусть e — базис в V. Если t имеет в базисе e координаты t^{i_1,\dots,i_p} , то $g_{\sigma}(t)$ в этом же базисе имеет координаты $t^{i_{\sigma(1)},\dots,i_{\sigma(p)}}$.

Определение 94. Тензор $t \in \mathbb{T}_0^p$ называется *симметричным*, если $\forall \sigma \in S_p : g_{\sigma}(t) = t$. Такие тензоры образуют подпространство в \mathbb{T}_0^p , обозначаемое через \mathbb{ST}^p .

Определение 95. *Симметризацией* тензора $t \in \mathbb{T}_0^p$ называется следующий тензор:

$$s(t) := \frac{1}{p!} \sum_{\sigma \in S_p} g_{\sigma}(t) \in \mathbb{T}_0^p$$

Симметризация определена, если $\operatorname{char} F \nmid p$.

Утверждение 41. Симметризация обладает следующими свойствами:

- 1. Для любого тензора $t \in \mathbb{T}_0^p$ выполнено $s(t) \in \mathbb{ST}^p$.
- 2. Ecau $t \in \mathbb{ST}^p$, mo s(t) = t.
- 3. Im $s = \mathbb{ST}^p$.

Определение 96. Тензор $t\in\mathbb{T}_0^p$ называется кососимметричным, если $\forall\sigma\in S_p:g_\sigma(t)=\operatorname{sgn}\sigma\cdot t.$ Такие тензоры образуют подпространство в \mathbb{T}_0^p , обозначаемое через $\Lambda^p.$

Определение 97. Альтернированием тензора $t \in \mathbb{T}_0^p$ называется следующий тензор:

$$a(t) := \frac{1}{p!} \sum_{\sigma \in S_p} \operatorname{sgn} \sigma \cdot g_{\sigma}(t) \in \mathbb{T}_0^p$$

Альтернирование определено, если char $F \nmid p$.

Утверждение 42. Альтернирование обладает следующими свойствами:

- 1. Для любого тензора $t\in\mathbb{T}_0^p$ выполнено $a(t)\in\Lambda^p.$
- 2. Ecnu $t \in \Lambda^p$, mo a(t) = t.
- 3. Im $a = \Lambda^p$.

Доказательство. Доказательство аналогично симметричному случаю.