A hol Theory of n > t ords Anthhny Fh

8	Conclusion	18
Α	A Commutative Ring with a 1	18
В	A Boolean Algebra	18

1 Introduction

This work forms part of an epsrc funded project on the formal speci cation and veri cation of the A M6 microprocessor. Under this project, Graham Birtwistle's group in Leeds have produced detailed mI speci cations of the A M instruction set and of the A M6. At Cambridge, the hol theorem prover has been used to verify a design that is closely based on the A M6. In order to model the A M instruction set and the processor implementation in hol, a model of 32-bit words was required. Moreover, the intention was

This set of equations does satisfy some of the properties of \boldsymbol{n}

used to partition an algebra A's carrier set into classes

 \cdots b_{h+2} b_{h+1} b_h b_{h-1} \cdots b_{l+1} b_l b_{l-1} \cdots b_1

Figure 3: Bitwise Conjunction.

The function bitwise : N! (B! B! B)! N! N! N is used to de ne logical operations. It has a (primitive) recursive de nition:

bitwise 0 R a b = 0bitwise $(n + 1) R a b = bitwise n R a b + sbit ((bit n a) R Td<math>\mathbf{O}(1)$ T3) **3.3 3.** 5 Constructing a Word Algebra

is a well-de ned bijection betw \boldsymbol{w}

Algebra: Bits
Carrier Sets
B; N
Constants
true; false 2 B
0;

h ₁	$h_2 + I_1$	$I_2 + I_1$	I_1	0	h_1-I_1	h_2	I_2	0

(a) Natural number n, split into bit regions.

(b) n' = bits

6.2.2 Shifting

Shifting by zero and shifting the word 0 is an identity mapping.

Theorem 9.

$$Isl 0 w = Isr 0 w = asr 0 w = ror 0 w = w$$

and

$$| s| x 0 = | s| x 0 = | a| s| x 0 = | c| x$$

The arithmetic and rotate right shifts are also identity maps forthe word T.

Theorem 10. $\operatorname{asr} x T = \operatorname{ror} x T = T$.

Theorem 11. Shifting is additive:

Logical left and right shifts reach a xed point at wl app14 0 rodate()Tj /R151 10.9091 Tf 4.23wions,0 Td 3

7.1 The Word Type

Equivalence types can be declared in hol using the function $define_equivalence_type$ from the equivType package. Creating an equivalence type is analogous to asserting the existence of the set A=.

7.3 Mappings to and from the Natural Numbers

Natural numbers can be mapped to words with the function n2w: num word32, de ned by

```
`def n2w a = mk_word32 ($== a)
```

The term \$== n represents the equivalence class of n; it is a map characterising the set of all numbers

, de n

8 Conclusion

A hol theory of n-bit words has been presented with reference to the quotient

[10] Warren A. Hunt, Jr.