Jiří Balun

Formální jazyky a automaty

Obsah

- 1 Abeceda a řetězce
- 2 Jazyk
- 3 Regulární výrazy (RE) a regulární jazyky (RL)
- 4 Konečný deterministický automat (DFA)
- 5 Reprezentace DFA
- 6 Jazyk DFA
- 7 Konstrukce DFA
- 8 Součinový DFA
- 9 Konečný nedeterministický automat (NFA)
- 10 Konstrukce NFA
- 11 Determinizace NFA
- 12 NFA s ε -přechody
- 13 Převod RE na ε -NFA
- 14 Převod DFA na RE
- 15 Minimalizace DFA
- 16 Pumping lemma
- 17 Homomorfismy jazyků
- 18 Gramatiky a derivace
- 19 Regulární gramatika (typ 3)
- 20 Bezkontextová gramatika (CFG, typ 2)
- 21 Derivační stromy a víceznačnost CFG
- 22 Chomského normální forma (CNF)
- 23 Algoritmus CYK
- 24 Zásobníkový automat (PDA)
- 25 Návrh PDA
- 26 Převod CFG na PDA
- 27 Gramatiky typu 0 a 1
- 28 Pumping lemma pro bezkontextové jazyky
- 29 Proč neplatí opačná implikace v pumping lemma?
- 30 Domácí úkoly

Seznam zkratek

- CFG bezkontextová gramatika (context-free grammar)
- CFL bezkontextový jazyk (context-free language)
- CNF Chomského normální forma
- CSG kontextová gramatika (context-sensitive grammar)
- CSL kontextový jazyk (context-sensitive language)
- DFA deterministický konečný automat (deterministic finite automaton)
- DPDA deterministický zásobníkový automat (deterministic pushdown automaton)
- NFA nedeterministický konečný automat (nondeterministic finite automaton)
- PDA (nedeterministický) zásobníkový automat (pushdown automaton)
- PL pumping lemma
- RE regulární výraz (regular expression)
- RG regulární gramatika
- RL regulární jazyk (regular language)

1 Abeceda a řetězce

- \bullet abeceda je konečná (neprázdná) množina znaků, značí se Σ
- \bullet řetězec s nad abecedou Σ je libovolná konečná posloupnost znaků abecedy
- délka řetězce s se značí |s|; prázdný řetězec se značí ε a tedy $|\varepsilon|=0$
- \bullet například pro řetězec $s=s_1\dots s_n$ (kde $s_i\in \Sigma$ pro $i=1,\dots,n)$ je |s|=n
- Σ^* značí množinu všech řetězců nad abecedou Σ
- Σ^+ je množina všech neprázdných řetězců nad abecedou Σ
- například pro $\Sigma = \{0, 1\}$ je:

$$- \Sigma^* = \{\varepsilon, 0, 1, 00, 01, 10, 11, 000, 001 \ldots\}$$

$$- \Sigma^{+} = \{0, 1, 00, 01, 10, 11, 000, 001 \ldots\}$$

poznámka: řetězce pro přehlednost píšeme v tzv. shortlex uspořádání

 \bullet zřetězení dvou řetězců $x=x_1\dots x_n$ a $y=y_1\dots y_m$ se značí $x\cdot y$ nebo zkráceně xy

$$xy = x_1 \dots x_n y_1 \dots y_m$$

• triviálně platí tyto vztahy:

$$|xy| =$$

$$x \cdot \varepsilon =$$

- pro řetězce platí x=y, právě když |x|=|y| a zároveň $x_i=y_i$ pro všechna $i=1,\ldots,|x|$
- mocnina řetězce x^n je definována rekurzivně:

$$x^n = \Big\{$$

• prefix a sufix řetězce:

$$- Pfx(x) =$$

$$- Sfx(x) =$$

- reverz řetězce $x=x_1\dots x_n$ značíme $x^R=x_n\dots x_1$
- mějme řetězece x = abb, y = ca; doplňte:

1.
$$xy =$$

$$2. yx =$$

3.
$$y^3x =$$

4.
$$y(x^2y)^Rx =$$

5.
$$Pfx(x) =$$

6.
$$S f x(x) =$$

2 Jazyk

- $\bullet\,$ jazyk je množina řetězců nad zvolenou abecedou $\Sigma,$ neboli pro jazyk L platí $L\subseteq \Sigma^*$
- ullet zřetězení jazyků $L_1 \cdot L_2 =$
- \bullet jaký je rozdíl mezi jazyky \emptyset a $\{\varepsilon\}$? Jak dopadnou výrazy:
 - 1. $\emptyset \cdot \{a\} =$
 - 2. $\{\varepsilon\} \cdot \{a\} =$
- mějme $L_1 = \{b, aa\}, L_2 = \{\varepsilon, aab\}$ a $L_3 = \{\varepsilon, b\}$ nad abecedou $\Sigma = \{a, b\}$; doplňte:
 - 1. $L_1 \cdot L_2 =$
 - 2. $L_2 \cdot L_1 =$
 - 3. $\{\varepsilon\} \cdot L_1 =$
 - 4. $L_1 \cup L_2 =$
 - 5. $\overline{L}_1 =$
 - 6. $(L_1 \cap L_3) \cdot (L_2 \setminus L_3) =$
- mocnina jazyka:

$$L^n = \Big\{$$

- uzávěry jazyků:
 - $-L^* =$
 - $-L^{+}=$
- $\bullet\,$ mějme jazyky $L_1=\{a,b,aa\}$ a $L_2=\{\varepsilon,bb\};$ doplňte:
 - 1. $L_1^0 =$
 - 2. $L_1^1 =$
 - 3. $L_1^2 =$
 - 4. $L_2^* =$
 - 5. $\{\varepsilon\}^* =$
 - 6. $\{\varepsilon\}^+ =$
 - 7. Ø* =
 - 8. $\emptyset^+ =$
- $\bullet\,$ rozhodněte zda platí vztah $(L^R)^*=(L^*)^R,$ kde $L^R=\{x^R\mid x\in L\}$ je reverz jazyka

3 Regulární výrazy (RE) a regulární jazyky (RL)

- regulární výraz (zkráceně RE z regular expression) je formalismus pro čitelný a úsporný zápis regulárních jazyků (samotný výraz je vzor pro dané retězce)
- jako **regulární jazyky** (zkráceně RL z *regular language*) označujeme třídu jazyků, které lze popsat pomocí regulárních výrazů
- \bullet pomocí L(E) značíme jazyk reprezentovaný regulárním výrazem E
- definice RE nad abecedou Σ :
 - 1. pro každý symbol $a \in \Sigma$ je \boldsymbol{a} RE s jazykem $L(\boldsymbol{a}) = \{a\}$
 - 2. ε je RE s jazykem $L(\varepsilon) = \{\varepsilon\}$
 - 3. \emptyset je RE s jazykem $L(\emptyset) = \emptyset$
 - 4. nechť E_1 a E_2 jsou RE, pak E_1+E_2 je RE s jazykem $L(E_1+E_2)=L(E_1)\cup L(E_2)$
 - 5. nechť E_1 a E_2 jsou RE, pak E_1E_2 je RE s jazykem $L(E_1E_2) = L(E_1) \cdot L(E_2)$
 - 6. nechť E je RE, pak E^* je RE s jazykem $L(E^*) = (L(E))^*$
- priorita operátorů: nejvyšší má operace *, pak zřetězení ·, a nejnižší má operace +
- dále můžeme prioritu operací upravit dle libosti pomocí závorek
- pro přehlednější zápis dále zavedeme zkrácený zápis pro tyto RE:
 - $-\Sigma$ jako RE s jazykem $L(\Sigma) = \Sigma$
 - $-\mathbf{E}^{+}=\mathbf{E}\mathbf{E}^{*}$
- navrhněte RE k následujícím jazykům:

$$L_1 = \{aaa, aab, aaac, aaaaa\}$$

$$L_2 = \{w \in \{a, b\}^* \mid w \text{ obsahuje podřetězce } aaa \text{ a } bbb\}$$

 $L_3 = \{w \in \{a, b\}^* \mid w \text{ neobsahuje podřetězce } ab \text{ a } ba\}$

 $L_4 = \{w \in \{a,b\}^* \mid w$ začíná i končí stejným řetězcem, který je aa, nebo $bb\}$

 $L_5 = \{w \in \{a, b\}^* \mid w \text{ má sudý počet znaků } a \text{ nebo přesně dva znaky } b\}$

4 Konečný deterministický automat (DFA)

- konečný deterministický automat, zkráceně DFA (deterministic finite automaton) je reprezentován uspořádanou pěticí $A = (Q, \Sigma, \delta, q_0, F)$, kde:
 - 1. Q je konečná množina stavů (proto název konečný automat)
 - 2. Σ je abeceda
 - 3. δ je přechodová funkce ve tvaru $\delta:Q\times\Sigma\to Q,$ která stavu a symbolu přiřadí nějaký stav
 - 4. q_0 je počáteční stav (platí pro něj $q_0 \in Q$)
 - 5. F je množina koncových/akceptujících stavů (platí pro ně $F \subseteq Q$),
- takto definovaný automat je deterministický, protože se v každém kroku výpočtu nachází právě v jednom stavu (později si ukážeme i nedeterministické modely)
- přechodová funkce je **úplná**, pokud je $\delta(q, a)$ definovaná pro všechny $q \in Q$ a $a \in \Sigma$; budeme uvažovat pouze DFA s úplnou přechodovou funkcí
- grafická reprezentace konečných automatů pomocí grafu:
 - stavy jsou reprezentované jako uzly
 - počáteční stav je označený šipkou směřující k uzlu
 - koncové stavy jsou označené dvojitým uzlem
 - každý přechod je reprezentovaný orientovanou hranou, jejíž popisek (jeden nebo více symbolů abecedy) udává, který symbol realizuje přechod mezi počátečním a koncovým uzlem dané hrany
- podle grafu automatu A_1 doplňte:

- 1. Q =
- $2. \Sigma =$
- 3. $q_0 =$
- 4. F =
- 5. $\delta(1, a) =$
- 6. $\delta(2, a) =$
- 7. $\delta(2,b) =$
- 8. $\delta(\delta(\delta(1,b),a),b) =$
- 9. $\delta(\delta(\delta(1,a),b),a) =$
- 10. $\delta(\delta(\delta(\delta(1,b),b),a),a) =$

5 Reprezentace DFA

- přechodovou funkci δ lze zapsat pomocí relace $\delta \subseteq Q \times \Sigma \times Q$, tedy jako množinu uspořádaných trojic, kde $\langle p, a, q \rangle \in \delta$ odpovídá přechodu $\delta(p, a) = q$
- mějme DFA $A_1 = (\{1,2,3\}, \{a,b\}, \delta, 1, \{3\})$, jehož přechodová funkce je zadaná jako relace $\delta = \{\langle 1,a,1\rangle, \langle 1,b,2\rangle, \langle 2,a,2\rangle, \langle 2,b,3\rangle, \langle 3,a,3\rangle, \langle 3,b,3\rangle\}$; takto zadaný automat lze reprezentovat:
 - 1. **grafem** stavy jsou uzly, přičemž počáteční stav je označen šipkou a koncové stavy jsou označeny dvojitým uzlem; orientované hrany jsou přechody, kde hrana z p do q s popiskem a značí přechod $\delta(p,a) = q$

2. **tabulkou** – první sloupce udává stavy automatu, počáteční stav je opět označen šipkou a koncové stavy hvězdou; další sloupce pak udávají výsledky přechodu pro jednotlivé symboly abecedy

3. v počítači – jednoduchá implementace v LISPu může vypadat následovně:

```
1 (defun DFA (delta q0 F)
    (let ((state q0))
      (labels ((st-cmp (a transition)
                 (and (equal (car transition) state)
4
                      (equal (second transition) a))))
        (lambda (&optional a)
          (values ;; 1st value is resulting state, 2nd value is state type
           (setf state (if a
                           (third (find a delta :test #'st-cmp))
                           state))
                                     ;; no input, return actual state
10
           (if (find state F) 'final 'non-final)))))
11
13 (defvar A (DFA '((1 a 1) (1 b 2) (2 a 2) (2 b 3) (3 a 3) (3 b 3)) 1 '(3)))
  CL-USER> (funcall A 'b)

← stav 2 není koncový

 non-final
  CL-USER> (funcall A 'b)
  3
  final
```

6 Jazyk DFA

• definujeme si **rozšířenou přechodovou funkci** $\hat{\delta}$, kde $q \in Q$ a $s = s_1 \dots s_n \in \Sigma^*$:

$$\hat{\delta}(q,s) = \left\{ \right.$$

• jaký je výsledek přechodů v následujcícím automatu, a které z nich přijme?

- 1. $\hat{\delta}(1, aabbaa) =$
- 2. $\hat{\delta}(1, abaa) =$
- 3. $\hat{\delta}(1, abbab) =$
- \bullet jazyk, který rozpoznává DFA A, budeme značit L(A)
- pokud se A po přečtení slova s přesune z počátečního stavu do koncového stavu, pak s patří do L(A); **jazyk DFA** formálně definujeme jako:

$$L(A) =$$

- \bullet DFA rozpoznávají třídu $\mathbf{regul\acute{a}rn\acute{i}ch}$ jazyků (jsou tedy ekvivalentní s RE)
- $\bullet\,$ jaký je jazyk automatu A_1 ze Sekce 5?

7 Konstrukce DFA

Navhrněte automaty rozponávající jazyky:

- $L_1 = \{\varepsilon\}$ nad abecedou $\Sigma = \{a, b\}$; jak by vypadal automat pro jazyky \emptyset a Σ^* ?
- $L_2 = \{a, b, ca, cb, cc, abc\}$ nad abecedou $\Sigma = \{a, b, c\}$

• $L_3 = \{s \mid s \text{ začíná řetězcem } abb\}$ nad abecedou $\Sigma = \{a,b\}$

• $L_4 = \{s \mid s \text{ obsahuje sudý počet znaků } a\}$ nad abecedou $\Sigma = \{a,b,c\}$

• $L_5 = \{s \mid s \text{ začíná a končí znakem } a\}$ nad abecedou $\Sigma = \{a,b\}$

• $L_6 = \{a\}^* \cup \{b\}^*$ nad abecedou $\Sigma = \{a,b\}$

• $L_7 = \{s \mid s \text{ obsahuje podřetězec } abab\}$ nad abecedou $\Sigma = \{a,b\}$

• $L_8 = \{s \mid s \text{ neobsahuje podřetězec } abab\}$ nad abecedou $\Sigma = \{a,b\}$

• $L_9=\{s\mid \text{součet hodnot znaků}\ s$ je dělitelný číslem 4 beze zbytku $\}$ nad abecedou $\Sigma=\{0,1,2,3\}$ (součet prázdné sekvence je 0, a tedy $\varepsilon\in L_9$)

8 Součinový DFA

- součinový/produktový DFA simuluje běh více DFA zároveň
- tuto konstrukci lze použít k vytvoření DFA, který rozpoznává průnik nebo sjednocení regulárních jazyků, nebo k ověření ekvivalence a inkluze regulárních jazyků
- Konstrukce: pro dva DFA $A_1 = (Q_1, \Sigma, \delta_1, q_{0,1}, F_1)$ a $A_2 = (Q_2, \Sigma, \delta_2, q_{0,2}, F_2)$ vytvoříme součinový DFA jako $A_1 \times A_2 = (Q_1 \times Q_2, \Sigma, \delta', \langle q_{0,1}, q_{0,2} \rangle, F')$, kde:
 - množina stavů obsahuje všechny dvojice stavů $\langle q_1,q_2\rangle,$ kde $q_1\in Q_1$ a $q_2\in Q_2$
 - abeceda zůstává stejná (oba automaty A_1 a A_2 musí být nad stejnou abecedou)
 - $-\delta'(\langle q_1,q_2\rangle,a)=\langle \delta_1(q_1,a),\delta_2(q_2,a)\rangle$ pro všechna $a\in\Sigma$
 - počáteční stav $\langle q_{0,1}, q_{0,2} \rangle$ je dvojice počátečních stavů z A_1 a A_2
 - množinu koncových stavů F'zvolíme podle účelu $A_1\times A_2$
- Volba koncových stavů: nechť $L_1 = L(A_1)$ a $L_2 = L(A_2)$, pak:
 - pro ověření $L_1=L_2$ (tj. platí $L_1=L_2$ právě když $L(A_1\times A_2)=\emptyset$) zvolíme:

$$F' = \{ \langle q_1, q_2 \rangle \mid (q_1 \in F_1 \land q_2 \not\in F_2) \lor (q_1 \not\in F_1 \land q_2 \in F_2) \}$$

poznámka: pro ověření $L_1 \subseteq L_2$ použijeme jen první část této podmínky

- pro rozpoznání $L(A_1\times A_2)=L_1\cap L_2$ zvolíme $F'=\{\langle q_1,q_2\rangle\mid q_1\in F_1\wedge q_2\in F_2\}$
- pro rozpoznání $L(A_1 \times A_2) = L_1 \cup L_2$ zvolíme $F' = \{ \langle q_1, q_2 \rangle \mid q_1 \in F_1 \lor q_2 \in F_2 \}$
- pro rozpoznání $L(A_1 \times A_2) = L_1 \setminus L_2$ zvolíme $F' = \{ \langle q_1, q_2 \rangle \mid q_1 \in F_1 \land q_2 \notin F_2 \}$
- sestrojte součinový DFA pro jazyk nad abecedou $\Sigma = \{a, b\}$:
 - $\{s \mid s \text{ obsahuje podřetězec aba}\} \cap \{s \mid s \text{ neobsahuje podřetězec bb}\}$

9 Konečný nedeterministický automat (NFA)

- konečný nedeterministický automat **NFA** (nondeterministic fininite automaton) je reprezentován uspořádanou pěticí $A = (Q, \Sigma, \delta_N, q_0, F)$
- v definici NFA je oproti DFA jediná změna, a to v přechodové funkci, která je nyní ve tvaru $\delta_N \colon Q \times \Sigma \to 2^Q$ (pokud je z kontextu jasné, že se jedná o NFA, budeme psát jen δ místo δ_N)
- NFA se může nacházet ve více stavech najednou (alternativně lze nedeterminismus chápat jako schopnost "uhádnout" ten správný přechod)
- výsledek přechodu z δ_N je tedy množina stavů klidně i prázdná množina, proto v NFA už nemusí mít úplnou přechodovou funkci
- rozšířená přechodová funkce $\hat{\delta}: Q \times \Sigma^* \to 2^Q$, kde $q \in Q$ a $s = s_1 \dots s_n \in \Sigma^*$:

$$\hat{\delta}_N(q,s) = \begin{cases} \{q\} & \text{pro } s = \varepsilon \\ \bigcup_{p \in \hat{\delta}_N(q,s_1...s_{n-1})} \delta_N(p,s_n) & \text{pro } |s| > 0 \end{cases}$$

• pokud se NFA A po přečtení slova s přesune z počátečního stavu aspoň do jednoho koncového stavu, pak slovo s patří do L(A); jazyk NFA formálně zapíšeme jako:

$$L(A) =$$

- NFA rozpoznávají regulární jazyky, tedy stejné jazyky jako rozpoznávají DFA/RE
- mějme zadán následujcí automat A_1 :

- 1. $\hat{\delta}_N(1, abab) =$
- 2. $\hat{\delta}_N(1, bbbaab) =$
- 3. jaký je jazyk $L(A_1)$?

10 Konstrukce NFA

- navrhněte NFA pro následující jazyky:
 - $L_1 = \{c, ab, ba, abc, bcb\}$ nad abecedou $\Sigma = \{a, b, c\}$

– $L_2 = \{s \in \{a, b, c\}^* \mid s \text{ obsahuje podslovo } abbc, acbc \text{ nebo } bcab\}$

– $L_3 = \{ab\}^* \cup \{abb\}^*$ nad abecedou $\Sigma = \{a,b\}$

– $L_4 = \{s \in \{a,b\}^* \mid s \text{ má sudý počet znaků } a \text{ nebo přesně dva znaky } b\}$

11 Determinizace NFA

- existuje NFA rozponávající jazyk L právě tehdy, když existuje DFA rozponávájící L:
 - (\Leftarrow) každý DFA je zároveň NFA (jen změníme $\delta(q,a)=p$ na $\delta_N(q,a)=\{p\}$)
 - (⇒) determinizace ke každému NFA lze sestrojit DFA rozponávájící stejný jazyk
- Podmnožinová konstrukce: k NFA $N = (Q, \Sigma, \delta_N, q_0, F)$ sestavíme DFA $D = (2^Q, \Sigma, \delta_D, \{q_0\}, F')$, tak aby platilo L(N) = L(D):
 - 1. stavy D jsou podmnožiny Q
 - 2. počáteční stav je $\{q_0\}$, množina obsahující původní počáteční stav q_0
 - 3. koncové stavy jsou podmnožiny Q obsahující aspoň jeden původní koncový stav, tedy $F'=\{S\subseteq Q\mid S\cap F\neq\emptyset\}$
 - 4. δ_D je determinisitcká přechodová funkce definovaná jako:

$$\delta_D(\{q_1,\ldots,q_k\},a) = \bigcup_{i=1}^k \delta_N(q_i,a)$$

- $\bullet~D$ má $2^{|Q|}$ stavů, ale nám stačí jen dosažitelné stavy (ke každému automatu existuje automat, který rozponává stejný jazyk, ale má jen dosažitelné stavy)
- determinizujte automat A_1 :

12 NFA s ε -přechody

- rozšířením modelu NFA o ε -přechody získáme ε -NFA $A=(Q,\Sigma,\delta_E,q_0,F)$, který navíc umožňuje i přechody bez přečtení symbolu ze vstupu
- jediná změna je opět v přechodové funkci, která má tvar $\delta_E\colon Q\times (\Sigma\cup\{\varepsilon\})\to 2^Q$
- \bullet ε -NFA rozpoznávají regulární jazyky, stejně jako NFA a DFA
- NFA se často definují s množinou počátečních stavů $I \subseteq Q$; každý takový NFA lze upravit na ε -NFA, tak aby měl pouze jeden počáteční stav:
 - 1. vytvoříme nový počáteční stav q_0
 - 2. pro každý stav $p \in I$ přidáme přechod $\langle q_0, \varepsilon, p \rangle$
- ε -uzávěr E(S) je množina dosažitelných stavů pomocí ε -přechodů ze stavů v $S\subseteq Q$
- převod ε -NFA na NFA:
 - 1. pro každý stav $q \in Q$ vypočítáme ε -uzávěr $E_q = E(\{q\})$
 - 2. výpočítáme δ_N z δ_E pro každý stav $q \in Q$ a symbol $a \in \Sigma$:

$$\delta_N(q, a) = E\Big(\bigcup_{p \in E_q} \delta_E(p, a)\Big)$$

- 3. označ jako koncový stav q_0 pokud platí $E(\{q_0\}) \cap F \neq \emptyset$
- převeď te následující ε -NFA A_1 na NFA bez ε -přechodů:

δ_E	arepsilon	a	b
$\rightarrow 1$	{3}	{1}	{2}
2	Ø	$\{4\}$	{2}
3⋆	{4}	Ø	{3}
4	Ø	$\{2, 3\}$	Ø

E_q	a	b
	E_q	E_q a

13 Převod RE na ε -NFA

• ekvivalenci s ε -NFA ukážeme strukturální indukcí vzhledem ke složitosti RE (ke každému bodu definice RE najdeme ε -NFA se stejným jazykem):

1.
$$L(a) = \{a\}$$
:

2.
$$L(\boldsymbol{\varepsilon}) = \{\varepsilon\}$$
:

3.
$$L(\emptyset) = \emptyset$$
:

4.
$$L(E_1+E_2) = L(E_1) \cup L(E_2)$$
:

5.
$$L(E_1E_2) = L(E_1) \cdot L(E_2)$$
:

6.
$$L(E^*) = (L(E))^*$$
:

• převeďte RE na ε -NFA:

1.
$$(a+ab)*b$$

2.
$$\varepsilon + (a+b)^*c(abc)^*$$

14 Převod DFA na RE

• Konstrukce: nechť $A = (\{1, ..., n\}, \Sigma, \delta, 1, F)$ je DFA s n stavy (jsou označené čísly od 1 do n), pak RE R_A , pro který platí $L(R_A) = L(A)$, vypočítáme předpisem:

$$R_A = \sum_{f \in F} R_{1,f}^n$$

kde jednotlivé RE $R_{1,f}^n$ získáme jako:

$$R_{ij}^{k} = R_{ij}^{k-1} + R_{ik}^{k-1} (R_{kk}^{k-1})^* R_{kj}^{k-1}$$

$$R_{ij}^{0} = \sum_{a \in \Sigma: \ \delta(i,a)=j} \boldsymbol{a} \quad (\text{pro } i \neq j)$$

$$R_{ii}^{0} = \boldsymbol{\varepsilon} + \sum_{a \in \Sigma: \ \delta(i,a)=i} \boldsymbol{a}$$

výraz $R_{i,j}^k$ je RE, který popisuje množinu všech cest (grafem automatu) ze stavu i do stavu j přes stavy, jež jsou označené maximálně číslem k; výraz výpočítáme z jednodušších podvýrazů:

- 1. R_{ij}^{k-1} jsou cesty z i do j, které nevedou přes k
- 2. $R_{ik}^{k-1}(R_{kk}^{k-1})^*R_{kj}^{k-1}$ jsou cesty zido j,které vedou přesk

výrazy, kde k=0, slouží jako podmínka ukončující rekurzi (už jsme na úrovni jednotlivých přechodů mezi stavy)

• převeďte DFA na RE:

15 Minimalizace DFA

- ullet chceme k zadanému DFA A najít ekvivalentní DFA A_m s nejmenším počtem stavů
- stavy $p, q \in Q$ v DFA A jsou nerozlišitelné, právě když pro $\forall w \in \Sigma^*$ platí:

$$\hat{\delta}(p, w) \in F \iff \hat{\delta}(q, w) \in F$$

- nerozlišitelnost stavů ' \equiv ' je binární relace na množině stavů Q, která je navíc ekvivalence (ověřte, že \equiv je reflexivní, symetrická a tranzitivní)
- pro stavy výsledného minimálního DFA A_m platí, že jsou to třídy \equiv a množina stavů A_m tvoří rozklad Q podle \equiv (předpokládáme, že A nemá nedosažitelné stavy)
- Konstrukce: A_m lze vypočítat pomocí tabulky dvojic stavů, která zachycuje \equiv :
 - nejprve označíme všechny dvojice, které obsahují pouze jeden koncový stav (ty jsme schopni rozlišit hned na začátku)
 - postupně označujeme dvojice $\langle p,q\rangle$, pro které existuje $a\in\Sigma$ takové, že dvojice $\langle \delta(p,a),\delta(q,a)\rangle$ už je označena; tento krok opakujeme dokud ještě lze označit nějakou další dvojici
 - neoznačené dvojice nejsme schopni rozlišit a pomocí tranzitivního uzávěru vypočítáme celou odpovídající třídu \equiv , kterou v A_m sloučíme do jednoho stavu

poznámka: není nutné počítat všechny políčka tabulky (reflexivita + symetrie)

• minimalizujte DFA zadaný tabulkou:

δ	a	b
$\rightarrow 1$	2	3
2	1	4
3⋆	5	6
4⋆	5	6
3* 4* 5*	6	6
6	6	6

\equiv	1	2	3	4	5	6
$\rightarrow 1$	√					
2	*	√				
3⋆	*	*	√			
4⋆	*	*	*	√		
5 *	*	*	*	*	√	
6	*	*	*	*	*	√

16 Pumping lemma

- užitečný nástroj, který umožňuje dokázat, že daný jazyk **není** regulární (neumožňuje dokázat, že jazyk je regulární)
- Pumping lemma: nechť L je regulární jazyk, pak existuje číslo $n \in \mathbb{N}$, tak že každý řetězec $w \in L$ délky aspoň n lze rozdělit na tři části w = xyz, které splňují:
 - (1) |y| > 0
 - $(2) |xy| \leq n$
 - (3) $xy^iz \in L$ pro všechna $i \ge 0$
- \bullet pokud je jazyk Lkonečný (a tedy i regulární), pak lemma platí triviálně nzvolíme větší než je délka nejdelšího řetězce vL
- postup při použití lemma v důkazu sporem:
 - 1. předpokládáme, že daný jazyk je regulární a tedy musí existovat $n \in \mathbb{N}$ z lemma (nikdy nevolíme konkrétní n, protože pokud L není regulární, n neexistuje)
 - 2. zvolíme vhodný řetězec w takový, že $|w| \ge n$ (w je tedy nějak vyjádřeno pomocí n; opět nikdy nevolíme konkrétní řetězec!)
 - 3. ukážeme, že pro každé rozdělení xyz = w splňující podmínky (1) a (2) z lemma existuje i, tak že xy^iz nelze napumpovat dle bodu (3)
- dokažte, že jazyky nejsou regulární (popište celou úvahu!):
 - 1. $L_1 = \{ww \mid w \in \{a, b\}^*\}$

2. $L_2 = \{a^p \mid p \text{ je prvočíslo}\}$

17 Homomorfismy jazyků

- homomorfismus na abecedě je funkce $h \colon \Sigma_1 \to \Sigma_2^*$, která přiřazuje každému symbolu z Σ_1 řetězec nad abecedou Σ_2
- h lze jednoduše definovat i pro řetězce, kde $h(w) = h(w_1) \dots h(w_n) \in \Sigma_2^*$ pro $w = w_1 \dots w_n \in \Sigma_1^*$ (zobrazíme zvlášť každý symbol v řetězci w)
- homomorfismus můžeme dále rozšířit jako operaci nad jazyky, kde pro jazyk L nad Σ_1^* je $h(L)=\{y\in\Sigma_2^*\mid x\in L\land h(x)=y\}$
- inverzní homomorfismus definujeme jako $h^{-1}(y)=\{x\in\Sigma_1^*\mid h(x)=y\}$ a analogicky pro jazyky $h^{-1}(L)=\{x\in\Sigma_1^*\mid h(x)\in L\}$
- ullet pokud je jazyk L regulární, pak h(L) je také regulární (to samé platí i pro $h^{-1}(L)$)
- mějme abecedy $\Sigma_1 = \{a, b, c, d\}$ a $\Sigma_2 = \{0, 1, 2\}$ a homomorfismus $h_1 \colon \Sigma_1 \to \Sigma_2^*$, kde $h_1(a) = 02$, $h_1(b) = 21$, $h_1(c) = 10$, $h_1(d) = \varepsilon$; určete:
 - $-h_1(adbccdda) =$
 - $-h_1^{-1}(0221) =$
 - $-h_1(L)$, kde $L = \{a^n b^* c^n \mid n \in \mathbb{N}\}$
- mějme abecedu $\Sigma = \{a, b, c\}$ a homomorfismus $h_2 \colon \Sigma \to \Sigma^*$, kde $h_2(a) = aa, h_2(b) = ba, h_2(c) = a$; určete:
 - $-h_2^{-1}(aabaaabaa) =$
 - $-h_2(L)$, kde $L = \{a^p \mid p \text{ je prvočíslo}\}$
 - $-h_2^{-1}(L)$, kde $L = \{w \in \{a\}^* \mid |w| = 2n$, pro $n \in \mathbb{N}\}$
- pro $\Sigma_1 = \{0,1\}$ a $\Sigma_2 = \{a\}$ zkuste najít homomorfismus $h \colon \Sigma_1 \to \Sigma_2^*$ takový, že pro všechna $w \in \Sigma_1^*$ platí $|h(w)| = 2^n$, kde |w| = n

18 Gramatiky a derivace

- gramatika je další způsob jak zapsat jazyk (nejen regulární! proto jsou gramatiky mnohem silnější nástroj než konečné automaty/RE)
- **Definice:** gramatika je reprezentována uspořádanou čtveřicí $\mathcal{G} = (N, \Sigma, P, S)$, kde:
 - 1. N je množina neterminálů (značené jako velká písmena)
 - 2. Σ je množina terminálů (symboly abecedy), platí $\Sigma \cap N = \emptyset$
 - 3. P je množina pravidel ve tvaru $P \subseteq V^*NV^* \times V^*$, kde $V = N \cup \Sigma$
 - 4. S je počáteční neterminál
- pravidlo $\alpha \to \beta$ chápeme tak, že při jeho aplikaci se α přepíše na β
- relaci přímého odvození $\gamma \Rightarrow_{\mathcal{G}} \delta$ chápejme jako aplikaci konkrétního pravidla na řetězec $\gamma = \eta \alpha \rho$, jehož výsledkem je řetězec $\eta \beta \rho$, neboli:

$$\eta \alpha \rho \Rightarrow_{\mathcal{G}} \eta \beta \rho$$

kde $\eta, \rho \in V^*$ a $\alpha \to \beta$ je právě aplikované pravidlo gramatiky \mathcal{G} (pokud je gramatika zřejmá z kontextu, pak můžeme označení \mathcal{G} u šipky vynechat)

- $\Rightarrow_{\mathcal{G}}^*$ umožňuje při odvození aplikovat libovolný počet libovolných pravidel (podobně $\Rightarrow_{\mathcal{G}}^k$ umožňujě přesně k aplikací, $\Rightarrow_{\mathcal{G}}^{\leq k}$ maximálně k aplikací atd.)
- derivace označuje proces, kdy na řetězec aplikujeme konečný počet kroků odvození
- $\bullet \Rightarrow_{lm}$ značí nejlevější derivaci přepisujeme vždy podle nejlevějšího neterminálu (analogicky \Rightarrow_{rm} je nejpravější derivace)
- jazyk generovaný gramatikou \mathcal{G} definujeme jako $L(\mathcal{G}) = \{w \in \Sigma^* \mid S \Rightarrow_{\mathcal{G}}^* w\}$ (řetězce v jazyku \mathcal{G} už neobsahují neterminály)
- mějme gramatiku \mathcal{G}_1 (ve zkrácené notaci pravidla pro jeden neterminál jsou napsaná na jednom řádku oddělená pomocí '|'):

$$\begin{split} S &\to XSX \mid R \\ R &\to aTb \mid bTa \\ T &\to XTX \mid X \mid \varepsilon \\ X &\to a \mid b \end{split}$$

- 1. jaké jsou proměnné a terminály v \mathcal{G}_1 ?
- 2. napište tři řetězce z $L(\mathcal{G}_1)$
- 3. rozhodněte zda platí $S \Rightarrow^* aabba$
- 4. rozhodněte zda platí $S \Rightarrow^* babbab$
- 5. rozepište nejlevější derivaci $S \Rightarrow_{lm}^* ababab$

19 Regulární gramatika (typ 3)

- \bullet gramatika $\mathcal{G} = (N, \Sigma, P, S)$ je **regulární**, pokud jsou všechna pravidla ve tvaru:
 - 1. $A \rightarrow aB$ (neterminál generuje jeden terminál následovaný jedním neterminálem)
 - 2. $A \rightarrow a$ (neterminál generuje pouze jeden terminál)
 - 3. $S \to \varepsilon$, pokud se S nevyskytuje na pravé straně jakéhokoliv pravidla (pouze počáteční neterminál může generovat generovat prázdný řetězec)
- každá regulární gramatika \mathcal{G} popisuje nějaký regulární jazyk, a proto lze převést na NFA $A_{\mathcal{G}} = (N \cup \{q_f\}, \Sigma, \delta, S, F)$, kde:
 - $A_{\mathcal{G}}$ má jeden stav pro každý neterminál $B \in N$ a navíc jeden stav q_f
 - -počáteční stavSodpovídá stavu počátečního neterminálu
 - F obsahuje stav q_f , a pokud \mathcal{G} obsahuje pravidlo $S \to \varepsilon$, pak i $S \in F$
 - pro každé pravidlo $A\to aB$ přidáme přechod $\delta(A,a)=B$ a pro pravidla ve tvaru $A\to a$ přidáme přechod $\delta(A,a)=q_f$
- navhrněte regulární gramatiky pro jazyky:

$$L_1 = \{ w \in \{a, b\}^* \mid |w| \in \{0, 3, 5\} \}$$

 $L_2 = \{w \in \{a, b\}^* \mid w \text{ začíná a končí stejným řetězcem } aa \text{ nebo } bb\}$

20 Bezkontextová gramatika (CFG, typ 2)

- gramatika $\mathcal{G} = (N, \Sigma, P, S)$ je bezkontextová (zkratka **CFG** z context-free grammar), pokud jsou všechna pravidla ve tvaru $A \to \alpha$, kde $\alpha \in (\Sigma \cup N)^*$, tedy neterminál generuje libovolný řetězec terminálů a neterminálů
- jazyk je **bezkontextový**, pokud jej generuje nějaká bezkontextová gramatika
- pokud je gramatika $\mathcal G$ bezkontextová, tak to nemusí znamenat, že jazyk $L(\mathcal G)$ není regulární množina jazyků, které lze generovat pomocí CFG, je totiž nadmnožinou regulárních jazyků (a podmnožinou kontextově závislých jazyků)
- navhrněte bezkontextové gramatiky pro jazyky:

$$L_1 = \{ w \in \{a, b, c\}^* \mid w = w^R \}$$

$$L_2 = \{w \in \{a,b,c\}^* \mid w$$
obsahuje aspoň tři znaky $a\}$

$$L_3 = \{a^{3n+2}b^{2n} \mid n \ge 1\}$$

$$L_4 = \{ w \in \{p, \neg, \rightarrow, \lor, \land, (,), \mathtt{true}, \mathtt{false}\}^* \mid w \text{ je formule výrokové logiky} \}$$

příklad: " $\neg (p \land pp)$ " $\in L_4$ a ") $(\lor p \land$ " $\not\in L_4$ $(p, pp, \dots \text{ jsou různé proměnné})$

$$L_5 = \{a^n b^m \mid n \neq m\}$$

$$L_6 = \{w \in \{0,\dots,9,+,-,.,(,)\}^* \mid w \text{ je aritmetický výraz s desetinnými čísly} \}$$
příklad: " $(-(-0.9))+(7.+.45-3.415)$ " $\in L_6$ a " -00.9 ", ".", " $5++5$ " $\not\in L_6$

- navrhněte bezkontextovou gramatiku pro minimalistický Lisp, který bude umět:
 - -definovat proměnné pomocí ${\tt defvar},$ kde název obsahuje pouze znaky ${\tt a-z}$
 - definovat funkce s pevným počtem parametrů pomocí ${\tt defun}$ a s názvem opět jen ze znaků ${\tt a-z}$
 - provádět aritmetické operace $+,-,\cdot,/$ na celých číslech
 - konstrukce car, cdr, cons, list, if, let a lambda
 - pro jednoduchost uvažujte, že každý výraz musí být oddělen whitespacem

21 Derivační stromy a víceznačnost CFG

- derivační strom je grafická reprezentace derivace (odvození) nějakého řetězce v CFG
- **Definice:** strom T nazveme derivačním stromem řetězce $\alpha \in (\Sigma \cup N)^*$ podle CFG $\mathcal{G} = (N, \Sigma, P, S)$, právě když platí:
 - 1. každý uzel je označen symbolem z $N \cup \Sigma \cup \{\varepsilon\}$, přičemž kořen je označen S
 - 2. nelistové (vniřní) uzly jsou označeny pouze neterminály
 - 3. pokud má nelistový uzel označení $A \in N$ a jeho potomci zleva doprava označení X_1, \ldots, X_k , pak v \mathcal{G} existuje pravidlo $A \to X_1 \ldots X_k$
 - 4. pokud je uzel označen ε , pak je list a nemá žádné sourozence
 - 5. zřetězením listových uzlů dostaneme α , neboli α je derivace stromu T
- CFG \mathcal{G} je **víceznačná/nejednoznačná**, pokud existuje řetězec $S \Rightarrow^* \alpha$, který je derivací aspoň dvou různých derivačních stromů
- bezkontextový jazyk je **jednoznačný**, pokud existuje jednoznačná gramatika, která jej generuje (je rozdíl mezi jednoznačností gramatiky a jazyka, který generuje)
- pro některé bezkontextové jazyky neexistuje jednoznačná gramatika, takový jazyk je **dědičně víceznačný** (např. jazyk $\{a^ib^jc^k\mid i=j\vee j=k\}$)
- mějme víceznačnou gramatiku $\mathcal{G}_1 = (\{E\}, \{a, +, \times, (,)\}, P, E)$:

$$E \rightarrow E + E \mid E \times E \mid (E) \mid a$$

- 1. sestavte derivační strom k řetězci ((a))
- 2. sestavte derivační strom k řetězci $(a \times (a+a))$
- 3. sestavte dva různé derivační stromy k jednomu řetězci

22 Chomského normální forma (CNF)

- CNF (zkratka z *Chomsky normal form*) je zjednodušený tvar CFG, který nám usnadní dokázat některá tvrzení (např. *pumping lemma* pro bezkontextové jazyky)
- do CNF lze převést každá CFG
- CFG $\mathcal{G} = (N, \Sigma, P, S)$ je v Chomského normální formě, pokud jsou všechna její pravidla ve tvaru:
 - 1. $A \to BC$ (neterminál generuje dva neterminály)
 - 2. $A \rightarrow a$ (neterminál generuje pouze jeden terminál)
 - 3. $S \to \varepsilon$, pokud se S nevyskytuje na pravé straně jakéhokoliv pravidla (pouze počáteční neterminál může generovat generovat prázdný řetězec)
- mějme CFG $\mathcal{G}_1 = (N, \Sigma, P, S)$, kde $N = \{S, A, B, C, D, E, F\}$ a $\Sigma = \{a, b, c, d\}$:

$$\begin{split} S &\to ASA \mid Ca \mid \varepsilon \\ A &\to S \mid aB \mid Ca \\ B &\to acB \mid bE \\ C &\to acac \mid Da \mid \varepsilon \\ D &\to dSS \mid E \mid aa \\ E &\to cB \mid acE \\ F &\to bD \mid ED \end{split}$$

převedení \mathcal{G}_1 do CNF provedeme v následujících krocích (záleží i na jejich pořadí):

1. odstraníme počáteční neterminál z pravé strany všech pravidel

- pokud se počáteční neterminál S vyskytuje na pravé straně nějakého pravidla, vytvoříme nový neterminál S' a přidáme nové pravidlo $S' \to S$
- ullet zvolíme S' jako nový počáteční neterminál $\mathcal G$

2. odstraníme ε -pravidla

- odebereme libovolné pravidlo ve tvaru $A \to \varepsilon$, kde A není počáteční neterminál
- \bullet dále pro každé pravidlo $B \to \alpha$ obsahující Ana pravé straně:
 - (a) přidáme do \mathcal{G} nová pravidla ve tvaru $B \to \beta$, kde β je řetězce α , ve kterém každý výskyt A může být nahrazen ε (např. pro pravidlo $B \to \alpha A \beta A \gamma \in P$ přidáme $B \to \alpha \beta A \gamma \mid \alpha A \beta \gamma \mid \alpha \beta \gamma$)
 - (b) pokud je pravidlo ve tvaru $B \to A$, pak přidáme nové pravidlo $B \to \varepsilon$, ale jen v případě, že jsme takové pravidlo již neodstranili (jinak by mohlo dojít k zacyklení)
- tyto kroky opakujeme, dokud neodstraníme všechna ε -pravidla (kromě $S \to \varepsilon$, kde S je startovní neterminál)

3. odstraníme jednoduchá pravidla

- \bullet pravidla ve tvaru $A\to B,$ kde $B\in N,$ nejsou v CNF povolena (můžeme vygenerovat vždy jen dva neterminály)
- každé takové pravidlo $A \to B$ odstraníme z \mathcal{G} , a poté přidáme nové pravidla $A \to \alpha_1 \mid \ldots \mid \alpha_k$, kde $B \to \alpha_1 \mid \ldots \mid \alpha_k$ jsou všechna zbývající pravidla s B na levé straně, které jsme při tomto procesu již neodstranili (jinak by mohlo dojít k zacyklení)

4. odstraníme neterminály, které nederivují terminální řetězec

- iterativně počítáme množinu neterminálů N_i , které generují terminální řetězec
- na začátku položíme $N_0 = \emptyset$ a postupně konstruujeme další $N_i = N_{i-1} \cup \{A \mid A \to \alpha, \alpha \in (N_{i-1} \cup \Sigma)^*\}$, výpočet končí pokud $N_i = N_{i-1}$
- nechť N_e je poslední vypočítaná množina N_i , pak z \mathcal{G} odstraníme všechny neterminály z $N \setminus N_e$ a pravidla, v nichž se tyto symboly vyskytují

5. odstraníme nedosažitelné symboly

- iterativně počítáme množinu symbolů $V_i \subset \Sigma \cup N$, které lze vygenerovat z počátečního neterminálu
- na začátku položíme $V_0 = \{S\}$ a postupně konstruujeme další $V_i = V_{i-1} \cup \{X \mid A \in V_{i-1} \land A \to \alpha X \beta \in P$, pro nějaké $A \in N$ a $\alpha, \beta \in (N \cup \Sigma)^*\}$, výpočet končí pokud $V_i = V_{i-1}$
- nechť V_e je poslední vypočítaná množina V_i , pak z \mathcal{G} odstraníme všechny terminály i neterminály, které nejsou v V_e a pravidla, v nichž se tyto symboly vyskytují (formálně $N' = N \cap V_e, \Sigma' = \Sigma \cap V_e$ a $P' = P \cap (V_e \times V_e^*)$)

6. nakonec převedeme pravidla do správného tvaru

- pořád nám ještě zbývají pravidla, které generují kombinace terminálů a neterminálů, nebo více než dva symboly
- pro každý terminál $a \in \Sigma$ vytvoříme nový neterminál $\langle a \rangle$ a pravidlo $\langle a \rangle \to a$, které přidáme do \mathcal{G} jen v případě, že přidáme jiné pravidlo generující $\langle a \rangle$
- každé pravidlo ve tvaru $A \to x_1 \dots x_k$, kde $k \ge 3$ a x_1, \dots, x_k jsou buď terminály nebo neterminály, nahradíme novými pravidly:

$$A \to \hat{x}_1 \langle x_2 \dots x_k \rangle, \ \langle x_2 \dots x_k \rangle \to \hat{x}_2 \langle x_3 \dots x_k \rangle, \ \dots, \ \langle x_{k-1} x_k \rangle \to \hat{x}_{k-1} \hat{x}_k$$

kde $\langle x_2 \dots x_k \rangle, \dots, \langle x_{k-1} x_k \rangle$ jsou nové neterminály a \hat{x}_i je $\langle a \rangle$, pokud $x_i = a$ (tedy x_i je nějaký terminál), jinak \hat{x}_i je neterminál x_i

• každé pravidlo ve tvaru $A \to x_i x_j$, kde aspoň jeden z x_i, x_j je terminál, nahraď novým pravidlem $A \to \hat{x}_i \hat{x}_j$ (\hat{x}_i je $\langle a \rangle$, pokud $x_i = a$, jinak x_i , analogicky \hat{x}_j)

23 Algoritmus CYK

- pro zadanou CFG $G=(N,\Sigma,P,S)$ v CNF a řetězec w testuje zda platí $S\Rightarrow^* w$
- časová složitost $O(n^3)$, kde n je délka slova $w = w_1 \dots w_n$; počítáme tabulku velikosti $O(n^2)$, přičemž výpočet jedné buňky tabulky trvá O(n)

• Průběh algoritmu:

- 1. vytvoříme trojúhelníkovou tabulku (viz níže) o šířce a výšce n a pod každý sloupec i napíšeme napíšeme terminál w_i poznámka: buňka v tabulce na indexu (i,j) odpovídá množině $X_{i,j}$, která obsahuje neterminály A, pro něž platí $A \Rightarrow^* w_i \dots w_j$
- 2. inicializujeme spodní řádek tabulky: do každé množiny $X_{i,i}$ vložíme všechny neterminály A, pro které existuje v G pravidlo $A \to w_i$
- 3. počítáme řadky od spodu tabulky: do $X_{i,j}$ vložíme neterminál A pokud existuje index k a pravidlo $A \to BC$ tak, že: $(i \le k < j) \land B \in X_{i,k} \land C \in X_{k+1,j}$ poznámka: pro každé $A \to BC$ postupně testujeme náležení B a C do dvojic množin $(X_{i,i}, X_{i+1,j}), (X_{i,i+1}, X_{i+2,j}), \ldots, (X_{i,j-1}, X_{j,j})$
- 4. pokud na konci výpočtu $X_{1,n}$ obsahuje startovní neterminál, pak platí $S \Rightarrow^* w$
- pomocí algoritmu CYK ověřte, že $S \Rightarrow^*$ "time flies like an arrow" v gramatice:

$$\begin{array}{c} {\rm S} \rightarrow {\rm NP\ VP} \\ {\rm NP} \rightarrow {\rm DET\ NP\ |\ NP\ NP\ |\ } time\ |\ flies\ |\ arrow \\ {\rm VP} \rightarrow {\rm VP\ NP\ |\ VP\ PP\ |\ } flies\ |\ like \\ {\rm PP} \rightarrow {\rm P\ NP} \\ {\rm DET} \rightarrow an \\ {\rm P} \rightarrow like \end{array}$$

1,5				
1,4	2,5			
1,3	2,4	3,5		
1,2	2,3	3,4	4,5]
1,2	2,0	0,1	1,0	
1,1	2,2	3,3	4,4	5,5
time	flies	like	an	arrow

24 Zásobníkový automat (PDA)

- **PDA** (zkratka z *pushdown automaton*) je nedeterministický model podobný NFA, který má navíc přístup k potenciálně nekonečné paměti v podobě zásobníku
- motivace k PDA: chceme "zvýšit sílu" NFA, aby rozponávaly bezkontextové jazyky
- **Definice:** PDA je reprezentován strukturou $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$, kde:
 - 1. Q je konečná množina stavů
 - 2. Σ je vstupní abeceda
 - 3. Γ je zásobníková abeceda (platí $Z_0 \in \Gamma$)
 - 4. δ je přechodová funkce ve tvaru $\delta\colon Q\times(\Sigma\cup\{\varepsilon\})\times\Gamma\to 2^{Q\times\Gamma^*}$, která stavu, vstupnímu symbolu a symbolu na vrcholu zásobníku přiřadí množinu dvojic skládajících se ze stavu a řetězce zásobníkových symbolů
 - 5. q_0 je počáteční stav (platí pro něj $q_0 \in Q$)
 - 6. Z_0 je symbol, který je jako jediný v zásobníku na začátku výpočtu
 - 7. F je množina koncových/akceptujících stavů (platí $F \subseteq Q$)
- pro jednoduchost povolíme i přechody, které nejsou podmíněné vrcholem zásobníku, tedy například přechod $\delta(q,\varepsilon,\varepsilon)=\{(p,\varepsilon)\}$ nečte nic ze vstupu ani zásobníku
- stav výpočtu PDA popisuje konfigurace, což je trojice $\langle q, w, \alpha \rangle \in Q \times \Sigma^* \times \Gamma^*$ obsahující aktuální stav, nezpracovanou část vstupního řetězce a stav zásobníku
- přechodová relace $X \vdash Y$ znamená, že z konfigurace X je dosažitelná konfigurace Y v jednom kroku (\vdash^* značí rozšíření na libovolný počet kroků)
- jazyk PDA lze definovat dvěma způsoby:
 - 1. pomocí koncových stavů (podobně jako u NFA)

$$L(P) = \{ w \in \Sigma^* \mid \langle q_0, w, Z_0 \rangle \vdash^* \langle q_f, \varepsilon, \alpha \rangle, \text{ kde } q_f \in F \text{ a } \alpha \in \Gamma^* \}$$

2. prázdným zásobníkem

$$N(P) = \{ w \in \Sigma^* \mid \langle q_0, w, Z_0 \rangle \vdash^* \langle q, \varepsilon, \varepsilon \rangle, \text{ kde } q \in Q \}$$

• mějme PDA P_1 (popisky u přechodů jsou ve tvaru $\Sigma, \Gamma \to \Gamma^*$):

- 1. je P_1 deterministický?
- 2. jaké jsou jazyky $L(P_1)$ a $N(P_1)$?
- 3. jaký může být stav zásobníku po přečtení baaaa ze vstupu?
- 4. rozepište kroky $\langle 1, abba, Z_0 \rangle \vdash^* \langle 3, \varepsilon, \varepsilon \rangle$

25 Návrh PDA

$$L_1 = \{a^i b^j c^j d^i \mid i, j \ge 0\}$$

$$L_2 = \{a^i b^j \mid 1 \le j \le i \le 2j\}$$

$$L_3 = \{a^i b^j c^k \mid i = j \text{ nebo } j = k\}$$

 $L_4 = \{w \in \{a,b\}^* \mid \#_a(w) \neq \#_b(w), \text{ tedy počet } a \text{ a } b \text{ není stejný}\}$

26 Převod CFG na PDA

- PDA, stejně jako CFG, rozpoznávají třídu bezkontextových jazyků, a proto můžeme tyto modely mezi sebou převádět
- Konstrukce: mějme gramatiku $\mathcal{G} = (N, \Sigma, P, S)$, pak PDA $A = (\{q\}, \Sigma, N \cup \Sigma, \delta, q, S, \emptyset)$ takový, že L(G) = N(A), sestrojíme v těchto krocích:
 - $1.\ A$ má pouze jeden stav, který je zároveň počáteční (nemá koncové stavy)
 - 2. zásobníková abeceda A obsahuje všechny terminály a neterminály z \mathcal{G}
 - 3. počáteční zásobníkový symbol je počáteční neterminál S
 - 4. pro každé pravidlo $A \to \alpha$ přidáme přechod $(q, \alpha) \in \delta(q, \varepsilon, A)$
 - 5. dále pro každý terminál $a \in \Sigma$ přidáme přechod $\delta(q, a, a) = \{(q, \varepsilon)\}$
- PDA A v této konstrukci simuluje nejlevější derivaci vstupního řetězce v \mathcal{G} na svém zásobníku, přičemž v každém kroku nedeterministicky vybere jeden z přechodů:
 - přechody v bodu 4. expandují pravidla \mathcal{G} na zásobník
 - přechody v bodu 5. srovnávají vygenerované terminály se vstupem
- mějme gramatiku $G_1 = (\{E\}, \{a, +, \times, (,)\}, P, E\})$:

$$E \rightarrow E + E \mid E \times E \mid (E) \mid a$$

- 1. převeď te \mathcal{G}_1 na PDA
- 2. rozepište kroky $\langle q, (a \times a), E \rangle \vdash^* \langle q, \varepsilon, \varepsilon \rangle$

27 Gramatiky typu 0 a 1

- jazyky, které generují gramatiky typu 0 a 1, jsou na rámec tohoto kurzu, více se o nich dozvíte v předmětu *Vyčíslitelnost a složitost*
- \bullet gramatika ${\mathcal G}$ je kontextová (CSG nebo typ 1), pokud jsou všechna pravidla ve tvaru:
 - 1. $\alpha A\beta \to \alpha \gamma \beta$, kde $A \in N$, $\gamma \neq \varepsilon$ a $\alpha, \gamma, \beta \in (\Sigma \cup N)^*$ (levá strana pravidla může obsahovat společně s přepisovaným neterminálem A i další symboly, které podmiňují aplikování daného pravidla, ale samy nemohou být přepsány)
 - 2. $S \to \varepsilon$, pokud se S nevyskytuje na pravé straně jakéhokoliv pravidla
- mějme mějme gramatiku $\mathcal{G}_1 = (\{S,A,B,C,W,Z\},\{a,b,c\},P,S\})$:

$S \to aBC \mid aSBC$	$aB \rightarrow ab$
$CB \to CZ$	bB o bb
$CZ \to WZ$	$bC \rightarrow bc$
$WZ \to WC$	$cC \rightarrow cc$
$WC \to BC$	$cc \rightarrow cc$

- 1. jaký jazyk generuje gramatika \mathcal{G}_1 ?
- 2. rozepište celou derivaci řetězce aabbcc
- pokud na pravidla neklademe žádné omezení, a tedy povolujeme libovolné pravidlo $\alpha \to \beta$ pro $\alpha, \beta \in (\Sigma \cup N)^*$, pak taková gramatika \mathcal{G} je **bez omezenení** (typ 0)
- mějme mějme gramatiku $\mathcal{G}_2 = (\{S, A, B, C, D, E\}, \{a, b\}, P, S\})$:

$$S \rightarrow ABC$$

$$AB \rightarrow aAD \mid bAE \mid \varepsilon$$

$$DC \rightarrow BaC$$

$$EC \rightarrow BbC$$

$$Da \rightarrow aD$$

$$Db \rightarrow bD$$

$$Ea \rightarrow aE$$

$$Eb \rightarrow bE$$

$$C \rightarrow \varepsilon$$

$$aB \rightarrow Ba$$

$$bB \rightarrow Bb$$

- 1. jaký jazyk generuje gramatika \mathcal{G}_2 ?
- 2. rozepište celou derivaci řetězce baabaa

28 Pumping lemma pro bezkontextové jazyky

- Pumping lemma pro CFL: nechť L je bezkontextový jazyk, pak existuje číslo $n \in \mathbb{N}$ tak, že každý řetězec $s \in L$ délky aspoň n lze rozdělit na pět částí s = uvxyz, které splňují:
 - 1. |vy| > 0
 - $2. |vxy| \leq n$
 - 3. $uv^ixy^iz\in L$ pro všechna $i\geq 0$
- intuice: L je bezkontextový, proto existuje PDA P, který jej rozpoznává; pokud máme dostatečně dlouhý řetězec $s \in L$, pak se v něm musí nějaký podřetězec v opakovat, přičemž P si na zásobník uloží výskyty tohoto podřetězce, a později je může srovnat s výskyty jiného podřetězce y (proto mezi počtem opakování v a y může být závislost)
- zásobník umožňuje pouze LIFO přístup, a proto P nemůže zároveň srovnávat výskyty více jak jedné dvojice; navíc řetězce ze zásobníku čteme v opačném pořadí, než byly uloženy (proto L_1 není CFL, přitom $\{ww^R \mid w \in \{a,b\}^*\}$ je CFL)
- dokažte, že následující jazyky nejsou bezkontextové:

$$L_1 = \{ww \mid w \in \{a, b\}^*\}$$

$$L_2 = \{ a^i \# a^j \# a^k \mid 0 < i < j < k \}$$

29 Proč neplatí opačná implikace v pumping lemma?

- pumping lemma je tvrzení ve tvaru implikace: "pokud je jazyk regulární, případně bezkontextový, pak splňuje nějaké podmínky"
- lze ukázat, že opačná implikace neplatí (tedy neplatí tvrzení: "pokud platí podmínky v lemmatu, pak je jazyk regulární/bezkontextový")
- pro jednoduchost uvažujme pumping lemma pro regulární jazyky, ale protipříklad můžeme najít i pro bezkontextové jazyky
- chceme najít jazyk, který splňuje pumping lemma, ale přitom není regulární
- mějme abecedu $\Sigma = \{a,b\}$, nějaký jazyk $L \subseteq \{b\}^*$ a jazyk $L_p = (\{a\}^+ \cdot L) \cup \{b\}^*$; dokažte následující tvrzení:
 - 1. L_p je regulární právě tehdy, když ($\{a\}^+ \cdot L$) je regulární

2. $(\{a\}^+ \cdot L)$ je regulární právě tehdy, když L je regulární

3. pokud L není regulární, pak L_p také není regulární a zároveň splňuje podmínky pumping lemma

30 Domácí úkoly

- 1. mějme $L = \{ab, ba\}, M = \{aa, ab\}$ a $N = \{a, b\}$; vypište prvky jazyků:
 - (a) $L \cdot (M \cup N)$
 - (b) $L \cdot (M \cdot N)$
- 2. mějme abecedu $\Sigma=\{a,b\}$ a jazyky $A=\{a\}$ a $B=\{b\};$ popište obsah nekonečných jazyků:
 - (a) $B \cdot A^*$
 - (b) $A^* \cup B^+$
 - (c) $(A^* \cup B^*)^+$

poznámka: unární operace mají vyšší prioritu

- 3. zamyslete se, zda obecně platí vztahy a dokažte své tvrzení:
 - (a) $L \cdot (M \cup N) = (L \cdot M) \cup (L \cdot N)$
 - (b) $L \cdot (M \cdot N) = (L \cdot M) \cdot N$
- 4. pro jazyky nad abecedou $\Sigma = \{0, 1, 2\}$ navrhněte RE:
 - (a) $\{s \mid s \text{ neobsahuje podřetězec } 01\}$
 - (b) $\{s \mid s \text{ m\'a lich\'y po\'cet } 0\}$
- 5. s pomocí libovolného regex editoru* si vyzkoušejte napsat rozšířené** RE pro:
 - (a) celá čísla a desetinná čísla:

🗶 --10 (více než jedno znaménko)

√ -0.5

X 0. (za tečkou musí následovat číslo)

√ .5

X 10.2ab (nepovolené znaky)

(b) emailovou adresu (zde není nutné se držet přesné syntaxe adres, stačí rozpoznat uvedené příklady):

√ 1234567890@example.com

email@ (chybí doména)

√ ____@example.com

X emailexample.com (chybí @)

 \checkmark email@example.museum

// em@ail@example.com (více jak jeden @)

√ email@example.co.jp

x my email@example.com (znak mezery)

(c) IPv4 adresu:

√ 172.15.255.255

X 256.0.0.0 (256 je

(256 je mimo rozsah)

√ 172.32.0.0

X 1.0.1..255.

(přebývající tečky)

- * například https://regex101.com/ podporuje několik standardů pro zápis RE ** běžně používané regulární výrazy toho umožňují více, než uvádí formální definice
- 6. mějme abecedu $\Sigma=\{a,b\}$ a dva jazyky $A=\{a\},\ B=\{b\};$ navhrněte DFA rozponávající jazyky:

(a)
$$\Sigma^* \setminus (A^* \cdot B^*)$$

(b)
$$A^+ \cdot B^+ \cdot A^*$$

- 7. popište (slovně nebo pseudokódem) algoritmus, který o DFA A rozhodne, zda jeho jazyk L(A) je konečná množina
- 8. popište průběh algoritmu, který z DFA odstraní nedosažitelné stavy
- 9. zkuste si implementovat konečný deterministický automat s rozšířenou přechodovou funkcí ve vašem oblíbeném programovacím jazyce
- 10. pomocí součinové konstrukce sestrojte DFA pro jazyk:

$$\{s \in \{a,b\}^* \mid s \text{ má lichý počet } a\} \cup \{s \in \{a,b\}^* \mid \text{každé } a \text{ je následováno alespoň dvěma } b\}$$

- 11. determinizujte NFA A_1 (po odstranění ε -přechodů) ze Sekce 12
- 12. odstraňte ε -přechody z ε -NFA zadaného tabulkou a poté jej determinizujte:

δ_E	a	b	ε
$\rightarrow 1$	{2}	Ø	$\{2, 3\}$
2	{4}	$\{2, 3\}$	Ø
3	{5}	Ø	Ø
4	Ø	{5 }	{5 }
5 *	{5}	{3}	\emptyset

- 13. zamyslete se, jak by mohla vypadat obecná konstrukce DFA, který pro zadaný jazyk Lrozponává jeho reverzní jazyk L^{R}
- 14. pokud je L regulární jazyk, pak jazyk sufixů všech slov daného jazyka $Sfx(L)=\{z\mid\exists x\in L\colon x=yz\}$ je také regulární (a proto existuje DFA, který jej rozpoznává); zamyslete se, jak by mohla vypadat obecná konstrukce DFA rozpoznávající Sfx(L) pro zadaný jazyk L
- 15. minimalizujte DFA zadaný tabulkou a výsledný automat nakreslete:

δ	a	b
$\rightarrow 1$	2	4
2	2	2
2 3∗	3	2
4	7	9
5 6∗	2	2
6⋆	3	5
7	5	8
8	7	9
9⋆	6	8

16. pomocí pumping lemma dokažte, že jazyk není regulární:

$$L = \{s \in \{(,)\}^* \mid s$$
 je správně uzávorkovaný výraz

– správně uzávorkovaný je například ()() nebo ((())()), přičemž (() a)(nejsou

- 17. pro $\Sigma_1 = \{a, b, c, d, e\}$ a $\Sigma_2 = \{0, 1\}$ najděte homomorfismus $h \colon \Sigma_1 \to \Sigma_2^*$ takový, že pro všechna $w \in \Sigma_1^*$ platí $h^{-1}(h(w)) = \{w\}$
- 18. jaký je jazyk generovaný gramatikou \mathcal{G}_1 ze Sekce 18?
- 19. navrhněte regulární gramatiku pro jazyk $\{w \in \{a,b,c\}^* \mid w \text{ neobsahuje podřetězec } abc\}$
- 20. najděte předpis, který pro zadané $n \in \mathbb{N}$ vytvoří NFA s n stavy, a jehož determinizace má 2^n dosažitelných stavů (takových předpisů automatů existuje více)
- 21. navrhněte gramatiku pro jazyk $L = \{w \in \{a,b\}^* \mid \#_a(w) \neq \#_b(w)\}$, tedy jazyk slov, kde počet a a b není stejný
- 22. dokažte, že třída bezkontextových jazyků je uzavřená na operace regulárních výrazů: uzávěr *, sjednocení a zřetězní
- 23. mějme zadanou gramatiku $\mathcal{G} = (\{E, T, F\}, \{a, +, \times, (,)\}, P, E),$

$$E \to E + T \mid T$$
$$T \to T \times F \mid F$$
$$F \to (E) \mid a$$

sestavte derivační stromy k řetězcům:

- (a) ((a))
- (b) $a + a \times a$
- (c) $(a+a) \times a$
- 24. nechť \mathcal{G} je libovolná gramatika v CNF a $w \in L(\mathcal{G}) \setminus \{\varepsilon\}$ je neprázdný řetězec; jaká je minimální a maximální délka odvození řetězce w v \mathcal{G} (počet provedených derivací)? pro své tvrzení uveď te důkaz
- 25. popište algoritmus, který pro CFG \mathcal{G} rozhodne zda $L(\mathcal{G})$ je konečná množina
- 26. DFA $A=(Q,\Sigma,\delta,q_0,F)$ je synchronizující, pokud existuje $w\in L(A)$ a $q\in Q$ takové, že pro všechny $p\in Q$ platí $\delta(p,w)=q$. Můžeme o libovolném DFA rozhodnout, zda je synchronizující?
- 27. dokažte, že jazyky jsou bezkontextové:

$$L_1 = \{x_1 \# x_2 \# \dots \# x_k \mid k \geq 2, x_i \in \{a, b\}^*, \text{ a } x_i = x_j^R \text{ pro nějaké } i \neq j\}$$

$$L_2 = \{x \# y \mid x, y \in \{a, b\}^+, |x| \leq |y| \land x \not\in Pfx(y)\}$$

poznámka: symbol # je v tomto případě další znak abecedy – oddělovač

- 28. zamyslete se jak se změní množina jazyků rozpoznávaných pomocí PDA, pokud model upravíme tak, že:
 - (a) nový model má pouze konečný zásobník, tj. mějme danou konstantu k, pak nemůžeme provést přechod, po němž by obsah zásobníku byl větší než k
 - (b) nový model má k dispozici dva zásobníky, přičemž každý přechod v δ může manipulovat (zapisovat i číst) vždy jen s jedním zásobníkem

29. mějme gramatiku $\mathcal{G} = (\{S, A, B, C, D, E\}, \{a\}, P, S\})$:

$$S \to ACaB$$

$$Ca \to aaC$$

$$CB \to DB \mid E$$

$$aD \to Da$$

$$AD \to AC$$

$$aE \to Ea$$

$$AE \to \varepsilon$$

- (a) rozhodněte jakého je gramatika typu a odpoveď zdůvodněte
- (b) rozhodněte zda platí $S \Rightarrow^* aaaa$ (pokud ano, rozepište celou derivaci)
- (c) jaký jazyk gramatika \mathcal{G} generuje?

30. mějme jazyk $L=\{a^ib^jc^jd^j\mid i,j\in\mathbb{N},i\geq 1\}\cup\{b^jc^kd^\ell\mid j,k,\ell\in\mathbb{N}\};$ dokažte tvrzení:

- (a) L není bezkontextový
- (b) L splňuje podmínky pumping lemma pro bezkontextové jazyky