Field-aware Factorization Machines for CTR Prediction

0. Summary

1. Research Objective

2. Problem Statement

CTR问题。

3. Methods

在FM中,每个特征值对应一个隐含向量。

比如现有三部电影, One-Hot编码之后:

id	x_0 (第一部电影)	x_1 (第二部电影)	x_2 (第三部电影)
158	0	0	1

 ω_2 是特征 x_2 对应的隐含向量,也就是第三部电影对应的和其他特征的交互信息。

如下图,与FM不同的是,FFM增加了特征值对应的领域信息,比如ESPN属于Publisher这个领域,Nike属于Advertiser这个领域,这也是FFM(Field-Aware Factorization Machines)名称的由来之处。

Clicked	Publisher(P)	Advertiser(A)	Gender(G)
Yes	ESPN	Nike	Male

在FFM中,每个特征值包含多个隐含向量,比如ESPN这个特征值,它包含两个隐含向量 $\omega_{ESPN,A}$, $\omega_{ESPN,G}$,其中 $\omega_{ESPN,A}$ 对ESPN与Adertiser这个领域内的特征的交互信息进行建模, $\omega_{ESPN,G}$ 对ESPN与Gender这个领域内的特征的交互信息进行建模。

针对上面这个例子,对FM来说:

$$\phi_{FM} = \omega_{ESPN} \cdot \omega_{Nike} + \omega_{ESPN} \cdot \omega_{Male} + \omega_{Nike} \cdot \omega_{Male}$$

对FFM来说:

$$\phi_{FFM} = \omega_{ESPN,A} \cdot \omega_{Nike,P} + \omega_{ESPN,G} \cdot \omega_{Male,P} + \omega_{Nike,G} \cdot \omega_{Male,A}$$

可以这样理解,FM中的每个隐含向量学到的是该特征值和其他特征值的交互信息,FFM中每个隐含向量学到的是该特征和对应领域内特征的交互信息。

$$\phi_{FFM}(\omega,x) = \sum_{j_1=1}^n \sum_{j_2=j_1+1}^n (\omega_{j_1,f_2} \cdot \omega_{j_2,f_1}) x_{j_1} x_{j_2}$$

其中 f_1 和 f_2 是属性 j_1 和 j_2 对应的领域(field)。

在FM和FFM中,特征对应的隐含向量的维度为 k,在FFM中,因为每个特征对应的隐含向量(有多个)只需要考虑该特征与某个领域的交互,例如 $\omega_{ESPN,A}$ 只考虑ESPN这个特征与Adertiser这个领域之间的交互,而在FM中,每个特征对应的隐含向量(只有一个),它包含该特征与所有特征之间的交互信息,所蕴含的信息量更大,所以一般来说 $k_{FFM} \ll k_{FM}$ 。

Optimization

采用SGD优化算法,自适应学习率算法采用的是Adagrad(研究表明Adagrad在矩阵分解中表现出更好的性能)。

每次从训练集中采样一个样本, 梯度信息

4. Evaluation

Madal and implementation		training time	public set		private set	
Model and implementation	parameters	(seconds)	logloss	rank	logloss	rank
LM-SG	$\eta = 0.2, \lambda = 0, t = 13$	527	0.46262	93	0.46224	91
LM-LIBLINEAR-CD	s = 7, c = 2	1,417	0.46239	91	0.46201	89
LM-LIBLINEAR-Newton	s = 0, c = 2	7,164	0.46602	225	0.46581	222
Poly2-SG	$\eta = 0.2, \lambda = 0, B = 10^7, t = 10$	12,064	0.44973	14	0.44956	14
Poly2-LIBLINEAR-Hash-CD	s = 7, c = 2	24,771	0.44893	13	0.44873	13
FM	$\eta = 0.05, \lambda = 2 \times 10^{-5}, k = 40, t = 8$	2,022	0.44930	14	0.44922	14
$_{ m FM}$	$\eta = 0.05, \lambda = 2 \times 10^{-5}, k = 100, t = 9$	4,020	0.44867	11	0.44847	11
LIBFM	$\lambda = 40, k = 40, t = 20$	23,700	0.45012	14	0.45000	15
LIBFM	$\lambda = 40, k = 40, t = 50$	131,000	0.44904	14	0.44887	14
LIBFM	$\lambda = 40, k = 100, t = 20$	54,320	0.44853	11	0.44834	11
LIBFM	$\lambda = 40, k = 100, t = 50$	398,800	0.44794	9	0.44778	8
FFM	$\eta = 0.2, \lambda = 2 \times 10^{-5}, k = 4, t = 9$	6,587	0.44612	3	0.44603	3

(a) Crited

(a) criteo							
Model and implementation	parameters	training time	ng time public set		private set		
Moder and implementation	parameters	(seconds)	logloss	rank	logloss	rank	
LM-SG	$\eta = 0.2, \lambda = 0, t = 10$	164	0.39018	57	0.38833	64	
LM-LIBLINEAR-CD	s = 7, c = 1	417	0.39131	115	0.38944	119	
LM-LIBLINEAR-Newton	s = 0, c = 1	650	0.39269	182	0.39079	183	
Poly2-SG	$\eta = 0.2, \lambda = 0, B = 10^7, t = 10$	911	0.38554	10	0.38347	10	
Poly2-LIBLINEAR-Hash-CD	s = 7, c = 1	1,756	0.38516	10	0.38303	9	
Poly2-LIBLINEAR-Hash-Newton	s = 0, c = 1	27,292	0.38598	11	0.38393	11	
FM	$\eta = 0.05, \lambda = 2 \times 10^{-5}, k = 40, t = 8$	574	0.38621	11	0.38407	11	
FM	$\eta = 0.05, \lambda = 2 \times 10^{-5}, k = 100, t = 9$	1,277	0.38740	17	0.38531	15	
LIBFM	$\lambda = 40, k = 40, t = 20$	18,712	0.39137	122	0.38963	127	
LIBFM	$\lambda = 40, k = 40, t = 50$	41,720	0.39786	935	0.39635	943	
LIBFM	$\lambda = 40, k = 100, t = 20$	39,719	0.39644	747	0.39470	755	
LIBFM	$\lambda = 40, k = 100, t = 50$	91,210	0.40740	1,129	0.40585	1,126	
FFM	$\eta = 0.2, \lambda = 2 \times 10^{-5}, k = 4, t = 4$	340	0.38411	6	0.38223	6	

(b) Avazu

	statistics			logloss			
Data set	# instances	# features	# fields	LM	Poly2	$_{\mathrm{FM}}$	FFM
KDD2010-bridge	20,012,499	$651,\!166$	9	0.27947	0.2622	0.26372	0.25639
KDD2012	149,639,105	$54,\!686,\!452$	11	0.15069	0.15099	0.15004	0.14906
phishing	11,055	100	30	0.14211	0.11512	0.09229	0.1065
adult	48,842	308	14	0.3097	0.30655	0.30763	0.30565
cod-rna (dummy fields)	$331,\!152$	8	8	0.13829	0.12874	0.12580	0.12914
cod-rna (discretization)	331,152	2,296	8	0.16455	0.17576	0.16570	0.14993
ijcnn (dummy fields)	141,691	22	22	0.20093	0.08981	0.07087	0.0692
ijcnn (discretization)	141,691	$69,\!867$	22	0.21588	0.24578	0.20223	0.18608

Table 4: Comparison between LM, Poly2, FM, and FFMs. The best logloss is underlined.

5. Conclusion

在某些数据集上,FFM比LM,Poly2,FM表现出更好的性能(logloss更小),但是它的训练时间也相对较长。

在某些数据集上,LM/Poly2/FM/FFM性能相当,一个解释是,该数据集包含的特征之间没有交互,或者说交互信息量很小,没法挖掘出信息。

6. Notes

- 1. 模型汇总
 - 1. LM, Linear Model,不考虑特征之间的交互,拟合效果不佳。

$$\phi_{\mathrm{LM}}(\boldsymbol{w}, \boldsymbol{x}) = \boldsymbol{w} \cdot \boldsymbol{x}.$$

2. Poly2,考虑特征之间的二阶交叉项,但是在数据十分稀疏的情况下,模型很难学到东西,也就是很难准确估算 ω 。

$$\phi_{\text{Poly2}}(\boldsymbol{w}, \boldsymbol{x}) = \sum_{j_1=1}^{n} \sum_{j_2=j_1+1}^{n} w_{h(j_1, j_2)} x_{j_1} x_{j_2}$$

3. FM,Factorization Machines,为了解决Poly2中存在的问题,FM为每个特征值引入隐含向量(embedding vector),通过隐含向量之间的内积来表示特征之间的交互,解决了数据稀疏性的问题。

$$\hat{y}(\mathbf{x}) := w_0 + \sum_{i=1}^n w_i \, x_i + \sum_{i=1}^n \sum_{j=i+1}^n \langle \mathbf{v}_i, \mathbf{v}_j \rangle \, x_i \, x_j$$

4. FFM,Field-aware Factorization Machines,引入了域的概念,每个特征都属于一个相应的域,另外每个特征包含多个隐含向量,每个隐含向量表示该特征与其他域内所有特征的交互信息。

$$\phi_{\text{FFM}}(\boldsymbol{w}, \boldsymbol{x}) = \sum_{j_1=1}^{n} \sum_{j_2=j_1+1}^{n} (\boldsymbol{w}_{j_1, f_2} \cdot \boldsymbol{w}_{j_2, f_1}) x_{j_1} x_{j_2}$$

2. 为了降低参数的个数, Poly2采用hash的方法, 如下:

$$\phi_{\text{Poly2}}(\boldsymbol{w}, \boldsymbol{x}) = \sum_{j_1=1}^{n} \sum_{j_2=j_1+1}^{n} w_{h(j_1, j_2)} x_{j_1} x_{j_2}$$

$$h(j_1, j_2) = (\frac{1}{2}(j_1 + j_2)(j_1 + j_2 + 1) + j_2) \bmod B$$

相当于多个特征组合共用同一个参数,其中B为模型参数的个数,用户自己指定。

3. PITF(Pairwise Interaction Tag Factorization)是FM的变体,FFM源自PITF。

- 4. 采用较小的"基准学习率"(Adagrad会自适应更新学习率,在此记η为基准学习率),模型收敛的速度很慢,采用较大的"基准学习率"模型在验证集上的损失值降低地很快,但是容易出现过拟合现象。本篇文章在模型训练过程中采用了Early Stopping策略来解决这个问题,具体地:
 - 1. 将数据集分为训练集和验证集两部分
 - 2. 在每轮训练结束时, 计算模型在验证集上的损失值
 - 3. 如果模型在验证集上的损失值上升, 那么记下来当前已经训练的轮数E, 转向第四步
 - 4. 使用全部的数据(包括训练集和验证集)重新训练模型E轮

7. References