CPSC 340: Machine Learning and Data Mining

Regularization

Admin

- Assignment 2:
 - 1 late day to hand it in today, 2 for tomorrow, 3 for Wednesday.
- Assignment 3 is out.
 - Due next Friday (right before the break)
- Tutorials this week: assignment 3 practice
- Real-time feedback system is back up

Last Time: Normal Equations and Change of Basis

Last time we derived normal equations:

$$X^{7}X_{w} = X^{7}y$$

- Solutions 'w' minimize squared error in linear model.
- We also discussed change of basis:
 - E.g., polynomial basis:

Replace
$$X = \begin{bmatrix} x_1 \\ x_2 \\ x_n \end{bmatrix}$$
 with $Z = \begin{bmatrix} 1 & x_1 & (x_1)^2 & ... & (x_n)^p \\ 1 & x_2 & (x_2)^2 & ... & (x_n)^p \\ 1 & x_n & (x_n)^2 & ... & (x_n)^p \end{bmatrix}$ 3

Let's you fit non-linear models with linear regression.

$$y_i = w^T z_i = w_0 + w_1 x_i + w_2 x_i^2 + w_3 x_i^3 + \cdots + w_p x_i^p$$

Parametric vs. Non-Parametric Bases

- Polynomials are not the only possible bases:
 - Exponentials, logarithms, trigonometric functions, etc.
 - The right basis will vastly improve performance.

Parametric vs. Non-Parametric Bases

- Polynomials are not the only possible bases:
 - Exponentials, logarithms, trigonometric functions, etc.
 - The right basis will vastly improve performance.
 - But the right basis may not be obvious.
- What happens if we use the wrong basis?
 - As 'n' increases, we can fit 'w' more accurately.
 - But eventually more data doesn't help if basis isn't "flexible" enough.
- Alternative is non-parametric bases:
 - Size of basis (number of features) grows with 'n'.
 - Model gets more complicated as you get more data.
 - You can model very complicated functions where you don't know the right basis.

- Radial basis functions (RBFs):
 - Non-parametric bases that depend on distances to training points.

Replace
$$X = \begin{cases} \begin{cases} g(||x_1-x_1||) & g(||x_1-x_2||) & \cdots & g(||x_1-x_n||) \\ g(||x_1-x_1||) & g(||x_2-x_1||) & \cdots & g(||x_1-x_n||) \\ \vdots & \vdots & \vdots & \vdots \\ g(||x_n-x_1||) & g(||x_n-x_n||) \end{cases}$$

$$= Most common 'g' is Gaussian RBE'$$

– Most common 'g' is Gaussian RBF:

$$g(x) = exp(-\frac{x^2}{2\sigma^2})$$

represente

• Variance σ^2 controls influence of nearby points.

This affects fundamental trade-off (set it using a validation set).

- Radial basis functions (RBFs):
 - Non-parametric bases that depend on distances to training points.

Replace
$$X = \begin{bmatrix} g(||x_i - x_i||) g(||x_i - x_i||) \cdots g(||x_i - x_n||) \\ g(||x_i - x_i||) g(||x_i - x_i||) \cdots g(||x_i - x_n||) \end{bmatrix}$$

To make predictions on $\hat{X} = \begin{bmatrix} g(||x_i - x_i||) g(||x_i - x_i||) \cdots g(||x_i - x_n||) \\ g(||x_i - x_i||) g(||x_i - x_i||) \cdots g(||x_i - x_n||) \end{bmatrix}$

Nowwhere of "features" is number of training example.

Cubic basis:
$$y_i = w_0 + w_1 + w_2 + w_3 + w_4 + w_4 + w_5 + w_6 + w_6$$

- Gaussian RBFs are universal approximators (compact subets of \mathbb{R}^d)
 - Can approximate any continuous function to arbitrary precision.
 - Achieve irreducible error as 'n' goes to infinity.

Interpolation vs. Extrapolation

• Least squares with Gaussian RBFs for different σ values:

Could add bigs and linear basis:

$$Z = \begin{bmatrix} 1 & -\chi_{1} & -\chi_{2} & -\chi_{3} & -\chi_{4} & -\chi_{4} & -\chi_{5} &$$

This reverts to linear regression instead of 0 away from data.

Last Time: Polynomial Degree and Training vs. Testing

- As the polynomial degree increases, the training error goes down.
- But training error becomes worse approximation test error.

- Same effect as we decrease variance in Gaussian RBF.
- But what if we need a complicated model?

Controlling Complexity

- Usually "true" mapping from x_i to y_i is complex.
 - Might need high-degree polynomial or small σ^2 in RBFs.
- But complex models can overfit.
- So what do we do????

- There are many possible answers:
 - Model averaging: average over multiple models to decrease variance.
 - Regularization: add a penalty on the complexity of the model.

L2-Regularization

• Standard regularization strategy is L2-regularization:

$$f(w) = \frac{1}{2} || x_w - y ||^2 + \frac{7}{2} ||w||^2$$

Standard regularization strategy is L2-regularization:
$$f(w) = \frac{1}{2} || \chi_w - y ||^2 + \frac{1}{2} ||w||^2 \qquad \text{or} \qquad f(w) = \frac{1}{2} \int_{i=1}^{n} (w^T x_i - y_i)^2 + \frac{1}{2} \int_{j=1}^{n} w_j^2$$

- Intuition: large w_i tend to lead to overfitting (cancel each other).
- So minimize squared error plus penalty on L2-norm of 'w'.
 - This objective balances getting low error vs. having small slope 'w'.
 - Training error will increase because you're no longer minimizing it.
 - But reduces overfitting.
 - Regularization parameter $\lambda > 0$ controls "strength" of regularization.
 - Large λ puts large penalty on slope.
 - There is such a thing as "too much" regularization: $\lambda \to \infty$ will cause w=0

L2-Regularization

Standard regularization strategy is L2-regularization:

$$f(w) = \frac{1}{2} || x_w - y ||^2 + \frac{1}{2} ||w||^2 \quad \text{or} \quad f(w) = \frac{1}{2} \sum_{i=1}^{n} (w^T x_i - y_i)^2 + \frac{1}{2} \sum_{j=1}^{n} w_j^2$$

- In terms of fundamental trade-off:
 - Regularization increases training error.
 - Regularization makes training error better approximation of test error.
- How should you choose λ?
 - Theory: as 'n' grows λ should be in the range O(1) to O(n^{1/2}).
 - Practice: optimize validation set or cross-validation error.
 - This almost always decreases the test error.

L2-Regularization

Standard regularization strategy is L2-regularization:

$$f(w) = \frac{1}{2} || xw - y||^2 + \frac{7}{2} ||w||^2$$
 or

or
$$f(w) = \frac{1}{4} \sum_{i=1}^{n} (w^{T} x_{i} - y_{i})^{2} + \frac{1}{4} \sum_{j=1}^{d} w_{j}^{2}$$

- Equivalent to minimizing squared error with L2-norm constraint:
- Connection to Occam's razor
 - Small values in 'w' are "simpler" models
 - L2-regularization favors small 'w'
- Regularization is a way of incorporating prior knowledge

Why use L2-Regularization?

- Almost always decreases test error
- Intuition: try to make the objective function reflect test error
 - The original objective function was just training error
 - Create an optimization problem that you actually want to solve
- But here are 6 more reasons (for linear regression):
 - 1. Solution 'w' is unique.
 - 2. X^TX does not need to be invertible.
 - 3. Less sensitive to changes in X or y (related to uniqueness).
 - 4. Makes algorithms for computing 'w' converge faster.
 - 5. Stein's paradox: if $d \ge 3$, 'shrinking' moves us closer to 'true' w on average.
 - In other words, it's a good idea even if the prior knowledge is wrong (!!) see bonus slides
 - 6. Worst case: just set λ small and get the same performance.

RBFs, Regularization, and Validation

- A model that is hard to beat:
 - RBF basis with L2-regularization and cross-validation to choose σ and λ .
 - Flexible non-parametric basis, magic of regularization, and tuning for test error!

Example:
Find regularized value of w for particular 1 and a by minimizing $f(w) = \frac{1}{2} ||Zw-y||^2 + \frac{3}{2} ||w||^2$ RBF basis. with variance of And choose 2 and or to minimize

RBFs, Regularization, and Validation

- A model that is hard to beat:
 - RBF basis with L2-regularization and cross-validation to choose σ and λ .
 - Flexible non-parametric basis, magic of regularization, and tuning for test error!

- Can add bias or linear/poly basis to do better away from data.
- Expensive at test time: need distance to all training examples.

Summary

- Radial basis functions:
 - Non-parametric bases that can model any function.
- Regularization:
 - Adding a penalty on model complexity.
 - Improves test error because it is magic.
- L2-regularization: penalty on L2-norm of regression weights 'w'.

- Next time:
 - Going downhill...