北京工业大学 2020-2021 学年第二学期期末 高等数学-2(管)课程试卷 B 卷

承诺:本人已学习了《北京工业大学考场规则》和《北京工业大学学生违纪处分条例》,承诺在考试过程中自觉遵守有关规定,服从监考教师管理,诚信考试,做到不违纪、不作弊、不替考。若有违反,愿接受相应的处分。

承诺人		生名	_成绩
注:本试卷共二大题 17 小题,共 4 页。满分 100 分得分登记(由阅卷教师填写)			
题号	-	=	成绩
分数			
一、填空题(每小题3分,共30分)			
$1.\lim_{x\to 0} \frac{x - \sin x}{\int_0^x \frac{\ln(1+t^3)}{t} dx} = \dots$			
$2.\int_0^{+\infty} x e^{-x^2} dx = $			
$3.$ 判定级数 $\sum_{n=0}^{\infty} \frac{e^n}{n!}$ 是否收敛			
$4.\sum_{n=0}^{\infty}\frac{x^n}{2^n}$ 的收敛半径是			
$5.$ 幂级数 $\sum_{n=1}^{\infty} \frac{(x-5)^n}{n}$ 的收敛域是			
6.级数 $\sum_{n=1}^{\infty} x^{n-1}$ 的和函数是 (写出收敛域)			
7.y'' + y' - 2y = 0的通解是			
$8.\int_0^\pi \sqrt{1+\cos 2x} dx = $			
9.要使 $\sum_{n=1}^{\infty} \frac{1}{1+a^n}$ ($a > 0$)收敛,则 a 的取值范围是			

二、计算题 (每小题 10 分, 共 70 分)

11.计算定积分
$$\int_0^{\frac{\pi}{2}} \frac{\cos x}{\sin x + \cos x} dx$$

12.求由
$$y = \frac{1}{x}, y = x, x = 2$$
所围图形的面积

13.求一阶线性微分方程 $y'+2y=e^{-x}$ 的通解

14.设
$$z = f(x + y, xy)$$
,求 $\frac{\partial^2 z}{\partial x \partial y}$

15.交换积分次序并计算
$$\int_0^1 dy \int_y^{\sqrt{y}} \frac{\sin x}{x} dx$$

$$16.$$
求 $\sum_{n=1}^{\infty} \frac{x^n}{n}$ 的收敛域及和函数并求 $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ 的和

17.将 $\frac{\sin x}{x}$ 展开为麦克劳林级数