

Lab Exercise: AVL Trees (paper exercise)

In this paper exercise you will gain some routine in the recognition of AVL trees and insertion and removal of elements in/from AVL trees

Exercise 1:

Determine for each of the following binary trees if they are BSTs and AVL trees:

Tree 1:

15

AVL og BST

Tree 2:

Ingen af delene, 9 er ikke indsat det rigtige sted

Tree 3:

Tree 4:

RR ulighed

	Tree 1	Tree 2	Tree 3	Tree 4
BST	<u>_</u>		7	X
AVL	X			

Exercise 2:

Insert 9 in the following AVL tree. Determine:

- 1. Where must 9 be inserted?
- 2. Does this cause an imbalance anywhere?
- 3. What case of imbalance is caused?
- 4. What do you do about the imbalance?
- 5. What does the tree look like after the insertion?

Exercise 3:

How does this AVL tree look after insertion of 25? Use the same recipe as in exercise 2.

Exercise 4:

How does this AVL tree look after deletion of 10?

Exercise 5:

Perform the following operations in an initially empty AVL tree. Then show the final structure of the tree

- 1. insert(14)
- 2. insert(17)
- 3. insert(11)
- 4. insert(7)
- 5. insert(53)
- 6. insert(4)
- 7. insert(13)
- 8. insert(12)
- 9. insert(8)
- 10. remove(53)
- 11. remove(11)
- 12. insert(117)

Exercise 6:

Build an AVL tree by inserting the following values in the order stated: 15, 20, 24, 10, 13, 7, 30, 36, 25

Exercise 7:

Remove 10 and 20 from the tree resulting from Exercise 6

Exercise 8:

Build an AVL tree by inserting the following values in the order stated: 10, 20, 15, 25, 30, 16, 18, 19

Exercise 9:

Remove 30 from the tree resulting from Exercise 8

