Алгебра. Задачи 2

Арунова Анастасия

Содержание

Системы линейных уравнений	3
Теория	3
Задача 1	3
Задача 2	5
Задача З	6
Задача 4	7
Аналитическая геометрия	LO
Задача 5	10
Задача 6	11
Задача 7	11
Задача 8	13
Задача 9	14
Задача 10	14
Задача 11	15
Задача 12	17
Задача 13	17
Задача 14	19
Задача 15	19
Задача 16	21
Задача 17	21
Комплексные числа	23
Теория	23
Задача 18	23

Задача 19	24
Задача 20	25
Задача 21	26
Задача 22	27
щая алгебра	29
Геория	29
Задача 23	30
Задача 24	30
Задача 25	31
Задача 26	32
Задача 27	32
Задача 28	33
20 7070 20	9 /

Системы линейных уравнений

Теория

Рассмотрим СЛАУ Ax = 0, $A \in M_{mn}(\mathbb{R})$.

Теорема (Кронекера-Капелли). СЛАУ Ax = b совместна $\Leftrightarrow \operatorname{Rg} A = \operatorname{Rg} \left(A \mid b \right)$

Определение. Любые n-r линейно независимых столбцов, являющиеся решениями однородной СЛАУ Ax=0, где n – число неизвестных, $r=\operatorname{Rg} A$, называют фундаментальной системой решений (ФСР).

Теорема (о существовании Φ CP). Рассмотрим однородную СЛАУ Ax = 0. У неё существует k = n - r линейно независимых решений, где n – число неизвестных, а $r = \operatorname{Rg} A$.

Теорема (о структуре общего решения однородной СЛАУ). Пусть Φ_1, \ldots, Φ_k – Φ CP однородной СЛАУ Ax = 0. Тогда любое решение этой СЛАУ можно представить в виде:

$$x = c_1 \Phi_1 + \ldots + c_k \Phi_k$$

где c_1, \ldots, c_k – некоторые постоянные.

Теорема (о структуре общего решения неоднородной СЛАУ). Пусть известно частное решение \tilde{x} СЛАУ Ax = b. Тогда любое решение этой СЛАУ может быть представлено в виде:

$$x = \widetilde{x} + c_1 \Phi_1 + \ldots + c_k \Phi_k$$

где c_1,\dots,c_k –некоторые постоянные, а Φ_1,\dots,Φ_k – Φ CP соответствующей однородной СЛАУ.

Задача 1

Проверьте совместность системы линейных уравнений. Найдите все её решения (ответ запишите в векторном виде, выделив частное решение), найдите ФСР соответствующей однородной системы.

$$\begin{cases} x_1 - 4x_2 + 2x_3 + 3x_5 = 5 \\ 2x_1 - 7x_2 + 4x_3 + x_4 = 9 \\ x_1 - 3x_2 + 2x_3 + x_4 - 3x_5 = 4 \end{cases}$$

Решение:

Введём следующие обозначения:

$$A = \begin{pmatrix} 1 & -4 & 2 & 0 & 3 \\ 2 & -7 & 4 & 1 & 0 \\ 1 & -3 & 2 & 1 & -3 \end{pmatrix}, b = \begin{pmatrix} 5 \\ 9 \\ 4 \end{pmatrix}$$

Запишем расширенную матрицу системы и приведём её элементарными преобразованиями к ступенчатому виду:

$$\begin{pmatrix} 1 & -4 & 2 & 0 & 3 & 5 \\ 2 & -7 & 4 & 1 & 0 & 9 \\ 1 & -3 & 2 & 1 & -3 & 4 \end{pmatrix} \xrightarrow{\text{II}-2I \to \text{III}} \begin{pmatrix} 1 & -4 & 2 & 0 & 3 & 5 \\ 0 & 1 & 0 & 1 & -6 & -1 \\ 0 & 1 & 0 & 1 & -6 & -1 \end{pmatrix} \xrightarrow{\text{III}-\text{III} \to \text{III}} \begin{pmatrix} 1 & 0 & 2 & 4 & -21 & 1 \\ 0 & 1 & 0 & 1 & -6 & -1 \end{pmatrix}$$

В ступенчатом виде матрицы $(A \mid b)$ две ненулевых строки, значит, $\operatorname{Rg}(A \mid b) = 2$.

При приведении матрицы A к ступенчатому виду элементарные преобразования будут эквивалентны приведению левой части расширенной матрицы.

$$\begin{pmatrix} 1 & -4 & 2 & 0 & 3 \\ 2 & -7 & 4 & 1 & 0 \\ 1 & -3 & 2 & 1 & -3 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & 0 & 2 & 4 & -21 \\ 0 & 1 & 0 & 1 & -6 \end{pmatrix}$$

Так как $\operatorname{Rg}(A \mid b) = \operatorname{Rg} A$, по теореме Кронекера-Капелли система совместна. Выпишем решение однородной СЛАУ Ax = 0, соответствующей СЛАУ Ax = b:

$$\begin{pmatrix} 1 & 0 & 2 & 4 & -21 & 0 \\ 0 & 1 & 0 & 1 & -6 & 0 \end{pmatrix} \Leftrightarrow \begin{cases} x_1 = -2x_3 - 4x_4 + 21x_5 \\ x_2 = -x_4 + 6x_5 \\ x_3, x_4, x_5 \in \mathbb{R} \end{cases}$$

Найдём ФСР, подставляя в зависимые переменные одновременно ненулевые значения:

x_1	x_2	x_3	x_4	x_5
-2	0	1	0	0
-4	-1	0	1	0
21	6	0	0	1

Получаем столбцы ФСР:

$$\begin{pmatrix} -2 \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} -4 \\ -1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 21 \\ 6 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

Выпишем решение системы Ax = b:

$$\begin{pmatrix} 1 & 0 & 2 & 4 & -21 & 1 \\ 0 & 1 & 0 & 1 & -6 & -1 \end{pmatrix} \Leftrightarrow \begin{cases} x_1 = 1 - 2x_3 - 4x_4 + 21x_5 \\ x_2 = -1 - x_4 + 6x_5 \\ x_3, x_4, x_5 \in \mathbb{R} \end{cases}$$

Частное решение СЛАУ Ax = b, например, будет $x_1 = 1$, $x_2 = -1$, $x_3 = x_4 = x_5 = 0$.

По теореме о структуре решения неоднородной СЛАУ любое решение Ax = b можно представить в виде суммы линейной комбинации Φ CP и частного решения СЛАУ:

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} -2 \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} x_3 + \begin{pmatrix} -4 \\ -1 \\ 0 \\ 1 \\ 0 \end{pmatrix} x_4 + \begin{pmatrix} 21 \\ 6 \\ 0 \\ 0 \\ 1 \end{pmatrix} x_5, x_3, x_4, x_5 \in \mathbb{R}$$

Данное общее решение записано в векторном виде.

Otbet:
$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} -2 \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} x_3 + \begin{pmatrix} -4 \\ -1 \\ 0 \\ 1 \\ 0 \end{pmatrix} x_4 + \begin{pmatrix} 21 \\ 6 \\ 0 \\ 0 \\ 1 \end{pmatrix} x_5, x_3, x_4, x_5 \in \mathbb{R}$$

Задача 2

Можно ли заданную матрицу A представит в виде A = LU, где L – нижнетреугольная матрица с единицами на главной диагонали, а U – верхнетреугольная матрица? Если такое разложение возможно, то предъявите его, если нет, то объясните почему.

$$A = \begin{pmatrix} 2 & 1 \\ 4 & 1 \end{pmatrix}$$

Решение:

LU-разложение существует только в том случае, когда матрица A обратима, а все ведущие (угловые) главные миноры матрицы A невырождены. Проверим эти условия.

Главные угловые миноры:

$$\det M_1^1 = |2| = 2 \neq 0$$

$$\det M_{12}^{12} = \begin{vmatrix} 2 & 1 \\ 4 & 1 \end{vmatrix} = -2 \neq 0$$

Они невырождены. Так как $A=M_{12}^{12},$ то $\det A=-2\neq 0,$ и A обратима. Таким образом, для матрицы A существует LU-разложение.

Найдём матрицу U. Для этого приведём A элементарными преобразованиями к ступенчатому верхнетреугольному виду:

$$\begin{pmatrix} 2 & 1 \\ 4 & 1 \end{pmatrix} \xrightarrow{\text{II - 2I} \to \text{II}} \begin{pmatrix} 2 & 1 \\ 0 & -1 \end{pmatrix} = U$$

Так как $A=LU,\, L=AU^{-1}.$ Найдём $U^{-1}:$

$$U^{-1} = -\frac{1}{2} \begin{pmatrix} -1 & -1 \\ 0 & 2 \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ 0 & -1 \end{pmatrix}$$

$$L = AU^{-1} = \begin{pmatrix} 2 & 1 \\ 4 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$$

Ответ:
$$A = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 0 & -1 \end{pmatrix}$$
.

Задача 3

Пользуясь методом исключения неизвестных, исследовать совместность и найти общее решение системы уравнений:

$$\begin{cases} 10x_1 + 23x_2 + 17x_3 + 44x_4 = 25\\ 15x_1 + 35x_2 + 26x_3 + 69x_4 = 40\\ 25x_1 + 57x_2 + 42x_3 + 108x_4 = 65\\ 30x_1 + 69x_2 + 51x_3 + 133x_4 = 95 \end{cases}$$

Решение: Введём следующие обозначения:

$$A = \begin{pmatrix} 10 & 23 & 17 & 44 \\ 15 & 35 & 26 & 69 \\ 25 & 57 & 42 & 108 \\ 30 & 69 & 51 & 133 \end{pmatrix}, b = \begin{pmatrix} 25 \\ 40 \\ 65 \\ 95 \end{pmatrix}$$

Запишем расширенную матрицу системы и приведём её элементарными преобразованиями к ступенчатому виду:

$$\begin{pmatrix} 10 & 23 & 17 & 44 & 25 \\ 15 & 35 & 26 & 69 & 40 \\ 25 & 57 & 42 & 108 & 65 \\ 30 & 69 & 51 & 133 & 95 \end{pmatrix} \xrightarrow{\text{III-III-JIII}} \begin{pmatrix} 10 & 23 & 17 & 44 & 25 \\ 15 & 35 & 26 & 69 & 40 \\ 10 & 22 & 16 & 39 & 25 \\ 0 & 0 & 0 & 1 & 20 \end{pmatrix} \xrightarrow{\text{III-III-JIII}}$$

$$\begin{pmatrix} 10 & 23 & 17 & 44 & 25 \\ 0 & \frac{1}{2} & \frac{1}{2} & 3 & \frac{5}{2} \\ 0 & -1 & -1 & -5 & 0 \\ 0 & 0 & 0 & 1 & 20 \end{pmatrix} \xrightarrow{\text{III-JIII-JII}} \begin{pmatrix} 10 & 23 & 17 & 44 & 25 \\ 0 & 0 & 0 & \frac{1}{2} & \frac{5}{2} \\ 0 & -1 & -1 & -5 & 0 \\ 0 & 0 & 0 & 1 & 20 \end{pmatrix} \xrightarrow{\text{IIV-2II-JIV}} \begin{pmatrix} 10 & 23 & 17 & 44 & 25 \\ 0 & 0 & 0 & 1 & 20 \end{pmatrix} \xrightarrow{\text{IIV-2II-JIV}}$$

$$\frac{\text{IV-2II-JIV}}{\text{O}} \begin{pmatrix} 10 & 23 & 17 & 44 & 25 \\ 0 & 0 & 0 & 1 & 20 \end{pmatrix} \xrightarrow{\text{III-JIII}} \begin{pmatrix} 10 & 23 & 17 & 44 & 25 \\ 0 & 0 & 0 & 1 & 20 \end{pmatrix} \xrightarrow{\text{IIV-2II-JIV}} \begin{pmatrix} 10 & 23 & 17 & 44 & 25 \\ 0 & -1 & -1 & -5 & 0 \\ 0 & 0 & 0 & \frac{1}{2} & \frac{5}{2} \\ 0 & 0 & 0 & 0 & \frac{1}{2} & \frac{5}{2} \\ 0 & 0 & 0 & 0 & 15 \end{pmatrix}$$

Количество ненулевых строк в ступенчатом виде матрицы A равно 3, значит, $\operatorname{Rg} A = 3$. Но количество ненулевых строк в матрице $\left(A \mid b\right) - 4$, поэтому $\operatorname{Rg}\left(A \mid b\right) = 4 \neq \operatorname{Rg} A$. По теореме Кронекера-Капелли система уравнений несовместная, у неё нет решений.

Ответ: несовместная.

Задача 4

Определить, какие из строк матрицы

$$B = \begin{pmatrix} 6 & 2 & 3 & -2 & -7 \\ 5 & 3 & 7 & -6 & -4 \\ 8 & 0 & -5 & 6 & -13 \\ 4 & -2 & -7 & 5 & -7 \end{pmatrix}$$

образуют фундаментальную систему решений для системы уравнений

$$\begin{cases} 2x_1 - 5x_2 + 3x_3 + 2x_4 + x_5 = 0 \\ 5x_1 - 8x_2 + 5x_3 + 4x_4 + 3x_5 = 0 \\ x_1 - 7x_2 + 4x_3 + 2x_4 = 0 \\ 4x_1 - x_2 + x_3 + 2x_4 + 3x_5 = 0 \end{cases}$$

Решение:

Составим матрицу системы A и приведём её к ступенчатому виду:

$$\begin{pmatrix} 2 & -5 & 3 & 2 & 1 \\ 5 & -8 & 5 & 4 & 3 \\ 1 & -7 & 4 & 2 & 0 \\ 4 & -1 & 1 & 2 & 3 \end{pmatrix} \xrightarrow{\text{II}-5III \to II} \begin{pmatrix} 0 & 9 & -5 & -2 & 1 \\ 0 & 27 & -15 & -6 & 3 \\ 1 & -7 & 4 & 2 & 0 \\ 0 & 27 & -15 & -6 & 3 \end{pmatrix} \xrightarrow{\text{II}-3I \to II} \xrightarrow{\text{IV}-4III \to IV} \begin{pmatrix} 0 & 9 & -5 & -2 & 1 \\ 1 & -7 & 4 & 2 & 0 \\ 0 & 27 & -15 & -6 & 3 \end{pmatrix} \xrightarrow{\text{II}-3I \to II} \xrightarrow{\text{IV}-3I \to IV} \begin{pmatrix} 0 & 9 & -5 & -2 & 1 \\ 1 & -7 & 4 & 2 & 0 \\ 1 & -7 & 4 & 2 & 0 \end{pmatrix} \xrightarrow{\text{II} \to II} \begin{pmatrix} 1 & -7 & 4 & 2 & 0 \\ 0 & 9 & -5 & -2 & 1 \end{pmatrix}$$

Таким образом, $\operatorname{Rg} A = 2$. Значит, по определению у системы будет 5 - 2 = 3 столбцов ФСР.

Так как каждый столбец Φ CP должен быть решением системы, будем рассматривать только те строки из матрицы B, которые удовлетворяют системе Ax=0.

$$\begin{pmatrix} 2 & -5 & 3 & 2 & 1 \\ 5 & -8 & 5 & 4 & 3 \\ 1 & -7 & 4 & 2 & 0 \\ 4 & -1 & 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 6 \\ 2 \\ 3 \\ -2 \\ -7 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \quad \begin{pmatrix} 2 & -5 & 3 & 2 & 1 \\ 5 & -8 & 5 & 4 & 3 \\ 1 & -7 & 4 & 2 & 0 \\ 4 & -1 & 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 5 \\ 3 \\ 7 \\ -6 \\ -4 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 2 & -5 & 3 & 2 & 1 \\ 5 & -8 & 5 & 4 & 3 \\ 1 & -7 & 4 & 2 & 0 \\ 4 & -1 & 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 8 \\ 0 \\ -5 \\ 6 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \quad \begin{pmatrix} 2 & -5 & 3 & 2 & 1 \\ 5 & -8 & 5 & 4 & 3 \\ 1 & -7 & 4 & 2 & 0 \\ 4 & -1 & 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 4 \\ -2 \\ -7 \\ 5 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

Все четыре строки матрицы B – решения уравнения Ax=0, поэтому они все могут быть столбцами Φ CP.

Найдём среди строк матрицы B линейно зависимые. Для этого применим элементарные преобразования к матрице B.

$$\begin{pmatrix} 6 & 2 & 3 & -2 & -7 \\ 5 & 3 & 7 & -6 & -4 \\ 8 & 0 & -5 & 6 & -13 \\ 4 & -2 & -7 & 5 & -7 \end{pmatrix} \xrightarrow{II - \frac{5}{6}I \to II} \begin{bmatrix} 6 & 2 & 3 & -2 & -7 \\ 0 & \frac{4}{3} & \frac{9}{2} & -\frac{13}{3} & \frac{11}{6} \\ 0 & -\frac{8}{3} & -9 & \frac{26}{3} & -\frac{11}{3} \\ 0 & -\frac{10}{3} & -9 & \frac{19}{3} & -\frac{7}{3} \end{bmatrix} \xrightarrow{III + 2II \to III} \begin{pmatrix} 6 & 2 & 3 & -2 & -7 \\ 0 & \frac{4}{3} & \frac{9}{2} & \frac{-13}{3} & \frac{11}{6} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{9}{4} & \frac{-9}{2} & \frac{9}{4} \end{pmatrix}$$

Получаем, что третья строка – линейная комбинация первой и второй строки. Значит, система из первой, второй и третьей строки – линейна зависима, а, значит, не может быть ФСР.

Остаётся всего три варианта систем строк:

- *Первая, вторая и четвёртая.* Все строки л.н.з. (ни одна строка не является линейной комбинацией двух других), поэтому этот случай образует ФСР.
- Первая, третья и четвёртая. Аналогично они образуют ФСР.
- Вторая, третья и четвёртая тоже ФСР.

Ответ: четвёртая строка вместе с любыми двумя из первых трёх.

Аналитическая геометрия

Задача 5

В ортонормированном базисе даны векторы $a=(1,4,1),\ b=(2,1,3),\ c=(-2,0,3).$ Найти вектор у такой, что $y\perp a,\ (y,c)=2,\ (y,b)=9.$

Решение:

Пусть вектор y имеет следующие координаты $y = (y_1, y_2, y_3)$.

Так как $y \perp a$, (y, a) = 0. Запишем систему:

$$\begin{cases} (y,a) = 0 \\ (y,b) = 9 \\ (y,c) = 2 \end{cases} \Leftrightarrow \begin{cases} y_1 + 4y_2 + y_3 = 0 \\ 2y_1 + y_2 + 3y_3 = 9 \\ -2y_1 + 3y_3 = 2 \end{cases}$$

Решим систему методом Гаусса:

$$\begin{pmatrix}
1 & 4 & 1 & 0 \\
2 & 1 & 3 & 9 \\
-2 & 0 & 3 & 2
\end{pmatrix}
\xrightarrow{\text{III+III}\to \text{III}}
\begin{pmatrix}
1 & 4 & 1 & 0 \\
2 & 1 & 3 & 9 \\
0 & 1 & 6 & 11
\end{pmatrix}
\xrightarrow{\text{III-2I}\to \text{II}}
\begin{pmatrix}
1 & 4 & 1 & 0 \\
0 & -7 & 1 & 9 \\
0 & 1 & 6 & 11
\end{pmatrix}
\xrightarrow{\text{III}+7\text{III}\to \text{II}}
\begin{pmatrix}
1 & 4 & 1 & 0 \\
0 & 1 & 6 & 11
\end{pmatrix}
\xrightarrow{\text{III}\to \text{III}}
\begin{pmatrix}
1 & 4 & 1 & 0 \\
0 & 0 & 43 & 86 \\
0 & 1 & 6 & 11
\end{pmatrix}
\xrightarrow{\text{III}\to \text{III}}
\begin{pmatrix}
1 & 4 & 1 & 0 \\
0 & 1 & 6 & 11 \\
0 & 0 & 43 & 86
\end{pmatrix}
\xrightarrow{\text{III}\to \text{III}}
\begin{pmatrix}
1 & 0 & -23 & -44 \\
0 & 1 & 6 & 11 \\
0 & 0 & 1 & 2
\end{pmatrix}
\xrightarrow{\text{III}\to \text{III}}
\xrightarrow{\text{III}}
\begin{pmatrix}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 2
\end{pmatrix}$$

$$\begin{cases} y_1 = 2 \\ y_2 = -1 \\ y_3 = 2 \end{cases}$$

Таким образом, полученный вектор y = (2, -1, 2).

Ответ: y = (2, -1, 2).

Задача 6

Найти площадь параллелограмма, построенного на векторах $a=p+3q,\ b=p-2q,$ если $|p|=2,\ |q|=3,\ \angle(p,q)=\frac{\pi}{3}.$

Решение:

Площадь параллелограмма построенного на векторах a, b равна модулю их векторного произведения. Найдём его.

$$[a,b] = [p+3q, p-2q] = [p, p-2q] + [3q, p-2q] = [p, p] + [p, -2q] + [3q, p] + [3q, -2q] = [p, p] - 2[p, q] + 3[q, p] - 6[q, q] = [p, p] - 2[p, q] - 3[p, q] - 6[q, q] = -5[p, q]$$

Тогда

$$S = |a \times b| = \left| -5[p, q] \right| = \left| -5[p]|q| \sin \angle (p, q) \right| = \left| -5 \cdot 2 \cdot 3 \cdot \sin \frac{\pi}{3} \right| = 15\sqrt{3}$$

Ответ: $15\sqrt{3}$.

Задача 7

Даны вершины треугольника A(-5,3), B(7,8), C(-2,-1). Составить уравнения следующих прямых: медианы, биссектрисы и высоты треугольника, проведенных из вершины A. Система координат прямоугольная декартова.

Решение:

1) Найдём уравнения прямых при пересечении которых получается $\angle A$. Это прямые, содержащие стороны треугольника AC и AB.

Направляющие векторы:

$$\overrightarrow{AB} = (7 - (-5), 8 - 3) = (12, 5)$$

 $\overrightarrow{AC} = (-2 - (-5), -1 - 3) = (3, -4)$

Тогда уравнения прямых будут:

$$AB: \frac{x - (-5)}{12} = \frac{y - 3}{5} \iff 5x - 12y + 61 = 0$$
$$AC: \frac{x - (-5)}{3} = \frac{y - 3}{-4} \iff 4x + 3y + 11 = 0$$

Так как каждая точка биссектрисы равноудалена от AB и AC, уравнение биссектрисы можно найти из равенства расстояний от точки $M(x_0, y_0)$, лежащей на биссектрисе, до прямых AB и AC.

$$\rho(M;AB) = \rho(M;AC) \iff \frac{5x_0 - 12y_0 + 61}{\sqrt{5^2 + 12^2}} = \frac{4x_0 + 3y_0 + 11}{\sqrt{4^2 + 3^2}} \iff 3x_0 + 11y_0 - 18 = 0$$

Беря точку M как произвольную, принадлежащую биссектрисе, получаем уравнение:

$$3x + 11y - 18 = 0$$

2) Теперь найдём высоту. Пусть высота, проведённая из $\angle A$, задаётся прямой с направляющим вектором \overrightarrow{AH} , где $H(x_H, y_H)$. Найдём векторы \overrightarrow{AH} и \overrightarrow{BC} .

$$\overrightarrow{AH} = (x_H - (-5), y_H - 3) = (x_H + 5, y_H - 3)$$

 $\overrightarrow{BC} = (-2 - 7, -1 - 8) = (-9, -9)$

Так как $\overrightarrow{AH} \perp \overrightarrow{BC}$, $(\overrightarrow{AH}, \overrightarrow{BC}) = 0$.

$$(\overrightarrow{AH}, \overrightarrow{BC}) = 0 \Leftrightarrow -9(x_H + 5) - 9(y_H - 3) = 0 \Leftrightarrow x_H + y_H + 2 = 0$$

Получаем уравнение высоты:

$$x + y + 2 = 0$$

3) Пусть M – середина стороны BC. Тогда AM – медиана, а, значит, \overrightarrow{AM} – направляющий вектор прямой, содержащей медиану. Координаты точки $M(x_M, y_M)$:

$$x_M = \frac{7 + (-2)}{2} = \frac{5}{2}$$

 $y_M = \frac{8 + (-1)}{2} = \frac{7}{2}$

Тогда

$$\overrightarrow{AM} = \left(\frac{5}{2} - (-5), \frac{7}{2} - 3\right) = \left(\frac{15}{2}, \frac{1}{2}\right)$$

И уравнение медианы:

$$\frac{x - (-5)}{\frac{15}{2}} = \frac{y - 3}{\frac{1}{2}} \iff x - 15y + 50 = 0$$

Ответ: биссектриса: 3x + 11y - 18 = 0; высота: x + y + 2 = 0; медиана: x - 15y + 50 = 0.

Задача 8

Даны точки E(2,1,0), F(0,2,1), G(1,2,0), H(1,0,-2). Найти:

- 1) объем пирамиды ЕГБН
- 2) длину высоты, проведенной из вершины H

Решение:

1) Объём пирамиды, построенной на трёх векторах, равен $\frac{1}{6}$ их смешанного произведения. Сначала найдём векторы:

$$\overrightarrow{EF} = (0 - 2, 2 - 1, 1 - 0) = (-2, 1, 1)$$

$$\overrightarrow{EG} = (1 - 2, 2 - 1, 0 - 0) = (-1, 1, 0)$$

$$\overrightarrow{EH} = (1 - 2, 0 - 1, -2 - 0) = (-1, -1, -2)$$

Найдём объём пирамиды EFGH по формуле:

$$V = \frac{1}{6} \cdot \left| \langle \overrightarrow{EF}, \overrightarrow{EG}, \overrightarrow{EH} \rangle \right| = \frac{1}{6} \cdot \left| \begin{vmatrix} -2 & 1 & 1 \\ -1 & 1 & 0 \\ -1 & -1 & -2 \end{vmatrix} \right| \xrightarrow{\text{III}+2I \to \text{III}}} \frac{1}{6} \cdot \left| \begin{vmatrix} -2 & 1 & 1 \\ -1 & 1 & 0 \\ -5 & 1 & 0 \end{vmatrix} \right| = \frac{1}{6} \cdot \left| \begin{vmatrix} -1 & 1 \\ -5 & 1 \end{vmatrix} \right| = \frac{2}{3}$$

2) Объём пирамиды можно выразить как $V=\frac{1}{3}Sh$, где S – площадь основания, h – высота, проведённая к основания. Тогда, чтобы найти длину высоты, проведённой из H, нужно сначала найти площадь основания EFG.

Площадь треугольника, построенного на двух векторах, равна половине длины их векторного произведения.

$$[\overrightarrow{EF}, \overrightarrow{EG}] = \begin{vmatrix} i & j & k \\ -2 & 1 & 1 \\ -1 & 1 & 0 \end{vmatrix} = -i - j - k$$

$$S = \frac{1}{2} | [\overrightarrow{EF}, \overrightarrow{EG}] | = \frac{1}{2} \sqrt{1^2 + 1^2 + 1^2} = \frac{\sqrt{3}}{2}$$

Тогда

$$h = \frac{3V}{S} = \frac{3 \cdot \frac{2}{3}}{\frac{\sqrt{3}}{2}} = \frac{4}{\sqrt{3}}$$

Ответ:
$$V = \frac{2}{3}$$
; $h = \frac{4}{\sqrt{3}}$.

Задача 9

Проверить, что прямые $a:2x=y+1=z+2,\,b:x-1=-1-y=z$ лежат в одной плоскости.

Решение:

Перепишем уравнения прямых в каноническом виде:

$$a: 2x = y + 1 = z + 2 \iff \frac{x}{1} = \frac{y+1}{2} = \frac{z+2}{2}$$

$$b: x - 1 = -1 - y = z \iff \frac{x - 1}{1} = \frac{y + 1}{-1} = \frac{z}{1}$$

Таким образом, $s_1=(1,2,2)$ – направляющий вектор прямой $a, s_2=(1,-1,1)$ – направляющий вектор прямой b. Точка $M_1(0,-1,-2)\in a, M_2(1,-1,0)\in b$. Три вектора $s_1, s_2, \overline{M_1M_2}$ лежат в одной плоскости, если их смешанное произведение равно 0. Проверим это условие.

$$\overrightarrow{M_1M_2} = (1-0, -1-(-1), 0-(-2)) = (1, 0, 2)$$

$$\langle \overrightarrow{M_1 M_2}, s_1, s_2 \rangle = \begin{vmatrix} 1 & 0 & 2 \\ 1 & 2 & 2 \\ 1 & -1 & 1 \end{vmatrix} = 2 \cdot \begin{vmatrix} 1 & 2 \\ 1 & 1 \end{vmatrix} - (-1) \cdot \begin{vmatrix} 1 & 2 \\ 1 & 2 \end{vmatrix} = -2 \neq 0$$

Значит, a и b не лежат в одной плоскости.

Ответ: не лежат.

Задача 10

Найти угол между прямой

$$l: \begin{cases} 2x + 2y + 3z + 5 = 0\\ x - 2y + z + 7 = 0 \end{cases}$$

и плоскостью 3x + y - 4z - 15 = 0, а также координаты точки их пересечения.

Решение:

Обозначим $n_1=(2,2,3)$ – нормаль к плоскости $2x+2y+3z+5=0, n_2=(1,-2,1)$ – нормаль к плоскости x-2y+z+7=0.

Прямая l, которая задаётся пересечением этих плоскостей, принадлежит как первой плоскости, так и второй, а, значит, перпендикулярна их нормалям. Так как $l \perp n_1$ и $l \perp n_2$, прямая l будет перпендикулярна и плоскости, образованной n_1 и n_2 (по признаку перпендикулярности прямой и плоскости). Значит, направляющий вектор прямой l можно найти через векторное произведение n_1 и n_2 .

$$[n_1, n_2] = \begin{vmatrix} i & j & k \\ 2 & 2 & 3 \\ 1 & -2 & 1 \end{vmatrix} = 8i + j - 6k \implies s = (8, 1, -6)$$

Теперь найдём синус угла между плоскостью 3x + y - 4z - 15 = 0 и прямой l по формуле:

$$\sin \varphi = \frac{3 \cdot 8 + 1 \cdot 1 + (-4) \cdot (-6)}{\sqrt{3^2 + 1^2 + (-4)^2} \sqrt{8^2 + 1^2 + (-6)^2}} = \frac{49}{\sqrt{26}\sqrt{101}} = \frac{49}{\sqrt{2626}}$$

Тогда

$$\varphi = \arcsin \frac{49}{\sqrt{2626}}$$

Точка пересечения прямой с плоскостью удовлетворяет и уравнениям, которые задают прямую, и плоскости, с которой она пересекается. Поэтому, чтобы найти эту точку, необходимо решить систему:

$$\begin{cases} 2x + 2y + 3z + 5 = 0 \\ x - 2y + z + 7 = 0 \\ 3x + y - 4z - 15 = 0 \end{cases} \Leftrightarrow \begin{cases} 2x + 2y + 3z = -5 \\ x - 2y + z = -7 \\ 3x + y - 4z = 15 \end{cases}$$

$$\begin{pmatrix} 2 & 2 & 3 & | & -5 \\ 1 & -2 & 1 & | & -7 \\ 3 & 1 & -4 & | & 15 \end{pmatrix} \xrightarrow{\text{III} \to \text{III}} \begin{pmatrix} 0 & 6 & 1 & | & 9 \\ 1 & -2 & 1 & | & -7 \\ 0 & 7 & -7 & | & 36 \end{pmatrix} \xrightarrow{\text{III} - \frac{7}{6}\text{I} \to \text{III}} \begin{pmatrix} 0 & 6 & 1 & | & 9 \\ 1 & 0 & \frac{4}{3} & | & -4 \\ 0 & 0 & -\frac{49}{6} & | & \frac{51}{2} \end{pmatrix} \xrightarrow{\text{III} \to \frac{6}{49}\text{III}} \begin{pmatrix} 1 & 0 & \frac{4}{3} & | & -4 \\ 0 & 1 & \frac{1}{6} & \frac{3}{2} \\ 0 & 0 & 1 & | & -\frac{153}{49} \end{pmatrix} \xrightarrow{\text{III} \to \frac{1}{6}\text{III} \to \text{II}} \begin{pmatrix} 1 & 0 & 0 & | & \frac{8}{49} \\ 0 & 1 & 0 & \frac{99}{49} \\ 0 & 0 & 1 & | & -\frac{153}{49} \end{pmatrix}$$

Искомая точка – $\left(\frac{8}{49}, \frac{99}{49}, -\frac{153}{49}\right)$.

Ответ: $\frac{49}{\sqrt{2626}}$; $\left(\frac{8}{49}, \frac{99}{49}, -\frac{153}{49}\right)$.

Задача 11

Найти точку M', симметричную точке M(-1,2,0) относительно прямой

$$l: \frac{x+\frac{1}{2}}{1} = \frac{y+\frac{7}{2}}{-\frac{1}{3}} = \frac{z-2}{2}$$

Решение:

Найдём уравнение плоскости (α) , которая перпендикулярна прямой и проходит через M. Так как $l \perp (\alpha)$, нормаль к (α) равна $n = (1, -\frac{1}{3}, 2)$. Тогда, подставляя коэффициенты нормали и точку M в формулу, получим уравнение плоскости:

$$A(x - x_M) + B(y - y_M) + C(z - z_M) = 0 \iff 1 \cdot (x - (-1)) - \frac{1}{3} \cdot (y - 2) + 2 \cdot (z - 0) = 0$$
$$\Leftrightarrow x - \frac{1}{3}y + 2z + \frac{5}{3} = 0$$
$$\Leftrightarrow 3x - y + 6z + 5 = 0$$

Теперь найдём точку пресечения прямой l и плоскости (α). Для этого сначала составим параметрическое уравнение прямой:

$$\frac{x + \frac{1}{2}}{1} = \frac{y + \frac{7}{2}}{-\frac{1}{3}} = \frac{z - 2}{2} = t \iff \begin{cases} x = t - \frac{1}{2} \\ y = -\frac{1}{3}t - \frac{7}{2} \\ z = 2t + 2 \end{cases}$$

Тогда, подставив, данные x,y,z в уравнение (α) найдём t при котором точка данной прямой принадлежит и плоскости:

$$3\left(t - \frac{1}{2}\right) - \left(-\frac{1}{3}t - \frac{7}{2}\right) + 6(2t + 2) + 5 = 0$$
$$\frac{46}{3}t = -19 \iff t = -\frac{57}{46}$$

Обозначим точку $A = (\alpha) \cap l$. Её координаты равны:

$$\begin{cases} x = -\frac{57}{46} - \frac{1}{2} \\ y = -\frac{1}{3} \cdot \left(-\frac{57}{46}\right) - \frac{7}{2} \\ z = 2 \cdot \left(-\frac{57}{46}\right) + 2 \end{cases} \Leftrightarrow \begin{cases} x = -\frac{40}{23} \\ y = -\frac{71}{23} \\ z = -\frac{11}{23} \end{cases} \Rightarrow A\left(-\frac{40}{23}, -\frac{71}{23}, -\frac{11}{23}\right)$$

Так как M' и M симметричны относительно прямой, то $M' \in (\alpha)$ и точка A будет серединой отрезка MM'. Тогда составим уравнение:

$$\begin{cases} x_A = \frac{x_{M'} + x_M}{2} \\ y_A = \frac{y_{M'} + y_M}{2} \\ z_A = \frac{z_{M'} + z_M}{2} \end{cases} \Leftrightarrow \begin{cases} x_{M'} = 2x_A - x_M = 2 \cdot \left(-\frac{40}{23}\right) - (-1) = -\frac{57}{23} \\ y_{M'} = 2y_A - y_M = 2 \cdot \left(-\frac{71}{23}\right) - 2 = -\frac{188}{23} \end{cases} \Rightarrow M' \left(-\frac{57}{23}, -\frac{188}{23}, -\frac{22}{23}\right)$$

Ответ:
$$M'\left(-\frac{57}{23}, -\frac{188}{23}, -\frac{22}{23}\right)$$
.

Задача 12

Найти точку M', симметричную точке M(3,3,3) относительно плоскости 8x+6y+8z-25=0.

Решение:

Найдём уравнение прямой l, которая перпендикулярна этой плоскости и проходит через точку M. Так как l перпендикулярна плоскости, в качестве её направляющего вектора можно взять нормаль к плоскости s = (8, 6, 8).

Тогда уравнение прямой в параметрическом виде будет

$$l: \begin{cases} x = 8t + 3 \\ y = 6t + 3 \\ z = 8t + 3 \end{cases}$$

Найдём координаты точки A – пересечения плоскости и прямой l:

$$8(8t+3) + 6(6t+3) + 8(8t+3) - 25 = 0 \Leftrightarrow t = -\frac{1}{4}$$

Тогда

$$\begin{cases} x = 8 \cdot \left(-\frac{1}{4}\right) + 3 \\ y = 6 \cdot \left(-\frac{1}{4}\right) + 3 \\ z = 8 \cdot \left(-\frac{1}{4}\right) + 3 \end{cases} \Leftrightarrow \begin{cases} x = 1 \\ y = \frac{3}{2} \\ z = 1 \end{cases} \Rightarrow A\left(1, \frac{3}{2}, 1\right)$$

Так как M' и M симметричны относительно плоскости, то $M' \in l$ и точка A будет серединой отрезка MM'. Тогда составим уравнение:

$$\begin{cases} x_A = \frac{x_{M'} + x_M}{2} \\ y_A = \frac{y_{M'} + y_M}{2} \\ z_A = \frac{z_{M'} + z_M}{2} \end{cases} \Leftrightarrow \begin{cases} x_{M'} = 2x_A - x_M = 2 \cdot 1 - 3 = -1 \\ y_{M'} = 2y_A - y_M = 2 \cdot \frac{3}{2} - 3 = 0 \\ z_{M'} = 2z_A - z_M = 2 \cdot 1 - 3 = -1 \end{cases} \Rightarrow M'(-1, 0, -1)$$

Ответ: M'(-1, 0-1).

Задача 13

Даны точки P(1,2,0), Q(1,0,2), R(2,1,0), S(0,-2,1). Найти:

- 1) объем пирамиды PQRS
- 2) угол между плоскостями (PQS) и (QRS)

Решение:

1) Объём пирамиды, построенной на трёх векторах, равен $\frac{1}{6}$ их смешанного произведения. Сначала найдём векторы:

$$\overrightarrow{PQ} = (0 - 1, 0 - 2, 2 - 0) = (-1, -2, 2)$$

$$\overrightarrow{PR} = (2 - 1, 1 - 2, 0 - 0) = (1, -1, 0)$$

$$\overrightarrow{PS} = (0 - 1, -2 - 2, 1 - 0) = (-1, -4, 1)$$

Найдём объём пирамиды PQRS по формуле:

$$V = \frac{1}{6} \cdot \left| \langle \overrightarrow{PQ}, \overrightarrow{PR}, \overrightarrow{PS} \rangle \right| = \frac{1}{6} \cdot \left| \begin{vmatrix} -1 & -2 & 2 \\ 1 & -1 & 0 \\ -1 & -4 & 1 \end{vmatrix} \right| \stackrel{\text{I-2III} \to \text{I}}{=} \frac{1}{6} \cdot \left| \begin{vmatrix} 1 & 6 & 0 \\ 1 & -1 & 0 \\ -1 & -4 & 1 \end{vmatrix} \right| = \frac{1}{6} \cdot \left| \begin{vmatrix} 1 & 6 \\ 1 & -1 \end{vmatrix} \right| = \frac{7}{6}$$

2) Угол между плоскостями ищется как угол между их нормалями. Нормаль к каждой из плоскостей можно найти с помощью векторного произведения двух векторов, лежащих в плоскости. Пусть n_1 – нормаль к (PQS), n_2 – к (QRS).

$$[\overrightarrow{PQ}, \overrightarrow{PS}] = \begin{vmatrix} i & j & k \\ -1 & -2 & 2 \\ -1 & -4 & 1 \end{vmatrix} = 6i - j + 2k \implies n_1 = (6, -1, 2)$$

Для нахождения n_2 нужно найти \overrightarrow{QR} , \overrightarrow{QS} :

$$\overrightarrow{QR} = (2 - 1, 1 - 0, 0 - 2) = (1, 1, -2)$$

 $\overrightarrow{QS} = (0 - 1, -2 - 0, 1 - 2) = (-1, -2, -1)$

$$[\overrightarrow{QR}, \overrightarrow{QS}] = \begin{vmatrix} i & j & k \\ 1 & 1 & -2 \\ -1 & -2 & -1 \end{vmatrix} = -6i + 3j \implies n_2 = (-6, 3, 0)$$

Тогда косинус угла φ между плоскостями равен:

$$\cos \varphi = \frac{(n_1, n_2)}{|n_1||n_2|} = \frac{|6 \cdot (-6) - 1 \cdot 3 + 2 \cdot 0|}{\sqrt{6^2 + (-1)^2 + 2^2} \sqrt{(-6)^2 + 3^2 + 0^2}} = \frac{39}{\sqrt{41}\sqrt{45}} = \frac{13}{\sqrt{205}}$$

Значит, угол равен:

$$\varphi = \arccos \frac{13}{\sqrt{205}}$$

Otbet:
$$V = \frac{7}{6}$$
; $\varphi = \arccos \frac{13}{\sqrt{205}}$.

Задача 14

Исследовать взаимное расположение прямых

$$l_1: \frac{x+5}{3} = \frac{y+5}{2} = \frac{z-1}{-2}$$

$$l_2: \begin{cases} x = 6t+9 \\ y = -2t \\ z = -t+2 \end{cases}$$

Вычислить расстояние между ними.

Решение:

Направляющий вектор прямой l_1 будет $s_1=(3,2,-2)$, и точка $M_1(-5,-5,1)\in l_1$. Направляющий вектор прямой l_2 будет $s_2=(6,-2,-1)$, и точка $M_2(9,0,2)\in l_2$. Проверим, лежат ли прямые в одной плоскости.

$$\overrightarrow{M_1 M_2} = (9 - (-5), 0 - (-5), 2 - 1) = (14, 5, 1)$$

$$\langle \overrightarrow{M_1 M_2}, s_1, s_2 \rangle = \begin{vmatrix} 14 & 5 & 1 \\ 3 & 2 & -2 \\ 6 & -2 & 1 \end{vmatrix} \xrightarrow{\text{III}-\overrightarrow{I}\rightarrow \text{III}} \begin{vmatrix} 14 & 5 & 1 \\ 3 & 2 & 0 \\ 6 & -2 & 0 \end{vmatrix} = 1 \cdot \begin{vmatrix} 3 & 2 \\ 6 & -2 \end{vmatrix} = -18 \neq 0$$

Значит, прямые скрещиваются и расстояние между ними будет равно:

$$\rho(l_1, l_2) = \frac{|\langle \overline{M_1 M_2}, s_1, s_2 \rangle|}{|[s_1, s_2]|} = \frac{18}{|[s_1, s_2]|} = \frac{18}{21} = \frac{6}{7}$$
$$[s_1, s_2] = \begin{vmatrix} i & j & k \\ 3 & 2 & -2 \\ 6 & -2 & -1 \end{vmatrix} = -6i - 9j - 18k$$
$$|[s_1, s_2]| = \sqrt{(-6)^2 + (-9)^2 + (-18)^2} = 21$$

Ответ: $\frac{6}{7}$.

Задача 15

Составить уравнение плоскости, проходящей через линию пересечения плоскостей, заданных уравнениями $x+2y+3z-4=0,\ 3x+z-5=0,\ и$ отсекающей на осях Oy и Oz ненулевые отрезки равной длины. Система координат прямоугольная.

Решение:

Найдём две точки, лежащие на линии пересечения плоскостей:

$$\begin{cases} x + 2y + 3z - 4 = 0 \\ 3x + z - 5 = 0 \end{cases}$$

Для точки A возьмём x=0. Тогда

$$\begin{cases} x = 0 \\ x + 2y + 3z - 4 = 0 \end{cases} \Leftrightarrow \begin{cases} x = 0 \\ y = -\frac{11}{2} \end{cases} \Rightarrow A\left(0, -\frac{11}{2}, 5\right)$$
$$z = 5$$

Для точки B возьмём z=0. Тогда

$$\begin{cases} z = 0 \\ x + 2y + 3z - 4 = 0 \end{cases} \Leftrightarrow \begin{cases} x = \frac{5}{3} \\ y = \frac{7}{6} \end{cases} \Rightarrow B\left(\frac{5}{3}, \frac{7}{6}, 0\right)$$
$$z = 0$$

Пусть искомая плоскость пересекает оси Oy и Oz в точках P(0,k,0) и Q(0,0,k) соответственно.

Точки A, B, P, Q по условию должны лежать в плоскости. Выпишем вектор \overrightarrow{PQ} , так как он содержит условие и о том, что плоскость отсекает на осях Oy и Oz ненулевые отрезки равной длины.

$$\overrightarrow{PQ} = (0 - 0, 0 - k, k - 0) = (0, -k, k)$$

Пусть точка M(x,y,z) – произвольная точка, принадлежащая искомой плоскости. Найдём вектор с точкой M:

$$\overrightarrow{AM} = \left(x - 0, y - \left(-\frac{11}{2}\right), z - 5\right) = \left(x, y + \frac{11}{2}, z - 5\right)$$

И найдём ещё любой третий вектор, лежащий в плоскости:

$$\overrightarrow{AB} = \left(\frac{5}{3} - 0, \frac{7}{6} - \left(-\frac{11}{2}\right), 0 - 5\right) = \left(\frac{5}{3}, \frac{20}{3}, -5\right)$$

Так как эти векторы лежат в искомой плоскости, они компланарны. Условие компланарности:

$$\langle \overrightarrow{AM}, \overrightarrow{PQ}, \overrightarrow{AB} \rangle = 0$$

$$\langle \overrightarrow{AM}, \overrightarrow{PQ}, \overrightarrow{AB} \rangle = \begin{vmatrix} x & y + \frac{11}{2} & z - 5 \\ 0 & -k & k \\ \frac{5}{3} & \frac{20}{3} & -5 \end{vmatrix} = x \begin{vmatrix} -k & k \\ \frac{20}{3} & -5 \end{vmatrix} - \left(y + \frac{11}{2}\right) \begin{vmatrix} 0 & k \\ \frac{5}{3} & -5 \end{vmatrix} + (z - 5) \begin{vmatrix} 0 & -k \\ \frac{5}{3} & \frac{20}{3} \end{vmatrix} =$$

$$= -\frac{5}{3}kx + \frac{5}{3}k\left(y + \frac{11}{2}\right) + \frac{5}{3}k(z - 5) = 0$$

По условию $k \neq 0$, следовательно, можем сократить уравнение на $\frac{5}{3}k$:

$$-\frac{5}{3}kx + \frac{5}{3}k\left(y + \frac{11}{2}\right) + \frac{5}{3}k(z - 5) = 0 \iff -x + \left(y + \frac{11}{2}\right) + (z - 5) = 0 \iff -x + y + z + \frac{1}{2} = 0$$

Получили уравнение на координаты точки, принадлежащей плоскости, т.е. уравненеие самой плоскости.

Ответ:
$$-x + y + z + \frac{1}{2} = 0.$$

Задача 16

Составить уравнение плоскости, параллельной плоскости 2x+y-4z+5=0 и отстоящей от точки M(1,2,0) на расстоянии, равном $\sqrt{21}$.

Решение:

Так как искомая (обозначим её (α)) и исходная плоскость параллельны, их нормали так же параллельны. Значит, нормаль к искомой плоскости n=(2,1,-4). И тогда плоскость задаётся уравнением:

$$(\alpha): 2x + y - 4z + k = 0$$

Причём $k \neq 5$, иначе плоскости совпадут.

Расстояние от точки до плоскости $\rho(M,(\alpha)) = \sqrt{21}$. Тогда, переписывая в виде формулы, получаем уравнение:

$$\frac{|2 \cdot 1 + 1 \cdot 2 - 4 \cdot 0 + k|}{\sqrt{2^2 + 1^2 + (-4)^2}} = \sqrt{21} \iff |4 + k| = 21 \iff \begin{vmatrix} k = 17 \\ k = -25 \end{vmatrix}$$

Получаем две плоскости, удовлетворяющие условию задачи.

Ответ:
$$2x + y - 4z + 17 = 0$$
, $2x + y - 4z - 25 = 0$.

Задача 17

Написать уравнение прямой, лежащей в плоскости Oyz, параллельной оси Oy и отсекающей на оси Oz отрезок, равный 3.

Решение:

Прямая отсекает на оси Oz отрезок, равный 3, поэтому точка M(0,0,3) принадлежит этой прямой.

В качестве направляющего вектора искомой прямой (обозначим его n) можно взять направляющий вектор оси Oy, потому что искомая прямая параллельна Oy. Найдём его с помощью двух точек, лежащих на Oy: A(0,0,0), B(0,1,0). Тогда

$$n = \overrightarrow{AB} = (0 - 0, 1 - 0, 0 - 0) = (0, 1, 0)$$

Зная точку на прямой и её направляющий вектор, можно записать уравнение прямой:

$$\frac{x-0}{0} = \frac{y-0}{1} = \frac{z-3}{0}$$

Или в параметрическом виде:

$$\begin{cases} x = 0 \\ y = t \\ z = 3 \end{cases}$$

Ответ:
$$\frac{x-0}{0} = \frac{y-0}{1} = \frac{z-3}{0}$$
.

Комплексные числа

Теория

Re – вещественная ось, Im – мнимая ось

Перейдём к полярным координатам (r, φ)

$$x = r\cos\varphi, \ y = r\sin\varphi$$

$$r = \sqrt{x^2 + y^2} = |z|$$
 — модуль комплексного числа

 $\varphi = \operatorname{Arg} z = \{ \arg z + 2\pi k \mid k \in \mathbb{Z} \}$ — аргумент комплексного числа (угол между r и положительным направлением Re)

 $\arg z$ – главное значение аргумента, $\arg z \in [0,2\pi]$ или $\arg z \in (-\pi,\pi]$

$$z = \underbrace{x + iy}_{\text{алгебраическая}} = r\cos\varphi + r\sin\varphi = \underbrace{r(\cos\varphi + i\sin\varphi)}_{\text{тригонометрическая}}$$

Утверждение. $z_1 \cdot z_2 = r_1 \cdot r_2(\cos(\varphi_1 + \varphi_2) + i\sin(\varphi_1 + \varphi_2))$

Определение. Комплексно сопряжённым к числу z называется $\bar{z}:z=a+bi,\ \bar{z}=a-bi.$ Сопряжение – отражение относительно вещественной оси.

$$z \cdot \bar{z} = (a+bi)(a-bi) = a^2 + b^2 = |z|^2$$

Деление комплексных чисел:

$$\frac{z_1}{z_2} = \frac{z_1 \cdot \bar{z_2}}{z_2 \cdot \bar{z_2}} = \frac{z_1 \cdot \bar{z_2}}{|z_2|^2}, \ z_2 \neq 0$$

$$\frac{z_1}{z_2} = \frac{r_1}{r_2} \cdot (\cos(\varphi_1 - \varphi_2) + i\sin(\varphi_1 - \varphi_2))$$

Утверждение. Формула Муавра: $z^n = r^n(\cos n\phi + i\sin n\phi), n \in \mathbb{N}$

Извлечение комплексных корней

$$\sqrt[n]{w} = \left\{ \sqrt[n]{\rho} \cdot \left(\cos \left(\frac{\psi + 2\pi k}{n} \right) + i \sin \left(\frac{\psi + 2\pi k}{n} \right) \right) \mid k = \overline{0, n - 1} \right\}$$

Задача 18

Решить систему уравнений

$$\begin{cases} (-2+4i)x + 3yi = -10+21i\\ (1+5i)x + (1-2i)y = 14+19i \end{cases}$$

Решение:

Решим систему методом Крамера. Главный определитель будет равен

$$\Delta = \begin{vmatrix} -2+4i & 3i \\ 1+5i & 1-2i \end{vmatrix} = (-2+4i)(1-2i) - 3i(1+5i) = -2+4i+4i-8i^2-3i-15i^2 =$$
$$= -2+5i+8+15=21+5i$$

Вычислим остальные определители:

$$\Delta_x = \begin{vmatrix} -10 + 21i & 3i \\ 14 + 19i & 1 - 2i \end{vmatrix} = (-10 + 21i)(1 - 2i) - 3i(14 + 19i) =$$
$$= -10 + 20i + 21i - 42i^2 - 42i - 57i^2 =$$
$$= -10 - i + 42 + 57 = 89 - i$$

$$\Delta_y = \begin{vmatrix} -2+4i & -10+21i \\ 1+5i & 14+19i \end{vmatrix} = (-2+4i)(14+19i) - (1+5i)(-10+21i) =$$

$$= -28 - 38i + 56i + 76i^2 + 10 - 21i + 50i - 105i^2 =$$

$$= -28 + 47i - 76 + 10 + 105 = 11 + 47i$$

Тогда

$$x = \frac{\Delta_x}{\Delta} = \frac{5-i}{21+5i} = \frac{(89-i)(21-5i)}{(21+5i)(21-5i)} = \frac{1869-445i-21i+5i^2}{21^2+5^2} = \frac{1864-466i}{466} = 4-i$$

$$y = \frac{\Delta_y}{\Delta} = \frac{11 + 47i}{21 + 5i} = \frac{(11 + 47i)(21 - 5i)}{(21 + 5i)(21 - 5i)} = \frac{231 - 55i + 987i - 235i^2}{466} = \frac{466 + 932i}{466} = 1 + 2i$$

Otbet:
$$\begin{cases} x = 4 - i \\ y = 1 + 2i \end{cases}$$

Задача 19

Решить уравнение

$$z^2 - (7+i)z + (18+i) = 0$$

Решение:

Данное уравнение квадратное, поэтому его можно решить через дискриминант.

$$D = (-(7+i))^{2} - 4(18+i) = 49 + 14i + i^{2} - 72 - 4i = -24 + 10i$$

Найдём корень из дискриминанта. Пусть $\sqrt{D} = a + ib$. Тогда

$$\sqrt{D} = a + ib \iff \sqrt{-24 + 10i} = a + ib \iff -24 + 10i = a^2 + 2abi - b^2 \iff \begin{cases} a^2 - b^2 = -24 \\ 2ab = 10 \end{cases}$$

Ни a, ни b не равны нулю, иначе бы 2ab=0. Значит, можно выразить a через b из второго уравнения и подставить его в первое:

$$2ab = 10 \iff a = \frac{5}{b}$$

$$\left(\frac{5}{b}\right)^2 - b^2 = -24, \ b \neq 0 \iff b^4 - 24b^2 - 25 = 0 \iff (b^2 + 1)(b^2 - 25) = 0 \iff b = \pm 5$$

Получаем два решения системы:

$$\begin{bmatrix} a = 1, b = 5 \\ a = -1, b = -5 \end{bmatrix} \Rightarrow \begin{bmatrix} \sqrt{D} = 1 + 5i \\ \sqrt{D} = -1 - 5i \end{bmatrix}$$

Для нахождения корней можно взять любой из полученных \sqrt{D} , так как они отличаются только знаком.

$$z_1 = \frac{7 + i - \sqrt{D}}{2} = \frac{7 + i - (1 + 5i)}{2} = 3 - 2i$$

$$z_2 = \frac{7+i-\sqrt{D}}{2} = \frac{7+i+(1+5i)}{2} = 4+3i$$

Ответ: 3 - 2i, 4 + 3i.

Задача 20

Пусть $z=-\sqrt{3}-i$. Вычислить значение $\sqrt[7]{z^3}$, для которого число $\frac{\sqrt[7]{z^3}}{-1+i}$ имеет аргумент $\frac{9\pi}{28}$. Найди модуль этого числа.

Решение:

Перепишем комплексное число в тригонометрическом виде:

$$|z| = \sqrt{(-\sqrt{3})^2 + (-1)^2} = 2$$

$$\arg z = -\pi + \arctan \frac{-1}{-\sqrt{3}} = -\pi + \frac{\pi}{6} = -\frac{5\pi}{6}$$

$$z = 2\left(\cos\left(-\frac{5\pi}{6}\right) + i\sin\left(-\frac{5\pi}{6}\right)\right)$$

Теперь возведём z в третью степень:

$$z^{3} = 2^{3} \left(\cos \left(-\frac{5\pi}{6} \cdot 3 \right) + i \sin \left(-\frac{5\pi}{6} \cdot 3 \right) \right) = 8 \left(\cos \left(-\frac{5\pi}{2} \right) + i \sin \left(-\frac{5\pi}{2} \right) \right)$$

Возьмём из z^3 корень седьмой степени:

$$\sqrt[7]{z^3} = \sqrt[7]{8} \left(\cos \frac{-\frac{5\pi}{2} + 2\pi k}{7} + i \sin \frac{-\frac{5\pi}{2} + 2\pi k}{7} \right), \ k = \overline{0,6}$$

Зная $\arg \frac{\sqrt[7]{z^3}}{-1+i}$, можно найти k. Сначала запишем -1+i в тригонометрической форме:

$$-1+i = \sqrt{(-1)^2+1^2} \left(\frac{-1}{\sqrt{(-1)^2+1^2}} + \frac{i}{\sqrt{(-1)^2+1^2}} \right) = \sqrt{2} \left(\frac{-1}{\sqrt{2}} + \frac{i}{\sqrt{2}} \right) = \sqrt{2} \left(\cos \frac{3\pi}{4} + i \sin \frac{3\pi}{4} \right)$$

Тогда

$$\frac{\sqrt[7]{z^3}}{-1+i} = \frac{\sqrt[7]{8}}{\sqrt{2}} \left(\cos \left(\frac{-\frac{5\pi}{2} + 2\pi k}{7} - \frac{3\pi}{4} \right) + i \sin \left(\frac{-\frac{5\pi}{2} + 2\pi k}{7} - \frac{3\pi}{4} \right) \right)$$

По условию

$$\arg \frac{\sqrt[7]{z^3}}{-1+i} = \frac{9\pi}{28} \Rightarrow \frac{9\pi}{28} = \frac{-\frac{5\pi}{2} + 2\pi k}{7} - \frac{3\pi}{4}$$
$$\frac{9\pi}{28} = \frac{-10\pi + 8\pi k - 21\pi}{28}$$

$$k = \frac{40\pi}{8\pi} = 5$$

Таким образом, значение $\sqrt[7]{z^3}$ будет:

$$\sqrt[7]{z^3} = \sqrt[7]{8} \left(\cos \frac{-\frac{5\pi}{2} + 2\pi \cdot 5}{7} + i \sin \frac{-\frac{5\pi}{2} + 2\pi \cdot 5}{7} \right) = \sqrt[7]{8} \left(\cos \frac{15\pi}{14} + i \sin \frac{15\pi}{14} \right)$$

Ответ: $\sqrt[7]{8} \left(\cos \frac{15\pi}{14} + i \sin \frac{15\pi}{14} \right)$.

Задача 21

Решить систему уравнений

$$\begin{cases} 2z_1 - (2+i)z_2 = -i\\ (4-2i)z_1 - 5z_2 = -1 - 2i \end{cases}$$

Решение:

Решим систему методом Гаусса:

$$\begin{pmatrix} 2 & -2-i & -i \\ 4-2i & -5 & -1-2i \end{pmatrix} \xrightarrow{\text{II}-(2-i)\text{I}\to\text{II}} \begin{pmatrix} 2 & -2-i & -i \\ 0 & 0 & 0 \end{pmatrix}$$

Получаем одну главную и одну зависимую переменную:

$$\begin{cases} z_1 = -\frac{i}{2} + (2+i)z_2 \\ z_2 \in \mathbb{C} \end{cases}$$

Ответ:
$$\begin{cases} z_1 = -\frac{i}{2} + (2+i)z_2 \\ z_2 \in \mathbb{C} \end{cases}$$

Задача 22

Вычислить:

$$\sqrt[8]{16}$$
, $\sqrt[6]{-27}$, $\sqrt[4]{8\sqrt{3}i-8}$

Решение:

Запишем каждое из чисел в тригонометрической форме:

$$16 = 16 + 0i = \sqrt{16^2 + 0^2} \left(\frac{16}{\sqrt{16^2 + 0^2}} + \frac{0i}{\sqrt{16^2 + 0^2}} \right) = 16(1 + 0i) = 16(\cos 0 + i \sin 0)$$
$$-27 = -27 + 0i = \sqrt{(-27)^2 + 0^2} \left(\frac{-27}{\sqrt{(-27)^2 + 0^2}} + \frac{0i}{\sqrt{(-27)^2 + 0^2}} \right) = 27(-1 + 0i) = 27(\cos \pi + i \sin \pi)$$

$$8\sqrt{3}i - 8 = 8(\sqrt{3}i - 1) = 8\sqrt{(-1)^2 + \sqrt{3}^2} \left(\frac{-1}{\sqrt{(-1)^2 + \sqrt{3}^2}} + \frac{\sqrt{3}i}{\sqrt{(-1)^2 + \sqrt{3}^2}} \right) = 16\left(-\frac{1}{2} + \frac{\sqrt{3}i}{2} \right) = 16\left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3} \right)$$

Найдём корни из каждого числа:

$$\sqrt[8]{16} = \sqrt[8]{16} \left(\cos \frac{0 + 2\pi k}{8} + i \sin \frac{0 + 2\pi k}{8} \right) = \sqrt{2} \left(\cos \frac{\pi k}{4} + i \sin \frac{\pi k}{4} \right), \ k = \overline{0,7}$$

$$\sqrt[6]{-27} = \sqrt[6]{27} \left(\cos \frac{\pi + 2\pi m}{6} + i \sin \frac{\pi + 2\pi m}{6} \right) = \sqrt{3} \left(\cos \frac{\pi (1 + 2m)}{6} + i \sin \frac{\pi (1 + 2m)}{6} \right), \ m = \overline{0,5}$$

$$\sqrt[4]{8\sqrt{3}i - 8} = \sqrt[4]{16} \left(\cos \frac{\frac{2\pi}{3} + 2\pi n}{4} + i \sin \frac{\frac{2\pi}{3} + 2\pi n}{4} \right) = 2 \left(\cos \frac{\pi(1 + 3n)}{6} + i \sin \frac{\pi(1 + 3n)}{6} \right), \ n = \overline{0,3}$$

Other:
$$\sqrt[8]{16} = \sqrt{2} \left(\cos \frac{\pi k}{4} + i \sin \frac{\pi k}{4} \right), \ k = \overline{0,7}$$

$$\sqrt[6]{-27} = \sqrt{3} \left(\cos \frac{\pi (1 + 2m)}{6} + i \sin \frac{\pi (1 + 2m)}{6} \right), \ m = \overline{0,5}$$

$$\sqrt[4]{8\sqrt{3}i - 8} = 2 \left(\cos \frac{\pi (1 + 3n)}{6} + i \sin \frac{\pi (1 + 3n)}{6} \right), \ n = \overline{0,3}$$

Общая алгебра

Теория

Определение. Бинарной операцией на X называется отображение $\tau: X \times X \to X$.

Определение. Множество с корректно заданной на нём бинарной операцией называется группоидом (магмой).

Определение. Множество X с заданной на нём бинарной ассоциативной операцией называется полугруппой.

Замечание. Ассоциативность: $\forall a, b, c \in X \ a * (b * c) = (a * b) * c$, где * – бинарная операция.

Определение. Элемент полугруппы M называется нейтральным, если $\forall x \in M \ e*x = x*e = x.$

Определение. Полугруппа, в которой есть нейтральный элемент – моноид.

Определение. Элемент a моноида (M, e, \cdot) называется обратимым, если $\exists b : a * b = b * a = e$.

Определение. Моноид G все элементы которого обратимы, называется группой.

Определение (эквивалентное). Множество G с корректно определённой на нём бинарной операцией * называется группой, если:

- 1) операция ассоциативна: $\forall x, y, z \in G \ x * (y * z) = (x * y) * z$
- $2) \ \exists e \in G \ \forall x \in G : x * e = e * x = x$
- 3) $\forall x \in G \exists x^{-1} \in G : x * x^{-1} = x^{-1} * x = e$

Определение. Группа с коммутативной операцией называется абелевой.

Замечание. Коммутативность: $\forall a, b \in X \ a * b = b * a$, где * – бинарная операция.

Определение. Пусть q – наименьшее натуральное ($\neq 0$) число, для которого $a^q = e$, где $a \in G$, оно называется порядком элемента. Если такого числа не существует, то говорят об элементе бесконечного порядка.

Определение. Пусть даны две группы: $(G_1, *)$ и (G_2, \circ) . Тогда отображение $f: G_1 \to G_2$ называется гомоморфизмом, если выполняется следующее условие: $\forall a, b \in G_1 \ f(a * b) = f(a) \circ f(b)$.

Определение. Инъективный гомоморфизм называют мономорфизмом, а сюръективный – эпиморфизмом.

Определение. Биективный гомоморфизм называется изоморфизмом.

Задача 23

Является ли отображение $\phi: X \to Y$, где

$$X = \left\{ \begin{pmatrix} a & b & c \\ 0 & 0 & 0 \end{pmatrix}, a, b, c \in \mathbb{Z} \right\}, \ Y = \mathbb{Z}, \ \phi \left(\begin{pmatrix} a & b & c \\ 0 & 0 & 0 \end{pmatrix} \right) = a + b + c$$

инъективным, сюръективным, биективным?

Решение:

1) Инъективность: $\phi(x_1) = \phi(x_2) \Rightarrow x_1 = x_2$.

Результат отображения — целое число, равное сумме трёх чисел из первой строки матрицы из множества X. Так как любое целое число можно представить в виде суммы трёх слагаемых бесконечным количеством способов, отображение не инъективно. Контрпример:

$$\phi\left(\begin{pmatrix} 1 & 2 & 3 \\ 0 & 0 & 0 \end{pmatrix}\right) = 1 + 2 + 3 = \phi\left(\begin{pmatrix} 3 & 2 & 1 \\ 0 & 0 & 0 \end{pmatrix}\right)$$

2) Сюръективность: $\forall y \in Y \exists x \in X : \phi(x) = y$.

Любое целое число y можно разложить в сумму трёх слагаемых, т.е. y=a+b+c. Тогда всегда есть такая матрица $x\in X$, что

$$x = \begin{pmatrix} a & b & c \\ 0 & 0 & 0 \end{pmatrix}, \ \phi \begin{pmatrix} \begin{pmatrix} a & b & c \\ 0 & 0 & 0 \end{pmatrix} \end{pmatrix} = a + b + c = y$$

Сюръективность выполнена.

3) *Биективность*. Выполняется, когда отображение и инъективно, и сюръективно. Отображение не биективно, так как оно не инъективно.

Ответ: только сюръективно.

Задача 24

Является ли (a) группоидом, (b) полугруппой, (c) моноидом, (d) группой множество целых чисел \mathbb{Z} относительно операции $a \circ b = a + b - 5$? Ответ обосновать.

Решение:

а) Проверим корректна ли задана операция на множестве \mathbb{Z} . Если $a,b\in\mathbb{Z}$, то $a\circ b=a+b-5\in\mathbb{Z}$. Операция не выводит из множества, значит, она корректно задана. Таким образом, (\mathbb{Z},\circ) – группоид.

b) Проверим ассоциативность операции:

$$\forall a, b, c \in \mathbb{Z} \ a \circ (b \circ c) = a + (b + c - 5) - 5 = (a + b - 5) + c - 5 = (a \circ b) \circ c$$

Операция ассоциативна, значит, группоид (\mathbb{Z}, \circ) – полугруппа.

с) Попробуем найти нейтральный элемент в (\mathbb{Z}, \circ) .

$$e \circ a = e + a - 5 = a \Leftrightarrow e = 5$$

$$a \circ e = a \circ 5 = a + 5 - 5 = a$$

Значит, e=5 – нейтральный элемент, и (\mathbb{Z}, \circ) – моноид.

d) Проверим, есть ли у любого $a \in \mathbb{Z}$ обратный элемент $a^{-1}: a^{-1} \circ a = a \circ a^{-1} = e$.

$$a^{-1} \circ a = a^{-1} + a - 5 = 5 \Leftrightarrow a^{-1} = 10 - a$$

$$a \circ a^{-1} = a \circ (10 - a) = a + 10 - a - 5 = 5 = e$$

У каждого элемента есть обратный, значит, (\mathbb{Z}, \circ) – группа.

Ответ: а)-d) – является.

Задача 25

Является ли отображение

$$\phi(7^a) = \begin{pmatrix} 0 & 0 \\ 0 & a \end{pmatrix}$$

гомоморфизмом групп, если первая группа — это множество $G = \{7^a, a \in \mathbb{Z}\}$ с операцией умножения, а вторая группа — $H = \left\{ \begin{pmatrix} b_1 & 0 \\ 0 & b_2 \end{pmatrix}, b_1, b_2 \in \mathbb{Z} \right\}$ множество с операцией сложения? Является ли это отображение изоморфизмом?

Решение:

Проверим, для произвольных $7^a, 7^b \in G$:

$$\phi(7^a \cdot 7^b) = \phi(7^{a+b}) \begin{pmatrix} 0 & 0 \\ 0 & a+b \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & a \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & b \end{pmatrix} = \phi(7^a) + \phi(7^b)$$

Таким образом, это гомоморфизм.

Отображение инъективно, так как

$$\forall 7^a, 7^b \in G \quad \phi(7^a) = \phi(7^b) \iff \begin{pmatrix} 0 & 0 \\ 0 & a \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & b \end{pmatrix} \iff a = b \implies 7^a = 7^b$$

Отображение не сюръективно, так как в H входят матрицы в левом углу которых может стоять не 0, а отображение не переводит в такие матрицы. Контрпример:

$$\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$$

Отображение не сюръективно, значит, не биективно. Тогда ϕ – не изоморфизм.

Ответ: гомоморфизм, не изоморфизм.

Задача 26

Ассоциативна ли операция * на множествах, если

$$G = \mathbb{N}, \ x * y = x^y$$

$$H = \mathbb{N}, \ x * y = \mathrm{HOД}(x, y)$$

Решение:

Проверим ассоциативность каждой из операций:

1) Для произвольных $a,b,c \in G$:

$$a * (b * c) = a^{b^c}$$
$$(a * b) * c = (a^b)^c = a^{bc}$$
$$a * (b * c) \neq (a * b) * c$$

Операция не ассоциативна.

2) Для произвольных $a, b, c \in H$:

$$a * (b * c) = HOД(a, HOД(b, c)) = HOД(a, b, c)$$

 $(a * b) * c = HOД(HOД(a, b), c) = HOД(a, b, c)$
 $a * (b * c) = (a * b) * c$

Ответ: 1) нет; 2) да.

Задача 27

Пусть G – множество всех вещественных чисел, отличных от -1. Доказать, что G является группой относительно операции

$$x \cdot y = x + y + xy$$

Решение:

Докажем по определению.

1) Замкнутость операции.

Операция не должна выводить из $G = \mathbb{R} \setminus \{-1\}$.

$$\forall x, y \in G \ x \cdot y = x + y + xy \in \mathbb{R}$$

Проверим, может ли получиться x + y + xy = -1.

$$x + y + xy = -1 \Leftrightarrow x(1+y) + y + 1 = 0 \Leftrightarrow (x+1)(y+1) = 0 \Leftrightarrow \begin{cases} x = -1 \\ y = -1 \end{cases}$$

Но, так как $x,y\in G$, они не могут быть равны -1. Значит, случай, когда x+y+xy=-1, невозможен. Таким образом, $x+y+xy\in G$.

2) Ассоциативность операции.

$$\forall x, y, z \in G \ x \cdot (y \cdot z) = x + (y + z + yz) + x(y + z + yz) = x + y + xy + z + yz + xz + xyz =$$

$$= (x + y + xy) + z + z(x + y + xy) = (x \cdot y) \cdot z$$

Операция ассоциативна.

3) Нейтральный элемент.

$$x \cdot e = e \cdot x = x$$

$$x + e + xe = x \Leftrightarrow e = 0$$

4) Обратный элемент.

$$x \cdot x^{-1} = x^{-1} \cdot x = e$$

$$x + x^{-1} + xx^{-1} = 0 \iff (x+1)(x^{-1}+1) = 1 \iff x^{-1} = \frac{1}{x+1} - 1$$

Обратный существует для всех x, так как $x \neq -1$.

Таким образом, (G, \cdot) – группа.

Задача 28

Какие из отображений групп $f:\mathbb{C}^* \to \mathbb{R}^*$ являются гомоморфизмами:

$$f(z) = |z|$$

$$g(z) = 2|z|$$

Решение:

Группа \mathbb{C}^* – множество комплексных чисел с операцией умножения, \mathbb{R}^* – множество вещественных чисел с операцией умножения.

Рассмотрим произвольные $z_1, z_2 \in \mathbb{C}^*$. Пусть

$$z_1 = r_1(\cos\varphi_1 + i\sin\varphi_1)$$

$$z_2 = r_2(\cos\varphi_2 + i\sin\varphi_2)$$

Проверим, являются ли f и g гомоморфизмом:

$$f(z_1 \cdot z_2) = f\left(r_1 r_2 \left(\cos(\varphi_1 + \varphi_2) + i\sin(\varphi_1 + \varphi_2)\right)\right) = r_1 r_2 = f(z_1) \cdot f(z_2)$$

$$g(z_1 \cdot z_2) = g\left(r_1 r_2 \left(\cos(\varphi_1 + \varphi_2) + i\sin(\varphi_1 + \varphi_2)\right)\right) = 2r_1 r_2$$

$$g(z_1) \cdot g(z_2) = 2r_1 \cdot 2r_2 = 4r_1 r_2$$

$$\Rightarrow g(z_1) \cdot g(z_2) \neq g(z_1) \cdot g(z_2)$$

Таким образом, f – гомоморфизм, g – не гомоморфизм.

Ответ: f – гомоморфизм, g – не гомоморфизм.

Задача 29

Найти порядок элемента группы

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 5 & 4 \end{pmatrix} \in S_5$$

$$-\frac{\sqrt{3}}{2} + \frac{1}{2}i \in \mathbb{C}^*$$

Решение:

1) Разложим подстановку в произведение независимых циклов:

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 5 & 4 \end{pmatrix} = (123)(45)$$

Так как подстановка в степени, равной НОКу длин её циклов, будет равна e, порядок этой подстановки будет НОК(3,2)=6 (меньшая степень не подойдёт).

2) Перепишем комплексное число в тригонометрической форме:

$$z = -\frac{\sqrt{3}}{2} + \frac{1}{2}i = \cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6}$$

Надо возвести z в такую минимальную степень $n \in \mathbb{N}$, что $z^n = 1$ – нейтральный элемент в \mathbb{C}^* .

$$z^n = \cos\frac{5\pi n}{6} + i\sin\frac{5\pi n}{6} = 1$$

$$\begin{cases} \cos\frac{5\pi n}{6} = 1\\ \sin\frac{5\pi n}{6} = 0 \end{cases} \Leftrightarrow \begin{cases} \frac{5\pi n}{6} = 2\pi k, \ k \in \mathbb{Z}\\ \frac{5\pi n}{6} = \pi l, \ l \in \mathbb{Z} \end{cases} \Rightarrow \frac{5\pi n}{6} = 2\pi k, \ k \in \mathbb{Z} \Leftrightarrow n = \frac{12k}{5}$$

Так как $n \in \mathbb{N}, \, k \neq 0$ должно быть кратно 5. Минимальное такое k=5. Значит, n=12.

Ответ: 1) 6; 2) 12.