Determinización de autómatas no-deterministas

Clase 04

IIC2223 / IIC2224

Prof. Cristian Riveros

Outline

Recordatorio clase pasada

Determinización de un NFA

Outline

Recordatorio clase pasada

Determinización de un NFA

Autómata finito no-determinista

Definición

Un autómata finito no-determinista (NFA) es una estructura:

$$A = (Q, \Sigma, \Delta, I, F)$$

- Q es un conjunto finito de estados.
- Σ es el alfabeto de input.
- F ⊆ Q es el conjunto de estados finales (o aceptación).

+

- $\Delta \subseteq Q \times \Sigma \times Q$ es la relación de transición.
- $I \subseteq Q$ es un conjunto de estados iniciales.

¿cómo ejecuto un autómata no-determinista?

Sea:

- Un autómata finito no-determinista $A = (Q, \Sigma, \Delta, I, F)$.
- El input $w = a_1 a_2 \dots a_n \in \Sigma^*$.

Una ejecución (o run) ρ de $\mathcal A$ sobre w es una secuencia:

$$\rho: p_0 \stackrel{a_1}{\rightarrow} p_1 \stackrel{a_2}{\rightarrow} \dots \stackrel{a_n}{\rightarrow} p_n$$

- $p_0 \in I$
- para todo $i \in \{0, ..., n-1\}, (p_i, a_{i+1}, p_{i+1}) \in \Delta.$

Una ejecución ρ de \mathcal{A} sobre w es de aceptación si:

$$p_n \in F$$
.

Desde ahora hablaremos de las ejecuciones de A sobre w

Lenguaje aceptado por un autómata no-determinista

Sea un autómata $A = (Q, \Sigma, \Delta, I, F)$ y $w \in \Sigma^*$.

Definiciones

- **A** acepta w si existe una ejecución de \mathcal{A} sobre w que es de aceptación.
- **A rechaza** w si **todas** las ejec. de \mathcal{A} sobre w **NO** son de aceptación.
- **El lenguaje aceptado** por A se define como:

$$\mathcal{L}(\mathcal{A}) = \{ w \in \Sigma^* \mid \mathcal{A} \text{ acepta } w \}$$

¿qué tan poderoso es el no-determinismo en autómatas?

¿puede un autómata determinista almacenar todas las ejecuciones?

Outline

Recordatorio clase pasada

Determinización de un NFA

¿qué tan poderoso es el no-determinismo en autómatas?

Teorema

Para todo autómata finito no-determinista \mathcal{A} , existe un autómata determinista \mathcal{A}' tal que:

$$\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}')$$

En otras palabras, DFA \equiv NFA.

Ambos modelos computan lo mismo

Demostración

Para demostrar este resultado, construiremos la "determinación" del autómata no-determinista \mathcal{A} .

Idea de determinización

"Almacenar en el autómata determinista todos los estados actuales de las ejecuciones en curso (sin repetidos)."

Determinización

Formalización

Para un autómata no-determinista $\mathcal{A} = (Q, \Sigma, \Delta, I, F)$, definimos el autómata determinista (determinización de \mathcal{A}):

$$\mathcal{A}^{\text{det}} = (2^Q, \Sigma, \delta^{\text{det}}, q_0^{\text{det}}, F^{\text{det}})$$

- $2^Q = \{S \mid S \subseteq Q\}$ es el conjunto potencia de Q
- $q_0^{\text{det}} = I$
- $\delta^{\text{det}}: 2^Q \times \Sigma \to 2^Q \text{ tal que:}$

$$\delta^{\mathsf{det}}(S, a) = \{ q \in Q \mid \exists p \in S. (p, a, q) \in \Delta \}$$

$$F^{\text{det}} = \{ S \in 2^Q \mid S \cap F \neq \emptyset \}$$

Determinización

Formalización

- $\mathbf{Q}^{Q} = \{S \mid S \subseteq Q\}$ es el conjunto potencia de Q
- $q_0^{\text{det}} = I$
- $\delta^{\text{det}}(S, a) = \{ q \in Q \mid \exists p \in S. (p, a, q) \in \Delta \}$
- $F^{\text{det}} = \{ S \in 2^Q \mid S \cap F \neq \emptyset \}$

Ejemplo determinización

Proposición

Dado un autómata no-determinista $\mathcal{A} = (Q, \Sigma, \Delta, I, F)$ se tiene que:

$$\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}^{\mathsf{det}})$$

¿cómo demostramos que ambos autómatas definen el mismo lenguaje?

Demostración: $\mathcal{L}(\mathcal{A}) \subseteq \mathcal{L}(\mathcal{A}^{\mathsf{det}})$

Sea $w = a_1 a_2 \dots a_n \in \mathcal{L}(\mathcal{A}).$

Existe una ejecución ρ de \mathcal{A} sobre w:

$$\rho: p_0 \stackrel{a_1}{\to} p_1 \stackrel{a_2}{\to} \dots \stackrel{a_n}{\to} p_n$$

- $p_0 \in I$.
- $(p_i, a_{i+1}, p_{i+1}) \in \Delta \quad \forall i \in \{0, \ldots, n-1\}.$
- $p_n \in F$.

Como \mathcal{A}^{det} es determinista, entonces existe una ejec. ρ' de \mathcal{A}^{det} sobre w:

$$\rho': S_0 \stackrel{a_1}{\to} S_1 \stackrel{a_2}{\to} \dots \stackrel{a_n}{\to} S_n$$

- $S_0 = I$.
- $\delta^{\text{det}}(S_i, a_{i+1}) = S_{i+1} \quad \forall i \in \{0, 1, \dots, n-1\}.$

¿qué debemos demostrar?

Demostración: $\mathcal{L}(\mathcal{A}) \subseteq \mathcal{L}(\mathcal{A}^{det})$

PD: $p_i \in S_i$ para todo $i \in \{0, 1, ..., n-1\}.$

Por inducción sobre i.

Caso base:
$$p_0 \in S_0$$
 (¿por qué?)

Inducción: Suponemos que $p_i \in S_i$ y demostramos para i + 1.

Como sabemos que:

$$\delta^{\det}(S_i, a_{i+1}) = S_{i+1} = \{ q \in Q \mid \exists p \in S_i. (p, a, q) \in \Delta \}$$
 y

$$(p_i, a_{i+1}, p_{i+1}) \in \Delta.$$

Entonces $p_{i+1} \in S_{i+1}$ (¿por qué?).

Como
$$p_n \in S_n \stackrel{?}{\Rightarrow} S_n \cap F \neq \emptyset \stackrel{?}{\Rightarrow} S_n \in F^{\text{det}}$$
.

Por lo tanto, $w \in \mathcal{L}(\mathcal{A}^{\text{det}})$.

Demostración:
$$\mathcal{L}(\mathcal{A}^{\mathsf{det}}) \subseteq \mathcal{L}(\mathcal{A})$$

Sea $w = a_1 a_2 \dots a_n \in \mathcal{L}(\mathcal{A}^{\text{det}}).$

Existe una ejecución ρ de \mathcal{A}^{det} sobre w:

$$\rho: S_0 \stackrel{a_1}{\to} S_1 \stackrel{a_2}{\to} \dots \stackrel{a_n}{\to} S_n$$

- $S_0 = I$.
- $\delta^{\text{det}}(S_i, a_{i+1}) = S_{i+1} \quad \forall \ i \in \{0, 1, \dots, n-1\}.$
- $S_n \in F^{\text{det}}$.

¿cómo demostramos una **ejecución de aceptación** de ${\mathcal A}$ sobre w?

 $(S_n \cap F \neq \emptyset)$

Demostración: $\mathcal{L}(\mathcal{A}^{\mathsf{det}}) \subseteq \mathcal{L}(\mathcal{A})$

PD: Para todo $i \le n$ y para todo $p \in S_i$, existe una ejecución:

$$\rho: p_0 \stackrel{a_1}{\to} p_1 \stackrel{a_2}{\to} \dots \stackrel{a_i}{\to} p_i = p$$

- 1. $p_0 \in I$.
- 2. $(p_j, a_{j+1}, p_{j+1}) \in \Delta \quad \forall j \in \{0, \dots, i-1\}.$

Por inducción sobre i.

Caso base: Si $p \in S_0 = I$, entonces la ejec. $\rho : p$ cumple 1. y 2.

Demostración: $\mathcal{L}(\mathcal{A}^{\mathsf{det}}) \subseteq \mathcal{L}(\mathcal{A})$

PD: Para todo $i \le n$ y para todo $p \in S_i$, existe una ejecución:

$$\rho: p_0 \stackrel{a_1}{\rightarrow} p_1 \stackrel{a_2}{\rightarrow} \dots \stackrel{a_i}{\rightarrow} p_i = p$$

- 1. $p_0 \in I$.
- 2. $(p_j, a_{j+1}, p_{j+1}) \in \Delta \quad \forall j \in \{0, \dots, i-1\}.$

Inducción: Supongamos que se cumple para todo $p \in S_i$. Sea $q \in S_{i+1}$.

Como
$$\delta^{\text{det}}(S_i, a_{i+1}) = S_{i+1} = \{q \in Q \mid \exists p \in S_i. (p, a, q) \in \Delta\}$$
 y $q \in S_{i+1}$ entonces existe $p \in S_i$ tal que $(p, a_{i+1}, q) \in \Delta$.

Por **HI**, existe $\rho: p_0 \stackrel{a_1}{\to} p_1 \stackrel{a_2}{\to} \dots \stackrel{a_i}{\to} p_i = p$ que satisface 1. y 2.

Por lo tanto, $\rho': p_0 \stackrel{a_1}{\to} p_1 \stackrel{a_2}{\to} \dots \stackrel{a_i}{\to} p_i \stackrel{a_{i+1}}{\to} q$ también satisface 1. y 2. \checkmark

Demostración: $\mathcal{L}(\mathcal{A}^{\mathsf{det}}) \subseteq \mathcal{L}(\mathcal{A})$

Por lo tanto: Para todo $i \le n$ y para todo $p \in S_i$, existe una ejecución:

$$\rho: p_0 \stackrel{a_1}{\rightarrow} p_1 \stackrel{a_2}{\rightarrow} \dots \stackrel{a_i}{\rightarrow} p_i = p$$

- 1. $p_0 \in I$.
- 2. $(p_j, a_{j+1}, p_{j+1}) \in \Delta \quad \forall j \in \{0, \dots, i-1\}.$

Como
$$S_n \cap F \neq \emptyset$$
, (¿por qué?)

para $p \in S_n \cap F$ existe una ejecución de acept. de $\mathcal A$ sobre w.

Por lo tanto, $w \in \mathcal{L}(A)$.

¿cuál es la ventaja de los autómatas no-deterministas?

Ventajas

- 1. Su representación es más sencilla para algunos lenguajes.
- 2. Son exponencialmente más compactos.

- La determinización tiene 2ⁿ estados.
- Es posible demostrar que no hay DFA con menos estados.

Cierre de clase

En esta clase vimos:

- 1. Como convertir un NFA en un DFA.
- 2. Demostramos la correctitud de la construcción.
- 3. NFA son exponencialmente más sucintos.

Próxima clase: Expresiones regulares