Product Recommendation System Based on Amazon Review

Objective

The goal of this project is to build a predictive model for forecasting user ratings and evaluating the usefulness of reviews. The system employs collaborative filtering techniques to recommend relevant products and personalizes user experiences.

1. Data Pre-processing

Data Loading

- The Amazon Electronics 5-core dataset and associated metadata were downloaded and loaded into Pandas DataFrames.
- Metadata was kept in a separate DataFrame.

Data Cleaning

- Handled missing values by dropping rows with NaN values.
- Removed duplicates and unnecessary columns.
- Focused on a specific category: **Headphones**.

2. Exploratory Data Analysis

Descriptive Statistics for Headphones

• Total Reviews: **411,152**

Average Rating: 4.11Number of Unique Products: 26,849

Good Ratings (≥3): 353,373Bad Ratings (<3): 57,779

Distribution of Ratings:

o 1-star: **30,991**

o 2-star: **26,788**

o 3-star: **40,752**

4-star: 79,1495-star: 233,472

Key Insights

- Most Reviewed Brand: Sony
- Most Positively Reviewed Product: **Sony (ASIN: B000053ZF1)** with an average rating of **5.0**.

Visualization Highlights

• Pie chart of ratings distribution.

Word Clouds for "Good" and "Bad" reviews.

Word Cloud for Bad Ratings

• Yearly trends of reviews showing 2015 as the year with maximum reviews.

3. Text Preprocessing

- Steps Applied:
 - o Removed HTML tags.
 - o Handled accented characters.
 - Expanded acronyms.
 - o Removed special characters.
 - Lemmatized text.
 - Normalized text.
- Saved the cleaned review text for further analysis.

4. Feature Engineering

- Created three vectorized representations for the review text:
 - 1. Bag of Words (BoW).
 - 2. **TF-IDF**.
 - 3. Hashing Vectorizer.

5. Classification Models

Target Classes

- Good (Rating > 3).
- Average (Rating = 3).
- Bad (Rating < 3).

Models Evaluated

- Multinomial Naive Bayes
- Logistic Regression
- Linear SVC
- Random Forest

Performance Metrics

• Evaluated using Precision, Recall, F1-Score, and Support.

Best Model

- Logistic Regression:
 - o F1-Score: **0.94** for "Good" class.
 - o Accuracy: 88%.

6. Collaborative Filtering

User-User Recommender

- 1. Created a User-Item matrix.
- 2. Normalized ratings using Min-Max Scaling.
- 3. Used Cosine Similarity to find the top N (10-50) similar users.
- 4. Used K-Folds Validation to compute MAE for predictions.

Item-Item Recommender

• Followed similar steps as User-User recommendations.

Results

- Plotted MAE against N (10, 20, 30, 40, 50) for both systems.
- User-User MAE was slightly better for smaller N, while Item-Item performed better for larger N.

Top Recommendations

• Generated the top 10 product recommendations based on predicted ratings.

```
Shape of User-Item sparse matrix: (735, 3238)

User Ratings Predicted Ratings

Recommended Items

B00006803L
3.0
0.021694

B00013BKS2
3.0
-0.001160

B00008Z1QI
3.0
-0.001160
```

Conclusion

This project successfully built a comprehensive recommendation system for electronics, particularly headphones, leveraging both supervised learning models and collaborative filtering. The system demonstrated robust performance and provided actionable insights for personalization in e-commerce.

Let me know if you need refinements or specific sections expanded!