«Математична логіка і теорія алгоритмів»

Спеціальність – 113 – прикладна математика

Формальні моделі алгоритмів

- 1. Знайти функцію f(x,y), яка отримана з функцій g(x) та h(x,y,z) за схемою примітивної рекурсії.
- 2. Для заданої функції $f(x_1,...,x_n)$:
 - побудувати машину Тьюрінга (МТ). Пояснити призначення станів машини Тьюрінга і перевірити її роботу для деяких аргументів функції $f(x_1,...,x_n)$ в емуляторі машини Тьюрінга.
 - записати алгоритм Маркова (НА). Для алгоритму Маркова пояснити вибір алфавіту, призначення продукцій і перевірити його роботу для деяких аргументів функції $f(x_1,...,x_n)$ в емуляторі нормальних алгоритмів Маркова.
 - скласти програму машини натуральнозначних регістрів (МНР). Пояснити ідею алгоритму і перевірити роботу програми МНР для деяких аргументів функції $f(x_1,...,x_n)$ в емуляторі МНР.
- 3. Скласти звіт.

Функції g(x) та h(x, y, z) для завдання 1 наведені в таблиці 1.

Функція $f(x_1,...,x_n)$ для завдання 2 наведена в таблиці 2.

Таблиця 1

No	g(x)	h(x, y, z)
1	x^2	XZ
2	2	$\frac{z^x}{x+y-z}$
3	X	x + y - z
4	x	$\left[\frac{x+z}{2}\right]$
5	1	x(y+1)z
6	X	x + z
7	0	y+z+1
8	χ^4	$x^3 \cdot \sqrt[4]{z}$
9	X	xz
10	X	x + y
11	3	$\frac{z^{y+1}}{xy+x}$
12	1	xy + x
13	1	$\frac{x}{z}$
14	0	$\frac{z}{x^2 + z}$

№	g(x)	h(x,y,z)
15	X	xyz + xz
16	X	$\frac{z^2}{3y+z}$
17	x^2	3y + z
18	2 <i>x</i>	2x + z
19	х	xz.
20	0	x + 2y
21	0	x + y + z
22	x^3	$x^2\sqrt[3]{z}$
23	0	$y^3 + z$
24	X	x + y
25	X	zy + z

No	$f(x_1,,x_n)$
	.,
1	$f(x,y,z) = \begin{cases} y - \left[\frac{x}{z}\right], \text{ якщо } z < 3, \\ \left[\frac{x+y+z}{3}\right], \text{ якщо } z \ge 3, \end{cases}$
2	$f(x,y) = \begin{cases} \left[\frac{x}{x-2}\right], \text{ якщо } x < 4, \\ x - y, \text{ якщо } x = 4, \\ \left[\frac{x+1}{2}\right], \text{ якщо } x > 4, \end{cases}$
3	$f(x,y) = \begin{cases} \left[\frac{x+2}{y}\right], \text{ якщо } y < 3, \\ xy, & \text{ якщо } y \ge 3, \end{cases}$
4	$f(x,y) = \begin{cases} \left\lfloor \frac{x+2}{3} \right\rfloor, \text{ якщо } y < 3, \\ xy, \text{ якщо } y \ge 3, \end{cases}$
5	$f(x,y,z) = \left\{ \begin{bmatrix} \frac{x-z}{y^2} \end{bmatrix}, \text{ якщо } y < 3, \\ x+y, \text{ якщо } y \ge 3, \right\}$
	$f(x,y) = 3^x + y$
7	$f(x,y,z) = \begin{cases} \left[\frac{z-y}{x^2}\right], \text{ якщо } x < 3, \\ z+y, \text{ якщо } x \ge 3, \end{cases}$
8	$f(x,y,z) = \begin{cases} \left[\frac{x-z}{3}\right], \text{ якщо } x+y < 4, \\ x+y+z, \text{ якщо } x+y \ge 4, \end{cases}$
9	$f\left(x,y,z\right) = \begin{cases} \left[\sqrt{\log_2 z}\right], \text{ якщо } z < 7, \\ 2 + x + z - y, \text{ якщо } z \ge 7 \text{ та } x > 0, \\ \left[\frac{y}{2}\right], \text{ якщо } z \ge 7 \text{ та } x = 0, \end{cases}$

10
$$f(x,y) = \left[\frac{4-x}{2-y}\right]$$
11
$$f(x,y,z) = \left\{ \left[\frac{\sqrt{x-y}}{3-z}\right], \text{ якщо } z < 7, \\ z+2, \text{ якщо } z \geq 7, \right]$$
12
$$f(x,y,z) = \left\{ \left[\frac{log_2 z}{2}\right], \text{ якщо } z < 5, \right]$$
13
$$f(x,y,z) = \left\{ \left[\frac{x+y}{2}\right], \text{ якщо } z < 3, \right.$$
14
$$f(x,y) = \left\{ \left[\frac{log_2 x}{y}\right], \text{ якщо } x < 8, \right.$$
15
$$f(x,y) = \left\{ \left[\frac{log_3 x}{2}\right], \text{ якщо } x + y < 6, \right.$$

$$x-y, \text{ якщо } x+y \geq 6, \right.$$
16
$$f(x,y) = \left\{ \left[\frac{x-2}{y-1}\right], \text{ якщо } y < 3, \right.$$
27
$$f(x,y) = \left\{ \left[\frac{x-2}{y-1}\right], \text{ якщо } y < 3, \right.$$
28
$$f(x,y,z) = \left\{ \left[\frac{x-2}{y-1}\right], \text{ якщо } y < 3, \right.$$
29
$$f(x,y,z) = \left\{ \left[\frac{x-2}{y-1}\right], \text{ якщо } x+y < 3, \right.$$
20
$$f(x,y,z) = \left\{ \left[\frac{log_2 z}{2-y}\right], \text{ якщо } x+z \leq 4, \right.$$

$$xy+z, \text{ якщо } x+z \leq 4, \right.$$

21	$f(x,y) = \begin{cases} x - y + z, \text{ якщо } x + y > 4, \\ \lceil log_2 y \rceil, \text{ якщо } x + y \le 4, \end{cases}$
22	$f\left(x,y\right) = \left[\frac{2x+1}{y}\right]$
	$f(x,y) = \left[\frac{x}{y^2}\right]$
24	$f(x,y) = \begin{cases} \left[\frac{2x+1}{y}\right], \text{ якщо } y \le 3, \\ x-2y, \text{ якщо } y > 3 \end{cases}$
	$f(x,y) = \begin{cases} \left[\frac{y}{x-2}\right], \text{ якщо } x < 4, \\ x^2 - y, \text{ якщо } x \ge 4 \end{cases}$