University of Vienna

Seminar: Joint RICAM Seminar

Summary of talk by Otmar Scherzer

Milutin Popovic

December 13, 2023

Contents

T	Intro		
	1.1	Posing the problem	1
	1.2	Shallow neural network coders	1
2	Solu	tion	2

1 Intro

The following questions are anwsered:

- $\bullet\,$ iterative regularization with NN functions
- application of NNs on inverse problems
- What generalized NNs are best suited for IPs?

1.1 Posing the problem

Consider linear operator equation between Hilbert spaces ${\bf X}$ and ${\bf Y}$

$$F\mathbf{x} = \mathbf{y}.\tag{1}$$

For the problem modeling we introduce a function, called **Coding** $\Psi : \vec{P} \to \mathbf{X}$ which maps NN parameters to images functions. Our problem can be written as follows

$$N(\vec{p}) = F\Psi(\vec{p}) = \mathbf{y},\tag{2}$$

where X is the image space, Y the data space and \vec{P} the parameter space. In the case the operator in question F is nonlinear then we would of course have a nonlinear equation, which we are not considering right now.

1.2 Shallow neural network coders

Shallow neural network coders are of the following form

$$\Psi: \mathcal{D}(\Psi) := \mathbb{R}^{n_*} = \mathbb{R}^N \times \mathbb{R}^{n \times N} \times \mathbb{R}^N \to \mathbf{X} := L^2([0, 1]^n), \tag{3}$$

$$\vec{p} = (\vec{\alpha}, \mathbf{w}, \vec{\theta}) \mapsto \left(\vec{x} \to \sum_{j=1}^{N} \alpha_j \sigma \left(\vec{\mathbf{w}}_j^T \vec{x} + \omega_j \right) \right), \tag{4}$$

where σ is an activation function, such as tanh or sigmoid.

2 Solution

The solution ivolves either recostructing the function or the coefficient use Tikhonov regularization(TODO: Tikhonov regularization introduction!) or use newton type methods.