# Extending The Sleuth Kit and its Underlying Model for Pooled Storage File System Forensic Analysis

# Fraunhofer Institute for Communication, Information Processing and Ergonomics

Jan-Niclas Hilgert\*
Martin Lambertz
Daniel Plohmann

jan-niclas.hilgert@fkie.fraunhofer.de martin.lambertz@fkie.fraunhofer.de daniel.plohmann@fkie.fraunhofer.de



## Digital Forensic Analysis







## File Systems

- Define how data is read from and written to a storage device
- Utilize metadata to keep order of the data stored
- File systems differ in many aspects



- Extensive background knowledge is required for a forensic analysis
  - But not always existent

**De-Facto Standard Model** 



**De-Facto Standard Model** 



Trying TSK on ZFS

jhilgert:ZPool\$ fsstat disk1
Cannot determine file system type

Old File System Mapping



- Storage devices (hard drives, solid state drives ...) are somehow used to create new block devices
- One file system is assigned to one of these block devices

#### **New Approach**



- Storage Devices are combined to form a storage pool
- Its configuration depends completely on the implementation
- File systems share the available space from the storage pool

#### Requirements – Detect Pool Members



#### Requirements – Detect Pool Members



#### Requirements – Detect Pool Configurations



#### Requirements – Analyze a Complete Pool



#### Requirements – Access Correct Offsets on Physical Disks



#### Requirements – Access All Filesystem Data



#### Requirements – Deal with Incomplete Pools



Phyiscal Media Analysis



Application Analysis

- Acquisition of data from storage devices
- Data is only seen as a sequence of bytes
  - No change necessary

**Application Analysis** 

Performs an application-level analysis of the acquired files

Storage

Device

- Works on already recovered and collected files
  - No change necessary



**Volume Analysis** 

Storage Device Sectors of Data

Volume Analysis

Volume

Analysis

- Data is searched for its underlying volume structure
- Returns detected volumes (block devices)



**Volume Analysis** 

Storage Device

Pooled storage file systems implement their own "volume manager"

- Established volume managers are still used
  - Volumes can also be part of a pool
- Volume analysis is still necessary



**Pool Analysis** 



Application Analysis

- Volumes or data need to be analyzed for possible pool membership
- Using the file systems volume manager results in a reconstructed pool
  - Only high-level access
  - No file system analysis possible



**Pool Analysis** 



**Application** 

**Analysis** 

- File system data and metadata is essential for a file system analysis
  - Direct access to the pool and its members is required
  - Mapping schema of the file system needs to be known



**Pool Analysis** 



dependent

File System Analysis



Fraunhofer

**Extended Model** 



**FKIE** 

#### **ZFS – Volume Management**

- First presented in 2003 (more than a decade ago)
- Available for major platforms like Solaris, FreeBSD, Linux, MacOS
- ZFS combines multiple volumes into a storage pool
- Pool members are identified by four vdev-labels



#### ZFS – Volume Management

- Pools in ZFS consist of one or more top-level virtual devices (vdevs)
- Data is striped across all of these top-level vdevs



#### **ZFS – Volume Management**

- Top-level vdevs are made up of children
- Different types of top-level vdevs are supported by ZFS
- Each top-level vdev is addressed using its ID



#### **ZFS – General Structure**

- Filesystem is represented in a tree-structure
- Überblock is the head of this tree
- Utilizes the copy-on-write principle



- Block pointers refer to variable-sized blocks of data
- Data is addressed by using Data Virtual Addresses (DVAs)

Top-level Vdevs 
$$1 : 0x2cf200$$
  $\longrightarrow$  Mapping Offsets  $2 : 0x52b600$ 

#### **Evaluation**

#### **Evaluation Pool**

- Use multiple numbers of disks in multiple configurations
  - Two simple disks
  - One mirror with two children
  - One raidz1 with three children



#### Contribution & Future Research

- Extension of The Sleuth Kit for pooled storage file systems
- Digital forensic analysis of ZFS
- Accessing older versions of the ZFS copy-on-write tree
- Dealing with incomplete pools
- Further investigations on other ZFS structures:
  - ZFS Intent Log (ZIL)
  - L2ARC
- Implementations for other pooled storage file systems
  - BTRFS, ReFS, APFS



## Thanks for your attention!

https://github.com/fkie-cad/sleuthkit