TODO List

Gareth Ma

April 16, 2024

Not sure why I need to make a TODO list in LATEX but here I am. \checkmark means ok, no \checkmark means no ok. The Lean part is split into three sections, the ABC: Asymptotics, Bridge and Construction. Lean Construction:

- 1. ✓ Definition of CornerFree
- 2. \checkmark Definition of construction (IsInCons and A_r)
- 3. ✓ Computable definitions
- 4. \checkmark Prove base case of induction $((x+d)_0 + y_0 = x_0 + (y+d)_0)$
- 5. Prove inductive case of induction $((x+d)_i + y_i = x_i + (y+d)_i)$
- 6. \checkmark Conclude lemma 0.2 $(\pi(x+d) + \pi(y) = \pi(x) + \pi(y+d))$.
- 7. Combine lemma 0.1 with parallelogram law to get b = 0.
- 8. \checkmark Conclude that A_r is corner-free.

Lean Asymptotics:

- 1. $\sqrt{\text{Prove asymptotics } 1} \left(q = (c + o(1))^d \right)$
- 2. $\sqrt{\text{Prove asymptotics 2}} (d = (1 + o(1)) \sqrt{\dots})$
- 3. Prove the "short calculation".

Lean Bridge:

- 1. Show that there are $(\frac{3}{4}q^2 + O(q))^d$ pairs of (x,y) with $\frac{q}{2} \le x_i + y_i < \frac{3q}{2}$.
- 2. Apply pigeonhole principle to get $\#A_r \ge (dq^2)^{-1} (\frac{3}{4}q^2 + O(q))^d$ (PP on the norm).

Essay:

- 1. sec1-intro
- 2. √sec2-background
- 3. √sec3-lean-and-mathlib
- 4. √sec4-limits
- 5. sec5-proof-breakdown
- $6. \ \verb+sec6-impl-construction+\\$
- 7. sec7-impl-asymptotics
- 8. sec8-impl-bridge
- 9. sec9-correctness
- 10. sec10-conclusion
- 11. √sec11-acknowledgement