

Mathématiques

Classe: BAC MATHS

Chapitre: Isométrie du plan

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

Exercice 1

(5) 10 min

3 pt

Soit ABCD un carré direct et r la rotation de centre A et d'angle $\frac{\pi}{2}$.

- a) Déterminer la droite Δ tel que $r = S_{\Delta} \circ S_{(AC)}$.
- b) Déterminer la droite Δ' tel que $r = S_{(AC)} \circ S_{\Delta'}$.

Exercice 2

(5) 10 min

3 pt

Soit ABCD un rectangle direct et I, J les milieux respectifs de [BC] et [AD] on considère la translation

t de vecteur \overrightarrow{BC} .

- a) Déterminer la droite Δ tel que $t = S_{\Delta} \circ S_{(IJ)}$
- b) Déterminer la droite Δ ' tel que $t = S_{(II)} \circ S_{\Delta}$

Exercice 3

4 pt

Soit ABCD losange direct de centre O.

Déterminer les droites $\Delta_{_{1}}$, $\Delta_{_{2}}$, $\Delta_{_{3}}$ et $\Delta_{_{4}}$ tel que :

- a) $t_{\overline{BD}} = S_{\Delta_1} \circ S_{(AC)}$
- b) $t_{\overrightarrow{BD}} = S_{(AC)} \circ S_{\Delta_2}$
- c) $t_{\overrightarrow{AO}} = S_{\Delta_3} \circ S_{(BD)}$
- d) $t_{\overline{AO}} = S_{(BD)} \circ S_{\Delta_4}$

Exercice 4

(5) 15 min

4 pt

Soit ABC un triangle équilatéral direct et r la rotation de centre A et d'angle $\frac{\pi}{3}$. On note I milieu de [BC].

- a) Déterminer la droite Δ tel que $r = S_{(AC)} \circ S_{\Delta}$.
- b) Déterminer la droite Δ' tel que $r = S_{(AI)} \circ S_{\Delta'}$

Exercice 5

(5) 15 min

4 pt

Soit ABCD un carré direct de centre O. On note I , J , K et L les milieux respectifs des

segments [AD], [AB], [BC] et [CD].

On note r la rotation de centre O et d'angle $\frac{\pi}{2}$.

Déterminer les droites $\Delta_{_{\! 1}}$, $\Delta_{_{\! 2}}$, $\Delta_{_{\! 3}}$ et $\Delta_{_{\! 4}}$ tel que :

a)
$$r = S_{(BD)} \circ S_{\Delta_1}$$
.

b)
$$r = S_{(AC)} \circ S_{\Delta_2}$$
.

c)
$$r = S_{(IK)} \circ S_{\Delta_3}$$
.

d)
$$r = S_{(JL)} \circ S_{\Delta_4}$$
.

Exercice 6

(5) 10 min

3 pt

Soit ABC un triangle équilatéral direct. On considère la rotation r de centre B et d'angle $\frac{\pi}{3}$.

On Note I le milieu de segment [AC] et J son symétrique par la symétrie axiale d'axe (BC).

Déterminer les droites $\Delta_{_{\! 1}}$, $\Delta_{_{\! 2}}$ et $\Delta_{_{\! 3}}$ tel que :

a)
$$r = S_{(BC)} \circ S_{\Delta_1}$$
.

b)
$$r = S_{\Delta_2} \circ S_{(BI)}$$
.

c)
$$r = S_{\Delta_3} \circ S_{(BC)}$$
.

Exercice 7

(5) 10 min

3 pt

Soit t la translation de vecteur u tel que $t = S_1 \circ S_2 = S_2 \circ S_1$ où S_1 et S_2 sont deux Symétries axiales d'axes respectifs Δ_1 et Δ_2 .

- a) Que peut-on en conclure pour les droites Δ_1 et Δ_2 ?
- b) Que peut-on en conclure pour le vecteur \vec{u} .

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

www.takiacademy.com

73.832.000