МФТИ, сложность вычислений, осень 2023 Семинар 06. Самосводимости и пэддинг

Определение. $\mathbf{EXP} = \bigcup_{c=1}^{+\infty} \mathbf{DTIME}(2^{n^c}).$ Определение. $\mathbf{NEXP} = \bigcup_{c=1}^{+\infty} \mathbf{NTIME}(2^{n^c}).$

Путь $A \in \mathbf{NP}$, соответствующий ему верификатор — V(x,s). Рассмотрим следующую задачу: по входу x нужно либо сообщить, что $x \notin A$, либо выдать такое s, что V(x,s) = 1. Если такую задачу можно решить за полиномиальное время при помощи оракула A, то говорим, что A обладает самосводимостью.

- 1. Постройте самосводимость для следующих языков:
 - а) $\mathsf{HAMPATH} = \{G \mid \mathsf{B} \text{ орграфе } G \text{ есть гамильтонов путь}\};$
 - б) VERTEXCOVER = $\{(G, k) \mid$ в графе G есть вершинное покрытие размера не более $k\}$;
 - в) SUBSETSUM = $\{(k, n_1, n_2, \dots, n_k, N) \mid$ из набора чисел n_1, \dots, n_k можно выбрать подмножество с суммой $N\}$;
 - $_{\Gamma}$) $_{3}\mathsf{COL} = \{G \mid \chi(G) \leqslant 3\};$
 - д) SUBSET-SUM = $\{(k, n_1, \dots, n_k, N) \mid \exists I \subset \{1, \dots, k\} : \sum_{i \in I} n_i = N\};$
 - е) $\{(k, n_1, \dots, n_k, N) \mid \text{ существуют целые неотрицательные } a_1, \dots, a_k, \text{ такие что } \sum_{i=1}^k a_i n_i = N\};$
 - ж) $\mathsf{GI} = \{(G_1, G_2) \mid \text{графы } G_1 \text{ и } G_2 \text{ изоморфны}\}.$
- $\mathbf{2}$. Докажите, что если $\mathbf{P} = \mathbf{NP}$, то $\mathbf{EXP} = \mathbf{NEXP}$.
- **3.** Докажите, что если любой унарный язык из NP лежит в P, то EXP = NEXP.
- 4. Зная, что $\mathbf{E} \neq \mathbf{EXP}$, докажите, что $\mathbf{NP} \neq \mathbf{EXP}$.

- а) Можно ли сделать s стартовой вершиной гамильтонова пути? Для этого можно удалить все рёбра, входящие в s, и проверить гамильтоновость. Альтернативно, можно удалять ненужные рёбра.
- б) Можно ли не включать v в вершинное покрытие?
- в) Можно ли не включать n_1 в сумму для получения N?
- Γ) Можно ли считать, что u и v покрашены в один цвет? Можно, если граф, полученный после их стягивания в одну вершину, останется 3-раскрашиваемым.
- д) Можно ли выбросить первый предмет? Если нельзя, то его нужно добавить к ответу, вычесть из N его вес и всё равно выкинуть.
- е) Бинарным поиском найдите максимально возможное значение a_1 , затем удалите n_1 .
- ж) Каноническое решение со стрелочками. Научимся определять, существует ли изоморфизм G_1 и G_2 , переводящий вершину i в вершину j (пусть $n \ge 2$). Для этого к обеим этим вершинам дорисуем «стрелочки»: цепочку длины n+2 вершин, и ещё два отдельных ребра из ближайшей к i (или j) вершины этой цепочки. Можно показать, что любой изоморфизм таких графов со стрелочками обязан переводить конец стрелочки в конец стрелочки, а значит, и i в j.
 - Более простое решение. Существует ли изоморфизм, отображающий 1 в $\pi(1)$, 2 в $\pi(2)$, ..., k в $\pi(k)$? К вершине i и $\pi(i)$ подвесим 2ni листьев. Тогда k обязана перейти в $\pi(k)$ и т. д.
- **2.** Пусть $A \in \mathbf{NEXP}$, и A распознаётся недетерминированной машиной за время 2^{n^c} . Тогда $B = \{x01^{2^{|x|^c}} \mid x \in A\} \in \mathbf{NP}$.
- **3.** Пусть $A \in \mathbf{NEXP}$ и A распознаётся недетерминированной машиной за время 2^{n^c} для некоторого $c \geqslant 2$. Тогда $B = \{1^{2^{|x|^c} + f(x)} \mid x \in A\} \in \mathbf{NP}$, где f(x) номер строки x среди всех битовых строк длины |x|.
- **4.** Предположим противное. Рассмотрим произвольный язык $A \in \mathbf{EXP}$, то есть $A \in \mathbf{DTIME}(2^{n^c})$. Пусть $A' = \{x01^{|x|^c} \mid x \in A\}$. Тогда $A' \in \mathbf{E}$, то есть $A' \in \mathbf{NP}$. Но тогда и $A \in \mathbf{NP}$. Отсюда следует, что $\mathbf{EXP} = \mathbf{NP} = \mathbf{E}$, что не может быть верно.