Exploiting Sensing Diversity for Confident Sensing in Wireless Sensor Networks

CSCI 780 Sensors and Ubiquitous Computing

Gang Zhou

Computer Science
College of William and Mary

Introduction

Introduction

- Performance critical applications need:
 - Accuracy enforcement
 - Long system lifetimes (battery powered)
- We propose confident sensing:
 - Meet user accuracy requirements in terms of false positive and false negative rates

Motivation: Vehicle Detection

- ▶ 23 nodes with acoustic, seismic, and infrared sensors
- Deployed in a desert in CA, vehicles pass with GPS ground truth
- We choose 100 locations along the road to detect vehicles
 - Evaluate different machine learning methods for detection

Motivation: Sensing Diversity

- Sensing diversity encompasses the sensing capability differences among:
 - Sensors of the same modality
 - Sensors of different modalities
- We can use sensing diversity to our advantage

Motivation: Sensor Collaboration

- When are individual sensors good enough?
- If collaboration is needed, how to choose the right sensors?
- ▶ How to collaborate efficiently in a distributed environment?

Contributions

- We explore the fundamental challenges in addressing sensing diversity for confident sensing
 - We identify when and how to collaborate sensors
- We exploit sensing diversity to provide confident sensing coverage
 - Theoretical analysis
 - Practical solution, Wolfpack
- Evaluation with real trace data for vehicle detection
 - Compared with state of the art, we cover 30% more locations using 20% less energy

Outline

- Introduction and Motivation
- Related Work
- Problem Statement: Confident Coverage
- Wolfpack Framework Design
- Evaluation
- Conclusion

Related Work

- Sensing coverage
 - k nodes awake to cover a location of interest
 - Ignore sensing diversity and confidence
 - (Kumar, 2005), (Hsin, 2004)
- Data fusion and modality-specific sensing models
 - Theoretical models do not provide confidence in reality
 - Modality-specific models make collaboration difficult
 - (Yang, 2008), (Volgyesi, 2007)
- Existing machine learning and calibration efforts
 - Recognize sensing diversity but do not provide confidence
 - (Hwang, 2007), (Tan, 2010)

Problem Statement: Confident Coverage

Find set of clusters that meets user requirements for all locations while residing on the fewest number of nodes

Cluster Selection is NP-hard

- A special case is equal to the NP-hard Set Cover problem
 - Each node only has one sensor
 - Each cluster only has one sensor
- ▶ A greedy solution for cluster selection is appropriate

- **≻**Clustering
- ➤ Runtime and Adaptive Coverage
- 1. Train detection model for each individual sensor and location
- 2. Discard detection models with poor accuracy
- 3. Each node computes its importance
 - Quantified sensing capability for multiple locations using FP/FN rates

Node (Node ID I)

Sensor (Sensor ID I)

Target Location

Sensitive Sensor

- **≻**Clustering
- ➤ Runtime and Adaptive Coverage

- 4. Importance-based competition
 - Cluster head declarations
 - Cluster member declarations

Node (Node ID I)

Sensor (Sensor ID I)

Target Location

Sensitive Sensor

Clustered Sensor

- **≻**Clustering
- ➤ Runtime and Adaptive Coverage

- 4. Importance-based competition
 - Cluster head declarations
 - Cluster member declarations
- 5. All unused nodes go to sleep

Node (Node ID I)

Sensor (Sensor ID I)

Target Location

Sensitive Sensor

Clustered Sensor

- ➤ Clustering➤ Runtime and Adaptive Coverage
- During runtime, each cluster member transmits its readings to its cluster head at regular intervals
 - CH makes detection decision for its location using trained model
- Adaptive Coverage: cluster heads evaluate their accuracy (FP/FN) at each interval
 - If user requirements are no longer met, broadcast message to retrain a new cluster; competition restarts

Evaluation Setup

- Wisconsin SensIT vehicle detection trace data
 - 79 detection locations, 23 nodes with acoustic, seismic, and infrared sensors
 - First vehicle pass used for training, remaining 10 used for evaluation
 - Vehicle path and speed varies noticeably with each pass
- Compare with V-SAM (Hwang, 2007)
 - Attempts to keep sensors awake that have dissimilar readings
 - Force k-coverage on V-SAM
- User Requirements: 5% FP and FN rates

Meeting User Requirements

	Accuracy %	FP%	FN %	Locations Met %
Wolfpack	99.8	0.0	0.4	98.7
Wolfpack, No AC	99.2	0.0	1.9	93.7
Wolfpack, Fisher's	99.8	0.0	0.6	96.2
V-SAM Sim-cov	93.4	0.0	15.1	67.I
V-SAM I-cov	94.2	0.0	13.0	68.4
V-SAM 2-cov	94.6	1.6	9.7	74.7
V-SAM 3-cov	94.8	2.2	8.0	57.0

- Wolfpack can choose the nodes with the most capable sensors to achieve confidence
- V-SAM does not learn the sensing capabilities of different sensors, nor does it collaborate carefully

Meeting User Requirements: Accuracy by Location

Wolfpack has perfect accuracy for 85% locations

Adaptive Coverage

 Adaptive Coverage allows Wolfpack to tolerate environmental changes while providing confidence

Adaptive Coverage

- Locations with more updates have lower accuracy
- Most updates retrain the same cluster or use the same nodes

Energy Usage Per Location

▶ 60% of V-SAM locations use more energy than the most expensive Wolfpack locations

Conclusion

- We explore sensing diversity and determine:
 - When sensor collaboration is needed
 - How to perform sensor collaboration
- We exploit sensing diversity for confident sensing coverage
 - Theoretical analysis
 - Practical solution, Wolfpack
- Wolfpack outperforms existing approaches in terms of meeting user requirements and reducing energy usage

Discussion

- How sensitive is Wolfpack to machine learning algorithms?
- What are other possible schemes, rather than differentiated backoff periods, that we can use for the Wolfpack collaboration?
- Any other scenarios rather than ad hoc wireless sensor network deployment?
- Any application scenario you can come up with that needs sensing coverage?