

Home Gameboard

Maths

Moments 3ii

Moments 3ii

Figure 1: Three forces acting on a rod.

Figure 1 shows three forces acting on a rod.

Part A Moments about X

Find the clockwise moment about point X.
Find the sum of the two anticlockwise moments about point X.
s the rod in equilibrium? If not, in which direction will it rotate? No, and it will rotate clockwise
No, and it will rotate anticlockwise Yes
No, but it is impossible to tell which way it will rotate
It's impossible to tell whether it is in equilibrium

Part B Additional force

An additional force of $4\,\mathrm{N}$ can be applied so that the system is then in equilibrium.

Find the distance from X of the line of action for the additional force. The line of action must be applied perpendicular to the length of the rod.

Adapted with permission from UCLES, A Level, January 2011, OCR Physics A G481, Question 6

Home G

<u>Gameboard</u>

Maths Moments 5i

Moments 5i

Figure 1: A human arm lifting an object.

Figure 1 shows a human arm lifting an object. The lower arm is horizontal and its centre of gravity is $0.150\,\mathrm{m}$ from the elbow joint. The weight of the lower arm is $18\,\mathrm{N}$. The biceps muscle exerts a vertical force F on the arm. The horizontal distance between the elbow joint and the point of attachment of the muscle to the lower arm bone is $0.040\,\mathrm{m}$. The weight of the object held in the hand is $30\,\mathrm{N}$ and its centre of gravity is $0.460\,\mathrm{m}$ from the elbow joint. The arm is in equilibrium.

Part A Total clockwise moment

Calculate the total clockwise moment about the elbow joint correct to 3 significant figures.

Part B Further from body

Figure 2: An arm holding a ball with the lower arm moved away from the body.

As the lower arm is moved away from the body, the force F exerted by the biceps muscles acts at an angle θ to the vertical as shown in **Figure 2**.

The lower arm remains horizontal and in equilibrium. Describe and explain what happens to each of the following quantities as the angle θ is increased:

As θ increases, what happens to the anticlockwise moment about the elbow joint?

• •	•
It stays the same	
It decreases	
It increases	

As θ increases, what happens to the magnitude of the force F?

It decreases
It increases
It stays the same

Used with permission from UCLES, A Level, January 2012, OCR Physics A, Question 4

Gameboard:

STEM SMART Double Maths 39 - Moments, Dynamics & Circular Motion

<u>Home</u> <u>Gameboard</u>

Maths

Moments 1i

Moments 1i

Figure 1: A uniform rod AB of mass m resting in a vertical plane with A resting on rough horizontal ground.

A uniform rod AB of mass m and length 6a rests in a vertical plane with A on rough horizontal ground. A particle of mass km, where k is a constant, is attached to the rod at B. The rod makes an angle of 60° with the horizontal and is supported by a small smooth peg P. The distance AP is 4a.

Part A Magnitude of force

Calculate, in terms of m, g and k, the magnitude of the force exerted by the peg on the rod.

The following symbols may be useful: R, g, k, m

Part B Greatest value of k

The coefficient of friction between the rod and the ground is $\frac{1}{\sqrt{3}}$.

Find the greatest value of k for which the rod remains in equilibrium.

Used with permission from UCLES, A Level, June 2017, OCR M2, Question 3

Gameboard:

STEM SMART Double Maths 39 - Moments, Dynamics & Circular Motion

<u>Home</u> <u>Gameboard</u>

Maths

Moments 2i

Moments 2i

Figure 1: A uniform rod PQ resting against a rough vertical wall at P and held in a horizontal position, perpendicular to the wall, by a light inextensible string at Q.

A uniform rod PQ has weight $18\,\mathrm{N}$ and length $20\,\mathrm{cm}$. The end P rests against a rough vertical wall. A particle of weight $3\,\mathrm{N}$ is attached to the rod at a point $6\,\mathrm{cm}$ from P. The rod is held in a horizontal position, perpendicular to the wall, by a light inextensible string attached to the rod at Q and to a point R on the wall vertically above P, as shown in the diagram. The string is inclined at an angle θ to the horizontal, where $\sin\theta=\frac{3}{5}$. The system is in limiting equilibrium.

Part A Tension in the string

Find the tension in the string to 3 significant figures.

Part B Magnitude of the force

Find the magnitude of the force exerted by the wall on the rod to 3 significant figures.

Part C Coefficient of friction

Find the coefficient of friction between the wall and the rod. Give your answer to 3 significant figures.

Used with permission from UCLES, A Level, June 2014, OCR M2, Question 4

Gameboard:

STEM SMART Double Maths 39 - Moments, Dynamics & Circular Motion

<u>Home</u>

<u>Gameboard</u>

Maths Advanced Systems 1ii

Advanced Systems 1ii

Figure 1: Two particles P and Q attached to opposite ends of a light inextensible string.

Two particles P and Q are attached to opposite ends of a light inextensible string which passes over a small smooth pulley at the top of a rough plane inclined at 30° to the horizontal. P has mass $0.2\,\mathrm{kg}$ and is held at rest on the plane. Q has mass $0.2\,\mathrm{kg}$ and hangs freely. The string is taut and the coefficient of friction between P and the plane is 0.4. The particle P is released.

Part A Tension before

Find the tension in the string ${\bf before}\ {\sf P}$ is released correct to 3 significant figures.

Part B Tension after

Find the tension in the string **after** P is released correct to 3 significant figures.

Part C Speed before

Q strikes the floor and remains at rest. P continues to move up the plane for a further distance of $0.8\,\mathrm{m}$ before it comes to rest. P does not reach the pulley.

Find the speed of the particles immediately before Q strikes the floor. Give your answer to 3 significant figures.

Part D Contact force

Calculate the magnitude of the contact force exerted on P by the plane while P is in motion. Give your answer to 3 significant figures.

Adapted with permission from UCLES A Level, June 2016, Paper 4728, Question 6.

Gameboard:

STEM SMART Double Maths 39 - Moments, Dynamics & Circular Motion

<u>Home</u>

<u>Gameboard</u>

Maths

Advanced Systems 3i

Advanced Systems 3i

Figure 1: Particles P and Q connected by a light inextensible spring passing over a pulley.

AB and BC are lines of greatest slope on a fixed triangular prism, and M is the mid-point of BC. AB and BC are inclined at 30° to the horizontal. The surface of the prism is smooth between A and B, and between B and M. Between M and C the surface of the prism is rough. A small smooth pulley is fixed to the prism at B. A light inextensible string passes over the pulley. Particle P of mass $0.3\,\mathrm{kg}$ is fixed to one end of the string, and is placed at A. Particle Q of mass $0.4\,\mathrm{kg}$ is fixed to the other end of the string and is placed next to the pulley on BC. The particles are released from rest with the string taut. P begins to move towards the pulley, and Q begins to move towards M.

Part A Initial acceleration

Find the initial acceleration of the particles.

Part B Tension in string

Calculate the tension in the string to 3 significant figures.

Part C Speed of particles

The particle Q reaches M 1.8 s after being released from rest.

Find the speed of the particles when Q reaches M to 3 significant figures.

Part D Deceleration of particles

After Q passes through M, the string remains taut and the particles decelerate uniformly. Q comes to rest between M and C $1.4\,\mathrm{s}$ after passing through M.

Find the deceleration of the particles while Q is moving from M towards C.

Part E Tension in string

By considering the motion of P, find the tension in the string while Q is moving from M towards C. Give your answer to 2 significant figures.

Part F Magnitude of frictional force

Calculate the magnitude of the frictional force which acts on Q while it is moving from M towards C. Give your answer correct to 3 significant figures.

Used with permission from UCLES, A Level, June 2015, OCR M1, Question 7

Gameboard:

STEM SMART Double Maths 39 - Moments, Dynamics & Circular Motion

<u>Home</u> <u>Gameboard</u> **Physics** Mechanics Circular Motion Banked Tracks for Turning 2

Banked Tracks for Turning 2

Linking Concepts in Pre-Uni Physics 17.2

A motorbike of mass	160 kg moves in a	circular path of i	radius 120 m at a s	peed of $15\mathrm{ms^{-1}}$
A IIIOlololike ol IIIass	TOO ME HIOVOS III O	ı Girbulai palif bi i	iauius 140 III at a s	

A motorbike of mass $160\mathrm{kg}$ moves in a circular path of radius $120\mathrm{m}$ at a speed of $15\mathrm{ms^{-1}}$.
Part A Resultant centripetal force
What is the resultant <u>centripetal</u> force on the motorbike?
Part B Centripetal force as a fraction of weight
Calculate the <u>centripetal</u> force as a fraction of the weight of the bike.

Angle of the track Part C

If the motor bike is driven along the slope of a <u>smooth</u>, banked circular track, what is the angle of the track to the horizontal that would provide this centripetal force?

Gameboard:

STEM SMART Double Maths 39 - Moments, Dynamics & **Circular Motion**

<u>Home</u> <u>Gameboard</u> Physics Mechanics Circular Motion Conical Pendulum 6

Conical Pendulum 6

A Level

Linking Concepts in Pre-Uni Physics 18.6

A conical pendulum on Earth produces a period of $0.34\,\mathrm{s}$ for a 30° semi-angle of the cone.

When the same pendulum is used on the Moon where $g=1.6\,\mathrm{m\,s^{-2}}$, what would be the period for double the semi-angle?

Gameboard:

<u>STEM SMART Double Maths 39 - Moments, Dynamics & Circular Motion</u>

<u>Home</u> <u>Gameboard</u> Physics Mechanics Circular Motion Vertical Circles 7

Vertical Circles 7

Linking Concepts in Pre-Uni Physics 19.7

An $850\,\mathrm{g}$ radio-controlled car is driven in circles around the inside of a large (empty) pipe with a radius of $90\,\mathrm{cm}$. It travels at a steady $4.0\,\mathrm{m\,s^{-1}}$.

Part A Fast enough not to fall off?
Is the car going quickly enough not to fall off the pipe's surface?
○ No
Yes, more than quickly enough
Yes, but only just
Part B Normal reaction at top
Calculate the normal reaction as the car passes the top.
Part C Normal reaction at bottom
Calculate the normal reaction as the car passes the bottom.

Gameboard:

STEM SMART Double Maths 39 - Moments, Dynamics & Circular Motion

All materials on this site are licensed under the ${\color{red} \underline{\textbf{Creative Commons license}}},$ unless stated otherwise.

Home Gameboard Physics Mechanics Circular Motion Rising Hoop

Rising Hoop

Two beads, each of mass m, are threaded on, and positioned at the top of, a <u>frictionless</u> hoop of mass M and radius R, which stands vertically on the ground. The beads are released and slide down opposite sides of the hoop.

What is the smallest value of $\frac{m}{M}$ for which the hoop will rise up off the ground at some time during the motion? Please answer to 3 s.f.

Harvard Question of the Week