1 Wykorzystane wzory

Niepewność zmierzonego prądu (Metex M-3800, AC, zakres 20 A)

$$u(I) = 2\% \ rdg + 5 \ dgt \tag{1}$$

Niepewność zmierzonego napięcia (Metex M-3850, DC, zakres 40 V)

$$u(U) = 0.3\% \ rdg + 1 \ dgt$$
 (2)

Okres drgań wahadła

$$T = \frac{t_n}{n} \tag{3}$$

Niepewność wyznaczonego okresu drgań wahadła

$$u(T) = \frac{\sqrt{\frac{\Delta_{obserwatora}^2}{3} + \frac{\Delta_{stopera}^2}{3}}}{n} \tag{4}$$

Częstość własna drgań wahadła

$$\omega = \frac{2 \cdot \pi}{T} \tag{5}$$

Niepewność częstości własnej drgań wahadła

$$u_C(\omega) = \sqrt{(\frac{\partial \omega}{\partial T})^2 \cdot u^2(T)} = \frac{2 \cdot \pi}{T} \cdot u(T)$$
(6)

Logarytmiczny dekrement tłumienia

$$\Lambda = ln(\frac{A_n}{A_{n+1}}) \tag{7}$$

Niepewność wyznaczonego logarytmicznego dekrementu tłumienia

$$u_C(\Lambda) = \sqrt{\left(\frac{\partial \Lambda}{\partial A_n}\right)^2 \cdot u^2(A_n) + \left(\frac{\partial \Lambda}{\partial A_{n+1}}\right)^2 \cdot u^2(A_{n+1})} = \sqrt{\frac{u^2(A_n)}{A_n^2} + \frac{u^2(A_{n+1})}{A_{n+1}^2}}$$
(8)

Dobroć układu

$$Q = \frac{\omega_r}{\Delta\omega} \tag{9}$$

Niepewność wyznaczonej dobroci układu

$$u_C(Q) = \sqrt{\frac{\partial Q}{\partial \omega_r} \cdot u^2(\omega_r) + \frac{\partial Q}{\partial \Delta \omega} \cdot u^2(\Delta \omega)} = \sqrt{\frac{u^2(\omega_r)}{(\Delta \omega)^2} + \frac{\omega_r^2}{(\Delta \omega)^4} \cdot u^2(\Delta \omega)}$$
(10)

2 Przykładowe obliczenia

Niepewność zmierzonego prądu (Metex M-3800, AC, zakres 20 A)

$$u(I) = 2\% \cdot 0.46 + 5 \cdot 0.01 = 0.06$$

Niepewność zmierzonego napięcia (Metex M-3850, DC, zakres 40 V)

$$u(U) = 0.3\% \cdot 1.985 + 1 \cdot 0.001 = 0.007$$

Okres drgań wahadła

$$T = \frac{19.31}{10} = 1.931 [s]$$

Niepewność wyznaczonego okresu drgań wahadła

$$u(T) = \frac{\sqrt{\frac{(0.2)^2}{3} + \frac{(0.01)^2}{3}}}{10} = 0.012 [s]$$

Częstość własna drgań wahadła

$$\omega = \frac{2 \cdot \pi}{1.931} = 3.25 \left[\frac{rad}{s} \right]$$

Niepewność wyznaczonej częstości własnej drgań wahadła

$$u_C(\omega) = \frac{2 \cdot \pi}{1.931} \cdot 0.012 = 0.04 \left[\frac{rad}{s} \right]$$

Logarytmiczny dekrement tłumienia

$$\Lambda = ln(\frac{7.8}{7}) = 0.108$$

Niepewność wyznaczonego logarytmicznego dekrementu tłumienia

$$u_C(\Lambda) = \sqrt{\frac{(0.058)^2}{7.8} + \frac{(0.058)^2}{7}} = 0.012$$

Dobroć układu

$$Q = \frac{3.3}{0.46} = 7.17$$

Niepewność wyznaczonej dobroci układu

$$u_C(Q) = \sqrt{\frac{(0.1)^2}{(0.46)^2} + \frac{(3.3)^2}{(0.46)^4} \cdot (0.025)^2} = 0.45$$

3 Wyniki pomiarów i opracowanie

Tablica 1: Okres drgań oraz częstość własna drgań wahadła przy wychyleniu początkowym α_0

$\alpha_0 [dz]$	$t_{10} [s]$	T[s]	u(T)[s]	$\omega \left[\frac{rad}{s}\right]$	$u_C(\omega) \left[\frac{rad}{s}\right]$
2	19.31	1.931	0.012	3.25	0.04
6	19.41	1.941	0.012	3.237	0.039
10	19.34	1.934	0.012	3.249	0.039

Tablica 2: Ilość okresów, amplituda, czas oraz logarytmiczny dekrement tłumienia przy $\alpha_0=8$ [dz], dla pomiarów bez prądu hamującego

prądu namującego							
n	A [dz]	u(A) [dz]	t[s]	u(t) [s]	Λ	$u_C(\Lambda)$	
1	7.800	0.058	1.71	0.12	0.108	0.012	
6	7.000	0.058	11.63	0.12	0.121	0.013	
12	6.200	0.058	23.30	0.12	0.138	0.015	
18	5.400	0.058	34.84	0.12	0.118	0.017	
24	4.800	0.058	46.46	0.12	0.087	0.018	
30	4.400	0.058	58.10	0.12	0.147	0.021	
36	3.800	0.058	69.61	0.12	0.204	0.025	
42	3.100	0.058	81.37	0.12	0.176	0.029	
48	2.600	0.058	92.88	0.12	0.167	0.035	
54	2.200	0.058	104.52	0.12	0.10	0.04	
60	2.000	0.058	114.27	0.12	0.357	0.051	
66	1.400	0.058	127.68	0.12	0.154	0.064	
72	1.200	0.058	139.00	0.12	0.182	0.076	
78	1.000	0.058	151.20	0.12	-	-	
84	0.200	0.058	162.20	0.12	-	-	
85	0.000	0.058	163.70	0.12	-	-	

Uśredniona wartość logarytmicznego dekrementu tłumienia:

$$\bar{\Lambda}=0.158\pm0.011$$

Rysunek 2: Wykres funkcji A = f(t) dla pomiarów przy prądzie hamującym I $_1$ = (0.46 \pm 0.06) A

Tablica 3: Ilość okresów, amplituda, czas oraz logarytmiczny dekrement tłumienia przy $\alpha_0=8$ [dz] i prądzie hamującym I $_1=(0.46\pm0.06)$ A

1	$111_1 = (0.40 \pm 0.00) A$								
n	A [dz]	u(A) [dz]	t[s]	u(t) [s]	Λ	$u_C(\Lambda)$			
1	6.200	0.058	2.09	0.12	0.298	0.016			
2	4.600	0.058	3.93	0.12	0.302	0.022			
3	3.400	0.058	5.83	0.12	0.268	0.028			
4	2.600	0.058	7.90	0.12	0.262	0.037			
5	2.000	0.058	9.84	0.12	0.357	0.051			
6	1.400	0.058	11.54	0.12	0.560	0.084			
7	0.800	0.058	13.45	0.12	0.29	0.13			
8	0.600	0.058	15.40	0.12	0.41	0.18			
9	0.400	0.058	17.17	0.12	0.29	0.25			
10	0.300	0.058	19.35	0.12	-	-			
11	0.100	0.058	21.00	0.12	-	-			
12	0.000	0.058	24.05	0.12	-	-			

Uśredniona wartość logarytmicznego dekrementu tłumienia:

$$\bar{\Lambda}=0.34\,\pm\,0.04$$

Rysunek 3: Wykres funkcji A = f(t) dla pomiarów przy prądzie hamującym I $_2$ = (0.400 \pm 0.058) A

Tablica 4: Ilość okresów, amplituda, czas oraz logarytmiczny dekrement tłumienia przy $\alpha_0=8$ [dz] i prądzie hamującym I $_2=(0.400\pm0.058)$ A

2	(333	\pm 0.000) $^{\prime\prime}$				
n	A [dz]	u(A) [dz]	t[s]	u(t) $[s]$	Λ	$u_C(\Lambda)$
1	6.600	0.058	1.96	0.12	0.238	0.015
2	5.200	0.058	3.84	0.12	0.214	0.018
3	4.200	0.058	5.81	0.12	0.211	0.022
4	3.400	0.058	7.79	0.12	0.268	0.029
5	2.600	0.058	9.72	0.12	0.262	0.037
6	2.000	0.058	11.54	0.12	0.357	0.051
7	1.400	0.058	13.48	0.12	0.154	0.064
8	1.200	0.058	15.39	0.12	0.405	0.088
9	0.800	0.058	17.33	0.12	0.29	0.13
10	0.600	0.058	19.18	0.12	0.41	0.18
11	0.400	0.058	21.06	0.12	0.29	0.25
12	0.300	0.058	22.99	0.12	0.41	0.35
13	0.200	0.058	24.82	0.12	-	-
14	0.100	0.058	26.79	0.12	-	-
15	0.000	0.058	28.62	0.12	-	-

Uśredniona wartość logarytmicznego dekrementu tłumienia:

$$\bar{\Lambda}=0.29\,\pm\,0.15$$

Rysunek 4: Wykres funkcji $\omega=f(U)$ i przybliżenie najlepszą prostą dla pomiarów przy prądzie hamującym I = (0.400 ± 0.058) A

Tablica 5: Ilość obrotów silniczka, napięcie zasilające, czas obrotów, okres, częstość silniczka przy prądzie hamującym I = (0.400 ± 0.058) A

	10.100 ± 0.000) / 1									
n	U[V]	u(U) [V]	t[s]	u(t)[s]	T[s]	u(T)[s]	$\omega \left[\frac{rad}{s} \right]$	$u_C(\omega) \left[\frac{rad}{s}\right]$		
5	1.985	0.007	36.23	0.12	7.246	0.024	0.867	0.021		
5	4.020	0.014	16.99	0.12	3.398	0.024	1.849	0.045		
5	5.870	0.019	11.41	0.12	2.282	0.024	2.753	0.067		
5	8.100	0.026	8.25	0.12	1.650	0.024	3.808	0.092		
10	9.990	0.031	13.40	0.12	1.340	0.012	4.689	0.057		
10	12.140	0.038	11.02	0.12	1.102	0.012	5.702	0.069		
10	13.900	0.043	9.60	0.12	0.960	0.012	6.545	0.079		
10	15.940	0.049	7.57	0.12	0.757	0.012	8.3	0.1		
10	17.990	0.055	7.40	0.12	0.740	0.012	8.49	0.11		
10	19.980	0.061	6.67	0.12	0.667	0.012	9.42	0.12		

Rysunek 5: Wykres funkcji $\omega=f(U)$ i przybliżenie najlepszą prostą dla pomiarów przy prądzie hamującym I = (0.450 ± 0.059) A

Tablica 6: Ilość obrotów silniczka, napięcie zasilające, czas obrotów, okres, częstość silniczka przy prądzie hamującym I = (0.450 ± 0.059) A

n	U[V]	u(U) $[V]$	t[s]	u(t) [s]	T[s]	u(T)[s]	$\omega \left[\frac{rad}{s} \right]$	$u_C(\omega) \left[\frac{rad}{s}\right]$
5	2.025	0.007	36.80	0.12	7.360	0.024	0.854	0.021
5	3.920	0.013	17.46	0.12	3.492	0.024	1.799	0.044
5	6.140	0.020	11.06	0.12	2.212	0.024	2.840	0.069
5	8.150	0.026	8.25	0.12	1.650	0.024	3.808	0.092
5	10.010	0.031	6.63	0.12	1.326	0.024	4.74	0.12
10	12.080	0.037	11.05	0.12	1.105	0.012	5.686	0.069
10	13.970	0.043	9.69	0.12	0.969	0.012	6.484	0.078
10	15.980	0.049	8.42	0.12	0.842	0.012	7.46	0.09
10	18.150	0.056	7.44	0.12	0.744	0.012	8.45	0.11
10	20.180	0.062	6.64	0.12	0.664	0.012	9.46	0.12

Rysunek 6: Wykres funkcji $\omega=f(U)$ i przybliżenie najlepszą prostą dla pomiarów przy prądzie hamującym I = (0.50 ± 0.06) A

Tablica 7: Ilość obrotów silniczka, napięcie zasilające, czas obrotów, okres, częstość silniczka przy prądzie hamującym I = (0.50 ± 0.06) A

n	U[V]	u(U) $[V]$	t [s]	u(t) [s]	T[s]	u(T)[s]	$\omega\left[\frac{rad}{s}\right]$	$u_C(\omega) \left[\frac{rad}{s}\right]$
5	1.963	0.007	38.60	0.12	7.720	0.024	0.81	0.02
5	3.980	0.013	17.41	0.12	3.482	0.024	1.804	0.044
5	5.960	0.019	11.40	0.12	2.280	0.024	2.756	0.067
5	7.940	0.025	8.49	0.12	1.698	0.024	3.700	0.089
5	9.880	0.031	6.81	0.12	1.362	0.024	4.61	0.12
10	12.110	0.037	11.13	0.12	1.113	0.012	5.645	0.068
10	14.360	0.044	9.34	0.12	0.934	0.012	6.727	0.081
10	15.990	0.049	8.37	0.12	0.837	0.012	7.507	0.091
10	17.900	0.055	7.52	0.12	0.752	0.012	8.36	0.11
10	20.270	0.062	6.60	0.12	0.660	0.012	9.52	0.12

Rysunek 7: Wykresy funkcji $\omega = f(U)$ zestawione razem dla trzech wartości prądu hamującego

Tablica 8: Napięcie zasilające i amplituda drgań przy prądzie hamującym I = (0.320 \pm 0.057) A

U[V]	u(U) $[V]$	A [dz]	u(A) [dz]
2.1630	0.0075	0.400	0.058
3.371	0.012	0.400	0.058
4.020	0.014	0.600	0.058
5.200	0.017	0.900	0.058
5.980	0.019	1.400	0.058
6.620	0.021	4.200	0.058
6.780	0.022	6.400	0.058
6.890	0.022	9.200	0.058
7.000	0.022	9.700	0.058
7.140	0.023	5.500	0.058
7.610	0.024	2.000	0.058
8.550	0.027	0.800	0.058
9.030	0.029	0.500	0.058
10.310	0.032	0.200	0.058
11.920	0.037	0.100	0.058
12.690	0.040	0.050	0.058

Tablica 9: Napięcie zasilające i amplituda drgań przy prądzie hamującym I = (0.270 \pm 0.056) A

U[V]	u(U) V	A [dz]	u(A) [dz]
2.5690	0.0088	0.200	0.058
3.161	0.011	0.200	0.058
4.030	0.014	0.600	0.058
5.190	0.017	0.800	0.058
6.330	0.020	2.000	0.058
6.440	0.021	3.100	0.058
6.590	0.021	4.800	0.058
6.780	0.022	8.800	0.058
6.900	0.022	12.000	0.058
6.950	0.022	12.800	0.058
7.040	0.023	13.000	0.058
7.210	0.023	6.400	0.058
7.350	0.024	3.800	0.058
7.540	0.024	2.600	0.058
8.330	0.026	1.000	0.058
9.290	0.029	0.600	0.058
10.080	0.032	0.200	0.058
10.850	0.034	0.100	0.058

Tablica 10: Napięcie zasilające i amplituda drgań przy prądzie hamującym I = (0.210 \pm 0.055) A

U[V]	u(U) [V]	A [dz]	u(A) [dz]
2.6180	0.0089	0.300	0.058
3.498	0.012	0.400	0.058
4.130	0.014	0.600	0.058
4.950	0.016	0.800	0.058
5.730	0.019	1.000	0.058
6.600	0.021	4.000	0.058
6.750	0.022	8.400	0.058
6.900	0.022	15.000	0.058
6.950	0.022	17.000	0.058
7.000	0.022	18.800	0.058
7.050	0.023	19.200	0.058
7.190	0.023	19.800	0.058
7.370	0.024	20.000	0.058
7.510	0.024	20.000	0.058
7.650	0.024	5.000	0.058
8.240	0.026	1.400	0.058
8.860	0.028	1.000	0.058
9.250	0.029	0.600	0.058
10.380	0.033	0.200	0.058
11.160	0.035	0.100	0.058

Rysunek 8: Wykresy funkcji A = f(U) zestawione razem dla trzech wartości prądu hamowania Prąd hamowania I = 0.21 A

Największa amplituda występuje dla najmniejszego prądu hamowania, jednak występuje dla tej samej częstości - niezależnie od prądu.

Tablica 11: Prąd hamujący, częstość rezonansowa, szerokość krzywej w połowie wysokości, dobroć układu

I[A]	u(I)[A]	$\omega_r \ [rad/s]$	$u(\omega_r) [rad/s]$	$\Delta\omega$	$u(\Delta\omega)$	Q	$u_C(Q)$
0.210	0.055	3.3	0.1	0.460	0.025	7.17	0.45
0.270	0.056	3.3	0.1	0.520	0.025	6.35	0.37
0.320	0.057	3.5	0.1	0.780	0.025	4.5	0.2

4 Wnioski

- Wyznaczone częstości własne dla różnych wychyleń początkowych są zbieżne, można więc wnioskować brak zależności częstości własnej od wartości wychylenia początkowego.
- Na podstawie samych wykresów można zauważyć wpływ prądu hamującego na czas ustania oscylacji im większy prąd, tym szybciej drgania wygasają, co potwierdzają dalsze obliczenia.
- ullet Wartość logarytmicznego dekrementu tłumienia układu $\Lambda_{swobodny}=0.158\pm0.011$
- ullet Wartość logarytmicznego dekrementu tłumienia układu $\Lambda_{I_1}=0.34\pm0.04$, przy prądzie hamującym I $_1=(0.46\pm0.06)$ A
- ullet Wartość logarytmicznego dekrementu tłumienia układu $\Lambda_{I_2}=0.29\pm0.15$, przy prądzie hamującym I $_2=(0.400\pm0.058)$ A
- Na podstawie rysunków 4 6 stwierdzono, że silniczek ma liniową charakterystykę.
- Na podstawie rysunku 7 stwierdzono, że częstość silniczka nie zależy od prądu hamowania, ponieważ dla trzech wartości prądów hamowania częstości przyjmują taką samą wartość dla tych samych wartości napięcia zasilającego.
- Cechowanie silniczka wynosi $\omega(U)=0.4705\cdot U$ 0.0462 jest to wartość przybliżona na podstawie trzech serii pomiarów.

- Układ, niezależnie od prądu hamującego, wpada w rezonans dla częstości rezonansowej około $\omega_{rez}=3.3~\frac{rad}{s}$ (odczyt z rys. 5).
- Wyniki pomiarów zaprezentowane na rys. 8 przybliżone zostały krzywymi dla lepszego zobrazowania oczekiwanych krzywych dzwonowych.
- Częstość rezonansowa oraz szerokość dzwonu odczytane zostały po zagęszczeniu siatki i znacznym przybliżeniu rysunków 5 oraz 8.
- \bullet Dobroć układu przy prądzie hamującym I = (0.320 \pm 0.057) A, wynosi Q = 4.5 \pm 0.2.
- ullet Dobroć układu przy prądzie hamującym I = (0.270 \pm 0.056) A, wynosi Q = 6.35 \pm 0.37.
- ullet Dobroć układu przy prądzie hamującym I = (0.210 \pm 0.055) A, wynosi Q = 7.17 \pm 0.45.