Measuring Public Opinion on Russia-Ukraine War Through Analysis of Tweets By RUUK Research Group

Avish Parmar, Dukyoung Eom, Woohyung Lee, Yejin Lee

INTRODUCTION

Task and motivation

 Conduct analysis on Russia-Ukraine war tweet datasets to measure the public opinion and predict the public response to the war.

- Our analysis is crucial as it reveals the impact of the war beyond the conflict zone.

Why should one care?

- Diplomatic conflicts such as the war indirectly have an impact on an individual's

What is our goal?

- Identify a rapid increase in negative sentiments and motivate nations to seek diplomatic solutions
- Contributing to the SDG of 'Peace, Justice, and Strong Institutions'.

Jared, H. (2023, January 12). Will the Russia-ukraine war last forever? . The Wei https://thewell.unc.edu/2023/01/13/will-the-russia-ukraine-war-last-forever

Why were big data frameworks and analytics necessary?

- Due to the overwhelming number of tweets, big data analysis is required.
- It helped filter out irrelevant tweets, ensuring accurate analysis and relevant findings.

BACKGROUND

What methods or ideas have you built on?

- We drew interest from the study titled: "Russia-Ukraine War: Modeling and Clustering the Sentiments Trends of Various Countries" which conducted sentiment analysis on the Russia-Ukraine tweet dataset to better understand the public sentiment by country in response to the war.
- Our project builds on this study by more efficiently gauging the public sentiment associated with the war by using a dataset spanning from the start of the war until April 30, 2023.
- We will use BERT for Sentiment Analysis and LDA for Topic Modeling.

MAJOR EVENTS OF THE UKRAINE-RUSSIA WAR

References

1. Batterywala, Alifiya. "Ukraine vs Russian Topic Modeling." Kaggle,

14 May 2023.

- www.kaggle.com/code/alifiyabatterywala/ukraine-vs-russian-topic-modeling. Bwandowando. "Ukraine-Russian Crisis Twitter Dataset (1.2 M Rows)." Kaggle,
- www.kaggle.com/datasets/bwandowando/ukraine-russian-crisis-twitter-dataset-1-2-m-rows. Brown, Eva & Schwartz, Lindsey & Huang, Richard & Weber, Nicholas. (2023). Soft-Search: Two Datasets to Study the Identification and Production of Research Software. 10.48550/arXiv.2302.14177.
- Liew, You Sheng. "Geolocation." Kaggle, www.kaggle.com/datasets/liewyousheng/geolocation?select=countries.csv. Odeyemi, G. "Twitter Data Mining - Measuring Users' Influence." Towards Data Science, Medium, 27 July 2020,
- towardsdatascience.com/twitter-data-mining-measuring-users-influence-ef76c9badfc0. Schmid, Phil. "K-Fold as Cross-Validation with a BERT Text Classification Example." Phil Schmid's Blog,
- www.philschmid.de/k-fold-as-cross-validation-with-a-bert-text-classification-example. 7. Socher, Richard, et al. "Recursive Deep Models for Semantic Compositionality over a Sentiment Treebank." ACL Anthology,
- 9. "Main Classes Pipelines." Hugging Face, huggingface.co/docs/transformers/v4.29.1/en/main_classes/pipelines#transformers.TextClassificationPipeline.

8. "DistilBERT Base Uncased Finetuned SST-2 English." Hugging Face, huggingface.co/distilbert-base-uncased-finetuned-sst-2-english. Accessed

- 10. Vahdat-Nejad, H., Akbari, M. G., Salmani, F., Azizi, F., & Nili-Sani, H.-R. (2023, January 2). Russia-ukraine war: Modeling and clustering the sentiments trends of various countries. [2301.00604] Russia-Ukraine war: Modeling and Clustering the Sentiments Trends of Various Countries. https://arxiv.org/ftp/arxiv/papers/2301/2301.00604.pdf
- 11. Yasser, H. "Twitter Tweets Sentiment Dataset." Kaggle. www.kaggle.com/datasets/yasserh/twitter-tweets-sentiment-dataset?resource=download.

DATA

Ukraine Conflict Twitter Dataset

- About 67M raw tweets that reaches 40GB regarding the ongoing Ukraine conflict - Offers well-defined labels from tweets. (language, hashtags, retweet counts etc..)

	username	location	text	hashtags		retweetcount	language	favorite_count	is_retweet
0	NewAmericanMag	Appleton, WI	As China gears up for war, the	[{'text': 'china', 'indices':		0	en	2	False
1	BlondellGammid1	Ukraine	uaUkraine War Footage ♠ ♠ ♠ \n\n ■	[{'text': 'UkraineWar', 'indic		0	en	5	False
				***			449	***	
133458	Hkjhgc2	NaN	Russian missile strike in Ukra	[{"text": 'Canada', 'Indices":	110	0	en	0	False
133459	MnylNoomi	Marseille	A aid from the great Ukrainian	It'text': 'Ukraine', 'indices'		81	en	0	True

Geolocation Dataset

- Offers names and geographic coordinates of cities, states, countries all around the world.
- Utilized to identify more accurate location information from user-defined locations in tweets

	city_name	city_latitude	city_longitude	state_code	state_name	state_latitude	state_longitude	country_code	country_name	country_latitude	country_longitude
0	Ashkāsham	36.68333	71.53333	BDS	Badakhshan	36.734772	70.811995	AF	Afghanistan	33.0	65.0
1	Fayzabad	37.11654	70.58002	BDS	Badakhshan	35.734772	70.811995	AF	Afghanistan	33.0	65.0
		-		1	-22			112	2.2	1.0	
148064	Shurugwi District	-19.75000	30.16667	M	Midlands Province	-19.055201	29.603549	ZW	Zimbabwe	-20.0	30.0
148065	Zvishavane District	-20.30345	30.07514	MI	Midlands Province	-19.055201	29.603549	ZW	Zimbabwe	-20.0	30.0

Tweets Sentiment Dataset

- About 27000 observations of sentiments on tweets to compare the performance metrics of sentiment analysis
- Used for Hypothesis testing the transformer Model

sentiment	selected_text	text	textID	
neutral	I'd have responded, if I were going	I'd have responded, if I were going	cb774db0d1	0
negative	Sooo SAD	Sooo SAD I will miss you here in San Diego!!!	549e992a42	1
positive	But it was worth it ****.	But it was worth it ****.	ed167662a5	27479
neutral	All this flirting going on - The ATG smiles. Yay. ((hugs)	All this flirting going on - The ATG smiles. Yay. ((hugs))	6f7127d9d7	27480

4 Number of tweets from 2022 Mar - 2023 Apr June 2022 September 2022 Russian invasion started. Largest Russia's fierce invasion continued for 4 Ukraine launched a counteroffensive number of casualties in a month months; worst public order in ukraine and retook some region February 2023

US President Joe Biden made an

other country's presidents

4. 1st topic of each month; the most representative topic of the month

4 Sentiment Distribution across the glob

unannounced visit to Kyiv, followed by

Global efforts toward a diplomatic

solution to the war in Ukraine

Significant victory for Ukraine.

Russian forces withdrew from Kherson

to the eastern side of the Dnipro River.

METHODS

Project Pipeline

Preprocessings with PySpark

Output = set of topics

Each topic is a distribution over words

LLDA algorithm intuition

4 LDA output example

Each document is a mixture of corpus-wide topics

Each word is drawn from one of those topics

Document = monthly tweet data

Seeking Life's Bare (Genetic) Necessities

- Clean up texts (Lemmatize words and remove punctuations, stop words, emojis, urls etc..)
- Identify location from user-defined locations in tweet

Sentiment Analysis with BERT using PyTorch

Topic Analysis with Latent Dirichlet Allocation (LDA)

Topic = a cluster of words that frequently occur together in the corpus.

Goal = To understand how the public opinion is affected by events

- Determine validity of distilbert-base-uncased-finetuned-sst-2-english through hypothesis
- Run DistilBERT on pre-processed tweets and determine the sentiment of each tweet Group sentiments by country
- Generate line graph and heat map to visualize sentiment trend using the geolocation

	dataset							
	id	city	state	country	 popularity_score	reach_score	sentiment	sentiment_score
0	2849797.0	NaN	Jijel	Algeria	 2272.0	1133.0	NEGATIVE	0.995405
1	3304622.0	NaN	Djelfa	Algeria	 0.0	0.0	POSITIVE	0.574494
	***	***		***	 	***	***	
9789	2396858.0	Harare	Harare Province	Zimbabwe	 184.0	0.0	NEGATIVE	0.990031
9790	2687429.0	Bulawayo	Bulawayo Province	Zimbabwe	 675.0	0.0	POSITIVE	0.997248

- LDA Topic modeling discovers latent topics in text by analyzing the distribution of words

Topic proportions and

Top-30 Most Relevant Terms for Topic 1 (17.2% of toke

L Global Sentiment Distribution over time SECURIO L Sentiment distribution from random 500000 samples

↓ Hypothesis testing results

CONCLUSIONS

What insights did we draw?

Our analysis concluded that the majority of the world had a strong negative sentiment toward the Russia-Ukraine war and that policy-makers should take stricter actions to put an end to this conflict as soon as possible.

L Converting topic to wordcloud

L Sample document showing various topics