🎯 1. Əsas anlayışlar

1.1 Qərar Ağacları (Decision Trees)

- Tərif: Qərar ağacları, veriləri budaqlara ayıraraq təsnifat və ya reqressiya edən sadə amma güclü modellərdir.
- Mantig:
 - Hər düyündə (node) veriləri ən yaxşı ayıran xüsusiyyət seçilir.
 - Bu ayırma meyarı adətən Gini impurity və ya Entropy (təsnifat üçün), MSE (reqressiya üçün) olur.
 - Son yarpaq düyünlər (leaf nodes) proqnoz verir: təsnifatda sinif etiketi, reqressiyada isə orta dəyər.
- 📌 Problem: Qərar ağacları təkbaşına overfitting etməyə çox meyllidir. Yəni train setinə çox yaxşı uyğunlaşır amma test setində zəif performans göstərə bilər.

1.2 Ensemble Learning (Toplu Öyrənmə)

- Fikir: Tək bir güclü model əvəzinə, çoxlu zəif modelləri bir araya gətirərək daha yaxşı prognoz vermək.
- İki əsas yanaşma:
 - 1. Bagging (Bootstrap Aggregating)
 - 2. Boosting

Nümunə:

- Tək bir qərar ağacı səhv edə bilər.
- Amma yüzlərlə fərqli ağacı bir araya gətirib çoxluq səsi alsaq, toplu daha düzgün qərar verər.

1.3 Bagging (Bootstrap Aggregating)

- Bootstrap: Train verilənlərindən təkrar seçməli (sampling with replacement) kiçik alt nümunələr (bootstrap samples) yaradılır.
- Hər alt nümunə üzərində ayrıca bir model (məsələn, qərar ağacı) öyrədilir.
- Proqnoz zamanı:
 - Təsnifatda: çoxluğun səsi (majority voting)
 - Regressiyada: orta (averaging) götürülür.

1.4 Random Forest'in Fikri

Random Forest, **Bagging + Təsadüfi Xüsusiyyət Seçimi** birləşməsidir.

- Bagging sayəsində: Hər ağac fərqli bootstrap nümunəsi ilə öyrədilir.
- Təsadüfilik sayəsində: Hər düyündə ən yaxşı xüsusiyyəti seçərkən, bütün xüsusiyyətlərə deyil **təsadüfi seçilmiş bir alt çoxluğa** baxılır.
- Bunun sayəsində: Ağaclar bir-birindən asılı olmayaraq müxtəlif olur → ensemble daha güclü olur.

1.5 Random Forest'ın Məqsədi

- Tək qərar ağacı = yüksək varians
- Bagging ilə → varians azalır
- Təsadüfi xüsusiyyət seçimi ilə → ağaclar arasında korrelyasiya azalır
- Nəticə: Daha ümumi, güclü və balanslı bir model

1.6 Formula (Ensemble Proqnozu)

Təsnifat üçün:

$$\hat{y} = \text{mode}\{h_1(x), h_2(x), \dots, h_T(x)\}$$

Reqressiya üçün:

$$\hat{y} = rac{1}{T} \sum_{t=1}^T h_t(x)$$

Burada:

- $h_t(x)$ = t-ci qərar ağacının proqnozu
- $T = \ddot{u}$ umumi ağac sayı

In []:

2. Teorik Təməllər

Random Forest-ı dərindən başa düşmək üçün əvvəlcə onun həll etdiyi problemləri və arxasındakı nəzəri prinsipləri öyrənmək lazımdır.

2.1 Qərar Ağaclarının Zəif Tərəfləri

Qərar ağacları sadə və intuitiv modellərdir, amma bəzi ciddi çatışmazlıqları var:

• Overfitting:

- Ağac çox dərin böyüyəndə təlim setinə demək olar ki, tam uyğunlaşır.
- Nəticədə test setində zəif performans göstərir.

• Yüksək Varians:

- Kiçik dəyişikliklər verilənlərdə böyük fərqli ağacların yaranmasına səbəb olur.
- Bu, modelin sabitliyini azaldır.

• Həddindən artıq spesifik qaydalar:

- Tək bir ağac real həyatda mürəkkəb nümunələri düzgün ümumiləşdirə bilmir.
- 📌 Yəni qərar ağacları "çox öyrənən" amma "yaxşı ümumiləşdirə bilməyən" modellərdir.

2.2 Random Forest bu problemləri necə həll edir?

Random Forest gərar ağaclarının zəif tərəflərini "ensemble" yanaşması ilə yumşaldır:

• Overfitting-i azaldır:

 Tək bir ağacda overfitting ola bilər, amma çoxlu ağacın ortalaması/çoxluq səsi daha sabit nəticə verir.

• Variansı azaldır:

- Hər ağac fərqli bootstrap veriləri ilə qurulur → müxtəliflik yaranır.
- Bu müxtəliflik nəticələri sabitləşdirir.

• Ümumiləşdirməni yaxşılaşdırır:

- Fərqli ağacların qərarları birləşdirilir → daha balanslı model alınır.
- of Nəticə: Random Forest həm daha dəqiq, həm də sabit proqnoz verir.

2.3 Xüsusiyyət Seçimində Təsadüfilik (Feature Randomness)

Random Forest yalnız **bootstrap nümunələri** ilə kifayətlənmir, əlavə olaraq təsadüfilik də əlavə edir:

- Hər düyündə ən yaxşı xüsusiyyəti seçərkən bütün xüsusiyyətlər yox, təsadüfi seçilmiş bir alt çoxluq nəzərdən keçirilir.
- Bu yanaşma:
 - Ağaclar arasında korrelyasiyanı azaldır (yəni eyni xüsusiyyətlər üzərində galmırlar).

- Daha **müxtəlif** ağaclar yaranır.
- Ensemble nəticəsi daha güclü olur.
- Misal: Əgər datasetdə 100 xüsusiyyət varsa, hər düyündə məsələn cəmi 10-u nəzərə alınır.

2.4 Bootstrap Sampling Mantiqi

Bootstrap sampling Random Forest-ın əsas sütunlarından biridir.

- Train setinin ölçüsü N olsun.
- Bootstrap nümunəsi də yenə N elementdən ibarət olur, amma **təkrar seçməklə** (with replacement).
- Bu o deməkdir ki:
 - Bəzi nümunələr bir neçə dəfə daxil ola bilər.
 - Bəzi nümunələr isə heç seçilməyə bilər.

Bu xüsusiyyətin nəticəsi:

- Təxminən train setinin 63%-i hər bootstrap nümunəsində yer alır.
- Qalan təxminən 37%-i isə həmin ağacda istifadə olunmur. Bu "istifadə olunmayan verilənlər" Out-of-Bag (OOB) samples adlanır.
- OOB nümunələri modelin əlavə test dəsti kimi istifadə olunur → bu da daxili validasiya imkanı yaradır.

2.5 Teorik Gözlənti

- Tək bir qərar ağacının bias-ı aşağı, amma variansı yüksəkdir.
- Random Forest isə çoxlu ağacın ortalamasını götürdüyü üçün:
 - Bias bir qədər artır, amma bu, ciddi problem yaratmır.
 - Varians isə ciddi şəkildə azalır → model daha sabit olur.

Qısa xülasə:

Random Forest = Qərar Ağaclarının sadəliyi + Bagging-in sabitliyi + Təsadüfilikdən gələn müxtəliflik.

3. Random Forest'in Quruluşu

Random Forest bir neçə sadə addım üzərində qurulur. Bu addımların hər birini başa düşmək modeli anlamaqda çox vacibdir.

3.1 Ağacların Qurulması (Bootstrapping)

- Train setindən bootstrap nümunələri yaradılır.
- Hər bootstrap nümunəsi ilkin datasetin ölçüsünə bərabərdir, amma təkrar seçməklə formalaşdırılır.
- Hər bir bootstrap nümunəsi üzərində ayrıca bir qərar ağacı qurulur.

★ Nəticədə:

- Hər ağac fərqli verilər üzərində öyrədilir.
- Ağaclar arasında müxtəliflik artır.

3.2 Bölünmə Kriteriyaları (Splitting Criteria)

Qərar ağaclarında düyünlərdə budaqlanma (split) edərkən **ən yaxşı xüsusiyyəti** seçmək lazımdır.

Random Forest da bu prinsiplərdən istifadə edir:

- Təsnifat üçün:
 - Gini Index
 - Entropy (Information Gain)
- Regressiya üçün:
 - MSE (Mean Squared Error)

Məntiq:

- Hər bir xüsusiyyət yoxlanır.
- Ən çox "təmiz" ayırmanı verən xüsusiyyət seçilir.
- "Təmizlik" → siniflərin daha homogen olması deməkdir.

3.3 Hər Düyündə Təsadüfi Xüsusiyyət Seçimi (max_features)

Random Forest-ın əsas yeniliklərindən biri:

- Hər düyündə bütün xüsusiyyətlər yox, yalnız təsadüfi seçilmiş bir alt çoxluq nəzərdən keçirilir.
- Bu alt çoxluq max_features parametrinə görə təyin olunur.

Məsələn:

- Datasetdə 100 xüsusiyyət varsa,
- max_features = sqrt(100) = 10 seçilsə,

- Hər düyündə yalnız 10 təsadüfi xüsusiyyət yoxlanacaq.
- **6** Məqsəd:
- Ağacların çox bənzər olmasının qarşısını almaq.
- Daha çox müxtəliflik yaratmaq.

3.4 Final Proqnozun Əldə Edilməsi

Bütün ağaclar qurulduqdan sonra, yeni bir nümunə üçün proqnoz aşağıdakı kimi alınır:

- Təsnifat (Classification):
 - Hər ağac səs verir (sinif seçir).
 - On çox səs alan sinif **final proqnoz** olur.
 - Bu üsula majority voting (çoxluq səsi) deyilir.
- Reqressiya (Regression):
 - Hər ağac bir ədədi proqnoz verir.
 - Bütün proqnozların **ortalaması** final nəticə olur.
- ★ Formula şəklində:

Təsnifat üçün: $\hat{y} = \mathrm{mode}\{h_1(x), h_2(x), \ldots, h_T(x)\}$

Reqressiya üçün: $\hat{y} = rac{1}{T} \sum_{t=1}^T h_t(x)$

Burada:

- $h_t(x)$ = t-ci ağacın proqnozu
- T = ümumi ağac sayı

Xülasə:

- 1. Bootstrap nümunələri yaradılır.
- 2. Hər bootstrap nümunəsində qərar ağacı qurulur.
- 3. Hər düyündə təsadüfi xüsusiyyət dəsti yoxlanır.
- 4. Final proqnoz çoxluq səsi və ya orta götürülməklə hesablanır.

In []:

\$

🕽 4. Hiperparametrlər

Random Forest modellərində hiperparametrlər modelin mürəkkəbliyini, öyrənmə qabiliyyətini və ümumi performansını idarə edir.

Bu parametrlərin düzgün seçilməsi modelin **dəqiqliyinə**, **hesablama sürətinə** və **ümumiləşdirmə qabiliyyətinə** birbaşa təsir göstərir.

4.1 n_estimators (Ağac sayı)

- Tərif: Random Forest-da qurulan ağacların ümumi sayı.
- Təsiri:
 - Ağac sayı artdıqca model daha sabit olur.
 - Amma çox böyük olduqda hesablamalar yavaşlayır.
- Tipik seçimlər: 100, 200, 500, hətta 1000.
- ★ Qızıl qayda: çox ağac → daha dəqiq nəticə, amma daha uzun train müddəti.

4.2 max depth (Maksimum Dərinlik)

- Tərif: Hər bir ağacın böyüyə biləcəyi maksimum dərinlik.
- Təsiri:
 - Böyük dərinlik → ağac çox mürəkkəbləşir → **overfitting** riski.
 - Kiçik dərinlik → model sadələşir → **underfitting** ola bilər.
- Tipik seçim:
 - Adətən ya təyin olunmur (None → ağac tam böyüyür),
 - ya da dataset ölçüsünə görə məhdudlaşdırılır (məsələn 10, 20).

4.3 min_samples_split

- Tərif: Bir düyünün daha kiçik budaqlara bölünməsi üçün tələb olunan minimum nümunə sayı.
- Təsiri:
 - Kiçik dəyər → çox budaqlanma → yüksək mürəkkəblik.
 - Böyük dəyər → daha az budaqlanma → sadə model.
- **Tipik seçim:** Default = 2 (yəni ən azı 2 nümunə olanda bölünə bilər).

4.4 min_samples_leaf

- Tərif: Yarpaq düyündə olmalı olan minimum nümunə sayı.
- Təsiri:
 - Kiçik dəyər (məs. 1) → çox xırda yarpaqlar → overfitting.
 - Böyük dəyər → yarpaqlar ümumiləşmiş olur → daha sabit nəticə.
- Tipik seçimlər: 1, 5, 10.

4.5 max_features

- Tərif: Hər düyündə parçalanma zamanı baxılan maksimum xüsusiyyət sayı.
- Təsiri:
 - Kiçik dəyər → ağaclar daha müxtəlif olur.
 - Böyük dəyər → ağaclar daha bənzər olur.
- Tipik seçimlər:
 - sqrt → təsnifat üçün çox istifadə olunur.
 - log2 və ya sabit say da seçilə bilər.

4.6 bootstrap

- Tərif: Ağacların qurulması üçün bootstrap nümunələrinin istifadə olunub-olunmaması.
- Variantlar:
 - True (default) → bootstrap istifadə olunur.
 - False → bütün datasetdən istifadə olunur.
- 🖈 Əksər hallarda **True** daha yaxşı nəticə verir, çünki müxtəliflik artır.

4.7 random_state

- Tərif: Təsadüfilik üçün başlanğıc seed.
- Magsad:
 - Eyni nəticəni hər dəfə təkrarlamaq üçün istifadə olunur.
- * Agar reproducibility (takrarlana bilan natica) istanilirsa, bu dayar tayin olunmalıdır.

4.8 class_weight

- Tərif: Təsnifat problemlərində siniflərin çəkisini tənzimləyir.
- Məqsəd:
 - Disbalanced datasetlerde (meselen, 95% sinif A, 5% sinif B) balans yaratmaq.
- Variantlar:
 - balanced → çəkilər avtomatik olaraq siniflərin tezliyinə görə tənzimlənir.
 - Manual çəkilər də verilə bilər (məsələn, {0: 1, 1: 5}).

* Xülasə:

- n_estimators, max_depth, max_features modelin mürəkkəbliyini və sabitliyini idarə edir.
- min_samples_split, min_samples_leaf ağacların nə qədər incə detallar öyrənəcəyini təyin edir.
- bootstrap və random_state modeli necə quracağımızı müəyyən edir.
- class_weight isə disbalanced verilənlərdə çox vacibdir.

5. Performans Ölçüləri

Random Forest modelini qiymətləndirmək üçün müxtəlif performans ölçüləri istifadə olunur. Bunlar modelin **dəqiqliyini**, **təhlükəsizliyini** və **ümumiləşdirmə qabiliyyətini** obyektiv şəkildə yoxlamağa imkan verir.

5.1 Təsnifat üçün Əsas Ölçülər

Doğruluq (Accuracy)

• Tərif: Doğru proqnozların ümumi proqnozlara nisbəti.

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

• Sadə və intuitivdir, amma disbalanced datasetlərdə yanıldıcı ola bilər.

Precision (Dəqiqlik)

• **Tərif:** Modelin "pozitiv" dediyi nümunələrin nə qədərinin həqiqətən pozitiv olduğunu göstərir.

$$Precision = rac{TP}{TP + FP}$$

Sual: Modelin verdiyi pozitiv proqnozlara nə qədər güvənə bilərəm?

Recall (Həssaslıq, Sensitivity)

• Tərif: Həqiqi pozitivlərin nə qədərini model düzgün tapa bilir.

$$Recall = \frac{TP}{TP + FN}$$

• Sual: Həqiqətən pozitiv olanları model nə qədər tapa bilir?

F1-Score

• Tərif: Precision və Recall-un harmonik ortası.

$$F1 = 2 \cdot rac{Precision \cdot Recall}{Precision + Recall}$$

- Balanslı ölçü → həm dəqiqliyi, həm də həssaslığı nəzərə alır.
- 🖈 Əsasən disbalanced datasetlərdə Accuracy əvəzinə **F1-score** daha faydalıdır.

5.2 ROC - AUC Əyrisi

- ROC (Receiver Operating Characteristic) əyrisi:
 - X oxu: False Positive Rate (FPR)
 - Y oxu: True Positive Rate (TPR, yəni Recall)
- AUC (Area Under Curve):
 - ROC əyrisinin altında qalan sahə.
 - Modelin təsnifat gücünü ölçür.
- * AUC dəyəri:
 - 0.5 → təsadüfi seçim qədərdir.
 - 1.0 → ideal modeldir.

5.3 Reqressiya üçün Əsas Ölçülər

MSE (Mean Squared Error)

$$MSE = rac{1}{n}\sum_{i=1}^n (y_i - \hat{y}_i)^2$$

Outlierləri daha çox cəzalandırır.

RMSE (Root Mean Squared Error)

$$RMSE = \sqrt{MSE}$$

• Eyni vahiddə olduğundan interpretasiya asandır.

MAE (Mean Absolute Error)

$$MAE = rac{1}{n} \sum_{i=1}^n |y_i - \hat{y}_i|$$

• Səhvlərin ortalama böyüklüyünü ölçür, outlierləri MSE qədər şişirtmir.

R² (Determination Coefficient)

$$R^2 = 1 - rac{\sum (y_i - \hat{y}_i)^2}{\sum (y_i - \bar{y})^2}$$

- Modelin variasiyanı nə qədər açıqladığını göstərir.
- 1 → ideal model, 0 → heç nə açıqlamır.

5.4 Out-of-Bag (OOB) Error

Random Forest-a məxsus xüsusi qiymətləndirmə üsulu.

- Hər ağac bootstrap nümunəsi ilə qurulur.
- Bu nümunəyə daxil olmayan təxminən 37% verilər həmin ağac üçün OOB nümunələri adlanır.
- Model bu OOB nümunələri ilə test edilir.

★ Üstünlüklər:

- Əlavə cross-validation lazım olmadan **daxili doğrulama** imkanı verir.
- Vaxt və hesablama resurslarına qənaət edir.

* Xülasə:

- Təsnifatda → Accuracy, Precision, Recall, F1, ROC-AUC vacibdir.
- Reqressiyada → MSE, RMSE, MAE, R² istifadə olunur.
- Random Forest-ın özəlliyi → **OOB error** daxili qiymətləndirmə imkanıdır.

In		٠.
т	LJ	٠

6. Xüsusiyyət Önəmi (Feature Importance)

Random Forest yalnız güclü proqnozlar vermir, həm də hansı xüsusiyyətlərin daha vacib olduğunu öyrənməyə imkan yaradır.

Bu, xüsusilə model interpretasiyası və ölçülərin azaldılması üçün çox faydalıdır.

6.1 Gini Importance (Mean Decrease in Impurity – MDI)

- Tərif: Hər xüsusiyyətin, ağacın qurulması zamanı impurity (qarışıqlıq, qeyri-saflıq) azalmasına nə qədər töhfə verdiyini ölçür.
- Prinsip:
 - Hər dəfə bir xüsusiyyət bölünmədə istifadə olunanda, impurity azalır.
 - Bu azalmaların cəmi həmin xüsusiyyətin önəmini göstərir.
- Formul:

$$Importance(feature_j) = \sum_{split \in j} \Delta Impurity(split)$$

- Üstünlüklər: Hesablama çox sürətlidir.
- Məhdudiyyətlər:
 - Kategorik xüsusiyyətlər çox dəyərə malikdirsə, şişirdilə bilər.
 - Yalnız train setinə əsaslanır.

6.2 Permutation Importance (Mean Decrease in

Accuracy - MDA)

• **Tərif:** Bir xüsusiyyətin dəyərləri qarışdırıldıqda (permute edildikdə) modelin dəqiqliyinin nə qədər düşdüyünə baxılır.

• Prinsip:

- → Əgər bir xüsusiyyət vacibdirsə → qarışdırıldıqda model performansı ciddi şəkildə pisləşir.
- Əgər vacib deyilsə → qarışdırmaq demək olar heç nəyi dəyişmir.

• Üstünlüklər:

- Daha etibarlı, çünki təlim verilərindən deyil, **test verilərindən** istifadə olunur.
- Bütün model növlərinə tətbiq edilə bilər.

• Məhdudiyyətlər:

■ Hesablama MDI-yə görə daha yavaşdır (çoxlu permutasiya tələb edir).

6.3 Xüsusiyyət Önəmlərinin Şərhi və Vizuallaşdırılması

• Şərh:

- Yüksək dəyərli xüsusiyyətlər → modelin proqnozunda əsas rol oynayır.
- Aşağı dəyərli xüsusiyyətlər → çox az təsir göstərir, bəzən silinə bilər.

• Vizuallaşdırma üsulları:

- 1. Bar chart → ənənəvi üsul.
- 2. Horizontal barplot → xüsusilə çox dəyişən olduqda oxunması asandır.
- 3. SHAP və ya LIME kimi texnikalar → hər bir fərdi proqnoz üçün də interpretasiya imkanı yaradır.
- Adətən sklearn -də feature_importances_ atributu ilə MDI, permutation_importance funksiyası ilə isə MDA hesablamaq mümkündür.

Xülasə:

- MDI (Mean Decrease in Impurity): sürətli, amma bəzən yanıltıcı.
- MDA (Permutation Importance): daha etibarlı, amma yavaşdır.
- Vizualizasiyalar → xüsusiyyətlərin modeldəki rolunu anlamaq üçün çox vacibdir.

In []:	
---------	--

7. Üstünlüklər və Çatışmazlıqlar

Random Forest çox güclü və çevik bir alqoritmdir.

Amma hər alqoritm kimi, onun da həm üstünlükləri, həm də zəif tərəfləri var.

7.1 Üstünlüklər 🔽

1. Yüksək Doğruluq

- Çoxlu ağaclardan ibarət olduğuna görə tək bir gərar ağacına nisbətən daha dəgiq nəticələr verir.
- Səs çoxluğu (majority vote) və ya ortalama nəticə ilə səhvlər minimuma enir.

2. Overfitting-a Dayanıqlılıq

- Tək ağaclar tez-tez overfit olur.
- Lakin Random Forest → bootstrap nümunələri və xüsusiyyətlərin təsadüfi seçilməsi sayəsində variasiyanı azaldır və overfitting riskini xeyli aşağı salır.

3. Çox Yönlülük (Versatility)

- Həm təsnifat (classification), həm də reqressiya (regression) problemlərində istifadə edilə bilər.
- Çox ölçülü (high-dimensional) datasetlərdə yaxşı işləyir.
- Outlier-lara və əskik dəyərlərə nisbətən dayanıqlıdır.

4. Xüsusiyyət Önəmi (Feature Importance)

- Model bizə hansı dəyişənlərin daha vacib olduğunu göstərir.
- Bu xüsusiyyət, data analizi və interpretasiya üçün böyük üstünlükdür.

5. OOB Error İmkanı

Əlavə cross-validation etmədən daxili doğrulama imkanı verir.

7.2 Çatışmazlıqlar X

1. Şərhin Zəifliyi

- Tək bir ağac vizual olaraq asanlıqla izah edilə bilər.
- Amma yüzlərlə ağacdan ibarət Random Forest → "qara qutu" (black box) modelinə çevrilir.
- Hər bir qərarın necə verildiyini anlamaq çətindir.

2. Yavaş Train və Prognoz (Training/Prediction)

- Çoxlu ağac qurulduğu üçün training prosesi vaxt aparır.
- Xüsusilə böyük datasetlərdə və yüksək n_estimators dəyərlərində proqnoz da gec ola bilər.

3. Yüksək Yaddaş (Memory) İstifadəsi

- Onlarla və ya yüzlərlə ağac saxlanmalıdır.
- Bu, RAM istifadəsini artırır.
- Böyük verilənlər bazasında çox resurs tələb edə bilər.

4. Disbalanced Datasetlarda Problem

- Datasetdə sinif balanssızdırsa (məsələn, 95% class 0, 5% class 1), model çox vaxt dominant sinifi proqnozlaşdırır.
- Bunun üçün əlavə üsullar (SMOTE, class_weight) tətbiq edilməlidir.

* Xülasə:

- Random Forest yüksək doğruluq və overfitting-ə qarşı dayanıqlılıq təmin edən çox güclü ensemble metodudur.
- Amma çox böyük datasetlərdə hesablama baxımından effektiv deyil və interpretasiya baxımından çətinliklər yaradır.

🌕 8. İstifadə Sahələri

Random Forest həm təsnifat, həm də reqressiya problemlərində çox yönlü və güclü algoritmdir.

Onun tətbiq sahələri müxtəlifdir və həm biznes, həm də elmi sahələrdə istifadə olunur.

8.1 Classification Problems

Random Forest təsnifat üçün ideal seçimdir, xüsusilə böyük və mürəkkəb datasetlərdə.

Məsələn:

1. Fraud Detection (Fırıldaqçılığın aşkarlanması)

- Kredit kartı əməliyyatlarında şübhəli fəaliyyətləri tanımaq.
- Hər əməliyyat bir neçə xüsusiyyətlə təsnif edilir (məbləğ, vaxt, region, kart tarixi).

2. Tibb və Sağlamlıq Analizi

- Xəstəlik diaqnozu: xəstənin simptomları və laboratoriya nəticələrinə əsasən doğru sinifi prognozlaşdırmaq.
- Məsələn, xərçəngin növünü təsnif etmək.

3. Müştəri Analizi (Customer Analytics)

- Müştərilərin məhsul və ya xidmətə reaksiyasını təsnif etmək.
- Hədəf reklamlar və marketinq strategiyaları üçün istifadə olunur.

8.2 Regression Problems

Random Forest reqressiyada da güclü nəticələr verir.

Misal tətbiqlər:

1. Qiymət Təxminləri (Price Prediction)

- Əmlak, avtomobil və digər məhsulların bazar qiymətlərini proqnozlaşdırmaq.
- Xüsusiyyətlər: m^2, yerləşmə, yaş, təchizat və s.

2. Risk Analizi (Risk Assessment)

• Kredit riski, sığorta riski və digər maliyyə risklərini qiymətləndirmək.

8.3 Feature Selection & Dimensionality Reduction

- Random Forest-ın feature_importances_ atributu, xüsusiyyət seçimində istifadə olunur.
- Əhəmiyyətli xüsusiyyətləri seçərək modelin sadələşdirilməsi və hesablama sürətinin artırılması mümkündür.

8.4 Anomaly Detection

- Nadir halları və qeyri-adi nümunələri tapmaq üçün istifadə olunur.
- Məsələn:
 - Kredit kartı fırıldaqçılıqları
 - Sistem və şəbəkə təhlükəsizliyi anomaliyaları
 - İstehsal xətalarının aşkarlanması

9. Random Forest-ın Praktik Tətbiqi

Random Forest-ın gücü yalnız nəzəriyyədə deyil, həm də praktik tətbiqlərdə ortaya çıxır.

9.1 Scikit-learn ilə Random Forest Classifier / Regressor

- Təsnifat (Classification): RandomForestClassifier
 - Məqsəd: Verilmiş xüsusiyyətlər əsasında nümunələri siniflərə ayırmaq.
 - Çıxış: Hər nümunə üçün sinif proqnozu və ehtimal dəyərləri.
- Regressiya (Regression): RandomForestRegressor
 - Məqsəd: Davranışı ədədi olaraq proqnozlaşdırmaq (qiymət, risk, temperatur və s.).
 - Çıxış: Nümunələr üçün orta proqnoz və mümkün inam intervalları (confidence intervals).

9.2 Hiperparametr Optimizasiyası

- Random Forest-ın performansı hiperparametrlərə çox bağlıdır.
- Əsas hiperparametrlər:
 - n_estimators → ağac sayı
 - max_depth → ağacın maksimum dərinliyi
 - min samples split → bir düyümün bölünməsi üçün minimum nümunə

- max_features → hər düyümdə nəzərə alınan xüsusiyyət sayı
- Optimallaşdırma üsulları:

1. GridSearchCV

- Əvvəlcədən təyin olunmuş hiperparametr dəyərləri üzərində exhaustiv axtarış aparır.
- Pros: Hər bir kombinasiyanı sınayır → ən optimal dəyərləri tapır.
- Cons: Hesablama baxımından baha başa gəlir.

2. RandomizedSearchCV

- Verilmiş dəyərlər aralığından təsadüfi nümunələr seçərək axtarır.
- Pros: Daha sürətli, böyük parametrlər məkanlarında uyğundur.

3. Optuna və digər Bayesian optimizasiya üsulları

- Parametrləri adaptiv şəkildə seçir.
- Daha az iterasiya ilə optimal nəticələr verir.

9.3 Pipeline İnteqrasiyası

- Pipeline-lar → **preprocessing**, **model qurma**, **evaluation** mərhələlərini birləşdirir.
- Random Forest pipeline-larda rahat integrasiya olunur:
 - Məsələn:
 - 1. Missing value imputasiyası
 - 2. One-hot encoding və ya scaling (əgər regressiyada lazım olsa)
 - 3. Random Forest Classifier / Regressor
 - 4. Cross-validation / scoring

• Üstünlük:

- Reproduktivlik
- Kodun sadəliyi və saxlanması
- Təkrar istifadə və eksperimentlərin avtomatlaşdırılması

9.4 Big Datada İstifadə

- Standart Scikit-learn implementasiyası RAM limitlərinə bağlıdır → çox böyük datasetlərdə yavaş ola bilər.
- Big data üçün texnologiyalar:
 - 1. **Spark MLlib** → parallel computing ilə Big Datada Random Forest trainingi.
 - 2. **Dask-ML** → Scikit-learn API ilə integrasiya, paralel və paylanmış təlim.
 - 3. **Hibrid yanaşmalar** → modelin bir hissəsi lokal, qalanı buludda və ya GPU-da train edilə bilər.
- Məqsəd: hesablama vaxtını azaltmaq, RAM istifadəsini idarə etmək və böyük verilənlərdə model qurmaq.

Xülasə:

• Random Forest-ı praktik layihələrdə qurmaq üçün:

- Scikit-learn ilə Classifier / Regressor
- Hiperparametr optimizasiyasi → GridSearchCV, RandomizedSearchCV, Optuna
- Pipeline-larla tam integrasiya
- Böyük datasetlər üçün Spark və Dask kimi paylanmış texnologiyalardan istifadə

🚀 10. Advanced Topics

10.1 Balanced Random Forest (Disbalanced Datasetlər üçün)

- Problem: Sinif balanssızlığı (məsələn, 95% class 0, 5% class 1) modelin dominant sinifi öyrənməsinə səbəb olur.
- Həll yolu: Balanced Random Forest
 - Hər ağac üçün sinifləri balanslı nümunələrlə təlim edir.
 - Minority sinif nümunələrini oversample və ya majority sinifdən təsadüfi nümunələri azaldaraq balans yaradır.
- Nəticə: Disbalanced datasetlərdə daha doğru proqnozlar.

10.2 Extremely Randomized Trees (ExtraTrees) Fərqi

- ExtraTrees → Random Forest-ın bir variantıdır.
- Əsas fərq:
 - 1. Random Forest → hər düyümdə ən yaxşı split üçün optimal xüsusiyyət və bölünmə dəyəri seçir.
 - 2. ExtraTrees → xüsusiyyət və split dəyəri təsadüfi seçilir → daha çox randomness → daha sürətli və bəzən daha yaxşı genelleme.
- Pros: Daha az overfit, daha sürətli train.
- Cons: Daha yüksək variance ola bilər bəzi datasetlərdə.

10.3 Random Forest vs XGBoost / LightGBM / **CatBoost**

- Random Forest:
 - Bagging ensemble
 - Ağaclar paralel qurulur
 - Overfitting-ə qarşı dayanıqlı
- XGBoost / LightGBM / CatBoost:
 - Boosting ensemble
 - Ağaclar ardıcıl qurulur (hər yeni ağac əvvəlki səhvləri düzəldir)
 - Daha yüksək performans (tez-tez) amma overfitting riski daha yüksək
- Müqayisə:
 - Dataset kiçik və sadədirsə → Random Forest daha sadə və sürətlidir

 Dataset böyük və mürəkkəbdirsə → Boosting metodları daha yaxşı performans verə bilər

10.4 OOB vs Cross-validation

- OOB (Out-of-Bag) Error
 - Hər ağac bootstrap nümunələr üzərində train olunur
 - Training zamanı istifadə olunmayan nümunələr → test kimi istifadə edilir
 - Pros: Daxili validation, əlavə cross-validation lazım deyil
- Cross-validation (CV)
 - Dataset k-fold bölünərək train və test mərhələləri təkrarlanır
 - Pros: Daha stabil və geniş qiymətləndirmə verir
 - OOB və CV arasında nəticələr adətən oxşardır, amma CV daha çox resurs tələb edir

10.5 Parallelization və Performans Optimizasiyası

- Random Forest ağaclar paralel qurulduğu üçün multi-core CPU-dan effektiv istifadə edir
- Parametrlər:
 - n_jobs=-1 → bütün mövcud CPU-lardan istifadə
 - max_features → daha az xüsusiyyət seçərək təlimi sürətləndirmək
 - n_estimators → balanslı şəkildə artırmaq, çox yüksək sayda ağac RAM-i yükləyə bilər
- Böyük datasetlər üçün:
 - Dask, Spark MLlib və GPU implementasiyaları
 - Hibrid yanaşmalar → yaddaş və sürət optimizasiyası

Xülasə:

- Disbalanced datasetlər → Balanced Random Forest
- Sürətli variant → ExtraTrees
- Daha performanslı boosting → XGBoost / LightGBM / CatBoost
- Validation → OOB və ya CV
- Performans → paralellization, optimallaşdırılmış hiperparametrlər, paylanmış hesablama

In []:	

11. Explainability

Random Forest yüksək performanslı olsa da, **"black-box" model** kimi tanınır. Bu bölmədə modelin nəticələrini necə anlamaq və interpretasiya etmək mövzularını öyrənəcəyik.

11.1 SHAP Dəyərləri

- SHAP (SHapley Additive exPlanations) → hər xüsusiyyətin model proqnozuna nə qədər təsir etdiyini göstərir.
- Məntiq: Hər nümunə üçün xüsusiyyətlərin marginal təsirlərini ədalətli şəkildə bölüşdürmək.
- Faydaları:
 - Hər xüsusiyyətin müsbət və ya mənfi təsirini görə bilmək
 - Individual prognozların izahı
 - Qlobal feature importance ilə müqayisə etmək
- Nəticə: SHAP modelin qərarlarını "açır" və istifadəçiyə başa düşülən şəkildə göstərir.

11.2 Partial Dependence Plots (PDP)

- PDP → müəyyən xüsusiyyətlərin proqnoz üzərində orta təsirini vizuallaşdırır.
- Məntiq:
 - 1. Bir və ya bir neçə xüsusiyyəti sabit saxlayaraq
 - 2. Digər xüsusiyyətləri datasetdə dəyişdirərək model proqnozlarını hesablamaq

- 3. Ortalama nəticəni qrafikdə göstərmək
- Faydaları:
 - Xüsusiyyətlərin model davranışına necə təsir etdiyini görmək
 - Linearlıq və ya non-linearlıq trendini analiz etmək

11.3 Feature Interaction Analizi

- Random Forest-ın güclü tərəfi → xüsusiyyətlərin qarşılıqlı təsirini təbii şəkildə öyrənmək.
- Yanaşmalar:
 - Two-way PDP → iki xüsusiyyətin birlikdə proqnoza təsirini görmək
 - SHAP interaction values → xüsusiyyətlərin qarşılıqlı təsir paylarını göstərmək
- Məqsəd: Modelin qərar mexanizmini daha dərindən anlamaq və xüsusiyyətlər arasındakı kompleks əlaqələri aşkar etmək.

* Xülasə:

Random Forest kimi "black-box" modellərin interpretasiyası üçün:

- **SHAP** → individual və qlobal izah
- PDP → xüsusiyyətlərin orta təsiri
- Feature interaction → xüsusiyyətlərin bir-birinə təsiri
- Nəticə → modellərin daha etibarlı, şəffaf və istifadəçi tərəfindən başa düşülən olması

