Selected Topics in Visual Recognition using Deep Learning HW 2

● Name: 馬楷翔

• Student ID: 110550074

1 Introduction

Hand-written multi-digit recognition is a two-stage problem:

- 1. **Detection** locate every digit (bounding boxes).
- 2. Classification predict each digit class (1-10, background).

Because digits can overlap, vary in scale and aspect ratio, a region-proposal detector is appropriate.

We adopt **Faster R-CNN with a ResNet-50-FPN** backbone, whose two-stage design (RPN plus ROI head) copes well with small objects.

Key elements of our implementation:

- Directly use the well-maintained torchvision model.
- Strict inference reproducibity via seeds.py (using deterministic algorithm).
- Minimal data pipeline (to_tensor only) torchvision's internal transform handles resizing/normalisation.
- Two training variants: full precision (trainer.py) and mixed precision (mixed_trainer.py)
 for speed exploration.

2 Method

2.1 Data pre-processing

Step	Details
Input format	PNG images plus COCO-style JSON (train.json , valid.json , test.json).
Dataset class	CocoDetectionDataset (see code).
Transform	torchvision.transforms.functional.to_tensor . All further transform is done by GeneralizedRCNNTransform inside the model.
Batching	Custom collate function returns (images, targets) in the format expected by torchvision.

2.2 Network architecture

- **Backbone** ResNet-50 up to C5, stride 32.
- Neck Feature Pyramid Network (P2–P6).
- RPN 3 anchors per location; objectness and box-delta branches.
- ROI head ROIAlign → 2 fully connected layers (1024 units) → classification and regression outputs.

Losses follow the original Faster R-CNN paper: RPN classification + regression, and ROI classification + regression (Smooth-L1).

2.3 Hyper-parameters

Parameter	FP32 run	Mixed-precision run
Batch size	16	24
Epochs	30	15
Optimizer	SGD, Ir = 5e-3, momentum 0.9	same
Weight decay	5e-4	same
Scheduler	StepLR(step = 10, γ = 0.1)	same
Seed	42	42

2.4 Training scripts

- trainer.py: full precision, validation loss decides the best model, resumes with --pth-path.
- mixed_trainer.py: uses torch.cuda.amp, validation accuracy decides the best model.

Both scripts save a checkpoint each epoch and always update best_model.pth when the monitored metric improves.

3 Results

3.1 Main experiment (FP32, best-loss model = epoch 10)

Metric (validation set)	Value
mAP (0.5 : 0.95)	0.449
AP@0.50	0.922

Metric (validation set)	Value
Accuracy (precision at IoU ≥ 0.5)	0.541
Best epoch	10 / 30

Training curves

3.2 Additional experiment – mixed precision

ltem	FP32	Mixed precision
Epochs (run)	30	30
Typical wall-time / epoch	22 min	15 min
Maximum batch size (8 GB GPU)	16	24
Best mAP (0.5 : 0.95)	0.457	0.441
Best validation accuracy	0.526	0.908

Comparative curves

Automatic mixed precision (AMP) shortens each epoch by ≈ 32 % and accommodates a 1.5× larger batch size.

However, its best mAP lags the FP32 run by \approx 1.6 percentage points, and the validation curves become noticeably noisier after epoch 15.

4 Choice of architecture

Pros

- Strong accuracy on small and medium objects.
- Modular two-stage design enables fine-grained control.
- Available in torchvision; minimal implementation effort.

Cons

- Slower inference than one-stage detectors (e.g. YOLO, RetinaNet).
- Memory heavier due to per-proposal operations.

Given the assignment priority on accuracy rather than real-time speed, Faster R-CNN is a reasonable trade-off.

5 Conclusion

A straightforward ResNet-50-FPN Faster R-CNN baseline, trained with SGD and a StepLR schedule, achieves **45.7** % **COCO mAP** on the validation split.

Mixed precision reduces training time by roughly one-third but delivered slightly lower accuracy in our setup. Future work includes anchor-free detectors and richer data augmentation.

Appendix

- Github Link: https://github.com/seanmamasde/Selected-Topics-in-Visual-Recognition-using-Deep-Learning
- The model download link can be found on the main README.md page of the repository.