

Hash table

Hashing – principle Data is stored in an array

- The index is calculated based on a key.
 - index = hash-function (key)
- Insert
 - put(key, value)
- "Search"
 - get (key)
- The hash-function must
 - return an integer (index < size of table)
 - be easy to calculate (why?)
 - Minimize the number of collisions
 - distribute data elements evenly across the table (why?)

Hash function (ex):

key value modulo 11

(11 = size of table)

ex:

Key value: 13

hash (13) => 13 mod 11 => 2

0	11
1	1
2	13
3	
4	
5	
6	
7	
8	30
9	
10	10

Collisions, chaining

Efficiency and hash table

- Insert, delete and search is (nearly) independent of the number of elements (n)
 - O(1)
 - Load factor
- Table size << number of <u>possible</u> different key values
- Preferred when you require fast
 - search
 - Insert

but not fast

- Iterate sorted
- Location of max /min