Corrigé de la série 1 : Généralités sur les fluides

Exercice 1:

a) Huile:

Masse volumique $\rho = M/V = 5080 / 6 = 846,67 \text{ kg/m}^3$

Poids volumique $Y = \rho$. $g = 846,67.9,81 = 8305,8 \text{ N/m}^3$

Densité huile $d = \rho_{fl} / \rho_R = 846,67/1000 = 0,847$

avec $\rho_R = \rho_{eau}$

b) Gaz:

Masse volumique $\rho = M/V = 5/6 = 0.833 \text{kg/m}^3$

Poids volumique $Y = \rho$. g = 0.833. 9.81 = 8.175 N/m³

Densité gaz $d = \rho_{fl} / \rho_R = 0.833 / 1.3 = 0.64$

avec $\rho_{R} = \rho_{air}$

Exercice 2:

Volume massique eau de mer $1/\rho = V/M = 1/1025 = 9,75.10^{-4} \text{ m}^3/\text{kg}$

Volume massique mercure $1/\rho = V/M = 1/13600 = 7,35.10^{-5} \text{ m}^3/\text{kg}$

Volume massique huile $1/\rho = V/M = 1/800 = 1,25.10^{-3} \text{ m}^3/\text{kg}$

Exercice 3:

$$\chi_{eau} = - (\Delta V/V) / \Delta P$$

$$\Delta P = - (\Delta V/V) / \chi_{eau}$$

$$\Delta P = -10^{-3} / 4,1.10^{-10} = -0,243.10^7 \text{ pas}$$

Pinitial > Pfinal traction

EXERCICE 4:

a)
$$E_{eau} = 1 / \chi_{eau}$$

$$E_{eau} = -\Delta P / (\Delta V/V) = -(2500 - 350).10^4 / (29,7-30/30) = 2150.10^6 pas$$

b)
$$\Delta V = -(\Delta P / E_{eau}) \cdot V = -(210.10^4 / 2150.10^6) \cdot 1 = -9,76.10^4 \text{ m}^3$$

Vinitial > Vfinal Compression

EXERCICE 5:

Viscosité cinématique : $y = \mu/\rho$

 μ : c'est la viscosité dynamique

 ρ : masse volumique du fluide = d. ρ_{eau}

$$y = \mu / \rho = 0.01008 \cdot 10^{-1} / 0.998 \cdot 1000 = 1.01 \cdot 10^{-6} \, m^2 / S$$

EXERCICE 6:

τ: la contrainte tangentielle

$$\tau = \mu \cdot \partial U(y) / \partial Y$$

u de forme parabolique donc son équation est de la forme

$$u(y) = AY^2 + BY + C$$
 à $u(0) = 0$ plan inférieur $\rightarrow C = 0$

$$U(0,1) = 10 \text{ plan supérieur} \rightarrow 0,01A + 0,1B = 10$$
(1)

$$\partial U(y)/\partial Y = 2AY+B$$
 à $\partial U(0,1)/\partial Y = 0 \rightarrow 0,2A+B=0 \rightarrow B=-0,2A$ (2)

Donc on remplace (2) dans (1) on aura:

$$0.01A - 0.02A = 10 \rightarrow A = -1000 \text{ et B} = 200$$

Donc
$$\partial U(y) / \partial Y = 2Y + B = -2000Y + 200$$

$$\tau$$
 (y) = 0,65.10⁻⁵. (-2000Y +200)

$$\tau$$
 (0) plan inférieur = 130.10⁻⁵ pas

$$\tau$$
 (0,1) plan supérieur = 0 pas

Conclusion

Quand U diminue T augmente et quand U augmente T diminue