MATHEMATICS DEPARTMENT CALIFORNIA POLYTECHNIC STATE UNIVERSITY SAN LUIS OBISPO

	Math 143	<u>Final Exam</u>	Winter 2020
Name:			
Section N	Number:		

- You have 170 minutes to complete this exam.
- No notes, books, cell phones, or other references are allowed.
- In problems that require reasoning or algebraic calculation, it is not sufficient just to write the answers. You **must explain** how you arrived at your answers, and show your algebraic calculations.
- There are 13 pages, including this one, in this exam and **nine** numbered problems. Make sure you have them all before you begin!
- There are **three** additional blank pages at the end of the exam if you need more space to write down your solutions.
- You must show all work to receive credit. Answers for which no work is shown will receive no credit (unless specifically stated otherwise).
- Let me wholeheartedly wish you good luck!!

1.	(10)	
2.	(10)	
3.	(15)	
4.	(10)	
5.	(10)	
6.	(20)	
7.	(10)	
8.	(15)	
9.	(20)	
Total		

Perfect Paper \longrightarrow 120 Points.

1. (10 points) Determine whether the series

$$\sum_{n=1}^{\infty} \frac{(-1)^n (n!)^2}{(2n)!}$$

converges or diverges. Make sure you state which test you use.

2. (a) (7 points) Find the radius R and interval I of convergence of the series

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1} (x+2)^n}{n2^n}.$$

Show all your work and state any tests you used.

(b) (3 points) Determine whether the series

$$\sum_{n=1}^{\infty} \frac{n^n}{2^{n^2}}$$

converges or diverges. Make sure you state which test you use.

- 3. (15 points) Consider the function $f(x) = \cos x$ on the interval $[0, \pi/4]$.
 - (a) (5 points) Derive the Maclaurin series of the function $f(x) = \cos x$. Write **separately** $P_k(x)$ and $R_k(x)$.

(b) (10 points) Estimate the error if k=4 is used to estimate the value of $\cos x$ at $x=\pi/4$.

4. (10 points) Consider a curve with parametrization given by

$$x = t^3 - 3t, \quad y = t^2 - 3, \quad t \in \mathbb{R}.$$

(a) (6 points) Find the tangent line to the curve at the point (2,1).

(b) (4 points) Find all the points where there is a vertical tangent line on $[0, 2\pi]$.

5. (a) (8 points) Write down the equation of the plane P containing the point A(2,1,-1) which is orthogonal/perpendicular to the line L determined by the intersection of the planes

$$P_1: 2x + y - z = 3, \quad P_2: x + 2y + z = 2.$$

(b) (2 points) What is the distance D from the point C(-2, 1, 2) to the plane P?

- 6. (20 points) Consider the points A(-1,1,3), B(2,5,2), and C(1,2,6).
 - (a) (5 points) Find the cosine of the angle between the vectors \overrightarrow{AB} and \overrightarrow{AC} .

(b) (5 points) Let L_1 be the line which passes through the points A and B. Find the parametric equations for L_1 .

(c) (5 points) Determine parametric equations for the line L_2 which is **tangent** to the space curve given by $\vec{r}(t) = \langle t, 2t^2, 2t \rangle$ at the point D(1, 2, 2).

(d) (5 points) Find the area of the triangle with corners the points A(-1,1,3), B(2,5,2), and C(1,2,6).

7. (10 points) Consider the **oval limaçon** of Figure 7 whose polar equation is given by:

$$r = 4 + 2\cos\theta.$$

Find the area of the region **inside** the **oval limaçon**.

8. (a) (2 points) Suppose a particle moving in space has velocity given by $\vec{r}'(t) = \langle 2t, 2\sqrt{t}, 1 \rangle$ for $t \geq 0$. If $\vec{r}(t=0) = \langle -1, 5, 4 \rangle$, then determine $\vec{r}(t)$ for all t.

(b) (3 points) Find a **vector** equation of the tangent line to the curve at t = 4.

(c) (5 points) Does the particle ever pass through the point P(80, 41, 13)?

(d) (5 points) Find the length L of the graph of the vector function $\vec{r}(t)$ on the interval $1 \le t \le 2$.

- 9. (20 points) The position of a space ship is specified by $\vec{r}(t) = \langle t^2, t^2, t^3 \rangle$ for $t \geq 0$.
 - (a) (6 points) Without finding \vec{T} (unit tangent vector) and \vec{N} (unit normal vector), write the acceleration vector of the space ship \vec{a} as $\vec{a} = a_T \vec{T} + a_N \vec{N}$.

(b) (14 points) Find the unit tangent vector \vec{T} , unit normal vector \vec{N} and unit binormal vector \vec{B} of the space ship's trajectory.