TALLER 1 - LÓGICA MATEMÁTICA

KEVIN VELEZ ESCARRIA

Axiomas

1. $AX_1: \alpha \to (\beta \to \alpha)$

2. $AX_2: (\alpha \to (\beta \to \gamma)) \to ((\alpha \to \beta) \to (\alpha \to \gamma))$

3. $AX_3: (\neg \alpha \rightarrow \neg \beta) \rightarrow (\beta \rightarrow \alpha)$

 $\alpha \to \beta$

4. MP:

Problema 1

Mostrar que si de $\Gamma \vdash \alpha$ y de $\alpha \vdash \neg \beta$ entonces $\Gamma \vdash \beta$

Demostración:

1. Γ

 $2. \alpha$ Primer resultado

3. $\neg \beta$ Segundo resultado

4. no se cumple Por hipótesis

Problema 2

Demostrar que:

a)
$$\vdash (\neg \neg \beta \rightarrow \neg \alpha) \rightarrow (\alpha \rightarrow \neg \beta)$$

b)
$$\alpha \to \beta, \beta \to \gamma \vdash \alpha \to \gamma$$

c)
$$(\alpha \to \beta) \vdash \neg \beta \to \neg \alpha$$

d)
$$\vdash (\beta \rightarrow \gamma) \rightarrow ((\alpha \rightarrow \beta) \rightarrow (\alpha \rightarrow \gamma))$$

e)
$$\vdash (\alpha \to \beta) \to ((\beta \to \gamma) \to (\alpha \to \gamma))$$

Demostración:

a)
$$\vdash (\neg \neg \beta \rightarrow \neg \alpha) \rightarrow (\alpha \rightarrow \neg \beta)$$

1.
$$(\neg \neg \beta \rightarrow \neg \alpha) \vdash \alpha \rightarrow \neg \beta$$
 TD

2.
$$(\neg \neg \beta \rightarrow \neg \alpha), \alpha \vdash \neg \beta$$
 TD

3.
$$(\neg \neg \beta \rightarrow \neg \alpha) \rightarrow (\alpha \rightarrow \neg \beta) \quad AX_3$$

4.
$$(\neg \neg \beta \rightarrow \neg \alpha)$$
 P

5.
$$\alpha \to \neg \beta$$
 $MP(5,4)$

$$\begin{array}{ccc}
6. & \alpha & P \\
7. & \neg \beta & MP(7,6)
\end{array}$$

b)
$$\alpha \to \beta, \beta \to \gamma \vdash \alpha \to \gamma$$

1.
$$(\alpha \to (\beta \to \gamma)) \to ((\alpha \to \beta) \to (\alpha \to \gamma))$$
 AX_2

2.
$$\beta \rightarrow \gamma$$

3.
$$\alpha \to (\beta \to \gamma)$$
 Teorema en clase a 2.

4.
$$(\alpha \to \beta) \to (\alpha \to \gamma)$$
 $MP(3,1)$

$$\alpha \rightarrow \beta$$
 P

$$\begin{array}{ccc} 5. & \alpha \to \beta & P \\ 6. & \alpha \to \gamma & MP(5,4) \end{array}$$

Fecha: Octubre, 2022.

Universidad del Valle

c)	$(\alpha$	\rightarrow	β)	\vdash	$\neg \beta$	\rightarrow	$\neg \alpha$
----	-----------	---------------	-----------	----------	--------------	---------------	---------------

1.	$\neg \neg \alpha \to \alpha$	Prop 7.4
2.	$\alpha \to \beta$	P

2.
$$\alpha \to \beta$$

3.
$$\beta \rightarrow \neg \neg \beta$$
 Prop 7.4

4.
$$\neg \neg \alpha \rightarrow \beta$$
 b) (1,2,3)
5. $\neg \neg \alpha \rightarrow \neg \neg \beta$ b) (4,3,5)

6.
$$(\neg \neg \alpha \rightarrow \neg \neg \beta) \rightarrow (\neg \beta \rightarrow \neg \alpha) \quad AX_3$$

7.
$$\neg \beta \rightarrow \neg \alpha$$
 $MP(5,6)$

d)
$$\vdash (\beta \to \gamma) \to ((\alpha \to \beta) \to (\alpha \to \gamma))$$

1.
$$((\beta \to \gamma) \to ((\alpha \to (\beta \to \gamma)) \to ((\alpha \to \beta) \to (\alpha \to \gamma)))) \to (((\beta \to \gamma) \to (\alpha \to (\beta \to \gamma))) \to ((\beta \to \gamma) \to ((\alpha \to \beta) \to (\alpha \to \gamma))))$$
 AX_2

2.
$$(\alpha \to (\beta \to \gamma)) \to ((\alpha \to \beta) \to (\alpha \to \gamma))$$
 AX_2

3.
$$(\beta \to \gamma) \to ((\alpha \to (\beta \to \gamma)) \to ((\alpha \to \beta) \to (\alpha \to \gamma)))$$
 Teorema en clase a 2.

$$4. \quad ((\beta \to \gamma) \to (\alpha \to (\beta \to \gamma))) \to ((\beta \to \gamma) \to ((\alpha \to \beta) \to (\alpha \to \gamma))) \qquad MP(4,1)$$

5.
$$(\beta \to \gamma) \to (\alpha \to (\beta \to \gamma))$$
 AX_1

$$6. \quad (\beta \to \gamma) \to ((\alpha \to \beta) \to (\alpha \to \gamma))$$

$$MP(5,4)$$

d)
$$\vdash (\alpha \rightarrow \beta) \rightarrow ((\beta \rightarrow \gamma) \rightarrow (\alpha \rightarrow \gamma))$$

Problema 3

Demuestrar sin utilizar TD, ni RA, los ejercicios d) y e) del item anterior.

Demostración:

d)

1.
$$\vdash (\beta \to \gamma) \to ((\alpha \to \beta) \to (\alpha \to \gamma))$$

Problema 4

Si se escoge a $\{\neg, \lor\}$ como conjunto completo de conectivos; y como sistema deductivo:

$$AX_1: \neg(\alpha \lor \alpha) \lor \alpha$$

$$AX_2: \neg \alpha \lor \alpha \lor \beta$$

$$AX_3: \neg(\alpha \lor \beta) \lor \beta \lor \alpha$$

$$AX_4: \neg(\neg \alpha \lor \beta) \lor \neg(\gamma \lor \alpha) \lor \gamma \lor \beta$$
 3 Demostrar el teorema $\vdash \neg \alpha \lor \alpha$.

$$\neg \alpha \lor \beta$$

$$MP: \underline{\alpha}$$