Prediction Games:

From Maximum Likelihood Estimation to Active Learning, Fair Machine Learning, and Structured Prediction

Brian Ziebart

Training

Predictor f: $X \rightarrow Y$

dog

Sample dist.

 $\widetilde{P}(x, y)$

Predictor f: $X \rightarrow Y$ Testing

 Dog
 Cat
 Car

 Dog
 0
 1
 1

 Cat
 1
 0
 1

 Car
 1
 1
 0

Prediction: $\hat{y} = f(x)$

Loss: $loss(\hat{y}, y)$

Expected Loss:

 $E_{P}[loss(f(X), Y)]$

Predictor f: $X \rightarrow Y$

Standard Idea:

Empirical Risk Minimization

1. Restrict predictor to some Approximate loss

Exact training data over predictor set

Dist. Robust Idea:

Adversarial Risk Minimization

1. Approximate true label dist. **Exact OSS** ple dist. statistics

Approximation Approximation

$$\min_{\substack{\{\hat{\boldsymbol{p}}_x\}\\\{\hat{\boldsymbol{p}}_x\}\in\Xi}} \sum_i \hat{\boldsymbol{p}}_{x_i}^T \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix} \boldsymbol{\check{p}}_{x_i}$$

Adversarial Supervised Learning Formulation

Construct predictor robust to worst label distribution:

$$\min_{\widehat{P}(\widehat{y}|\mathbf{x})\in\Delta} \max_{\widecheck{P}(\widecheck{y}|\mathbf{x})\in\Delta\cap\Xi} - \sum_{\mathbf{x},y} \widetilde{P}(\mathbf{x})\widecheck{P}(y|\mathbf{x})\log\widehat{P}(y|\mathbf{x})$$

Logarithmic loss measures surprise from labels **Predictor** \hat{P} minimizes loss (in probability simplex Δ) **Adversary** \check{P} maximizes loss, but must be similar to available data (set Ξ , e.g., $\mathbb{E}_{\mathbf{X} \sim \hat{P}} \left[\phi(\mathbf{X}, Y) \right] = \mathbb{E}_{\mathbf{X}, Y \sim \tilde{P}} \left[\phi(\mathbf{X}, Y) \right]$)

Reduces to maximizing entropy ($\hat{P} = \check{P}$) (Topsøe 1979) Robust Bayesian Games (Grünwald & Dawid 2004) DRO with expectations constraints (Wieseman et al. 2014)

 \rightarrow Standard logistic regression and MLE: $\hat{P}(y|\mathbf{x}) \propto e^{\theta \cdot \phi(\mathbf{x},y)}$

Part 1: Covariate Shift & Active Learning

Joint work with Anqi Liu (NeurIPS 2014), Anqi Liu & Lev Reyzin (AAAI 2015)

Active Learning

4 vs. 15 <u>labels</u> O(log n) vs. O(n)

Training

Chosen sample dist.

 $\tilde{P}(\mathbf{x}, y)$

Training

cat

$$\mathbb{E}_{\mathbf{X}, Y \sim \tilde{P}} \left[-\log \hat{P}(Y|\mathbf{X}) \right]$$

Chosen sample dist.

 $\tilde{P}(\mathbf{x}, y)$

Predictor $\hat{P}(y|\mathbf{x})$

Active Learning

Results frequently <u>worse</u> than passive learning!

"random sampling ... may be more advisable than taking one's chances on active learning with an inappropriate learning model"

Active Learning

- 1. Train logistic regressor from labeled data (circled * and +)
- 2. Label most uncertain datapoint
- 3. Repeat

What's wrong with this recipe?

Active Learning

- 1. Traín logistic regressor from labeled data
- 2. Label most uncertain datapoint
- 3. Repeat

What's wrong with this recipe?

Active Learning

- 1. Traín logistic regressor from labeled data
- 2. Label most uncertain datapoint
- 3. Repeat

Assumes IID data

Produces non-IID data

Wrong, but certain about datapoints over here

 \odot

+ labels all datapoints here

correcting the model

on labeled data

Re-Weighted Empirical Risk Minimization

(Shimodaira 2000, Kanamori and Shimodaira 2003)

$$\max_{\theta} \mathbb{E}_{\tilde{P}(\mathbf{x},y)} \left[\log \hat{P}_{\theta}(Y|\mathbf{X}) \right] + \lambda ||\theta||$$

$$\frac{P_{\text{test}}(\mathbf{x})}{P_{\text{train}}(\mathbf{x})}$$

If $\frac{P_{\text{test}}(\mathbf{x})}{P_{\text{train}}(\mathbf{x})}$ > 0, asymptotically unbiased estimator!

Re-Weighted Empirical Risk Minimization

(Shimodaira 2000, Kanamori and Shimodaira 2003)

Issues:

- High variance estimates
- Slow (or <u>no</u>) convergence (Cortes et al. 2010)
- Especially bad for small sample sizes

Adversarial Prediction for Sample Selection Bias

$$\min_{\hat{P}} \max_{\check{P}} \mathbb{E}_{\tilde{P}(\mathbf{x})\check{P}(\check{y}|\mathbf{x})} \left[-\log \hat{P}(\check{Y}|\mathbf{X}) \right]$$

such that:
$$\mathbb{E}_{\tilde{P}(\mathbf{x})\check{P}(\check{y}|\mathbf{x})} \left[\phi(\mathbf{X}, \check{Y}) \right] = \tilde{\phi}$$

IID:
$$\hat{P}_{\theta}(y|\mathbf{x}) \propto e^{\theta \cdot \phi(\mathbf{x},y)}$$

Adversarial Prediction for Sample Selection Bias

$$\min_{\hat{P}} \max_{\check{P}} \mathbb{E}_{\frac{P_{\text{test}}(\mathbf{x})}{\check{P}(\check{y}|\mathbf{x})}} \left[-\log \hat{P}(\check{Y}|\mathbf{X}) \right]$$
such that:
$$\mathbb{E}_{\frac{P_{\text{train}}(\mathbf{x})}{\check{P}(\check{y}|\mathbf{x})}} \left[\phi(\mathbf{X}, \check{Y}) \right] = \tilde{\phi}$$

IID:
$$\hat{P}_{\theta}(y|\mathbf{x}) \propto e^{\theta \cdot \phi(\mathbf{x},y)}$$

Covariate Shift: $\hat{P}_{\theta}(y|\mathbf{x}) \propto e^{\frac{P_{\mathrm{train}}(\mathbf{x})}{P_{\mathrm{test}}(\mathbf{x})} \theta \cdot \phi(\mathbf{x},y)}$

Adversarial Prediction for Sample Selection Bias

Part 2: Group Fairness

Joint work with: Ashkan Rezaei, Rizal Fathony, Omid Memarrast (AAAI 2020)

Fairness for data-driven decision making

Group 1

QualifiedUnqualifiedTrueFalsePositivePositive (TP_1) (FP_1) FalseTrueNegativeNegative (FN_1) (TN_1)

Accept

Group 2

	Qualified	Unqualified
ot	True	False
Accept	Positive	Positive
Ac	(TP ₂)	(FP ₂)
ct	False	True
Reject	Negative	Negative
Ž	(FN_2)	(TN ₂)
,		

(Hardt et al. 2016)

Demographic Parity: Decision ⊥ Group

$$(TP_1+FP_1)/N_1 = (TP_2+FP_2)/N_2$$

Equalized Opportunity: Decision $\perp \!\!\! \perp$ Group | Qualified=True

$$TP_1/(TP_1+FN_1) = TP_2/(TP_2+FN_2)$$

Equalized Odds: Decision \(\precedeft \) Group \(\quad \) Qualified

$$TP_1/(TP_1+FN_1) = TP_2/(TP_2+FN_2); FP_1/(FP_1+TN_1) = FP_1/(FP_1+TN_1)$$

Fair and Robust Log Loss Predictor

$$\begin{split} \min_{\mathbb{P}\in\Delta\cap\Gamma} \max_{\mathbb{Q}\in\Delta\cap\Xi} \mathbb{E}_{\widetilde{P}(\mathbf{x},a,y)} \left[-\log\mathbb{P}(\widehat{Y}|\mathbf{X},A,Y) \right]. \\ \Xi: \left\{ \mathbb{Q} \mid \mathbb{E}_{\widetilde{P}(\mathbf{x});\mathbb{Q}(\widehat{y}|\mathbf{x})} [\phi(\mathbf{X},\widehat{Y})] = \mathbb{E}_{\widetilde{P}(\mathbf{x},y)} \left[\phi(\mathbf{X},Y)\right] \right\}, \\ \Gamma: \mathbb{P} \text{ is fair} \\ \Gamma: \left\{ \mathbb{P} \mid_{\frac{1}{p_{\gamma_{1}}}} \mathbb{E}_{\frac{\widetilde{P}(a,y)}{\mathbb{P}(\widehat{y}|\mathbf{x},a,y)}} [\mathbb{I}(\widehat{Y}=1 \land \gamma_{1}(A,Y))] = \frac{1}{p_{\gamma_{0}}} \mathbb{E}_{\frac{\widetilde{P}(\mathbf{x},a,y)}{\mathbb{P}(\widehat{y}|\mathbf{x},a,y)}} [\mathbb{I}(\widehat{Y}=1 \land \gamma_{0}(A,Y))] \right\} \\ \Gamma_{\mathsf{dp}} \iff \gamma_{j}(A,Y) = \mathbb{I}(A=j); \\ \Gamma_{\mathsf{e.opp}} \iff \gamma_{j}(A,Y) = \mathbb{I}(A=j \land Y=1); \\ \Gamma_{\mathsf{e.odd}} \iff \gamma_{j}(A,Y) = \begin{bmatrix} \mathbb{I}(A=j \land Y=1) \\ \mathbb{I}(A=j \land Y=0) \end{bmatrix}. \end{split} \tag{Agarwal et al. 2018}$$

$$\begin{split} \hat{P}_{\theta,\lambda}(\hat{y} = 1 | \mathbf{x}, a, y) &= \\ & \left\{ \begin{aligned} & \min\left\{\frac{\exp(\theta^\top \phi(\mathbf{x}, 1))}{Z_{\theta}(\mathbf{x})}, \frac{p_{\tau_1}}{\lambda}\right\} & \text{if } \gamma_1(a, y) \\ & \max\left\{\frac{\exp(\theta^\top \phi(\mathbf{x}, 1))}{Z_{\theta}(\mathbf{x})}, 1 - \frac{p_{\tau_0}}{\lambda}\right\} & \text{if } \gamma_0(a, y) \\ & \frac{\exp(\theta^\top \phi(\mathbf{x}, 1))}{Z_{\theta}(\mathbf{x})} & \text{otherwise}, \end{aligned} \right. \\ & \left\{ \begin{aligned} & \left(1 + \frac{\lambda}{p_{\tau_1}} \hat{P}_{\theta,\lambda}(\hat{y} = 0 | \mathbf{x}, a, y)\right) & \text{if } \gamma_1(a, y) \\ & \left(1 - \frac{\lambda}{p_{\tau_0}} \hat{P}_{\theta,\lambda}(\hat{y} = 0 | \mathbf{x}, a, y)\right) & \text{if } \gamma_0(a, y) \\ & \left(1 - \frac{\lambda}{p_{\tau_0}} \hat{P}_{\theta,\lambda}(\hat{y} = 0 | \mathbf{x}, a, y)\right) & \text{otherwise}. \end{aligned} \right. \\ & \left\{ \begin{aligned} & 1 + \frac{\lambda}{p_{\tau_0}} \hat{P}_{\theta,\lambda}(\hat{y} = 0 | \mathbf{x}, a, y) & \text{if } \gamma_0(a, y) \\ & \left(1 - \frac{\lambda}{p_{\tau_0}} \hat{P}_{\theta,\lambda}(\hat{y} = 0 | \mathbf{x}, a, y)\right) & \text{if } \gamma_0(a, y) \\ & \left(1 - \frac{\lambda}{p_{\tau_0}} \hat{P}_{\theta,\lambda}(\hat{y} = 0 | \mathbf{x}, a, y)\right) & \text{otherwise}. \end{aligned} \right. \\ & \left\{ \begin{aligned} & 1 + \frac{\lambda}{p_{\tau_0}} \hat{P}_{\theta,\lambda}(\hat{y} = 0 | \mathbf{x}, a, y) & \text{otherwise}. \end{aligned} \right. \\ & \left\{ \begin{aligned} & 1 + \frac{\lambda}{p_{\tau_0}} \hat{P}_{\theta,\lambda}(\hat{y} = 0 | \mathbf{x}, a, y) & \text{if } \gamma_0(a, y) \\ & \left(1 - \frac{\lambda}{p_{\tau_0}} \hat{P}_{\theta,\lambda}(\hat{y} = 0 | \mathbf{x}, a, y)\right) & \text{if } \gamma_0(a, y) \\ & \left(1 - \frac{\lambda}{p_{\tau_0}} \hat{P}_{\theta,\lambda}(\hat{y} = 0 | \mathbf{x}, a, y)\right) & \text{otherwise}. \end{aligned} \right. \\ & \left\{ \begin{aligned} & 1 + \frac{\lambda}{p_{\tau_0}} \hat{P}_{\theta,\lambda}(\hat{y} = 0 | \mathbf{x}, a, y) & \text{otherwise}. \end{aligned} \right. \\ & \left(1 - \frac{\lambda}{p_{\tau_0}} \hat{P}_{\theta,\lambda}(\hat{y} = 0 | \mathbf{x}, a, y)\right) & \text{if } \gamma_0(a, y) \\ & \left(1 - \frac{\lambda}{p_{\tau_0}} \hat{P}_{\theta,\lambda}(\hat{y} = 0 | \mathbf{x}, a, y)\right) & \text{otherwise}. \end{aligned} \right. \\ & \left(1 - \frac{\lambda}{p_{\tau_0}} \hat{P}_{\theta,\lambda}(\hat{y} = 0 | \mathbf{x}, a, y)\right) & \left(1 - \frac{\lambda}{p_{\tau_0}} \hat{P}_{\theta,\lambda}(\hat{y} = 0 | \mathbf{x}, a, y)\right) & \text{otherwise}. \end{aligned} \right. \\ & \left(1 - \frac{\lambda}{p_{\tau_0}} \hat{P}_{\theta,\lambda}(\hat{y} = 0 | \mathbf{x}, a, y)\right) & \left(1 - \frac{\lambda}{p_{\tau_0}} \hat{P}_{\theta,\lambda}(\hat{y} = 0 | \mathbf{x}, a, y)\right) & \left(1 - \frac{\lambda}{p_{\tau_0}} \hat{P}_{\theta,\lambda}(\hat{y} = 0 | \mathbf{x}, a, y)\right) & \left(1 - \frac{\lambda}{p_{\tau_0}} \hat{P}_{\theta,\lambda}(\hat{y} = 0 | \mathbf{x}, a, y)\right) & \left(1 - \frac{\lambda}{p_{\tau_0}} \hat{P}_{\theta,\lambda}(\hat{y} = 0 | \mathbf{x}, a, y)\right) & \left(1 - \frac{\lambda}{p_{\tau_0}} \hat{P}_{\theta,\lambda}(\hat{y} = 0 | \mathbf{x}, a, y)\right) & \left(1 - \frac{\lambda}{p_{\tau_0}} \hat{P}_{\theta,\lambda}(\hat{y} = 0 | \mathbf{x}, a, y)\right) & \left(1 - \frac{\lambda}{p_{\tau_0}} \hat{P}_{\theta,\lambda}(\hat{y} = 0 | \mathbf{x}, a, y)\right) & \left(1 - \frac{\lambda}{p_{\tau_0}} \hat{P}_{\theta,\lambda}(\hat{y} = 0 | \mathbf{x}, a, y)\right) & \left(1 - \frac{\lambda}{p_{\tau_0}} \hat{P}_{\theta,\lambda}(\hat{y} = 0 | \mathbf{x}, a, y)\right) &$$

Benefits of jointly optimizing θ and λ :

Benefits of jointly optimizing θ and λ :

Experiments

	Label	Protected Attribute	Features	Examples
UCI Adult	Income > \$50k	Gender	12	45,222
COMPAS	recidivism	Race	10	6,167

- Evaluation on 20 random splits (70%/30% train/test)
- Baselines
 - Unconstrained (unfair) logistic regression
 - Reweighting approach (Kamiran & Calders 2012)
 - Cost-sensitive reduction approach (Agarwal et al. 2018)
 - Post-processing (Hardt et al. 2016)

Part 3: Structured Prediction

Joint work with: Rizal Fathony, Sima Behpour, Xinhua Zhang (ICML 2018)

Bipartite Matching Task

Maximum weighted bipartite matching:

$$\max_{\pi \in \Pi} \psi(\pi) = \max_{\pi \in \Pi} \sum_{i} \psi_i(\pi_i)$$

Machine learning task: Learn appropriate weights $\psi_i(\cdot)$

Objective:

Minimize a loss metric, e.g., the Hamming loss

$$loss_{Ham}(\pi, \pi') = \sum_{i=1}^{n} 1(\pi'_i \neq \pi_i)$$

Bipartite Matching Applications

Word alignment

(Taskar et. al., 2005; Pado & Lapta, 2006; Mac-Cartney et. al., 2008)

Correspondence between images

(Belongie et. al., 2002; Dellaert et. al., 2003)

Learning to rank documents

(Dwork et. al., 2001; Le & Smola, 2007)

Learning Bipartite Matchings

Conditional Random Field

(Petterson et. al., 2009; Volkovs & Zemel, 2012)

$$P_{\psi}(\pi) = \frac{1}{Z_{\psi}} \exp\left(\sum_{i=1}^{n} \psi_{i}(\pi_{i})\right)$$

$$Z_{\psi} = \sum_{\pi} \prod_{i=1}^{n} \exp(\psi_i(\pi_i)) = \operatorname{perm}(\mathbf{M})$$

where $M_{i,j} = \exp(\psi_i(j))$

Structured SVM

(Tsochantaridis et. al., 2005)

Based on CS hinge loss solved using constraint generation

$$\min_{\psi} \mathbb{E}_{\pi \sim \tilde{P}} \left[\max_{\pi'} \left\{ loss(\pi, \pi') + \psi(\pi') \right\} - \psi(\pi) \right] \quad X$$

 \tilde{P} is the empirical distribution

Fisher consistent

Produces Bayes optimal prediction in ideal case

Computationally intractable

Normalization term requires matrix permanent computation (a #P-hard problem). Approximation is needed.

Computationally efficient

Hungarian algorithm for computing the maximum violated constraints

No Fisher consistency guarantee

Not consistent for distribution with no majority label

[Fathony et al., ICML 2018]

 $\min_{\hat{P}(\hat{\pi}|x)} \max_{\check{P}(\check{\pi}|x)} \mathbb{E}_{x \sim \tilde{P}; \hat{\pi}|x \sim \check{P}} \left[\operatorname{loss}(\hat{\pi}, \check{\pi}) \right]$ Fisher consistency **Primal:**

guaranteed

s.t.
$$\mathbb{E}_{x \sim \tilde{P}; \check{\pi} | x \sim \check{P}} \left[\sum_{i=1}^{n} \phi_i(x, \check{\pi}_i) \right] = \mathbb{E}_{(x,\pi) \sim \tilde{P}} \left[\sum_{i=1}^{n} \phi_i(x, \pi_i) \right]$$

Augmented Hamming loss matrix for n=3 permutations

	$\check{\pi} = 123$	$\check{\pi} = 132$	$\check{\pi}=213$	$\check{\pi}=231$	$\check{\pi} = 312$	$\check{\pi}=321$
$\hat{\pi} = 123$	$0 + \delta_{123}$	$2+\delta_{132}$	$2+\delta_{213}$	$3 + \delta_{231}$	$3 + \delta_{312}$	$2 + \delta_{321}$
$\hat{\pi} = 132$	$2 + \delta_{123}$	$0 + \delta_{132}$	$3 + \delta_{213}$	$2+\delta_{231}$	$2 + \delta_{312}$	$3 + \delta_{321}$
$\hat{\pi} = 213$	$2 + \delta_{123}$	$3 + \delta_{132}$	$0 + \delta_{213}$	$2+\delta_{231}$	$2 + \delta_{312}$	$3 + \delta_{321}$
$\hat{\pi} = 231$	$3 + \delta_{123}$	$2 + \delta_{132}$	$2 + \delta_{213}$	$0 + \delta_{231}$	$3 + \delta_{312}$	$2 + \delta_{321}$
$\hat{\pi} = 312$	$3 + \delta_{123}$	$2 + \delta_{132}$	$2+\delta_{213}$	$3 + \delta_{231}$	$0 + \delta_{312}$	$2 + \delta_{321}$
$\hat{\pi} = 321$	$2+\delta_{123}$	$3 + \delta_{132}$	$3 + \delta_{213}$	$2+\delta_{231}$	$2 + \delta_{312}$	$0 + \delta_{321}$

size: $n! \times n!$

<u>Intractable</u> for modestlysized n

[Fathony et al., ICML 2018]

Dual:
$$\min_{\theta} \mathbb{E}_{(x,\pi)\sim \tilde{P}} \min_{\hat{P}(\hat{\pi}|x)} \max_{\check{P}(\check{\pi}|x)} \mathbb{E}_{\hat{\pi}|x\sim \hat{P};\check{\pi}|x\sim \check{P}} \left[\sum_{i=1}^{n} I(\pi'_{i} \neq \pi_{i}) + \theta \cdot \sum_{i=1}^{n} (\phi_{i}(x,\check{\pi}_{i}) - \phi_{i}(x,\pi_{i})) \right]$$

Marginal Distribution Matrices:

$$q_{i,j} = \check{P} \ (\check{\pi_i} = j)$$

Birkhoff – Von Neumann theorem:

reduce variables from O(n!) to $O(n^2)$

Marginal Formulation:

Rearrange the optimization order and add regularization and smoothing penalties

$$\max_{\mathbf{Q} \geq \mathbf{0}} \min_{\theta} \frac{1}{m} \sum_{i=1}^{m} \min_{\mathbf{P}_i \geq \mathbf{0}} \left[\langle \mathbf{Q}_i - \mathbf{Y}_i, \sum_k \theta_k \mathbf{X}_{i,k} \rangle - \langle \mathbf{P}_i, \mathbf{Q}_i \rangle + \frac{\mu}{2} \|\mathbf{P}_i\|_F^2 - \frac{\mu}{2} \|\mathbf{Q}_i\|_F^2 \right] + \frac{\lambda}{2} \|\theta\|_2^2$$

s.t.:
$$P_i 1 = P_i^{\top} 1 = Q_i 1 = Q_i^{\top} 1 = 1, \quad \forall i$$

projected Quasi-Newton (Schmidt, et.al., 2009) for Q; closed-form for θ ; projection to doubly-stochastic matrix for P using ADMM

[Fathony et al., ICML 2018]

Application: Video Tracking

Datasets

Table 3. Dataset properties

DATASET	# ELEMENTS	# EXAMPLES
TUD-CAMPUS	12	70
TUD-STADTMITTE	16	178
ETH-SUNNYDAY	18	353
ETH-BAHNHOF	34	999
ETH-PEDCROSS2	30	836

Empirical runtime (until convergence)

Table 5. Running time (in seconds) of the model for various number of elements n with fixed number of samples (m=50)

DATASET	# ELEMENTS	ADV MARG.	SSVM
CAMPUS	12	1.96	0.22
STADTMITTE	16	2.46	0.25
SUNNYDAY	18	2.75	0.15
PEDCROSS2	30	8.18	0.26
BAHNHOF	34	9.79	0.31

Adversarial. Marginal Formulation: grows (roughly) quadratically in n

CRF: impractical even for n = 20 (Petterson et. al., 2009)

[Fathony et al., ICML 2018]

Table 1: The mean and standard deviation (in parenthesis) of the average accuracy (1 - the average Hamming loss) for the adversarial bipartite matching model compared with Structured-SVM.

Training/ Testing	Adv. Bipartite Matching	STRUCTURED SVM
Campus/ Stadtmitte	0.662 (0.08)	0.662 (0.08)
Stadtmitte/ Campus	0.667 (0.11)	$0.660 \\ (0.12)$
Bahnhof/ Sunnyday	0.754 (0.10)	0.729 (0.15)
Pedcross2/ Sunnyday	0.750 (0.10)	0.736 (0.13)
Sunnyday/ Bahnhof	0.751 (0.18)	0.739 (0.20)
Pedcross2/ Bahnhof	0.763 (0.16)	0.731 (0.21)
Bahnhof/ Pedcross2	0.714 (0.16)	0.701 (0.18)
Sunnyday/ Pedcross2	0.712 (0.17)	0.700 (0.18)

6 pairs of dataset significantly outperforms SSVM

2 pairs of dataset competitive with SSVM

[Fathony et al., ICML 2018]

	Efficient?	Consistent?	Performs well?
Conditional Random Field (CRF) (Petterson et. al., 2009; Volkovs & Zemel, 2012)	X	\	?
Structured SVM (Tsochantaridis et. al., 2005)		X	
Adversarial Bipartite Matching (our approach)	\	\	

Summary & Conclusions

$$\min_{\substack{\hat{P}(\hat{y}|\mathbf{x}) \in \Delta \cap \Gamma \check{P}(\check{y}|\mathbf{x}) \in \Delta \cap \Xi}} \max_{\substack{\mathbf{x} \sim \tilde{P} \\ \hat{\mathbf{y}}|\mathbf{x} \sim \hat{P} \\ \check{\mathbf{y}}|\mathbf{x} \sim \check{P}}} \left[loss(\hat{\mathbf{Y}}, \check{\mathbf{Y}}) \right]$$

Covariate Shift/Active Learning: $P_{train}(x) \neq P_{test}(x)$

→ Avoids harmful extrapolations

Fairness: Minimizer also satisfies fairness requirements (Γ)

→ Robust/smooth group fairness

Structured Prediction: Structured objects y, bilinear loss

→ Consistency and Computational Tractability

Foundational framework for parametric predictors Versatile for a wide range of settings

Questions?

- Liu, Ziebart. "Robust Classification Under Sample Selection Bias." NeurIPS 2014.
- Liu, Reyzin, Ziebart. "Shift-Pessimistic Active Learning Using Robust Bias-Aware Prediction." AAAI 2015.
- Rezaei, Fathony, Memmarest, Ziebart. "Fairness for robust log loss classification."
 AAAI 2020.
- Fathony, Behpour, Zhang, Ziebart. "Efficient and Consistent Adversarial Bipartite Matching." ICML 2018.
- Fathony, Liu, Asif, Ziebart. "Adversarial Multiclass Classification: A Risk Minimization Perspective." NeurIPS 2016.
- Fathony, Bashiri, Ziebart. "Adversarial Surrogate Losses for Ordinal Regression." NeurIPS 2017.
- Wang, Xing, Asif, Ziebart. "Adversarial Prediction Games for Multivariate Losses." NeurIPS 2015.
- Tirinzoni, Chen, Petrik, Ziebart. "Policy-conditioned uncertainty sets for robust Markov Decision Processes." NeurIPS 2018.
- Bashiri, Ziebart, Zhang. "Distributionally Robust Imitation Learning." NeurIPS 2021.

