Dark energy as a kinematic effect Merging de Sitter special relativity with teleparallel gravity

Hendrik Jennen

Supervisor: José Geraldo Pereira

Instituto de Física Teórica - UNESP

February 12, 2016

Outline

Motivation

Accelerated expansion & de Sitter kinematics

Cartan geometry

Geometry of spacetime de Sitter–Cartan geometry

Teleparallel gravity

Weitzenböck geometry Equations of motion

de Sitter teleparallel gravity

Fundamentals

Dynamics gravitational field & cosmological function

Conclusions & outlook

- Homogeneous and isotropic universe at large scales
 - ~ 300 million light-years

- Homogeneous and isotropic universe at large scales
 - ∼ 300 million light-years

Friedman-Lemaître-Robertson-Walker

$$ds^2 = dt^2 - a(t)^2 \left[d\chi^2 + f_k(\chi)^2 d\Omega_2 \right]$$

- Comoving coordinates
- Symmetric universe / cosmological principle
- Space with constant curvature
 - Spherical for k=1

$$[f_k = \sin \chi]$$

• Flat for k = 0

$$[f_k = \chi]$$

• Hyperbolic for k = -1

$$[f_k = \sinh \chi]$$

Scale factor

- Homogeneous and isotropic universe at large scales
 - ~ 300 million light-years

Friedman-Lemaître-Robertson-Walker

$$ds^2 = dt^2 - a(t)^2 \left[d\chi^2 + f_k(\chi)^2 d\Omega_2 \right]$$

- Comoving coordinates
- Symmetric universe / cosmological principle
- Space with constant curvature
 - Spherical for k = 1 $[f_k = \sin \chi]$

$$[f_k = \sin \chi]$$

• Flat for k=0

$$[f_k = \chi]$$

• Hyperbolic for k = -1 $[f_k = \sinh \chi]$

$$[f_k = \sinh \chi]$$

- Homogeneous and isotropic universe at large scales
 - ∼ 300 million light-years

Friedman-Lemaître-Robertson-Walker

$$ds^2 = dt^2 - \frac{a(t)^2}{a(t)^2} \left[d\chi^2 + f_k(\chi)^2 d\Omega_2 \right]$$

- Comoving coordinates
- Symmetric universe / cosmological principle
- Space with constant curvature
 - Spherical for k = 1 $[f_k = \sin \chi]$
 - Flat for k = 0 [$f_k = \chi$]
 - Hyperbolic for k = -1 $[f_k = \sinh \chi]$
- Scale factor

- lacksquare Determine evolution of scale factor today (t_*)
 - No a-priori assumptions on dynamical model
- Luminosity distance d_L vs. redshift z for SNe Ia
 - $d_L^2 \sim L_{\rm absolute}/F_{\rm observed}$
 - $z = a_*/a 1$

- lacksquare Determine evolution of scale factor today (t_*)
 - No a-priori assumptions on dynamical model
- Luminosity distance d_L vs. redshift z for SNe Ia
 - $d_L^2 \sim L_{\rm absolute}/F_{\rm observed}$
 - $z = a_*/a 1$

Hubble law

$$d_L(z) = \frac{z}{H_*} + \left[1 - q_*\right] \frac{z^2}{2H_*} - \left[1 - q_* - 3q_*^2 + j_* + \frac{k}{a_*^2 H_*^2}\right] \frac{z^3}{6H_*}$$

- $H = \dot{a}/a, \quad q = -\ddot{a}a/\dot{a}^2, \quad j = \ddot{a}a^2/\dot{a}^3, \quad \dots$
- Inflation ⇒ negligible curvature term
- Evidence for accelerated expansion \longleftrightarrow $\dot{a}_*, \ddot{a}_* > 0$

- lacksquare Determine evolution of scale factor today (t_*)
 - No a-priori assumptions on dynamical model
- Luminosity distance d_L vs. redshift z for SNe Ia
 - $d_L^2 \sim L_{\rm absolute}/F_{\rm observed}$
 - $z = a_*/a 1$

Hubble law

$$d_L(z) = \frac{z}{H_*} + \left[1 - q_*\right] \frac{z^2}{2H_*} - \left[1 - q_* - 3q_*^2 + j_* + \frac{k}{a_*^2 H_*^2}\right] \frac{z^3}{6H_*}$$

- $\blacksquare H = \dot{a}/a, \quad q = -\ddot{a}a/\dot{a}^2, \quad j = \ddot{a}a^2/\dot{a}^3, \quad \dots$
- Inflation ⇒ negligible curvature term
- Evidence for accelerated expansion \longleftrightarrow $\dot{a}_*, \ddot{a}_* > 0$

- lacksquare Determine evolution of scale factor today (t_*)
 - No a-priori assumptions on dynamical model
- Luminosity distance d_L vs. redshift z for SNe Ia
 - $d_L^2 \sim L_{\rm absolute}/F_{\rm observed}$
 - $z = a_*/a 1$

Hubble law

$$d_L(z) = \frac{z}{H_*} + \left[1 - q_*\right] \frac{z^2}{2H_*} - \left[1 - q_* - 3q_*^2 + j_* + \frac{k}{a_*^2 H_*^2}\right] \frac{z^3}{6H_*}$$

- $\blacksquare H = \dot{a}/a, \quad q = -\ddot{a}a/\dot{a}^2, \quad j = \ddot{a}a^2/\dot{a}^3, \quad \dots$
- Inflation ⇒ negligible curvature term
- Evidence for accelerated expansion $\longleftrightarrow \dot{a}_*, \ddot{a}_* > 0$

Hendrik Jennen

Dark energy

Einstein's equations

$$R_{\mu\nu} - g_{\mu\nu}R + g_{\mu\nu}\Lambda = T_{\mu\nu}$$

- No known component of repulsive gravitation
- Expansion driven by dark energy
- Cosmological constant
- Vacuum solution given by de Sitter space
- Change of large-scale kinematic group
 - $ISO(1,3) \longrightarrow SO(1,4)$
 - Degree of deformation depends on A
 - de Sitter special relativity

Dark energy

Einstein's equations

$$R_{\mu\nu} - g_{\mu\nu} R + g_{\mu\nu} \Lambda = T_{\mu\nu}$$

- No known component of repulsive gravitation
- Expansion driven by dark energy
- Cosmological constant
- Vacuum solution given by de Sitter space

Dark energy

Einstein's equations

$$R_{\mu\nu} - g_{\mu\nu}R + g_{\mu\nu}\Lambda = T_{\mu\nu}$$

- No known component of repulsive gravitation
- Expansion driven by dark energy
- Cosmological constant
- Vacuum solution given by de Sitter space
- Change of large-scale kinematic group
 - $ISO(1,3) \longrightarrow SO(1,4)$
 - Degree of deformation depends on Λ
 - de Sitter special relativity

Cosmological function

Working objective

Kinematic group at every point is SO(1,4)

- Pointwise deformation $ISO(1,3) \xrightarrow{\Lambda} SO(1,4)$
 - How much varies from event to event
- Λ becomes nonconstant function
 - Cosmological function

Cosmological function

Working objective

Kinematic group at every point is SO(1,4)

- Pointwise deformation $ISO(1,3) \xrightarrow{\Lambda} SO(1,4)$
 - How much varies from event to event
- A becomes nonconstant function
 - Cosmological function
- How to implement mathematically?
 - Cartan geometry modeled on de Sitter space
- How to implement physically?
 - Generalize teleparallel gravity
 - Deform curvature of spin connection

- Geometry of homogeneous spaces
 - Minkowski space, de Sitter space, . . .
- Symmetry Lie group $G \longrightarrow$ transitivity
 - *ISO*(1,3), *SO*(1,4), ...
- Subgroup $H \subset G$ defines isotropy around any point
 - *SO*(1,3), *SO*(1,3), . . .
- Homogeneous space \longleftrightarrow G/H

- Geometry of homogeneous spaces
 - Minkowski space, de Sitter space, . . .
- lacksquare Symmetry Lie group $G \longrightarrow$ transitivity
 - *ISO*(1,3), *SO*(1,4), . . .
- Subgroup $H \subset G$ defines isotropy around any point
 - *SO*(1,3), *SO*(1,3), . . .
- Homogeneous space \longleftrightarrow G/H

Minkowski space ISO(1,3) \longrightarrow de Sitter space SO(1,4)

- Geometry of homogeneous spaces
 - Minkowski space, de Sitter space, . . .
- Symmetry Lie group $G \longrightarrow$ transitivity • *ISO*(1,3), *SO*(1,4), . . .
- Subgroup $H \subset G$ defines isotropy around any point • *SO*(1,3), *SO*(1,3), ...
- Homogeneous space \longleftrightarrow G/H

Minkowski space
$$ISO(1,3)$$
 \longrightarrow de Sitter space $SO(1,4)$ \downarrow gravity Riemann-Cartan space local $ISO(1,3)$

- Geometry of homogeneous spaces
 - Minkowski space, de Sitter space, ...
- Symmetry Lie group $G \longrightarrow \text{transitivity}$ • ISO(1,3), SO(1,4), ...
- Subgroup $H \subset G$ defines isotropy around any point
 - SO(1,3), SO(1,3), ...
- Homogeneous space \longleftrightarrow G/H

- Let G/H be homogeneous model space
- Give up homogeneity, retain symmetry locally
- Endow manifold M with Cartan connection A
 - 1-form valued in c
 - $\dim M = \dim G/H$

Cartan connection

$$A: TM \mapsto \mathfrak{g} = \mathfrak{h} \oplus \mathfrak{g}/\mathfrak{k}$$

- Let G/H be homogeneous model space
- Give up homogeneity, retain symmetry locally
- Endow manifold M with Cartan connection A
 - 1-form valued in g
 - $\dim M = \dim G/H$

Cartan connection

$$A: TM \mapsto \mathfrak{g} = \mathfrak{h} \oplus \mathfrak{g}/\mathfrak{h}$$

- Let G/H be homogeneous model space
- Give up homogeneity, retain symmetry locally
- Endow manifold M with Cartan connection A
 - 1-form valued in g
 - $\dim M = \dim G/H$

Cartan connection

$$A: TM \mapsto \mathfrak{g} = \mathfrak{h} \oplus \mathfrak{g}/\mathfrak{h}$$

- G = SO(3), H = SO(2)
- For each direction, A returns an element of $\mathfrak{so}(3)$

Cartan connection

$$A: TM \mapsto \mathfrak{g} = \mathfrak{h} \oplus \mathfrak{g}/\mathfrak{h}$$

- \blacksquare $A_{\rm fi}$ is H-connection
- \blacksquare $A_{\mathfrak{p}}$ is vielbein \longrightarrow soldering

Cartan curvature

$$F = dA + \frac{1}{2}[A, A]$$

- \blacksquare F_h is curvature
- \blacksquare $F_{\mathfrak{p}}$ is torsion
- $F = 0 \iff M = G/H$

Cartan connection

$$A: TM \mapsto \mathfrak{g} = \mathfrak{h} \oplus \mathfrak{g}/\mathfrak{h}$$

- \blacksquare $A_{\rm fi}$ is H-connection
- \blacksquare $A_{\mathfrak{p}}$ is vielbein \longrightarrow soldering

Cartan curvature

$$F = dA + \frac{1}{2}[A, A]$$

- \blacksquare $F_{\mathfrak{h}}$ is curvature
- \blacksquare $F_{\mathfrak{p}}$ is torsion
- $\blacksquare F = 0 \iff M = G/H$

- Generic spacetime with locally SO(1,4) kinematics
- Homogeneous model space: SO(1,4)/SO(1,3)

- Generic spacetime with locally SO(1,4) kinematics
- Homogeneous model space: SO(1,4)/SO(1,3)

de Sitter algebra

$$\mathfrak{so}(1,4) = \mathfrak{so}(1,3) \oplus \mathfrak{p}$$

• de Sitter translations $[\mathfrak{p} = \mathfrak{so}(1,4)/\mathfrak{so}(1,3)]$

Commutation relations

$$\begin{split} [\mathfrak{so}(1,3),\mathfrak{so}(1,3)] &\subset \mathfrak{so}(1,3) \\ [\mathfrak{so}(1,3),\mathfrak{p}] &\subset \mathfrak{p} \\ [\mathfrak{p},\mathfrak{p}] &\subset \mathfrak{so}(1,3) \end{split}$$

- Generic spacetime with locally SO(1,4) kinematics
- Homogeneous model space: SO(1,4)/SO(1,3)

de Sitter algebra

$$\mathfrak{so}(1,4) = \mathfrak{so}(1,3) \oplus \mathfrak{p}$$

• de Sitter translations $[\mathfrak{p} = \mathfrak{so}(1,4)/\mathfrak{so}(1,3)]$

Commutation relations

$$[\mathfrak{so}(1,3),\mathfrak{so}(1,3)] \subset \mathfrak{so}(1,3)$$
$$[\mathfrak{so}(1,3),\mathfrak{p}] \subset \mathfrak{p}$$
$$[\mathfrak{p},\mathfrak{p}] \subset \mathfrak{so}(1,3)$$

- Generic spacetime with locally SO(1,4) kinematics
- Homogeneous model space: SO(1,4)/SO(1,3)

de Sitter algebra

$$\mathfrak{so}(1,4) = \mathfrak{so}(1,3) \oplus \mathfrak{p}$$

- de Sitter translations $[\mathfrak{p} = \mathfrak{so}(1,4)/\mathfrak{so}(1,3)]$
- Splitting is SO(1,3) invariant
- Length scale hidden in translations
 - Cosmological constant
 - $\Lambda \to 0$ gives Minkowski space

- Generic spacetime with locally SO(1,4) kinematics
- Homogeneous model space: SO(1,4)/SO(1,3)

de Sitter algebra

$$\mathfrak{so}(1,4) = \mathfrak{so}(1,3) \oplus \mathfrak{p}$$

- de Sitter translations $[\mathfrak{p} = \mathfrak{so}(1,4)/\mathfrak{so}(1,3)]$
- Splitting is SO(1,3) invariant
- Length scale hidden in translations
 - Cosmological constant
 - Λ → 0 gives Minkowski space

de Sitter-Cartan geometry

- Provide spacetime with de Sitter–Cartan connection
- At every point valued in copies of $\mathfrak{so}(1,4)$
 - Let length scale in p vary pointwise
- Cosmological function Λ

de Sitter-Cartan geometry

- Provide spacetime with de Sitter–Cartan connection
- At every point valued in copies of $\mathfrak{so}(1,4)$
 - Let length scale in p vary pointwise
- Cosmological function Λ

Spin connection & vierbein

$$A \xrightarrow{\mathfrak{so}(1,3) \longrightarrow \omega^{a}_{b\mu}} e^{a}_{\mu}$$

Curvature & torsion

$$F \xrightarrow{\mathfrak{so}(1,3)} R^{a}_{b\mu\nu}$$

$$F \xrightarrow{\mathfrak{p}} T^{a}_{\mu\nu}$$

- Decompose according to $\mathfrak{so}(1,4) = \mathfrak{so}(1,3) \oplus \mathfrak{p}$
- Local SO(1,3) invariance
- $F = dA + \frac{1}{2}[A, A]$

de Sitter-Cartan geometry

Spin connection & vierbein

Curvature & torsion

$$F \xrightarrow{\mathfrak{so}(1,3)} \xrightarrow{R^{\mathsf{a}}_{b\mu\nu}} T^{\mathsf{a}}_{\mu\nu}$$

$$\begin{split} R^{a}_{\ b\mu\nu} &= B^{a}_{\ b\mu\nu} + \frac{\Lambda}{3} (e^{a}_{\ \mu} e_{b\nu} - e^{a}_{\ \nu} e_{b\mu}) \\ T^{a}_{\ \mu\nu} &= G^{a}_{\ \mu\nu} + \frac{1}{2} \partial_{\mu} \ln \Lambda \, e^{a}_{\ \nu} - \frac{1}{2} \partial_{\nu} \ln \Lambda \, e^{a}_{\ \mu}, \end{split}$$

$$\begin{split} B^{a}_{b\mu\nu} &= \partial_{\mu}\omega^{a}_{b\nu} - \partial_{\nu}\omega^{a}_{b\mu} + \omega^{a}_{c\mu}\omega^{c}_{b\nu} - \omega^{a}_{c\nu}\omega^{c}_{b\mu} \\ G^{a}_{\mu\nu} &= \partial_{\mu}e^{a}_{\nu} - \partial_{\nu}e^{a}_{\mu} + \omega^{a}_{b\mu}e^{b}_{\nu} - \omega^{a}_{b\nu}e^{b}_{\mu} \end{split}$$

 $\Lambda \to 0$ gives back Riemann–Cartan geometry

de Sitter–Cartan geometry

Spin connection & vierbein

Curvature & torsion

$$F \xrightarrow{\mathfrak{so}(1,3)} R^{\mathsf{a}}_{\phantom{\mathsf{b}\mu\nu}}$$

$$F \xrightarrow{\mathfrak{p}} T^{\mathsf{a}}_{\phantom{\mathsf{b}\mu\nu}}$$

$$\begin{split} R^{a}_{\ b\mu\nu} &= B^{a}_{\ b\mu\nu} + \frac{\Lambda}{3} (e^{a}_{\ \mu} e_{b\nu} - e^{a}_{\ \nu} e_{b\mu}) \\ T^{a}_{\ \mu\nu} &= G^{a}_{\ \mu\nu} + \frac{1}{2} \partial_{\mu} \ln \Lambda \, e^{a}_{\ \nu} - \frac{1}{2} \partial_{\nu} \ln \Lambda \, e^{a}_{\ \mu}, \end{split}$$

$$\begin{split} B^{a}_{b\mu\nu} &= \partial_{\mu}\omega^{a}_{b\nu} - \partial_{\nu}\omega^{a}_{b\mu} + \omega^{a}_{c\mu}\omega^{c}_{b\nu} - \omega^{a}_{c\nu}\omega^{c}_{b\mu} \\ G^{a}_{\mu\nu} &= \partial_{\mu}e^{a}_{\nu} - \partial_{\nu}e^{a}_{\mu} + \omega^{a}_{b\mu}e^{b}_{\nu} - \omega^{a}_{b\nu}e^{b}_{\mu} \end{split}$$

■ $\Lambda \rightarrow 0$ gives back Riemann–Cartan geometry

Introduction to teleparallel gravity

- Description for classical gravity
- Predictions equivalent to general relativity
- Mathematical structure is related but different
 - Riemann-Cartan spacetime without curvature
 - Gravitational degrees of freedom encoded in torsion
- Conceptually quite unlike general relativity
 - No geometrization of gravitational interaction
 - Restores the concept of force
 - Inertial and gravitational effects separated

Introduction to teleparallel gravity

- Description for classical gravity
- Predictions equivalent to general relativity
- Mathematical structure is related but different
 - Riemann–Cartan spacetime without curvature
 - Gravitational degrees of freedom encoded in torsion
- Conceptually quite unlike general relativity
 - No geometrization of gravitational interaction
 - Restores the concept of force
 - · Inertial and gravitational effects separated
- Gauge theory for the Poincaré translations
 - Nonlinear realization of Riemann–Cartan connection
 - Not further considered

Geometric objects

- Kinematics ruled by Poincaré group
 - Riemann-Cartan geometry

$$\begin{split} B^{a}_{b\mu\nu} &= \partial_{\mu}\omega^{a}_{b\nu} - \partial_{\nu}\omega^{a}_{b\mu} + \omega^{a}_{c\mu}\omega^{c}_{b\nu} - \omega^{a}_{c\nu}\omega^{c}_{b\mu} \\ G^{a}_{\mu\nu} &= \partial_{\mu}e^{a}_{\nu} - \partial_{\nu}e^{a}_{\mu} + \omega^{a}_{b\mu}e^{b}_{\nu} - \omega^{a}_{b\nu}e^{b}_{\mu} \end{split}$$

Ricci theorem

$$\omega^a_{b\mu} = \mathring{\omega}^a_{b\mu} + K^a_{b\mu}$$

- Levi-Civita connection
- Contortion
- lacksquare General relativity $\longrightarrow G^a_{\ \mu\nu} \equiv 0$
 - $K_{bu}^{a} = 0$
 - Riemannian spacetime
 - Both inertial and gravitational effects in spin connection

Geometric objects

- Kinematics ruled by Poincaré group
 - Riemann–Cartan geometry

$$\begin{split} B^{a}_{b\mu\nu} &= \partial_{\mu}\omega^{a}_{b\nu} - \partial_{\nu}\omega^{a}_{b\mu} + \omega^{a}_{c\mu}\omega^{c}_{b\nu} - \omega^{a}_{c\nu}\omega^{c}_{b\mu} \\ G^{a}_{\mu\nu} &= \partial_{\mu}e^{a}_{\nu} - \partial_{\nu}e^{a}_{\mu} + \omega^{a}_{b\mu}e^{b}_{\nu} - \omega^{a}_{b\nu}e^{b}_{\mu} \end{split}$$

Ricci theorem

$$\omega^{a}_{bu} = \mathring{\omega}^{a}_{bu} + K^{a}_{bu}$$

- Levi-Civita connection
- Contortion
- General relativity $\longrightarrow G^{a}_{,,,,} \equiv 0$

Geometric objects

- Kinematics ruled by Poincaré group
 - Riemann–Cartan geometry

$$\begin{split} B^{a}_{b\mu\nu} &= \partial_{\mu}\omega^{a}_{b\nu} - \partial_{\nu}\omega^{a}_{b\mu} + \omega^{a}_{c\mu}\omega^{c}_{b\nu} - \omega^{a}_{c\nu}\omega^{c}_{b\mu} \\ G^{a}_{\mu\nu} &= \partial_{\mu}e^{a}_{\nu} - \partial_{\nu}e^{a}_{\mu} + \omega^{a}_{b\mu}e^{b}_{\nu} - \omega^{a}_{b\nu}e^{b}_{\mu} \end{split}$$

Ricci theorem

$$\omega^{a}_{bu} = \mathring{\omega}^{a}_{bu} + K^{a}_{bu}$$

- Levi-Civita connection
- Contortion
- General relativity $\longrightarrow G^a_{\mu\nu} \equiv 0$
 - $K_{bu}^{a} = 0$
 - Riemannian spacetime
 - Both inertial and gravitational effects in spin connection

Weitzenböck geometry

$$\begin{split} B^{a}_{b\mu\nu} &= \partial_{\mu}\omega^{a}_{b\nu} - \partial_{\nu}\omega^{a}_{b\mu} + \omega^{a}_{c\mu}\omega^{c}_{b\nu} - \omega^{a}_{c\nu}\omega^{c}_{b\mu} \\ G^{a}_{\mu\nu} &= \partial_{\mu}e^{a}_{\nu} - \partial_{\nu}e^{a}_{\mu} + \omega^{a}_{b\mu}e^{b}_{\nu} - \omega^{a}_{b\nu}e^{b}_{\mu} \end{split}$$

- Teleparallel gravity $\longrightarrow B^a_{\ b\mu\nu} \equiv 0$
- - Spin connection encodes inertial effects only
- Torsion represents gravitational degrees of freedom
- 10 off-shell degrees of freedom
 - Same as in Riemannian spacetime
- Dictionary general relativity teleparallel gravity

$$\mathring{\omega}^{a}_{b\mu} \longleftrightarrow \omega^{a}_{b\mu} - K^{a}_{b\mu}$$

Weitzenböck geometry

$$\begin{split} B^{a}_{b\mu\nu} &= \partial_{\mu}\omega^{a}_{b\nu} - \partial_{\nu}\omega^{a}_{b\mu} + \omega^{a}_{c\mu}\omega^{c}_{b\nu} - \omega^{a}_{c\nu}\omega^{c}_{b\mu} \\ G^{a}_{\mu\nu} &= \partial_{\mu}e^{a}_{\nu} - \partial_{\nu}e^{a}_{\mu} + \omega^{a}_{b\mu}e^{b}_{\nu} - \omega^{a}_{b\nu}e^{b}_{\mu} \end{split}$$

- Teleparallel gravity $\longrightarrow B^a_{\ b\mu\nu} \equiv 0$
- - Spin connection encodes inertial effects only
- Torsion represents gravitational degrees of freedom
- 10 off-shell degrees of freedom
 - Same as in Riemannian spacetime
- Dictionary general relativity teleparallel gravity

$$\mathring{\omega}^{a}_{b\mu} \longleftrightarrow \omega^{a}_{b\mu} - K^{a}_{b\mu}$$

Weitzenböck geometry

$$\begin{split} B^{a}_{b\mu\nu} &= \partial_{\mu}\omega^{a}_{b\nu} - \partial_{\nu}\omega^{a}_{b\mu} + \omega^{a}_{c\mu}\omega^{c}_{b\nu} - \omega^{a}_{c\nu}\omega^{c}_{b\mu} \\ G^{a}_{\mu\nu} &= \partial_{\mu}e^{a}_{\nu} - \partial_{\nu}e^{a}_{\mu} + \omega^{a}_{b\mu}e^{b}_{\nu} - \omega^{a}_{b\nu}e^{b}_{\mu} \end{split}$$

- Teleparallel gravity $\longrightarrow B^a_{\ b\mu\nu} \equiv 0$
- - · Spin connection encodes inertial effects only
- Torsion represents gravitational degrees of freedom
- 10 off-shell degrees of freedom
 - Same as in Riemannian spacetime
- Dictionary general relativity teleparallel gravity

$$\mathring{\omega}^{a}_{b\mu} \longleftrightarrow \omega^{a}_{b\mu} - K^{a}_{b\mu}$$

Particle mechanics

Action

$$-m\int d\tau = -m\int u_a e^a$$

- Mass *m* in gravitational field
- Nonzero torsion

$$u^{
ho}D_{
ho}u^{a}=K^{a}_{b
ho}\,u^{b}u^{
ho}$$

- Inertial vs. gravitational effects
- Force equation

Particle mechanics

Action

$$-m\int d\tau = -m\int u_a e^a$$

- Mass *m* in gravitational field
- Nonzero torsion

$$u^{\rho}D_{\rho}u^{a}=K^{a}_{b\rho}u^{b}u^{\rho}$$

- Inertial vs. gravitational effects
- Force equation

Particle mechanics

Action

$$-m\int d\tau = -m\int u_a e^a$$

- Mass m in gravitational field
- Nonzero torsion

$$u^{\rho}D_{\rho}u^{a}=K^{a}_{b\rho}u^{b}u^{\rho}$$

- Inertial vs. gravitational effects
- Force equation
- Equivalence with geodesic equation

$$u^{\rho}\partial_{\rho}u^{a} + [\underbrace{\omega^{a}_{b\rho} - K^{a}_{b\rho}}_{\mathring{\omega}^{a}_{b\rho}}]u^{b}u^{\rho} = 0$$

Gravitional field equations

Lagrangian teleparallel gravity

$$\mathcal{L}_{\mathsf{tg}} = rac{1}{4} G^{
ho}_{\ \mu
u} \, G_{
ho}^{\ \mu
u} + rac{1}{2} G^{
ho}_{\ \mu
u} \, G^{
u \mu}_{\ \
ho} - G^{
u}_{\ \mu
u} \, G^{
ho \mu}_{\
ho}$$

Field equations

$$D_{\rho}(e W_a^{\rho\mu}) + e t_a^{\mu} = 0$$

- Superpotential $W_a^{\rho\mu}$
- Gravitational energy-momentum current t_a^{μ}
 - Conserved charges $q_a = \int t_a^0 \longrightarrow \dot{q}_a = 0$
- Equivalence with general relativity
 - $\mathcal{L}_{tg} \longleftrightarrow R \partial_{\mu} (e K^{\mu\nu}_{\ \nu})$

Gravitional field equations

Lagrangian teleparallel gravity

$$\mathcal{L}_{\mathsf{tg}} = rac{1}{4} G^{
ho}_{\ \mu
u} \, G_{
ho}^{\ \mu
u} + rac{1}{2} G^{
ho}_{\ \mu
u} \, G^{
u \mu}_{\ \
ho} - G^{
u}_{\ \mu
u} \, G^{
ho \mu}_{\
ho}$$

Field equations

$$D_{\rho}(e W_a^{\rho\mu}) + e t_a^{\mu} = 0$$

- Superpotential $W_a^{\rho\mu}$
- Gravitational energy-momentum current t_a^{μ}
 - Conserved charges $q_a = \int t_a^0 \longrightarrow \dot{q}_a = 0$
- Equivalence with general relativity
 - $\mathcal{L}_{t\sigma} \longleftrightarrow R \partial_{\mu} (e K^{\mu\nu}, r)$

Gravitional field equations

Lagrangian teleparallel gravity

$$\mathcal{L}_{\mathsf{tg}} = rac{1}{4} G^{
ho}_{\ \mu
u} \, G_{
ho}^{\ \mu
u} + rac{1}{2} G^{
ho}_{\ \mu
u} \, G^{
u \mu}_{\ \
ho} - G^{
u}_{\ \mu
u} \, G^{
ho \mu}_{\
ho}$$

Field equations

$$D_{\rho}(e W_a^{\rho\mu}) + e t_a^{\mu} = 0$$

- Superpotential $W_a^{\rho\mu}$
- Gravitational energy-momentum current t_a^{μ}
 - Conserved charges $q_a = \int t_a^0 \longrightarrow \dot{q}_a = 0$
- Equivalence with general relativity
 - $\mathcal{L}_{tg} \longleftrightarrow R \partial_{\mu} (e K^{\mu\nu}_{\nu})$

Introduction to de Sitter teleparallel gravity

Introduction to de Sitter teleparallel gravity

- Deform local kinematics $ISO(1,3) \longrightarrow SO(1,4)$
- New paradigm to incorporate cosmological function
 - Applicable to any theory of gravity
 - Merging de Sitter special relativity with gravity

Introduction to de Sitter teleparallel gravity

- Deform local kinematics $ISO(1,3) \longrightarrow SO(1,4)$
- New paradigm to incorporate cosmological function
 - Applicable to any theory of gravity
 - Merging de Sitter special relativity with gravity
- de Sitter teleparallel gravity
- Deform the curvature of spin connection
 - Minkowski space → de Sitter space
 - Deformation specified by Λ
 - Kinematic contribution to deviation equation
- Gravity relates to torsion of vierbein
- Cosmological function acquires own dynamics

- Kinematics ruled by de Sitter group
 - de Sitter–Cartan geometry

$$\begin{split} R^{a}_{\ b\mu\nu} &= B^{a}_{\ b\mu\nu} + \frac{\Lambda}{3} (e^{a}_{\ \mu} e_{b\nu} - e^{a}_{\ \nu} e_{b\mu}) \\ T^{a}_{\ \mu\nu} &= G^{a}_{\ \mu\nu} + \frac{1}{2} \partial_{\mu} \ln \Lambda \, e^{a}_{\ \nu} - \frac{1}{2} \partial_{\nu} \ln \Lambda \, e^{a}_{\ \mu}, \end{split}$$

• Gravitational field \iff $G^a_{\mu\nu} \neq 0$

- Kinematics ruled by de Sitter group
 - de Sitter–Cartan geometry

$$\begin{split} R^{a}_{\ b\mu\nu} &= B^{a}_{\ b\mu\nu} + \frac{\Lambda}{3} (e^{a}_{\ \mu} e_{b\nu} - e^{a}_{\ \nu} e_{b\mu}) \\ T^{a}_{\ \mu\nu} &= G^{a}_{\ \mu\nu} + \frac{1}{2} \partial_{\mu} \ln \Lambda \, e^{a}_{\ \nu} - \frac{1}{2} \partial_{\nu} \ln \Lambda \, e^{a}_{\ \mu}, \end{split}$$

■ Gravitational field \iff $G^a_{\mu\nu} \neq 0$

- Kinematics ruled by de Sitter group
 - de Sitter–Cartan geometry

$$\begin{split} R^{a}_{\ b\mu\nu} &= B^{a}_{\ b\mu\nu} + \frac{\Lambda}{3} (e^{a}_{\ \mu} e_{b\nu} - e^{a}_{\ \nu} e_{b\mu}) \equiv \mathbf{0} \\ T^{a}_{\ \mu\nu} &= G^{a}_{\ \mu\nu} + \frac{1}{2} \partial_{\mu} \ln \Lambda \, e^{a}_{\ \nu} - \frac{1}{2} \partial_{\nu} \ln \Lambda \, e^{a}_{\ \mu}, \end{split}$$

■ Gravitational field \iff $G^a_{\mu\nu} \neq 0$

Kinematic curvature

$$B^{a}_{\ b\mu\nu} = -\frac{\Lambda}{3}(e^{a}_{\ \mu}e_{b\nu} - e^{a}_{\ \nu}e_{b\mu})$$

- Kinematics ruled by de Sitter group
 - de Sitter–Cartan geometry

$$\begin{split} R^{a}_{\ b\mu\nu} &= B^{a}_{\ b\mu\nu} + \frac{\Lambda}{3} (e^{a}_{\ \mu} e_{b\nu} - e^{a}_{\ \nu} e_{b\mu}) \equiv 0 \\ T^{a}_{\ \mu\nu} &= G^{a}_{\ \mu\nu} + \frac{1}{2} \partial_{\mu} \ln \Lambda \, e^{a}_{\ \nu} - \frac{1}{2} \partial_{\nu} \ln \Lambda \, e^{a}_{\ \mu}, \end{split}$$

■ Gravitational field \iff $G^a_{\mu\nu} \neq 0$

Kinematic curvature

$$B^{a}_{\ b\mu\nu} = -\frac{\Lambda}{3} (e^{a}_{\ \mu} e_{b\nu} - e^{a}_{\ \nu} e_{b\mu})$$

 $\Lambda \to 0 \longrightarrow Weitzenböck spacetime$

Action

$$-m\int u_a e^a$$

$$u^{\rho}D_{\rho}u^{a}=K^{a}_{b\rho}u^{b}u^{\rho}$$

- Formally the same as in teleparallel gravity
- A affects deviation free-falling particles

Action

$$-m\int u_a e^a$$

$$u^{\rho}D_{\rho}u^{a}=K^{a}_{b\rho}u^{b}u^{\rho}$$

- Formally the same as in teleparallel gravity
- Λ affects deviation free-falling particles

Action

$$-m\int u_a e^a$$

$$u^{\rho}D_{\rho}u^{a}=K^{a}_{b\rho}u^{b}u^{\rho}$$

- Formally the same as in teleparallel gravity
- A affects deviation free-falling particles
- String of free-falling particles $x_{\sigma}(\tau)$
 - σ runs along the string $\longrightarrow v = d/d\sigma$
 - τ is the proper time $\longrightarrow u = d/d\tau$
 - Relative acceleration $u^{\mu}D_{\mu}(u^{\nu}D_{\nu}v^{a})$

Action

$$-m\int u_a e^a$$

Equations of motion

$$u^{\rho}D_{\rho}u^{a}=K^{a}_{b\rho}u^{b}u^{\rho}$$

- Formally the same as in teleparallel gravity
- A affects deviation free-falling particles
- String of free-falling particles $x_{\sigma}(\tau)$
 - σ runs along the string $\longrightarrow v = d/d\sigma$
 - τ is the proper time $\longrightarrow u = d/d\tau$
 - Relative acceleration $u^{\mu}D_{\mu}(u^{\nu}D_{\nu}v^{a})$

Relative acceleration free-falling particles

$$v^{\mu}D_{\mu}(K^{a}_{\ b\nu}\,u^{b}u^{\nu}) + u^{\mu}D_{\mu}(u^{\lambda}v^{\nu}G^{a}_{\ \lambda\nu}) + u^{\mu}v^{\nu}u^{b}B^{a}_{\ b\mu\nu}$$

■ Kinematic curvature $B^a_{\ b\mu\nu} \sim \Lambda(e^a_{\ \mu}e_{b\nu}^{\ }-e^a_{\ \nu}e_{b\mu}^{\ })$

Action

$$-m\int u_a e^a$$

Equations of motion

$$u^{\rho}D_{\rho}u^{a}=K^{a}_{b\rho}u^{b}u^{\rho}$$

- Formally the same as in teleparallel gravity
- A affects deviation free-falling particles
- String of free-falling particles $x_{\sigma}(\tau)$
 - σ runs along the string $\longrightarrow v = d/d\sigma$
 - τ is the proper time $\longrightarrow u = d/d\tau$
 - Relative acceleration $u^{\mu}D_{\mu}(u^{\nu}D_{\nu}v^{a})$

Relative acceleration free-falling particles

$$v^{\mu}D_{\mu}(K^{a}_{\ b\nu}\,u^{b}u^{\nu}) + u^{\mu}D_{\mu}(u^{\lambda}v^{\nu}G^{a}_{\ \lambda\nu}) + u^{\mu}v^{\nu}u^{b}B^{a}_{\ b\mu\nu}$$

■ Kinematic curvature $B^a_{\ b\mu\nu} \sim \Lambda(e^a_{\ \mu}e_{b\nu}^{\ }-e^a_{\ \nu}e_{b\mu}^{\ })$

Lagrangian of teleparallel gravity

$$\mathcal{L}_{\mathsf{tg}} = \frac{1}{4} G^{\rho}_{\ \mu\nu} \, G_{\rho}^{\ \mu\nu} + \frac{1}{2} G^{\rho}_{\ \mu\nu} \, G^{\nu\mu}_{\ \ \rho} - G^{\nu}_{\ \mu\nu} \, G^{\rho\mu}_{\ \ \rho}$$

- Change in torsion
 - Riemann-Cartan spactime → de Sitter-Cartan spacetime

$$G^{a}_{\;\mu\nu} \, o \, T^{a}_{\;\;\mu\nu} \, = \, G^{a}_{\;\;\mu\nu} \, + \, {1 \over 2} \partial_{\mu} {\rm ln} \, \Lambda \, {\rm e}^{a}_{\;\;\nu} \, - \, {1 \over 2} \partial_{\nu} {\rm ln} \, \Lambda \, {\rm e}^{a}_{\;\;\mu}$$

Lagrangian of teleparallel gravity

$$\mathcal{L}_{\mathsf{tg}} = rac{1}{4} G^{
ho}_{\ \mu
u} \, G^{\ \mu
u}_{
ho} + rac{1}{2} G^{
ho}_{\ \mu
u} \, G^{
u \mu}_{\ \
ho} - G^{
u}_{\ \mu
u} \, G^{
ho \mu}_{\ \
ho}$$

- Change in torsion
 - Riemann-Cartan spactime → de Sitter-Cartan spacetime

$$G^{a}_{\;\mu\nu}\,\to\,T^{a}_{\;\;\mu\nu}\,=\,G^{a}_{\;\;\mu\nu}\,+\,\tfrac{1}{2}\partial_{\mu}\ln\Lambda\,e^{a}_{\;\;\nu}\,-\,\tfrac{1}{2}\partial_{\nu}\ln\Lambda\,e^{a}_{\;\;\mu}$$

Lagrangian of teleparallel gravity

$$\mathcal{L}_{\mathsf{tg}} = \frac{1}{4} G^{\rho}_{\ \mu\nu} \, G_{\rho}^{\ \mu\nu} + \frac{1}{2} G^{\rho}_{\ \mu\nu} \, G^{\nu\mu}_{\ \ \rho} - G^{\nu}_{\ \mu\nu} \, G^{\rho\mu}_{\ \ \rho}$$

- Change in torsion
 - Riemann-Cartan spactime → de Sitter-Cartan spacetime

$$G^{a}_{~\mu\nu} \rightarrow T^{a}_{~\mu\nu} \,=\, G^{a}_{~\mu\nu} \,+\, \tfrac{1}{2}\partial_{\mu}\ln\Lambda\,e^{a}_{~\nu} \,-\, \tfrac{1}{2}\partial_{\nu}\ln\Lambda\,e^{a}_{~\mu}$$

Lagrangian de Sitter teleparallel gravity

$$\mathcal{L}_{\mathsf{dStg}} = rac{1}{4} T^{
ho}_{\ \mu
u} \, T^{\ \mu
u}_{
ho} + rac{1}{2} T^{
ho}_{\ \mu
u} \, T^{
u \mu}_{\
ho} - T^{
u}_{\ \mu
u} \, T^{
ho \mu}_{\
ho}$$

Substitute for torsion

Lagrangian of teleparallel gravity

$$\mathcal{L}_{\mathsf{tg}} = \frac{1}{4} G^{\rho}_{\ \mu\nu} \, G_{\rho}^{\ \mu\nu} + \frac{1}{2} G^{\rho}_{\ \mu\nu} \, G^{\nu\mu}_{\ \ \rho} - G^{\nu}_{\ \mu\nu} \, G^{\rho\mu}_{\ \ \rho}$$

- Change in torsion
 - Riemann-Cartan spactime → de Sitter-Cartan spacetime

$$G^{a}_{\;\mu\nu} \,\to\, T^{a}_{\;\;\mu\nu} \,=\, G^{a}_{\;\;\mu\nu} \,+\, \tfrac{1}{2} \partial_{\mu} \ln \Lambda \, e^{a}_{\;\;\nu} \,-\, \tfrac{1}{2} \partial_{\nu} \ln \Lambda \, e^{a}_{\;\;\mu}$$

Lagrangian de Sitter teleparallel gravity

$$\mathcal{L}_{\mathsf{dStg}} = rac{1}{4} T^{
ho}_{\ \mu
u} \, T_{
ho}^{\ \mu
u} + rac{1}{2} T^{
ho}_{\ \mu
u} \, T^{
u \mu}_{\ \
ho} - T^{
u}_{\ \mu
u} \, T^{
ho \mu}_{\
ho}$$

Substitute for torsion

$$\mathcal{L}_{\mathsf{dStg}} = \mathcal{L}_{\mathsf{tg}} - rac{3}{2} \partial_{\mu} \mathsf{ln} \, \Lambda \, \partial^{\mu} \mathsf{ln} \, \Lambda - 2 G^{\mu
u}_{ \mu} \, \partial_{
u} \mathsf{ln} \, \Lambda$$

- Gravitational sector modeled by teleparallel gravity
- Kinetic term for the cosmological function
- Interaction through nonminimal coupling
- Similarities with theories of modified gravity
 - Teleparallel dark energy
 - Scalar-tensor theories
- Important differences
 - A deforms local kinematics
 - Natural incorporation of cosmological function

$$\mathcal{L}_{\mathsf{dStg}} = \mathcal{L}_{\mathsf{tg}} - rac{3}{2} \partial_{\mu} \mathsf{ln} \, \Lambda \, \partial^{\mu} \mathsf{ln} \, \Lambda - 2 G^{\mu
u}_{ \mu} \, \partial_{
u} \mathsf{ln} \, \Lambda$$

- Gravitational sector modeled by teleparallel gravity
- Kinetic term for the cosmological function
- Interaction through nonminimal coupling
- Similarities with theories of modified gravity
 - Teleparallel dark energy
 - Scalar-tensor theories
- Important differences
 - A deforms local kinematics
 - Natural incorporation of cosmological function

$$\mathcal{L}_{\mathsf{dStg}} = \mathcal{L}_{\mathsf{tg}} - rac{3}{2} \partial_{\mu} \mathsf{ln} \, \Lambda \, \partial^{\mu} \mathsf{ln} \, \Lambda - 2 G^{\mu
u}_{ \mu} \, \partial_{
u} \mathsf{ln} \, \Lambda$$

- Gravitational sector modeled by teleparallel gravity
- Kinetic term for the cosmological function
- Interaction through nonminimal coupling
- Similarities with theories of modified gravity
 - Teleparallel dark energy
 - Scalar-tensor theories
- Important differences
 - A deforms local kinematics
 - Natural incorporation of cosmological function

$$\mathcal{L}_{\mathsf{dStg}} = \mathcal{L}_{\mathsf{tg}} - rac{3}{2} \partial_{\mu} \mathsf{ln} \, \Lambda \, \partial^{\mu} \mathsf{ln} \, \Lambda - 2 G^{\mu
u}_{ \mu} \partial_{
u} \mathsf{ln} \, \Lambda$$

- Gravitational sector modeled by teleparallel gravity
- Kinetic term for the cosmological function
- Interaction through nonminimal coupling
- Similarities with theories of modified gravity
 - Teleparallel dark energy
 - Scalar-tensor theories
- Important differences
 - A deforms local kinematics
 - Natural incorporation of cosmological function

Field equations

Gravitational field

$$\begin{split} &e^{-1}D_{\rho}(e\,W_{a}^{\rho\mu})+t_{a}^{\mu}-2G^{\rho\mu}_{\rho}\,e_{a}^{\nu}\partial_{\nu}\ln\Lambda-2e_{a}^{\mu}\,\square\ln\Lambda\\ &+2e_{a}^{\rho}\nabla_{\rho}\partial^{\mu}\ln\Lambda-3e_{a}^{\rho}\partial_{\rho}\ln\Lambda\,\partial^{\mu}\ln\Lambda+\frac{3}{2}e_{a}^{\mu}\partial_{\rho}\ln\Lambda\,\partial^{\rho}\ln\Lambda=0 \end{split}$$

Cosmological function

$$\Box \ln \Lambda + G^{\mu\rho}_{\mu} \partial_{\rho} \ln \Lambda = -\frac{2}{3} (\nabla_{\mu} G^{\rho\mu}_{\rho} + G^{\mu}_{\rho\mu} G^{\nu\rho}_{\nu})$$

- Coupled system of equations
- Matter energy-momentum sources gravitational field equations
- Λ interrelates kinematics and dynamics
 - Energy and momentum may modify kinematics locally

Field equations

Gravitational field

$$\begin{split} &e^{-1}D_{\rho}(e\,W_{a}^{\rho\mu})+t_{a}^{\mu}-2G^{\rho\mu}_{\rho}\,e_{a}^{\nu}\partial_{\nu}\ln\Lambda-2e_{a}^{\mu}\,\square\ln\Lambda\\ &+2e_{a}^{\rho}\nabla_{\rho}\partial^{\mu}\ln\Lambda-3e_{a}^{\rho}\partial_{\rho}\ln\Lambda\,\partial^{\mu}\ln\Lambda+\frac{3}{2}e_{a}^{\mu}\partial_{\rho}\ln\Lambda\,\partial^{\rho}\ln\Lambda=0 \end{split}$$

Cosmological function

$$\Box \ln \Lambda + G^{\mu\rho}_{\mu} \partial_{\rho} \ln \Lambda = -\frac{2}{3} (\nabla_{\mu} G^{\rho\mu}_{\rho} + G^{\mu}_{\rho\mu} G^{\nu\rho}_{\nu})$$

- Coupled system of equations
- Matter energy-momentum sources gravitational field equations
- Λ interrelates kinematics and dynamics
 - Energy and momentum may modify kinematics locally

Field equations

Gravitational field

$$\begin{split} \mathrm{e}^{-1}D_{\rho}(\mathrm{e}\,W_{\mathrm{a}}^{\rho\mu}) + t_{\mathrm{a}}^{\mu} - 2G^{\rho\mu}_{\rho}\,\mathrm{e}_{\mathrm{a}}^{\nu}\partial_{\nu}\ln\Lambda - 2\mathrm{e}_{\mathrm{a}}^{\mu}\,\square\ln\Lambda \\ + 2\mathrm{e}_{\mathrm{a}}^{\rho}\nabla_{\rho}\partial^{\mu}\ln\Lambda - 3\mathrm{e}_{\mathrm{a}}^{\rho}\partial_{\rho}\ln\Lambda\,\partial^{\mu}\ln\Lambda + \frac{3}{2}\mathrm{e}_{\mathrm{a}}^{\mu}\partial_{\rho}\ln\Lambda\,\partial^{\rho}\ln\Lambda = 0 \end{split}$$

Cosmological function

$$\Box \ln \Lambda + G^{\mu\rho}_{\mu} \partial_{\rho} \ln \Lambda = -\frac{2}{3} (\nabla_{\mu} G^{\rho\mu}_{\rho} + G^{\mu}_{\rho\mu} G^{\nu\rho}_{\nu})$$

- Coupled system of equations
- Matter energy-momentum sources gravitational field equations
- Λ interrelates kinematics and dynamics
 - · Energy and momentum may modify kinematics locally

- Deform kinematic group $ISO(1,3) \xrightarrow{\Lambda} SO(1,4)$
 - Cosmological function Λ
- de Sitter–Cartan geometry with nonconstant ∧
 - Point-dependent length scale in de Sitter translations
- New paradigm for dark energy problem
- Teleparallel gravity with local SO(1,4) kinematics
- Kinematic component relative acceleration free-falling particles
 - Dark energy as a kinematic effect
- Cosmological function has own dynamics
 - Couples to gravitational field
 - Forms a link between kinematics and dynamics

- Deform kinematic group $ISO(1,3) \xrightarrow{\Lambda} SO(1,4)$
 - Cosmological function Λ
- de Sitter–Cartan geometry with nonconstant Λ
 - Point-dependent length scale in de Sitter translations
- New paradigm for dark energy problem
- lacktriangle Teleparallel gravity with local SO(1,4) kinematics
- Kinematic component relative acceleration free-falling particles
 - Dark energy as a kinematic effect
- Cosmological function has own dynamics
 - Couples to gravitational field
 - Forms a link between kinematics and dynamics

- Deform kinematic group $ISO(1,3) \xrightarrow{\Lambda} SO(1,4)$
 - Cosmological function Λ
- de Sitter–Cartan geometry with nonconstant Λ
 - Point-dependent length scale in de Sitter translations
- New paradigm for dark energy problem
- Teleparallel gravity with local SO(1,4) kinematics
- Kinematic component relative acceleration free-falling particles
 - Dark energy as a kinematic effect
- Cosmological function has own dynamics
 - Couples to gravitational field
 - Forms a link between kinematics and dynamics

- Deform kinematic group $ISO(1,3) \xrightarrow{\Lambda} SO(1,4)$
 - Cosmological function Λ
- lacktriangle de Sitter–Cartan geometry with nonconstant Λ
 - Point-dependent length scale in de Sitter translations
- New paradigm for dark energy problem
- Teleparallel gravity with local SO(1,4) kinematics
- Kinematic component relative acceleration free-falling particles
 - · Dark energy as a kinematic effect
- Cosmological function has own dynamics
 - · Couples to gravitational field
 - Forms a link between kinematics and dynamics

- Field equations for FRLW spacetime
 - Time evolution scale factor and cosmological function
- Newtonian limit of de Sitter teleparallel gravity
- Galaxy rotation curves
 - Dark matter
- Kinematic contribution to Raychaudhuri equation
- Generalize dynamics
- General relativity

- Field equations for FRLW spacetime
 - Time evolution scale factor and cosmological function
- Newtonian limit of de Sitter teleparallel gravity
- Galaxy rotation curves
 - Dark matter
- Kinematic contribution to Raychaudhuri equation
- Generalize dynamics
- General relativity

- Field equations for FRLW spacetime
 - Time evolution scale factor and cosmological function
- Newtonian limit of de Sitter teleparallel gravity
- Galaxy rotation curves
 - Dark matter
- Kinematic contribution to Raychaudhuri equation
- Generalize dynamics
- General relativity

- Field equations for FRLW spacetime
 - Time evolution scale factor and cosmological function
- Newtonian limit of de Sitter teleparallel gravity
- Galaxy rotation curves
 - Dark matter
- Kinematic contribution to Raychaudhuri equation
- Generalize dynamics
- General relativity

- Field equations for FRLW spacetime
 - Time evolution scale factor and cosmological function
- Newtonian limit of de Sitter teleparallel gravity
- Galaxy rotation curves
 - Dark matter
- Kinematic contribution to Raychaudhuri equation
- Generalize dynamics
- General relativity

- Field equations for FRLW spacetime
 - Time evolution scale factor and cosmological function
- Newtonian limit of de Sitter teleparallel gravity
- Galaxy rotation curves
 - Dark matter
- Kinematic contribution to Raychaudhuri equation
- Generalize dynamics
- General relativity