An efficient kinetic modeling in plasmas by using the AWBS transport equation

Authors^{a,1}

^aCentre Lasers Intenses et Applications, Universite de Bordeaux-CNRS-CEA, UMR 5107, F-33405 Talence, France

Abstract

Keywords: kinetics; hydrodynamics; nonlocal electron transport; laser-heated plasmas.

 $E ext{-}mail\ address: milan.holec@u-bordeaux.fr}$

^{*}Corresponding author.

1. Introduction

2. The AWBS nonlocal transport model

$$\frac{\partial f}{\partial t} + \boldsymbol{v} \cdot \nabla_{\boldsymbol{x}} f + \tilde{\boldsymbol{E}} \cdot \nabla_{\boldsymbol{v}} f = v \frac{\nu_e}{2} \frac{\partial}{\partial v} \left(f - f_M \right) + \frac{\nu_{ei} + \frac{\nu_e}{2}}{2} \frac{\partial^2 f}{\partial \boldsymbol{n}^2}, \tag{1}$$

з [1]

4 3. BGK, AWBS, and Fokker-Planck models in local diffusive regime

We can try to find an approximate solution while using the first term of

expansion in λ_e and mu as

$$\tilde{f}(z, v, \mu) = f^{0}(z, v) + f^{1}(z, v)\lambda_{ei}(v)\mu.$$
 (2)

⁷ 3.1. The BGK local diffusive electron transport

$$\mu \left(\frac{\partial f}{\partial z} + \frac{\tilde{E}_z}{v} \frac{\partial f}{\partial v} \right) + \frac{\tilde{E}_z (1 - \mu^2)}{v^2} \frac{\partial f}{\partial \mu} = \frac{f - f_M}{\lambda_e} + \frac{1}{2} \left(\frac{1}{\lambda_{ei}} + \frac{1}{2\lambda_e} \right) \frac{\partial}{\partial \mu} (1 - \mu^2) \frac{\partial f}{\partial \mu}, \quad (3)$$

$$f^{0} = f_{M} + \frac{1}{v} f^{1} \bar{Z} \lambda_{ei}^{2}, \tag{4}$$

$$f^{1} = -\frac{\bar{Z}}{\bar{Z}+1} \left[\frac{\partial f^{0}}{\partial z} + \frac{\tilde{E}_{z}}{v} \frac{\partial f^{0}}{\partial v} \right], \tag{5}$$

$$f = f_M - \frac{\bar{Z}}{\bar{Z} + 1} \left[\frac{1}{\rho} \frac{\partial \rho}{\partial z} + \left(\frac{v^2}{2v_{th}^2} - \frac{3}{2} \right) \frac{1}{T} \frac{\partial T}{\partial z} - \frac{\tilde{E}_z}{v_{th}^2} \right] f_M \lambda_{ei} \mu,$$

$$\mathbf{j} \equiv q_e \int_0^\infty \int_{4\pi} v \mathbf{n} f \, d\mathbf{n} \ v^2 \, dv = \mathbf{0} \longrightarrow \tilde{\mathbf{E}} = v_{th}^2 \left(\frac{\nabla \rho}{\rho} + \frac{5}{2} \frac{\nabla T}{T} \right), \quad (6)$$

$$f = f_M - \frac{\bar{Z}}{\bar{Z} + 1} \left(\frac{v^2}{2v_{th}^2} - 4 \right) \frac{1}{T} \frac{\partial T}{\partial z} f_M \lambda_{ei} \mu,$$

$_{11}$ 3.2. The AWBS diffusive electron transport

$$\mu \left(\frac{\partial f}{\partial z} + \frac{\tilde{E}_z}{v} \frac{\partial f}{\partial v} \right) + \frac{\tilde{E}_z (1 - \mu^2)}{v^2} \frac{\partial f}{\partial \mu} = \frac{v}{2\lambda_e} \frac{\partial}{\partial v} \left(f - f_M \right) + \frac{1}{2} \left(\frac{1}{\lambda_{ei}} + \frac{1}{2\lambda_e} \right) \frac{\partial}{\partial \mu} (1 - \mu^2) \frac{\partial f}{\partial \mu}, \quad (7)$$

$$\frac{\partial}{\partial v} \left(f^0 - f_M \right) = \frac{1}{v^2} f^1 \bar{Z} \lambda_{ei}^2,$$

$$\frac{v}{\bar{Z} \lambda_{ei}} \frac{\partial (f^1 \lambda_{ei})}{\partial v} - \frac{\bar{Z} + 1}{\bar{Z}} f^1 = \frac{\partial f^0}{\partial z} + \frac{\tilde{E}_z}{v} \frac{\partial f^0}{\partial v}$$
(8)

$$\frac{\partial f^1}{\partial v} + \frac{1}{v}(3 - \bar{Z})f^1 = \frac{\bar{Z}}{v} \left(\frac{1}{\rho} \frac{\partial \rho}{\partial z} + \left(\frac{v^2}{2v_{th}^2} - \frac{3}{2} \right) \frac{1}{T} \frac{\partial T}{\partial z} - \frac{\tilde{E}_z}{v_{th}^2} \right) f_M. \tag{9}$$

12 3.3. The Fokker-Planck diffusive electron transport

13

14

$$\begin{split} v_{2th} &= \sqrt{\frac{2k_BT}{m_e}} = 1/j, \\ A &= -\frac{m_e^2 v_{2th}^2 \tilde{\boldsymbol{E}}}{2\pi e^4 n_e \mathrm{ln} \Lambda} = -\frac{mE}{2\pi j^2 e^3 n_e \mathrm{ln} \Lambda}, \\ B &= \frac{m_e^2 v_{2th}^4 |\nabla T|}{2\pi e^4 n_e \mathrm{ln} \Lambda T} = \frac{2k_B^2 T |\nabla T|}{\pi e^4 n_e \mathrm{ln} \Lambda}, \\ \frac{A}{B} &= -\frac{|\tilde{\boldsymbol{E}}|T}{v_e^2 \cdot |\nabla T|}, \end{split}$$

 $\tilde{\boldsymbol{E}} = -\frac{3}{2} \frac{v_{2th}^2}{2} \frac{\gamma_T}{\gamma_E} \frac{\nabla T}{T},$

From Eq. (24) CSR, we can write the form of f_1 including both ∇T and $\tilde{\boldsymbol{E}}$ effects as

$$f_1(v,\theta) = \cos(\theta) \frac{B}{\overline{Z}} \left(d_T(v/v_{2th}) + \frac{A}{B} d_E(v/v_{2th}) \right) f_M(v),$$

	$\bar{Z}=1$	$\bar{Z}=2$	$\bar{Z}=4$	$\bar{Z} = 16$	$\bar{Z} = 116$
$ar{\Delta}oldsymbol{q}_{AWBS}$	0.057	0.004	0.038	0.049	0.004

Table 1: Relative error $\bar{\Delta} q_{AWBS} = |q_{AWBS} - q_{SH}|/q_{SH}$ of the AWBS kinetic model equation (1) showing the discrepancy (maximum around 5%) with respect to the original solution of the heat flux given by Spitzer and Harm [5].

where in the case of vanishing current one gets

$$\frac{A}{B} = \frac{3}{2} \frac{\gamma_T}{2\gamma_E},$$

19 i.e.

$$f_1(v,\theta) = \cos(\theta) \frac{m_e^2}{4\pi e^4 \ln \Lambda} \frac{v_{2th}^4}{\bar{Z}} \left(2d_T(v/v_{2th}) + \frac{3}{2} \frac{\gamma_T}{\gamma_E} d_E(v/v_{2th}) \right) \frac{f_M(v)}{n_e} \frac{\nabla T}{T}, \tag{10}$$

where $d_T(x) = \bar{Z}D_T(x)/B$ and $d_E(x) = \bar{Z}D_E(x)/A$ are represented by numerical values in TABLE I and TABLE II in [5], respectively. In the case of high \bar{Z} limit, $\gamma_T \to 1$, $\gamma_E \to 1$, $d_E(x) = x^4$, and $d_T(x) = x^4(2.5 - x^2)/2$ [5],

²³ which leads to the standard Lorentz gas model

$$f_1(v,\theta) = \cos(\theta) \frac{m_e^2}{4\pi e^4 \ln \Lambda} \frac{v^4}{\bar{Z}} \left(4 - \frac{v^2}{v_{2th}^2} \right) \frac{f_M(v)}{n_e} \frac{\nabla T}{T}, \tag{11}$$

[2], [3], [4]

25 3.4. Summary of BGK, AWBS, and Fokker-Planck diffusion

4. Benchmarking the AWBS nonlocal transport model

27 4.1. Review of simulation codes

28 4.2. C7

In order to eliminate the dimensions of the above transport problem the first-two-moment model based on approximation

$$f = \frac{f_0}{4\pi} + \frac{3}{4\pi} \boldsymbol{n} \cdot \boldsymbol{f_1},$$

Figure 1: The flux velocity moment of the anisotropic part of the electron distribution function in low Z=1 and high Z=116 plasmas in diffusive regime.

can be adopted and reads

$$v\frac{\nu_e}{2}\frac{\partial}{\partial v}\left(f_0 - 4\pi f_M\right) = v\nabla \cdot \boldsymbol{f_1} + \tilde{\boldsymbol{E}} \cdot \frac{\partial \boldsymbol{f_1}}{\partial v} + \frac{2}{v}\tilde{\boldsymbol{E}} \cdot \boldsymbol{f_1},$$
$$v\frac{\nu_e}{2}\frac{\partial \boldsymbol{f_1}}{\partial v} - \left(\nu_{ei} + \frac{\nu_e}{2}\right)\boldsymbol{f_1} = \frac{v}{3}\nabla f_0 + \frac{\tilde{\boldsymbol{E}}}{3}\frac{\partial f_0}{\partial v},$$

32

$$\boldsymbol{q}_{c} \equiv q_{e} \int_{v} \left(\frac{\nu_{e}v^{2}}{\nu_{ei} + \frac{\nu_{e}}{2}} \frac{\partial \boldsymbol{f}_{1}}{\partial v} - \frac{v^{2}}{3\left(\nu_{ei} + \frac{\nu_{e}}{2}\right)} \nabla f_{0} - \frac{v}{3\left(\nu_{ei} + \frac{\nu_{e}}{2}\right)} \frac{\partial f_{0}}{\partial v} \tilde{\boldsymbol{E}} \right) v^{2} dv = 0,$$

33 4.2.1. Nonlocal electric field treatment

$$\left(v\frac{\nu_e}{2} - \frac{2\tilde{E}_z^2}{3v\nu_e}\right)\frac{\partial f_{1_z}}{\partial v} = \frac{2\tilde{E}_z}{3\nu_e}\frac{\partial f_{1_z}}{\partial z} + \frac{4\pi\tilde{E}_z}{3}\frac{\partial f_M}{\partial v} + \frac{v}{3}\frac{\partial f_0}{\partial z} + \left(\frac{4\tilde{E}_z^2}{3v^2\nu_e} + \left(\nu_{ei} + \frac{\nu_e}{2}\right)\right)f_{1_z},$$

Kn	10^{-3}	5×10^{-3}	10^{-2}	5×10^{-2}	10^{-1}
$v_{lim}^{Z=2}/v_{th}$	14.8	6.8	5.0	2.8	2.6
$v_{lim}^{Z=10}/v_{th}$	6.7	3.4	2.6	1.6	1.3

Table 2: $\sqrt{3}v\frac{\nu_e}{2} > \tilde{E}_z$.

$$|\tilde{\boldsymbol{E}}_{red}| = v\nu_e + \alpha^E v\nu_e, \tag{12}$$

$$|\tilde{\boldsymbol{E}}_{red}| = |\tilde{\boldsymbol{E}}_d| + |\tilde{\boldsymbol{E}}_{iso}|,$$

 $v\nu_e + |\tilde{\boldsymbol{E}}_{iso}| = |\tilde{\boldsymbol{E}}_d|,$

where we define the isotropic effect of E field as $|\mathbf{E}_{iso}| = v\nu_e^E$ by introducing the effective collisional frequency ν_e^E .

Since the effect of the original E field $\tilde{\boldsymbol{E}}$ has been reduced in (12), an additional collision term

$$v\nu_{ei}^{E} = |\tilde{\boldsymbol{E}}| - |\tilde{\boldsymbol{E}}_{red}|,$$

is added to scattering on ions. The improved collision AWBS operator then takes the following form

$$C_{AWBS} = v \left(\frac{1}{2} + \alpha^E\right) \nu_e \frac{\partial}{\partial v} \left(f - f_M\right) + \left(\nu_{ei} + \nu_{ei}^E + \frac{\nu_e}{2}\right) (f_0 - f),$$

where both α^E and ν^E_{ei} apply only if $|\tilde{\boldsymbol{E}}| > \sqrt{3}v\frac{\nu_e}{2}$ and are set to zero otherwise.

P1 approximation equivalent

$$f = \frac{4\pi f_M + \delta f_0}{4\pi} + \frac{3}{4\pi} \boldsymbol{n} \cdot \boldsymbol{f_1}.$$
 (13)

where the moment model reads

$$v\left(\frac{1}{2} + \alpha^{E}\right)\nu_{e}\frac{\partial\delta f_{0}}{\partial v} = v\nabla\cdot\boldsymbol{f_{1}} + \tilde{\boldsymbol{E}}\cdot\left(\omega_{d}\frac{\partial\boldsymbol{f_{1}}}{\partial v} + \frac{2}{v}\boldsymbol{f_{1}}\right),$$

$$v\left(\frac{1}{2} + \alpha^{E}\right)\nu_{e}\frac{\partial\boldsymbol{f_{1}}}{\partial v} = \left(\nu_{ei} + \nu_{ei}^{E} + \frac{\nu_{e}}{2}\right)\boldsymbol{f_{1}} + \frac{v}{3}\nabla\left(4\pi f_{M} + \delta f_{0}\right)$$

$$+\frac{\tilde{\boldsymbol{E}}}{3}\left(4\pi\frac{\partial f_{M}}{\partial v} + \omega_{d}\frac{\partial \delta f_{0}}{\partial v}\right),$$

$$\tilde{\boldsymbol{E}} = \frac{\int_{v} \left(\frac{\left(\frac{1}{2} + \alpha^{E}\right)\nu_{e}v^{2}}{\nu_{ei} + \nu_{ei}^{E} + \frac{\nu_{e}}{2}} \frac{\partial f_{1}}{\partial v} - \frac{v^{2}}{3\left(\nu_{ei} + \nu_{ei}^{E} + \frac{\nu_{e}}{2}\right)} \nabla \left(4\pi f_{M} + \delta f_{0}\right) \right) v^{2} dv}{\int_{v} \frac{v}{3\left(\nu_{ei} + \nu_{ei}^{E} + \frac{\nu_{e}}{2}\right)} \left(4\pi \frac{\partial f_{M}}{\partial v} + \omega_{d} \frac{\partial \delta f_{0}}{\partial v}\right) v^{2} dv},$$

- where $\omega_d(v) = |\tilde{\boldsymbol{E}}_d(v)|/|\tilde{\boldsymbol{E}}|$.
- 45 4.3. Aladin

Figure 2: Snapshot 12 ps. Left: correct steady solution of heat flux. Right: correct comparison to kinetic profiles at point 442 μ m by Aladin.

Figure 3: Snapshot 12 ps. Left: correct steady solution of heat flux. Right: correct comparison to kinetic profiles at point 480 μ m by Aladin.

Figure 4: Snapshot 12 ps. Left: correct steady solution of heat flux. Right: correct comparison to kinetic profiles at point 442 μm by Aladin.

Figure 5: Snapshot 12 ps. Left: correct steady solution of heat flux. Right: correct comparison to kinetic profiles at point 480 μ m by Aladin.

46 4.4. Impact

Figure 6: Impact diffusive case 1.

Figure 7: Impact case 2.

Figure 8: Snapshot 12 ps. Left: correct steady solution of heat flux. Right: correct comparison to kinetic profiles at point 437 μ m by Impact.

Figure 9: Impact case 4.

Figure 10: Impact case 5.

4.5. Calder

Figure 11: Snapshot 11 ps. Left: correct steady solution of heat flux. Right: Kinetic profiles at point of maximum flux by C7. Kinetics profiles by CALDER should be added.

48 4.6. Simulation results

Figure 12: Simulation results for the case Z=2 computed by C7/Aladin/Impact/Calder. Every point corresponds to the maximum heat flux in a "tanh" temperature simulation, which can be characterized by Kn. The range of $\log_{10}(\mathrm{Kn}) \in (-0.5, -3.5)$ can be expressed as equivalent to the electron density approximate range $\mathrm{n}_e \in (5e19, 3.5e22)$ of the 50 $\mu\mathrm{m}$ slope tanh case.

Figure 13:

5. Conclusions

- 50 [1] Nathaniel J. Fisch. Theory of current drive in plasmas. Rev. Mod. Phys., 59(1):175234, Jan 1987.
- [2] Marshall N. Rosenbluth, William M. MacDonald, and David L.
 Judd. Fokker-planck equation for an inverse-square force. Phys. Rev.,
 107(1):16, Jul 1957.
- [3] Longmire, Conrad L.: Elementary Plasma Physics. Intersci. Pub., 1963.
- [4] I.P. Shkarofsky, T.W. Johnston, T.W. Bachynski, The Particle Kinetics
 of Plasmas, Addison-Wesley, Reading, MA, 1966.
- ₅₈ [5] SH 1953.