VECTOR LINE INTEGRALS

- Vector Line Integrals
- FTC for Gradients

VECTOR LINE INTEGRALS

WORK

$$W=F\cdot V$$

WORK ALONG A CURVE

$$W = \int_C \overrightarrow{\mathbf{F}} \cdot \overrightarrow{\mathbf{T}} ds = \int_a^b \overrightarrow{\mathbf{F}}(\mathbf{c}(t)) \cdot \mathbf{c}'(t) dt$$

$$ds = |\mathbf{c}'|, \quad \overrightarrow{\mathbf{T}} = rac{\mathbf{c}'}{|\mathbf{c}'|}$$

2D NOTATION

DEFINITION

For
$$\overrightarrow{\mathbf{F}} = (P,Q)$$
 and $c(t) = (x(t),y(t))$

$$egin{align} \int_C \overrightarrow{\mathbf{F}} \cdot \overrightarrow{\mathbf{T}} ds &= \int_a^b P rac{dx}{dt} dt + Q rac{dy}{dt} dt \ &= \int_C P dx + Q dy. \end{aligned}$$

3D NOTATION

DEFINITION

For
$$\overrightarrow{\mathbf{F}} = (P,Q,R)$$
 and $c = (x(t),y(t),z(t))$

$$egin{aligned} \int_C \overrightarrow{\mathbf{F}} \cdot \overrightarrow{\mathbf{T}} ds &= \int_a^b P rac{dx}{dt} dt + Q rac{dy}{dt} dt + R rac{dz}{dt} dt \ &= \int_C P dx + Q dy + R dz. \end{aligned}$$

EXAMPLE

EXAMPLE

$$\int_C x dx + y dy + z dz$$

along $\mathbf{c}(t) = (\sin t, \cos t, t)$, $0 \leq t \leq 2\pi$.

FTC FOR GRADIENTS

FTC FOR GRADIENTS

THEOREM

$$\int_C
abla f \cdot \overrightarrow{\mathbf{T}} ds = f(\mathbf{c}(b)) - f(\mathbf{c}(a))$$

EXAMPLE

EXAMPLE

$$ullet$$
 $\mathbf{c}(t)=ig(t^2/4,\sin^3(t\pi/2)ig)$, $t\in[0,1]$

•
$$f(x,y) = xy$$

$$\int_C y dx + x dy = rac{1}{4}$$

CONSERVATIVE VECTOR FIELDS

DEFINITION

A vector field is conservative if the work done around a closed loop is zero.

CONSERVATIVE VECTOR FIELDS

LEMMA

The following conditions are equivalent:

- 1. F is conservative
- 2. F =
 abla f for some scalar field f
- 3. The work done by F along a path joining points p and q is independent of the path taken

INVERSE SQUARE LAW

EXAMPLE

$$\overrightarrow{\mathbf{F}}(x,y) = rac{1}{(x^2+y^2)^{3/2}}(x,y), \quad (x,y)
eq (0,0)$$

$$\overrightarrow{\mathbf{F}} =
abla \left(rac{-1}{\sqrt{x^2 + y^2}}
ight)$$