D. Chińska komórka

Dostępna pamięć: 32 MB

Niezbyt dawno temu wpisywanie tekstu na telefonie komórkowym wyglądało następująco. L liter napisanych w kolejności alfabetycznej było podzielone pomiędzy K klawiszy, tj. każdy klawisz zawierał spójny fragment alfabetu. Aby wpisać określoną literę, należało znaleźć klawisz z zadaną literą; jeśli stała ona na nim na i-tej pozycji, należało nacisnąć ten klawisz i razy. Przykładowo na standardowej komórce L=26 liter było podzielonych między K=8 klawiszy. Na klawiszu "7" znajdowały się litery pqrs. Wprowadzenie litery r wymagało zatem naciśnięcia tego klawisza 3 razy.

Ostatnio Rząd Chińskiej Republiki Ludowej postanowił wprowadzić na rynek podobną komórkę, tylko nieco większą, żeby zmieściły się na niej wszystkie chińskie symbole (dalej nazywane literami). Litery zostały ponumerowane od 1 do L, pozostało je tylko podzielić pomiędzy K klawiszy. Rząd ChRL ustalił, że układ klawiszy na komórce ma zostać tak zoptymalizowany, żeby pewien określony komunistyczny pamflet dało się wpisać naciskając klawisze minimalną liczbę razy.

Specyfikacja danych wejściowych

W pierwszym wierszu wejścia znajdują się dwie liczby naturalne K i L oddzielone pojedynczą spacją, spełniające warunki: $1 \le K \le 100$, $1 \le L \le 10\,000$, $K \le L$. W drugim wierszu znajduje się L liczb naturalnych f_1, f_2, \ldots, f_L oddzielonych pojedynczym odstępem. Liczba $f_i \in [1, \ldots, 1000]$ jest liczbą wystąpień litery i w pamflecie. W siedmiu punktowanych testach zachodzi dodatkowo $L \le 1000$.

Specyfikacja danych wyjściowych

W pierwszym wierszu wyjścia Twój program powinien wypisać jedną liczbę naturalną będącą minimalną liczbą naciśnięć klawiszy konieczną do wpisania pamfletu na najlepszej możliwej klawiaturze składającej się z K klawiszy. W drugim wierszu wyjścia Twój program powinien wypisać opis takiej klawiatury: K liczb naturalnych K_1, K_2, \ldots, K_K oddzielonych pojedynczymi odstępami, gdzie K_1 jest liczbą liter przypisanych do klawisza K_2 .

Jeśli istnieje wiele optymalnych rozmieszczeń liter na klawiszach, należy wybrać takie, które maksymalizuje liczbę liter na ostatnim klawiszu, wśród nich to, które maksymalizuje liczbę liter na przedostatnim klawiszu itd.

Przykład A

Wejście:	Wyjście:
5 6	14
2 2 2 2 2 2	1 1 1 1 2

Przykład B

Wejście:	Wyjście:
2 4	8
3 1 1 1	2 2

Przykład C

Wejście:	Wyjście:
3 6	23
3 4 3 1 1 4	2 3 1