Interpretable Machine Learning

Individual Conditional Expectation (ICE) Plot

- ICE curves as local effect method
- How to sample grid points for ICE curves

MOTIVATION

Question: How does changing values of a single feature of an observation affect model prediction?

Idea: Change values of observation and feature of interest, and visualize how prediction changes

Example: Prediction surface of a model (left), select observation and visualize changes in prediction for different values of x_2 while keeping x_1 fixed

⇒ local interpretation

INDIVIDUAL CONDITIONAL EXPECTATION (ICE)

► Goldstein et. al (2013)

Partition each observation \mathbf{x} into \mathbf{x}_S (feature(s) of interest) and \mathbf{x}_S (remaining features)

	× _s	_x _s	
i	X,	X ₂	X ₃
1	1	4	7
2	2	5	8
3	3	6	9

In practice, x_S consists of one or two features (i.e., |S| ≤ 2 and −S = S^C).

Formal definition of ICE curves:

- Choose grid points $\mathbf{x}_{S}^{*} = \mathbf{x}_{S}^{*^{(1)}}, \dots, \mathbf{x}_{S}^{*^{(g)}}$ to vary \mathbf{x}_{S}
- For each k connect point pairs to obtain ICE curve
- → ICE curves visualize how prediction of i-th observation changes after varying its feature values indexed by S using grid points x^{*}_S while keeping all values in −S fixed

Step - Grid points:

Sa
$$x_1 = x_2 = x_3 = x$$

 $\frac{2}{3}$ $\frac{2}{3}$ $\frac{5}{6}$ $\frac{1}{9}$ ew artificial points for *i*-th observation (here: $\mathbf{x}_S^* = x_1^* \in \{1, 2, 3\}$ scalar)

1. Step - Grid points:

Sample grid values $\mathbf{x}_{S}^{*^{(1)}}, \dots, \mathbf{x}_{S}^{*^{(\theta)}}$ along feature of interest \mathbf{x}_{S} and replace vector $\mathbf{x}^{(t)}$ in data with grid

 \Rightarrow Creates new artificial points for *i*-th observation (here: $\mathbf{x}_{\mathcal{S}}^* = \mathbf{x}_1^* \in \{1, 2, 3\}$ scalar)

2. Step - Predict and visualize: 2. Step - Predict and visualize:

2. Step. - Predict and visualize: For each artificially created data point of *i*-th observation, plot prediction $\hat{f}_{S,ICE}^{(i)}(\mathbf{x}_{S}^{*})$ vs. For each artificially created data point of *i*-th observation, plot prediction $f_{S,ICE}^{(i)}(\mathbf{x}_{S}^{*})$ vs. grid values x:

$$\hat{f}_{1,ICE}^{(i)}(x_k^*) = \hat{f}(x_k^*, \mathbf{x}_{2,3}^{(i)}) \, \underset{\text{vs. } x_k^* \in \{1, 2, 3\}}{\text{vs. }} f(x_k^*) = f(x_k^*, \mathbf{x}_{2,3}^{(i)}) \, \underset{\text{vs. } x_k^* \in \{1, 2, 3\}}{\text{vs. }}$$

2. Step - Predict and visualize: 2. Step - Predict and visualize:

2. Step. Predict and visualize: For each artificially created data point of *i*-th observation, plot prediction $f_{S/OE}^{(i)}(\mathbf{x}_{S}^{*})$ vs. For each artificially created data point of *i*-th observation, plot prediction $f_{S/OE}^{(i)}(\mathbf{x}_{S}^{*})$ vs. grid values x:

$$\hat{f}_{1,ICE}^{(i)}(x_k^*) = \hat{f}(x_k^*, \mathbf{x}_{2,3}^{(i)}) \, \underset{\text{vs. } x_k^* \in \{1, 2, 3\}}{\text{vs. }} f(x_k^*) = f(x_k^*, \mathbf{x}_{2,3}^{(i)}) \, \underset{\text{vs. } x_k^* \in \{1, 2, 3\}}{\text{vs. }}$$

2. Step - Predict and visualize: 2. Step - Predict and visualize:

2. Step - Predict and visualize: For each artificially created data point of i-th observation, plot prediction $\hat{f}_{S,ICE}^{(i)}(\mathbf{x}_S^*)$ vs. one each artificially created data point of i-th observation, plot prediction $f_{S,ICE}(\mathbf{x}_S^*)$ vs. one values \mathbf{x}_S^* :

$$\hat{f}_{1,ICE}^{(i)}(x_{k}^{*}) = \hat{f}(x_{k}^{*}, \mathbf{x}_{100}^{(i)}) \text{ vs. } x_{k}^{*} \in \left\{1, 2, 3\right\}$$

- 3. Step Repeat for other observations: 3. Step Repeat for other observations:
- 3. Step Hepeat for other observations:
 LE curve for i = 2 connects all predictions at grid values associated to i-th ICE curve for i = 2 connects all predictions at grid values associated to i-th observation.

 observation.

- 3. Step Repeat for other observations:
 3. Step Repeat for other observations:
 5. Curve for first some case all preparations. The property of the connects all predictions at grid values associated to i-th ICE curve for i=3 connects all predictions at grid values associated to i-th
- observation.

ICE CURVES INTERPRETATION

Example: Prediction surface of a model (left) select observation and visualize changes in prediction for different values of x_2 while keeping x_1 fixed

- ⇒ local interpretation
 - equidistant grid values within feature range
 - randomly sampled values or quantile values of observed feature values

COMMENTS ON GRID VALUES

- Plotting ICE curves involves generating grid values x_s; visualized on x-axis
- · Common choices for grid values are
 - equidistant grid values within feature range
 - randomly sampled values or quantile values of observed feature values
- Except equidistant grid, the other two options preserve (approximately) the marginal distribution of feature of interest
- Correlations/interactions → unrealistic values in all three methods

