

Cultural Diversity

Factors and Results of Cultural Diversity

Variety

Eun-A Jung, Soonbin Hong, Hyebong Kim, Seachang Jeon

	Introduction Methods Result Discussion Conclusion Future Direction
Introduction	Contents
	 Introduction
	• Method
	• Result
	 Discussion
	 Conclusion & Future Work
	 Reference

Introduction

	Introduction	Methods	Result	Discussion	Conclusion	Future Direction
Introduction	GDP?		6)		obal ace?
	GNI	?		•		Well- being?

	Introduction Methods	Result [Discussion	Conclusion	Future Direction
Introduction	corruption	ty Adjusted II-being (Goods balar	Th nce Well-being	ne percentage of assemblywomen
	tourism income a crime rate Inequality adjusted	Human netv _{zation levels} life: udent's abili	Access Loi span	index ion rate ng-term nployment	Dwellings bisiseol
	Household financial air pollution assets Current-account Mobile subscriber	urnout	Perso	nal Income ler gap index _{ex}	Housing costs Rooms Tourist per personI penditure
	ousehold period disposable income The HDI unemployment Drinking exchange rapte consumption	econ	omic ^{Educati} wth	GNI Dr ion Level	ility rate the consumer inking price index umption ependence on exports and imports
	water pollution service account satisfaction	Leisure	e time per day	Beating rate (GDP

Introduction Methods Result Discussion Conclusion Future Direction

1) Gathering and Filtering Data

Datasets

Methods

Consumer Price, Crime Rate, Economic Freedom, Gender Inequality, Global Peace,

GNI/person, Human Development, Life Expectancy, Total Fertility Rate, Urbanization Rate,

Happy Planet Index, Wellbeing, Economic Participation Rate,

World Corruption

[점] GI_CPI(소비자물가지수)	2015-07-09 오후	Microsoft Office E
🗐 GI_CPI(소비자물가지수)2	2015-07-09 오후	Microsoft Office E
∰ GI_CRI(범죄발생률)	2015-07-13 오후	Microsoft Office E
GI_EFI(경제자유도지수)	2015-07-09 오후	Microsoft Office E
🕙 GI_EGR(경제성장률)	2015-07-09 오후	Microsoft Office E
🗐 GI_EXP(수출)	2015-07-10 오전	Microsoft Office E
🛂 GI_EXR(환율)	2015-07-09 오후	Microsoft Office E
🕵 GI_GII(성불평등지수)	2015-07-09 오후	Microsoft Office E
🕙 GI_GNI(국민 유형: Microsoft Office Excel 원	임표로 구분된 값 파일	Microsoft Office E
(S) GI_GPI(국제 클키: 3:28KB 수정한 날짜: 2015-07-09 오루	2015-07-09 오후	Microsoft Office E
图 GI_HDI(인진지을의 루)~. 2013-07-09 모	2015 07 00 Sq	Microsoft Office E
🕵 GI_IMP(수입)	2015-07-10 오전	Microsoft Office E
🕵 GI_IMP(수입)2	2015-07-10 오전	Microsoft Office E
🐴 GI_LIF(기대수명)	2015-07-09 오후	Microsoft Office E
🔁 GI_MPM(이동전화가입자수)	2015-07-09 오후	Microsoft Office E
🔨 GI_TFR(합계출산율)	2015-07-09 오후	Microsoft Office E
🖺 GI_UBR(도시화율)	2015-07-09 오후	Microsoft Office E
🐴 GI_WPR(여성국회의원비율)	2015-07-09 오후	Microsoft Office E

			Α			В	C		D	
1	С	ountr	у		Co	de	GI		GPI	
2	D+O	. ⊒5 v	11 -	ϽÊ	2F	₩ • %	, 🧃	178	3.44	
3)86	1.96	
4	가	가 를	<u> </u>	⊘ •	간	- 00. °	00 E3H	75	2.28	
5	V	TITLL	17100		ANI	<u> </u>	- 0	ີງ22		
ϵ	₩		H기(II)					721	2.15	
7		복사(35		
8	3	붙여성	킿기(<u>P</u>)					0	1.91	
KB		선택하	하여 붙여	[봉기	l(<u>S</u>)			95	2.12	
KB		삽입(D					129	1.44	
KB		삭제(<u>D</u>)					194	1.25	
KB		내용	지우기(1	4))32	1,23	
KB	~	센 서.	식(F)	_				342		
KB KB	==		_					76		
KB			0 (<u>R</u>)						210	
KB		숨기기						.83	2.16	
KB			기 취소(<u>(</u>	<u>J)</u>				375		
KB		ELARI			BLF	•		1965	2.12	
KB	В	ELGIU	JM		BEL	-	0.5	5374	1.34	
KB	В	ELIZE			BLZ	-	0.0	6436		
KB	В	ENIN			BEN	V	0.0	5845	2.16	
KB KB	В	HUTA	N		BTI	V	0.5	5751	1.49	
KB	В	OLIVI	Α		ВО	L	0.0	6671	2.06	
KB	-	111 5	heet1	\di	na d	2/She	ot3	100	4 07	
				- 11						

2) Correlation Analysis

> cor.test(GI,TFR)

```
Methods
```

```
Pearson's product-moment correlation

data: GI and TFR
t = 7.2353, df = 159, p-value = 1.859e-11
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.3716194 0.6057328
sample estimates:

cor
0.4976871
```

Introduction Methods Result Discussion Conclusion Future Direction

2) Correlation Analysis

Total Fertility Rate

---,---,

0.4976871

Pearson's product-moment correlation

data: GI and TFR
t = 7.2353, df = 159, p-value = 1.859e-11
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.3716194 0.6057328
sample estimates:
cor

Life Expectancy

> cor.test(GI,EL)

Pearson's product-moment correlation

Result

Introduction Methods Result Discussion Conclusion Future Direction

2) Correlation Analysis

Happy Planet Index

> cor.test(GI, HPI)

-0.3511525

Result

Pearson's product-moment correlation

data: GI and HPI
t = -4.4691, df = 142, p-value = 1.594e-05
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 -0.4867684 -0.1990076
sample estimates:

Well-Being Index

> cor.test(GI,Wellbeing)

Pearson's product-moment correlation

Introduction Methods Result Discussion Conclusion Future Direction

2) Correlation Analysis

Pearson's product-moment correlation

data: GI and GPI t = 3.5653, df = 151, p-value = 0.0004871 alternative hypothesis: true correlation is not equal to 0 95 percent confidence interval: 0.1255193 0.4188080 sample estimates:

0.2786476

Gender Inequality

> cor.test(GI,GII)

Pearson's product-moment correlation

data: GI and GII t = 7.1868, df = 145, p-value = 3.23e-11 alternative hypothesis: true correlation is not equal to 0 95 percent confidence interval: 0.3823210 0.6227201 sample estimates: 0.5124934

Result

Introduction Methods Result Discussion Conclusion Future Direction

2) Correlation Analysis

Human Development

cor -0.4757877

Result

Pearson's product-moment correlation

```
data: GI and Human.development
t = -6.9485, df = 165, p-value = 8.137e-11
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
-0.5853564 -0.3491520
sample estimates:
```


Urbanization Rate

> cor.test(GI, Urbanization.rate)

Pearson's product-moment correlation

```
data: GI and Urbanization.rate
t = -2.7947, df = 159, p-value = 0.005834
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
-0.35904196 -0.06384595
sample estimates:
```

-0.2163839

Introduction Methods Result Discussion Conclusion Future Direction

2) Correlation Analysis

World Corruption

-0.2947726

Result

Pearson's product-moment correlation

data: GI and Corruption t = -3.8405, df = 155, p-value = 0.0001785 alternative hypothesis: true correlation is not equal to 0 95 percent confidence interval: -0.4314878 -0.1448212 sample estimates:

Economic Participation Rate

> cor.test(GI,EPI)

0.2456616

Pearson's product-moment correlation

```
data: GI and EPI
t = 2.2238, df = 77, p-value = 0.02909
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 0.02596134 0.44272395
sample estimates:
```


Introduction Methods Result Discussion Conclusion Future Direction

3) Regression Analysis

All Variables in one equation

Methods

	S2 ▼ (COUNTIF(C2:R2,"")														
	Е	F	G	Н	I	J	K	L	М	N	0	Р	Q	R	S
1	GII	Exchange rate	Economic g	Total fertil	Life exped	Economic	Crime/10	gender ed	Woman p	Mobileph	urbanizat	Human d	GNI/pers	consumer	price
2	0.705	55.38	4.2	6.33	58.4	N/A		0.705	27.6	70	36.7	0.468	1904	127.2	1
3	0.245	105.67	1.3	1.75	76.3	65.2	157	0.245	17.9	116.2	71.1	0.716	9225	107.6	0
4	0.425	79.37	2.7	2.72	70.3	49.6		0.425	25.8	102	78.7	0.717	12555	117.5	1

	D175	→ (9	$f_{x} = 0$	COUNTIF(D	2:D174,"")	
	А	В	С	D	E	
157	TOGO	TGO	0.8118		0.579	
158	TONGA	TON	0.0869		0.458	
159	TRINIDAD AND 1	TTO	0.4783	2.07	0.321	
160	TUNISIA	TUN	0.0391	2.01	0.265	
161	TURKEY	TUR	0.31	2.44	0.36	
162	TURKMENISTAN	TKM	0.2932	2.15		
163	UGANDA	UGA	0.363	2.18	0.529	
164	UKRAINE	UKR	0.3349	2.24	0.326	
165	UNITED ARAB EN	ARE	0.6246	1.68	0.244	
166	UNITED KINGDO	GBR	0.0901	1.79	0.193	
167	UNITED STATES	USA	0.278	2.13	0.262	
168	URUGUAY	URY	0	1.53	0.364	
169	UZBEKISTAN	UZB	0.3564	2.33		
170	VANUATU	VUT	0.0405			
171	VENEZUELA	VEN	0.0392	2.37	0.464	
172	VIETNAM	VNM	0.235	1.77	0.322	
173	ZAMBIA	ZMB	0.6681	1.83	0.617	
174	ZIMBABWE	ZWE	0.3187	2.7	0.516	
175				25	26	

	D176	- (0	fx)2:D174)		
	А	В	С		D	E
157	TOGO	TGO	0.8	118		0.579
158	TONGA	TON	0.0	369		0.45
159	TRINIDAD AND	TTO	0.4	783	2.07	0.32
160	TUNISIA	TUN	0.0	391	2.01	0.26
161	TURKEY	TUR	(.31	2.44	0.3
162	TURKMENISTAN	TKM	0.2	932	2.15	
163	UGANDA	UGA	0.	363	2.18	0.52
164	UKRAINE	UKR	0.3	349	2.24	0.32
165	UNITED ARAB EN	ARE	0.6	246	1.68	0.24
166	UNITED KINGDO	GBR	0.0	901	1.79	0.19
167	UNITED STATES	USA	0	278	2.13	0.26
168	URUGUAY	URY		0	1.53	0.36
169	UZBEKISTAN	UZB	0.3	564	2.33	
170	VANUATU	VUT	0.0	405		
171	VENEZUELA	VEN	0.0	392	2.37	0.46
172	VIETNAM	VNM	0	235	1.77	0.32
173	ZAMBIA	ZMB	0.6	681	1.83	0.61
174	ZIMBABWE	ZWE	0.3	187	2.7	0.51
175					25	20
176					2.034797	

Methods

All Variables in one equation

HPI + Corruption + Wellbeing

All Variables in one equation

```
Result
```

```
> new.lm2 <- lm(formula = GI ~ GII + Total.fertility.rate +
                                                                     > shapiro.test(new.lm2$resid)
       HPI, data = filtered2)
> summary(new.lm2)
                                                                             Shapiro-Wilk normality test
Call:
lm(formula = GI ~ GII + Total.fertility.rate + HPI, data = filtered2) data: new_lm2Sresid
                                                                     W = 0.9902, p-value = 0.3055
Residuals:
    Min
             10 Median
                                                                     > bptest(new.lm2)
-0.6133 -0.1486 0.0092 0.1643 0.4870
                                                                             studentized Breusch-Pagan test
Coefficients:
                      Estimate Std. Error t value Pr(>|t|)
                                                                     data: new.lm2
(Intercept)
                                0.091728
                                                                     BP = 3.8612, df = 3, p-value = 0.2769
GTT
                     0.357924
                                0.128670
                                           2.782 0.006045 **
                                           3.101 0.002276 **
Total.fertilitv.rate 0.049769
                                0.016052
                                                                     > dwtest(new.lm2)
HPT
                     -0.006479
                                0.001848 -3.505 0.000589 *
                                                                             Durbin-Watson test
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
                                                                     data: new.lm2
Residual standard error: 0.2035 cm 163
                                                                     DW = 1.6854, p-value = 0.0193
Multiple R-squared: 0.3375,
                              Adjusted R-squared: 0.325
F-statistic: 27.68 on 3 and 163 DF, p-value: 1.608e-14
```

Cultural Diversity = 0.357802 + 0.357964*Gender Inequality + 0.049769*Total Fertility Rate -0.006479Happy Planet Index

> HDI.lm <- lm(GI ~ Human.development)

Each variable -> Cultural Diversity

```
Methods
```

```
> summary(HDI.lm)
Call:
lm(formula = GI ~ Human.development)
Residuals:
                                          shapiro.test(HDI.lm$resid)
              1Q Median
-0.53358 -0.16999 -0.00156 0.17326 0.49
                                                Shapiro-Wilk normality test
Coefficients:
                 Estimate Std. Error t vidata: HDI.lm$resid
                                        W = 0.98556, p-value = 0.08184
(Intercept)
Human.development -0.75801
                            0.10909 -6
                                        > bptest(HDI.lm)
Signif. codes: 0 '***' 0.001 '**' 0.01 '
                                                studentized Breusch-Pagan test
Residual standard error: 0.219 on 165 deg
Multiple R-squared: 0.2264, Adjusted | data: HDI.lm
F-statistic: 48.28 on 1 and 165 DF, p-va_{BP} = 4.5271, df = 1, p-value = 0.03336
                                                                                                                                 0.9
 Linear modeling
                                        > dwtest(HDI.lm)
                                                                                                             Human.development
                                                Durbin-Watson test
                                                                                                           Plot & Prediction
                                        data: HDI.lm
                                        DW = 1.8251, p-value = 0.1262
                                        alternative hypothesis: true autocorrelation is greater than 0
                                         Test
```


Introduction Methods Result Discussion Conclusion Future Direction

3) Regression Analysis

Cultural Diversity -> Each Variable

Result

```
> HDI.1m2 <- lm(Human.development ~ GI)
> summary(HDI.lm2)
Call:
lm(formula = Human.development ~ GI)
Residuals:
    Min
               10 Median
-0.39406 -0.08020 0.00452 0.10226 0.31061
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.79817
                       0.01857 42.980 < 2e-16 ***
            -0.29864
                       0.04298 -6.948 8.14e-11
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.1374 on 165 degrees of freedom
Multiple R-squared: 0.2264, Adjusted R-squared: 0.2217
F-statistic: 48.28 on 1 and 165 DF, p-value: 8.137e-11
```

Human Development

Human Development = 0.79817 - 0.29864*Cultural Diversity

Cultural Diversity -> Each Variable

```
Result
```

```
> shapiro.test(HDI.lm2$resid)
        Shapiro-Wilk normality test
      HDI.lm2$resid
W = 0.98245, p-value = 0.033
> bptest(HDI.lm2)
        studentized Breusch-Pagan test
                                                                    0
data: HDI.lm2
BP = 0.34629, df = 1, p-value = 0.5562
> dwtest(HDI.1m2)
        Durbin-Watson test
                                                                                                       00
data: HDI.1m2
                                                                  0.0
                                                                            0.2
                                                                                     0.4
                                                                                               0.6
                                                                                                         8.0
    1.887, p-value = 0.2281
alternative nypotnesis: true autocorrelation is greater than 0
                                                                                       GI
```

> LIF.1m2 <- 1m(EL ~ GI)

```
Cultural Diversity -> Each Variable
```

Result

```
> summary(LIF.lm2)
Call:
lm(formula = EL ~ GI)
Residuals:
              10 Median
-27.381 -3.610 1.640
                            5.415 17.233
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 76.946
GI
              -19.757
                            3.039 -6.501 1.75e-09
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 8.363 on 124 degrees of freedom
  (1 observation deleted due to missingness
Multiple R-squared: 0.2542,
                                  Adjusted R-squared: 0.2482
F-statistic: 42.27 on 1 and 124 DF, p-value: 1.754e-09
> shapiro.test(LIF.lm2$resid)
       Shapiro-Wilk normality test
data: LIF.lm2$resid
W = 0.94437, p-value = 5.644e-05
> bptest(LIF.lm2)
       studentized Breusch-Pagan test
data: LIF.1m2
BP = 0.83858, df = 1, p-value = 0.3598
> dwtest(LIF.lm2)
       Durbin-Watson test
data: LIF.1m2
DW = 1.9079, p-value = 0.3002
alternative hypothesis: true autocorrelation is greater than 0
```

GI

Life Expectancy

Life Expectancy = 76.947 - 19.757*Cultural Diversity

```
Cultural Diversity -> Each Variable
```

```
Call:
lm(formula = TFR ~ GI)
Residuals:
             10 Median
-2.3064 -0.9323 -0.2542 0.6834 4.9731
Coefficients:
(Intercept) 1.7881
                                7.235 1.86e-11 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.348 on 159 degrees of freedom
Multiple R-squared: 0.2477.
F-statistic: 52.35 on 1 and 159 DF,
                                      p-value: 1.859e-11
> shapiro.test(TFR.lm2$resid)
       Shapiro-Wilk normality test
data: TFR.lm2$resid
W = 0.93151, p-value = 5.841e-07
> bptest(TFR.1m2)
```

Total Fertility Rate

Durbin-Watson test

data: TFR.1m2

> dwtest(TFR.lm2)

> TFR.1m2 <- lm(TFR ~ GI) > summary(TFR.1m2)

Result

data: TFR.lm2
DW = 1.9489, p-value = 0.3687
alternative hypothesis: true autocorrelation is greater than 0

studentized Breusch-Pagan test

BP = 0.8854, df = 1, p-value = 0.3467

Total Fertility Rate = 1.7881 + 3.1028*Cultural Diversity

Group's idea:

Discussion

There will be significant factors influencing on Cultural diversity in a positive way.

Cultural diversity don't have necessarily good influence on country

Missing points

Discussion

- We did not consider complex factors as much
- There were many missing values in some Indexes

The result of analysis did not correspond to our prediction

Future study needed

- With more data & more significant factors

- Economic Effects of Domestic and Neighbouring Countries' Cultural Diversity (E Gören 2013 papers.ssrn.com)
- GDP per capita average annual growth rate(http://data.un.org/Data.aspx?q=gdp+growth+rate&d=SOWC&f=inID%3a93)
- Population by religion, sex and urban/rural
- http://data.worldbank.org/country
- http://www.heritage.org/index/ranking
- https://en.wikipedia.org/wiki/List_of_countries_by_economic_freedom
- http://www.tradingeconomics.com/country-list/gdp
- - http://journals.lww.com/academicmedicine/Abstract/2007/06000/Measures_of_Cultural_Competence__Examinin g_Hidden.5.aspx
- http://www.theguardian.com/news/datablog/2014/jun/18/global-peace-index-2014-every-country-ranked
- http://www.numbeo.com/crime/rankings_by_country.jsp
- http://hdr.undp.org/en/content/gender-inequality-index-gii
- http://kosis.kr/statisticsList/statisticsList_03List.jsp?vwcd=MT_RTITLE&parmTabId=M_03_01#SubCont

- About Index Global Peace Index
- https://en.wikipedia.org/wiki/Global_Peace_Index
- The Global Peace Index (GPI) is an attempt to measure the relative position of nations' and regions' peacefulness.[1] It is the product of the Institute for Economics and Peace (IEP) and developed in consultation with an international panel of peace experts from peace institutes and think tanks with data collected and collated by the Economist Intelligence Unit.
- he index gauges global peace using three broad themes: the level of safety and security in society, the extent of domestic and international conflict, and the degree of militarization.
- lower value, more peace
- visionofhumanity
- Gender Inequality Index
- http://hdr.undp.org/en/content/gender-inequality-index-gii
- https://en.wikipedia.org/wiki/Gender_Inequality_Index
- The Gender Inequality Index (GII) is an index for measurement of gender disparity that was introduced in the 2010 Human
 Development Report 20th anniversary edition by the United Nations Development Programme (UNDP). According to the
 UNDP, this index is a composite measure which captures the loss of achievement within a country due to gender inequality. It
 uses three dimensions to do so: reproductive health, empowerment, and labor market participation.
- The GII is built on the same framework as the HDI and the IHDI to better expose differences in the distribution of
 achievements between women and men. It measures the human development costs of gender inequality, thus the higher the
 GII value the more disparities between females and males. The GII values vary tremendously across countries, they range
 from 2.1 percent to 73.3 percent.
- near zero, equal, near 1, unequal
- UNITED NATIONS DEVELOPMENT PROGRAMME

- Life Expectancy Index
- https://en.wikipedia.org/wiki/List_of_countries_by_life_expectancy
- Life expectancy equals the average number of years a person born in a given country would live if mortality rates at each
 age were to remain constant in the future.
- correlated with HDI in itself

.

- Human Development Index
- https://en.wikipedia.org/wiki/Human_Development_Index
- https://www.google.co.kr/search?q=happy+planet+index&oq=happy+planet+index&aqs=chrome..69i57j0l5.3208j0j4&sourceid= chrome&es_sm=93&ie=UTF-8#newwindow=1&q=human+development+index
- The Human Development Index (HDI) is a composite statistic of life expectancy, education, and per capita income indicators, which is used to rank countries into four tiers of human development.
- The HDI was created to emphasize that people and their capabilities should be the ultimate criteria for assessing the
 development of a country, not economic growth alone. The HDI can also be used to question national policy choices, asking
 how two countries with the same level of GNI per capita can end up with different human development outcomes. These
 contrasts can stimulate debate about government policy priorities.
- The Human Development Index (HDI) is a summary measure of average achievement in key dimensions of human development: a long and healthy life, being knowledgeable and have a decent standard of living. The HDI is the geometric mean of normalized indices for each of the three dimensions.
- UNITED NATIONS DEVELOPMENT PROGRAMME

- Total Fertility Rate
- https://en.wikipedia.org/wiki/Total_fertility_rate
- The total fertility rate (TFR), sometimes also called the fertility rate, period total fertility rate (PTFR) or total period
 fertility rate (TPFR) of a population is the average number of children that would be born to a woman over her lifetime if:
- She was to experience the exact current age-specific fertility rates (ASFRs) through her lifetime, and
- She was to survive from birth through the end of her reproductive life.
- It is obtained by summing the single-year age-specific rates at a given time.
- Urbanization Rate
- There are two measures of the degree of urbanization of a population. The first, urban population, describes the percentage of the total population living in urban areas, as defined by the country.— The second measure, rate of urbanization, describes the projected average rate of change of the size of the urban population over the given period of time. World Corruption Indexhttps://www.transparency.org/research/cpi/overview— What does a number mean to you? Each year we score countries on how corrupt their public sectors are seen to be. Our Corruption Perceptions Index sends a powerful message and governments have been forced to take notice and act.—TRANSPARENCY INTERNATIONAL Economic Participation Ratehttps://en.wikipedia.org/wiki/Workforce— The labour force participation rate, LFPR (or economic activity rate, EAR), is the ratio between the labour force and the overall size of their cohort (national population of the same age range).—KOSIS Happy Planet Indexhttps://www.happyplanetindex.org/about/— The HPI measures what matters: the extent to which countries deliver long, happy, sustainable lives for the people that live in them. The Index uses global data on life expectancy, experienced well-being and Ecological Footprint to calculate this.—The index is an efficiency measure, it ranks countries on how many long and happy lives they produce per unit of environmental input.

Thank You For Listening!