MATH 345 Homework 5

T.J. Liggett

March 2021

Problems 1

- **2.13** Determine the set of limit points of A in each case.
 - (a) A = (0,1] in the lower limit topology on \mathbb{R} . A' = [0,1)
 - (b) $A = \{a\}$ in $X = \{a, b, c\}$ with topology $\{X, \emptyset, \{a\}, \{a, b\}\}\}$. $A' = \{b, c\}$
 - (c) $A = \{a, c\}$ in $X = \{a, b, c\}$ with topology $\{X, \emptyset, \{a\}, \{a, b\}\}\}$ $A' = \{b, c\}$
 - (d) $A = \{b\}$ in $X = \{a, b, c\}$ with topology $\{X, \emptyset, \{a\}, \{a, b\}\}\}$. $A' = \{c\}$
 - (e) $A = (-1,1) \cup \{2\}$ in the standard topology on \mathbb{R} . A' = [-1,1]
 - (f) $A = (-1,1) \cup \{2\}$ in the lower limit topology on \mathbb{R} . A' = [-1,1)
 - (g) $A = \{(x,0) \in \mathbb{R}^2 | x \in \mathbb{R} \}$ in \mathbb{R}^2 with the standard topology. A' = A
 - **2.14** For each $n \in \mathbb{Z}_+$, let $B_n = \{n, n+1, n+2, ...\}$, and consider the collection $B = \{B_n | n \in \mathbb{Z}_+\}$.
 - (a) Show that B is basis for a topology on \mathbb{Z}_+ .
 - (b) Show that the topology on X generated by B is not Hausdorff.
 - (c) Show that the sequence (2,4,6,8,...) converges to every point in \mathbb{Z}_+ with the topology generated by B.

(a)

Proof. Let $x \in \mathbb{Z}_+$. Consider the set $B_1 \in B$, where $B_1 = \{1, 2, 3, ...\} = \mathbb{Z}_+$. $x \in B_1$, therefore for every $x \in \mathbb{Z}_+$, there exists a basis element $U \in B$ where $x \in U$.

For the second condition, let $x \in \mathbb{Z}_+$ and $B_m \in B$, $B_n \in B$, $x \in B_m \cap B_n$. WLOG, assume $m \le n$. Then

$$B_m \cap B_n = \{m, m+1, m+2, ...\} \cap \{n, n+1, n+2, ...\} = \{m, m+1, m+2, ...\} = B_m$$

Since $B_m \in B$, there exists a third basis element, $B_s = B_m$, where $x \in B_s \subset B_m \cap B_n$. Thus, the second condition of a basis is satisfied.

Therefore, B is a basis for a topology on \mathbb{Z}_+ .

(b)

Proof. BWOC, assume the topology on X generated by B is Hausdorff. Then for $x, y \in X$, there exist open sets $x \in U$, $y \in V$, where $U \cap V = \emptyset$. Since U and V are open sets, they are each a union of basis elements and contain at least one basis element of the form $B_n = \{n, n+1, n+2, ...\}$. Let $B_m \subset U$ and $B_n \subset V$ be basis elements. But there exists one $s \in \mathbb{Z}_+$ where m < s and n < s, and thus $s \in B_m, B_n$, and more importantly $s \in U$ and $s \in V$. Thus, $U \cap V \neq \emptyset$, which is a contradiction!

Therefore, the topology on X generated by B is not Hausdorff.

(c)

Proof. Let $z \in \mathbb{Z}_+$, where U is a neighborhood of z in the topology generated by B. Then U is a union of basis elements in B of the form $B_n = \{n, n+1, n+2, ...\}$, so $U = \{u, u+1, u+2, ...\}$, where $u \in \mathbb{Z}_+$ and B_u is the largest of these basis elements. Consider $x_e \in (2,4,6,8,...)$, where $u \le e$. Then for every element $x_f \in (2,4,6,8,...)$ where e < f, $f \in u$, and thus there is a positive integer e such that $x_f \in U$ for all $f \ge e$. Since this is true for every neighborhood U of z, it follows that (2,4,6,8,...) converges to z.

Therefore, the sequence (2,4,6,8,...) converges to every point in \mathbb{Z}_+ with the topology generated by B. \square

.

2.15 Determine the set of limit points of [0,1] in the finite complement topology on \mathbb{R} .

The set of limit points is \mathbb{R} .

2.19 Show that if (x_n) is an injective sequence in \mathbb{R} , then (x_n) converges to every point in \mathbb{R} with the finite complement topology on \mathbb{R} .

Proof. Let (x_n) be an injective sequence in \mathbb{R} , $y \in \mathbb{R}$. Then (x_n) has an infinite range. Consider U, a neighborhood of y in the finite complement topology, where $U = \mathbb{R} - F$ and F is a finite set in \mathbb{R} where $F \cap (x_n) = \emptyset$. Since (x_n) is infinite and F is finite, there exists some N where $x_n \notin F$ for $n \geq N$, and it follows that (x_n) converges to y. Therefore, if (x_n) is an injective sequence in \mathbb{R} , then (x_n) converges to every point in \mathbb{R} with the finite complement topology on \mathbb{R} .

.

2.20 Prove Theorem 2.11: Let A be a subset of \mathbb{R}^n in the standard topology. If x is a limit point of A, then there is a sequence of points in A that converges to x.

Proof. Let A be a subset of \mathbb{R}^n and x be a limit point of A. Then every neighborhood of x intersects A at a point other than x. Let U be a neighborhood of x, by definition of the standard topology an open n-ball, B(y,). Let $x_n \in B(y, \epsilon - \frac{1}{n}) \cap A$, where $n \in \mathbb{N}$, $x \in B(y, \frac{1}{n})$, and $y \in \mathbb{R}$. The sequence (x_n) generated from this converges to x, as all of the elements of this sequence where $n \ge m$ are in $U = B(y, \epsilon)$, an arbitrary neighborhood of x. Therefore, If x is a limit point of A, then there is a sequence of points in A that converges to x.

.

2.21 Determine the set of limit points of the set

$$S = \{(x, sin(\frac{1}{x})) \in \mathbb{R}^2 | 0 < x \le 1\}$$

as a subset of \mathbb{R}^2 in the standard topology.

 $S \cup \{(0,y)|y \in [-1,1]\}$. The S, because obviousness (this is a determine not a show). The $\{(0,y)|y \in [-1,1]\}$ because any neighborhood of this will intersect with a point on the sinusoid.

- **2.23** Let T be the collection of subsets of \mathbb{R} consisting of the empty set and every set whose complement is countable.
 - (a) Donut have to do this one.
 - (b) Show that the point 0 is a limit point of the set $A = \mathbb{R} \{0\}$ in the countable complement topology.
 - (c) Show that in $A = \mathbb{R} \{0\}$ there is no sequence converging to 0 in the countable complement topology.

(b)

Proof. Let U be an open set containing 0 in the countable complement topology. Then $U = \mathbb{R} - C$ where $C \in \mathbb{R}$ is countable, and $0 \in U$. Since C is countable, there exists an $x \in U$ where $x \neq 0$, so $x \in \mathbb{R} - \{0\}$. Thus, $U \cap A \neq 0$, and every neighborhood of 0 intersects A, and since $0 \notin A$, the intersection contains points other than 0. Therefore, the point 0 is a limit point of the set $A = \mathbb{R} - \{0\}$ in the countable complement topology.

•

(c)

Proof. Consider a sequence $S = (x_1, x_2, x_3, ...)$ in $\mathbb{R} - \{0\}$ that converges to 0 in the countable complement topology. Consider the open set $O = \mathbb{R} - S$, where $0 \in O$. There are no elements of S that are in O, this is a neighborhood of 0, so S does not converge to 0. Therefore, in $A = \mathbb{R} - \{0\}$ there is no sequence converging to 0 in the countable complement topology.