TDs 3 and 4

Email timothy.hosgood@univ-amu.fr for questions or corrections.

February 11, 2019

Problem 1. (2.6.A)

Show that $(a_n) = \left(\frac{n\cos^n(n)}{\sqrt{n^2+2n}}\right)_{n-1}^{\infty}$ has a convergent subsequence.

Problem 2. (2.6.B)

Does the sequence $(b_n) = \left(n + \cos(n\pi)\sqrt{n^2 + 1}\right)_{n=1}^{\infty}$ have a convergent subsequence?

Problem 3. (2.6.D)

Show that every sequence has a monotone subsequence.

Problem 4. (2.6.H)

Let $(x_n)_{n=1}^{\infty}$ be a sequence of real numbers. Suppose that there is a real number L with the property that every subsequence $(x_{n_k})_{k=1}^{\infty}$ has a subsubsequence $(x_{n_{k(l)}})_{l=1}^{\infty}$ with

$$\lim_{l \to \infty} x_{n_{k(l)}} = L.$$

Show that the whole sequence converges to L.

Hint. If it were false, then you could find a subsequence bounded away from L.

Problem 5. (2.6.J)

Suppose that $(x_n)_{n=1}^{\infty}$ is a sequence of real numbers. If $L = \liminf x_n$, show that there is a subsequence $(x_{n_k})_{k=1}^{\infty}$ so that $\lim_{k\to\infty} x_{n_k} = L$

Problem 6. (2.7.A)

Give an example of a sequence (a_n) such that $\lim_{n\to\infty} |a_n - a_{n+1}| = 0$, but the sequence does not converge.

Problem 7. (2.7.4) Evaluate the continued fraction $1 + \frac{1}{1 + \frac{1}{1$