Probabilistic Mitigation Strategies

Thanh H. Nguyen

New Mexico State University tnguyen@cs.nmsu.edu

December 6, 2019

Physical CPS System

Definition

A physical CPS system S is a tuple (C, A, F, R) where:

- C is a set of physical components.
- A is a set of tuples $(a_i, prob_{a_i})$, where a_i is an action which can be executed on the CPS, and $prob_{a_i}$ is the probability of success of the action a_i . $(0 \le prob_{a_i} \le 100)$ or $prob_{a_i} = \text{None}$ if the probability is unknown. A successful action modifies the current state, an unsuccessful action has no affect.
- F is a finite set of fluent literals.
- R is a set of relations that map each physical component c∈ C with a set of physical component properties that are defined in CPS Ontology.
 For any r∈ R, r: C → 2^P. P is set of all properties that are defined in CPS ontology.

Representation the System

- **Step 1**: Represent the probability of success of action. The fluent $prob_success(a_i, prob_{a_i})$ denotes that an action a_i has probability $prob_{a_i}$ ($0 \le prob_{a_i} \le 100$).
- Step 2: The fluent prob_of_state($prob_s$) models the propagation by the model to the successor state. The statement holds(prob_of_state($prob_s$),S) means that at step S of the CPS evolution, the probability of the current state described by this fluent is $prob_s$ (0 $\leq prob_s \leq$ 100). The initial value at time step 0 is holds(prob_of_state(100),0) or prob_of_state(0) = 100.
- **Step 3**: Assuming that at step S of evolution, an action a_i can be executed. The predicate $do(a_i,S)$ denotes that action a_i is executed at step S.

Compute the Probability of success of mitigation strategies

• Step 4: (1) Given the probability of success of mitigation strategies in CPS System at step S: prob_of_state(S). (2) At step S, an action a_i is executed (do(a_i ,S) holds) and the probability of success of a_i is prob_success(a_i). So the probability of success of CPS system at step S+1 is:

$$prob_of_state(S+1) = \begin{cases} \frac{prob_of_state(S)*prob_success(a_i)}{100}, \\ \text{if } prob_success(a_i) \neq \textit{None} \\ prob_of_state(S), \text{ if } prob_success(a_i) = \textit{None} \end{cases}$$

• Step 5: Finally, assume that S_{last} is the last step of system evolution, the value of prob_of_state(S_{last}) represents the probability of success of mitigation strategy $\alpha = a_0...a_{S_{last}}$