

Manage Experiments

CS 20: TensorFlow for Deep Learning Research Lecture 5 1/26/2017

Agenda

word2vec

Embedding visualization

Structure your TensorFlow model

Variable sharing

Manage experiments

Autodiff

Word Embedding in TensorFlow

How do we represent words in an efficient way?

One-hot Representation

Each word is represented by one vector with a single 1 and the rest is o

One-hot Representation

Each word is represented by one vector with a single 1 and the rest is o

Example

Vocab: i, it, california, meh

$$i = [1000]$$

$$it = [0 1 0 0]$$

california = $[0 \ 0 \ 1 \ 0]$

$$meh = [0 \ 0 \ 0 \ 1]$$

Problems with one-hot representation

- Vocabulary can be large
- => massive dimension, inefficient computation
 - Can't represent relationship between words
- => "anxious" and "nervous" are similar but would have completely different representations

Word Embedding

- Distributed representation
- Continuous values
- Low dimension
- Capture the semantic relationships between words

How?

Representing a word by means of its neighbors

"You shall know a word by the company it keeps."

- Firth, J. R. 1957:11

Word Embeddings

Live visualization

Count vs Predict

Counting

- Example corpus:
 - I like deep learning.
 - I like NLP.
 - I enjoy flying.

counts	1	like	enjoy	deep	learning	NLP	flying	
1	0	2	1	0	0	0	0	0
like	2	0	0	1	0	1	0	0
enjoy	1	0	0	0	0	0	1	0
deep	0	1	0	0	1	0	0	0
learning	0	0	0	1	0	0	0	1
NLP	0	1	0	0	0	0	0	1
flying	0	0	1	0	0	0	0	1
	0	0	0	0	1	1	1	0

15

Predicting

Implementing word2vec skip-gram

Softmax vs Sample-based Approaches

Softmax

$$P(o|c) = \frac{\exp(u_o^T v_c)}{\sum_{w=1}^V \exp(u_w^T v_c)}$$

Computationally expensive

Sample-based Approaches

Negative Sampling

is a simplified version of

Noise Contrastive Estimation

Sample-based Approaches

NCE guarantees approximation to softmax Negative Sampling doesn't

For more information, see:

Sebastian Rudder's "On word embeddings - Part 2: Approximating the Softmax"

Chris Dyer's "Notes on Noise Contrastive Estimation and Negative Sampling"

Embedding Lookup

$$\begin{bmatrix} 0 & 0 & 0 & 1 & 0 \end{bmatrix} \times \begin{bmatrix} 17 & 24 & 1 \\ 23 & 5 & 7 \\ 4 & 6 & 13 \\ 10 & 12 & 19 \\ 11 & 18 & 25 \end{bmatrix} = \begin{bmatrix} 10 & 12 & 19 \end{bmatrix}$$

Embedding Lookup

$$\begin{bmatrix} 0 & 0 & 0 & 1 & 0 \end{bmatrix} \times \begin{bmatrix} 17 & 24 & 1 \\ 23 & 5 & 7 \\ 4 & 6 & 13 \\ 10 & 12 & 19 \\ 11 & 18 & 25 \end{bmatrix} = \begin{bmatrix} 10 & 12 & 19 \end{bmatrix}$$

NCE Loss

```
tf.nn.nce loss(
    weights,
    biases,
    labels,
    inputs,
    num sampled,
    num classes,
    num true=1,
    sampled values=None,
    remove accidental hits=False,
    partition strategy='mod',
    name='nce loss'
```


Word2vec in TensorFlow

Interactive Coding

word2vec_utils.py

04_word2vec_eager_starter.py

Structure your TensorFlow model

Phase 1: Assemble graph

- 1. Import data (with tf.data or placeholders)
- 2. Define the weights
- 3. Define the inference model
- 4. Define loss function
- 5. Define optimizer

Phase 2: Compute

Need models to be reusable

Reusable models

- Define a class for your model
- Set up your model in a collection (e.g. map)

If you want to <u>really</u> reuse a model (without rebuilding it)

 For big models that take a long time to build, save the graph_def in a file and then load it

Model as a class

```
class SkipGramModel:
                                                        Yay, object oriented programming!!
    """ Build the graph for word2vec model """
    def init (self, params):
        pass
   def import data(self):
        """ Step 1: import data """
        pass
    def create embedding(self):
        """ Step 2: define weights. In word2vec, it's actually the weights that we care about """
       pass
   def create loss(self):
        """ Step 3 + 4: define the inference + the loss function """
        pass
    def create optimizer(self):
        """ Step 5: define optimizer """
        pass
```


Embedding visualization

Interactive Coding

04_word2vec_visualize.py

Visualize vector representation of anything

Variable sharing

word2vec on TensorBoard

word2vec on TensorBoard

What if I have more complex models?

Name scope

TensorFlow doesn't know what nodes should be grouped together, unless you tell it to

Name scope

Group nodes together with tf.name_scope(name)

```
with tf.name_scope(name_of_that_scope):
    # declare op_1
    # declare op_2
# ...
```

Name scope

```
with tf.name_scope('data'):
  iterator = dataset.make initializable iterator()
 center words, target words = iterator.get next()
with tf.name scope('embed'):
 embed matrix = tf.get variable('embed matrix',
                  shape=[VOCAB SIZE, EMBED SIZE], ...)
 embed = tf.nn.embedding lookup(embed matrix, center words)
with tf.name scope('loss'):
  nce weight = tf.get variable('nce weight', shape=[VOCAB SIZE, EMBED SIZE], ...)
  nce bias = tf.get variable('nce bias', initializer=tf.zeros([VOCAB SIZE]))
  loss = tf.reduce mean(tf.nn.nce loss(weights=nce weight, biases=nce bias, ...)
with tf.name scope('optimizer'):
 optimizer = tf.train.GradientDescentOptimizer(LEARNING RATE).minimize(loss)
```

TensorBoard

Variable scope

Name scope vs variable scope

tf.name_scope() vs tf.variable_scope()

Variable scope

Name scope vs variable scope

Variable scope facilitates variable sharing

Variable sharing: The problem

```
def two_hidden_layers(x):
    w1 = tf.Variable(tf.random_normal([100, 50]), name='h1_weights')
    b1 = tf.Variable(tf.zeros([50]), name='h1_biases')
    h1 = tf.matmul(x, w1) + b1

w2 = tf.Variable(tf.random_normal([50, 10]), name='h2_weights')
    b2 = tf.Variable(tf.zeros([10]), name='2_biases')
    logits = tf.matmul(h1, w2) + b2
    return logits
```

Variable sharing: The problem

```
def two_hidden_layers(x):
    w1 = tf.Variable(tf.random_normal([100, 50]), name='h1_weights')
    b1 = tf.Variable(tf.zeros([50]), name='h1_biases')
    h1 = tf.matmul(x, w1) + b1

w2 = tf.Variable(tf.random_normal([50, 10]), name='h2_weights')
    b2 = tf.Variable(tf.zeros([10]), name='2_biases')
    logits = tf.matmul(h1, w2) + b2
    return logits
What
```

What will happen if we make these two calls?

```
logits1 = two_hidden_layers(x1)
logits2 = two_hidden_layers(x2)
```

Sharing Variable: The problem

Two sets of variables are created.

You want all your inputs to use the same weights and biases!

tf.get_variable()

```
tf.get_variable(<name>, <shape>, <initializer>)
```

If a variable with <name> already exists, reuse it

If not, initialize it with <shape> using <initializer>

tf.get_variable()

```
def two hidden layers(x):
    assert x.shape.as list() == [200, 100]
    w1 = tf.get variable("h1 weights", [100, 50], initializer=tf.random normal initializer())
    b1 = tf.get variable("h1 biases", [50], initializer=tf.constant initializer(0.0))
    h1 = tf.matmul(x, w1) + b1
    assert h1.shape.as list() == [200, 50]
    w2 = tf.get variable("h2 weights", [50, 10], initializer=tf.random normal initializer())
    b2 = tf.get variable("h2 biases", [10], initializer=tf.constant initializer(0.0))
    logits = tf.matmul(h1, w2) + b2
    return logits
logits1 = two hidden layers(x1)
logits2 = two hidden layers(x2)
```

tf.get_variable()

```
def two hidden layers(x):
    assert x.shape.as list() == [200, 100]
    w1 = tf.get variable("h1 weights", [100, 50], initializer=tf.random normal initializer())
    b1 = tf.get variable("h1 biases", [50], initializer=tf.constant initializer(0.0))
    h1 = tf.matmul(x, w1) + b1
    assert h1.shape.as list() == [200, 50]
    w2 = tf.get variable("h2 weights", [50, 10], initializer=tf.random normal initializer())
    b2 = tf.get variable("h2 biases", [10], initializer=tf.constant initializer(0.0))
    logits = tf.matmul(h1, w2) + b2
    return logits
                                               ValueError: Variable h1 weights already exists,
logits1 = two hidden layers(x1)
                                               disallowed. Did you mean to set reuse=True in
logits2 = two hidden layers(x2)
                                               VarScope?
```

tf.variable_scope()

```
def two hidden layers(x):
    assert x.shape.as_list() == [200, 100]
    w1 = tf.get variable("h1 weights", [100, 50], initializer=tf.random normal initializer())
    b1 = tf.get variable("h1 biases", [50], initializer=tf.constant initializer(0.0))
    h1 = tf.matmul(x, w1) + b1
    assert h1.shape.as list() == [200, 50]
    w2 = tf.get variable("h2 weights", [50, 10], initializer=tf.random normal initializer())
    b2 = tf.get variable("h2 biases", [10], initializer=tf.constant initializer(0.0))
    logits = tf.matmul(h1, w2) + b2
    return logits
                                                    Put your variables within a scope and reuse all
with tf.variable scope('two layers') as scope:
                                                    variables within that scope
    logits1 = two hidden layers(x1)
    scope.reuse variables()
    logits2 = two hidden layers(x2)
```

tf.variable_scope()

Only one set of variables, all within the variable scope "two_layers"

They take in two different inputs

tf.variable_scope()

tf.variable_scope implicitly creates a name scope

Reusable code?

```
def two hidden layers(x):
    assert x.shape.as_list() == [200, 100]
    w1 = tf.get variable("h1 weights", [100, 50], initializer=tf.random normal initializer())
    b1 = tf.get variable("h1 biases", [50], initializer=tf.constant initializer(0.0))
    h1 = tf.matmul(x, w1) + b1
    assert h1.shape.as list() == [200, 50]
    w2 = tf.get variable("h2 weights", [50, 10], initializer=tf.random normal initializer())
    b2 = tf.get variable("h2 biases", [10], initializer=tf.constant initializer(0.0))
    logits = tf.matmul(h1, w2) + b2
    return logits
with tf.variable scope('two layers') as scope:
    logits1 = two hidden layers(x1)
    scope.reuse variables()
    logits2 = two hidden layers(x2)
```

Layer 'em up

```
def fully_connected(x, output_dim, scope):
    with tf.variable_scope(scope, reuse=tf.AUTO_REUSE) as scope:
        w = tf.get_variable("weights", [x.shape[1], output_dim], initializer=tf.random_normal_initializer())
        b = tf.get_variable("biases", [output_dim], initializer=tf.constant_initializer(0.0))
        return tf.matmul(x, w) + b
                                                                         Fetch variables if thev
def two_hidden_layers(x):
                                                                         already exist
    h1 = fully_connected(x, 50, 'h1')
    h2 = fully connected(h1, 10, 'h2')
                                                                         Else, create them
with tf.variable_scope('two_layers') as scope:
    logits1 = two_hidden_layers(x1)
```

logits2 = two_hidden_layers(x2)

Layer 'em up

Manage Experiments

tf.train.Saver

saves graph's variables in binary files

Saves sessions, not graphs!

```
tf.train.Saver.save(sess, save_path, global_step=None...)
tf.train.Saver.restore(sess, save_path)
```

Save parameters after 1000 steps

```
# define model
model = SkipGramModel(params)
# create a saver object
saver = tf.train.Saver()
with tf.Session() as sess:
     for step in range(training steps):
           sess.run([optimizer])
           # save model every 1000 steps
           if (step + 1) % 1000 == 0:
                saver.save(sess,
                            checkpoint directory/model_name',
                            global step=step)
```

Specify the step at which the model is saved

```
# define model
model = SkipGramModel(params)
# create a saver object
saver = tf.train.Saver()
with tf.Session() as sess:
     for step in range(training steps):
           sess.run([optimizer])
           # save model every 1000 steps
           if (step + 1) % 1000 == 0:
                saver.save(sess,
                            'checkpoint directory/model name',
                            global step=step)
```

Global step

```
global_step = tf.Variable(0, dtype=tf.int32, trainable=False, name='global_step')
```

Very common in TensorFlow program

Global step

Need to tell optimizer to increment global step

This can also help your optimizer know when to decay learning rate

Your checkpoints are saved in checkpoint_directory

checkpoint	265 bytes
skip-gram-1000.data-00000-of-00001	51.4 MB
skip-gram-1000.index	261 bytes
skip-gram-1000.meta	87 KB
skip-gram-2000.data-00000-of-00001	51.4 MB
skip-gram-2000.index	261 bytes
skip-gram-2000.meta	87 KB
skip-gram-3000.data-00000-of-00001	51.4 MB
skip-gram-3000.index	261 bytes
skip-gram-3000.meta	87 KB
skip-gram-4000.data-00000-of-00001	51.4 MB
skip-gram-4000.index	261 bytes
skip-gram-4000.meta	87 KB

tf.train.Saver

Only save variables, not graph

Checkpoints map variable names to tensors

tf.train.Saver

Can also choose to save certain variables

```
v1 = tf.Variable(..., name='v1')
v2 = tf.Variable(..., name='v2')
```

You can save your variables in one of three ways:

```
saver = tf.train.Saver({'v1': v1, 'v2': v2})
saver = tf.train.Saver([v1, v2])
saver = tf.train.Saver({v.op.name: v for v in [v1, v2]}) # similar to a dict
```

Restore variables

```
saver.restore(sess, 'checkpoints/name_of_the_checkpoint')
e.g. saver.restore(sess, 'checkpoints/skip-gram-99999')
```

Still need to first build graph

Restore the latest checkpoint

```
# check if there is checkpoint
ckpt = tf.train.get_checkpoint_state(os.path.dirname('checkpoints/checkpoint'))
# check if there is a valid checkpoint path
if ckpt and ckpt.model_checkpoint_path:
    saver.restore(sess, ckpt.model_checkpoint_path)
```

- 1. checkpoint file keeps track of the latest checkpoint
- 2. restore checkpoints only when there is a valid checkpoint path

tf.summary

Why matplotlib when you can summarize?

tf.summary

Visualize our summary statistics during our training

tf.summary.scalar

tf.summary.histogram

tf.summary.image

Step 1: create summaries

```
with tf.name_scope("summaries"):
    tf.summary.scalar("loss", self.loss)
    tf.summary.scalar("accuracy", self.accuracy)
    tf.summary.histogram("histogram loss", self.loss)
    summary_op = tf.summary.merge_all()
```

merge them all into one summary op to make managing them easier

Step 2: run them

Like everything else in TF, summaries are ops. For the summaries to be built, you have to run it in a session

Step 3: write summaries to file

writer.add_summary(summary, global_step=step)

Need global step here so the model knows what summary corresponds to what step

Putting it together

```
tf.summary.scalar("loss", self.loss)
tf.summary.histogram("histogram loss", self.loss)
summary op = tf.summary.merge all()
saver = tf.train.Saver() # defaults to saving all variables
with tf.Session() as sess:
    sess.run(tf.global variables initializer())
    ckpt = tf.train.get checkpoint state(os.path.dirname('checkpoints/checkpoint'))
    if ckpt and ckpt.model checkpoint path:
        saver.restore(sess, ckpt.model checkpoint path)
    writer = tf.summary.FileWriter('./graphs', sess.graph)
    for index in range(10000):
        loss batch, , summary = sess.run([loss, optimizer, summary op])
        writer.add summary(summary, global step=index)
        if (index + 1) \% 1000 == 0:
            saver.save(sess, 'checkpoints/skip-gram', index)
```

See summaries on TensorBoard

Scalar loss

Loss Loss 250 200 150 100 50.0 0.00 0.002 0.004 0.006

Histogram loss

Toggle run to compare experiments

Control Randomization

Op level random seed

```
my_var = tf.Variable(tf.truncated_normal((-1.0,1.0), stddev=0.1, seed=0))
```

Sessions keep track of random state

```
c = tf.random_uniform([], -10, 10, seed=2)
with tf.Session() as sess:
    print(sess.run(c)) # >> 3.57493
    print(sess.run(c)) # >> -5.97319
c = tf.random uniform([], -10, 10, seed=2)
with tf.Session() as sess:
    print(sess.run(c)) # >> 3.57493
with tf.Session() as sess:
    print(sess.run(c)) # >> 3.57493
```

Each new session restarts the random state

Op level seed: each op keeps its own seed

```
c = tf.random_uniform([], -10, 10, seed=2)
d = tf.random_uniform([], -10, 10, seed=2)
with tf.Session() as sess:
    print(sess.run(c)) # >> 3.57493
    print(sess.run(d)) # >> 3.57493
```

Graph level seed

```
tf.set_random_seed(2)
c = tf.random_uniform([], -10, 10)
d = tf.random_uniform([], -10, 10)
with tf.Session() as sess:
   print(sess.run(c)) # >> -4.00752
   print(sess.run(d)) # >> -2.98339
```

Note that the result is different from op-level seed

Autodiff

Where are the gradients?

TensorFlow builds the backward path for you!

• The computation graph makes computing symbolic gradients straightforward

• Chain rule

Can you take gradients for this graph?

The backward path takes the same time as forward path

tf.gradients(y, [xs])

Take derivative of y with respect to each tensor in the list [xs]

tf.gradients(y, [xs])

```
x = tf.Variable(2.0)
y = 2.0 * (x ** 3)
z = 3.0 + y ** 2
grad_z = tf.gradients(z, [x, y])
with tf.Session() as sess:
     sess.run(x.initializer)
     print(sess.run(grad_z)) # >> [768.0, 32.0]
# 768 is the gradient of z with respect to x, 32 with respect to y
```

Gradient Computation

```
tf.gradients(ys, xs, grad_ys=None, ...)

tf.stop_gradient(input, name=None)

# prevents the contribution of its inputs to be taken into account

tf.clip_by_value(t, clip_value_min, clip_value_max, name=None)

tf.clip_by_norm(t, clip_norm, axes=None, name=None)
```

Should I still learn to take gradients?

Yes

Vanishing/exploding gradients

Next class

Computer Vision

Convolution

Convnet

No class on Friday, 2/2

Feedback: <u>huyenn@stanford.edu</u>

Thanks!