Bolted System: Auto-deployment Cloud Project

Vidya Anandamurali Pei Jia Yuxi Jiang Jiangnan Zou

Project Description (Recap)

Automate the deployment of Bolted which consists of:

- Installation and configuration of each component of the Bolted system (HIL, BMI, Keylime and orchestration)
- Integrating all the components together
- Bolted system should be able to be installed on any cloud platform

Use Case

As a cloud provider, I want to deploy Bolted System on my cloud platform easily without having to call upon a personnel to configure the components.

Minimum Viable Product

- To deliver a system that doesn't require separate installation and configuration procedure for each component of the bolted system
- Develop an ansible playbook for each component first and then an overall playbook for all four components to work together.

Burndown Chart

2018 BUCS528 SECURE CLOUD AUTOMATED DEP... BU CS 528 CLOUD COMPUTING - DEMO 2 15 FEB 2018-01

Last Sprint Report

- Install HIL on Virtual Machine (CentOS/VMware)
 - ✓ Install through terminal command line
 - Automate installation using Ansible
 - Unittest
- Install Keylime on Virtual Machine (CentOS/VMware)
 - ✓ Install through terminal command line
 - ✓ Bash script automated installation
 - Test script in another virtual machine
- Install BMI on Virtual Machine (CentOS/VMware)
 - Install BMI on a CentOS environment contains HIL
 - Automate installation using Ansible
 - Unittest
- Learning Ansible

Project Progress of Keylime

- TPM (Trusted Platform Module) This is the core module of Keylime, because keylime uses this module to collect node information, (operating system, application and etc), using [quote].
- For now, installation is under virtual machine, which doesn't contain a TPM module. Testing is needed for later test.
- A bash script is developed to automated the installation procedure, targeted for [CentOS VM using vmware]
- Testing passed, bash to ansible script is in progress.

Project Progress of HIL

- Installing CentOS on VMware workstation.
- Setting up the server upon which HIL runs. (epel and python - using pip)
- Configure HIL (hil.cfg)
- Setting up the HIL database
- Starting the server
- Testing the setup


```
(.venv)[Vidya@rfc1918 hill$ cd hil/
(.venv)[Vidya@rfc1918 hill$ ls
                   cli.py
                                   dev_support.pyc
                                                                    network_allocator.py
api.py
                                                     __init__.py
                                                     init_.pyc
                                                                    network_allocator.pyc
api.pyc
                   cli.pyc
                                   errors.py
                                                    migrations
auth.py
                   commands
                                                                    rest.pg
                                   errors.pyc
                   config.py
                                                    migrations.py
auth.pyc
                                   ext
                                                                    rest.pyc
class_resolver.py
                   config.pyc
                                   flaskapp.py
                                                    migrations.pyc
                                                                    server.pg
class_resolver.pyc deferred.py
                                   flaskapp.pyc
                                                    model.py
                                                                    server.pyc
client
                   dev_support.py hil.db
                                                    model.pyc
                                                                    test_common.py
(.venv)[Vidya@rfc1918 hill$ which hil
~/hil/.venv/bin/hil
(.venv)[Vidya@rfc1918 hill$ _
```


Project Progress of BMI

- Set up CentOS 7.0 on virtual machine
- HIL environment checking
- Installing the Ceph Client
 - Learn Ceph server and client simultaneously
- Configuring iSCSI Server
 - Deal with system version inconsistency
- Configuring DHCP Server
- Installing BMI
 - Did not settle File missing problem yet

iSCSI Server Demo

```
[Vidya@rfc1918 ~]$ systemctl status tgtd
 tgtd.service - tgtd iSCSI target daemon
  Loaded: loaded (/usr/lib/system/system/tgtd.service; enabled; vendor preset: disabled)
  Active: active (running) since Thu 2018-03-01 13:35:25 EST; 28min ago
 Process: 1482 ExecStartPost=/usr/sbin/tgtadm --op update --mode sys --name State -v ready (code=ex
ited, status=0/SUCCESS)
 Process: 1476 ExecStartPost=/usr/sbin/tgt-admin -e -c $TGTD_CONFIG (code=exited, status=0/SUCCESS)
 Process: 1475 ExecStartPost=/usr/sbin/tgtadm --op update --mode sys --name State -v offline (code=
exited. status=0/SUCCESS)
 Process: 1075 ExecStartPost=/bin/sleep 5 (code=exited, status=0/SUCCESS)
Main PID: 1074 (tgtd)
  CGroup: /system.slice/tgtd.service
           └1074 /usr/sbin/tqtd -f
Mar 01 13:35:20 rfc1918.address.not.used.bu.edu systemd[1]: Starting tgtd iSCSI target daemon...
Mar 01 13:35:20 rfc1918.address.not.used.bu.edu tgtd[1074]: tgtd: iser ib init(3436) Failed to i...?
Mar 01 13:35:20 rfc1918.address.not.used.bu.edu tgtd[1074]: tgtd: work_timer_start(146) use time...r
Mar 01 13:35:20 rfc1918.address.not.used.bu.edu tgtd[1074]: tgtd: bs init signalfd(267) could no...e
Mar 01 13:35:20 rfc1918.address.not.used.bu.edu tgtd[1074]: tgtd: bs_init(386) use signalfd noti...n
Mar 01 13:35:25 rfc1918.address.not.used.bu.edu systemd[1]: Started tytd iSCSI target daemon.
Hint: Some lines were ellipsized, use -l to show in full.
```


Project Plan

11

Responsibilities for next sprint

- Finish installation process of each component and start configuring communication between each component on local machine
- 2. Write ansible playbook script for automated installation of each component.
- Test installation result on local virtual machine
- 4. Test ansible script on server
- Create containers and install each component in container using Kubernetes

Thank you.

Question?

