

齿轮齿条式电动助力转向系统(EPS)检修

1、EPS 系统概述

EPS(Electric Power-assistant Steering,以下简称 EPS)系统,是指利用 EPS 电机提供转向动力,辅助驾驶员进行转向操作的转向系统。该系统和其他控制系统一样,是由传感器(扭矩转角传感器、车速传感器)、控制器(EPS 电子控制单元)、执行器(EPS 电机)以及相关机械部件组成。

1.1、EPS系统的功能:

EPS 系统是在机械转向系统的基础上,将最新的电子技术和高性能的电机控制技术应用于汽车转向系统。EPS 系统在原有汽车转向系统的基础上,改造并且增加了以下几个部分: EPS 电子控制单元、扭矩及转角传感器、EPS 电机等。系统的传动机构采用电机驱动,取代了传统机械液压机构。它能够在各种环境下给驾驶员提供实时转向盘助力。

EPS 系统通常由以下几部分组成:(a)扭矩及转角传感器、(b)车速传感器、(c)EPS 电子控制单元、(d)EPS 电机、(e)相关机械结构。EPS 系统由 EPS 电机提供助力,助力大小由 EPS电子控制单元 实时调节与控制。根据车速的不同提供不同的助力,改善汽车的转向特性,减轻停车泊位和低速行驶时的操纵力,提高高速行驶时的转向操纵稳定性,进而提高了汽车的主动安全性。

EPS 系统主要有以下几个功能:

1.1.1、助力控制功能

EPS 的助力特性属于车速感应型,即在同一转向盘力矩输入下,电机的目标电流随车速的变化而变化,能较好地兼顾轻便性与路感的要求。

EPS 的助力特性采用分段型助力特性。EPS 电机根据转向盘偏离方向施加助力转矩。以保证低速时转向轻便,高速时操作稳定并获得较好的路感。

1.1.2、回正控制功能

转向时,由于转向轮主销后倾角和主销内倾角的存在,使得转向轮具有自动回正的作用。EPS 系统在机械转向机构的基础上,增加了 EPS 电机和减速机构。EPS 系统通过 EPS 电子控制单元对 EPS 电机进行转向回正控制,与前轮定位产生的回正力矩一起进行车辆的转向回正动作,使转向盘迅速回正,抑制转向盘振荡,保持路感,提高转向灵敏性和稳定性,优化转向回正特性,缩短了收敛时间。回正控制通过调整回正补偿电流,进而产生回正作用转矩,该转矩沿某一方向使转向轮返回到中间位置。

1.1.3、阻尼控制功能

车辆高速行驶时,通过控制阻尼补偿电流进 行阻尼控制,增强驾驶员路感,改善车辆高速行 驶情况下转向的稳定性。

1.2、EPS系统工作原理

汽车转向时,扭矩及转角传感器把检测到的 扭矩及角度信号的大小、方向经处理后传给 EPS 电子控制单元,EPS 电子控制单元同时接收车速 传感器检测到的车速信号,然后根据车速传感器 和扭矩及转角传感器的信号决定电机的旋转方向 和助力扭矩的大小。同时电流传感器检测电路的 电流,对驱动电路实施监控,最后由驱动电路驱动电机工作,实施助力转向。其工作原理如图 1-1 所示。

图 1-1 EPS 系统工作原理

2、EPS 系统电路原理图 F2/27 海拉扭矩转角传感器 KPS 161 10A 7∰ 4\$ 1 8# 5≇ 2# 6∰ 34 √G2X 16 GJ20 16 BJ10 B/G B/R G R/G 0. 5 0, 5 0, 5 0.5 0.5 0.5 0.5 0, 5 D3 **D4** D8 D1 D2D5 | D6 D7 <u>5∕ B20</u> 000档电 vcci VCC2 GND1 GND2 TQ1 PWM_S PWM_P +57 +57 **EPS** ESC阿 ESC M **₩20** /B20 /B19 2 J B19 R 15. 0 23 BJ07 GJ09 15. O B22 正被保险金 BPS电机 0.5 G22-14 G22-11, 动力图

图 2-1 EPS 系统电路原理图

2.1、EPS系统与整车配线电气接口定义

B (扭矩信号接插件 黑色) W (CAN 信号接插件 白色) D (电源接插件 黑色) 图 2-2 EPS 电子控制单元(从进线方向视图)

表 2-1	EPS	电子控制单元引脚定义
1× 2-1	ELO	电 1 江 即 半 儿 刀 脚 足 入

测试端子	配线颜色	端子说明	测试条件	标准值
B1-车身	W	扭矩主信号	ON 档电	PWM 占空比: 12.5%-87.5%
B2-车身	G	接地	ON 档电	和车身之间阻抗小于1Ω
B3-车身	B/G	接地	ON 档电	和车身之间阻抗小于1Ω
B4-车身	R	电源正	ON 档电	5V
B5-车身	B/R	电源正	ON 档电	5V
B6-车身	В	扭矩辅信号	ON 档电	PWM 占空比: 12.5%-87.5%
B7-车身	L	转角 P 信号	ON 档电	PWM 占空比: 12.5%-87.5%
B8-车身	V	转角S信号	ON 档电	PWM 占空比: 12.5%-87.5%
W4-车身	R/G	Ig 电源	ON 档电	10-16V
W6-车身	V	CAN_L	ON 档电	1.5V 或 3.5V
W7-车身	P	CAN_H	ON 档电	2.5V 或 3.5V
W(其余)				预留
D1-车身	R	电源正极	始终	9-16V
D2-车身	В	接地	始终	和车身之间阻抗小于1Ω

3、维护注意事项

3.1、检修注意事项

3.1.1、无钥匙启动按钮如右图所示。其灯光颜色 定义如表3-1所示。

图3-1 点火开关档位示意图

表3-1 点火开关状态

按钮状态说明	车辆状态		
按	批示灯颜色	发动机状态	
车内检测到智能钥匙,可以启动发动机	绿色	OFF	
车内检测不到智能钥匙,无法启动发动 机	无灯光,熄灭	OFF	
ACC档/ON档	橙色	OFF	
发动机起动	无灯光,熄灭	起动	

3.1.2、电动助力转向器总成检修注意事项

(1) SRS气囊系统操作注意事项

本车配备有安全气囊(SRS),包括前排双安全气囊、侧安全气囊和侧安全气帘。如果不按正确的次序操作,可能会引起安全气囊在维修过程中意外打开,并导致严重的事故。故维修之前(包括零件的拆卸或安装、检查或更换),一定

要阅读安全气囊系统的注意事项。

(2)本车电动助力转向系统带有主动回正控制功能及遥控驾驶功能,转向系统(齿轮齿条式电动助力转向器总成等)经过拆换后,需重新进行车辆四轮定位,并标定扭矩转角信号,同时标定ESP转角信号。并清除故障码(标定流程如图3-2、3-3、3-4所示)。

图3-2、扭矩信号标定流程

图3-3、转向盘转角信号标定流程

图3-4、故障码消除流程

- (3) 拆卸或重新安装动助力转向器总成时:
- ①避免撞击电动助力转向器总成,特别是传感器,EPS电子控制单元,EPS电机和减速机构。如果电动助力转向器总成跌落或遭受严重冲击,需要更换一个新的总成。
 - ②移动动助力转向器总成时,请勿拉拽线束。
- ③在从转向器上断开转向管柱或者中间轴之前,车轮应该保持在正前方向,车辆处于断电状态,否则,会导致转向管柱上的时钟弹簧偏离中心位置,从而损坏时钟弹簧。
- ④断开转向管柱或者中间轴之前,车辆处于 断电状态。断开上述部件后,不要移动车轮。不

遵循这些程序会使某些部件在安装过程中定位不准。

⑤转向盘打到极限位置的持续时间不要超过 5秒钟,否则可能会损坏助力电机。

3.2、故障排除表

故障排除表有助于找到故障的原因,表中数字表明了引起故障的可能顺序,请按顺序检查每一个零件。必要时,请修理或更换有故障的零件或进行调整。

转向系统故障排除如表3-2所示。

表3-2 转向系统故障排查表

症状	可能原因	症状	可能原因
转向沉重 回位不足	3)转向节(磨损) 5)转向管柱总成(有故障) 6)电动助力转向器总成(有故障)	游隙过大	1)转向节(磨损) 2)中间轴、滑动节叉(磨损) 3)转向器(有故障)
		异常噪声	1)减速机构(磨损) 2)转向节(磨损) 3)电动助力转向器总成(有故障)
	3)转向管柱(弯曲) 4)电动助力转向器总成(有故障)	转向盘抖动	1) 电动助力转向器总成(有故障) 2) 转向管柱总成(有故障)

5 EPS 系统自诊断及故障排除

5.1 诊断仪故障排除方法:

当 EPS 系统发生故障时,用手持式专用故障诊断仪(ED400)读取故障代码,根据诊断仪读出故障类型。

- 将故障诊断仪连接到汽车故障诊断接口(DLC3)。
- ●按照诊断仪上的提示读出故障代码(DTC)

对故障排查方法如下:

5.1.1 故障码故障排除方法

表 5-2 各故障码故障排除方法

DTC NO.	故障类型	表 3-2 合故障的故障排列 故障分析	故障排除流程
C1B0200	ECU 故障	EPS 电子控制单元内部 故障	更换转向器总成。
C1B0400	扭矩信号故障	扭矩传感器故障、线束 开路或短路、EPS 电子 控制单元内部故障	1.接插件是否松动、脱落。是:重新固定好;否:2 2.线束是否开路或短路。是:修复线束;否:3 3.扭矩传感器是否故障。是:更换转向器总成;否:4 4. EPS 控制单元故障,更换转向器总成。
C1B0900	扭矩传感器 未校准	没有进行扭矩传感器出厂校准	1.接插件是否松动、脱落。是:重新固定好;否:2 2.扭矩信号是否已标定。是:3;否:用诊断仪标定 3 扭矩传感器是否故障。是:更换转向器总成,否:4 4.EPS 控制单元故障,更换转向器总成。
C1B0A00	转角传感器 未校准	没有进行转角信号标定	1.接插件是否松动、脱落。是:重新固定好;否:2 2.转角信号是否已标定。是:3;否:用诊断仪标定 3 转角传感器是否故障。是:更换转向器总成,否:4 4.EPS 控制单元故障,更换转向器总成
C1B0B00	转角信号故 障	转角传感器故障、线束 开路或短路、EPS 电子控 制单元内部故障	1.接插件是否松动、脱落。是:重新固定好;否:2 2.线束是否开路或短路。是:修复线束;否:3

			3.扭矩传感器是否故障。是:更换转向器总成;否:4 4. EPS 控制单元故障,更换转向器总成。
C1B0D00	电源电压高	EPS 供电异常、EPS 电子控制单元内部故障	1.测试 EPS 电源电压是否异常 (>16V)。是: 检查供电系统; 否: 2 2. EPS 控制单元故障,更换转向器总成
C1B0E00	电源电压低	EPS 供电异常、电源线 束连接异常、EPS 电子 控制单元内部故障	1.测试 EPS 电源电压是否异常 (<9V)。是:检查供电系统;否: 2 2.检查 EPS 与蓄电池之间的搭铁 片,端子是否未连接到位。是: 修复;否:3 3.EPS 控制单元故障,更换转向器 总成。
C1B0F00	电源正极断路	EPS 电源线束连接异常、EPS 电源保险烧坏、EPS 电控单元故障	1.检查 EPS 与蓄电池之间的搭铁 片,线束是否连接异常。是:修 复;否:2 2.检查 EPS 保险是否烧坏。是:更 换保险;否:3 3.EPS 控制单元故障,更换转向器 总成。
C1B1000	车速信号错误	车速传感器故障、EPS 电控单元故障	1.检查动力网中车速信号报文 (ID:121)第 13 位报文值是否为 1: 失效。是:检查 ESP 系统;否:2 2.EPS 控制单元故障,更换转向器 总成
C1B1100	发动机转速 信号错误	发动机系统故障、EPS 电控单元故障	1.检查动力网中发送机转速信号 报文(ID:10D)第3位是否1:失 效。是:检查发送机系统;否:2 2.EPS 控制单元故障,更换转向器 总成
C1B1200	电机旋变信 号错误	EPS 电控单元故障	EPS 电机故障,更换转向器总成
C1B1300	电机温度过 高	长时间转动转向盘、 EPS 电机、电控单元故 障	1.保持转动转向盘等待十分钟再 检测当前故障是否消失。是:属 于系统正常的温度保护;否:2 2.EPS 电机信号故障、EPS 电控单 元故障,更换转向器总成
C1B1400	电机过流故障	EPS 电机故障,EPS 电 控单元故障	更换转向器总成

C1B1500	电流偏离过 大	EPS 电机故障,EPS 电 控单元故障	更换转向器总成
C1B1600	电流传感器 故障	EPS 电控单元故障	更换转向器总成
C1B1700	电机温度传 感器故障	EPS 电机故障,EPS 电 控单元故障	更换转向器总成
C1B1800	电机继电器 故障	EPS 电机故障,EPS 电 控单元故障	更换转向器总成
C1B1900	EUC 温度过 高	长时间转动转向盘、电 控单元故障	1.保持转动转向盘等待十分钟再 检测当前故障是否消失。是:属 于系统正常的温度保护;否:2 2.EPS 电控单元故障,更换转向器 总成
C1B1A00	ECU 温度传 感器故障	EPS 电控单元故障	更换转向器总成
U029D00	与 ESP 失去 通信故障	CAN 通信系统,ESP 系统,EPS 电控单元	1. 检查动力网中车速信号报文 (ID:121)是否不存在。是: 检查 ESP 系统; 否: 2 2. EPS 电控单元故障,更换转向 器总成
U010300	与 ECM(电 喷)失去通 信	CAN 通信系统, ECM 系统, EPS 电控单元	1.检查动力网中发送机转速信号 报文(ID:10D)是否不存在:失效。 是:检查发送机系统;否:2 2.EPS 电控单元故障,更换转向器 总成

5.1.2 电源电压低、电源电压正极断路故障检查电路图

图 5-2

		图 3-2					
电源电压	电源电压故障检查						
步骤	诊断动作	标准值	是	否			
1	检查整车电压是否正常	10-16V	至步骤 3	进行下步			
2	修复整车电压问题	是否完成	至步骤 8				
	检查 EPS B19-2 电压是否为						
3	10-16V, B11-1 是否和地良好	是否正常	至步骤7	进行下步			
	导通						
4	保险 F5/1 是否正常且保险安	是否导通	至步骤 6	进行下步			
, T	装螺钉是否拧紧	~ I 7 W	1. 1/2 V/K U	VT 11 1 70			
5	更换保险,拧紧螺钉	是否完成	至步骤 8				
6	检查 EPS 电源线束是否存在	是否正常	检修电源系	进行下步			
0	其它短路或开路	化口止巾	统	延11 上 の			
7	更换转向器总成	是否完成	进行下步				
0	使用诊断仪清理诊断故障代	故障代码是否依然	乙上·諏 1	を を OV			
8	码	存在	至步骤 1	系统 OK			

5.1.3 扭矩、转角信号故障检查

电路图

图 5-4

		<u>ы</u> .				
扭矩化	扭矩传感器故障检查					
步骤	诊断动作	标准值	是	否		
1	检查接插件 B 和 EPS 电子控	是否正常	至步骤 3	进行下步		
	制单元连接是否正常					
2	固定好接插件	是否完成	至步骤 9			
3	扭矩传感器线束是否开路或	是否正常	至步骤 5	进行下步		
	短路					
4	修复线束故障	是否完成	至步骤 6			
5	更换转向器总成	是否正常	至步骤 6			
6	用诊断仪清理诊断故障代码	故障代码是否复位	至步骤1	系统 OK		