```
import numpy as np
In [1]:
         import pandas as pd
         import matplotlib.pyplot as plt
         import seaborn as sns
         data = pd.read_excel('myexcel.xlsx')
In [2]:
         data.head()
Out[2]:
               Name
                         Team Number Position Age
                                                           Height Weight
                                                                                College
                                                                                            Salary
                                                          2023-02-
                Avery
                       Boston
                                      0
         0
                                               PG
                                                     25
                                                                        180
                                                                06
                                                                                  Texas 7730337.0
              Bradley
                        Celtics
                                                          00:00:00
                                                          2023-06-
                       Boston
                  Jae
          1
                                     99
                                               SF
                                                     25
                                                                             Marquette 6796117.0
                                                                06
                                                                        235
                        Celtics
             Crowder
                                                          00:00:00
                                                          2023-05-
                John
                       Boston
                                                                                 Boston
         2
                                                                        205
                                     30
                                               SG
                                                     27
                                                                06
                                                                                              NaN
              Holland
                        Celtics
                                                                              University
                                                          00:00:00
                                                          2023-05-
                  R.J.
                       Boston
                                                                                Georgia
         3
                                     28
                                               SG
                                                     22
                                                                06
                                                                        185
                                                                                         1148640.0
                        Celtics
              Hunter
                                                                                  State
                                                          00:00:00
                                                          2023-10-
                       Boston
                Jonas
         4
                                      8
                                               PF
                                                     29
                                                                        231
                                                                                         5000000.0
                                                                06
                                                                                   NaN
              Jerebko
                        Celtics
                                                          00:00:00
         np.random.seed(0)
In [5]:
         data['Height'] = np.random.randint(150, 181, size=len(data))
         data.head()
Out[5]:
                Name
                                 Number Position Age Height Weight
                                                                                College
                          Team
                                                                                            Salary
                Avery
                         Boston
         0
                                        0
                                                PG
                                                      25
                                                              162
                                                                       180
                                                                                  Texas 7730337.0
                         Celtics
              Bradley
                         Boston
                  Jae
         1
                                       99
                                                 SF
                                                      25
                                                              165
                                                                       235
                                                                              Marguette 6796117.0
              Crowder
                         Celtics
                 John
                         Boston
                                                                                 Boston
         2
                                       30
                                                SG
                                                      27
                                                              171
                                                                       205
                                                                                              NaN
              Holland
                         Celtics
                                                                              University
                  R.J.
                         Boston
                                                                                Georgia
         3
                                       28
                                                SG
                                                      22
                                                              150
                                                                       185
                                                                                         1148640.0
                         Celtics
               Hunter
                                                                                  State
                Jonas
                         Boston
         4
                                        8
                                                 PF
                                                      29
                                                              153
                                                                       231
                                                                                         5000000.0
                                                                                   NaN
              Jerebko
                         Celtics
         data.isnull()
In [4]:
```

Out[4]:		Name	Team	Number	Position	Age	Height	Weight	College	Salary
	0	False	False	False	False	False	False	False	False	False
	1	False	False	False	False	False	False	False	False	False
	2	False	False	False	False	False	False	False	False	True
	3	False	False	False	False	False	False	False	False	False
	4	False	False	False	False	False	False	False	True	False
	•••									
	453	False	False	False	False	False	False	False	False	False
	454	False	False	False	False	False	False	False	True	False
	455	False	False	False	False	False	False	False	True	False
	456	False	False	False	False	False	False	False	False	False
	457	False	False	False	False	False	False	False	False	False

458 rows × 9 columns

```
In [7]:
         data.isnull().sum()
                       0
 Out[7]: Name
         Team
                       0
         Number
                       0
         Position
         Age
         Height
         Weight
                      0
         College
                      84
         Salary
                      11
         dtype: int64
In [12]: mode_college = data['College'].mode()[0]
         mode_college
Out[12]: 'Kentucky'
In [14]: data['College'] = data['College'].fillna(mode_college)
         data.isnull().sum()
```

```
Out[14]:
                      0
         Name
         Team
                      0
         Number
                      0
         Position
                      0
         Age
         Height
         Weight
         College
                      0
         Salary
                     11
         dtype: int64
In [16]: mean_Salary = data['Salary'].mean()
        data['Salary'] = data['Salary'].fillna(mean_Salary)
In [18]:
In [20]:
         data.isnull().sum()
Out[20]:
                     0
         Name
         Team
                     0
         Number
                     0
         Position
         Age
         Height
         Weight
                     0
         College
                     0
         Salary
         dtype: int64
In [22]: data.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 458 entries, 0 to 457
        Data columns (total 9 columns):
            Column
                      Non-Null Count Dtype
            ____
                      -----
        0
            Name
                      458 non-null
                                     object
                      458 non-null
                                     object
        1
            Team
         2
            Number
                      458 non-null
                                   int64
         3
            Position 458 non-null
                                     object
            Age
                      458 non-null
                                   int64
         5
            Height
                      458 non-null
                                    int32
            Weight
                      458 non-null int64
            College
                      458 non-null
                                     object
            Salary
                      458 non-null
                                     float64
        dtypes: float64(1), int32(1), int64(3), object(4)
        memory usage: 30.5+ KB
In [24]: data.describe()
```

O.	 $\Gamma \cap A$	7
())	1 / / /	

	Number	Age	Height	Weight	Salary
count	458.000000	458.000000	458.00000	458.000000	4.580000e+02
mean	17.713974	26.934498	164.60262	221.543668	4.833970e+06
std	15.966837	4.400128	9.13522	26.343200	5.163335e+06
min	0.000000	19.000000	150.00000	161.000000	3.088800e+04
25%	5.000000	24.000000	157.00000	200.000000	1.100150e+06
50%	13.000000	26.000000	165.00000	220.000000	2.862190e+06
75%	25.000000	30.000000	172.00000	240.000000	6.323553e+06
max	99.000000	40.000000	180.00000	307.000000	2.500000e+07

In [26]: data

Out[26]:

	Name	Team	Number	Position	Age	Height	Weight	College	Salary
0	Avery Bradley	Boston Celtics	0	PG	25	162	180	Texas	7.730337e+06
1	Jae Crowder	Boston Celtics	99	SF	25	165	235	Marquette	6.796117e+06
2	John Holland	Boston Celtics	30	SG	27	171	205	Boston University	4.833970e+06
3	R.J. Hunter	Boston Celtics	28	SG	22	150	185	Georgia State	1.148640e+06
4	Jonas Jerebko	Boston Celtics	8	PF	29	153	231	Kentucky	5.000000e+06
•••									
453	Shelvin Mack	Utah Jazz	8	PG	26	176	203	Butler	2.433333e+06
454	Raul Neto	Utah Jazz	25	PG	24	169	179	Kentucky	9.000000e+05
455	Tibor Pleiss	Utah Jazz	21	С	26	157	256	Kentucky	2.900000e+06
456	Jeff Withey	Utah Jazz	24	С	26	158	231	Kansas	9.472760e+05
457	Priyanka	Utah Jazz	34	С	25	179	231	Kansas	9.472760e+05

458 rows × 9 columns

In [28]: duplicate = data.duplicated().sum()

Displaying the result

team_distribution

duplicate

Out[28]: 0

In []: 1. Determine the distribution of employees across each team and calculate the perce

In [30]: # Grouping by 'Team' and counting the number of employees (players) in each team team_distribution = data['Team'].value_counts().reset_index() team_distribution.columns = ['Team', 'EmployeeCount']

Calculating the total number of employees total_employees = data['Team'].count()

Adding a percentage split column team_distribution['EmployeeCount'] / total_

Out[30]:

	Team	EmployeeCount	PercentageSplit
0	New Orleans Pelicans	19	4.148472
1	Memphis Grizzlies	18	3.930131
2	Utah Jazz	16	3.493450
3	New York Knicks	16	3.493450
4	Milwaukee Bucks	16	3.493450
5	Brooklyn Nets	15	3.275109
6	Portland Trail Blazers	15	3.275109
7	Oklahoma City Thunder	15	3.275109
8	Denver Nuggets	15	3.275109
9	Washington Wizards	15	3.275109
10	Miami Heat	15	3.275109
11	Charlotte Hornets	15	3.275109
12	Atlanta Hawks	15	3.275109
13	San Antonio Spurs	15	3.275109
14	Houston Rockets	15	3.275109
15	Boston Celtics	15	3.275109
16	Indiana Pacers	15	3.275109
17	Detroit Pistons	15	3.275109
18	Cleveland Cavaliers	15	3.275109
19	Chicago Bulls	15	3.275109
20	Sacramento Kings	15	3.275109
21	Phoenix Suns	15	3.275109
22	Los Angeles Lakers	15	3.275109
23	Los Angeles Clippers	15	3.275109
24	Golden State Warriors	15	3.275109
25	Toronto Raptors	15	3.275109
26	Philadelphia 76ers	15	3.275109
27	Dallas Mavericks	15	3.275109
28	Orlando Magic	14	3.056769

```
In [32]: # Bar chart
plt.figure(figsize=(14, 6))
plt.bar(team_distribution['Team'], team_distribution['EmployeeCount'], color='red')
plt.title('Employee Distribution Across Teams')
plt.xlabel('Team')
plt.ylabel('Employee Count')
plt.xticks(rotation=90)
plt.show()
```


In []: 2. Segregate employees based on their positions within the company. (2 marks)

```
In [34]: position_distribution = data['Position'].value_counts().reset_index()
    position_distribution.columns = ['Position', 'EmployeeCount']

position_distribution['PercentageSplit'] = (position_distribution['EmployeeCount']

# Displaying the result
position_distribution
```

```
Out[34]:
              Position EmployeeCount PercentageSplit
           0
                   SG
                                    102
                                               22.270742
                    PF
                                    100
           1
                                               21.834061
           2
                   PG
                                               20.087336
                                     92
           3
                    SF
                                     85
                                               18.558952
           4
                    C
                                     79
                                               17.248908
```

```
In [36]: # Bar Chart for Position Distribution
plt.figure(figsize=(12, 6))
```

```
plt.bar(position_distribution['Position'], position_distribution['EmployeeCount'],
plt.title('Employee Distribution by Position')
plt.xlabel('Position')
plt.ylabel('Employee Count')
plt.show()
```


In []: #Identify the predominant age group among employees.

```
In [38]: age_bins = [0, 20, 30, 40, 50, 60, 100]
    age_labels = ['<20', '20-29', '30-39', '40-49', '50-69', '60+']

# Categorize employees into age groups
    data['AgeGroup'] = pd.cut(data['Age'], bins=age_bins, labels=age_labels, right=Fals

# Count employees in each age group
    age_group_distribution = data['AgeGroup'].value_counts().reset_index()
    age_group_distribution.columns = ['AgeGroup', 'EmployeeCount']

# Calculate percentage split for each age group
    total_employees = data['Age'].count()
    age_group_distribution['PercentageSplit'] = (age_group_distribution['EmployeeCount'

# Display result
    age_group_distribution.head()</pre>
```

```
Out[38]:
             AgeGroup EmployeeCount PercentageSplit
          0
                  20-29
                                   334
                                             72.925764
          1
                 30-39
                                   119
                                             25.982533
                                     3
          2
                 40-49
                                              0.655022
          3
                   <20
                                     2
                                              0.436681
          4
                  50-69
                                     0
                                              0.000000
In [40]: # Find the predominant age group
          predominant_age_group = age_group_distribution.loc[age_group_distribution['Employee
          # Display the result
          predominant_age_group.head()
Out[40]: AgeGroup
                                  20-29
          EmployeeCount
                                    334
          PercentageSplit
                              72.925764
          Name: 0, dtype: object
In [100...
          # Bar Chart for Age Group Distribution
          plt.figure(figsize=(10, 6))
          plt.bar(age_group_distribution['AgeGroup'], age_group_distribution['EmployeeCount']
          plt.title('Distribution of Employees by Age Group', fontsize=16)
          plt.xlabel('Age Group', fontsize=12)
          plt.ylabel('Employee Count', fontsize=12)
          plt.xticks(fontsize=10)
          plt.yticks(fontsize=10)
          # Highlight the predominant age group
          predominant_group = age_group_distribution.loc[age_group_distribution['EmployeeCoun'
          plt.bar(predominant_group['AgeGroup'], predominant_group['EmployeeCount'], color='o
          plt.legend()
          plt.tight_layout()
          plt.show()
```



```
In []: # Discover which team and position have the highest salary expenditure
In [42]: team_exp = data.groupby('Team')['Salary'].sum()
team_exp
```

```
Out[42]: Team
         Atlanta Hawks
                                   7.290295e+07
         Boston Celtics
                                   6.337504e+07
         Brooklyn Nets
                                   5.252848e+07
         Charlotte Hornets
                                   7.834092e+07
         Chicago Bulls
                                   8.678338e+07
         Cleveland Cavaliers
                                   1.118227e+08
         Dallas Mavericks
                                   7.119873e+07
                                   6.495590e+07
         Denver Nuggets
         Detroit Pistons
                                   6.716826e+07
         Golden State Warriors
                                   8.886900e+07
         Houston Rockets
                                   7.528302e+07
         Indiana Pacers
                                   6.675183e+07
         Los Angeles Clippers
                                   9.485464e+07
         Los Angeles Lakers
                                   7.177043e+07
         Memphis Grizzlies
                                   9.588676e+07
         Miami Heat
                                   9.218361e+07
         Milwaukee Bucks
                                   6.960352e+07
         Minnesota Timberwolves
                                   6.454367e+07
         New Orleans Pelicans
                                   8.275077e+07
         New York Knicks
                                   7.330390e+07
         Oklahoma City Thunder
                                  9.376530e+07
         Orlando Magic
                                   6.016147e+07
         Philadelphia 76ers
                                   3.582686e+07
         Phoenix Suns
                                   6.344514e+07
         Portland Trail Blazers
                                   4.830182e+07
         Sacramento Kings
                                   7.168367e+07
         San Antonio Spurs
                                   8.444273e+07
         Toronto Raptors
                                   7.111761e+07
         Utah Jazz
                                   6.400737e+07
         Washington Wizards
                                   7.632864e+07
         Name: Salary, dtype: float64
In [44]: team_high_exp = team_exp.idxmax()
         team high exp
Out[44]: 'Cleveland Cavaliers'
In [46]:
         highest exp = team exp.max()
         highest_exp
Out[46]: 111822658.5458613
In [48]: # Group by Team and calculate total salary expenditure
         team_exp = data.groupby('Team')['Salary'].sum()
         # Bar Chart
         plt.figure(figsize=(12, 6))
         plt.bar(team_exp.index, team_exp.values, color='blue')
         plt.title('Total Salary Expenditure by Team', fontsize=16)
         plt.xlabel('Team', fontsize=12)
         plt.ylabel('Total Salary Expenditure', fontsize=12)
         plt.xticks(rotation=90)
         plt.tight_layout()
         plt.show()
```


In []: #Investigate if there's any correlation between age and salary, and represent it vi

```
import seaborn as sns
import matplotlib.pyplot as plt

# Scatter Plot
plt.figure(figsize=(10, 6))
sns.scatterplot(data=data, x='Age', y='Salary', color='blue', alpha=0.7)
plt.title('Correlation Between Age and Salary', fontsize=16)
plt.xlabel('Age', fontsize=12)
plt.ylabel('Salary', fontsize=12)
plt.grid(True)
plt.tight_layout()
plt.show()
```



```
In [56]: correlation_coefficient = data['Age'].corr(data['Salary'])
    print(f"Correlation Coefficient between Age and Salary: {correlation_coefficient:.2
        Correlation Coefficient between Age and Salary: 0.21
In []:
```