ЛЕКЦИЯ 5

Нечеткая продукция

Продукционная система состоит из некоторой базы правил. В общем виде правило нечеткой продукции записывается так:

- $(i):Q,P,A\Rightarrow B,S,F,N$, где
- (і) наименование (номер) правила,

Q - предметная область,

 $A \Rightarrow B$ - ядро правила,

P - предусловие,

S - способ/процедура определения истинности ядра,

F - коэффициент определенности (доверие относительно правила),

N - постусловие/постдействие (что делается, если ядро выполняется).

Способы определения истинности ядра

В четкой логике существуют следующие способы:

1. Modus Ponens (прямой метод):

$$If\underbrace{AisB}_{\alpha}, then\underbrace{CisD}_{\beta}.$$

A есть B, C есть D, прямой ход рассуждения - $(\alpha \land (\alpha \to \beta)) \to \beta$.

2. Modus Tollens:

$$If\underbrace{AisB}_{\alpha}, then\underbrace{CisD}_{\beta}.$$

C не есть D, A не есть B, $((\alpha \to \beta) \land \overline{\beta}) \to \overline{\alpha}$.

Применяем данные способы к нечеткой логике: if A, then B.

Пусть A - унарное нечеткое множество вида: $A = \{x, \mu_A(x)\}$, и пусть множество $B = \{y, \mu_B(y)\}$.

Введем бинарное отношение $Q = \{\langle x, y \rangle, \mu_Q(\langle x, y \rangle)\}.$

Q характеризует степень истинности высказывания "If A, then B".

Нужно определить истинность B.

Воспользуемся нечеткой композицией.

1.
$$\mu_B(y) = \max_x \{\min\{\mu_A(x), \mu_Q(\langle x, y \rangle)\}\}$$
 (max – min).

2.
$$\mu_B(y) = \max_x \{ \mu_A(x) \cdot \mu_Q(\langle x, y \rangle) \} \text{ (max } -prod).$$

3.
$$\mu_B(y) = \min_{x} \{ \max\{\mu_A(x), \mu_Q(\langle x, y \rangle) \} \}$$
 (min – max).

- 4. $\min \min$.
- 5. $\max \max$.

6.
$$\mu_B(y) = \frac{1}{2} \max_x \{ \mu_A(x) + \mu_Q(\langle x, y \rangle) \}.$$

Это методы для прямого метода рассуждения.

Пример. (Примечание: в примере рассматривается идеальная ситуация, на практике же подобная ситуация может иметь совершенно другие результаты, сильно отличающиеся от теоретических :))

- 1. Если студент посещает лекции, mo он пишет конспект :) . F=0.75.
- 2. Если у студента \exists конспект, mo он хорошо подготовится к экзамену. F = 0.9.
- 3. Если студент посещал лекции и готов к экзамену, т0 сдаст экзамен. F = 0.95.

Возьмем способ импликации по Мамдани (Примечание: Ebrahim Mamdani - английский математик:)).

- 1. $T_1 = 0.6$.
- 2. $T_2 = 0.6$.
- 3. $T_3 = 0.6$.

Если отрицание - что не сдаст экзамен: $\overline{T}_3 = 0.4$.

Возможное домашнее задание: применить другие правила композиции.

If A, then B.

Запишем теперь ядро в следующем виде:

$$If \underbrace{\beta_1 is \bigtriangledown \alpha_1}_{}, then \underbrace{\beta_2 is \bigtriangledown \alpha_2}_{},$$
 где

 β_1 и β_2 - лингвистические переменные,

 α_1 и α_2 - лингвистические термы,

 β is α - нечеткое лингвистическое высказывание.

Пример. Если скорость автомобиля высокая, то расход топлива большой.

"Ошибка скорости"

"Управляющее ускорение"

1. Фаззификация (перевод в область нечеткости):

$$\mu_{ZE}(E_V) > 0,$$

$$\mu_{BNE}(E_V) = 0,$$

$$\mu_{BPE}(E_V) < 0.$$

2. Агрегирование подусловий:

 $\mathit{Ecлu}$ "Ошибка по скорости
"есть BPE ($T=0),\ \mathit{mo}$ "Управляющее ускорение "есть BPA.

Может быть такой случай:

Ecnu "Ошибка по скорости"
есть BPE или "Ошибка по скорости"
есть ZE, то