

Objective 2.3 Explain hardware assurance best practices.

- Hardware root of trust
- Trusted platform module (TPM)
- Hardware security module (HSM)
- eFuse
- Unified Extensible Firmware Interface (UEFI)
- Trusted firmware updates
- Measured boot and attestation

Trusted Platform Module (TPM)

- TPM chip
 - System-on-chip (SoC)
 - Stores cryptographic keys and the functionality to deal with them
- Persistent memory
 - Endorsement key (EK)
 - Storage root key (SRK)
- Versatile memory
 - Platform Configuration Registers (PCRs)
 - Attestation Identity Keys (AIKs)
 - Storage keys

Hardware Security Module (HSM)

- Not bound to a motherboard
- Removable card or device

eFuse

- Nonvolatile bit
 - Once set to 1, cannot be changed
- Useful to permanently disable functionality
 - Manufacturing tests
- Useful to permanently store data
 - Cryptographic keys

Firmware

- Software that's burned into hardware (chip)
- Difficult to change
- Unified Extensible Firmware Interface (UEFI)
 - Security Phase (SEC)
 - Pre-EFI Initialization (PEI)
 - Driver Execution Environment (DXE)
 - Boot Device Select (BDS)
 - Transient System Load (TSL)
 - Runtime (RT)

Firmware Security

- Measured boot and attestation
 - Instead of verifying digital signatures of code
 - Calculates code hashes
 - Stores hashes of programs that have been run
 - Securely sends hashes to management station
- Trusted firmware updates
 - Built-in capability to download, verify, and swap firmware images
 - · Avoids overwrite failures that result in unbootable devices

Objective 2.3 Explain hardware assurance best practices.

- Self-encrypting drive
- Bus encryption

Storage Encryption

- Full-disk encryption (FDE)
 - Software
 - Hardware

Hardware Encryption

- Self-encrypting drive (SED)
 - User provides password
 - Password gets used to encrypt key
 - Encrypted key is stored in nonvolatile memory of the disk controller

Bus Encryption

- SED still exposes plaintext once data gets read from the disk
- Moving crypto module from the disk controller to the CPU
 - Keeps data on the bus as ciphertext
 - Requires a dedicated chip (cryptoprocessor)
- Bus encryption is not suitable for general purpose computers
 - Expensive
 - Complex
 - Functional limitations

Objective 2.3 Explain hardware assurance best practices.

- Trusted foundry
- Secure processing
- Trusted execution
- Secure enclave
- Processor security extensions
- Atomic execution
- Anti-tamper

Secure Processing

- Trusted execution environment (TEE)
 - Rigorous assessment prior to certification
 - Secure enclave
 - Runtime environment that limits how programs interact with one another and the outside world

TEE and REE • Processor security extensions • CPU instructions that support TEE functionality OS Bootloader Trusted Execution Environment Trusted OS Trusted OS Trusted OS Trusted OS Trusted OS Trusted OS App Trusted OS Firmware Source: Chapman, B., & Maymil, F. (2020). CompTIA CySA+** Cybenscurity Analysis Certification All-in-One Exam Guide, Second Edition (Exam CSO-022), 248.

Secure Processing

- Atomic execution
 - Anti-interruption guarantee
 - Helps to protect from TOCTOU attacks

Trusted Foundry

- US DoD program
- Ensures that the supply chain for all DoD mission-critical systems is hardened
- Fewer than 100 companies have passed the rigorous certification process to be designated as trusted foundries

Anti-Tamper Techniques

- Chip attacks
 - Microprobing
 - Apply voltage to various conductors and recording the results
 - Visual analysis
 - Carefully removing the chip's covering, layer by layer

Anti-Tamper Techniques

- Chip manufacturers employ techniques to thwart tampering
 - Random signals to confuse microprobing
 - Chip casing compromise detection
 - If compromised, place zeros in nonvolatile memory

