Projet 5 : Produisez une étude de marché

Introduction

Introduction

4 Variables:

- Evolution de la population
- Proportion de protéines d'origine animale par rapport à la quantité totale de protéines dans la disponibilité alimentaire du pays
- -Disponibilité alimentaire en protéines par habitant par jour
- -Disponibilité alimentaire en calories par habitant par jour

Introduction

Classification hiérarchique

Partitionner les données

Analyse en composante principale (ACP)

Visualiser les partitions

I. Création du DataFrame

I. Création du DataFrame

```
data_4={"Pays":dispo_Kcal.Pays.tolist(),"dispo_Kcal":dispo_Kcal.dispo_Kcal.tolist(),"dispo_prot_total.dispo_prot
df=pd.DataFrame(data_4)

print(df[df.Pays=="Oman"])  #Le pays Oman est un outlier
df=df[df.Pays!="Oman"]

print(df[df.Pays=="Soudan"])  #Le pays Soudan est un outlier
df=df[df.Pays!="Soudan"]

df=df.reset_index(drop=True)
df=df.set_index("Pays")
```

Le DataFrame est prêt à être analysé

II. Classification hiérarchique

```
def plot dendrogram(Z, names):
    plt.figure(figsize=(10,25))
    plt.title('Dendogramme')
    dendrogram(
        Ζ,
        labels = names,
        truncate_mode='lastp',
        p=15,
    plt.show()
# préparation des données pour le clustering
X = df.values
names = df.index
# Centrage et Réduction
std scale = preprocessing.StandardScaler().fit(X)
X scaled = std scale.transform(X)
# Clustering hiérarchique
Z = linkage(X_scaled, 'ward')
# Affichage du dendrogramme
plot dendrogram(Z, names)
```

II. Classification hiérarchique

Découpage en 15 clusters

III. Analyse des partitions

```
# Découpage du dendrogramme en 5 clusters
clusters = fcluster(Z, 5, criterion='maxclust')

# Comparaison des clusters trouvés

courses = pd.DataFrame({"cluster": clusters, "Pays":df.index, "Indice": indice.Indice})

sns.heatmap(courses.pivot_table(index="Indice" , columns="cluster", aggfunc=len, fill_value=0), annot=True, xticklabels=["Cluster", atticklabels=["Cluster", atticklabels=["Cluster"
```


III. Analyse des partitions

Les variables dispo_prot, dispo_Kcal et ratio_prot en général plus haute pour le cluster 1.

Cependant, les clusters 1 et 2 sont les plus bas au niveau de la variable ratio_pop

IV. Analyse en composante principale

```
# choix du nombre de composantes à calculer
n_comp = 4

# import de l'échantillon
X = df.drop(columns=["Indice","Pays","cluster"]).values

# Centrage & réduction
std_scale = preprocessing.StandardScaler().fit(X)
X_scaled = std_scale.transform(X)

# Calcul des composantes principales
pca = decomposition.PCA(n_components= n_comp)
pca.fit(X_scaled)
```

Eboulis des valeurs propres
display_scree_plot(pca)

Cercle des corrélations
pcs = pca.components_
display_circles(pcs, n_comp, pca, [(0,1)],labels = np.array(df.drop(columns=["Indice","Pays"]).columns))

IV. Analyse en composante principale

Projection des individus
X_projected = pca.transform(X_scaled)
display_factorial_planes(X_projected, n_comp, pca, [(0,1)],illustrative_var=df.cluster)

#Projection des centroîdes

V. Qualité de représentation

Contribution	dans	l inertie	totale
		_	

id	_
Zambie	11.905066
Islande	11.602863
Koweït	10.748100
Lituanie	10.561226
Chine - RAS de Hong-Kong	10.551092
Libéria	10.427880
Madagascar	10.053566
Ouganda	9.992069
Rwanda	9.587161
Mozambique	9.294506

Contribution	dans	l inertie	totale
		_	

id	_
Kirghizistan	0.050425
Turkménistan	0.210350
Viet Nam	0.244451
Ouzbékistan	0.282423
Afrique du Sud	0.384145
Pérou	0.393910
Mexique	0.413540
Fidji	0.458271
Kiribati	0.464336
Guyana	0.528963

	COS2_1er_plan_factoriel	COS2_F1	COS2_F2
id			
Eswatini	0.998246	0.879300	0.118947
France	0.998091	0.972659	0.025433
Saint-Vincent-et-les Grenadines	0.997698	0.631653	0.366045
Norvège	0.997161	0.883915	0.113246
Jamaïque	0.995503	0.078885	0.916618
Iraq	0.995431	0.877040	0.118391
Portugal	0.993950	0.993142	0.000808
République-Unie de Tanzanie	0.992079	0.963739	0.028341
Danemark	0.991633	0.988750	0.002883
Sierra Leone	0.991587	0.968950	0.022636

	COS2_1er_plan_factoriel	COS2_F1	C0S2_F2
id			
Panama	0.003760	0.000993	0.002768
Kiribati	0.064521	0.062795	0.001725
Kirghizistan	0.067423	0.006121	0.061302
Mongolie	0.102084	0.000775	0.101310
Costa Rica	0.105337	0.037995	0.067341
Bahamas	0.145905	0.128146	0.017760
Malaisie	0.188292	0.157295	0.030997
Iran (République islamique d')	0.215854	0.004158	0.211695
Venezuela (République bolivarienne du)	0.245990	0.094883	0.151107
Antigua-et-Barbuda	0.250713	0.046662	0.204051

V. Qualité de représentation

	CTR F1		CTR_F1
id	_	id	
Zambie	0.022976	Kirghizistan	6.219170e-07
Libéria	0.020350	Saint-Kitts-et-Nevis	6.893884e-07
Lituanie	0.020058	Panama	1.075693e-06
Madagascar	0.020044	Mongolie	2.803287e-06
Ouganda	0.018990	Iran (République islamique d')	1.285789e-05
Rwanda	0.018376	Gabon	2.362841e-05
Mozambique	0.018317	Algérie	2.460875e-05
Chine - RAS de Hong-Kong	0.018059	Fidji	2.858141e-05
Islande	0.017986	Viet Nam	3.081229e-05
Tchad	0.017216	Grenade	3.245125e-05

Top 10 Min 10

1/172 = 0.005814

Choix du focus sur le cluster 1

	dispo_Kcal	dispo_prot_total	ratio_pop	ratio_prot	١
Pays					
Albanie	3193	111.42	0.730159	0.533297	
Allemagne	3499	101.59	-0.349326	0.605178	
Argentine	3229	102.64	2.655174	0.652182	
Australie	3276	106.28	4.191216	0.674445	
Autriche	3768	106.21	1.106879	0.591846	
Belgique	3733	99.59	1.489809	0.583593	
Canada	3494	104.95	3.094415	0.521201	
Chine - RAS de Hong-Kong	3290	129.18	2.184397	0.730841	
Danemark	3367	108.88	1.225005	0.641256	
Espagne	3174	104.88	1.613183	0.621186	
Estonie	3253	103.90	-0.923788	0.512416	
États-Unis d'Amérique	3682	109.60	2.499303	0.636679	
Fédération de Russie	3361	102.84	-0.545893	0.546285	
Finlande	3368	117.72	1.080477	0.620370	
France	3482	110.52	1.676393	0.627488	
Grèce	3400	108.80	0.162016	0.544485	
Irlande	3600	110.02	3.558639	0.589166	
Islande	3380	133.54	3.773585	0.722480	
Israël	3610	128.14	4.218329	0.565553	
Italie	3579	108.51	0.794923	0.536725	
Lituanie	3417	124.49	-1.662321	0.614427	
Luxembourg	3539	113.88	4.330709	0.633298	
Maldives	2732	122.43	5.828221	0.702115	
Malte	3378	110.36	0.941176	0.559442	
Monténégro	3491	112.07	0.161290	0.563130	
Norvège	3485	110.90	3.107749	0.595041	
Pays-Bas	3228	111.72	0.866687	0.678213	
Pologne	3451	101.47	0.047122	0.524983	
Portugal	3477	110.88	0.169972	0.606782	
Roumanie	3358	103.02	-0.741046	0.458261	
Royaume-Uni	3424	103.21	1.723640	0.564674	
Suède	3179	107.72	2.014496	0.657538	

32 Pays

Découpage en 10 clusters

Pays	Population	score1	PIB	score2	total
États-Unis d'Amérique	320051	15	52898.817379	10	25
Australie	23343	10	66301.306788	13	23
Canada	35182	11	52264.959967	9	20
Suède	9571	7	60190.029595	11	18
France	64291	14	42493.606628	3	17
Pays-Bas	16759	9	51466.478134	8	17
Danemark	5619	5	60942.805627	12	17
Norvège	5043	3	103110.441896	14	17
Luxembourg	530	1	113341.237463	15	16
Espagne	46927	13	29163.288417	2	15
Argentine	41446	12	14417.421454	1	13
Belgique	11104	8	46713.462219	4	12
Autriche	8495	6	50137.519579	6	12
Finlande	5426	4	49659.588178	5	9
Irlande	4627	2	51130.077752	7	9

Choix des pays Suède, Pays-Bas, Danemark et Norvège

VII. Tests statistiques

```
from scipy.stats import kstest

#Hypothèse H0 : la disponibilité en Kcal suit une distribution gaussienne
print(kstest(X_scaled[:,0],'norm'))

#La p-value est supérieure au seuil de 5%. L'hypothèse H0 n'est ainsi pas rejetté.
#La distribution du ratio de protéines est donc gaussienne
```

KstestResult(statistic=0.05819703271366561, pvalue=0.6004195326847048)

VII. Tests statistiques

```
#Hypothèse H0 : les deux clusters suivent la même loie de distribution pour la disponibilité en Kcal from scipy.stats import bartlett bartlett(cluster_1_scaled[:,0],cluster_2_scaled[:,0]) #La p-value est supérieure au seuil de 5%. On ne rejette donc pas l'égalité des variances.
```

BartlettResult(statistic=0.7266592689821892, pvalue=0.39396819736177313)

```
from scipy.stats import ttest_ind
ttest_ind(cluster_1_scaled[:,0],cluster_2_scaled[:,0], equal_var=True)
# La p-value est bien inférieure au seuil de 5%. On rejette l'hypothèse H0.
#les deux clusters ne suivent pas la même loie de distribution pour la disponibilité en Kcal
```

Ttest_indResult(statistic=5.823178675834855, pvalue=1.6026269596095416e-07)

URL des images utilisées

- https://openclassrooms.com/fr/projects/produisez-une-etude-demarche
- https://www.cuisineaz.com/recettes/poulet-entier-au-cookeo-98217.aspx
- http://www.ecommercemag.fr/Thematique/management-1225/Breves/Commerce-Paris-2014-conseils-experts-start-bienexporter-245853.htm