Crypto Recommender Final Update

Sean Hung, Yu-Kai Wang, Matthew Uryga, Jonathan Li

Initial Goals

Initial Goals

- Use crypto price history and real-time price and sentiment analysis to identify similar cryptocurrencies.
 - Construct a graph using this data
 - Use this to predict future price action
- Scrape data from Twitter and Reddit for real-time news and sentiment
 - Using BERT for sentiment analysis
- Construct an aggregate similarity metric that takes all of the data into account
- Determine if each crypto is bullish/neutral/bearish
 - Possibly output a price target for a given crypto

Data Collection and Processing

Data Collection and Processing

- Scraping data from various social media and crypto information sites
 - Twitter
 - Reddit
 - Binance API
 - Coin Market Cap
- Applying various clustering algorithms to create similarity metrics
- Sentiment Analysis
 - Bert-uncased model from hugging face
 - Evaluating stock performance on a given day based on reddit headline posts
- Calculating price data with technical analysis indicator

Similarity Algorithms

T-SNE

T-distributed Stochastic Neighbor Embedding

- For each crypto assets, we have a list of metadata associated with it
 - Max supply, market cap, circulating supply, etc.
- To aggregate these values, we trained a
 T-SNE model to compress these features into
 2-dimensional space
- We then use K-means clustering to categorize the crypto assets with the T-SNE embedding
- This artificial feature can represent the metadata of each crypto to a certain degree

DBSCAN Clustering

- Due to the volatility of the crypto market, there will inevitably be outliers in the data
- Clustering methods such as k mean clustering sensitive to outliers
- DBSCAN fixes this issue by clustering points based on density
- Outliers have low density, thus they are treated as noise and disregarded

Regression Similarity

Regression Similarity (cont'd)

- This is a visualization of 8 different cryptocurrencies
 - A linear regression has been computed for every edge, and the edge's weight is the r^2 value for the regression
- Darker edges have a stronger correlation than lighter edges

Regression Similarity (cont'd)

 This is the same visualization but with 18 cryptocurrencies

Regression Similarity (cont'd)

TIME	XRPUSDT	BNBUSDT	TIME	XRPUSDT	BNBUSDT
2021-06-13 00:00:00	sell	sell	2021-06-14 20:00:00	buy	buy
2021-06-13 04:00:00	sell	sell	2021-06-15 00:00:00	buy	buy
2021-06-13 08:00:00	sell	sell	2021-06-15 04:00:00	buy	buy
2021-06-13 12:00:00	sell	sell	2021-06-15 08:00:00	buy	buy
2021-06-13 16:00:00	buy	buy	2021-06-15 12:00:00	buy	buy
2021-06-13 20:00:00	buy	buy	2021-06-15 16:00:00	buy	buy
2021-06-14 00:00:00	buy	buy	2021-06-15 20:00:00	buy	buy
2021-06-14 04:00:00	buy	buy	2021-06-16 00:00:00	buy	buy
2021-06-14 08:00:00	buy	buy	2021-06-16 04:00:00	buy	buy
2021-06-14 12:00:00	buy	buy	2021-06-16 08:00:00	sell	sell
2021-06-14 16:00:00	buy	buy	2021-06-16 12:00:00	sell	sell

Correlation Prediction

- Graph
 - Weight: Correlation
 - Nodes: Crypto assets
- Time series data prediction
 - Volume correlation prediction
 - Price correlation prediction
- Multi-head self-attention with CNN

Challenges

Challenges

- The volatile nature of the crypto market
- Getting historical data from Twitter
 - Twitter API has a 7 day limit on tweet fetches
- Various cryptocurrencies are relatively new
 - No standard start time
 - Don't have enough information to backtest
- Real-time prediction is more complex than initially thought
 - All predictions will be made at runtime.
- Unable to get the latest information in the first place
 - Crypto project teams usually post information on Twitter and discord

Summary

Summary

- As of now, we are able to construct a comprehensive graph:
 - Nodes are unique cryptocurrencies
 - Edges hold values for each similarity metric
 - T-SNE
 - k-means
 - DBSCAN
 - Regression similarity
 - Cosine similarity
- Sentiment analysis is also complete
 - Using BERT, we can achieve > 90% accuracy on determining bullish/neutral/bearish sentiment

Work Distribution

Work Distribution

- Sean Hung
 - Data scraping from twitter, reddit
 - Price and volume data from Binance API
 - Sentiment analysis
 - Implementing technical analysis indicator
- Steven Wang
 - Data scraping from CoinMarketCap
 - Metadata clustering (T-SNE, k-means)
 - Correlation graph prediction

Matt Uryga

- Regression similarity
- Real-time price fetching (not used)
- Graph visualizations
- Implemented graph and crypto object framework
- Jonathan Li
 - DBSCAN
 - Cosine Similarity
 - Data Clustering and visualization

Looking Ahead

Looking Ahead

- We need to implement graph similarity algorithms to determine which cryptocurrencies are similar within the constructed graph
- This, combined with the sentiment analysis will be the backbone of the aggregate similarity algorithm that will output the final signal/price target for each cryptocurrency
- Evaluating the reliability of different metrics