7. Turbulence	

What is Turbulence?

- A "random", 3-d, time-dependent eddying motion with many scales, superposed on an often drastically simpler mean flow
- A solution of the Navier-Stokes equations
- The natural state at high Reynolds numbers
- An efficient transporter and mixer
- A major source of energy loss
- A significant influence on drag:
 - increases frictional drag in non-separated flow
 - delays, or sometimes prevents, boundary-layer separation on curved surfaces, so reducing pressure drag.
- "The last great unsolved problem of classical physics"

Flow Regimes • Laminar: - smooth - no mixing of fluid - momentum transfer by viscous forces • Turbulent: - chaotic - mixing of fluid - momentum transfer mainly by net effect of intermingling Regime determined by Reynolds number: Re = \frac{\rho UL}{\rho} = \frac{UL}{\rho} 'Low' Re ⇒ laminar; 'high' Re ⇒ turbulent

'High' or 'low' depends on the flow and the choice of $\it U$ and $\it L$

Alternative Notations

• Overbar for mean, prime for fluctuation:

$$\overline{u} + u'$$

$$-\rho \overline{u'v'}$$

• Upper case for mean, lower case for fluctuation:

$$U + u$$

$$-\rho \overline{uv}$$

Reynolds Averaging

$$u = \overline{u} + u'$$

$$\overline{u'} = 0$$

Variance:

$$\overline{u^2} = \overline{u}^2 + \overline{u'^2}$$

Covariance: $\overline{uv} = \overline{u} \, \overline{v} + \overline{u'v'}$

$$\overline{u}_{v} = \overline{u} \, \overline{v} + \overline{u'v'}$$

Effect of Turbulence on the Mean Flow (i) Mass

Mass flux:

Average mass flux: $\rho \overline{\nu} A$

The mean velocity satisfies the same continuity equation as the instantaneous velocity

Effect of Turbulence on the Mean Flow				
(ii) Momentum				
(x-)momentum flux: $(\rho vA)u = \rho(uv)A$	-			
Average momentum flux : $ (\overline{\rho \nu A}) \overline{u} = \rho (\overline{u} \ \overline{v} + \overline{u'v'}) A $				
extra term				
Net rate of transport of momentum $\rho \overline{u'v'}A$ from LOWER to UPPER				
is equivalent to $-\rho\overline{u'v'}A$ from UPPER to LOWER				
has the same dynamic effect as a stress $-\rho \overline{u'v'}$				
The mean velocity satisfies the same momentum equation as the instantaneous velocity, except for additional apparent stresses; e.g.				
$-\rho \overline{u'v'}$ $-\rho \overline{u'u'}$				
These are called the Reynolds stresses				

Total Stress				
In simple shear: $\tau = \mu \frac{\partial \overline{u}}{\partial y} - \rho \overline{u'v'}$ $\frac{\partial \overline{u}}{\partial y} - \frac{\partial \overline{u'v'}}{\partial y}$ $\frac{\partial \overline{u}}{\partial y} - \frac{\partial \overline{u'v'}}{\partial y}$ $\frac{\partial \overline{u}}{\partial y} - \frac{\partial \overline{u}}{\partial y}$	τ			
may be regarded as EITHER: the force per unit area exerted by upper on lower fluid OR				
the rate of transport of its content of its co	momentum per unit area from upper to lower fluid			
The dynamic effect (average	rate of transfer of momentum) is the same			

Velocity Fluctuations

Normal stresses:

$$\overline{u'^2}, \overline{v'^2}, \overline{w'^2}$$

Shear stresses:

$$\overline{v'w'}, \overline{w'u'}, \overline{u'v'}$$

Turbulent kinetic energy: $k = \frac{1}{2}(\overline{u'^2} + \overline{v'^2} + \overline{w'^2})$

Turbulence intensity:

$$\frac{root\text{-}mean\text{-}square\text{ fluctuation}}{mean\text{ velocity}} \quad = \frac{u'_{\text{\tiny rmss}}}{U} \quad = \frac{\sqrt{\frac{2}{3}\,k}}{U}$$

$$=\frac{u'_{rms}}{IJ} = \frac{\sqrt{\frac{2}{3}k}}{IJ}$$

Effect of Turbulence on the Mean Flow

(iii) General Scalar

Scalar flux:

Average scalar flux:

$$(\rho \nu A)\phi = \rho(\nu \phi)A$$

extra term

The mean concentration satisfies the same transport equation as the instantaneous concentration, except for the addition of turbulent fluxes

 $\rho \overline{v' \phi'}$

The Closure Problem

To close the mean flow equations one must specify the Reynolds stresses

$$-\rho \overline{u'^2}, -\rho \overline{u'v'}, \dots$$

and other turbulent fluxes

- A means of doing so is called a turbulence model or turbulence closure
- The simplest model assumes that the turbulent stress can be modelled similarly to the viscous stress. In simple shear:

$$-\rho \overline{u'v'} = \mu_t \frac{\partial U}{\partial y}$$

This is called an eddy-viscosity model

Turbulence Transport

- · Turbulence is transported by the flow
- Each individual Reynolds stress satisfies its own scalar-transport equation
- The "source" term is a balance between:
 - production by mean-velocity gradients
 - dissipation by viscosity
 - redistribution by pressure fluctuations
- Turbulence anisotropy is a result of:
 - anisotropic production by particular velocity gradients
 - selective damping of wall-normal fluctuations

Production of Turbulence Energy

$$\begin{split} P_{11} &= -2(\overline{uu}\,\frac{\partial U}{\partial x} + \overline{uv}\,\frac{\partial U}{\partial y} + \overline{uw}\,\frac{\partial U}{\partial z}) \\ P_{12} &= -(\overline{uu}\,\frac{\partial V}{\partial x} + \overline{uv}\,\frac{\partial V}{\partial y} + \overline{uw}\,\frac{\partial V}{\partial z}) - (\overline{vu}\,\frac{\partial U}{\partial x} + \overline{vv}\,\frac{\partial U}{\partial y} + \overline{vw}\,\frac{\partial U}{\partial z}) \end{split}$$

$$P_{ij} = -(\overline{u_i u_k} \frac{\partial U_j}{\partial x_k} + \overline{u_j u_k} \frac{\partial U_i}{\partial x_k})$$

$$P^{(k)} = \frac{1}{2} (P_{11} + P_{22} + P_{33})$$

In simple shear: $P_{11} = -2\overline{uv}\frac{\partial U}{\partial y}$, $P_{22} = P_{33} = 0$ Energy is preferentially supplied to the streamwise normal stress \overline{uu}

Free Shear Flows

- Maximum turbulence where |∂U/∂y| largest
- \overline{uv} has the opposite sign to $\partial U/\partial y$ and vanishes where this is zero
- Turbulence is anisotropic: $\overline{u^2} > \overline{v^2}$

Summary (1	
------------	--

- Turbulence is a 3-d, time-dependent eddying motion with many scales, causing continuous mixing
- Any instantaneous flow variable can be decomposed as mean + fluctuation
- The process of averaging turbulent variables is called Reynolds averaging and leads to the Reynoldsaveraged Navier-Stokes (RANS) equations
- The product of turbulent fluctuations makes a net contribution to the transport of momentum and other quantities via Reynolds stresses and turbulent fluxes

Su	mı	ma	rv	(2)

- A turbulence model is a means of specifying turbulent fluxes in order to close the mean-flow equations
- Turbulent energy is:
 - generated (anisotropically, at large scale) by mean-velocity gradients
 - redistributed amongst components by pressure fluctuations
 - dissipated (at small scale) by viscosity
- Turbulence modelling is guided by theory and experiments for fundamental free and wall-bounded flows: in particular, by the log law
