

Matlab e Simulink per i sistemi di controllo

Analisi e simulazione in ambiente Matlab

Introduzione (1/2)

- L'utilizzo del linguaggio MATLAB© permette di realizzare facilmente i principali passi necessari per l'analisi ed il progetto di sistemi di controllo:
 - Manipolazione di funzioni di trasferimento e calcolo delle loro principali caratteristiche (singolarità, guadagno, ecc.)
 - Analisi del comportamento in frequenza di un sistema mediante il tracciamento di diagrammi di Bode, di Nyquist e di Nichols della sua fdt
 - Simulazione della risposta di un sistema ad un ingresso assegnato

Un esempio applicativo

L'utilizzo di Matlab per l'analisi e la simulazione di un sistema di controllo sarà illustrato nel caso di un servomotore in c.c. rappresentato dal seguente schema a blocchi

Calcolo della fdt del motore

Primo obiettivo: calcolo della fdt del motore (incluso anello di corrente) per $T_c = 0$

$$C_{Ia}(s) = \frac{K}{s}$$

$$F(s) = \frac{V_{\Omega}(s)}{V_{r,Ia}(s)}$$

Si consiglia di porre all'inizio di un nuovo file, aperto con l'editor di Matlab, i comandi di "pulizia" dello spazio di lavoro e di chiusura delle finestre grafiche eventualmente già aperte

clear all close all

Questi comandi permettono di "ripartire da zero" ogni volta in cui il file viene eseguito

Preparazione del file Matlab: 1^a parte (1/3)

- Si consiglia di porre all'inizio di un nuovo file, aperto con l'editor di Matlab, i comandi di "pulizia" dello spazio di lavoro e di chiusura delle finestre grafiche eventualmente già aperte
- Si definisce la variabile complessa s per un'agevole definizione delle fdt di sistemi o sottosistemi

clear all close all s=tf('s');

Il comando tf permette di definire e/o di calcolare la fdt di un sistema LTI secondo diverse modalità

Preparazione del file Matlab: 1^a parte (2/3)

Si assegnano ai parametri del sistema i corrispettivi
 valori numerici (nelle appropriate unità di misura) e si definisce C_{Ia}(s)

```
clear all
close all
s=tf('s');
Ra=6;
L=3.24e-3;
Km = 0.0535;
J = 20e - 6;
beta=14e-6;
KD=0.0285;
Kcond=0.67;
Rs = 7.525;
A=2.925;
K=1000;
CIa=K/s;
```

Preparazione del file Matlab: 1^a parte (3/3)

Si calcola la fdt fra V_{r,Ia}(s) e $I_a(s)$ (indicata come $F_{r,Ia}(s)$) con il comando feedback

1° argomento: fdt del ramo diretto

Preparazione del file Matlab: 1^a parte (3/3)

Si calcola la fdt fra V_{r,Ia}(s) e $I_a(s)$ (indicata come $F_{r,Ia}(s)$) con il comando feedback

2° argomento: fdt della retroazione

Preparazione del file Matlab: 1^a parte (3/3)

Si calcola la fdt fra V_{r,Ia}(s) e I_a(s) (indicata come F_{r,Ia}(s)) con il comando **feedback**

La retroazione è assunta automaticamente negativa

Si calcola la fdt fra V_{r,Ia}(s) e I_a(s) (indicata come F_{r,Ia}(s)) con il comando **feedback**

 $V_{r,\Omega}$

Per visualizzare il risultato non si mette il ;

Si calcola la F(s)

FrIa=feedback(CIa*A/(L*s+Ra),Rs);

cercata (cascata F=FrIa*Km/(J*s+beta)*KD*Kcond di blocchi)

T_c= 0

Fdt del motore e schema a blocchi risultante

L'esecuzione della prima parte del file Matlab così preparata dà come risultato:

Per $T_c = 0$ lo schema a blocchi diventa pertanto:

Simulazione del sistema ad anello chiuso

Secondo obiettivo: simulazione della risposta del sistema ad anello chiuso ad un riferimento a gradino unitario, per diversi controllori C_o(s)

Si assegna a K_r il valore 1 ··········

Kr=1;

- Si assegna a K_r il valore 1
- Si definisce la fdt del controllore: K_p (proporzionale)

```
Kr=1;
Kp=0.4;
C_omega1=Kp;
```

- Si assegna a K_r il valore 1
- Si definisce la fdt del controllore: K_p (proporzionale) K_p+K_i/s (proporzionale-integrativa)

```
Kr=1;
Kp=0.4;
C_omega1=Kp;
Ki=2;
C_omega2=Kp+Ki/s;
```

- Si assegna a K_r il valore 1
- Si definisce la fdt del controllore: K_p (proporzionale) K_p+K_i/s (proporzionale-integrativa)
- Si calcola la fdt ad anello chiuso nei due casi

```
1 Kr=1;
Kp=0.4;
C_omega1=Kp;
Ki=2;
C_omega2=Kp+Ki/s;
W1=Kr*feedback(C_omega1*F,1);
W2=Kr*feedback(C_omega2*F,1);
```

Si applica il gradino unitario con il comando step

```
Kr=1;
Kp=0.4;
C_omega1=Kp;
Ki=2;
C_omega2=Kp+Ki/s;
```

```
W1=Kr*feedback(C_omega1*F,1);
W2=Kr*feedback(C_omega2*F,1);
step(W1,5)
hold on
step(W2,5)
hold off
```

2° argomento: istante finale della simulazione a partire da t = 0

Si applica il gradino unitario con il comando step

```
Kr=1;
Kp=0.4;
C_omega1=Kp;
Ki=2;
C_omega2=Kp+Ki/s;
```

```
W1=Kr*feedback(C_omega1*F,1);
W2=Kr*feedback(C_omega2*F,1);
step(W1,5)
hold on
step(W2,5)
hold off
```

Tutti i grafici vengono riportati nella medesima finestra per un più agevole confronto

Risultato della simulazione

L'esecuzione della seconda parte del file Matlab così preparata effettua la simulazione desiderata:

Analisi della risposta del sistema (1/3)

Valutazione del valore della risposta in regime permanente e calcolo dell'errore di inseguimento

finale

Analisi della risposta del sistema (2/3)

Valutazione della sovraelongazione massima e del tempo di assestamento

Analisi della risposta del sistema (3/3)

Valutazione del tempo di salita (secondo le definizioni date per t_r e t_s)

Poli del sistema ad anello chiuso (1/2)

Il diverso comportamento del sistema ad anello chiuso con i due controllori adottati può essere giustificato calcolando il valore dei poli della funzione W(s) nei due casi:

damp(W1) damp(W2) Il comando damp determina i poli della fdt nella forma "parte reale + parte immaginaria" e ne fornisce anche pulsazione naturale e fattore di smorzamento

Poli del sistema ad anello chiuso (2/2)

	Eigenvalue	Damping	Freq. (rad/s)
-3.42	2e+000	1.00e+000	3.42e+000
-9.25	5e+002 + 2.44e+003i	3.55e-001	2.61e+003
-9.25	5e+002 – 2.44e+003i	3.55e-001	2.61e+003

damp(W1) damp(W2)

Poli del sistema ad anello chiuso (2/2)

Eigenvalue	Damping	Freq. (rad/s)
-3.42e+000	1.00e+000	3.42e+000
-9.25e+002 + 2.44e+003i	3.55e-001	2.61e+003
-9.25e+002 – 2.44e+003i	3.55e-001	2.61e+003

damp(W1) damp(W2)

	Eigenvalue	Damping	Freq. (rad/s)
	-1.71e+000 + 3.27e+000i	4.63e-001	3.69e+000
,	-1.71e+000 - 3.27e+000i	4.63e-001	3.69e+000
	-9.25e+002 + 2.44e+003i	3.55e-001	2.61e+003
	-9.25e+002 - 2.44e+003i	3.55e-001	2.61e+003
			26

Riconoscimento dei poli dominanti

li	Eigenvalue	Damping	Freq. (rad/s)
	-3.42e+000	1.00e+000	3.42e+000
	-9.25e+002 + 2.44e+003i	3.55e-001	2.61e+003
	-9.25e+002 – 2.44e+003i	3.55e-001	2.61e+003

Poli dominanti

Damping	Freq. (rad/s)
4.63e-001	3.69e+000
4.63e-001	3.69e+000
3.55e-001	2.61e+003
3.55e-001	2.61e+003
	4.63e-001 4.63e-001 3.55e-001

Riconoscimento dei poli dominanti

W₁(s) ha un polo dominante reale

	Eigenvalue	Damping	Freq. (rad/s)
\cdot	-3.42e+000	1.00e+000	3.42e+000
	-9.25e+002 + 2.44e+003i	3.55e-001	2.61e+003
	-9.25e+002 – 2.44e+003i	3.55e-001	2.61e+003

Poli dominanti

Eigenvalue	Damping	Freq. (rad/s)
-1.71e+000 + 3.27e+000i	4.63e-001	3.69e+000
-1.71e+000 - 3.27e+000i	4.63e-001	3.69e+000
-9.25e+002 + 2.44e+003i	3.55e-001	2.61e+003
-9.25e+002 - 2.44e+003i	3.55e-001	2.61e+003
		28

Riconoscimento dei poli dominanti

W₁(s) ha un polo dominante reale

Eigenvalue

Damping

Freq. (rad/s)

-3.42e+000

1.00e+000

3.42e + 000

-9.25e+002 + 2.44e+003i-9.25e+002 - 2.44e+003i

3.55e-001 3.55e-001 2.61e + 0032.61e + 003

Poli dominanti

Eigenvalue

Damping

 $\zeta = 0.463$ Freq. (rad/s)

 $W_2(s)$ ha una coppia di poli dominanti complessi coniugati

-1.71e+000 + 3.27e+000i-1.71e+000 - 3.27e+000i

4.63e-001 4.63e-001

3.69e + 0003.69e + 0002.61e + 003

-9.25e+002 + 2.44e+003i-9.25e+002 - 2.44e+003i

3.55e-001 3.55e-001 2.61e + 003