เคมี ม.6

สารประกอบไฮโดรคาร์บอน (แอลคีน: Alkene)

โดย..มิสเพ็ญนภา ดีจรัส

แอลคืน (Alkene)

สารประกอบไฮโดรคาร์บอนไม่อิ่มตัว (unsaturated hydrocarbon compound) มีหมู่ฟังก์ชันเป็นพันธะคู่อย่างน้อย 1 พันธะ

$$C_3H_4$$

1. เรียกตามการเรียกชื่อของแอลเคน แต่เปลี่ยนท้ายเสียงเป็น อีน (-ene)

2. ระบุ ตำแหน่งพันธะคู่ ด้วย ตัวเลขที่น้อยที่สุด

$CH_2 = CH_2$	มีชื่อว่า	อีทีน (ethane)	
$CH_2 = CHCH_3$	มีชื่อว่า	โพรพีน (propene)	
$CH_2 = CHCH_2CH_3$	มีชื่อว่า	1-บิวทีน โพรพีน (1-butene)	
CH ₃ CH= CHCH ₃	มีชื่อว่า	2-บิวทีน โพรพีน (2-butene)	

3. ถ้ามีโซ่กิ่ง เลือกโซ่ที่ยาวที่สุด และมีพันะคู่อยู่ในโซ่ เป็นโซ่หลัก

- 4. ถ้ามีพันธะคู่ จำนวน
 - 1 พันธะ ลงท้ายชื่อว่า -ene
 - 2 พันธะ ลงท้ายชื่อว่า -diene

$$CH_2 = CHCH_2CH = CH_2$$

$$CH_3$$
 $CH_2 = CCH = CH_2$

$$CH_{3}$$

$$CH_{2} = CCH = CH_{2}$$

$$CH_3$$
 $CH_2 = CCHCH_2CH_3$
 $CH_2 = CCHCH_2CH_3$
 $CH_2CH_2CH_3$

$$CH_3 - CH - C = CH - CH_3$$

$$CH_3 - CH_3$$

$$CH_3$$

$$CH_3 - CH - CH = C - CH_3$$

$$CH_3 - CH_3$$

$$CH_{3} - CH - CH = C - CH_{3}$$
 $CH_{2} - CH_{3}$

$$CH_3 - CH_2$$
 $CH_3 - CH - C = C - CH_2 - CH_3$
 $CH_3 - CH_2 - CH_2 - CH_3$

5. การเรียกชื่อสารประกอบไซโคลแอลคืน

ถ้าในวงของสารประกอบมีพันธะคู่ 1 พันธะ ให้นับคาร์บอนอะตอมที่สร้างพันะคู่ตำแหน่งที่ 1 และไม่จำเป็นต้องระบุตำแหน่งพันธะคู่ แต่ถ้ามีพันธะคู่ 2 พันธะจะต้องระบุตำแหน่งของพันธะ

ห้งสอง

การเรียกชื่อสารประกอบแอลคืน

ไอโซเมอร์เรขาคณิต (geometric isomer)

แอลคืนบางชนิดมีสูตรโครงสร้างเหมือนกัน แต่กลับมีสมบัติทางกายภาพและทางเคมีแตกต่างกัน!
การจัดเรียงตัวใน 3 มิติ แตกต่างกัน : ของแอลคืนแบ่งเป็นแบบ ซิส (cis) และแบบ ทรานส์ (trans)

ไอโซเมอร์แบบ*ซิส*

จุดหลอมเหลว -138.9 °C จุดเดือด 3.7 °C

ไอโซเมอร์แบบ*ทรานส์*

จุดหลอมเหลว –105.5 °C จุดเดือด 0.8 °C

ไอโซเมอร์เรขาคณิต (geometric isomer)

ซิส: อะตอม/หมู่ ที่เหมือนกัน อยู่ด้านเดียวกันของพันธะคู่

ทรานส์: อะตอม/หมู่ ที่เหมือนกัน อยู่**ตรงข้ามกัน**ของพันธะคู่

ซิส–2–บิวทีน

(cis-2-butene)

$$H$$
 $C=C$
 H_3C
 CH_2CH_3
 $Ma-2$ -เพนทีน
 $C=C$
 CH_2CH_3
 $C=C$
 $C=C$

ทรานส์–2–บิวทีน

(trans-2-butene)

$$H_3C$$
 $C=C$ CH_2CH_3 n รานส์–2–เพนทีน $(trans$ –2–pentene)

จุดหลอมเหลวและจุดเดือดของแอลคืนโซ่ตรงบางชนิด

	จำนวนอะตอม	แอลคีน		จุดหลอมเหลว	จุดเดือด
	ของคาร์บอน	ชื่อ	สูตรโมเลกุล	(°C)	(°C)
	2	อีทีน (ethene)	C_2H_4	-169.1	-103.8
ı	3	โพรพีน (propene)	C_3H_6	-185.2	-47.7
ı	4	1–บิวทีน (1–butene)	C₄H ₈	-185.3	-6.3
ı	5	1–เพนทีน (1–pentene)	C ₅ H ₁₀	-165.1	30.0
ı	6	1–เฮกซีน (1–hexene)	C ₆ H ₁₂	-139.8	63.5
ı	7	1–เฮปที่น (1–heptene)	C ₇ H ₁₄	-118.9	93.6
	8	1–ออกทีน (1–octene)	C ₈ H ₁₆	-101.7	121.3

ปฏิกิริยาของแอลคืน

ปฏิกิริยาการเติม (addition reaction)

Hydrogenation

Halogenation

addition of hydrogen halide

Addition of water to alkenes

ปฏิกิริยาออกซิเดชัน (Oxidation)

ปฏิกิริยาพอลิเมอไรเซชัน (polymerisation)

ปฏิกิริยาของแอลคืน : ปฏิกิริยาการเติมไฮโดรเจน (hydrogenation)

$$_{\text{H}_3\text{CC}}^{\text{CH}_3}$$
 \to $_{\text{CH}_3\text{CHCH}_3}^{\text{CH}_3}$

ปฏิกิริยาของแอลคืน : ปฏิกิริยาการเติมฮาโลเจน (halogenation)

การฟอกจางสีของโบรมีน

$$H_3CC = CH_2 + Br_2 \xrightarrow{Pt}$$

ปฏิกิริยาของแอลคืน : ปฏิกิริยาการเติมไฮโดรเจนเฮไลด์

(addition of hydrogen halide: Markovenikov' rule)

ไฮโดรเจนเฮไลด์เกิดปฏิกิริยาการเติม โดยจะเปลี่ยนพันธะคู่ให้เป็นพันธะเดี่ยว ไฮโดรเจนเฮไลด์ที่ใช้ได้แก่ HI HBr HCl และ HF

ปฏิกิริยาของแอลคืน : ปฏิกิริยาการเติมไฮโดรเจนเฮไลด์

กฎของมาร์คอนนิคอฟ (Markovnikov ' rule); ปฏิกิริยาการเติมอิเล็กโตรไฟล์ของกรดเบรินสเตด-ลาวรี กับแอลคืนที่ไม่สมมาตรนั้น <u>ไฮโดรเจน</u>ของ HA จะเติมลงไปที่พันธะคู่ของคาร์บอนอะตอมที่ม<u>ีไฮโดรเจน</u> <u>ติดอยู่แล้วจำนวนมากกว่า</u> ส่วน A จะเติมลงไปที่คาร์บอนอีกอะตอมหนึ่ง

ปฏิกิริยาของแอลคืน : ปฏิกิริยาการเติมน้ำ (Addition of water to alkenes)

ปฏิกิริยาการเตรียมแอลกอฮอล์ โดยใช้น้ำและมีกรดเป็นตัวเร่งปฏิกิริยา ซึ่งการเกิดปฏิกิริยาจะเป็นไปตาม กฏ Markovnikov

$$C=C$$
 + H_2O $\xrightarrow{H^+}$ $-C-C-C-$

(Markovnikov orientation)

$$CH_3CH = CH_2 + H_2O$$

propene

H₂SO₄

propene

ปฏิกิริยาของแอลคืน : ปฏิกิริยาการเติมกรดซัลฟิวริก (Addition of sulfuric to alkenes)

แอลคืน ทำปฏิกิริยากับกรดซัลฟิวริก ได้อัลคิลไฮโดรเจนซัลเฟต เมื่อทำปฏิกิริยาต่อกับน้ำ ที่อุณหภูมิสูงจะได้แอลกอฮอล์ ดังสมการ

$$C=C'$$
 + H_2SO_4 $-C'$ OSO_3H

alkyl hydrogen sulfate

(Markovnikov orientation)

ปฏิกิริยาของแอลคืน : ปฏิกิริยาออกซิเดชัน (Oxidation)

ปฏิกิริยาการฟอกจางสีของ KMnO₄ ปฏิกิริยานี้ใช้เป็นวิธีทดสอบความไม่อื่มตัวของ สารประกอบ เรียกว่า **เบเยอร์เทสท์ (Baeyer test)**

ปฏิกิริยาของแอลคืน : ปฏิกิริยาพอลิเมอไรเซชัน (polymerisation)

ลองทำดู

แอลคืน : เขียนผลิตภัณฑ์จากปฏิกิริยาต่อไปนี้

$$H - C - C - C = C - H + Cl_2$$

$$H + H$$

$$H + H$$

$$H - C \equiv \begin{bmatrix} H & H \\ I & I \\ C - C - C - H \\ I & I \\ H & H \end{bmatrix} + 2CI_2 \longrightarrow$$

$$CH_3 - CH = CH_2 + H_2O \xrightarrow{H^+}$$

แอลคืน: เขียนผลิตภัณฑ์จากปฏิกิริยาต่อไปนี้

1.
$$CH_3$$
- $CH=CH_2$ + Br_2/CCl_4 ----->

2.
$$CH_3-CH=CH_2 + KMnO_4 + H_2O$$
 ----->

4.
$$C_6H_{12} + KMnO_4 + H_2O$$
 ---->

7.
$$+ H_2 - \frac{Ni}{-Ni} >$$

ลองทำดู.....

แอลคืนชนิดหนึ่งมีสูตรโมเลกุลเป็น C_5H_8 ทำปฏิกิริยากับ Br_2 ได้สารประกอบ $C_5H_8Br_2$ แต่ถ้าทำปฏิกิริยากับ $KMnO_4$ จะได้สารประกอบ $C_5H_{10}O_2$

สาร A ทำปฏิกิริยากับ $KMnO_4$ ได้ตะกอนสีน้ำตาล และผลิตภัณฑ์ B ซึ่งมีสูตร $C_5H_{14}O_2$ สาร A ควรเป็นสารใด

สารประกอบคู่ใดต่อไปนี้สามารถบอกความแตกต่างได้ โดยการทดสอบกับสารละลาย KMnO₄ ที่เจือจางและเย็น

$$n. \quad H_3C - C \equiv C - CH_3$$

กับ

$$CH_2 = CH - CH = CH_2$$

กับ

กับ

ง.
$$\mathrm{CH_3}$$
— $\mathrm{CH_2}$ — CH - $\mathrm{CH_3}$ กับ

