

高精度电压检测器 超小型

S-808xxC 系列

S-808xxC 系列是使用 CMOS 技术开发的,高精度电压检 测 IC。检测电压在内部被固定,精度为±2.0%。在输出方 式上备有 N 沟道开路漏极输出和 CMOS 输出。

■ 特点

• 超低消耗电流 1.3 μA 典型值(检测电压为典型值 1.4 V 以下的产品、V_{DD}=1.5 V 时)

 $0.8~\mu A$ 典型值(检测电压为典型值 1.5~V 以上的产品、 $V_{DD}=3.5~V$ 时)

• 高精度检测电压 ±2.0 %

工作电压范围 0.65 V ~ 5.0 V (检测电压为典型值 1.4 V 以下的产品)

0.95 V ~ 10.0 V (检测电压为典型值 1.5 V 以上的产品)

滞后特性 5% 典型值

检测电压 0.8 V ~ 6.0 V (进阶单位为 0.1 V)

输出方式 N 沟道开路漏极输出(动态 Low)

CMOS 输出(动态 Low)

• 无铅产品

■ 用途

- 电池电压检测器
- 停电检测器
- 寻呼机、电子计算器、电子记事本、遥控器等的携带设备用电源的监视
- 照相机、视频设备、通信设备等的稳压电源的监视
- 微机用电源的监视以及 CPU 的复位

封装

封装名			面号码	
封装名 GC-82AB GOT-23-5 GOT-89-3 GNT-4A GO-92 (散装)	封装图面	卷带图面	带卷图面	折叠图面
	NP004-A	NP004-A	NP004-A	加重时间
	MP005-A	MP005-A	MP005-A	
	UP003-A	UP003-A	UP003-A	
	PF004-A	PF004-A	PF004-A	
	YS003-B			
TO-92(卷带)	YF003-A	YF003-A	YF003-A	
TO-92(折叠)	YF003-A	YZ003-C	11 000-7	YZ003-C

■ 框图

1. N沟道开路漏极输出产品

图 1

2. CMOS输出产品

图 2

■ 产品型号的构成

• 关于 S-808xxC 系列,用户可根据用途选择指定产品的检测电压值、输出方式和封装类型。产品名的文字 列含义请参阅"1.产品名"、所有的产品名,请参阅"2.产品名目录"。

1. 产品名

1-1. SC-82AB、SOT-23-5、SOT-89-3、SNT-4A 封装

- *1. 请参阅卷带图。
- *2. 请参阅「2.产品名目录」的表 1、3。

1-2. TO-92 封装

■ 输出方式的不同

1. S-808xxC系列的输出方式

表 5

S-808xxC 系列	N 沟道开路漏极输出产品 (动态 Low) 产品名结尾为 N 例: S-80815CN	CMOS 输出产品 (动态 Low) 产品名结尾为 L
-------------	--	-----------------------------------

2. 输出方式的不同与使用方法

表 6

使用方法·	N 沟道开路漏极输出产品(动态 Low)	CMOS 输出产品 (动态 Low
不同种类电源的使用	0	OMOO 期間/ 面 (划念 LOW
CPU 等的复位为动态 Low	0	^
CPU 等的复位为动态 High	×	U V
电阻分割而引起的检测电压的改变	0	X

- 有2个电源情况下的例子
- 有 1 个电源情况下的例子

图 3

■ 引脚排列图

SC-82AB Top view 2 图 4

表 7

引脚号	符号	描述
1	OUT	电压检测输出端子
2	VDD	电压输入端子
3	NC *1	无连接
4	VSS	GND 端子

*1. NC 表示从电气角度而言处于开路状态。 所以,与 VDD 以及 VSS 相接均可。

SOT-23-5 Top view 5 2 3

图 5

SOT-89-3 Top view

SNT-4A Top view

图 7

表 8

引脚号	符号	描述
1	OUT	电压检测输出端子
2	VDD	电压输入端子
3	VSS	GND 端子
4	NC *1	
5	NC *1	无连接

*1. NC 表示从电气角度而言处于开路状态。 所以,与 VDD 以及 VSS 相接均可。

表 9

引脚号	符号	描述
1	OUT	电压检测输出端子
2	VDD	电压输入端子
3	VSS	GND 端子

表 10

引脚号	符号	描述
1	OUT	电压检测输出端子
2	VSS	GND 端子
3	NC*1	无连接
4	VDD	电压输入端子

*1. NC 表示从电气角度而言处于开路状态。 所以,与 VDD 以及 VSS 相接均可。

表 11 引脚号 符号 描述 1 OUT 电压检测输出端子 2 **VDD** 电压输入端子 3 VSS GND 端子

图 8

■ 绝对最大额定值

1. 检测电压为典型值 1.4 V 以下的产品

表 12

(除特殊注明以外: Ta = 25°C)

	TET		(冰行水)上班以外、「a	= 25 °C)
电源电压	项目 	记号	绝对最大额定值	单位
输出电压		$V_{DD} - V_{SS}$	7	V
柳山电压	N 沟道开路漏极输出产品 CMOS 输出产品	V _{out}	V_{SS} -0.3 ~ V_{SS} +7	V
输出电流			$V_{SS}-0.3 \sim V_{DD}+0.3$	V
容许功耗		lout	50	mΑ
	SNT-4A	P_{D}	150	mW
工作周围	温度	Name of the last o	140	mW
保存温度		Topr	-40 ~ +85	°C
	A STATE OF THE STA	Tstg	−40 ~ +125	°C

注意。绝对最大额定值是指无论在任何条件下都不能超过的额定值。万一超过此额定值,有可能造成 产品劣化等物理性损伤。

2. 检测电压为典型值 1.5 V 以上的产品

表 13

(除特殊注明以外: Ta = 25°C)

i	17. CJ		(18/19/8/王列5/7). Ta	- 23 C
电源电压	项目	记号	绝对最大额定值	单位
	_	$V_{DD} - V_{SS}$	12	V
初山电压	N 沟道开路漏极输出产品	V _{out}	V_{SS} -0.3 ~ V_{SS} +12	V
检贝内法	CMOS 输出产品		V_{SS} -0.3 ~ V_{DD} +0.3	V
输出电流	To o	lout	50	mA
容许功耗		P_{D}	150	mW
	SOT-23-5		250	mW
	SOT-89-3		500	mW
	SNT-4A		140	mW
	TO-92		400	mW
工作周围温	温度	Topr	-40 ~ +85	°C
保存温度		Tstg	-40 ~ +125	°C
注音 绝对:	最大頻学は見化エッカは伝わ		10 +120	

注意。绝对最大额定值是指无论在任何条件下都不能超过的额定值。万一超过此额定值,有可能造成 产品劣化等物理性损伤。

■ 电气特性

1. N沟道开路漏极输出产品

1-1. 检测电压为典型值 1.4 V 以下的产品

表 14

项目	记号		条件	旦小(生			以外: Ta :	= 25
——————— 检测电压 ^{*1}			X()	最小值	典型值	最大值	单位	电
	-V _{DET}			-V _{DET(S)}	-V _{DET(S)}	-V _{DET(S}) V	
解除电压	+V _{DET}	S-80808		×0.98		×1.02	V	1
		S-80809		0.802	0.834	0.867	V	1
		S-80810		0.910	0.944	0.979	V	1
		S-80811		1.017	1.054	1.091	V	1
		S-80812		1.232	1.164	1.203	V	1
		S-80813		1.340	1.273	1.315	<u> </u>	1
* C # C		S-80814		1.448	1.383 1.493	1.427	V	1 1
带后幅度	V_{HYS}	S-80808		0.018	0.034	1.538	V	1
		S-80809		0.028	0.044	0.051 0.061	V	1
		S-80810		0.037	0.054	0.001	V	1
		S-80811		0.047	0.064	0.071	V	1 1
		S-80812		0.056	0.073	0.091	V	1
		S-80813		0.066	0.083	0.101	V	1
耗电流	1	S-80814		0.076	0.093	0.110	V	
10.0%	Iss	$V_{DD} = 1.5 \text{ V}$	S-80808 ~ 09		1.3	3.5	μА	2
作电压		$V_{DD} = 2.0 \text{ V}$	S-80810 ~ 14	_	1.3	3.5	μΑ	2
	V _{DD}	f		0.65		5.0	V	1
出电流 	l _{out}	输出晶体管, N 沟道, V _{DS} = (0.5 V, V _{DD} = 0.7 V	0.04	0.2	_	mA	<u></u> 3
届电流	I _{LEAK}	输出晶体管,	5.0 V, V _{DD} = 5.0 V			60	nA	3
应时间	t _{PLH}	. ,~., , , , ,	2.0 V, VDD - 3.0 V				11/7	. J
则电压的	Δ – VDET					60	μs	1
E系数 ^{*2} -V _{DET} :实际检测E 检测由压的温度或	ΔTa • −VDET		0 ~ +85 °C	_	±100	±350	ppm/°C	1

^{*1. -}V_{DET}:实际检测电压值、-V_{DET(S)}:设定检测电压值(表 1~2 的检测电压范围的中心值) *2. 检测电压的温度变化率[mV/°C]按如下公式计算出来。

$$\frac{\Delta - V_{\text{DET}}}{\Delta \text{Ta}} \left[\text{mV/°C} \right]^{*} = -V_{\text{DET(S)}} \left(\text{Typ.} \right) \left[\text{V} \right]^{*2} \times \frac{\Delta - V_{\text{DET}}}{\Delta \text{Ta} \cdot - V_{\text{DET}}} \left[\text{ppm/°C} \right]^{*3} \div 1000$$

- *1. 检测电压的温度变化率
- *2. 设定检测电压值
- *3. 上述的检测电压温度系数

1-2. 检测电压为典型值 1.5 V 以上的产品

表 15

(除特殊注明以外: Ta = 25°C) 项目 记号 条件 测定 最小值 典型值 最大值 单位 电路 检测电压*1 -V_{DET(S)} $-V_{DFT}$ -V_{DET(S)} -V_{DET(S)} V 1 ×0.98 ×1.02 滞后幅度 -V_{DET(S)} V_{HYS} -V_{DET(S)} -V_{DET(S)} V 1 ×0.03 ×0.05 消耗电流 ×0.08 I_{SS} $V_{DD} = 3.5 \text{ V}$ S-80815 ~ 26 0.8 2.4 μΑ 2 $V_{DD} = 4.5 \text{ V}$ S-80827 ~ 39 0.8 2.4 μΑ 2 $V_{DD} = 6.0 \text{ V}$ S-80840 ~ 56 0.9 2.7 2 μА $V_{DD} = 7.5 \text{ V}$ S-80857 ~ 60 0.9 2.7 μΑ 2 工作电压 V_{DD} 0.95 输出电流 10.0 ٧ 1 lour $V_{DD} = 1.2 \text{ V},$ 输出晶体管, 0.59 1.36 S-80815 ~ 60 mΑ 3 N 沟道, $V_{DD} = 2.4 \text{ V}.$ $V_{DS} = 0.5 V$ 2.88 4.98 S-80827 ~ 60 mΑ 3 输出晶体管,N沟道, 泄漏电流 LEAK 100 V_{DS} = 10.0 V, V_{DD} = 10.0 V nΑ 3 响应时间 tplH 60 检测电压的 μs 1 $\Delta - V_{\text{DET}}$ Ta = -40 ~ +85 °C 温度系数*2 ΔTa • -VDET ±100 ±350 ppm/°C 1

$$\frac{\Delta - V_{\text{DET}}}{\Delta Ta} \left[\text{mV/}^{\circ} C \right]^{*1} = -V_{\text{DET(S)}} \left(\text{Typ.} \right) \left[V \right]^{*2} \times \frac{\Delta - V_{\text{DET}}}{\Delta Ta \bullet - V_{\text{DET}}} \left[\text{ppm/}^{\circ} C \right]^{*3} \div 1000$$

- *1. 检测电压的温度变化率
- *2. 设定检测电压值
- *3. 上述的检测电压温度系数

^{*1. -}V_{DET}: 实际检测电压值、--V_{DET(S)}: 设定检测电压值(**表 1~2** 的检测电压范围的中心值)

^{*2.} 检测电压的温度变化率[mV/°C]按如下公式计算出来。

2. CMOS 输出产品

2-1. 检测电压为典型值 1.4 V 以下的产品

表 16

			表 16					
项目	记号				()	注特殊注:	明以外: Ta	= 25
			条件 ———————	最小位		í		测
解除电压	-V _{DET}	0.000		-V _{DET(} ×0.98	s) -V _{DET(S}	S) -V _{DET}	(S) V	电
	+V _{DET}	S-80808		0.802	0.834	0.867		
		S-80809 S-80810		0.910		0.979		-
		S-80811		1.017	1.054	1.091		
		S-80812		1.125	1.164	1.203	V	1
		S-80813		1.232	1.273	1.315	V	1
# F 幅 点		S-80814	· · · · · · · · · · · · · · · · · · ·	1.340	1.383	1.427	V	1
带后幅度	V_{HYS}	S-80808		0.018	1.493	1.538	V	1
		S-80809		0.018	0.034	0.051	V	1
		S-80810		0.020	0.044	0.061	V	1 1
		S-80811		0.047	0.064	0.071	V	1
	-	S-80812		0.056	0.073	0.001	V	1 1
		S-80813		0.066	0.083	0.101	\ \ \ \ \ \ \	1
耗电流	I _{SS}	S-80814		0.076	0.093	0.110	1 v	1 1
	155	$V_{DD} = 1.5 \text{ V}$	S-80808 ~ 09		1.3	I _{SS}	μА	2
作电压	V_{DD}	$V_{DD} = 2.0 \text{ V}$	S-80810 ~ 14		1.3		μΑ	2
出电流	lout	输出晶体管,		0.65		5.0	V	1
			5 V, V _{DD} = 0.7 V	0.04	0.2		mA	3
立时间	<u> </u>	删山邮体官, P沟道, V _{DS} = 2.	1V, V _{DD} = 4.5V	2.9	5.8		mA	4
川电压的	t_{PLH} $\Delta - V_{DET}$	-				60	μs	1
系数*2	ΔTa • -VDET	Ta = -40	~ +85 °C	_	±100	±350	ppm/°C	1

^{*1. -}V_{DET}: 实际检测电压值、-V_{DET(S)}: 设定检测电压值(表 3~4 的检测电压范围的中心值) *2. 检测电压的温度变化率[mV/°C]按如下公式计算出来。

$$\frac{\Delta - V_{\text{DET}}}{\Delta \text{Ta}} \left[\text{mV/°C} \right]^{*1} = -V_{\text{DET(S)}} \left(\text{Typ.} \right) \left[V \right]^{*2} \times \frac{\Delta - V_{\text{DET}}}{\Delta \text{Ta} \cdot -V_{\text{DET}}} \left[\text{ppm/°C} \right]^{*3} \div 1000$$

- *1. 检测电压的温度变化率
- *2. 设定检测电压值
- *3. 上述的检测电压温度系数

2-2. 检测电压为典型值 1.5 V 以上的产品

表 17

			4X 17					
		T			(除:	持殊注明。	以外: Ta =	≟ 25 °C
项目	记号		条件 ———————	最小值	典型值	最大值	单位	测定 电路
检测电压 ^{*1}	-V _{DET}			-V _{DET(S)} ×0.98	-V _{DET(S)}	-V _{DET(S)} ×1.02	V	1
滞后幅度 消耗电流	V _{HYS}			−V _{DET} ×0.03	−V _{DET} ×0.05	-V _{DET} ×0.08	V	1
旧称电弧	Iss	$V_{DD} = 3.5 \text{ V}$	S-80815 ~ 26		0.8	2.4	μА	2
		$V_{DD} = 4.5 \text{ V}$	S-80827 ~ 39	_	0.8	2.4	μА	2
		$V_{DD} = 6.0 \text{ V}$	S-80840 ~ 56		0.9	2.7	μА	2
		$V_{DD} = 7.5 \text{ V}$	S-80857 ~ 60		0.9	2.7	иА	2
	V _{DD}			0.95	_	10.0	V	1
输出电流	Гоит	输出晶体管, N 沟道,	$V_{DD} = 1.2 \text{ V}$ S-80815 ~ 60	0.59	1.36		mA	3
		V _{DS} = 0.5 V	$V_{DD} = 2.4 \text{ V}$ S-80827 ~ 60	2.88	4.98	-	mA	3
		输出晶体管,	$V_{DD} = 4.8 \text{ V}$ S-80815 ~ 39	1.43	2.39	. —	mA	4
		P 沟道, V _{DS} = 0.5 V	$V_{DD} = 6.0 \text{ V}$ S-80840 ~ 56	1.68	2.78		mA	4
4 pt pt 127		VUS 0.5 V	$V_{DD} = 8.4 \text{ V}$ S-80857 ~ 60	2.08	3.42	_	mA	4
向应时间	t _{PLH}		_			60	μs	1
验测电压的 温度系数 ^{*2}	$\frac{\Delta - V_{DET}}{\Delta Ta \bullet - V_{DET}}$	Ta = -40) ~ +85 °C		±100	±350	ppm/°C	1

^{*1. -}V_{DET}: 实际检测电压值、-V_{DET(S)}: 设定检测电压值(表 3~4 的检测电压范围的中心值)

- *1. 检测电压的温度变化率
- *2. 设定检测电压值
- *3. 上述的检测电压温度系数

^{*2.} 检测电压的温度变化率[mV/°C]按如下公式计算出来。

■ 测定电路图

1.

*1. CMOS 输出产品的情况下不需要 R。

图 9

2.

3.

4.

图 12

受控

■ 工作时序图

1. N沟道开路漏极输出产品

图 13

2. CMOS 输出产品

备注 V_{DD} 在最低工作电压以下时,OUT 输出端子输出电压在阴影范围内为不稳定状态。

图 14

Rev.4.1 01

■ 工作说明

- 1. 基本工作: CMOS输出(动态Low)的情况下
- 1-1. 电源电压(V_{DD})在解除电压(+V_{DET})以上时,N沟道晶体管变为OFF,P沟道晶体管变为ON,V_{DD}被输出(High 被输出)。此时,图15的N沟道晶体管N1为OFF状态,往比较器输入的输入电压变为(RB+RC) ◆ V_{DD}。
 RA+RB+RC
- 1-2. VDD即使降低到+VDET以下,只要在检测电压(-VDET)以上VDD也能被输出。VDD变为-VDET (图16的A点)以下时,输出方的N沟道晶体管变为ON,P沟道晶体管变为OFF,VSS被输出。此时,图15的N沟道晶体管外1变为ON状态,往比较器输入的输入电压变为 RB ◆ VDD RA + RB。
- **1-3**. V_{DD} 进一步下降,若处在IC的最低工作电压以下就会导致输出的不稳定,在输出被上拉的情况下,输出变为 V_{DD} 。
- 1-4. 使V_{DD}上升到最低工作电压以上时,V_{SS}被输出。另外,即使V_{DD}超过了--V_{DET},在不足+V_{DET}的情况下输出变为V_{SS}。
- **1-5.** 再继续使V_{DD}上升,到+V_{DET} (图**16**的B点) 以上时,N沟道晶体管变为OFF,P沟道晶体管变为ON,V_{DD}被输出。

*1. 寄生二极管

图15 工作说明图1

2. 其他特性

2-1. 检测电压的温度特性

检测电压的温度特性在工作温度范围内,如图 17 所示的阴影范围。

*1. -V_{DET25}为在25°C时的检测电压值

图17 检测电压的温度特性(S-80827C的示例)

2-2. 解除电压的温度特性

解除电压的温度系数 $\frac{\Delta + V_{\text{DET}}}{\Delta \text{Ta}}$ 是利用检测电压的温度系数 $\frac{\Delta - V_{\text{DET}}}{\Delta \text{Ta}}$,如下式所示。

$$\frac{\Delta + V_{\text{DET}}}{\Delta \text{Ta}} = \frac{+V_{\text{DET}}}{-V_{\text{DET}}} \times \frac{\Delta - V_{\text{DET}}}{\Delta \text{Ta}}$$

因此,解除电压的温度系数和检测电压的温度系数具有相同符号的特性。

2-3. 滞后电压的温度特性

滞后电压的温度系数为
$$\frac{\Delta + V_{DET}}{\Delta Ta} - \frac{\Delta - V_{DET}}{\Delta Ta}$$
,如下式所示。 $\frac{\Delta + V_{DET}}{\Delta Ta} - \frac{\Delta - V_{DET}}{\Delta Ta} = \frac{V_{HYS}}{-V_{DET}} \times \frac{\Delta - V_{DET}}{\Delta Ta}$

■ 标准电路

*1. CMOS 输出产品的情况下不需要 R。

图 18

注意。上述连接图以及参数并不保证工作。实际的应用电路请在进行充分的评价基础上再设定参数。

■ 用语说明

1. 检测电压(-V_{DET}) 、解除电压(+V_{DET})

检测电压($-V_{DET}$)表示输出切换到Low时的电压。此检测电压,即使是同样的产品也有不同程度的差异,由此差异而引起的检测电压的最小值($-V_{DET}$)Min.到最大值($-V_{DET}$)Max.的范围称为检测电压范围(参阅图19)。

例: S-80815CN的情况下,检测电压为1.470 \leq ($-V_{DET}$) \leq 1.530的范围内的一点。也就是说,既有 $-V_{DET}$ =1.470的产品,也存在 $-V_{DET}$ =1.530的产品。

解除电压是输出切换到High时的电压。此解除电压,即使是同样的产品也有不同程度的差异,由此差异而引起的解除电压的最小值($+V_{DET}$)Min.到最大值($+V_{DET}$)Max.的范围称为解除电压范围。(参阅图**20**)。此值可以从各自产品的实际的检测电压($-V_{DET}$)中求出,在 $-V_{DET} \times 1.03 \le +V_{DET} \le -V_{DET} \times 1.08$ 的范围内。

例: S-80815CN的情况下,系列产品全体的解除电压为1.514 \leq (+ V_{DET}) \leq 1.652的范围内的一点。也就是说,既有+ V_{DET} =1.514的产品,也存在+ V_{DET} =1.652的产品。

图 20 解除电压(CMOS 输出产品)

备注 检测电压与解除电压在1.514~1.530 V的范围内会重复,务必会变为(-V_{DET})<(+V_{DET})。

2. 滞后幅度(V_{HYS})

滞后幅度表示检测电压与解除电压之间的电压差(图16中B点的电压-A点的电压=V_{HYS})。通过在检测电压 与解除电压之间带有滞后幅度,可以防止在因噪声等侵入输入电压时而产生的误工作。

3. 击穿电流

击穿电流是在电压检测器的检测以及解除时瞬间流经的电流。此击穿电流在输出方式为CMOS类型的产品 比较大,在N沟道开路漏极产品中也会稍许流经。

4. 振荡

在输入处连接电阻的应用电路中(图21),例如CMOS输出(动态Low)产品的情况下,输出Low→High切换时 (解除时),由于流经的击穿电流会发生[击穿电流]×[输入电阻]的份额的电压下降。输入电压降低到检测电 压以下时,输出进行High→Low的切换。输出变为Low时,因为击穿电流不会流经,所以没有电压下降分 额,输出Low→High切换时或者击穿电流流经时,会发生电压下降。此状态的反复发生称为振荡。

图21 检测电压改变电路不良事例

■ 用户要求规格产品的电气特性

1. S-80824KNUA-D2BT2G、S-80824KNY-x-G

表 18

项目	记号	(除特殊注明以外: Ta = 2						Ta = 25 °C
检测电压*1		条件		最小值	典型值	最大值	单位	测定电路
解除电压	-V _{DET}			2.295	2.400*2	2.505	V	1
消耗电流	+V _{DET}			4.300	4.400	4.500	V	1
工作电压	Iss	$V_{DD} = 6.0 \text{ V}$			0.8	2.4	μA	2
<u>一下电压</u> 输出电流	V _{DD}			0.95		10.0	V	1
制山 电流	I _{OUT}	输出晶体管, N沟道,	$V_{DD} = 0.95 \text{ V}$	0.03	0.24		mA	3
		V _{DS} =0.5 V	$V_{DD} = 1.2 \text{ V}$	0.23	0.50		mA	3
世漏电流	LEAK	输出晶体管, N沟道, V _{DD} = 10.0 V, V _{DS} = 10.0 V			_	0.1	μA	3
响应时间	t _{PLH}	_				60		
佥测电压的	Δ – V DET	Ta = -40 ~ 85°C				-00	μs	1
显度系数 ^{*3} 1. –V _{DET} ∶实际标	ΔTa • −VDET				±100	±350	ppm/°C	1

- *2. 设定检测电压值 (-V_{DET(S)})
- *3. 检测电压的温度变化率[mV/°C]按如下公式计算出来。

$$\frac{\Delta - V_{\text{DET}}}{\Delta \text{Ta}} \left[\text{mV/°C} \right]^{*1} = -V_{\text{DET(S)}} \left(\text{Typ.} \right) \left[V \right]^{*2} \times \frac{\Delta - V_{\text{DET}}}{\Delta \text{Ta} \cdot - V_{\text{DET}}} \left[\text{ppm/°C} \right]^{*3} \div 1000$$

- *1. 检测电压的温度变化率
- *2. 设定检测电压值
- *3. 上述的检测电压温度系数

2. S-80844KLUA-D2AT2G、S-80844KLY-x-G

表 19

项目	记号	T				(除特殊	注明以外	: Ta = 25 °
检测电压"		条件		最小值	典型值	最大值		测定电路
解除电压	-V _{DET}			4.295	4.450*2	4.605	V	1
消耗电流	+V _{DET}					4.700	V	1
工作电压	l _{SS}	$V_{DD} = 6.0 \text{ V}$			1.0	3.0	μA	2
输出电流	V _{DD}	th 11 F (1 Atr		0.95		10.0	V	1
	OUT	输出晶体管, N沟道,	$V_{DD} = 1.2 \text{ V}$	0.23	0.50		mA	3
		$V_{DS} = 0.5 V$	$V_{DD} = 2.4 \text{ V}$	1.60	3.70		mA	3
		输出晶体管, P沟道, V _{DS} = 0.5 V	$V_{DD} = 4.8 \text{ V}$	0.36	0.62		mA	4
向应时间	t _{PLH}					60		
_{佥测电压的}	Δ – VDET	Ta = -40 ~ 85°C				60	μs	1
温度系数 ^{*3}	ΔTa • −VDET				±100	±350	ppm/°C	1
1. -V _{DET} :实际ホ	金测由压值							

- 1.-V_{DET}:实际检测电压值
- *2. 设定检测电压值(-V_{DET(S)})
- *3. 检测电压的温度变化率[mV/°C]按如下公式计算出来。

- *1. 检测电压的温度变化率
- *2. 设定检测电压值
- *3. 上述的检测电压温度系数

3. S-80846KNUA-D2CT2G、S-80846KNY-x-G

表 20

(除特殊注明以外: Ta = 25 °C)

还只	15.53		- AC 20		(1	休 守9本に	±明以外:	Ta = 25 °C
项目	记号	条件		最小值	典型值			测定电路
检测电压*1	-V _{DET}			4.500	4.600*2		V	MACEE
滞后幅度	V _{HYS}			1.000	 	1.700		1
消耗电流	I _{SS}	V 60V			0.05	0.10	V	1
工作电压	V _{DD}	$V_{DD} = 6.0 \text{ V}$			0.9	2.7	μA	2
输出电流				0.95		10.0	V	1
	OUT	输出晶体管,	$V_{DD} = 1.2 \text{ V}$	0.59	1.36		mA	3
		N沟道, V _{DS} = 0.5 V	$V_{DD} = 2.4 \text{ V}$	2.88	4.98		mA	3
泄漏电流	I _{LEAK}	输出晶体管,N沟道, V _{DD} = 10.0 V, V _{DS} = 10.0 V				0.1	μА	3
响应时间	t _{PLH}					60		
检测电压的	Δ - VDET	Ta = -40 ~ 85°C				- 00	μs	
温度系数 ^{*3} * 1 V · 实际*	ΔTa •VDET				±100	±350	ppm/°C	1

^{*1.-}V_{DET}:实际检测电压值

$$\frac{\Delta - V_{\text{DET}}}{\Delta Ta} \left[\text{mV/°C} \right]^{\text{*1}} = -V_{\text{DET(S)}} \left(\text{Typ.} \right) \left[V \right]^{\text{*2}} \times \frac{\Delta - V_{\text{DET}}}{\Delta Ta \cdot - V_{\text{DET}}} \left[\text{ppm/°C} \right]^{\text{*3}} \div 1000$$

- *1. 检测电压的温度变化率
- *2. 设定检测电压值
- *3. 上述的检测电压温度系数

■ 注意事项

- 本 IC 虽内置防静电保护电路,但请不要对 IC 施加超过保护电路性能的过大静电。
- CMOS 输出产品在检测以及解除时会流经击穿电流。因此,若输入为高阻抗,由于解除时的击穿电流而引起的电压降低有导致振荡的情况发生。
- 当在 CMOS 输出产品处连接下拉电阻且电源电压(VDD)的下降时间在检测电压附近比较缓慢时,有可能会发生振荡。
- 本资料中所记载的应用电路用于大量生产设计的情况下,请注意元器件的偏差与温度特性。 另外,有关所记载电路的专利,本公司概不承担相应责任。
- 使用本公司的 IC 生产产品时,如在其产品中对该 IC 的使用方法或产品的规格,或因与所进口国对包括本 IC 产品在内的制品发生专利纠纷时,本公司概不承担相应责任。

^{*2.} 设定检测电压值(-V_{DET(S)})

^{*3.} 检测电压的温度变化率[mV/°C]按如下公式计算出来。

受控

■ 各种特性数据(典型数据)

1. 检测电压(VDET) - 温度(Ta)

2. 滞后电压幅(V_{HYS}) - 温度(Ta)

4. 消耗电流(Iss) - 温度(Ta)

5. N沟道晶体管输出电流(lout) - Vps

6. P沟道晶体管输出电流(lour) - Vos

7. N沟道晶体管输出电流(louτ) - 输入电压(Vpp)

8. Р沟道晶体管输出电流(louт) - 输入电压(VDD)

图23 响应时间的测定条件

图24 响应时间的测定电路

注意 上述连接图以及参数并不作为保证电路工作的依据,实际的应用电路请在进行充分的实测基础上设定参数。

■ 应用电路例

1. 微机等的复位电路

微机电脑在电源电压比工作保证电压还低的情况下,执行规定以外的程序,会导致破坏存储器・寄存器的内容的情况发生。另外,电源恢复到正常电位时,如果不把微机设定到所定的初期状态,会导致以后的异常工作。为了防止这样的事故,在电源的瞬间切断・瞬间停止时一定要进行复位工作。

S-808xxC系列电压检测器,因为具有工作保证电压低、检测电压精度高、备有滞后并且内置了延迟电路,如图25、26所示,可以简单地构成复位电路。

(但是仅 N 沟道开路漏极产品)

图25 复位电路示例(S-808xxCL)

图26 复位电路示例(S-808xxCN)

注意 上述连接图以及参数并不作为保证电路工作的依据,实际的应用电路请在进行充分的实测基础上设定 参数。

受控

9. 最低工作电压 - 输入电压(VDD)

备注 V_{DDmin}是在V_{DD}从0 V开始上升时,如上图所示V_{OUT}变为PULL-UP电压的10%以下时的V_{DD}电压而定义的。

图22