

Aplicación de Cierre

De forma gráfica

Como pares ordenados:

Sea $A = \{b, c, d, v\}$ inicialmente tenemos $R = \{(b,c), (b, d), (c, d),$ (d,v).

relaciones transitivas faltantes:

Una relación **R** puede o no tener alguna propiedad como la reflexividad, la simetría o la transitividad. Sea S una relación que cumple con dicha propiedad y que contiene a R, entonces se_ dice que S es el cierre de R con respecto a dicha propiedad.

TIPOS

- relación reflexiva más pequeña en el conjunto (A) y que incluyen a R.
- · La clausura o cierre simétrico es la relación simétrica más pequeña en el conjunto (A) y que contiene a R.
- · La clausura o cierre transitivo es la relación transitiva más pequeña en el conjunto (A) y que contiene a R.
- · Si R cumple con una propiedad, ella misma es la clausura de dicha propiedad.

Ejemplo CLAUSURA REFLEXIVA

Ejemplo CLAUSURA

TRANSITIVA

CLAUSURA REFLEXIVA

Sea A = {1, 2, 3, 4} y la relación $R = \{(1,2),(2,4),(3,3),(4,2)\}$ R no es reflexiva. ¿Cómo encontramos su cierre reflexivo?

Adicionando a **R** los pares faltantes (a,a), donde a pertenece a A.

$$r(R) = \{(1,1),(1,2),(2,2),(2,4),(3,3),(4,2),(4,4)\}$$

CLAUSURA SIMÉTRICA

Sea A = {1, 2, 3, 4} y la relación $R = \{(1,2),(2,2),(2,4),(4,3)\}$ R no es simétrica. ¿Cómo encontramos su cierre simétrico?

Adicionando a **R** los pares inversos faltantes (b,a)

$$s(R) = \{(1,2),(2,1),(2,2),(2,4),(4,3),(4,2),(3,4)\}$$

CLAUSURA TRANSITIVA

Sea A = {1, 2, 3, 4} y la relación
R = {(1,2),(2,2),(2,3),(3,3)}
R no es transitiva.
¿Cómo encontramos su cierre transitivo?

Adicionando a R los pares (a,c) faltantes, donde (a,b) y (b,c) pertenecen a A

$$t(R) = \{(1,2), (1,3), (2,2), (2,3), (3,3)\}$$

Pero el cálculo del cierre transitivo no es tan sencillo. Debido a su complejidad se han creado algunos algoritmos para su construcción

Cierres Transitivos

Teorema 2

Lema 1

Definición:

Sea R una relación en un conjunto A. La relación de conectividad R consta de los pares (a, b) tales que hay un camino de longitud al menos uno desde a hasta b en B.

porque R^n consta de los pares (a, b) tales que hay un camino de longitud n desde a hasta b, se sigue que R^* es la unión de todos los conjuntos R^n . Es decir,

La cerradura transitiva de una relación R es la mas pequeña relación transitiva que contiene a

Teorema 3

Teorema 2

El cierre transitivo de una relación R es igual a la relación de conectividad.

$$S^* = \bigcup_{k=1}^{\infty} S^k$$

Lema 1

Sea A un conjunto con n elementos, y sea R una relación sobre A. Si hay una trayectoria de longitud en al menos uno en R de a a b, entonces existe un camino con una longitud que no excede n, Además cuando a es diferente de b, si hay un camino de longitud al menos uno en R desde a hasta b, entonces existe tal camino con longitud no superior a n-1.

$$R^* = R \cup R^2 \cup R^3 \cup \cdots \cup R^n$$

Teorema 3 Sea Mr* la matriz cero-one de la relación R en un conjunto con n elementos. Entonces la matriz ceroone del cierre transitivo R* es Algoritmo $\mathbf{M}_{R^*} = \mathbf{M}_R \vee \mathbf{M}_R^{[2]} \vee \mathbf{M}_R^{[3]} \vee \cdots \vee \mathbf{M}_R^{[n]}.$ Prezi

ALGORITHM 1 A Procedure for Computing the Transitive Closure. **procedure** transitive closure $(\mathbf{M}_{E}: zero-one \ n \times n \text{ matrix})$

 $A := M_{\mathcal{S}}$ B := A

for i := 2 to n

 $A := A \odot M_F$

 $\mathbf{B} := \mathbf{B} \vee \mathbf{A}$

end (B is the zero-one matrix for R*)

El teorema 3 se puede utilizar como base de un algoritmo para calcular la matriz de la relación R *. Para encontrar esta matriz, se calculan las sucesivas potencias booleanas de MR, hasta la enésima potencia. A medida que se calcula cada poder, se forma su unión con la unión de todas las potencias menores. Cuando se hace esto con la n-ésima potencia, se ha encontrado la matriz para R *. Este procedimiento se muestra como Algoritmo 1.

Lemma II

El lemma 2 nos da los medios para calcular de manera eficiente las matrices Wk. k = 1, 2, ..., n. Mostramos el pseudocódigo para el algoritmo de Warshall, usando el Lema 2, como Algoritmo 2.

ALGORITHM 2 Warshall Algorithm.

end $\{W = [w_{ij}] \text{ is } M_{R^*}\}$

```
procedure Warshall (M_R : n \times n zero-one matrix)
W := M_B
for k := 1 to n
begin
     for i := 1 to n
     begin
           for j := 1 to n
           w_{ij} := w_{ij} \vee (w_{ik} \wedge w_{kj})
```

La complejidad computacional del algoritmo de Warshall se puede calcular fácilmente en términos de operaciones de bits. Para encontrar la entrada

Es una matriz cuadrada que se utiliza como una forma de representar relaciones binarias. Propiedades: -Para un grafo no dirigido la matriz de adyacencia es simétrica.

-El número de caminos Ci,j(k), atravesando k arista desde el nodo i al nodo j, viene dado por un element de la potencia k-ésima de la matriz de adyacencia: Construcción

 $C_{i,j}(k) = [\mathbf{A}^k]_{ij}$

Construcción de una matriz a partir de un grafo

- Construcción a partir de un grafo:

 1. Se crea una matriz cero, cuyas columnas y filas representan los nodos del grafo.

 2. Por cada arista que une a dos nodos, se
- suma 1 al valor que hay actualmente en la ubicación correspondiente de la matriz. Si tal arista es un bucle y el grafo es no dirigido, entonces se suma 2 en vez de 1.
- 3. Finalmente, se obtiene una matriz que representa el número de aristas (relaciones) entre cada par de nodos (elementos).

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$

