collections by extracting all vertex points of all components of the collection, creating a MultiPoint value from them, and computing its convex hull.

ST_ConvexHull() handles its arguments as described in the introduction to this section, with this exception:

 The return value is NULL for the additional condition that the argument is an empty geometry collection.

• ST Difference(q1, q2)

Returns a geometry that represents the point set difference of the geometry values g1 and g2. The result is in the same SRS as the geometry arguments.

As of MySQL 8.0.26, ST_Difference() permits arguments in either a Cartesian or a geographic SRS. Prior to MySQL 8.0.26, ST_Difference() permits arguments in a Cartesian SRS only; for arguments in a geographic SRS, an ER_NOT_IMPLEMENTED_FOR_GEOGRAPHIC_SRS error occurs.

ST_Difference() handles its arguments as described in the introduction to this section.

ST_Intersection(g1, g2)

Returns a geometry that represents the point set intersection of the geometry values g1 and g2. The result is in the same SRS as the geometry arguments.

As of MySQL 8.0.27, ST_Intersection() permits arguments in either a Cartesian or a geographic SRS. Prior to MySQL 8.0.27, ST_Intersection() permits arguments in a Cartesian SRS only; for arguments in a geographic SRS, an ER_NOT_IMPLEMENTED_FOR_GEOGRAPHIC_SRS error occurs.

ST_Intersection() handles its arguments as described in the introduction to this section.

• ST_LineInterpolatePoint(ls, fractional_distance)

This function takes a LineString geometry and a fractional distance in the range [0.0, 1.0] and returns the Point along the LineString at the given fraction of the distance from its start point to its endpoint.