8.6.3 每对顶点之间的最短路径

问题描述:对于一个各边权值均大于零的有向图,对每一对顶点 $i\neq j$,求出顶点i与顶点j之间的最短路径和最短路径长度。

多源最短路径问题: Floyd算法

1936~2001

算法: 迭代(递推) 思路

假设有向图G=(V, E)采用邻接矩阵存储。设置一个二维数组A用于存放当前顶点之间的最短路径长度,分量A[i][j]表示当前顶点 $i \Rightarrow j$ 的最短路径长度。

递推产生一个矩阵序列:

$$A_0 \Rightarrow A_1 \Rightarrow \cdots \Rightarrow A_k \Rightarrow \cdots \Rightarrow A_{n-1}$$

 $A_{i}[i][j]: i \Rightarrow j$ 的路径上所经过的顶点编号不大于k的最短路径长度。

- 初始时,有A₋₁[i][j]=g.edges[i][j]。
- ② 考虑从i ⇒ j的最短路径经过编号为k顶点的情况:

 $A_{k}[i,j]=MIN\{A_{k-1}[i,j], A_{k-1}[i,k]+A_{k-1}[k,j]\}$

算法设计(解决2个问题)

- (1) 用二维数组A存储最短路径长度:
 - $A_k[i][j]$ 表示考虑顶点 $0\sim k$ 后得出的 $i\Rightarrow j$ 的最短路径长度。
 - $A_{n-1}[i][j]$ 表示最终的 $i \Rightarrow j$ 的最短路径长度。
- (2) 用二维数组path存放最短路径:
 - $path_k[i][j]$ 表示考虑顶点 $0\sim k$ 后得出的 $i\Rightarrow j$ 的最短路径。
 - $path_{n-1}[i][j]$ 表示最终 $i \Rightarrow j$ 的最短路径。

如何用path存放最短路径?

 $path_x[i][j]$ 表示考虑过 $0\sim x$ 的顶点得到 $i\Rightarrow j$ 的最短路径,该路径上顶点j的前一个顶点。

2 现在考虑顶点k

若经过顶点k的路径更短: path $_k[i][j] = a = path_{k-1}[k][j]$

 A_{-1}

	0	1	2	3
0	0	5	∞	7
1	∞	0	4	2
2	3	3	0	2
3	∞	∞	1	0

求path ∞和i⇔i: -1

(i,j)	有	边	•	1
\ 0 /	•			

	0	1	2	3
0	-1	0	-1	0
1	-1	-1	1	1
2	2	2	-1	2
3	-1	-1	3	-1

A_0

	0	1	2	3
0	0	5	∞	7
1	∞	0	4	2
2	3	3	0	2
3	∞	∞	1	0

考虑顶点0:

• 没有任何路径修改

$$A_0 = A_{-1}$$
, path₀ = path₋₁

path₀

	0	1	2	3
0	-1	0	-1	0
1	-1	-1	1	1
2	2	2	-1	2
3	-1	-1	3	-1

考虑顶点1:

0→2: 由无路径改为0→1→2, 长度为9, path[0][2]改为1

A	1	
	_	

	0	1	2	3
0	0	5	9	7
1	∞	0	4	2
2	3	3	0	2
3	∞	∞	1	0

path₁

	0	1	2	3
0	-1	0	1	0
1	-1	-1	1	1
2	2	2	-1	2
3	-1	-1	3	-1

$\boldsymbol{A_2}$

	0	1	2	3
0	0	5	9	7
1	7	0	4	2
2	3	3	0	2
3	4	4	1	0

考虑顶点2:

- $1\rightarrow 0$: 由无路径改为 $1\rightarrow 2\rightarrow 0$, 长度为7, path[1][0]改为2
- 3→0: 由无路径改为3→2→0, 长度为4, path[3][0]改为2
- 3→1: 由无路径改为3→2→1, 长度为4, path[3][1]改为2

path₂

	0	1	2	3
0	-1	0	1	0
1	2	-1	1	1
2	2	2	-1	2
3	2	2	3	-1

A_3

	0	1	2	3
0	0	5	8	7
1	6	0	3	2
2	3	3	0	2
3	4	4	1	0

考虑顶点3:

- $0\rightarrow 2$: $b 0\rightarrow 1\rightarrow 2$ 改为 $0\rightarrow 3\rightarrow 2$,长度为8, $b 0\rightarrow 1$ path[0][2]改为3
- $1 \rightarrow 0$: 由 $1 \rightarrow 2 \rightarrow 0$ 改为 $1 \rightarrow 3 \rightarrow 2 \rightarrow 0$,长度为6,path[1][0]改为2
- 1→2: 由1→2改为1→3→2, 长度为3, path[1][2]改为3

path₃

	0	1	2	3
0	-1	0	3	0
1	2	-1	3	1
2	2	2	-1	2
3	2	2	3	-1

求最终结果

 A_3

		path	3

	0	1	2	3
0		5	8	7
1	$\left(\begin{array}{c}6\end{array}\right)$	0	3	2
2		3	0	2
3	4.	4	1	0

	0	1	2	3
0	-1	0	3	0
1	2	-1	3	1
2	2	2	-1	2
3	2	2	3	-1

● 求最短路径长度:

由A3数组可以直接得到两个顶点之间的最短路径长度。

说明顶点1到0的最短路径长度为6。

	$\mathbf{A_3}$				
	0	1	2	3	
0	0	5	8	7	
1	6	0	3	2	
2	3	3	0	2	
3	4	4	1	0	

2 求最短路径:

求顶点1 ⇒ 0的最短路径

顶点序列为0、2、3、1,则顶点 $1 \Rightarrow 0$ 的最短路径为 $1 \rightarrow 3 \rightarrow 2 \rightarrow 0$ 。

弗洛伊德算法如下:

```
//求每对顶点之间的最短路径
void Floyd(MatGraph g)
                             //建立A数组
   int A[MAXVEX][MAXVEX];
   int path[MAXVEX][MAXVEX]; //建立path数组
  int i, j, k;
  <u>Ifor (i=0;i<g.n;i++)</u>
     for (j=0;j<g.n;j++)
         A[i][j]=g.edges[i][j];
         if (i!=j && g.edges[i][j]<INF)
                               //i和j顶点之间有一条边时
            path[i][j]=i;
                                //i和j顶点之间没有一条边时
         else
            path[i][j]=-1;
```

A和path数组 初始化

```
for (k=0;k<g.n;k++)
                                      //求A<sub>k</sub>[i][j]
for(i=0;i < g.n;i++)
      for (j=0;j<g.n;j++)
                                                                        调
          if (A[i][j]>A[i][k]+A[k][j])
                                      //找到更短路径
                                                                        整
                                      //修改路径长度
              A[i][j]=A[i][k]+A[k][j];
                                      //修改最短路径为经过顶点k
               path[i][j]=path[k][j];
```

本算法的时间复杂度为 $O(n^3)$ 。

思考题

求所有顶点之间的最短路径可以对每个顶点调用一次Dijkstra算法,总共调用n次即可,其时间复杂度为 $O(n^3)$ 。

而Floyd算法的时间复杂度也为 $O(n^3)$ 。两者有什么不同?

数据结构经典算法的启示

用Dijkstra求所有顶点之间的最短路径

——本讲完——