Abaixo preparei uma tabela com **aplicações práticas reais** para cada um dos modelos que mencionei. Ela está dividida por **tipo de modelo**, **nome**, **área de aplicação** e **exemplo real de uso**.

🧠 Modelos Supervisionados – Classificação

Modelo	Área de Aplicação	Exemplo Real
Logistic Regression	Finanças, saúde	Previsão de inadimplência / probabilidade de doença
Decision Tree	Negócios, jurídico	Aprovação de crédito com base em regras simples
Random Forest	Finanças, e-commerce	Detecção de fraudes em transações
XGBoost / LightGBM	Competição, fintech, big data	Score de crédito, churn de cliente
KNN	E-commerce, biometria	Recomendação de produtos / reconhecimento facial
SVM	Ciências, imagens médicas	Classificação de tumores, identificação de padrões
Naive Bayes	NLP, segurança	Classificação de e-mails como spam
MLP (Neural Network)	Dados tabulares complexos	Classificação de clientes em produtos financeiros

Modelos Supervisionados – Regressão

Modelo	Área de Aplicação	Exemplo Real
Linear Regression	Imóveis, economia	Previsão de preço de imóveis
Ridge / Lasso	Saúde, crédito	Prever valores de pressão arterial ou renda
Random Forest Regressor	Energia, vendas	Previsão de consumo de energia
XGBoost Regressor	Finanças, logística	Preço de ações, previsão de demanda
SVR	Engenharia, previsão	Previsão de temperatura com base em sensores

★ Modelos Não Supervisionados – Agrupamento e Redução

Modelo	Área de Aplicação	Exemplo Real
K-Means	Marketing, CRM	Segmentação de clientes por perfil de compra
DBSCAN	Anomalias, redes	Identificação de fraudes em redes bancárias
Hierarchical	Genética, histórico	Agrupamento hierárquico de espécies ou documentos
PCA	Visualização, compressão	Redução de dimensionalidade em dados de sensores
t-SNE / UMAP	Visão de dados, clustering	Visualização de embeddings ou vetores de texto

im Modelos de Deep Learning

Modelo	Área de Aplicação	Exemplo Real
CNN	Imagens, visão computacional	Diagnóstico por imagem médica, detecção de objetos
RNN	Sinais, séries temporais	Previsão de séries financeiras ou sensores IoT
LSTM / GRU	Texto, tempo	Tradução automática, previsão de sequência de eventos
Transformer s	NLP, copilotos, agentes	ChatGPT, BERT, copilotos para código, assistentes IA
Autoencoder s	Segurança, IoT	Detecção de anomalias em máquinas ou sistemas
GANs	Arte, simulação	Geração de imagens realistas, deepfakes, estilização

📌 Se quiser um guia rápido:

- Dados estruturados (tabelas)? Comece com Random Forest, XGBoost.
- Dados de texto? Use Naive Bayes, Transformers.
- Imagens? CNN.
- Séries temporais? **LSTM**, **RNN**, ou **SVR**.
- Dados sem rótulo? K-Means, PCA, Autoencoder.