Ingeniería de Servidores (2015-2016)

Grado en Ingeniería Informática Universidad de Granada

ISE CheatSheet

Francisco Carrillo Pérez

1 de febrero de 2016

Índice

1.	Vari	ables
	1.1.	Variables temporales de una estación de servicio
	1.2.	Redes de colas cerradas
	1.3.	Variables operacionales básicas
	1.4.	Variables operacionales deducidas
	1.5.	Variables globales del servidor
	1.6.	Razón de visita y demanda de servicio
2.	Leye	es
	2.1.	Ley de Little
	2.2.	Ley de la Utilización
	2.3.	Ley de flujo forzado
	2.4.	Ley General del tiempo de respuesta
	2.5.	Ley del tiempo de respuesta interactivo

1. Variables

1.1. Variables temporales de una estación de servicio

- Tiempo de espera en cola(*W*, *waiting time*)
- Tiempo de servicio(S, service time)
- Tiempo de respuesta de la estación de servicio(R, $response\ time$): R = W + S

1.2. Redes de colas cerradas

- Red cerrada tipo batch: $N_T = N_0$
- Red cerrada tipo interactivo: $N_T = N_0 + N_Z$
- $N_0 = N$ úmero de trabajos en el servidor
- $N_Z = N$ úmero de trabajos en reflexión (esperando a que los usuarios vuelvan a introducirlos en el servidor)

1.3. Variables operacionales básicas

- T Duración del periodo de medida para el que se extrae el modelo.
- A_i Número de trabajos solicitados a la estación (llegadas, arrivals)
- C_i Número de trabajos completados por la estación (salidas, completions)
- B_i Tiempo que el dispositivo está ocupado (busy time)

1.4. Variables operacionales deducidas

- λ_i Tasa de llegada (arrival rate): $\lambda_i = \frac{A_i}{T}$ trabajos/segundo
- $\bullet \ \tau_i$ Tiempo medio entre llegadas (interarrival time): $\tau_i = \frac{1}{\lambda_i} = \frac{T}{A_i}$ segundos[/trabajo]
- $\bullet \ X_i$ Productividad
(throughput): $X_i = \frac{C_i}{T}$ trabajos/segundo
- S_i Tiempo medio de servicio (service time): $S_i = \frac{B_i}{C_i}$ segundos
- W_i Tiempo medio de espera en cola (waiting time): $W_i = R_i S_i$ segundos
- \blacksquare R_i Tiempo medio de respuesta (response time): $R_i = W_i + S_i$ segundos
- $\bullet~N_i$ Número medio de trabajos en la estación de servicio
- ullet Q_i Número medio de trabajos en cola de espera $(jobs\ in\ queue)$
- U_i Número medio de trabajos siendo servidos por el dispositivo: $U_i = N_i Q_i$

Variables globales del servidor

- A_0 Número de trabajos solicitados al servidor (arrivals)
- C_0 Número de trabajos completados por el servidor (completions)
- λ_0 Tasa de llegada al servidor (arrival rate): $\lambda_i = \frac{A_0}{T}$ trabajos/segundo
- τ_0 Tiempo medio entre llegadas al servidor (interarrival time): $\tau_0 = \frac{1}{\lambda_0} = \frac{T}{A_0}$ segundos[/trabajo]
- X_0 Productividad sel servidor (throughput): $X_0 = \frac{C_0}{T}$ trabajos/segundo
- R_0 Tiempo medio de respuesta del servidor (response time): $R_0 = W_i + S_i$ segundos
- N_0 Número medio de trabajos en el servidor $(jobs) = N_1 + N_2 + ... + N_k$

Razón de visita y demanda de servicio

- Razón de visita V_i visit ratio: $V_i = \frac{C_i}{C_0}$
- Demanda de servicio D_i service demand: $D_i = \frac{B_i}{C_0} = V_i \times S_i$

2. Leyes

Ley de Little 2.1.

Aplicada a un servidor: $N_0 = \lambda_0 \times R_0$

Bajo la hipótesis del equilibrio de flujo(servidor no saturado):

$$N_0 = \lambda_0 \times R_0 = X_0 \times R_0$$

Aplicación a toda una estación de servicio: $N_i = \lambda_i \times R_i = X_i \times R_i$

Aplicación a la cola de una estación de servivio: $Q_i = \lambda_i \times W_i = X_i \times W_i$

Ley de la Utilización 2.2.

Aplicada a un servidor: $U_i = \frac{B_i}{T} = \frac{C_i}{T} \times \frac{B_i}{C_i} = X_i \times S_i$ Para un sistema en equilibrio de flujo(servidor no saturado):

$$U_i = \lambda_i \times S_i = X_i \times S_i$$

Ley de flujo forzado

Ley de Flujo Forzado: $X_i = X_0 \times V_i$

Relación Utilización-Demanda de Servicio: $U_i = X_i \times S_i = X_0 \times V_i \times S_i = X_0 \times D_i$

Ley General del tiempo de respuesta

$$R_0 = V_1 \times R_1 + V_2 \times R_2 + \dots + V_k \times R_k = \sum_{i=1}^k V_i \times R_i$$

2.5. Ley del tiempo de respuesta interactivo

$$R_0 = \frac{N_T}{X_0} - Z$$