# Sprawozdanie Podstawy Sztucznej Inteligencji Perceptron breast cancer WEKA

Natalia Gadocha 304165 Geoinformatyka III

## Badane dane

Nasze dane są oparte na informacjach dotyczących zachorowań na raka piersi. Instancje są opisane przez 9 atrybutów i jeden atrybut klasy. Każde z nich posiada 286 instancji. Suma poszczególnych wag wynosi również 286. Wśród wspominanych atrybutów znajdują się: age, menopause, tumor-size, inv-nodes, node-caps, deg-malig, breast, breast-quad, irradiat, class. Atrybut Class składa się z recurrence-events (85 wartości) oraz no-recurrence-events (201 wartości). Wszystkie atrybuty są typu Nominal.

Wartości brakujące występują dla dwóch argumentów:

- node-caps 3% (8 wartości)
- breast-quad w przybliżeniu 0% (1 wartość)

Rozkład powyższych atrybutów prezentuje się następująco:



### A dodatkowo, nasze atrybuty prezentują się tak:

| Attribute<br>Name | Attribute Values                                                                     |
|-------------------|--------------------------------------------------------------------------------------|
| Class             | {no-recurrence-events, recurrence-events}                                            |
| Age               | {10-19, 20-29, 30-39, 40-49, 50-59, 60-69, 70-79, 80-89, 90-99}                      |
| Menopause         | {lt40, ge40, premeno}                                                                |
| Tumor-size        | {0-4, 5-9, 10-14, 15-19, 20-24, 25-29, 30-34, 35-39, 40-44, 45-49, 50-54, 55-59}     |
| Inv-nodes         | {0-2, 3-5, 6-8, 9-11, 12-14, 15-17, 18-20, 21-23, 24-26, 27-29, 30-32, 33-35, 36-39} |
| Node-caps         | {yes, no}                                                                            |
| Deg-malig         | {1, 2, 3}                                                                            |
| Breast            | {left, right}                                                                        |

# Trochę o Multilayer Perceptron

Jest to typ sztucznej sieci neuronowej. Składa się zwykle z jednej warstwy wejściowej, kilku warstw ukrytych oraz jednej wyjściowej.

Perceptrony wielowarstwowe wykorzystuje się często do nadzorowania problemów uczenia się. Trening ten polega na dostosowaniu parametrów lub wag i odchyleń modelu w celu zminimalizowania błędów.

MLP jest bardzo pomocny w rozwiązywaniu wielu różnych problemów, które są trudne przy użyciu zwykłych algorytmów opartych na zasadach programowania. Wyróżnia go to, iż jest może być on szkolonym przy pomocy algorytmu wstecznej propagacji błędów.

Jest również bardzo czuły na minima lokalne. Aby ich uniknąć należy powtórzyć kilka razy proces nauki z różnymi punktami startowymi. Od nich bowiem zależy jego trajektoria.

Schematyczne działanie algorytmu przedstawione zostało na poniższym obrazie:



https://www.researchgate.net/figure/A-hypothetical-example-of-Multilayer-Perceptron-Network\_fig4\_303875065

# Przebieg i wyniki analiz

Poniższe dane są wynikiem przeprowadzenia kilkukrotnego przejścia algorytmu i wybranych tych danych, które dały najlepszy wynik o tych samych parametrach. Kolejno będą testowane różne opcje danych ustawień. W kolejnych krokach dla tych samych ustawień, tylko z różnymi parametrami zostaną podane tylko powstałe różnice. Różne wyniki sprawiają, iż może pojawić się ich duża wariancja. Dążyć będziemy do stworzenia jak najlepszego modelu.

Zacznijmy więc od użycia opcji Use training set, żeby poglądowo tylko spojrzeć na uzyskane potencjalne wyniki.

|                                     | U                | se | training set |    |                          |
|-------------------------------------|------------------|----|--------------|----|--------------------------|
| Correctly Classified<br>Instances   | 276<br>96.5035 % |    | а            | b  | classified as            |
| Incorrectly Classified<br>Instances | 10<br>3.4965 %   |    | 197          | 4  | a = no-recurrence-events |
| Total Number of<br>Instances        | 286              |    | 6            | 79 | b = recurrence-events    |
| Kappa statistic                     | 0.9157           |    |              |    |                          |
| Precision                           | 0.965            |    |              |    |                          |
| Mean absolute error                 | 0.0482           |    |              |    |                          |
| Root mean squared error             | 0.1567           |    |              |    |                          |
| Relative absolute error             | 11.5332 %        |    |              |    |                          |
| Root relative squared error         | 34.2946 %        |    |              |    |                          |

Wyniki jakie otrzymaliśmy nie są wiarygodne. Otrzymujemy je mocno przejaskrawione w związku z czym nie bierzemy ich pod czujne oko analizy i dalszych badań.

Tą samą procedurę przeprowadzimy również dla cross-validation = 10 oraz percentage split = 70%. A wyniki prezentują się następująco:

| Cross-validation = 10             |                  |  |     |    |                          |  |  |
|-----------------------------------|------------------|--|-----|----|--------------------------|--|--|
| Correctly Classified<br>Instances | 185<br>64.6853 % |  | а   | b  | classified as            |  |  |
| Incorrectly Classified Instances  | 101<br>35.3147 % |  | 150 | 51 | a = no-recurrence-events |  |  |
| Total Number of<br>Instances      | 286              |  | 50  | 35 | b = recurrence-events    |  |  |
| Kappa statistic                   | 0.1575           |  |     |    |                          |  |  |
| Precision                         | 0,648            |  |     |    |                          |  |  |
| Mean absolute error               | 0.3552           |  |     |    |                          |  |  |
| Root mean squared error           | 0.5423           |  |     |    |                          |  |  |
| Relative absolute error           | 84.8811 %        |  |     |    |                          |  |  |
| Root relative                     |                  |  |     |    |                          |  |  |

118.654 %

squared error

| Percentage-split = 70%              |                 |  |     |    |                          |  |  |  |
|-------------------------------------|-----------------|--|-----|----|--------------------------|--|--|--|
| Correctly Classified<br>Instances   | 162<br>72.093 % |  | а   | b  | classified as            |  |  |  |
| Incorrectly Classified<br>Instances | 124<br>27.907 % |  | 121 | 60 | a = no-recurrence-events |  |  |  |
| Total Number of<br>Instances        | 286             |  | 64  | 41 | b = recurrence-events    |  |  |  |
| Kappa statistic                     | 0.3534          |  |     |    |                          |  |  |  |
| Precision                           | 0,717           |  |     |    |                          |  |  |  |
| Mean absolute error                 | 0.3075          |  |     |    |                          |  |  |  |
| Root mean squared error             | 0.5001          |  |     |    |                          |  |  |  |

| Relative absolute<br>error     | 69.8012 %  |
|--------------------------------|------------|
| Root relative<br>squared error | 101.1071 % |

W tym zestawieniu lepsze wyniki otrzymaliśmy dla użytej opcji cross-validation - ma większą trafność i mniejsze błędy.

Przed jeszcze bardziej dogłębną analizą wypróbujemy działanie dodawanego szumu. Wartość ta jest używana w wece do zapoczątkowania generatora liczb losowych. Zaczniemy od dodania szumu równego 100.

|                                     |                  | S | eed = 100 |     |                          |
|-------------------------------------|------------------|---|-----------|-----|--------------------------|
| Correctly Classified<br>Instances   | 108<br>37.7622 % |   | а         | b   | classified as            |
| Incorrectly Classified<br>Instances | 178<br>62.2378 % |   | 47        | 154 | a = no-recurrence-events |
| Total Number of<br>Instances        | 286              |   | 24        | 61  | b = recurrence-events    |
| Kappa statistic                     | -0.0337          |   |           |     |                          |
| Precision                           | 0,550            |   |           |     |                          |
| Mean absolute error                 | 0.5107           |   |           |     |                          |
| Root mean squared error             | 0.512            |   |           |     |                          |
| Relative absolute<br>error          | 122.0612 %       |   |           |     |                          |
| Root relative<br>squared error      | 112.0131 %       |   |           |     |                          |

Co możemy więc tu dostrzec? Widzimy, iż otrzymujemy tutaj duże błędy. Wartość Kappa jest ujemna. Nasza precyzja oraz liczba poprawnie sklasyfikowanych danych nie są duże. Spróbujmy dodać trochę mniejszą ilość szumu (= 50). Jednakże pomimo swoich wad, szum pozwala uciec z płytszych minimów, chociaż generowanie modeli trwa zdecydowanie dłużej.

Różnicami w uzyskanych wynikach dla dodanego szumu mogą być:

- zwiększa się ilość poprawnie przyporządkowanych instancji (98) oraz delikatnie precyzja (0,498)
- wartość Kappa jest już dodatnia, choć niewielka (0,0295)
- błędy zmniejszają się

Przeciwny efekt otrzymujemy dla danych o zwiększonym szumie. Możemy zatem wnioskować, iż dodanie szumu będzie utrudniało pracę z danymi oraz obniżało wyniki algorytmu.

Kolejnym aspektem jaki poruszymy będzie zmiana czasu do nauki. Zaczniemy od ustawienia wartości 200.

|                                     | time            | to | training = 2 | 200 |                          |  |  |
|-------------------------------------|-----------------|----|--------------|-----|--------------------------|--|--|
| Correctly Classified<br>Instances   | 186<br>65.035 % |    | а            | b   | classified as            |  |  |
| Incorrectly Classified<br>Instances | 100<br>34.965 % |    | 154          | 47  | a = no-recurrence-events |  |  |
| Total Number of<br>Instances        | 286             |    | 53           | 32  | b = recurrence-events    |  |  |
| Kappa statistic                     | 0.1456          |    |              |     |                          |  |  |
| Precision                           | 0,643           |    |              |     |                          |  |  |
| Mean absolute error                 | 0.3605          |    |              |     |                          |  |  |
| Root mean squared error             | 0.5395          |    |              |     |                          |  |  |
| Relative absolute error             | 86.1705 %       |    |              |     |                          |  |  |
| Root relative<br>squared error      | 118.026 %       |    |              |     |                          |  |  |

Natomiast jeżeli zwiększymy tą wartość na 700 możemy dostrzec:

- identyczne, choć trochę słabsze poprawne przypasowanie instancji oraz precyzję
- w niewielkim stopniu zwiększone błędy

Podczas zmniejszenia wydzielonego czasu na 100 widzimy, iż:

- wartości poprawnie przyporządkowanych instancji oraz precyzja zwiększyły się (189 oraz 0,653)
- błędy zmniejszyły się

Sprawdźmy teraz jak działa dodawanie ukrytych warstw na działanie algorytmu.

|                                   | hio              | dde | en layers = | 2  |                          |
|-----------------------------------|------------------|-----|-------------|----|--------------------------|
| Correctly Classified<br>Instances | 209<br>73.0769 % |     | а           | b  | classified as            |
| Incorrectly Classified Instances  | 77<br>26.9231 %  |     | 175         | 26 | a = no-recurrence-events |
| Total Number of<br>Instances      | 286              |     | 51          | 34 | b = recurrence-events    |
| Kappa statistic                   | 0.2957           |     |             |    |                          |
| Precision                         | 0.713            |     |             |    |                          |
| Mean absolute error               | 0.3254           |     |             |    |                          |
| Root mean squared error           | 0.4653           |     |             |    |                          |
| Relative absolute<br>error        | 77.777 %         |     |             |    |                          |
| Root relative<br>squared error    | 101.7919 %       |     |             |    |                          |

Natomiast jeżeli będziemy zwiększać liczbę ukrytych warstw - przykład dla siedmiu:

- zmniejsza się ilość poprawnie sklasyfikowanych instancji (191) oraz precyzja (0,662)
- Wszystkie brane pod uwagę błędy zwiększają się

Dla całkowitego braku warstw ukrytych otrzymujemy również skrajne wyniki, których nie możemy brać pod uwagę. Ich błędy są za duże, aby dane były wiarygodne.

Kolejnym czynnikiem, który będziemy badać to batch size określający wielkość partii.

|                                     | b                | ato | ch size = 20 | )  |                          |
|-------------------------------------|------------------|-----|--------------|----|--------------------------|
| Correctly Classified Instances      | 197<br>68.8811 % |     | a            | b  | classified as            |
| Incorrectly Classified<br>Instances | 89<br>31.1189 %  |     | 167          | 34 | a = no-recurrence-events |
| Total Number of<br>Instances        | 286              |     | 55           | 30 | b = recurrence-events    |
| Kappa statistic                     | 0.1979           |     |              |    |                          |
| Precision                           | 0,668            |     |              |    |                          |
| Mean absolute error                 | 0.3406           |     |              |    |                          |
| Root mean squared error             | 0.5109           |     |              |    |                          |
| Relative absolute error             | 81.4043 %        |     |              |    |                          |
| Root relative<br>squared error      | 111.7654 %       |     |              |    |                          |

Dla batch size = 150 możemy zaobserwować:

- Taką samą ilość poprawnie przyporządkowanych instancji
- Dokładnie taką samą precyzję
- Brak zmieniających się innych wartości

Podobną sytuację otrzymujemy dla większych wartości batch size. Możemy więc wywnioskować, iż algorytm nie jest bardzo czuły na ten parametr.

Learning rate jest następnym czynnikiem, który będziemy badać. Jest to współczynnik uczenia się algorytmu propagacji wstecznej. Zaczniemy od wartości równej 0.1.

|                                     | lea              | arn | ing rate = C | ).1 |                          |
|-------------------------------------|------------------|-----|--------------|-----|--------------------------|
| Correctly Classified<br>Instances   | 208<br>72.7273 % |     | а            | b   | classified as            |
| Incorrectly Classified<br>Instances | 78<br>27.2727 %  |     | 176          | 25  | a = no-recurrence-events |
| Total Number of<br>Instances        | 286              |     | 53           | 32  | b = recurrence-events    |
| Kappa statistic                     | 0.2786           |     |              |     |                          |
| Precision                           | 0,707            |     |              |     |                          |
| Mean absolute error                 | 0.3524           |     |              |     |                          |
| Root mean squared error             | 0.4321           |     |              |     |                          |
| Relative absolute error             | 84.2157 %        |     |              |     |                          |
| Root relative<br>squared error      | 94.537 %         |     |              |     |                          |

Zwiększając stopniowo omawiany parametr otrzymujemy:

- coraz gorsze przyporządkowania instancji, oraz zmniejszającą się precyzję
- coraz większe błędy przekraczające 100% (dla root relative squared error)
- coraz mniejszą wartość Kappa

Kolejnym aspektem jaki omówimy będzie parametr momentum. Mówi nam on o tempie pędu nauki dla algorytmu wstecznej propagacji.

|                                   | m                | ion | nentum = 0 | .1 |                          |
|-----------------------------------|------------------|-----|------------|----|--------------------------|
| Correctly Classified<br>Instances | 208<br>72.7273 % |     | а          | b  | classified as            |
| Incorrectly Classified Instances  | 78<br>27.2727 %  |     | 177        | 24 | a = no-recurrence-events |
| Total Number of<br>Instances      | 286              |     | 54         | 31 | b = recurrence-events    |
| Kappa statistic                   | 0.2731           |     |            |    |                          |
| Precision                         | 0,706            |     |            |    |                          |
| Mean absolute error               | 0.3541           |     |            |    |                          |
| Root mean squared error           | 0.4304           |     |            |    |                          |
| Relative absolute<br>error        | 84.6393 %        |     |            |    |                          |
| Root relative<br>squared error    | 94.156 %         |     |            |    |                          |

Jeżeli ustawimy tą wartość na 0.01 możemy dostrzec:

- Delikatnie zwiększoną poprawność sklasyfikowanych instancji (210)
- Precyzja również wrasta (0,714)
- Błędy zmniejszają się średnio o 2 punkty procentowe

Próba zmiany dokładności (wartości decimals) nie przyniosła żadnych dodatkowych efektów. Wartości te powtórzyły się z powyższego przykładu, bez zmian poprawności ani błędów. Podobną sytuację otrzymujemy dla parametru validation threshold, który to mówi o liczbie kolejnych wzrostów błędu dozwolonych dla testów walidacyjnych przed zakończeniem uczenia. Zmiana wartości parametru nie wpływa na uzyskane dane.

Spróbujemy zatem wpłynąć na badany algorytm poprzez ostatni już parametr - Validation set size. Jego wartość ustawmy początkowo na 50. A oto wyniki:

|                                     | valida           | atio | on set size : | = 50 |                          |
|-------------------------------------|------------------|------|---------------|------|--------------------------|
| Correctly Classified<br>Instances   | 200<br>69.9301 % |      | a             | b    | classified as            |
| Incorrectly Classified<br>Instances | 86<br>30.0699 %  |      | 193           | 8    | a = no-recurrence-events |
| Total Number of<br>Instances        | 286              |      | 78            | 7    | b = recurrence-events    |
| Kappa statistic                     | 0.0558           |      |               |      |                          |
| Precision                           | 0,639            |      |               |      |                          |
| Mean absolute error                 | 0.4009           |      |               |      |                          |
| Root mean squared error             | 0.4453           |      |               |      |                          |
| Relative absolute error             | 95.8058 %        |      |               |      |                          |
| Root relative squared error         | 97.4243 %        |      |               |      |                          |

Próby zwiększenia tej wartości powodowały pogorszenie się uzyskanych wyników. Jednakże po jej zmniejszeniu (na wartość równą 5) dostajemy bardziej poprawne sklasyfikowanie instancji (210, 73.4266%). Nasza precyzja również się zwiększa (0,712), a błędy zmniejszają.

### Podsumowanie

Powyższa przeprowadzona analiza ukazuje dokładnie wady i zalety algorytmu Multilayer Perceptron. Dostrzegamy, iż nie jest on na pewno podatny na problemy związane z wymiarem przestrzeni. Inne parametry oraz ich wpływ został opisany na górze. Sieci neuronowe w trakcie uczenia potrafią od razu skoncentrować się na pewnym podzbiorze przestrzeni wejściowej. Jego zdolność uczenia się na przykładach sprawia, że sztuczne sieci neuronowe są bardzo elastyczne i wydajne. Widzimy również wpływ dodawanego szumu na jego działanie. Algorytm ten był jednakże jednym z najwolniejszych z wcześniej poznanych i użytych w tym programie. Generowanie, powstawanie oraz ponowne tworzenie modelu trwało dość długo.