

MINISTÉRIO DAS TELECOMUNICAÇÕES, TECNOLOGIAS DE INFORMAÇÃO E COMUNICAÇÃO SOCIAL MINISTÉRIO DA EDUCAÇÃO

TÉCNICAS DE LINGUAGENS DE PROGRAMAÇÃO:

UNIDADE II: FUNDAMENTOS DE BASE DE DADOS

PROF. PAULO TUMBA / PROF. JÚLIO BARROS

ÍNDICE

- 1. Introdução
- 2. Conceito de base de Dados;
- 3. História;
- 4. SGBD;
- 5.

As Disciplinas de TLP e SI

Professores: Paulo Tumba / Júlio Barros

julioantoniomoraisbarros@gmail.com

manuelpaulo@gec.inatel.br

paulo.tumba@itel.gov.ao

Tipo de Aula: Teóricas e práticas

Forma de Avaliação:

- Provas
- Projectos
- Participação nas aulas

Objectivos

Compreender os conceitos inerentes às bases de dados e aplicá-los no desenvolvimento de projectos tecnológicos.

No final do ano, o aluno, perante um problema de informatização deverá ser capaz de:

- Argumentar sobre o conceito de base de dados, com foco em bases de dados relacionais;
- Obter um esquema de base de dados com foco no modelo relacional;
- Definir um modelo de dados de acordo com os métodos e teorias de normalização;
- Manipular bases de dados através da linguagem SQL;
- Desenvolver aplicativos que utilizem base de dados.

Conteúdo Programático

II. Fundamentos de Base de Dados

- Conceito de base de dados
- História
- O SGBD

III. Modelação de Dados

- Modelo ER
- Diagrama ER

IV. Modelo Relacional de Base de Dados

- Conceitos Chave
- Modelação de dados

V. Ferramenta de BD

VI. Linguagens de BD

- DDL
- DMI
- Consultas

VII. Normalização

- Dependências funcionais
- A Teoria da Normalização
- Formas normais

VIII . Programabilidade

- Ligação SQL com outras linguagens de programação
- Consultas avançadas
- Ordenação
- Agrupamento
- Junções
- Subconsultas
- Views
- Procedimentos armazenados

IX. Relatório

Introdução

- Com os avanços tecnológicos e com a necessidade de cada vez mais ter maior capacidade de tratamento de informação viram na informática a solução para os seus problemas.
- Qualquer solução informática tem como elemento fundamental a informação. O que faz com que um repositório de dados seja o núcleo dos sistemas informáticos.

DADOS VS INFORMAÇÃO

- Dados elementos ou valores discretos que isoladamente, não têm qualquer significado específico. (Damas, 2005)
- São conjunto de factos em sua forma primária.
- **Exemplo: Respostas de um inquérito**
- Informação resulta da transformação (ordenação, formatação) dos dados de modo significativo. I.e, a informação tem que ser algo útil para o utilizador, num determinado contexto.
- Exemplo: resultados estatísticos de um inquérito

NECESSIDADE DE INFORMATIZAÇÃO

Porquê informatizar?

Gestão - a necessidade de organizar a informação.

Compactação - não existe a necessidade de se usar arquivos em papel volumosos;

Automatização – automatização de algumas tarefas referentes ao processamento de dados;

Velocidade – por se tratar de um sistema computorizado a recuperação e actualização dos dados é muito mais rápida;

Menos esforço - elimina-se grande parte de trabalhos feitos à mão.

SISTEMA DE GESTÃO DE FICHEIROS

O que é?

- conjunto de ficheiros, directórios, descritores e estruturas de dados auxiliares geridos por um módulo do sistema operativo (Sistema de Gestão de Ficheiros).
- permitem estruturar o armazenamento e a recuperação de dados persistentes em um ou mais dispositivos de memória secundária (discos ou bandas magnéticas).
- Ficheiro conjunto de dados persistentes, geralmente relacionados, identificado por um nome. Um ficheiro possui ainda outro tipo de informação que facilita a sua localização e gestão:
- dimensão, datas de criação, modificação e acesso, direitos de acesso, e localização da informação em memória secundária.
- O conjunto destes dados é usualmente designado por meta-informação.

Nota: O termo persistente significa que os dados continuam a existir mesmo após terminar a aplicação, terminar a sessão e desligar o PC.

SISTEMA DE GESTÃO DE FICHEIROS

- Redundância de Dados -
- Os mesmos dados são armazenados em vários ficheiros
- Isolamento dos Dados As aplicações dificilmente acedem aos ficheiros de outras aplicações
- Inconsistência dos Dados -Várias cópiasdiferentes dos mesmos dados.

BASE DE DADOS

Definição Segundo alguns autores:

Uma coleção de arquivos de dados computorizados. (Date, 2001) Uma base de dados é:

- Uma coleção de dados relacionados, representando algum aspecto do mundo real;
- Logicamente coerente, com algum significado;
- Projetada, construída e gerada para uma aplicação específica. (Marcos André Gonçalves,
 2004)

Conjunto de dados estruturados, armazenados de maneira persistente e organizados de acordo com determinado contexto. (Damas, 2005)

EXEMPLO DE BASE DE DADOS

- Bancos informação de clientes, contas bancárias, transações bancárias.
- Linhas aéreas voos, aviões, reservas de bilhetes, passageiros, pilotos.
- Escolas informação de alunos, professores, disciplinas, matrículas, notas.
- Vendas informação de clientes, produtos recebidos e faturas.
- Recursos humanos informação de funcionários, departamentos, salários, impostos, mapa de férias.

BASE DE DADOS VS GESTÃO DE FICHEIROS

Porquê BD ao invés de sistemas de ficheiros?

Normalmente as informações num computador são armazenadas em ficheiros (arquivos) do sistema, mas tem alguns inconvenientes:

Redundância e inconsistência – dados armazenados em vários ficheiros o que leva à duplicação de dados e cópias dos mesmos dados podem não coincidir;

Dificuldade de acesso e localização de dados – como saber em que ficheiros está armazenado determinado dado?

Dependência de dados – dados armazenados em vários ficheiros e com formato de dados

diferentes havendo a necessidade de usar diferentes aplicações para recuperá-los.

Existe uma dependência entre os dados e os programas;

Concorrência – dificuldade em actualizar simultaneamente os ficheiros;

Segurança – quem pode aceder a quê?

NECESSIDADE DE USO DE BD

As bases de dados surgiram para suprir todas as dificuldades encontradas com o o sistema de gestão de ficheiros. Assim as bases de dados permitem:

Armazenamento centralizado – os dados são armazenados numa única unidade integrada de armazenamento o que evita a redundância e inconsistência dos mesmos;

Controlo centralizado – todo o acesso aos dados passa a ser controlada por uma única entidade, o sistema de gestão de base de dados (SGBD) o que permite actualizações e consultas simultâneas;

Isolamento – existe uma separação entre dados e os programas de acesso aos dados; Actualidade – informação precisa e actualizada a qualquer momento;

Desenvolvimento – disponibiliza meios de desenvolvimento dos programas mais rápidos;

História

- Os seres humanos começaram a armazenar informações à muito tempo atrás, através de arquivos em papel.
- Com o surgimento dos computadores, o armazenamento e gestão de informação passou a ser o foco de muitas organizações.
- 1950s Automatização dos dados e armazenamento em fitas magnéticas.
- 1960s Uso de discos de memória.
- 1960s Charles Bachman desenhou a Integrated Data Store, que era baseado no modelo de dados em rede, que foi padronizado e conhecido como CODASYL. A IBM desenvolveu o IMS (Information Management System) baseado no modelo de dados hierárquico.
- 1970s Edgar Codd propôs o modelo de dados relacional, que veio mudar completamente a panorâmica do mundo das bases de dados.
- 1980s Sistemas de base de dados relacionais tornaram-se um sucesso comercial. Surgimento da Structured Query Language – SQL.
- 1990s Modelo de dados por objectos. Era da internet, acesso via Web.

Sistema de Base de Dados

- Um sistema de base de dados ou sistema de informação tem quatro componentes principais:
- Dados
- Hardware
- Software
- Utilizadores

SGBD – Definição

- Um SGBD é um software desenhado para gerir e utilizar grandes colecções dedados.
- ■Sistema computorizado cujo objectivo é armazenar dados e permitir que os utilizadores recuperem e actualizem esses mesmos dados mediante "pedidos". (Date,2001)
- ■Aplicação ou conjunto de aplicações que serve para definir, aceder e gerir dados existentes numa base de dados (Damas,2005).
- O SGBD é a única entidade que manipula directamente a base de dados.
- Em inglês DBMS Database Management System.

SGBD Objectivo

- Objectivo fornecer um ambiente apropriado para aceder e armazenar os dados na base de dados de forma fiável e eficiente, fornecendo ao utilizador uma visão abstracta da base de dados.
- Um SGBD tem como principal objectivo fornecer uma visão abstracta dos dados ao utilizador. Ou seja, esconde detalhes de como e onde os dados estão armazenados.

Exemplos de SGBD

- Access
- DB2
- Firebird
- Ingres
- Interbase
- MySQL
- Oracle
- Postgree
- SQL Server
- Sybase

Classificação de SGBD

- Quanto ao modelo de dados
- Relacional
- De rede
- Hierárquicos
- Orientado à objectos,

Etc..

- Quanto aos utilizadores
- Mono-utilizador
- Multi-utilizador
- Quanto a localização
- Centralizados
- Distribuído

Níveis de Abstração – facilitam a interação do usuário com o sistema. Os níveis de abstração são subdiviididos em :

1. Nível Físico: Refere-se a como os dados são armazenados fisicamente no sistema, como estruturas de armazenamento em disco, índices, ou técnicas de compressão de dados. Exemplo: Como as tabelas são dispostas em blocos de disco ou como os índices são implementados para facilitar a recuperação rápida de dados. (Nível mais baixo de abstração)

2. Nível Lógico (conceptual): Descreve os tipos de dados e os relacionamentos entre eles, mas sem detalhar como esses dados são armazenados fisicamente.

Exemplo: Um diagrama entidade-relacionamento (ER) que mostra as tabelas (ou entidades) e as relações entre elas. (Nível mais alto de abstração)

3. Nível Visão: Refere-se à maneira como os usuários finais ou aplicações interagem com partes da base de dados. Cada usuário pode ter uma visão personalizada dos dados, mostrando apenas as partes relevantes.

Exemplo: Um funcionário de uma empresa pode ver apenas os dados de clientes com os quais ele trabalha, enquanto outro pode ver dados financeiros. (Nível mais alto de abstração)

Instâncias e Esquemas

Instâncias:

- Representam os dados que estão armazenados no banco de dados em um determinado momento.
- Elas mudam frequentemente, à medida que os dados são inseridos, atualizados ou deletados.
- Exemplo: Uma cópia de segurança (backup) de um banco de dados reflete a instância naquele momento.

Esquemas:

- São o projeto estrutural do banco de dados, também conhecido como o "esqueleto". É a definição das tabelas, suas colunas, tipos de dados e relações entre elas.
- O esquema é relativamente estável e raramente é alterado.
- Exemplo: A estrutura de um banco de dados com tabelas como "Clientes", "Pedidos", e as relações entre essas tabelas.

Idenpendência de Dados

A Independência de Dados refere-se à capacidade de modificar o esquema em um nível sem afetar o nível superior. Ela garante flexibilidade ao banco de dados, permitindo mudanças internas sem a necessidade de grandes alterações nos programas ou na forma como os dados são acessados.

Ind. Física: Permite modificar o esquema físico (a maneira como os dados são armazenados fisicamente) sem alterar o modelo lógico.

Exemplo: Mudar a estrutura de armazenamento em disco ou criar novos índices, sem alterar a lógica do banco de dados que define as tabelas e as relações.

Ind. Lógica: Permite modificar o esquema lógico (estrutura de tabelas e relações) sem impactar os programas que acessam o banco de dados.

Exemplo: Adicionar uma nova coluna em uma tabela ou alterar o relacionamento entre duas tabelas sem precisar reescrever o código das aplicações que acessam o banco.

Obs: A independência de dados é um conceito fundamental em sistemas de banco de dados, pois permite que os administradores façam melhorias ou mudanças no sistema sem interromper o funcionamento de aplicações dependentes.

Os conjuntos de ferramentas conceituais usados para a descrição e o relacionamento entre dados são chamados de modelos de dados. Eles ajudam a definir a estrutura dos dados em um sistema de gerenciamento de banco de dados (SGBD) e a forma como esses dados se inter-relacionam.

Os modelos usados são subdivididos em 3 grupos:

- 1. Modelo Lógico com base em objectos;
- 2. Modelos Lógicos com base em registros;
- 3. Modelos Físicos (Não Abordado);

Modelo Lógico com base em objectos:

Esses modelos tratam os dados como objetos que podem representar entidades reais e suas características. Os dados são organizados como coleções de objetos, onde cada objeto possui atributos (propriedades) e comportamentos (métodos).

Modelos lógicos baseados em objetos são usados na descrição de dados nos níveis conceptual e de visões. Eles se caracterizam pelo fato de fornecerem, de modo conveniente, capacidades de estruturação flexíveis.

Modelos mais conhecidos:

Modelo entidade-relacionamento (ER): Utiliza entidades e relacionamentos entre elas para descrever a estrutura lógica do banco de dados.

Modelo orientado a objetos: Combina princípios da orientação a objetos com banco de dados, onde os dados são representados por objetos que têm propriedades e métodos.

Modelo binário;

Modelo semântico de dados;

Modelo infológico;

Modelo funcional de dados.

OBS: São amplamente usados em projetos que exigem uma modelagem próxima à maneira como os dados são percebidos no mundo real.

Modelos Lógicos com Base em Registros:

Organizam os dados em formatos de registros fixos ou predefinidos, geralmente associados a estruturas de tabelas, como em bancos de dados relacionais.

Exemplo de Modelos:

Modelo Relacional: Representa os dados como tabelas (ou relações), onde cada tabela é composta por linhas (registros) e colunas (atributos). É o modelo mais amplamente utilizado em sistemas de banco de dados.

Modelo Hierárquico: Organiza os dados em uma estrutura de árvore, onde os registros são organizados em níveis e há uma relação de pai-filho entre os registros.

Modelo de Redes: Semelhante ao modelo hierárquico, mas permite que cada registro tenha múltiplos pais, formando uma estrutura de rede.

OBS: Muito comum em SGBDs, especialmente os bancos de dados relacionais como MySQL, PostgreSQL e Oracle.

MUITO OBRIGADO!