

Early Journal Content on JSTOR, Free to Anyone in the World

This article is one of nearly 500,000 scholarly works digitized and made freely available to everyone in the world by JSTOR.

Known as the Early Journal Content, this set of works include research articles, news, letters, and other writings published in more than 200 of the oldest leading academic journals. The works date from the mid-seventeenth to the early twentieth centuries.

We encourage people to read and share the Early Journal Content openly and to tell others that this resource exists. People may post this content online or redistribute in any way for non-commercial purposes.

Read more about Early Journal Content at http://about.jstor.org/participate-jstor/individuals/early-journal-content.

JSTOR is a digital library of academic journals, books, and primary source objects. JSTOR helps people discover, use, and build upon a wide range of content through a powerful research and teaching platform, and preserves this content for future generations. JSTOR is part of ITHAKA, a not-for-profit organization that also includes Ithaka S+R and Portico. For more information about JSTOR, please contact support@jstor.org.

SOME OBSERVATIONS ON THE BLOOD OF DAIRY COWS IN TICK-INFESTED REGIONS.*

R. P. HIBBARD AND D. C. NEAL.

(From the Mississippi Agricultural Experiment Station, Agricultural College, Mississippi.)

The material contained in this paper has been selected from a mass of data collected during the past two years. The subject was suggested by some observations made while conducting one of our Adams Fund projects. Our first set of results, obtained from a limited number of animals (15), when compared with the results of other observers in the hematological studies of the blood of normal cattle, brought to light some differences which could not then be explained. In view of this fact we thought it necessary to make a more thorough study in an attempt to account for these differences. In all over 50 individual animals have been examined, a few of which were subjected to repeated examination at various times of the year. Our observations during this period of time have not brought any change in the general result. We do not consider, however, that we have established a new normal, but according to data recently obtained we believe that what differences do exist between our data and those of other observers are entirely due to the influence of the Texas fever parasite upon the blood of the animals which have recovered from the disease. It is generally considered that the blood of cows that have had tick fever never attains the optimum condition that it maintained preceding an attack. To our knowledge nothing has been published in regard to the condition of the blood after recovery from Texas fever nor has anything appeared in the literature concerning the history of the leukocytes during or after an attack. It has, therefore, seemed advisable to publish our results.

TECHNIC.

The blood was procured from a gash made by a spring fleam. This gash was made on the rump at a place most accessible to the operator and at the same time in a region where the blood could be made to ooze out with readiness. When the hair is clipped

^{*} Received for publication July 3, 1911.

and the site thoroughly cleaned a good specimen of blood can be obtained. With proper care a clean sample of blood can be taken from between the lips of the gash. The counts are materially affected when dirt particles, oil droplets, and debris are taken up in the pipette. Every instrument and piece of apparatus was placed in readiness so that the work could be done quickly. After the operation the wound was treated with five per cent carbolic acid and the lips held together for a few seconds. This precaution was finally given up as unnecessary since no septic conditions were produced and the scars soon disappeared.

The samples of blood were taken during milking time, between four and five o'clock in the afternoon, while the cows were in the stalls, feeding. A few animals were nervous, but the majority took little or no notice of the slight operation. The ages of the animals varied from one to 12 years. After the samples had been gathered they were taken to the laboratory and counts made. During the winter it was too dark to do this work at once, so they were held over until the following mor ing. There appears to be little or no difference between the morning and evening results, or, in other words, between results obtained one hour or 14 hours after the samples are taken. What differences do show up are within the limit of error. The accompanying table is inserted to show this fact.

Two samples from each animal in the dilution of 1:200 were taken. One was examined on return to the laboratory while the other was put away for examination in the morning. (P.M. = samples taken in the afternoon and counts made within one hour after samples were collected. A.M. = samples taken in the afternoon but held until the morning following and then examined.)

TABLE 1.

Number	P.1	м.	A.M	[.
NUMBER	Reds	Whites	Reds	Whites
	5,880,000	12,000	4,584,000	13,554
	5,120,000	15,554	5,240,000	8,888
	4,142,000	7,332	4,936,000	11,776
	4,608,000	6,000	5,440,000	7,332
Average	4,940,000	10,221	5,050,000	10,387

The above method would afford a slight chance for error. The samples were taken by two individuals. Those to be examined immediately, by one, and those for morning study, by the other. We next took samples in the afternoon and held them over until the morning following, when they were counted together with samples taken in the morning. The evening and morning samples were taken from the same individual animals. (P.M. = samples taken in the afternoon and counted in the morning. A.M. = samples taken in the morning and counted within an hour after taking. In this case the samples were all taken by one individual.)

TABLE 2.

Number	P.M	ſ.	Α.:	M.
NUMBER	Reds	Whites	Reds	Whites
82	5,744,000	11,110	7,504,000	8,888
83	5,080,000	13,776	5,544,000	16,888
84	7,152,000	9,822	6,352,000	12,000
85	6,680,000	12,000	6,752,000	10,222
93	5,792,000	8,000	6,336,000	10,666
97	5,624,000	14,776	6,344,000	20,222
99	broken	broken	6,600,000	12,444
μοο	6,488,000	5,332	6,664,000	14,776
Average	6,080,000	10,688	6,512,000	13,263

The morning and evening counts are known to vary slightly. Finally we took samples in the afternoon and within an hour from the time they were taken we began counting. After counting, the pipettes, which were about half full, were put aside and in the morning were counted again with the following results.

In this case all the samples were taken by one individual, and the morning and evening counts from the same pipette.

TABLE 3. From Same Pipette.

Number	P.M	ſ. 	A.M	ſ.
IVUMBER	Reds	Whites	Reds	Whites
	4,152.000	7,332	4,464,000	7,110
	6,488,000	8,332	6,160,000	8,000
	4,848,000	11,110	4,800,000	12,888
	4,912,000	9,110	5,360,000	10,332
	4,768,000	10,000	4,800,000	7,554
	6,488,000	8,332	4,976,000	7,554 6,888
	4,936,000	12,000	4,768,000	10,666
Average	5,227,000	9,460	5,047,000	9,062

We consider the above differences as within the limit of error. The number of erythrocytes and leukocytes per c.c. was determined. Both sets of corpuscles were counted from the same preparation. The blood was diluted 1:200 with Toisson's fluid.

In this work the reds and whites were counted in the same preparation. To facilitate the work the dilution of 1:200 was used instead of the 1:100 dilution, as the number of red corpuscles to a square was large and rendered the counts tedious when so many examinations were made. We have found that the differences are small and fall within the limit of error. This may be observed in Table 4.

TABLE 4.

	DILUTION 1:100	DILUTION 1:200
Name	No. of Leukocytes per c.mm.	No. of Leukocytes per c.mm.
Estelle	11,777	
Sweet Eyes	11,555	13,776
224	10,055	9,554
Maimie		10,666
228	12,111	13,844
Roxie	11,611	12,444
Marjorie R		17,110
Lucy R	7,206	8,444
Lady Doth	9,950	12,222
316 	14,444	bad
Cecile S	10,200	8,666
125	16,444	16,000
Wayne P	8,000	8,222
116	10,332	0,222
100	15,777	16,666
Lura K	15,888	15,332
Timola's Lassie	7,777	8,444
Average	11,837	12,040

The Thomas Zeiss hematocytometer with the Zappert Ewing ruling was used for counting both reds and whites. In estimating the number of red cells, one hundred squares were counted. This operation was repeated with another drop, and if the results varied more than 25 from that obtained with the first drop, a third preparation was made and the three results averaged. In counting the white cells the number in the whole ruled area or nine squares was counted. Two preparations were examined as described above in the counting of the red cells. Whenever necessary a third preparation was made and an average taken of all three. A differential count of the leukocytes was also made. Wright's modification of Jenner's stain was used exclusively.

The hemoglobin was determined by use of Dare's hemoglobinometer. In some cases the results were checked by another person. The results were in fairly close agreement. Results obtained in different months and different years tallied quite closely.

The following tables have been taken from Dr. Burnett's book on Clinical Examination of the Blood of Animals.

Red Corpuscles per c.mm.	Leukocytes per c.mm.	Hemoglobin per c.mm.	Specific Gravity	Size of Red Corpuscles	Authors
6,275,000				4.6-7.2 m	Bethe
6,152,000	5,486	59.7		::	Dimock and Thompson
				5.95 m	Gulliver
4,200,000				6 m	Malassez
6,000,000	9,730			5-6 m	Smith and Kilbourne
5,073,000					Stoltzing
6,503,000*	7,841				Storch
6,683,000†	9,367				Storch
5,473,000	8,241	1			Storch
7,055,000‡‡	11,614				Storch
8,523,000§	15,739				Storch

^{*}Bulls. † Oxen. ‡ Cows. ‡‡ Young cattle. § Calves.

Dimock and Thompson obtained the following numbers and percentages of the several varieties of leukocytes in the blood of normal cattle:

	Per c.mm.	Average per cent	Minimum per cent	Maximum per cent
Lymphocytes. Large mononuclears. Polymorphs Eosins. Mast cells.	2,992 86 1,786 772 31	54.2 1.4 30.5 13.15 0.59	31 0.2 13.0 3.8 0.1	76 3·3 45.8 26.5

Refik-Bey gives the normal number of leukocytes for cattle as 7,000–11,000 per c.mm., the number of mononuclears, including lymphocytes, as 4,500–6,500 per c.mm. (57–84 per cent), the number of polynuclears as 1,500–3,500 per c.mm.

The above is a summary of our present knowledge of the clinical work on the blood of cattle and is inserted here for purposes of comparison.

In our original work 15 animals were selected and placed in a feeding experiment. A clinical study of the blood was begun on October 22, 1908, and at first consisted in a count of erythrocytes only. The animals were heifers with their first calves. There were three lots of three each, making nine in all. Two months

All animals are females and grade Jerseys. The number of red corpuscles is given as million per cubic centimeter. The number of white corpuscles is given as thousand per cubic centimeter. TABLE 5.

thousand per cubic centimeter.	ibic centime	ter.								ĺ			
Number	Age in Years	Time Taken	Reds	Whites	Average Reds	Average Whites	Number	Age in Years	Time Taken	Reds	Whites	Average Reds	Average Whites
382	312	10-28-08 11- 7-08 11- 9-08 11-16-08 2- 8-09	7.516 7.296 7.360 7.536 7.696	14.0 11.4 10.2 13.2 10.2	7.480		393	31°2	11-2-08 11-11-08 11-18-08 12-8-08 1-12-09 2-9-09	5.520 5.656 7.160 5.752 4.560 6.248	14.22 14.44 14.00 12.44 15.20 13.11	5.816	13.9
383	22.00	11-4-08 11-18-08 12-8-08 1-12-09 2-9-09	7.680 5.280 6.752 6.640 5.400	2.0 % % % % % % % % % % % % % % % % % % %		23.3.3	397	m	10-22-08 11- 7-08 11- 9-08 11-16-08 12- 7-08 1-14-09 2- 8-09 3- 9-09 4- 6-09	7.472 3.397 5.384 6.312 4.688 6.480 6.080 5.480	10.0 14.0 11.0 4.66 15.4 11.7 17.5	5.782	12
384	312	10-29-08 11-10-08 11-17-08 11-23-08 1-13-08	7.697 6.800 7.296 7.600 7.160	0.4.0 4.0 8.0 14.0	7.310		398	m	10-29-08 11-10-08 11-17-08 11-23-08 2-10-09 3-10-09 4-8-09	7.440 5.888 7.256 7.280 7.216 6.944 7.904	16.22 11.60 12.00 15.20 11.76 4.66	7.132	13.00
385	3 12	10-29-08 11-10-08 11-17-08 11-23-08 12- 9-08 1-13-09 2-10-09	5.960 7.940 6.560 6.920 7.160	. 48. 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	6.552	: : : : : : : : : : : : : : : : : : :	400	Cd Lin Lis	10-22-08 11- 7-08 11- 9-08 11-16-08 12- 7-08 1-14-09 2- 8-09	7.256 6.312 6.984 7.200 7.376 7.104 6.944	12.88 20.80 12.00 8.88 16.20 14.80	7.025	14.47
399	210	11- 2-08 11-11-08 11-18-08 1-12-09 2- 9-09	6.320 7.136 7.000 6.720 7.256	20.00 12.80 11.00 13.54 12.88	6.887								
	-				_	General Average.	verage.					-	

				General	Average.					
Number	382	383	384	385	393	397	398	399	400	Average
Reds	7.480	6.350	7.310	6.552	5.816	5.782	7.132	6.887	7.025	6.704
Whites	11.80	23.26	10.56	10.06	13.90	12.29	13.00	14.04	14.47	13.71

PHILES	Percent	3.1 8.0 8.2 8.6 11.4 17.4	12.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	8. 4.7.8 8. 2. 9. 8. 7. 9 1. 5. 5. 1. 9	15.0 15.0 11.4 11.5 10.6 6.2
EOSINOPHILES	Number	275 675 1,020 1,032 1,773 824 1,285		1,148 448 472 869 672 866	747 1,533 1,040 1,152 1,337 1,213 785
Mast	Percent-	0.10000 0.0000 0.0000	4 4 60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 H H O 4 4 4 0 0	. 0 . 1 . 0 . 0 . 0
W W	Number	80 101 75 48 75 23	213 213 42 57 179 206 162	26 39 112 115 82	31 31 173 71 32 69 98
OCYTES	Percent-	92.1 71.8 72.6 80.3 68.6 74.6 76.4		61.6 80.8 68.4 76.0 76.0 76.0	75.0 77.6 61.0 75.0 75.0 85.6 85.6
LYMPHOCYTES	Number	8,178 6,060 9,034 9,636 10,669 8,537 8,615	20,852 14,114 18,114 18,155 14,423 19,775 17,182 12,082	8,624 7,540 4,483 7,422 5,120 8,877 5,439	7,999 7,932 7,152 7,582 8,063 7,507 10,842
Mononuclears	Percent-	. 8 8 8 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	. 0 % 7 % 8 2 3 7 H . 4 4 0 7 % 8 7 % 4	3.9 9.5 9.0 9.0 9.0 9.0	6. +
Monont	Number	287 722 156 684 180	 101 201 201 661 625 889 283	546 210 254 96 185 264	491 716 131 149 343 215
CLEARS	Percent- age	30.0 12.8 8.7 14.5 10.0		26.1 14.8 20.0 11.8 12.6 12.6	13.4 6.0 7.22.7 111.4 10.0 6.6
POLYNUCLEARS	Number	329 2,583 1,593 1,044 2,255 2,060 1,173	1,243 1,635 1,635 1,393 1,511 715 2,724 1,411	3,654 1,281 1,311 1,152 1,968 1,455 2,496	1,422 675 2,623 1,152 1,067 2,380 836
PERCENTAGE	ог Немосковім	82 76 100 94 93 95	90 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	88 · 80 83 85 83	77 72 72 72 88 88 88 88
	Whites	8.88 8.44 12.44 12.00 15.55 11.44	24.55 22.66 17.77 21.11 18.88 22.33 22.88 15.33	14.00 9.33 6.55 9.76 8.00 II.54 9.11	10.66 10.22 12.11 11.55 10.11 16.66 11.44 12.66
	Reds	7.152 7.280 6.552 7.224 7.008 6.320 6.736	4.576 5.280 3.456 4.392 4.792 5.480 5.000	7.288 6.752 5.784 5.520 5.184 5.584 6.112	5.408 5.816 6.000 5.856 6.224 5.632 5.680 5.048
	DATE	4- 6-09 8- 5-09 3- 8-10 5- 4-10 6-24-10 11-14-10	3-9-09 8-7-09 8-5-09 3-9-10 3-4-10 11-14-10	3-10-09 4-8-09 8-8-09 3-10-10 5-6-10 6-24-10 3-4-11	3-10-09 4- 8-09 8- 4-09 3-10-10 5- 6-10 6-24-10 11-14-10 3- 4-11
	NUMBER	382	383	384	385

CABLE 6.

7 : 0 . 2 . 4 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5	3.77 3.88 7.2 4.1 7.5	7.3 3.3 1.7	14.2 8.4 5.7 13.0	11.8 10.8 10.4 13.7
1,024 964 1,184 728 368 320	1,095 708 1,440 387 1,013	200 271 782 162	2,650 802 785 1,820 369	2,858 2,016 915 1,456 625 3,042
	0.1 · · · 0 2 · · · 4	0.2 1.1 4.6		2 · 0 0 0 H ·
120 120 196 196	71 202 	33 107	93 14 14 31	454 755 756 856 1866
81.6 81.8 81.8 81.1 88.2 91.0	75.7 80.8 86.4 86.2 80.8	81.0 79.3 81.5 84.1	50.0 74.6 85.4 74.4 74.4	98.1 68.2 74.0 79.2 76.2 59.0
11,605 12,505 13,088 11,354 14,112 7,280	10,766 16,393 17,280 23,820 14,252	13,320 6,520 14,267 8,035	9,333 7,127 11,764 10,416 8,791	18,917 12,730 8,468 11,088 12,869 9,702
8 : 4 H 9 : 9 H 9 : 5 S 8 S 5 : 0	2.03.5 0.04.0 0.06.0	2.2	10.2 1.9 1.9	0. : 84 4 4 5
455 321 321 250 80 80	497 749 348 442 356	99 126 284 210	1903 181 344 	218 526 280 608
8 : 0 7 0 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	12.3 10.8 10.8 11.0	11.0 13.2 11.8	25.0 14.3 6.1 12.8	6.6 115.2 111.0 8.4 17.7
113 1,493 1,010 1,376 1,408 296	1,749 2,184 1,160 2,984 1,955	1,809 1,085 2,060 1,127	1,566 1,366 840 1,792 1,161	1,598 2,837 1,259 1,176 1,216 3,075
28 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	73 88 88	88 88 88 88	983 29 888	88888
14.22 10.66 15.55 14.22 16.00 8.00	14.22 20.22 20.00 27.66 17.77	16.44 8.22 17.77 9.55	18.66 12.00 9.55 13.77 14.00 19.11	24.22 17.55 18.66 11.44 14.00 16.88
6.176 4.336 5.760 5.376 5.376 5.816	3.792 4.960 4.816 5.740 6.496	7.192 6.712 7.720 7.456	7.080 6.296 6.856 6.366 6.016 5.992 5.728	6.624 7.400 6.516 5.928 3.776 6.992 5.912
3-10-09 4-7-09 8-4-09 3-9-10 11-14-10 3-4-11	8- 4-09 3- 9-10 5- 4-10 6-24-10 3- 4-11	8- 4-09 3-11-10 6-24-10 3- 4-11	3-9-09 8-8-09 3-9-10 5-4-10 3-4-11	3-9-09 8-5-09 8-5-09 3-28-10 5-4-10 3-4-11
393	307	308	399	

later six yearling heifers were introduced into the experiment. This completed the total number of animals to be examined. Table 5 gives the results for each individual for five or six different examinations extending over a period of four months. A differential count was also made and will be found in Table 7.

Table 6 includes further observations on the same animals and, in addition, shows the percentages of hemoglobin, and the number and percentage of the five different varieties of leukocytes. The observations over a period extending from March, 1909, to March, 1911.

In the following tables we have the observations made on the six calves introduced in the experiment two months after it was started. The period of experimentation extended from January 27, 1909 to March 11, 1911.

HILES

| PERCENTAGE | PERCENTAG

	Newson			III	216	5 60-165		rad	10		·	26.1	7 48-160	201	E15				161/	Н 68-169	21	101	_		ecy.		47-167			The second secon
	AGE IN	YEARS	,	_	_	~ +1	:) 6,1		_	,		_		→ 2			_	_			~~~ •ëi			-
	-	DATE	1-27-09	2-23-00	3-27-09	4-29-09	3-17-10	5-17-10	6-12-10 3-11-11		1-28-09	2-12-00	2-24-09	4-28-09	8-6-00	1-27-00	2-11-0	2-23-00	3-22-00	000	3-17-10	5- 7-10	6-12-10	3-11-11	1-28-09	2-12-00	3-27-09	4-29-00	5 [-
	,	KEDS							5.288					8.032		6.702		6.088		2.6.7				5.440	8.00	201.7	7.008	7.960	e militar	-
		WHITES	7.10	8 8 8 8	99.9	14.66	12.00	18.44	10.00		12.88	00.01	20.00	11.11	6.22	7.40	11.55	11.33	11.11	11.11	22.22	15.11	18.00 0.00	10.88	8.8	0.77	. 8	12.8	מוכח הז כו	
	Росуи	Number	:	1,733		1,129	: :	5,257	2,032	, , ,	006	:		422	:	:	1,300	:	844	6,433		1,723	2,322	2.837	8.8			oh forror	רש ונאנו.	
T	Polynuclears	Number Percentage	:	20.0 28.1	:	7.7	: :	28.5	12.7		7.5	:	25.2	3.8	:	:	15.0	:::	2.0	: :	:	11.4	12.9	8.01						
TABLE 7.	Monon	Number	:	1,151	:	323	: :	240	144	: ;	412	:	1.078	:	:	:	234	: 0	000	: :		363	234	203						
	MONONUCLEARS	Percentage Number	:	13.4 21.6	:	2.2	: :	1.3	3.0 I.I	,	3.2	:	. 0.4	1	:	:	2.7	: 1	7.3	: :	:	4.4	1.3	1.2						
	Lymp	Number		3,798	:	12,847		12,265	12,088		11,277	:	14.060	10,555	:	:	7,028		9,455	550,0		11,438	14,076	12,834		Mo D	200			
	LYMPHOCYTES	Percentage	:.	00.84 0.8.9		87.6	: :	99.3	79.3) i	87.5	:	089	95.0	:	:	81.1		05.I	? :	:	75.7	78.2	0.07		544004	INO INECORDS			
	2	Number	:	. 52	:`	176	: :	92	39	: :	39	:	154	H	:	:	:	:	. y	S :	:	991	80	s S						
	Masr	Number Percentage		0	:	1.2	: :	0.5	0.3	, ,	e. 0	:	0	0.1	:	:	:	:	: :	· ·	:	1.1	0.5	4.0	- productions					
	EOSINOPE	Number Pe	 :	: :	 : :	101	: :	216	730		39	:	801	22	:	:	35	:	:	† · · · · ·	:	1,390	1,206	940						
li	ä	P.																							1					ĺ

ABLE 7.—Continued.

Percentage Number Percentage Number Percentage Number 10.4 43.2 11.6 25.0 13.4 43.7 19.0 43.1 13.8 23.3 12.4 400	WHILES
10.0 6 73.2 11.0 6 73.2 11.0 6 73.2 11.0 6 73.2 11.0 6 73.2 11.0 6 73.2 11.0 6 73.2 11.0 6 73.2 11.0 6 73.2 11.0 6 73.2 11.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7	Nun
10.0 10.0	6.40
11.00 11.00	
30.00 11.00 13.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00	•
13.0 10.0	-
11.6 13.4 13.4 13.8 13.8 13.8 13.8 13.8 13.8	
10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	_
13.4 19.0 431 13.8 233 13.8 233	_
19.0	_
13.8	
13.8 233 13.4 400	
13.8 233 	-
I I I I I I I I I I I I I I I I I I I	
I3.8 233 I2.4 400	
12.4 400	9.33 1,2
12.4 400	_
12.4 400	
- : : : : : : : : : : : : : : : : : : :	9.33
	_

TABLE 8.
GENERAL AVERAGES OF REDS, WHITES, DIFFERENTIAL COUNTS OF WHITES AND HEMOGLOBIN.

						(000							
	É		PERCENTAGE	Polyn	OLYNUCLEARS	Monont	MONOUCLEARS	LYMPHOCYTES	CYTES	MAST	T.	Eosinophiles	нігез
NOMBER	KEDS	WHITES	HEMOGLOBIN	Number	Percentage	Number	Percentage	Number	Percentage	Number	Percentage	Number	Percentage
382	908.9	11.43	8	1,612	14.1	377	3.3	8,735	76.4	69	9.0	938	8.2
383	4.720	20.64	83	1,486	7.2	536	2.6	17,172	83.2	123	9.0	1,382	6.7
384	6.032	9.75	81	1,912	9.61	244	2.5	108'9	9.69	28	8. 0	2,077	12.2
385	5.708	11.92	1 8	1,550	13.0	357	3.0	8,791	73.7	11	9.0	1,216	10.2
303	5.360	12.33	85	974	7.9	210	1.7	10,397	84.3	IOI	0.0	654	5.3
397	5.180	10.01	85	2,018	10.1	430	2.2	16,360	81.9	120	9.0	010,1	5.1
398	7.270	12.99	8	1,547	6.11	22I	1.7	10,580	81.4	28	9.0	533	4.1
399	6.419	13.95	92	1,925	13.8	544	3.0	13,044	93.5	2	0.5	1,242	8.0
400	6.164	17.03	98	1,907	11.2	404	2.0	12,330	72.4	136	∞. ∞	2,077	12.2
				_							_		

TABLE o.

General average of six calves sampled between the dates of January 27, 1909, and March 11, 1911.

Reds									. 6,7	42,000
Whites										11.632

DIFFERENTIAL COUNT OF LEUKOCYTES OF THE ABOVE SIX CALVES.

	Per c.c.	Average per cent	Minimum per cent	Maximum per cent	
Lymphocytes. Mononuclears. Polynuclears Eosins Mast	9,740 452 1,873 524 92	77.8 3.8 14.6 3.9 0.6	49.8 0.6 3.8 0.1	95.0 21.6 30.9 10.5	Personal observations

Before the work represented in the above tables was completed it was seen that the results in some respects were different from those obtained by other workers in this line. It seemed necessary, therefore, to determine if possible the cause of this difference, so a number of animals in the general herd living under supposedly normal conditions were tested. In Table 10 we have the results obtained from 41 individual cattle.

Ħ
H
띪
¥
H

;	I		ACE IN			PER- CENTAGE	Polynu	POLYNUCLEARS	Mononuclears	CLEARS	Lумен	LYMPHOCYTES	W,	Mast	EOSINOPHILES	PHILES
NAME	Breed	DATE	YEARS	Reds	WHITES	OF HEMO- GLOBIN	Number	Per- centage	Number	Per- centage	Number	Per- centage	Number	Per- centage	Number	Per- centage
Boyd	P. B. J	3-13-10	2.0	6,440,000	11,776	70	:	<u>.</u>	:	:	:	:	:	:		:
Fair Tabby	P. B. I.	3-31-10 6- 2-10	2 2	5,500,000	14,444	g :	:	. 9	:		:		:	:	:	: o
Bettie's Hef	P. B. R. P.	6-15-09	9	7,816,000	26,222	: :	1,075	1.4	: :	; :	24,622	93.0	184	. 4	288	0 H
171		1-1 2-0 0	4	6,464,000	12,444	80	983	6.7	:	:	10,01	85.3	25	0.5	513	4.2
K. Sanders	χ. υ.υ	60-01-0	64	5,980,000	18,444	င်္ဂ	738	0.4	:	:	14,117	0.92	221	1.2	3,320	0.81
Mand.	P.B.R.P	0-101-0	- ·	5,404,000	11,554	8 8	2,022	0.8 0.6	:	:	8,514	73.7	22	0 0	1,433	11.4
230		3-23-10	-∞	6,208,000	8,444	94	1,266	15.0	228	2.7	6.510	27.77	1°	?	20.5	0 6
92	ن آ	3-23-10	3	5,200,000	16,888	16	2,702	16.0	540	3.2	11,720	69.4	34	. 0	2,027	12.0
330	ن ئ	3-23-10	0	6.720,000	10,888	86	1,753	1.91	217	5.0	8,493	78.0	:	:`	403	3.7
84		3-23-10	7 6	2,032,000	22,21	ŝ	000	0.0	4.5	2.0	10,000	82.4	73	0.0	1,124	9.5
364		3-31-10	o ~	5,400,000	011.01	3 8	2,032	11.6	573	5.0	14.523	4.00	101	o ⊢ 4· c	3,240	0.0
Turner	P. B. R. P.	6-15-09	· vo	6,560,000	14,444	800	1,632	11.3	2 :		12,306	85.2	, :	; ;	404	000
Butts 85	 	6-12-00	v	5,880,000	16,000	87	544	3.4	:	:	14,560	91.0	192	1.2	576	3.6
01		0-14-00	8	0,000,000	27,110	8.	2,000	7.4	:	:	23,803	87.8	81	0.3	1,166	4.3
20		0-14-09	ე ∝	5,912,000	13,110	10 %	2,910	22.2	:	:	8,535	05.I	240	6.1	1,390	0.01
30	٠	0-11-0	000	6 202,000	11 222		5 2 2		:	:	3,012	6.5.9	45	. 0	391	0 1
III		6-7-00		5.848,000	10,222	% 18	050	Ç. 6	: :	: :	% 7,0,7 7,1	2 0	34	0 0	1,213	10.7
78	G. J	60-7-0	8	6,888,000	14,000	8	2,576	18.4	:		10,388	74.2	80	0 0	2882	
		7- 5-10	5	4,984,000	8,000	20	832	10.4	208	2.6	6,296	78.7	32	0.4	624	.8.
Evelene	F. B. J.	7- 5-10	4	5,576,000	6,632	85	019	9.5	506	3.1	2,306	% %	9	9.0	491	7.4
Lura K		7- 5-10	×0 =	5,200,000	11,000	2 5	1,248	10.7	455	٠ 6 9	8,400	72.0	23	0.5	000	8 4:
Timola's Lassie.	P.B.	7- 5-10	1-0	5,792,000	7.666	2 2	2,7,7	13.7	252	4 4 200	2,52,7	1.8.7	:	:	942	, o
225	P. B. J	6- 2-10	7	6,248,000	9,544	65	1,116	11.7	67	0	7,511	78.7	. 50	. ~	773	000
99	ا	6- 4-00	9	5,616,000	12,666	\$2	924	7.3	190	1.5	10,348	81.7	:	:	1,165	9.5
272	عاد	0- 1-00	~ ;	0,050,000	7,770	8 4 7	544	0.6	:	:	5,913	27.6	69	6.0	1,111	14.3
10	: : : : :	4-21-09	2 6	5.400,000	0,554	03	2,395	28.0	:	:	5,500	02.0	85	0.1	718	×.
202		4-13-00	ე ∞	6,076,000	4444	98	1.278	1.61	:	:	3,210	74.9	: «	. v	222	4 C
011	G.	4-12-00	7	5,320,000	11,110	: :	110	200	533	8.4	0.243	83.2	44	0 0	377	4.6
8	G. J.	4-12-09	7	4,504,000	6,732	28	1,252	9.81		. :	4,712	0.07	6	4.1	673	0.01
104	ع ا	6- 4-00	~	6,302,000	15,332	88	1,594	10.4	:	:	12,909	84.2	30	0.2	720	4.7
Bettie	P B P	0- 2-10	0 4	5,570,000	2,000	0 %	804	7.5	288	40	10,152	84.0	:	:	9 ;	. S.
174	_	3-23-10	200	7.608.000	7.666	9	1,303	4.4.4	c ·	9	3,000	5 t	:	:	253	2 + 1
Roxie L	P. B. J	6- 2-10	w	5,592,000	866,11	89	2,052	17.1	131	1.1	8,326	60.4	35		1.403	11.7
Maimie L	P. B. J	6- 2-10	01	000'000'9	011,11	0,	955	8.5	133	1.2	8,699	78.3	3 :	:	1,344	12.1
Average of 41 cases	cases		5.7	6,053,600	12,361	83	:	11.7	:	2.5		6.77	:	9.0	:	7.8
Average of 15	cases	:	:	6,338,000	14,080	85	:	12.0	:	2.6	:	9.62	:	0.7	:	9.7
					-	-		_	- <u> </u>	-	_	_			_	

Note.-P. B. J. = Pure Bred Jersey; G. J. = Grade Jersey; P. B. R. P. = Pure Bred Red Poll; G. R. P. = Grade Red Poll.

COMPARISON OF RESULTS.

General average of nine cows sampled between the dates of October 22, 1908, and April 8, 1909. These were on a feeding experiment.

Reds......6,704,000 Whites..........13,712

General average of nine cows sampled between the dates of March 9, 1909, and March 4, 1911. These were on a feeding experiment.

Average of the above results.

Average of 41 cows in the general herd. These were not in any experiment.

Red Corpuscles	Leukocytes	Hemoglobin	Authors
per c.c.	per c.c.	per cent	
6,152,000 6,000,000 5,473,000 6,053,600	5,486 9,730 8,241 12,361	59·7 ···· 83·7	Dimock and Thompson Smith and Kilbourne Storch Personal observations (4r cases)

DIFFERENTIAL COUNT OF LEUKOCYTES.

	Per c.c.	Average per cent	Minimum per cent	Maximum per cent	
Lymphocytes Large mononuclears Polymorphonuclears Eosins Mast		54.2 21.4 30.5 13.15 0.59	31.0 20.2 13.0 3.8 0.1	76.0 3.3 45.8 26.5 1.2	Dimock and Thompson

RESULTS OF OBSERVATION ON 41 COWS IN GENERAL HERD.

	Per c.c.	Average per cent	Minimum per cent	Maximum per cent	
Lymphocytes Large mononuclears Polymorphonuclears Eosins Mast	9,568 327 1,820 1,005 80	79.9 2.5 11.7 7.8 0.7	65.0 0.7 3.4 1.1 0.2	93.9 4.9 28.0 18.0	Personal observations

RESULTS OF OBSERVATION ON NINE IN A FEEDING EXPERIMENT.

963 98

Eosins

Minimum Maximum Average Per c.c. per cent per cent per cent. 50.0

12,283 368 1,620 Lymphocytes...... Large mononuclears..... 2.6 10.2 0.4 7.6 30.6 Personal observations Polymorphonuclears 3.2

I.4

A glance at the preceding tables will reveal some differences when compared with the already accepted data of other observers. At first the records were thought to be faulty though the methods used were the same then as now. The work was done then with as great care as at the present time. The work was repeated and allowed to extend over long periods. The results were, in general, the same as at first. No reason could be given to account for the The idea, however, that the Texas fever parasite must exert some influence persistently suggested itself. In order to see if there was any foundation for this belief five yearling heifers which had just been imported from Pennsylvania were examined and a normal established. Afterward these same animals were inoculated with Texas fever organisms. One died within the prescribed 10 days and within 15 minutes of the time of death the blood was examined. The other animals all survived the treatment and after three later attacks the blood was sampled at intervals as shown in the table below. No definite conclusions should rightly be made, since the number of cases are few, but the indications strengthen the belief that the differences between our observations and those of other workers are traceable to the Texas fever protozoon.

The following tables include further observations on the same animals, and, in addition, show the percentage of hemoglobin and the number and percentage of the five different varieties of leukocytes.

The results of the tables can be more strikingly arranged in the following manner: The animals had recovered from three attacks and had been passed on as in good condition a month before the clinical examination represented in the second column.

TABLE 11.
Normal (before Treatment with Texas Fever Organisms).

				Per-	POLYNUCLEARS	CLEARS	MONONUCLEARS	CLEARS	LYMPHOCYTES	CYTES	W/W	Mast	Eosinophiles	HILES
NAME OF ANIMAL	DATE	Reds	WHITES	CENTAGE OF HEMO- GLOBIN	Number	Number Percent-	Number	Number Percentage		Number Percent-		Number Percentage	Number	Percent-
Daisy Megs of Hyland Yearling Lady Monkland Heifer No. 30	7-13-10 7-13-10 7-13-10 7-13-10 7-13-10	7,424,000 6,992,000 7,656,000 5,208,000 7,872,000	9,440 10,666 6,222 10,666 7,766	98 96 95 100	1,133 1,920 759 2,027 1,328	12.0 18.0 12.2 19.0	283 107 75 245 148	3.00 1.00 1.00 1.00	7,779 8,127 5,251 8,202 5,957	82.4 76.2 84.4 76.9	38	4 0	264 405 100 181 318	2.8 3.8 1.6 1.7
Average		7,030,000	8,950	97.2	1,433	15.6	171	1.88	7,163	79.3	37	0.5	253	2.8
The following counts were taken after three attacks, Heifer No. 30 having died after the first attack	e taken afte	r three attac	ks, Heifer	No. 30 havi	ng died af	ter the fir	st attack.							
Daisy Megs of Hyland Yearling Lady Monkland	11-18-10 11-18-10 11-18-10	5,056,000 5,872,000 4,960,000 5,040,000	19,554 43,332 14,444 20,666	88 95 84 95	4,302 2,947 303 1,994	22.0 6.8 2.1	1,036 1,430 419 847	5.3 3.3 4.1	14,079 37,916 13,606 15,520	72.0 87.5 94.2 75.1	: 43	. 0 . 0 . 3 8	39 823 101 1,384	0.1 0.7 9.6
Average		5,233,000	24,499	8	2,384	10.2	383	3.9	20,280	82.2	52	0.2	586	3.1
Daisy Megs of Hyland Yearling Lady Monkland	12- 1-10 12- 1-10 12- 1-10 12- 1-10	3,968,000 5,584,000 5,288,000 6,408,000	18,444 30,888 16,332 25,554	88 84 84 89	1,420 1,820 1,633 4,370	7.7 5.9 10.0 17.1	1,107 710 294 690	6.0 2.3 1.8 2.7	14,811 26,934 14,258 20,009	80.3 87.2 87.3 78.3	::::	: : : :	1,070 1,390 131 434	8.3.8 1.7
Average		5,312,000	22,804	98	2,310	10.2	700	3.2	19,003	83.2	:	:	756	3.2
Daisy Megs of Hyland Yearling Lady Monkland	1-31-11 1-31-11 1-31-11	7,040,000 7,840,000 7,488,000 6,432,000	32,000 28,888 14,888 16,444	88 94 4 83 83 83 83 83 83 83 83 83 83 83 83 83	4,608 4,333 2,680 2,154	14.4 15.0 18.0 13.1	433 462 181		25,120 22,677 11,464 13,711	78.5 78.5 77.0	87		2,272 1,329 253 1,332	7.1 4.6 1.7 8.1
Average		7.200,000	23,055	86.5	3,444	15.1	358	1.9	18,243	77.8	87	0.3	1,296	5.3
Nore.—Heifer No. 30 died on the 22d of July. Is minutes afterward an exami more reliable and therefore, preferable, but unfortunately we were informed too late	ed on the 220 referable, bu	d of July.	r5 minutes; ely we were	15 minutes afterward an examination was made with the following results. tely we were informed too late.	examinat oo late.	ion was m	ade with t	he followi	ng results.		A sample just before death would have been	efore death	would h	tve been
Heifer No. 30 Daisy Megs of Hyland Yearling Lady Monkland	7-22-IO 4-I4-II 4-I4-II 4-I4-II 4-I4-II	2,192,000 7,440,000 5,704,000 6,672,000 6,766,000	31,332 31,554 15,110 19,554 20,666	32 80 80 80 80 80	4,102 2,418 3,050 2,144	41.4 13.0 16.0 15.6 10.4	726 212 704 434	2.9 2.3 3.6 1.4	23.445 11,060 13,766 15,706	53.4 74.3 74.2 70.4 76.0	95 		3,092 1,420 2,034 2,315	9.8 9.4 10.4 11.2
Average		6,644,000	21,721	88.5	2,930	14.0	519	2.3	15,994	73.4	89	0.25	2,215	10.2

second examination was made on the 1st of December, the third on the 31st of January, and the last on the 14th of April.

We note that there was a decrease in reds still but that the number was gradually approaching the normal. The percentage of hemoglobin also decreased, while the number of leukocytes increased beyond the normal and was continuing to increase.

TABLE 12.

OBSERVATIONS OF FIVE HEIFERS.

General Results.

	Before		AFTER T	REATMENT	
,	TREATMENT	Date 11–18–10	Date 12-1-10	Date 1-3-11	Date 4-14-11
Reds	7,030,000 8,950 97	5,233,000 24,444 90	5,312,000 22,804 86	7,200,000 23,005 86.5	6,644,000 21,721 88.5

Differential Count of Whites.

	Number	Per cent	Number	Per cent	Number	Per cent	Number	Per cent	Number	Per cent
Polynuclears	1.433 171 7,163 37 253	15.6 1.88 79.3 .5 2.8	383	10.2 3.9 82.2 .2 3.1	2,310 700 19,003 	3.2 83.2 3.2	3,444 858 18,243 87 1,296	15.0 1.9 77.8 .3 5.3	2,930 519 15,994 68 2,215	14.0 2.3 73.4 .2 10.2

A glance at the table will reveal an increase in the percentage of lymphocytes, eosinophiles, and mononuclears and a decrease in the percentage of polynuclears and mast cells.

CONCLUSIONS.

Our original observations on 15 animals in the dairy herd gave us results which, when compared with those of other observers, showed some marked differences. The most apparent differences are noted as follows: (1) The number of whites is appreciably larger. (2) The number and percentage of polynuclears are smaller. (3) The number and percentage of lymphocytes are larger. Other differences, though not so apparent and possibly of very little value, are noted as follows: (1) The number and percentage of mast cells have decreased, while the number and percentage of eosino-philes and mononuclears have increased.

These same differences were observed when the above 15 animals were further examined at various times and over a period of two years. When the results of the original 15 animals were compared with the results of a set of 15 animals from the general herd, the same differences were also noted. Furthermore, we observed similar differences when we examined 41 cows in the general herd.

To account for these differences was our next object, for we did not consider that we had established a new normal. that tick fever might have such an effect on the blood of the animal that had passed through one or more attacks persistently suggested itself; so when five Ayrshire heifers were imported from Pennsylvania, observations were immediately made to establish a normal. After these observations the animals were put through a system of immunization to tick fever. A month after they had passed through three attacks and were considered in good condition, the blood was examined at four different times. These results were found to be similar to our other results. The number of cases (four) is small, and though too small to draw definite conclusions from, we believe that we have sufficient indication to justify our position and hope on further observation to establish this fact without a doubt.

One animal died and observations 15 minutes after death showed an increase of whites. We have found this to be true in three other cases. It is hoped that time and material will be available for a more thorough study of the leukocytes in the last stages of the disease.