

INFORMATION AND COMMUNICATION UNIVERSITY ICE0112: HIGHER MATHEMATICS 1: ASSIGNMENT 1

Lecturer's Name and Contact Details: Henry Sinkala, Mobile: 0978316789

Instructions:

Answer ALL Questions

- 1- Use the Assignment cover page provided below
- 2- You are expected to type your assignment (or handwritten and save as **ONE** pdf file)
- 3-Answer all questions and Label all your Solutions according to the Question Number
- 4- Use Times New Roman font type, font size 12 and 1.5-line spacing (if typed)
- 5 Deadline: The Assignment is due on 20th May 2023.
- 6- Assignment should be uploaded on the Portal by due date. **

N.B: Save the Assignment as: surname_firstname _ student #_module name_Assignment #

E.g: Hamududu John_202112345_Higher Mathematics1_Assignment 1

Total Marks: 15 Marks

STUDENTS' COVER PAGE

INFORMATION AND COMMUNICATION UNIVERSITY

School:
Degree Programme:
Course name and Code
Assignment No.(1)
Student's Surname:
Student's First name:
Student number:
Mode of Study:(FT/DL)(your mode of study)
E-mail Address:your email
Phone Number:your number
Lecturer's name:
Due Date: 20 th May 2023

ANSWER ALL QUESTIONS

QUESTION 1

a) Rationalize the denominators

$$\frac{5+\sqrt{3}}{5-\sqrt{3}}$$

[5 Marks]

b)

The quadratic equation $2x^2 - 7x - 5 = 0$ has roots α and β . Find:

- (a) $\alpha + \beta$
- (b) $\alpha\beta$
- (c) $\alpha^2 + \beta^2$
- (d) $\frac{1}{\alpha} + \frac{1}{\beta}$

[10 Marks]

- b) Evaluate the followings: show your working.
- i) lg10000
- ii) log₃ (1/9)
- iii) $\log_5 3 + \log_5 50 \log_5 4$ iv) $\log_2 20 \log_2 5$

[10 Marks]

QUESTION 2

- a) Given that θ is acute and that $\tan \emptyset = 4/3$, Find values of $\sin \emptyset$, $\cos \emptyset$, $\csc \emptyset$ $\sec \emptyset$, $\cot \emptyset$ leave your answers in surd form. [6 Marks]
- b) Graph the following quadratic equation $y = -x^2 + 2X + 3$; showing all your working. [9 Marks]

Consider the subsets A = [-3, 7], B = (-2, 5) and C = (-6, 10] of the universal set (-7, 10]. Find each of the following sets and display them on the number line.

- i) (A ∩ B)
- ii) C'
- iii) B' U A iv) (A U C)'

[10 Marks]

QUESTION 3

a) Convert 5∠60° into a + j b form, correct to 4 significant figures.

[5 Marks]

b) Determine, in polar form: 6∠40° × 2∠50°

[5 Marks]

c) Given $Z_1=3+j5$ and $Z_2=4-j2$ determine (i) Z_1+Z_2 , (ii) Z_1-Z_2 , (iii) Z_2-Z_1 and show the results on an Argand diagram.

[7 Marks]

d) Determine the modulus and argument of the complex number Z = -8 + j6, and express Z in polar form. [8 Marks]

QUESTION 4

- a) Find the remainder when $6 x^3 + 7x^2 15x + 4$ is divided by x-1 [5 Marks]
- b) Given that $\mathbf{p} = 2\mathbf{i} + 0.5\mathbf{j} 3\mathbf{k}$, $\mathbf{q} = -\mathbf{i} + \mathbf{j} + 4\mathbf{k}$ and $\mathbf{r} = 6\mathbf{j} 5\mathbf{k}$, evaluate and simplify the following vectors in i, j, k form: i) $\mathbf{p} + \mathbf{r}$ ii) $2\mathbf{q} + 3\mathbf{r}$ iii) $2\mathbf{p} + \mathbf{q} + \mathbf{r}$ [10 Marks]
- c) Given that $f(x) = x^2-3$, g(x) = 3x+4 find:
- i) $(f \circ g(x))$ ii) $(g \circ f(x))$ iii) $(f \circ f(x))$ iv) confirm that $f^{-1}(f(x))=x$ [10 Marks]

QUESTION 5

- a) Using the synthetic division find the quotient and the remainder when x^3-2x^2+9 is divided by x+2 [5 Marks]
- b)
 If $A = \begin{pmatrix} 2 & 3 \\ 1 & -4 \end{pmatrix}$ and $B = \begin{pmatrix} -5 & 2 \\ -3 & 4 \end{pmatrix}$ Find i) B x A ii) 2A 3B [10 Marks]
- c) Prove the following identities

i)
$$\frac{1}{\sec A + 1} + \frac{1}{\sec A - 1} = 2 \cos ecA \cot A$$

ii)
$$(\sin x + \cos x)^2 = 1 + \sin 2x$$
 [10 Marks]