CSCE 689-609 Special Topics in Programming Large Language Models (LLMs)

Jeff Huang jeff@cse.tamu.edu o2lab.github.io

Course information

https://classroom.google.com (using your tamu account)

Class code: fjzt7kf

Grading policy

- <i>L</i>	ecture Participation.	10%
- <i>L</i>	ecture Participation.	10%

The grading scale will be:

•
$$A = 90 - 100$$

$$\bullet$$
 B = 80 - 90

$$\bullet$$
 C = 70 - 80

•
$$D = 60 - 70$$

$$\bullet \quad F = < 60$$

Homeworks

HW0 (1pt):

- Evaluate top-3 leading frontier LLMs with your own tests
 - Prepare 10 super difficult questions

HW1 (4pt):

- Write a Python program that uses LLMs to find and patch security vulnerabilities
 - In a Mock Challenge Project from AlxCC

HW2 (5pt):

Reproduce GPT-2

HW3 (10pt):

- Write a personal AI assistant that can
 - Write and send emails on your behalf
 - Schedule meetings for you
 - Search the Internet
 - Read multiple PDF files and answer questions
 - Ask you questions, e.g., for your private information or when uncertain

Course project

Scope:

- build a new application based on LLMs
- improve an existing LLM-based technique
- apply an existing technique to a new domain
- other relevant ideas
- Project proposals:
 - o propose your own project or choose one of the selected projects
 - o submit a proposal and have it approved by me
- Required submissions:
 - All code, tests, documents in github
 - A final project report

Selected projects

- Train and evaluate a variant of GPT-2 (based on a modified transformer)
- Local LLM-based tools
 - Develop a sensitive data cleaner
 - Develop a private data blocker in browser
 - Develop a real-time audio transcription in browser
 - Develop a form auto-fill in browser
 - Develop a video summarizer for Youtube

Cybersecurity tools

Develop a LLM-based tool to detect and patch bugs in Linux kernel

- LLM inference performance

- Optimize a local LLM using existing or new quantization techniques
- Speculative decoding for whisper models
- Inference Llama 3.1 in one file of pure C (based on karpathy/llama2.c)

Selected papers

- Attention is All You Need. 2017. https://arxiv.org/pdf/1706.03762
- Scaling Laws for Neural Language Models. 2020. https://arxiv.org/pdf/2001.08361
- Chain of Thought: 2022. https://arxiv.org/abs/2201.11903
- ReAct: https://arxiv.org/abs/2210.03629
- Speculative Decoding. 2022. https://arxiv.org/abs/2211.17192
- AWQ: Activation-aware Weight Quantization. 2023. https://arxiv.org/pdf/2306.00978
- SmoothQuant 2023. https://arxiv.org/abs/2211.10438
- Flash Attention. 2023. https://arxiv.org/abs/2307.08691
- Paged Attention. 2023. https://arxiv.org/pdf/2309.06180
- **The llama 3 herd of models**. 2024. https://ai.meta.com/research/publications/the-llama-3-herd-of-models/

More: https://github.com/Hannibal046/Awesome-LLM

Important Notes

- Zero tolerance: cheating & plagiarism
- Late penalty: 2% per hour

- Materials:
 - Transformer Explainer https://poloclub.github.io/transformer-explainer/
 - Illustrated Transformer: https://jalammar.github.io/illustrated-transformer/
 - Chatbot Area: https://arena.lmsys.org/
 - -
 - LiteLLM https://docs.litellm.ai/docs/
- Due
 - HW0