X. Hausaufgabe im Modul "Berechenbarkeit & Komplexität"

Gruppe XYZ

Aufgabe 1: Turing-Maschinen Analysieren

(a)

z_0abc	\vdash^1_M
az_0bc	\vdash^1_M
abz_1c	\vdash^1_M
$abcz_2\square$	\vdash^1_M
abz_3c	\vdash^1_M
az_3bc	\vdash^1_M
z_3abc	\vdash^1_M
$z_3\Box bbc$	\vdash^1_M
z_4bbc	

(b) Wenn M in z_3 kommt, werden danach alle 'a's mit 'b's ersetzt (von rechts nach links) bis alle buchstaben durgegangen werden, worauf M im zustand z_4 kommt. Dann wird der Buchstabe rechts vom Lesekopf entweder ein 'b' oder ein 'c' sein.

Aus δ folgt offensichtlich: M hält falls $w \in \{a^nb^mc^k \mid n, m, k \in \mathbb{N}\}$. Jedes wort was sich nicht and der Reihenfolge hält, terminiert ohne den Endzustand zu erreichen

(c) Wir betrachten das wort "aaaaaaaaa", also n=9. Die Konfigurationsfolge lautet:

$z_0 aaaaaaaaa$	\vdash_M^9
$aaaaaaaaaz_0$	\vdash^1_M
$aaaaaaaaz_3a$	\vdash^9_M
$z_3\Box bbbbbbbbb$	\vdash^1_M
$z_4bbbbbbbbb$	

Da $9+1+9+1=20>18.5=1, 5\cdot 9+5$ gilt die gegebene Formel nicht immer. Die richtige formel Lautet: 2n+2

${\bf Aufgabe~2:}\quad {\bf Turing-Maschinen~Konstruieren}$