1. Text Embedding Models (Open Source)

Model	Туре	Notes
Instructor XL	Embedding	Text + task-aware context
E5 (text2vec)	Embedding	Good multilingual, very fast
GTE-base / large	Embedding	Compact, multilingual, good recall
BGE / BAAI	Embedding	Optimized for semantic search

2. Image Models (Vision Encoders)

Model	Base	Notes
CLIP (OpenAl)	Vision + text	Gold standard for image-text embeddings
OpenCLIP	CLIP variant	Trained on LAION datasets, open weights

BLIP / BLIP-2	Vision + text	Captioning + QA, great for scanned docs
LLaVA	Vicuna + CLIP	Visual chat is good for document screenshots

Use these to extract image features or caption images to convert into searchable text.

3. Audio & Speech Models

Model	Function	Notes
Whisper (OpenAl)	Speech-to-text	Best open-source STT, multilingual
WhisperX	Whisper + timestamping	Adds speaker diarization + word time
Wav2Vec 2.0	Audio embedding	Use for audio similarity

Transcribe and chunk transcripts with $timestamps \rightarrow store$ them in a vector DB.

4. Video Handling (Hybrid Approach)

 Frame Extraction: Use ffmpeg to extract keyframes (every X seconds or scene changes)

- Audio Transcription: Run Whisper on video audio
- Frame Embedding: Use CLIP or BLIP to get frame-level embeddings
- Index in DB: Timestamped image + text pairs

5. Vector Databases (Search Infrastructure)

Name	Features
FAISS	Fastest, simplest ANN search
Weaviate	Schema-based, multimodal search
Qdrant	Filters, payload, Docker-friendly
ChromaDB	Easy to use, simple APIs

6. Optional: Multimodal LLMs (Inference)

Model	Base	Use case
MiniGPT-4	Vicuna + BLIP	Visual+text Q&A, captioning

LLaVA One Vision 7B	Vicuna + CLIP	Visual instruction following
BakLLaVA	LLaMA 3	Open-weight, vision+text
Fuyu	Deformable DETR	Newer vision model from Adept
CogVLM	Stronger multimodal	Better visual grounding
Qwen 2.5 72B		

These can help **summarize**, **explain**, or **generate search previews**, but are optional for pure search.

Role of the LLM in Semantic Search App

1. Query Understanding

- Paraphrasing or expanding user queries to improve semantic matching.
- Example: User types "how to build a hollow part?" → LLM rephrases to match: "What sequence design and primitives are used to create a hollow axisymmetric component in NAGFORM?"

2. Multimodal Embedding Generation

- If using LLaMA 3.2 Vision or LLaVA, the LLM includes built-in encoders for:
 - Text embeddings (from queries and documents)
 - Image understanding (e.g., diagrams in PDFs or screenshots)
 - Basic video/audio captions

Alternative: Can use **separate encoders** (e.g., CLIP for vision, Whisper for audio)

3. Retrieval-Augmented Feedback

- After the vector search retrieves top matches, the LLM can:
 - Summarize retrieved snippets
 - Rank or cluster results
 - Provide user-friendly contextual previews without inventing facts

4. Multimodal Reasoning

- For use cases like:
 - Understanding a diagram with captions
 - Explaining a video segment with text + visual info
 - Relating text and image in a single paragraph

If needed, you can use LLaVA, MiniGPT-4, or GPT-40 for this stage.

5. UI Co-Pilot (Optional Chatbot Layer)

- The LLM can serve as a semantic interface layer:
 - Interpret complex user queries
 - Keep the multi-turn conversation context

o Provide "Ask me anything about NAGFORM manuals" UX