

45th International Physics Olympiad Astana, Kazakhstan Theoretical Competition, Tuesday, 15 July 2014

Списокфундаментальныхконстант

Скорость света в вакууме
Гравитационная постоянная
Ускорение свободного падения
Число Авогадро
Универсальная газовая постоянная
Постоянная Больцмана
Элементарный заряд
Масса электрона
Масса протона
Постоянная Планка
Электрическая постоянная
Магнитная постоянная

$$\begin{split} c &= 299792458 \,\mathrm{m}\cdot\mathrm{c}^{-1} \\ G &= 6.67\cdot10^{-11}\,\mathrm{m}^3\cdot\mathrm{kr}^{-1}\cdot\mathrm{c}^{-2} \\ g &= 9.81 \,\mathrm{m}\cdot\mathrm{c}^{-2} \\ N_A &= 6.02\cdot10^{23}\,\mathrm{моль}^{-1} \\ R &= 8.31\,J\cdot K^{-1}\cdot\mathrm{моль}^{-1} \\ k &= 1.38\cdot10^{-23}\,\mathrm{Дж}\cdot K^{-1} \\ e &= 1.60\cdot10^{-19}\,\mathrm{Kл} \\ m_e &= 9.11\cdot10^{-31}\,\mathrm{kr} \\ m_p &= 1.67\cdot10^{-27}\,kg \\ \hbar &= 1.05\cdot10^{-34}\,\mathrm{Дж}\cdot\mathrm{c} \\ \varepsilon_0 &= 8.85\cdot10^{-12}\,\Phi\cdot\mathrm{m}^{-1} \\ \mu_0 &= 1.26\cdot10^{-6}\,\mathrm{\Gammah}\cdot\mathrm{m}^{-1} \end{split}$$

Полезные математические формулы

$$(1+x)^{\alpha} \approx 1 + \alpha x + \frac{1}{2}\alpha(\alpha-1)x^{2}, \text{где}|x| \ll 1 \text{и}\alpha$$
 постоянная
$$\sin x \approx x - \frac{x^{3}}{3}, \text{где}|x| \ll 1$$

$$\cos x \approx 1 - \frac{1}{2}x^{2}, \text{где}|x| \ll 1$$

$$\int x^{n} dx = \frac{x^{n+1}}{n+1} + C, \, n \neq -1, \text{где}C$$
 постоянная интегрирования
$$\int \frac{dx}{x-a} = \log|x-a| + C, \, \text{где}C$$
 постоянная интегрирования
$$\cosh x = \frac{e^{x} + e^{-x}}{2}$$

$$\sinh x = \frac{e^{x} - e^{-x}}{2}$$

$$\sinh x = \frac{e^{x} - e^{-x}}{2}$$

$$\cosh^{2}x - \sinh^{2}x = 1$$

$$\tanh x = \frac{\sinh x}{\cosh x}$$

$$(e^{x})' = e^{x}$$

$$(\log x)' = \frac{1}{x}$$

$$(x^{n})' = nx^{n-1}$$

$$u'_{t}(x(t)) = u'_{x}(x(t))x'_{t}(t)$$

$$(u(x)v(x)) = u(x)'v(x) + u(x)v(x)'$$

$$\left(\frac{u(x)}{v(x)}\right)' = \frac{u(x)'v(x) - u(x)v(x)'}{v(x)^{2}}$$

Задача 1 (9 баллов)

Эта задача состоит из трёх независимых частей

Часть А (3 балла)

Небольшое тело массой т осторожно положили на внутреннюю поверхность полого тонкого цилиндра массой M и радиуса R. В начальный времени цилиндр момент покоится горизонтальной поверхности стола, а тело находится на высоте R над поверхностью стола. Найдите силу F взаимодействия между телом и цилиндром в тот момент, когда тело находится в низшей точке своей траектории. Трение между телом и внутренней поверхностью цилиндра отсутствует, а цилиндр сам ПО поверхности стола без проскальзывания. Ускорение свободного падения равно д.

Часть В (3 балла)

В вакууме находится мыльный пузырь радиуса r=5.00 см и толщиной стенок h=10.0 мкм, внутри которого содержится двухатомный идеальный газ. Коэффициент поверхностного натяжения мыльной пленки $\sigma=4.00\cdot 10^{-2}$ и плотность $\rho=1.10$ $\frac{r}{con^2}$.

- 1) Выведите формулу и рассчитайте молярную теплоемкость C газа в мыльном пузыре. Считайте, что газ нагревается так медленно, что пузырь всё время находится в состоянии механического равновесия;
- 2) Найдите и рассчитайте циклическую частоту ω радиальных колебаний пузыря. Считайте, что теплоемкость мыльной пленки много больше теплоемкости газа в пузыре и термодинамическое равновесие внутри пузыря устанавливается гораздо быстрее, чем период колебаний.

Подсказка: Лаплас показал, что разница давлений внутри и снаружи искривленной поверхности между жидкостью и газом, вызванная поверхностным натяжением, равна $\Delta p = \frac{2\sigma}{\pi}$.

Часть С (3 балла)

В начальный момент в схеме, изображенной на рисунке, ключ K разомкнут, конденсатор емкостью C имеет заряд Q_0 , конденсатор емкостью C не заряжен, ток в катушках с индуктивностями L и 2L отсутствует.

Конденсатор начинает разряжаться, и в момент времени, когда сила тока в катушках достигает максимального значения, ключ K замыкают. Найдите максимальную силу тока I_{\max} , протекающего в последующем через ключ K.

Задача 2. Уравнение состояния Ван-дер-Ваальса (11 баллов)

В модели идеального газа, описываемого уравнением Менделеева—Клапейрона, не учитываются два важных физических эффекта. Во-первых, молекулы реального газа имеют конечный размер, во-вторых — они взаимодействуют друг с другом. Во всех частях задачи рассматривается один моль водяного пара.

Часть А. Уравнение состояния неидеального газа (2 балла)

С учетом конечного размера молекул уравнение состояния газа примет вид

$$P(V-b) = RT, (1)$$

где P, V, T — давление газа, его объем и температура, соответственно, R — универсальная газовая постоянная, а b — некоторая постоянная.

A1 Оцените параметр b и выразите его через характерный диаметр молекулы воды d. (0,3 балла)

С учетом сил межмолекулярного притяжения Ван-дер-Ваальс предложил следующее уравнение, которое описывает жидкое и газообразное состояние вещества:

$$\left(P + \frac{a}{V^2}\right)(V - b) = RT,$$
(2)

где *a* – ещё одна постоянная.

При температурах T ниже некоторой критической температуры T_c изотерма уравнения (2) представляет собой немонотонную кривую 1, изображенную на рис. 1, которая называется изотермой Ван-дер-Ваальса. На этом же рисунке построена кривая 2 — изотерма идеального газа при той же температуре. Реальная изотерма отличается от изотермы Ван-дер-Ваальса прямым участком AB с постоянным давлением P_{LG} , расположенным по оси объемов между V_L и V_G , на котором реализуется равновесие жидкости (обозначенной индексом L) и газа (обозначенного индексом G). Использовав второе начало термодинамики Дж. Максвелл показал, что давление P_{LG} должно быть выбрано таким образом, чтобы показанные на рисунке 1 площади I и II были одинаковы.

Рис. 1. Изотерма Ван-дер-Ваальса для газа/жидкости. (кривая 1) и изотерма идеального газа (кривая 2).

Рис. 2. Ряд изотерм Ван-дер-Ваальса.

С увеличением температуры длина прямолинейного участка AB изотермы уменьшается и при некоторой температуре T_c и давлении $P_{LG} = P_c$ обращается в нуль. Параметры P_c и T_c называются критическими и могут быть измерены экспериментально с большой точностью.

A2	Выразите постоянные Ван-дер-Ваальса a и b через T_c и P_c . (1.3 балла)
A3	Для воды $T_c = 647 \text{ K}$ и $P_c = 2.2 \cdot 10^7 \text{ Па. Вычислите } a_w$ и b_w для воды. (0.2 балла)
A4	Оцените диаметр молекулы воды d_w . (0.2 балла)

Theoretical competition. Tuesday, 15 July 2014

Часть В. Свойства газа и жидкости (6 баллов)

В данной части задачи рассматриваются свойства воды в газообразном и жидком состояниях, находящейся при t=100 °C. Давление насыщенного пара при этой температуре равно $P_{LG}=p_0=1.0\cdot 10^5$ Па. Молярная масса воды $\mu=1.8\cdot 10^{-2}$ кг/моль..

Газообразное состояние

Можно считать, что при описании свойств воды в газообразном состоянии выполняется условие $V_G\gg b$.

В1 Получите формулу для объема пара V_G при заданных условиях и выразите его через R, T, P_0 и a. (0.8 балла)

Этот же объем V_{G0} . можно приближенно рассчитать с помощью уравнения состояния идеального газа.

В2 Рассчитайте, на сколько процентов уменьшается объем газа вследствие межмолекулярных взаимодействий: $\frac{\Delta V_G}{V_{G0}} = \frac{V_{G0} - V_G}{V_{G0}}$. (0.3 балла)

При уменьшении объема пара ниже значения V_G начинается его конденсация. Однако тщательно очищенный пар может оставаться в механически метастабильном состоянии (переохлажденный пар) до тех пор, пока его объем не достигнет некоторого значения V_{Gmin} .

Условие механической стабильности переохлажденного газа при постоянной температуре записывается как $\frac{dP}{dV} < 0$.

В3 Найдите и рассчитайте, во сколько раз можно уменьшить объем пара, чтобы он оставался в газообразном состоянии. Другими словами, найдите V_G/V_{Gmin} . (0.7 балла)

Жидкое состояние

Можно считать, что при ван-дер-ваальсосвском описании свойств воды в жидком состоянии выполняется неравенство: $P \ll a/V^2$.

В4 Выразите объем воды V_L в жидком состоянии через a, b. R и T. (1.0 балл)

Полагая, что $bRT \ll a$, рассчитайте следующие характеристики воды (не удивляйтесь, если некоторые данные не совпадут с известными вам табличными значениями).

B5	Выразите плотность воды ρ_L через μ , a , b , R и рассчитайте ее. (0.3 балла)
B6	Выразите объемный коэффициент теплового расширения $\alpha = \frac{1}{V_L} \frac{\Delta V_L}{\Delta T}$ через a,b,R и
	рассчитайте его. (0.6 балла)
B7	Выразите удельную теплоту парообразования воды L через μ , a , b , R и рассчитайте ее.
	(1.1 балла)
B8	Рассмотрите мономолекулярный слой воды и оцените коэффициент σ её поверхностного
	натяжения. (1.2 балла)

Theoretical competition. Tuesday, 15 July 2014

Часть С. Система жидкость-пар (3 балла)

Из правила Максвелла (равенства площадей) и уравнения Ван-дер-Ваальса при использованных в части ${\bf B}$ приближениях следует, что зависимость давления насыщенного пара p_{LG} от температуры T имеет вид

$$\ln p_{LG} = A + \frac{B}{T} \tag{3}$$

где A, B — постоянные величины, которые могут быть выражены через a, b следующим образом:

$$A = \ln\left(\frac{a}{b^2}\right) - 1$$
; $B = -\frac{a}{bR}$

Уильям Томсон показал, что давление насыщенного водяного пара над поверхностью жидкости зависит от кривизны этой поверхности. Рассмотрим жидкость, которая не смачивает материал капилляра (угол смачивания равен 180°). При погружении капилляра в жидкость, она опускается на некоторую глубину вследствие поверхностного натяжения (см. рис. 3).

С1 Найдите малое изменение давления Δp_T насыщенных паров над искривленной поверхностью жидкости и выразите его через плотность пара ρ_s , плотность жидкости ρ_L , коэффициент поверхностного натяжения σ и радиус кривизны поверхности r. (1.3 балла)

Рис. 3. Капилляр, погруженный в не смачивающую его жидкость, в атмосфере насыщенного пара.

Метастабильные состояния (рассмотренные в части **B3**) широко используются в реальных физических установках, таких, как камера Вильсона, пузырьковая камера для регистрации элементарных частиц, а также встречаются в природных явлениях, например, при образовании утренней росы. Переохлажденный пар стремится сконденсироваться, образуя капельки жидкости. Очень маленькие капли быстро испаряются, а достаточно большие могут расти.

С2 Предположим, что вечером при температуре $t_e = 20\,^{\circ}\text{C}$ пар был насыщенным, а утром температура окружающей среды упала на небольшую величину $\Delta t = 5.0\,^{\circ}\text{C}$. Считая давление пара неизменным, оцените минимальный радиус капель, которые могут расти. Коэффициент поверхностного натяжения воды равен $\sigma = 7.3 \cdot 10^{-2}\,\text{H/m}$. (1.7 балла)

Задача 3. Простейшая модель газового разряда (10 баллов)

Процесс протекания электрического тока через газ называется газовым разрядом. Существует много типов газовых разрядов: тлеющий разряд (используется в осветительных лампах), дуговой разряд (применяется для сварки), искровой разряд (возникает между облаками и землей в виде молнии).

Часть А. Несамостоятельный газовый разряд (4.8 балла)

В этой части задачи будем изучать несамостоятельный газовый разряд, для поддержания которого необходимо постоянное присутствие внешнего ионизатора, т.е. устройства, которое в единице объема газа в единицу времени однородно по всему объему создает $Z_{\rm ext}$ пар однократно ионизированных атомов и электронов.

При включении внешнего ионизатора число пар электронов и ионов начинает расти. Неограниченному увеличению концентрации электронов и ионов в газе препятствует процесс их рекомбинации, при котором свободный электрон соединяется с ионом и образуется нейтральный атом. Число рекомбинаций в единице объема в единицу времени $Z_{\rm rec}$ дается формулой

$$Z_{\rm rec} = r n_e n_i$$
,

гдеr— постоянная, называемая коэффициентом рекомбинации, а n_e и n_i — концентрации электронов и ионов соответственно.

Пусть в моментt=0 включается внешний ионизатор. Начальная концентрация электронов и ионов в газе равна нулю. Тогда зависимость концентрации электронов $n_e(t)$ от времениtвыражается формулой

$$n_e(t) = n_0 + a \tanh bt$$
,

где n_0 , a, b— некоторые постоянные, a tanh x—гиперболический тангенс.

А1 Найдите n_0 , a, b и выразите ответ через Z_{ext} и r.(1.8 балла)

Предположим, что имеется два внешних ионизатора. Известно, что при включении одного из них в газе устанавливается концентрация электронов, равная $n_{e1}=12\cdot 10^{10}~{\rm cm}^{-3}$. При включении другого внешнего ионизатора в газе устанавливается концентрация электронов, равная $n_{e2}=16\cdot 10^{10}{\rm cm}^{-3}$.

А2 Найдите установившуюся концентрацию электронов n_e , если два ионизатора будут работать одновременно. (0.6 балла)

Внимание! В дальнейшем считайте, что внешний ионизатор действует в течение достаточно длительного промежутка времени, так что все процессы являются стационарными и не зависят от времени. Собственным электрическим полем носителей заряда полностью пренебрегайте.

Пусть газ находится в трубке между двумя параллельными проводящими пластинами площадиS, расположенными нарасстоянии $L \ll \sqrt{S}$ друг от друга. Приложим к пластинам напряжениеU,при этом между ними образуется электрическое поле. Считайте, что концентрация обоих носителей в трубке практически везде одинакова.

Пусть в электрическом поле электроны (обозначенные индексом e) и ионы (обозначенные индексом i) приобретают одинаковую скорость упорядоченного движения, равную

$$v = \beta E$$

гдеE— напряженность электрического поля, а β — так называемая подвижность.

A3	Выразитесилутока в трубке I через U , β , L , S , Z_{ext} , r , e где e — элементарный заряд.(1.7 балла)
A4	Найдите удельное сопротивление газа $ ho_{\rm gas}$ при малых значениях приложенного напряжения и
	выразите его через β , L , Z_{ext} , r , e .(0.7 балла)

Часть В. Самостоятельный газовый разряд (5.2 балла)

Изучим процесс зажигания самостоятельного газового разряда, при котором ток в трубке становится самоподдерживающимся.

Внимание! В дальнейшем считайте, что внешний ионизатор продолжает действовать с тем же $Z_{\rm ext}$, электрическое поле всюду однородно, а рекомбинацией можно полностью пренебречь. Собственным электрическим полем носителей заряда полностью пренебрегайте.

Для самостоятельного газового разряда важны процесса, не рассмотренных выше. Первый процесс — вторичная электронная эмиссия, а второй образование электронной лавины. Вторичная электронная эмиссия возникает в тот момент, когда отрицательному ПО называемому катодом, и выбивают из него электроны, которые затем движутся к положительному электроду, называемому анодом. Отношение числа выбитых в времени электронов \dot{N}_{ρ} к единицу ионов \dot{N}_i , попадающих на катод в единицу времени,

называется коэффициентом вторичной электронной эмиссии $\gamma = \dot{N}_e / \dot{N}_i$.

Образование электронной лавины происходит следующим образом. Электрическое поле ускоряет свободные электроны, которые ионизируют атомы при столкновении с ними.В результате число свободных электронов растетпри их движениик аноду. Этот процесс характеризуетсякоэффициентом Таунсенда α , который описываетувеличение числа электронов dN_e на единицу длины путиdl, то есть

$$\frac{dN_e}{dl} = \alpha N_e$$
.

Полный токIв любом сечении трубки с газом складывается из ионного $I_i(x)$ и электронного токов $I_e(x)$, которые в стационарном режимезависят от координаты x, показанной на рисунке.Изменениеэлектронного тока $I_e(x)$ вдоль осиxописывается формулой

$$I_e(x) = C_1 e^{A_1 x} + A_2,$$

где A_1 , A_2 , C_1 — некоторые постоянные.

В1 Найдите A_1 , A_2 и выразите их через Z_{ext} , α , e, L, S.(2 балла)

Изменение ионного тока $I_i(x)$ вдоль оси x описывается формулой

$$I_i(x) = C_2 + B_1 e^{B_2 x},$$

где B_1, B_2, C_2 — некоторые постоянные.

B2	Найдите B_1 , B_2 и выразите их через $Z_{\rm ext}$, α , e , L , S , C_1 . (0.6 балла)
B3	Запишите условие для тока $I_i(x)$ в точке $x = L.(0.3 балла)$
B4	Запишите условие для токов $I_i(x)$ и $I_e(x)$ в точке $x=0.$ (0.6 балла)
B5	Найдите полный ток I и выразите его через $Z_{\rm ext}$, α , γ , e , L , S . Считайте, что полный ток остается
	конечной величиной (1.2 балла)

Пусть коэффициент Таунсенда α постоянен. При длине разрядного промежутка, большей некоторого критического значения $L>L_{\rm cr}$, внешний ионизатор может быть отключен, т.е. разряд становится самостоятельным.

В6 Найдите L_{cr} и выразите его через Z_{ext} , α , γ , e , L , S . (0.5 балла)
