

# Survey of Scientific Computing (SciComp 301)

Dave Biersach
Brookhaven National
Laboratory
dbiersach@bnl.gov

Session 12
Continued Fractions,
Chi Squared

#### **Section Goals**

- Gain an appreciation for Continued Fractions in nature
- Understand the three types of CFs: 1) finite, 2) infinite with repeating <u>sequence</u>, 3) infinite with repeating <u>pattern</u>
- Write code to generate a generalized CF for a real number, and how to expand that CF to produce convergents of the original number
- Appreciate the hidden underlying simplicity of the generalized continued fraction for  $\pi$
- Perform a computational mathematical experiment to determine the solutions to Pell's Equation

#### **Seminar Goals**

- Gain an appreciation for the Normal Distribution
- Investigate if a Normal Distribution can be made from a Uniform Distribution using a Pachinko game
- Use **chi-squared statistic** to determine if a random sample conforms to a reasonable Normal Distribution

## Expanding Your Definition of a "Number"



$$x = a_0 + \frac{b_1}{a_1 + \frac{b_2}{a_2 + \frac{b_3}{a_3 + \ddots}}}$$

In a <u>simple</u> continued fraction, all  $b_n = 1$ 

$$3.245 = 3 + \frac{1}{4 + \frac{1}{12 + \frac{1}{4}}}$$

What is the simple CF encoding for **3.245**?



All rational numbers have a CF of finite length!

What is the simple CF encoding for **0.825** (= **33/40**)?

| x          | floor(x) |   | x = x - floor(x) | 1/x        |
|------------|----------|---|------------------|------------|
| 0.82500000 |          | 0 | 0.82500000       | 1.21212121 |
| 1.21212121 |          | 1 | 0.21212121       | 4.71428571 |
| 4.71428571 |          | 4 | 0.71428571       | 1.40000000 |
| 1.40000000 |          | 1 | 0.40000000       | 2.50000000 |
| 2.50000000 |          | 2 | 0.50000000       | 2.00000000 |
| 2.0000000  |          | 2 | 0.00000000       |            |

A CF is an *encoding* scheme

$$0.825 = [0; 1, 4, 1, 2, 2]$$

All rational numbers have a CF of finite length!

$$h_n = a_n * h_{(n-1)} + h_{(n-2)}$$
  
 $k_n = a_n * k_{(n-1)} + k_{(n-2)}$ 

0.82500000

0.00000000

Each row gives a better and better approximation (h / k) to the original number x

40

33

$$[0; 1, 4, 1, 2, 2] = 0.825 (= 33/40)$$

## $\sqrt{2}$ to 3,600 digits

What is the simple CF encoding for  $\sqrt{2}$ ?

| х          | floor(x) | x = x - floor(x) | 1/x        |
|------------|----------|------------------|------------|
| 1.41421356 | 1        | 0.41421356       | 2.41421356 |
| 2.41421356 | 2        | 0.41421356       | 2.41421356 |
| 2.41421356 | 2        | 0.41421356       | 2.41421356 |
| 2.41421356 | 2        | 0.41421356       | 2.41421356 |
| 2.41421356 | 2        | 0.41421356       | 2.41421356 |
| 2.41421356 | 2        | 0.41421356       | 2.41421356 |

$$\sqrt{2} = [1; \{2\}]$$

Numbers within {} are repeated

All irrational numbers yield an infinite CF with a repeated *sequence* of *finite* length!

There is simple order behind the chaos!

$$h_n = a_n * h_{(n-1)} + h_{(n-2)}$$
  
 $k_n = a_n * k_{(n-1)} + k_{(n-2)}$ 

$$\Delta = \left(\frac{h_n}{k_n} - x\right)$$

What fraction best approximates  $\sqrt{2}$  ?

| n  | a | h     | k     | h/k        | delta       |
|----|---|-------|-------|------------|-------------|
| -2 |   | 0     | 1     |            |             |
| -1 |   | 1     | 0     |            |             |
| 0  | 1 | 1     | 1     | 1.00000000 | 0.41421356  |
| 1  | 2 | 3     | 2     | 1.50000000 | -0.08578644 |
| 2  | 2 | 7     | 5     | 1.4000000  | 0.01421356  |
| 3  | 2 | 17    | 12    | 1.41666667 | -0.00245310 |
| 4  | 2 | 41    | 29    | 1.41379310 | 0.00042046  |
| 5  | 2 | 99    | 70    | 1.41428571 | -0.00007215 |
| 6  | 2 | 239   | 169   | 1.41420118 | 0.00001238  |
| 7  | 2 | 577   | 408   | 1.41421569 | -0.00000212 |
| 8  | 2 | 1393  | 985   | 1.41421320 | 0.00000036  |
| 9  | 2 | 3363  | 2378  | 1.41421362 | -0.0000006  |
| 10 | 2 | 8119  | 5741  | 1.41421355 | 0.0000001   |
| 11 | 2 | 19601 | 13860 | 1.41421356 | 0.0000000   |

$$\sqrt{2} \approx 19,601 / 13,860$$

What is the simple CF encoding for  $\sqrt{113}$ ?

| x           | floor(x) | x = x - floor(x) | 1/x         |
|-------------|----------|------------------|-------------|
| 10.63014581 | 10       | 0.63014581       | 1.58693429  |
| 1.58693429  | 1        | 0.58693429       | 1.70376823  |
| 1.70376823  | 1        | 0.70376823       | 1.42092235  |
| 1.42092235  | 1        | 0.42092235       | 2.37573512  |
| 2.37573512  | 2        | 0.37573512       | 2.66144940  |
| 2.66144940  | 2        | 0.66144940       | 1.51183144  |
| 1.51183144  | 1        | 0.51183144       | 1.95376823  |
| 1.95376823  | 1        | 0.95376823       | 1.04847275  |
| 1.04847275  | 1        | 0.04847275       | 20.63014581 |
| 20.63014581 | 20       | 0.63014581       | 1.58693430  |
| 1.58693430  | 1        | 0.58693430       | 1.70376822  |
| 1.70376822  | 1        | 0.70376822       | 1.42092237  |
| 1.42092237  | 1        | 0.42092237       | 2.37573499  |
| 2.37573499  | 2        | 0.37573499       | 2.66145027  |
| 2.66145027  | 2        | 0.66145027       | 1.51182945  |
| 1.51182945  | 1        | 0.51182945       | 1.95377581  |
| 1.95377581  | 1        | 0.95377581       | 1.04846442  |
| 1.04846442  | 1        | 0.04846442       | 20.63369395 |
| 20.63369395 | 20       | 0.63369395       | 1.57804883  |

Period = 9

$$\sqrt{113} = [10; \{1,1,1,2,2,1,1,1,20\}]$$

$$h_n = a_n * h_{(n-1)} + h_{(n-2)}$$
  
 $k_n = a_n * k_{(n-1)} + k_{(n-2)}$ 

$$\Delta = \left(\frac{h_n}{k_n} - x\right)$$

What fraction best approximates  $\sqrt{113}$  ?

| n  | а  | h      | k     | h/k         | delta       |
|----|----|--------|-------|-------------|-------------|
| -2 |    | 0      | 1     |             |             |
| -1 |    | 1      | 0     |             |             |
| 0  | 10 | 10     | 1     | 10.00000000 | 0.63014581  |
| 1  | 1  | 11     | 1     | 11.00000000 | -0.36985419 |
| 2  | 1  | 21     | 2     | 10.50000000 | 0.13014581  |
| 3  | 1  | 32     | 3     | 10.66666667 | -0.03652085 |
| 4  | 2  | 85     | 8     | 10.62500000 | 0.00514581  |
| 5  | 2  | 202    | 19    | 10.63157895 | -0.00143313 |
| 6  | 1  | 287    | 27    | 10.62962963 | 0.00051618  |
| 7  | 1  | 489    | 46    | 10.63043478 | -0.00028897 |
| 8  | 1  | 776    | 73    | 10.63013699 | 0.00000883  |
| 9  | 20 | 16009  | 1506  | 10.63014608 | -0.00000027 |
| 10 | 1  | 16785  | 1579  | 10.63014566 | 0.00000015  |
| 11 | 1  | 32794  | 3085  | 10.63014587 | -0.00000005 |
| 12 | 1  | 49579  | 4664  | 10.63014580 | 0.00000002  |
| 13 | 2  | 131952 | 12413 | 10.63014581 | 0.00000000  |

$$\sqrt{113} \approx$$
**131,952 / 12,413**

#### *e* to 3,600 digits

2.7182818284590452353602874713526624977572470936999595749669676277240766303535475945713821785251664274274663 

#### Continued Fraction for e

|                       | х                 | floor(x | () | x = x - floor(x) | 1/x         |
|-----------------------|-------------------|---------|----|------------------|-------------|
|                       | 2.71828183        |         | 2  | 0.71828183       | 1.39221119  |
|                       | 1.39221119        |         | 1  | 0.39221119       | 2.54964678  |
|                       | 2.54964678        |         | 2  | 0.54964678       | 1.81935024  |
|                       | 1.81935024        |         | 1  | 0.81935024       | 1.22047929  |
|                       | 1.22047929        |         | 1  | 0.22047929       | 4.53557348  |
|                       | 4.53557348        |         | 4  | 0.53557348       | 1.86715744  |
|                       | 1.86715744        |         | 1  | 0.86715744       | 1.15319313  |
|                       | 1.15319313        |         | 1  | 0.15319313       | 6.52770793  |
|                       | 6.52770793        |         | 6  | 0.52770793       | 1.89498763  |
| All transcend         | dental number     | rs 🗀    | 1  | 0.89498763       | 1.11733388  |
|                       | inite CF with a   |         | 1  | 0.11733388       | 8.52268767  |
| •                     |                   |         | 8  | 0.52268767       | 1.91318841  |
| repeated <i>patte</i> | ern of finite ier | ngth    | 1  | 0.91318841       | 1.09506427  |
|                       | 1.09506427        |         | 1  | 0.09506427       | 10.51919947 |
|                       | 10.51919947       | 10      | 0  | 0.51919947       | 1.92604201  |
|                       | 1.92634201        |         | 1  | 0.92604201       | 1.07986461  |
|                       | 1.07986461        |         | 1  | 0.07986461       | 12.52119027 |
|                       | 12.52119027       | 1       | 2  | 0.52119027       | 1.91868508  |
|                       | 1.91868508        |         | 1  | 0.91868508       | 1.08851229  |
|                       |                   |         |    |                  |             |

 $e = [2; \{1,2n,1\}]$  for n > 0 $e^2 = [7;2,\{1,1,3n,12n+6,3n+2\}]$  for n > 0



#### The Golden Ratio





a+b is to a as a is to b

$$\frac{a+b}{a} = \frac{a}{b} = \varphi$$

$$1 + \frac{b}{a} = \frac{a}{b} = \varphi$$

$$1 + \frac{1}{\varphi} = \varphi$$
$$\varphi + 1 = \varphi^2$$

$$\varphi + 1 = \varphi^2$$

$$\varphi^2 - \varphi - 1 = 0$$

$$\varphi = \frac{1 + \sqrt{5}}{2} = 1.6180339887 \dots$$

$$\varphi = \frac{1 + \sqrt{5}}{2} = 1.6180339887 \dots$$



$$\varphi = \frac{1 + \sqrt{5}}{2} = 1.6180339887 \dots$$

#### Whole Step







#### Perfect Fifth









$$\varphi = \frac{1 + \sqrt{5}}{2} = 1.6180339887 \dots$$

The greatest of luthiers, Stradivarius, designed his violins around the golden ratio ( $\phi$ ). His violins are the most valuable and precious instruments in the string-playing world because of their exquisite tonal and harmonic qualities, [2]. The Stradivarius violin in Fig. 2 reveals how precisely his instruments are determined by the golden ratio, [3]:

$$\frac{a1+a2}{a2} = \frac{a2}{a1} = \frac{b2}{b1} = \frac{b2}{c2} = \frac{c2}{c1} = \phi$$



#### φ to 3,600 digits

1.6180339887498948482045868343656381177203091798057628621354486227052604628189024497072072041893911374847540

#### Open Lab 1 – Simple CF Encoding



#### View Lab 1 – Simple CF Encoding

```
void DisplayCF(const vector<int>& terms)
{
    cout << "{":
    auto itr = terms.begin();
    while (true)
    {
        cout << *itr;
        if (++itr == terms.end()) break;
        cout << ", ";
    }
    cout << "}\n";
    return;
}</pre>
```



$$v[k] == *(v.begin()+k)$$

#### Run Lab 1 – Simple CF Encoding

```
int main()
                                                      void DisplayCF(const vector<int>& terms)
   double x = 3.245;
                                                          cout << "{":
                                                          auto itr = terms.begin();
   auto terms = EncodeCF(x);
                                                          while (true)
   cout << "To " << terms.size() << " terms, "</pre>
                                                              cout << *itr:
        << "the simple continued fraction for\n"</pre>
                                                              if (++itr == terms.end()) break;
        << setprecision(18) << x << " is" << endl;</pre>
                                                              cout << ", ";
   DisplayCF(terms);
                          Intrinsic data types
                                                          cout << "}\n";
                          cannot store most
                                                          return:
   return 0;
                           numbers exactly
                                       stdcf-encode
                                                                        floor(x)
 File Edit View Terminal
                          os Help
To 5 terms, the simple continued fraction for
3.24500000000000011 is
{3, 4, 12, 3, 1}
Process returned 0 (0x0)
                               execution time : 0.031 s
Press ENTER to continue.
```

## Edit Lab 1 –Simple CF Encoding

$$\varphi = \frac{1 + \sqrt{5}}{2} = 1.6180339887$$



#### Run Lab 1 – Simple CF Encoding

• Generate the Simple CF for the golden ratio  $\frac{1+\sqrt{5}}{2}$ 

This is Mother
Nature's true *Unit*It is the most simple infinite CF possible!

## **Check** Lab 1 – Simple CF Encoding



#### C++ Vector Initialization

- Vectors can be defined using the list initializer syntax
  - Elements are comma separated between curly braces
  - First item in list goes into index position 0 in the array
  - The vector is dynamically sized to match the number of elements in the initializer list
- Lab 1 emits source code for Lab 2
- Programs <u>can</u> create programs



#### #include "stdafx.h" using namespace std; int main() int maxTerms = 20; vector<double> h(maxTerms + 2); vector<double> k(maxTerms + 2); **if** (cf.size() == 0) cout << "Error - Missing cf data!";</pre> return -1; h.at(0) = 0; k.at(0) = 1;h.at(1) = 1: k.at(1) = 0;cout << "Using " << maxTerms << " terms, ";</pre> cout << "the continued fraction expansion is:" << endl;</pre> cout << setw(5) << "a"; cout << right << setw(15) << "h";</pre> cout << right << setw(15) << "k";</pre> cout << setw(20) << "convergent" << endl;</pre> for (int n{ 2 }; n < maxTerms + 2; ++n)</pre> double a = cf.at(n - 2): h.at(n) = a \* h.at(n - 1) + h.at(n - 2);k.at(n) = a \* k.at(n - 1) + k.at(n - 2);double convergent = h.at(n) / k.at(n); cout << setprecision(0) << right</pre> << setw(5) << a << setw(15) << h[n] << setw(15) << k[n] << setprecision(14) << fixed << setw(20) << convergent << endl;</pre> return 0;

## Edit Lab 2 CF Decode

Don't forget the semicolon!

Right click and **paste** in the white line output from Lab 1

```
h_n = a_n * h_{(n-1)} + h_{(n-2)}

k_n = a_n * k_{(n-1)} + k_{(n-2)}
```

## Run Lab 2 – Simple CF Decoding



#### $\pi$ to 3,600 digits

3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679821480 

What is the simple CF encoding for  $\pi$  ?

| х            | floor(x) | x = x - floor(x) | 1/x          |
|--------------|----------|------------------|--------------|
| 3.14159265   | 3        | 0.14159265       | 7.06251331   |
| 7.06251331   | 7        | 0.06251331       | 15.99659441  |
| 15.99659441  | 15       | 0.99659441       | 1.00341723   |
| 1.00341723   | 1        | 0.00341723       | 292.63459088 |
| 292.63459088 | 292      | 0.63459088       | 1.57581844   |
| 1.57581844   | 1        | 0.57581844       | 1.73665853   |
| 1.73665853   | 1        | 0.73665853       | 1.35748105   |
| 1.35748105   | 1        | 0.35748105       | 2.79735107   |
| 2.79735107   | 2        | 0.79735107       | 1.25415271   |
| 1.25415271   | 1        | 0.25415271       | 3.93464232   |
| 3.93464232   | 3        | 0.93464232       | 1.06992802   |
| 1.06992802   | 1        | 0.06992802       | 14.30041960  |
| 14.30041960  | 14       | 0.30041960       | 3.32867763   |
| 3.32867763   | 3        | 0.32867763       | 3.04249485   |
| 3.04249485   | 3        | 0.04249485       | 23.53226532  |
| 23.53226532  | 23       | 0.53226532       | 1.87876228   |
| 1.87876228   | 1        | 0.87876228       | 1.13796418   |
| 1.13796418   | 1        | 0.13796418       | 7.24825805   |
| 7.24825805   | 7        | 0.24825805       | 4.02806683   |

 $\pi$  = [3;7,15,1,292,1,1,1,2,1,3,1,14,3,3,23,1,1,7....] (no repeated *pattern* of finite length  $\otimes$ !)

| n  | а   | h       | k       | h/k               | delta              |
|----|-----|---------|---------|-------------------|--------------------|
| -2 |     | 0       | 1       |                   |                    |
| -1 |     | 1       | 0       |                   |                    |
| 0  | 3   | 3       | 1       | 3.000000000000000 | 0.141592653589793  |
| 1  | 7   | 22      | 7       | 3.142857142857140 | -0.001264489267350 |
| 2  | 15  | 333     | 106     | 3.141509433962260 | 0.000083219627529  |
| 3  | 1   | 355     | 113     | 3.141592920353980 | -0.000000266764189 |
| 4  | 292 | 103993  | 33102   | 3.141592653011900 | 0.00000000577891   |
| 5  | 1   | 104348  | 33215   | 3.141592653921420 | -0.00000000331628  |
| 6  | 1   | 208341  | 66317   | 3.141592653467440 | 0.00000000122356   |
| 7  | 1   | 312689  | 99532   | 3.141592653618940 | -0.00000000029143  |
| 8  | 2   | 833719  | 265381  | 3.141592653581080 | 0.000000000008715  |
| 9  | 1   | 1146408 | 364913  | 3.141592653591400 | -0.00000000001611  |
| 10 | 3   | 4272943 | 1360120 | 3.141592653589390 | 0.000000000000404  |
| 11 | 1   | 5419351 | 1725033 | 3.141592653589820 | -0.000000000000022 |

#### If measuring the circumference of Earth:

22 / 7 = accurate to between this classroom and Washington, DC 355 / 113 = accurate to between this classroom and the main parking lot

If measuring the distance between Earth & Sun: 355 / 113 = accurate to 4 football fields 104348 / 33215 = accurate to the length of my shoe

$$x = a_0 + \frac{b_0}{a_1 + \frac{b_1}{a_2 + \frac{b_2}{a_3 + \ddots}}}$$

In a generalized continued fraction,  $a_n$  and  $b_n$  can be any expression

$$x=a_0+\dfrac{1}{a_1+\dfrac{1}{a_2+\dfrac{1}{a_3}}}$$
 In a **simple** CF all the numerators must be 1

What is a **generalized** CF encoding for  $\pi$  ?



All the mysterious and unpredictable digits of PI come from this simple generalized CF!!

What is a **generalized** CF expansion for  $\pi$  ?

|                                                                                                               | n                                             | а               | b   | h              | k             | h/k                      | delta       |
|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------------|-----|----------------|---------------|--------------------------|-------------|
|                                                                                                               | -2                                            |                 |     | 0              | 1             |                          |             |
|                                                                                                               | -1                                            | 0               | 1   | 1              | 0             |                          |             |
|                                                                                                               | 0                                             | 3               | 1   | 3              | 1             | 3.00000000               | 0.14159265  |
|                                                                                                               | 1                                             | 6               | 9   | 19             | 6             | 3.16666667               | -0.02507401 |
|                                                                                                               | 2                                             | 6               | 25  | 141            | 45            | 3.13333333               | 0.00825932  |
|                                                                                                               | 3                                             | 6               | 49  | 1321           | 420           | 3.14523810               | -0.00364544 |
|                                                                                                               | 4                                             | 6               | 81  | 14835          | 4725          | 3.13968254               | 0.00191011  |
|                                                                                                               |                                               | 6               | 121 | 196011         | 62370         | 3.14271 <mark>284</mark> | -0.00112019 |
| ղ <sub>ո=a<sub>n</sub>*h<sub>(n-1)</sub>+ </sub>                                                              | <b>b</b> <sub>(n-1)</sub> *h <sub>(n-1)</sub> | 2) 6            | 169 | 2971101        | 945945        | 3.14088                  | Gen CF      |
| n <sub>n</sub> =a <sub>n</sub> *h <sub>(n-1)</sub> + <br>k <sub>n</sub> =a <sub>n</sub> *k <sub>(n-1)</sub> + | م*k                                           | 6               | 225 | 50952465       | 16216200      | 3.14207                  | onverge s   |
| `n <mark>∽n '</mark> (n-1)''                                                                                  | ~(n-1) ' (n-2                                 | <sup>2)</sup> 6 | 289 | 974212515      | 310134825     | 3.14125                  | onverge s   |
|                                                                                                               | 9                                             | 6               | 361 | 20570537475    | 6547290750    | 3.14183962               | -0.0002469  |
|                                                                                                               | 10                                            | 6               | 441 | 475113942765   | 151242416325  | 3.14140672               | 0.000185 4  |
|                                                                                                               | 11                                            | 6               | 529 | 11922290683065 | 3794809718700 | 3.14173610               | -0.00014345 |

$$\pi = [3; 1, \{6 | (2n+1)^2\}]$$

All the mysterious and unpredictable digits of PI come from this simple generalized CF!!

What is another **generalized** CF encoding for  $\pi$  ?

**Biersach** 



$$\pi = 3 + \frac{1}{7 + \frac{1}{15 + \frac{25}{23 + \frac{65}{31 + \cdots}}}}$$

$$\pi = [3; 1, {(8n-1)|(8n-7)^2}]$$

There are infinitely many Generalized CFs but not all converge

### **Generalized Continued Fractions**

#### What is a **generalized** CF expansion for $\pi$ ?

| n  | а  | b   | h               | k              | h/k           | delta          |
|----|----|-----|-----------------|----------------|---------------|----------------|
| -2 |    |     | 0               | 1              |               |                |
| -1 | 0  | 1   | 1               | 0              |               |                |
| 0  | 3  | 1   | 3               | 1              | 3.00000000000 | 0.14159265359  |
| 1  | 7  | 1   | 22              | 7              | 3.14285714286 | -0.00126448927 |
| 2  | 15 | 25  | 333             | 106            | 3.14150943396 | 0.00008321963  |
| 3  | 23 | 65  | 8209            | 2613           | 3.14159969384 | -0.00000704025 |
| 4  | 31 | 121 | 276124          | 87893          | 3.14159261830 | 0.00000003529  |
| 5  | 39 | 193 | 11762125        | 3744000        | 3.14159321581 | -0.00000056222 |
| 6  | 47 | 281 | 606111807       | 192931349      | 3.14159316328 | -0.00000050969 |
| 7  | 55 | 385 | 36641306510     | 11663288195    | 3.14159316801 | -0.00000051443 |
| 8  | 63 | 505 | 2541755355825   | 809065725650   | 3.14159316758 | -0.00000051399 |
| 9  | 71 | 641 | 198968490051125 | 63333627059625 | 3.14159316762 | -0.00000051403 |

$$\pi = [3; 1, \{(8n-1)|(8n-7)^2\}]$$

My GCF for π converges faster than Euler's

### **Generalized Continued Fractions**

$$x = a_0 + \frac{b_0}{a_1 + \frac{b_1}{a_2 + \frac{b_2}{a_3 + \ddots}}}$$

In a generalized continued fraction,  $a_n$  and  $b_n$  can be any expression

$$\tan(x) = \frac{x}{1 - \frac{x^{2}}{3 - \frac{x^{2}}{3 - \frac{x^{2}}{7 - \ddots}}}}$$

$$\tan(x) = \frac{1}{1 - \frac{x^{2}}{3 - \frac{x^{2}}{5 - \frac{x^{2}}{7 - \ddots}}}}$$

$$\tan(x) = [0; x, \{(2n-1)|-x^{2}\}]$$

## Pell's Equation

• Your scientist has asked you to write a C++ program to find x & y for a given n (assume  $x, y, n \in \mathbb{Z}^+$ ) such that:

$$x^2 - ny^2 = 1$$

- For every  $2 \le n \le 70$ , check all  $1 \le x \le 70,000$
- Why is there is no need to check for  $y > \left[\sqrt{\frac{x^2}{n}}\right]$ ?
- Do you see any relationship between the specific x & y values that solve the equation for each n value?

#### int main() DisplayHeader(); const uintmax\_t xMax = 70000; for (uintmax t n = 2; $n \le 70$ ; n++) cout << setw(4) << n;</pre> bool foundSolution = false; uintmax t x = 1; while ((x <= xMax) && !foundSolution)</pre> uintmax\_t xSqr = x \* x; uintmax t y = 1;uintmax\_t yMax = sqrt(xSqr / n); while ((y <= yMax) && !foundSolution)</pre> uintmax\_t ySqr = y \* y; if (xSqr - n \* ySqr == 1)cout << setw(8) << x << setw(8) << y; foundSolution = true; y++; X++; if (!foundSolution) cout << setw(8) << "-" << setw(8) << "-"; cout << endl; return 0;

# Open Lab 3 Pell's Equation

$$x^2 - ny^2 = 1$$

As soon as a valid solution is found for the current value of **n**, then stop trying any more **x** & **y** values

Hyphens indicate no solution was found in the allowed search space

# Run Lab 3 Pell's Equation

| \$_                        |      |             |                  |
|----------------------------|------|-------------|------------------|
| File                       | Edit | View        | Terminal Tabs    |
| n                          |      | X           | у                |
| ===                        |      | ====        | ===              |
| 2                          |      | 3<br>2      | 2<br>1           |
| 2<br>3<br>4<br>5<br>6<br>7 |      | 2           | 1                |
| 4                          |      | -           | _                |
| 5                          |      | 9<br>5<br>8 | 4                |
| 6                          |      | 5           | 2                |
|                            |      | 8           | 4<br>2<br>3<br>1 |
| 8                          |      | 3           | 1                |
| 9                          |      | -           | -                |
| 10                         |      | 19          | 6<br>3<br>2      |
| 11<br>12                   |      | 10          | 3                |
| 12                         |      | 7           | 2                |
| 13                         |      | 649         | 180              |
| 14                         |      | 15          | 4                |
| 15                         |      | 4           | 1                |
| 16                         |      | -           | -                |
| 17                         |      | 33          | 8                |
| 18                         |      | 17          | 4                |
| 19                         |      | 170         | 39               |
| 20                         |      | 9           | 2                |
| 21                         |      | 55          | 12               |
| 22                         |      | 197         | 42               |
| 23                         |      | 24          | 5                |

| \$   |      |       |          |      |
|------|------|-------|----------|------|
| File | Edit | View  | Terminal | Tabs |
| 24   |      | 5     | 1        |      |
| 25   |      | -     | -        |      |
| 26   |      | 51    | 10       |      |
| 27   |      | 26    | 5        |      |
| 28   |      | 127   | 24       |      |
| 29   |      | 9801  | 1820     |      |
| 30   |      | 11    | 2        |      |
| 31   |      | 1520  | 273      |      |
| 32   |      | 17    | 3        |      |
| 33   |      | 23    | 4        |      |
| 34   |      | 35    | 6        |      |
| 35   |      | 6     | 1        |      |
| 36   |      | -     | -        |      |
| 37   |      | 73    | 12       |      |
| 38   |      | 37    | 6        |      |
| 39   |      | 25    | 4        |      |
| 40   |      | 19    | 3        |      |
| 41   |      | 2049  | 320      |      |
| 42   |      | 13    | 2        |      |
| 43   |      | 3482  | 531      |      |
| 44   |      | 199   | 30       |      |
| 45   |      | 161   | 24       |      |
| 46   |      | 24335 | 3588     |      |
| 47   |      | 48    | 7        |      |

| <b>\$</b> _ |           |          |      |
|-------------|-----------|----------|------|
| File        | Edit View | Terminal | Tabs |
| 48          | 7         | ' 1      |      |
| 49          |           |          |      |
| 50          | 99        | 14       |      |
| 51          | 56        | ) 7      |      |
| 52          | 649       | 90       |      |
| 53          | 66249     | 9100     |      |
| 54          | 485       |          |      |
| 55          | 89        |          |      |
| 56          | 15        |          |      |
| 57          | 151       |          |      |
| 58          | 19603     |          |      |
| 59          | 536       |          |      |
| 60          | 31        | 4        |      |
| 61          |           | -        |      |
| 62          | 63        |          |      |
| 63          | 8         | 3 1      |      |
| 64          |           | -        |      |
| 65          | 129       |          |      |
| 66          | 65        |          |      |
| 67          | 48842     |          |      |
| 68          | 33        |          |      |
| 69          | 7775      |          |      |
| 70          | 251       | L 30     |      |

#### **Check** Lab 3 – Observations

Which values of **n** have no solution?

$$n = 1, 4, 9, 16, 25, 36, 49, 61, 64, ...$$

Some of the values for x & y are much bigger than for other

close values of **n**:

| 40 | 19    | 3    |
|----|-------|------|
| 41 | 2049  | 320  |
| 42 | 13    | 2    |
| 43 | 3482  | 531  |
| 44 | 199   | 30   |
| 45 | 161   | 24   |
| 46 | 24335 | 3588 |
| 47 | 48    | 7    |
| 48 | 7     | 1    |

 The magnitude of n does not seem to be a good predictor about the magnitude of the x & y values that solve the equation for that specific n

## Pell's Equation: Period of Simple CF

#### Small values for x & y

| n  | х  | у |
|----|----|---|
| 35 | 6  | 1 |
| 47 | 48 | 7 |
| 60 | 31 | 4 |
| 68 | 33 | 4 |

Period = 2 
$$\sqrt{68}$$
 = {8, 4, 16, 4, 16,

#### Large values for x & y

| n  | х          | у         |
|----|------------|-----------|
| 13 | 649        | 180       |
| 29 | 9801       | 1820      |
| 41 | 2049       | 320       |
| 43 | 3482       | 531       |
| 46 | 24335      | 3588      |
| 53 | 66249      | 9100      |
| 61 | 1766319049 | 226153980 |
| 67 | 48842      | 5967      |

Period = 5
$$\sqrt{29} = \begin{cases} 5, 2, 1, 1, 2, 10, 2, 1, 1, 2, 10, \\ & \text{Period} = 5 \end{cases}$$

$$\sqrt{53} = \begin{cases} 7, 3, 1, 1, 3, 14, 3, 1, 1, 3, 14, \\ & \text{Period} = 11 \end{cases}$$

## Pell's Equation: Period of Simple CF



| Large values for x & y |  |            |   |      |      |      |  |  |  |
|------------------------|--|------------|---|------|------|------|--|--|--|
| n                      |  | >          | ( |      |      |      |  |  |  |
| 13                     |  | 649        | ) |      |      | 180  |  |  |  |
| 29                     |  | 9801       | Ц | 1820 |      |      |  |  |  |
| 41                     |  | 2049       | ) | 320  |      |      |  |  |  |
| 43                     |  | 3482       | 2 |      | 531  |      |  |  |  |
| 46                     |  | 24335      | 5 | 358  |      |      |  |  |  |
| 53                     |  | 66249      | ) |      | 9100 |      |  |  |  |
| 61                     |  | 1766319049 | ) | 1    | 3980 |      |  |  |  |
| 67                     |  | 48842      |   |      |      | 5967 |  |  |  |



 $\sqrt{13}$  Period = 4

If the period of the simple CF of the  $\sqrt{n}$  is large...

 $\sqrt{61}$  Period = 11

...then the x & y will be large for the solution to Pell's equation

#### **Continued Fractions**

- CFs may have their own rich arithmetic, algebra, and potentially even their own calculus
  - How can one <u>directly</u> <u>divide</u> two CFs?
  - How can one <u>directly</u> take the sin() of a CF?
  - What does the factorial of a CF look like?
- In many ways a CF is a more accurate representation of an irrational or transcendental number
  - The sum of an infinite series must stop somewhere, and after that point, all of the remaining digits of precision are lost
  - A CF encodes the entire number with no loss of precision
  - What can you discover about CFs?

- Until recently, most computer languages only provided a uniform pseudo-random number generator
- Growing up I had heard of a bell curve and I understood the rationale for curving test scores
- However I could not create a normal distribution using my 1978 vintage TRS-80 computer using Bill Gate's first BASIC language interpreter



... or could 1?





- There are indeed several ways to turn a uniform distribution into a normal distribution
- Developing an accurate functional approximation to a normal curve requires advanced mathematics
- Consider this code from Abramowitz & Stegun's classic Handbook



- This was neat but I did not understand it at all!
- Where did all those magic numbers come from?
- I wanted to base my approach after something tangible

## Pachinko Distribution



## Pachinko Distribution



## Pachinko Distribution



- We can simulate dropping balls down a Pachinko board where at each level a ball can move one step to left or right
- If we drop enough balls through enough levels, and we accumulate the count of balls at each slot at the bottom, then we should be able to simulate a normal distribution
- We will run a chi-squared test to see if our code simulates a distribution that has a reasonable deviation from the perfect (pure) normal distribution
- If the discrepancies are statistically significant, then we cannot trust that our algorithm is producing a "good enough" normal distribution to use in scientific simulations

## Open Lab 4 – Pachinko Normal



```
The range is ½ the number of levels
```

```
int DropBall()
{
   int slot{};
   for (int level{}; level < levels; level++) {
      int step = distribution(generator);
      if (step == 0)
            slot--;
      else
            slot++;
   }
   slot = slot / 2;
   return stot;
}</pre>

seed_seq seed{ 2016 };
default_random_engine generator(seed);
uniform_int_distribution<int> distribution(0, 1);
```

#### View Lab 4 – Pachinko Normal

```
const int balls{ 1000 };
const int levels{ 10 };
seed_seq seed{ 2016 };
default_random_engine generator(seed);
uniform_int_distribution<int> distribution(0, 1);
double mean{};
double stddev{};

const int sigmas{ 4 };
vector<int> sigCountPachinko(sigmas);
vector<int> sigCountNormal(sigmas);
double chiSquared{};
```

```
int main()
{
    CalcMeanPachinko();

    ResetPachinkoDistribution();

    CalcStdDevPachinko();

    ResetPachinkoDistribution();

    CountBallsPerSigma();

    DisplayBallsPerSigma();

    return 0;
}
```

```
void ResetPachinkoDistribution()
{
    generator.seed(seed);
    distribution.reset();
}

void CalcMeanPachinko()
{
    for (int ball{}; ball < balls; ball++)
        mean += DropBall();
    mean /= balls;
}

void CalcStdDevPachinko()
{
    double variance{};
    for (int ball{}; ball < balls; ball++)
        variance += pow(DropBall() - mean, 2);
    stddev = sqrt(variance / balls);
}</pre>
```

The mean slot should be = 0

#### View Lab 4 – Pachinko Normal

```
const int balls{ 1000 };
const int levels{ 10 };
```

```
const int sigmas{ 4 };
vector<int> sigCountPachinko(sigmas);
vector<int> sigCountNormal(sigmas);
```





- A sigma is a integral multiple of the standard deviation
- Each slot is belongs to a sigma
- We count the number of balls that fall into each sigma

## **Chi-Squared Test**

 Does the Pachinko distribution perform reasonably well compared to a perfect normal distribution?

$$\chi^2 = \sum \frac{(O-E)^2}{E}$$

```
for (int s{}; s < sigmas; s++)
    chiSquared += (pow(
        sigCountNormal[s] -
        sigCountPachinko[s], 2)
        / sigCountNormal.at(s));</pre>
```



#### Run Lab 4 – Pachinko Normal



For 4 degrees of freedom, the

19.686 deviation is statistically

significant (> 9.49) so the proposed algorithm is not generating reasonable normally distributed probabilities!

| Degrees of | Probability |                |      |      |      |       |       |       |       |          |       |
|------------|-------------|----------------|------|------|------|-------|-------|-------|-------|----------|-------|
| Freedom    | 0.95        | 0.90           | 0.80 | 0.70 | 0.50 | 0.30  | 0.20  | 0.10  | 0.05  | 0.01     | 0.001 |
| 1          | 0.004       | 0.02           | 0.06 | 0.15 | 0.46 | 1.07  | 1.64  | 2.71  | 3.84  | 6.64     | 10.83 |
| 2          | 0.10        | 0.21           | 0.45 | 0.71 | 1.39 | 2.41  | 3.22  | 4.60  | 5.99  | 9.21     | 13.82 |
| 3          | 0.35        | 0.58           | 1.01 | 1.42 | 2.37 | 3.66  | 4.64  | 6.25  | 7.82  | 11.34    | 16.27 |
| 4<br>5     | 0.71        | 1.06           | 1.65 | 2.20 | 3.36 | 4.88  | 5.99  | 7.78  | 9.49  | 13.28    | 18.47 |
| 5          | 1.14        | 1.61           | 2.34 | 3.00 | 4.35 | 6.06  | 7.29  | 9.24  | 11.07 | 15.09    | 20,52 |
| 6          | 1.63        | 2.20           | 3.07 | 3.83 | 5.35 | 7.23  | 8.56  | 10.64 | 12.59 | 16.81    | 22.46 |
| 7          | 2.17        | 2.83           | 3.82 | 4.67 | 6.35 | 8.38  | 9.80  | 12.02 | 14.07 | 18.48    | 24.32 |
| 8          | 2.73        | 3.49           | 4.59 | 5.53 | 7.34 | 9.52  | 11.03 | 13.36 | 15.51 | 20.09    | 26.12 |
| 9          | 3.32        | 4.17           | 5.38 | 6.39 | 8.34 | 10.66 | 12.24 | 14.68 | 16.92 | 21.67    | 27.88 |
| 10         | 3.94        | 4.86           | 6.18 | 7.27 | 9.34 | 11.78 | 13.44 | 15.99 | 18.31 | 23.21    | 29.59 |
|            |             | Nonsignificant |      |      |      |       |       |       |       | ignifica | nt    |

## Approaching a Normal Distribution

Maybe we didn't let enough balls drop through to get a good estimate?

What if we used 10x more balls?





## Approaching a Normal Distribution

- So can the Pachinko model accurately mimic a normal distribution? Yes! ...but only under the right circumstances
- It turns out that it is not just the number of balls that are used in the experiment that matters, but also the number of levels in the simulated Pachinko board
- The levels affects how wide (displacement from the center slot) a ball can fall left or right from the topmost (first) pin
- We have to ensure we have enough levels (therefore enough width at the bottom level) to ensure the balls can spread out during their fall to occupy the side slots that represent the higher sigma values

## Approaching a Normal Distribution

Increasing the number of levels improves the agreement of the sigma ball count between the Pachinko and perfect normal distribution, thereby decreasing the chi-squared value, until the difference is no longer statistically significant

| Degrees of     |       | Probability |      |      |      |       |       |       |       |          |       |
|----------------|-------|-------------|------|------|------|-------|-------|-------|-------|----------|-------|
| Freedom        | 0.95  | 0.90        | 0.80 | 0.70 | 0.50 | 0.30  | 0.20  | 0.10  | 0.05  | 0.01     | 0.001 |
| 1              | 0.004 | 0.02        | 0.06 | 0.15 | 0.46 | 1.07  | 1.64  | 2.71  | 3.84  | 6.64     | 10.83 |
| 2              | 0.10  | 0.21        | 0.45 | 0.71 | 1.39 | 2.41  | 3.22  | 4.60  | 5.99  | 9.21     | 13.82 |
| 3              | 0.35  | 0.58        | 1.01 | 1.42 | 2.37 | 3.66  | 4.64  | 6.25  | 7.82  | 11.34    | 16.27 |
| 4              | 0.71  | 1.06        | 1.65 | 2.20 | 3.36 | 4.88  | 5.99  | 7.78  | 9.49  | 13.28    | 18.47 |
| 5              | 1.14  | 1.61        | 2.34 | 3.00 | 4.35 | 6.06  | 7.29  | 9.24  | 11.07 | 15.09    | 20.52 |
| 6              | 1.63  | 2.20        | 3.07 | 3.83 | 5.35 | 7.23  | 8.56  | 10.64 | 12.59 | 16.81    | 22.46 |
| 7              | 2.17  | 2.83        | 3.82 | 4.67 | 6.35 | 8.38  | 9.80  | 12.02 | 14.07 | 18.48    | 24.32 |
| 8              | 2.73  | 3.49        | 4.59 | 5.53 | 7.34 | 9.52  | 11.03 | 13.36 | 15.51 | 20.09    | 26.12 |
| 9              | 3.32  | 4.17        | 5.38 | 6.39 | 8.34 | 10.66 | 12.24 | 14.68 | 16.92 | 21.67    | 27.88 |
| 10             | 3.94  | 4.86        | 6.18 | 7.27 | 9.34 | 11.78 | 13.44 | 15.99 | 18.31 | 23.21    | 29.59 |
| Nonsignificant |       |             |      |      |      |       |       |       | S     | ignifica | nt    |



#### **Central Limit Theorem**

#### Central limit theorem

In probability theory, the **central limit theorem** (**CLT**) establishes that, for the most commonly studied scenarios, when independent random variables are added, their sum tends toward a normal distribution (commonly known as a *bell curve*) even if the original variables themselves are not normally distributed. In more precise terms, given certain conditions, the arithmetic mean of a sufficiently large number of iterates of independent random variables, each with a well-defined (finite) expected value and finite variance, will be approximately normally distributed, regardless of the underlying distribution. [1][2] The theorem is a key concept in probability theory because it implies that probabilistic and statistical methods that work for normal distributions can be applicable to many problems involving other types of distributions.



## Approximating a Normal Distribution

It is best to use the code from Abramowitz & Stegun, as only **one** call to this function is required to produce a normalized random variable versus to my method:

(1000 balls x 1000 levels = 1M calls!)



## The C++ has a built-in normal\_distribution()

```
int main()
    std::random device rd{};
    std::mt19937 gen{rd()};
   // values near the mean are the most likely
   // standard deviation affects the dispersion of generated values from the mean
   std::normal distribution<> d{5,2};
    std::map<int, int> hist{};
    for(int n=0; n<10000; ++n) {
        ++hist[std::round(d(gen))];
    for(auto p : hist) {
        std::cout << std::setw(2)
                  << p.first << ' ' << std::string(p.second/200, '*') << '\n';
```

## Now you know...

- Rational, Irrational, and Transcendental numbers each have their own style of continued fractions
  - We can take any real number and generate a CF
  - Given a CF, we can *expand* it to regain the original number
- The convergents of a CF are excellent approximations to the original number
- The magnitude of the **x** & **y** values in solutions to Pell's Equation  $\{x^2-ny^2=1\}$  is related to the period of the simple continued fraction of  $\sqrt{n}$
- Memorizing thousands of digits of  $\pi$  is okay but I'd rather appreciate its beautifully simple GCF: [3; 1, {6|(2n+1)^2}]

## Now you know...

- A perfect Normal distribution ensures that 68.26% of all values fall within one (1) standard deviation from the mean
  - 99.73% of all values in a perfect normal distribution are within **three** (3) standard deviations from the mean
  - The normal distribution is known as the "bell curve"
- There is a way to convert a PRNG created uniform distribution into a normal distribution – but don't use the Pachinko method
- The chi-squared test suggests if the discrepancies between the observed and the expected values are <u>statistically</u> <u>significant</u>