BE 12 TOWN TO SEE THE PARTY OF THE PARTY OF

SEQUENCE LISTING

GTC Biotherapeutics, Inc.

- <120> Modified Antibodies Stably Produced in Milk and Methods of Producing Same
- <130> GTC-53
- <140> 10/722,903
- <141> 2003-11-26
- <150> US 60/429,606
- <151> 2002-11-27
- <160> 11
- <170> PatentIn version 3.2
- <210> 1
- <211> 2028
- <212> DNA
- <213> Homo sapiens
- <220>

<400> 1

- <221> misc_feature
- <223> Human Ig germline H-chain G-E-A region B: gamma-4 constant region, 3' end
- agetttetgg ggeaggeegg geetgaettt ggetgggge agggagggg etaaggtgae 60 geaggtggeg ceageeaggt geacaceaa tgeeeatgag eecagaeaet ggaeeetgea 120 tggaeeateg eggatagaea agaacegagg ggeetetgeg eeetgggeee agetetgtee 180 cacacegegg teacatggea eeacetetet tgeagettee aceaagggee eateegtett 240 eeeeetggeg eeetgeteea ggageacete egagageaea geegeeetgg getgeetggt 300 caaggaetae tteeeegaae eggtgaeggt gtegtggaae teaggegeee tgaeeagegg 360 egtgeacace tteeeggetg teetacagte eteaggaete taeteeetea geagegtggt 420
- gaccgtgccc tccagcagct tgggcacgaa gacctacacc tgcaacgtag atcacaagcc 480 cagcaacacc aaggtggaca agagagttgg tgagaggcca gcacagggag ggagggtgtc 540
- tgctggaagc caggctcagc cctcctgcct ggacgcaccc cggctgtgca gccccagccc 600
- .
- agggcagcaa ggcatgcccc atctgtctcc tcacccggag gcctctgacc accccactca 660
- tgctcaggga gagggtcttc tggatttttc caccaggctc ccggcaccac aggctggatg 720

cccctacccc aggccctgcg catacagggc aggtgctgcg ctcagacctg ccaagagcca

780

tatccgggag gaccctg	sccc ctgacctaag	cccaccccaa	aggccaaact	ctccactccc	840
tcagctcaga cacctto	tet ceteccagat	ctgagtaact	cccaatcttc	tctctgcaga	900
gtccaaatat ggtcccc	cat gcccatcatg	cccaggtaag	ccaacccagg	cctcgccctc	960
cagctcaagg cgggaca	iggt gccctagagt	agcctgcatc	cagggacagg	ccccagccgg	1020
gtgctgacgc atccacc	tcc atctcttcct	cagcacctga	gttcctgggg	ggaccatcag	1080
tcttcctgtt cccccca	aaa cccaaggaca	ctctcatgat	ctcccggacc	cctgaggtca	1140
cgtgcgtggt ggtggac	gtg agccaggaag	accccgaggt	ccagttcaac	tggtacgtgg	1200
atggcgtgga ggtgcat	aat gccaagacaa	agccgcggga	ggagcagttc	aacagcacgt	1260
accgtgtggt cagcgto	ctc accgtcctgc	accaggactg	gctgaacggc	aaggagtaca	1320
agtgcaaggt ctccaac	aaa ggcctcccgt	cctccatcga	gaaaaccatc	tccaaagcca	1380
aaggtgggac ccacggg	gtg cgagggccac	acggacagag	gccagctcgg	cccaccctct	1440
gccctgggag tgaccgc	tgt gccaacctct	gtccctacag	ggcagccccg	agagccacag	1500
gtgtacaccc tgccccc	atc ccaggaggag	atgaccaaga	accaggtcag	cctgacctgc	1560
ctggtcaaag gcttcta	ccc cagcgacatc	gccgtggagt	gggagagcaa	tgggcagccg	1620
gagaacaact acaagac	cac gcctcccgtg	ctggactccg	acggctcctt	cttcctctac	1680
agcaggctaa ccgtgga	icaa gagcaggtgg	caggagggga	atgtcttctc	atgctccgtg	1740
atgcatgagg ctctgca	acaa ccactacaca	cagaagagcc	tetecetgte	tctgggtaaa	1800
tgagtgccag ggccggc	aag cccccgctcc	ccgggctctc	ggggtcgcgc	gaggatgctt	1860
ggcacgtacc, ccgtcta	cat acttcccagg	cacccagcat	ggaaataaag	cacccaccac	1920
tgccctgggc ccctgtg	gaga ctgtgatggt	tctttccacg	ggtcaggccg	agtctgaggc	1980
ctgagtgaca tgaggga	uggc agagcgggtc	ccactgtccc	cacactgg		2028

<210> 2

t 61

<211> 61

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<223> IgG4 Hinge Region Nucleic Acid

<400> 2

tctgcagagt ccaaatatgg tcccccatgc ccatcatgcc caggtaagcc aacccaggcc 60

```
<210> 3
<211> 12
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> IgG4 Hinge Region Amino Acid
<400> 3
Glu Ser Lys Tyr Gly Pro Pro Cys Pro Ser Cys Pro
<210> 4
<211> 33
<212> DNA
<213> artificial sequence
<220>
<221> misc_feature
<223> S241P Oligo Nucleic Acid
<400> 4
                                                                     33
ggtcccccat gtcctccctg cccaggtaag cca
<210> 5
<211> 11
<212> PRT
<213> artificial sequence
<220>
<221> misc_feature
<223> S241P Oligo Amino Acid
<400> 5
Gly Pro Pro Cys Pro Pro Cys Pro Gly Lys Pro
<210> 6
<211> 65
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> IgG4 Hinge Region Nucleic Acid
```

```
cttctctctg cagagtccaa atatggtccc ccatgcccat catgcccagg tccgccaacc
                                                                     60
                                                                     65
caggc
<210> 7
<211> 12
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> IgG4 Hinge Region Amino Acid
<400> 7
Glu Ser Lys Tyr Gly Pro Pro Cys Pro Ser Cys Pro
               5
<210> 8
<211> 65
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> IgG2 Hinge Region Nucleic Acid
<400> 8
cttctctctg cagagegeaa atgttgtgtc gagtgeecae egtgeecagg teegeeaaee
                                                                     60
caggc
                                                                     65
<210> 9
<211> 12
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> IgG2 Hinge Region Amino Acid
<400> 9
Glu Arg Lys Cys Cys Val Glu Cys Pro Pro Cys Pro
<210> 10
<211> 33
```

```
<212> DNA
<213> artificial sequence
<220>
<221> misc_feature
<223> Oligo 2014 Nucleic Acid
<400> 10
                                                                     33
gaggagcagt tccagtctac ttaccgagtg gtc
<210> 11
<211> 11
<212> PRT
<213> artificial sequence
<220>
<221> misc_feature
<223> Oligo 2014 Amino Acid
<400> 11
Glu Glu Gln Phe Gln Ser Thr Tyr Arg Val Val
               5
```