Case Study Data Scientist Production Planning

Anahita Pakiman

Work Flow

seaborn streamlit sklearn jupyter

Consumption forecast

Models:

- Linear Regression annual
- Random Forest monthly
- Decision Tree monthly
- Autoregressive Integrated Moving Average Time series

Consumption = pred + SM * RMSE

Data Cleaning

Models

Methods	RMSE
• Mean	10262
• Linear Regression	4295
Random Forest	8486
• Decision Tree	11642

Linear Regression:

- RMSE on the test data: 4295

- The future cost prediction: 99622

- with 20% safety margin = 100481

Random Forest:

- RMSE on the test data: 8486

- The future cost prediction: 1186575

- with 20% safety margin = 1188272

- Decision Tree: - RMSE on the test data: 11642

- The future cost prediction: 1274226

with 20% safety margin = 1276554

- ARIMA: 1277340

Total Consumption per Year

Predict Consumption APP

Autoregressive Integrated Moving Average - ARIMA

Issues:

- No data split, no RSME to compare
- Dta point is not continues

Parameter: order=(30, 2, 5)

Improvement

Data split:

Change data split for annual forecast, first split and later average annual or seasonal consumption.

Hyperparameter tuning

All models are set to their default hyperparameters (python pkgs, mlflow, hyperopt). Of the models examined, the decision tree clearly overfits the data and the model complexity needs to be reduced (max_depth).

Modify prediction target, Time Series

Current models are trained to predict for a specific year/month. However, the result could be improved if we use a time series prediction and consider the time history (e.g. average consumption) in the input data and train it on its future prediction performance.

Re-evaluate data cleaning

Check the validity of the cleaned data points and reconsider including them in the dataset.

Try other models

For example: Support Vector Regression (SVR), Autoregressive Integrated Moving Average (ARIMA)

Commercial Plant Manager

- Present the APP and the parameters study available in the APP.
- Highlight the current best prediction and the reasoning behind it.
- Ask him/her to use the app and give feedback on the visualisations
 he/she needs to improve the use case and understanding of the models.
- Suggest further selection of data for better prediction (e.g. material type).

Focus on Communication and feedback:

- Exploration accasibility > colbaorative development
- Simplifying the DS concept > extend brain strorming of problem solving

Elctronic Mounting KG

Data Sceience idea:

- Reporting
- Interdependency analyses
 - Correlation of parameters
 - Hypothesis
- Specification limits
 - In-circuit analysis > Graph embedding
- Human based inspections

