Q. From the figure and the data given below, using Bayes Rule and calculate:

Pneumonia			Smoking		
True	0.1			Yes	0.2
False	0.9			No	0.8

		Cough	
Pneumonia	Smoking	True	False
True	Yes	0.95	0.05
True	No	0.8	0.2
False	Yes	0.6	0.4
False	No	0.05	0.95

	Temperature		
Pneumonia	Yes	No	
Yes	0.9	0.1	
No	0.2	0.8	

Solution:

Let c, be the event for the cough. (Here, \underline{c} represents to not cough)

Let p, be the event for pneumonia. (Here, <u>p</u> represents to not pneumonia)

Let s, be the event for smoking. (Here, \underline{s} represents to not smoking)

i.
$$P(c/(p \& s)) = 0.95$$

ii.
$$P(\underline{c}/(p \& s)) = 0.05$$

iii.
$$P(c/(p \& s)) = 0.6$$

iv.
$$P(c/(p \& s)) = 0.8$$

$$P(c) = [P(c/p \cap s)] * P(p) * P(s) + [P(c/p \cap s)] * P(p) * P(s) + [P(c/p \cap \underline{s})] * P(p) * P(\underline{s}) + [P(c/p \cap \underline{s})] * P(\underline{p}) * P(\underline{s})$$

$$= 0.95 * 0.1 * 0.2 + 0.6 * 0.9 * 0.2 + 0.8 * 0.1 * 0.8 + 0.05 * 0.9 * 0.8$$

$$= 0.019 + 0.108 + 0.064 + 0.036$$

=0.227

$$P(c/s) = \left[P \; (c/p \; \cap \; s)\right] * P(p) + \left[P \; (c/\underline{p} \; \cap \; s)\right] * P(\underline{p})$$

$$= 0.95* 0.1 + 0.6*0.9$$

$$=0.095+0.54$$

$$= 0.635$$

$$P(s/c) = [P(c/s) * P(s)] / P(c)$$

$$= [0.635*0.2] / 0.227$$

$$= 0.55$$

$$P(c/\underline{s}) = [P(c/p \cap \underline{s})] * P(p) * 1 + [P(c/p \cap s)] * P(p) * 1$$

$$= 0.8 * 0.1 + 0.05 * 0.9$$

$$= 0.08 * 0.045$$

$$=0.125$$