CMSC 818B HW 2

Gaussian Process

Gaussian process is a linear predictor which requires a kernel function. Alternatively, gaussian process can be described as a linear combination of co-variance functions. In Gaussian process we consider the co-variance function doesn't depend on the function instead it depends only on the position if inputs or observations.

Objective

Function to be learnt: sin(3x) (with noisy observations)

Implementation

- 1. Read observation data from file (training set)
- 2. Read test data form file (test set)
- 3. Generate truth values for test set (sine(3x))
- 4. Use different kernel to fit model to data
- 5. Compute mean squared error between ground truth and model predicted value

Kernel functions used

	Kernel	Hyper Parameters	Reason for choosing Kernel	MSE
1	Squared Exponential	l_{se} – Length Scale	Observed data has error and the error also	0.0732
	Kernel + Constant	σ_{se} – Variance	has to be modelled	
	Kernel	σ_c - error		
2	Square Exponential	l_{se} – Length Scale	Observed data has noise and the noise is	0.0459
	Kernel + Radial	σ_{se} – Variance	assumed to be gaussian	
	Basis Kernel	l_{rbf} - length scale		
3	Rational Quadratic +	l_{rq} – Length Scale	Observed data has noise and the noise level	0.0459
	Radial Basis Kernel	σ_{rq} – Variance	may not be constant throughout the data	
		α_{rq} - weight factor		
		l_{rbf} - length scale		
4	Exp-Sine-Squared	l _{ess} – Length Scale	Since we already know that the function to	0.0011
	kernel + Radial	p_{ess} – Periodicity	be learnt is sine wave, which is periodic,	
	Basis Kernel	l_{rbf} - length scale	periodic kernel is used along with RBF to	
		.,	model gaussian noise. Since we know the	
			properties of the function to be learnt we	
			can tailor the kernel function and get	
			minimum error	

Final Model

Kernel 1

 $0.733**2*RBF(length_scale=0.481) + 0.0316**2$

Mean Squared Error: 0.07321081199043417

Kernel 2

 $0.0316**2*RBF(length_scale=100) + RBF(length_scale=0.561)$

Mean Squared Error: 0.045965971922398756

Kernel 3

0.0316**2 * RationalQuadratic(alpha=0.000707, length_scale=25) + RBF(length_scale=0.561)

Mean Squared Error: 0.04596593768269977

Kernel 4

3.11**2 * ExpSineSquared(length_scale=6.09, periodicity=2.09) + RBF(length_scale=100)

Mean Squared Error: 0.0011681031664022967

Plots

Objective

Given: Combined Cycle Power Plant Data Set

X = [T, AP, RH, V]

Y = [PE]

To predict: PE for test data

Implementation

- 1. Read observation data from file (training set)
- 2. Read test data form file (test set)
- 3. Read ground truth data for test set form solution file
- 4. Use different kernel to fit model to data
- 5. Compute mean squared error between ground truth and model predicted value

Kernel functions used

	Kernel	Hyper	Reason for choosing Kernel	MSE
		Parameters	S	
1	Squared Exponential Kernel (1 Dimensional) + Constant Kernel	l_{se} – Length Scale σ_{se} – Variance σ_c - error	Observed data has error and the error also has to be modelled	274.1088
2	Square Exponential Kernel (4 Dimensional) + Radial Basis Kernel	$4 \times l_{se}$ – Length Scale (one for each dimension) σ_{se} – Variance l_{rbf} - length scale	Observed data is in 4 dimensions and the noise is assumed to be gaussian	29.2136
3	Rational Quadratic + Radial Basis Kernel	l_{rq} – Length Scale σ_{rq} – Variance α_{rq} - weight factor l_{rbf} - length scale	Observed data has noise and the noise level may not be constant throughout the data	11.9522
4	Exp-Sine-Squared kernel + Radial Basis Kernel	l_{ess} – Length Scale p_{ess} – Periodicity l_{rbf} - length scale	The data might have small ripples throughout the length (since electrical energy is to be predicted, it might fluctuate depending on load and this might give rise to ripples) with some gaussian noise similar to the graph shown below.	NA

Final Model

Kernel 1

17.1**2 * RBF(length_scale=0.0122) + 31.6**2

Mean Squared Error: 274.1088810454674

Kernel 2

31.6**2 * RBF(length_scale=88) * RBF(length_scale=86.8) * RBF(length_scale=59) * RBF(length_scale=5.09) + RBF(length_scale=0.0374)

Mean Squared Error: 29.213600832990878

Kernel 3

31.6**2 * RationalQuadratic(alpha=0.00319, length_scale=2.85) + RBF(length_scale=0.0277)

Mean Squared Error: 11.952289870308482

Plots

Plotting 1st dimension against prediction

References

- 1. https://scikit-learn.org/stable/modules/gaussian_process.html#exp-sine-squared-kernel
- 2. https://scikit-learn.org/stable/auto_examples/gaussian_process/plot_gpr_noisy_targets.html
- 3. https://scikit-learn.org/stable/modules/gaussian_process.html#gpr-examples
- 4. https://www.cs.toronto.edu/~duvenaud/cookbook/