Package 'swt'

November 22, 2023

Description This R package provides tools for data analysis and visualization by Swisstransplant--the national organisation for organ donation and

Imports ggplot2, grDevices, utils, hms, data.table, rlang, officer, cowplot, utf8, testit

Type Package

Version 0.1

Index

Title Swisstransplant R Package

transplantation in Switzerland.

LazyData	true
License	ile LICENSE
Encoding	UTF-8
•	Note 7.2.3
• •	R (>= 3.5.0)
R topi	es documented:
	Fmt_hla
	HLA_mismatch
	HLA_parse
	kidmo_hr2rank
	kidmo_model
	kidmo_scaling
	ifeport_d2prc_temp
	ifeport_d2_temp
	ifeport_process
	ifeport_read
	ifeport_sumstats
	nean_sd
	median_iqr
	miss_perc
	nearest
	swt_colors
	swt_LifePortCaseReport
	swt_style
	idy_missing
	idy_pvalues
	idy_rmsfit

13

2 HLA_mismatch

fmt_hla

Helper function to format strings for broads, e.g. A(10) becomes A10 and A becomes NA

Description

Helper function to format strings for broads, e.g. A(10) becomes A10 and A becomes NA

Usage

```
fmt_hla(v_char)
```

Arguments

v_char

character vector

Value

formatted character vector

HLA_mismatch

The function calculates HLA mismatches.

Description

The function calculates HLA mismatches.

Usage

```
HLA_mismatch(
    D.A1,
    D.A2,
    D.B1,
    D.B2,
    D.DR1,
    D.DR2,
    R.A1,
    R.A2,
    R.B1,
    R.B2,
    R.DR1,
    R.DR2
```

HLA_parse 3

Arguments

D.A1	Donor HLA Antigen on allele 1 locus A
D.A2	Donor HLA Antigen on allele 2 locus A
D.B1	Donor HLA Antigen on allele 1 locus B
D.B2	Donor HLA Antigen on allele 2 locus B
D.DR1	Donor HLA Antigen on allele 1 locus DR
D.DR2	Donor HLA Antigen on allele 2 locus DR
R.A1	Recipient HLA Antigen on allele 1 locus A
R.A2	Recipient HLA Antigen on allele 2 locus A
R.B1	Recipient HLA Antigen on allele 1 locus B
R.B2	Recipient HLA Antigen on allele 2 locus B
R.DR1	Recipient HLA Antigen on allele 1 locus DR
R.DR2	Recipient HLA Antigen on allele 2 locus DR

Value

data frame with mismatch information.

HLA_parse	Parser for the unstructured SOAS HLA information into structured data.

Description

Parser for the unstructured SOAS HLA information into structured data.

Usage

```
HLA_parse(D_HLA, R_HLA)
```

Arguments

D_HLA	Donor HLA antigens. Character string from SOAS variable D HLA Ag.
R_HLA	Recipient HLA antigens. Character string from SOAS variable R HLA Ag.

Value

a data frame with structured HLA information.

4 kidmo_scaling

kidmo_hr2rank

KIDMO conversion of hazard ratio to percentile rank.

Description

KIDMO conversion of hazard ratio to percentile rank.

Usage

```
kidmo_hr2rank(hr)
```

Arguments

hr

hazard ratio

Value

percentile

kidmo_model

Gets KIDMO prediction model fit.

Description

Gets KIDMO prediction model fit.

Usage

kidmo_model()

Value

Model fit

kidmo_scaling

Get KIDMO scaling factor.

Description

Get KIDMO scaling factor.

Usage

kidmo_scaling()

Value

scaling factor

lifeport_d2prc_temp 5

 $lifeport_d2prc_temp$

Returns the percentile rank of the distance D-squared for the temperature

Description

Returns the percentile rank of the distance D-squared for the temperature.

Usage

```
lifeport_d2prc_temp(d2)
```

Arguments

d2

D-squared

Value

percentile rank

lifeport_d2_temp

Calculate Mahalanobis distance D-square for LifePort temperature data.

Description

Calculate Mahalanobis distance D-square for LifePort temperature data.

Usage

```
lifeport_d2_temp(data)
```

Arguments

data

data frame or matrix with temperature data

Value

vector with D-square for temperature

6 lifeport_read

lifeport_process

Process LifePort data. Adds runtime, clock time vectors, and filtered time series.

Description

Process LifePort data. Adds runtime, clock time vectors, and filtered time series.

Usage

```
lifeport_process(lpdat, window_size = 15)
```

Arguments

lpdat A list with data from read.lifeport()
window_size rolling window size for filtering

Value

a list with additional processed data tables

lifeport_read

Read LifePort data

Description

Read LifePort data

Usage

```
lifeport_read(file, format = "guess")
```

Arguments

file The data file

format guess, binary or plaintxt (default guess)

Value

a list with LifePort data

lifeport_sumstats 7

lifeport_sumstats

Summary statistics for LifePort data.

Description

Summary statistics for LifePort data.

Usage

```
lifeport_sumstats(lpdat, ice_threshold = 2.5, infuse_threshold = 10)
```

Arguments

lpdat A list with data from read.lifeport()
ice_threshold Threshold for ice temperature in degrees Celsius
infuse_threshold

Threshold for infuse temperature in degrees Celsius

Value

a list with additional summary statistics

mean_sd

Returns mean and SD.

Description

Returns mean and SD.

Returns frequency count and percentage.

Usage

```
mean_sd(x, d1 = 1, d2 = 1)
mean_sd(x, d1 = 1, d2 = 1)
```

Arguments

X	a logical vector
d1	number of digits
d2	number of digits

Value

character object character object 8 miss_perc

median_iqr

Returns median and interquartile range IQR.

Description

Returns median and interquartile range IQR.

Usage

```
median_iqr(x, d1 = 1, d2 = 1, d3 = 1)
```

Arguments

Χ	a numeric vector
d1	number of digits
d2	number of digits
d3	number of digits

Value

character object

 ${\tt miss_perc}$

Returns frequency count and percentage of missing data.

Description

Returns frequency count and percentage of missing data.

Usage

```
miss_perc(x, d2 = 1)
```

Arguments

x a vector

d2 number of digits

Value

character object

nearest 9

nearest

Nearest element in vector for a given set of values.

Description

Nearest element in vector for a given set of values.

Usage

```
nearest(y, q)
```

Arguments

y vector to be searched

q vector of values of interest

Value

indices of the nearest elements in y for a set of values in q.

swt_colors

SWT colors

Description

Easy access to official SWT color scheme.

Usage

```
swt_colors()
```

Value

a SWT color object

Examples

```
mycolors = swt_colors()
mycolors$red.liver
```

10 swt_style

```
swt_LifePortCaseReport
```

Create SWT LifePort Case Report in MS Word.

Description

Create SWT LifePort Case Report in MS Word.

Usage

```
swt_LifePortCaseReport(data.file, output.file, template.file)
```

Arguments

```
data.file Lifeport data file output.file target file docx template.file template file docx
```

swt_style

SWT theme for ggplot

Description

This function allows you to add the SWT theme to your ggplot graphics.

Usage

```
swt_style(
  title_size = 14,
  subtitle_size = 14,
  font_size = 10,
  grey_theme = FALSE,
  legend_position = "top"
)
```

Arguments

```
title_size The font size of the title
subtitle_size The font size of the subtitle
font_size The font font size of the legend, axis text, and axis titles
grey_theme Whether to use the grey theme instead (TRUE or FALSE)
legend_position
Position of the legend (top, bottom, left or right)
```

tidy_missing 11

Examples

```
library(ggplot2)
ggplot(mtcars, aes(wt, mpg)) +
   geom_point() +
   swt_style()
```

tidy_missing

Tidy missing data summary from data frame.

Description

Tidy missing data summary from data frame.

Usage

```
tidy_missing(df)
```

Arguments

df

data frame with raw data

Value

data frame with summary data

 ${\tt tidy_pvalues}$

Formats p-values.

Description

Formats p-values.

Usage

```
tidy_pvalues(x)
```

Arguments

Х

numerical vector with p-values

Value

formatted p-values as character vector

12 tidy_rmsfit

tidy_rmsfit

Tidy rms model fit results.

Description

Tidy rms model fit results.

Usage

```
tidy_rmsfit(fit, ...)
```

Arguments

```
fit model fit from rms
```

... optional arguments to summary of the rms fit object.

Value

formatted data.frame

Index

```
fmt_hla, 2
HLA_mismatch, 2
HLA_parse, 3
kidmo_hr2rank,4
kidmo_model, 4
{\tt kidmo\_scaling, 4}
lifeport_d2_temp, 5
lifeport_d2prc_temp, 5
lifeport_process, 6
lifeport_read, 6
mean_sd, 7
{\tt median\_iqr}, \\ 8
miss_perc, 8
\mathsf{nearest}, \textcolor{red}{9}
swt_colors, 9
\verb|swt_LifePortCaseReport|, 10|\\
swt_style, 10
tidy_missing, 11
tidy_pvalues, 11
{\tt tidy\_rmsfit}, \\ \frac{12}{}
```