

Universidad Nacional de Ingeniería Escuela Profesional de Matemática Ciclo 2021-1

[Análisis Convexo - CM3E2] [Prof: Jonathan Munguia]

UNI, 02 de julio de 2021

Sétima Práctica Dirigida

- 1. Dé un ejemplo de una función f tal que $\overline{f} \neq f^{**}$.
- 2. Verifique si las siguientes funciones son Fréchet diferenciable y/o Gâteaux differenciable:

a)
$$f(x,y) = \frac{x^2y + 2xy^2}{x^2 + y^2}$$
 para $(x,y) \neq (0,0)$ y $f(0,0) = 0$.

b)
$$f(x,y) = \frac{x^2y}{x^4 + y^2}$$
 para $(x,y) \neq (0,0)$ y $f(0,0) = 0$.

c)
$$f(x,y) = \frac{x^4y}{x^6 + y^3}$$
 para $(x,y) \neq (0,0)$ y $f(0,0) = 0$.

3. Dada $f: \mathbb{R}^n \to \mathbb{R}$ convexa. Pruebe que

$$d \in \partial f(x) \iff f'(x,y) \ge \langle y, d \rangle \quad \forall y \in \mathbb{R}^n.$$

Discuta esta propiedad para las funciones en la Pregunta 1

- 4. Dada $f: \mathbb{R}^n \to \mathbb{R}$ convexa. Demuestre que para cada $x \in \mathbb{R}^n$:
 - a) $f'(x,y) = \max_{d \in \partial f(x)} \langle y, d \rangle$, para todo $y \in \mathbb{R}^n$.
 - b) f es Fréchet diferenciable en x si y solo si $\partial f(x)$ es unitario (singleton).
- 5. Dadas $f_j: \mathbb{R}^n \to \mathbb{R}, j=1,\cdots,r$ funciones convexas. Demostrar que
 - a) Para todo $x, d \in \mathbb{R}^n$, se cumple que $f'(x, d) = \max\{f'_i(x, d) : j \in A_x\}$,
 - b) $\partial f(x) = \operatorname{co}(\bigcup_{j \in A_x} \partial f_j(x)),$

donde $A_x = \{j : f_j(x) = f(x)\}.$

- 6. Suponga que $f: \mathbb{R}^n \to (-\infty, +\infty]$ es una función convexa propia. Se sabe que si $x_0 \in \partial \operatorname{dom} f$, entonces $\partial f(x_0)$ es o vacío o no acotado. Dar un ejemplo por cada posible caso.
- 7. Mostrar que si $f: \mathbb{R}^n \to (-\infty, +\infty]$ es una función convexa propia, entonces \overline{f} es una función convexa propia también. Utilice el subdiferencial.
- 8. Dada $f: \mathbb{R}^n \to \mathbb{R}$ convexa y X un subconjunto acotado de \mathbb{R}^n . Probar que $\bigcup_{x \in X} \partial f(x)$ es acotado.
- 9. Dadas $f_j: \mathbb{R}^n \to \mathbb{R}, j=1,\cdots,r$ funciones convexas y $f=f_1+\cdots+f_r$. Demostrar que

$$\partial f(x) = \partial f_1(x) + \dots + \partial f_r(x).$$

- 10. Dada $f: \mathbb{R}^n \to \mathbb{R}$ convexa y $g: \mathbb{R} \to \mathbb{R}$ diferenciable. Probar que la función $F = g \circ f$:
 - a) Posee todas sus derivadas direccionales en \mathbb{R}^n .
 - b) Si g es convexa y monótonamente no decreciente, entonces F es convexa y

$$\partial F(x) = \nabla g(f(x)) \, \partial f(x) \quad \forall x \in \mathbb{R}^n.$$

11. Hallar el subdiferencial en \mathbb{R}^n de la función f(x) = ||x||.