Homework 6

ALECK ZHAO

March 16, 2017

- 1. (a) Let $F \to \overline{F}$ be an algebraic closure of \overline{F} and let $F \to E$ be a finite field extension. Show that there exists an F-embedding of E into \overline{F} .
 - (b) It can be shown that (a) continues to hold when E is only assumed to be algebraic over F. Assuming this fact, show that any two algebraic closures of F are isomorphic as F-algebras.
- 2. Let F be a field and let $F \to \overline{F}$ an algebraic closure. As a continuation of 6.3 Ex. 21, show that a finite field extension $F \to E$ is normal \iff all F-embeddings of E into \overline{F} have the same image.

Section 6.2: Algebraic Extensions

- 7. Find the minimal polynomial of $u = \sqrt{3} i$
 - (a) over \mathbb{R} .

Solution. We have $\overline{u} = \sqrt{3} + i$, where

$$u + \overline{u} = 2\sqrt{3}$$
$$u\overline{u} = 4$$

so the minimal polynomial over \mathbb{R} is given by

$$m = x^2 - 2\sqrt{3}x + 4$$

(b) over \mathbb{Q} .

19. Let $\mathbb{C} \supseteq E \supseteq \mathbb{Q}$, where E is a field, and assume that $[E : \mathbb{Q}] = 2$. Show that $E = \mathbb{Q}(\sqrt{m})$, where m is a square-free integer.

21. Let $E \supseteq F$ be fields, and let $u, v \in E$ be algebraic over F of degrees m, n.

- (a) Show that $[F(u,v):F] \leq mn$.
- (b) If m and n are relatively prime, show that [F(u,v):F]=mn.
- (c) Is the converse to (b) true?
- 32. Let p and q in \mathbb{Q} satisfy $\sqrt{p} \notin \mathbb{Q}$ and $\sqrt{q} \notin \mathbb{Q}(\sqrt{p})$.
 - (a) Show that $\mathbb{Q}(\sqrt{p}, \sqrt{q}) = \mathbb{Q}(\sqrt{p} + \sqrt{q})$.
 - (b) Use Theorem 5 to find a basis of $\mathbb{Q}(\sqrt{p}, \sqrt{q})$ over \mathbb{Q} .
 - (c) Deduce that $x^4 2(p+q)x^2 + (p-q)^2$ is the minimal polynomial of $\sqrt{p} + \sqrt{q}$ over \mathbb{Q} .

Section 6.3: Splitting Fields

3. If $2 \neq 0$ in the field F, show that the splitting field E of $x^4 + 1$ over F is a simple extension of F and factors $x^4 + 1$ completely in E[x]. What happens if 2 = 0 in F?

- 21. Show that the following conditions are equivalent for fields $E \supseteq F$:
 - 1. E is the splitting field of a polynomial in F[x].
 - 2. [E:F] is finite and every irreducible polynomial in F[x] with a root in E splits completely in E[x].