CURRICULUM VITAE

WEIHAO MAI (麦伟浩)

866 Yuhangtang Road, Hangzhou |+86 13235810126 | wilsonmak@zju.edu.cn

EDUCATION

Zhejiang University, Hangzhou, China

MRes. in Neurobiology, GPA: 83.9/100

Sep 2016 - present

Supervisors: Dr. Shumin Duan (段树民) and Dr. Zhihua Gao (高志华)

South China Normal University, Guangzhou, China

B.S. in biotechnology, GPA: 86.9/100, ranking: 4/20

Sep 2012 - June 2016

SUMMER / WINTER SCHOOLS

Peking University, Beijing, China

Tutorial in Neuroscience and Artificial Neural Network

July 2018

 Understanding of modeling and statistical physics approach focusing on the information processing of neural circuits and networks

Summer school on data science, School of Mathematical Sciences

July 2017

• Recent developments of graphical theory, reinforcement learning and applied mathematics in high performance data analysis

Cognitive and neuroscience summer school, Center for Life Sciences

July 2013

 Understanding basic knowledges of modern neurobiology and cognitive neuroscience through lectures and laboratory touring

Shanghai Jiao Tong University, Shanghai, China

Computational Neuroscience winter school, Institute of Natural Sciences

Dec 2017

- Introduction of modeling and experimental studies focusing on the information processing properties
 of individual neurons, neural circuits and networks, and systems
- Computer lab class: implementing Hodgkin–Huxley model in matlab

RESEARCH EXPERIENCE

Zhejiang University, Hangzhou, China

Sep 2016 - present

Microglial specific metabolic gene expression feature

- Purpose: data mining of RNA-seq data to better understand the metabolism function of microglia
- Methods:

WEIHAO MAI (麦伟浩) PAGE 2

> identified metabolic differences among microglia and other types of brain cells by spearman's rank correlation and principal component analysis (PCA)

➤ analyzed metabolic gene expression in microglial development data using the Markov clustering algorithm (MCL)

• Results & conclusion:

- > microglia possesses a unique metabolic gene expression feature among other brain cell types
- microglial specific metabolic genes associated with glycolysis and increasingly expressed during development

Feature selection of disease specific microglial gene expression

- Purpose: determine biomarkers which regulate the microglial activation in Alzheimer's disease (AD)
- Methods: utilized machine learning (ML) methods to analyze two single cell data set from published articles of AD and neurodegeneration
 - applied t-Distributed Stochastic Neighbor Embedding (t-SNE) technique to determine specific microglia clusters in single cell RNA-seq data
 - > performed feature selection using elastic net logistic regression with stability selection
 - > assessed classification performance of feature selection by support vector machine (SVM) model
 - > unravel the biological functions of biomarkers by Gene Ontology (GO) enrichment analysis
 - ➤ validation of selected genes expression in bulk RNA-seq neurodegeneration data sets

• Results & conclusion:

- > Key genes in activated microglia in AD or neurodegeneration are defense response related
- > ML-selected gene set exhibited microglia-specific expression pattern while there was no apparent difference in neuron and astrocyte
- The expression pattern of the key genes were consistent among other bulk RNA-seq data
- The analysis provided a new direction for determining biomarkers in scRNA-seq data and a new insight to uncover neurodegeneration mechanism

China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen, China Mar 2015 – July 2016

Joint training student

Clopidogrel pharmacogenomics study

- Investigated single-nucleotide polymorphisms (SNPs) in over 1,800 patients treated by percutaneous coronary interventions (PCI)
- Applied PCA, logistic regression and survival analysis to detect SNPs associated with clopidogrel pharmacodynamic effects

WEIHAO MAI (麦伟浩) PAGE 3

PUBLICATIONS

ZG Zhu, QQ Ma, HB Yang, L Miao, JT Wu, SJ Hao, S Lin, <u>WH Mai</u>, YZ Hao, N M. Shah, YQ Yu and SM Duan. The Substantia Innominata Acts as a Rage Nucleus in Mice. in preparation

F Meng, ZG Guo, YL Hu, <u>WH Mai</u>, ZJ Zhang, B Zhang, QQ Ge, HF Lou, JF Chen, SM Duan and ZH Gao. Restricting ecto-5'-nucleotidase-derived adenosine attenuates neuroinflammation and protects neuronal loss in Parkinson's disease models. *Brain*, accepted

XM Liu, HS Xu, HQ Xu, QS Geng, <u>WH Mak</u>, Z Su, F Yang, T Zhang, R Gao, PP Jiang, HM Yang, J Wang, XQ Zhang, X Xu, XY Li, JY Chen, X Liu and SL Zhong. New genetic predispositions underlying cardiovascular outcomes among patients treated with clopidogrel and aspirin after percutaneous coronary intervention. *Scientific Reports*, submitted

HONORS AND AWARDS

•	Zhejiang University Outstanding Graduate Student	2018
•	Zhejiang University Academic Scholarship	2016
•	Zhejiang University Outstanding Camper	2015
•	South China Normal University Extracurricular Research Certificate	2014
•	South China Normal University School Study Activist	2013

SKILLS

Computer: R (packages: ggplot2, caret, Seurat), Python (packages: scikit-learn, scipy, numpy), bash shell Language: Chinese (native), English (TOEFL score: 98)