ELETROQUÍMICA

Redox - Definições

- 1- Oxidação e Redução
- 2- Reconhecimento de uma reação de oxirredução
- 3- Agente Oxidante e agente redutor
- 4- Balanceamento de equação

Complementos:

Balanceamento de Equações:

- 1) Método das tentativas
- 2) Método algébrico
- 3) Método das semirreações

PROFESSOR: THÉ

LICÃO: 119

1. Oxidação e Redução

Há muito tempo se notava que quando uma barra de ferro se **oxidava** (enferrujava) essa barra ficava mais pesada.

Explica-se o aumento da massa pela combinação de átomos de oxigênio com os de ferro

$$2 \overline{Fe_{(s)}^0} + 1,5 O_2 \longrightarrow 1 \overline{Fe_2O_{3(s)}}$$

No processo inverso, isto é, para transformar o **ferro oxidado** em **ferro metálico** (ferro puro, sem ferrugem) observa-se uma redução de massa.

$$\boxed{Fe_2O_{3(s)}} \xrightarrow{REDUÇÃO} 2 \boxed{Fe_{(s)}^0} + 1,5 O_{2(g)}^1$$

A perda de massa é devida à saída de oxigênio da peça que estava oxidada.

Então historicamente esses termos significavam:

$$C \xrightarrow{\text{oxidação}} CO_2 \text{ (introduzir oxigênio)}$$

$$CO_2 \xrightarrow{\text{redução}} C \text{ (reduzir oxigênio)}$$

Atualmente com o desenvolvimento da química, constatou-se que o fenômeno da oxidação estava associado à perda de elétrons, e a redução ao ganho de elétrons.

Os termos foram mantidos mas hoje tem outro significado

OXIDAÇÃO: doação de elétron REDUÇÃO: recepção de elétron

2) Reconhecimento de uma reação de óxido-redução (redox)

Constata-se que uma reação é de oxi-redução quando...

Há variação do Nox de algum elemento. Sempre que um átomo perde elétron outro átomo ganha

Qual elemento que sofreu...

Oxidação?

Aquele que perdeu elétron ou sofreu um aumento do Nox

Redução?

Aquele que ganhou o elétron ou sofreu uma redução do Nox

OXIDAÇÃO
Perda de elétrons
Aumento do Nox

REDUÇÃO Recebimento de Elétrons Redução do Nox

EXEMPLO 1

Quem se oxidou e quem se reduziu na reação:

a) $Ca + O \rightarrow CaO$ $0 \xrightarrow{\text{oxidação}} +2$ $0 \xrightarrow{\text{oxidou} - se : Ca}$ reduziu - se : O

3) Agente Oxidante - Agente Redutor

Quando ocorre uma troca de elétrons pode-se pensar que:

- Uma substância entra em contato com outra;
- Nesse contato uma substância arranca elétrons da outra
- Daí a **substância oxidante** é aquela que arranca os elétrons, provocando a perda de elétrons da outra, isto é, oxidando-a
- Já a substância redutora, a que perdeu elétrons, "provoca" o ganho pela outra, isto é, reduzindo-a

AGENTE OXIDANTE: é a substância que age oxidando um certo elemento químico de outra substância AGENTE REDUTOR: é a substância que age reduzindo um certo elemento químico de outra substância

EXEMPLO 2

Quais os elementos que sofrem oxidação e redução e as substâncias que agem como oxidante e redutor

4) Balanceamento de Equações

Quando um átomo ganha um elétron, outro obrigatoriamente perde um elétron, então:

> O número de elétrons perdidos

Examine a reação de REDOX

Estudando a oxidação e a redução separadamente:

$$Sn^{2+} \longrightarrow Sn^{4+} + \boxed{2e}$$
 $Fe^{3+} + \boxed{1e} \longrightarrow Fe^{2+}$
O número de elétrons perdidos e recebidos, nesse exemplo, **não** são iguais.

- Igualando-se o número de elétrons.
- Multiplicar cada reação por um fator conveniente, que iguale o número de elétrons

$$Sn^{2+} \rightarrow Sn^{4+} + 2e^{-}$$
 (x1)

$$Fe^{3+} + 1e^{-} \rightarrow Fe^{2+} \quad (x2)$$

Somam-se as semirreações e cancela-se o "número de elétrons", agora igualados.

$$Sn^{2+} \longrightarrow Sn^{4+} + 2e$$
 $x = 1 \longrightarrow Sn^{2+} \longrightarrow Sn^{4+} + 2e$
 $Fe^{3+} + 1e \longrightarrow Fe^{2+}$ $x = 2 \longrightarrow 2Fe^{3+} + 2e \longrightarrow 2Fe^{2+}$
 $soma: 2 Fe^{3+} + Sn^{2+} \longrightarrow Sn^{4+} + 2 Fe^{2+}$

Finalmente, voltando a equação original:

$$2 FeCl_3 + 1 SnCl_2 \longrightarrow 2 FeCl_2 + 1 SnCl_4$$

Completar o balanceamento "por tentativa" se ainda houver algum elemento não balanceado.

RESUMO

Oxidação e Redução

Oxidação: doação de elétrons Redução: recepção de elétron

Verifica-se a perda ou ganho de elétrons pela variação do

Mnemônicamente associe as siglas | OPA | e | RRR |

O Oxidação

Redução

Perda de elétrons

Recebimento de elétrons

A Aumento do Nox

R Redução do Nox

Agente Oxidante - Agente Redutor

Oxidante

Redutor

–Arranca elétrons

–Cede elétrons -Reduz o outro

-Oxida a outra espécie

-Sofre oxidação

Sofre redução

O OXIDANTE é o assaltante de elétrons

Agente oxidante é assaltante de elétrons

Agente redutor é doador de elétrons

Oxidante: Arranca elétrons, oxida a outra espécie e sofre redução

Redutor: Cede elétrons, reduz o outro, sofre oxidação

Outras Definições:

Oxidante: é a substância que possui o elemento químico que se

reduz.

Redutor: é a substância que possui o elemento químico que se

oxida.

⊳ A substância é... OXIDANTE : o <u>elemento</u>... se reduz

⊳ A substância é... REDUTORA: o elemento... se oxida

5. Balanceamento de reações de Oxi-Redução

- 1- Calcula-se o nox de todos os elementos da equação
- 2- Identifica-se o elemento que se oxidou e o que se reduziu
- 3- Divide-se a reação em duas semirreações, a de oxidação e a de redução

Semirreação de oxidação: $Ca^0 \xrightarrow{oxi} Ca^{2+} + \boxed{2e^-}$ Semirreação de redução: $O + \boxed{2e^-} \xrightarrow{red} O^{--}$

Escrevem-se os elétrons ao membro mais positivo da reação

- > Oxidação: elétrons no lado dos produtos
- > Redução: elétrons no lado dos reagentes
 - Igualam-se o número de elétrons perdidos e recebidos (se ainda não estiverem igualados)
 - Finalmente, somam-se as semirreações, obtendo-se a equação completa novamente.
 - Os demais elementos da equação química, que não foram balanceados na semirreação, são agora balanceados por "tentativa".

> Ao final do balanceamento,

nas equações de OXI-RED devem se verificar a igualdade:

- a) do número de átomos
- b) das cargas

As reações químicas que não são do tipo REDOX, são denominadas METATÉTICAS.

COMPLEMENTO

Existem várias maneiras de se balancear uma equação química, tendo sempre em mente que os átomos **não são criados, nem exterminados** numa reação química.

O número de átomos de cada elemento no início da reação é o mesmo ao final da reação

a) Método das tentativas:

Escolhe-se um elemento para começar o balanceamento. Aquele que aparece em uma fórmula nos reagentes em apenas uma nos produtos.

Aproveite o índice do elemento em um dos membros transformando-o em coeficiente deste elemento no outro membro da equação.

Acompanhe o balanceamento da combustão do metano: Começando pelo hidrogênio (H)

$$\begin{array}{c|c}
\hline
2 & CH_4 + O_2 \longrightarrow CO_2 + \boxed{4} & H_2O
\end{array}$$

Os demais elementos são balanceados a partir das fórmulas já balanceadas

$$\boxed{2} CH_4 + \boxed{4} O_2 \longrightarrow \boxed{2} CO_2 + \boxed{4} H_2O$$

Em geral, simplificam-se os coeficientes:

$$1 CH_4 + 2 O_2 \longrightarrow 1 CO_2 + 2 H_2O$$

b) Método algébrico

1- Consiste em se criar uma equação para cada elemento atribuindo-se uma incógnita para cada coeficiente

$$x CH_4 + y O_2 \rightarrow z CO_2 + w H_2O$$

EQUAÇÕES

Carbono: x = z

 $Hidrog\hat{e}nio: 4x = 2w$

Oxigênio: 2y = 2z + w

2- Adotar um valor qualquer para uma das incógnitas. Determinar as demais, a partir da primeira adotada inicialmente.

Por exemplo:
$$\Rightarrow x = 2$$

$$x = z \implies z = 2$$

$$4x = 2w \implies 4(2) = 2w : w = 4$$

$$2y = 2z + w \Longrightarrow 2(2) + 4 : \boxed{y = 4}$$

Finalmente,

$$2 CH_4 + 4 O_2 \rightarrow 2 CO_2 + 4 H_2O$$

Simplificando:

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$$

c) Método das Semi-Reações

Nas equações OXI-RED devem-se verificar a igualdade:

- do número de átomos;
- · das cargas.

$$\begin{array}{c|c} FeCl_2 + SnCl_2 & \longrightarrow FeCl_2 + SnCl_4 \\ \hline \downarrow 3 & \downarrow 2 & \downarrow 42 \\ \hline \end{array}$$

Estudando a oxidação e a redução separadamente

$$\left[Sn^{2+} \rightarrow Sn^{4+} + 2e\right] \times 1$$
: $Sn^{2+} \rightarrow Sn^{4+} + 2e$

$$\underbrace{\left[Fe^{3+} + 1e \rightarrow Fe^{2+} \right] \times 2}_{\text{CP}} : 2Fe^{3+} + 2e \rightarrow 2Fe^{2+}$$

soma:
$$2Fe^{3+} + Sn^{2+} \rightarrow Sn^{4+} + 2Fe^{2+}$$

Voltando a equação original:

$$2 FeCl_3 + 1 SnCl_2 \longrightarrow 2 FeCl_2 + 1 SnCl_4$$

Completar o balanceamento "por tentativa" se ainda houver algum elemento não balanceado.