PROBLEM STATEMENT:- TO DIVIDE THE DATA INTO CLUSTERS BASED ON THE SIMILARITY

In [32]: ▶

import numpy as np
import pandas as pd
from sklearn.linear_model import LinearRegression

In [4]: ▶

df=pd.read_csv(r"C:\Users\samit\OneDrive\Desktop\jupyter\Online Retail csv.csv")
df

Out[4]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	6	01-12-2010 08:26	2.55	17850.0
1	536365	71053	WHITE METAL LANTERN	6	01-12-2010 08:26	3.39	17850.0
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	01-12-2010 08:26	2.75	17850.0
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	01-12-2010 08:26	3.39	17850.0
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	01-12-2010 08:26	3.39	17850.0
541904	581587	22613	PACK OF 20 SPACEBOY NAPKINS	12	09-12-2011 12:50	0.85	12680.0
541905	581587	22899	CHILDREN'S APRON DOLLY GIRL	6	09-12-2011 12:50	2.10	12680.0
541906	581587	23254	CHILDRENS CUTLERY DOLLY GIRL	4	09-12-2011 12:50	4.15	12680.0
541907	581587	23255	CHILDRENS CUTLERY CIRCUS PARADE	4	09-12-2011 12:50	4.15	12680.0
541908	581587	22138	BAKING SET 9 PIECE RETROSPOT	3	09-12-2011 12:50	4.95	12680.0
541909	rows × 8 co	lumns					
◆							

In [5]: ▶

df.head()

Out[5]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Countr
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	6	01-12-2010 08:26	2.55	17850.0	Unite Kingdor
1	536365	71053	WHITE METAL LANTERN	6	01-12-2010 08:26	3.39	17850.0	Unite Kingdor
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	01-12-2010 08:26	2.75	17850.0	Unite Kingdor
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	01-12-2010 08:26	3.39	17850.0	Unite Kingdor
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	01-12-2010 08:26	3.39	17850.0	Unite Kingdor
4								•

In [6]: ▶

df.tail()

Out[6]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID
541904	581587	22613	PACK OF 20 SPACEBOY NAPKINS	12	09-12-2011 12:50	0.85	12680.0
541905	581587	22899	CHILDREN'S APRON DOLLY GIRL	6	09-12-2011 12:50	2.10	12680.0
541906	581587	23254	CHILDRENS CUTLERY DOLLY GIRL	4	09-12-2011 12:50	4.15	12680.0
541907	581587	23255	CHILDRENS CUTLERY CIRCUS PARADE	4	09-12-2011 12:50	4.15	12680.0
541908	581587	22138	BAKING SET 9 PIECE RETROSPOT	3	09-12-2011 12:50	4.95	12680.0
4							•

In [7]: ▶

df.describe()

Out[7]:

	Quantity	UnitPrice	CustomerID
count	541909.000000	541909.000000	406829.000000
mean	9.552250	4.611114	15287.690570
std	218.081158	96.759853	1713.600303
min	-80995.000000	-11062.060000	12346.000000
25%	1.000000	1.250000	13953.000000
50%	3.000000	2.080000	15152.000000
75%	10.000000	4.130000	16791.000000
max	80995.000000	38970.000000	18287.000000

```
In [8]:
                                                                                       M
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 541909 entries, 0 to 541908
Data columns (total 8 columns):
#
     Column
                  Non-Null Count
                                   Dtype
     -----
                  -----
     InvoiceNo
                  541909 non-null
                                   object
0
 1
     StockCode
                  541909 non-null
                                   object
 2
     Description 540455 non-null
                                   object
 3
                  541909 non-null
                                   int64
     Quantity
 4
     InvoiceDate 541909 non-null
                                   object
 5
     UnitPrice
                  541909 non-null float64
 6
     CustomerID
                  406829 non-null float64
 7
     Country
                  541909 non-null object
dtypes: float64(2), int64(1), object(5)
memory usage: 33.1+ MB
                                                                                       M
In [9]:
df.isnull().any()
Out[9]:
InvoiceNo
               False
StockCode
               False
Description
                True
Quantity
               False
InvoiceDate
               False
UnitPrice
               False
CustomerID
                True
Country
               False
dtype: bool
In [10]:
                                                                                       H
df.shape
Out[10]:
(541909, 8)
In [11]:
                                                                                       M
df.fillna(method='ffill',inplace=True)
```

```
M
In [12]:
df.isnull().sum()
Out[12]:
InvoiceNo
                0
StockCode
                0
Description
                0
Quantity
                0
{\tt InvoiceDate}
                0
UnitPrice
                0
CustomerID
                0
                0
Country
dtype: int64
In [13]:
                                                                                           H
del df['InvoiceNo']
```

In [14]: ▶

df

Out[14]:

	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country
0	85123A	WHITE HANGING HEART T- LIGHT HOLDER	6	01-12-2010 08:26	2.55	17850.0	United Kingdom
1	71053	WHITE METAL LANTERN	6	01-12-2010 08:26	3.39	17850.0	United Kingdom
2	84406B	CREAM CUPID HEARTS COAT HANGER	8	01-12-2010 08:26	2.75	17850.0	United Kingdom
3	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	01-12-2010 08:26	3.39	17850.0	United Kingdom
4	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	01-12-2010 08:26	3.39	17850.0	United Kingdom
541904	22613	PACK OF 20 SPACEBOY NAPKINS	12	09-12-2011 12:50	0.85	12680.0	France
541905	22899	CHILDREN'S APRON DOLLY GIRL	6	09-12-2011 12:50	2.10	12680.0	France
541906	23254	CHILDRENS CUTLERY DOLLY GIRL	4	09-12-2011 12:50	4.15	12680.0	France
541907	23255	CHILDRENS CUTLERY CIRCUS PARADE	4	09-12-2011 12:50	4.15	12680.0	France
541908	22138	BAKING SET 9 PIECE RETROSPOT	3	09-12-2011 12:50	4.95	12680.0	France

541909 rows × 7 columns

```
In [15]:

df=df[['Quantity','UnitPrice','CustomerID']]
df
```

Out[15]:

	Quantity	UnitPrice	CustomerID
0	6	2.55	17850.0
1	6	3.39	17850.0
2	8	2.75	17850.0
3	6	3.39	17850.0
4	6	3.39	17850.0
541904	12	0.85	12680.0
541905	6	2.10	12680.0
541906	4	4.15	12680.0
541907	4	4.15	12680.0
541908	3	4.95	12680.0

541909 rows × 3 columns

```
In [16]:
```

```
df.shape
```

Out[16]:

(541909, 3)

```
In [17]: ▶
```

```
import seaborn as sns
import matplotlib.pyplot as plt
```

In [18]: ▶

```
sns.lmplot(x='CustomerID',y='UnitPrice',data=df,order=2,ci=None)
```

Out[18]:

<seaborn.axisgrid.FacetGrid at 0x14c6e099610>

In [19]: ▶

from sklearn.cluster import KMeans
km=KMeans()
km

Out[19]:

▼ KMeans KMeans()

```
In [20]: ▶
```

```
y_predicted=km.fit_predict(df[["CustomerID","UnitPrice"]])
y_predicted
```

C:\Users\samit\AppData\Local\Programs\Python\Python311\Lib\site-packages
\sklearn\cluster_kmeans.py:870: FutureWarning: The default value of `n_i
nit` will change from 10 to 'auto' in 1.4. Set the value of `n_init` expl
icitly to suppress the warning
 warnings.warn(

Out[20]:

array([1, 1, 1, ..., 2, 2, 2])

```
In [21]:
```

```
df["cluster"]=y_predicted
df.head()
```

C:\Users\samit\AppData\Local\Temp\ipykernel_18152\2282443312.py:1: Settin
gWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

df["cluster"]=y_predicted

Out[21]:

	Quantity	UnitPrice	CustomerID	cluster
0	6	2.55	17850.0	1
1	6	3.39	17850.0	1
2	8	2.75	17850.0	1
3	6	3.39	17850.0	1
4	6	3.39	17850.0	1

In [22]:

```
df1=df[df.cluster==0]
df2=df[df.cluster==1]
df3=df[df.cluster==2]
plt.scatter(df1["CustomerID"],df1["UnitPrice"],color="black")
plt.scatter(df2["CustomerID"],df2["UnitPrice"],color="pink")
plt.scatter(df3["CustomerID"],df3["UnitPrice"],color="cyan")
plt.xlabel("CustomerID")
plt.ylabel("UnitPrice")
```

Out[22]:

Text(0, 0.5, 'UnitPrice')


```
In [23]: ▶
```

```
from sklearn.preprocessing import MinMaxScaler
scaler=MinMaxScaler()
scaler.fit(df[["UnitPrice"]])
df["UnitPrice"]=scaler.transform(df[["UnitPrice"]])
df.head()
```

C:\Users\samit\AppData\Local\Temp\ipykernel_18152\4223297019.py:4: Settin
gWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

df["UnitPrice"]=scaler.transform(df[["UnitPrice"]])

Out[23]:

	Quantity	UnitPrice	CustomerID	cluster
0	6	0.221150	17850.0	1
1	6	0.221167	17850.0	1
2	8	0.221154	17850.0	1
3	6	0.221167	17850.0	1
4	6	0.221167	17850.0	1

```
In [24]: ▶
```

```
y_predicted=km.fit_predict(df[["CustomerID","UnitPrice"]])
y_predicted
```

C:\Users\samit\AppData\Local\Programs\Python\Python311\Lib\site-packages
\sklearn\cluster_kmeans.py:870: FutureWarning: The default value of `n_i
nit` will change from 10 to 'auto' in 1.4. Set the value of `n_init` expl
icitly to suppress the warning
 warnings.warn(

Out[24]:

```
array([4, 4, 4, ..., 2, 2, 2])
```

In [25]: ▶

```
df["New Cluster"]=y_predicted
df.head()
```

C:\Users\samit\AppData\Local\Temp\ipykernel_18152\2865533764.py:1: Settin
gWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

df["New Cluster"]=y_predicted

Out[25]:

	Quantity	UnitPrice	CustomerID	cluster	New Cluster
0	6	0.221150	17850.0	1	4
1	6	0.221167	17850.0	1	4
2	8	0.221154	17850.0	1	4
3	6	0.221167	17850.0	1	4
4	6	0.221167	17850.0	1	4

In [26]: ▶

```
df1=df[df["New Cluster"]==0]
df2=df[df["New Cluster"]==1]
df3=df[df["New Cluster"]==2]
plt.scatter(df1["CustomerID"],df1["UnitPrice"],color="black")
plt.scatter(df2["CustomerID"],df2["UnitPrice"],color="pink")
plt.scatter(df3["CustomerID"],df3["UnitPrice"],color="cyan")
plt.xlabel("CustomerID")
plt.ylabel("UnitPrice")
```

Out[26]:

Text(0, 0.5, 'UnitPrice')


```
In [27]: ▶
```

```
km.cluster_centers_
```

Out[27]:

In [28]:

```
df1=df[df["New Cluster"]==0]
df2=df[df["New Cluster"]==1]
df3=df[df["New Cluster"]==2]
plt.scatter(df1["CustomerID"],df1["UnitPrice"],color="black")
plt.scatter(df2["CustomerID"],df2["UnitPrice"],color="pink")
plt.scatter(df3["CustomerID"],df3["UnitPrice"],color="cyan")
plt.scatter(km.cluster_centers_[:,0],km.cluster_centers_[:,1],color="red",marker="+")
plt.xlabel("CustomerID")
plt.ylabel("UnitPrice")
```

Out[28]:

Text(0, 0.5, 'UnitPrice')


```
In [29]:
```

```
k_rng=range(1,10)
sse=[]
```

ELBOW METHOD:-

In [31]: ▶

```
for k in k_rng:
   km=KMeans(n clusters=k)
   km.fit(df[["CustomerID","UnitPrice"]])
    sse.append(km.inertia )
print(sse)
plt.plot(k_rng,sse)
plt.xlabel("K")
plt.ylabel("Sum of Squared Error")
C:\Users\samit\AppData\Local\Programs\Python\Python311\Lib\site-packages
\sklearn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_i
nit` will change from 10 to 'auto' in 1.4. Set the value of `n_init` expl
icitly to suppress the warning
 warnings.warn(
C:\Users\samit\AppData\Local\Programs\Python\Python311\Lib\site-packages
\sklearn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_i
nit` will change from 10 to 'auto' in 1.4. Set the value of `n init` expl
icitly to suppress the warning
  warnings.warn(
C:\Users\samit\AppData\Local\Programs\Python\Python311\Lib\site-packages
\sklearn\cluster\_kmeans.py:870: FutureWarning: The default value of `n i
nit` will change from 10 to 'auto' in 1.4. Set the value of `n_init` expl
icitly to suppress the warning
 warnings.warn(
C:\Users\samit\AppData\Local\Programs\Python\Python311\Lib\site-packages
\sklearn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_i
nit` will change from 10 to 'auto' in 1.4. Set the value of `n_init` expl
icitly to suppress the warning
 warnings.warn(
C:\Users\samit\AppData\Local\Programs\Python\Python311\Lib\site-packages
\sklearn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_i
nit` will change from 10 to 'auto' in 1.4. Set the value of `n_init` expl
icitly to suppress the warning
  warnings.warn(
C:\Users\samit\AppData\Local\Programs\Python\Python311\Lib\site-packages
\sklearn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_i
nit` will change from 10 to 'auto' in 1.4. Set the value of `n_init` expl
icitly to suppress the warning
  warnings.warn(
C:\Users\samit\AppData\Local\Programs\Python\Python311\Lib\site-packages
\sklearn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_i
nit` will change from 10 to 'auto' in 1.4. Set the value of `n_init` expl
icitly to suppress the warning
  warnings.warn(
C:\Users\samit\AppData\Local\Programs\Python\Python311\Lib\site-packages
\sklearn\cluster\ kmeans.py:870: FutureWarning: The default value of `n i
nit` will change from 10 to 'auto' in 1.4. Set the value of `n_init` expl
icitly to suppress the warning
  warnings.warn(
C:\Users\samit\AppData\Local\Programs\Python\Python311\Lib\site-packages
\sklearn\cluster\ kmeans.py:870: FutureWarning: The default value of `n i
```

nit` will change from 10 to 'auto' in 1.4. Set the value of `n_init` expl

localhost:8888/notebooks/online retail.ipynb

warnings.warn(

icitly to suppress the warning

[1636787813359.9038, 400077229910.0796, 173473424696.1372, 96093174431.13 193, 59794644206.69411, 41558097996.873886, 31829293596.37155, 2384890443 0.7886, 18619563731.525654]

Out[31]:

Text(0, 0.5, 'Sum of Squared Error')

Based on the above prograom data has been divided into several clusters