RISP	OSTA TA	PANSITO	2(A	
Définises la 1	sporte trans	toria oli	un riteme	cliusa come
YE	(t) = Y(t) - 7	(t)	
Incromente dall	e visporte	s regime	e sermanente,	juelle
renstorie non di	pende unice	emente,	dall'inguesso u	(t) me
ande dalle ce	notition i	nitali:		
	X (0) = 0		STATO INIZIALE	NULLO
1176	m(t) = 8		INGRESSO A GRAL	1100
Per gertine il	transitorio	di un	vitena posso	mo utilisare
due disserenti	appolli:			
1) STUDIO DE	1 Poli		LA CONOSCENZA MATEMATICO DEL	
2) PARAMETRI GI			PIÙ INTUITIVO	
C) ITTIOATTE IZI GI	CODACI	7101080		

$$STV010 \quad 061 \quad POL1$$

$$Y_{t}(t) = Y(t) - Y(t)$$

$$Y_{t}(s) = Y(s) - 2 (Y(t))$$

$$Y_{t}(s) = W(s)|_{s=0}$$

$$M(t) = \delta_{-1}(t) \rightarrow M(s) = \frac{1}{s}$$

$$Y_{t}(s) = W(s) \cdot \frac{1}{s} - \frac{W(s)}{s}$$

$$P_{1}, ..., P_{n} \quad P_{n}$$

Ble arere quindi un transitorio brene (loe yt (t) - 0
il più relolemente possibile) è duindi nelessario ele i
poli à travino più a sinistra possibile. (POLI BRANDI IN)

bale limite difende delle costante temporale, quindi

2 < TMAX

· grafiamente, nel coso di soli complessi caviugati

Rale tanto più l'andamento è ossillatorio

(con limit: S = 0 IMM. PURO; S = 1 REALE PURO)

De là tragge le requent und romi

5 > 5 min

Wn > Wn MIN

Unundo le tre conditioni Ateniamo

POLI POSIZIONATI NELLA
ZONA GRIGIA
ASSICURANO
PLESS UN BREVE
TRANSITORIO

Mel caro di soli complessi coningeti, la risporte transtatie delede tento qui relocemente a tho quanto sui le serve reale dei soli è grande (in salore assolute), e la frequenta di orbillazione del modo prenotoseciolito è tonto sui elevate duanto sui è grande la sale immeginarie de soli tesi.

Mr: mossimo volore del modulo della risporte amonica resportato al suo salore in w = 0 Mr = W(jw) MAX [W(jo)] Mr (18) = 20 log10 | W(jw) | MAX - 20 log10 | W(jo) | = 20 log10 | W(jw) | MAX B3 ets sono inversemente poportionali tre loro. Quindi per volume ts dero aumentore B3 133 [rod/1] · ts [1] ~ 3 Mr e 3 jons direttamente proportionali tre lors \$ ~ 0,85 Mr Wt: pulsarione in coninjondenta della quale | F(jwt)/c/4] = 0 dB Wt [rad/1] = [3 = 5] . B3 [H2] my = 180° + / F(jut) mq e Mr sono indesomente proportionalite loro. I nontegg: di utilisse di cut e me al porte di tis e s' sono li studiamo nella ceterna alla tesse jubarione Kudiamo

Scanned by TapScanner