

Lecture 8: Image Alignments

Alignment

- Alignment: find parameters of model that maps one set of points to another
- Typically want to solve for a global transformation that accounts for *most* true correspondences
- Difficulties
 - Noise (typically 1-3 pixels)
 - Outliers (often 50%)
 - Many-to-one matches or multiple objects

Computing transformations

- Given a set of matches between images A and B
- How can we compute the transform T from A to B?

Find transform T that best "agrees" with the matches

Computing transformations

Parametric (global) warping

Transformation T is a coordinate-changing machine:

$$p' = 7(p)$$

What does it mean that T is global?

- Is the same for any point p
- can be described by just a few numbers (parameters)

For linear transformations, we can represent T as a matrix $p' = \mathbf{T}p$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \mathbf{T} \begin{bmatrix} x \\ y \end{bmatrix}$$

Common transformations

original

Transformed

translation

rotation

aspect

Scaling

- Scaling a coordinate means multiplying each of its components by a scalar
- Uniform scaling means this scalar is the same for all components:

Scaling

Non-uniform scaling: different scalars per component:

Scaling

Scaling operation:

$$x' = ax$$

$$y' = by$$

Or, in matrix form:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$
scaling matrix S

2-D Rotation

2-D Rotation

Polar coordinates...

$$x = r \cos (\phi)$$

$$y = r \sin (\phi)$$

$$x' = r \cos (\phi + \theta)$$

$$y' = r \sin (\phi + \theta)$$

Trig Identity...

$$x' = r \cos(\phi) \cos(\theta) - r \sin(\phi) \sin(\theta)$$

$$y' = r \sin(\phi) \cos(\theta) + r \cos(\phi) \sin(\theta)$$

Substitute...

$$x' = x \cos(\theta) - y \sin(\theta)$$

 $y' = x \sin(\theta) + y \cos(\theta)$

2-D Rotation

This is easy to capture in matrix form:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Even though $sin(\theta)$ and $cos(\theta)$ are nonlinear functions of θ ,

- x' is a linear combination of x and y
- y' is a linear combination of x and y

$$\mathbf{R}^{-1} = \mathbf{R}^T$$

What is the inverse transformation?

Rotation by $-\theta$

Basic 2D transformations

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Scale

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \Theta & -\sin \Theta \\ \sin \Theta & \cos \Theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Rotate

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & \alpha_x \\ \alpha_y & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$
Shear

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
Translate

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
Affine

 $\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} \begin{vmatrix} x \\ y \\ 1 \end{vmatrix}$ Affine is any combination of translation, scale, rotation, shear

Affine Transformations

Affine transformations are combinations of

- Linear transformations, and
- Translations

Properties of affine transformations:

- Lines map to lines
- Parallel lines remain parallel
- Ratios are preserved
- Closed under composition

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

or

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Projective Transformations

Projective transformations are combos of

- · Affine transformations, and
- Projective warps

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

Properties of projective transformations:

- Lines map to lines
- Parallel lines do not necessarily remain parallel
- Ratios are not preserved
- Closed under composition
- Models change of basis
- Projective matrix is defined up to a scale

2D image transformation

Name	Matrix	# D.O.F.	Preserves:	Icon
translation	$egin{bmatrix} ig[egin{array}{c c} ig[oldsymbol{I} ig oldsymbol{t} ig]_{2 imes 3} \end{array}$	2	orientation $+\cdots$	
rigid (Euclidean)	$igg[egin{array}{c c} R & t \end{bmatrix}_{2 imes 3}$	3	lengths $+\cdots$	\Diamond
similarity	$\left[\begin{array}{c c} sR & t\end{array}\right]_{2 imes 3}$	4	$angles + \cdots$	\Diamond
affine	$\left[egin{array}{c} oldsymbol{A} \end{array} ight]_{2 imes 3}$	6	parallelism $+\cdots$	
projective	$\left[egin{array}{c} ilde{m{H}} \end{array} ight]_{3 imes 2}$	8	straight lines in Image Proc.	

Given matched points in {A} and {B}, estimate the translation of the object

$$\begin{bmatrix} x_i^B \\ y_i^B \end{bmatrix} = \begin{bmatrix} x_i^A \\ y_i^A \end{bmatrix} + \begin{bmatrix} t_x \\ t_y \end{bmatrix}$$
Special Topics in Image Proc.

Least squares solution

- 1. Write down objective function
- 2. Derived solution
 - a) Compute derivative
 - b) Compute solution
- 3. Computational solution
 - a) Write in form Ax=b
 - b) Solve using pseudo-inverse or 5/5/2022 Special Topics in Image Proc. eigenvalue decomposition

$$\begin{bmatrix} x_i^B \\ y_i^B \end{bmatrix} = \begin{bmatrix} x_i^A \\ y_i^A \end{bmatrix} + \begin{bmatrix} t_x \\ t_y \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ \vdots & \vdots \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} t_x \\ t_y \end{bmatrix} = \begin{bmatrix} x_1^B - x_1^A \\ y_1^B - y_1^A \\ \vdots \\ x_n^B - x_n^A \\ y_n^B - y_n^A \end{bmatrix}$$

Problem: outliers

RANSAC solution

- 1. Sample a set of matching points (1 pair)
- 2. Solve for transformation parameters
- 3. Score parameters with number of inliers
- 4. Repeat steps 1-3 N times

$$\begin{bmatrix} x_i^B \\ y_i^B \end{bmatrix} = \begin{bmatrix} x_i^A \\ y_i^A \end{bmatrix} + \begin{bmatrix} t_x \\ t_y \end{bmatrix}$$

Problem: outliers, multiple objects, and/or many-to-one matches

Hough transform solution

- 1. Initialize a grid of parameter values
- 2. Each matched pair casts a vote for consistent values
- 3. Find the parameters with the most votes
- 4. Solve using least squares with inliers Special Topics in Image Proc.

$$\begin{bmatrix} x_i^B \\ y_i^B \end{bmatrix} = \begin{bmatrix} x_i^A \\ y_i^A \end{bmatrix} + \begin{bmatrix} t_x \\ t_y \end{bmatrix}$$

Simple case: translations

 $(\mathbf{x}_t, \mathbf{y}_t)$

How do we solve for $(\mathbf{x}_t, \mathbf{y}_t)$?

Special Topics in Image Proc.

Simple case: translations

Displacement of match
$$i = (\mathbf{x}_i' - \mathbf{x}_i, \mathbf{y}_i' - \mathbf{y}_i)$$

$$(\mathbf{x}_t, \mathbf{y}_t) = \left(\frac{1}{n} \sum_{i=1}^n \mathbf{x}_i' - \mathbf{x}_i, \frac{1}{n} \sum_{i=1}^n \mathbf{y}_i' - \mathbf{y}_i\right)$$

Another view

$$\mathbf{x}_i + \mathbf{x_t} = \mathbf{x}_i'$$
 $\mathbf{y}_i + \mathbf{y_t} = \mathbf{y}_i'$

- System of linear equations
 - What are the knowns? Unknowns?
 - How many unknowns? How many equations (per match)?

Another view

$$\mathbf{x}_i + \mathbf{x_t} = \mathbf{x}_i'$$
 $\mathbf{y}_i + \mathbf{y_t} = \mathbf{y}_i'$

- Problem: more equations than unknowns
 - "Overdetermined" system of equations
 - We will find the *least squares* solution 5/5/2022
 Special Topics in Image Proc.

4

Least squares formulation

For each point $(\mathbf{x}_i, \mathbf{y}_i)$

$$\mathbf{x}_i + \mathbf{x_t} = \mathbf{x}_i'$$
 $\mathbf{y}_i + \mathbf{y_t} = \mathbf{y}_i'$

we define the residuals as

$$r_{\mathbf{x}_i}(\mathbf{x}_t) = (\mathbf{x}_i + \mathbf{x}_t) - \mathbf{x}_i'$$

 $r_{\mathbf{y}_i}(\mathbf{y}_t) = (\mathbf{y}_i + \mathbf{y}_t) - \mathbf{y}_i'$

Least squares formulation

Goal: minimize sum of squared residuals

$$C(\mathbf{x}_t, \mathbf{y}_t) = \sum_{i=1}^n \left(r_{\mathbf{x}_i}(\mathbf{x}_t)^2 + r_{\mathbf{y}_i}(\mathbf{y}_t)^2 \right)$$

- "Least squares" solution
- For translations, is equal to mean (average) displacement

Least squares formulation

Can also write as a matrix equation

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \\ 0 & 1 \\ \vdots \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_t \\ y_t \end{bmatrix} = \begin{bmatrix} x'_1 - x_1 \\ y'_1 - y_1 \\ x'_2 - x_2 \\ y'_2 - y_2 \\ \vdots \\ x'_n - x_n \\ y'_n - y_n \end{bmatrix}$$

$$A_{2n \times 2}$$

Least squares

$\mathbf{At} = \mathbf{b}$

Find t that minimizes

$$||{\bf At} - {\bf b}||^2$$

■ To solve, form the *normal equations*

$$\mathbf{A}^{\mathrm{T}}\mathbf{A}\mathbf{t} = \mathbf{A}^{\mathrm{T}}\mathbf{b}$$
 $\mathbf{t} = \left(\mathbf{A}^{\mathrm{T}}\mathbf{A}\right)^{-1}\mathbf{A}^{\mathrm{T}}\mathbf{b}$
Special Topics in Image Proc.

Least squares: linear regression

$$\operatorname{Cost}(m,b) = \sum_{\substack{i=1 \\ \text{Special Topics in Image Proc.}}}^{n} |y_i - (mx_i + b)|^2$$

Linear regression

Affine transformations

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

$$\left[\begin{array}{c} x \\ y \\ 1 \end{array}\right]$$

- How many unknowns?
- How many equations per match?
- How many matches do we need?

4

Affine transformations

Residuals:

$$r_{x_i}(a, b, c, d, e, f) = (ax_i + by_i + c) - x'_i$$

 $r_{y_i}(a, b, c, d, e, f) = (dx_i + ey_i + f) - y'_i$

Cost function:

$$C(a,b,c,d,e,f) = \sum_{i=1}^{n} \left(r_{x_i}(a,b,c,d,e,f)^2 + r_{y_i}(a,b,c,d,e,f)^2 \right)$$
 Special Topics in Image Proc.

-

Affine transformations

Matrix form

$$\begin{bmatrix} x_1 & y_1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & x_1 & y_1 & 1 \\ x_2 & y_2 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & x_2 & y_2 & 1 \\ \vdots & & & & & \\ x_n & y_n & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & x_n & y_n & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \\ e \\ f \end{bmatrix} = \begin{bmatrix} x'_1 \\ y'_1 \\ x'_2 \\ y'_2 \\ \vdots \\ x'_n \\ y'_n \end{bmatrix}$$

Homographies

To unwarp (rectify) an image

- solve for homography H given p and p'
- solve equations of the form: wp' = Hp
 - linear in unknowns: w and coefficients of H
 - H is defined up to an arbitrary scale factor

5/5/2022 - how many points special especial espe

Solving for homographies

$$\begin{bmatrix} x_i' \\ y_i' \\ 1 \end{bmatrix} \cong \begin{bmatrix} h_{00} & h_{01} & h_{02} \\ h_{10} & h_{11} & h_{12} \\ h_{20} & h_{21} & h_{22} \end{bmatrix} \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix}$$

$$x_i' = \frac{h_{00}x_i + h_{01}y_i + h_{02}}{h_{20}x_i + h_{21}y_i + h_{22}}$$

$$y_i' = \frac{h_{10}x_i + h_{11}y_i + h_{12}}{h_{20}x_i + h_{21}y_i + h_{22}}$$

Not linear!

$$x'_i(h_{20}x_i + h_{21}y_i + h_{22}) = h_{00}x_i + h_{01}y_i + h_{02}$$

 $y'_i(h_{20}x_i + h_{21}y_i + h_{22}) = h_{10}x_i + h_{11}y_i + h_{12}$

Solving for homographies

$$x'_i(h_{20}x_i + h_{21}y_i + h_{22}) = h_{00}x_i + h_{01}y_i + h_{02}$$

 $y'_i(h_{20}x_i + h_{21}y_i + h_{22}) = h_{10}x_i + h_{11}y_i + h_{12}$

Solving for homographies

$$\begin{bmatrix} h_{00} \\ h_{01} \\ h_{02} \\ h_{10} \\ h_{11} \\ h_{12} \\ h_{20} \\ h_{21} \\ h_{22} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 0 \end{bmatrix}$$

Defines a least squares problem: minimize $||\mathbf{Ah} - \mathbf{0}||^2$

- ullet Since ${f h}$ is only defined up to scale, solve for unit vector ${f h}$
- Solution: $\hat{\mathbf{h}}$ = eigenvector of $\mathbf{A}^T \mathbf{A}$ with smallest eigenvalue
- Works with 4 or more points 5/5/2022 Special Topics in Image Proc.

Two Common Optimization Problems

Problem statement

minimize $\|\mathbf{A}\mathbf{x} - \mathbf{b}\|^2$

least squares solution to Ax = b

Solution

$$\mathbf{x} = \left(\mathbf{A}^T \mathbf{A}\right)^{-1} \mathbf{A}^T \mathbf{b}$$

$$\mathbf{x} = \mathbf{A} \setminus \mathbf{b}$$
 (matlab)

Problem statement

minimize $\mathbf{x}^T \mathbf{A}^T \mathbf{A} \mathbf{x}$ s.t. $\mathbf{x}^T \mathbf{x} = 1$

Solution

$$[\mathbf{v},\lambda] = \operatorname{eig}(\mathbf{A}^T \mathbf{A})$$

$$\lambda_1 < \lambda_{2..n} : \mathbf{x} = \mathbf{v}_1$$

non - trivial lsq solution to $\mathbf{A}\mathbf{x} = 0$

Special Topics in Image Proc.

Image Alignment Algorithm

Given images A and B

- Compute image features for A and B
- Match features between A and B
- 3. Compute homography between A and B using least squares on set of matches

What could go wrong?

