Logique - TD

Sophie Pinchinat – L3 Info Rennes 1

TD1

Exercice 1

Soit ϕ valide, $mod(\phi) = Val$ et comme (cours) $mod(\neg \phi) = Val \setminus mod(\phi) = Val \setminus Val = \emptyset$, $\neg \phi$ n'est pas satisfiable. Réciproquement, $mod(\neg \phi) = \emptyset \Rightarrow mod(\phi) = mod(\neg \neg \phi) = Val \setminus mod(\neg \phi) = Val \setminus \emptyset = Val$ et ϕ est valide; d'où (1).

$$\exists \nu \in mod(\phi) \Leftrightarrow mod(\neg \phi) = Val \setminus mod(\phi) \subsetneq Val \ (2)$$

Exercice 2

$$var(\phi)\subseteq X \text{ et } \nu_X=\nu_X' \text{ donc } \nu_{var(\phi)}=\nu_{var(\phi)}', \text{ d'où } \nu(\phi)=\nu'(\phi).$$

Exercice 3

Pour toute proposition $\phi \equiv p, \ \phi^* \equiv \neg p \equiv \neg \phi$ donc la propriété est vraie. Soient ϕ et ψ qui vérifient la propriété, alors $\phi \lor \psi$ se transforme en $\neg \phi \land \neg \psi$ et $\neg (\neg \phi \land \neg \psi) \equiv \neg \neg (\phi \lor \psi) \equiv \phi \lor \phi$ (calcul identique pour \land transformé en \lor). Donc la propriété est vraie pour toute formule.

Exercice 4

Tout d'abord, on a $p \to q \equiv (\neg p) \lor q$ donc toute formule contenant le signe \to peut s'écrire sans, et $\{\neg, \land, \lor\} \equiv \{\neg, \land, \lor, \to\}$. Ensuite, comme vu précédemment, $p \land q = \neg(\neg p \lor \neg q)$ donc de même, $\{\neg, \lor\} \equiv \{\neg, \land, \lor\}$ (+transitivité). Ajoutons que $\{\neg\} \sqsubseteq \{\neg, \lor\}$ (évident) et on obtient

$$\{\neg\} \sqsubset \{\neg, \lor\} \equiv \{\neg, \land, \lor, \rightarrow\}$$

(et plus généralement, \neg et \lor (ou \land , calculs analogues) suffisent à écrire toute formule de calcul propositionnel).

TD2

Exercice 1

 $\Gamma \models \varphi$ donne par définition $mod(\Gamma) \subseteq mod(\varphi)$. Soit ν une valuation modèle de $\Gamma \cup \{\neg \varphi\}$; cette valuation est aussi un modèle du sous-ensemble Γ et donc de φ d'après l'inclusion précédente. Alors $\nu(\varphi) = 1$ et $\nu(\neg \varphi) = 1$, ce qui est impossible. Il n'existe donc aucun modèle pour $\Gamma \cup \{\neg \varphi\}$, cet ensemble de formules est contradictoire.

Réciproquement, soit ν un modèle de Γ ; si $\nu(\varphi) = 0$, alors $\nu(\neg \varphi) = 1$ et ν satisfait $\Gamma \cup \{\neg \varphi\}$, ce qui est impossible. Donc $\nu(\varphi) = 1$, ν est un modèle de φ et on a bien $\Gamma \models \varphi$.

Exercice 2

Soit $\nu \in mod(\Sigma \cup \Gamma)$; $\forall \psi \in \Sigma, \psi \in \Sigma \cup \Gamma$ donc $\nu(\psi) = 1$ donc $\nu \in mod(\Sigma)$ et par un calcul similaire, $\nu \in mod(\Gamma)$. Ainsi, $\nu \in mod(\Sigma) \cap mod(\Gamma)$.

Réciproquement, soit $\nu \in mod(\Sigma) \cap mod(\Gamma)$. $\forall \varphi \in \Sigma \cup \Gamma$, si $\varphi \in \Sigma$, alors $\nu(\varphi) = 1$ puisque $\nu \in mod(\Sigma)$; si $\varphi \in \Gamma$, le calcul est analogue et donc on a bien $\nu \in mod(\Sigma \cup \Gamma)$. Ainsi, $mod(\Sigma \cup \Gamma) = mod(\Sigma) \cap mod(\Gamma)$.

Exercice 3

- 1. $\Gamma_2 = \{\varphi_1, \varphi_2\}$ est une telle simplification de Γ_1 ; en effet, tout modèle de Γ_1 est trivialement un modèle de Γ_2 et réciproquement, tout modèle de Γ_2 force p_B vrai et p_C faux, ce qui valide φ_3 , et est donc aussi un modèle de Γ_1 .
- 2. $mod(\Gamma_2) = \{(p_A, p_B, \neg p_C, p_D), (p_A, p_B, \neg p_C, \neg p_D), (\neg p_A, p_B, \neg p_C, p_D)\}$
- 3. Γ_2 est consistant (il admet trois modèles).
- 4. φ_3 est une conséquence logique de Γ_2 .
- 5. Il est contradictoire (aucun modèle de Γ_2 ne valide la nouvelle proposition, du coup ça marche pas).

Exercice 4

T: je joue au tennis, R: je regarde du tennis à la télé, A: je lis des articles sur le tennis. La publicité s'énonce $(\neg T \to R) \land (\neg R \to A) \equiv (T \lor R) \land (R \lor A) \equiv R \lor (T \land A)$; ainsi, la seule activité possible à l'exclusion des deux autres est R.

Exercice 5

A,B,C pour noter chaque suspect; D: Brown connaissait la victime; E: Clark détestait la victime; F: Brown était en ville; G: Adams était en ville. Les déclarations des suspects se formulent comme suit :

```
 \begin{split} & - \varphi_A = \neg A \wedge D \wedge E \\ & - \varphi_B = \neg B \wedge \neg D \wedge \neg F \\ & - \varphi_C = \neg C \wedge F \wedge G \wedge (A \vee B) \end{split}
```

Si Adams est le coupable, alors Brown et Clark disent la vérité d'après l'énoncé; or, leurs déclarations sont contradictoires (l'un affirme F et l'autre $\neg F$). Si Clark est le coupable, le même problème se pose entre les déclarations d'Adams et Brown. C'est donc Brown le coupable, ce saligaud.

Exercice 6

- 1. En numérotant les position de 1 à 4 dans le sens horaire en partant du haut, on peut exprimer chaque contrainte sous la forme : 1A signifie "la carte à la position 1 est un As", ou $3 \spadesuit$ pour "la carte à la position 3 est un Carreau".
- 2. Notre problème se modélise alors par un ensemble de clauses d'unicité : $(1A \land \neg 2A \land \neg 3A \land \neg 4A) \lor (\neg 1A \land 2A \land \neg 3A \land \neg 4A) \lor ...$ (avec le même genre de clauses pour les couleurs), auxquelles on adjoint les contraintes de l'énoncé :

```
\begin{array}{ll} --1A, \\ --3 \spadesuit, \\ --2D, \\ --1R \rightarrow 1 \clubsuit \land 2R \rightarrow 2 \clubsuit \land ..., \\ --1A \rightarrow \neg 1 \spadesuit \land 2A \rightarrow \neg 2 \spadesuit \land ... \end{array}
```