TD 01: TOPOLOGIE GÉNÉRALE

► Cette feuille de TD 1 nous occupera une semaine.

Exercices fondamentaux

1. HOMÉOMORPHISMES. Soient X et Y deux espaces topologiques localement compacts et $f: X \to Y$ une application continue, bijective et propre 1 . Montrer que f est un homéomorphisme.

2. COMPACTIFIÉ D'ALEXANDROV.

Soient X un espace localement compact et ∞ un élément n'appartenant pas à X. On note $\hat{X} = X \cup \{\infty\}$.

- (a) Montrer que l'ensemble des parties de \hat{X} de la forme U, avec U ouvert de X ou $U=(X-K)\cup\{\infty\}$, avec K compact de X, est une topologie sur \hat{X} . L'espace \hat{X} munie de cette topologie est appelé le compactifié d'Alexandrov de X et ∞ est son point à l'infini.
- (b) Montrer que la topologie induite sur X par celle de \hat{X} est la topologie de départ de X. Montrer que \hat{X} est compact.
- (c) Si Y est un espace topologique compact et si $\varphi: X \to Y$ est un homéomorphisme sur son image, tel que $\varphi(X) = Y \{y\}$, montrer que l'application $\hat{\varphi}: \hat{X} \to Y$ définie par $x \mapsto \varphi(x)$ si $x \in X$ et $\infty \mapsto y$, est un homéomorphisme.
- (d) Montrer que le compactifié d'Alexandrov de \mathbb{R}^n est homéomorphe à \mathbf{S}^n . (Nous regardons \mathbb{R}^n contenu dans \mathbb{R}^{n+1} comme l'hyperplan des n premières coordonnées. Si N est le pôle nord de \mathbf{S}^n , on utilisera la question (c), en montrant que la projection stéréographique $\pi: \mathbf{S}^n \{N\} \to \mathbb{R}^n$, qui à x associe le point d'intersection avec \mathbb{R}^n de la droite passant par N et x, est un homéomorphisme.)

3. SÉPARATION DES QUOTIENTS ET TORE.

Soient X un espace topologique, $\mathcal R$ une relation d'équivalence sur X, $X/\mathcal R$ l'ensemble quotient muni de la topologie quotient et $\pi:X\to X/\mathcal R$ la projection canonique.

- (a) Montrer que X/\mathcal{R} est séparé si, et seulement si, pour tous $x,y\in X$ non équivalents, il existe deux ouverts saturés 2U et V disjoints avec $x\in U$ et $y\in V$.
- (b) Montrer que si X/\mathcal{R} est séparé alors la relation d'équivalence \mathcal{R} est un sous ensemble fermé de $X \times X$.
- (c) Soient Y un espace topologique séparé et $f: X \to Y$ une application continue telle que $x\mathcal{R}y$ si, et seulement si, f(x) = f(y). Montrer que X/\mathcal{R} est séparé.
- (d) On suppose que $\operatorname{Card}(X/\mathcal{R}) \geqslant 2$. Montrer que s'il existe une classe d'équivalence dense dans X, alors X/\mathcal{R} n'est pas séparé et que si toutes les classes d'équivalence sont denses dans X, alors X/\mathcal{R} est muni de la topologie grossière.

Soient $\pi: \mathbb{R}^2 \to \mathbf{T}^2 = \mathbb{R}^2/\mathbb{Z}^2$ la projection canonique et $\alpha \in \mathbb{R} \cup \{\infty\}$. On se fixe $D \subset \mathbb{R}^2$ une droite de pente α .

- (e) Montrer que l'espace topologique quotient ${f T}^2$ est homéomorphe au produit de deux cercles ${f S}^1 imes {f S}^1$.
- (f) Montrer que si $\alpha=0$ alors $\pi(D)$ est homéomorphe à un cercle. Montrer que si α est irrationel alors $\pi(D)$ est dense dans $\mathbb{R}^2/\mathbb{Z}^2$ et $\pi_{|D}:D\to\pi(D)$ est une bijection continue. Est-ce que $\pi_{|D}$ est un homéomorphisme sur son image?
- (g) Soit \sim la relation suivante sur $\mathbb{R}^2/\mathbb{Z}^2$: $x\sim y$ si, et seulement s'il existe une droite D' parallèle à D et $x',y'\in D'$ tel que $\pi(x')=x$, $\pi(y')=y$. Montrer que \sim est une relation d'équivalence sur \mathbf{T}^2 et que l'espace quotient $\mathbf{T}^2/_{\sim}$ est séparé si, et seulement si, $\alpha\in\mathbb{Q}\cup\{\infty\}$. Montrer que si $\alpha=0$, alors l'espace quotient $\mathbf{T}^2/_{\sim}$ est homéomorphe à un cercle. Montrer que si α est irrationel, alors la topologie sur $\mathbf{T}^2/_{\sim}$ est la topologie grossière.

Les conclusions pour lpha=0 restent valables pour $lpha\in\mathbb{Q}\cup\{\infty\}$ via un automorphisme linéaire du tore.

4. RECOLLEMENT ET SOMME POINTÉE.

Soit X un espace topologique.

(a) Soient X,Y deux espaces topologiques, A une partie non vide de X et $f:A\to Y$ une application continue. Le recollement de X sur Y par f est l'espace quotient $X\cup_f Y=(X\sqcup Y)/\mathcal{R}$ où \mathcal{R} est la relation d'équivalence engendrée par $x\sim f(x)$ pour tout $x\in A$. Soit $\pi:X\sqcup Y\to X\cup_f Y$ la projection canonique. Montrer que, dans le cas où A est ouverte (resp. fermée), $\pi_{|_Y}:Y\to X\cup_f Y$ est un homéomorphisme sur son image. Montrer que si X,Y sont connexes (resp. connexes par arcs), alors $X\cup_f Y$ aussi. Montrer que si $u:X\to Z$ et $v:Y\to Z$ sont deux applications continues, telles que u(x)=v(f(x)) pour tout x dans A, alors il existe une unique application continue $w:X\cup_f Y\to Z$ telle que $w\circ\pi_{|_X}=u$ et $w\circ\pi_{|_Y}=v$. Si Y est réduit à un point * alors f est l'application constante de A dans Y, montrer qu'alors l'inclusion de $X\to X\sqcup \{*\}$ induit un homéomorphisme $X/\mathcal{R}\to X\cup_f \{*\}$ où \mathcal{R} est la relation d'équivalence engendrée par $x\sim x'$ pour tout $x,x'\in A$.

^{1.} C'est à dire l'image réciproque de tout compact de Y soit un compact de X.

^{2.} On dit qu'une partie A de X est saturée si $A = \pi^{-1}(\pi(A))$.

(b) Soit $(X_i)_{i\in I}$ une famille d'espaces topologiques srt soit $(x_i)_{i\in I}$ une famille de points telle que $x_i\in X_i$ pour tout $i\in I$. La somme pointée de cette famille est l'espace quotient :

$$\bigvee_{i \in I} (X_i, x_i) = \left(\coprod_{i \in I} X_i \right) / \mathcal{R}$$

où $\mathcal R$ est la relation d'équivalence engendrée par $x_i \sim x_j$ pour tout i,j dans I. Montrer que l'inclusion $X_i \to \coprod_{i \in I} X_i$ induit un homéomorphisme sur son image de X_i dans $\bigvee_{i \in I} (X_i, x_i)$.

5. CYLINDRE ET RUBAN DE MÖBIUS

Soit $X=[0,1] imes \left[-\frac{1}{2},\frac{1}{2}\right]$. On définit deux relations d'équivalence sur X, de la façon suivante. La relation \sim_C est engendrée par $(0,x)\sim_C (1,x)$ pour tout $x\in [-1/2,1/2]$. La relation \sim_M est engendrée par $(0,x)\sim_M (1,-x)$ pour tout $x\in [-1/2,1/2]$.

On définit le cylindre comme l'espace topologique $C=X_{/\sim_C}$, et le ruban de Möbius comme l'espace topologique $M=X_{/\sim_M}$.

- (a) Montrer que ${\cal C}$ et ${\cal M}$ sont des espaces topologiques connexes par arcs.
- (b) Montrer que C est homéomorphe à l'espace $\{z \in \mathbb{C}: 1 \leq |z| \leq 2\}$.
- (c) Montrer que C et M sont homotopiquement équivalents. Cela change-t-il quelque chose de considérer $[0,1] \times \left] \frac{1}{2}, \frac{1}{2} \right[$ plutôt que X?
- (d) Montrer qu'il existe un homéomorphisme local f:C o M tel que tout point de M admette deux antécédents.

6. ESPACES PROJECTIFS RÉELS

Soit $n\geqslant 1$ un entier. Pour $x\in\mathbb{R}^n$, on note ||x|| la norme euclidienne de x. On note $\mathbf{B}^n=\{x\in\mathbb{R}^n\ ,\, ||x||\le 1\}$ la boule unité fermée de \mathbb{R}^n et $\mathbf{S}^n=\{x\in\mathbb{R}^{n+1}\ ,\, ||x||=1\}$ la sphère de dimension n. On identifie \mathbb{R}^n avec un sous espace de \mathbb{R}^{n+1} par l'application $(x_1,\dots x_n)\mapsto (x_1,\dots x_n,0)$.

- (a) Sur $\mathbb{R}^{n+1}-\{0\}$ on considère la relation d'équivalence $x\sim_1\lambda x$ pour $x\in\mathbb{R}^{n+1}-\{0\}$ et $\lambda\in\mathbb{R}-\{0\}$. Sur \mathbf{S}^n on considère la relation d'équivalence $x\sim_2\pm x$ pour $x\in\mathbf{S}^n$. Sur \mathbf{B}^n on considère la relation d'équivalence \sim_3 définie par $x\sim_3\pm x$ pour $x\in\partial\mathbf{B}^n=\mathbf{S}^{n-1}$. Montrer que l'inclusion $\mathbf{S}^n\hookrightarrow\mathbb{R}^{n+1}-\{0\}$ et l'application $\mathbf{B}^n\to\mathbf{S}^n$ définie par $(x_1,\dots,x_n)\mapsto \left[x_1,\dots,x_n,\sqrt{1-\sum_{j=1}^nx_j^2}\right]$ induisent des homéomorphismes $\mathbf{S}^n/\sim_2\to(\mathbb{R}^{n+1}-\{0\})/\sim_1$ et $\mathbf{B}^n/\sim_3\to\mathbf{S}^n/\sim_2$. Montrer que ces espaces quotients sont compacts. L'espace quotient $(\mathbb{R}^{n+1}-\{0\})/\sim_1$ est appelé l'espace projectif réel de dimension n et est noté $\mathbf{P}_n(\mathbb{R})$. Pour $(x_1,\dots,x_{n+1})\in\mathbb{R}^{n+1}-\{0\}$, on note $[x_1,\dots,x_{n+1}]$ sa classe d'équivalence.
- (b) Montrer que $\mathbf{P}_1(\mathbb{R})$ est homéomorphe au compactifié d'Alexandrov de \mathbb{R} (donc à \mathbf{S}^1), par l'application $[x,y]\mapsto x/y$ si $y\neq 0$, et $[x,0]\mapsto \infty$.
- (c) Si $f: \mathbf{S}^{n-1} \to \mathbf{P}_{n-1}(\mathbb{R})$ est la projection canonique $(x_1, \dots, x_n) \mapsto [x_1, \dots, x_n]$, montrer que l'application $\phi: \mathbf{B}^n \sqcup \mathbf{P}_{n-1}(\mathbb{R}) \longrightarrow \mathbf{P}_n(\mathbb{R})$ définie par

$$(x_1, \dots, x_n) \in \mathbf{B}^n \longmapsto \left[x_1, \dots, x_n, \sqrt{1 - \sum_{j=1}^n x_j^2} \right] \in \mathbf{P}_n(\mathbb{R}) \quad \text{et}$$

$$[x_1, \dots, x_n] \in \mathbf{P}_{n-1}(\mathbb{R}) \longmapsto [x_1, \dots, x_n, 0] \in \mathbf{P}_n(\mathbb{R})$$

induit un homéomorphisme $\mathbf{B}^n \cup_f \mathbf{P}_{n-1}(\mathbb{R}) \to \mathbf{P}_n(\mathbb{R})$.

Exercices complémentaires

1. CÔNE ET SUSPENSION

Soit X un espace topologique.

- (a) Le cône sur X est l'espace topologique $CX = (X \times [0,1])/\mathcal{R}$ où \mathcal{R} est la relation d'équivalence engendrée par $(x,1) \sim (x',1)$ pour tout $x,x' \in X$. Montrer que $x \in X \mapsto [(x,0)] \in CX$ est un homéomorphisme sur son image. Montrer que si $f:X \to Y$ est une application continue alors $Cf:[(x,t)] \in CX \mapsto [(f(x),t)] \in CY$ est continue.
- (b) La suspension de X est l'espace topologique $SX = (X \times [-1,1])/\mathcal{R}$ où \mathcal{R} est la relation d'équivalence engendrée par $(x,1) \sim (x',1)$ et $(x,-1) \sim (x',-1)$ pour tout $x,x' \in X$. Montrer que $x \in X \mapsto [(x,0)] \in SX$ est un homéomorphisme sur son image. Montrer que si $f:X \to Y$ est une application continue alors $Sf:[(x,t)] \in SX \mapsto [(f(x),t)] \in SY$ est continue.
- (c) Soit $A \subset X$, l'écrasement de A dans X est l'espace $X/\langle A \rangle = X/\mathcal{R}$ où \mathcal{R} est la relation d'équivalence définie en (a) de l'exercice 4. Montrer que si A est ouvert ou fermée alors la restriction à X-A de la projection canonique $\pi: X \to X/\langle A \rangle$ est un homéomorphisme sur son image. Montrer que SX est homomorphe à $CX/\langle \{[(x,0)]: x \in X\}\rangle$

9. FONCTORIALITÉ DU COMPACTIFIÉ D'ALEXANDROV (SUITE DE L'EXERCICE 2).

Soit X un espace localement compact et ∞ un élément n'appartenant pas à X. On note $\hat{X}=X\cup\{\infty\}$ muni de la topologie d'Alexandrov.

- (a) Montrer que si Y est un espace localement compact, et si $f:X\to Y$ est une application continue propre (voir la définition dans l'exercice 1), alors l'application $\hat f:\hat X\to\hat Y$ définie par $\hat f_{|X}=f$ et $\hat f(\infty)=\infty$ est continue.
- (b) Montrer que si Y est un espace localement compact, et si $f:X\to Y$ est un homéomorphisme, alors l'application $\hat f:\hat X\to \hat Y$ définie par $\hat f_{|X}=f$ et $\hat f(\infty)=\infty$ est un homéomorphisme.
- (c) Montrer que si X est compact, alors \hat{X} est homéomorphe à $X \sqcup \{\infty\}$, muni de la topologie somme disjointe.

Soit $C_b(X)$ l'espace de Banach de fonctions continues bornées munie de la norme sup, $C_c(X)$ le sous-espace vectoriel des fonctions à support compact. Soit $f:X\to\mathbb{C}$ une fonction continue. Montrer que les trois énoncés suivants sont équivalents.

- (a) La fonction f appartient à l'adhérence de $C_c(X)$ dans $C_b(X)$.
- (b) Pour tout $\epsilon > 0$, il existe un compact K dans X tel que $\sup\{|f(x)| : x \in K^c\} < \epsilon$.
- (c) La fonction f admet une extension continue $g: \hat{X} \to \mathbb{C}$ telle que $g(+\infty) = 0$.

On dit que la fonction f est nulle à l'infini si elle satisfait ces conditions.

3. ESPACES PROJECTIFS COMPLEXES. SUITE DE L'EXERCICE 6

Soit $n\geqslant 1$ un entier. Pour $x\in\mathbb{C}^n$, on note ||x|| la norme euclidienne de x. On note $\mathbf{B}^n_{\mathbb{C}}=\{x\in\mathbb{C}^n\,,\,||x||\le 1\}$ la boule unité fermée de \mathbb{C}^n et $\mathbf{S}^n_{\mathbb{C}}=\{x\in\mathbb{C}^{n+1}\,,\,||x||=1\}$ la sphère unité de \mathbb{C}^{n+1} . On identifie \mathbb{C}^n avec un sous espace de \mathbb{C}^{n+1} par l'application $(x_1,\dots x_n)\mapsto (x_1,\dots x_n,0)$.

- (a) Montrer que $\mathbf{S}^n_{\mathbb{C}}=\mathbf{S}^{2n+1}$. Rappel $\mathbb{C}=\mathbb{R}^2$.
- (b) Sur $\mathbb{C}^{n+1}-\{0\}$ on considère la relation d'équivalence $x\sim_1\lambda x$ pour $x\in\mathbb{C}^{n+1}-\{0\}$ et $\lambda\in\mathbb{C}-\{0\}$. Sur $\mathbf{S}^n_\mathbb{C}$ on considère la relation d'équivalence $x\sim_2\lambda x$ pour $x\in\mathbf{S}^n_\mathbb{C}$ et $\lambda\in\mathbf{S}^1$. Montrer que l'inclusion $\mathbf{S}^n_\mathbb{C}\hookrightarrow\mathbb{C}^{n+1}-\{0\}$ induit un homéomorphisme $\mathbf{S}^n_\mathbb{C}/\sim_2\to(\mathbb{C}^{n+1}-\{0\})/\sim_1$. Montrer que ces espaces quotients sont compacts. L'espace quotient $(\mathbb{C}^{n+1}-\{0\})/\sim_1$ est appelé *l'espace projectif complexe* de dimension n et est noté $\mathbf{P}_n(\mathbb{C})$. Pour $(z_1,\ldots,z_{n+1})\in\mathbb{C}^{n+1}-\{0\}$, on note $[z_1,\ldots,z_{n+1}]$ sa classe d'équivalence.
- (c) Montrer que $\mathbf{P}_1(\mathbb{C})$ est homéomorphe au compactifié d'Alexandrov de \mathbb{C} (donc à \mathbf{S}^2), par l'application $[w,z]\mapsto w/z$ si $z\neq 0$, et $[w,0]\mapsto\infty$.
- (d) Si $f: \mathbf{S}^{n-1}_{\mathbb{C}} \to \mathbf{P}_{n-1}(\mathbb{C})$ est la projection canonique $(z_1, \dots, z_n) \mapsto [z_1, \dots, z_n]$, montrer que l'application $\phi: \mathbf{B}^{2n}_{\mathbb{C}} \sqcup \mathbf{P}_{n-1}(\mathbb{C}) \longrightarrow \mathbf{P}_n(\mathbb{C})$ définie par

$$(z_1,\dots,z_n)\in \mathbf{B}^{2n}_{\mathbb{C}}\longmapsto \left[z_1,\dots,z_n,\sqrt{1-\sum_{j=1}^n|z_j|^2}\right]\in \mathbf{P}_n(\mathbb{C})\quad \text{et}\quad [z_1,\dots,z_n]\in \mathbf{P}_{n-1}(\mathbb{C})\longmapsto [z_1,\dots,z_n,0]\in \mathbf{P}_n(\mathbb{C})$$

induit un homéomorphisme $\mathbf{B}^n_{\mathbb{C}} \cup_f \mathbf{P}_{n-1}(\mathbb{C}) \to \mathbf{P}_n(\mathbb{C})$.