1 Criterio di Nyquist

Si consideri il seguente sistema in controreazione:

Fig.1 - Schema in controreazione

Theorem 1.1. Condizione necessaria e sufficiente affinché il sistema a ciclo chiuso di Fig.1 sia stabile è che il diagramma polare della funzione $F(j\omega)$, per ω che varia tra $-\infty$ e $+\infty$, compia nel piano di Nyquist un numero $\stackrel{\frown}{N}$ di giri attorno al punto critico $(-\frac{1}{K_T}, j0)$, in senso antiorario, pari al numero P_p di poli a parte reale positiva di F(s). Assumendo come positivo il verso orario di rotazione, tale condizione diviene:

$$\stackrel{\curvearrowright}{N} = -P_p \tag{1}$$

Dimostrazione. Sia W(s) la funzione di trasferimento in catena chiusa, che è data da:

$$W(s) = \frac{F(s)}{1 + K_T F(s)} \tag{2}$$

Si indichino con $n_F(s)$ e $d_F(s)$ rispettivamente il numeratore ed il denominatore di F(s), e con $n_W(s)$ e $d_W(s)$ rispettivamente il numeratore ed il denominatore di W(s). Si definisca inoltre la funzione $E(s) = 1 + K_T F(s)$. Si può facilmente verificare che:

$$W(s) = \frac{n_W(s)}{d_W(s)} = \frac{n_F(s)}{d_F(s) + K_T n_F(s)}$$
(3)

$$E(s) = \frac{F(s)}{W(s)} = \frac{d_F(s) + K_T n_F(s)}{d_F(s)} = \frac{d_W(s)}{d_F(s)}$$
(4)

Dalla relazione (4) si deduce che la funzione E(s) è data dal rapporto tra il denominatore della funzione di trasferimento in catena chiusa e il denominatore della funzione di trasferimento in catena aperta. In altre parole, gli zeri di E(s) coincidono con i poli di W(s), mentre i poli di E(s) coincidono con i poli di E(s). Si calcoli ora la variazione di fase di E(s) per $s = j\omega$, per ω che varia tra $-\infty$ e $+\infty$, cioè quando la variabile s percorre l'intero asse immaginario, da $-\infty$ a $+\infty$. Per far questo, si osservi innanzitutto che:

- F(s) è una funzione fisicamente realizzabile, cioè il grado di $d_F(s)$ è maggiore del grado di $n_F(s)$. Per questo motivo, il grado di $d_W(s)$ è sicuramente uguale al grado di $d_F(s)$. Si indichi tale grado con n, con k_1 il coefficiente del termine di grado massimo di $d_W(s)$ e con k_2 il coefficiente del termine di grado massimo di $d_F(s)$. Dalla fisica realizzabilità della F(s) e dalla (3), si deduce facilmente che $k_2 = k_1$;
- indicando inoltre con $p_{W,1}, \ldots, p_{W,n}$ i poli di W(s), cioè le radici di $d_W(s)$, e con $p_{F,1}, \ldots, p_{F,n}$ i poli di F(s), cioè le radici di $d_F(s)$, si può scrivere:

$$E(s) = \frac{d_W(s)}{d_F(s)} = \frac{k_1(s - p_{W,1}) \cdots (s - p_{W,n})}{k_2(s - p_{F,1}) \cdots (s - p_{F,n})} = \frac{(s - p_{W,1}) \cdots (s - p_{W,n})}{(s - p_{F,1}) \cdots (s - p_{F,n})}$$
(5)

Si assuma che né $d_W(s)$ né $d_F(s)$ abbiano radici sull'asse immaginario. Per ricavare la variazione di fase di $E(j\omega)$ per ω che varia tra $-\infty$ e $+\infty$, si consideri che:

$$\underline{/E(j\omega)} = \sum_{k=1}^{n} (\underline{/j\omega - p_{W,k}} - \underline{/j\omega - p_{F,k}})$$
 (6)

e che nel piano di Gauss il numero complesso $j\omega - p_{W,k}$, al variare di ω , può essere rappresentato come un vettore che unisce $p_{W,k}$ e il punto dell'asse immaginario $j\omega$, come descritto in Fig.2.

Fig.2 - Piano di Gauss

Dalla medesima figura si nota che, per ω che varia tra $-\infty$ e $+\infty$, la variazione di fase di $j\omega - p_{W,k}$ è pari a π in senso orario, se $p_{W,k}$ è a parte reale positiva, mentre è pari a π in senso antiorario se $p_{W,k}$ è a parte reale negativa. Assumendo come verso positivo per la fase quello orario, si ha una variazione di $+\pi$ quando $p_{W,k}$ è a parte reale positiva, e di $-\pi$ quando $p_{W,k}$ è a parte reale negativa. Un ragionamento analogo può essere fatto per il termine $j\omega - p_{F,k}$. Indicando con ϕ_E la variazione di fase di $E(j\omega)$ per ω che varia tra $-\infty$ e $+\infty$, con Z_p il numero di zeri a parte reale positiva di E(s) (poli a parte reale positiva di E(s)), e con P_p il numero di poli a parte reale positiva di E(s) (poli a parte reale positiva di E(s)), si ha:

$$\phi_E = Z_p \pi - (n - Z_p) \pi - [P_p \pi - (n - P_p) \pi] = 2\pi (Z_p - P_p)$$
 (7)

Il numero di giri che il diagramma della funzione $E(j\omega)$ compie intorno all'origine è uguale a $\frac{\phi_E}{2\pi}$. Inoltre, dalla definizione di E(s), si può concludere che il numero di giri che il diagramma della funzione $E(j\omega)$ compie intorno all'origine è pari al numero di giri che la funzione $F(j\omega)$ compie intorno al punto critico $(-\frac{1}{K_T}, j0)$. Perciò si può scrivere:

$$\stackrel{\curvearrowright}{N} = (Z_p - P_p) \tag{8}$$

Affinché il sistema in catena chiusa di Fig.1 sia stabile, tutti i poli di W(s), ovvero gli zeri di E(s), devono essere a parte reale negativa, e quindi $Z_p=0$. Di conseguenza:

$$\stackrel{\curvearrowright}{N} = -P_p \tag{9}$$

come volevasi dimostrare.

