

The VirtualData Cloud

or the demystification of what cloud means

Julien Peloton 14/04/2023

Hello

Who am I?

- Joined IJCLab/CNRS (engineer) after PhD/postdoc in cosmology.
- Mainly work in the big data ecosystem nowadays.
- Co-lead Rubin broker Fink: responsible for algorithms and infrastructures.
- Helped built various software pipelines in astronomy/cosmology.
- Also heavily involved in teaching activities.

I am primarily a cloud user, but I have the chance to touch the internals!

We will probe the concept of DevOps...

Scientific computing

Computers used to be only for science :-)

Nowadays computers are used everywhere for (almost) everything

In our labs, it goes from smaller scale: integrated circuit, desktop, laptop, mobile; to bigger scale: machines room, data center, computing center, supercomputer, grid, and... cloud!

Cloud Computing

Cloud computing: group of networked elements providing services that do not need to be addressed or managed individually by users.

Decoupling the usage from the rest

In practice, several layers of interaction

- SaaS: Software as a service
- PaaS: Platform as a service
- laaS: Infrastructure as a service

Users*

Web browser, mobile app, loT devices, machines, ...

Applications (SaaS)

Productivity software, conferencing, email, chat, video games, virtual desktop, ...

Platforms (PaaS)

Application runtime, database, web server, data lake, ...

Infrastructure (laaS)

Virtual machines, storage, load balancers, network, ...

Public clouds

Public term is misleading – pay-as-you-go model!

@PSaclay: early phase

Initially an initiative from P2IO labs in 2011

- 5 ex-labs of IJCLab + IAS
- Objective: build a datacenter focusing on energy efficiency to host the all the computer science (informatique) needs.

In operation since 2013

- Modular infrastructure with 51 racks (90 max) and 600 kW IT
- Double power source (300 kW), plus an emergency engine-generator (80kW)

Current hosting

The datacenter hosts shared & specific resources

- All computing from IJCLab + part of IAS
- DSI Paris-Saclay, AgroParisTech,
 CentraleSupelec
- EGI/WLCG grid node (LHC + Institut des Systemes Complexes)
- Cloud for scientific computing

kW IT par projet

1 kWh: 100 gCO2 (ADEME)

PUE \sim 1.25 \rightarrow 1 kW IT = 1.25 kW real

VirtualData cloud

Mutualised resource for scientific computing of Paris-Saclay, piloted by IJCLab

- Started in 2016 (UPSud) & based on OpenStack
- 12,000 cores and 1 PB storage (w/ replication)
 - ∘ ¾ less than 2 years old.
 - Servers with 256 cores/512 GB RAM, AMD processors 7702 @ 2 GHz.
 - 4 servers with 40 GB RAM per core (1.7 TB RAM aggregated).
 - No (yet) GPUs.

Funding sources since 2016: labs/users, ldF region (DIM), Paris Sud/Saclay...

Capability to increase the resources as needs grow and opportunities come.

VirtualData cloud

Computing infrastructure for various needs

- Users access dynamically needed resources (compute & storage) within a shared pool (under quotas).
- Storage & compute is decoupled.
- Users completely control the executing environment (OS, libraries, ...).
- Possibility to orchestrate several virtual machines together.

Basic mode of use: creation/execution of a virtual machine (VM) for an application.

- Other use cases from advanced services
- Possibilities to deploy clusters of containers (Kubernetes, Swarm)
- VMs can last several months: users need to periodically confirm to extend the lease. Otherwise, resources go back to the shared pool.

Compute

Mutualised resource in expansion

- 12,000 cores
- 2021: 43 MheuresxCPU delivered (~50% load, + 25% wrt 2020)
- 80 active « projects »

Some critical services

- CNRS BBB, Mathrice BBB, GRANDMA, SVOM...
- All hypervisors have a backup electricity supply (but no emergency line).

Storage

VirtualData storage platform based on Ceph (1 PB effective in 2023):

- Storage cluster with high availability and high performance thanks to data replication and distribution.
- Various storage types: file system (~NFS), virtual disks (~iSCSI) or object storage (S3)

Mainly for cloud operations

- Main usage: non-volatile disks of virtual machines.
- Some usage of S3 for import/export of large volumes of data.
- No long-term archival, no back-up by default, ...

Solution chosen for the future global storage platform of the PSaclay mesocentre.

Openstack (core services)

- Dashboard (Horizon)
- Identity (Keystone)
- Networking (Neutron)
- Block Storage (Cinder)
- Compute (Nova)
- Shared File Systems (Manila)
- Image (Glance)
- Object Storage (Swift)
- Telemetry (Ceilometer)
- Load balancing (Octavia)
- Orchestration (Heat)
- Secrets Service (Barbican)
- Bare metal provisioning (Ironic)
- Database as a Service (Trove)
- DNS service (Designate)
- Container orchestration (Magnum)

. . .

Advanced services

In addition to its laaS aspect, VD exposes a number of advanced services:

- Apache Spark
- JupyterHub (https://jupyterhub.ijclab.in2p3.fr)
- Batch system (HTCondor)

JupyterHub

Service (JupyterHub & JupyterLab) for executing and sharing <u>Jupyter notebooks</u>:

- Notebook : mixing code/text/graphics.
- Highly used in the data analysis world and for teaching.
- Several kernels available: Python, R, C++ (from C++ 11 to C++ 20)
- Authentication with eduGAIN but need to contact first info-scientifique.di@unviersite-paris-saclay.fr

Actual configuration: 1 VM with 256 cores / 512 GB RAM

 Current work to dynamically (on-demand) provision workers within a cluster of containers

Regarding teaching: 20 UE, ~50 teachers, O(10,000) students in 2021-22

Apache Spark

Service to process and analyse large volumes of data in parallel (MapReduce).

- High scalability by adding resources (horizontal scaling).
- Based on the Apache Spark framework, highly used in the big data world.

Service potentially open to user groups.

- Heavily used in Astronomy/cosmology, especially for the Vera Rubin Observatory. See e.g. https://fink-broker.org
- Used to be use for Genomics projects.

Dynamical management of workers is possible (connection with Kubernetes).

Batch system

Used to launch applications in a non-interactive mode but without maintaining the infrastructure (e.g. like a supercomputer).

- Like a traditional computing center/supercomputer.
- Solution based on HTCondor deployed in VD.
- 1 private instance for IJCLab connected to the local spaces of users.
- 1 instance for external users of IJCLab requiring import/export of data.

Still in its infancy: we need your feedback if you are using it to better design the service. Planned evolutions:

- Dynamical provision of resources as a function of the job load.
- Deployment of the CVMFS service to easily distribute and deploy software independently of the job submission.

Support

IJCLab administrates the cloud, the storage, and all advanced services: ~4 FTE

Dedicated Helpdesk: https://cloud-support.ijclab.in2p3.fr

No support for user-based applications/services.

 The expertise needs to exist in the laboratory or community using the resources. IJCLab/mésocentre promote expertise networking.

How to get an account to access the cloud? https://registration.lal.in2p3.fr

 Self-registration (no validation), and then contact the helpdesk to be added in a project, or create a new one.

Economical model

Cloud opens to all PSaclay members, without guarantee of resources.

- After a phase of PoC, users need to contribute to be granted a defined level of resources.
- Contribution model centered on machines and not computing hours: users are allocating machines as opposed to job submission mechanisms.

Buying the cores that one would like to be guaranteed (IJCLab prescriptor – standard configuration exists), and then possibility to use more if/when available. On the other side, use by others if/when available.

Need to fund hosting costs of machines during the usage period (~5-7 years).

For storage: no mutualisation (of course!)

Let's play!

We will see a series of example on how to interact and use the cloud. Here is the playlist:

- Intro [beginners]: requesting resources
- Example 1 [beginners]: Web application
- Example 2 [beginners]: REST API
- Example 3 [experts]: Continuous integration service
- Example 4 [beginners]: Streaming service
- Outro [experts]: Creating and managing clusters

hands-on

Go to https://github.com/virtualdata-cloud-i2i

To conclude

Do not be a simple client – inspect what is inside, how things are implemented.

Be careful about bullshitting and marketing.

But I strongly believe that the use of cloud will only grow!

