1.

La función color azul es la original	$f(x) = 3x^2 - 3x + 1$
La función en color café es la primera derivaba	f(x) = 6x - 3
La función en color rosado es la segunda derivaba	f(x) = 6

- 1.a) f' > 0 en $]\frac{1}{2}$, $+\infty$ y la función original es positiva y creciente en ese intervalo
- 1.b) f' < 0 en $] \infty$, $\frac{1}{2}$ [y la función original positiva y decreciente en ese intervalo
- 1.c) f' = 0 en $x = \frac{1}{2}$ y la función original en $x = \frac{1}{2}$ tiene imagen $y = \frac{1}{4}$
- 2.a) f'' > 0 en \mathbb{R} y la función original en \mathbb{R} es positiva (crece y decrece)
- 2.b) f'' < 0 nunca es negativa y la función original tampoco lo es en todo su dominio
- 2.c) f'' = 0 nunca es cero y la función original tampoco lo es en todo su dominio

2.

La función color azul es la original	$f(x) = x^3/4 - 3x$
La función en color café es la primera derivaba	$f(x) = 3x^2/4 - 3$
La función en color rosado es la segunda derivaba	f(x) = 3x/2

- 1.a) f' > 0 en $]-\infty, -2[\cup]2, +\infty[$ y la función original es creciente en ese intervalo
- 1.b) f' < 0 en] 2, 2[y la función original decreciente en ese intervalo
- 1.c) f' = 0 en x = 2 y x = -2 en la función original en x = 2 tiene imagen y = -4 y en x = -2 tiene imagen y = -8
- 2.a) f'' > 0 en $]0, +\infty[$ y la función original en ese intervalo es positiva y negativa (crece y decrece)
- 2.b) f'' < 0 en] $-\infty$, 0[y la función original en ese intervalo es positiva y negativa (crece y decrece)
- 2.c) f'' = 0 en x = 0 y la función original también tiene imagen 0 en ese punto

La función color azul es la original	$f(x) = 2\sqrt[3]{x}$
La función en color café es la primera derivaba	$f(x) = \frac{2\sqrt[3]{x}}{3x}$
La función en color rosado es la segunda derivaba	$f(x) = \frac{-4\sqrt[3]{x}}{9x^2}$

- 1.a) f' > 0 en todo su dominio y la función original es creciente en todo el dominio
- 1.b) f' < 0 no es negativa nuncay la función original no decrece
- 1.c) f' = 0 nunca es cero en la función original alrededor de cero tiende a cero
- 2.a) f'' > 0 en $]-\infty$, 0 y la función original en ese intervalo es negativa y creciente
- 2.b) f'' < 0 en $]0, +\infty[$ y la función original en ese intervalo es positiva y crece y
- 2.c) f'' = 0 nunca es cero en la función original alrededor de cero tiende a cero

La función color azul es la original	$f(x) = \frac{1}{3\sqrt{x}}$
La función en color café es la primera derivaba	$f(x) = \frac{1}{-6\sqrt{x} x}$
La función en color rosado es la segunda derivaba	$f'(x) = 3 \cdot \frac{x}{12 x^2 \sqrt{x} x}$

- 1.b) f' < 0 en todo su dominio y la función original es decreciente en todo el dominio
- 1.a) f' > 0 no es positiva nuncay la función original no crece
- 1.c) f' = 0 nunca es cero en la función original alrededor de cero tiende a cero
- 2.a) f'' > 0 en $]-\infty$, 0[y la función original en ese intervalo es positiva (todo su dominio)
- 2.b) f'' < 0 en $]0, +\infty[$ no es positiva nuncay la función original es positiva en todo el dominio
- 2.c) f'' = 0 nunca es cero en la función original alrededor de cero tiende a cero

La función color azul es la original	$f(x) = x^2 - 4 $
La función en color café es la primera derivaba	$f'(x) = 2 \times \frac{ x^2 - 4 }{x^2 - 4}$
La función en color rosado es la segunda derivaba	$f'(x) = 2 \cdot \frac{ x^2 - 4 }{x^2 - 4}$

1.a) f' > 0 en]2, $+\infty$ [y la función original es creciente en ese intervalo

```
1.b) f' < 0 en ] - \infty, -2[y] la función original decrece en ese intervalo
```

- 2.a) f'' > 0 en $n \mid -\infty, -2[\cup]2, +\infty[$ y la función original en ese intervalo es positiva (crece y decrece)
- 2.b) f'' < 0 en] 2, 2[y la función original en ese intervalo es positiva (crece y decrece)
- 2.c) f'' = 0 nunca es cero en la función original alrededor de cero tiende a 4

6.

La función color morado es la original	$f(x) = 3sen(x^2 - 1) $
La función en color verde es la primera derivaba	$f'(x) = 6 \times \cos(x^2 - 1) \frac{\left sen(x^2 - 1) \right }{sen(x^2 - 1)}$
La función en color rojo es la segunda derivaba	$f'(x) = -12 x sen(x^2 - 1) $

Actividad 2

Primera foto

^{1.}c) f' = 0 en x = 0 en la función original en cero tiene imagen 4

La f es una cúbica y la f' timo un grado menos por eso us una parabola

donde f'es negativa, f decrece donde f'es positiva, f crece

donde la drivada es positiva, la original es creciente donde f'es negativo, f dicrece

Il dande f'es negative, f
decrece
donde f'es positive, f erece

Para decidir cuál era cada función comparamos el signo que tenía la función derivada y la monotonía de la función original.

Hicimos esta distinción debido a que sabemos que la derivada disminuye en un grado el criterio de la función. Vimos que f tiene forma de función cúbica, f' tiene forma de función cuadrática y f" tiene forma de función lineal.

Hicimos esta distinción debido a que sabemos que la derivada disminuye en un grado el criterio de la función. Vimos que f tiene forma de función cuadrática, f' tiene forma de función lineal y f'' tiene forma de función lineal de grado cero; es decir, es constante.

Segunda foto

