# Teoria Sygnałów w zadaniach



$$f(t) = A \cdot \Pi\left(\frac{t}{2 \cdot t_0}\right) \cdot \cos\left(\frac{2\pi}{t_0} \cdot t\right) \qquad F(\jmath \omega) = A \cdot t_0 \cdot [Sa\left(\omega \cdot t_0 + 2\pi\right) - Sa\left(\omega \cdot t_0 - 2\pi\right)]$$

Tomasz Grajek, Krzysztof Wegner

POLITECHNIKA POZNAŃSKA Wydział Informatyki i Telekomunikacji Instytut Telekomunikacji Multimedialnej

pl. M. Skłodowskiej-Curie 5 60-965 Poznań

www.et.put.poznan.pl www.multimedia.edu.pl

Copyright © Krzysztof Wegner, 2019 Wszelkie prawa zastrzeżone ISBN 978-83-939620-1-3 Wydrukowano w Polsce

## Podstawowe własności sygnałów

- 1.1 Podstawowe parametry i miary sygnałów ciągłych
- 1.1.1 Wartość średnia
- 1.1.2 Energia sygnału
- 1.1.3 Moc i wartość skuteczna sygnału

# Analiza sygnałów okresowych za pomocą szeregów ortogonalnych

#### 2.1 Trygonometryczny szereg Fouriera

#### 2.2 Zespolony szerego Fouriera

**Zadanie 1.** Wyznacz współczynniki zespolonego szeregu Fouriera dla okresowego sygnału f(t) przedstawionego na rysunku. Narysuj widmo amplitudowe i fazowe sygnału.



W pierwszej kolejności należy ustalić wzór funkcji przedstawionej na rysunku. Jest to funkcja przedziałowa, którą możemy opisać w następujący sposób:

$$f(x) = \begin{cases} A \cdot \sin\left(\frac{2\pi}{T} \cdot t\right) & t \in \left(0 + k \cdot T; \frac{T}{2} + k \cdot T\right) \\ 0 & t \in \left(\frac{T}{2} + k \cdot T; T + k \cdot T\right) \end{cases} \land k \in C$$
 (2.1)

Współczynnik  $F_0$  wyznaczamy ze wzoru:

$$F_0 = \frac{1}{T} \int_T f(t) \cdot dt \tag{2.2}$$

Podstawiamy do wzoru wzór naszej funkcji w pierwszym okresie k=0

$$F_0 = \frac{1}{T} \int_T f(t) \cdot dt =$$

$$\begin{split} &=\frac{1}{T}\left(\int_{0}^{\frac{T}{2}}A\cdot\sin\left(\frac{2\pi}{T}\cdot t\right)\cdot dt+\frac{1}{T}\int_{\frac{T}{2}}^{T}0\cdot dt\right)=\\ &=\frac{A}{T}\left(\int_{0}^{\frac{T}{2}}\sin\left(\frac{2\pi}{T}\cdot t\right)\cdot dt+0\right)=\\ &=\frac{A}{T}\int_{0}^{\frac{T}{2}}\sin\left(\frac{2\pi}{T}\cdot t\right)\cdot dt=\\ &=\begin{cases} z&=\frac{2\pi}{T}\cdot t\\ dz&=\frac{2\pi}{T}\cdot dt\\ dt&=\frac{dz}{\frac{2\pi}{T}}\end{cases}\\ &=\frac{A}{T}\int_{0}^{\frac{T}{2}}\sin\left(z\right)\cdot \frac{dz}{\frac{2\pi}{T}}=\\ &=\frac{A}{T}\int_{0}^{\frac{T}{2}}\sin\left(z\right)\cdot dz=\\ &=\frac{A}{2\pi}\cdot\left(-\cos\left(z\right)|_{0}^{\frac{T}{2}}\right)=\\ &=-\frac{A}{2\pi}\cdot\left(\cos\left(\frac{2\pi}{T}\cdot t\right)|_{0}^{\frac{T}{2}}\right)=\\ &=-\frac{A}{2\pi}\cdot\left(\cos\left(\frac{2\pi}{T}\cdot T\right)-\cos\left(\frac{2\pi}{T}\cdot 0\right)\right)=\\ &=-\frac{A}{2\pi}\cdot\left(\cos\left(\pi\right)-\cos\left(0\right)\right)=\\ &=-\frac{A}{2\pi}\cdot\left(-1-1\right)=\\ &=-\frac{A}{2\pi}\cdot\left(-2\right)=\\ &=\frac{A}{\pi}\end{split}$$

Wartość współczynnika  $F_0$  wynosi  $\frac{A}{\pi}$ .

Współczynniki  $F_k$  wyznaczamy ze wzoru

$$F_k = \frac{1}{T} \int_T f(t) \cdot e^{-\jmath \cdot k \cdot \frac{2\pi}{T} \cdot t} \cdot dt$$
 (2.3)

Podstawiamy do wzoru wzór naszej funkcji w pierwszym okresie k=0

$$\begin{split} F_k &= \frac{1}{T} \int_T f(t) \cdot e^{-\jmath \cdot k \cdot \frac{2\pi}{T} \cdot t} \cdot dt = \\ &= \frac{1}{T} \cdot \left( \int_0^{\frac{T}{2}} A \cdot \sin \left( \frac{2\pi}{T} \cdot t \right) \cdot e^{-\jmath \cdot k \cdot \frac{2\pi}{T} \cdot t} \cdot dt + \int_{\frac{T}{2}}^T 0 \cdot e^{-\jmath \cdot k \cdot \frac{2\pi}{T} \cdot t} \cdot dt \right) = \\ &= \frac{1}{T} \cdot \left( A \cdot \int_0^{\frac{T}{2}} \sin \left( \frac{2\pi}{T} \cdot t \right) \cdot e^{-\jmath \cdot k \cdot \frac{2\pi}{T} \cdot t} \cdot dt + \int_{\frac{T}{2}}^T 0 \cdot dt \right) = \\ &= \left\{ \sin \left( x \right) \right. \\ &= \frac{e^{\jmath \cdot x} - e^{-\jmath \cdot x}}{2\jmath} \right\} = \\ &= \frac{1}{T} \cdot \left( A \cdot \int_0^{\frac{T}{2}} \frac{e^{\jmath \cdot \frac{2\pi}{T} \cdot t} - e^{-\jmath \cdot \frac{2\pi}{T} \cdot t}}{2\jmath} \cdot e^{-\jmath \cdot k \cdot \frac{2\pi}{T} \cdot t} \cdot dt + 0 \right) = \end{split}$$

$$\begin{split} &=\frac{1}{T}\cdot \left(\frac{A}{2}\right)\cdot \int_{0}^{\frac{T}{2}}\left(e^{j\frac{2\pi}{2}\cdot t}-e^{-j\frac{2\pi}{2}\cdot t}\right)\cdot e^{-jk\cdot\frac{2\pi}{2}\cdot t}\cdot dt\right)=\\ &=\frac{1}{T}\cdot \frac{A}{2}\cdot \int_{0}^{\frac{T}{2}}\left(e^{j\frac{2\pi}{2}\cdot t}\cdot e^{-jk\cdot\frac{2\pi}{2}\cdot t}-e^{-j\frac{2\pi}{2}\cdot t}\cdot e^{-jk\cdot\frac{2\pi}{2}\cdot t}\right)\cdot dt=\\ &=\frac{A}{T\cdot2}\cdot \int_{0}^{\frac{T}{2}}\left(e^{j\frac{2\pi}{2}\cdot t}\cdot e^{-jk\cdot\frac{2\pi}{2}\cdot t}-e^{-j\frac{2\pi}{2}\cdot t}\cdot e^{-jk\cdot\frac{2\pi}{2}\cdot t}\right)\cdot dt=\\ &=\frac{A}{T\cdot2}\cdot \int_{0}^{\frac{T}{2}}\left(e^{j\frac{2\pi}{2}\cdot t}\cdot e^{-jk\cdot\frac{2\pi}{2}\cdot t}-e^{-j\frac{2\pi}{2}\cdot t}\cdot e^{-jk\cdot\frac{2\pi}{2}\cdot t}\right)\cdot dt=\\ &=\frac{A}{T\cdot2}\cdot \int_{0}^{\frac{T}{2}}\left(e^{j\frac{2\pi}{2}\cdot t}\cdot e^{-jk\cdot\frac{2\pi}{2}\cdot t}\cdot e^{-jk\cdot\frac{2\pi}{2}\cdot t}\right)\cdot dt=\\ &=\frac{A}{T\cdot2}\cdot \int_{0}^{\frac{T}{2}}\left(e^{j\frac{2\pi}{2}\cdot t}\cdot e^{-jk\cdot\frac{2\pi}{2}\cdot t}\cdot e^{-jk\cdot\frac{2\pi}{2}\cdot t}\cdot dt\right)\cdot dt\\ &=\frac{A}{T\cdot2}\cdot \int_{0}^{\frac{T}{2}}\left(e^{j\frac{2\pi}{2}\cdot t}\cdot e^{-jk\cdot\frac{2\pi}{2}\cdot t}\cdot e^{-jk\cdot\frac{2\pi}{2}\cdot t}\cdot dt\right)=\\ &=\frac{A}{t^{2}\cdot 1}\cdot \int_{0}^{\frac{T}{2}}\left(e^{j\frac{2\pi}{2}\cdot t}\cdot e^{-jk\cdot\frac{2\pi}{2}\cdot t}\cdot e^{-j\frac{2\pi}{2}\cdot t}\cdot e^{-jk\cdot\frac{2\pi}{2}\cdot t}\cdot dt\right)\\ &=\frac{A}{T\cdot2}\cdot \left(\int_{0}^{\frac{T}{2}}\left(e^{j\frac{2\pi}{2}\cdot t}\cdot e^{-jk\cdot\frac{2\pi}{2}\cdot t}\cdot e^{-j\frac{2\pi}{2}\cdot t}\cdot e^{-jk\cdot\frac{2\pi}{2}\cdot t}\cdot e^{-jk\cdot\frac$$

$$\begin{split} &=\frac{A}{-4\cdot\pi}\cdot\left(\frac{-e^{-\jmath\cdot\pi\cdot k}-2-k\cdot e^{-\jmath\cdot\pi\cdot k}-e^{-\jmath\cdot\pi\cdot k}+k\cdot e^{-\jmath\cdot\pi\cdot k}}{1-k^2}\right)=\\ &=\frac{A}{-4\cdot\pi}\cdot\left(\frac{-2\cdot e^{-\jmath\cdot\pi\cdot k}-2}{1-k^2}\right)=\\ &=\frac{A}{4\cdot\pi}\cdot\left(\frac{2\cdot e^{-\jmath\cdot\pi\cdot k}+2}{1-k^2}\right)=\\ &=\frac{A}{4\cdot\pi}\cdot2\cdot\left(\frac{e^{-\jmath\cdot\pi\cdot k}+1}{1-k^2}\right)=\\ &=\frac{A}{2\cdot\pi}\cdot\left(\frac{e^{-\jmath\cdot\pi\cdot k}+1}{1-k^2}\right)\\ &=\frac{A}{2\cdot\pi}\cdot\left(\frac{(-1)^k+1}{1-k^2}\right) \end{split}$$

Wartość współczynnika  $F_k$  wynosi  $\frac{A}{2\cdot\pi}\cdot\left(\frac{(-1)^k+1}{1-k^2}\right)$  dla  $k\neq 1 \land k\neq -1$ .

Współczynnik  $F_k$  dla k=1 musimy wyznaczyć raz jeszcze, tak więc wyznaczmy go wprost z definicji  $F_1$ :

$$\begin{split} F_1 &= \frac{1}{T} \int_T f(t) \cdot e^{-\jmath \cdot 1 \cdot \frac{2\pi}{T} \cdot t} \cdot dt = \\ &= \frac{1}{T} \cdot \left( \int_0^{\frac{T}{2}} A \cdot \sin\left(\frac{2\pi}{T} \cdot t\right) \cdot e^{-\jmath \cdot 1 \cdot \frac{2\pi}{T} \cdot t} \cdot dt + \int_{\frac{T}{2}}^T 0 \cdot e^{-\jmath \cdot 1 \cdot \frac{2\pi}{T} \cdot t} \cdot dt \right) = \\ &= \frac{1}{T} \cdot \left( A \cdot \int_0^{\frac{T}{2}} \sin\left(\frac{2\pi}{T} \cdot t\right) \cdot e^{-\jmath \cdot \frac{2\pi}{T} \cdot t} \cdot dt + \int_{\frac{T}{2}}^T 0 \cdot dt \right) = \\ &= \left\{ \sin\left(x\right) \right. = \frac{e^{\jmath \cdot x} - e^{-\jmath \cdot x}}{2\jmath} \right\} = \\ &= \frac{1}{T} \cdot \left( A \cdot \int_0^{\frac{T}{2}} \frac{e^{\jmath \cdot \frac{2\pi}{T} \cdot t} - e^{-\jmath \cdot \frac{2\pi}{T} \cdot t}}{2\jmath} \cdot e^{-\jmath \cdot \frac{2\pi}{T} \cdot t} \cdot dt + 0 \right) = \\ &= \frac{1}{T} \cdot \left( \frac{A}{2\jmath} \cdot \int_0^{\frac{T}{2}} \left( e^{\jmath \cdot \frac{2\pi}{T} \cdot t} - e^{-\jmath \cdot \frac{2\pi}{T} \cdot t} \right) \cdot e^{-\jmath \cdot \frac{2\pi}{T} \cdot t} \cdot dt \right) = \\ &= \frac{1}{T} \cdot \frac{A}{2\jmath} \cdot \int_0^{\frac{T}{2}} \left( e^{\jmath \cdot \frac{2\pi}{T} \cdot t} \cdot e^{-\jmath \cdot \frac{2\pi}{T} \cdot t} - e^{-\jmath \cdot \frac{2\pi}{T} \cdot t} \cdot e^{-\jmath \cdot \frac{2\pi}{T} \cdot t} \right) \cdot dt = \\ &= \frac{A}{T \cdot 2\jmath} \cdot \int_0^{\frac{T}{2}} \left( e^{\jmath \cdot \frac{2\pi}{T} \cdot t} \cdot e^{-\jmath \cdot \frac{2\pi}{T} \cdot t} - e^{-\jmath \cdot \frac{2\pi}{T} \cdot t} \cdot e^{-\jmath \cdot \frac{2\pi}{T} \cdot t} \right) \cdot dt = \\ &= \frac{A}{T \cdot 2\jmath} \cdot \int_0^{\frac{T}{2}} \left( e^{\jmath \cdot \frac{2\pi}{T} \cdot t} \cdot (1-1) - e^{-\jmath \cdot \frac{2\pi}{T} \cdot t} \cdot (1+1) \right) \cdot dt = \\ &= \frac{A}{T \cdot 2\jmath} \cdot \left( \int_0^{\frac{T}{2}} e^{\jmath \cdot \frac{2\pi}{T} \cdot t} \cdot 0 \cdot dt - \int_0^{\frac{T}{2}} e^{-\jmath \cdot \frac{2\pi}{T} \cdot t} \cdot dt \right) = \\ &= \frac{A}{T \cdot 2\jmath} \cdot \left( \int_0^{\frac{T}{2}} e^{\jmath \cdot \frac{2\pi}{T} \cdot t} \cdot 0 \cdot dt - \int_0^{\frac{T}{2}} e^{-\jmath \cdot \frac{2\pi}{T} \cdot t} \cdot dt \right) = \\ &= \frac{A}{T \cdot 2\jmath} \cdot \left( \int_0^{\frac{T}{2}} e^{0} \cdot dt - \int_0^{\frac{T}{2}} e^{-\jmath \cdot \frac{2\pi}{T} \cdot t} \cdot dt \right) = \\ &= \frac{A}{T \cdot 2\jmath} \cdot \left( \int_0^{\frac{T}{2}} e^{0} \cdot dt - \int_0^{\frac{T}{2}} e^{-\jmath \cdot \frac{2\pi}{T} \cdot t} \cdot dt \right) = \\ &= \frac{A}{T \cdot 2\jmath} \cdot \left( \int_0^{\frac{T}{2}} e^{0} \cdot dt - \int_0^{\frac{T}{2}} e^{-\jmath \cdot \frac{2\pi}{T} \cdot t} \cdot dt \right) = \\ &= \frac{A}{T \cdot 2\jmath} \cdot \left( \int_0^{\frac{T}{2}} e^{0} \cdot dt - \int_0^{\frac{T}{2}} e^{-\jmath \cdot \frac{2\pi}{T} \cdot t} \cdot dt \right) = \\ &= \frac{A}{T \cdot 2\jmath} \cdot \left( \int_0^{\frac{T}{2}} e^{0} \cdot dt - \int_0^{\frac{T}{2}} e^{-\jmath \cdot \frac{2\pi}{T} \cdot t} \cdot dt \right) = \\ &= \frac{A}{T \cdot 2\jmath} \cdot \left( \int_0^{\frac{T}{2}} e^{0} \cdot dt - \int_0^{\frac{T}{2}} e^{-\jmath \cdot \frac{2\pi}{T} \cdot t} \cdot dt \right) = \\ &= \frac{A}{T \cdot 2\jmath} \cdot \left( \int_0^{\frac{T}{2}} e^{0} \cdot dt - \int_0^{\frac{T}{2}} e^{-\jmath \cdot \frac{2\pi}{T} \cdot t} \cdot dt \right) = \\ &= \frac{A}{T \cdot 2\jmath} \cdot \left( \int_0^{\frac{T}{2}} e^{0} \cdot dt - \int_0^{\frac{T}{2}} e^{-\jmath \cdot \frac{2\pi}{T} \cdot t} \cdot dt \right) = \\ &= \frac{A}{T \cdot 2\jmath} \cdot \left( \int_0^{$$

$$= \begin{cases} z = -j \cdot \frac{4\pi}{T} \cdot t \\ dz = -j \cdot \frac{4\pi}{T} \cdot dt \\ dt = \frac{-j \cdot \frac{4\pi}{T}}{2j} \cdot \left( \int_{0}^{\frac{T}{2}} dt - \int_{0}^{\frac{T}{2}} e^{z} \cdot \frac{dz}{-j \cdot \frac{4\pi}{T}} \right) = \\ = \frac{A}{T \cdot 2j} \cdot \left( \int_{0}^{\frac{T}{2}} dt - \frac{1}{-j \cdot \frac{4\pi}{T}} \cdot \int_{0}^{\frac{T}{2}} e^{z} \cdot dz \right) = \\ = \frac{A}{T \cdot 2j} \cdot \left( t \Big|_{0}^{\frac{T}{2}} + \frac{1}{j \cdot \frac{4\pi}{T}} \cdot e^{z} \Big|_{0}^{\frac{T}{2}} \right) = \\ = \frac{A}{T \cdot 2j} \cdot \left( \left( \frac{T}{2} - 0 \right) + \frac{1}{j \cdot \frac{4\pi}{T}} \cdot e^{-j \cdot \frac{4\pi}{T} \cdot t} \Big|_{0}^{\frac{T}{2}} \right) = \\ = \frac{A}{T \cdot 2j} \cdot \left( \left( \frac{T}{2} - 0 \right) + \frac{1}{j \cdot \frac{4\pi}{T}} \cdot \left( e^{-j \cdot \frac{4\pi}{T} \cdot \frac{T}{2}} - e^{-j \cdot \frac{4\pi}{T} \cdot 0} \right) \right) = \\ = \frac{A}{T \cdot 2j} \cdot \left( \frac{T}{2} + \frac{1}{j \cdot \frac{4\pi}{T}} \cdot (1 - 1) \right) = \\ = \frac{A}{T \cdot 2j} \cdot \left( \frac{T}{2} + \frac{1}{j \cdot \frac{4\pi}{T}} \cdot (1 - 1) \right) = \\ = \frac{A}{T \cdot 2j} \cdot \left( \frac{T}{2} + \frac{1}{j \cdot \frac{4\pi}{T}} \cdot 0 \right) = \\ = \frac{A}{T \cdot 2j} \cdot \left( \frac{T}{2} + 0 \right) = \\ = \frac{A}{T \cdot 2j} \cdot \frac{T}{2} = \\ = \frac{A}{4j} = \\ = -j \cdot \frac{A}{4}$$

Wartość współczynnika  $F_1$  wynosi  $-\jmath \cdot \frac{A}{4}$ .

Współczynnik  $F_k$  dla k=-1 musimy wyznaczyć raz jeszcze, tak więc wyznaczmy go wprost z definicji  $F_{-1}$ :

$$F_{-1} = \frac{1}{T} \int_{T} f(t) \cdot e^{-j \cdot (-1) \cdot \frac{2\pi}{T} \cdot t} \cdot dt =$$

$$= \frac{1}{T} \cdot \left( \int_{0}^{\frac{T}{2}} A \cdot \sin \left( \frac{2\pi}{T} \cdot t \right) \cdot e^{-j \cdot (-1) \cdot \frac{2\pi}{T} \cdot t} \cdot dt + \int_{\frac{T}{2}}^{T} 0 \cdot e^{-j \cdot (-1) \cdot \frac{2\pi}{T} \cdot t} \cdot dt \right) =$$

$$= \frac{1}{T} \cdot \left( A \cdot \int_{0}^{\frac{T}{2}} \sin \left( \frac{2\pi}{T} \cdot t \right) \cdot e^{j \cdot \frac{2\pi}{T} \cdot t} \cdot dt + \int_{\frac{T}{2}}^{T} 0 \cdot dt \right) =$$

$$= \left\{ \sin \left( x \right) \right. = \frac{e^{j \cdot x} - e^{-j \cdot x}}{2j} \right\} =$$

$$= \frac{1}{T} \cdot \left( A \cdot \int_{0}^{\frac{T}{2}} \frac{e^{j \cdot \frac{2\pi}{T} \cdot t} - e^{-j \cdot \frac{2\pi}{T} \cdot t}}{2j} \cdot e^{j \cdot \frac{2\pi}{T} \cdot t} \cdot dt + 0 \right) =$$

$$= \frac{1}{T} \cdot \left( \frac{A}{2j} \cdot \int_{0}^{\frac{T}{2}} \left( e^{j \cdot \frac{2\pi}{T} \cdot t} - e^{-j \cdot \frac{2\pi}{T} \cdot t} \right) \cdot e^{j \cdot \frac{2\pi}{T} \cdot t} \cdot dt \right) =$$

$$\begin{split} &= \frac{1}{T} \cdot \frac{A}{2j} \cdot \int_{0}^{\frac{T}{2}} \left( e^{j \cdot \frac{2\pi}{T} \cdot t} \cdot e^{j \cdot \frac{2\pi}{T} \cdot t} - e^{-j \cdot \frac{2\pi}{T} \cdot t} \cdot e^{j \cdot \frac{2\pi}{T} \cdot t} \right) \cdot dt = \\ &= \frac{A}{T \cdot 2j} \cdot \int_{0}^{\frac{T}{2}} \left( e^{j \cdot \frac{2\pi}{T} \cdot t + j \cdot \frac{2\pi}{T} \cdot t} - e^{-j \cdot \frac{2\pi}{T} \cdot t + j \cdot \frac{2\pi}{T} \cdot t} \right) \cdot dt = \\ &= \frac{A}{T \cdot 2j} \cdot \int_{0}^{\frac{T}{2}} \left( e^{j \cdot \frac{2\pi}{T} \cdot t \cdot t + j \cdot t} - e^{-j \cdot \frac{2\pi}{T} \cdot t \cdot t \cdot (1-1)} \right) \cdot dt = \\ &= \frac{A}{T \cdot 2j} \cdot \left( \int_{0}^{\frac{T}{2}} e^{j \cdot \frac{2\pi}{T} \cdot t \cdot t \cdot t + 1} \cdot dt - \int_{0}^{\frac{T}{2}} e^{-j \cdot \frac{2\pi}{T} \cdot t \cdot t \cdot t} \right) dt \right) = \\ &= \frac{A}{T \cdot 2j} \cdot \left( \int_{0}^{\frac{T}{2}} e^{j \cdot \frac{2\pi}{T} \cdot t \cdot t} \cdot dt - \int_{0}^{\frac{T}{2}} e^{-j \cdot \frac{2\pi}{T} \cdot t \cdot t} \cdot dt \right) = \\ &= \frac{A}{T \cdot 2j} \cdot \left( \int_{0}^{\frac{T}{2}} e^{j \cdot \frac{2\pi}{T} \cdot t} \cdot dt - \int_{0}^{\frac{T}{2}} e^{0} \cdot dt \right) = \\ &= \frac{A}{T \cdot 2j} \cdot \left( \int_{0}^{\frac{T}{2}} e^{j \cdot \frac{2\pi}{T} \cdot t} \cdot dt - \int_{0}^{\frac{T}{2}} 1 \cdot dt \right) = \\ &= \frac{A}{T \cdot 2j} \cdot \left( \int_{0}^{\frac{T}{2}} e^{j \cdot \frac{2\pi}{T} \cdot t} \cdot dt - \int_{0}^{\frac{T}{2}} 1 \cdot dt \right) = \\ &= \frac{A}{T \cdot 2j} \cdot \left( \int_{0}^{\frac{T}{2}} e^{j \cdot \frac{2\pi}{T} \cdot t} \cdot dt - \int_{0}^{\frac{T}{2}} 1 \cdot dt \right) = \\ &= \frac{A}{T \cdot 2j} \cdot \left( \int_{0}^{\frac{T}{2}} e^{j \cdot \frac{2\pi}{T} \cdot t} \cdot dt - \int_{0}^{\frac{T}{2}} dt \right) = \\ &= \frac{A}{T \cdot 2j} \cdot \left( \int_{0}^{\frac{T}{2}} e^{j \cdot \frac{2\pi}{T} \cdot t} \cdot dt - \int_{0}^{\frac{T}{2}} dt \right) = \\ &= \frac{A}{T \cdot 2j} \cdot \left( \int_{0}^{\frac{T}{2}} e^{j \cdot \frac{2\pi}{T} \cdot t} \cdot dt - \int_{0}^{\frac{T}{2}} dt \right) = \\ &= \frac{A}{T \cdot 2j} \cdot \left( \int_{0}^{\frac{T}{2}} e^{j \cdot \frac{2\pi}{T} \cdot t} \cdot dt - \int_{0}^{\frac{T}{2}} dt \right) = \\ &= \frac{A}{T \cdot 2j} \cdot \left( \int_{0}^{\frac{T}{2}} e^{j \cdot \frac{2\pi}{T} \cdot t} \cdot dt - \int_{0}^{\frac{T}{2}} dt \right) = \\ &= \frac{A}{T \cdot 2j} \cdot \left( \int_{0}^{\frac{T}{2}} \frac{e^{j \cdot \frac{2\pi}{T} \cdot t} \cdot dt}{j \cdot \frac{4\pi}{T} \cdot t} \cdot (e^{-j \cdot \frac{2\pi}{T} \cdot t} \cdot e^{-j \cdot \frac{2\pi}{T} \cdot t} \cdot dt - \int_{0}^{\frac{T}{2}} dt \right) = \\ &= \frac{A}{T \cdot 2j} \cdot \left( \int_{0}^{\frac{T}{2}} \frac{e^{j \cdot \frac{2\pi}{T} \cdot t} \cdot dt}{j \cdot \frac{4\pi}{T} \cdot t} \cdot (e^{-j \cdot \frac{2\pi}{T} \cdot t} \cdot e^{-j \cdot \frac{2\pi}{T} \cdot t} \cdot dt - \int_{0}^{\frac{T}{2}} e^{j \cdot \frac{2\pi}{T} \cdot t} \cdot dt - \int_{0}^{\frac{T}{2}} e^{j \cdot \frac{2\pi}{T} \cdot t} \cdot dt - \int_{0}^{\frac{T}{2}} e^{j \cdot \frac{2\pi}{T} \cdot t} \cdot dt - \int_{0}^{\frac{T}{2}} e^{j \cdot \frac{2\pi}{T} \cdot t} \cdot dt - \int_{0}^{\frac{T}{2}} e^{j \cdot \frac{2\pi}{T} \cdot t} \cdot dt - \int_{0}^{\frac{T}{2}} e^{j \cdot$$

Wartość współczynnika  $F_{-1}$  wynosi  $j \cdot \frac{A}{4}$ .

Ostatecznie współczynniki zespolonego szeregu Fouriera dla funkcji przedstawionej na rysunku przyjmują wartości.

$$F_0 = \frac{A}{\pi}$$

$$F_{-1} = \jmath \cdot \frac{A}{4}$$

$$F_1 = -\jmath \cdot \frac{A}{4}$$

$$F_k = \frac{A}{2 \cdot \pi} \cdot \left(\frac{(-1)^k + 1}{1 - k^2}\right)$$

Podstawiając to wzoru aproksymacyjnego funkcję f(t) możemy wyrazić jako

$$f(t) = \sum_{k=-\infty}^{\infty} F_k \cdot e^{\jmath \cdot k \cdot \frac{2\pi}{T} \cdot t}$$

$$f(t) = \frac{A}{\pi} + \jmath \cdot \frac{A}{4} \cdot e^{\jmath \cdot (-1) \cdot \frac{2\pi}{T} \cdot t} - \jmath \cdot \frac{A}{4} \cdot e^{\jmath \cdot 1 \cdot \frac{2\pi}{T} \cdot t} + \sum_{\substack{k=-\infty\\k\neq 0\\k\neq -1 \land k\neq 1}}^{\infty} \left[ \frac{A}{2 \cdot \pi} \cdot \left( \frac{(-1)^k + 1}{1 - k^2} \right) \right] \cdot e^{\jmath \cdot k \cdot \frac{2\pi}{T} \cdot t}$$

$$(2.4)$$

Możemy wyznaczyć kilka wartości współczynników  $F_k$ 

| $F_k$        | -6                 | -5 | -4                 | -3 | -2                | -1                    | 0               | 1                         | 2                 | 3 | 4                  | 5 | 6                  |
|--------------|--------------------|----|--------------------|----|-------------------|-----------------------|-----------------|---------------------------|-------------------|---|--------------------|---|--------------------|
| $F_k$        | $-\frac{A}{35\pi}$ | 0  | $-\frac{A}{15\pi}$ | 0  | $-\frac{A}{3\pi}$ | $j \cdot \frac{A}{4}$ | $\frac{A}{\pi}$ | $-\jmath\cdot\frac{A}{4}$ | $-\frac{A}{3\pi}$ | 0 | $-\frac{A}{15\pi}$ | 0 | $-\frac{A}{35\pi}$ |
| $ F_k $      | $\frac{A}{35\pi}$  | 0  | $\frac{A}{15\pi}$  | 0  | $\frac{A}{3\pi}$  | $\frac{A}{4}$         | $\frac{A}{\pi}$ | $\frac{A}{4}$             | $\frac{A}{3\pi}$  | 0 | $\frac{A}{15\pi}$  | 0 | $\frac{A}{35\pi}$  |
| $Arg\{F_k\}$ | $-\pi$             | 0  | $-\pi$             | 0  | $-\pi$            | $\frac{\pi}{2}$       | 0               | $-\frac{\pi}{2}$          | $\pi$             | 0 | $\pi$              | 0 | $\pi$              |

Na podstawie wyznaczonych współczynników  $F_k$  możemy narysować widmo amplitudowe  $|F_k|$  sygnału f(t).



Widmo aplitudowe sygnału rzeczywistego jest zawsze parzyste.

Podobnie n podstawie wyznaczonych współczynników  $F_k$  możemy narysować widmo fazowe  $\arg\{F_k\}$  sygnału f(t).



Widmo fazowe sygnału rzeczywistego jest zawsze nieparzyste.

W przypadku sumowania od  $k_{\min}=-1$  do  $k_{\max}=1$ otrzymujemy:



W przypadku sumowania od  $k_{\min}=-2$  do  $k_{\max}=2$ otrzymujemy:



W przypadku sumowania od  $k_{min} = -4$  do  $k_{max} = 4$  otrzymujemy:



W przypadku sumowania od  $k_{\min}=-6$  do  $k_{\max}=6$ otrzymujemy:



W przypadku sumowania od  $k_{\min}=-12$  do  $k_{\max}=12$ otrzymujemy:



W granicy sumowania od  $k_{min}=-\infty$  do  $k_{max}=\infty$ otrzymujemy oryginalny sygnał.

#### 2.3 Obliczenia mocy sygnałów - twierdzenie Parsevala

**Zadanie 1.** Wyznacz stosunek mocy parzystych harmonicznych do mocy całkowitej dla sygnału przedstawionego na rysunku poniżej. Wykorzystaj współczynniki zespolonego szeregu Fouriera obliczone w zadaniu 1



W pierwszej kolejności należy ustalić wzór funkcji przedstawionej na rysunku. Jest to funkcja przedziałowa, którą możemy opisać w następujący sposób:

$$f(x) = \begin{cases} A \cdot \sin\left(\frac{2\pi}{T} \cdot t\right) & t \in \left(0 + k \cdot T; \frac{T}{2} + k \cdot T\right) \\ 0 & t \in \left(\frac{T}{2} + k \cdot T; T + k \cdot T\right) \end{cases} \land k \in C$$
 (2.5)

Cele jest obliczenie stusunku mocy parzystych harmonicznych  $P_{par}$  do mocy całkowitej P.

$$\frac{P_{par}}{P}$$

Moc sygnału możemy wyznaczyć z definicji:

$$P = \frac{1}{T} \int_{T} (f(t))^{2} \cdot dt$$

Podstawiając wzór naszej funkcji otrzymujemy

$$\begin{split} P &= \frac{1}{T} \int_{0}^{T} (f(t))^{2} \cdot dt = \\ &= \frac{1}{T} \int_{0}^{\frac{T}{2}} \left( A \cdot \sin \left( \frac{2\pi}{T} \cdot t \right) \right)^{2} \cdot dt + \frac{1}{T} \int_{\frac{T}{2}}^{T} (0)^{2} \cdot dt = \\ &= \left\{ \sin \left( x \right) = \frac{e^{\jmath \cdot x} - e^{-\jmath \cdot x}}{2 \cdot \jmath} \right\} = \\ &= \frac{1}{T} \int_{0}^{\frac{T}{2}} \left( A \cdot \frac{e^{\jmath \cdot \frac{2\pi}{T} \cdot t} - e^{-\jmath \cdot \frac{2\pi}{T} \cdot t}}{2 \cdot \jmath} \right)^{2} \cdot dt + 0 = \\ &= \frac{1}{T} \int_{0}^{\frac{T}{2}} A^{2} \cdot \frac{\left( e^{\jmath \cdot \frac{2\pi}{T} \cdot t} - e^{-\jmath \cdot \frac{2\pi}{T} \cdot t} \right)^{2}}{2^{2} \cdot \jmath^{2}} \cdot dt = \\ &= \frac{1}{T} \int_{0}^{\frac{T}{2}} A^{2} \cdot \frac{\left( e^{\jmath \cdot \frac{2\pi}{T} \cdot t} - e^{-\jmath \cdot \frac{2\pi}{T} \cdot t} \right)^{2}}{-4} \cdot dt = \end{split}$$

$$\begin{split} &=\frac{1}{T}\int_{0}^{\frac{T}{2}}A^{2}\cdot\frac{e^{j\frac{2\pi}{T}\cdot t^{2}}2-2\cdot e^{j\frac{2\pi}{T}\cdot t-j\frac{2\pi}{T}\cdot t}+e^{-j\frac{2\pi}{T}\cdot t}2}{-4}\cdot dt=\\ &=\frac{1}{T}\int_{0}^{\frac{T}{2}}A^{2}\cdot\frac{e^{j\frac{4\pi}{T}\cdot t}-2\cdot e^{0}+e^{-j\frac{4\pi}{T}\cdot t}}{-4}\cdot dt=\\ &=\frac{A^{2}}{-4\cdot T}\int_{0}^{\frac{T}{2}}\left(e^{j\frac{4\pi}{T}\cdot t}-2\cdot 1+e^{-j\frac{4\pi}{T}\cdot t}\right)\cdot dt=\\ &=\frac{A^{2}}{-4\cdot T}\left(\int_{0}^{\frac{T}{2}}e^{j\frac{4\pi}{T}\cdot t}\cdot dt-\int_{0}^{\frac{T}{2}}2\cdot dt+\int_{0}^{\frac{T}{2}}e^{-j\frac{4\pi}{T}\cdot t}\cdot dt\right)=\\ &=\left\{ \begin{aligned} &\frac{A^{2}}{-4\cdot T}\left(\int_{0}^{\frac{T}{2}}e^{j\frac{4\pi}{T}\cdot t}\cdot dt-\int_{0}^{\frac{T}{2}}2\cdot dt+\int_{0}^{\frac{T}{2}}e^{-j\frac{4\pi}{T}\cdot t}\cdot dt\right)=\\ &=\left\{ \begin{aligned} &\frac{A^{2}}{dt_{1}}&=j\cdot \frac{4\pi}{T}\cdot dt &dz_{2}&=-j\cdot \frac{4\pi}{T}\cdot dt\\ dt&=j\cdot \frac{4\pi}{T}\cdot dt &dz_{2}&=-j\cdot \frac{4\pi}{T}\cdot dt\\ dt&=\frac{d_{2}}{j\cdot \frac{4\pi}{T}}&dt&=\frac{d_{2}}{-j\cdot \frac{4\pi}{T}} \end{aligned} \right\}=\\ &=\frac{A^{2}}{-4\cdot T}\left(\int_{0}^{\frac{T}{2}}e^{2i}\cdot \frac{dz_{1}}{j\cdot \frac{4\pi}{T}}-2\cdot \int_{0}^{\frac{T}{2}}dt+\int_{0}^{\frac{T}{2}}e^{2i}\cdot \frac{dz_{2}}{-j\cdot \frac{4\pi}{T}}\right)=\\ &=\frac{A^{2}}{-4\cdot T}\left(\frac{1}{j\cdot \frac{4\pi}{T}}\cdot e^{2i}|_{0}^{\frac{T}{2}}-2\cdot t|_{0}^{\frac{T}{2}}+\frac{1}{-j\cdot \frac{4\pi}{T}}\cdot e^{2i}|_{0}^{\frac{T}{2}}\right)=\\ &=\frac{A^{2}}{-4\cdot T}\left(\frac{1}{j\cdot \frac{4\pi}{T}}\cdot e^{j\frac{4\pi}{T}\cdot t}|_{0}^{\frac{T}{2}}-2\cdot t|_{0}^{\frac{T}{2}}+\frac{1}{-j\cdot \frac{4\pi}{T}}\cdot e^{-j\frac{4\pi}{T}\cdot t}|_{0}^{\frac{T}{2}}\right)=\\ &=\frac{A^{2}}{-4\cdot T}\left(\frac{1}{j\cdot \frac{4\pi}{T}}\cdot \left(e^{j\frac{2\pi}{T}}-e^{j\frac{4\pi}{T}\cdot 0}\right)-2\cdot \left(\frac{T}{2}-0\right)+\frac{1}{-j\cdot \frac{4\pi}{T}}\cdot \left(e^{-j\frac{2\pi}{T}\cdot \frac{T}{2}}-e^{-j\frac{4\pi}{T}\cdot 0}\right)\right)=\\ &=\frac{A^{2}}{-4\cdot T}\left(\frac{1}{j\cdot \frac{4\pi}{T}}\cdot \left(e^{j\frac{2\pi}{T}}-e^{0}\right)-2\cdot \left(\frac{T}{2}\right)+\frac{1}{-j\cdot \frac{4\pi}{T}}\cdot \left(e^{-j\frac{2\pi}{T}}-e^{0}\right)\right)=\\ &=\frac{A^{2}}{-4\cdot T}\left(\frac{1}{j\cdot \frac{4\pi}{T}}\cdot \left(1-1\right)-T+\frac{1}{-j\cdot \frac{4\pi}{T}}\cdot \left(1-1\right)\right)=\\ &=\frac{A^{2}}{-4\cdot T}\left(\frac{1}{j\cdot \frac{4\pi}{T}}\cdot 0-T+\frac{1}{-j\cdot \frac{4\pi}{T}}\cdot 0\right)=\\ &=\frac{A^{2}}{-4\cdot T}\left(0-T+0\right)=\\ &=\frac{A^{2}}{-4\cdot T}\left(0-T+0\right)=\\ &=\frac{A^{2}}{-4\cdot T}\left(0-T+0\right)=\end{aligned}$$

Moc sygnału wynosi wiec:  $P = \frac{A^2}{4}$ 

Moc sygnału możemy wyznaczyć na podstawie współczynników zespolonego szeregu Fouriera  $F_k$  za pomocą twierdzenia Parsevala

$$P = \sum_{k=-\infty}^{\infty} |F_k|^2$$

Dla sygnałów rzeczywistych widmo amplitudowe sygnału jest parzyste a wiec mamy

$$|F_{-k}|^2 = |F_k|^2 \Rightarrow P = \sum_{k=-\infty}^{\infty} |F_k|^2$$
  
=  $|F_0|^2 + 2 \cdot \sum_{k=1}^{\infty} |F_k|^2$ 

A wiec moc parzystych harmonicznych można wyznaczyć odejmując od mocy całkowitej moc nieparzystych harmonicznych i moc składowej zerowej

$$P_{par} = P - |F_0|^2 - 2 \cdot \sum_{k=0}^{\infty} |F_{2 \cdot k+1}|^2$$

Współczynniki zespolonego szeregu Fouriera dla sygnału przedstawionego powyżej wyznaczone w ramach zadania 1 wynoszą

$$F_0 = \frac{A}{\pi}$$

$$F_{-1} = \jmath \cdot \frac{A}{4}$$

$$F_1 = -\jmath \cdot \frac{A}{4}$$

$$F_k = \frac{A}{2 \cdot \pi} \cdot \left(\frac{(-1)^k + 1}{1 - k^2}\right)$$

A wiec moc parzystych harmonicznych wynosi

$$\begin{split} P_{par} &= P - |F_0|^2 - 2 \cdot \sum_{k=0}^{\infty} |F_{2 \cdot k + 1}|^2 = \\ P_{par} &= P - |F_0|^2 - 2 \cdot |F_1|^2 - 2 \cdot \sum_{k=1}^{\infty} |F_{2 \cdot k + 1}|^2 = \\ &= \frac{A^2}{4} - \left|\frac{A}{\pi}\right|^2 - 2 \cdot \left|-\jmath \cdot \frac{A}{4}\right|^2 - 2 \cdot \sum_{k=1}^{\infty} \left|\frac{A}{2 \cdot \pi} \cdot \left(\frac{(-1)^{2 \cdot k + 1} + 1}{1 - (2 \cdot k + 1)^2}\right)\right|^2 = \\ &= \frac{A^2}{4} - \frac{A^2}{\pi^2} - 2 \cdot \frac{A^2}{4^2} - 2 \cdot \sum_{k=1}^{\infty} \left|\frac{A}{2 \cdot \pi} \cdot \left(\frac{(-1)^{2 \cdot k} \cdot (-1)^1 + 1}{1 - (2 \cdot k + 1)^2}\right)\right|^2 = \\ &= \frac{A^2}{4} - \frac{A^2}{\pi^2} - 2 \cdot \frac{A^2}{4^2} - 2 \cdot \sum_{k=1}^{\infty} \left|\frac{A}{2 \cdot \pi} \cdot \left(\frac{((-1)^2)^k \cdot (-1)^1 + 1}{1 - (2 \cdot k + 1)^2}\right)\right|^2 = \\ &= \frac{A^2}{4} - \frac{A^2}{\pi^2} - 2 \cdot \frac{A^2}{4^2} - 2 \cdot \sum_{k=1}^{\infty} \left|\frac{A}{2 \cdot \pi} \cdot \left(\frac{(1)^k \cdot (-1) + 1}{1 - (2 \cdot k + 1)^2}\right)\right|^2 = \\ &= \frac{A^2}{4} - \frac{A^2}{\pi^2} - 2 \cdot \frac{A^2}{4^2} - 2 \cdot \sum_{k=1}^{\infty} \left|\frac{A}{2 \cdot \pi} \cdot \left(\frac{1 \cdot (-1) + 1}{1 - (2 \cdot k + 1)^2}\right)\right|^2 = \\ &= \frac{A^2}{4} - \frac{A^2}{\pi^2} - 2 \cdot \frac{A^2}{4^2} - 2 \cdot \sum_{k=1}^{\infty} \left|\frac{A}{2 \cdot \pi} \cdot \left(\frac{1 \cdot (-1) + 1}{1 - (2 \cdot k + 1)^2}\right)\right|^2 = \\ &= \frac{A^2}{4} - \frac{A^2}{\pi^2} - 2 \cdot \frac{A^2}{4^2} - 2 \cdot \sum_{k=1}^{\infty} \left|\frac{A}{2 \cdot \pi} \cdot \left(\frac{-1 + 1}{1 - (2 \cdot k + 1)^2}\right)\right|^2 = \end{split}$$

$$= \frac{A^2}{4} - \frac{A^2}{\pi^2} - 2 \cdot \frac{A^2}{4^2} - 2 \cdot \sum_{k=1}^{\infty} \left| \frac{A}{2 \cdot \pi} \cdot \left( \frac{0}{1 - (2 \cdot k + 1)^2} \right) \right|^2 =$$

$$= \frac{A^2}{4} - \frac{A^2}{\pi^2} - 2 \cdot \frac{A^2}{4^2} - 2 \cdot \sum_{k=1}^{\infty} |0|^2 =$$

$$= \frac{A^2}{4} - \frac{A^2}{\pi^2} - 2 \cdot \frac{A^2}{16} - 0 =$$

$$= \frac{2 \cdot A^2}{8} - \frac{A^2}{\pi^2} - \frac{A^2}{8} =$$

$$= \frac{A^2}{8} - \frac{A^2}{\pi^2} =$$

$$= A^2 \cdot \left( \frac{1}{8} - \frac{1}{\pi^2} \right)$$

A wiec moc parzystych harmonicznych wynosi:  $P_{par} = A^2 \cdot \left(\frac{1}{8} - \frac{1}{\pi^2}\right)$ 

A wiec poszukiwany stosunek parzystych harmoniczych do całkowitej mocy synału wynosi:

$$\frac{P_{par}}{P} = \frac{A^2 \cdot \left(\frac{1}{8} - \frac{1}{\pi^2}\right)}{\frac{A^2}{4}} =$$

$$= \left(\frac{1}{8} - \frac{1}{\pi^2}\right) \cdot 4 =$$

$$= \frac{4}{8} - \frac{4}{\pi^2} =$$

$$= \frac{1}{2} - \frac{4}{\pi^2}$$

A wiec poszukiwany stosunek parzystych harmoniczych do całkowitej mocy synału wynosi:  $\frac{1}{2}-\frac{4}{\pi^2}$ 

# Analiza sygnałów nieokresowych. Przekształcenie całkowe Fouriera

- 3.1 Wyznaczanie transformaty Fouriera z definicji
- 3.2 Wykorzystanie twierdzeń do obliczeń transformaty Fouriera
- 3.3 Obliczenia energii sygnału za pomocą transformaty Fouriera. Twierdzenie Parsevala

# Transmisja sygnałów przez układy liniowe o stałych parametrach (LTI)

- 4.1 Obliczanie splotu ze wzoru
- 4.2 Filtry

