तरंग प्रकाशिकी | Physics class 12 chapter 10 notes in hindi pdf

इसके अंतर्गत wave optics संबंधी सभी टॉपिकों को रखा गया है। यहां नीचे हर टॉपिक के लिंक दिया गया है वहां से आप उस टॉपिक को पूरा पढ़ सकते हैं।

तरंग प्रकाशिकी

यह 12वीं कक्षा का chapter 10 है। उसके महत्वपूर्ण बिंदु निम्न प्रकार से हैं-

- 1. प्रकाश सीधी सरल रेखा में चलता है।
- 2. प्रकाश तरंगें ईथर में अधिक वेग से चलती है क्योंकि ईथर भारहीन है। इसका घनत्व बहुत ही कम तथा प्रत्यास्थता बहुत अधिक होती है।
- 3. हाइगेंस के द्वितीयक तरंगिकाओं के सिद्धांत से प्रकाश के परावर्तन, अपवर्तन के नियमों की तथा प्रकाश के व्यतिकरण और विवर्तन की व्याख्या की जा सकती है। एवं इस सिद्धांत से प्रकाश विद्युत प्रभाव की व्याख्या नहीं की जा सकती है।
- 4. अपवर्तन की घटना में तरंग की चाल तथा तरंगदैर्ध्य का मान बदल जाता है जबकि तरंग की आवृत्ति नहीं बदलती है।
- 5. पानी में प्रकाश की चाल हवा में प्रकाश की चाल से कम होती है। क्योंकि पानी का अपवर्तनांक, हवा के अपवर्तनांक से अधिक होता है।
- 6. व्यतिकरण फ्रिजों की आकृति अतिपरवलयकार होती है।
- 7. व्यतिकरण फ्रिजों की चौड़ाई समान भी हो सकती है अथवा नहीं भी हो सकती है। लेकिन विवर्तन फ्रिजों की चौड़ाई कभी भी समान नहीं हो सकती है।
- 8. ध्रुवण की घटना केवल प्रकाश में ही होती है ध्वनि में ध्रुवण की परिघटना नहीं होती है।
- 9. पोलेराइड द्वारा अध्रुवित प्रकाश को ध्रुवित प्रकाश में परिवर्तित किया जाता है।

हाइगेंस का द्वितीयक तरंग सिद्धांत क्या है | अपवर्तन तथा परिवर्तन की व्याख्या

प्रस्तुत अध्याय के अंतर्गत हाइगेंस का तरंग सिद्धांत के बारे में जानकारी प्रदान करेंगे। एवं इसकी परिकल्पना, नियम, सफलता और असफलता पर भी नजर डालेंगे।

हाइगेंस का तरंग सिद्धांत huygens wave theory in hindi

इस सिद्धांत के अनुसार, प्रकाश तरंगों के रूप में गमन करता है प्रकाश स्रोत से निकलकर ये तरंगे चारों (सभी) दिशाओं में निर्वात में प्रकाश की चाल से चलती है। चूंकि प्रकाश तरंगों का संचरण होने के लिए माध्यम की आवश्यकता होती है। इसलिए वैज्ञानिक हाइगेंस ने एक ऐसे सभी गुण वाले माध्यम 'ईथर (ether) ' की कल्पना की। क्योंकि इसमें प्रकाश तरंग के संचरण होने के सभी गुण होते हैं तथा ईथर लगभग भारहीन होता है।

निर्वात में प्रकाश की चाल 3 × 10⁸ मीटर/सेकंड होती है। अतः ईथर का घनत्व बहुत कम होता है। एवं प्रत्यास्थता का गुण बहुत अधिक होता है तथा यह किसी भी माध्यम में प्रवेश कर सकता है। इस प्रकार के माध्यम में प्रकाश तरंगें अधिक से चलती हैं। जब यह तरंगे हमारी आंख के रेटिना पर गिरती है तो हमें वस्तु दिखाई देने लगती है।

हाइगेंस का द्वितीयक तरंगिकाओं का सिद्धांत

वैज्ञानिक हाइगेंस ने अपने सिद्धांत की परिकल्पना दी। जो निम्न है –

 किसी माध्यम में स्थित प्रकाश स्रोत से जब तरंगे निकलती है तो स्रोत के सभी दिशाओं में स्थित माध्यम के कण गित (कंपन) करने लगते हैं। माध्यम का वह पृष्ठ जिसमें स्थित सभी कण समान कला में कंपन करते हैं तो उस पृष्ठ को तरंगाग्र कहते हैं।

जब तरंग स्रोत से तरंग की दूरी बहुत अधिक हो जाती है तब तरंगाग्र समतल हो जाता है।

- 2. तरंगाग्र पर जितने भी माध्यम के कण उपस्थित होते हैं वह सभी कण एक नवीन (नए) तरंग स्रोत का कार्य करते हैं। इन नए तरंग स्रोत से सभी दिशाओं में तरंगे गमन करती हैं इन तरंगों को द्वितीयक तरंगिकाएं (huygens theory of secondary waves in hindi) कहते हैं। माध्यम में द्वितीयक तरंगिकाओं की चाल प्राथमिक तरंगों की चाल के बराबर ही होती है अर्थात् ये दोनों तरंगे समान चाल से चलती हैं।
- 3. यदि किसी समय गमन करती हुई द्वितीयक तरंगिकाओं का आवरण (envelope) या उन्हें स्पर्श करता हुआ पृष्ठ अगर खींचते हैं। तो यह आवरण उस समय तरंगाग्र की नई स्थिति प्रदर्शित करता है।

हाइगेंस के सिद्धांत की सफलताएं

- 1. इस सिद्धांत द्वारा प्रकाश के अपवर्तन तथा परावर्तन के नियमों की व्याख्या की जा सकती है।
- 2. इस सिद्धांत द्वारा प्रकाश के व्यतिकरण तथा विवर्तन की व्याख्या भी की जा सकती है।

हाइगेंस के सिद्धांत की असफलताएं

- 1. इस सिद्धांत में प्रकाश को अनुदैर्ध्य माना गया, जिस कारण यह सिद्धांत प्रकाश के ध्रुवण की व्याख्या नहीं कर सका।
- 2. इस सिद्धांत द्वारा प्रकाश विद्युत प्रभाव की व्याख्या नहीं की जा सकी।

हाइगेंस सिद्धांत के प्रयोग द्वारा तरंगों के अपवर्तन की व्याख्या

इसके अंतर्गत हाइगेंस के सिद्धांत का उपयोग करके अपवर्तन के नियमों की व्याख्या करेंगे। इस तरह के प्रश्न बोर्ड परीक्षा में दीर्घ (Long) उत्तरीय प्रश्न में पूछा जाता है इसलिए इसे अच्छे से पढ़ें और याद करें।

हाइगेंस सिद्धांत द्वारा तरंगों की अपवर्तन की व्याख्या

तरंग के अपवर्तन की घटना में तरंग की चाल तथा तरंदैध्य बदल जाती है परंतु तरंग की आवृत्ति नहीं बदलती है।

माना YY' एक अपवर्तक पृष्ठ है। पहले माध्यम में एक समतल तरंगाग्र AB अपवर्तक पृष्ठ YY' पर इस प्रकार आपितत होता है कि तरंग संचरण की किरण अपवर्तक पृष्ठ के बिंदु A पर अभिलंब से i कोण बनाता है। माना पहले माध्यम में तरंग की चाल v_1 तथा दूसरे माध्यम में v_2 है। t=0 समय पर यह बिंदु A पर स्पर्श होता है। माना तरंगाग्र के बिंदु B को अपवर्तक पृष्ठ के बिंदु C तक पहुंचने में t=1 समय लगता है चित्र द्वारा स्पष्ट है। तब

 $BC = v_1t$

आप जैसे-जैसे आपितत तरंगाग्र AB आगे बढ़ता है वह अपवर्तक पृष्ठ के बिंदुओं A व C के बीच के बिंदुओं से टकराता रहता है। जो पहले माध्यम में v_1 तथा दूसरे माध्यम में v_2 चाल से चलने लगती है। तब इस प्रकार सबसे पहले बिंदु A से द्वितीयक तरंगिकाएं चलती है जब इनके बीच समय t होता है तो

माना दूसरा माध्यम पहले माध्यम के सापेक्ष सघन है। तब $v_2 < v_1$ तथा AD < BC . अब A को केंद्र मानकर AD त्रिज्या का एक गोलीय चाप खींचते हैं। तथा बिंदु C से इस चाप पर एक स्पर्श रेखा खींच देते हैं इस प्रकार AD सभी द्वितीयक तरंगिकाओं को स्पर्श करेगा। अतः CD अपवर्तित तरंगाग्र होगा

माना आपतित तरंगाग्र AB, अपवर्तित तरंगाग्र CD तथा अपवर्तक पृष्ठ YY' के साथ क्रमशः i तथा r कोण बनाता है। तब समकोण त्रिभुज ABC में

sini = BC/AC

sini = v₁t/AC समी.①

अब समकोण त्रिभुज ACD में

sinr = AD/AC

sinr = v₂t/AC समी.②

समी. 1) से समी. 2) को भाग करने पर

 $sini/sinr = v_1t/AC \times v_2t/AC$

$$rac{sini}{sinr} = rac{v_1}{v} =$$
न**ि**यत \circ ंक

यही स्नेल का अपवर्तन का नियम है तथा चित्र द्वारा यह भी स्पष्ट है कि आपतित किरण, अपवर्तित किरण तथा आपतन बिंदु पर अभिलंब तीनों एक ही तल में हैं। इस प्रकार इस परिभाषा से अपवर्तन के दोनों नियम सत्य है।

हाइगेंस सिद्धांत के प्रयोग द्वारा तरंगों के परावर्तन की व्याख्या

इस अध्याय के अंतर्गत हाइगेंस के सिद्धांत पर प्रयोग करके परावर्तन के नियमों की व्याख्या करेंगे। इस तरह के प्रश्न बोर्ड परीक्षा में दीर्घ (Long) उत्तरीय प्रश्न में पूछे जाते हैं। इसलिए इसे जरूर पढ़ें।

हाइगेंस सिद्धांत द्वारा तरंगों की परावर्तन की व्याख्या

माना YY' एक अपवर्तक पृष्ठ है। जिस पर एक समतल तरंगाग्र AB इस प्रकार आपतित होता है कि तरंग संचरण की किरण परावर्तक पृष्ठ के बिंदु A पर अभिलंब से i कोण बनाती है।

आप जैसे-जैसे तरंगाग्र AB आगे बढ़ता है तो तरंगाग्र परावर्तक पृष्ठ के बिंदुओं A व C के बीच स्थित बिंदुओं से टकराता रहता है। इस प्रकार A तथा C के बीच स्थित सभी बिंदुओं से द्वितीयक गोलीय तरंगिकाएं निकलने लगती हैं। ये तरंगिकाएं परावर्तक पृष्ठ के दूसरे माध्यम में नहीं जाती बल्कि पहले माध्यम में ही v चाल से ऊपर की ओर फैल जाती हैं।

अतः सबसे पहले बिंदु A से द्वितीयक तरंगिकाएं चलती है। जो t समय में तरंगाग्र के बिंदु B से C तक की दूरी तय करती हैं तथा ठीक इतने ही समय में तरंगाग्र का बिंदु A, AD दूरी तय करके बिंदु D तक पहुंचता है। अतः

AD = vt

या BC = vt

अब तरंगाग्र के बिंदु A को केंद्र मानकर AD त्रिज्या का एक गोलीय चाप खींचते हैं। तथा बिंदु C से इस चाप पर एक स्पर्श रेखा खींच देते हैं इस प्रकार AD सभी द्वितीयक तरंगिकाओं को स्पर्श करेगा। अतः CD परावर्तित तरंगाग्र होगा। समकोण त्रिभुज ABC तथा ADC में BC = AD (चूंकि दोनों vt के बराबर हैं) समकोण त्रिभुज के नियम से

∠ABC = ∠ADC

अतः भुजा AC, त्रिभुज ABC तथा ADC दोनों में इसलिए भुजा AC एक उभयनिष्ठ भुजा है इस प्रकार दोनों त्रिभुज सर्वांगसम त्रिभुज है। अतः

∠DAC = ∠DCA

अर्थात् $oxed{\mathrm{SUP}}$ अर्थात् $oxed{\mathrm{SUP}}$ अर्थात् $oxed{\mathrm{SUP}}$

इससे स्पष्ट है कि आपतित तरंगाग्र AB, परावर्तित तरंगाग्र CD तथा परावर्तक पृष्ठ YY' के साथ बराबर कोण बनाता है। तथा चित्र द्वारा यह भी स्पष्ट है कि आपतित किरण, परावर्तित किरण तथा आपतन बिंदु पर अभिलंब तीनों एक ही तल में है इस प्रकार इस परिभाषा से परावर्तन के दोनों नियम सत्य है।

ब्रूस्टर का नियम क्या है, brewster law in hindi, बूस्टर के नियम

प्रकाश एक स्थान से दूसरे स्थान तक तरंगों के रूप में चलकर पहुंचता है यह तरंगे दो प्रकार की होती हैं अनुप्रस्थ तरंग तथा अनुदैर्ध्य तरंग।

प्रकाश की तरंगे अनुप्रस्थ तरंगे होती हैं।

ब्रूस्टर का नियम

जब अध्रुवित प्रकाश किसी पारदर्शी माध्यम (जैसे कांच) के पृष्ठ पर परावर्तित होता है तो यह आज ध्रुवित प्रकाश संपूर्ण रूप से समतल ध्रुवित हो जाता है। वैज्ञानिक ब्रूस्टर ने मत दिया कि परावर्तित प्रकाश में ध्रुवित प्रकाश की मात्रा आपतन कोण पर निर्भर करती है। तथा एक विशेष आपतन कोण के लिए परावर्तित प्रकाश पूर्ण रूप से समतल ध्रुवित हो जाता है। इस आपतन कोण को ध्रुवण कोण कहते हैं। इसे ip से प्रदर्शित करते हैं एवं इसके कंपन आपतन तल के लंबवत होते हैं। ब्रूस्टर ने बताया कि पारदर्शी माध्यम के अपवर्तनांक तथा ध्रुवण कोण में निम्न संबंध होता है।

माना कांच का एक पृष्ठ है जिस पर AB आपतित किरण तथा BC परावर्तित किरण और BD अपवर्तित किरण है। इस पृष्ठ पर i_p आपतन कोण तथा r अपवर्तन कोण है तो स्नेल के नियम से

$$n = \frac{sini_p}{sinr}$$
 समी.①

चित्र द्वारा \angle PBC + \angle CBD + \angle QBD = 180°

तो \angle i $_p$ + \angle CBD + \angle r = 180° समी.②

चूंकि BC तथा BD परस्पर एक दूसरे के लंबवत है तो

समी. (1) में r तथा ∠CBD का मान रखने पर

$$n = \frac{sini_p}{sin(90-i_p)}$$
 $n = \frac{sini_p}{cosi_p}$ (चूंकि sin(90-θ) = cosθ)

$$oxed{n = tani_p}$$

इस संबंध को ही ब्रूस्टर का नियम कहते हैं।

आपतन कोण तथा अपवर्तन कोण के बीच संबंध

समी. से

$$n = \frac{sini_p}{sinr}$$

अब ब्रूस्टर के नियम से

दोनों समीकरणों की तुलना करने पर

$$tani_p = \frac{sini_p}{sinr}$$

$$\frac{sini_p}{cosi_p} = \frac{sini_p}{sinr}$$

$$sinr = cosi_p$$

$$sinr = sin(90 - i_p)$$

$$r = 90 - i_p$$

$$\boxed{r+i_p=90\degree}$$

इस समीकरण से स्पष्ट है कि परावर्तित तथा अपवर्तित प्रकाश की किरणें परस्पर लंबवत होती हैं।

व्यतिकरण किसे कहते हैं, संपोषी एवं विनाशी व्यतिकरण, interference in Hindi

व्यतिकरण

व्यतिकरण किन्हीं दो तरंगों के बीच होने वाली घटना है।

जब किसी माध्यम में समान आवृत्ति की दो तरंगे एक साथ समान (एक ही) दिशा में चलती हैं तो इनके अध्यारोपण से माध्यम के कुछ बिंदुओं पर परिणामी तीव्रता बहुत अधिक होती है। तथा इसके विपरीत माध्यम के कुछ बिंदुओं पर परिणामी तीव्रता बहुत कम होती है। तरंगों की इस घटना को व्यतिकरण interference in Hindi कहते हैं।

व्यतिकरण का व्यंजक

माना किसी माध्यम में एक ही आवृत्ति की दो सरल आवर्त प्रगामी तरंगे हैं। जो समान दिशा में गित कर रही है जिनके आयाम क्रमशः a_1 , a_2 हैं। एवं इनके बीच कलांतर ϕ है तथा इनकी तीव्रता I_1 व I_2 हैं तो परिणामी तीव्रता

$$I=I_1+I_2+2\sqrt{I_1\,I_2}cos\Phi$$

इस प्रकार स्पष्ट है कि किसी बिंदु पर परिणाम तीव्रता उस बिंदु पर मिलने वाली दोनों तरंगों के बीच कलांतर पर निर्भर करती है।

संपोषी व्यतिकरण

व्यतिकरण के जिन बिंदुओं पर तीव्रता अधिकतम होती है उन बिंदुओं पर हुए व्यतिकरण को संपोषी व्यतिकरण (constructive interference) कहते हैं। संपोषी व्यतिकरण के लिए cosφ = +1

चूंकि तीव्रता आयाम, के वर्ग के अनुक्रमानुपाती होती है इसलिए

$$I \propto a^2$$
 या $I = ka^2$

तब परिणामी तीव्रता

$$I_{\text{max}} = I_1 + I_2 + 2\sqrt{I_1 I_2} \times 1$$

$${
m I}_{\sf max}$$
 = $(\sqrt{I_1} + \sqrt{I_2})^2$ {(a +b) 2 के सूत्र से}

$$I_{\text{max}} = k(a_1 + a_2)^2$$

जिन बिंदुओं पर व्यतिकरण करने वाली तरंगें एक ही कला में मिलती है। इन बिंदुओं पर परिणामी तीव्रता अधिकतम होती है।

विनाशी व्यतिकरण

व्यतिकरण में जिन बिंदुओं पर तीव्रता न्यूनतम होती है उन बिंदुओं पर हुए व्यतिकरण को विनाशी व्यतिकरण (destructive interference) कहते हैं।

संपोषी व्यतिकरण के लिए $\cos\phi$ = -1

चूंकि $I \propto a^2$ तथा $I = ka^2$

तब परिणामी तीव्रता

$$I_{min} = I_1 + I_2 + 2\sqrt{I_1 I_2} \times -1$$

$$\mathrm{I}_{\mathsf{min}}$$
 = $(\sqrt{I_1} - \sqrt{I_2})^2$ {(a -b) 2 के सूत्र से}

$$I_{\mathsf{min}} = k(a_1 - a_2)^2$$

यंग का व्यतिकरण संबंधी द्विक रेखा छिद्र प्रयोग Young ka prayog

सर थॉमस यंग ने सन 1801 ई॰ में <u>व्यतिकरण</u> को द्विक रेखा छिद्र के प्रयोग की घटना को देखा। जो कि चित्र द्वारा स्पष्ट किया गया है इस प्रयोग को ही यंग का द्विक रेखा छिद्र प्रयोग कहते हैं।

यंग का व्यतिकरण प्रयोग

चित्र के अनुसार S एक रेखा छिद्र है जो कि L पर्दे में उपस्थित है। इस पर्दे से आगे की ओर कुछ दूरी पर एक अन्य पर्दा M है जिस पर दो रेखा छिद्र S_1 व S_2 हैं। जो छिद्र S से बराबर बराबर दूरी पर हैं तथा छिद्र रेखा S से उपर नीचे हैं। पर्दे M के आगे कुछ दूरी पर एक और अन्य पर्दा N है।

यंग का व्यतिकरण संबंधी द्विक रेखा छिद्र प्रयोग

जब पहले पर्दे के रेखा छिद्र S पर एकवर्णी प्रकाश गिराया जाता है तो पर्दे L से प्रकाश निकलकर दूसरे पर्दे M के दो छिद्रों S_1 व S_2 से होकर गुजरता है। तथा पर्दे पर समान चौड़ाई की दीप्त तथा अदीप्त पट्टियां एकांतर क्रम में बनने लगती हैं जो चित्र में B और D से दर्शाई गई है। इस दीप्त तथा अदीप्त पट्टियों को फ्रींज कहते हैं। एवं फ्रींजो का यह समूह रेखा छिद्र का व्यतिकरण प्रतिरूप कहलाता है चित्र में देखें।

यंग के प्रयोग संबंधी प्रश्न

(1) यंग के द्विक रेखा छिद्र प्रयोग में उन बिंदुओं पर तीव्रता का अनुपात ज्ञात कीजिए, जहां छिद्र से निर्गत तरंगों के बीच पथांतर λ तथा λ/6 है।

हल –

जब पथांतर λ है तो कलांतर ϕ_1 = $2\pi/\lambda \times \lambda$ = 2π जब पथांतर λ है तो कलांतर ϕ_2 = $2\pi/\lambda \times \lambda/6$ = $\pi/3$

तीव्रता के समीकरण से I = I_1 + I_2 + $2\sqrt{I_1\ I_2}\ \mathrm{cos} \phi$

 ϕ_1 के लिए तीव्रता

$$I' = I_1 + I_2 + 2\sqrt{I_1 I_2} \cos 2\pi$$

$$I' = 2I + 2I = 4I$$

 ϕ_2 के लिए तीव्रता

$$I'' = I_1 + I_2 + 2\sqrt{I_1 I_2} \cos \pi/6$$

$$I' = 2I + 2I \times 1/2 = 3I$$

अतः तीव्रताओं का अनुपात = I'/I" = 4I/3I = **4 : 3 Ans.**

(2) यंग के द्विक छिद्र प्रयोग में छिद्र के बीच की दूरी 2×10^{-3} मीटर है। तथा छिद्रों और पर्दों के बीच की दूरी 3.0 मीटर है एवं फ्रिंज चौड़ाई 2.1×10^{-3} मीटर है। तब प्रयोग में प्रकाश की तरंगदैध्य ज्ञात कीजिए –

हल –

दिया है $d = 2 \times 10^{-3}$ मीटर

 $W = 2.1 \times 10^{-3}$ मीटर

D = 3.0 मीटर

λ = ?

सूत्र W =
$$\frac{D\lambda}{d}$$
 से

$$\lambda = \frac{Wd}{D}$$

$$\lambda = \frac{2.1 \times 10^{-3} \times 2 \times 10^{-3}}{3.0}$$

प्रकाश का विवर्तन क्या है, फ्रेनल तथा फ्राउनहोफर विवर्तन, परिभाषा, उदाहरण

विवर्तन क्या है

जब किसी प्रकाश स्रोत तथा जिस पर प्रकाश गिर रहा है उस पर्दे के बीच में एक अपारदर्शी रोधक एवं इसमें एक छिद्र करके रख दिया जाता है। तो जब प्रकाश स्रोत से प्रकाश गिराया जाता है तो अपारदर्शी अवरोधक की छाया पर्दे पर बनती है। एवं अवरोधक पर छिद्र के कारण प्रकाश का प्रदीप्त क्षेत्र पर्दे पर प्राप्त होता है।

इस प्रकार हमें ज्ञात होता है कि प्रकाश ऋजुरेखीय पथ पर चलता है।

परंतु यदि अवरोधक तथा छिद्र का आकार छोटा कर दिया जाता है तो प्रकाश छिद्र के किनारों पर ऋजुरेखीय पथ से विचलित हो जाता है। एवं छिद्र के किनारों पर प्रकाश संपूर्ण रूप से मुड़ जाता है।

अतः प्रकाश का इस प्रकार छिद्र के किनारों से मोड़ने की प्रक्रिया को प्रकाश का विवर्तन (diffraction in Hindi) कहते हैं।

विवर्तन की परिभाषा

जब प्रकाश की किरणें किसी अवरोध अथवा छोटा छिद्र (झिर्री) पर पड़ती हैं। तो प्रकाश की किरणें छिद्र तथा अवरोध के किनारों की ओर आंशिक रूप से मुड़ जाती हैं। प्रकाश की किरणों का इस प्रकार मुड़ने की घटना को प्रकाश का विवर्तन कहते हैं।

प्रकाश के विवर्तन की घटना तभी घटित होती है जब छिद्र तथा अवरोध का आकार, प्रकाश की तरंगदैर्ध्य की कोटि का होना चाहिए।

अतः यह विवर्तन की एक आवश्यक शर्त है चित्र द्वारा स्पष्ट है।

फ्रेनल विवर्तन

फ्रेनल विवर्तन में प्रकाश स्रोत तथा वह पर्दा, जिस पर अवरोध की प्रतिछाया बनती है वह अवरोध अथवा द्वारक से कम दूरी पर स्थित होता है। इस प्रकार के विवर्तन में लेंसों की आवश्यकता नहीं होती है। तथा इसमें आपाती तरंगाग्र (अवरोध से निकला हुआ प्रकाश) गोलाकार एवं बेलनाकार होता है।

फ्राउनहोफर विवर्तन

फ्राउनहोफर विवर्तन में प्रकाश स्रोत तथा वह पर्दा, जिस पर अवरोध की प्रतिछाया बनती है वह अवरोध अथवा द्वारक से अधिक दूरी पर स्थित होता है। इस प्रकार के विवर्तन में स्रोत तथा पर्दे को दो लेंसों के फोकस तलों में रखते है। तथा इसमें आपाती तरंगाग्र समतल होता है।

तरंगों में विवर्तन

तरंगों के लिए भी यही परिभाषा होगी – विवर्तन तरंगों का एक महत्वपूर्ण गुण है। यह केवल तरंगों में ही दिखाई देता है कणों में नहीं। " तरंगों का अपने मार्ग से आने वाले अवरोध के किनारों पर आंशिक रूप से मुड़ना विवर्तन कहलाता है।

व्यतिकरण एवं विवर्तन में अंतर लिखिए, और समझाइए

व्यतिकरण - किन्ही दो तरंगों के बीच में होने वाली एक घटना है।

जब किसी माध्यम में समान आवृत्ति की दो तरंगे समान दिशा में चलती हैं तो इन तरंगों के अध्यारोपण से माध्यम के कुछ बिंदुओं पर तीव्रता बहुत अधिक तथा कुछ बिंदुओं पर तीव्रता बहुत कम पायी जाती है। तरंगों की इस घटना को व्यतिकरण कहते हैं। एवं जिन बिंदुओं पर तीव्रता अधिक पाई जाती है उन बिंदुओं पर हुए व्यतिकरण को संपोषी व्यतिकरण कहते हैं। तथा इसके विपरीत जिन बिंदुओं पर तीव्रता बहुत कम पाई जाती है उन बिंदुओं पर हुए व्यतिकरण को विनाशी व्यतिकरण कहते हैं।

विवर्तन – जब प्रकाश की किरणें किसी अवरोध अथवा पतली झिर्री पर गिराई जाती हैं। तो प्रकाश की किरणें अवरोध अथवा पतली झिर्री के किनारों की ओर आंशिक रूप से मुड़ जाती है।

अतः प्रकाश की किरणों का इस प्रकार मुड़ने की प्रक्रिया को प्रकाश का विवर्तन कहते हैं।

व्यतिकरण एवं विवर्तन में अंतर

व्यतिकरण तथा विवर्तन के बीच अनेकों प्रकार के अंतर पाए जाते हैं जिनमें से कुछ निम्न प्रकार हैं –

क्रमांक व्यतिकरण विवर्तन

1	व्यतिकरण प्रतिरूप में सभी दीप्त फ्रीजों की तीव्रता समान होती है।	विवर्तन प्रतिरूप में सभी दीप्त फ्रीजों की तीव्रता लगातार घटती जाती है।
2	व्यतिकरण, दो कला संबद्ध स्रोतों से प्राप्त प्रकाश तरंगों के अध्यारोपण से यह घटना होती है।	विवर्तन, एक ही स्रोत के विभिन्न बिंदुओं से प्राप्त द्वितीयक तरंग के अध्यारोपण से यह घटना होती है।
3	व्यतिकरण द्वारा प्राप्त फ्रीजें समान चौड़ाई की हो सकती है या नहीं भी हो सकती।	विवर्तन द्वारा प्राप्त फ्रीजें कभी भी समान चौड़ाई की नहीं होती हैं।

4	व्यतिकरण में सभी अदीप्त फ्रीजों की तीव्रता शून्य	विवर्तन में निम्निष्ट की तीव्रता कभी भी शून्य नहीं होती है।
	अथवा बहुत कम होती है।	

प्रकाश का ध्रुवण क्या है, ध्रुवित, अध्रुवित तथा समतल ध्रुवित प्रकाश में अन्तर

प्रकाश का ध्रुवण

जब कोई प्रकाश की तरंग किसी टूरमैलीन क्रिस्टल पर गिरती है तो क्रिस्टल से तरंग के वे कंपन ही बाहर निकलते हैं जो क्रिस्टल की अक्ष के समांतर होते हैं। एवं बाकी कंपन क्रिस्टल के कारण बाहर नहीं निकल पाते हैं वह रुक जाते हैं। तथा क्रिस्टल प्रकाश की तरंग के बाहर निकलने के बाद कंपन तरंग की चलने की लम्बवत् तल में सभी दिशाओं में समान रूप से न होकर केवल एक ही दिशा में होते हैं। इस प्रकार की तरंग को समतल ध्रुवित तरंग एवं घटना को प्रकाश का ध्रुवण (Polarisation of light in hindi) कहते हैं।

ध्रुवण की परिघटना केवल प्रकाश में ही होती है ध्विन में यह घटना नहीं पाई जाती है। इसका कारण है कि प्रकाश की तरंगे अनुप्रस्थ तथा ध्विन तरंगे अनुदैर्ध्य होती हैं।

अध्रुवित प्रकाश

वह प्रकाश जिसमें विद्युत वेक्टर के कंपन प्रकाश की तरंग के चलने की दिशा के लम्बवत् तल में, सभी दिशाओं में समान रूप से होते हैं। इस प्रकार के प्रकाश को अध्रुवित प्रकाश कहते हैं।

ध्रुवित प्रकाश

वह प्रकाश जिसमें विद्युत वेक्टर के कंपन प्रकाश की तरंग के चलने की दिशा के लम्बवत् तल में, सभी दिशाओं में समान रूप से न होकर केवल एक ही दिशा में होते हैं। इस प्रकार के प्रकाश को ध्रुवित प्रकाश कहते हैं।

समतल ध्रुवित प्रकाश

यह ध्रुवित प्रकाश के जैसा ही होता है।

समतल ध्रुवित प्रकाश में कंपन केवल एक ही सीधी रेखा के अनुदेश होते हैं। जब कंपन वस्तु के तल के समांतर होते हैं तब समतल ध्रुवित प्रकाश को तीर द्वारा दर्शाया जाता हैं। तथा जब कंपन वस्तु के तल के लम्बवत् होते हैं तब समतल ध्रुवित प्रकाश को बिन्दुओं द्वारा दर्शाया जाता हैं।

समतल ध्रुवित प्रकाश तथा अध्रुवित प्रकाश में अन्तर

समतल ध्रुवित प्रकाश

अध्रुवित प्रकाश

इसमें विद्युत वेक्टर के कंपन प्रकाश के संचरण की दिशा के लम्बवत् तल में सभी दिशाओं में सममित रूप से न होकर केवल एक ही दिशा में होते हैं। इसमें विद्युत वेक्टर के कंपन प्रकाश के संचरण की दिशा के लम्बवत् तल में सभी दिशाओं में सममित (समान) रूप से होते हैं।

पोलेराइड क्या है, परिभाषा Polaroid meaning in Hindi class 12

पोलेराइड क्या है

कार्बनिक यौगिक हारपेथाइट या आयोडो सल्फेट का क्यूनाइन के अति सूक्ष्म क्रिस्टल का नाइट्रो सेलुलोस की पतली चादर पर एक विशेष प्रकार की विधि द्वारा एक बड़े आकार की फिल्म बनाई जाती है। यह बड़े आकार की फिल्म ही पोलेराइड फिल्म होती है।

इस पोलेराइड फिल्म को कांच की दो प्लेटों के बीच रखा जाता है। पोलेराइड, अध्रुवित प्रकाश को समतल ध्रुवित प्रकाश में परिवर्तित करने की एक विधि है।

पोलेराइड की कार्यविधि

जब अध्रुवित प्रकाश की एक किरण पुंज को पोलेराइड की फिल्म में से गुजारा जाता है तो पोलेराइड फिल्म केवल प्रकाश के उन घटकों को पार जाने देती है। जिनके विद्युत वेक्टर पोलेराइड फिल्म की ध्रुवण दिशा के समांतर कंपन करते हैं। इस प्रकार पोलेराइड फिल्म से बाहर निकले हुए प्रकाश के विद्युत वेक्टर एक ही दिशा में कंपन करते हैं।

अतः यह प्रकाश पूर्ण रूप से समतल ध्रुवित प्रकाश होता है। इस प्रकार पोलेराइड द्वारा अध्रुवित प्रकाश को समतल ध्रुवित प्रकाश में परिवर्तित किया जाता है।

पोलेराइड द्वारा समतल ध्रुवित प्रकाश की पहचान करना

पोलेराइड द्वारा अध्रुवित प्रकाश को आंशिक रूप से ध्रुवित प्रकाश होने का पता लगाया जाता है। इसको तीन भागों में बढ़ेंगे।

- 1. किसी पोलेराइड को आपतित प्रकाश के परितः एक पूरा चक्कर घुमाने में यदि निर्गत प्रकाश की तीव्रता में कोई अंतर नहीं पड़ता है। तो आपतित प्रकाश **अध्यवित** होता है।
- 2. यदि निर्गत प्रकाश की तीव्रता में कोई परिवर्तन होता है लेकिन किसी भी स्थिति में तीव्रता शून्य नहीं होती है। तो आपतित प्रकाश **ध्रुवित** होता है।
- 3. यदि निर्गत प्रकाश की तीव्रता में अंतर होता है तथा एक चक्कर में दो बार तीव्रता अधिकतम तथा दो बार तीव्रता शून्य हो जाती है। तो आपतित प्रकाश पूर्ण रूप से समतल ध्रुवित प्रकाश होता है।

पोलेराइड के उपयोग

- 1. पोलेराइड का सबसे महत्वपूर्ण उपयोग फोटो कैमरो में किया जाता है। इससे तस्वीरें स्पष्ट दिखाई देती है जिससे फोटो साफ खींचे जाते हैं।
- 2. पोलेराइड का उपयोग मोटर कारों की हेडलाइट में किया जाता है। इससे रात के समय सामने से आने वाले वाहन की लाइट से आंखों पर चकाचौंध नहीं पड़ती है।
- 3. जब सूक्ष्मदर्शी द्वारा अति सूक्ष्म जीव देखा जाता है तो वह स्पष्ट नहीं दिखता है। तथा यहां सूक्ष्मदर्शी में पोलेराइड का उपयोग करके जीव स्पष्ट दिखाई देता है।

मेलस का नियम बताइए, malus law in Hindi, सिद्ध करना

मेलस का नियम

जब किसी स्रोत से आने वाला पूर्ण रूप से ध्रुवित प्रकाश को किसी विश्लेषक पर गिराया जाता है तो विश्लेषक से बाहर निकलने वाले प्रकाश की तीव्रता, विश्लेषक की ध्रुवण दिशा तथा विश्लेषक पर आपतित प्रकाश की तीव्रता के बीच बने कोण की कोज्या (cosine) के वर्ग के अनुक्रमानुपाती होता है।

माना विश्लेषक से बाहर निकलने वाले प्रकाश की तीव्रता I तथा विश्लेषक व ध्रुवण दिशा के बीच बना कोण θ हो तो मेलस के नियमानुसार

 $I \propto \cos^2\theta$

$$I=I_0 cos^2 heta$$

जहां ${
m I}_0$ विश्लेषक पर आपतित, ध्रुवित प्रकाश की तीव्रता है। इसे ही मेलस का नियम (malus law in hindi) कहते हैं।

मेलस नियम की उत्पत्ति

माना किसी विश्लेषक पर आपितत ध्रुवित प्रकाश की तीव्रता I_0 तथा इसमें विद्युत वेक्टर के कंपन का आयाम a है। एवं इसकी दिशा तथा विश्लेषक की ध्रुवण दिशा के बीच का कोण θ है।

आयाम a को विश्लेषक की ध्रुवण दिशा के समांतर तथा लंबवत घटकों में वियोजित करने पर

समांतर घटक = acosθ

लंबवत घटक = asinθ

विश्लेषक में से केवल समांतर घटक acosθ ही गुजर सकता है लंबवत घटक asinθ विश्लेषक से नहीं गुजर सकता है।

अतः विश्लेषक से निर्गत प्रकाश की तीव्रता

 $I \propto (a\cos\theta)^2$

 $I = ka^2 cos^2 \theta$ समी. ①

मेलस के नियम के सूत्र से

 $I = I_0 cos^2 \theta$ समी. ②

अब समी. १ व समी. १ की तुलना करने पर

 $I_0\cos^2\theta = ka^2\cos^2\theta$

 $I_0 = ka^2$ समी.③

समी. 1) से प्रकाश की तीव्रता

 $I = ka^2 cos^2 \theta$

अब समी.③ से ka² का मान रखने पर प्रकाश की तीव्रता

 $I = I_0 cos^2 heta$

यही मेलस का नियम है।