

第三章 词法分析

正则表达式

正则表达式

语言
$$L=\{a\}\{a,b\}^*(\{\varepsilon\}\cup(\{.,_\}\{a,b\}\{a,b\}^*))$$

- ▶正则表达式(Regular Expression, RE) 是一种用来描述正则语言的更紧凑的表示方法
 - \triangleright 例: $r = a(a/b)^*(\varepsilon \mid (./_)(a/b)(a/b)^*)$
- \triangleright 正则表达式可以由较小的正则表达式按照特定规则递归地构建。每个正则表达式r定义(表示)一个语言,记为L(r)。这个语言也是根据r的子表达式所表示的语言递归定义的

正则表达式的定义

- \triangleright ε 是一个RE, $L(\varepsilon) = {\varepsilon}$
- > 如果 a ∈ ∑ ,则 a 是一个RE , $L(a) = \{a\}$
- \triangleright 假设r和s都是RE,表示的语言分别是L(r)和L(s),则
 - ightharpoonup r|s $\not\equiv -\uparrow RE$, $L(r|s) = L(r) \cup L(s)$
 - ightharpoonup rs 是一个RE, L(rs) = L(r) L(s)
 - $> r^*$ 是一个RE, $L(r^*)=(L(r))^*$
 - \triangleright (r) 是一个RE, L((r)) = L(r)

运算的优先级: *、连接、|

例

$$\triangleright$$
 令 $\Sigma = \{a, b\}$,则

$$> L(a|b) = L(a) \cup L(b) = \{a\} \cup \{b\} = \{a,b\}$$

$$> L((a|b)(a|b)) = L(a|b) L(a|b) = \{a,b\}\{a,b\} = \{aa,ab,ba,bb\}$$

$$> L(a^*) = (L(a))^* = \{a\}^* = \{ \epsilon, a, aa, aaa, ... \}$$

$$> L((a|b)^*) = (L(a|b))^* = \{a,b\}^* = \{ \varepsilon, a, b, aa, ab, ba, bb, aaa, \ldots \}$$

$$\triangleright L(a|a^*b) = \{a, b, ab, aab, aaab, \ldots\}$$

例:C语言无符号整数的RE

- ▶十进制整数的RE
 - >(1|...|9)(0|...|9)*|0
- ▶八进制整数的RE
 - $> 0(1|2|3|4|5|6|7)(0|1|2|3|4|5|6|7)^*$
- ▶十六进制整数的RE
 - $> 0x(1|...|9|a|...|f|A|...|F)(0|...|9|a|...|f|A|...|F)^*$

正则语言

▶可以用RE定义的语言叫做

正则语言(regular language)或正则集合(regular set)

RE的代数定律

定律	描述
$r \mid s = s \mid r$	是可以交换的
$r \mid (s \mid t) = (r \mid s) \mid t$	是可结合的
r(st) = (rs)t	连接是可结合的
r(s t) = rs rt; $(s t) r = sr tr$	连接对 是可分配的
$\varepsilon r = r\varepsilon = r$	ε 是连接的单位元
$r^* = (r \varepsilon)^*$	闭包中一定包含 &
$r^{**}=r^*$	*具有幂等性

正则文法与正则表达式等价

- \triangleright 对任何正则文法 G,存在定义同一语言的正则表达式 r
- \triangleright 对任何正则表达式r,存在生成同一语言的正则文法G

第三章 词法分析

正则表达式

第三章 词法分析

正则定义

正则定义 (Regular Definition)

> 正则定义是具有如下形式的定义序列:

 $d_1 \rightarrow r_1$ $d_2 \rightarrow r_2$ \cdots $d_n \rightarrow r_n$

给一些RE命名,并在之后的RE中像使用字母表中的符号一样使用这些名字

其中:

- ight)每个 d_i 都是一个新符号,它们都不在字母表 Σ 中,而且各不相同
- \triangleright 每个 r_i 是字母表 $\Sigma \cup \{d_1,d_2,\ldots,d_{i-1}\}$ 上的正则表达式

例1

- >C语言中标识符的正则定义
 - > digit $\rightarrow 0|1|2|...|9$
 - \triangleright letter_ $\rightarrow A|B|...|Z/a|b|...|z|_$
 - $\gt{id} \rightarrow letter_(letter_|digit)^*$

例2

- > (整型或浮点型) 无符号数的正则定义
 - > digit $\rightarrow 0|1|2|...|9$
 - > digits \rightarrow digit digit*
 - \succ optional Fraction \rightarrow .digits | ε
 - $\gt{optionalExponent} \rightarrow (E(+|-|\varepsilon)digits)|\varepsilon$
 - \succ number \rightarrow digits optionalFraction optionalExponent

2 2.15 2.15E+3 2.15E-3 2.15E3 2E-3

第三章 词法分析

正则定义

提纲

3.3 单词的识别

- ▶有穷自动机 (Finite Automata)
- ▶从正则表达式到自动机

第三章 词法分析

有穷自动机

有穷自动机

- ▶有穷自动机(Finite Automata, FA)由两位神经物理学家 MeCuloch和Pitts于1948年首先提出,是对一类处理系统 建立的数学模型
- ▶这类系统具有一系列离散的输入输出信息和有穷数目的内部状态(状态:概括了对过去输入信息处理的状况)
- 》系统只需要根据当前所处的状态和当前面临的输入信息 就可以决定系统的后继行为。每当系统处理了当前的输 入后,系统的内部状态也将发生改变

FA的典型例子

- ▶电梯控制装置
 - ▶输入: 顾客的乘梯需求 (所要到达的层号)
 - ▶状态: 电梯所处的层数+运动方向
 - ▶电梯控制装置并不需要记住先前全部的服务要求, 只需要知道电梯当前所处的状态以及还没有满足的所有服务请求

FA模型

- > 输入带(input tape): 用来存放输入符号串
- ▶ 读头(head): 从左向右逐个读取输入符号,不能修改(只读)、不能往返移动
- ➤ 有穷控制器(finite control): 具有有穷个状态数,根据当前的 状态和当前输入符号控制转入下一状态

FA的表示

- > 转换图 (Transition Graph)
 - > 结点: FA的状态
 - ▶初始状态(开始状态):只有一个,由start箭头指向
 - ▶终止状态(接收状态):可以有多个,用双圈表示
 - ▶ 带标记的有向边:如果对于输入a,存在一个从状态p到状态q的转换,就在p、q之间画一条有向边,并标记上a

FA定义(接收)的语言

- ▶给定输入串x,如果存在一个对应于串x的从初始状态 到某个终止状态的转换序列,则称串x被该FA接收
- \triangleright 由一个有穷自动机M接收的所有串构成的集合称为是该FA定义(或接收)的语言,记为L(M)

L(M) =所有以abb结尾的字母表 $\{a,b\}$ 上的串的集合

最长子串匹配原则(Longest String Matching Principle)

▶当输入串的多个前缀与一个或多个模式匹配时, 总是选择最长的前缀进行匹配

▶在到达某个终态之后,只要输入带上还有符号, DFA就继续前进、以便寻找尽可能长的匹配

第三章 词法分析

有穷自动机

FA的分类

- ▶确定的FA (Deterministic finite automata, DFA)
- ▶非确定的FA (Nondeterministic finite automata, NFA)

确定的有穷自动机 (DFA)

$$M = (S, \Sigma, \delta, s_0, F)$$

- ▶S: 有穷状态集
- $\triangleright \Sigma$: 输入字母表,即输入符号集合。假设 ε 不是 Σ 中的元素
- $\triangleright \delta$: 将 $S \times \Sigma$ 映射到S的转换函数。 $\forall s \in S, a \in \Sigma, \delta(s,a)$ 表示 从状态s出发,沿着标记为a的边所能到达的状态。
- $\triangleright s_0$: 开始状态 (或初始状态), $s_0 \in S$
- $\triangleright F$: 接收状态(或终止状态)集合, $F \subseteq S$

例:一个DFA

$$M = (S, \Sigma, \delta, s_0, F)$$

转换表

状态输入	a	b
0	1	0
1	1	2
2	1	3
3 •	1	0

可以用转换表表示DFA

非确定的有穷自动机(NFA)

$$M = (S, \Sigma, \delta, s_0, F)$$

- ▶S: 有穷状态集
- $\triangleright \Sigma$: 输入符号集合,即输入字母表。假设 ε 不是 Σ 中的元素
- \triangleright 8: 将 $S \times \Sigma$ 映射到 2^S 的转换函数。 $\forall s \in S, a \in \Sigma, \delta(s,a)$ 表示从状态s出发,沿着标记为a的边所能到达的状态集合
- $\triangleright s_0$: 开始状态(或初始状态), $s_0 \in S$
- $\triangleright F$: 接收状态(或终止状态)集合, $F \subseteq S$

例: 一个NFA

$$M = (S, \Sigma, \delta, s_0, F)$$

转换表

状态输入	a	b
0	{0,1}	{0}
1	Ø	{2}
2	Ø	{3}
3•	Ø	Ø

如果转换函数没有给出对应于某 个状态-输入对的信息,就把Ø放 入相应的表项中

DFA和NFA的等价性

- \triangleright 对任何非确定的有穷自动机N,存在定义同一语言的确定的有穷自动机D
- \triangleright 对任何确定的有穷自动机D,存在定义同一语言的非确定的有穷自动机N

DFA和NFA的等价性

▶DFA和NFA可以识别相同的语言

$$r = (a|b)^*abb$$

正则文法 \Leftrightarrow 正则表达式 \Leftrightarrow FA

带有 " ε -边" 的NFA

$$M = (S, \Sigma, \delta, s_0, F)$$

- ▶S: 有穷状态集
- $\triangleright \Sigma$: 输入符号集合,即输入字母表。假设 ε 不是 Σ 中的元素
- \triangleright 8: 将 $S \times (\Sigma \cup \{\varepsilon\})$ 映射到 2^S 的转换函数。 $\forall s \in S, a \in \Sigma \cup \{\varepsilon\}, \delta(s,a)$ 表示从状态s出发,沿着标记为a的边所能到达的状态集合
- $\triangleright s_0$: 开始状态(或初始状态), $s_0 \in S$
- $\triangleright F$: 接收状态 (或终止状态) 集合, $F \subseteq S$

带有和不带有 " ε -边" 的NFA 的等价性

〉例

$$r = 0^*1^*2^*$$

状态A: 0*

状态B: 0*1*

状态C: 0*1*2*

DFA的算法实现

- \triangleright 输入:以文件结束符eof结尾的字符串x。DFAD的开始状态 S_0 ,接收状态集F,转换函数move。
- \triangleright 输出:如果D接收x,则回答"yes",否则回答"no"。
- ▶方法:将下述算法应用于输入串 x。

```
s = s<sub>0</sub>;

c = nextChar();

while (c! = eof) {

    s = move(s,c);

    c = nextChar();

}

if (s在F中) return "yes";

else return "no";
```

- ➤ 函数nextChar()返回输入串x的下 一个符号
- ► 函数move(s, c)表示从状态s出发, 沿着标记为c的边所能到达的状态

从正则表达式到有穷自动机

根据RE 构造NFA

► E对应的NFA

 \triangleright 字母表 Σ 中符号 α 对应的NFA

$$start \rightarrow \boxed{q_0} \xrightarrow{a} \boxed{q_f}$$

$$r = r_1 r_2$$
对应的NFA

$$start \rightarrow q_0 \xrightarrow{r_1} q_1 \xrightarrow{r_2} q_f$$

 $r = r_1/r_2$ 对应的NFA

$$start \rightarrow q_0 \qquad q_f \qquad q_f$$

$$r = (r_1)^*$$
对应的NFA

例: $r=(a|b)^*abb$ 对应的NFA

哈尔滨工业大学 陈鄞

从NFA到DFA的转换

DFA的每个状态都是一个由 NFA中的状态构成的集合,即 NFA状态集合的一个子集

状态输入	а	b	c
\boldsymbol{A}	$\{A,B\}$	Ø	Ø
В	Ø	<i>{B,C}</i>	Ø
C	Ø	Ø	{ <i>C</i> , <i>D</i> }
<i>D</i> •	Ø	Ø	Ø

 $r = aa^*bb^*cc^*$

$$DFA : start \rightarrow A \xrightarrow{a} \xrightarrow{A,B} \xrightarrow{b} \xrightarrow{b} \xrightarrow{c} \xrightarrow{c} \xrightarrow{c}$$

例2:从带有 ε -边的NFA到DFA的转换

 $NFA : start \longrightarrow A \xrightarrow{\varepsilon} B \xrightarrow{\varepsilon} C$

17 12 12				
状态	0	1	2	
$oldsymbol{A}$	$\{A,B,C\}$	<i>{B,C}</i>	{ <i>C</i> }	
\boldsymbol{B}	Ø	<i>{B,C}</i>	{ <i>C</i> }	
<i>C</i> •	Ø	Ø	{ <i>C</i> }	

结选表

	r=0.1.2] 1
DFA:	start—	$ \begin{array}{c c} 0 & & \\ \hline A,B,C & \\ \hline 2 & \\ \hline C & \\ \end{array} $

子集构造法(subset construction)

▶ 输入: NFA N ▶ 输出:接收同样语言的DFA D 方法: 一开始, ε-closure (s_0) 是Dstates 中的唯一状态, 且它未加标记; while (在Dstates中有一个未标记状态T) { 给T加上标记: for (每个输入符号a){ $U = \varepsilon$ -closure(move(T, a)); if (U不在Dstates中) 将U加入到Dstates中,且不加标记: Dtran[T, a]=U;

操作	描述
ε-closure (s)	能够从 NFA 的状态 s 开始只通过 ϵ 转换到达的 NFA 状态集合
ε-closure (T)	能够从 T 中的某个 NFA 状态 s 开始只通过 ϵ 转换到达的 NFA 状态集合,即 $U_{s \in T}$ ϵ -closure (s)
move(T, a)	能够从 T 中的某个状态 S 出发通过标号为 a 的转换到达的 NFA 状态的集合

计算 ε-closure (T)

```
将T的所有状态压入stack中;
将ε-closure (T)初始化为T;
while (stack 非空) {
     将栈顶元素 t 给弹出栈中;
      for (每个满足如下条件的u: 从t出发有一个标号为\varepsilon的转换到达状态u)
          if (u不在\varepsilon-closure (T)中) {
                将u加入到\varepsilon-closure (T)中;
                将u压入栈中;
```


第三章 词法分析

识别单词的DFA

哈尔滨工业大学 陈鄞

识别标识符的DFA

- >标识符的正则定义
 - > digit $\rightarrow 0|1|2|...|9$
 - \gt letter $\rightarrow A|B|...|Z|a|b|...|z|_{-}$
 - $\gt{id} \rightarrow letter_(letter_|digit)^*$

识别无符号数的DFA

- $> digit \rightarrow 0|1|2|...|9$
- $\gt digits \rightarrow digit \ digit^*$
- \triangleright optionalFraction \rightarrow .digits| ε
- $\gt{optionalExponent} \rightarrow (E(+|-|\varepsilon)digits)|\varepsilon$
- > number -> digits optionalFraction optionalExponent

识别无符号数的DFA

识别各进制无符号整数的DFA

$$HEX \to 0x(1|...|9|a|...|f|A|...|F)(0|...|9|a|...|f|A|...|F)^*$$
 $start \to 0 5 x 6 1-9,a-f 7 0-9,a-f$

识别注释的DFA

识别 Token的DFA

词法分析阶段的错误处理

- 户词法分析阶段可检测错误的类型
 - > 单词拼写错误
 - **>**例: int i = 0x3G; float j = 1.05e;
 - >非法字符
 - ≽例: ~ @
- >词法错误检测
 - ▶如果当前状态与当前输入符号在转换表对应项中的信息为空,则报错,调用错误处理程序

错误处理

- ▶查找已扫描字符串中最后一个对应于某终态的字符
 - ▶如果找到了,将该字符与其前面的字符识别成一个单词。然后将输入指针退回到该字符,扫描器重新回到初始状态,继续识别下一个单词
 - >如果没找到,则确定出错,采用错误恢复策略

错误恢复策略

- ▶最简单的错误恢复策略:"恐慌模式 (panic mode)"恢复
 - 从剩余的输入中不断删除字符,直到词法分析器能够在剩余输入的开头发现一个正确的字符为止

第三章 词法分析

识别单词的DFA

哈尔滨工业大学 陈鄞

