Section 8.3 - Part 1: Integral Test

Section 8.3 - Tests for Series with POSITIVE Terms:

The tests that we will develop in this section can only be applied to series with POSITIVE terms: $a_n > 0$ \Rightarrow verifying and stating that $a_n > 0$ is an important part of the argument when using these tests!

Key Idea:

Knowing that $a_n > 0$ means that the sequence of partial sums, $\{s_n\}$, is *increasing*. If we can also show that $\{s_n\}$ is *bounded*, then by the **MST**, it must converge.

We just need ways to find an upper bound!

p-Series:

The **p-series**
$$\sum_{n=1}^{\infty} \frac{1}{n^p}$$
 is

- convergent if p > 1
- divergent if $p \leq 1$

The Integral Test:

Suppose f is a continuous, positive, decreasing function on $[1,\infty)$ and let $a_n=f(n)$.

Then the series $\sum_{n=1}^{\infty} a_n$ is convergent if-and-only-if the improper integral $\int_1^{\infty} f(x) \ dx$ is convergent:

(i) If
$$\int_1^\infty f(x) \ dx$$
 is convergent, then $\sum_{n=1}^\infty a_n$ is convergent.

(ii) If
$$\int_1^\infty f(x) \; dx$$
 is divergent, then $\sum_{n=1}^\infty a_n$ is divergent.

Integral Test Examples:

1. Use an area argument, referencing the figure shown below, to convince yourself that

$$1 + \int_{1}^{\infty} \frac{dx}{x^2} > \sum_{n=1}^{\infty} \frac{1}{n^2}$$

Now show that the improper integral $\int_1^\infty \frac{dx}{x^2}$ converges, and by the Integral Test, so does $\sum_{n=1}^\infty \frac{1}{n^2}$.

2. Use an area argument, referencing the figure shown below, to convince yourself that

$$1 + \int_{1}^{\infty} \frac{dx}{x} > \sum_{n=1}^{\infty} \frac{1}{n}$$

In one of the pre-class videos, we discovered that the Harmonic Series, $\sum_{n=1}^{\infty} \frac{1}{n}$, diverges to ∞ .

Use this fact to argue that $\int_{1}^{\infty} \frac{dx}{x}$ must also diverge.

Problems for Group Work:

Be sure to fully justify your reasoning as a part of your solutions.

The answers are upside-down on the bottom of this page.

1. Determine the convergence/divergence of the following p-series:

(a)
$$\sum_{n=1}^{\infty} \frac{1}{n^3}$$

(b)
$$\sum_{n=1}^{\infty} \frac{1}{n^1}$$

(c)
$$\sum_{n=1}^{\infty} \frac{1}{n^{1.00001}}$$

2. If the improper integral $\int_5^\infty \frac{dx}{x^p}$ converges, which of the following series $\underline{\text{must}}$ converge?

$$\mathsf{A)} \; \sum_{n=1}^{\infty} \; \frac{1}{n^{p+1}}$$

$$\mathsf{B)} \; \sum_{n=5}^{\infty} \; \frac{1}{n^{p+1}}$$

$$\mathsf{C)} \; \sum_{n=1}^{\infty} \; \frac{1}{n^{p-1}}$$

MATH 1336: Calculus III

$$\mathsf{D)} \; \sum_{n=5}^{\infty} \; \frac{1}{n^{p-1}}$$

- E) Both A and B
- F) Both C and D

3. Determine the convergence/divergence of the following series using the tools we currently have:

a)
$$\sum_{n=1}^{\infty} \left[\frac{5}{n(n+1)} - \left(-\frac{1}{2} \right)^n \right]$$

$$\mathsf{b)} \; \sum_{n=2}^{\infty} \; \frac{1}{n (\ln n)^p}$$

Answers:

Problem ??: a) Converge, b) Diverge, c) Converge **Problem ??:** E, **Problem ??:** a) Converge, b) Converge if p > 1, Diverge if $p \le 1$