

Алгоритм «Дерево решений»

КУХАЛЬСКИЙ НИКОЛАЙ ГЕННАДЬЕВИЧ

Вопросы занятия

- 1. Задача классификации: постановка и примеры
- 2. Дерево решений: как его построить?
- 3. Достоинства и недостатки деревьев решений.
- 4. Визуализируем принятие решений и предсказания алгоритма.

В конце занятия научимся:

- применять *алгоритм классификации*, принятие решений которого *можно проинтерпретировать*;
- *измерять качество* решений в задачах классификации;
- оценивать важность фичей.

1. ЗАДАЧА КЛАССИФИКАЦИИ

ТИПЫ ЗАДАЧ

- классификация
- ранжирование
- регрессия
- кластеризация

1. ЗАДАЧА КЛАССИФИКАЦИИ

ПРИМЕРЫ ЗАДАЧ КЛАССИФИКАЦИИ

Скоринг. Оценка риска выдачи клиенту кредита? (banking, insurance)

Отмок. Перестанет ли пользоваться клиент услугами компании? Перестанет ли, если дать ему бонус? (marketing)

Intent recognition. О чём говорит пользователь в своём обращении? (может быть несколько intent'oв, может быть древовидная структура)

Image recognition. Распознавание образов

1. ЗАДАЧА КЛАССИФИКАЦИИ

ПОСТАВНОВКА ЗАДАЧИ

Задача восстановления зависимости $y: X \to Y, \ |Y| < \infty$ по точкам *обучающей выборки* $(x_i, y_i), \ i = 1, \dots, \ell$.

Дано: векторы $x_i = (x_i^1, \dots, x_i^n)$ — объекты обучающей выборки, $y_i = y(x_i)$ — классификации, ответы учителя, $i = 1, \dots, \ell$:

$$\begin{pmatrix} x_1^1 & \dots & x_1^n \\ \dots & \dots & \dots \\ x_\ell^1 & \dots & x_\ell^n \end{pmatrix} \xrightarrow{y^*} \begin{pmatrix} y_1 \\ \dots \\ y_\ell \end{pmatrix}$$

Найти: функцию a(x), способную классифицировать объекты произвольной *тестовой выборки* $\tilde{x}_i = (\tilde{x}_i^1, \dots, \tilde{x}_i^n), i = 1, \dots, k$:

$$\begin{pmatrix} \tilde{x}_1^1 & \dots & \tilde{x}_1^n \\ \dots & \dots & \dots \\ \tilde{x}_k^1 & \dots & \tilde{x}_k^n \end{pmatrix} \xrightarrow{a?} \begin{pmatrix} a(\tilde{x}_1) \\ \dots \\ a(\tilde{x}_k) \end{pmatrix}$$

ЦВЕТКИ ИРИСА: ЗАДАЧА

ЦВЕТКИ ИРИСА: ДАННЫЕ

Дано:

- 3 вида цветков ириса
- 4 параметра: 2 длины и 2 ширины листа
- по 50 наборов значений на каждый вид

Найти:

• тип цветка по 4 параметрам

ЦВЕТКИ ИРИСА: ДАННЫЕ

Дано:

- 3 вида цветков ириса
- 4 параметра: 2 длины и 2 ширины листа
- по 50 наборов значений на каждый вид

Найти:

• тип цветка по 4 параметрам

ЦВЕТКИ ИРИСА: ДАННЫЕ

Дано:

- 3 вида цветков ириса
- 4 параметра: 2 длины и 2 ширины листа
- по 50 наборов значений на каждый вид

Найти:

• тип цветка по 4 параметрам

ЦВЕТКИ ИРИСА: РЕШАЮЩЕЕ ДЕРЕВО

ПОСТРОЕНИЕ ДЕРЕВА

Определить:

- -вид правила разбиения
- -критерий информативности разбиения
- -критерий останова
- -метод стрижки
- обработка пропусков

ВИД ПРАВИЛА РАЗБИЕНИЯ

- одномерное:

сравнивается значение одной фичи вектора х

- линейное:

сравнивается линейная комбинация фичей х

- метрическое:

расстояние до точки признакового пространства

здесь используется одномерный предикат: сравнение идёт лишь по одной фиче из вектора признаков

ФУНКЦИОНАЛ КАЧЕСТВА РАЗБИЕНИЯ

Идея:

- взять признак
- отсортировать его по возрастанию
- в зависимости от целевой переменной установить порог разделения выборки на две, максимально снижая численно выражаемый разброс внутри каждой из 2 групп
- подобрать лучшее с точки зрения улучшения разбиение

Вопрос: как измерить улучшение?

ИЗМЕРЕНИЕ ПОЭТАПНОГО УЛУЧШЕНИЯ

Есть 1 группа, в ней 2 класса

Пусть H(R) - «критерии информативности» группы, больше разнообразия - больше H(R) - хуже для классификатора

Будем измерять улучшение разбиения по функционалу вида: IG(R) = H(R) - q_{left}*H(R_{left}) - q_{right}*H(R_{right}), где q_{left} и q_{right} - доли объектов, попавших в левый или правый класс соответственно

ИЗМЕРЕНИЕ ПОЭТАПНОГО УЛУЧШЕНИЯ

$$IG(R) = H(R) - q_{left} + H(R_{left}) - q_{right} + H(R_{right})$$

$$H(R) = x > 0$$

 $H(R_{left}) = 0$
 $H(R_{right}) = 0$

$$IG(R) = x - 5/9*0 - 4/9*0 = x > 0$$

КРИТЕРИЙ ДЖИНИ

$$H(R) = \sum_{k=1}^{K} p_k (1 - p_k)$$

К - количество классов рк - доля класса в выборке

$$IG(R) = H(R) - q_{left} + H(R_{left}) - q_{right} + H(R_{right})$$

$$H(R) = 4/9*(1-4/9) + 5/9*(1-5/9) = 0.494$$

 $H(R_{left}) = 3/4*(1-3/4) + 1/4*(1-1/4) = 0.375$
 $H(R_{right}) = 1/5*(1-1/5) + 4/5*(1-4/5) = 0.32$

$$IG(R) = 0.494 - 4/9*0.375 - 5/9*0.32 = 0.15$$

ЭНТРОПИЙНЫЙ КРИТЕРИЙ

$$H(R) = -\sum_{k=1}^{K} p_k \log p_k$$

К - количество классоврк - доля класса в выборке

$$IG(R) = H(R) - q_{left} + H(R_{left}) - q_{right} + H(R_{right})$$

$$\begin{split} H(R) &= -4/9*log2(4/9) - 5/9*log2(5/9) = 0.991 \\ H(R_{left}) &= -3/4*log2(3/4) - 1/4*log2(1/4) = 0.811 \\ H(R_{right}) &= -1/5*log2(1/5) - 4/5*log2(4/5) = 0.722 \end{split}$$

$$IG(R) = 0.991 - 4/9*0.811 - 5/9*0.722 = 0.229$$

ПРАКТИЧЕСКИЕ ЗАДАНИЯ

1. Построить критерии информативности: джини и энтропийный

КРИТЕРИИ ОСТАНОВА

-останов, когда в каждом листе объекты только одного класса

- -ограничение тах глубины дерева
- -ограничение min число объектов в листьях
- требование улучшения функционала качества при дроблении не менее, чем х или на х%

ПРОБЛЕМА ПРОПУСКОВ

- удалить объекты с пропусками из обучающей;
- замена на значения вне средние, медианные;
- заменить на значения вне области значений фич;
- модифицировать алгоритм построения и работы дерева: включать элементы с пропусками в обе ветки дерева, но взвешивать качество разбиения по объёму пропусков

ДОСТОИНСТВА

- легко интерпретировать, визуализировать, «белый ящик»;
- простота подготовки данных: не требуется нормализация, dummy переменные, возможны пропуски;
- скорость работы.

3. ДОСТОИНСТВА И НЕДОСТАТКИ ДЕРЕВЬЕВ РЕШЕНИЙ

НЕДОСТАТКИ

- острая проблема переобучения;
- неустойчивость;
- не учитывает нелинейные зависимости или даже простые линейные, которые идут не по осям координат;
- чувствителен к несбалансированным классам;
- хорошо интерполирует, плохо экстраполирует.

РЕАЛИЗАЦИЯ В SKLEARN

Деревья могут оценивать важность фичей. Метод: feature_importances_

Например, судя по решению, на выживаемость на Титанике сильнее всего влияли:

- * наличие в обращении «Mr.»
- * пол
- * уровень дохода
- * проживание в 3 классе
- * возраст
- * наличие в обращении «Mrs» / «Miss»

ПРАКТИЧЕСКИЕ ЗАДАНИЯ

- 2. Обучить дерево решений на цветках ириса
- 3. Нарисовать дерево принятий решений
- 4. Оценить важность фичей

ЧТО МЫ СЕГОДНЯ УЗНАЛИ

- 1. Деревья решений, объединённые в «лес», составляют одни из наиболее сильных алгоритмов. По одиночке же они являются слабыми, зато очень легко интерпретируемыми и визуализируемыми алгоритмами.
- 2. Деревья позволяют оценивать важность признаков.

Алгоритм «Дерево решений»

КУХАЛЬСКИЙ НИКОЛАЙ ГЕННАДЬЕВИЧ