计组 ALU 实验

计71 张程远 2017011429

1 实验原理

Thinpad 的 module 里提供了所需要的开关和接口的定义,所以只需要完成逻辑就可以了。使用一个变量 status 表示状态,每次检测到 clk 被按下的时候 status 就改变,代表进入不同状态;同时实验需要 LED 输出的答案随着 op 变化而变化,所以另一个过程监听 status 和 clk,当 status 进入正确的状态码后生效,控制 LED 输出答案。

2 实验数据

输入数据			实际输出		还知
操作码	操作数 A	操作数 B	运算结果	标志位	· 预期一致性
0001	aa67	2165	cbcc	0	一致
0010	41e4	7b91	c653	0	一致
0011	a519	e851	a011	0	一致
0100	75c7	153a	75ff	0	一致
0101	a93e	1584	bcba	0	一致
0110	d083	0000	2f7c	0	一致
0111	b11b	0005	2360	0	一致
1000	fe03	0006	03f8	0	一致
1001	8a16	0006	fe28	0	一致
1010	67f6	000b	b33f	0	一致

3 思考题

- (1) 算术运算部分用组合逻辑电路实现(但状态机部分需要时序逻辑电路实现)。
- (2) 需要一个寄存器电路存储数据,外加部分时序逻辑电路处理各种状态的逻辑。

4 一些收获

在写代码的时候,有时候会遇到"multiple driver"的问题,以及循环的次数不能是变量、一些关键字无法综合等等,这都充分体现了硬件和软件语言编写的巨大差别。