The Seven Wonders of the World Exercises

Updated 22 January 2025

Contents

1	Physics, quantities, units	4
	1.0	4
	1.1	4
	1.2	4
	1.3	5
	1.4	5
	1.5	6
	1.6	6
	Example solutions	9
2	Time and space	12
	2.0	12
	2.1	12
	2.2	13
	Example solutions	14
	2.2	14
	URLs for chapter 2	15
3	Volume contents, fluxes, supplies	16
	3.0	16
	Example solutions	17
4	Physical laws	18
	4.0	18
	Example solutions	19
5	The Seven Wonders of the world	20
	5.0	20
	Example solutions	21

6	Conservation & balances of matter	22
	6.0	22
	Example solutions	23
7	Conservation of electric charge	24
	7.0	24
	Example solutions	25
8	Conservation of magnetic flux	26
	8.0	26
	Example solutions	27
9	Balance of momentum	28
	9.0	28
	Example solutions	29
10	Balance of energy	30
	10.0	30
	Example solutions	31
11	Balance of angular momentum	32
	11.0	32
	Example solutions	33
12	Remarks on momentum and energy	34
	12.0	34
	Example solutions	35
13	Balance of entropy	36
	13.0	36
	Example solutions	37
14	Constitutive relations	38
	14.0	38
	Example solutions	39

Physics, quantities, units 1

For some of the following exercises you can refer to tables 1.1 and 1.2 on page 8 (reproduced from the textbook).

1.0

(Do the exercises in the main text.)

1.1

Preferably together with a friend or colleague:

If you have some large-language-model service (such as ChatGPT), ask it which physical laws are universally valid in Newtonian Mechanics and in General Relativity and in Thermodynamics and in Chemistry and in Electromagnetics.

Discuss the answer you get, based on what you have learned so far. (Note: if the answer mention a 'balance of boost momentum', that's actually correct.)

Argue with the LLM and see where the discussion goes.

1.2

Take *time* and *velocity* as primitive quantities.

- **1.** Try to define *distance* as a derived quantity
- **2.** Try to define *acceleration* as a derived quantity.

1.3

Which of the following quantities are scalars, and which are vectors?

- Time
- Distance
- Position
- Energy
- Velocity
- Speed
- Momentum
- Entropy
- Angular momentum
- Force
- Temperature
- Magnetic flux
- Electric charge
- Electric current
- Heat
- Power
- Volume
- Pressure

1.4

Find the correct units for the following quantities:

- Volumic energy or energy density, defined as energy divided by volume
- *Energy flux*, defined as energy divided by time.
- *Power*, defined as energy divided by time.
- *Heating*, defined as energy divided by time.
- *Magnetic flux*, which we take as a primitive quantity.
- *Electric potential difference*, defined as magnetic flux divided by time.
- Force, defined as momentum divided by time.
- *Momentum flux*, defined as momentum divided by time.
- *Momentum supply*, defined as momentum divided by time.
- Pressure, defined as force divided by area.
- *Amount of substance (or of matter)*, which we take as primitive.
- Molar mass, defined as mass divided by amount of substance.
- Specific momentum, defined as momentum divided by mass.

- *Volumic charge* or *charge density*, defined as charge divided by volume.
- *Entropy*, which we take as primitive, has dimension of energy divided by temperature.
- Matter density, defined as amount of substance divided by volume.
- *Matter flux*, defined as amount of substance divided by time.

1.5

With a friend or colleague:

- **1.** Try to explain to your friend the difference between a *primitive quantity* and a *derived quantity*; then let your friend criticize unclear or incorrect points in your explanation, and comment on the good points. Then invert your roles: your friend tries to explain to you, and you criticize and comment.
- **2.** Similarly as the previous exercise, but explaining the difference between a *scalar quantity* and a *vector quantity*.
- **3.** If you have some large-language-model service (such as ChatGPT), ask it to explain the difference between primitive and derived quantity, and between scalar and vector quantity. Find out weak or unsure points in its answer, given what you've learned so far.

1.6

Find which of the following mathematical expressions and equalities are dimensionally incorrect, and explain why they are incorrect:

- \triangleright 11 J + 4 kg
- $ightharpoonup \tan\left(\frac{a}{b}\right)$, where a has dimension length and b has dimension time
- ▶ 299 792 458 m/s
- $ightharpoonup \exp\left(\frac{71 \, \mathrm{s}}{3 \, \mathrm{s}}\right)$
- ► cos(3.14) m
- \rightarrow m-v, where m has dimension of mass and v of velocity

- $ightharpoonup 10 \, N \, s 2 \, kg \, m/s = 8 \, J \, s/m$
- ▶ exp(-8 J)
- ▶ (9 m, 0.1 rad, -0.5 rad)
- > 8 J/s = 12 N m 4 N m
- ⊳ e⁻⁸ J
- $\frac{15 \text{ J}}{5 \text{ kg/s}^2} = 3 \text{ m}^2$
- $\sqrt{25} \, K = 5$
- ▶ $(e^7)^s$
- $\Rightarrow \tan\left(\frac{10\,\mathrm{m}}{5\,\mathrm{m}}\right)$
- ▶ √300 K
- $ightharpoonup \sin(t/s)$, where t has dimension of time
- $\Rightarrow \frac{3}{8}$
- sin(10 s)

Quantity	SI Dimension	Unit
Time	time	second s
Length	length	metre m
Temperature	temperature	kelvin K
Matter Electric charge Magnetic flux	amount of substance electric charge magnetic flux	mole mol coulomb C weber Wb
Energy	energy, mass	joule J, kilogram kg
Momentum	force · time, mass · length/time, energy · time/length	$N \cdot s$, $kg \cdot m/s$, $J \cdot s/m$
Angular momentum	force · length · time, mass · length ² /time, energy · time	$N \cdot m \cdot s$, $kg \cdot m^2/s$, $J \cdot s$
Entropy	energy/temperature	J/K

Table 1.1 Dimensions and units of the main physical quantities used in these notes. Their fluxes have the dimensions divided by time, and therefore units divided by seconds. Quantities in **boldface** are vectors, the others are scalars.

Quantity	Volume content [unit]	Flux [unit]
matter	N [mol]	J [mol/s]
electric charge	Q [C]	I [C/s or A]
magnetic flux	${\mathcal B}$ [Wb]	\mathcal{E} [Wb/s or V]
energy	E [J]	Φ [J/s or W]
momentum	P [Ns]	F [N]
angular momentum	L [Nms]	τ [N m]
entropy	S [J/K]	П [J/(Кs)]

Table 1.2 Units for volume contents and fluxes of the main seven quantities.

1.2

- **1.** "Distance is the product of a time lapse and a particular velocity". See section 2.3 about *Radar distance* in our lecture notes.
- **2.** "Acceleration is the ratio between a change in the product of a time lapse and a particular velocity, and the time taken by that change".

1.3

These quantities are scalars:

- Time
- Distance
- Energy
- Speed
- Entropy
- Temperature
- Magnetic flux
- Electric charge
- Electric current
- Heat
- Power
- Volume

These quantities are vectors:

- Position
- Velocity
- Momentum
- Angular momentum
- Force

For *pressure*, it depends on the context. In some applications it is considered a scalar, but in other applications it is considered a vector – or actually a generalized kind of vector, called *tensor*, which can be represented by a matrix.

1.4

• Volumic energy: J/m³

1. Physics, quantities, units

• Energy flux: J/s

• Power: J/s

• Heating: J/s

• Magnetic flux: Wb

• *Electric potential difference*: Wb/s

• Force: N

• Momentum flux: N

• Momentum supply: N

• Pressure: N/m²

• Amount of substance: mol

• *Molar mass*: kg/mol

• *Specific momentum*: $N \cdot s/kg \equiv m/s$

• *Volumic charge*: C/m³

• Entropy: J/K

• *Matter density*: mol/m³

• *Matter flux*: mol/s

1.6

 \triangleright 11 J + 4 kg

Incorrect: cannot sum quantities of different dimension

 $ightharpoonup \tan\left(\frac{a}{b}\right)$, where a dimension length and b has dimension time

Incorrect: trigonometric function must have a dimensionless argument, but a/b has dimension length/time

▶ 299 792 458 m/s

$$\Rightarrow \exp\left(\frac{71 \,\mathrm{s}}{3 \,\mathrm{s}}\right)$$

► cos(3.14) m

▶ m - v, where m has dimension of mass and v of velocity **Incorrect**: cannot subtract quantities of different dimension

> 10 N s - 2 kg m/s = 8 J s/m

▶ exp(-8 J)

Incorrect: exponential function must have a dimensionless argument, but this argument has dimension energy

- \triangleright (9 m, 0.1 rad, -0.5 rad)
- \triangleright 8 J/s = 12 N m − 4 N m Incorrect: J/s \neq N m (correct is J = N m)
- e⁻⁸ J

$$\frac{15 \text{ J}}{5 \text{ kg/s}^2} = 3 \text{ m}^2$$

$$\sqrt{25} \, K = 5$$

Incorrect: both sides of an equation must have the same dimension; here the left side has dimension length $^{1/2}$, right side is dimensionless

► $(e^7)^s$ Incorrect: cannot raise to a dimensional power

$$\Rightarrow \tan\left(\frac{10\,\mathrm{m}}{5\,\mathrm{m}}\right)$$

- ▶ √300 K
- $ightharpoonup \sin(t/s)$, where t has dimension of time
- $\Rightarrow \frac{3}{s}$
- sin(10 s)

Incorrect: trigonometric function must have a dimensionless argument

Time and space 2

(Do the exercises in the main text.)

1. 2.1

The *Veritasium*¹ channel has many informative and entertaining videos on diverse scientific topics. Most of these videos are accurate and pedagogically very useful. But a couple of them contain some inaccuracies or partially faulty reasoning.

One example of partially inaccurate video is *Why no one has measured* the speed of light². It contains many correct and insightful statements and explanations, but also some faulty reasoning.

Watch the video and

- 1. Identify and ponder about some explanations that reflect what you learned so far. (For instance, do you recognize *radar distance* between t=3:10 and t=3:20?)
- 2. Consider the discussion between t=4:57³ and t=5:14, and the statement "and get a response 20 minutes later". What kind of time is this statement referring to? is it proper time? if so, whose proper time? or is it coordinate time?
- 3. Consider the same snip and the statement "we imagine our signal takes 10 minutes to get there". Draw a spacetime diagram (similar to fig. 2.1 in our main text) illustrating this statement. In the diagram, place the proper times on the worldline of the Earth station and on Mark's worldline; and mark the points where the signal is sent and where it is received.

How can we imagine that it takes 10 minutes to get there? Which proper time are we speaking about?

- 4. Consider again the snip and the statement "it's possible that our message took all 20 minutes to get there". Draw a spacetime diagram illustrating this statement. What's the difference from the previous spacetime diagram? Are the two spacetime diagrams actually different?
- 5. Now consider the discussion between t=9:47⁴ and t=10:16, and the statement "one of the clocks will be ahead of the other". When we say *ahead*, to which kind of time are we referring? is it proper time? if so, whose proper time? Does it make sense to say that one clock is "ahead" of the other?
- **6.** Draw one or two spacetime diagrams illustrating the discussion in the snip above. Can we make sense of the discussion using the diagrams?
- 7. Find parts in which the reasoning offered in the video is inconsistent. For instance, find discussions where Derek says "right now": does "right now" make sense in those discussions?

2.2

We have a coordinate system (t, x) with one spatial dimension only. A small object S has position $x_S(t)$ which changes with the coordinate time t. The time dependence of the position is given by

$$x_{\rm S}(t) = a t + b$$
 with $a = -3 \,{\rm m/s}$, $b = 7 \,{\rm m}$.

- **1.** Verify that the equation above is dimensionally consistent.
- **2.** What is the spatial coordinate of S at times t = 0 s, t = -10 s, and t = 5 s?
- **3.** What is the spatial coordinate of S at time t = 10?
- **4.** Calculate the time dependence of the coordinate velocity of S.
- **5.** What is the cooordinate velocity of S at time t = 5 s?
- **6.** What is the *speed* of S at time t = 5 s?
- 7. Calculate the time dependence of the coordinate acceleration of S.

2.2

For the notation used in this solution, see § 2.8 in our main text.

- 1. It is, provided that t has dimension time and x has dimension length. In this case, since a has dimension length/time, then a t has dimension length, which is added to b which also has dimension length; the left and right side have then both dimension length.
- **2.** $x_S(0 s) = 7 m$, $x_S(-10 s) = 37 m$, $x_S(5 s) = -8 m$.
- **3.** The question doesn't make sense, because "t = 10" is dimensionless; it should have dimension length instead.
- **4.** Denoting with \dot{x}_S the coordinate velocity of S, then $\dot{x}_S(t) = a$, which is constant in time.
- **5.** $\dot{x}_{\rm S}(t) = -3 \, {\rm m/s}$ at any time.
- **6.** The speed is $|\dot{x}_{S}(t)| = 3 \text{ m/s}$ at any time.
- 7. Denoting with \ddot{x}_S the coordinate acceleration of S, then $\ddot{x}_S(t) = 0 \text{ m/s}^2$, which is zero at all times.

URLs for chapter 2

- 1. https://www.youtube.com/c/veritasium/videos
- 2. https://www.youtube.com/watch?v=pTn6Ewhb27k
- 3. https://youtu.be/pTn6Ewhb27k?t=297
- 4. https://youtu.be/pTn6Ewhb27k?t=588

Volume contents, fluxes, supplies 3

Physical laws 4

The Seven Wonders of the world 5

Conservation & balances of matter 6

Conservation of electric charge 7

Conservation of magnetic flux 8

Balance of momentum 9

Balance of energy 10

Balance of angular momentum 11

Remarks on momentum and energy 12

Balance of entropy 13

Constitutive relations 14

