CSCI-GA.3033-061 Predictive Analytics

July 15, 2022

Solutions to Problem 1 of Hands-On Practice 1

Name: Anav Prasad (ap7152) Due: 11:59pm on Friday, July 15

Collaborators:

Recorded results for testing Naive Bayes model on Hepatitis Dataset.

Solution:

Training Cycles = 200

 \bullet Replacing missing values with ${\it minimum}$ values:

accuracy: 76.00% +/- 8.99% (micro average: 76.13%)

	true 2	true 1	class precision
pred. 2	91	5	94.79%
pred. 1	32	27	45.76%
class recall	73.98%	84.38%	

 \bullet Replacing missing values with maximum values:

accuracy: 70.17% +/- 9.32% (micro average: 70.32%)

	true 2	true 1	class precision
pred. 2	84	7	92.31%
pred. 1	39	25	39.06%
class recall	68.29%	78.12%	

• Replacing missing values with *average* values:

accuracy: 74.71% +/- 7.60% (micro average: 74.84%)

	true 2	true 1	class precision
pred. 2	91	7	92.86%
pred. 1	32	25	43.86%
class recall	73.98%	78.12%	

• Replacing missing values with **zero** values:

accuracy: 72.71% +/- 11.01% (micro average: 72.90%)

	true 2	true 1	class precision
pred. 2	86	5	94.51%
pred. 1	37	27	42.19%
class recall	69.92%	84.38%	

Recorded results for testing Neural Net model on Hepatitis dataset:

Solution: Process Structure on RapidMiner:

Figure 1: Overall Process

Figure 2: Cross Validation

Optimizer is optimizing two parameters: **Learning Rate**, and **Momentum**. Results:

• Replacing missing values with *minimum* values; Training Cycles = 200: accuracy, 83,92% +/- 6,31% (micro average: 83,87%)

	true 2	true 1	class precision
pred. 2	111	13	89.52%
pred. 1	12	19	61.29%
class recall	90.24%	59.38%	

• Replacing missing values with *maximum* values; Training Cycles = 200: accuracy: 86.50% +1. 9.98% (micro average: 86.45%)

	true 2	true 1	class precision
pred. 2	114	12	90.48%
pred. 1	9	20	68.97%
class recall	92.68%	62.50%	

 \bullet Replacing missing values with ${\it average}$ values; Training Cycles = 200:

doding, voice and a straight out in				
	true 2	true 1	class precision	
pred. 2	115	14	89.15%	
pred. 1	8	18	69.23%	
class recall	93.50%	56.25%		

• Replacing missing values with *zero* values; Training Cycles = 200: accuracy: 84.00% +/-7.40% (micro average: 83.87%)

	true 2	true 1	class precision
pred. 2	114	16	87.69%
pred. 1	9	16	64.00%
class recall	92.68%	50.00%	

As can be seen, best results were obtained by replacing missing values by maximum values. Trying to improve accuracy by increasing training cycles now:

• Replacing missing values with *maximum* values; Training Cycles = 500: accuracy: 87.08% +/-9.52% (micro average: 87.10%)

	true 2	true 1	class precision
pred. 2	114	11	91.20%
pred. 1	9	21	70.00%
class recall	92.68%	65.62%	

• Replacing missing values with maximum values; Training Cycles = 750: accuracy: 86.46% +/-9.23% (micro average: 86.45%)

	true 2	true 1	class precision
pred. 2	114	12	90.48%
pred. 1	9	20	68.97%
class recall	92.68%	62.50%	

• Replacing missing values with *maximum* values; Training Cycles = 1000: accuracy: 86.46% +/- 9.02% (micro average: 86.45%)

	true 2	true 1	class precision
pred. 2	116	14	89.23%
pred. 1	7	18	72.00%
class recall	94.31%	56.25%	

Best Accuracy Obtained: 87.08%

CSCI-GA.3033-061 Predictive Analytics

July 15, 2022

Solutions to Problem 2 of Hands-On Practice 1

Name: Anav Prasad (ap7152)

Due: 11:59pm on Friday, July 15

Collaborators:

Research and discuss very briefly, how would you deploy your algorithm built here (cite your sources)

Solution: There are several ways to deploy machine learning models.

- For web services: Flask, Streamlit, Docker or Kubernetes.
- For embedded models on edge devices: Using TensorFlow, Keras etc.

References:

- Deploy Machine Learning Models to Production With Flask, Streamlit, Docker, and Kubernetes on Google Cloud Platform
- https://towardsdatascience.com/3-ways-to-deploy-machine-learning-models-in-production-cdba15b00e
- https://stackoverflow.blog/2020/10/12/how-to-put-machine-learning-models-into-production/