Tutorial

Common Mistakes

- Didn't used \$finish at the end of testbench.
- Using initial block instead of always/forever block for clock.
- Forget to initialize clock in the testbench.
- Using incorrect module names and forgetting semicolon at the end of each line.

More About Flip Flops

Why do we need one more flip-flop?

- No Invalid States
- Need a device which can toggle its previous state.

JK-Flip Flop

$$Q(t+1) = J\bar{Q}(t) + Q\bar{K}(t)$$

Task-1

JK Flip Flop (Behavioral) Implementation in Verilog

FSM

Task 1

Coding the given FSM in verilog

Task 2

The following is the state transition table for a Moore machine with one input, one output, and four states. Implement this state machine. Include a reset that resets

the FSM to state A.

State	Next state		Outnut
	in=0	in=1	Output
Α	Α	В	0
В	С	В	0
С	Α	D	0
D	С	В	1