```
In [1]: ▶ import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn import metrics
```

In [3]: #reformat the employment dataset
 employment=employment.rename(columns={"day_endofweek": "day"})
 employment = employment.drop(employment[employment.cityid == 45].index)
 employment['emp']=[float(emp) for emp in employment['emp']]
 employment['date'] = pd.to_datetime(employment[['year', 'month', 'day']])
 employment=employment.drop(columns=['year', 'month', 'day'])
 employment

Out[3]:

	cityid	emp	emp_incq1	emp_incq2	emp_incq3	emp_incq4	emp_incmiddle	emp_
0	1	0.00228	.000506	.00154	.00356	.00251	.00238	
1	2	0.00120	0033	00183	.00556	.000793	.00189	
2	3	0.00211	.00321	.00155	.00344	.000749	.00242	
3	4	0.00133	000504	0058	.0108	.000674	.00245	
4	5	-0.00202	.000567	00826	.00483	00328	0025	
9906	49	-0.01490	131	0341	.0732		.00504	
9907	50	-0.10500	36	0351	.0081		0169	
9908	51	-0.16000	133	156	226		188	
9909	52	-0.21900	19	317	16		245	
9910	53	-0.09210	112	102	0712		0875	

9724 rows × 10 columns

In [4]: #Combine employment dataset and the geoId on the cityId employment_geoId=employment.merge(geoIDs, left_on=['cityid'], right_on = ['cityid'] employment_geoId.sort_values(by=['city_pop2019'], ascending=False) employment_geoId

Out[4]:

	cityid	emp	emp_incq1	emp_incq2	emp_incq3	emp_incq4	emp_incmiddle	emp
0	1	0.002280	.000506	.00154	.00356	.00251	.00238	
1	1	0.001550	00992	.00411	.00233	000303	.00337	
2	1	0.000917	016	.00506	.00166	00196	.00365	
3	1	0.001680	0283	.00693	.00376	000899	.00562	
4	1	0.002630	0373	.00559	.00767	.00312	.00645	
9719	53	-0.085700	114	0986	0934		0961	
9720	53	-0.081900	104	0928	0798		0865	
9721	53	-0.080900	0965	0931	0708		0824	
9722	53	-0.087000	104	0969	0739		0859	
9723	53	-0.092100	112	102	0712		0875	

9724 rows × 17 columns

In [5]:

#Select row from dataset with popultion over 5 million

employment_geoId_pol_lar=employment_geoId.loc[employment_geoId.city_pop2019>500000
employment_geoId_pol_lar

Out[5]:

cityid	emp	emp_incq1	emp_incq2	emp_incq3	emp_incq4	emp_incmiddle	emp_
1	0.002280	.000506	.00154	.00356	.00251	.00238	
1	0.001550	00992	.00411	.00233	000303	.00337	
1	0.000917	016	.00506	.00166	00196	.00365	
1	0.001680	0283	.00693	.00376	000899	.00562	
1	0.002630	0373	.00559	.00767	.00312	.00645	
3	-0.186000	401	106	165		133	
3	-0.183000	396	102	155		126	
3	-0.178000	393	0861	152		116	
3	-0.179000	401	0838	15		114	
3	-0.183000	406	0928	151		12	
	1 1 1 1 3 3 3	1 0.002280 1 0.001550 1 0.000917 1 0.001680 1 0.002630 3 -0.186000 3 -0.183000 3 -0.178000 3 -0.179000	1 0.002280 .000506 1 0.001550 00992 1 0.000917 016 1 0.001680 0283 1 0.002630 0373 3 -0.186000 401 3 -0.183000 396 3 -0.178000 393 3 -0.179000 401	1 0.002280 .000506 .00154 1 0.001550 00992 .00411 1 0.000917 016 .00506 1 0.001680 0283 .00693 1 0.002630 0373 .00559 3 -0.186000 401 106 3 -0.183000 396 102 3 -0.178000 393 0861 3 -0.179000 401 0838	1 0.002280 .000506 .00154 .00356 1 0.001550 00992 .00411 .00233 1 0.000917 016 .00506 .00166 1 0.001680 0283 .00693 .00376 1 0.002630 0373 .00559 .00767 3 -0.186000 401 106 165 3 -0.183000 396 102 155 3 -0.178000 393 0861 152 3 -0.179000 401 0838 15	1 0.002280 .000506 .00154 .00356 .00251 1 0.001550 00992 .00411 .00233 000303 1 0.000917 016 .00506 .00166 00196 1 0.001680 0283 .00693 .00376 000899 1 0.002630 0373 .00559 .00767 .00312 3 -0.186000 401 106 165 3 -0.183000 396 102 155 3 -0.178000 393 0861 152 3 -0.179000 401 0838 15	1 0.002280 .000506 .00154 .00356 .00251 .00238 1 0.001550 00992 .00411 .00233 000303 .00337 1 0.000917 016 .00506 .00166 00196 .00365 1 0.001680 0283 .00693 .00376 000899 .00562 1 0.002630 0373 .00559 .00767 .00312 .00645 3 -0.186000 401 106 165 133 3 -0.178000 396 102 155 126 3 -0.179000 401 0838 15 114

561 rows × 17 columns

In [6]: #Calculate the mean value by date for the big city(population > 5m) large_city_employment_rate_change=employment_geoId_pol_lar.groupby(['date'])['emp' large_city_employment_rate_change

Out[6]:

	date	emp
0	2020-01-17	0.001863
1	2020-01-24	0.000073
2	2020-01-31	-0.000636
3	2020-02-07	0.000183
4	2020-02-14	0.000463
182	2023-07-14	-0.181667
183	2023-07-21	-0.181667
184	2023-07-28	-0.181667
185	2023-08-04	-0.187667
186	2023-08-11	-0.195333

187 rows × 2 columns

In [7]:

▶ #Select row from dataset with popultion less than half million

employment_geoId_pol_sml=employment_geoId.loc[employment_geoId.city_pop2019<500000
employment_geoId_pol_sml</pre>

Out[7]:

	cityid	emp	emp_incq1	emp_incq2	emp_incq3	emp_incq4	emp_incmiddle	emp
8041	44	0.000259	00671	.0126	000385	00433	.00637	
8042	44	0.000482	.0143	0166	.00309	00396	00712	
8043	44	0.000003	.0142	0149	000864	0034	00814	
8044	44	-0.001000	.00949	0155	000983	.000859	0085	
8045	44	-0.000186	000433	0246	.0122	.0203	00692	
9345	51	-0.134000	0986	127	214		166	
9346	51	-0.139000	0876	15	211		178	
9347	51	-0.147000	0965	158	216		184	
9348	51	-0.152000	111	157	219		185	
9349	51	-0.160000	133	156	226		188	

561 rows × 17 columns

In [8]: M #Calculate the mean value by date for the big city(population < 0.5m)

small_city_employment_rate_change = employment_geoId_pol_sml.groupby(['date'])['em

small_city_employment_rate_change

#employment_trend_lar['date'] = pd. to_datetime(employment_geoId_pol_lar[['year', '

#employment_trend_lar=employment_trend_lar[['date', 'emp']]

#employment_trend_sm['date'] = [x for x, y, z in employment_trend_sm['year', 'month',

#employment_trend_lar

Out[8]:

	date	emp
0	2020-01-17	-0.003894
1	2020-01-24	0.002386
2	2020-01-31	0.006378
3	2020-02-07	0.010128
4	2020-02-14	0.013128
182	2023-07-14	-0.107600
183	2023-07-21	-0.112633
184	2023-07-28	-0.117933
185	2023-08-04	-0.124093
186	2023-08-11	-0.135967

187 rows × 2 columns

```
In [9]: #Calculate the mean value by date for all city employment_rate_change = employment_geoId.groupby(['date'])['emp'].mean().reset_in employment_rate_change
```

Out[9]:

	date	emp
0	2020-01-17	0.001482
1	2020-01-24	0.000732
2	2020-01-31	-0.000031
3	2020-02-07	0.001115
4	2020-02-14	0.002320
182	2023-07-14	-0.092503
183	2023-07-21	-0.091203
184	2023-07-28	-0.093081
185	2023-08-04	-0.098651
186	2023-08-11	-0.105910

187 rows × 2 columns

```
In [10]:
              #Draw line plot of the Change of Employment Rate
              plt. figure (figsize=(10, 6))
              plt.plot(large_city_employment_rate_change['date'], large_city_employment_rate_cha
              plt.plot(small_city_employment_rate_change['date'], small_city_employment_rate_cha
              plt.plot(employment rate change['date'], employment rate change['emp'], label='Ove
              peak_value = min(employment_rate_change['emp'])
              peak date = employment rate change.loc[employment rate change['emp'] == peak value
              print(str(peak date)[:10])
              print('min value of large city: ', min(large_city_employment_rate_change['emp']))
              print('min value of overall: ', min(employment_rate_change['emp']))
              print('min value of small city: ', min(small_city_employment_rate_change['emp']))
              plt.axvline(x=peak_date, color='red', linestyle='--')
              plt. scatter (peak date, peak value, color='red', s=20)
              plt.annotate(f'Date: {str(peak_date)[:10]}', (peak_date, peak_value), textcoords="o
              plt.title('Change of Employment Rate')
              plt.xlabel('Date')
              plt.ylabel('Employment Rate')
              # Show the plot
              plt.legend()
              plt. show()
```

2020-04-17

min value of large city: -0.251333333333333335 min value of overall: -0.23001923076923078 min value of small city: -0.269333333333333333

In [11]: N covid

Out[11]:

		year	month	day	cityid	case_count	death_count	new_case_count	new_death_cou
	0	2020	1	1	1				
	1	2020	1	1	2				
	2	2020	1	1	3				
	3	2020	1	1	4				
	4	2020	1	1	5				
64	1679	2023	6	1	2	2736550	45257	190	
64	1680	2023	6	2	2	2736745	45258	195	
64	1681	2023	6	3	2	2736944	45259	199	
64	1682	2023	6	4	2	2737141	45260	197	
64	1683	2023	6	5	2	2737341	45261	199	

64684 rows × 28 columns

In [12]: #Clean up the data set of Covid, remove empty row and sort it by population covid=covid.drop(covid[covid.new_case_count == '.'].index) covid['date'] = pd. to_datetime(covid[['year', 'month', 'day']]) covid_emp=covid.merge(employment, left_on=['date', 'cityid'], right_on = ['date', 'covid_emp=covid_emp.merge(geoIDs, left_on=['cityid'], right_on = ['cityid']) covid_emp.sort_values(by='city_pop2019') covid_emp

Out[12]:

	year	month	day	cityid	case_count	death_count	new_case_count	new_death_coun
0	2020	1	31	1	1	0	0	
1	2020	2	7	1	1	0	0	
2	2020	2	14	1	1	0	0	
3	2020	2	21	1	1	0	0	
4	2020	2	28	1	1	0	0	
8569	2023	3	31	49	161739	1140	238	(
8570	2023	4	7	49	161275	1140	212	(
8571	2023	4	14	49	161063	1140	151	(
8572	2023	4	21	49	160912	1140	139	(
8573	2023	4	28	49	160773	1140	127	(

8574 rows × 44 columns


```
In [13]: #Select the row by the date value 2020-04-17, located the min. value of employment top_city=covid_emp.loc[covid_emp['date'] == '2020-04-17'] top_city=top_city.sort_values(by='city_pop2019', ascending=False) top_city
```

Out[13]:

	year	month	day	cityid	case_count	death_count	new_case_count	new_death_coun
11	2020	4	17	1	10039	370	2961	254
1858	2020	4	17	2	131363	12733	25067	452!
181	2020	4	17	3	16369	596	6919	362
2028	2020	4	17	4	3958	53	1199	2
351	2020	4	17	5	2106	56	663	21
1026	2020	4	17	6	1943	55	462	21
5800	2020	4	17	38	7742	139	2524	11 [.]
3182	2020	4	17	7	1897	40	653	3(
2193	2020	4	17	8	2494	109	594	49
2358	2020	4	17	9	4611	307	785	54
3346	2020	4	17	10	924	28	470	14
1194	2020	4	17	11	831	32	294	1;
520	2020	4	17	12	1716	63	386	24
3510	2020	4	17	13	12114	835	2710	430
2853	2020	4	17	41	949	29	318	21
3674	2020	4	17	14	7195	196	3042	188
1527	2020	4	17	35	798	29	244	ł
3018	2020	4	17	43	823	17	248	-
7111	2020	4	17	15	1077	17	470	ł
7274	2020	4	17	16	882	14	432	14
5964	2020	4	17	42	618	42	391	34
6292	2020	4	17	46	1242	33	331	20
1693	2020	4	17	50	1237	8	445	ţ
2688	2020	4	17	39	500	1	175	-
3838	2020	4	17	17	1012	16	230	1.
2523	2020	4	17	36	1753	59	620	24
5472	2020	4	17	33	692	34	276	3.
5636	2020	4	17	34	245	6	120	:
6456	2020	4	17	48	361	6	37	•
4002	2020	4	17	18	3124	161	925	8:
4166	2020	4	17	19	722	14	199	4
7926	2020	4	17	31	1819	101	438	4:
4330	2020	4	17	20	1382	29	599	1(
8252	2020	4	17	47	486	3	190	(

	year	month	day	cityid	case_count	death_count	new_case_count	new_death_coun
689	2020	4	17	21	969	16	261	:
7437	2020	4	17	22	344	4	230	;
4494	2020	4	17	24	411	22	150	1.
858	2020	4	17	25	6015	128	2738	117
7763	2020	4	17	26	470	20	107	!
4658	2020	4	17	27	555	49	105	2 [.]
4822	2020	4	17	28	1404	56	523	24
6784	2020	4	17	52	650	42	158	1(
4986	2020	4	17	29	2098	65	816	41
8089	2020	4	17	37	236	9	74	(
5144	2020	4	17	30	1442	17	373	-
5308	2020	4	17	32	466	17	107	•
6948	2020	4	17	53	354	19	76	(
7600	2020	4	17	23	987	29	588	2!
1361	2020	4	17	40	267	8	51	
8415	2020	4	17	49	553	8	77	;
6620	2020	4	17	51	252	3	41	4
6128	2020	4	17	44	5718	270	490	9;

52 rows × 44 columns

In [14]: #Choose 3 city representing the big city top_city = top_city.iloc[0:3] top_city

Out[14]:

	year	month	day	cityid	case_count	death_count	new_case_count	new_death_coun
11	2020	4	17	1	10039	370	2961	254
1858	2020	4	17	2	131363	12733	25067	4529
181	2020	4	17	3	16369	596	6919	362

3 rows × 44 columns


```
In [15]:
              #Calculate the infection rate
               ratio top=[{'city':row['cityname'], 'infection rate':float(row['case count'])/float
               ratio_top
     Out[15]: [{'city': 'Los Angeles',
                 'infection rate': 0.0009999893416814862,
                 'emp rate': -0.232,
                 'new case count': '2961'},
                {'city': 'New York City',
                 'infection rate': 0.015756972955025882,
                 'emp rate': -0.327,
                 'new case count': '25067'},
                {'city': 'Chicago',
                 'infection rate': 0.003178302806882718,
                 'emp rate': -0.195,
                 'new case count': '6919'}]
In [16]:
              #Choose 3 city from the bottom representing the small population city
               bot city = top city.iloc[-3:]
               bot city
     Out[16]:
                     year month day cityid case_count death_count new_case_count new_death_coun
                  11 2020
                                   17
                                           1
                                                  10039
                                                                 370
                                                                               2961
                                                                                                 254
                                           2
                1858 2020
                                   17
                                                 131363
                                                              12733
                                                                              25067
                                                                                                4529
                 181 2020
                                   17
                                                  16369
                                                                 596
                                                                               6919
                                                                                                 36;
               3 rows × 44 columns
   [17]:
              #Calculate the infection rate
               ratio_bot=[{'city':row['cityname'], 'infection rate':float(row['case_count'])/float
               ratio bot
     Out[17]: [{'city': 'Los Angeles',
                 'infection rate': 0.0009999893416814862,
                 'emp rate': -0.232,
                 'new case count': '2961'},
                {'city': 'New York City',
                 'infection rate': 0.015756972955025882,
                 'emp rate': -0.327,
                 'new case count': '25067'},
                {'city': 'Chicago',
                 'infection rate': 0.003178302806882718,
                 'emp rate': -0.195,
                 'new case count': '6919'}]
```

```
In [122]:
               #Combine the result
                ratio=ratio top+ratio bot
                ratio
     Out[122]: [{'city': 'Los Angeles',
                  'infection rate': 0.0009999893416814862,
                  'emp rate': -0.232,
                  'new case count': '2961'},
                 {'city': 'New York City',
                  'infection rate': 0.015756972955025882,
                  'emp rate': -0.327,
                  'new case count': '25067'},
                 {'city': 'Chicago',
                  'infection rate': 0.003178302806882718,
                  'emp rate': -0.195,
                  'new case count': '6919'},
                 {'city': 'Los Angeles',
                  'infection rate': 0.0009999893416814862,
                  'emp rate': -0.232,
                 'new case count': '2961'},
                 {'city': 'New York City',
                  'infection rate': 0.015756972955025882,
                  'emp rate': -0.327,
                  'new case count': '25067'},
                 {'city': 'Chicago',
                  'infection rate': 0.003178302806882718,
                  'emp rate': -0.195,
                  'new case count': '6919'}]
```

```
In [19]:
           #Draw a bar chart for the infection rate and employment rate
              cities = [item['city'] for item in ratio]
              infection_rates = [item['infection rate']*15 for item in ratio]
              emp_rates = [abs(item['emp rate']) for item in ratio]
              #new_case = [int(item['new case count']) for item in ratio]
              #print(new case)
              x = np. arange (len (cities))
              width = 0.25
              # Create a bar chart for infection rate
              plt.figure(figsize=(10, 6))
              plt.bar(x - width, infection_rates, width, label='Infection Rate', color='b', alph
              # Create a bar chart for employment rate
              plt.bar(x, emp rates, width, label='Employment Rate Change', color='r', alpha=0.7
              plt. xlabel('City')
              plt.title('Infection Rate and Employment Rate by City on 2020-04-17')
              plt.xticks(x, cities, rotation=45)
              plt.legend()
              plt. gca().axes.get_yaxis().set_visible(False)
              plt. tight_layout()
              plt.show()
```


In [20]:

K

geoIDs

Out[20]:

	cityid	cityname	stateabbrev	statename	statefips	lat	lon	city_pop2019
0	1	Los Angeles	CA	California	6	34.05	-118.24	10039107
1	2	New York City	NY	New York	36	40.71	-74.01	8336817
2	3	Chicago	IL	Illinois	17	41.88	-87.63	5150233
3	4	Houston	TX	Texas	48	29.76	-95.37	4713325
4	5	Phoenix	AZ	Arizona	4	33.45	-112.07	4485414
5	6	San Diego	CA	California	6	32.72	-117.16	3338330
6	7	Dallas	TX	Texas	48	32.78	-96.80	2635516
7	8	Las Vegas	NV	Nevada	32	36.17	-115.14	2266715
8	9	Seattle	WA	Washington	53	47.61	-122.33	2252782
9	10	Fort Worth	TX	Texas	48	32.76	-97.33	2102515
10	11	San Antonio	TX	Texas	48	29.42	-98.49	2003554
11	12	San Jose	CA	California	6	37.34	-121.89	1927852
12	13	Detroit	MI	Michigan	26	42.33	-83.05	1749343
13	14	Philadelphia	PA	Pennsylvania	42	39.95	-75.17	1584064
14	15	Columbus	ОН	Ohio	39	39.96	-83.00	1316756
15	16	Austin	TX	Texas	48	30.27	-97.74	1273954
16	17	Charlotte	NC	North Carolina	37	35.23	-80.84	1110356
17	18	Indianapolis	IN	Indiana	18	39.77	-86.16	964582
18	19	Jacksonville	FL	Florida	12	30.33	-81.66	957755
19	20	Memphis	TN	Tennessee	47	35.15	-90.05	937166
20	21	San Francisco	CA	California	6	37.77	-122.42	881549
21	22	El Paso	TX	Texas	48	31.78	-106.44	839238
22	23	Baltimore	MD	Maryland	24	39.29	-76.61	593490
23	24	Portland	OR	Oregon	41	45.52	-122.68	812855
24	25	Boston	MA	Massachusetts	25	42.36	-71.06	803907
25	26	Oklahoma City	ОК	Oklahoma	40	35.47	-97.52	797434
26	27	Louisville	KY	Kentucky	21	38.25	-85.76	766757
27	28	Denver	СО	Colorado	8	39.74	-104.99	727211
28	29	Washington	DC	District of Columbia	11	38.91	-77.04	705749
29	30	Nashville	TN	Tennessee	47	36.16	-86.78	694144
30	31	Milwaukee	WI	Wisconsin	55	43.04	-87.91	945726
31	32	Albuquerque	NM	New Mexico	35	35.09	-106.61	679121
32	33	Tucson	AZ	Arizona	4	32.22	-110.93	1047279

	cityid	cityname	stateabbrev	statename	statefips	lat	lon	city_pop2019
33	34	Fresno	CA	California	6	36.75	-119.77	999101
34	35	Sacramento	CA	California	6	38.58	-121.49	1552058
35	36	Atlanta	GA	Georgia	13	33.75	-84.39	1063937
36	37	Kansas City	MO	Missouri	29	39.10	-94.58	703011
37	38	Miami	FL	Florida	12	25.76	-80.19	2716940
38	39	Raleigh	NC	North Carolina	37	35.78	-78.64	1111761
39	40	Omaha	NE	Nebraska	31	41.25	-96.00	571327
40	41	Oakland	CA	California	6	37.80	-122.27	1671329
41	42	Minneapolis	MN	Minnesota	27	44.98	-93.27	1265843
42	43	Tampa	FL	Florida	12	27.95	-82.46	1471968
43	44	New Orleans	LA	Louisiana	22	29.95	-90.07	390144
44	45	Wichita	KS	Kansas	20	37.69	-97.34	516042
45	46	Cleveland	ОН	Ohio	39	41.50	-81.69	1235072
46	47	Bakersfield	CA	California	6	35.37	-119.02	900202
47	48	Honolulu	HI	Hawaii	15	21.31	-157.86	974563
48	49	Boise	ID	Idaho	16	43.62	-116.20	481587
49	50	Salt Lake City	UT	Utah	49	40.76	-111.89	1160437
50	51	Virginia Beach	VA	Virginia	51	36.85	-75.98	449974
51	52	Colorado Springs	СО	Colorado	8	38.83	-104.82	720403
52	53	Tulsa	OK	Oklahoma	40	36.15	-95.99	651552

Out[21]:

	year	month	cityid	case_count	death_count	new_case_count	new_death_count va
954	2020	1	3	1	0	0	
1007	2020	1	3	1	0	0	
1058	2020	1	1	1	0	0	·
1060	2020	1	3	1	0	0	
1062	2020	1	5	1	0	0	
64679	2023	6	2	2736550	45257	190	0
64680	2023	6	2	2736745	45258	195	0
64681	2023	6	2	2736944	45259	199	0
64682	2023	6	2	2737141	45260	197	0
64683	2023	6	2	2737341	45261	199	0

61292 rows × 28 columns

```
In [22]:  #Covid data set pre-process
    covid=covid[['date','cityid','case_count','new_case_count']]
    covid=covid.drop(covid[covid.new_case_count == '.'].index)
    covid
```

Out[22]:

	date	cityid	case_count	new_case_count
954	2020-01-25	3	1	0
1007	2020-01-26	3	1	0
1058	2020-01-27	1	1	0
1060	2020-01-27	3	1	0
1062	2020-01-27	5	1	0
64679	2023-06-01	2	2736550	190
64680	2023-06-02	2	2736745	195
64681	2023-06-03	2	2736944	199
64682	2023-06-04	2	2737141	197
64683	2023-06-05	2	2737341	199

61292 rows × 4 columns

```
In [25]: N covid_case_per_day
```

Out[25]:

	date	new_case_count
0	2020-01-25	0
1	2020-01-26	0
2	2020-01-27	0
3	2020-01-28	0
4	2020-01-29	0
1223	2023-06-01	190
1224	2023-06-02	195
1225	2023-06-03	199
1226	2023-06-04	197
1227	2023-06-05	199

1228 rows × 2 columns

```
In [27]:  consumer_spending=consumer_spending[['date','cityid','spend_all']]  consumer_spending=consumer_spending.drop(consumer_spending[consumer_spending.spending])
```

In [28]: N consumer_spending['spend_all']=[float(spd) for spd in consumer_spending['spend_al consumer_spending_by_day=consumer_spending.groupby(['date'])['spend_all'].mean().r consumer_spending_by_day

Out[28]:

	date	spend_all
0	2020-01-13	0.001134
1	2020-01-14	-0.009896
2	2020-01-15	-0.009414
3	2020-01-16	-0.017062
4	2020-01-17	-0.021166
941	2023-09-17	0.155013
942	2023-09-24	0.154160
943	2023-10-01	0.132858
944	2023-10-08	0.194251
945	2023-10-15	0.169939

946 rows × 2 columns

In [29]:
#Drop two column from the dataset due to lacking of values mobility=mobility.drop(columns=['gps_transit_stations', 'gps_transit_stations']) mobility

Out[29]:

	year	month	day	cityid	gps_retail_and_recreation	gps_grocery_and_pharmacy	gps.
0	2020	2	24	1	0.00571	-0.00286	
1	2020	2	24	2	0.02000	-0.02410	
2	2020	2	24	3	0.04000	0.02710	
3	2020	2	24	4	0.02140	-0.00714	
4	2020	2	24	5	0.03290	-0.00143	
51140	2022	10	15	49	-0.10100	-0.02000	
51141	2022	10	15	50	-0.11400	-0.07290	
51142	2022	10	15	51	-0.13000	-0.04860	
51143	2022	10	15	52	-0.09860	-0.07710	
51144	2022	10	15	53	-0.00429	0.00143	

51145 rows × 10 columns

C:\Users\claio\AppData\Local\Temp\ipykernel_8072\3018456002.py:4: FutureWarning: Indexing with multiple keys (implicitly converted to a tuple of keys) will be dep recated, use a list instead.

mobile = mobile.groupby(['date'])['gps_retail_and_recreation','gps_grocery_and_
pharmacy', 'gps_workplaces', 'gps_residential', "gps_away_from_home"].mean().reset_i
ndex()

In [31]:

mobile

Out[31]:

	date	gps_retail_and_recreation	gps_grocery_and_pharmacy	gps_workplaces	gps_resid
0	2020- 02-24	0.026122	0.010062	0.010062	0.0
1	2020- 02-25	0.033874	0.014156	0.012498	0.0
2	2020- 02-26	0.042136	0.019076	0.013270	-0.0
3	2020- 02-27	0.052115	0.025338	0.015764	-0.0
4	2020- 02-28	0.060467	0.033913	0.018789	-0.0
960	2022- 10-11	-0.152111	-0.092559	-0.249057	0.0
961	2022- 10-12	-0.155723	-0.096561	-0.248472	0.0
962	2022- 10-13	-0.158542	-0.099121	-0.250857	0.0
963	2022- 10-14	-0.158493	-0.098971	-0.251472	0.0
964	2022- 10-15	-0.158334	-0.098445	-0.250975	0.0

965 rows × 6 columns

In [32]: N consumer_spending_by_day

Out[32]:

	date	spend_all
0	2020-01-13	0.001134
1	2020-01-14	-0.009896
2	2020-01-15	-0.009414
3	2020-01-16	-0.017062
4	2020-01-17	-0.021166
941	2023-09-17	0.155013
942	2023-09-24	0.154160
943	2023-10-01	0.132858
944	2023-10-08	0.194251
945	2023-10-15	0.169939

946 rows × 2 columns

```
#Use linear method to interpolate data between value on date column, which use to #The result of the interpolated data will compare with the result of small size da date_range = pd. date_range(start=consumer_spending_by_day['date'].iloc[0], end=cor new_df = pd. DataFrame({'date': date_range})

consumer_merged_df = pd. merge(new_df, consumer_spending_by_day, on='date', how='lectonsumer_merged_df['spend_all'].interpolate(method='linear', inplace=True)

consumer_merged_df = consumer_merged_df.reset_index(drop=True)

consumer_merged_df
```

Out[33]:

	date	spend_all
0	2020-01-13	0.001134
1	2020-01-14	-0.009896
2	2020-01-15	-0.009414
3	2020-01-16	-0.017062
4	2020-01-17	-0.021166
1367	2023-10-11	0.183831
1368	2023-10-12	0.180358
1369	2023-10-13	0.176885
1370	2023-10-14	0.173412
1371	2023-10-15	0.169939

In [34]: N covid_case_per_day

Out[34]:

	date	new_case_count
0	2020-01-25	0
1	2020-01-26	0
2	2020-01-27	0
3	2020-01-28	0
4	2020-01-29	0
1223	2023-06-01	190
1224	2023-06-02	195
1225	2023-06-03	199
1226	2023-06-04	197
1227	2023-06-05	199

1228 rows × 2 columns

|--|

combine_df = mobile.merge(consumer_merged_df,left_on=['date'], right_on = ['date'] combine_df = combine_df.merge(covid_case_per_day,left_on=['date'], right_on = ['date'] combine_df

3	02-27	0.052115	0.025338	0.015764	
4	2020- 02-28	0.060467	0.033913	0.018789	
	•••				
960	2022- 10-11	-0.152111	-0.092559	-0.249057	
961	2022- 10-12	-0.155723	-0.096561	-0.248472	
962	2022- 10-13	-0.158542	-0.099121	-0.250857	
963	2022- 10-14	-0.158493	-0.098971	-0.251472	
964	2022- 10-15	-0.158334	-0.098445	-0.250975	

Out[36]: Text(0.5, 1.0, 'Correlation Heatmap')


```
In [37]: #Scatter Plot represent the correlation of new covid case and residential info plt.scatter(combine_df["new_case_count"], combine_df["gps_residential"], c='blue', plt.xlabel('new_case_count') plt.ylabel('gps_resdidential') plt.title('Scatter Plot of new_case_count and gps_residential (Correlation)') plt.legend() plt.show()
```


In [38]:

```
#econ_small_bussiness pre-process
econ_small_bussiness['day'] = econ_small_bussiness['day_endofweek']
econ_small_bussiness['date'] = pd. to_datetime(econ_small_bussiness[['year', 'month
econ_small_bussiness['date'] = econ_small_bussiness['date'] - pd. DateOffset(days=2
sm_business_col=['date','cityid','merchants_all','revenue_all']
econ_small_bussiness = econ_small_bussiness[sm_business_col]
econ_small_bussiness
sm_b_df=econ_small_bussiness.groupby(['date'])['merchants_all','revenue_all'].mean
sm_b_df
```

C:\Users\claio\AppData\Local\Temp\ipykernel_8072\167200411.py:8: FutureWarning: Indexing with multiple keys (implicitly converted to a tuple of keys) will be deprecated, use a list instead.

sm_b_df=econ_small_bussiness.groupby(['date'])['merchants_all','revenue_al
l'].mean().reset index()

Out[38]:

	date	merchants_all	revenue_all
0	2020-01-10	0.010253	-0.009718
1	2020-01-17	-0.003797	0.004772
2	2020-01-24	-0.004183	0.011522
3	2020-01-31	-0.002925	-0.003220
4	2020-02-07	-0.001004	0.005327
104	2022-01-07	0.042990	0.070065
405	0000 04 44	0.040000	0.054000

Out[39]:

	date	merchants_all	revenue_all
0	2020-01-10	0.010253	-0.009718
1	2020-01-11	0.008246	-0.007648
2	2020-01-12	0.006239	-0.005578
3	2020-01-13	0.004232	-0.003508
4	2020-01-14	0.002225	-0.001438
752	2022-01-31	0.019036	0.027497
753	2022-02-01	0.021531	0.041835
754	2022-02-02	0.024026	0.056173
755	2022-02-03	0.026521	0.070511
756	2022-02-04	0.029016	0.084849

757 rows × 3 columns

```
In [84]: #Employment rate data set combine with city info and count the mean value by date emp_geo_df=employment_geoId emp_geo_df=emp_geo_df.groupby(['date'])['emp'].mean().reset_index()
```

In [88]: #Combine ALL data set at weekly basis combine_emp_rev = combine_df.merge(sm_b_df,left_on=['date'], right_on = ['date']) combine_emp_rev = combine_emp_rev.merge(emp_geo_df,left_on=['date'], right_on = ['combine_emp_rev]

Out[88]:

	date	gps_retail_and_recreation	gps_grocery_and_pharmacy	gps_workplaces	gps_resid
0	2020- 02-28	0.060467	0.033913	0.018789	-0.(
1	2020- 03-06	0.079988	0.075869	0.019321	-0.(
2	2020- 03-13	0.045159	0.123200	-0.027745	0.0
3	2020- 03-20	-0.225755	0.101004	-0.262868	0.′
4	2020- 03-27	-0.444208	-0.129394	-0.442283	0.1
97	2022- 01-07	-0.267385	-0.133570	-0.357472	0.1
98	2022- 01-14	-0.228806	-0.094809	-0.281623	0.1
99	2022- 01-21	-0.242925	-0.128155	-0.312094	0.1
100	2022- 01-28	-0.225234	-0.121674	-0.254472	0.0
101	2022- 02-04	-0.235151	-0.120145	-0.281830	0.0

102 rows × 11 columns

Out[89]: Text(0.5, 1.0, 'Correlation Heatmap')

In [90]: #Dataframe of employment and workplace spent time emp_workplace=combine_emp_rev[["date", "emp", "gps_workplaces"]] emp_workplace

Out[90]:

	date	emp	gps_workplaces
0	2020-02-28	0.003801	0.018789
1	2020-03-06	0.000961	0.019321
2	2020-03-13	-0.014212	-0.027745
3	2020-03-20	-0.061443	-0.262868
4	2020-03-27	-0.129640	-0.442283
97	2022-01-07	-0.083267	-0.357472
98	2022-01-14	-0.081131	-0.281623
99	2022-01-21	-0.076905	-0.312094
100	2022-01-28	-0.074794	-0.254472
101	2022-02-04	-0.073885	-0.281830

```
#Reveal the correlation of these two factors in detail
emp_workplace["difference"]=emp_workplace["emp"]-emp_workplace["gps_workplaces"]

plt.figure(figsize=(10, 6))
plt.plot(emp_workplace['date'], emp_workplace['emp'], label='employment rate')
plt.plot(emp_workplace['date'], emp_workplace['gps_workplaces'], label='gps_workpl

plt.title('Change of Workplace Behavior')
plt.xlabel('Date')
plt.ylabel('Level')

# Show the plot
plt.legend()
plt.show()
```

 $\label{local-loc$

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer, col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy) emp_workplace["difference"]=emp_workplace["emp"]-emp_workplace["gps_workplace s"]

Out[92]:

	date	emp
0	2020-01-17	0.001482
1	2020-01-24	0.000732
2	2020-01-31	-0.000031
3	2020-02-07	0.001115
4	2020-02-14	0.002320
182	2023-07-14	-0.092503
183	2023-07-21	-0.091203
184	2023-07-28	-0.093081
185	2023-08-04	-0.098651
186	2023-08-11	-0.105910

187 rows × 2 columns

Out[93]:

	date	emp
0	2020-01-17	0.001482
1	2020-01-18	0.001375
2	2020-01-19	0.001268
3	2020-01-20	0.001161
4	2020-01-21	0.001054
1298	2023-08-07	-0.101762
1299	2023-08-08	-0.102799
1300	2023-08-09	-0.103836
1301	2023-08-10	-0.104873
1302	2023-08-11	-0.105910

1303 rows × 2 columns

In [94]: #Combine all the dataset in daily basis combine_large = combine_df.merge(emp_trend_df,left_on=['date'], right_on = ['date' combine_large = combine_large.merge(merged_df,left_on=['date'], right_on = ['date' combine_large

Out[94]:

	date	gps_retail_and_recreation	gps_grocery_and_pharmacy	gps_workplaces	gps
0	2020- 02-24	0.026122	0.010062	0.010062	
1	2020- 02-25	0.033874	0.014156	0.012498	
2	2020- 02-26	0.042136	0.019076	0.013270	
3	2020- 02-27	0.052115	0.025338	0.015764	
4	2020- 02-28	0.060467	0.033913	0.018789	
707	2022- 01-31	-0.215987	-0.115928	-0.249868	
	_				

```
In [123]: # Demostrate the daily basis heat map is not much different from the weekly basis heatmap_df_all_daily=combine_large.drop(columns=['date']) heatmap_df_all_daily

correlation_matrix = heatmap_df_all_daily.corr()

plt.figure(figsize=(10, 6))
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', linewidths=0.5)
plt.title('Correlation Heatmap Daily')
```

Out[123]: Text(0.5, 1.0, 'Correlation Heatmap Daily')


```
In [95]: 

#combine the employment rate and spending emp_spend=combine_large[["emp", "spend_all"]] emp_spend
```

Out[95]:

	emp	spend_all
0	0.003754	-0.022519
1	0.003766	-0.025104
2	0.003777	-0.029255
3	0.003789	-0.027846
4	0.003801	-0.031179
707	-0.074404	0.083429
708	-0.074274	0.094303
709	-0.074145	0.098208
710	-0.074015	0.098088
711	-0.073885	0.095169

712 rows × 2 columns

```
In [96]:
              #Draw scatter plot to reveal the data distribution
              plt.figure(figsize=(10, 6))
              emp_spend=consumer_spending_by_day.merge(emp_geo_df,left_on=['date'], right_on =
              emp_spend.plot(kind='scatter', x="emp", y='spend_all')
              plt.title('Correlation between and Spending')
              plt. xlabel('Employment Rate')
              plt.ylabel('Spending')
              plt.show()
               <Figure size 1000x600 with 0 Axes>
                                      Correlation between and Spending
                    0.1
                    0.0
                Spending
                  -0.1
                   -0.2
  [97]:
              #Use linear regression to predict the correlation
              import sklearn.linear_model
              model = sklearn.linear_model.LinearRegression()
              X = np.c_[emp_spend["emp"]]
              y = np.c_[emp_spend["spend_all"]]
              # Train the model
              model.fit(X, y)
     Out [97]:
                ▼ LinearRegression
```

LinearRegression()

Linear Regression Prediction vs. Actual Data


```
In [99]: 
print("Model Intercept", model.intercept_[0])
print("Model Coeffient:", model.coef_[0][0])
```

Model Intercept 0.16720764416969355 Model Coeffient: 1.8139710870460024 In [100]: #Combine spending and small bussiness dataset to generate a 3 dimension dataset spend_rev=consumer_spending_by_day.merge(sm_b_df,left_on=['date'], right_on = ['date'] spend_rev

Out[100]:

	date	spend_all	merchants_all	revenue_all
0	2020-01-17	-0.021166	-0.003797	0.004772
1	2020-01-24	0.030892	-0.004183	0.011522
2	2020-01-31	-0.008131	-0.002925	-0.003220
3	2020-02-07	0.000927	-0.001004	0.005327
4	2020-02-14	-0.002106	-0.002155	-0.006601
103	2022-01-07	0.095070	0.042990	0.070065
104	2022-01-14	0.082719	0.019200	0.051389
105	2022-01-21	0.125645	0.014133	0.055417
106	2022-01-28	0.052608	0.011552	-0.015517
107	2022-02-04	0.095169	0.029016	0.084849

108 rows × 4 columns

```
In [101]:  
#Draw the data distribution in 3-d graph from mpl_toolkits.mplot3d import Axes3D

fig = plt.figure(figsize=(20, 20))
ax = fig.add_subplot(111, projection='3d')

ax.scatter(spend_rev["spend_all"], spend_rev["merchants_all"], spend_rev["revenue_ax.set_xlabel('Spending')
ax.set_ylabel('Merchants Level')
ax.set_zlabel('Revenue')

plt.show()
```


In [104]: ▶ combine_large

Out[104]:

	date	gps_retail_and_recreation	gps_grocery_and_pharmacy	gps_workplaces	gps_resi
0	2020- 02-24	0.026122	0.010062	0.010062	0.0
1	2020- 02-25	0.033874	0.014156	0.012498	0.0
2	2020- 02-26	0.042136	0.019076	0.013270	-0.0
3	2020- 02-27	0.052115	0.025338	0.015764	-0.0
4	2020- 02-28	0.060467	0.033913	0.018789	-0.0
707	2022- 01-31	-0.215987	-0.115928	-0.249868	0.0
708	2022- 02-01	-0.206025	-0.099810	-0.247394	0.0
709	2022- 02-02	-0.210221	-0.096995	-0.251811	0.0
710	2022- 02-03	-0.226774	-0.110306	-0.269019	0.0
711	2022- 02-04	-0.235151	-0.120145	-0.281830	0.0

712 rows × 11 columns

In [106]: ▶ target

[0.026520970350404315, 0.0705112398921833],

[0.029015849056603777, 0.08484924528301888]], dtype=object)

```
In [107]:
                data
     \dots, -0.02251877551020408, 11, 0.0037538598901098903],
                       [0.03387377358490566, 0.01415566037735849, 0.012498301886792452,
                        \dots, -0.025103755102040815, 12, 0.0037656016483516483],
                       [0.042136415094339616, 0.01907603773083019, 0.01326977358490566,
                        \dots, -0.029254693877551016, 15, 0.0037773434065934064],
                       [-0.21022075471698112, -0.0969945283018868, -0.25181132075471696,
                        \dots, 0.09820795918367348, 732558, -0.07414453296703297],
                       [-0.22677358490566038, -0.11030566037735848, -0.2690188679245283,
                        \dots, 0. 09808795918367347, 668328, -0. 07401467032967034],
                       [-0.2351509433962264, -0.12014528301886793, -0.28183018867924525,
                        \dots, 0.09516911020408163, 598116, -0.0738848076923077]],
                      dtype=object)
   [108]:
                #Pre-processing the multi-factor prediction
                from sklearn import model selection
                X_train, X_test, Y_train, Y_test = model_selection.train_test_split(data, target,
                # X train, X test, Y train, Y test
                #print(X train)
                print(X test)
                #print(Y train)
                #print(Y_test)
                [[-0.4429056603773585 -0.16324150943396226 -0.4833584905660378 \dots]
                  -0.2771673469387755460567-0.21895879120879122
                  \begin{bmatrix} -0.\ 2261452830188679 & -0.\ 05779283018867924 & -0.\ 3557547169811321 \ \dots \end{bmatrix} 
                  -0.10085102040816327151555-0.12342032967032968
                 \lceil -0.2250698113207547 -0.0795688679245283 -0.3621698113207547 \dots \rceil
                  -0. 10140530612244898 151897 -0. 12425384615384615]
                  [-0.\ 36713207547169807 \ -0.\ 08042339622641509 \ -0.\ 44584905660377355 \ \dots ]
                  -0. 21891836734693879 54222 -0. 1916134615384615]
                 [-0.2540377358490566 -0.1100766037735849 -0.3175471698113207 \dots]
                  -0.041810204081632656 274750 -0.11088818681318681
                  \begin{bmatrix} -0.\ 11478415094339624 \ -0.\ 03769471698113208 \ -0.\ 27637735849056605 \ \dots \end{bmatrix} 
                  0. 06025142857142857 190015 -0. 07854052197802198]]
   [109]:
                #Using linear regression model to predict
Tn
                from sklearn.linear_model import LinearRegression
                model = LinearRegression()
                model.fit(X train, Y train)
     Out[109]:
                 ▼ LinearRegression
                 LinearRegression()
```

```
y_pred = model.predict(X_test)
In [110]:
                 y pred
                         [-8.10266985e-02, -1.42863965e-01],
                         [-3.09559534e-02, -2.28639031e-02],
                         [-7.99439301e-02, -1.37514681e-01],
                         [-4.94744728e-02, -4.48728504e-02],
                         [-4.10788132e-02, -3.56018580e-02],
                         [-7.69859273\mathrm{e}{-02}, -1.03733957\mathrm{e}{-01}],
                         [-2.51812207e-02, -1.42235766e-02],
                         [-7.93615543e-02, -1.27522690e-01],
                         [ 8.59451821e-03, -3.67159756e-02],
                         [-1.49272329e-01, -2.48200872e-01],
                         [-3.10410642e-02, -9.51843435e-03],
                         [-2.66225636e-01, -4.01961943e-01],
                         [-4.39246423e-02, -4.21069086e-02],
                         [-8.15465058e-02, -1.30780016e-01],
                         [-9.42438084e-02, -1.10004754e-01],
                         [-3.01180042e-02, 8.63851202e-03],
                         [-1.00714948e-01, -1.31527162e-01],
                         [-3.\,95242862\mathrm{e}{-02},\ -3.\,72695364\mathrm{e}{-03} \rfloor,
                         [-1.05205182e-01, -2.28753292e-01],
                         [-7 Q608Q459a-09 -1 1QQ19131a-01]
   [111]:
                #Calculate the mean squared error and r squared value
                 from sklearn.metrics import mean squared error, r2 score
                 mse = mean squared error (Y test, y pred)
                 r2 = r2 \text{ score}(Y \text{ test, y pred})
                 print("Mean Squared Error:", mse)
                 print("R-squared:", r2)
```

Mean Squared Error: 0.001658158620888309

R-squared: 0.8033854245671945

	[112]:		mobili	ıty					
	Out[112	2]:		year	month	day	cityid	gps_retail_and_recreation	gps_grocery_and_pharmacy
			0	2020	2	24	1	0.00571	-0.00286
			1	2020	2	24	2	0.02000	-0.02410
			2	2020	2	24	3	0.04000	0.02710
			3	2020	2	24	4	0.02140	-0.00714
			4	2020	2	24	5	0.03290	-0.00143
			51140	2022	10	15	49	-0.10100	-0.02000
	[113]:	H	kmean_ kmean_ kmean_	_mob_df _mob_df _mob_df	= mob: = kmea = kmea	ility an_mol an_mol	b_df.dr b_df.dr	rop(kmean_mob_df[kmean_m	rt all value to numeric nob_df.gps_parks == '.'].i nob_df.gps_residential ==
	[113]: [114]:	H	kmean_kmean_kmean_kmean_	_mob_df _mob_df _mob_df _mob_df	= mob; = kmea = kmea = kmea	ility an_mol an_mol an_mol	b_df.di b_df.di b_df.re	rop(kmean_mob_df[kmean_m rop(kmean_mob_df[kmean_m	nob_df.gps_parks == '.'].i nob_df.gps_residential ==
			kmean_kmean_kmean_kmean_	_mob_df _mob_df _mob_df _mob_df _mob_df _mob_df	= mob: = kmea = kmea = kmea	ility an_mol an_mol an_mol	b_df.di b_df.di b_df.re	rop(kmean_mob_df[kmean_m rop(kmean_mob_df[kmean_m eset_index(drop=True)	nob_df.gps_parks == '.'].i nob_df.gps_residential ==
			kmean_	_mob_df _mob_df _mob_df _mob_df _mob_df _mob_df	= mob: = kmea = kmea = kmea	ility an_mob an_mob an_mob	b_df.dr b_df.dr b_df.re	rop(kmean_mob_df[kmean_m rop(kmean_mob_df[kmean_m eset_index(drop=True) oat(x) for x in kmean_m	nob_df.gps_parks == '.'].i nob_df.gps_residential == ob_df["gps_parks"]]
		H	kmean_	_mob_df _mob_df _mob_df _mob_df _mob_df _mob_df _mob_df	= mob: = kmea = kmea = kmea = ["gps_r	ility an_mol an_mol an_mol oarks'	b_df. dr b_df. dr b_df. re "]=[f1c	rop(kmean_mob_df[kmean_m rop(kmean_mob_df[kmean_m eset_index(drop=True) oat(x) for x in kmean_m	nob_df.gps_parks == '.'].i nob_df.gps_residential == ob_df["gps_parks"]]
		H 500	kmean_	_mob_df _mob_df _mob_df _mob_df _mob_df _mob_df _mob_df	= mob: = kmea = kmea = kmea = ["gps_r 2 2 2	ility an_mol an_mol an_mol oarks'	b_df. dr b_df. dr b_df. re "]=[flo	rop(kmean_mob_df[kmean_m rop(kmean_mob_df[kmean_m eset_index(drop=True) oat(x) for x in kmean_m 0.03290	nob_df.gps_parks == '.'].i nob_df.gps_residential == ob_df["gps_parks"]] -0.00143
1		5 00	kmean_kmean_kmean_kmean_kmean_kmean_kmean_kmean_kmean_	_mob_df	= mob: = kmea = kmea = kmea = kmea = ["gps_r 2 2 10 1	ility an_mol an_mol an_mol oarks'	b_df. dr b_df. dr b_df. re "]=[f]c 5 	cop(kmean_mob_df[kmean_mcop(kmean_mob_df[kmean_meset_index(drop=True) oat(x) for x in kmean_m 0.03290 0.21300	ob_df.gps_parks == '.'].i ob_df.gps_residential == ob_df["gps_parks"]] -0.00143 -0.18000
		500 500	kmean_kmean_kmean_kmean_kmean_kmean_	mob_df mob_df mob_df mob_df mob_df mob_df mob_df mob_df 220 022 022	2 2 10 1 10 1	ility an_mol an_mol an_mol coarks'	5 48	cop(kmean_mob_df[kmean_mop(kmean_mob_df[kmean_mob_df[kmean_meset_index(drop=True)] oat(x) for x in kmean_m -0.21300 -0.11400	ob_df.gps_parks == '.'].i ob_df.gps_residential == ob_df["gps_parks"]] -0.00143 -0.18000 -0.07290
		500 500 500	kmean_kmean_kmean_kmean_kmean_wmean_kmean_wmean_	mob_df mob_df mob_df mob_df mob_df mob_df mob_df mob_df 220 222 222 222	2 2 10 1 10 1	ility an_mol an_mol an_mol coarks'	5 48 50	cop(kmean_mob_df[kmean_mop(kmean_mob_df[kmean_mob_df[kmean_meset_index(drop=True)] oat(x) for x in kmean_m -0.21300 -0.11400 -0.13000	ob_df.gps_parks == '.'].i ob_df.gps_residential == ob_df["gps_parks"]] -0.00143 -0.18000 -0.07290 -0.04860

C:\ProgramData\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:1412: Futur eWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning super()._check_params_vs_input(X, default_n_init=10)

C:\ProgramData\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:1436: UserW arning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment v ariable OMP_NUM_THREADS=3.

warnings.warn(

Silhouette Score: 0.7108765995910622

Clustering Result of Life Behavior by Mobility Data with 10 Labels

C:\ProgramData\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:1412: Futur eWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning super()._check_params_vs_input(X, default_n_init=10)
C:\ProgramData\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:1436: UserW arning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment v ariable OMP_NUM_THREADS=3.

Silhouette Score: 0.5486270622481992

warnings.warn(

Clustering Result of Life Behavior by Mobility Data with 10 Labels


```
#Draw a line plot of the result of clustering by using 3-50 labels
In [120]:
               from sklearn.cluster import KMeans
               from sklearn. metrics import silhouette score, completeness score, homogeneity sco
               silhouette list=[]
               number clusters=[x for x in range(3, 40)]
               for i in number clusters:
                   kmeans = KMeans(n clusters=i)
                   kmeans. fit (data)
                   labels = kmeans.labels
                   silhouette_avg = silhouette_score(data, labels)
                   silhouette list.append(silhouette avg)
               plt.plot(number_clusters, silhouette_list)
               plt.title('K-Means Clustering for Different Numbers of Clusters')
               plt.xlabel('Numbers of Clusters')
               plt. ylabel ('Silhouette Score')
               # Show the plot
               plt.grid()
               plt.legend()
               plt.show()
               ruturewarning, the derault value of in thit will change from to to
               n 1.4. Set the value of `n_init` explicitly to suppress the warning
                  super()._check_params_vs_input(X, default_n_init=10)
               C:\ProgramData\anaconda3\Lib\site-packages\sklearn\cluster\_kmeans.py:1436:
               UserWarning: KMeans is known to have a memory leak on Windows with MKL, when
                there are less chunks than available threads. You can avoid it by setting th
                e environment variable OMP NUM THREADS=3.
                 warnings.warn(
               C:\ProgramData\anaconda3\Lib\site-packages\sklearn\cluster\_kmeans.py:1412:
               FutureWarning: The default value of `n_init` will change from 10 to 'auto' i
               n 1.4. Set the value of 'n init' explicitly to suppress the warning
                  super()._check_params_vs_input(X, default_n_init=10)
               C:\ProgramData\anaconda3\Lib\site-packages\sklearn\cluster\ kmeans.py:1436:
               UserWarning: KMeans is known to have a memory leak on Windows with MKL, when
                there are less chunks than available threads. You can avoid it by setting th
               e environment variable OMP_NUM_THREADS=3.
                 warnings.warn(
               C:\ProgramData\anaconda3\Lib\site-packages\sklearn\cluster\ kmeans.py:1412:
               FutureWarning: The default value of `n_init` will change from 10 to 'auto' i
               n 1.4. Set the value of `n_init` explicitly to suppress the warning
                                           . . /17 1 0 1 .
 In [ ]:
            H
```