ST 705 Linear models and variance components Homework problem set 8

March 21, 2023

- 1. Monahan exercise 4.1
- 2. Monahan exercise 4.2
- 3. Monahan exercise 4.3
- 4. Monahan exercise 4.9
- 5. Suppose that $Y_1, \ldots, Y_n \stackrel{\text{iid}}{\sim} \text{Uniform}(0, 2\theta)$, and define $U_i := Y_i \theta$ for $i \in \{1, \ldots, n\}$.
 - (a) Find the mean and variance of $U := (U_1, \dots, U_n)'$.
 - (b) Show that $Y := (Y_1, ..., Y_n)'$ is generated according to a linear model that satisfies the Gauss-Markov assumptions.
 - (c) Find the BLUE of θ , and denote the BLUE by $\hat{\theta}_{OLS}$.
 - (d) Find c so that the estimator $\hat{\theta} = cY_{(n)}$ is unbiased for θ , where $Y_{(i)}$ denotes the ith order statistic, and compute the variance of $\hat{\theta}$.
 - (e) Compare the variances of $\hat{\theta}_{OLS}$ and $\hat{\theta}$, and provide intuition for your finding.
- 6. The problem of least squares regression can be understood as a special case of the more general problem of ridge regression. For an n-dimensional column vector y and an $n \times p$ design matrix X, the problem of ridge regression is to solve for the parameter vector b that minimizes

$$a||b||_2^2 + ||y - Xb||_2^2,$$

where $a \geq 0$ is fixed.

- (a) Derive a closed-form expression of the ridge regression solution.
- (b) Assume that X has full column rank, and suppose that y is an observed instance of the random vector $Y = X\beta + U$, where $\beta \in \mathbb{R}^p$ is fixed and U satisfies the Gauss-Markov assumptions. Under what condition(s) is the ridge regression solution the best linear unbiased estimator (BLUE) for any β ?