

CH7009A/B, CH7010A/B, CH7011A, CH7012A, CH7301A/B Encoder Registers Read/Write Operation

1. Introduction

The CH7009A/B, CH7010A/B, CH7011A, CH7012A, and CH7301A/B belong to the CH7009A/B encoders family. Each of these encoders contains a serial port, through which the control registers can be written to and read from. The serial port is a two-wire serial interface consisting of pins SPD (bidirectional) - Serial Port Data, and SPC - Serial Port Clock.

The serial port clock line (SPC) is input only and is driven by the output buffer of the graphics controller device, which is the clock master in the system. The serial port data line (SPD) is either input to or output from the CH7009A/B family encoder depending on the write or read status. The data on the line can be transferred at speeds of up to 400 kbit/s. **Figure 1** shows the connection of the serial port interface of CH7009A/B family.

Please note that we DO NOT recommend sharing of this serial port with other serial port programmable devices.

Figure 1: The Connection of the CH7009A/B Family Serial Port Interface

2. Serial Port Operation

2.1 Electrical Characteristics of the Serial Port

The connections of the serial port inputs and outputs are shown in **Figure 1**. A pull-up resistor (R_P) must be connected to a 3.3V \pm 10% supply. The CH7009A/B family of encoders have input levels related to DVDDV.

A weak pull-up resister (R_C) may be added to the clock line to ensure that it is pulled high when the line is free.

Maximum and minimum values of pull-up resistor (Rp)

The value of R_P depends on the following parameters:

- · Supply voltage
- · Line capacitance
- Number of devices connected (input current + leakage current = I_{input})

The supply voltage limits the minimum value of resistor R_P due to the specified minimum sink current of 2mA at $VOL_{max} = 0.4 \text{ V}$ for the output stages:

$$R_P >= (V_{DD} - 0.4) / 2 (R_P \text{ in } k\Omega)$$

The line capacitance is the total capacitance of wire, connections and pins. This capacitance limits the maximum value of R_P due to the specified rise time. The equation for R_P is shown below:

$$R_P \le 10^3/C$$
 (where: R_P is in $k\Omega$ and C, the total capacitance, is in pF)

The maximum HIGH level input current of each input/output connection has a specified maximum value of $10~\mu A$. Due to the desired noise margin of $0.2V_{DD}$ for the HIGH level, this input current limits the maximum value of R_P . The R_P limit depends on V_{DD} and is shown below:

$$R_P \! < = \! (100 \; x \; V_{DD}) \! / \; I_{input} \; \; (\text{where:} \; R_P \; \text{is in } k\Omega \; \text{and} \; I_{input} \; \text{is in } \mu A)$$

2.2 Transfer Protocol

Both read and write cycles can be executed in "Auto-increment" or "Single-step" modes. Auto-increment mode allows you to establish the initial register location, then automatically increments the register address after each subsequent data access (i.e., transfers will be address, data...). The Single-step mode, as a matter of fact, is the Auto-increment mode with a single set of data sending/receiving to/from a specific register. A basic serial port transfer protocol is shown in **Figure 2** and is described below.

Please note that the CH7009A/B family of encoders DO NOT support "Alternating Mode", which is supported by CH7007/CH7008 encoders.

Figure 2: Serial Port Transfer Protocol

The description of the transfer protocol is as follows:

1. The transfer sequence is initiated when a high-to-low transition of SPD occurs while SPC is high; this is the "START" condition. Transitions of address and data bits can only occur while SPC is low.

- 2. The transfer sequence is terminated when a low-to-high transition of SPD occurs while SPC is high; this is the "STOP" condition.
- 3. Upon receiving the first START condition, the CH7009A/B family encoder expects a Device Address Byte (DAB) from the master device. The value of the device address is shown in the DAB data format below. When AS = 1, the DAB is EAh for serial port write operations and EBh for serial port read operations. Similarly, when AS = 0, the DAB is ECh for serial port writes and EDh for serial port reads.
- 4. After the DAB is received, the CH7009A/B family encoder expects a Register Address Byte (RAB) from the master. The format of the RAB is shown in the RAB data format below. Please note that bit 7 of the RAB is not used.

Device Address Byte (DAB)

B7	B6	B5	B4	В3	B2	B1	В0
1	1	1	0	1	AS*	AS	R/W

R/W Read/Write Indicator

- "0": master device will write to the CH7009A/B family encoder at the register location specified by the address AR[6:0]
- "1": master device will read from the CH7009A/B family encoder at the register location specified by the address AR[6:0].

Register Address Byte (RAB)

B7	B6	B5	B4	В3	B2	B1	В0
1	AR[6]	AR[5]	AR[4]	AR[3]	AR[2]	AR[1]	AR[0]

AR[6:0] Specifies the Address of the Register to be Accessed.

This register address is loaded into the Address Register of the CH7009A/B family encoder. The R/W access, which follows, is directed to the register specified by the content stored in the Address Register.

The following two sections describe the operation of the serial interface for the four combinations of R/W = 0, 1 and Auto-increment and Single-step operation.

2.3 CH7009A/B Family Encoder Write Cycle Protocols (R/W = 0)

Data transfer with acknowledge is required. The acknowledge-related clock pulse is generated by the master-transmitter. The master-transmitter releases the SPD line (HIGH) during the acknowledge clock pulse. The slave-receiver must pull down the SPD line, during the acknowledge clock pulse, so that it remains stable LOW during the HIGH period of the clock pulse. The CH7009A/B family encoder always acknowledges for writes (see **Figure 3**). Note that the resultant state on SPD is the wired-AND of data outputs from the transmitter and receiver.

Figure 3: Acknowledge Protocol

Figure 4 shows two consecutive Single step write cycles. The byte of information, following the Register Address Byte (RAB), is the data to be written into the register specified by AR[6:0]. After the acknowledge has been received, the serial port interface will then enter the "Stop Condition". The cycle is then repeated for each single-step write cycle.

Note: The acknowledge is from the CH7009A/B family encoder (slave).

Figure 4: Single-step Write Cycles (2 cycles)

The Auto-increment write cycle is shown in **Figure 5**. During Auto-increment mode transfers, the register address pointer continues to increment for each data write cycle until AR[6:0] = 4F. The next byte of information represents a new auto-sequencing "Starting address", which is the address of the register to receive the next byte. The auto-sequencing then resumes based on this new "Starting address". The Auto-increment sequence can be terminated any time by either a "STOP" or "RESTART" condition. The write operation can be terminated with a "STOP" condition.

Note: The acknowledge is from the CH7009A/B family encoder (slave).

Figure 5: Auto-Increment Write Cycle

2.4 CH7009A/B Family Encoder Read Cycle Protocols (R/W = 1)

If a master-receiver is involved in a transfer, it must signal the end of data to the slave-transmitter by not generating an acknowledge on the last byte that was clocked out of the slave. The slave-transmitter, CH7009A/B family encoder, releases the data line to allow the master to generate a "STOP" condition or a "RESTART" condition.

To read the content of the registers, the master device starts by issuing a "START" condition (or a "RESTART" condition). The first byte of data, after the "START" condition, is a DAB with R/W = 0. The second byte is the RAB with AR[6:0], containing the address of the register that the master device intends to read from in AR[6:0]. The master device should then issue a "RESTART" condition ("RESTART" = "START", without a previous "STOP" condition). The first byte of data, after this "RESTART" condition, is another DAB with R/W=1, indicating the master's intention to read data hereafter. The master then reads the next byte of data (the content of the register specified in the RAB). For Single-step mode, a "STOP" condition or "RESTART" condition is sent out immediately after the acknowledge of data read (see **Figure 6**).

Note: The acknowledge is from the CH7009A/B family encoder (slave).

Figure 6: Single-step Read Cycle

For Auto-increment read cycles, the address register will be incremented automatically and subsequent data bytes can be read from successive registers without providing a second RAB.

Regarding the Auto-increment mode, the address register continues to increment for each read cycle. When the content of the address register reaches 4Fh, it will wrap around and start from 00h again. The auto increment sequence can be terminated by either a "STOP" or "RESTART" condition. The read operation can be terminated with a "STOP" condition. **Figure 7** shows an Auto-increment read cycle terminated by a STOP condition.

Note: The acknowledge is from the CH7009A/B family encoder (slave).

Figure 7: Auto-increment Read Cycle

3. Electrical Specifications

Table 1: DC Specifications

Symbol	Description	Test Condition	Min	Тур	Max	Unit
V _{SDOL}	SPD (serial port data) Output Low Voltage	I _{OL} = 2.0 mA			0.4	V
V _{SPIH}	Serial Port (SPC, SPD) Input High Voltage		2.7		DVDD+0.5	V
V _{SPIL}	Serial Port (SPC, SPD) Input Low Voltage		GND-0.5		1.4	V

Table 2: AC Specifications

Symbol	Description	Test Condition	Min	Тур	Max	Unit
f _{SPC}	SPC clock frequency		0		400	kHz
t _{LOW-SPC}	Low Period of SPC clock		1.3			μs
t _{HIGH-SPC}	High Period of SPC clock		0.6			μs
t _{SU-SPD}	Data setup time		100			ns
t _{HD-SPD}	Data hold time		0			ns
t _{F-SPD}	Fall time of SPD signal	Cload = 400pf			300	ns

Figure 8: Serial Port Interface Timing

Appendix: Registers Map of CH7009A/B Family Encoders

Table 3: Non-Macrovision registers map of the CH7009A

Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
00h	IR2	IR1	IR0	VOS1	VOS0	SR2	SR1	SR0
01h		VOF0	CFF1	CFF0	YFFT1	YFFT0	YFFNT1	YFFNT0
02h	VBID	CFRB	CVBWB	CBW	YSV1	YSV0	YCV1	YCV0
03h			SAV8	HP8	VP8	TE2	TE1	TE0
04h	SAV7	SAV6	SAV5	SAV4	SAV3	SAV2	SAV1	SAV0
05h	HP7	HP6	HP5	HP4	HP3	HP2	HP1	HP0
06h	VP7	VP6	VP5	VP4	VP3	VP2	VP1	VP0
07h	BL7	BL6	BL5	BL4	BL3	BL2	BL1	BL0
08h						CE2	CE1	CE0
09h	MEM2	MEM1	MEM0	N9	N8	M8	PLLCPI	PLLCAP
0Ah	M7	M6	M5	M4	M3	M2	M1	M0
0Bh	N7	N6	N5	N4	N3	N2	N1	N0
0Ch	FSCI31	FSCI30	FSCI29	FSCI28	FSCI27	FSCI26	FSCI25	FSCI24
0Dh	FSCI23	FSCI22	FSCI21	FSCI20	FSCI19	FSCI18	FSCI17	FSCI16
0Eh	FSCI15	FSCI14	FSCI13	FSCI12	FSCI11	FSCI10	FSCI9	FSCI8
0Fh	FSCI7	FSCI6	FSCI5	FSCI4	FSCI3	FSCI2	FSCI1	FSCI0
10h			CIV25	CIV24	CIVC1	CIVC0	PALN	CIVEN
11h	CIV23	CIV22	CIV21	CIV20	CIV19	CIV18	CIV17	CIV16
12h	CIV15	CIV14	CIV13	CIV12	CIV11	CIV10	CIV9	CIV8
13h	CIV7	CIV6	CIV5	CIV4	CIV3	CIV2	CIV1	CIV0
1Ch					M/S*	MCP	PCM	XCM
1Dh					XCMD3	XCMD2	XCMD1	XCMD0
1Eh	GOENB1	GOENB0	GPIOL1	GPIOL0	HPIR	HPIE	POUTE	POUTP
1Fh	IBS	DES	SYO	VSP	HSP	IDF2	IDF1	IDF0
20h	HPIE2	XOSC2	DVIT	DACT3	DACT2	DACT1	DACT0	SENSE
21h	XOSC1	XOSC0		SYNC01	SYNCO0	DACG1	DACG0	DACBP
22h	SHF2	SHF1	SHF0	BCOEN	BCOP	BCO2	BCO1	BCO0
31h	TPPD3	TPPD2	TPPD1	TPPD0	CTL3	CTL2	CTL1	CTL0
32h	TPVCO7	TPVCO6	TPVCO5	TPVCO4	TPVCO3	TPVCO2	TPVCO1	TPVCO0
33h	DVID2	DVID1	DVID0	DVII			TPCP1	TPCP0
35h			TPVT5	TPVT4	TPVT3	TPVT2	TPVT1	TPVT0
36h	TPLPF3	TPLPF2	TPLPF1	TPLPF0				
37h	TPVCO10	TPVCO9	TPVCO8					
48h				ResetIB	ResetDB	RSA	TSTP1	TSTP0
49h	DVIP	DVIL	TV	DACPD3	DACPD2	DACPD1	DACPD0	FPD
4Ah	VID7	VID6	VID5	VID4	VID3	VID2	VID1	VID0
4Bh	DID7	DID6	DID5	DID4	DID3	DID2	DID1	DID0

Table 4: Non-Macrovision registers map of the CH7009B

Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
00h	IR2	IR1	IR0	VOS1	VOS0	SR2	SR1	SR0
01h		VOF0	CFF1	CFF0	YFFT1	YFFT0	YFFNT1	YFFNT0
02h	VBID	CFRB	CVBWB	CBW	YSV1	YSV0	YCV1	YCV0
03h			SAV8	HP8	VP8	TE2	TE1	TE0
04h	SAV7	SAV6	SAV5	SAV4	SAV3	SAV2	SAV1	SAV0
05h	HP7	HP6	HP5	HP4	HP3	HP2	HP1	HP0
06h	VP7	VP6	VP5	VP4	VP3	VP2	VP1	VP0
07h	BL7	BL6	BL5	BL4	BL3	BL2	BL1	BL0
08h						CE2	CE1	CE0
09h	MEM2	MEM1	MEM0	N9	N8	M8	PLLCPI	PLLCAP
0Ah	M7	M6	M5	M4	M3	M2	M1	M0
0Bh	N7	N6	N5	N4	N3	N2	N1	N0
0Ch	FSCI31	FSCI30	FSCI29	FSCI28	FSCI27	FSCI26	FSCI25	FSCI24
0Dh	FSCI23	FSCI22	FSCI21	FSCI20	FSCI19	FSCI18	FSCI17	FSCI16
0Eh	FSCI15	FSCI14	FSCI13	FSCI12	FSCI11	FSCI10	FSCI9	FSCI8
0Fh	FSCI7	FSCI6	FSCI5	FSCI4	FSCI3	FSCI2	FSCI1	FSCI0
10h			CIV25	CIV24	CIVC1	CIVC0	PALN	CIVEN
11h	CIV23	CIV22	CIV21	CIV20	CIV19	CIV18	CIV17	CIV16
12h	CIV15	CIV14	CIV13	CIV12	CIV11	CIV10	CIV9	CIV8
13h	CIV7	CIV6	CIV5	CIV4	CIV3	CIV2	CIV1	CIV0
1Ch					M/S*	MCP	PCM	XCM
1Dh					XCMD3	XCMD2	XCMD1	XCMD0
1Eh	GOENB1	GOENB0	GPIOL1	GPIOL0	HPIR	HPIE	POUTE	POUTP
1Fh	IBS	DES	SYO	VSP	HSP	IDF2	IDF1	IDF0
20h	HPIE2		DVIT	DACT3	DACT2	DACT1	DACT0	SENSE
21h	XOSC1	XOSC0		SYNC01	SYNCO0	DACG1	DACG0	DACBP
22h	SHF2	SHF1	SHF0	BCOEN	BCOP	BCO2	BCO1	BCO0
23h						HPDD		
31h	TPPD3	TPPD2	TPPD1	TPPD0	CTL3	CTL2	CTL1	CTL0

32h	TPVCO7	TPVCO6	TPVCO5	TPVCO4	TPVCO3	TPVCO2	TPVCO1	TPVCO0
33h	DVID2	DVID1	DVID0		TPPSD1	TPPSD0	TPCP1	TPCP0
34h			TPFFD1	TPFFD0	TPFBD3	TPFBD2	TPFBD1	TPFBD0
35h			TPVT5	TPVT4	TPVT3	TPVT2	TPVT1	TPVT0
36h	TPLPF3	TPLPF2	TPLPF1	TPLPF0				
37h	TPVCO10	TPVCO9	TPVCO8					
48h				ResetIB	ResetDB			
49h	DVIP	DVIL	TV	DACPD3	DACPD2	DACPD1	DACPD0	FPD
4Ah	VID7	VID6	VID5	VID4	VID3	VID2	VID1	VID0
4Bh	DID7	DID6	DID5	DID4	DID3	DID2	DID1	DID0

Table 5: Non-Macrovision registers map of the CH7010A

Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
00h	IR2	IR1	IR0	VOS1	VOS0	SR2	SR1	SR0
01h		VOF0	CFF1	CFF0	YFFT1	YFFT0	YFFNT1	YFFNT0
02h	VBID	CFRB	CVBWB	CBW	YSV1	YSV0	YCV1	YCV0
03h			SAV8	HP8	VP8	TE2	TE1	TE0
04h	SAV7	SAV6	SAV5	SAV4	SAV3	SAV2	SAV1	SAV0
05h	HP7	HP6	HP5	HP4	HP3	HP2	HP1	HP0
06h	VP7	VP6	VP5	VP4	VP3	VP2	VP1	VP0
07h	BL7	BL6	BL5	BL4	BL3	BL2	BL1	BL0
08h						CE2	CE1	CE0
09h	MEM2	MEM1	MEM0	N9	N8	M8	PLLCPI	PLLCAP
0Ah	M7	M6	M5	M4	M3	M2	M1	M0
0Bh	N7	N6	N5	N4	N3	N2	N1	N0
0Ch	FSCI31	FSCI30	FSCI29	FSCI28	FSCI27	FSCI26	FSCI25	FSCI24
0Dh	FSCI23	FSCI22	FSCI21	FSCI20	FSCI19	FSCI18	FSCI17	FSCI16
0Eh	FSCI15	FSCI14	FSCI13	FSCI12	FSCI11	FSCI10	FSCI9	FSCI8
0Fh	FSCI7	FSCI6	FSCI5	FSCI4	FSCI3	FSCI2	FSCI1	FSCI0
10h			CIV25	CIV24	CIVC1	CIVC0	PALN	CIVEN
11h	CIV23	CIV22	CIV21	CIV20	CIV19	CIV18	CIV17	CIV16
12h	CIV15	CIV14	CIV13	CIV12	CIV11	CIV10	CIV9	CIV8
13h	CIV7	CIV6	CIV5	CIV4	CIV3	CIV2	CIV1	CIV0
1Ch					M/S*	MCP	PCM	XCM
1Dh					XCMD3	XCMD2	XCMD1	XCMD0
1Eh	GOENB1	GOENB0	GPIOL1	GPIOL0	HPIR	HPIE	POUTE	POUTP
1Fh	IBS	DES	SYO	VSP	HSP	IDF2	IDF1	IDF0
20h	HPIE2	XOSC2	DVIT	DACT3	DACT2	DACT1	DACT0	SENSE
21h	XOSC1	XOSC0		SYNC01	SYNCO0	DACG1	DACG0	DACBP
22h	SHF2	SHF1	SHF0	BCOEN	BCOP	BCO2	BCO1	BCO0
31h	TPPD3	TPPD2	TPPD1	TPPD0	CTL3	CTL2	CTL1	CTL0
32h	TPVCO7	TPVCO6	TPVCO5	TPVCO4	TPVCO3	TPVCO2	TPVCO1	TPVCO0
33h	DVID2	DVID1	DVID0	DVII			TPCP1	TPCP0
35h			TPVT5	TPVT4	TPVT3	TPVT2	TPVT1	TPVT0
36h	TPLPF3	TPLPF2	TPLPF1	TPLPF0				
37h	TPVCO10	TPVCO9	TPVCO8					
48h				ResetIB	ResetDB	RSA	TSTP1	TSTP0
49h	DVIP	DVIL	TV	DACPD3	DACPD2	DACPD1	DACPD0	FPD
4Ah	VID7	VID6	VID5	VID4	VID3	VID2	VID1	VID0
4Bh	DID7	DID6	DID5	DID4	DID3	DID2	DID1	DID0

Table 6: Non-Macrovision registers map of the CH7010B

Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
00h	IR2	IR1	IR0	VOS1	VOS0	SR2	SR1	SR0
01h		VOF0	CFF1	CFF0	YFFT1	YFFT0	YFFNT1	YFFNT0
02h	VBID	CFRB	CVBWB	CBW	YSV1	YSV0	YCV1	YCV0
03h			SAV8	HP8	VP8	TE2	TE1	TE0
04h	SAV7	SAV6	SAV5	SAV4	SAV3	SAV2	SAV1	SAV0
05h	HP7	HP6	HP5	HP4	HP3	HP2	HP1	HP0
06h	VP7	VP6	VP5	VP4	VP3	VP2	VP1	VP0
07h	BL7	BL6	BL5	BL4	BL3	BL2	BL1	BL0
08h						CE2	CE1	CE0
09h	MEM2	MEM1	MEM0	N9	N8	M8	PLLCPI	PLLCAP
0Ah	M7	M6	M5	M4	M3	M2	M1	M0
0Bh	N7	N6	N5	N4	N3	N2	N1	N0
0Ch	FSCI31	FSCI30	FSCI29	FSCI28	FSCI27	FSCI26	FSCI25	FSCI24
0Dh	FSCI23	FSCI22	FSCI21	FSCI20	FSCI19	FSCI18	FSCI17	FSCI16
0Eh	FSCI15	FSCI14	FSCI13	FSCI12	FSCI11	FSCI10	FSCI9	FSCI8
0Fh	FSCI7	FSCI6	FSCI5	FSCI4	FSCI3	FSCI2	FSCI1	FSCI0
10h			CIV25	CIV24	CIVC1	CIVC0	PALN	CIVEN
11h	CIV23	CIV22	CIV21	CIV20	CIV19	CIV18	CIV17	CIV16
12h	CIV15	CIV14	CIV13	CIV12	CIV11	CIV10	CIV9	CIV8
13h	CIV7	CIV6	CIV5	CIV4	CIV3	CIV2	CIV1	CIV0
1Ch					M/S*	MCP	PCM	XCM

1Dh					XCMD3	XCMD2	XCMD1	XCMD0
1Eh	GOENB1	GOENB0	GPIOL1	GPIOL0	HPIR	HPIE	POUTE	POUTP
1Fh	IBS	DES	SYO	VSP	HSP	IDF2	IDF1	IDF0
20h	HPIE2	XOSC2	DVIT	DACT3	DACT2	DACT1	DACT0	SENSE
21h	XOSC1	XOSC0		SYNC01	SYNCO0	DACG1	DACG0	DACBP
22h	SHF2	SHF1	SHF0	BCOEN	BCOP	BCO2	BCO1	BCO0
23h						HPDD		
31h	TPPD3	TPPD2	TPPD1	TPPD0	CTL3	CTL2	CTL1	CTL0
32h	TPVCO7	TPVCO6	TPVCO5	TPVCO4	TPVCO3	TPVCO2	TPVCO1	TPVCO0
33h	DVID2	DVID1	DVID0		TPPSD1	TPPSD0	TPCP1	TPCP0
34h			TPFFD1	TPFFD0	TPFBD3	TPFBD2	TPFBD1	TPFBD0
35h			TPVT5	TPVT4	TPVT3	TPVT2	TPVT1	TPVT0
36h	TPLPF3	TPLPF2	TPLPF1	TPLPF0				
37h	TPVCO10	TPVCO9	TPVCO8					
48h				ResetIB	ResetDB			
49h	DVIP	DVIL	TV	DACPD3	DACPD2	DACPD1	DACPD0	FPD
4Ah	VID7	VID6	VID5	VID4	VID3	VID2	VID1	VID0
4Bh	DID7	DID6	DID5	DID4	DID3	DID2	DID1	DID0

Table 7: Non-Macrovision registers map of the CH7011A

Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
00h	IR2	IR1	IR0	VOS1	VOS0	SR2	SR1	SR0
01h		VOF0	CFF1	CFF0	YFFT1	YFFT0	YFFNT1	YFFNT0
02h	VBID	CFRB	CVBWB	CBW	YSV1	YSV0	YCV1	YCV0
03h			SAV8	HP8	VP8	TE2	TE1	TE0
04h	SAV7	SAV6	SAV5	SAV4	SAV3	SAV2	SAV1	SAV0
05h	HP7	HP6	HP5	HP4	HP3	HP2	HP1	HP0
06h	VP7	VP6	VP5	VP4	VP3	VP2	VP1	VP0
07h	BL7	BL6	BL5	BL4	BL3	BL2	BL1	BL0
08h						CE2	CE1	CE0
09h	MEM2	MEM1	MEM0	N9	N8	M8	PLLCPI	PLLCAP
0Ah	M7	M6	M5	M4	M3	M2	M1	M0
0Bh	N7	N6	N5	N4	N3	N2	N1	N0
0Ch	FSCI31	FSCI30	FSCI29	FSCI28	FSCI27	FSCI26	FSCI25	FSCI24
0Dh	FSCI23	FSCI22	FSCI21	FSCI20	FSCI19	FSCI18	FSCI17	FSCI16
0Eh	FSCI15	FSCI14	FSCI13	FSCI12	FSCI11	FSCI10	FSCI9	FSCI8
0Fh	FSCI7	FSCI6	FSCI5	FSCI4	FSCI3	FSCI2	FSCI1	FSCI0
10h			CIV25	CIV24	CIVC1	CIVC0	PALN	CIVEN
11h	CIV23	CIV22	CIV21	CIV20	CIV19	CIV18	CIV17	CIV16
12h	CIV15	CIV14	CIV13	CIV12	CIV11	CIV10	CIV9	CIV8
13h	CIV7	CIV6	CIV5	CIV4	CIV3	CIV2	CIV1	CIV0
1Ch					M/S*	MCP	PCM	XCM
1Dh					XCMD3	XCMD2	XCMD1	XCMD0
1Eh	GOENB1	GOENB0	GPIOL1	GPIOL0	Reserved	Reserved	POUTE	POUTP
1Fh	IBS	DES	SYO	VSP	HSP	IDF2	IDF1	IDF0
20h	Reserved	XOSC2	Reserved	DACT3	DACT2	DACT1	DACT0	SENSE
21h	XOSC1	XOSC0		SYNC01	SYNCO0	DACG1	DACG0	DACBP
22h	SHF2	SHF1	SHF0	BCOEN	BCOP	BCO2	BCO1	BCO0
48h				ResetIB	ResetDB	RSA	TSTP1	TSTP0
49h	Reserved	Reserved	TV	DACPD3	DACPD2	DACPD1	DACPD0	FPD
4Ah	VID7	VID6	VID5	VID4	VID3	VID2	VID1	VID0
4Bh	DID7	DID6	DID5	DID4	DID3	DID2	DID1	DID0

Table 8: Non-Macrovision registers map of the CH7012A

Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
00h	IR2	IR1	IR0	VOS1	VOS0	SR2	SR1	SR0
01h		VOF0	CFF1	CFF0	YFFT1	YFFT0	YFFNT1	YFFNT0
02h	VBID	CFRB	CVBWB	CBW	YSV1	YSV0	YCV1	YCV0
03h			SAV8	HP8	VP8	TE2	TE1	TE0
04h	SAV7	SAV6	SAV5	SAV4	SAV3	SAV2	SAV1	SAV0
05h	HP7	HP6	HP5	HP4	HP3	HP2	HP1	HP0
06h	VP7	VP6	VP5	VP4	VP3	VP2	VP1	VP0
07h	BL7	BL6	BL5	BL4	BL3	BL2	BL1	BL0
08h						CE2	CE1	CE0
09h	MEM2	MEM1	MEM0	N9	N8	M8	PLLCPI	PLLCAP
0Ah	M7	M6	M5	M4	M3	M2	M1	M0
0Bh	N7	N6	N5	N4	N3	N2	N1	N0
0Ch	FSCI31	FSCI30	FSCI29	FSCI28	FSCI27	FSCI26	FSCI25	FSCI24
0Dh	FSCI23	FSCI22	FSCI21	FSCI20	FSCI19	FSCI18	FSCI17	FSCI16
0Eh	FSCI15	FSCI14	FSCI13	FSCI12	FSCI11	FSCI10	FSCI9	FSCI8
0Fh	FSCI7	FSCI6	FSCI5	FSCI4	FSCI3	FSCI2	FSCI1	FSCI0
10h			CIV25	CIV24	CIVC1	CIVC0	PALN	CIVEN
11h	CIV23	CIV22	CIV21	CIV20	CIV19	CIV18	CIV17	CIV16
12h	CIV15	CIV14	CIV13	CIV12	CIV11	CIV10	CIV9	CIV8

13h	CIV7	CIV6	CIV5	CIV4	CIV3	CIV2	CIV1	CIV0
1Ch					M/S*	MCP	PCM	XCM
1Dh					XCMD3	XCMD2	XCMD1	XCMD0
1Eh	GOENB1	GOENB0	GPIOL1	GPIOL0	Reserved	Reserved	POUTE	POUTP
1Fh	IBS	DES	SYO	VSP	HSP	IDF2	IDF1	IDF0
20h	Reserved	XOSC2	Reserved	DACT3	DACT2	DACT1	DACT0	SENSE
21h	XOSC1	XOSC0		SYNC01	SYNCO0	DACG1	DACG0	DACBP
22h	SHF2	SHF1	SHF0	BCOEN	BCOP	BCO2	BCO1	BCO0
48h				ResetIB	ResetDB	RSA	TSTP1	TSTP0
49h	Reserved	Reserved	TV	DACPD3	DACPD2	DACPD1	DACPD0	FPD
4Ah	VID7	VID6	VID5	VID4	VID3	VID2	VID1	VID0
4Bh	DID7	DID6	DID5	DID4	DID3	DID2	DID1	DID0

Table 9: Non-Macrovision registers map of the CH7301A

Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
1Ch						MCP		XCM
1Dh					XCMD3	XCMD2	XCMD1	XCMD0
1Eh	GOENB1	GOENB0	GPIOL1	GPIOL0	HPIR	HPIE		
1Fh	IBS	DES				IDF2	IDF1	IDF0
20h	HPIE2	XOSC2	DVIT		DACT2	DACT1	DACT0	SENSE
21h	XOSC1	XOSC0		SYNC01	SYNCO0	DACG1	DACG0	DACBP
22h				BCOEN	BCOP	BCO2	BCO1	BCO0
31h	TPPD3	TPPD2	TPPD1	TPPD0	CTL3	CTL2	CTL1	CTL0
32h	TPVCO7	TPVCO6	TPVCO5	TPVCO4	TPVCO3	TPVCO2	TPVCO1	TPVCO0
33h	DVID2	DVID1	DVID0	DVII			TPCP1	TPCP0
35h			TPVT5	TPVT4	TPVT3	TPVT2	TPVT1	TPVT0
36h	TPLPF3	TPLPF2	TPLPF1	TPLPF0				
37h	TPVCO10	TPVCO9	TPVCO8					
48h				ResetIB	ResetDB		TSTP1	TSTP0
49h	DVIP	DVIL	TV		DACPD2	DACPD1	DACPD0	FPD
4Ah	VID7	VID6	VID5	VID4	VID3	VID2	VID1	VID0
4Bh	DID7	DID6	DID5	DID4	DID3	DID2	DID1	DID0

 $Table\ 10: \textbf{Non-Macrovision registers map of the CH7301B}$

Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
1Ch						MCP		XCM
1Dh					XCMD3	XCMD2	XCMD1	XCMD0
1Eh	GOENB1	GOENB0	GPIOL1	GPIOL0	HPIR	HPIE		
1Fh	IBS	DES				IDF2	IDF1	IDF0
20h	HPIE2	XOSC2	DVIT		DACT2	DACT1	DACT0	SENSE
21h	XOSC1	XOSC0		SYNC01	SYNCO0	DACG1	DACG0	DACBP
22h				BCOEN	BCOP	BCO2	BCO1	BCO0
31h	TPPD3	TPPD2	TPPD1	TPPD0	CTL3	CTL2	CTL1	CTL0
32h	TPVCO7	TPVCO6	TPVCO5	TPVCO4	TPVCO3	TPVCO2	TPVCO1	TPVCO0
33h	DVID2	DVID1	DVID0	DVII			TPCP1	TPCP0
35h			TPVT5	TPVT4	TPVT3	TPVT2	TPVT1	TPVT0
36h	TPLPF3	TPLPF2	TPLPF1	TPLPF0				
37h	TPVCO10	TPVCO9	TPVCO8					
48h				ResetIB	ResetDB		TSTP1	TSTP0
49h	DVIP	DVIL	TV		DACPD2	DACPD1	DACPD0	FPD
4Ah	VID7	VID6	VID5	VID4	VID3	VID2	VID1	VID0
4Bh	DID7	DID6	DID5	DID4	DID3	DID2	DID1	DID0

4. Revision History

Rev. #	Date	Section	Description
1.0	9/29/00	All	First official release
1.1	4/25/01	All	Changed the scope of the document from the CH7009/CH7010 to the
			entire CH7009 family
1.2	7/19/01	All	Minor text changes
1.3	5/15/03	All	Scope of document changed to include all versions of the
			CH7009A/B family (CH7009A/B, CH7010A/B, CH7011A,
			CH7012A, CH7301A/B)
		3.0, 4.0	Added Electrical Specifications of the serial interface
			Added Document Revision History
		Appendix	Added the CH7009B, CH7010A/B, CH7011A, CH7012A, and
			CH7301A Register Maps.

Disclaimer

This document provides technical information for the user. Chrontel reserves the right to make changes at any time without notice to improve and supply the best possible product and is not responsible and does not assume any liability for misapplication or use outside the limits specified in this document. We provide no warranty for the use of our products and assume no liability for errors contained in this document. The customer should make sure that they have the most recent data sheet version. Customers should take appropriate action to ensure their use of the products does not infringe upon any patents. Chrontel, Inc. respects valid patent rights of third parties and does not infringe upon or assist others to infringe upon such rights.

Chrontel PRODUCTS ARE NOT AUTHORIZED FOR AND SHOULD NOT BE USED WITHIN LIFE SUPPORT SYSTEMS OR NUCLEAR FACILITY APPLICATIONS WITHOUT THE SPECIFIC WRITTEN CONSENT OF Chrontel. Life support systems are those intended to support or sustain life and whose failure to perform when used as directed can reasonably expect to result in personal injury or death.