MULTIVARIATE INTERPOLATION ON UNISOLVENT NODES LIFTING THE CURSE OF DIMENSIONALITY

MICHAEL HECHT

ABSTRACT. We present some basic ideas being part of current developments in Multivarite Interpolation (MIP).

1. Introduction

This is just a short extract and briefly sketched outline of current ideas. I hope it can help.

1.1. **Notation.** Let $m, n \in \mathbb{N}$, $p \geq 1$. We denote by $e_1 = (1, 0, \dots, 0), \dots, e_m = (0, \dots, 0, 1) \in \mathbb{R}^m$ the standard basis, by $\|\cdot\|$ the euclidean norm on \mathbb{R}^m , and by $\|M\|_p$ the l_p -norm of a matrix $M \in \mathbb{R}^{m \times m}$. Further, $A_{m,n,p} \subseteq \mathbb{N}^m$ denotes all multi-indices $\alpha = (\alpha_1, \dots, \alpha_m) \in \mathbb{N}^m$ with $\|\alpha\|_p = (\alpha_1^p + \dots + \alpha_m^p)^{1/p} \leq n$.

We order a finite set $A \subseteq \mathbb{N}^m$, $m \in \mathbb{N}$ of multi-indices with respect to the lexicographical order \leq_L on \mathbb{N}^m starting from x_m to x_1 , e.g. $(5,3,1) \leq_L (1,0,3) \leq_L (1,1,3)$. Thereby, $\alpha_{\min}, \alpha_{\max}$ shall denote the minimum and maximum of $A = \{\alpha_{\min}, \ldots, \alpha_{\max}\}$ with respect to \leq_L . We call A complete iff there is no $\beta = (b_1, \ldots, b_m) \in \mathbb{N}^m \setminus A$ with $b_i \leq a_i, \forall i = 1, \ldots, m$ for some $\alpha = (a_1, \ldots, a_m) \in A$. Note that $A_{m,n,p}$ is complete for all $m, n \in \mathbb{N}$, $p \geq 1$. Given $A \subseteq \mathbb{N}^m$ complete and a matrix $R_A \in \mathbb{R}^{|A| \times |A|}$ we slightly abuse notation by denoting

(1.1)
$$R_A = (r_{\alpha,\beta})_{\alpha,\beta \in A} = (r_{i,j})_{1 \le i,j \le |A|},$$

with α, β being the *i*-th, *j*-th entry of A ordered by \leq_L , respectively.

We consider the real polynomial ring $\mathbb{R}[x_1,\ldots,x_m]$ in m variables and denote by Π_m the \mathbb{R} -vector space of all real polynomials in m variables. Further, $\Pi_A\subseteq\Pi_m$ denotes the polynomial subspace induced by A and generated by the canonical basis given by the monomials $x^\alpha=x_1^{\alpha_1}\cdots x_m^{\alpha_m}$ with $\alpha\in A$. For $A=A_{m,n,p}$ we write $\Pi_{m,n,p}$ to mean $\Pi_{A_{m,n,p}}$. Given a polynomial $Q(x)=\sum_{\alpha\in A}c_\alpha x^\alpha,\ A\subseteq\mathbb{N}^m,$ we call $\max_{\alpha\in A,c_\alpha\neq 0}\|\alpha\|_p$ the l_p -degree of Q. As it will turn out, the notion of l_p -degree plays a crucial role for the approximation quality of polynomial interpolation. Whatsoever, while $A_{1,n,p}=\{0,\ldots,n\}$, for m>1 considering $A\subseteq\mathbb{N}^m$ generalizes the concept of polynomial degree to multi-dimensions.

Received by the editor October 28, 2020 and, in revised form,

 $^{2020\} Mathematics\ Subject\ Classification.$ Primary 65D15, 41A50, 41A63, 41A05 ; Secondary 41A25, 41A10 .

Key words and phrases. Newton interpolation, Lagrange interpolation, unisolvent nodes, multivariate approximation, Runge's phenomenon.

FIGURE 1. Unisolvent nodes P_A in 2D (left) and 3D (right) with respect to $A_{m,n,p}$ for dimensions m=2,3, n=5, p=2, and generating nodes $GP = \bigoplus_{i=1}^m Cheb_n^{2nd}$. Nodes belonging to the same line/plane are colored equally.

Throughout this article $\Omega = [-1, 1]^m$ denotes the *m*-dimensional standard hypercube. Finally, we use the standard Landau symbols $\mathcal{O}(\cdot)$, $o(\cdot)$

$$f \in \mathcal{O}(g) \iff \lim \sup_{x \to \infty} \frac{|f(x)|}{|g(x)|} \le \infty, \qquad f \in o(g) \iff \lim_{x \to \infty} \frac{|f(x)|}{|g(x)|} = 0.$$

2. Unisolvent Nodes

In the following, we present a simplified and shortened version of unisolvent nodes and a specific notion of a *unisolvent grid* developed in our previous work [5]. We highly recommend to consider [5] for more detailed explanations and proofs.

Definition 2.1 (unisolvent nodes). Let $m \in \mathbb{N}$ and $\Pi \subseteq \Pi_m$ be a polynomial subspace. We call a finite non–empty set $\emptyset \neq P \subseteq \mathbb{R}^m$ unisolvent with respect to Π iff there exists no non–zero polynomial

$$Q \in \Pi \setminus \{0\}$$
 with $Q(p) = 0, \forall p \in P$.

Definition 2.2 (Essential Assumptions). We say that the *essential assumptions* hold with respect to $A \subseteq \mathbb{N}^m$ and $P_A \subseteq \mathbb{R}^m$, where $m \in \mathbb{N}$ and A is a complete set of multi-indices, if and only if there exist generating nodes

(2.1)
$$GP = \bigoplus_{i=1}^{m} P_i, \quad P_i = \{p_{0,i}, \dots, p_{n_i,i}\} \subseteq \mathbb{R}, \quad n_i = \max_{\alpha \in A} (\alpha_i),$$

and the unisolvent nodes P_A are given by

$$P_A = \{(p_{\alpha_1,1}, \dots, p_{\alpha_m,m}) \mid \alpha \in A\} .$$

Unless further specified, the generating nodes GP are arbitrary.

In Figure 1, we illustrate examples of unisolvent nodes in two and three dimensions for the generating nodes $GP = \bigoplus_{i=1}^{m} \operatorname{Cheb}_{n}^{2\mathrm{nd}}$, where the Chebyshev nodes $\operatorname{Cheb}_{n}^{1\mathrm{st}}$ of first and second kind $\operatorname{Cheb}_{n}^{2\mathrm{nd}}$ are defined in Eq. (2.3). For better visualization, all nodes belonging to the same line/plane are colored equally.

We will show that the unisolvent nodes P_A allow to deduce cubature formulas in any dimension. The following section provides the polynomial bases, which are needed in this regard.

Theorem 2.3 (Hecht et al.). Let $m \in \mathbb{N}$, $A \subseteq \mathbb{N}^m$ be a complete set of multiindices, and $\Pi_A \subseteq \Pi_m$ by the polynomial sub-space induced by A. We consider the generating nodes given by the grid

(2.2)
$$GP = \bigoplus_{i=1}^{m} P_i, \quad P_i = \{p_{0,i}, \dots, p_{n_i,i}\} \subseteq \mathbb{R}, \quad n_i = \max_{\alpha \in A} (\alpha_i),$$

where the P_i are arbitrary finite sets. Then, the node set

$$P_A = \{(p_{\alpha_1,1}, \dots, p_{\alpha_m,m}) \mid \alpha \in A\}$$

is unisolvent with respect to Π_A .

The following nodes are of crucial importance $Chebyshev\ nodes\ of\ first\ and\ second\ kind$

Cheb_n^{1st} =
$$\left\{\cos\left(\frac{2k-1}{2(n+1)}\pi\right) \mid 1 \le k \le n\right\}$$
,
Cheb_n^{2nd} = $\left\{\cos\left(\frac{k\pi}{n+2}\right) \mid 1 \le k \le n\right\}$,
(2.3) Cheb_n⁰ = $\left\{\cos\left(\frac{k\pi}{n}\right) \mid 0 \le k \le n-1\right\}$.

 $Cheb_n^{1st}, Cheb_n^{2nd}$ are the roots of the associated *Chebyshev polynomials*

$$t_{n+1}(x) = \prod_{i=1}^{n+1} (x - p_i), \ p_i \in \operatorname{Cheb}_n^{1st}$$

$$u_{n+1}(x) = \prod_{i=1}^{n+1} (x - q_i), \ q_i \in \operatorname{Cheb}_n^{2nd}.$$

of first and second kind, respectively. Indeed, Cheb_n^{1st} are minimizers of the product $M_{P_n}(x) = \prod_{p \in P_n} |x - p|, |P_n| = n + 1$, i.e.,

(2.5)
$$\min_{P_n \subset \Omega} ||M_{P_n}||_{C^0(\Omega)} = \frac{1}{2^n} \quad \text{for } P_n = \text{Cheb}_n^{1\text{st}}.$$

The nodes Cheb_n^0 are the extrema of t_{n+1} , with values oscillating between $t_{n+1}(q) \in \{-1,1\}$, $q \in \operatorname{Cheb}_n^{2\mathrm{nd}}$. Therefore, the term *Chebyshev extreme nodes* is also often used [3, 10]. In practice, Cheb_n^0 is the best choice for yielding fast approximations, when aiming to approximate arbitrary functions. Moreover, the following inclusions are crucial:

$$\operatorname{Cheb}_n^0\subseteq\operatorname{Cheb}_{2n}^0,\quad\operatorname{Cheb}_n^{2\mathrm{nd}}\subseteq\operatorname{Cheb}_{2n+1}^{2\mathrm{nd}},\quad\operatorname{Cheb}_n^{1\mathrm{st}}\subseteq\operatorname{Cheb}_{3n}^{1\mathrm{st}}$$

3. Multivariate Polynomial Bases

We recapture results of our prior work [5] to introduce the notion of multivariate Newton and Lagrange bases with respect to Π_A , $A \subseteq \mathbb{N}^m$. Indeed the generalized multi-dimensional notions coincide with the classic notion in dimension m=1 or the tensorial definitions for $A_{m,n,\infty}$ [2, 3, 8, 9, 10].

4

Definition 3.1 (Multivariate Newton Polynomials). Let the essential assumptions (Definition 2.2) be fulfilled with respect to $A \subseteq \mathbb{N}^m$ and $P_A \subseteq \mathbb{R}^m$. Then, we define the multivariate Newton polynomials by

(3.1)
$$N_{\alpha}(x) = \prod_{i=1}^{m} \prod_{j=0}^{\alpha_{i}-1} (x_{i} - p_{j,i}), \quad \alpha \in A.$$

Indeed, in dimension m=1 this reduces to the classic definition of Newton polynomials [3, 9, 10].

Similar to the Newton case, our notion of unisolvent nodes also allows us to generalize the concept of Lagrange bases to multi-dimensions. For this, we define:

Definition 3.2 (Lagrange Polynomials). Let the essential assumptions (Definition 2.2) be fulfilled with respect to a complete set $A \subseteq \mathbb{N}^m$ and $P_A \subseteq \mathbb{R}^m$. Then, we define the multivariate Lagrange polynomials

(3.2)
$$L_{\alpha} \in \Pi_A \quad \text{with} \quad L_{\alpha}(p_{\beta}) = \delta_{\alpha,\beta}, \quad \alpha, \beta \in A,$$

where $\delta_{\cdot,\cdot}$ is the Kronecker delta.

Indeed, by considering $A = A_{m,n,\infty}$, $\alpha \in A$ and a regular grid P_A the definition recovers the notion of tensorial mD Lagrange polynomials [2, 8].

$$L_{\alpha}(x) = \prod_{i=1}^{m} l_{\alpha_{i}}(x), \quad l_{\alpha_{i}}(x) = \prod_{j=0, j \neq \alpha_{i}}^{n} \frac{x_{i} - p_{j,i}}{p_{\alpha_{i},i} - p_{j,i}}, \quad p_{i,j} \in P_{i}.$$

By summarizing results from [5] the following theorems generalize the classic facts known for 1D Newton and Lagrange polynomials.

Theorem 3.3 (Hecht et al.). Let the essential assumptions (Definition 2.2) be fulfilled with respect to any complete set of multi-indices $A \subseteq \mathbb{N}^m$ and $P_A \subseteq \mathbb{R}^m$. Then the multivariate Newton polynomials $\{N_\alpha\}_{\alpha\in A}$ and the multivariate Lagrange polynomials $\{L_\alpha\}_{\alpha\in A}$ are bases of Π_A .

Corollary 3.4 (Lagrange interpolation). Let the essential assumptions (Definition 2.2) be fulfilled with respect to $A \subseteq \mathbb{N}^m$ and $P_A \subseteq \mathbb{R}^m$, and $f: \Omega \longrightarrow \mathbb{R}$ be a function. Then the uniquely determined interpolant $Q_{f,A} \in \Pi_A$ of f satisfying $Q_{f,A}(p_\alpha) = f(p_\alpha)$ for all $p_\alpha \in P_A$ is given by

$$Q_{f,A} = \sum_{\alpha \in A} f(p_{\alpha}) L_{\alpha}(x) .$$

In other words: The Lagrange coefficients $C_{Lag} \in \mathbb{R}^{|A|}$ of $Q_{f,A}$ are given by $C_{Lag} = F$, $F = (f(p_0), \ldots, f(p_{max})) \in \mathbb{R}^{|A|}$.

Proof. The proof follows directly from Theorem 3.3.

In [5] we enabled to link the different kind of bases by proving the following statement.

Theorem 3.5 (LU-Decomposition). Let the essential assumptions (Definition 2.2) be fulfilled, $f: \mathbb{R}^m \longrightarrow \mathbb{R}$ be a function and $F = (f(p_{\alpha_{\min}}), \dots, f(p_{\alpha_{\max}})) \in \mathbb{R}^{|A|}$. Then:

i) A lower triangular matrix $NL_A \in \mathbb{R}^{|A| \times |A|}$ can be computed in $\mathcal{O}(|A|^2)$ operations, such that

$$\operatorname{NL}_A \cdot C_{\operatorname{Newt}} = C_{\operatorname{Lag}} = F$$
, where $C_{\operatorname{Newt}} = (c_{\alpha_{\min}}, \dots, c_{\alpha_{\max}}) \in \mathbb{R}^{|A|}$
denote the uniquely determined Newton coefficients of $Q_{f,A} = \sum_{\alpha \in A} c_{\alpha} N_{\alpha}$.

ii) A lower triangular matrix $LN_A \in \mathbb{R}^{|A| \times |A|}$ can be computed in $\mathcal{O}(|A|^2)$ operations, such that

$$\operatorname{LN}_A \cdot C_{\operatorname{Lag}} = C_{\operatorname{Newt}}$$
, where $C_{\operatorname{Lag}} = (c_{\alpha_{\min}}, \dots, c_{\alpha_{\max}}) = F \in \mathbb{R}^{|A|}$
denote the uniquely determined Lagrange coefficients of $Q_{f,A} = \sum_{\alpha \in A} c_{\alpha} L_{\alpha}$.
In particular, $\operatorname{NL}_A^{-1} = \operatorname{LN}_A$.

iii) An upper triangular matrix $CN_A \in \mathbb{R}^{|A| \times |A|}$ can be computed in $\mathcal{O}(|A|^3)$ operations, such that

$$\operatorname{CN}_A \cdot C_{\operatorname{can}} = C_{\operatorname{Newt}}$$
, where $C_{\operatorname{can}} = (d_{\alpha_{\min}}, \dots, d_{\alpha_{\max}}) \in \mathbb{R}^{|A|}$
denote the canonical coefficients of $Q_{f,A}(x) = \sum_{\alpha \in A} d_{\alpha} x^{\alpha}$.

iv) An LU-decomposition of the multivariate Vandermonde matrix $V(P_A) = (p_{\alpha}^{\beta})_{\alpha,\beta\in A}$ can be computed in $\mathcal{O}(|A|^3)$ operations and is given by

$$V(P_A) = NL_A \cdot CN_A$$
.

Remark 3.6. Note, that the LU–decomposition of $V(P_A)$ is not computed by a general decomposition scheme but by multivariate Newton evaluation [5]. In contrast to a general scheme, the structure of V_A is thereby incorporated in a feasible fashion yielding numerically stable computations of the entries of NL_A and CN_A . The sparsity of NL_A and CN_A and the efficient performance of the multivariate Newton–interpolation make the computations very accurate and fast in practice.

Remark 3.7. The LU-decomposition of $V(P_A)$ allows stable inversion, i.e.,

$$V(P_A)^{-1} = \mathrm{NC}_A \cdot \mathrm{LN}_A$$
, $\mathrm{NC}_A = \mathrm{CN}_A^{-1}$, $\mathrm{LN}_A = \mathrm{NL}_A^{-1}$

Thereby, LN_A can be computed by multivariate Newton interpolation [5] instead of using a general inversion scheme, yielding more accurate results. Even though, the computation of CN_A requires general matrix inversion, the fact that CN_A is a sparse upper triangle matrix makes the computations reasonable accurate and efficient in practice.

Corollary 3.8. Let the essential assumptions (Definition 2.2) be fulfilled with respect to a complete set $A \subseteq \mathbb{N}^m$ and $P_A \subseteq \mathbb{R}^m$. Then the Lagrange polynomials L_{α} are given in canonical form by

(3.3)
$$L_{\alpha}(x) = \sum_{\beta \in A} d_{\beta} x^{\beta} , \quad D = (d_{\beta_{\min}}, \dots, d_{\beta_{\max}}) ,$$

where $D = V(P_A)^{-1} \cdot e_{\alpha} = NC_A \cdot LN_A \cdot e_{\alpha}$, and $e_{\alpha} \in \mathbb{R}^{|A|}$ is the α -th standard basis vector, when ordering $A = \{\alpha_{\min}, \ldots, \alpha_{\max}\}$ by lexicographical order as introduced.

Proof. The proof follows directly from Theorem 3.5 and Remark 3.7.

Corollary 3.9. Let the essential assumptions (Definition 2.2) be fulfilled with respect to a complete set $A \subseteq \mathbb{N}^m$ and $P_A \subseteq \mathbb{R}^m$. Let $Q \in \Pi_{m,n,p}$ be given in Newton-form

(3.4)
$$Q(x) = \sum_{\beta \in A} c_{\alpha} N_{\alpha}(x) .$$

6

Then there is an (iterative) algorithm that evaluates $Q(x_0) \in \mathbb{R}$ in $\mathcal{O}(m+n|A|)$ at any $x_0 \in \Omega$.

Proof. This is the new evaluation version coded by Jannik.

Thus, we have to use the transformations in a smart way to get what we want...evaluation, integration differentiation, convolution etc

4. Polynomlets - recursive polynomial regression

Let $n \geq 2^k$, $m, k, p \in \mathbb{N}$ such that $m^{1/p} \cdot 2^k \leq n$ then $A_{m, 2^k, \infty} \subseteq A_{m, n, p}$. We consider the nested nodes

$$\mathsf{Cheb}^0_n = \mathsf{Cheb}^0_2 \cup (\mathsf{Cheb}^0_4 \setminus \mathsf{Cheb}^0_2) \cup \cdots \cup (\mathsf{Cheb}^0_n \setminus \mathsf{Cheb}^0_{2^k})$$

in the order as above. Set $GP = \bigoplus_{i=1}^{m} Cheb_{n}^{0}$ and let P_{A} , $A = A_{m,n,p}$ the corresponding unisolvent nodes. Consider the inclusion

$$\Pi_{m,2,\infty} \subseteq \Pi_{m,4,\infty} \subseteq \cdots \subseteq \Pi_{m,2^k,\infty} \subseteq \Pi_{m,n,p}$$

and the corresponding Lagrange bases

$$L^1_{\alpha}, \alpha \in A_{m,2,\infty}, \quad L^2_{\alpha}, \alpha \in A_{m,4,\infty} \setminus A_{m,2,\infty}, \dots, \quad L^n_{\alpha}, \alpha \in A_{m,n,p} \setminus A_{m,2^k,\infty}$$

Then setting $A_1=A_{m,2,\infty}$, $A_2=A_{m,4,\infty}\setminus A_{m,2,\infty},\ldots,$ $A_n=A_{m,n,p}\setminus A_{m,2^k,\infty}$ yields

(4.1)
$$L_{\alpha}^{j}(p_{\beta}) = 0, \quad \forall \beta \in A_{m,j-1,\infty}, \quad \forall j \geq 2$$

Given a function $f: \Omega \longrightarrow \mathbb{R}$ on some arbitrary data nodes $\{p_1, \ldots, p_M\} = P_0 \subseteq \Omega$, $F = (f(p_1), \ldots, f(p_M)) \in \mathbb{R}^M$. We consider the matrices

$$\begin{split} R_1 &= (r_{i,\beta})_{1 \leq i \leq M, \beta \in A_1} \,, \quad r_{i,\beta} = L_{\beta}^1(p_i) \\ R_2 &= (r_{i,\beta})_{1 \leq i \leq M, \beta \in A_2} \,, \quad r_{i,\beta} = L_{\beta}^2(p_i) \quad . \\ R_n &= (r_{i,\beta})_{1 \leq i \leq M, \beta \in A_n} \,, \quad r_{i,\beta} = L_{\beta}^n(p_i) \end{split}$$

Due to Eq. (5.1) we observe that when computing

$$R_1 C_1 \approx F_1$$
, $R_2 C_2 \approx F_2$, $R_n C_n \approx F_n$, $F_i = F - \sum_{j=1}^{i} R_j C_j$

then we have defined a recursive regression of F. The size of the matrices $R_j \in \mathbb{R}^{M \times J}$, $J = 2^j/2^m$ increases reasonable fast and allows polynomial regression even in high dimensions. Let's start with m = 2, 3.

5. Nested orthogonal polynomials

Let $n > 2^k$, $m, k, p \in \mathbb{N}$ such that $m^{1/p} \cdot 2^k \leq n$ then $A_{m, 2^k, \infty} \subseteq A_{m, n, p}$. We consider the nested nodes

$$\mathrm{Cheb}_{n+1}^0 = \mathrm{Cheb}_3^{\mathrm{2nd}} \cup (\mathrm{Cheb}_7^{\mathrm{2nd}} \setminus \mathrm{Cheb}_3^{\mathrm{2nd}}) \cup \cdots \cup (\mathrm{Cheb}_{n+1}^{\mathrm{2nd}} \setminus \mathrm{Cheb}_{n/2}^{\mathrm{2nd}})$$

in the order as above. Set $GP = \bigoplus_{i=1}^{m} Cheb_{n}^{0}$ and let P_{A} , $A = A_{m,n,p}$ the corresponding unisolvent nodes. Consider the inclusion

$$\Pi_{m,2,\infty} \subseteq \Pi_{m,5,\infty} \subseteq \cdots \subseteq \Pi_{m,(n-1)/2,\infty} \subseteq \Pi_{m,n,p}$$

and the corresponding Lagrange bases

$$L^1_{\alpha}, \alpha \in A_{m,2,\infty}, L^2_{\alpha}, \alpha \in A_{m,4,\infty} \setminus A_{m,2,\infty}, \dots, L^n_{\alpha}, \alpha \in A_{m,n,p} \setminus A_{m,(n-1)/2,\infty}$$

Then setting $A_1 = A_{m,2,\infty}$, $A_2 = A_{m,5,\infty} \setminus A_{m,2,\infty}, \ldots, A_n = A_{m,n,p} \setminus A_{m,(n-1)/2,\infty}$ yields

(5.1)
$$L^j_{\alpha}(p_{\beta}) = L^{j-1}_{\alpha}(p_{\beta}), \quad \forall \beta \in A_{m,j-1,\infty}, \quad \forall j \geq 2$$

Conversely,

(5.2)
$$L_{\alpha}^{j-1}(x) = L_{\alpha}^{j}(x) + \sum_{\beta \in A_{j} \setminus A_{j-1}} L_{\alpha}^{j-1}(p_{\beta}) L_{\beta}^{j}(x)$$

Thus,

$$\begin{split} \int_{\Omega} \omega L_{\alpha}^{n}(x) d\Omega &= \int_{\Omega} \omega L_{\alpha}^{n-1}(x) d\Omega - \sum_{\beta \in A_{n} \backslash A_{n-1}} \int_{\Omega} \omega L_{\alpha}^{n-1}(p_{\beta}) L_{\beta}^{n}(x) d\Omega \\ &= \int_{\Omega} \omega L_{\alpha}^{n-1}(x) d\Omega - \sum_{\beta \in A_{n} \backslash A_{n-1}} \omega L_{\alpha}^{n-1}(p_{\beta}) \int_{\Omega} L_{\beta}^{n}(x) d\Omega \,. \end{split}$$

If both terms of the right hand side vanish then the integration weight $w_{\alpha} = 0$ vanishes as well! This gives an recursive condition, which we can check, i.e.,

$$\int_{\Omega} \omega L_{\alpha}^{n-1}(x) d\Omega = 0? \quad L_{\alpha}^{n-1}(p_{\beta}) = 0 \quad \text{for all } \beta \text{ with } \int_{\Omega} \omega L_{\beta}^{n}(x) d\Omega \neq 0?$$

 $\int_{\Omega} \omega L_{\alpha}^{j-1}(x) d\Omega = 0$ holds whenever $\alpha \in A_{m,2^{j}+1,\infty}$. The remaining term then becomes a recursive condition.

6. Sobolev Theory

This brief summary of Sobolev theory is a rewritten and corrected version of aspects discussed in our previous work [5, 6]. We recommend [1] as an excellent overview of Sobolev theory and [4, 7] for specific aspects deduced here.

Let $C^0(\Omega, \mathbb{R})$ be the Banach space of continuous functions $f: \Omega \longrightarrow \mathbb{R}$ with norm $||f||_{C^0(\Omega)} = \sup_{x \in \Omega} |f(x)|$. We consider the Hilbert space $L^2(\Omega, R)$, $R = \mathbb{R}$, \mathbb{C} of all real- or complex-valued Lebesgue-integrable functions [1] with associated scalar product and norm

$$\langle f, g \rangle_{L^2(\Omega)} = \frac{1}{|\Omega|} \int_{\Omega} f(x)g(x) \, \mathrm{d}x, \ \|f\|_{L^2(\Omega)}^2 = \langle f, f \rangle_{L^2(\Omega)}.$$

For $k \in \mathbb{N}$, we consider the *Sobolev space* of all L^2 functions with existing and integrable weak derivatives

$$H^k(\Omega,R) = \left\{ f \in L^2(\Omega,R) \mid \partial^{\alpha} f \in L^2(\Omega,R) \text{ for all } \alpha \in A_{m,k,1} \right\},$$

$$\langle f,g \rangle_{H^k(\Omega)} = \sum_{\alpha \in A} \langle \partial^{\alpha} f, \partial^{\alpha} g \rangle_{L^2(\Omega)}, \quad \|f\|_{H^k(\Omega)}^2 = \langle f,f \rangle_{H^k(\Omega)}, \ R = \mathbb{R}, \mathbb{C}.$$

Indeed, $(H^k(\Omega, \mathbb{R}), \langle \cdot, \cdot \rangle_{H_A})$ is a Hilbert space and by the Sobolev embedding Theorem for k > m/2, we have that $H^k(\Omega, R) \subseteq C^0(\Omega, R)$ [1]. Therefore, $H^k(\Omega, R)$ with k > m/2 is the largest Hilbert space contained in the space of continuous functions.

In our previous work [5] we answered the fundamental question of which functions can be approximated by polynomial interpolation at all. That is:

Theorem 6.1 (Approximation of Sobolov functions). Let the essential assumptions (Definition 2.2) be fulfilled with respect to $A_{m,n,p}$, $m,n \in \mathbb{N}$, $p \geq 1$, and the nodes $P_{A_{m,n,p}}$ generated by

$$GP = \bigoplus_{i=1}^{m} Cheb_n^{2nd}$$
.

Assume that $f \in H^k(\Omega, \mathbb{R})$, k > m/2 and denote with $Q_{f,A_{m,n,p}}$ its unique interpolant with respect to $P_{A_{m,n,p}}$. Then

$$||f - Q_{f,A_{m,n,p}}||_{C^0(\Omega)} \xrightarrow[n \to \infty]{} 0.$$

6.1. **periodic functions.** We denote by $\mathbb{T}^m = \mathbb{R}^m/2\mathbb{Z}^m$ the torus with fundamental domain Ω and call a function $f:R^m \longrightarrow R$ periodic if and only if $f(x+2\mathbb{Z}^m)=f(x)$, i.e., $f:\mathbb{T}^m \longrightarrow R$ is well defined. Since $C^\infty(\Omega,R)\subseteq H^k(\Omega,R)$ is dense [1], $H^k(\mathbb{T}^m,R)$ can be defined as the completion of the space of all smooth periodic functions

$$H^k(\mathbb{T}^m,R) = \overline{C^\infty_{\mathrm{period}}(\Omega,R)}^{\|\cdot\|_{H^k(\Omega)}} \ .$$

Thus, $H^k(\mathbb{T}^m, R) \subseteq H^{k'}(\mathbb{T}^m, R)$ for all $k \geq k' \geq 0$ with $H^0(\mathbb{T}^m, R) = L^2(\mathbb{T}^m, R)$. Consequently, every $f \in H^k(\mathbb{T}^m, R)$ can be expanded in a Fourier series

(6.1)
$$f(x) = \sum_{\beta \in \mathbb{N}^m} c_{\beta} e^{\pi i \langle \beta, x \rangle}, \quad c_{\beta} \in \mathbb{C}$$

almost everywhere, i.e., Eq. (6.1) is violated only on a set $\Omega' \subseteq \Omega$ of Lebesgue measure zero. Since the $e^{\pi i \langle \beta, x \rangle}$ are an orthogonal L^2 -basis, the norm of f is given by

$$(6.2) \qquad ||f||^2_{H^k(\Omega)} = \sum_{\alpha \in A_{m,k,1}} \langle \partial^\alpha f, \partial^\alpha f \rangle_{L^2(\Omega)} = \sum_{\alpha \in A_{m,k,1}} \sum_{\beta \in \mathbb{N}^m} \left(\pi^{\|\alpha\|_1} \beta^\alpha |c_\beta| \right)^2,$$

where $\beta^{\alpha} = \beta_1^{\alpha_1} \cdots \beta_m^{\alpha_m}$. Due to the Sobolev and Rellich-Kondrachov Embedding Theorem [1], we have that whenever k > m/2 then $H^k(\mathbb{T}^m, \mathbb{R}) \subseteq C^0(\mathbb{T}^m, \mathbb{R})$ and the embedding

$$i: H^k(\mathbb{T}^m, \mathbb{R}) \hookrightarrow C^0(\mathbb{T}^m, \mathbb{R})$$

is well defined, continuous, and compact. Thus, for $m \in \mathbb{N}$ there exists a constant $c = c(m, \Omega) \in \mathbb{R}^+$ such that

$$||f||_{C^0(\Omega)} \le c ||f||_{H^k(\Omega)}$$
.

By the Trace Theorem [1], we observe furthermore that whenever $H \subseteq \mathbb{R}^m$ is a hyperplane of co-dimension 1, then the induced restriction

(6.3)
$$\rho: H^k(\Omega, \mathbb{R}) \longrightarrow H^{k-1/2}(\Omega \cap H, \mathbb{R})$$

is continuous, i.e., $||f|_{\Omega \cap H}||_{H^{k-1/2}(\Omega \cap H)} \le d||f||_{H^k(\Omega)}$ for some $d = d(m, \Omega) \in \mathbb{R}^+$.

7. Laplacian and other differential operators

Consider $A_{m,n,p}$ and the Laplace operator on not necessarily periodic functions

$$\Delta: H^{k+2}(\Omega, \mathbb{R}) \longrightarrow H^k(\Omega, \mathbb{R})$$

Then we can approximate Δ by a finite dimensional approximation being representable by a matrix $\widetilde{\Delta} \in \mathbb{R}^{|A| \times |A|}$, i.e.,

$$\widetilde{\Delta}: \Pi_{m,n,p} \longrightarrow \Pi_{m,n,p} \,, \quad \widetilde{\Delta} = (d_{\alpha,\beta})_{\alpha,\beta \in A} \,, \quad \text{where} \quad \sum_{\alpha \in A_{m,n,p}} d_{\alpha,\beta} L_{\alpha} = \Delta L_{\beta} \,.$$

The computation of $d_{\alpha,\beta}$ is thereby done by smartly combining the transformations and the known derivation w.r.t. canonical basis. In the case, where we consider periodic functions, i.e.,

$$\Delta: H^{k+2}(\mathbb{T}^m, \mathbb{R}) \longrightarrow H^k(\mathbb{T}^m, \mathbb{R})$$

the Eigenvalues and Eigenfunctions are given by the Fourier basis, i.e.,

$$\Delta e^{\pi i \langle \beta, x \rangle} = \pi^2 \beta^2 e^{\pi i \langle \beta, x \rangle}, \quad \beta^2 = \beta_1^2 + \dots + \beta_m^2.$$

However, for non-periodic functions this does not longer hold and we have to study that further!

8. Polynomial Level Sets

To come ...sorry Sachin;)

References

- [1] Robert A Adams and John JF Fournier. Sobolev spaces, volume 140. Academic press, 2003.
- [2] M. Gasca and J. I. Maeztu. On Lagrange and Hermite interpolation in \mathbb{R}^k . Numerische Mathematik, 39(1):1–14, 1982.
- [3] Walter Gautschi. Numerical analysis. Springer Science & Business Media, 2011.
- [4] Michael Hecht. Isomorphic chain complexes of Hamiltonian dynamics on tori. Journal of Fixed Point Theory and Applications, 14(1):165-221, 2013.
- [5] Michael Hecht, Kryzsztof Gonciarz, Jannik Michelfeit, Vladimir Sivkin, and Ivo F. Sbalzarini.
 Multivariate interpolation on unisolvent nodes, 2020.
- [6] Michael Hecht, Karl B. Hoffmann, Bevan L Cheeseman, and Ivo F Sbalzarini. Multivariate Newton interpolation. arXiv preprint arXiv:1812.04256, 2018.
- [7] Helmut Hofer and Eduard Zehnder. Symplectic invariants and Hamiltonian dynamics. Birkhäuser, 2012.
- [8] Thomas Sauer. Lagrange interpolation on subgrids of tensor product grids. Mathematics of Computation, 73(245):181–190, 2004.
- [9] Josef Stoer, Roland Bulirsch, Richard H. Bartels, Walter Gautschi, and Christoph Witzgall. Introduction to numerical analysis. Texts in applied mathematics. Springer, New York, 2002.
- [10] Lloyd N Trefethen. Approximation theory and approximation practice, volume 164. Siam, 2019.

MOSAIC GROUP, CHAIR OF SCIENTIFIC COMPUTING FOR SYSTEMS BIOLOGY, FACULTY OF COMPUTER SCIENCE, TU DRESDEN, DRESDEN, GERMANY & CENTER FOR SYSTEMS BIOLOGY DRESDEN, MAX PLANCK INSTITUTE OF MOLECULAR CELL BIOLOGY AND GENETICS, DRESDEN, GERMANY

 ${\it Current\ address} \hbox{: Center\ for\ Systems\ Biology\ Dresden,\ Pfotenhauerstrae\ 108,\ 01307\ Dresden,\ Germany}$

 $Email\ address: \ \mathtt{hecht@mpi-cbg.de}$