Distanze Analisi Esplorativa

Aldo Solari

1 Distanze

2 Distanza di Mahalanobis

3 Distanze e trasformazioni lineari

4 Indici di similarità

Raggruppamento di unità statistiche

- L'analisi di raggruppamento (*cluster analysis*) ha per scopo far emergere dall'insieme dei dati a disposizione gruppi di unità statistiche "simili" tra loro e "dissimili" da quelle degli altri gruppi
- Che cosa si intende per unità statistiche "simili", o equivalentemente, "dissimili"?
- Dobbiamo quantificare con un numero la "diversità" tra due unità statistiche

Diversità e tipologia di variabili

Variabili Quantitative

Diversità = Distanza (Metrica e Indice di Distanza)

Variabili Qualitative

Diversità = Indice di Dissimilarità

Outline

1 Distanze

- 2 Distanza di Mahalanobis
- 3 Distanze e trasformazioni lineari
- 4 Indici di similarità

Distanza

- Consideriamo misurazioni su p variabili tutte quantitative
- *i*-sima unità statistica (un punto *p*-dimensionale):

$$u'_{i} = x'_{i} = [x_{i1} \cdots x_{ij} \cdots, x_{ip}] \in \mathbb{R}^{p}$$
 $1 \times p \quad 1 \times p$

- Quanto è "distante" u_i' da u_l' ? $1 \times p$
- Dipende da come definiamo la "distanza".
- In generale, una distanza è una funzione

$$d: \mathbb{R}^p \times \mathbb{R}^p \to \mathbb{R}$$

che associa ad una coppia di unità statistiche u_i' e u_l' un numero reale

Proprietà di una distanza

```
(D1) Non negatività d(u_i,u_l) \geq 0 (D2) Identità d(u_i,u_l) = 0 \Leftrightarrow u_i = u_l (D3) Simmetria d(u_i,u_l) = d(u_l,u_l) (D4) Disuguaglianza triangolare d(u_i,u_l) \leq d(u_i,u_l) + d(u_t,u_l)
```

- METRICA: valgono (D1), (D2), (D3) e (D4)
- INDICE DI DISTANZA: valgono (D1), (D2) e (D3)

Distanza Euclidea

Distanza Euclidea d_2 tra due unità statistiche u_i' e u_l' $\underset{1 \times p}{\text{e}} \quad \underset{1 \times p}{u_l'}$

$$d_2(u_i, u_l) = \sqrt{\sum_{j=1}^{p} (x_{ij} - x_{lj})^2}$$

 d_2 soddisfa le proprietà (D1), (D2), (D3) e (D4), quindi è una metrica

Distanza Euclidea

$$u_1' = \begin{bmatrix} 1 & 1 \end{bmatrix}, \ u_2' = \begin{bmatrix} 2 & 3 \end{bmatrix}, \ d_2(u_1, u_2) = \sqrt{(1-2)^2 + (1-3)^2} = \sqrt{5}$$

Distanza di Manhattan

Distanza di Manhattan (o della città a blocchi) d_1 tra due unità statistiche u_i' e u_l' $_{1\times p}$ $_{1\times p}$

$$d_1(u_i, u_l) = \sum_{j=1}^{p} |x_{ij} - x_{lj}|$$

 d_1 soddisfa le proprietà (D1), (D2), (D3) e (D4), quindi è una metrica

Distanza di Manhattan

$$u_1' = \begin{bmatrix} 1 & 1 \end{bmatrix}$$
, $u_2' = \begin{bmatrix} 2 & 3 \end{bmatrix}$, $d_1(u_1, u_2) = |1 - 2| + |1 - 3| = 3$

Distanza di Lagrange

Distanza di Lagrange d_{∞} tra due unità statistiche u_i' e u_l' 1 e u_l' 1 e u_l'

$$d_{\infty}(u_i, u_l) = \max_{j \in \{1...,p\}} |x_{ij} - x_{lj}|$$

 d_{∞} soddisfa le proprietà (D1), (D2), (D3) e (D4), quindi è una metrica

Distanza di Lagrange

$$u_1' = \begin{bmatrix} 1 & 1 \end{bmatrix}, \ u_2' = \begin{bmatrix} 2 & 3 \end{bmatrix}, \ d_{\infty}(u_1, u_2) = \max\{|1 - 2|, |1 - 3|\} = 2$$

Distanza di Minkowski

Distanza di Minkowski d_m (di ordine $m \geq 1$) tra due unità statistiche u_i' e u_l' $_{1 \times p}$ $_{1 \times p}$

$$d_m(u_i, u_l) = \left[\sum_{j=1}^{p} |x_{ij} - x_{lj}|^m\right]^{1/m}$$

- Per $m \geq 1$, d_m soddisfa le proprietà (D1), (D2), (D3) e (D4), quindi è una metrica
- Casi particolari: distanza Euclidea (m=2), di Manhattan (m=1) e di Lagrange ($m=\infty$)
- E' funzione non crescente dell'indice m

$$d_{m'}(u_i, u_l) \ge d_{m''}(u_i, u_l) \quad 1 \le m' < m''$$

Distanza di Minkowski

Punti $u'_{1\times 2}=[u_1\ u_2]$ equidistanti (con distanza costante c>0) dall'origine $0'_{1\times 2}=[0\ 0]$ secondo la distanza di Minkowski d_m per $m=1,\sqrt{2},2,2^{3/2},4$ e ∞

$$\left\{ u'_{1\times 2} = [u_1 \ u_2] : d_m(u,0) = [|u_1|^m + |u_2|^m]^{1/m} = c \right\}$$

Distanza di Canberra

Distanza di Canberra d_C tra due unità statistiche u_i' e u_l' 1 e u_l' 1 e u_l'

$$d_C(u_i, u_l) = \sum_{j=1}^{p} \frac{|x_{ij} - x_{lj}|}{|x_{ij} + x_{lj}|}$$

- Sono esclusi dalla somma i termini in cui il denominatore si annulla
- E' utilizzata per variabili quantitative non negative
- E' una versione pesata della distanza di Manhattan

$$d_C(u_i, u_l) = \sum_{j=1}^{p} w_j |x_{ij} - x_{lj}|$$

con pesi
$$w_j = \frac{1}{|x_{ij} + x_{lj}|}, j = 1, \dots, p$$

Distanza Euclidea al quadrato

• Distanza Euclidea al quadrato

$$d_2^2(u_i, u_l) = \sum_{j=1}^p (x_{ij} - x_{lj})^2$$

- La distanza Euclidea al quadrato d_2^2 soddisfa (D1), (D2) e (D3) ma non soddisfa (D4), quindi è un indice di distanza
- Tuttavia, d_2^2 gode della proprietà di addittività (mentre la distanza Euclidea d_2 no):

per due insiemi K e Q tali che $K \cup Q = \{1, \dots, p\}$ e $K \cap Q = \emptyset$

$$d_2^2(u_i, u_l) = \sum_{j=1}^{p} (x_{ij} - x_{lj})^2 = \sum_{k \in K} (x_{ik} - x_{lk})^2 + \sum_{q \in Q} (x_{iq} - x_{lq})^2$$

Controesempio

- $u_1' = [10 \ 5]$
- $u_2' = [13 \ 9]$
- $u_3' = [11 \ 7]$
- $d_2^2(u_1, u_2) = (10 13)^2 + (5 9)^2 = 25$
- $d_2^2(u_1, u_3) = (10 11)^2 + (5 7)^2 = 5$
- $d_2^2(u_3, u_2) = (11 13)^2 + (7 9)^2 = 8$
- $25 = d_2^2(u_1, u_2) > d_2^2(u_1, u_3) + d_2^2(u_3, u_2) = 5 + 8 = 13$

Distanza Euclidea dal baricentro

 \bullet tra l'i-sima unità statistica u_i' e il baricentro \bar{x}' : ${1 \times p}$

$$d_2(u_i, \bar{x}) = \sqrt{\sum_{j=1}^{p} (x_{ij} - \bar{x}_j)^2} = \sqrt{\frac{(u_i - \bar{x})'(u_i - \bar{x})}{1 \times p}}$$

• L'insieme di punti p-dimensionali $u'_{1 \times p}$ con distanza Euclidea costante c>0 dal baricentro $\bar{x}'_{1 \times p}$ soddisfano l'equazione

$$(u - \bar{x})'(u - \bar{x}) = c^2$$

$$1 \times p \qquad p \times 1$$

che definisce una ipersfera di raggio c dal baricentro

Distanza Euclidea dal baricentro

Outline

1 Distanze

- 2 Distanza di Mahalanobis
- 3 Distanze e trasformazioni lineari
- 4 Indici di similarità

Distanza di Mahalanobis

• tra due unità statistiche u_i' e u_l' $1 \times p \qquad 1 \times p$ $d_M(u_i, u_l) = \sqrt{\frac{(u_i - u_l)'S^{-1}(u_i - u_l)}{1 \times p}}$

 \bullet tra l'i-sima unità statistica u_i' e il baricentro \bar{x}' : $\underset{1 \times p}{\bar{x}'}$:

$$d_M(u_i, \bar{x}) = \sqrt{\underbrace{(u_i - \bar{x})'S^{-1}_{p \times p}(u_i - \bar{x})}_{p \times 1}}$$

• L'insieme dei punti p-dimensionali $u'_{1 \times p}$ con distanza di Mahalanobis costante c>0 dal baricentro $\bar{x}'_{1 \times p}$ soddisfano l'equazione

$$(u - \bar{x})' S_{p \times p}^{-1} (u - \bar{x}) = c^2$$

che definisce un iperellissoide

Distanza di Mahalanobis dal baricentro

Distanza di Mahalanobis e outliers

Se si può assumere che le righe della matrice X sono realizzazioni indipendenti generate dalla medesima distribuzione Normale p-variata, possiamo definire l'i-sima unità statistica u_i' un outlier se $\sum_{1 \le n}^{1 \le n} u_i$

$$d_M^2(u_i, \bar{x}) > q_{0.95}$$

dove $q_{0.95}$ è il 0.95 quantile di una distribuzione χ^2 con p gradi di libertà

p	$q_{0.95}$			
1	3.8415			
2	5.9915			
3	7.8147			
5	11.0705			
10	18.3070			
100	124.3421			

Valore atteso di outliers

Se le n unità statistiche sono realizzazioni indipendenti generate dalla medesima distribuzione Normale p-variata

valore atteso di outliers = $n \times 0.05$

Qualora osserviamo un numero sostanzialmente più elevato di quello atteso, abbiamo un eccesso di *outliers*

Outliers: dati Animals

i		$d_M^2(u_i,\bar{x})$	i		$d_M^2(u_i,\bar{x})$
1	Mountain beaver	3.339	15	African elephant	5.445
2	Cow	1.529	16	Triceratops	22.392
3	Grey wolf	0.134	17	Rhesus monkey	4.12
4	Goat	0.328	18	Kangaroo	0.014
5	Guinea pig	3.533	19	Golden hamster	8.51
6	Dipliodocus	26.092	20	Mouse	14.908
7	Asian elephant	2.963	21	Rabbit	2.243
8	Donkey	0.343	22	Sheep	0.082
9	Horse	1.348	23	Jaguar	0.169
10	Potar monkey	2.087	24	Chimpanzee	0.795
11	Cat	2.573	25	Rat	6.249
12	Giraffe	1.346	26	Brachiosaurus	38.629
13	Gorilla	0.423	27	Mole	11.303
14	Human	2.084	28	Pig	0.782

Outliers: dati Animals

Outline

1 Distanze

- 2 Distanza di Mahalanobis
- 3 Distanze e trasformazioni lineari
- 4 Indici di similarità

Trasformazioni lineari

La trasformazione lineare dell' i-sima unità statistica $u_i' = x_i'$ $1 \times p$ $1 \times p$

$$y_i' = x_i' A' + b'_{1 \times p}$$

$$1 \times p x_i' A' + b'_{1 \times p}$$

è definita da

- $\bullet \ \ \text{la matrice} \ \underset{p\times p}{A}$
- il vettore $b \\ p \times 1$

La matrice dei dati linearmente trasformati risulta

$$Y_{n \times p} = X_{n \times pp \times p} A' + 1_{n \times 11 \times p} b'$$

Invarianza di d_M rispetto alle trasf. lin.

Siano
$$y_i' = x_i' \underbrace{A'}_{1 \times p} \underbrace{A'}_{p \times p} + \underbrace{b'}_{1 \times p} e \underbrace{y_l'}_{1 \times p} = \underbrace{x_l' A'}_{1 \times p} + \underbrace{b'}_{1 \times p} \operatorname{con} \underbrace{A}_{p \times p} \operatorname{non singolare}.$$

La distanza di Mahalanobis d_m è invariate rispetto alle trasformazioni lineari (non singolari):

$$\begin{split} d_M(y_i, y_l) &= \sqrt{(y_i - y_l)'[S^Y]^{-1}(y_i - y_l)} \\ &= \sqrt{(Ax_i + b - Ax_l - b)'[AS^XA']^{-1}(Ax_i + b - Ax_l - b)} \\ &= \sqrt{[A(x_i - x_l)]'[AS^XA']^{-1}[A(x_i - x_l)]} \\ &= \sqrt{(x_i - x_l)'A'[A']^{-1}[S^X]^{-1}[A]^{-1}A(x_i - x_l)} \\ &= d_M(u_i, u_l) \end{split}$$

ricordando che $(AB)^{-1} = B^{-1}A^{-1}$

Traslazioni

- $\bullet \ \ \underset{p \times p}{A} = \underset{p \times p}{I}$
- ullet $b'_{1 imes p}$ arbitraria

Traslazione della matrice dei dati X

$$Y_{n \times p} = X_{n \times p} + \frac{1}{n \times 11 \times p}b'_{1 \times 11 \times p}$$

con vettore delle medie e matrice di varianze/covarianze

$$\bar{y}_{p \times 1} = \bar{x}_{p \times 1} + b_{p \times 1}, \qquad S^{Y}_{p \times p} = S^{X}_{p \times p}$$

Invarianza di d_m rispetto alle traslazioni

Siano
$$y_i' = x_i' + b_1' \text{ e } y_l' = x_l' + b_1' \text{ e } x_l' = x_l' + b_1' \text{ e } x_l' = x_l' + x_l' + x_l' \text{ e } x_l' = x_l' + x_l' + x_l' \text{ e } x_l' = x_l' + x_l' + x_l' = x_l' + x_l' + x_l' + x_l' = x_l' + x$$

La distanza di Minkowski d_m è invariate rispetto alle traslazioni:

$$d_{m}(y_{i}, y_{l}) = \left[\sum_{j=1}^{p} |y_{ij} - y_{lj}|^{m}\right]^{1/m}$$

$$= \left[\sum_{j=1}^{p} |(x_{ij} + b_{j}) - (x_{lj} + b_{j})|^{m}\right]^{1/m}$$

$$= \left[\sum_{j=1}^{p} |x_{ij} - x_{lj}|^{m}\right]^{1/m}$$

$$= d_{m}(u_{i}, u_{l})$$

Trasformazioni ortogonali

- $\bullet \ \, \mathop{A}_{p\times p} \text{ matrice ortogonale: } \mathop{A'}_{p\times p} = \mathop{A^{-1}}_{p\times p} \text{ e} \mathop{A'}_{p\times pp\times p} \mathop{A} = \mathop{A}_{p\times pp\times p} \mathop{A'} = \mathop{I}_{p\times p}$
- $\bullet \quad b'_{1\times p} = 0_{1\times p}$

Trasformazione ortogonale della matrice dei dati X

$$\underset{n \times p}{Y} = \underset{n \times pp \times p}{X} A'$$

con vettore delle medie e matrice di varianze/covarianze

$$\bar{y}_{p \times 1} = \underset{p \times pp \times 1}{A} \bar{x}, \quad S^{Y}_{p \times p} = \underset{p \times pp \times pp \times p}{A} S^{X} A'$$

Invarianza di d_2 rispetto alle trasf. ort.

Siano $y_i' = x_i' A' = y_l' = x_l' A' = x_l' A' = x_l A$

La distanza Euclidea d_2 è invariate rispetto alle trasformazioni ortogonali:

$$d_{2}(y_{i}, y_{l}) = \sqrt{(y_{i} - y_{l})'(y_{i} - y_{l})}$$

$$= \sqrt{(Ax_{i} - Ax_{l})'(Ax_{i} - Ax_{l})}$$

$$= \sqrt{[A(x_{i} - x_{l})]'[A(x_{i} - x_{l})]}$$

$$= \sqrt{(x_{i} - x_{l})'A'A(x_{i} - x_{l})}$$

$$= \sqrt{(x_{i} - x_{l})'A^{-1}A(x_{i} - x_{l})}$$

$$= \sqrt{(x_{i} - x_{l})'(x_{i} - x_{l})}$$

$$= d_{2}(x_{i}, x_{l})$$

Esempi di trasformazioni ortogonali

- \bullet Trasformazione identità: $\underset{p\times p}{A}=\underset{p\times p}{I}$
- Permutazione: $A \atop p imes p$ è una matrice di permutazione che si ottiene permutando le righe (o le colonne) della matrice identità
- Rotazione: $A \in A$ è una matrice di rotazione, ovvero $A \in A$ ortogonale con $\det(A)=1$ o -1

Permutazione in due dimensioni

In due dimensioni, la seguente matrice di permutazione comporta scambiare l'ordine due delle colonne di X:

$$A_{2\times 2} = \left[\begin{array}{cc} 0 & 1\\ 1 & 0 \end{array} \right]$$

Rotazione in due dimensioni

In due dimensioni, la seguente matrice di rotazione comporta una rotazione antioraria di angolo θ radianti intorno all'origine:

$$A_{2\times 2} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$

Distanza Euclidea calcolata su \tilde{X} , Z e \tilde{Z}

• $\tilde{x}_i' = (u_i - \bar{x})'$ è l'i-sima riga di $\tilde{X}_{n \times p} = \underset{n \times nn \times p}{HX}$

$$d_2(\tilde{x}_i, \tilde{x}_l) = \sqrt{\frac{(u_i - u_l)'(u_i - u_l)}{1 \times p}} = d_2(u_i, u_l)$$

 $\bullet \ \ z_i' = (u_i - \bar{x})' D^{-\frac{1}{2}}_{p \times p} \text{ è l'} i\text{-sima riga di } \underset{n \times p}{Z} = \underset{n \times nn \times p}{H} \underset{p \times p}{X} D^{-\frac{1}{2}}_{p \times p}$

$$d_2(z_i, z_l) = \sqrt{\frac{(u_i - u_l)' D^{-1}(u_i - u_l)}{p \times p}} = \sqrt{\sum_{j=1}^p \frac{1}{s_{jj}} (x_{ij} - x_{lj})^2}$$

• $\tilde{z}_i' = (u_i - \bar{x})' S^{-\frac{1}{2}}_{p imes p}$ è l'i-sima riga di $\tilde{Z}_{n imes p} = \underset{n imes n n imes p}{H} X_i S^{-\frac{1}{2}}_{p imes p}$

$$d_2(\tilde{z}_i, \tilde{z}_l) = \sqrt{\frac{(u_i - u_l)' S^{-1}(u_i - u_l)}{1 \times p}} = d_M(u_i, u_l)$$

Outline

1 Distanze

- 2 Distanza di Mahalanobis
- 3 Distanze e trasformazioni lineari
- 4 Indici di similarità

Indici di similarità

- ullet Consideriamo misurazioni su p variabili, qualitative e/o quantitative
- Ciascuna unità statistica presenta misurazioni appartenenti allo spazio campionario $\mathcal{X} = \mathcal{X}_1 \times \ldots \times \mathcal{X}_p$
- Ad esempio, se abbiamo p=2 variabili, Sesso e Posizione geografica, lo spazio campionario è:

$$\mathcal{X} = \mathcal{X}_{\mathrm{Sesso}} \times \mathcal{X}_{\mathrm{Pos.Geog.}} = \{ \texttt{M}, \, \texttt{F} \} \times \{ \texttt{Nord}, \, \texttt{Centro}, \, \texttt{Sud} \} = \{ (\texttt{M}, \, \texttt{Nord}), \, (\texttt{F}, \, \texttt{Nord}), \, (\texttt{M}, \, \texttt{Centro}), \, (\texttt{F}, \, \texttt{Centro}), \, (\texttt{M}, \, \texttt{Sud}), \, (\texttt{F}, \, \texttt{Sud}) \}$$

• In generale, un indice di similarità è una funzione

$$s: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$$

che associa ad una coppia di unità statistiche u_i^\prime e u_l^\prime un numero reale

Proprietà di un indice di similarità

Un indice di similarità soddisfa

$$\begin{array}{ll} \text{(S1) Non negatività} & s(u_i,u_l) \geq 0 \\ \text{(S2) Normalizzazione} & u_i = u_l \Rightarrow s(u_i,u_l) = 1 \\ \text{(S3) Simmetria} & s(u_i,u_l) = s(u_l,u_i) \end{array}$$

dove 1 è il massimo valore assumibile dall'indice di similarità

Indice di dissimilarità

Un indice di dissimilarità è definito come

$$d(u_i, u_j) = 1 - s(u_i, u_j)$$

e soddisfa (D1) e (D3)

Variabili binarie

Supponiamo che il profilo dell'i-esima unità statistica u_i' sia composto di sole variabili binarie (o dicotomiche), codificate per comodità come 0 e 1

$$X_{n \times p} = \begin{bmatrix} 0 & 0 & \cdots & 1 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 1 & 0 & \cdots & 1 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 1 & 0 & \cdots & 0 & \cdots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 & \cdots & 1 \end{bmatrix} = \begin{bmatrix} u'_1 \\ v'_1 \\ \vdots \\ u'_l \\ \vdots \\ u'_n \end{bmatrix}$$

Variabili binarie

Possiamo costruire, per ciascuna coppia u_i^\prime e u_l^\prime , la seguente tabella di contingenza

	unit	$\dot{\mathrm{a}}$ l	
unità i	1	0	
1	a	b	a+b
0	c	d	c+d
	a+c	b+d	p = a + b + c + d

dove

- a è la frequenza di variabili binarie con valore 1 per l'unità i e valore 1 per l'unità l
- etc.

Esempio

$$\left[\begin{array}{cccc} 1 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 0 \end{array}\right] = \left[\begin{array}{c} u_i' \\ u_l' \end{array}\right]$$

	un	ità l	
unità i	1	0	
1	2	1	3
0	1	1	2
	3	2	p=5

Variabili binarie simmetriche e asimmetriche

- Consideriamo 1 come 'presenza' e 0 come 'assenza'
- Non è ovvio se la contemporanea presenza 1-1 o la contemporanea assenza 0-0 siano egualmente indicativi di somiglianza
- Ad esempio, se le unità sono individui e la variabile binaria è
 "capelli castani (1)/capelli non castani (0)" la contemporanea
 presenza 1-1 è indubbiamente indicativa di somiglianza, non così la
 contemporanea assenza 0-0
 Si parla in questo caso di variabile binaria asimmetrica
- Per contro se la variabile binaria è "maschio (1)/femmina (0)" la contemporanea assenza 0-0 ha lo stesso valore della contemporanea presenza 1-1.
 Si parla in questo caso di variabile binaria simmetrica

Indice di corrispondenza e di Jaccard

• Indice di corrispondenza semplice

$$s_c(u_i, u_l) = \frac{a+d}{p}$$

considera allo stesso modo co-presenze 1-1 e co-assenze 0-0, quindi è opportuno per variabili binarie simmetriche

• Indice di Jaccard

$$s_J(u_i, u_j) = \frac{a}{a+b+c}$$

ignora le coassenze 0-0 (ed è indeterminato se d=p), quindi è opportuno per variabili binarie asimmetriche

• Per l'esempio precedente abbiamo

$$s_c(u_i, u_l) = \frac{3}{5} = 0.6, \quad s_J(u_i, u_l) = \frac{2}{4} = 0.5$$

Esempio

$$\left[\begin{array}{ccccc} 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{array}\right] = \left[\begin{array}{c} u_1' \\ u_2' \\ u_3' \end{array}\right]$$

 Per ciascuna coppia di osservazioni calcoliamo la tabella di contingenza, ottenendo le tre tabelle

$u_1 \setminus u_2$	1	0	$u_1 \setminus u_3$	1	0	$u_2 \setminus u_3$	1	0
1	2	2	1	1	3	1	1	2
0	1	0	0	0	1	0	0	2

- $s_c(u_1, u_2) = 2/5$, $s_c(u_1, u_3) = 2/5$, $s_c(u_2, u_3) = 3/5$
- $s_J(u_1, u_2) = 2/5$, $s_J(u_1, u_3) = 1/4$, $s_J(u_2, u_3) = 1/3$
- Si noti che u_1 è equi-somigliante a u_2 e u_3 secondo s_c , mentre è più somigliante a u_2 che a u_3 secondo s_J , questo poichè la co-assenza che lo accomuna a u_3 non ha peso nell'indice di Jaccard.

Variabili qualitative nominali

• Se tutte le variabili sono qualitative nominali (factor in R), possiamo considerare come indice di corrispondenza semplice la proporzione di variabili in cui le due unità u_i' e u_j' assumono la stessa modalità

$$s_c(u_i, u_j) = \frac{\sum_{j=1}^{p} I\{x_{ij} = x_{lj}\}}{p}$$

dove $I\{\cdot\}$ rappresenta la funzione indicatrice

Variabili qualitative ordinali

- Variabili qualitative ordinali (Ord.factor in R) con modalità ordinate, ad esempio, mai ≺ qualche volta ≺ spesso ≺ sempre
- Trattare queste variabili come qualitative non ordinate, sebbene possibile, fa perdere l'informazione relativa all'ordinamento delle modalità (mai e qualche volta sono misurate egualmente 'distanti' di mai e sempre).

Variabili qualitative ordinali

• Se la j-sima variabile è qualitativa ordinale, una soluzione alternativa consiste nel trasformare le m_j modalità ordinate nei corrispondenti numeri interi da 1 a m_j normalizzando il risultato:

$$y_{ij} = \frac{\text{punteggio}(x_{ij}) - 1}{m_j - 1}$$

e trattare la j-sima variabile come quantitativa

- In questo caso si assume che le 'distanze' tra le categorie ordinate sono le stesse
- Ad esempio

Modalità	mai	qualche volta	spesso	sempre
Punteggio	1	2	3	4
y_{ij}	0	1/3	2/3	1

Variabili miste: indice di Gower

$$s_G(u_i, u_l) = \frac{\sum_{j=1}^{p} \delta_{il}(j) s_{il}(j)}{\sum_{j=1}^{p} \delta_{il}(j)}$$

dove

$$s_{il}(j) = \begin{cases} 1 - \frac{|x_{ij} - x_{lj}|}{\text{range } j\text{-sima variabile}} \\ I(x_{ij} = x_{lj}) \\ 1 - |y_{i:} - y_{l:}| \end{cases}$$

se j-sima variabile quantitativa se j-sima variabile binaria/nominale se j-sima variabile ordinale

$$\delta_{il}(j) = \begin{cases} 1 & i,l \text{ confrontabili rispetto } j\text{-sima variabile} \\ 0 & i,l \text{ non confrontabili rispetto } j\text{-sima variabile} \end{cases}$$

dove due unità sono non confrontabili rispetto alla j-sima variabile se c'è un valore mancante in almeno una delle due o se la j-sima variabile è binaria asimmetrica e si ha co-assenza 0-0.

Matrice delle distanze/dissimilarità

A $\underset{n \times p}{X}$ si associa una matrice $\underset{n \times n}{D}$ delle distanze/dissimilarità tra le n unità statistiche

$$D_{n \times n} = \begin{bmatrix} 0 & d_{12} & \cdots & d_{1i} & \cdots & d_{1n} \\ 0 & \cdots & d_{2i} & \cdots & d_{2n} \\ & & \ddots & \vdots & & \vdots \\ & & 0 & \cdots & d_{in} \\ & & & \ddots & \vdots \\ & & & 0 \end{bmatrix}$$

dove

- $d_{il} = d(u_i, u_l)$
- $d_{il} = d_{li}$ (la matrice è simmetrica)
- $d_{ii} = 0$

