CS 747, Autumn 2022: Lecture 1

Shivaram Kalyanakrishnan

Department of Computer Science and Engineering Indian Institute of Technology Bombay

Autumn 2022

Multi-armed Bandits

1. The exploration-exploitation dilemma

2. Definitions: Bandit, Algorithm

3. e-greedy algorithms

Multi-armed Bandits

1. The exploration-exploitation dilemma

2. Definitions: Bandit, Algorithm

3. e-greedy algorithms

A Game

Coin 1

 $\mathbb{P}\{\mathsf{heads}\} = p_1$

 $\mathbb{P}\{\mathsf{heads}\} = p_2$

 $\mathbb{P}\{\mathsf{heads}\} = p_3$

p₁, p₂, and p₃ are unknown.
You are given a total of 20 tosses.

Maximise the total number of heads!

A Game

Coin 1

 $\mathbb{P}\{\mathsf{heads}\} = p_1$

 $\mathbb{P}\{\mathsf{heads}\} = p_2$

 $\mathbb{P}\{\mathsf{heads}\} = p_3$

- p_1 , p_2 , and p_3 are unknown.
- You are given a total of 20 tosses.
- Maximise the total number of heads!

Let's play!

Coin 1

 $\mathbb{P}\{\mathsf{heads}\} = p_1$

 $\mathbb{P}\{\mathsf{heads}\} = p_2$

 $\mathbb{P}\{\mathsf{heads}\} = p_3$

- p_1 , p_2 , and p_3 are unknown.
- You are given a total of 20 tosses.
- Maximise the total number of heads!

Let's play!

• If you knew p_1, p_2, p_3 beforehand, how would you have played?

Coin 1

 $\mathbb{P}\{\mathsf{heads}\} = p_1$

 $\mathbb{P}\{\mathsf{heads}\} = p_2$

 $\mathbb{P}\{\mathsf{heads}\} = p_3$

- p_1 , p_2 , and p_3 are unknown.
- You are given a total of 20 tosses.
- Maximise the total number of heads!

Let's play!

• If you knew p_1, p_2, p_3 beforehand, how would you have played? How many heads would you have got in 20 tosses?

To Explore or to Exploit?

On-line advertising: Template optimisation

To Explore or to Exploit?

On-line advertising: Template optimisation

Clinical trials

To Explore or to Exploit?

On-line advertising: Template optimisation

- Clinical trials
- Packet routing in communication networks

On-line advertising: Template optimisation

- Clinical trials
- Packet routing in communication networks
- Game playing and reinforcement learning

Multi-armed Bandits

1. The exploration-exploitation dilemma

2. Definitions: Bandit, Algorithm

3. e-greedy algorithms

 n arms, each associated with a Bernoulli distribution (rewards are 0 or 1).

- with a Bernoulli distribution n arms, each associated (rewards are 0 or 1).
- Let A be the set of arms. Arm a ∈ A has mean reward pa.

Stochastic Multi-armed Bandits

- with a Bernoulli distribution n arms, each associated (rewards are 0 or 1).
- Let A be the set of arms. Arm a ∈ A has mean reward pa.
- Highest mean is p*.

1. https://pxhere.com/en/photo/942387.

Shivaram Kalyanakrishnan (2022)

Algorithm

Here is what an algorithm does—

For
$$t = 0, 1, 2, \dots, T - 1$$
:

- Given the history $h^t = (a^0, r^0, a^1, r^1, a^2, r^2, \dots, a^{t-1}, r^{t-1}),$
 - Pick an arm at to sample (or "pull"), and
- Obtain a reward r^t drawn from the distribution corresponding to arm a^t .

Here is what an algorithm does—

For
$$t = 0, 1, 2, ..., T - 1$$
:

- Given the history $h^t = (a^0, r^0, a^1, r^1, a^2, r^2, \dots, a^{t-1}, r^{t-1}),$
 - Pick an arm at to sample (or "pull"), and
- Obtain a reward r^t drawn from the distribution corresponding to arm a^t .
- 7 is the total sampling budget, or the horizon.

Here is what an algorithm does—

For
$$t = 0, 1, 2, \dots, T - 1$$
:

- Given the history $h^t = (a^0, r^0, a^1, r^1, a^2, r^2, \dots, a^{t-1}, r^{t-1}),$
- Pick an arm a^t to sample (or "pull"), and
- Obtain a reward r^t drawn from the distribution corresponding to arm a^t .
- T is the total sampling budget, or the horizon.
- Formally: a deterministic algorithm is a mapping from the set of all histories

to the set of all arms.

For
$$t = 0, 1, 2, \ldots, T - 1$$
:

- Given the history $h^t = (a^0, r^0, a^1, r^1, a^2, r^2, ..., a^{t-1}, r^{t-1}),$
 - Pick an arm at to sample (or "pull"), and
- Obtain a reward r^t drawn from the distribution corresponding to arm a^t .
- T is the total sampling budget, or the horizon.
- Formally: a deterministic algorithm is a mapping

from the set of all histories

to the set of all arms.

Formally: a randomised algorithm is a mapping

from the set of all histories

to the set of all probability distributions over arms.

Here is what an algorithm does—

For
$$t = 0, 1, 2, \ldots, T - 1$$
:

- Given the history $h^t = (a^0, r^0, a^1, r^1, a^2, r^2, \dots, a^{t-1}, r^{t-1}),$
 - Pick an arm at to sample (or "pull"), and
- Obtain a reward r^t drawn from the distribution corresponding to arm a^t .
- T is the total sampling budget, or the horizon.
- Formally: a deterministic algorithm is a mapping

from the set of all histories

to the set of all arms.

Formally: a randomised algorithm is a mapping

from the set of all histories

to the set of all probability distributions over arms.

The algorithm picks the arm to pull; the bandit instance returns the reward.

Illustration

Mustration

• Consider
$$h^T = (a^0, r^0, a^1, r^1, \dots, a^{T-1}, r^{T-1}).$$

Consider

$$h^T = (a^0, r^0, a^1, r^1, \dots, a^{T-1}, r^{T-1}).$$

Observe that
$$\mathbb{P}\{h^T\}=\prod_{t=0}^{T-1}\mathbb{P}\{a^t|h^t\}\mathbb{P}\{r^t|a^t\},$$
 where

$$\mathbb{P}\{a^t|h^t\}$$
 is decided by the algorithm,

$$\mathbb{P}\{r^t|a^t\}$$
 comes from the bandit instance.

Ilustration

 $\mathbb{P}\{r^t|a^t\}$ comes from the bandit instance. Observe that $\mathbb{P}\{h^T\} = \prod_{t=0}^{T-1} \mathbb{P}\{a^t|h^t\}\mathbb{P}\{r^t|a^t\}$, where $\mathbb{P}\{a^t|h^t\}$ is decided by the algorithm, $h^T = (a^0, r^0, a^1, r^1, \dots, a^{T-1}, r^{T-1}).$ Consider

 An algorithm, bandit instance possible T-length histories. pair can generate many

Nustration

 $\mathbb{P}\{r^t|a^t\}$ comes from the bandit instance. Observe that $\mathbb{P}\{h^T\} = \prod_{t=0}^{T-1} \mathbb{P}\{a^t|h^t\}\mathbb{P}\{r^t|a^t\}$, where $\mathbb{P}\{a^t|h^t\}$ is decided by the algorithm, $h^T = (a^0, r^0, a^1, r^1, \dots, a^{T-1}, r^{T-1}).$ Consider

 An algorithm, bandit instance possible T-length histories. pair can generate many

How many histories possible if the algorithm is deterministic and rewards 0-1?

Multi-armed Bandits

1. The exploration-exploitation dilemma

2. Definitions: Bandit, Algorithm

3. e-greedy algorithms

e-greedy Algorithms

• Parameter $\epsilon \in [0, 1]$ controls the amount of exploration.

11/13

e-greedy Algorithms

• Parameter $\epsilon \in [0, 1]$ controls the amount of exploration.

• (C)

- If $t \leq \epsilon T$, sample an arm uniformly at random.
- At $t = \lfloor \epsilon T \rfloor$, identify a^{best} , an arm with the highest empirical mean.
 - If $t > \epsilon T$, sample a^{best} .

e-greedy Algorithms

• Parameter $\epsilon \in [0, 1]$ controls the amount of exploration.

- If $t \leq \epsilon T$, sample an arm uniformly at random.
- At $t = \lfloor \epsilon T \rfloor$, identify a^{best} , an arm with the highest empirical mean.
- If $t > \epsilon T$, sample a^{best} .

- If $t \leq \epsilon T$, sample an arm uniformly at random.
- If $t > \epsilon T$, sample an arm with the highest empirical mean.

e-greedy Algorithms

• Parameter $\epsilon \in [0, 1]$ controls the amount of exploration.

- If $t \leq \epsilon T$, sample an arm uniformly at random.
- At $t = \lfloor \epsilon T \rfloor$, identify a^{best} , an arm with the highest empirical mean.
- If $t > \epsilon T$, sample a^{best} .

- If $t \leq \epsilon T$, sample an arm uniformly at random.
- If $t > \epsilon T$, sample an arm with the highest empirical mean.

• (G3

With probability ϵ , sample an arm uniformly at random; with probability $1-\epsilon$, sample an arm with the highest empirical mean.

• Fix a 4-armed bandit instance with means $p_1 > p_2 > p_3 > p_4$.

If $\epsilon = 1$, what is the expected reward of ϵ G1?

• Fix a 4-armed bandit instance with means $p_1 > p_2 > p_3 > p_4$.

If $\epsilon = 1$, what is the expected reward of ϵ G1?

If $\epsilon=0.8$ and T is relatively large, what is the expected reward of ϵ G1?

• Fix a 4-armed bandit instance with means $p_1 > p_2 > p_3 > p_4$.

If $\epsilon = 1$, what is the expected reward of ϵ G1?

If $\epsilon=0.8$ and T is relatively large, what is the expected reward of ϵ G1?

• Does ϵ G1 perform worse than ϵ G2 on each run?

Multi-armed Bandits

1. The exploration-exploitation dilemma

2. Definitions: Bandit, Algorithm

3. e-greedy algorithms

Multi-armed Bandits

1. The exploration-exploitation dilemma

2. Definitions: Bandit, Algorithm

3. e-greedy algorithms

Next class: What is a "good" algorithm? What is the "best" algorithm?