. Key concepts on Deep Neural Networks Quiz, 10 questions

~	Congratulations! You passed!	Next Item					
~	1/1 point						
1. What is	the "cache" used for in our implementation of forward propagation and backward	propagation?					
0	We use it to pass variables computed during forward propagation to the correspo step. It contains useful values for backward propagation to compute derivatives.	nding backward propagation					
	ect ect, the "cache" records values from the forward propagation units and sends it to be because it is needed to compute the chain rule derivatives.	the backward propagation					
	We use it to pass variables computed during backward propagation to the corresp step. It contains useful values for forward propagation to compute activations.	oonding forward propagation					
	It is used to keep track of the hyperparameters that we are searching over, to spec	ed up computation.					
	It is used to cache the intermediate values of the cost function during training.						
2.	 1/1 point 2. Among the following, which ones are "hyperparameters"? (Check all that apply.) 						
_							
	number of iterations						
Corre	ect						
	activation values $a^{[l]}$						
Un-se	elected is correct						
	bias vectors $oldsymbol{b}^{[l]}$						
Un-se	Un-selected is correct						

	concepts on Deep Neural Networks of questions ect
	learning rate $lpha$
Corre	ect
	weight matrices $W^{[l]}$
Un-s	elected is correct
	number of layers L in the neural network
Corr	ect
3.	1/1 point
Which	of the following statements is true? The deeper layers of a neural network are typically computing more complex features of the input than the earlier layers.
Corre	ect
	The earlier layers of a neural network are typically computing more complex features of the input than the deeper layers.
~	1 / 1 point
	ization allows you to compute forward propagation in an L -layer neural network without an explicit for-loop (or any explicit iterative loop) over the layers l=1, 2,,L. True/False?
	True
0	False
the l	vard propagation propagates the input through the layers, although for shallow networks we may just write all lines $(a^{[2]}=g^{[2]}(z^{[2]})$, $z^{[2]}=W^{[2]}a^{[1]}+b^{[2]}$,) in a deeper network, we cannot avoid a for loop iterating over layers: $(a^{[l]}=q^{[l]}(z^{[l]})$, $z^{[l]}=W^{[l]}a^{[l-1]}+b^{[l]}$,).

https://www.coursera.org/learn/neural-networks-deep-learning/exam/v5sVo/key-concepts-on-deep-neural-networks-deep-learning/exam/v5sVo/key-concepts-on-deep-neural-networks-deep-learning/exam/v5sVo/key-concepts-on-deep-neural-networks-deep-learning/exam/v5sVo/key-concepts-on-deep-neural-networks-deep-learning/exam/v5sVo/key-concepts-on-deep-neural-networks-deep-learning/exam/v5sVo/key-concepts-on-deep-neural-networks-deep-learning/exam/v5sVo/key-concepts-on-deep-neural-networks-deep-learning/exam/v5sVo/key-concepts-on-deep-neural-networks-deep-neura

. Key concepts on Deep Neural Networks

5.

Assume we store the values for $n^{[l]}$ in an array called layers, as follows: layer_dims = $[n_x, 4,3,2,1]$. So layer 1 has four hidden units, layer 2 has 3 hidden units and so on. Which of the following for-loops will allow you to initialize the parameters for the model?

```
1 for(i in range(1, len(layer_dims)/2)):
2  parameter['W' + str(i)] = np.random.randn(layers[i], layers[i-1])) * 0.01
3  parameter['b' + str(i)] = np.random.randn(layers[i], 1) * 0.01
```

```
1 for(i in range(1, len(layer_dims)/2)):
2  parameter['W' + str(i)] = np.random.randn(layers[i], layers[i-1])) * 0.01
3  parameter['b' + str(i)] = np.random.randn(layers[i-1], 1) * 0.01
```

```
1 for(i in range(1, len(layer_dims))):
2  parameter['W' + str(i)] = np.random.randn(layers[i-1], layers[i])) * 0.01
3  parameter['b' + str(i)] = np.random.randn(layers[i], 1) * 0.01
```

```
for(i in range(1, len(layer_dims))):
    parameter['W' + str(i)] = np.random.randn(layers[i], layers[i-1])) * 0.01
    parameter['b' + str(i)] = np.random.randn(layers[i], 1) * 0.01
```

Correct

1/1 point

6

Consider the following neural network.

How many layers does this network have?

The number of layers ${\cal L}$ is 4. The number of hidden layers is 3.

T.7		´-		37 . 1
K Δτ	concents	on Daan	Naural	Natworks
IXC y	Concepts	OII DEED	iveurar	Networks

Quiz, 10 questions

	n	r		

Ye	es. As seen in lecture,	the number of	of layers is	counted as	the number	of hidden	layers + 1.	The input	and o	output
a	yers are not counted	as hidden lay	ers.							

laye	is the flot counted as madernayers.
	The number of layers L is 3. The number of hidden layers is 3.
	The number of layers L is 4. The number of hidden layers is 4.
	The number of layers L is 5. The number of hidden layers is 4.
~	1 / 1 point
layer (S	g forward propagation, in the forward function for a layer l you need to know what is the activation function in a Sigmoid, tanh, ReLU, etc.). During backpropagation, the corresponding backward function also needs to know what activation function for layer l , since the gradient depends on it. True/False?
0	True
	ect as you've seen in the week 3 each activation has a different derivative. Thus, during backpropagation you d to know which activation was used in the forward propagation to be able to compute the correct derivative.
	False
~	1 / 1 point
8. There	are certain functions with the following properties:
numbe	ompute the function using a shallow network circuit, you will need a large network (where we measure size by the er of logic gates in the network), but (ii) To compute it using a deep network circuit, you need only an exponentially r network. True/False?
	True

Correct

False

1/1 point

9.

Consider the following 2 hidden layer neural network:

Key concepts on Deep Neural Networks

Which of the following statements are True? (Check all that apply).

$W^{\left[1 ight]}$ will have shape (4, 4)

Correct

Yes. More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]})$.

Correct

Yes. More generally, the shape of $b^{[l]}$ is $(n^{[l]},1)$.

Un-selected is correct

Un-selected is correct

Correct

Yes. More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]})$.

$L^{[2]}$	will have shape (1 1
n	will have shape (1 1

Key concepts on Deep Neural Networks

Quiz, 10 questions
Un-selected is correct

Un-selected is correct

Correct

Yes. More generally, the shape of $b^{[l]}$ is $(n^{[l]},1)$.

Un-selected is correct

Correct

Yes. More generally, the shape of $b^{[l]}$ is $(n^{[l]}, 1)$.

$$oxed{ \ \ } W^{[3]}$$
 will have shape (1, 3)

Correct

Yes. More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]})$.

$$igcup b^{[3]}$$
 will have shape (3, 1)

Un-selected is correct

1/1 point

10.

Whereas the previous question used a specific network, in the general case what is the dimension of $W^{[l]}$, the weight matrix associated with layer l?

Correct

True

$$igcap W^{[l]}$$
 has shape $(n^{[l+1]}, n^{[l]})$

$$igcup W^{[l]}$$
 has shape $(n^{[l]}, n^{[l+1]})$

Key conficepts per in Deep Neural Networks $_{\rm Quiz,\,10\,\,questions}$

