Group 11

Nonlinear Regression The Gauss-Newton Estimation

Yilan LIANG 1830010014 Yunzhi XIAO 1830006195 Gengchen SUN 1830021031 Kaiyang LIU 1830004016 Jiaying YIN 1830006230

CONTENES IS

- 1. Motivation
- 2. The Gauss-Newton Method
- 3.Algorithm
- 4. Properties of Estimation
- 5.Example
- 6.Discussion

Motivation

Motivation

- The problem of nonlinear least square
 - The proposed of Gauss-Newton

The Nonlinear Models in the Natural World

Many models that reflecting the natural world is constructed in a nonlinear way rather than a linear way

The Nonlinear Least Square

Example model:

$$y = \alpha e^{\beta x}$$

$$y = \frac{\alpha}{1 + \exp(-(\beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k))} + \varepsilon$$

$$y = \alpha + \beta_1 x_1^{\gamma_1} + \beta_2 x_2^{\gamma_2} + \dots + \beta_k x_k^{\gamma_k} + \varepsilon$$

$$y = a * \exp[-\beta_1 e^{-\beta_2 x}] + \varepsilon$$

The Nonlinear Least Square

$$y = \alpha e^{\beta x}$$

$$\downarrow$$

$$SS_{Res} = \sum_{i=1}^{n} (y_i - \alpha e^{\beta x_i})^2$$
residuals:

Take the derivative with respect to α

 $\sum_{i=1}^{n} (y_i - \alpha e^{\beta x_i})(-e^{\beta x_i}) = 0$

Take the derivative with respect to β

$$\sum_{i=1}^{n} (y_i - \alpha e^{\beta x_i})(-\alpha e^{\beta x_i} * x_i) = 0$$

- Cannot be computed by elementary matrix algebra
 - Need to solved by iteration way

The Gauss-Newton Method

The Gauss-Newton Method

- One of the most commonly used method to solve nonlinear least square
- An iteration method
- Basic idea:
 - utilize first-order Taylor expansion to approximate the original nonlinear regression model.
 - iteration by finding the least square estimator of the first-order Taylor expansion

Algorithm

Algorithm

1. Choose an initial point

The choosing of initial point:

- Empirical analysis on the approximate parameter value.
- Choosing specific values according to the property of the model.
- Plotting a graph and choosing an approximate extremum as the initial point.

2. Conduct the Taylor expansion

The Taylor expansion:

1. Conducting the first order Taylor expansion near $\theta=\theta_0$, where θ_0 is the initial point.

$$f(\mathbf{x}_i, \boldsymbol{\theta}) \cong f(\mathbf{x}_i, \boldsymbol{\theta}_0) + (\theta_1, \theta_{1,0}) \left[\frac{\partial f(\mathbf{x}_i, \boldsymbol{\theta})}{\partial \theta_1} \right]_{\boldsymbol{\theta} = \boldsymbol{\theta}_0} + (\theta_2, \theta_{2,0}) \left[\frac{\partial f(\mathbf{x}_i, \boldsymbol{\theta})}{\partial \theta_2} \right]_{\boldsymbol{\theta} = \boldsymbol{\theta}_0}$$

$$+..+(\theta_p,\theta_{p,0})\left[\frac{\partial f(\mathbf{x_i},\boldsymbol{\theta})}{\partial \theta_p}\right]_{\boldsymbol{\theta}=\boldsymbol{\theta_0}} \qquad (i=1,2,...n)$$

2. Represent the Taylor expansion in a linear way

$$f(x_i, \theta) - f(x_i, \theta_0) \cong \gamma_1 w_{1i} + \gamma_2 w_{2i} + \dots + \gamma_p w_{pi}$$
 $(i = 1, 2, \dots, n)$

where:
$$\gamma_j = \theta_j - \theta_{j,0}$$
 , $w_{ji} = \left[\frac{\partial f(x_i, \boldsymbol{\theta})}{\partial \theta_1}\right]_{\boldsymbol{\theta} = \boldsymbol{\theta}_0}$ $i = 1, 2, ... n, j = 1, 2, ... p$

3. The iteration

 $=\widehat{\boldsymbol{\theta}}_{s-1}+\boldsymbol{\gamma}_{s-1}$

$$y_{i} - f(x_{i}, \theta_{0}) = \gamma_{1}w_{1i} + \gamma_{2}w_{2i} + \dots + \gamma_{p}w_{pi} + \varepsilon_{i} \qquad (i = 1, 2, \dots, n)$$

$$\varepsilon_{i} = y_{i} - (f(x_{i}, \theta_{0}) + \gamma_{1}w_{1i} + \gamma_{2}w_{2i} + \dots + \gamma_{p}w_{pi}) \qquad (i = 1, 2, \dots, n)$$

Least Square Method

$$S(\boldsymbol{\theta}) = \sum_{i=1}^{n} [y_i - (f(\boldsymbol{x_i}, \boldsymbol{\theta_0}) + \sum_{j=1}^{n} w_{ji} \gamma_j)]^2$$

$$\frac{\partial S}{\partial \theta_j} = -2 \sum_{i=1}^{n} [y_i - (f(\boldsymbol{x_i}, \boldsymbol{\theta_0}) + \sum_{j=1}^{p} w_{ji} \gamma_j)] * w_{ji} = 0 \longrightarrow$$

 $\sum_{i=1}^{n} w_{ji} \sum_{j=1}^{p} w_{ji} \gamma_{j} = \sum_{i=1}^{n} w_{ji} [y_{i} - f(\mathbf{x}_{i}, \boldsymbol{\theta}_{0})]$

$$(W'W) \gamma_i = W' [y_i - f(x_i, \theta_0)]$$

Matrix Form

$$\boldsymbol{\gamma}_j = (W'W)^{-1}W'[y_i - f(\boldsymbol{x_i}, \boldsymbol{\theta}_0)]$$

$$\widehat{\boldsymbol{\theta}}_{S} = \widehat{\boldsymbol{\theta}}_{S-1} + (W'_{S-1}W_{S-1})^{-1}W'_{S-1}[\boldsymbol{y} - f(\widehat{\boldsymbol{\theta}}_{S-1})]$$

$$W \text{ is an } n \times p \text{ matrix whose (i, j)}$$

$$\text{element is } \left[\partial f(\boldsymbol{x_i}, \boldsymbol{\theta})/\partial \theta_j\right]_{\theta = \theta_{S-1}}$$

4. FRACTION INCREMENT

- 1. Use $\gamma_{s-1} = (W'_{s-1}W_{s-1})^{-1}W'_{s-1}[y f(\theta_{s-1})]$ to compute the standard Gauss-Newton increment vector for the s^{th} iteration (s=1,2,...).
- 2. Compute $\hat{\theta}_s = \hat{\theta}_{s-1} + \gamma_{s-1}$ as the Gauss-Newton procedure suggests.
- 3. If $SS_{Res,s} < SS_{Res,s-1}$, continue to the next iteration using θ_s .
- 4. If $SS_{Res,s} > SS_{Res,s-1}$, go back to step 2; use $\gamma_{s-1}/2$ as the vector of increments.

Flow

Determine the initial point

Conduct the first order Taylor expansion

Calculate the partial derivative and function value

$$\widehat{\boldsymbol{\theta}}_{S} = \widehat{\boldsymbol{\theta}}_{S-1} + (W'_{S-1}W_{S-1})^{-1}W'_{S-1}[\boldsymbol{y} - f(\widehat{\boldsymbol{\theta}}_{S-1})]$$

$$= \widehat{\boldsymbol{\theta}}_{S-1} + \boldsymbol{\gamma}_{S-1}$$
Update the parameters

If not

If the parameters are convergence

Get the final parameters

Properties of Estimation

Covariance

Important assumption : $\varepsilon \sim N(0, \sigma^2 I)$

Asymptotic variance-covariance matrix

n should be large enough to make the estimation approximately unbiased (idea from MLE)

$$Cov(\hat{\theta}) = s^{2}(W^{T}W)^{-1} \approx \begin{pmatrix} Var(\hat{\theta}_{1}) & \cdots & Cov(\hat{\theta}_{p}, \hat{\theta}_{1}) \\ \vdots & \ddots & \vdots \\ Cov(\hat{\theta}_{1}, \hat{\theta}_{p}) & \cdots & Var(\hat{\theta}_{p}) \end{pmatrix}$$

Similar as the covariance of parameters' estimators in linear regression, we have $Cov(\hat{\beta}) = \sigma^2(X^TX)^{-1}$

Use s^2 to estimate σ^2

Where W is the Jacobian matrix evaluated at the least square estimates obtained from the final iteration.

Where
$$s^2 = \sum_{i=1}^{n} \frac{[y_i - f(x_i, \hat{\theta})]^2}{n - p} = \frac{SSE}{n - p}$$

Similar as the residual mean square in linear regression, we have

$$s^{2} = \hat{\sigma}^{2} = \frac{Q(\hat{\beta})}{n-p} = \frac{SSE}{n-p}$$

[from the unbiased estimation of $Q(\hat{\theta})$]

Confidence Interval

$$Cov(\hat{\theta}) = s^{2}(W^{T}W)^{-1} \approx \begin{pmatrix} Var(\hat{\theta}_{1}) & \cdots & Cov(\hat{\theta}_{p}, \hat{\theta}_{1}) \\ \vdots & \ddots & \vdots \\ Cov(\hat{\theta}_{1}, \hat{\theta}_{p}) & \cdots & Var(\hat{\theta}_{p}) \end{pmatrix}$$

Therefore, the confidence interval for θ_i :

$$\hat{\theta}_i \pm t_{\frac{\alpha}{2}, n-p} * \sqrt{Var(\hat{\theta}_i)} = \hat{\theta}_i \pm t_{\frac{\alpha}{2}, n-p} * \sqrt{[s^2(W^TW)^{-1}]_{ii}}$$

Example

Example

Example

In a study to develop the growth behavior for protozoa colonization in a particular lake, an experiment was conducted in which 15 sponges were placed in a lake and 3 sponges at a time were gathered. Then the number of protozoa were counted at 1,3,6,15, and 21 days. In this case, the *MacArthur-Wilson Equation* was used to

describe the growth mechanism.

The model is given by $y = S_{eq}(1 - e^{-g_0 t})$

Where:

y: Total protozoa on the sponge;

 S_{eq} : Species equilibrium constant;

 g_0 : Parameter that measures how quickly growth rises;

t: Time, number of days

Goal:

- 1. Estimate S_{eq} and g_0 using nonlinear regression
- 2. Give estimated standard errors of the parameter estimates

		y(Total
Observation	Day	Protozoa)
1	1	17
2	1	21
3	1	16
4	3	30
5	3	25
6	3	25
7	6	33
8	6	31
9	6	32
10	15	34
11	15	33
12	15	33
13	21	39
14	21	35
15	21	36

Example

$$y = S_{eq}(1 - e^{-g_0 t})$$

$$S_{eq} \approx 34$$

$$g_0$$
 ≈ 0.627

Confident interval:

 $S_{eq} \in (31.93687, 36.06434)$ $g_0 \in (0.4601091, 0.7941507)$

Standard error of parameter

$$S_{\widehat{S_{eq}}} = 0.95527080$$

$$S_{\widehat{g_0}} = 0.07731124$$

Discussion

Discussion

Limitation

- Limitation of the algorithm
 - $\gamma's$ can be estimated very poorly in some problems
 - Hessian matrix $H = W(W'W)^{-1}W'$: not be positive definite
 - Stepsize: too large
 - Wrong signs may occur on the $\hat{\gamma}'s$
 - Poor starting values
 - Bad results of these problem
 - Not convergence
 - Slow convergence & large number of iteration
 - Allow the computed increments at a specific iteration to increase SS_{Res}
 - Procedure move in the wrong direction
 - Convergence to a local minimum of the SS_{Res} function

Modification to solve the above problems

- Fractional increments
 - Goal: not to allow the computed increments at a specific iteration to increase SS_{Res}
- Evaluate the Starting point (Using model $y = \alpha (1 e^{\beta x})$ as example)
 - Goal: Avoid convergence to a local minimum of the SS_{Res} function
 - Reasonable starting values can be determined from the data set
 - Consider the deterministic portion of the model $y = \alpha e^{\beta x}$
 - > Linearized form found by taking natural logs $\ln y = \ln \alpha + \beta x$
 - > Doing linear regression on $\ln y$ against x
 - > Starting value for α : the antilog of the intercept; Starting value of β : The slope of the regression
- Other modifications of the procedure
 - The Marquardt procedure
 - > Goal: Improve convergence
 - > Based on a revision of the iteration equation $\hat{\theta}_s = \hat{\theta}_{s-1} + \hat{\gamma}_{s-1}$

Limitation and implication of the model in our example

- Number of obeservations is small
 - Vunerable to chance
 - Difficult to identify outliers and influential points
- Laboratory conditions do not fully simulate the natural environment
 - Natural resources
 - Interspecies competition
- Practical implication of the model in our example
 - Effective conservation and use of wildlife resources
 - Maximizing the economic benefits of captive farms
 - Effective control of harmful animals

THANKS FOR LISTENLING