Medical Science

25(118), December, 2021

To Cite

Alqarni AA, Alharthi SA, Alyousef LA, Alramyan RK, Alshaalan RI, Alassaf LA. Emergency surgery for obstructing or perforated colon cancer; rate of re-intervention and prognostic factors: A single center study. Medical Science, 2021, 25(118), 3288-3302

Author Affiliation:

¹College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia

²Saudi Ministry of Health, Riyadh, Saudi Arabia

Ayyob A Alqarni qarniay@ngha.med.sa
Sawsan A Alharthi dr.sawsanalharthi@gmail.com
Loujain A Alyousef Alyousef.Loujain@gmail.com
Rana K Alramyan Ranarumayan@gmail.com
Raghad I Alshaalan ra.alshaalan@gmail.com
Lujain A. Alassaf Lujainassaf@gmail.com

[™]Corresponding author

College of Medicine, King Saud bin Abdulaziz University for Health Sciences.

Riyadh, Saudi Arabia

Email: dr.sawsanalharthi@gmail.com

Peer-Review History

Received: 01 November 2021 Reviewed & Revised: 03/November/2021 to 04/December/2021 Accepted: 06 December 2021 Published: December 2021

Peer-review Method

External peer-review was done through double-blind method.

Ayyob A Alqarni¹, Sawsan A Alharthi¹™, Loujain A Alyousef¹, Rana K Alramyan¹, Raghad I Alshaalan¹, Lujain A Alassaf²

ABSTRACT

Aim: Emergency complications of colon cancer including obstruction and perforation can be seen in up to one third of patients as an initial presentation. The aim of this study is to determine the rate of re-intervention, incidence of complications, and prognostic factors of emergency surgery in obstructing and perforated colon cancer. Methods: Data of patients with colorectal cancer managed in our hospital during a 5-year period were retrospectively analyzed. Only patients presented to the emergency department (ED) for a complicated colorectal cancer with obstruction or perforation and underwent a surgical intervention were included. Results: A total of 176 colon cancer patients with a mean age of 64.24 were included. Obstructing colon cancer was the most commonly presented complication (70%), followed by perforated colon cancer (17.5%). Around 42% were diagnosed prior to ED visit and 58%were diagnosed first in the ED at the time of complication. Fifty-two (30.6%) patients underwent a surgical re-intervention. In the univariate analysis, hospitalization duration and undergoing a surgical re-intervention were the most significant factors associated with post-operative complications (p=0.002). Additionally, patients who underwent laparotomy had almost 3 times higher risk for experiencing post-operative complications compared to those who underwent a laparoscopic approach, OR= 2.801, p=.018; (CI 95% 1.195-6.568). The mortality incidence is 13.5%. Conclusion: Rate of reintervention appears to be high and associated with increased mortality among patients with complicated colon cancer. Further studies are needed to determine the appropriate timing and indication for undergoing a surgical intervention after initial surgical management for complicated colon cancer.

Keywords: CRC; obstruction; perforation; emergency; reintervention.

© 2021 Discovery Scientific Society. This work is licensed under a Creative Commons Attribution 4.0 International License.

1. INTRODUCTION

Colorectal cancer (CRC) has been considered to be the most common type of cancer among men and the third most commonest type of cancer among women in Saudi Arabia (Alsanea et al., 2015). Emergency complications of colon cancer including obstruction and perforation can be seen in up to one third of patients as an initial presentation. Colon cancer with obstruction constitutes 8-40% of colon cancer first presentation, and 3-10% of cases present with bowel perforation (Biondo et al., 2005). These complications have been associated with worse prognostic outcomes in patients undergoing emergency surgery compared to those undergoing elective surgery with 12-32% 5 year-survival rate and a higher rates of cancer recurrence (Ho et al., 2010; McArdle et al., 2004). Therefore, even though emergent surgical interventions tend to be of a high risk, the importance of performing curative surgery is not the same as in elective curative surgeries. Several studies reported the outcomes of those who underwent emergent surgeries for complicated colon cancer. In 2017, a study was done to compare the outcome of colon cancer patients who initially presented as colonic obstruction versus those with colon perforation. Those with perforation had poorer progression-free survival, a higher rate of local recurrence, and a higher rate of distant metastasis. However, there were no differences in the overall survival between the two groups (Chen et al., 2017).

More recently, a study assessed the prognostic factors and patterns of recurrence after emergency management for obstructing colon cancer. Several factors such as older age (>75), right sided colon cancer, and ASA score (≥ 3) were associated with poor prognosis. The study concluded that other patient-dependent factors should be taken into account in the management of obstructing colon cancer (Manceau et al., 2019). In one study, it was noted that the presence of positive lymph nodes, anastomotic dehiscence, diffuse peritonitis, and male gender were independent predictors for poor prognosis (Biondo et al., 2019). Emergent surgical interventions in colon cancer is associated with high postoperative morbidity and mortality rates as well as lengthy hospital stay in comparison to elective surgical interventions (de' Angelis et al., 2019; Sjo et al., 2009).

Surgical site infection, anastomotic leakage and postoperative peritonitis are the most common noted surgical complications seen after colorectal cancer resection (de' Angelis et al., 2019). Another study was done in Poland and Italy on emergent right hemicolectomy complications, their results showed postoperative morbidity rate to be 28.1% while the mortality rate was 12.1%. It was noted that 25% of patients presented with perforation and diffuse peritonitis had the highest mortality rate. Other observed complications were surgical site infection (25%), wound dehiscence (25%), pulmonary edema (12.5%) and intra-abdominal abscess (12.5%), (Tabola et al., 2017). Postoperative adverse effects and long-term outcomes have been associated more with emergent surgical interventions (Shah et al., 2012).

The choice of the operative approach in the emergency treatment of complicated colorectal cancer depends on several factors including the tumor location, the well-state of the patient, and the overall staging of the tumor. Primary resection with anastomosis and Hartmann's procedure are not competing operations, but two situation-dependent therapeutic alternatives that should be used according to the clinical situation (Charbonnet et al., 2008; Ramos et al., 2017; Kube et al., 2010). Multiple studies reported the outcomes of patients undergoing surgical management of colon cancer; however, there are limited numbers of data concerning patients with bowel obstruction or perforation secondary to colon cancer. Furthermore, other variables such as rate of reintervention and its affect on the overall survival are not fully explored.

Our study permits a preliminary assessment of the clinical course and outcomes of patients presenting with complicated colon cancer and underwent a surgical intervention. Finally, we hope that our findings presented here will encourage more extensive studies to investigate the interventions that can improve the outcomes of colon cancer patients.

2. MATERIALS AND METHODS

Ethical consideration and study settings

This study complies with the Declaration of Helsinki. The study protocol was approved by the Ethics Committee of King Abdullah International Medical Research Center (KAIMRC) (RC 20/518/R), IRBC/1827/20, and waived the need for informed consent from individual patients owing to the retrospective nature of the study. The study was conducted at King Abdulaziz Medical City, Riyadh, Saudi Arabia.

Study design and data collection

For this single center retrospective study, we recruited adult patients diagnosed with colorectal cancer from Jan 1 2015 to Jan 1 2020. Data was acquired by searching the electronic medical database of the Riyadh National Guard Health Affairs for inpatient and outpatient hospital visits including emergency department visits accompanied with a diagnosis code for colon/rectal cancer. A total of 1184 patients were diagnosed with colon cancer in our institution during this period. The electronic medical records of the

persons were then carefully manually reviewed to ensure that patients with colonic obstruction or perforation requiring surgical intervention were included. Clearance was done to exclude patients who do not fulfill our inclusion criteria. After excluding the duplicate data, and those with incomplete data, the sample size which met our inclusion criteria was found to be 176 patients.

Study variables

The study variables were collected and organized into 4 main sections: (1) patients' characteristics including demographical data and the presence of comorbidities; (2) tumor characteristics such as the time of diagnosis, location of the tumor, received treatment, and the type of complication (obstruction or perforation); (3) surgery characteristics which include the surgical approach, type of surgeon performing the surgery, and rate of re-intervention; (4) patients' outcomes consisting of post-operative destination, post-operative complications; and final outcome (discharged versus passed away).

Statistical analysis

Data was entered and analyzed using (SPSS) version 25. A p-value < 0.05 and 95% CI was used to report the significance. For descriptive statistical analysis, numerical variables were presented as means and standard deviations while categorical variables were displayed as frequencies and proportions. For the dichotomous dependent variables Final outcome, Re-intervention, Post-op complication and Type of complication, binary logistic regression was inferred. In addition for the continuous dependent variable Hospitalization Duration, general linear model was employed to assess potential risk factors. Furthermore, to control for confounders, multivariate analysis was used for adjustment.

3. RESULTS

A total of 176 colon cancer patients aged between 26 and 90 were included in this analysis. The mean age was 64.24 and majority of patients were males 102 (57.6%) vs 75 females (42.4%). Diabetes mellitus was the most common co-morbid disease presenting in about half of the study population (51.1%), followed by hypertension (47.1%). Inflammatory bowel disease was the least common illness, only 2 patients (1.1%) had a history of inflammatory ulcerative colitis disease. No history of crohn's disease was detected in the study sample. Most patients had a normal BMI (35.6%) and nearly 30% were overweight and obese. Regarding patients ED diagnosis and admission, (42.4%) were diagnosed prior to ED visit and (57%) were diagnosed first in the ED at the time of complication. Most patients did not receive any treatment in the pre-emergency admission (76%) vs (24.1%). Among those who were diagnosed prior to ED visit and received treatment, chemotherapy with 2 agents was the most commonly received treatment (43.6%). The tumor was localized in sigmoid in nearly (40%) of the patients. Furthermore, around (60%) of the patients underwent laparotomy and (41.5%) laparoscopy. Most of these surgeries were performed by colorectal surgeons (84.6%) and around (15.4%) were performed by general surgeons. In addition, 50 patients (29.8%) experienced post-op complications and 52 (30.6%) required a surgical re-intervention. The mean duration between patient admission and surgery was 97.88 hours and the mean hospitalization stay was 14.5 days with minimum stay being only one day and maximum is 76 days. Most patients who underwent the surgery were discharged 148 (86.5%) while 23 patients (13.5%) passed away (Table 1).

Table 1 Descriptive statistics of patient and tumor characteristics

			Frequency (n) / Mean	Percent (%) / SD	
A ca in man	Min.	Max.	64.24	12.549	
Age in years	26	90	04.24	12.549	
Duration between presentation	Min.	Max	97.88	150.646	
and surgery (Hours)	3	1344	97.00	130.040	
Hospitalization duration (day)	Min.	Max	14.50	11.303	
	1	76	14.50	11.505	
Gender	Fen	nale	75	42.4	
Gender	Ma	ale	102	57.6	
	History of in	flammatory	2	1.1	
C 1:1::	bowel disease (UC)		2	1.1	
Comorbidities	History of Cardiovascular		35	20.1	
	disease	(CVD)	33	20.1	

	History of Carabrassassis		
	History of Cerebrovascular accident (CVA)	7	4.0
	History of pulmonary		
	disease	23	13.2
	History of hypertension	82	47.1
	History of diabetes mellitus	89	51.1
	History of liver disease	8	4.6
	History of renal impairment	13	7.5
	History of other malignancy	12	6.9
	BMI (Overweight)	50	29
	BMI (Obese)	52	29.5
Pre emergency department	No	95	57.6
diagnosis of CRC	Yes	70	42.4
	No (was not diagnosed)	95	57.9
	Yes, in the previous 3 months	22	13.4
Pre emergency department duration of CRC	Yes, in the previous 6 months	7	4.3
	Yes, in previous 12 months OR more	20	12.2
	Yes, but unknown	20	12.2
	Τx	92	59.4
	T is/1	2	1.3
Pre emergency department CRC	T 2	2	1.3
stage T	Т3	10	6.5
	T 4	10	6.5
	Unknown	39	25.2
	Nx	95	60.9
	N 0	6	3.8
	N 1a/1b	10	6.4
Lymph node (N)	N2	5	3.2
	N3+	1	.6
	Unknown	39	25.0
	Мх	107	71.8
	M 0	9	6.0
Metastasis	M 1	15	10.1
	Unknown	18	12.1
D ED CDC 1 1 1	Not treated	123	75.9
Pre- ED CRC treatment	Treated	39	24.1
	Surgery	5	12.8
	Chemotherapy 1 agent	6	15.4
Trung of Dwg ED CDC (market)	Chemotherapy 2 agents	17	43.6
Type of Pre- ED CRC treatment	Radiation	1	2.6
	Combination of treatment methods	10	25.6
ED first diagnosis of CRC at	No	71	43.0
time of complication	Yes, first presentation at ED	94	57.0
-	Ascending	16	10.5
Tumor-Location	Descending	21	13.7
	U		

	Transverse	18	11.8
	Sigmoid	61	39.9
	Rectum	21	13.7
	Cecum	16	10.5
True of our sized was sodium	Laparotomy	100	58.5
Type of surgical procedure	Laparoscopy	71	41.5
Type of cureon	Colorectal surgeon	143	84.6
Type of surgeon	General surgeon	26	15.4
Dook on Jostinskins	Surgical ward	122	73.5
Post-op destination	ICU	44	26.5
Recurrence of obstruction or	No	145	85.8
perforation	Yes	24	14.2
Dont on committeetion	No	118	70.2
Post-op complication	Yes	50	29.8
	Bleeding Cardiopulmonary	6	3.6
	Venous thromboembolic	11	6.5
Type of post-op complication	event	6	3.6
	Sepsis	10	6.0
	Other	17	10.1
	No	118	69.4
Re-intervention	Yes	52	30.6
E' - 1 1	Discharged	148	86.5
Final outcome	Passed away	23	13.5
	I .	1	

Most patients who underwent a re-intervention were for a curative approach 43% and only 20% required a re-intervention due to surgical complication (Figure 1). Obstructing colon cancer was the most commonly presented complication accounting for about (70%) of admissions, followed by perforated colon cancer (17.5%). Perforated rectal cancer was the least common complication in the sample accounting for less than 10% (Figure 2).

Figure 1 Reasons for re-intervention

Figure 2 Type of complication

In the logistic regression table (Table 2) age was a significant predeterminant for undergoing surgical re-intervention. For each year increase in age, the likelihood of reintervention decreases by 3.3%, OR=.967, p=.015; (CI95% .941-.993). There was no significant association between other factors and the risk for re-intervention. All p-values are > 0.05.

Table 2 Prognostic factors for re-intervention

	Re-intervention					
	OR P		CI 95%			
Age*	.967	.015	.941	.993		
Gender ¹						
Female	.800	.506	.415	1.544		
Male	.000					
BMI*	.971	.331	.915	1.030		
History of Inflammatory bowel disease						
No	2.294	.560	.141	37.397		
Yes, UC						
History of CVD						
No	.820	.646	.351	1.912		
Yes						
History of CVA						
No	na	na	na	na		
Yes						
History of pulmonary disease						
No	.992	.986	.382	2.577		
Yes						
History of hypertension						
No	.820	.554	.426	1.580		
Yes						
History of diabetes mellitus						
No	.836	.592	.435	1.607		
Yes						
History of liver disease	2.354	.239	.565	9.802		

No				
Yes				
History of renal impairment				
No	.661	.543	.174	2.509
Yes				
History of other malignancy				
No	1.146	.831	.329	3.988
Yes				
Pre ED diagnosed patients				
No	.714	.353	.351	1.454
Yes				
ED first diagnosis of CRC at time of				
complications	.882	.724	.441	1.767
No	.002	./ 24	.441	1./0/
Yes				
Type of surgical procedure ²				
Laparotomy	1.790	.086	.287	1.087
Laparoscopy				
Treatment				
No	.741	.487	.319	1.722
Yes				
Tumor Location ³	0a			
Ascending	4.687	.180	.489	44.904
Descending	.882	.932	.051	15.368
Transverse	1.389	.772	.151	12.813
Sigmoid	3.529	.282	.354	35.156
Rectum	2.143	.552	.174	26.329
Cecum	2.143	.332	.1/4	20.329
Type of surgeon ⁴				
Colorectal surgeon	1.261	.608	.520	3.053
General surgeon				

^{*}Treated as continuous scale variables; P < 0.05

Values shown as "na" are due to 0 number of cases in the outcome.

Table 3 shows that some of the covariates were significantly associated with experiencing post-operative complications and the final outcome. In the univariate analysis, hospitalization duration and undergoing re-intervention were the most significant factors associated with post-operative complications p=0.002, followed by post-op destination p=0.003 and type of surgery 0.004. After adjustment for age, gender and other significant factors, re-intervention was an independent risk factor for experiencing post-op complications, OR= 3.631 p= 0.002; (CI95% 1.575-8.368). In addition, those who were transported to ICU after surgery were at greater odds of having post-operative complications compared to those admitted in surgical ward OR= 2.799 p= .022; (CI95% 1.162-6.742). Those who underwent laparotomy had almost 3 times higher risk of post-op complications compared to those who underwent a laparoscopic approach, OR= 2.801, p=.018; (CI95% 1.195-6.568). Moreover, those who were presented with perforated colon cancer had around 3 times higher risk of experiencing post-op complications compared to those with obstructing colon cancer. OR=2.720 p= .026; (CI95% 1.128-6.560).

No significant differences were found between other types of cancer complications and post-op complications when compared to the reference category, p>0.05. Furthermore, an increase in hospitalization days was significantly associated with post-operative complications. OR= 1.044 p= .020; (CI95% 1.007-1.082). However, regarding the final outcome, only the variable re-intervention was

¹⁾ Female as a reference group, 2) Laparotomy as a reference group, 3) Ascending as a reference group,

⁴⁾ Colorectal surgeon as a reference group,

significant. After adjustment for other covariates, those who underwent a re-intervention were almost 4 times at higher risk of death compared to those who didn't, OR= 3.929 p= .004; (CI95% 1.533-10.069).

Table 3 Factors associated with experiencing post-operative complications and the final outcome

Factors associated with experien	Chig pos	т-ореган	ive comp	nications a				
Univariate:	Post-op	o Compli	cations		Final Ou	ıtcome		
	OR P		CI 95%	OR	P		CI 95%	
Pre ED diagnosed patients								
No	1.018	.960	.508	2.040	1.640	.292	.654	4.115
Yes								
ED first diagnosis of CRC at								
time of complications	.805	.539	.404	1.606	.462	.098	.185	1.152
No	.003	.339	.404	1.000	.402	.096	.163	1.132
Yes								
Treatment								
No	1.712	.175	.787	3.724	2.236	.104	.848	5.892
Yes								
Tumor Location ¹	.907	.429	.713	1.154	1.017	.922	.721	1.435
Ascending	0a							
Descending	.791	.729	.211	2.972	4.687	.180	.489	44.904
Transverse	.276	.112	.056	1.352	.882	.932	.051	15.368
Sigmoid	.520	.260	.167	1.623	1.389	.772	.151	12.813
Rectum	.402	.205	.098	1.643	3.529	.282	.354	35.156
Cecum	.771	.719	.188	3.173	2.143	.552	.174	26.329
Type of complication at								
presentation ²								
Obstructing colon cancer	0a				O ^a			
Perforated colon cancer	2.720	.026	1.128	6.560	2.174	.192	.678	6.971
Obstructing rectal cancer	1.275	.734	.314	5.169	2.222	.347	.421	11.739
Perforated rectal cancer	2.267	.232	.593	8.669	4.286	.057	.956	19.219
Duration between presentation								
and surgery	1.001	.693	.997	1.004	1.000	.827	.996	1.005
Post-op destination ³								
Surgical Ward	3.061	.003	1.477	6.345	1.459	.450	.547	3.893
ICU								
Type of surgical procedure ⁴								
Laparotomy	3.008	.004	1.430	6.327	1.459	.443	.556	3.827
Laparoscopy								
Type of surgeon								
Colorectal surgeon	.661	.408	.248	1.761	.539	.427	.118	2.470
General surgeon								
Hospitalization duration	1.054	.002	1.020	1.089	.811	.995	.953	1.038
Re-intervention								
No	4.255	.002	1.682	10.765	3.600	.005	1.461	8.873
Yes								
Multivariate:								
Age*	.282	.983	.952	1.014	1.018	.378	.979	1.059
Gender ⁵								
Male	1.686	.191	.770	3.690	.643	.341	.259	1.596
Female								

Post-op destination								
Surgical Ward	2.799	.022	1.162	6.742	-	-	-	-
ICU								
Type of surgical procedure ⁴								
Laparotomy	2.801	.018	1.195	6.568	-	-	-	-
Laparoscopy								
Hospitalization duration	1.044	.020	1.007	1.082	-	-	-	-
Re-intervention								
No	3.631	.002	1.575	8.368	3.929	.004	1.533	10.069
Yes								

Treated as continuous scale variables; P< 0.05

Table 4 shows the risk factors for different post-operative complications. Patients with history of other malignancy had over 7 times greater risk of experiencing bleeding and sepsis as a post-operative complication compared to those who don't, OR=7.6 and OR=7.1 p=.028 and 9=.011. No significant associations were observed between age, gender and other comorbidities with all types of post-op complications, p-values > 0.05.

Table 4 Summary table of types of post-op complications and associated risk factors

-	Type of post-op complication									
	Bleeding	Bleeding		ulmonary	Venous thrombo	oembolic	Sepsis	Other		
	OR	P	OR	P	OR	P	OR	P	OR	P
Age*	.986	.667	1.029	.280	1.040	.283	.960	.120	1.005	.921
Gender ¹										
Female	.742	.720	3.621	.107	.742	.720	.736	.639	1.511	.738
Male										
BMI*	.985	.841	1.020	.717	.944	.459	.994	.915	1.061	.552
History of										
Inflammatory bowel										
Disease	na	na	na	na	na	na	na	na	na	na
No										
Yes, UC										
History of CVD										
No	4.586	.07	1.655	.476	na	na	.455	.463	na	na
Yes										
History of CVA										
No	na	na	na	na	5.200	.159	2.815	.361	na	na
Yes										
History of										
pulmonary disease	1.273	.829	2.569	.189			.687	.728		
No	1.2/3	.029	2.369	.109	na	na	.00/	.720	na	na
Yes										
History of										
hypertension	2.320	.339	1.381	.606	.552	.500	1.135	.846	.558	.636
No	2.320	.337	1.301	.000	.552	.500	1.133	.040	.556	.030
Yes										
History of diabetes mellitus	.929	.929	.509	.297	.929	.929	4.000	.086	.459	.529

¹Ascending as a reference group, ²Obstructing colon cancer as a reference group, ³surgical ward as a reference

⁴Laparoscopy as reference, ⁵females as a reference group; *P*< 0.05

No										
Yes										
History of liver										
disease			2.129	.499	ma				72.0	
No	na	na	2.129	.499	na	na	na	na	na	na
Yes										
History of renal										
impairment			2.949	100					(27E	.142
No	na	na	2.949	.199	na	na	na	na	6.375	.142
Yes										
History of other										
malignancy	7.600	020			ma		7.005	011	72.0	
No	7.000	.028	na	na	na	na	7.095	.011	na	na
Yes										

^{*}Treated as continuous scale variables; P < 0.05.

In a univariate general linear model (Table 5), age, comorbidities (elevated BMI, CVD, CVA, pulmonary heart disease, hypertension, diabetes mellitus, liver disease, and renal impairment) did not differ significantly in hospitalization duration. However, females had an increased hospitalization stay by average of 4.4 days compared to males p=0.011. Furthermore, patients with a history of UC inflammatory bowel disease and other malignancy had a significant increase in hospitalization duration by 22.8 days p=0.004 and 9 days p=0.007. Also in (Table 5), in the multivariate analysis, post-op destination, having a history of inflammatory bowel disease and the duration between presentation and surgery were independent risk factors for increased hospitalization duration. OR=5.202 p=.009; (CI95% 1.299-9.106) OR=19.823 p= .005; (CI95% 6.258-33.389) and OR=.022 p=.003; (CI95% .008-.037). Gender, having a history of other malignancy, type of surgical procedure and post-op complications were not significant after the adjustment of potential confounder's p> 0.05.

Table 5 Factors associated with hospitalization length

Univariate:	Hospitalization Duration					
Cilivariate.	В	р	CI 95%			
Age*	.081	.249	057	.218		
Gender ¹						
Male	4.423	.011	1.008	7.839		
female						
BMI*	.421	.437	.663	-1.483		
History of Inflammatory bowel disease						
No	22.766	.004	7.230	38.303		
Yes, UC	22.700					
History of CVD						
No	3.641	.093	617	7.9000		
Yes						
History of CVA						
No	.966	.826	-7.674	9.605		
Yes						
History of pulmonary heart disease						
No	2.639	.299	-2.366	7.644		
Yes						

¹females as a reference group; Values shown as "na" is due to 0 numbers of cases in the outcome.

History of Hypertension				
No	-1.498	.391	-4.936	1.939
Yes				
History of Diabetes mellitus				
No	.716	.682	-2.726	4.158
Yes				
History of Liver disease				
No	1.025	.804	-7.105	9.155
Yes				
History of Renal impairment				
No	3.705	.257	-2.731	10.142
Yes				
History of other malignancy				
No	9.057	.007	2.498	15.616
Yes				
Post-op complication				
No	6.840	.000	3.187	10.493
Yes				
Type of surgical procedure ²				
Laparotomy	4.200	.018	.728	7.672
Laparoscopy				
Duration between presentation and	000	004	005	020
surgery (Hours)	.022	.004	.007	.038
Post-op destination ³				
Surgical Ward	6.231	.002	2.397	10.066
ICU				
Pre emergency department diagnosis of				
CRC	2.024	267	4 555	E < 40
No	2.036	.267	-1.577	5.649
Yes				
Treatment				
No	2.856	.188	-1.408	7.120
Yes				
Tumor location ⁴		.525	-5.508	10.758
Ascending	2.625	.525	-3.506	10.756
Descending	5.536	.154	-2.098	13.169
Transverse	1.306	.745	-6.598	9.209
Sigmoid	3.233	.326	-3.251	9.717
Rectum	4.869	.209	-2.765	12.503
Cecum	Oa			
		<u> </u>	•	
Type of surgeon ⁵				
Colorectal surgeon	-1.613	.506	-6.392	3.166
General surgeon				
Multivariate:				
Age	.028	.674	102	.158
1	-			

Gender				
Male	-1.444	.375	-4.656	1.768
Female				
History of other malignancy				
No	134	.966	-6.346	6.078
Yes				
Type of surgical procedure				
Laparotomy	774	.652	-4.163	2.615
Laparoscopy				
Post-op destination				
Surgical Ward	5.202	.009	1.299	9.106
ICU				
History of inflammatory bowel disease				
No	19.823	.005	6.258	33.389
Yes				
Post-op complication				
No	3.499	.066	229	7.227
Yes				
Duration between presentation and	.022	.003	.008	.037
surgery (Hours)	.022	.003	.000	.037
VT (1 (* 1 * 11	D +0.05			

^{*}Treated as continuous scale variables; P < 0.05

4. DISCUSSION

Emergency management of complicated colonic cancer depends on many factors including tumor location and stage, overall condition of the patient and surgeon's experience. Obstruction was found to be the most commonly reported complication of colon cancer in our study. Similarly, other studies cited obstruction to be more frequent than perforation (Biondo et al., 2008; Enciu et al., 2019). Several studies demonstrated the survival and outcomes among patients with complicated colon cancer. Chen et al., (2000) revealed that neoplastic bowel obstruction, but not bowel perforation at the tumor site, was associated with poor survival.

Banaszkiewicz et al., (2014) demonstrated an increased rate of complications and mortality in these patient groups. Ho et al., (2010) study found that bowel obstruction and bowel perforation were significantly correlated with poor disease survival in patients with colorectal cancer. The reported postoperative mortality rate was 1.5%, and complications rate was 40% among 1876 patients who underwent emergency surgery for obstructing or perforated colon cancer. In a study conducted in France, the mortality rate was reported to be 8.7% among patients undergoing emergent surgery for malignant colon obstruction (Collard et al., 2018). In contrast, our study showed a higher mortality rate (13.5%), and around 30% developed complications post-operatively. Several factors were significantly associated with experiencing postoperative complications such as colonic perforation, laparotomy approach, and undergoing another surgical intervention. The outcomes of patients undergoing surgical interventions for complicated colon cancer are influenced by several surgeon-dependent factors (McArdle et al., 2004; Biondo et al., 2010). In one study compared those operated on by a colorectal surgeon (CRS) and those operated on by a general surgeon (GS). Postoperative morbidity rate was 52% in the CRS group and 60.5% in the GS group (P = .01), and those who were operated by CRS had a lower mortality rate compared to the GS group (Biondo et al., 2010).

In our study most of the patients were operated on by CRS; however, there was no statistical significance in terms of postoperative complications and outcome between the two groups. Thus, it is likely that increased specialization rather than the specialty itself will lead to further improvements in the overall prognosis and survival rates. Undergoing another surgical intervention at the same admission after initial surgical management of complicated colon cancer was observed in 30.6% of our patients. The most reported reason for undergoing re-intervention was for curative purposes in 42.3%, this was followed by recurrence of complication (obstruction or perforation) in 38.5%, and management of surgical complications in 19.2%. Undergoing another re-intervention was observed to be significantly associated with experiencing post-operative complications.

¹Males as a reference group; ²Laparoscopy as reference group; ³Surgical ward as a reference group;

⁴Cecum as a reference group; ⁵Colerectal surgeon as a reference group

Previous studies demonstrated the rate of reoperation and in-hospital mortality to be 12.8% and 2.4% respectively among patients undergoing elective colon cancer surgeries (van Westreenen et al., 2011). Data regarding reoperation rates in elective colorectal surgery varies and most studies have reported the incidence of surgical re-intervention to be between 5-7% (Morris et al., 2007; Merkow et al., 2009). Marek Zawadzki (2019) demonstrated that reoperations after curative colorectal cancer surgery are more frequent and might occur in over a tenth of total patients underwent an operative surgery. However, there is limited number of studies that evaluated the rate of re-intervention among patients with bowel obstruction or perforation secondary to colon cancer. One reason is the lack of a clear definition of "reoperation" after initial surgical management. In addition, there are no definitive guidelines describing a clear indications or timing of return to the operating theatre. More commonly, the management of postoperative complications is at the discretion of the surgeon concerned and it may vary among different institutions or individual surgeons. One may ask if surgical re-intervention for complicated colon cancer might be of a benefit for some patients in terms of curative purposes.

The current published data cannot answer this question. Biondo et al., (2005) suggested that curative surgeries for complicated colonic cancer patinets are acceptable in emergency conditions if a surgical treatment with radical oncologic criteria is performed. Colorectal cancer is the commonest cancer in Saudi Arabia among men and the third most prevalent cancer among women. In 2020, a study indicated an increase in crude incidence rates and age-standardized incidence rates of colorectal cancer in the population of Saudi Arabia (Almatroudi, 2020). The percentage of colorectal cancer cases of all diagnosed cancers increased two-fold from 4.8% to 10.1% over the period of 1994–2010 (Al-Eid, 2014). Previous studies demonstrated a rate of 15% - 30% CRC diagnosis presenting as an emergency (Waldron et al., 1986).

In the current study, more than half of the patients presenting with bowel obstruction or perforation had no previous diagnosis of CRC. One strategy that might help in decreasing CRC complications rates is early detection and screening. The Saudi Ministry of Health recommends offering colorectal cancer screening to asymptomatic, average-risk persons at the age 50 years (Aljumah & Aljebreen, 2017). These observations not only reinforce physicians practicing at primary health cares to have more education/orientation about the magnitude of the problem we face with CRC, but also the impact of screening might have on reducing this threat.

5. CONCLUSION

Due to the lack of the general understanding of CRC screening in Saudi Arabia, a large proportion of our patients diagnosed with colon cancer at the time of complication. The most common presenting emergency is colonic obstruction. Rate of re-intervention after initial surgical management appears to be relatively high and associated with increased mortality among patients with complicated colon cancer. Further studies are needed to determine the appropriate timing and indications for undergoing a surgical intervention after initial surgical management of complicated colon cancer.

Acknowledgement

We thank the participants who were all contributed samples to the study.

Author Contributions

All authors made substantial contributions to the design of the study, data collection process, data analysis and writing of the manuscript. All authors read and approved the final manuscript and gave final approval of the version to be published.

Ethical approval

The study was approved by the Medical Ethics Committee of King Abdullah International Medical Research Center (ethical approval code: RC 20/518/R).

Funding

This study has not received any external funding.

Conflict of Interest

The authors declare that there are no conflicts of interests.

Data and materials availability

All data associated with this study are presented in the paper.

REFERENCES AND NOTES

- Al-Eid HS. Colorectal cancer (C 18–C 20) In: Bazarbashi S, editor. Saudi Cancer Registry 2010. Riyadh, Main Office: National Cancer Registry; 2014. pp. 38–39.
- Aljumah AA, Aljebreen AM. Policy of screening for colorectal cancer in Saudi Arabia: A prospective analysis. Saudi J Gastroenterol 2017; 23(3):161-168.
- Almatroudi A. The Incidence Rate of Colorectal Cancer in Saudi Arabia: An Observational Descriptive Epidemiological Analysis. Int J Gen Med 2020; 13:977-990.
- Alsanea N, Abduljabbar AS, Alhomoud S, Ashari LH, Hibbert D, Bazarbashi S. Colorectal cancer in Saudi Arabia: incidence, survival, demographics and implications for national policies. Ann Saudi Med 2015; 35(3):196-202.
- Banaszkiewicz Z, Woda Ł, Tojek K, Jarmocik P, Jawień A. Colorectal cancer with intestinal perforation - a retrospective analysis of treatment outcomes. Contemp Oncol (Pozn) 2014; 18(6):414-8.
- Biondo S, Gálvez A, Ramírez E, Frago R, Kreisler E. Emergency surgery for obstructing and perforated colon cancer: patterns of recurrence and prognostic factors. Tech Coloproctol 2019; 23(12):1141-1161.
- Biondo S, Kreisler E, Millan M, Fraccalvieri D, Golda T, Frago R, Miguel B. Impact of surgical specialization on emergency colorectal surgery outcomes. Arch Surg 2010; 145(1):79-86.
- Biondo S, Kreisler E, Millan M, Fraccalvieri D, Golda T, Martí Ragué J, Salazar R. Differences in patient postoperative and long-term outcomes between obstructive and perforated colonic cancer. Am J Surg 2008; 195(4):427-32.
- Biondo S, Martí-Ragué J, Kreisler E, Parés D, Martín A, Navarro M, Pareja L, Jaurrieta E. A prospective study of outcomes of emergency and elective surgeries for complicated colonic cancer. Am J Surg 2005; 189(4):377-83.
- Charbonnet P, Gervaz P, Andres A, Bucher P, Konrad B, Morel P. Results of emergency Hartmann's operation for obstructive or perforated left-sided colorectal cancer. World J Surg Oncol 2008; 6:90.
- 11. Chen HS, Sheen-Chen SM. Obstruction and perforation in colorectal adenocarcinoma: an analysis of prognosis and current trends. Surgery 2000; 127(4):370-6.
- 12. Chen TM, Huang YT, Wang GC. Outcome of colon cancer initially presenting as colon perforation and obstruction. World J Surg Oncol 2017; 15(1):164.
- Collard MK, Moszkowicz D, Clause-Verdreau AC, Beauchet A, Cudennec T, Vychnevskaia K, Malafosse R, Peschaud F.

- Postoperative morbidity and mortality for malignant colon obstruction: the American College of Surgeon calculator reliability. J Surg Res 2018; 226:112-121.
- 14. de' Angelis N. Colorectal cancer research: A state of the art. In: de'Angelis N, Di Saverio S, Brunetti F, editors. Emergency Surgical Management of Colorectal Cancer Switzerland Springer Nature 2019. p. 1-13.
- Enciu O, Calu V, Angelescu M, Nădrăgea MA, Miron A.
 Emergency Surgery and Oncologic Resection for Complicated Colon Cancer: What Can We Expect? A Medium Volume Experience in Romania. Chirurgia (Bucur) 2019; 114(2):200-206.
- 16. Ho YH, Siu SK, Buttner P, Stevenson A, Lumley J, Stitz R. The effect of obstruction and perforation on colorectal cancer disease-free survival. World J Surg 2010; 34(5):1091-1101.
- 17. Kube R, Granowski D, Stübs P, Mroczkowski P, Ptok H, Schmidt U, Gastinger I, Lippert H; Study group Qualitätssicherung Kolon/Rektum-Karzinome (Primärtumor) (Quality assurance in primary colorectal carcinoma). Surgical practices for malignant left colonic obstruction in Germany. Eur J Surg Oncol. 2010 Jan;36(1):65-71.
- 18. Manceau G, Voron T, Mege D, Bridoux V, Lakkis Z, Venara A, Beyer-Berjot L, Abdalla S, Sielezneff I, Lefèvre JH, Karoui M; AFC (French Surgical Association) Working Group. Prognostic factors and patterns of recurrence after emergency management for obstructing colon cancer: multivariate analysis from a series of 2120 patients. Langenbecks Arch Surg 2019; 404(6):717-729.
- 19. McArdle CS, Hole DJ. Influence of volume and specialization on survival following surgery for colorectal cancer. Br J Surg 2004; 91(5):610-617.
- 20. Merkow RP, Bilimoria KY, Cohen ME, Richards K, Ko CY, Hall BL. Variability in reoperation rates at 182 hospitals: a potential target for quality improvement. J Am Coll Surg 2009; 209(5): 557–564.
- 21. Morris AM, Baldwin LM, Matthews B, Dominitz JA, Barlow WE, Dobie SA, Billingsley KG. Reoperation as a quality indicator in colorectal surgery: a population-based analysis. Ann Surg. 2007; 245(1):73-9.
- 22. Ramos RF, Dos-Reis LCS, Teixeira BEB, Andrade IM, Sulzbach JS, Leal RA. Colon cancer surgery in patients operated on an emergency basis. Rev Col Bras Cir 2017; 44(5):465-470.

- 23. Shah N, Halverson J, Madhavan S. Burden of Emergency and Non-emergency Colorectal Cancer Surgeries in West Virginia and the USA. J Gastrointest Can 2012; 44(1):46-53.
- 24. Sjo O, Larsen S, Lunde O, Nesbakken A. Short term outcome after emergency and elective surgery for colon cancer. E Colorectal Dis 2009; 11(7), pp.733-739.
- 25. Tabola R, Mantese G, Cirocchi R, Gemini A, Grassi V, Boselli C, Avenia S, Sanguinetti A, Avenia N, Sroczynski M, Wierzbicki J. Postoperative mortality and morbidity in older patients undergoing emergency right hemicolectomy for colon cancer. Aging Clin Exp Res 2017; 29(Suppl 1):121-126.
- 26. Van Westreenen HL, Ijpma FF, Wevers KP, Afzali H, Patijn GA. Reoperation after colorectal surgery is an independent predictor of the 1-year mortality rate. Dis Colon Rectum 2011; 54(11): 1438–1442.
- 27. Waldron RP, Donovan IA, Drumm J, Mottram SN, Tedman S. Emergency presentation and mortality from colorectal cancer in the elderly. Br J Surg 1986; 73(3):214-6.
- 28. Zawadzki M, Krzystek-Korpacka M, Rząca M, Czarnecki R, Obuszko Z, Sitarska M, Witkiewicz W. Risk factors in reoperations in colorectal surgery. Pol Przegl Chir 2019; 91(4):13-18.