Remark 1. The intersection of an infinite collection of open sets is not necessarily open. Consider the family of open intervals in \mathbb{R} of the form

$$J_n = \left(-\frac{1}{n}, \frac{1}{n}\right).$$

Note that $\bigcap J_n = \{0\}$ which is not open.

Def. Neighborhood

Let $a \in \mathbb{R}^n$. A **neighborhood** of a is an open set $G \subseteq \mathbb{R}^n$ such that $a \in G$. Often the term nbhd is used as a shorthand.

Remark 2. If *G* is a nbhd of *a*, then $\exists r > 0$ such that $B_r(a) \subseteq G$.

Def. Interior

The **interior** of a set $A \subseteq \mathbb{R}^n$ is defined as

$$\operatorname{int}(A) := \{x \in \mathbb{R}^n : x \text{ has a nbhd } G \subseteq A\}.$$

Example 1.

- i) int([a,b)) = (a,b) since any nbhd of a will contain points outside of the interval.
- ii) Let $A = \{(x, y) \in \mathbb{R}^2 : x, y \ge 0\}$. Then $\operatorname{int}(A) = \{(x, y) \in \mathbb{R}^2 : x, y > 0\}$ as any point along the axes fail by the same reasoning as above.
- iii) $int(\mathbb{Q}) = \emptyset$ because there will always be an irrational x in any ball based around a rational number.

Theorem 1.

For any $A \subseteq \mathbb{R}^n$

- i) int(A) is open
- ii) int(A) is the largest open set contained in A

Proof. Let $x \in \text{int}(A)$. Then there is some nbhd G such that $G \subseteq A$. Let $y \in G$. Since G is open, G is a nbhd of Y as well hence $Y \in \text{int}(A)$. Therefore $G \subseteq \text{int}(A)$ meaning int(A) is open.

Def. Closed set

A set $F \subseteq \mathbb{R}^n$ is **closed** if its complement F^c is open.

Example 2.

- i) Both \emptyset and \mathbb{R}^n are closed
- ii) [a, b] is closed for all $a \neq b$
- iii) $[a, \infty)$ is closed since $[a, \infty)^c = (-\infty, a)$ which is open

Theorem 2.

For every $a \in \mathbb{R}^n$ and r > 0, the closed ball $B_r[a] = \{x \in \mathbb{R}^n : |x - a| \le r\}$ is closed in \mathbb{R}^n .

Proof. If $B_r[a]^c = \{x \in \mathbb{R}^n : |x - a| > r\}$ is open, then the desired result is achieved. Let $x \in B_r[a]^c$. Since |x - a| > r, then $\exists \rho > 0$ such that $|x - a| = r + \rho$. Take $y \in B_\rho(x)$. Then

$$|x-a| \le |x-y| + |y-a| \implies |y-a| \ge |x-a| - |x-y|$$

 $\implies |y-a| > |x-a| - \rho = r$

 \Diamond

Therefore $y \in Br[a]^c$, meaning $B_r[a]$ is open.