CPP1702 Coding Assignment 2

庫存系統-訂購決策問題

電子檔 2018/03/27 09:00 前上傳至 moodle 書面檔 2018/03/27 09:15 前於課堂繳交

運用在工業與資訊管理的範圍

基本邏輯推導、庫存系統。

相關 C++課程內容

基本 C/C++語法、陣列、迴圈、讀檔。

問題背景與概述

「庫存系統管理」為「作業管理」領域中極為重要的一個主題,每日 i 的庫存即存貨量 I[i] (件/日) 指的是商家在每天打烊後,尚存於其倉庫內的商品總量。適量的存貨有益於應付突發的需求量:若 前一日之存貨量 I[i-1]加上當日之新進貨量 O[i]仍不足以應付當日之需求量 D[i] ,將導致當日產生 缺貨量 L[i]。而每單位的缺貨每持續一日,將會引發一筆缺貨成本 B(\$/4) (\mathbb{S}) 反之,若滿足需 求量之後還有多餘的存貨量 ∏i],每單位的存貨每滯在倉庫一日,將會引發一筆持有成本 H(\$/ 件日)。一般商家只能被動地因應顧客的需求變化,在打烊後依庫存是否足夠,來決定是否訂購 $(Y[i]=1 {o} 0)$ 新的進貨量 O[i+1] 於隔日營業前入庫,以維持適量的庫存。每次訂購皆會產生一固 定額的單次訂購成本 A (\$/次),且每單位的新訂購貨物需要付一筆進貨成本 C (\$/件日)。如何 決定商品的進貨時機與進貨量為庫存管理最重要的決策。本次作業將要求同學實作常見的兩種庫存 **訂購策略**,讓同學對需求、進貨、存貨、缺貨四者之間的消長關係有初步的理解。

假設某公司已有其每日i=1,...,T之商品需求量預測值D[i],想測試不同訂購策略對其T日之總 成本(Total Cost, TC)的影響,以選出最有利的訂購策略。總成本由以下四組成本加總而成:

- 存貨成本(Inventory Cost, IC) $H\sum_{i=1}^{T}I[i]$,請注意I[0]因木已成舟,所以不算成本
- 缺貨成本(Backlog Cost,BC) $B\sum_{i=1}^{T} L[i]$,請注意 L[0]因木已成舟,所以不算成本
- 訂購成本(Ordering Cost,OC) $A\sum_{i=0}^{T-1}Y[i]$,請注意其可能的訂購期間為 i=0,...,T-1
- 進貨成本(Purchasing Cost,PC) $C\sum_{i=1}^{T}O[i]$

以上每日i之存貨量I[i]、缺貨量L[i]、訂購與否Y[i]、進貨量O[i]皆為商家的「決策變數」,除Y[i]僅可為 0 或 1 外,其餘三者皆為正整數或零。又可依其主被動的變動關係得知 Y[i]與 O[i]為主動之 決策,而 /[i]與 L[i]則被動地受其影響。舉例來說,若第 i 日之需求量 D[i]可被前日存貨 /[i-1]與當 日進貨 O[i]所滿足,則當日之存貨量 I[i]=I[i-1]+O[i]-D[i]; 反之,當日之缺貨量 L[i]=D[i]-I[i-1]-O[i]。 當然,I[i]若為正,L[i]必為0(同理,L[i]若為正,I[i]必為0)。

以下先定義兩種訂購策略計算公式中會用到的統計變數:

$$T$$
期內的總需求量 $D_T = \sum_{i=1}^T D[i]$,平均需求量 $\overline{D}_T = \left\lfloor D_T / T \right\rfloor$,標準差 $\sigma_T = \left\lfloor \sqrt{\sum_{i=1}^T (D[i] - \overline{D}_T)^2 / (T - 1)} \right\rfloor$

本次作業將實作以下兩種訂購策略,它們將以不同的準則來決定 Y[i]與 O[i],再隨之決定 I[i]與 L[i], 最後計算 TC = IC + BC + OC + PC:

■ (s_T, Q_T)訂購策略:

 $m{s}_T[i] \leq s_T$ (i=0,...,T-1) 時,隨即訂購 Q_T 單位的貨,於隔日一大早進貨 $O[i+1] = Q_T$ 單位商品 s_T :再訂購點,當存貨量少或等於此值時,隨即引發一次訂購,我們先設定 $s_T^0 = \overline{D}_T + \sigma_T$; $s_T = s_T^0$ Q_T :經濟訂購批量,為每次訂購量(隔天早上抵達),我們先設定 $Q_T^0 = \left| \sqrt{2AD_T/H} \right|$; $Q_T = Q_T^0$

■ (R, S)訂購策略:

初始進貨日 V 之後每隔 R 日(第V,V+R,..., $V+\lfloor (T-V)/R \rfloor R$ 日)將進貨至其庫存量為 S 單位 R: 訂購週期,亦即每隔 R 日即進貨一次,本作業中 R 可能的值將介於 1 與 $\lfloor T/2 \rfloor$ 之間。 S: 進貨將達成之預期期初庫存量,假設某預期進貨日 i 之前一天 I[i-1] < S,則第 i 日將進貨 O[i] = S-I[i-1],以使期初庫存量在進貨之後變成 S 單位,在此我們先設定 V=2, $S=7\overline{D}_T$ 。

作業目的及假設

本次作業擬要求同學寫兩個程式:其中程式一在 PART1 先讀入一個特定格式的輸入檔,依該輸入檔之資料再實作出 PART2: (s_T, Q_T) 與 PART3: (R, S) 等兩種訂購策略,最後再於程式二實作 PART4,讓同學們嘗試尋找針對 data2.txt 之 PART2 與 PART3 中最佳的 s_T, Q_T 與 V, R, S 之可能設定值,以使其總成本 TC 最小。

由於此為第二個作業,為簡化問題,我們假設所有的一維陣列長度(32)已給定。同學們可依需要自行再宣告其它新的變數或陣列,我們皆假設使用者會輸入正確的資料與格式(亦即先不用防呆)。

程式要求及作法

本作業大概可切割成以下四個 PART: (PART1、2、3 在程式一; PART4 在程式二) PART1 宣告與讀檔:(程式一)

請使用相同的命名方法宣告下列變數與陣列,額外需求的自訂變數可自行命名。

```
int T,
             //規劃期間為 T 天
             //單位持有成本
   Η,
             //單位缺貨成本
   В,
             //單次訂購成本
    Α,
             //單位進貨成本
    C,
        //再訂購點,程式一假設s_r = s_r^0,程式二需測試\sigma_r + 1組s_r值
    s,
        //經濟訂購批量,程式一假設Q_r = Q_r^0,程式二需測試 11 組Q_r 值
    Q,
        //初始進貨日,程式一假設V=2,程式二需測試V=2,4,6等3組數值
   V,
        // 訂購週期,程式一假設R=7,程式二需測試R=1,3,5,...,13,15 等 8 組值
   R,
        //預期期初庫存量,程式一假設S=7\bar{D}_{r},程式二需配合8組R值測試S=R\bar{D}_{r}值
    S;
int D[32]={0}, //儲存第 i(=1,...,31)天的預測需求量,先初始化為 0
    I[32]={0}, //儲存第 i(=0,...,31)天的期末存貨量, 先初始化為 0
   L[32]={0}, //儲存第 i(=0,...,31)天的期末缺貨量,先初始化為 0
   Y[32]={0}, //儲存第 i(=0,...,30)天的訂購決定,先初始化為 0
```

O[32]={0}; //儲存第 i(=1,...,31)天的期初進貨量,先初始化為 0

請使用者輸入檔名,譬如讀取 datal.txt 檔案後,輸出以下結果。(紅色部分為使用者輸入)

Enter filename: data1.txt

T=10, D= 34 31 26 40 33 23 22 25 41 17

H=2, B=20, A=300, C=10, V=2, R=7, I[0]=45, L[0]=0

D=292, $D_bar=29$, stdev=7; (s,Q)=(36,295); (R,S)=(7,203)

輸入檔 data1.txt 格式:

10 (期數 T) 34 31 26 40 33 23 22 25 41 17 (預測需求量 D[i], i=1, ...,10) 2 20 300 10 2 7 45 0 $(H \cdot B \cdot A \cdot C \cdot V \cdot R \cdot I[0] \cdot L[0])$

PART2 實作 (s_T, Q_T) 訂購策略:(程式一)

實作完成後,請印出以下格式之結果:(請分別用 data1.txt、data2.txt 測試並印出)

(s=36,Q=295) model:

t	D	0	I	L	
0	0	0	45	0	_
1	34	0	11	0	
2	31	295	275	0	
3	26	0	249	0	
4	40	0	209	0	
5	33	0	176	0	
6	23	0	153	0	
7	22	0	131	0	
8	25	0	106	0	
9	41	0	65	0	
10	17	0	48	0	

左表為 data1.txt 之結果(供核對用) 以下為 data2.txt 之總成本(供核對用) D=960, D_bar=30, stdev=12; (s,Q)=(42,536) model: Total cost: 27622 = 16302(IC) + 0(BC) +600(OC) + 10720(PC)

Total cost: 6096 = 2846(IC) + 0(BC) + 300(OC) + 2950(PC)

PART3 實作(R, S)訂購策略:(程式一)

實作完成後,請印出以下格式之結果:(請分別用 data1.txt、data2.txt 測試並印出)

(R=7,S=203) model:

(, , 0	200,	mouc.	_		
	t	D	0	I	L	
	0	0	0	45	0	
	1	34	0	11	0	
	2	31	192	172	0	
	3	26	0	146	0	
	4	40	0	106	0	
	5	33	0	73	0	
	6	23	0	50	0	
	7	22	0	28	0	
	8	25	0	3	0	
	9	41	200	162	0	
	10	17	0	145	0	

左表為 data1.txt 之結果(供核對用)

以下為 data2.txt 之總成本(供核對用)

 $(R,S)=(7,210) \mod e1$:

Total cost: 18798 = 5828(IC) + 1920(BC)

+ 1500(OC) + 9550(PC)

Total cost: 6312 = 1792(IC) + 0(BC) + 600(OC) + 3920(PC)

PART4 讀取 data2.txt, 搜尋最佳之ST, QT 與V, R, S 設定值, 以使其總成本TC 最小: (程式二)

- 針對 (s_T, Q_T) 訂購策略,原先使用之公式 $s_T = s_T^0 \times Q_T = Q_T^0$ 並無法保證可算出小總成本,本題要求同學們測試 $\sigma_T + 1$ 組 s_T 可能的值: $s_T \in \{s_T^0 2\sigma_T, s_T^0 2\sigma_T + 2, s_T^0 2\sigma_T + 4, ..., s_T^0 2, s_T^0\}$,以及 11 組 Q_T 可能的值: $Q_T \in \{Q_T^0 50, Q_T^0 40, ..., Q_T^0 + 40, Q_T^0 + 50\}$,亦即找出這 $11(\sigma_T + 1)$ 個 (s_T, Q_T) 組合當中,哪一組 (s_T, Q_T) 設定能測得最小之總成本。
- 針對(R, S)訂購策略,原先使用 V=2, R=7, $S=7\bar{D}_T$ 並無法保證可算出最小總成本,本題要求 同學們計算多組 V, R, S 可能的值,以搭配得到測試組合中總成本最小者。在此請同學測試 V=2, 4, 6 共 3 組; $(R,S) \in \{(1,\bar{D}_T),(3,3\bar{D}_T),...,(13,13\bar{D}_T),(15,15\bar{D}_T)\}$ 共 8 組,找出這 $3\times 8=24$ 個組合當中,哪一組 V, R, S 設定能測得最小之總成本。
- 再比較上述兩種訂購策略之最佳設定,印出其所有組合中最佳之訂購策略(即最佳之ST, QT 與V, R, S 設定值)、總成本與各項成本:TC = IC + BC + OC + PC

解題建議

- 老師估計初學者必須花至少 3hr 才能將本題作好,因為是第二個作業,老師給大家兩週 多來做。如果連這題你都必須花超過 5hr 才能作好,代表之後你必須要更早開始寫作業。
- 本題分成 4 個 PART 處理,前 3 個 PART 應該可以很快解決(1hr內),不過仍建議你先確認 PART1 對了之後再做 PART2、3。前三個 PART 建議命名為 hw2_123.cpp
- PART4 的程式可先 copy/paste 前三 PART 的程式當基礎來改,最簡單的作法就是先把 先前單一變數的 s,Q,V,R,S 重新宣告成陣列(譬如 s[13],Q[11],V[3],R[8],S[8]) 再使用多重 for loop 分別計算不同組合之總成本,當然你要記得記錄當下為止曾經計 算過的最小總成本以及其相關參數設定。PART4 只需列印最佳組合的相關參數設定值以及 成本,不用像 PART2、3 那樣列印個別之 D[],O[],I,L[]。PART4 建議命名為 hw2_4.cpp
- 記得兩個 cpp 檔案的 header comment 應該會稍有不同
- 其實 PART1、2、3 可以用 Excel 來檢查

*作業繳交應注意事項

- 1. 作業需繳交電子檔以及書面(列印程式檔及程式結果)
- 2. 電子檔請於作業繳交截止時間以前上傳至 http://moodle.ncku.edu.tw
 - 2.1 請同學先建立一個**資料夾**,資料夾名稱為"學號_hw2",例如學號為 hxxxx,則資料夾名稱則為 hxxxx_hw2
 - 2.2 將程式檔案名稱存為 "hw2_123.cpp、hw2_4.cpp",並將此程式檔案存於上述設立之 學號_hw2 資料夾中
 - 2.3 最後將<u>整個</u>學號_hw2 資料夾壓縮成 zip 檔(學號_hw2.zip), 再上傳至 moodle 系統 (!注意!:請勿將 cpp 檔 copy/paste 至 word 檔而上傳之)
- 3. 書面作業請於 2018/03/27 上課 5 分鐘內(09:15 前)繳交至講台,其中需要註明程式是否能被編譯與執行、撰寫人、程式之目的、如何編譯及執行等資料(詳見 https://www.dropbox.com/s/pvac59tfefggokd/programming.html?dl=0)。