MCA Course (chapters and sections to learn)

- MCA Course book Computer Architecture: A Quantitative Approach
 - O Chapter 1 Fundamentals of Quantitative Design and Analysis
 - ◆ Section 1.1 Introduction
 - ◆ Section 1.2 Classes of Computers
 - ◆ Section 1.3 Defining Computer Architecture
 - Section 1.4 Trends in Technology
 - ◆ Section 1.5 Trends in Power and Energy in Integrated Circuits
 - ◆ Section 1.6 Trends in Cost
 - Section 1.7 Dependability
 - ◆ Section 1.8 Measuring, Reporting, and Summarising Performance
 - Section 1.9 Quantitative Principles of Computer Design
 - ◆ Section 1.10 Putting it All Together
 - ◆ Section 1.11 Fallacies and Pitfalls
 - Section 1.12 Concluding Remarks
 - Not exam material, but interesting read
 - O Chapter 2 Memory Hierarchy Design
 - ◆ Section 2.1 Introduction
 - Section 2.2 Memory Technology and Optimizations
 - ◆ Section 2.3 Ten Advances Optimizations of Cache Performance
 - Section 2.4 Virtual Memory and Virtual Machines
 - Virtual Machines is not exam material
 - ◆ Section 2.5 Cross-cutting Issues: The Design of Memory Hierarchies
 - Section 2.6 Putting all Together: Memory Hierarchies in the ARM Cortex-A53 and Intel Core i7 6700
 - Not exam material, but interesting read
 - ◆ Section 2.7 Fallacies and Pitfalls
 - ◆ Section 2.8 Concluding Remarks: Looking Ahead
 - Not exam material, but interesting read
 - O Chapter 3 Instruction-level Parallelism and Its Exploitation
 - Section 3.1 Instruction-Level ParallelismL Concepts and Challenges
 - Section 3.2 Basic Compiler Techniques for Exposing ILP
 - Section 3.3 Reducing Branch Costs with Advanced Branch Prediction
 - Section 3.4 Overcoming Data Hazards with Dynamic Scheduling
 - Section 3.5 Dynamic Scheduling: Examples and the Algorithm
 - Section 3.6 Hardware-based Speculation
 - Section 3.7 Exploiting ILP using Multiple Issue and Static Scheduling
 - Section 3.8 Exploiting ILP using Dynamic Scheduling, Multiple Issue, and Speculation
 - ◆ Section 3.9 Advances Techniques for Instruction Delivery and Speculation
 - Section 3.10 Cross-cutting Issues
 - Section 3.11 Multithreading: Exploiting Thread-leve Parallelism to Improve Uni-processor Throughput
 - Section 3.12 Putting it All Together: The Core i7 6700 and ARM Cortex-A53
 - ♦ Not exam material, but interesting read
 - Section 3.13 Fallacies and Pitfalls

- Section 3.14 Concluding Remarks: What's Ahead?
 - ♦ Not exam material, but interesting read
- O Chapter 4 Data-level Parallelism in Vector, SIMD, and GPU Architectures
 - Section 4.1 Introduction
 - ◆ Section 4.2 Vector Architecture
 - ◆ Section 4.3 SIMD Instruction Set Extensions for Multimedia
 - ♦ Section 4.4 Graphics Processing Units
 - Section 4.5 Detecting and Enhancing Loop-level Parallelism
 - Not exam material, but interesting read
 - ◆ Section 4.6 Cross-cutting Issues
 - Section 4.7 Putting It All Together: Embedded Versus Server GPA and Tesla Versus Core I7
 - Not exam material, but interesting read
 - Section 4.8 Fallacies and Pitfalls
 - Section 4.9 Concluding Remarks
- Chapter 5 Thread-level parallelism
 - ◆ Section 5.1 Introduction
 - ◆ Section 5.2 Centralized Sharing-memory Architectures
 - Section 5.3 Performance of Symmetric Shared-memory Multiprocessors
 - Section 5.4 Distributed Shared-memory and Directory-based Coherence
 - Section 5.5 Synchronization: The Basics
 - ♦ Not exam material, but interesting read
 - ◆ Section 5.6 Models of Memory Consistency: An Introduction
 - ♦ Relaxed Consistency Models are not exam material, but interesting read
 - ◆ Section 5.7 Cross-cutting Issues
 - ♦ Not exam material, but interesting read
 - Section 5.8 Putting it All Together: Multicore Processors and Their Performance
 - Not exam material, but interesting read
 - ♦ Section 5.9 Fallacies and Pitfalls
 - ◆ Section 5.10 The Future of Multicore Scaling
 - ◆ Section 5.11 Concluding Remarks