PROBABILITY

Jonathan Gai

8th April 2022

Contents

1	Formal Setup				
	1.1	Examples of Probability Spaces	4		
	1.2	Combinatorial Analysis	5		
	1.3	Random Walks	6		
	1.4	Properties of Probability Measures	8		
	1.5	Bonferroni Inequalities	11		
	1.6	Counting with IEP	11		
	1.7	Independence	14		
	1.8	Conditional Probability	15		
	1.9	Law of Total Probability & Bayes' Formula	17		
2 Discrete Random Variables					
	2.1	Discrete Probability Distributions	22		
	2.2	More Than One RV	24		
	2.3	Expectation	25		
	2.4	Random Walks	38		
	2.5	Generating Functions	41		

Lecture 1: Probability Space

20 Jan. 11:00

Example. If we have a die with outcomes 1, 2, ..., 6.

- 1. $\mathbb{P}(2) = \frac{1}{6}$
- 2. $\mathbb{P}(\text{multiple of 3}) = \frac{2}{6} = \frac{1}{3}$

3. $\mathbb{P}(\text{pair or a multiple of 3}) = \frac{4}{6} = \frac{2}{3}$

1 Formal Setup

We try to define a probability space rigorously in this section.

Definition 1.1: Probability Space

We have the following,

- 1. Sample space Ω , a set of outcomes.
- 2. \mathcal{F} , a collection of subsets of Ω (called events).
- 3. \mathcal{F} is a σ -algebra if
 - a) **F1**: $\Omega \in \mathcal{F}$
 - b) **F2**: if $A \in \mathcal{F}$ then $A^c \in \mathcal{F}$
 - c) **F3**: For all countable collections $\{A_n\}$ in \mathcal{F} , $\cup_n A_n \in \mathcal{F}$.

Given σ -algebra \mathcal{F} on Ω , function $\mathbb{P}: \mathcal{F} \to [0,1]$ is a probability measure if

- 1. **P1**: The probability function is nonnegative.
- 2. **P2**: $\mathbb{P}(\Omega) = 1$
- 3. **P3**: For all countable collection $\{A_n\}$ of disjoint events in \mathcal{F} , we have $\mathbb{P}(\cup_n A_n) = \sum_{n=1}^{\infty} \mathbb{P}(A_n)$.

Then $(\Omega, \mathcal{F}, \mathbb{P})$ is a probability space.

Problem. Why $\mathbb{P}: \mathcal{F} \to [0,1]$, not $\mathbb{P}: \Omega \to [0,1]$?

We will justify the definition in the following examples.

Example. When Ω is finite or countable,

- 1. In general: $\mathcal{F} = \mathcal{P}(\Omega)$.
- 2. $\mathbb{P}(2)$ is shorthand for $\mathbb{P}(\{2\})$.
- 3. \mathbb{P} is determined by $\mathbb{P}(\{w\})$, $\forall w \in \Omega$.

Remark. When Ω is uncountable, a probability space behaves differently, as shown in the following example.

Example. If $\Omega = [0, 1]$, and we want to choose a real number, all equally likely.

If $\mathbb{P}\{0\} = \alpha > 0$, then $\mathbb{P}(\{0, 1, \frac{1}{2}, \dots, \frac{1}{n}\} = n\alpha)$. This cannot happen if n large, because we would have $\mathbb{P} > 1$. So $\mathbb{P}(\{0\}) = 0$ or undefined.

Example. When Ω is infinitely countable (e.g., $\Omega = \mathbb{N}$ or $\Omega = \mathbb{Q} \cap [0,1]$), however, it is not possible to choose uniformly. Suppose it is possible, there are two possibilities

• If
$$\mathbb{P}\left(\{\omega\}\right) = \alpha \quad \forall \omega \in \Omega$$
,
then $\mathbb{P}\left(\Omega\right) = \sum_{\omega \in \Omega} \mathbb{P}\left(\{\omega\}\right) = \infty$. \nleq

• If
$$\mathbb{P}\left(\{\omega\}\right)=0 \quad \forall \omega \in \Omega$$
, then $\mathbb{P}\left(\Omega\right)=\sum_{\omega \in \Omega}\mathbb{P}\left(\{\omega\}\right)=0$. $\mbox{\ensuremath{\not=}}$

So it is not possible to have one such uniform probability space. But that's fine as there exists many other interesting probability measures on a infinite countably set.

Property. From the axioms, we want to prove the following properties of a probability space.

1.
$$\mathbb{P}(A^c) = 1 - \mathbb{P}(A)$$
.

Proof. A, A^c disjoint. $A \cup A^c = \Omega$. So $\mathbb{P}(A) + \mathbb{P}(A^c) = \mathbb{P}(\Omega) = 1$

2.
$$\mathbb{P}(\emptyset) = 0$$

- 3. If $A \subseteq B$, then $\mathbb{P}(A) \leq \mathbb{P}(B)$.
- 4. $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B)$

1.1 Examples of Probability Spaces

Example. Here we list some concrete examples of probability spaces.

1. Ω finite, $\Omega = \{w_1, \dots, w_n\}$, $\mathcal{F} = \text{all subsets under uniform choice.}$

$$\mathbb{P}: \mathcal{F} \to [0,1], \mathbb{P}(A) = \frac{|A|}{|\Omega|}$$
. In particular: $\mathbb{P}(\{w\}) = \frac{1}{|\Omega|} \forall w \in \Omega$.

2. If we are choosing without replacement n indistinguishable marbles that are labelled $\{1, \ldots, n\}$. Pick $k \le n$ marbles uniformly at random.

Here we have
$$\Omega = \{A \subseteq \{1, \dots, n\}, |A| = k, |\Omega| = \binom{n}{k}$$
.

3. If we have a well-shuffled deck of cards, and we uniformly chose permutation of 52 cards.

 $\Omega = \{\text{all permutations of 52 cards}\}. |\Omega| = 52!.$

Then we have

$$\mathbb{P}(\text{first three cards have the same suit}) = \frac{52 \cdot 12 \cdot 11 \cdot 49!}{52!} = \frac{22}{425}.$$

Lecture 2: Finite Probability Space

22 Jan. 11:00

Example (Coincidental Birthday). There we have n people, what is the probability that at least two share a birthday? To be precise, we first make the following assumptions,

- No leap years; (365 days in a year)
- All birthdays are equally likely.

We have the probability space

$$\Omega = \{1, ..., 365\}^n$$
 $\mathcal{F} = \mathcal{P}(\Omega)$
 $A = \{\text{at least 2 people share birthday}\}$
 $A^c = \{\text{all } n \text{ birthdays are different}\}.$

So we have the probability

$$\mathbb{P}(A^{c}) = \frac{365 \times 364 \times ... \times (365 - n - 1)}{365^{n}},$$

$$\mathbb{P}(A) = 1 - \frac{365 \times 364 \times ... \times (365 - n - 1)}{365^{n}}.$$

Remark.

• We note several special *n* values,

$$n = 22$$
 : $\mathbb{P}(A) \approx 0.479$
 $n = 23$: $\mathbb{P}(A) \approx 0.507$
 $n \geq 366$: $\mathbb{P}(A) = 1$

- The probability of birthday is not equal in real life though. It is more likely to be born about 9 months after christmas.
- Sometimes it would be easier to calculate the probability of the complement of an event.

1.2 Combinatorial Analysis

If Ω is a finite set such that $|\Omega| = n$,

Problem. How many ways to partition Ω into k disjoint subsets $\Omega_1, \dots \Omega_k$ with $|\Omega_i| = n_i (\sum_{i=1}^k n_i = n)$?

The total number of ways *M* is

$$M = \binom{n}{n_i} \binom{n - n_1}{n_2} \binom{n - n_1 - n_2}{n_3} \cdots \binom{n - n_1 - n_2 \cdots - n_{k-1}}{n_k}$$

$$= \binom{n}{n_i} \binom{n - n_1}{n_2} \binom{n - n_1 - n_2}{n_3} \cdots \binom{n_k}{n_k}$$

$$= \frac{n!}{n!(n - n_1)!} \times \frac{(n - n_1)!}{n_2!(n - n_1 - n_2)!} \times \cdots \times \frac{(n - n_1 - n_2 - \cdots - n_{k-1})!}{x_k!0!}$$

$$= \frac{n!}{n_1!n_2! \cdots n_k!}$$

$$= \binom{n}{n_1, n_2, \dots, n_k}$$

which is called the *multinomial coefficient*, and denoted by the last term in the equations.

Remark. The ordering of the subsets do matter in this setting.

1.3 Random Walks

Figure 1: Random Walks

We have the following uniform probability space

$$\Omega = \{(x_0, x_1, \dots, x_n) \mid x_0 = 0, |x_k - x_{k-1}| = 1, k = 1, \dots, n\}, \\ |\Omega| = 2^n.$$

Problem. What's $\mathbb{P}(x_n = 0)$ and $\mathbb{P}(x_n = n)$?

We have $\mathbb{P}(x_n = n) = \frac{1}{2^n}$.

When n is odd, $\mathbb{P}(x_n = 0) = 0$ because after every step the value changes parity. To find the probability when n is even, we need to choose $\frac{n}{2}$ ks for which $x_k = x_{k-1} + 1$, and the rest $x_k = x_{k-1} - 1$. So

$$\mathbb{P}(x_n = 0) = 2^{-n} \binom{n}{n/2}$$
$$= \frac{n!}{2^n [(\frac{n}{2})!]^2}.$$

Problem. What happens when n is large?

We next present Stirling's Formula, and we adopt the following notation for the time being.

Notation. If (a_n) , b_n are two sequences, we say $a_n \sim b_n$ as $n \to \infty$ if $\frac{a_n}{b_n} \to 1$ as $n \to \infty$.

Theorem 1.1: Stirling's Formula

$$n! \sim \sqrt{2\pi} n^{n+\frac{1}{2}} e^{-n}$$
 as $n \to \infty$.

We also have the weaker version

$$\log(n!) \sim n \log n$$
.

Lecture 3 25 Jan. 11:00

Proof. We have

$$\log(n!) = \log 2 + \log 3 + \ldots + \log n.$$

So

$$\underbrace{n \log x dx}_{n \log n} \leq \log(n!) \leq int_1^{n+1} \log x dx$$

$$\underbrace{n \log n - n + 1}_{n \log n} \leq \log(n!) \leq \underbrace{(n+1) \log(n+1) - n}_{n \log n}.$$

log(n!) is sandwiched between the lower and upper integrals, so log(n!) must be approximately n log n as well. In this calculation, these facts helped

- 1. $\log x$ is increasing, so it's easier to bounded by the integrals.
- 2. log *x* has a nice integral. So the integrals have closed forms.

(Ordered) Compositions

Definition 1.2

A *composition* of m with k parts is sequence $(m1, \ldots, m_k)$ of non-negative integers with $\sum_{i=1}^k m_i = m$.

We use stars and bars. There are m stars and k-1 bars, and

$$\#Compositions = \binom{m+k-1}{m}.$$

1.4 Properties of Probability Measures

Recall Definition 1.1. We prove the following properties.

Property.

1. Countable sub-additivity

Let $(A_n)_{n\geq 1}$ sequence of events in \mathcal{F} . Then

$$\mathbb{P}\left(\cup_{n\geq 1}A_n\right)\leq \sum_{n\geq 1}\mathbb{P}\left(A_n\right).$$

Proof. We rewrite $\bigcup_{n\geq 1}$ as a disjoint union.

Define
$$B_1 = A_1$$
 and $B_n = A_n \setminus (A_1 \cup ... \cup A_{n-1})$.

So

$$\bullet \ \cup_{n>1} B_n = \cup_{n>1} A_n,$$

• $(B_n)_{n\geq 1}$ disjoint (by construction),

•
$$B_n \subseteq A_n \implies \mathbb{P}(B_n) \leq \mathbb{P}(A_n)$$
.

And we have

$$\mathbb{P}\left(\cup_{n\geq 1}A_n\right) = \mathbb{P}\left(\cup_{n\geq 1}B_n\right) = \sum_{n\geq 1}\mathbb{P}\left(B_n\right) = \sum_{n\geq 1}\mathbb{P}\left(A_n\right).$$

2. Continuity $(A_n)_{n\geq 1}$ increasing sequence of events in \mathcal{F} that is $A_n\subseteq A_{n+1}$ for all n.

In fact,
$$\lim_{n\to\infty} \mathbb{P}(A_n) = \mathbb{P}(\cup_{n\geq 1} A_n)$$
.

Proof. We reuse the B_n s, and we have

•
$$\bigsqcup_{k=1}^n B_k = A_n$$
,

$$\bullet \ \cup_{n>1} B_n = \cup_{n>1} A_n.$$

So we have

$$\mathbb{P}\left(A_{n}\right) = \sum_{k=1}^{n} \mathbb{P}\left(B_{k}\right) \to \sum_{k\geq 1} \mathbb{P}\left(B_{k}\right) = \mathbb{P}\left(\cup_{n\geq 1} B_{n}\right) = \mathbb{P}\left(\cup_{n\geq 1} A_{n}\right).$$

3. Inclusion-Exclusion Principle

Background:
$$\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$$
.

Similarly, for A, B, $C \in \mathcal{F}$,

$$\mathbb{P}(A \cup B \cup C) = \mathbb{P}(A) + \mathbb{P}(B) + \mathbb{P}(C) - \mathbb{P}(A \cap B) - \mathbb{P}(B \cap C) - \mathbb{P}(C \cap A) + \mathbb{P}(A \cap B \cap C).$$

The full Inclusion-Exclusion principle statement is the following. Let $A_1, \ldots, A_n \in$

 \mathcal{F} , then

$$\mathbb{P}\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{i=1}^{n} \mathbb{P}\left(A_{i}\right) - \sum_{1 \leq i_{1} < i_{2} \leq n} \mathbb{P}\left(A_{i_{1}} \cap A_{i_{2}}\right) + \dots
+ (-1)^{n+1} \mathbb{P}\left(A_{1} \cap \dots \cap A_{n}\right)
= \sum_{\substack{I \subseteq \{1,\dots,n\}\\I \neq \varnothing}} (-1)^{|I|+1} \mathbb{P}\left(\bigcap_{i \in I} A_{i}\right).$$

Lecture 3: Inclusion-Exclusion Principle

27 Jan. 2022

Proof. We used induction. The n = 2 case is proved in the example sheet.

$$\mathbb{P}\left(\bigcup_{i=1}^{n} A_{i}\right) = \mathbb{P}\left(\left(\bigcup_{i=1}^{n-1} A_{i}\right) \bigcup A_{n}\right)$$

$$= \mathbb{P}\left(\bigcup_{i=1}^{n-1} A_{i}\right) + \mathbb{P}\left(A_{n}\right) - \mathbb{P}\left(\left(\bigcup_{i=1}^{n-1} A_{i}\right) \bigcap A_{n}\right).$$

Note that for $J \subseteq \{1, \dots, n-1\}$,

$$\bigcap_{i\in J}(A_i\cap A_n)=\bigcap_{i\in J\cup\{n\}}A_i.$$

The inductive statement tells us

$$\mathbb{P}\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{\substack{J \subseteq \{1,\dots,n-1\}\\J \neq \emptyset}} (-1)^{|J|+1} \mathbb{P}\left(\bigcap_{i \in J} A_{i}\right) + \mathbb{P}\left(A_{n}\right)$$

$$- \sum_{\substack{J \subseteq \{1,\dots,n-1\}\\J \neq \emptyset}} (-1)^{|J|+1} \mathbb{P}\left(\bigcap_{i \in J} A_{i}\right)$$

$$= \sum_{\substack{I \subseteq \{1,\dots,n-1\}\\I \neq \emptyset}} (-1)^{|I|+1} \mathbb{P}\left(\bigcap_{i \in I} A_{i}\right) + \mathbb{P}\left(A_{n}\right)$$

$$+ \sum_{\substack{I \subseteq \{1,\dots,n-1\}\\n \in I,|I| \geq 2}} (-1)^{|I|+1} \mathbb{P}\left(\bigcap_{i \in I} A_{i}\right)$$

$$= \sum_{\substack{I \subseteq \{1,\dots,n\}\\I \neq \emptyset}} (-1)^{|I|+1} \mathbb{P}\left(\bigcap_{i \in I} A_{i}\right).$$

1.5 Bonferroni Inequalities

Problem. What if you truncate Inclusion-Exclusion Principle?

Recall countable subadditivity states that $\mathbb{P}(\cup A_i) \leq \sum \mathbb{P}(A_i)$, also known as union bound. We have the following inequalities.

•
$$\mathbb{P}\left(\bigcup_{i=1}^n A_i\right) \leq \sum_{k=1}^r (-1)^{k+1} \sum_{i_1 < \ldots < i_k} \mathbb{P}\left(A_{i_1} \cap \ldots \cap A_{i_k}\right)$$
 when r is odd;

•
$$\mathbb{P}\left(\bigcup_{i=1}^n A_i\right) \ge \sum_{k=1}^r (-1)^{k+1} \sum_{i_1 < \dots < i_k} \mathbb{P}\left(A_{i_1} \cap \dots \cap A_{i_k}\right)$$
 when r is even.

Problem. When is it good to truncate at, for example, r = 2?

Proof. We induct on r and n. When r is odd

$$\mathbb{P}\left(\bigcup_{i=1}^{n} A_{i}\right) = \mathbb{P}\left(\bigcup_{i=1}^{n} A_{i}\right) + \mathbb{P}\left(A_{n}\right) - \mathbb{P}\left(\bigcup_{i=1}^{n-1} (A_{i} \cap A_{n})\right)$$

$$\leq \sum_{\substack{J \subseteq \{1,\dots,n-1\}\\1 \leq |J| \leq r}} (-1)^{|J|+1} \mathbb{P}\left(\bigcap_{i \in J} A_{i}\right) + \mathbb{P}\left(A_{n}\right)$$

$$- \sum_{\substack{J \subseteq \{1,\dots,n-1\}\\1 \leq |J| \leq r-1}} (-1)^{|J|+1} \mathbb{P}\left(\bigcap_{i \in J} A_{i}\right)$$

$$\leq \sum_{\substack{I \subseteq \{1,\dots,n\}\\1 \leq |I| \leq r}} (-1)^{|I|+1} \mathbb{P}\left(\bigcap_{i \in I} A_{i}\right).$$

And a similar argument follows when r is even.

1.6 Counting with IEP

Inclusion Exclusion Principle gives up a route to solve questions that do not have a closed form answer.

When we have a uniform probability measure on Ω with $|\Omega| < \infty$,

$$\mathbb{P}\left(A\right) = \frac{|A|}{|\Omega|} \, \forall A \subseteq \Omega.$$

Then $\forall A_1, \ldots, A_n \subseteq \Omega$,

$$|A_1 \cup \ldots \cup A_n| = \sum_{k=1}^n (-1)^{n+1} \sum_{i_1 < \ldots < i_k} |A_{i_1} \cap \ldots \cap A_{i_k}|,$$

and similarly for Bonferroni inequalities.

Example. We count the number of surjections $f : \{1, ..., n\} \rightarrow \{1, ..., m\}$ with $n \ge m$.

We have the probability space and event

$$\Omega = \{ f : \{1, \dots, n\} \to \{1, \dots, m\} \},\$$

$$A = \{ f : \text{im}(f) = \{1, \dots, m\} \}.$$

For all $i \in \{1, ..., m\}$, let $B_i = \{f \in \Omega \mid i \notin \operatorname{im}(f)\}$. We have the following key observations:

- $A = B_1^c \cap \ldots B_m^c = (B_1 \cup \ldots \cup B_m)^c$.
- $|B_{i_1} \cap ... \cap B_{i_k}|$ is nice to calculate, and we have

$$|B_{i_1}\cap\ldots\cap B_{i_k}|=|\{f\in\Omega\mid i_1,\ldots,i_k\notin\mathrm{im}(f)\}|=(m-k)^n.$$

So by IEP, we have

$$|B_1 \cup \ldots \cup B_m| = \sum_{k=1}^m (-1)^{k+1} \sum_{i_1 < \ldots < i_k} |B_{i_1} \cap \ldots \cap B_{i_k}|$$
$$= \sum_{k=1}^m (-1)^{k+1} {m \choose k} (m-k)^n.$$

So
$$|A| = m^n - \sum_{k=1}^m (-1)^{k+1} {m \choose k} (m-k)^n = \sum_{k=0}^m (-1)^k {m \choose k} (m-k)^n$$
.

Lecture 5: Independence

29 Jan. 2022

Example (Derangements). We try to find the number of permutations with no fixed points, for a Secret Santa for example. We have the sample space and event

$$\Omega = \{ \text{permutations of } \{1, \dots, n\} \},$$

$$D = \{ \sigma \in \Omega \mid \sigma(i) \neq i \ \forall i = 1, \dots, n \}.$$

For all $i \in 1, ..., n$, let $A_i = \{ \sigma \in \Omega \mid \sigma(i) = i \}$.

Problem. Is $\mathbb{P}(D)$ large or small when $n \to \infty$.

Similar to the last example, $D = A_1^c \cap ... \cap A_n^c = (\bigcup_{i=1}^n A_i)^c$, and

$$\mathbb{P}\left(A_{i_1}\cap\ldots\cap A_{i_k}\right)=\frac{(n-k)!}{n!}.$$

So by IEP, we have

$$\mathbb{P}\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{k=1}^{n} (-1)^{k+1} \sum_{i_{1} < \dots < i_{k}} \mathbb{P}\left(A_{i_{1}} \cap \dots \cap A_{i_{k}}\right)$$
$$= \sum_{k=1}^{n} (-1)^{k+1} \binom{n}{k} \frac{(n-k)!}{n!}.$$

So
$$\mathbb{P}(D) = 1 - \mathbb{P}\left(\bigcup_{i=1}^{n} A_i\right) = 1 - \sum_{k=1}^{n} \frac{(-1)^{k+1}}{k!} = \sum_{k=0}^{n} \frac{(-1)^k}{k!}.$$

In fact, when $n \to \infty$, $\mathbb{P}(D) \to \sum_{k=0}^{\infty} \frac{(-1)^k}{k!} = e^{-1} \approx 0.37$.

Note. What if instead $\Omega' = \{\text{all functions } f : \{1, \dots, n\} \rightarrow \{1, \dots, n\}\}$?

We have $D = \{ f \in \Omega' \mid f(i) \neq i \ \forall i = 1, \dots, n \}$, and

$$\mathbb{P}(D) = \frac{(n-1)^n}{n^n} = (1 - \frac{1}{n})^n \to e^{-1}.$$

Can we just say $\mathbb{P}(D) = (\frac{n-1}{n})^n$? We would need independence to say that.

Also note that f(i) is a random quantity associated to Ω . We will study these later as a random variable.

We are allowed to toss a fair coin n times, but we can't toss an unfair coin n times so far.

1.7 Independence

Definition 1.3

Events $A, B \in \mathcal{F}$ are independent if

$$\mathbb{P}(A \cap B) = \mathbb{P}(A) \mathbb{P}(B)$$
. (denoted as $A \perp \!\!\! \perp B$)

A countable collection of events (A_n) is *independent* if for all distinct i_1, \ldots, i_k , we have

$$\mathbb{P}\left(A_{i_1}\cap\ldots\cap A_{i_k}\right)=\prod_{j=1}^k\mathbb{P}\left(A_{i_j}\right).$$

Remark. Pairwise independence does not imply independence.

Example. If we have the uniform probability space

$$\Omega = \{(H, H), (H, T), (T, H), (T, T)\},\$$

and $\mathbb{P}(\{\omega\}) = \frac{1}{4}$ for all $\omega \in \Omega$. And we define the following events

$$A = \text{first coin } H = \{(H, H), (H, T)\}$$

$$B = second coin H = \{(H, H), (T, H)\}\$$

$$C = \text{same outcome} = \{(H, H), (T, T)\}$$

Note that probability of each of these happening is $\mathbb{P}(A) = \mathbb{P}(B) = \mathbb{P}(C) = \frac{1}{2}$, and $A \cap B = A \cap C = B \cap C = \{(H, H)\}$, so they are pairwise independent. But

$$\mathbb{P}(A \cap B \cap C) = \frac{1}{4} \neq \mathbb{P}(A) \mathbb{P}(B) \mathbb{P}(C).$$

The three events are not independent.

Example.

• If we have $\Omega' = \{\text{all functions } f : \{1, ..., n\} \rightarrow \{1, ..., n\}\}$, and let $A_i = \{f \in \Omega' \mid f(i) = i\}$. Then,

$$\mathbb{P}(A_i) = \frac{n^{(n-1)}}{n^n} = \frac{1}{n}$$

$$\mathbb{P}(A_{i_1} \cap \ldots \cap A_{i_k}) = \frac{n^{n-k}}{n^n} = \frac{1}{n^k} = \prod_{j=1}^k \mathbb{P}(A_{i_j}).$$

Here, (A_i) are independent events.

• If we have $\Omega = \{ \sigma \mid \text{permutation of } \{1, \dots, n\} \}$, and let $A_i = \{ \sigma \in \Omega \mid \sigma(i) = i \}$. Then,

$$\mathbb{P}(A_i) = \frac{n^{(n-1)}}{n^n} = \frac{1}{n}$$

$$\mathbb{P}(A_i \cap A_j) = \frac{(n-1)!}{n!} = \frac{1}{n(n-1)} \neq \mathbb{P}(A_i) \mathbb{P}(A_j).$$

Here, (A_i) are not independent.

Property.

1. If A is independent of B then A is also independent of B^c .

Proof.
$$\mathbb{P}(A \cap B^c) = \mathbb{P}(A) - \mathbb{P}(A \cap B)$$

 $= \mathbb{P}(A) - \mathbb{P}(A) \mathbb{P}(B)$
 $= \mathbb{P}(A) (1 - \mathbb{P}(B))$
 $= \mathbb{P}(A) \mathbb{P}(B^c).$

2. *A* is independent of $B = \Omega$ and of $C = \emptyset$.

Proof.
$$\mathbb{P}(A \cap \Omega) = \mathbb{P}(A) = \mathbb{P}(A) \mathbb{P}(\Omega)$$
, and $A \perp \emptyset$ by part 1.

3. $\mathbb{P}(B) = 0$ or 1 Then *A* is independent of *B*.

1.8 Conditional Probability

Definition 1.4: Conditional Probability

If we have a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ as before. Consider $B \in \mathcal{F}$ with $\mathbb{P}(B) > 0$, and we have $\mathbb{P}(A)$, The *conditional probability of A given B* is

$$\mathbb{P}(A \mid B) := \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}.$$

We can interpret this informally as the probability of *A* if we know *B* happened.

Example. If *A*, *B* are independent events,

$$\mathbb{P}(A \mid B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} = \frac{\mathbb{P}(A) \mathbb{P}(B)}{\mathbb{P}(B)} = \mathbb{P}(A).$$

Informally, we know that if A, B are independent, then knowing where B happened doesn't affect probability of A.

Lecture 6

1 Feb. 2022

Property.

- 1. $\mathbb{P}(A \mid B) \geq 0$.
- 2. $\mathbb{P}(B \mid B) = \mathbb{P}(\Omega \mid B) = 1$.
- 3. (A_n) disjoint events in \mathcal{F} , we claim

$$\mathbb{P}\left(\bigcup_{n\geq 1}A_n\mid B\right)=\sum_{n\geq 1}\mathbb{P}\left(A_n\mid B\right).$$

Proof.
$$\mathbb{P}(\cup_{n\geq 1} A_n \mid B) = \frac{\mathbb{P}((\cup_n A_n) \cap B)}{\mathbb{P}(B)}$$

$$= \frac{\mathbb{P}(\cup_n (A_n \cap B))}{\mathbb{P}(B)} \quad \text{numerator is a disjoint union}$$

$$= \frac{\sum_n \mathbb{P}(A_n \cap B)}{\mathbb{P}(B)} = \sum_{n\geq 1} \mathbb{P}(A_n \mid B).$$

To prove it, we used the definition, and applied P1, P2, P3 to numerator.

4. $\mathbb{P}(\cdot \mid B)$ is a function from $\mathcal{F} \to [0,1]$ that satisfies the rules to be a probability measure in Ω . It is often useful to restrict the function to

$$\Omega' = B$$
$$\mathcal{F}' = \mathcal{P}(B),$$

especially in finite/ countable setting. Then $(\Omega', \mathcal{F}', \mathbb{P}(\cdot \mid B))$ also satisfies rules to be a probability measure on Ω' .

We have

$$\mathbb{P}(A \cap B) = \mathbb{P}(A) \mathbb{P}(B \mid A)$$

$$\mathbb{P}(A_1 \cap A_2 \cap \cdots \cap A_n) = \mathbb{P}(A_1) \mathbb{P}(A_2 \mid A_1) \mathbb{P}(A_3 \mid A_1 \cap A_2)$$

$$\cdots \mathbb{P}(A_n \mid A_1 \cap \cdots \cap A_{n-1})$$

Example. Uniform permutation $(\sigma(1), \sigma(2), \dots, \sigma(n)) \in \Sigma_n$. We claim that

$$\mathbb{P}\left(\sigma(k) = i_k \mid \sigma(1) = i, \dots, \sigma(k-1) = i_{k-1}\right)$$

$$= \begin{cases} 0, & \text{if } i_k \in \{i, \dots, i_{k-1}\} \\ \frac{1}{n-k+q}, & \text{if otherwise} \end{cases}$$

Proof. We have

$$\mathbb{P} (\sigma(k) = i_k \mid \sigma(1) = i_1, \dots, \sigma(k-1) = i_{k-1})
= \frac{\mathbb{P} (\sigma(1) = i_1, \dots, \sigma(k) = i_k)}{\mathbb{P} (\sigma(1) = i_1, \dots, \sigma(k-1) = i_{k-1})}
= \frac{\frac{(n-k)!}{n!}}{\frac{(n-k+1)!}{n!}} = \frac{1}{n-k+1}.$$

1.9 Law of Total Probability & Bayes' Formula

Definition 1.5

 $(B_1, B_2, ...) \subseteq \Omega$ is a partition of Ω if $\Omega = \bigcup_n B_n$ and (B_n) are disjoint.

Theorem 1.2

 (B_n) a finite or countable partition of Ω with $B_n \in \mathcal{F}$ for all n such that $\mathbb{P}(B_n) > 0$. Then for all $A \in \mathcal{F}$:

$$\mathbb{P}(A) = \sum_{n} \mathbb{P}(A \mid B_n) \mathbb{P}(B_n).$$

This is also called "Partition Theorem".

Proof. Note that $\bigcup_n (A \cap B_n) = A$. So we have

$$\mathbb{P}(A) = \sum_{n>1} \mathbb{P}(A \cap B_n) = \sum_n \mathbb{P}(A \mid B_N) \mathbb{P}(B_n).$$

Theorem 1.3: Bayes' Formula

With the same setup as above, we have

$$\mathbb{P}\left(B_{n}\mid A\right) = \frac{\mathbb{P}\left(A\cap B_{N}\right)}{\mathbb{P}\left(A\right)} = \frac{\mathbb{P}\left(A\mid B_{n}\right)\mathbb{P}\left(B_{n}\right)}{\sum_{m}\mathbb{P}\left(A\mid B_{m}\right)\mathbb{P}\left(B_{m}\right)}.$$

Rephrasing for
$$n = 2$$
, we have $\mathbb{P}(B \mid A) \underbrace{\mathbb{P}(A)}_{given} = \underbrace{\mathbb{P}(A \mid B) \mathbb{P}(B)}_{given} = \mathbb{P}(A \cap B)$.

Example. Lecture course has $\frac{2}{3}$ of the lectures on weekdays and $\frac{1}{3}$ on weekends. We have

$$\mathbb{P} \text{ (forget notes } | \text{ weekday}) = \frac{1}{8}$$

 $\mathbb{P}\left(\text{forget notes} \mid \text{weekend}\right) = \frac{1}{2}$

What is \mathbb{P} (weekend | forget notes)?

We have $B_1 = \{\text{weekday}\}\$ and $B_2 = \{\text{weekend}\}\$ and $A = \{\text{forget notes}\}\$. So we have

$$\mathbb{P}(A) = \frac{2}{3} \cdot \frac{1}{8} + \frac{1}{3} \cdot \frac{1}{2} = \frac{1}{12} + \frac{1}{6} = \frac{1}{4}.$$

And by Bayes' Formula, we have

$$\mathbb{P}(B_2 \mid A) = \frac{\frac{1}{3} \cdot \frac{1}{2}}{\frac{1}{4}} = \frac{2}{3}.$$

Example (Disease testing). If p are infected and 1 - p are not, and we have

$$\mathbb{P}$$
 (positive | infected) = $1 - \alpha$
 \mathbb{P} (positive | not infected) = β .

Ideally, you want both α , β to be small. Of course, we want p to be small as well. We want to find \mathbb{P} (infected | positive). By LTP, we have

$$\mathbb{P}$$
 (positive) = $p(1-\alpha) + (1-p)\beta$.

Using Bayes', we have

$$\mathbb{P} \text{ (infected } | \text{ positive)} = \frac{p(1-\alpha)}{p(1-\alpha) + (1-p)\beta}.$$

Suppose $p \ll \beta$, we have $p(1-\alpha) \ll (1-p)\beta$. The probability is approximately $\frac{p(1-\alpha)}{(1-p)\beta} \sim \frac{p}{\beta}$ which is small.

Example (Simpson's Paradox). If the scientists want to know if jelly beans make your tongue change color? Studies give results:

Oxford	Change	No change	% change
Blue	15	22	41 %
Green	5	8	38 %

Cambridge	Change	No change	% change
Blue	10	3	77 %
Green	23	14	62 %,

but if you add them up, you get

Total	Change	No change	% change
Blue	25	25	50 %
Green	28	22	56 %.

Lecture 7

3 Feb. 2022

We continue from the Simpson's Paradox example. Let $A = \{\text{change color}\}$, $B = \{\text{blue}\}$, $B^c = \{\text{green}\}$, $C = \{\text{Cambridge}\}$ and $C^c = \{\text{Oxford}\}$. We have

$$\mathbb{P}(A \mid B \cap C) > \mathbb{P}(A \mid B^c \cap C)$$
$$\mathbb{P}(A \mid B \cap C^c) > \mathbb{P}(A \mid B^c \cap C^c).$$

But it is not true that $\mathbb{P}(A \mid B) > \mathbb{P}(A \mid B^c)$. LTP for conditional probabilities is the following. Suppose C_1, C_2, \ldots is a partition of B, and we have

$$\mathbb{P}(A \mid B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} = \frac{\mathbb{P}(A \cap (\cup_n C_n))}{\mathbb{P}(B)}$$

$$= \frac{\mathbb{P}(\cup_n (A \cap C_n))}{\mathbb{P}(B)} = \frac{\sum_n \mathbb{P}(A \cap C_n)}{\mathbb{P}(B)}$$

$$= \frac{\sum_n \mathbb{P}(A \mid C_n) \mathbb{P}(C_n)}{\mathbb{P}(B)} = \sum_n \mathbb{P}(A \mid C_n) \frac{\mathbb{P}(B \cap C_n)}{\mathbb{P}(B)}$$

So in conclusion, we have

$$\mathbb{P}(A \mid B) = \sum_{n} \mathbb{P}(A \mid C_{n}) \mathbb{P}(C_{n} \mid B).$$

Special Case:

- If all $\mathbb{P}(C_n)$ are equal, then $\mathbb{P}(C_n \mid B)$ are all equal.
- If $\mathbb{P}(A \mid C_n)$ are all equal. Note that $\sum_n \mathbb{P}(C_n \mid B) = 1$. Then we have

$$\mathbb{P}(A \mid B) = \mathbb{P}(A \mid C_n).$$

Example. Uniform permutation $(\sigma(1), \sigma(2), \ldots, \sigma(52)) \in \Sigma_{52}$ ("well-shuffled cards"). We call $\{1, 2, 3, 4\}$ the aces. We consider $A = \{\sigma(1), \sigma(2) \text{ aces}\}$, and $B = \{\sigma(1) \text{ ace}\} = \{\sigma(1) \le 4\}$, $C_i = \{\sigma(1) = i\}$.

Note $\mathbb{P}(A \mid C_i) = \mathbb{P}(\sigma(2) \in \{1, 2, 3, 4\} \mid \sigma(1) = i) = \frac{3}{51}$ for $i \le 4$ by previous example. And we have $\mathbb{P}(C_i) = \frac{1}{52}$. So we have $\mathbb{P}(A \mid B) = \frac{3}{51}$. In total, we have

$$\mathbb{P}(A) = \mathbb{P}(B) \times \mathbb{P}(A \mid B) = \frac{4}{52} \times \frac{3}{51}.$$

2 Discrete Random Variables

Motivation: Roll two dices. $\Omega = \{1, ..., 6\}^2 = \{(i, j) \mid 1 \le i, j \le 6\}$. If we restrict attention to first dice $\{(i, j) \mid i = 3\}$; sum of dices $\{(i, j) \mid i, j \le 4, i \text{ or } j = 4\}$.

Goal: "Random real-valued measurements".

Definition 2.1

A *discrete random variable* X (often denoted by RV) on a probability space $(\Omega, \mathcal{F}, \mathbb{P}())$ is a function $X : \Omega \to \mathbb{R}$ such that

- 1. $\{\omega \in \Omega \mid X(\omega) = x\} \in \mathcal{F}$.
- 2. im(X) is finite or countable (subset of \mathbb{R}).

We can write $\{\omega \in \Omega \mid X(\omega) = x\}$ as $\{X = x\}$. So $\mathbb{P}(X = x)$ is valid. And the image is often \mathbb{Z} or $\{0,1\}$ for example, instead of $\{\text{Heads, Tails}\}$.

If Ω is finite or countable, and $\mathcal{F} = \mathcal{P}(\Omega)$, both requirements hold automatically.

Example (Part II Applied Probability). If we consider the arrival problem, we have

 $\Omega = \{\text{countable subsets } (a_1, a_2, \ldots) \text{ of } (0, \infty)\}.$ Then,

$$N_t$$
 = number of arrivals by time t
= $|\{a_i \mid a_i \le t\}| \in \{0,1,2,...\}$

is a discrete RV for each time t.

Definition 2.2

The *probability mass function* (p.m.f.) of discrete RV X is the function $p_X : \mathbb{R} \to [0,1]$ given by

$$p_X(x) = \mathbb{P}(X = x) \quad \forall x \in \mathbb{R}.$$

Note.

• If $x \notin \text{im}(X)$ (that is, $X(\omega)$ never takes value x), then

$$p_X(x) = \mathbb{P}\left(\omega \in \Omega \mid X(\omega) = x\right) = \mathbb{P}\left(\varnothing\right) = 0.$$

•
$$\sum_{x \in (X)} p_X(x) = \sum_{x \in \operatorname{im}(x)} \mathbb{P}\left(\left\{\omega \in \Omega \mid X(\omega) = x\right\}\right)$$
$$= \mathbb{P}\left(\bigcup_{x \in \operatorname{im}(X)} \left\{\omega \in \Omega \mid X(\omega) = x\right\}\right) = \mathbb{P}\left(\Omega\right) = 1$$

Example (Indicator Function). Event $A \in \mathcal{F}$, define $\mathbf{1}_A : \omega \to \mathbb{R}$ by

$$\mathbf{1}_{A}(\omega) = \begin{cases} 1, & \text{if } \omega \in A \\ 0, & \text{if } \omega \notin A \end{cases}$$

called the *indicated function* of A. $\mathbf{1}_A$ is a discrete RV with $\operatorname{im}(\mathbf{1}) = \{0, 1\}$. The probability mass function is

$$p_{\mathbf{1}_{A}}(1) = \mathbb{P}\left(\mathbf{1}_{A} = 1\right) = \mathbb{P}\left(A\right)$$

$$p_{\mathbf{1}_{A}}(0) = \mathbb{P}\left(\mathbf{1}_{A} = 0\right) = \mathbb{P}\left(A^{c}\right) = 1 - \mathbb{P}\left(A\right)$$

$$p_{\mathbf{1}_{A}}(x) = 0 \quad \forall x \notin \{0, 1\}.$$

It encodes "did A happen" as a real number.

Remark. Given a probability mass function, we can always construct a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and a RV defined on it with this pmf.

- $\Omega = \text{im}(X)$. That is, $\{x \in \mathbb{R} \mid p_X(x) > 0\}$;
- $\mathcal{F} = \mathcal{P}(\Omega)$;
- $\mathbb{P}(\{x\}) = p_X(x)$ and extend it to all $A \in \mathcal{F}$.

Lecture 8

5 Feb. 2022

2.1 Discrete Probability Distributions

We first start with distributions with Ω finite.

2.1.1 Bernoulli Distribution ("biased coin toss")

We have $X \sim \text{Bern}(p)$ with $p \in [0,1]$, and

$$im(X) = \{0, 1\}$$

 $p_X(1) = \mathbb{P}(X = 1) = p$
 $p_X(0) = \mathbb{P}(X = 0) = 1 - p$.

Example. $\mathbf{1}_A \sim \text{Bern}(p)$ with $p = \mathbb{P}(A)$.

2.1.2 Binomial Distribution

We have $X \sim \text{Bin}(n, p)$ with $n \in \mathbb{Z}^+$, $p \in [0, 1]$. ("Toss coin n times, count number of heads") We have

$$im(X) = \{0, 1, ..., n\}$$

 $p_X(k) = \mathbb{P}(X = k) = \binom{n}{k} p^k (1 - p)^{n - k}.$

Do check that $\sum_{k=0}^{n} p_X(k) = 1$ by binomial expansion. Next, we consider $\Omega = \mathbb{N}$. ("Ways of choosing a random integer")

Next, we consider the case when Ω is countable. This is slightly deviating from the order which they were taught in the lectures.

2.1.3 Geometric Distribution ("Waiting for success")

We have $X \sim \text{Geom}(p)$ with $p \in (0,1]$. ("Toss a coin with \mathbb{P} (head) = p until a head appears. Count how many trials were needed") So

$$\operatorname{im}(X) = \{1, 2 \dots\}$$

 $p_X(k) = \mathbb{P}\left((n-1) \text{ failures, then success on last}\right) = (1-p)^{k-1}p.$

Indeed, we have

$$\sum_{k>1} (1-p)^{k-1} p = p \sum_{\ell>0} (1-p)^{\ell} = \frac{p}{1-(1-p)} = 1.$$

Alternatively, we can count how many failures before a success. So

$$im(Y) = \{0, 1, 2, ...\}$$

 $p_Y(k) = \mathbb{P}(k \text{ failures, then success on next}) = (1 - p)^k p.$

Similarly, we have

$$\sum_{k>0} (1-p)^k p = 1.$$

2.1.4 Poisson Distribution

We have $X \sim Po(\lambda)$ (or $Poi(\lambda)$ with parameter λ), and

$$im(X) = \{0, 1, 2, \ldots\}$$
$$p_X(k) = e^{-\lambda} \frac{\lambda^k}{k!}.$$

Note that $\sum_{k\geq 0} \mathbb{P}\left(X=k\right) = e^{-\lambda} \sum_{k\geq 0} \frac{\lambda^k}{k!} = e^{-\lambda} e^{\lambda} = 1$.

Motivation: Consider $X_n \sim \text{Bin}(n, \frac{\lambda}{n})$, we split time interval $[0, \lambda]$ into n small intervals. If the probability of arrival in each interval is p, and independent across intervals. The total number of arrivals is X_n , and note by fixing k and taking $n \to \infty$,

$$\mathbb{P}(X_n = k) = \binom{n}{k} (\frac{\lambda}{n})^k (1 - \frac{\lambda}{n})^{n-k}$$

$$= \frac{n!}{n^k (n-k)!} \times \frac{\lambda^k}{k!} \times (1 - \frac{\lambda}{n})^n \times (1 - \frac{\lambda}{n})^{-k}$$

$$\to 1 \times \frac{\lambda^k}{k!} \times e^{-\lambda} \times 1 = e^{-\lambda} \frac{\lambda^k}{k!}.$$

2.2 More Than One RV

Motivation: Roll a die, and the outcome is $X \in \{1, 2, 3, 4, 5, 6\}$. If we consider the events

$$A = \{1 \text{ or } 2\}, B = \{1 \text{ or } 2 \text{ or } 3\}, C = \{1 \text{ or } 3 \text{ or } 5\}.$$

We have

$$\mathbf{1}_{A} \sim \operatorname{Bern}(\frac{1}{3}), \ \mathbf{1}_{B} \sim \operatorname{Bern}(\frac{1}{2}), \ \mathbf{1}_{C} \sim \operatorname{Bern}(\frac{1}{2}).$$

Note $\mathbf{1}_A \leq \mathbf{1}_B$ for all outcomes, but $\mathbf{1}_A \leq \mathbf{1}_C$ is not true for all outcomes.

Definition 2.3

 X_1, \ldots, X_n discrete RVs, then we say X_1, \ldots, X_n are independent if

$$\mathbb{P}(X_1 = x_1, \dots, X_n = x_n) = \mathbb{P}(X_1 = x_1) \cdots \mathbb{P}(X_n = x_n) \quad \forall x_1, \dots, x_n \in \mathbb{R}.$$

Remark. It suffices to check that $\forall x_i \in \text{im}(X_i)$.

Example. $X_1, ..., X_n$ independent RVs each with the Bern(p) distribution. We study $S_n = X_1 + \cdots + X_n$. Then

$$\mathbb{P}(S_n = k) = \sum_{\substack{x_1 + \dots + x_n = k \\ x_i \in \{0,1\}}} \mathbb{P}(X_1 = x_1, \dots, X_n = x_n)$$

$$= \sum_{\substack{x_1 + \dots + x_n = k \\ x_i \in \{0,1\}}} \mathbb{P}(X_1 = x_1) \dots \mathbb{P}(X_n = x_n) \text{ by independence}$$

$$= \sum_{\substack{x_1 + \dots + x_n = k \\ x_i \in \{0,1\}}} p^{|\{i|x_i = 1\}|} (1 - p)^{|\{i|x_i = 0\}|}$$

$$= \sum_{\substack{x_1 + \dots + x_n = k \\ x_i \in \{0,1\}}} p^k (1 - p)^{n-k}$$

$$= \binom{n}{k} p^k (1 - p)^{n-k}.$$

So $S_n \sim \text{Bin}(n, k)$.

Example. Consider the uniform permutation $(\sigma(1), \ldots, \sigma(n))$ of the integers $1, 2, \ldots, n$. We claim that $\sigma(1)$ and $\sigma(2)$ are not independent.

It suffices to find i_1 , i_2 such that

$$\mathbb{P}\left(\sigma(1)=i_1,\sigma(2)=i_2\right)\neq\mathbb{P}\left(\sigma(1)=i_1\right)\mathbb{P}\left(\sigma(2)=i_2\right).$$

For example,

$$\mathbb{P}(\sigma(1) = 1, \sigma(2) = 1) = 0 \neq \mathbb{P}(\sigma(1) = 1) \mathbb{P}(\sigma(2) = 1) = \frac{1}{n} \cdot \frac{1}{n}.$$

We also have that if X_1, \ldots, X_n are independent, $\forall A_1, \ldots, A_n \in \mathbb{R}$ countable,

$$\mathbb{P}\left(X_1 \in A_1, \dots, X_n \in A_n\right) = \mathbb{P}\left(X_1 \in A_1\right) \cdots \mathbb{P}\left(X_n \in A_n\right).$$

Lecture 9 8 Feb. 2022

2.3 Expectation

If we have $(\Omega, \mathcal{F}, \mathbb{P})$ and X a discrete RV. For now, X only takes non-negative values. " $X \ge 0$ "

Definition 2.4

The expectation of X (or *expected value* or *mean*).

$$\mathbb{E}[X] = \sum_{x \in \mathrm{im}(X)} x \mathbb{P}(X = x) = \sum_{\omega \in \Omega} X(\omega) \mathbb{P}(\{\omega\}).$$

The latter definition is only used in a later proof once.

Remark. Informally, this is the "average of values taken by X, weighted by p_X ".

Example. If we have X uniform on $\{1, 2, ..., 6\}$ (e.g., a die), we have

$$\mathbb{E}[X] = \frac{1}{6} \times 1 + \frac{1}{6} \times 2 + \dots + \frac{1}{6} \times 6 = 3.5.$$

Note that $\mathbb{E}[X] \notin \text{im}(X)$.

Example. If $X \sim \text{Bin}(n, p)$. We have

$$\mathbb{E}[X] = \sum_{k=0}^{n} k \mathbb{P}(X = k) = \sum_{k=0}^{n} k \binom{n}{k} p^{k} (1 - p)^{n-k}.$$

Note that

$$k\binom{n}{k} = \frac{k \times n!}{k! \times (n-k)!} = \frac{n!}{(k-1)!(n-k)!} = \frac{n \times (n-1)!}{(k-1)! \times (n-k)!} = n\binom{n-1}{k-1}.$$

So we have

$$\begin{split} \mathbb{E}[X] &= n \sum_{k=1}^{n} \binom{n-1}{k-1} p^k (1-p)^{n-k} \\ &= n p \sum_{k=1}^{n} \binom{n-1}{k-1} p^{k-1} (1-p)^{(n-1)-(k-1)} \\ &= n p \sum_{\ell=0}^{n-1} \binom{n-1}{\ell} p^{\ell} (1-p)^{(n-1)-\ell} \\ &= n p (p+(1-p))^{n-1} \\ &= n p. \end{split}$$

Note. We would like to say that

$$\mathbb{E}[Bin(n,p)] = \mathbb{E}[Bern(p)] + \cdots + \mathbb{E}[Bern(p)].$$

We will show this later in the lecture.

Example. If $X \sim \text{Poisson}(\lambda)$,

$$\mathbb{E}[X] = \sum_{k \ge 0} k \mathbb{P}(X = k) = \sum_{k \ge 0} k \cdot e^{-\lambda} \frac{\lambda^k}{k!}$$

$$= \sum_{k \ge 1} e^{-\lambda} \frac{\lambda^k}{(k-1)!}$$

$$= \lambda \sum_{k \ge 1} e^{-\lambda} \frac{\lambda^{k-1}}{(k-1)!}$$

$$= \lambda \sum_{\ell \ge 0} e^{-\lambda} \frac{\lambda^{\ell}}{\ell!}$$

$$= \lambda.$$

Note. We would like to say that

$$\mathbb{E}[\operatorname{Poisson}(\lambda)] \approx \mathbb{E}[\operatorname{Bin}(n, \frac{\lambda}{n})] = \lambda.$$

But it is not true in general that $\mathbb{P}(X_n = k) \approx \mathbb{P}(X = k) \implies \mathbb{E}[X_n] \approx \mathbb{E}[X]$.

For a general X (not necessarily $X \ge 0$),

$$\mathbb{E}[X] = \sum_{x \in \text{im}(X)} x \mathbb{P}(X = x)$$

unless $\sum_{\substack{x \geq 0 \ x \in \text{im}(X)}} x \mathbb{P}(X = x) = +\infty$ and $\sum_{\substack{x \leq i \text{m}(X) \ x \in \text{im}(X)}} x \mathbb{P}(X = x) = -\infty$, then we say $\mathbb{E}[X]$ is not defined. (because we don't want to do arithmetic with infinity)

If only one of them holds, we say that $\mathbb{E}[X]$ is $+\infty$ and $-\infty$ respectively. (some people say that it is undefined, but the lecturer disagrees with it) If neither of them hold, we say X is *integrable*.

Example. Most examples in the course are integrable except the following. Let

$$\mathbb{P}(x=n) = \frac{6}{\pi^2} \times \frac{1}{n^2}. \qquad x \ge 1$$

Note that $\sum \mathbb{P}(X = n) = 1$. Then

$$\mathbb{E}[X] = \sum \frac{6}{\pi^2} \times \frac{1}{n} = +\infty.$$

If instead, let

$$\mathbb{P}(X=n) = \frac{3}{\pi^2} \times \frac{1}{n^2}. \qquad n \in \mathbb{Z} \setminus \{0\}$$

Then $\mathbb{E}[X]$ is not defined.

Example. $\mathbb{E}[\mathbf{1}_A] = \mathbb{P}(A)$.

Property. 1. If $X \ge 0$, then $\mathbb{E}[X] \ge 0$ with equality if and only if $\mathbb{P}(X = 0) = 1$.

Proof.
$$\mathbb{E}[X] = \sum_{\substack{x \in \text{im}(X) \\ x \neq 0}} x \mathbb{P}(X = x).$$

2. If $\lambda, c \in \mathbb{R}$, then

a)
$$\mathbb{E}[X+c] = \mathbb{E}[x] + c$$
;

b)
$$\mathbb{E}[\lambda X] = \lambda \mathbb{E}[X]$$
.

3. a) For *X*, *Y* random variables (both integrable) on same probability space,

$$\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y].$$

b) In fact, for $\lambda, \mu \in \mathbb{R}$,

$$\mathbb{E}[\lambda X + \mu Y] = \lambda \mathbb{E}[X] + \mu \mathbb{E}[Y].$$

Proof. For Ω countable, we have

$$\begin{split} \mathbb{E}[\lambda X + \mu Y] &= \sum_{\omega \in \Omega} (\lambda X(\omega) + \mu Y(\omega)) \mathbb{P}(\{\omega\}) \\ &= \lambda \sum_{\omega \in \Omega} X(\omega) \mathbb{P}(\{\omega\}) + \mu \sum_{\omega \in \Omega} Y(\omega) \mathbb{P}(\{\omega\}) \\ &= \lambda \mathbb{E}[X] + \mu \mathbb{E}[Y]. \end{split}$$

Note that property (2) is a special case of property (3). Similarly, it extends to n RVs. It is called *linearity of expectation*.

Remark. 1. Independence is not a condition.

Lecture 10

10 Feb. 2022

Corollary 2.1

$$X \ge Y$$
 then $\mathbb{E}[X] \ge \mathbb{E}[X]$.

Proof. Note X = (X - Y) + Y. By linearity of expectation,

$$\mathbb{E}[X] = \mathbb{E}[X - Y] + \mathbb{E}[X].$$

Because $X - Y \ge 0$ and property 1, $\mathbb{E}[X - Y] \ge 0$.

Key applications of expectation are counting problems.

Example. Let $(\sigma(1), ..., \sigma(n))$ be uniform on Σ_n , and $Z = |\{i : \sigma(i) = i\}|$ be the number of fixed points. Let $A_i = \{\sigma(i) = i\}$. (recall that A_i are not independent) Note

$$Z=\mathbf{1}_{A_1}+\cdots+\mathbf{1}_{A_n}.$$

And we have

$$\mathbb{E}[Z] = \mathbb{E}[\mathbf{1}_{A_1} + \dots + \mathbf{1}_{A_n}]$$

$$= \mathbb{E}[\mathbf{1}_{A_1}] + \dots + \mathbb{E}[\mathbf{1}_{A_n}]$$

$$= \mathbb{P}(A_1) + \dots + \mathbb{P}(A_n)$$

$$= \frac{1}{x} \times n = 1.$$

Note that this is the same answer as $Bin(n, \frac{1}{n})$, but they are not the same distribution.

Example. If *X* takes values in $\mathbb{Z}_{\geq 0}$.

$$\mathbb{E}[X] = \sum_{k \ge 1} \mathbb{P}(X \ge k).$$

Proof. Carefully re-arrange the summands.

Proof. Write $X = \sum_{k \geq 1} \mathbf{1}_{X \geq k}$, and take expectation of both sides

$$\mathbb{E}[X] = \mathbb{E}[\sum \mathbf{1}_{X \ge k}] = \sum \mathbb{E}[\mathbf{1}_{X \ge k}] = \sum \mathbb{P}(X \ge k).$$

Theorem 2.1: Markov's Inequality

Let $X \ge 0$ be a random variable. Then $\forall a > 0$,

$$\mathbb{P}(X \ge a) \le \frac{\mathbb{E}[X]}{a}.$$

Remark. If we take $a = \frac{\mathbb{E}[X]}{2}$, it is not useful since it just tells us that the probability is less than 2. It gets more useful when a is large.

Proof. Observe that $X \ge a \mathbf{1}_{X \ge a}$. Taking expectations,

$$\mathbb{E}[X] \ge a\mathbb{E}[\mathbf{1}_{X>a}] = a\mathbb{P}(X \ge a),$$

and rearrange.

Remark. This is also true for continuous RVs.

Proposition 2.1

Let $f : \mathbb{R} \to \mathbb{R}$ be a function, then f(X) is also a random variable. And

$$\mathbb{E}[f(X)] = \sum_{x \in \text{im}(X)} f(x) \mathbb{P}(X = x)$$

when the expectation exists.

Proof. Let $A = \operatorname{im}(f(X)) = \{ f(x) \mid x \in \operatorname{im}(X) \}$. Starting with the right-hand side,

$$\sum_{x \in \text{im}(X)} f(x) \mathbb{P}(X = x) = \sum_{y \in A} \sum_{\substack{x \in \text{im}(X) \\ f(x) = y}} f(x) \mathbb{P}(X = x)$$

$$= \sum_{y \in A} y \sum_{\substack{x \in \text{im}(X) \\ f(x) = y}} \mathbb{P}(X = x)$$

$$= \sum_{y \in A} y \mathbb{P}(f(X) = y)$$

$$= \mathbb{E}[f(X)]$$

Consider the random variables.

$$U_n \sim \text{Uniform}(\{-n, -n+1, ..., n\})$$

 $V_n \sim \text{Uniform}(\{-n, n\})$
 $Z_n = 0$
 $S_n \sim n - 2\text{Bin}(n, 1/2)$ (random walk for n step)

All of these have expectation 0. *Variance* "measure how concentrated a RV is around its mean".

Definition 2.5

The *variance* of *X* is

$$Var(X) = \mathbb{E}[(X - \mathbb{E}[X])^2].$$

Property. 1. $Var(X) \ge 0$ with equality if and only if $\mathbb{P}(X = \mathbb{E}[X]) = 1$.

2. Alternatively,

$$Var(X) = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$$

Proof. Write $\mu = \mathbb{E}[X]$, then

$$Var(X) = \mathbb{E}[(X - \mu)^{2}]$$

$$= \mathbb{E}[X^{2} - 2\mu X + \mu^{2}]$$

$$= \mathbb{E}[X^{2}] - 2\mu \mathbb{E}[X] + \mu^{2}$$

$$= \mathbb{E}[X^{2}] - \mu^{2}.$$

3. If λ , $c \in \mathbb{R}$,

• $Var(\lambda X) = \lambda^2 Var(X)$;

• Var(X + c) = Var(X);

Proof. $\mathbb{E}[X+c] = \mu + c$, and

$$Var(X + c) = \mathbb{E}[(X + c - (\mu + c))^2] = \mathbb{E}[(X - \mu)^2] = Var(X).$$

Lecture 11 12 Feb. 2022

Example. $X \sim \text{Poisson}(\lambda)$, then $\mathbb{E}[X] = \lambda$, and we have

$$Var(X) = \mathbb{E}[X^2] - \lambda^2.$$

"Falling factorial trick": sometimes $\mathbb{E}[X(X-1)]$ is easier than $\mathbb{E}[X^2]$.

$$\mathbb{E}[X(X-1)] = \sum_{k\geq 2} k(k-1)e^{-\lambda} \frac{\lambda^k}{k!}$$
$$= \lambda^2 e^{-\lambda} \sum_{k\geq 2} \frac{\lambda^{k-2}}{(k-2)!} = \lambda^2.$$

And by linearity of expectation,

$$\mathbb{E}[X^2] = \mathbb{E}[X(X-1)] + \mathbb{E}[X] = \lambda^2 + \lambda.$$

So the variance is Var(X) = x.

Example. Take $Y \sim \text{Geo}(p) \in \{1, 2, 3, \dots\}$, and $\mathbb{E}[Y] = \frac{1}{p}$, $\text{Var}(Y) = \frac{1-p}{p^2}$.

Note. When λ is large, $Var(X) = \mathbb{E}[X]$. When p is small, $Var(Y) \approx \frac{1}{p^2} = (\mathbb{E}[X])^2$. So Poisson distribution is more concentrated.

Example. When $X \sim \text{Bern}(p)$, we have $\mathbb{E}[X] = 1 \times p = p$, and $\mathbb{E}[X^2] = 1^2 \times p = p$, so $\text{Var}(X) = p - p^2 = p(1 - p)$.

Before we study the variance of binomial distribution, we develop some theory.

Lemma 2<u>.1</u>

If X, Y are independent RVs, and f, g functions $\mathbb{R} \to \mathbb{R}$,

$$\mathbb{E}[f(X)g(X)] = \mathbb{E}[f(X)] \,\mathbb{E}[f(Y)].$$

Proof. We have

$$\begin{split} \mathbb{E}[f(X)g(X)] &= \sum_{\substack{x \in \operatorname{im}(X) \\ y \in \operatorname{im}(Y)}} f(x)g(y) \mathbb{P}(X = x, Y = y) \\ &= \sum_{\substack{x \in \operatorname{im}(X) \\ y \in \operatorname{im}(Y)}} f(x)g(y) \mathbb{P}(X = x) \mathbb{P}(Y = y) \\ &= \sum_{\substack{x \in \operatorname{im}(X) \\ y \in \operatorname{im}(X)}} f(X) \mathbb{P}(X = x) \sum_{\substack{y \in \operatorname{im}(Y) \\ y \in \operatorname{im}(Y)}} g(y) \mathbb{P}(Y = y) \\ &= \mathbb{E}[f(X)] \mathbb{E}[g(Y)]. \end{split}$$

Example. If we have f(x) = g(x) = x, then $\mathbb{E}[XY] = \mathbb{E}[X] \mathbb{E}[Y]$.

Example. When $f(x) = g(x) = z^x$ or $f(x) = g(x) = e^{tx}$, the lemma is useful.

Lemma 2.2

If X_1, \ldots, X_n are independent,

$$Var(X_1 + \cdots + X_n) = Var(X_1) + \cdots + Var(X_n).$$

Proof. It suffices to prove the case when n=2. Let $\mathbb{E}[X]=\mu$ and $\mathbb{E}[Y]=\nu$, and $\mathbb{E}[X+Y]=\mu+\nu$.

$$Var(X + Y) = \mathbb{E}[(X + Y - \mu - \nu)^{2}]$$

$$= \mathbb{E}[(X - \mu)^{2}] + \mathbb{E}[(Y - \nu)^{2}] + 2\mathbb{E}[(X - \mu)(Y - \nu)]$$

$$= Var(X) + Var(Y) + 2\mathbb{E}[X - \mu]\mathbb{E}[Y - \nu]$$

$$= Var(X) + Var(Y).$$

Definition 2.6

If *X*, *Y* are RVs. Their covariance is $Cov(X, Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])].$

Remark. It measures how dependent X, Y are and in which direction. Cov(X, Y) > 0 means X large and Y large, and Cov(X, Y) < 0 means X large and Y small.

Property. 1. Cov(X, Y) = Cov(Y, X).

- 2. Cov(X, X) = Var(X).
- 3. Alternatively,

$$Cov(X, Y) = \mathbb{E}[XY] - \mathbb{E}[X] \mathbb{E}[Y].$$

It is often more useful, and it's nice if $\mathbb{E}[X] = 0$.

Proof.

$$Cov(X,Y) = \mathbb{E}[(X - \mu)(Y - \nu)]$$

$$= \mathbb{E}[XY] - \mu \mathbb{E}[Y] - \nu \mathbb{E}[X] + \mu \nu$$

$$= \mathbb{E}[XY] - \mathbb{E}[X] \mathbb{E}[Y].$$

4. For $\lambda, c \in \mathbb{R}$,

•
$$Cov(c, X) = 0$$

•
$$Cov(X + c, Y) = Cov(X, Y)$$
.

•
$$Cov(\lambda X, Y) = \lambda Cov(X, Y)$$
.

5.
$$Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y)$$
.

6. Covariance is linear in each argument. That is,

$$Cov(\sum \lambda_i X_i, Y) = \sum \lambda_i Cov(X_i, Y)$$

and

$$Cov(\sum \lambda_i X_i, \sum \mu_j Y_j) = \sum \sum \lambda_i \mu_j Cov(X_i, Y_j).$$

The special case is

$$Var(\sum_{i=1}^{n} X_i) = Cov(\sum_{i=1}^{n} X_i, \sum_{i=1}^{n} X_i)$$
$$= \sum_{i=1}^{n} Var(X_i) + \sum_{i \neq j} Cov(X_i, Y_j).$$

Remark. We know that X, Y independent implies Cov(X, Y) = 0, but the converse is false.

Lecture 12

15 Feb. 2022

Example. Var(X + Y) = Var(X) + Var(Y) if X and Y are independent.

Take
$$Y = -X$$
, $Var(Y) = Var(-X) = Var(X)$. But
$$0 = Var(0) = Var(X + Y) \neq Var(X) + Var(Y) = 2 Var(X)$$

unless *X* and *Y* are deterministic.

Example. Again let $(\sigma(1), \dots, \sigma(n))$ uniformly on Σ_n , and let $A_i = \{ \sigma \mid \sigma(i) = i \}$, and $N = \mathbf{1}_{A_1} + \dots + \mathbf{1}_{A_n}$ be the number of fixed points. We've already seen

$$\mathbb{E}[N] = n \times \frac{1}{n} = 1.$$

Note that the A_i s are not independent, and

$$\operatorname{Var}(\mathbf{1}_{A_i}) = \frac{1}{n}(1 - \frac{1}{n})$$

$$\operatorname{Cov}(\mathbf{1}_{A_i}, \mathbf{1}_{A_j}) = \mathbb{E}[\mathbf{1}_{A_i}\mathbf{1}_{A_j}] - \mathbb{E}[\mathbf{1}_{A_i}] \mathbb{E}[\mathbf{1}_{A_j}]$$

$$= \mathbb{E}[\mathbf{1}_{A_i \cap A_j}] - \mathbb{E}[\mathbf{1}_{A_i}] \mathbb{E}[\mathbf{1}_{A_j}]$$

$$= \mathbb{P}(A_i \cap A_j) - \mathbb{P}(A_i) \mathbb{P}(A_j)$$

$$= \frac{1}{n(n-1)} - \frac{1}{n} \times \frac{1}{n}$$

$$= \frac{1}{n^2(n-1)} > 0.$$

So

$$Var(N) = \sum_{i=1}^{n} Var(\mathbf{1}_{A_i}) + \sum_{i \neq j} Cov(\mathbf{1}_{A_i}, \mathbf{1}_{A_j})$$

$$= n \times \frac{1}{n} (1 - \frac{1}{n}) + n(n - 1) \times \frac{1}{n^2(n - 1)j}$$

$$= 1 - \frac{1}{n} + \frac{1}{n} = 1.$$

Compare this with Bin $(n, \frac{1}{n})$. The binomial distribution has expectation 1 and variance $1 - \frac{1}{n}$. So the binomial distribution is not too disimilar to the number of fixed points.

Theorem 2.2: Chebyshev's Inequality

Let *X* be a RV, $\mathbb{E}[X] = \mu$ and $Var(X) = \sigma^2 < \infty$, then

$$\mathbb{P}(|X - \mu| \ge \lambda) = \frac{\operatorname{Var}(X)}{\lambda^2}.$$

Remark. It's easier to remember the proof, not the statement.

Proof. Apply Markov's inequality to $(X - \mu)^2$,

$$\mathbb{P}((X-\mu)^2 \ge \lambda^2) \le \frac{\mathbb{E}[(X-\mu)^2}{\lambda^2} = \frac{\operatorname{Var}(X)}{\lambda^2}.$$

And we are done.

Remark. 1. If instead we apply Markov's inequality to $|X - \mu|$, $\mathbb{E}[|X - \mu|]$ is less nice than Var(X).

- 2. Chebyshev's inequality gives better bounds than Markov's inequality.
- 3. Note that it can apply to all RVs, not just ≥ 0 .
- 4. $Var(X) < \infty$ is a stronger condition than $\mathbb{E}[X] < \infty$.

Definition 2.7

Quantity $\sqrt{\text{Var}(X)}$ is called the *standard deviation* of *X*.

Remark. It has the same unit as *X*, but it does not have as many nice properties as variance.

If we write $\lambda = k\sqrt{\sigma^2}$ ("k standard deviations") in Chebyshev's inequality, then

$$\mathbb{P}(|X - \mu| \ge k\sqrt{\sigma^2}) \le \frac{1}{k^2}.$$

This is a nice uniform statement.

Definition 2.8: Conditional Expectation

If we have a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, we defined

$$\mathbb{P}(A \mid B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}.$$

The *conditional expectation* with the condition $B \in \mathcal{F}$ with $\mathbb{P}(B) > 0$ and X a RV is

$$\mathbb{E}[X \mid B] = \frac{\mathbb{E}[X\mathbf{1}_B]}{\mathbb{P}(B)}.$$

Example. If *X* is a die uniform on $\{1, ..., 6\}$,

$$\mathbb{E}[X \mid X \text{ prime}] = \frac{\frac{1}{6}(0+2+3+0+5+0)}{\frac{1}{2}} = \frac{1}{3}(2+3+5) = \frac{10}{3}.$$

Remark. An alternative characterization is

$$\mathbb{E}[X \mid B] = \sum_{x \in \text{im}(X)} x \, \mathbb{P}(X = x \mid B).$$

Proof.

$$\sum_{x \in \text{im}(X)} x \mathbb{P}(X = x \mid B) = \sum_{x \in \text{im}(X)} \frac{x \mathbb{P}(\{X = x\} \cap B)}{\mathbb{P}(B)}$$
$$= \sum_{x \in \text{im}(X)} \frac{x \mathbb{P}(X \mathbf{1}_B = x)}{\mathbb{P}(B)}$$

and note that $\mathbb{E}[X\mathbf{1}_B] = \sum x \mathbb{P}(X\mathbf{1}_B = x)$.

Theorem 2.3: Law of Total Expectation

If $(B_1, B_2, ...)$ is a finite or countably-infinite partition of Ω with $B_n \in \mathcal{F}$ such that $\mathbb{P}(B_n) > 0$ and X a RV, then

$$\mathbb{E}[X] = \sum_{n} \mathbb{E}[X \mid B_n] \, \mathbb{P}(B_n).$$

Proof.

$$\sum_{n} \mathbb{E}[X \mid B_{n}] \mathbb{P}(B_{n}) = \sum_{n} \mathbb{E}[X \mathbf{1}_{B_{n}}]$$

$$= \mathbb{E}[X \cdot (\mathbf{1}_{B_{1}} + \dots + \mathbf{1}_{b_{n}})]$$

$$= \mathbb{E}[X \cdot \mathbf{1}] = \mathbb{E}[X].$$

Remark. 1. We recover Law of Total probability by taking $X = \mathbf{1}_A$.

2. Two-stage randomness where (B_n) describes what happens in stage 1.

Example (Random Sums). If $(X_n)_{n\geq 1}$ are IID (independent and identically distributed) with $\mathbb{E}[X_n] = \mu$, and $N \in \{0, 1, 2, ...\}$ is a random index independent of (X_n) . The

sum $S_n = X_1 + \cdots + X_n$ has $\mathbb{E}[S_n] = n\mu$. The random sum

$$\mathbb{E}[S_N] = \sum_{n \ge 0} \mathbb{E}[S_N \mid N = n] \, \mathbb{P}(N = n)$$
$$= \sum_{n \ge 0} \mathbb{E}[S_n] \, \mathbb{P}(N = n)$$
$$= \sum_{n \ge 0} n \mu \, \mathbb{P}(N = n) = \mu \, \mathbb{E}[N]$$

Lecture 13 17 Feb. 2022

2.4 Random Walks

Definition 2.9

Let $(X_n)_{n\geq 1}$ be IID random variables and

$$S_n = x_0 + X_1 + \dots + X_n.$$

 (S_0, S_1, \dots) is a random process called *random walk* starting from x_0 .

Example. We study Simply Random Walk on \mathbb{Z} ; that is,

$$\mathbb{P}(X_i = 1) = p$$
, $\mathbb{P}(X_i = -1) = q = 1 - p$

with $x_0 \in \mathbb{Z}$, and often $x_0 = 0$.

When $p = q = \frac{1}{2}$, it's called *symmetric* simple random walk.

Example.
$$P(S_2 = x_0) = pq + qp = 2pq$$
.

A useful interpretation is a gambler repeated playing a game where he wins £1 with probability p and loses £1 with probability q. Often, we require the random walk to stop when the gambler has £0.

Problem. Suppose the gambler starts with £x at time 0. What is the probability he reaches £a before £0. (0 < x < a)

Notation. We introduce $\mathbb{P}_x(A) = \mathbb{P}(A \mid x_0 = x)$ to condition on the first step. ("measure of random walk started from x_0 ")

By Law of Total Probability,

$$\mathbb{P}_x(S \text{ gets to } a \text{ before } 0) = \sum_z \mathbb{P}_x(S \text{ gets to } a \text{ before } 0 \mid S_1 = z) \, \mathbb{P}_x(S_1 = z)$$

$$= \sum_z \mathbb{P}_z(S \text{ gets to } a \text{ before } 0) \, \mathbb{P}_x(S_1 = z)$$

So $h_x = \mathbb{P}_x(S \text{ gets to } a \text{ before } 0)$, and

$$h_x = ph_{x+1} + qh_{x-1}.$$

It is important to specify boundary conditions, and $h_0 = 0$, $h_a = 1$.

By Law of Total Expectation, the expected absorption time is

$$T = \min \{ n \ge 0 \mid S_n = 0 \text{ or } S_n = a \},$$

the "First time *S* hits 0 or *a*". We write

$$\mathbb{E}_{x}[T] = \tau_{x}$$

for the expected absorption time starting from x. By Law of Total Expectation,

$$\tau_{x} = \mathbb{E}_{X}[T] = p \,\mathbb{E}_{x}[T \mid S_{1} = x + 1] + q \,\mathbb{E}_{x}[T \mid S_{1} = x - 1]$$
$$= p \,\mathbb{E}_{x+1}[T + 1] + q \,\mathbb{E}_{x-1}[T + 1]$$
$$= 1 + p\tau_{x+1} + q\tau_{x-1}$$

The boundary conditions are $\tau_0 = \tau_a = 0$.

Solving Linear Recurrence Relations

If we have

$$ph_{x+1} - h_x + qh_{x-1} = 0.$$

This is homogeneous with boundary conditions $h_0 = 0, h_a = 1$. This is analogous to differential equations, and the solutions form a vector space.

To solve it, we find two linearly independent solutions. Guess $h_x = \lambda^x$,

$$p\lambda^{x+1} - \lambda^x + q\lambda^{x-1} = 0$$
$$p\lambda^2 - \lambda + q = 0.$$

It's quadratics, so we have $\lambda = 1$ or $\lambda = \frac{q}{p}$.

When $p \neq q$, $h_x = A + B(\frac{q}{p})^x$. Using the boundary conditions, $h_0 = 0 = A + B$ and $h_a = 1 = A + B(\frac{q}{p})^a$. So $h_x = \frac{(q/p)^x - 1}{(q/p)^a - 1}$

When p = q, note that $h_x = x$ is a solution, so the general solution is $h_x = A + Bx$. Boundary conditions give $h_0 = 0 = A$ and $h_a = 1 = A + Ba$. So $h_x = \frac{x}{a}$.

If p = q, the expected profit if you start from x and play until time T is

$$\mathbb{E}_x[S_T] = a \, \mathbb{P}_x(S_T = a) + 0 \cdot \mathbb{P}(S_T = 0) = a \cdot \frac{x}{a} = x.$$

This fits out intuition for fair games.

For the inhomogeneous case, we find a particular solution by guess one level more complicated than general solution. We next add on the general solution and solve for boundary condition.

When $p \neq q$, we guess $h_x = \frac{x}{q-p}$ works as a particular solution.

When p = q, we guess that $h_x = Cx^2$ might work. Substituting it in, and we have

$$\frac{C}{2}(x+1)^2 - Cx^2 + \frac{C}{2}(x-1)^2 = -1 \implies C = -1.$$

So $h_x = A + Bx - x^2$ is the general solution. The boundary conditions give $h_x = x(a-x)$. So the expected absorption time is maximized by x roughly equal to $\frac{a}{2}$.

Lecture 14

19 Feb. 2022

2.4.1 Gambler's Ruin

We have

$$\mathbb{P}_{x}(\text{hit }0) = \lim_{a \to \infty} \mathbb{P}_{x}(\text{hit }0 \text{ before }a)$$

$$= \begin{cases} 1 - (\frac{q}{p})^{x}, & \text{if } p > q & \text{Is this true??} \\ 1, & \text{if } p \le q \end{cases}$$

When $p = \frac{1}{2}$,

 $\mathbb{E}[\text{time to hit } 0] \ge \mathbb{E}[\text{time to hit } 0 \text{ or } a] = x(a-x) \to \infty.$

So T_x , the time to hit 0 from x is finite with probability 1 but infinite expectation.

Remark. Alternative derivation that $\mathbb{E}[T_1] = \infty$.

$$\mathbb{E}[T_1] = \frac{1}{2} \times 1 + \frac{1}{2}(1 + \mathbb{E}[T_2])$$

= 1 + \mathbb{E}[T_1].

Conclude that $\mathbb{E}[T_1] = \infty$.

2.5 Generating Functions

Definition 2.10

If *X* is a RV taking values in $\{0,1,2,\ldots\}$, the *probability generating function* of *X* is

$$G_X(z) = \mathbb{E}[z^X] = \sum_{k \ge 0} z^k \mathbb{P}(X = k).$$

It can be seen as a function $(-1,1) \to \mathbb{R}$.

Remark. Probability generating functions encodes the distribution of X as a function with nice analytic properties.

Example. If $X \sim \text{Bern}(p)$, then

$$G_X(z) = z^0 \mathbb{P}(X=0) + z^1 \mathbb{P}(X=1) = (1-p) + pz.$$

Example. If $X \sim \text{Poisson}(\lambda)$, then

$$G_X(z) = \sum_{k \geq 0} z^k e^{-\lambda} \frac{\lambda^k}{k!} = e^{-\lambda} \sum_{k \geq 0} \frac{(\lambda z)^k}{k!} = e^{\lambda(z-1)}.$$

One can recover PMF from PGF. Note that

$$G_X(0) = 0^0 \mathbb{P}(X = 0) = \mathbb{P}(X = 0).$$

Lecture 16

24 Feb. 2022

Lecture 17

26 Feb. 2022