Modeling Carbon Uptake by the Harvard Forest

Ethan Manninen 4/I0/19

Background: Three Models

R² To Differentiate Models of NEE

RNN discarded:

- 1) "Base model" does not offer an advantage over ANN in return for increase in required resources
- 2) RNN would need to train on minimum of a full year of data, out of ~15

Neural Networks Can Attribute VPRM Error to Cov(T, PAR)

Eshel et al 2019

Error in ANN Partly Driven by n?

Seasonality of NEE Observation Availability

Models' Error Peaks Align with Summer Observation Dropoff, but not Winter

Why does the VPRM display less error, but lower R²?

Autocorrelation to Determine ARIMA Parameters

Average Number Lags per year: ~2,600

Resource Constrained ARIMA

Conclusions, Future Directions, Limitations

- RNN likely does not offer significant advantage over recent ANN in predicting NEE in HF
- Potential link between seasonality of error and number of observations, needs rigorous treatment
- No Bootstraps
- ARIMA with sufficient resources to investigate Observation Seasonality and Model Error

Acknowledgements: Tianning Zhao, Prof. Wofsy, Prof. Tziperman