Experiment 2.1

Logistic Regression

Student Name: Ayush Kumar Pathak UID:20BCS4990

Branch: CSE Section/Group:20BCS_WM_601-A

Semester: 5th

Subject Name: Machine Learning Lab Subject Code: CSP-317

1. Aim/Overview of the practical:

Apply logistic regression on iris dataset.

2. Source Code:

```
import pandas as pd

[1] from google.colab import drive
    drive.mount('/content/drive')

Mounted at /content/drive

of = pd.read_csv("/content/drive/MyDrive/ML Lab/Iris.csv")
    x = df.iloc[:, :2]
    y = df.iloc[:,2]

[4] x=df[['SepalLengthCm']]
    y=df['Species']
    df.head()
```

	Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa

Discover. Learn. Empower.

```
[5] from sklearn.model selection import train test split
    x train, x test, y train, y test = train test split(x,y,test size=0.4)
from sklearn.linear model import LogisticRegression
    model = LogisticRegression()
    model.fit(x_train, y_train)
    y predicted = model.predict(x test)
[7] from sklearn.metrics import accuracy_score
    print("Accuracy: ",accuracy_score(y_test,y_predicted))
    Accuracy: 0.73333333333333333
[8] from sklearn import svm
    #Create a svm Classifier
    clf = svm.SVC(kernel='linear') # Linear Kernel
    #Train the model using the training sets
    clf.fit(x_train, y_train)
    #Predict the response for test dataset
    y_pred1 = clf.predict(x_test)
    y pred1
```

Discover. Learn. Empower.

```
array(['Iris-setosa', 'Iris-virginica', 'Iris-virginica',
                'Iris-virginica', 'Iris-virginica', 'Iris-setosa',
                'Iris-versicolor', 'Iris-virginica', 'Iris-versicolor',
                'Iris-virginica', 'Iris-virginica', 'Iris-setosa', 'Iris-setosa', 'Iris-virginica', 'Iris-versicolor', 'Iris-versicolor',
                'Iris-virginica', 'Iris-setosa', 'Iris-versicolor',
                'Iris-virginica', 'Iris-versicolor', 'Iris-setosa', 'Iris-setosa', 'Iris-versicolor', 'Iris-virginica', 'Iris-virginica',
                'Iris-virginica', 'Iris-virginica', 'Iris-setosa', 'Iris-setosa',
                'Iris-setosa', 'Iris-versicolor', 'Iris-virginica', 'Iris-setosa', 'Iris-virginica', 'Iris-versicolor', 'Iris-setosa', 'Iris-setosa',
                'Iris-setosa', 'Iris-setosa', 'Iris-virginica', 'Iris-virginica',
                'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor',
                'Iris-versicolor', 'Iris-virginica', 'Iris-setosa',
'Iris-versicolor', 'Iris-versicolor', 'Iris-setosa',
                'Iris-versicolor', 'Iris-virginica', 'Iris-setosa',
'Iris-versicolor', 'Iris-virginica', 'Iris-versicolor',
                'Iris-setosa', 'Iris-setosa', 'Iris-virginica'], dtype=object)
[9] print("Accuracy: ",accuracy_score(y_test,y_pred1))
       Accuracy: 0.73333333333333333
[10] from sklearn.metrics import confusion matrix
[11] #This is for SVM
       confusion matrix(y test, y pred1)
       array([[20, 3, 0],
               [0, 9, 7],
                [0, 6, 15]])
```

Learning outcomes (What I have learnt):

- 1. Learn about the Logistic regression algorithm
- 2. Learn to perform the Logistic regression algorithm on iris dataset
- 3. Learnt about the exploratory data analysis
- 4. Learn to optimize the Model
- 5. Got the clear concept of logistic regression classifier

Evaluation Grid:

Sr. No.	Parameters	Marks Obtained	Maximum Marks
1.	Student Performance		12
	(Conduct of experiment)		
	objectives/Outcomes.		
2.	Viva Voce		10
3.	Submission of Work Sheet		8
	(Record)		
	Total		30