DENIAL OF SERVICE AND INTRUSION DETECTION

DENIAL OF SERVICE

- DoS attack is an attack on the availability of network resources.
- DoS attack can be initiated in many ways, including:
- Transmission failure
- -physical interference between asset and user
- Traffic redirection
- manipulation of routing table
- DNS attack
- Altering a DNS table
- Connection flooding
- flooding a server beyond a threshold

• Connection flooding attack seeks to negatively affect the availability of a network resource by exhausting or overwhelming the capacity of a communications channels.

TYPES OF CONNECTION FLOODING

- There are many types of Connection flooding attacks, including:
- 1. Echo Chargen (Character Generator Protocol)
- 2. Ping of Death
- 3. Smurf attack
- 4. SYN flood
- 5. teardrop

Echo Chargen

- It capitalizes on the echo commands within the character generator protocol.
- generator protocol it is a component of the broader internet protocol.
- It is designed to support debugging, testing and evaluating the performance of internet performance.
- this command simply instruct the server to send an identical copy of the data is has received back to the source server.

Echo Chargen Attack

Echo Chargen Attack

PING OF DEATH

- It was created for:
- diagnosing and solving problems with connections between host and a network that relies upon internet protocol addressing.
- Specifically the ping utility uses the Internet Control Message Protocol (ICMP) to send ping request to a target server.
- it measures the round trip time for each packet and track instances of packet loss

Ping of Death Attack

ICMP PING

Ping of Death Attack

ICMP PING

Ping of Death Attack

PING OF DEATH

- It is similar to the above mentioned .
- Malicious attacker sends a request to the broadcast address and it is relayed to the host on the network.
- The host then sends the reply to the ping request that is the malicious party/attacker but it is sent back to the target server.
- Both echo chargen and ping of death need a great deal of bandwidth.

SYN FLOOD ATTACK

TCP/IP CONNECTION

- It is a three-way-handshake to establish a connection
- Syn request are stored in a syn receive queue for a limited time befor the ack from the user is received and a connection is established.
- Syn request queue has a maximum amount of unacknowledged request it can hold. When the queue is filled up it is not able to accept legitimate request from users

SYN FLOOD ATTACK

SYN Flood Attack

SYN FLOOD ATTACK

SYN Flood Attack

SYN Flood Attack

SYN FLOOD ATTACK

NETWORK COMMUNICATI ON

- In ordinary network communication across the internet messages between users and servers are broken apart into segment of various length which are sent independently over the network.
- Due to the network, segments arrive out of order.
- Therefore the server must hold income segment until they all arrive after which the message can be reassembled.

- An attacker manipulates the segment of the message in way that they overlap.
- When the manipulated segment arrives at the target server, the server is confused because the situation is out of control and it cannot find a way of reassembling the incoming message.
- If the server is not intentionally designed to handle the situation, the tear drop attack can cause the server to crash.
- Therefore disrupting legitimate user from accessing the server

Teardrop Attack

User

Teardrop Attack

User

Teardrop Attack

User

END

THANK YOU