

Lecture 3 - Classification

DTU Management EngineeringDepartment of Management Engineering

Outline

- Recap
- Introduction
- Models
 - Logistic Regression
 - Support Vector Machines

• Multivariate linear regression model (linear in the parameters β_i)

$$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_r X_r + \varepsilon$$

• Multivariate linear regression model (linear in the parameters β_i)

$$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_r X_r + \varepsilon$$

Standard least squares coefficient estimates are scale equivariant.

• Multivariate linear regression model (linear in the parameters β_i)

$$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_r X_r + \varepsilon$$

- Standard least squares coefficient estimates are scale equivariant.
- Multiplying X_j by a constant c simply leads to a scaling of the least squares coefficient estimate $\hat{\beta}_j$ by a factor of 1/c.

• Multivariate linear regression model (linear in the parameters β_i)

$$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_r X_r + \varepsilon$$

- Standard least squares coefficient estimates are scale equivariant.
- Multiplying X_j by a constant c simply leads to a scaling of the least squares coefficient estimate $\hat{\beta}_i$ by a factor of 1/c.
- In other words, regardless of how the jth predictor is scaled, $X_j \hat{\beta}_j$ will remain the same
- However, this is not true with Ridge regression and the Lasso!

Back to Ridge Regression and the Lasso

• Recall the objective function in Ridge regression .

$$S = (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^T (\mathbf{y} - \mathbf{X}\boldsymbol{\beta}) + \lambda \sum_{j=1}^p \beta_j^2$$

Back to Ridge Regression and the Lasso

• Recall the objective function in Ridge regression .

$$S = (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^{T}(\mathbf{y} - \mathbf{X}\boldsymbol{\beta}) + \lambda \sum_{j=1}^{p} \beta_{j}^{2}$$

• In this case, $X_j\hat{\beta}_{j,\lambda}$ depends not only on the value of λ , but also on the scaling of X_j and of the other predictors!

Back to Ridge Regression and the Lasso

• Recall the objective function in Ridge regression .

$$S = (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^{T}(\mathbf{y} - \mathbf{X}\boldsymbol{\beta}) + \lambda \sum_{j=1}^{p} \beta_{j}^{2}$$

- In this case, $X_j\hat{\beta}_{j,\lambda}$ depends not only on the value of λ , but also on the scaling of X_j and of the other predictors!
- Hence, it is important to standardize the predictors before applying ridge regression or the Lasso.

Standardization and Normalization (feature scaling)

• Standardization and Normalization are two common ways of scaling features

Standardization and Normalization (feature scaling)

- Standardization and Normalization are two common ways of scaling features
- Standardization transforms a variable so it has a zero mean and unit standard deviation

$$\tilde{x}_{ij} = \frac{x_{ij} - \bar{x_j}}{\sigma_{x_j}} = \frac{x_{ij} - \bar{x_j}}{\sqrt{\frac{\sum_{i=1}^{n} (x_{ij} - \bar{x_j})^2}{n}}}$$

Standardization and Normalization (feature scaling)

- Standardization and Normalization are two common ways of scaling features
- Standardization transforms a variable so it has a zero mean and unit standard deviation

$$\tilde{x}_{ij} = \frac{x_{ij} - \bar{x_j}}{\sigma_{x_j}} = \frac{x_{ij} - \bar{x_j}}{\sqrt{\sum_{i=1}^{n} (x_{ij} - \bar{x_j})^2}}$$

Normalization transforms a variable so it is between 0 and 1

$$\tilde{x}_{ij} = \frac{x_{ij} - x_j^{\mathsf{MIN}}}{x_j^{\mathsf{MAX}} - x_j^{\mathsf{MIN}}}$$

Handling Categorical Predictors

 Suppose we are modeling credit card balance of a customer and we have information about whether a customer owns a house or not

Handling Categorical Predictors

- Suppose we are modeling credit card balance of a customer and we have information about whether a customer owns a house or not
- We can incorporate this variable in the model by creating a indicator or dummy variable

$$x_i = \begin{cases} 1 & \text{if person } i \text{ owns a house.} \\ 0 & \text{if person } i \text{ does not own a house.} \end{cases}$$

Handling Categorical Predictors

- Suppose we are modeling credit card balance of a customer and we have information about whether a customer owns a house or not
- We can incorporate this variable in the model by creating a indicator or dummy variable

$$x_i = \begin{cases} 1 & \text{if person } i \text{ owns a house.} \\ 0 & \text{if person } i \text{ does not own a house.} \end{cases}$$

ullet If we have a qualitative variable with k possible values, we create k-1 dummy variables. For example if we know the location of the house (say South, West or East), we could create two variables

$$x_{i1} = \begin{cases} 1 & \text{if person } i \text{ lives in the South.} \\ 0 & \text{if person } i \text{ does not live in the South.} \end{cases}$$

$$x_{i2} = \begin{cases} 1 & \text{if person } i \text{ lives in the West.} \\ 0 & \text{if person } i \text{ does not live in the West.} \end{cases}$$

Introduction

- ullet Linear regression o Predicting a **continuous** dependent variable from a set of independent variables.
- ullet Classification o Predicting a **discrete** dependent variable from a set of independent variables.
- Identifying to which of a set of classes, $\{\pi_1,...,\pi_g\}$, a new observation belongs, on the basis of a training set of data containing observations whose classes are known.

Classification

Examples:

- Vehicle identification determine type of vehicle from camera
- Incident detection determine incident/no-incident from flow and speed data
- Spam filter Allocate emails to spam/no-spam
- Handwritten Digit Recognition Allocate the images of handwritten zip codes on mail to digits

Example: Vehicle Type Identification

Bus

Minivan

Passenger car

Sedan

Truck

Image source: Dong, Zhen et al. "Vehicle Type Classification Using Unsupervised Convolutional Neural Network." IEEE, 2014. 172–177. Print.

Example: Vehicle Type Identification

- Images were captured from traffic cameras
- The task is to identify the types of vehicles in these images
- Each image represents one observation
- Dependent variable $Y \in \{Bus, MiniVan, PassengerCar, Sedan, Truck\}$
- Applications: traffic volume estimation, illegal vehical type identification

Regression for Discrete Dependent Variable?

- Can we directly use linear regression models to predict the discrete dependent variable?
- Linear regression model:

$$Y = X\beta + \epsilon$$

ullet We used least squares method to estimate the parameters eta

Regression for Discrete Dependent Variable?

- Can we directly use linear regression models to predict the discrete dependent variable?
- Linear regression model:

$$Y = X\beta + \epsilon$$

- ullet We used least squares method to estimate the parameters eta
- This model predicts continuous variable with values ranging from $-\infty$ to ∞ i.e, $Y\in (-\infty,\infty)$
- We need another way to use a 'regression like' approach for discrete dependent variables.

Binary Logistic Regression

- ullet Dependent variable, Y, is restricted to two values.
- $\bullet \ \, \mathsf{Examples:} \ \{\mathsf{Incident}, \mathsf{NoIncident}\}, \ \{\mathsf{Spam}, \mathsf{NotSpam}\}, \ \{\mathsf{Employed}, \mathsf{NotEmployed}\}$

• Denote the two cases as 0 and 1

Binary Logistic Regression

- ullet Dependent variable, Y, is restricted to two values.
- Examples: {Incident, NoIncident}, {Spam, NotSpam}, {Employed, NotEmployed}
- Denote the two cases as 0 and 1
- ullet For a given observation, we want to estimate the **probability** that Y belongs to either case.

Binary Dependent Variables

• We need only focus on predicting $p(y_i = 1)$

$$-> p(y_i = 0) = 1 - p(y_i = 1)$$

Binary Dependent Variables

ullet We need only focus on predicting $p(y_i=1)$

$$-> p(y_i = 0) = 1 - p(y_i = 1)$$

 \bullet Linear regression model still cannot be used since the probability $p(y_i=1), \in \ [0,1]$

• Need to establish a function that links $p(y_i = 1)$ to a continuous variable that ranges from $-\infty$ to $+\infty$, possibly obtained by a linear model (LR(X)).

Odds ratio

Odds ratio

- not symmetric
- \bullet $[0,+\infty[\text{, but it should be }]-\infty,+\infty[$

Logit model

Take the natural logarithm of the odds ratio

$$logit(p(y_i = 1)) = ln(odds) = ln\left(\frac{p(y_i = 1)}{1 - p(y_i = 1)}\right)$$

Logit model

Take the natural logarithm of the odds ratio

$$logit(p(y_i = 1)) = ln(odds) = ln\left(\frac{p(y_i = 1)}{1 - p(y_i = 1)}\right)$$

Log odds ratio (logit) provides a monotonically increasing function of $p(y_i=1)$ with range $(-\infty,\infty)$

Binary Logit Model

Now we can use a linear function of the predictors to model the log odds ratio (*logit*)

$$\operatorname{logit}(p(y_i = 1)) = \ln\left(\frac{p(y_i = 1)}{1 - p(y_i = 1)}\right) = \boldsymbol{\beta}^T \mathbf{x}_i$$

Binary Logit Model

Now we can use a linear function of the predictors to model the log odds ratio (logit)

$$\operatorname{logit}(p(y_i = 1)) = \ln\left(\frac{p(y_i = 1)}{1 - p(y_i = 1)}\right) = \boldsymbol{\beta}^T \mathbf{x}_i$$

From the predicted value of the *logit*, we can obtain the probability of $y_i=1$ through the *logistic sigmoid function*:

$$p(y_i = 1) = \frac{1}{1 + \exp(-\boldsymbol{\beta}^T \mathbf{x}_i)}$$

Logistic Sigmoid Function

$$p(y_i = 1) = \frac{1}{1 + \exp(-\boldsymbol{\beta}^T \mathbf{x}_i)}$$

Parameter Interpretation

- ullet eta_0 is the intercept
- $\beta_1, \beta_2, ..., \beta_r$ are the coefficients
- \bullet The sign of β_i indicates the direction of change in p(y) with respect to change in x_i

Parameter Interpretation

- ullet eta_0 is the intercept
- $\beta_1, \beta_2, ..., \beta_r$ are the coefficients
- \bullet The sign of β_i indicates the direction of change in p(y) with respect to change in x_i
- ullet The magnitude of eta_i affects the steepness of the sigmoid function

Model Estimation

ullet We need to estimate $oldsymbol{eta}$

Model Estimation

- We need to estimate β
- We want to choose parameters $\boldsymbol{\beta} = [\beta_0, \beta_1, ..., \beta_r]^T$ such that the joint probability of $P(\boldsymbol{Y} = \mathbf{y})$ for all observations is maximized

Model Estimation

- ullet We need to estimate eta
- We want to choose parameters $\boldsymbol{\beta} = [\beta_0, \beta_1, ..., \beta_r]^T$ such that the joint probability of $P(\boldsymbol{Y} = \boldsymbol{y})$ for all observations is maximized
- Example

• Obs 1:
$$\mathbf{x_1}, y_1 = 1$$
; $p(y_1 = 1) = p_1 = \frac{1}{1 + \exp(-\boldsymbol{\beta}^T \mathbf{x_1})}$

• Obs 2:
$$\mathbf{x_2}, y_2 = 0$$
; $p(y_2 = 0) = p_2 = 1 - \left(\frac{1}{1 + \exp(-\boldsymbol{\beta}^T \mathbf{x_2})}\right)$

$$\bullet L(\boldsymbol{\beta}) = p_1 \times p_2$$

Model Estimation

- ullet We need to estimate eta
- We want to choose parameters $\boldsymbol{\beta} = [\beta_0, \beta_1, ..., \beta_r]^T$ such that the joint probability of $P(\boldsymbol{Y} = \boldsymbol{y})$ for all observations is maximized
- Example

• Obs 1:
$$\mathbf{x_1}, y_1 = 1$$
; $p(y_1 = 1) = p_1 = \frac{1}{1 + \exp(-\boldsymbol{\beta}^T \mathbf{x_1})}$

• Obs 2:
$$\mathbf{x_2}, y_2 = 0$$
; $p(y_2 = 0) = p_2 = 1 - \left(\frac{1}{1 + \exp(-\boldsymbol{\beta}^T \mathbf{x_2})}\right)$

$$\bullet L(\boldsymbol{\beta}) = p_1 \times p_2$$

ullet The function of parameters $L(oldsymbol{eta})$ that we want to maximize is called the Likelihood Function

Maximum Likelihood

- Typically to maximize the log likelihood we differentiate the function with respect to the parameters and set it equal to zero
- In case of the logistic regression there is no closed form solution due to the non-linearity introduced by exponentials inside the sum
- We need to use numerical methods for finding the parameter values that maximize the log likelihood

Prediction

For a test observation or point i, once we obtain the probability of $y_i = 1$, we assign a prediction value such that

$$\begin{cases} y_i = 1 & \text{if } p(y_i) > 0.5 \\ y_i = 0 & \text{otherwise} \end{cases}$$

Logistic Regression: Decision Boundary

• Fill a confusion matrix (also known as success matrix) contrasting the actual classification with the predicted on the training set

		Actual Class	
		Dog	Cat
Predicted Class	Dog	88	12
	Cat	10	90

• Fill a confusion matrix (also known as success matrix) contrasting the actual classification with the predicted on the training set

		Actual Class	
		Dog	Cat
Predicted Class	Dog	88	12
	Cat	10	90

From https://www.svds.com/the-basics-of-classifier-evaluation-part-1/

Accuracy

 $\frac{\#\mathsf{Correct\ predictions}}{\#\mathsf{Total\ predictions}}$

Accuracy

$$\frac{\#\mathsf{Correct\ predictions}}{\#\mathsf{Total\ predictions}}$$

- true positive rate = $\frac{TP}{TP+FN}$
- ullet False positive rate $= \frac{FP}{FP+TN}$

Accuracy

$$\frac{\#\mathsf{Correct\ predictions}}{\#\mathsf{Total\ predictions}}$$

- true positive rate = $\frac{TP}{TP+FN}$
- False positive rate = $\frac{FP}{FP+TN}$
- Precision=Positive predictive value = $\frac{TP}{TP+FP}$
- Recall = Sensitivity = true positive rate = $\frac{TP}{TP+FN}$

Accuracy

$$\frac{\#\mathsf{Correct\ predictions}}{\#\mathsf{Total\ predictions}}$$

- ullet true positive rate $= \frac{TP}{TP+FN}$
- False positive rate = $\frac{FP}{FP+TN}$
- Precision=Positive predictive value = $\frac{TP}{TP+FP}$
- Recall = Sensitivity = true positive rate = $\frac{TP}{TP+FN}$
- F1 is the harmonic mean of precision and recall:

$$F1 = 2 * \frac{precision * recall}{precision + recall}$$

Playtime!

- Open the "5. Classification.ipynb" notebook
- Do Part 1
- Estimated duration: 30 min

- Find a line that separates the observations belonging to different classes.
- Would you choose line 1 or line 2? Why?

• **note**: for mathematical convenience, y will now be {-1, 1} (instead of {0, 1} from before)

Support Vector Machines - Support Vectors

Goal in SVM: maximize the separation margin.

A hyperplane is defined by parameters β_0 , β such that

$$\beta_0 + \pmb{\beta}^T \mathbf{x} \begin{cases} = 0 & \text{if } \mathbf{x} \text{ lies on the plane} \\ < 0 & \text{if } \mathbf{x} \text{ on one side} \\ > 0 & \text{if } \mathbf{x} \text{ on the other side} \end{cases}$$

A hyperplane is defined by parameters β_0 , β such that

$$\beta_0 + \pmb{\beta}^T \mathbf{x} \begin{cases} = 0 & \text{if } \mathbf{x} \text{ lies on the plane} \\ < 0 & \text{if } \mathbf{x} \text{ on one side} \\ > 0 & \text{if } \mathbf{x} \text{ on the other side} \end{cases}$$

Rule: $sign(\beta_0 + \boldsymbol{\beta}^T \mathbf{x})$ tells us the class.

A hyperplane is defined by parameters β_0 , β such that

$$\beta_0 + \pmb{\beta}^T \mathbf{x} \begin{cases} = 0 & \text{if } \mathbf{x} \text{ lies on the plane} \\ < 0 & \text{if } \mathbf{x} \text{ on one side} \\ > 0 & \text{if } \mathbf{x} \text{ on the other side} \end{cases}$$

Rule: $sign(\beta_0 + \boldsymbol{\beta}^T \mathbf{x})$ tells us the class.

The margin-maximizer hyperplane β_0 , β comes from

$$\max_{\beta_0, \boldsymbol{\beta}} M \text{ s.t.}$$

$$y_j(\beta_0 + \boldsymbol{\beta}^T \mathbf{x}_j) \ge M, \forall j$$

$$||\boldsymbol{\beta}||^2 = 1$$

A hyperplane is defined by parameters β_0 , β such that

$$\beta_0 + \pmb{\beta}^T \mathbf{x} \begin{cases} = 0 & \text{if } \mathbf{x} \text{ lies on the plane} \\ < 0 & \text{if } \mathbf{x} \text{ on one side} \\ > 0 & \text{if } \mathbf{x} \text{ on the other side} \end{cases}$$

Rule: $sign(\beta_0 + \boldsymbol{\beta}^T \mathbf{x})$ tells us the class.

The margin-maximizer hyperplane β_0 , β comes from

$$\max_{\beta_0, \boldsymbol{\beta}} M \text{ s.t.}$$

$$y_j(\beta_0 + \boldsymbol{\beta}^T \mathbf{x}_j) \ge M, \forall j$$

$$||\boldsymbol{\beta}||^2 = 1$$

After calculation, we find that $\beta = \sum_{j \in \mathcal{S}} \alpha_j y_j \mathbf{x}_j.$ The plane only depends on the support vectors \mathcal{S} (subset of the training set). $\beta_0 \text{ can be obtained by solving } \alpha_j \left[y_j (\beta_0 + \boldsymbol{\beta}^T \mathbf{x}_j) - 1 \right] = 0 \text{ for any of the support vectors } \mathbf{x}_j, j \in \mathcal{S}$

Support Vector Machines - Hard vs Soft margin

What if the data is not linearly separable?

- Reformulate optimization problem to "tolerate" a few dots getting misclassified
- \bullet Tolerance parameter C controls the amount of misclassifications that are allowed

Support Vector Machines - Hard vs Soft margin

Tolerance parameter ${\cal C}$ tries to balance the trade-off between finding a line that maximizes the margin and minimizes the misclassification

Image credit: https://medium.com/bite-sized-machine-learning/ support-vector-machine-explained-soft-margin-kernel-tricks-3728dfb92cee

Support Vector Machines - Kernel trick

What if the data is not linearly separable?

• We can find a mapping $\phi(x)$ into a higher dimension where all objects are linearly separable, in this case $\phi(x)=(x,x^2)$

• Recall the equation of the separating hyperplane in the support vector classifier:

$$f(\mathbf{x}_i) = \beta_0 + \sum_{j \in \mathcal{S}} \alpha_j y_j \langle \mathbf{x}_i, \mathbf{x}_j \rangle$$

where
$$\langle \mathbf{x}_i, \mathbf{x}_j \rangle = \sum_{k=1}^p x_{ik} x_{jk}$$

• Recall the equation of the separating hyperplane in the support vector classifier:

$$f(\mathbf{x}_i) = \beta_0 + \sum_{j \in \mathcal{S}} \alpha_j y_j \langle \mathbf{x}_i, \mathbf{x}_j \rangle$$

where
$$\langle \mathbf{x}_i, \mathbf{x}_j \rangle = \sum_{k=1}^p x_{ik} x_{jk}$$

• When we enlarge the feature space, we have

$$f(\mathbf{x}_i) = \beta_0 + \sum_{j \in \mathcal{S}} \alpha_j y_j \langle \phi(\mathbf{x}_i), \phi(\mathbf{x}_j) \rangle$$

• Recall the equation of the separating hyperplane in the support vector classifier:

$$f(\mathbf{x}_i) = \beta_0 + \sum_{j \in \mathcal{S}} \alpha_j y_j \langle \mathbf{x}_i, \mathbf{x}_j \rangle$$

where
$$\langle \mathbf{x}_i, \mathbf{x}_j \rangle = \sum_{k=1}^p x_{ik} x_{jk}$$

• When we enlarge the feature space, we have

$$f(\mathbf{x}_i) = \beta_0 + \sum_{j \in \mathcal{S}} \alpha_j y_j \langle \phi(\mathbf{x}_i), \phi(\mathbf{x}_j) \rangle$$

ullet The kernel function K computes these inner products in the transformed space

$$K(\mathbf{x}_i, \mathbf{x}_j) = \langle \boldsymbol{\phi}(\mathbf{x}_i), \boldsymbol{\phi}(\mathbf{x}_j) \rangle$$

• Recall the equation of the separating hyperplane in the support vector classifier:

$$f(\mathbf{x}_i) = \beta_0 + \sum_{j \in \mathcal{S}} \alpha_j y_j \langle \mathbf{x}_i, \mathbf{x}_j \rangle$$

where
$$\langle \mathbf{x}_i, \mathbf{x}_j \rangle = \sum_{k=1}^p x_{ik} x_{jk}$$

• When we enlarge the feature space, we have

$$f(\mathbf{x}_i) = \beta_0 + \sum_{j \in \mathcal{S}} \alpha_j y_j \langle \boldsymbol{\phi}(\mathbf{x}_i), \boldsymbol{\phi}(\mathbf{x}_j) \rangle$$

ullet The kernel function K computes these inner products in the transformed space

$$K(\mathbf{x}_i, \mathbf{x}_j) = \langle \boldsymbol{\phi}(\mathbf{x}_i), \boldsymbol{\phi}(\mathbf{x}_j) \rangle$$

$$f(\mathbf{x}_i) = \beta_0 + \sum_{j \in \mathcal{S}} \alpha_j y_j K(\mathbf{x}_i, \mathbf{x}_j)$$

• Recall the equation of the separating hyperplane in the support vector classifier:

$$f(\mathbf{x}_i) = \beta_0 + \sum_{j \in \mathcal{S}} \alpha_j y_j \langle \mathbf{x}_i, \mathbf{x}_j \rangle$$

where $\langle \mathbf{x}_i, \mathbf{x}_j \rangle = \sum_{k=1}^p x_{ik} x_{jk}$

When we enlarge the feature space, we have

$$f(\mathbf{x}_i) = \beta_0 + \sum_{j \in \mathcal{S}} \alpha_j y_j \langle \phi(\mathbf{x}_i), \phi(\mathbf{x}_j) \rangle$$

ullet The kernel function K computes these inner products in the transformed space

$$K(\mathbf{x}_i, \mathbf{x}_j) = \langle \boldsymbol{\phi}(\mathbf{x}_i), \boldsymbol{\phi}(\mathbf{x}_j) \rangle$$

$$f(\mathbf{x}_i) = \beta_0 + \sum_{j \in \mathcal{S}} \alpha_j y_j K(\mathbf{x}_i, \mathbf{x}_j)$$

• If we have K we do not need to know or compute $\phi(\mathbf{x})$ at all!

• A simple example: consider the case with two features X_1 and X_2 , and two observations $\mathbf{x}_i = (x_{i1}, x_{i2})$ and $\mathbf{x}_j = (x_{j1}, x_{j2})$

• A simple example: consider the case with two features X_1 and X_2 , and two observations $\mathbf{x}_i = (x_{i1}, x_{i2})$ and $\mathbf{x}_j = (x_{j1}, x_{j2})$

$$K(\mathbf{x}_i, \mathbf{x}_j) = (1 + \langle \mathbf{x}_i, \mathbf{x}_j \rangle)^2$$

$$= (1 + x_{i1}x_{j1} + x_{i2}x_{j2})^2$$

$$= (1 + 2x_{i1}x_{j1} + 2x_{i2}x_{j2} + (x_{i1}x_{j1})^2 + (x_{i2}x_{j2})^2 + 2x_{i1}x_{j1}x_{i2}x_{j2})$$

• A simple example: consider the case with two features X_1 and X_2 , and two observations $\mathbf{x}_i = (x_{i1}, x_{i2})$ and $\mathbf{x}_j = (x_{j1}, x_{j2})$

$$K(\mathbf{x}_i, \mathbf{x}_j) = (1 + \langle \mathbf{x}_i, \mathbf{x}_j \rangle)^2$$

$$= (1 + x_{i1}x_{j1} + x_{i2}x_{j2})^2$$

$$= (1 + 2x_{i1}x_{j1} + 2x_{i2}x_{j2} + (x_{i1}x_{j1})^2 + (x_{i2}x_{j2})^2 + 2x_{i1}x_{j1}x_{i2}x_{j2})$$

If we were to define our enlarged feature space as

$$\phi(\mathbf{x}_i) = (1, \sqrt{2}x_{i1}, \sqrt{2}x_{i2}, x_{i1}^2, x_{i2}^2, \sqrt{2}x_{i1}x_{i2})$$

we see that $K(\mathbf{x}_i, \mathbf{x}_j) = \langle \boldsymbol{\phi}(\mathbf{x}_i), \boldsymbol{\phi}(\mathbf{x}_j) \rangle$!

• Linear kernel: original support vector classifier

$$K(\mathbf{x}_i, \mathbf{x}_j) = \langle \mathbf{x}_i, \mathbf{x}_j \rangle$$

Linear kernel: original support vector classifier

$$K(\mathbf{x}_i, \mathbf{x}_j) = \langle \mathbf{x}_i, \mathbf{x}_j \rangle$$

 Polynomial kernel of degree d: Generates new features through polynomial combinations of existing features (degree d)

$$K(\mathbf{x}_i, \mathbf{x}_j) = (1 + \langle \mathbf{x}_i, \mathbf{x}_j \rangle)^d$$

• Linear kernel: original support vector classifier

$$K(\mathbf{x}_i, \mathbf{x}_j) = \langle \mathbf{x}_i, \mathbf{x}_j \rangle$$

 Polynomial kernel of degree d: Generates new features through polynomial combinations of existing features (degree d)

$$K(\mathbf{x}_i, \mathbf{x}_j) = (1 + \langle \mathbf{x}_i, \mathbf{x}_j \rangle)^d$$

 Gaussian Radial basis function kernel: value depends on the distance between the two points point

$$K(\mathbf{x}_i, \mathbf{x}_j) = \exp(-\gamma \|\mathbf{x}_i - \mathbf{x}_j\|^2) = \exp(-\gamma \sum_{k=1}^p (x_{ik} - x_{jk})^2)$$

Support Vector Machines - RBF kernel

- Parameter γ (gamma) controls how much nearby points influence each other
- In practice, controls how "wiggling" the decision boundary is

Support Vector Machines - Conclusion

- SVMs learn the function of class separation as in logistic regression.
- The objective function for finding the best separation of classes is based on maximizing the separation margin.
- SVMs do not model the distribution of the data rather only find the support vectors.

Playtime!

- Open the "5. Classification.ipynb" notebook
- Do Part 2
- Estimated duration: 15 min