Homework 1

Homework 1

Due:: March 3, 2019

1 Induction

Answers should be written in this document.

- 1. Prove by Induction that: $\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$ $\forall n \geq 0$
- 2. Prove by Induction that: $\forall n \geq 7$ it is true $3^n < n!$
- 3. Prove by Induction that $\forall n \geq 0$

$$\left\lceil \frac{n}{2} \right\rceil = \left\{ \begin{array}{ll} \frac{n}{2} & \text{si } n \text{ es par} \\ \frac{n+1}{2} & \text{si } n \text{ es impar} \end{array} \right.$$

- 4. Prove by induction that a number is divisible by 3 if and only if the sum of its digits is divisible by 3.
- 5. Prove that any integer greater than 59 can be formed using only 7 and 11 cent coins.
- 6. Prove by induction that $F_{n+k} = F_k F_{n+1} + F_{k-1} F_n$
- 7. Prove by induction in n that $\sum_{m=0}^{n} {n \choose m} = 2^n$
- 8. Prove by induction that a graph with n vertices can have at most $\frac{n(n-1)}{2}$ edges.
- 9. Prove by induction that a complete binary tree¹ with n has $2^n 1$ vertices.
- 10. A polygon is convex if each pair of points in the polygon can be joined by a straight line that does not leave the polygon. Prove by induction in n > 3 that the sum of the angles of a polygon of n vertices is 180(n-2).

2 Insertion Sort vs Mergesort

Implement the insertion sort and merge sort using the template *test.py* (use Python 3.X). You must submit your code as an attached file. Graphs and descriptions must be included in this document.

¹http://web.cecs.pdx.edu/ sheard/course/Cs163/Doc/FullvsComplete.html

2.1 Random Order

- 1. Create 10 sets of numbers in random order. The sets must have {10k, 20k, 30k, ..., 100k} numbers.
- 2. Sort these numbers using the 2 algorithms and calculate the time each algorithm takes for each set of numbers.
- 3. Generate a graph (using excel or another tool) showing a *linechart*, where the x-axis is the "number of elements", and the y-axis is the time that the algorithm takes. This graphic must have 2 lines of different colors with its legend.
- 4. Write a small paragraph describing the results.

2.2 Ascending Order

Do the same experiment when the numbers are ordered in ascending order.

2.3 Descending Order

Do the same experiment when the numbers are ordered in descending order.