Teoria dos Grafos Aula 2

Aula passada

- Logística
- Objetivos
- Grafos, o que são?
- Formando pares

Aula de hoje

- Mais problemas reais
- Definições importantes
- Algumas propriedades

Objetivos da Disciplina

- Grafos como ferramenta de modelagem
 - abtração de problemas reais
- Algoritmos eficientes em grafos para resolver problemas

Abordagem?

- Estudo de problemas reais
- Construção de algoritmos eficientes
 - complexidade de algoritmos
- Técnicas para construção de algortimos

O que é um grafo?

Definição: "Um grafo é um conjunto de pontos, chamados vértices, conectados por linhas, chamadas de arestas" [Wikipedia 2008]

Definição burocrática!

Grafo, outra definição

Abstração que permite codificar relacionamentos entre pares de objetos

Que objetos?

Qualquer um! Ex. pessoas, cidades, empresas, países, páginas web, filmes, etc...

Que relacionamentos?

- Qualquer um! Ex. amizade, conectividade, produção, língua falada, etc.
- Simétrico ou assimétrico

Grafo

Abstração que permite codificar relacionamentos entre pares de objetos

Exemplos?

Poder da Abstração

Muitos problemas resolvidos com o mesmo algoritmo (solução) em cima da abstração!

Alocação de Professores

- Cada professor pode lecionar uma ou mais disciplinas
- Problema 1: Dado o que cada professor pode lecionar, é possível que as M disciplinas sejam oferecidas simultaneamente?
- Problema 2: Qual o maior número de disciplinas que podem ser oferecidas?

Alocação de Professores

Como abstrair o problema (via grafos)?

Mesma abstração!

Mesmo algoritmo!

Pesquisando no Orkut

- Milhões de pessoas (profiles)
 - Profiles interligadas via relacionamentos declarados
- Problema 1: Como saber se duas pessoas estão "conectadas" através de uma sequência de relacionamentos?
- Problema 2: Qual é o menor caminho entre duas pessoas?

Orkut resolve os dois problemas!

Pesquisando no Orkut

- Como abstrair o problema (via grafos)?
- Objeto: profiles (pessoas)
- Relacionamento: relacionamentos declarados

Carlos e Ana: Conectados? Menor caminho?

Pesquisando no Orkut

olve o

Como Orkut resolve o problema?

milhões de profiles e relacionamentos!

Algoritmo (eficiente)!

Viagem entre Cidades

- Cidades brasileiras
- Estradas entre cidades

- Problema 1: Como saber se duas cidades estão "conectadas" por estradas?
- Problema 2: Qual é o menor (melhor) caminho entre duas cidades?

Viagem entre Cidades

Como abstrair o problema (via grafos)?

Abstração parecida!

Algoritmo parecido! (algumas variações)

Grafo

Abstração que permite codificar relacionamentos entre pares de objetos

Como representá-lo formalmente?

Conjuntos!

Conjuntos de objetos e de pares relacionados

Grafo

- \blacksquare Grafo G = (V, E)
- V = conjunto de objetos
 - chamaremos de vértices ou nós
- E = conjunto de pares relacionados
 - chamaremos de arestas
 - par não ordenado: (a,b) == (b,a)
- \blacksquare Exemplo: G = (V, E)
 - $V = \{1, 2, 3, 4\}$
 - $\blacksquare E = \{(1,2), (1,3), (2,3), (3,4)\}$

Representação Gráfica

- Desenho de G (o que vimos até agora)
 - representação gráfica dos conjuntos
- \blacksquare Exemplo: G = (V, E)
 - $V = \{1, 2, 3, 4\}$
 - \blacksquare E = {(1,2), (1,3), (2,3), (3,4)}

Adjacência e Incidência

- Vértices adjacentes são vértices "vizinhos"
 - mais precisamente...
- Dado grafo G= (V, E)
- Dois vértices a e b são adjacentes se existe e = (a, b) no conjunto E
- Aresta e é incidente aos vértices a e b
- Exemplo: G = (V, E)
 - $V = \{1, 2, 3, 4\}$
 - \blacksquare E = {(1,2), (1,3), (2,3), (3,4)}
 - 4 e 1 são adjacentes?
 - 3 e 2 são adjacentes?

Vértices e Arestas

Número de vértices de um grafo

- Número de arestas de um grafo
 - $\mathbf{m} = |\mathbf{E}|$
- Dado G = (V, E)
 - Menor número de arestas de G? ---- zero!
 - Maior número de arestas de G?
 - número de pares não ordenados em um conjunto de n = |V| objetos $\longrightarrow \binom{n}{2} = \frac{n(n-1)}{2} \le n^2$

Grau

- Grau de um vértice v
 - número de vértices adjacentes a v
 - função grau(v)
- \blacksquare Exemplo: G = (V, E)

$$V = \{1, 2, 3, 4\}$$

$$\blacksquare$$
 E = {(1,2), (1,3), (2,3), (3,4)}

- \square Dado G = (V, E)
 - Grau mínimo de um vértice? ----- zero!
 - Grau máximo de um vértice? → n 1

Grafo Regular

- Todos os vértices têm mesmo grau
 - no caso de *r*-Regular, grau é *r*
- Exemplo: G é 2-regular, n = 3

$$V = \{1, 2, 3\}$$
 $E = \{(1,2), (1,3), (2,3)\}$

- Dado G = (V, E), e G r-regular
- Quantas arestas tem G?

$$|E| = \frac{nr}{2} \longrightarrow \text{Por que?}$$

Grafo Regular

São regulares?

É possível ter qualquer combinação de n e r?

Grafo Completo

- Aresta presente entre cada par de vértices
 - todos os vértices tem grau máximo
- Notação de grafo completo
 - K_n onde n é o número de vértices
- Exemplos

Quantas arestas têm K_n?

Caminho

- Como definir "caminho" em um grafo?
- Ex. caminho entre 1 e 7?

- Caminho entre dois vértices
 - sequência de vértices conectados por arestas
- Caminho entre v₁ e v_k
 - \bullet sequência $v_1, ..., v_k$, tal que $(v_i, v_{i+1}) \in E$ i=1,...k-1
- Ex. caminho entre 1 e 7?
 - \blacksquare 1, 2, 3, 7 \longrightarrow (1,2), (2,3), (3,7)
 - 1, 5, 6, 2, 6, 7 é caminho?

Caminho Simples

- Vértices do caminho são distintos
 - não há "voltas"

- Ex. caminho entre 1 e 7?
 - 1, 5, 6, 2, 6, 7 não é caminho simples
- Comprimento do caminho
 - número de arestas que o forma
- Dado G = (V, E)
 - qual é o menor caminho simples entre dois vértices?
 - qual é o maior?

Ciclo

Caminho simples que começa e termina no mesmo vértice

$$\mathbf{v}_1 = \mathbf{v}_k$$

- Ex. ciclo em 5?
 - **5**, 1, 2, 3, 7, 6, 5
 - **■** 5, 1, 4, 8, 5
- Comprimento do ciclo
 - número de arestas que o forma

- Dado G = (V, E)
 - qual é o maior ciclo?
 - n vértices, ciclo hamiltoniano

Subgrafo

- Um grafo que é "parte" de outro grafo
 - mais precisamente...
- \square Dado G = (V, E)
- G' = (V', E') é subgrafo de G se
 - **■** *V'*⊂*V* e *E'*⊂*E*

Subgrafo Exemplo

Dado G = (V, E)

É subgrafo de G?

É subgrafo de G?

É subgrafo de G?

Clique

- Um grafo completo "dentro" de outro grafo
 - mais precisamente...
- \square Dado G = (V, E)
- G' = (V', E') é um *clique* de G se
 - G' é subgrafo de G
 - G' é um grafo completo

Clique Exemplo

Dado G = (V, E)

Qual é o maior clique de G?

Problema "difícil": encontrar maior clique de um grafo É clique de G?

É clique de G?

Conexo

- Grafo está "conectado"
 - como definir mair precisamente?
- Grafo G=(V, E) é conexo se
 - existe caminho entre qualquer par de vértices
- Caso contrário, G é desconexo

Conexo

Problema: Como saber se um grafo é conexo?

- Como você resolveria este problema?
- Veremos algoritmo (eficiente)
 - em duas aulas...

Componentes Conexos

- Maiores subgrafos "conectados" de um grafomais precisamente...
- Subgrafos maximais de G que sejam conexos
 - maximal: subconjunto que maximiza a propriedade, no caso subgrafo conexo

Exemplo:

