

Metody programowania 2020/2021 Maksymalna podtablica 2D o najmniejszej liczbie elementów

P_01

Opis

Dla danej niepustej tablicy dwuwymiarowej liczb całkowitych: a[0][0], ... ,a[n-1][m-1] dla $0 \le i \le j < n$, $0 \le k \le l < m$ definiujemy jej *maksymalną podtablicę* jako spójny fragment a[i..j][k..l] o <u>maksymalnej nieujemnej sumie elementów</u>, obliczanej według wzoru:

```
ms(i, j, k, l) = 3*D+2*U gdzie:
```

D= suma dodatnich elementów a[x][y] tej podtablicy, dla których $i \le x \le j$ oraz $k \le y \le l$. U = suma ujemnych elementów a[x][y] tej podtablicy, dla których $i \le x \le j$ oraz $k \le y \le l$. W przypadku, gdy elementy tablicy są mniejsze od zera, maksymalna podtablica jest pusta i ms()=0.

Napisz w Javie program działający w czasie <u>O((max(n,m))³),</u> który oblicza maksymalną wartość ms(i, j, k, l) oraz wyznacza maksymalną podtablicę mstab= a[i..j][k..l] <u>o najmniejszej liczbie elementów, której indeksy i, j, k, l tworzą ciąg leksykograficznie najmniejszy.</u>

Wejście

Dane do programu wczytywane są ze standardowego wejścia (klawiatury) zgodnie z poniższą specyfikacją.

Pierwszą podawaną wartością będzie dodatnia liczba całkowita oznaczająca ilość zestawów danych, po której na wejściu pojawią się zestawy danych w ilości równej wczytanej liczbie.

Każdy zestaw danych zawiera w pierwszej linii numer zestawu od 1, po którym występuje ciąg znaków " : " oraz dwie dodatnie liczby całkowite z zakresu od 1 do 100, oznaczające odpowiednio liczbę wierszy oraz liczbę kolumn tablicy, w następnych liniach podawane są dane będące kolejnymi wierszami tablicy zgodnie z podaną liczbą wierszy i kolumn. Ostatnia linia każdego zestawu zakończona jest znakiem '\n'.

Dane każdego zestawu są liczbami całkowitymi z zakresu od -2^{15} do $+2^{15}$.

Wyjście

Dla każdego zestawu danych:

jeśli maksymalna podtablica nie jest pusta, program wypisze linie postaci:

no: n= liczba_wierszy m= liczba_kolumn, ms = ms(i,j,k,l) , mstab= a[i..j][k..l], przy czym: i, j, k, l, wyznaczają $maksymalnq\ podtablice$ a[i..j][k..l]

w przeciwnym przypadku program powinien wypisywać tekst:

n0: n= liczba_wierszy m= liczba_kolumn, ms= 0, mstab is empty

przy czym: no - jest numerem zestawu.

Wymagania implementacyjne

W pierwszej linii program powinien zawierać komentarz:

1. // Imie Nazwisko – nr grupy

Metody programowania 2020/2021 Maksymalna podtablica 2D o najmniejszej liczbie elementów

P_01

- 2. Jedynym dozwolonym importem jest obsługa wczytywania z klawiatury, to jest: import java.util.Scanner;
- 3. Główna klasa musi nazywać się Source, co oznacza ogólne ramy kodu postaci:

```
class Source {
  public static void main( String [] args ) {
  ...
  }
}
```

4. Wczytywanie musi się odbywać przez pojedynczą zmienną klasy Scanner, zadeklarowaną zewnętrznie w stosunku do wszystkich metod głównej klasy.

W praktyce oznacza to tylko jedną deklarację w przykładowej postaci, np.:

public static Scanner scn = new Scanner(System.in);

w pierwszej linii ciała głównej klasy.

Dane przykładowe

wejście:	wyjście:
7	1: n=1 m=6, ms= 39, mstab= a[00][15]
1:16	2: n=2 m=5, ms= 16, mstab= a[01][04]
	3: n=2 m=5, ms= 12, mstab= a[01][04]
-2 7 -4 8 -5 4	
2:25	4: n=2 m=5, ms= 12, mstab= a[00][33]
1 1-1-1 0	5: n=2 m=5, ms= 0, mstab is empty
1 1-1-1 4	6: n=2 m=5, ms= 0, mstab= a[00][00]
3:2 5	7: n=1 m=6, ms= 0, mstab= a[00][33]
0 -1 -1 1 1	
4 -2 -2 1 1	
4:25	
0 -1 -1 4 0	
4 -2 -2 0 0	
5:25	
-1 -2 -3 -1 -2	
-1 -1 -1 -1 -5	
6:25	
0 0 0 0 0	
0 0 0 0 0	
7:16	
-1 -2 -3 0 -5 0	