1 Demostración

Queremos ver que:

```
\forall t :: AT \ a. \ \forall x :: a. \ (elem \ x \ (preorder \ t) = elem \ x \ (postorder \ t))
```

Definiendo:

- $AT \ a = Nil \mid Tern \ a \ (AT \ a) \ (AT \ a) \ (AT \ a)$
- preorder :: Procesador (AT a) a $\{PRE\}$ preorder = foldAT [] (v i c d \rightarrow [v] ++ i ++ c ++ d)
- postorder :: Procesador (AT a) a $\{POST\}$ postorder = foldAT [] (v i c d \rightarrow i ++ c ++ [v] ++ d)
- $foldAT :: b \rightarrow (a \rightarrow b \rightarrow b \rightarrow b \rightarrow b) \rightarrow AT \ a \rightarrow b$ $foldAT \ cNil \ cTern \ at = case \ at \ of$ $Nil \rightarrow cNil$ $Tern \ v \ c \ i \ d \rightarrow cTern \ val \ (rec \ izq) \ (rec \ cen) \ (rec \ der)$ $where \ rec = foldATcNilcTern$

Por inducción estructural en t definimos el enunciado P(t) y planteamos tanto el caso base como el caso inductivo:

```
\forall i,\ c,\ d::AT\ a.\ \forall v::a
```

 $P(t) = elem \ x \ (preorder \ t) = elem \ x \ (postorder \ t)$

- Caso base: P(Nil)
- Caso inductivo: $(P(i) \land P(c) \land P(d)) \Rightarrow P(AT \ v \ i \ c \ d)$

1.1 Caso Base

```
P(Nil) \equiv elem \ x \ (preorder \ Nil) = elem \ x \ (postorder \ Nil)
```

Reemplazando en preorder/postorder y luego en fold AT:
 $preorder\ Nil = [\]$

$$postorder\ Nil = [\]$$

$$\begin{split} P(Nil) &\equiv elem \ x \ [\] = elem \ x \ [\] \\ elem \ x \ [\] &= False \Rightarrow P(Nil) \equiv False = False \end{split}$$

$$P(Nil) = True$$

1.2 Caso Inductivo

$$(P(i) \land P(c) \land P(d)) \Rightarrow P(AT \ v \ i \ c \ d)$$

Para demostrar esta implicación asumimos la implicación

Con este criterio vemos que $P(i) \wedge P(c) \wedge P(d)$ es verdadero, con lo cual:

- $P(i) \equiv elem \ x \ (preorder \ i) = elem \ x \ (postorder \ i) \equiv True$
- $P(c) \equiv elem \ x \ (preorder \ c) = elem \ x \ (postorder \ c) \equiv True$
- $P(d) \equiv elem \ x \ (preorder \ d) = elem \ x \ (postorder \ d) \equiv True$

Pasamos a detallar el consecuente:

```
P(AT \ v \ i \ c \ d) \equiv elem \ x \ (preorder \ (AT \ v \ i \ c \ d)) = elem \ x \ (preorder \ (AT \ v \ i \ c \ d))
```

Reemplazando en preorder/postorder y luego en foldAT: $preorder(AT\ v\ i\ c\ d) = [v] + + preorder\ i\ + + preorder\ c\ + + preorder\ d$ $postorder(AT\ v\ i\ c\ d) = postorder\ i\ + + postorder\ c\ + + [v]\ + postorder\ d$

Por lo tanto:

```
P(AT \ v \ i \ c \ d) \equiv

elem \ x \ ([v] + + preorder \ i \ + + preorder \ c \ + + preorder \ d)

= elem \ x \ (postorder \ i \ + + postorder \ c \ + + [v] \ + postorder \ d)
```

Ahora desarrollamos cada lado de $P(AT \ v \ i \ c \ d)$:

1.2.1 Lado Izquierdo

```
elem \ x \ ([v] + preorder \ i + preorder \ c + preorder \ d) = x = v \ \lor \ elem \ x \ (preorder \ i) \ \lor \ elem \ x \ (preorder \ d)
```

1.2.2 Lado Derecho

```
elem x (postorder i ++ postorder c ++ [v] ++ postorder d) = x = v \lor elem x (postorder i) \lor elem x (postorder c) \lor elem x (postorder d)
```

Así podemos separar estos 2 casos:

- 1. x = v
- $2. x \neq v$

1.2.3 x = v

 $x = v \lor elem \ x \ (preorder \ i) \lor elem \ x \ (preorder \ c) \lor elem \ x \ (preorder \ d) \equiv elem \ x \ (preorder \ AT \ v \ i \ c \ d) \equiv True$

 $x = v \lor elem \ x \ (postorder \ i) \lor elem \ x \ (postorder \ c) \lor elem \ x \ (postorder \ d) \equiv elem \ x \ (postorder \ AT \ v \ i \ c \ d) \equiv True$

```
\Rightarrow elem x (preorder AT v i c d) = elem x (postorder AT v i c d) \equiv True \Rightarrow P(AT v i c d) \equiv True
```

1.2.4 $x \neq v$

Como $x \neq v$ podemos detallar ambos lados de $P(AT\ v\ i\ c\ d)$ de la siguiente manera:

Lado izquierdo: $elem\ x\ (preorder\ i) \lor elem\ x\ (preorder\ c) \lor elem\ x\ (preorder\ d)$ Lado derecho: $elem\ x\ (postorder\ i) \lor elem\ x\ (postorder\ c) \lor elem\ x\ (postorder\ d)$

Ahora bien, por hipótesis inductiva sabememos que

- $P(i) \equiv elem \ x \ (preorder \ i) = elem \ x \ (postorder \ i) \equiv True$
- $P(c) \equiv elem \ x \ (preorder \ c) = elem \ x \ (postorder \ c) \equiv True$
- $P(d) \equiv elem \ x \ (preorder \ d) = elem \ x \ (postorder \ d) \equiv True$

Con lo cual

```
elem x (preorder i) \lor elem x (preorder c) \lor elem x (preorder d) = elem x (postorder i) \lor elem x (postorder c) \lor elem x (postorder d) \equiv P(AT \ v \ i \ c \ d) \equiv True
```

De esta forma demostramos por inducción estructural que

```
\forall t :: AT \ a. \ \forall x :: a. \ (elem \ x \ (preorder \ t)) = elem \ x \ (postorder \ t))
```