

High Voltage Power MOSFET

IXTT1N300P3HV IXTH1N300P3HV

= 3000V1.00A

≤ 50Ω

N-Channel Enhancement Mode

TO-268HV (IXTT)

TO-247HV (IXTH)

G = Gate	D	= Di	rain
S = Source	Tab	= Dr	ain

Features

- High Blocking Voltage
- High Voltage Packages

Advantages

- Easy to Mount
- Space Savings
- High Power Density

Applications

- High Voltage Power Supplies
- Capacitor Discharge Applications
- Pulse Circuits
- Laser and X-Ray Generation Systems

Symbol	Test Conditions	Maximum Ra	atings
V _{DSS}	$T_{_{\rm J}}$ = 25°C to 150°C	3000	V
V _{DGR}	$T_{_{ m J}}$ = 25°C to 150°C, $R_{_{ m GS}}$ = 1M Ω	3000	V
V _{GSS}	Continuous	±20	V
V _{GSM}	Transient	±30	V
I _{D25}	T _C = 25°C	1.00	Α
I _{D110}	$T_{c} = 110^{\circ}C$	0.65	Α
I _{DM}	$T_{\rm C} = 25$ °C, Pulse Width Limited by $T_{\rm JM}$	2.60	Α
P _D	T _C = 25°C	195	W
T _J		- 55 +150	°C
T _{JM}		150	°C
T _{stg}		- 55 +150	°C
T _L	Maximum Lead Temperature for Soldering	300	°C
T _{SOLD}	1.6 mm (0.062in.) from Case for 10s	260	°C
M _d	Mounting Torque (TO-247)	1.13/10	Nm/lb.in
Weight	TO-268HV	4.0	g
	TO-247HV	6.0	g

		eteristic Values Typ. Max.				
BV _{DSS}	$V_{GS} = 0V, I_{D} = 250\mu A$		3000			V
V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$		2.0		4.0	V
I _{GSS}	$V_{GS} = \pm 20V, V_{DS} = 0V$				±100	nA
I _{DSS}	$V_{DS} = 0.8 \cdot V_{DSS}, V_{GS} = 0V$				25	μΑ
		$T_J = 125^{\circ}C$			250	μΑ
R _{DS(on)}	$V_{GS} = 10V, I_{D} = 0.5A, Note 1$				50	Ω

IXTT1N300P3HV IXTH1N300P3HV

Symbol	Test Conditions	Characteristic Values		
$(T_{J} = 25^{\circ}C,$	Unless Otherwise Specified)	Min.	Тур.	Max.
g _{fs}	$V_{DS} = 50V, I_{D} = 0.5A, Note 1$	0.4	0.7	S
C _{iss}			895	pF
C _{oss}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		48	pF
C _{rss}			17	pF
t _{d(on)}	Resistive Switching Times		22	ns
t _r	$V_{GS} = 10V, V_{DS} = 500V, I_{D} = 0.5 \cdot I_{D25}$		35	ns
$\mathbf{t}_{d(off)}$			78	ns
t _r	$R_{\rm g} = 20\Omega$ (External)		60	ns
Q _{g(on)}			30.6	nC
\mathbf{Q}_{gs}	$V_{GS} = 10V, V_{DS} = 1kV, I_{D} = 0.5 \cdot I_{D25}$		4.0	nC
Q_{gd}	J		15.7	nC
R _{thJC}				0.64 °C/W
R _{thCS}	TO-247HV		0.21	°C/W

Source-Drain Diode

		Values Max.		
I _s	$V_{GS} = 0V$		1.0	A
I _{SM}	Repetitive, Pulse Width Limited by T_{JM}		4.0	Α
V _{SD}	$I_F = I_S$, $V_{GS} = 0V$, Note 1		1.5	V
t _{rr}	$I_{\rm F} = 1$ A, -di/dt = 100A/µs, $V_{\rm R} = 100$ V	1.8		μs

Note: 1. Pulse test, $t \le 300 \mu s$, duty cycle, $d \le 2\%$.

PRELIMANARY TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a "considered reflection" of the anticipated result. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

TO-268HV Outline L4 0.215 [5:5] -RECOMMENDED MINIMUM FOOT PRINT INCHES MILLIMETER SYM MIN MAX MIN MAX 5.10 2.90 .193 4.90 Α .106 .114 Α2 .010 0.02 0.25 Ь .045 .016 .026 0.40 0.65 543 14.00 465 .476 295 307 7.50 114 2.90 .624 15.85 16.05 524 13.60 е .215 .736 .752 .079 18.70 19.10 1.70 2.00 Н 067 .039 .0 .045 1.00 0.25 1.15

.150

.161

3.80

Fig. 1. Output Characteristics @ T_J = 25°C

Fig. 2. Output Characteristics @ T_J = 125°C

Fig. 3. $R_{\text{DS(on)}}$ Normalized to I_{D} = 0.5A Value vs.

Fig. 4. $R_{DS(on)}$ Normalized to I_D = 0.5A Value vs.

Fig. 5. Maximum Drain Current vs.

Fig. 6. Input Admittance 8.0 0.7 0.6 Ip - Amperes 0.5 T_J = 125°C 0.4 - 40ºC 0.2 0.1 0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

 $V_{\rm GS}$ - Volts

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 12. Forward-Bias Safe Operating Area

Fig. 13. Forward-Bias Safe Operating Area

