CD4528BM/CD4528BC Dual Monostable Multivibrator

General Description

The CD4528B is a dual monostable multivibrator. Each device is retriggerable and resettable. Triggering can occur from either the rising or falling edge of an input pulse, resulting in an output pulse over a wide range of widths. Pulse duration and accuracy are determined by external timing components Rx and Cx.

Features

- Wide supply voltage range
- 3.0V to 18V
- Separate reset available
- Quiescent current = 5.0 nA/package (typ.) at 5.0 V_{DC}
- Diode protection on all inputs
- Triggerable from leading or trailing edge pulse
- Capable of driving two low-power TTL loads or one low-power Schottky TTL load over the rated temperature range

Connection Diagrams

Top View
Order Number CD4528B

TL/F/5998-1

Truth Table

	Inputs		Outputs				
Clear	Α	В	Q	Q			
L	Х	Х	L	Н			
X	Н	X	L	Н			
X	Х	L	L	Н			
Н	L	↓	Л	T			
Н	↑	Н	Л	T			

H = High Level

L = Low Level

 \uparrow = Transition from Low to High

↓ = Transition from High to Low

☐ One High Level Pulse☐ One Low Level Pulse

X = Irrelevant

Absolute Maximum Ratings (Notes 1 & 2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

 $-0.5\,V_{DC}$ to $\,\pm\,18\,V_{DC}$ DC Supply Voltage (V_{DD}) Input Voltage, All Inputs (V $_{\mbox{\footnotesize{IN}}})$ $-0.5~\mbox{\footnotesize{V}}_{\mbox{\footnotesize{DC}}}$ to V $_{\mbox{\footnotesize{DD}}}$ $+0.5~\mbox{\footnotesize{V}}_{\mbox{\footnotesize{DC}}}$

Storage Temperature

Range (T_S) -65°C to +150°C

Power Dissipation (P_D)

Dual-In-Line 700 mW Small Outline 500 mW

Lead Temperature (T_L)

Recommended Operating Conditions (Note 2)

DC Supply Voltage (V_{DD}) Input Voltage (V_{IN})

3V to 15V 0V to $V_{\mbox{\scriptsize DD}}\,V_{\mbox{\scriptsize DC}}$

Operating Temperature Range (T_A) CD4528BM

CD4528BC

-55°C to +125°C -40°C to $+85^{\circ}\text{C}$

260°C (Soldering, 10 seconds)

DC Electrical Characteristics CD4528BM (Note 2)

Symbol	Parameter	Conditions	−55°C		+ 25°C			+ 125°C		Units
			Min	Max	Min	Тур	Max	Min	Max	Julia
I _{DD}	Quiescent Device Current	$V_{DD} = 5V$ $V_{DD} = 10V$ $V_{DD} = 15V$		5 10 20	0.005 0.010 0.015		5 10 20		150 300 600	μΑ μΑ μΑ
V _{OL}	Low Level Output Voltage	$V_{DD} = 5V$ $V_{DD} = 10V$ $V_{DD} = 15V$		0.05 0.05 0.05			0.05 0.05 0.05		0.05 0.05 0.05	V V V
V _{OH}	High Level Output Voltage	$V_{DD} = 5V$ $V_{DD} = 10V$ $V_{DD} = 15V$	4.95 9.95 14.95		4.95 9.95 14.95	5.0 10.0 15.0		4.95 9.95 14.95		V V V
V _{IL}	Low Level Input Voltage	$V_{DD} = 5V, V_{O} = 0.5V \text{ or } 4.5V$ $V_{DD} = 10V, V_{O} = 1V \text{ or } 9V$ $V_{DD} = 15V, V_{O} = 1.5V \text{ or } 13.5V$		1.5 3.0 4.0		2.25 4.50 6.75	1.5 3.0 4.0		1.5 3.0 4.0	V V
V _{IH}	High Level Input Voltage	$V_{DD} = 5V, V_{O} = 0.5V \text{ or } 4.5V$ $V_{DD} = 10V, V_{O} = 1V \text{ or } 9V$ $V_{DD} = 15V, V_{O} = 1.5V \text{ or } 13.5V$	3.5 7.0 11.0		3.5 7.0 11.0	2.75 5.50 8.25		3.5 7.0 11.0		V V V
l _{OL}	Low Level Output Current (Note 3)	$V_{DD} = 5V, V_{O} = 0.4V$ $V_{DD} = 10V, V_{O} = 0.5V$ $V_{DD} = 15V, V_{O} = 1.5V$	0.64 1.6 4.2		0.51 1.3 3.4	0.88 2.25 8.8		0.36 0.9 2.4		mA mA mA
ГОН	High Level Output Current (Note 3)	$V_{DD} = 5V, V_{O} = 4.6V$ $V_{DD} = 10V, V_{O} = 9.5V$ $V_{DD} = 15V, V_{O} = 13.5V$	-0.25 -0.62 -1.8		-0.2 -0.5 -1.5	-0.36 -0.9 -3.5		-0.14 -0.35 -1.1		mA mA mA
I _{IN}	Input Current	$V_{DD} = 15V, V_{IN} = 0V$ $V_{DD} = 15V, V_{IN} = 15V$		-0.1 0.1		-10 ⁻⁵	-0.1 0.1		-1.0 1.0	μA μA

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range", they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device

Note 2: $V_{SS} = 0V$ unless otherwise specified.

Note 3: I_{OH} and I_{OL} are tested one output at a time.

DC Electrical Characteristics CD4528BC (Note 2)

Symbol	Parameter	Conditions	−40°C		+ 25°C			+ 85°C		Units
Symbol			Min	Max	Min	Тур	Max	Min	Max	Jints
I _{DD}	Quiescent Device Current	V _{DD} = 5V V _{DD} = 10V V _{DD} = 15V		20 40 80		0.005 0.010 0.015	20 40 80		150 300 600	μΑ μΑ μΑ
V _{OL}	Low Level Output Voltage	$V_{DD} = 5V$ $V_{DD} = 10V$ $V_{DD} = 15V$		0.05 0.05 0.05			0.05 0.05 0.05		0.05 0.05 0.05	V V
V _{OH}	High Level Output Voltage	V _{DD} = 5V V _{DD} = 10V V _{DD} = 15V	4.95 9.95 14.95		4.95 9.95 14.95	5.0 10.0 15.0		4.95 9.95 14.95		V V
V _{IL}	Low Level Input Voltage	$V_{DD} = 5V, V_{O} = 0.5V \text{ or } 4.5V$ $V_{DD} = 10V, V_{O} = 1V \text{ or } 9V$ $V_{DD} = 15V, V_{O} = 1.5V \text{ or } 13.5V$		1.5 3.0 4.0		2.25 4.50 6.75	1.5 3.0 4.0		1.5 3.0 4.0	V V
V _{IH}	High Level Input Voltage	$V_{DD} = 5V, V_{O} = 0.5V \text{ or } 4.5V$ $V_{DD} = 10V, V_{O} = 1V \text{ or } 9V$ $V_{DD} = 15V, V_{O} = 1.5V \text{ or } 13.5V$	3.5 7.0 11.0		3.5 7.0 11.0	2.75 5.50 8.25		3.5 7.0 11.0		V V
l _{OL}	Low Level Output Current (Note 3)	$V_{DD} = 5V, V_{O} = 0.4V$ $V_{DD} = 10V, V_{O} = 0.5V$ $V_{DD} = 15V, V_{O} = 1.5V$	0.52 1.3 3.6		0.44 1.1 3.0	0.88 2.25 8.8		0.36 0.9 2.4		mA mA mA
ГОН	High Level Output Current (Note 3)	$V_{DD} = 5V, V_{O} = 4.6V$ $V_{DD} = 10V, V_{O} = 9.5V$ $V_{DD} = 15V, V_{O} = 13.5V$	-0.2 -0.5 -1.4		-0.16 -0.4 -1.2	-0.36 -0.9 -3.5		-0.12 -0.3 -1.0		mA mA mA
I _{IN}	Input Current	$V_{DD} = 15V, V_{IN} = 0V$ $V_{DD} = 15V, V_{IN} = 15V$		-0.3 0.3		-10 ⁻⁵	-0.3 0.3		-1.0 1.0	μA μA

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range", the real root meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: $V_{SS} = 0V$ unless otherwise specified.

Note 3: $I_{\mbox{\scriptsize OH}}$ and $I_{\mbox{\scriptsize OL}}$ are tested one output at a time.

Parameter	Conditions	Min	Тур	Max	Units
Output Rise Time	$\begin{aligned} t_r &= (3.0 \text{ ns/pF}) C_L + 30 \text{ ns, } V_{DD} = 5.0V \\ t_r &= (1.5 \text{ ns/pF}) C_L + 15 \text{ ns, } V_{DD} = 10.0V \\ t_r &= (1.1 \text{ ns/pF}) C_L + 10 \text{ ns, } V_{DD} = 15.0V \end{aligned}$		180 90 65	400 200 160	ns ns ns
Output Fall Time	$\begin{split} t_f &= (1.5 \text{ ns/pF}) \text{ C}_L + 25 \text{ ns, V}_{DD} = 5.0 \text{V} \\ t_f &= (0.75 \text{ ns/pF}) \text{ C}_L + 12.5 \text{ ns, V}_{DD} = 10 \text{V} \\ t_f &= (0.55 \text{ ns/pF}) \text{ C}_L + 9.5 \text{ ns, V}_{DD} = 15.0 \text{V} \end{split}$		100 50 35	200 100 80	ns ns ns
Turn-Off, Turn-On Delay A or B to Q or \overline{Q} Cx = 15 pF, Rx = 5.0 k Ω	$\begin{aligned} &t_{PLH}, t_{PHL} = (1.7 \text{ ns/pF}) \text{ C}_{L} + 240 \text{ ns}, V_{DD} = 5.0V \\ &t_{PLH}, t_{PHL} = (0.66 \text{ ns/pF}) \text{ C}_{L} + 8 \text{ ns}, V_{DD} = 10.0V \\ &t_{PLH}, t_{PHL} = (0.5 \text{ ns/pF}) \text{ C}_{L} + 65 \text{ ns}, V_{DD} = 15.0V \end{aligned}$		230 100 65	500 250 150	ns ns ns
Turn-Off, Turn-On Delay A or B to Q or \overline{Q} Cx = 100 pF, Rx = 10 k Ω	$\begin{aligned} t_{PLH}, t_{PHL} &= (1.7 \text{ ns/pF}) \text{ C}_L + 620 \text{ ns}, V_{DD} = 5.0 \text{V} \\ t_{PLH}, t_{PHL} &= (0.66 \text{ ns/pF}) \text{ C}_L + 257 \text{ ns}, V_{DD} = 10.0 \text{V} \\ t_{PLH}, t_{PHL} &= (0.5 \text{ ns/pF}) \text{ C}_L + 185 \text{ ns}, V_{DD} = 15.0 \text{V} \end{aligned}$		230 100 65	500 250 150	ns ns ns
Minimum Input Pulse Width A or B $\label{eq:cx} \text{Cx} = \text{15 pF, Rx} = 5.0 \text{ k}\Omega$	$V_{DD} = 5.0V$ $V_{DD} = 10.0V$ $V_{DD} = 15V$		60 20 20	150 50 50	ns ns ns
$Cx = 1000 \text{ pF}, Rx = 10 \text{ k}\Omega$	$V_{DD} = 5.0V$ $V_{DD} = 10.0V$ $V_{DD} = 15.0V$		60 20 20	150 50 50	ns ns ns
Output Pulse Width Q or \overline{Q} For Cx < 0.01 μ F (See Graph for Appropriate V _{DD} Level) Cx = 15 pF, Rx = 5.0 k Ω	$V_{DD} = 5.0V$ $V_{DD} = 10.0V$ $V_{DD} = 15.0V$		550 350 300		ns ns ns
For Cx $>$ 0.01 μ F Use PW _{out} = 0.2 Rx Cx In [V _{DD} - V _{SS}] Cx = 10,000 pF, Rx = 10 k Ω	$V_{DD} = 5.0V$ $V_{DD} = 10.0V$ $V_{DD} = 15.0V$	15 10 15	29 37 42	45 90 95	μs μs μs
Pulse Width Match between Circuits in the Same Package $Cx=10,\!000~pF,Rx=10~k\Omega$	$V_{DD} = 5.0V$ $V_{DD} = 10.0V$ $V_{DD} = 15.0V$		6 8 8	25 35 35	% % %
Reset Propagation Delay, t_{PLH}, t_{PHL} $Cx = 15 pF, Rx = 5.0 k\Omega$	$V_{DD} = 5.0V$ $V_{DD} = 10.0V$ $V_{DD} = 15.0V$		325 90 60	600 225 170	ns ns ns
$Cx = 1000 \text{ pF}, Rx = 10 \text{ k}\Omega$	$V_{DD} = 5.0V$ $V_{DD} = 10.0V$ $V_{DD} = 15.0V$		7.0 6.7 6.7		μs μs μs
Minimum Retrigger Time $Cx=15 pF, Rx=5.0 k\Omega$ $Cx=1000 pF, Rx=10 k\Omega$	$V_{DD} = 5.0V$ $V_{DD} = 10.0V$ $V_{DD} = 15.0V$ $V_{DD} = 5.0V$ $V_{DD} = 10.0V$		0 0 0 0		ns ns ns ns
	V _{DD} = 15.0V V _{DD} = 15.0V		0		ns

^{*}AC parameters are guaranteed by DC correlated testing.

Logic Diagrams (1/2 of Device Shown) Note: Externally ground pins 1 and 15 to pin 8. TL/F/5998-3 TL/F/5998-10 Duty Cycle = 50% TL/F/5998-4 FIGURE 1. Power Dissipation Test Circuit and Waveforms **Input Connections** c_{D} Characteristics Α В t_{PLH}, t_{PHL}, t_r, t_f, PW_{out}, PW_{in} V_{DD} PG1 V_{DD} $\begin{aligned} &t_{PLH},\,t_{PHL},\,t_{r},\,t_{f},\\ &PW_{out},\,PW_{in} \end{aligned}$ PG2 V_{DD} V_{SS} $t_{PLH(R)}, t_{PHL(R)}, PW_{in}$ PG3 PG1 PG2 *Includes capacitance of probes, wiring, and fixture parasitic.

FIGURE 2. AC Test Circuit

TL/F/5998-5

Note: AC test waveforms for PG1, PG2, and PG3 on next page.

PG2 =

PG3=

TL/F/5998-6

Physical Dimensions inches (millimeters) (Continued)

Molded Dual-In-Line Package (N) Order Number CD4528BMN or CD4528BCN NS Package Number N16E

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor National Semiconducto Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018

National Semiconductor Europe

Fax: (+49) 0-180-530 85 86 Fax: (+49) U-18U-35U oo oo Email: onjwege tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 85 85 English Tei: (+49) 0-180-532 78 32 Français Tei: (+49) 0-180-532 93 58 Italiano Tel: (+49) 0-180-534 16 80 **National Semiconductor** Hong Kong Ltd.
13th Floor, Straight Block,
Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon

Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960

National Semiconductor Japan Ltd.
Tel: 81-043-299-2309
Fax: 81-043-299-2408