# Desenvolvimento de Código Otimizado

Alyson Matheus Maruyama Nascimento - 8532269

Atividade 2

Planejamento de Experimentos



Universidade de São Paulo - São Carlos

#### Análise de influência

Dado que temos um Projeto Fatorial  $2^2$ , contendo dois fatores e dois níveis para cada fator, podemos mapear as seguintes representações e os seguintes experimentos:

**Representações:** ao longo dos experimentos, iremos denominar cada nível de cada fator da seguinte forma:

- Loop Interchange: -1, Loop Unrolling: 1
- Tamanho da matriz 100: -1, tamanho da matriz 1000: 1

**Experimentos**: com as representações acima, podemos mapear quatro experimentos em nosso Projeto Fatorial:

| Experimento | Α           | В          | Var. Resposta |  |
|-------------|-------------|------------|---------------|--|
| 1           | -1 (inter.) | -1 (M=100) | y1            |  |
| 2           | 1 (unrol.)  | -1 (M=100) | y2            |  |
| 3           | -1 (inter)  | 1 (M=1000) | уЗ            |  |
| 4           | 1 (unrol.)  | 1 (M=1000) | y4            |  |

Onde cada uma das respostas yi acima corresponde ao valor médio para cada variável de resposta de todas as execuções realizadas (na Atividade 1 realizamos 10 execuções).

Sendo assim ,e seguindo o modelo para o Projeto Fatorial  $2^2$ , temos os seguintes valores para yi:

- 
$$y_1 = q_0 - q_a - q_b + q_{ab}$$

- 
$$y_2 = q_0 + q_a - q_b - q_{ab}$$

- 
$$y_3 = q_0 - q_a + q_b - q_{ab}$$

- 
$$y_4 = q_0 + q_a + q_b + q_{ab}$$

E consequentemente, resolvendo as equações acima para qi:

$$- q_0 = \frac{1}{4} (y_1 + y_2 + y_3 + y_4)$$

- 
$$q_a = \frac{1}{4} \left( -y_1 + y_2 - y_3 + y_4 \right)$$

- 
$$q_b = \frac{1}{4} \left( -y_1 - y_2 + y_3 + y_4 \right)$$

$$- q_{ab} = \frac{1}{4} (y_1 - y_2 - y_3 + y_4)$$

Com isso, e com os resultados da Atividade 1, temos:

| Fatores     |            | Variáveis de Resposta |           |                     |                  |
|-------------|------------|-----------------------|-----------|---------------------|------------------|
| A           | В          | L1-dcache loads       | L1-dcache | branch instructions | branch<br>misses |
| -1 (inter.) | -1 (M=100) | 13151275              | 699053    | 10483632            | 236027           |
| 1 (unrol.)  | -1 (M=100) | 13207135              | 747244    | 10465075            | 237072           |
| -1 (inter)  | 1 (M=1000) | 1322562515            | 76626646  | 1064390668          | 23312796         |
| 1 (unrol.)  | 1 (M=1000) | 132053624             | 77909924  | 1063787610          | 23884774         |
|             |            |                       | •         | •                   |                  |

Com a tabela em mãos acima, para cada um dos experimentos nela foi aplicado o *script* em linguagem *R* disponibilizado como material de apoio durante a aula. O script contendo o exemplo foi modificado para atender o programa em questão da Atividade 1 e o novo código foi entregue no mesmo arquivo comprimido (.zip ou .rar) junto com este documento com o nome de factorial\_project.R.

## Resultados

Todos os resultados a seguir são as saídas do *script* em R modificado. Como temos quatro variáveis de resposta, teremos também quatro conjunto de dados, um para cada variável.

#### L1-dcache loads

```
The design itself:
    Tecnica Matriz resultados
1 Interchange 100 13151275
2 Unrolling 100 13207135
3 Interchange 1000 1322562515
4 Unrolling 1000 132053624
class=design, type= full factorial
```

Influencia devido ao fator Tecnica: 0.2907305 Influencia devido ao fator Matriz: 0.4184844 Influencia devido a interacaoo dos fatores: 0.2907851

# Main effects plot for resultados



#### Interaction plot matrix for resultados



#### L1-dcache load-misses

The design itself:
 Tecnica Matriz resultados
1 Interchange 100 699053
2 Unrolling 100 747244
3 Interchange 1000 76626646
4 Unrolling 1000 77909924
class=design, type= full factorial

Influencia devido ao fator Tecnica: 7.563204e-05 Influencia devido ao fator Matriz: 0.9998593 Influencia devido a interacaoo dos fatores: 6.507869e-05

# Main effects plot for resultados



#### Interaction plot matrix for resultados



#### branch instructions

```
The design itself:
    Tecnica Matriz resultados
1 Interchange 100 10483632
2 Unrolling 100 10465075
3 Interchange 1000 1064390668
4 Unrolling 1000 1063787610
class=design, type= full factorial
```

Influencia devido ao fator Tecnica: 8.702002e-08 Influencia devido ao fator Matriz: 0.9999998 Influencia devido a interacaoo dos fatores: 7.693904e-08

## Main effects plot for resultados



### Interaction plot matrix for resultados



#### branch misses

```
The design itself:
    Tecnica Matriz resultados

1 Interchange 100 236027

2 Unrolling 100 237072

3 Interchange 1000 23312796

4 Unrolling 1000 23884774

class=design, type= full factorial
```

Influencia devido ao fator Tecnica: 0.0001503575 Influencia devido ao fator Matriz: 0.9997004 Influencia devido a interacaoo dos fatores: 0.0001492627

## Main effects plot for resultados







## Resumindo os dados

Resumindo os dados do item anterior em uma tabela, temos os seguintes níveis de influência de cada fator sobre cada uma das variáveis:

| Variáveis             | Influência da<br>Técnica (Inter. ou<br>Unrol.) | Influência do<br>Tamanho da<br>Matriz | Influência de<br>ambos |
|-----------------------|------------------------------------------------|---------------------------------------|------------------------|
| L1-dcache loads       | 0.2907305                                      | 0.4184844                             | 0.2907851              |
| L1-dcache load misses | 0.0000756                                      | 0.9998593                             | 0.00006507             |
| branch instructions   | 0.0000008                                      | 0.999998                              | 0.0000007              |
| branch misses         | 0.000150                                       | 0.9997004                             | 0.000149               |

#### Conclusão

Sucintamente, a partir dos dados coletados e dos gráficos obtidos, podemos concluir que os fatores apresentam influência praticamente nula sobre *branch-misses* e *branch-instructions*.

Por outro lado, *L1-dcache load-misses* e *L1-dcache loads* recebem grande influência por ambos os fatores, especialmente quando falando sobre o tamanho da matriz.