- L3 MIASHS/Ingémath
- Université Paris Cité
- Année 2023-2024
- Course Homepage
- Moodle

Créer les fonctions SQL et vues correspondant aux questions suivantes.

Les questions portent sur le schéma nycflights13 issu de https://github.com/tidyverse/nycflights13.

Voir Documentation package R nycflights13

Exercice

- Nombre vols retardés d'un délai minimal à l'arrivée à un aéroport donné
- Donnés sur schéma nycflights13

Écrire une fonction SQL nommée cc_fonc_11 qui prend en argument un code d'aéroport p_faa de type text, une année p_year (int4), un mois p_month (int4), un délai plancher p_delay (int4) et renvoie le nombre de vols retardés de strictement plus de p_delay minutes à l'arrivée à l'aéroport faa, pendant le mois month de l'année year.

La fonction retourne un entier (bigint)

```
Réponse attendue pour
SELECT *
FROM cc_fonc_11('LAX', 2013, 3, 40);`
73
```

Exercice

Donnés sur schéma nycflights.

Écrire une fonction SQL nommée cc_fonc_12 qui prend en argument une année p_year, un mois p_month, une compagnie aérienne p_carrier (text) et renvoie le nombre de couples aéroport d'origine origin/aéroports de destination dest distincts desservis par cette compagnie p_carrier pendant le mois p_month de l'année p_year.

La fonction retourne un entier (bigint)

Réponse attendue pour SELECT * FROM cc_fonc_12('UA', 2013, 2);

39

Exercice

Données dans le schéma nycflights13

Écrire une vue nommée cc_vue_13 de schema (origin, dest, year, month, carrier, model, maxspeed) qui indique pour chaque couple (origin, dest), pour chaque couple (year,month), la vitesse maximale maxspeed (numeric) d'un vol reliant origin à dest pendant le mois month de l'année year, le modèle de l'avion qui a réalisé le vol le plus rapide, et la compagnie aérienne qui a assuré ce vol.

maxspeed sera exprimée en km/h. distance est exprimée en milles nautiques (1 mille = 1.852 km).

Écrire une vue nommée cc_vue_13 de schéma :

(year INT4, month INT4, origin TEXT, dest TEXT, name TEXT, model TEXT, maxspeed numeric)

Réponse attendue pour

Précision pour maxspeed : (1 km/h)

```
CREATE MATERIALIZED VIEW correction_cc3.cc_vue_13 AS (
WITH r AS (
    SELECT f.year, f.month, f.origin, f.dest, max(1.852 *60*f.distance/f.air_time) as maxspeed
    FROM nycflights13.flights f
    where f.distance > 0 and f.air_time > 0
    GROUP BY f.year, f.month, f.origin, f.dest
), s AS (
    SELECT r.year, r.month, r.origin, r.dest, r.maxspeed, ff.tailnum, ff.carrier
    FROM nycflights13.flights ff JOIN r ON (r."month"=ff."month" AND r."year"=ff."year" AND r
    WHERE ff.distance > 0 and ff.air_time > 0 AND (1.852 * 60* ff.distance/ff)
)
SELECT s.year, s.month, s.origin, s.dest, a.name, p.model ,s.maxspeed
FROM s
    JOIN nycflights13.planes p ON (s.tailnum=p.tailnum)
    JOIN nycflights13.airlines a ON (s.carrier=a.carrier))
WITH DATA;
```

Exercice

Donnés sur schéma nycflights13.

Créer dans votre schéma, une vue nommée cc_vue_14 de schéma :

(origin , year int4, month int4, day int4, hour int4, avg_depdelay bigint, n_cancelled bigint, n_so qui donne pour chaque aéroport d'origine origin, chaque heure yyyy:mm:dd hh:00:00, le retard moyen au départ avg_depdelay des vols qui ont (effectivement) décollé de origin pendant l'heure qui a précédé yyyy:mm:dd hh:00:00, et n_canceled le nombre de vols annulés sur cet aéroport pendant cette heure, et enfin n_scheduled_flights le nombre de vols prévus pendant cette heure.

Réponse attendue pour :

+	+	+-	+	+
date_time	avg	_ ,		n_scheduled_flights
2013-01-30 20:00:0		30.7	7	23
2013-02-08 12:00:0	1000.00	5.8	5	11
2013-02-08 15:00:0	1000.00	25.9	7	17
2013-02-08 16:00:0	1000.00	10.6	17	24
2013-02-08 17:00:0	1000.00	6.7	19	25
2013-02-08 18:00:0	1000.00		24	24
2013-02-08 19:00:0	1000.00		24	24
2013-02-08 20:00:0	1000.00		23	23
2013-02-08 21:00:0	1000.00		17	17
2013-02-08 22:00:0	1000.00		6	6

```
CREATE MATERIALIZED VIEW correction_cc3.cc_vue_14 AS (
SELECT f.origin,
   f."year",
   f."month",
   f."day",
   f."hour"+ 1 AS "hour",
   AVG(dep_delay) AS avg_delay,
   SUM(CASE WHEN f.arr_time IS NULL THEN 1 ELSE 0 END) AS n_cancelled,
   COUNT(*) as n_scheduled_flights
FROM nycflights13.flights f
GROUP BY f.origin, f.year, f.month, f."day", f."hour")
WITH DATA;
```

Exercice

Donnés sur schéma nycflights13.

Créer une vue cc_vue_15 de schéma :

```
(tailnum text, year int4, woy int4, cumdist numeric, model text)
```

qui recense pour chaque semaine (commencant le dimanche) les avions (identifiés par tailnum) qui ont parcouru la plus grande distance durant cette semaine, la distance parcourue pendant la semaine (en milles nautiques), on indiquera aussi le modèle (model) de l'avion

Réponse attendue pour :

```
SELECT *
FROM cc_vue_15
WHERE woy>=26 AND woy <= 30
```

```
+----+
|tailnum|year|woy|cumdist|model |
+----+
|N320AA |2013| 30|22497.0|767-223|
|N324AA |2013| 28|22497.0|767-223|
|N327AA |2013| 26|23697.0|767-223|
|N327AA |2013| 27|22386.0|767-223|
|N332AA |2013| 29|23475.0|767-223|
```

Indications

Manipulation du temps

```
• Doc PostgreSQL : types
```

• Doc PostgreSQL : fonctions

```
SELECT extract(week from now()), now(), now() + '1 week'::interval;

+-----+
|date_part|now | ?column? |
+----+
| 46.0|2022-11-20 11:46:59.322 +0100|2022-11-27 11:46:59.322 +0100|
```

Voir aussi datetime pour Python ou lubridate pour R.

solution CREATE MATERIALIZED VIEW correction_cc3.cc_vue_15 AS (WITH r AS (SELECT f.tailnum, f.year, extract(week from f.time_hour)::int4 as woy, sum(distance) as cumdist FROM nycflights13.flights f WHERE tailnum is not null GROUP BY f.year, extract(week from f.time_hour), f.tailnum), s AS (SELECT DISTINCT r.tailnum, r.year, r.woy, r.cumdist, rank() OVER v AS rnk FROM r WINDOW v AS (PARTITION BY (r.year, r.woy) ORDER BY cumdist DESC NULLS LAST)), t AS (SELECT s.tailnum, s.year, s.woy, s.cumdist FROM s WHERE rnk = 1) SELECT t.*, p.model FROM t JOIN nycflights13.planes p ON (t.tailnum=p.tailnum)) WITH DATA ;