190 High Holborn London WC1V 7BH

January 2005

Advanced Subsidiary/Advanced Level

General Certificate of Education

Subject:

Statistics

oubject.	Statistics i aper	_		
Question Number	Scheme	Marks		1
1.	(a) P(R=5) = P(R < 5) - P(R < 4) = 0.7216-0.5155 Can be inf	liced MI		
	* 0.2061 AWET 0.20	4	(2)	
	$(oR: {}^{15}C_{5}(o.3)^{5}(o.7)^{10} = 0.206130)$ $(b) P(S=5) = 0.2414 - 0.1321 = 0.1093 Accept $ $(oR: {}^{7.65}C_{5}^{-7.5} = 0.10937459)$ Awar Au	81 94 18T	(1)	
	(OR: -5! (E) P(T=5) =0	iao B1	(i)	
۵.	(e) (i) A collection of individuals or items	81		
•	in A list of all sampling units in the population	BI	(2)	
	(6) Not always bossible to keep this list up to da	ke BI	(ı)	
	(c) (i) eg:- Pupils in year 12 - small easily listed touth	81		
	Population known & easily accessed	Bı		
	in Students in a University - Large not easily lin	ta Bi		
	Population known but too time population consuming expensive to interview	81	(4)	
	all of them.			
	(i) SR (i) Definition of census by example B1			

190 High Holborn London WC1V 7BH

January 2005

Advanced Subsidiary/Advanced Level

General Certificate of Education

Subject:

Statistics

Oubject.	Otatistics	raper. 32	
Question Number	Scheme	Marks	
3.	(a) Continuous uniform/Rectangular	Bı	
	L(n) = 1 % 0 exel	Bi	
	$f(x) = \begin{cases} 1/2, & 0 \le x \le 1 \\ 0 & \text{otherwise} \end{cases}$	81	(3)
	(1) $P(X < \frac{1}{2}L) = \frac{1}{L} \times \frac{L}{3} = \frac{1}{3}$	Thirty & MIAI	(2)
	(c) E(x)= 1L	Bı	(1)
	(d) P(Both < 12) = (13)2 = 1	(P) _T WI	
,		Ay	(2)
4.	(a) Probability of success/failure is const Trials are independent	ant BI	(.5)
	(b) Let b represent proportion of steedents	who can	
	distinguish detensen brands Ho: b=0.1; Hi: b>0.1	(bok) BI	
	W= 0.01; CR: 2 > 2.3263	2.3263 B1	
	np = 25; ~pq = 22.5	both B1 Combe implied	
	$3 = \frac{39.5 - 25}{\sqrt{22.5}} = 3.05 \text{ ferm.}$	Standardication MI Title ±0.5 & Noir Tupy AWRT 3.02 AI	
	Riject Ho: claim count be accepted	Based on clear All evidence from got	(6)
	(c) ig:- np, nor both 75 - true to accept p close to 0.5 - not true, assure success/failure not clear cut ne	within not met Bi cess with	(2)
	p close to 0.5 - not true, assure	which we that Bi	

⁽b) Aliter 8= 3.06 * p=0.9989 >0.99 } &1 equir to 2.3263

190 High Holborn London WC1V 7BH

January 2005

Advanced Subsidiary/Advanced Level

General Certificate of Education

Subject:

Statistics

Question Number	Scheme	Marks	
5 .	Let X represent the number of defective articles: X ~ B(10,0.032)	N.	.,
	(a) $1(x=2) = \frac{10}{2} (0.032)^{2} (1-0.032)^{6}$ $= 0.0355274$	Oug "C, p'q"." All correct AWRT 0'0355	M) A) A) (3)
	(b) Large n small p → Poisson apploximation with 1= 100×0.032 = 3.2	Seen or implied	81
·	$P(X \leftarrow 4) = P(X \leq 3) = P(=) + P(1) + P(2) + 7(3)$	P(X≤3) stated or implied	MI
	R Horasel = 0/4 = = -3.2 { 1+3.2 + (3.2) + (3.2) } } Approx	All correct	AI
	= 0.602519	Awet o bod	A1 (4)
	(C) np & nq bok >5 => Hornal approximation	· Nathax	MI
	with nb = 32 and nby = 30.976	bok	A \
	P(X>42) = P(Y>42.5) whic Y-11(32,30	WARRIED TO THE PARTY OF THE PA	Μı
	$= P(Z > \frac{130.976}{}$	their np, vary All correct	Æì
	= 1(2 > 1.8845)	AWRT 1.69	Al Aı
	= 0.0294	0.0294-0.0297	A1 (6)

190 High Holborn London WC1V 7BH

January 2005

Advanced Subsidiary/Advanced Level

General Certificate of Education

Subject:

Statistics

	<u> </u>	
Question Number	Scheme	Marks
6.	het X represent nowber of accidents/worth :: x~ Po(3)	BI
	(a) $P(X>4) = 1 - P(X=4); = 1 - 0.8513 - 0.1647$	MI; AI (3)
	(b) Let Yrepresent number of accidents in 3 worther : Yn Po (3x3 = 9) Can be in	apliced B1
	P(Y>4)= 1-0.0560 = 0.9450	B1 (2)
	(c) Ho: $\lambda = 3$; H: $\lambda = 3$ Robinson Robinson Robinson	L BI
-	P(X=1/2=3)= 0.1991; >0.05	Bl; Mi
	in houseficient evidence to cuff out the claim that the near wenter of accident has been reduced. (M8: CR: X =0; X=1 not in CR; same conclusion >> B1, M1	AIV (4)
		<u>.72</u> 81
	K= 0.05 => CR: 3 <-1.644) -1.6	rand Bi Moth Bi
	Using Mormal approximation with JL=0"= 72 Canbin	uplied B1
	8= 55.5-72 = -1.94454 \$ 504, ju	with all w
	Since -1.944 is in the CR, the 1s rejected. There Contests evidence that the restriction has reduced clearer	+ 2 AN (7)
Ī	the number of accidents.	
	Aliter (d) p=0.0262 < 0.05 Awr 0.026 &1 equal	to -1.6449

190 High Holborn London WC1V 7BH

January 2005

Advanced Subsidiary/Advanced Level

General Certificate of Education

Subject:

Statistics

Question Number	Scheme	arks
7.	(a) $k \int_{-\infty}^{+\infty} (-x^2 + 5x - 4) dx = 1$ Using $\int_{-\infty}^{+\infty} f(x) dx = 1$	MI
	$\therefore \left[\frac{1}{3} + \frac{5x^{2}}{2} - 4x \right]^{4} = 1$ All correct integing with limits	Aı
	* => \(\frac{1}{2} \frac{1}{9} \) \(\tag{c.s.0} \)	A1 (3)
	(b) $E(x) = \int_{-2/9}^{4/9} (-x^3 + 5x^2 - 4x) dx$ Ung $\int x f(x) dx$	MI
	$= \frac{2}{9} \left[-\frac{\kappa^4}{4} + \frac{5\kappa^2}{3} - \frac{4\kappa^2}{1} \right]_1^4 \qquad \text{Comet in fig.}$ with limits	∱ 1
	= 5/2 Cao	A((3)
	(c) $\frac{d}{dx}f(x) = \frac{2}{3}(-2x+5) = 0$; \Rightarrow Mode = $\frac{5}{3}$ Diff. 4 f(x)	MI; AI (2)
	(d) $F(x) = \int_{-49}^{49} (-x^2 + 5x - 4) dx$ Un 3 fleich	Mi
_	$= \left[\frac{2}{9}\left(-\frac{x^{2}}{3} + \frac{5x^{2}}{2} - 4x\right]^{3} \right]$ Integ [*] with limits	Ai
	$= \frac{2}{9} \left\{ -\frac{1}{3} + \frac{5}{2} - 4 \times 0 + \frac{11}{4} \right\}$ auf	Ar
	$F(x) = \begin{cases} 9 \left(-\frac{x^3}{2} + 5x^2 - 4x + \frac{11}{6}\right) & 1 \le x \le 4 \\ 1 \le x \le 4 & 1 \le x \le 4 \end{cases}$	B ₁ (s)
	(e) $P(x=2.5) = F(2.5) = 0.5$ [1.15] or [Atyrel etc.]	MI AI (2)
	(f) Median = 2.5; Distribution is eguenetrees	Blibl(2)