Classification Assignment

Problem Statement:

A requirement from the Hospital, Management asked us to create a predictive model which will predict the Chronic Kidney Disease (CKD) based on the several parameters. The Client has provided the dataset of the same.

1.) Identify your problem statement

To predict the Disease

- a) Machine Learning
- b)Supervised Learning
- c)Classification
- 2) Tell basic info about the dataset

399 Rows × 25 columns

3)Mention the pre-processing method if you're doing any (like converting string to number – nominal data)

normal	abnormal	notpresent
yes	no	

These above terms are converted into numerical form

4.) Develop a good model with good evaluation metric. You can use any machine learning algorithm; you can create many models. Finally, you have to come up with final model.

1.LOGISTIC REGRESSION

1_solver	params	split0_test_score	split1_test_score	split2_test_score	split3_test_score	split4_test_score	mean_test_score	std_test_score	rank_test_score
ewton-cg	{'penalty': '12', 'solver': 'newton- cg'}	0.945100	0.961755	0.981217	0.943093	0.981031	0.962439	0.016575	3
Ibfgs	{'penalty': '12', 'solver': 'lbfgs'}	0.945100	0.981014	0.981217	0.943093	0.981031	0.966291	0.018133	1
liblinear	{'penalty': "12', 'solver': 'liblinear'}	0.945100	0.981014	0.981217	0.943093	0.981031	0.966291	0.018133	1
saga	{'penalty': '12', 'solver': 'saga'}	0.890759	0.868632	0.887719	0.832069	0.829279	0.861692	0.026452	4
<									>

2.KNN

```
: print("The confusion matrix:\n",cm)
  The confusion matrix:
  [[49 2]
[17 65]]
: print("The report:\n",clf_report)
  The report:
                 precision
                              recall f1-score
                                                 support
             0
                     0.74
                               0.96
                                         0.84
                                                      51
                     0.97
                               0.79
             1
                                         0.87
                                                      82
     accuracy
                                         0.86
                                                     133
                               0.88
                     0.86
                                         0.86
                                                     133
     macro avg
  weighted avg
                     0.88
                               0.86
                                         0.86
                                                     133
```

hts	params	split0_test_score	split1_test_score	split2_test_score	split3_test_score	split4_test_score	mean_test_score	std_test_score	rank_test_score
ırm	{'metric': 'euclidean', 'n_neighbors': 5, 'p':	0.835979	0.831098	0.869925	0.813811	0.907035	0.851570	0.033170	5
108	{'metric': 'euclidean', 'n_neighbors': 5, 'p':	0.854345	0.831098	0.869925	0.813811	0.907035	0.855243	0.032244	3
ırm	{'metric': 'manhattan', 'n_neighbors': 5, 'p':	0.908877	0.887907	0.925524	0.869387	0.925146	0.903368	0.021860	1
108	{'metric': 'manhattan', 'n_neighbors': 5, 'p':	0.908877	0.887907	0.925524	0.850292	0.925146	0.899549	0.028209	2
ırm	{'metric': 'minkowski', 'n_neighbors': 5, 'p':	0.835979	0.831098	0.869925	0.813811	0.907035	0.851570	0.033170	5

3.RANDOM FOREST

The confi [[51 0] [1 81]] The repo]]	n matr:	ix:							
		pre	cisio	n recal	l f1-scor	re support				
	0 1		0.98 1.00	1.00 0.99	0.99 0.99					
accu macro weighted	avg		0.99 0.99	0.99 0.99		133				
{'criterion': 'gini', 'max_features': 'sqrt',		1.000000		0.942166	0.981217	0.981031	0.981031	0.977089	0.018935	8
{'criterion': 'gini', 'max_features': 'log2',		0.981569		0.942166	0.981217	0.981031	0.943093	0.965815	0.018934	11
{'criterion': 'gini', 'max_features': 'log2',		1.000000		0.961755	0.981217	0.981031	0.981217	0.981044	0.012095	1
{'criterion': 'entropy', 'max_features': 'auto		1.000000		0.961755	0.981217	0.981031	0.981031	0.981007	0.012095	2
{'criterion': 'entropy', 'max_features': 'auto		1.000000		0.961755	0.981217	0.981031	0.981031	0.981007	0.012095	2

4.DECISION TREE

The confusion matrix: [[51 0] [1 81]] The report: recall f1-score precision support 0 0.98 1.00 0.99 51 1 1.00 0.99 0.99 82 accuracy 0.99 133 0.99 0.99 0.99 133 macro avg weighted avg 0.99 0.99 0.99 133

om ,	{'criterion': 'entropy', 'max_features': 'auto	0.908501	0.924528	0.906705	0.943651	0.943651	0.925407	0.016137	11
est ,	{'criterion': 'entropy', 'max_features': 'sqrt	0.926567	0.962636	0.962573	0.903887	0.981031	0.947339	0.028003	3
om ,	{'criterion': 'entropy', 'max_features': 'sqrt	0.908877	0.903610	0.944023	0.922492	0.962264	0.928253	0.022006	10
est ,	{'criterion': 'entropy', 'max_features': 'log2	0.926567	0.962264	0.944023	0.923652	0.943651	0.940032	0.013949	5
om ,	{'criterion': 'entropy', 'max_features': 'log2	0.945100	0.923510	0.962573	0.962264	0.962573	0.951204	0.015395	1

5.SUPPORT VECTOR MACHINE

[[[51 0]	j	atrix:						
			precision	recall	f1-sco	re s	upport		
		0	0.89	1.00	0.9	4	51		
		1	1.00	0.93	0.9	6	82		
	accui	racy			0.9	5	133		
	macro	avg	0.95	0.96	0.9	5	133		
we:	ighted	_	0.96	0.95	0.9	6	133		
sigmoid	'auto', 'kernel': 'sigmoid'}	0.890759	0.962264	0.962573	1.000000	0.962264	0.955572	0.035534	8 ^
poly	{'C': 10, 'gamma': 'auto', 'kernel': 'poly'}	0.926978	0.981014	0.944023	1.000000	1.000000	0.970403	0.029820	1
linear	{'C': 10, 'gamma': 'scale', 'kernel': 'linear'}	0.890759	0.924528	0.981217	0.961826	0.962264	0.944119	0.032404	17
rbf	{'C': 10, 'gamma': 'scale', 'kernel': 'rbf}	0.908877	0.981014	0.944023	0.981217	1.000000	0.963026	0.032603	3
									~

AT THE FINAL MODEL:

RANDOM FOREST

Because RF has more accuracy compare to the other algorithum

The confusion [[51 0] [1 81]] The report:	matrix:			
	precision	recall	f1-score	support
0	0.98	1.00	0.99	51
1	1.00	0.99	0.99	82
accuracy			0.99	133
macro avg	0.99	0.99	0.99	133
weighted avg	0.99	0.99	0.99	133

THE OVERALL PERFORMANCE IS 0.99

0→not caused by disease
1→caused by disease
total count of not caused by disease =51
total count of caused by disease=82

{'criterion': 'gini', 'max_features': 'sqrt',	1.000000	0.942166	0.981217	0.981031	0.981031	0.977089	0.018935	8
{'criterion': 'gini', 'max_features': 'log2',	0.981569	0.942166	0.981217	0.981031	0.943093	0.965815	0.018934	11
{'criterion': 'gini', 'max_features': 'log2',	1.000000	0.961755	0.981217	0.981031	0.981217	0.981044	0.012095	1
{'criterion': 'entropy', 'max_features': 'auto	1.000000	0.961755	0.981217	0.981031	0.981031	0.981007	0.012095	2
{'criterion': 'entropy', 'max_features': 'auto	1.000000	0.961755	0.981217	0.981031	0.981031	0.981007	0.012095	2

By using the parameters are

n_estimators=100,

'criterion': 'gini',

'max_features': 'log2'

In these way we have to achieve the good accuracy