Lecture 16: A Review of Major Security **Primitives**

Cunsheng DING, HKUST

COMP4631

The objective of this review lecture

The objective of this lecture is to answer the following questions:

- 1. What are the security services covered in this course so far?
- 2. How to provide the data confidentiality service?
- 3. How to provide the sender authentication and data integrity services?
- 4. How to provide the mutual authentication service?
- 5. How to establish a common secret key?

The motivation of reviewing the security primitives

The first part (i.e., cryptography) of this course covers security primitives for providing specific security services.

Most of them are used in real-world security systems such as PGP and S/MIME, IP Security, SSL/TLS, VPNs and the Secure Shell, which will be covered in the second part of this course.

To better understand these real-world security systems, we need recall some basic security primitives before studying real-world security systems.

Page 2 COMP4631

Passive and active attacks

Question: What are passive and active attacks?

Question: What is a replay attack?

Question: Is a replay attack a passive attack?

Question: Could a replay attack be a serious security problem?

Question: How is the anti-replay service provided? (Quiz question)

Page 3 COMP4631

A summary of the security services covered so far

- Data confidentiality
- Sender authentication, receiver authentication, mutual authentication
- Data integrity (data authentication)
- Sender non-repudiation
- Anti-replay
- Key generation, key distribution, key establishment

Comment: You have to fully understand these security services and know how to provide these security services.

Providing the data confidentiality service

A cipher is used to encrypt a piece of data m. The ciphertext $E_k(m)$ may be in storage or in transmission:

Alice
$$\to E_k(m) \to B$$

Encryption is usually done in the CBC mode.

Question: Does this protocol provide other security services? If yes, what are these security services?

Providing sender authentication & data integrity (1)

Question: How to provide the two security services simultaneously?

Answer: In real-world security systems, two protocols are used.

Page 6 COMP4631

Providing sender authentication & data integrity (2)

In PGP and S/MIME, the two security services are provided in the form:

Alice $\to m||$ Alice' digital signature on $m \to Bob$.

Question: What should Bob do after receiving the text from Alice?

Question: Does this protocol provide other security services?

Page 7 COMP4631

Providing sender authentication & data integrity (3)

In most real-world security systems, the two security services are provided simultaneously as follows:

Alice
$$\to m||h_k(m)\to \mathrm{Bob},$$

where a hash function h and an authentication key are used in the HMAC mode for obtaining a keyed hash function h_k . The HMAC approach was covered earlier.

The value $h_k(m)$ is called the **message authentication code** (MAC).

Question: What should Bob do after receiving the text from Alice?

Question: Does this protocol provide other security services?

Providing the mutual authentication (1)

Question: How to provide the mutual authentication service?

Answer: In real-world security systems, two protocols are used. One is a Type-1 authentication protocol, the other is a Type-2 authentication protocol.

Page 9 COMP4631

Providing the mutual authentication (2)

Type-1 authentication protocol (a Kerberos-like protocol or Niederheim-Schroeder-like protocol),

Alice
$$\to E_k(ID_A||ID_B||timestamp) \to Bob$$

Alice
$$\leftarrow E_k(ID_B||ID_A||timestamp) \leftarrow Bob$$

where a pre-shared secret key k is used.

Question: Does this protocol provide other security services?

Question: What is the purpose of adding the timestamp in this protocol?

Page 10 COMP4631

Providing the mutual authentication (3)

Type-2 authentication protocol (a challenge-response protocol),

Alice
$$\to E_{k_e^B}(N_1) \to \text{Bob}$$

Alice $\leftarrow N_1 \leftarrow \text{Bob}$,

This is to allow Alice to authenticate Bob. Authentication in the other direction is similar.

Question: Does this protocol provide other security services?

Page 11 COMP4631

Providing the sender nonrepudiation service

Protocols: In real-world security systems, the following two digital signature schemes are supported:

- The RSA public-key cipher and a hash function (covered in this course)
- The Digital Signature Standard (also called DSA) (not covered in this course)

Page 12 COMP4631

Establishing a common secret key (1)

Recall: We talked about key generation, key distribution, key exchange.

Remark: Key management includes, key generation, key distribution, key exchange, key storage, key destruction, etc.

Comment: "Key management" is the most complicated building block in real-world security systems!

Information: Two protocols for establishing a common secret key are supported in real-world security systems.

Page 13 COMP4631

Establishing a common secret key (2)

The first one is the digital-envelop protocol,

Alice
$$\to E_{k_e^B}(k) \to \mathrm{Bob}$$

Question: Is this protocol secure with respect to man-in-the-middle attacks.

Question: Why is it used in real-world security systems?

Establishing a common secret key (3)

The second one is the Diffie-Hellman key exchange protocol. Let us recall this protocol briefly (see Lecture 8).

Question: Is this protocol secure with respect to man-in-the-middle attacks.

Question: Why is it used in real-world security systems?

Diffie-Hellman group: a specific pair (p, α) used in the Diffie-Hellman protocol.

Page 15 COMP4631