多项式的唯一析因定理的证明

叶卢庆* 杭州师范大学理学院, 浙江 杭州 310036

摘要: 证明了域上多项式的唯一析因定理.

关键词: 多项式, 唯一析因定理

定理 1.3.9 (唯一析因定理) 设 f(x) 为域 \mathbb{F} 上次数大于零的多项式, 则 f(x) 有下列因式分解:

$$f(x) = a_0 p_1(x) p_2(x) \cdots p_r(x), \tag{1.3.3}$$

其中 a_0 是 f(x) 的首项系数, $p_1(x)$, $p_2(x)$, \cdots , $p_r(x)$ 为域 \mathbb{F} 上次数大于零, 且首项系数为 1 的不可约多项式. 若另有因式分解

$$f(x) = a_0 q_1(x) q_2(x) \cdots q_t(x), \tag{1.3.4}$$

其中 $q_1(x)$, $q_2(x)$, \dots , $q_t(x)$ 为域 \mathbb{F} 上次数大于零, 且首项系数为 1 的不可约多项式, 则 t=r, 且存在 1, 2, \dots , r 的排列 $i_1i_2\cdots i_r$, 使得

$$q_j(x) = p_{i_j}(x), \quad 1 \leqslant j \leqslant r. \tag{1.3.5}$$

又, f(x) 的次数大于零的因式必为

$$\lambda p_{j_1}(x)p_{j_2}(x)\cdots p_{j_s}(x),$$
 (1.3.6)

其中 λ 为域 \mathbb{F} 中非零数, j_1, j_2, \dots, j_s 为 $1, 2, \dots, r$ 中 s 个不同的数.

证明. 分解的存在性是容易证明的. 我只证明分解的唯一性. 采用数学归纳法. 当 f(x) 可以分解成 $a_0q_1(x)$ 这种形式时, 其中 $q_1(x)$ 不可约, 那么容易证明此时分解是唯一的. 假设当 f(x) 可以分解成 $a_0q_1(x)q_2(x)\cdots q_n(x)$ 时, 其中 $\forall 0 \leq i \leq n, q_i(x)$ 是不可约的, 假设此时, 分解仍然是唯一的. 那么当 f(x) 能被分解成 $a_0q_1(x)q_2(x)\cdots q_n(x)q_{n+1}(x)$ 时, 其中 $\forall 0 \leq i \leq n, q_i(x)$ 都是不可约的, 我们要证明此时分解仍是唯一的. 这是容易的, 因为

$$\frac{f(x)}{q_{n+1}(x)}$$

能被唯一分解成 $a_0q_1(x)q_2(x)\cdots q_n(x)$ (根据归纳假设),而 $q_{n+1}(x)$ 与其它多项式只有两种关系,要么 $q_{n+1}(x)$ 和其它多项式互质,要么 $q_{n+1}(x)$ 与其它多项式是常数倍关系. 如果是常数倍关系,那么这个常数只能是 1,此时能证明 f(x) 的分解 $a_0q_1(x)q_2(x)\cdots q_n(x)q_{n+1}(x)$ 是唯一的. 如果是互质关系,是不可能的,这是因为如下的结论:

引理 1. m(x) 为非零多项式, 若 p(x) 与 q(x) 互质, 则 $m(x)p(x) \neq m(x)q(x)$.

^{*}叶卢庆 (1992—), 男, 杭州师范大学理学院数学与应用数学专业本科在读,E-mail:h5411167@gmail.com

注 1. 数论里的算术基本定理可以类似得证.