Oppgaver i kommutativ algebra

Fredrik Meyer

1 Ringer og idealer

Oppgave (1). La x være et nilpotent element i ringen A. Vis at 1 + x er en enhet i A, og utled at summen av en enhet og et nilpotent element er en enhet.

Proof. La z være en enhet i A, og la x være nilpotent. Da er $x^n=0$ for en n>0. Da er

$$1 = (z+x)(z^{-1} - xz^{-2} + x^2z^{-3} - \dots + x^{n-1}z^n)$$
 (1)

så z+x er en enhet i A. (dette er bare sumformelen for en geometrisk rekke) At 1+x er en enhet følger trivielt ved z=1.

Oppgave (2). La A være en ring og la A[x] være polynomringen med ko-

effisienter i A. La $f = a_0 + a_1x + \ldots + a_nx^n \in A[x]$. Bevis at i) f er en enhet i $A[x] \Leftrightarrow a_0$ er en enhet i A og a_1, \ldots, a_n er nilpotente.

- ii) f er $nilpotent \Leftrightarrow a_0, \ldots, a_n$ er nilpotente.
- iii) f er en nulldivisor \Leftrightarrow det eksisterer en $a \neq 0$ i A slik at af = 0.

Proof. i) Vi viser \Leftarrow først. Ved Prop 1.7 i Atiyah er $a_1x + \ldots + a_nx^n$ nilpotent (siden nilradikalet er lukket under multiplikasjon fra ringen og er en abelsk gruppe). Fra oppgave (1) følger det at $a_0 + a_1x + \ldots + a_nx^n$ er enhet.

Den andre implikasjonen \Rightarrow er verre. Anta f er enhet i A[x]. Da finnes en invers $g = b_0 + b_1 x + \ldots + b_m x^m$ slik at

$$fg = c_0 + c_1 x + \ldots + c_{m+n} x^{n+m} = 1$$
 (2)

med

$$c_i = \sum_{j=0}^i a_j b_{i-j} \tag{3}$$

Vi skal vise ved induksjon at

$$a_n^{r+1}b_{m-r} = 0 (4)$$

for alle $r \in \{0, \ldots, m\}$. Tilfellet r = 0 stemmer åpenbart siden (4) da er koeffisienten foran x^{m+r} i fg. Anta nå at $a_n^{r+1}b_{m-r} = 0$ for $r = 0, 1, \ldots, r$. Koeffisienten foran $x^{n+m-(r+1)}$ i fg er gitt ved (3). Åpenbart er $c_{n+m-(r+1)} = 0$ siden fg = 1.

$$c_{n+m-r-1} = a_n b_{m-r-1} + \sum_{i=0}^{n-1} a_i b_{n+m-r-i-1} + \sum_{i=n+1}^{n+m-r-1} a_i b_{n+m-r-i-1}$$
 (5)

Her er siste ledd 0 fordi alle i > n (f er et polynom av grad n). Vi flytter over, og ganger med a_n^{r+1} , og får

$$a_n^{r+2}b_{m-r-1} = -\sum_{i=0}^{n-1} a_i a_n^{r+1} b_{n+m-r-i-1}$$
(6)

Ved induksjonshypotesen er $a_n^{r+1}b_k = 0$ for alle k lavere og lik m-r, men dette gjør at summen i (6) er lik 0. Vi konkluderer med at (4) gjelder for alle r, og da spesielt for r=m, slik at $a_n^{m+1}b_0 = 0$. Ved å betrakte c_0 ser vi at b_0 er enhet, så vi ganger med b_0^{-1} , og får at $a_n^{m+1}b_0b_0^{-1} = a_n^{m+1} = 0$, så a_n er nilpotent.

Ved Oppgave (1) er også $f - a_n x^n$ enhet. Samme argument gir at alle a_i (i = 1, ..., n - 1) er nilpotente.

- ii) Vi gjør \Leftarrow først. Siden mengden av nilpotente elementer utgjør et ideal (Prop 1.7 i Atiyah), er også $a_0 + a_1x + \ldots + a_nx^n$ nilpotent.
- \Rightarrow . Anta at f er nilpotent. Ved oppgave (1) er 1 + f enhet i A[x]. Ved i) er a_1, \ldots, a_n nilpotente. Det følger at $a_0 = f (a_1x + \ldots + a_nx^n)$ er nilpotent (igjen, Prop 1.7 i Atiyah).
- iii) Den lette implikasjonen \Leftarrow først. Om $a \neq 0 \in A$ og af = 0. er f åpenbart en nulldivisor siden $a \in A[x]$.
- \Rightarrow . Anta nå at f er en nulldivisor. Da eksisterer det en $g \in A[x]$ av minste grad m slik at fg = 0. Om $g = b_0 + b_1 x + \ldots + b_m x^m$, følger det at $a_m b_m = 0$, så $a_n g$ er et polynom av grad < m. Og slik at $(a_n g)f = a_n(gf) = 0$. Men g var valgt som det polynomet av minste grad slik at fg = 0, så $a_n g = 0$.

Vi skal vise ved induksjon at

$$a_{n-r}g = 0 \text{ for alle } r \in \{0, \dots, 0\}$$
 (7)

Tilfellet r=0 er allerede vist. Anta nå at (7) stemmer for $r=1,\ldots,k$. Da har vi at:

$$(a_0 + \dots + a_n x^n)(b_0 + \dots + b_m x^m)$$

$$= \left(\sum_{i=0}^{n-k-1} a_i x^i + \sum_{i=n-k}^n a_i x_i\right) \left(\sum_{i=0}^m b_i x^m\right)$$

$$= \left(\sum_{i=0}^{n-r-1} a_i x^i\right) \left(\sum_{i=0}^m b_i x^m\right),$$

hvor vi i siste steg har brukt induksjonshypotesen. Ved samme argument som over er $a_{n-r-1}g = 0$ og dermed er (7) vist. Det følger at $a_ib_j = 0$ for alle i, j og dermed at

$$\prod_{b_j \neq 0} b_j f = 0.$$

Og vi er ferdige.

Oppgave (4). I ringen A[x] er Jacobson-radikalet lik nilradikalet.

Proof. Betegn Jacobson-radikalet med \mathfrak{J} og nilradikalet med \mathfrak{N} . Vi viser først at $\mathfrak{N} \subseteq \mathfrak{J}$. La f være nilpotent. Da er også fg nilpotent for alle $g \in A[x]$. Ved oppgave (1) er 1 + fg enhet i A[x] for alle $g \in A[x]$. Ved Prop 1.9 i Atiyah er da $f \in \mathfrak{J}$. Så $\mathfrak{N} \subseteq \mathfrak{J}$.

La $f \in \mathfrak{J}$. Da er 1 - fg enhet for alle $g \in A[x]$. Spesielt er 1 + fx enhet, og ved oppgave (2i) følger det at a_0, \ldots, a_n er nilpotente. Det følger trivielt fra oppgave (2ii) at f er nilpotent, så $f \in \mathfrak{N}$, altså $\mathfrak{J} \subseteq \mathfrak{N}$.

Vi konkluderer med at $\mathfrak{J} = \mathfrak{N}$.

Oppgave (8). La $A \neq 0$ være en ring. Vis at mengden av primidealer har et minste element med hensyn på inklusjon.

Proof. Vi bruker Zorns lemma "'baklengs"', dvs. aksiomene for en partiellordning er oppfylt også for ordning "'motsatt"' vei.

La Σ være mengden av primidealer av A. Da er Σ ikke-tom siden Theorem 1.3 i Atiyah garanterer et maksideal (som også er prim). La nå $\{\mathfrak{p}_{\alpha}\}$ være en kjede av primidealer slik at $\mathfrak{p}_{\alpha} \subseteq \mathfrak{p}_{\beta}$ eller $\mathfrak{p}_{\beta} \subseteq \mathfrak{p}_{\beta}$ for alle indekser α, β .

La nå $\mathfrak{p} = \cap_{\alpha} \mathfrak{p}_{\alpha}$. Da er $\mathfrak{p} = \mathfrak{p}_{\gamma}$ for en indeks γ , så \mathfrak{p} er et primideal som er inneholdt i alle primidealene \mathfrak{p}_{α} , og er derfor et minste element for kjeden.

Ved Zorns lemma har A derfor et minste primideal.

Oppgave (10). La A være en ring og \Re ringens nilradikal. Da er følgende ekvivalent:

- i) A har nøyaktig ett primideal.
- ii) hvert element i A er enten en enhet eller nilpotent.
- iii) A/\Re er en kropp.
- Proof. $i) \Rightarrow ii)$. Siden A bare har ett primideal, er dette idealet også maksimalt (siden alle maksimale idealer også er primidealer og alle ringer har et maksimalt ideal, ved Theorem 1.3 i Atiyah). Alle elementer som ikke er enheter, er inneholdt i maksimalidealet ved Korollar 1.5 i Atiyah. Siden nilradikalet \mathfrak{R} er snittet av alle primidealene, må alle elementene i \mathfrak{R} være nilpotente.
- $ii) \Rightarrow iii)$. La $\bar{x} \in A/\mathfrak{R}$ være ulik 0. og la $\phi : A \to A/\mathfrak{R}$ være standardhomomorfien. Siden $\bar{x} \neq 0$, er $x \notin \mathfrak{R}$, så x er en enhet i A med invers x^{-1} . Da er $\phi(xx^{-1}) = \bar{x}\bar{x}^{-1} = \bar{1}$, så \bar{x} er enhet. Siden \bar{x} var arbitrær, er A/\mathfrak{R} en kropp.
- $iii) \Rightarrow i$). Siden A/\Re er en kropp, er de eneste idealene i A/\Re nullidealet og A/\Re selv. Fra Prop 1.1 i Atiyah følger umiddelbart det at det eneste idealet som inneholder \Re er A selv, så A må ha kun ett primideal (hadde A hatt flere, ville $\Re \subset \mathfrak{p}$ for et primideal \mathfrak{p}).

Oppgave (11). En ring A er Boole hvis $x^2 = x$ for alle $x \in A$. Hvis A er Boole, vis at

- i) 2x = 0 for alle $x \in A$
- ii) Hvert primideal er maksimalt, og A/\mathfrak{p} er en kropp med to elementer. iii) Hvert endeliggenererte ideal er et hovedideal.
- *Proof.* i) Se på x + 1. Siden A er Boole, er $(x + 1)^2 = x + 1$, så $x^2 + 2x + 1 = (x + 1) + 2x = x + 1$, så 2x = 0.
- ii) La \mathfrak{p} være et primideal. Da er A/\mathfrak{p} et integritetsdomene. La $\bar{x} \in A/\mathfrak{p}$ være ulik 0. Siden $x^2 = x$, er $x(x-1) = x^2 x = x x = 0$, så $\bar{x}(\bar{x} \bar{1}) = 0$ i A/\mathfrak{p} . Men da må $\bar{x} 1 = 0$, altså $\bar{x} = 1$. Så A/\mathfrak{p} har to elementer. Siden $\bar{x}\bar{x} = 1$ er A/\mathfrak{p} en kropp, og \mathfrak{p} er derfor maksimal.