Malaria */ detection in blood

Meneghetti Gianluca

ITS Academy Angelo Rizzoli **ML 2022-24**

Contenuti

01

 \diamondsuit

02

Dataset

Approcci

Esempi e dataexploration

Modelli e algoritmi

03

04

Risultati

Conclusioni

Tabelle e grafici dei risultati

Deduzioni

Dataset

- 27_558 Immagini
- 2 Classi
- Istanze uguali

Immagini

Shape diversa

ľ	(103,	103,	3)
	(151,	115,	3)
	(121,	115,	3)
	(157,	136,	3)
	(151,	148,	3)

h

Approcci

Step 1

Reshaping \longrightarrow (shape=(224, 224, 3),

Step 2

Data augmentation -

224 px

Flip left right

Flip up down

Brightness (delta = 0.2)

Random contrast

Lenet model

My Model:

- Conv2D(f = 8, k = 3, s = 1, valid, relu)
- Batch Norm
- MaxPooling (p = 2, s = 2)
- Conv2D(f = 16, k = 3, s = 1, valid, relu)
- Batch Norm
- MaxPooling (p = 2, s = 2)
- Flatten()
- Dense(100, Relu)
- BatchN
- Dense(10, relu)
- BatchN
- Dense(1, Sigmoid)

Risultati

↑ LOSS val_loss: 0.1494

→ Accuracy val_accuracy: 0.9579

Precision = True Positive
True Positive+False Positive

→ F1 SCOYE val_f1_score: 0.9557

F1 Score = $\frac{2 \times \text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}$

 $\mathsf{Recall} = \frac{\mathit{True\ Positive}}{\mathit{True\ Positive} + \mathit{False\ Negative}}$

val recall: 0.9672

Confusion Matrix

Deduzioni:

- Elevata accuratezza.
- Buona precisione e richiamo.
- Elevato AUC-ROC, indicando una forte capacità di separazione tra le classi.
- Bassi falsi positivi e falsi negativi.
- Il modello dimostra una sensibilità notevole nella diagnosi della malattia.

La specificità del modello è elevata, il che suggerisce una buona capacità di identificare correttamente campioni negativi.

Migliorie possibili:

- L'ottimizzazione degli iperparametri.
- L'uso di tecniche di regolarizzazione come la dropout o la L2 regularization può aiutare a prevenire l'overfitting del modello.