Supplementary Details on Inverse Kinematics

Click here to go back.

- t_0 is just the coordinates of joint 0 in the world reference frame.
- For i > 0, $t_i = \begin{pmatrix} l_i \\ 0 \\ 0 \end{pmatrix}$ where l_i is the length of the i-th bone.
- To compute the axis-angle parameters ω_i , denote the unit vectors of bone i and i+1 as u,v respectively. Bone 0 is $\hat{x}=\begin{pmatrix} 1\\0\\0 \end{pmatrix}$. The axisangle parameters aligning the x-axis of reference frames from joint i to joint i+1 is given by $\frac{u\times v}{\|u\times v\|}$ arccos $(u\cdot v)$.
- Hint: Do this in reverse fashion, i.e. start by finding the parameters for aligning the last bone.

Wu Shuang Data Preprocessing May 2018

Supplementary Details on Forward Kinematics

Click here to go back.

• Given $\xi = \begin{pmatrix} \omega \\ t \end{pmatrix} \in \mathfrak{se}(3)$, the SE(3) matrix representation is

$$e^{\xi} \equiv egin{pmatrix} R(\omega) & T \ 0 & 1 \end{pmatrix}$$

where $R(\omega)$ is given in the axis-angle representation.

• The 3D coordinates of joint *i* in the world reference frame is simply given by the first 3 entries in

$$e^{\xi_0}e^{\xi_1}\cdots e^{\xi_j}egin{pmatrix}0\\0\\0\\1\end{pmatrix}.$$

Why?

May 2018