Задача А. Сумма делителей

Имя входного файла: input.txt
Имя выходного файла: output.txt
Ограничение по времени: 1 секунда
Ограничение по памяти: 256 мегабайт

Заданы два натуральных числа a и b.

Необходимо найти сумму делителей числа a, не являющихся делителями числа b.

Формат входного файла

Первая строка входного файла содержит два записанных через пробел натуральных числа a и b ($1 \le a, b \le 10^6$).

Формат выходного файла

В выходной файл выведите единственное число — ответ на задачу.

Пример

input.txt	output.txt
6 4	9
3 2	3

Примечание

Рассмотрим первый пример. У числа 6 делители — это 1, 2, 3 и 6. У числа 4 делители — это 1, 2 и 4. Таким образом, ответ равен 3+6=9.

Задача В. Последовательность

Имя входного файла: input.txt
Имя выходного файла: output.txt
Ограничение по времени: 1 секунда
Ограничение по памяти: 256 мегабайт

Задана последовательность чисел a_1, a_2, \ldots, a_n . При разбиении последовательности a по индексу i ($1 \le i < n$) получаются две части: левая – включающая элементы от a_i и правая – включающая элементы от a_{i+1} до a_n .

Назовем весом разбиения модуль разности сумм элементов левой и правой частей. Например, для последовательности a=(-4,5,3,-3,2) и i=2 вес соответствующего разбиения равен |(-4+5)-(3+-3+2)|=|1-2|=|-1|=1.

Требуется найти количество разбиений, таких, что их вес наименьший.

Формат входного файла

Первая строка входного файла содержит одно целое число $n\ (2 \le n \le 100)$ — длину последовательности.

Вторая строка содержит n целых чисел a_i ($-1000 \le a_i \le 1000$) — элементы последовательности.

Формат выходного файла

В выходной файл выведите единственное число — ответ на задачу.

Пример

input.txt	output.txt
5	2
-4 5 3 -3 2	
5	3
1 -1 1 3 -3	
3	2
1 -2 1	

Примечание

В первом примере, наименьший вес разбиения равен 1, а соответствующие значения i равны 2 и 4.

Задача С. Таблица

Имя входного файла: input.txt
Имя выходного файла: output.txt
Ограничение по времени: 1 секунда
Ограничение по памяти: 256 мегабайт

Задана таблица, в каждой ячейке которой написана строчная буква латинского алфавита и шаблон слова, состоящий из строчных букв латинского алфавита и символов «?».

Шаблон можно прикладывать к таблице двумя способами: горизонтально (слева направо, от некоторой ячейки таблицы) и вертикально (сверху вниз от некоторой ячейки таблицы). При этом каждому символу шаблона будет соответствовать одна из букв таблицы. Назовем положение шаблона корректным, если шаблон целиком находится в пределах таблицы и соответствующие символы слова и шаблона совпадают. При этом считается, что символ «?» совпадает с любой буквой.

Требуется найти число корректных положений шаблона.

Формат входного файла

В первой строке входного файла содержатся два целых числа n и m ($1 \le n, m \le 300$) — количество строк и столбцов в таблице. В каждой из следующих n строк содержится m строчных латинских букв.

В следующей строке содержится целое число p ($2 \le p \le 300$) — длина шаблона. В следующей строке содержится строка p из строчных латинских букв и символов «?» — шаблон.

Формат выходного файла

В выходной файл выведите единственное число — количество корректных положений шаблона.

Примеры

input.txt	output.txt
3 4	4
abca	
caac	
ccbc	
3	
a?c	
3 4	6
abca	
caac	
ccbc	
3	
??c	
2 2	1
ab	
cd	
2	
bd	

Задача D. Три обхода дерева

Имя входного файла: input.txt
Имя выходного файла: output.txt
Ограничение по времени: 1 секунда
Ограничение по памяти: 256 мегабайт

Рассмотрим двоичное дерево, в вершинах которого находятся различные прописные буквы латинского алфавита. Рассмотрим три обхода дерева:

LUR	левое-корень-правое (симметричный обход дерева)
ULR	корень-левое-правое (префиксный обход дерева)
LRU	левое-правое-корень (постфиксный обход дерева)

Выпишем буквы в вершинах в порядке посещения вершин при обходе, получив код дерева при обходе. Например, для дерева

коды, соответствующие обходам, имеют вид:

LUR	DABECF
ULR	BADCEF
LRU	DAEFCB

Вам задано дерево. Найдите коды обхода LUR, ULR и LRU.

Формат входного файла

Первая строка входного файла содержит n ($1 \le n \le 20$) — число вершин в дереве. В качестве пометок вершин используются первые n прописных букв латинского алфавита. На второй строке записано 2n символов: первая пара соответствует сыновьям вершины \mathbf{A} , следующая пара — сыновьям вершины \mathbf{B} и так далее. В каждой паре вначале указывается левый сын, затем —правый. Если соответствующего сына нет, вместо него указывается символ «-» (дефис).

Формат выходного файла

Выходной файл должен содержать коды обхода LUR, ULR и LRU заданного дерева.

Пример

input.txt	output.txt
6	DABECF
D-ACEF	BADCEF
	DAEFCB