Team Meeting

26 Aug 2022 / 3:15 PM / Dual delivery

Attendees

Ate, Stefan, Xavier, Jiadong, Zexi, Ni

Agenda

Overall Approach - Ni

Sparse PLS & Variable Selection- Ate

Variable Selection by RF - Ni

Spartan & Data Preprocessing - Xavier, Stefan

Deep learning - Zexi

To Do

Overall Approach

Variable selection methods wrt data cleaning

- Variables given by Shuai
- Variables containing missing values
- Variables with low variance
- Variables with high covariance

Variable selection methods wrt modeling

- PLS / PCA
- SelectFromModel Logistic Regression, Random Forest, Adaboost
- 1. For each of the five datasets, calculate no. of missing values for each column (variable)
 - => These columns are the ones that may need to be removed
- 2. Join all five datasets to find common variables dataset 1 ~ 420k

- Drop the variables by different variable selection methods wrt data cleaning dataset 2 ~
 400k
- 4. Find intersection between dataset to and the selected variables (by modeling) dataset 3 ~ 500-1000

Sparse PLS & Variable Selection - Ate

In the nature paper, the following steps are taken:

Step 1: Discovery Analysis on the NTR dataset.

The epigenome-wide association study (EWAS) identified 243 epigenome-wide significant (p < $1.20 \times 10-7$, Bonferroni correction for 411,169 tests) differentially methylated positions (DMPs) between MZ and DZ twins.

Step 2: Replication Analysis (Other four datasets)

Replication analysis in four independent twin cohorts revealed strong concordance of effects: correlations of effect sizes ranged from 0.84 to 0.97. The number of DMPs that replicated following Bonferroni correction for 243 tests ranged from 5 to 186.

Step 3: Sensitivity analysis (NTR and BSGS)

These cohorts also had DNA methylation data available for non-twins. These analyses included a comparison of MZ twins to non-twins (parents and siblings) rather than DZ twins, comparison of single MZ twins to single DZ twins (random exclusion of one twin from each pair), and sex-stratified analyses (Supplementary Data 2). The 243 sites showed highly consistent effect sizes across all analyses.

Step 4: Meta-Analysis

We next combined all blood EWAS results in a meta-analysis (total sample size = 5723, 88% of samples), which revealed 834 Bonferroni-significant CpGs, hereafter referred to as "MZ-DMPs": 497 (60%) of which had a lower methylation level in MZ twins (MZ-hypo-DMPs) and 337 had a higher methylation level (MZ-hyper-DMPs).

Sparse PCA and Sparse PLS

- In python, the command **sklearn.decomposition**. Sparse PCA can be used to derive the sparse PCA.
 - sklearn.decomposition.SparsePCA scikit-learn 1.1.2 documentation
- In r, we have a package called spls for sparse PLS.
 Sparse PLS on R Qiita

- In python, we have the following package to perform PLS sklearn.cross decomposition.PLSRegression — scikit-learn 1.1.2 documentation
- In python, the package py-ddspls can be used for data-driven-sparse PLS. py-ddspls · PyPI

Variable Selection by Random Forest - Ni

This method can also apply to: LogisticRegression, AdaBoostRegressor

Results after variable selection using random forest

Random Forest	Original -833	Round 1 - 319	Round 2 - 121
E-Risk	0.8115	0.7787	0.8286
BSGS	0.8158	0.8014	0.7724

The AUC didn't change much but the model complexity has been reduced.

(The selected variable would be different every time you run it)

Reference:

https://towardsdatascience.com/feature-selection-using-random-forest-26d7b747597f

The sparse SVC we found last week is an old version for SVC

http://scikit-learn.sourceforge.net/0.8/modules/generated/scikits.learn.svm.sparse.SVC.html

For the latest version of SVC, the default of input data is already assumed to be a sparse matrix

Parameters:: X : {array-like, sparse matrix} of shape (n_samples, n_features) or (n_samples, n_samples) Training vectors, where n_samples is the number of samples and n_features is the number of features. For kernel="precomputed", the expected shape of X is (n_samples, n_samples).

Spartan & Data Preprocessing - Xavier, Stefan

Dataset Name	Total Columns	Common Columns & probes deletion	
E-MTAB	485,577	427,376	
BSGS	485,577		
Denmark	485,577		
AMDTSS	479,597		
ERISK	430,867		

Dataset Name	Column With Missing Value	Total Missing Value	Average Missing Value Per Column	Max Missing Value Per Column	Total row number
E-Risk	0	0	0	0	
BSGS	183201	740468	4.0	564	614
Denmark	0	0	0	0	
E-MTAB	18339	32283	1.8	32	648
AMDTSS	0	0	0	0	_

Missing values: Use KNN / avg to impute

Deep learning - Zexi

Implemented drop out, 0.2, smaller learning steps from 0.001 to 0.0001. 1 hidden layer (833 * 16*1), batch size of 64 => result in 0.8 AUC, significant improvement, but still not converge because run out of memory. Following graph shows the training loss and test loss.


```
epoch 15350 average training loss : 0.5084542036056519 average test loss: 0.4613941592788696 test auc : 0.8033420264657587 epoch 15400 average training loss : 0.3866788934503 average test loss: 0.528178215022685 test auc : 0.8033420264657587 epoch 15500 average training loss : 0.3866788934503 average test loss: 0.528178215022685 test auc : 0.8033420264657587 epoch 15500 average training loss : 0.3666789834503 average test loss: 0.528187851160144 test auc : 0.8033420254657587 epoch 15500 average training loss : 0.3766954860947043457 average test loss: 0.528187851160144 test auc : 0.8030322553849125 epoch 15500 average training loss : 0.376959460079 average test loss: 0.705896014777692738 test auc : 0.8030322553849125 epoch 15700 average training loss : 0.3767959180679 average test loss: 0.57695961477692738 test auc : 0.8030322553849126 epoch 15800 average training loss : 0.487366954860077 average test loss: 0.574012163314819 epoch 15800 average training loss : 0.48334673047065735 average test loss: 0.54902471612163314819 epoch 15900 average training loss : 0.48398619661312 average test loss: 0.596749511879773 test auc : 0.803039502047716 epoch 15900 average training loss : 0.2878909409046173 average test loss: 0.574012163314819 test auc : 0.803039039047716 test auc : 0.80303950253849125 epoch 15900 average training loss : 0.4878909409046173 average test loss: 0.574012163314819 test auc : 0.803039039047716 test auc : 0.803039503650536 epoch 15900 average training loss : 0.4878909409046173 average test loss: 0.5052749514579773 test auc : 0.8030393603650536 epoch 15900 average training loss : 0.4878904909406173 average test loss: 0.5052749514579773 test auc : 0.8030393639644895 epoch 15900 average training loss : 0.4878904909406173 average test loss: 0.5052749514579773 test auc : 0.80303936396444895 epoch 15900 average training loss : 0.48789049094094014 average test loss: 0.5052749514579773 test auc : 0.8030393639644895 epoch 15900 average training loss : 0.48789049094094014 average test loss: 0.5052749514579773 t
```

Questions for Shuai

- Use modeling to select variables from all 5 datasets, then use the selected feature to train E-Risk
- 2. Use 80% from each of the 5 dataset to do variable selection and training, then the rest 20% on testing
- 3. Use 3 datasets to do the model training and variable selection, then the rest 2 on testing (cross validation?)

To Do

1. Schedule a short meeting with Shuai