參考資料 (References)

第1章

- 1. Dylan Yeh、陳建鈞,《市值首度超越Intel! NVIDIA 贏在哪裡?》,2020 (https://www.bnext.com.tw/article/58410/nvidia-valuation-soars-past-intel-ongraphics-chip-boom)
- 2. Orhan G. Yalçın, 《Top 5 Deep Learning Frameworks to Watch in 2021 and Why TensorFlow》, 2021

(https://towardsdatascience.com/top-5-deep-learning-frameworks-to -watchin-2021-and-why-tensorflow-98d8d6667351)

- 3. 陳昭明,《深度學習最佳入門邁向AI 專題實戰》, 2021 (https://www.tenlong.com.tw/products/9789860776263?1ist_name=b-r7-zh_tw)
- 4. Google Cloud 官網指南
 (https://cloud.google.com/ai-platform/docs/ml-solutions-overview)
- 5. NVIDIA 官網說明 (https://developer.nvidia.com/cuda-toolkit-archive)
- 6. Colaboratory 官網說明 (https://colab.research.google.com/notebooks/intro.ipynb)
- 7. Mike Driscoll, 《Jupyter Notebook: An Introduction》 (https://realpython.com/jupyter-notebook-introduction/)

第2章

- 1. Keith McNulty, 《Decision makers need more math》, 2018 (https://towardsdatascience.com/decision-makers-need-more-math-ed 4d4fe3dc09)
- 2. PyTorch 線性代數函數庫說明文件 (https://pytorch.org/docs/stable/linalg.html)

第3章

1. Quora, $\langle What is the difference between a Tensor and a Variable in Pytorch? \rangle$, 2019

(https://www.quora.com/What-is-the-difference-between-a-Tensor-and-a-Variable-in-Pytorch)

- 2. PyTorch 官網關於神經層的說明 (https://pytorch.org/docs/stable/nn.html)
- 3. 維基百科關於完全神經層(Linear Layers)的介紹 (https://en.wikipedia.org/wiki/Activation_function)

第4章

- 1. TensorFlow 官網的手寫阿拉伯數字辨識 (https://www.tensorflow.org/overview)
- 2. PyTorch 官網 Normalize 用法的介紹 (https://pytorch.org/vision/stable/transforms.html#torchvision.tr ansforms.Normalize)
- 3. PyTorch 官網 CrossEntropyLoss 的說明 (https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss. html#crossentropyloss)
- 4. fledlingbird,《交叉熵损失,softmax 函数和 torch.nn.CrossEntropyLoss()中文》,2019(https://www.cnblogs.com/fledlingbird/p/10718096.html)
- 5. PyTorch 官網 Saving and Loading Models
 (https://pytorch.org/tutorials/beginner/saving_loading_models.htm
 https://pytorch.org/tutorials/beginner/saving_models.htm
 https://pytorch.org/tutorials/beginner/saving_models.htm
 https://pytorch.org/tutorials/beginner/saving_models.htm
 https://pytorch.org/tutorials/beginner/saving_models.htm
 https://pytorch.org/tutorials/beginner/saving_models.htm
 h
- 6. Antonio Gulli Amita Kapoor Sujit Pal, 《Deep Learning with TensorFlow 2 and Keras》, 2019

 (https://www.amazon.com/Deep-Learning-TensorFlow-Keras-Regression/dp/1838823417)
- 7. 維基百科 Activation Function 的介紹 (https://en.wikipedia.org/wiki/Activation_function)
- 8. PyTorch 優化器的介紹

- (https://pytorch.org/docs/stable/optim.html#algorithms)
- 9. PyTorch 損失函數的介紹 (<u>https://pytorch.org/docs/stable/nn.html#loss-functions</u>)
- 10. PyTorch 官網 torch. nn. functional 的說明 (https://pytorch.org/docs/stable/nn. functional. html)
- 11. PyTorch 官網 Negative Log Likelihood Loss 的說明 (https://pytorch.org/docs/stable/generated/torch.nn.functional.nl l_loss.html)
- 12. PyTorch 神經層的介紹(https://pytorch.org/docs/stable/nn.html)
- 13. Geoffrey E. Hinton Nitish Srivastava Alex Krizhevsky, 《Improving neural networks by preventing co-adaptation of feature detectors》, 2012 (https://arxiv.org/abs/1207.0580)
- 14. PyTorch Activation Function 的介紹 (https://pytorch.org/docs/stable/nn.html#non-linear-activations-weighted-sum-nonlinearity)
- 15. Naoki, 《Gradient Descent Optimizers》, 2021 (https://naokishibuya.medium.com/gradient-descent-optimizers-80d29f22deb5)
- 16. Raimi Karim, 《10 Stochastic Gradient Descent Optimisation Algorithms + Cheat Sheet》, 2018

 (https://towardsdatascience.com/10-gradient-descent-optimisation-algorithms-86989510b5e9)
- 17. Sanket Doshi, 《Various Optimization Algorithms For Training Neural Network》, 2019

 (https://towardsdatascience.com/optimizers-for-training-neural-ne-twork-59450d71caf6)
- 18. Dominik Schmidt, 《Understanding Nesterov Momentum (NAG)》, 2018 (https://dominikschmidt.xyz/nesterov-momentum/)
- 19. Diederik P. Kingma · Jimmy Ba, 《Adam: A Method for Stochastic Optimization》, 2014 (https://arxiv.org/abs/1412.6980)
- 20. 深度學習於 NLP, 《一文告訴你 Adam 、Adam W、Amsgrad 區別和聯繫》, 2018 (https://zhuanlan.zhihu.com/p/39543160)

21. Deniz Yuret, 《Alec Radford's animations for optimization algorithms》, 2015

(http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html)

- 22. Keras 官網中效能衡量指標的介紹 (https://keras.io/api/metrics/)
- 23. scikit-learn 文件 (https://scikit-learn.org/stable/modules/model_evaluation.html)
- 24. TorchMetrics文件 (https://torchmetrics.readthedocs.io/en/stable/pages/quickstart.h tml)
- 25. PyTorch 官網關於 Ray Tune 的介紹
 (https://pytorch.org/tutorials/beginner/hyperparameter_tuning_tutorial.html)
- 26. Search Space API (https://docs.ray.io/en/latest/tune/api_docs/search_space.html#random-distributions-api)
- 27. Ray Tune 使用手册 (https://docs.ray.io/en/latest/tune/user-guide.html#auto-filled-metrics)
- 28. Ray Tune 官網範例(https://docs.ray.io/en/latest/tune/index.html)

第5章

- 1. Pytorch 官網 torchvision. datasets (https://pytorch.org/vision/stable/datasets.html)
- 2. Pytorch 官網 torchaudio. datasets (https://pytorch.org/audio/stable/datasets.html)
- 3. Pytorch 官網 torchtext. datasets (https://pytorch.org/text/stable/datasets.html)
- 4. Pytorch 官網 torchvision. transforms (https://pytorch.org/vision/stable/transforms.html)

- 5. Pytorch 官網 Illustration of transforms
 (https://pytorch.org/vision/stable/auto_examples/plot_transforms.
 html#illustration-of-transforms)
- 6. 余霆嵩,《PyTorch 學習筆記(三): transforms 的二十二個方法》, 2018 (https://zhuanlan.zhihu.com/p/53367135)
- 7. TensorFlow 官網的 TensorBoard 指南 (https://www.tensorflow.org/tensorboard/get_started)
- 8. TorchServe GitHub (https://github.com/pytorch/serve)
- 9. TorchServe 官網 (https://pytorch.org/serve/)

第6章

- 1. Prateek Karkare, 《Convolutional Neural Networks—Simplified》, 2019 (https://medium.com/x8-the-ai-community/cnn-9c5e63703c3f)
- 2. Convolutional Neural Networks—Simplified 文中卷積計算的 GIF 動畫 (https://miro.medium.com/max/963/1*wpbLgTW_lopZ6JtDqVByuA.gif)
- 3. Pytorch 官網 Transforming and augmenting images (https://pytorch.org/vision/master/transforms.html)
- 4. PyTorch 官網 Illustration of transforms
 (https://pytorch.org/vision/stable/auto_examples/plot_transforms.
 https://pytorch.org/vision/stable/auto_examples/plot_transforms.
 https://pytorch.org/vision/stable/auto_examples/plot_transforms.
 https://pytorch.org/vision/stable/auto_examples/plot_transforms.
- 5. Antti Isosalo, PyTorch Implementation of CIFAR-10 Image Classification Pipeline Using VGG Like Network (https://github.com/aisosalo/CIFAR-10)
- 6. Dhruvil Karani, 《How Data Augmentation Improves your CNN performance?》, 2020

 (https://medium.com/swlh/how-data-augmentation-improves-your-cnn-performance-an-experiment-in-pytorch-and-torchvision-e5fb36d038fb)
- 7. Albumentations (https://github.com/albumentations-team/albumentations)
- 8. Jason Brownlee, 《How to Visualize Filters and Feature Maps in Convolutional Neural Networks》, 2019

(https://machinelearningmastery.com/how-to-visualize-filters-and-feature-maps-in-convolutional-neural-networks/)

- 9. Siladittya Manna, 《Extracting Features from an Intermediate Layer of a Pretrained ResNet Model in PyTorch》, 2021

 (https://medium.com/the-owl/extracting-features-from-an-intermediate-layer-of-a-pretrained-model-in-pytorch-easy-way-62631c7fa8f6)
- 10. SHAP 套件的安裝與介紹說明 (https://github.com/slundberg/shap)
- 11. 維基百科中關於 Shapley value 的介紹 (https://en.wikipedia.org/wiki/Shapley_value)
- 12. PyTorch Deep Explainer MNIST example (https://shap.readthedocs.io/en/latest/example_notebooks/image_examples/image_classification/PyTorch%20Deep%20Explainer%20MNIST%20 example.html)
- 13. LIME 套件的安裝與介紹說明 (https://github.com/marcotcr/lime)
- 14. Bolei Zhou, Aditya Khosla, Agata Lapedriza et al, 《Learning Deep Features for Discriminative Localization》, 2015 (https://arxiv.org/pdf/1512.04150.pdf)
- 15. Kaggle 中介紹的實作 (https://www.kaggle.com/aakashnain/what-does-a-cnn-see)

第7章

- Sergey Ioffe · Christian Szegedy, 《Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift》, 2015 (http://proceedings.mlr.press/v37/ioffe15.pdf)
- 2. Kaiming He \ Xiangyu Zhang \ Shaoqing Ren \ Jian Sun, 《Deep Residual Learning for Image Recognition》, 2015
 (https://arxiv.org/abs/1512.03385)
- 3. Vishwesh Shrimali, 《PyTorch for Beginners: Image Classification using Pre-trained models》, 2019

 (https://learnopencv.com/pytorch-for-beginners-image-classification-using-pre-trained-models/)
- 4. Pytorch 官網 MODELS AND PRE-TRAINED WEIGHTS (https://pytorch.org/vision/stable/models.html)

- 5. Keras 官網 Keras Applications (https://keras.io/api/applications/)
- 6. Marie Stephen Leo, 《How to Choose the Best Keras Pre-Trained Model for Image Classification》, 2020
 (https://towardsdatascience.com/how-to-choose-the-best-keras-pre-trained-model-for-image-classification-b850ca4428d4)
- 7. Yagnesh Revar GitHub (https://gist.github.com/yrevar/942d3a0ac09ec9e5eb3a)
- 8. torchvision 原始程式碼 (https://github.com/pytorch/vision)
- 9. Sketchfab 網站(https://sketchfab.com/)
- 10. Ethan Rosenthal, 《Using Keras' Pretrained Neural Networks for Visual Similarity Recommendations》, 2016 (https://www.ethanrosenthal.com/2016/12/05/recasketch-keras/)
- 11. Pytorch 官網 Transfer learning for computer vision tutorial (https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html)
- 12. Pytorch 官網 Quantized transfer learning for computer vision tutorial (https://pytorch.org/tutorials/intermediate/quantized_transfer_learning_tutorial.html)
- 13. Sergey Ioffe · Christian Szegedy, 《Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift》, 2015 (https://arxiv.org/pdf/1502.03167.pdf)
- 14. Aman Sawarn, 《Why Batch Normalization Matters?》, 2020 (https://medium.com/towards-artificial-intelligence/why-batch-normalization-matters-4a6d753ba309)
- 15. alexirpan, 《On The Perils of Batch Norm》, 2017 (https://www.alexirpan.com/2017/04/26/perils-batch-norm.html)

第8章

 Joseph Redmon · Anelia Angelova, 《Real-Time Grasp Detection Using Convolutional Neural Networks》, 2015 (https://docs.google.com/presentation/d/1Zc9-iR1eVz-zysinwb7bzLGC2no2ZiaD897_14dGbhw/edit?usp=sharing)

- 2. 2011 年 ImageNet ILSVRC 挑戰賽比賽說明 (http://image-net.org/challenges/LSVRC/2011/index)
- 3. 2017年 ImageNet ILSVRC 挑戰賽比賽說明 (http://image-net.org/challenges/LSVRC/2017/)
- 4. Fei-Fei Li · Justin Johnson · Serena Yeung, 《Lecture 11: Detection and Segmentation》, 2017

 (http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture11.pdf)
- 5. Adrian Rosebrock, 《Image Pyramids with Python and OpenCV》, 2015 (https://www.pyimagesearch.com/2015/03/16/image-pyramids-with-python-and-opency/)
- 6. IIPImage (https://iipimage.sourceforge.io/documentation/images/)
- 7. Adrian Rosebrock, 《Sliding Windows for Object Detection with Python and OpenCV》, 2015

 (https://www.pyimagesearch.com/2015/03/23/sliding-windows-for-object-detection-with-python-and-opency/)
- 8. 素娜 93, 《方向梯度直方圖 (HOG)》, 2017 (https://www.jianshu.com/p/6f69c751e9e7)
- 9. Adrian Rosebrock, 《Histogram of Oriented Gradients and Object Detection》, 2014

 (https://www.pyimagesearch.com/2014/11/10/histogram-oriented-gradients-object-detection/)
- 10. Adrian Rosebrock, 《Non-Maximum Suppression for Object Detection in Python》, 2014

 (https://www.pyimagesearch.com/2014/11/17/non-maximum-suppression-object-detection-python/)
- 11. Tomasz Malisiewicz, 《Ensemble of Exemplar-SVMs for Object Detection and Beyond》 (http://www.cs.cmu.edu/~tmalisie/projects/iccv11/index.html)
- 12. Jatin Prakash, 《Non Maximum Suppression: Theory and Implementation in PyTorch》, 2021

 (https://learnopencv.com/non-maximum-suppression-theory-and-implementation-in-pytorch/)

- 13. Ross Girshick · Jeff Donahue · Trevor Darrell · Jitendra Malik, 《Rich feature hierarchies for accurate object detection and semantic segmentation》, 2014 (https://arxiv.org/pdf/1311.2524.pdf)
- 14. J. R. R. Uijlings、K. E. A. van de Sande、T. Gevers、A. W. M. Smeulders, 《Selective Search for Object Recognition》, 2012 (https://github.com/object-detection-algorithm/selectivesearch)
- 15. Github R-CNN: Regions with Convolutional Neural Network Features (https://github.com/rbgirshick/rcnn)
- 16. Kaiming He、Xiangyu Zhang、Shaoqing Ren、Jian Sun, 《Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition》, 2015 (https://arxiv.org/abs/1406.4729)
- 17. v1_vivian, 《SPP-Net 論文詳解》, 2017 (https://www.itread01.com/content/1542334444.html)
- 18. Github 「A simple Spatial Pyramid Pooling layer which could be added in CNN」 (https://github.com/yueruchen/sppnet-pytorch)
- 19. Github 「Spatial pyramid pooling layers for keras」 (https://github.com/yhenon/keras-spp)
- 20. 白裳,《捋一捋 pytorch 官方 FasterRCNN 代碼》, 2021 (https://zhuanlan.zhihu.com/p/145842317)
- 21. Johannes Schmidt, 《Train your own object detector with Faster-RCNN & PyTorch》, 2021

 (https://johschmidt42.medium.com/train-your-own-object-detector-with-faster-rcnn-pytorch-8d3c759cfc70)
- 22. Ross B. Girshick 於 GitHub 上放置的 Faster R-CNN 程式碼 (https://github.com/rbgirshick/py-faster-rcnn)
- 23. Shangeth Rajaa · Satya Mallick, 《Faster R-CNN Object Detection with PyTorch》, 2019

 (https://learnopencv.com/faster-r-cnn-object-detection-with-pytorch)
- 24. Tsung-Yi Lin · Piotr Dollár · Ross Girshick, 《Feature Pyramid Networks for Object Detection》, 2016 (https://arxiv.org/abs/1612.03144)

第9章

- Vijay Badrinarayanan · Alex Kendall · Roberto Cipolla, 《SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation》, 2015 (https://arxiv.org/abs/1511.00561)
- Eugenia Anello, 《Denoising Autoencoder in Pytorch on MNIST dataset》, 2021 (https://ai.plainenglish.io/denoising-autoencoder-in-pytorch-on-m nist-dataset-a76b8824e57e)
- 3. 月下花弄影,《ConvTranspose2d 原理,深度網路如何進行上採樣》,2019 (https://blog.csdn.net/qq_27261889/article/details/86304061)
- 4. Alexander Van de Kleut, 《Variational AutoEncoders (VAE) with PyTorch》, 2020 (https://avandekleut.github.io/vae/)
- 5. Satyam Kumar, 《7 Applications of Auto-Encoders every Data Scientist should know》, 2021

 (https://towardsdatascience.com/6-applications-of-auto-encoders-e
 very-data-scientist-should-know-dc703cbc892b)
- 6. Liang-Chieh Chen、George Papandreou 等人,《DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs》, 2017 (https://arxiv.org/pdf/1606.00915.pdf)
- 7. Guosheng Lin Anton Milan Chunhua Shen, 《RefineNet: Multi-Path Refinement Networks for High-Resolution Semantic Segmentation》, 2016 (https://arxiv.org/pdf/1611.06612.pdf)
- 8. Hengshuang Zhao、Jianping Shi、Xiaojuan Qi, 《Pyramid Scene Parsing Network》, 2017 (https://arxiv.org/pdf/1612.01105.pdf)
- 9. Olaf Ronneberger、Philipp Fischer、Thomas Brox, 《U-Net: Convolutional Networks for Biomedical Image Segmentation》, 2015 (https://arxiv.org/pdf/1505.04597.pdf)
- 10. Naoto Usuyama, 『usuyama_pytorch-unet』範例 (https://github.com/usuyama/pytorch-unet)
- 11. 皮特潘,《語義分割之 dice loss 深度分析》, 2020 (https://zhuanlan.zhihu.com/p/269592183)
- 12. Mateusz Buda , 《PyTorch U-NET FOR BRAIN MRI》

- (https://pytorch.org/hub/mateuszbuda_brain-segmentation-pytorch_u net)
- 13. Mateusz Buda , 《Kaggle Brain MRI segmentation》, 2019 (https://www.kaggle.com/mateuszbuda/lgg-mri-segmentation)
- 14. Kaiming He、Georgia Gkioxari、Piotr Dollár, Ross Girshick 等人,《Mask R-CNN》, 2017 (https://arxiv.org/pdf/1703.06870.pdf)
- 15. Satya Mallick, 《Mask R-CNN Instance Segmentation with PyTorch》, 2019 (https://learnopencv.com/mask-r-cnn-instance-segmentation-with-pytorch/)
- 16. Penn-Fudan Database for Pedestrian Detection and Segmentation (https://www.cis.upenn.edu/~jshi/ped_html/)
- 17. MODNet Github (https://github.com/ZHKKKe/MODNet)
- 18. PyTorch 官網『Torchvision object detection finetuning tutorial』 (https://pytorch.org/tutorials/intermediate/torchvision_tutorial.html)
- 19. Detectron2 Github (https://github.com/facebookresearch/detectron2)
- 20. Detectron2 官網文件 (<u>https://detectron2.readthedocs.io/en/latest/tutorials/install.html</u>)
- 21. fast-style-transfer GitHub (https://github.com/lengstrom/fast-style-transfer)
- 22. 翁書婷,《催生全球首位 AI 繪師 Andy, 美圖搶攻人工智慧卻面臨一大挑戰》, 2017 (https://www.bnext.com.tw/article/47330/ai-andy-meitu)
- 23. Leon A. Gatys Alexander S. Ecker Matthias Bethge, 《A Neural Algorithm of Artistic Style》, 2015 (https://arxiv.org/abs/1508.06576)
- 24. PyTorch 官網提供的範例『Neural transfer using pytorch』
 (https://pytorch.org/tutorials/advanced/neural_style_tutorial.htm
 <a href="https://pytorch.org/tutorials/advanced/neural_style_tutorials/advanced/neural_st
- 25. Kaipeng Zhang、Zhanpeng Zhang、Zhifeng Li、Yu Qiao, 《Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Networks》, 2016 (https://arxiv.org/abs/1604.02878)

- 26. MTCNN_face_detection_alignment GitHub (https://github.com/kpzhang93/MTCNN_face_detection_alignment)
- 27. mtcnn Github (https://github.com/ipazc/mtcnn)
- 28. facenet-pytorch Github (https://github.com/timesler/facenet-pytorch)
- 29. 陳昭明,《dlib 安裝心得 -- Windows 環境》, 2020 (https://ithelp.ithome.com.tw/articles/10231535)
- 30. face-recognition GitHub 的範例 (https://github.com/ageitgey/face_recognition)
- 31. 羅之盈, 《訊連養出 14 億美元獨角獸, 玩美移動憑什麼赴美 IPO?》, 2022 (https://www.gvm.com.tw/article/87786)
- 32. Shaoqing Ren、Xudong Cao、Yichen Wei 等人,《Face Alignment at 3000 FPS via Regressing Local Binary Features》, 2014 (http://www.jiansun.org/papers/CVPR14_FaceAlignment.pdf)
- 33. Georgios Tzimiropoulos · Maja Pantic, 《Optimization problems for fast AAM fitting in-the-wild》, 2013

 (https://ibug.doc.ic.ac.uk/media/uploads/documents/tzimiro_pantic_iccv2013.pdf)
- 34. V. Kazemi · J. Sullivan, 《One Millisecond Face Alignment with an Ensemble of Regression Trees》, 2014
 (http://www.csc.kth.se/~vahidk/face_ert.html)
- 35. Tesseract OCR 官網 (https://github.com/tesseract-ocr/tesseract/blob/master/doc/tesseract.1. asc)
- 36. Filip Zelic \ Anuj Sable, \(\) A comprehensive guide to OCR with Tesseract, OpenCV and Python\(\) \(\
- 37. Tesseract 官網的語言列表 (<u>https://github.com/tesseract-ocr/tesseract/blob/master/doc/tesseract.1.asc#LANGUAGES</u>)
- 38. Aswinth Raj, 《Car License Plate Recognition using Raspberry Pi and

OpenCV > , 2019

(https://circuitdigest.com/microcontroller-projects/license-plate-recognition-using-raspberry-pi-and-opency)

39. Disadvantages of CNN models (https://iq.opengenus.org/disadvantages-of-cnn/)

第10章

- 1. 自由時報,《全球首次!AI 創作肖像畫 10 月佳士得拍賣》, 2018 (https://news.ltn.com.tw/news/world/breakingnews/2529174)
- 2. 佳士得官網《Is artificial intelligence set to become art's next medium?》
 (https://www.christies.com/features/A-collaboration-between-two-a rtists-one-human-one-a-machine-9332-1.aspx)
- 3. 佳士得官網關於 Edmond de Belamy 肖像畫的介紹 (https://www.christies.com/lot/lot-edmond-de-belamy-from-la-famille-de-6166184)
- 4. the-gan-zoo GitHub (https://github.com/hindupuravinash/the-gan-zoo)
- 5. Liqian Ma、Xu Jia、Qianru Sun 等人,《Pose Guided Person Image Generation》, 2018 (https://arxiv.org/pdf/1705.09368.pdf)
- 6. Yanghua Jin、Jiakai Zhang 等人,《Towards the Automatic Anime Characters Creation with Generative Adversarial Networks》, 2017 (https://arxiv.org/pdf/1708.05509.pdf)
- 7. MakeGirlsMoe (https://make.girls.moe/#/)
- 8. MIL WebDNN (https://mil-tokyo.github.io/webdnn/)
- 9. Yunjey Choi、Minje Choi、Munyoung Kim 等人,《StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation》, 2017 (https://arxiv.org/abs/1711.09020)
- 10. stargan Github (https://github.com/yunjey/stargan)
- 11. Christian Ledig、Lucas Theis、Ferenc Huszár 等人,《Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network》, 2017 (https://arxiv.org/pdf/1609.04802.pdf)

- 12. Tero Karras、Samuli Laine、Miika Aittala 等人,《Analyzing and Improving the Image Quality of StyleGAN》, 2020 (https://arxiv.org/pdf/1912.04958.pdf)
- 13. stylegan2 Github (https://github.com/NVlabs/stylegan2)
- 14. Jonathan Hui, 《GAN Some cool applications of GAN》, 2018 (https://jonathan-hui.medium.com/gan-some-cool-applications-of-gan-s-4c9ecca35900)
- 15. DCGAN-MNIST-pytorch Github (https://github.com/Ksuryateja/DCGAN-MNIST-pytorch)
- 16. PyTorch 官網範例『DCGAN Tutorial』
 (https://pytorch.org/tutorials/beginner/dcgan_faces_tutorial.html
)
- 17. Tero Karras、Timo Aila、Samuli Laine 等人,《Progressive Growing of GANs for Improved Quality, Stability, and Variation》, 2017 (https://arxiv.org/abs/1710.10196)
- 18. Fair Hdgan, 《PyTorch Progressive growing of GANs》 (https://pytorch.org/hub/facebookresearch_pytorch-gan-zoo_pgan/)
- 19. Mehdi Mirza · Simon Osindero, 《Conditional Generative Adversarial Nets》, 2014 (https://arxiv.org/abs/1411.1784)
- 20. Artur Machado Lacerda, 《Kaggle PyTorch Conditional GAN》, 2018 (https://www.kaggle.com/arturlacerda/pytorch-conditional-gan)
- 21. Qiwen Fu · Wei-Ting Hsu · Mu-Heng Yang, 《Colorization Using ConvNet and GAN》, 2017 (http://cs231n.stanford.edu/reports/2017/pdfs/302.pdf)
- 22. Marc Górriz Blanch、Marta Mrak、Alan F. Smeaton 等人,《End-to-End Conditional GAN-based Architectures for Image Colourisation》, 2019 (https://github.com/bbc/ColorGAN#end-to-end-conditional-gan-based-architectures-for-image-colourisation)
- 23. Phillip Isola Jun-Yan Zhu Tinghui Zhou, 《Image-to-Image Translation with Conditional Adversarial Networks》, 2016 (https://arxiv.org/abs/1611.07004)
- 24. Kooose, 《Kaggle Pix2Pix PyTorch》, 2022

(https://www.kaggle.com/kooose/pix2pix-pytorch)

- 25. CMP Facade Database (https://cmp.felk.cvut.cz/~tylecr1/facade/)
- 26. pytorch-CycleGAN-and-pix2pix Github (https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix)
- 27. Jun-Yan Zhu · Taesung Park · Phillip Isola · Alexei A. Efros, 《Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks》, 2017 (https://arxiv.org/abs/1703.10593)
- 28. CycleGAN-PyTorch Github (https://github.com/Lornatang/CycleGAN-PyTorch)
- 29. 李宏毅老師的 PPT『Introduction of Generative Adversarial Network (GAN)』
 (https://speech.ee.ntu.edu.tw/~tlkagk/slide/Tutorial_HYLee_GAN.pdf)
- 30. tensorflow-generative-model-collections Github (https://github.com/hwalsuklee/tensorflow-generative-model-collections)
- 31. Shakir Mohamed Danilo Rezende, 《Tutorial on Deep Generative Models》, 2017 (http://www.shakirm.com/slides/DeepGenModelsTutorial.pdf)
- 32. BuzzFeedVideo, 《You Won't Believe What Obama Says In This Video!》, 2018 (https://www.youtube.com/watch?v=cQ54GDm1eL0)
- 33. 蔣曜宇,《網紅小玉製作「換臉片」遭法辦!為何 Deepfake 讓 AI 變頭號網路犯罪公敵?》, 2021
 (https://www.bnext.com.tw/article/57260/deepfake-ai-deep-learning)
- 34. 鄭鴻達, 《遏阻 Deepfake 換臉 A 片 法務部提修法最重關七年》, 2021 (https://udn. com/news/story/7321/5897568)
- 35. Alan Zucconi, 《Understanding the Technology Behind DeepFakes》, 2018 (https://www.alanzucconi.com/2018/03/14/understanding-the-technology-behind-deepfakes/)
- 36. Aayush Bansal · Shugao Ma · Deva Ramanan · Yaser Sheikh, 《Recycle-GAN: Unsupervised Video Retargeting》, 2018
 (https://arxiv.org/abs/1808.05174)

- 37. Jonathan Hui, 《Detect AI-generated Images & Deepfakes》, 2020 (https://jonathan-hui.medium.com/detect-ai-generated-images-deepfakes-part-1-b518ed5075f4)
- 38. Louis Bouchard, 《DeepFakes in 5 minutes》, 2020 (https://pub.towardsai.net/deepfakes-in-5-minutes-155c13d48fa3)
- 39. DeepFaceLab GitHub (https://github.com/iperov/DeepFaceLab)
- 40. Jonathan Hui, 《Detect AI-generated Images & Deepfakes (Part 1)》, 2020 (https://jonathan-hui.medium.com/detect-ai-generated-images-deepfakes-part-1-b518ed5075f4)
- 41. 林妍溱,《微軟開發能判別 Deepfake 影像及內容變造的技術》, 2020 (https://www.ithome.com.tw/news/139740)

第11章

- 1. Sebastian Andrei, 《South Korea's Convenience Store Culture》, 2018 (https://medium.com/@sebastian_andrei/south-koreas-convenience-st-ore-culture-187c33a649a6)
- 2. 維基百科關於 tf-idf 的說明 (https://en.wikipedia.org/wiki/Tf/E2%80%93idf)
- 3. Tomas Mikolov · Quoc V. Le · Ilya Sutskever, 《Exploiting Similarities among Languages for Machine Translation》, 2013 (https://arxiv.org/pdf/1309.4168v1.pdf)
- 4. NSS, 《An Intuitive Understanding of Word Embeddings: From Count Vectors to Word2Vec》, 2017

 (https://www.analyticsvidhya.com/blog/2017/06/word-embeddings-count-word2veec/)
- 5. Ria Kulshrestha, 《NLP 102: Negative Sampling and GloVe》, 2019 (https://towardsdatascience.com/nlp-101-negative-sampling-and-glove-936c88f3bc68)
- 6. Dr. Srijith Rajamohan, 《Word2Vec in Pytorch Continuous Bag of Words and Skipgrams》, 2018 (https://srijithr.gitlab.io/post/word2vec/)
- 7. Gensim 官網關於 Word2Vec 的說明 (https://radimrehurek.com/gensim/models/word2vec.html)

- 8. Pierre Megret, 《Gensim Word2Vec Tutorial》, 2019 (https://www.kaggle.com/pierremegret/gensim-word2vec-tutorial)
- 9. Embedding Projector (https://projector.tensorflow.org/)
- 10. Jeffrey Pennington Richard Socher Christopher D. Manning, 《GloVe: Global Vectors for Word Representation》, 2014 (https://www.aclweb.org/anthology/D14-1162.pdf)
- 11. glove. 42B. 300d. zip (https://nlp. stanford. edu/data/wordvecs/glove. 42B. 300d. zip)
- 12. glove. 840B. 300d. zip (https://nlp.stanford.edu/data/wordvecs/glove.840B.300d.zip)
- 13. glove. 6B. 300d. zip (https://nlp. stanford. edu/data/wordvecs/glove. 6B. zip)
- 14. glove. twitter. 27B. zip (https://nlp.stanford.edu/data/wordvecs/glove.twitter. 27B. zip)
- 15. 自由時報 蘇金鳳,《中市明第二輪分區限水 百貨業買 20 個水塔桶》, 2021 (https://news.ltn.com.tw/news/life/breakingnews/3497315)
- 16. 布丁布丁吃布丁,《彙整中文與英文的詞性標註代號》, 2017 (http://blog.pulipuli.info/2017/11/fasttag-identify-part-of-speech-in.html)
- 17. spaCy (https://spacy.io/usage)
- 18. spaCy Quickstart (https://spacy.io/usage/models)
- 19. pkuseg GitHub (https://github.com/explosion/spacy-pkuseg)
- 20. spaCy spaCy 101: Everything you need to know (https://spacy.io/usage/spacy-101)
- 21. spaCy Token (https://spacy.io/api/token)
- 22. glossary.py GitHub (https://github.com/explosion/spaCy/blob/master/spacy/glossary.py)

23. displaCy visualizer 的說明文件 (https://spacy.io/api/top-level#displacy)

第12章

- 1. PyTorch 官網嵌入層說明 (https://pytorch.org/docs/stable/generated/torch.nn.Embedding.htm
 https://pytorch.org/docs/stable/generated/torch.nn.Embedding.htm
- 2. PyTorch 官網 RNN 層說明 (https://pytorch.org/docs/stable/generated/torch.nn. RNN. html)
- 3. PyTorch 所支援的詞向量 (https://pytorch.org/text/stable/_modules/torchtext/vocab/vectors .html#GloVe)
- 4. Martín Pellarolo, 《How to use Pre-trained Word Embeddings in PyTorch》, 2018

 (https://medium.com/@martinpella/how-to-use-pre-trained-word-embeddings-in-pytorch-71ca59249f76)
- 5. PyTorch 官網 TorchText Datasets (https://pytorch.org/text/stable/datasets.html)
- 6. PyTorch 官網 TorchData Tutorial (https://pytorch.org/data/beta/tutorial.html#using-datapipes)
- 7. PyTorch 官網 Text classification with the torchtext library (https://pytorch.org/tutorials/beginner/text_sentiment_ngrams_tutorial.html)
- 8. Antonio Gulli, 《AG's corpus of news articles》 (https://paperswithcode.com/dataset/ags-corpus)
- 9. Christopher Olah, 《Understanding LSTM Networks》, 2015 (https://colah.github.io/posts/2015-08-Understanding-LSTMs/)
- 10. PyTorch LSTM 神經層 (https://pytorch.org/docs/stable/generated/torch.nn.LSTM.html)
- 11. 我唱歌比較走心,《pytorch 實現 IMDB 資料集情感分類》, 2021 (https://blog.csdn.net/Delusional/article/details/113357449)
- 12. Jason Brownlee, 《Time Series Prediction with LSTM Recurrent Neural

- Networks in Python with Keras》, 2016 (https://machinelearningmastery.com/time-series-prediction-lstm-recurrent-neural-networks-python-keras)
- 13. Junyoung Chung、 Caglar Gulcehre、KyungHyun Cho、Yoshua Bengio, 《Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling》, 2014 (https://arxiv.org/abs/1412.3555)
- 14. Michael Phi, 《Illustrated Guide to LSTM's and GRU's: A step by step explanation》, 2018

 (https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21)
- 15. Alexandre Xavier, 《Predicting stock prices with LSTM》, 2019 (https://medium.com/neuronio/predicting-stock-prices-with-1stm-34 9f5a0974d4)
- 16. szrlee, 《DJIA 30 Stock Time Series》, 2018
 (https://www.kaggle.com/szrlee/stock-time-series-20050101-to-2017
 1231)
- 17. 陳昭明,《演算法交易(Algorithmic Trading) 實作》, 2021 (https://ithelp.ithome.com.tw/articles/10255111)
- 18. 張俊林博客,《深度學習中的注意力機制(2017 版)》, 2017 (https://blog.csdn.net/malefactor/article/details/78767781)
- 19. Meng Lee, 《淺談神經機器翻譯 & 用 Transformer 與 TensorFlow 2 英翻中》, 2019
 (https://leemeng.tw/neural-machine-translation-with-transformer-and-tensorflow2.html)
- 20. Lilian Weng, 《Attention? Attention!》, 2018 (https://lilianweng.github.io/posts/2018-06-24-attention/)
- 21. PyTorch 官網範例『Translation with a sequence to sequence network and attention』
 (https://pytorch.org/tutorials/intermediate/seq2seq_translation_t utorial.html)
- 22. Andrej Karpathy, 《The Unreasonable Effectiveness of Recurrent Neural Networks》, 2015
 (http://karpathy.github.io/2015/05/21/rnn-effectiveness/)

- 23. Ashish Vaswani Noam Shazeer Niki Parmar, 《Attention Is All You Need》, 2017 (https://arxiv.org/pdf/1706.03762.pdf)
- 24. Raimi Karim, 《Illustrated: Self-Attention》, 2019 (https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a)
- 25. Jay Alammar, 《The Illustrated Transformer》, 2018 (http://jalammar.github.io/illustrated-transformer/)
- 26. GeeksforGeeks, 《Self-attention in NLP》, 2020 (https://www.geeksforgeeks.org/self-attention-in-nlp/)
- 27. Jason Brownlee, 《A Gentle Introduction to Calculating the BLEU Score for Text in Python》, 2019

 (https://machinelearningmastery.com/calculate-bleu-score-for-text-python/)
- 28. Jacob Devlin · Ming-Wei Chang · Kenton Lee · Kristina Toutanova, 《BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding》, 2018 (https://arxiv.org/abs/1810.04805)
- 29. Hugging Face Transformers (https://huggingface.co/docs/transformers/quicktour)
- 30. Rani Horev, 《BERT Explained: State of the art language model for NLP》, 2018

 (https://towardsdatascience.com/bert-explained-state-of-the-art-language-model-for-nlp-f8b2la9b6270)
- 31. BERT GitHub (https://github.com/google-research/bert)
- 32. Anna Rogers · Olga Kovaleva · Anna Rumshisky, 《A Primer in BERTology: What we know about how BERT works》, 2020 (https://arxiv.org/abs/2002.12327)
- 33. Transformers GitHub (https://github.com/huggingface/transformers)
- 34. Transformers "Quick tour " (https://huggingface.co/transformers/quicktour.html)
- 35. Transformers 官網『Summary of the tasks』的 Extractive Question Answering (https://huggingface.co/transformers/task_summary.html#extractive

-question-answering)

- 36. Transformers 官網『Using tokenizers from Tokenizers』 (https://huggingface.co/transformers/fast_tokenizers.html)
- 37. Transformers 官網『Summary of the tasks』的 Masked Language Modeling (https://huggingface.co/transformers/task_summary.html#masked-language-modeling)
- 38. Transformers 官網『Summary of the tasks』的 Text Generation (https://huggingface.co/transformers/task_summary.html#text-generation)
- 39. Transformers 官網『Summary of the tasks』的 Named Entity Recognition (https://huggingface.co/transformers/task_summary.html#named-entity-recognition)
- 40. Transformers 官網『Summary of the tasks』的 Summarization (https://huggingface.co/transformers/task_summary.html#summarization)
- 41. Adam Roberts、Staff Software Engineer、Colin Raffel 等人,《Exploring Transfer Learning with T5: the Text-To-Text Transfer Transformer》, 2020

 (https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html)
- 42. Transformers 官網『Summary of the tasks』的 Translation (https://huggingface.co/transformers/task_summary.html#translatio n)
- 43. Transformers 官網『Training and fine-tuning』 (https://huggingface.co/transformers/training.html#tensorflow)
- 44. https://colab.research.google.com/github/huggingface/notebooks/bl ob/master/examples/text_classification.ipynb
- 45. Transformers 官網的『DatasetDict 說明文件』
 (https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasetdict)
- 46. Transformers 官網的『TrainingArguments 說明文件』
 (https://huggingface.co/transformers/main_classes/trainer.html#transformers.TrainingArguments)

- 47. CKIP Transformers Github (https://github.com/ckiplab/ckip-transformers)
- 48. CKIP Transformers 官網說明
 (https://ckip-transformers.readthedocs.io/en/latest/main/readme.h
 tml)
- 49. Transformers Pretrained models (https://huggingface.co/transformers/pretrained_models.html)
- 50. 王若樸,《AI 趨勢周報第 142 期:推理能力新突破! OpenAI 新作 GPT-f 能自動證明數學定理》, 2020 (https://www.ithome.com.tw/news/140030)
- 51. 王若樸,《AI 趨勢周報第 167 期:臉書新模型融合自監督和 Transformer, 不需標註資料還能揪出複製圖》, 2021 (https://www.ithome.com.tw/news/144208)

第13章

- 1. Adnan Rehan, 《10 Best Chatbot Development Frameworks to Build Powerful Bots》, 2020 (https://geekflare.com/chatbot-development-frameworks/)
- 2. Data Flair 《Learn to build your first chatbot using NLTK & Keras》 (https://data-flair.training/blogs/python-chatbot-project)
- 3. ChatterBot GitHub (https://github.com/gunthercox/ChatterBot/tree/3eccceddd2a14eccaaeff1 (https://github.com/gunthercox/chatterBot/tree/3ecccedda2a14eccaaeff1 (<a href="https://github.com/gunther
- 4. ChatBotAI GitHub (https://github.com/ahmadfaizalbh/Chatbot)
- 5. Rasa 官網 (https://rasa.com/)
- 6. mathparse GitHub (https://github.com/gunthercox/mathparse)
- 7. Wikipedia GitHub (https://github.com/goldsmith/Wikipedia)
- 8. Dialogflow 的官網說明 (https://cloud.google.com/dialogflow/docs)
- 9. Google Dialogflow Editions (https://cloud.google.com/dialogflow/docs/editions)
- 10. Google Dialogflow System entities reference (https://cloud.google.com/dialogflow/es/docs/reference/system-ent

ities)

- 11. Google Dialogflow Predefined follow-up intents (https://cloud.google.com/dialogflow/es/docs/reference/follow-up-intent-expressions)
- 12. Dialogflow Integrations 說明 (https://dialogflow.cloud.google.com/#/agent/get-agent-name-ojw9/integrations)
- 13. DialogFlow Prebuilt Agents 說明 (https://dialogflow.cloud.google.com/#/agent/get-agent-name-ojw9/prebuiltAgents/)
- 14. LINE Developers 文件 (<u>https://developers.line.biz/zh-hant/docs/messaging-api/getting-s</u>tarted/#using-oa-manager)

第14章

- Michael Picheny Bhuvana Ramabhadran Stanley F. Chen, 《Lecture 1 Introduction/Signal Processing, Part I》, 2012
 (https://www.ee.columbia.edu/~stanchen/fall12/e6870/slides/lecturel.pdf)
- 2. Roger Jang (張智星), 《Audio Signal Processing and Recognition (音 訊處理與辨識)》, 2005
 (http://mirlab.org/jang/books/audioSignalProcessing/audioIntro.asp?language=chinese)
- 3. 國立臺灣大學普通物理實驗室官網關於示波器使用教學 (https://web.phys.ntu.edu.tw/gphyslab/modules/tinyd2/index8803.html?id=7)
- 4. Gfycat 說明振幅、頻率及相位的動畫 (https://gfycat.com/ickyfilthybobolink)
- 5. Pema Grg, 《Audio Signal Processing》, 2020 (https://blog.ekbana.com/audio-signal-processing-f7e86d415489)
- 6. 維基百科 Sampling (signal processing)
 (https://en.wikipedia.org/wiki/Sampling_(signal_processing)#Sampling_rate)

- 7. CPT-Sound-ADC-DAC. svg Wikimedia Commons (https://commons.wikimedia.org/wiki/File:CPT-Sound-ADC-DAC.svg)
- 8. sample-files Github (https://github.com/maxifjaved/sample-files)
- 9. wave 說明文件 (https://docs.python.org/3/1ibrary/wave.html)
- 10. SpeechRecognition Project description (https://pypi.org/project/SpeechRecognition/2.1.2/)
- 11. Librosa 說明文件(https://librosa.org/doc/latest/tutorial.html)
- 12. Vincent Koops, 《Introduction Basic Audio Feature Extraction》, 2017 (http://www.cs.uu.nl/docs/vakken/msmt/lectures/SMT_B_Lecture5_DSP_2017.pdf)
- 13. Nagesh Singh Chauhan, 《Audio Data Analysis Using Deep Learning with Python (Part 1)》, 2020 (https://www.kdnuggets.com/2020/02/audio-data-analysis-deep-learning-python-part-1.html)
- 14. Henry Haefliger, 《Python audio spectrum analyzer》, 2019 (https://medium.com/quick-code/python-audio-spectrum-analyser-6a3 c54ad950)
- 15. FFmpeg 官網 (http://ffmpeg.org/download.html)
- 16. FFmpeg 官網文件 (http://ffmpeg.org/documentation.html)
- 17. PyTorch Audio 教學文件 (https://pytorch.org/tutorials/beginner/audio_io_tutorial.html)
- 18. Pytorch Torchaudio. Backend (https://pytorch.org/audio/stable/backend.html)
- 19. sox 工具軟體 (https://sourceforge.net/projects/sox/files/sox)
- 20. pysox Github (https://github.com/rabitt/pysox)
- 21. Pytorch Torchaudio. Transforms (https://pytorch.org/audio/stable/transforms.html)
- 22. Hohyub Jeon Yongchul Jung Seongjoo Lee Yunho Jung, 《Area-Efficient Short-Time Fourier Transform Processor for Time Frequency Analysis

- of Non-Stationary Signals , 2020 (https://www.mdpi.com/2076-3417/10/20/7208/htm)
- 23. PyTorch Torchaudio. Datasets (https://pytorch.org/audio/stable/datasets.html)
- 24. Pyroomacoustics CMU ARCTIC Corpus (https://pyroomacoustics.readthedocs.io/en/pypi-release/pyroomacoustics.datasets.cmu_arctic.html)
- 25. 維基百科 CMU Pronouncing Dictionary (https://en.wikipedia.org/wiki/CMU_Pronouncing_Dictionary)
- 26. Common Voice Datasets (https://commonvoice.mozilla.org/en/datasets)
- 27. Common Voice 繁體中文 (https://commonvoice.mozilla.org/zh-TW)
- 28. GTZAN Genre Collection (http://marsyas.info/downloads/datasets.html)
- 29. Open Speech and Language Resources (https://www.openslr.org/1)
- 30. Pete Warden, 《Speech Commands: A Dataset for Limited-Vocabulary Speech Recognition》, 2018 (https://arxiv.org/abs/1804.03209)
- 31. Kunal Vaidya, 《Music Genre Recognition using Convolutional Neural Networks (CNN) Part 1》, 2020 (https://towardsdatascience.com/music-genre-recognition-using-convolutional-neural-networks-cnn-part-1-212c6b93da76)
- 32. prasad213 music-genre-classification (https://jovian.ai/prasad213/music-genre-classification)
- 33. 陳昭明,《Day 25:自動語音辨識(Automatic Speech Recognition) -- 觀念與實踐》, 2018 (https://ithelp.ithome.com.tw/articles/10195763)
- 34. kaggle 官網『TensorFlow Speech Recognition Challenge』
 (https://www.kaggle.com/c/tensorflow-speech-recognition-challenge)
- 35. 維基百科關於音素的說明 (https://zh.wikipedia.org/wiki/音位)
- 36. Anand P V, 《Indian Accent Speech Recognition》, 2020

- (https://anandai.medium.com/indian-accent-speech-recognition-2d43 3eb7edac)
- 37. Amazon Polly 支援語言的音素 (https://docs.aws.amazon.com/zh_tw/polly/latest/dg/ref-phoneme-tables-shell.html)
- 38. Oscar Contreras Carrasco, 《Gaussian Mixture Models Explained》, 2019 (https://towardsdatascience.com/gaussian-mixture-models-explained-6986aaf5a95)
- 39. 心學-知行合一,《語音辨識系列 2--基於 WFST 解碼器_u012361418 的博客-程式師宅基地》,2019 (http://www.cxyzjd.com/article/u012361418/90289912)
- 40. 『愛丁堡大學語音辨識課程』第11章 (http://www.inf.ed.ac.uk/teaching/courses/asr/lectures-2019.html)
- 41. 陳柏琳, 《現階段大詞彙連續語音辨識研究之簡介》, 2005 (http://berlin.csie.ntnu.edu.tw/Berlin_Research/Manuscripts/2005_ ACLCLP-Newsletter_現階段大詞彙連續語音辨識研究之簡介_Final.pdf)
- 42. Kaldi 官網操作說明文件 (http://kaldi-asr.org/doc/index.html)
- 43. 台灣大學李琳山教授 Introduction to Digital Speech Processing 2019 Spring (http://speech.ee.ntu.edu.tw/DSP2019Spring/)
- 44. 哥倫比亞大學 Speech Recognition EECS E6870 Fall 2012 (https://www.ee.columbia.edu/~stanchen/fall12/e6870/outline.html)
- 45. 愛丁堡大學 Automatic Speech Recognition (ASR) 2018-19: Lectures (https://www.inf.ed.ac.uk/teaching/courses/asr/lectures-2019.html)
- 46. OpenSLR Resources (https://www.openslr.org/resources.php)
- 47. TIMIT Acoustic-Phonetic Continuous Speech Corpus (https://catalog.ldc.upenn.edu/LDC93S1)
- 48. WikiProject Spoken Wikipedia (https://en.wikipedia.org/wiki/Wikipedia:WikiProject_Spoken_Wikipedia)

第15章

- 1. 維基百科關於強化學習的說明(https://zh.wikipedia.org/wiki/强化学 <u>习</u>)
- 2. Gym 官網 (https://gym.openai.com/)
- 3. Gym GitHub (https://github.com/openai/gym#installing-everything)
- 4. Sayan Mandal, 《Install OpenAI Gym with Box2D and Mujoco in Windows 10》, 2019

 (https://medium.com/@sayanmnd121/install-openai-gym-with-box2d-and-mujoco-in-windows-10-e25ee9b5c1d5)
- 5. Yuval Tassa Saran Tunyasuvunakool Mimrod Gileadi, 《Opening up a physics simulator for robotics》, 2021
 (https://deepmind.com/blog/announcements/mujoco)
- 6. Mujoco 官網操作說明文件 (https://mujoco.readthedocs.io/en/latest/overview.html#examples)
- 7. Mike Shi, 《From Scratch: AI Balancing Act in 50 Lines of Python》, 2018

 (https://towardsdatascience.com/from-scratch-ai-balancing-act-in-50-lines-of-python-7ea67ef717)
- 8. Maciej Balawejder, 《Solving Open AI's CartPole Using Reinforcement Learning Part-1》, 2021

 (https://medium.com/analytics-vidhya/q-learning-is-the-most-basic
 -form-of-reinforcement-learning-which-doesnt-take-advantage-of-an v-8944e02570c5)
- 9. Denny Britz Github (https://github.com/dennybritz/reinforcement-learning)
- 10. Richard S. Sutton Andrew G. Barto, 《Reinforcement Learning: An Introduction》, 2018 (http://incompleteideas.net/book/the-book-2nd.html)
- 11. 維基百科關於蒙地卡羅方法的說明 (<u>https://zh.wikipedia.org/wiki/蒙</u>地卡羅方法)
- 12. 維基百科關於二十一點的說明(<u>https://zh.wikipedia.org/wiki/二十一點</u>)

- 13. Jeremy Zhang, 《Reinforcement Learning Implement TicTacToe》, 2019 (https://towardsdatascience.com/reinforcement-learning-implement-tictactoe-189582bea542)
- 14. Volodymyr Mnih、Koray Kavukcuoglu、David Silver 等人,《Human-level control through deep reinforcement learning》, 2015
 (https://web.stanford.edu/class/psych209/Readings/MnihEtAlHassibis15NatureControlDeepRL.pdf)
- 15. Keras 官網 Apoorv Nandan, 《Actor Critic Method》, 2020 (https://keras.io/examples/rl/actor_critic_cartpole/)
- 16. Pytorch 官網 Adam Paszke,《Reinforcement Learning (DQN) Tutorial》 (https://pytorch.org/tutorials/intermediate/reinforcement_q_learning.html)
- 17. Stable Baselines3 官網 Stable-Baselines3 Docs Reliable Reinforcement Learning Implementations (https://stable-baselines3.readthedocs.io/en/master/)
- 18. Rob, 《Get Started With Q-Learning With Python: How To Automatize A Warehouse Robot》, 2020
 (https://medium.datadriveninvestor.com/get-started-with-q-learning-with-python-how-to-automatize-a-warehouse-robot-7bfae0180301)
- 19. Yaodong Yang \ Jun Wang, \ \(\) An Overview of Multi-Agent Reinforcement Learning from Game Theoretical Perspective \(\) , 2020 \(\) \(\
- 20. 維基百科關於強化學習的介紹 (https://en.wikipedia.org/wiki/Reinforcement_learning)

第 16 章

- 1. Univariate Distribution Relationships (http://www.math.wm.edu/~leemis/chart/UDR/UDR.html)
- 2. Software Catepentry, Advanced NumPy (https://paris-swc.github.io/advanced-numpy-lesson/03-broadcasting.html)
- 3. NetworkX Algorithms (https://networkx.org/documentation/stable/reference/algorithms/i

ndex. html)

- 4. Bumstead 教授早上起床後的穿戴順序 (<u>https://networkx.org/nx-guides/content/algorithms/dag/index.html</u>)
- 5. NetworkX Graph Layout

 (https://networkx.org/documentation/stable/reference/drawing.html
 #module-networkx, drawing, layout)
- 6. community detection 社區發現, 隨勛所欲, 2020 (https://smiliu.xyz/posts/22257)
- 7. Community Detection 演算法, peghoty, 2019 (https://blog.csdn.net/itplus/article/details/9286905)
- 8. NetworkX Louvain Communities
 (https://networkx.org/documentation/stable/reference/algorithms/g
 enerated/networkx.algorithms.community.louvain.louvain_communitie
 s.html#louvain-communities)
- 9. PyTorch Geometric(PyG)官網文件 (<u>https://pytorch-geometric.readthedocs.io/en/latest/notes/installation.html</u>)
- 10. Christopher Morris 等學者, TUDatasets (https://chrsmrrs.github.io/datasets/)
- 11. TUDatasets 網站 (https://chrsmrrs.github.io/datasets/docs/datasets/)
- 12. Torch Geometric transforms (https://pytorch-geometric.readthedocs.io/en/latest/modules/transforms.html)
- 13. Thomas kipf, Graph Convolutional Network (http://tkipf.github.io/graph-convolutional-networks/)
- 14. Planetoid 類別說明
 (https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html#torch_geometric.datasets.Planetoid)
- 15. Creating Message Passing Networks (https://pytorch-geometric.readthedocs.io/en/latest/notes/create_

gnn. html

- 16. Keyulu Xu 等學者, How Powerful are Graph Neural Networks?, 2018 (https://arxiv.org/abs/1810.02244)
- 17. Christopher Morris 等學者,Weisfeiler and Leman Go Neural: Higher-order Graph Neural Networks,2018 (https://arxiv.org/abs/1810.00826)