E Achyuta Siddartha - ee25btech11024

Problem Statement

The edges of a parallelepiped are of unit length and are parallel to non-coplanar unit vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$ such that $\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{c} = \mathbf{c} \cdot \mathbf{a} = \frac{1}{2}$. Then, the volume of the parallelepiped is

(a)
$$\frac{1}{\sqrt{2}}$$

(b)
$$\frac{1}{2\sqrt{2}}$$

(c)
$$\frac{\sqrt{5}}{2}$$

(d)
$$\frac{1}{\sqrt{3}}$$

Solution:

Symbol	Value / Definition	Description
a, b, c	$ \mathbf{a} = \mathbf{b} = \mathbf{c} = 1$	Non-coplanar unit vectors for the
		parallelepiped edges.
$\mathbf{a} \cdot \mathbf{b}, \mathbf{b} \cdot \mathbf{c}, \mathbf{c} \cdot \mathbf{a}$	$\frac{1}{2}$	The dot product between any pair of the vectors.
A	(a b c)	A 3×3 matrix with the edge vectors as its columns.
V	det(A)	The volume of the parallelepiped
		(the value to be found).

Using Gram matrix, $G = A^{T}A$.

$$G = A^{\top} A = \begin{pmatrix} \mathbf{a} & \mathbf{b} & \mathbf{c} \end{pmatrix}^{\top} \begin{pmatrix} \mathbf{a} & \mathbf{b} & \mathbf{c} \end{pmatrix} = \begin{pmatrix} \mathbf{a} \cdot \mathbf{a} & \mathbf{a} \cdot \mathbf{b} & \mathbf{a} \cdot \mathbf{c} \\ \mathbf{b} \cdot \mathbf{a} & \mathbf{b} \cdot \mathbf{b} & \mathbf{b} \cdot \mathbf{c} \\ \mathbf{c} \cdot \mathbf{a} & \mathbf{c} \cdot \mathbf{b} & \mathbf{c} \cdot \mathbf{c} \end{pmatrix}$$
(2.10.55.1)

Substituting the given values into the Gram matrix:

$$G = \begin{pmatrix} 1 & 1/2 & 1/2 \\ 1/2 & 1 & 1/2 \\ 1/2 & 1/2 & 1 \end{pmatrix}$$
 (2.10.55.2)

The determinant of the Gram matrix is related to the determinant of A by:

$$\det(G) = \det(A^{\top}A) = (\det(A))^2 = V^2$$
 (2.10.55.3)

1

Therefore, the volume is $V = \sqrt{\det(G)}$. Calculating determinant of G we get,

$$\det(G)$$
 (2.10.55.4)

$$= \det \begin{pmatrix} 1 & 1/2 & 1/2 \\ 1/2 & 1 & 1/2 \\ 1/2 & 1/2 & 1 \end{pmatrix} \xrightarrow{R_2 \to R_2 - \frac{1}{2}R_1} \det \begin{pmatrix} 1 & 1/2 & 1/2 \\ 0 & 3/4 & 1/4 \\ 0 & 1/4 & 3/4 \end{pmatrix}$$
(2.10.55.5)

$$= \det \begin{pmatrix} 1 & 1/2 & 1/2 \\ 0 & 3/4 & 1/4 \\ 0 & 1/4 & 3/4 \end{pmatrix} \xrightarrow{R_3 \to R_3 - \frac{1}{3}R_2} \det \begin{pmatrix} 1 & 1/2 & 1/2 \\ 0 & 3/4 & 1/4 \\ 0 & 0 & 2/3 \end{pmatrix}$$
(2.10.55.6)

$$= \frac{1}{2} = \det(G) \tag{2.10.55.7}$$

Therefore, volume V is,

$$V = \sqrt{\det(G)} = \frac{1}{\sqrt{2}}$$
 (2.10.55.8)

Thus, the volume of the parallelepiped is $\frac{1}{\sqrt{2}}$, which corresponds to option (a). See Figure 2.10.55.1.

Fig. 2.10.55.1