Norwegian University of Science and Technology

TTK4135 – Lecture 6 Quadratic Programming Equality-constrained QPs

Lecturer: Lars Imsland

Types of Constrained Optimization Problems

Linear programming

- Convex problem
- Feasible set polyhedron

Quadratic programming

- Convex problem if $P \ge 0$
- Feasible set polyhedron

$$\min \quad \frac{1}{2}x^{\mathsf{T}}Px + q^{\mathsf{T}}x$$

subject to $Ax \le b$

Cx = d

– In general non-convex!

min
$$f(x)$$

subject to $g(x) = 0$
 $h(x) \ge 0$

 $f(x) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2$

$$\min_{x \in \mathbb{R}^n} f(x) \qquad \text{subject to} \quad \begin{aligned} c_i(x) &= 0, & i \in \mathcal{E}, \\ c_i(x) &\geq 0, & i \in \mathcal{I}. \end{aligned}$$

Last time: The simplex method for LP

- $\min_{x} c^{\top}$
- s.t. Ax = b
 - $x \ge 0$

- The Simplex algorithm
 - The feasible set of LPs are (convex) polytopes
 - LP solution is a vertex/"corner"/BFP of the feasible set
 - Simplex works by going from vertex to neighbouring vertex in such a manner that the objective decreases in each iteration
 - In each iteration, we solve a linear system to find which component in the **basis** (set of "not active constraints") we should change
 - "Almost" guaranteed convergence (if LP not unbounded or infeasible)

- Typically, at most 2m to 3m iterations
- Worst case: All vertices must be visited (exponential complexity in n)
- Active set methods (such as simplex method):
 - Maintains explicitly an estimate of the set of inequality constraints that are active at the solution (the set N for the Simplex method)
 - Makes small changes to the set in each iteration (a single index in Simplex)
- Today, and next lecture: Active set method for QP

G > 0, strictly convex

 $G \ge 0$, convex

Why are we interested in (convex) QPs?

- It is the "easiest" nonlinear programming problem
 - "easy": efficient algorithms exist for convex QPs
- The QP is the basic building block of SQP ("sequential quadratic programming"), a common method for solving general nonlinear programs
 - Topic in end of course (N&W Ch. 18)
- QPs are often used in control, especially as solvers in Model Predictive Control
 - Topic in a few weeks
 - Also used in finance ("Portifolio optimization"), some types of Machine Learning/regression problems, control allocation, economics, ...

QP Example: Farming example with changing prices

- A farmer wants to grow apples (A) and bananas (B)
- He has a field of size 100 000 m²
- Growing 1 tonne of A requires an area of 4 000 m², growing 1 tonne of B requires an area of 3 000 m²

- A requires 60 kg fertilizer per tonne grown, B requires 80 kg fertilizer per tonne grown
- The profit for A is $7000 200 x_1$ per tonne (including fertilizer cost), the profit for B is $6000 140 x_1$ per tonne (including fertilizer cost)
- The farmer can legally use up to 2000 kg of fertilizer
- The farmer wants to maximize his profits

LP farming example: Geometric interpretation and solution

$$\max_{x_1, x_2} 7000x_1 + 6000x_2$$

subject to:
$$4000x_1 + 3000x_2 \le 100000$$

$$60x_1 + 80x_2 \le 2000$$

$$x_1 \ge 0$$

$$x_2 \ge 0$$

QP farming example: Geometric interpretation and solution

$$\max_{x_1, x_2} (7000 - 200x_1)x_1 + (6000 - 140x_2)x_2$$
 subject to:
$$4000x_1 + 3000x_2 \le 100000$$

$$60x_1 + 80x_2 \le 2000$$

$$x_1 \ge 0$$

$$x_2 \ge 0$$

KKT Conditions (Thm 12.1)

$$\min_{x \in \mathbb{R}^n} f(x) \qquad \text{subject to} \qquad \begin{aligned} c_i(x) &= 0, & i \in \mathcal{E}, \\ c_i(x) &\geq 0, & i \in \mathcal{I}. \end{aligned}$$

$$c_i(x) = 0, \quad i \in$$

$$c_i(x) \ge 0, \quad i \in \mathcal{I}.$$

Lagrangian:
$$\mathcal{L}(x,\lambda) = f(x) - \sum_{i \in \mathcal{E} \cup \mathcal{I}} \lambda_i c_i(x)$$

KKT-conditions (First-order necessary conditions): If x^* is a local solution and LICQ holds, then there exist λ^* such that

(stationarity)

(primal feasibility)

(complementarity condition/ complementary slackness)

Important special case: Equality-constrained QP

Nullspace

Solving the EQP

"Proof" Theorem 16.2

Example 16.2

$$\min_{x} \quad \frac{1}{2}x^{\top}Gx + c^{\top}x$$

subject to
$$Ax = b$$

$$\min_{x_1, x_2, x_3} 3x_1^2 + 2x_1x_2 + x_1x_3 + 2.5x_2^2 + 2x_2x_3 + 2x_3^2 - 8x_1 - 3x_2 - 3x_3$$
 subject to $x_1 + x_3 = 3$, $x_2 + x_3 = 0$

$$\text{Matrices:} \quad G = \begin{pmatrix} 6 & 2 & 1 \\ 2 & 5 & 2 \\ 1 & 2 & 4 \end{pmatrix}, \quad c = \begin{pmatrix} -8 \\ -3 \\ -3 \end{pmatrix}, \quad A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}, \quad b = \begin{pmatrix} 3 \\ 0 \end{pmatrix} \qquad \text{Note symmetry of G.}$$

Fundamental Theorem of Linear Algebra

A matrix $A \in \mathbb{R}^{m \times n}$ is a mapping:

Nullspace of A: Null(A) = $\{v \in \mathbb{R}^n \mid Av = 0\}$

Rangespace (columnspace) of A: Range(A) = $\{w \in \mathbb{R}^m \mid w = Av, \text{ for some } v \in \mathbb{R}^n\}$

Fundamental theorem of linear algebra:

$$\mathrm{Null}(A) \oplus \mathrm{Range}(A^{\top}) = \mathbb{R}^n$$

Nullspace method/Elimination of variables (N&W 16.2/15.3)

Nullspace method/Elimination of variables (N&W 16.2/15.3)

Example 16.2

$$\min_{x} \quad \frac{1}{2}x^{\top}Gx + c^{\top}x$$

subject to
$$Ax = b$$

$$\min_{x_1, x_2, x_3} 3x_1^2 + 2x_1x_2 + x_1x_3 + 2.5x_2^2 + 2x_2x_3 + 2x_3^2 - 8x_1 - 3x_2 - 3x_3$$
 subject to $x_1 + x_3 = 3$, $x_2 + x_3 = 0$

```
>> G = [6\ 2\ 1;\ 2\ 5\ 2;\ 1\ 2\ 4];\ c = [-8;\ -3;\ -3];\ A = [1\ 0\ 1;0\ 1\ 1];\ b = [3;0];
>> K = [G, -A'; A, zeros(2,2)];
>> K\setminus [-c;b] % X = A\B is the solution to the equation A*X = B
                                                       >> [O,R,P] = gr(A')
ans =
    -1.0000
                                                        R =
                                                           -1.4142
                                                                      -0.7071
                                                                      -1.2247
                                                                                                 >> Z = Q(:,3);
                                                                                                  >> 7.1*G*7
                                                                                                  ans =
 Norwegian University of
                                                                                                      4.3333
```

Summing up: Direct solutions of KKT system (16.2)

Solution of KKT system when $Z^{\top}GZ > 0$

Full space:

$$\begin{pmatrix} G & A^{\top} \\ A & 0 \end{pmatrix} \begin{pmatrix} -p \\ \lambda^* \end{pmatrix} = \begin{pmatrix} c + Gx \\ Ax - b \end{pmatrix}$$

- Use LU (or LDL-method, since KKT-matrix is symmetric
- Reduced space, efficient if n-m « n:

$$(AY)p_Y = b - Ax$$

$$(Z^{\top}GZ)p_Z = -Z^{\top}GYp_Y + Z^{\top}(c + Gx)$$

$$p = Yp_Y + Zp_Z$$

- Solve two much smaller systems using LU and Cholesky (both with complexity that scales with n³)
- Main complexity is calculating basis for nullspace. Usual method is using QR.
- Alternative to direct methods: Iterative methods (16.3)
 - For very large systems, can be parallelized