Marten theoram

Find
$$\rightarrow$$
 (i) $\log_b a$ (iii) P

case 1: if
$$log_ba > K$$
, $\theta(n^{log_ba})$

case 2: if $log_ba = K$, $p > -1$, $\theta(n^{K} log_ba)$
 $p = -1$, $\theta(n^{K} log_ba)$

$$P = T(N) = AT(N/2) + N$$

 $\Rightarrow a = 4, b = 2, f(n) = n = n^{K} log^{P} n$
 $K = 1, P = 0$
 $\therefore log_{b}a = log A = 2 > K, P = 0.$