

5795MHz by 802.11ax(40MHz):

5210MHz by 802.11ax(80MHz):

5775MHz by 802.11ax(80MHz):

AV-Ant 0+1+2+3 with Beam-forming:

Band I AV Limit=54 dBuV/m-95.2-10lg4(4tx)-11.03(Directional Gain)-0.7(cable loss)=-59dbm 5180MHz by 802.11a:

5180MHz by 802.11n(20MHz):

Page: 203 of 232

5190MHz by 802.11n(40MHz):

5180MHz by 802.11ac(20MHz):

5190MHz by 802.11ac(40MHz):

5210MHz by 802.11ac(80MHz)

5180MHz by 802.11ax(20MHz):

5190MHz by 802.11ax(40MHz):

5210MHz by 802.11ax(80MHz)

PK-Ant 0+1+2+3 with Beam-forming:

Band I PK Limit=74 dBuV/m-95.2-10lg4(4tx)-11.03(Directional Gain)-0.7(cable loss)=-39dbm 5180MHz by 802.11a:

5745MHz by 802.11a:

Page: 208 of 232

5785MHz by 802.11a:

5825MHz by 802.11a:

5180MHz by 802.11n(20MHz):

5745MHz by 802.11n(20MHz):

5785MHz by 802.11n(20MHz):

5825MHz by 802.11n(20MHz):

5190MHz by 802.11n(40MHz):

5755MHz by 802.11n(40MHz):

5795MHz by 802.11n(40MHz):

5180MHz by 802.11ac(20MHz):

5745MHz by 802.11ac(20MHz):

5785MHz by 802.11ac(20MHz):

5825MHz by 802.11ac(20MHz):

5190MHz by 802.11ac(40MHz):

5755MHz by 802.11ac(40MHz):

5795MHz by 802.11ac(40MHz):

5210MHz by 802.11ac(80MHz):

5775MHz by 802.11ac(80MHz):

5180MHz by 802.11ax(20MHz):

5745MHz by 802.11ax(20MHz):

5785MHz by 802.11ax(20MHz):

5825MHz by 802.11ax(20MHz):

5190MHz by 802.11ax(40MHz):

5755MHz by 802.11ax(40MHz):

5795MHz by 802.11ax(40MHz):

5210MHz by 802.11ax(80MHz):

5775MHz by 802.11ax(80MHz):

10. Frequency Stability

10.1. Test Equipment

Frequency Stability / TR-8					
Instrument	Manufacturer	Type No.	Serial No.	Cal. Date	Cal. Due Date
Spectrum Analyzer	Agilent	N9010A	MY48030494	2018.02.04	2019.02.03
AC Power Supply	IDRC	CF-500TP	979422	2017.09.16	2018.09.15
DC Power Supply	IDRC	CD-035-020PR	977272	2017.09.16	2018.09.15
Programmable	Gaoyu	TH-1P-B	WIT-05121302	2018.01.03	2019.01.02
Temperature & Humidity					
Chamber					
Temperature/Humidity	zhichen	ZC1-2	TR8-TH	2018.04.10	2019.04.09
Meter	ZHICHEH	201-2	I K0- I H	2010.04.10	2019.04.09

Note: All equipment are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.

10.2. Test Setup

10.3. Limit

Freq	Frequency Stability Limit				
UNII	UNII Devices				
\square	In-band emission is maintained within the band of operation under all conditions of normal				
	operation as specified in the user's manual.				
IEEE	IEEE Std. 802.11n-2009				
\square	The transmitter center frequency tolerance shall be ± 20 ppm maximum for the 5 GHz band				
	and ± 25ppm maximum for the 2.4 GHz band.				

Page: 225 of 232

10.4. Test Procedure

Frequ	ency S	Stability Test Method		
		References Rule	Chapter	Description
	ANSI	C63.10	6.8	Frequency stability tests
	\boxtimes	ANSI C63.10	6.8.1	Frequency stability with respect to ambient temperature
	\boxtimes	ANSI C63.10	6.8.2	Frequency stability when varying supply voltage

10.5. Uncertainty

The measurement uncertainty is defined as ± 100 Hz

Page: 226 of 232

10.6. EUT test Axis definition

Item	Frequency Stability						
		Outdoor AP					
Device Category		Fixed point-to-poin	it AP				
		Outdoor fixed poin	t-to-multip	point AP			
		Client					
Test mode	Carri	er Wave					
		Conducted					
			Ch	nain 1			
		Chain 1		(Chain 2		
			•	•			
		Chain 1	Ch	nain 2	Chain 3		
			•	•			

10.7. Test Result

Product Name	:	Wireless Access Point	Power		AC 120V/60Hz
Test Mode	•	Carrier Wave	Test Site	:	TR8
Test Date	:	2018.06.20			

Frequency Stability under Temperature at Omin

Temperature Interval ()	Test Frequency (MHz)	Deviation (Hz)	ppm	Limit
-30	5220.000	79	0.015	± 20
-20	5220.000	215	0.041	± 20
-10	5220.000	137	0.026	± 20
0	5220.000	-10	-0.002	± 20
10	5220.000	33	0.006	± 20
20	5220.000	-70	-0.013	± 20
30	5220.000	-74	-0.014	± 20
40	5220.000	49	0.009	± 20
50	5220.000	-3	-0.001	± 20

Page: 228 of 232

Frequency Stability under Temperature at 2min

Temperature Interval ()	Test Frequency (MHz)	Deviation (Hz)	ppm	Limit
-30	5220.000	-210	-0.040	± 20
-20	5220.000	-156	-0.030	± 20
-10	5220.000	-37	-0.007	± 20
0	5220.000	90	0.017	± 20
10	5220.000	-90	-0.017	± 20
20	5220.000	-119	-0.023	± 20
30	5220.000	107	0.020	± 20
40	5220.000	-86	-0.016	± 20
50	5220.000	-94	-0.018	± 20

Page: 229 of 232

Frequency Stability under Temperature at 5min

Temperature Interval ()	Test Frequency (MHz)	Deviation (Hz)	ppm	Limit
-30	5220.000	-129	-0.025	± 20
-20	5220.000	-122	-0.023	± 20
-10	5220.000	107	0.020	± 20
0	5220.000	-88	-0.017	± 20
10	5220.000	113	0.022	± 20
20	5220.000	179	0.034	± 20
30	5220.000	161	0.031	± 20
40	5220.000	-95	-0.018	± 20
50	5220.000	-91	-0.017	± 20

Page: 230 of 232

Frequency Stability under Temperature at 10min

Temperature Interval ()	Test Frequency (MHz)	Deviation (Hz)	ppm	Limit
-30	5220.000	123	0.024	± 20
-20	5220.000	105	0.020	± 20
-10	5220.000	94	0.018	± 20
0	5220.000	99	0.019	± 20
10	5220.000	-100	-0.019	± 20
20	5220.000	148	0.028	± 20
30	5220.000	-123	-0.024	± 20
40	5220.000	118	0.023	± 20
50	5220.000	-94	-0.018	± 20

Frequency Stability under Voltage

AC Voltage (V)	Test Frequency (MHz)	Deviation (Hz)	ppm	Limit
102	5220.000	114	0.022	± 20
120	5220.000	-105	-0.020	± 20
138	5220.000	163	0.031	± 20

Page: 231 of 232

Report No: 1832134R-RF-US-P09V01

11. Antenna Requirement

11.1. Limit

Antenna Requirement Limit

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

11.2. Antenna Connector Construction

Antei	nna Connector Construction				
	The use of a permanently attached antenna				
	The antenna use of a unique coupling to the intentional radiator				
\boxtimes	The use of a nonstandard antenna jack or electrical connector				
Pleas	Please refer to the attached document "Internal Photograph" to show the antenna connector.				
	T. F				

Page: 232 of 232