化学物质基本概念·四·「离子检验」

大题通用术语: 取少量待测液于洁净试管中, 滴加......, 观察......

1. 阳离子

- Na+:用 铂丝 蘸其溶液,用酒精灯火焰上灼烧,火焰呈 黄色
- K+:用 铂丝 蘸其溶液,用酒精灯火焰上灼烧,透过蓝色钻玻璃观察,火焰呈 紫色

通过焰色反应检验离子

- Na^+ 与 K^+ 在自然界中往往同时存在,火焰的紫色可能被黄色遮盖,因此判断 K^+ ,需透过蓝色钻玻璃观察
- 需使用铂丝或干净的铁丝,不得使用玻璃棒 (Na₂SiO₃)
- $\mathrm{Mg^{2+}} \xrightarrow{ \wp \pm \mathrm{NaOH} }$ 白色沉淀 $\mathrm{Mg(OH)_2} \downarrow \xrightarrow{\mathrm{\ddot{a}lm}\,\mathrm{NaOH}\,\mathrm{\Xi}\mathrm{\overline{c}l}\,\pm}$ 白色沉淀不溶解
- $\mathrm{Al}^{3+} \xrightarrow{\phi \oplus \mathrm{NaOH}}$ 白色沉淀 $\mathrm{Al}(\mathrm{OH})_3 \downarrow \xrightarrow{\mathrm{\ddot{m}h}\,\mathrm{NaOH}\mathrm{\Xi}\mathrm{d}\oplus}$ 白色沉淀完全溶解 AlO_2^-

如果白色沉淀部分溶解则说明均含有 Mg^{2+} 与 Al^{3+}

- Fe³⁺
 - 1. 待测液 $\xrightarrow{ ext{KSCN} iny ? ? ? }$ 溶液变为血红色 $ext{Fe}(ext{SCN})_3$
 - 2. 待测液 $\xrightarrow{\mathrm{NaOH} imeslpha}$ 产生红褐色沉淀 $\mathrm{Fe}(\mathrm{OH})_3$
 - 3. 待测液 ^{苯酚} 溶液显紫色
- Fe²⁺
 - 1. 待测液 $\xrightarrow{\mathrm{K}_3[\mathrm{Fe}(\mathrm{CN})_6]}$ 产生蓝色沉淀
 - 2. 待测液 $\xrightarrow{\mathrm{NaOH} imes_{\mathrm{Na}}}$ 白色絮状沉淀 \longrightarrow 灰绿色沉淀 \longrightarrow 红褐色沉淀
- 有 Fe²⁺ 无 Fe³⁺
 - 待测液 $\xrightarrow{\text{KSCN} imes imes}$ 溶液不变红(排除 Fe^{3+}) $\xrightarrow{\text{氯<math>k$ or H_2O_2}}$ 溶液变红

 $\mathrm{NH_4^+}$ 与 NaOH 反应先生成一水合氨,只有一部分分解出氨气,且由于其氨气对水溶解性过大,会溶解在水中

加热用于促进一水合氨分解 且 降低氨气对水的溶解度

• Cu²⁺

一般可通过溶液颜色直接判断是否含有 Cu^{2+} ,但如果溶液中含有多个有色离子则难以判断,需通过化学检验的方式判断

待测液 $\xrightarrow{\mathrm{NaOH}}$ 蓝色沉淀 $\mathrm{Cu}(\mathrm{OH})_2$

- Ag⁺
 - 1. 待测液 $\xrightarrow{\mathrm{HNO_3}}$ 无沉淀(排除 $\mathrm{SiO_3^{2-}}$ 干扰) $\xrightarrow{\mathrm{HCl}}$ 白色沉淀 AgCl
 - 2. 待测液 $\xrightarrow{\mathcal{O}^{\pm} \exists x^{N}}$ $AgOH \downarrow$ (不稳定) \longrightarrow 棕褐色沉淀 $Ag_{2}O \xrightarrow{\boxtimes x}$ 沉淀溶解 $[Ag(NH_{3})_{2}]OH$

2. 阳离子

• C1⁻

待测液
$$\xrightarrow[\overline{\&V}]{\mathrm{HNO_3}}$$
 (排除 $\mathrm{CO_3^{2-}}$ 的干扰) $\xrightarrow{\mathrm{AgNO_3}}$ 白色沉淀 AgCl

教材对比实验

在三支试管中分别加入 2~3mL 稀盐酸、NaCl 溶液、 Na_2CO_3 溶液,然后各滴入几滴 $AgNO_3$ 溶液,观察现象。再分别加入少量稀硝酸,观察现象

物质	加入 溶液后	加入稀硝酸后	解释或离子方程式
稀盐酸	白色沉淀(AgCl)	不溶解	${ m Ag^+ + Cl^-} = { m AgCl} \downarrow$
NaCl 溶液	白色沉淀(AgCl)	不溶解	$\mathrm{Ag^{+}} + \mathrm{Cl^{-}} = \mathrm{AgCl} \downarrow$

物质	加入 ${ m AgNO_3}$ 溶 液后	加入稀硝酸后	解释或离子方程式
Na ₂ CO ₃ 溶液	白色沉淀($ m Ag_2CO_3$)	溶解并产生气泡	$egin{aligned} 2\mathrm{Ag^+} + \mathrm{CO_3^{2-}} &= \mathrm{Ag_2CO_3} \downarrow \ \mathrm{Ag_2CO_3} + 2\mathrm{H^+} &= 2\mathrm{Ag^+} + \mathrm{H_2O} + \mathrm{CO_2} + \mathrm{H_2O_2} + H_2O_$

Table 2-1

• Br⁻

待测液 $\stackrel{{rac{8\pi}{4}}}{\longrightarrow}$ 溶液变黄 $\stackrel{{
m CCl}_4}{\longrightarrow}$ 分层,且下层油状液体(有机层)呈橙色

- T-
 - 1. 待测液 $\stackrel{{rac{k}}}{\longrightarrow}$ 溶液变黄 $\stackrel{{}^{lpha}}{\longrightarrow}$ 分层,且上层油状液体(有机层)呈紫色
- SO₄
 - 1. 原理:在溶液中, $\mathrm{SO_4^{2-}}$ 可与 $\mathrm{Ba^{2+}}$ 反应,生成 **不溶于稀盐酸** 的白色 $\mathrm{BaSO_4}$ 沉淀

强酸根形成的沉淀往往难溶于强酸,例如 $\mathrm{BaSO_4}$ 、 AgCl 不溶于盐酸、硝酸

2. 操作方法

1. 取少许待测液于洁净试管中, 先加入足量稀盐酸酸化

 ${
m Ba^{2+}}$ 与 ${
m SO_4^{2-}}$ 、 ${
m CO_3^{2-}}$ 、 ${
m SO_3^{2-}}$ 形成沉淀, ${
m Ag^+}$ 与 ${
m Cl^-}$ 形成沉淀;稀盐酸可排除 ${
m CO_3^{2-}}$ 、 ${
m SO_3^{2-}}$ 、 ${
m Cl^-}$ 的干扰

- 2. 上一步后无明显现象(若有沉淀,则静置后取上层清液),滴加 \mathbf{BaCl}_2 溶液
- 3. 若有白色沉淀产生,则说明待测液中含有 SO_4^{2-} 若无白色沉淀产生,则说明待测液中不含 SO_4^{2-}

3. 注意事项

 $lacksymbol{f R}$ 不能只加入 ${
m BaCl_2}$,且盐酸和 ${
m BaCl_2}$ 的顺序不可以颠倒

例如:待测液先加入 ${\bf BaCl_2}$,发现白色沉淀,再加入稀盐酸,观察到沉淀不消失,不可判断是 ${\bf SO_4^{2-}}$

因为虽然排除了 $BaCO_3$ 和 $BaSO_3$ 的干扰,但也有可能是 AgCl (HCl 不会使 AgCl 沉淀消失)

- 不可以引入硝酸根,例如不可以加 HNO_3 酸化或是加 $Ba(NO_3)_2$
- SO₃²⁻ & HSO₃⁻

激性 且 可使品红溶液褪色的气体 (SO_2)

• $CO_3^{2-} \& HCO_3^{-}$

• $AlO_2^- \& SiO_3^{2-}$

$$egin{cases} {
m AlO_2^-} & \xrightarrow{\begin{subarray}{cccc} ϕ \leq HCl \ $
m SiO_3^{2-}$ & ϕ \leq HCl \ $
m Dellar{} TCl \ $
m$$

• $S_2O_3^{2-}$

待测液 —— 黄色沉淀 且 生成具有刺激性气味的气体

$$S_2O_3^{2-} + 2H^+ = S\downarrow + SO_2\uparrow + H_2O$$

- S²⁻
 - 1. 待测液 $\stackrel{\mathrm{Cu}^{2+}}{\longrightarrow}$ 黑色沉淀 CuS
 - 2. 待测液 $\xrightarrow{\{ar{x}^{N}\}}$ 黄色沉淀 S
- NO_3^- 待测液 $\xrightarrow{\hspace*{-0.5cm} \hspace*{-0.5cm} \hspace*$