Ćwiczenie 3: Wyznaczenie mocy akustycznej przetwornika piezoelektrycznego przez pomiar ultradźwięków w wodzie							
Prowadzący	Mgr inż. Tomasz Świetlik						
Wykonujący doświadczenie	Izabela Popiel Katarzyna Sokół Karolina Marciniszyn						
Grupa zajęciowa	Środa 14:15; Tura I						
Data wykonania ćwiczenia	07.11.18r.						
Data oddania sprawozdania	14.11.18r.						

1. Cel

Doświadczenie miało na celu wyznaczanie mocy akustycznej przetwornika piezoelektrycznego. Ponadto ćwiczenie umożliwia zapoznanie studenta z normami, które dopuszczają przetworniki do użycia w medycynie oraz porównanie z nimi użytego w doświadczeniu przetwornika. Co umożliwia określenie przydatności badanego obiektu w celach medycznych.

2. Schemat pomiarowy

3. Spis aparatury pomiarowej

- Waga torsyjna (dokładność 0,1mg)
- Generator ultradźwiękowy (klasa 1,5; zakres 3W)
- Woltomierz (klasa =1,5; zakres 20V)
- Częstościomierz (dokładność 1Hz)

4. Przebieg, analiza oraz wyniki

Przed przystąpieniem do wykonania ćwiczenia obliczono prędkość dźwięku w wodzie (c_{wody}), współczynnik k, zakres pola bliskiego dla rezonansu r₀ oraz kąta padania na reflektor.

Temperatura wody znajdującej się w wytłumionym zbiorniku (basenie) wynosiła 22,6°C.

Prędkość dźwięku w wodzie – obliczono korzystając z poniższego wzoru

$$c_{wody} = \sum_{i=0}^{5} k_i t^i = 1490,09 \frac{m}{s}$$

Gdzie t- 22,6 °C; k_i- współczynniki wyszczególnione w tabeli 4.1.

Tabela 4.1.: Współczynniki k_i dla poszczególnych wartości i

i	k _i [m/s]
0	1402,385
1	5,038813
2	-0,05799
3	0,000329
4	-1,4x10 ⁻⁶
5	2,79x10 ⁻⁹

- Zakres pola bliskiego dla rezonansu r₀ obliczono ze wzoru:

$$r_0 = \frac{d^2}{4\lambda} = \frac{d^2 f_r}{4c_{wody}} = \frac{(0.038m)^2 * 340kHz}{4 * 1490.09 \frac{m}{s}} = 0.0823m$$

Gdzie: d- średnica przetwornika (38mm); f_{r-} częstotliwość rezonansowa (340kHz); λ - długość fali

- Kat padania na reflektor α

Rys. 6.4. Sposób rozchodzenia się fali ultradźwiękowej w czasie pomiaru ciśnienia promieniowania

[2]

Współczynnik k obliczono następująco:

$$F_{p_{r\alpha}} = \frac{2P_a}{c_o} \cos^2 \alpha = mg$$

$$P_a = k * m$$

$$P_a = \frac{mgc_o}{2\cos^2 \alpha}$$

$$k = \frac{gc_o}{2\cos^2 \alpha} = 8898,1482 \left[\frac{W}{kg}\right] = 8,9 \left[\frac{mW}{mg}\right]$$

gdzie: c_o=c_{wody}; P_a- moc akustyczna

Według schematu zamieszczonego w podpunkcie 2. wykonano dwie części doświadczenia. Najpierw dokonano pomiaru częstotliwości (od około 300 do 380 kHz), mocy akustycznej oraz masy przy stałym napięciu równym 15V (przy czym pomiary zostały dokonywane przy zmianie masy co około 0,5 mg). A następnie mierzono moc elektryczną oraz masę dla częstotliwości rezonansowych przy zadanym napięciu o wartościach od 16 do 1V.

4.1.Część pierwsza

Moc akustyczna Pa została obliczona za pomocą wzoru:

$$P_a = k * m$$

Gdzie: k- współczynnik wyznaczony w punkcie 3.; m-masa

Przykładowe obliczenie dla Pa przy częstotliwości równej 300,341 kHz:

$$P_a = k * m = 8.9 * 3.6 = 32,03333 \ mW \approx 32,03 \ mW$$

$$\Delta P_a = \left| \frac{\delta P_a}{\delta m} \right| * \Delta m = k * \Delta m = 8.9 \frac{mW}{mg} * 0.1 mg = 0.89 \ mW$$

$$\delta P_a = \frac{\Delta P_a}{P_a} * 100 = \frac{0.89}{32,03} * 100 = 2.78 \%$$

Tabela 4.1.1.: Wyniki pomiarów wraz z obliczonymi wartościami mocy akustycznej oraz niepewnościami

f [kHz]	∆f [k Hz]	U [V]	ΔU [V]	m [mg]	Δ m[mg]	P _e [mW]	ΔP_e [mW]	P _a mW]	ΔP_a [mW]
300,341	0,001	15	0,3	3,6	0,1	400	0,045	32,03	0,89
306,967	0,001	15	0,3	8,3	0,1	500	0,045	73,85	0,89
310,032	0,001	15	0,3	13,9	0,1	580	0,045	123,68	0,89
311,481	0,001	15	0,3	18,7	0,1	650	0,045	166,40	0,89
312,622	0,001	15	0,3	23,5	0,1	700	0,045	209,11	0,89
313,214	0,001	15	0,3	27,8	0,1	730	0,045	247,37	0,89
313,700	0,001	15	0,3	33,2	0,1	750	0,045	295,42	0,89
315,608	0,001	15	0,3	27,8	0,1	590	0,045	247,37	0,89
315,927	0,001	15	0,3	22,9	0,1	550	0,045	203,77	0,89
316,326	0,001	15	0,3	18,0	0,1	520	0,045	160,17	0,89
317,052	0,001	15	0,3	13,5	0,1	500	0,045	120,13	0,89

319,221	0,001	15	0,3	7,9	0,1	490	0,045	70,30	0,89
329,330	0,001	15	0,3	13,2	0,1	640	0,045	117,46	0,89
331,645	0,001	15	0,3	18,3	0,1	750	0,045	162,84	0,89
333,450	0,001	15	0,3	23,0	0,1	890	0,045	204,66	0,89
334,314	0,001	15	0,3	28,6	0,1	1000	0,045	254,49	0,89
334,842	0,001	15	0,3	33,3	0,1	1090	0,045	296,31	0,89
335,169	0,001	15	0,3	37,4	0,1	1100	0,045	332,79	0,89
335,645	0,001	15	0,3	42,8	0,1	1200	0,045	380,84	0,89
336,080	0,001	15	0,3	47,6	0,1	1230	0,045	423,55	0,89
336,716	0,001	15	0,3	53,7	0,1	1290	0,045	477,83	0,89
337,334	0,001	15	0,3	57,5	0,1	1320	0,045	511,64	0,89
339,803	0,001	15	0,3	62,7	0,1	1410	0,045	557,91	0,89
340,440	0,001	15	0,3	58,4	0,1	1290	0,045	519,65	0,89
340,548 341,026	0,001	15 15	0,3	32,7 58,5	0,1	1390 1250	0,045	290,97	0,89
341,527	0,001	15	0,3	53,7	0,1	1120	0,045	520,54 477,83	0,89
341,995	0,001	15	0,3	47,9	0,1	1000	0,045	426,22	0,89
342,332	0,001	15	0,3	43,3	0,1	900	0,045	385,29	0,89
342,809	0,001	15	0,3	38,0	0,1	810	0,045	338,13	0,89
343,299	0,001	15	0,3	33,9	0,1	750	0,045	301,65	0,89
343,962	0,001	15	0,3	29,0	0,1	670	0,045	258,05	0,89
344,765	0,001	15	0,3	23,7	0,1	600	0,045	210,89	0,89
346,145	0,001	15	0,3	18,8	0,1	500	0,045	167,29	0,89
346,920	0,001	15	0,3	14,2	0,1	430	0,045	126,35	0,89
347,803	0,001	15	0,3	10,6	0,1	390	0,045	94,32	0,89
350,603	0,001	15	0,3	4,8	0,1	370	0,045	42,71	0,89
355,807	0,001	15	0,3	10,3	0,1	510	0,045	91,65	0,89
356,985	0,001	15	0,3	15,4	0,1	600	0,045	137,03	0,89
357,662	0,001	15	0,3	20,1	0,1	690	0,045	178,85	0,89
358,100	0,001	15	0,3	24,2	0,1	740	0,045	215,34	0,89
358,615 359,202	0,001	15 15	0,3	29,3 35,4	0,1	810 900	0,045	260,72 314,99	0,89
359,612	0,001	15	0,3	39,8	0,1	1000	0,045	354,15	0,89
361,064	0,001	15	0,3	44,6	0,1	1050	0,045	396,86	0,89
362,863	0,001	15	0,3	50,5	0,1	1100	0,045	449,36	0,89
363,233	0,001	15	0,3	54,2	0,1	1110	0,045	482,28	0,89
363,858	0,001	15	0,3	60,7	0,1	1120	0,045	540,12	0,89
364,353	0,001	15	0,3	66,8	0,1	1150	0,045	594,40	0,89
364,682	0,001	15	0,3	70,6	0,1	1160	0,045	628,21	0,89
365,043	0,001	15	0,3	75,0	0,1	1190	0,045	667,36	0,89
365,457	0,001	15	0,3	80,3	0,1	1190	0,045	714,52	0,89
365,931	0,001	15	0,3	84,7	0,1	1190	0,045	753,67	0,89
366,586	0,001	15	0,3	89,3	0,1	1190	0,045	794,60	0,89
367,416	0,001	15	0,3	94,9	0,1	1190	0,045	844,43	0,89
367,857	0,001	15	0,3	99,9	0,1	1200	0,045	888,93	0,89
368,232	0,001	15	0,3	106,0	0,1	1210	0,045	943,20	0,89
368,405	0,001	15	0,3	109,7	0,1	1230	0,045	976,13	0,89

368,873	0,001	15	0,3	114,5	0,1	1210	0,045	1018,84	0,89
369,661	0,001	15	0,3	109,8	0,1	1090	0,045	977,02	0,89
369,977	0,001	15	0,3	105,9	0,1	1020	0,045	942,31	0,89
370,488	0,001	15	0,3	99,9	0,1	900	0,045	888,93	0,89
370,974	0,001	15	0,3	94,3	0,1	800	0,045	839,10	0,89
371,149	0,001	15	0,3	91,7	0,1	790	0,045	815,96	0,89
371,486	0,001	15	0,3	86,5	0,1	710	0,045	769,69	0,89
371,777	0,001	15	0,3	81,3	0,1	680	0,045	723,42	0,89
372,310	0,001	15	0,3	75,4	0,1	610	0,045	670,92	0,89
373,420	0,001	15	0,3	69,9	0,1	580	0,045	621,98	0,89
374,441	0,001	15	0,3	65,5	0,1	540	0,045	582,83	0,89
375,185	0,001	15	0,3	61,0	0,1	490	0,045	542,79	0,89
375,575	0,001	15	0,3	55,2	0,1	410	0,045	491,18	0,89
375,874	0,001	15	0,3	50,4	0,1	400	0,045	448,47	0,89
376,363	0,001	15	0,3	43,7	0,1	380	0,045	388,85	0,89
376,669	0,001	15	0,3	41,0	0,1	350	0,045	364,82	0,89
377,190	0,001	15	0,3	36,4	0,1	320	0,045	323,89	0,89
378,234	0,001	31	0,3	31,2	0,1	300	0,045	277,62	0,89
381,040	0,001	15	0,3	26,3	0,1	300	0,045	234,02	0,89

Na podstawie uzyskanych pomiarów oraz obliczeń wartości mocy akustycznej wyznaczono charakterystykę mocy akustycznej od częstotliwości oraz mocy elektrycznej od częstotliwości, którą przedstawiono poniżej.

Wykres 4.1.1.:Zależność mocy akustycznej oraz elektrycznej od częstotliwości

Ponieważ częstotliwości rezonansowe pokrywają się, nie skorygowano wartości częstotliwości.

Następnie na podstawie charakterystyki wyznaczono w każdym z uzyskanych rezonansów szerokość pasma, sprawność przetwornika oraz natężenie I.

- Natężenie

$$I = \frac{P_a}{S}$$

$$\Delta I = \left| \frac{\delta I}{\delta P_a} \right| * \Delta P_a = \frac{1}{S} * \Delta P_a = \frac{1}{S} * \Delta P_a$$

$$\delta I = \frac{\Delta I}{I} * 100$$

Gdzie: P_a - moc akustyczna, $S=\pi r^2$ -powierzchnia promieniująca, r=0,19mm -promień powierzchni promieniującej będącej kołem

Przykładowe obliczenia:

$$S = \pi r_0^2 = 3.14 * 0.019^2 = 0.001134m^2 = 11.34cm^2$$

$$I_I = \frac{P_{aI}}{S} = \frac{295.42}{11.34} = 26.04837548 \frac{mW}{cm^2} \approx 26.048 \frac{mW}{cm^2}$$

$$\Delta I = \left| \frac{1}{11.34cm^2} \right| * 0.89mW = 0.0784 \frac{mW}{cm^2} \approx 0.078 \frac{mW}{m^2}$$

$$\delta I = \frac{0.078}{26.048} * 100 = 0.301267503 \% \approx 0.3\%$$

Szerokość pasma

Aby wyznaczyć szerokość pasma, wartości mocy akustycznej zostały przeliczone na decybele.

$$P[dB] = 10log\left(\frac{P_a}{P_{amax}}\right)$$

P_{amax}- maksymalna wartość mocy akustycznej w danym rezonansie

Wykres 4.1.2.: Zależność mocy akustycznej [dB] od częstotliwości [kHz]

Szerokość pasma została obliczona jako stosunek częstotliwości dla maksymalnej mocy akustycznej maksimum lokalnego (jakim jest rezonans) do różnicy częstotliwości dla mocy akustycznej odpowiadającej spadkowi jej wartości o około 3dB.

$$szerokość pasma = \frac{f_{Pamax}}{f_2 - f_1}$$

A więc dla pierwszego rezonansu:

$$szerokość pasma = \frac{313,700}{316,326 - 311,481} = 64,74716202[-] \approx 64,747[-]$$

$$\Delta(f_2 - f_1) = \left| \frac{\delta(f_2 - f_1)}{\delta f_1} \right| * \Delta f_1 + \left| \frac{\delta(f_2 - f_1)}{\delta f_2} \right| * \Delta f_2 = |1 - f_1| * \Delta f_2 + |f_2 - 1| * \Delta f_1$$

$$= 0,004845 \ kHz \approx 0,0049 \ kHz$$

Aszerokość pasma

$$= \left| \frac{\delta szerokość pasma}{\delta(f_2 - f_1)} \right| * \Delta(f_2 - f_1) + \left| \frac{\delta szerokość pasma}{\delta f_{Pamax}} \right| * \Delta f_{Pamax}$$

$$= \left| \frac{-f_{Pamax}}{(f_2 - f_1)^2} \right| * \Delta(f_2 - f_1) + \left| \frac{1}{f_2 - f_1} \right| * \Delta f_{Pamax}$$

$$= \left| \frac{-313,700}{(316,326 - 311,481)^2} \right| * 0,0049 + \left| \frac{1}{316,326 - 311,481} \right| * 0,001$$

$$= 0,06495356 \approx 0,065 [-]$$

$$\delta szerokość\ pasma = \frac{\Delta szerokość\ pasma}{szerokość\ pasma}*100 = 0,100318776\% \approx 0,11\%$$

Sprawność

Sprawność badanego przetwornika obliczono ze stosunku mocy akustycznej do mocy elektrycznej pomnożonego przez 100.

$$\eta[\%] = \frac{P_a}{P_e} * 100$$

$$\Delta \eta = \left| \frac{\delta \eta}{\delta P_a} \right| * \Delta P_a + \left| \frac{\delta \eta}{\delta P_e} \right| * \Delta P_e = \left| \frac{1}{P_e} * 100 \right| * \Delta P_a + \left| \frac{-P_a}{P_e^2} * 100 \right| * \Delta P_e$$

$$\delta \eta = \frac{\Delta \eta}{\eta} * 100$$

Przykładowe obliczenia dla rezonansu pierwszego:

$$\eta[\%] = \frac{295,42}{750} * 100 = 39,38913601\% \approx 39,39\%$$

$$\Delta \eta = \left| \frac{1}{750} * 100 \right| * 0,89 + \left| \frac{-295,42}{750^2} * 100 \right| * 0,045 = 0,121030015\% \approx 0,12\%$$

Tabela 4.1.2.: Zestawienie parametrów: szerokości pasma, natężenia, sprawności wraz z niepewnościami dla trzech częstotliwości rezonansowych

	Częstotliwość f [kHz]	Δf [kHz]	Szerokość pasma [-]	Δszerokość pasma [-]	Natężenie I [mW/cm²]	ΔI [mW/ cm ²]	Sprawność η [%]	Δη [%]
Rezonans I	313,700	0,001	64,747	0,065	26,048	0,078	39,39	0,12
Rezonans II	340,440	0,001	40,180	0,043	45,820	0,078	40,28	0,07
Rezonans III	368,873	0,001	29,888	0,030	89,836	0,078	84,20	0,07

4.2.Część druga

Na podstawie napięcia oraz obliczenia mocy akustycznej (zasada obliczania jest taka sama jak w przypadku mocy akustycznej z punktu 3.1.) wyznaczono charakterystyki $P_a(P_e)$ oraz $P_a(U)$, które zostały przedstawione poniżej.

Tabela 4.2.1.: Wyniki pomiarów wraz z obliczoną mocą akustyczną oraz niepewnościami

Rezonans 1											
U [V]	Δ U [V]	P _e [mW]	$\Delta P_e[mW]$	m [mg]	Δ m [mg]	P _a [mW]	$\Delta P_a [mW]$				
16	0,3	790	0,045	37,4	0,1	332,79	0,89				
15	0,3	700	0,045	33,2	0,1	295,42	0,89				
14	0,3	600	0,045	29,9	0,1	266,05	0,89				

i			•		•	•	•	•
L	13	0,3	520	0,045	26,4	0,1	234,91	0,89
	12	0,3	480	0,045	23,1	0,1	205,55	0,89
	11	0,3	400	0,045	19,8	0,1	176,18	0,89
	10	0,3	350	0,045	17	0,1	151,27	0,89
	9	0,3	300	0,045	14,6	0,1	129,91	0,89
	8	0,3	250	0,045	12,2	0,1	108,56	0,89
	7	0,3	200	0,045	10,4	0,1	92,54	0,89
	6	0,3	180	0,045	8,7	0,1	77,41	0,89
	5	0,3	140	0,045	7,1	0,1	63,18	0,89
	4	0,3	110	0,045	5,3	0,1	47,16	0,89
	3	0,3	100	0,045	4,5	0,1	40,04	0,89
	2	0,3	90	0,045	3,6	0,1	32,03	0,89
	1	0,3	90	0,045	3,1	0,1	27,58	0,89
				Rezor		ı		ı
	U [V]	Δ U [V]	P _e [mW]	$\Delta P_{e}[mW]$	m [mg]	∆ m [mg]	P _a [mW]	$\Delta P_a [mW]$
	16	0,3	1410	0,045	67,7	0,1	602,40	0,89
-	15	0,3	1200	0,045	62,8	0,1	558,80	0,89
	14	0,3	1120	0,045	54,4	0,1	484,06	0,89
-	13	0,3	1010	0,045	48,5	0,1	431,56	0,89
-	12	0,3	890	0,045	41,7	0,1	371,05	0,89
-	11	0,3	730	0,045	35,8	0,1	318,55	0,89
-	10	0,3	610	0,045	30,7	0,1	273,17	0,89
-	9	0,3	510	0,045	25,3	0,1	225,12	0,89
-	8	0,3	420	0,045	21,8	0,1	193,98	0,89
-	7	0,3	350	0,045	17,1	0,1	152,16	0,89
-	6	0,3	280	0,045	13,7	0,1	121,90	0,89
-	5	0,3	200	0,045	10,6	0,1	94,32	0,89
-	4	0,3	150	0,045	7,9	0,1	70,30	0,89
-	3	0,3	120	0,045	5,9	0,1	52,50	0,89
-	2	0,3	100	0,045	4,3	0,1	38,26	0,89
-	1	0,3	90	0,045	3,4	0,1	30,25	0,89
-	T7 (X7)	A T. (3.7)	D (1371	Rezor		A 1 1	D (33/1	AD [337]
	U [V]	Δ U [V]	P _e [mW]	$\Delta P_{\rm e} [{\rm mW}]$	m [mg]	Δ m [mg]	P _a [mW]	$\Delta P_a [mW]$
}	16 15	0,3	1380 1200	0,045	130,1 113,4	0,1	1157,65 1009,05	0,89 0,89
	13	0,3	1040	0,045	98,8	0,1	879,14	0,89
}	13	0,3	900	0,045	87,3	0,1	776,81	0,89
-	12	0,3	800	0,045	75,4	0,1	670,92	0,89
}	11	0,3	690	0,045	63,9	0,1	568,59	0,89
}	10	0,3	580	0,045	53,9	0,1	479,61	0,89
}	9	0,3	500	0,045	46,3	0,1	411,98	0,89
	8	0,3	400	0,045	36,1	0,1	321,22	0,89
	7	0,3	300	0,045	28,5	0,1	253,60	0,89
ŀ	6	0,3	250	0,045	22,2	0,1	197,54	0,89
}	5	0,3	200	0,045	16,6	0,1	147,71	0,89
	4	0,3	150	0,045	11,9	0,1	105,89	0,89
L	7	0,5	150	0,043	11,3	0,1	105,03	0,09

3	0,3	110	0,045	8,4	0,1	74,74	0,89
2	0,3	100	0,045	5,6	0,1	49,83	0,89
1	0,3	90	0,045	4,2	0,1	37,37	0,89

Wykres 4.2.1.: Wykres zależności mocy akustycznej od mocy elektrycznej

Wykres 4.2.2.: Zależność mocy akustycznej od napięcia

5. Wnioski

Patrząc na wykres 4.1.1. widać, że wartości mocy akustycznej są wyższe niż wartości mocy elektrycznej dla zakresu badanych częstotliwości. Najwyższa wartość mocy elektrycznej odpowiada drugiej częstotliwości rezonansowej (340,440 kHz), natomiast najwyższa wartość mocy akustycznej odpowiada trzeciej częstotliwości rezonansowej (368,873 kHz).

Na podstawie wykresu 4.2.1. można zauważyć, że zależność mocy akustycznej od mocy elektrycznej jest liniowa.

Na podstawie wykresu 4.2.2. można stwierdzić, że zależności mocy akustycznej od napięcia jest rosnąca. Im wyższa częstotliwość rezonansowa, tym moc akustyczna osiąga wyższe wartości wraz ze wzrostem przyłożonego napięcia.

Z zestawienia parametrów (szerokość pasma, natężenie, sprawność) dla trzech częstotliwości rezonansowych zamieszczonych w tabeli 4.1.2. widać, że najwyższą sprawność uzyskano dla trzeciej częstotliwości rezonansowej (368,873 kHz), dla tej częstotliwości została uzyskana również najwyższa wartość natężenia dźwięku. Najszersze pasmo uzyskano dla pierwszej częstotliwości rezonansowej (313,700 kHz). Im szersze pasmo, tym impuls jest krótszy, co jest ważne w obrazowaniu podczas badania USG. Zatem badany przetwornik najlepiej pracowałby w okolicach częstotliwości pierwszego rezonansu, jeżeli miałby być zastosowany do obrazowania w USG.

Badany przetwornik w częstotliwościach rezonansowych nie generował wartości natężenia, które przekraczałyby 100 mW/cm². "Normy FDA ograniczają natężenie ultradźwięków do poziomu uzależnionego od rodzaju badania." ^[1] Przykładowo przy badaniu osób dorosłych w badaniach brzusznych i neurologicznych najwyższym dopuszczalnym natężeniem chwilowym jest wartość 180 mW/cm², w badaniach kończyn i naczyń obwodowych – 1500 mW/cm², natomiast przy badaniu dzieci jest to wartość 180 mW/cm². A więc natężenia generowane przez użyty w doświadczeniu przetwornik są niższe niż dopuszczalna norma w tych badaniach, czyli przetwornik mógłby zostać podczas tych badań wykorzystany, lecz im wyższe jest stosowane natężenie, tym czas badań powinien być krótszy.

^[1] http://www.ire.pw.edu.pl/~arturp/Dydaktyka/aus/paus_4.pdf

^{[2] -} T. Gudra "Podstawy zastosowań ultradźwięków. Ćwiczenia laboratoryjne.", Wrocław 1990