Fake News Detection

Classification

Michalina Hulak

Overview

The spread of fake news has become a major issue in today's world. False information spreads rapidly through social media and other online platforms, leading to widespread misinformation and confusion. Fake news can have serious implications, such as spreading misinformation, influencing public opinion, and even affecting election results. Therefore, it is important to have a reliable and accurate system for identifying fake news.

The aim

The aim of this project is to develop a machine learning model that can detect <u>fake news</u>.

To achieve this, I used a datasets of news articles, where each article is labeled as either real or fake. I explored various natural language processing (NLP) techniques to extract meaningful features from the text data, such as word embeddings, bag of words, SentenceTransformer.

Datasets

There are 3 datasets. All come from kaggle.com:

WELFake_Dataset

	title	text	label
0	LAW ENFORCEMENT ON HIGH ALERT Following Threat	No comment is expected from Barack Obama Membe	1
1	NaN	Did they post their votes for Hillary already?	1
2	UNBELIEVABLE! OBAMA'S ATTORNEY GENERAL SAYS MO	Now, most of the demonstrators gathered last	1
3	Bobby Jindal, raised Hindu, uses story of Chri	A dozen politically active pastors came here f	0
4	SATAN 2: Russia unvelis an image of its terrif	The RS-28 Sarmat missile, dubbed Satan 2, will	1

Fake & Real

	title	text	subject	date	label
0	With Trump win, Republican chairman Priebus em NEW YORK (Reuters) - Donald Trump's White	e Hous	politicsNews	November 9, 2016	1
1	Mattis signs orders to send additional troops WASHINGTON (Reuters) - U.S. Defense Sec	cretary	politicsNews	August 31, 2017	1
2	MEMBERS: EP #5 – DRIVE BY WIRE: 'Taxi to the U MEMBERS can join host Patrick Henningse	en and	Middle-east	April 5, 2017	0

Fake news net

	title	news_url	source_domain	tweet_num	real
0	Kandi Burruss Explodes Over Rape Accusation on	http://toofab.com/2017/05/08/real-housewives-a	toofab.com	42	1
1	People's Choice Awards 2018: The best red carp	https://www.today.com/style/see-people-s-choic	www.today.com	0	1
2	Sophia Bush Sends Sweet Birthday Message to 'O	https://www.etonline.com/news/220806_sophia_bu	www.etonline.com	63	1
3	Colombian singer Maluma sparks rumours of inap	https://www.dailymail.co.uk/news/article-33655	www.dailymail.co.uk	20	1
4	Gossip Girl 10 Years Later: How Upper East Sid	https://www.zerchoo.com/entertainment/gossip-g	www.zerchoo.com	38	1

The algorithm

5 roots * 3 models = 15models 5 * 3 models * 3 datasets = 45 models

more

complex

neural

network

models

Cross

validation

Results

1. For WELFake Dataset dataset

Models - 1st root

- cut stopwords: no
- tokenize: yes
- convert to stem: yes bag-of-words

Root	model	train accuracy	val accuracy	test accuracy
	Logistic Regression with Optuna	1	0.924	0.9279
	Cross validation	1	0.9655	0.9651
1st	More complex NN	0.9959	0.9705	0.9729
	Logistic Regression with Optuna	0.4286	0.5038	0.5012
	Cross validation	0.4625	0.5615	0.5065
2nd	More complex NN	0.8443	0.8423	0.8162
	Logistic Regression with Optuna	0.8478	0.8194	0.8175
	Cross validation	0.819	0.8501	0.8577
3rd	More complex NN	0.8911	0.8647	0.8717
	Logistic Regression with Optuna	0.8478	0.9268	0.9226
	Cross validation	0.9714	0.9572	0.9575
4th	More complex NN	0.9956	0.9617	0.9658
	Logistic Regression with Optuna	0.5	0.503	0.491
	Cross validation	0.7286	0.6513	0.7226
5th	More complex NN	0.741	0.7413	0.7421

Among the three models evaluated for each root model, the "More complex NN" consistently achieved the highest accuracy scores across all three metrics (train accuracy, validation accuracy, and test accuracy) in most cases. The 2nd and 5th root models had relatively lower overall accuracy scores across all models and metrics. Based on the provided results, it appears that the "More complex NN" model for 1st root consistently performs better than the other models, achieving higher accuracy scores on average.

Results

2. For Fake & Real dataset

Models - 1st root

- * cut stopwords: no
- * tokenize: yes
- * convert tó stem: yes
- bag-of-words

Root	model	train accuracy	val accuracy	test accuracy
	Logistic Regression with Optuna	1	0.9827	0.9789
_	Cross validation	1	0.9953	0.9961
1st	More complex NN	0.9993	0.9947	0.9958
	Logistic Regression with Optuna	0.8333	0.912	0.9054
	Cross validation	0.9857	0.9765	0.956
2nd	More complex NN	0.9797	0.9787	0.9851
	Logistic Regression with Optuna	0.6	0.5236	0.5215
	Cross validation	0.9714	0.9182	0.9161
3rd	More complex NN	0.99	0.988	0.9922
	Logistic Regression with Optuna	1	0.9767	0.9739
	Cross validation	1	0.9938	0.9959
4th	More complex NN	0.9992	0.9935	0.9942
	Logistic Regression with Optuna	0.8571	0.9329	0.934
	Cross validation	0.9418	0.9489	0.9493
5th	More complex NN	0.9751	0.969	0.9705

In most cases, the "More complex NN" model achieved the highest accuracy scores across all three metrics (train accuracy, validation accuracy, and test accuracy). It consistently outperformed the other models in terms of accuracy. The "Logistic Regression with Optuna" model performed well in some cases, but its accuracy scores were generally lower compared to the "More complex NN" model. The "Cross validation" model also showed competitive performance, but it was generally outperformed by the "More complex NN" model as well. The 3rd root model had relatively lower accuracy scores across all models and metrics. More complex NN for 1st and 4th root is chosen.

Results

3. For Fake news net dataset

	Root	model	train accuracy	val accuracy	test accuracy
		Logistic Regression with Optuna	0.6111	0.7531	0.74
		Cross validation	0.7485	0.7919	0.7966
	1st	More complex NN	0.9446	0.8783	0.8819
		Logistic Regression with Optuna	0.7222	0.7205	0.7147
		Cross validation	0.825	0.7184	0.7232
	2nd	More complex NN	0.8057	0.7989	0.8002
		Logistic Regression with Optuna	0.9444	0.7276	0.7172
		Cross validation	0.6564	0.7385	0.7423
S	3rd	More complex NN	0.8172	0.7757	0.7873
		Logistic Regression with Optuna	0.7222	0.7414	0.75
		Cross validation	0.9	0.7833	0.8115
	4th	More complex NN	0.8485	0.793	0.8919
		Logistic Regression with Optuna	0.5	0.5019	0.5021
		Cross validation	0.675	0.7245	0.7154
	5th	More complex NN	0.8101	0.8039	0.8085

Models - 4th root

* cut stopwords: yes* tokenize: yes

* convert tó stem: yes

bag-of-words

After analyzing the results of the different models, we can see that the most accurate model in terms of test accuracy is the 4th one, which uses Logistic Regression with Optuna and has a test accuracy of 0.75. The more complex neural network in this case did not perform as well as the logistic regression model. It is also worth noting that the 1st model with the most complex neural network achieved the highest training accuracy, but did not perform as well on the validation and test sets. Therefore, based on the given results, we would choose the 4th model with Logistic Regression as the best one.

Conclusions

- 1. For 1. WELFake_Dataset and 2. Fake & Real dataset, the same more complex NN model was chosen, which does not require removing stopwords in data preparation and uses a bag-of-words approach.
- 2. For the 3. Fake news net dataset, a logistic regression model with hyperparameters selected by Optuna was chosen. In this case, removing stopwords was beneficial, and bag-of-words was also used in preprocessing.
- 3. There is no one correct way to transform data and build a model that would be universal for every dataset. Each dataset should be treated separately as a unique problem.

