Math 470 Assignment 4

Arnold Jiadong Yu

February 2, 2018

6.3.0. Let $\{a_k\}$ and $\{b_k\}$ be real sequences. Decide which of the following statements are true and which are false. Prove the true ones and give counterexamples to the false ones.

a) Suppose that $0 < \alpha < \infty$. If $|a_k|^{\alpha/k} \to a_0$, where $a_0 < 1$, then $\sum_{k=1}^{\infty} a_k^{\alpha}$ is absolutely convergent.

proof: False. Suppose that $0 < \alpha < \infty$, for a real sequence $\{a_k\}$,

$$|a_k^{\alpha}| \le |a_k|^{\alpha}$$

Then

$$\limsup_{k \to \infty} |a_k^{\alpha}|^{1/k} = \limsup_{k \to \infty} |a_k|^{\alpha/k} = a_0 < 1$$

by 6.22(iii). Hence $\sum_{k=1}^{\infty} a_k^{\alpha}$ is absolutely convergent by Root Test.

b)If $\sum_{k=1}^{\infty} a_k$ is absolutely convergent and $a_k \downarrow 0$ as $k \to \infty$, then

$$\limsup_{k \to \infty} |a_k|^{1/k} < 1.$$

proof: False. Let $a_k = \frac{1}{k^2}$, then $\sum_{k=1}^{\infty} a_k$ is absolutely convergent and $a_k \downarrow 0$ as $k \to \infty$. Suppose $\lim_{k \to \infty} |\frac{1}{k^2}|^{1/k} = \lim_{k \to \infty} |k^{-2/k}| = a$ for large k. Then

$$loga = log \lim_{k \to \infty} |k^{-2/k}| = \lim_{k \to \infty} log k^{-2/k} = \lim_{k \to \infty} \frac{-2log k}{k}$$

by L'Hopital's Rule, loga = 0 implies a = 1. Thus by 6.22(iii)

$$\limsup_{k \to \infty} \left| \frac{1}{k^2} \right|^{1/k} = 1.$$

c) If $a_k \leq b_k$ for all $k \in \mathbb{N}$ and $\sum_{k=1}^{\infty} b_k$ is absolutely convergent, then $\sum_{k=1}^{\infty} a_k$ converges.

proof: False. Let $a_k = -2$ and $b_k = \frac{1}{k^2}$ for all $k \in \mathbb{N}$, then $\sum_{k=1}^{\infty} b_k$ is absolutely convergent, but $\sum_{k=1}^{\infty} a_k$ diverges.

d) If $\sum_{k=1}^{\infty} a_k$ is absolutely convergent, then $\sum_{k=1}^{\infty} a_k^2$ is absolutely convergent.

proof: True. Suppose $\sum_{k=1}^{\infty} a_k$ is absolutely convergent, then $a_k \to 0$ as $k \to \infty$. This implies $|a_k| \le 1$ for large k. Then $|a_k|^2 \le |a_k|$. Hence $\sum_{k=1}^{\infty} a_k^2$ is absolutely convergent by Comparison Test.

6.3.1. Prove that each of the following series converges.

a)
$$\sum_{k=1}^{\infty} \frac{1}{k!}$$

proof: Let $k \ge 1$, then $k! > k^2$ for large k. This implies $\frac{1}{k!} < \frac{1}{k^2}$. $\sum_{k=1}^{\infty} \frac{1}{k^2}$ converges by p-series Test. Hence by Comparison Test $\sum_{k=1}^{\infty} \frac{1}{k!}$ converges.

b)
$$\sum_{k=1}^{\infty} \frac{1}{k^k}$$

proof: Let $k \geq 1$, then $\limsup_{k \to \infty} |\frac{1}{k^k}|^{1/k} = \limsup_{k \to \infty} |\frac{1}{k}|$, since $\frac{1}{k} \to 0$ as $k \to \infty$. By 6.22(iii), $\limsup_{k \to \infty} |\frac{1}{k^k}|^{1/k} = 0$. Hence by Root Test $\sum_{k=1}^{\infty} \frac{1}{k^k}$ is absolute convergent.

c)
$$\sum_{k=1}^{\infty} \frac{\pi^k}{k!}$$

proof: Let $k \geq 1$, then

$$\limsup_{k \to \infty} \frac{\left|\frac{\pi^{k+1!}}{(k+1)!}\right|}{\left|\frac{\pi^k}{k!}\right|} = \limsup_{k \to \infty} \left|\frac{\pi}{k+1}\right|$$

Since $\frac{\pi}{k+1} \to 0$ as $k \to \infty$, then

$$\limsup_{k \to \infty} |\frac{\pi}{k+1}| = 0$$

by 6.22(iii). Hence by Ratio Test, $\sum_{k=1}^{\infty} \frac{\pi^k}{k!}$ is absolutely convergent.

$$d)\sum_{k=1}^{\infty} \left(\frac{k}{k+1}\right)^{k^2}$$

proof: Let $k \geq 1$, then

$$\limsup_{k \to \infty} |(\frac{k}{k+1})^{k^2}|^{1/k} = \limsup_{k \to \infty} \frac{k^{-k}}{k+1} = \limsup_{k \to \infty} (1 - \frac{1}{k+1})^k.$$

Since $0 < 1 - \frac{1}{k+1} < 0$ and increasing, then $(1 - \frac{1}{k+1})^k$ is decreasing and bounded below by 0, then limit of sequence $(1 - \frac{1}{k+1})^k$ exists. Suppose $\lim_{k \to \infty} (1 - \frac{1}{k+1})^k = a \in \mathbb{R}$, then

$$loga = log \lim_{k \to \infty} (1 - \frac{1}{k+1})^k = \lim_{k \to \infty} log(\frac{k}{k+1})^k = \lim_{k \to \infty} klog \frac{k}{k+1} = \lim_{k \to \infty} \frac{log \frac{k}{k+1}}{\frac{1}{k}}$$

by L'Hopital's Rule,

$$\lim_{k \to \infty} \frac{\log \frac{k}{k+1}}{\frac{1}{k}} = \lim_{k \to \infty} \frac{(\log \frac{k}{k+1})'}{(\frac{1}{k})'} = \lim_{k \to \infty} \frac{\frac{1}{k} - \frac{1}{k+1}}{-\frac{1}{k^2}} = \lim_{k \to \infty} \frac{-k^2}{k^2 + k} = -1$$

then log a = -1 implies $a = \frac{1}{e}$, by 6.22(iii)

$$\limsup_{k \to \infty} |(\frac{k}{k+1})^{k^2}|^{1/k} = \frac{1}{e} < 1$$

Hence by Root Test, $\sum_{k=1}^{\infty} (\frac{k}{k+1})^{k^2}$ is absolutely convergent.

6.3.2. Decide, using results covered so far in this chapter, which of the following series converge and which diverge.

a)
$$\sum_{k=1}^{\infty} \frac{k^3}{(k+1)^{logk}}$$

proof: Convergent. Let $k \geq 1$, then log k > 5 for large k. This implies $(k+1)^{log k} > (k+1)^5 \Rightarrow \frac{1}{(k+1)^5} > \frac{1}{(k+1)^{log k}} \Rightarrow \frac{k^3}{(k+1)^{log k}} < \frac{k^3}{(k+1)^5} < \frac{k^3}{(k)^5} = \frac{1}{k^2}$ for large k. Hence $\sum_{k=1}^{\infty} \frac{k^3}{(k+1)^{log k}}$ converges by Comparison Test.

b)
$$\sum_{k=1}^{\infty} \frac{k^{100}}{e^k}$$

proof: Convergent. Let $k \geq 1$, then

$$\limsup_{k \to \infty} \frac{\left| \frac{(k+1)^{100}}{e^{k+1}} \right|}{\left| \frac{k^{100}}{e^k} \right|} = \limsup_{k \to \infty} \left(\frac{k+1}{k} \right)^{100} \frac{1}{e}$$

since $(\frac{k+1}{k})^{100} \frac{1}{e} \to \frac{1}{e}$ as $k \to \infty$. Then by 6.22(iii)

$$\limsup_{k \to \infty} (\frac{k+1}{k})^{100} \frac{1}{e} = \frac{1}{e} < 1$$

Hence by Ratio Test, $\sum_{k=1}^{\infty} \frac{k^{100}}{e^k}$ is absolutely convergent.

c)
$$\sum_{k=1}^{\infty} \left(\frac{k+1}{2k+3}\right)^k$$

proof: Convergent. Let $k \geq 1$, then

$$\limsup_{k \to \infty} |(\frac{k+1}{2k+3})^k|^{1/k} = \limsup_{k \to \infty} \frac{k+1}{2k+3}$$

since $\frac{k+1}{2k+3} \to \frac{1}{2}$ as $k \to \infty$, then by 6.22(iii)

$$\limsup_{k \to \infty} \frac{k+1}{2k+3} = \frac{1}{2} < 1$$

Hence by Root Test, $\sum_{k=1}^{\infty} (\frac{k+1}{2k+3})^k$ is absolutely convergent.

$$d)\sum_{k=1}^{\infty} \frac{1 \cdot 3 \cdots (2k-1)}{(2k)!}$$

proof: Convergent. Let $k \geq 1$ and $a_k = \frac{1 \cdot 3 \cdots (2k-1)}{(2k)!}$ then

$$\limsup_{k \to \infty} \frac{|a_{k+1}|}{|a_k|} = \limsup_{k \to \infty} \frac{\frac{1 \cdot 3 \cdots (2k+1)}{(2k+2)!}}{\frac{1 \cdot 3 \cdots (2k-1)}{(2k)!}} = \limsup_{k \to \infty} \frac{(2k+1)}{(2k+1)(2k+2)} = \limsup_{k \to \infty} \frac{1}{2k+2}$$

since $\frac{1}{k+2} \to 0$ as $k \to \infty$. By 6.22(iii)

$$\limsup_{k \to \infty} \frac{1}{2k+2} = \frac{1}{2} < 1$$

Hence by Ratio Test $\sum_{k=1}^{\infty} \frac{1 \cdot 3 \cdots (2k-1)}{(2k)!}$ is absolutely convergent.

$$e)\sum_{k=1}^{\infty} (\frac{(k-1)!}{k!+1})^k$$

proof: Convergent. Let $k \geq 1$ and $a_k = (\frac{(k-1)!}{k!+1})^k$. Then

$$\limsup_{k \to \infty} |(\frac{(k-1)!}{k!+1})^k|^{1/k} = \limsup_{k \to \infty} \frac{(k-1)!}{k!+1}$$

Since $\frac{(k-1)!}{k!+1} < \frac{(k-1)!}{k!} = \frac{1}{k} \to 0$ as $k \to \infty$. By 6.22(iii)

$$\limsup_{k \to \infty} \frac{(k-1)!}{k!+1} = 0 < 1$$

Hence $\sum_{k=1}^{\infty} (\frac{(k-1)!}{k!+1})^k$ is absolutely convergent by Root Test.

$$f)\sum_{k=1}^{\infty} \left(\frac{3+(-1)^k}{5}\right)^k$$

proof: Convergent. Let $k \ge 1$ and $a_k = (\frac{3+(-1)^k}{5})^k$. Then

$$\limsup_{k \to \infty} |a_k|^{1/k} = \limsup_{k \to \infty} \frac{3 + (-1)^k}{5} = \lim_{k \to \infty} (\sup \frac{3 + (-1)^k}{5}) = \lim_{k \to \infty} \frac{4}{5} = \frac{4}{5} < 1$$

Hence $\sum_{k=1}^{\infty} (\frac{3+(-1)^k}{5})^k$ is absolutely convergent by Root Test.

$$g)\sum_{k=1}^{\infty} \frac{(3-(-1)^k)^k}{\pi^k}$$

proof: Convergent. Let $k \geq 1$ and $a_k = \frac{(3-(-1)^k)^k}{\pi^k}$. Then

$$\begin{split} \limsup_{k \to \infty} |a_k| &= \limsup_{k \to \infty} |\frac{(3 - (-1)^k)^k}{\pi^k}|^{1/k} = \limsup_{k \to \infty} \frac{3 - (-1)^k}{\pi} = \lim_{k \to \infty} (\sup \frac{3 - (-1)^k}{\pi}) \\ &= \lim_{k \to \infty} \frac{4}{5} = \frac{4}{5} < 1 \end{split}$$

Hence $\sum_{k=1}^{\infty} \frac{(3-(-1)^k)^k}{\pi^k}$ is absolutely convergent by Root Test.