# Discrete Structures for Computer Science

William Garrison

bill@cs.pitt.edu 6311 Sennott Square

Lecture #9: Set Identities and Functions



### Today's Topics

#### Set identities

- Methods of proof
- Relationships to logical equivalences

#### **Functions**

- Important definitions
- Relationships to sets, relations
- Specific functions of particular importance

## Set identities help us manipulate complex expressions

Recall from last lecture that set operations bear a striking resemblance to logical operations

- Disjunction (∨) and set union (∪)
- Conjunction ( $\wedge$ ) and set intersection ( $\cap$ )
- Negation (¬) and complement (¬)

Just as logical equivalences helped us manipulate logical expressions, set identities help us simplify and understand complex set definitions.



### Some important set identities

| Identity | Name                |
|----------|---------------------|
|          | Identity laws       |
|          | Domination laws     |
|          | Idempotent laws     |
|          | Complementation law |
|          | Commutative laws    |
|          | Associative laws    |

We don't have commutative or associative laws for set difference!



### Some important set identities

| Identity | Name              |
|----------|-------------------|
|          | Distributive laws |
|          | DeMorgan's laws   |
|          | Absorption laws   |
|          | Complement laws   |

#### There are many ways to prove set identities

#### Today, we'll discuss four common methods:

- 1. Membership tables
- Logical argument
- 3. Using set builder notation
- 4. Applying other known set identities

## Membership tables allow us to write proofs like we did using truth tables!

The membership table for an expression has columns for sub-expressions and rows to indicate the ways in which an arbitrary element may or may not be included.

**Example:** A membership table for set intersection

| Α | В | A∩B |
|---|---|-----|
| 1 | 1 | 1   |
| 1 | 0 | 0   |
| 0 | 1 | 0   |
| 0 | 0 | 0   |

An element is in  $A \cap B$  iff it is in both A and B

### Prove that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$



| Α | В | С | B∪C | A ∩ (B ∪ C) | $A \cap B$ | A ∩ C | $(A \cap B) \cup (A \cap C)$ |
|---|---|---|-----|-------------|------------|-------|------------------------------|
| 1 | 1 | 1 |     |             |            |       |                              |
| 1 | 1 | 0 |     |             |            |       |                              |
| 1 | 0 | 1 |     |             |            |       |                              |
| 1 | 0 | 0 |     |             |            |       |                              |
| 0 | 1 | 1 |     |             |            |       |                              |
| 0 | 1 | 0 |     |             |            |       |                              |
| 0 | 0 | 1 |     |             |            |       |                              |
| 0 | 0 | 0 |     |             |            |       |                              |
|   |   |   |     |             |            |       |                              |

Since the appropriate columns of the membership table are the same, we can conclude that  $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ .  $\square$ 

## Sometimes, it's easier to make a logical argument about a set identity

Recall: A = B iff  $A \subseteq B$  and  $B \subseteq A$ 

As a result, we can prove a set identity by arguing that each side of the equality is a subset of the other.

**Example:** Prove that  $\overline{A \cap B} = \overline{A} \cup \overline{B}$ 

- 1. First prove that  $\overline{A \cap B} \subseteq \overline{A} \cup \overline{B}$
- 2. Then prove that  $\overline{A} \cup \overline{B} \subseteq \overline{A \cap B}$

Let's see how this is done...



### Prove that $A \cap B = \overline{A} \cup \overline{B}$



### Prove that $A \cap B = \overline{A} \cup \overline{B}$

Since we have shown  $\overline{A \cap B} \subseteq \overline{A} \cup \overline{B}$  and  $\overline{A} \cup \overline{B} \subseteq \overline{A \cap B}$ , we have shown that  $\overline{A \cap B} = \overline{A} \cup \overline{B}$ 

## THE TOTAL PROPERTY OF THE PARTY OF THE PARTY

#### Note: Differences between ⊆ and ∈

Recall that  $A \subseteq B$  if A is a subset of B, whereas  $a \in A$  means that a is an element of A.

#### **Examples:**

- Is  $\{1\} \in \{1, 2, 3\}$ ?
- Is  $\{1\} \subseteq \{1, 2, 3\}$ ?
- Is  $1 \in \{1, 2, 3\}$ ?
- Is  $\{2, 3\} \subseteq \{1, \{2, 3\}, \{4, 5\}\}$ ?
- Is  $\{2, 3\} \in \{1, \{2, 3\}, \{4, 5\}\}$ ?
- Is  $\emptyset \in \{1, 2, 3\}$ ?
- Is  $\emptyset \subseteq \{1, 2, 3\}$ ?

### Be careful when computing power sets

**Question:** What is P({1, 2, {1, 2}})?

Note: The set {1, 2, {1, 2}} has three elements

- 1
- 2
- {1, 2}

So, we need all combinations of those elements:

- Ø
- {1}
- {2}
- {{1,2}}
- {1, 2}
- {1, {1,2}}
- {2, {1,2}}
- {1, 2, {1, 2}}

This power set has  $2^3 = 8$  elements.

## We can use set builder notation and logical definition to make very precise proofs

**Example:** Prove that  $\overline{A \cap B} = \overline{A} \cup \overline{B}$ 

#### **Proof:**

| 1. A      | $\cap B = \{x \mid x \notin A \cap B\}$                   | Def'n of complement  |
|-----------|-----------------------------------------------------------|----------------------|
| 2.        | $= \{x \mid \neg(x \in (A \cap B))\}\$                    | Def'n of ∉           |
| 3.        | $= \{x \mid \neg(x \in A \land x \in B)\}\$               | Def'n of ∩           |
| 4.        | $= \{x \mid \neg(x \in A) \lor \neg(x \in B)\}$           | DeMorgan's law       |
| <b>5.</b> | $= \{x \mid x \notin A \lor x \notin B\}$                 | Def'n of ∉           |
| 6.        | $= \{x \mid x \in \overline{A} \lor x \in \overline{B}\}$ | Def'n of complement  |
| 7.        | $=\{x\mid x\in \overline{A}\cup \overline{B}\}$           | Def'n of ∪           |
| 8.        | $= \overline{A} \cup \overline{B}$                        | Set builder notation |

## We can also construct proofs by repeatedly applying known set identities

**Example:** Prove that 
$$\overline{A \cup (B \cap C)} = (\overline{C} \cup \overline{B}) \cap \overline{A}$$

#### **Proof:**

1. 
$$\overline{A \cup (B \cap C)} = \overline{A} \cap (\overline{B} \cap C)$$
 DeMorgan's law
2.  $= \overline{A} \cap (\overline{B} \cup \overline{C})$  DeMorgan's law
3.  $= (\overline{B} \cup \overline{C}) \cap \overline{A}$  Commutative law
4.  $= (\overline{C} \cup \overline{B}) \cap \overline{A}$  Commutative law

Note how similar this process is to that of proving logical equivalences using known logical equivalences.



#### In-class exercises

**Problem 1:** Prove DeMorgan's law for complement over intersection using a membership table.

**Problem 2:** Prove the complementation law using set builder notation.

## Sets give us a way to formalize the concept of a function

**Definition:** Let A and B be nonempty sets. A function, f, is an assignment of exactly one element of set B to each element of set A.

Note: We write  $f : A \rightarrow B$  to denote that f is a function from A to B

Note: We say that f(a) = b if the element  $a \in A$  is mapped to the unique element  $b \in B$  by the function f(a) = b



### Functions can be defined in a number of ways



#### 1. Explicitly

- $f: Z \rightarrow Z$
- $f(x) = x^2 + 2x + 1$

#### 2. Using a programming language

• int min(int x, int y) =  $\{x < y ? \text{ return } x : \text{return } y; \}$ 

#### 3. Using a relation

- Let S = {Anna, Brian, Christine}
- Let G = {A, B, C, D, F}



### More terminology

The domain of a function is the set that the function maps from, while the codomain is the set that is mapped to

If f(a) = b, b is called the image of a, and a is called the preimage of b

The range of a function  $f : A \rightarrow B$  is the set of all images of elements of A



## What are the domain, codomain, and range of the following functions?

- 1.  $f : Z \to Z, f(x) = x^3$ 
  - Domain:
  - Codomain:
  - Range:
- 2.  $g : R \to R, g(x) = x 2$ 
  - Domain:
  - Codomain:
  - Range:
- 3. int foo(int x, int y) = { return (x\*y)%2; }
  - Domain:
  - Codomain:
  - Range:

## A one-to-one function never assigns the same image to two different elements

**Definition:** A function  $f : A \rightarrow B$  is one-to-one, or injective, iff  $\forall x,y \in A [(f(x) = f(y)) \rightarrow (x = y)]$ 

Are the following functions injections?

- $f : R \to R, f(x) = x + 1$
- $f : Z \to Z, f(x) = x^2$
- f:  $\mathbb{R}^+ \to \mathbb{R}^+$ ,  $f(x) = \int x$
- $f: S \rightarrow G$



## An onto function "uses" every element of its codomain

**Definition:** We call a function  $f : A \rightarrow B$  onto, or surjective, iff for every element  $b \in B$ , there is some element  $a \in A$  such that f(a) = b.

Think about an onto function as "covering" the entirety of its codomain.

The following function is a surjection:



### Are the following functions one-to-one, onto, both, or neither?





 $f:A\to B$ 

#### One-to-one and onto Neither!

(Aside: Functions that are both one-to-one and onto are called *bijections*)





## TANDER OF THE PARTY OF THE PART

### Bijections have inverses

**Definition:** If  $f: A \to B$  is a bijection, the inverse of f is the function  $f^{-1}: B \to A$  that assigns to each  $b \in B$  the unique value  $a \in A$  such that f(a) = b. That is,  $f^{-1}(b) = a$  iff f(a) = b.

#### **Graphically:**



Note: Only a bijection can have an inverse. (Why?)

### Do the following functions have inverses?



1. 
$$f : \mathbf{R} \to \mathbf{R}, f(x) = x^2$$

2. 
$$g: Z \to Z, g(x) = x + 1$$

3.  $h:A\rightarrow B$ 





#### Functions can be composed with one another

**Definition:** Given two functions  $g : A \rightarrow B$  and  $f : B \rightarrow C$ , the composition of f and g, denoted  $f \circ g$ , is defined as  $(f \circ g)(x) = f(g(x))$ .



Note: For  $f \circ g$  to exist, the codomain of g must be a subset of the domain of f.

## Can the following functions be composed? If so, what is their composition?

Let 
$$f : A \rightarrow A$$
 such that  $f(a) = b$ ,  $f(b) = c$ ,  $f(c) = a$   $g : B \rightarrow A$  such that  $g(1) = b$ ,  $g(4) = a$ 

- 1.  $(f \circ g)(x)$ ?
- 2.  $(g \circ f)(x)$ ?

Let 
$$f: \mathbb{Z} \to \mathbb{Z}$$
,  $f(x) = 2x + 1$   
  $g: \mathbb{Z} \to \mathbb{Z}$ ,  $g(x) = x^2$ 

- 1.  $(f \circ g)(x)$ ?
- 2.  $(g \circ f)(x)$ ?

Note: There is not a guarantee that  $(f \circ g)(x) = (g \circ f)(x)$ .



### Important functions

**Definition:** The floor function maps a real number x to the largest integer y that is not greater than x. The floor of x is denoted  $\lfloor x \rfloor$ .

**Definition:** The ceiling function maps a real number x to the smallest integer y that is not less than x. The ceiling of x is denoted [x].

#### **Examples:**

$$|1.2| = 1$$

$$|7.0| = 7$$

$$|-42.24| = -43$$

$$[1.2] = 2$$

$$[7.0] = 7$$

$$[-42.24] = -42$$

## We actually use floor and ceiling quite a bit in computer science...

**Example:** A byte, which holds 8 bits, is typically the smallest amount of memory that can be allocated on most systems. How many bytes are needed to store 123 bits of data?

**Answer:** We need [123/8] = [15.375] = 16 bytes

**Example:** How many 1400 byte packets can be transmitted over a 14.4 kbps modem in one minute?

Answer: A 14.4 kbps modem can transmit 14,400\*60 = 864,000 bits per minute. Therefore, we can transmit [864,000/(1400\*8)] = [77.1428571] = 77 packets.

## SET THE CO.

#### In-class exercises

### **Problem 3:** Find the domain and range of each of the following functions.

- a. The function that determines the number of zeros in some bit string
- b. The function that maps an English word to its two rightmost letters
- c. The function that assigns to an integer the sum of its individual digits

#### **Problem 4:** Compute the following

- a. [435.5]
- b. [89/90]
- c. [5.5 + [1.22]]



### Final thoughts

- Set identities are useful tools!
- We can prove set identities in a number of (equivalent) ways
- Sets are the basis of functions, which are used throughout computer science and mathematics
- Next time:
  - Summations (Section 2.4)