INFO-F-405: Introduction to cryptography

Introduction to modular arithmetic

Theoretical background

Euler φ function

The Euler φ function gives the number of integers between 0 and n-1 coprime to n. For example, $\varphi(20)=8$ because only the 8 integers $\{1,3,7,9,11,13,17,19\}$ are coprime to 20.

A direct consequence of this theorem is that for any p, a prime number, $\varphi(p) = p-1$. More generally, $\varphi(p^m) = p^m - p^{m-1} = (p-1) \cdot p^{m-1}$.

Let us also note this property of φ that if gcd(m, n) = 1, then $\varphi(m \cdot n) = \varphi(m) \cdot \varphi(n)$.

As a result, it is easy to compute $\varphi(n)$ when we know the prime factors factorization of n. Indeed, if $n = p_1^{m_1} \cdot p_2^{m_2} \cdots p_n^{m_n}$, with all the p_i prime numbers, we have:

$$\varphi(n) = (p_1 - 1)p_1^{m_1 - 1}(p_2 - 1)p_2^{m_2 - 1} \cdots (p_v - 1)p_v^{m_v - 1}$$
(1)

For example $20 = 2^2 \cdot 5$ and $\varphi(20) = (2-1) \cdot 2 \cdot (5-1) = 8$

Additive structure of multiplication

For modulus n of the form p^k , $2p^k$ where p is a prime and k > 0, there exists an integer g (called the generator) such that the set of powers of g, $\{g^0, g^1, g^2, \cdots, g^{\varphi(n)-1}\}$ is the set of all integers coprime to n.

For example, if n = 10, we have g = 3 and $\{1, 3, 9, 27\} \equiv \{1, 3, 7, 9\}$.

Furthermore, $g^{\varphi(n)} \equiv 1 \equiv g^0$, meaning that the exponents of g can be reduced mod $\varphi(n)$. If we multiply two integers $a = g^{\alpha}$ and $b = g^{\beta} \mod n$, their exponents add $\mod \varphi(n) : ab = g^{\alpha}g^{\beta} = g^{(\alpha+\beta) \mod \varphi(n)}$.

For example, modulo 10, $7 \equiv 3^3$ and $9 \equiv 3^2$, hence $7 \cdot 9 = 3^{3+2} \equiv 3^1 = 3$ because $\varphi(10) = 4$.

To compute the multiplicative inverse of an integer $a = g^{\alpha} \mod n$, one can simply take the additive inverse of the exponent mod $\varphi(n)$. Hence $a^{-1} \equiv g^{(-\alpha) \mod \varphi(n)}$

Modular exponentiation

Modular exponentiation is the computation of $a^b \mod n$. Working modulo n, if we have a generator g and $a \equiv g^{\alpha}$, to compute a^b , one can simply compute $(g^{\alpha})^b = g^{\alpha \cdot b \mod \varphi(n)}$.

In the same way a multiplication mod n is equivalent to an addition mod $\varphi(n)$ of the exponents, the modular exponentiation mod n is equivalent to a multiplication mod $\varphi(n)$ of the exponents.

Theorem(Euler) For all a coprime with n, it holds that:

$$a^{\varphi(n)} \equiv 1 \mod n \tag{2}$$

Multiplicative group of integers modulo *n*

So far, we have worked with \mathbb{Z}_n with either addition or multiplication. Let us remember that a group requires four properties:

- closure
- · associativity
- ∃ neutral (identity) element
- all elements of the group have an inverse

Working with the multiplicative group \mathbb{Z}_8^* for instance, we would find that **not** all values in \mathbb{Z}_8 have an inverse, as shown in the below table.

	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7
2	0	2	4	6	0	2	4	6
3	0	3	6	1	4	7	2	5 4
4	0	4	0	4	0	4	0	4
5	0	5	2	7	4	1	6	3
6	0	6	4	2	0	6	4	2
7	0	7	6	5	4	3	2	1

We deduce from this table that the elements of \mathbb{Z}_8^* are $\{1,3,5,7\}$ because they have an inverse. More generally, any value a in \mathbb{Z}_n coprime to n is in \mathbb{Z}_n^* .

Group order and element order

The order of a group refers to the cardinality of the group, i.e. the number of elements. The order of an element a is the smallest positive integer m such that $a^m = n$ where n is the neutral (or identity) element.

Exercises

Exercise 1

Compute as fast as possible, without writing 78130*8012*700451*19119 mod 20.

Exercise 2

Compute by exhaustive search 23^{-1} in \mathbb{Z}_{57} (the answer is a single digit number). Using this result, solve $23x + 52 \equiv 5$ in \mathbb{Z}_{57} . Could you solve an equation of the form $19x + a \equiv b$ using the same method?

Exercise 3

Show that n-1 is self inverse in \mathbb{Z}_n .

Exercise 4

Show that for n = pq, $\varphi(n) = (p-1)(q-1)$ for p, q two prime numbers.

Exercise 5

Compute $2^i \mod 25$ until cycling back to 1(it might take a while but less than 25 steps). Then:

- Deduce the value of $\varphi(25)$.
- Compute 18 * 22 mod 25 without doing any multiplication using the previous results.
- Solve $16x \equiv 1 \mod 25$.
- Compute 17²⁰²⁴ mod 25.

Ex. 6 — Asymmetric Cryptography - Euler $\varphi(n)$ Function

1. Compute the Euler $\varphi(n)$ function for all $n \in \{2, 3, 4, 5, 36\}$.

2. Give the results of $2^{32} \mod 31$, $3^{16} \mod 32$ and $8^{14} \mod 25$ without performing the actual exponentiations but by using only the Euler Theorem.

Ex. 7 — Cyclic Groups and Generators

Working with the multiplicative group \mathbb{Z}_p^* for p=19 ...

- 1. List all the elements of \mathbb{Z}_{19}^{\ast} and determine the order of the group.
- 2. Determine the order ord(a) of each element $a \in \mathbb{Z}_{19}^*$. Use the following two facts to simplify the amount of calculations:
 - Fact (1) If $a \in \mathbb{Z}_p^*$ then ord(a) divides the order of \mathbb{Z}_p^* .
 - Fact (2) $\operatorname{ord}(a^k)$ is equal to $\operatorname{ord}(a)/\operatorname{gcd}(\operatorname{ord}(a),k)$.
- 3. List all the generators of \mathbb{Z}_{19}^* .