Graph Algorithms

Graphs

- A graph G = (V, E)
 - V = set of vertices
 - \blacksquare E = set of edges = subset of V × V
 - Thus $|E| = O(|V|^2)$

Graph Variations

- Variations:
 - A connected graph has a path from every vertex to every other
 - In an *undirected graph:*
 - \circ Edge (u,v) = edge (v,u)
 - In a *directed* graph:
 - \circ Edge (u,v) goes from vertex u to vertex v, notated u \rightarrow v

Graph Variations

- More variations:
 - A *weighted graph* associates weights with either the edges or the vertices
 - o E.g., a road map: edges might be weighted w/ distance

Graphs

- We will typically express running times in terms of |E| and |V|
 - If $|E| \approx |V|^2$ the graph is *dense*
 - If $|E| \approx |V|$ the graph is *sparse*
- If you know you are dealing with dense or sparse graphs, different data structures may make sense

Representing Graphs

- Assume $V = \{1, 2, ..., n\}$
- An *adjacency matrix* represents the graph as a $n \times n$ matrix A:
 - A[i, j] = 1 if edge $(i, j) \in E$ (or weight of edge) = 0 if edge $(i, j) \notin E$

• Example:

A	1	2	3	4
1				
2				
3			??	
4				

• Example:

A	1	2	3	4
1	0	1	1	0
2	0	0	1	0
3	0	0	0	0
4	0	0	1	0

- How much storage does the adjacency matrix require?
- A: $O(V^2)$
- What is the minimum amount of storage needed by an adjacency matrix representation of an undirected graph with 4 vertices?
- A: 6 bits
 - Undirected graph → matrix is symmetric
 - No self-loops → don't need diagonal

- The adjacency matrix is a dense representation
 - Usually too much storage for large graphs
 - But can be very efficient for small graphs
- Most large interesting graphs are sparse
 - For this reason the *adjacency list* is often a more appropriate respresentation

Graphs: Adjacency List

- Adjacency list: for each vertex $v \in V$, store a list of vertices adjacent to v
- Example:
 - \blacksquare Adj[1] = {2,3}
 - $Adj[2] = {3}$
 - $Adj[3] = \{ \}$
 - \blacksquare Adj[4] = {3}
- Variation: can also keep a list of edges coming *into* vertex

Graphs: Adjacency List

- How much storage is required?
 - The *degree* of a vertex v = # incident edges
 - Directed graphs have in-degree, out-degree
 - For directed graphs, # of items in adjacency lists is Σ out-degree(v) = |E| takes $\Theta(V + E)$ storage
 - For undirected graphs, # items in adj lists is Σ degree(v) = 2 |E| also $\Theta(V + E)$ storage
- So: Adjacency lists take O(V+E) storage

Graph Searching

- Given: a graph G = (V, E), directed or undirected
- Goal: methodically explore every vertex and every edge
- Ultimately: build a tree on the graph
 - Pick a vertex as the root
 - Choose certain edges to produce a tree
 - Note: might also build a *forest* if graph is not connected

Traverse of Graph

- Given graph G = (V, E)
- Given a source node $s \in V$
 - Visit all nodes in *V* reachable from *s*

- Need an efficient strategy to achieve that
 - BFS: Breadth-first search

Intuition

- Starting from source node s,
 - Spread a wavefront to visit other nodes
- Example
 - Imagine given a tree
 - What if a graph?

Intuition cont.

- $\delta(u, v)$:
 - Distance (smallest # edges) from node u to v in G
- Goal:
 - Start from source s, first visit those nodes of distance
 1 from s, then 2, and so on.
 - More formally: BFS
 - Input: Graph G=(V, E) and source node s ∈ V
 - Output: δ (s, u) for every $u \in V$
 - δ (s,u) = ∞ if u is unreachable from s
 - Assume adjacency list representation for G

Breadth-First Search

- "Explore" a graph, turning it into a tree
 - One vertex at a time
 - Expand frontier of explored vertices across the breadth of the frontier
- Builds a tree over the graph
 - Pick a *source vertex* to be the root
 - Find ("discover") its children, then their children, etc.

Breadth-First Search

- Will associate vertex "colors" to guide the algorithm
 - White vertices have not been discovered
 - All vertices start out white
 - Grey vertices are discovered but not fully explored
 - They may be adjacent to white vertices
 - Black vertices are discovered and fully explored
 - They are adjacent only to black and gray vertices
- Explore vertices by scanning adjacency list of grey vertices

Breadth-First Search

```
BFS(G, s) {
    initialize vertices:
    Q = \{s\}; // Q is a queue; initialize to s
    while (Q not empty) {
        u = RemoveTop(Q);
        for each v \in u->adj {
             if (v->color == WHITE)
                 v->color = GREY;
                 v->d = u->d + 1; What does v->d represent?
                 v->p = u;
                                      What does v->p represent?
                 Enqueue(Q, v);
        }
        u \rightarrow color = BLACK;
```


Q: s

Q: w r

Q: x v u

Q: v u y

Q: *u y*

Q: y

Q: Ø

BFS: The Code Again

```
BFS(G, s) {
       initialize vertices; \longleftarrow Touch every vertex: O(V)
      Q = \{s\};
       while (Q not empty) {
           u = RemoveTop(Q); \leftarrow u = every vertex, but only once
           for each v \in u-adj \{
               if (v->color == WHITE)
So v = every \ vertex \ v->color = GREY;
                v->d = u->d + 1;
that appears in
some other vert's v->p = u;
                  Enqueue (Q, v);
adjacency list
                                    What will be the running time?
           u \rightarrow color = BLACK;
                                    Total running time: O(V+E)
```

Breadth-First Search: Properties

- BFS calculates the *shortest-path distance* to the source node
 - Shortest-path distance $\delta(s,v)$ = minimum number of edges from s to v, or ∞ if v not reachable from s

- BFS builds *breadth-first tree*, in which paths to root represent shortest paths in G
 - Thus can use BFS to calculate shortest path from one vertex to another in O(V+E) time

Depth-First Search

- *Depth-first search* is another strategy for exploring a graph
 - Explore "deeper" in the graph whenever possible
 - Edges are explored out of the most recently discovered vertex v that still has unexplored edges
 - When all of *v*'s edges have been explored, backtrack to the vertex from which *v* was discovered

Depth-First Search

- Vertices initially colored white
- Then colored gray when discovered
- Then black when finished

Depth-First Search: The Code

```
DFS(G)
   for each vertex u \in G->V
      u->color = WHITE;
   time = 0;
   for each vertex u \in G->V
      if (u->color == WHITE)
         DFS Visit(u);
```

```
DFS Visit(u)
   u->color = GREY;
   time = time+1;
   u->d = time;
   for each v \in u \rightarrow Adj[]
       if (v->color == WHITE)
          DFS_Visit(v);
   u->color = BLACK;
   time = time+1;
   u->f = time;
```

Depth-First Search: Running Time

- The loops on lines 1-3 and lines 5-7 of DFS take time $\Theta(V)$, exclusive of the time to execute the calls to DFS-VISIT.
- The procedure DFS-VISIT is called exactly once for each vertex v V, since DFS-VISIT is invoked only on white vertices and the first thing it does is paint the vertex gray.
- During an execution of DFS-VISIT(v), the loop on lines 4-7 is executed |Adj[v]| times. Since the total cost of executing lines 4-7 of DFS-VISIT is $\Theta(E)$. The running time of DFS is therefore $\Theta(V + E)$.

DFS Example

DFS: Kinds of edges

- DFS introduces an important distinction among edges in the original graph:
 - *Tree edge*: encounter new (white) vertex

Tree edges

DFS: Kinds of edges

- DFS introduces an important distinction among edges in the original graph:
 - *Tree edge*: encounter new (white) vertex
 - Back edge: from descendent to ancestor
 - Encounter a grey vertex (grey to grey)

Tree edges Back edges

DFS: Kinds of edges

- DFS introduces an important distinction among edges in the original graph:
 - *Tree edge*: encounter new (white) vertex
 - *Back edge*: from descendent to ancestor
 - Forward edge: from ancestor to descendent
 - Not a tree edge, though
 - From grey node to black node

Tree edges Back edges Forward edges

DFS: Kinds of edges

- DFS introduces an important distinction among edges in the original graph:
 - *Tree edge*: encounter new (white) vertex
 - *Back edge*: from descendent to ancestor
 - Forward edge: from ancestor to descendent
 - *Cross edge*: between a tree or subtrees
 - From a grey node to a black node

Tree edges Back edges Forward edges Cross edges

DFS: Kinds of edges

- DFS introduces an important distinction among edges in the original graph:
 - *Tree edge*: encounter new (white) vertex
 - *Back edge*: from descendent to ancestor
 - Forward edge: from ancestor to descendent
 - *Cross edge*: between a tree or subtrees
- Note: tree & back edges are important; most algorithms don't distinguish forward & cross

Review: Dynamic Programming

- Summary of the basic idea:
 - Optimal substructure: optimal solution to problem consists of optimal solutions to subproblems
 - Overlapping subproblems: few subproblems in total, many recurring instances of each
 - Solve bottom-up, building a table of solved subproblems that are used to solve larger ones

Greedy Algorithms

- Like dynamic programming, used to solve optimization problems.
- Problems exhibit optimal substructure (like DP).
- Problems also exhibit the **greedy-choice** property.
 - When we have a choice to make, make the one that looks best *right now*.
 - Make a locally optimal choice in hope of getting a globally optimal solution.

Greedy Algorithms

- A *greedy algorithm* always makes the choice that looks best at the moment
 - The hope: a locally optimal choice will lead to a globally optimal solution
 - For some problems, it works
- Dynamic programming can be overkill; greedy algorithms tend to be easier to code

Spanning Tree

- Spanning tree. Let T = (V, F) be a subgraph of G = (V, E).
- T is a spanning tree of G: T that contains all the vertices of a graph G.
 - T is acyclic and connected.
 - T is connected and has |V| 1 arcs.
 - T is acyclic and has |V| 1 arcs.
 - T is minimally connected: removal of any arc disconnects it.
 - T is maximally acyclic: addition of any arc creates a cycle.
 - T has a unique simple path between every pair of vertices.

Minimum Spanning Trees

- •A spanning tree for G is a free tree that connects all the vertices in V.
- •The cost of a spanning tree is the sum of the costs of the edges in the tree.

•Given: a Connected, undirected, weighted graph, G = (V, E) in which each edge (u, v) in E has a cost c (u, v) attached to it.

-3 •Find: Minimum - weight spanning tree, T

Problem: Laying Telephone Wire

Wiring: Naïve Approach

Expensive!

Wiring: Better Approach

Minimize the total length of wire connecting the customers

Minimum Spanning Tree

• Problem: given a connected, undirected, weighted graph:

Minimum Spanning Tree

• Problem: given a connected, undirected, weighted graph, find a *spanning tree* using edges that minimize the total weight

Minimum Spanning Tree

• Which edges form the minimum spanning tree (MST) of the below graph?

• Answer:

- MSTs satisfy the *optimal substructure* property: an optimal tree is composed of optimal subtrees
 - Let T be an MST of G with an edge (u,v) in the middle
 - Removing (u,v) partitions T into two trees T_1 and T_2
 - Claim: T_1 is an MST of $G_1 = (V_1, E_1)$, and T_2 is an MST of $G_2 = (V_2, E_2)$
 - Proof: $w(T) = w(u,v) + w(T_1) + w(T_2)$ (There can't be a better tree than T_1 or T_2 , or T would be suboptimal)

- Thm:
 - Let T be MST of G, and let $A \subseteq T$ be subtree of T
 - Let (u,v) be min-weight edge connecting A to V-A
 - Then $(u,v) \in T$

- Thm:
 - Let T be MST of G, and let $A \subseteq T$ be subtree of T
 - Let (u,v) be min-weight edge connecting A to V-A
 - Then $(u,v) \in T$

```
MST-Prim(G, w, r)
    Q = V[G];
    for each u \in Q
         key[u] = \infty;
    key[r] = 0;
    p[r] = NULL;
    while (Q not empty)
         u = ExtractMin(Q);
         for each v \in Adj[u]
              if (v \in Q \text{ and } w(u,v) < \text{key}[v])
                  p[v] = u;
                  key[v] = w(u,v);
```

```
MST-Prim(G, w, r)
    Q = V[G];
    for each u \in Q
                          14
         key[u] = \infty;
                                   10
                                                     15
    key[r] = 0;
    p[r] = NULL;
    while (Q not empty)
         u = ExtractMin(Q); Run on example graph
         for each v \in Adj[u]
              if (v \in Q \text{ and } w(u,v) < \text{key}[v])
                  p[v] = u;
                  key[v] = w(u,v);
```

```
MST-Prim(G, w, r)
    Q = V[G];
    for each u \in Q
                           14
         key[u] = \infty;
                                    10
                                                      15
    key[r] = 0;
    p[r] = NULL;
                                      \infty
    while (Q not empty)
         u = ExtractMin(Q); Run on example graph
         for each v \in Adj[u]
              if (v \in Q \text{ and } w(u,v) < \text{key}[v])
                   p[v] = u;
                   key[v] = w(u,v);
```

```
MST-Prim(G, w, r)
    Q = V[G];
     for each u \in Q
                            14
         key[u] = \infty;
                                    10
                                                       15
    key[r] = 0;
    p[r] = NULL;
                                      \infty
    while (Q not empty)
         u = ExtractMin(Q); Pick a start vertex r
          for each v \in Adj[u]
              if (v \in Q \text{ and } w(u,v) < \text{key}[v])
                   p[v] = u;
                   key[v] = w(u,v);
```

```
MST-Prim(G, w, r)
    Q = V[G];
     for each u \in Q
                           14
         key[u] = \infty;
                                    10
                                                       15
    key[r] = 0;
    p[r] = NULL;
                                       \infty
    while (Q not empty)
         u = ExtractMin(Q); Red vertices have been removed from Q
          for each v \in Adj[u]
               if (v \in Q \text{ and } w(u,v) < \text{key}[v])
                   p[v] = u;
                   key[v] = w(u,v);
```

```
MST-Prim(G, w, r)
    Q = V[G];
     for each u \in Q
                           14
         key[u] = \infty;
                                    10
                                                       15
    key[r] = 0;
    p[r] = NULL;
    while (Q not empty)
         u = ExtractMin(Q); Red arrows indicate parent pointers
         for each v \in Adj[u]
              if (v \in Q \text{ and } w(u,v) < \text{key}[v])
                   p[v] = u;
                   key[v] = w(u,v);
```

```
MST-Prim(G, w, r)
    Q = V[G];
    for each u \in Q
                           14
         key[u] = \infty;
                                    10
                                                      15
    key[r] = 0;
    p[r] = NULL;
    while (Q not empty)
         u = ExtractMin(Q);
         for each v \in Adj[u]
              if (v \in Q \text{ and } w(u,v) < \text{key}[v])
                   p[v] = u;
                   key[v] = w(u,v);
```

```
MST-Prim(G, w, r)
    Q = V[G];
    for each u \in Q
                           14
         key[u] = \infty;
                                    10
                                                      15
    key[r] = 0;
    p[r] = NULL;
    while (Q not empty)
         u = ExtractMin(Q);
         for each v \in Adj[u]
              if (v \in Q \text{ and } w(u,v) < \text{key}[v])
                   p[v] = u;
                   key[v] = w(u,v);
```

```
MST-Prim(G, w, r)
    Q = V[G];
    for each u \in Q
                           14
         key[u] = \infty;
                                    10
                                                      15
    key[r] = 0;
    p[r] = NULL;
    while (Q not empty)
         u = ExtractMin(Q);
         for each v \in Adj[u]
              if (v \in Q \text{ and } w(u,v) < \text{key}[v])
                   p[v] = u;
                   key[v] = w(u,v);
```

```
MST-Prim(G, w, r)
    Q = V[G];
    for each u \in Q
                           14
         key[u] = \infty;
                                   10
                                                      15
    key[r] = 0;
    p[r] = NULL;
    while (Q not empty)
         u = ExtractMin(Q);
         for each v \in Adj[u]
              if (v \in Q \text{ and } w(u,v) < \text{key}[v])
                   p[v] = u;
                   key[v] = w(u,v);
```

```
MST-Prim(G, w, r)
    Q = V[G];
    for each u \in Q
                           14
         key[u] = \infty;
                                   10
                                                      15
    key[r] = 0;
    p[r] = NULL;
    while (Q not empty)
         u = ExtractMin(Q);
         for each v \in Adj[u]
              if (v \in Q \text{ and } w(u,v) < \text{key}[v])
                   p[v] = u;
                   key[v] = w(u,v);
```

```
MST-Prim(G, w, r)
    Q = V[G];
    for each u \in Q
                           14
         key[u] = \infty;
                                   10
                                                      15
    key[r] = 0;
    p[r] = NULL;
    while (Q not empty)
         u = ExtractMin(Q);
         for each v \in Adj[u]
              if (v \in Q \text{ and } w(u,v) < \text{key}[v])
                   p[v] = u;
                   key[v] = w(u,v);
```

```
MST-Prim(G, w, r)
    Q = V[G];
    for each u \in Q
                           14
         key[u] = \infty;
                                   10
                                                      15
    key[r] = 0;
    p[r] = NULL;
    while (Q not empty)
         u = ExtractMin(Q);
         for each v \in Adj[u]
              if (v \in Q \text{ and } w(u,v) < \text{key}[v])
                   p[v] = u;
                   key[v] = w(u,v);
```

```
MST-Prim(G, w, r)
                                                      9
    Q = V[G];
    for each u \in Q
                           14
         key[u] = \infty;
                                    10
                                                      15
    key[r] = 0;
    p[r] = NULL;
    while (Q not empty)
         u = ExtractMin(Q);
         for each v \in Adj[u]
              if (v \in Q \text{ and } w(u,v) < \text{key}[v])
                   p[v] = u;
                   key[v] = w(u,v);
```

```
MST-Prim(G, w, r)
                                                      9
    Q = V[G];
    for each u \in Q
                           14
         key[u] = \infty;
                                    10
                                                      15
    key[r] = 0;
    p[r] = NULL;
    while (Q not empty)
         u = ExtractMin(Q);
         for each v \in Adj[u]
              if (v \in Q \text{ and } w(u,v) < \text{key}[v])
                   p[v] = u;
                   key[v] = w(u,v);
```

```
MST-Prim(G, w, r)
                                                      9
    Q = V[G];
    for each u \in Q
                           14
         key[u] = \infty;
                                    10
                                                      15
    key[r] = 0;
    p[r] = NULL;
    while (Q not empty)
         u = ExtractMin(Q);
         for each v \in Adj[u]
              if (v \in Q \text{ and } w(u,v) < \text{key}[v])
                   p[v] = u;
                   key[v] = w(u,v);
```

```
MST-Prim(G, w, r)
                                                      9
    Q = V[G];
    for each u \in Q
                           14
         key[u] = \infty;
                                    10
                                                      15
    key[r] = 0;
    p[r] = NULL;
    while (Q not empty)
         u = ExtractMin(Q);
         for each v \in Adj[u]
              if (v \in Q \text{ and } w(u,v) < \text{key}[v])
                   p[v] = u;
                   key[v] = w(u,v);
```

```
MST-Prim(G, w, r)
    Q = V[G];
    for each u \in Q
                           14
         key[u] = \infty;
                                    10
                                                      15
    key[r] = 0;
    p[r] = NULL;
    while (Q not empty)
         u = ExtractMin(Q);
         for each v \in Adj[u]
              if (v \in Q \text{ and } w(u,v) < \text{key}[v])
                   p[v] = u;
                   key[v] = w(u,v);
```

```
MST-Prim(G, w, r)
    Q = V[G];
    for each u \in Q
                           14
         key[u] = \infty;
                                    10
                                                      15
    key[r] = 0;
    p[r] = NULL;
    while (Q not empty)
         u = ExtractMin(Q);
         for each v \in Adj[u]
              if (v \in Q \text{ and } w(u,v) < \text{key}[v])
                   p[v] = u;
                   key[v] = w(u,v);
```

```
MST-Prim(G, w, r)
    Q = V[G];
    for each u \in Q
                           14
         key[u] = \infty;
                                    10
                                                      15
    key[r] = 0;
    p[r] = NULL;
    while (Q not empty)
         u = ExtractMin(Q);
         for each v \in Adj[u]
              if (v \in Q \text{ and } w(u,v) < \text{key}[v])
                   p[v] = u;
                   key[v] = w(u,v);
```

```
MST-Prim(G, w, r)
    Q = V[G];
    for each u \in Q
                           14
         key[u] = \infty;
                                   10
                                                      15
    key[r] = 0;
    p[r] = NULL;
    while (Q not empty)
         u = ExtractMin(Q);
         for each v \in Adj[u]
              if (v \in Q \text{ and } w(u,v) < \text{key}[v])
                   p[v] = u;
                   key[v] = w(u,v);
```

Single-Source Shortest Path

Single-Source Shortest Path

- Problem: given a weighted directed graph G, find the minimum-weight path from a given source vertex s to another vertex v
 - "Shortest-path" = minimum weight
 - Weight of path is sum of edges
 - E.g., a road map: what is the shortest path from Louisville to Memphis?

Shortest Path Properties

• Again, we have *optimal substructure*: the shortest path consists of shortest subpaths:

- Proof: suppose some subpath is not a shortest path
 - There must then exist a shorter subpath
 - Could substitute the shorter subpath for a shorter path
 - But then overall path is not shortest path. Contradiction

Shortest Path Properties

- Define $\delta(u,v)$ to be the weight of the shortest path from u to v
- Shortest paths satisfy the *triangle inequality*: $\delta(u,v) \leq \delta(u,x) + \delta(x,v)$

This path is no longer than any other path

Relaxation

- A key technique in shortest path algorithms is relaxation
 - Idea: for all v, maintain upper bound d[v] on $\delta(s,v)$ Relax(u,v,w) { if (d[v] > d[u]+w) then d[v]=d[u]+w; Relax Relax

```
BellmanFord()
                                       Initialize d[], which
   for each v \in V
                                        will converge to
      d[v] = \infty;
                                       shortest-path value \delta
   d[s] = 0;
   for i=1 to |V|-1
                                       Relaxation:
                                       Make |V|-1 passes,
      for each edge (u,v) \in E
                                       relaxing each edge
          Relax(u,v, w(u,v));
   for each edge (u,v) \in E
                                       Test for solution
                                       Under what condition
      if (d[v] > d[u] + w(u,v))
                                       do we get a solution?
            return "no solution";
```

```
Relax(u,v,w): if (d[v] > d[u]+w) then d[v]=d[u]+w
```

```
BellmanFord()
                                      What will be the
   for each v \in V
                                      running time?
      d[v] = \infty;
   d[s] = 0;
   for i=1 to |V|-1
      for each edge (u,v) \in E
         Relax(u,v, w(u,v));
   for each edge (u,v) \in E
      if (d[v] > d[u] + w(u,v))
            return "no solution";
Relax(u,v,w): if (d[v] > d[u]+w) then d[v]=d[u]+w
```

```
BellmanFord()
                                      What will be the
   for each v \in V
                                      running time?
      d[v] = \infty;
                                      A: O(VE)
   d[s] = 0;
   for i=1 to |V|-1
      for each edge (u,v) \in E
         Relax(u,v, w(u,v));
   for each edge (u,v) \in E
      if (d[v] > d[u] + w(u,v))
            return "no solution";
Relax(u,v,w): if (d[v] > d[u]+w) then d[v]=d[u]+w
```

```
BellmanFord()
   for each v \in V
      d[v] = \infty;
   d[s] = 0;
   for i=1 to |V|-1
      for each edge (u,v) \in E
         Relax(u,v, w(u,v));
   for each edge (u,v) \in E
      if (d[v] > d[u] + w(u,v))
            return "no solution";
```

```
Relax(u,v,w): if (d[v] > d[u]+w) then d[v]=d[u]+w
```

Bellman-Ford Example

Bellman-Ford Example

- Bellman-Ford running time:
 - $(|V|-1)|E| + |E| = \Theta(VE)$

Bellman-Ford Example

Dijkstra's algorithm

<u>Dijkstra's algorithm</u> - is a solution to the single-source shortest path problem in graph theory.

Works on both directed and undirected graphs. However, all edges must have nonnegative weights.

Approach: Greedy

Input: Weighted graph G={E,V} and source vertex *v*∈V, such that all edge weights are nonnegative

Output: Lengths of shortest paths (or the shortest paths themselves) from a given source vertex *v*∈V to all other vertices

Dijkstra's algorithm - Pseudocode

```
dist[s] \leftarrow o
                                              (distance to source vertex is zero)
for all v \in V - \{s\}
     do dist[v] \leftarrow \infty
                                              (set all other distances to infinity)
                                              (S, the set of visited vertices is initially empty)
S \leftarrow \emptyset
                                  (Q, the queue initially contains all vertices)
Q \leftarrow V
while Q \neq \emptyset
                                              (while the queue is not empty)
                                              (select the element of Q with the min. distance)
do u \leftarrow mindistance(Q, dist)
                                              (add u to list of visited vertices)
    S \leftarrow S \cup \{u\}
    for all v \in neighbors[u]
         do if dist[v] > dist[u] + w(u, v)
                                                                     (if new shortest path found)
                 then d[v] \leftarrow d[u] + w(u, v) (set new value of shortest path)
                       (if desired, add traceback code)
return dist
```

Dijkstra's Algorithm

- If no negative edge weights, we can beat BF
- Similar to breadth-first search
 - Grow a tree gradually, advancing from vertices taken from a queue
- Also similar to Prim's algorithm for MST
 - Use a priority queue keyed on d[v]

S: { A, C }

Implementations and Running Times

For sparse graphs, or graphs with very few edges and many nodes, it can be implemented more efficiently storing the graph in an adjacency list using a binary heap or priority queue. This will produce a running time of

$$O((|E|+|V|)\log |V|)$$

DIJKSTRA'S ALGORITHM - WHY USE IT?

- As mentioned, Dijkstra's algorithm calculates the shortest path to every vertex.
- However, it is about as computationally expensive to calculate the shortest path from vertex *u* to every vertex using Dijkstra's as it is to calculate the shortest path to some particular vertex *v*.
- Therefore, anytime we want to know the optimal path to some other vertex from a determined origin, we can use Dijkstra's algorithm.

Applications of Dijkstra's Algorithm

- Traffic Information Systems are most prominent use
- Mapping (Map Quest, Google Maps)
- Routing Systems

Centror Plaza

Tioner S

Total State S

Total State S

Total S

To

From Computer Desktop Encyclopedia

3 1998 The Computer Language Co. Inc.

• Find shortest path from s to t.

$$S = \{ \}$$

 $PQ = \{ s, 2, 3, 4, 5, 6, 7, t \}$

$$S = \{ \}$$

 $PQ = \{ s, 2, 3, 4, 5, 6, 7, t \}$

 $S = \{ s \}$ $PQ = \{ 2, 3, 4, 5, 6, 7, t \}$

$$S = \{ s \}$$

 $PQ = \{ 2, 3, 4, 5, 6, 7, t \}$

$$S = \{ s, 2 \}$$

 $PQ = \{ 3, 4, 5, 6, 7, t \}$

 $S = \{ s, 2 \}$ $PQ = \{ 3, 4, 5, 6, 7, t \}$

$$S = \{ s, 2 \}$$

 $PQ = \{ 3, 4, 5, 6, 7, t \}$

 $S = \{ s, 2, 6 \}$ $PQ = \{ 3, 4, 5, 7, t \}$

 $S = \{ s, 2, 6 \}$ $PQ = \{ 3, 4, 5, 7, t \}$

 $S = \{ s, 2, 6, 7 \}$ $PQ = \{ 3, 4, 5, t \}$

 $S = \{ s, 2, 3, 6, 7 \}$ $PQ = \{ 4, 5, t \}$

 $S = \{ s, 2, 3, 6, 7 \}$ $PQ = \{ 4, 5, t \}$

 $S = \{ s, 2, 3, 5, 6, 7 \}$ $PQ = \{ 4, t \}$

 $S = \{ s, 2, 3, 5, 6, 7 \}$ $PQ = \{ 4, t \}$

 $S = \{ s, 2, 3, 4, 5, 6, 7 \}$ $PQ = \{ t \}$

 $S = \{ s, 2, 3, 4, 5, 6, 7 \}$ $PQ = \{ t \}$

 $S = \{ s, 2, 3, 4, 5, 6, 7, t \}$ $PQ = \{ \}$

Dijkstra's Shortest Path Algorithm

 $S = \{ s, 2, 3, 4, 5, 6, 7, t \}$ $PQ = \{ \}$


```
Kruskal()
   T = \emptyset;
   for each v \in V
      MakeSet(v);
   sort E by increasing edge weight w
   for each (u,v) \in E (in sorted order)
      if FindSet(u) ≠ FindSet(v)
          T = T \cup \{\{u,v\}\};
          Union(FindSet(u), FindSet(v));
```

```
Run the algorithm:
Kruskal()
                                     19
   T = \emptyset;
                                 25
                                            5
   for each v \in V
                                      13
                         21
      MakeSet(v);
   sort E by increasing edge weight w
   for each (u,v) \in E (in sorted order)
      if FindSet(u) ≠ FindSet(v)
          T = T \cup \{\{u,v\}\};
          Union(FindSet(u), FindSet(v));
```

```
Run the algorithm:
Kruskal()
                                        19
   T = \emptyset;
                                    25
                                               5
   \quad \text{for each } v \ \in \ V
                                         13
                           21
       MakeSet(v);
   sort E by increasing edge weight w
   for each (u,v) \in E (in sorted order)
       if FindSet(u) ≠ FindSet(v)
           T = T \cup \{\{u,v\}\};
           Union(FindSet(u), FindSet(v));
```

```
Run the algorithm:
Kruskal()
                                     19
   T = \emptyset;
                                 25
                                            5
   for each v \in V
                                      13
                         21
      MakeSet(v);
  sort E by increasing edge weight w
   for each (u,v) \in E (in sorted order)
      if FindSet(u) ≠ FindSet(v)
          T = T \cup \{\{u,v\}\};
          Union(FindSet(u), FindSet(v));
```

```
Run the algorithm:
Kruskal()
                                     19
   T = \emptyset;
                                 25
                                            5
   for each v \in V
                                      13
                         21
      MakeSet(v);
   sort E by increasing edge weight w
   for each (u,v) \in E (in sorted order)
      if FindSet(u) ≠ FindSet(v)
          T = T \cup \{\{u,v\}\};
          Union(FindSet(u), FindSet(v));
```

```
Run the algorithm:
Kruskal()
                                     19
   T = \emptyset;
                                 25
                                            5
   for each v \in V
                                      13
                         21
      MakeSet(v);
   sort E by increasing edge weight w
   for each (u,v) \in E (in sorted order)
       if FindSet(u) ≠ FindSet(v)
          T = T \cup \{\{u,v\}\};
          Union(FindSet(u), FindSet(v));
```

```
Run the algorithm:
Kruskal()
                          2?
                                     19
   T = \emptyset;
                                 25
                                            5
   for each v \in V
                                      13
                         21
      MakeSet(v);
   sort E by increasing edge weight w
   for each (u,v) \in E (in sorted order)
       if FindSet(u) ≠ FindSet(v)
          T = T \cup \{\{u,v\}\};
          Union(FindSet(u), FindSet(v));
```

```
Run the algorithm:
Kruskal()
                                     19
   T = \emptyset;
                                 25
                                            5
   for each v \in V
                                      13
                         21
      MakeSet(v);
   sort E by increasing edge weight w
   for each (u,v) \in E (in sorted order)
       if FindSet(u) ≠ FindSet(v)
          T = T \cup \{\{u,v\}\};
          Union(FindSet(u), FindSet(v));
```

```
Run the algorithm:
Kruskal()
                                     19
   T = \emptyset;
                                 25
                                            5?
   for each v \in V
                                      13
                         21
      MakeSet(v);
   sort E by increasing edge weight w
   for each (u,v) \in E (in sorted order)
       if FindSet(u) ≠ FindSet(v)
          T = T \cup \{\{u,v\}\};
          Union(FindSet(u), FindSet(v));
```

```
Run the algorithm:
Kruskal()
                                     19
   T = \emptyset;
                                 25
   for each v \in V
                                      13
                         21
      MakeSet(v);
   sort E by increasing edge weight w
   for each (u,v) \in E (in sorted order)
      if FindSet(u) ≠ FindSet(v)
          T = T \cup \{\{u,v\}\};
          Union(FindSet(u), FindSet(v));
```

```
Run the algorithm:
Kruskal()
                                     19
   T = \emptyset;
                    8?
                                 25
   for each v \in V
                                      13
                         21
      MakeSet(v);
   sort E by increasing edge weight w
   for each (u,v) \in E (in sorted order)
       if FindSet(u) ≠ FindSet(v)
          T = T \cup \{\{u,v\}\};
          Union(FindSet(u), FindSet(v));
```

```
Run the algorithm:
Kruskal()
                                     19
   T = \emptyset;
                                 25
   for each v \in V
                                      13
                         21
      MakeSet(v);
   sort E by increasing edge weight w
   for each (u,v) \in E (in sorted order)
      if FindSet(u) ≠ FindSet(v)
          T = T \cup \{\{u,v\}\};
          Union(FindSet(u), FindSet(v));
```

```
Run the algorithm:
Kruskal()
                                     19
   T = \emptyset;
                                 25
   for each v \in V
                                      13
                         21
      MakeSet(v);
   sort E by increasing edge weight w
   for each (u,v) \in E (in sorted order)
      if FindSet(u) ≠ FindSet(v)
          T = T \cup \{\{u,v\}\};
          Union(FindSet(u), FindSet(v));
```

```
Run the algorithm:
Kruskal()
                                     19
   T = \emptyset;
                                 25
   for each v \in V
                                      13
                         21
      MakeSet(v);
   sort E by increasing edge weight w
   for each (u,v) \in E (in sorted order)
      if FindSet(u) ≠ FindSet(v)
          T = T \cup \{\{u,v\}\};
          Union(FindSet(u), FindSet(v));
```

```
Run the algorithm:
Kruskal()
                                     19
   T = \emptyset;
                                 25
   for each v \in V
                                      13?
                         21
      MakeSet(v);
   sort E by increasing edge weight w
   for each (u,v) \in E (in sorted order)
      if FindSet(u) ≠ FindSet(v)
          T = T \cup \{\{u,v\}\};
          Union(FindSet(u), FindSet(v));
```

```
Run the algorithm:
Kruskal()
                                     19
   T = \emptyset;
                                 25
   for each v \in V
                         21
                                      13
      MakeSet(v);
   sort E by increasing edge weight w
   for each (u,v) \in E (in sorted order)
      if FindSet(u) ≠ FindSet(v)
          T = T \cup \{\{u,v\}\};
          Union(FindSet(u), FindSet(v));
```

```
Run the algorithm:
Kruskal()
                                     19
                          14?
   T = \emptyset;
                                 25
   for each v \in V
                         21
                                      13
      MakeSet(v);
   sort E by increasing edge weight w
   for each (u,v) \in E (in sorted order)
      if FindSet(u) ≠ FindSet(v)
          T = T \cup \{\{u,v\}\};
          Union(FindSet(u), FindSet(v));
```

```
Run the algorithm:
Kruskal()
                                     19
   T = \emptyset;
                                 25
   for each v \in V
                                      13
                         21
      MakeSet(v);
   sort E by increasing edge weight w
   for each (u,v) \in E (in sorted order)
      if FindSet(u) ≠ FindSet(v)
          T = T \cup \{\{u,v\}\};
          Union(FindSet(u), FindSet(v));
```

```
Run the algorithm:
Kruskal()
                                     19
                                     17?
   T = \emptyset;
                                 25
   for each v \in V
                         21
                                      13
      MakeSet(v);
   sort E by increasing edge weight w
   for each (u,v) \in E (in sorted order)
       if FindSet(u) ≠ FindSet(v)
          T = T \cup \{\{u,v\}\};
          Union(FindSet(u), FindSet(v));
```

```
Run the algorithm:
Kruskal()
                                    19?
   T = \emptyset;
                                 25
   for each v \in V
                                      13
                         21
      MakeSet(v);
   sort E by increasing edge weight w
   for each (u,v) \in E (in sorted order)
      if FindSet(u) ≠ FindSet(v)
          T = T \cup \{\{u,v\}\};
          Union(FindSet(u), FindSet(v));
```

```
Run the algorithm:
Kruskal()
                                     19
   T = \emptyset;
                                 25
   for each v \in V
                                      13
                         21?
      MakeSet(v);
   sort E by increasing edge weight w
   for each (u,v) \in E (in sorted order)
      if FindSet(u) ≠ FindSet(v)
          T = T \cup \{\{u,v\}\};
          Union(FindSet(u), FindSet(v));
```

```
Run the algorithm:
Kruskal()
                                     19
   T = \emptyset;
                                 25?
   for each v \in V
                                      13
                         21
      MakeSet(v);
   sort E by increasing edge weight w
   for each (u,v) \in E (in sorted order)
      if FindSet(u) ≠ FindSet(v)
          T = T \cup \{\{u,v\}\};
          Union(FindSet(u), FindSet(v));
```

```
Run the algorithm:
Kruskal()
                                     19
   T = \emptyset;
                                 25
   for each v \in V
                                      13
                         21
      MakeSet(v);
   sort E by increasing edge weight w
   for each (u,v) \in E (in sorted order)
      if FindSet(u) ≠ FindSet(v)
          T = T \cup \{\{u,v\}\};
          Union(FindSet(u), FindSet(v));
```

```
Run the algorithm:
Kruskal()
                                     19
   T = \emptyset;
                                 25
   for each v \in V
                         21
                                      13
      MakeSet(v);
   sort E by increasing edge weight w
   for each (u,v) \in E (in sorted order)
      if FindSet(u) ≠ FindSet(v)
          T = T \cup \{\{u,v\}\};
          Union(FindSet(u), FindSet(v));
```