Assignment #3

UW-Madison MATH 421

GEOFF YOERGER April 22, 2021

Exercise #1: | Spivak, Chapter 11, Problem 53

Theorem. Suppose

$$f(x) = \begin{cases} \frac{g(x)}{x} & x \neq 0\\ 0 & x = 0 \end{cases}$$

and q(0) = q'(0) = 0 and q''(0) = 17. Find f'(0)

Proof. Notice that $\lim_{h\to 0} g'(h) = 0$ and $\lim_{h\to 0} 2h = 0$, and $\lim_{h\to 0} \frac{g''(h)}{2} = \frac{17}{2}$ exists.

By L'Hopitals rule, $\lim_{h\to 0} \frac{g'(h)}{2h}$ exists, and is equal to $\lim_{h\to 0} \frac{g''(h)}{2}$. Notice that $\lim_{h\to 0} g(h) = 0$ and $\lim_{h\to 0} h^2 = 0$.

By L'Hopitals rule, $\lim_{h\to 0} \frac{g(h)}{h^2}$ exists, and is equal to $\lim_{h\to 0} \frac{g'(h)}{2h}$. Then,

$$f'(0) = \lim_{h \to 0} \frac{f(h) - f(0)}{h}$$

$$= \lim_{h \to 0} \frac{f(h)}{h}$$

$$= \lim_{h \to 0} \frac{g(h)}{h^2}$$

$$= \lim_{h \to 0} \frac{g'(h)}{2h}$$

$$= \lim_{h \to 0} \frac{g(h)}{2}$$

$$= \frac{17}{2}$$

Exercise #2: Spivak, Chapter 11, Problem 65

Theorem. If $n \ge 1$, then $(-1 < x < 0 \lor 0 < x) \implies (1+x)^n > 1 + nx$.

Proof. Let $g(x) = (1+x)^n - 1 - nx$.

Then $g'(x) = n(1+x)^{n-1} - n = n((1+x)^{n-1} - 1).$

Notice that $n-1 \ge 0$.

Cases on x:

If -1 < x < 0, then $(1+x) < 1 \implies (1+x)^{n-1} < 1 \implies g'(x) < 0$.

If 0 < x, then $(1+x) > 1 \implies (1+x)^{n-1} > 1 \implies g'(x) > 0$.

By corollary, g is decreasing on (-1,0), and increasing on $(0,\infty)$.

Thus, by definition, $-1 < x < 0 \implies g(x) > 0$ and $x > 0 \implies g(x) > 0$. $\equiv -1 < x < 0 \lor 0 < x \implies (1+x)^n > 1 + nx.$

Exercise #3: If P,Q are partitions of [a,b], $P \subset Q$, Q has one more element than P, and f is bounded on [a, b], then $U(f, P) \geq U(f, Q)$.

```
Proof. By assumption, P = \{t_0, \dots, t_n\}, Q = \{t_0, \dots, t_{k-1}, u, t_k, \dots, t_n\}
     Let M_i = \sup\{f(x) : t_{i-1} \le x \le t_i\}.
     Let M' = \sup\{f(x) : t_{k-1} \le x \le u\}.
     Let M'' = \sup\{f(x) : u \le x \le t_k\}.
    Let M' = \sup_{\{J(u) : u \ge u \ge v_k\}}.

Then U(f, P) = \sum_{i=1}^n M_i(t_i - t_{i-1}).

Then U(f, Q) = (\sum_{i=1}^{k-1} M_i(t_i - t_{i-1})) + m'(u - t_{k-1}) + m''(t_k - u) + \sum_{j=k+1}^n M_j(t_j - t_{j-1}).

So U(f, Q) - U(f, P) = M'(u - t_{k-1}) + M''(t_k - u) - M_k(t_k - t_{k+1}).
     By defn, M' \leq M_k, M'' \leq M_k.
     So U(f,Q) - U(f,P) \le M_k(u - t_{k-1}) + M_k(t_k - u) - M_k(t_k - t_{k-1}) = 0.
     So U(f,Q) < U(f,P).
```

Exercise #4: Suppose f is integrable on [a,b]. Prove: if $c \in \mathbb{R}$, then cf is integrable on [a,b] and $\int_{a}^{b} cf = c \int_{a}^{b} f.$

(Hint: how to L(f, P), L(cf, P), U(f, P), and U(cf, P) relate? It is a good idea to treat the cases $c \le 0$ and c > 0 separately.)

Proof. Assuming several properties of sup and inf.

- 1. $c \ge 0$: $\inf\{c * a : a \in A\} = c * \inf\{a : a \in A\}$
- 2. c > 0: $\sup\{c * a : a \in A\} = c * \sup\{a : a \in A\}$
- 3. c < 0: $\inf\{c * a : a \in A\} = c * \sup\{a : a \in A\}$
- 4. $c \le 0 : \sup\{c * a : a \in A\} = c * \inf\{a : a \in A\}$

Notice that "f is bounded on [a,b]" \Longrightarrow "cf is bounded on [a,b]". If $c \ge 0$, because f is integrable on [a,b], and $\int_a^b f = \sup\{L(f,P)\} = \inf\{U(f,P)\}$, Then,

$$\Rightarrow c * \int_{a}^{b} f$$

$$\equiv c * \sup\{L(f, P)\} = \sup\{c * L(f, P)\} = \inf\{c * U(f, P)\}$$

$$\equiv \sup\{c * \sum_{i=1}^{n} \inf\{f(x) : t_{i-1} \le x \le t_{i}\}(t_{i} - t_{i-1})\} = \inf\{c * \sum_{i=1}^{n} \sup\{f(x) : t_{i-1} \le x \le t_{i}\}(t_{i} - t_{i-1})\}$$

$$\equiv \sup\{\sum_{i=1}^{n} \inf\{c * f(x) : t_{i-1} \le x \le t_{i}\}(t_{i} - t_{i-1})\} = \inf\{\sum_{i=1}^{n} \sup\{c * f(x) : t_{i-1} \le x \le t_{i}\}(t_{i} - t_{i-1})\}$$

$$\equiv \sup\{L(cf, P)\} = \inf\{U(cf, P)\}$$

$$\equiv \int_{a}^{b} cf$$

 $\implies cf$ is integrable on [a, b]

If $c \leq 0$, because f is integrable on [a,b], and $\int_a^b f = \sup\{L(f,P)\} = \inf\{U(f,P)\}$, Then,

$$\implies c * \int_a^b f$$

$$\equiv c * \sup\{L(f, P)\} \qquad = c * \inf\{U(f, P)\}$$

$$\equiv \inf\{c * L(f, P)\} \qquad = \sup\{c * U(f, P)\}$$

$$\equiv \inf\{c * \sum_{i=1}^n \inf\{f(x) : t_{i-1} \le x \le t_i\}(t_i - t_{i-1})\} \qquad = \sup\{c * \sum_{i=1}^n \sup\{f(x) : t_{i-1} \le x \le t_i\}(t_i - t_{i-1})\}$$

$$\equiv \inf\{\sum_{i=1}^n \sup\{c * f(x) : t_{i-1} \le x \le t_i\}(t_i - t_{i-1})\} \qquad = \sup\{\sum_{i=1}^n \inf\{c * f(x) : t_{i-1} \le x \le t_i\}(t_i - t_{i-1})\}$$

$$\equiv \inf\{U(cf, P)\} \qquad = \sup\{L(cf, P)\}$$

$$\equiv \int_a^b cf$$

$$\implies cf \text{ is integrable on } [a, b]$$

Exercise #5: Spivak, Chapter 13, Problem 20 (a), (b), and (c)

Theorem. Suppose that f is nondecreasing on [a, b].

If $P = t_0, \dots, t_n$ is a partition of [a, b], what is L(f, P) and U(f, P)?

Proof of (a). By definition, $m_i = \inf\{f(x) : t_{i-1} \le x \le t_i\}$.

By definition, $M_i = \sup\{f(x) : t_{i-1} \le x \le t_i\}.$

Thus,
$$m_i = f(t_{i-1})$$
, and $L(f, P) = \sum_{i=1}^n f(t_{i-1})(t_i - t_{i-1})$.

Since
$$f$$
 is nondecreasing on $[a, b]$, $t_{i-1} \le x \implies f(t_{i-1}) \le f(x)$.
Thus, $m_i = f(t_{i-1})$, and $L(f, P) = \sum_{i=1}^n f(t_{i-1})(t_i - t_{i-1})$.
Thus, $M_i = f(t_i)$, and $U(f, P) = \sum_{i=1}^n f(t_i)(t_i - t_{i-1})$.

Theorem. Suppose $\forall i: t_i - t_{i-1} = \delta$.

Prove $U(f, P) - L(f, P) = \delta * (f(b) - f(a)).$

Proof of (b). Then $L(f,P) = \sum_{i=1}^{n} f(t_{i-1}) * \delta$. Then $U(f,P) = \sum_{i=1}^{n} f(t_i) * \delta$.

Then
$$U(f,P) = \sum_{i=1}^{n} f(t_i) * \delta$$
.
Then $U(f,P) - L(f,P) = \delta * (f(t_1) + \dots + f(t_n) - f(t_0) - \dots - f(t_{n-1})) = \delta * (f(t_n) - f(t_0)) = \delta * (f(b) - f(a))$.

Theorem. Prove f is integrable.

Proof of (c). Fix $\epsilon > 0$.

By archimedian property, $\exists n \in \mathbb{N} : 0 < \frac{b-a}{n} < \frac{\epsilon}{f(b)-f(a)}$

Let
$$\delta = \frac{b-a}{a}$$
.

Let $P = \{a, a + \delta, a + 2\delta, \dots, a + n\delta = a + b - a = b\}$. Notice that $\forall i : t_i - t_{i-1} = \delta$.

Thus,

$$U(f,P) - L(f,P) = \delta(f(b) - f(a))$$

$$= \frac{b-a}{n}(f(b) - f(a))$$

$$< \frac{\epsilon}{f(b) - f(a)}(f(b) - f(a))$$

$$= \epsilon$$

Since $\epsilon > 0$ was arbitrary, by Theorem 13-2, f is integrable on [a, b].

Exercise #6: Prove: if f is integrable on [a, b], then |f| is integrable on [a, b].

 $\overline{\text{(Hint: show that } U(|f|, P) - L(|f|, P)} \leq U(f, P) - L(f, P)$

Proof. Fix $P = \{t_0, \dots, t_n\}$ as some partition of [a, b].

Consider each interval: Fix $1 \le i \le n$.

Cases on $m_i(f), M_i(F)$:

If $m_i(f) < 0, M_i(f) < 0$, then $m_i(f) = -M_i(|f|)$, and $M_i(f) = -m_i(|f|)$. Then $M_i(|f|) - m_i(|f|) = -m_i(|f|)$ $M_i(f) - m_i(f)$.

If $m_i(f) > 0, M_i(f) > 0$, then $m_i(f) = m_i(|f|)$, and $M_i(f) = M_i(|f|)$. Then $M_i(|f|) - m_i(|f|) = 0$ $M_i(f) - m_i(f)$.

If $m_i(f) < 0, M_i(f) > 0, |M_i(f)| \ge |m_i(f)|$, then $m_i(|f|) = 0$ and $M_i(|f|) = M_i(f)$. Then $M_i(|f|) = M_i(f)$ $m_i(|f|) = M_i(f) \le M_i(f) - m_i(f).$

If $m_i(f) < 0, M_i(f) > 0, |M_i(f)| \le |m_i(f)|$, then $m_i(|f|) = 0$ and $M_i(|f|) = -m_i(f)$. Then $M_i(|f|) = -m_i(f)$. $m_i(|f|) = -m_i(f) \le M_i(f) - m_i(f).$

Since i was arbitrary, and from cases, $\forall i: M_i(|f|) - m_i(|f|) \leq M_i(f) - m_i(f)$. Then, $U(f,P) - L(f,P) = \sum_{i=1}^n (M_i(f) - m_i(f))(t_i - t_{i-1}) \geq \sum_{i=1}^n (M_i(|f|) - m_i(|f|))(t_i - t_{i-1}) = \sum_{i=1}^n (M_i(|f|) - M_i(|f|))(t_i - t_{i-1})$ U(|f|, P) - L(|f|, P).

Since P was arbitrary, $\forall P: U(|f|, P) - L(|f|, P) \leq U(f, P) - L(f, P)$.

Because f is integrable on [a, b], by theorem 13-2, $\forall \epsilon > 0 \ \exists P : \epsilon > U(f, P) - L(f, P) \geq U(|f|, P) - U(|f|, P)$ L(|f|, P).

Thus, $\forall \epsilon > 0 \; \exists P : U(|f|, P) - L(|f|, P) < \epsilon$.

Thus, by theorem 13-2, |f| is integrable on [a, b].

Exercise #7: Prove: if f and g are integrable on [a, b], then $\max\{f, g\}$ and $\min\{f, g\}$ are integrable on [a,b].

(Hint: use a past HW problem for expressing the minimum and maximum in terms of absolute values).

Proof. By definition, $\max\{f,g\} = \frac{f+g+|f-g|}{2}$, and $\min\{f,g\} = \frac{f+g-|f-g|}{2}$. By Thm 6, -g is integrable on [a,b].

By Thm 5, f - g is integrable on [a, b].

By result of exercise 6, |f-g| is integrable on [a,b].

By Thm 6, -|f-g| is integrable on [a, b].

By Thm 5, f + g is integrable on [a, b].

By Thm 5, f+g+|f-g| and f+g-|f-g| are both integrable on [a,b]. By Thm 6, $\frac{f+g+|f-g|}{2}$ and $\frac{f+g-|f-g|}{2}$ are both integrable on [a,b].

Equivicantly, $\max\{f,g\}$ and $\min\{f,g\}$ are both integrable on [a,b].