COVID-19 IN THE UNITED STATES

RASHEED HAMEED

The covid-19 model is represented by a system of ordinary differential equations shown here 1.

(1)
$$\frac{dG}{dt} = \Lambda - \beta_1 \frac{N}{O} G - \mu G$$

$$\frac{dS}{dt} = \beta_1 \frac{N}{O} G - \beta_2 \frac{(E + kC)}{N} S - \mu S$$

$$\frac{dE}{dt} = \beta_2 \frac{(E + kC)}{N} S - \gamma E - \mu E$$

$$\frac{dC}{dt} = \gamma E - \theta_C C - \mu C$$

$$\frac{dR}{dt} = \theta_C C - \mu R$$

where:

$$\begin{split} N &= S + E + C + R \\ O &= G + N \end{split}$$

FIGURE 1. COVID-19 Model

COVID-19

Variables	Description	${\bf Initial\ Value}^a$	Source
G	General Population of US	330,511,531	[?]
S	susceptible	79,834,735	[?] [?]
E	Expected population of individuals infected with virus	20,000	derived
C	Confirmed cases of Coronavirus	100,000	derived
R	Recovered	100	est
N	at-risk population	79,834,735	derived
0	total population	330,511,531	derived
Parameter	Description	Values & Units ^b	Source
Λ	birth rate	435,722 people per year	[?]
μ	mortality rate	$\mathcal{U}[0.012, 0.013]$ ^c per person per year	[?]
ψ	release rate	$\mathcal{U}[0.124, 0.164]$ ^c per person per year	[?]
γ	rehab admissions rate	$\mathcal{E}(0.304)^{-d}$ per person per year	[?]
θ_H	quitting rate (due to rehab success)	0.33 per person per year	[?]
η	relapse rate	0.1894 per person per year	[?]
β_1	growth factors of at-risk population	0.245 dimensionless	[?]
θ_U	quitting rate (on their own)	$\mathcal{U}[0,0.33]$ ^c per person per year	est
p	proportion released that successfully quit	$\mathcal{U}[0.8, 0.9]$ ^c dimensionless	est
k	reduction in transmission intensity of H	$\mathcal{U}[0,1]$ dimensionless	est
β_2	transmission intensity rate	$\mathcal{N}(\mu = 0.75, \sigma = 0.47)^{e}$ interactions per person per year	[?]

Table 1. Brief Summary of State Variables & Parameters

 $a_{
m total}$ count

 $[^]b1$ time unit = 1 year c parameter sampled from the Uniform distribution in the given range d parameter sampled from the Exponential distribution with the given rate parameter e parameter sampled from the Normal distribution with the given mean and standard deviation