

Deep learning on fluid simulation

Progress

当前帧

真实输出

预测输出

Progress

当前帧

真实输出

预测输出

Progress

当前帧

真实输出

预测输出

Challenge

• 1. Make the model understand the input data

• 2. Make the model learn fluid simulation

Challenge

- 1. Make the model understand the input data
 - ◆ PointNet
 - ♦ PointNet++
 - ◆ VoxelNet

- ◆ PointNet
 - ✓ Unordered
 - ✓ Interaction among points
 - ✓ Invariance under transformations

◆ PointNet

Qi C R, Su H, Mo K, et al. Pointnet: Deep learning on point sets for 3d classification and segmentation[J]. Proc. Computer Vision and Pattern Recognition (CVPR), IEEE, 2017, 1(2): 4.

◆ PointNet++

Qi C R, Yi L, Su H, et al. Pointnet++: Deep hierarchical feature learning on point sets in a metric space[C]//Advances in Neural Information Processing Systems. 2017: 5099-5108.

◆ VoxelNet

Our model

Does the neural network working?

$$L(A, P, N) = \max(\|f(A) - f(P)\|^2 - \|f(A) - f(N)\|^2 + \alpha, 0)$$

Challenge

- 2. Make the model learn fluid simulation
 - Accelerating Eulerian Fluid Simulation With Convolutional Networks
 - Data-Driven Synthesis of Smoke Flows with CNN-based Feature Descriptors
 - Generating Liquid Simulations with Deformation-aware Neural Networks
 - tempoGAN: A Temporally Coherent, Volumetric GAN for Super-resolution
 Fluid Flow
 - Latent-space Physics Towards Learning the Temporal Evolution of Fluid Flow

Figure 3. Convolutional Network for Pressure Solve

Chu M, Thuerey N. Data-driven synthesis of smoke flows with CNN-based feature descriptors[J]. ACM Transactions on Graphics (TOG), 2017, 36(4): 69.

- Physical learning
 - Deep Learning for Physical Processes: Incorporating Prior Scientific Knowledge
 - Deep learning the physics of transport phenomena

de Bezenac E, Pajot A, Gallinari P. Deep Learning for Physical Processes: Incorporating Prior Scientific Knowledge[J]. arXiv preprint arXiv:1711.07970, 2017

Analyze video data

Schenck C, Fox D. Reasoning about liquids via closed-loop simulation[J]. arXiv preprint arXiv:1703.01656, 2017.

Plan

- 1. Prove that the network is working and useful
- 2. Combine model with physical prior scientific knowledge
- 3. Learn the temporal evolution of fluid simulation