#### Sterowniki rozmyte i programowanie



#### **Fuzzy Control Language**

Fuzzy Control Language (FCL) to język pozwalający budować (definiować) sterowniki rozmyte.

Definicja sterownika rozmytego zapisana jest w pliku tekstowym z rozszerzeniem fcl.

Plik fcl zawiera instrukcje określające parametry sterownika. Instrukcje te zawarte są w następującym elemencie:

```
FUNCTION_BLOCK

//instrukcje

END_FUNCTION_BLOCK
```

#### **Fuzzy Control Language**

Chcemy zbudować przykładowy sterownik rozmyty, który dla otrzymanej na wejściu odległości od przeszkody (odleglosc) wyznaczy nam prędkość (predkosc) pojazdu.

Wykorzystamy dwie zmienne lingwistyczne:

```
odleglosc (wejście sterownika)
predkosc (wyjście steronika)
```

W języku FCL zapisujemy to następująco:

```
VAR_INPUT
odleglosc : REAL;
END_VAR
VAR_OUTPUT
predkosc : REAL;
END_VAR
```

# FCL - wejście

Przyjmijmy, że interesuje nas odleglosc w przedziale [0,1000] (m).

Konkretna wartość zmiennej odleglosc będzie podana na wejściu naszego sterownika. Wartość ta będzie następnie rozmyta.

Przyjmijmy, że zmienna odleglosc będzie przyjmowała następujące 3 wartości:



## FCL - wejście

```
FUZZIFY odleglosc
TERM mala := (0, 1) (150, 1) (350, 0);
TERM srednia := (250, 0) (400,1) (600,1) (750,0);
TERM duza := (650, 0) (850, 1) (1000, 1);
END_FUZZIFY
```



## FCL - wyjście

Przyjmijmy, że interesuje nas predkosc w przedziale [0,100] (km/h). Konkretna wartość zmiennej predkosc będzie zwrócona na wyjściu naszego sterownika. Wartość ta będzie efektem wyostrzania.

Przyjmijmy, że zmienna predkosc będzie przyjmowała następujące 3 wartości:



# FCL - wyjście

```
DEFUZZIFY predkosc
TERM mala := (0, 1) (25, 1) (40,0);
TERM srednia := (30,0) (45,1) (55, 1) (70, 0);
TERM duza := (60, 0) (75, 1) (100, 1);
METHOD : COA;
END_DEFUZZIFY
METODA WYOSTRZANIA
```



## FCL - wyostrzanie

Metody wyostrzania:

**COG** - Centre of Gravity

**COGS** - Centre of Gravity for Singletons

COA - Centre of Area

LM - Left Most Maximum

**RM** - Right Most Maximum

Możemy teraz przystąpić do zdefiniowania bazy reguł.

## FCL – baza reguł

Przyjmijmy następującą bazę reguł:

```
JEŻELI odleglosc jest mala TO predkosc jest mala

JEŻELI odleglosc jest srednia TO predkosc jest srednia

JEŻELI odleglosc jest duza TO predkosc jest duza
```

W języku FCL zapisujemy to następująco:

```
RULE 1 : IF odleglosc IS mala THEN predkosc IS mala;
RULE 2 : IF odleglosc IS srednia THEN predkosc IS srednia;
RULE 3 : IF odleglosc IS duza THEN predkosc IS duza;
```

#### FCL - AND i OR

Ponadto musimy określić jeszcze:

Metodę AND i OR (do wykorzystania po lewej stronie implikacji)
 Mamy do wyboru:

| operator OR              |                                           | operator AND             |                                    |
|--------------------------|-------------------------------------------|--------------------------|------------------------------------|
| keyword for<br>Algorithm | Algorithm                                 | keyword for<br>Algorithm | Algorithm                          |
| MAX                      | Max $(\mu_1(x), \mu_2(x))$                | MIN                      | $Min(\mu_1(x), \mu_2(x))$          |
| ASUM                     | $\mu_1(x) + \mu_2(x) - \mu_1(x) \mu_2(x)$ | PROD                     | $\mu_1(X) \ \mu_2(X)$              |
| BSUM                     | $Min(1, \mu_1(x) + \mu_2(x))$             | BDIF                     | Max $(0, \mu_1(x) + \mu_2(x) - 1)$ |

W języku FCL zapisujemy to następująco:

AND : MIN;

Wystarczy, że określimy jeden operator!

# FCL - aktywacja

Ponadto musimy określić jeszcze:

Metodę aktywacji (implikacja!)

Mamy do wyboru:

| Name    | Keyword | Algorithm                                   |  |
|---------|---------|---------------------------------------------|--|
| Product | PROD    | μ <sub>1</sub> (x) μ <sub>2</sub> (x)       |  |
| Minimum | MIN     | Min(μ <sub>1</sub> (x), μ <sub>2</sub> (x)) |  |

W języku FCL zapisujemy to następująco:

ACT : MIN;

# FCL - akumulacja

Ponadto musimy określić jeszcze:

Metodę akumulacji (suma zbiorów!)

Mamy do wyboru:

| Name           | Keyword | Formula                                 |
|----------------|---------|-----------------------------------------|
| Maximum        | MAX     | $Max(\mu_1(x), \mu_2(x))$               |
| Bounded Sum    | BSUM    | Min(1, $\mu_1(x) + \mu_2(x)$ )          |
| Normalised Sum | NSUM    | $\mu_1(x) + \mu_2(x)$                   |
|                |         | Max(1, $MAX ( \mu_1(x') + \mu_2(x') ))$ |

W języku FCL zapisujemy to następująco:

ACCU : MAX;

## FCL – blok reguł

Ostatecznie blok reguł w FCL wygląda następująco:

```
RULEBLOCK No1
AND : MIN;
ACT : MIN;
ACCU : MAX;
RULE 1: IF odleglosc IS mala THEN predkosc IS mala;
RULE 2: IF odleglosc IS srednia THEN predkosc IS srednia;
RULE 3: IF odleglosc IS duza THEN predkosc IS duza;
END RULEBLOCK
```

Jak zobaczymy bloków takich może być kilka!

#### FCL – przykładowe wyjście

W naszym przykładowym programie otrzymujemy na wyjściu kolejno:

```
C:\Windows\system32\cmd.exe
od1=977 v=84
od1=954 v=84
od1=930 v=84
od1=907 v=84
od1=884 v=84
od1=837 v=83
od1=814 v=83
od1=791 v=83
od1=768 v=82
od1=723 v=74
od1=702 v=63
od1=627 v=50
od1=529 v=50
```

#### FCL – przykładowe wyjście

Ostatecznie po przejściu kilkudziesięciu iteracji:

