P5.12*
$$I_{rms} = \sqrt{\frac{1}{T} \int_{0}^{T} i^{2}(t) dt} = \sqrt{\frac{1}{4} \left(\int_{0}^{2} 25 dt + \int_{2}^{4} 4 dt \right)} = 3.808 A$$

P5.22*
$$v_1(t) = 100 \cos(\omega t)$$

$$v_2(t) = 100 \sin(\omega t) = 100 \cos(\omega t - 90^\circ)$$

$$V_1 = 100 \angle 0^\circ = 100$$

$$V_2 = 100 \angle - 90^\circ = -j100$$

$$V_3 = V_1 + V_2 = 100 - j100 = 141.4 \angle - 45^\circ$$

$$v_s(t) = 141.4 \cos(\omega t - 45^\circ)$$

V₂ lags V₁ by 90° V_s lags V₁ by 45° V_s leads V₂ by 45°

P5.25
$$V_m = 15 \text{ V}$$
 $T = 20 \text{ ms}$ $f = \frac{1}{T} = 50 \text{ Hz}$ $\omega = 2\pi f = 100\pi \text{ rad/s}$ $\theta = -360^{\circ} \frac{t_{\text{max}}}{T} = 72^{\circ}$ $v(t) = 15 \cos(100\pi t + 72^{\circ}) \text{ V}$ $V = 15 \angle 72^{\circ} \text{ V}$ $V_{rms} = \frac{15}{\sqrt{2}} = 10.61 \text{ V}$

P5.34 (a) Notice that the current is a sine rather than a cosine.

$$V = 100 \angle 30^{\circ}$$
 $I = 2.5 \angle -60^{\circ}$ $Z = \frac{V}{T} = 40 \angle 90^{\circ} = j40$

Because Z is pure imaginary and positive, the element is an inductance.

$$\omega = 200$$
 $L = \frac{|Z|}{\omega} = 200 \text{ mH}$

(b) Notice that the voltage is a sine rather than a cosine.

$$V = 100 \angle -60^{\circ}$$
 $I = 4 \angle 30^{\circ}$ $Z = \frac{V}{T} = 25 \angle -90^{\circ} = -j25$

Because Z is pure imaginary and negative, the element is a capacitance.

$$\omega = 200$$
 $C = \frac{1}{|Z|\omega} = 200 \ \mu F$

(c)
$$V = 100 \angle 30^{\circ}$$
 $I = 5 \angle 30^{\circ}$ $Z = \frac{V}{T} = 20 \angle 0^{\circ} = 20 + j0$

Because Z is pure real, the element is a resistance of 20 Ω .

5.35 (a) From the plot, we see that $T=4\,\mathrm{ms}$, so we have $f=1/T=250\,\mathrm{Hz}$ and $\omega=500\,\pi$. Also, we see that the current lags the voltage by 1 ms or

90°, so we have an inductance. Finally, $\omega L = V_m / I_m = 5000 \ \Omega$, from which we find that $L = 3.183 \ H$.

(b) From the plot, we see that $\mathcal{T}=16\,$ ms, so we have $f=1/\mathcal{T}=62.5\,$ Hz and $\omega=125\pi$. Also, we see that the current leads the voltage by 4 ms or 90°, so we have a capacitance. Finally, $1/\omega\mathcal{C}=V_m$ / $I_m=2500\,\Omega$, from which we find that $\mathcal{C}=1.019\,\mu\text{F}$.

P5.36 (a)
$$Z = \frac{V}{T} = 20 \angle -90^{\circ} = -j20$$

Because Z is pure imaginary and negative, the element is a capacitance.

$$\omega = 1000$$
 $C = \frac{1}{|Z|\omega} = 50 \mu F$

(b)
$$Z = \frac{V}{I} = 10 \angle 90^{\circ} = j10$$

Because Z is pure imaginary and positive, the element is an inductance.

$$\omega = 1000$$
 $L = \frac{|Z|}{\omega} = 10 \text{ mH}$

(c)
$$Z = \frac{V}{I} = 20 \angle 0^{\circ} = 20$$

Because Z is pure real, the element is a resistance of 20 Ω_{\cdot}

P5.38*

$$\mathbf{I} = \frac{\mathbf{V}_s}{R + j\omega L}$$

$$= \frac{10 \angle 0^{\circ}}{100 + j100}$$

$$= 70.71 \angle -45^{\circ} \text{ mA}$$

$$\mathbf{V}_R = R\mathbf{I} = 7.071 \angle -45^{\circ} \text{ V}$$

$$\mathbf{V}_L = j\omega L\mathbf{I} = 7.071 \angle 45^{\circ} \text{ V}$$

$$\mathbf{I} \text{ lags } \mathbf{V}_s \text{ by } 45^{\circ}$$

P5.45*
$$\mathbf{I}_{s} = 10 \angle 0^{\circ} \text{ mA}$$

$$\mathbf{V} = \mathbf{I}_{s} \frac{1}{1/R + 1/j\omega L + j\omega C}$$

$$= 10^{-2} \frac{1}{1/1000 - j0.005 + j0.005}$$

$$= 10 \angle 0^{\circ} \text{ V}$$

$$\mathbf{I}_{R} = \mathbf{V}/R = 10 \angle 0^{\circ} \text{ mA}$$

$$\mathbf{I}_{L} = \mathbf{V}/j\omega L = 50 \angle -90^{\circ} \text{ mA}$$

$$\mathbf{I}_{C} = \mathbf{V}(j\omega C) = 50 \angle 90^{\circ} \text{ mA}$$

$$\mathbf{I}_{C} = \mathbf{V}(j\omega C) = 50 \angle 90^{\circ} \text{ mA}$$

The peak value of $i_L(t)$ is five times larger than the source current! This is possible because current in the capacitance balances the current in the inductance (i.e., $\mathbf{I}_L + \mathbf{I}_C = 0$).

5.46
$$\mathbf{I}_{s} = 0.5 \angle -90^{\circ}$$

$$\mathbf{V} = \mathbf{I}_{s} \frac{1}{1/200 + 1/j100}$$

$$= 44.72 \angle -26.56^{\circ}$$

$$\mathbf{I}_{R} = \mathbf{V}/R = 0.2236 \angle -26.56^{\circ}$$

$$\mathbf{I}_{L} = \mathbf{V}/j\omega L = 0.4472 \angle -116.56^{\circ}$$

$$\mathbf{V} \mid \text{eads } \mathbf{I}_{s} \text{ by } 63.44^{\circ}$$

P5.51 $Z_{total} = J\omega L + \frac{1}{1/R + J\omega C}$ $= J100 + \frac{1}{0.01 + J0.01}$ = J00 + J50 = 50 + J50 $= 70.71 \angle 45^{\circ}$ $\mathbf{I} = \frac{100 \angle 0^{\circ}}{Z_{total}} = 1.414 \angle -45^{\circ}$ $\mathbf{I}_{R} = \mathbf{I} \frac{Z_{C}}{R + Z_{C}} = (1.414 \angle -45^{\circ}) \times \frac{-J100}{100 - J100}$ $= 1\angle 0^{\circ}$ $\mathbf{I}_{C} = \mathbf{I} \frac{R}{R + Z_{C}} = (1.414 \angle -45^{\circ}) \times \frac{100}{100 - J100}$ $= 1\angle 0^{\circ}$