MDM Lista 3

Weronika Jakimowicz

ZAD 1.

JEDYNOSC O CO CHODZI

Poprawność wzoru

$$f(n) = n - 1 + f(\lceil \frac{n}{2} \rceil) + f(\lfloor \frac{n}{2} \rfloor)$$

pokażę przez indukcję.

Dla n = 2

$$f(2) = \sum_{k=1}^{2} \lceil \log_2 k \rceil = 1$$
$$2 - 1 + f(1) + f(1) = 1 + 0 + 0 = 1 = f(2)$$

czyli się zgadza.

Załóżmy teraz, że wzór zachodzi dla pierwszych n wyrazów. Pokażemy, że wówczas zachodzi również dla wyrazu n+1. Rozważmy dwa przypadki:

I. 2|n+1, wtedy możemy zapisać n+1=2k+2 oraz n=2k+1 dla pewnego $k\in\mathbb{N}$.

$$\begin{split} f(n+1) &= \sum_{k=1}^{n+1} \lceil \log_2 k \rceil = f(n) + \lceil \log_2 n + 1 \rceil \stackrel{ind}{=} \\ &\stackrel{ind}{=} n - 1 + f(\lceil \frac{n}{2} \rceil) + f(\lfloor \frac{n}{2} \rfloor) + \lceil \log_2 n + 1 \rceil = \\ &= n - 1 + f(k+1) + f(k) + \lceil \log_2 2(k+1) \rceil = \\ &= n - 1 + \sum_{i=1}^{k+1} \lceil \log_2 i \rceil + \sum_{i=1}^{k} \lceil \log_2 i \rceil + \lceil 1 + \log_2 k + 1 \rceil = \\ &= n - 1 + \sum_{i=1}^{k+1} \lceil \log_2 i \rceil + \sum_{i=1}^{k} \lceil \log_2 i \rceil + 1 + \lceil \log_2 k + 1 \rceil = \\ &= (n+1) - 1 + \sum_{i=1}^{k+1} \lceil \log_2 i \rceil + \sum_{i=1}^{k+1} \lceil \log_2 i \rceil = \\ &= (n+1) - 1 + f(\lceil \frac{n+1}{2} \rceil) + f(\lfloor \frac{n+1}{2} \rfloor) \end{split}$$

II. $2 \nmid n+1$, czyli, dla pewnego $k \in \mathbb{N}$, mamy n+1=2k+1 i n=2k. Zauważmy, że wtedy $\lceil \log_2 n+1 \rceil = \lceil \log_2 n+2 \rceil$.

$$\begin{split} f(n+1) &= \sum_{k=1}^{n+1} \lceil \log_2 k \rceil = f(n) + \lceil \log_2 n + 1 \rceil \stackrel{ind}{=} \\ &\stackrel{ind}{=} n - 1 + f(\lceil \frac{n}{2} \rceil) + f(\lfloor \frac{n}{2} \rfloor) + \lceil \log_2 n + 1 \rceil = \\ &= n - 1 + f(k) + f(k) + \lceil \log_2 2k + 1 \rceil = \\ &= n - 1 + \sum_{i=1}^{k} \lceil \log_2 i \rceil + \sum_{i=1}^{k} \lceil \log_2 i \rceil + \lceil \log_2 2(k+1) \rceil = \\ &= n - 1 + \sum_{i=1}^{k} \lceil \log_2 i \rceil + \sum_{i=1}^{k} \lceil \log_2 i \rceil + \lceil 1 + \log_2 k + 1 \rceil = \\ &= n - 1 + \sum_{i=1}^{k} \lceil \log_2 i \rceil + \sum_{i=1}^{k} \lceil \log_2 i \rceil + 1 + \lceil \log_2 k + 1 \rceil = \end{split}$$

$$\begin{split} &= (n+1) - 1 + \sum_{i=1}^{k} \lceil \log_2 i \rceil + \sum_{i=1}^{k+1} \lceil \log_2 i \rceil = \\ &= (n+1) - 1 + f(\lfloor \frac{n+1}{2} \rfloor) + f(\lceil \frac{n+1}{2} \rceil) \end{split}$$

ZAD 2.

ZAD 3.

I. istnienie takiego zapisu:

Dla n = 1 mamy

$$1 = 1 \cdot 1 = 1 \cdot F_2$$
.

Załóżmy, że jest to prawdą również dla wszystkich liczb naturalnych do n włącznie. Niech wtedy k będzie największą liczbą naturalną taką, że

$$F_k < n$$

Jeżeli $n=F_k$, to zapis jest oczywisty. W przeciwnym wypadku, liczba $m=n-F_k$ jest liczbą naturalną mniejszą niż n, a więc z założenia indukcyjnego możemy ją zapisać tak jak w poleceniu.