凸优化 20181121 课后作业

一、自学内容

教材 11.1、11.2、11.3 (相关内容下次上课利用 15 分钟随堂测验)

二、作业题

1. 考虑等式约束优化问题

min
$$f(x) = \sum_{i=1}^{n} x_i \log x_i$$

s.t. $Ax = b$

其中 $\operatorname{dom} f = R_{++}^n$, $A \in R^{m \times n}$, m < n 。

- (1) 采用标准 Newton 法求解上述问题在 $m=30,\ n=100$,可行初始点为 x_0 时的最优解 x^* 和 p^* 。采用回溯直线搜索,合理选择回溯参数,要求误差 $\eta=10^{-10}$,并画出 $\log(f(x^{(k)}-p^*))$ 和迭代次数 k 的关系图。
- (2) 采用不可行初始点 Newton 法求解上述问题在 $m=30,\ n=100$,不可行初始点为 x_1 时的最优解 x^{**} 和 p^{**} 。采用回溯直线搜索,合理选择回溯参数,要求误差 $\eta=10^{-10}$,并画出 $\log(f(x^{(k)}-p^{**}))$ 和迭代次数 k 的关系图。

要求:编写程序,在 Newton 法中利用教材 521 页的消元法和 Cholesky 因式分解方法求解 KKT 系统的逆矩阵。

若对作业有任何问题,请及时与助教联系。

说明

- 1、 本次作业均为编程题,需要提交 MATLAB 程序和计算结果的电子版,以及计算结果的 说明文档。并通过网络学堂"课程作业"。请使用文件夹中提供的数据求解。
- 2、 log指以自然对数为底的对数。
- 3、关于 Cholesky 因式分解程序需自己编写,不能调用 Matlab 中相关函数。
- 4、提交作业时保证程序可直接在文件夹中运行。