Electric Power & Power Measurement (Lab 9)

Calculating Power Consumption

Leonardo Fusser, 1946995

Experiment Performed on 28 October 2019
Report Submitted on 4 November 2019

Department of Computer Engineering Technology Circuit Analysis & Simulation I Mohamed Tavakoli

TABLE OF CONTENTS

1.0 Purpose	3
2.0 Equipment Needed	
3.0 Theory	
4.0 Experiemntal Results	
5.0 Conclusion	

1.0 Purpose

- Understand the concept of the Voltage Divider Rule.
- Calculating voltage of resistors using *Voltage Divider Rule*.
- Understanding the concept of Electric Power and Power Measurement.
- > Calculating power consumed by resistors in a circuit.

2.0 EQUIPMENT NEEDED

- ➤ (1x) desktop Power Supply.
- > (1x) desktop Digital Multimeter.
- > (3x) 4-band (1/4 watt) resistors.
- > (1x) electronics breadboard.

3.0 THEORY

Electric Power & Measurement

➤ <u>POWER</u> is an indication of how much work (conversion of energy from one form to another) can be done in a specified amount of time. In other words, POWER is a rate of doing work. The work is measured in joules (J) and time elapsed is measured in seconds (s). Therefore, POWER is measured in joules/second (J/s). The electrical unit of measurement for POWER is watts (w). So therefore:

1 watt (W) = 1 joule/second (J/s)

[POWER is determined by:]

$$P = \frac{W}{t}$$

* (That is, POWER is Work/Second and unit is watts)

[POWER is calculated by:]

$$P = V * I$$

$$P = I^2 * R$$

$$P = \frac{V^2}{R}$$

4.0 EXPERIEMNTAL RESULTS

Results from the Procedure section:

First Experiment:

<u>PROCEDURE:</u> $(V_S = 6V)$ (Use Circuit Fig.1 from above)

Step 1: Measure the values of the resistors and copy to Table 1.

Step 2: Calculate the voltages of each resistor using the *Voltage Divider Rule* and copy to Table

Step 3: Calculate the current in each resistor and write in Table 1.

Step 4: Build the circuit of Fig.1.

Step 5: Ask your teacher to verify your circuit before you connect power supply.

Step 6: Set the voltage source to 6V and limit the current to 500mA.

Step 7: Measure the voltages of each resistor and copy to Table 1.

Step 8: Measure the current of each resistor and copy to Table 1.

Step 9: Calculate the power dissipated in each resistor and record to Table 1.

Table 1

$R_T = 3K\Omega$	3KΩ Voltage Current						
Resistor	Value	Calculated	Measured	%Error	Calculated	Measured	Power
R1	1ΚΩ	2V	2V	0%	2mA	2mA	4mW
R2	2ΚΩ	4V	4V	0%	2mA	2mA	8mW

CALCULATIONS:

[Calculated Voltage]

$$V_{X} = \frac{R_{X} * V_{S}}{R_{T}}, = \frac{1K\Omega * 6V}{3K\Omega} = \frac{2V}{V_{X}}$$

$$V_{X} = \frac{R_{X} * V_{S}}{R_{T}}, = \frac{2K\Omega * 6V}{3K\Omega} = \frac{4V}{V_{X}}$$

[%Error Voltage]

%Error =
$$\frac{Measured-Calculated}{Calculated}$$
 * 100 = $\frac{2V-2V}{2V}$ * 100 = 0%

%Error =
$$\frac{Measured-Calculated}{Calculated}$$
 * 100 = $\frac{4V-4V}{4V}$ * 100 = 0%

[Calculated Current]

$$V = I*R, 2 = I*1K\Omega, I = 2mA$$

$$V = I*R, 4 = I*2K\Omega, I = 2mA$$

[Calculated Power]

$$P = V*I, P = 2V * 2mA, P = 4mW$$

$$P = V*I, P = 4V * 2mA, P = 8mW$$

Second Experiment:

Fig.2.

PROCEDURE: (V_s = 6V) (Use Circuit Fig.2.)

- Step 1: Set the Voltage and the Current limit to the same parameters as done with the previous experiment.
- Step 2: Connect a voltmeter and ammeter to Fig.1 to make the circuit of Fig.2.
- Step 3: Turn on the power and read voltage and current of R2. Record to Table 2.
- Step 4: Calculate the power dissipated in R2 and record in Table 2.
- Step 5: Measure the Voltage and current of R1 and record in Table 2.
- Step 6: Calculate the power dissipated in R1 and record in Table 2.
- Step 7: Compare the result with powers from Table 1.

Table 2

		Voltage	Current	
Resistor	Value	Measured	Measured	Power
R1	1ΚΩ	2V	2mA	4mW
R2	2ΚΩ	4V	2mA	8mW

Third Experiment:

Fig.3.

PROCEDURE: Open Circuits Voltages

Step 1: Make the circuit of Fig.3.

Step 2: Set the source Voltage to 6V and limit the Current to 500mA.

Step 3: Measure the voltages V_{AB} , V_{DB} , V_{CB} , V_1 , V_2 and V_3 .

Step 4: Record your result in Table 3.

Table 3

V _{AB}	V_{DB}	V_{CB}	V_1	V_2	V ₃
6V	1.5V	4.5V	1.5V	3V	1.5V

5.0 Conclusion

- Purpose of this lab has been achieved.
- Understood the concept of the Voltage Divider Rule.
- ➤ Understood how to measure voltage of resistors using the *Voltage Divider Rule*.
- Understood the concept of Electric Power and Measurement.
- Understood how to calculate Power consumed by elements in a circuit.
- Used advanced functions on the lab equipment to facilitate my experiments.