Instituto Superior Técnico

Análise e Síntese de Algoritmos

Ano Lectivo 2021/2022

1º Exame

RESOLUÇÃO

Cotação: 4 + 4 + 4 + 4 + 4 = 20 val.

A) Dado um conjunto de inteiros $V = \{v_1, ..., v_n\}$, pretende determinar-se se é possível dividir V em três subconjuntos disjuntos de modo a que a somas dos seus elementos coincidam. Formalmente, pretende determinar-se se existem três conjuntos V_1 , V_2 e V_3 tais que: (1) $V = V_1 \cup V_2 \cup V_3$; (2) $V_1 \cap V_2 = V_2 \cap V_3 = V_1 \cap V_3 = \emptyset$; and (3) $\sum_{v \in V_1} v = \sum_{v \in V_2} v = \sum_{v \in V_3} v$. Por exemplo, o conjunto $\{1, 2, 4, 5, 6\}$ pode ser dividido nos subconjuntos: $\{1, 5\}$, $\{2, 4\}$ e $\{6\}$, todos com soma 6.

Nota: Admite-se, para simplificar a formulação do problema, que os elementos do conjunto dado como input estão indexados, sendo que se denota por v_i o i-ésimo elemento do conjunto.

- 1. Seja $B^{(m)}(k_1,k_2)$ o booleano que indica se existem dois conjuntos disjuntos V_1' e V_2' contidos no conjunto $\{v_1,...,v_m\}$, com $m \leq n$, tais que: $\sum_{v \in V_1'} v = k_1$ e $\sum_{v \in V_2'} = k_2$. Por exemplo, dado o conjunto $\{1,2,4,5,6\}$, temos que:
 - $B^{(4)}(6,6) =$ true, basta escolher $V'_1 = \{1,5\}$ e $V'_2 = \{2,4\};$
 - $B^{(4)}(3,5) =$ true, basta escolher $V_1' = \{1,2\}$ e $V_2' = \{5\}$;
 - $B^{(4)}(2,3) =$ false.

Defina $B^{(m)}(k_1, k_2)$ recursivamente completando os campos em baixo:

$$B^{(m)}(k_1, k_2) = \begin{cases} \text{false} & \text{se } ((k_1 \neq 0) \lor (k_2 \neq 0)) \land m = 0 \\ & \text{se } k_1 = 0 \land k_2 = 0 \end{cases}$$

$$B^{(m-1)}(k_1 - v_m, k_2) \lor \qquad \qquad \lor \qquad \qquad c.c.$$

Admite-se para facilitar a formulação que $B^{(m)}(k_1, k_2) =$ false quando $k_1 < 0$ ou $k_2 < 0$.

2. Complete o template de código em baixo que, dados dois inteiros k_1 e k_2 , calcula a matriz $B^{(0)}(k_1, k_2)$.

$\mathbf{t} \ B[0k_1, 0]$		

3. Complete o template de código em baixo que, dado um conjunto de inteiros $V = \{v_1, ..., v_n\}$ e dois inteiros k_1 e k_2 , calcula o valor booleano $B^{(n)}(k_1, k_2)$.

```
 \begin{aligned} & \text{DoublePartition}(v[1..n], k_1, k_2) \\ & \text{let } B^{(0)} \coloneqq \text{InitMatrix}(k_1, k_2) \\ & \text{for } l = 1 \text{ to } n \text{ do} \\ & \text{let } B^{(l)} \text{ be a new matrix of size } (k_1 + 1) \times (k_2 + 1) \end{aligned}   = \text{endfor}
```

- 4. Determine a complexidade assimptótica do algoritmo proposto na alínea anterior.
- 5. Explique por palavras como obter a solução para o problema original a partir do algoritmo proposto na alínea 3.

Solução:

return $B^{(n)}[k_1, k_2]$

1.

$$B^{(m)}(k_1,k_2) = \begin{cases} \text{ false } & \text{se } ((k_1 \neq 0) \lor (k_2 \neq 0)) \land m = 0 \\ \text{true } & \text{se } k_1 = 0 \land k_2 = 0 \\ B^{(m-1)}(k_1 - v_m, k_2) \lor B^{(m-1)}(k_1, k_2 - v_m) \lor B^{(m-1)}(k_1, k_2) \text{ c.c.} \end{cases}$$

2. InitMatrix (k_1,k_2) let $B[0..k_1,0..k_2]$ be a new matrix of size $(k_1+1)\times(k_2+1)$ for i=0 to k_1 do
for j=0 to k_2 do $B[i,j]:= \mathbf{false}$ endfor
endfor $B[0,0]:= \mathbf{true}$ return B

3.

```
DoublePartition(v[1..n], k_1, k_2)
  let B^{(0)} := InitMatrix(k_1, k_2)
  for l = 1 to n do
     let B^{(l)} be a new matrix of size (k_1 + 1) \times (k_2 + 1)
     for i = 0 to k_1 do
        for j = 0 to k_2 do
           if(i == 0 \land j == 0){
              B^{(l)}[i, j] := true
           } else{
             b := B^{(l-1)}[i, j]
             \mathbf{if}(i \geq v[l]){
                b := b \vee B^{(l-1)}[i - v[l], j]
             \mathbf{if}(j \ge v[l]){
                b := b \vee B^{(l-1)}[i, j - v[l]]
             B^{(l)}[i,j] := b
        endfor
     endfor
  endfor
  return B^{(n)}[k_1, k_2]
```

- 4. Complexidade: $O(n.k_1.k_2)$. O algoritmo tem de preencher n+1 matrizes cada uma com dimensão $(k_1+1)\times (k_2+1)$.
- 5. Dado um conjunto de inteiros $V = \{v_1, ..., v_n\}$, começamos por calcular a soma dos elementos do conjunto: $\bar{v} = \sum_{v \in V} v$. Depois, calculamos a divisão inteira de \bar{v} por 3. Se 3 não divide \bar{v} , o algoritmo retorna **false**. Caso contrário, seja k o valor do quociente obtido, i.e. $3 * k = \bar{v}$, a resposta ao problema proposto é dada por: DoublePartition(v[1..n], k, k).

- **B)** O gestor de pessoal do Hospital Central de Caracolândia foi encarregue de fazer a atribuição de cirurgiões a blocos operatórios para o próximo mês tendo em conta as restrições indicadas em baixo:
 - O hospital dispõe de k cirurgiões $\{C_1, ..., C_k\}$.
 - O calendário mensal hospitalar é constituído por n slots para cirurgias $\{S_1, ..., S_n\}$.
 - O hospital dispõe de m blocos operatórios $\{B_1, ..., B_m\}$, sendo que cada bloco operatório B_i está apenas disponível nos slots contidos no conjunto de slots $\mathbf{BSlots}(B_i)$.
 - Cada cirurgião C_i pode apenas efectuar cirurgias nos blocos operatórios contidos no conjunto $\mathbf{CBlocks}(C_i)$.
 - Nenhum cirurgião pode efectuar mais de max cirurgias por mês.
 - Cada cirurgia envolve um único cirurgião.

O objectivo do gestor hospitalar é maximizar o número de cirurgias efectuadas, respeitando as restrições do problema, admitindo que: m < k < n.

- 1. Modele o problema descrito em cima como um problema de fluxo máximo. A resposta deve incluir o procedimento utilizado para determinar o conjunto de tuplos da forma (C_i, S_j, B_l) , indicando que o cirugião C_i vai efectuar uma cirurgia no bloco B_l no slot S_j .
- 2. Indique o algoritmo que utilizaria para a calcular o fluxo máximo, bem como a respectiva complexidade assimptótica medida em função dos parâmetros do problema: número de cirurgiões k, número de slots n e número de blocos operatórios m. De entre os algoritmos de fluxo estudados nas aulas deve escolher aquele que garanta a complexidade assimptótica mais baixa para o problema em questão. Nota: A resposta deverá necessariamente incluir as expressões que definem os limites superiores assimptóticos para o número de vértices e de arcos da rede de fluxo proposta (|V| e |E|, respectivamente) em função dos parâmetros do problema, bem como um upper-bound para o valor do fluxo máximo.

Solução:

1. Construção da rede de fluxo G=(V,E,w,s,t). Na construção da rede de fluxo consideramos um vértice por cirurgião, um vértice por cada par bloco-slot compatíveis e dois vértices adicionais s e t, respectivamente a fonte e o sumidouro. Formalmente:

```
\begin{split} V &= \{C_i \mid 1 \leq i \leq k\} \\ &\quad \cup \{CS_{ij} \mid 1 \leq i \leq k \land 1 \leq j \leq n \land \} \\ &\quad \cup \{SB_{ij} \mid 1 \leq i \leq n \land 1 \leq j \leq m \land S_i \in \mathbf{BSlots}(B_j)\} \\ &\quad \cup \{s,t\} \end{split} \qquad \text{Um v\'ertice por cirurgião}
```

 $E = \{(s, C_i, \mathbf{max}) \mid_{i=1}^k \}$ Cada cirurgião pode fazer \mathbf{max} cirurgias cirurgiões e slots $\cup \{(C_i, CS_{ij}, 1) \mid_{i=1}^k \mid_{j=1}^n \}$ Elocos e slots $\cup \{(SB_{ij}, t, 1) \mid_{i=1}^n \mid_{j=1}^m \}$ Elocos e slots Blocos e slots Blocos e slots

A resposta deve incluir o tuplo (C_i, S_j, B_l) sse $f^*(CS_{ij}, SB_{il}) = 1$.

$2. \ \ Complex idade:$

- |V| = k + k.n + m.n + 2 = O(k.n)
- $|E| \le k + k.n + k.n.m + m.n = O(k.m.n)$
- $|f^*| \le m.n = O(m.n)$
- Edmonds Karp (upper bound EK): $O(E^2.V) = O(k^3.m^2.n^3)$
- Relabel-To-Front: $O(k^3.n^3)$

O limite mais apertado é obtido pelo upper bound do método de FF, pelo que podemos utilizar qualquer implementação do método Ford-Fulkerson.

C) Uma família com n membros $\{M_1, ..., M_n\}$ prepara-se para cozinhar a maior pizza de sempre. Para tal têm de escolher os ingredientes a incluir na pizza de entre k ingredientes disponíveis $\{I_1, ..., I_k\}$. Cada familiar M_i deve indicar os ingredientes que não deseja incluir na pizza e os ingredientes que deseja incluir. Assim sendo, associamos a cada familiar M_i um par com dois conjuntos de ingredientes, (C_i, C'_i) , onde C_i contém os ingredientes a incluir e C'_i os ingredientes a excluir.

Tratando-se de uma família pouco conflituosa para que um familiar se considere satisfeito basta que uma das suas escolhas seja atendida: um dos seus ingredientes preferidos seja incluído ou um dos preteridos não o seja. Por exemplo, suponha que o pai quer fiambre e queijo e não quer ananás; para que a pizza escolhida satisfaça o pai, basta que contenha fiambre ou queijo ou não contenha ananás.

O problema da escolha de ingredientes para pizza, **PizzaIngredients**, consiste em determinar se existe um conjunto de ingredientes que satisfaça todos os membros da família e é modelado formalmente através do seguinte problema de decisão:

PizzaIngredients = $\{\langle \mathcal{I} \rangle \mid \text{ existe uma escolha de ingredientes compatível com } \mathcal{I} \}$

Onde \mathcal{I} denota o conjunto de pares que representam as escolhas da família.

- 1. Mostre que o problema PizzaIngredients está em NP.
- 2. Mostre que o problema da escolha dos ingredientes é NP-difícil por redução a partir do problema 3-CNFSAT estudado nas aulas. Não é necessário provar formalmente a equivalência entre os dois problemas; é suficiente indicar a redução e a respectiva complexidade.

Solução:

- 1. Certificado: o conjunto X de ingredientes a incluir.
 - Tamanho do Certificado: $|X| \in O(k)$
 - Algoritmo de verificação: Verificar se X é compatível com cada elemento do conjunto \mathcal{I} . Começamos por calcular o conjunto $\bar{X} = \{I_1, ..., I_k\} \setminus X$. Para cada par (C_i, C'_i) , verificamos se: $X \cap C_i \neq \emptyset$ ou $\bar{X} \cap C'_i \neq \emptyset$.
 - Complexidade do algoritmo de verificação: A intersecção de conjuntos faz-se em tempo linear, pelo que a verificação de cada par para custa: O(k). Assim, a verificação de todos os n pares faz-se em tempo O(k.n).
- 2. Há que mostrar que 3-CNFSAT \leq_P PizzaIngredients.
 - Redução: Cada cláusula corresponde a um membro da família e cada variável a um ingrediente. As variáveis negadas na cláusula correspondem aos ingredientes a excluir e as variáveis não negadas aos ingredientes a incluir. Por exemplo, a cláusula $(x_1 \vee \neg x_2 \vee x_3)$ é mapeada no par $(\{x_1, x_3\}, \{x_2\})$. A redução tem complexidade: O(n), onde n é o número de cláusulas.

- \mathbf{D}) Considere a aplicação do algoritmo de Prim a grafos com arcos de peso inteiro não negativo e limitado superiormente por uma dada constante X de valor pequeno. Neste caso, pode utilizar-se uma implementação alternativa da fila de prioridade mínima por forma a melhorar a complexidade assimptótica do algoritmo.
 - 1. Admitindo que as chaves a inserir na fila têm prioridade limitada por uma dada constante Z de valor pequeno, proponha uma implementação de uma fila de prioridade mínima com as seguintes operações e complexidades associadas:
 - ExtractMin(Queue q) $\in O(Z)$: extrai o elemento de prioridade mínima;
 - DecreaseKey(Queue q, Elem elem, int pri) $\in O(1)$: diminui a prioridade associada ao elemento elem na fila q para o valor pri;
 - MakeQueue(Elem[] elems) $\in O(n)$: cria uma fila de prioridade mínima com n elementos elems respeitando as prioridades que lhes estão associadas.

Não é necessário apresentar o pseudo-código. Basta fazer um diagrama que ilustre a estrutura da fila de prioridade e explicar por palavras a implementação das três operações. Pode admitir-se que cada elemento elem está associado a uma estrutura com os campos key e pri, que guardam respectivamente a sua chave e prioridade.

- 2. Admitindo que o peso dos arcos do grafo está limitado por uma dada constante X, qual o número máximo de prioridades distintas a manter na fila de prioridade?
- 3. Admitindo que as complexidades das operações associadas à fila de prioridade mínima são aquelas as dadas na alínea 1., indique a complexidade assimptótica do algoritmo de Prim. Deve justificar a resposta.

Solução:

1. Mantemos um vector com uma posição por prioridade e associamos a cada prioridade uma lista duplamente ligada com elementos com essa prioridade. Adicionalmente, guardamos a prioridade mínima associada a um elemento da fila. O diagrama que ilustra a implementação é dado em baixo:

Operações:

- ExtractMin(Queue q) $\in O(Z)$: remove o primeiro elemento da lista duplamente ligada associada à prioridade mínima.
- DecreaseKey(Queue q, Elem elem, int pri) $\in O(1)$: remove o elemento elem da lista duplamente ligada que o contém para depois o inserir na lista duplamente ligada associada à nova prioridade.

- MakeQueue(Elem[] elems) $\in O(n)$: todos os elementos são inseridos nas listas duplamente ligadas correspondentes às suas prioridades.
- 2. A fila de prioridade tem que manter no máximo X+2 prioridades distintas porque há que contar com a prioridade 0 e com a prioridade ∞ .
- 3. O algoritmo de Prim executa |V| iterações do ciclo principal que remove os vértices da fila de prioridade e |E| iterações do ciclo interior que percorres as adjacências de cada vértice. Todas as operações realizadas em cada iteração dos dois ciclos (DecreaseKey e ExtractMin) se fazem em tempo constante, pelo que a complexidade do algoritmo é agora O(V+E).

E) Considere a aplicação do algoritmo Push-Relabel à rede de fluxo que se apresenta em baixo:

Durante a resolução do exercício admita que k é um inteiro ímpar superior a 1.

- 1. Determine o número exacto de operações de push e relabel a ser efectuadas durante a aplicação do algoritmo em função de k, bem como o respectivo limite assimptótico superior.
- 2. Considere a seguinte heurística, designada por heurística de intervalo, a aplicar durante a execução do algoritmo:

Se existir uma altura 0 < k < |V| tal que nenhum vértice do grafo tem altura k, então é atribuída a todos os vértices $v \in V \setminus \{s, t\}$ com altura superior a k a altura: $\max(v.h, |V| + 1)$.

Determine o número exacto de operações de push e relabel a ser efectuadas durante a aplicação do algoritmo de Push-Relabel ao grafo da figura em função de k considerando a aplicação da heurística de intervalo, bem como o respectivo limite assimptótico superior.

3. Recorde o invariante de *função de altura* usado para estabelecer a correcção do algoritmo de Push-Relabel. Mostre que a aplicação da heurística de intervalo ao grafo apresentado não viola este invariante.

Solução:

1. Para contar o número de pushes e relabels, é útil estabelecer primeiro o número de travessias de ida-e-volta do grafo. As alturas dos vértices v_1 e v_k variam da seguinte maneira:

Travessia	$h(v_1)$	$h(v_k)$
0	0	0
1	1	2
2	3	4
:	:	:
i	2i - 1	2i

Paramos de empurrar fluxo da esquerda para a direita quando $h(v_1) = h(s) = k+2$. Resolvendo para i obtemos: $2i - 1 = k + 2 \Leftrightarrow i = \frac{k+3}{2}$. Contamos o número de pushes e relabels por travessia:

Travessia	# Pushes	# Relabels
0	2.(k-1)+2	2.(k-1)+1
1	$ \begin{array}{ c c } 2.(k-1) + 2 \\ 2.(k-1) \end{array} $	2.(k-1)
2	2.(k-1)	2.(k-1)
:	:	:
$\frac{k+3}{2}$	2.(k-1)+1	2.(k-1)+1
Total:	(k+3).(k-1)+3	(k-1).(k+3)+2

Na primeira travessia temos 2 pushes adicionais (de s para v_1 e de v_k para t) e 1 relabel adicional (de $h(v_k)$ para 1). Na última travessia temos 1 push adicional (de v_1 para s) e 1 relabel adicional (de $h(v_1)$ para s).

- 2. No final da primeira ida-e-volta todos os vértices intermédios têm altura 2 excepto o vértice v_1 que tem altura 1. Quando a altura de v_1 é subida para 3, estamos nas condições da heurística de intervalo e a altura de todos os vértices é subida para k+3. Contamos apenas os pushes e relabels da primeira ida-e-volta, incluindo os relabels da aplicação da heurística:
 - Número de pushes: 2(k-1)+3
 - Número de relabels: 2(k-1) + 2 + k = 3k
- 3. O invariante de altura estabelece que $(u, v) \in E_f$ então $h(u) \leq h(v) + 1$. Para mostrarmos que aplicação da heurística não viola o invariante de altura consideramos a rede residual no momento da aplicação da heurística e as novas alturas obtidas. A rede residual é composta por 4 tipos de arcos:
 - (t, v_k) : $h(t) = 0 \le h(v_k) + 1 = k + 3 + 1 = k + 4$
 - (v_i, v_{i+1}) : $h(v_i) = k+3 \le h(v_{i+1}) + 1 = k+4$
 - (v_{i+1}, v_i) : $h(v_{i+1}) = k+3 \le h(v_i)+1 = k+4$
 - (v_1, s) : $h(v_1) = k + 3 \le h(s) + 1 = k + 3$

Número:______ Nome:______ 11/11