1 Общие слова о линейных кодах

Пусть задано продмножество $\mathfrak{K}\subset V_n$ множества двоичнх векторов длины n, называемое кодом и пусть задана матрица H.

Определение: (n,k)-кодом называется код со словами длиной n в каждом из которых содержится k информационных символов.

Определение: Линейным называется код, каждый вектор которого удовлетворяет уравнению $Hc^t=0$. Матрица H называется проверочной матрицей кода \mathfrak{K} .

Определение: Код называется групповым, если множество его слов образует группу.

Очевидно, что каждый линейный код является групповым (более того, множество его слов образует продпространоство в пространстве V_n).

Примеры:

1. Рассмотрим код с повторением. $\mathfrak{K} = \{(c_1, c_2, \dots, c_n) | c_1 = c_i, i = 1 \dots n\}$ Его проверочной матрицей будет

$$H = \begin{pmatrix} 1 & 1 & 0 & \dots & 0 \\ 1 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & 0 & \dots & 1 \end{pmatrix}$$

2. Код с проверкой на четность. $\mathfrak{K} = \{(c_1, c_2, \dots, c_n) | c_n = \sum_{i=1}^{n-1} c_i\}$ Проверочная матрица:

$$H = (1, 1, \dots, 1)$$

Определение: Будем говорить что проверочная матрица записана в каноническом виде если H = (A|-I), где I – единичная матрица

В случае когда проерочная матрица записана в каноническом виде очень просто отделить информационные и и проверочные символы: первые k – информационные, остальные – проверочные.

Пусть $u = (\alpha_1, \alpha_2, \dots, \alpha_k)$ – исхоное информационное слово. Тогда

$$c^t = \begin{pmatrix} I \\ -- \\ -A \end{pmatrix} u^t$$

Транспонировав равенство получим c=uG, где $G=(I|-A^t)$. Матрица G называется порождающей матрицей. Из полученного результата сразу вытекает следующий результат Матрицы G и H связаны соотношением $HG^t=0$.

На самом деле матрица G иметь такой вид не обязана. Это справедливо для кодов с матрицей H в каноническом виде, то есть для систематических кодов.

Есть более общий способ получить матрицу G.

Посмотрим на равенство $Hc^t=0$ как на однородную систему линейных уравнений. Посмотрим базис решений этой системы, пусть это будут $\{e_1,e_2,\ldots,e_k\}$. Тогда любой вектор c мы сможем записать как линейную комбинацию этих векторов $c=\sum_{i=1}^k \alpha_i e_i$, где $\alpha_i\in\mathbb{Z}_2$. Далее запишем найденные решения в строки матрицы G. Таким образом получим порождающую матрицу.

Заметим, что раз строки матрицы G есть ничто иное как решение уравнения $Hc^t=0$, то получаем следующую теорему:

Теорема: Матрицы H и G связаны соотношением $HG^t = 0$.

2 Как определять и корректировать ошибки

Перед тем как идти дальше следует сделать несклько замечаний. Во-первых, имея информационное слово длины k мы не можем просто так выбрать кодирующую матрицу G.

Чтобы декодировать принятое сообщение c, формально, нам нужно найти его прообраз, а это ничто иное как решение системы уравнений uG=c. Это значит что rank G=k. Аналогично, rank H=n-k

Теорема: Пусть код $\mathfrak K$ имеет минимальное расстояние $\geq d \Leftrightarrow$ любые d-1 столбцов матрицы H линейно независимы.

Доказательство: $\square \Rightarrow 3$ аметим что минимальное расстояние линейного кода равно минимальному весу его ненулевого слова.

Пусть $w(\mathfrak{K}) = d$, и пусть $c = (\alpha_1, \alpha_2, \dots, \alpha_n) \in \mathfrak{K}$ – кодовое слово и $H = (h_1, h_2, \dots, h_n)$ – проверочная матрица кода $(h_i$ – столбцы H). Из соотношения $Hc^t = 0$ имеем $\alpha_1 h_1 + \alpha_2 h_2 + \dots + \alpha_n h_n = 0$. Пусть w(c) = d. Тогда существует ровно d линейно зависимых столбцов проверочной матрицы.

Пусть теперь известно что t столбцов матрицы H линейнозависимы, то есть справедливо равенство

$$\varepsilon_{i_1}h_{i_1} + \varepsilon_{i_2}h_{i_2} + \dots \varepsilon_{i_t}h_{i_t} = 0.$$

Это значит что существует вектор x такой что на позициях $i_j, j = 1 \dots t$ у него стоят 1, а на других 0.

Значит для такого вектора x справедливо равенство $Hx^t=0$, тогда, с учетом того что $w(\mathfrak{K})=d$, получаем $t\geq d$. Следовательно любые d-1 столбцов матрицы H линейно независимы.

 \Leftarrow Обратно, пусть любые d-1 столбцов H – линейнонезависимы, тогда если $c\in\mathfrak{K},$ то $w(c)\geq d.$

Будем считать что шум в канале просто прибавлет к нашему слову c вектор ошибки e. Пусть полученное слово будет y=c+e. Тогда справедлива

Теорема: Групповой код \mathfrak{K} оставляет незамеченными те и только те ошибки, которые являются его элементами.

Предположим что при передаче оппибки происходят независимо друг от друга с вероятностью $q<\frac{1}{2}$. Тогда, воспользовавшись законом Бернулли, вероятность того что проихошло ровно w оппибок равна $C_n^w q^w (1-q)^{n-w}$.

Отсюда видно что при q < 1/2 вероятность появления шумового слова веса t меньше, чем вероятность появления шумового слова веса t-1.

Заметим что если происходит ошибка, то вектор ошибки будет находится в смещном классе $\Re + y$. Обратно, если c' + g = y, то $\Re + g = \Re + y$. Поэтому множество векторов ошибок в точности составлет смежный класс $\Re + y$.

Поэтому возникает следующаяя идея: выпишем все возможные элементы смежного класса $\mathfrak{K}+y$ и среди них выберем слово наименьшего веса, которое назовем лидером смежного класса. Справедлива

Теорема: Групповой код $\mathfrak K$ исправлет в точности те ошибки, которые являются лидерами смежных классов.

Сформулируем еще одну теорему о линейных кодах

Теорема: Линейны код исправлет одиночные ошибки тогда и только тогда когда все столбцы матрицы H отличны от нуля и различны.

Доказательство: $\square \Rightarrow \Pi$ усть $H = (h_1, h_2, \ldots, h_n)$ и $e_i = (0, 0, \ldots, 0, 1, 0, \ldots, 0)$, где 1 стоит на i позиции. Тогда $H(c+e_i) = Hc + He_i = h_i$. Так как нам нужно чтобы мы умели различать ошибку в позиции $i \neq j$, то столбец $h_i \neq h_j$ и $h_i \neq 0$ при всех i = 1..n.

 \Leftarrow Так как все столбцы матрицы H различны и отличны от нуля, то $H(c+e_i)=He_i=h_i$, то можно построить следующее соответствие

$$h_1 \to 1$$

$$h_2 \to 2$$

$$\vdots$$

$$h_n \to n$$

То есть если мы получили слово y и $Hy=h_i$ это значит что при передаче произошла ошибка в позиции i.

Результат применения матрицы H к полученному слову y называется синдромом ошибки.

Теорема: Пусть H — проверочная матрица кода \mathfrak{K} , тогда синдром ошибки S есть сумма столбцов соответствующих тем позициям в которых произошли ошибки. Два вектора x и y имеет одинаковый синдром, если они находятся в одном смежном классе.

Из теоремы следует что можество всех синдромов образует факторгруппу $\mathbb{Z}_2^n/\mathfrak{K}$.

Примеры: Построим код $\mathfrak K$ наибольшей длины r исправляющий ровно одну ошибку. Ненулевых двоичных слов длины r сущетсвует 2^r-1 штук. Разместим их матрице следующим образом (для r=3):

$$\begin{pmatrix}
0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1
\end{pmatrix}$$

В столбце с номером k стоит двоичная запись числа k. Тогда если мы прибавим вектор ошибки e_k , то соответствующий синдром будет представлять двоичную запись числа k, а значит, переведя его в десятичную, мы получим номер позиции в которой произошла ошибка.