7. Program to simmulate VLAN for a organization with 3 departments using 1900 Switch

/* Use the 1900 switch, connect 6 nodes A,B,C,D,E,F through ports 1 to 6 with ip address 10.0.0.1 to 10.0.0.6, Mask 255.0.0.0

/* check the connectivity between each nodes from A to F Ping 10.0.0.2, 3,4,5,6

/* Observe the vlans if any Switch1900#sh vlan

/* Define vlans in switch 1900

CISCO#config terminal CISCO(config)#vlan 10 name HR CISCO(config)#vlan 20 name Sales CISCO(config)#vlan 30 name IT

/* Observe the vlans Switch1900#sh vlan

/* Assign membership to vlan

CISCO(config)#int e0/1

CISCO(config-if)#vlan-membership static 10

CISCO(config)#int e0/2

CISCO(config-if)#vlan-membership static 10

CISCO(config)#int e0/3

CISCO(config-if)#vlan-membership static 20

CISCO(config)#int e0/4

CISCO(config-if)#vlan-membership static 20

CISCO(config)#int e0/5

CISCO(config-if)#vlan-membership static 30

CISCO(config)#int e0/6

CISCO(config-if)#vlan-membership static 30

CISCO#sh vlan

/* check the connectivity between each nodes from A to F Ping 10.0.0.2, 3,4,5,6

8. Program to simmulate VLAN for a organization with 3 departments using 1900 Switch fabric

Use the same procedure.

Add one more 1900 switch

Define same vlans & add membership

Add nodes to each of the port

Assign IP 10.0.0.7,8,9,10,11,12 with mask 255.0.0.0

Check the connectivity within same vlan and across the vlan spread over switch fabric.

9. Program to simmulate VLAN for a organization with 3 departments using 2950 Switch

CISCO#config terminal

CISCO(config)#vlan 10

CISCO(config-vlan)#name HR

CISCO(config-vlan)#exit

CISCO(config)#vlan 20

CISCO(config-vlan)#name Sales

CISCO(config-vlan)#exit

ISCO(config)#vlan 30

CISCO(config-vlan)#name IT

CISCO(config-vlan)#exit

Verify VLANs

CISCO#show vlan brief

VLAN Name Status Ports

1 default active Fa0/1, Fa0/2, Fa0/3, Fa0/4

Fa0/5, Fa0/6, Fa0/7, Fa0/8 Fa0/9, Fa0/10, Fa0/11, Fa0/12 Fa0/13, Fa0/14, Fa0/15, Fa0/16 Fa0/17, Fa0/18, Fa0/19, Fa0/20 Fa0/21, Fa0/22, Fa0/23, Fa0/24

Gi0/1, Gi0/2

10 HR active 20 Sales active

30 IT Active

1002 fddi-default act/unsup

1003 token-ring-default act/unsup

1004 fddinet-default act/unsup

1005 trnet-default act/unsup

Note: All ports of the switch are member of VLAN 1 by default.

To Assign Ports to Different VLANs:

CISCO(config)#interface fa0/1

CISCO(config-if)#switchport mode access

CISCO(config-if)#switchport access vlan 10

CISCO(config-if)#exit

CISCO(config)#interface fa0/3

CISCO(config-if)#switchport mode access

CISCO(config-if)#switchport access vlan 20

CISCO(config)#interface fa0/5

CISCO(config-if)#switchport mode access

CISCO(config-if)#switchport access vlan 30

Verify Ports in VLANS

CISCO#show vlan brief

VLAN Name Status Ports

1 default active Fa0/3, Fa0/4, Fa0/5, Fa0/6 Fa0/7, Fa0/8, Fa0/9, Fa0/10 Fa0/11, Fa0/12, Fa0/13, Fa0/14 Fa0/15, Fa0/16, Fa0/17, Fa0/18 Fa0/19, Fa0/20, Fa0/21, Fa0/22 Fa0/23, Fa0/24, Gi0/1, Gi0/2

10 HR activeFa0/1 20 Sales active Fa0/3 30 IT active Fa0/5

10. Program to simmulate VLAN for a organization with 3 departments using 2950 Switch fabric

Using same procedure of above and use additional switch and link both switches using any ethernet ports.

8. Program to simulate Inter VLAN Routing among 2 Vlans in 1900 Switch, using Router Interfaces

Using the same procedure of prg. 8, create 2 vlans in 1900 switch Add 2 nodes in each vlan, Assign IP address 10.0.0.1 & 10.0.0.2, with Mask 255.0.0.0 for 1st vlan Assign IP address 20.0.0.1 & 20.0.0.2 with Mask 255.0.0.0 for 2nd vlan Check connectivity

Add a 2621 Router.

Through its F0/0 connect to fa interface of switch. Through its F0/1 connect to fa interface of switch. Assign the proper ip address to Router interface

/* For F0/0, 10.0.0.10 with mask 255.0.0.0 For F0/1, 20.0.0.10 with mask 255.0.0.0

2621(config-if) ip address 10.0.0.10 255.0.0.0 2621(config-if) ip address 20.0.0.10 255.0.0.0

For nodes of 1st vlan, add gateway address 10.0.0.10 For nodes of 2nd vlan, add gateway address 20.0.0.10

Try connectivity from one vlan to another for success

9. Program to simulate Inter VLAN Routing in 2950 Switch, using Router Interfaces

10. Program to simulate Inter VLAN Routing in 2950 Switch, using ISL

Routing

Configuring Switch:

Switch(config)#vlan 10

Switch(config-vlan)#name HR

Switch(config-vlan)#vlan 20

Switch(config-vlan)#name Sales

Switch(config-vlan)#exit

Switch(config)#interface fa0/1

Switch(config-if)#switchport mode access

Switch(config-if)#switchport access vlan 10

Switch(config-if)#exit

Switch(config)#interface fa0/2

Switch(config-if)#switchport mode access

Switch(config-if)#switchport access vlan 20

Switch(config-if)#exit

Switch(config)#interface fa0/3

Switch(config-if)#switchport mode trunk

Configuring Router:

Router(config)#interface fa0/0

Router(config-if)#no shutdown

Router(config-if)#exit

Creating sub-interface for VLAN 10 on router:

Router(config)#interface fa0/0.10

Router(config-subif)#encapsulation dot1Q 10

Router(config-subif)#ip address 10.0.0.10 255.0.0.0

Router(config-subif)#exit

Creating sub-interface for VLAN 20 on router:

Router(config)#interface fa0/0.20

Router(config-subif)#encapsulation dot1Q 20

Router(config-subif)#ip address 20.0.0.10 255.0.0.0

Router(config-subif)#exit

Configuring IP on PC:

Host A

IP Address 10.0.0.1

Subnet Mask 255.0.0.0

Default Gateway 10.0.0.10

Host B

IP Address 20.0.0.1

Subnet Mask 255.0.0.0

Default Gateway 20.0.0.10

check the connectivity between vlans for success

10. Program to simulate static Routing in a simple network with 2 networks connected to same Router and demonstrate Direct Delivery

Configuring R1:

R1(config)#interface fa0/0 R1(config-if)#ip address 10.0.0.10 255.0.0.0 R1(config-if)#no shutdown R1(config-if)#exit

R1(config)#interface fa0/1 R1(config-if)#ip address 20.0.0.10 255.0.0.0 R1(config-if)#no shutdown R1(config-if)#exit

Connect Node A with 10.0.0.1 & mask 255.0.0.0 to FA0/0 Connect Node B with 20.0.0.1 & mask 255.0.0.0 to FA0/1

/* verify the roputing table Router# Sh ip route

Check the connectivity between Node A & Node B for a success

11. Program to simulate static Routing in a network with 2 router connected through its serial interface

Configuring R1:

R1(config)#interface fa0/0

R1(config-if)#ip address 10.0.0.10 255.0.0.0

R1(config-if)#no shutdown

R1(config-if)#exit

R1(config)#interface s0/0

R1(config-if)#ip address 30.0.0.10 255.0.0.0

R1(config-if)#clock rate 64000

R1(config-if)#no shutdown

R1(config-if)#exit

Connect Node A with 10.0.0.1 & mask 255.0.0.0 to FA0/0

/* verify the roputing table R1# sh ip route

Note: Interface Serial0/0 of Router R1 is a DCE end, so clock rate must be given to this.

Configuring R2:

R2(config)#interface fa0/0

R2(config-if)#ip address 20.0.0.10 255.0.0.0

R2(config-if)#no shutdown

R2(config-if)#exit

R2(config)#interface s0/0

R2(config-if)#ip address 30.0.0.20 255.0.0.0

R2(config-if)#no shutdown

R2(config-if)#exit

Connect Node B with 20.0.0.1 & mask 255.0.0.0 to FA0/0

Check the connectivity between Node A & Node B

/*Adding static route on R1 for network 20.0.0.0 R1(config)#ip route 20.0.0.0 255.0.0.0 30.0.0.20

/* verify the roputing table

R1# sh ip route

/*Adding static route on R2 for network 10.0.0.0 R2(config)#ip route 10.0.0.0 255.0.0.0 30.0.0.10

/* verify the roputing table

R2# sh ip route

Check the connectivity between Node A & Node B for a success.

- 12. Program to simulate Static Routing among 5 different networks with 3 router interconnected using serial interfaces.
- 13. Program to simulate Dynamic Routing using RIP, among 2 different networks interconnected with 2 router through the serial interfaces.

Configuring R1:

R1(config)#interface fa0/0 R1(config-if)#ip address 10.0.0.10 255.0.0.0 R1(config-if)#no shutdown R1(config-if)#exit R1(config)#interface s0/0 R1(config-if)#ip address 30.0.0.10 255.0.0.0 R1(config-if)#clock rate 64000 R1(config-if)#no shutdown R1(config-if)#exit

Connect Node A with 10.0.0.1 & mask 255.0.0.0 to FA0/0

/* verify the roputing table R1# sh ip route

Note: Interface Serial0/0 of Router R1 is a DCE end, so clock rate must be given to this.

Configuring R2:

R2(config)#interface fa0/0
R2(config-if)#ip address 20.0.0.10 255.0.0.0
R2(config-if)#no shutdown
R2(config-if)#exit

R2(config)#interface s0/0
R2(config-if)#ip address 30.0.0.20 255.0.0.0
R2(config-if)#no shutdown
R2(config-if)#exit

Connect Node B with 20.0.0.1 & mask 255.0.0.0 to FA0/0

Check the connectivity between Node A & Node B

/*Adding Dynamic route on R1
R1(config)#router rip
R1(config)#network 10.0.0.0
/* network to be advertised
/* verify the roputing table

R1# sh ip route

/*Adding dynamic route on R2
R2(config)#router rip
R2(config)#network 20.0.0.0
/* network to be advertised
/* verify the roputing table

R2# sh ip route

Check the connectivity between Node A & Node B for a success.

14. Program to simulate Dynamic Routing using RIP, among 5 different networks interconnected with 3 router through the serial interfaces.

.....