x86-64

- 64-bitna CISC arhitektura.
- 16 opštenamenskih registara (za svaki od njih postoji mogućnost pristupa nižm 32, 16 i 8 bita).
- little-endian (podaci širi od 1 bajt, kontinualno se zapisuju, tako da je na nižoj adresi zapisan bajt nižeg značaja).
- Dužina instrukcije je između 1 i 15 bajta.
- Stek raste ka nižim adresama.
- Registar rsp sadrži adresu poslednje zauzete lokacije ne steku.
- Vrednost (rsp+8) mora biti deljiva sa 16 u trenutku poziva procedure.

Opštenamenski registri

64-bit	32-bit	16-bit	8-bit
rax	eax	ax	al
rbx	ebx	bx	bl
rcx	ecx	cx	cl
rdx	edx	dx	dl
rsi	esi	si	sil
rdi	edi	di	dil
rbp	ebp	bp	bpl
rsp	esp	sp	spl
r8	r8d	r8w	r8b
r9	r9d	r9w	r9b
r10	r10d	r10w	r10b
r11	r11d	r11w	r11b
r12	r12d	r12w	r12b
r13	r13d	r13w	r13b
r14	r14d	r14w	r14b
r15	r15d	r15w	r15b

Vrste operanada

Tip	Zapis	Vrednost
Neposredni	Imm	Imm
Registarski	Rx	R[Rx]
Memorijski	[Rx]	M[R[Rx]]
Memorijski	[Rx + Imm]	M[R[Rx] + Imm]
Memorijski	[Rx + Ry]	M[R[Rx] + R[Ry]]
Memorijski	[Rx + Ry + Imm]	M[R[Rx] + R[Ry] + Imm]
Memorijski	[Rx + s*Ry]	M[R[Rx] + s*R[Ry]]
Memorijski	[Rx + s*Ry + Imm]	M[R[Rx] + s*R[Ry] + Imm]

- s (od scale) se neposredno navodi, i mora imati neku od vrednosti: 1, 2, 4 ili 8.
- Nekada iz konteksta instrukcije nije moguće zaključiti koja je širina memorijskog operanda, na primer kod instrukcije inc [Rx]. U tim slučajevima neophodno je navesti širinu pre operanda, na primer ako bi inkrementirali podatak širine dva bajta inc DWORD PTR [Rx].

Naziv	Širina	Oznaka
byte	8-bit	BYTE PTR
word	16-bit	WORD PTR
double word	32-bit	DWORD PTR
quad word	64-bit	QWORD PTR

Instrukcije za prenos podataka

Instrukcija	Efekat	Opis
mov D, S	D := S	move
movsx D, S	<pre>D := signExtend(S)</pre>	move sign extend
movzx D, S	<pre>D := zeroExtend(S)</pre>	move zero extend
movabs R, Imm	R := Imm	mov 64-bit immediate to a register

- Kod mov instrukcija najviše jedan operand može biti memorijski.
- Kod instrukcije movabs destinacion operand je registar, a izovrisni neposredna 64-bitna vrednost. Kod ostalih mov instrukcija neposredna vrednost je 32-bitna.

Aritmetičke i logičke operacije

Instrukcija	Efekat	Opis
inc D	D := D+1	Increment
dec D	D := D-1	Decrement
neg D	D := -D	Negate
not D	D := ~D	Complement
add D, S	D := D+S	Add
sub D, S	D := D-S	Subtract
imul D, S	D := D*S	Multiply
xor D, S	$D := D^S$	Exclusive-or
or D, S	$D := D \mid S$	Or
and D, S	D := D&S	And
sal D, k	$D := D \ll_A k$	Arithmetic left shift
shr D, k	$D := D \ll_L k$	Logic left shift
sar D, k	$D := D \gg_A k$	Arithmetic right shift
shr D, k	$D := D \gg_L k$	Logic right shift

- Instrukcije za sabiranje, oduzimanje i mnozenje su iste za označene i neozančene brojeve.
- Drugi argument shift instrukcija je neposredni ili registar cl (nižih osam bita registra rcx).
- Ako je prvi operand neke od shift instrukcija širine w bita, vrednost za koju se šiftuje se određuje
 ne osnovu najnižih log₂(w) bita drugog operanda posmatranih kao neoznačen ceo broj. Na primer,
 ako je vrednost koja se šiftuje širine 64-bita, vrednost za koje ima smisla šiftovati su 0, 1, ...,
 63, za zapis ovih vrednosti je dovoljno log₂(64)=6 bita.

Posebne aritmetičke operacije

Instrukcija	Efekat	Opis
imul S	R[rdx]:R[rax] := S*R[rax]	Signed full multiply
mul S	R[rdx]:R[rax] := S*R[rax]	Unsigned full multiply
idiv S	R[rax] := R[rdx]:R[rax] div S	Signed divide
	$R[rdx] := R[rdx] : R[rax] \mod S$	
idiv S	R[rax] := R[rdx]:R[rax] div S	Unigned divide
	$R[rdx] := R[rdx] : R[rax] \mod S$	
cqo	<pre>R[rdx]:R[rax] := signeExtend(R[rax])</pre>	Convert to oct word

Instrukcija lea

Instrukcija	Efekat	Opis
lea D, S	D := &S	Load effective address

• Instrukcija lea se često koristi za izračunavanje jednostavnih aritmetičkih izraza. Na primer, potrebno izračunati vrednost x+4*y+12 i rezultat smestiti u registar rcx, vrednost x je u registru rax, a y u rdx. Ovo se može postici sa dve instrukcije sabiranje i jednom instrukcijom množenja, ili korišćenjem jedne lea instrukcije, lea rcx, [rax + 4*rdx + 12].

Flegovi

Oznaka	Naziv	Značenje
CF	Carry flag	Poslednja operacija je generisala prenos na bitu najveće težine
		(detekcija overflow-a kod neoznačenih brojeva).
ZF	Zero flag	Poslednja operacija je za rezultat imala nulu.
SF	Sign flag	Poslednja operacija je imala negativan rezultat.
OF	Overflow flag	Poslednja operacija je izazvala overflow u komplementu dvojke
		(detekcija overflow-a kod označenih brojeva).

- Aritmetičke instrukcije postaljavju sve flegove u skladu se njihovim definicijama.
- Logičke instrukcije, postavljaju flegove SF i ZF u skladu sa njihovim definicijama, dok flagove CF i OF postavljaju na 0.
- Instrukcije šiftovanja postavljaju flegove SF i ZF u skladu sa njihovim definicijama, CF postavljaju na poslednji bit koji je "iz-šiftovan", dok OF postavljaju na 0.
- Ne postoji način za direktan pristup vrednostim flegova.

Instrukcije cmp i test

Instrukcija	Opis
cmp S1, S2	Računa vrednost S1-S2, ne beleži rezultat, ali menja flegove.
test S1, S2	Računa vrednost S1&S2, ne beleži rezultat, ali menja flegove.

set instrukcije

• Postavljaju najniži bajt operanda na 0x00 ili 0x01, u zavisnosti od vrednosti flegova.

Instrukcija	Sinonim	Efekat	Opis
sete D setne D sets D setns D	setz setnz	D := ZF D := ~ZF D := SF D := ~SF	Equal / zero Not equal / not zero Negative Nonnegative
setg D setge D setl D setle D	setnle setnl setnge setng	D := ~(SF^OF)&~ZF D := ~(SF^OF) D := SF^OF D := (SF^OF) ZF	Greater (signed >) Greater or equal (signed >=) Less (signed <) Less or equal (signed <=)
seta D setae D setb D setbe D	setnbe setnb setnae setna	D := ~CF&~ZF D := ~CF D := CF D := CF ZF	Above (unsigned >) Above or equal (unsigned >=) Below (unsigned <) Below or equal (unsigned <=)

Instrukcije kontrole toka

Instrukcija	Sinonim	Uslov	Opis
jmp label		1	Uncoditional jump
jmp *Operand		1	Unconditional jump
je label	jz	ZF	Jump if equal / zero
jne label	jnz	~ZF	Jump if not equal / not zero
js label		SF	Jump if negative
<pre>jns label</pre>		~SF	Jump if nonnegative
jg label	jnle	~(SF^OF)&~ZF	Jump if greater (signed >)
jge label	jnl	~(SF^OF)	Jump if greater or equal (signed >=)
jl label	jnge	SF^OF	Jump if less (signed <)
jle label	jng	(SF^OF) ZF	Jump if less or equal (signed \leq)
ja label	jnbe	~CF&~ZF	Jump if above (unsigned >)
jae label	jnb	~CF	Jump if above or equal (unsigned >=)
jb label	jnae	CF	Jump if below (unsigned <)
jbe label	jna	CF ZF	Jump if below or equal (unsigned <=)

Instrukcije uslovnog prenosa podataka

- Efekat ovih instrukcija je R := S ukoliko je ispunjen uslov, u suprotnom ništa.
- Destinacioni operand mora biti registar.

Instrukcija	Sinonim	Uslov	Opis
cmove R, S cmovne R, S cmovs R, S cmovns R, S	cmovz cmovz	ZF ~ZF SF ~SF	Move if equal / zero Move if not equal / not zero Move if negative Move if nonnegative
cmovg R, S cmovge R, S cmovl R, S cmovle R, S	<pre>jnle cmovnl cmovnge cmovng</pre>	~(SF^OF)&~ZF ~(SF^OF) SF^OF (SF^OF) ZF	Move if greater (signed >) Move if greater or equal (signed >=) Move if less (signed <) Move if less or equal (signed <=)
cmova R, S cmovae R, S cmovb R, S cmovbe R, S	cmovnbe cmovnb cmovnae cmovna	~CF&~ZF ~CF CF CF ZF	Move if above (unsigned >) Move if above or equal (unsigned >=) Move if below (unsigned <) Move if below or equal (unsigned <=)

Instrukcije za rad sa stekom

• ISA definiše registar rsp kao stack-pointer, a ne ABI.

Instrukcija	Efekat	Opis
push S	R[rsp] := R[rsp] - 8; M[R[rsp]] := S	Push on stack
pop D	D := M[R[rsp]]; R[rsp] := R[rsp] + 8	Pop from stack

Instrukcije za rad sa procedurama

Instrukcija	Opis
call labela	Procedure call
call *Operand	Procedure call
ret	Return from call

- Instrukcija call na stek postavlja povratnu adresu (adresu instrukcije koja se nalazi nakon call instrukcije), a u registar rip upisuje vrednost operanda.
- Instrukcija ret sa vrha steka skida povratnu adresu i upisuje je u registar rip.

System V ABI

Registar	Namena	Vrednost očuvana između poziva
rax	1st return register	NO
rbx	general purpose	YES
rcx	4th argument register	NO
rdx	3rd argument register, 2nd return register	NO
rsi	2nd argument register	NO
rdi	1st argument register	NO
rbp	frame pointer	YES
rsp	stack pointer	YES
r8	5th argument register	NO
r9	6th argument register	NO
r10	general purpose	NO
r11	general purpose	NO
r12	general purpose	YES
r13	general purpose	YES
r14	general purpose	YES
r15	general purpose	YES