				-							
		Tipo de Prova Teste 2		_	o letivo 021/2022	Data 13-06-2022					
		Curso		1 20	,	Hora					
P.PORTO	ESCOLA SUPERIOR	LSIRC+LEI				14:00					
F.FORTO	DE TECNOLOGIA E GESTÃO	Unidade Curricular			Duraçã 1 5 h						
	EGESTAG	Matemática Discreta				1,5 horas + 15 min					
Nome:					Νί	ímero:					
Observações: A avaliação desta Uni respetivas ponderaçõe Para a realização desta	es: 35% Tes		0% Trabalho Prát	ico.							
As cotações de cada q No final da prova, tên	o apresento uestão estã n de ser ent	e justificações. Nas res o identificadas entre p	oarêntesis []. as folhas de respo	-		o formulário, TODOS Bom trabalho!					
				Eliana (Costa e Silva e	Isabel Cristina Duarte					
Responda às qu	estões 1	L a 6 sem ap	resentar								
justificações.		•		> M1=[1 0	0 1 0 1;	> M2=[1 0 2 1;					
1. [1.0] Considere of	fragment	o de código scilab	onde são	> 1 0 0 0		> 0 0 1 0;					
definidas as matrizes	_	=		> 1 1 0 0		> 2 1 1 0;					
de vértices {a,b,c,d,	-		=	> 0 0 1 0		> 1 0 0 1];					
base no output, resp		· · · · · · · · · · · · · · · · · · ·		> 0 0 1 0							
Podemos afirmar que		Č		> 1 1 0 1	I 0];						
os dois grafos s. nenhum dos gra	ão de Ham			de vértices {a,b de vértices {A,B	· · · · ·						
2. [1.0] Relativamer é um circuito de não é caminho		o apresentado ao lao e um caminho nenhuma das	o de Hamilton	, A:		D 					
3. [1.0] O produto de é: 2	e dois núm	neros é 12 e o seu ma	áximo divisor co	omum é 2, então	o o seu mínim	no múltiplo comum					
4. Com base no	fragmento	de código sci <mark>laba</mark> ab	oaixo, podemos	afirmar que:							
> factor(55), ans = 5. 11. ans = 2. 3. 5. ans = 7. 7. 11. ans = 3. 3. 11.	5.), factor(539), fac	tor(1287)								
4.1 [1.0] md	c(150, 128	7) é:									
3		5	11		nenhuma da	s anteriores					
4.2 [1.0] não	-	s entre si: 55, 539 e 1287	<u> </u>	e 1287	150 e 539						
4.3 [1.0] exis	ste o invers	so de 539 modulo:		_							
55		150	1287		nenhuma da	is anteriores					

ESTG-PR05-Mod013V2 Página 1 de6

		Tipo de Prova Teste 2				Ano letivo 2021/2022							
P.PORTO	ESCOLA	Curso LSIRC+LEI					Hor 1	та .5:00					
P.PORTO	SUPERIOR DE TECNOLOGIA E GESTÃO	Unidade Currio Matemática D					1	ação .,5 horas+15 nin					
5. [1.0] Um inverso de	3 module	o 7 é:											
2	3		4	5									
6. Considere a rede comostrados na imagem a				A, B, C, D e	E com os	s links (A		TB X	`				
6.1. [1.0] Considere que página web onde estam Markov subjacente é:						WI)				
T = 0. 0.5 0. 0.5 0. 0.5 0.5 0.5 0.5 0.	0.333 0.333 0. 0.333	3333 0.	0.	T = 0. 0.5 0.33 0. 1.	333333	0. 0. 0.3333333 0.	0. 0.5 0. 0.5	0.5 0. 0.3333333 0.	0.5 0. 0.5 0.5				
T = 0.41 0.59 0.88 0.69	0.39	0.73 0. 0.26 0.		T = 0.	0.5	0.33 0.	1.						
0.88 0.69 0.11 0.89 0.2 0.5 0.56 0.35	0.95 0.34 0.38	0.5 0.1 0.26 0.1 0.53 0.1	23 63	0. 0. 0.5 0.5	0. 0.5 0.	0.33 0. 0. 0.5 0.33 0. 0. 0.5	0. 0. 0.						
6.2. [1.0] Considere os de transição definida na			s no fragmen	to de código	Scillab ar	oresentado ab	oaixo, s	endo T a matr	iz				
	> 1	r^6 =											
	0.293 0.027 0.142 0.229	16667 0.39 77778 0.06 23611 0.11 91667 0.19	35185 0.321 01852 0.046 11111 0.113 56019 0.238 95833 0.280	2963 0.025 4259 0.173 4259 0.171	463 0. 6111 0. 2963 0.	4027778 0694444 0833333 2152778 2291667							
	-> T^6*[0 ans = 0.393518 0.060189	52	> T^6*[0 (ans = 0.4027778 0.0694444 0.0833333	3	> T^6* ans = 0.291 0.027 0.142	7778							
A probabilidada da carr	0.195603 0.239583	19 33	0.2152778 0.229166	7	0.229	1667 0278	damari	to:					
A probabilidade, de com	ieçando f	na pagina B,		epois estar n 03	a pagina	ь е аргохіта	uamen	ie.					

Ano letivo

ESTG-PR05-Mod013V2 Página 2 de6

P.PORTO		Tipo de Prova Teste 2	Data 13-06-2022	
	ESCOLA	Curso LSIRC+LEI	Hora 14:00	
	SUPERIOR DE TECNOLOGIA E GESTÃO	Unidade Curricular Matemática Discreta		

Nome:	Número:
NOTITE.	indificio.

Nas questões que seguem apresente todas as justificações.

7. Considere o grafo ponderado apresentado ao lado.

7.1 [1.5] Use o algoritmo de $\it Dijkstra$ para encontrar o caminho de menor custo entre $\it a$ e $\it f$.

Observação: Apresente a sua resolução na tabela abaixo.

lt.	v _d (M)	Mc	А	$v_i, \dots, v_d, v_j \in L(v_j)$	$X \in X_d$	R: Caminhos mínimos

ESTG-PR05-Mod013V2 Página 3 de6

		Tipo de Prova Teste 2	Data 13-06-2022
P.PORTO	ESCOLA	Curso LSIRC+LEI	Hora 15:00
	SUPERIOR DE TECNOLOGIA E GESTÃO	Unidade Curricular Matemática Discreta	

7.2 [1.5] Usando o Algoritmo de *Kruskal*, determine uma árvore geradora de custo mínimo do grafo, e indique o seu comprimento.

Observação: Apresente a sua resolução na tabela abaixo.

lt	(vi,vj)	Si	Sj	Т	S1	S2	S3	S4	S5	S6	S 7	S8	S9	S10	Nr
					а	b	С	d	е	f	g	h	i	j	

ESTG-PR05-Mod013V2 Página 4 de6

P.PORTO		Tipo de Prova Teste 2	Data 13-06-2022
	ESCOLA	Curso LSIRC+LEI	Hora 14:00
	SUPERIOR DE TECNOLOGIA E GESTÃO	Unidade Curricular Matemática Discreta	

Nome: _______Número:_____

8 [1.5] Determine, recorrendo ao Algoritmo de Euclides, os inteiros s e t (coeficientes de Bézout) tais que $mdc(234,48) = 234 \times s + 48 \times t$, e se possível, indique o inverso de $48 \mod 234$.

9 [1.5] Resolva, se possível, a congruência $9x \equiv 3 \mod 11$.

10 [1.5] Escreva a sequência de números pseudo-aleatórios gerada por $x_{n+1} = (5x_n + 7) \mod 11 \,$ com raíz $x_0 = 7$.

ESTG-PR05-Mod013V2 Página 5 de6

P.PORTO		Tipo de Prova Teste 2	Data 13-06-2022
	ESCOLA	Curso LSIRC+LEI	Hora 15:00
	SUPERIOR DE TECNOLOGIA E GESTÃO	Unidade Curricular Matemática Discreta	

11 Considere a função de encriptação $f(n) = (10n + 1) \mod 29$ e ainda as correspondências seguintes:

P	١	В	С	D	E	F	G	Н	I	J	K	L	М	N	О	Р	Q	R	S	Т	U	٧	W	Х	Υ	Z	_	#	@
C)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	l'I h	17	18	19	20	21	22	23	24	25		27	28

11.1 [1.0] Encripte a mensagem "HASH".

11.2 [1.0] Escreva a função de desencriptação f^{-1} , sabendo que 3 é o inverso de 10 módulo 29.

12 Considere o sistema RSA com a = 13 e $\xrightarrow{--> pmodulo(218,2537)}$ $m = 43 \times 59 = 2537.$

Responda às seguintes questões usando os outputs do sciente que considerar necessários.

12.1 [0.75] Encripte a mensagem "CS".

12.1[0.75] Sendo b = 937 a chave privada, desencripte a mensagem "1005".

```
-> x=13
                                     x =
  218.
                                        13.
                                     -> x new=1;
-> pmodulo(218^13,2537)
                                     -> for k=1:218,
ans =
                                     >
                                            x_new=pmodulo(x*x_new, 2537);
  0.
                                     > end
                                     -> x_new
                                     x_new =
                                       1672.
                                     -> x=1005;
-> x=218
                                     --> x_new=1;
x =
  218.
                                     \rightarrow for k=1:2537,
 -> x_new=1;
                                           x_new=pmodulo(x*x_new,937);
--> for k=1:13,
                                     > end
                                     -> x_new
\times x_new=pmodulo(x*x_new,2537);
 > end
                                     x_new =
-> x_new
                                       225.
x new =
   1259.
--> x=1005;
                                     --> x=1005;
                                     -> x_new=1;
-> x_new=1;
-> for k=1:13,
                                     -> for k=1:937,
> x_new=pmodulo(x*x_new,2537);
                                     > x_new=pmodulo(x*x_new,2537);
 > end
                                     > end
-> x_new
                                     -> x_new
                                     x_new =
x_new =
                                       2400.
  2056.
```

ESTG-PR05-Mod013V2 Página 6 de6