华中科技大学 2022~2023 学年度第 1 学期

大学物理(二)课程考试卷(A)参考答案

考试日期: 2023.02.13

一、选择题

题号	1	2	3	4	5	6	7	8	9	10
答案	A	С	В	A	В	D	A	С	D	D

二、填空题

$$1, \frac{Bk \omega \pi R^2}{5}$$

- 2, 3
- 3, -0.01
- 4, 12
- 5, 50
- 6, 600
- 7, 0.141

$$8, \quad \frac{I_0}{2} + \frac{I_1}{4}$$

- 9, 0.15
- 10、空穴

三、计算题

1、解: (1) 该线圈中通过电流 I 时,管内的磁感应强度为: $B = \mu n I = \mu \frac{N}{I} I$

管内的全磁通为: $\psi = NBS = \mu \frac{N^2}{I} IS$

6 分

根据自感的定义有: $L = \frac{\psi}{I} = \mu \frac{N^2}{l} S$

(2) 电流的变化率为: $\frac{dI}{dt} = \frac{2}{0.01} = 200 \text{ A/s}$

因此,自感电动势的大小为: $\varepsilon = \left| -L \frac{dI}{dt} \right| = 200 \, \mu \frac{N^2}{I} S$

2、解: (1) x_1, x_2 是同频率、同振动方向的简谐振动,

相位差: $\Delta \varphi = \varphi_2 - \varphi_1 = -\pi, A_1 > A_2$

因此合振幅: $A = |A_1 - A_2| = 1 \text{ m}$

初位相: $\varphi = \varphi_1 = \frac{\pi}{6}$

4 分

(2) x_1 和 x_2 合振动的振幅最大时,两简谐振动同相,

因此有 $\varphi_3 - \varphi_1 = 2k\pi$, 即:

 $\varphi_3 = \varphi_1 + 2k\pi = \frac{\pi}{6} + 2k\pi$, $\sharp + k=0,\pm 1,\pm 2,...$

3 分

(3)、 x_1, x_2 和 x_3 的合振动可以看成 x_{12} 和 x_2 的合振动。

 $x_{12} = \cos\left(10t + \frac{\pi}{6}\right), x_3 = \cos\left(10t + \frac{\pi}{6}\right)$

因此三者的合振动为

$$x = 2\cos\left(10t + \frac{\pi}{6}\right)$$

该平面简谐波的波函数为:

3 分

$$y = 2\cos\left[10\left(t + \frac{x}{10}\right) + \frac{\pi}{6}\right] = 2\cos\left(10t + x + \frac{\pi}{6}\right)$$

- **3、解:** (1) 根据光栅衍射主极大公式: $d \sin \theta = k\lambda$,

可以得到光栅常数为:

3 分

$$d = \frac{k\lambda}{\sin \theta} = \frac{2}{0.5} \times 600 \times 10^{-9} = 2.4 \times 10^{-6} \text{m}$$

(2) 根据题意,有 $\frac{d}{a}$ = 3,因此谱线级数为3的倍数的谱线将缺级。

假设在光屏上呈现的谱线的最大级数为i,对应的衍射角为 90° ,

由 $d \sin \theta_i = i\lambda$,可以解出谱线的最大级数为 4 级。

因第3级谱线缺级,不能被观察到,另外衍射角为90°的第4级谱线也不能观 察到,所以呈现在光屏上的有:

 $0, \pm 1, \pm 2$ 级谱线, 共 5 条。

3 分

4、解: (1) 根据全空间概率的归一性(归一化条件),有

$$\int_{-\infty}^{\infty} \psi^* \psi dx = \int_{-\infty}^{\infty} A^2 e^{-\alpha^2 x^2} dx = 1$$

根据:
$$\int_{-\infty}^{\infty} A^2 e^{-\alpha^2 x^2} \mathrm{d}x = A^2 \frac{1}{\alpha} \int_{-\infty}^{\infty} e^{-\alpha^2 x^2} \mathrm{d}(\alpha x) = A^2 \frac{\sqrt{\pi}}{\alpha} = 1$$

可得:
$$A = \sqrt{\frac{\alpha}{\sqrt{\pi}}}$$
 或 $\frac{\alpha^{1/2}}{\pi^{1/4}}$

- (2) 该粒子的概率密度分布为: $|\psi|^2 = A^2 e^{-\alpha^2 x^2} = \frac{\alpha}{\sqrt{\pi}} e^{-\alpha^2 x^2}$
- (3) 概率密度取最大值,满足条件: $\frac{d}{dx}|\psi|^2=0$

即:

$$\frac{\mathrm{d}}{\mathrm{d}x}|\psi|^2=0\Rightarrow\frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{\alpha}{\sqrt{\pi}}e^{-\alpha^2x^2}\right)=0, \frac{\mathrm{d}}{\mathrm{d}x}\left(e^{-\alpha^2x^2}\right)=-2\alpha^2xe^{-\alpha^2x^2}=0$$

解得: x = 0