CSE215 Foundations of Computer Science

State University of New York, Korea

Determine if the following statements are true or false. You do not need to explain the reasons.

- 1. Let $A = \{1, 2, 3, 4, 5\}$ and **Z** be the set of integers. Then A is a proper subset of **Z**.
- 2. $\{x \in \mathbb{Z} \mid x^3 1 = 0\} = \{x \in \mathbb{Z} \mid x^2 x = 0\}.$
- 3. Suppose x is a real number. If $x^{100} + 5x^9 < 0$ then x < 0.
- 4. Suppose a and b are two real numbers. If a b is irrational and a is rational, then b is irrational.

Let $A = \{0, 2, 4\}, B = \{1, 2, 3, 4\}$ and the universal set $U = \{0, 1, 2, 3, 4\}$. Find:

- 1.*A*′
- 2.B'
- $3.A \cap A'$
- $4.A \cup A'$
- 5.A B
- 6.B-A
- $7.\left(A-B\right) \times \left(B-A\right)$

- 1. Prove that for any sets A and B, $A \cup (A' \cap B) = A \cup B$. [Hint: Use set identities] 2. Prove that for any sets A and B, $A (A B) = A \cap B$. [Hint: Use set identities]

- 1. Prove that there are no integers a and b such that 10a + 1 = 6b.
- 2. Prove that there exist integers a and b such that 10a + 2 = 6b.

3. Prove that $91(4^{3n}+8)$ for every integer $n \ge 0$.

For the following statement, first determine whether it is true or false. If it is true, provide a proof; if it is false, disprove it.

There exist no integers a and b for which 21a + 30b = 1.

For the following statement, first determine whether it is true or false. If it is true, provide a proof; if it is false, disprove it.

There exist no integers a and b for which 18a + 6b = 1.

For the following statement, first determine whether it is true or false. If it is true, provide a proof; if it is false, disprove it.

For every $x \in [\pi/2, \pi]$, $\sin x - \cos x \ge 1$.

Hint: Use $sin(x) ^2 + cos(x) ^2 = 1$