OpenCL Performance Prediction using Architecture-Independent Features

Beau Johnston¹, Greg Falzon², Josh Milthorpe¹

The Australian National University¹ & The University of New England²

July 17, 2018

OpenCL – The Language of Heterogenous

Overview of EOD

- Extended Open Dwarfs (EOD) Benchmark Suite
- Based off the OpenDwarfs benchmark suite¹
- Benchmarks selected following diversity analysis and 13
 Berkeley Dwarfs taxonomy
- Built in OpenCL

¹Krommydas, K. OpenDwarfs: Characterization of dwarf-based benchmarks on fixed and reconfigurable architectures. Journal of Signal Processing Systems, vol. 85, no. 3, pp. 373-392, 2016

Extensions

- Diverse:
 - 4 different problem sizes per application
 - Added applications currently 11
- Reproducible: Minimum of 2 sec runs per benchmark
- Precise:
 - ► High resolution timers with LibSciBench
 - ▶ Reported with one cycle resolution and roughly 6 ns of overhead
- Portable:
 - Based on an OpenCL backend
 - ► Tested on a wide range of hardware

Hardware

Name	Vendor	Туре	Series	Core	Frequency	Cache (KiB)	TDP	Launch
				Count	(MHz)	(L1/L2/L3)	(W)	Date
					(min/max/turbo)			
Xeon E5-2697 v2	Intel	CPU	Ivy Bridge	24*	1200/2700/3500	32/256/30720	130	Q3 2013
i7-6700K	Intel	CPU	Skylake	8*	800/4000/4300	32/256/8192	91	Q3 2015
i5-3550	Intel	CPU	Ivy Bridge	4*	1600/3380/3700	32/256/6144	77	Q2 2012
Titan X	Nvidia	GPU	Pascal	3584†	1417/1531/-	48/2048/-	250	Q3 2016
GTX 1080	Nvidia	GPU	Pascal	2560†	1607/1733/-	48/2048/-	180	Q2 2016
GTX 1080 Ti	Nvidia	GPU	Pascal	3584†	1480/1582/-	48/2048/-	250	Q1 2017
K20m	Nvidia	GPU	Kepler	2496†	706/-/-	64/1536/-	225	Q4 2012
K40m	Nvidia	GPU	Kepler	2880†	745/875/-	64/1536/-	235	Q4 2013
FirePro S9150	AMD	GPU	Hawaii	2816	900/-/-	16/1024/-	235	Q3 2014
HD 7970	AMD	GPU	Tahiti	2048	925/1010/-	16/768/-	250	Q4 2011
R9 290X	AMD	GPU	Hawaii	2816	1000/-/-	16/1024/-	250	Q3 2014
R9 295x2	AMD	GPU	Hawaii	5632	1018/-/-	16/1024/-	500	Q2 2014
R9 Fury X	AMD	GPU	Fuji	4096	1050/-/-	16/2048/-	273	Q2 2015
RX 480	AMD	GPU	Polaris	4096	1120/1266/-	16/2048/-	150	Q2 2016
Xeon Phi 7210	Intel	MIC	KNI	256†	1300/1500/-	32/1024/-	215	Q2 2016

Clock

^{*} HyperThreaded cores

[†] CUDA cores

[|] Stream processors

[‡] Each physical core has 4 hardware threads per core, thus 64 cores

Overview of AIWC

- Architecture-Independent Workload Characterisation (AIWC)
- ▶ Plugin for OclGrind an Extensible OpenCL device simulator²
- ► Beta available https://github.com/BeauJoh/Oclgrind and will be merged into default OclGrind

²J. Price and S. McIntosh-Smith, "Oclgrind: An extensible opencl device simulator," in Proceedings of the 3rd International Workshop on OpenCL, 2015, p. 12.