CWR Vorleiststung 03

Mohamad Al Farhan

June 2021

Aufgabe 21

1

Die Vektoren \vec{a} , \vec{b} und $\vec{\lambda}$ sind in der Datei code.c in der main()-Funktion initialisiert.

2

Siehe dafür die Datei code.c.

3

Mit Hilfe der Funktion p() wird das charakteristische Polynom für verschiedene Stellen ausgewertet. Die Stellen x sowie das Polynom p(x) sind in der Datei Ä3_values"gespeichert. In Abbildung 1 sind diese dargestellt. Die Stellen, an denen die blaue Kurve die x-Achse schneidet sind die eigen Werte der Matrix. Diese haben alle die Vielfachheit 1, da es insgesamt 10 Nullstellen gibt von einem Polynom 10. Ordnung.

4

Die Nullstellen werden nummerisch mit dem Newton-Verfahren mit Hilfe der Funktion find_root ermittelt. Diese werden in Vektor $\vec{\lambda}$ sowie die Datei A4_values gespeichert. Gerechnet wird mit einer Abweichung $\propto 10^{-5}$.

5

Die Eigenwerte bzw. Nullstellen des charakteristischen Polynoms werden analytische mit der Gleichung 1 gerechnet. Sie werden zum Vergleich mit den in 4 nummerisch berechneten Werte in Tabelle 1 aufgetragen. Die Werte weisen eine vernachlässigbar kleine Abweichung auf.

$$\lambda_{\alpha} = \omega + 2t \frac{\alpha \pi}{N+1} \tag{1}$$

Abbildung 1: Das charakteristische Polynom der in der Aufgabe 21)3 beschriebenen Matrix ausgewertet an verschiedenen Stellen.

Tabelle 1: Eigenwerte des charakteristischen Polynoms berechnet nummerisch und analytisch

α	analytischer Wert	nummerischer Wert
10	0,0405	0,039043
9	$0,\!1587$	0,158500
8	0,3451	0,348542
7	0,5846	0,585718
6	0,8577	0,865974
5	1,1423	1,146041
4	1,4154	1,415771
3	1,6549	1,676404
2	1,8413	1,863490
1	1,9595	1,961106