

Module: 3D Vision

Project: 3D recovery of urban scenes

Session 3

Gloria Haro

Goal: compute the fundamental matrix that relates two images

Algorithms:

- Normalized 8-point algorithm (algebraic method).
- Robust normalized 8-point algorithm.

Application: Photo-sequencing.

Mandatory tasks:

- Function that estimates the fundamental matrix F with the normalized 8-point algorithm.
- Compute the theoretical fundamental matrix that relates two images with correponding camera matrices P = [I|0], and P' = [R|t].
- Function that robustly estimates F using the previous function and RANSAC (you can use as a basis the provided function in lab 2: 'Ransac_DLT_homography').

The inliers are obtained with a threshold on the first order approximation of the geometric error: Sampson distance,

$$\frac{({x_i'}^T F x_i)^2}{(F x_i)_1^2 + (F x_i)_2^2 + (F^T x_i')_1^2 + (F^T x_i')_2^2}$$

- Compute the epipolar lines of the matching points in both images.
- Apply the theoretical concepts to do photo-sequencing.

Geometric distance

(used for determining the inliers in the RANSAC function)

$$d([x_i], [\hat{x}_i])^2 + d([x_i'], [\hat{x}_i'])^2$$
 s. t. $\hat{x}_i'^T F \hat{x}_i = 0 \ \forall i$

where the different matchings $x_i \longleftrightarrow x_i'$ are the data, [.] is the projection operator to Euclidean coordinates.

Geometric distance

A variant is (we use the distance of a point to a line $d(x, l) = |x^T l|/||l||$):

$$d(x_i', Fx_i)^2 + d(x_i, F^T x_i')^2$$

$$= (x_i'^T Fx_i)^2 \left(\frac{1}{(Fx_i)_1^2 + (Fx_i)_2^2} + \frac{1}{(F^T x_i')_1^2 + (F^T x_i')_2^2} \right)$$

We will use the **Sampson error** (1st order approx. of the geometric distance)

$$\frac{({x_i'}^T F x_i)^2}{(F x_i)_1^2 + (F x_i)_2^2 + (F^T x_i')_1^2 + (F^T x_i')_2^2}$$

Int J Comput Vis (2014) 110:275–289 DOI 10.1007/s11263-014-0712-x

Photo Sequencing

Tali Dekel (Basha) · Yael Moses · Shai Avidan

Given a set of images of a dynamic scene taken at different viewpoints and different time instants, the photo-sequencing algorithm establishes an ordering of the images according to the time they were taken.

There are two underlying hypothesis:

- Object trajectories can be approximated by straight lines.
- Two of the images are taken from approximately the same position.

Computing static and dynamic features (thanks to hypothesis 2)

Fig. 5 (a) The projection of the trajectory, L^l , of the point P^l , forms the line ℓ^l on image I_1 . The feature points $p_1^l(t_1)$, $p_2^l(t_2)$, in image I_1 , and $p_\ell^l(t_k)$ in image I_k , are corresponding dynamic features. The line ℓ^l intersects the epipolar line (in yellow), which corresponds to p_k^l . The intersection point, $p_l^l(t_k)$, is the projection of P^l onto I_1 at time

step t_k . The spatial order of $p_1^i(t_1)$, $p_2^i(t_2)$, and $p_1^i(t_k)$, along ℓ^i , defines the temporal order between I_1 , I_2 and I_k . (b) The computation on real images: the projected trajectory, ℓ^i , in cyan; the *epipolar line* in *yellow*; the intersection in *red*

Fig. 6 Linear Motion Assumptions: In *green*, the real path of the green boat; in yellow, the approximated 2D image line. The epipolar lines intersect both the real path and the 2D image line. The spatial order of both sets of intersections is the same

Language: Python

To Do:

- Complete the code in lab3.ipynb as indicated in the same file (e.g. ground-truth F, epipolar lines)
- Write the function fundamental_matrix
- Write the function Ransac_fundamental_matrix
- Complete the code on photo-sequencing, dynamic feature given

Evaluation

To deliver **before 11am of the day before** the next lab session:

- Code deliverable:
 - READY TO BE LAUNCHED on the provided images
- Short document:
 - Results
 - Problems and comments, conclusions

Evaluation

Grading:

• Report: 2 points

• Normalized 8-point algorithm: 2 points

• F from P1 and P2: 1 point

• Robust 8-point algorithm (RANSAC): 2 points

• Epipolar lines: 1 point

• Photo-sequencing: **2 points**