INTERNATIONAL LARGE DETECTOR

IDR

ILD Detector Collaboration

2018

ILD Editors

Main Editors:
Ties Behnke, Kiyotomo Kawagoe
Tracking System:
Calorimeter System:
Outer Detector System:
Data Acquisition:
Machine Detector Interface:
Integration:
Karsten Buesser
Alignment:
Software:
Frank Gaede, Akiya Miyamoto
Performance: Keisuke Fujii, Jenny List
Costing: Henri Videau, Karsten Buesser
ricini videau, itaisten Duessei

Contents

Сс	ntent	S		i
1	Intro	duction	n	1
2	Scie	nce with	th ILC	3
3	The	ILC En	nvironment	5
4	The 4.1 4.2	The ov	etector concept overall ILD concept	
5	Dete	ector La	ayout and Technologies	9
	5.1		Ill structure of the detector	. 9
		5.1.1	Global structure and parameters	
		5.1.2	Subdetecor layout	
	5.2		etector technology status	
	0	5.2.1	Vertex detector	
		5.2.2	Silicon inner tracking detectors	
		5.2.3	Time projection chamber	
		5.2.4	Calorimeters	
		5.2.5	Very forward detectors	
		5.2.6	Iron instrumentation	
6	ILD	Global I	Integration	13
	6.1	Interna	al ILD integration	. 13
	6.2	externa	nal ILD integration	. 13
		6.2.1	Cavern ancillary services	. 13
		6.2.2	Data acquisition	. 13
	6.3	Mecha	anical structure and studies	. 13
	6.4	Coil ar	and yoke studies	. 13
	6.5	Beam	background studies	. 13
	6.6	Alignm	ment/ calibration procedures	. 13
7	Phys	sics and	d Detector Modelling	15
	7.1	Model	lling of ILC Conditions and Physics Processes	. 15
	7.2	Detect	tor Modelling	. 15
	7.3	Recons	nstruction Tools	. 15

i

8	Dete	ector and	d Physics Performance	17
	8.1	System	performance	17
		8.1.1	Vertexing	17
		8.1.2	Tracking	17
		8.1.3	Particle flow performance	17
		8.1.4	Particle identification	17
	8.2	High-le	evel Reconstruction Performance	17
	8.3	Physics	s Benchmarks	17
		8.3.1	General Remarks	17
		8.3.2	Hadronic Branching Ratios of the Higgs Boson	17
		8.3.3	Higgs Mass from $H o b ar{b}$	17
		8.3.4	Branching Ratio of $H o \mu^+\mu^-$	17
		8.3.5	Sensitivity to $H o$ invisible	17
		8.3.6	$ au$ decay modes and polarisation, A_{FB} and A_{LR} in $e^+e^- o au^+ au^-$	17
		8.3.7	W mass, Triple Gauge Couplings and Beam Polarisation from $e^+e^- \to WW \to$	
			qql u	17
		8.3.8	Quartic Gauge Couplings in $e^+e^- o \nu\nu qqqq$	17
		8.3.9	A_{LR} and Jet Energy Scale Calibration from $e^+e^- o \gamma Z$	17
		8.3.10	A_{FB} and A_{LR} from $tt o bbqqqqq$	17
		8.3.11	Discovery Reach for extra Higgs Bosons in $e^+e^- o Zh$	17
		8.3.12	Discovery Reach for and Characterisation of low ΔM Higgsinos	17
		8.3.13	$\label{lem:wimp} \mbox{WIMP Discovery Reach and Characterisation in the Mono-Photon Channel} .$	17
9	Cost	ing		19
10	Sum	mary		21

Chapter 1 Introduction

Ties Behnke, Kiyotomo Kawagoe 2 pages

1

Chapter 2 Science with ILC

Keisuke Fujii, Jenny List 2 pages

Executive summary of the scientific goals of the ILC. Emphasis on 250 GeV. Prepare connection to choice of physics benchmarks, where details will of course come in the actual performance section.

Chapter 3 The ILC Environment

Karsten Buesser, Keisuke Fujii 3 pages

Chapter 4 The ILD detector concept

Ties Behnke, Kiyotomo Kawagoe pages

4.1

The overall ILD concept

This is text describing the ILD detector concept. This is text describing the ILD detector conce

4.2

Optimising ILD

Chapter 5 Detector Layout and Technologias

Claude Vallee, Karsten Buesser 1 pages

5.1 Overall structure of the detector

Claude Vallee, Karsten Buesser

1 pages

5.1.1 Global structure and parameters

Subdetector technical convener 4 pages

5.1.2 Subdetecor layout

Subdetector convener pages

5.2 Subdetector technology status

5.2.6 Iron instrumentation

Chapter 6 ILD Global Integration

6.1	Internal ILD integration
6.2	external ILD integration
6.2.1	Cavern ancillary services
6.2.2	Data acquisition
6.3	Mechanical structure and studies
6.4	Coil and yoke studies
6.5	Beam background studies
6.6	Alignment/ calibration procedures

Karsten Buesser
Karsten Buesser
Yasuhiro Sugimoto
Yasuhiro Sugimoto
Matthew Wing, Taikan SueFelix Sefkow, Henri Videau
Karsten Buesser, Uwe
Daniel Jeans
Graham Wilson
1 pages

Chapter 7 Physics and Detector Modelling

7.1 Modelling of ILC Conditions and Physics Processes
7.2 Detector Modelling
7.3 Reconstruction Tools

Chapter 8 Detector and Physics Performance Frank Gaede

5 pages

8.1	System performance			
8.1.1	Vertexing			
8.1.2	Tracking			
8.1.3	Particle flow performance Graham Wilson, Frank Gaede			
8.1.4	Particle identification Keisuke Fujii, Jenny Lis			
8.2	High-level Reconstruction Performance			
8.3	Physics Benchmarks			
8.3.1	General Remarks			
8.3.2	Hadronic Branching Ratios of the Higgs Boson			
8.3.3	Higgs Mass from $H o bar b$			
8.3.4	Branching Ratio of $H o \mu^+ \mu^-$			
8.3.5	Sensitivity to $H o$ invisible			
8.3.6	$ au$ decay modes and polarisation, A_{FB} and A_{LR} in $e^+e^- ightarrow au^+ au^-$			
8.3.7	W mass, Triple Gauge Couplings and Beam Polarisation from e^+e^-	$\rightarrow WW \rightarrow qql\nu$		
8.3.8	Quartic Gauge Couplings in $e^+e^- o u u qqqq$			
8.3.9	A_{LR} and Jet Energy Scale Calibration from $e^+e^- o \gamma Z$			
8.3.10	A_{FB} and A_{LR} from $tt o bbqqqq$			
8.3.11	Discovery Reach for extra Higgs Bosons in $e^+e^- o Zh$			
8.3.12	Discovery Reach for and Characterisation of low ΔM Higgsinos			
8.3.13	WIMP Discovery Reach and Characterisation in the Mono-Photon C	Channel		

Chapter 9 Costing

Chapter 10 Summary

Bibliography