### BBM413 Fundamentals of Image Processing

Spatial Filtering

#### Contents

- •In this lecture we will look at spatial filtering techniques:
  - Neighbourhood operations
  - What is spatial filtering?
  - Smoothing operations
  - What happens at the edges?
  - Correlation and convolution
  - Sharpening filters
    - 1<sup>st</sup> derivative filters
    - 2<sup>nd</sup> derivative filters
  - Combining filtering techniques

#### Neighbourhood Operations

- Neighbourhood operations simply operate on a larger neighbourhood of pixels than point operations
- Neighbourhoods are mostly a square around a central pixel
- Any size rectangle and any shape filter are possible



## Simple Neighbourhood Operations

- Some simple neighbourhood operations include:
  - Min: Set the pixel value to the minimum in the neighbourhood
  - Max: Set the pixel value to the maximum in the neighbourhood
  - **Median:** The median value of a set of numbers is the midpoint value in that set (e.g. from the set [1, 7, 15, 18, 24] 15 is the median). Sometimes the median works better than the average

#### The Spatial Filtering Process



The above is repeated for every pixel in the original image to generate the filtered image

#### Spatial Filtering: Equation Form



$$= \sum_{s=-at=-b}^{a} \sum_{t=-b}^{b} w(s,t) f(x+s,y+t)$$

Filtering can be given in equation form as shown above

Notations are based on the image shown to the left

$$g[\cdot,\cdot]_{\frac{1}{9}}^{\frac{1}{1}}_{\frac{1}{1}}^{\frac{1}{1}}_{\frac{1}{1}}^{\frac{1}{1}}$$





$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

$$g[\cdot,\cdot]_{\frac{1}{9}}^{\frac{1}{1}}_{\frac{1}{1}}^{\frac{1}{1}}_{\frac{1}{1}}$$





$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

$$g[\cdot,\cdot]^{\frac{1}{9}}^{\frac{1}{1}}^{\frac{1}{1}}^{\frac{1}{1}}^{\frac{1}{1}}$$



$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

$$g[\cdot,\cdot]^{\frac{1}{9}}^{\frac{1}{1}}^{\frac{1}{1}}^{\frac{1}{1}}^{\frac{1}{1}}$$



$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

$$g[\cdot,\cdot]^{\frac{1}{9}}^{\frac{1}{1}}^{\frac{1}{1}}^{\frac{1}{1}}^{\frac{1}{1}}$$





$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

$$g[\cdot,\cdot]_{\frac{1}{9}}^{\frac{1}{1}}_{\frac{1}{1}}^{\frac{1}{1}}_{\frac{1}{1}}$$





$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

$$g[\cdot,\cdot]^{\frac{1}{9}}^{\frac{1}{1}}^{\frac{1}{1}}^{\frac{1}{1}}^{\frac{1}{1}}$$



$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

$$g[\cdot,\cdot]^{\frac{1}{9}}^{\frac{1}{1}}^{\frac{1}{1}}^{\frac{1}{1}}^{\frac{1}{1}}$$

| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
|---|---|----|----|----|----|----|----|---|---|
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 0  | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 90 | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |

| 0  | 10 | 20 | 30 | 30 | 30 | 20 | 10 |  |
|----|----|----|----|----|----|----|----|--|
| 0  | 20 | 40 | 60 | 60 | 60 | 40 | 20 |  |
| 0  | 30 | 60 | 90 | 90 | 90 | 60 | 30 |  |
| 0  | 30 | 50 | 80 | 80 | 90 | 60 | 30 |  |
| 0  | 30 | 50 | 80 | 80 | 90 | 60 | 30 |  |
| 0  | 20 | 30 | 50 | 50 | 60 | 40 | 20 |  |
| 10 | 20 | 30 | 30 | 30 | 30 | 20 | 10 |  |
| 10 | 10 | 10 | 0  | 0  | 0  | 0  | 0  |  |
|    |    |    |    |    |    |    |    |  |

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

$$g[\cdot,\cdot]^{\frac{1}{9}}^{\frac{1}{1}}^{\frac{1}{1}}^{\frac{1}{1}}^{\frac{1}{1}}$$



$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

#### **Smoothing Spatial Filters**

One of the simplest spatial filtering operations we can perform is a smoothing operation

- Simply average all of the pixels in a neighbourhood around a central value
- Especially useful in removing noise from images
- Also useful for highlighting gross detail

| 1/9 | 1/9 | 1/9 |
|-----|-----|-----|
| 1/9 | 1/9 | 1/9 |
| 1/9 | 1/9 | 1/9 |

Simple averaging filter

| 1        | 1 | 1 | 1 |
|----------|---|---|---|
| <u> </u> | 1 | 1 | 1 |
| 9        | 1 | 1 | 1 |
|          |   |   |   |

Box filter

#### **Smoothing Spatial Filtering**



The above is repeated for every pixel in the original image to generate the smoothed image

### Smoothing with box filter



- •The image at the top left is an original image of size 500\*500 pixels
- •The subsequent images show the image after filtering with an averaging filter of increasing sizes
  - 3, 5, 9, 15 and 35
- Notice how detail begins to disappear





original























#### Another Smoothing Example

•By smoothing the original image we get rid of lots of the finer detail which leaves only the gross features for thresholding

a b c

**FIGURE 3.34** (a) Image of size  $528 \times 485$  pixels from the Hubble Space Telescope. (b) Image filtered with a  $15 \times 15$  averaging mask. (c) Result of thresholding (b). (Original image courtesy of NASA.)



**Original Image** 

**Smoothed Image** 

Thresholded Image



#### Weighted Smoothing Filters

- •More effective smoothing filters can be generated by allowing different pixels in the neighbourhood different weights in the averaging function
  - Pixels closer to the central pixel are more important
  - Often referred to as a weighted averaging

| <sup>1</sup> / <sub>16</sub> | <sup>2</sup> / <sub>16</sub> | <sup>1</sup> / <sub>16</sub> |
|------------------------------|------------------------------|------------------------------|
| <sup>2</sup> / <sub>16</sub> | <sup>4</sup> / <sub>16</sub> | <sup>2</sup> / <sub>16</sub> |
| <sup>1</sup> / <sub>16</sub> | <sup>2</sup> / <sub>16</sub> | <sup>1</sup> / <sub>16</sub> |

Weighted averaging filter







Original Image With Noise

Image After Averaging Filter 3x3

Image After Median Filter 3x3

- •Filtering is often used to remove noise from images
- Sometimes a median filter works better than an averaging filter





Original Image With Noise



Image After Averaging Filter



Image After Median Filter

#### Important filter: Gaussian

Weight contributions of neighboring pixels by nearness





| 0.003 | 0.013 | 0.022          | 0.013 | 0.003 |
|-------|-------|----------------|-------|-------|
| 0.013 | 0.059 | 0.097<br>0.159 | 0.059 | 0.013 |
| 0.022 | 0.097 | 0.159          | 0.097 | 0.022 |
| 0.013 | 0.059 | 0.097          | 0.059 | 0.013 |
| 0.003 | 0.013 | 0.022          | 0.013 | 0.003 |
|       |       |                |       |       |

$$5 \times 5$$
,  $\sigma = 1$ 

$$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2 + y^2)}{2\sigma^2}}$$

### Smoothing with Gaussian filter



### Smoothing with Box filter



#### Gaussian filters

- Remove "high-frequency" components from the image (low-pass filter)
  - Images become more smooth
- Convolution with self is another Gaussian
  - So can smooth with small-width kernel, repeat, and get same result as larger-width kernel would have
  - Convolving two times with Gaussian kernel of width  $\sigma$  is same as convolving once with kernel of width  $\sigma\sqrt{2}$
- Separable kernel
  - Factors into product of two 1D Gaussians

### Separability of the Gaussian filter

$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{x^2 + y^2}{2\sigma^2}}$$

$$= \left(\frac{1}{\sqrt{2\pi}\sigma} \exp^{-\frac{x^2}{2\sigma^2}}\right) \left(\frac{1}{\sqrt{2\pi}\sigma} \exp^{-\frac{y^2}{2\sigma^2}}\right)$$

The 2D Gaussian can be expressed as the product of two functions, one a function of x and the other a function of y

In this case, the two functions are the (identical) 1D Gaussian

## Separability example

2D filtering (center location only)



The filter factors into a product of 1D filters:



x 1 2 1

Perform filtering along rows:





Followed by filtering along the remaining column:

#### Strange Things Happen At The Edges!

At the edges of an image we are missing pixels to form a neighbourhood



# Strange Things Happen At The Edges! (cont...)

- •There are a few approaches to dealing with missing edge pixels:
  - Omit missing pixels
    - Only works with some filters
    - Can add extra code and slow down processing
  - Pad the image
    - Typically with either all white or all black pixels
  - Replicate border pixels
  - Truncate the image
  - Allow pixels wrap around the image
    - Can cause some strange image artefacts

#### Practical matters

- What is the size of the output?
- Python: convolve2d(g, f, mode)
  - mode = 'full': output size is sum of sizes of f and g
  - mode = 'same': output size is same as f
  - mode = 'valid': output size is difference of sizes of f and g







# Strange Things Happen At The Edges! (cont...)





#### Correlation & Convolution

•The filtering we have been talking about so far is referred to as correlation with the filter itself referred to as the correlation kernel

$$g(x, y) = \sum_{s=-at=-b}^{a} \sum_{t=-b}^{b} w(s, t) f(x+s, y+t)$$

•Convolution is a similar operation, with just one subtle difference

$$g(x, y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s, t) f(x - s, y - t)$$

•For symmetric filters it makes no difference

| a | b | С |
|---|---|---|
| d | e | e |
| f | g | h |

\*

| r             | S | t |
|---------------|---|---|
| и             | v | W |
| $\mathcal{X}$ | у | Z |

 $e_{processed} = v^*e + \\ z^*a + y^*b + x^*c + \\ w^*d + u^*e + \\ t^*f + s^*g + r^*h$ 

Original Image Pixels

**Filter** 

#### Spatial Filtering Refresher



The above is repeated for every pixel in the original image to generate the smoothed image

### Sharpening Spatial Filters

Previously we have looked at smoothing filters which remove fine detail

Sharpening spatial filters seek to highlight fine detail

- Remove blurring from images
- Highlight edges

Sharpening filters are based on *spatial differentiation* 

#### Spatial Differentiation

Differentiation measures the *rate of change* of a function Let's consider a simple 1 dimensional example





#### Spatial Differentiation







#### 1<sup>st</sup> Derivative

The formula for the 1<sup>st</sup> derivative of a function is as follows:

$$\frac{\partial f}{\partial x} = f(x+1) - f(x)$$

It's just the difference between subsequent values and measures the rate of change of the function

#### 1<sup>st</sup> Derivative (cont...)



#### 2<sup>nd</sup> Derivative

The formula for the 2<sup>nd</sup> derivative of a function is as follows:

$$\frac{\partial^2 f}{\partial^2 x} = f(x+1) + f(x-1) - 2f(x)$$

Simply takes into account the values both before and after the current value

# 2<sup>nd</sup> Derivative (cont...)



# Using Second Derivatives For Image Enhancement

The 2<sup>nd</sup> derivative is more useful for image enhancement than the 1<sup>st</sup> derivative

- Stronger response to fine detail
- Simpler implementation
- We will come back to the 1<sup>st</sup> order derivative later on

The first sharpening filter we will look at is the Laplacian

- Isotropic
- One of the simplest sharpening filters
- We will look at a digital implementation

#### The Laplacian

The Laplacian is defined as follows:

$$\nabla^2 f = \frac{\partial^2 f}{\partial^2 x} + \frac{\partial^2 f}{\partial^2 y}$$

where the partial 2nd order derivative in the x direction is defined as follows:

$$\frac{\partial^2 f}{\partial^2 x} = f(x+1, y) + f(x-1, y) - 2f(x, y)$$

and in the y direction as follows:

$$\frac{\partial^2 f}{\partial^2 y} = f(x, y+1) + f(x, y-1) - 2f(x, y)$$

### The Laplacian (cont...)

So, the Laplacian can be given as follows:

$$\nabla^{2} f = [f(x+1, y) + f(x-1, y) + f(x, y+1) + f(x, y+1) + f(x, y-1)]$$
$$-4f(x, y)$$

We can easily build a filter based on this

| 0 | 1  | 0 |
|---|----|---|
| 1 | -4 | 1 |
| 0 | 1  | 0 |

### The Laplacian (cont...)

Applying the Laplacian to an image we get a new image that highlights edges and other discontinuities





## But That Is Not Very Enhanced!

- The result of a Laplacian filtering is not an enhanced image
- We have to do more work in order to get our final image
- Subtract the Laplacian result from the original image to generate our final sharpened enhanced image



Laplacian
Filtered Image
Scaled for Display

$$g(x, y) = f(x, y) - \nabla^2 f$$



#### Laplacian Image Enhancement



In the final sharpened image edges and fine detail are much more obvious



# Laplacian Image Enhancement







### Simplified Image Enhancement

The entire enhancement can be combined into a single filtering operation

$$g(x, y) = f(x, y) - \nabla^{2} f$$

$$= f(x, y) - [f(x+1, y) + f(x-1, y) + f(x, y+1) + f(x, y+1)$$

# Simplified Image Enhancement (cont...)

This gives us a new filter which does the whole job for us in one step





# Simplified Image Enhancement (cont...)





### Variants On The Simple Laplacian

There are lots of slightly different versions of the Laplacian that can be used:

| 0 | 1  | 0 |
|---|----|---|
| 1 | -4 | 1 |
| 0 | 1  | 0 |

Simple Laplacian

| 1 | 1  | 1 |
|---|----|---|
| 1 | -8 | 1 |
| 1 | 1  | 1 |

Variant of Laplacian





#### 1<sup>st</sup> Derivative Filtering

Implementing 1<sup>st</sup> derivative filters is difficult in practice

For a function f(x, y) the gradient of f at coordinates (x, y) is given as the column vector:

$$\nabla \mathbf{f} = \begin{bmatrix} G_x \\ G_y \end{bmatrix} = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix}$$

### 1<sup>st</sup> Derivative Filtering (cont...)

The magnitude of this vector is given by:

$$\nabla f = mag(\nabla f)$$

$$= \left[G_x^2 + G_y^2\right]^{\frac{1}{2}}$$

$$= \left[\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2\right]^{\frac{1}{2}}$$

For practical reasons this can be simplified as:

$$\nabla f \approx \left| G_{x} \right| + \left| G_{y} \right|$$

## 1<sup>st</sup> Derivative Filtering (cont...)

There is some debate as to how best to calculate these gradients but we will use for Sobel Filters:

$$\nabla f \approx \left| (z_7 + 2z_8 + z_9) - (z_1 + 2z_2 + z_3) \right| + \left| (z_3 + 2z_6 + z_9) - (z_1 + 2z_4 + z_7) \right|$$

which is based on these coordinates

| z <sub>1</sub>        | $z_2$                 | $z_3$                 |
|-----------------------|-----------------------|-----------------------|
| Z <sub>4</sub>        | <b>Z</b> <sub>5</sub> | <b>Z</b> <sub>6</sub> |
| <b>Z</b> <sub>7</sub> | <b>Z</b> <sub>8</sub> | $z_9$                 |

#### Sobel Operators

- Based on the previous equations we can derive the Sobel Operators
- To filter an image it is filtered using both operators the results of which are added together

| -1 | -2 | -1 |
|----|----|----|
| 0  | 0  | 0  |
| 1  | 2  | 1  |

| -1 | 0 | 1 |
|----|---|---|
| -2 | 0 | 2 |
| -1 | 0 | 1 |

#### Other filters



| 1 | 0 | -1 |
|---|---|----|
| 2 | 0 | -2 |
| 1 | 0 | -1 |

Sobel



Vertical Edge (absolute value)

#### Other filters



| 1  | 2  | 1  |
|----|----|----|
| 0  | 0  | 0  |
| -1 | -2 | -1 |

Sobel



Horizontal Edge (absolute value)

#### Sobel Example



An image of a contact lens which is enhanced in order to make defects (at four and five o'clock in the image) more obvious

Sobel filters are typically used for edge detection



#### 1<sup>st</sup> & 2<sup>nd</sup> Derivatives

Comparing the 1<sup>st</sup> and 2<sup>nd</sup> derivatives we can conclude the following:

- 1<sup>st</sup> order derivatives generally produce thicker edges
- 2<sup>nd</sup> order derivatives have a stronger response to fine detail e.g. thin lines
- 1st order derivatives have stronger response to grey level step
- 2<sup>nd</sup> order derivatives produce a double response at step changes in grey level

# Combining Spatial Enhancement Methods

Successful image enhancement is typically not achieved using a single operation

Rather we combine a range of techniques in order to achieve a final result

This example will focus on enhancing the bone scan to the right





# Combining Spatial Enhancement Methods (cont...)



Combining Spatial Enhancement Methods (cont...)

Sharpened image which is sum of (a) and (f) The product of (c) and (e) which will be used as a mask (e)



Image (d) smoothed with a 5\*5 averaging filter

#### Combining Spatial Enhancement Methods (cont...)

Compare the original and final images



#### Summary

- •In this lecture we looked at:
  - Neighbourhood operations
  - What is spatial filtering?
  - Smoothing operations
  - What happens at the edges?
  - Correlation and convolution
  - Spatial filtering refresher
  - Sharpening filters
    - 1<sup>st</sup> derivative filters
    - 2<sup>nd</sup> derivative filters
  - Combining filtering techniques