- Kank	
Question	6.3
	Lets start from c
	V(B) = 0.5 V(D)=0.5
	Reward is O for either side.
	So V(c) = 0.5 + 0.1 (0+0.5-0.5)
	= 0.5 estimati remains same
	Suppose we went to D
	V(D) = 0.5 + 0.1(0+0.5-0.5)
	20.5, whether we went to C or E
	eshmate remains same
	Suppose we went to E
	reward is I for going to the terminal state and O
	otherwise.
	If we went to the terminal state,
	0
	V(e) = 0.5 + 0.1 (1 + 215 - 0.5)
	V(E) = 0.55
	But according to the figure, V[E] = 0.5
	But according to the figure, V[E] = 0.5 which means that this epirode terminated at
	the bottom.
	V[A] = 0-5 + 0.1 (0+0-0-5)
	= 0.5 -0.05
	= 0-45
	Charge is - 0.05
1	

6.4 It would be better to take a wider verge of & values to determine the better learning method. OSA) & QCO,A) A LERY 400',A V(S) < Q V(S) + ~[R+ YV(S') -V(S)] I determine how much effect the reward would have on the update of V(s). with a smaller ax, there would be less orallations in the mee, but it night take infinite time for convergence. Both algorithms cannot be compared with each other gainst ony fined alpha

DELTA Pg No.
65
V(s) is affected by how large & is. Large & may can
V(s) to more towards its optimal value rapidly; but
V(s) is affected by how large of is. Large of may can v(s) to move towards its optimal value rapidly, but I may also overshoot the aphinal value due to a large step size. Since this is essentially a stepisize movement
towards an ophma, it does not depend on mithal values.