- Partie 6 -Routage IP

Routage IP

- Fonction qui permet de déterminer le meilleure chemin dans un réseau maillé vers une destination identifiée par une adresse de réseau IP.
- Utilisation de :
 - TABLE DE ROUTAGE (ou table d'acheminement) située dans chaque nœud : information nécessaire pour atteindre le prochain nœud vers la destination. Ex. Table de routage ip (netstat -r)
 - ALGORITHME DE ROUTAGE : fonction distribuée sur chaque noeuds qui a pour objectif de calculer les routes optimales pour atteindre une destination. Ex. Bellman-ford, Djikstra,
 - PROTOCOLES DE ROUTAGE : pour rôle l'échanges des informations de routes calculées par les algorithmes de routage et qui permettent la mise à jour dynamique des tables de routage. Ex. RIP, OSPF

Routage IP

- Machines et routeurs participent au routage :
 - Ils possèdent tous deux une table de routage,
 - les machines doivent déterminer si le datagramme doit être délivré sur le réseau physique sur lequel elles sont connectées (routage direct) ou bien si le datagramme doit être acheminé vers un routeur; dans ce cas (routage indirect), elle doit identifier le routeur appropriée.
 - les routeurs effectuent le choix de routage vers d'autres routeurs afin d'acheminer le datagramme vers sa destination finale.

Commande : netstat -r

page 7

Routage

- Le Routage est réalisé par 3 fonctions :
 - 1. Le relayage (Forwarding) : calcul du port de sortie
 - 1. analyse de l'adresse de destination du paquet IP
 - 2. et consultation d'une table de routage
 - 3. Fragmentation du paquet en fonction du MTU (Maximum Transmssion Unit) si besoin
 - 2. La commutation (Switching): transfert du ou des fragments de paquet du paquet d'un port d'entrée vers un port de sortie à travers un bus;
 - 3. L'ordonnancement (Scheduling) : détermination de l'ordre d'émission des paquets sur la liaison de sortie
- 1. Routage statique et dynamique:
- Les tables de routages peuvent être configurées en dur sur le routeur, on parle alors de "routage statique" (Téléphone).
- Elles peuvent aussi être mises à jour automatiquement et dynamiquement, c'est le "routage dynamique" (Internet).

Tâches d'une passerelle IP

Pour chaque datagramme IP qui traverse une passerelle, le protocole IP :

- détermine si ce sont des données utilisateur (TCP ou UDP) ou de contrôle (ICMP) destinées à la passerelle (analyse du champ « Protocole »)
- 2. vérifie le checksum, si faux => destruction paquet
- 3. vérifie la liste de contrôle d'accès (optionnel : fonction de Pare-Feux)
- 4. décrémente la durée de vie (TTL) du paquet, si nulle => destruction
- 5. forwarding: décide du routage (consulte la table de routage)
- 6. fragmente le datagramme si nécessaire (pour respecter le MTU de la prochaine liaison)
- 7. reconstruit l'en-tête IP avec les champs maj (TTL, ID, FLAG, OFFSET, Checksum)
- Switching: transmet le ou les fragments du paquet IP vers le port de sortie à travers le bus
- 9. Scheduling: ordonnancement du paquet dans la file de sortie
- 10. Remise du paquet à la couche 2 puis à la couche 1 pour codage et transmission
- 11. mise à jours des statistiques de trafic (optionnel)

A réception dans l'hôte destinataire, IP :

- vérifie le checksum
- s'il y a eu fragmentation, mémorise puis réassemble
- délivre au niveau supérieur (TCP, UDP) les données et les paramètres par la primitive DELIVER

Commutation de paquets vs commutation de circuits

	Commutation de paquets	Commutation de circuits
Principes		
- Niveau d'exécution :	Couche 3	Couche 2
- mode de transfert: avantages	Datagramme robuste aux pannes, ressources optimisées	Circuit virtuel rapidité, séquencement
- Modèle du monde réel	Réseau postal	Réseau des chemins de fer
- type de service : avantages	non connecté pas d'états	Connecté Contrôle simplifié
Structure de données échangées : Taille Longueur	datagramme ou paquet variable grande (Ko)	Trame ou cellule fixe petite (octets)
Type de tables utilisés: Portée Protocole de mise à jour Fréquence de mise à jours Algorithme de calcul de routes Taille dépend du	Table de routage (routes) Un ou plusieurs domaines Statique ou dynamique (RIP, OSPF) 30 sec – 3 mns état de liens (Djikstra), vecteur de distance (Bellman-ford) Nbre de réseaux destinations	Table de commutation (circuit) Locale (nœuds adjacents) Statique ou dynamique ms - RTT Auto-apprentissage (Ethernet), ou via table de routage et algo. associé Nbre de circuits actifs

page 11

Cas 1 : Serveur local Routage IP directe ARP (Adresse Resolution Protocol)

ARP

 L'association adresse physique - adresse IP de l'émetteur est incluse dans la requête ARP de manière à ce que les récepteurs enregistrent l'association dans leur propre mémoire cache,

- Pour connaître l'adresse physique de B (PB) à partir de son adresse IP (IB), la machine A diffuse une requête ARP qui contient l'adresse IP de B (IB) vers toutes les machines;
- la machine B répond avec un message ARP qui contient la paire (IB, PB).
- Rem : champ type de la trame Ethernet: 0806 pour ARP

page 13

Cas 2 : Serveur distant Routage IP indirecte

Routage IP intra-domaine

Distance vector algorithm:

- algorithme simple,
- par diffusion d'un extrait des meilleurs chemins,
- (sous la forme d'un vecteur où chaque entrée contient une distance)
- entre voisins directs (de proche en proche)
- métrique simple : hop count.

Link state algorithm (pour information):

- 2 phases:
 - . diffusion à tous de la connaissance sur les liaisons locales
 - . calcul local par chacun des meilleurs chemins sur les informations ainsi rassemblées
- exemple : Short Path First

RIP : Routing Information Protocol

- Protocole intérieur (Cf AS), RFC 1058.
- Proposé par l'université de Berkeley (BSD/routed)
- Conçu à l'origine pour les réseaux locaux, étendu aux réseaux distants
- Peu performant, mais le plus employé au monde (Appletalk, ...)
- · De type Vecteur de distance
- Deux Version 1.0 et 2.0 (sécurisé par authentification)
- Fonctionne au dessus d'UDP/IP; port 520 (Cf <1024)
- Les informations de routage sont émises toutes les 30 secondes et indiquent pour un routeur donné, la liste des réseaux accessibles avec leur distance (next hop).
- Si une route n'est pas rafraichie dans les 3 Mns la distance=infini
 - Utilisation de temporisateurs

page 17

RIP

Routing Information Protocol:

- RIP-1: RFC 1058 juin 1988.
- RIP-2: RFC 1388 juin 1993.

routed: Unix RIP routing deamon

commande *netstat -r*: visualise la table de routage commande *route*: modifie la table de routage fichier: /etc/hosts: la table de routage initiale

RIP + UDP + IP

- . Port n°520 (service RIP)
- . Période de diffusion des message de routage [15-45s]
- . Durée de validité d'un entrée (3 mn)
- Délai aléatoire de diffusion immédiate [0-5s]

Optimisation:

- RIP-1 utilise l'adresse de diffusion locale (255.255.255.255)
 - . Toutes les stations reçoivent une copie du message
- RIP-2 utilise l'adresse multicast réservée (224.0.0.9 : le groupe des routeurs)
 - . Seuls les routeurs RIP reçoivent une copie du message
 - ⇒ moins de surcharge pour les drivers IP des autres stations et autres routeurs. 3ge 18

RIP Encapsulation

Contraintes

- . Les messages de routage ont une longueur limitée : 512 octets
 - □ le MTU par défaut des datagrammes IP est de 576 octets!
- si les informations à transmettre sont plus longues, on diffuse plusieurs messages de routage.
- le protocole RIP est sans mémoire ("memoryless"), ces messages ne sont pas liés (par ex. pas de n°).

page 19

RIP principe

Etat initial:

Chaque routeur connaît son environnement immédiat :

- . son adresse, ses interfaces,
- . ses (sous-)réseaux directs : distance = 0.

Chaque routeur maintient localement une liste (BdD) des meilleures routes

table de routage < @ de destination, distance, @ du prochain routeur>

Chaque routeur actif diffuse un extrait de sa table de routage (message de routage):

- Périodiquement (30s)
- A tous leurs voisins immédiats
- Une liste de couple <@ de destination, distance>

Tous les routeurs mettent à jour leur tables de routage en conséquence. L'adresse du prochain routeur est implicitement celui de l'émetteur du message de routage.

Etat des stations :

- Actif (les routeurs) diffusent leurs routes,
- Passif (les stations d'extrémité) écoutent.

Routage IP intra-domaine Protocole RIP

RIP Format des messages

Le champ "command" (8 bits) : code le type du message :

7 8 15 16 31 bits . 1 = demande d'information

command version routing domain address family route tag

IP address subnet mask next-hop address metric address family route tag

IP address subnet mask next-hop address subnet mask next-hop address subnet mask next-hop address metric

- demande partielle pour certaines destinations (dont les entrées figurent dans la demande)
- demande totale (s'il y a une seule entrée associée à la demande tel que "address family"=0 et "metric"=16)
- . 2 = réponse
- l'extrait des meilleures routes du routeur
- suit à une demande, envoi périodique, envoi spontané

Le champ "version" (8 bits):

- . 1 = RIP-1 ⇔ les champs "routing domain", "route tag" "subnet address", "next-hop address" sont inutilisés = 0) . 2 = RIP-2
- Le champ "routing domain" (16 bits):
- . RIP est générique :
 - plusieurs domaines peuvent être gérés simultanément par le même routeur.
- . 0 par défaut et obligatoire pour RIP-1

RIP Format des messages (2) Le champ "address family "(16 bits): code le format d'adressage : 15 16 31 bits . les adresses peuvent être de longueur quelconque command version routing domain $.2 = IP \implies (32 \text{ bits})$ address family Le champ "route tag" (16 bits): . transmet des informations utilisées par le routage interdomaine (EGP) next-hop address . 0 pour RIP-1 Le champ "IP address" (32 bits): l'adresse de destination . l'adresse d'un réseau IP (⇒ netid) address family route tag . l'adresse d'un sous-réseau IP (⇒ subnet mask : subnetid) subnet mask . l'adresse d'une station (⇒@IP) . l'adresse par défaut (⇒n'importe quelle destination : 0.0.0.0) next-hop address Le champ "subnet mask" (32 bits): metric 0 pour RIP-1 . spécifie la taille du champ "subnetID" dans le champ "hostID" de l'adresse IP. page 23

Routage IP intra AS: OSPF

- Le protocole OSPF (Open Shortest Path First) a été développé en 1989/90 par IETF pour satisfaire aux spécifications du routage des réseaux privés de grande taille ou le nombre d'interconnexion est important.
- OSPF version 2 se trouve dans le RFC 1583.
- Basé sur l'algorithme de routage : Djikstra
- Avantages :
 - Routage hiérarchique par zone
 - · Stabilité du réseau
 - Peu de trafic de signalisation de routes
 - Routes alternatives avec répartition de charge si même coût
 - Métriques des routes plus complexes basées sur la bande passante des liens
 - Mais ne tiens pas compte de la charge réelle des liens
 - 108 / Bande passante en bps
 - Ethernet 10Mbps = 10
 - Fast Ethernet = 1
 - Sérial 64 Kbps = 1562

