2023. december 2., szombat 17:12

Mik a félvezetők?

- Olyan anyagok, melyek fajlagos ellenállása a vezetők és szigetelők közé esik
- Lehetnek:
 - Elemi (Si, Ge)
 - o Vegyületek (AIP, AIAs, GaAs, stb)
 - Adalékolt (n- és p-típus)
 - Szerves (pentacén, poliacetilén)

Szilárd félvezetők:

- Szobahőmérsékleten, vegytiszta állapotban szigetelők
- Hő növelésével, szennyezéssel megnövekszik a vezetőképesség
- Legyakrabban használt:
 - o Szilícium
 - o Germánium

Félvezetők szennyezése:

- Erős hőfüggésű tiszta félvezetők alacsony vezetőképessége idegen atomok hozzáadásával növelhető
- Szennyezés mértéke kicsi, 10^-5, 10^-6 %
- Szabad töltéshordozók számát (termikushoz képest) 10³ 10⁶ szorosára növeli
- Szennyezés lehet:
 - N-típusú (donor)
 - P-típusú (akceptor)

N-típusú szennyezés:

- 4 vegyértékű Si kristályhoz 5 vegyértékű atomokat adnak (foszfor, antimon, arzén, bizmut)
- Hatására szabad elektronok jönnek létre a kristályban
- Többségi töltéshordozók az elektronok
- Kissebségi töltéshordozók a lyukak

P-típusú szennyezés:

- 4 vegyértékű Si kristályhoz 3 vegyértékű atomokat adnak (bór, alumínium, indium, gallium)
- Hatására elektronhiányt jelentő lyukak jönnek létre a kristályban
- Kissebségi töltéshordozók az elektronok
- Többségi töltéshordozók a lyukak

Töltéshordozók mozgása:

- Okai:
 - Hőmérséklet változás (rendezetlen mozgás)
 - Változó eloszlású koncentráció (rendezett)
 - Belső vagy külső villamos erőtér jelenléte (rendezett)
- Rekombináció: kristályban véletlenszerűen mozgó elektronok lyukakkal találkozva újra egyesülnek --> megszűnnek, mint szabad töltéshordozók

Félvezető dióda:

- Elektronikai félvezető eszköz
- Zárt tokban, két kivezetéssel, egy db PN átmenetet tartalmaz

PN átmenet:

- N és P félvezetők találkozásánál a szennyező atomok eloszlása megváltozik
- Határon létrejön egy mikrométer vastagságú sáv
- Koncentrációkülönbsége diffúziós áramlást hoz létre
- N-ből elektronok, P-ből lyukak diffundálnak
- PN átmeneten keresztül az ellentétes rétegbe
- Itt rekombináció megy végbe
- PN két oldalán létrejön a kiürített réteg

Dióda nyitóirányú előfeszítése:

- P rétegre az N réteghez képest pozitív feszültséget kapcsolnak
- Ellenállása kicsi
- Vezetőként viselkedik
- Nyitóirányú áram jön létre

Dióda záróirányú előfeszítése:

- P rétegre N réteghez képest negatív feszültséget kapcsolnak
- Ellenállása nagy
- Ellenállásként viselkedik
- Kiürített réteg kiszélesedik
- Potenciálgát megnő
- Nem vezető

Diódák fajtái:

- Egyenirányító
- Zener
- Schottky
- Varikap
- Tűs
- Alagút
- Foto
- LED

Bipoláris tranzisztor:

- Elektromos jelek erősítésére kifejlesztett, 2 PN átmenettel rendelkező aktív áramköri komponens
- Működésében mindkét töltéshordozó fajta részt vesz
- Háromelektródás félvezető eszköz
- NPN vagy PNP elrendezésű
- Szennyezett félvezető rétegekből áll
- Elnevezései:
 - E emitter(kibocsátó)
 - B bázis(vezérlő)
 - C kollektor(gyűjtő)

Bipoláris tranzisztor működése:

• B-E átmenetet nyitó irányban a B-C átmenetet záró irányban feszítjük elő

- Nyitóirányú feszültség hatására az E tartományban található lyukak rendezett áramlással áthaladnak a határrétegen --> létrejön az E áram
- Kiürített rétegként viselkedő bázistartományba áramlott lyukak kis része rekombinálódik az itt található elektronokkal --> létrejön egy kis értékű B áram
- B-C átmenet záróirányú előfeszítése következtében a lyukak diffúzió révén rendezetten a kollektor rétegbe áramlanak és létrejön a C áram

Bipoláris tranzisztor alapkapcsolásai:

- Fizikai működés nem függ az alapkapcsolástól
- Bemeneti-, kimeneti- és transzfer jellemzői alapkapcsolás függőek
- Típusok:

Emitter kapcsolás karakterisztikái:

FET:

- Unipolártis, másnéven térvezérlésű tranzisztor
- Kialakuló áramot csak egyfajta töltéshordozó biztosítja
- Alapja: egy félvezető kristályból álló csatorna vezetőképességének külső villamos erőtér segítségével történő változása
- Elektromos teret egy kapunak nevezett vezérlőelektróda segítségével hozzák létre a csatorna keresztmetszetében
- Ezt a teret létrehozó feszültség vezérli a FET áramát
- Létezik:
 - o jFET
 - MOSFET

FET vs Bipoláris tranzisztor:

- Előnyei:
 - o Igen nagy bemeneti ellenállás
 - Egyszerűbb gyártás
 - Kisebb helyigény az Ic-ben

jFET:

- Térvezérlésű eszköz
- Belső csatornáját 2 db záróirányban előfeszített PN átmenet határolja
- Készülhet N és P szennyezéssel
- Elektródái:
 - o S source
 - O D drain
 - G gate

jFET felépítése és működése:

- N csatornás JFET szerkezetének közepén egy nagyon keskeny, gyengén szennyezett réteg, a csatorna helyezkedik el, melyet két erősen szennyezett, a csatornával ellentétes szennyezettésgű P+ félvezető határol
- Két végén fém elektródák, a D és S kivezetések
- G feladata a vezérlés
- D és S közé Uds feszültséget kapcsolunk
- Ha a G és S elektróda közötti Ugs feszültség nulla, mindkét PN átmenet záróirányú előfeszítést kap
- Ekkor a csatorna szélessége maximális, D és S elektródák közötti Id elektronáram a legnagyobb.
- Másik neve önvezető tranzisztor

jFET vezérlése:

- Ugs változtatásával befolyásolható a csatorna
- Csatorna ellenállásának növekedése a csatornán folyó Id áram csökkenését eredményezi
- Id áram nagysága Uds feszültséggel vezérelhető

MOSFET:

- Felépítése összhangban áll a nevével: MOS Metal Oxid Semiconductor
- MOSFET tranzisztorok lehetnek:
 - N-csatornásak
 - P-csatornásak
- További csoportosításuk:
 - Növekményes(önzáró)
 - Kiürítéses(önvezető)

FET-ek alapkapcsolásai:

Teljesítményelektronikai alkatrészek:

- Négyrétegű dióda
- Tirisztor
- Diac (kétirányú dióda)
- Triac (kétirányú tirisztordióda)
- UJT (egyátmenetű tranzisztor)