Brand Sentiment Analysis with Natural Language Processing (NLP)

September 2023

Overview

Use <u>NLP to analyze consumer attitudes</u> towards Google/Android and Apple and leverage <u>machine learning techniques to classify a given tweet</u> as having positive, negative, or neutral emotions

The Data: Original Version

	tweet_text	emotion_in_tweet_is_directed_at	is_there_an_emotion_directed_at_a_brand_or_product
0	.@wesley83 I have a 3G iPhone. After 3 hrs twe	iPhone	Negative emotion
1	@jessedee Know about @fludapp ? Awesome iPad/i	iPad or iPhone App	Positive emotion
2	@swonderlin Can not wait for #iPad 2 also. The	iPad	Positive emotion
3	@sxsw I hope this year's festival isn't as cra	iPad or iPhone App	Negative emotion
4	@sxtxstate great stuff on Fri #SXSW: Marissa M	Google	Positive emotion

- The data comes from tweets posted by contributors at a festival
 - The dataset contains 3 columns and 9,093 rows
 - "is_there_an_emotion_directed_at_a_brand_or_product" is our target variable
 - The remaining columns contain the actual tweet and the product the tweet refers to

The Data: Target Variable

- The bar plot shows the distribution of our "sentiment" (target) variable
- ~81% of attitudes towards the brands at the conference is positive
- We address the imbalance with weighted metrics and oversampling minority classes

The Data: Processing and Cleaning

- Cleaning and preprocessing consists of:
 - Removing duplicate entries
 - Renaming values and columns to be less ambiguous
 - Splitting tweets into lists of words without punctuations (tokens)
 - Assigning numerical values to the target variable

The Data: Processing and Cleaning

													twee	t	pro	duct	sentimer	nt	tweet_without_stopwords_and_punc
0					.0	@wesle	ey83 i h	ave a	3g ip	hone	e. afte	er 3	hrs twe		iPł	hone	negativ	e	[3g, iphone, 3, hrs, tweeting, riseaustin, dea
1				(@jesse	edee k	now ab	out @	fluda	pp?	awe	som	e ipad/i	. il	Pad or iPhone	Арр	positiv	e	[know, awesome, ipad, iphone, app, likely, app
2					@	swon	derlin d	an no	ot wai	t for #	#ipac	12 a	lso. the			iPad	positiv	e	[wait, ipad, 2, also, sale, sxsw]
3						@sxs	w i ho	e this	s year	's fes	stival	isn'	t as cra	. il	Pad or iPhone	Арр	negativ	e	[hope, years, festival, crashy, years, iphone,
4					(extxs	tate gr	eat st	uff on	fri #s	sxsw	: ma	rissa m		Go	ogle	positiv	e	[great, stuff, fri, sxsw, marissa, mayer, goog
•••																	•		
9088								ip	oad e	veryw	here	e. #s	xsw {link	}		iPad	positiv	e	[ipad, everywhere, sxsw, link]
9089					V	vave, I	ouzz	rt @m	entio	n we	inter	rupt	your re		unkn	nown	nor	e	[wave, buzz, , rt, interrupt, regularly, sched
9090					g	oogle	s zeige	r, a p	hysici	an ne	ever i	repo	rted po		unkn	nown	nor	e	[googles, zeiger, physician, never, reported,
9091					som	e veriz	zon iph	one c	uston	ners o	comp	olain	ed their		unkn	nown	nor	e	[verizon, iphone, customers, complained, time,
9092	ï; ïà	ü_	ê	î	ò	£	á â	â.	_	£		â_	ûârt @		unkn	nown	nor	e	[, ï, ¡, , ïà, , ü, , , ê, , , î, , ,
8914 rd	ows × 4	colu	mns																

Our processed dataset has shorter column names and 8,914 rows x 4 columns

Results

Naïve Bayes Classifier and Sentiment Analysis

- Optimal binary classification model
- Optimal multiclass classification model
- Sentiment Analysis by Brand

Results: Optimal Binary Classification

	precision	recall	f1-score
0	0.65	0.44	0.53
1	0.91	0.96	0.93
accuracy			0.88
macro avg	0.78	0.70	0.73
weighted avg	0.87	0.88	0.87

- A Naïve Bayes classifier with best parameters, over sampling techniques, tokenization, and stopword removal
- Returns weighted f1 score of 0.87 and an overall test score (accuracy) of 0.88
- The model emphasizes weighted f1, because it combines recall and precision and accounts for imbalance

Results: Optimal Multiclass Classification

2 = none

	precision	recall	f1-score
0 1 2	0.77 0.61 0.71	0.17 0.52 0.84	0.28 0.56 0.77
accuracy macro avg weighted avg	0.70 0.68	0.51	0.69 0.54 0.67

- A Naïve Bayes classifier with best parameters, tokenization, and stopword removal
- Returns weighted f1 score of 0.67 and an overall test score (accuracy) of 0.69
- The model emphasizes weighted f1, because it combines recall and precision and accounts for imbalance
- This model performs better without oversampling, as the new target variable increases overfitting

Results: Sentiment Analysis

We also use NLP to visualize the top ten bigrams associated with positive and negative tweets for Google/Android and Apple. An example of visualizations are below (word cloud and graph of bigram by importance). Please refer to the Appendix for a complete version.

Brands can leverage machine learning algorithms like Naïve Bayes to categorize large quantities of online text data

Google/Android

- Invest in Google Maps' competitive advantage
- Hold live events with guests like Marissa Mayer
- Address compatibility issues with Android

Apple

- Open popup stores frequently and promote launches
- Increase product testing for design and battery
- Strengthen corporate social responsibility and values

Contact Information

- <u>Email</u>
- Github
- <u>LinkedIn</u>

Appendix

Appendix: Google Sentiment

Appendix: Google Sentiment

Appendix: Android Sentiment

Appendix: Android Sentiment

Negative Tweets about Android

Appendix: Apple Sentiment

Appendix: Apple Sentiment

Negative Tweets about Apple

