Propriedades Semânticas da Lógica Proposicional

Márcio Lopes Cornélio DSC-Poli-UPE mlc@dsc.upe.br

Propriedades Semânticas

Propriedades Básicas Propriedades Básicas Exemplos Propriedades Básicas - conjuntos de fórmulas

Relações entre as Propriedades Semânticas

Propriedades Semânticas

Propriedades Básicas

Propriedades Semânticas

Propriedades Básicas

Propriedades Básicas Exemplos Propriedades Básicas - conjuntos de fórmulas

Relações entre as Propriedades Semânticas

- Relações no mundo semântico a partir de fórmulas do mundo sintático
- Propriedades semânticas básicas
 - Uma fórmula H é uma tautologia ou válida sse para toda interpretação I, I[H] = T
 - Uma fórmula H é factível ou satisfatível sse existe pelo menos uma interpretação I, tal que I[H] = T
 - Uma fórmula H é contraditória sse existe para toda interpretação I, I[H] = F
 - lacktriangle Dadas duas fórmulas H e G, H implica G sse para toda interpretação I,

se
$$I[H] = T$$
 então $I[G] = T$

Propriedades Básicas

Propriedades Semânticas

Propriedades Básicas

Propriedades Básicas

Exemplos
Propriedades Básicas
- conjuntos de
fórmulas

Relações entre as Propriedades Semânticas

- Propriedades semânticas básicas
 - ♦ Dadas duas fórmulas H e G, H equivale G sse para toda interpretação I, I[H] = I[G]
 - lacktriangle Dada uma fórmula H e uma interpretação I, então I satisfaz H se I[H] = T
 - Um conjunto de fórmulas $\beta = \{H_1, H_2, ..., H_n\}$ é satisfatível sse existe uma interpretação I, tal que

$$I[H_1] = I[H_2] = ... = I[H_n] = T$$

Exemplos

Propriedades Semânticas

Propriedades Básicas Propriedades Básicas

Exemplos

Propriedades Básicas - conjuntos de fórmulas

Relações entre as Propriedades Semânticas **Tautologia.** $H=P\vee\neg P$ é uma tautologia **Satisfatibilidade.** $H=(P\vee Q)$ é satisfatível **Contradição.** $H=(P\wedge\neg P)$ é contraditória **Implicação.** Sejam as fórmulas $E=((P\wedge Q)\vee Q),\ H=(P\wedge Q)$ e $G=(P\to Q)$

- Construir tabela verdade
- Resultados
 - lacktriangle E implica G, E não implica H
 - lacktriangle H implica G, H implica E
 - ◆ G não implica E, G não implica H

Equivalência. $H = (\neg P \land \neg Q) \in G = \neg (P \lor Q)$ são equivalentes

Propriedades Básicas - conjuntos de fórmulas

Propriedades Semânticas

Propriedades Básicas Propriedades Básicas Exemplos

Propriedades Básicas - conjuntos de fórmulas

Relações entre as Propriedades Semânticas Um conjunto de fórmulas é $\{H_1, H_2, ..., H_n\}$ é satisfatível quando existe ao menos uma interpretação I tal que as fórmulas H_1 , H_2 e H_n sejam interpretadas como iguais a T

- ◆ Exemplos
 - Insatisfatibilidade. H = P, $H = \neg P$ e H = Q
 - Satisfatibilidade. $E = (P \rightarrow Q)$, $H = (Q \rightarrow R)$, $G = (R \rightarrow P)$

Propriedades Semânticas

Relações entre as Propriedades Semânticas

Proposições Equivalências

Relações entre as Propriedades Semânticas

Proposições

Propriedades Semânticas

Relações entre as Propriedades Semânticas

Proposições

Equivalências

Validade e Contradição. Dada uma fórmula H, então

H é válida $\Leftrightarrow \neg H$ é contraditória

Validade e Factibilidade. Dada uma fórmula H,

H é tautologia $\Rightarrow H$ é satisfatível

Implicação e "\rightarrow". Dadas as fórmulas H e G

H implica $G \Leftrightarrow (H \rightarrow G)$ é uma tautologia

Equivalência e " \leftrightarrow ". Dadas as fórmulas H e G

H é equivalente a $G \Leftrightarrow (H \leftrightarrow G)$ é uma tautologia

Equivalência e implicação. Dadas as fórmulas H e G

H equivale a $G \Leftrightarrow H$ implica G e G implica H

Equivalências

Propriedades Semânticas

Relações entre as Propriedades Semânticas

Proposições

Equivalências

- Equivalências entre fórmulas da Lógica Proposicional
- Conjecturas inválidas

Equivalência e validade

H equivale a $G \Leftrightarrow \{H \text{ \'e uma tautologia} \Leftrightarrow G \text{ \'e uma tautologia}\}$

Contra-exemplo. Considere H = P e G = Q (implicação da direita para a esquerda é falsa)