习题课材料(八)

习题 1. 奇数阶反对称矩阵不可逆.

习题 2. 对分块上三角矩阵 $X = \begin{bmatrix} A & C \\ O & B \end{bmatrix}$, 证明 $\det X = \det A \cdot \det B$.

习题 3. 设 A, B 分别为 $m \times n$, $n \times m$ 矩阵. 证明 $\det(I_m + AB) = \det(I_n + BA)$.

习题 4 (\heartsuit). 设 $T = [t_1, \ldots, t_n]$ 为 n 阶方阵. 证明 Hadamard 不等式

$$|\det T| \leq ||\boldsymbol{t}_1|| \cdots ||\boldsymbol{t}_n||.$$

习题 5. 计算行列式

$$\begin{vmatrix} 1 & 0 & 0 & 2 \\ 0 & 3 & 4 & 5 \\ 5 & 4 & 0 & 3 \\ 2 & 0 & 0 & 1 \end{vmatrix}$$

习题 6.
$$\begin{vmatrix} 2x & x & 1 & 2 \\ 1 & x & 1 & -1 \\ 3 & 2 & x & 1 \\ 1 & 1 & 1 & x \end{vmatrix}$$
中 x^4 , x^3 系数.

习题 7. 设方阵 A,B 满足 AB=BA. 证明 $\det \begin{bmatrix} A & B \\ -B & A \end{bmatrix} = \det (A^2+B^2)$.

习题 8. 1. 设 A 是正交矩阵, $\det A < 0$. 证明 $I_n + A$ 不可逆.

2. 设 A 为奇数阶正交矩阵, $\det A > 0$. 证明 $I_n - A$ 不可逆.

习题 9 (♥). 设 A 为对角占优方阵, 对角元素全为正数. 证明 det A > 0.

习题 10. 设 A 是元素为整数的可逆矩阵. 证明, 若 A 可逆, 并且 A^{-1} 的元素也为整数的必要且充分条件是 $|\det A|=1$.