Medición On-Wafer de parámetros S

Medidas Electrónicas II

Luis Seva

Bruno Errasti |

Pablo Di Sabato

Introducción

TRL

- Fundamentos teóricos.
- Por qué se eligió?
- TX Line Software.

Proceso de fabricación e inconvenientes

- Selección de PCB y componentes.
- Inconvenientes y soluciones.
- Aspectos a evitar.
- Mediciones, capturas y comparaciones
- Conclusiones

TRL

TRL (Thru, Reflect, Line)

- Familia de técnicas de calibración que miden dos patrones de transmisión y uno de reflexión para determinar los coeficientes de error (2 puertos – 12 términos).
- Incluyen: TRM (Thru, Reflect, Match), LRL (Line, Reflect, Line) y LRM (Line, Reflect, Match).

Por que TRL?

- Excelente precisión.
- Muy utilizado cuando no se cuenta con patrones de calibración con los mismos tipos de conectores que el DUT (por ejemplo mediciones on-wafer).
- Utiizado generalmente para realizar mediciones con probe stations.
- Relativamente sencillo de fabricar e implmentar.
- Los patrones no necesitan ser definidos con tanta precisión y exactitud, ya que son modelados (a diferencia de SOTL).

TRL - Cálculos

TRL - Cálculos

Line

- Idealmente, el largo de la pista patrón debe ser de $\frac{1}{4}\lambda$ (90 grados eléctricos).
- Para realizar un barrido en frecuencia a lo largo de una buena porción del espectro, se vuelve impráctico e irrealizable.
- **Criterio de ingeniería**: El largo el patrón **Line** funciona razonablemente bien entre 20 y 160 grados eléctricos. Dependiendo del ancho de banda que se necesite medir, se crean los patrones necesarios.
- Podemos pensar el ancho de banda a cubrir como un ratio entre la menor frecuencia y la mayor. Esto nos permite fácilmente saber cuantos patrones line vamos a necesitar:
 - 1 línea cubre un ratio 8:1
 - 2 líneas cubren un ratio 64:1
 - 3 líneas cubren un ratio 512:1
 - 4 líneas cubren un ratio 4096:1

TRL - Cálculos

		I		I	1
Enter Keff	10,2				
Enter FL	Enter FH		Ratio FH/FL		Result
0,24	24	GHz	100		Three lines

One line solution	FL	FC		FH						
Frequencies	0,2	,24 12,12		24	GHz					
Line length			1,9375751581		mm					
Time delay			20,6270627063		ps					
Phase at lower trans			1,7821782178		deg					
Phase at upper trans			178,2178217822		deg					
		Band 1			Band 2					
Two line solution	FL	FC1		FT	FC2	FH				
Frequencies	0,2	.4	1,32	2,4	13,2	24	GHz			
Line lengths			17,7904628149		1,7790463	3	mm			
Time delay			189,3939393939		18,939394	L	ps			
Phase at lower trans			16,3636363636		16,363636	5	deg			
Phase at upper trans			163,6363636364		163,63636	i	deg			
		Band 1			Band 2		Band 3			
Three line solution	FL	FC1		FT1	FC2	FT2	FC3	FH		
Frequencies	0,2	24	0,67699066	1,1139813	3,1423123	5,1706433	14,585322	2	24	GHz
Line lengths			34,6879392908		7,47329)	1,6100715	5		mm
Time delay			369,2813132571		79,559247		17,14052	2		ps
Phase at lower trans			31,9059054654		31,905905	j	31,905905	5		deg
Phase at upper trans			148,0940945346		148,09409		148,09409			deg

TRL

TXLine Software

- Utilizado para calcular, analizar y sintetizar lineas de transmisión.
- En nuestro caso lo utilizamos para poder determinar las características del PCB que necesitábamos adquirir.

3,14 GHz

TRL

15 GHz

Selección de PCB

Selección de PCB

- Necesitabamos cumplir con los siguientes requerimientos:
 - CPW (Coplanar Waveguide)
 - Dieléctrico 10,2
 - Gap y Width limitados, por las caracterísitcas de las puntas de medición (probes): pitch desde 50 a 1250 um
 - Conductor de cobre

RO3200™ Series Circuit Materials

RO3203[™], RO3206[™] and RO3210[™] High Frequency Circuit Laminates

Sample Items:

Item Name	Qty Ordered		
RO3210 12X9 H1/H1 R3 0500+-002/DI	2		

RO3210 Series

- Laminados de cerámica reforzados con fibra de vidrio tejida.
- Balance entre alta performance eléctrica y estabilidad mecánica.
- Cumpple con el valor de constante dieléctorica (K=10,2).
- Factor de dsicipación bajo 0,0027 (muy importante en RF alta frecuencia, para minimizar las pérdias y errores).
- Costo aproximado de 50 USD.

Standard Thickness	Standard Panel Size	Standard Copper Cladding
RO3203: 0.010" (0.25mm) 0.020" (0.50mm) 0.030" (0.75mm) 0.060" (1.52mm)	12" X 18" (305 X 457mm) 24" X 18" (610 X 457mm)	½ oz. (17µm) electrodeposited copper foil (HH/HH) & rolled copper foil (5R/5R) 1 oz. (35µm) electrodeposited copper foil. (H1/H1) & rolled copper foil (1R/1R) 2 oz. (70µm) electrodeposited copper foil. (H2/H2) & rolled copper foil (2R/2R)
RO3206/RO3210: 0.025" (0.64mm) 0.050" (1.28mm)	12" X 18" (305 X 457mm) 24" X 18" (610 X 457mm)	½ oz. (17µm) electrodeposited copper foil (HH/HH) 1 oz. (35µm) electrodeposited copper foil. (H1/H1) 2 oz. (70µm) electrodeposited copper foil. (H2/H2) Other claddings may be available. Contact customer service.

	Typical Value ⁽¹⁾			5 1				
Property	RO3203	RO3206	RO3210	Direction	Unit	Condition	Test Method	
Dielectric Constant, $\epsilon_{_{_{\Gamma}}}$ Process	3.02± 0.04	6.15± 0.15	10.2± 0.50	Z	-	10 GHz 23°C	IPC-TM-650 2.5.5.5 Clamped Stripline	
Design	3.02	6.6	10.8	Z	-	8 GHz - 40 GHz	Differential Phase Length Method	
Dissipation Factor, $\tan\delta$	0.0016	0.0027	0.0027	Z	-	10 GHz 23°C	IPC-TM-650 2.5.5.5	
Thermal Coefficient of $\varepsilon_{_{\! r}}$	-13	-212	-459	Z	ppm/°C	10 GHz 0-100°C	IPC-TM-650 2.5.5.5	
Dimensional Stability	0.8	0.8	0.8	X,Y	mm/m	COND A	ASTM D257	
Volume Resistivity	10 ⁷	103	103		MΩ•cm	COND A	IPC 2.5.17.1	
Surface Resistivity	10 ⁷	103	103		МΩ	COND A	IPC 2.5.17.1	
Tensile Modulus	409 351	462 462	579 517	MD CMD	kpsi	23°C	ASTM D638	
Water Absorption	<0.1	<0.1	<0.1	-	%	D24/23	IPC-TM-650 2.6.2.1	
Specific Heat	0.95	0.85	0.79		J/g/K		Calculated	
Thermal Conductivity	0.48	0.67	0.81	-	W/m/K	80°C	ASTM C518	
Coefficient of Thermal Expansion	13 58	13 34	13 34	X,Y, Z	ppm/°C	-55 to 288°C	ASTM D3386-94	
Td	500	500	500		°C	TGA	ASTM D3850	
Color	Tan	Tan	Off White					
Density	2.1	2.7	3.0		gm/cm3			
Copper Peel Strength	10.2	10.7	11.0		pli	1 oz. EDC After Solder Float	IPC-TM-2.4.8	
Flammability	V-0	V-0	V-0				UL 94	
Lead Free Process Compatible	YES	YES	YES					

Inconvenientes y consideraciones...

- Revisar todos los aspectos e imperfecciones del diseño antes de la impresión de la filmina. Revisar con diversos softwares.
- Minimizar el tamaño de los contactos/pads (llamdas launchers) de cada uno de los patrones (para reducir imperfecciones y meduciones indeseadas).
- No usar conectores (genralmetne SMA) baratos.
- Utilizar preferentemente un corto-circuito (short) para el patrón Reflect.
- Tener en cuenta tiempos de entrega, demoras y posibles imprevistos.
- Tener en cuenta desde un principio las características del probe.

HMC652LP2E

- 4 Attenuator Products:
- 2, 3, 4 & 6 dB Fixed Attenuation Levels
- Wide Bandwidth: DC 25 GHz
- Excellent Attenuation Accuracy
- 6 Lead 2x2 mm SMT Package: 4 mm 2

Functional Diagram

Evaluation PCB

Mediciones

Bibliografía

- https://www.microwaves101.com/encyclopedias/trl-calibration
- http://info.asistandards.com/blog/6-things-you-have-to-know-about-calib ration-standards
- https://www.microwaves101.com/encyclopedias/trl-calibration
- https://ieeexplore.ieee.org/Xplore/home.jsp
- https://www.rohde-schwarz.com/us/home_48230.html
- https://www.agilent.com/
- https://www.analog.com/en/index.html

Dudas?

