

Model Optimization and Tuning Phase Template

Date	July 5, 2024
Team ID	739683
Project Title	Customer segmentation using Machine Learning
Maximum Marks	10 Marks

Model Optimization and Tuning Phase

The Model Optimization and Tuning Phase involves refining machine learning models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

Hyperparameter Tuning Documentation (6 Marks):

Model	Tuned Hyperparameters	Optimal Values
Decision tree	<pre># Define the Decision Tree classifier dt_classifier = DecisionTreeClassifier() # Define the hyperparameters and their possible values for tuning param_grid = { 'criterion': ['gini', 'entropy'], 'splitter': ['best', 'random'], 'max_depth': [None, 10, 20, 30, 40, 50], 'min_samples_split': [2, 5, 10], 'min_samples_leaf': [1, 2, 4] }</pre>	# Evaluate the performance of the toned model accordary a accordance services (seet parms)") print("Accordance of lest fact parms)") print("Accordance of lest fact (accordance)") Optical Apperprometers ("Criterion" 'pini', "man Angold": Norm, "min, smples Jun": 2, "min, smples golit": 30, "malither": "heat") Accordance of lest fact: 8.7559.000.0000007
Random forest	<pre># Define the Random Forest classifier rf_classifier = RandomForestClassifier() # Define the hyperparameters and their possible values for tuning param_grid = { 'n_estimators': [50, 100, 200], 'criterion': ['gini', 'entropy'], 'max_depth': [None, 10, 20, 30], 'min_samples_split': [2, 5, 10], 'min_samples_leaf': [1, 2, 4], }</pre>	# Evaluate the performance of the tuned model accuracy = accuracy_score(s_test, s_u_red) print(f'Optical Superporanters: (Best_parases')) print(f'Accuracy on Test Set: (accuracy)') Optical Superporanters: ("criterior': "entropy", "max_depth": 20, "min_samples_leaf": 1, "min_samples_polit": 2, "m_estimator Accuracy on Test Set: 0.775147528594828


```
# Define the Gradient Boosting classifier
gb_classifier = GradientBoostingClassifier()

# Define the hyperparameters and their possible values for tuning
param_grid = {
    'n_estimators': [50, 100, 200],
    'learning_rate': [0.01, 0.1, 0.2],
    'max_depth': [3, 4, 5],
    'min_samples_split': [2, 5, 10],
    'min_samples_leaf': [1, 2, 4],
    'subsample': [0.8, 1.0]
}

# Define the Gradient Boosting classifier
gb_classifier
gb_cl
```

Performance Metrics Comparison Report (2 Marks):

Model	Optimized Metric
Decision tree	print(classification_report(y_test,y_pred)) precision recall f1-score support Loan will be Approved 0.07 0.08 0.08 75 Loan will not be Approved 0.74 0.73 0.74 94 accuracy macro avg 0.71 0.71 0.71 109 weighted avg 0.71 0.71 0.71 109 confusion_matrix(y_test,y_pred) array([[51, 24], [25, 69]])
Random forest	print(classification_report(y_test,y_pred)) precision recall f1-score support Loan will be Approved
Gradient boosting	<pre>print(classification_report(y_test,y_pred))</pre>

Final Model Selection Justification (2 Marks):

Final Model	Reasoning
	The gradient Boosting model was selected for its superior performance,
	exhibiting high accuracy during hyperparameter tuning. Its ability to
	handle complex relationships, minimize overfitting, and optimize
	predictive accuracy aligns with project objectives, justifying its
Gradient boosting	selection as the final model