

C1 : Modélisation des systèmes pluritechniques C1-1 : Introduction aux Sciences Industrielles de l'Ingénieur et à l'ingénierie systèmes

> Émilien DURIF emilien.durif@gmail.com

Lycée La Martinière Monplaisir Lyon Classe de MPSI

Plan

- Métiers de l'ingénieur
 - Contexte du travail dans l'entreprise
 - Rôle de l'ingénieur
 - Les différentes formes du métier d'ingénieur
- Cursus de formation pour être ingénieur
 - Déroulement du cursus en CPGE
 - Compétences visées
 - Organisation en CPGE
 - Principales débouchées
 - Quelques conseils pour l'année scolaire
 - Les cycles en MPSI
- L'ingénierie système
 - Définitions
 - Spécification du besoin
 - Triptyque "système souhaité-réel-simulé"
 - Cycle de vie d'un système
 - Processus du conception de produits complexes

- Métiers de l'ingénieur
 - Contexte du travail dans l'entreprise
 - Rôle de l'ingénieur
 - Les différentes formes du métier d'ingénieur
- Cursus de formation pour être ingénieu
 - Déroulement du cursus en CPGE
 - Compétences visées
 - Organisation en CPGE
 - Principales débouchées
 - Quelques conseils pour l'année scolaire
 - Les cycles en MPSI
- L'ingénierie système
 - Définitions
 - Spécification du besoin
 - Triptyque "système souhaité-réel-simulé"
 - Cycle de vie d'un système
 - Processus du conception de produits complexes

Entreprise

L'entreprise dans le cadre du travail d'ingénieur peut être décrite comme une association de personnes mettant en commun des ressources intellectuelles, financières et matérielles dans un objectif partagé :

la conception, la réalisation, la commercialisation et le suivi d'un produit ou d'un service à destination de **clients**.

- ouvriers;
- techniciens:
- agents des ressources humaines;
- gestionnaires;
- commerciaux
- ingénieu

Entreprise

L'entreprise dans le cadre du travail d'ingénieur peut être décrite comme une association de personnes mettant en commun des ressources intellectuelles, financières et matérielles dans un objectif partagé :

la conception, la réalisation, la commercialisation et le suivi d'un produit ou d'un service à destination de **clients**.

- ouvriers;
- techniciens;
 - agents des ressources humaines :
- gestionnaires;
- commerciaux
- a ingénieure

L'entreprise dans le cadre du travail d'ingénieur peut être décrite comme une association de personnes mettant en commun des ressources intellectuelles, financières et matérielles dans un objectif partagé :

la conception, la réalisation, la commercialisation et le suivi d'un produit ou d'un service à destination de **clients**.

- ouvriers;
- techniciens;
- agents des ressources humaines;
- gestionnaires;
- commerciaux
- a ingénieure

Entreprise

L'entreprise dans le cadre du travail d'ingénieur peut être décrite comme une association de personnes mettant en commun des ressources intellectuelles, financières et matérielles dans un objectif partagé :

la conception, la réalisation, la commercialisation et le suivi d'un produit ou d'un service à destination de clients

- ouvriers:
- techniciens:

L'entreprise dans le cadre du travail d'ingénieur peut être décrite comme une association de personnes mettant en commun des ressources intellectuelles, financières et matérielles dans un objectif partagé :

la conception, la réalisation, la commercialisation et le suivi d'un produit ou d'un service à destination de **clients**.

- ouvriers;
- techniciens:
- agents des ressources humaines;
- gestionnaires;
- commerciaux
- ingénieurs

L'entreprise dans le cadre du travail d'ingénieur peut être décrite comme une association de personnes mettant en commun des ressources intellectuelles, financières et matérielles dans un objectif partagé :

la conception, la réalisation, la commercialisation et le suivi d'un produit ou d'un service à destination de **clients**.

- ouvriers;
- techniciens;
- agents des ressources humaines;
- gestionnaires;
- commerciaux
- ingénieurs

L'entreprise dans le cadre du travail d'ingénieur peut être décrite comme une association de personnes mettant en commun des ressources intellectuelles, financières et matérielles dans un objectif partagé :

la conception, la réalisation, la commercialisation et le suivi d'un produit ou d'un service à destination de **clients**.

- ouvriers;
- techniciens:
- agents des ressources humaines;
- gestionnaires;
- commerciaux:
- ingénieurs.

Entreprise

L'entreprise dans le cadre du travail d'ingénieur peut être décrite comme une association de personnes mettant en commun des ressources intellectuelles, financières et matérielles dans un objectif partagé :

la conception, la réalisation, la commercialisation et le suivi d'un produit ou d'un service à destination de clients

- ouvriers:
- techniciens:
- agents des ressources humaines;
- gestionnaires;
- commerciaux:
- ingénieurs.

- L'ensemble de ces employés forment une équipe et mettent à disposition leurs compétences en échange d'un salaire pour concevoir, réaliser et mettre en vente le produit dans le but d'un retour d'investissement qui assure la pérennité de l'entreprise mais aussi son évolution (innovation de produits et développement des marchés).
- On l'aura compris tout ceci est possible s'il existe au moins un client qui éprouve de l'intérêt pour le produit proposé.

client

Le client est l'entité qui achète le produit (le client peut être une entreprise). Pour un seul client, une entreprise peut être en concurrence avec une autre c'est pourquoi il est nécessaire d'identifier avec précision les attentes et besoins de ce dernier.

- L'ensemble de ces employés forment une équipe et mettent à disposition leurs compétences en échange d'un salaire pour concevoir, réaliser et mettre en vente le produit dans le but d'un retour d'investissement qui assure la pérennité de l'entreprise mais aussi son évolution (innovation de produits et développement des marchés).
- On l'aura compris tout ceci est possible s'il existe au moins un client qui éprouve de l'intérêt pour le produit proposé.

- L'ensemble de ces employés forment une équipe et mettent à disposition leurs compétences en échange d'un salaire pour concevoir, réaliser et mettre en vente le produit dans le but d'un retour d'investissement qui assure la pérennité de l'entreprise mais aussi son évolution (innovation de produits et développement des marchés).
- On l'aura compris tout ceci est possible s'il existe au moins un client qui éprouve de l'intérêt pour le produit proposé.

client

Le client est l'entité qui achète le produit (le client peut être une entreprise). Pour un seul client, une entreprise peut être en concurrence avec une autre c'est pourquoi il est nécessaire d'identifier avec précision les attentes et besoins de ce dernier.

- Définir, piloter et garantir la réussite du produit en mettant en oeuvre les méthodes permettant d'assurer que le besoin du client soit satisfait.
- Modéliser les attentes du client. Ce sera le rôle du cahier des charges fonctionnel (CdCF) qui permettra alors de définir et chiffrer les attentes du client.

- Définir, piloter et garantir la réussite du produit en mettant en oeuvre les méthodes permettant d'assurer que le besoin du client soit satisfait.
- Modéliser les attentes du client. Ce sera le rôle du cahier des charges fonctionnel (CdCF) qui permettra alors de définir et chiffrer les attentes du client.

- Sortez vos Téléphones portables
- Télécharger l'application "SOCRATIVE STUDENT"
- Ou taper dans google "SOCRATIVE STUDENT"
- Saisir le nom de la "ROOM" : DURIF
- Saisir un PSEUDO

Le titre d'ingénieur est large est provient d'un diplôme délivré à l'issu d'une école d'ingénieur. Différents secteurs d'activité :

- génie civil;
- mécanique ;
- aéronautique ;
- électronique ;
- chimie;
- optique;
- économie;
- finance:
- informatique;
- biologie;
- agronomie;
- etc...

- a ingénieur produit
- ingénieur en bureau d'étude
- ingénieur en recherche et développement
- Émilien DURIF emilien.durif@gmail.com

Métiers de l'ingénieur Cursus de formation pour être ingénieur L'ingénierie système

Les différentes formes du métier d'ingénieur

Le titre d'ingénieur est large est provient d'un diplôme délivré à l'issu d'une école d'ingénieur. Différents secteurs d'activité :

- génie civil;
- mécanique;
- aéronautique;
- électronique;
- chimie :
- optique;
- économie;
- finance:
- informatique;
- biologie;
- agronomie;
- etc...

- ingénieur produit
- ingénieur en bureau d'étude
- ingénieur en recherche et développement
- Émilien DURIF emilien.durif@gmail.com

Le titre d'ingénieur est large est provient d'un diplôme délivré à l'issu d'une école d'ingénieur. Différents secteurs d'activité :

- génie civil;
- mécanique;
- aéronautique;
- électronique
- chimie;
- optique;
- économie ;
- finance:
- informatique;
- biologie;
- agronomie;
- etc...

- ingénieur produit
- ingénieur en bureau d'étude
- ingénieur en recherche et développement
- Émilien DURIF emilien.durif@gmail.com

Métiers de l'ingénieur Cursus de formation pour être ingénieur L'ingénierie système

Les différentes formes du métier d'ingénieur

Le titre d'ingénieur est large est provient d'un diplôme délivré à l'issu d'une école d'ingénieur. Différents secteurs d'activité :

- génie civil;
- mécanique ;
- aéronautique;
- électronique;
- chimie:
- optique;
- économie ;
- finance:
- informatique;
- biologie;
- agronomie;
- etc...

- ingénieur produit
- ingénieur en bureau d'étude
- ingénieur en recherche et développement
- Émilien DURIF emilien.durif@gmail.com

Métiers de l'ingénieur Cursus de formation pour être ingénieur L'ingénierie système

Les différentes formes du métier d'ingénieur

Le titre d'ingénieur est large est provient d'un diplôme délivré à l'issu d'une école d'ingénieur. Différents secteurs d'activité :

- génie civil;
- mécanique;
- aéronautique;
- électronique;
- chimie;
- optique;
- économie :
- finance:
- informatique;
- biologie;
- agronomie;
- etc...

- ingénieur produit
- ingénieur en bureau d'étude
- ingénieur en recherche et développement
- Émilien DURIF emilien.durif@gmail.com

Le titre d'ingénieur est large est provient d'un diplôme délivré à l'issu d'une école d'ingénieur. Différents secteurs d'activité :

- génie civil;
- mécanique;
- aéronautique;
- électronique;
- chimie;
- optique;
- économie ;
- finance:
- informatique;
- biologie;
- agronomie;
- etc...

- ingénieur produit
- ingénieur en bureau d'étude
- ingénieur en recherche et développement
- Émilien DURIF emilien.durif@gmail.com

Le titre d'ingénieur est large est provient d'un diplôme délivré à l'issu d'une école d'ingénieur. Différents secteurs d'activité :

- génie civil;
- mécanique;
- aéronautique;
- électronique;
- chimie;
- optique;
- économie ;
- finance:
- informatique;
- biologie;
- agronomie;
- etc...

- ingénieur produit
- ingénieur en bureau d'étude
- ingénieur en recherche et développement :
- Émilien DURIF emilien.durif@gmail.com

Le titre d'ingénieur est large est provient d'un diplôme délivré à l'issu d'une école d'ingénieur. Différents secteurs d'activité :

- génie civil;
- mécanique;
- aéronautique;
- électronique;
- chimie;
- optique;
- économie;
- finance:
- informatique:
- biologie;
- agronomie;
- etc...

- ingénieur produit :
- ingénieur en bureau d'étude
- ingénieur en recherche et développement
- Émilien DURIF emilien.durif@gmail.com

Le titre d'ingénieur est large est provient d'un diplôme délivré à l'issu d'une école d'ingénieur. Différents secteurs d'activité :

- génie civil;
- mécanique ;
- aéronautique;
- électronique;
- chimie;
- optique;
- économie :
- finance:
- informatique;
- biologie;
- agronomie;
- etc...

- ingénieur produit :
- ingénieur en bureau d'étude
- ingénieur en recherche et développement

Le titre d'ingénieur est large est provient d'un diplôme délivré à l'issu d'une école d'ingénieur. Différents secteurs d'activité :

- génie civil;
- mécanique;
- aéronautique;
- électronique;
- chimie;
- optique;
- économie;
- finance:
- informatique;
- biologie;
- agronomie;
- etc...

- ingénieur produit :
- ingénieur en bureau d'étude
- ingénieur en recherche et développement
- Émilien DURIF emilien.durif@gmail.com

Le titre d'ingénieur est large est provient d'un diplôme délivré à l'issu d'une école d'ingénieur. Différents secteurs d'activité :

- génie civil;
- mécanique;
- aéronautique;
- électronique;
- chimie;
- optique;
- économie ;
- finance;
- informatique;
- biologie;
- agronomie;
- etc

Le titre d'ingénieur est large est provient d'un diplôme délivré à l'issu d'une école d'ingénieur. Différents secteurs d'activité :

- génie civil :
- mécanique ;
- aéronautique;
- électronique;
- chimie:
- optique;
- économie :
- finance;
- informatique;
- biologie;
- agronomie;
- etc...

- maître d'oeuvre;
- ingénieur produit;
- o ingénieur en bureau d'étude :
- ingénieur en recherche et développement :
- ingénieur commercial :

Le titre d'ingénieur est large est provient d'un diplôme délivré à l'issu d'une école d'ingénieur. Différents secteurs d'activité :

- génie civil :
- mécanique ;
- aéronautique;
- électronique;
- chimie:
- optique;
- économie;
- finance;
- informatique;
- biologie;
- agronomie;
- etc...

- maître d'oeuvre;
- ingénieur produit;
- o ingénieur en bureau d'étude :
- ingénieur en recherche et développement :
- ingénieur commercial :

Le titre d'ingénieur est large est provient d'un diplôme délivré à l'issu d'une école d'ingénieur. Différents secteurs d'activité :

- génie civil :
- mécanique ;
- aéronautique;
- électronique;
- chimie:
- optique;
- économie :
- finance;
- informatique;
- biologie;
- agronomie:
- etc

- maître d'oeuvre :
- ingénieur produit;

Le titre d'ingénieur est large est provient d'un diplôme délivré à l'issu d'une école d'ingénieur. Différents secteurs d'activité :

- génie civil :
- mécanique ;
- aéronautique;
- électronique;
- chimie:
- optique;
- économie :
- finance;
- informatique;
- biologie;
- agronomie;
- etc

- maître d'oeuvre :
- ingénieur produit;
- ingénieur en bureau d'étude;

Le titre d'ingénieur est large est provient d'un diplôme délivré à l'issu d'une école d'ingénieur. Différents secteurs d'activité :

- génie civil :
- mécanique ;
- aéronautique;
- électronique;
- chimie:
- optique;
- économie :
- finance;
- informatique;
- biologie;
- agronomie;
- etc...

- maître d'oeuvre;
- ingénieur produit;
- ingénieur en bureau d'étude;
- ingénieur en recherche et développement;
 - ingénieur commercial ;

Le titre d'ingénieur est large est provient d'un diplôme délivré à l'issu d'une école d'ingénieur. Différents secteurs d'activité :

- génie civil :
- mécanique ;
- aéronautique;
- électronique;
- chimie:
- optique;
- économie :
- finance;
- informatique:
- biologie;
- agronomie;
- etc...

- maître d'oeuvre;
- ingénieur produit;
- ingénieur en bureau d'étude;
- ingénieur en recherche et développement;
- ingénieur commercial ;

Le titre d'ingénieur est large est provient d'un diplôme délivré à l'issu d'une école d'ingénieur. Différents secteurs d'activité :

- génie civil :
- mécanique ;
- aéronautique;
- électronique;
- chimie:
- optique;
- économie :
- finance;
- informatique:
- biologie;
- agronomie;
- etc...

- maître d'oeuvre;
- ingénieur produit;
- ingénieur en bureau d'étude;
- ingénieur en recherche et développement;
- ingénieur commercial ;

Image 1

Image 1

Image 3

Image 3

Métiers de l'ingénieur Cursus de formation pour être ingénieur L'ingénierie système

Métiers de l'ingénieur Cursus de formation pour être ingénieur L'ingénierie système

Plan

- Métiers de l'ingénieur
 - Contexte du travail dans l'entreprise
 - Rôle de l'ingénieur
 - Les différentes formes du métier d'ingénieur
- 2 Cursus de formation pour être ingénieur
 - Déroulement du cursus en CPGE
 - Compétences visées
 - Organisation en CPGE
 - Principales débouchées
 - Quelques conseils pour l'année scolaire
 - Les cycles en MPSI
- L'ingénierie système
 - Définitions
 - Spécification du besoin
 - Triptyque "système souhaité-réel-simulé"
 - Cycle de vie d'un système
 - Processus du conception de produits complexes

Déroulement du cursus en CPGE

En MPSI (Mathématiques Physique Sciences de l'Ingénieur) l'organisation des sciences de l'ingénieur se découpe en deux semestres avec deux volumes horaires hebdomadaires différents.

- S1 : 1h de cours + 1h de TD par demi-classe;
- S2: 1h de cours + 1h de TD par demi-classe + 2h de TP par tiers de classe (maxi 18).

- modélisation ;
- capacité à diriger et animer une équipe;
- créativité et esprit d'innovation ;
- communication;
- capacité d'analyse;
- pluridisciplinarité;
- solides bases scientifiques:
- etc

- modélisation ;
- capacité à diriger et animer une équipe;
- créativité et esprit d'innovation;
- communication;
- capacité d'analyse;
- pluridisciplinarité;
- solides bases scientifiques:
- etc

- modélisation;
- capacité à diriger et animer une équipe;
- créativité et esprit d'innovation;
- communication;
- capacité d'analyse;
- pluridisciplinarité;
- solides bases scientifiques;
- etc ...

- modélisation ;
- capacité à diriger et animer une équipe;
- créativité et esprit d'innovation;
- · communication;
- capacité d'analyse;
- pluridisciplinarité;
- solides bases scientifiques;
- etc ...

- modélisation ;
- capacité à diriger et animer une équipe;
- créativité et esprit d'innovation;
- · communication;
- capacité d'analyse;
- pluridisciplinarité;
- solides bases scientifiques;
- etc ...

- modélisation ;
- capacité à diriger et animer une équipe;
- créativité et esprit d'innovation;
- · communication;
- capacité d'analyse;
- pluridisciplinarité;
- solides bases scientifiques;
- etc ...

- modélisation ;
- capacité à diriger et animer une équipe;
- créativité et esprit d'innovation;
- communication;
- capacité d'analyse;
- pluridisciplinarité;
- solides bases scientifiques;
- etc ...

- Le rythme en CPGE est soutenue mais pas insurmontable. Il convient alors de veiller à s'organiser convenablement.
- En SII, vous aurez par semaine :
 - a 1h de Travaux Dirinés (TD)
 - Ill de Travaux Diliges (TD)
 - 2h de Travaux Pratiques (TP) par semaine organisees par cycles de 5 semaine
 (ceulement au S2)
 - 4 séances de préparation à chaque finances
 - o 1 séance de synthèse avec évaluation à l'i

Émilien DURIF emilien.durif@gmail.com

- Le rythme en CPGE est soutenue mais pas insurmontable. Il convient alors de veiller à s'organiser convenablement.
- En SII, vous aurez par semaine :
 - 1h de cour
 - 1h de Travaux Dirigés (TD)
 - 2h de Travaux Pratiques (TP) par semaine organisées par cycles de 5 semaines (seulement au S2) :
 - 4 séances de préparation à chaque fois sur un système différent;
 - 1 séance de synthèse avec évaluation à l'orale de la demière séance sous forme d'une précentation format type pouse point de 10 min (par binôme ou trinôme)

- Le rythme en CPGE est soutenue mais pas insurmontable. Il convient alors de veiller à s'organiser convenablement.
- En SII, vous aurez par semaine :
 - 1h de cours;
 - 1h de Travaux Dirigés (TD);
 - 2h de Travaux Pratiques (TP) par semaine organisées par cycles de 5 semaines (seulement au S2) :
 - 4 séances de préparation à chaque fois sur un système différent;
 - 1 séance de synthèse avec évaluation à l'orale de la dernière séance sous forme d'une présentation format type power-point de 10 min (par binôme ou trinôme).

- Le rythme en CPGE est soutenue mais pas insurmontable. Il convient alors de veiller à s'organiser convenablement.
- En SII, vous aurez par semaine :
 - 1h de cours;
 - 1h de Travaux Dirigés (TD);
 - 2h de Travaux Pratiques (TP) par semaine organisées par cycles de 5 semaines (seulement au S2) :

- Le rythme en CPGE est soutenue mais pas insurmontable. Il convient alors de veiller à s'organiser convenablement.
- En SII, vous aurez par semaine :
 - 1h de cours;
 - 1h de Travaux Dirigés (TD);
 - 2h de Travaux Pratiques (TP) par semaine organisées par cycles de 5 semaines (seulement au S2):
 - 4 séances de préparation à chaque fois sur un système différent;
 - 1 séance de synthèse avec évaluation à l'orale de la dernière séance sous forme d'une présentation format type power-point de 10 min (par binôme ou trinôme).

- Le rythme en CPGE est soutenue mais pas insurmontable. Il convient alors de veiller à s'organiser convenablement.
- En SII, vous aurez par semaine :
 - 1h de cours;
 - 1h de Travaux Dirigés (TD);
 - 2h de Travaux Pratiques (TP) par semaine organisées par cycles de 5 semaines (seulement au S2):
 - 4 séances de préparation à chaque fois sur un système différent;
 - 1 séance de synthèse avec évaluation à l'orale de la dernière séance sous forme d'une présentation format type power-point de 10 min (par binôme ou trinôme).

- Le rythme en CPGE est soutenue mais pas insurmontable. Il convient alors de veiller à s'organiser convenablement.
- En SII, vous aurez par semaine :
 - 1h de cours ;
 - 1h de Travaux Dirigés (TD);
 - 2h de Travaux Pratiques (TP) par semaine organisées par cycles de 5 semaines (seulement au S2) :
 - 4 séances de préparation à chaque fois sur un système différent ;
 - 1 séance de synthèse avec évaluation à l'orale de la dernière séance sous forme d'une présentation format type power-point de 10 min (par binôme ou trinôme).

Métiers de l'ingénieur Cursus de formation pour être ingénieur L'ingénierie système

Principales débouchées

- Aéronautique;
- Santé
- Sports
- Transports;
- Grands ouvrages;
- Sciences des matériaux;
- Énergie;
- Logistique

Timespares debodences

- Aéronautique;
- Santé;
- Sports
- Transports;
- Grands ouvrages;
- Sciences des matériaux
- Energie;
- Logistique

- Aéronautique;
- Santé;
- Sports;
- Transports;

r filicipales debouchées

- Aéronautique;
- Santé;
- Sports;
- Transports;
- Grands ouvrages
- Sciences des matériaux;
- Énergie;
- Logistique

- Aéronautique;
- Santé;
- Sports;
- Transports;

- Aéronautique;
- Santé;
- Sports;
- Transports;
- Grands ouvrages;
- Sciences des matériaux
- Énergie;
- Logistique

- Aéronautique;
- Santé;
- Sports;
- Transports;
- Grands ouvrages;
- Sciences des matériaux;
- Energie;
- Logistique

- Aéronautique;
- Santé;
- Sports;
- Transports;
- Grands ouvrages;
- Sciences des matériaux;
- Énergie;
- Logistique

- Aéronautique;
- Santé;
- Sports;
- Transports;
- Grands ouvrages;
- Sciences des matériaux;
- Énergie;
- Logistique.

Différents secteurs d'activité s'ouvrant aux filières SI

- Aéronautique;
- Santé;
- Sports;
- Transports;
- Grands ouvrages;
- Sciences des matériaux;
- Énergie;
- Logistique.

Remarque

Le cursus en CPGE vous permet également d'accéder à d'autres métiers que celui d'ingénieur, tel que :

- enseignant;
- chercheur;
- enseignant/chercheur.

organisation du travail

Quelques conseils pour l'année scolaire

Soigner sa santé

www.mangerbouger.fr

Quelques conseils pour l'année scolaire

Soigner sa santé

Les cycles en MPSI

Cycle 1	Modélisation des systèmes pluritechniques	
Cycle 2	Modélisation des systèmes asservis	
Cycle 3	Analyse temporelle des systèmes asservis	
Cycle 4	Modélisation cinématiques des systèmes composés de chaines de solides	
Cycle 5	Analyse des performances cinématiques des systèmes composés de chaines de solides	
Cycle 6	Analyse fréquentielle des systèmes asservis	
Cycle 7	Modélisation des performances statiques des systèmes	
Cycle 8	Modélisation multiphysique	
Cycle 9	Modélisation de la chaine d'information des systèmes	

Plan

- - Contexte du travail dans l'entreprise
 - Rôle de l'ingénieur
 - Les différentes formes du métier d'ingénieur
- - Déroulement du cursus en CPGE
 - Compétences visées
 - Organisation en CPGE
 - Principales débouchées
 - Quelques conseils pour l'année scolaire
 - Les cycles en MPSI
- L'ingénierie système
 - Définitions
 - Spécification du besoin
 - Triptyque "système souhaité-réel-simulé"
 - Cycle de vie d'un système
 - Processus du conception de produits complexes

Système

- Un système est un ensemble d'éléments en interaction entre eux et avec l'environnement de manière à créer un assemblage destiné à satisfaire un besoin.

Système

- Un système est un ensemble d'éléments en interaction entre eux et avec l'environnement de manière à créer un assemblage destiné à satisfaire un besoin.
- Un système présente donc des propriétés nouvelles résultant des interactions entre ses constituants et est donc bien plus qu'un ensemble de composants : les flux d'information, d'énergie ou de matière échangées entre les composants sont essentiels dans le comportement global.

Remarque : système complexe

Système

- Un système est un ensemble d'éléments en interaction entre eux et avec l'environnement de manière à créer un assemblage destiné à satisfaire un besoin.
- Un système présente donc des propriétés nouvelles résultant des interactions entre ses constituants et est donc bien plus qu'un ensemble de composants : les flux d'information, d'énergie ou de matière échangées entre les composants sont essentiels dans le comportement global.

Remarque: système complexe

- Un système est dit complexe lorsque les inter-relations liant les composants sont multiples, interdépendantes et bouclées :
- le comportement global n'est donc pas directement prévisible à partir des comportements élémentaires des composants.

Système

- Un système est un ensemble d'éléments en interaction entre eux et avec l'environnement de manière à créer un assemblage destiné à satisfaire un besoin.
- Un système présente donc des propriétés nouvelles résultant des interactions entre ses constituants et est donc bien plus qu'un ensemble de composants : les flux d'information, d'énergie ou de matière échangées entre les composants sont essentiels dans le comportement global.

Remarque: système complexe

- Un système est dit complexe lorsque les inter-relations liant les composants sont multiples, interdépendantes et bouclées :
- le comportement global n'est donc pas directement prévisible à partir des comportements élémentaires des composants.

Données du Standish Group :

Données du Standish Group:

Données du Standish Group :

Trois principales causes du non-aboutissement des projets :

- au manque de prise en compte des utilisateurs;
- aux exigences et spécifications incomplètes;
- aux changements des exigences et spécifications au cours de la conception.

Trois principales causes du non-aboutissement des projets :

- au manque de prise en compte des utilisateurs;
- aux exigences et spécifications incomplètes;
- aux changements des exigences et spécifications au cours de la conception.

Trois principales causes du non-aboutissement des projets :

- au manque de prise en compte des utilisateurs;
- aux exigences et spécifications incomplètes;
- aux changements des exigences et spécifications au cours de la conception.

 Bi-bop (1993-1997): cabine téléphonique portable 47000 abonnées au lieu des 500000 espérées;

 Bi-bop (1993-1997): cabine téléphonique portable 47000 abonnées au lieu des 500000 espérées;

Image 2

Q l'aérotrain (1957-1977): Un train sur coussin d'air, un futur qui n'a jamais vu le jour d'autant plus avec l'arrivée du TGV:

 l'aérotrain (1957-1977): Un train sur coussin d'air, un futur qui n'a jamais vu le jour d'autant plus avec l'arrivée du TGV;

1 trottoire roulant rapide de Montparnasse (2002-2009);

1 trottoire roulant rapide de Montparnasse (2002-2009);

 le TO7 (1982-1984): premier ordinateur grand public commercialisé par Thomson, plusieurs écoles sont équipées d'ordinateurs;

 le T07 (1982-1984): premier ordinateur grand public commercialisé par Thomson, plusieurs écoles sont équipées d'ordinateurs;

6 Avantime (2001-2003), échec automobile.

 Avantime (2001-2003), échec automobile.

Métiers de l'ingénieur Cursus de formation pour être ingénieur L'ingénierie système

L'ingénierie système

Ingénierie Système

L'Ingénierie Système est une approche scientifique interdisciplinaire dont le but est de formaliser et d'appréhender la conception de systèmes complexes avec succès. Le but de l'Ingénierie Système est donc l'analyse des échecs antérieurs afin d'apporter des solutions pour éviter qu'ils ne se reproduisent.

Métiers de l'ingénieur Cursus de formation pour être ingénieur L'ingénierie système

L'ingénierie système

Ingénierie Système

L'Ingénierie Système est une approche scientifique interdisciplinaire dont le but est de formaliser et d'appréhender la conception de systèmes complexes avec succès. Le but de l'Ingénierie Système est donc l'analyse des échecs antérieurs afin d'apporter des solutions pour éviter qu'ils ne se reproduisent.

Ingénierie Système

L'Ingénierie Système est une approche scientifique interdisciplinaire dont le but est de formaliser et d'appréhender la conception de systèmes complexes avec succès. Le but de l'Ingénierie Système est donc l'analyse des échecs antérieurs afin d'apporter des solutions pour éviter qu'ils ne se reproduisent.

Ingénierie Système

L'Ingénierie Système est une approche scientifique interdisciplinaire dont le but est de formaliser et d'appréhender la conception de systèmes complexes avec succès. Le but de l'Ingénierie Système est donc l'analyse des échecs antérieurs afin d'apporter des solutions pour éviter qu'ils ne se reproduisent.

- Celle de ses sous-systèmes et constituants (matériels, logiciels, organisations et compétences humaines) et de leurs interfaces, sièges des interactions recherchées.
- Celles des processus de leurs cycles de vie permettant de les concevoir, produire, vérifier, distribuer, déployer, exploiter, maintenir en condition opérationnelle et retirer du service, et donc des produits contributeurs nécessaires à ces processus.

Ingénierie Système

L'Ingénierie Système est une approche scientifique interdisciplinaire dont le but est de formaliser et d'appréhender la conception de systèmes complexes avec succès. Le but de l'Ingénierie Système est donc l'analyse des échecs antérieurs afin d'apporter des solutions pour éviter qu'ils ne se reproduisent.

- Celle de ses sous-systèmes et constituants (matériels, logiciels, organisations et compétences humaines) et de leurs interfaces, sièges des interactions recherchées.
- Celles des processus de leurs cycles de vie permettant de les concevoir, produire, vérifier, distribuer, déployer, exploiter, maintenir en condition opérationnelle et retirer du service, et donc des produits contributeurs nécessaires à ces processus.

- La mise en oeuvre du cahier des charges consiste à déterminer (définir et caractériser) le besoin des clients.
- Le cahier des charges spécifie la ou les fonctions attendues du produits , les

- La mise en oeuvre du cahier des charges consiste à déterminer (définir et caractériser) le besoin des clients.
- Le cahier des charges spécifie la ou les fonctions attendues du produits, les critères de performances et leurs niveaux associés. Ce document doit être le plus exhaustif possible.

- La mise en oeuvre du cahier des charges consiste à déterminer (définir et caractériser) le besoin des clients.
- Le cahier des charges spécifie la ou les fonctions attendues du produits, les critères de performances et leurs niveaux associés. Ce document doit être le plus exhaustif possible.

Expression 1 du besoin	Critère 1	Valeur(s) 1
Expression 2 du besoin	Critère 2	Valeur(s) 2

- La mise en oeuvre du cahier des charges consiste à déterminer (définir et caractériser) le besoin des clients.
- Le cahier des charges spécifie la ou les fonctions attendues du produits, les critères de performances et leurs niveaux associés. Ce document doit être le plus exhaustif possible.

Expressions du besoin	Critères	Valeurs
Quantité de café	Volume V	50 <i>cl</i>
Qualité de café	Goût, odeur, couleur	Non détectable
Chaleur du café	Température <i>T</i>	86° C − 96° C

Remarque : acteurs de la définition du besoin

Selon le type de produit à concevoir : différents types de personnes pour concevoir le cahier des charges :

- cafetière à capsule (type Nespresso) : produit Marketing → résultats d'enquêtes;

Remarque : acteurs de la définition du besoin

Selon le type de produit à concevoir : différents types de personnes pour concevoir le cahier des charges :

- ullet cafetière à capsule (type Nespresso) : produit Marketing o résultats d'enquêtes ;
- turbo-réacteur d'un gros porteur (ie Airbus A380) : haute technicité → ingénieurs;
- véhicule de tourisme (ie Renault Clio) : produit mixte → marketing et ingénieur

Remarque : acteurs de la définition du besoin

Selon le type de produit à concevoir : différents types de personnes pour concevoir le cahier des charges :

- cafetière à capsule (type Nespresso) : produit Marketing → résultats d'enquêtes;
- turbo-réacteur d'un gros porteur (ie Airbus A380) : haute technicité → ingénieurs;
- ullet véhicule de tourisme (ie Renault Clio) : produit mixte o marketing et ingénieurs.

Triptyque "système souhaité-réel-simulé"

Triptyque "système souhaité-réel-simulé"

Cycle de vie d'un système

La notion de "cycle de vie" est indissociable d'un système. Elle exprime les différentes étapes, appelées phases de vie, qui vont de l'analyse du besoin jusqu'à l'élimination et/ou le recyclage de ses constituants. Les phases de vie rassemblent les différents cas d'utilisation du produit parmi lesquels les phases de réalisation, d'utilisation auprès du client, de maintenance et de recyclage.

Processus du conception de produits complexes

Processus de conception

- L'Ingénierie Système est la démarche de conception des systèmes complexes en entreprise.
- Le cycle de conception en "V" est l'un des cycles les plus utilisés dans l'ingénierie système puisque, celui-ci ne nécessite pas forcément qu'une activité d conception soit complètement finalisée pour qu'une autre commence.
- Cette démarche permet de diviser le système complexe en sous-composants. Le phases de validation sont donc ici primordiales pour valider la conception finale.
 Elles sont suivies d'itérations (modification de paramètres) si elles sont négatives

Processus de conception

- L'Ingénierie Système est la démarche de conception des systèmes complexes en entreprise.
- Le cycle de conception en "V" est l'un des cycles les plus utilisés dans l'ingénierie système puisque, celui-ci ne nécessite pas forcément qu'une activité de conception soit complètement finalisée pour qu'une autre commence.
- Cette démarche permet de diviser le système complexe en sous-composants. Le phases de validation sont donc ici primordiales pour valider la conception finale.
 Elles sont suivies d'itérations (modification de paramètres) si elles sont négatives

Processus de conception

- L'Ingénierie Système est la démarche de conception des systèmes complexes en entreprise.
- Le cycle de conception en "V" est l'un des cycles les plus utilisés dans l'ingénierie système puisque, celui-ci ne nécessite pas forcément qu'une activité de conception soit complètement finalisée pour qu'une autre commence.
- Cette démarche permet de diviser le système complexe en sous-composants. Les phases de validation sont donc ici primordiales pour valider la conception finale.
 Elles sont suivies d'itérations (modification de paramètres) si elles sont négatives.

