Hydrogen Fuel Cells Modeling and Computations

Rouben Rostamian

Department of Mathematics and Statistics University of Maryland Baltimore County Baltimore, MD 21250, USA

October 27, 2003

Fred Gornik, Power+Energy, Inc.

http://powerandenergy.com

Overview of the talk

- ▶ The workings of a hydrogen fuel cell
- A mathematical model for hydrogen-palladium interaction
- Two mathematical problems:
 - Solution and analysis of an ODE
 - Solution and analysis of a PDE

Palladium: the element

palladium 1 (pə-l $\bar{\mathbf{a}}'$ d $\bar{\mathbf{e}}$ -əm) n. Symbol **Pd**

1. A soft, ductile, steel-white, tarnish-resistant, metallic element occurring naturally with platinum, especially in gold, nickel, and copper ores. Because it can absorb large amounts of hydrogen, it is used as a purification filter for hydrogen and a catalyst in hydrogenation. It is alloyed for use in electric contacts, jewelry, nonmagnetic watch parts, and surgical instruments. Atomic number 46; atomic weight 106.4; melting point 1,552° C; boiling point 3,140° C; specific gravity 12.02 (20° C); valence 2, 3, 4. See note at **element**.

[From Pallas (discovered at the same time as the element)]

palladium 1 (pə-l $\bar{\mathbf{a}}'$ d $\bar{\mathbf{e}}$ -əm) n. Symbol **Pd**

1. A soft, ductile, steel-white, tarnish-resistant, metallic element occurring naturally with platinum, especially in gold, nickel, and copper ores. Because it can absorb large amounts of hydrogen, it is used as a purification filter for hydrogen and a catalyst in hydrogenation. It is alloyed for use in electric contacts, jewelry, nonmagnetic watch parts, and surgical instruments. Atomic number 46; atomic weight 106.4; melting point 1,552 $^\circ$ C; boiling point 3,140 $^\circ$ C; specific gravity 12.02 (20 $^\circ$ C); valence 2, 3, 4. See note at **element**.

[From Pallas (discovered at the same time as the element)]

Pallas (păl'əs) n.

- 1. One of the largest asteroids, the second to be discovered.
- 2. Greek Mythology Athena.

[After Pallas (Athena)]

The Hydrogen-Palladium interface

 $\Gamma_0=$ rate of hydrogen molecules impacting a surface Representative value: 10^{19} hits/cm²/sec

 Γ_0 proportional to pressure

Around 10¹⁴ surface sites/cm²

The Hydrogen-Palladium interface

 $\Gamma_0=$ rate of hydrogen molecules impacting a surface

Representative value: 10¹⁹ hits/cm²/sec

 Γ_0 proportional to pressure

Around 10¹⁴ surface sites/cm²

Fraction of occupied surface sites on the surface $= \alpha$, $0 \le \alpha \le 1$ Rate of sticking $= \Gamma_0 S_0 (1 - \alpha)^2$, $S_0 \approx 0.3$ Rate of recombination $= k_d \alpha^2$

Equilibrium:

$$\Gamma_0 S_0 (1 - \alpha)^2 = k_d \alpha^2 \quad \Rightarrow \quad \left(\frac{1 - \alpha}{\alpha}\right)^2 = \frac{k_d}{\Gamma_0 S_0}$$

Fraction of occupied interior sites $= \beta$, $0 \le \beta \le 1$ Flow rate from surface to interior $= k_i \alpha (1 - \beta)$

Flow rate from interior to surface $= k_o \beta (1 - \alpha)$

Equilibrium:

$$k_i \alpha (1 - \beta) = k_o \beta (1 - \alpha)$$
 \Rightarrow $\frac{1 - \alpha}{\alpha} = \frac{k_i}{k_o} \frac{1 - \beta}{\beta}$

Eliminate
$$\alpha$$
:
$$\frac{\beta}{1-\beta} = \frac{k_i}{k_o} \sqrt{\frac{\Gamma_0 S_0}{k_d}}$$

Diffusion through a membrane

$$\beta \approx 0 \quad \Rightarrow \quad \beta = C_1 \sqrt{\Gamma_0} = C_2 \sqrt{P}$$

Concentrations near the surfaces: $C_2\sqrt{P_1}$ and $C_2\sqrt{P_2}$

Flux =
$$\kappa \frac{\sqrt{P_1} - \sqrt{P_2}}{\delta}$$

Conservation of mass

$$\rho A v = (\rho + \Delta \rho) A v + (2\pi r \Delta x) \kappa \frac{\sqrt{P} - \sqrt{P_{\rm amb}}}{\delta}$$

Differential equation of pressure

Conservation of mass

$$\frac{d\rho}{dx} = -\frac{2\pi r\kappa}{Av\delta} \left(\sqrt{P} - \sqrt{P_{\rm amb}}\,\right)$$

Ideal Gas

$$P = RT\rho$$

$$\frac{dP}{dx} = -\frac{2\pi r \kappa RT}{Av\delta} \left(\sqrt{P} - \sqrt{P_{\text{amb}}} \right)$$

Differential equation

$$\frac{dP}{dx} = -K\left(\sqrt{P} - \sqrt{P_{\rm amb}}\right),\,$$

$$K = \frac{2\pi r \kappa RT}{F\delta}, \quad F = Av$$

Calculation of pressure

$$\frac{dP}{dx} = -K \left(\sqrt{P} - \sqrt{P_{\rm amb}} \, \right)$$

Calculation of pressure

$$\frac{dP}{dx} = -K(\sqrt{P} - \sqrt{P_{\rm amb}})$$

Solve for
$$P(x)$$
:

$$P(x) = P_{\rm amb}[1 + W(z)]^2$$

where
$$z = \frac{\sqrt{P(0)} - \sqrt{P_{\mathrm{amb}}}}{\sqrt{P_{\mathrm{amb}}}} \exp\Bigl(\frac{\sqrt{P(0)} - \sqrt{P_{\mathrm{amb}}} - \frac{1}{2} \mathit{Kx}}{\sqrt{P_{\mathrm{amb}}}}\Bigr)$$

W: the Lambert function

$$ye^y = x \Leftrightarrow y = W(x)$$

Efficiency of hydrogen exchange

Rate of hydrogen inflow = $F\rho(0)$

Rate hydrogen outflow = $F\rho(L)$

Rate of hydrogen release: $F\rho(0) - F\rho(L)$

Efficiency:

$$\mathcal{E} = \frac{\text{rate of hydrogen release}}{\text{rate of hydrogen inflow}} = \frac{F\rho(0) - F\rho(L)}{F\rho(0)} = 1 - \frac{\rho(L)}{\rho(0)} = 1 - \frac{P(L)}{P(0)}$$

Best possible efficiency:

$$\mathcal{E}_{\mathsf{max}} = 1 - rac{P_{\mathrm{amb}}}{P(0)}$$

tube radius r 0.3175 cm tube wall thickness δ 0.0003 cm flow rate F 8330 cm $^3/\text{sec}$ inlet pressure P(0) 4.08 atm ambient pressure P_{amb} 1.36 atm

temperature T 673 Kelvin

diffusivity κ 6.96 10^{-8} mol/(cm sec atm^{1/2})

gas constant $R cm^3 atm / (mol Kelvin)$

Membrane on porous support

Membrane on porous support

Membrane on porous support

Numerical solution with Femlab

Numerical solution with Femlab

$$\int_{-\frac{1}{2}}^{1} \frac{\partial T}{\partial x}(x,1) dx = 0.667$$

$$\int_0^1 \frac{\partial T}{\partial y}(x,1) \, dx = 0.667 \qquad \int_0^{0.3} \frac{\partial T}{\partial y}(x,0) \, dx = 0.627$$

Throughput =
$$J(a) = \int_0^a \frac{\partial T}{\partial v}\Big|_{v=0} du$$

Throughput =
$$J(a) = \int_0^a \frac{\partial T}{\partial v}\Big|_{v=0} du$$

Theorem

Asymptotically, as $a \rightarrow 0$:

$$J(a) \approx \frac{\pi}{2 \ln \frac{2}{a}}.$$

Conformal mapping

$$u + iv = a\sin(x + iy)$$
 \Leftrightarrow $u = a\sin x \cosh y$, $v = a\cos x \sinh y$

$$u + iv = a\sin(x + iy)$$
 \Leftrightarrow $u = a\sin x \cosh y$, $v = a\cos x \sinh y$

$$T = T(x, y) \approx \frac{y}{\operatorname{arcsinh}(1/a)}$$

$$T(u,v) \approx \frac{1}{\mathrm{arcsinh}\,\frac{1}{a}}\,\mathrm{arccosh}\left[\frac{1}{2}\sqrt{\left(\frac{u}{a}+1\right)^2+\left(\frac{v}{a}\right)^2}+\frac{1}{2}\sqrt{\left(\frac{u}{a}-1\right)^2+\left(\frac{v}{a}\right)^2}\right]$$

$$T(u,v) \approx \frac{1}{\operatorname{arcsinh} \frac{1}{a}} \operatorname{arccosh} \left[\frac{1}{2} \sqrt{\left(\frac{u}{a}+1\right)^2 + \left(\frac{v}{a}\right)^2} + \frac{1}{2} \sqrt{\left(\frac{u}{a}-1\right)^2 + \left(\frac{v}{a}\right)^2} \right]$$

$$J(a) = \int_0^a \left. \frac{\partial T(u, v)}{\partial v} \right|_{v=0} du = ?$$

$$T(u,v) \approx \frac{1}{\operatorname{arcsinh} \frac{1}{a}} \operatorname{arccosh} \left[\frac{1}{2} \sqrt{\left(\frac{u}{a} + 1\right)^2 + \left(\frac{v}{a}\right)^2} + \frac{1}{2} \sqrt{\left(\frac{u}{a} - 1\right)^2 + \left(\frac{v}{a}\right)^2} \right]$$

$$J(a) = \int_0^a \frac{\partial T(u, v)}{\partial v} \bigg|_{v=0} du = ?$$

$$\left. \frac{\partial T(u,v)}{\partial v} \right|_{v=0} = \frac{1}{a \operatorname{arcsinh} \frac{1}{a}} \frac{1}{\sqrt{1-(\frac{u}{a})^2}}$$
 (calculus challenge!)

$$T(u,v) \approx \frac{1}{\mathrm{arcsinh}\,\frac{1}{a}}\,\mathrm{arccosh}\left[\frac{1}{2}\sqrt{\left(\frac{u}{a}+1\right)^2+\left(\frac{v}{a}\right)^2}+\frac{1}{2}\sqrt{\left(\frac{u}{a}-1\right)^2+\left(\frac{v}{a}\right)^2}\right]$$

$$J(a) = \int_0^a \frac{\partial T(u, v)}{\partial v} \bigg|_{v=0} du = ?$$

$$\left. \frac{\partial T(u,v)}{\partial v} \right|_{v=0} = \frac{1}{a \operatorname{arcsinh} \frac{1}{a}} \frac{1}{\sqrt{1-(\frac{u}{a})^2}}$$
 (calculus challenge!)

$$J(a) = \int_0^a \left. \frac{\partial T(u, v)}{\partial v} \right|_{v=0} du = \frac{\pi}{2 \arcsin \frac{1}{a}} \approx \frac{\pi}{2 \ln \frac{2}{a}} \qquad QED$$