## \*Predikcia Cukrovky pomocou algoritmov strojového učenia\*

### Vypracovali Michal Knor a Martin Jankech

Tento dataset pochádza z Národného inštitútu pre diabetes a choroby tráviaceho traktu a obličiek (USA).

Cieľom je na základe diagnostických meraní predpovedať, či má pacient diabetes.

Rizikové faktory pre cukrovku sú:

- výskyt cukrovky v priamom príbuzenstve
- Vek. Zatiaľ čo pre diabetes 1. typu je charakteristický začiatok v detskom a mladom dospelom veku, výskyt diabetu 2. typu stúpa s vekom, najmä po 40. roku života
- výskyt zvýšených hodnôt krvného cukru v minulosti
- výskyt cukrovky v tehotenstve
- zvýšená telesná hmotnosť alebo tučnota
- zvýšené hodnoty krvného tlaku
- zvýšené hodnoty krvných tukov
- stres a/alebo depresia
- ochorenie srdca v prítomnosti alebo minulosti.

```
In [1]: # import všetkých potrebných knižníc
import numpy as np
import pandas as pd
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split
from sklearn import metrics
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import RandomForestClassifier
import seaborn as sns
from scipy import stats
from sklearn import naive_bayes
import warnings
warnings.filterwarnings('ignore')
```

## 1. načítanie dát + exploratívna analýza

• údaje boli oddelené ; preto bolo treba použiť vo funkcii read\_csv parameter sep=";"

```
In [2]: # nacitanie datasetu z csv súboru
data = pd.read_csv(r"C:\\Users\janke\OneDrive\Počítač\\škola 5 ročnik\\1 semester\\Maschine learning\\projekt\diabetes.csv",sep=';')
# vypísanie hLavičky s prvými piatimi údajmi
data.head()
```

| : | Pregnancies | Glucose | BloodPressure | SkinThickness | Insulin | ВМІ  | ${\bf Diabetes Pedigree Function}$ | Age | Outcome |
|---|-------------|---------|---------------|---------------|---------|------|------------------------------------|-----|---------|
| 0 | 6           | 148     | 72            | 35            | 0       | 33.6 | 0.627                              | 50  | 1       |
| 1 | 1           | 85      | 66            | 29            | 0       | 26.6 | 0.351                              | 31  | 0       |
| 2 | 8           | 183     | 64            | 0             | 0       | 23.3 | 0.672                              | 32  | 1       |
| 3 | 1           | 89      | 66            | 23            | 94      | 28.1 | 0.167                              | 21  | 0       |
| 4 | 0           | 137     | 40            | 35            | 168     | 43.1 | 2 288                              | 33  | 1       |

### Opis údajov z datasetu

- Stĺpec Pregnancies znamená koľkokrát bola pacientka tehotná
- Stĺpec Glukose sa vzťahuje plazmatickú koncentráciu glukózy 2 hodiny pri orálnom glukózovom tolerančnom teste. Podľa hodnôt odhadujeme že merna jednotka je
  mg/dL
- Stĺpec BloodPressure sa vzťahuje na Diastolický krvný tlak (mm Hg) pacientov.
- Stĺpec SkinThickness kože sa vzťahuje na hrúbku kožného záhybu tricepsu (mm)
- Stĺpec Insulin inzulínu sa týka použitia inzulínu u pacientov merná jednotka mIU/L
- Stĺpec BMI sa vzťahuje na index telesnej hmotnosti pacientov
- Stĺpec DiabestesPedigreeFunction označuje funkciu, ktorá hodnotí pravdepodobnosť diabetu na základe rodinnej anamnézy.
- Stĺpec age sa vzťahuje na vek pacientov
- Stĺpec Outcome znamená, že ak má pacient cukrovku (1) ak nemá (0) predstavuje našu závislú premennú

```
In [3]: data.shape
Out[3]: (768, 9)
In [4]: data.info()
```

localhost:8888/lab 1/13

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 768 entries, 0 to 767
Data columns (total 9 columns):
# Column
                              Non-Null Count Dtype
0
    Pregnancies
                              768 non-null
                                              int64
     Glucose
                              768 non-null
                                               int64
    BloodPressure
                              768 non-null
                                              int64
    SkinThickness
                              768 non-null
                                              int64
                              768 non-null
                                              int64
 4 Insulin
                               768 non-null
                                               float64
    DiabetesPedigreeFunction 768 non-null
                                               float64
 7 Age
8 Outcome
                              768 non-null
                                              int64
                              768 non-null
                                              int64
dtypes: float64(2), int64(7)
memory usage: 54.1 KB
```

In [5]: # zákLadne štatisticke údaje
data.describe()

| Out[5]: |       | Pregnancies | Glucose    | BloodPressure | SkinThickness | Insulin    | ВМІ        | DiabetesPedigreeFunction | Age        | Outcome    |
|---------|-------|-------------|------------|---------------|---------------|------------|------------|--------------------------|------------|------------|
|         | count | 768.000000  | 768.000000 | 768.000000    | 768.000000    | 768.000000 | 768.000000 | 768.000000               | 768.000000 | 768.000000 |
|         | mean  | 3.845052    | 120.894531 | 69.105469     | 20.536458     | 79.799479  | 31.992578  | 0.471876                 | 33.240885  | 0.348958   |
|         | std   | 3.369578    | 31.972618  | 19.355807     | 15.952218     | 115.244002 | 7.884160   | 0.331329                 | 11.760232  | 0.476951   |
|         | min   | 0.000000    | 0.000000   | 0.000000      | 0.000000      | 0.000000   | 0.000000   | 0.078000                 | 21.000000  | 0.000000   |
|         | 25%   | 1.000000    | 99.000000  | 62.000000     | 0.000000      | 0.000000   | 27.300000  | 0.243750                 | 24.000000  | 0.000000   |
|         | 50%   | 3.000000    | 117.000000 | 72.000000     | 23.000000     | 30.500000  | 32.000000  | 0.372500                 | 29.000000  | 0.000000   |
|         | 75%   | 6.000000    | 140.250000 | 80.000000     | 32.000000     | 127.250000 | 36.600000  | 0.626250                 | 41.000000  | 1.000000   |
|         | max   | 17.000000   | 199.000000 | 122.000000    | 99.000000     | 846.000000 | 67.100000  | 2.420000                 | 81.000000  | 1.000000   |

#### **Pozorovanie**

• vysoká smerodajná odchýlka pri insuline, skinthickness a bloodpressure

localhost:8888/lab 2/13



### **Pozorovanie**

- Najviac pacientov je vo veku od 20 do 30 rokov
- Najviac pacientok ma 1 dieťa
- pomer pacientov, ktorý majú cukrovku k tým ktorým nebola diagnostikovaná je cca 1:2

data.hist(bins=75,figsize=(15,15))

## **Problémy**

- 1. veľa hodnôt s 0 pri inzuline
- 2. veľa hodnôt s 0 pri Skinthickness
- 3. 0 pri glukoze, bloodpressure a bmi- predstavujú nereálne údaje

# Mazanie nevhodných údajov

Rozhodli sme sa vymazať všetky hodnoty, ktoré mali pri insuline alebo skinthickness 0 - problémom je akurát že takto odstránime cca 300 hodnôt Skúšali sme nahradiť 0 priemernou hodnotou, ale to taktieť nepomohlo, keďže tých 0 je celkom dosť- akurát to skreslilo rozdelenie riešením by bolo aj odstránenie celých stĺpcov, ale tieto parametre považujeme za kľučové a preto sme sa ich rozhodli zachovať

```
In [8]: # odstranovanie nevhodnych hodnot
# odstranenie vsetkych hodnot ktore maju v insuline alebo skinthickness - problem zmazanych vyse 300 hodnot
data.drop(data[data['SkinThickness'] == 0].index, inplace=True)
data.drop(data[linsulin'] == 0].index, inplace=True)
# nahradenie 0 hodnot medianom - moc nepomohlo
#data['Insulin']-data['Insulin'].replace(0,data['Insulin'].mean())
#data['SkinThickness']=data['SkinThickness'].replace(0,data['SkinThickness'].mean())
data
```

localhost:8888/lab 3/13

| Out[8]: |     | Pregnancies | Glucose | BloodPressure | SkinThickness | Insulin | вмі  | DiabetesPedigreeFunction | Age | Outcome |
|---------|-----|-------------|---------|---------------|---------------|---------|------|--------------------------|-----|---------|
|         | 3   | 1           | 89      | 66            | 23            | 94      | 28.1 | 0.167                    | 21  | 0       |
|         | 4   | 0           | 137     | 40            | 35            | 168     | 43.1 | 2.288                    | 33  | 1       |
|         | 6   | 3           | 78      | 50            | 32            | 88      | 31.0 | 0.248                    | 26  | 1       |
|         | 8   | 2           | 197     | 70            | 45            | 543     | 30.5 | 0.158                    | 53  | 1       |
|         | 13  | 1           | 189     | 60            | 23            | 846     | 30.1 | 0.398                    | 59  | 1       |
|         |     |             |         | •••           |               |         |      |                          |     |         |
|         | 753 | 0           | 181     | 88            | 44            | 510     | 43.3 | 0.222                    | 26  | 1       |
|         | 755 | 1           | 128     | 88            | 39            | 110     | 36.5 | 1.057                    | 37  | 1       |
|         | 760 | 2           | 88      | 58            | 26            | 16      | 28.4 | 0.766                    | 22  | 0       |
|         | 763 | 10          | 101     | 76            | 48            | 180     | 32.9 | 0.171                    | 63  | 0       |
|         | 765 | 5           | 121     | 72            | 23            | 112     | 26.2 | 0.245                    | 30  | 0       |

394 rows × 9 columns





# Odstránenie odľahlých pozorovaní

In [10]: sns.boxplot(x=data['Glucose'])
plt.show()



```
In [11]: data.drop(data[data['Glucose'] == 0].index, inplace=True)
In [12]: sns boxplot(v=data['BloodPressure'])
```

In [12]: sns.boxplot(x=data['BloodPressure'])
plt.show()
data.drop(data[data['BloodPressure'] == 0].index, inplace=True)

localhost:8888/lab 4/13



```
In [13]: sns.boxplot(x=data['SkinThickness'])
    plt.show()
    data.drop(data[data['SkinThickness'] > 80].index, inplace=True)
```



```
In [14]: sns.boxplot(x=data['BMI'])
    plt.show()
    data.drop(data[data['BMI'] == 0].index, inplace=True)
```



```
In [15]: sns.countplot(x=data['Outcome'])
   plt.show()
```

localhost:8888/lab 5/13



In [16]: # histogramy po uprave dat
 data.hist(bins=75,figsize=(15,15))



















## histogramy s outputmi



### **Pozorovanie**

vačší počet ľudi s cukrovkov(1) oproti ľudom bez(0) bol zistený

- 1. u žien s viac ako 7 detmi
- 2. osobách s hladinou glukózy vačšiou ako 160
- 3. bmi nad 40
- 4. vek nad 40
- 5. DiabestesPedigreeFunction nad 1

In [18]: # vyber nezavislych atributov s ktorými budeme dalej pracovať pri aplikovani ML algoritmov - pre zlepsenie accuracy sme skušali viacero variant feature\_names = ["Pregnancies", "Glucose", "BloodPressure", "SkinThickness", "Insulin", "BMI", "DiabetesPedigreeFunction", "Age"]

localhost:8888/lab 7/13

```
#feature_names = ["Glucose", "BLoodPressure", "BMI", "DiabetesPedigreeFunction", "Age"]
#eature_names = ["Pregnancies", "Glucose", "BloodPressure", "BMI", "DiabetesPedigreeFunction", "Age"]

plt.figure(figsize=(13, 13))
cor = data.corr()
sns.heatmap(cor, annot=True, cmap=plt.cm.Reds, fmt='.2f')
plt.show()
```



In [19]: x = pd.DataFrame(data, columns=feature\_names)
y = data.Outcome.values.reshape(-1, 1)
print(x)

localhost:8888/lab 8/13

#### projekt vypracovanie

|     | Pregnancies  | Glucose I  | BloodPressu | re | SkinThickness | Insulin | BMI  |  |
|-----|--------------|------------|-------------|----|---------------|---------|------|--|
| 3   | 1            | 89         |             | 56 | 23            | 94      | 28.1 |  |
| 4   | 0            | 137        |             | 10 | 35            | 168     | 43.1 |  |
| 6   | 3            | 78         | !           | 50 | 32            | 88      | 31.0 |  |
| 8   | 2            | 197        | -           | 70 | 45            | 543     | 30.5 |  |
| 13  | 1            | 189        |             | 50 | 23            | 846     | 30.1 |  |
|     |              |            |             |    |               |         |      |  |
| 753 | 0            | 181        | :           | 38 | 44            | 510     | 43.3 |  |
| 755 | 1            | 128        | :           | 38 | 39            | 110     | 36.5 |  |
| 760 | 2            | 88         | !           | 58 | 26            | 16      | 28.4 |  |
| 763 | 10           | 101        |             | 76 | 48            | 180     | 32.9 |  |
| 765 | 5            | 121        |             | 72 | 23            | 112     | 26.2 |  |
|     |              |            |             |    |               |         |      |  |
|     | DiabetesPedi | greeFuncti | on Age      |    |               |         |      |  |
| 3   |              | 0.10       | 57 21       |    |               |         |      |  |
| 4   |              | 2.2        | 33          |    |               |         |      |  |
| 6   |              | 0.2        | 48 26       |    |               |         |      |  |
| 8   |              | 0.1        | 58 53       |    |               |         |      |  |
| 13  |              | 0.39       | 98 59       |    |               |         |      |  |
|     |              |            |             |    |               |         |      |  |
| 753 |              | 0.2        | 22 26       |    |               |         |      |  |
| 755 |              | 1.0        | 57 37       |    |               |         |      |  |
| 760 |              | 0.7        | 56 22       |    |               |         |      |  |
| 763 |              | 0.1        | 71 63       |    |               |         |      |  |
| 765 |              | 0.2        | 45 30       |    |               |         |      |  |

[392 rows x 8 columns]

#### **Pozorovanie**

- stredne silná korelácia outputu a glukózy
- · pri ostatných slabá korelácia
- pri nezávislých premenných silná korelácia počtu tehotenstviev a veku ako aj bmi a skinthickness

### 3. Rozdelenie datasetu na trénovaciu a testovaciu čast

```
In [20]: x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2,random_state=125)
```

## 4. Aplikácia MI algoritmov a porovnanie ich výkonnosti

### Popis algoritmov

#### Rozhodovaci strom

- Výhody Používa model bielej skrinky. Ak je daná situácia pozorovateľná v modeli, vysvetlenie podmienky sa dá ľahko vysvetliť boolovskou logikou. Naopak, v modeli čiernej skrinky (napr. v umelej neurónovej sieti) môže byť interpretácia výsledkov zložitejšia
- Nevýhody Rozhodovacie stromy môžu byť nestabilné, pretože malé odchýlky v údajoch môžu viesť k vygenerovaniu úplne iného stromu.

**parameter gini** - Nečistota gini meria frekvenciu, pri ktorej bude akýkoľvek prvok súboru údajov nesprávne označený, keď je náhodne označený. Minimálna hodnota Gini indexu je 0. Stáva sa to, keď je uzol čistý, to znamená, že všetky obsiahnuté prvky v uzle sú z jednej jedinečnej triedy.

#### max\_depht

Maximálna hĺbka stromu. Ak nie je, potom sa už rozširujú, kým nie sú všetky listy čisté alebo kým všetky listy neobsahujú menej ako min\_samples\_split vzoriek.

#### Support Vector Machine

• Základom metódy SVM je lineárny klasifikátor do dvoch tried. Cieľom úlohy je nájsť nadrovinu, ktorá priestor príznakov optimálne rozdeľuje tak, že trénovacie dáta patriace odlišným triedam ležia v opačných polopriestoroch. Optimálna nadrovina je taká, že hodnota minima vzdialeností bodov od roviny je čo najväčšia.

Gaussian Radial Basis Function (RBF)-Je to jedna z najpreferovanejších a najpoužívanejších funkcií jadra v svm. oproti linearnemu nam zlepsilo accuracy o 5percent

#### logicticka regresia

nižsia accuracy pretože niektoré nezávislé premenné majú vyššiu vzajomnú koreláciu

#### random fores

rozhodovacie lesy je súborová metóda učenia pre klasifikáciu, regresiu a iné úlohy, ktorá funguje tak, že v čase učenia vytvára množstvo rozhodovacích stromov. Pre klasifikačné úlohy je výstupom náhodného lesa trieda, ktorú vyberie väčšina stromov

#### KNeighborsClassifier

vyšla nám lepšia accuracy pri párnej hodnote k=6 aj keď správne by bolo použiť nepárnu k hodnotu. napr. defaultnú 5

localhost:8888/lab 9/13

```
accuracies = []
clfs_result = {}

In [24]:
    from sklearn.metrics import confusion_matrix
    for i in range(len(clfs)):
        clf = clfs[i]
        algorithm = algorithms[i]

        clf = clf.fit(x_train, y_train)
        y_pred = clf.predict(x_test)
        acc = metrics.accuracy_score(y_test, y_pred)
        accuracies.append(acc)
        clfs_result[algorithm] = clf

        cm = confusion_matrix(y_test, y_pred)
        plt.figure(figsize=(9, 6))
        sns.heatmap(cm, vmin=0, vmax=70, annot=True)
        plt.title(algorithm)
        plt.vlabel("Predicted")
        plt.ylabel("Truth")
        plt.show()
```



Predicted

0

localhost:8888/lab 10/13

1



localhost:8888/lab 11/13



|--- class: 1

```
In [25]: accuracies_df = pd.DataFrame(accuracies, index=algorithms)
          accuracies_df.columns = ["Accuracy"]
print(accuracies_df.sort_values(by="Accuracy", ascending=False))
                                          Accuracy
          Decision Tree
                                          0.835443
          Support Vector Machine
                                          0.822785
          KNeighborsClassifier
                                          0.822785
          {\tt RandomForestClassifier}
                                          0.797468
          log res
                                          0.734177
          GradientBoostingClassifier 0.721519
In [26]: from sklearn import tree
          text_representation = tree.export_text(clfs_result["Decision Tree"])
          print(text_representation)
          target_names = ['0', '1']
fig = plt.figure(figsize=(25, 20))
plot = tree.plot_tree(clfs_result["Decision Tree"], feature_names=feature_names, class_names=target_names, filled=True)
          plt.show()
           |--- feature_1 <= 127.50
               |--- feature_4 <= 143.50
                    |--- feature_5 <= 50.90
| |--- class: 0
                    --- feature_5 > 50.90
                      |--- class: 1
                 --- feature_4 > 143.50
|--- feature_7 <= 28.50
| |--- class: 0
          --- feature_1 > 171.00
                       |--- class: 1
               |--- feature_7 > 23.50
| |--- feature_3 <= 16.50
| | |--- class: 0
                    --- feature_3 > 16.50
```

localhost:8888/lab 12/13



# Predikovanie novej hodnoty všetkými algoritmami

```
In [27]: #([Pregnacies,Glucoce,BloodPressure,SkinThickness,Insulin,BMI,DiabetesPedigreeFunction,Age,Outcome])
          new_data_point=np.array([10,150,70,38,300,38,0.78,54]).reshape(1,-1)
          #new_data_point1=np.array([2,40,30,20,30,11,0.13,20]).reshape(1,-1)
#new_data_point2=np.array([5,80,40,30,150,23,0.58,33]).reshape(1,-1)
          new_data_point_pred=[]
          for i in range(len(clfs)):
    clf = clfs[i]
               algorithm = algorithms[i]
               {\tt new\_data\_point\_pred.append(clf.predict(new\_data\_point))}
          predicted_df = pd.DataFrame(new_data_point_pred, index=algorithms)
          predicted_df.columns = ["predicted"]
          print(predicted_df.sort_values(by="predicted", ascending=False))
          Support Vector Machine
          Decision Tree
          GradientBoostingClassifier
          \bar{\text{KNeighborsClassifier}}
          RandomForestClassifier
In [ ]:
```

localhost:8888/lab 13/13