On the growth of cuspidal cohomology of GL_4 by symmetric cube transfer

Sudipa Mondal

(Based on joint work with Dr. Chandrasheel Bhagwat)

IISER Pune

(IISC-IISERP 20-20 symposium)

September 19, 2021

Contents

- Introduction
- 2 Notations
- Cuspidal cohomology of GL₄
- 4 References

2 Notations

Cuspidal cohomology of GL₄

4 References

• Let $\mathbb{E} = \mathbb{Q}(\sqrt{-d})$ be an imaginary quadratic extension of \mathbb{Q} .

- Let $\mathbb{E} = \mathbb{Q}(\sqrt{-d})$ be an imaginary quadratic extension of \mathbb{Q} .
- Consider the group of idèles $\mathbb{A}_{\mathbb{E}}^{\times}$.

- Let $\mathbb{E} = \mathbb{Q}(\sqrt{-d})$ be an imaginary quadratic extension of \mathbb{Q} .
- \bullet Consider the group of idèles $\mathbb{A}_{\mathbb{R}}^{\times}.$
- Using automorphic induction, every character of $\mathbb{A}_{\mathbb{E}}^{\times}$ yields an automorphic form ϕ for $GL_2(\mathbb{A}_{\mathbb{Q}})$.

- Let $\mathbb{E} = \mathbb{Q}(\sqrt{-d})$ be an imaginary quadratic extension of \mathbb{Q} .
- \bullet Consider the group of idèles $\mathbb{A}_{\mathbb{E}}^{\times}.$
- Using automorphic induction, every character of $\mathbb{A}_{\mathbb{E}}^{\times}$ yields an automorphic form ϕ for $GL_2(\mathbb{A}_{\mathbb{Q}})$.
- ullet It is a mass form if $\mathbb E$ is real quadratic field and a holomorphic modular form if $\mathbb E$ is imaginary quadratic field.

• Moreover, ϕ is a cusp form if it does not factor through the norm map.

- Moreover, ϕ is a cusp form if it does not factor through the norm map.
- The relation between the automorphic representations of $GL_2(\mathbb{A}_{\mathbb{Q}})$ and the cuspidal cohomology of GL_2 can be described in terms of the sheaf \widetilde{M}_{μ} associated to the highest weight representation M_{μ} of $GL_2(\mathbb{R})$.

- Moreover, ϕ is a cusp form if it does not factor through the norm map.
- The relation between the automorphic representations of $GL_2(\mathbb{A}_{\mathbb{Q}})$ and the cuspidal cohomology of GL_2 can be described in terms of the sheaf \widetilde{M}_{μ} associated to the highest weight representation M_{μ} of $GL_2(\mathbb{R})$.
- Also, for a fixed weight and level structure of $GL_2(\mathbb{A}_{\mathbb{Q}})$, the space of cusp forms has finite dimension.

- Moreover, ϕ is a cusp form if it does not factor through the norm map.
- The relation between the automorphic representations of $GL_2(\mathbb{A}_{\mathbb{Q}})$ and the cuspidal cohomology of GL_2 can be described in terms of the sheaf \widetilde{M}_{μ} associated to the highest weight representation M_{μ} of $GL_2(\mathbb{R})$.
- Also, for a fixed weight and level structure of GL₂(A_ℚ), the space of cusp forms has finite dimension.
- One can ask, how much of cuspidal cohomology of $GL_2(\mathbb{A}_{\mathbb{Q}})$ is obtained by automorphic induction.

• C. Ambi in [AM] has estimated the dimension for a fixed weight and varying level structure.

- C. Ambi in [AM] has estimated the dimension for a fixed weight and varying level structure.
- Let $C_k(N)$ denote the set of normalised cusp eigenforms of Hecke operators of $\Gamma_1(N)$ of weight k obtained by automorphic induction of größencharacters of imaginary quadratic extensions.

- C. Ambi in [AM] has estimated the dimension for a fixed weight and varying level structure.
- Let $C_k(N)$ denote the set of normalised cusp eigenforms of Hecke operators of $\Gamma_1(N)$ of weight k obtained by automorphic induction of größencharacters of imaginary quadratic extensions.

Theorem 1 (Ambi)

Let $k \geq 1, \epsilon \in (0,1)$. Then,

$$|C_k(N)| \ll_{k,\epsilon} N \cdot N'^{(1+\epsilon)}$$
 as $N \longrightarrow \infty$

where N' is the product of all distinct prime factors of N.

• Consider a cuspidal automorphic representation π of $GL_2(\mathbb{A}_{\mathbb{Q}})$.

- Consider a cuspidal automorphic representation π of $GL_2(\mathbb{A}_{\mathbb{Q}})$.
- Then $\operatorname{sym}^2(\pi)$ is an automorphic representation of $\operatorname{GL}_3(\mathbb{A}_{\mathbb{Q}})$.

- Consider a cuspidal automorphic representation π of $GL_2(\mathbb{A}_{\mathbb{Q}})$.
- Then $\operatorname{sym}^2(\pi)$ is an automorphic representation of $\operatorname{GL}_3(\mathbb{A}_{\mathbb{Q}})$.
- Similarly, one can ask, how much of cuspidal cohomology of $GL_3(\mathbb{A}_{\mathbb{Q}})$ is obtained by symmetric square transfer.

- Consider a cuspidal automorphic representation π of $GL_2(\mathbb{A}_{\mathbb{Q}})$.
- Then $\operatorname{sym}^2(\pi)$ is an automorphic representation of $\operatorname{GL}_3(\mathbb{A}_{\mathbb{Q}})$.
- Similarly, one can ask, how much of cuspidal cohomology of $GL_3(\mathbb{A}_{\mathbb{Q}})$ is obtained by symmetric square transfer.
- Again in [AM], C. Ambi estimated the above number by fixing the weight and varying the level structure.

• Let π be a cuspidal automorphic representation of $GL_2(\mathbb{A}_{\mathbb{O}})$.

- Let π be a cuspidal automorphic representation of $GL_2(\mathbb{A}_{\mathbb{Q}})$.
- Then sym³(π) is a representation of $GL_4(\mathbb{A}_{\mathbb{Q}})$.

- Let π be a cuspidal automorphic representation of $GL_2(\mathbb{A}_{\mathbb{Q}})$.
- Then sym³(π) is a representation of $GL_4(\mathbb{A}_{\mathbb{Q}})$.
- Due to Kim and Shahidi [Theorem 6.1, [KS]], $\operatorname{sym}^3(\pi)$ is an automorphic representation of $\operatorname{GL}_4(\mathbb{A}_\mathbb{Q})$.

- Let π be a cuspidal automorphic representation of $GL_2(\mathbb{A}_{\mathbb{Q}})$.
- Then sym³(π) is a representation of $GL_4(\mathbb{A}_{\mathbb{Q}})$.
- Due to Kim and Shahidi [Theorem 6.1, [KS]], $\operatorname{sym}^3(\pi)$ is an automorphic representation of $\operatorname{GL}_4(\mathbb{A}_\mathbb{Q})$. Furthermore, it is cuspidal if the representation π is not obtained by Automorphic induction.

- Let π be a cuspidal automorphic representation of $GL_2(\mathbb{A}_{\mathbb{Q}})$.
- Then sym³(π) is a representation of $GL_4(\mathbb{A}_{\mathbb{Q}})$.
- Due to Kim and Shahidi [Theorem 6.1, [KS]], $\operatorname{sym}^3(\pi)$ is an automorphic representation of $\operatorname{GL}_4(\mathbb{A}_\mathbb{Q})$. Furthermore, it is cuspidal if the representation π is not obtained by Automorphic induction.
- Hence we estimate the cuspidal cohomology of $GL_4(\mathbb{A}_\mathbb{Q})$ which is obtained by symmetric cube transfer from $GL_2(\mathbb{A}_\mathbb{Q})$ corresponding to a specific level structure.

2 Notations

3 Cuspidal cohomology of GL₄

References

Consider the algebraic group GL_m . For a finite prime p of \mathbb{Q} , let \mathbb{Z}_p be the ring of p-adic integers.

Consider the algebraic group GL_m . For a finite prime p of \mathbb{Q} , let \mathbb{Z}_p be the ring of p-adic integers. For each integer $n \geq 0$, define

$$K_p^m(n) := \{x = (x_{i,j})_{m \times m} \in \operatorname{GL}_m(\mathbb{Z}_p) : x_{m,k} \in p^n \mathbb{Z}_p, \ 1 \le k < m, \\ x_{m,m} - 1 \in p^n \mathbb{Z}_p \}.$$

Consider the algebraic group GL_m . For a finite prime p of \mathbb{Q} , let \mathbb{Z}_p be the ring of p-adic integers. For each integer $n \geq 0$, define

$$K_p^m(n):=\{x=(x_{i,j})_{m\times m}\in \operatorname{GL}_m(\mathbb{Z}_p): x_{m,k}\in p^n\mathbb{Z}_p,\ 1\leq k< m,\\ x_{m,m}-1\in p^n\mathbb{Z}_p\}.$$

Let
$$N = \prod_{i=1}^r p_i^{n_i}$$
.

Consider the algebraic group GL_m . For a finite prime p of \mathbb{Q} , let \mathbb{Z}_p be the ring of p-adic integers. For each integer $n \geq 0$, define

$$K_{\rho}^m(n):=\{x=(x_{i,j})_{m\times m}\in \mathrm{GL}_m(\mathbb{Z}_{\rho}): x_{m,k}\in \rho^n\mathbb{Z}_{\rho},\ 1\leq k< m,\\ x_{m,m}-1\in \rho^n\mathbb{Z}_{\rho}\}.$$

Let $N = \prod_{i=1}^r p_i^{n_i}$. Define a compact open subgroup $K_f^m(N) = \prod_p K_p$ of $\mathrm{GL}_m(\mathbb{A}_f)$ where

$$K_p = \begin{cases} K_{p_i}^m(n_i) & \text{if } p \mid N \text{ i.e., } p = p_i \\ \operatorname{GL}_m(\mathbb{Z}_p) & \text{if } p \nmid N \end{cases}$$

Consider the algebraic group GL_m . For a finite prime p of \mathbb{Q} , let \mathbb{Z}_p be the ring of p-adic integers. For each integer $n \geq 0$, define

$$K_{\rho}^m(n):=\{x=(x_{i,j})_{m\times m}\in \mathrm{GL}_m(\mathbb{Z}_{\rho}): x_{m,k}\in \rho^n\mathbb{Z}_{\rho},\ 1\leq k< m,\\ x_{m,m}-1\in \rho^n\mathbb{Z}_{\rho}\}.$$

Let $N = \prod_{i=1}^r p_i^{n_i}$. Define a compact open subgroup $K_f^m(N) = \prod_p K_p$ of $\mathrm{GL}_m(\mathbb{A}_f)$ where

$$K_p = \begin{cases} K_{p_i}^m(n_i) & \text{if } p \mid N \text{ i.e., } p = p_i \\ \operatorname{GL}_m(\mathbb{Z}_p) & \text{if } p \nmid N \end{cases}$$

 $K_f^m(N) \subseteq \operatorname{GL}_m(\mathbb{A}_f)$ is called the level structure corresponding to N.

↓□▶ ←□▶ ←□▶ ←□▶ □ ♥♀○

Conductor of a representation

• Let $(\rho, \mathcal{H}) = (\bigotimes_{p \leq \infty} \rho_p, \bigotimes_{p \leq \infty} \mathcal{H}_p)$ be an irreducible automorphic representation of $\mathrm{GL}_m(\mathbb{A}_\mathbb{Q})$.

Conductor of a representation

• Let $(\rho, \mathcal{H}) = (\bigotimes_{p \leq \infty} \rho_p, \bigotimes_{p \leq \infty} \mathcal{H}_p)$ be an irreducible automorphic representation of $\mathrm{GL}_m(\mathbb{A}_\mathbb{Q})$.

For each finite prime p, the conductor of ρ_p is defined to be the smallest integer $c(\rho_p) \geq 0$ such that the set $\mathcal{H}_p^{K_p^m(c(\rho_p))}$ consisting of all $K_p^m(c(\rho_p))$ -fixed vectors of \mathcal{H}_p is non-zero.

Conductor of a representation

• Let $(\rho, \mathcal{H}) = (\bigotimes_{p \leq \infty} \rho_p, \bigotimes_{p \leq \infty} \mathcal{H}_p)$ be an irreducible automorphic representation of $\mathrm{GL}_m(\mathbb{A}_\mathbb{Q})$.

For each finite prime p, the conductor of ρ_p is defined to be the smallest integer $c(\rho_p) \geq 0$ such that the set $\mathcal{H}_p^{K_p^m(c(\rho_p))}$ consisting of all $K_p^m(c(\rho_p))$ -fixed vectors of \mathcal{H}_p is non-zero.

ullet The conductor of ho is defined as

$$N_{\rho} = \prod_{p < \infty} p^{c(\rho_p)}.$$

2 Notations

3 Cuspidal cohomology of GL₄

4 References

• Let π be a cuspidal automorphic representation of $GL_4(\mathbb{A}_{\mathbb{Q}})$ with π_{∞} and π_f be its infinite and finite parts respectively.

- Let π be a cuspidal automorphic representation of $GL_4(\mathbb{A}_{\mathbb{Q}})$ with π_{∞} and π_f be its infinite and finite parts respectively.
- Let μ be a dominant integral weight corresponding to the standard borel subgroup and $M_{\mu,\mathbb{C}}$ be the underlying vector space.

- Let π be a cuspidal automorphic representation of $GL_4(\mathbb{A}_{\mathbb{Q}})$ with π_{∞} and π_f be its infinite and finite parts respectively.
- Let μ be a dominant integral weight corresponding to the standard borel subgroup and $M_{\mu,\mathbb{C}}$ be the underlying vector space.
- For a level structuce $K_f \subset GL_4(\mathbb{A}_f)$, we write $\pi_f^{K_f}$ to be the K_f -fixed vectors of π_f .

- Let π be a cuspidal automorphic representation of $GL_4(\mathbb{A}_{\mathbb{Q}})$ with π_{∞} and π_f be its infinite and finite parts respectively.
- Let μ be a dominant integral weight corresponding to the standard borel subgroup and $M_{\mu,\mathbb{C}}$ be the underlying vector space.
- For a level structuce $K_f \subset GL_4(\mathbb{A}_f)$, we write $\pi_f^{K_f}$ to be the K_f -fixed vectors of π_f .

We write $\pi \in Coh(GL_4(\mathbb{A}_{\mathbb{Q}}), \mu, K_f)$ if for the relative Lie algebra cohomology,

$$H^*(\mathfrak{gl}_4(\mathbb{R}),\mathbb{R}_+^*\cdot\mathsf{SO}_4(\mathbb{R}),\pi_\infty\otimes M_{\mu,\mathbb{C}})\otimes\pi_f^{K_f}
eq 0.$$

Theorem 2 (Theorem 6.1, [KS])

Let \mathbb{F} be a number field and π be a automorphic cuspidal representation of $\mathrm{GL}_2(\mathbb{A}_{\mathbb{F}})$. Then $\mathrm{sym}^3(\pi)$ is automorphic representation of $\mathrm{GL}_4(\mathbb{A}_{\mathbb{F}})$.

Theorem 2 (Theorem 6.1, [KS])

Let \mathbb{F} be a number field and π be a automorphic cuspidal representation of $\mathrm{GL}_2(\mathbb{A}_{\mathbb{F}})$. Then $\mathrm{sym}^3(\pi)$ is automorphic representation of $\mathrm{GL}_4(\mathbb{A}_{\mathbb{F}})$.

 $sym^3(\pi)$ is cuspidal unless π is dihedral or it is tetrahedral type.

Theorem 2 (Theorem 6.1, [KS])

Let $\mathbb F$ be a number field and π be a automorphic cuspidal representation of $\mathrm{GL}_2(\mathbb A_{\mathbb F})$. Then $\mathrm{sym}^3(\pi)$ is automorphic representation of $\mathrm{GL}_4(\mathbb A_{\mathbb F})$.

 $sym^3(\pi)$ is cuspidal unless π is dihedral or it is tetrahedral type.

In particular, if $\mathbb{F}=\mathbb{Q}$ and π is the automorphic cuspidal representation attached to a non-dihedral holomorphic form of weight ≥ 2 , then $\text{sym}^3(\pi)$ is cuspidal.

• Let $E_k(N)$ denote the set of cuspidal automorphic representations of $\mathrm{GL}_4(\mathbb{A}_\mathbb{Q})$ corresponding to the level structure $K_f^4(N)$ and highest weight ν_k which are obtained by symmetric cube transfer of cuspidal automorphic representation of $\mathrm{GL}_2(\mathbb{A}_\mathbb{Q})$ of highest weight

$$\lambda_k = \left(\frac{k}{2} - 1, 1 - \frac{k}{2}\right).$$

• Let $E_k(N)$ denote the set of cuspidal automorphic representations of $\mathrm{GL}_4(\mathbb{A}_\mathbb{Q})$ corresponding to the level structure $K_f^4(N)$ and highest weight ν_k which are obtained by symmetric cube transfer of cuspidal automorphic representation of $\mathrm{GL}_2(\mathbb{A}_\mathbb{Q})$ of highest weight

$$\lambda_k = \left(\frac{k}{2} - 1, 1 - \frac{k}{2}\right).$$

Theorem 3 (Bhagwat,....)

Let $k \ge 2$ be an even integer and $p \ge 3$ be a prime. Then

$$|E_k(p^n)| \gg_k p^n$$
 as $n \to \infty$

where the implied constant depends on k.

Let $\pi = \otimes \pi_p$ be a cohomological cuspidal automorphic representation of $\mathrm{GL}_2(\mathbb{A}_\mathbb{O})$.

Let $\pi = \otimes \pi_p$ be a cohomological cuspidal automorphic representation of $\mathrm{GL}_2(\mathbb{A}_\mathbb{Q})$. Assume that the highest weight corresponding to π_∞ is $\lambda_k := (k/2-1, 1-k/2)$ where $k \geq 2$ is an even integer.

Let $\pi = \otimes \pi_p$ be a cohomological cuspidal automorphic representation of $\operatorname{GL}_2(\mathbb{A}_\mathbb{Q})$. Assume that the highest weight corresponding to π_∞ is $\lambda_k := (k/2-1, 1-k/2)$ where $k \geq 2$ is an even integer. Let $\Pi = \operatorname{sym}^3(\pi)$ be the representation of $\operatorname{GL}_4(\mathbb{A}_\mathbb{Q})$ obtained by symmetric cube transfer. Let $c(\Pi)$ be its conductor and ν_k be the highest weight corresponding to Π_∞ .

Let $\pi = \otimes \pi_p$ be a cohomological cuspidal automorphic representation of $\operatorname{GL}_2(\mathbb{A}_\mathbb{Q})$. Assume that the highest weight corresponding to π_∞ is $\lambda_k := (k/2-1, 1-k/2)$ where $k \geq 2$ is an even integer. Let $\Pi = \operatorname{sym}^3(\pi)$ be the representation of $\operatorname{GL}_4(\mathbb{A}_\mathbb{Q})$ obtained by symmetric cube transfer. Let $c(\Pi)$ be its conductor and ν_k be the highest weight corresponding to Π_∞ .

Then the following holds:

$$\Pi \in \mathit{Coh}(\mathit{GL}_4(\mathbb{A}_\mathbb{Q}), \nu_k, \mathit{K}^4_f(\mathit{c}(\Pi)),$$

$$u_k = \left(3\left(\frac{k}{2} - 1\right), \ \frac{k}{2} - 1, \ 1 - \frac{k}{2}, \ 3\left(1 - \frac{k}{2}\right)\right)$$

Sudipa Mondal (Based on joint wor On the growth of cuspidal cohomology of GL,

September 19, 2021

We now give an outline of the proof of theorem 3.

proof

Let $\pi = \bigotimes_{q \leq \infty} \pi_q$ be an cuspidal automorphic representation of $GL_2(\mathbb{A}_{\mathbb{Q}})$ corresponding to the level structure $K_f^2(p^n), n \geq 1$.

We now give an outline of the proof of theorem 3.

proof

Let $\pi = \bigotimes_{q \leq \infty} \pi_q$ be an cuspidal automorphic representation of $GL_2(\mathbb{A}_{\mathbb{Q}})$ corresponding to the level structure $K^2_{\ell}(p^n), n \geq 1$.

Step 1: Let $c(\pi_p), c(\Pi_p)$ be the conductor of the representations of π_p and $\Pi_p = \operatorname{sym}^3(\pi_p)$ respectively. Then, for odd prime p and taking π_p to be supercuspidal, we have, $c(\pi_p) \leq c(\Pi_p) \leq 2c(\pi_p)$.

Step 2: By Theorem 2, either $\operatorname{sym}^3(\pi) \in \bigcup_{(j \geq 1)} E_k(p^j)$ or π is obtained by automorphic induction.

Step 2: By Theorem 2, either $\operatorname{sym}^3(\pi) \in \bigcup_{(j \geq 1)} E_k(p^j)$ or π is obtained by automorphic induction. Also we have, π_p correspond to a unique newform in $S_k^{new}(\Gamma_1(p^i))$ for some $1 \leq i \leq n$ with some character.

Step 2: By Theorem 2, either $\operatorname{sym}^3(\pi) \in \cup_{(j \geq 1)} E_k(p^j)$ or π is obtained by automorphic induction. Also we have, π_p correspond to a unique newform in $S_k^{new}(\Gamma_1(p^i))$ for some $1 \leq i \leq n$ with some character.

We will count the contribution of supercuspidal representations π_p to $\cup_{(j\geq 1)} E_k(p^j)$.

Step 2: By Theorem 2, either $\operatorname{sym}^3(\pi) \in \cup_{(j \geq 1)} E_k(p^j)$ or π is obtained by automorphic induction. Also we have, π_p correspond to a unique newform in $S_k^{new}(\Gamma_1(p^i))$ for some $1 \leq i \leq n$ with some character.

We will count the contribution of supercuspidal representations π_p to $\cup_{(j\geq 1)} E_k(p^j)$.

Using this and the relation between the conductors, we get

{ supercuspidal within $\bigoplus_{1 \leq i \leq n} S_k^{\text{new}}(\Gamma(p^i)) \setminus C_k(p^n)$ } $\subseteq E_k(p^{2n})$.

Step 2: By Theorem 2, either $\operatorname{sym}^3(\pi) \in \bigcup_{(j \geq 1)} E_k(p^j)$ or π is obtained by automorphic induction. Also we have, π_p correspond to a unique newform in $S_k^{new}(\Gamma_1(p^i))$ for some $1 \leq i \leq n$ with some character.

We will count the contribution of supercuspidal representations π_p to $\cup_{(j\geq 1)} E_k(p^j)$.

Using this and the relation between the conductors, we get

$$\{ \text{ supercuspidal within } \oplus_{1 \leq i \leq n} S_k^{\text{new}}(\Gamma(p^i)) \setminus C_k(p^n) \} \subseteq E_k(p^{2n}).$$

We now use Theorem 1 and the dimension formula of the space of newforms to get the lower bound.

Using the fact that $\dim_{\mathbb{C}} S_k(\Gamma_1(N)) \sim_k N^2$, we have the following upper bound of $|E_k(p^n)|$:

Using the fact that $\dim_{\mathbb{C}} S_k(\Gamma_1(N)) \sim_k N^2$, we have the following upper bound of $|E_k(p^n)|$:

Corollary 5

For $p \geq 3$,

$$|E_k(p^n)| \ll_k p^{2n}$$

as $n \to \infty$.

Introduction

2 Notations

Cuspidal cohomology of GL₄

4 References

References

- [KS] Kim, Henry H., and Freydoon Shahidi. Functorial products for $GL(2) \times GL(3)$ and the symmetric cube for GL(2). Annals of mathematics (2002): 837-893.
- [AM] Ambi, Chaitanya. On the growth of cuspidal cohomology of GL(2) and GL(3). Journal of Number Theory (2020).
- [BM] Bhagwat, Chandrasheel, and Sudipa Mondal. On the growth of cuspidal cohomology of GL4. Journal of Number Theory (2021).

Thank you