5. THE PORPOSED SCHEME

5.1 System Initialization Phase

在進行驗證之前,我們假設所有的可信的 6G 運營商(6G Operator)都已初始化並公開了系統參數。以 6G 運營商 A (O_A) 為例, O_A 將選擇 $s_{O_A} \in \mathbb{Z}_q^*$ 作為系統私鑰,並且 s_{O_A} 應秘密保存,計算 $P_{pub_{O_A}} = s_{O_A}P$ 作為系統公鑰。使用變色龍雜湊生成一個公開雜湊密鑰 HK_{O_A} 和秘密陷門密鑰 TK_{O_A} 。然後,從一個橢圓曲線 E (\mathbb{F}_p) 上的生成元 P 開始選擇一個階數為 q 的循環群 G ,其中 p 和 q 是兩個質數。此外,定義安全的雜湊函數,其中H: $\{0,1\}^* \to \{0,1\}^*$,公共參數 $param = \{G,P,q,p,g,P_{pub_{O_A}},HK_{O_A},H\}$ 將 param 寫入區塊鏈,以便不同網路切片請求和授權。

5.2 Registration

在訪問網路切片上的應用服務器之前,UE需要完成註冊以及 3GPP TS 33.501 中定義的初始認證。用戶在完成 6G網絡接入後,才可以選擇網絡切片服務。為了確保用戶身份的安全性,我們將使用PIDⁱ來代替真實身份ID_i,並且只有信任的 6G運營商可以還原用戶的真實身份。這樣的設計確保了在一般情況下用戶的隱私不會被洩露,但在需要追蹤身份時,信任的 6G運營商可以進行追蹤。當用戶註冊時,我們將採用 FIDO 的驗證方式,要求用戶的設備提供相關的用戶資訊,同時要求設備生成公鑰和私鑰。在生成密鑰對之後,設備將會把公鑰回傳至系統以便儲存。

圖 x. UE 註冊流程圖

(1) UE $\rightarrow O_A : \{PID^i, X_i, FIDO_{PK}, coin, T1\}$

用戶選擇一個隨機數 $x_i \in \mathbb{Z}_q^*$ 作為私鑰, x_i 應被秘密保存,再來計算 $X_i = x_i P$ 作為公鑰。設備將透過 FIDO 認證器生成一對公私鑰 $FIDO_{PK}$, $FIDO_{SK}$ 。 $FIDO_{SK}$ 由設備保管, $FIDO_{PK}$ 將用於註冊。然後選擇一個隨機數 n_u 來計算 匿名身份 $PID^i = (PID_1^i, PID_2^i)$,其中 $PID_1^i = n_u P$, $PID_2^i = ID_i \oplus (n_u P_{pubo_A})$, ID_i 為用戶的真實身份。並將身份註冊請求 { PID^i , X_i , $FIDO_{PK}$, Coin, T1} 發送給 BC,其中Coin為 UE 的計費帳戶。

演算法:

(2) $O_A \rightarrow BC$

當 O_A 收到註冊請求後,根據 PID^i 還原用戶的真實身份 ID_i 。利用FIDO公鑰 $FIDO_{PK}$ 對用戶進行驗證,確定用戶身份。透過智能合約,把 PID^i 做為索引儲存訊息,並將初始查詢時間設為零。用戶計費帳戶也會被儲存,初始值同時會為零。 O_A 將記錄用戶的註冊訊息 $\lambda_{ij} = \{PID^i, X_i\}$,並把所有註冊後用戶的訊息 $w_i = \{\lambda_{1j}, \lambda_{2j}, ..., \lambda_{ij}\}$,打包成一個消息m,其中 $m = \{ID_{O_A}, w_i, Sig_{TKO_A}\{H(w_i)\}$, ID_{O_A} 為當下的G運營商的真實身份。然後,隨

機選擇 $r,s \in \mathbb{Z}_q^*$,計算變色龍雜凑 $h = r - (HK_{O_A}^{(H(m||r))} \cdot g^s \mod p) \mod q$, 其中 HK_{O_A} 是公開的雜湊密鑰。最後,將m和變色龍雜湊h打包成交易 $TX_{O_A} = \{m, h\}$,存在區塊鏈上,並發給其他 6G 運營商。

同樣,不同的網路切片上的應用服務器在認證前也需要進行身份註冊,註冊的 過程與用戶註冊過程類似,不過網路切片不需要進行FIDO註冊,以及由於需要 了解當前的應用服務器,因此不需要用匿名的身份。

Algorithm 2 Chameleon Hash

Input: m, HK, TK

Output: CH

- 1: Select prime p, q where p = 2q + 1;
- 2: Select prime q;
- 3: Select random values r and s, where $r,s\in Z_q;$ 4: Compute chameleon Hash value $h=r-(y^{H(m\|r)}\cdot g^s\mod p)\mod q$, where $H:\{0,1\}^*\to Z_q;$
- 5: **return** (h, r, s);

5.3 Slice Access Authentication

圖 x Slice Access Authentication

為了要訪問網路切片上的應用服務器AP1,UE也需要進行對應的驗證。

(1) UE \rightarrow AP₁ : { X_i , PID_i , T2}

用戶 UE 將會根據需求選擇對應的應用服務器發送連線驗證請求,其中 X_i 為 UE 的公鑰,PIDi為UE的匿名身份,T2為請求的時間戳。

(2) $AP_1 \rightarrow BC : \{PID_i\}$

應用服務器 (AP_1) 收到用戶的請求後,首先先檢查 T2 是否小於 Δt ,驗證 T2 的

有效性。然後透過發送 {PID_i}給 BC,並檢查該用戶是否註冊。

(3) $AP_1 \rightarrow UE : \{C_{FIDO}, r_{ap_1}, T3\}$

應用服務器(AP_1)將發送一個 FIDO 的 challenge-response 給 UE,進行 FIDO 的身份認證,其中 r_{ap_1} 為一個隨機數。

(4) $UE \rightarrow AP_1 : \{sig(C_{FIDO}), r_u, T4\}$

用戶收到 AP_1 發送來的 FIDO 挑戰後,首先先驗證 T3 是否小於 Δt ,然後將 C_{FIDO} 使用其 FIDO 私鑰 $FIDO_{SK}$ 進行簽章,並回傳 $\{sig(C_{FIDO}), r_u, T4\}$ 給 AP_1 ,其 r_u 為一個隨機數。

(5) AP₁

 AP_1 收到 $\{sig(C_{FIDO}), r_u, T4\}$ 後,首先先驗證T4是否小於 Δt ,並透過UE的 FIDO 公鑰 $FIDO_{PK}$ 來進行驗證簽章,如果驗證成功,則表示身份認證通過,進行密鑰協商。

(6) $AP_1 \to UE : \{Y_{ap_1}\}$

在認證完成後, AP_1 將使用 Diffie-Hellman 密鑰交換協議來生成會話密鑰。 AP_1 將生成一個隨機數 α 並計算 $DH_{ap_1}=g^a \ mod \ p$,並發送給 UE。

 $(7) \quad UE \to AP_1 : \{Y_u\}$

同時,UE 將生成一個隨機數 b 並計算 $DH_u = g^b \mod p$,並發送給 AP_1 。

- (8) UE, AP_1 收到傳送來的 Diffie-Hellman 公鑰後,雙方使用對方的公鑰和自己的私鑰計算共享密鑰 $K \circ K_{ap_1} = (DH_u)^a \mod p$, $K_u = (DH_{ap_1})^b \mod p$,由於 Diffie-Hellman 協議的特性, $K_{ap_1} = K_u$,即共享密鑰K相同。
- (9) 最終,UE 和 AP_1 計算會話密鑰 $SK_{u,ap_1} = H\big(K \parallel r_u \parallel r_{ap_1} \parallel T3 \parallel T4\big)$ 。
- (10) 當身份認證和會話密鑰交換完成,我們將使用智能合約自動開始計費系統。 系統將記錄用戶的開始使用時間。智能合約將檢查用戶的帳戶餘額是否足 夠支付一天的服務,如果不足,通知用戶並拒絕服務。我們使用智能合約 在每天固定時間檢查所有用戶,並自動扣除對應的日費用。如果在任何時 間用戶的帳戶不足下一天的費用,系統將自動登出用戶,並通知用戶。而

5.4 Inter-slice Handover Authentication

圖 x Inter-slice Handover Authentication

當用戶需要交換網路切片時,首先會先通知目前的應用服務器AP₁,並選擇不同的網路切片上的應用服務器AP₂,來進行跨網路切片的認證。

(1) UE $\rightarrow AP_1 : \{PID_i\}$

首先用戶會先發送要交換網路切片的需求給目前的AP1。

(2) $AP_1 \rightarrow BC : \{PID_i\}$

AP₁透過智能合約停止用戶在目前的應用服務器上的時間計算。

(3) UE $\rightarrow AP_2 : \{X_i, PID_i, T5\}$

當用戶要選擇不同的網路切片時,用戶將向新的應用服務商發送認證請求。其中X;為 UE 的公鑰,PID;為 UE 的匿名身份,T5為請求的時間戳。

(4) $AP_2 \rightarrow BC : \{PID_i\}$

應用服務器(AP_2)收到用戶的請求後,首先先驗證 T5 是否小於 Δt 。然後透過 發送 $\{PID_i\}$ 給 BC,當 BC 收到後,查詢 UE 在區塊鏈帳本中的註冊交易,並檢

查該用戶的計費帳戶餘額。

(5) UE
$$\rightarrow AP_1 : \left\{ Enc_u \left(Sig_{x_i} \left(SK_{u,ap_1} \right) \right) \right\}$$

用戶生成共享密鑰的簽章 $Sig_{x_i}(SK_{u,ap_1})$,再使用用戶的公鑰對簽章進行加密生成加密後的簽章 $Enc_u\left(Sig_{x_i}(SK_{u,ap_1})\right)$ 發送給 AP_1 。

(6) $AP_2 \rightarrow UE$

 AP_2 為了要驗證 $Enc_u\left(Sig_{x_i}\left(SK_{u,ap_1}\right)\right)$ 的資料,先向 UE 要求一把代理重新加密的 Re-encrypted key (rk),使他可以使用自己的私鑰解出內容。

(7) UE $\rightarrow AP_1$

用戶使用自己的私鑰和 AP_2 的公鑰生成的一個代理重加密密鑰 $r_{u\rightarrow ap_2}$ 。

(8)
$$AP_1 \rightarrow AP_2 : \left\{ Enc_{AP_2} \left(Sig_{x_i} \left(SK_{u,ap_1} \right) \right), T6 \right\}$$

當 AP_1 收 到 $rk_{u\to ap}$ 後 , 把 加 密 簽 章 $Enc_u\left(Sig_{x_i}(SK_{u,ap_1})\right)$ 重 加 密 為 $Enc_{AP_2}\left(Sig_{x_i}(SK_{u,ap_1})\right)$,並發送給 AP_2 。

- (9) AP_2 收到資料後,首先先驗證 T6 是否小於 Δt 。再來 AP_2 使用重加密簽章 $Enc_{AP_2}\left(Sig_{x_i}(SK_{u,ap_1})\right)$ 後,使用自己的私鑰解密重加密的簽章數據,得到用戶原始簽章 $Sig_{x_i}(SK_{u,ap_1})$,並透過用戶的公鑰驗證該簽章的真實性和完整性。
- $(10) AP_2 \rightarrow UE : \{DH_{ap_2}\}\$

在認證完成後, AP_2 將使用 Diffie-Hellman 密鑰交換協議來生成會話密鑰。 AP_2 將生成一個隨機數 α 並計 $DH_{ap_2}=g^a \ mod \ p$,並發送給 UE。

 $(11) UE \to AP_2 : \{DH_u\}$

UE 將生成一個隨機數 b 並計算 $DH_u = g^b \mod p$, 並發送給 AP_2 。

(12) UE, AP_2 收到傳送來的 Diffie-Hellman 公鑰後,雙方使用對方的公鑰和自己的私鑰計算共享密鑰 $K\circ K_{ap_2}=(DH_u)^a\ mod\ p$, $K_u=(DH_{ap_2})^b\ mod\ p$,由

於 Diffie-Hellman 協議的特性, $K_{ap_2} = K_u$,即共享密鑰K相同。

- (13) 最終,UE 和 AP_2 計算會話密鑰 $SK_{u,ap_2} = H(K \parallel r_u \parallel r_{ap_2} \parallel T5 \parallel T6)$ 。
- (14) 當跨網路切片的身份認證和會話密鑰交換完成,我們將使用智能合約自動開始計費系統。系統將記錄用戶的開始使用時間。智能合約將檢查用戶的帳戶餘額是否足夠支付一天的服務,如果不足,通知用戶並拒絕服務。我們使用智能合約在每天固定時間檢查所有用戶,並自動扣除對應的日費用。如果在任何時間用戶的帳戶不足下一天的費用,系統將自動登出用戶,並通知用戶。而當用戶完成服務或服務被終止時,將進行結算。

5.5 Identity Revocation

當發現有惡意用戶出現時,6G 運營商通常需要定期維護和更新撤銷列表,這可能會帶來大量存取和通訊開銷。然而,在我們的方法中,我們利用變色龍雜湊來刪除區塊鏈上與惡意用戶相關的註冊信息,而不是定期維護撤銷列表。如果區塊鏈上沒有某用戶的公鑰,則該用戶可以被視為惡意用戶。為了刪除區塊鏈上的註冊訊息,6G 運營商會生成一個不包含惡意用戶註冊訊息的新交易,替換掉包含惡意用戶註冊訊息的原始交易。新交易將經由其他6G運營商驗證後,替換掉原始交易。假設 O_4 發現一個惡意用戶 U^* ,具體身份撤銷流程如下:

- (1) 如果 O_A 需要撤銷用戶 U^* ,並其註冊訊息包含在 TX_A 中, O_A 生成一個新的訊息 m' , 而 $m' = \{ID_{O_A}, \lambda_{1j}, \lambda_{2j}, ..., \lambda_{(i-1)j}, Sig_{TK_{O_A}}\{H(w'_i)\}$, 其 中 $\lambda_{kj} = \{ID_{U^*}, X_{U^*}\}$, $w'_i = \{ID_{O_A}, \lambda_{1j}, \lambda_{2j}, ..., \lambda_{(i-1)j}\}$,且 m' 和 m 相同,只是不包含 U^* 的註冊訊息。
- (2) O_A 使用其私有陷門密鑰 s_{O_A} 生成新消息m'的變色龍雜湊碰撞。選擇一個隨機 值 $k \in [1, q-1]$,計算 更新後的 $r' = h + (g^k mod \ p) mod \ q$, $s' = k H(m' \parallel r') \cdot TK_{O_A} mod \ q$
- (3) 執行完變色龍雜湊碰撞後, O_A 可以獲得r'和s',然後 O_A 生成一個新的交易

 $TX'_A = \{m', h\}$, 並將他廣播給其他 6G 運營商。

(4) 當其他 6G 運營商收到新的交易時,首先驗證h是否等於 r' — $(HK_{O_A}^{(H(m'||r')}\cdot g^{s'}mod\,p)\,mod\,q$ 。如果相等,其他 6G 運營商將儲存新交 BTX'_A ,並刪除原始交易 TX_A 。