An Introduction to Minimal Surfaces in \mathbb{R}^3

Chenjia Lin

University of Chicago

December 24, 2021

Motivation

- Motivation
- Surfaces, tangent spaces, and curvature

- Motivation
- 2 Surfaces, tangent spaces, and curvature
- Variational characterization of minimal surfaces

- Motivation
- 2 Surfaces, tangent spaces, and curvature
- 3 Variational characterization of minimal surfaces
- 4 Examples of minimal surfaces

- Motivation
- 2 Surfaces, tangent spaces, and curvature
- 3 Variational characterization of minimal surfaces
- 4 Examples of minimal surfaces
- 6 Remarks

Soap films

- Soap films
 - Given any non-self-intersecting, closed curve Γ , is there a minimal surface with boundary Γ ? (Plateau's Problem)

- Soap films
 - Given any non-self-intersecting, closed curve Γ , is there a minimal surface with boundary Γ ? (Plateau's Problem)
 - Yes! Solved independently by T. Radó (1930) and J. Douglas (1931)

- Soap films
 - Given any non-self-intersecting, closed curve Γ , is there a minimal surface with boundary Γ ? (Plateau's Problem)
 - Yes! Solved independently by T. Radó (1930) and J. Douglas (1931)

• Think of them as solutions to optimization problems

 $S \subset \mathbb{R}^3$ is a *surface* if it looks like \mathbb{R}^2 locally and is 'smooth' everywhere.

 $S \subset \mathbb{R}^3$ is a *surface* if it looks like \mathbb{R}^2 locally and is 'smooth' everywhere.

- Described by $\mathbf{x}(u,v) = (x(u,v),y(u,v),z(u,v))$ locally
- Tangent planes exist everywhere

 $S \subset \mathbb{R}^3$ is a *surface* if it looks like \mathbb{R}^2 locally and is 'smooth' everywhere.

- Described by $\mathbf{x}(u,v) = (x(u,v),y(u,v),z(u,v))$ locally
- Tangent planes exist everywhere

Examples:

Planes

 $S \subset \mathbb{R}^3$ is a *surface* if it looks like \mathbb{R}^2 locally and is 'smooth' everywhere.

- Described by $\mathbf{x}(u,v) = (x(u,v),y(u,v),z(u,v))$ locally
- Tangent planes exist everywhere

- Planes
- Spheres

 $S \subset \mathbb{R}^3$ is a *surface* if it looks like \mathbb{R}^2 locally and is 'smooth' everywhere.

- Described by $\mathbf{x}(u,v) = (x(u,v),y(u,v),z(u,v))$ locally
- Tangent planes exist everywhere

- Planes
- Spheres
- Cylinders

 $S \subset \mathbb{R}^3$ is a *surface* if it looks like \mathbb{R}^2 locally and is 'smooth' everywhere.

- Described by $\mathbf{x}(u,v) = (x(u,v),y(u,v),z(u,v))$ locally
- Tangent planes exist everywhere

- Planes
- Spheres
- Cylinders
- Graphs of smooth $f:\mathbb{R}^2 o \mathbb{R}$

Tangent Space

The tangent space T_pS is the collection of velocity vectors of curves passing through $p \in S$.

Tangent Space

The tangent space T_pS is the collection of velocity vectors of curves passing through $p \in S$.

Given local parametrization $\mathbf{x}(u,v)=(x(u,v),y(u,v),z(u,v))$ and $\mathbf{x}(0,0)=p$, consider the *coordinate curves*:

$$u \to \mathbf{x}(u,0), \qquad v \to \mathbf{x}(0,v).$$

Tangent Space

The tangent space T_pS is the collection of velocity vectors of curves passing through $p \in S$.

Given local parametrization $\mathbf{x}(u,v)=(x(u,v),y(u,v),z(u,v))$ and $\mathbf{x}(0,0)=p$, consider the *coordinate curves*:

$$u \to \mathbf{x}(u,0), \qquad v \to \mathbf{x}(0,v).$$

Let \mathbf{x}_u and \mathbf{x}_v be the respective velocity vectors at p.

Surface Normal

• $\{\mathbf{x}_u, \mathbf{x}_v\}$ is a basis of T_pS

Surface Normal

- $\{\mathbf{x}_u, \mathbf{x}_v\}$ is a basis of T_pS
- Surface normal given by

$$N(p) = \frac{\mathbf{x}_u \times \mathbf{x}_v}{\|\mathbf{x}_u \times \mathbf{x}_v\|}$$

Surface Normal

- $\{\mathbf{x}_u, \mathbf{x}_v\}$ is a basis of T_pS
- Surface normal given by

$$N(p) = \frac{\mathbf{x}_u \times \mathbf{x}_v}{\|\mathbf{x}_u \times \mathbf{x}_v\|}$$

We will assume our surfaces have a 'consistent' normal direction.

Normal Curvature

• Take $w \in T_pS$ with ||w|| = 1.

Normal Curvature

- Take $w \in T_pS$ with ||w|| = 1.
- Pick curve α with velocity w.

Normal Curvature

- Take $w \in T_pS$ with ||w|| = 1.
- Pick curve α with velocity w.
- Compute *curvature of* α at p:

$$\mathbf{n} = \frac{\alpha''(0)}{\|\alpha''(0)\|}.$$

Normal Curvature

- Take $w \in T_pS$ with ||w|| = 1.
- Pick curve α with velocity w.
- Compute *curvature of* α at p:

$$\mathbf{n} = \frac{\alpha''(0)}{\|\alpha''(0)\|}.$$

ullet "Project" ${f n}$ onto axis of N

Normal Curvature

- Take $w \in T_pS$ with ||w|| = 1.
- Pick curve α with velocity w.
- Compute *curvature of* α at p:

$$\mathbf{n} = \frac{\alpha''(0)}{\|\alpha''(0)\|}.$$

• "Project" $\mathbf n$ onto axis of N

Interpretation

• High (+) normal curvature \implies curve 'bends' or 'accelerates' towards N

Principle Curvatures

• Define the *principal curvatures*

$$\begin{split} \kappa_1 &:= \max_{\|w\|=1} (\text{normal curvature w.r.t. } w), \\ \kappa_2 &:= \min_{\|w\|=1} (\text{normal curvature w.r.t. } w). \end{split}$$

Principal directions either maximize or minimize normal curvature

Mean Curvature and Minimal Surfaces

Define $mean \ curvature \ H$

$$H = \frac{1}{2}(\kappa_1 + \kappa_2).$$

We say S is *minimal* if H=0 everywhere.

Mean Curvature and Minimal Surfaces

Define *mean curvature H*

$$H = \frac{1}{2}(\kappa_1 + \kappa_2).$$

We say S is *minimal* if H = 0 everywhere.

- i.e. $\kappa_1 = -\kappa_2$
- But what is minimized with 'minimal surfaces?'

Variational Characterization of Minimal Surfaces

Assume S is parametrized by $\mathbf{x}(u, v)$ with domain \mathbb{R}^2 .

- **1** Take some closed disk $D \subset \mathbb{R}^2$ and perturbation $g: D \to \mathbb{R}$
- 2 "Stretch" S along its normal direction by tg where $t \in \mathbb{R}$ small

$$\mathbf{x}^{t}(u,v) = \mathbf{x}(u,v) + tg(u,v) \cdot N$$

Variational Characterization of Minimal Surfaces

 $oldsymbol{3}$ Compute area of stretched S by factor t

$$A(t) = \int_D \|\mathbf{x}_u^t \times \mathbf{x}_u^t\| \ du \ dv$$

Equivalent Formula of 'Minimal':

We say S is minimal if A'(0) = 0 for any disk D and perturbation g.

Theorem

$$H=0$$
 everywhere $\iff A'(0)=0$ for any D and $h:\bar{D}\to\mathbb{R}$

Sketch of Proof.

Some computation yields

$$A'(0) = -\int_D 2gH \|\mathbf{x}_u \times \mathbf{x}_v\| \ du \ dv$$

Theorem

$$H=0$$
 everywhere $\iff A'(0)=0$ for any D and $h:\bar{D}\to\mathbb{R}$

Sketch of Proof.

Some computation yields

$$A'(0) = -\int_D 2gH \|\mathbf{x}_u \times \mathbf{x}_v\| \ du \ dv$$

• H = 0 everywhere $\implies A'(0) = 0$

Theorem

$$H=0$$
 everywhere $\iff A'(0)=0$ for any D and $h:\bar{D}\to\mathbb{R}$

Sketch of Proof.

Some computation yields

$$A'(0) = -\int_D 2gH \|\mathbf{x}_u \times \mathbf{x}_v\| \ du \ dv$$

- H = 0 everywhere $\implies A'(0) = 0$
- Converse using contradiction:

Theorem

$$H=0$$
 everywhere $\iff A'(0)=0$ for any D and $h:\bar{D}\to\mathbb{R}$

Sketch of Proof.

Some computation yields

$$A'(0) = -\int_D 2gH \|\mathbf{x}_u \times \mathbf{x}_v\| \ du \ dv$$

- H = 0 everywhere $\implies A'(0) = 0$
- Converse using contradiction:
 - If $H \neq 0$ at $p \in S$, then pick g so that gH > 0.

Equivalence of Minimal Surface Definitions

Theorem

$$H=0$$
 everywhere $\iff A'(0)=0$ for any D and $h:\bar{D}\to\mathbb{R}$

Sketch of Proof.

Some computation yields

$$A'(0) = -\int_D 2gH \|\mathbf{x}_u \times \mathbf{x}_v\| \ du \ dv$$

- H = 0 everywhere $\implies A'(0) = 0$
- Converse using contradiction:
 - If $H \neq 0$ at $p \in S$, then pick g so that gH > 0.
 - Then A'(0) < 0 on a certain disk.

Some Facts About Minimal Surfaces

Quick Facts:

Planes are minimal.

Some Facts About Minimal Surfaces

Quick Facts:

- Planes are minimal.
- Spheres are not minimal.

Some Facts About Minimal Surfaces

Quick Facts:

- Planes are minimal.
- Spheres are not minimal.
- Compact surfaces are not minimal.

Example: Catenoid

Parametrization given by:

$$\mathbf{x}(u,v) = (a\cosh v\cos u, a\cosh v\sin u, av)$$

The catenoid is the only minimal surface of revolution (aside from plane)

Example: Helicoid

Parametrization given by:

$$\mathbf{x}(u,v) = (a \sinh v \cos u, a \sinh v \sin u, av)$$

Example: Enneper's Surface

Parametrization given by:

$$\mathbf{x}(u,v) = \left(u - \frac{u^3}{3} - uv^2, v - \frac{v^3}{3} - vu^2, u^2 - v^2\right)$$

Known for having self-intersections.

Example: Enneper's Surface

Parametrization given by:

$$\mathbf{x}(u,v) = \left(u - \frac{u^3}{3} - uv^2, v - \frac{v^3}{3} - vu^2, u^2 - v^2\right)$$

- Known for having self-intersections.
- Invariant after $\pi/2$ rotation about z-axis, followed by reflection over xy-plane

Example: Doubly-Scherk Surface

Parametrization given by:

$$\mathbf{x}(u,v) = \left(\arg \left(\frac{\zeta+i}{\zeta-i} \right), \arg \left(\frac{\zeta+1}{\zeta-1} \right), \log \left| \frac{\zeta^2+1}{\zeta^2-1} \right| \right)$$

where $\zeta = u + iv$ and $\arg \zeta$ is the angle from the real axis to ζ .

Known for being periodic.

Why do we care about minimal surfaces?

Architecture

Why do we care about minimal surfaces?

- Architecture
 - e.g. Frei Otto's German Pavillion at 1968 Expo

Why do we care about minimal surfaces?

- Architecture
 - e.g. Frei Otto's German Pavillion at 1968 Expo
- Applications in physics, chemistry, biology

Why do we care about minimal surfaces?

- Architecture
 - e.g. Frei Otto's German Pavillion at 1968 Expo
- Applications in physics, chemistry, biology
 - e.g. Butterfly wing colors

THANK YOU!