Macroeconomía Internacional

Francisco Roldán IMF

September 2021

The views expressed herein are those of the authors and should not be attributed to the IMF its Executive Board, or its management.

Hoy

Código para resolver

- McCall (1970)
- · El problema de la torta

McCall (1970) en Julia

Problema de búsqueda

$$v(w) = \max \left\{ u(b) + \beta \int v(z) dF(z), \frac{u(w)}{1-\beta} \right\}$$

Algoritmo

- $\,\cdot\,$ Elegir una función ${\it v}^0:\mathbb{R}_+ o\mathbb{R}_+$
- \rightarrow Aplicarle a v^n la ecuación de Bellman para obtener $v^{(n+1)}$
- · Comparar v^n con $v^{(n+1)}$

Problema de búsqueda

$$v(w) = \max \left\{ u(b) + \beta \int v(z) dF(z), \frac{u(w)}{1-\beta} \right\}$$

Algoritmo

- · Elegir una función $v^0:\mathbb{R}_+ o\mathbb{R}_+$
- Aplicarle a v^n la ecuación de Bellman para obtener $v^{(n+1)}$
- Comparar v^n con $v^{(n+1)}$

- · Un objeto con el modelo
 - Parámetros
 - Grillas para las variables
 - Solución decisiones de los agentes, funciones de valor
- Funciones que manejen ese objeto

- · Un objeto con el modelo
 - Parámetros
 - Grillas para las variables
 - Solución decisiones de los agentes, funciones de valor
- Funciones que manejen ese objeto

- · Un objeto con el modelo
 - Parámetros
 - Grillas para las variables
 - Solución decisiones de los agentes, funciones de valor
- Funciones que manejen ese objeto

- · Un objeto con el modelo
 - Parámetros
 - Grillas para las variables
 - Solución decisiones de los agentes, funciones de valor
- Funciones que manejen ese objeto

- · Un objeto con el modelo
 - Parámetros
 - Grillas para las variables
 - Solución decisiones de los agentes, funciones de valor
- Funciones que manejen ese objeto

- · Un objeto con el modelo
 - Parámetros
 - Grillas para las variables
 - Solución decisiones de los agentes, funciones de valor
- Funciones que manejen ese objeto

- · Un objeto con el modelo
 - Parámetros
 - Grillas para las variables
 - Solución decisiones de los agentes, funciones de valor
- Funciones que manejen ese objeto

- · Un objeto con el modelo
 - Parámetros
 - Grillas para las variables
 - Solución decisiones de los agentes, funciones de valor
- Funciones que manejen ese objeto

Tipos abstractos y concretos

Estructuras de datos

- Simples
 - · Float64, Int64, String, Function, ...
- Compuestos
 - Vector{Int64}, Matrix{String}, DataFrame,...
- Abstractos
 - Any, Number (Float64 <: Number <: Any)</pre>
 - AbstractArray
- Creados por uno
 - Vamos a introducir un tipo McCall para guardar el planteo y la solución del modelo

Multiple dispatch

- La misma función puede tener efectos diferentes según el tipo de datos de sus argumentos
- En ese caso f tiene distintos métodos

Tipos abstractos y concretos

Estructuras de datos

- Simples
 - · Float64, Int64, String, Function, ...
- Compuestos
 - Vector{Int64}, Matrix{String}, DataFrame,...
- Abstractos
 - Any, Number (Float64 <: Number <: Any)</pre>
 - AbstractArray
- · Creados por uno
 - Vamos a introducir un tipo McCall para guardar el planteo y la solución del modelo

Multiple dispatch

- La misma función puede tener efectos diferentes según el tipo de datos de sus argumentos
- En ese caso f tiene distintos métodos

Tipos concretos

```
mutable struct McCall
   β::Float64
   v::Float64
   b::Float64
  wgrid::Vector{Float64}
   pw::Vector{Float64}
   w star::Float64
  v::Vector{Float64}
```

- Declara un nuevo tipo McCall
- Una vez declarado, permite 'x::McCall'
- Objetos de tipo McCall pueden ser modificados (mutable)
- · Si x::McCall, entonces x. β debe ser Float64
- Queremos guardar
 - 1. Parámetros de la función de utilidad
 - 2. Grilla de puntos y probabildad para w
 - 3. Estimación de w^* , v(w)

Constructores

- · La declaración del tipo McCall que hicimos también crea un constructor
- · El constructor permite

$$x = McCall(\beta, \gamma, b, wgrid, pw, w_star, v)$$

siempre que los argumentos sean de los tipos correctos (el constructor tiene un único método)

```
function McCall(; \beta = 0.96, \gamma = 0, b = 1, \mu w = 1, \sigma w = 0.05,
    |wmin = 0.1. wmax = 4. <u>Nw = 50)</u>
    wgrid = range(wmin, wmax, length=Nw)
    w star = first(wgrid)
    d = Normal(\mu w, \sigma w)
    pw = [pdf(d, wv) for wv in wgrid]
    pw = pw / sum(pw)
    v = zeros(Nw)
    return McCall(β, y, b, wgrid, pw, w star, v)
end
```


Funciones básicas

```
function u(c. mc::McCall)
   y = mc.y
   if v == 1
      return log(c)
      return c^(1-v) / (1-v)
function R(w, mc::McCall)
   \beta = mc.\beta
   return u(w, mc) / (1-\beta)
end
```

 u usa el modelo y un número c y calcula la función de utilidad en ese número

 R usa el modelo y un número w y calcula el valor de aceptar una oferta w

· R usa la definición de u

Valor de continuación

```
function E v(mc::McCall)
  Fv = 0.0
  for (jwp, wpv) in enumerate(mc.wgrid)
      Ev += mc.pw[jwp] * mc.v[jwp]
  return Ev
E v2(mc::McCall) = sum( [ mc.pw[jwp]*mc.v[jwp] for (jwp,wpv)
  in enumerate(mc.wgrid) ] )
E v3(mc::McCall) = mc.pw'*mc.v
```

```
function vf iter!(new v, mc::McCall)
   flag = 0
   rechazar = u(mc. mc.b) + mc.\beta * E v(mc)
   for (jw. wv) in enumerate(mc.wgrid)
      aceptar = R(mc, wv)
      new v[iw] = \max(aceptar. rechazar)
      if flag == 0 && aceptar >= rechazar
         mc.w star = wv
         flag = 1
```

```
function vfi!(mc::McCall; maxiter = 200, tol = 1e-8)
  dist. iter = 1+tol. 0
  new v = similar(mc.v)
  while dist > tol && iter < maxiter
     iter += 1
     vf iter!(new v, mc)
     dist = norm(mc.v - new v)
     mc.v .= new v
  print("Finished in $iter iterations. Dist = $dist")
```

Ensamblar todo

```
include("mccall.jl")
mc = McCall()
vfi!(mc)
make_plots(mc)
```

- 1. Cargar/actualizar códigos
- 2. Crear instancia de McCall usando el método default
- 3. Usar la función vfi! modificando a mc
- 4. (No vimos cómo graficar) PlotlyJS

7 diferencias

Ahora con aversión al riesgo

$$mc = McCall(\gamma = 3)$$

Ahora con aversión al riesgo

$$mc = McCall(\gamma = 3)$$

Perdón si te reusé el mismo código


```
function simul(mc::McCall, flag = 0; maxiter = 2000)
  t = 0
  while flag == 0 && t < maxiter
     t += 1
     jw = findfirst(cumsum(mc.pw) .>= rand())
     wt = mc.wgrid[jw]
     print("Salario en el período $t: $wt. ")
     wt >= mc.w star ? flag = 1 : println("Sigo buscando")
  flag == 1 && println("Oferta aceptada en $t períodos")
```

Problema de la torta

Problema de la torta recursivo

$$egin{aligned} \mathbf{v}(k) &= \max_{c,k'} \mathbf{u}(c) + eta \mathbf{v}(k') \ & ext{sujeto a } c + k' = k(1+r) \ &k' \geq \mathbf{0} \end{aligned}$$

- · La función **v** es desconocida
- Podemos
 - 1. **meter una f cualquiera del lado derecho** (reemplazar v por f)
 - 2. usar la ec. de Bellman para encontrar una nueva f
 - 3. comparar la f que entró con la f que salió
 - 4. usar la f que salió del lado derecho

Problema de la torta recursivo

$$egin{aligned} \mathbf{v}(k) &= \max_{c,k'} \mathbf{u}(c) + eta \mathbf{v}(k') \ & ext{sujeto a } c + k' = k(1+r) \ &k' \geq \mathbf{0} \end{aligned}$$

- · La función v es desconocida
- Podemos
 - 1. meter una f cualquiera del lado derecho (reemplazar v por f)
 - 2. usar la ec. de Bellman para encontrar una nueva f
 - 3. comparar la f que entró con la f que salió
 - 4. usar la f que salió del lado derecho

Pseudo-código

Cómo elegir k'?

Dos formas

- · Forma lenta
 - · Recorrer kgrid elemento por elemento y probarlos a todos
 - · Super robusto, fácil de implementar
 - · Iterar la ecuación de Bellman requiere K^2 combinaciones de (k, k')

Forma un poco mejor

- Elegir $k' \in [k, k]$ con algún algoritmo continuo
 - \cdot Precisión en la elección de k' no depende de la cantidad de puntos de kgrid
- Requiere evaluar v(k') para valores de $k \notin kgrid$
 - · Interpolations.jl

Cómo elegir k'?

Dos formas

- · Forma lenta
 - · Recorrer kgrid elemento por elemento y probarlos a todos
 - Super robusto, fácil de implementar
 - · Iterar la ecuación de Bellman requiere K^2 combinaciones de (k, k')
- · Forma un poco mejor
 - Elegir $k' \in [\underline{k}, \overline{k}]$ con algún algoritmo continuo
 - · Precisión en la elección de k' no depende de la cantidad de puntos de kgrid
 - · Requiere evaluar v(k') para valores de $k \notin kgrid$
 - · Interpolations.j

Forma lenta

cakeeating.jl

Forma más rápida

itpcake.jl

Ojo con multiple dispatch!!

Forma más rápida

itpcake.jl

Ojo con multiple dispatch!!

$$\mathbf{v}(\mathbf{x}, \mathbf{q}) = \max \left\{ \mathbf{u}(\mathbf{q}) + \delta \mathbb{E} \left[\mathbf{v}(\mathbf{x} - \mathbf{1}, \mathbf{q}') \right], \delta \mathbb{E} \left[\mathbf{v}(\mathbf{x}, \mathbf{q}') \right] \right\}$$

$$v(\mathbf{x}, q) = \max \left\{ u(q) + \delta \mathbb{E} \left[v(\mathbf{x} - \mathbf{1}, q') \right], \delta \mathbb{E} \left[v(\mathbf{x}, q') \right] \right\}$$

$$\mathbf{v}(\mathbf{x}, \mathbf{q}) = \max \{ \mathbf{u}(\mathbf{q}) + \delta \mathbb{E} \left[\mathbf{v}(\mathbf{x} - \mathbf{1}, \mathbf{q}') \right], \delta \mathbb{E} \left[\mathbf{v}(\mathbf{x}, \mathbf{q}') \right] \}$$

Cierre

Cierre

Vimos

- · Estructuras de datos
- · Siempre escribir pseudo-código
- Un poquito de multiple dispatch
- Dos modelos
 - McCall
 - · Problema de la torta
 - Eligiendo k' en la grilla original
 - Eligiendo k' de forma continua con interpolaciones
- Problem sets
 - · Estática comparada para McCall, usando el simulador
 - · Reglas de decisión en el problema de la torta