BEHAVIOR OF FRP COMPOSITE-STRENGTHENED BEAMS UNDER STATIC AND CYCLIC LOADING

Summary Report

SPR 387.011

BEHAVIOR OF FRP COMPOSITE-STRENGTHENED BEAMS UNDER STATIC AND CYCLIC LOADING

Summary Report

SPR 387.011

by

Damian Kachlakev, Ph.D., Assistant Professor, California Polytechnic State University, Civil and Environmental Engineering

and

Solomon Yim, PhD, PE
Thomas Miller, PhD, PE
Dharadon Seamanontaprinya
Oregon State University,
Civil, Construction & Environmental Engineering

for

Oregon Department of Transportation Research Group 200 Hawthorne SE, Suite B-240 Salem OR 97301-5192

and

Federal Highway Administration Washington, D.C.

June 2001

1. Report No.	2. Government Accession No.	2 Positional's Court - No
1. Report No.	2. Government Accession No.	3. Recipient's Catalog No.
FHWA-OR-RD-01-20		P
4. Title and Subtitle	,	5. Report Date
	ngthened Beams Under Static and C	Cyclic June 2001
Loading - Summary Report	,	6. Performing Organization Code
7. Author(s)		8. Performing Organization Report No.
Damian Kachlakev, PhD, Civil and E California Polytechnic State Universit and		ent,
Thomas Miller, PhD, PE; Solomon Y Civil, Construction and Environmenta Oregon State University, Corvallis, O	l Engineering Department,	prinya,
9. Performing Organization Name and Address	,	10. Work Unit No. (TRAIS)
Oregon Department of Transportati	On	
Research Group	on ,	11. Contract or Grant No.
200 Hawthome Ave. SE, Suite B-2 Salem, OR 97301-5192	240	SPR 387.011
12. Sponsoring Agency Name and Address		13. Type of Report and Period Covered
Oregon Department of Transportati	on	Summary Report
Research Group an		tion 14. Sponsoring Agency Code
200 Hawthorne Ave. SE, Suite B-2 Salem, OR 97301-5192	40 400 Seventh Street SW Washington, DC 20590	
, or 7/304-3172	washington, DC 20390	
15. Supplementary Notes		-
16. Abstract		
Small compands have with a second		
of fiber reinforced polymer composite	reinforcement were externally streng	gthened with eight different configurations as consisted of high and low modulus
epoxy, high and low modulus fiber, a	and 1 and 2 composite layers. Load	capacity tests were conducted for all eight
configurations, and fatigue tests were	conducted for two of the configura	tions. Beams with the higher modulus
epoxy had more load capacity than be	eams with the lower modulus epoxy	. However, this enhancement decreased
effect on beam stiffness. The fatigue	xural failure to less desirable failure	modes. The modulus of the resin had no dependent on the load capacity of the
beams; consequently, higher modulus	s epoxy could improve the fatigue p	erformance of concrete beams.
		,
. ,	•	
17. Key Words	18. Distrib	ution Statement
fiber reinforced, composite, FRP, corresin, modulus, load, capacity, fatigue	ioroto, ocum, opoxy,	le from NTIS and Department of Transportation
19. Security Classification (of this report)		21 No - CD
, , ,	20. Security Classification (of this page)	21. No. of Pages 22. Price
Unclassified	Unclassified	11

		SI* (N	IODERN MI	WIRIO)	CONV	DRSION FAC	TORS		
A	APPROXIMATE CONVERSIONS TO SI UNITS	CONVERSIC	NS TO SI UNIT	LS.	AF	APPROXIMATE CONVERSIONS FROM SI UNITS	ONVERSIO	NS FROM SI UN	SLI
Symbol	When You Know	Multiply By	To Find	Symbol	Symbol	When You Know	Multiply By	To Find	Symbol
		LENGTH	•				LENGTH		Domit's
.E	inches	25.4	millimeters	mm	· mm	millimeters	0.039	inches	
=	. feet	0.305	meters	, E	· E	meters	3.28	feet	≣ ¢
yd	yards	0.914	meters	E	E	meters	1.09	varde	≟]
Ē	miles	1.61	kilometers	km	km	kilometers	0.621	miles	g 'i
	-	AREA				•	AREA		
in,	square inches	645.2	millimeters squared	mm²	mm ²	millimeters squared.	0.0016	square inches	in ²
<u>,</u>	square feet	0.093	meters squared	m²	m ₂	meters squared	10.764	Square feet	∄ 7±
, yd,	square yards	0.836	meters.squared	m ²	ha	hectares	2.47	acres	1 6
ac	acres	0.405	hectares	ha	km²	kilometers squared	0.386	square miles	3 ⁷
mi ²	square miles	2.59	kilometers squared	km²			VOLTME	salum amak	
		VOLUME			mĽ	milliliters	0.034		7
ZO U	fluid ounces	29.57	milliliters	m.		liters	0.264	nula dunces	ZO 11
gal	gallons	3.785	liters	7	Ę.	meters cubed	35 315	ganons onhio feet	gal
€	cubic feet	0.028	meters cubed	m³.	E E	meters cubed	1 308	בתחור זכנו	± ,
yd³	cubic yards	0.765	meters cubed	Ę.	ŧ	0000	1.506 MASS	cubic yards	yd
NOTE: Vol	NOTE: Volumes greater than 1000 L shall be shown ir	L shall be shown in	ı m³.		. 6	out out	CONTI		÷
	,	MASS			ـ م	Biana	0.035	onuces	20
20	onuces	28.35	346		ж Э	Kilograms	2.205	spunod	lb
<u> </u>	nomude	6600	giums Fil-	 20	Mg	megagrams	1.102	short tons (2000 lb)	Т
: F	short tone (2000 IL)	# C C C	Kilograms	6		TEN	TEMPERATURE (exact)	(act)	
-	SHOLL WHS (2000 ID)	io) U.90/ me Tempedatine (22.53)	megagrams	Mg	ပ္	Celsius temperature	1.8C + 32	Fahrenheit	
F		5(F-32)/9	Celsius temperature	٦			6.60		
	temperature	,)		- - - - -		180 200	
						2. °	20 40	- 08 - 05 - 05 - 05 - 05	
* SI is the syr	* SI is the symbol for the International System of Measurement	vstem of Measuremen	1						
		-							(4-7-94 jbp)

ACKNOWLEDGEMENTS

The authors would like to thank Mr. Steven Soltesz, Project Manager, Mr. Alan Kirk, Research Analyst, and Dr. Barnie Jones, Research Manager, of the ODOT Research Group for their suggestions and contributions to this project.

DISCLAIMER

This document is disseminated under the sponsorship of the Oregon Department of Transportation and the U.S. Department of Transportation in the interest of information exchange. The State of Oregon and the U.S. Government assumes no liability of its contents or use thereof.

The contents of this report reflect the views of the author(s) who are solely responsible for the facts and accuracy of the material presented. The contents do not necessarily reflect the official views of the Oregon Department of Transportation or the U.S. Department of Transportation.

The State of Oregon and the U.S. Government do not endorse products or manufacturers. Trademarks or manufacturer's names appear herein only because they are considered essential to the object of this document.

This report does not constitute a standard, specification, or regulation.

BEHAVIOR OF FRP COMPOSITE-STRENGTHENED BEAMS UNDER STATIC AND CYCLIC LOADING

TABLE OF CONTENTS

1.0 INTRODUCTION	••••••
2.0 METHOD	•
2.1 STATIC LOAD TESTING	
2.2 FATIGUE TESTING	
3.0 RESULTS AND DISCUSSION	5
3.1 LOAD TESTS	£
4.0 CONCLUSIONS AND RECOMMENDATIONS	
5.0 REFERENCES	11
LIST OF TABLES	
Table 2.1: Composite configurations for static load tests	,
Table 2.2: Composite configurations for fatigue tests	3
Table 3.1: Results of load tests	5
Table 3.2: Failure modes	6
Table 3.3: Fatigue test results	7
LIST OF FIGURES	٠
Figure 2.1: Test configuration	4
Figure 3.1: Load amplitude versus number of cycles	7
Figure 3.2: Load ratio versus number of cycles	0

1.0 INTRODUCTION

Externally applied fiber reinforced polymer (FRP) composites applied as a wet lay-up are increasingly being used to strengthen, repair, and rehabilitate civil structures. Performance of a structure with composites depends on the structural design and the orientation, properties, and proportion of the constituents (fibers and polymer resin). In the case of a wet lay-up, the matrix resin is also the resin that bonds the composite laminate to the structure. The resin is critical for effectively transferring strain to the composite over the life of the structure. Design engineers can choose from many composite systems with a wide range of resin properties. It is unclear, however, whether there are resin and fiber combinations that perform better than others.

A study conducted by Oregon State University and funded by Oregon Department of Transportation investigated the effects of different epoxy resin and fiber combinations on the static and cyclic behavior of small, concrete beams strengthened with FRP composites. The results of that study are reported in a masters project report from the Department of Civil, Construction, and Environmental Engineering at Oregon State University (Seamanontaprinya, 2001). This report is a summary of that thesis.

2.0 METHOD

2.1 STATIC LOAD TESTING

Thirty-eight unreinforced concrete beams were cast with dimensions 150 mm x 150 mm x 530 mm, using concrete with a nominal 28-day strength of 32 MPa. Twenty-four beams were reinforced with eight composite strengthening configurations using high and low modulus epoxy, high and low modulus fiber, and 1 and 2 composite layers, as shown in Table 2.1.

Table 2.1: Composite configurations for static load tests

Identification	Composite Configuration	Number of FRP Layers	Number of Specimens
CONT	Unreinforced concrete beam	. 0	3
1LG	Low-modulus resin with glass fiber	1	3
2LG	Low-modulus resin with glass fiber	2	3
1LC	Low-modulus resin with carbon fiber	1	3
2LC	Low-modulus resin with carbon fiber	2	3
1HG	High-modulus resin with glass fiber	1	: 3
2HG	High-modulus resin with glass fiber	2	. 3
1HC	High-modulus resin with carbon fiber	1	3
2HC	High-modulus resin with carbon fiber	2	. 3
·			Total: 27

Mitsubishi Epotherm® L700S resin was used for the low modulus epoxy, and Tyfo® S resin was used for the high modulus epoxy. Glass fiber from the Fyfe Corporation – Tyfo® SHE-51 – was used as the low modulus fiber; and carbon fiber from the Fyfe Corporation – Tyfo®SCH-41 – was used as the high modulus fiber.

These beams, along with three unstrengthened control beams, were loaded to failure in third-point loading in accordance with ASTM C78, as shown in Figure 2.1 (ASTM 2001).

Figure 2.1: Test configuration

2.2 FATIGUE TESTING

The remaining 10 beams were reinforced with two composite strengthening configurations, as shown in Table 2.2.

Table 2.2: Composite configurations for fatigue tests

Identification	Composite Configuration	Number of FRP Layers	Number of Specimens
CONT	Unreinforced concrete beam	0	1
1LG	Low-modulus resin with glass fiber	1	5
2HC	High-modulus resin with carbon fiber	2	5 -
			Total: 11

These beams, along with one unstrengthened control beam, were fatigue tested at 0.5 Hz under the third-point loading shown in Figure 2.1. The minimum load for each test was maintained at 0.67 kN (150 lb). The 1LG configuration was the low stiffness and strength condition, while the 2HC configuration was the high stiffness and strength condition of the eight composite combinations.

3.0 RESULTS AND DISCUSSION

3.1 LOAD TESTS

The results of the load tests are summarized in Table 3.1, and the failure modes of the tests are described in Table 3.2.

Table 3.1: Results of load tests

Configuration	Load (kN)	Deflection (mm)	Strain (microstrain)	Post-Crack Stiffness (kN/mm)	Failure Mode
	27	0.04	230		
CONT	29.	0.05	200		T-1
	30.	NA	190		Flexure
	Mean = 29	Mean = 0.03	Mean = 210	0 .	
	97	3.23	12500	20	
1LG	98	3.27	11900	19	Flexure with FRP
	127	4.43	15500	20	rupture
	Mean = 107	Mean = 3.64	Mean = 13300	Mean = 20	
	142	2.99	10200	36	
2LG	189	3.79	13300	41	Shear and flexure
	195	3.78	14900	42	Shear and Hexure
	Mean = 175	Mean = 3.52	Mean = 12800	Mean = 39	
	141	2.28	7800	47	
1LC	149	3.17	8600	35	Shear and flexure
	158	3.09	9000	38	Shear and hexure
<u></u>	Mean = 149		Mean = 8500	Mean = 40	
	179	1.97	5400	. 74	
2LC	199	1.86	5400	88	Chasa
	210	2.48	6100	67	Shear
	Mean = 196	Mean = 2.10	Mean = 5600	Mean = 77	
	134	4.23	16400	23	Flexure with internal
1HG	136	4.70	16300	20	shear failure of
	. 143	5.29	17100	- 18	laminate
	Mean = 138		Mean = 16600	Mean = 20	- iammate
	196	3.96	12600	42	Shear and flexure, 2
2HG	203	4.69	14600	35	failed with concrete
	220	4.13	14600	42	crushing
	Mean = 206	Mean = 4.26	Mean = 13900	Mean = 40	Crushing
•	159	3.38	9600	38	Shear and flexure. 2
1HC	171	3.46	11600	38	had internal shear
	. 174	3.13	9300	42	failure of laminate
	Mean = 168	Mean = 3.32	Mean = 10200	Mean = 39	· lanure or lanninate
. 1	196	1.87	5200	83	
2HC	201	2.07	5400	76	Shear
.]	223	2.17	6300	82	Silear
	Mean = 206	Mean = 2.04	Mean = 5600	Mean = 80	

Table 3.2: Failure modes

Failure Mode	Description
Flexure	Flexure crack develops from tensile side in the center of specimen between loading points and propagates to compression side.
Shear	Shear crack develops on the tensile side of specimen near support and propagates about 45° angle to the loading point
Shear and flexure	Shear crack propagates to the center of specimen, shifts to flexure, and continues to propagate to the compression side.
Internal shear failure of laminate	Shear stress in the resin exceeds its capacity
Concrete crushing	Flexural cracking with concrete crushing on compression side.

As expected, beams with 2 layers of a particular fiber type had higher load capacity and stiffness than beams with 1 layer. Also, carbon fiber produced higher capacity and stiffness in the beams than the glass fiber. The resin had no effect on the stiffness; however, the high-modulus resin increased the load capacity up to 29%. A smaller increase in load capacity – as low as 5% – was observed when the failure mode switched from a desirable flexure failure to shear failure modes in beams strengthened with the higher stiffness composite configurations. This result indicated that for properly designed beams, the resin could appreciably affect the load capacity of the beam.

3.2 FATIGUE TESTS

The fatigue test results are shown in Table 3.3. Load ratios were calculated using the following equation:

$$R_1 = \frac{L}{L_{ult}} \tag{3-1}$$

where $R_l = \text{load ratio}$, L = applied load, and $L_{ult} = \text{static ultimate loading capacity}$

Table 3.3: Fatigue test results

Configuration	Load Amplitude (kN)	Load Ratio	Number of Cycles	Failure Mode
CONT	29.0	1.000	1	771
CONT	22.2	0.766	136000	Flexure
	107.0	1.000	÷	
1LG	72.8	0.680	80	
	64.3	0.601	180	
	55.5	0.519	1200	Flexure
	44.6	0.417	36000	
	40.0	0.374	648000	
	206.0	1.000		
2HC	105.0	0.510	11700	
	104.9	0.509	13700	Shear and Flexure
	89.1	0.433	32400	Shear and Flexure
	86.4	0.419	99800	
	81.0	0.393	916400	

Figure 3.1 shows that the higher strength and stiffness composite configuration, 2HC, provided better fatigue response. Figure 3.2 indicates that the fatigue strength of the composite-strengthened beams is strongly dependent on the capacity of the beams. Equations were established to predict fatigue life for the beams used in this study.

Figure 3.1: Load amplitude versus number of cycles

Figure 3.2: Load ratio versus number of cycles

4.0 CONCLUSIONS AND RECOMMENDATIONS

- Increasing the elastic modulus of the resin in a wet lay-up may increase the load capacity of FRP-strengthened, concrete beams. However, this enhancement decreases as the failure mode changes from flexural failure to less desirable failure modes.
- Because fatigue performance is dependent on load capacity, the resin effect may also increase the fatigue response of FRP-strengthened beams.
- The elastic modulus of the resin has no effect on the stiffness of beams.
- To verify and quantify the relationship between elastic modulus of the resin and performance, further testing would need to be conducted on full-size beams with realistic design configurations.

5.0 REFERENCES

American Society for Testing and Materials (ASTM) Subcommittee C09.61. 2001. Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading). Designation ASTM C 78-00. West Conshohocken, PA.

Seamanontaprinya, Dharadon. 2001 (in press). Behavior of FRP Composite-Strengthened Beams under Static and Cyclic Loading. Masters project report, Department of Civil, Construction, and Environmental Engineering, Oregon State University.

Fiber	Typical diameter (µm) ^a	Specific gravity	Tensile modulus, GPa (10 ⁶ psi)	Tensile strength, GPa (10 ³ psi)	Strain to failure (%)	Coefficient of thermal expansion (10 ⁻⁶ m/m per °C, 0-100°C) ^b	Poisson's ratio
Glass						•	,
E glass	10 (round)	254	72.4 (10.5)	3.45 (500)	4.8	5	0.2
S glass	10 (round)	2.49	86.9 (12.6)	4.30 (625)	5.0	2.9	0.22
PAN-carbon	•						
T-300°	7 (round)	1.76	228 (33.5)	3.2 (470)	1.4	-0.1 to -0.5 (longitudinal) 7-12 (radial)	- ~0·2
AS ^d	7 (round)	1.77	220 (32)	3.1 (450)	1.2	-0.5 to -1.2 (longitudinal) 7-12 (radial)	
T-40 ^C	6 (round)	1.81	276 (40)	5 - 65 (820)	2	·	,
нмs ^d	7 (round)	1.85	344.5 (50)	2.34 (340)	0.58		
GY-70 ^e	8.4 (bilobal)	1.96	483 (70)	1.52 (220)	0.38		i .

Pitch-carbon							
P-55 ^C	10`	2.0	380 (55)	1.90 (275)	0.5	-0.9 (longitudinal)	
P-100 ^c	10	2.15	690 (100)	2 · 2 (325)	0.31	-1.6 (longitudinal)	
Kevlar 49 ^f	11.9 (round)	1.45	131 (19)	3 · 62 (525)	.2 - 8	-2 (longitudinal) +59 (radial)	0.35
Boron	140 (round) .	2.7	393 (57)	3.1 (450)	0.79	5	0.2
SiC	133 (round)	3.08	400 (58)	3 . 44 (485)	0.84	1.5	-
Al ₂ O ₃	20 (round)	3.95	379.3 (55)	1.90 (275)	0.4	8.3	

 $^{^{}a}_{1~\mu m}$ = 0.000039 in. $^{b}_{1~m/m}$ per $^{\circ}$ C = 0.556 in./in. per $^{\circ}$ F.

cAmoco.

dHercules Inc.

eCelanese.

FIG. 2.2 Mounting tab for single filament testing (ASTM D3379-75).

away. The tension test is carried out at a constant loading rate until the filament fractures. From the load-time record of the test, the following grips of a tension testing machine, its midsection is either cut or burnt tensile properties are determined:

Tensile strength
$$\sigma_{\rm tu} = \frac{F}{A_{\rm f}}$$
 (2.1)

and

Tensile modulus
$$\mathbf{E}_{\mathbf{f}} = \frac{\mathbf{L}_{\mathbf{f}}}{\mathbf{C}\mathbf{A}_{\mathbf{f}}}$$

(2.2)

= force at failure where:

= average cross-sectional area, measured by a planimeter from the photomicrographs of filament ends

gage length

= true compliance, determined from the chart speed, loading rate, and the system compliance ပ

Similar tests can also be performed to measure tensile properties of fiber strands (either dry or resin impregnated). Generally, the average tensile strength and modulus of fiber strands are lower than those measured on single filaments.

FIBERS

MATERIALS

 21

surfaces. In continuous manufacturing operations, such as filament winding, make them prone to damage in handling as well as during contact with other of yielding does not reduce the load-carrying capacity of the fibers, it does very low strains to failure and a brittle failure mode. Although the absence frequent fiber breakage resulting from such damages may slow the rate of linear up to the point of failure, as shown in Fig. 2.3. They also exhibit Tensile stress-strain diagrams for all reinforcing fibers in use are production.

The high tensile strengths of the reinforcing fibers are generally attributed to their filamentary form in which there are statistically fewer number

FIG. 2.3 Tensile stress-strain diagrams for various reinforcing fibers.

·Fiber	Advantages	Disadvantages
E-glass, S-glass	High strength	Low stiffness
		onon faugue life High temperature sensitivity
Aramid (Kevlar)	High tensile strength Low density	Low compressive strength High moisture absorption
Boron	High stiffness High compressive strength	High cost
Carbon (AS4, T300, C6000)	High strength High stiffness	Moderately high cost
Graphite (GY-70, pitch)	Very high stiffness	Low strength High cost
Ceramic (silicon carbide, alumina)	High stiffness High use temperature	Low strength High cost

Table 2.5 Fiber Properties

Туре	Manufacturer	Tensile	Modulus	Density
		MPa (ksi)	GPa (Msi)	(g/cm³)
E-glass	Corning .	3,450 (500)	72.5 (10.5)	2.54
'S-glass	Coming	4,480 (650)	85.6 (12.4)	2.49
Carbon			(i i)	ì.
AS4	Hercules	3,730 (540)	235 (34)	181
T300	Union Carbide	2,760-3,450	228 (33)	92
		(400-200)		2
HTS	Hercules	2,830 (410)	248 (36)	- 83
IM-6	Hercules	4,480 (650)	290 (42)	20.
IM-7	Hercules	5.170 (750)	290 (42)	8 8
Graphite			(7.)	99:
T-50	Union Carbide	2.070 (300)	(67)	.71
GY-70	Celanese	1.725 (250)	\$17 (75)	78.1
Pitch, type P	Union Carbide	1,725 (250)	345 (50)	2 03
Boron	AVCO	3,280-3660	365-414	2 1-3 0
		(475–530)	(53-60)	
Kevlar (aramid)	DuPont	3,800 (550)	131 (19)	1.45
Silicon carbide				?
5.6 mil/C (SCS-2)	Textron	4,140 (600)	400 (58)	3.05
Nicalon	Nippon Carbon	2,070 (300)	172 (25)	2.60
Alumina				
F-2	Dúpont	1,725 (250)	380 (55)	3.70
Nextel 610	3M	1,900 (275)	370 (54)	3.75
Saphikon	Saphikon	3,100 (450)	380 (55)	3.80
Silica	1	5,800 (840)	72.5 (10.5)	2 10
Tungsten	i	4,140 (600)	414 (60)	19.3

composite and high moisture absorption. Boron fibers, not widely used at present, are useful in local stiffening applications because of their high stiffness.

Carbon (graphite) fibers come in many types with a range of stiffnesses and strengths, depending on the processing temperatures. High strength and high stiffness carbon fibers (AS4, T300, C6000), are processed at temperatures between 1200° and 1500°C (2200° and 2700°F). Ultrahigh stiffness graphite fibers (GY-70, Pitch) are processed at temperatures between 2000° and 3000°C (3600° and 5400°F). The increase in stiffness is achieved at the expense of strength, as shown in Table 2.5. Ceramic fibers such as silicon carbide and aluminum oxide have high stiffness and moderate strength and are used in metal-matrix and ceramic-matrix composites for high temperature applications.

Most fibers behave linearly to failure, as shown in Figure 2.8. Carbon fibers, such as the AS4 fiber, however, display a nonlinear stiffening effect. One important property of the fiber related to strength and stiffness is the ultimate strain or strain to failure, because it influences greatly the strength of the composite laminate.

As mentioned previously, the basis of the superior performance of composites lies in the high specific strength (strength to density ratio) and high specific stiffness (modulus to density ratio). These two properties are controlled by the fibers. A two-dimensional comparative representation of some typical fibers from the point of view of specific strength and specific modulus is shown in Figure 2.9.

Fig. 2.8 Stress-strain curves of typical reinforcing fibers.

"THE FIBRWRAP" COMPANY

Tyfo® SEH-51 Composite using Tyfo® S Epoxy

DESCRIPTION
The Tyre' BEH-51 Composite is an ICOO ER-5282 listed material comprised of Tyfos 6 Epoxy and Tytos SEH-61 retributing fabric. Tyfos SEH-61 is a custom weave, emidzenional pless and eramithyoristeprioused in the Tyto* Fibrerap Dystem The glass material is oversized in the Coding constitution aramid fibers at 90". The Tyto' B Ecory is a two-component cooky matra motorial for bonding applications.

Tyro" SEH-51 Fabric is corrained with Tyro" epoxy material to edd strength and ductility to endgos, buildings, and other structures

ADVANTAGES

- · ICBO ER-5282 listed material
- Good high & low temperature properties.
- Long world time
- High elongszon
- · Ambient cure
- OCCUPATION APON
- · Rois can be cut to desired widths prior to shipping

COVERAGE

Approximately 679 sq & curtico erea with \$ to 4 ords of Tyto" & Eposy and 1 call of Tyto" SEH-51 Fatriciahenused och the Tyto" Saturator.

PACKAGING

Order Tylo" & Epoxy in 55-gation (2081) drums or pro-measured units in 3-gation (19L) containers. Order Tyto* SEH-51 Fabric in 54" x 150 lineal foot (1.4m x 45,7m) rolls. Typically ships in 12" x 13" x 64" (305mm x 230mm x 1626mm) poses.

EPOXY MIX RATIO

100.0 component A to 42.0 component B by Johns 1100 compared Att 94,5 compenent 8 by weight.)

SHELF LIFE

Epoxy - two years in original unoponed and properly stated containers.

Fabric - ten years in proper dorage conditions.

STORAGE CONDITIONS

Score at 40° to 60° F (4" to 32° C). Avoid freezery. Store rolls that not on ends, at temperatum below 100° F (38°C). Avoid moisture and water contanuation

CERTIFICATE OF COMPLIANCE

- Váli de supplied upon request, compliste with state and forteral packagery tame with copy of labels used.
- · Material safety data shocks will be supplied upon request.
- · Possesses ON V.O.C. lavel

DE2 THE BEHAST

Tensie Strength	470,000 pci (3.24 GPa)
Terruko Moduka	10.5 x 10° pci (72.4 GPs)
Ultimase Elongation	4.5%
Donsity	© 002 Sp./m² (2.55 gron?)
Weight per sq. yd.	27 cz. (915 g/m²)
Fact Thickness	0.014 in. (0.20mm)

Laminum Thickness	······································	D.05 in. (1.3 mm)	0.05 in. (1.3mm)
Ultimate tensile strength 93 degrees to primary Liber, pui	D-3039	6,250 pai (43 MPa)	5,000 psi (34.4 MPs)
Tensie Modulus, psi	D-2029	3,70 x 10°pci (20.1 GPs)	3.03 x 10 ⁵ psi (20,6 GPa
Slangation et breek	D-3039	22%	2.2%
Ultimete tensle strength in primary floor Graction, psi	0-1019	03,400 pel (575 l/Ps) (4.17 lopita wides)	රේ,730 සට (න්ර 167a) (3.3 kp හා න්රඩා)
PROPERTY	METHOD	TYPICAL TEST VALUE	DESIGN VALUE

On tigh and apreferable values and year based on instruction of CA CEC anginees to occurrence appropriate specification of the control of the center of the

Cuting Schedule 72 hours post	cum at 143° F (90° C).	
PROPERTY	ASTN METHOD	TYPICAL TEST VALUE
Tg 145°F (00°C) Post Cure (24 hours)	ASTU D-4068	167F (82°C)
Tensile Strength', pri	ASTM 0-633 Type 1	10,500 pei (72.4 k(Pe)
Tensão Modulus, psi	ASTN D-638 Type 1	451,000 pel (2,18 GPa)
Extraction Percent	ASTU D-633 Type 1	50%
Floxuriit Strongth, più	ASTM 0-700	17,900 pui (123,4 IAPa)
Flexural Modulus, po		452,000 psi (3.12 GPa)

Testing with easier. AT F (21" C) — Creatives speed 6.6 in 1/2 majoria. Commission 2718-1256-25 and East Torson when commission accounts and

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

3
D BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
✓ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.