Classification of gastrointestinal lesions for resection

Project group 10

Athena Taymourtash Bodnár Dániel Alice Santilli

Objective - problem specification

- Colorectal cancer and the importance of the accuracy and the promptness of the diagnosis
 - Cause: Old age, lifestyle factors, genetic disorders
 - Diagnostic method: Tissue biopsy and colonoscopy
- Virtual Colonoscopy
 - tell surgeons in real time whether or not the lesion needs to be resected
 - discriminate the severity of individual lesions in patients with many polyps in real time

Examples of the available images

- videos, 25 frames/second, 768x576 pixels per frame
- each video length is 5 30 seconds
- 76 colonoscopy videos, both in NBI (narrow band imaging) and WL (white light)
- 15 serrated adenomas, 21 hyperplastic lesions and 40 adenomas
- Labels :

Adenoma + serrated = resection hyperplastic = no resection

	Human Expert	Human Beginner
Acc.	76.54%	72.22%
Sen.	64.98%	54.50%
Spec.	81.35%	77.30%

Model Architecture

- By considering a video as a series of frames:
- 1. Loop over all extracted frames in the video file
- 2. For each frame, pass the frame through the CNN
- 3. Classify each frame *individually* and *independently* of each other
- 4. Choose the label with the largest corresponding probability
- For test data:
 - Computing the average of the predictions for all frames of a video and choosing the label with the largest corresponding probability

Data separation:

Training

- Gastro-Intestinal-Lesions > data > train
- adenoma 01 WL
- Madenoma 02 WL
- adenoma 03 WL
- adenoma_04_WL
- adenoma_05_WL
- adenoma_06_WL
- adenoma 07 WL
- adenoma 08 WL
- adenoma_09_WL
- adenoma 13 WL
- adenoma 14 WL adenoma 15 WL
- adenoma 16 WL
- adenoma 17 WL
- adenoma 18 WL
- adenoma 19 WL
- adenoma 20 WL
- adenoma_22_WL
- adenoma 24 WL

- hyperplasic_08_WL
- hyperplasic_09_WL
- hyperplasic_13_WL
- hyperplasic_14_WL
- hyperplasic_15_WL

serrated 02 WL

serrated_03_WL

serrated 04 WL

serrated 05 WL

serrated_06_WL

serrated 07 WL

serrated 08 WL

serrated_13_WL

serrated_14_WL

serrated_15_WL

- hyperplasic_01_WL hyperplasic 16 WL hyperplasic_02_WL
- hyperplasic_18_WL
- Myperplasic 19 WL hyperplasic_04_WL
- serrated_01_WL
 - hyperplasic 06 WL

adenoma 28 WL

Madenoma 29 WL

adenoma 34 WL

adenoma 37 WL

hyperplasic_03_WL

hyperplasic_07_WL

Validation

- Gastro-Intestinal-Lesions > data > val
- adenoma_10_WL
- adenoma 11 WL
- adenoma_12_WL
- adenoma_25_WL
- adenoma 30 WL
- adenoma 31 WL
- adenoma_39_WL
- adenoma_40_WL
- hyperplasic_10_WL
- hyperplasic_11_WL
- in hyperplasic 12 WL
- in hyperplasic_20_WL
- in hyperplasic_21_WL
- serrated_10_WL
- serrated_12_WL

Test

(D:) > Gastro-Intestinal-Lesions > data > test

adenoma_21_WL

adenoma_23_WL

adenoma_26_WL

hyperplasic_05_

serrated 09 WL

serrated 11 WL

Preprocessing

print("loading validation data....")

directory = datapath + 'val/'

```
train data, train labels = DataLoader("train", datapath=args.dataset, step=10)
Colonoscopy_Train.py
                             val data, val labels = DataLoader("val", datapath=args.dataset, step=10)
def DataLoader(what, datapath, step):
                                                     filename in os.listdir(directory):
                                                      video = cv2.VideoCapture(directory + filename)
    STEP = step
                                                     name = filename.split("_")[0] #get the class of the video
    frames = []
                                                      if name=="adenoma" or name=="serrated":
    labels = []
                                                         label = [0,1]
    f counter = 0
                                                      elif name=='hyperplasic':
                                                         label = [1.0] #one hot encoded labels
    if what == "train":
                                                         print("issue with filename " + filename)
        print("loading training data.....")
        directory = datapath + 'train/'
                                                      while True:
                                                         has frame, frame = video.read()
    if what == "val":
```

if not has frame:

f counter += 1

if f_counter % STEP == 0:
 frames.append(frame)
 labels.append(label)

Training Model

- Transfer learning of ResNet50
- Froze all the base layers
- Fine tuned training to our dataset

Training Performance

- Short training time due to transfer learning
- 80% validation accuracy
- 97% training accuracy

Results

Predictions were made for the entire video

Test on 7 full videos:
5 needing resection
(3 adenoma, 2 serrated)
2 no resection
(hyperplasic polyp)

Туре	True Class	Predicted Class	Confidence
Adenoma	1	1	100%
Adenoma	1	1	98%
Adenoma	1	1	99%
Serrated	1	1	97%
Serrated	1	1	51%
Hyperplasic	0	0	63%
Hyperplasic	0	0	56%

Future work

- Give surgeons information about which type of polyp they are viewing
 - This may help them make better clinical decisions
- Try different architectures or help extract more features from the images to aid the classification

Hyperplasic

Adenoma

Serrated

Conclusion

Colon Polyps and lesions can be successfully identified from colonoscopy videos.

This will give surgeons real time pathologic information about the polyps and make sure all important lesions are being resected.

Thank you