Homework 4; Due THURSDAY, 09/28/2023

(MTH 317H, Honors Linear Algebra; Fall 2023)

1 Commentary

In this homework you will continue to understand the techniques related to linear dependence / independence, span, and basis. Additionally, you will start to use the notion of dimension.

1.1 required reading

"LADR" – Linear Algebra done right "BOP" – Book of Proof

- LADR, sections 3A, 3B (and review 2A, 2B, 2C). For the moment, we will exclusively use the scalar field to be the real numbers, \mathbb{R} . That is to say, any time you encounter \mathbf{F} , or $\mathbf{F}^{\mathbf{n}}$, you are free to assume $\mathbf{F} = \mathbb{R}$. (This will change later in the semester.)
- BOP, chp 5, chp 6.

2 Questions

Question 2.1. Let $\ell = v_1, \ldots, v_6$ and $s = w_1, \ldots, w_6$ be ordered lists of vectors in \mathbb{R}^3 , where:

$$v_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
 $v_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ $v_3 = \begin{pmatrix} 3 \\ 4 \\ 5 \end{pmatrix}$ $v_4 = \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}$ $v_5 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ $v_6 = \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix}$

and

$$w_1 = \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix}$$
 $w_2 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ $w_3 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ $w_4 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ $w_5 = \begin{pmatrix} 3 \\ 4 \\ 5 \end{pmatrix}$ $w_6 = \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}$.

Recall that the vectors in the canonical basis for \mathbb{R}^3 are

$$e_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
 $e_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ $e_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$.

- (i) Prove that $e_1, e_2, e_3 \in \text{span}(\ell)$.
- (ii) Prove that $\operatorname{span}(\ell) = \mathbb{R}^3$.
- (iii) Use the reduction algorithm in LADR Result 2.31 to reduce the list ℓ to a basis. What is the resulting list? For this you must show each step of the algorithm, including the calculation of whether or not a vector is in the span of the previous vectors. Then just state the resulting list. Give a one sentence explanation for why your answer for the span of the resulting list is what it is.
- (iv) Use the reduction algorithm in LADR Result 2.31 to reduce the list s to a basis. What is the resulting list? Is it the same list as the algorithm applied to ℓ ? Does order matter in this algorithm? Does the ordering of the original vectors affect the span of the reduced list?

Question 2.2. Define the list, $\ell = x_1, x_2, x_3$ of vectors in \mathbb{R}^3 , where

$$x_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \quad x_2 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} \quad x_3 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}.$$

You will prove that ℓ is a basis for \mathbb{R}^3 via two different methods.

- (i) Prove, from the definitions of linear independence and span that ℓ is linearly independent and $\operatorname{span}(\ell) = \mathbb{R}^3$, hence that ℓ is a basis of \mathbb{R}^3 . For the proof of the span, you must use the typical set equality proof, in which you will establish that $\operatorname{span}(\ell) \subseteq \mathbb{R}^3$ and $\mathbb{R}^3 \subseteq \operatorname{span}(\ell)$. Note, for your span proof, it may be easiest to first show that the canonical basis vectors satisfy $e_1, e_2, e_3 \in \operatorname{span}(\ell)$.
- (ii) Use some combination of the results in LADR 2.C to prove that ℓ is a basis for \mathbb{R}^3 .
- (iii) Do you have a preference for either method?

Question 2.3. Define a list $\ell = p_1, p_2$ of vectors in \mathcal{P}_3 , where

$$p_1(x) = 1 + x^2$$
, $p_2(x) = 1 - x^2$.

Add vectors to the list, ℓ , so that it becomes a basis for \mathcal{P}_3 . Prove that your new list is both linearly independent and that it spans \mathcal{P}_3 .

Question 2.4. Assume that the list $B = q_1, \ldots, q_m$ is a basis for \mathcal{P}_4 .

(i) Is it possible that no polynomial in B has degree 4? Prove your answer.

- (ii) Is it possible that no polynomial in B has degree 2? Prove your answer.
- (iii) What must be the value of m (the length of the list, B)? Prove your answer.

Note: in the following questions the vectors, v_i , have nothing to do with Question 2.1. The vector space and vectors in the following questions are generic.

Question 2.5. Assume that v_1, v_2, v_3, v_4 is a linearly independent list of vectors in a vector space, V.

(i) Define the vectors, w_i as

$$w_1 = v_1 + v_2$$
, $w_2 = v_2 + v_3$, $w_3 = v_3 + v_4$, $w_4 = v_4 + v_1$.

Determine if the list of vectors w_1, w_2, w_3, w_4 is linearly dependent or is linearly independent. Justify your answer with a proof.

(ii) Define the vectors, u_i , as

$$u_1 = v_1 + v_2$$
, $u_2 = v_2 + v_3$, $u_3 = v_3 + v_4$, $u_4 = v_4 - v_1$.

Determine if the list of vectors u_1, u_2, u_3, u_4 is linearly dependent or is linearly independent. Justify your answer with a proof.

Question 2.6. Assume that V is a vector space, $v_1, v_2, v_3, v_4 \in V$, and

- (a) v_1, v_2, v_3 is a linearly dependent list of vectors.
- (b) v_2, v_3, w is a linearly independent list of vectors.

Prove that

- (i) v_1 is a linear combination of v_2 and v_3 .
- (ii) w is not a linear combination of v_1, v_2, v_3 .

Question 2.7. Prove that in any vector space, V, if the ordered list, $B = v_1, v_2, v_3, v_4$ is a basis for V, then for

$$C = w_1, w_2, w_3, w_4,$$

where

$$w_1 = v_1 + v_2$$
, $w_2 = v_2 + v_3$, $w_3 = v_2$, $w_4 = v_2 + v_4$,

C is also a basis for V.

Prove this by two different methods, as follows:

- (i) Use the definitions of linear independence and span to show that C is a basis. (Hint: for span, try to show that $v_i \in \text{span}(C)$.)
- (ii) Use the results of LADR 2.C to show that C is a basis of V.