Sobolev inequalities

Let $n \geq 2$ abnd F(x) is a function with compact support contained in a ball $\{|x| \leq K\}$ for some K > 0 whose partial derivtives $\{\partial_j(F)\}$ belong to $L^1(\mathbf{R}^n)$. Let ω denote points on the unit sphere S^{n-1} . For each fixed ω we set

$$F_{\omega}(x) = \int_{0}^{\infty} \frac{\partial}{\partial r} (F(x - r\omega) \cdot b(r)) dr$$

A psrtial integration shows that the right hand side becomes

$$F(x) + \int_0^\infty F(x - r\omega) \cdot b'(r) dr$$

Now $b'(r) \neq 0$ only occurs if 2K < r < 3K so if $|x| \leq K$ it is clear that the last integral is zero because F vanishes when |x| > K. Hence $F_{\omega}(x) = F(x)$ when $|x| \leq K$. This implies that the L^q -norm of F is majorized by the L^q -norm of F_{ω} for every $q \geq 1$ and every $\omega \in S^{n-1}$. Since L^q -norms satisfy the triangle inequality we conclude that if $a(\omega)$ is some non-negative function on S^{n-1} such that

$$\int_{S^{n-1}} a(\omega) \, d\omega = 1$$

then every L^q -norm of F is majorized by that of

$$F_a(x) = \int_{S^{n-1}} \int_0^\infty \int_0^\infty \frac{\partial}{\partial r} (F(x - r\omega) \cdot b(r)a(\omega)) dr d\omega$$

Notice that

$$\frac{\partial}{\partial r}(F(x-r\omega)) = \sum_{j=1}^{j=n} \omega_j \cdot \frac{\partial}{\partial x_j}(F(x-r\omega))$$

Define the functions h_1, \ldots, h_n in \mathbf{R}^n by

$$h_j(r\omega) = \frac{b(r) \cdot \omega_j \cdot a(\omega)}{r^{n-1}}$$

Since $dx = r^{n-1}d\omega$ holds when we pass to polar coordinates in \mathbb{R}^n , it follows from (xx) that

$$F_a(x) = \sum_{\mathbf{R}^n} \partial_j (F(x-y)) \cdot h_j(y) \, dy$$

The individual h-functions satisfy

$$|h_j(r\omega)| \le \frac{b(r)a(\omega)}{r^{n-1}} \le C \cdot \frac{b(r)}{r^{n-1}}$$

where C is the maximum norm of a. So if σ_{n-1} denotes the n-1-dimensional volume of S^{n-1} and s>1 it follows that

$$\int_{\mathbf{R}^n} |h_j(x)|^s dx \le \sigma_{n-1} \int_0^\infty \frac{b(r)^s}{r^{(n-1)(s-1)}}$$

The last integral is convergent provided that

$$(n-1)(s-1) < 1 \implies 1 \le s < \frac{n}{n-1}$$

Conclusion. If $p \geq 1$ and each $\partial_j(F)$ belongs to $L^p(\mathbf{R}^n)$ then Hölder's inequality entails that F_a belongs to L^{p_*} when

$$(*) \frac{1}{p_*} > \frac{1}{p} - \frac{1}{n}$$

The case of equality. The inequality (*) holds for every $p \ge 1$, i.r. even if p = 1. To get (*) in the critical case when equality holds one must appeal to the Calderon-Zygmund inequality and use the rather spatial properties of the h-functions above. More precisely, one should choose $a(\omega)$ so that not only (xx) above holds, but also

$$\int_{S^{n-1}} \omega_j \cdot a(\omega) \, d\omega = 0 \quad : \quad 1 \le j \le n$$

The fact that (xx) entails that Theorem xx also holds in the critical case when $\frac{1}{p_*} = \frac{1}{p} - \frac{1}{n}$ follows by general facts about convolution operators. More precisely, (xx) entails that convolution by the h-functions satisfy a certain weak-type estimate in the critical case when one takes p=1 and after Thorin's interpolation theorem is applied. We leave this to the reader who may consult text-books for details. See in particular [Stein-Fourier analysis] and the reader may also consult Chapter XIV: § 4 in [Dunford-Schwarz] for a further discussion of Sobolev inequalities.

Passage to higher order derivatives. By repeated use of Theorem XX it follows that if F(x) has bounded support and $k \geq 2$ is an integer such that the partial derivatives $\frac{\partial^{\alpha}}{\partial x^{\alpha}}(F)$ belong to L^p for some p > 1, then

$$F \in L^{p_*}(\mathbf{R}^n)$$
 where $\frac{1}{p_*} = \frac{1}{p} - \frac{k}{n}$

Finally, if it happens that $\frac{1}{p} - \frac{1}{n} < 0$ one cann establish a continuity result which goes as follows:

Consider a bounded open set Ω in \mathbb{R}^n with a smooth boundary, i.e. of class C^{∞} . Let $p \geq 1$ and k is a positive integer which yields the largest integer m such that

$$\frac{1}{m} < k - \frac{n}{p}$$

Then the following hold:

Theorem. Let F(x) be a function in Ω whose partial derivatives up to order k belong to $L^p(\Omega)$. Then every derivative of order $\leq m$ exists and is even a continuous function defined on the closure of Ω .

Sobolev inequalities

Theorem. Let p > 1 and assume that each $\partial_j(F)$ belongs to $L^p(\mathbf{R}^n)$. Then it follows that $F \in L^{p_*}(\mathbf{R}^n)$ where

$$\frac{1}{p_*} = \frac{1}{p} - \frac{1}{n}$$

The proof relies upon an interesting construction. With K given as above we cohoose some C^{∞} -function b(r) on the real line where b(r) = 1 if $0 \le r \le 2K$ and zero if r > 3K. Let ω denote points on the unit sphere S^{n-1} . For each fixed ω we set

$$F_{\omega}(x) = \int_{0}^{\infty} \frac{\partial}{\partial r} (F(x - r\omega) \cdot b(r)) dr$$

A psrtial integration shows that the right hand side becomes

$$F(x) + \int_0^\infty F(x - r\omega) \cdot b'(r) dr$$

Now $b'(r) \neq 0$ only occurs if 2K < r < 3K so if $|x| \leq K/2$ it is clear that the last integral is zero because F vanishes when |x| > K. Hence $F_{\omega}(x) = F(x)$ when $|x| \leq K/2$. This implies that the L^q -norm of F is majorized by the L^q -norm of F_{ω} for every $q \geq 1$ and every $\omega \in S^{n-1}$. Since L^q -norms satisfy the triangle inequality we conclude that if $a(\omega)$ is some non-negative function on S^{n-1} such that

$$\int_{S^{n-1}} a(\omega) \, d\omega = 1$$

then every L^q -norm of F is majorized by that of

$$F_a(x) = \int_{S^{n-1}} \int_0^\infty \int_0^\infty \frac{\partial}{\partial r} (F(x - r\omega) \cdot b(r)a(\omega) \, dr d\omega$$

Next, we notice that

$$\frac{\partial}{\partial r}(F(x-r\omega)) = \sum_{j=1}^{j=n} \omega_j \cdot \frac{\partial}{\partial x_j}(F(x-r\omega))$$

Let us now define the functions h_1, \ldots, h_n in \mathbb{R}^n by

$$h_j(r\omega) = \frac{b(r) \cdot \omega_j \cdot a(\omega)}{r^{n-1}}$$

Since $dx = r^{n-1}d\omega$ holds when we pass to polar coordinates in \mathbb{R}^n , it follows from (xx) that

$$F_a(x) = \int_{\mathbf{R}^n} \partial_j (F(x-y)) \cdot h_j(y) \, dy$$

Next, consider the individual h-functions and notice that

$$|h_j(r\omega)| \le \frac{b(r)a(\omega)}{r^{n-1}} \le C \cdot \frac{b(r)}{r^{n-1}}$$

where C is the maximum norm of a. So if σ_{n-1} denotes the n-1-dimensional volume of S^{n-1} and s>1 it follows that

$$\int_{\mathbf{R}^n} |h_j(x)|^s \, dx \le \sigma_{n-1} \int_0^\infty \frac{b(r)^s}{r^{(n-1)(s-1)}}$$

The last integral is convergent provided that

$$(n-1)(s-1) < 1 \implies 1 \le s < \frac{n}{n-1}$$

Conclusion. If $p \geq 1$ and each $\partial_j(F)$ belongs to $L^p(\mathbf{R}^n)$ then Hölder's inequality entails that F_a belongs to L^{p_*} when

$$(*) \frac{1}{p_*} > \frac{1}{p} - \frac{1}{n}$$

The case of equality. The inequality (*) holds for every $p \ge 1$, i.r. even if p = 1. To get (*) in the critical case when equality holds one must appeal to the Calderon-Zygmund inequality and use the rather spatial properties of the h-functions above. More precisely, one should choose $a(\omega)$ so that not only (xx) above holds, but also

$$\int_{S^{n-1}} \omega_j \cdot a(\omega) \, d\omega = 0 \quad : \quad 1 \le j \le n$$

The fact that (xx) entails that Theorem xx also holds in the critical case when $\frac{1}{p_*} = \frac{1}{p} - \frac{1}{n}$ follows by general facts about convolution operators. More precisely, (xx) entails that convolution by the h-functions satisfy a certain weak-type estimate in the critical case when one takes p=1 and after Thorin's interpolation theorem is applied. We leave this to the reader who may consult text-books for details. See in particular [Stein-Fourier analysis] and the reader may also consult Chapter XIV: § 4 in [Dunford-Schwarz] for a further discussion of Sobolev inequalities.

Passage to higher order derivatives. By repeated use of Theorem XX it follows that if F(x) has bounded support and $k \geq 2$ is an integer such that the partial derivatives $\frac{\partial^{\alpha}}{\partial x^{\alpha}}(F)$ belong to L^p for some p > 1, then

$$F \in L^{p_*}(\mathbf{R}^n)$$
 where $\frac{1}{p_*} = \frac{1}{p} - \frac{k}{n}$

Finally, if it happens that $\frac{1}{p} - \frac{1}{n} < 0$ one cann establish a continuity result which goes as follows:

Consider a bounded open set Ω in \mathbb{R}^n with a smooth boundary, i.e. of class C^{∞} . Let $p \geq 1$ and k is a positive integer which yields the largest integer m such that

$$\frac{1}{m} < k - \frac{n}{p}$$

Then the following hold:

Theorem. Let F(x) be a function in Ω whose partial derivatives up to order k belong to $L^p(\Omega)$. Then every derivative of order $\leq m$ exists and is even a continuous function defined on the closure of Ω .