Prova I

Nome: Lucas Machado da Silva Santana_____ data.: 06/02/2022

Professor.:Ronilson

1) No exemplo abaixo temos a implementação em Python do problema Torre de Hannoi de forma recursiva para formula $T_{(n)}=2.T_{(n-1)}+1.$

```
import sys
class Pilha:
  def __init__(self, capacidade):
    self.capacity = capacidade
    self.top = -1
    self.array = [0]*capacidade
def cria pilha(capacidade):
  pilha = Pilha(capacidade)
  return pilha
def cheia(pilha):
  return (pilha.top == (pilha.capacity - 1))
def vazia(pilha):
  return (pilha.top == -1)
def push(pilha, item):
  if(cheia(pilha)):
    return
  pilha.top+=1
  pilha.array[pilha.top] = item
def Pop(pilha):
  if(vazia(pilha)):
    return -sys.maxsize
  Top = pilha.top
  pilha.top-=1
  return pilha.array[Top]
def moverDiscosEntreDoisArcos(src, dest, a, b):
  Arco1DiscoSup = Pop(src)
  Arco2Discosup = Pop(dest)
  if (Arco1DiscoSup == -sys.maxsize):
    push(src, Arco2Discosup)
    moverDisco(b, a, Arco2Discosup)
  elif (Arco2Discosup == -sys.maxsize):
    push(dest, Arco1DiscoSup)
    moverDisco(a, b, Arco1DiscoSup)
  elif (Arco1DiscoSup > Arco2Discosup):
    push(src, Arco1DiscoSup)
    push(src, Arco2Discosup)
    moverDisco(b, a, Arco2Discosup)
  else:
```

```
push(dest, Arco2Discosup)
    push(dest, Arco1DiscoSup)
    moverDisco(a, b, Arco1DiscoSup)
def moverDisco(fromPin, toPin, disco):
  print("Mova o disco", disco, "do "", fromPin, "' para'", toPin, """)
def Iterativo(num_de_discos, src, aux, dest):
  a, b, c = 'A', 'B', 'C'
  if (num de discos \% 2 == 0):
    temp = b
    b = c
    c = temp
  total_movimentos = int(pow(2, num_de_discos) - 1)
  for i in range(num_de_discos, 0, -1):
    push(src, i)
  for i in range(1, total_movimentos + 1):
    if (i % 3 == 1):
      moverDiscosEntreDoisArcos(src, dest, a, b)
    elif (i % 3 == 2):
      moverDiscosEntreDoisArcos(src, aux, a, c)
    elif (i % 3 == 0):
       moverDiscosEntreDoisArcos(aux, dest, c, b)
num_de_discos = int(input("Quantos discos deseja considerar? \n -->"))
print("Solução do Problema (",2 ** num_de_discos -1,"jogadas): \n")
src = cria pilha(num de discos)
dest = cria_pilha(num_de_discos)
aux = cria_pilha(num_de_discos)
Iterativo(num_de_discos, src, aux, dest)
```

```
def hanoi(n, orig, dest, aux):
    if n == 1:
        print("Mover de",orig,"para",dest)
    else:
        hanoi(n-1, orig, aux, dest)
    print("Mover de",orig,"para",dest)
    hanoi(n-1, aux, dest, orig)

def main():    n = int(input("Digite a quantidade de discos:"))    hanoi(n, "A", "B", "C")

main()
```

Implemente o algoritmo de Torre de Hannoi em python na formula direta $T_{(n)}=2^n$ -1.

2) Usando a definição formal de Big O prove que $6n^3 \neq O(n^2)$ e que lg_n não é Ω (n)

$$6n^3 \neq O(n^2)$$

C=10

N	6n^3	<=	C * N^2	
1	216	>	10	
2	1728	>	40	
3	5832	>	90	
4	13824	>	160	
5	27000	>	250	
100	216.000.000	>	100.000	

 $lg_n \neq \Omega$ (n)

C= 0,2

N	lgN	>=	C * N	
1	0	<	0,2	
2	0,301	<	0,4	
3	0,477	<	0,6	
4	0,602	<	0,8	
5	0,698	<	1	
100	2	<	20	
1000	3	<	200	

3) Demonstre com exemplo para n^2 analise assintótica para $\Omega,\Theta,$ Big O

Tabela	Assintótica	Para f(n)=	N^2
	Ω	Θ	Big O
N!	não	não	sim
2 ^N	não	não	sim
N^2	sim	sim	sim
N LOG N	sim	não	não
n	sim	não	não
Log n	sim	não	não
1	sim	não	não

C1=1 C2=3

N	C1 *N!	<=	N^2	<=	C2 * N!
1	1	<	1	<	3
2	2	<	4	<	6
3	6	<	9	<	18
3	24	>	16	<	72
5	120	>	25	<	360
10	3628800	>	100	<	10.886.400

C1=1 C2=3

N	C1 *2^N	<=	N^2	<=	C2 * 2^N
1	2	<	1	<	6
2	4	=	4	<	12
3	8	<	9	<	24
4	16	=	16	<	48
5	32	>	25	<	96
10	1024	>	100	<	3.072

C1=1 C2=3

N	C1 *N^2	<=	N^2	<=	C2 * N^2
1	1	=	1	<	3
2	4	=	4	<	12
3	9	=	9	<	27
4	16	=	16	<	48
5	25	=	25	<	75
10	100	=	100	<	300

C1=1 C2=3

N	C1 * n	<=	N^2	<=	C2 * n
	logn				logn
1	0	<	1	>	0
2	0,602	<	4	>	1,806
3	1,431	<	9	>	4,293
4	2,408	<	16	>	7,224
5	3,494	<	25	>	10,482
10	10	<	100	>	30

C1=1 C2=3

N	C1 * n	<=	N^2	<=	C2 * n
1	1	<	1	<	3
2	2	<	4	<	6
3	3	<	9	=	9
4	4	<	16	>	12
5	5	<	25	>	15
10	10	<	100	>	30
100	100	<	10000	>	300

C1=1 C2=3

N	C1 * logn	<=	N^2	<=	C2 * logn
1	0	<	1	>	0
2	0,301	<	4	>	0,903
3	0,477	<	9	>	1,431
4	0,602	<	16	>	1,806
5	0,698	<	25	>	2,094
10	1	<	100	>	3
100	2	<	10000	>	6

C1=1 C2=3

N	C1 * 1	<=	N^2	<=	C2 * 1
1	1	=	1	<	3
2	1	<	4	>	3
3	1	<	9	>	3
4	1	<	16	>	3
5	1	<	25	>	3
10	1	<	100	>	3
100	1	<	10000	>	3

- 4) Considere as seguintes funções e coloque as funções em ordem de crescimento assintótico demonstrando graficamente.
 - a. log n
 - b. 2ⁿ
 - c. n²
 - d. n *
 - e. n³
 - g. n

R: $2^n > n^3 > n^2 > n \log n > n > \log n$

