Zirconia製作マニュアル

Ver.0.0 (2019/1/27)

目次

- ■P3~5 第1部:Zirconiaの概要
 - ・開発背景、コンセプト
 - ・対象と開発スタート方法
- ■P7~19 第2部:機体の製作方法
 - ・基板への電子部品の実装方法
 - センサ類やケーブルの組み付け
 - ・機構部品の組み立て
 - •モーターの組み付け
- ■P20~?? 第3部:ソフト書き込みと動作確認
 - ・ソフト書き込み方法(電源投入、ケーブル接続、ソフト書き込み)
 - ・動作確認方法(センサ、モーターの動作)
 - まっすぐ前に進むための組み付け修正
- ■P??~?? 第4部:パラメータ調整方法?迷路走行?

•

開発背景

■作者自身の最近のマイクロマウス(ハーフサイズ)開発課題

- 1. 最近の技術と電子部品を試せておらず、チャレンジできていない。やってみたいのはとりわけ次の2つ。
 - ①廃番予定の電子部品の更新
 - ②機構部品の作製方法を、切削から3Dプリンタに移行する。これにより、コストダウンと、部品一体化による組み立て工数短縮を実現。 个これらをまずは、お試しでマウスを作って取り組んでみたい
- 2. 現在使用のマウスは「四輪+吸引」と複雑で、今後の制御系ソフト開発のため素直な応答の「二輪」マウスが欲しい。
 - ①変則四輪機構…直進の安定性に優れるが、原理上スリップしないと曲がれないのでターン中は車輪の挙動がつかみにくい
 - ②吸引…羽の回転により、ターン時の挙動が、右回りと左回りで変わる。
 - 个特にターン走行中について課題抽出と処置を進めていく上で、リファレンスとなるシンプルなマウスがほしい。

自分が抱える課題は、自分だけにかぎらないのでは?→自分も、みんなも使えるオープンハードウェアの開発に着手

■作者の課題と他競技者の一致点

- 1の①…最新の電子部品の使用方法は、初心者からベテランもみんな知りたいはず。現行品が廃番予定なら、なおさら。
- 1の②…安く、かつ組み立てやすい部品が手に入るのならば、マイクロマウス競技を始める敷居が下がるハズ。
- 2の①と②…2つとも有用な技術であり、走行性能を格段にアップさせてくれるので、使わない手はない。一方で、ハードばっか複雑になって 入門層がますます調整とソフトを軽視しているように思う。(メチャ速そうなのにゴールにも行けないマウスを散見する) こんなマウスでも完走できます、十分良い記録が残せます、これで走れたら次は4輪&吸引です、を提示していきたい。

コンセプト

コンセプト: 最新技術と部品も使いつつ、最低限をギュッと詰め込みシンプルで扱いやすく

- 1. 最新技術
 - (1) 廃番予定の部品の更新(ジャイロ: MPU6500→ICM20468、エンコーダ: AS5050→MA300)
 - ② DMMの3Dプリントサービスを利用(例えば歯車付きのホイールの場合、切削に比べ部品点数:3→1、コスト:1/3)
- 2. 二輪という一番シンプルなハード

駆動の構成がシンプルなだけでなく

- ・組み立て、再分解が容易な機構でメンテナンスしやすい
- ・電子回路も、最小部品サイズ:1608(最近のトレンドは1005)として修理しやすい

等、マイクロマウスのなかでは扱いやすい構成とした。

<例: 歯車付きホイール製作方法>

3Dプリント

切削自作品

/

対象者とおススメの開発スタート方法

■想定する対象者

・マイクロマウスや他のロボット競技、業務などで自分でロボットを設計、製作した経験がある、または身近に経験者がいる (ロボット全体でなくとも、メカ機構、電子回路、ソフトウェアパッケージなど何らかのシステム開発経験があればよいです)

■おススメの開発スタート方法

- ・開発スタート方法は、以下3つの方法で想定しています。部品、完成品の提供を希望される場合は、製作者まで問い合わせください
- また、おすすめの開発スタート方法は、以下の質問に答えながら決定してください。
 - 1. 設計データを入手、必要に応じ自分で設計変更をしたのち、部品発注、製作をする
 - 2. 機構部品、部品実装済の電子基板の提供を受け、自分で製作
 - 3. 製作済みの完成車体の受け取り

くおすすめ開発スタート方法決定フロー>

5

以降、製作方法説明

面実装電子部品の実装(表面)

※実装済基板使用の際は、このページの部品の実装は不要

	C10 10 uF	C9 10 uF	R14 10 ohm				0.774.9 0.7800.00			R3 1k ohm	R2 1k ohm		
		R12 1k ohm	Q7 IRML6344			1				D9 LED(青)	R24 1k ohm		
R17 10 ohm	R13 100k ohm	U11 LP5907	C15 10 uF			P14に記	e it			R11 10 ohm	C7 10 uF		
	Q8 IRML6344	C14 10 uF	C12 10 uF								C2 10 uF		
			C13 0.1 uF		P14	P11(乙訂	c載	P14		R10 100k ohm	Q6 IRML6344		
		R4 1k ohm	R15 1k ohm		記載	P11/5 記載	again aga	IE 記載		R18 10k ohm	R9 1k ohm		
			R16 100k ohm	1		P91				R19 10k ohm	R7 100k ohm	R6 1k ohm	R8 10 ohm
					PI	記載				C4 0.1 uF	Q5 IRML6344	R1 1k ohm	
			C11 0.1 uF		I.E.		P12 C C R			C5 0.1 uF			
			C3 100 uF			228	記載						
D8 LED(青) R23	D7 LED(緑) R22	D6 LED(赤) R21	D5 LED(黄) R20			P11(記載		9		C6 10 uF C8			
1k ohm	1k ohm	1k ohm	1k ohm		9	2	100	4	11 (1	0.1 uF			
		L2 IFSC1515	L1 IFSC1515				MANAGEMENT A	ett Mahilla		SW1 KMR211	R5 10k ohm		

面実装電子部品の実装(サブボード、裏面)

※実装済基板使用の際は、このページの部品の実装は不要

くサブボード>

<裏面>

向きのある電子部品の実装向き(表面)

※実装済基板使用の際は、このページの部品の実装は不要

向きのある電子部品の実装向き(裏面)

※実装済基板使用の際は、このページの部品の実装は不要

コネクタやスイッチの実装向き

P5 フットプリントの向きに合わせて はんだづけ

SW2 (向きなし)

P6 (ピンの隙間が広い方が前)

エンコーダーの組付け方

エンコーダーサブボードを垂直に立て、 本体基板とはんだ付けして手結合します。 組み付け後、磁石との距離が重要なため、 なるべく基板パターンの水平位置からズレず、 かつなるべく垂直に立てます。

充電、通信ケーブルの組み立て方

秋月のUSBーシリアル変換モジュールと充電サブボードを、次のように組み立てます。

+BATT
GND
TX(変換モ
ジュール側)
RX (変換モ
ジュール側)

電池をロボットにさした状態で、 ケーブルを接続することで、充電スタート (充電完了すると、充電サブボードの赤LEDが消える)

センサの組み付け

- ①LED(D1~D4)の足を、左側に足の長いほうが来るように曲げます
- ②LEDの樹脂部分の側面を覆うように、黒いビニールテープを巻きます。 (LEDの光がフォトトランジスタ(Q1~Q4)に届かないようにするためです)
- ③基板の穴に挿入し、はんだ付けします。
- ④フォトトランジスタも同様にします。(曲げるときの長い脚の向きは、同じです。)

<①LEDを曲げる>

<①の参考:曲げる向き>

<②黒ビニテ貼り>

バッテリの組み付け

+とGND確認してはんだ付け、ショート注意

機構部品の組み付け方法

はじめに次の3つを準備します。

- ①ホイール、タイヤ、シャフトのアセンブリ
- ②マウントとベアリング
- ③磁石、磁石マウント、鉄シールドのアセンブリ

これを、以下の断面図に沿って組み立てます。

モーターの組み付け方法、配線

- ①ピニオンギアとモーターの接着します。
- ②前ページで組立てたマウントに、モーターを挿入します。 この時、モーターだけ挿入すると緩くなるよう作ってあるので、コピー用紙を切って詰めるようにします。 コピー用紙をモーターの外周のどこに挿入するかで、ギアが滑らかに回るようにギア間の距離を調整します。 (近すぎたり、遠すぎたりすると、手でギアを回すと引っ掛かりができるので、それがないようにします。)
- ③基板へのモーターの線をはんだ付けします。線の色を確認し間違えないようにしてください。

く(1)ピニオンギアとモーターの接着>

sshun@sshun robotさんより引用

<②モーターの組み付け>

<③モーターの配線>

裏面の保護

- ①裏面の電子部品の保護、並びにバッテリ端子保護のため、テープを張る
- ②はんだ付けした箇所の、バリをニッパでなるべく短く切り取る
- ③カグスベールを貼り付ける

完成!

