Log Lineer Modeller ve Kosulsal Rasgele Alanlar (Log Linear Models and Conditional Random Fields)

Ders 2

Charles Elkan ders notlari

Kosulsal Olurluk (Conditional Likelihood)

Diyelim ki elimizde egitim verisi olarak ikili $\langle x, y \rangle$ veri noktalari var. O zaman y'nin x'e kosulsal olarak bagli (conditional on) bir dagilimi oldugunu soyleyebiliriz.

$$y \sim f(x; \theta)$$

Yani her x icin farkli bir y dagilimi ortaya cikabilir. Ve tum bu farkli dagilimlarin ortak noktasi θ parametresidir. Kosulsal olasilik yani soyle yazilabilir,

$$P(Y = y|X = x;\theta)$$

Usttekiler Y icin bir model ortaya koydu, peki elimizde X'in dagilimi icin bir olasilik modelimiz var mi? Cevap hayir. Niye? Dusunelim, p(y, x) nedir?

$$p(x,y) = p(x)p(y|x)$$

Ustte p(y|x)'i tanimlayacak (θ uzerinden) bir olasilik demeti / ailesi tanimladik, fakat elimizde p(x) dagilimini verecek bir model yok, o zaman p(x, y)'yi tanimlayacak bir model de yok.

Fakat bu dunyanin sonu degil. Belki de Makine Ogrenimi bransinin bir slogani su olmali: "Ogrenmen gerekmeyen seyi ogrenme". Ustteki ornekte p(y|x)'i ogrenebiliriz, ama p(x)'i illa ogrenmemiz gerekir mi?

Siniflayici (classifier) ve takip edilen (supervised) ogrenim durumunu dusunursek, bize egitim amacli olarak < x, y > ikili veri noktalari saglanacak. x kaynak veri, y tahmin edilecek (ya da basta egitim hedefi olan) etiket olacak. y icin bir model ortaya cikartiyoruz, cunku test zamaninda y olmayacak, fakat x hep olacak. Yani y'nin modellenmesi mecburi, cunku "genelleyerek" onun ne oldugunu bulacagiz, ama x hep verili.

Kosulsal Olurluk Maksimum Olurluk Prensibi

Egitim verisi $\langle x_1, y_1 \rangle, ..., \langle x_n, y_n \rangle$ icin, θ 'yi soyle sec

$$\hat{\theta} = \arg\max_{\theta} \prod_{i=1}^{n} p(y_i|x_i;\theta)$$

Normal maksimum olurlukta bilindigi gibi olasiliklarin carpimi maksimize edilir, burada maksimize ettigimiz "kosulsal" olasiliklarin carpimi.

Burada onemli bir soru su: bildigimiz gibi maksimum olurluk hesabi her veri noktasinin bir digerinden bagimsiz oldugunu farzeder [cunku her olurluk hesabini bir diger ile carpiyoruz, baska ek carpim, toplama, vs yapmiyoruz], bu faraziye dogru bir faraziye midir? Bu soru ve ona verilecek cevap cok onemli. Evet, eger egitim noktalari birbirinden bagimsiz degilse maksimum olurluk kullanmamaliyiz. Bagimsizligi da iyi tanimlamak gerekiyor tabii, eger ustteki durumda x_i verildikten sonra y_i 'larin birbirinden bagimsiz olmasi yeterli.

Bu model klasik Istatistik'te cokca kullanilan bir yaklasimdir, hatta lineer regresyon'un temeli ustteki faraziyedir.

$$y = \alpha + \bar{\beta}\bar{x} + N(0, \sigma^2)$$

Bu standart lineer regresyon modeli, ve bu modelde her y ona tekabul eden x'e bagli, bu sayede x'ler biliniyorsa y'ler birbirinden kosulsal olarak bagimsiz hale geliyor, boylece x'ler birbirine bagimli olsa bile α ve β 'nin bulunmasi mumkun oluyor.

Ustteki resimde egitim noktalari (training points) mavi olsun, test noktalari yesil olsun (hemen altinda). Bazi Yapay Ogrenim yaklasimlari diyebilir ki egitim x'lerinin dagilimi test x'lerinin dagilimindan farkli, bu veri seti ogrenilemez (yani genellenemez, modellenemez). Fakat klasik Istatistik buna bakar ve der ki x'lerin verildigi durumda y'ler bagimsizdir, bu sekilde bir kosulsal model ogrenilebilir.

Lojistik Regresyon ayni sekilde isler (lojistik regresyon, log lineer modellerin ozel bir halidir, Kosulsal Rasgele Alanlar ayni sekilde). Burada da ogrenilen bir

$$p = p(y|x; \alpha, \beta)$$

modeli vardir ve y degerleri sadece 0 ve 1 olabilir. Tahmin edilen olasilik ise y'nin 1 olma olasiligidir. Bu model Rasgele Gradyan Cikisi ile egitilir [detaylar icin Lojistik Regresyon notlarimiza bakabilirsiniz].

$$log\frac{p}{1-p} = \alpha + \sum_{j} \beta_{j} x_{j}$$

p log sansinin monotonik bir fonksiyonudur, ve ters yonden bakarsak, log sans p'nin monotonik bir fonksiyonudur. Yani lineer bir fonksiyon (sag taraf) ne kadar buyurse, olasilik / log sans o kadar buyuyecektir. Bu buyume durumu mesela β_j katsayisini veri analizi baglaminda yorumlanabilir hale getirir. Diyelim ki β_4 katsayisi pozitif, o zaman diger tum sartlarin esit oldugu durumda (with all else being equal) x_4 ne kadar buyurse 1 olma olasiligi o kadar artar.

Lojistik modellerin onemli bazi avantajlari var, ki bu avantajlar log lineer modellere de sirayet ediyor (bu iyi).

1) Degiskenler arasi ilinti (correlation) probleme yol acmaz: Bu fayda aslinda daha once belirttigimiz x'lerin birbirine bagimli olabilmesi ile alakali. Bagimsizlik onsarti aranmadigi icin istedigimiz kadar x'i problemin uzerine atabiliriz, egitici algoritma bunlardan cikartabildigi kadar iyi bir model bulacaktir.

Kiyasla mesela Naive Bayes boyle degildir, eger bir NB siniflayicisini egitiyorsak, ve ogelerin (feature) arasinda ilinti var ise, siniflayicinin dogrulugu (accuracy) azalabilir.

- 2) LR ile "1 olma olasiligini", yani "bir sayisal skoru", elde ediyoruz, bu sadece 1/0 degerinden daha fazla bir bilgi demektir.
- 3) Bu skor, anlami olan bir olasiliksal degerdir: Sonucta SVM siniflayicilari da $-\infty$ ve $+\infty$ arasinda degerler dondururler, ve bu degerler siralama (ranking) amacli kullanilabilir, fakat olasilik matematigi acisindan anlami olan bir degerin olmasi bundan bile iyidir. Naive Bayes 0 ve 1 arasinda deger dondurebilir, fakat bu degerlerin de olasiliksal olarak aslinda anlami yoktur, pratikte goruldu ki bu degerler cok uc noktalarda, ya sifira cok yakin, ya bire cok yakin. Literaturde NB skorlarinin "iyi kalibre edilmis olmadigi" soylenir.

 $X_1, ..., X_n$ test ornekleri ve tahmin edilen olasiliklar $P(Y = 1|x_i) = v_i$ olsun. Diyelim ki $s = \sum_i v_i$ ve t sayisi 1, ..., n tane ogenin icinden y = 1 degerini tasiyan ogelerin sayisi olsun. Ornek, elimizde 100 tane egitim noktasi var, bunlarin 60'i 1 degerinde. Bu durumda s yaklasik 60 olacaktir (rasgele gurultuyu hesaba katarsak tabii), yani E[t] = s denebilecektir ve bu sadece eger olasiliklar iyi kalibre edilmisse soylenebilir.

4) Dengesiz egitim verisi kullanilabilir: pek cok egitim setinde mesela 1 degeri tasiyan degerleri 0 degeri tasiyanlardan cok daha fazla. Lojistik regresyon bu tur veriyle rahatca calisabilir.

Ders 3

Lojistik regresyon icin log olurlugun (LCL) turevini almak lazim. Once basitlestirme amacli $\alpha = \beta_o$, ve $x_0 = 1$. O zaman log sansin eski hali (altta esitligin sol tarafi) soyle yazilabilir (sag taraf), daha derli toplu bir formul olur,

$$\alpha + \sum_{j} \beta_{j} x_{j} = \sum_{j=0}^{d} \beta_{j} x_{j}$$

Bulmak istedigim her j icin $\frac{d}{d\beta_j}LCL$ lazim

$$\frac{d}{d\beta_j}LCL = \sum_{i:u_i=1} \frac{d}{d\beta_j} \log p(1|..) + \sum_{i:u_i=0} \frac{d}{d\beta_j} \log p(0|..)$$
 (3)

Eger ustteki bir bolumu p digerine 1-p dersem, yani soyle

$$= \sum_{i:y_i=1} \frac{d}{d\beta_j} \underbrace{\log p(1|..)}_{p} + \sum_{i:y_i=0} \frac{d}{d\beta_j} \underbrace{\log p(0|..)}_{1-p}$$

O zaman

$$= \sum_{i:y_i=1} \frac{d}{d\beta_j} \log p + \sum_{i:y_i=0} \frac{d}{d\beta_j} \log(1-p)$$

Biliyoruz ki

$$\frac{d}{d\beta_j}\log p = \frac{1}{p}\frac{d}{d\beta_j}p \quad (1)$$

$$\frac{d}{d\beta_j}\log(1-p) = \frac{1}{1-p}(-1)\frac{d}{d\beta_j}p \quad (2)$$

Ustteki son iki formulun her ikisinde de $d/d\beta_j p$ kismi olduguna dikkat.

Notasyon

$$e = \exp\left[-\sum_{j=0}^{n} \beta_j x_j\right]$$
$$p = \frac{1}{1+e}$$
$$1 - p = \frac{1+e-1}{1+e} = \frac{e}{1+e}$$

Simdi $d/d\beta_i p'$ e donelim, ve p'nin ustteki gibi oldugundan hareketle,

$$\frac{d}{d\beta_j} p = (-1)(1+e)^{-2} \frac{d}{d\beta_j} e$$

$$= (-1)(1+e)^{-2}(e) \frac{d}{d\beta_j} (x_j)$$

$$= \frac{1}{1+e} \frac{e}{1+e} x_j = p(1-p)x_j$$

Son ifade kodlama icin oldukca uygun, $d/d\beta_j p$ hesabini yine icinde p iceren bir ifadeye bagladik, ayrica turev x_j ile orantili.

Bu hesapla aslinda (1) icindeki $d/d\beta_j p$ kismini hesaplamis olduk. Eger yerine koyarsak,

$$\frac{d}{d\beta_j}\log p = \frac{1}{p}p(1-p)x_j$$

p'ler iptal olur

$$=(1-p)x_i$$

Ayni sekilde (2) icin

$$\frac{d}{d\beta_j}\log(1-p) = \frac{1}{1-p}(-1)p(1-p)x_j$$
$$= -px_j$$

Ustteki turevler tek bir egitim veri noktasi icin. Tum egitim veri setinin turevi her noktanin turevlerinin toplami olacak, (3)'de goruldugu gibi.

$$\frac{d}{d\beta_j}LCL = \sum_{i:y_i=1} (1 - p_i)x_{ij} + \sum_{i:y_i=0} -p_i x_{ij} \quad (4)$$

 x_{ij} notasyonunda j, j^{inci} oge / ozellik anlamina geliyor. Simdi notasyonel bir numara kullanacagim,

$$= \sum_{tum\ i} (y_i - p_i) x_{ij}$$

Bunu niye yaptim? (4) formulunde esitligin sag tarafi, birinci terim icinde 1 sayisi var, sonraki terimde 1 yok. Eger 1 olup olmamasi yerine y_i kullanirsam, ki zaten 1'in olup olmamasi y_i 'nin 1 olup olmamasina bagli, tek bir terimde isi halledebilirim. $y_i = 1$ oldugu zaman ustteki ifade $1 - p_i$ olacaktir, olmadigi zaman $-p_i$ olacaktir.