Lei de Ohm e Resistividade

Introdução

Todo condutor elétrico oferece uma resistência a passagem da corrente elétrica. A resistência elétrica (R) de um condutor entre dois pontos é determinada aplicando uma diferença de potencial (V) e medindo a corrente elétrica (I) resultante, onde a resistência elétrica é dada pela razão entre a tensão aplicada e a corrente medida, assim;

$$R = \frac{V}{I} \qquad (1)$$

A unidade de resistência no sistema internacional de unidades é o ohm, representado pela letra grega Ω .

Um condutor elétrico pode ser classificado de acordo como sua resistência elétrica se comporta em função da tensão aplicada. Quando o condutor apresenta a resistência elétrica constante independente da tensão aplicada dizemos que é um condutor ôhmico, obedecendo a um comportamento observado por Georg Simon Ohm, e formulado em uma lei. A Lei de Ohm define que a corrente elétrica que atravessa um condutor é diretamente proporcional a tensão aplicada no mesmo, um condutor obedece a lei de ohm quando sua resistência independe do valor e da polaridade da diferença de potencial aplicada. Se um condutor tiver sua resistência variando em função da diferença de potencial aplicada dizemos que o mesmo tem um comportamento não Ôhmico.

A resistência de um condutor também depende do tipo de substância com que o mesmo é fabricado. O parâmetro que relaciona a resistência do condutor com o tipo de material usado em sua fabricação é a resistividade (ρ), cuja unidade no sistema internacional de unidades é o Ω ·m (ohm vezes metro). Além do material utilizado no condutor a geometria do mesmo também influencia em sua resistência, assim, tanto o comprimento (L) quanto sua área de secção transversal (A) afetarão a resistência final do condutor. A resistência elétrica também pode ser determinada pela relação

$$R = \rho \frac{L}{A}$$
 (2)

A eficiência com que um condutor deixará fluir as cargas elétricas por ele é expresso pelo parâmetro condutividade (σ) que é o inverso da resistividade e a unidade de condutividade é o Simens (S).

Experimento

Para verificar todas as nuances relativas a Lei de Ohm dois conjunto de experiências será conduzido. A primeira visando verificar o comportamento de condutores ôhmicos e não ôhmicos e o segundo a dependência da condutividade com o material com o qual o condutor é fabricado.

Dependência da resistência com a diferença de potencial

Nesta etapa deverá ser montado o circuito da Figura 1 com o auxilio de uma fonte de alimentação ajustável e um multímetro na função amperímetro.

Figura 1 - Circuito para determinar a curva característica de um condutor elétrico.

Conecte no circuito o resistor de $8,2~k\Omega$. Varie a tensão sob o resistor e meça a corrente que passa pelo mesmo, utilize a os valores de tensão contidos na Tabela 1 e anote as correspondentes para corrente.

	Tabela 1 – Tabela	para registro da tensão em fun	cão da corrente para resistor	es de 8.2 kΩ. 1.	5 kΩ e uma lâmpada.
--	-------------------	--------------------------------	-------------------------------	------------------	---------------------

Resistor 8,2 kΩ		Resist	or 1,5 kΩ	Lâmpada		
Tensão (V)	Corrente (mA)	Tensão (V)	Corrente (mA)	Tensão (V)	Corrente (mA)	
1,00		1,00		1,00		
2,00		2,00		2,00		
3,00		3,00		3,00		
4,00		4,00		4,00		
5,00		5,00		5,00		
6,00		6,00		6,00		
7,00		7,00		7,00		
8,00		8,00		8,00		
9,00		9,00		9,00		
10,0		10,0		10,0		
11,0		11,0		11,0		
12,0		12,0		12,0		

Repita do procedimento do parágrafo anterior para o resistor de 1,5 $K\Omega$ e para a lâmpada (cuida para não ultrapassar a tensão de 12V para não queimar a lâmpada). Com os dados contidos na Tabela 1 construa gráfico de tensão em função da corrente para

cada um dos dispositivos caracterizados, identifique qual deles obedecer a Lei de Ohm e nos que obedecer determine o valor da resistência elétrica.

Resistividade de um condutor

Agora será determinada a resistividade de três condutores distintos, Níquel-cromo, Cobre e Ferro. Para isso utilize a placa que contem os fios condutores esticados sobre a mesma. Com a ajuda de uma fonte de tensão ajustável que contém medidores de tensão e corrente, ajuste a fonte para uma tensão de 0,3 V. Conecte o terminal negativo da fonte no borne do lado esquerdo da placa com fios no borne correspondente ao fio de níquel-cromo com diâmetro de 0,36 mm. O terminal positivo da fonte deve ser conectado no borne seguinte do mesmo fio correspondente a um comprimento de 0,25 m. Anote o valor correspondente de corrente lida na fonte de alimentação na Tabela 2. Meça a corrente para outros comprimentos do fio. Determine a resistência elétrica utilizando a equação (1) para cada comprimento que se mediu a corrente elétrica. Repita o procedimento descrito para os fios com outros diâmetros.

Tabela 2 – Dados do comprimento em função da corrente e resistência elétrica para fios de níquel-cromo com diferentes diâmetros.

Níquel Cromo						
	Diâmetro 0,36 mm		Diâmetro 0,51 mm		Diâmetro 0,72 mm	
Comprimento	Corrente	Resistência	Corrente	Resistência	Corrente	Resistência
(m)	(A)	(Ω)	(A)	(Ω)	(A)	(Ω)
0,25						
0,50						
0,75						
1,00						

Repita o procedimento feito para o fio de níquel-cromo para os fios de cobre e ferro, anote os valores medidos na Tabela 3.

Tabela 3 – Parâmetros para determinação da resistividade elétrica de fios de Cobre e Ferro.

Cobre – Diâmetro 0,51 mm			Ferro – Diâmetro 0,51 mm		
Comprimento	Corrente	Resistência	Comprimento	Corrente	Resistência
(m)	(A)	(Ω)	(m)	(A)	(Ω)
0,25			0,25		
0,50			0,50		
0,75			0,75		
1,00			1,00		

Faça para cada fio estudado um gráfico da resistência em função do comprimento do fio. A partir dos gráficos obtidos determine a resistividade para cada material medido. Compare a condutividade dos materiais utilizados em cada fio e descreva qual a influencia da geometria do fio na resistência elétrica.

Redija um relatório completo com os dados coletados nestes experimentos.