Prof. Dr. Cisinski, Dr. Hoang-Kim Nguyen, Sebastian Wolf

Exercises for the course Higher Category Theory (return: 13.01.21, 10:00)

Exercise 1 (2 points). Prove that any homotopy equivalence of topological spaces $f: X \to Y$ induces a Δ^1 -homotopy equivalence of simplicial sets

$$Sing(f): Sing(X) \rightarrow Sing(Y)$$
.

Exercise 2 (2.6=12 points). Let *X* and *Y* be ∞ -categories.

- 1. We assume that there is an equivalence of ∞ -categories $f: X \to Y$. Prove that X is an ∞ -groupoid if and only if Y is an ∞ -groupoid.
- 2. Let C be a small category with a terminal object ω . Prove that the map $N(C) \to \Delta^0$ is a Δ^1 -homotopy equivalence but not a J-homotopy equivalence.
- 3. Let $f: X \to Y$ be an equivalence of ∞ -categories. Prove that, for any simplicial set T, the induced map

$$f \times 1_T : X \times T \to Y \times T$$

is a J-homotopy equivalence.

4. Let $f, g: X \to Y$ be two morphisms, and $h: J \times X \to Y$ a J-homotopy from f to g. Prove that, for any simplicial set T, the induced map

$$f_*, g_* : Fun(T, X) \to Fun(T, Y)$$

are *J*-homotopic. *Hint*: consider the map $\tilde{h}: X \to Fun(J, Y)$ induced by h.

5. Let $f: X \to Y$ be an equivalence of ∞ -categories. Prove that, for any simplicial set T, the induced map

$$f_*: Fun(T, X) \to Fun(T, Y)$$

is an equivalence of ∞-categories.

6. Let $f: X \to Y$ be an equivalence of ∞ -categories. Prove that the induced functor

$$ho(f): ho(X) \rightarrow ho(Y)$$

is an equivalence of categories.

Exercise 3 (3+3=6 points). Let A be a small category I an interval in \widehat{A} .

- 1. Prove that any retract of an *I*-homotopy equivalence is an *I*-homotopy equivalence.
- 2. Let $f: X \to Y$ be two $g: Y \to Z$ be two morphisms of presheaves on A. Prove the following assertion: if two among f, g and $h = g \circ f$ are I-homotopy equivalences, so is the third.