Voice Controlled Robot

•••

Presented By: Brandon Galletta, Kory McTague, and Stephanie Valley

Outline

- Importance of Project
- Block Diagram
- Speech Recognition
 - Hardware and software
 - How it works
- Robot
 - Hardware and software
 - How it works
- Wireless Communication
 - Hardware and software
 - How it works
- Deliverables
- Future Work and Improvement

Importance of Project

- Speech recognition is the next step in the future of devices
 - Alexa, Google, Siri
 - Home Automation
 - Smart Cars
- Huge leaps in robotics are starting to be seen
 - Boston Dynamics
 - Sophia
 - iRobot Vacuum (Roomba)
- Helps visually, hearing, and physically impaired individuals

Overall Block Diagram

Speech Recognition

Hardware Used

- Raspberry Pi 3 B+
 - "Low cost, credit-card sized computer"

- Jounivo USB Microphone
 - 16-bit depth
 - Sampling rate of 48kHz
 - Omnidirectional

How Speech Recognition Is Typically Done

- Neural Networks
 - Series of algorithms to recognize relationships within data
 - Mimics the way the brain operates
- Hidden Markov Layers
- Requires lots of training
 - Deep Machine Learning Process

How We Accomplished Speech Recognition

- Two main parts in our algorithm:
 - Speech Detection
 - Speech Analysis
- Detection
 - Finding voice activity within an audio signal
- Analysis
 - Figure out a way to "define" a word

Speech Detection

- 1. Normalize audio amplitude
- 2. Low Pass Filter
 - a. 8th order Chebyshev Type 1, IIR
- 3. Downsample audio (16kHz)
- 4. Remove non-speech within the signal
 - a. Noise floor & moving average

Speech Analysis Trials

- Originally just used the Fourier Transform (FT)
 - Decomposes time function into its frequency components

Short-time Fourier Transform

- 1. Frequency vs. Time vs. Magnitude
- 2. Used to determine the sinusoidal frequency and phase of sections of a signal as it changes with time
- 3. Used to divide a longer time signal into smaller sections, of equal length
- 4. Computes the Fourier transform of each section separately
- 5. Creates the spectrogram plot

Speech Analysis

- 1. Short-time Fourier Transform
- 2. Spectrogram
- 3. Compare and contrast

Analyzing Processed Speech

- Split algorithm into two branches based on pitch of the speaker
 - Fundamental Frequency of Men vs. Women
- Take four commands and make two groups of two commands
- Chooses one of the two remaining options

Spectrograms

Robot

Hardware Used

- Tiva C (TM4C123G) Launchpad
 - As low as 370 μA/MHz
 - 16 PWM outputs
 - 8 UART
 - Up to 80MHz
- Vex 2 Wire Motor 393
 - All motor specifications are at 7.2 volts
- Vex Motor Controller 29
 - lms, full reverse
 - 2ms, full forward
 - 1.5ms, neutral

Hardware Used Continued

- Vex NiMH Battery
 - 7.2 V
 - 3000mAH
- YwRobot Breadboard Power Supply
 - Input Voltage: 6.5 V to 12 V (DC)
 - Output Voltage: 5V
 - Maximum Output Current: 700 mA

Software & Peripherals Used

- Texas Instruments Code Composer
 Studio
 - Two Motion Control Modules
 - 8 high-res PWM outputs
 - Serial Connectivity
 - Universal Asynchronous
 Receiver/Transmitter (UART).
- Separate movement functions
 - goStraight(), goBack(), turnLeft(), turnRight(), and stop()
 - Get the needed movement by changing a variable that gives us the proper pulse width

Pulse Width Modulation (PWM)

- Method of encoding analog signal levels
- Duty cycle of square wave is modulated to encode analog signal
- Since the programmed frequency is 55HZ and the period is 18.2mS, dividing that by 1000 gives us a pulse resolution of 1.82μS. Multiplying that by 83 gives us a pulse-width of 1.51mS.

Wireless Communication

Universal Asynchronous Receiver/Transmitter (UART)

- Main purpose is to transmit and receive serial data
- Data flows from the Tx pin of the transmitting UART to the Rx pin of the receiving UART
- Transmit data asynchronously
 - Uses start and stop bits

Hardware Used

Two Xbee S2Cs Xbee Shield v2.2

Configuration and Testing Software Used

- XCTU

- Free next generation platform for Xbee's
- Provided by Digi (manufacturer of Xbee)
- Compatible with Windows, Mac OS, and Linux
- Graphical network view for simple wireless network configuration
- API frame builder is a simple tool to allow the building of API frames
- Used for testing purposes when learning to use the XBee modules
- Allowed configuration of our XBees for easier back-and-forth communication

How Wireless Capability Was Achieved

- Raspberry Pi:
 - o Python library: *serial*
- 1. Initialize a serial port
- 2. Create a message 'msg' to send
- 3. Write 'msg' to serial port

```
import serial
ser1 = serial.Serial()
ser1.baudrate = 9600
ser1.port = 'COM5'
ser1.open()
if voice == 'go':
    msg = bytes('g', 'utf-8')
ser1.write(msg)
ser1.close()
```

- Tiva-C:
 - Initialize the UART
 - Take in a single char from receiver
 - Perform action of received character
 - 'g' = go
 - 'l' = left
 - 'r' = right
 - 'b' = back
 - Echo the received char back through the transmitter
 - Lets the voice recognition system know the command has been completed and ready for a new one

Characterization of System (Robot)

- Battery 3000mAH
 - Xbee S2C 45mA
 - Tiva C 30mA
 - Vex Motors
 - Max current 3A, we will not use full forward/full reverse speed
 - Idle current 12mA
- System will be using motors about 10% of the time
 - Battery capacity 3000mAH, discharge rate 3075mAH
 - Run time less than 1hr (0.97hrs)
- System will be idle for about 90% of the time
 - Battery capacity 3000mAH, discharge rate 99mAH
 - Run time about 30hrs
- Total system run time
 - About 27 hours

Characterization of System (Speech Recognition)

- Overall, very accurate within the group members
 - o Fairly accurate for other students as well
- Main things that affect accuracy:
 - Accents
 - Distance from the mic / volume of the speaker
 - "Clarity" of the speech

Deliverables

- Voice-controlled robot
- Stationary system on table/desk
 - Utilization of wall power
 - o Operated by Raspberry Pi
- Offline Speech Recognition
- Robot performs basic movement commands;
 - o Go, Back, Right, Left
- Wireless capability
- Characterization of System
 - Power consumption comparable to baseline values, SNR estimation from classrooms/labs
- Always Listening

Future Work and Improvements

- Improve the robot
 - Add more commands
 - Add sensors for automation
 - Improve the physical design
- Allow internet access
 - Larger database for speech recognition
- Use Deep Learning
 - Neural Networks
 - Improves accuracy
- Add more microphones
 - Stronger noise reduction

References

- Xbee S2C
- YwRobot Power Supply
- <u>Vex Battery</u>
- PWM and UART
- <u>UART2</u>
- XCTU
- Short-time Fourier Transform
- Time-domain audio processing

Questions?