Modeling hw2

10170437 Mark Taylor

Contents

Table of Contents

Modeling hw2	1
Table of Contents	1
Problems	1
Model Establishing	2
Drawing the Graph	2
Solve by Lingo	
Result & Analysis	
J	

Problems

备用件数	1		0.6	0.7
		0.6	0.75	0.9
	2	0.7	0.95	1.0
	3	0.8	1.0	1.0
	4	0.9	1.0	1.0
	5	1.0	1.0	1.0
单件价格/元		20	30	40
单件质量/kg		2	4	6

某公司利用钢材和铝材作为原材料,生产两种产品(A和B).单件产品A需消耗钢材6kg,铝材8kg,劳动力11h,利润5000元(不含工人加班费);单件产品B需消耗钢材12kg,铝材20kg,劳动力24h,利润11000元(不含工人加班费).该企业目前可提供钢材200kg,铝材300kg,劳动力300h.如果要求工人加班,每小时加班费100元.请制订生产计划,最大化公司的利润和最小化工人加班时间.

12. 某银行营业部设立 3 个服务窗口,分别为个人业务、公司业务和特殊业务(如外汇和理财等).现有 3 名服务人员,每人处理不同业务的效率(每天服务的最大顾客数),以及每人处理不同业务的质量(如顾客的满意度)见下表.如何为服务人员安排相应的工作(服务窗口)?

最大顾客数

公司业务

个人业务

特殊业务

Model Establishing

Let x: = the No. of product A, and y: = the No. of product B. It's not difficult to obtain following model by observing the problem.

```
Max(profit) & Min(overtime);
  profit = 5000*x + 11000*y - 100*overtime,
  6*x + 12*y <= 200,
  8*x + 20*y <= 300,
  11*x + 24*y - 300 = overtime.
  (Of course, x, y, & overtime >= 0.
  Moreover, x & y are integers, which results in overtime also being an integer.)
```

Drawing the Graph

See & play around it online at https://www.geogebra.org/m/b6w8yztr.

Mark Taylor Page 3 of 5 Contents

Solve by Lingo

See Lingo code as follows

```
model:
! A greedy boss wants maximum profit & minimum overtime for employees;
max = z;
!@param x: the No. of product A
    @param y: the No. of product B;

wp = 0.9; ! weight of profit. This is decided by the boss;
wt = 1 - wp; ! weight of overtime;
z = profit * wp + (-overtime) * wt; ! Target optimal (maximum) value;

profit = 5000*x + 11000*y - 100*overtime;
[Steel] 6*x + 12*y <= 200;
[Aluminum] 8*x + 20*y <= 300;
[TotalHours] 11*x + 24*y <= 300 + overtime;
! declare variable x & y as integer only;
@gin(x); @gin(y);
end</pre>
```

o Output

Result & Analysis

Zooming in we shall find when wp = 1, Target Equation (red line) will cross point $P_2(15,9)$ as the last integer point in domain D (green area). Moreover, if we try to change wp (simple to do, just to drag wp in the slider), and the result remains unchanged. Let's delve a little bit into the details about why this happens. By the model,

$$profit = 5000x + 11000y - 100 * overtime$$

= $5000x + 11000y - 100(11x + 24y - 300)$
= $3900x + 8600y + 30000$,

$$z = profit * wp + (-overtime) * (1 - wp)$$

= $(3900x + 8600y + 30000) * wp - (11x + 24y - 300) * (1 - wp)$. (TarEq)
weight of profit weight of overtime

Obviously, even when wp = 0.1, 1 - wp = 0.9, the slope of equation (TarEq) changes little, since the profit weight part has a magnitude of $10^2 \sim 10^3$ and the overtime weight part has a magnitude of at most 10^1 , concerning the coefficients of x & y.

Furthermore, if we try to change the wp in the Lingo program, we can get the same result as that of wp = 1.

So, the final solution is to produce 15 pieces of product A, and 9 pieces of product B, with 81 hours of overtime, generating maximum profit \$165900, and leaving 2kg of rolled steel, regardless of the wight of profit given by the boss.

(see also the Lingo solution report as follows)

Variable	Value	Reduced Cost
Z	149301.9	0.000000
WP	0.9000000	0.000000
WT	0.1000000	0.000000
PROFIT	165900.0	0.000000
OVERTIME	81.00000	0.000000
X	15.00000	-3508.900
Y	9.000000	-7737.600
Row	Slack or Surplus	Dual Price
1	149301.9	1.000000
2	0.000000	165981.0
3	0.000000	-81.00000
4	0.000000	1.000000
5	0.000000	0.9000000
STEEL	2.000000	0.000000
ALUMINUM	0.000000	0.000000
TOTALHOURS	0.000000	90.10000

Lingo solution report