# **KAN Tutorial Slides**

Daniel Precioso Francisco Suárez October 8, 2025



### Kolmogorov-Arnold Representation Theorem

Let  $\Omega \subset \mathbb{R}^d$  be a bounded domain and let  $f : \Omega \to \mathbb{R}$  be a continuous function; i.e.  $f \in C(\Omega)$ .

Then there exist continuous univariate functions

$$\Phi_q: \mathbb{R} \to \mathbb{R}, \quad q = 1, \dots, 2d + 1;$$

and continuous univariate functions

$$\phi_{pq}: \mathbb{R} \to \mathbb{R}, \quad p = 1, \dots, d; \quad q = 1, \dots, 2d + 1;$$

such that for every  $\mathbf{x} = (x_1, \dots, x_d) \in \Omega$ ,

$$f(\mathbf{x}) = \sum_{q=1}^{2d+1} \Phi_q \left( \sum_{p=1}^d \phi_{pq}(x_p) \right).$$



# Kolmogorov-Arnold Representation Theorem



The theorem states that any  $f(x_1, x_2)$  can be written as a sum of univariate compositions.

The diagram shows this expression visually: each block represents a component of the decomposition.

Together, they form a Kolmogorov-Arnold Network (KAN).





### Kolmogorov-Arnold Networks



In a network setting, each univariate function is written as  $\phi_{d,p,q}$ , where:

d: laver depth

4/19

- p: output node index
- a: input node index

This network is a KAN [2,5,1]: it has 2 inputs, one hidden laver with 5 nodes, and 1 output.



### Kolmogorov-Arnold Networks



KAN [2,3,3,1]: 2 inputs, two hidden layers of 3, 1 output.

# Why go deeper?

- Theory: Any continuous  $f(\mathbf{x})$  admits a shallow KAN  $[n_{in}, 2n_{in} + 1, 1]$ .
- Practice: Deeper KANs can model non-continuous functions. Depth improves expressivity.



# **B-Splines**

 $\phi_{d,p,q}$  can be chosen from any family of continuous univariate functions.

A common choice is the **B-spline** family.

A B-spline of degree k is defined as:

$$B_k(x) = \sum_{i=1}^n P_i N_{i,k}(x)$$

where n is the number of control points.  $N_{i,k}$  are the basis functions of degree k, and  $P_i$  are the control points (spline weights).



# **B-Splines**

The basis functions follow the standard **Cox-de Boor recursive definition**:

$$N_{i,0}(x) = \begin{cases} 1, & t_i \leq x < t_{i+1} \\ 0, & \text{otherwise} \end{cases}$$

$$N_{i,k}(x) = \frac{x - t_i}{t_{i+k} - t_i} N_{i,k-1}(x) + \frac{t_{i+k+1} - x}{t_{i+k+1} - t_{i+1}} N_{i+1,k-1}(x), \quad k > 0$$

where  $t_i \in [t_1, t_m]$  is the **knot vector**, a non-decreasing sequence of real numbers of length m = n + k + 1.



# **B-Splines as KAN Edges**

All univariate functions share the same spline degree k and number of control points n. Each  $\phi_{d,p,q}$  combines a basis function (similar to residual connections) with a B-spline expansion:

$$\phi(x) = W_b b(x) + \sum_{i=1}^n P_i N_{i,k}(x)$$

Here,  $w_b$  is the learnable weight of the basis function, and the control point coefficients  $P_i$  scale the individual B-spline functions directly. We choose the basis as:

$$b(x) = \operatorname{SiLU}(x) = \frac{x}{1 + e^{-x}}$$



# **B-Splines as KAN Edges**

Knot vector  $\mathbf{t} = (t_1, \dots, t_m)$  with

$$m = n+k+1$$
,  $a = t_k+1$ ,  $b = t_{m-k}$ 

Clamped uniform knots on [a, b]:

$$t_1 = \dots = t_{k+1} = a,$$
  
 $t_{n+1} = \dots = t_{n+k+1} = b,$   
 $t_{k+j} = a + \frac{j}{n-k}(b-a), \quad j = 1, \dots, n-k$ 



$$\mathbf{t} = (-2, -2, -2, -1, 0, 1, 2, 2, 2, 2)$$

$$\mathbf{P} = (0,0,0,6,0,0,0)$$





#### **KAN Parameters**



# **Hyperparameters**

- n: number of control points.
- k: B-spline degree.

# Learnable parameters

(for each edge)

- $P_i$ : control points,  $i \in [1, n]$ .
- $w_h$ : basis weight.



# **KAN Backpropagation**

Loss function is L2 (RMSE):

$$L = \|y - \hat{y}\|_2 = \left\|f(\mathbf{x}) - \hat{f}_d(\mathbf{x})\right\|_2 = \left\|f(\mathbf{x}) - \sum_q \phi_{d,q}(\mathbf{x})\right\|_2$$

Where d is the last layer, and p = 1 because we have a single output. The coefficients of that layer are  $P_{d,q,i}$ .

$$\frac{\partial L}{\partial P_{d,q,i}} = \frac{\partial L}{\partial \hat{f}_d(\mathbf{x})} \cdot \frac{\partial \hat{f}_d(\mathbf{x})}{\partial P_{d,q,i}}$$

And for the previous layer d-1:

$$\frac{\partial L}{\partial P_{d-1,p,q,i}} = \frac{\partial L}{\partial \hat{f}_d(\mathbf{x})} \cdot \frac{\partial \hat{f}_d(\mathbf{x})}{\partial \hat{f}_{d-1,p}(\mathbf{x})} \cdot \frac{\partial \hat{f}_{d-1,p}(\mathbf{x})}{\partial P_{d-1,p,q,i}}$$



### Capabilities of KANs with B-Splines

- **Grid extension**: progressively increase model capacity by refining the spline grid without retraining from scratch.
- **Continual learning**: local support ensures new information affects only nearby regions, reducing catastrophic forgetting.
- Sparsity: regularization and pruning remove redundant components, simplifying the model without major accuracy loss.
- **Symbolic regression**: univariate structure enables conversion of learned functions into interpretable closed-form expressions.



### **Capabilities - Grid Extension**

**Grid extension** refines a trained KAN by adding more spline knots without restarting training.

- Train on a coarse grid first.
- Add knots to increase resolution and capacity.
- Initialize new coefficients by least-squares fitting.
- Continue training to improve accuracy.

Test loss often improves until the parameter count roughly matches the number of data points.







### **Capabilities - Continual Learning**

Because B-splines have **local support**, updates to  $\phi(x)$  in one region of the input space affect only nearby points. This locality mitigates catastrophic forgetting, a common issue in MLPs where learning new data can overwrite previously acquired knowledge.





# **Capabilities - Sparsity**

**Sparsity** removes unnecessary components, revealing the essential structure of our target function.

- Regularization drives many spline weights toward zero.
- Irrelevant  $\phi_{d,p,q}$  can be pruned after training.
- The result is a compact, interpretable network.

Sparsity helps towards interpretability.







### **Capabilities - Symbolic Regression**

KANs provide an interpretable path from neural models to closed-form expressions:

- Each learned  $\phi_{d,p,q}$  is a univariate function, which can often be approximated by simple analytic forms (e.g., sin, exp, log).
- After training, these functions are "snapped" to symbolic templates via affine fitting, producing human-readable equations.
- The resulting network can be viewed as a composition graph of symbolic functions approximating f(x).

This makes KANs suitable not only for prediction but also for **discovering** interpretable laws from data.



# **KAN Train Steps**





# **Limitations of KANs with B-Splines**





#### References

