ME 311: Microprocessors and Automatic Control

Basics of digital logic design Combinational

P.S. Gandhi Mechanical Engineering IIT Bombay

PRASANNA S GANDHI gandhi@me.iitb.ac.in

1

Life Skil

Process of Learning or Gaining Knowledge

- Journey from "something known" to "something unknown"
- What it is not?
 - Just information: (a lot of it is on web why we need classroom teaching)
 - Just memory
- So what to do if you feel you don't understand things? Go one step back and connect dots there what was missing..

Recap

- Introduction why we should study microprocessors and control fundes?
- Examples of real life automation in industry and in appliances
- Core or brain of all these is microprocessor
- Todays class: start with building blocks for microprocessors

3

Applications of Logic Design/Microprocessors

- Embedded products and real-time control systems: as we saw already
- Scientific equipment
 - Testing, sensing, reporting
- Conventional computer design
 - CPUs, memories, peripherals
- Networking and communications
 - Phones, modems, routers, computer

Brief history

- 1850: George Boole invents Boolean algebra
 - Maps logical propositions to symbols
 - Permits manipulation of logic statements using mathematics
- 1938: Claude Shannon links Boolean algebra to switches
 His Masters' thesis
- 1945: John von Neumann develops first stored program computer
 - Its switching elements are vacuum tubes (a big advance from relays)
- 1946: ENIAC--world's first all electronic computer
 - 18,000 vacuum tubes
 - Several hundred multiplications per minute
- 1947: Shockley, Brattain, and Bardeen invent the transistor
 - replaces vacuum tubes
- enable integration of multiple devices into one package
 - gateway to PRASMONT FAIRE Landing to Brasilists.ac.in

5

Switching networks

- To build larger computations
 - Use a light bulb (output of the network) to set other switches (inputs to another network)→ concept of relay

This is the way older big size computers were created

■ Connect one network with another and so on

9

Transistors replacing relays

- Relays: bulky unreliable
- Invention of transistors first in the form of cathode ray tubes and next in the form of semiconductor revolutionized digital circuits
- Current technology: Complementary metal oxide semiconductor (CMOS):
 - Several chips including pentium use this
 - Fabrication using VLSI technology (Very large scale integration)
- MOS transistors act as voltage controlled switches

Logic design

What is design?

 Given a problem develop a solution using available resources to meet some specific design performance parameters

Logic design?

- Converting application task inputs and outputs to specifications in terms of 0s and 1s. (encoding) → several possible ways
- Establishing mathematical relationship and developing combination of basic elements to achieve the goal → several possible ways
- Selection of optimum design

19

				Example	
		Inputs		Output/s	Say you have a logic table
	A	В	С	Z	with inputs and outputs
	0	0	0	0	specified. How will you
	0	0	1	1	come up with some
	0	1	0	0	combination of standard
	0	1	1	0	gates to realize it in
	1	0	0	1	practice? Unique way or
	1	0	1	0	several ways
	1	1	0	1	$Z = (A' \circ B' \circ C) + (A \circ B' \circ C') +$
	1	1	1	0	(A•B•C')
				PRASA	■ Further simplification NNA S GANDHI GANDHI GREUTH ACID POSSIBLE → K maps

