Problem 1:

Let R be a UFD and P be a prime ideal containing no proper prime ideals other than (0).

Let \mathcal{P} be a minimal generating set for P (that is, with a/b for all $a, b \in \mathcal{P}$). Then each $a \in \mathcal{P}$ has a prime factorization. We know that $gcd(\mathcal{P})$ exists; we show that it is in P.

First, let $a, b \in \mathcal{P}$. Then there are c, d such that $c \gcd(a, b) = a$ and $d \gcd(a, b) = b$. Now, because P is prime, that means that either $\gcd(a, b) \in P$ or both c and d are. If both c and d are in P, then

But naturally, every element of \mathcal{P} is a multiple of $\gcd(\mathcal{P})$. So $P \subset (\gcd(\mathcal{P}))$.

So P is principal if P is a prime ideal containing no proper prime ideals other than (0).

Problem :	2:		
Problem 3	3:		
Problem 4	1 :		
Problem 8	5:		