2.4.5-Repn-CPDs-loglinear

Tuesday, September 10, 2019

5:02 PM

2.4.5-Repn-CPDs...

re

r

Log-Linear Kepresenta

$$\tilde{P} = \prod_{i} \phi_{i}(\mathbf{D}_{i})$$
 $\tilde{P} = \exp\left(-\sum_{j} w_{j} f\right)$

$$\tilde{P} = \exp\left(-\sum_{j} w_{j} \right)$$

$$\tilde{P} = \prod_{j} \exp\left(-w_{j}\right)$$

- $\tilde{P} = \prod_{j} \exp{(-w_{j}f_{j})}$ Each feature f_{j} has a scope D_{j}
- Different features can have sam

Representing Table Fac

$$\phi(X_{1}, X_{2}) = \begin{pmatrix} a_{00} & a_{01} \\ a_{10} & a_{11} \end{pmatrix} \qquad \begin{array}{l} f_{12}^{00} = 1 \{X_{1} = 0, X_{2} \\ f_{12}^{01} = 1 \{X_{1} = 0, X_{2} \\ f_{12}^{10} = 1 \{X_{1} = 1, X_{2} \\ f_{12}^{11} = 1 \{X_{1} = 1, X_{2} \\ f_{22}^{11} = 1 \} \end{array}$$

$$f_{12}^{00} = 1 \{X_1 = 0, X_1 \}$$
 $f_{12}^{01} = 1 \{X_1 = 0, X_2 \}$
 $f_{12}^{10} = 1 \{X_1 = 1, X_2 \}$
 $f_{12}^{11} = 1 \{X_1 = 1, X_2 \}$
General representation

TION

 $(j(oldsymbol{D}_j))$ $(j(oldsymbol{D}_j))$

e scope

2 Daphne Koller

tors

$$f_2 = 0$$
 $f_2 = 0$
 $f_2 = 0$

$$a = 1$$

$$\frac{\phi(X_1, X_2) = \exp(-\sum_{kl} w_{kl} f_{ij}^{\kappa \iota}(X_1))}{w_{kl} = -\log a_{kl}} = \exp(-\sum_{kl} w_{kl} f_{ij}^{\kappa \iota}(X_1))$$

Features for Language

Features: word capitalized, word in atlas or name list, pr "Mrs", next word is "Times", ...

$$\underline{\textbf{Ising Model}}$$

$$E(x_1, \dots, x_n) = -\sum_{i < j} w_{i,j} x_i x_j^{\text{maxion}} \sum_i x_i x_j^{\text{maxion}}$$

evious word is

4 Daphne Koller

rwile

 $u_i \overset{\text{joint spins}}{x_i}$

$$x_{i} \in \{-1, +1\}, f_{i,j}(X_{i}, X_{j}) = X_{i} \cdot X_{j}$$

$$P(X) \propto e^{-\frac{1}{T}E(X)} \xrightarrow{\text{U}_{i,j}} \rightarrow 0$$

$$\text{high}$$

Metric MRFs

All X_i take values in label space V

want X_i and X_j to take <u>"similar"</u> values

- Distance function $\mu: V \times V \rightarrow R^{\dagger}$
- Reflexivity: $\mu(v,v) = 0$ for all v
 - Symmetry: $\mu(v_1,v_2) = \mu(v_2,v_1)$ for all
 - Triangle inequality: $\mu(v_1,v_2) \le \mu(v_1,v_3)$ for all v_1 , v_2 , v_3

Metric MRFs

All X_i take values in label space V

want X_i and X_j to take "similar" values

• Distance function $\mu: V \times V \rightarrow R$

$$f_{i,j}(X_i,X_j) = \mu(X_i,X_j) \qquad \text{lower}$$

$$\exp\left(-w_{ij}f_{ij}(X_i,X_j)\right) \qquad w_{ij} > 0 \qquad \text{higher}$$
 values of \mathbf{X}_i and \mathbf{X}_j far in μ lower probab

Metric MRF Example

$$\mu(v_k,v_l) = \begin{cases} 0 & v_k=v_l \\ 1 & \text{otherwise} \end{cases}$$

distand
risher probability
ility

7

Daphne Koller

Metric MRF: Segmenta

$$\mu(\mathbf{v}_{k},\mathbf{v}_{l}) = \begin{cases} 0 & \mathbf{v}_{k} = \mathbf{v}_{l} \\ 1 & \text{otherwise} \end{cases}$$

Metric MRF: Denoisi

tion

> 9 Daphne Koller

Similar idea for stereo reconstruction

$$(|v_k-v_l|,d)$$

10 Daphne Koller