Data Mining:

Books: References

Book 1: Introduction to Data Mining by Pang-Ning Tan, Michale Steinbach, Anuj Karpathe, Vipin Kumar.

Book 2: Data Mining Concepts and Techniques by Jiawei Han, Micheline Kamber, Jian Pei.

Why Data Mining?

- The Explosive Growth of Data: from terabytes to petabytes
 - Data collection and data availability
 - Automated data collection tools, database systems, Web, computerized society
 - Major sources of abundant data
 - Business: Web, e-commerce, transactions, stocks, ...
 - Science: Remote sensing, bioinformatics, scientific simulation, ...
 - Society and everyone: news, digital cameras, YouTube

Evolution of Database Technology

• 1960s:

Data collection, database creation, IMS and network DBMS

• 1970s:

Relational data model, relational DBMS implementation

• 1980s:

- RDBMS, advanced data models (extended-relational, OO, deductive, etc.)
- Application-oriented DBMS (spatial, scientific, engineering, etc.)

• 1990s:

Data mining, data warehousing, multimedia databases, and Web databases

2000s

- Stream data management and mining
- Data mining and its applications
- Web technology (XML, data integration) and global information systems

What Is Data Mining?

- Data mining (knowledge discovery from data)
 - Extraction of interesting (<u>non-trivial</u>, <u>implicit</u>, <u>previously</u>
 <u>unknown</u> and <u>potentially useful</u>) patterns or knowledge from huge amount of data
- Alternative names
 - Knowledge discovery (mining) in databases (KDD), knowledge extraction, data/pattern analysis, data archeology, data dredging, information harvesting, business intelligence, etc.
- Watch out: Is everything "data mining"?
 - Simple search and query processing
 - (Deductive) expert systems

Knowledge Discovery (KDD) Process

Example: A Web Mining Framework

- Web mining usually involves
 - Data cleaning
 - Data integration from multiple sources
 - Warehousing the data
 - Data cube construction
 - Data selection for data mining
 - Data mining
 - Presentation of the mining results
 - Patterns and knowledge to be used or stored into knowledge-base

Data Mining in Business Intelligence

Example: Mining vs. Data Exploration

- Business intelligence view
 - Warehouse, data cube, reporting but not much mining
- Business objects vs. data mining tools
- Supply chain example: tools
- Data presentation
- Exploration

KDD Process: A Typical View from ML and Statistics

This is a view from typical machine learning and statistics communities

Example: Medical Data Mining

- Health care & medical data mining often adopted such a view in statistics and machine learning
- Preprocessing of the data (including feature extraction and dimension reduction)
- Classification or/and clustering processes
- Post-processing for presentation

Multi-Dimensional View of Data Mining

Data to be mined

 Database data (extended-relational, object-oriented, heterogeneous, legacy), data warehouse, transactional data, stream, spatiotemporal, time-series, sequence, text and web, multi-media, graphs & social and information networks

Knowledge to be mined (or: Data mining functions)

- Characterization, discrimination, association, classification, clustering, trend/deviation, outlier analysis, etc.
- Descriptive vs. predictive data mining
- Multiple/integrated functions and mining at multiple levels

Techniques utilized

 Data-intensive, data warehouse (OLAP), machine learning, statistics, pattern recognition, visualization, high-performance, etc.

Applications adapted

 Retail, telecommunication, banking, fraud analysis, bio-data mining, stock market analysis, text mining, Web mining, etc.

Data Mining: On What Kinds of Data?

- Database-oriented data sets and applications
 - Relational database, data warehouse, transactional database
- Advanced data sets and advanced applications
 - Data streams and sensor data
 - Time-series data, temporal data, sequence data (incl. bio-sequences)
 - Structure data, graphs, social networks and multi-linked data
 - Object-relational databases
 - Heterogeneous databases and legacy databases
 - Spatial data and spatiotemporal data
 - Multimedia database
 - Text databases
 - The World-Wide Web

Data Mining Function: (1) Generalization

- Information integration and data warehouse construction
 - Data cleaning, transformation, integration, and multidimensional data model
- Data cube technology
 - Scalable methods for computing (i.e., materializing)
 multidimensional aggregates
 - OLAP (online analytical processing)
- Multidimensional concept description: Characterization and discrimination
 - Generalize, summarize, and contrast data characteristics, e.g., dry vs. wet region

Data Mining Function: (2) Association and Correlation Analysis

- Frequent patterns (or frequent itemsets)
 - What items are frequently purchased together in your Walmart?
- Association, correlation vs. causality
 - A typical association rule
 - Diaper □ Beer [0.5%, 75%] (support, confidence)
 - Are strongly associated items also strongly correlated?
- How to mine such patterns and rules efficiently in large datasets?
- How to use such patterns for classification, clustering, and other applications?

Data Mining Function: (3) Classification

- Classification and label prediction
 - Construct models (functions) based on some training examples
 - Describe and distinguish classes or concepts for future prediction
 - E.g., classify countries based on (climate), or classify cars based on (gas mileage)
 - Predict some unknown class labels
- Typical methods
 - Decision trees, naïve Bayesian classification, support vector machines, neural networks, rule-based classification, pattern-based classification, logistic regression, ...
- Typical applications:
 - Credit card fraud detection, direct marketing, classifying stars, diseases, web-pages, ...

Data Mining Function: (4) Cluster Analysis

- Unsupervised learning (i.e., Class label is unknown)
- Group data to form new categories (i.e., clusters), e.g., cluster houses to find distribution patterns
- Principle: Maximizing intra-class similarity & minimizing interclass similarity
- Many methods and applications

Data Mining Function: (5) Outlier Analysis

- Outlier analysis
 - Outlier: A data object that does not comply with the general behavior of the data
 - Noise or exception? One person's garbage could be another person's treasure
 - Methods: by product of clustering or regression analysis, ...
 - Useful in fraud detection, rare events analysis

Structure and Network Analysis

- Graph mining
 - Finding frequent subgraphs (e.g., chemical compounds), trees (XML), substructures (web fragments)
- Information network analysis
 - Social networks: actors (objects, nodes) and relationships (edges)
 - e.g., author networks in CS, terrorist networks
 - Multiple heterogeneous networks
 - A person could be multiple information networks: friends, family, classmates, ...
 - Links carry a lot of semantic information: Link mining
- Web mining
 - Web is a big information network: from PageRank to Google
 - Analysis of Web information networks
 - Web community discovery, opinion mining, usage mining, ...

Data Mining: Confluence of Multiple Disciplines

Why Confluence of Multiple Disciplines?

- Tremendous amount of data
 - Algorithms must be highly scalable to handle such as tera-bytes of data
- High-dimensionality of data
 - Micro-array may have tens of thousands of dimensions
- High complexity of data
 - Data streams and sensor data
 - Time-series data, temporal data, sequence data
 - Structure data, graphs, social networks and multi-linked data
 - Heterogeneous databases and legacy databases
 - Spatial, spatiotemporal, multimedia, text and Web data
 - Software programs, scientific simulations
- New and sophisticated applications

Applications of Data Mining

- Web page analysis: from web page classification, clustering to PageRank & HITS algorithms
- Collaborative analysis & recommender systems
- Basket data analysis to targeted marketing
- Biological and medical data analysis: classification, cluster analysis (microarray data analysis), biological sequence analysis, biological network analysis
- Data mining and software engineering (e.g., IEEE Computer, Aug. 2009 issue)
- From major dedicated data mining systems/tools (e.g., SAS, MS SQL-Server Analysis Manager, Oracle Data Mining Tools) to invisible data mining

A Brief History of Data Mining Society

- 1989 IJCAI Workshop on Knowledge Discovery in Databases
 - Knowledge Discovery in Databases (G. Piatetsky-Shapiro and W. Frawley, 1991)
- 1991-1994 Workshops on Knowledge Discovery in Databases
 - Advances in Knowledge Discovery and Data Mining (U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, 1996)
- 1995-1998 International Conferences on Knowledge Discovery in Databases and Data Mining (KDD'95-98)
 - Journal of Data Mining and Knowledge Discovery (1997)
- ACM SIGKDD conferences since 1998 and SIGKDD Explorations
- More conferences on data mining
 - PAKDD (1997), PKDD (1997), SIAM-Data Mining (2001), (IEEE) ICDM (2001), etc.
- ACM Transactions on KDD starting in 2007

Conferences and Journals on Data Mining

KDD Conferences

- ACM SIGKDD Int. Conf. on Knowledge Discovery in Databases and Data Mining (KDD)
- SIAM Data Mining Conf. (SDM)
- (IEEE) Int. Conf. on Data Mining (ICDM)
- European Conf. on Machine Learning and Principles and practices of Knowledge Discovery and Data Mining (ECML-PKDD)
- Pacific-Asia Conf. on Knowledge Discovery and Data Mining (PAKDD)
- Int. Conf. on Web Search and Data Mining (WSDM)

Other related conferences

- DB conferences: ACM SIGMOD,
 VLDB, ICDE, EDBT, ICDT, ...
- Web and IR conferences: WWW, SIGIR, WSDM
- ML conferences: ICML, NIPS
- PR conferences: CVPR,

Journals

- Data Mining and Knowledge Discovery (DAMI or DMKD)
- IEEE Trans. On Knowledge and Data Eng. (TKDE)
- KDD Explorations
- ACM Trans. on KDD

Summary

- Data mining: Discovering interesting patterns and knowledge from massive amount of data
- A natural evolution of database technology, in great demand, with wide applications
- A KDD process includes data cleaning, data integration, data selection, transformation, data mining, pattern evaluation, and knowledge presentation
- Mining can be performed in a variety of data
- Data mining functionalities: characterization, discrimination, association, classification, clustering, outlier and trend analysis, etc.
- Data mining technologies and applications
- Major issues in data mining

Typical data warehouse AllElectronics

