Trigonometry

 $(\cos \theta, \sin \theta)$ is the coordinate on the unit circle that makes angle θ with the positive x-axis.

$$\sec \theta = \frac{1}{\cos \theta} \qquad \csc \theta = \frac{1}{\sin \theta}$$

$$\tan \theta = \frac{\sin \theta}{\cos \theta} \qquad \cot \theta = \frac{\cos \theta}{\sin \theta}$$

 $sin(A \pm B) = sin A cos B \pm cos A sin B$ $cos(A \pm B) = cos A cos B \mp sin A sin B$

$$\sin(2\theta) = 2\sin\theta\cos\theta$$

$$\cos(2\theta) = \cos^2\theta - \sin^2\theta$$

Limits

Law	Let $\lim_{x \to a} f(x) =$	$L \text{ and } \lim_{x \to a} g(x) = M.$

Sum
$$\lim_{x \to a} (f(x) + g(x)) = L + M$$

Scalar
$$\lim_{x \to a} cf(x) = ch$$

Product
$$\lim_{x \to a} (f(x) \cdot g(x)) = L \cdot M$$

Quotient
$$\lim_{x\to a} \frac{f(x)}{g(x)} = \frac{L}{M}$$
 for $M \neq 0$

Power
$$\lim_{x \to a} (f(x))^n = L^n$$

Root
$$\lim_{x \to a} \sqrt[n]{f(x)} = \sqrt[n]{L}$$
 for all L if n is odd,

and for
$$L \ge 0$$
 if n is even and $f(x) \ge 0$.

Squeeze Theorem:

Let f, q, and h be functions with $q(x) \le f(x) \le h(x)$ for all x and $\lim_{x \to a} g(x) = L = \lim_{x \to a} h(x), \text{ then}$ $\lim_{x \to \infty} f(x) = L.$

Indeterminate Forms:

$$\tfrac{0}{0}, \tfrac{\infty}{\infty}, 0^0, \infty - \infty, 1^\infty, 0 \cdot \infty, \infty^0$$

$\varepsilon - \delta$ definition:

L is the limit of f as x approaches *a* if for all $\varepsilon > 0$, there is some $\delta > 0$, such that

$$|x-a| < \delta \implies |f(x) - L| < \varepsilon.$$

$$\lim_{x \to 0} \frac{\sin(x)}{x} = 1 \qquad \lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x = e \qquad \lim_{x \to \infty} \frac{ax^n + \dots}{bx^m + \dots} = \begin{cases} 0 & m > n \\ \infty & n > m \\ a/b & n = m \end{cases}$$

Continuity

Definition: f is continuous at x = a if $\lim_{x \to a} f(x) = f(a)$.

- The following functions are continuous on their domains: polynomials, rational functions, trig and inverse trig functions, exponential functions, logarithms.
- The sum, product, and composition of continuous functions is continuous.

Composite Function Theorem: Intermediate Value Theorem:

If f(x) is continuous at Land $\lim g(x) = L$, then $\lim_{n \to a} f(g(x)) = f(L).$

Let f be continuous over a closed, bounded interval

[a, b]. If z is any real number between f(a) and f(b), then there is a number c in [a, b] satisfying f(c) = z.

Finding Derivatives

Limit definition of the derivative:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

Tangent line to f(x) at x = a:

$$L(x) = f(a) + f'(a)(x - a)$$

L'Hôpital's Rule:

If $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0$ or ∞ , then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}.$$

Scalar Rule
$$[af]' = af'$$

Sum Rule
$$[f+q]' = f'+q'$$

Product Rule
$$[fg]' = f'g + fg'$$

Quotient Rule
$$\left[\frac{f}{g}\right]' = \frac{f'g - fg'}{g^2}$$

Chain Rule
$$[f(g(x))]' = f'(g(x))g'(x)$$

Inverse Rule
$$[f^{-1}(x)]' = \frac{1}{f'(f^{-1}(x))}$$

Logarithmic Differentiation:

To find the derivative of y = f(x)g(x), take $\ln(x)$ of both sides, bring g(x) down using the log rule $(\ln(a^b) = b \ln(a))$:

$$ln(y) = ln(f(x)^{g(x)}) = g(x) ln(f(x))$$

Then implicitly differentiate and solve for y':

$$y' = f(x)^{g(x)} \left(g'(x) \ln(f(x)) + g(x) \frac{f'(x)}{f(x)} \right).$$

$[x^a]' = ax^{a-1}$ **Power Rule**

Trig Rules
$$[\sin(x)]' = \cos(x)$$
 $[\cos(x)]' = -\sin(x)$

(PSST!)
$$[\tan(x)]' = \sec^2(x) \qquad [\cot(x)]' = -\csc^2(x)$$

$$[\sec(x)]' = \sec(x)\tan(x) [\csc(x)]' = -\csc(x)\cot(x)$$

Inverse Trig Rules
$$[\arcsin(x)]' = \frac{1}{\sqrt{1-x^2}}$$
 $[\arccos(x)]' = \frac{-1}{\sqrt{1-x^2}}$ $[\arctan(x)]' = \frac{1}{1+x^2}$ $[\arccos(x)]' = \frac{-1}{1+x^2}$ $[\arccos(x)]' = \frac{-1}{|x|\sqrt{x^2-1}}$

$$[\arctan(x)]' = \frac{1}{1+x^2}$$
 $[\operatorname{arccot}(x)]' = \frac{-1}{1+x^2}$

$$[\operatorname{arcsec}(x)]' = \frac{1}{|x|\sqrt{x^2-1}} \quad [\operatorname{arccsc}(x)]' = \frac{-1}{|x|\sqrt{x^2-1}}$$

Exponent Rule
$$[a^x]' = \ln(a)a^x$$

Logarithm Rule
$$[\log_a(x)]' = \frac{1}{x \ln(a)}$$

Integration

Definitions

- The *definite integral* of f on (a,b) is written $\int_a^b f(x) \, dx$ and is defined to be the *signed* area between the graph of f and the x-axis (if such a
- The *indefinite integral* (or *anti-derivative*) of f on is written $\int f(x) dx$ or $\int f$ is the family of functions whose derivative is f.

Fundamental Theorem of Calculus If F' = f,

$$\int_a^b f(x) \ dx = F(b) - F(a).$$

Scalar Rule	$\int af = a \int f.$	
Sum Rule	$\int f + \int g = \int f + \int g$	
Int. by Parts	y Parts $\int f'g = fg - \int fg'$	
u-substitution	$\int f'(g(x))g'(x)\ dx = f(g(x))$	
Power Rule	$\int x^{a} dx = \begin{cases} \frac{1}{a+1} x^{a+1} + C & a \neq -1\\ \ln x + C & a = -1 \end{cases}$	
Trig Rules	$\int \sin(x) \ dx = -\cos(x) + C$	
	$\int \cos(x) \ dx = \sin(x) + C$	

Partial Fractions

Factor	Term in decomposition
ax + b	$\frac{A}{ax+b}$
$(ax+b)^k$	$\frac{A_1}{ax+b} + \frac{A_2}{(ax+b)^2} + \cdots + \frac{A_k}{(ax+b)^k}$
$ax^2 + bx + c$	$\frac{Ax+B}{ax^2+bx+c}$
$(ax^2 + bx + c)^k$	$\frac{A_1x + B_1}{ax^2 + bx + c} + \frac{A_2x + B_2}{(ax^2 + bx + c)^2} + \dots + \frac{A_kx + B_k}{(ax^2 + bx + c)^k}$

Trig Substitutions

Integrand	Substitution	Result
$\sqrt{a^2-x^2}$	$x = a\sin\theta$	$a\cos\theta$
$\sqrt{a^2 + x^2}$	$x = a \tan \theta$	$a \sec \theta$
$\sqrt{x^2-a^2}$	$x = a \sec \theta$	$a \tan \theta$

Exp. Rules

Other Antiderivatives

 $\int a^x dx = \frac{1}{\ln(a)} a^x + C$

$$\int \ln(x) dx = x \ln(x) - x + C$$

$$\int \tan(x) dx = \ln|\cos(x)| + C$$

$$\int \sec(x) dx = \ln|\sec(x) + \tan(x)| + C$$

$$\int \csc(x) dx = \ln|\csc(x) - \cot(x)| + C$$

$$\int \cot(x) dx = \ln|\sin(x)| + C$$

Riemann Sums

$$R_{n} = \sum_{k=1}^{n} f\left(a + k \frac{b-a}{n}\right) \frac{b-a}{n}$$

$$L_{n} = \sum_{k=1}^{n} f\left(a + (k-1) \frac{b-a}{n}\right) \frac{b-a}{n}$$

$$T_{n} = \sum_{i=k}^{n} \frac{f\left(a + (k-1) \frac{b-a}{n}\right) + f\left(a + k \frac{b-a}{n}\right)}{2} \frac{b-a}{n}$$

$$\lim_{n \to \infty} R_{n}, L_{n}, T_{n} = \int_{a}^{b} f(x) dx$$
Sums of Powers
$$\sum_{k=1}^{n} 1 = n$$

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

$$\sum_{k=1}^{n} k^{2} = \frac{n(n+1)(2n+1)}{6}$$

$$\sum_{k=1}^{n} k^{3} = \frac{n^{2}(n+1)^{2}}{4}$$

Sums of Powers

•
$$\sum_{k=1}^{n} 1 = n$$

$$\sum_{n=1}^{n} k = \frac{n(n+1)}{n}$$

•
$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{4}$$

•
$$\sum_{k=1}^{n} k^3 = \frac{n^2(n+1)^2}{4}$$

Bounds

If f(x) > 0 is CTS and decreasing $[1, \infty)$ with $f(n) = a_n$, then for

$$\left(\sum_{n=1}^{N} a_n + \int_{N+1}^{\infty} f(x) \ dx\right) \le \sum_{n=1}^{\infty} a_n \le \left(\sum_{n=1}^{N} a_n + \int_{N}^{\infty} f(x) \ dx\right).$$

Suppose $S = \sum_{n=1}^{\infty} b_n (-1)^n$ where $b_n \ge 0$, and b_n decreases to 0. Then for any N,

$$|S - S_N| \le b_{N+1}$$

where $S_N = \sum_{n=1}^{N} b_n (-1)^n$.

Taylor's Inequality: If for all $x \in [a - d, a + d]$,

$$\left| f^{(k+1)}(x) \right| \le M,$$

then for all $x \in [a - d, a + d]$,

$$|f(x) - T_k(x)| \le \frac{M}{(k+1)!} |x - a|^{k+1}.$$

Test for Convergence and Divergence

- Divergence Test: $\lim a_n \neq 0 \implies \sum a_n$ diverges.
- **Integral Test:** If f(x) > 0 is CTS and decreasing on $[k, \infty)$, and $f(n) = a_n$

$$\int_{k}^{\infty} f(x) dx \text{ converges } \iff \sum_{n=k}^{\infty} a_n \text{ converges.}$$

- The *p*-series Test: If k > 0, $\sum_{i=1}^{\infty} \frac{1}{n^p}$ converges $\iff p > 1$.
- Comparison Test: If $0 \le a_n \le b_n$ for all n, then

$$\sum b_n$$
 converges $\Longrightarrow \sum a_n$ converges.

• Limit Comparison Test: If $a_n \ge 0$ and $b_n > 0$ for all n and $\lim_{n\to\infty} a_n/b_n$ is positive and finite, then

$$\sum a_n$$
 converges $\iff \sum b_n$ converges.

- Alternating Series Test: If $b_n \ge 0$ decreases to $0, \sum b_n (-1)^n$ converges.
- Absolute Convergence Test:

$$\sum |a_n|$$
 converges $\Longrightarrow \sum a_n$ converges.

- Ratio Test: Define $L = \lim_{n \to \infty} |a_{n+1}/a_n|$. If L < 1, $\sum a_n$ converges. If L > 1, $\sum a_n$ diverges.
- Root Test Define $L = \lim_{n \to \infty} |a_n|^{1/n}$. If L < 1, $\sum a_n$ converges. If L > 1, $\sum a_n$ diverges.

$$\sum_{n=0}^{\infty} a_n (x-c)^n$$

converges on

$$|x-c| < \lim \left| \frac{a_n}{a_{n+1}} \right|.$$

Test the interval's endpoints separately. On some interval centered at a,

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x - a)^n.$$

Near x = a,

$$f(x) \approx T_k(x) = \sum_{n=0}^k \frac{f^{(n)}(a)}{n!} (x-a)^n.$$

Function	Taylor Series	Interval of Convergence
e ^x	$\sum_{n=0}^{\infty} \frac{1}{n!} x^n$	$\mathbb R$
sin(x)	$\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}$	\mathbb{R}
$\cos(x)$	$\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}$	\mathbb{R}
$\frac{1}{1-x}$	$\sum_{n=0}^{\infty} x^n$	(-1, 1)
ln(1-x)	$\sum_{n=1}^{\infty} \frac{-1}{n} x^n$	[-1, 1)
$(x + 1)^k$	$\sum_{n=0}^{\infty} \binom{k}{n} x^n$	R