Boolean ALGEBRA

Department of Mathematics
Manipal Institute of Technology
Manipal Academy of Higher Education Manipal
Manipal

Boolean lattice: A complemented and distributive lattice is called a Boolean lattice.

Example 1.1.

 $(P(S), \subseteq)$ is a Boolean lattice.

Let (A, \leq) be a Boolean lattice. Since every element a has a unique complement \bar{a} , we have another unary operation known as complementation and denoted by \bar{a} . Thus we can say that the lattice (A, \leq) defines an algebraic system (A, \leq, \vee, \wedge) where \vee and \wedge are the join and meet operations respectively. The algebraic system defined by a Boolean lattice is known as **Boolean algebra**.

Theorem 1.2.

DeMorgan's laws: For any elements a, b in a Boolean algebra (A, \leq, \vee, \wedge) ,

•
$$\overline{a \vee b} = \bar{a} \wedge \bar{b}$$

•
$$\overline{a \wedge b} = \overline{a} \vee \overline{b}$$

Proof.

We have to prove that
$$(a \lor b) \lor (\bar{a} \land \bar{b}) = 1$$
 and $(a \lor b) \land (\bar{a} \land \bar{b}) = 0$. Consider $(a \lor b) \lor (\bar{a} \land \bar{b}) = [(a \lor b) \lor \bar{a}] \land [(a \lor b) \lor \bar{b}]$ (distributive law)
$$= [\bar{a} \lor (a \lor b)] \land [a \lor (b \lor \bar{b})] \text{ (associative law)}$$
$$= [(\bar{a} \lor a) \lor b] \land [a \lor 1] \text{ (associative law)}$$
$$= [1 \lor b] \land [a \lor 1]$$
$$= 1 \land 1 = 1$$
Similarly, $(a \lor b) \land (\bar{a} \land \bar{b}) = (\bar{a} \land \bar{b}) \land (a \lor b) \text{ (commutative law)}$
$$= [(\bar{a} \land \bar{b}) \land a] \lor [(\bar{a} \land \bar{b}) \land b] \text{ (distributive law)}$$
$$= [a \land (\bar{a} \land \bar{b})] \lor [(\bar{a} \lor \bar{b}) \land b] \text{ (commutative law)}$$
$$= [(a \land \bar{a}) \land \bar{b}] \lor [\bar{a} \lor (\bar{b} \land b)] \text{ (associative law)}$$
$$= [0 \land \bar{b}] \lor [(\bar{a} \land 0]$$
$$= 0 \lor 0 = 0$$

The second part follows from principle of duality.

Uniqueness of finite Boolean algebras:

Definition 1.3.

An element of a Boolean algebra is called an atom if it covers 0.

Note: Finite Boolean algebra has 2^n elements for some n.

Lemma 1.4.

In a distributive lattice, if $b \wedge \bar{c} = 0$, then $b \leq c$.

Proof.

We know that
$$0 \lor c = c$$
 $(b \land \bar{c}) \lor c = c$ (given) $c \lor (b \land \bar{c}) = c$ (commutative law) $(c \lor b) \land (c \lor \bar{c}) = c$ (distributive law) $(c \lor b) \land 1 = c$ $(c \lor b) = c$ $(b \lor c) = c$ Thus $b < b \lor c \implies b < c$.

Lemma 1.5.

Let (A, \leq) be a finite Boolean lattice with universal lower bound 0. Then for any element b (which is not universal lower bound 0), there exists at least one atom 'a' such that $a \leq b$.

Proof.

If b is an atom, then there is nothing to prove as $b \le b$.

Suppose b is not an atom, since (A, \leq) is a finite lattice, there must be chain in (A, \leq) such that $(0, b_i, \ldots, b_2, b_1, b)$ where b_i is an atom.

Lemma 1.6.

Let $(A, \leq, \vee, \wedge, ^-)$ be a finite Boolean algebra. Let b be any nonzero element in A and a_1, a_2, \ldots, a_k be all the atoms of A such that $a_i \leq b$. Then $b = a_1 \vee a_2 \vee \ldots a_k$.

Proof.

For notational convenience, let $c = a_1 \lor a_2 \lor \dots a_k$.

We should Prove b = c.

First let us prove $b \le c$, then $c \le b$.

Since
$$a_1 \leq b, a_2 \leq b, \ldots, a_k \leq b$$
, it follows that $a_1 \vee a_2 \vee \ldots a_k \leq b$

$$\implies c \leq b -----(1)$$

Suppose $b \wedge \bar{c} \neq 0$, then there exists an atom a_i such that $a_i \leq b \wedge \bar{c}$.

$$a_i \leq b \wedge \bar{c} \text{ and } b \wedge \bar{c} \leq \bar{c} \implies a_i \leq \bar{c} -----(2)$$

From (2) and (3), we get $a_i \leq c \wedge \bar{c}$.

$$\implies a_i \leq 0.$$

which is contradiction to definition of an atom.

Proof continues....

Lemma 1.7.

Let $(A, \leq, \vee, \wedge, ^-)$ be a finite Boolean algebra. Let b be any nonzero element in A and a_1, a_2, \ldots, a_k be all the atoms of A such that $a_i \leq b$. Then $b = a_1 \vee a_2 \vee \ldots a_k$ is the unique way to represent b as a join of atoms.

Proof.

Suppose that we have alternative representation $b = a_{j1} \lor a_{j2} \lor \dots a_{jt}$.

Since b is the lub of $a_{j1}, a_{j2}, \dots a_{jt}$, it is true that

$$a_{j1} \leq b, a_{j2} \leq b, \ldots, a_{jt} \leq b.$$

Consider an atom a_{ju} $(1 \le u \le t)$.

Since $a_{ju} \leq b$, we have $a_{ju} \wedge b = a_{ju}$

$$a_{ju} \wedge (a_1 \vee a_2 \vee \dots a_k) = a_{ju}$$

$$(a_{ju} \wedge a_1) \vee (a_{ju} \wedge a_2) \vee \dots (a_{ju} \wedge a_k) = a_{ju}$$

Then for some a_i $(1 \le i \le k)$, $a_{ju} \land a_i \ne 0$.

Since a_{iu} and a_i are atoms, we must have $a_{iu} = a_i$.

Thus each atom in the alternative representation is an atom in the original one, and the lemma follows. \Box

From the above lemmas, it is clear that there is one to one correspondence between the elements of a Boolean lattice and subset of atoms. As a matter of fact, there is one to one correspondence from (A, \leq) to $(P(S), \subseteq)$, where S is the set of all atoms.

Theorem 1.8.

Let $(A, \vee, \wedge, ^-)$ be a finite Boolean algebra. Let S be the set of all atoms. Then $(A, \vee, \wedge, ^-)$ is isomorphic to the algebraic system defined by the lattice $(P(S), \subseteq)$.

It follows from the above lemmas that there exists a finite Boolean algebra of 2^n elements for any n > 0.

Example 1.9.

Let P be the set of all positive factors of 60 and let '|' denote the 'divides' relation. Then poset (P, |) a Boolean Lattice?

Solution: Positive factors of 60 are $\{1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60\}$

Atoms: 2,3,5

Number of elements in the lattice=12

Not a boolean lattice.

Boolean expression: Let Let $(A, \vee, \wedge, \overline{\ })$ be a finite Boolean algebra. A Boolean expression over $(A, \vee, \wedge, \overline{\ })$ is defined as follows:

- An element of A is a Boolean expression.
- Any variable name is a Boolean expression.
- If e_1 and e_2 are Boolean expressions, then $\overline{e_1}, e_1 \lor e_2$ and $e_1 \land e_2$ are Boolean expressions.

Example 2.1.

$$0 \lor x$$
, $(x_1 \lor x_2) \land \overline{(2 \lor 3)}$

Let $E(x_1, x_2, ..., x_n)$ be a Boolean expression of n variables over a Boolean algebra $(A, \vee, \wedge, ^-)$. By assignment of values to the variables $x_1, x_2, ..., x_n$, we mean an assignment of elements of A to be the values of the variables. For an assignment of values to the variables, we can evaluate $E(x_1, x_2, ..., x_n)$ by substituting the variables in the expression by their values.

Two Boolean expressions of n variables are said to be equivalent, if they assume same values for every assignment of values to the n variables. If $E_1(x_1, x_2, \ldots, x_n)$ and $E_2(x_1, x_2, \ldots, x_n)$ are equivalent, then we write $E_1(x_1, x_2, \ldots, x_n) = E_2(x_1, x_2, \ldots, x_n)$.

Example 2.2.

 $(x_1 \wedge x_2) \vee (x_1 \wedge \bar{x_3})$ is equivalent to $x_1 \wedge (x_2 \vee \bar{x_3})$.

Boolean function: A function $f: A^n \to A$ is said to be a Boolean function if it can be specified by a Boolean expression of n variables.

Minterm: A booleam expression of n variables x_1, x_2, \ldots, x_n is said to be a minterm if it is of the form $\tilde{x_1} \wedge \tilde{x_2} \wedge \cdots \wedge \tilde{x_n}$ where $\tilde{x_i}$ is either x_i or $\bar{x_i}$. **Disjunctive normal form (DNF):** A Boolean expression over $(\{0,1\},\wedge,\vee,^-)$ is said to be in disjunctive normal form if it is join of minterms.

Example 2.3.

$$(x_1 \wedge \bar{x_2} \wedge x_3) \vee (\bar{x_1} \wedge \bar{x_2} \wedge x_3) \vee (x_1 \wedge x_2 \wedge x_3)$$

Maxterm: A booleam expression of n variables x_1, x_2, \ldots, x_n is said to be a maxterm if it is of the form $\tilde{x_1} \vee \tilde{x_2} \vee \cdots \vee \tilde{x_n}$ where $\tilde{x_i}$ is either x_i or $\bar{x_i}$. **Conjunctive normal form (CNF):** A Boolean expression over $(\{0,1\},\wedge,\vee,^-)$ is said to be in conjunctive normal form if it is meet of maxterms.

Example 2.4.

$$(x_1 \vee \bar{x_2} \vee x_3) \wedge (\bar{x_1} \vee \bar{x_2} \vee x_3)$$

DNF: Given a function $\{0,1\}^n \to \{0,1\}$, we can obtain a Boolean expression in DNF corresponding to this function by having a minterm corresponding to each ordered n tuple of 0's and 1's for which the value of the function is 1. For each n tuple with the functional value is 1, we have the minterm $\tilde{x_1} \vee \tilde{x_2} \vee \cdots \vee \tilde{x_n}$ where $\tilde{x_i} = \begin{cases} x_i & \text{if } i^{th} \text{ componet is 1} \\ \bar{x_i} & \text{if } i^{th} \text{ componet is 0} \end{cases}$.

CNF: We can obtain a Boolean expression in CNF corresponding to this function by having a maxterm corresponding to each ordered n tuple of 0's and 1's for which the value of the function is 1. For each n tuple with the functional value is 0, we have the minterm $\tilde{x_1} \vee \tilde{x_2} \vee \cdots \vee \tilde{x_n}$ where

$$\tilde{x}_i = \begin{cases} x_i & \text{if } i^{th} \text{ componet is } 0 \\ \bar{x}_i & \text{if } i^{th} \text{ componet is } 1 \end{cases}$$

Q1. Let $E(x_1, x_2, x_3) = (x_1 \wedge x_2) \vee (x_1 \wedge x_3) \vee (\bar{x_2} \wedge x_3)$ be a Boolean expression over $(\{0, 1\}, \wedge, \vee, ^-)$. Write the Boolean expression in both DNF and CNF.

Sol:

<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	$(x_1 \wedge x_2)$	$(x_1 \wedge x_3)$	$(\bar{x_2} \wedge x_3)$	f
0	0	0	0	0	0	0
0	0	1	0	0	1	1
0	1	0	0	0	0	0
0	1	1	0	0	0	0
1	0	0	0	0	0	0
1	0	1	0	1	1	1
1	1	0	1	0	0	1
1	1	1	1	1	0	1

DNF: $(\bar{x_1} \land \bar{x_2} \land x_3) \lor (x_1 \land \bar{x_2} \land x_3) \lor (x_1 \land x_2 \land \bar{x_3}) \lor (x_1 \land x_2 \land x_3)$ CNF: $(x_1 \lor x_2 \lor x_3) \land (x_1 \lor \bar{x_2} \lor x_3) \land (x_1 \lor \bar{x_2} \lor \bar{x_3}) \land (\bar{x_1} \lor x_2 \lor x_3)$

References

[1] Liu C L, Elements of discrete mathematics, 2nd edition, McGraw Hill Book Company, New Dehli, (2007).

THANK YOU