Departamento de Física Universidade de Aveiro

Modelação de Sistemas Físicos

3ª aula Prática

Sumário:

Cálculo simbólico em python Resolução de problemas sobre o cap. 2

Bibliografia:

Serway, cap. 2 Sorenssen, cap. 4

Exercício 1. Familiarização com cálculo symbólico com sympy

A biblioteca sympy permite fazer cálculos simbólicos no python. Experimente as seguintes instruções.

Importar a biblioteca import sympy as sy

Definir variáveis simbólicos: x,y,m,b = sy.symbols('x, y, m, b')

Definir uma expressão: $y = m^*x^{**2} + b$ nota que y é uma função de 3 variáveis, x, m, e b

Impôr valores especificos para variáveis: y2 = y.subs([(m,0.01),(b,0.0)]) agora y2 é uma função só de x

Podemos avaliar y2 num determinado valor de x com o método evalf:

 $y_em_1 = y2.evalf(subs={x:1})$

usar um dicionário para definir o valor de x onde avaliar

Se quisermos avaliar múltiplas vezes, é mais eficiente transformar uma expressão sympy numa função lambda numpy:

y lam = sy.lambdify(x,y2,"numpy")

Agora y_lam é uma função de x, que pode ser chamada assim:

y_lam(x)

Use a função y lam para fazer um plot de y em valores de x de 0 até 2

Outras instruções uteis: sympy.diff(y,x) derivada de y em função de x

sympy.integrate(y, x) integral de y em função de x

sympy.nsolve(y,x,x0) encontrar solução x numérica para y=0, com valor inicial x0

Exercício 2. Aceleração constante

Um avião arranque do repouso e acelera com aceleração constante $a_x = 3$ m/s² até atingir a velocidade de descolagem de 250 km/h.

- 1. Escreve a função que descreve o movimento do avião (lei do movimento) x(t). Faça o gráfico da lei do movimento.
- 2. Em que instante e qual a distância percorrida pelo avião quando atinge a velocidade de descolagem? Encontre a solução com cálculo analítico.
- 3. Use sympy.integrate() para integrar a aceleração em função de tempo duas vezes, para obter a velocidade e a posição do avião como funções (simbólicos) de tempo. Está de acordo com o que se esperava?
- 4. Use sympy.nsolve() para encontrar o tempo e a posição de descolagem. Concorde com a solução encontrada em 2.?

Pergunta 1:

Descreve uma situação em que faz sentido usar cálculo simbólico em vez de obter soluções numéricas.

Exercício 3. Volante de badmington (aceleração uma função de velocidade)

Um volante de badmington foi largado de uma altura considerável. A lei do movimento é

$$y(t) = \frac{v_T^2}{g} \log \left[\cosh \left(\frac{gt}{v_T} \right) \right],$$

em que a velocidade terminal do volante v_T é 6.80 m/s.

- 1. Faça o gráfico da lei do movimento y(t) de 0 a 4.0 s.
- 2. Determine a velocidade instantânea em função do tempo, usando **cálculo simbólico** (sympy). Faça o gráfico da velocidade em função do tempo de 0 a 4 s, usando matplotlib.
- 3. Determine a aceleração instantânea em função do tempo, usando cálculo simbólico. Faça o gráfico da aceleração em função do tempo de 0 a 4 s, usando o pacote matplotlib.
- 4. Mostre que a aceleração é compatível com a forma geral $a_y(t)=g-\frac{g}{v_T^2}v_y\big|v_y\big|$.
- 5. Se o volante for largado de uma altura de 20 m, quanto tempo demora a atingir o solo? Compare com o tempo que demoraria se não houvesse resistência do ar.

Nota:

$$\cosh x = \frac{e^x + e^{-x}}{2} e \sinh x = \frac{e^x - e^{-x}}{2};$$

$$\cosh^2(x) - \sinh^2(x) = 1; \tanh(x) = \sinh(x) / \cosh(x)$$

Pergunta 2:

Se a velocide terminal v_T fosse muito elevada, como seria diferente o movimento?