

UNIVERSIDADE DO VALE DO RIO DOS SINOS

Matemática para Computação Prof. Rodrigo Orsini Braga

EXERCÍCIOS DE FIXAÇÃO DO MÓDULO 6

- 1) Classifique em verdadeira (V) ou falsa (F) as seguintes proposições:
- (a) Todo número natural representa a quantidade de elementos de um conjunto finito.
- (b) Existe um número natural que é maior que todos os demais.
- (c) Todo número natural tem sucessor.
- (d) Todo número natural tem antecessor.

RESPOSTAS:

- (a) V. Cada número natural n pode representar o número de elementos de um conjunto com n elementos. Note que n=0 pode representar o conjunto vazio $\mathcal S$, que é o conjunto que não tem elementos.
- **(b) F**. O conjunto \mathbb{N} é ilimitado superiormente, isto é, qualquer que seja $n \in \mathbb{N}$ existirão infinitos elementos maiores do que n.
- (c) V. Todo número $n \in \mathbb{N}$ possui um sucessor que é n+1.
- (d) F. Dizer que um número natural n não tem antecessor é o mesmo que dizer que n não é o sucessor de nenhum número natural. Existe n=0 que não possui antecessor, isto é, zero não é o sucessor de nenhum número natural, ou seja, não existe natural x tal que x+1=0.
- 2) Se $A = \{x \in \mathbb{N} \mid x = 4n, n \in \mathbb{N}\}$ e $B = \{x \in \mathbb{N}^* \mid \frac{20}{x} = n, n \in \mathbb{N}\}$, então o número de elementos de $A \cap B$ é:
- **(a)** 3
- **(b)** 2
- (c) 1
- **(d)** 0
- (e) impossível determinar.

RESPOSTAS: A alternativa correta é a B.

Explicação: A é o conjunto dos múltiplos de 4, isto é, dos números x tais que x = 4 vezes um número natural. Logo, $A = \{0,4,8,12,16,...\}$. Por outro lado, B é o conjunto dos divisores naturais de 20, isto é, dos números naturais x tais que $\frac{20}{x}$ é um número natural. Neste caso, $B = \{1,2,4,5,10,20\}$. Logo, $A \cap B = \{4,20\}$.

- **3)** Se $A = \{x \in \mathbb{Z} \mid -3 < x \le 1\}$ e $B = \{x \in \mathbb{N} \mid x^2 < 16\}$, então $(A \cup B) (A \cap B)$ é o conjunto:
- (a) $\{-2,-1,0,1,2,3\}$
- (b) $\{-2,-1,2,3\}$
- (c) $\{-3,-2,-1,0\}$
- (d) $\{0,1,2,3\}$
- (e) $\{0,1\}$

RESPOSTAS: A alternativa correta é a B.

Explicação: Sendo $A = \{x \in \mathbb{Z} \mid -3 < x \le 1\} = \{-2, -1, 0, 1\}$ e $B = \{x \in \mathbb{N} \mid x^2 < 16\} = \{0, 1, 2, 3\}$, temos que $A \cup B = \{-2, -1, 0, 1, 2, 3\}$, $A \cap B = \{0, 1\}$ portanto, $(A \cup B) - (A \cap B) = \{-2, -1, 2, 3\}$.

- **4)** Expresse cada um das seguintes dízimas na forma $\frac{a}{b}$.
- (a) 0,3333...
- **(b)** 0,24242424...

(c) 0,1257777...

RESPOSTAS:

(a) Se
$$x = 0.3333...$$
, então $10x = 3.333...$ e, portanto, $10x - x = 3 \Leftrightarrow 9x = 3 \Leftrightarrow x = \frac{3}{9} \Leftrightarrow x = \frac{1}{3}$

Logo,
$$0.3333... = \frac{1}{3}$$
.

(b)Se
$$x=0.242424...$$
, então $100x=24.242424...$ e, portanto,

$$100x - x = 24 \Leftrightarrow 99x = 24 \Leftrightarrow x = \frac{24}{99} = \frac{8}{33}$$
.

Logo,
$$0,242424... = \frac{8}{33}$$
.

(c)Se
$$x=0,125777...$$
, então $1000x=125,7777...$ e, $10000x=1257,7777...$ Portanto,

$$10000x - 1000x = 1257 - 125 \Leftrightarrow 9000x = 1132 \Leftrightarrow x = \frac{1132}{9000} = \frac{283}{2250}.$$

Logo,
$$0,125777... = \frac{283}{2250}$$
.

- 5) Dentre os números abaixo, indique os que são racionais e os que são irracionais ou nenhum dos dois:
- (a) $\sqrt{5}$
- (b) $\sqrt{-4}$
- (c) $\sqrt[3]{-27}$
- (d) $\sqrt[3]{0.64}$ (e) $\sqrt[4]{0.0016}$

- **(f)** 0,555...
- (g) 0,50500500050000...

RESPOSTAS:

- (a) irracional, pois raiz quadrada de um número primo não é um número racional.
- (b) nem racional, nem irracional. Não existe número real cujo quadrado seja igual a -4.
- (c) racional, pois $\sqrt[3]{-27} = -3 = -\frac{3}{1}$.
- (d) irracional, pois $\sqrt[3]{0.64} = \sqrt[3]{\frac{64}{100}} = \frac{\sqrt[3]{64}}{\sqrt[3]{100}} = \frac{\sqrt[3]{2^3 \times 2^3}}{\sqrt[3]{2^2 \times 5^2}} = \frac{4}{\sqrt[3]{2^2 \times 5^2}}$ (o denominador não será um número inteiro).
- (e) racional, pois $\sqrt[4]{0,0016} = \sqrt[4]{\frac{16}{10000}} = \frac{\sqrt[4]{16}}{\sqrt[4]{10000}} = \frac{\sqrt[4]{2^4}}{\sqrt[4]{10^4}} = \frac{2}{10} = \frac{1}{5}$.
- **(f)** racional, pois $0,555... = \frac{3}{9}$.
- (g) irracional, é uma dízima não periódica.

6) Considere os conjuntos $A = \{x \in \mathbb{R} \mid 0 < x < 2\}$, $B = \{x \in \mathbb{R} \mid 1 < x \le 3\}$ e $C = \{x \in \mathbb{R} \mid x \ge 2\}$. Determine:

(a) A-B

(b) B-A

(c) $A \cap B$

(d) $C \cap A$ (e) $(A \cup C) - B$

RESPOSTAS:

Temos que:

$$A = \{x \in \mathbb{R} \mid 0 < x < 2\} = (0, 2);$$
 $B = \{x \in \mathbb{R} \mid 1 < x \le 3\} = (1, 3]$ e $C = \{x \in \mathbb{R} \mid x \ge 2\} = [2, +\infty)$

veja as figuras a seguir!

Analisando os gráficos dos segmentos de reta, temos que:

- (a) $A-B=(0,1] = \{x \in \mathbb{R} \mid 0 < x \le 1\}$
- **(b)** $B-A=[2,3] = \{x \in \mathbb{R} | 2 \le x \le 3\}$
- (c) $A \cap B = (1, 2) = \{x \in \mathbb{R} \mid 1 < x < 2\}$
- (d) $C \cap A = \emptyset$ (não existe $x \in \mathbb{R}$ tal que 0 < x < 2 e $x \ge 2$ ao mesmo tempo)
- (e) $(A \cup C) B = (0, 1] \cup (3, +\infty) = \{x \in \mathbb{R} \mid 0 < x \le 1 \text{ ou } x > 3\}$