Maths: DM NX

Il est important avant de commencer lire ce DM d'avoir bien compris le tableau et les exemples suivants

symbole	symbole du	prononciation
usuel	DM	prononciation
0	Bivi	fé
1	n '	
		ur
2	Þ	tur
3	<u> </u>	an
4	R	rai
5	<	kau
6	Χ	gèb
7	P	wun
8	H	hag
9	+	nau
10	\$	je
11	1	ei
=	X	ing/i ng
+	1	ti
_	Y	al
×	M	dag
÷	1	lag
€	\$	so
A	۲	per
∃	₿	ber
>	M	man
> <	M	e
<u> </u>	MX	maning
<u></u>	MX	ehwing
<i>=</i>	*	naing
	k	suz
\supset	4	zus

 $\mathsf{XP} \uparrow \mathrel{<<} \mathsf{XNFF}$ ce qui est équivalant à 79+65=144

$$e^{\mathbf{3}}\underset{\mathbf{3}}{\overset{}{\otimes}}\underset{\rightarrow\mathbb{M}}{\overset{}{\wedge}}\mathbb{N}\uparrow\mathbf{3}\uparrow\frac{\mathbf{3}^{\,\flat}}{\,\flat\,!}\uparrow\dots\uparrow\frac{\mathbf{3}^{\,\mathbf{18}}}{\,\mathbf{18}!}\uparrow o\Big(\mathbf{3}^{\,\mathbf{18}}\Big)$$

est équivalant à

$$e^x \underset{x \to 0}{=} 1 + x + \frac{x^2}{2} + \dots + \frac{x^n}{x!} + o(x^n)$$

Problème ♭: nombres algébrique et extensions de corps

Partie I. extensions de corps

N=° n. Premiers exemples a.

il est évidant que $\mathbb R$ est stable un sous-corps de $\mathbb C$ et de plus $\mathbb C$ est de dimension finis, donc $\mathbb C$ est une extention finie de $\mathbb R$

de plus soit $\maltese \in \mathbb{C}$ alors

Ainsi comme (\mathbb{N}, \mathbb{N}) et (\mathbb{N}, i) ne sont pas colinéaire, $\mathrm{Vect}((\mathbb{N}, \mathbb{N}), (\mathbb{N}, i))$ forme une base de \mathbb{N} Ainsi $[\mathbb{N}: \mathbb{N}]$

soit \boxplus un sous-corps qui contient $\mathbb R$

comme $[\mathbb{R}:\mathbb{R}]$ $\$ $\$ $\$ et que l'on vient de prouver que $[\mathbb{C}:\mathbb{R}]$ $\$ $\$

il apparait donc comme condition que, $\[\] MX = \mathbb{R} \] MX \[\]$

Ainsi $[\oplus : \mathbb{R}] \$ ou $[\oplus : \mathbb{R}] \$

Et ansi $\boxplus \mbox{\ } \mbo$