Inducción simple

Clase 18

IIC 1253

Prof. Cristian Riveros

Inducción

Principio de inducción sobre los naturales

Principio de inducción simple

Para una afirmación P(x) sobre los naturales, si P(x) cumple que:

- 1. P(0) es verdadero,
- 2. si P(n) es verdadero, entonces P(n+1) es verdadero, entonces para todo n en los naturales se tiene que P(n) es verdadero.

Notación

- P(0) se llama el caso base.
- En el paso 2.
 - P(n) se llama la hipótesis de inducción.
 - P(n+1) se llama la **tesis de inducción** o paso inductivo.

Ejemplo de demostración por inducción

Ejemplo

Supongamos la afirmación:

$$P(n) := \sum_{i=0}^{n} 2^{i} = 2^{n+1} - 1$$

1.
$$P(0): 2^0 = 2^{0+1} - 1 = 1$$

2. si
$$P(n)$$
: $\sum_{i=0}^{n} 2^{i} = 2^{n+1} - 1$ es verdadero, entonces:

$$\mathbf{P(n+1)}: \sum_{i=0}^{n+1} 2^{i} = \underbrace{2^{0} + 2^{1} + \dots + 2^{n}}_{\mathbf{P(n)}} + 2^{n+1}$$

$$= 2^{n+1} - 1 + 2^{n+1}$$

$$= 2 \cdot 2^{n+1} - 1$$

$$= 2^{n+2} - 1$$

Por lo tanto, P(n) es verdadero para todo $n \in \mathbb{N}$.

Principio de inducción sobre los naturales

Principio de inducción simple (versión teoría de conjunto)

Para un subconjuto $A \subseteq \mathbb{N}$, si se cumple que:

- 1. $0 \in A$,
- 2. $\forall n \in \mathbb{N}$. $(n \in A \rightarrow (n+1) \in A)$

entonces $A = \mathbb{N}$.

(con $A = \{n \in \mathbb{N} \mid P(n) \text{ es verdadero}\}$ es el mismo principio anterior)

¿por qué se cumple este principio? ¿es un axioma de №?

Axiomas de los número naturales N

Axiomas de Peano (extracto)

- 1. El número $0 \in \mathbb{N}$.
- 2. Si $n \in \mathbb{N}$, entonces $(n+1) \in \mathbb{N}$ donde n+1 es el sucesor de n.
- 3. Todo $n \in \mathbb{N}$ tal que $n \neq 0$ tiene un sucesor en \mathbb{N} .
- 4. Todo subconjunto $A \subseteq \mathbb{N}$ tiene un elemento mínimo.

(principio del buen orden)

¿cómo podemos derivar de estos axiomas el principio de inducción?

Buen orden implica inducción

Teorema

El principio del buen orden implica el principio de inducción.

Buen orden implica inducción

Demostración

Suponemos que el principio del buen orden se cumple en \mathbb{N} .

Por **contradicción** suponga que existe un conjunto $A \subseteq \mathbb{N}$ tal que:

- $1.0 \in A.$
- 2. $\forall n \in \mathbb{N}$. $(n \in A \rightarrow (n+1) \in A)$

pero
$$A \neq \mathbb{N}$$
.

entonces el conjunto $B = \mathbb{N} - A$ es no vacío.

como $n^* - 1 \in A$, entonces $n^* \in A$. $\rightarrow \leftarrow$

existe un menor elemento $n^* \in B$.

 $n^* \neq 0$ y $n^* - 1 \in A$.

(¿por qué?)

Por lo tanto, se tiene que $A = \mathbb{N}$.

Caso base extendido

Principio de inducción simple (caso base extendido)

Para una afirmación P sobre los naturales y un $k \in \mathbb{N}$, si P cumple que:

- 1. P(k) es verdadero,
- 2. para todo $n \ge k$, si P(n) es verdadero, entonces P(n+1) es verdadero entonces P(n) es verdadero para todo $n \ge k$.

Demuestre este principio a partir del principio del buen orden. (ejercicio)

Caso base extendido

Ejemplo

$$P(n) := n! > 2^n \quad \text{para } n \ge 4$$

1.
$$P(4)$$
: 4! = 24 > 16 = 2⁴ \checkmark

2. si P(n): $n! > 2^n$ es verdadero con $n \ge 4$, entonces:

$$P(n+1): (n+1)! = n! \cdot (n+1) > 2^{n} \cdot (n+1) \text{ (por HI)} > 2^{n} \cdot 4 \text{ (como } n \ge 4) > 2^{n+1}$$

Por lo tanto, P(n) es verdadero para todo $n \ge 4$.