MATH1064 Cheatsheet

Abyan Majid

• View on GitHub

1	Logi	c, inference, and proof	2	4	O-N	otation, mathematical induction, recursion	8
	1.1	Truth tables	2		4.1	Big O , Big Ω , Big Θ	8
	1.2	Logical equivalences	2		4.2	Big O complexity order	8
	1.3	Equivalences for conditionals and biconditionals .	2		4.3	Some O-Notation properties	8
	1.4	Equivalences for quantifiers	2		4.4	Triangle inequality	8
	1.5	Contrapositive, converse, and inverse of condi-			4.5	Induction - intuition and definition	ç
		tional statements	2		4.6	Template for induction	ç
	1.6	Negation of quantifiers	2		4.7	Template for closed formula	ç
	1.7	Rules of inference	3		4.8	Template for linear homogeneous recurrence relation	1 (
	1.8	Rules of inference for quantified statements	3			-	
	1.9	Proof methods	3	5	Cou	nting	10
	1.10	Without loss of generality (WLOG)	4		5.1	Product, sum, subtraction, divison rules	10
					5.2	Relevant applications of the product rule	10
2	Sets	functions, sequences, sums	4		5.3	Tree diagrams	10
	2.1	Union, intersection, difference, complement, subset	4		5.4	Permutation: definition, theorem, corollaries	10
	2.2	Set identities and their logic counterparts	4		5.5	Combination: definition, theorem, corollary	11
	2.3	Cardinality, power set, and cartesian product of sets	4		5.6	Choosing k elements from n + order and repetition	1.1
	2.4	Proof methods for set equivalences	4		5.7	Binomial theorem	11
	2.5	Domain, codomain, preimage, image, range of			5.8	Pascal's identity and triangle	11
		functions	4		5.9	Inlusion-exclusion	12
	2.6	Injective, surjective, bijective, and composite			5.10	Pigeonhole principle + generalized form	12
		functions	5		5.11	Catalan numbers, balanced strings, dyck paths .	12
	2.7	Proving injection, surjection, and non-existent				3., .,	
		functions	5	6	Disc	rete probability	13
	2.8	Arithmetic and geometric sequences, and recur-			6.1	Discrete probability, compenentary and union	13
		rence	5		6.2	Conditional probability, independent events	13
	2.9	Fibonacci and factorials sequences	5		6.3	Probability distribution, random variables	14
	2.10	Summation notation	5		6.4	Bayes' theorem	14
	2.11	Summation definitions	6		6.5	Expected value, variance + useful identities	14
3	Nun	ber theory	6	7	Rela	ations	15
	3.1	Addition, multiplication, and transitivity theo-			7.1	Relation definition, notation, complementary $\ \ .$	15
		rems of divisibility	6		7.2	Reflexivity, symmetry, transitivity, antisymmetry	15
	3.2	Quotient-Remainder theorem	6		7.3	Combining and composing relations	15
	3.3	Expressions for quotient and remainder	6		7.4	Equivalence relation and class	15
	3.4	Lemma: bounds for divisors	6		7.5	Partitions	15
	3.5	Congruence definition	6		7.6	Partial and total orders	16
	3.6	Congruence theorems	6		7.7	Reflexive, symmetric, and transitive closures	16
	3.7	Definitions and theorems for primes	7			•	
	3.8	GCD and LCM definitions	7	8	Gra	ph theory	16
	3.9	Finding GCD and LCM via prime factorization .	7		8.1	Graph terminologies	16
	3.10	Finding GCD via Euclidean algorithm (Credits:			8.2	Handshake theorem	18
		Anthony Cheung)	7		8.3	Matrices, matrix multiplication, adjacency matrix	18
	3 11	Verifying prime using trial division	7		8.4	Graph isomorphism	10

1 Logic, inference, and proof

1.1 Truth tables

		NOT p	p AND q	p OR q	p XOR q	IF p THEN q	q IF AND ONLY IF p
p	q	$\neg p$	$p \wedge q$	$p \lor q$	$p\oplus q$	p o q	$p \iff q$
Т	Т	F	Т	Т	F	Т	Т
Т	F	F	F	Т	${ m T}$	F	F
F	Т	Т	F	Т	${ m T}$	Т	F
F	F	Т	F	F	F	Т	T

1.2 Logical equivalences

Logical equivalence	Name of law
$\neg(p \land q) \equiv \neg p \lor \neg q$	De Morgan's laws
$\neg(p \lor q) \equiv \neg p \land \neg q$	
$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$	Distributive laws
$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$	
$p \wedge q \equiv q \wedge p$	Commutative laws
$p \vee q \equiv q \vee p$	
$(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$	Associative laws
$(p\vee q)\vee r\equiv p\vee (q\vee r)$	
$p \wedge \mathbf{T} \equiv p$	Identity laws
$p ee \mathbf{F} \equiv p$	
$pee\mathbf{T}\equiv\mathbf{T}$	Universal bound laws
$p\wedge {f F}\equiv {f F}$	
$p \lor \neg p \equiv \mathbf{T}$	Negation laws
$p \wedge \neg p \equiv \mathbf{F}$	
$\neg(\neg p) \equiv p$	Double negation law
$p \wedge p \equiv p$	Idempotent laws
$p\vee p\equiv p$	
$p \lor (p \land q) \equiv p$	Absorption laws
$p \land (p \lor q) \equiv p$	

1.3 Equivalences for conditionals and biconditionals

Logical equivalence	Description
$p \to q \equiv \neg p \lor q$	Expressing $p \to as \neg p \lor$
$p \iff q \equiv (p \to q) \land (q \to p)$	Expressing \iff as a conjunction of conditionals

1.4 Equivalences for quantifiers

Logical equivalence	Description
$\forall x \in D, P(x) \equiv P(x_1) \land P(x_2) \land \dots \land P(x_n)$	Expressing \forall as a conjunction of predicates
$\exists x \in D : P(x) \equiv P(x_1) \lor P(x_2) \lor \dots \lor P(x_n)$	Expressing \exists as a disjunction of predicates

1.5 Contrapositive, converse, and inverse of conditional statements

Given a conditional statement $p \rightarrow q$		
Contrapositive	$\neg q \rightarrow \neg p$	
Converse	q o p	
Inverse	$\neg p \rightarrow \neg q$	

1.6 Negation of quantifiers

Given	Negation
$\forall x \in D, P(x)$	$\exists x \in D : \neg P(x)$
$\exists x \in D : P(x)$	$\forall x \in D, \neg P(x)$

1.7 Rules of inference

Rule of inference	Name
p	Modus ponens
$\frac{p \to q}{\therefore q}$	
$\neg q$	Modus tollens
$\frac{p \to q}{\because \neg p}$	
p o q	Hypothetical syllogism
$\frac{q \to r}{\therefore p \to r}$	
$p \lor q$	Disjunctive syllogism
$\frac{\neg p}{\therefore q}$	
$ \frac{\frac{\neg p}{\therefore q}}{\frac{p}{\therefore p \lor q}} $	Addition/generalization
$\frac{p \wedge q}{\therefore p}$	Simplification/specialisation
$\frac{p}{\frac{q}{\therefore p \wedge q}}$	Conjunction
$p \lor q$	Resolution
$\neg p \lor r$	

1.8 Rules of inference for quantified statements

Rule of inference	Name
$\frac{\forall x P(x)}{\therefore P(c)}$	Universal instantiation
$\frac{P(c) \text{ for arbitrary } c}{\therefore \forall x P(x)}$	Universal generalisation
$\frac{\exists x P(x)}{\therefore P(c) \text{ for some } c}$	Existential instantiation
$\frac{P(c) \text{ for some } c}{\therefore \exists x P(x)}$	Existential generalisation

1.9 Proof methods

Name of proof	Step-by-step procedure	Effective use case
Direct proof	To prove $p \to q$:	When given a
	1. assume p is true	statement in the
	2. show that q must also be true	form $p \to q$
	otherwise $p \to q$ is false since $\mathbf{T} \to \mathbf{F} \equiv \mathbf{F}$	
Proof by contraposition	Since $p \to q \equiv \neg q \to \neg p$, to prove $p \to q$:	When given a
	1. assume $\neg q$ is true	statement in the
	2. show that $\neg p$ must also be true	form $p \to q$, and
	otherwise $\neg q \rightarrow \neg p$ is false since $\mathbf{T} \rightarrow \mathbf{F} \equiv \mathbf{F}$,	direct proof failed.
	and therefore $p \to q$ is false.	
Proof by contradiction	To prove p ,	When given a
	1. assume $\neg p$ is true	statement in the
	2. show that $\neg p$ leads to a contradiction,	form p
	i.e. $\neg p \to (r \land \neg r)$. Otherwise, p is true.	
Disproof by counterexample	To disprove $\forall x \in D, P(x),$	When given state-
	find one example for which $P(x)$ is false.	-ments with universal
		quantifiers.
Proof by cases	To prove $\forall x \in D, P(x)$,	When it appears
	1. identify all cases for which the	that you can prove
	truthness/falsity of P(x) may vary.	one example and
	2. make assumptions WLOG where necessary	and every other
	3. show that all cases prove $P(x)$ true/false.	example will follow.

1.10 Without loss of generality (WLOG)

Without loss of generality (WLOG) is the act of making a simplifying assumption along the lines of: "if this simple case is true, then trivially every other cases must be true".

2 Sets, functions, sequences, sums

2.1 Union, intersection, difference, complement, subset

Name	Set operation	Description
Union	$A \cup B$	All elements that are in A or B or both
Intersection	$A \cap B$	All elements that are both in A and B
Difference	$A \setminus B$	All elements that are in A but not in B
Complement	\overline{A}	All elements in the universal set that are not in A
Subset	$A \subseteq B$	A is a subset of B ; every element in A is also in B
Proper subset	$A \subsetneq B$	A is a subset of B and $A \neq B$.

2.2 Set identities and their logic counterparts

Set	Logic
\cap (intersection)	\wedge (and)
∪ (union)	∨ (or)
\overline{A} (complement)	¬ (not)
U (universal set)	T (tautology)
Ø (empty set)	F (contradiction)

2.3 Cardinality, power set, and cartesian product of sets

Name	Operation	Description	Given $A = \{p, q\}, B = \{r, s\}$
Cardinality	A	Number of elements in A	A = 2
Power set	$\mathcal{P}(A)$	Set of all subsets of A	$\mathcal{P}(A) = \{\emptyset, \{p\}, \{q\}, \{p, q\}\}\$
(Size of set $= 2^n$)		including the empty set	
Cartesian product	$A \times B$	Set of all ordered <i>n</i> -tuples	$A \times B = \{(p, r), (p, s), (q, r), (q, s)\}$
(Size of set = $ A \cdot B $)		from A and B	

2.4 Proof methods for set equivalences

To prove $A = B$, show that $A \subseteq B$ and $B \subseteq A$	
Method	Step-by-step procedure
Element method	To prove $A \subseteq B$,
	1. let $x \in A$
	2. construct worded proof with set operations to arrive at $x \in B$
Logical equivalences	To prove $A \subseteq B$,
	1. let $x \in A$
	2. rewrite set operators with their logical counterparts
	3. derive $x \in B$ from $x \in A$ using logical equivalences

2.5 Domain, codomain, preimage, image, range of functions

Given $f: X \to Y$		Given $f(x) = y$		
Terminology	Description	Terminology Description		
Domain (X)	All possible inputs for f	Preimage (x)	$x \in X$ that is mapped to some $y \in Y$ by f	
Codomain (Y)	All possible outputs for f	Image (y)	$y \in Y$ to which some $x \in X$ is mapped by f	

2.6 Injective, surjective, bijective, and composite functions

Function type	Definition
Injective (one-to-one)	A function $f: X \to Y$ where $\forall x \in X, x$ is
	assigned a different $y \in Y$, and $ X \leq Y $.
Surjective (onto)	A function $f: X \to Y$ where all $\forall y \in Y, y$ is
	an image of some $x \in X$, and $ X \ge Y $.
Bijective (one-to-one correspondence)	A function that is both injective and surjective,
	where $ X = Y $
Composite	A function $(f \circ g)(a) = f(g(a))$ where
	a function f takes another function g as input.

2.7 Proving injection, surjection, and non-existent functions

What to prove	How to prove
$f: X \to Y$ is injective	1) If a graph of f is given or derivable, commit horizontal line test
	2) Alternatively, show that if $f(x_1) = f(x_2)$ for arbitrary $x_1, x_2 \in X$
	with $x_1 \neq x_2$, then $x_1 = x_2$.
$f: X \to Y$ is NOT injective	Show that $\exists x_1, x_2 \in X$ such that $x_1 \neq x_2$ and $f(x_1) = f(x_2)$
$f: X \to Y$ is surjective	Show that $\forall y \in \mathbb{Z}, \exists x \in \mathbb{Z} \text{ such that } f(x) = y$
$f: X \to Y$ is NOT surjective	Show that $\exists y \in Y$ such that $\forall x \in X, f(x) \neq y$
$f: X \to Y$ is not a function	1) If a graph of f is given or derivable, commit vertical line test
	if there exists a vertical line that intersects the graph more than once,
	then f is not a function.
	2) If the expression for f is given, make y the subject and prove
	algebraically that there are more than one value for y .

2.8 Arithmetic and geometric sequences, and recurrence

Name of sequence	Definition	n-th Term	Series
Arithmetic sequence	${a, a + d, a + 2d,, a + nd}$, where	$a_n = a_1 + (n-1)d$	$S_n = n(\frac{a_1 + a_n}{2}))$
	a is the initial term and d is difference		_
Geometric sequence	$\{a, ar, ar^2,, ar^n\}$, where	$a_n = ar^{n-1}$	$S_n = a_1(\frac{1-r^n}{1-r})$
	a is the initial term and r is common ratio		

2.9 Fibonacci and factorials sequences

Name of sequence	Definition
Fibonacci sequence	a sequence $\{f_0, f_1, f_2\}$ defined by initial conditions $f_0 = 0, f_1 = 1$
	and the recurrence relation $f_n = f_{n-1} + f_{n-2}$ for $n = 2, 3, 4,$
Factorials sequence	$(n!)_{n\geq 0} = \{1, 1, 2, 6, 24, 120,\},$ or defined
	recursively as $0! = 1$, $n! = (n-1)! \times n$ for $n \ge 1$

2.10 Summation notation

To represent the sum of some sequence $a_m + a_{m+1} + ... + a_n$, we write: $\sum_{i=m}^n a_i$

2.11 Summation definitions

Property	Definition
Addition/subtraction over the same range	$\sum_{i=m}^{n} a_i \pm \sum_{i=m}^{n} b_i = \sum_{i=m}^{n} (a_i \pm b_i)$
Taking out a common factor	$\sum_{i=m}^{n} ca_i = c \sum_{i=m}^{n} a_i$
Combining consecutive indices	$\sum_{i=p}^{q} a_i + \sum_{i=q+1}^{r} a_i = \sum_{i=p}^{r} a \text{ if } p \le q \le r$
Index shift	$\sum_{i=m}^{n} a_i = \sum_{i=m+p}^{n+p} a_{i-p} = \sum_{i=m-q}^{n-q} a_{i+q}$
Telescoping sums	$\sum_{i=m}^{n} (a_i - a_{i+1}) = a_m - a_{n+1} \text{ if } m \le n$

3 Number theory

3.1 Addition, multiplication, and transitivity theorems of divisibility

Theorem	Definition
Addition	If $a b$ and $a c$, then $a (b+c)$
Multiplication	If $a b$, then $a bc$ for all $c \in \mathbb{Z}$
Transitivity	If $a b$ and $b c$, then $a c$

3.2 Quotient-Remainder theorem

Quotient-Remainder Theorem
Given integer $a \in \mathbb{Z}$ and $b \in \mathbb{Z}^+$, then there exists
Two unique integers q and r, with $0 \le r < d$, such that $a = dq + r$

3.3 Expressions for quotient and remainder

Expressions for quotient (q) and remainder (r)
$$q = a \text{ div } d = \lfloor \frac{a}{d} \rfloor$$

$$r = a \text{ mod } d = a - (d \times \lfloor \frac{a}{d} \rfloor)$$

3.4 Lemma: bounds for divisors

	Bounds for divisors
Let $n, d \in \mathbb{Z}$.	If $ n \ge 1$ and $d n$, then $0 < d \le n $

3.5 Congruence definition

Congruence
$a \equiv b \pmod{m}$ denotes that a is congruent to $b \pmod{m}$ if and only if $m (a-b)$

3.6 Congruence theorems

Theorem 1	
If $a, b \in \mathbb{Z}$ and $m \in \mathbb{Z}^+$, then a and b are congruent	
modulo m if and only if $\exists k \in \mathbb{Z}$ such that $a = b + km$	
Theorem 2	
Let $a, b \in \mathbb{Z}$ and $m \in \mathbb{Z}^+$,	
if $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then	
$a+c \equiv b+d \pmod{m}$ and $ac \equiv bd \pmod{m}$	

3.7 Definitions and theorems for primes

Name	Definition
Prime number	Given $p \in \mathbb{Z}$ with $p > 1$, p is prime if the only positive
	factors of p are 1 and p .
Fundamental theorem of arithmetic	$\forall x \in \mathbb{Z}$ where $x > 1$, x can be written uniquely as a prime,
	or as a product of 2 or more primes where the prime
	factors are written in order of nondecreasing size.
Composite integer	$k \in \mathbb{Z}^+$ is a composite integer if $\exists a, b \in \mathbb{Z}^+$
	where $a < k$ and $b < k$, such that $k = ab$.
Relatively prime	Let $a, b \in \mathbb{Z}$, a and b are realtively prime if $gcd(a, b) = 1$
Pairwise relatively prime	$a_1, a_2,, a_n \in \mathbb{Z}$ are pairwise relatively prime if
	$gcd(a_i, a_j) = 1$ whenever $1 \le i \le j \le n$

3.8 GCD and LCM definitions

Name	Definition
Greatest Common Divisor	Let $a, b \in \mathbb{Z}$ where $a \neq 0$ and $b \neq 0$. The GCD of a and b ,
	denoted $gcd(a, b)$ is d such that $d a$ and $d b$
Least Common Multiple	The LCM of a and b , denoted $lcm(a, b)$, is the smallest
	$k \in \mathbb{Z}^+$ such that $a k$ abd $b k$
Relationship between GCD and LCM of $a,b\in\mathbb{Z}$	$ab = \gcd(a, b) \cdot \operatorname{lcm}(a, b)$

3.9 Finding GCD and LCM via prime factorization

Suppose the prime factorization of $a, b \in \mathbb{Z}$ are:		
$a = p_1^{a_1} \cdot p_2^{a_2} \cdot \dots \cdot p_n^{a_n}$		
$b=p_1^{b_1}\cdot p_2^{b_2}\cdot\cdot p_n^{b_n}$		
What to find	How	
What to find GCD	$ \begin{array}{c} \textbf{How} \\ \gcd(a,b) = (P_1^{\min(a_1,b_1)})(P_2^{\min(a_2,b_2)})(P_n^{\min(a_n,b_n)}) \\ \operatorname{lcm}(a,b) = (P_1^{\max(a_1,b_1)})(P_2^{\max(a_2,b_2)})(P_n^{\max(a_n,b_n)}) \end{array} $	

3.10 Finding GCD via Euclidean algorithm (Credits: Anthony Cheung)

Euclidean algorithm	
Step	What to do
1	Calculate $a \div b$ to find quotient q and remainder r that satisfy $a = bq + r$
2	Case I. If $r = 0$, then conclude that $gcd(a, b) = b$
3	Case II. Else if $r \neq 0$, then repeat steps 1 and 2 but calculate $gcd(b, r)$ instead

Example: gcd(345, 92) = 23

3.11 Verifying prime using trial division

Trial divison
Given $a \in \mathbb{Z}$, a is prime, if for all primes $k \leq \sqrt{a}$, $k a$.

4 O-Notation, mathematical induction, recursion

4.1 Big O, Big Ω , Big Θ

O-Notation	Definition
Worst-case complexity (O)	$f(x)$ is $O(g(x))$ if and only if $\forall x > k, f(x) \le C g(x) $,
" $f(x)$ grows SLOWER than $g(x)$ "	for some constants C and k .
Best-case complexity (Ω)	$f(x)$ is $\Omega(g(x))$ if and only if $\forall x > k, f(x) \ge C g(x) $,
" $f(x)$ grows FASTER than $g(x)$ "	for some positive constants C and k .
Average-case complexity (Θ)	$f(X)$ is $\Theta(g(x))$ if and only if $f(x) \in O(g(x))$ and $f(x) \in \Omega(g(x))$.
" $f(x)$ grows at the SAME RATE as $g(x)$ "	That is, $C_1 g(x) \le f(x) \le C_2 g(x) $ for positive constants C_1, C_2, k

4.2 Big O complexity order

Big O complexity order
$$O(1) < O(\log(n)) < O(n) < O(n\log(n)) < O(n^2) < O(2^n) < O(n!)$$

Elements

4.3 Some O-Notation properties

#	Property
1	$f(n) \in O(f(n))$
2	$O(c \cdot f(n)) = O(f(n))$ O(f(n) + f(n)) = O(f(n))
3	O(f(n) + f(n)) = O(f(n))
4	$O(f(n)g(n)) = f(n) \cdot O(g(n))$

4.4 Triangle inequality

Triangle inequality
$ a+b \le a + b $
Useful for problems in the form $a + b \in O(g(n)), a + b \in \Omega(g(n)), or a + b \in \Theta(g(n))$

4.5 Induction - intuition and definition

Point	Explanation
Intuition	Suppose we have a ladder, and
	(1) We can reach the first rung of the ladder #BASIS
	(2) If we can reach a particular rung of the ladder, then we can
	reach the next rung $\#INDUCTIVE\ HYPOTHESIS$
	#INDUCTION: By (1), we can reach the first rung. By (2), since we can reach
	the first rung, then we can reach the second rung. Then by (2) again, since
	we can reach the second rung, then we can reach the third rung. Repeating
	(2), we can show that we can reach the fourth rung, the fifth, and so on.
Definition	To prove $\forall n \in \mathbb{Z}^+, P(n)$, we complete two steps:
	(1) Basis step: Verify that $P(1)$ is true
	(2) Inductive step: Show that $\forall k \in \mathbb{Z}^+, P(k) \to P(k+1)$. To do this
	you assume $P(k)$ is true (inductive hypothesis). Then, show that if $P(k)$ is true,
	then $P(k+1)$ must also be true.

4.6 Template for induction

Step	What to do
1	Express statement to be proved in the form " $\forall n \geq b, P(n)$ for a fixed b"
2	BASIS STEP: Show that $P(b)$ is true
3	INDUCTIVE STEP:
	(3.1) State inductive hypothesis in the form "assume that $P(k)$ is true for
	an arbitrary fixed integer $k \geq b$ "
	(3.2) State what $P(k+1)$ says, ie. what needs to be proved under inductive hypothesis
	(3.3) Prove $P(k+1)$ using assumption $P(k)$
4	State the conclusion, e.g. ".: By induction, $\forall n \in \mathbb{Z}^+$ with $n \geq b$, $P(n)$."

4.7 Template for closed formula

Step	What to do
1	BASIS STEP: Verify initial conditions for which T_n is true
2	INDUCTIVE STEP:
	(2.1) Rewrite T_{k+1} in terms of previous terms, eg. T_k
	(2.2) Use the inductive hypothesis T_k to prove T_{k+1}

4.8 Template for linear homogeneous recurrence relation

	Given a linear homogeneous recurrence relation $a_n = \alpha_1 a_{n-1} + \alpha_2 a_{n-2} + + \alpha_k a_{n-k}$		
Step	What to do		
1	Get characteristic polynomial: $x^k - \alpha_1 x^{k-1} - \alpha_2 x^{k-2} - \dots - \alpha_k x^0 = 0$		
2	Factor: $x^k - \alpha_1 x^{k-1} - \alpha_2 x^{k-2} - \dots - \alpha_{\ell} x^0 = (x - \lambda_1)(x - \lambda_2)\dots(x - \lambda_k)$		
3	Write roots as sum with coefficients determined by the initial conditions		
	(3a) For any roots λ_a and λ_b , if $\lambda_a \neq \lambda_b$, write their sum as $A\lambda_a^n + B\lambda_b^n$ for constants A, B		
	(3b) For any roots λ_a and λ_b , if $\lambda_a = \lambda_b$, write their sum as $(A + Bn)\lambda^n$, where $\lambda = \lambda_a = \lambda_b$, for constants A, B		
	Initial conditions of the recurrence relation determine constants $A, B,$		
4	Repeating step (3) until the last term and write the general solution		
	Example: Given recurrence relation of order 4 with factors in step (2) $\lambda_1 = \lambda_2 \neq \lambda_3 \neq \lambda_4$,		
	the general solution is given by $a_n = (A + Bn)\lambda^n + C\lambda_3^n + D\lambda_4^n$, where $\lambda = \lambda_1 = \lambda_2$, for consants A, B, C, D		

5 Counting

5.1 Product, sum, subtraction, divison rules

Rule	Definition
Product rule	Given a procedure with two tasks, where
	1. The first task can be done in n_1 ways
	2. The second task can be done in n_2 ways
	The total number of ways to do the procedure is $n_1 \times n_2$
Sum rule	Given a task that can be done in one of n_1 ways
	or in one of n_2 , where n_1 and n_2 are mutually exclusive,
	then the total number of ways to do the task is $n_1 + n_2$
Subtraction rule	If a task can be done in ONLY either n_1 ways or n_2 ways,
	then the number of ways to do the task is $n_1 + n_2 - M$, where
	M is the number of ways common to both ways.
	In set notation: $ A_1 \cup A_2 = A_1 + A_2 - A_1 \cap A_2 $
Division rule	Given a task that can be done in n ways which can be,
	categorized into d groups, the total number of ways to
	do the task is $\frac{n}{d}$
	In set notation: If a set A is the union of n pairwise disjoint
	subsets each with d elements, then $n = \frac{ A }{d}$

5.2 Relevant applications of the product rule

Example	By product rule
No. of functions from a set with n elements	m^n
to a set with m elements	
No. of injective functions from a set with n	$m \times (m-1) \times (m-2) \times \times (n-m+1)$
elements to a set with m elements	
No. of subsets of a finite set S	$ \mathcal{P}(S) = 2^{ S }$

5.3 Tree diagrams

Tree diagrams Counting problems can sometimes be solved using tree diagrams where each branch represent a possible choice

Example: There are 8 bit strings of length 4 without consecutive 1s

5.4 Permutation: definition, theorem, corollaries

Definition of permutation

A permutation of a set of distinct objects is an ordered arrangement of these objects. An r-permutation is said to be an ordered arrangement of r elements of a set.

Useful theorem for permutation

Given $n \in \mathbb{Z}^+$ and $r \in \mathbb{Z}$ with $1 \le r \le n$, the r-permutations of a set with n distinct elements is given by $P(n,r) = n \times (n-1) \times (n-2) \times \ldots \times (n-r+1)$

Corollary 1

If n and r are integers with $0 \le r \le n$, then $P(n,r) = \frac{n!}{(n-r)!}$

Corollary 2

$$P(n,n) = n!$$

Combination: definition, theorem, corollary 5.5

Definition of combination

An r-combination of elements of a set with n elements is an unoredered selection of relements from the set. Common notations include $\binom{n}{r}$, C(n,r), and ${}^{n}C_{r}$

Useful theorem for combinations

Given $n, r \in \mathbb{Z}$, where $n \geq 0$ and $0 \leq r \leq n$, the number of r-permutations of a set with n elements is $C(n,r) = \frac{n!}{r!(n-r)!}$

Corollary

Let $n, r \in \mathbb{Z}$, with $n, r \geq 0$ and $r \leq n$, then C(n, r) = C(n, n - r)

Choosing k elements from n + order and repetition

	Order matters	Order doesn't matter
Repetition is allowed	n^k	$\binom{k+n-1}{n-1}$
Repetition is not allowed	$\frac{n!}{(n-k)!}$	$\binom{n}{k}$

Binomial theorem 5.7

Binomial theorem

Let x and y be variables, and let n be a nonnegative integer. Then, we have:

$$(x+y)^n = \sum_{j=0}^n \binom{n}{j} x^{n-j} y^j = \binom{n}{0} x^n + \binom{n}{1} x^{n-1} y + \dots + \binom{n}{n-1} x y^{n-1} + \binom{n}{n} y^n$$

Corollary 1

Let n be a nonnegative integer. Then, $\sum_{k=0}^{n} \binom{n}{k} = 2^n$

Corollary 2

Let
$$n \in \mathbb{Z}^+$$
. Then, $\sum_{k=0}^n (-1)^k \binom{n}{k} = 0$

Corollary 3

Let n be a nonnegative number. Then, $\sum_{k=0}^{n} 2^{k} {n \choose k} = 3^{n}$

Pascal's identity and triangle

Pascal's identity
Let
$$n, k \in \mathbb{Z}^+$$
 with $n \ge k$. Then, $\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}$

Pascal's triangle

5.9 Inlusion-exclusion

Lemmas for the size of set union

No of elements in 2 sets: $|A \cup B| = |A| + |B| - |A \cap B|$ No of elements in 3 sets: $|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|$

Principle of Inclusion-Exclusion

Let A_1, A_2, \ldots, A_n b finite sets. Then the size of set union of n sets is given by:

$$|A_1 \cup \ldots \cup A_n| = \sum_i |A_i| - \sum_i |A_i \cap A_j| + \sum_{i < j < k} |A_i \cap A_j \cap A_k| - \sum_{i < j < k < \ell} |A_i \cap A_j \cap A_k \cap A_\ell| + \ldots \pm |A_1 \cap A_2 \cap \ldots \cap A_n|$$

In short, you simply follow:

- 1. Add the size of each set individually
- 2. Subtract all two-way intersections
 - 3. Add all three-way intersections
- 4. Subtract all four-way intersections
 - 5. Add all five-way intersections

And so on...

5.10 Pigeonhole principle + generalized form

Pigeonhole principle

If you have n pigeons sitting in k pigeonholes, and if n > k, then at least one of the pigeonholes contains at least two pigeons.

Generalised pigeonhole principle

If you have n pigeons sitting in k pigeonholes, and if $n > k \cdot m$, then at least one of the pigeonholes contains at least m+1 pigeons.

5.11 Catalan numbers, balanced strings, dyck paths

Balanced strings

A string is a sequence of brackets where order matters

A balanced string is a string where all opening bracket "(" is closed with a ")" Examples:))((and (() not balanced, meanwhile ()() and (()) are balanced.

Catalan numbers

A sequence of natural numbers such that the *n*-th term is given by $C_n = \frac{1}{n+1} {2n \choose n}$ for $n \ge 0$ Click here for 6 proofs of the catalan numbers

First few terms:

$$C_0=1, C_1=1, C_2=2, C_3=5, C_4=14, C_5=42, C_6=132, C_7=429, C_8=1430, \dots$$

Catalan numbers for balanced strings

A catalan number C_n represent all possible combinations of balanced strings with n opening brackets

Example: By C_3 , there are 5 balanced strings when there are 3 opening and 3 closing brackets, ie. ((())), ()(), (())(), (())(), (()())

Discrete probability 6

6.1Discrete probability, compenentary and union

Basic definition for discrete probability

Let a sample space S be the set of possible outcomes, and let an event E be a subset of S.

sample space S be the set of possible outcomes, and $P(E) = \frac{|E|}{|S|} = \sum_{s \in E} p(s)$. Then, the probability of event E occurring is given by $p(E) = \frac{|E|}{|S|} = \sum_{s \in E} p(s)$

Name	Definition
Complementary event	$p(\overline{E}) = 1 - p(E)$
Union of events	$p(E_1 \cup E_2) = p(E_1) + p(E_2) - p(E_1 \cap E_2)$

6.2Conditional probability, independent events

Name	Definition
Conditional probability	Let E and F be events with $p(F) > 0$. The conditional probability
	E given F, is given by: $p(E F) = \frac{p(E \cap F)}{p(F)}$
Independent events	Events E and F are independent if and only if $p(E \cap F) = p(E)p(F)$.
	That is to say, E and F are NOT independent if $p(E \cap F) \neq p(E)p(F)$

6.3 Probability distribution, random variables

Name	Definition
Probability distribution	The probabilty distribution of a variable X is a
	function $p: S \to [0,1]$ such that $\sum_{s \in S} p(x) = 1$
Random variable	A function $X:S \to \mathbb{R}$ defined on outcomes of sample space S
	Example:
	Let $X(t)$ be no. of heads in 3 coin flips. Therefore $X(t)$ takes on the values:
	X(HHH) = 3
	X(HHT) = X(HTH) = X(THH) = 2
	X(TTH) = X(THT) = X(HTT) = 1
	X(TTT) = 0
Distribution of a random variable	A set of pairs $(r, p(X = r))$ for all $r \in X(s)$ where $p(X = r)$ is the
	probability that X takes the value of r .
	Example:
	The distribution of random variable $X(t)$ is the set of pairs
	$\{(3,\frac{1}{8}),(2,\frac{3}{8}),(1,\frac{3}{8}),(0,\frac{1}{8})\}$

6.4 Bayes' theorem

Bayes' theorem Let
$$E,F$$
 be events from sample space S such that $p(E)\neq 0$ and $p(F)\neq 0$. Then,
$$p(F|E)=\frac{p(E|F)p(F)}{p(E|F)p(F)+p(E|\overline{F})p(\overline{F})}$$

6.5 Expected value, variance + useful identities

Name	Definition
Expected value	The expected value of a random variable X on a sample space S
	is given by $E(X) = \sum_{s \in S} p(s)X(s) = \sum_{r \in X(S)} p(X=r)r$
Variance	The variance of a random variable X on a sample space S
	is given by $V(X) = \sum_{s \in S} (X(s) - E(X))^2 p(s)$

Useful identities for expected value and variance		
Name	Definition	
Linearity of expectation	Let X, Y be random variables and $a, b \in \mathbb{R}$. Then,	
	$E(X_1 + X_2 + \dots + X_n) = E(X_1) + E(X_2) + \dots + E(X_n),$	
	E(aX+b) = aE(X) + b	
Variance	$V(X) = E(X^{2}) - E(X)^{2} = E((X - E(X))^{2})$	
Expected value and variance	If X and Y are independent, then	
of independent events	$E(XY) = E(X) \times E(Y)$ and $V(X+Y) = V(X) + V(Y)$	

7 Relations

7.1 Relation definition, notation, complementary

Realtion definition, notation, complementary

A relation R from set X to set Y is a subset of $X \times Y$. The complementary relation \overline{R} is given as $\overline{R} = (X \times Y) \setminus R$

Notations to express "x is related to y":

- $\bullet \ (x,y) \in R$
- \bullet xRy
- $x \sim y$

7.2 Reflexivity, symmetry, transitivity, antisymmetry

Let R be a relation on X		
Property Definition		
Reflexivity	R is reflexive provided that $\forall x \in X, (x, x) \in R$	
Symmetric	R is symmetric provided that $\forall x, y \in X$, if $(x, y) \in R$, then $(y, x) \in R$	
Transitive	R is transitive provided that $\forall x, y, z \in X$, if $(x, y) \in R$ and $(y, z) \in R$, then $(x, z) \in R$	
Antisymmetry	R is antisymmetric provided that $\forall x, y \in X$, if $(x, y) \in R$ and $(y, x) \in R$, then $x = y$	

7.3 Combining and composing relations

Combining and composing relations

Since relations R_1 , R_2 from X to Y are just subsets of $X \times Y$, we can use set operations to create new relations e.g. $R_1 \cup R_2$, $R_1 \cap R_2$, $R_1 \setminus R_2$

Composition of relations:

We can compose relations R from X to Y and S from Y to Z to get a new relation $S\circ R=\{(a,c)|\exists b\in Y:aRb\wedge bSc\}\subseteq X\times Z$

7.4 Equivalence relation and class

Let R be a relation on X		
Name	Definition	
Equivalence relation	R is an equivalence realtion on X if and only if the relation R	
	on the non-empty set X is reflexive, symmetric, and transitive.	
Equivalence class	If R is an equivalence relation on X and $x \in X$, then the set	
	$[x] = \{y \in X (x, y) \in R\}$ is the equivalence class of x	
	In simpler terms: An equivalence class is a set of numbers all of	
	which are equal to one another under the given relation.	

7.5 Partitions

Partitions A set $\{S_1, S_2, ...\}$ is a partition of S if: (1) $S_i \neq \emptyset$ for all i(2) $S = S_1 \cup S_2 \cup S_3 \cup ...$ (3) $S_i \cap S_j = \emptyset$ where $i \neq j$ Example: $S = \{1, 2, 3, 4, 5\}, S_1 = \{1\}, S_2 = \{2, 5\}, S_3 = \{3, 4\}$ (1) $S_1 \neq \emptyset, S_2 \neq \emptyset, S_3 \neq \emptyset$ (2) $S_1 \cup S_2 \cup S_3 = \{1, 2, 3, 4, 5\} = S$ (3) $S_1 \cap S_2 = \emptyset, S_2 \cap S_3 = \emptyset, S_1 \cap S_3 = \emptyset$ $\therefore \{S_1, S_2, S_3\}$ is a partition of S

7.6 Partial and total orders

Property	Definition
Partial order	A relation R on a set X which is reflexive, transitive, and
	anti-symmetric is called a "partial order" on X.
Total order	$\forall a, b \in X$, if aRb or bRa , then R is called a "total order" on X .

7.7 Reflexive, symmetric, and transitive closures

Closure	How to derive				
Reflexive $(ref(R))$	The smallest reflexive relation containing R (i.e. $ref(R)$) is given by				
	$\operatorname{ref}(R) = R \cup \{(x,x) x \in X\}, \text{ where } \Delta = \{(x,x) x \in X\} \text{ is the diagonal relation }$				
Symmetric $(\text{sym}(R))$	The smallest symmetric relation containg R (i.e. $sym(R)$) is given by				
	$R \cup R^{-1} = R \cup \{(y,x) (x,y) \in R\}$, where $R^{-1} = \{(y,x) (x,y) \in R\}$ is the inverse relation to R				
Transitive $(tra(R))$	Use Warshall's algorithm:				
	Loop over vertices (e.g. $1, 2, 3, \ldots, n$)				
	A) Identify all incoming edges				
	B) Identify all outgoing edges				
	C) Connect incoming vertices to outgoing vertices				
	Repeat loop until nothing cahnges (at most n times)				

8 Graph theory

8.1 Graph terminologies

Terminology	Definition					
Graph	A graph G is a structure comprised of 2 finite sets:					
	- a non-empty set $V(G)$ of vertices					
	- a set $E(G)$ of edges, where each edge is associated with a set $\{v,w\}\subseteq V(G)$					
	The vertices v and w are endpoints of the edge					
Loop edge	$\{v,v\} = \{v\}$					
Parallel edges	$\{v,w\}$					
	0					
Simple graph	A graph with no loops or parallel edges					
	O					
Incidence	Edge e and vertex v are incident if v is an endpoint e					
Adjecence	Vertices u, v are adjacent if there is an edge with endpoints $\{u, v\}$. A vertex					
	u is adjacent to itself if there is a loop with endpoints $\{u\}$					
Degree	Degree of a vertex v is the number of edges incident with v , where we count					
	each loop twice. We write this as $deg(v)$					
	b a					
	$deg(b) = 2 \qquad deg(a) = 4$					
	In simpler terms: $deg(v)$ counts the ends of edges that meet v					
Directed graph	Let G be a directed graph and $v \in V(G)$					
	$deg^{-}(b) = 1$ $deg^{-}(a) = 2$ $deg^{+}(b) = 1$ $deg^{+}(a) = 2$					
	- The indegree $\deg^-(v)$ is the no. of edges terminating in v .					
	- The outdegree $\deg^+(v)$ is the no. of edges starting in v .					

Terminology	Definition		
Complete graph	The complete graph on n vertices is a simple graph with exactly		
	one edge between any pair of vertices.		
Cycle	A cycle C_n for $n \geq 3$ is a graph that looks like a loop.		
	$\setminus C_5$		
	0—0		
Wheel	You get a wheel W_n from cycle C_n by adding a vertex that connects		
	to each of the vertices		
	W_5		
	8-8		
Trees	Graphs without cycles		
	20		
Path	An alternating sequence of vertices and edges with a starting and ending		
	vertices.		
Simple path	A path with no repeating vertices		
Connected & disconnected graphs	A graph G is connected if $\forall x, y \in V(G)$, there is a path from		
	x to y . Otherwise G is a disconnected graph.		
	Connected Disconnected		
Circuit	A path that starts and ends at the same vertex		
Eulerian circuit	A path that starts and ends at the same vertex and uses every edge exactly once		
	Necessary conditions for an Eulerian circuit to exist:		
	(1) If we ingore any isolated vertices (vertices with degree 0), then the		
	remaining graph must be connected (because we must traverse all edges) (2) The degree of every vertex must be even (otherwise you will be retracing!)		
Eulerian trail/path	A path that uses each path exactly once, but whose start and end vertices can		
Eurorium tram, patri	be different. For it to exist, it requires exactly two vertices of odd degree		
Hamiltonian circuit/cycle	circuit that traverses every vertex exactly once		
Bipartite graph	A simple graph G is bipartite if it has at least 2 vertices and satisfies one		
	(and hence all) of the following equivalent conditions:		
	(1) The set of vertices $V(G)$ has a partition $\{V_1, V_2\}$ such that every edge is of		
	the form $\{v_1, v_2\}$ where $v_k \in V_k$ (2) The vertices can be coloured with 2 colours such that no 2 adjacent vertices		
	(2) The vertices can be coloured with 2 colours such that no 2 adjacent vertices have the same colour.		
	(3) Every circuit in G has even length.		
	$//$ \otimes		
	ď Ö		

8.2 Handshake theorem

Handshake theorem

Let G be a graph with n vertices $V(G) = \{v_1, ..., v_n\}$ then

$$\sum_{i=1}^{n} \deg(v_i) = \deg(v_1) + \deg(v_2) + \dots + \deg(v_n) = 2 \times |E(G)|$$

Corollary

In any graph, the sum of all vertex degrees must be even and the number of vertices of odd degree is even.

Handshake theorem for directed graphs

Let G be a directed graph with n vertices $V(G) = \{v_1, ..., v_n\}$ then

$$\sum_{i=1}^{n} \deg^{-}(v_i) = \sum_{i=1}^{n} \deg^{+}(v_i) = |E(G)|$$

Matrices, matrix multiplication, adjacency matrix 8.3

Matrix definition

Let $n_r, n_c \in \mathbb{N}$. An $n_r \times n_c$ matrix is just a $n_r \times n_c$ grid of numbers where n_r is the no. of rows and n_c is the no. of columns.

$$M = \begin{bmatrix} m_{1,1} & m_{1,2} & \dots & m_{1,n_c} \\ m_{2,1} & m_{2,2} & \dots & m_{2,n_c} \\ \vdots & \vdots & \ddots & \vdots \\ m_{n_r,1} & m_{n_r,2} & \dots & m_{n_r,n_c} \end{bmatrix}$$

Given a $n_r \times n_c$ matrix M we write $M = (m_{i,j})$ where for each i = 1, 2, ..., nand j = 1, 2, ..., n the symbol $m_{i,j}$ denotes the entry in row i, column j

Matrix multiplication

Let $A = (a_{i,j})$ and $B = (b_{i,j})$ be $n \times n$ matrices.

Their product AB is an $n \times n$ matrix $AB = (m_{i,j})$ with entries:

$$m_{i,j} = \sum_{k=1}^{n} a_{i,k} b_{k,j} = a_{i,1} b_{1,j} + \ldots + a_{i,n} b_{n,j}$$

$$m_{i,j} = \sum_{k=1}^{n} a_{i,k} b_{k,j} = a_{i,1} b_{1,j} + \dots + a_{i,n} b_{n,j}$$
Example:
$$A = \begin{bmatrix} 1 & 2 \\ 4 & 6 \end{bmatrix}, B = \begin{bmatrix} 7 & 3 \\ 2 & 8 \end{bmatrix}$$

$$AB = \begin{bmatrix} (1)(7) + (2)(2) & (1)(3) + (2)(8) \\ (4)(7) + (6)(2) & (4)(3) + (6)(8) \end{bmatrix} = \begin{bmatrix} 11 & 19 \\ 40 & 60 \end{bmatrix}$$

Adjacency matrix

The adjacency matrix of graph G is a $n \times n$ matrix $M_G = (m_{i,j})$ where each entry $m_{i,j}$ is the no. of edges with endpoints $\{i,j\}$ (counted with multiplicity) Example: Let G be the following graph

The adjacency matrix of G is defined by

$$M_G = \begin{bmatrix} 0 & 1 & 1 & 2 & 0 & 0 \\ 1 & 0 & 0 & 0 & 3 & 0 \\ 1 & 0 & 0 & 0 & 1 & 1 \\ 2 & 0 & 0 & 0 & 0 & 1 \\ 0 & 3 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \end{bmatrix}$$

where the rows and columns are from a to f

8.4 Graph isomorphism

Graph isomorphism

Two graphs are isomorphic when you can map connections from G_1 to G_2 completely

Example: G_1 and G_2 are isomorphic

Graph G_1		Graph G_2		
Vertex	Connections	Vertex	Connections	Conclusion
e_1	e_2e_5	c_1	c_3c_4	$\phi(e_1) = c_1$
e_2	e_3e_1	c_3	c_5c_1	$\phi(e_2) = c_3$
e_3	e_4e_2	c_5	$c_{2}c_{3}$	$\phi(e_3) = c_5$
e_4	e_5e_3	c_2	$c_{4}c_{5}$	$\phi(e_4) = c_2$
e_5	e_1e_4	c_4	c_1c_2	$\phi(e_5) = c_4$