

GC

gutmutcode@gmail.com — https://github.com/gutmutcode

Contents

1	Def	inition
	1.1	What is a LATEX?
2	Pur	pose
		Why use L ^A T _E X?
3	Usa	ges
		Math vs. text vs. function
		3.1.1 Inline
		3.1.2 Equation
		3.1.3 Displaystyle
	3.2	Images
	3.3	Text decorations
	3.4	Spaces and new lines
	3.5	Comments
	3.6	Delimiters
	3.7	Lists
	3.8	Symbols (in <i>math</i> mode)
	0.0	3.8.1 The basics
		3.8.2 Functions
		3.8.3 Greek and Hebrew letters
		3.8.4 Set theory
		3.8.5 Calculus
		3.8.6 Logic
		3.8.7 Linear algebra
		3.8.8 Number theory
		3.8.9 Geometry and trigonometry
		3.8.10 Symbols (in text mode)
		o.o.ro bymbots (in test mode)

Definition

• What is a LATEX?

A mathemetics type setting program that is the standard for most professional mathematics writing. This is based on type setting program TEX created by Donald Knuth of Stanford Uniuversity. Leslie Lamport was responsible for create Lambert version Lambert version of TEX. A team of Lambert programmers created the current version Lambert 2ϵ .

Purpose

• Why use \LaTeX ?

In properly typeset mathematics variables appear in italics (e.g., $f(x) = x^2 + 2x - 3$). The exception to this rule is predefined functions (e.g. $\sin(x)$). It is important to always threat text, variables, and functions correctly. There are two ways to present mathematical expression inline or equation.

Usages

• Math vs. text vs. function

- Inline

Inline expressions occur in the middle of a sentence. To produce an inline expression, place the math expression between dollar signs (\$). For example, typing 90° is the same as $\frac{\pi}{2}$

- Equation

Equations are mathmetical expressions that are given their own line and are centered on the page. These are usually used for important equations that deserve to be showcased on their own line of for large equations that cannot fit inline. To produce an inline expression, place the mathematical expression between the symbols $\[$ and $\]$. Typing $\[$ $x=\frac{b\pm}\sqrt{2-4ac}$ $\]$ yields

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$

- Displaystyle

To get full-sized inline mathematical expressions use \displaystyle . Use this sparingly. Typing I want this $\displaystyle \sum_{n=1}^{\inf y}\frac{1}{n}$, not this $\sum_{n=1}^{\inf y}\frac{1}{n}$. yields

I want this
$$\sum_{n=1}^{\infty} \frac{1}{n}$$
, not this $\sum_{n=1}^{\infty} \frac{1}{n}$

• Images

You can put images (pdf, png, jpe, or gif) in your document. They need to be in the same location as your .tex file when you compile the document. Omit [width=.5in] if you want the image to be full-sized.

\begin{figure}[ht]
\includegraphics[width=.5in]{imagename.jpg}
\caption{The (optional) caption goes here.}
\end{figure}

• Text decorations

Your text can be *italics* (\textit{italics}), **boldface** (\textbf{boldface}), <u>underline</u> (\underline{underline}), or typewriter (\textit{typewriter}).

Your math can contain boldface, \mathbf{R} (\mathbf{R}), or blackboard bold, \mathbb{R} (\mathbf{R}). You may want to used these to express the sets of real numbers (\mathbb{R} or \mathbf{R}), integers (\mathbb{Z} or \mathbf{Z}), rational numbers (\mathbb{Q} or \mathbf{Q}), and natural numbers (\mathbb{N} or \mathbf{N}).

To have text appear in a math expression use $\text{text}\{\text{text}\}$.

 $(0,1]=\{x\in\mathbb{R}:x>0\setminus text\{and }x\setminus text\}$ yields

 $(0,1] = \{x \in \mathbb{R} : x > 0 \text{ and } x \le 1\}.$ (Without the \text command it treats "and" as three variables: $(0,1] = \{x \in \mathbb{R} : x > 0 \text{ and } y \le 1\}$)

• Spaces and new lines

LATEX ignores extra spaces and new lines. For example,

This sentence will look fine after it is compiled

This sentence will look fine after it is compiled. Leave one full empty line between two paragraphs. Place \\ at the end of a line to create a new line (but not create a new paragraph).

This compiles

 $like \setminus this.$

This compiles

like

this.

Use \noindent to prevent a paragraph from indenting.

• Comments

Use % to create a comment. Nothing on the line after the % will be typeset. $f(x) = \sin(x)$ % this is the sine function yields $f(x) = \sin(x)$

• Delimiters

description command output

parentheses (x) (x)

brackets [x] [x]

curly braces $\{x\}$ $\{x\}$

$$\left\{\sin\left(\frac{1}{n}\right)\right\}_n^{\infty}$$
, differ to $\left\{\sin\left(\frac{1}{n}\right)\right\}_n^{\infty}$.

Currly braces are non-priting characters that are used to gather text that has more than one character. Observe the differences between the four expressions \mathbf{x}^2 , \mathbf{x}^2 , \mathbf{x}^2 , \mathbf{x}^2 , \mathbf{x}^2 , when typeset: x^2 , x^2 , x^2 , x^2

• Lists

You can produce ordered and unordered lists.

description	command	output
	$\left\{ \operatorname{itemsize}\right\}$	
	\item	
unordered list	Thing 1	• Thing 1
	\item	• Thing 2
	Thing 2	
	$\ensuremath{\operatorname{end}}{\operatorname{(itemsize)}}$	
	\1 . (,)	
	$\left\{ enumerate \right\}$	
	\item	
ordered list	Thing 1	• Thing 1
	\item	• Thing 2
	Thing 2	
	$ \ \ \langle \mathrm{end}\{\mathrm{enumerate}\}$	

\bullet Symbols (in math mode)

- The basics

description	command	output
addition	+	+
subtraction	-	_
plus or minus	$\operatorname{\mathbf{pm}}$	±
multiplication (times)	$\setminus \mathbf{times}$	×
multiplication (dot)	$\backslash {f cdot}$	•
division symbol	$\backslash { m div}$	÷
division (slash)	/	/
circle plus	\bigcirc oplus	\oplus
circle times	\setminus otimes	\otimes
equal	=	=
not equal	$\backslash \mathbf{ne}$	\neq
less than	<	<
greater than	>	>
less than or equal to	$\backslash \mathbf{le}$	\leq
greater than or equal to	$\backslash \mathbf{ge}$	≤ ≥ ≈
approximately equal to	$\backslash \mathrm{approx}$	\approx
infinity	$\setminus \mathbf{infty}$	∞
dots	$1,2,3,\land ldots$	$1, 2, 3, \ldots$
dots	$1+2+3+\setminus cdots$	$1+2+3+\cdots$
fraction	$\frac{a}{b}$	$\frac{a}{b}$
square root	$\operatorname{\backslash} \operatorname{sqrt}\{x\}$	\sqrt{x}
nth root	$\operatorname{\backslash} \operatorname{sqrt}[n]\{x\}$	$\sqrt[n]{x}$
exponentiation	a^b	a^b
subscript	$\mathbf{a}_{-}\mathbf{b}$	a_b
absolute value	$ \mathbf{x} $	x
natural log	$\ln(x)$	ln(x)
logarithm	$\log_{-}\{a\}b$	$\log_a b$
exponential function	$e^x = \exp(x)$	$e^x = \exp(x)$
degree	$\backslash \mathrm{deg}(\mathrm{f})$	$\deg(f)$

- Functions

- Greek and Hebrew letters

description	output	command	output
\alpha	α	\tau	au
ackslash	β	$\backslash {f theta}$	θ
$\backslash \mathbf{chi}$	χ	$\setminus upsilon$	v
\d elta	δ	$\backslash xi$	ξ
$\ensuremath{\backslash} \mathbf{epsilon}$	ϵ	$\setminus \mathbf{zeta}$	ζ
\vert varepsilon	ε	$\backslash {f Delta}$	Δ
$\backslash {f eta}$	η	$\backslash \mathbf{Gamma}$	Γ
\gamma	γ	$ackslash ext{Lambda}$	Λ
$\setminus iota$	ι	$\backslash \mathbf{Omega}$	Ω
\kappa	κ	$ackslash \mathbf{Phi}$	Φ
\lambda	λ	$\backslash \mathbf{Pi}$	Π
$\backslash \mathbf{mu}$	μ	$ackslash \mathbf{Psi}$	Ψ
ν	ν	$\backslash \mathbf{Sigma}$	Σ
$\backslash omega$	ω	$\backslash {f Theta}$	Θ
ackslashphi	ϕ	$\setminus \mathbf{Upsilon}$	Υ
$\backslash { m varphi}$	φ	$ackslash \mathbf{Xi}$	Ξ
$ackslash \mathbf{pi}$	π	\all eph	×
$ackslash \mathbf{psi}$	ψ	$ackslash \mathbf{beth}$	コ
$\$ ho	ho	$\backslash {f daleth}$	٦
$\setminus sigma$	σ	$\setminus \mathbf{gimel}$	J

- Set theory

description	command	output
set brackets	$\setminus \{1,2,3\}$	1, 2, 3
element of	\setminus in	\in
not an element of	$\not\not$	∉
subset of	$\setminus subset$	\subset
subset of	\subseteq	\subseteq
not a subset of	$\not\subset$	$\not\subset$
contains	\supset	\supset
contains	\supseteq	\supseteq
union	$\setminus \operatorname{cup}$	\cup
intersection	\cap	\cap
big union	$\begin{array}{c} \begin{array}{c} -1^{1} & 10 \end{array} A_n \end{array}$	$\bigcup_{n=1}^{10} A_n$
big intersection	$\big(\sum_{n=1}^{10} A_n $	$\bigcap_{n=1}^{10} A_n$
empty set	$\ensuremath{\setminus} \mathbf{emptyset}$	Ø
power set	\mathbf{P}	${\cal P}$
minimum	$\operatorname{\backslash} \min$	\min
maximum	$\backslash \max$	max
supremum	$\setminus \sup$	\sup
infimum	\inf	\inf
limit superior	\limsup	$\lim \sup$
limit inferior	\liminf	$\lim\inf$
closure	$\operatorname{\widetilde{A}}$	\overline{A}

- Calculus

description	command	output
derivative	$\frac{df}{dx}$	$\frac{df}{dx}$
derivative	f'	f'
partial derivative	$\frac{frac{\pi f}{\pi x}}{f}$	$\frac{\partial f}{\partial x}$
integral	\int	ſ
double integral	\iint	ſſ
triple integral	\iiint	JJJ
limits	$\lim_{x\to \infty} x \to \inf y$	$\lim_{x \to \infty}$
summation	$\\ \sum_{n=1}^{} {\inf y} a_n$	$\sum_{\substack{n=1\\ \infty}}^{\infty} a_n$
product	$\prod_{-}{n=1}^{}_{-}{\inf}y}a_{-}n$	$\prod_{n=1}^{\infty} a_n$

- Logic

description	command	output
not	$\setminus \mathbf{neg}$	\neg
and	$\backslash land$	\wedge
or	$\setminus \mathbf{lor}$	\vee
ifthen	$\setminus implies$	\Longrightarrow
if and only if	$\setminus \mathbf{iff}$	\iff
logical equivalence	$\setminus \mathbf{equiv}$	=
therefore	$\backslash { m therefore}$	<i>:</i> .
there exists	$\setminus \mathbf{exists}$	3
for all	\backslash forall	\forall

- Linear algebra

description vector vector norm	<pre>command \vec{v} \mathbf{v} \vec{v} \left[</pre>	$egin{aligned} output\ ec{v}\ \mathbf{v}\ ec{v} \end{aligned}$
matrix	\begin{array}{ccc} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 0 \end{array} \right]	$ \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 0 \end{bmatrix} $
determinant	\left \begin{array}{ccc} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 0 \end{array} \right	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
determinant trace dimension	$\det(A)$ $\operatorname{det}(A)$ $\operatorname{dim}(V)$	$\det(A)$ $\operatorname{tr}(A)$ $\dim(V)$

- Number theory

description	command	output
devides		
does not devide	$\setminus \mathbf{not} $	X
div	$\backslash \mathrm{d} \mathrm{v}$	÷
mod	$\setminus \mathbf{mod}$	mod
greatest common divisor	\gcd	gcd
ceiling	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$\lceil x \rceil$
floor	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$\lfloor x \rfloor$

- Geometry and trigonometry $% \left\{ \mathbf{r}^{\prime}\right\} =\left\{ \mathbf{r}^{\prime}\right\} =\left\{ \mathbf{r}^{\prime}\right\}$

description	command	output
angle	\angle ABC	$\angle ABC$
degree	90°	90°
triangle	\triangle ABC	$\triangle ABC$
segment	$\operatorname{Overline}\{AB\}$	\overline{AB}
sine	$\setminus \sin$	\sin
cosine	$\setminus \mathbf{cos}$	cos
tangent	$\setminus an$	\tan
cotangent	$\setminus \mathbf{cot}$	\cot
secant	$\backslash \mathbf{sec}$	\sec
cosecant	$\backslash \mathbf{csc}$	\csc
inverse sine	\arcsin	arcsin
inverse cosine	$\setminus \arccos$	arccos
inverse tangent	\arctan	\arctan

- Symbols (in text mode)

The following symbols do ${f not}$ have to be surrounded by dollar signs

description	command	output
dollar sign	\\$	\$
percent	\%	%
ampersand	\&	&
pound	\#	#
backslash	\textbackslash	\
left quote marks	, ,	"
right quote marks	, ,	"
single left quote	,	,
single right quote	,	,
hyphen	X-ray	X-ray
en-dash	pp. 515	pp. 5–15
em-dash	Yesor no?	Yes—or no?