ABSTRACT

BHANUSHALI, KIRTI NARAYAN. Design Rule Development for FreePDK15: An Open Source Predictive Process Design Kit for 15nm FinFET Devices. (Under the direction of Dr. W. Rhett Davis).

The semiconductor industry has seen an exponential growth curve since the advent of MOS transistors, as computing power have scaled continuously with transistor sizes. However, this scaling now faces major roadblocks beyond 22nm due to excessive leakage and short channel effects. This has encouraged research on a multi-gate transistor architecture, FinFET, as an alternative to continue on the exponential growth curve. This further necessitates introduction of FinFET device and supporting tools into university education through development of open source process development kits.

In this thesis, FinFET device architecture is first studied, and lithographic and process challenges involved in the fabrication of sub-20nm device structures are analyzed. In particular, double patterning lithography technique is presumed for critical dimensions and basic methodology for design of FinFET layouts and the layer stack for integrated circuit fabrication is developed to meet these requirements. Design rules which play a crucial role in ensuring the yield and reliability of a layout are developed for good layout density considering lithographic constraints and also graphically explained.

Further, these design rules are validated by running Calibre design rule checks on standard layout designs. The layout density of an inverter cell designed using these design rules is compared to that of an inverter cell in 45nm bulk technology and is evaluated to see whether it agrees with implemented designs.

This work is a step in the direction of the complete development of the FreePDK15TM, an open source process design kit for 15nm FinFET device, which aims to support introduction of large scale FinFET based IC design into universities and help train future VLSI design engineers.

© Copyright 2014 by Kirti Bhanushali

All Rights Reserved

Design Rule Development for FreePDK15: An Open Source Predictive Process Design Kit for 15nm FinFET Devices

by Kirti Bhanushali

A thesis submitted to the Graduate Faculty of North Carolina State University in partial fulfillment of the requirements for the degree of Master of Science

Electrical Engineering

Raleigh, North Carolina

2014

APPROVED BY:

Dr. Mehmet Ozturk		Dr. Paul Franzon
	Dr. W. Rhett Davis	
	Committee Chair	

DEDICATION

To my father Narayan Bhanushali, my mother Laxmi Bhanushali and rest of my family for supporting me throughout my education.

BIOGRAPHY

Kirti Bhanushali received his Bachelor of Engineering degree in Electronics from University of Mumbai in 2010. He then went on to join Sedemac Mechatronics as an Engineer working on development of electronic control units for diesel engines. In Fall 2012, he joined Master of Science program in Electrical Engineering at North Carolina State University. His research interests include circuit design for high speed transceiver systems.

ACKNOWLEDGMENTS

I would like to thank Dr. W. Rhett Davis for giving me an opportunity to work on this project and his assistance throughout this project. Our weekly meeting were a great learning experience, each time I learnt something new.

I would like to express deep gratitude to Alexandre Toniolo at NanGate Inc., as this project would not been possible without his support in development of design rules and explanation of Local interconnect layers was crucial to this project.

I am also extremely grateful to the team at Mentor Graphics, particularly Tarek Ramadan, Ahmed Hammed Fathy, Omar El-Sewefy, Ahmed El-Kordy, and Hend Wagieh for developing the first cut of the design rules and also supporting us throughout this project.

I would like to thank my family and friends back home in India for their patience and for encouraging me throughout these years.

Finally, I would like to thank my friends at N C State for keeping me motivated throughout this graduate program. I would like specially thank Deeksha Lal for proof reading and constantly providing feedback on my thesis. I would also like to thank my friends Ankit Ganguly, Abhijeet Deshpande, Mayank Kothiya for their patience while being friends with a spoilsport like me.

TABLE OF CONTENTS

L	IST O	F TABLES	vii
L	IST O	F FIGURES	viii
1	IN	FRODUCTION	1
	1.1	Motivation	1
	1.2	Thesis Outline	2
2	SE	MICONDUCTOR TECHNOLOGY BEYOND 22NM	4
	2.1	Issues with bulk technology	5
	2.1.		
	2.1.		
	2.1.	3 Channel Length modulation	10
	2.1.	4 Drain Induced Barrier Lowering (DIBL)	11
	2.1.	5 Gate Induced Drain Leakage (GIDL)	12
	2.2	Introduction - FinFET	13
	2.3	Operation of FinFET	16
	2.4	FinFET Performance	18
	2.4.	1 Advantages	18
	2.4.	2 Issues	22
3	IN	TRODUCTION TO FINFET FABRICATION PROCESS AND LAYERS	25
	3.1	FinFET fabrication – 15nm	25
	3.2	Lithography Techniques	25
	3.2.	1 Double patterning Lithography (DPL)	26
	3.3	Introduction to FreePDK15 TM layers	28
	3.3.	1 Back-End-Of-Line (BEOL) Layers	28
	3.3.	2 Cut Layer	30
	3.3.	3 Middle-of-line Layers (MOL)	31
4	DE	VELOPMENT OF DESIGN RULES FOR FREEPDK15TM	34
	4.3	DRC software	34
	4.3	Types of design rules	35

	4.2.1	Width Rules	35
	4.2.2	Spacing Rules	36
	4.2.3	Enclosure Rules	36
	4.2.4	Overlap Rules	37
	4.2.5	Area Rules	38
	4.2.6	Antenna Rules	38
	4.2.7	Multi-colored design rules	38
	4.2.8	Restrictive Design Rules (RDR)	39
4	1.3 Des	sign Rules for FreePDK15 TM	40
	4.3.1	NWell (NW) Rules	40
	4.3.2	Active (ACT) Rules	42
	4.3.3	GATE design rules	46
	4.3.4	GATEAB rules	49
	4.3.5	Gate cut mask (GATEC) rules	51
	4.3.6	Threshold voltage adjust layer (VTH/VTL) rules	54
	4.3.7	NIM/PIM rules	56
	4.3.8	Active Interconnect Layer-1 (AIL1) rules	59
	4.3.9	Active Interconnect Layer-2 (AIL2) rules	61
	4.3.10	Gate Interconnect layer (GIL) rule	64
	4.3.11	Via0 Rule (V0) rule	67
	4.3.12	Metal1 Rules	71
5	FINFET	Γ LAYOUTS AND DESIGN RULE VALIDATION	82
5	5.1 Sin	gle Transistor Layout of a FinFET	82
5	5.2 Des	sign rule validation	84
	5.2.1	Minimum size inverter cell:	84
	5.2.2	NAND4 cell	85
	5.2.3	Tiled Inverter and NAND4 cells	86
	5.2.4	Layout Density Comparison	88
6	CONCI	LUSION AND FUTURE WORK	91
7	REFER	ENCES	93

LIST OF TABLES

Table.4.1: NWell design rules.	41
Table 4.2: Active design rules.	43
Table 4.3: GATE layer design rules.	46
Table 4.4: GATEAB layer design rules.	49
Table 4.5: GATEC layer design rules.	51
Table 4.6: VTH/VTL layer design rules.	54
Table 4.7: NIM/PIM design rules.	56
Table 4.8: AIL1 design rules.	59
Table 4.9: AIL2 design rules.	61
Table 4.10: GIL design rules.	64
Table 4.11: V0 design rules	67
Table 4.12: M1A design rules	71
Table 5.1: Area Comparison.	89

LIST OF FIGURES

Fig. 2.1: Cross section of a Bulk MOSFET
Fig. 2.2: Piece-wise Linear characteristics of MOSFET
Fig. 2.3: Id vs Vgs characteristics of a MOSFET.
Fig. 2.4: Distribution of I_{ON} with Channel dopant for 20 nm transistors. This shows that the
current varies up to 30% with variation channel dopant concentration
Fig. 2.5: Distribution of I_{OFF} with Channel dopants for 20 nm transistors. This shows that I_{OF}
varies by up to 20% with variation in channel dopant concentration.
Fig. 2.6: Distribution of V_{TS} with Channel dopants for 20 nm transistors. This shows that the
threshold voltage varies by up to 200 mV with channel dopant concentration which wil
introduced undesirable power and speed variations.
Fig. 2.7: I _D vs V _{DS} plot for an NMOS
Fig. 2.8: I_D and Gate voltage V_G plot for two drain voltages. When the drain current is high
electrical characteristics are left-shifted due to DIBL
Fig. 2.9: GIDL current in medium V_T , Low V_T and High V_T 45 nm NMOS transistor
Fig. 2.10: Cross-section of Intel's Tri-gate.
Fig. 2.11: 3D view of Intel's Tri-gate device
Fig. 2.12: I _D -V _{DS} curves for a 25nm FinFET.
Fig. 2.13: Current density distribution in Intel Tri-gate structure for different gate bia
voltages

Fig. 2.14: Leakage path away from the MOSFET.	19
Fig. 2.15: A lower Sub-threshold slope can be leveraged to operate the device at lower power	er
and/or to improve speed performance	19
Fig. 2.16: Plot of G _{DS} vs Physical length for FinFET and Planar devices	20
Fig. 2.17: Comparison of sigma (V _{TH}) for FinFET and planar FET	21
Fig. 2.18: Width Quantization.	22
Fig. 2.19: Detail list of FinFET capacitances.	23
Fig. 3.1: Representation of Double Patterning using two colored mask. (a) Metal Pitch	_
Metal1A is 'X' (b) Metal Pitch – Metal1B is 'X' (c) Final Metal pitch is 'X/2'	27
Fig. 3.2: Steps involved in Self-Aligned-Double-Patterning Lithography.	28
Fig. 3.3: Representation of cross-section of hierarchical metal layer scaling.	29
Fig. 3.4: Typical digitized 6bit SRAM cell and its expected printed image on Silicon	30
Fig. 3.5: Shows resulting printed in double patterning image due to horizontal and vertice	al
mask misalignment. Horizontal misalignment results in reduced gate length ' $L_{\rm g}$ ' and vertic	al
misalignment results in reduced device Width 'W'.	30
Fig. 3.6: Shows how printing the contiguous gate layer and then using the cut mask to remove	ve
the unwanted part of the gate helps in achieving the best printout for devices.	31
Fig. 3.7: Cross-section of FinFET.	32
Fig. 3.8: Shows use of local interconnect layers for connecting the internal nets and for	oı
connection to the power rails.	33
Fig. 4.1: Width and Spacing rules.	36

Fig. 4.2: Via misalignment.	37
Fig. 4.3: Minimum overlap of the two shapes.	37
Fig. 4.4: Pitch Rule between metal layers.	39
Fig. 4.5: Pinching seen in the case of jogs. As shown, pinching can be remove	ved by using
thicker layer at the bend.	40
Fig. 4.6: Graphical explanation of NW rules.	42
Fig. 4.7: Graphical representation of ACT rules	45
Fig. 4.8: ACT.2 rule	46
Fig. 4.9: Graphical representation of GATE layer rules	49
Fig. 4.10: Graphical representation of GATEAB layer rules	51
Fig. 4.11: Graphical representation of GATEC layer rules	54
Fig. 4.12: Graphical representation of VTH/VTL layer rules	56
Fig. 4.13: Graphical representation of NIM/PIM layer rules	58
Fig. 4.14: Graphical representation of AIL1 rules	61
Fig. 4.15: Graphical representation of AIL2 rules	63
Fig. 4.16: Graphical representation of GIL rules	67
Fig. 4.17: Graphical representation of V0 rules.	71
Fig. 4.18: V0 spacing rules.	72
Fig. 4.19: Graphical representation Metal1 design rules	79
Fig. 4.20: Metal spacing as a function of metal width. Shows metal spacing for	metals with
same colors greater than metal spacing for metals with different colors	80

Fig. 5.1: Basic transistor Layouts of (a) Planar MOS device (b) a FinFET and(c) a Fin	ıFET as
seen on the physical mask	83
Fig. 5.2: Dummy Gates for Uniformity in FinFET.	83
Fig. 5.3: Inverter cell for 15nm FinFET device.	84
Fig. 5.4: NAND4 standard cell for 15nm FinFET.	86
Fig. 5.5: Tiled Inverter cells for 15nm FinFET.	87
Fig. 5.6: Tiled NAND4 cells for 15nm FinFET.	88
Fig. 5.7: Inverter Layout for 45 CMOS process.	89

1 INTRODUCTION

This chapter discusses the motivation behind development of an Open Source Process design kit FreePDK15TM for 15 nm FinFET devices. In the latter part of the chapter a brief outline of the thesis is presented.

1.1 Motivation

International Technology roadmap for Semiconductors (ITRS) [1] predicts physical length of transistors to scale down to 16 nm by 2016. However, bulk CMOS technology suffers from high leakage power, random dopant fluctuations and other short channel effects which greatly limit the scaling of the bulk CMOS technology beyond 22nm feature size. Thus, the current trend in semiconductor technology is in the direction of development Fully Depleted Silicon On Insulator (FDSOI) and multi-gate FinFET architectures, as they offer lower leakage power and improved short channel characteristics. A literature survey of the I_{ON} against I_{OFF} performance [6] [7] [8] [9] of FinFET and FDSOI devices at 22nm indicates that FinFET have a higher drive current for the same IOFF. In addition, due to the wrapping nature of the gate structure in FinFET they have low leakage power and better short channel characteristics.

Companies like ST Microelectronics are still working towards development of FDSOI technology for mass production [3]. However, major foundries like Intel, TSMC and GlobalFoundries have started producing FinFETs. On May 4, 2011 New York Times reported that Intel Inc., would be using FinFET at 22nm. This announcement was seen as the most radical change in the Semiconductor Industry in 4 decades [4]. Three years on and Major

Foundries like Intel and TSMC are expected to roll out FinFET at 15nm and 16nm feature size respectively in couple of years [2].

It can be seen that FinFET devices are to dominate the silicon roadmap for the foreseeable future. Thus, it is necessary to introduce this technology in university education and research for the designers to gain an understanding. It is necessary to develop Process Development Kits (PDK) in order to understand the complexity of these new processes [5]. However, intellectual property is strictly held on to by the industry and it requires large investment for licensing this technology which is beyond the scope of universities and educational institutions. As training the next generation of VLSI designers is of paramount importance it is necessary to develop these tools and process development kits.

This provides the motivation for development of open source tools and a PDK which can support sub-20nm FinFET technology. Additionally, Schuddinck et. al, [35] shows examples of 15nm FinFET standard cells and these layouts are used as a reference for FreePDK15 which offers a physical gate length of 15nm, 16nm and 20nm. This project is thus a step towards development of an open source PDK. As part of this project, FinFET architecture is analyzed Additionally, a set of design rules meeting the requirements of double patterning lithography are developed and a Calibre Design rule deck file is created and evaluated on a set of standard cell layouts.

1.2 Thesis Outline

The rest of this thesis is organized as follows. Chapter 2 describes the challenges involved with scaling MOSFETs beyond 22nm and how FinFET, as an alternative, have helped

in overcoming these issues. Specifically. Chapter 3 discusses the limitations imposed on FinFET fabrication due to optical lithography below 22 nm, and introduces the different layers which would help in the realization of a layout using FinFETs. In Chapter 4, different kinds of design rules are first analyzed and then developed for the layers used within the FreePDK15TM design kit. In chapter 5, these design rules are validated against a set of layouts by running design rule checks and evaluating the layout density for a standard cell. Finally, chapter six concludes this thesis and presents the scope for future work.

2 SEMICONDUCTOR TECHNOLOGY BEYOND 22NM

Since the advent of MOSFET technology, bulk MOSFETs have been the preferred choice of the semiconductor industry due to their simplified planar fabrication process. A bulk MOSFET is a planar four-terminal transistor and consists of a single gate structure that controls the channel current. The device is shown in Fig. 2.1 and its four terminals are the Gate, the Drain, the Source and the Bulk, with the Gate terminal isolated from the bulk by an oxide layer. A MOSFET works on the basic principle of formation of an inversion charge layer by application of potential difference between the Gate and the Bulk terminal and thus the name Field Effect transistor (FET). This charge layer starts conducting on application of a potential difference between the Drain and the Source terminal.

Fig. 2.1 Cross section of a Bulk MOSFET [24]

As MOS technology has scaled several techniques have been adopted to improve performance. The major changes to the original structure include use of Metal Gate High-K stack to overcome the issue of Random Dopant Fluctuation (RDF) and gate leakage. However, bulk technology has now reached its limit and suffers from several issues when scaled beyond 22nm.

This section presents some of these problems and introduces FinFET as a prospect beyond 22nm. The multi-gate architecture of the device is explained and further, the current flow in the channel is described. The chapter ends with an overview of the advantages and challenges seen with adoption of multi-gate architecture.

2.1 Issues with bulk technology

As a direct consequence of scaling, short channel length devices exhibit a number of second order effects which are not generally observed in longer channel devices. Some of these effects, like channel length modulation, drain induced barrier lowering (DIBL), Gate induced drain leakage (GIDL) and sub-threshold conduction deteriorate MOSFET performance. In order to overcome these effects, body doping is increased, but it results in random variation of the threshold voltage. This section describes these second order effects in detail.

2.1.1 Leakage power consumption

Total power dissipation in CMOS is described by the following equation:

$$P_{avg} = P_{short} + P_{dynamic} + P_{leakage} (2.1)$$

$$= I_{sc} V_{dd} + C_L V_{dd}^2 f + I_{leak} V_{dd}$$
 (2.2)

where P_{short} represents the power dissipation due to direct short circuit path current I_{sc} which happens when both PMOS and NMOS are conducting. Dynamic Power $P_{dynamic}$ represents the power dissipation due to the charging and discharging of load capacitor C_L . Leakage Power $P_{leakage}$ is the power dissipation because of the leakage current I_{leak} in the off-state. For deep submicron (DSM) devices, leakage power due to increase in I_{leak} is one of the major contributors to average power dissipation. In MOSFETs, the main mechanism behind power leakage is flow of sub-threshold leakage current or off-state leakage current.

2.1.1.1 Sub-threshold Leakage

The transition of a MOSFET from the OFF-state to the ON-state is not as abrupt as is modeled by its piece-wise linear model shown in Fig.2.2.

Fig. 2.2 Piece-wise Linear characteristics of MOSFET

In the sub-threshold or OFF-state region, the potential across the channel is almost constant and drift current is negligible. In practice, however, a channel current exists and it is essentially caused by the diffusion of minority carriers due to a concentration gradient between the drain/source and the body. This leakage current varies exponentially with gate voltage [10]. The sub-threshold swing *S* of a MOSFET is defined by the following equation

$$I_{off} = I_{VT} 10^{-Vt/S}$$
 (2.4)

where I_{VT} is the current at which threshold voltage V_T is defined. The equation and the I_D vs V_{GS} characteristics in Fig.2.3 indicate that the leakage current largely depends on I_{OFF} , threshold voltage V_T and the sub-threshold slope. A lower sub-threshold slope is desired for low power operation. As shown by Cho et.al [13] the sub-threshold slope has degraded with scaling and is around 90dB/dec for 20 nm Bulk MOSFET. As a result, the contribution of Sub-threshold leakage to the total power dissipation has significantly increased and is a major impediment to circuit design.

Fig. 2.3 Id vs Vgs characteristics of a MOSFET [12]

2.1.2 Random Dopant Fluctuation

As the planar MOSFET transistor scales beyond 20 nm gate length, the impact of channel doping on the characteristic of MOSFET becomes more dominant [14]. The discrete dopant distribution is random and this results in random threshold voltage fluctuations and drive current mismatch [14]. Figures 2.4, 2.5 and 2.6 present the distribution of I_{ON}, I_{OFF} and saturation threshold voltage V_{TS} with channel dopants. Saturation threshold voltage is defined as the gate voltage for which saturation drain current is 100 nA.

Fig. 2.4 Distribution of I_{ON} with Channel dopant for 20 nm transistors [14]. This shows that the current varies up to 30% with variation channel dopant concentration

Fig. 2.5 Distribution of I_{OFF} with Channel dopants for 20 nm transistors [14]. This shows that I_{OFF} varies by up to 20% with variation in channel dopant concentration.

Fig. 2.6 Distribution of V_{TS} with Channel dopants for 20 nm transistors [14]. This shows that the threshold voltage varies by up to 200 mV with channel dopant concentration which will introduced undesirable power and speed variations.

2.1.3 Channel Length modulation

The long channel current equation for a MOSFET suggests that the channel current is constant in saturation region.

$$Idsat = \frac{\beta(Vgs - Vt)^2}{2} \quad ; Vds > Vgs - Vt \qquad (2.6)$$

As the channel length decreases, it is seen that the channel current begins to depend on drain voltage. This happens as the depletion width near the drain increases because of the presence of extra dopants. Thus, the effective channel length decreases and the equation for the drain current I_D is modified as follows

$$I_D = I_{dsat} (1 + \lambda V_{DS}) \qquad (2.7)$$

where λ is the channel length modulation factor. Since the output impedance r_0 of the device is inversely proportional to λ , it decreases significantly with length. This reduces the intrinsic gain A_V of the device which is $g_m r_0$ and degrades its analog performance.

Fig. 2.7 I_D vs V_{DS} plot for an NMOS

2.1.4 Drain Induced Barrier Lowering (DIBL)

Drain Induced Barrier lowering is a short channel phenomenon in which the drain voltage starts controlling the threshold voltage of the device. DIBL is measured by change in threshold voltage V_T due to drain bias V_{DS} (ΔV_T / ΔV_{DS}) and becomes more prominent for higher drain voltages. At the drain, DIBL causes the channel current to increase as the voltage starts controlling the inversion layer charge. The impact of DIBL has increased with scaling and as reported by Cho et.al [13] is ~ 100mV/V for 20 nm Bulk MOSFETs.

Fig. 2.8 I_D and Gate voltage V_G plot for two drain voltages. When the drain current is high, electrical characteristics are left-shifted due to DIBL [17].

2.1.5 Gate Induced Drain Leakage (GIDL)

Another type of leakage seen in MOSFETs is Gate Induced Drain Leakage, which is due to the presence of carriers in the drain-gate overlap region. When the gate is grounded and the drain is connected to a high potential, a large electric field develops across the oxide in the

overlapped region. A significant drain leakage current is seen in this condition and is plotted in Fig. 2.9.

Fig. 2.9 GIDL current in medium V_T , Low V_T and High V_T 45 nm NMOS transistor [18]

2.2 Introduction - FinFET

Due to the above issues a multi-gate architecture can be considered as a key enabler for scaling the device beyond 22nm. One such example is the FinFET, which is a multi-gate transistor that promises to offer greater performance and power advantage over traditional MOS transistors. The cross-sectional view of a FinFET is shown in Fig 2.9.

Fig. 2.10 Cross-section of Intel's Tri-gate [19]

Fig. 2.11 3D view of Intel's Tri-gate device [19]

In a FinFET, a thin slice of Silicon called as "fin" is wrapped on three sides by a gate, and this is how the FinFET derives its name. This wrapping allows the gate to exercise greater electrical control over the channel and helps in reducing short channel effects and leakage current. The current flows along the top surface of the Fin, as shown in in Fig. 2.11.

Due to the three-dimensional nature of a FinFET structure it is possible to pack more number of transistors in the same area. Also, this structure increases the effective width W_{eff} of the device as given by

$$W_{eff} = 2HFin + WFin$$
 (2.7)

where *HFin* is the height of the fin and *WFin* is the width of the Fin. These factors aid in attaining higher I_{ON} per unit area.

The fin is a fully depleted thin slice of Silicon. This eliminates the need for implanting dopant atoms, which would otherwise contribute to RDF. It also helps in overcoming short channel effects as well as in eliminating the leakage path away from the gate.

The fin width has to be less than the gate length to have greater electrical control over the channel. It is seen that devices with fin widths half that of the fin length have a better leakage performance [13]. Thus the Width of the fin and the Length have to scaled together in order to harness the advantage of fins.

Therefore, the width and height of the fin play a crucial role in defining the performance of the device and are the new scaling factors in circuit design.

2.3 Operation of FinFET

Basic principle behind the operation of FinFET is through control of channel charge by a three-dimensional gate, which is basically the same as that of a planar MOSFET. They have three regions of operation and the ID –VDS and the I_D - V_{DS} curves for a 25nm FinFET are as shown in Fig. 2.12.

Fig. 2.12 I_D-V_{DS} curves for a 25nm FinFET [12]

The presence of second gate modifies the inversion charge considerably compared to a planar MOSFET. Therefore, the main difference between the operation of FinFET and bulk MOSFET is the distribution of the current in the channel. The current density distribution is complex and varies with region of operation as illustrated in Fig.2.13. At low gate bias the current distribution is maximum in the middle of the channel. However, the gate control is

minimum in the middle of the channel and this results in off state leakage current. At higher gate voltages the current density distribution is maximum at the Fin-oxide interface. Due to this non-uniform nature of the current density distribution for different gate biases, the compact model are much more complicated than planar MOSFET.

Fig. 2.13 Current density distribution in Intel Tri-gate structure for different gate bias voltages [25]

2.4 FinFET Performance

The FinFET structure and its characteristics have been discussed in the previous sections and they have a considerable impact on the performance of the circuit. In the following section, the performance advantages of this device in terms of speed and power are evaluated and the challenges incurred during device circuit co-design are discussed.

2.4.1 Advantages

FinFET structure are anticipated to have multiple benefits like low power operation, reduced short channel effects and improved performance. The following section analyses these features and compares these performance metrics with bulk MOSFET.

2.1.4.1 Reduction in Leakage power:

As the feature size shrinks, the drain and gate of the MOSFET start competing with each other in order to take control over the channel. The influence of the gate on the channel reduces as we go away from the gate and the outcome of this is the creation of a leakage path away from the channel as indicated in the Fig. 2.14. As a consequence, a MOSFET starts acting like a resistor at smaller channel lengths. The advanced geometry of the FinFET provides better control and eliminates this leakage path away from the gate. The sub-threshold slope is determined by the gate oxide and depletion layer capacitance. In FinFET the fin is depleted and thus there is no depletion layer capacitance. The Sub-threshold slope is thus lowered this can be exploited in two different ways.

One way is to keep the same I_{ON} and achieve a lower leakage current I_{OFF} . The second method is to increase I_{ON} and achieve lower threshold voltage for the same leakage current for improving the speed performance as shown in Fig. 2.15.

Multi-gate transistors also exhibit a lower DIBL effect by eliminating the influence of drain potential on the channel in OFF state.

Fig. 2.14 Leakage path away from the MOSFET

Fig. 2.15 A lower Sub-threshold slope can be leveraged to operate the device at lower power and/or to improve speed performance [19]

2.4.1.2 Higher output impedance and thus better analog performance

Channel Length modulation is predominantly seen due to the shortening of the channel length beyond the pinch off point. Because of the wrapping of the gate around the fin and the narrow width of the Fin, it is fully depleted. Therefore, increase in drain voltage doesn't deplete the fin further and the variation in channel length is low. The reduced variation in channel current with respect to drain voltage results in a lower output trans-conductance $G_{DS} = I_D / V_{DS}$. Lower output trans-conductance translates into higher output impedance and thus a higher intrinsic gain $Av = G_m * r_0$.

Fig. 2.16 Plot of G_{DS} vs Physical length for FinFET and Planar devices [15]

The comparative analysis of G_{DS} for FinFET and Planar MOS-FET for gate lengths from 60nm to 1um in Fig.2.16 shows a multi-fold improvement in G_{DS} for FinFET devices over planar [15].

2.4.1.3 Lower Random Dopant Fluctuation (RDF)

RDF induced threshold voltage variation can be reduced by using light channel surface doping or fully depleted thin-body, as FinFETs use an undoped body they are immune to RDF except for the variations introduced by impurities in the body. A relative study of threshold variation $sigma~(V_{TH})$ for FinFET and MOSFET shown in Fig. 2.17 indicates a substantial decrease in $sigma~(V_{TH})$ due to both body and source/drain RDF.

Fig. 2.17 Comparison of sigma (V_{TH}) for FinFET and planar FET [23]

2.4.1.4 Higher drive current

The effective width of FinFETs tends to be 25% higher than that of a planar MOSFET. As a result the drain current in FinFET is much greater than a planar structure. This is reflected by the increase in input trans-conductance G_m which is proportional to the drain current of the device.

2.4.2 Issues

Multi-gate technology introduces additional challenges during the design cycle which complicate the device circuit co-design. A new design approach is required to accommodate thermal characteristics and device sizing, these issues are illustrated in the following section.

2.4.2.1 Width quantization

The total width of a FinFET is an integer multiple of individual fin width. The width of the device is one of the main design variable for modifying transistor characteristics however, device width can only increase in discrete steps for FinFET as shown in Fig. 2.18 for a 3 fin structure. Standard cell design requires complex device sizing in order to achieve a balance between power and speed, however, the discrete nature of the FinFET width limits this option.

Fig. 2.18 Width Quantization [19]

2.4.2.2 Higher intrinsic capacitances

Due to the wrap around nature of the gate, the FinFET structure tends to have higher parasitic capacitances. A complex parasitic model of a FinFET is shown in Fig. 2.19. The introduction of these parasitic capacitance complicate the layout extraction model of a FinFET and also limit their speed performance.

Name Domain Ccc Caps Cf TC Gate to top of fin diffusion Extraction Gate to diffusion inside Cc1, Spice Model channel Cc2 Csd Diff Source to drain diffusion Spice Model Gate to substrate inside Spice Model Cg channel Cg (in channel) Side View Gate to substrate Cg2 Extraction between fins Gate to diffusion between Cf2 Extraction fins Fin to substrate Cfin Spice Model Diff Diff Bulk diffusion to substrate Cdiff Spice Model Extraction Field poly to diffusion Cfp Gate to trench contact Ct Extraction **Top View** Contact to contact Ccc Extraction

Detailed Capacitance Components

Fig. 2.19 Detail list of FinFET capacitances [26]

2.4.2.3 Complex Thermal Characteristics

Heat dissipation in FinFETs is different from planar MOSFETs due to the increase in current density and because of the three dimensional nature of the structure. In case of planar MOSFET the heat is dissipated through the Silicon substrate. FinFETs on the other hand have a narrow fin structure and the heat is trapped in the Fin. This results in a higher thermal

coupling to the metal interconnects. Thus, selection of the fin height is important to ensure thermal reliability [21]. Thermal characterization of FinFET is complex and requires a review of additional parameters.

3 INTRODUCTION TO FINFET FABRICATION PROCESS AND LAYERS

Integrated circuit fabrication using FinFET technology for 15nm technology nodes involves a lot of technical challenges including limitation of the optical lithography process and introduction of specific interconnect layers. This chapter presents double patterning lithography process and explains the additional constraints introduced due to double patterning lithography. The chapter ends with a discussion on the layer stack used for FreePDK15TM.

3.1 FinFET fabrication – 15nm

FreePDK15TM kit is a 15nm FinFET technology kit, the selection of 15nm was done on the basis of ITRS-2011 table, which predicts a physical length of 16nm by 2016. However, the definition of 15nm FinFET technology is ambiguous as Schuddinck et.al, [35] which is a representative of industry, shows a standard inverter and NAND4 cell layouts and uses a physical length of 19nm for a 14nm FinFET technology. FreePDK15 thus provides an option of 16nm and 20nm for physical lengths.

3.2 Lithography Techniques

Micro-fabrication of integrated circuits involves use of photo-lithography, which uses Argon Fluoride (ArF) lasers in order to etch out semiconductor wafers. The wavelength of ArF is 193 nm, and this has enabled the transistor feature size to shrink from 0.5 um to 32 nm. Having reached this limit, the ArF technology cannot be scaled any further to keep up with Moore's Law. Several novel approaches, like immersion technology, multi patterning and resolution enhancement methods, have been proposed to extend the current lithography technique beyond 22nm [27]. An alternative is use of Extreme Ultra Violet (EUV) lithography,

which uses single exposure technique with sub 20 nm laser wavelength. EUV could thus be the next big step in fabrication technology, but its viability in volume production is currently held up by insufficient wafer throughput. Additionally, use of EUV technology would require a complete over-haul of current photo-lithography tools.

As a result major foundries have extended the use of photo-lithography by use of innovative solutions like Double Patterning. In this section, the process of double patterning is presented.

3.2.1 Double patterning Lithography (DPL)

Double patterning lithography is a lithography technique adopted for integrated circuit fabrication beyond 32nm and aims to double pitch density to twice the pitch density achieved by single patterning technique. In order to achieve a higher layout density a layout is decomposed into two different masks with two different colors. Figure 3.1 shows a representation of double patterning for a metal layer, it illustrates how using two different colored masks for metal layers can help achieve a twice the pitch density.

Some of the processes used for implementation of double patterning lithography are Litho-Etch-Litho-Etch (LELE), Litho-Freeze-Litho-Etch (LFLE) and Self Aligned Double Patterning (SADP), out of which SADP is described in details as it has the lower overcomes overlay issues, and is well suited for further scaling [31]. Thus, the choice of lithographic process influences the parasitic extraction. However, the impacts of the type of DPL lithographic process used is not considered while deciding the design rules for FreePDK15TM.

Fig. 3.1 Representation of Double Patterning using two colored mask. (a) Metal Pitch – Metal1A is 'X' (b) Metal Pitch – Metal1B is 'X' (c) Final Metal pitch is 'X/2'

3.2.1.1 Self-Aligned Double Patterning Lithography (SADP)

The Self aligned double patterning process is described in Fig. 3.2. The first step of the process is to expose the resist to form an initial dummy pattern called mandrel, which is then followed by deposition of a masking material is deposited on the side surfaces of the mandrel pattern. The next step of the process is to etch this masking material to form side wall spacers,

followed by another etching process to remove the resist pattern and the hard mask. Lastly, the residual spacers are removed which leaves behind thinner denser final pattern.

Fig. 3.2 Steps involved in Self-Aligned-Double-Patterning Lithography [31]

3.3 Introduction to FreePDK15TM layers

This section introduces the Metal layer stack used for FreePDK15TM. Additionally, the FreePDK15TM provides additional layers like cut mask and local interconnect layers which are discussed here.

3.3.1 Back-End-Of-Line (BEOL) Layers

The metal layer stack can be divided into

1. Metal1 – It is directly connected to the device and may be used for internal routing.

- 2. Intermediate metal It is an interface layer between metal layer and semi global metal layer and generally used for routing between two devices.
- 3. Semi-global metal It is wider metal layer (twice the metal1 width) and is generally used for connection between different circuits.
- 4. Global Metal layers It is the widest metal layer (four times metal1 width) and it is used for routing global nets like power and clock.

The layer stack follows a typical hierarchical scaling of ASIC architecture [30] and the cross section of the representation of hierarchy scaling of these metal layers is as shown in Fig. 3.3.

Fig. 3.3 Representation of cross-section of hierarchical metal layer scaling

3.3.2 Cut Layer

Cut mask/Cut layers are used by Self-aligned-double-patterning lithography as it becomes difficult to print non-uniform structures below 22 nm. The process starts with printing a wide area of uniform structure and then defining the required features by cut mask. The primary use of Cut mask is to remove the unwanted features that are printed by the previous mask. It can be seen how a cut mask is used while printing 6 bit SRAM cell in order to overcome misalignment [32] as shown in Figures 3.4 to 3.6.

Fig. 3.4 Typical digitized 6bit SRAM cell and its expected printed image on Silicon [32]

Fig. 3.5 Resulting printed in double patterning image due to horizontal and vertical mask misalignment. [32]

Fig. 3.6 Shows how printing contiguous gate layer and then using the cut mask to remove unwanted part of the gate helps in achieving the best printout for devices [32]

3.3.3 Middle-of-line Layers (MOL)

One of the distinct feature of fabrication below 22nm is use of MOL layers in order to connect the Back-end-of-line layers (BEOL) like Active and Gate to Front-End-of-Line-Layers (FEOL) like Metal. MOL layers have been introduced to overcome electrical resistance concerns and performance loss between connected layers [27]. MOL layers are also used for connecting internal nets, internal devices as well as for connection to the supply rails resulting in a denser layout. The cross-section of a FinFET device along with the relevant layers is as shown in Fig. 3.7.

Fig. 3.7 Cross-section of FinFET

Explanation of local interconnect layers:

- 1. Active Interconnect Layer-1 (AIL-1): It is used for connecting the individual fins of the FinFET
- 2. Active Interconnect Layer-2 (AIL-2): It is used for connecting the AIL-1 layers and thus the fins to the B-E-O-L like Metal1 through a via.
- 3. Gate Interconnect Layer (GIL): It is used for connecting the Gate of the device to metal layer.

Fig. 3.8 Shows use of local interconnect layers for connecting the internal nets and for connection to the power rails

4 DEVELOPMENT OF DESIGN RULES FOR FREEPDK15TM

Design rules are a set of geometric and connectivity guidelines for constructing the process mask, and they are specific for a particular semiconductor technology and lithography process. They help the designer verify the mask design before sending it for fabrication and are thus an important interface between designers and process engineers. Also, semiconductor manufacturing suffers from process variability and this necessitates confirmation of the design against set design rules. This is achieved in Electronic Design Automation (EDA) tools by a process called Design Rule Check (DRC).

The main objective of DRC is to achieve high yield for the design, since if the design rules are violated the design may not function as desired. However, at the same time, design rules are a primary determinant of the layout density and thus the cost of the technology [36]. Thus, it is necessary to develop optimum design rules that meet the requirements of high layout density and high yield.

This chapter describes the types of design rules and the programming language used for their development. Additionally, all the design rules for FreePDK15TM are listed and explained.

4.3 DRC software

The Calibre design rules deck were developed using Mentor graphics Standard Verification Rule Format (SVRF) file. The rule file consists of definition of the original layer,

generation of the derived layer, electrical and geometric rule checking, connectivity extraction, circuit comparison, and parasitic extraction [40].

4.3 Types of design rules

Design rules can be categorized on the basis of different geometrical, electrical and lithographic constraints. Conventionally, a simple classification based on minimum width or minimum spacing of a feature was sufficient for designing functional layouts. However, the escalation of lithographic requirements has increased the complexity of design rules, thus necessitating the introduction of additional restrictive design rules.

This section describes basic design rule types used in the design rule deck of FreePDK15TM.

4.2.1 Width Rules

The width of a polygon is defined by the distance between the edges of the polygon. Since the minimum width of a polygon is decided by the resolution of the lithographic technique used, it is necessary to define a minimum width rule (Fig.4.1). Also, violation of this rule manifests itself in the form of an open-circuit in the design [34].

Fig. 4.1 Width and Spacing rules

4.2.2 Spacing Rules

The spacing between any two shapes is defined by the distance between the outside edges, and one of the most common form of spacing rules used is the minimum spacing rule (Fig.4.1). This rule ensures electrical isolation between two shapes, for example, two wells [11]. Failure to meet this rule may result in a short circuit. [34].

4.2.3 Enclosure Rules

An enclosure is defined by the distance between the outside edges of an enclosed shape to the inside edge of an enclosing shape. Also, a design generally fails to meet this rule due to overlay errors exhibited in the form of misalignment of layers. An example of this rule is illustrated for a metal layer enclosing a Via in Fig. 4.2. It can be seen that a large enclosure allows for a misalignment of the Via layer with respect to the metal layer.

Fig. 4.2 Via misalignment

4.2.4 Overlap Rules

The overlap rule is defined by calculating the distance between the internal edges of the overlapping shapes [34] (Fig. 4.3). The overlap rule is violated due to the misalignment between the two shapes and may result in an unwanted short circuit or an open circuit in the layout.

Fig. 4.3 Minimum overlap of the two shapes

4.2.5 Area Rules

Typically, this rule is used to ensure that no shape in the design has an area less than the minimum defined area. It is generally defined so that the area of a shape is greater than the minimum area of the shape beneath it during processing [34].

4.2.6 Antenna Rules

In advanced processes, the wires are taller than they are wider, and thus plasma etching is generally used for fabrication of metal layers. The ionization process involved in plasma etching may impact the metal layer due to transfer of charge by ionized molecules. This charge can buildup on a net and exceed the breakdown voltage of the transistor gate. Thus, tunneling current density through the oxide must be kept below a certain threshold in order to satisfy the antenna rule. It can be seen from [36] that the tunnel current density depends on a simple ratio of metal area to transistor gate area, and these rules thus define a maximum ratio of metal area to transistor gate area.

4.2.7 Multi-colored design rules

Use of double patterning lithography necessitates use of different rules for different colors. One example of multi-colored rules is the use different pitches between metal layers of same color and metal layers of different colors. It can be seen in Fig 4.4 that the minimum pitch rule between metal layers of same color is larger than spacing rule between metal layers of different colors.

Fig. 4.4 Pitch Rule between metal layers

4.2.8 Restrictive Design Rules (RDR)

A further set of restrictions on the physical design have been introduced to overcome process complexity and still guarantee a high yield design. These design rules are called restricted design rules and help in maintaining the same design methodologies as earlier. For example, earlier a continuous set of valid width and spacing rules were used for near critical dimensions. Now, these have been replaced with a set of discrete width and spaces [41]. A similar approach has been used for the gate layer and only a set of width values are now allowed (Section 4.3.3 - GATE.1 rule). RDR is also used to avoid jog and notches in near critical dimensional layers, which may otherwise result in pinching as indicated in [36]. At the same

time, these rule cause an increase in the overall area of the layout, and thus are only used for critical dimensions.

Fig. 4.5 Pinching seen in the case of jogs. As shown, pinching can be removed by using thicker layer at the bend. [36]

4.3 Design Rules for FreePDK15TM

Based on lithographic requirements, a set of design rules were developed for 15nm FinFET device process design kit FreePDK15TM. This sections discusses these design rules for all the layers.

4.3.1 NWell (NW) Rules

A single well layer (NWell) strategy is assumed for FreePDK15TM (NW). This section introduces the design rules for NWell (NW) and also gives a graphical explanation for each.

Table.4.1 NWell design rules

Rule #	Value	Description	Rationale
NW.1	180 nm	Minimum spacing of NW/(not NW) at a different potential	Spacing rule to provide electrical isolation and prevent punch-through between separate wells [34].
NW.2	110 nm	Minimum spacing of NW/(not NW) at the same potential	Spacing rule to provide electrical isolation and prevent punch-through between separate wells at same potential [34].
NW.3	160 nm	Minimum width of NW/(not NW)	The width of 160nm required for a single standard cell.
NW.4	0.140 um ²	Minimum area/enclosed area of NW	Minimum area sufficient for constructing a single standard cell.
NW.5		NW must be orthogonal	Restriction rule added since orthogonal structures simplify cell design.

Fig. 4.6 Graphical explanation of NW rules

4.3.2 Active (ACT) Rules

An Active Silicon layer is used in FreePDK15TM. This section defines the rules for this layer and explains them graphically.

Table 4.2. Active design rules

Rule #	Value	Description	Rationale
			Schuddinck et al. [35] shows that
			device with fin pitch of 40nm has
			tolerable W-Si interface resistance
			~80Ω. As fin Pitch is scaled from
	40		45nm [35] to 40nm, fin width is also
ACT.1	48	Minimum vertical width of ACT	scaled from 10nm [3] to 8nm. As
	nm		minimum vertical width of ACT is
			2*Half_Fin_width + Fin_pitch,
			minimum vertical width is calculated
			as (2*4+40) nm = 48nm
			Device with fin Pitch of 40nm has a
			tolerable W-Si interface resistance
			and low epi-to-gate capacitance
			[35].
	40		[55].
ACT.2	nm	Incremental vertical width of ACT	

Table 4.2. Continued

			Rule to provide electrical isolation
			between two Active areas. Off-axis
			illumination technique makes the
			vertical spacing different from
			horizontal spacing. Calculated to
	62		ensure spacing greater than one
ACT.3	nm	Minimum vertical spacing of ACT	pitch spacing in ACT.
	_		Defined by minimum width required
ACT.4	112	Minimum horizontal width of ACT	for formation of a single transistor
	nm		with dummy gates.
			Spacing to place exactly two
	80		different dummy gates between
ACT.5	nm	Exact Horizontal spacing of ACT	two active regions [38].
			Same as minimum horizontal width
	442		since notch is assumed to be
ACT.6	112	Minimum notch of ACT	implemented using special
	nm		resolution technique, for e.g. cut
			mask.

Table 4.2 Continued

			Vertical spacing rule of ACT-ACT is
			62nm, dividing that into two and also
	31	Minimum enclosure/spacing of	to ensure extension of NW beyond
ACT.7	nm	NW to ACT	ACT.
A CT O	0.005	Minimum area/enclosed area of	Calculated for a two fin device
ACT.8	um²	ACT	

Fig. 4.7 Graphical representation of ACT rules

Fig. 4.8 ACT.2 rule

4.3.3 GATE design rules

The FreePDK15TM design kit assumes use of double patterning for GATE layers, and GATE layers GATEA and GATEB are the two different gate patterns used. This section explains the design rules for these GATE layers.

Table 4.3. GATE layer design rules

Rule #	Value	Description	Rationale
	20		Gate length of 19nm in [35]
GATE.1	nm	GATE[A B] exact horizontal width	modified to values 20 nm, 16 nm
	16		based on ITRS 2011 table [1]. Only
	nm		exact width values used for process
			uniformity.

Table. 4.3. Continued

GATE.2	128 nm	Horizontal Pitch of GATE[A B]	This value calculated to allow minimum active region between the two dummy gates [35].
GATE.3	44 nm	Min HORIZONTAL spacing of GATEA and GATEB	Minimum horizontal spacing calculated from minimum horizontal pitch in [35].
GATE.4		GATE[A B] may not bend	Gate bending causes pinching and requires introduction of special rules. These rules are currently not part of FreePDK15™ [36].
GATE.5	38 nm	ACT min extension past GATE[A B]	Used to satisfy minimum horizontal spacing rule between GATEA and GATEB.
GATE.6	62 nm	GATE[A B] min extension past ACT	To ensures uniform transistor formation in case of misalignment. This rule is equal to vertical spacing rule of ACT as off-axis illumination is used.

Table. 4.3. Continued

		T	1
			Length is sufficient for at least one
	200		transistor and minimum extension
GATE.7	nm	GATE[A B] minimum length	on two sides of the ACT.
			All the GATEA B layers are printed
			simultaneously and inessential
			layers are removed using cut mask
GATE.8	236	GATE [A B] maximum distance	layer GATEC. This rule ensures that
G/TE.0	nm	to neighbor shape.	only one neighboring transistor can
			be skipped and thus prevents
			cutting out of two consecutive
			GATEA B shapes.

Fig. 4.9 Graphical representation of GATE layer rules

4.3.4 GATEAB rules

The FreePDK15TM kit also provides a single colored gate layer called GATEAB with an assumption that the coloring of the gates would be done at process level. This section introduces the design rules for GATEAB layer and also gives a graphical explanation of each rule.

Table 4.4. GATEAB layer design rules

Rule #	Value	Description	Rationale

Table 4.4 Continued

	20		Same as GATE.1 rule with the
GATEAB.1	nm	GATEAB exact horizontal	exception that GATE has a single
GATEAB.1	16	width	color. Coloring of these gate layers
	nm		implemented at process level.
GATEAB.2	64	Horizontal Pitch of GATEAB	Pitch is half that of GATEA B since
GATEAB.2	nm	HORIZORIAI PILCITOT GATEAB	coloring is a post processing step.
GATEAB.3	44	Min HORIZONTAL spacing of	Same as GATE.3
GATLAB.5	nm	GATEAB	Jame as GATE.S
GATEAB.4		GATEAB may not bend	Same as GATE.4
GATEAB.5	38	ACT min extension past	Same as GATE.5
G/TIE/TO.5	nm	GATEAB	Jame as GATE.S
GATEAB.6	62	GATEAB minimum extension	Same as GATE.6
GATEAB.0	nm	past ACT	Same as GATE.0
GATEAB.7	200	GATEAB minimum length	Same as GATE.7
OATLAD.7	nm	GATEAD HIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	June as GATE./
GATEAB.8	236	Maximum distance of GATEAB	Same as GATE.8
GATEAD.8	nm	to neighboring shape.	Sallie as GATE.0

Fig. 4.10 Graphical representation of GATEAB layer rules

4.3.5 Gate cut mask (GATEC) rules

The FreePDK15™ kit provides a gate cut mask layer (GATEC) for removing unwanted printed features. This section introduces the design rules for GATEC layer.

Table 4.5. GATEC layer design rules

Rule #	Value	Description	Rationale

Table 4.5 Continued

GATEC.1.a	32 nm	Exact vertical width of GATEC (shape is oriented horizontally)	Cut layers vertical width selected to be equal to the spacing between two fins and the minimum spacing between actives.
GATEC.1.b	64 nm	Exact horizontal width of GATEC (shape is oriented vertically)	Definition of a square cut drawn on a gate.
GATEC.2.a	128 nm	Minimum horizontal length of GATEC (shape is oriented horizontally)	Assumption of 22nm min extension of GATEC past GATEA B and min length for Resolution Enhancement Technique that overlaps two consecutive gates.
GATEC.2.a	64nm	Exact vertical length of GATEC (shape is oriented vertically)	Definition of a square cut drawn on a gate.
GATEC.3	128 nm	Minimum space of GATEC	Spacing equal to two gate pitches.

Table 4.5 Continued

GATEC.4	22nm	Minimum extension of GATEC past GATE[A B] horizontally	To force GATEC alignment. This value was calculated assuming 128nm length (horizontal direction),
			cutting two gates only.
			Spacing 62nm - GATEC width on
GATEC.5	15 nm	GATEC minimum space to ACT	horizontal shape (32nm) = 30nm.
GATEC.5	15 nm	darte millimum space to act	Divided it by two to define min
			space to ACT.
			Gate bending results in pinching and
GATEC.6		GATEC may not bend	requires introduction of special
GATEC.0		GATE may not bend	rules. These rules are currently not
			part of FreePDK15™ [36].
		GATEC shape bottom or top	Used to add regularity in the layout
GATEC.7		must be aligned if distance <	and improve resolution.
		192 nm	

Fig. 4.11 Graphical representation of GATEC layer rules

4.3.6 Threshold voltage adjust layer (VTH/VTL) rules

The FreePDK15TM also provides a low-threshold voltage adjust layer (VTL) and high-threshold voltage adjust layer (VTH), which are described in this section. These layers are used for adjusting the implant and thus adjust the threshold voltage of the device. This section introduces the design rules for VTH/VTL layer and also gives a graphical explanation of each rule.

Table 4.6. VTH/VTL layer design rules

Rule #	Value	Description	Rationale

Table 4.6 Continued

	144	Minimum width of	Width used to fit at least one
VT.1	nm	VTL/VTH/(not (VTL or VTH))	standard cell.
			Used to provide electrical isolation
			between the two layers and to allow
	144	Minimum space of	at least one standard cell between
VT.2	nm	VTL/VTH/(not (VTL or VTH))	VT layers.
			Calculated using GATE-GATE space
VT.3	64nm	Minimum enclosure of	with ACT break in the middle (128nm
		GATE[A B] by VTL/VTH	- 20nm gate L = 108nm) with 64nm
			to enclosure and 44nm to space
VT.4	44	Minimum space of VTL/VTH to	Refer VT.3
	nm	GATEA B	

Fig. 4.12 Graphical representation of VTH/VTL layer rules

4.3.7 NIM/PIM rules

A P-implant layer (PIM) is used for creating a P-type FET and an N-implant (NIM) layer is used for creating an N-type FET in FreePDK15TM and their design rules are discussed here.

Table 4.7. NIM/PIM design rules

Rule #	Value	Description	Rationale

Table 4.7 Continued

			For layout regularity and assuming
NIM/PIM.1	128 nm	Minimum	resolution techniques, implants are
		width/spacing/notch of	rounded up to gate pitch value.
		NIM/PIM	Space and notch rules are defined
			similarly.
			This rule is to ensure electrical
	32	Minimum spacing of NIM/PIM	isolation between channel and the
NIM/PIM.2	nm	to channel	implant
		Minimum extension of	This rule is to ensure formation of
	32	NIM/PIM past channel	channel even in case of
NIM/PIM.3	nm	(HORIZONTAL directions)	misalignment error.
		Minimum extension of	This rule ensures formation of
	30	NIM/PIM past channel	channel even in case of
NIM/PIM.4	nm	(VERTICAL directions)	misalignment error.
			To prevent formation of junction
	30	Minimum space of NIM/PIM	between separate ACT and implant
NIM/PIM.5	nm	to ACT enclosed by PIM/NIM	layer.

Table 4.7 Continued

			This rule ensures sufficient ion
	30	Minimum enclosure of ACT	implantation in case of
NIM/PIM.6	nm	by NIM/PIM	misalignment
	0.04		
	9	Minimum NIM/PIM	Value obtained by scaling
NIM/PIM.7	um²	area/enclosed area	minimum area of ACT by 35%.

Fig. 4.13 Graphical representation of NIM/PIM layer rules

4.3.8 Active Interconnect Layer-1 (AIL1) rules

A local interconnect layer (AIL1) is provided in FreePDK15™ kit and is used for connecting the fins of the FinFET device. This section introduces the design rules for AIL1 layer and describes them graphically.

Table 4.8. AIL1 design rules

Rule #	Value	Description	Rationale
AIL1.1	28 nm	Horizontal Width of AIL1	Schuddinck et al. [35] uses 27nm for local interconnect layer-1. This
			value is rounded up to 28nm for symmetry (simplification) purpose.
AIL1.2	36 nm	Horizontal Spacing of AIL1	Schuddinck et al. [35] uses a minimum spacing of 31nm. We use AIL1.3 rule and the gate pitch rule to derive a minimum spacing of 36nm (8nm spacing from AIL1 to GATEA B on either side, GATEA B max width of 20nm).

Table 4.8 Continued

AIL1.3	8 nm	Minimum spacing of AIL1 to GATE[A B]	Obtained by changing spacing from 6nm to 8nm [35] to accommodate AIL1.1 and AIL1.2
		Minimum extension of ACT	
		past AIL1 (horizontal	Used to ensure correct connection
AIL1.4	2 nm	direction)	of fins.
			Vertical length selected to be
			sufficient for connecting at least
AIL1.5	58 nm	Vertical length of AIL1	two fins of the device.
			Value selected to be the same as
AIL1.6	62 nm	Vertical spacing of AIL1	vertical spacing between ACTs.
		AIL1 horizontal edges must	
		be aligned or extend beyond	This rule automatically inherit the
AIL1.7	0nm	ACT horizontal edges.	min ACT vertical width rule, and was
		Minimum vertical extension	chosen for simplification.
		of AIL1 past ACT is 0nm.	
AIL1.8		AIL1 may not bend	To prevent pinching of AIL1 layer

Fig. 4.14 Graphical representation of AIL1 rules

4.3.9 Active Interconnect Layer-2 (AIL2) rules

A local interconnect layer (AIL2) is provided in FreePDK15™ kit and is used for routing internal nets and connecting the Active layer to the Metal layer through a contact. This section introduces the design rules for AIL2 layer and also gives a graphical explanation of each rule.

Table 4.9. AIL2 design rules

Rule #	Value	Description	Rationale

Table. 4.9 Continued

			This rule derived from AIL1.1 rule
			and is adjusted to ensure 2nm
			horizontal enclosure for AIL1 over
AIL2.1	24 nm	Horizontal width of AIL2	AIL2.
			This rule derived from AIL1.2 rule
			and is adjusted to ensure a 2nm
AIL2.2	40 nm	Horizontal spacing of AIL2	enclosure of AIL1 over AIL2.
			This rule derived from AIL1.3 rule
		Minimum spacing between	and is adjusted to ensure a 2nm
AIL2.3	10 nm	AIL2 and GATE[A B]	enclosure of AIL1 over AIL2.
		Minimum enclosure of AIL2	In Schuddinck et al., [35] local
AU 2.4	2		interconnect layers extends about
AIL2.4	2 nm	by AIL1, HORIZONTAL	3nm beyond IM2, this value is
		direction	changed to 2nm for uniformity.
			The minimum vertical overlap is
		Minimum Vertical overlap of	assumed to be equal to the
AIL2.5	58 nm	AIL1 and AIL2	minimum vertical length of AIL1.

Table 4.9 Continued

			This rule helps in maintaining a
			constant area for critical shapes
			AIL1 And AIL2. The area of AIL1 is
			given by 28*58 = 1624. Thus, the
AIL2.6	68 nm	Vertical length of AIL2	length for AIL2 is 1624/24 ~ 68nm
			This rule uses the same value as
AIL2.7	62nm	Vertical spacing of AIL2	AIL1.6.
AIL2.8		AIL2 may not bend	To prevent pinching of AIL2 layer

Fig. 4.15 Graphical representation of AIL2 rules

4.3.10 Gate Interconnect layer (GIL) rule

A local interconnect layer (GIL) is provided in FreePDK15TM kit and is used for connecting the gate layer to the metal layer through a contact. This section introduces the design rules for GIL layer and also gives a graphical explanation of each rule

Table 4.10. GIL design rules

Rule #	Value	Description	Rationale
			The vertical width from [35] is
			reduced to 44nm from 45nm and
		Minimum vertical width of	this is done to match other layout
GIL.1	44 nm	GIL	resolutions used in this pdk.
			Based on layout regularity.
			Calculated from AIL2 and GATE rules
		Minimum horizontal length	considering at least 20% longer
GIL.2	56 nm	of GIL	edge on H dir.
			Considered 20% smaller space when
			compared horizontal spacing as off-
		GIL minimum vertical space	axis illumination technique is
GIL.3	32 nm	(40nm rectangular extension)	assumed.

Table 4.10 Continued

		GIL minimum horizontal	This is calculated assuming GIL.2,
		space (32nm rectangular	GIL.6 and minimum spacing rule
GIL.4	40 nm	extension)	between gates.
			The vertical length of GIL is 56nm
			and minimum vertical space of ACT
			is 62nm, thus this results in GIL to
			ACT vertical space as 62nm – 56nm
GIL.5	6 nm	GIL vertical space to ACT	= 6nm.
			From [35] it can be seen that local
			interconnect layer-2 extends about
			4nm beyond GATE [A B], ITRS 2011
GIL.6	2 nm	GIL minimum horizontal	states "The fundamental premise is
GIL.0	2 11111	extension past GATE[A B]	that both the line and the space
			must meet the 12% CD
			specification", and 12% of CD is
			about 2nm.
		GIL horizontal space to AIL2	To ensure isolation between the
GIL.7	8 nm	(different nets)	two layers

Table 4.10 Continued

			The rule provides isolation between
			The fale provides isolation between
			AIL2 and GIL layers and is higher
			than horizontal spacing as off-axis
GIL.8	32 nm	GIL vertical space to AIL2	illumination is assumed
			This rule is calculated considering
			horizontal spacing between GATE A
		GIL minimum horizontal	and GATE B and the minimum width
GIL.9	10 nm	space to GATE[A B]	of GIL layer.
			In order to ensure connection
			between AIL2 and GIL, it is assumed
		AIL2 min horizontal overlap	that overlap is atleast greater than
GIL.10	24 nm	of GIL (same net)	minimum width of AIL2.
			In Schuddinck et al, [35] local
		AIL2 minimum vertical	interconnect layer2 extends by
GIL.11	4 nm	extension past GIL	about 4nm
GIL.12		GIL may not bend	To prevent pinching of AIL2 layer

Fig. 4.16 Graphical representation of GIL rules

4.3.11 Via0 Rule (V0) rule

Via0 is used for connecting the GIL/AIL2 to the M1A and is thus provided in FreePDK15TM. This section introduces the design rules for V0 and also gives a graphical explanation of each rule.

Table 4.11. V0 design rules

Rule #	Value	Description	Rationale

Table 4.11 Continued

		VO shape is a square or	
		rectangle respecting V0.1.a	This rule is used for accommodating
V0.1		or V0.1.b. V0.1.b is	current crowding in square vias
VU.1		mandatory when V0 is	when metal with width > 40nm is
		enclosed by Metal1 shapes	used
		with width >= 40nm.	
			The minimum width of the square
		V0 is a square with 28nm	via is assumed to be the same as the
V0.1.a	28 nm	edge length	minimum width of the metal layer.
			The rectangular shape is assumed to
	[28nm,	V0 is a rectangular of sides =	be equal to two square shapes
V0.1.b	56nm]	[28nm, 56nm, 28nm, 56nm]	merged.
		Minimum spacing of V0 (if	The minimum vertical spacing is
		runlength exactly 28nm) -	selected so as to match the pitch of
V0.2	36 nm	Full alignment	AIL2 layer.
			To ensure connection between M1A
		V0 must be inside [AIL2 GIL]	and AIL2 or GIL layer V0 must be
V0.4		and M1[A B]	completely inside these two layers.

Table 4.11 Continued

		V0 enclosure by AIL2 on two	This value is calculated considering
		opposite sides, horizontal	the minimum vertical widths of AIL2
V0.5.a	-2 nm	direction	and V0.
		V0 enclosure by AIL2 on two	The vertical enclosure is higher than
		opposite sides, vertical	horizontal enclosure as off-axis
V0.5.b	20 nm	direction	illumination is assumed.
		VO enclosure by (GIL and	This value is calculated considering
		AIL2) on two opposite sides,	the minimum vertical widths of AIL2
V0.6.a	-2 nm	horizontal direction	and V0.
		VO enclosure by (GIL and	The vertical enclosure is higher than
V0.6.b		AIL2) on two opposite sides,	horizontal enclosure as off-axis
	8 nm	vertical direction	illumination is assumed.
		VO enclosure by (GIL not	This enclosure rule ensures
		AIL2) on two opposite sides,	connection between GIL layer and
V0.7.a	14 nm	horizontal direction	V0.
		VO enclosure by (GIL not	This enclosure rule ensures
V0.7.b		AIL2) on two opposite sides,	connection between GIL layer and
	8 nm	vertical direction	V0.

Table 4.11 Continued

		Minimum space of V0 and	This rule ensures isolation between
V0.8	38 nm	AIL2 of different net	V0 and AIL2 layers.
		Minimum space of V0 and	This rule ensures isolation between
V0.9	38 nm	GIL of different net	V0 and GIL layer
		V0 enclosed by GIL may not	
V0.10		overlap with (GATE[A B]	
		over ACT)	Gate stacking restriction

Fig. 4.17 Graphical representation of V0 rules

Fig. 4.18 V0 spacing rules

4.3.12 Metal1 Rules

Metall layer is the first level of metal level connection to the device. This layer is double patterned and thus is decomposed into M1A and M1B. This section explains the design rules for M1A layer.

Table 4.12. M1A design rules

Rule #	Value	Description	Rationale
M1.1	28 nm	M1[A B] width	2016 node in [1] has 19nm for M1
			half-pitch. Even though this is
			conveniently the same as GATE [A B]
			min width, it would restrict to one
			direction only. The value of the Metal
			layer is increased to 28nm

Table 4.12 Continued

		Minimum length of one		
		of two edges connected	To prevent pinching during bending	
M1.2	56 nm	to the same vertex.	of metal layer.	
		Maximum length of		
		M1[A B] for wires with	To put restriction on metal routing	
M1.3	960 nm	min width (28nm)	and avoid IR drop.	
		M1[A B] end-of-Line		
M1.4		spacing (EOL edge	Assumes spacing requirement to	
	68 nm	defined as edge < 32nm)	increase by 20% on EOL patterns	
		M1[A B] minimum space	Set to be 50% higher than M1A-M1B	
M1.5	54 nm	and notch	spacing	
			2016 node in ITRS 2011 [1] table	
		Minimum spacing of M1A	assumes metal half-pitch of 19nm,	
	36 nm	, -	however, to accommodate an	
		to M1B	increase in the metal width, the	
M1.6			minimum spacing is increased.	

Table 4.12 Continued

		End-of-Line spacing of	
M1.7		M1A to M1B (EOL edge	Assume spacing requirement to
	44 nm	defined as edge < 32nm)	increase 20% on EOL patterns
		Minimum spacing of	
		M1[A B] wider than 32	
		nm and longer than 240	
M1.8	68 nm	nm	
		Minimum spacing of	
		M1[A B] wider than 40	
		nm and longer than 240	
M1.9	76 nm	nm	
		Minimum spacing of	
M1.10		M1[A B] wider than 64	To accommodate for increase in
1011.10		nm and longer than 480	spacing with width in case of metal
	92 nm	nm	layers

Table 4.12 Continued

		Minimum spacing of	
		M1[A B] wider than 120	
		nm and longer than 1.2	
M1.11	120 nm	um	
		Minimum spacing of	
		M1[A B] wider than 240	
		nm and longer than 1.8	
M1.12	240 nm	um	
		Minimum spacing of	
M1.13		M1[A B] wider than 320	
IVII.I3		nm and longer than 2.4	
	320 nm	um	
		Minimum spacing of	
M1.14		M1[A B] wider than 600	To accommodate for increase in
1011.14		nm and longer than 2.4	spacing with width in case of metal
	600 nm	um	layers

Table 4.12 Continued

		M1[A B] minimum	
		I WIT[A] IIIIIIIIIIIIIII	
M1.15		spacing to M1[B A] wider	
IVII.IS		than 32 nm and longer	
	44 nm	than 240 nm	
		M1[A B] minimum	
M1.16		spacing to M1[B A] wider	
IVII.IO		than 40 nm and longer	
	50 nm	than 240 nm	
		M1[A B] minimum	
M1.17		spacing to M1[B A] wider	
IVII.I/		than 64 nm and longer	
	60 nm	than 480 nm	
		M1[A B] minimum	
N44 40		spacing to M1[B A] wider	To accommodate for increase in
M1.18		than 120 nm and longer	spacing with width in case of metal
	78 nm	than 1.2 um	layers

Table 4.12 Continued

		M1[A B] minimum	
M1.19		spacing to M1[B A] wider	
1011.19		than 240 nm and longer	
	156 nm	than 1.8 um	
		M1[A B] minimum	
M1.20		spacing to M1[B A] wider	
1011.20		than 320 nm and longer	
	200 nm	than 2.4 um	
		M1[A B] minimum	
M1.21		spacing to M1[B A] wider	To accommodate for increase in
IVII.ZI		than 600 nm and longer	spacing with width in case of metal
	400 nm	than 2.4 um	layers
		Minimum overlap of M1A	
M1.22		and M1B (stitch region	To ensure proper connection in the
	40 nm	length)	stitch region.

Table 4.12 Continued

	[28, 2, 28, 2]		Assumes a larger enclosure to allow	
M1.23	[32, 0, 32, 0]		for significant line end tapering as	
1011.23	[10, 10, 10,	Allowed enclosures of V0	opposed to 3-sigma overlay used in	
	10]	by M1[A B]	FreePDK45.	
	[32, 2, 32, 2]	Allowed enclosures of V0		
M1.24	[40, 0, 40, 0]	by M1[A B] on	Adding conservative values	
1011.24	[14, 14, 14,	overlapping zone (stitch	compared to enclosure	
	14]	area)		
		V0 center must be		
M1.25		aligned to wire center		
IVI1.25		(between the 2 longest To ensure proper enclosure of VC		
		edges)	M1A	
		V0 shape must be		
M1.26		rectangular if enclosing		
1011.20		M1[A B] wire width >=		
		40nm		

Table 4.12 Continued

			Assuming 120nm x 20nm min shape	
M1.27		M1[A B] minimum area	size. Should create enough blockage	
	0.0024 um2	for rectangular shape	to reflect routing congestion.	
		M1[A B] minimum area		
M1.28		for non-rectangular	Assuming 50% more than area rule	
	0.0036 um2	shape	for rectangular shapes	

Fig. 4.19 Graphical representation Metal1 design rules

Fig. 4.20 Metal spacing as a function of metal width. Shows metal spacing for metals with same colors greater than metal spacing for metals with different colors.

4.3.12 Additional design rules

The FreePDK15TM design also has additional higher order metal layers and via layers.

They are divided into Intermediate metal layers, Semi Global metal layers and Global metal

layers. The design rules for intermediate metal layers are the same as the design rules for M1 layers in accordance with [30]. Additionally, the width and spacing for Semi-Global metal layers are twice of M1A [30], while the spacing and width rules for Global metal layers are four times of the M1 layer to accommodate for the higher current flowing through these layers.

5 FINFET LAYOUTS AND DESIGN RULE VALIDATION

The fabrication process of FinFET devices is slightly dissimilar to that of planar CMOS devices due to their three-dimensional thin-fin structure. Additionally, channel width quantization and use of local interconnect layers impact the layout design style of a FinFET and thus reduce the layout density. In the following sections the layout of a basic FinFET transistor is first explained, and further the layout densities of an inverter cell designed using FinFET and bulk MOSFETs are compared. The design rules developed for FreePDK15TM are then validated using a set of layouts drawn in Cadence Virtuoso.

5.1 Single Transistor Layout of a FinFET

The layout of a single planar MOS transistor is shown in Fig. 5.1.a. The width of the MOS transistor is defined by width of the active 'W' and the length of the channel is defined by gate length 'L'. It can be seen that the active region has direct contacts to the FEOL layers, like Metall. However, in the layout of a single FinFET transistor, local interconnect layers are used to connect the fins and the active region is connected to the FEOL through a contact between the interconnect layer and the metal (Figure 5.1). Figure 5.1.b shows how the layout of a FinFET transistor drawn in the design tool. Since the fin width is quantized, the width of the active region, 'W', is discrete and defines the number of fins in the FinFET transistor. The final FinFET structure on the physical mask, however, looks different as it consists of fins (Fig.5.1.c). Additionally, "dummy" gates are also printed at the end of the Fins in case of FinFET in order to ensure process uniformity [43] (Fig 5.2).

Thus it can be seen from these layouts that except for the use of local interconnect layers and discrete active widths, the procedure for designing a FinFET and MOS transistor remains essentially the same.

Fig. 5.1 Basic transistor Layouts of (a) Planar MOS device (b) a FinFET and (c) a FinFET as seen on the physical mask

Fig. 5.2 Dummy Gates for Uniformity in FinFET

5.2 Design rule validation

In the previous chapter the design rules for the FreePDK15TM kit were developed keeping in consideration the impacts of lithography techniques and the requirements for FinFET design. However, these design rules are at best predictive and need to be validated against a set of layouts. For this reason a design rule deck was developed and a set of layouts were drawn in Cadence Virtuoso. A design rule check using these set of rules was performed and consequently the design rules were validated.

This section presents layouts of standard cells and then discusses layout density for a standard inverter cell.

5.2.1 Minimum size inverter cell:

Figure 5.2 illustrates the design of a standard inverter cell based on a single FinFET cell design drawn in Cadence virtuoso. This design uses the gate interconnect layer for

connecting to the gate, the active interconnect layer-1 for connecting the fins, and the active interconnect layer-2 to connect internal nets and for connection to supply rails. The design rules were validated for this design by running a Calibre design rule check on this layout.

Fig. 5.3 Inverter cell for 15nm FinFET device

5.2.2 NAND4 cell

A standard NAND4 cell for 15 nm FinFET device in Cadence virtuoso is shown in Figure 5.3. This design is more elaborate than the inverter cell and uses dual colored metal layers. This design is also validated by running a Calibre design rule check.

Fig. 5.4 NAND4 standard cell for 15nm FinFET

5.2.3 Tiled Inverter and NAND4 cells

In order to test the design rules against more complex designs, layouts consisting of tiled inverter and NAND4 cells were drawn (Figure 5.4 and 5.5). These layouts require the use of double colored metal layers as well as higher order metal interconnect layers. A Calibre design rule check was successfully conducted on these sets of layouts.

Fig. 5.5 Tiled Inverter cells for 15nm FinFET

Fig. 5.6 Tiled NAND4 cells for 15nm FinFET

5.2.4 Layout Density Comparison

As part of the validation process, the layout density of a minimum 15nm FinFET standard cell was compared with a planar CMOS Inverter at 45nm.

The layout density in a FinFET does not scale like in bulk MOSFETs. Alioto [42] shows that for 65nm technology, the layout density for FinFET is 1.3x that for a planar CMOS process. The primary reason for this area overhead is analyzed in [39] and it is shown that it is essentially due to the width quantization issue and due to the fact that the effective width of the fin is defined by the height of the Fin. In order to achieve the same effective width as in

MOSFETs in the same area, the fin height demands are much higher than seen in Literature [39].

A standard inverter cell for 45nm CMOS was designed using FreePDK45TM in Cadence virtuoso and is shown in Figure 5.6.

Fig. 5.7 Inverter Layout for 45 CMOS process

Table 5.1 Area Comparison

Technology	Height	Width	Area
15nm FinFET	235nm	128nm	0.03008um ²
45 nm CMOS	595nm	327nm	0.195um ²

In case of planar CMOS, the expected area shrink factor for a 45nm process to a 15nm process is 1/9. However, the area shrink factor of 45 nm CMOS inverter to 15nm FinFET inverter is ~1/6, this is primarily attributed to the area overhead indicated in [42].

6 CONCLUSION AND FUTURE WORK

FinFET devices have been predicted to dominate the semiconductor industry in the future, but their realization requires an overhaul of the current design flow. Thus extensive research on these limitations is required and techniques that have been evolved to overcome them need to be investigated. These design flows have been realized by the industry, but their intellectual property is not shared with universities and academic institutions, which has so far prevented extensive teaching of large-scale FinFET based integrated circuit design in these areas. This thesis attempts to bridge this gap by providing a design flow platform through which FinFET based integrated circuits can be designed, tested and verified by educators and students.

In the first part of this thesis, FinFET fabrication through double patterning lithography processes has been analyzed as a viable option, and the layer arrangement required for drawing layouts have been developed.

In the second part of this thesis, the design guidelines for creating layouts allowing for lithographic processes have been established and explained. The third part implements these design guidelines and validates the currently assigned rules against a set of layouts. The layout density for a single inverter cell is analyzed and found to agree with the implemented design. However, it is necessary to run lithographic simulations and see whether the designed layouts meet the constraints set by the latest processes. Furthermore, the future scope of this work also includes development of a standard cell library to enable full chip design and verification. Also, parasitic extraction of the layouts is needed to see whether the speed and power performance

of designs developed using this process design kit are comparable with industrially implemented designs.

We believe that the design rules developed in this thesis would allow completion of the development of the predictive process design kit and would help expedite the introduction of large scale FinFET based integrated circuit design into university education.

7 REFERENCES

- [1] "International technology roadmap for semiconductors," 2011. [Online]. Available: http://www.itrs.net
- [2] Rick Merritt. "Intel Makes 14nm ARM for Altera" [Online]. Available: http://www.eetimes.com/document.asp?doc_id=1319919
- [3] STMicroelectronics 28nm FD-SOI Technology Hits 3GHz Operating Speed. [Online]

 Available at http://www.st.com/web/en/press/t3405
- [4] John Markoff. Intel Increases Transistor Speed by Building Upward [Online].

 Available:http://www.nytimes.com/2011/05/05/science/05chip.html?_r=0
- [5] J.E. Stine, I. Castellanos, M. Wood, J. Henson, F. Love, W.R. Davis, P.D. Franzon, M. Bucher, S. Basavarajaiah, Julie Oh and R. Jenkal, "FreePDK: An Open-Source Variation-Aware Design Kit," in Microelectronic Systems Education, 2007. MSE '07. IEEE International Conference on, pp. 173-174, 2007.
- [6] T. Yamashita, V.S. Basker, T. Standaert, C.-. Yeh, T. Yamamoto, K. Maitra, C. Lin, J. Faltermeier, S. Kanakasabapathy, M. Wang, H. Sunamura, H. Jagannathan, A. Reznicek, S. Schmitz, A. Inada, J. Wang, H. Adhikari, N. Berliner, K.-. Lee, P. Kulkarni, Y. Zhu, A. Kumar, A. Bryant, S. Wu, T. Kanarsky, J. Cho, E. Mclellan, S.J. Holmes, R.C. Johnson, T. Levin, J. Demarest, J. Li, P. Oldiges, J. Arnold, M. Colburn, M. Hane, D. Mcherron, V.K. Paruchuri, B. Doris, R.J. Miller, H. Bu, M. Khare, J. O'Neill and E. Leobandung, "Sub-25nm FinFET with advanced fin formation and short channel effect engineering," in VLSI Technology (VLSIT), 2011 Symposium on, pp. 14-15, 2011.

- [7] K. Cheng, A. Khakifirooz, P. Kulkarni, S. Ponoth, B. Haran, A. Kumar, T. Adam, A. Reznicek, N. Loubet, H. He, J. Kuss, M. Wang, T.M. Levin, F. Monsieur, Q. Liu, R. Sreenivasan, J. Cai, A. Kimball, S. Mehta, S. Luning, Y. Zhu, Z. Zhu, T. Yamamoto, A. Bryant, C. Lin, S. Naczas, H. Jagannathan, L.F. Edge, S. Allegret-Maret, A. Dube, S. Kanakasabapathy, S. Schmitz, A. Inada, S. Seo, M. Raymond, Z. Zhang, A. Yagishita, J. Demarest, J. Li, M. Hopstaken, N. Berliner, A. Upham, R. Johnson, S. Holmes, T. Standaert, M. Smalley, N. Zamdmer, Z. Ren, T. Wu, H. Bu, V. Paruchuri, D. Sadana, V. Narayanan, W. Haensch, J. O'Neill, T. Hook, M. Khare and B. Doris, "ETSOI CMOS for system-on-chip applications featuring 22nm gate length, sub-100nm gate pitch, and 0.08μm² SRAM cell," in VLSI Technology (VLSIT), 2011 Symposium on, pp. 128-129, 2011.
- [8] B.S. Haran, A. Kumar, L. Adam, J. Chang, V. Basker, S. Kanakasabapathy, D. Horak, S. Fan, J. Chen, J. Faltermeier, S. Seo, M. Burkhardt, S. Burns, S. Halle, S. Holmes, R. Johnson, E. Mclellan, T.M. Levin, Y. Zhu, J. Kuss, A. Ebert, J. Cummings, D. Canaperi, S. Paparao, J. Arnold, T. Sparks, C.S. Koay, T. Kanarsky, S. Schmitz, K. Petrillo, R.H. Kim, J. Demarest, L.F. Edge, H. Jagannathan, M. Smalley, N. Berliner, K. Cheng, D. LaTulipe, C. Koburger, S. Mehta, M. Raymond, M. Colburn, T. Spooner, V. Paruchuri, W. Haensch, D. Mcherron and B. Doris, "22 nm technology compatible fully functional 0.1 μm² 6T-SRAM cell," in Electron Devices Meeting, 2008. IEDM 2008. IEEE International, pp. 1-4, 2008.

- [9] Chang-Yun Chang, Tsung-Lin Lee, C. Wann, Li-Shyue Lai, Hung-Ming Chen, Chih-Chieh Yeh, Chih-Sheng Chang, Chia-Cheng Ho, Jyh-Cherng Sheu, Tsz-Mei Kwok, Feng Yuan, Shao-Ming Yu, Chia-Feng Hu, Jeng-Jung Shen, Yi-Hsuan Liu, Chen-Ping Chen, Shin-Chih Chen, Li-Shiun Chen, L. Chen, Yuan-Hung Chiu, Chu-Yun Fu, Ming-Jie Huang, Yu-Lien Huang, Shih-Ting Hung, Jhon-Jhy Liaw, Hsien-Chin Lin, Hsien-Hsin Lin, L.-.S. Lin, Shyue-Shyh Lin, Yuh-Jier Mii, E. Ou-Yang, Ming-Feng Shieh, Chien-Chang Su, Shih-Peng Tai, Hun-Jan Tao, Ming-Huan Tsai, Kai-Ting Tseng, Kin-Weng Wang, Shiang-Bau Wang, J.J. Xu, Fu-Kai Yang, Shu-Tine Yang and Chen-Nan Yeh, "A 25-nm gate-length FinFET transistor module for 32nm node," in Electron Devices Meeting (IEDM), 2009 IEEE International, pp. 1-4, 2009.
- [10] D. Helms, E. Schmidt, and W. Nebel, Leakage in CMOS Circuits An Introduction
- [11] Brian Swahn , Soha Hassoun, Gate sizing: finFETs vs 32nm bulk MOSFETs, Proceedings of the 43rd annual Design Automation Conference, July 24-28, 2006, San Francisco, CA, USA
- [12] Dr. King. Lecture Notes, EECS 40: Introduction to Microelectronic Circuits
- [13] H.-. Cho, K.-. Seo, W.C. Jeong, Y.-. Kim, Y.D. Lim, W.W. Jang, J.G. Hong, S.D. Suk, M. Li, C. Ryou, H.S. Rhee, J.G. Lee, H.S. Kang, Y.S. Son, C.L. Cheng, S.H. Hong, W.S. Yang, S.W. Nam, J.H. Ahn, D.H. Lee, S. Park, M. Sadaaki, D.H. Cha, D.-. Kim, S.P. Sim, S. Hyun, C.G. Koh, B.C. Lee, S.G. Lee, M.C. Kim, Y.K. Bae, B. Yoon, S.B. Kang, J.S. Hong, S. Choi, D.K. Sohn, J.S. Yoon and C. Chung, "Bulk planar 20nm high-k/metal gate

- CMOS technology platform for low power and high performance applications," in Electron Devices Meeting (IEDM), 2011 IEEE International, pp. 15.1.1-15.1.4, 2011.
- [14] Yiming Li, Shao-Ming Yu, Jiunn-Ren Hwang and Fu-Liang Yang, "Discrete Dopant Fluctuations in 20-nm/15-nm-Gate Planar CMOS," Electron Devices, IEEE Transactions on, vol. 55, pp. 1449-1455, 2008.
- [15] V. Subramanian, B. Parvais, J. Borremans, A. Mercha, D. Linten, P. Wambacq, J. Loo, M. Dehan, C. Gustin, N. Collaert, S. Kubicek, R. Lander, J. Hooker, F. Cubaynes, S. Donnay, M. Jurczak, G. Groeseneken, W. Sansen and S. Decoutere, "Planar Bulk MOSFETs Versus FinFETs: An Analog/RF Perspective," Electron Devices, IEEE Transactions on, vol. 53, pp. 3071-3079, 2006.
- [16] A. Kloes, M. Weidemann and M. Schwarz, "Analysis of 3D current flow in undoped FinFETs and approaches for compact modeling," in Mixed Design of Integrated Circuits & Systems, 2009. MIXDES '09. MIXDES-16th International Conference, pp. 33-38, 2009.
- [17] Ferain, Isabelle, Colinge, Cynthia A., Colinge, Jean-Pierre. "Multigate transistors as the future of classical metal-oxide-semiconductor field-effect transistors" in Nature, 2011
- [18] Xiaobin Yuan, Jae-Eun Park, Jing Wang, Enhai Zhao, D.C. Ahlgren, T. Hook, Jun Yuan, V. Chan, Hulling Shang, Chu-Hsin Liang, R. Lindsay, Sungjoon Park and Hyotae Choo, "Gate-Induced-Drain-Leakage Current in 45-nm CMOS Technology," Device and Materials Reliability, IEEE Transactions on, vol. 8, pp. 501-508, 2008.

- [19] M. Bohr, K.Mistry, Intel's Revolutionary 22 nm Transistor Technology, May 2011.
 [Online] Available: http://download.intel.com/newsroom/kits/22nm/pdfs/22nm-details_presentation.pdf
- [20] C. Hu. "FinFET and other New Transistor Technolyg". [Online]. Available: http://www.eecs.berkeley.edu/~hu/FinFET-and-other-New-Transistor-Tech-Hu.pdf
- [21] Tsu Jae King Liu. "Introduction to Multi-gate MOSFETs". [Online]. Available: http://www.eecs.berkeley.edu/~tking/presentations/KingLiu_SOI2012
- [22] A. Shanmugavel. FinFET Reliability issues. [Online] Available: http://semiengineering.com/finfet-reliability-issues/
- [23] Changhwan Shin, Xin Sun and Tsu-Jae King Liu, "Study of Random-Dopant-Fluctuation (RDF) Effects for the Trigate Bulk MOSFET," Electron Devices, IEEE Transactions on, vol. 56, pp. 1538-1542, 2009.
- [24] C. J. Först, C. R. Ashman, K. Schwarz, P. E. Blöchl. "The interface between silicon and a high-k oxide". [Online] Available: http://info.tuwien.ac.at/theochem/si-srtio3_interface/si-srtio3.html
- [25] "Simulation analysis of the Intel 22nm". [Online]. Available http://www.goldstandardsimulations.com/index.php/news/blog_search/simulation-analysis-of-the-intel-22nm-finfet/
- [26] L. Collins. "How to design with finFETs" [Online] Available: http://www.techdesignforums.com/practice/technique/how-to-design-with-finfets/

- [27] S. Renwick, V. Singh, J. Huckabay Nanolithography and CAD Challenges for 32nm/22nm and Beyond. [Online]. Available: http://events.iccad.com/events/eventdetails.aspx?id=86-8-E
- [28] M.C. Smayling and V. Axelrad, "Simulation-Based Lithography Optimization for Logic Circuits at 22nm and Below," in Simulation of Semiconductor Processes and Devices, 2009. SISPAD '09. International Conference on, pp. 1-4, 2009.
- [29] L. Liebmann, J. Lund, Fook-Luen Heng and I. Graur, "Enabling alternating phase shifted mask designs for a full logic gate level: design rules and design rule checking," in Design Automation Conference, 2001. Proceedings, pp. 79-84, 2001.
- [30] ITRS Report of Interconnects- 2011. [Online]. Available: http://www.itrs.net/Links/2011ITRS/Home2011.htm
- [31] P. Zimmerman. "Double patterning lithography: double the trouble or double the fun?" SPIE, 2009
- [32] J. Kawa. FinFET Design Manufacturability, and Reliability. [Online]. Available: http://www.synopsys.com/Company/Publications/DWTB/Pages/dwtb-finfet-jan2013.aspx
- [33] R.O. Topaloglu, "Design with FinFETs: Design rules, patterns, and variability," in Computer-Aided Design (ICCAD), 2013 IEEE/ACM International Conference on, pp. 569-571, 2013.
- [34] NCSU FreePDK45. [Online]. Available: http://www.eda.ncsu.edu/wiki/FreePDK45:Contents

- [35] P. Schuddinck, M. Badaroglu, M. Stucchi, S. Demuynck, A. Hikavyy, M. Garcia-Bardon, A. Mercha, A. Mallik, T. Chiarella, S. Kubicek, R. Athimulam, N. Collaert, N. Horiguchi, I. Debusschere, A. Thean, L. Altimime and D. Verkest, "Standard cell level parasitics assessment in 20nm BPL and 14nm BFF," in Electron Devices Meeting (IEDM), 2012 IEEE International, pp. 25.3.1-25.3.4, 2012.
- [36] W. R. Davis, H. Demircioglu. Predictive Process Design Kits, Predictive Technology Model for Robust Nanoelectronic Design Integrated Circuits and Systems 2011, pp 121-140
- [37] Class notes Joseph A. Elias. [Online] Available: http://www.engr.uky.edu/~elias/lectures/ln_07.pdf
- [38] M.G. Bardon, V. Moroz, G. Eneman, P. Schuddinck, M. Dehan, D. Yakimets, D. Jang, G. Van der Plas, A. Mercha, A. Thean, D. Verkest and A. Steegen, "Layout-induced stress effects in 14nm & 10nm FinFETs and their impact on performance," in VLSI Technology (VLSIT), 2013 Symposium on, pp. T114-T115, 2013.
- [39] K.G. Anil, K. Henson, S. Biesemans and N. Collaert, "Layout density analysis of FinFETs," in European Solid-State Device Research, 2003. ESSDERC '03. 33rd Conference on, pp. 139-142, 2003.
- [40] Standard Verification Rule Format (SVRF) manual, Mentor Graphics.
- [41] Vyacheslav V. Rovner. Circuit-Layout Co-optimization for Extremely Regular Design Fabrics in Nanoscale ICs, 2010. PhD dissertation, Carnegie Mellon University

- [42] M. Alioto, "Analysis and evaluation of layout density of FinFET logic gates," in Microelectronics (ICM), 2009 International Conference on, pp. 106-109, 2009.
- [43] T. Dillinger, "Challenges for FinFET extraction," in IEEE Electronic Design Symposium, 2013.