PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2000-326393

(43) Date of publication of application: 28.11.2000

(51)Int.Cl.

B29C 49/22 B29B 11/14 B32B 27/08

B32B 27/36 // B29K 67:00 B29L 22:00

(21)Application number: 11-137206

(71)Applicant: SHOWA DENKO KK

(22)Date of filing:

18.05.1999

(72)Inventor: MIYAUCHI OTOHIKO

NAGAO TAKESHI

(54) MULTILAYER BOTTLE, ITS PREFORM AND THEIR MANUFACTURE

(57)Abstract:

PROBLEM TO BE SOLVED: To obtain a preform by laminating a barrier resin on a position capable of covering from a bottom of a bottle to a center of a neck or a shoulder of the bottle stably when the bottle is molded by reducing flow characteristics of one layer from those of an another layer in a molding of a thermoplastic plastic sheet having two or more layers. SOLUTION: A sheet or laminated sheet preformed in a shape of a stamping cavity and having work pieces 3, 4 of a structural material resin 3 and a barrier resin 4 are set in a mold 1 and heated to a predetermined temperature. When the sheet arrives at the predetermined temperature, the mold 1 is closed and stamped. Since the resin 4 has smaller flow characteristics than those of the resin 3, the resin 4 does not arrive at an upper end of the cavity. To form a parison from the manufactured preform, the preform is injection molded. Thus, when the bottle is molded, the preform obtained by laminating the barrier resin flowing

only to a position where the preform is arrived from the bottom of the bottle to a center of the neck or shoulder of the bottle can be inexpensively molded when the bottle is molded.

* NOTICES *

JPO and INPIT are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-326393 (P2000-326393A)

(43)公開日 平成12年11月28日(2000.11.28)

(51) Int.Cl.7		識別記号	•	FΙ				Ť.	-マコード(参考)
	40./00	C. THE COMM			C 49/22			·	4F100
B 2 9 C			•		•				· -
B 2 9 B	11/14			B 2 9	B 11/14				4 F 2 O 1
B 3 2 B	27/08			В 3 2	B 27/08				4 F 2 O 8
	27/36	•			27/36				
// B29K	67: 00								
			審查請求	未請求	請求項の数9	ol	(全 7	頁)	最終頁に続く

(21) 出願番号 特顧平11-137206 (71) 出願人 000002004 昭和電工株式会社 東京都港区芝大門 1 丁目13番 9 号 (72) 発明者 宮内 乙彦 東京都港区芝大門一丁目13番 9 号 昭和電工株式会社内 (72) 発明者 長尾 勇志 神奈川県川崎市川崎区千島町 3 - 2 昭和電工株式会社総合研究所川崎研究室内 (74) 代理人 100070378 弁理士 菊地 精一

最終頁に続く

(54) 【発明の名称】 多層ボトル、そのプリフォーム及びそれらの製造方法

(57)【要約】

【課題】 まず成形用コア金型にインサートするプリフォームを作成し、多層ボトルとした時に確実に特定の位置にバリア性樹脂が積層できるパリソン、それを用いた多層熱可塑性プラスチックボトル及びそれらの製造方法の提供。

【解決手段】 熱可塑性プラスチックの少なくとも流れ特性の異なる2層から形成された多層シートをスタンピング成形用キャビティー金型にセットし、これら熱可塑性プラスチックの融点近傍においてスタンピング成形してプリフォームを製造し、次いでこれをパリソン成形用コア金型にインサートし、キャビティーにセットし、これに流れ特性の小なる樹脂と異なる他の層と同種の樹脂を、流れ特性の小なる樹脂層を完全に被覆できるように注入してパリソンを製造し、次いで延伸プロー成形した多層熱可塑性プラスチックボトル及びその製造方法。

2

【特許請求の範囲】

【請求項1】 少なくとも二層の熱可塑性プラスチックシートからなる多層の成形体であって、そのうちの一層は他の層よりも流れ特性が小であり、ボトル成形時にボトル底部からボトル首部中央ないしボトル肩部中央の範囲までカバーできる位置まで積層されている多層熱可塑性プラスチックボトルパリソン用プリフォーム。

【請求項2】 熱可塑性プラスチックのうちの一層はバリア性樹脂であり、他の層は少なくともポリエステル樹脂である請求項1に記載の多層熱可塑性プラスチックボトルパリソン用プリフォーム。

【請求項3】 流れ特性の小なる樹脂層とそれと異なる他の樹脂層の間に接着性樹脂層を設けた多層成形体である請求項1または2に記載の多層熱可塑性プラスチックボトル用プリフォーム。

【請求項4】 熱可塑性プラスチックの少なくとも流れ特性の異なる2枚のシートあるいは少なくとも流れ特性の異なる2層から形成された多層シートを打ち抜き、これをスタンピング成形用キャビティー金型にセットし、これら熱可塑性プラスチックの融点近傍においてスタンピング成形することを特徴とする多層熱可塑性プラスチックボトル用プリフォームの製造方法。

【請求項5】 熱可塑性プラスチックのシートが、ポリエステル樹脂及びバリア性樹脂からなる少なくとも2枚のシートまたは少なくとも二層からなる多層シートであり、スタンピング成形した際にバリア性樹脂が端面に露出しないように、ポリエステル樹脂の流れ特性をバリア性樹脂の流れ特性より大きくした請求項4に記載の多層熱可塑性プラスチックボトル用プリフォームの製造方法。

【請求項6】 熱可塑性プラスチックの多層のシートが、中間層としてバリア性樹脂を有し、両外面にポリエステル樹脂を用いた少なくとも3層からなる請求項4または5に記載の多層熱可塑性プラスチックボトル用プリフォームの製造方法。

【請求項7】 少なくとも3層からなる熱可塑性プラスチック多層ボトルであって、中間層となるバリア性樹脂層が、ボトル底部よりボトル首部中央ないしボトル肩部中央の範囲に積層されていることを特徴とする多層熱可塑性プラスチックボトル。

【請求項8】 少なくとも2層の熱可塑性プラスチックからなる多層の成形体であって、そのうちの一層の樹脂は他の層の樹脂よりも流れ特性が小であってボトル成形した時にボトル底部からボトル首部中央ないしボトル肩部中央の範囲をカバーできる位置まで積層されている多層ボトル用プリフォームを、パリソン成形用コア金型にインサートし、キャビティーにセットし、これに流れ特性の小なる樹脂と異なる他の層と同種の樹脂を、流れ特性の小なる樹脂層を完全に被覆できるように注入してパリソンを製造し、次いで延伸プロー成形することを特徴

とする多層熱可塑性プラスチックボトルの製造方法。

【請求項9】 プリフォームを射出成形によりパリソン を成形する際に、プリフォーム成形時のコア金型に装着 したままそれをパリソン成形用コア金型として使用する 請求項8に記載の多層熱可塑性プラスチックボトルの製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、内容物として品質 面から酸化を嫌う液状の内容物を収納するための収納容器、特に安価であって軽量であり、耐衝撃性、リサイクル性、ガスバリア性に優れ、再封止が可能であり、多品種少量生産も可能な熱可塑性プラスチックの多層ボトル製造に使用するパリソンのためのプリフォーム(パリソンの前の段階)、プリフォームに構造材樹脂を被覆してパリソンを成形し、それを延伸ブロー成形して製造された多層ボトル及びそれらの製造方法に関する。

[0002]

【従来の技術】医薬、写真用薬剤、化粧品原料、1 C製造用薬剤などの易酸化性または酸化されてはならない化学薬品類、ぶどう酒、ビール、ソフトドリンク、お茶、コーヒーなどのように香気を必要とする飲料、易酸化性である飲料あるいは C O2を含有する飲料などのように酸素との接触を嫌うものの容器として従来はガラスびん、アルミニウム缶などが用いられていた。特に C O2を含有するビール、ソフトドリンクなどの容器としては、ガラスびんが主として用いられてきたが、20~30年前くらい前からアルミニウム缶がこれに一部代替されて使用され、その使用率を高めつつある。

【0003】アルミニウム缶は、軽量であり、リサイク ル性、ガスバリア性、耐衝撃性、遮光性に優れ、美麗で あるなどの利点を有しており、易酸化性または酸化され てはならない内容物の包装材としては極めて理想的な材 料と思われる。反面、原料が高価格であり、アルミニウ ム缶の製造設備、内容物の充填設備などの製造設備が大 型、高性能なものが必要であって極めて大型の投資額を 必要とするものであり、小品種大量生産のものにしか対 応できないものである。そのうえアルミニウム材は耐食 処理を必要とし、製品価格も高価格であり、また容器と しての大型化は困難であって、しかも食品市場において は内容物が見えることも大きな商品コンセプトのひとつ であり、通常は再封止不可能な1リットル以下の小型容 器に主として使用されている。従来から使用されてきた ガラスびんは、リサイクル性、ガスバリア性、耐食性、 再封止性に優れており、多品種少量生産にも対応でき製 品価格も比較的安価に生産できる。しかし他の包装材に 比して製品重量が重くかつ耐衝撃性が極めて弱い重大な 問題点を有している。

性の小なる樹脂層を完全に被覆できるように注入してパ 【0004】上記以外に液体容器としての紙パックがあ リソンを製造し、次いで延伸プロー成形することを特徴 50 り、これらは軽量、リサイクル性、耐衝撃性、遮光性に

優れており、設備投資額も小さくて済み、多品種少量生 産に対応可能なものであるが、ガスバリア性が劣るため にシェルフライフの小さい、中身が見えない、高級感が ないなどのために、安価な内容物の包装材に主として用 いられている。またプラスチック容器は、透明で軽量 性、耐衝撃性、耐食性に優れ、製品価格も安価であり、 設備投資額も小さくて済み、多品種少量生産の容器にも 対応できるなど優れた包装材ではあるが、ガスバリア性 が低く品質面で酸化を嫌う、また C O2 の透過を嫌う内 容物の容器としては、酸素ガス透過性、CO2 ガス透過 性が大きいという重大な欠点を有している。このプラス チック容器のガスバリア性の改善策として、プラスチッ クと特殊なバリア性樹脂を積層した多層プラスチックボ トルが数多く提案されている。

【0005】従来の多層ボトルの製造法としては、熱可 塑性プラスチックとエチレンー酢酸ビニル共重合体のケ ン化物(エチレン-ビニルアルコール共重合体;以下 「EVOH」という。)、ポリ塩化ビニリデン、ポリア 「クリロニトリルなどのバリア性樹脂とを、該バリア性樹 脂を中間層とする多層押出し手パリソンを成形し、これ をブロー成形するダイレクトブロー成形方法、プラスチ ックボトルを成形した後、その表面にEVOHなどのバ リア性樹脂を塗布する方法(特開昭60-251027 号公報)、バリア性樹脂が吸湿するとガスバリア性が低 下するのでこれを防止するためにバリア性樹脂の表面を 疎水性樹脂で被覆した収縮性フィルムを用いてボトルを 被覆する方法(特公昭62-7060号公報)など多数 の提案があるが、薄肉であっても製品の強度を高く維持 できる延伸ブロー多層ボトルが広く採用されている。こ れに用いるパリソンは、製品多層ボトルの端面にバリア 性樹脂が露出しないような工夫が必要であるため、1段 射出成形では難しく、2段射出成形あるいは構造材樹脂 のパリソンとバリア性樹脂のパリソンを別々に射出成形 により作っておき、延伸ブロー前にこれを組み立て延伸 ブローする (特開昭62-193940号公報) などの 手段が必要とされてきた。

【0006】一般的にバリア性樹脂に比して構造材樹脂 (ポリエステル樹脂など) は剛性が高く、またコスト的 にも安価であるところから、求められるバリア性能の範 囲内でバリア性樹脂の使用量を減らし、多層ボトルの強 40 度アップとコストダウンを図る設計が求められる。これ らの多層ボトルは、形状的に見ると首部、肩部、胴部、 底部に分けられる。そしてそれぞれの樹脂層の厚さは胴 部が一番面積が大で薄く、次いで肩部であり、首部及び 底部はこれらに比して面積が強いさくかつ厚い樹脂層か ら形成されている。このためガスバリア性の面から見る と、樹脂層が薄くて面積の大きいボトル胴部のガスバリ ア性を改善するだけで、首部と底部にはバリア性樹脂層 が存在しなくとも多層ボトルのガスバリア性をほとんど

などのように、ボトルのガスバリア機能として内部から CO2 ガスの逃散を抑え、同時に外気中の酸素ガスが内 部へ侵入し内容物の品質を大幅に低下することを防止す る必要がある場合に適用できる。

【0007】特にビール、サイダーなどのように、充填 後3月程度の比較的短期間のシェルフライフがあれば良 い容器類としては、完全なガスバリア性がなくとも良 く、通常20℃、相対湿度65%における酸素ガス透過 度が2cc/m²・日以下、CO2 ガス透過度が20c c / m^2 ・日以下を満足れば、これら容器に必要とされ る3月でСО2 ガスの圧力低下が15%以下を確保でき る。したがって、上記の基準を満足するバリア性樹脂層 を多層ボトルのボトル層部及び胴部に均一な層を形成す るようなパリソンの高生産性でかつ安定して製造できる 合理的な製造方法の確立が必要となる。

[0008]

【発明が解決しようとする課題】本発明は、スタンピン グ成形法を利用して、次の工程である成形用コア金型に インサートするプリフォームを作成し、多層ボトルとし た時に確実にかつ安定して、ボトル首部中央ないしボト ル肩部中央から胴部全体を含むボトル底部までの範囲を カバーできる位置までバリア性樹脂が積層できるパリソ ン、それを用いた多層熱可塑性プラスチックボトル及び それらの製造方法の開発を目的とする。

【課題を解決するための手段】本発明は、[1] くとも二層の熱可塑性プラスチックシートからなる多層 の成形体であって、そのうちの一層は他の層よりも流れ 特性が小であり、ボトル成形時にボトル底部からボトル 首部中央ないしボトル肩部中央の範囲までカバーできる 位置まで積層されている多層熱可塑性プラスチックボト ルパリソン用プリフォーム、 [2] 熱可塑性プラスチ ックのうちの一層はバリア性樹脂であり、他の層は少な くともポリエステル樹脂である上記[1]に記載の多層 熱可塑性プラスチックボトルパリソン用プリフォーム、 「3] 流れ特性の小なる樹脂層とそれと異なる他の樹

脂層の間に接着性樹脂層を設けた多層成形体である上記 [1] または [2] に記載の多層熱可塑性プラスチック ボトル用プリフォーム、 【0010】[4] 熱可塑性プラスチックの少なくと

も流れ特性の異なる2枚のシートあるいは少なくとも流 れ特性の異なる2層から形成された多層シートを打ち抜 き、これをスタンピング成形用キャビティー金型にセッ トし、これら熱可塑性プラスチックの融点近傍において スタンピング成形することを特徴とする多層熱可塑性プ ラスチックボトル用プリフォームの製造方法、[5] 熱可塑性プラスチックのシートが、ポリエステル樹脂及 びバリア性樹脂からなる少なくとも2枚のシートまたは 少なくとも二層からなる多層シートであり、スタンピン 解決できることがわかる。ビール、コーラ類、サイダー 50 グ成形した際にバリア性樹脂が端面に露出しないよう

5

に、ポリエステル樹脂の流れ特性をバリア性樹脂の流れ 特性より大きくした上記 [4] に記載の多層熱可塑性プ ラスチックボトル用プリフォームの製造方法、 [6] 熱可塑性プラスチックの多層のシートが、中間層として バリア性樹脂を有し、両外面にポリエステル樹脂を用い た少なくとも3層からなる上記 [4] または [5] に記 載の多層熱可塑性プラスチックボトル用プリフォームの 製造方法、

[0011] [7] 少なくとも3層からなる熱可塑性 プラスチック多層ボトルであって、中間層となるバリア 性樹脂層が、ボトル底部よりボトル首部中央ないしボト ル肩部中央上部の範囲まで積層されている多層熱可塑性 プラスチックボトル、[8] 少なくとも2層の熱可塑 性プラスチックからなる多層の成形体であって、そのう ちの一層の樹脂は他の層の樹脂よりも流れ特性が小であ ってボトル成形した時にボトル底部からボトル首部中央 ないしボトル肩部中央上部の範囲までカバーできる位置 まで積層されている多層ボトル用プリフォームを、パリ ソン成形用コア金型にインサートし、キャビティーにセ ットし、これに流れ特性の小なる樹脂と異なる他の層と 同種の樹脂を流れ特性の小なる樹脂を完全に被覆できる ように注入してパリソンを製造し、次いで延伸プロー成 形することを特徴とする多層熱可塑性プラスチックボト ルの製造方法、[9] プリフォームを射出成形により パリソンを成形する際に、プリフォーム成形時のコア金 型に装着したままそれをパリソン成形用コア金型として 使用する上記[8]に記載の多層熱可塑性プラスチック ボトルの製造方法、を開発することにより上記の目的を 達成した。

[0012]

【発明の実施の形態】本発明の多層ボトル用プリフォー ムの製造に使用する多層のシートとしては、それぞれの 流れ特性の異なる複数の樹脂のシートを打ち抜いたもの を複数枚重ねて使用してもよく、また流れ特性の異なる 複数の樹脂を積層した多層シートを打ち抜いたものであ ってもよい。これらの樹脂層は少なくとも2層からな り、一層は他の層よりも流れ特性が小であるものであ り、ボトルに成形した時は他の樹脂層(構造材樹脂層) によって全面が被覆されるようにする。多層ボトル用プ リフォームが、ガスバリア性多層ボトルを目的とする時 には、該流れ特性の小なる樹脂層の樹脂としてはボトル の中間層となるバリア性樹脂を、他の層(流れ特性の大 なる樹脂層) は構造材と同種の樹脂を使用する。この構 成は少なくともそれぞれが1層づつ必要であり、3層シ ートにおいては構造材樹脂/バリア性樹脂/構造材樹脂 の構成をとり、4層以上においては、多層ボトルとバリ

ア性樹脂が交互に積層された多層シートを使用する。 【0013】多層シート(以下特に断らない限り複数の シートを重ねて使用するもの及び多層シートの両者を意 味する。)の各層における樹脂厚みはバリア層の厚みが 重要であり、後での延伸ブロー倍率、容器の容積などに より変わるため、多層ボトルの容積及び強度、延伸倍率 などから必要な厚みを計算して作成することが必要であ る。単層シートあるいは多層の積層シートの製造には、 従来行われている同時押出、逐次押出など従来のシート 成形に使用されている押出成形方法を使用すれば良い。 【0014】多層シートに使用する樹脂のうち流れ特性 の小なる樹脂は、スタンピング工程あるいはパリソンの 成形工程においてその表面は他の樹脂層(構造材樹脂 層) で完全に覆われる。すなわち流れ特性の小なる樹脂 (一般にバリア性樹脂なので以下「バリア性樹脂」とい う。) はスタンピング工程においても流れが悪いため、 スタンピングによってもプリフォームの上部までは流れ ず、該上部は流れ特性の良い構造材樹脂で構成されるこ とになる。いずれにしても該プリフォームから製造した パリソンを延伸ブローした時、図6に示す多層ボトルの 首部中央(「ボトル首部中央」とは、ボトル首部のほぼ 中央近辺を意味し、幾何学的中央を指してはいない。) ないしボトル肩部(これも前記と同旨)に対応する部分 は構造材樹脂だけで構成され、バリア性樹脂は、延伸ブ

ローした時に多層ボトルのボトル首部近辺に対応したパ

く。上記の構造を取る流れ特性を選ぶには、多層ボトル

の形状、構造材樹脂の厚さ、流れ特性との関係があって

簡単に言うことはできないが、構造材樹脂の流れ特性を

決めた後、数回のテストにより比較的簡単に適切な流れ

特性のバリア性樹脂を選ぶことができる。

リソン位置まであるようにプリフォームを設計してお

【0015】本発明の多層ボトルに使用するバリア性樹脂としては、EVOH、ポリ塩化ビニリデン、ポリアクリロニトリル、MXD6ナイロン(メタキシリレンジアミンーアジピン酸の重縮合体)などであるが、コスト及びエコロジー性の面から見てEVOH、MXD6ナイロンが好ましい。また構造材樹脂としては、ポリエチレンテレフタレート(以下「PET」という。)、ポリブチレンテレフタレート、ポリエチレンナフタレート(PEN)などのポリエステル樹脂、ポリプロピレンなどが挙げられるが、コスト、剛性などの特性からPETが最も好ましい。なおこれら樹脂のガスバリア性を示すと以下のようになる。

[0016]

【表 1】

7

	ガス透過率(cc-mil)/(100in²-day-bar)					
	酸素	C O 2				
PET (dry)	5.00	19.0				
PEN	1.10	4. 1				
MXD6 (dry)	0.15	0.50				
EVOH (dry)	0.07	0.20				
PVDC	0.07	0.22				

【0017】これらの樹脂には従来使用されている酸化防止剤、滑剤、紫外線吸収材、充填材、着色材などを併用してもよい。遮光性を必要とする時には、カーボンブラックなどの充填材を使用すれば良い。上記の多層シートは、限定するわけではないが加工の容易性から複数の単層シートまたは2層以上の積層シートを打ち抜きによりキャビティー金型底部に固定できるように必要なサイズの円形のワークピースとする。あるいは射出成形によりワークピースを成形してもよい。

【0018】その際、金型に挿入する前にワークピースをスタンピング成形金型のキャビティーの形状に合わせて予備的プレスしておくことは、スタンピングの際の加熱効率のために好ましい。またワークピースをキャビティーに挿入する前に予備的に予熱するとか、多数の金型を使用してスタンピングに先立ちワークピースを予熱しておくなどもプリフォーム成形の操作性を向上させる。そして金型に挿入したワークピースが十分に加熱できた後、コア金型を圧入(スタンピング)してワークピースを次の工程であるパリソン成形用コア金型にインサートできるプリフォームに成形する。スタンピング工程におけるワークピースの温度、コア金型圧力などの操作条件は、従来のスタンピング工程と特に異なることはない。

【0019】スタンピングする3層以上の多層シートであって両外面が構造材と同種の樹脂である時は、その後のパリソン成形時の構造材樹脂とプリフォーム外面との樹脂の溶着が容易で安定した製品が得られる。また2層の多層シートのように外面にバリア性樹脂層が露出している時には、プリフォームのバリア性樹脂の露出した面に構造材樹脂を射出して、バリア性樹脂全体を被覆してそれを中間層(3層の時は第2層目、それ以外の時でも外面層面には構造材樹脂が来るようにする。)となったパリソンとすることが必要である。また3層以上の多層シートであってすでにバリア性樹脂が確実に被覆されている場合においてもそのスタンピングしたパリソンに構造材樹脂を射出してパリソンとして必要な厚みを形成させることもできる。

【0020】成形の容易性、確実性から言えば、中間層

にバリア性樹脂、両表面層に構造材樹脂からなる3層の ワークピースを用い、一旦スタンピングしプリフォーム を成形した後、必要な厚みの構造材樹脂を射出してパリ ソンとしたものを使用することが多層ボトルの胴部のバ リア性樹脂層の均一な厚みの確保及びボトルにおけるバ リア性樹脂層の積層範囲をコントロールするのに有利で ある。あらかじめスタンピングによりバリア性樹脂を所 定の位置にセットしておいた多層ボトル用プリフォーム はその後パリソン成形し、再加熱して延伸ブローした時 に、ボトルのバリア性樹脂層を所定の範囲に積層した多 層ボトルとすることができる。

【0021】スタンピングした両外面層が構造材と同種の樹脂で被覆されている3層以上のプリフォームあるいはバリア性樹脂が露出しているスタンピングしたプリフォームに構造材樹脂を射出成形して積層したパリソンは、延伸ブロー装置において再加熱後延伸ブロー成形して多層ボトルに成形される。延伸ブローの条件は、使用した構造材樹脂、バリア性樹脂、それらの厚さ、多層ボトルの容量などにより異なるが、構造材樹脂とバリア性樹脂の流れ特性が異なるといっても一旦プリフォームとした後では通常の延伸ブローと同様に行うことができる

【0022】このようにして作られたパリソンを延伸ブローした時には、得られる多層熱可塑性プラスチックボトルは、ボトル底部から上部のボトル首部中央ないしボトル肩部中央の範囲まで、両外面層に構造材樹脂で中間層としてバリア性樹脂が積層された多層の構成をしており、ボトル首部の上部などの肉厚の厚い部分はバリア性樹脂を含まない多層構成材からなっている。この部分はボトル胴部などに比較して樹脂層が充分に厚く、樹脂層のガス透過率は同じであっても透過量は極めて小さくなっており、必要なガスバリア性は確保できるものとなっている。

【0023】以下図面を参照して本発明を具体的に説明 する。図1及び図2はスタンピングによるプリフォーム の成形に関する概念図である。プリフォーム用の金型は 50 スタンピングコア金型1及びスタンピングキャビティー

金型2からなっており、構造材樹脂のワークピース3、 3とバリア性樹脂ワークピース4からなるスタンピング キャビティーの形状に予備成形されたそれぞれのシート あるいは積層シートをセットし、所定の温度に加熱す る。この際キャビティーにセットする前にあらかじめ別 の手段により加熱してからセットすることが金型の占有 時間を短縮できるので好ましい。所定の温度に達した時 に金型を閉じてスタンピングを行う。この時バリア性樹 脂は流れ特性が構造材樹脂より小であるので、キャビテ ィーの上端までは達することなく、ボトル成形時にボト ル首部中央ないしボトル肩部中央の範囲に達する位置ま でしか流れない。

【0024】製造されたプリフォームは次にパリソンと するために射出成形に付される。上記で製造された3層 からなるプリフォームは、図4に示すように射出成形コ ア金型5にインサートし、射出成形キャビティー金型6 にセットされる。該キャビティーの空間はプリフォーム の外形よりは十分大きいのでプリフォームの周囲には空 間が存在する。次いで図5に示すようにこの空間に対し 構造材樹脂またはそれと同種の樹脂8を射出し、プリフ ォームの表面を樹脂8で被覆する。構造材樹脂3と射出 された構造材樹脂8は一体となってパリソンの外面層を 形成する。この場合、スタンピングコア金型1を射出成 形のコア金型5と兼用させることもできる。

【0025】このパリソンを金型5から取りはずし、図 5に示すように延伸プロー成形装置にセットし、再加熱 した上、延伸ブローを行う。この場合の成形条件、操作 方法は、バリア性樹脂層があっても従来のポリエステル 樹脂パリソンの場合と同じであって特に変更は必要とし ない。仮に変更が必要であっても2~3回のテストラン で解決可能である。このようにして得られた多層ボトル は、ボトル全体をバリア性樹脂層で囲繞されていないに もかかわらず酸素ガス、CO2 ガスに対するバリア性が 高く、ビール、コーラ類、サイダーなどの容器として十 分使用に耐える性能を有していた。

[0026]

【実施例】(実施例)

[プリフォームの成形] 50トンプレスを使用し、構造 材樹脂として中間層のバリア性樹脂としてMXD6ナイ ロン(ナムス社)、両面にポリエステル樹脂[日本ユニ 40 ペット社;PET;RT543]を用い、予熱し、圧力 32トン/kgをかけて内径22mmø、外径23 mmφ、全長90mm (PET層200μm/ナイロン 成形した。

[パリソンの成形] 上記で成形したプリフォームをスタ ンピング金型から取り出し、射出成形コア金型にインサ ートし、射出成形金型キャビティーにセットした。プリ フォームに使用したポリエステル樹脂と同一グレードの 樹脂をプリフォーム外面に射出し、外径24.4mm φ

のパリソンとした。

【0027】上記パリソンを従来の延伸ブロー機により 延伸ブローを行い全髙さ200mm、胴部の径60mm φ、ボトル肩部中央部の肉厚500μm、ボトル胴部の 肉厚350μm、底部の肉厚(薄い部分)600μmの 500ccの多層ボトルを得た。得られた多層ボトルは 透明、軽量であり、耐衝撃性も十分であって、かつバリ ア性樹脂を積層しているため酸素ガス、CO2 ガスのバ リア性も十分であった。

[0028]

【発明の効果】本発明方法により、プリフォームを成形 し、それを用いてパリソンとし、該パリソンを延伸ブロ 一して成形された延伸ブロー多層成形ボトルは、内容物 が見え、アルミニウム缶に比較して、安価であり、初期 の投資が小さくてよく、また再封止性を有する利点があ り、またガラスびんに比較して、軽量であり耐衝撃性に すぐれている利点を有する。本発明においてはスタンピ ングでプリフォームを成形するため、従来法の射出成形 に比しパリソンも安価に、かつ短時間で生産性高く多層 ボトル用パリソンを成形できた。またプリフォームを経 由したため、パリソン段階におけるバリア性樹脂の積層 する位置が安定しており、かつバリア性樹脂の使用量を 減らしても多層ボトルとしてバリア性が高く、剛性の高 いボトルが製造できた。

【図面の簡単な説明】

【図1】プリフォーム用金型に多層シートをセットした 状態の断面図。

【図2】プリフォーム用金型を閉じた状態の断面図。

【図3】射出成形金型にプリフォームをセットした状態 の断面図。

【図4】プリフォームに射出成形してパリソンとした状 態の断面図。

【図5】パリソンを延伸ブローをして多層ボトルとした 状態の断面図。

【図6】多層ボトルの外形。

【符号の説明】

- 1 スタンピングコア金型
- 2 スタンピングキャビティー金型
- 3 構造材樹脂
 - 4 バリア性樹脂
 - 5 射出成形コア金型
 - 6 射出成形キャビティー金型
 - 射出成形キャビティーの空間
 - 8 射出成形により注入された樹脂
 - 9 射出成形ノズル
 - 10 パリソン (3+8+4)
 - 11 延伸プロー金型
 - 12 延伸プロー金型

フロントページの続き

B 2 9 L 22:00

(51) Int. Cl. ⁷

識別記号

FΙ

テーマコード(参考)

F ターム(参考) 4F100 AK01A AK01B AK01C AK41B AK42 AK48 BA02 BA03 BA07 BA10A BA10B BA15 DA01 DA04 DA05 EA031 EH012 EJ302 EJ362 EJ372 EJ812 GB16 JA20A JA20B JB16A JB16B JB16C JD02 JD02A JD02C JK09 JL02 JL03 JL16

4F201 AA10 AA11 AA15 AA24 AA29 AC03 AG03 AG07 AH55 AR17 AR18 AR20 BA03 BC01 BC02 BC12 BC21 BD02 BD04 BD06 BD10 BM05 BM07 BM13 BQ09 BQ12

4F208 AA10 AA11 AA15 AA24 AA29 AC03 AG03 AG07 AH55 AR17 AR18 AR20 LA08 LB01 LB22 LG03 LG05 LG06 LG14 LG15 LG16 LG28 LG32 LJ01 LJ08