# Recommender System Using Wide & Deep Technique and Side Information

장영수, 지윤혁, 조기흠, 백찬진

### Contents

- #1. Abstract
- #2. Introduction
- #3.Backgrounds
- #4. Model Architecture
- #5. Experiments
- #6. Conclusion
- #7. Reference

### 1. Abstract

User와 Item 각각의 부가정보를 Wide 방식과 Deep 방식으로 나누어 총 4가지의 Interaction Map 생성



각각의 Interaction Map 간의 중요도 파악을 위하여 Channel Attention을 적용하여 예측을 진행하고, 기존의 ONCF의 성능 비교

### 2. Introduction

#### [필요성]

- 1) 기존 ONCF에 부가 정보를 활용하여 데이터를 풍부하게 표현할 수 있음
- 2) 기존 ONCF에서는 하나였던 Interaction Map을 부가정보를 활용하여 다수의 채널로 확장할 수 있음

#### [목적]

- 1) 사용자의 나이, 직업, 영화의 장르, 제목 등을 활용하여 모델의 성능에 기여
- 2) Concat, Stack의 방식으로 서로 관련 없는 Map을 채널로 쌓는 방식이 아닌 Element-wise 방식으로 생성한 Latent Vector를 외적하여 채널들 간의 연관성을 확보하면서 다수의 채널로 확장할 수 있음

#### [추가]

- 1) 부가정보 추가할 때, Memorization과 Generalization의 방식을 사용하는 Wide & Deep을 사용할 수 있음
- 2) 다수의 채널을 만든 후 Channel Attention을 사용하여 Channel들 간의 중요도를 고려할 수 있음

### 3. Backgrounds

[3.1 ONCF]



### 3. Backgrounds

[ 3.2 Wide & Deep ]



# 3. Backgrounds

[3.3 Channel Attention]



$$F_{out} = CA(F_{in})$$
 
$$F_{out} = F_{in} \times \sigma_2(fc_2(\sigma_1(fc1(GAP(F_{in})))))$$

## 4. Model Architecture



[실험설정]

```
# Epoch : 50
# Batch size: 512
# Loss Function: MSE Loss
# 평가지표: HR, AUC
# Optimizer: Adam
# Learning rate: 0.001
# Embedding size: 16
```

[Data]

movielens의 영화 Dataset을 빠른 실험을 위해 User를 200명으로 Random Sampling

# Users.dat

- 6040 명

# movies.dat

- 3900 개

**# Sampled Users** 

- 200 명

# Sampled movies

- 2928 개

[실험1] 기존 ONCF VS WD - ONCF

Point. 기존 모델인 ONCF에 부가정보를 사용하는 것이 성능향상에 도움이 되는지 검증 기존의 ONCF와 W&D 방식을 사용하여 부가정보를 추가한 ONCF의 성능을 비교

[실험2] WD - ONCF VS Channel Attention With WD - ONCF

Point. Channel 간의 중요도를 Attention을 통해 강조하는 것이 부가정보를 효과적으로 사용하는데 도움이 되는지 검증 Channel Attention을 사용하여 특정 채널의 중요도를 전달해 주는 것이 부가정보를 더욱 효과적으로 사용할 수 있다고 판단

[실험3]기존 ONCF VS Channel Attention With WD - ONCF

Point. 기존 모델 대비 제안한 모델의 성능을 비교

[Result]

#### 기존 ONCF VS WD - ONCF VS Channel Attention With WD - ONCF

| Model   | HR @ K |       |       | A1.10   |
|---------|--------|-------|-------|---------|
|         | 10     | 15    | 20    | AUC     |
| ONCF    | 0.55   | 0.63  | 0.68  | 0.7286  |
| WD-ONCF | 0.485  | 0.55  | 0.62  | 0.71591 |
| CA-ONCF | 0.575  | 0.655 | 0.705 | 0.79067 |







### 6. Conclusion

#### 연구 내용)

부가정보 없이 협업 필터링 기법과 외적의 방식을 통해 좋은 성능을 냈던 ONCF에 부가 정보를 활용하여 추천시스템의 성능을 개선 기존에 하나로 구성 되었던 Interaction Map을 부가정보를 활용하여 여러 채널로 확장

#### 결론)

기존의 ONCF에 더욱 풍부한 부가 정보를 추가하여 추천시스템의 성능 향상에 기여하였고, Channel Attention의 방식을 사용하여 더욱 효과적으로 부가정보를 사용할 수 있음을 입증

#### 한계점 및 개선사항)

MovieLens 데이터와 비교하였을 때, 부가정보가 많거나 적은 데이터의 경우 부가정보의 수에 따라 성능 차이가 생길 수 있다고 판단 빠른 실험을 위해 데이터를 축소하여 진행하였기 때문에 더 많은 데이터를 사용한다면 더 높은 성능을 기대할 수 있음

#### 7. References

- Neural Collaborative Filtering(NCF)
- Outer Product-based Neural Collaborative Filtering (ONCF)
- Wide & Deep Learning for Recommender Systems
- AttentionIs All YouNeed (Transformer)
- An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale (Vision Transformer)
- A Deep Learning Based Recommender System Using Visual Information
- 채널 강조와 공간 강조의 결합을 이용한 딥 러닝 기반의 초해상도 방법 (Channel Attention, Spatial Attention)

# Thank You