Page 11

- **3.1** We must prove that the set $\{x : x \in A \text{ and } x \notin B\}$ exist. Let P(x, A, B) be the property " $x \in A \text{ and } x \notin B$ ", P(x, A, B) implies $x \in A$, because A exist, we have $\{x : x \in A \text{ and } x \notin B\} = \{x \in A : x \in A \text{ and } x \notin B\} = \{x \in A : x \notin B\}$, this set clearly exist by the axiom of comprehension.
- **3.2** Weak Axiom of Existence implies that some set exist, call one of them A and let P(x) be the property " $x \neq x$ ", by axiom of comprehension the set $X = \{x \in A : x \neq x\}$ exist, it has no element because no object satisfy the property P(x).
- **3.3** (a) Suppose that V is set of all sets, by Comprehension $X = \{x \in V : x \notin x\}$ exist. Because V is set of all sets, clearly $X \in V$. Now suppose that $X \in X$ then $X \notin X$ by definition, a contradiction. suppose $X \notin X$, then $X \in X$ again by definition.
- (b) Assume the contrary, there is a set A that any $x \in A$. then A = V is set of all sets, by previous exercise there is no V.
- **3.4** By axiom of pairing the set $\{A, B\}$ exist and union axiom implies the existence of $\bigcup \{A, B\}$, let $P(x, A, B) = (x \in A \land x \notin B) \lor (x \notin A \land x \in B)$ by comprehension there is a set that its elements satisfy P(x, A, B) and $x \in \bigcup \{A, B\}$.
- **3.5** 3.5(a) by axiom of pairing there is $\{A, B\}$ and $\{C\}$. again by pairing $\{\{A, B\}, \{C\}\}$. by axiom of union there is $X = \bigcup \{\{A, B\}, \{C\}\}$. Now $x \in X$ iff $x \in \{A, B\}$ or $x \in \{C\}$ iff x = A or x = B or x = C.
 - (b) Take $\{C, D\}$ instead of $\{C\}$ in the previous exercise.
- **3.6** Assume that $\mathcal{P}(X) \subseteq X$, Now let $Y = \{x \in X : x \notin x\}$, clearly $Y \subseteq X$, so $Y \in \mathcal{P}(X)$, thus $Y \in X$. also we have either $Y \in Y$ or $Y \notin Y$. if first, $Y \notin Y$, if th second $Y \in Y$, thus $Y \in Y$ iff $Y \notin Y$, a contradiction.
- **3.6** Let P(x, A, B) be the property " $x = A \lor x = B$ ", apply axiom of comprehension to C, we get the set $X \subseteq C$ such that $x \in X$ iff x = A or x = B, so $X = \{A, B\}$.

Let P'(x,S) be the property " $\exists A(A \in S \land X \in A)$ ", apply axiom of comprehension to U, we get the set Y such that $x \in Y$ iff for some $A \in S$ we have $x \in A$, thus $Y = \bigcup S$.

Let P'(x, S) be the property " $x \subseteq S$ ", apply axiom of comprehension to P, we get the set Z such that $x \in Z$ iff $x \subseteq S$, thus $Y = \mathcal{P}(S)$.

Page 15

4.2 (a) Left to right, assume (*) $A \subseteq B$, and let $x \in A \cap B$, which means that $x \in A$ and $x \in B$, we can conclude $x \in A$, thus $A \cap B \subseteq A(**)$. to prove the other direction, let $x \in A$, by assumption (*) we get $x \in B$, we can conclude $x \in A$ and $x \in B$, which means that $x \in A \cap B$, so we have $A \subseteq A \cap B$, so by this and (**) we have $A = A \cap B$.

Right to left, suppose $A \cap B = A(*)$, let $x \in A$, by (*) $x \in B$, so we have $A \subset B$.

Second part, $x \in A \cup B$ iff $x \in B$, it means that there is nothing in A such that is not in B, thus $A - B = \emptyset$.

(b) Left to right, suppose $A \subseteq B \cap C$, let $x \in A$, by previous assumption we have $x \in B \cap C$, which implies that $x \in B$ and $x \in C$, so we have $A \subseteq B$ and $A \subseteq C$.

Right to left, suppose $A \subseteq B$ and $A \subseteq C$, let $x \in A$, by two previous assumtion we have both $x \in B$ and $x \in C$ which implies that $x \in B \cap C$, thus we have $A \subseteq B \cap C$.

- (c) Suppose $B \cup C \subseteq A$, let $x \in B$, we can get also $x \in B \cup C$, by previous assumption we conclude that $x \in A$, thus $B \subseteq A$. by similar argument we can show $C \subseteq A$.
- (d) $x \in A B$ iff $x \in A \land \neg(x \in B)$ iff $x \in A \land \neg(x \in B) \lor (x \in B \land \neg(x \in B))$ iff $(x \in A \lor x \in B) \land \neg(x \in B)$ iff $x \in (A \cup B) B$ iff $(x \in A \land \neg(x \in B)) \lor (x \in A \land \neg(x \in A))$ iff $x \in A \land (\neg(x \in A) \lor \neg(x \in B))$ iff $x \in A (A \cap B)$.
- (e) $x \in A \cap B$ iff $x \in A \land x \in B$ iff $(x \in A \land x \in B) \lor (x \in A \land \neg(x \in A))$ iff $(x \in A \land x \in B) \lor (x \in A \land \neg(x \in A))$ iff $x \in A \land \neg(\neg(x \in B) \land (x \in A))$ iff $x \in A \land \neg(x \in A)$ i
- (f) $x \in A (B C)$ iff $x \in A \land \neg (x \in B C)$ iff $x \in A \land \neg (x \in B) \lor (x \in C)$ iff $x \in A \land (\neg (x \in B) \lor (x \in C))$ iff $(x \in A \land \neg (x \in B)) \lor (x \in A \land x \in C)$ iff $(x \in A \land B) \lor (x \in A \land x \in C)$ iff $(x \in A \land B) \lor (x \in A \land x \in C)$ iff $(x \in A \land B) \lor (x \in A \land x \in C)$ iff $(x \in A \land B) \lor (x \in A \land x \in C)$ iff $(x \in A \land B) \lor (x \in A \land x \in C)$ iff $(x \in A \land B) \lor (x \in A \land x \in C)$ iff $(x \in A \land B) \lor (x \in A \land x \in C)$ iff $(x \in A \land x \in C)$ i

(g) $(A-B) \cup (B-A) = \emptyset$ iff both (*) $A-B=\emptyset$ and $B-A=\emptyset$, by (a) we get (*) iff $A \subseteq B$ and $B \subseteq A$ iff A=B.

- **4.4** Suppose it exist, then $A' \cup A$ is equal to universal set which does not exist.
- **4.5** (a) let $x \in A \cap \bigcup S$, then $x \in A$ and $x \in C$ for some $C \in S$, it means that $x \in A \cap C$, clearly $A \cap C \in P(A)$ so $A \cap C \in T_1$ by definition, thus $x \in \bigcup T_1$. (Note that if we take $A \cap C = C$, then we can say that for some $C \in T_1$ we have $x \in C$). Now let $x \in \bigcup T_1$, then there is some $Y \in T_1$ such that $x \in Y$, but by definition of T_1 we know that $Y = A \cap X$ for some $X \in S$, it means that $x \in \bigcup S$ and $x \in A$, thus $x \in A \cap \bigcup S$.
- (b) Let $x \in A \bigcup S$, we have $x \in A \bigcup S$ iff $x \in A$ and $x \notin X$ for any $X \in S$. it equally means that (*) $x \in A X$ for every $X \in S$. we know that any set in the form of A X such that $X \in S$ is in T_2 , thus (*) means that we have $x \in \bigcap T_2$.
- $x \in A \bigcap S$ iff $x \in A$ and $x \notin C$ for some $C \in S$ iff $x \in A C$ for some $C \in S$, because any set in the form of A X such that $X \in S$ is in T_2 we have some $x \in \bigcap T_2$.
- **4.6** if S is not empty, then there is some $C \in S$, by Axiom Schema of Comprehension the set $\{x \in C : (\forall X)(X \in S \to x \in X)\}$ exist. if it was empty, then we could not apply the axiom of comprehension.