Algorithms for Programming Contests - Week 02

Prof. Dr. Javier Esparza,
Philipp Czerner, Martin Helfrich, Christoph Welzel,
Mikhail Raskin,
conpra@in.tum.de

October 29, 2021

Theme of this Week

- Data structures + simple operations on them
- Basic algorithms

Graphs

- Known from practically all theoretical courses: G = (V, E).
- Numerous variants: Directed, weighted, labelled, ...
- Different underlying structures for different tasks!

Important properties / considerations

- Is the graph sparse or dense?
- Directed or undirected?
- Are node/edge labels/meta-information important?
- Transitive closure or predecessor relation relevant?
- Do we need the whole set of states?

Example approaches

Usually represented as some form of adjacency matrix:

- Dense, unweighted graph: boolean[][]
- Sparse, unweighted graph: Set(int)[], int -> Set(int)
- Sparse digraph with labels: Node -> Set(Edges)
- Dense, weighted graph: double[][]
- . . .

Other possibilities (no access to whole state set):

- Node object with set of successors
- Successor function (on-demand computation)
- . .

Summary

- · Representation highly depends on the input format and task!
- Usually, adjacency lists are sufficient
 - ...Adjacency hashtables are very nice
- Sometimes, having objects as graph nodes is really helpful might not happen in the course

- Widely known approach to search for specific items in $O(\log(n))$ time
- Simple example: Search in an ordered array

Idea

- Input: Sorted array a and object of interest needle
- Naive approach: Linearly scan through array -O(n).
- Array sorted \Rightarrow if needle < a[4], then needle < a[i] for all $i \ge 4$!
- Idea: Check the middle element, compare it to needle:
 - Element is larger: Search on left side
 - Element is equal: Found it!
 - Element is smaller: Search on right side

Example

a: | 3 | 5 | 7 | 12 | 13 | 20 | 21 | 40 | 50 | 90 | 100 | needle: 12

Example

needle: 12

Example

needle: 12

Example

Example

a: | 3 | 5 | 7 | 12 | 13 | 20 | 21 | 40 | 50 | 90 | 100 | needle: 12

Example

a: | 3 | 5 | 7 | 12 | 13 | 20 | 21 | 40 | 50 | 90 | 100 | needle: 12

Summary

- Very efficient method to check whether an object is in an array
- Java has a dedicated function (Arrays.binarySearch)
- Important: Easily generalized to monotonous properties, e.g. searching for a bug with git bisect

Union Find

- Extremely fast approach to maintain a partition of a set
- Useful to model equivalence relations, e.g., graph partitions
- Theoretically interesting: Inverse Ackermann complexity¹ (when implemented with weighted union and path compression)

 $^{^{1}\}mathrm{very}$ very close to constant: $\alpha(\mathrm{61})=$ 3, $\alpha(\mathrm{2^{2}^{2^{2}^{16}}})\approx$

Features

- Two core operations:
 - union(a, b): Merge the sets of a and b
 - find(a): Find the "root" of a (the representative of the set)
 - ... and potentially make, adding a new element
- Idea: find(a) = find(b) iff a and b are in the same set
- Extensions: Size of each subset, amount of subsets, . . .

Union Find

Example

1 union(1, 3)

1 union(1, 3)

- **1** union(1, 3)
- 2 find(1) \neq find(4)

- **1** union(1, 3)
- 2 find(1) \neq find(4)
- **3** union(4, 2)

5

- **1** union(1, 3)
- 2 find(1) \neq find(4)
- **3** union(4, 2)

(5)

- 1 union(1, 3)
- 2 find(1) \neq find(4)
- **3** union(4, 2)
- 4 union(2, 1)

- 1 union(1, 3)
- 2 find(1) \neq find(4)
- **3** union(4, 2)
- 4 union(2, 1)

- 1 union(1, 3)
- 2 find(1) \neq find(4)
- **3** union(4, 2)
- 4 union(2, 1)
- $\mathbf{6} \text{ find}(1) = \text{find}(4)$

Implementation overview

- Here: Base set integers from 0 to n
- Underlying structures:
 - parent : int[n]: Parent of an element
 - size: int[n]: Size of the set (needed for weighted union)
- Initialize: parent[i] = i, size[i] = 1

Implementation overview

- Here: Base set integers from 0 to n
- Underlying structures:
 - parent : int[n]: Parent of an element
 - size: int[n]: Size of the set (needed for weighted union)
- Initialize: parent[i] = i, size[i] = 1
- find(a):
 - Follow parent[i] until element is its own parent ($\hat{=}$ it's the root)
 - Path compression: Set parent[i] = root for all i along the way.

Implementation overview

- Here: Base set integers from 0 to n
- Underlying structures:
 - parent: int[n]: Parent of an element
 - size: int[n]: Size of the set (needed for weighted union)
- Initialize: parent[i] = i, size[i] = 1
- find(a):
 - Follow parent[i] until element is its own parent (\hat{=} it's the root)
 - Path compression: Set parent[i] = root for all i along the way.
- union(a, b):
 - Find roots of a and b
 - Set the larger (according to size) of the two as the parent of the smaller one (weighted union)
 - Update size accordingly

Implementation - find(a)

```
# Find root
root = a
while True:
    parent = parent[root]
    if parent == root:
        break
    root = parent
# Compress path
current = a
while current != root:
    next_elem = parent[current]
    parent[current] = root
    current = next elem
return root
```

Implementation - union(a, b)

```
a, b = find(a), find(b)
if a == b: # a and b are already merged
    return a

# Weighted Union: Update smaller component
a_size, b_size = size[a], size[b]
if a_size < b_size:
    a, b = b, a

parent[b] = a
# Update size accordingly
size[a] = a_size + b_size</pre>
```

Summary

- Practically constant time data structure for (merging) disjoint sets
- Simple to understand and implement