

REC'D 0 4 JUN 2004

WIPO

PCT

<u> TO MILTO WHOM THUSIE: PRESENTS SHAVIL COMES</u>

UNITED STATES DEPARTMENT OF COMMERCE **United States Patent and Trademark Office** 

June 02, 2004

AVAILABLE COPY YAMAT AND EXED HERETO IS A TRUE COPY FROM THE RECORDS OF THE UNITED STATES PATENT AND TRADEMARK OFFICE OF THOSE PAPERS OF THE BELOW IDENTIFIED PATENT APPLICATION THAT MET THE REQUIREMENTS TO BE GRANTED A FILING DATE.

APPLICATION NUMBER: 60/458,856

FILING DATE: March 28, 2003

RELATED PCT APPLICATION NUMBER: PCT/US04/09620

By Authority of the

COMMISSIONER OF PATENTS AND TRADEMARKS

**Certifying Officer** 

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

Patent and Trademark Office; U.S. DEPARTMENT OF COMMERC

# PROVISIONAL APPLICATION COVER SHEET

This is a request for filing a PROVISIONAL APPLICATION under 37 CFR 1.53(c).

**DOCKET NUMBER: B01075.70042** Express Mail Label No. EV 208 517 825 US Date of Deposit: March 28, 2003

INVENTOR(S)/APPLICANT(S)

LAST NAME

MIDDLE FIRST NAME INITIAL

RESIDENCE (CITY AND EITHER STATE OR

FOREIGN COUNTRY)

Stevens-Wright

Debbie

North Andover, MA

Additional inventors are being named on the separately numbered sheets attached hereto.

TITLE OF THE INVENTION (280 characters max)

CATHETER TIP/ELECTRODE JUNCTION DESIGN FOR ELECTROPHYSIOLOGY CATHETERS

CORRESPONDENCE ADDRESS

23628

**CUSTOMER NUMBER:** 

ENCLOSED APPLICATION PARTS (check all that apply)

[X ]Specification - Number of Pages

[ ]Drawing(s) - Number of Sheets

[ ]Application Data Sheet, See 37 CFR 1.76

[X ]Return receipt postcard

The invention was made by an agency of the United States Government or under a contract with an agency of the United States Government.

IX 1No

) Yes, the name of the U.S., Government Agency and the Government Contract Number are:

[ ] Other:

METHOD OF PAYMENT (check all that apply)

[X] A check is enclosed to cover the Provisional Filing Fees.

[ ] The Commissioner is hereby authorized to charge any additional fees or credit overpayment to Deposit Account 23/2825. A duplicate of this sheet is enclosed.

[ ]Small Entity Status is claimed.

PROVISIONAL FILING FEE AMOUNT

\$ 160.00

Respectfully submitted,

March 28, 2003

Date

James/H. Morris, Reg. No. 34,681

Telephone No.: 617-720-3500

U.S. Patent No. 5,257,635 (attached) illustrates a conventional electrode to tip junction design.



# United States Patent [19]

Langberg

4,352,360 10/1982 . King

[11] Patent Number:

5,257,635

1451 Date of Patent:

Nov. 2, 1993

| [54 | [54] ELECTRICAL HEATING CATHETER                                                                                                                                                                             |            |                                                                                     |  |  |  |  |  |  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------------------------------------------------------------------------|--|--|--|--|--|--|
| [7: | 5}                                                                                                                                                                                                           | Inventor:  | Edwin Langberg, Mount Laurel, N.J.                                                  |  |  |  |  |  |  |
| [7  | 3]                                                                                                                                                                                                           | Assignee:  | Sensor Electronics, Inc., Mt. Laurel, N.J.                                          |  |  |  |  |  |  |
| [2  | 1]                                                                                                                                                                                                           | Appl. No.: | 736,253                                                                             |  |  |  |  |  |  |
| [2  | 2]                                                                                                                                                                                                           | Filed:     | Jul. 26, 1991                                                                       |  |  |  |  |  |  |
|     | Related U.S. Application Data                                                                                                                                                                                |            |                                                                                     |  |  |  |  |  |  |
| [6  | [60] Division of Ser. No. 563,562, Aug. 3, 1990, which is a continuation-in-part of Ser. No. 435,361, Nov. 17, 1989, which is a continuation-in-part of Ser. No. 276,294, Nov. 25, 1988, Pat. No. 4,945,912. |            |                                                                                     |  |  |  |  |  |  |
| [:  | 51]<br>52]<br>58]                                                                                                                                                                                            | U.S. Cl    | A61N 1/05<br>607/122; 606/41<br>arch 128/784-786,<br>128/419 P, 804; 606/33, 41, 49 |  |  |  |  |  |  |
| ľ   | 56]                                                                                                                                                                                                          |            | References Cited                                                                    |  |  |  |  |  |  |
|     |                                                                                                                                                                                                              | U.S.       | PATENT DOCUMENTS                                                                    |  |  |  |  |  |  |

4,896,671 1/1990 Cunningham et al. ........ 128/786 X FOREIGN PATENT DOCUMENTS

Primary Examiner—Lee S. Cohen Attorney, Agent, or Firm—Ryan, Kees & Hohenfeldt

[57] ABSTRACT

The invention provides a thermal design of a catheter where the active electrode is partially covered by a heat conducting and electrically insulating heat-sink layer for localizing and controlling an electrical heating of tissue and cooling of the active electrode by convective blood flow. The invention further comprises a current equalizing coating for gradual transition of electrical properties at a boundary of a metallic active electrode and an insulating catheter tube. The current equalizing coating controls current density and the distribution of tissue heating.

13 Claims, 5 Drawing Sheets



Nov. 2, 1993

Sheet 1 of 5

5,257,635





Nov. 2, 1993 Sheet 3 of 5 5,257,635



Nov. 2, 1993

Sheet 4 of 5 5,257,635



Nov. 2, 1993

Sheet 5 of 5

5,257,635



5,257,635

### **ELECTRICAL HEATING CATHETER**

This application is a division, of application Ser. No. 07/563,562 filed, Aug. 3, 1990, which is a continuation-in-part of application Ser. No. 07/435,361, filed Nov. 17, 1989. which is a continuation-in-part of application Ser. No. 276,294 filed Nov. 25, 1988, now U.S. Pat. No. 4,945,912.

#### BACKGROUND .

An electrical heating catheter is a tube typically between 1 and 10 millimeters in diameter used for insertion into biological structure and equipped at the distal end with one or more electrodes and at the proximal 15 end with electrical connectors for application of electric power. Electrical heating catheters are useful in many medical applications, e.g., for hyperthermia treatment of cancer or for cardiac ablation of arithmogenic tissue in the endocardium. In such medical applications 20 it is desirable to maintain a fairly uniform generation of heat in a controlled volume of tissue adjoining the catheters.

A radiofrequency (RF) cardiac ablation catheter is presented here as a preferred embodiment. Catheter 25 ablation is a non-surgical method of destroying an arrhythmogenic focus tissue in the endocardium. Typically, an ablation catheter is introduced percutaneously and advanced under fluoroscopic guidance into the left heart ventricle. It is manipulated until the site of the 30 earliest activation is found, indicating the location of problem tissue. RF power is then applied to the distal catheter electrode. The heat in the vicinity of the electrode destroys the cardiac tissue responsible for the arrhythmia.

· The temperature boundary between viable and nonviable tissue is approximately 48° Centigrade. Tissue heated to a temperature above 48° C. is non viable and defines the ablation volume. For therapeutic effectiveness the ablation volume must extend a few millimeters 40 into the endocardium and must have a surface cross-section of at least a few millimeters square. The objective is to elevate the basal tissue temperature, generally at 37° C., fairly uniformly to the ablation temperature above 48° C., keeping however the hottest tissue temperature 45 below 100° C. At approximately 100° C. charring and desiccation take place which seriously modifies the electrical conductivity of blood and tissue, and causes an increase in the overall electrical impedance of the electrical heating circuit and a drop in the power deliv- 50 ery to the tissue. Charring is particularly troublesome at the surface of the catheter electrode, since the catheter must be removed and cleaned before the procedure can. continue.

In cardiac ablation catheters, the operative electrode 55 is typically metallic and is located on a distal-tip end of the device. This electrode which serves as the heating applicator is referred to as an active electrode. Such an active electrode is the source of electrical or electromagnetic field, which causes heating of neighboring 60 tissue. Even though no significant amount of heat is generated in the electrode itself, adjacently heated endocardial tissue heats the electrode via heat conduction through the tissue.

The field generated by the active electrode also heats 65 the rapid blood flow in the heart chamber, which however very effectively carries away this generated heat so that the flowing blood temperature, except for the

boundary layer, stays close to the basal temperature. Some cooling of the catheter tip takes place due to forced convective cooling caused by fast flowing blood in the heart chamber. The active electrode temperature is the result of the balance between such conductive heating and convective cooling.

In one preferred embodiment, the heating and cooling of the active electrode, for the purpose of tip temperature regulation and improved tissue temperature to control, is carried out by covering the active electrode with thermally conductive and electrically insulating material. It is therefore appropriate to review the use of dielectric coatings in catheter art and to point out the fundamental difference between the preferred emboditiments and the catheter microwave radiator art.

Frequencies for powering heating catheters range from dc to microwaves. It is customary to divide the spectrum of operating frequencies into conductive and radiative regions because of fundamental differences of implementation in these two regions. The dividing frequency between the two regions depends on the characteristic admittance of the tissue surrounding the active electrode: The conductive region is defined by operating frequencies where the conductivity term dominates. Alternatively, in the radiative region the dielectric term dominates. For blood and muscle, the dividing frequency is approximately at 400 MHz. The conductive region corresponds to dc to 400 MHz; the radiative region corresponds to microwave frequencies above 400 MHz.

Implementation of catheter heating applicators for the radiative and the conductive region is quite different. In the radiative region, the heating applicator acts as an antenna causing electromagnetic wave propagation into the tissue. The art of radiative catheter heating applicators, relying on wave propagation, is quite rich, e.g., dipole antennas, helical radiators, and resonators.

An example of a radiative catheter heating applicator, using a resonator, is described in the UK Patent Application GB 2 122 092 A by J. R. James, R. H. Johnson, A. Henderson, and M. H. Ponting. James matches a wave impedance of a resonant radiator, in a mode corresponding to multiples of a quarter wavelength, to a wave impedance of surrounding tissue, by appropriate selection of (1) an electrode coating size, (2) a coating dielectric constant, and (3) a coating magnetic permeability. Neither thermal nor electrical conductivity of the coating is a part of James's design. It should also be noted that the coating in James has both uniform thickness and uniform dielectric properties.

In the conductive region, there is no electromagnetic wave propagation and so techniques relying on wavelength resonance and matching of wave impedance are not applicable. Also in the conductive region, especially in the lower frequencies below 1 MHz, the capacitive impedance of a typical dielectric coating is so high, in comparison with the tissue impedance, that a dielectric coating, in effect, prevents a current flow into the tissue. Typical state of the art catheter heating applicators

Typical state of the art catheter heating applicators for the conductive region, such as the United States Catheter Industries (USCI) catheter shown in FIG. 1, and described in detail later, has an active electrode at the end of the catheter tube and possibly ring electrode or electrodes around the diameter of the tube. Electrodes are connected to the proximal end with a thin, flexible wire.

One undesirable feature associated with such a stateof-the art catheter is a formation of hot spots along the

circular junction of the active electrode with the insulating catheter tube due to a sudden transition of electrical properties at the boundary. For example, an article "Catheter ablation without fulguration: Design and performance of a new system", A. J. Ahsan, D. Cun-ningham, E. Rowland, and A. F. Rickards. PACE. Vol. 12, Part II, January: 001-005, 1989 ("Ahsan") shows such formation of hot spots along the circular junction of the active electrode with the insulating catheter tube. To remedy this problem, Ahsan suggests a cylindrical 10 electrode with hemispherical termination at both ends. The problem with Ahsan's solution is that the electrical connection to such an electrode breaks the smoothness of the surface and so generates a hot spot at the junction of the wire with the hemisphere.

The other undesirable feature of the state-of-the art catheter heating applicators is that there is no provision for cooling of the active electrode and as a result, maximum temperature is reached at the electrode and the resultant charring frequently fouls the electrode during 20 a procedure. The temperature profile taken along the axis of the catheter as it extends into the tissue, similar to that shown by the dashed line in Graph (A) in FIG. 2, has been studied by D. E. Haines and D. D. Watson. (PACE Vol. 12, June: 962-976, 1989) and is described in 25 some detail later. It will suffice here to observe that state-of-the-art catheters exhibit the highest temperature at the active electrode and therefore worst charring occurs at the active electrode-tissue boundary.

#### SUMMARY OF THE INVENTION

The invention provides a thermal design of a catheter where the active electrode is partially covered by a heat conducting and electrically insulating heat-sink layer for localizing and controlling an electrical heating of 35 tissue and cooling of the active electrode by convective blood flow. This design moves peak-temperature awayfrom the active electrode surface thus preventing fouling of the active electrode. The cooling provided by the heat-sink layer also increase the depth and volume of an 40 ablation region.

Without the heat-sink layer, as the size of the active electrode increases, the cooling area expands. Simultaneously, the area of current flow increases, thereby increasing the overall heating volume, decreasing the 45 precision of localization of electrical heating; and leading to an undesirable increase in the overall heating power required for ablation.

Additional cooling of the active electrode can be provided by increasing the diameter of an electrical 50 power supply wire, to a cable size so that the cable can carry a significant amount of heat away from the active electrode and dissipates it along the catheter shaft.

The invention further comprises a current equalizing a boundary of a metallic active electrode and an insulating catheter tube. The current equalizing coating controls current density and the distribution of tissue heating. Absence of an abrupt transition in the electrical properties at the catheter tissue boundary, smoothes 60 heat generation and reduces hot spots in tissue.

# BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 schematically shows a state-of-the-art catheter system and, in detail, a catheter electrode with the re- 65 sulting tissue heating power density pattern adjacent to the electrode, indicating formation of a hot spot at the base of the electrode.

FIG. 2 shows a temperature profile along the extension of the catheter axis into the tissue, produced by (A) the state-of-the-art catheter, and by (B) a catheter with heat sink.

FIG. 3 shows an active electrode with a conductive skirt around the base of the active electrode and shows the resulting equalization of heating power density distribution. FIG. 3 also shows a wire implementation of the heat sink.

FIG. 4 shows a heat sink in the form of an electrically insulating and thermally conductive film on an active electrode.

FIG. 5 shows a bipolar catheter with a current equalizing coating.

### DESCRIPTION OF THE PREFERRED **EMBODIMENTS**

Materials used for the design of the catheter can be conveniently divided into three ranges of electrical resistivity. Metals or metallic materials have resistivity of the order  $10^{-6} \Omega$ -cm to  $10^{-3} \Omega$ -cm. The term "conductive" material is used here to describe intermediate materials in the range of resistivity between  $10^{-3} \Omega$ -cm and 105 Ω-cm. Materials with resistivity larger than 105 Ω-cm are referred to as dielectrics or insulators.

FIG. 1 shows a state-of-the-art electrical catheter with an active electrode similar to the standard (USCI) catheter quoted in Ahsan, and referred to in the Background section. The active electrode serves as a heat applicator in distinction to other electrodes which may also be placed on the catheter. A plastic catheter tube 10 connects at a distal end to an active electrode 11, typically made of Platinum. Wire 12 is electrically connected between the active electrode 11 at junction 13 and, at the proximal end of the catheter, to an electrical power source 15, at terminal 14. To maintain flexibility, wire-12 is thin; typical-size is 28 gage copper wire with a 0.4 millimeter diameter.

The connection at the proximal end of the catheter to the electrical power source 15 can be between two electrodes on the catheter (bipolar connection, seen later in FIG. 5), or between one active electrode and a large neutral external skin electrode (unipolar connection). A unipolar power supply connection is completed in FIG. 1 by connecting an external skin electrode 17 to a neutral power supply terminal 16. The frequency of operation of the power supply is 450 kHz.

A pattern of dashed lines and associated numbers with a "%" symbol, on the outside of tube 10 and active electrode 11 represent contours of equal heating power density. The percentages associated with pattern lines indicate the relative magnitude of electrical power dissipation in the tissue, with the relative scale adjusted, so that 100% represents maximum dissipation, and 0% coating for gradual transition of electrical properties at 55 represents dissipation at a distant neutral boundary. It should be noted in FIG. 1 that the maximum dissipation ranging from 100% to 93% is in the immediate vicinity of the junction between the metallic active electrode 11 and insulating catheter tube 10. Tissue adjacent to the tip of the active electrode 11 is only in the 63% heating density region. The hot spot at the junction of active electrode 11 and tube 10 acts as an undesirable focus for charring. The temperature of tissue along extension 18 of the catheter axis beyond the tip of active electrode 11 is discussed in connection with FIG. 2.

Graph (A) in FIG. 2, shown as a dashed line, is a temperature distribution along extension 18 of the catheter axis produced by the state-of-the-art catheter heating pattern shown in FIG. 1. The temperature is highest directly at the surface of the active electrode (distance=0). In operation, power is typically increased in order to increase the ablation volume until impedance change in noticed due to onset of charring. Since the tissue temperature is highest at the active electrode

charring is most likely to take place there. Charring frequently necessitates the removal of the catheter for cleaning.

The objective of the thermal design of a heating catheter is to heat a controlled volume of tissue to a temperature which causes ablation while at the same time
assuring that the peak temperature is away from the
electrode surface so that charring does not foul the
active electrode surface. Graph (B) in FIG. 2 shows 15
such a temperature profile. Graph (B) is described later

in conjunction with a heat sink catheter design shown in FIG. 3 and FIG. 4.

FIG. 3 shows a catheter with improved electrical and thermal design. Axial blind hole 21, in active electrode 20 20, houses a metallic cable 26. Comparing FIG. 3 with the state-of-the-art catheter in FIG. 1, cable 26 provides an electrical connection to the active electrode 20, as did wire 12 in FIG. 1. Unlike the wire 12, the cross section of cable 26 is much greater, and is typically at 25 least 20% of the cross-section of active electrode 20. Flexibility of cable 26 is maintained by stranded or laminated construction from multiple metallic conductors. Cable 26 provides a much greater heat conduction away from active electrode 20 and into catheter tube 24, 30 thereby reducing a temperature rise of active electrode 20 during operation. Cable 26 also provides a range of possibilities for movable support of active electrode 20. Catheter tube 24 is firmly seated on a undercut protruding proximal end 25 of active electrode 20.

Active electrode 20 is tapered at its base 22 with a tapered angle of 10 degrees. Conductive epoxy fills this tapered region and forms a conductive skirt 23. The contours of equal heating power density, are shown in FIG. 3 for conductive epoxy with resistivity of 150 40 Ω-cm. The power density percentages, are scaled the same way as in FIG. 1. It can be seen that the uniformity of heating density at the junction of active electrode 20 and tube 24 is much improved when compared with the state-of-the-art catheter in FIG. 1 due to a graduated 45 impedance, presented to the surface current flow, provided by the wedge-shaped cross section of conductive

skirt 23.

Such a gradual transition between metallic and insulating surface properties for heating equalization can be 50 accomplished by alternate means to those described above. In one example, conductive skirt 23 is made of uniform thickness but of graduated electrical properties. In another example the transition is implemented by graduated surface capacitance, rather than graduated surface resistance above. A skirt in the form of a tapered deposit of metal oxide on electrode 20 can accomplish such graduated capacitive implementation, e.g., through the formation of a tantalum oxide film, discussed in some detail later.

The impedance graduation need not be accomplished by a surface layer but can if fact extend into the body of the electrode: In yet another implementation, the active electrode is built from axially layered regions of different electrical properties. The direction of current flow 65 can be selectively controlled in individual layers. If radial flow is desired the layer is separated from its neighbors by an insulator and is connected in the center

to cable 26. If axial flow is desired the layer is insulted from the cable 26 and electrically joined to its neighbors.

The flow of heat from the electrode 20 is aided by the large cross section of cable 26. The heat flow path in the cable heat sink implementation, shown in FIG. 3, is completed by modification of the catheter tube 24 to increase thermal conductivity from cable 26 to the outside tissue. The heat conductivity of a plastic elastomer material for tube 24 is reduced by embedding heat conductive particles in the material. The region between the cable 26 and the tube 24 is filled with heat conductive paste 27. The technology of improved heat conductivity plastics, and the technology of heat conductive pastes are well established in conjunction with heat sink techniques for solid state devices. In the cable heat sink implementation above, heat dissipated in the tissue, heats active electrode 20. Active electrode 20 in turn, is cooled by heat outflow along cable 26, through the conductive paste 27 and a wall of catheter tube 24 to the blood and tissue surrounding tube 24.

FIG. 4 shows an alternative heat sink design. The mounting of cable 26 and tube 24 to active electrode 28 and the function of conductive skirt 23 is substantially the same as described in conjunction with FIG. 3. Active electrode 28 in FIG. 4, preferably made from silver, which is the best heat conductor, has a different shape from active electrode 20 in FIG. 3: Active electrode 28 is longer and is shaped to seat a cylindrical film heat sink 29. The heat sink film 29 is electrically insulating and

thermally conductive.

The distal end of active electrode 28 provides a bare metal interface to tissue, generating a heating pattern just as active electrode 20 in FIG. 3. When compared with FIG. 3, the interface between cylindrical film heat sink 29 and the external blood flow provides an added cooling element. The amount of heating and cooling is independently controlled by the ratio of the electrically interacting bare electrode area to the heat sink area.

The overall effectiveness of the heat sink is determined by the thermal conductivity of film 29 and by the heat transfer coefficient. The heat transfer coefficient associated with the thermal boundary layer in forced convection of heat between the catheter surface and the adjacent blood flow, is determined by thermal and hydrodynamic properties of blood. As long as the thermal conductivity of film 29 is significantly smaller than the heat transfer coefficient of the heat convection of the blood flow, the heat sink is close to optimum design. Implementation of heat sink film 29 by a 0.025 mm plastic tube meets this requirement.

The design in FIG. 4 provides very effective forced convective cooling by the flow of blood, while at the same time, allows full control over the size of the area which generates the electrical current flow. It will be noted that the active electrode in FIG. 4 can also comprise the impedance skirt 23 which prevents the formation of a hot spot at the juncture where active electrode 28 and electrically insulating film heat sink 29 meet. The capacitive impedance skirt implementation can be implemented using the same material as heat sink film 29. Cable 26, attached to active electrode 28 provides additional cooling of active electrode 27 by allowing the heat flow into the catheter tube, as previously discussed in conjunction with FIG. 3.

An attractive heat sink/impedance skirt implementation involves a tantalum tube 30 (shown dashed in FIG. 4) which is pressed onto active electrode 28 and so

maintains a good thermal and electrical contact with active electrode 28. This tantalum tube is covered by a 0.5 µm thick film of tantalum oxide on its external surface and is graduated to 0 thickness in the skirt area.

It is well known from the technology of tantalum 5 capacitors that a tantalum film only 0.5 µm thick is adequate to provide an electrical insulation with a breakdown voltage in excess of 350 volts. The relative dielectric constant of the tantalum oxide film is 27.6 and so 0.5 µm thick layer 29 produces a capacitance of 8.85 10 electrical catheters and systems have been disclosed in pF to the tissue. At an operating frequency of 300 kHz, this film represents a capacitive reactance of 60 kn. When compared with the resistance of the active electrode metal-tissue interface, which is of the order of 100  $\Omega$ , the capacitive current through oxide film 29 is insig- 15 nificant, and film 29 in effect blocks the current flow between the oxide covered tantalum tube 30 and the surrounding tissue and so eliminates electrical heat generation in the tissue surrounding the tantalum oxide heat exchanger.

The same tantalum oxide film 29 has a thermal conductivity of 0.3 watts/(meter C\*). For the specified film thickness of 0.5 µm and film area of 12.6 mm2, oxide film 29 represents a large thermal conductance of 75.6 watts/C°, which is very adequate for an efficient heat 25

sink.

Graph (B) in FIG. 2 shows the temperature distribution along projection 31 of the axis beyond the distal end of the catheter for an optimized heat sink design in FIG. 4. Comparison of Graph (A) and Graph (B) in 30 FIG. 2 indicates the superior features of the heat sink catheter: The peak temperature is no longer at the catheter surface. The ablation temperature is reached some distance from the catheter surface. Also the ablation region where the tissue temperature is above 48° C. is 35 much larger.

The shape of Graph (B) in FIG. 2 can be adjusted by modification of the ratio of the electrically interacting bare metal active electrode area 32, to the heat sink area 29, and so can be optimized for the requirements of the 40

specific medical procedure.

FIG. 5 shows a proximal ring electrode 75 and a distal tip electrode 76, mounted or plated on a catheter tube 74 and shaped very similarly to the currently used pacing catheters. An electrical connection in main- 45 tained by a twisted pair transmission line 77. Unlike currently u&M catheters where the electrodes are made from plain metal, proximal ring electrode 75 and distal tip electrode 76 have their notallic surfaces coated with control coatings 79 and 78 respectively. Optionally, the 50 gap between proximal ring electrode 75 and distal tip electrode 76 can be filled with gap coating 70. (Thickness of coatings is exaggerated in FIG. 5 for the sake of

Control coatings 78 and 79 vary in thickness as a 55 function of the axial distance from the inter-electrode gap, being thickest along the edges of the inter-electrode gap and thinning away from the gap. The electrical properties of the uniform thickness coating 70 can be constant or can vary in the axial direction. Without the 60 coatings, the strongest Ez field in adjacent to the interelectrode gap. The coatings, by changing the surface impedance, equalize the external electric field and im-

prove radial penetration of the field.

Coatings 78, 79, and 70 can be made from a resistive 65 material or from a dielectric. A resistive coating introduces the highest resistance close to the inter-electrode gap. As a result, the external field adjacent to the inter-

electrode gap is reduced, the external field intensity is equalized and the radial penetration is improved. A capacitive coating, made from a dielectric, exhibits a smallest capacitive impedance near the inter-electrode gap and accomplishes field equalization similar to the resistive coating. There is, however, significantly less heat dissipation in the capacitive coating than in the resistive coating.

While certain specific embodiments of improved the forgoing description it will be understood that various modifications within the scope of the invention may occur to those skilled in the art. Therefore, it is intended that adaptations and modifications should and are intended to be comprehended within the meaning and range of equivalents of the disclosed embodiments.

What is claimed is:

1. An electrical heating catheter comprising: an electrical cable housed in an electrically insulating catheter tube;

the electrical cable adapted to be connected at a proximal end to a source of electrical power;

an active electrode including a metallic material; the electrical cable connected at a distal end to said active electrode:

a graduated electrical impedance coating on the active electrode for providing a smooth transition of surface current density between said metallic material of the active electrode and a material of the electrically insulating catheter tube.

2. An electrical heating catheter in claim 1 wherein said coating comprises a material with substantially uniform electrical properties and a varying thickness.

3. An electrical heating catheter in claim 2 wherein said material of said coating is conductive epoxy

4. An electrical heating catheter in claim 2 wherein said material of said coating is a cermet-

5. An electrical heating catheter in claim 2 wherein said material of said coating is a plastic.

6. An electrical heating catheter in claim 2 wherein said material of said coating is a metal oxide.

7. An electrical heating catheter in claim 2 wherein said coating with said varying thickness comprises a conductive skirt surrounding a base of said active electrode, the skirt characterized by a wedge-shaped cross section with a wide face of the wedge against a junction with said electrically insulating catheter tube and a pointy end of the wedge against said metallic material of said active electrode.

8. An electrical heating catheter in claim 1 wherein said graduated electrical impedance coating comprises an electrical material of a substantially uniform thickness and a spatially varying electrical impedance.

9. An electrical heating catheter in claim 1 wherein said graduated electrical impedance coating comprises axially stratified layers, each layer of a substantially constant impedance, and an impedance value graduated from layer to layer.

10. In a catheter for electrical heating, comprising an active electrode formed of metallic material and a catheter transmission line having a proximal end and a distal end, said line being adapted to be connected at its proximal end to a source of electrical power and being connected at its distal end to said active electrode, said electrode in operation being immersed in a lossy medium, said catheter characterized by:

a graduated impedance coating deposited on a surface of the said active electrode for shaping an

.5,257,635

electric field in the lossy medium outside of sald electrode and coating being heat conducting and electrically insulating, said coating controlling an electrical heating of tissue and cooling of said active electrode by convective blood flow.

11. A catheter for electrical heating in accordance with claim 10, wherein said graduated impedance coating comprises a resistive coating of a varying thickness deposited on the metallic material of said electrode.

12. A catheter for electrical heating in accordance with claim 10, wherein said graduated impedance heat sink coating comprises a dielectric coating of a varying thickness deposited on said metallic material.
 13. A catheter for electrical heating in accordance

10

13. A catheter for electrical heating in accordance with claim 10, further comprising a graduated electrical impedance coating located in a gap and electrically interacting with said active electrode.

10

15

20

25 ·

30

35

40

45

50

55

60

65

| . ! | IIILE <u>Catheter - Electrode to Tip Junction Design</u> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1      |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
|     | From Page No. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | L      |
|     | Уюмирот: 1 ООМ: D://miclign/ginetimal-speil-15V-80sec-100-10.adb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
|     | electrode S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
|     | Éissije                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1      |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
|     | Previous efficiency in the function designs incorporate a third material that                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |
|     | provides a gradual transition of the electrical properties at a boundary between                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2      |
|     | Schondary material is introduced at this poundary of junction of good is in the wind the declarate and the dip in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |
|     | Receiption & Control Art of the Control of the Cont | للنتير |

| Fre      | m P             | age                 |                |                     | tra                                          |                   | /            | the             |                | - !<br>- : !                                          |                 | -1       | lei          | _              | 1.                                     | 1.57           | be             |            | 26                                               |                 | <u> </u>         | B                | 25           | -               |              | 1            |              |                  | -            |                                              | 140          | 1            | -32      |                                                                                                                | F:   | om P            | age                | No.              | +                                            | +                                      |                                               |
|----------|-----------------|---------------------|----------------|---------------------|----------------------------------------------|-------------------|--------------|-----------------|----------------|-------------------------------------------------------|-----------------|----------|--------------|----------------|----------------------------------------|----------------|----------------|------------|--------------------------------------------------|-----------------|------------------|------------------|--------------|-----------------|--------------|--------------|--------------|------------------|--------------|----------------------------------------------|--------------|--------------|----------|----------------------------------------------------------------------------------------------------------------|------|-----------------|--------------------|------------------|----------------------------------------------|----------------------------------------|-----------------------------------------------|
| ١-       | 6D.<br>SUC      |                     |                | on<br>E             |                                              |                   | 200          | <i>50</i> 4     |                | (Z4<br>4:n                                            | <u>"</u>        | -9       |              | 42<br>6        | ST.                                    |                |                | 15         | Tho                                              |                 | Inc              | 700              | 2            | _4<br>6         | 10           | رور<br>در م  |              | es e             | -4           | alis                                         | the          |              | Ţ,       |                                                                                                                | +    | - <del></del>   | <del></del> -      | ;                |                                              | 十                                      | -                                             |
|          | G'B             |                     | nd             |                     | ממ                                           | اربر.             | Lh)          | 10              |                | 0 5                                                   |                 | f20      | <u>.</u>     | 11             |                                        | z's            |                | 10         | 0.52                                             | <b>,</b>        | 10               | £                | he           | 60              | אמ           | . 6          | 5            | . //             | 22           | 3 <i>e2</i>                                  | / 1          | i            | <u>U</u> |                                                                                                                | -    |                 | Ī                  |                  | Ť                                            | T                                      | _                                             |
| ۱,       | מינו            | 7                   | ias            | ·/                  | , į                                          | th                | 2            | bo              |                | 0                                                     |                 | 200      |              | 7              |                                        | 10             | 5              | Post       | 100                                              | al              | fz               | ce               |              | The             | sd           | d            | har          | 20               | 40           | ا کار                                        | 10           | S            | -1       |                                                                                                                | 1    |                 | 1                  |                  |                                              |                                        | _                                             |
| 1        | an.             | 70                  | /              | h                   |                                              | un                | rel          | 24              | del            | 2.52                                                  | 41              |          | £            | H              |                                        | 14             | 21             | 110        | 12                                               | a               | ndi              | th               | ere          | fore            | 2 /          | nin          | in           | أجح              |              | She                                          |              |              |          |                                                                                                                |      | Ī               | ·                  |                  |                                              |                                        | _                                             |
| £        | DER             | nt                  | in             | 0                   | F                                            | 00                | OU           | lu              | 72             |                                                       |                 |          | L            | L              | Ľ                                      |                | <u> </u>       | L          | $\perp$                                          | 上               | Ŀ                |                  | _            |                 | ·            |              | _!           | _]               |              | $\Box$                                       | _ i          | į            | _[       | 麗                                                                                                              |      | :               | 1                  |                  |                                              | <u>i</u>                               | _                                             |
|          | 1               |                     |                |                     |                                              |                   | <b>J</b>     |                 |                |                                                       | ·               |          |              |                | L                                      | Ŀ              | <u> </u>       | L          | 1                                                | 1_              | L                |                  |              | Li              |              | i            | i            |                  |              |                                              |              | _;           | _        |                                                                                                                |      | -               | L                  |                  |                                              | <u> </u>                               |                                               |
|          |                 |                     |                |                     |                                              |                   |              |                 |                |                                                       |                 |          | L            | L              | <u>L</u> _                             | L              |                | L          | 1                                                | $\perp$         | ↓_               | _                | <u> </u>     |                 | _            | _            | _            |                  |              |                                              | i            |              | _        |                                                                                                                |      |                 | ·                  | ļ.,              | el                                           | ectro                                  | 0                                             |
|          | 1               |                     |                |                     |                                              |                   |              |                 |                |                                                       |                 | ·        | _            | Ĺ              | 1                                      | L              | 1              | L          | 1                                                | 1               | 1_               | 1_               | <u></u>      | $\sqcup$        |              |              | _            | i                | ٠,           | /                                            |              | i            |          |                                                                                                                | L.,  | 19              | <u> </u>           |                  |                                              |                                        |                                               |
|          |                 | L                   |                |                     | <u> </u>                                     |                   |              |                 |                | _                                                     |                 |          | _            | L              | ↓:                                     | L              | <b>L</b> .     | 1          | 1                                                | 1               | ⊥_               | <u> </u>         | <u> </u>     | <u> </u>        | _            | _            |              |                  |              | L                                            | !            | ;            |          | 月                                                                                                              | . [_ |                 |                    |                  | <u> </u>                                     | <u></u>                                | ٠                                             |
| L        |                 |                     |                |                     |                                              |                   | ·            |                 |                |                                                       |                 |          | L            | L              | Ļ.                                     | ļ              | <u> </u>       | 1          | 4.                                               | 1               | _                | <u> </u>         | <u> </u>     | <b>.</b> i      |              |              | 4            |                  |              |                                              | Li           |              |          | <b>4</b>                                                                                                       |      | ·<br>           | <u> </u>           |                  | Ļļ                                           | _ <u>i</u>                             | _                                             |
| L        | L               | <u> </u>            | <u> </u>       |                     | _                                            |                   |              |                 |                |                                                       |                 | L        | _            | 1_             |                                        | L.             | .              | Ŀ          | 1                                                | ┷-              | <u> </u>         | <u> </u>         | <u> </u>     | <u> </u>        |              | 4            |              |                  |              |                                              | <u> </u>     | ;            |          |                                                                                                                |      | :<br><b></b> -  | <u>.</u>           | _                |                                              |                                        |                                               |
| L        |                 | 1_                  |                |                     | L                                            | Ш                 |              |                 |                |                                                       |                 | L        | L            | L              | L.                                     | ـــ            | 1_             | 1          | 4                                                | 1:              | 1                | ↓_               | Ļ            |                 | $\leq$       |              |              |                  |              |                                              | إا           |              | _        | 1                                                                                                              | I.   | <u>;</u> _      |                    | į                |                                              |                                        |                                               |
| L.       | 1               | <br>                | <u> </u>       |                     | <u>i                                    </u> | Ш                 | L_           |                 |                | _                                                     |                 | <u>L</u> | L            | L              | <u> </u>                               | <u> </u>       | <u> </u>       | 丰          | <u> </u>                                         | 1               | -                | <del> </del>     |              |                 | _            |              |              |                  |              |                                              | <u> </u>     | <b></b> ;    |          | 覆                                                                                                              | ļ    | -=-             | i.                 | į.               | ļ_ j                                         | <u>:</u>                               |                                               |
| <u>L</u> | <u>.</u>        | i.                  | <u> </u>       | _                   | <u> </u>                                     |                   | L.,          |                 |                |                                                       |                 | _        | ļ.,          | L              | ــــــــــــــــــــــــــــــــــــــ | ļ              | <del> </del>   | Ļ          | -                                                | <del> </del>    | 1                | $\swarrow$       | 1            | $\sqcup$        |              |              |              |                  | <u> </u>     |                                              |              |              |          |                                                                                                                | L.   | <u> </u>        |                    | ᆚ_               |                                              | _                                      | _                                             |
| L        | <u>.</u>        |                     | ╄              |                     | <u> </u>                                     |                   | <u> </u>     |                 |                |                                                       |                 | _        | <u> </u>     | Ļ              | 1                                      | ↓_             | 1              | 4_         | <del> </del>                                     | 4,              | X                | +-               | <u> </u>     | <u> </u> i      |              | _            |              |                  | ļ            | L                                            |              |              |          |                                                                                                                |      |                 | :<br>              | <u> </u>         | <u> </u>                                     | 4                                      |                                               |
| L        | 丄               | <u>!</u>            | ļ              | :<br>               | <u>i                                    </u> |                   | <u> </u>     |                 |                |                                                       |                 | <u> </u> | Ļ            | Ļ              | 1_                                     | Ļ.             | <u>  </u> _    | 1          | 4                                                | 4               | 1                | 1                | <u> </u>     |                 |              | <u> </u>     | $oxed{\Box}$ |                  | <b> </b>     | ļ                                            |              |              |          |                                                                                                                | L    |                 | 1                  | Ļ.               | <u> </u>                                     | 4-4                                    | _                                             |
| _        |                 | <u>:</u>            | <u> </u>       | Ŀ                   | !<br>*                                       | <u> </u>          | <u>!</u>     | -               |                |                                                       | <u> </u>        | <u> </u> | <u> </u>     | _              | <u> </u>                               | 1              | <u> </u>       | ملٍ        | 4_                                               | 4-              | Ļ                | . <del> </del>   | į            |                 |              |              |              | <u> </u>         | ŀ÷           | <del>  -</del>                               |              |              |          | . 18                                                                                                           | ٠ [  | <u>.</u>        | <u>ا</u> ن         |                  |                                              | <b></b>                                | <u>,                                     </u> |
| L        |                 | !<br><del>;</del> - | <u> </u>       | <u>.</u>            | <u> </u>                                     | -                 | <u> </u>     | <u> </u>        |                |                                                       |                 | <u> </u> | -            | -              | <u>Ļ.</u>                              | 4-5            | 4              | 1          | 4                                                | <del>- į</del>  | 4                | ٠.               | <u> </u>     | -               | -            | _            |              |                  |              | <u>.                                    </u> |              |              |          |                                                                                                                | -    | <u>- +</u> -    | <del>- j</del> r.: | <u> </u>         |                                              |                                        | -                                             |
| L        | ╁-              | - <b>;</b>          | 1              |                     | ļ                                            | <b>Ļ</b>          | <u> </u>     |                 |                |                                                       | <u> </u>        | <u> </u> | <del> </del> | ╀-             |                                        | 4              | 1              | ╀-         | 4                                                | ╬.              | <u>.</u>         | - <u> </u>       | <b>↓-</b> -  | -               |              |              |              | <b>-</b>         | -            | ļ                                            |              |              |          | CHANCE STREET, | -    |                 | <u> </u>           | - <del> </del>   | <u>;                                    </u> | ļ                                      | L                                             |
| L        | <del> </del> -  | <u>.</u>            | <del>-</del>   | <u> </u>            | <del></del>                                  | <del> </del>      | [            | L.              | <u> </u>       | !<br><del>                                     </del> | ļ'              | <u> </u> | 1            | $\downarrow$   | 1                                      | 1              | <del> </del>   | $\dotplus$ | +                                                | +               | +-               | <del>- </del>    | ╄            |                 | -            |              |              | <del> </del> -   | ļ            | <u> </u>                                     |              |              |          | SE S                                                                       |      |                 |                    | <u>.</u>         | ļ                                            | ــــــــــــــــــــــــــــــــــــــ | <u>-</u> -                                    |
| L        | Ļ.              | ·<br>               | ∔_             | _                   | į.                                           | -                 | <u> </u>     | 1               | <u> </u>       |                                                       | ļ               | ١,       | 4            | +              | <del>-</del>                           | <del>- -</del> | +              | 4-         |                                                  |                 | +-               | ┿                | -            | <u> </u>        | -            |              |              | <u> </u>         | <del></del>  | <del> </del> -                               |              | -            |          | TA SE                                                                                                          | Ŀ    | <u></u>         | _ļ_                |                  | i                                            | <u>-</u>                               | Ļ.                                            |
| L        | <del>-i</del>   | <u>i</u> _          | ╁              | <u> </u>            | -                                            | <u> </u>          | <u> </u>     | _               | <u> </u>       | <u> </u>                                              | 1_              | K        | Ļ.           | ╄-             | ╀-                                     | +              | 4              | ÷          | +                                                | <del>-</del>    | +                | +                | ╀            |                 | <u> </u> -   |              | -            | <del>  .</del>   | ├-           |                                              | -            |              |          | Enfeat                                                                                                         |      | <u>.</u>        | _                  | <del>-</del>     | <del>i</del>                                 |                                        | L                                             |
| L        | <del>-</del>    | ·                   | <del> </del> _ | <br>                | <del>↓</del> _                               | <u> </u>          | <u> </u>     | ļ               | ļ              | /                                                     | <del>-</del>    | ┡        | <del>-</del> | <del> </del> - | +-                                     | +-             | +-             | +          | <del> </del> -                                   | $\dotplus$      | +-               | <del> </del>     | ╁            |                 | -            |              |              | <u> </u>         | ├-           | ├                                            |              |              |          | a se                                                                                                           | -    | <del>-</del> i- | 4                  |                  | 1                                            | <u> </u>                               | į                                             |
| L        | <u> </u>        | <u>.</u>            | <del>-</del>   | i<br><del> </del> - | <u> </u>                                     | <u> </u>          | Ļ.           | ١.,             | _              | <u> </u>                                              | <u>!</u>        | <b> </b> | <u>_</u>     | +              | ╬-                                     | ╀              | <del> </del>   | ╁          | - <del> </del> -                                 | +               | +-               | 4-               | <del> </del> |                 | -            |              | <b> </b>     | <u> </u>         | <u>:</u>     | <u> </u>                                     |              | !<br>!       |          | . 14                                                                                                           | -    | <u>!</u> _      | <u>.</u>           | L.               | :<br>                                        | <u> </u>                               | ;<br>t                                        |
| L        | <del>-</del>  - | <u>i</u> _          | <del> </del>   | -                   | <u>i</u> -                                   | <del> </del>      | ١.,          | $\angle$        | <u> </u>       | ļ                                                     | <del> </del>    | <u> </u> | -            | +              | -                                      | ╀              | +              |            | -                                                | <del>-</del>  - | 4                | <del>-i-</del> - | ┼            | ļ               | <u></u>      |              |              | <del>!</del>     | <del>!</del> |                                              | -            | -            |          | S) MARK                                                                                                        | -    |                 | +                  |                  | <del>-</del>                                 | Ì                                      | Ļ                                             |
| L        | +               | Ļ.,                 | +-             | i<br><del> </del>   | <del> </del>                                 | <del>ل</del> ـــا | Z,           | <del> </del>    | ļ              | <del> </del> -                                        | <del>  -</del>  | -        | ÷            | +              | <del></del>                            | +              | <del>-</del> - | +-         | <u>-</u> j-                                      | <u>.</u>        | - <del> </del>   | +-               | <del> </del> | ┼               | <u> </u>     | ļ            |              | <u></u> -        | i            | <del></del>                                  | <del> </del> |              |          |                                                                                                                | -    |                 |                    | <del></del> -    | <del> </del>                                 |                                        | Ļ                                             |
| L        | - <b>-</b>      | <del> </del> -      | <del> </del>   | <del> </del>        | <del>-</del>                                 | <u>Ł</u> .        | :<br>        |                 | ļ              | <del> </del> -                                        | ┼-              | +-       | +            | +              |                                        | +-             | +              | 1          |                                                  |                 | <del>-</del> † - | +                | -            |                 | ,<br>        | -            | ├            | -                | ┼~           | <del>: -</del>                               | <del> </del> |              |          |                                                                                                                | -    |                 | -                  | +                | $\vdash$                                     | <del>├</del>                           | -                                             |
| L        | <u> </u>        | +                   | ∔-             |                     | 4                                            | <del> </del> -    | <u> </u>     | ·<br>           | ļ.             |                                                       | <del>.</del>    | ╀        | +-           | ÷-             | +                                      | - -            | +-             | +          | +                                                | +               | +                | +-               | +-           | ┼               | -            | -            | ├            | ├                | ├            | <del>i</del>                                 | -            | ļ            |          | - 1                                                                                                            |      |                 | - -                | 4-               | $\downarrow$                                 | ļ.,                                    | Ļ                                             |
| -        | <del>-</del>    | $\bot$              | /              | <del>[_</del>       | ╁                                            |                   | <del>}</del> | <del>!</del> —  | -              | <del> </del>                                          | ├-              | +        | +            | +              | ╁                                      | +              | +              | +          |                                                  | +               | +                | +                | ╀            | ┼               | -            | -            | +-           | <del> </del>     | ┼            | ⊢                                            | ╁─╴          | <del> </del> | -        | ŀ                                                                                                              |      |                 | +                  | - <del>i</del> - | +                                            | <b> </b>                               | Ļ                                             |
| -        | -               | -                   | 4-             | <del> </del>        | +                                            | <del> </del>      | -            | <u> </u>        | -              |                                                       | ┼               | +        | +-           | +              | +                                      | +              | +-             | +          | -                                                | +               | +-               | +-               | +            | <del> -</del> - | <del> </del> | -            | ├-           | ├-               | -            | ╀                                            | ├-           |              |          |                                                                                                                |      | -               |                    |                  | +                                            | + -                                    | ż                                             |
| -        | ·<br>/          | 4                   | ∔              | <del>!</del> -      | +                                            | ┼-                |              | <del></del> -   | <del> </del> - | <del> </del> -                                        | <del> </del>    | $\vdash$ | ╀            | +              | +                                      | +              | +              | +          | -                                                | +               | +                | +-               | ┼-           | ╀               | <u> </u>     | ├-           | <del> </del> | ⊬                | ┿            | ╁╌                                           | -            | ├            |          |                                                                                                                |      |                 | -}-                | 4                | +,                                           | X.                                     | Ļ                                             |
| -        | <u>.</u>        | ÷                   | <del></del> -  | ĺ.                  | ┼-                                           | <del> </del>      | -            | <del> </del>    | <u> </u>       | <del> </del> -                                        | 1_              | +        | ╀            | +              | +                                      | +              | +              | +          | +                                                |                 | -+-              | -                | <u> </u>     | ┼               | -            | -            | +-           | <del>  ·</del> · | <del> </del> | ╁                                            | ┼            | -            | -        | ľ                                                                                                              |      | _               | <u>-</u>           | +                | X                                            | <u> </u>                               | +                                             |
| H        | -÷              | ╀.                  | <u> </u>       | -                   | ╄-                                           | -                 | ļ            | <del>:</del>    | <u>-</u>       | <b>Ļ</b> _                                            |                 | +        | ╄            | +              | ╫                                      | +              | +              | +          | +                                                |                 | +                | +                | +-           | <del> </del>    | -            | -            | ┼            | <del> -</del>    | <del> </del> | +-                                           | <del> </del> | -            | -        |                                                                                                                |      |                 |                    | <u>.</u>         | -                                            | <del> </del>                           | ļ                                             |
| H        | <del>-</del>    | - +                 | +              | <u> </u>            | +                                            | +-                | +            | +-              | <del>-</del>   | <del> </del>                                          | -               | +        | ╁            | ╀              | +                                      | +-             | +              | +          | <del>-                                    </del> | - -             | +                | +                | +-           | +               | -            | <del> </del> | ┼            | +-               | +-           | H                                            | <u> </u>     | <u> </u>     |          |                                                                                                                |      |                 | 4                  | 4.               | ļ                                            | ┼                                      | į                                             |
| H        |                 | ·                   | <del> </del>   | ļ                   | <u>-</u>                                     | ╁                 | <u> </u>     | <del> -</del> - | <b>├</b> -     | <del></del>                                           | <del>Ļ.</del> . | ╀        | +            | - -            | +-                                     | ᆛ-             |                | ÷          |                                                  | 1               | ÷                | <u> </u>         |              |                 | <b>├</b>     | <del> </del> | ├            | -                | <del> </del> | Ł.,                                          | <u>:-</u>    |              | ţ        |                                                                                                                | .    | -               | <u> </u>           |                  | <del>-  </del>                               | <u> </u>                               | ÷                                             |
| ١.       | . i_            | 1                   | 1              | :                   | 1                                            | į.                | ١.,          | 1               | l              | 1 .                                                   | .، أ            | 1        |              | . l .          | د ا ــ                                 | . i .          | _i_            | L          |                                                  | Ŀ               |                  | ٠.               |              | <u> </u>        | <u> </u>     | <u> </u>     | <u> </u>     | i                | 110          | Pag                                          | э N          | 0,,,         |          |                                                                                                                | 1    | i               | . i                |                  | . L                                          | L                                      | į                                             |





Re: Radiator Electrode - Concept Analysis

### Background:

The catheter R&D department has done preliminary evaluations of a radiator electrode throughout the year. The radiator electrode concept employs a grooved surface. This grooved surface increases the electrode surface area. This increase in surface area may allow greater convective cooling that could in turn allow the radiator type electrode to maintain lower temperatures at higher power settings. It is thought that this cooling effect could potentially lead to the generation of larger and deeper lesions.

. Through the use of Pro/E,

I modified the design to include a larger number of grooves that were deeper. This electrode design is shown in the attached <u>Drawing: RAD-MOD10</u>. This geometry increased the surface area by 41% relative to a standard 8mm electrode. The previous design evaluated increased the surface area by 5%.

#### Objective:

The objective of this study was to evaluate the effects of the increased surface area of the radiator electrode on electrode temperature and lesion depth. In addition, the effect of electrode mass on lesion development and electrode temperature was also evaluated. The electrode concept was evaluated at varying power settings and varying convective flow conditions. Control runs were made of five other electrode configurations:

- 1) 8mm electrode with the same mass as the radiator electrode (Matched Mass)
- 2) 8mm electrode solid
- 3) 8 mm electrode shell
- 4) 4 mm electrode solid
- 5) 4 mm electrode shell

These configurations are shown in Table (1). The results of radiator electrode analysis were compared to the analysis results obtained with these configurations.

# Drawing: RAD-MOD10



Table 1. Electrode Configurations

| Electrode Type                                     | Surface Area (in²) | Volume ( in <sup>3</sup> )       |
|----------------------------------------------------|--------------------|----------------------------------|
|                                                    |                    |                                  |
|                                                    | .1285 (Solid)      | .00143 (Solid)                   |
| 8mm Radiator Electrode                             | .1285 (Shell)      | .00051 (Shell)<br>(.0039" Thick) |
| (41% More Surface<br>Than Standard 8mm Electrode)  |                    |                                  |
|                                                    | .0910              | .00143                           |
| 8mm Electrode<br>(Same Mass as Radiator Electrode) |                    |                                  |
|                                                    |                    |                                  |
|                                                    | .0910              | .00199                           |
| 8mm Electrode - Solid                              |                    |                                  |
|                                                    | .0910              | .00053                           |
| 8mm Electrode - Shell (Wall Thickness0061")        |                    |                                  |
|                                                    |                    |                                  |
|                                                    | .0455              | .00095                           |
| 4mm Electrode - Solid                              |                    |                                  |
|                                                    |                    |                                  |
|                                                    | .0455              | .00026                           |
| 4mm — Shell<br>(Wall Thickness0061")               |                    |                                  |

# Model Description

The ablation model consisted of an electrode, plastic tip, tissue block, and blood field. Figure (1) depicts this simplified model. The material properties used in the model are listed in Table (2). Due to the symmetry of the geometry, an axisymmetric model was used. The following boundary conditions were used in the model:

Dirichlet boundary conditions set at the surfaces:

Outer surface — 0 volts Outer surface — 37°C Electrode surface — 5 volts to 75 volts

Convective boundary condition set along electrode-blood interface, tip-blood interface, and tissue-blood interface:

H=. 002 to .125

The initial temperature of the model was set to 37°C.



Figure 1. Model

Table 2. Material Properties Used in Radiator Study

Part

| Material                                   | Specific Heat*Density | Density | Specific Heat | Thermal Conductivity | Electrical Conductivity | Thermal |
|--------------------------------------------|-----------------------|---------|---------------|----------------------|-------------------------|---------|
|                                            | J/mm3*K               | g/mm³   | J/g‡K         | M/mm*K               | S/mm                    | mm²/s   |
| Blood                                      | 0.004180              | 0.0010  | 4.180         | . 0.000543           | 6.670E-04               | 0.13    |
| 80% Pebax 6333/ 20% Barlum Sulfate, Pantor | 0.005500              | 0.0010  | 5.500         | 0.000290             | 1.072E-17               | 0.05    |
| Platinum                                   | 0.002838              | 0.0215  | 0.132         | 0.071000             | 4.000E+03               | 25:02   |
| Cardiac Muscle                             | 0.003864              | 0.0012  | 3,220         | (37°C) 0.00053670    | 2.220E-04               | 1.39    |
|                                            |                       |         |               | (50°C) 0.00055225    |                         |         |
|                                            |                       | •       |               | (63°C) 0.00057779    | ·                       |         |
|                                            |                       | ·       |               | (76°C) 0.00058332    |                         |         |
|                                            |                       | ·       | •             | (89°C) 0.00059886    |                         |         |
|                                            |                       | -       |               | (102°C) 0.00061390   |                         |         |
|                                            |                       |         | •             |                      |                         |         |
|                                            |                       | •<br>   |               | •                    |                         |         |
|                                            |                       |         |               |                      |                         |         |
|                                            |                       |         |               |                      |                         |         |
|                                            |                       |         | ٠             |                      |                         |         |

# Model Description (continued)

The following bio-heat equations were solved through the analysis. Equation (2) is the Laplace equation for voltage potential. This equation was solved to determine the potential field established by each electrode configuration. For each electrode-geometry, the potential field at a constant power setting is depicted in Figure (2). The potential field results were used to solve the heat equation in which joule heating, conduction, and convection are considered.

$$\rho c \frac{dT}{dt} = k \nabla^2 T + JE - h_{bl} (T - T_{bl}) \qquad (1)$$

$$\sigma \nabla^2 V = 0 \tag{2}$$

$$J = \sigma E = \sigma \nabla V \tag{3}$$

 $\rho$  (density –  $kg/m^3$ )

c (specific heat- J/kgAK)

k (thermal conductivity-W/mAK)

J (current density-  $A/m^2$ )

E (electric field density-V/m)

h bl (convective heat transfer coefficient)

 $T(\ ^{\circ}C\ )$   $T_{\rm bl}$  (temperature of blood-37°C)

V(potential distribution)

σ (electrical conductivity-S/m)



Figure 2. Potential Fields for Varying Electrodes

# Protocol and Rationale for Analysis Runs

Voltage values ranging between 25V and 75V have been observed in clinical settings. Therefore this range was explored. Values below 25 volts were explored to understand the minimum power requirements for lesion generation for the varying electrode geometries. For each electrode-geometry, twenty-four analysis runs were performed at the settings depicted in Table (3). Each run simulated an ablation of duration of 120 seconds.

Table 3. Voltage and Flow Setting for Analysis Runs

| Service Communication of the C |           | Talling Co. Sec. 19 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H=.125    |                     |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | H=.125    | 15                  |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | H=.125    | 25                  |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | H= 125    | 35                  |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | H=.125    | 45                  |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | H=125     | 55                  |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | H=.125    | . 65 .              |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | H=.125    | 75                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                     |
| . 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | H=.004    |                     |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | H≑.004    | <u> </u>            |
| . 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | . H=.004. |                     |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .H=.004.  | 35                  |
| 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | H=.004    | 45                  |
| 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | H=.004    |                     |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | H=.004    | 65                  |
| 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | H=004     | . 25                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                     |
| 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | H=.004    | . 5                 |
| 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | H=.004 ·  | -15                 |
| 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | H=.004    | 25                  |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | H=.004    | . 35                |
| 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | H=.004    | 45                  |
| 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | H=.004    | . 55                |
| 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | H=.004    | 65                  |
| 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | H=.004    | 75                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1000      |                     |

The following field results were obtained for each electrode-geometry at the above run conditions:

- Potential Field
- Temperature Field
- Current Density Field

Through analysis of the temperature fields at the end of a 60-second period, the following values were tabulated:

- Maximum Tissue Temperature
- Maximum Electrode Temperature
- Minimum Electrode Temperature
- Lesion Depth

An evaluation of the time history of the joule heat dissipation (*IE*) allowed the calculation of power, current, and impedance values. The equations used for these calculations is shown below:

Model Analysis Calculations

$$Power = \frac{JE}{Time\ Interval}$$

Impedance = 
$$\frac{V^2}{Power}$$

# Analysis Description

A transient analysis was run using a full Newton method. The time increments for each analysis were determined automatically. The step size for sixty-second ablation simulations ranged from .0012 to 2 seconds. The average mesh size for the runs was about 3 mm. Figure 3 shows an example mesh.



# Results and Discussion

# Operation Parameters

The power, voltage, maximum electrode temperature, and minimum electrode temperature were determined for maximum tissue temperatures ranging between 55°C and 95°C. These values are shown in Table (4). This table was developed to understand the appropriate temperature ranges and power ranges for data comparison. Comparisons of the lesion formation and cooling effects for the various electrode geometries were evaluated within these ranges. Table (4a) and Table (4b) show the operating parameters at H values of .002 and .125 repsectively.

| Table (4). Operating Parameters for Various Electron |               |                                       |                 |                                       |                   |
|------------------------------------------------------|---------------|---------------------------------------|-----------------|---------------------------------------|-------------------|
| Maximum Tissue Temperature                           | 55°C          | 65°C                                  | 75°C            | 85°C                                  | 95°C              |
|                                                      |               | •                                     |                 |                                       |                   |
| · · · · · · · · · · · · · · · · · · ·                |               |                                       |                 | · · · · · · · · · · · · · · · · · · · |                   |
|                                                      |               |                                       |                 |                                       |                   |
| D din                                                |               |                                       | 10.00           | 1300                                  | 10.00             |
| Power (W)<br>Voltage (V)                             | 5.10<br>21.40 | 8.00<br>27.00                         | 10.90<br>31.60  | 13.86<br>35.60                        | 13.90<br>39.30    |
| Max Electrode Temperature( °C )                      | 50.15         | 57.60                                 | 65.20           | 72.90                                 |                   |
| Min Electrode Temperature ( °C )                     | 48.30         | 54.75                                 | 61.20           | 67.80                                 | 80.65<br>74.55    |
| Lesion Depth (mm)                                    | 1.34          | 2.54                                  | 3,41            | 4.09                                  | 4.61              |
|                                                      | 2.0           |                                       |                 |                                       |                   |
|                                                      |               |                                       |                 |                                       |                   |
| Power (W)                                            | 5.30          | 8.30                                  | 11.35           | 14.40                                 | 7 14:40 ·         |
| Voltage (V)                                          | 21.60         | 27.10                                 | 31.70           | 36.00                                 | 39.45             |
| Max Electrode Temperature( °C )                      | 51.50         | 59.75                                 | 68.10           | 76.60 .                               | 85.20.            |
| Min Electrode Temperature ( °C )                     | 47.65         | 53.75                                 | 59.90           | 66.05                                 | 72.40             |
| Lesion Depth                                         | 1.38          | 2,55                                  | 3.42            | 4.12                                  | 4.63              |
|                                                      |               |                                       |                 |                                       | 3 22 11           |
|                                                      |               |                                       |                 |                                       |                   |
| Power (ii)                                           | 9.85          | 15.50                                 | . 21.20         | 27.03                                 | 27.05             |
| Yoliage (Y)                                          | 24.00         | 30.00                                 | 35.40           | 39.70                                 | 44,00             |
| Max Electrade Temperature( °C )                      | 50.20         | 57.80                                 | - 65.50 · · - · | ·· · 77.00 - · ·                      | ··· -·· 81.20···- |
| Min Electrode Temperature ( °C )                     | 45.00         | 49.60                                 | 54.25           | 59.00                                 | 63.75             |
| Lesion Depth                                         | 1.47          | 2.79                                  | 3.87            | 4.57                                  | 5.11              |
|                                                      |               |                                       |                 |                                       |                   |
| Power (W)                                            | 10.05         | 16.00                                 | 21:90           | 27.86                                 | 27.90             |
| Voltage (V)                                          | 24.40         | 30.40                                 | 35.90           | 40.30                                 | 44.70             |
| Max Electrode Temperature( °C )                      | 53.40         | 63.00                                 | 72.55           | 82.40                                 | 92.00             |
| Min Electrode Temperature ( °C )                     | 43.50         | . 47,20                               | 51.00           | 54.80                                 | 58.65             |
| Lesion Depth                                         | 1.45          | 2.85                                  | 3.97            | . 4.69                                | 5.24              |
|                                                      |               | · · · · · · · · · · · · · · · · · · · |                 |                                       |                   |
| Power (W)                                            | 9.65          | 15.20                                 | 20.80           | 26.45                                 | 26.45             |
| Voltage (V)                                          | 23.40         | 29.20                                 | 34.20           | 38.60                                 | 42.65             |
| Max Electrode Temperature( °C )                      | 51.60         | 60.00                                 | 68.45           | 73.40                                 | 85.70             |
| Min Electrode Temperature ( °C )                     | 47.30         | 53.10                                 | 59.10           | 65.10 .                               | 71.20             |
| Lesion Depth .                                       | 1.46          | 2.73                                  | 3.81            | 4.51                                  | 5.01              |
|                                                      | , -           |                                       |                 |                                       | <del></del>       |
|                                                      |               |                                       |                 | ··· · · i                             |                   |
| Power (14)                                           | 9.85          | 15.45                                 | 21.10           | 26.90                                 | . 26.95           |
| Yoliage (Y)                                          | 23.40         | 29.20                                 | 34.70           | 39.60                                 | 42.70             |
| Max Electrode Temperature( °C )                      | 53.60         | 63.10                                 | 72.65           | 82.20                                 | 92.20             |
| Min Electrode Temperature (°C)                       | 46.35         | 51.90                                 | -57.60          | . 62.90                               | 68.20             |
| Lesion Depth                                         | 1.48          | 2.77                                  | 3.85            | 4.55                                  | 5.08              |
|                                                      |               |                                       |                 |                                       |                   |
|                                                      |               |                                       |                 |                                       |                   |
| Power (W)                                            | 9.80          | 15.40                                 | 21.00           | 26.75                                 | 26.80             |
| Voltage (V)                                          | 23.20         | 29.00                                 | 34.10           | 38.60                                 | 43.05             |
| Max Electrode Temperature( °C )                      | 52.10         | 60.80                                 | 69.60           | 78.50                                 | 87.50             |
| Min Electrode Temperature (°C) Lesion Depth          | 47.00<br>1.48 | 52.65<br>2,73                         | 58.40 · 3.77    | 64.30<br>4.48                         | 70.20             |
| . resion nehm                                        | 1 4.40        | 4.13                                  | 3.11            | 4.48                                  | 5.03              |

Table (4A). Operating Parameters for Various Electrode Configurations (H=.002)

| Maximum Tissue Temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | . 55°C         | 65°C  | . 75°C        | 85°C          | 95°C           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------|---------------|---------------|----------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |       |               |               |                |
| Andronoung time was the transfer of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |       |               |               |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3,45           | 5.65  | 7.80          | 9.90          | 12.00          |
| Power (W)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 17,50          | 22,40 | 26.45         | 29.70         | 32.90          |
| Voltage (V)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 53,70          | 63.10 | 72.50         | 82.10         | 91.70          |
| Max Electrode Temperature( °C )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 52.20          | 60.80 | 69.40         | 78.10         | 86.90          |
| Min Electrode Temperature ( °C )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .71            | 2,13  | 3.05          | 3.65          | 4.12           |
| Lesion Depth (mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | 2,17  |               |               |                |
| graph of more all and suppose and other last.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |       |               |               |                |
| Power (W)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.65           | 6.00  | 8.20          | 10.20         | 12.60          |
| Voltage (V)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 18.10          | 23.00 | 27.00         | 30.30         | 33.60          |
| Max Electrode Temperature( °C )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 55.30          | 65.50 | 76.00         | 86.40         | 96.90          |
| Min Electrode Temperature ( °C )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 51.90          | 60.10 | 68.60         | 77.10         | 85.50          |
| Lesion Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .80            | 2.22  | 3.11          | 3.73          | 4.22           |
| Paul along so a grown to be a strong to the second |                |       |               |               | ئى<br>قىمىنىنى |
| Power (W) .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7.55           | 12.10 | 16.55         | : 21.05       | 25.55          |
| Voltage (V)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20.80          | 26.60 | 30.95         | 35.20         | 38.60          |
| Max Electrode Temperature( °C )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 55.10          | 65.40 | 75.80         | 86.30         | 96.90          |
| Min Electrode Temperature ( °C )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 49.20          | 56.40 | 63.50         | 70.60         | 77.95          |
| Lesion Depth .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.39           | 2.66  | 3.54          | 4.24          | · 4.77         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |       |               | 22,30         | 27,15          |
| Power (W)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8.20           | 12.90 | 17.55         | 36.20         | 39.80          |
| Voltage (V).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 21.50          | 72,60 | 85.70         | 99.50         | 112.4          |
| Max Electrode Temperature (°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 59.70<br>47.20 | 53.30 | 59.30         | 65.40         | 71.10          |
| Min Electrode Temperature (°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.49           | 2.72  | 3.60          | 4.30          | 4.86           |
| Lesion Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.47           | 2.12  | 5.00          |               |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |       |               |               |                |
| Power (W)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.15           | 11.10 | 15.25         | 19.35         | 23.45          |
| Voltage (V)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 19:50          | 25.20 | 29.00         | 92:80         | :36:20         |
| Max Electrode Temperature( °C )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 55.60          | 66.10 | 76.70         | 87.30         | 98.00          |
| Min Electrode Temperature ( °C )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 51.70          | 60.00 | 68.40         | 76.75         | 85.20          |
| Lesion Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.13           | 2.47  | 3.33          | 3.94          | 4.46           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |       |               |               |                |
| 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.30           | 11.75 | 16.05         | 20.30         | 24.60          |
| Power (W) Voltage (V)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | . 20.10        | 25.80 | 29.80         | 33.90         | 37.30          |
| Max Electrode Temperature (*C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 58.70          | 71.00 | 83.40         | 95.80         | 108.40         |
| Min Electrode Temperature (°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50.90          | 58.70 | 66.60         | 74.75         | 82.55          |
| Lesion Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.23           |       | 3.37          | 4.04          | 4.58           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |       |               |               |                |
| Power (Y)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.10           | 11.00 | 15.20         | 19.35         | 23.50          |
| Voltage (V)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 19.50          | 25.20 | 29.00         | 32.80         | 36.20          |
| Max Electrode Temperature( °C )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 56.00          | 66.70 | 77.60         | 88.50         | 99.50          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |       |               |               |                |
| Min Electrode Temperature (°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 51.25          | 59.30 | 67.40<br>3.26 | 75.50<br>3.88 | 83.70<br>4.43  |

Table (4B). Operating Parameters for Various Electrode Configurations (H=.125)

| <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 55°C                                    | · 65°C         | 75°C    | 85°C          | . 95°C        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------|---------|---------------|---------------|
| Maximum Tissue Temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 330                                     | 03.0           |         |               | ;             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | i              |         | l             |               |
| and the second of the second o |                                         |                |         |               |               |
| A marketing on propagations 254 935 for the contract of the con-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                |         |               |               |
| ومراقبات ومرور ومرور والمراور  | 7.850                                   | 12,40          | 16.95   | 21.60         | 26.35         |
| Power (W)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 26.50                                   | 33.40          | 39.10   | 44.30         | 48.85         |
| Voltage (V)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 38.05                                   | 38.65          | 39.25   | 39.85         | 40.48         |
| Max Electrode Temperature( °C )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 37.45                                   | 37.70          | 37.97   | 38.25         | 38.50         |
| Min Electrode Temperature (°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 40                                      | 2.95           | 4.12    | 4.7           | 5,25          |
| Lesion Depth (mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .40                                     | 200            |         |               |               |
| the second of the second of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         |                |         |               |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                |         | <u> </u>      |               |
| Power (W)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7.95                                    | 12.50          | 17.10   | 21.75         | 26.55         |
| Voltage (V)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 26.50                                   | 33.50          | 39.10   | 44.30         | 48.85         |
| Max Electrode Temperature( °C )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38.55                                   | 39.45          | 40.70   | 41.25         | 42.20         |
| Min Electrode Temperature ( °C )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 37.43                                   | 37.65          | 37.90   | 38.15<br>4.70 | 38.78         |
| Lesion Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A                                       | 2.95           | 4.12    | 4.70          | 5.24          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                |         |               |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                |         |               |               |
| Pawer (W)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13.30                                   | 20.95          | 28,70   | 36.60         | 44.60         |
| Yaltage (V)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 28.10                                   | 35,20          | 41.20   | 46.50         | 51.35         |
| Max Electrode Temperature( °C )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38.50                                   | 39.36          | 40.50   | 41.15         | 42.05         |
| Min Electrode Temperature ( °C )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 37.20 .                                 | 37.30          | 37.40   | .37.51        | 37.62         |
| Lesion Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .80                                     | 3.29           | 4.33    | 5.04          | 5.66 .        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                |         |               |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                |         |               |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 20.70          | 28,50   | 36.25         | 44.20         |
| Power (W)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13.20                                   | 20.70<br>35.00 | 40.70   | 46.20         | 50.90         |
| Voltage (V)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 27.60<br>39.50                          | 40.95          | 42.45   | 43.96         | 45.50         |
| Max Electrode Temperature( °C )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 37.10                                   | 37.15          | 37.20   | 37.25.        | 37.31         |
| Min Electrode Temperature (°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .75                                     | 3.25           | 4.28    | 4,98          | 5.60          |
| Lesion Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .,,,                                    | 5125           |         |               |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                |         |               |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                |         |               |               |
| Power (W)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14.10                                   | 22.15          | 30.40   | 38.75         | 47,20         |
| Voltage (V)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 27.90                                   | 35.30          | 41.15   | 46.6          | 51.45         |
| Max Electrode Temperature( °C )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38.30                                   | 39.05          | 39.83   | 40.60         | 41.40         |
| Min Electrode Temperature ( °C )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 37.38                                   | 37.60          | 37.83   | 38.06<br>5.14 | 38.29<br>5.73 |
| Lesion Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .83                                     | 3.38           | 4.42    | 5.14          | 5.13          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                |         |               |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                |         |               |               |
| Power (W)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13.9                                    | 21.8           | 29,90   | 38.10         | 46.50         |
| Yoltage (Y)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 27.8                                    | 35.2           | 41.0    | 46.5          | 51.20         |
| Max Electrode Temperature (°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 38.32                                   | 39.07          | 39.89   | 40.68         | 41.45         |
| Min Electrode Temperature ( °C )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | . 37.35                                 | 37.55          | 37.75   | 37.95         | 38.15         |
| Lesion Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 81                                      | 3.35           | 4.41    | 5.11          | - 5.70        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100 100 100 100 100 100 100 100 100 100 |                |         |               |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                |         |               |               |
| and the second s |                                         | 22.15          | . 30,40 | . 38.75       | 47.20         |
| Power (W)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .14.10                                  | 35.30          | 41.15   | 46,60         | 51.45         |
| Voltage (V)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 27.90<br>38.30                          | 39.05          | 39.83   | 40.60         | 41.40         |
| Max Electrode Temperature(°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 37.38                                   | 37.57          | 37.81   | 38.04         | 38.27         |
| Min Electrode Temperature ( °C )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .83                                     | 3.38           | 4,40    | 5.11          | 5.74          |
| Lesion Depth .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ; .0.3                                  | 1 2.20         | 1       |               |               |

### Results and Discussion (continued)

### Electrode Cooling Effect

Figures (5), (6), and (7), are graphs of the minimum electrode temperature vs. power curves for each electrode-geometry. The convective heat transfer coefficients are H=.004, H=.125, and H=.002 for Figures (5), (6) and (7) respectively. The radiator shell electrode design has a lower minimum electrode temperature over the power range for all convection-coefficient values. This is due to the combined effects of increased surface area and lower electrode mass. The minimum electrode temperature occurs in the portion of the electrode adjacent to the tissue. Therefore, the graphs show that with the radiator shell design, maximum cooling is achieved over this area for a given power input. The solid radiator design is second most effective in achieving cooling over this area for a given power input. The cooling of the 8mm electrode geometries is less effective over this area due to the decreased surface area. The 8mm-electrode shell design was more effective than the larger mass 8mm electrode designs in the area adjacent to the tissue. The 4mm electrode designs were less effective in achieving cooling for a given power input. The same pattern of behavior was observed for each convective heat transfer coefficient setting.

Figures (8), (9), and (10), are graphs of the maximum electrode temperature vs. power curves for each electrode-geometry. The maximum electrode temperature for the various configurations was located at or near the junction where the tip and the electrode meet. This hot spot is due to the abrupt change in material properties and interface geometry. The figure below shows the relative and approximate positioning of the maximum and minimum electrode temperature for a radiator electrode as an example. The temperature profiles for all configurations are shown in Figure (22). In Table (5), the effective cooling of each configuration is rated in regard to maximum electrode temperature. The Table shows that no consistent pattern is observed over the range of flow settings when evaluating the maximum electrode temperature. However, for convection-coefficient settings of H=.004 and H=.002, the solid radiator design performed better in regards to junction area. This suggests that the heating in this area is effected by the mass of the radiator design. The cooling achieved by the increased surface area seems to compete with the spot heating that occurs at the tip junction. This data suggests that the most effective radiator design should minimize this effect in order to achieve the greatest advantage.



Figure 4. Approximate Locations of Maximum and Minimum Temperatures

Table 5. Cooling Effectiveness per Evaluation of Maximum Electrode Temperature

| Effectiveness Rank  | H=.002             | H.004              | <u>H=.125</u>      |
|---------------------|--------------------|--------------------|--------------------|
| 1 (Most effective)  | 8mm Radiator Solid | 8mm Radiator Solid | 8mm Solid          |
| ٠.                  |                    | ·                  | 8mm Matched        |
| <u>2</u>            | 8mm Solid          | 8mm Solid          |                    |
| <u>3</u>            | 8mm Matched        | 8mm Radiator Shell | 8mm Shell          |
| 4                   | 8mm Radiator Shell | 8mm Shell          | 8mm Radiator Solid |
| <u>5</u>            | 8mm Shell          | 8mm Matched        | 4mm Solid          |
| <u>6</u> · ·        | 4mm Solid          | 4mm Solid          | 8mm Radiator Shell |
| 7 (Least effective) | 4mm Shell          | 4mm Shell          | 4mm Shell          |
|                     |                    |                    |                    |













## Results and Discussion (continued)

### Lesion Development

Figures (11), (12), and (13), are graphs of lesion depths vs. minimum electrode temperature for each electrode-geometry. The convective heat transfer coefficients are H=.004, H=.125, and H=.002 for the Figures (11), (12) and (13) respectively. These graphs show that the radiator designs will produce a deeper lesion for a given minimum electrode temperature. Therefore, in the region adjacent to the tissue, the radiator design electrode will remain cooler than the 8mm and 4mm electrode configurations when creating the same depth lesion. Table (6) shows the radiator shell offers the best improvement to lesion depth for a given electrode temperature within this region. At a convection-coefficient of H=.002, the radiator shell design offers improvements of 12.6%, 20.87%, and 33.9% to the solid radiator design, 8mm solid design, and 4mm solid design respectively. At higher flows (H=.004), the improvements increase to 41.9%, and 66.7% for the 8mm solid design, and 4mm solid design respectively. The improvements over the solid radiator do not change a lot with increasing flows since both radiator configurations have the same amount of surface area. Table (6) and Figure (12) also show that at high flows (H=.125), for a given electrode temperature within this region, the radiator configurations are able to create lesions when the other configurations have not begun to generate a lesion at all.

Figures (14), (15), and (16), are graphs of lesion depths vs. maximum electrode temperature for each electrode-geometry. The convection heat transfer coefficients are H=.004, H=.125, and H=.002 for the Figures (14), (15) and (16) respectively. These graphs show that the radiator solid designs will produce a deeper lesion for a given maximum electrode temperature for H=.002 and H=.004. Therefore, in the region where the electrode and the catheter tip meet (junction region), the solid radiator design electrode will remain cooler than the radiator shell, 8mm and 4mm electrode configurations when creating the same depth lesion. At higher flow rates (H=.125) the solid radiator design does not offer much benefit. Table (7) shows that at a convection-coefficient of H=.002, the solid radiator design offers improvements of 13.7%, 7.7%, and 9.7% over the shell radiator design, 8mm solid design, and 4mm solid design respectively. At higher flows (H=.004), the improvements are 11.1%, 6.5%, 10.4% for the shell radiator design, 8mm solid design, and 4mm solid design respectively. These improvements to lesion depths are much lower than the improvements observed when evaluating lesion depths relative to minimum electrode temperature. In addition, these improvements are not improved by increasing flow, except in the case of the radiator shell at H=.125. For the radiator design, we would expect convective flow rates to influence the improvement in lesion depth for a given maximum temperature, this does not seem to be the case. Again this seems to be reflective of the competing contributions of convective cooling and junctional heating in this region.

Figures (17), (18), (19), are graphs of lesion depth vs. maximum tissue temperature. These graphs in combination with Table (4), Table (4a) and Table (4b) were used to establish the appropriate ranges for the above graphs. In addition, these graphs and tables were used to establish the temperature maximum and minimum electrode values used in the development of Tables (6) and (7).

Table 6. Comparison of Lesions Depths to Best Performance of Radiator Shell in Minimum Electrode Temperature Region and Various Flows

| •                                       |           |      |                      |         |                      |                      |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------|-----------|------|----------------------|---------|----------------------|----------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                         | 64.71     | N/A  | Infinite Improvement | 1766.67 | Infinite Improvement | Infinite Improvement | Infinite Improvement |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                         | 3.4       | 5.6  | No Lesion            | 0.3     | No Lesion            | No Lesion            | No Lesion            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                         | 14.13     | N/A  | 41.89                | 29.63   | 36.36                | . 66.67              | 56.72                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                         | <br> 4.6  | 5.25 | 3.7                  | 4.05    | 3.85                 | 3.15                 | 3.35                 | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                         | <br>12.64 | N/A  | 20.83                | 12.99   | 19.83                | 33.85                | 27.94                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) | <br>4.35  | 4 90 | 3.60                 | 3 85    | 20.0 震響 3.03         | 3.25                 | 3 40                 | ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                         |           |      |                      |         |                      |                      |                      | A CHARLES OF CHARLES AND A CHARLES OF CHARLE |

\*Minimum Electrode Temperature of Radiator Shell Electrode at Maximum Tissue Temperture =  $95^{\circ}C$ 

Table 7. Comparison of Lesions Depths to Best Performance of Solid Radiator in Maximum Electrode Temperature Region and Various Flows \*Maximum Electrode Temperature of Radiator Solid Electrode at Maximum Tissue Temperature =  $95^{\circ}C$ 

| ·              | · .      |              |              |            |                                                  |              |              |           |
|----------------|----------|--------------|--------------|------------|--------------------------------------------------|--------------|--------------|-----------|
|                |          |              |              |            |                                                  |              |              |           |
|                | l        |              | ı            | 1          |                                                  | }            | l            |           |
|                | - 1      | İ            | l            | i          | - 1                                              |              | l            |           |
|                | - 1      | - 1          | - 1          |            | - 1                                              |              | ļ            |           |
|                | · · ]    | - 1          | - [          | ]          | 1                                                | - 1          |              |           |
|                | ı        | l            | 1            | l          | 1                                                | 1            | Ì            |           |
|                |          |              | 1            | ı          | i                                                | - 1          |              |           |
|                |          |              | 1            |            | ٠, ١                                             |              | - 1          |           |
|                |          |              | ì            | . <b> </b> |                                                  |              |              |           |
|                |          | 39.75        | ᇙ            | -6.45      | []                                               | 1            | 0            |           |
|                |          | 6            | -7.21        | 9.7        | -7.21                                            | -8.71        | 9.90         | ł         |
|                | N/A      | 3            |              |            | 1                                                |              | 5            | l         |
| 10             |          |              |              |            |                                                  |              |              | 1         |
|                |          |              |              |            |                                                  |              |              |           |
|                |          |              |              |            |                                                  |              |              |           |
|                | 99       | )5           | 10           | 35         | 10                                               | ន            | 15           |           |
|                | 5.66     | 4.05         | 6.10         | 6.05       | 6.10                                             | 6.20         | 5.15         | ١         |
|                |          | :-           |              |            |                                                  |              |              | 1         |
|                | ļ        |              | } .          |            | •                                                |              | l            | 1         |
|                | l l      | l            | :            |            | 1                                                | į .          |              |           |
|                |          |              |              | ١.         | ·                                                | ١.           |              | 1         |
|                |          |              |              | 1          | 1                                                | 1_           |              | 1         |
|                | A        | 18           | छ            | 12         | 00                                               | 16.          | 12           | 1         |
|                | N/A      | 11.09        | 6.46         | 13.56      | 68.6                                             | 10.37        | 16.14        | 1         |
|                |          | <u> </u>     | -            |            | <del>                                     </del> | 1            | 1            | 1         |
|                | <b>I</b> |              | ├            |            | <del> </del> —                                   | <del> </del> | <del> </del> | ╂         |
|                | <b>i</b> | <del> </del> | <del>[</del> | ·          | <del>                                     </del> | $\dagger -$  | ├            | 十         |
|                | 5.11     | 4.60         | 4.80         | 4.50       | 4.65                                             | 4.63         | 4.40         | 1         |
|                | 5.       | 4            | 4            | 4.         | 4                                                | 4.           | 4            | 1         |
|                |          |              | ļ ·          |            |                                                  |              | 1            | 1         |
|                |          | 1            | ŀ            |            |                                                  | 1            | 1            | 1         |
|                | 1        |              |              | 1          | 1                                                | <b> </b> .   | 1            |           |
|                |          | 1            |              | 1.         | 1                                                | 1            |              |           |
|                | ~        | 13.57        | 7.67         | 16.34      | 10.93                                            | 16           | 13.57        |           |
|                | N/A      | <u>  m</u>   | 19.          | 9          | 10                                               | 9.66         | 12           |           |
|                | =        | ╁═           | +            | +=         | +=                                               | 15,          | +=           | $\forall$ |
|                |          | '            | .   `        | .]         | 1                                                | 1            | 1            |           |
|                |          | 1            | .]           | 1          | 1                                                |              | 1.           | -         |
|                |          | 1_           |              |            | 1_                                               | 1            | _            | 1         |
|                | 77       | 18           | 43           |            | 118                                              | 3            | 100          | ì         |
|                | 4.77     | 4            | 4            | 4          | 4                                                | 4            | 4            |           |
|                |          |              |              |            |                                                  |              |              |           |
|                |          |              |              |            |                                                  |              |              |           |
|                |          |              | 德閣           |            |                                                  |              |              |           |
|                |          |              |              |            |                                                  |              |              | 3         |
|                |          |              |              |            |                                                  |              |              |           |
|                |          |              |              |            |                                                  |              |              | 4         |
|                |          |              |              | 淵豐         |                                                  |              |              |           |
|                | - 100    |              | 測是           |            |                                                  | 1            |              | 8         |
|                |          |              |              |            |                                                  |              |              | 数.        |
| <b>《</b> 图》:"我 |          |              |              |            |                                                  |              |              |           |
|                |          | を開発          | 到影           | 30         | ALC:                                             | 强逐           | 出版           | 涯         |







ć











| 100 1300 450 500 550 1000 | 33 |
|---------------------------|----|
|                           |    |

# Results and Discussion (continued)

# Electrode Temperature Histories

Figure (20) is a graph of the minimum electrode temperature during a 120-second ablation period for all the electrode-configurations. The maximum tissue temperature during the ablation for each configuration is 65°C. The graph shows that the shell radiator electrode maintains the lowest minimum electrode temperature over the ablation period. Therefore, the electrode region adjacent to the electrode-tissue interface remains the coolest over the ablation period for the shell radiator electrode. Within this region, the solid radiator design remains the second coolest. The 8mm electrode designs have higher minimum electrode temperatures than the radiator designs. The 4mm electrodes have the highest minimum electrode temperatures of all the configurations during the first eighty seconds of the cycle. At about eighty seconds the minimum temperatures of the 8mm solid design and 4 mm shell design have similar values. After the first ten seconds of the ablation period, the minimum electrode temperature for all configurations remained somewhat stable.

Figure (21) is a graph of the maximum electrode temperature during a 120-second ablation period for all the electrode-configurations. As in Figure (21), the maximum tissue temperature during the ablation for each configuration is 65°C. The graph shows that the solid radiator electrode maintains the lowest maximum electrode temperature during the first sixty seconds of the ablation cycle. Therefore, the junction region remains the coolest during the first sixty seconds for the solid radiator electrode. However, the 4mm electrode is slightly cooler during the second half of the ablation cycle. The rate of maximum electrode temperature increase is slightly higher for the 8mm electrode configurations than for the increase for the 4mm electrode configurations. These differing rates of temperature increase account for the changes seen over the ablation cycle. The solid versions of each configuration (radiator, 8mm, 4mm) have a consistently lower maximum electrode temperature over the ablation cycle. This again implies that in the junction region the presence of more mass helps counter the heating due to material mismatches and interface geometry.





# Results and Discussion (continued)

## Field Results

Figures (22), (23) and (24) depict the temperature fields, potential fields, and the potential gradient fields respectively for each electrode configuration. All fields are shown at a maximum tissue temperature of 65°C. As previously mentioned, the temperature fields show the minimum electrode temperature regions adjacent to the tissue-electrode interface. The regions with the maximum electrode temperatures are located at the junction of the electrode and the catheter tip material. The potential fields for the 8mm electrode configurations are of similar size. This indicates that the area of current flow and the heating volume will be similar for the 8mm configurations (radiator as well as standard). This accounts for the similar impedance values found in Table (4). This also accounts for the fact that at equal power settings the 8mm configurations create lesions of equivalent depths as shown in Figure (25). The 4mm potential fields are much smaller than the 8mm potential fields. Therefore the area of current flow and the heating volume are much smaller when compared to the 8mm electrode configurations. This accounts for the higher impedance values shown in Table (4). At equal power settings the 4mm electrode will create deeper lesions when compared to the 8mm electrode configurations. However, as shown in Table (4), for a 4mm electrode, the operating range is 5W to 14W (H=.004) whereas for the 8mm configurations, the operating range is 10W to 28W (H=.004). The operating range is defined as the voltage range and power range required to create maximum tissue temperatures ranging between 55°C and 95°C during an ablation cycle (60 seconds). The maximum lesion depth ranges between 4.61 to 4.63 for 4mm configurations at H=.004 in the previously mentioned power range. The maximum lesion depth ranges between 5.01 to 5.24 for 8mm configurations at H=.004 in the previously mentioned power range. Therefore even though the 4mm configurations create deeper lesions for a given power setting, the 8mm configurations create deeper lesions for comparable operating ranges defined with respect to maximum tissue temperature. As indicated in equation (3) the current density is proportional to the gradient of potential field. Thus, Figure (24), shows areas of high current density occurring at the electrode tissue interface junction and at the electrode-tip junction.

# Conclusion

The minimum electrode temperature evaluations are more reflective of the cooling effects of the radiator design. The minimum electrode temperature evaluations show that the radiator design can provide a deeper lesion for a given minimum electrode temperature. This improvement in lesion depth for a given minimum temperature is enhanced at higher flow rates. Clinically, this would be very beneficial, given that currently it is more difficult to make deep lesions in high flow areas. However, spot heating at the electrode-tip junction compromises the effectiveness of the design. I would recommend that this matter be resolved in any proposed design.

## Further Analysis Work

This analysis work assumes a convective heat boundary condition. With the current tools we are not able to evaluate the details of the fluid field and its effects. The ability to perform such analysis will help us to better define potential coagulation hazards.

Figure 23. Potential Fields for Varying Electrode Configurations (Maximum Tissue Temperature =  $65^{\circ}$ C)





Figure 24. Potential Gradient Fields for Varying Electrode Configurations (Maximum Tissue Temperature = 65°C)

Ę



# APPENDIX-1

| 008 Fite                                 |  |  | Cathabeswill  | 7247-03-125-1203-0400-1<br>7247-03-125-1203-0400-1 | rath-chdh.294120sec-HD04 | tachfestaffeffert20asc4004 | rafr1-thaB-651703-en-HDO4 | 19013-0103-120-12039C-F0004 | 18411-ths 405w120uc-H125 | ndri-chs5-13+120secH125 | radri-chel-Sh-120secH125 | ndf-shel-Switzbrowkt25 | Cach-phr 4-63m 120sac-H125 | rad7-theb?D=12thse41125 | radri-shall C3-120sec-H002 | radit-shelt 55+120zac+6002 | mdri-sheb.23+1201+6-4002 | radii-the2-45+-120sec-H002 | radr)-che2-45+120sec+0002 | md14shd5634-120sss+0002 | nd-t-dat-75-1201ac-4002 |   |
|------------------------------------------|--|--|---------------|----------------------------------------------------|--------------------------|----------------------------|---------------------------|-----------------------------|--------------------------|-------------------------|--------------------------|------------------------|----------------------------|-------------------------|----------------------------|----------------------------|--------------------------|----------------------------|---------------------------|-------------------------|-------------------------|---|
| Елетруйт                                 |  |  | N/A           | \$ t                                               | 27.70                    | 401.11                     | 800.00                    | B1007                       | HIA                      | A AN                    | min .                    | 8 5                    | 678.15                     | F2857                   | KIN                        | N.                         |                          | 10.05                      | TE LE                     | 621.20                  | F                       | _ |
| Lesion Depth                             |  |  | 97 <b>0</b> . | 9 9                                                | 9                        | 2 2                        | Ą                         | o'ng                        | 0,00                     | 8 8                     | 3.75                     | 3 5                    | 78                         | 82                      | oro or                     | 8                          | R :                      | 9                          | 6.60                      |                         |                         |   |
| Tenperatus Difference<br>Electrode/Thrue |  |  | 0,49          | 5 52                                               | 22.86                    | 55.29                      | 20.00                     |                             | c sys                    | 2 5                     | 27.75                    | 427/                   | 8.5                        | 120.73                  | Q40                        | 9                          | . 674                    | 23.16                      | 42,50                     | 0713                    |                         | 7 |
| Max Temp<br>(Tissue)                     |  |  | 37.76         | 50.78                                              | 5 t                      | 24                         | 184.60                    |                             | 8576                     | 1 2                     | 6100                     | 101.001                | 123.00                     | 158.40                  | 25.58                      | 45.40                      | 5 5                      | DS.EDI                     | 144.20                    | 106.70                  | 2                       | - |
| Max Temp<br>(Electrodo)                  |  |  | 37,60         | 54.13                                              | 70.07                    | 120.00                     | 16.20<br>21.20            |                             | 27.08                    | 2000                    | 40.07                    | 1 9                    | 50.73                      | . 9230                  | 38.17                      | ***                        | 9879                     | 131.00                     | 170.40                    | R S                     | 3                       | 1 |
| Min Temp<br>(Electrode)                  |  |  | 12.0          | ere.                                               | 502x                     | or es                      | 22.03                     |                             | 8 8                      | are.                    | 22.1                     | 27.78                  | 87.00                      | 17,01                   | HAVE                       | 2 5                        | 2 7 7                    | 80.08                      | 101,70                    | 9 5                     |                         | ‡ |
| Current                                  |  |  | 500           | 3                                                  | 68.0                     | 120                        | 97                        | : 1                         |                          | 3                       | 9 5                      | 3                      | 110                        | e I                     | 0.00                       | 9 3                        | . 5                      | . 22                       | 9 :                       | 2 5                     |                         | 1 |
| Timo                                     |  |  | 60,46         | 1970                                               | 61.00                    | 61.15                      | 27 4                      |                             | 9 5                      | <b>4</b> 16             | 2 2 2                    | 918                    | 61,04                      | 3                       | 60.48                      | 8 5                        | 50.50                    | 27'19                      | 2 2 2                     | 7 5                     |                         | - |
| . Enorgy                                 |  |  | 15 HZ         | 80.00                                              | 20200                    | 123816                     | 5696.94                   | 1                           | i i                      | . 15.710                | 1252.10<br>.ortha 20     | 3155,13                | 420.53                     | 000070                  | 25.5                       | 1 6                        | 1255.31                  | 21112                      | 3078.06                   | 2000                    |                         | 1 |
| Impedance                                |  |  | 68.11         | 58.11                                              | 58.15                    | E E                        | 55.53<br>57.63            | 27,00                       | 39.10                    | 68.70                   | 1 62 62                  | 59.11                  | 58,10                      | 0 T                     | 18.0                       | 200                        | 1971                     | 63.10                      | 0.00                      |                         |                         | 1 |
| Voltage                                  |  |  | 6,00<br>18,00 | 8                                                  | 8 8                      | 85.80                      | 53.00<br>74.00            | 8                           | 8 9                      | 270                     | 25.00                    | 55.00                  | 62.00                      | 3                       | g ;                        | 9 2                        | 3100                     | 45.00                      | 8 8                       | 88                      |                         |   |
| Power                                    |  |  | 25 25         | 10.57                                              | 25.22<br>25.24           | 91.18                      | 7,48<br>61.19             |                             | 1 7                      | 72.01                   | 200                      | 51.18                  | 27.                        | •                       | 29                         | 500                        | 25                       | 34.28                      | 2.4                       | 11.0                    | <del>-</del> -          | 1 |
| Electrodo Typo                           |  |  | pen Recusion  | <del></del>                                        | al se                    | Interface                  |                           | m Radhim                    | (Sret)                   |                         | . 40                     |                        | •                          |                         | 6 orm Radator              | <u> </u>                   |                          | Low Row                    |                           |                         |                         |   |

Table A1-1. Analysis Data - 60 Second Ablation Runs

Max Temp (Tissue) Min T 201111 201111 201111 201111 201111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 20111 2 

Table A1-2. ranalysis Data - 60 Second Ablation Runs - 252

|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 908 FJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 000                                    | 8 8 8<br>8 8 8 | 2 2                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |              |                 | <b>E</b> S | W             |        |             | <b>180</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 183   |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------|-----------------|------------|---------------|--------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | CONTRACT.      |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |              |                 |            |               |        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |              |                 |            |               |        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                | <u> </u>                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | ****         |                 |            | 4             |        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | EnergyAmm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NA.                                    |                |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 鷾                                       |              | PER S           |            |               | Sapar. |             | 8789<br>8789<br>8789                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | No.   |
|           | Oscha Contr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | e de la composition della comp |                                        |                |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |              | 50 i            |            |               |        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |
|           | la de la companya de |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8 8 8                                   |              | 響化              |            |               | 202    | B           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |
|           | e Oua                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |                |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |              |                 |            |               | ·      |             | 7-71-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |
|           | Temperatura Difference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Electrode/Tissue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                | 8                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.9                                     |              |                 |            |               |        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |
|           | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |                |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |              |                 |            |               |        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |
| •         | Mex Temp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (Tissue)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100                                    | 1000           |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |              |                 |            |               |        |             | 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|           | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ******                                  | 19.5         |                 |            |               | 4      |             | 2 3<br>5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | *     |
|           | Max Temp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 20.00        | ig.             |            |               |        |             | oli za                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |
|           | g 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |              | <b>1</b>        | 2          |               |        |             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |
| 1         | Min Ten<br>(Electro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        |                |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 9.8          | Ä.              |            |               |        | 1 B         | B<br>B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |
|           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                |                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | *************************************** |              | <del>F</del> FF | **         | 174           |        |             | Charact<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Character<br>Characte |       |
| ľ         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | a a a                                  | in the second  |                                                   | T.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |              |                 |            | 13            | 9      |             | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |
| Į.        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8                                      | 200            |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 9            |                 | が          |               |        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | F 102 |
| È         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100 (0 mm)                             |                |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TO SECOND                               | 57           | i in            |            | <b>5</b> (2)  |        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | i y   |
| Energy    | C. R. Der                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |              |                 |            |               |        | 100.00      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |
| Impedance | 13046                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CARGO.                                 | 1              | 1000                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                       |              |                 | 100        | 1             | 10.5   | 5 5         | を                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |
|           | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | wis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | *****                                  |                | <del>                                      </del> | <del>Virgo</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |              | Hose            |            |               |        | in 3        | ili.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |
| a land    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | E SO           | (a) 15.00                                         | N S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8 20 20                                 | 8            | احسوس           | 2031       | 8 8<br>8 8    |        | an Kr       | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ].    |
|           | A P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No.                                    | i si           | i i                                               | 10 July 10 Jul |                                         | 1922         |                 | ian        | 33,           |        | <del></del> | Service                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
| _         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <del>(5,513)</del>                     | -              | }<br><del>****</del> :-                           | . ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7724                                    |              |                 | 70 150     | iel.          | e e e  | : 8         | <del>)=</del> :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |
|           | E.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 90% More Marche<br>Acresie<br>Amelicos | Actroda        | E                                                 | e primari Materia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10.0                                    | The state of |                 |            | Necelli Grain | · g å  | 8           | Ř                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ~ <u> </u>                             | <u> </u>       |                                                   | ₫                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.4                                     | ā            | ŧ]              | l., , , ,  | <u>§</u>      | n and  | <b>d</b>    | N. Park                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |

Why was the state of the state

27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27.10 27 schodo Typo

Table Al -4: Analysis Data - 60 Second Ablation Runs

..)











Ç

















|   |     |                                                             | . •          |       |   | -4mm Electrode - High Flow | 4mm Electrode - Shell - High Flow<br>— 8mm Radiator Electrode-High Flow | • · · · 8mm Radiator Electrode Shell - High Flow | o 8mm Electrode - Shell - High Flow | 2011 1997 - 5981 - 5981 - 5981 |                                                  |        | 200      |          |         |             |          |                               |
|---|-----|-------------------------------------------------------------|--------------|-------|---|----------------------------|-------------------------------------------------------------------------|--------------------------------------------------|-------------------------------------|--------------------------------|--------------------------------------------------|--------|----------|----------|---------|-------------|----------|-------------------------------|
|   |     | 125)                                                        | <br> -<br>   |       |   |                            |                                                                         | • •                                              | •                                   |                                |                                                  | -      | - 8      |          |         |             | <u> </u> |                               |
|   | , . | re (H=                                                      |              |       |   |                            |                                                                         |                                                  |                                     |                                |                                                  |        |          |          |         |             |          |                               |
|   |     | ectrode Temperature vs. Maximum Tissue Temperature (H=.125) |              |       |   |                            |                                                                         |                                                  | -                                   |                                |                                                  |        | 4        |          |         |             |          |                               |
|   | ٠   | ssue Te                                                     |              |       |   |                            |                                                                         | -                                                | +                                   |                                | -                                                |        | 4-       |          |         | <del></del> |          |                               |
|   | •   | imum Ti                                                     |              |       | • |                            | ·                                                                       |                                                  | -                                   |                                | <del> </del>                                     | -      | 4        |          |         |             |          | Minimum Electrode Temperature |
| - |     | . Maxi                                                      |              |       |   |                            | =                                                                       | +-                                               | -                                   |                                | +                                                |        |          |          |         |             | :        | le Tem                        |
|   |     | ature vs                                                    |              |       |   |                            |                                                                         |                                                  |                                     |                                |                                                  |        | 8        |          |         |             |          | Electroc                      |
|   |     | emper                                                       |              |       |   | 8                          | - 0                                                                     |                                                  |                                     |                                | 7-03-2-                                          | ****** | 00<br>CO |          | ·       |             | <u> </u> | imum l                        |
|   |     | trode 1                                                     |              |       |   |                            |                                                                         |                                                  |                                     | :                              |                                                  |        | %<br>%   | 77.7     | <b></b> |             |          | Min                           |
|   |     | ım Elec                                                     |              | ·     |   | -                          |                                                                         |                                                  |                                     |                                |                                                  |        |          | •        |         |             | ٠        |                               |
|   |     | Minim                                                       |              |       |   | -                          |                                                                         |                                                  |                                     | 1                              | <del>                                     </del> |        | **       |          |         |             |          | •                             |
|   |     | (2-14.                                                      |              |       | • |                            |                                                                         | ļ.,                                              |                                     |                                | -                                                |        | -22      | ٠.       |         |             |          |                               |
|   |     | Figure A2-14. Minimum El                                    | ·<br>·.      |       |   |                            |                                                                         |                                                  |                                     |                                |                                                  |        |          |          |         |             |          | -                             |
|   | -   | 14                                                          | . <u>.</u> . | 5<br> |   | ?                          | &<br>                                                                   | <del>- </del>                                    | 75 +                                | 2                              | \$                                               | 3 %    | ر<br>ا ج | 25<br>45 | ;       | ; ;;<br>    | <br>}    | }                             |

Maximum Tissue Temperature







š

APPENDIX-3

|   |                            |                                         | ·     |      |      | — O — 4mm Electrods Low Flow | 6 4mm Etextrode - Shell - High Flow0 4mm Etextrode Shell Low Flow0 8mm Radiator Etextrode |                                         | 6 8mm Radiator Electrode Shell 6 8mm Radiator Electroda Shell High Plow |      | onim Erections - Shell - High Flow | O    |      | ,       |                            | 50.0      |       |
|---|----------------------------|-----------------------------------------|-------|------|------|------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------|------|------------------------------------|------|------|---------|----------------------------|-----------|-------|
|   |                            | . •                                     |       |      |      |                              |                                                                                           |                                         |                                                                         |      |                                    |      |      |         |                            | 45.0      |       |
|   | · .                        |                                         |       |      |      |                              |                                                                                           | 00 0                                    |                                                                         |      | a.                                 |      |      |         | - 80                       | 35.0 40.0 |       |
|   |                            | , , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |       | 0    |      |                              |                                                                                           |                                         | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                                  | . \  | 4                                  |      | · ·  |         | 8                          | 30.0      |       |
|   | Type Electrode             |                                         | -     |      | ٥    | 9                            | 0                                                                                         |                                         |                                                                         |      | 000                                |      |      |         |                            | 25.0      | Power |
|   | 1 - 1                      |                                         |       |      |      |                              |                                                                                           |                                         |                                                                         | 0    |                                    | 0 0  |      |         |                            | 15.0 20.0 |       |
|   | Cooling Effect of Radiator | -                                       | -     | 0    | 0    |                              |                                                                                           |                                         | B                                                                       | D    | 0,0                                | 0.0  |      | a       | Q                          | 10.0      |       |
| • | Figure A3-1. Coo           |                                         |       |      |      |                              |                                                                                           | *************************************** |                                                                         | 0    |                                    | ů a  | æ    | B 0 0 0 | مرزيز<br>مسهس منتسين ومدين | 5.0       |       |
|   | Fign                       |                                         | 100.0 | 0.00 | 0.00 | 0.00                         | 0.08                                                                                      | 75.0                                    | 70.0                                                                    | 65.0 | 0.00                               | 0.00 | 30.0 | 45.0    |                            | 0.0       |       |









|                                        |              | •              |              |               |          |           |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |                |              | γŤ              | itl              | E                                                | [a            | th               | etc    |         |                | lec          | tra            | <u>de</u>       | /7               | Ξp                |                                                  | Jι           | INC<br>Des                                       | H 0                                          | n<br>R       | ·             |                                                  |               |
|----------------------------------------|--------------|----------------|--------------|---------------|----------|-----------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------|--------------|-----------------|------------------|--------------------------------------------------|---------------|------------------|--------|---------|----------------|--------------|----------------|-----------------|------------------|-------------------|--------------------------------------------------|--------------|--------------------------------------------------|----------------------------------------------|--------------|---------------|--------------------------------------------------|---------------|
|                                        |              |                | سندن         |               |          |           | T              | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -               |                | :1           | Ţ               |                  | T                                                |               | T                |        |         |                |              | !              | :               | 1                | ,                 |                                                  |              |                                                  |                                              | •            | ` i           |                                                  |               |
| m Page                                 | NO           | =              |              | <u> </u>      |          | <b></b> - | +-             | - <del>-</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 | ╁              | +            | ÷               | -+               | -}                                               | <del> </del>  |                  |        |         | 300            | -            | <u> </u>       | <del>! - </del> | 1                |                   |                                                  | <u> </u>     |                                                  | ······································       |              |               |                                                  |               |
|                                        | ļ            | <u> </u>       |              | <del> _</del> | <u> </u> | ┞         | -              | <del> </del> _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -               | -}-            | <del>.</del> | +               | +                | -                                                | <del>-i</del> |                  |        | -       |                | <u></u>      | ┼-             | <del></del>     | -                | <u>-</u>          | 1<br>la <i>P</i>                                 | ┝            | <del>                                     </del> | <b></b>                                      | .16          | -0/           | <u>_</u>                                         |               |
| _Moi                                   | 720          | 212            | _            | EE            | 12       | La        | 120            | ŽŲ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8/1             | ٢,             | 124          | 25              | _4               | bol                                              |               |                  |        | et.     | <u> </u>       | D.C          | <del>'</del> — | 7C -            |                  | ous               | いフ                                               |              |                                                  | <u>CC1</u>                                   | ΨZ           | <u>CZ</u>     | <del>,</del>                                     |               |
|                                        | 524          |                | 6            | 04            | ld       | L         | be.            | $oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{ol}}}}}}}}}}}}}}}}}}$ | الإع            | Kh             | de           | 2               | <u> </u>         | 2                                                |               | 110              | 9      | 12      | P              | ę_           | e              | RC              | t <u>K</u> A     | de                | <del> </del>                                     | 12           | يكنا                                             | <b> </b>                                     | +            | <del>}</del>  | <del> </del>                                     |               |
| i c                                    | 50           | 10/            | 2            | T             | 30       | Ks.       | 4              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -               |                |              |                 |                  |                                                  |               | <u> </u>         |        | L       | <u> </u>       | 1            | _              | <u> </u>        | <u> </u> _       | <u> </u>          | <u> </u>                                         | <u> </u>     | <u> </u>                                         | ١٠                                           | 1-           | 4             |                                                  | [             |
| - 194                                  | 1            | The same       | _            | 1             |          | T         | 1              | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T               | T              |              |                 |                  |                                                  | ٠             |                  |        |         |                | L            | 1_             |                 | <u> </u>         |                   | 1_                                               | Ĺ            | _                                                | ļ .                                          | 1_           | -             | <del>                                     </del> |               |
| . — —                                  | ╁╌           | +-             | -            | 1             | 1        | 1         | 1              | $\top$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7               |                | $\neg$       |                 | $\neg$           | 7                                                |               |                  |        | 1       | Π              | Τ.           | T              | T               |                  |                   |                                                  |              | :                                                | ! _                                          | L            | <u> </u>      | <u> </u>                                         |               |
|                                        | ╀            | ┼              | -            | ╁             | ╁        | ╁         | -              | 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | rt              | 7              | +            | -               | _                |                                                  |               |                  | _      | $T^-$   |                | 1            | 1-             | T               | 7                | $\top$            | T :                                              | T            | 1                                                | Τ.                                           | Ţ            |               |                                                  |               |
|                                        | <del> </del> | ┼              | <u> </u>     |               | ┾╌       | ╁         | ¥              | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del>/.</del> / | <del>/  </del> | -            |                 |                  |                                                  | _             |                  | ├-     | ╁╌      | ╁              | ╁╴           | 1              | +               | +                | ╁                 | <del> </del>                                     | +            | <u>:</u>                                         | <del></del>                                  | <del></del>  | +             | ļţ                                               |               |
|                                        | _            |                | _            | 4             | 4        | +         |                | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>        | //             |              |                 |                  |                                                  |               | ├                | ╁      | ╁       | <del> </del> - | ╁-           | +-             | +               | +                | <del></del> -     | +-                                               | +            | <del>-</del>                                     | +                                            | 十            | <del></del> - | 1                                                |               |
| į.                                     | 1_           |                | Ŀ            | ᆜ_            | 丄        | 丄         | _\             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>        |                | _            |                 |                  |                                                  |               | -                |        | +-      | <u> </u>       | <del>-</del> | +-             | -               | <u> -</u> i      | <del>i</del> -    | <del>-</del>                                     | 1-           | +                                                | +-                                           | +            | ÷             |                                                  |               |
|                                        | T            | 1              | _            |               |          | L         | Ï              | $\Box$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .               |                | <u>ز</u> ر   | lec             | 120              | de                                               | L             | ede              | نطح    | ملك     | zce            | 4            | Ofte           | 24/1            | d.               | +                 | <del> </del> +                                   | 1_           | ┿                                                | +-                                           | +-           |               | -                                                | <u> </u>      |
|                                        | T            | T              | Γ            | T             | T        |           |                | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                | - 1          | aa              | . '              | x.te                                             |               |                  |        | nh      | 1              | Qu           | d              | 12              | 700              | 1                 | 1.                                               | -1           | 4                                                | +                                            | 1            | 1             | <u>i</u>                                         | <b>,</b>      |
| -                                      | +            | †              | +            | 十             | 7        | T         | 1              | <del>-</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |                |              |                 | $\Box$           |                                                  |               | 1                | 1      |         |                | (            |                | ].              |                  |                   |                                                  |              | 1                                                | Ĺ                                            |              |               |                                                  | i             |
|                                        | ┿            | +-             | +            | +-            | 十        | +         | 寸.             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                |              | _               |                  | <u> </u>                                         |               | T                | 1      | 1       | 1              | 7            | 1              | 7               | Ţ                | T                 | i                                                |              | 1                                                | -                                            |              |               | 1                                                | :             |
| -                                      | +-           | ╁              | +-           |               | +        | 一         | +              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                |              |                 |                  | <del>                                     </del> | 1             | 17               | 1      | 九       | 1              | 士            | بار            |                 | A                | 2/25              | 1                                                |              |                                                  | 0                                            | À            |               | 7.                                               | 1             |
| By                                     | <u> </u>     | de             | 45           | 2/2           | 9-       | £2        | <u>e</u>       | 524                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 17-1            | 20             |              | U               | 12               |                                                  | $\overline{}$ | 12.2             |        | 10      | 200            | 20           | 7              | +               |                  | ecto<br>20 Fi     |                                                  | aga<br>NH    |                                                  | eza<br>He                                    | ~-7          | 2/20          | Jones                                            | de            |
| _Dus                                   | SPA          | 24             | 4            | the s         | 4        | 01        | CH             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Fil             | الجريم         | per          | ١.              | 12               | to.                                              | دڼ            | 4c               |        |         |                | <u>'</u>     | _2             | 24              | بح.              | 201               | 54-                                              | ay Z         | _Z.                                              | 75                                           |              | مالیات<br>علا | 77.02                                            | a flathal     |
| edi                                    | بطد          | 2              | م            | _://          | 2/2      | 2/1/      | <u>n:</u>      | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S l             | or_            | 2            | LE              | Diz              | 102                                              | 26            | 4_               | Ż      | 121     | ر ک            | <u>P</u>     | Z40            | 4               | en.              | _22               | 2_                                               | pzi          | 27.1                                             | 29                                           | 4            | 24_           | <u>-</u> j                                       | +             |
| the                                    |              | Za             | 15           | 1             | عاج      | 2/        | 1              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2               | a              | 17           | E               | 100              | 1/2                                              | da            | رط/              | 11     | וא אוני | 2              | 14           | Z¢.            | lix             | _#4              | De.               | figr                                             | 147          | _//                                              | Eal                                          | 27/          | 2 <i>9</i> j_ | <del>-</del>                                     | <del></del>   |
| Little .                               |              | lot            |              | ا لرد         |          |           | (//            | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m               |                | مراه         | 1               | 10               | de                                               | ١,            | 40               | no     | er      | 2 HZ           | 10/6         | : لم.          |                 | 7                | 70                | <u>. D</u>                                       | 201          | 15/2                                             | 200                                          | 1:           | <u> </u>      | <del></del>                                      | <del> </del>  |
| an                                     | 7/1          | ~~~            | ~            |               |          |           |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Lo              | nd             |              | - 2             | 200              | 100                                              | Т             | 1                | 721    | - 1     | ی ام           | ,            | Z              | 11              | 7                | Lh/               | 0                                                | do           | åÜ                                               | 24                                           | <u>.</u> .   |               | <u>i</u> _                                       | <del></del> _ |
| 27                                     | 111          | IJ.            | $\mathbf{I}$ |               | F        |           |                | 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |                | LA           |                 | 10               | کنه<br>مما                                       | L.            | 7                | ~y~    |         | 7              | علت          | عربت.<br>مراصد | ماء             | نده              | 14                | اما                                              |              | زيدو                                             |                                              | 191          | ينم.          |                                                  |               |
| PXO                                    |              | 286            | 7            | DΥ            | -1       | a         | 316            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7               | 100            | ZZ           | 7-              |                  |                                                  |               | z po             |        |         | ا              | ZĘĄ<br>Z     | 201            | CICK            | 9                | -12               | 24                                               |              | यस्य<br>भ                                        | 2                                            | بدو<br>د م   |               |                                                  |               |
| BOD                                    | 122          | 2 <i>G</i> J., | 4            | a             | 12       |           | 25             | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u> </u>        | m              | 30           | -Z              | be               |                                                  | _             |                  |        | Sec     |                |              |                | 22              |                  |                   | j                                                | - •          | 1<br>Yie                                         | يريعه.                                       | 1-+-         |               | ,                                                | <del>-1</del> |
| DY.                                    | 96           | 4              | uc           | CEL           |          |           | lec            | ىكە                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | f.              | كبخ            | -            | #£              | 12               | he                                               |               | ŢŲ               | 25     | 1       | ФQ.            |              | 122            | 177             | <del>ś</del> ∤   | 0                 | .D€                                              |              | 7/6                                              |                                              | +            | <del></del>   |                                                  | -4            |
| me                                     | ZŽ           | an             | 28           | m             | A        | F         | _4             | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2/1             | 29             | 4            | 1_              | $\bot$           | 1                                                | 1             |                  | 4      | _∔      | 1              | _            |                |                 | <del></del>      | <del></del>       | <u>-</u> į-                                      | +            |                                                  | :_                                           | -+           | <del></del> - | - <del>-</del>                                   | :             |
|                                        | Т            | i              | 7            |               |          | Ì         |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _               | $\forall$      |              | 1_              |                  | $\perp$                                          | Ĺ             |                  |        |         |                | _            | · •            | _               | 1                | _                 |                                                  | _            | ۔۔۔                                              | <u>.</u>                                     |              |               | - 4                                              |               |
|                                        | 7            |                | 7            |               | 7        | •         |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Γ               | F              | Ţ            |                 |                  |                                                  | 1             | 1                | - 1    | 1       | j              |              |                |                 |                  |                   |                                                  |              |                                                  | <u></u>                                      | <u>.</u>     |               | , -;                                             | <br>          |
| -                                      | -            | -              | -†           | 寸             | $\neg$   |           |                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | †∵              | 1              | T            | +               | 1                | $\top$                                           | $\top$        | 1                | $\neg$ |         | i              | _ {          |                |                 | ٠ ¡              | İ                 | ١                                                | -            | ļ.                                               |                                              |              | · .           | . ·                                              |               |
| }                                      | -            | $\dashv$       | +            | -             |          |           | ┝━             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +-              | +              | $\dagger$    | <del>-</del>  - | +                | 十                                                | 十             | 寸                | 十      | -1      | 1              |              |                |                 |                  |                   | -                                                | 7            |                                                  |                                              |              |               |                                                  |               |
|                                        |              |                | -            |               | -1       |           | -              | ├                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ╀               | +-             | ╫            | +-              | ╫                | 十                                                | +             | -                | +      | +       | -              |              |                |                 | <del></del>      | <del>!</del><br>i | 1                                                | <del>;</del> |                                                  | <del>}</del> -                               |              |               | . ,                                              |               |
|                                        |              | -+             |              |               |          |           | <del> </del> - | <del>                                     </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <del> </del>    | +-             | ┿            | ╌┼╌             | - <del> </del> - | +                                                | ╌╂╴           | <del>.  </del> - |        |         | 一十             | i            |                |                 |                  |                   | <del>-</del>                                     |              |                                                  |                                              | +            |               |                                                  |               |
|                                        | • •          |                |              | _             |          |           |                | ↓_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -               | +-             |              | -               |                  | 4                                                | -}-           | <u> </u>         |        |         |                |              |                |                 | -                |                   | <del>-                                    </del> | <u>-</u> -   | }                                                |                                              |              |               | - <del></del> -                                  |               |
| 1                                      | · - į        | !              |              |               |          |           |                | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1               | _              |              | 1               | <u> </u>         | $\bot$                                           | 4             | _                | _      |         | _              |              |                |                 |                  |                   | !                                                | į            |                                                  | _ +                                          | <u></u>      | - +           | 1                                                | ٠             |
|                                        |              | <u>-</u>       | 7            |               |          |           |                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                |              | _[:             |                  |                                                  |               |                  |        |         |                |              | <u> </u>       | <u></u>         |                  | i                 | <u> </u>                                         |              | _4                                               |                                              | أ.<br>أمد من |               |                                                  |               |
|                                        |              | <del> </del> - |              |               |          | <br>1     |                | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T               | T              | T            | T               | -                | T                                                | T             | T                |        |         | - ,            |              | }<br>          | l<br>           |                  |                   |                                                  |              |                                                  | 1                                            |              | <u> </u>      | <del></del>                                      |               |
|                                        |              | -+             |              |               |          | -         | <b>†</b> :     | 十                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ť               | 1              | 十            | 十               | -                | 1                                                | 1             |                  | i      |         |                |              | 1              |                 |                  | }                 | , <del>,</del>                                   | 1            |                                                  |                                              | اسد سا       | <u>.</u>      |                                                  |               |
| ·                                      |              |                |              | <b> </b>      | ├        | -         | $\vdash$       | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ┪.              | ╁              | +            | 十               | +                | +                                                | 7             |                  |        |         |                | •            | 1              | :               | Γ-               | -                 | ;                                                |              | i                                                |                                              |              |               |                                                  |               |
|                                        |              |                |              | <del> </del>  | -        | ├-        | +              | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | +              | +            | +               | +                | <del>-  </del>                                   | -             |                  |        |         | -              | <del> </del> | 1              | -               | <del>  -</del> - | 1                 | -                                                | -            | ├ <br>                                           |                                              | ,            |               |                                                  |               |
|                                        |              |                |              | <u> -</u>     |          | 1         | +-             | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +               | -              | +            | <del>-</del>    |                  | <del>-</del> i                                   | -             |                  | _      |         | -              | <b> </b>     | ╁╌             | <u>!</u>        | <del>  -</del>   | ┼                 | <del>-</del>                                     | <b>-</b>     | <b>}</b>                                         |                                              | ŗ·           |               |                                                  |               |
|                                        |              |                |              |               |          | 1         | 1              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4               | _ <u>i</u> _   | _            | <u>.</u>        |                  | _                                                | _             |                  |        | 1_      |                | <u> </u>     | ╄              | ╁               | +                | +                 | -                                                | <u> </u>     |                                                  |                                              | · • • •      | <br>Da-       | a Ála                                            |               |
|                                        | ,            |                |              |               | 1        |           | 1              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | $\bot$         |              |                 |                  |                                                  |               |                  |        | 1:      |                | Ŀ            | 1              | <u> </u>        |                  |                   | Ŀ                                                |              |                                                  | <u>.                                    </u> | : 10<br>     | rag           | e No                                             |               |
| · ــــــــــــــــــــــــــــــــــــ |              | <u></u>        |              | <del></del>   | -        |           |                | بمنسب                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 | -              |              |                 | ,                |                                                  |               |                  |        |         |                |              |                |                 | •                |                   | •                                                |              |                                                  |                                              |              | M.            |                                                  | •             |

## This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

## BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked: .

| ☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES                 |
|---------------------------------------------------------|
|                                                         |
| ☐ FADED TEXT OR DRAWING                                 |
| BLURRED OR ILLEGIBLE TEXT OR DRAWING                    |
| ☐ SKEWED/SLANTED IMAGES                                 |
| ☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS                  |
| ☐ GRAY SCALE DOCUMENTS                                  |
| ☐ LINES OR MARKS ON ORIGINAL DOCUMENT                   |
| ☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY |
| OTHER:                                                  |

## IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.