Kritéria ekonomické efektivnosti

INVESTICE

- Investiční rozhodování má dlouhodobé účinky
- Je nutné se vyrovnat s faktorem času
- Investice zvyšují poptávku, výrobu a zaměstnanost a jsou zdrojem dlouhodobého ekonomického růstu
- Investice v době pořízení jsou výdajem, do nákladů vchází ve formě odpisů v době užívání
- Finanční toky (cash flows) pohyby finančních prostředků v různých časových okamžicích (příjmy, výdaje)

Metody hodnocení investic

- 1. Metoda čisté současné hodnoty (NPV)
- 2. Metoda vnitřního výnosového procenta (IRR)
- 3. Doba splacení
- 4. Metoda výnosnosti investice (ROI)

1. Čistá současná hodnota (Net Present Value)- NPV

- Je součtem diskontovaných hotovostních toků
- Pro hodnocení je nutné znát diskontní sazbu nebo li alternativní náklad kapitálu
- Diskontní sazba vychází z teorie opportunity cost, charakterizuje časovou hodnotu peněz a riziko
- Diskontní sazba se může měnit v průběhu životnosti investice
- Je dána vztahem:

$$NPV = \sum_{t=0}^{T} CF_t \times (1+r)^{-t}$$
 CF_t tok hotovosti v čase t

r diskontní sazba

Použití NPV:

- pro každý investiční záměr se stanoví toky hotovosti v čase (během jednotlivých let)
- pro každý investiční záměr vypočteme NPV, ve kterém diskont je cena nevyužité příležitosti
- jsou li investice nevylučující se, realizujeme všechny s kladnou čistou současnou hodnotou
- jsou li investice vzájemně se vylučující, vybíráme takovou, jejíž kladná čistá současná hodnota je maximální

2. Vnitřní výnosové procento (Internal Rate of Return) - IRR

Je taková úroková míra, při které je čistá současná hodnota nulová Platí vztah:

$$\sum_{t=0}^{T} \frac{CF_t}{(1+IRR)^t} = 0$$

Použití IRR:

- Realizujeme investici tehdy, je li hodnota IRR větší než diskontní sazba
- Někdy není možné IRR najít, nebo hodnot IRR je více
- U vzájemně se vylučujících investic je nutná párová eliminace a použití dodatkové investice
- Použitím dodatkové investice dává IRR stejné závěry jako pravidlo čisté současné hodnoty NPV

3. Roční ekvivalentní peněžní tok

Jedná se o čistou současnou hodnotu projektu vynásobenou anuitním faktorem. Tím dojde k rovnoměrnému rozdělení diskontovaných peněžních toků do jednotlivých let po celou dobu životnosti projektu. Toto kritérium se používá pro porovnávání různých variant se shodným rokem počáteční investice, ale různou dobou životnosti.

$$RCF = \frac{q^{n} \times (q-1)}{q^{n} - 1} * NPV$$

Použití RCF stejné jako u NPV.

4. Doba splacení (Payback Period)

- Doba splacení (doba návratnosti investice) je taková doba, kdy tok příjmů (cash flow) přinese hodnotu rovnající se původním nákladům na investici.
- Doba splacení diskontovaná /nediskontovaná
- Je CF po dobu životnosti investice konstantní pak platí:

$$PP = \frac{n \acute{a} k l a dy \, na \, investici}{CF}$$

- Pokud je CF v každém roce jiné, doba splacení se zjistí postupným načítáním ročních částek CF, až se kumulovaný CF bude rovnat investičním nákladům.
- Doba splacení investice musí být kratší než je životnost investice, aby byla efektivní.

5. Metoda výnosnosti (rentability) investic (Return on Investment)

- Za efekt investice je považován zisk, změny v zisku vyvolané investicí charakterizují přínos investice.
- Používá se průměrný roční zisk, lze srovnávat projekty s různou dobou životnosti a různou výší investičních nákladů, metoda nebere v úvahu všechny peněžní příjmy a

nerespektuje časovou hodnotu peněz a rozložení zisku v čase. V praxi se přes své nedostatky často používá.

$$ROI = \frac{Z_r}{N_i}$$

 Z_{r} průměrný čistý roční zisk plynoucí z investice

N_i investiční náklady

1. Příklad (řešený)

Určete čistou současnou hodnotu, vnitřní výnosové procento dvou navzájem se vylučujících se investicí. Diskontní sazba je 9 %.

Rok	0	1	2	3	4
A	-460	100	200	300	200
В	-460	100	300	200	150

$$NPV_A = -\ 460 + \frac{100}{(1+0.09)^{\wedge}1} + \frac{200}{(1+0.09)^{\wedge}2} + \frac{300}{(1+0.09)^{\wedge}3} + \frac{200}{(1+0.09)^{\wedge}4}$$

$$NPV_A = 173,42 \text{ Kč}$$

Obdobně $NPV_B = 145,95 \text{ Kč}$

$$IRR_{A}: -460 + \frac{100}{(1+IRR)^{^{1}}} + \frac{200}{(1+IRR)^{^{2}}} + \frac{300}{(1+IRR)^{^{3}}} + \frac{200}{(1+IRR)^{^{4}}} = 0$$

$$IRR_A = 23 \%$$

Obdobně IRR_B = 22 %

Obě kritéria jednoznačně ukazují, že se máme rozhodnout pro investici A.

2. Příklad

Pomocí metody NPV a IRR zhodnoť te následující dva projekty, je-li diskontní sazba 10 %.

CF	CF ₀	CF ₁	CF ₂
A	-1 700	1 400	650
В	-1 000	600	600

3. Příklad

Firma se rozhoduje, zda koupit nový lis. Investiční výdaj je odhadován na 2,5 mil. Kč, doba životnosti projektu je 5 let, diskontní sazba činí 10 %. Tržby plynoucí z koupě nového lisu jsou odhadovány na 1,5 mil. Kč, náklady (bez odpisů) jsou 0,7 mil. Kč, roční odpisy 0,5 mil. Kč a daň činí 20 %. Určete NPV a IRR projektu.

4. Příklad

Zhodnoť te následující investiční projekty metodou NPV a IRR, diskontní sazba činí 9 % a rozložení toku hotovosti v milionech je dáno následující tabulkou.

CF	CF ₀	CF ₁	CF ₂	CF ₃	CF ₄	CF ₅
A	-3,45	1,5	1,8	1,8	1,8	1,6
В	-150	35	45	45	45	52,5

5. Příklad

Zhodnoť te vzájemně se vylučující investiční projekty, je – li diskontní sazba 12 % a rozložení hotovostního toku v čase je dáno následující tabulkou. Projekty zhodnoť te pomocí ročního ekvivalentního toku hotovosti. Po skončení životnosti se počítá s cyklickou obměnou zařízení.

CF	CF ₀	CF ₁	CF ₂	CF ₃	CF ₄
A	-1 000	800	600	1 000	-
В	-1 000	600	600	600	800

6. Příklad

Máme dvě investiční příležitosti se stejnou kupní cenou 1 mil. Kč., finanční toky pro obě investice jsou v tis. Kč uvedeny v následující tabulce. Pro kterou investici se rozhodnete, je-li diskontní sazba 12 %?

	2008	2009	2010	2011
A	160	160	160	1160
В	0	730	0	1030

7. Příklad

Společnost si musí vybrat mezi dvěma stroji, které vykonávají stejnou práci, ale mají různou životnost. Stroje jsou spojeny s následujícími náklady danými tabulkou. Jaký stroj by si měla společnost koupit, jestliže diskontní sazba je 9 %.

	CF ₀	CF ₁	CF ₂	CF ₃	CF ₄
Stroj A	55 000	12 000	12 000	12 000	
Stroj B	60 000	10 500	10 500	10 500	10 500

8. Příklad

Firma se musí rozhodnout, do kterých projektů bude investovat své peníze, každá investice má životnost 4 roky. Investiční výdaje a CF pro každou investici je uveden v následující tabulce. Výnosnost obdobně rizikové investice jsme odhadli na 10%.

K vyhodnocení výhodnosti investic použijte metody NPV a IRR.

	CF ₀	CF ₁	CF ₂	CF ₃	CF ₄
A	-110 000	25 000	30 000	35 000	50 000
В	-300 000	120 000	100 000	90 000	70 000
C	-1 500 000	700 000	700 000	230 000	150 000

Příklady pro procvičení:

Příklad 1

Investiční výdaj má velikost 2 mil. Kč, doba životnosti projektu je 4 roky, diskontní sazba činí 10 procent. Během doby životnosti jsou odhadovány roční tržby na 1,2 mil. Kč, roční náklady včetně odpisů 1,03 mil. Kč, roční odpisy 0,5 mil. Kč a daň činí 70 tis. Kč. Určete čistou současnou hodnotu, vnitřní výnosové procento, nediskontovanou dobu návratnosti.

Řešení:

 $NPV = -98\ 081\ Kc$

IRR = 7, 71 %

Prostá doba návratnosti 3 1/3 roku

Příklad 2

Zhodnoť te vzájemně se vylučující investiční projekty, je–li diskontní sazba 20 % a rozložení hotovostního toku v čase je dáno následující tabulkou.

CF	CF ₀	CF ₁	CF ₂	CF ₃	CF ₄
A	-5 000	4 000	3 000	6 000	-
В	-5 000	3 000	3 000	3 000	3 000

Řešení:

Projekt A je lepší, má vyšší roční ekvivalentní cash flow

 $(RCF_A = 1~846, 15~K\check{c}, RCF_B = 1~068, 55~K\check{c}.).$

Příklad 3

Zhodnoť te následující investiční projekty metodou NPV a IRR: Diskontní sazba činí 10 % a rozložení toku hotovosti v milionech je dáno následující tabulkou.

CF	CF ₀	CF ₁	CF ₂	CF ₃	CF ₄	CF ₅
A	-2,3	1	1,2	1,2	1,2	1,05
В	-100	20	30	30	30	35

Řešení:

$$NPV_A = 1,97 \ K \ \ \ IRR_A = 39,27 \ \%$$

 $NPV_B = 7,74 \ K \ \ \ IRR_B = 12,76 \ \%$

Příklad 4

Je dáno rozložení toku hotovosti v milionech Kč investičního projektu dle následující tabulky. Stanovte IRR projektu a graficky zobrazte závislost NPV na diskontní sazbě.

CF ₀	CF ₁	CF ₂	CF ₃	CF ₄
-100	40	30	20	40

Řešení:

IRR = 11,65 %

Příklad 5

Použití následujících strojů se vzájemně vylučuje, očekává se , že budou vytvářet následující hotovostní toky v tisících Kč při diskontní sazbě 10 %. Rozhodněte, který stroj si vyberete, jestliže po výrobně -technologické stránce jsou ekvivalentní. Rozhodujte se dle ročního ekvivalentního toku hotovosti RCF daného vztahem $RCF = \frac{r}{r} \times NPV$, kde T je

ekvivalentního toku hotovosti RCF daného vztahem $RCF = \frac{r}{1-(1+r)^{-T}} \times NPV$, kde T je doba životnosti.

	CF ₀	CF ₁	CF ₂	CF ₃
Stroj A	-100	110	121	
Stroj B	-120	110	121	131

Řešení:

 $RCF_A = 57,62 \text{ Kč}, RCF_B = 71,75 \text{ Kč}$

Příklad 6

Prezident společnosti musí rozhodnout mezi těmito dvěma investicemi, diskontní sazba je 9 % na základě metody NPV a IRR. Slaďte rozhodování s NPV a IRR tak, aby nebylo protichůdné.

	CF ₀	CF ₁	CF ₂
Projekt A	-400	241	293
Projekt B	-200	131	172

Řešení:

 $NPV_A = 67,71 \text{ K}\check{c}$ IR

 $IRR_A = 20,86 \%$

 $NPV_B = 64,95 \text{ Kč}$

 $IRR_B = 31,10 \%$

Využití dodatkové investice

 $NPV_{A-B} = 2,761 \text{ K}$ č

 $IRR_{A-B} = 10 \%$

Projekt A je lepší.

Příklad 7

Společnost si musí vybrat mezi dvěma stroji, které vykonávají stejnou práci, ale mají různou životnost. Stroje jsou spojeny s následujícími výdaji danými tabulkou. Jaký stroj by si měla společnost koupit, jestliže diskontní sazba je 6 %.

	CF ₀	CF ₁	CF ₂	CF ₃	CF ₄
Stroj A	40 000	10 000	10 000	10 000+ výměna	
Stroj B	50 000	8 000	8 000	8 000	8 000 + výměna

Řešení:

RCF_A = 24 964,39 Kč, RCF_B = 22 429,57 Kč. Stroj B je lepší.