Mini Course: Dimers and Embeddings Marianna Russkikh

TA: Matthew Nicoletti

Exercise Session Two: Discrete harmonic and holomorphic functions

Below $\Omega \subset \mathbb{C}$ denotes an open simply connected subset.

Reminder:

- A function *u* is harmonic on Ω iff $\Delta u(z) = u_{xx} + u_{yy} = 0$ for any $z \in \Omega$.
- A form $\omega = Pdx + Qdy$ is called *closed* if for any loop γ we have $\int_{\gamma} \omega = 0$. In this case, we can define a primitive F of ω (i.e., a function F such that $dF = \omega$) by letting $F(z) = \int_{z_0}^z \omega$, where $z_0 \in \Omega$ is some fixed point and $\int_{z_0}^z$ denotes the integral along any path in Ω connecting z_0 and z.

1. Harmonic conjugate

- (a) Let $u: \Omega \to \mathbb{R}$ be a harmonic function. Show that $d^*u := u_x dy u_y dx$ is a closed form. [Use Green's theorem: for any $P, Q \in C^1(\Omega)$ one has $\int_{\partial \Omega} P dx + Q dy = \iint_{\Omega} \left(\frac{\partial Q}{\partial x} \frac{\partial P}{\partial y} \right) dx dy$.]
- (b) In the setup of (1a), define v to be the primitive of d^*u . Observe that ∇v is equal to ∇u rotated by $\pi/2$ counterclockwise everywhere.
- (c) Show that f := u + iv is a holomorphic function.
- (d) Check that for any function $f: \Omega \to \mathbb{C}$ one has $4\partial \bar{\partial} f = 4\bar{\partial} \partial f = \Delta f$.

2. Discrete harmonic conjugate

A function $u: \mathbb{Z}^2 \to \mathbb{R}$ is called discrete harmonic at $b \in \mathbb{Z}^2$ if

$$\Delta_{\rm discr} u(b) = \frac{u(b+1) + u(b+i) + u(b-1) + u(b-i) - 4u(b)}{4} = 0.$$

(a) Check that if $u \in C^2(\mathbb{C})$, then for any $b \in \mathbb{C}$

$$\frac{u(b+\varepsilon)+u(b+i\varepsilon)+u(b-\varepsilon)+u(b-i\varepsilon)-4u(b)}{4}=\frac{\varepsilon^2}{4}\Delta u+o(\varepsilon^2),$$

i.e., Δ_{discr} approximates Δ in a certain sense.

(b) Given an oriented edge (b_1b_2) of \mathbb{Z}^2 , denote by $(b_1^*b_2^*)$ the oriented edge of $(\mathbb{Z}+\frac{1}{2})\times(\mathbb{Z}+\frac{1}{2})$ which has the first vertex (here b_1) to its right. Define a 1-form on oriented edges of $(\mathbb{Z}+\frac{1}{2})\times(\mathbb{Z}+\frac{1}{2})$ by

$$\omega(b_1^*b_2^*) := u(b_2) - u(b_1).$$

Show that ω is a closed form (sums to zero around any loop in the dual graph) if u is discrete harmonic.

(c) Define a function $v: (\mathbb{Z} + \frac{1}{2}) \times (\mathbb{Z} + \frac{1}{2}) \to \mathbb{R}$ to be the primitive of ω , which means that the equality

$$v(b_1^*) - v(b_2^*) = \omega(b_1^*b_2^*)$$

holds for any adjacent vertices b_1^* and b_2^* of $(\mathbb{Z} + \frac{1}{2}) \times (\mathbb{Z} + \frac{1}{2})$. Show that v is discrete harmonic.

(d) Let u and v be defined as above. Let $B := \mathbb{Z}^2 \cup (\mathbb{Z} + \frac{1}{2}) \times (\mathbb{Z} + \frac{1}{2})$ and define a function $f : B \to \mathbb{R} \cup i\mathbb{R}$ by

$$f(b) = \begin{cases} u(b) & \text{if } b \in \mathbb{Z}^2\\ iv(b) & \text{if } b \in \left(\mathbb{Z} + \frac{1}{2}\right) \times \left(\mathbb{Z} + \frac{1}{2}\right). \end{cases}$$

Let us define discrete operators ∂_{discr} and $\bar{\partial}_{\text{discr}}$ by the formulas:

$$[\partial_{\mathrm{discr}} f](w) = \frac{1}{2} \left(\frac{f(w + \frac{1}{2}) - f(w - \frac{1}{2})}{2} + \frac{f(w + \frac{i}{2}) - f(w - \frac{i}{2})}{2i} \right),$$

$$[\bar{\partial}_{\mathrm{discr}} f](w) = \frac{1}{2} \left(\frac{f(w + \frac{1}{2}) - f(w - \frac{1}{2})}{2i} + \frac{f(w + \frac{i}{2}) - f(w - \frac{i}{2})}{2} \right),$$

Show that $[\bar{\partial}_{\mathrm{discr}} f](w) = 0$ for all $w \in W := (\mathbb{Z} \times (\mathbb{Z} + \frac{1}{2})) \cup ((\mathbb{Z} + \frac{1}{2}) \times \mathbb{Z}).$

(e) Suppose that $f \in C^1(\mathbb{C})$. Show that

$$\frac{1}{2}\left(\frac{f(w+\frac{\varepsilon}{2})-f(w-\frac{\varepsilon}{2})}{2i}+\frac{f(w+i\frac{\varepsilon}{2})-f(w-i\frac{\varepsilon}{2})}{2}\right)=\frac{\varepsilon}{2}\bar{\partial}f+o(\varepsilon),$$

i.e., $\bar{\partial}_{discr}$ approximates $\bar{\partial}$.

Definition: we call a pair f := (u, iv) a holomorphic function and associate u with the real part of f and v with its imaginary part.

(f) Show that $4[\partial_{\mathrm{discr}}\bar{\partial}_{\mathrm{discr}}f](b) = 4[\bar{\partial}_{\mathrm{discr}}\partial_{\mathrm{discr}}f](b) = \Delta_{\mathrm{discr}}f(b)$.