Robot Behavior-Tree-Based Task Generation with Large Language Models

Yue Cao, C.S. George Lee Purdue University AAAI-MAKE 2023 Symposium

The Upsurge of Large Language Models

MAKE

The Upsurge of Large Language Models

- Large Language Models (LLMs):
 Neural language models with lots of parameters and trained on huge amount of data.
- Model timeline and parameter count (B for billion):

2018	\geq	2019	\geq	2020	\rangle	2021	\rangle	2022	\rangle	2023	
Jun: GPT 0.12 B Oct: BERT 0.34 B		Feb: GPT-2 1.5 B		May: GPT-3 175 B		May: LaMDA 137 B	N	n: InstructGPT 175 B lov: <mark>ChatGPT</mark> known param ²	u	Mar: GPT-4 Inknown param	l

¹ Oren Leung, Is ChatGPT 175 Billion Parameters? Technical Analysis

Large Language Models Meet Robotics

GPT-3 can generate human activities.

How about using Large Language models in robotics?

Human activity planner

Robot task planner¹

An example tested in GPT-3 text-davinci-003 (released in Nov 2022). Text in green is generated.

¹ Wenlong, et al. "Language models as zero-shot planners: Extracting actionable knowledge for embodied agents."

Large Language Models Meet Robotics

Previous works: Large language models as robot task planners

Work 1. LLM Planner¹

Published in: Jan 2022

LLM: GPT-3

Work 3. ProgPrompt³

Published in: Sep 2022

LLM: GPT-3

These 3 pictures are captured from the referred papers:

- ¹ Wenlong, et al. "Language models as zero-shot planners: Extracting actionable knowledge for embodied agents."
- ²Ahn, Michael, et al. "Do as i can, not as i say: Grounding language in robotic affordances."
- ³ Singh, Ishika, et al. "Progprompt: Generating situated robot task plans using large language models."

Large Language Models Meet Robotics

Previous works: Generated task are sequential. Can we generate modular tasks?
Better in terms of reusability and readability

Our Idea: Generating Behavior-Tree Tasks

- A Modular task representation for robots: Behavior Tree
- Non-leaf node: control flow
 Leaf node: action (primitive task) or condition

Prompt Design in Task Generation

- In large language models, the prompt guides the text generation.
- Prompt: text that converts the original input into a template string, leaving two types of slots unfilled: input $[\]_X$ and output $[\]_Y$

Prior Work	Prompt Design
LLM Planner	Task: Task A; Step 1: [Sub-task 1] $_X$; Step 2: [Sub-task 2] $_X$; Task: Task B; [Step 1: Sub-task ?; Step 2: Sub-task ?;] $_Y$
SayCan	How would do Task A? 1. [Sub-task 1] $_X$, 2. [Sub-task 2] $_X$, How would do Task B? I would: [1. Sub-task ?, 2. Sub-task ?,] $_Y$
ProgPrompt	def Task A(): # 1: [Sub-task 1] $_X$; # 2: [Sub-task 2] $_X$; def Task B(): [# 1: Sub-task ?; # 2: Sub-task ?;] $_Y$

Then, how to design a prompt for behavior trees?

Prompt Design for Behavior Trees

Our approach: Phase-Step Prompt
 It can generate a 3-layer behavior tree consisting of Sequence nodes (→) and Action nodes.


```
Source Task
Procedures:
Phase 1.
Step 1. [Sub-task 1.1] _X; Step 2. [Sub-task 1.2] _X; ...
Phase 2.
Step 1. [Sub-task 2.1] _X; Step 2. [Sub-task 2.2] _X; ...
Target Task: Task Description
Procedures:
[Phase 1.
Step 1. Sub-task ?; Step 2. Sub-task ?; ...
Phase 2.
Step 1. Sub-task?; Step 2. Sub-task?; ...
\dots]_{Y}
```


Layer 2 node: Phase; Layer 3 node: Step

Phase-Step Prompt Example

Source Task Target Task: Desktop assembly

Procedures: Procedures:

Phase 1. Phase 1.

Step 1. Put car at a conveyor; Step 1. Place desktop case on table;

Step 2. Lift the car. Step 2. Insert motherboard into the case.

Phase 2. Phase 2.

Step 1. Pick the wheel; Step 1. Install CPU;

Step 2. Approach conveyor; Step 2. Install RAM;

Step 3. Align wheel with wheel hub.

Step 3. Install power supply.

Phase 3. Phase 3.

Step 1. Insert screws; Step 1. Connect all cables and peripherals;

Step 2. Fasten screws; Step 2. Power on the device;

Step 3. Leave the conveyor. Step 3. Test for proper functionality.

Source task: car wheel assembly

Target task: desktop assembly

Phase-Step Prompt Example

Source Task Target Task: Desktop assembly **Procedures: Procedures:** Phase 1. Phase 1. Step 1. Put car at a conveyor; Step 1. Place desktop case on table; Step 2. Lift the car. Step 2. Insert motherboard into the case. Phase 2. Phase 2. Step 1/Install CPU: Step 1. Pick the wheel; Step 2. Approach conveyor; Step 1. Install FAM; Step 3. Align wheel with wheel hub. Step 3 Install power supply. Phase 3. Phase 3. Step 1. Insert screws; Step 1. Connect all cables and peripherals; Step 2 Power on the device; Step 2. Fasten screws; Step 3. Leave the conveyor. Step 3. Test for proper functionality.

Issue: some generated sub-tasks are too abstract for robots to execute.

Decompose into Primitive Tasks

- We specify a verb list based on the robot capabilities, such as $L = \{\text{pick, drop, push, pull, rotate, move, place}\}$.
- Decide which one is a primitive task: semantic similarity test

$$Sim(v, L_i) = 1 - 2 \arccos\left(\frac{Enc_1(v) \cdot Enc_1(L_i)}{\|Enc_1(v)\| \|Enc_1(L_i)\|}\right) / \pi$$

For example, we apply the *Universal Sentence Encoder*¹ as $Enc_1()$. All similarities between "install" and any verb in L is below a threshold 0.5, meaning "install …" is non-primitive.

Decompose into Primitive Tasks

Decomposition strategy 1:
 use the same source target, only
 change the target task description.
 Keep performing tree decomposition
 until all the sub-tasks are primitive.

Source Task
Procedures:
Phase 1.
Step 1. Same as before
...

Target Task: Desktop assembly
Target Task: Install CPU in desktop in 1 phase
Procedures:
To be generated ...

 Decomposition strategy 2: add the verb requirement into prompt Will limit the expanded depth to 1.

```
Source Task
Procedures:
Phase 1.
Step 1. Same as before
...

Target Task: Desktop assembly
Target Task: Install CPU in desktop in 1 phase,
only use the following verb: pick, drop, push, pull,
rotate, move, place
Procedures:
To be generated ...
```

Example: "Install CPU" is a generated sub-task of "Desktop assembly" but is non-primitive based on our verb list.

Automatic Source-Task Selection

Source Task

Procedures:

Phase 1.

Step 1. Put car at a conveyor;

Step 2. Lift the car.

Phase 2.

Step 1. Pick the wheel;

Step 2. Approach conveyor;

Step 3. Align wheel with wheel hub.

Phase 3.

Step 1. Insert screws;

Step 2. Fasten screws;

Step 3. Leave the conveyor.

Target Task: Desktop assembly

Procedures:

To be generated ...

 The source-task behavior tree still requires an end-user to design.

 Any way to make this process automatic?

Automatic Source-Task Selection

Source Task

Procedures:

Phase 1.

Step 1. Put car at a conveyor;

Step 2. Lift the car.

Phase 2.

Step 1. Pick the wheel;

Step 2. Approach conveyor;

Step 3. Align wheel with wheel hub.

Phase 3.

Step 1. Insert screws;

Step 2. Fasten screws;

Step 3. Leave the conveyor.

Target Task: Desktop assembly

Procedures:

To be generated ...

MAKE

Solution:

Retrieve relevant behavior tree from a knowledge base.

Now, the end-user just needs to input a short target task description.

Automatic Source-Task Selection

• Embedding-based¹ behavior tree retrieval. Find the most semantically similar behavior tree from the knowledge base.

¹ Cao, Yue, and CS George Lee. "Behavior-Tree Embeddings for Robot Task-Level Knowledge."

Evaluations: Models Used

1. GPT-3 text-davinci-003 released in Nov 2022

2. ChatGPT Feb/13/2023 version first version released in Nov 2022

Evaluation 1: Ablation Study

- Can LLMs generate modular tasks without our Phase-Step prompt?
- Rarely.

	GPT-3 te	ext-davinci-003	ChatGPT		
;	Avg. R	Avg. N_{total}	Avg. R	Avg. N_{total}	
PS-none prompt	0.12	5.67	0.22	6.90	
PS-wheel prompt	0.65	7.80	0.60	9.77	
PS-desktop prompt	0.93	8.80	0.66	9.13	

Each test was conduct using 30 different target task descriptions.

PS-none prompt: No phase-step prompt, example: "Generate a desk assembly task in behavior tree"

PS-wheel prompt: Use a car-wheel-assembly behavior tree as source task in prompt

PS-desktop prompt: Use a desktop-assembly behavior tree as source task in prompt

R: a metric for tree modularity, If sequential task, R = 0

 N_{total} : total number of generated *Action* nodes

Evaluation 2: Task Quality Assessment

- Does the Phase-Step prompt affect the quality of generated tasks?
- Yes. Prompts containing more details tend to generate more informative tasks.

	GPT-3 text-	davinci-003	ChatGPT		
PS-wheel prompt PS-desktop prompt	Avg. N_{mate} 1.87 5.33	Avg. N_{total} 7.80 8.87	Avg. N_{mate} 3.20 5.73	Avg. N_{total} 10.80 10.00	

Each test was conduct using 15 different target task descriptions in robotic assembly domain.

 N_{mate} : total number of part-mating operations in robotic assembly

PS-wheel prompt: Use a car-wheel-assembly behavior tree as source task in prompt, $N_{mate} = 1$

PS-desktop prompt: Use a desktop-assembly behavior tree as source task in prompt, $N_{mate} = 5$

Evaluation 3: Limitation in Uncommon Tasks

- Can LLMs generate uncommon tasks?
- Sometimes cannot.

Vince Lombardi Trophy		Superbowl trophy,			
crafting	SUPER PICTS STORY PICTS	American football shape	Know football shape	Fail to generate	Know football shape
Atlas robot assembly		Boston Dynamics, hydraulic actuators	Don't know hydraulic actuators	Know hydraulic actuators	Don't know hydraulic actuators

Conclusion

Utilize large language models to generate robot behavior trees.

- Phase-Step prompt for modular task generation
- Decomposition strategy to match robot capabilities
- Automatic source-task selection from knowledge base

Take-Aways on Large Language Model Applications (outside of robotics)

- Input side:
 Integrate the information from knowledge base to augment prompt.

 It can provide better guide/regulation for generation.
- Output side: Large language models (broadly, Generative AI) have surprising power in generating new things. But in many applications, there lack metrics to evaluate the generated results.

Thank you!

