Discrete Mathematics Problem Set 1 Due January 27

Davide Rossotto

January 21, 2025

1 Problem 1

Let $A = \{n \in \mathbb{Z} : n^2 < 10\}$ and $B = \{n \in \mathbb{Z} : 0 \le n \le 5\}$

(a) Rewrite the sets A and B using the roster form.

$$A=\{0,-1,1,-2,2,-3,3\},\quad B=\{0,1,2,3,4,5\}.$$

(b) Determine $A \times B$

$$A \times B = \{(a,b) \mid a \in \{0,-1,1,-2,2,-3,3\} \text{ and } b \in \{0,1,2,3,4,5\}\}$$
 or
$$A \times B = \{(0,0),(0,1),...,(0,5),(-1,0),(-1,1),...,(3,5)\}$$

$$|A \times B| = |A| * |B| = 42$$

2 Problem 2

Given the collection: $C = \{A_n : n \in \mathbb{N}\}$, where $A_n = \{x \in \mathbb{R} : x^2 < n\}$.

(a) Determine $\bigcup_{n=1}^{100} A_n$.

We know that:

$$A_n = \{x \in \mathbb{R} : x^2 < n\} = (-\sqrt{n}, \sqrt{n}).$$

Since the intervals A_n are nested, with each interval A_n being contained in A_{n+1} :

$$A_1 \subset A_2 \subset \cdots \subset A_{100}$$
.

Thus, the union of all these intervals is equal to the largest interval:

$$\bigcup_{n=1}^{100} A_n = A_{100} = (-10, 10).$$

3 Problem 3

Let $A_n = \{n+1, n+2, n+3, n+4\}, n \in \mathbb{Z}$ (a) Find $\bigcup_{n=-3}^{3} A_n$ and $\bigcap_{n=-3}^{3} A_n$

$$\bigcup_{n=-3}^{3} A_n = \{ x \in \mathbb{Z} \mid -2 \le x \le 7 \}, \quad \cap_{n=-3}^{3} A_n = \emptyset$$

(b) Which values of $k \in \mathbb{N}$ make the subcollection $\{A_{kn} : n \in \mathbb{N}\}$ mutually disjoint.

$$A_{kn} = \{kn + 1, kn + 2, kn + 3, kn + 4\} \text{ for } n \in \mathbb{N}$$

Sets A_{kn} and A_{km} , where $n \neq m$, will be mutually disjoint if:

$$A_{kn}\cap A_{km}=\emptyset$$

For this to be true, kn must be ≥ 5 from km:

$$|kn - km| \ge 5 \text{ for all } n \ne m$$

For this to be true for all cases m and n:

$$k = 5$$

(c) Which values of $k \in \mathbb{N}$ which make $\bigcup_{n \in \mathbb{N}} A_{kn} = \mathbb{Z}$ We define A_{kn} : $A_{kn} = \{kn | n \in \mathbb{N}\}$

$$k = 1$$

Problem 4 4

For each condition below, give a nested collection C of distinct subsets of $\mathbb R$ which satisfies each of the following conditions:

1.
$$\cap C = \emptyset$$

$$C_n = \{(-\infty, n) \mid n \in \mathbb{Z}\}\$$

$$2. \ \cap C = [-1,1]$$

$$C_n = \{ [-1 - \frac{1}{n}, 1 + \frac{1}{n}] \mid n \in \mathbb{N} \}$$

3.
$$\cup C = [-1, 1]$$

$$C_n = \{-1 + \frac{1}{n}, 1 - \frac{1}{n} \mid n \in \mathbb{N}\}$$

4.
$$\cup C = \mathbb{R}$$

$$C_n = \{(-\infty, n) \mid n \in \mathbb{Z}\}\$$

5 Problem 5

Let A, B, C be non-empty sets. Show that

$$A*(B\cap C) = (A\times B)\cap (A\times C)$$

Part A WTS $A \times B(B \cap C) \subseteq (A \times B) \cap (A \times C)$

Let $(a, x) \in A \times (B \cap C)$

This must mean that: $a \in A$ and $x \in B \cap C$

Since $x \in B \cap C$, $x \in B$ and $x \in C$.

Therefore, $(a, x) \in A \times B$ and $(a, x) \in A \times C$.

Therefore, $(a, x) \in (A \times B) \cap (A \times C)$.

Therefore, $A \times (B \cap C) \subseteq (A \times B) \cap (A \times C)$

Part B WTS $(A \times B) \cap (A \times C) \subseteq A * (B \cap C)$

Let $(a, x) \in (A \times B) \cap (A \times C)$

By definition of intersection, $(a, x) \in A \times B$ and $(a, x) \in A \times C$

 $a \in A, x \in B, x \in C$

Hence, $x \in B \cap C$

Therefore, $(a, x) \in A \times (B \cap C)$

Therefore, $(A \times B) \cap (A \times C) \subseteq A \times (B \cap C)$

Conclusion Because

$$A\times (B\cap C)\subseteq (A\times B)\cap (A\times C)$$

and

$$(A \times B) \cap (A \times C) \subseteq A \times (B \cap C)$$

we can conclude that:

$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$

6 Problem 6

For each $n \in \mathbb{N}$, define

$$C_n = \{x \in \mathbb{R} : n - 1 < x^2 < n\}$$

Show that $\{C_n\}_{n\in\mathbb{N}}$ is a partition of \mathbb{R} .

Part A WTS $C_n = \emptyset$ for all $n \in \mathbb{N}$

For any $n \in \mathbb{N}$, there must be $x \in \mathbb{R}$ that satisfies $n - 1 < x^2 < n$

Because $n-1 \ge 0$ for all $n \ge 1$ and n-1 < n, the interval (n-1,n) is non-empty and contains positive values.

Thus, there exists $x \in \mathbb{R}$ such that $x^2 \in (n-1, n)$.

Therefore, for each $n \in \mathbb{N}$, C_n is non-empty, $C_n \neq \emptyset$.

Part B WTS $C_n \cap C_m = \emptyset$ for $n \neq m$

Suppose $x \in C_n$ and $x \in C_m$ for some $n \neq m$.

By definition of C_n , this means:

$$n-1 < x^2 < n$$
 and $m-1 < x^2 < m$

If $n \neq m$, then the intervals (n-1,n) and (m-1,m) are non-overlapping because:

$$n-1 < n < m-1 \\ for n < m$$

Therefore, it is impossible for x^2 to lie in both intervals, meaning $C_n \cap C_m = \emptyset$ for $n \neq m$.

Part C WTS

$$\bigcup_{n\in\mathbb{N}} C_n = \mathbb{R}$$

For any $x \in \mathbb{R}$ there must exist $x^2 \ge 0$.

For any $x \in \mathbb{R}$, there exists some $n \in \mathbb{N}$ such that $n - 1 < x^2 < n$.

Specifically, for $x^2 \in (n-1, n)$, we have $x \in C_n$.

Therefore, $\bigcup_{n\in\mathbb{N}} C_n = \mathbb{R}$

7 Problem 7

Let A, B, C be sets such that $A \subset B$. Show that

$$A \cap B = A$$

Part A WTS $A \cap \subset A$

Let $x \in A \cap B$.

By the definition of intersection:

$$x \in A$$
 and $x \in B$

Since $A \subset B$, if $x \in A$, then $x \in B$

Therefore, $x \in A$ shows that every element $A \cap B$ is also in A.

Hence, $A \cap B \subset A$

Part B WTS $A \subset A \cap B$

Let $x \in A$. Since $A \subset B$, it follows that $x \in B$

Therefore, $x \in A$ and $x \in B$, which implies that $x \in A \cap B$.

Thus, for all $x \in A$, $x \in A \cap B$.

Hence, $A \subset A \cap B$.

Conclusion

Because:

$$A \cap B \subset A$$

and:

$$A \subset A \cap B$$

therefore:

$$A \cap B = A$$

8 Problem 8

For each $\lambda \in \mathbb{R}$, define $A_{\lambda} = \{(x,y) \in \mathbb{R} : y = x^2 + \lambda\}$. Prove that the collection $\{A_{\lambda} : \lambda \in \mathbb{R}\}$ forms a partition of \mathbb{R}^2 .

Part A WTS A_{λ} are disjoint: $A_{\lambda_1} \cap A_{\lambda_2}$ for $\lambda_1 \neq \lambda_2$

Let $\lambda_1 \neq \lambda_2$ and $\lambda_1, \lambda_2 \in \mathbb{R}$. Consider the sets:

$$A_{\lambda_1} = \{(x, y) \in \mathbb{R}^2 : y = x^2 + \lambda_1\} \quad A_{\lambda_2} = \{(x, y) \in \mathbb{R}^2 : y = x^2 + \lambda_2\}$$

Suppose that $(x,y) \in A_{\lambda 1} \cap A_{\lambda 2}$. Then, by definition, we must have:

$$y = x^2 + \lambda_1 \quad y = x^2 + \lambda_2$$

Which can be rewritten as:

$$x^2 + \lambda_1 = x^2 + \lambda_2$$

Which implies:

$$\lambda_1 = \lambda_2$$

Which can not because $\lambda_1 \neq \lambda_2$. Therefore $A_{\lambda_1} \cap A_{\lambda_2} = \emptyset$ when $\lambda_1 \neq \lambda_2$. Thus, A_{λ} are disjointed.

Part B WTS $\bigcup_{\lambda \in \mathbb{R}} A_{\lambda} = \mathbb{R}^2$.

Let $(x,y) \in \mathbb{R}^2$.

By definition A_{λ} , $(x,y) \in A_{\lambda} \iff y = x^2 + \lambda$ Rearranging the equation gives: $\lambda = y - x^2$

Since $\lambda = y - x^2 \in \mathbb{R}$ for any $(x, y) \in \mathbb{R}$, there exists some $\lambda \in \mathbb{R}$ such that $(x,y) \in A_{\lambda}$

Thus:

$$\bigcup_{\lambda \in \mathbb{R}} A_{\lambda} = \mathbb{R}^2$$

Conclusion

- 1. A_{λ} are mutually disjoint, $A_{\lambda 1} \cap A_{\lambda 2} = \emptyset$ for $\lambda_1 \neq \lambda_2$
- 2. $\bigcup_{\lambda \in \mathbb{R}} A_{\lambda} = \mathbb{R}^2$