A Preliminary Introduction to Copula Theory

Ny *

nymath@163.com

November 10, 2022

Abstract

Copula[?]

Contents

1		2
2	Copula	;
	2.1 Copula	. :
3	Dependence Measures	
	3.1	
	3.1.1 Pearson rho	
	3.1.2 Spearman rho	
	3.1.3 Kendall tau	
	3.2	
	3.3	
	3.4	
4	Bivariate(Explicit) Copula Classes	
	4.1 Gaussian Copula	
	4.2 t Copula	

^{*~} https://github.com/nymath/notes4master

5	Arc	himedean Copulas	9
	5.1	Simple Archimedean Copula	10
	5.2	Laplace-Lebesgue-Stieltjes Transform	10
	5.3	Nested Archimedean Copula	11
	5.4	Simulations	11
6	test		11
7	App	plications in Assurance	11
8	App	plications in Derivatives	11
\mathbf{L}	ist	of Figures	
	1	Copula	8
	2	Top left: Clayton, top right: Gumbel, bottom left: Frank, bottom right: Joe.	10
${f L}$	ist	of Tables	
	1		6
	2		7
	3	Archimedean Generator	10

1

FX

1.1 Theorem

 $U \sim U(0,1)UFX(), F$

$$F^{-1}:[0,1]\mapsto\mathbb{R}$$

$$F^{-1}(U)X$$

 FF^{-1}

 $\square 1.1U_{\square}(U_1,\cdots,U_p)$ Copula

Copulalink function alphaCopula

Example 1.3 (Copula):

- 1. Copula: $C(u_1, \dots, u_d) = \prod_{k=1}^{p} u_k$
- 2. (Comonotonicity) Copula: $C(u_1, \dots, u_d) = \min\{u_1, \dots, u_d\}$
- 3. Copula()
- 4. Gaussian Copula:

1.5 Theorem

$$(U_1,\cdots,U_p)C$$

$$C(u_1, \dots, u_p) = \Pr(U_1 \le u_1, \dots, U_p \le u_p) = C(u_1, \dots, u_p)$$

C

Remark: Copula

2 Copula

2.1 Copula

 $(X_1,\cdots,X_p),\,(U_1,\cdots,U_p)$

2.1 Theorem

 $\Box X$

= +

 $\mathrm{Copula} X$

= + Copula

2.2 Theorem Sklar's Theorem

Copula() $(U_1, \cdots, U_p)F_i$

$$(X_1, \cdots, X_p) = (F_1^{-1}(U_1), \cdots, F_p^{-1}(U_p))$$

 $(X_1,\cdots,X_p)F$

$$F(x_1, \cdots, x_p) = C(F_1(x_1), \cdots, F_p(x_p))$$

Sklar's TheoremCopula

2.4 Theorem Sklar's Theorem

Xcdf FF_iX Copula C which is define as follows:

$$C(u_1, \dots, u_p) = F(F_1^{-1}(u_1), \dots, F_p^{-1}(u_p))$$

2.5 Theorem Copula

f, g(), (X, Y)copula C,

f(X), g(Y)Copula C.

 $\mathsf{Remark} \colon X, Y$

$$(U_1, U_2) = (F_X(X), F_Y(Y))$$

copula C.

UX

3 Dependence Measures

Measure

3.1

3.1.1 Pearson rho

Remark:

3.1.2 Spearman rho

Remark: Spearman $rho(X,Y)Copulaf(X),g(Y)XYCopulaf(X),\ g(Y)spearman rhoSpearman rhocopulaCare$

Remark: spearman rho $n \; {r_{i1} \over n} U_1 U_1, U_2$ Pearson rho

3.5 Theorem

$$\rho_s = 12 \int_{\mathbb{R}^2} C(u, v) - uv \, du dv$$

3.1.3 Kendall tau

kendall tauCopulaKendall Kendall tauCopula

3.7 Theorem

$$\tau = 4 \int_{\mathbb{R}^2} C(u, v) \, dC(u, v) - 1$$

Family	Kendall's $ au$	Range of τ
Gaussian	$\tau = \frac{2}{\pi}\arcsin(\rho)$	[-1, 1]
t	$\tau = \frac{2}{\pi}\arcsin(\rho)$	[-1, 1]
Gumbel	$ au = 1 - rac{1}{\delta}$	[0,1]
Clayton	$ au = rac{\delta}{\delta + 2}$	[0, 1]
Frank	$\tau = 1 - \frac{4}{\delta} + 4 \frac{D_1(\delta)}{\delta}$ with	[-1, 1]
	$D_1(\delta) = \int_0^{\delta} \frac{x/\delta}{e^x - 1} dx$ (Debye function)	

Table 1:

3.2

3.3

3.4

In the case of d variables, we consider the dependence of any pair of variables. Additionally, we are interested in the dependence of two variables after the effect of the remaining variables

Family	Upper tail dependence	Lower tail dependence
Gaussian	_	_
t	$2t_{\nu+1}\left(-\sqrt{\nu+1}\sqrt{\frac{1-\rho}{1+\rho}}\right)$	$2t_{\nu+1}\left(-\sqrt{\nu+1}\sqrt{\frac{1-\rho}{1+\rho}}\right)$
Gumbel	$2-2^{1/\delta}$	_
Clayton	_	$2^{-1/\delta}$
Frank	_	_
Joe	$2-2^{1/\delta}$	-
BB1	$2-2^{1/\delta}$	$2^{-1/(\delta\theta)}$
BB7	$2 - 2^{1/\theta}$	$2^{-1/\delta}$
Galambos	$2^{-1/\delta}$	_
BB5	$2 - \left(2 - 2^{-1/\delta}\right)^{1/\theta}$	-
Tawn	$(\psi_1 + \psi_2) - \left(\psi_1^{\theta} + \psi_2^{\theta}\right)^{1/\theta}$	_
t-EV	$2\left[1-T_{\nu+1}\left(z_{1/2}\right)\right]$	-
Hsler-Reiss	$2\left[1-\Phi\left(\frac{1}{\lambda}\right)\right]$	_
Marshall-Olkin	$\min\left\{\alpha_1,\alpha_2\right\}$	-

Table 2:

are removed (partial correlations) or the dependence when we fix the values of the remaining variables (conditional correlations).

At first, we introduce some notations for convenience.

- $I^d := \{1, 2, \cdots, d\}$
- $\bullet \ \ I^d_{-i} := I^d \backslash \{i\}.$

4 Bivariate(Explicit) Copula Classes

copula

4.1 Gaussian Copula

CopulaCopula

 $\mathrm{Copula}\Sigma(Z_1,\cdots,Z_p)$

$$(U_1,\cdots,U_p)=(\varphi(Z_1),\cdots,\varphi(Z_p)).$$

Σ Copula 000651. SZ601318. SH
 Copula() Copula Gamma Copula+Gamma

Figure 1: Copula

Algorithm 4.2 (Gaussian Copula):

- 1. Sample i.i.d (Z_1, \dots, Z_p) from N(0, 1).
- 2. Using Cholesky Decomposition to $\Sigma=AA'$ and obtain $[X_1,\cdots,X_p]=[Z_1,\cdots,Z_p]A'$
- 3. Return $(U_1, \dots, U_p) = (\varphi(X_1), \dots, \varphi(X_p))$

4.2 t Copula

Algorithm 4.4 (Simulate a t Copula):

- 1. Generate (Z_1, \dots, Z_p) from $N_p(0, \Sigma)$.
- 2. Let $(X_1, \dots, X_p) = (\frac{Z_1}{\sqrt{\frac{S}{\nu}}}, \dots, \frac{Z_p}{\sqrt{\frac{S}{\nu}}})$ where $S \sim \chi_v$ independent of Z_i .
- 3. Return $(U_1, \dots, U_p) = (t_{\nu}(X_1), \dots, t_{\nu}(X_p)).$

5 Archimedean Copulas

In practice, Archimedean copulas are popular because they allow modeling dependence in arbitrarily high dimensions with only one parameter, governing the strength of dependence. In addition, there exists a close-form expresssion of the relationship between this parameter and kendall tau.

Name of copula	Bivariate copula $C_{\theta}(u,v)$	parameter θ	generator $\psi_{\theta}(t)$	generator inverse $\psi_{\theta}^{-1}(t)$
Ali-Mikhail-Haq	$\frac{uv}{1-\theta(1-u)(1-v)}$	$\theta \in [-1,1]$	$\log\left[\frac{1-\theta(1-t)}{t}\right]$	$\frac{1-\theta}{\exp(t)-\theta}$
Clayton	$\left[\max\left\{u^{-\theta}+v^{-\theta}-1;0\right\}\right]^{-1/\theta}$	$\theta \in [-1,\infty) \backslash \{0\}$	$\frac{1}{\theta} \left(t^{-\theta} - 1 \right)$	$(1+\theta t)^{-1/\theta}$
Frank	$-\frac{1}{\theta}\log\left[1+\frac{(\exp(-\theta u)-1)(\exp(-\theta v)-1)}{\exp(-\theta)-1}\right]$	$\theta \in \mathbb{R} \backslash \{0\}$	$-\log\left(\frac{\exp(-\theta t)-1}{\exp(-\theta)-1}\right)$	$-\frac{1}{\theta}\log(1+\exp(-t)(\exp(-\theta)-1))$
Gumbel	$\exp\left[-\left((-\log(u))^{\theta} + (-\log(v))^{\theta}\right)^{1/\theta}\right]$	$\theta \in [1, \infty)$	$(-\log(t))^{\theta}$	$\exp\left(-t^{1/ heta} ight)$
Independence	uv		$-\log(t)$	$\exp(-t)$
Joe	$1 - \left[(1 - u)^{\theta} + (1 - v)^{\theta} - (1 - u)^{\theta} (1 - v)^{\theta} \right]^{1/\theta}$	$\theta \in [1, \infty)$	$-\log\left(1-(1-t)^{\theta}\right)$	$1 - (1 - \exp(-t))^{1/\theta}$

Table 3: Archimedean Generator

Figure 2: Top left: Clayton, top right: Gumbel, bottom left: Frank, bottom right: Joe.

5.1 Simple Archimedean Copula

5.2 Laplace-Lebesgue-Stieltjes Transform

5.3 Nested Archimedean Copula

5.4 Simulations

Algorithm 5.3 (Marshall and Olkin):

- 1. Sample V from $F = LS^{-1}(\psi^{-1})$
- 2. Sample i.i.d E_1, \dots, E_p from Exp(1), independent of V.
- 3. Return $U = (\psi^{-1}(\frac{E_1}{V}), \cdots, \psi^{-1}(\frac{E_p}{V}))$
- 6 test
- 7 Applications in Assurance
- 8 Applications in Derivatives