ONE HUNDRED

PHOTOGRAPHIC FORMULÆ.

THE INDISPENSABLE COMPANION TO THE LABORATORY.

CONTAINING MOST USEFUL FORMULÆ USED IN PHOTOGRAPHY
AND ITS BRANCHES. COLLECTED FROM THE MOST
RELIABLE SOURCES, AND CONVENIENTLY
ARRANGED FOR READY REFERENCE.

BY

W. INGLES ROGERS,

WITH A USEFUL APPENDIX.

PRICE SIXPENCE.

London:

HAZELL, WATSON, & VINEY, LD., 1, CREED LANE, LUDGATE HILL.

PREFACE.

During the summer of last year the compiler of the present little volume had the pleasure of visiting a large number of studios (both amateur and professional), and the one thing he noticed above all others was the very uncertain way in which the formulæ relating to the various processes were kept.

In some cases the walls of the "dark-rooms" were literally covered with clippings from books and journals, whereby the said books and journals were, of course, deprived of their completeness and utility; and not only that, but through the dampness of the walls and the action of the chemicals, the figures were well-nigh obliterated, and required a very keen eye to distinguish them. In the others, bottles themselves were plastered with labels bearing in almost undecipherable characters the necessary instructions for the preparation of their contents; while in many instances no formulæ at all were observable, the manipulators trusting solely to their memory in the preparation of such solutions as were in daily use, and to their facility in digging out of their mine of photographic literature the particular nugget they required for any special purpose.

It was to improve this state of affairs that the present little work was compiled; and if, during his next round of visits, the compiler finds a copy of it in every studio, he will be amply repaid for the trouble he has taken in compiling it.

ST. GERMANS, CORNWALL.

CONTENTS.

				PAG
WET COLLODION PROCESS	•••	••••	 	
DRY COLLODION PROCESS			 	8
ALBUMEN PROCESS			 	11
HONEY PROCESS			 	12
FERROTYPE PROCESS			 	12
GELATINE DRY-PLATE PRO	CESS		 	13
GELATINE FILM PROCESS			 	21
KALLITYPE PROCESS			 	21
SILVER PRINTING PROCESS		•••		22
ARISTOTYPE PROCESS			 	24
BROMIDE PRINTING PROCES	S		 	24
PLATINUM PROCESS				27
CARBON PROCESS				27
IRON PROCESS				28
MISCELLANEOUS			 	
WEIGHTS AND MEASURES				30
PRICE LIST OF CHEMICALS				31

WET COLLODION PROCESS.

1.—PLAIN COLLODION.

Alcohol			 	5	ounces.
Ether		•	 		,,
Pyroxyline	,	•	 		grains.

2.—NEGATIVE COLLODION.

		TOTALODION.					
				2	ounces.		
				2			
Pyroxyline	•••			20	grains.		
Iodide of An				20	••		
Bromide of (Cadmium			8	"		

3.—POSITIVE COLLODION.

Alcohol			10	ounces.
Ether		•••	10	
Pyroxyline			100	grains.
Iodide of Cadmium	•••		50	"
Bromide of Ammonium	•••		20	"

4.—COLLODION FOR THE REPRODUCTION OF LINE WORK.

Plain Collodion	 	28	ounces.
Chloride of Calcium	 	18	grains.
Iodide of Ammonium	 	60	
" Cadmium		100	77
Absolute Alcohol			ounces.

5.—NEGATIVE SILVER BATH.							
Nitrate of Silver	(recryst	allized)	6 ou	nces.		
Distilled Water				80			
Nitric Acid				10 mi			
Saturate wi							
Radarate Wi	on round	.01 01	iver a	na miter			
6.—P08	ITIVE	SILVE	R BA	TH.			
Nitrate of Silver	(recryst	allized)	5 our	nces.		
Distilled Water				80 .			
Nitrie Acid				12 mi	nims.		
Saturate wit	h Iodid	e of Sil	lver a	nd filter.			
7.—SILVER							
Nitrate of Silver	(recrysta	allized)		1 our	ice.		
Distilled Water				15 our	ices.		
(Nitric Acid				5 min	nims.		
(Iodide of Potassiv	ım			30 gra	ins.		
Iodine				5,	,		
Distilled Water				5 our	ices.		
To 15 oun							
8.—NEC		DEVE	LOPE	R.			
Protosulphate of I	ron			2 dra	ms.		
Glacial Acetic Aci				2 ,,			
Alcohol							
Water				8 oun	ces.		
	SITIVE	DEVE	LOPEI	R.			
Protosulphate of I		•••		$1\frac{1}{2}$ ou	nce.		
Nitrate of Baryta				1	,,		
Alcohol				1	,,		
Nitric Acid				40 droj	ps.		
Water				1 pint			

10.—DEVELOPER	FOR	COLL	DION	TRANSFERS.
Pyrogallic Acid				
Citric Acid				
Acetic Acid				45 minims.
Water				1 ounce.
Alcohol				quant. suff.
11.—DEVEL(PER	FOR :	LINE	WORK.
Protosulphate of I	ron			50 grains.
Tartaric Acid				10 ,,
Water		•••		2 ounces.
10 NTC	A MYYY-			
12.—NEG	ATIVE	FIXI	NG BA	ATH.
Hyposulphite of So	oda	•••		8 ounces.
Water	•••	•••		10 ,,
13.—Posi	TTTE	DINTE	TO DA	w reducing a
Cupido of Potani	TIAT	FIXIN	G BA	rh.
Cyanide of Potassir Water	ım	•••	•••	1 dram.
water	•;	•••	•••	8 ounces.
14.—WET	PLATE	trivit	METEI	TAD
Pyrogallic Acid		11411	THOLE	ER.
Pyrogallic Acid Citric Acid	•	•••	4	0.0
TTT.	•	•••		50 ,,
	20		2	20 ounces.
Add a few drops of a	50-g1	cain so	lution	of Nitrate of
Bilver	to ea	ch oun	ce.	
15.—SOLUTION FO	אם מד	TO A BYTT	TO MT	T OT AGG
	PLAT	EANI	NG TH	LE GLASS
Iodine				1 duom
Tripoli		••	•••	1 dram.
Methylated Spirit				
		· Lesses	10 200	1 pint.

16.—VARNISH	FOR	WET-P	LATE	NEG	ATIVES.
Gum Sandarac				6	ounces.
Gum Shellac				1	ounce.
Turpentine				$2\frac{1}{2}$	ounces.
Oil of Lavender				2	"
Methylated Spir	it			40	,,

DRY COLLODION PROCESS.

17.—PYROXYLINE FOR COLLODIO-BROMIDE EMULSION.

Nitric Acid		2	ounces.
Sulphuric Acid		4	"
Water		1	ounce.
Cotton (cleaned and carded)		100	grains.
Temperature		150	deg. Fahr.
Time of Immersion	•••	10	minutes.

18.—WASHED EMULSION (SLOW).

Alcohol	$2\frac{1}{2}$ ounces.
Ether	4 ,,
Pyroxyline	40 grains.
Castile Soap dissolved in Alcohol	30 ,,
Bromide of Cadmium and Ammo-	
nium	91

Sensitize with 100 grains of Nitrate of Silver dissolved in 1 ounce of boiling alcohol, and after standing 10 days, add 20 grains more of silver dissolved in 2 drams of alcohol.

19.—WASHED EMULSION (RAPID).

 $2\frac{1}{2}$ ounces. Alcohol Ether 40 grains. Pyroxyline Castile Soap dissolved in Alcohol 30 Bromide of Cadmium and Ammo-56 nium

Sensitize with 125 grains of Nitrate of Silver dissolved in 1 ounce of alcohol, without heat, and in 12 hours' time add 30 grains more of the double bromide of cadmium and ammonium dissolved in half-ounce of alcohol.

20.—PYROXYLINE FOR WASHED EMULSION.

Nitric Acid	 2 ounces.
Sulphuric Acid	 6 ,,
Water	 1 ounce.
Cotton (cleaned and carded)	 100 grains.
Temperature	 140 deg. Fahr.
Time of Immersion	 10 minutes.

21.—COLLODIO-BROMIDE EMULSION.

Alcohol					$2\frac{1}{2}$	ounces.
Ether					4	,,
Pyroxyline	Э				40	grains.
Bromide of	of Cad	mium	and A	mmo-		
nium					80	"

Sensitize by adding to each ounce 15 grains of Nitrate of Silver dissolved in a few drops of water and one dram of boiling alcohol.

-							
22.—W	ASHED	EMULS	ION I	FOR TH	RANSF	ARENCI	E
Alcoh	nol				3	ounces	
Ether	c		*		5	our cop.	
Pyrox	r xyline				60	grains.	
Brom	ide of C	admium	and	Ammo-		8-01110.	
niu	m				100		
Hydro	ochloric A	Acid			8	minims.	
sensitize	with 20	grains o	of Nitr	ate of S	ilver t	o the our	10
diss	olved in	a minir	num (of water	with	2 drams	0
boil	ing alcoh	ol. All	low to	stand f	or 2 or	r 3 days.	
23.—UK	GANIFI	ER (FO	R LA	NDSCA	PE E	MULSIO	V)
Tannin	ı	•••		•	300	grains.	
Water	J	•••			20	ounces.	
24.—	ORGAN	IFIER	WAR	M-BROY	WN T	ONE)	
Freshly	-ground	Coffee			1	one.	
Boiling	Water				1,	oint	
25.—0	RGANIF	IER (B	ROWI	VISH-BI	ACK	TONE).	
Tannin					30 0	raina	
Pyrogal	lic Acid				60		
Water					20 o	unces.	
V.—IN II	ENSIFIE	R FOR	COL	LODION	EMI	ULSION.	
Nitrate (of Silver	•••			60 g	rains.	
DILLIC AC	310				30		
VILLIC AC	310				30 m	inims.	
valer					9 01	mana	
Acid a	dd 2	a 3-gr	ain s	olution	of P	yrogallic	3
riciu a	uu z or	o mini	ms of	the oh	ove, a	nd apply	,
diffil St	ufficient	density	is obt	tained.			

To

27.—DEVELOPING SOLUTIONS FOR COLLODION EMULSION.

	****		96	grains.
	,		1	ounce.
sium			10	grains.
			1	ounce.
.880		•••	1	dram.
			15	drams.
	 sium ·880	sium	 .880	sium 10 1

For each dram of developer take, for a normal exposure, 5 minims of A, 2 minims of B, and 2 minims of C.

ALBUMEN PROCESS.

28.—SUBSTRATUM.

Albumen from fresh eggs	 26 drams.
Iodide of Ammonium	 15 grains.
Bromide of Potassium	 4 ,,
Iodine	 4 ,,

29.—SENSITIZER.

Nitrate of Silver	 	155	grains.
Glacial Acetic Acid	 	$2\frac{1}{2}$	drams.
Distilled Water	 	4	ounces.

30.—DEVELOPER.

Gallic Acid				1 dram.
Water				10 ounces.
Solution of Acet	o-nitra	ate of S	ilver	
(1 to 30)				5 minims

HONEY PROCESS.

31.—SUBSTRATUM.

01.—30	PRIKE	ATUM.		
Albumen			8 ounces.	
Honey			7 ,,	
Iodide of Potassium			3 drams.	
Bromide of Potassium			20 grains.	
Chloride of Sodium	• • •		10 ,,	
Water	•••		2 ounces.	
32.—SE	ENSITE	ZER.		
Nitrate of Silver			1 ounce.	
Acetic Acid	•••		10 drams.	
Water			10 ounces.	

For developer see No. 30.

FERROTYPE PROCESS.

33.—FERROTYPE COLLODION.

oo.—I MILLOI IFI	COTTODION.	
Alcohol	5	ounces.
Ether	5	,,
Pyroxyline		
Iodide of Cadmium	25	grains.
	20	"
Iodide of Ammonium	30	"
Iodide of Sodium	10	
Bromide of Cadmium		"
···	20	"

34.—DEVELOPER FOR FERROTYPES.

D / 17 / 25	TOT	FERR	UTYPES.
Protosulphate of Iron an	d Am	monia	4 ounces.
Acetic Acid			4
Yellow Rock Candy			$\frac{1}{2}$ ounce.
Water			
Fixing Bath.—See No. 13	•••	•••	64 ounces.

Fixing Bath.—See No. 13.

35.—SILVER BATH FOR FERROTYPES.
Nitrate of Silver 4 ounces.
Iodide of Potassium 2 grains.
Water 64 ounces.
Dissolve, sun for 3 or 4 hours, filter, and acidulate.
CELATINE DEVIDEATE
GELATINE DRY-PLATE
PROCESS. THE RO
36.—EMULSION (ORDINARY).
Nelson's No. 1 Gelatine 160 grains.
Hard Gelatine 200 OSRADHIO
A Bromide of Potassium 40
Iodide 2 ,,
Water 4 ounces.
Water 4 ounces.
The Nitrate of Silver should be precipitated and re-dis-
solved by strong ammonia, and the solutions mixed
at 100 deg. Fahr., and kept at that temperature
till blue.
37.—EMULSION (VERY RAPID).
In one vessel put
Nelson's No. 1 Gelatine 24 grains.
Bromide of Ammonium 120 ,,
Iodide of Potassium 5 ,,
Water $2\frac{1}{2}$ ounces.
Dissolve the above with heat; when cooled down add
Water 10 ,,

Stir well, then add in a fine stream, with constant
agitation,
Nitrate of Silver 180 grains.
Water 12 drams.
Keep in the dark without heat for 24 hours.
In another vessel put
Nelson's No. 1 Gelatine 20 grains.
Bromide of Ammonium 160
Indide of Potassium
Carbonate of Ammonia 60 .,
Water 4 ounces.
Dissolve with heat; when cool add in a fine stream,
constantly stirring,
Ammonio-nitrate of Silver 240 grains.
Water 4 ounces.
Nitric Acid 2 minims.
Place in a vessel of boiling water and put aside for
24 hours. Then, in the first emulsion, put 240
grains dry gelatine, and dissolve with gentle heat;
to the second emulsion add 360 grains gelatine
and dissolve; then mix both emulsions together,
stir well, and let remain for another 24 hours;
then break up, wash, and filter.
38.—EMULSION (BURTON'S).
Methylated Spirit 10 ounces. Salicylic Acid 100 grains.
Nelson's No. 1 Gelatine 80 grains.
Bromide of Ammonium 280 ,,
B Iodide of Ammonium 24 ,,
Water $5\frac{1}{2}$ ounces.
Solution A $2\frac{1}{2}$,

Dissolve B by heat and add		
(Nitrate of Silver	400	grains.
c $\begin{cases} Nitrate of Silver \\ Water \end{cases}$. 7	ounces.
Convert to Ammonio-nitrate making	8	,,
Heat to 140 deg., and keep up temper		
37 1 1		
39.—EMULSION (AMMONIA	METH	(OD).
In Distilled Water	$8\frac{1}{2}$	ounces
dissolve	-	
Gelatine (previously swelled)	50	grains.
Bromide of Ammonium	308	"
When cold add		
Alcohol	$1\frac{1}{2}$	ounce.
Liquor Ammonia	$\frac{1}{2}$	"
	$1\frac{1}{2}$	"
		ounces
dissolve by heat		
Nitrate of Silver	462	grains,
and add gradually to the gelating	ne solut	tion.
Finally add		
Gelatine	. 220	grains.
Wash and filter.	-	
40.—CHLORIDE EMULSIO		R
TRANSPARENCIES	5).	
A Gelatine	. 300	grains.
Water	. 4	ounces.
Nitrate of Silver	. 240	grains.
${\rm B} \begin{cases} {\rm Nitrate~of~Silver~} & \dots & \dots \\ {\rm Water~} & \dots & \dots \\ \end{array}$. 2	ounces.
$\mathbf{c} \begin{cases} \text{Chloride of Ammonium} & \dots & \dots \\ \text{Water} & \dots & \dots & \dots \end{cases}$. 100	grains.
Water	. 4	ounces.
When A is dissolved add B a	and the	n C.

41.—ORTHOCHROMATIC EMULSION.

Gelatine	20 grains.	
Bromide of Potassium	135	
Erythrosine (purified) Solution		
Water	1,000	
Heat to 150 deg. and add slowly	1,000 ,,	
Nitrate of Silver	170 grains.	

Water 1,000 ,, Heat till blue, then stir in 200 grains of gelatine previously soaked in water, and set aside to ripen.

42.—PYRO DEVELOPER (ORDINARY).

						1
Α.	Pyrogallic Acid Water				30	grains.
	(Water	•••	•••		10	ounces.
	Liquor Ammonia, Bromide of Potass	.880			14	drams.
B	Bromide of Potass	ium			200	grains.
(Water					ounces.
Use in equal volumes.						

43.—FERROUS OXALATE DEVELOPER

(ORDINARY). $A \begin{cases} \text{Neutral Oxalate of Potash} & \dots & 8 \text{ ounces.} \\ \text{Boiling Water} & \dots & 1 \text{ pint.} \\ \text{Boiling Water} & \dots & 12 \text{ ounces.} \\ \text{Boiling Water} & \dots & 1 \text{ pint.} \\ \text{C} \begin{cases} \text{Bromide of Potassium} & \dots & 20 \text{ grains.} \\ \text{Water} & \dots & \dots & 1 \text{ ounce.} \\ \text{For use} & \dots & \dots & \dots & 2 \text{ ounces.} \\ \text{A Solution} & \dots & \dots & 2 \text{ ounces.} \\ \text{B} & \dots & \dots & \dots & \frac{1}{2} \text{ ounce.} \\ \end{cases}$

... 4 drops.

44.—SODA DEVELOPER.

Washing Soda	 	 4	ounces.
Water		1	duart

For use add 2 grains dry pyro to every ounce of solution, only adding bromide when necessary.

45.—POTASH DEVELOPER.

	-		Control of the last of the las	 	
	Pyrogallic Acid			 1	ounce.
A-	Sulphite of Soda			 31	ounces.
	Sulphurous Acid.			 STATE OF THE PARTY	,,
	Warm Water .			 5	,,
	Carbonate of Potas	h			ounces.
B	Sulphite of Soda .			$2\frac{1}{2}$	
				10	
(Bromide of Potagoi	um			ounce.
C	Water				ounce.

For use to each ounce of water add 20 minims No. 1 and 30 minims No. 2. For over-exposure a few drops of No. 3.

46.—CARBONATE OF AMMONIA DEVELOPER.

Pyrogallic Acid			$\frac{1}{2}$	ounce.
A Alcohol	•••		9	ounces.
Bromide of Ammonium		•••	50	grains.
B{Carbonate of Ammonia Water			$1\frac{1}{2}$	ounce.
(Water			30	ounces.

For use add 15 minims of A to 1 ounce of B.

47.—HYDROQUINONE DEVELOPER.

Hydroquinone	 	1 part.
Sulphite of Soda		2 parts.
Carbonate of Soda.		10
Water	 	67

48.—EIKONOGEN DEVELOPER.

	(Eikonogen			1	part.		
A	(Eikonogen Sulphite of Sodium			4	parts.		
	Water		•••		"		
D	Carbonate of Soda Water			. 3	parts.		
B							
	For use mix 3 parts A to 1 part B.						

49.—META-BISULPHITE DEVELOPER.

(Pyrogallic Acid	1 part.
Pyrogallic Acid A Meta-bisulphite of Potash	$\frac{1}{4}$,,
(Water	10 parts.
(Carbonate of Potash	1 part.
Carbonate of Potash Meta-bisulphite of Potash	$\frac{1}{4}$,
(Water	10 parts.
For use mix A and B in equal	quantities; no bromide

50.—PYROCATECHIN DEVELOPER.

is required.

Pyrocatechin				1	part.
A Sulphite of So	da			4	parts.
(Water				40	"
Potash				4	parts.
$_{\mathrm{B}}\{ egin{matrix} \mathrm{Potash} & \dots \\ \mathrm{Water} & \dots \end{array} $,	40	"
177		CA	· 17 0 -	1_	CD.

For use mix 1 part of A with 2 parts of B.

51.—DEVELOPER FOR OVER-EXPOSED PLATES.

Pyrogallic	Acid	 	 2	grains.
Ammonia		 	 4	minims.
Bromide		 	 2	grains.
Water		 	 1	ounce.

52.—DEVELOPER F	OR C	HLORI	DE PLATES	3.
(Citric Acid			120 grain	q
A Carbonate of Ammonia	a		00	٥.
Water			88 ,,	
Sulphate of Iron			1 ounce	
B Sulphuric Acid	•••		140 grain	S.
Water			1 drop.	
For man add 1			1 ounce	
For use add 1 par	t of B	to 3 pa	arts of A.	
53.—FIX				
Hyposulphite of Soda	•••		4 ounce	S.
Water			20 ounces	2
			- o danco	•
54,—CLEA	RING	BATH	Ι.	
Alum			1 ounce.	
Water			20 ounges	
Sulphuric Acid			$\frac{1}{2}$ ounce.	•
			½ ounce.	
55.—BATH FOR HA	RDEN	ING T	HE EILM	
Sulphite of Soda		1	154 amain	
Tannin		•••	194 grains.	
TIT			30 ,,	
Nitaria A • 1			18 ounces.	
Mitrie Acid	•••	•••	1 dram.	
56 DATH FOR THE				
56.—BATH FOR ELIM	INAT	ING G	REEN FOG	
Perchloride of Iron	•••		50 grains.	
bromide of Potassium			30 ,,	
water			4 ounces.	
After immersing in above	e till	whiter	ned, wash.	and
treat with ordinary fe	rrous	oxalate	e developer	till
density is restored.			- Jordon	JIII

57.—H	YPO EL	IMINAT	OR.	
Peroxide of Hydrog	gen		1	dram.
Water			5	ounces.
				0012000
	-INTEN			
Bichloride of Merc	ury		$\frac{1}{2}$	ounce.
A Sal Ammoniae .			$\frac{1}{2}$	"
Water				
¿Liquid Ammonia.			2	drams.
Water			6	ounces.
Whiten in A, wa	sh, and	restore d	lensity	in B.
59.—HYDROQUI				
Hydroguinone			10	narts.
Citric Acid Water B{Silver Nitrate Water			6	parasi
Water			1 000	"
(Silver Nitrate			1,000	nart
B Water	•	•••	30	parts
Mix 3 of A to 1 of B	and no	it ovo	n the	pares.
INIA O OI II (O I OI D	and por	ur it ove	i one i	regative.
60.	-REDU	JCER.		
Alum Sulphate of Copper			4	ounces.
Sulphate of Copper Chloride of Sodium			4	,,
Chloride of Sodium			8	"
Water			1 (quart.
Saturated Solution of	f Comm	on Salt.		
Mix A an				
61.—NEG.	ΔΤΤΥΣ	TADATE	CII	
Sandarac				na a a a
Alcohol		•••	94	ounces.
Oil of Lavender	•••		24	"
Chloroform		•••	3	"
CHIOTOTOTIII			0 0	irams.

GELATINE FILM PROCESS.

62.—DEVELOPER.

			OT TITE.		
Pyrogallic Ac	eid		•••	1	ounce.
A Sulphite of S	oda				ounces.
water				1	quart.
B Carbonate of Water	Soda				ounces.
(Water				1	quart.
For use					
A Solution				1	ounce.
ъ "				1	,,
Water	•••				ounces.
Bromide of	Potassium	S	olution		
(1 to 6)	•••	•••	· · · · · · · · · · · · · · · · · · ·	20	minims.
	63.—FIXIN	G	BATH.		
Hyposulphite	of Soda			4	ounces.
Water				16	"
64	-CLEARIN	G	SOLUTI	ON.	
Acetic Acid					dram.
Water					ounces.
9 7 7 7		•••	•••	30	ounces.

KALLITYPE PROCESS.

65.—DEVELOPER.

Nitrate of Silver	 	50	grains.
Citrate of Soda	 	800	"
Bichromate of Potash	 	2	grains.
Water	 	10	ounces.

SILVER PRINTING.

66.—SILVER BATH.

Silver Nitrate		 	50 grains.
Water	•••	 	1 ounce.

67.—SILVER BATH FOR DURABLE PAPER.

Silver Nitrate		 	1	ounce.
Citric Acid	•	 	1	"
Alcohol		 	1	"
Water		 	12	ounces.

68.—ACETATE TONING BATH.

Chloride of	Gold	•••	 	1	grain.
Acetate of S	Soda		 	30	grains.
Water .			 	8	ounces.

69.—BORAX TONING BATH.

Chloride of Gold	 	 1 grain.
Borax	 	 90 grains.
Water	 	 15 ounces.

70.—BICARBONATE TONING BATH.

Chloride of Gold	 	1	grain.
Bicarbonate of Soda	 	4	grains.
Water	 	8	ounces.

71.—PHOSPHATE TONING BATH.

Chloride of Gold	 	1	grain.
Phosphate of Soda	 	20	grains.
Water	 	8	ounces.

72.—LIME T	ONING	BATI	I.	
			1	grain.
Precipitated Chalk				grains.
Sat. Sol. Chloride of Lim	ie			drop.
Boiling Water				ounces.
	nen coo		O	ounces.
C 50 W1	ich cool	•		
73.—LEAD T	ONING	BATI	Ŧ	
And - L CT 7				
	•••	•••	2	ounce.
Hyposulphite of Soda Water	•••	•••	4	
	•••	•••	1	pint.
This bath requires no	gold ar	nd fixe	s as	well.
74.—URANIUM	TONIN	IG BA	TH	
Chloride of Gold			1	grain.
Nitrate of Uranium			1	
Acetate of Soda				"
Common Salt				grains.
Water				"
	•••	•••	12	ounces.
75.—FIXI	NG BA	עיד		
Hyposulphite of Soda				
Waton		•••		ounces.
water	•••		1	pint.
76.—COMBINED FIXING	3 AND	TON	ING	BATH.
Chloride of Gold			1	grain.
Phosphate of Soda	•••			grains.
Sulphocyanide of Ammor			25	"
Hyposulphite of Soda		2		
Water				ounces.
		•••	4	ounces.

77.—RED	PRIN	TS F	OR PH	0Т0-Е	NGR	AVERS.
Citric Acid					100	grains.
Chloride of	Ammo	onium			100	19
Gelatine .					10	"
Water .					10	ounces.
	7:4:	A -: - 1		d		molino m

Dissolve the Citric Acid in water and neutralize with 228 grains common washing soda. Float the paper on this bath for 2 minutes and sensitize on Silver Bath (see No. 66).

ARISTOTYPE.

78.—ARISTOTYPE TONING BATH. Chloride of Gold ... 1 grain. Sat. Sol. of Borax ... 1 ounce. Water ... 4 ounces. 79.—ARISTOTYPE FIXING BATH. Hyposulphite of Soda ... 3 ounces. Water 10 ,,

BROMIDE PRINTING.

80.—DEVELOPER FOR "ALPHA" PAPER. (Neutral Oxalate of Potash ... 16 ounces. ... 320 grains. A Bromide of Ammonium ... Warm Water ... 64 ounces. Sulphate of Iron ... 4½ ounces. B{Citric Acid \dots $\frac{1}{2}$ ounce. Water 80 ounces.

For use add 1 of B to 3 of A.

81.—TONING AND FIXING BATH FOR "ALPHA" PAPER.

Stock Solution of Gold.

Chloride of Gold Water	 15 grains.15 drams.
Stock Solution of Gold	 4 drams.
Acetate of Soda	 $\frac{1}{2}$ ounce.
Sulphocyanide of Ammonium	 4 ounces.
Hyposulphite of Soda	 $2\frac{1}{2}$,,
Water	 10 ,,

82.—DEVELOPER FOR EASTMAN'S BROMIDE PAPER.

(Neutral Oxalate of Potasl	h		16	ounces.
A	Neutral Oxalate of Potasi Hot Water				"
	Protosulphate of Iron			16	ounces.
B-	Protosulphate of Iron Sulphuric Acid Hot Water		- i	$\frac{1}{2}$	dram.
	Hot Water				ounces.
	Bromide of Potassium			1	ounce.
C.	Bromide of Potassium Water			32	ounces.
	For use—A 6 ounces.	В1	ounce,	C 1	dram.

83.—FIXING BATH.

Hyposulphite of Soda		 3	ounces.
Water	·	 16	,,

84.—CLEARING BATH.

Acetic Acid		 1 dram.		
		39	ounces.	
Water	 	 02	ounces.	

85.—DEVELOPER FOR EASTMAN'S TRANSFEROTYPE PAPER.

		Character Street, and St.		1110.		
Neutral Oxalate	of Pota	sh		1	lb.	
A Acetic Acid Hot Water			•••		drams.	
Protosulphate of	Tuon		••••		ounces.	
B Acetic Acid	11011	•••	•••		lb.	
Hot Water	•••				dram.	
c Bromide of Potas	sium				ounce.	
(Water				32	Ounces	•
For use—A 6 ounce	es, B 1	ounce,	$C_{\frac{1}{2}}$	dran	n. Fixi	ng
	bath	(83).				

86.—DEVELOPER FOR BROMIDE OPALS.

					SEPS CONTRACTOR	
	Neutral Oxalate Bromide of Amm	of Pota	sh	·	1	lb.
A-	Bromide of Amn	nonium			20	grains.
	water					ounces.
1	Sulphate of Iron Citric Acid					
B	Citric Acid					ounce.
(Water				48	Ollmana
	For use add 1	ounce	of B to	5 0111	CAS	of A
			- 00	o oun	COD	or H.

87.—FIXING BATH.

Hyposul	phite of Soda			11.
Water	L COUL	•••	 1	lb.
11 4001			 . 80	ounces.

88.—CLEARING BATH.

Alum			4 ounces.
Citric Acid		 	1 ounce.
Water	•••	 	80 ounces

89.—INTENSIFIER FOR BROMIDE PRINTS AND OPALS.

	Perchloride of Iron	1	20	grains.
	Alum Citric Acid Water		2	ounces.
A	Citric Acid	•••	$\frac{1}{2}$	ounce.
			60	ounces.
D	Sat. Sol. Bichloride of Mercu Water	ry	1	ounce.
В	Water		10	ounces.
0	Sulphite of Soda Water		4	ounces.
U	Water		60	ounces.
	Immerse in A. wash, bleach	in B. and	res	tore in C.

PLATINUM PROCESS.

90.—PLATINUM DEVELOPER.

Neutral	Oxalate of Potash	 130	grains.
Water		 1	ounce.

91.—PLATINUM FIXER.

Hydrochloric Acid	 	1 ounce.
Water	 	80 ounces.

CARBON PROCESS.

92.—SENSITIZING BATH FOR CARBON TISSUE.

Bichromate of Potash	 	1	ounce.
Liquor Ammonia	 	6	minims.
Water	 	20	ounces.

93.—WAXING SOLUTION.

Beeswax	 	 	20	grains.
Benzole	 	 	4	ounces.

IRON PROCESS.

94.—SENSITIZER.

Ammonio-citrate of Iron		2	ounces.			
Water		8	,,			
$_{\mathrm{B}}$ Ferricyanide of Potassium Water		2	ounces.			
Water		8	,,			
Mix A and B in equal proportions.						

MISCELLANEOUS.

95.—GROUND GLASS VARNISH.

Best Gelatine	 ς°	 5	ounces.
Glycerine	 	 1 2	ounce.
Oxide of Zinc	 	 ĩ	"
Water	 	 20	ounces.

96.—COLOURED VARNISH.

Turmeric	 	$\frac{1}{2}$ lb.
Gamboge	 	2 ounces.
Yellow Sandal Wood	 	2
Shellac	 	1/2 lb.
Alcohol	 	1½ lbs.

97.—FLASH-LIGHT MIXTURE.

Permanganate of Potassium	 2	parts.
Bichromate of Potassium	 2	
Powdered Magnesium	 1	part.

98.—MOUNTING MEDIUM.

Gelatine	 	2 ounces.
Glycerine	 	$\frac{1}{2}$ ounce.
Methylated Spirit	 	2 ounces.
Water	 	8

99.—INK FOR WRITING ON PHOTOGRAPHS.

Iodide o	f Potas	sium	•••	 10	parts.
Iodine					part.
Gum	•••	•••		 1	"
Water				 30	parts.

100.—SOLUTION FOR RESTORING FOGGED PLATES.

Bichromate of Potash		 1 ounce.
Hydrochloric Acid	•••	 2 drams.
Water		 10 onnes.

APPENDIX.

WEIGHTS AND MEASURES.

APOTHECARIES' WEIGHT.

20	Grains	=	1 Scruple	=	20	Grains.
3	Scruples	=	1 Dram	=	60	"
8	Drams	=	1 Ounce	=	480	,,
12	Ounces	=	1 Pound	-=	5,760	. "

AVOIRDUPOIS WEIGHT.

$27\frac{1}{2}$ Grains	= 1	Dram	=	$27\frac{1}{2}$	Grains.
16 Drams	= 1	Ounce	=	$437\frac{1}{2}$,,
16 Ounces	= 1	Pound		7,000	

FLUID MEASURE.								
60	Minims	=	1	Dram		=	60	Minims.
	Drams	=	1	Ounce		=	480	,,
20	Ounces	=	1	Pint		=	9,600	
2	Pints	=	1	Quart			19,200	"
	Quarts	=	1	Gallon		=	76,800	"
8	Pints	=	1	Gallon			76.800	"

Note.—Apothecaries' weight is that generally adopted in the foregoing formulæ.

per oz. per lb.

PRICES OF CHEMICALS USED

IN THE

FOREGOING FORMULÆ.

(These prices are subject to fluctuations.)

		per oz.	per 10.
		s. d.	s. d.
Acid, Citric		0 3	2 0
" Gallic		0 5	4 3
" Glacial Acetic		0 2	1 0
" Hydrochloric		_	0 2
" Nitric		0 2	1 0
" Pyrogallic		1 0	-
" Salicylic		0 9	10 6
" Sulphuric		—	0 2
Albumen		<u> </u>	6 0
Alcohol	•	0 3	3 6
Alum		 /	0 2
Ammonia, Liquor, 880 degrees		0 1	0 7
Ammonium, Bromide		0 3	2 4
" Carbonate		0 1	0 8
" Iodide		1 6	-
Benzole (2s. per j	pint.)		
Borax			0 8
Cadmium, Bromide	• • • •	0 7	_
,, Iodide		1 3	_
Calcium, Bromide		0 9	8 0
Chalk, prepared			0 2
Chloroform	,	0 6	5 6
Copper, Sulphate			0 4
Eikonogen		1 6	3 0

				per	oz.	per	r lb.
The Character				s.	d.	8.	d.
Erythrosin		•••		2	0	5	- 6
Ether		•••	• • • • • • • • • • • • • • • • • • • •	0	5	5	
Gelatine, Nelson's		•••	•••	0	6	4	8
Glycerine				0	2	1	2
Gold, Chloride		per	tube.)				0
Hydrogen, Peroxid		• • • •	•••	_	_	1	6
Hydroquinone	•••	•••			10		
Iodine	•••		•••	1	4	•	_
Iron, Ammonio-cita			*	0	3		6
" Perchloride				0	2	. 1	3
" Sulphate				-	_	0	2
Lead, Acetate				0	3	2	0
Lime, Chloride				0	1	1	0
Magnesium Powder				2	0	-	- 3
Mercury, Bichloride	· · ·			0	3	4	0
Potash, Bichromate				_	_	0	6
,, Carbonate			•••	_	_	0	8
" Ferricyanid	е			0	2	1	4
" Neutral Oxa				0	1	0	10
Potassium, Bromide				0	2	2	0
" Cyanide				0	2	1	4
				1	2	-	_
" Meta-bis				0	3	3	6
Silver, Nitrate				3	0	-	_
Soda, Acetate				0	2	1	6
,, Carbonate				0	1	0	6
,, Hyposulphite				_	_	0	3
" Sulphite				0	1	0	8
Spirit, Methylated	(6d.			·	•		
Tripoli	(000.			0	2	2	0
Uranium, Nitrate		•••	•••	2	0	-	_
Zinc, Oxide	•••			0	1	1	0
dine, Oalde	•••	•••	•••	U	1	1	U