Corrigé CNC PSI 2007 MATHS1 A.CHABCHI Professeur en classe MP au lycée Ibn Taimyia - www.mathprepa.africa-web.org

Problème I : Equations différentielles de Bessel modifiées

PARTIE I

- 1. Soit x un réel
 - (a) La fonction $t \mapsto t^{x-1}e^{-t}$ est continue sur]0,1] et $t^{x-1}e^{-t} \sim \frac{1}{t^{1-x}}$ au $\mathcal{V}(0^+)$, donc elle est intégrable sur [0,1] si et seulement si 1-x<1 càd x>0
 - (b) La fonction $t \mapsto t^{x-1}e^{-t}$ est continue sur $[1, +\infty[$ et $t^{x-1}e^{-t} = o\left(\frac{1}{t^2}\right)$ au $\mathcal{V}(+\infty)$, donc elle est intégrable sur $[1, +\infty[$ pour toute valeur du réel x.
- 2. La fonction $t \longmapsto t^{x-1}e^{-t}$ est intégrable sur $]0, +\infty[$ si et seulement si, elle l'est au $\mathcal{V}(0^+)$ et au $\mathcal{V}(+\infty)$. Selon la question1, cela est réalisé si et seulement x > 0

Pour un complexe z, on a d'abord $t \stackrel{}{\longmapsto} t^{z-1}e^{-t}$ est continue sur \mathbb{R}^{*+} et $|t^{z-1}e^{-t}| = t^{\operatorname{Re}(z)-1}e^{-t}$. Elle donc intégrable sur \mathbb{R}^{*+} si et seulement si $\boxed{\operatorname{Re}\left(z\right)>0}$.

- 3. Pour $z \in \mathbb{C}$ avec $\operatorname{Re}(z) > 0$, on note $\Gamma(z) = \int_{0}^{+\infty} t^{z-1} e^{-t} dt$
 - (a) A l'aide d'une intégration par partie, on a $\Gamma(z+1) = \lim_{(A,B) \to (0^+,+\infty)} \left(\left[-e^{-t}t^z \right]_A^B + z \int_A^B t^z e^{-t} dt \right) =$ $z\Gamma(z)$.
 - (b) Par récurrence sur p:
 - Pour p=1, on a $\Gamma(\alpha+2)=(\alpha+1)\Gamma(\alpha+1)$ c'est juste.
 - Soit $p \ge 1$, supposons le résultat vrai pour p, alors selon (a), on a $\Gamma(\alpha + p + 2) = (\alpha + p + 1)\Gamma(\alpha + p + 1)$, on conclu alors à l'aide de l'hypothèse de récurrence. D'où le résultat.
 - (c) La fonction $t \mapsto t^{x-1}e^{-t}$ est continue non nulle sur $]0, +\infty[$, donc $\Gamma(x) > 0$.
 - (d) On a $\Gamma(1) = \int_{0}^{+\infty} e^{-t} dt = 1$ et puisque $\Gamma(n+1) = n\Gamma(n)$, par récurrence simple, on a $\Gamma(n+1) = n!$.
- 4. Soit $z \in \mathbb{C}$.

Pour Re (z) > 0, on a d'abord $\Gamma(z) = \int_0^1 t^{z-1} e^{-t} dt + \int_1^{+\infty} t^{z-1} e^{-t} dt$, puis il s'agit d'une intégration terme à terme dans la première intégrale : En effet on a :

- La série de fonction $\sum_{n=0}^{\infty} (-1)^n \frac{t^{n+z-1}}{n!}$ converge simplement sur]0,1] vers $t \longmapsto t^{z-1}e^{-t}$.
- La fonction $t \longmapsto t^{z-1}e^t$ est continue sur [0,1].
- La série des intégrales des modules $\sum_{n>0} \int_0^{+\infty} \left| (-1)^n \frac{t^{n+z-1}}{n!} \right| dt = \sum_{n>0} \frac{1}{n!} \frac{1}{n + \text{Re}(z)}$ est convergente

Le résultat en découle alors.

- 5. Soit [c,d] un segment inclus dans $\mathbb{R} \setminus \mathbb{Z}^-$, alors son image par la valeur absolue $x \longmapsto |x|$ qui est continue est un segment de \mathbb{R} , il existe donc $(\alpha, \beta) \in \mathbb{R}^2$, $0 < \alpha \le \beta$, $\forall x \in [c, d]$, $\alpha \le |x| \le \beta$, il vient que :
 - $\bullet \ \forall \ z \in B, \ \forall \ n \geq E\left(\beta\right)+1, \ \left|\frac{\left(-1\right)^n}{n!}\frac{1}{n+x}\right| \leq \frac{1}{n!}\frac{1}{n-\beta} \ \text{et} \ \sum \frac{1}{n!}\frac{1}{n-\beta} \ \text{est convergente, d'où la convergente, d'où la convergente}$ gence normale, donc uniforme de $\sum_{n\geq E(\beta)+1} \frac{(-1)^n}{n!} \frac{1}{n+x}$ sur le segment (donc aussi sur tout compact) de $\mathbb{R} \setminus \mathbb{Z}^-$.

• Par ailleurs, pour tout $n \in \mathbb{N}$, la fonction $z \longmapsto \frac{(-1)^n}{n!} \frac{1}{n+x}$ est continue sur $\mathbb{R} \setminus \mathbb{Z}^-$

On conclut alors que $z \longmapsto \sum_{n=E(\beta)+1}^{+\infty} \frac{(-1)^n}{n!} \frac{1}{n+x}$ est continue sur $\mathbb{R} \setminus \mathbb{Z}^-$, puis il évident que la sommation

finie $x \longmapsto \sum_{n=0}^{E(\beta)} \frac{(-1)^n}{n!} \frac{1}{n+x}$ est continue sur $\mathbb{R} \setminus \mathbb{Z}^-$, d'où la continuité de $z \longmapsto \sum_{n=0}^{+\infty} \frac{(-1)^n}{n!} \frac{1}{n+x}$ est continue sur $\mathbb{R} \setminus \mathbb{Z}^-$

- 6. Soit 0 < a < b.
 - (a) Pour t > 0 fixé, la fonction $x \longmapsto t^{x-1}$ est croissante sur \mathbb{R}^{*+} pour $t \ge 1$ et décroissante pour $t \le 1$, il vient alors que

$$\max(t^{a-1}, t^{b-1}) = \begin{cases} t^{a-1} & \text{si } t \le 1 \\ t^{b-1} & \text{si } t > 1 \end{cases}$$

- (b) Découle de la monotonie de la fonction $x \mapsto t^{x-1}$ sur [a, b], en utilisant le (a).
- (c) On devra vérifier les hypothèses du théorème de dérivation sous le signe intégrale (formule de Leibniz)
 - D'abord la fonction $f:(x,t) \longmapsto t^{x-1}e^{-t}$ est continue sur $\mathbb{R}^{*+} \times \mathbb{R}^{*+}$ et $\frac{\partial f}{\partial x}$ existe et y est aussi continue sur $\mathbb{R}^{*+} \times \mathbb{R}^{*+}$.
 - Pour $x \in [a, b]$, t > 0, on a $|f(x, t)| \le e^{-t} \max(t^{a-1}, t^{b-1}) = \phi(t)$ avec :
 - $-\phi$ continue sur \mathbb{R}^{*+}
 - Intégrable au $\mathcal{V}(+\infty)$ car négligeable devant $t \longmapsto \frac{1}{t^2}$
 - Intégrable au $\mathcal{V}(0^+)$ car équivalente à $t \longmapsto \frac{1}{t^{1-a}}$ avec 1-a < 1
 - Pour $x \in [a, b]$, t > 0, on a $\left| \frac{\partial f}{\partial x}(x, t) \right| \le e^{-t} \left| \ln(t) \right| \max(t^{a-1}, t^{b-1}) = \psi(t)$ avec :
 - $-\psi$ continue sur \mathbb{R}^{*+}
 - Intégrable au $\mathcal{V}(+\infty)$ car négligeable devant $t \longmapsto \frac{1}{t^2}$
 - Intégrable au $\mathcal{V}(0^+)$ car équivalente à $t \longmapsto \frac{-\ln(t)}{t^{1-a}} = o\left(\frac{1}{t^{1-\frac{a}{2}}}\right)$ avec $1 \frac{a}{2} < 1$

Ainsi la fonction Γ est de classe C^{1} sur \mathbb{R}^{*+} et $\Gamma'\left(x\right)=\int_{0}^{+\infty}\ln\left(t\right)e^{-t}t^{x-1}dt$.

PARTIE II

1. On sait que la somme d'une série entière de rayon R > 0, $\sum_{n=0}^{+\infty} a_n x^n$ est de classe C^{∞} sur]-R, R[et se dérive infiniment sous le signe somme, en écrivant $y_{\alpha}(x) = x^{\alpha} \sum_{n=0}^{+\infty} a_n x^n$, on en déduit que y_{α} est de classe C^{∞} sur

 y_{α} est solution de (F_{λ}) sur]0, R[si et seulement si

[0, R] et se dérive terme à terme.

$$x^{2} \sum_{n=0}^{+\infty} (n+\alpha) (n+\alpha-1) a_{n} x^{n+\alpha-2} + x \sum_{n=0}^{+\infty} (n+\alpha) a_{n} x^{n+\alpha-1} - (x^{2} + \lambda^{2}) \sum_{n=0}^{+\infty} a_{n} x^{n+\alpha} = 0$$

Après avoir fait le changement n'=n+2 dans la sommation $\sum_{n=0}^{+\infty}a_nx^{n+2+\alpha}$, il vient

$$x^{\alpha} \left(\left(\alpha^{2} - \lambda^{2} \right) a_{0} x^{0} + \left((1 + \alpha)^{2} - \lambda^{2} \right) a_{1} x^{1} + \sum_{n=2}^{+\infty} \left(\left((n + \alpha)^{2} - \lambda^{2} \right) a_{n} - a_{n-2} \right) x^{n} \right) = 0$$

ou encore après simplification par le terme non nul x^{α} ,

$$\left(\alpha^2 - \lambda^2\right) a_0 x^0 + \left(\left(1 + \alpha\right)^2 - \lambda^2\right) a_1 x^1 + \sum_{n=2}^{+\infty} \left(\left(\left(n + \alpha\right)^2 - \lambda^2\right) a_n - a_{n-2}\right) x^n = 0 \text{ pour tout } x \in]0, R[$$
(valable en aussi en 0)

A ce stade, on ne peut utiliser directement l'unicité d'un développement en série entière puisque [0, R[n'est pas un voisinage de zéro! Soit alors $y \in]-\sqrt{R}, \sqrt{R}[$, on a alors $y^2 \in [0, R[$, donc

$$\left(\alpha^{2} - \lambda^{2}\right) a_{0} y^{0} + \left(\left(1 + \alpha\right)^{2} - \lambda^{2}\right) a_{1} y^{2} + \sum_{n=2}^{+\infty} \left(\left(\left(n + \alpha\right)^{2} - \lambda^{2}\right) a_{n} - a_{n-2}\right) y^{2n} = 0 \text{ pour tout } y \in \left] - \sqrt{R}, \sqrt{R} \right[$$

Par unicité d'un DSE, et en tenant compte de $a_0 \neq 0$, il vient $\begin{cases} \alpha^2 = \lambda^2 \\ \left((1+\alpha)^2 - \lambda^2 \right) a_1 = 0 \\ \forall n \geq 2, \left(\left((n+\alpha)^2 - \lambda^2 \right) a_n - a_{n-2} \right) = 0 \end{cases}$

- 2. On suppose $\alpha = \lambda \ge 0$ et $a_0 \ne 0$.
 - (a) Puisque $\alpha = \lambda \geq 0$, alors la relation $\left((1+\alpha)^2 \lambda^2 \right) a_1 = 0$ donne $a_1 = 0$, puis la relation $\forall n \geq 2$, $\left(\left((n+\alpha)^2 \lambda^2 \right) a_n a_{n-2} \right) = 0$ assure que $\forall p \in \mathbb{N}$, $a_{2p+1} = 0$.

 D'autres part $\forall p \geq 1$, $(2p+\alpha)^2 \alpha^2 \neq 0$ car $\alpha \geq 0$, donc $a_{2p} = \frac{a_{2(p-1)}}{(2p+\alpha)^2 \alpha^2} = \frac{a_{2(p-1)}}{2^2 p \, (p+\alpha)}$.

 Par récurrence sur $p \geq 1$, on aura $a_{2p} = \frac{a_0}{2^{2p} p!} \frac{1}{(p+\alpha) \, (p+\alpha-1) \dots \, (\alpha+1)}$. On conclut à l'aide de la question I-3-b.
 - (b) On vu que pour tout x > 0, $\Gamma(x) > 0$, donc $a_{2p} \neq 0$ pour tout $p \in \mathbb{N}$. Pour z un complexe non nul, on note $u_p = \left|a_{2p}z^{2p}\right|$, alors $\lim_{p \longrightarrow +\infty} \frac{u_{p+1}}{u_p} = \lim_{p \longrightarrow +\infty} |z|^2 \frac{\Gamma(\alpha+p+1)}{2^2(p+1)\Gamma(\alpha+p+2)} = \lim_{p \longrightarrow +\infty} |z|^2 \frac{1}{2^2(p+1)(\alpha+p+1)} = 0 < 1. \text{ D'où la série } \sum_{n>0} a_n z^n = \sum_{p>0} a_{2p} z^{2p} \text{ converge pour tout complexe } z. \text{ Ainsi le rayon cherché est } +\infty.$
 - (c) On suppose $a_0 2^{\lambda} \Gamma(\lambda + 1) = 0$, puisque $\Gamma(\lambda + 1) > 0$ car $\lambda + 1 > 0$, alors $a_0 = \frac{1}{2^{\lambda} \Gamma(\lambda + 1)}$. De plus le rayon de $\sum a_n z^n$ est infini, alors pour tout x > 0, $y_{\lambda}(x) = \sum_{p=0}^{+\infty} \frac{1}{2^{\lambda} \Gamma(\lambda + 1)} \frac{\Gamma(\lambda + 1)}{2^{2p} p! \Gamma(\lambda + p + 1)} x^{2p + \lambda} = \sum_{p=0}^{+\infty} \frac{1}{p! \Gamma(\lambda + p + 1)} \left(\frac{x}{2}\right)^{2p + \lambda}$. CQFD On a aussi $y_{\lambda}(x) = \left(\frac{x}{2}\right)^{\lambda} \sum_{p=0}^{+\infty} \frac{1}{p! \Gamma(\lambda + p + 1)} \left(\frac{x}{2}\right)^{2p}$, et or $x \mapsto \sum_{p=0}^{+\infty} \frac{1}{p! \Gamma(\lambda + p + 1)} \left(\frac{x}{2}\right)^{2p}$ est continue en 0, donc $y_{\lambda}(x) \sim_0 \left(\frac{x}{2}\right)^{\lambda} \frac{1}{\Gamma(\lambda + 1)}$
- 3. On suppose que $2\lambda \notin \mathbb{N}$, soit $p \geq 1$.
 - (a) Le fait que $2\lambda \notin \mathbb{N}$, assure que $\forall p \geq 1$, $(-\lambda + n)^2 \lambda^2 \neq 0$, donc comme dans le 2-(a), on trouve que : $\forall p \in \mathbb{N}$, $a_{2p+1} = 0$ et $a_{2p} = \frac{a_0}{2^{2p}p!} \frac{1}{(p+\alpha)(p+\alpha-1)\dots(\alpha+1)}$, puis en prenant comme le 2-(b) : $a_02^{-\lambda}\Gamma(-\lambda+1) = 1$, puisque $-\lambda \notin \mathbb{Z}^{*-}$ (car sinon $2\lambda \in \mathbb{N}$), alors le fait de "noter" le produit non nul : $(-\lambda + p)(-\lambda + p + 1)\dots(-\lambda + 1)$ par $\frac{\Gamma(-\lambda + p + 1)}{\Gamma(-\lambda + 1)}$, assure que $\Gamma(-\lambda + 1) \neq 0$, donc $a_0 = \frac{1}{2^{-\lambda}\Gamma(-\lambda+1)}$, on obtient que $x \longmapsto \sum_{p=0}^{+\infty} \frac{1}{p!\Gamma(-\lambda+p+1)} \left(\frac{x}{2}\right)^{2p-\lambda}$ est aussi solution de (F_{λ}) sur \mathbb{R}^{*+} .
 - (b) Il est à noter d'abord que $\lambda \neq 0$ car $2\lambda \notin \mathbb{N}$, puis comme dans le 3(c), on a $y_{-\lambda}(x) \sim_0 \left(\frac{x}{2}\right)^{-\lambda} \frac{1}{\Gamma(-\lambda+1)}$ Ainsi y_{λ} et $y_{-\lambda}$ ont des comportements non propotionnel au voisinage de zéro : l'une tend vers 0 et l'autre vers $+\infty$, la famille $(y_{\lambda}, y_{-\lambda})$ est alors libre. D'autres part (F_{λ}) est une équation différentielle linéaire sans second membre d'ordre deux et dont les coefficients sont des fonctions continues sur \mathbb{R}^{*+} et aussi le coefficient de y'' ne s'annule jamais sur

 \mathbb{R}^{*+} , donc l'espace des solutions de (F_{λ}) sur \mathbb{R}^{*+} est \mathbb{R} -espace vectoriel de dimension 2, contenant la famille libre $(y_{\lambda}, y_{-\lambda})$, qui sera donc une base de cet espace. D'où la solution générale de (F_{λ}) sur \mathbb{R}^{*+} est : $x \longmapsto Ay_{\lambda}(x) + By_{-\lambda}(x)$ où A et B sont des constantes réelles.

Problème II : Etude d'une cardioïde et sa développée

PARTIE I

1. .

- (a) Le domaine de définition de ρ est \mathbb{R} et ρ est 2π -périodique.
- (b) Par parité de la fonction cosinus, ρ est aussi paire, donc l'arc γ_1 est symétrique par rapport à l'axe $\left(O\ \tilde{\mathbf{i}}\right)$.
- (c) Le support de γ_1 est obtenu en prenant le support de γ_2 union son symétrique par rapport à l'axe $\left(O\ \tilde{\mathbf{i}}\right)$.
- 2. Le pôle O est paramétré par $\theta=\pi$, de plus $\rho\left(\pi\right)=\rho'\left(\pi\right)=0$ et $\rho''\left(\pi\right)=-\cos\left(\pi\right)=1\neq0$. Puisque 2 est pair alors le pôle O est un point de rebroussement du premier espèce et la tangente est porté par $\vec{u}\left(\pi\right)$, càd horizontale.
- 3. Soit $M_0 = \phi(\theta_0)$ un point de γ_1 autre que le pôle O, donc $\theta_0 \in [0, 2\pi]$ avec $\theta_0 \neq \pi$. On a alors $\rho^2(\theta_0) + 2(\rho'(\theta_0))^2 \rho(\theta_0)\rho''(\theta_0) = 3(1 + \cos(\theta_0)) > 0$. Ainsi la concavité de γ_1 en M_0 est tournée vers le pôle O (ou contient le pôle O).
- 4. On a la fonction ρ est dérivable sur $[0, \pi]$ et $\rho'(\theta) = -\sin(\theta) \le 0$. Donc est décroissante sur $[0, \pi]$: elle décroit de la valeur $\rho(0) = 2$ à la valeur $\rho(\pi) = 0$.
- 5. Le tracé est ci-contre :

- $\bullet\,$ La tangente à l'origine est horizontale
- Le point M(2,0) est paramétré par $\theta=0$, puisque $\rho(0)=2\neq 0$ et $\rho'(0)=0$, la tangente est alors portée par $v(0)=\vec{j}$ càd verticale.

• Le point
$$B(0,1)$$
 est parmétré par $\theta = \frac{\pi}{2}$, puisque $\rho\left(\frac{\pi}{2}\right) = 1$ et $\rho'\left(\frac{\pi}{2}\right) = -1$. Si $V\left(\frac{\pi}{2}\right) = \left(\vec{u}\left(\frac{\pi}{2}\right), \vec{T}\left(\frac{\pi}{2}\right)\right)$ désigne l'angle que le vecteur $\vec{u}\left(\frac{\pi}{2}\right)$ avec le vecteur tangent, alors ici tan $\left(V\left(\frac{\pi}{2}\right)\right) = \frac{\rho\left(\frac{\pi}{2}\right)}{\rho'\left(\frac{\pi}{2}\right)} = -1$, donc $V\left(\frac{\pi}{2}\right) = -\frac{\pi}{4}$. Dans $\mathcal{R}\left(O, \vec{i}/\vec{j}\right)$ cette tangente a pour équation : $y = x + 1$

- Par symètrie, la tangente en $C\left(0,-1\right)$ dans $\mathcal{R}\left(O,\vec{i}\!\!/\!\,\vec{j}\right)$ a pour équation : y=-x-1.
- 6. L'arc γ_1 étant de classe C^1 , donc sa longueur $l\left(\gamma_1\right)$ est donnée par : $l\left(\gamma_1\right) = \int_0^{2\pi} ||\phi'\left(\theta\right)|| d\theta = 2 \int_0^{\pi} ||\phi'\left(\theta\right)|| d\theta$ par symétrie, donc

$$l\left(\gamma_{1}\right)=2\int_{0}^{\pi}\sqrt{\sin^{2}\left(\theta\right)+\left(1+\cos\left(\theta\right)\right)^{2}}d\theta=2\int_{0}^{\pi}\sqrt{2\left(1+\cos\left(\theta\right)\right)}d\theta=2\int_{0}^{\pi}2\cos\left(\frac{\theta}{2}\right)d\theta=8$$

7. L'aire cherché est donnée par la formule de Green-Reimman en polaire: Aire $(\gamma_1) = \frac{1}{2} \int_{\overleftarrow{\partial \gamma_1}} \rho^2 d\theta$: il s'agit ic d'intégrale curviligne, où $\overleftarrow{\partial \gamma_1}$ désigne la fronière de γ_1 orienté dans le sens direct.

$$\text{Donc Aire}(\gamma_1) = \frac{1}{2} \int_0^{2\pi} \left(1 + \cos\left(\theta\right)\right)^2 d\theta = \frac{1}{2} \int_0^{2\pi} \left(1 + 2\cos\left(\theta\right) + \frac{1 + \cos 2\theta}{2}\right) d\theta = \frac{1}{2} \times \frac{3}{2} \times 2\pi = \frac{3\pi}{2}.$$

PARTIE II

A- Questions de cours

1. Voir figure ci-contre : (permettez mes outils de dessin vectoriel modestes!)

2. L'abscisse curvuligne est un paramétrage admissible de l'arc γ, elle consiste à choisir une origine et de paramétrer chaque point par la longueur (algébrique) de l'arc joignant ce point à l'origine. dans ce cas la courbe est parcourue à vitesse uniforme valant 1.

On choisit pour origine $\theta = 0$, et on oriente γ dans le sens des θ croissant. Alors $s(\theta) = \int_0^\theta ||(f(t)\vec{u}(t))'||dt = \int_0^\theta \sqrt{f^2(t) + f'^2(t)}dt$ et $\frac{ds}{d\theta}(\theta) = \sqrt{f^2(\theta) + f'^2(\theta)}$.

3. D'abord la fonction angulaire V est dérivable selon le théorème de relévement, et en dérivant la relation : $\tan\left(V\left(\theta\right)\right) = \frac{f\left(\theta\right)}{f'\left(\theta\right)}, \text{ on obtient :}$

5

$$V'\left(\theta\right)\left(1+\tan^{2}\left(V\left(\theta\right)\right)\right)=\frac{f'^{2}\left(\theta\right)-f\left(\theta\right)f''\left(\theta\right)}{f'^{2}\left(\theta\right)}.\text{ D'où }V'\left(\theta\right)=\frac{f'^{2}\left(\theta\right)-f\left(\theta\right)f''\left(\theta\right)}{f'^{2}\left(\theta\right)}\times\frac{1}{1+\frac{f^{2}\left(\theta\right)}{f'^{2}\left(\theta\right)}}=\frac{f'^{2}\left(\theta\right)-f\left(\theta\right)f''\left(\theta\right)}{f'^{2}\left(\theta\right)}.$$

Par ailleurs (à la physicienne, que l'on justifie mathématiquement à l'aide de dérivée de composée), on a $R = \frac{ds}{d\alpha} = \frac{ds}{d\theta} \frac{d\theta}{d\alpha} = \frac{ds}{d\theta} \times \left(\frac{d\alpha}{d\theta}\right)^{-1}, \text{ or } \alpha = V + \theta, \text{ donc } \frac{d\alpha}{d\theta} = 1 + \frac{dV}{d\theta} = 1 + \left(\frac{f'^2\left(\theta\right) - f\left(\theta\right)f''\left(\theta\right)}{f'^2\left(\theta\right) + f'^2\left(\theta\right)}\right), \text{ ainsi } \frac{d\alpha}{d\theta} \left(\theta\right) = \frac{f^2\left(\theta\right) + 2f'^2\left(\theta\right) - f\left(\theta\right)f''\left(\theta\right)}{\left(f^2\left(\theta\right) + f'^2\left(\theta\right)\right)} \text{ et par suite } : R\left(\theta\right) = \frac{\left(f^2\left(\theta\right) + f'^2\left(\theta\right)\right)^{\frac{3}{2}}}{f^2\left(\theta\right) + 2f'^2\left(\theta\right) - f\left(\theta\right)f''\left(\theta\right)}.$

4. On a $\overrightarrow{MI} = \overrightarrow{RN}$, donc les coordonnées de M dans le repère mobile $(M, \overrightarrow{u}(\theta), \overrightarrow{v}(\theta))$ sont $\left(\cos\left(V + \frac{\pi}{2}\right), \sin\left(V + \frac{\pi}{2}\right)\right) = (-\sin V, \cos V)$ où V désigne l'angle $\left(\overrightarrow{u}(\theta), \overrightarrow{T}\right)$.

B - Retour à l'arc γ_1

1. L'arc γ_1 privé de son pôle O est décrit lorsque θ parcourt l'intervalle $]-\pi,\pi[$, il est un arc birégulier. Commençons par déterminer l'abscisse curviligne orienté d'origine $\theta=0$, puis la normale et le rayon de courbure :

•
$$s\left(\theta\right) = \int_{0}^{\theta} \sqrt{f^{2}\left(t\right) + f'^{2}\left(t\right)} dt = \int_{0}^{\theta} \sqrt{4\cos^{2}\left(\frac{t}{2}\right)} dt = 4\sin\left(\frac{\theta}{2}\right) \text{ et } s'\left(\theta\right) = 2\cos\left(\frac{\theta}{2}\right)$$

• Vecteur tangent et normal : On a $\overrightarrow{T} = \frac{d\overrightarrow{OM}}{ds} = \frac{d\overrightarrow{OM}}{d\theta} \times \frac{d\theta}{ds} = \frac{1}{2\cos\left(\frac{\theta}{2}\right)} \left(\begin{array}{c} -\sin\theta\\ 1 + \cos\theta \end{array}\right)_{\left(\overrightarrow{u}(\theta), \overrightarrow{v}(\theta)\right)} = \frac{d\overrightarrow{OM}}{ds} = \frac{d\overrightarrow{OM}}{ds} = \frac{d\overrightarrow{OM}}{ds} \times \frac{d\theta}{ds} = \frac{1}{2\cos\left(\frac{\theta}{2}\right)} \left(\begin{array}{c} -\sin\theta\\ 1 + \cos\theta \end{array}\right)_{\left(\overrightarrow{u}(\theta), \overrightarrow{v}(\theta)\right)} = \frac{d\overrightarrow{OM}}{ds} = \frac{d\overrightarrow{OM}}{ds} \times \frac{d\theta}{ds} = \frac{1}{2\cos\left(\frac{\theta}{2}\right)} \left(\begin{array}{c} -\sin\theta\\ 1 + \cos\theta \end{array}\right)_{\left(\overrightarrow{u}(\theta), \overrightarrow{v}(\theta)\right)} = \frac{d\overrightarrow{OM}}{ds} \times \frac{d\theta}{ds} = \frac{1}{2\cos\left(\frac{\theta}{2}\right)} \left(\begin{array}{c} -\sin\theta\\ 1 + \cos\theta \end{array}\right)_{\left(\overrightarrow{u}(\theta), \overrightarrow{v}(\theta)\right)} = \frac{d\overrightarrow{OM}}{ds} \times \frac{d\theta}{ds} = \frac{1}{2\cos\left(\frac{\theta}{2}\right)} \left(\begin{array}{c} -\sin\theta\\ 1 + \cos\theta \end{array}\right)_{\left(\overrightarrow{u}(\theta), \overrightarrow{v}(\theta)\right)} = \frac{d\overrightarrow{OM}}{ds} \times \frac{d\theta}{ds} = \frac{1}{2\cos\left(\frac{\theta}{2}\right)} \left(\begin{array}{c} -\sin\theta\\ 1 + \cos\theta \end{array}\right)_{\left(\overrightarrow{u}(\theta), \overrightarrow{v}(\theta)\right)} = \frac{d\overrightarrow{OM}}{ds} \times \frac{d\theta}{d\theta} = \frac{1}{2\cos\left(\frac{\theta}{2}\right)} \left(\begin{array}{c} -\sin\theta\\ 1 + \cos\theta \end{array}\right)_{\left(\overrightarrow{u}(\theta), \overrightarrow{v}(\theta)\right)} = \frac{d\overrightarrow{OM}}{ds} \times \frac{d\theta}{d\theta} = \frac{d\overrightarrow{OM}}{ds} \times \frac{d\theta}{ds} \times \frac{d\theta}{ds} \times \frac{d\theta}{ds} = \frac{d\overrightarrow{OM}}{ds} \times \frac{d\theta}{ds} \times \frac{d\theta}{ds} = \frac{d\overrightarrow{OM}}{ds} \times \frac{d\theta}{ds} \times \frac{d\theta}{$

$$\begin{pmatrix} -\sin\frac{\theta}{2} \\ \cos\frac{\theta}{2} \end{pmatrix}_{(\overrightarrow{u}(\theta),\overrightarrow{v}(\theta))},$$

Ainsi
$$V = \frac{\theta}{2} + \frac{\pi}{2}$$
 et $\alpha = V + \theta = \frac{3\theta}{2} + \frac{\pi}{2}$ et $\overrightarrow{N} = \begin{pmatrix} -\sin V \\ \cos V \end{pmatrix}_{\left(\overrightarrow{u}(\theta), \overrightarrow{v}(\theta)\right)} = \begin{pmatrix} -\cos\frac{\theta}{2} \\ -\sin\frac{\theta}{2} \end{pmatrix}_{\left(\overrightarrow{u}(\theta), \overrightarrow{v}(\theta)\right)}$

- Rayon de courbure : $R = \frac{ds}{d\alpha} = \frac{ds}{d\theta} \times \frac{d\theta}{d\alpha} = 2\cos\left(\frac{\theta}{2}\right) \times \frac{2}{3} = \frac{4}{3}\cos\left(\frac{\theta}{2}\right)$.
- Enfin $\overrightarrow{MI} = R\overrightarrow{N}$, donc $\overrightarrow{OI} = \overrightarrow{OM} + R\overrightarrow{N} = \begin{pmatrix} 1 + \cos\theta \\ 0 \end{pmatrix}_{\left(\overrightarrow{u}(\theta), \overrightarrow{v}(\theta)\right)} + \frac{4}{3}\cos\left(\frac{\theta}{2}\right) \begin{pmatrix} -\cos\frac{\theta}{2} \\ -\sin\frac{\theta}{2} \end{pmatrix}_{\left(\overrightarrow{u}(\theta), \overrightarrow{v}(\theta)\right)}$, d'où

$$\overrightarrow{OI}(\theta) = \frac{1}{3} \begin{pmatrix} 1 + \cos \theta \\ -2\sin \theta \end{pmatrix}_{\left(\overrightarrow{u}(\theta), \overrightarrow{v}(\theta)\right)} = \frac{1}{3} \begin{pmatrix} 2 + \cos \theta \left(1 - \cos \theta\right) \\ \sin \theta \left(1 - \cos \theta\right) \end{pmatrix}_{\left(\overrightarrow{i}, \overrightarrow{j}\right)}$$

- 2. On a $\overrightarrow{OM}(\theta+\pi)=\begin{pmatrix} -\cos\theta\left(1-\cos\theta\right)\\ -\sin\theta\left(1-\cos\theta\right) \end{pmatrix}_{\left(\overrightarrow{i},\overrightarrow{j}\right)}$, alors le rapport de cette homothétie est $\lambda=-\frac{1}{3}$. Si $\Omega=(a,b)$ désigne les coordonées de son centre dans le repère fixe $\left(O,\overrightarrow{i},\overrightarrow{j}\right)$, alors on aura $\overrightarrow{\Omega I}(\theta)=-\frac{1}{3}\overrightarrow{\Omega M}(\theta+\pi)$, donc $\overrightarrow{\Omega O}+\overrightarrow{O I}(\theta)=-\frac{1}{3}\overrightarrow{\Omega O}-\frac{1}{3}\overrightarrow{O M}(\theta+\pi)$, en identifiant les coordonnées, en obtient $a=\frac{1}{2}$ et b=0. Ainsi le centre de cette homothétie est : $\Omega=\left(\frac{1}{2},0\right)$.
- 3. On a $\overrightarrow{OI}(\theta) = \frac{1}{3} \begin{pmatrix} 1 + \cos \theta \\ -2\sin \theta \end{pmatrix}_{\left(\overrightarrow{u}(\theta), \overrightarrow{v}(\theta)\right)}$, donc $\overrightarrow{OH}(\theta) = \frac{1}{3} \left(1 + \cos \theta\right) \overrightarrow{u}(\theta)$. Ainsi $H(\theta)$ est l'image de $M(\theta)$ par l'homothétie de centre O et de rapport $\frac{1}{3}$.
- 4. Voir figure ci-dessous (Merci Maple) : En noir la cardioïde γ_1 , en rouge sa développée γ_I et en bleu la courbe γ_H . (Attention Daltoniens ...)

5. Puisque γ_H se déduit de γ_1 par homothétie de centre O et de rapport $\frac{1}{3}$, alors selon I-(6) et I-(7), on a :

$$l\left(\gamma_{H}\right)=\frac{1}{3}l\left(\gamma_{1}\right)=\frac{8}{3}\text{ et }\operatorname{Aire}(\gamma_{H})=\frac{1}{3}\operatorname{Aire}(\gamma_{1})=\frac{\pi}{2}$$