## Supplementary Material for Time Series Averaging Using Multi-Tasking Autoencoder

Tsegamlak Terefe, Maxime Devanne, Jonathan Weber, Dereje Hailemariam, Germain Forestier Emails: {tsegamlak-terefe.debella,maxime.devanne,jonathan.weber,germain.forestier}@uha.fr {tsegamlak.terefe,dereje.hailemariam}@aait.edu.et

## I. EXPERIMENTAL RESULTS

This supplementary material is provided to present the experimental results for the paper "Time Series Averaging Using Multi-Tasking Autoencoder". In the paper, a multitasking autoencoder, shown in Figure 1, was trained to obtain a compact per class latent space features. The features were utilized to mimic multiple alignment which is a challenging and computationally intensive task in time series averaging due to temporal distortion [1]–[4]. After training the network, the latent features were utilized to make a per class mean estimation for data sets obtained from the University of California Univariate Time Series Repository (UCR) [5]. To make the estimation, we have taken the per class arithmetic means of the latent features; which were latter projected to the time domain. Such estimation of the mean is sub optimal in the time domain in most cases [3]; this is better demonstrated in Figure 2.



Fig. 1. Proposed multi-tasking autoencoder.

In general, in the paper, two major experiments were conducted. In the first experimental setup, a non multitasking auto encoder was utilized to obtain the latent space representation of the uni variate time series [5]. These experiments were conducted to evaluate the performance of an autoencoder in obtaining a separable and compact per class latent features. To this end, the classifier part of the proposed network is removed and the network is trained with a reconstruction loss as an objective function. The encoder portion of the trained network was then used to project the test data sets into a latent space. Following this, the per class arithmetic mean of the latent features was taken as the estimate of the class means. To measure the quality of the estimated latent means, a one nearest centroid classification was conducted using the per class latent means and the projected latent features. Moreover, we have utilized Euclidean distance as a means of similarity measure. The outcomes of these classification is reported as "Enc. Lat" in Table II & III. Additionally, the latent means were also projected to the time domain using the decoder portion of the autoencoder to conduct a one nearest centroid classification in the time domain. However, we have utilized Dynamic Time Warping (DTW) distance as a similarity measure to account for temporal distortion in the time domain. The outcomes of these experiments are reported as "Enc. Time" in Table II & III. On the other hand, the multitasking autoencoder is trained with categorical cross entropy and reconstruction loss as an objective function. After



Fig. 2. Comparison of estimated means.(a) Arithmetic mean, (b) Multitasking autoencoder estimated mean

training the encoder portion of the network is utilized to project the data sets to the latent space. The projected latent features were then utilized to preform one nearest centroid classification as conducted in the basic autoencoder. The latent space and the time domain results are respectively reported as "MT. Enc. Lat" and "Mt. Enc. Time" in Table II, III & IV. In the experimental setups, the basic autoencoder, i.e., an autoencoder performing encoding and decoding, was trained for 2500 epochs and zero L2 regularization. However, we have trained the multitasking autoencoder for five different L2 regularization setups as shown in Table I. For the first L2 regularization setup, the network was trained for 600 epochs. On the contrary, for the remaining four setups the network was trained for 2500 epochs. For the multitasking autoencoder, we have reported the best latent space classification result and its time domain counterpart. Moreover, we have extracted results for other averaging techniques from [6]. Even if [6] provided experimental results for 84 data sets, we have conducted the two major tests on 85 data sets. Moreover, we have provided experimental results for additional 14 data sets using the multitasking autoencoder.

 $TABLE\ I$  L2 Regularization schemes used while training the multi tasking autoencoder.

| No. | Layer      | L2 Regularizations                      |
|-----|------------|-----------------------------------------|
| 1.  | Encoder    | $0, 10^{-4}, 10^{-3}, 10^{-3}, 10^{-2}$ |
| 2.  | Decoder    | $0, 10^{-4}, 10^{-3}, 10^{-3}, 10^{-2}$ |
| 3.  | Classifier | $0, 10^{-3}, 10^{-3}, 10^{-2}, 10^{-2}$ |

TABLE II

COMPARISON OF ONE NEAREST CENTROID CLASSIFICATION WITH DIFFERENT AVERAGING TECHNIQUES. THE RESULTS FOR DTAN, DBA AND SOFT DBA ARE EXTRACTED FROM [6]. ACCORDING TO [6] THE DTAN NETWORK WAS TRAINED USING A 80/20 SPLIT; WHERE, THE NETWORK WAS TRAINED FOR 2500 EPOCHS WITH DIFFERENT LSTM ITERATION AND REPORTED THE BEST ACCURACY.

| No. | Data                         | Enc. Time | Enc. Lat | MT. Enc.Time | MT. Enc.Lat | DTAN   | DBA   | SDBA  | Arth. Mean |
|-----|------------------------------|-----------|----------|--------------|-------------|--------|-------|-------|------------|
| 1.  | Adiac                        | 47.06     | 31.71    | 39.90        | 55.75       | 69.57  | 46.29 | 50.13 | 47.06      |
| 2.  | ArrowHead                    | 48.57     | 53.71    | 64.00        | 79.43       | 74.86  | 52.00 | 52.00 | 46.86      |
| 3.  | Beef                         | 40.00     | 63.33    | 43.33        | 66.67       | 63.33  | 40.00 | 56.67 | 46.67      |
| 4.  | BeetleFly                    | 50.00     | 60.00    | 50.00        | 80.00       | 80.00  | 90.00 | 85.00 | 70.00      |
| 5.  | BirdChicken                  | 45.00     | 45.00    | 65.00        | 85.00       | 80.00  | 60.00 | 70.00 | 55.00      |
| 6.  | Car                          | 40.00     | 55.00    | 51.67        | 76.67       | 81.67  | 63.33 | 68.33 | 31.67      |
| 7.  | CBF                          | 72.22     | 87.33    | 89.67        | 97.44       | 91.44  | 96.56 | 97.11 | 61.56      |
| 8.  | ChlorineConcentration        | 32.66     | 32.76    | 30.86        | 34.90       | 33.31  | 32.37 | 34.82 | 31.69      |
| 9.  | CinCECGTorso                 | 31.28     | 75.90    | 24.71        | 97.25       | 61.59  | 44.57 | 39.86 | 15.80      |
| 10. | Coffee                       | 96.43     | 92.86    | 100          | 100.00      | 100.00 | 96.43 | 96.43 | 96.43      |
| 11. | Computers                    | 50.00     | 52.00    | 54.80        | 58.80       | 59.20  | 61.60 | 64.00 | 51.20      |
| 12. | CricketX                     | 21.54     | 32.05    | 30.77        | 43.08       | 42.31  | 57.44 | 60.26 | 19.23      |
| 13. | CricketY                     | 19.49     | 42.05    | 22.31        | 48.97       | 54.10  | 54.10 | 57.18 | 20.77      |
| 14. | CricketZ                     | 17.18     | 31.28    | 26.15        | 45.38       | 42.05  | 60.51 | 61.54 | 19.74      |
| 15. | DiatomSizeReduction          | 76.14     | 92.81    | 90.86        | 95.10       | 97.06  | 95.10 | 95.10 | 84.64      |
| 16. | DistalPhalanxOutlineAgeGroup | 72.66     | 70.50    | 74.10        | 74.82       | 84.75  | 84.00 | 85.00 | 73.38      |
| 17. | DistalPhalanxOutlineCorrect  | 41.67     | 78.26    | 43.12        | 76.09       | 47.17  | 48.83 | 49.00 | 64.49      |
| 18. | DistalPhalanxTW              | 62.59     | 53.24    | 63.31        | 63.31       | 78.00  | 76.00 | 75.50 | 61.87      |
| 19. | Earthquakes                  | 25.90     | 56.83    | 74.82        | 64.03       | 77.33  | 57.45 | 82.30 | 25.18      |
| 20. | ECG200                       | 61.00     | 74.00    | 72.00        | 84.00       | 79.00  | 72.00 | 73.00 | 67.00      |
| 21. | ECG5000                      | 80.96     | 89.64    | 80.29        | 90.51       | 89.13  | 83.47 | 85.38 | 83.82      |
| 22. | ECGFiveDays                  | 49.94     | 60.86    | 58.65        | 96.17       | 97.79  | 65.85 | 67.02 | 52.96      |
| 23. | ElectricDevices              | 24.67     | 44.99    | 16.88        | 63.70       | 53.48  | 53.90 | 53.97 | 17.27      |
| 24. | FaceAll                      | 36.21     | 32.96    | 41.54        | 70.59       | 82.78  | 79.65 | 80.47 | 41.30      |
| 25. | FaceFour                     | 65.91     | 78.41    | 69.32        | 95.45       | 82.95  | 85.23 | 85.23 | 76.14      |
| 26. | FacesUCR                     | 46.68     | 58.68    | 46.78        | 82.49       | 85.71  | 77.46 | 81.27 | 40.78      |
| 27. | FiftyWords                   | 24.62     | 51.65    | 29.45        | 60.44       | 65.27  | 61.54 | 61.54 | 16.70      |
| 28. | Fish                         | 41.71     | 56.00    | 49.14        | 76.00       | 90.29  | 65.14 | 69.71 | 40.00      |
| 29. | FordA                        | 51.59     | 58.64    | 51.59        | 91.97       | 60.48  | 54.96 | 55.29 | 51.59      |
| 30. | FordB                        | 49.51     | 51.73    | 49.51        | 63.83       | 57.98  | 56.85 | 59.13 | 53.21      |
| 31. | GunPoint                     | 53.33     | 67.33    | 50.00        | 97.33       | 88.00  | 70.00 | 73.33 | 54.67      |
| 32. | Ham                          | 60.95     | 67.62    | 60.00        | 75.24       | 79.05  | 72.38 | 73.33 | 62.86      |
| 33. | HandOutlines                 | 70.00     | 82.70    | 71.89        | 90.81       | 85.0   | 80.40 | 81.20 | 67.57      |
| 34. | Haptics                      | 24.35     | 33.44    | 27.60        | 42.53       | 45.78  | 35.06 | 37.34 | 27.27      |
| 35. | Herring                      | 57.81     | 56.25    | 57.81        | 64.06       | 70.31  | 54.69 | 60.94 | 50.00      |
| 36. | InlineSkate                  | 18.98     | 19.66    | 20.18        | 22.91       | 26.00  | 23.27 | 25.27 | 16.73      |
| 37. | InsectWingbeatSound          | 20.25     | 55.20    | 18.03        | 53.74       | 58.74  | 28.94 | 32.83 | 17.53      |
| 38. | ItalyPowerDemand             | 80.47     | 93.59    | 84.26        | 96.60       | 96.21  | 73.08 | 75.02 | 76.77      |
| 39. | LargeKitchenAppliances       | 34.13     | 41.60    | 37.87        | 47.47       | 48.27  | 72.80 | 73.33 | 34.40      |
| 40. | Lightning2                   | 59.02     | 67.21    | 60.66        | 75.41       | 72.13  | 63.93 | 62.30 | 57.38      |
| 41. | Lightning7                   | 47.95     | 43.84    | 52.05        | 61.64       | 71.23  | 72.60 | 69.86 | 31.51      |
| 42. | Mallat                       | 30.06     | 96.29    | 93.86        | 96.67       | 96.89  | 95.27 | 95.39 | 93.94      |

3

TABLE III CONTINUED COMPARISON OF ONE NEAREST CENTROID CLASSIFICATION RESULTS

| No. | Data                             | Enc. Time | Enc. Lat | MT. Enc.Time | MT. Enc.Lat | DTAN   | DBA    | SDBA  | Arth. Mean |
|-----|----------------------------------|-----------|----------|--------------|-------------|--------|--------|-------|------------|
| 43. | Meat                             | 95.00     | 88.33    | 91.67        | 93.33       | 93.33  | 91.67  | 93.33 | 91.67      |
| 44. | MedicalImages                    | 31.71     | 35.79    | 29.74        | 46.58       | 46.84  | 43.68  | 46.18 | 29.47      |
| 45. | MiddlePhalanxOutlineAgeGroup     | 59.74     | 57.14    | 58.44        | 57.79       | 73.75  | 71.25  | 79.50 | 59.74      |
| 46. | MiddlePhalanxOutlineCorrect      | 59.45     | 79.38    | 61.86        | 65.29       | 54.33  | 49.50  | 48.33 | 57.73      |
| 47. | MiddlePhalanxTW                  | 53.90     | 42.86    | 42.86        | 42.86       | 59.65  | 55.64  | 58.15 | 48.05      |
| 48. | MoteStrain                       | 84.42     | 82.43    | 82.59        | 86.42       | 90.42  | 82.67  | 84.35 | 80.99      |
| 49. | NonInvasiveFetalECGThorax1       | 53.28     | 57.51    | 65.24        | 79.85       | 85.34  | 71.30  | 71.09 | 64.73      |
| 50. | NonInvasiveFetalECGThorax2       | 62.54     | 71.50    | 69.82        | 82.24       | 90.53  | 76.39  | 77.30 | 75.67      |
| 51. | OliveOil                         | 46.67     | 70.00    | 76.67        | 76.67       | 86.67  | 76.67  | 80.00 | 76.67      |
| 52. | OSULeaf                          | 25.62     | 35.54    | 23.14        | 40.08       | 46.28  | 43.80  | 47.52 | 20.25      |
| 53. | PhalangesOutlinesCorrect         | 61.19     | 62.00    | 60.96        | 80.65       | 64.22  | 63.29  | 63.75 | 61.77      |
| 54. | Phoneme                          | 1.05      | 8.28     | 2.43         | 14.87       | 10.18  | 18.25  | 20.46 | 3.27       |
| 55. | Plane                            | 99.05     | 96.19    | 99.05        | 96.19       | 100.00 | 100.00 | 99.05 | 93.33      |
| 56. | ProximalPhalanxOutlineAgeGroup   | 80.98     | 79.02    | 83.46        | 81.43       | 85.37  | 84.39  | 85.37 | 81.95      |
| 57. | Proximal Phalanx Outline Correct | 63.92     | 63.57    | 88.66        | 90.03       | 64.26  | 64.95  | 72.51 | 63.92      |
| 58. | ProximalPhalanxTW                | 65.85     | 67.80    | 67.32        | 73.66       | 81.75  | 73.50  | 74.75 | 64.88      |
| 59. | RefrigerationDevices             | 26.40     | 43.47    | 36.00        | 52.00       | 46.67  | 58.40  | 58.67 | 34.13      |
| 60. | ScreenType                       | 33.87     | 40.00    | 49.07        | 45.87       | 44.53  | 37.87  | 38.93 | 33.07      |
| 61. | ShapeletSim                      | 50.00     | 67.22    | 50.00        | 67.78       | 53.89  | 52.22  | 58.89 | 56.11      |
| 62. | ShapesAll                        | 41.67     | 52.83    | 42.83        | 56.33       | 62.83  | 60.33  | 62.83 | 40.33      |
| 63. | SmallKitchenAppliances           | 33.07     | 60.53    | 32.53        | 73.07       | 62.13  | 66.13  | 65.87 | 7.47       |
| 64. | SonyAIBORobotSurface1            | 79.20     | 84.69    | 71.05        | 88.69       | 89.35  | 83.53  | 89.35 | 89.52      |
| 65. | SonyAIBORobotSurface2            | 70.51     | 77.65    | 73.56        | 87.51       | 81.11  | 76.60  | 77.23 | 75.34      |
| 66. | StarlightCurves                  | 79.92     | 76.13    | 80.99        | 89.87       | NA     | 14.29  | 14.29 | 75.42      |
| 67. | Strawberry                       | 57.84     | 56.49    | 72.43        | 74.05       | 84.34  | 61.66  | 64.93 | 58.38      |
| 68. | SwedishLeaf                      | 51.20     | 71.36    | 52.00        | 83.04       | 80.64  | 68.16  | 72.32 | 41.12      |
| 69. | Symbols                          | 83.22     | 86.33    | 84.52        | 78.59       | 89.75  | 85.73  | 95.48 | 91.46      |
| 70. | SyntheticControl                 | 72.67     | 88.00    | 83.67        | 99.00       | 95.00  | 98.00  | 98.00 | 73.67      |
| 71. | ToeSegmentation1                 | 48.68     | 61.84    | 50.44        | 69.30       | 64.04  | 67.11  | 61.40 | 48.25      |
| 72. | ToeSegmentation2                 | 82.31     | 55.38    | 63.08        | 76.15       | 75.38  | 83.85  | 85.38 | 68.46      |
| 73. | Trace                            | 78.00     | 64.00    | 76.00        | 99.00       | 78.00  | 97.00  | 97.00 | 57.00      |
| 74. | TwoLeadECG                       | 58.65     | 54.26    | 81.04        | 93.06       | 95.61  | 81.12  | 80.16 | 70.32      |
| 75. | TwoPatterns                      | 14.22     | 50.15    | 47.00        | 91.80       | 55.58  | 97.50  | 98.98 | 32.60      |
| 76. | UWaveGestureLibraryAll           | 54.86     | 85.17    | 59.99        | 90.34       | 92.07  | 83.19  | 83.36 | 48.91      |
| 77. | UWaveGestureLibraryX             | 56.98     | 65.21    | 55.42        | 70.07       | 68.12  | 67.64  | 70.69 | 56.53      |
| 78. | UWaveGestureLibraryY             | 50.64     | 58.99    | 49.53        | 59.58       | 61.17  | 52.54  | 56.48 | 49.94      |
| 79. | UWaveGestureLibraryZ             | 47.88     | 55.05    | 62.65        | 48.91       | 64.21  | 59.24  | 60.41 | 47.15      |
| 80. | Wafer                            | 40.06     | 77.22    | 62.64        | 98.72       | 98.90  | 51.10  | 64.94 | 41.79      |
| 81. | Wine                             | 50.00     | 48.15    | 59.26        | 50.00       | 57.41  | 51.85  | 57.41 | 51.85      |
| 82. | WordSynonyms                     | 10.50     | 31.66    | 10.03        | 37.46       | 47.49  | 34.48  | 41.22 | 8.31       |
| 83. | Worms                            | 18.18     | 50.65    | 27.27        | 50.65       | 25.97  | 41.44  | 40.88 | 20.78      |
| 84. | WormsTwoClass                    | 50.65     | 53.25    | 48.05        | 63.64       | 61.88  | 59.12  | 65.19 | 49.35      |
| 85. | Yoga                             | 46.40     | 51.33    | 47.03        | 70.57       | 63.17  | 55.70  | 57.40 | 46.43      |

TABLE IV EVALUATION OF REMAINING DATA SETS

| No. | Name                     | MT. Enc. Time | MT. Enc. Lat |
|-----|--------------------------|---------------|--------------|
| 86. | UMD                      | 55.56         | 78.47        |
| 87. | InsectEPGRegularTrain    | 100.00        | 100.00       |
| 88. | FreezerSmallTrain        | 73.02         | 78.32        |
| 89. | FreezerRegularTrain      | 76.28         | 95.72        |
| 90. | GunPointOldVersusYoung   | 97.14         | 88.89        |
| 91. | InsectEPGSmallTrain      | 100.00        | 100.00       |
| 92. | Adiac                    | 43.73         | 56.78        |
| 93. | BME                      | 62.00         | 78.67        |
| 94. | PowerCons                | 87.78         | 98.33        |
| 95. | GunPointAgeSpan          | 82.28         | 87.03        |
| 96. | GunPointMaleVersusFemale | 72.47         | 67.41        |

## REFERENCES

- [1] D. Schultz and B. Jain, "Nonsmooth analysis and subgradient methods for averaging in dynamic time warping spaces," Pattern Recognition, vol. 74,
- pp. 340–358, 2018.
  [2] V. Niennattrakul and C. A. Ratanamahatana, "Shape averaging under time warping," in 2009 6th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, vol. 2, pp. 626-629, IEEE, 2009.
- [3] F. Petitjean and P. Gançarski, "Summarizing a set of time series by averaging: From steiner sequence to compact multiple alignment," Theoretical Computer Science, vol. 414, no. 1, pp. 76-91, 2012.
- [4] R. A. Shapira Weber, M. Eyal, N. Skafte, O. Shriki, and O. Freifeld, "Diffeomorphic temporal alignment nets," in Advances in Neural Information Processing Systems 32 (H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, eds.), pp. 6574-6585, Curran Associates,
- [5] Y. Chen, E. Keogh, B. Hu, N. Begum, A. Bagnall, A. Mueen, and G. Batista, "The ucr time series classification archive," July 2015. www.cs.ucr.edu/
- R. A. Shapira Weber, M. Eyal, N. Skafte, O. Shriki, and O. Freifeld, "Diffeomorphic temporal alignment nets: Supplementary material," in Advances in Neural Information Processing Systems 32 (H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, eds.), pp. 6574-6585, Curran Associates, Inc., 2019.