CS & IT ENGINEERING

COMPUTER ORGANIZATION
AND ARCHITECTURE

Cache Organization

Lecture No.- 05

Recap of Previous Lecture

Cache Mapping Topic

Topic

Direct Mapping

Topics to be Covered

Topic

Cache Mapping

Topic

Direct Mapping

Topic

Tag & Index

Cache	0	1	2	3	4	5	6	7	8	9
Main	00	01	02	03	04	05	06	07	08	09
Memory	10	11	12	13	14	15	16	17	18	19
	20	21	22	23	24	25	26	27	28	29
	30	31	32	33	34	35	36	37	38	39
	:	:	+	:	:	:	:	:	:	:
	90	91	92	93	94	95	96	97	98	99

mm block no.

- Blocks in cache =4(00-11)
- = 8 (000-111)Blocks in Main memory
- Block Size = 2 Bytes
- Size of Cache memory
- Size of Main memory
- Size of Main memory address

=
$$4 * 2B = 8$$
 bytes
= $8 * 2B = 16$ bytes = $2^4 B$

CPU Request (MM add.)	Mapping(CM block no.)	Hit/Miss	Comments
mm add. = 1010 101 0 byte no.	Tag cm block no.	Miss	bring mm block no. 101 into cache block of with tag 1
mm add. = 1011 101 11 s byte no. no.	Tag cm block no.	Hit	byte 1 of the block is sent to CPU for access.

< mm add. ->

Tag blockno. byte no.

or byte offset

cm line byte offset

no.

or

ache index

11

Topic: Indexing in Direct Mapping

4 blocks

Topic: Cache Controller

Cache memory chip

cache controller stores one tag infor per block of cache

size of tag directory = no of blocks * Tag-bits on cache

Size of meta data

a.)

Cache memory = 128 bytes

block size = 16 bytes = 24B

mm add: = 12 bits

Direct mapping

byte no. = log 2 = 4 bits

mm add.

no of blocks in cache =
$$\frac{128B}{16B} = \frac{2^{7}}{2^{4}} = \frac{3}{2}$$

cm block no. = 3 bits

[NAT]

- Consider a direct mapped cache of size 64KB with block size 16 Bytes. The #Q. CPU generates 32-bits addresses.
 - 1. Number of bits for byte offset? 4 5ibs
 - 2. Number of blocks in cache? 2
 - 3. The number of bits needed for cache indexing? 12 bits
 - 4. The number of tag bits? 16 bits
 - 5. Tag Directory size? = $2^{12} * 16$ bits = $2^{19} 2^{2} * 16$ bits = 64 k bits = 8 k bytes

$$\frac{1}{12} \frac{32}{10} = \frac{32}{16} = \frac{64 \text{ kg}}{16 \text{ g}}$$

$$\frac{1}{10} \frac{1}{10} = \frac{2}{10} = \frac{2}{10} = \frac{12}{10} =$$

#Q. Consider a direct mapped cache of size 32KB The CPU generates 32-bits addresses. The number of tag bits in main memory address are?

no. of blocks in cm =
$$\frac{32kB}{2^{x}B}$$

$$= \frac{2^{15}B}{2^{x}B} = 2^{15-x}$$

$$= \frac{2^{x}B}{2^{x}B} = 15$$
cm block no. = $(15-x)$ bits

Topic: Cache Initialization

Topic: Performance Improvement of Write Back Cache

only modified blocks must

Tag directory Size = no. of blocks in cm * (Tag + extra bits)

[NAT]

Size of Cache memory = 128KB

Size of Main memory address = 34-bits

Direct Mapping

For each block apart from tag,1 valid bit and 1 modifies bit are stored in cache

Bits in byte offset? 4

Bits in cache block number? 13

Bits in tag? 17
Tag Directory size? =
$$2^{13}*(17+1+1)$$
 bits = $2^{13}*19$ bits

#Q. Blocks in Main memory = 2^{23}

Blocks in Cache memory = 2^{16}

Block Size: 64 Bytes

Direct Mapping

No. of bits required for Byte Offset = ?

No of bits required for main memory address = ?

Index-bits =?

Tag-bits = ?

Size of Tag Directory = ?

#Q. 32-bit architecture CPU

Main Memory Size = 4GB

Cache Size = 256KB

Block Size = 16 Words

Direct Mapping

No. of bits required for Byte Offset = ?

No of bits required for main memory address = ?

No of bits required for main memory block no. =?

Index-bits = ?

Tag-bits = ?

Size of Tag Directory = ?

Topic: Calculating CM Block Number from MM Address

1. mm add given in binary

2. mm add. given in hexadecimal = Convert to binary

ex:- mm add. = 16 bits

cm size = 512 bytes = 2

block size = 32 bytes

Direct mapping

16

Tag block byte

7

4

5

#Q. Consider a machine with a byte addressable main memory of 2^{20} bytes, block size of 16 bytes and a direct mapped cache having 2^{12} cache lines. Let the addresses of two consecutive bytes in main memory be $(E201F)_{16}$ and $(E2020)_{16}$. What are the tag and cache line address (in hex) for main memory address $(E201F)_{26}$?

A ____ E, 201

E, E20

B

F, 201

109

2,01F

2 mins Summary

Topic

Cache Mapping

Topic

Direct Mapping

Topic

Tag & Index

Happy Learning THANK - YOU