1

Matrix theory Assignment 19

Shivangi Parashar

Abstract—This document contains the concept of matrix diagonalization.

Download all python codes from

https://github.com/shivangi-975/EE5609-Matrix_Theory/tree/master/Assignment19/ Codes

Download latex-tikz codes from

https://github.com/shivangi-975/EE5609-Matrix_Theory/blob/master/Assignment19/ Assignment 19.tex

1 Problem

Let A be a 3×3 matrix with real entries. Identify the correct statements.

- 1.A is necessarily diagonalizable over **R**
- 2.If A has distinct real eigen values than it is diagonalizable over ${\bf R}$
- 3.If A has distinct eigen values than it is diagonalizable over C
- 4.If all eigen values are non zero than it is diagonalizable over C

2 Solution

Given	A 3×3 matrix with real entries.
Statement 1.	A is necessarily diagonalizable over R
False statement	matrix A is diagonalizable if and only if there is a basis of \mathbb{R}^3 consisting of eigenvectors of A. Counter example: $ \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 4 \end{pmatrix} $
Statement 2.	If A has distinct real eigen values than it is diagonalizable over R
True statement	A has n linearly independent eigenvectors which implies it is diagonalizable.
Statement 3.	If all eigen values are non zero than it is diagonalizable over C
True statement	A has n linearly independent eigenvectors which implies it is diagonalizable.
Statement 4.	If all eigen values are non zero than it is diagonalizable over C
False statement	matrix A is diagonalizable if and only if there is a basis of R ³ consisting of eigenvectors of A.

TABLE 1: Summary