- **19.-** Una empresa produce y comercializa dos artículos A y B que le proporcionan unos beneficios unitarios de 30 y 50 u.m. respectivamente. Los artículos A y B se obtienen mediante transformación de los minerales P y Q, de tal forma que cada unidad de A requiere 2 unidades de P y 3 de Q. Cada unidad de B requiere 4 unidades de P y 3 de Q. Diariamente se dispone de 60 unidades de P y 80 de Q. Suponiendo que se vende toda la producción, se pide:
 - a) Plantear el problema para maximizar el beneficio, su problema dual y escribir la primera tabla del simplex del problema primal.
- c) ¿Cuánto estaría dispuesta a pagar la empresa por 3 unidades más de mineral Q? ¿y por 30?
- d) Dar la solución del problema dual.

$Maximizar\ 30x_1 + 50x_2$

$$s.a: \begin{cases} 2x_1 + 4x_2 \le 60 \\ 3x_1 + 3x_2 \le 80 \\ x_1 \ge 0, x_2 \ge 0 \end{cases}$$

$$Minimizar 60y_1 + 80y_2$$

$$s.a: \begin{cases} 2y_1 + 3y_2 \ge 30 \\ 4y_1 + 3y_2 \ge 50 \\ y_1 \ge 0, y_2 \ge 0 \end{cases}$$

1º: Variables

			30	50	0	0
			x_1	x_2	x_3	x_4
0	x_3	60	2	4	1	0
0	x_4	80	3	3	0	1
		0	0	0	0	0
			-30	-50	0	0

			30	50	0	0
			x_1	x_2	x_3	x_4
0	x_3	60	2	4	1	0
0	x_4	80	3	3	0	1
		0	0	0	0	0
			-30	-50	0	0

			30	50	0	0
			x_1	x_2	x_3	x_4
50	x_2	15	1/2	1	1/4	0
0	x_4	35	3/2	0	-3/4	1
		750	25	50	25/2	0
			-5	0	0	0

			30	50	0	0
			x_1	x_2	x_3	x_4
50	x_2	10/3	0	1	1/2	-1/3
30	x_1	70/3	1	0	-1/2	2/3
		750	30	50	10	10/3
			0	0	10	10/3

Solución del Primal: $x_1 = 70/3$, $x_2 = 10/3$

Solución del Dual: $y_1 = 10$, $y_2 = 10/3$

- **21.-** Una tienda vende rotuladores a 20 céntimos de euro y libretas a 30 céntimos de euro. Disponemos de 150 céntimos de euro y pretendemos comprar, por lo menos, las mismas libretas que rotuladores.
 - a) ¿Cuál será el número máximo de productos que podemos comprar?
 - b) Escribir el programa Dual y su solución (a través de las tablas echa en el apartado a)

d) Suponga que la restricción "pretendemos comprar, por lo menos, las mismas libretas que rotuladores" se cambia a "la diferencia entre el número de rotuladores y libretas sea menor o igual a tres unidades"; en este caso, ¿cuál es la nueva solución?

Maximizar $x_1 + x_2$

$$s. a: \begin{cases} 20x_1 + 30x_2 \le 150 \\ x_2 \ge x_1 \end{cases} \rightarrow \begin{cases} 20x_1 + 30x_2 \le 150 \\ x_1 - x_2 \le 0 \end{cases}$$
$$x_1 \ge 0, x_2 \ge 0$$

$Maximizar x_1 + x_2$

$$s. a: \begin{cases} 20x_1 + 30x_2 + x_3 = 150 \\ x_1 - x_2 + x_4 = 0 \\ x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, x_4 \ge 0 \end{cases}$$

			1	1	0	0
			x_1	x_2	x_3	x_4
0	x_3	150	20	30	1	0
0	x_4	0	1	-1	0	1
		0	0	0	0	0
			-1	-1	0	0

		1	1	0	0
		x_1	x_2	x_3	x_4
0	x_3				
1	x_1				

_

			1	1	0	0
			x_1	x_2	x_3	x_4
0	x_3	150	0	50	1	-20
1	x_1	0	1	-1	0	1
		0	1	-1	0	1
			0	-2	0	1

	1	1	0	0
	x_1	x_2	x_3	x_4
x_2				
x_1				

			1	1	0	0
			x_1	x_2	x_3	x_4
1	x_2	3	0	1	1/50	-2/5
1	x_1	3	1	0	1/50	3/5
		6	1	1	2/50	1/5
			0	0	2/50	1/5

			1	1	0	0
			x_1	x_2	x_3	x_4
1	x_2	3	0	1	1/50	-2/5
1	x_1	3	1	0	1/50	3/5
		6	1	1	2/50	1/5
			0	0	2/50	1/5

$Minimizar 150y_1$

$$s. a: \begin{cases} 20y_1 + y_2 \ge 1 \\ 30y_1 - y_2 \ge 1 \\ y_1 \ge 0, y_2 \ge 0 \end{cases}$$

Solución del Primal:
$$x_1 = 3$$
, $x_2 = 3$

Solución del Dual:
$$y_1 = \frac{2}{50}$$
, $y_2 = \frac{1}{5}$