

Index

Un	it – 5.1 🖚 Graph Theory – II	2
1)	Method 1 → Euler Paths and Circuits	2
2)	Method 2 → Hamiltonian Paths and Circuits	7
3)	Method 3 → Introduction to Planar Graph	.11
4)	Method 4 → Introduction to Graph Coloring	.15
Un	it 5.2 Group Theory	20
5)	Method 1 → Binary Operation	.20
6)	Method 2 → Group	.23
7)	Method 3→ Subgroup	.24
8)	Method 4→ Abelian group	.25
9)	Method 5 → Order of an Element of a Group	.26
10)	Method 6→ Cyclic Group	.27

Unit - 5.1 → Graph Theory - II

Method 1 ---> Euler Paths and Circuits

A	1	Define the following terms: Euler Circuit, Euler Path, Eulerian Graph
		Answer: Refer Theory
A	2	Determine whether the given graph has an Euler circuit. Give such a circuit
		when one exists. If no Euler circuit exists, determine whether the graph has
		an Euler path and give such a path if one exists.
		V ₁ V ₂ V ₃ C W ₂ V ₃ G Hint: Euler circuit of G: v ₄ e ₄ v ₁ e ₁ v ₂ e ₂ v ₃ e ₇ v ₅ e ₈ v ₁ e ₅ v ₅ e ₆ v ₃ e ₃ v ₄
A	3	
A	3	For which values of n do the graphs K_n and C_n have an Euler path but no Euler circuit?

A Determine whether the given graph has an Euler circuit. Give such a circuit when one exists. If no Euler circuit exists, determine whether the graph has an Euler path and give such a path if one exists.

Hint: H has neither Euler circuit nor Euler path

A Determine whether the given graph has an Euler circuit. Give such a circuit when one exists. If no Euler circuit exists, determine whether the graph has an Euler path and give such a path if one exists.

 $Hint: Euler\ path\ of\ G:\ v_5e_{10}v_4e_1v_1e_2v_4e_3v_1e_4v_2e_6v_3e_8v_5e_9v_3e_7v_4e_5v_2$

B 6 Determine whether the following graphs has an Euler circuit. Give such a circuit when one exists. If no Euler circuit exists, determine whether the graph has an Euler path and give such a path if one exists.

 $Hint: Euler\ circuit\ of\ H: u_4e_2u_1e_3u_5e_7u_3e_6u_4e_4u_2e_5u_5e_1u_4,$

Euler path of G: $v_4e_4v_5e_5v_6e_6$ $v_1e_1v_2e_2v_3e_3v_4e_7v_2e_{10}v_6e_8v_4e_9v_1$

B 7 Determine whether the given graph has an Euler circuit. Give such a circuit when one exists. If no Euler circuit exists, determine whether the graph has an Euler path and give such a path if one exists.

Hint: Euler circuit of H:

 $ae_{1}be_{2}ce_{3}de_{4}ie_{5}he_{14}de_{11}ee_{10}be_{9}fe_{12}ee_{13}he_{6}ge_{7}fe_{8}a\\$

C Determine whether the given graph has an Euler circuit. Give such a circuit when one exists. If no Euler circuit exists, determine whether the graph has an Euler path and give such a path if one exists.

Hint:

 $Euler\ path\ of\ G_1: v_1e_1v_2e_2v_3e_6v_5e_7v_2e_9v_5e_8v_4e_{10}v_5e_5v_1e_4v_4e_3v_3$

 $Euler\ path\ of\ G_2\colon u_4e_5u_5e_{10}u_6e_{11}u_4e_9u_3e_8u_6e_3u_2e_4u_3e_7u_1e_2u_2e_1u_5e_6u_1$

C Determine whether the given graph has an Euler circuit. Give such a circuit when one exists. If no Euler circuit exists, determine whether the graph has an Euler path and give such a path if one exists.

Hint:

 $Euler\ path: be_{3}ae_{1}he_{13}fe_{12}de_{11}ee_{10}ae_{7}de_{8}he_{9}ke_{15}ge_{14}he_{6}ce_{5}de_{4}be_{2}c$

Method 2 ---> Hamiltonian Paths and Circuits

A	1	Define the following terms:
		Hamiltonian Path, Hamiltonian Circuit, Hamiltonian Graph
		Angwor, Dofor Theory
		Answer: Refer Theory
A	2	Determine whether the given graph has a Hamilton circuit. If it does, find
		such a circuit.
		\mathbf{e}_{7} \mathbf{e}_{6} \mathbf{e}_{2} \mathbf{e}_{2} \mathbf{e}_{4} \mathbf{e}_{6} \mathbf{e}_{6} \mathbf{e}_{5} \mathbf{e}_{5}
		Answer: The given graph does not have a Hamilton circuit.
Α	3	Determine whether the following graphs has a Hamilton circuit. If it does,
		find such a circuit.
		v_1 v_2 v_3 v_4 v_4 v_4 v_5 v_6 v_8
		Answer: Graph G has a Hamiltonian circuit, $v_1e_1v_2e_2v_3e_3v_4e_7v_5e_6v_1$
		Graph H doesn't have a Hamiltonian circuit.

A Determine whether the following graph has a Hamilton circuit. If it does, find such a circuit. e₉ **e**₇ e_3 **e**₅ e_6 Answer: The given graph does not have a Hamiltonian circuit. For what values of n does the complete graph K_n with n vertices contains a 5 A Hamiltonian circuit? В 6 Determine whether the following graphs has a Hamilton circuit. If it does, find such a circuit. \mathbf{v}_2 m $\mathbf{e_2}$ $\mathbf{v_8}$ e_3 \mathbf{v}_6 H G Answer: The graph G has a Hamiltonian circuit,

v₇gv₈hv₁av₂jv₉kv₃cv₄dv₅ev₆fv₇,

The graph H oes not have a Hamiltonian circuit.

В	7	Determine whether the following graphs has a Hamilton circuit. If it does,
		find such a circuit. Also, Does the graph have a Hamiltonian path? If
		so, find such a path.
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
		Hamiltonian path, $v_6e_7v_3e_3v_4e_4v_5e_5v_7e_6v_1e_1v_2$
В	8	Give two examples of a graph that has an Eulerian Circuit which is also a
		Hamiltonian Circuit.
В	9	Give two examples of a graph that has an Eulerian Circuit and a Hamiltonian Circuit, which are distinct.
В	10	Give two examples of a graph which has an Eulerian Circuit but not a Hamiltonian Circuit.
В	11	Give two examples of a graph which has a Hamiltonian Circuit but not an Eulerian Circuit.
В	12	Give two examples of a graph that has neither a Hamiltonian Circuit nor an Eulerian Circuit.
	4.5	
В	13	Give two examples of a graph that has Hamiltonian path but not a Hamiltonian circuit.
В	14	For what values of m and n does the graph $K_{m,n}$ contains a Hamiltonian circuit?
		ı

C 15 For each of these graphs, determine (i) whether Dirac's theorem can be used to show that the graph has a Hamiltonian circuit, (ii) whether Ore's theorem can be used to show that the graph has a Hamiltonian circuit, and (iii) whether the graph has a Hamiltonian circuit.

Answer: For G → No, No, Yes, For H → Yes, Yes, Yes

C 16 For each of these graphs, determine (i) whether Dirac's theorem can be used to show that the graph has a Hamiltonian circuit, (ii) whether Ore's theorem can be used to show that the graph has a Hamiltonian circuit, and (iii) whether the graph has a Hamiltonian circuit.

Answer: For G → No, No, Yes, For H → Yes, No, Yes

Method 3 → Introduction to Planar Graph

Α	1	Define the following terms:
		Planar Graph, Region of a Graph, Finite Region, Infinite Region
		Answer: Refer Theory
Α	2	Show that each is planar graph by redrawing it so that no edges cross. Also,
		verify the Euler's formula.
		v_1 v_2 v_3 v_4 v_5 v_6 v_8
Α	3	Suppose that a connected planar graph has 30 edges. If a planar
		representation of this graph divides the plane into 20 regions, how many
		vertices does this graph have?
		Answer: 12
В	4	Suppose that a connected planar graph has six vertices, each of degree four.
		Into how many regions is the plane divided by a planar representation of this graph?
		Answer: 8
В	5	Suppose that a connected planar graph has eight vertices, each of degree
		three. Into how many regions is the plane divided by a planar representation
		of this graph?
		Answer: 6

В 6 Show that the following graph is planar by redrawing it so that no edges cross. Also, verify the Euler's formula. H Show that the following graph G is non – planar. 7 G C 8 Draw the given planar graphs without any crossings. G_1 G_2

Method 4 ---> Introduction to Graph Coloring

Α	1	Define the following terms with examples:
		Vertex Coloring, Chromatic Number of a Graph
		Answer: Refer Theory
Α	2	Determine the chromatic number of the following graphs.
		a $\begin{array}{c} a \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
Α	3	Determine the chromatic number of the following graph.
		v_1 v_2 v_3 v_5
		Answer: 3

Determine the chromatic number of the following graphs. A H G Answer: $\chi(G) = 3$, $\chi(H) = 3$ 5 Show that the following graph is 3 – chromatic. A Find the chromatic number of the following graphs. В 6 $\overline{\mathbf{u}}_{\mathbf{5}}$ $\tilde{\mathrm{u}_4}$ G_1 G_2 Answer: $\chi(G_1) = 2$, $\chi(G_2)=2$

Find the chromatic number of the following graphs. В \mathbf{v}_{5} G H Answer: $\chi(G) = 2$, $\chi(H) = 4$ Find the chromatic number of the following graph. В 8 G Answer: $\chi(G) = 3$

Find the chromatic number of the following graph. C 9 G Answer: $\chi(G) = 3$ C Find the chromatic number of the following graph. 10 Answer: $\chi(G) = 3$

Unit 5.2 Group Theory

Method 1 --> Binary Operation

Example of Method-1: Binary Operation

Α	1	On the set \mathbb{Z}^+ , check whether $*$ is binary operation or not
---	---	--

(1)
$$m * n = m - n$$

(2)
$$m * n = \frac{m}{n}$$

A 2 On the set
$$\mathbb{Q}$$
, check whether the binary operation $*$ is associative or not.

(1)
$$m * n = mn + 1$$

(2)
$$m * n = \frac{m}{n}$$

(3)
$$m * n = 10$$

A
$$\bigcirc$$
 On the set \mathbb{Q} , check whether the binary operation $*$ is commutative or not.

$$\mathbf{(1)} \ \mathbf{m} * \mathbf{n} = \mathbf{m}^{\mathbf{n}}$$

(2)
$$m * n = \frac{mn}{3}$$

(3)
$$m * n = 10$$

B 4 Construct composition table for set
$$S = \{1, -1, i, -i\}$$
 where $i^2 = -1$ with binary operation multiplication \times .

Answer:

×	1	-1	i	- i
1	1	-1	i	-i
-1	-1	1	-i	i
i	i	-i	-1	1
-i	-i	i	1	-1

В	5	Write down the composition table for $(\mathbb{Z}_7, +_7)$.								
		Answer:								
		+7	0	1	2	3	4	5	6	
		1	1	2	3	4	5	6	0	
		2	2	3	4	5	6	0	1	
		3	3	4	5	6	0	1	2	
		4	4	5	6	0	1	2	3	
		5	5	6	0	1	2	3	4	
		6	6	0	1	2	3	4	5	
В	6	Write down t	ne compos	sition tab	ole for (Z	$(2_6, +_6)$).			
		Answer:	0	1	<u> </u>	,	2	1	-	\neg
		+6	0	1		2	3	4	5	_
		1	1	2		3	4	5	0	_
		2	2	3		4	5	0	1	_
		3	3	4		5	0	1	2	
		4	4	5)	1	2	3	
		5	5	0	-	1	2	3	4	
В	7	Write down t	ne compos	sition tab	le for (Z	\mathbb{Z}_7^*, \times_7).			
		Answer:	1	2	3		4	5	6	
		1	1	2	3		4	5		
		 							6	
		2	2	4	6		1	3	5	
		3	3	6	2		5	1	4	
		4	4	1	5		2	6	3	
		5	5	3	1		6	4	2	
		6	6	5	4		3	2	1	

8	Write down the composition table for $(\mathbb{Z}_6^*, \times_6)$.							
	Answer:						ı	
	× ₆	1	2	3	4	5		
	1	1	2	3	4	5		
	2	2	4	0	2	4		
	3	3	0	3	0	3		
	4	4	2	0	4	2		
	5	5	4	3	2	1		
	8	Answer: ×6 1 2 3 4	Answer: × ₆ 1 1 1 2 2 3 4 4	Answer: $ \begin{array}{c cccccccccccccccccccccccccccccccc$	Answer:	Answer:	Answer:	

Method 2 ---> Group

Example of Method-2: Group

A	1	Show that $(\mathbb{Z}, +)$ is group.
Α	2	Show that $(\mathbb{R} - \{ 0 \}, \times)$ is group.
A	3	Show that $(\mathbb{Q} - \{ 0 \}, \times)$ is group.
В	4	Show that the set of square root of unity forms a group under multiplication.
С	5	Show that the set of fourth root of unity forms a group under multiplication.
В	6	Prove that the set $G=\{3^m\cdot 3^n;m,n\in\mathbb{Z}\}$ is a group under multiplication.
A	7	Check whether ({ 15, 25, 35 }, \times_{40}) is a group or not?
		Answer: Not group, as closure property not satisfied

Method 3 ---> Subgroup

Example of Method-3: Subgroup

Α	1	Show that $(\mathbb{Q}, +)$ is a subgroup of $(\mathbb{R}, +)$.
	1	blow that (\(\psi_j, \cdot \) is a subgroup of (\(\mathbb{u}\text{s}_j, \cdot \cdot \).
В	2	Show that $H = n\mathbb{Z} = \{ nx; x \in \mathbb{Z} \} $ is a subgroup of $(\mathbb{Z}, +)$.
В	3	Find all subgroups of $(\mathbb{Z}_{18}, +_{18})$.
		Answer : $\mathbb{Z}_{18} = \{ 0, 1, 2, 3 \dots 17 \}$
		$\langle 1 \rangle = \{ 0, 1, 2, 3, \dots 17 \}$
		$\langle 2 \rangle = \{ 0, 2, 4, 6, 8, 10, 12, 14, 16 \}$
		$\langle 3 \rangle = \{ 0, 3, 6, 9, 12, 15 \}$
		$\langle 6 \rangle = \{ 0, 6, 12 \}$
		$\langle 9 \rangle = \{ 0, 9 \}$
		⟨ 18 ⟩ = { 0 }
С	4	Find all subgroups of $(\mathbb{Z}_7^*, \times_7)$.
		Answer : $\mathbb{Z}_7^* = \{ 1, 2, 3 \dots 6 \}$
		⟨ 1 ⟩ = { 1 }
		⟨ 2 ⟩ = { 2 , 4 , 8 }
		$\langle 3 \rangle = \{ 1, 2, 3, 4, 5, 6 \}$
		⟨ 6 ⟩ = { 1 , 6 }

Method 4 --- Abelian group

Example of Method-4: Abelian group

В	1	Show that $G = \left\{ \begin{bmatrix} a & b \\ -b & a \end{bmatrix} / a, b \in \mathbb{R} \right\}$ is a commutative group under matrix addition.							
В	2	Show that $(\mathbb{Z}_4, +_4)$ is an abelian group.							
В	3	Let * be a binary operation defined on \mathbb{Q} defined by a * b = a + b - ab. (1) Find 2 * 3, 3 * (-5), $7 * \left(\frac{1}{2}\right)$ (2) Is $(\mathbb{Q}, *)$ group? (3) Is it commutative? Answer: (1) -1, 13, 4 (2) Yes (3) Yes							
В	4	Let * be a binary operation on Q × Q defined by (a, b) * (x, y) = (ax, ay + b) then (1) Find (3, 4) * (1, 2), (-1, 3) * (5, 2). (2) Is it group? (3) Is it commutative? Answer: (1) (3, 10), (-5, 1) (2) Yes (3) No							

Method 5 --- Order of an Element of a Group

Example of Method-5: Order of an Element of a Group

A	1	Find the order of each element of $(\mathbb{Z}_6, +_6)$.					
A	2	Find the order of each element of $(\mathbb{Z}_7^*, \times_7)$.					

Method 6 * Cyclic Group**

Example of Method-6: Cyclic Group

A	1	Prove that $(\mathbb{Z}, +)$ is cyclic group.										
A	2	Prove that $(\mathbb{Z}_3, +_3)$ is cyclic group.										
A	3	Prove that $G = \{1, -1\}$ is cyclic group under multiplication.										
В	4	Consider the group G = { 1, 2, 3, 4, 5, 6 } under multiplication modulo 7. (1) Find multiplication table of G. (2) Find 2 ⁻¹ , 3 ⁻¹ and 6 ⁻¹ . (3) Is group G cyclic? Answer: (1)										
		× ₇	$ imes_7$ 1 2 3 4 5 6									
		1	1	2	3	4	5	6				
2 2 4 6 1 3								5				
		3 3 6 2 5 1 4 4 4 1 5 2 6 3 5 5 3 1 6 4 2 6 6 5 4 3 2 1										
		(2) $2^{-1} = 4$, $3^{-1} = 5$, $6^{-1} = 6$ (3) Yes, since it is generated by 3										

B Consider the group $G = \{1, 2, 4, 7, 8, 11, 13, 14\}$ under multiplication modulo 15.

- (1) Find multiplication table of G.
- (2) Find 2^{-1} , 7^{-1} and 11^{-1} .
- (3) Is group G cyclic?

Answer: (1)

× ₁₅	1	2	4	7	8	11	13	14
1	1	2	4	7	8	11	13	14
2	2	4	8	14	1	7	11	13
4	4	8	1	13	2	14	7	11
7	7	14	13	4	11	2	1	8
8	8	1	2	11	4	13	14	7
11	11	7	14	2	13	1	8	4
13	13	11	7	1	14	8	4	2
14	14	13	11	8	7	4	2	1

(2)
$$2^{-1} = 8$$
, $7^{-1} = 13$, $11^{-1} = 11$

(3) No, since no element generates G