Data visualization

COSC 480B

Reyan Ahmed

rahmed1@colgate.edu

Lecture 21

Hidden Markov models

Overview

- Defining interpretive models
- Using Markov chains to model data
- Inferring hidden state using a hidden Markov model

Overview

Exercise 1

What makes a model interpretable may be slightly subjective. What's your criteria for an interpretable model?

Overview

Exercise 1

What makes a model interpretable may be slightly subjective. What's your criteria for an interpretable model?

ANSWER

We like to refer to mathematical proofs as the de facto explanation technique. If one were to convince another about the truth of a mathematical theorem, then a proof that irrefutably traces the steps of reasoning is sufficient.

Example of a not-so-interpretable model

- One classic example of a black-box machine-learning algorithm that's difficult to interpret is image classification.
- You'll learn how to solve the problem of classifying images in next lectures
- It's difficult to ask an image classifier why it made the decision that it did.
- Machine learning sometimes gets the notoriety of being a black-box tool that solves a specific problem without revealing how it arrives at its conclusion.
- The purpose of this chapter is to unveil an area of machine learning with an interpretable model.
- Specifically, you'll learn about the HMM and use TensorFlow to implement it.

- Andrey Markov was a Russian mathematician who studied the ways systems change over time in the presence of randomness.
- For example, maybe a gas particle in Europe has barely any effect on a particle in the United States. So why not ignore it?
- The mathematics is simplified when you look only at a nearby neighborhood instead of the entire system.
- This notion is now referred to as the Markov property.

Weather conditions (states) represented as nodes in a graph

Exercise 2

A robot that decides which action to perform based on only its current state is said to follow the Markov property. What are the advantages and disadvantages of such a decision-making process?

Exercise 2

A robot that decides which action to perform based on only its current state is said to follow the Markov property. What are the advantages and disadvantages of such a decision-making process?

ANSWER

The Markov property is computationally easy to work with. But these models aren't able to generalize to situations that require accumulating a history of knowledge. Examples of these are models in which a trend over time is important, or in which knowledge of more than one past state gives a better idea of what to expect next.

Transition probabilities between weather conditions are represented as directed edges.

A trellis representation of the Markov system changing states over time

A transition matrix conveys the probabilities of a state from the left (rows) transitioning to a state at the top (columns).

3 × 3 transition matrix