Review

第2次离散数学习题课 集合论(1)

集合代数&二元关系

魏恒峰 hengxin0912@gmail.com

Department of Computer Science & Technology, NJU

March 14, 2011

- Set Theory
 - Algebra of Sets(Optional)

Review

- Counting Principle of Inclusion-Exclusion
- Binary Relation
 - Binary Relation
 - Equivalence Relation

Problem Set

- Set Theory
 - Algebra of Sets
 - Counting Principle of Inclusion-Exclusion
- Binary Relation
- 3 Applications and Extension(Optional)
 - Relational Database
 - Cantor Set
 - Russell's Paradox and Axiomatic Set Theory

Outline

- Review
 - Set Theory
 - Algebra of Sets(Optional)
 - Counting Principle of Inclusion-Exclusion
 - Binary Relation
 - Binary Relation
 - Equivalence Relation
- 2 Problem Set
 - Set Theory
 - Algebra of Sets
 - Counting Principle of Inclusion-Exclusion
 - Binary Relation
 - 3 Applications and Extension(Optional)
 - Relational Database
 - Cantor Set
 - Russell's Paradox and Axiomatic Set Theory

萌芽(Euclid):

空间乃位置点之无限堆积。

对无穷集合的思考(Galileo):

 $\lambda_1:1,2,3,\cdots,n,\cdots$

 $\lambda_2: 1, 2, 3, \cdots, n, \cdots$

Figure: "Dialogues Concerning Two New Science"

萌芽(Euclid):

空间乃位置点之无限堆积。

对无穷集合的思考(Galileo):

$$\lambda_1:1,2,3,\cdots,n,\cdots$$

$$\lambda_2^2: 1^2, 2^2, 3^2, \cdots, n^2, \cdots$$

Figure: "Dialogues Concerning Two New Science"

萌芽(Euclid):

空间乃位置点之无限堆积。

对无穷集合的思考(Galileo):

$$\lambda_1:1,2,3,\cdots,n,\cdots$$

$$\lambda_2^2: 1^2, 2^2, 3^2, \cdots, n^2, \cdots$$

$$\lambda^*: 1^{100}, 2^{100^{100}}, \cdots, n^{100^{100}}, \cdots$$

Figure: "Dialogues Concerning Two New Science"

"从有限推进到无限,乃是Cantor的不朽功绩。"

Figure: From "One, Two, Three,..., Infinity"

Figure: Georg Cantor(1845-1918) 缔造 集合论

集合基本概念

Review

"吾人直观或思维之对象,如为相异而确定之物,其总 括之全体 即谓之集合, 其组成此集合之物谓之集合之 元素。" — Cantor

集合基本概念

"吾人直观或思维之对象,如为相异而确定之物,其总 括之全体 即谓之集合, 其组成此集合之物谓之集合之 元素。" — Cantor

"这是在用莫名定义莫名。" — Hausdorff

(P96第3(3)题:)

$$N - \{1, 2\}$$

集合的运算— \cup (union), \cap (intersection), \sim (complement)

集合运算律: (compare P₉₃ with P₁₈)

Distributive Law

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$A\cap (B\cup C)=(A\cap B)\cup (A\cap C)$$

De Morgan Law

$$A - (B \cup C) = (A - B) \cap (A - C)$$

$$A - (B \cap C) = (A - B) \cup (A - C)$$

Complement

$$A - B = A \cap \sim B = A - (A \cap B)$$
$$A \cap (B - A) = \emptyset$$
$$A \cup (B - A) = A \cap B$$

Outline

对称差等价定义:

"Union of both relative complements"

$$A \oplus B = (A - B) \cup (B - A)$$

"Union of two sets, minus their intersection"

$$A \oplus B = (A \cup B) - (A \cap B)$$

Venn diagram of $A \wedge R$ The symmetric difference is the union without the intersection:

集合的运算— ⊕(symmetric difference)

对称差运算性质:

Commutative $A \oplus B = B \oplus A$

Associative $(A \oplus B) \oplus C = A \oplus (B \oplus C)$

Cancellative $A \oplus B = A \oplus C \Rightarrow B = C$

$$A \oplus \emptyset = A$$

$$A \oplus E = \sim A$$

$$A \oplus A = \emptyset$$

Figure: Venn diagram of $A \oplus B \oplus C$

集合的运算— 幂集(Power Set)

定义:

$$P(A) = \{x \mid x \subseteq A\}$$

Theorem

$$|A| = n \in N \rightarrow |P(A)| = 2^n$$

Proof

Relation to binomial theorem.

$$\binom{n}{0} + \binom{n}{1} + \dots + \binom{n}{k} + \dots + \binom{n}{n} = 2^n \quad \Box$$

Q: What happens if A is an infinite set?

集合的运算— 幂集(Power Set)

定义:

$$P(A) = \{x \mid x \subseteq A\}$$

Theorem

$$|A| = n \in N \rightarrow |P(A)| = 2^n$$

Proof

Relation to binomial theorem.

$$\binom{n}{0} + \binom{n}{1} + \dots + \binom{n}{k} + \dots + \binom{n}{n} = 2^n \quad \Box$$

Q: What happens if A is an infinite set?

A: 欲知后事如何, 请听下回分解。

广义并&广义交

广义并:

$$\cup A = \{x \mid \exists z (z \in A \land x \in z)\}\$$

Problem Set

广义交:

$$A \neq \emptyset, \cup A = \{x \mid \forall z (z \in A \rightarrow x \in z)\}$$

Q: What happens if $A = \emptyset$ in arbitrary intersection?

广义并&广义交

广义并:

$$\cup A = \{x \mid \exists z (z \in A \land x \in z)\}$$

广义交:

$$A \neq \emptyset, \cup A = \{x \mid \forall z (z \in A \rightarrow x \in z)\}$$

Q: What happens if $A = \emptyset$ in arbitrary intersection?

A: $\cap \emptyset = E$

容斥原理

Review

$$|A \cup B| = |A| + |B| - |A \cap B|$$

Review

$$|A \cup B| = |A| + |B| - |A \cap B|$$

$$|A_1 \cup A_2 \cup \cdots \cup A_n| = \sum_{i=1}^{n} |A_i| - \sum_{i=1}^{n} |A_i \cap A_j| + \cdots + (-1)^{n+1} |A_1 \cap A_2 \cap \cdots \cap A_n|$$

Outline

$$|A \cup B| = |A| + |B| - |A \cap B|$$

$$|A_1 \cup A_2 \cup \cdots \cup A_n| = \sum |A_i| - \sum |A_i \cap A_j| + \cdots + (-1)^{n+1} |A_1 \cap A_2 \cap \cdots \cap A_n|$$

Complement Form:

U: universe object

 A_i : specific property to avoid

 $\overline{A}_1 \cap \overline{A}_2 \cap \cdots \cap \overline{A}_n$: objects without any of the properties.

$$|\overline{A}_1 \cap \overline{A}_2 \cap \cdots \cap \overline{A}_n| = |U| - \sum_i |A_i| + \sum_i |A_i \cap A_j| + \cdots + (-1)^n |A_1 \cap A_2 \cap \cdots \cap A_n|$$

Outline

- Review
 - Set Theory
 - Algebra of Sets(Optional)
 - Counting Principle of Inclusion-Exclusion
 - Binary Relation
 - Binary Relation
 - Equivalence Relation
- 2 Problem Set
 - Set Theory
 - Algebra of Sets
 - Counting Principle of Inclusion-Exclusion
 - Binary Relation
- 3 Applications and Extension(Optional)
 - Relational Database
 - Cantor Set
 - Russell's Paradox and Axiomatic Set Theory

有序对(Ordered Pair)

有序对:

$$\langle x, y \rangle = \langle u, v \rangle \Leftrightarrow x = u \& y = v.$$

Problem Set

如何用集合定义有序对:

- **3** $\langle x, y \rangle = \{ \{ \{x\}, \emptyset \}, \{ \{y\} \} \}$
- $\langle x, y \rangle = \{ \{x\}, \{x, y\} \}$

有序对(Ordered Pair)

有序对:

$$\langle x, y \rangle = \langle u, v \rangle \Leftrightarrow x = u \& y = v.$$

如何用集合定义有序对:

4
$$\langle x, y \rangle = \{ \{x\}, \{x, y\} \}$$
 \checkmark

笛卡尔积(The Cartesian Product)

定义:

$$A \times B = \{ \langle a, b \rangle \mid a \in A \land b \in B \}$$

性质(Distributive Law): (P130第4题)

$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$

$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$

Figure: Cartesian coordinate system

二元关系及其运算

定义:

若R ⊆ A × B, 则称R为从A到B的二元关系.

关系的运算

- **1** Inverse: $(F \circ G)^{-1} = G^{-1} \circ F^{-1}$
- Omposition:
 - **1** Associative Law: $(F \circ G) \circ H = F \circ (G \circ H)$
 - **2** Distributive Law over Union: $F \circ (G \cup H) = F \circ G \cup F \circ H$
 - ⑤ Distributive Law over Intersection: $F \circ (G \cap H) \subseteq F \circ G \cap F \circ H$ (课本 P_{109} 定理 $7.4,P_{132}$ 第18題)

二元关系的性质

二元关系的重要性质:

reflexive: $(\forall x \in A)(xRx)$

irreflexive: $(\forall x \in A)(\neg xRx)$

symmetric: $(\forall x, y \in A)(xRy \rightarrow yRx)$

antisymmetric: $(\forall x, y \in A)(xRyRx \rightarrow x = y)$

transitive: $(\forall x, y, z \in A)(xRyRz \rightarrow xRz)$

二元关系的性质

二元关系可以使用关系矩阵表示:

- Must be true for every member of the set in any reflexive relation
- / Is true for this case (need not be true for all cases)

- Must be false for every member of the set in any irrefelsive relation
- / Is true for this case (need not be true for all cases)

- / Is true for this case (need not be true for all cases)
- Must be true if the check mark with the same number (z) is true for it to be a symmetric relation
- z/ Is true for this case and requires the circle with the same number (z) to also be true for it to be a symmetric relation

- Must be false if the check mark with the same number (z) is true for it to be an antisymmetric relation
- z. Is true for this case and requires the circle with the same number (z) to be false for it to be a symmetric relation

二元关系的性质

二元关系也是集合!(P₁₁₈表7.2 and P₁₁₆例题7.13)

reflexive: $I_A \subseteq R$

irreflexive: $R \cap I_A = \emptyset$

symmetric: $R = R^{-1}$

antisymmetric: $R \cap R^{-1} \subseteq I_A$

transitive: $R \circ R \subseteq R$

Problem Set

等价关系(Equivalence Relation)

\sim is an equivalence relation:

- \bigcirc $x \sim x$

- Q: Why?

等价关系(Equivalence Relation)

\sim is an equivalence relation:

- $2 x \sim y \rightarrow y \sim x$

Q: Why?

A: The simplest and the commonest.

等价关系(Equivalence Relation)

 \sim is an equivalence relation:

Q: Why ?

A: The simplest and the commonest.

Equivalence Class:

$$[x]_R = \{ y \mid y \in A \land xRy \}$$

Quotient Set:

$$A/R = \{ [x]_R \mid x \in A \}$$

Q: Why Quotient Set?

Equivalence Class and Partition

Equivalence class holds some interesting properties:

- $[x] \neq \emptyset$
- $2 xRy \rightarrow [x] = [y]$
- **●** \cup {[x] | $x \in A$ } = A

Partition: $\pi \subseteq P(A)$

- **0** Ø ∉ π
- $\forall x \forall y (x, y \in \pi \land x \neq y \rightarrow x \cap y = \emptyset)$

There is an one-to-one correspondence between equivalence relation and partition.

Outline

- - Set Theory
 - Algebra of Sets(Optional)
 - Counting Principle of Inclusion-Exclusion
 - Binary Relation
 - Binary Relation
 - Equivalence Relation
- Problem Set
 - Set Theory
 - Algebra of Sets
 - Counting Principle of Inclusion-Exclusion
 - Binary Relation
- - Relational Database
 - Cantor Set
 - Russell's Paradox and Axiomatic Set Theory

1:请证明补集之唯一性(Optional)。

Review

Theorem:

 $\Diamond A. B \rightarrow E$ 的任意子集. 则 $B = \sim A \Leftrightarrow A \cup B = E \& A \cap B = \emptyset$

tips:

$$B = B \cap E = B \cap (A \cup \sim A) = (B \cap A) \cup (B \cap \sim A)$$

= $\emptyset \cup (B \cap \sim A) = (A \cap \sim A) \cap (B \cap \sim A)$
= $\sim A \cap (A \cup B) = \sim A \cap E = \sim A$.

Problem Set

集合运算律

2: 请证明以下命题等价:

- lacktriangledown $A \subseteq B$
- $\triangle A \cup B = B$
- $A \cap B = A$
- $A B = \emptyset$

Q: 为什么可以采用循环证明?

Problem Set

集合运算律

2: 请证明以下命题等价:

- **1 A** ⊆ **B**
- $\triangle A \cup B = B$
- $A \cap B = A$
- $A B = \emptyset$

Q: 为什么可以采用循环证明?

A: ⇔ is an equivalence relation.

集合运算律

3: 请证明∩关于-是可分配的:

Theorem:

$$A \cap (B - C) = (A \cap B) - (A \cap C)$$

3: 请证明∩关于-是可分配的:

Theorem:

$$A\cap (B-C)=(A\cap B)-(A\cap C)$$

练习:

请问U关于-是可分配的吗?

4: 请证明∩关于⊕是可分配的:

Theorem:

$$A\cap (B\oplus C)=(A\cap B)\oplus (A\cap C)$$

tips:

•
$$B \oplus C = (B - C) \cup (C - B)$$

$$\bullet \ A \cap (B - C) = (A \cap B) - (A \cap C)$$

4: 请证明∩关于⊕是可分配的:

Theorem:

$$A \cap (B \oplus C) = (A \cap B) \oplus (A \cap C)$$

tips:

•
$$B \oplus C = (B - C) \cup (C - B)$$

•
$$A \cap (B - C) = (A \cap B) - (A \cap C)$$

练习:

请问∪关于⊕是可分配的吗?

①
$$A \subseteq B \Leftrightarrow P(A) \subseteq P(B)$$
 (课本 P_{100} 第36题& P_{101} 第44题)

- ① $A \subseteq B \Leftrightarrow P(A) \subseteq P(B)$ (课本 P_{100} 第36题& P_{101} 第44题)
- ② $P(A) \cap P(B) = P(A \cap B)$ (课本 P_{101} 第45(1)题)

- ① $A \subseteq B \Leftrightarrow P(A) \subseteq P(B)$ (课本 P_{100} 第36题& P_{101} 第44题)
- ② $P(A) \cap P(B) = P(A \cap B)$ (课本 P_{101} 第45(1)题)
- ③ 字母集合|A| = n,自然数集合|B| = m,求 $P(A) \cap P(B)$ (课本 P_{98} 第12(1)题)

- ① $A \subseteq B \Leftrightarrow P(A) \subseteq P(B)$ (课本 P_{100} 第36题& P_{101} 第44题)
- ② $P(A) \cap P(B) = P(A \cap B)$ (课本 P_{101} 第45(1)题)
- ⑤ 字母集合 | A |= n,自然数集合 | B |= m,求P(A) ∩ P(B) (课本P₉₈第12(1)题)
- $P(\bigcap A_i) = \bigcap P(A_i)$ (2010年期中测试题)

容斥原理

6: 求Euler函数φ:

(P91例6.6,2001年期中测试题)

$$n=p_1^{\alpha_1}p_2^{\alpha_2}\cdots p_k^{\alpha_k},$$

$$\phi(n) = n \prod_{i=1}^{k} (1 - \frac{1}{p_k}).$$

Outline

- - Set Theory
 - Algebra of Sets(Optional)
 - Counting Principle of Inclusion-Exclusion
 - Binary Relation
 - Binary Relation
 - Equivalence Relation
- Problem Set
 - Set Theory
 - Algebra of Sets
 - Counting Principle of Inclusion-Exclusion
 - Binary Relation
- - Relational Database
 - Cantor Set
 - Russell's Paradox and Axiomatic Set Theory

有序对

7: 如何定义三元组(Optional)?

We have:

$$\langle x, y \rangle = \{\{x\}, \{x, y\}\}\$$

then:

$$\langle x, y, z \rangle = \{ \{x\}, \{x, y\}, \{x, y, z\} \}$$

有序对

7: 如何定义三元组(Optional)?

Review

We have:

$$\langle x, y \rangle = \{ \{x\}, \{x, y\} \}$$

then:

$$\langle x, y, z \rangle = \{ \{x\}, \{x, y\}, \{x, y, z\} \}$$

Q: Is the definition OK?

Tips: Consider $\langle x, y, x \rangle$ and $\langle x, y, y \rangle$

有序对

7: 如何定义三元组(Optional)?

Review

We have:

$$\langle x, y \rangle = \{ \{x\}, \{x, y\} \}$$

then:

$$\langle x, y, z \rangle = \{ \{x\}, \{x, y\}, \{x, y, z\} \}$$

Q: Is the definition OK?

Tips: Consider $\langle x, y, x \rangle$ and $\langle x, y, y \rangle$

A: $\langle x_1, x_2, x_3 \rangle = \langle \langle x_1, x_2 \rangle, x_3 \rangle$.

Operation over Binary Relation

8: 请证明如下运算性质:

$$R_1 \subseteq A \times B, R_2 \subseteq A \times B$$

Problem Set

②
$$(R_1 \cap R_2)^{-1} = R_1^{-1} \cap R_2^{-1} (P_{132} \$20(2) \mathbb{Z})$$

$$(\sim R)^{-1} = \sim (R^{-1})$$

$$(R_1 - R_2)^{-1} = R_1^{-1} - R_2^{-1}$$

Properties of Binary Relation

9: 请证明如下命题: (P118表7.2)

R, S are symmetric, so are $R^{-1}, R \cap S, R \cup S$, and R - S.

tips:

- R is symmetric $\Leftrightarrow R = R^{-1}$.
- $(\sim R)^{-1} = \sim (R^{-1}).$
- $(R_1 \cap R_2)^{-1} = R_1^{-1} \cap R_2^{-1}$.

Review

10:请证明如下定义的关系为等价关系,并给出商群。

- $(a,b) \sim \langle c,d \rangle \Leftrightarrow a+d=b+c$ (where $a < b, a, b \in N$)(P_{133} 第36题,作业补充题)
- $\langle a,b\rangle \sim \langle c,d\rangle \Leftrightarrow ad=bc$
- **③** $A = P(X), C \subseteq X, \forall x, y \in A, xRy \Leftrightarrow x \oplus y \subseteq C$ (P_{133} 第32(5)题)

11: Counting partitions on a set with n elements(Optional)

Problem Set

try:

- $\binom{n}{0} = 0$
- $\{ {n \atop 1} \} = 1$
- $\{ \binom{n}{2} \} = 2^{n-1} 1$
- $\bullet \ \left\{ {n \atop n-1} \right\} = {n \choose 2}$
- $\binom{n}{n} = 1$

11: Counting partitions on a set with n elements(Optional)

try:

Outline

•
$$\binom{n}{0} = 0$$

•
$$\binom{n}{1} = 1$$

$$\bullet \ \left\{ {n \atop n-1} \right\} = {n \choose 2}$$

•
$$\binom{n}{n} = 1$$

Recurrence relation:

$${n \choose r} = r{n-1 \choose r} + {n-1 \choose r-1}$$

11: Counting partitions on a set with n elements(Optional)

Problem Set

try:

- $\binom{n}{0} = 0$
- $\{ {n \atop 1} \} = 1$
- $\{ \binom{n}{2} \} = 2^{n-1} 1$
- $\{n_{n-1}^n\}=\binom{n}{2}$
- $\binom{n}{n} = 1$

Recurrence relation:

$${n \choose r} = r{n-1 \choose r} + {n-1 \choose r-1}$$

Bell number:

$$B_n = \sum_{r=0}^n {n \choose r} (n \ge 1)$$

Outline

- Review
 - Set Theory
 - Algebra of Sets(Optional)

Review

- Counting Principle of Inclusion-Exclusion
- Binary Relation
 - Binary Relation
 - Equivalence Relation
- 2 Problem Set
 - Set Theory
 - Algebra of Sets
 - Counting Principle of Inclusion-Exclusion
 - Binary Relation
 - 3 Applications and Extension(Optional)
 - Relational Database
 - Cantor Set
 - Russell's Paradox and Axiomatic Set Theory

Relational Database(关系数据库)

LName	FName	City	Age	Salary
Smith	John	3	35	\$280
Doe	Jane	1	28	\$325
Brown	Scott	3	41	\$265
Howard	Shemp	4	48	\$359
Taylor	Tom	2	22	\$250

Figure: Person table

Concept and Operator:

- ullet relation o table, tuple o row
- Union, Intersection, Difference, Cartesian product.
- Select(subset), Project,...
 "select person.LName from person where person.city=3."

http://www.seas.upenn.edu/~zives/03f/cis550/codd.pdf

Outline

Outline

- - Set Theory
 - Algebra of Sets(Optional)
 - Counting Principle of Inclusion-Exclusion
 - Binary Relation
 - Binary Relation
 - Equivalence Relation
- - Set Theory
 - Algebra of Sets
 - Counting Principle of Inclusion-Exclusion
 - Binary Relation
- Applications and Extension(Optional)
 - Relational Database
 - Cantor Set
 - Russell's Paradox and Axiomatic Set Theory

Cantor Set

What are removed?

$$\frac{1}{3} + \frac{2}{9} + \frac{4}{27} + \dots = \frac{1}{3} \sum_{n=0}^{\infty} \frac{2^n}{3^n} = 1.$$

And what remains?

Just as many "points" as there were before we began!

Outline

- Review
 - Set Theory
 - Algebra of Sets(Optional)
 - Counting Principle of Inclusion-Exclusion
 - Binary Relation
 - Binary Relation
 - Equivalence Relation
- 2 Problem Set
 - Set Theory
 - Algebra of Sets
 - Counting Principle of Inclusion-Exclusion
 - Binary Relation
- Applications and Extension(Optional)
 - Relational Database
 - Cantor Set
 - Russell's Paradox and Axiomatic Set Theory

Russell's Paradox

When we meet infinity...

Figure: Drawing Hands by M. C. Escher

When we meet paradox...

$$R = \{x \mid x \notin x\}.$$

Q: Is R a set?

A: $R \in R \Leftrightarrow R \notin R$

Axiomatic Set Theory

If you are encouraged by the paradox, or you are annoyed and begin to lose sleep night after night, please refer to this article: .

http://mplab.ucsd.edu/tutorials/settheory.pdf

Axiomatic Set Theory

If you are encouraged by the paradox, or you are annoyed and begin to lose sleep night after night, please refer to this article or a doctor immediately.

http://mplab.ucsd.edu/tutorials/settheory.pdf

That's the end. Thank you.

Figure: Bring Up a Question