

WG7311-0A WG7311-EA

WLAN/BT/FM Module
TI WL1271L IEEE 802.11b/g/n
BT 4.0 & FM solution

Datasheet Revision 0.3

<u>Index</u>

1. OVERVIEW	3
1.1. General Features	3
2. FUNCTIONAL FEATURES	4
2.1. MODULE BLOCK DIAGRAM	4
2.2. BLOCK FUNCTIONAL FEATURE	
2.2.1. WLAN Features	4
2.2.2. Bluetooth Features	5
2.2.3. BLE Features	6
2.2.4. ANT Features	6
2.2.5. FM Radio (RX/TX) Features	7
3. MODULE SPECIFICATION	8
3.1. Absolute Maximum Ratings	8
3.2. RECOMMENDED OPERATING CONDITIONS	8
3.3. WLAN RF	
3.3.1. 2.4G Receiver	
3.3.2. 2.4G Transmitter	
3.4. BLUETOOTH RF	
3.5. BLE RF	
3.6. FM RADIO ELECTRICAL CHARACTERISTICS	
3.7. EXTERNAL SLOW CLOCK INPUT (SLEEP_CLK)	
4. POWER CONSUMPTION	14
4.1. Device Shutdown Current	14
4.2. WLAN Power Consumption	14
4.2.1. Active Mode	14
4.2.2. Inactive and Dynamic Modes	
4.3. BT Power Consumption	
4.3.1. Static State	
4.3.2. Dynamic State	
4.4. BLE POWER CONSUMPTION	17
5. MODULE OUTLINE	18
5.1. SIGNAL LAYOUT (TOP VIEW)	18

5.2. PIN DESCRIPTION	19
6. POWER SEQUENCE	22
6.1. WLAN Power on Sequence	22
6.2. Bluetooth Power Up Sequence	
7. INTERFACE CHARACTERISTICS	24
7.1. WLAN SDIO CHARACTERISTIC	24
7.1.1. SDIO Read Timing	24
7.1.2. SDIO Interface Write Timing	24
7.1.3. SDIO Clock Timing	25
7.2. Bluetooth HCI Interface	26
7.3. BLUETOOTH PCM INTERFACE	27
8. DEBUG INTERFACE	28
8.1. WLAN RS232 TESTING PORT	28
8.2. Bluetooth HCI Testing Port	28
9. REFERENCE SCHEMATIC	29
10. LAYOUT RECOMMENDATION	31
10.1. RECOMMENDED BUMP PAD DESIGN	31
10.2. Recommended Stencil Design	31
10.3. RECOMMENDED TRACE LAYOUT	31
11. PACKAGE INFORMATION	34
11.1. MODULE MECHANICAL OUTLINE	34
11.2. Ordering Information	35
11.3. Package Marking	35
12. SMT AND BAKING RECOMMENDATION	36
12.1. Baking Recommendation	36
12.2. SMT RECOMMENDATION	36
13 HISTORY CHANGE	37

1. OVERVIEW

WG7311, a WiFi, Bluetooth and FM SiP (system in package) module, is the most demanded design for all handset and portable devices with TI WL1271L IEEE 802.11b/g/n and BT solutions to provide the best WiFi and BT coexistence interoperability and power saving technologies from TI.

1.1. General Features

- WLAN, Bluetooth and FM radio on a SiP module
- LGA96 pin package
- Dimension 10mm(L) x 10mm(W) x 1.4mm(H)
- Based on TI WL1271L 65-nm CMOS technology packaged in WSP for module
- Seamless integration with TI OMAP application processor and GSM-GPRS-UMTS chipset
- Internal support for WLAN and Bluetooth Co-existence (bandwidth sharing, antenna sharing)
- Direct connection to battery using external switching mode power supply supporting 5.5V to 2.3V operation
- VIO in the 1.8V domain
- Wide temperature range:

Normal: -20°C to 70°C (WG7311-0A) Extended: -40°C to 85°C (WG7311-EA)

2. FUNCTIONAL FEATURES

2.1. Module Block Diagram

2.2. Block Functional Feature

2.2.1. WLAN Features

- Support 802.11 2.4GHz b/g/n mode
- Optimized for ultra low current consumption in all operating modes including extremely low power modes
- IEEE Std 802.11d, e, h, I, k, r, s PICS compliant
- Supports Cisco Client eXtensions (CCX) standard
- Support Secure Digital Input/Output (SDIO) Interfaces

- Medium-Access Controller (MAC)
 - Embedded ARM Central Processing Unit (CPU)
 - 292kByte (Used for Program code, data and packet data) Embedded Random-Access Memory (RAM)
 - Hardware-Based Encryption/Decryption Using 64-, 128-, and 256-Bit WEP, TKIP or AES Keys
 - Supports Wi-Fi Protected Access (WPA and WPA2.0) and IEEE Std 802.11i [Includes Hardware-Accelerated Advanced-Encryption Standard (AES)]
 - Designed to Work with IEEE Std 802.1x for Virtual Private Network (VPN) Solutions
- Baseband Processor
 - All IEEE Std 802.11b/g and 802.11n Data Rates up to 72.2Mbps
- 2.4 GHz Radio
 - Digital Radio Processor (DRP) implementation
 - Internal LNA
 - Supports: IEEE Std 802.11b, 802.11g, 802.11b/g, and 802.11n

2.2.2. Bluetooth Features

- Bluetooth 1.1, 1.2, 2.0+EDR and 2.1+EDR, 3.0 and 4.0 specification compliant – up to HCI level
- BT Enhanced Data Rate (2 and 3 Mbps)
- Enhanced host Interfaces (UART)
- Very low power consumption
- On-chip Embedded radio
- Embedded ARM Microprocessor System
- Temperature detection and compensation mechanism ensure minimal variation in the RF performance over the entire temperature range
- A2DP support
- Wide-Band Speech support
- Full support for the Ultra Low Power (ULP) Bluetooth standard (previously known as Wibree)

2.2.3. BLE Features

Fully compliant with BT4.0 Low Energy (BLE) dual mode standard:

- TI BLE solution optimized for the proximity/sports use-case
- Supports large number of multiple connections (up to 10)
- Multiple sniff instance are tightly coupled to achieve minimum power consumption
- Independent buffering for LE allows having large number of multiple connections without affecting BR/EDR performance
- Includes built-in coexistence and prioritization handling for BT,
 BLE and WLAN

Notes: Advanced audio and voice processing (AVPR) capabilities, and ANT are not available when BLE is enabled.

2.2.4. ANT Features

Fully compliant with all ANT Protocols:

- ANT solution optimized for the fitness, health and consumers use-case
- Supports large number of multiple connections (up to 8)
- Simple to complex network topologies
- Support high-resolution proximity pairing
- Includes built-in coexistence and prioritization handling for BT,
 BLE and WLAN
- ANT provides immediate access to the millions of ANT+ sensors already in the market and an ongoing option for cost and power optimized sensors

The ANT protocol has been designed to very power-efficient, yet is flexible enough to support various network topologies (point-to-point, star, 1-to-N, N-to-1) and data transfer modes (broadcast, broadcast with acknowledge, mass data transfer). Each logical ANT channel can be independently configured for 1-way or 2-way operation.

Notes: Advanced audio and voice processing (AVPR) capabilities, and BLE are not available when ANT is enabled.

2.2.5. FM Radio (RX/TX) Features

- On-Chip FM Receive
- On-Chip 0dBm output FM Transmitter
- Operation through BT host interface (UART) or separate I²C interface for control and RDS data transfer
- Up to 48k Samples/sec audio sampling for stereo headsets
- Frequency resolution: 50-kHz step tuner
- Compatibility with Europe/US (87.5-108MHz) and Japan (76-90 MHz) FM Bands
- Full digital implementation
- Digital MPX signal, thus eliminating need for noise blanking circuits
- Integrated RDS/RDBS features
- Soft Mute
- Stereo/Mono blend based on signal condition for RX
- Selectable 50/75-us de-emphasis filter
- I²S format for stereo/mono digital audio data
- Analog stereo audio inputs/outputs
- Software selectable level for soft mute and stereo/mono blend level for RX
- Fast independent up/down tuning function
- Supports a dedicated enable pin for the FM IP

3. MODULE SPECIFICATION

3.1. Absolute Maximum Ratings

Over operating free-air temperature range

Characteristics	Value	Unit	
Supply Voltago Pango	VBAT	-0.5 to 5.5	٧
Supply Voltage Range	VIO	-0.5 to 2.1	>
Input Voltage to Analog Pins		-0.5 to 2.1	>
Input Voltage to all Other Pins	Input Voltage to all Other Pins		
Operating Ambient Temperature	WG7310-0A	-20 to 70	°C
Range	WG7310-EA	-40 to 85	Õ
Storage Temperature Range	WG7310-0A	-40 to 85	°C
	WG7310-EA	-50 to 105	°C

3.2. Recommended Operating Conditions

The WG7311 requires two supplies: VBAT and VIO.

Dower Supply	Voltage				
Power Supply	Min.	Тур.	Max.		
VBAT	2.3V	3.3V	4.8V		
VIO	1.62V	1.8V	1.92V		

3.3. WLAN RF

3.3.1. 2.4G Receiver

CHARACTERISTICS	CONDITION	SYMBOL	MIN	TYP (1)	MAX	UNIT
Operation frequency			2412		2484	MHz
range						

Sensitivity(2)(3)	1 Mbps DSSS		-92.5	-96.0		dBm
	2 Mbps DSSS		-90.0	-92.5		
	5.5 Mbps CCK		-87.5	-90.5		
	11 Mbps CCK		-85.5	-88.0		
	6 Mbps OFDM		-88.0	-90.5		
	9 Mbps OFDM		-87.5	-89.5		
	12 Mbps OFDM		-86.0	-88.0		
	18 Mbps OFDM		-84.0	-86.0		
	24 Mbps OFDM		-81.5	-83.5		
	36 Mbps OFDM		-77.5	-80.0		
	48 Mbps OFDM		-73.5	-76.0		
	54 Mbps OFDM		-71.5	-74.0		
	MCS0(4)(5)		-87.5	-89.0		
	MCS1(4)(5)		-86.0	-88.0		
	MCS2(4)(5)		-84.0	-86.0		
	MCS3(4)(5)		-81.0	-85.0		
	MCS4(4)(5)		-77.5	-78.5		
	MCS5(4)(5)		-73.5	-75.5		
	MCS6(4)(5)		-71.5	-73.5		
	MCS7(4)(5)		-69.5	-71.5		
Max Iput Level(6)	OFDM(11g or 11n)				-15	dBm
	CCK				-8	
	1/2 DSSS				-4	
Adjacent Channel	54OFDM	ADJCI	30			dB
Rejection	11CCK		46.5			
Alternate Channel	54OFDM		-53			dBm
Rejection						
LO Leakage					-70	dBm

- (1) Typical values are nominal room temperature
- (2) For channel 13, sensitivity is degraded up to 2 dB in 802.11g/n.
- (3) For channel 14, sensitivity is degraded up to 2 dB in 802.11b/g/n.
- (4) Measurements without STBC with 1024 bytes.
- (5) Greenfield mode: degrade 1 dB for mixed mode
- (6) At < 10% PER limit

3.3.2. 2.4G Transmitter

CHARACTERISTICS	CONDITION	SYMBOL	MIN	MAX	UNIT
Maximum RMS output	1 Mbps,2 Mbps ₍₁₎		17.5		dBm
power	5.5 Mbps,11 Mbps ₍₁₎		17.5		
	6 Mbps,9 Mbps ₍₂₎		17.0		
	12 Mbps,1 8Mbps	1	16.5		
	24 Mbps,36 Mbps	1	13.5		
	48 Mbps,54 Mbps		13.0		
	MCS0(1)		16.0		
	MCS1,2		15.5		
	MCS3,4		13.5		
	MCS5,6		12.5		
	MCS7(Greenfield)(3)(4)		11.0		
Special mask margin	Each frequency region detailed in ₍₅₎		2		dB
EVM	24 Mbps and 36 Mbps at +14.5dBm		-21		dB
	48 Mbps and 54 Mbps at +13.0dBm ₃		-25		
	MCS7 at + 12.0dBm		-28		

- (1) Customers are advised to look at filter insertion loss and board trace losses when assessing the maximum number to be calibrated during the production line testing
- (2) At $V_{\text{BAT}} = 2.7~\text{V}$, performance degrades up to 0.5 dB , At-30°C performance degraded up to additional 0.5 dB
- (3) At $V_{BAT} = 2.7 \text{ V}$, performance degrades up to 0.5 dB
- (4) Mixed mode degrades 1.0dB; channel 10 at 75° C degrades 0.5 dB more(total up to 1.5 dB).
- (5) At $V_{BAT} = 2.7 \text{ V}$, performance degrades up to 1.5 dB
- (6) Spectral mask regions are defined according to the IEEE802.11 specifications (Regions A through C for 802.11b;Regions D through F for 802.11g):

Region A: $f \in [Fc-22MHz,Fc-11MHz] \cup [Fc+11MHz,Fc+22MHz]$

Region B:f [Fc-22MHz,Fc +22 MHz]

Region C: $f \in [Fc-11MHz,Fc-9MHz] \cup [Fc+9MHz,Fc+11MHz]$

Region D:f \in [Fc-20MHz,Fc -11 MHz] \cup [Fc+11 MHz, Fc +20 MHz]

Region E:f∈[Fc-30MHz,Fc -20 MHz] ∪ [Fc+20 MHz, Fc +30 MHz]

Region F:f∉ [Fc-30MHz,Fc +30 MHz]

3.4. Bluetooth RF

BT Transmitter, GFSK, Class 2 & Class 1.5							
Characteristics		Min	Тур	Max	Unit		
RF output power	CLASS1P5 = VBAT	7	9		dBm		
Power variation over BT band		-1		1	dB		
Gain control range			30		dB		
Power control step		2	5	8	dB		

BT Receiver Characteristics, In-Band Signals							
Characteristics		Min	Тур	Max	Unit		
	GFSK, BER = 0.1%	-86	-90				
Sensitivity	Pi/4-DQPSK, BER = 0.01%	-86	-90		dBm		
	8DPSK, BER = 0.01%	-80	-84				
May uppala input	GFSK, BER = 0.1%	-5					
Max. useable input	Pi/4-DQPSK, BER = 0.1%	-10			dBm		
	8DPSK, BER = 0.1%	-10					

3.5. BLE RF

BT Transmitter						
Characteristics	Min	Тур	Max	BLE	Unit	
					SPEC	
RF output power	CLASS1P5 = VBAT	7	9		<= 10	dBm
Power variation over BLE band		-1		1		dB

BT Receiver Characteristics, In-Band Signals						
Characteristics		Min	Тур	Max	BLE	Unit
					SPEC	
Sensitivity	PER=30.8%	-89	-92		<= -70	dBm

Max. useable input	GFSK, PER = 30.8%	-5	 	>= -10	dBm
power					

3.6. FM Radio Electrical Characteristics

Characteristics	Condition		Min	Тур	Max	Unit
Audio output		FM function enabled and during auto-search			50	Ω
impedance	FM function d	isabled and	50			ΚΩ
Audio input impedance			30			ΚΩ
Selectable RF Rx input impedance		With external matching circuitry – Default = 50Ω			500	Ω
RF input return loss	With external circuitry	matching	-10			dB
Receiver current consumption	FM Rx at sensi	tivity level, BT in		12	15	mA
Transmitter current consumption	FM TX on, BT in deep sleep	Digital audio Analog audio		13	16	mA
FM off current		•		1	2	υA

3.7. External Slow Clock Input (SLEEP_CLK)

The external slow clock input SLEEP_CLK must be present at all times. The slow clock is used to maintain timers that synchronize the device to the access point (AP) beacons.

Table 1. External Slow Clock Input Requirements

Characteristics (1)	Condition	Min.	Тур.	Max.	Unit
Frequency			32.768		KHz
Reference Frequency	WLAN, BT,			+/-150	ppm

Accuracy	FM_RX				
	FM_TX (2)			+/- 40	
Input Transmit Time	10% ~ 90%			100	ns
Frequency Duty Cycle		30	50	70	%
Fail Safe Maximum				2.0	>
Value				2.0	٧
Input Voltage Limits	VIH	0.65xVIO		VIO	V/10 0 01/4
(Square Wave)	VIL	0		0.35xVIO	Vpeak
Input Impedance		1			МΩ
Input Capacitance				5	рF
Rise and fall time				100	ns
Phase noise	1kHz		-125		dBc/Hz
Jitter (3)	Integrated over			1	1.1-
	300Hz ~ 15000Hz			I	Hz

- (1) Slow clock is a fail safe input
- (2) If the available slow clock source does not meet the +/-40ppm requirement, there are two options;
 - Use the fast clock for the FM_TX functionality. This is configured using a vendor-specific command to switch to Fref operation after enabling the FM core with the slow clock source.
 - Enable clock error calibration in the FM core to compensate for the clock source error. The calibration can be done using a known vendor-input clock error or intrinsically to the core (self-calibration).
- (3) Not required if fast clock is used for FM TX and RX

4. POWER CONSUMPTION

4.1. Device Shutdown Current

The SDIO/CLK_REQ lines should be driven by the host to prevent leakage in sleep/shutdown modes.

Mode Description	Power Supply	Тур.	Max.	Unit
Shutdown mode (BT, WLAN and	1.8V (VIO)	3	5	
FM sections in shutdown mode)				
Values are over process and at	Total VBAT at 3.6V	14	35	UΑ
room temperature				

4.2. WLAN Power Consumption

WLAN supply current was measured using the HDK and the TrioScope tool, over process and temperature at F_{ref} 38.4MHz unless otherwise specified.

4.2.1. Active Mode

- During Listen Mode operation, the radio is in a low power mode optimized to receive only 11b beacons. The DC2DC, FEM and WL1271 devices are active but consume less current.
- In STBY mode, no RF operation required. The DC2DC, FEM and WL1271 device are active but consume lower current.
- In TX and RX modes, all devices are active and consume maximum currents.

			11N	lbps	54/65Mbps		
Ma	ndo Dosorintion	IEEE802.11b)2.11b	IEEE802.11g/n		Unit
Mode Description		Power Supply	Тур	Max	Тур	Max	Ullit
			(1)	(2)	(1)	(2)	
Transmit	11b/g: Packet size	1.8V (VIO)	0.25	0.3	0.25	0.3	mA

							l	
Data	=2048 bytes		FEM					
	11n: Packet size	Total	current	190	220	110	137	
	=1024 bytes	VBAT	only					
	11b delay=0.004ms	=3.6V	System	0.40	075	100	007	
	11g/n delay=0.002ms		current	260	275	189	207	
Do opine D) orto (2)	1.8V (VI	10)	0.25	0.3	0.25	0.3	A
Receive D		Total VE	3.6V	92	103	92	103	mA
Liston (2)		1.8V (VI	10)	0.25	0.3	n/a	n/a	A
Listen (3)		Total VBAT = 3.6V		69	75	n/a	n/a	mA
CTDV		1.8V (VIO)		0.25	0.3	0.25	0.3	A
STBY		Total VBAT =3.6V		6	9	6	9	mA

- (1) Nominal process at 25°C
- (2) Over process and temperature
- (3) CH14 values add up to 2mA

4.2.2. Inactive and Dynamic Modes

Mode Description	Power Supply	Тур	Max	Unit
Sloop mode (PT and EAA in recet) (1) (0)	1.8V (VIO)	12	15	
Sleep mode (BT and FM in reset) (1) (2)	Total VBAT at 3.6V	85	107	UΑ

- (1) Values indicate current between beacons
- (2) Room temp over process

Mode Description (1)	Power Supply	Max	Unit
Dynamic mode			
Beacon (DTIM =1 : TBTT = 100ms)	Total VBAT at 3.6V to	0.75	mA
Beacon duration~1.6ms : Rate= 1Mbps	TPS62611	0.75	MA
Beacon in Listen mode			

⁽¹⁾ This mode reflects results with software drivers and not the Triscope tool.

4.3. BT Power Consumption

BT supply current was measured using the HDK and HCl Tester tool at Fref 38.4MHz.

4.3.1. Static State

Characteristics	Тур	Max	Unit	
Supply current in deep sleep mode	VIO	12	15	
	VBAT	62	80	UΑ

4.3.2. Dynamic State

Transmit power at 4dBm, nominal, room temperature, V_{BAT} =3.6V, F_{ref} at 38.4MHz.

	Mode	Full VBAT	Mixed I	Mode	
Use Case	Description	Source	1.8V (1)	V BAT	Unit
	-			(2)	
Idle current (ARM off) (3)	Master/Slave	1.8	2.9	0	
SCO link HV3	Master/Slave	8	11.4	1.2	
eSCO link EV3 64Kbps, no	Master/Slave	0.0	11.5	1.0	
retransmission		8.2	11.5	1.3	
eSCO link 2-EV3 64Kbps, no	Master/Slave	5 /	0.5	0.4	
retransmission		5.6	8.5	0.6	mA
GFSK full throughput: Tx=DH1,	Master/Slave	00.5	37.5	1.0	
RX=DH5		23.5		1.2	
EDR full throughput:	Master/Slave	0.4.2	20.7	1.1	
Tx=2-DH1, RX=2-DH5		24.3	38.6		
EDR full throughput:	Master/Slave	24.9	38.5	1.1	
Tx=3-DH1, RX=3-DH5		24.9	36.3	1.1	
Sniff, 1 attempt, 1.28sec	Master/Slave	100/110	90/115	<10	
Page or Inquiry Scan 1.28s,	Master/Slave	000	21.5	0	
11.25ms		230	315	0	
Page scan 1.28s, 11.25msec	Master/Slave				υA
and Inquiry Scan 2.56s,		320	435	0	
11.25ms					
Low power scan, 1.28 interval	Master/Slave	145	150	0	

- (1) Voltage Input at INPUT_VBAT_SUPPLY
- (2) Voltage input at BT_CLASS_1P5
- (3) IDLE is a state in which the BT is awake and communicates with the host, but there is no RF activity.

4.4. BLE Power Consumption

BLE supply current was measured using the HDK and HCI Tester tool at Fref = 38.4 MHz.

Operational Mode	Description	Full VBAT Source	Unit	
	AdvInterval = 1.28 s			
Advertising	Adv Data = 15 Octets	1124		
(non-connectable)	TX output power = +10 dBm	1124		
	Advertising on 3 adv channels			
	AdvInterval = 1.28 s			
Advertising	Adv Data = 15 Octets	135	υA	
(discoverable)	TX output power = +10 dBm	133		
	Advertising on 3 adv channels			
	scanInterval = 1.28 s		UA	
Scanning	scanWindow = 11.25 ms	245		
Scanning	Listens on single frequency per	243		
	window			
	Master role			
Link Lawar	connInterval = 500 ms			
Link Layer	connSlaveLatency = 0	160		
connection (master)	Empty TX/RX LL packets			
	TX output power = +10 dBm			

5. Module Outline

5.1. Signal Layout (Top View)

		1	2	3	4	5	6	7	8	9	10	11
		Al	A2	A3	A4	A5	A6	A7	A8	A9	A 10	A11
Α	1	GND	N.C.	VBAT	VIO	PM_DC_REQ	GND	CM_XTALM	GND	FA_AUD_IN_L	GND	FA_AUD_IN_R
		B1	B2	В3	B4	B5	B6	B7	B8	B9	B10	B11
В	2	BD_WU	GND	CLASS1P5	178	N.C.	N.C.	GND	CM_XTALP	GND	FA_AUD_OUT_L	GND
		C1	C2								C10	C11
C	3	N.C.	BD_TX_DBG		WG	7311 Pin	Assignme	ent Top V	iew		GND	FA_RX_ANT
		D1	D2		D4	D5	D6	D7	D8	9	D10	D11
D	4	N.C.	GND		BD_AUD_CLK	BD_AUD_FSYNC	BD_HCI_CTS	BD_HCI_RTS	NC.		FA_AUD_OUT_R	GND
		E1	E2		E4	E5	E6	E7	E8		E10	E11
E	5	GND	N.C.		BD_AUD_IN	BD_AUD_OUT	GND	GND	BD_HCI_TX		GND	FA_TX_ANT
		F1	F2		F4	F5		F7	F8		F10	F11
F	6	N.C.	GND		GND	GND		GND	BD_HCI_RX		MD_SLOWCLK	GND
		G1	G2		G4	G5	G6	G7	G8		G10	G11
G	7	GND	N.C.		N.C.	GND	GND	GND	WD_IRQ		GND	FD_12S_DO
		H1	H2		H4	Н5	H6	H7	H8		H10	H11
Н	8	N.C.	GND		GND	N.C.	NC.	WD_UART_DBG	MD_CLK_REQ_OUT	r	FD_J2S_DI	FD_12S_CLK
		J1	J2	,							J10	J11
1	9	N.C.	N.C.								FD_IRQ	FD_SCL
		K1	K2	K3	K4	K5	K6	K7	K8	K9	K10	K11
K	10	GND	N.C.	N.C.	BD_EN	GND	WD_RS232_RX	WD_RS232_TX	DS_SPI_CSX	DS_SPI_DOUT	FD_12S_FSYNC	FD_SDA
		L1	L2	L3	L4	L5	L6	L7	L8	L9	L10	L11
L	11.	N.C.	GND	FD_EN	GND	WB_RF_ANT	GND	DS_SDIO_D1	DS_SDIO_D2	DS_SPI_DIN	DS_SPI_CLK	WD_EN

5.2. Pin Description

No.	Index	Name	Туре	Description	
1	A1	GND	GND	GROUND	
2	A2	N.C.	-	Not connected	
3	В1	BT_FUNC2: BT_WU/ DC2DC	0	BT WU (default) or BT DC2DC	
4	B2	GND	GND	GROUND	
5	C1	N.C.	-	Not connected	
6	C2	BT_FUNC4: BT_TX_DBG	0	BT UARTD (reserved for debug)	
7	D1	N.C.	-	Not connected	
8	D2	GND	GND	GROUND	
9	E1	GND	GND	GROUND	
10	E2	N.C.	-	Not connected	
11	F1	N.C.	-	Not connected	
12	F2	GND	GND	GROUND	
13	G1	GND	GND	GROUND	
14	G2	N.C.	-	Not connected	
15	Н1	N.C.	-	Not connected	
16	H2	GND	GND	GROUND	
17	J1	N.C.	-	Not connected	
18	J2	N.C.	-	Not connected	
19	K1	GND	GND	GROUND	
20	K2	N.C.	-	Not connected	
21	L1	N.C.	-	Not connected	
22	L2	GND	GND	GROUND	
23	L3	FM_EN		FM RST	
24	К3	N.C.	-	Not connected	
25	L4	GND	GND	GROUND	
26	K4	BT_EN	I	BT RST	
27	L5	WB_RF_ANT	I/O	WL/BT RF ANT	
28	K5	GND	GND	GROUND	
29	L6	GND	GND	GROUND	
30	K6	WL_RS232_RX/ I2S_M_SCL	I	RS232_RX (default) or I2C_M_SCL	
				(reserved for debug)	
31	L7	SDIO_D1	I/O	SDIO IF	

No.	Index	Name	Туре	Description
32	K7	WL_RS232_TX/ I2S_M_SDA	0	RS232_TX (default) or I2C_M_SDA
				(reserved for debug)
33	L8	SDIO_D2	I/O	SDIO IF
34	K8	SDIO_D3	I/O	SDIO IF
35	L9	SDIO_CMD	I/O	SDIO IF
36	K9	SDIO_D0	I/O	SDIO IF
37	L10	SDIO_CLK	I	SDIO IF
38	K10	FM_I2S_FSYNC	I/O	FM I2S IF
39	L11	WL_EN	I	WL RST
40	K11	FM_SDA	I/O	FM I2C IF
41	J11	FM_SCL	I/O	FM I2C IF
42	J10	FM_IRQ	0	FM I2C IF
43	H11	FM_I2S_CLK	I/O	FM I2S IF
44	H10	FM_I2S_DI	I	FM I2S IF
45	G11	FM_I2S_DO	0	FM I2S IF
46	G10	GND	GND	GROUND
47	F11	GND	GND	GROUND
48	F10	SLOWCLK	I	SLEEP CLK
49	E11	FM_TX_ANT	0	FM TX ANT
50	E10	GND	GND	GROUND
51	D11	GND	GND	GROUND
52	D10	FMAUDROUT	0	FM AUD OUT
53	C11	FM_RX_ANT	I	FM RX ANT
54	C10	GND	GND	GROUND
55	B11	GND	GND	GROUND
56	B10	FMAUDLOUT	0	FM AUD OUT
57	A11	FMAUDRIN	1	FM AUD IN
58	A10	GND	GND	GROUND
59	А9	FMAUDLIN	I	FM AUD IN
60	В9	GND	GND	GROUND
61	A8	GND	GND	GROUND
62	В8	XTALP	0	FREF INPUT (internal use only)
63	A7	XTALM	0	FREF INPUT (internal use only)
64	В7	GND	GND	GROUND

No.	Index	Name	Туре	Description
65	A6	GND	GND	GROUND
66	В6	DC2DC_MODE	-	Connect to B5
67	A5	DC_REQ	0	DC_REQ to INTERNAL DC2DC
68	В5	DC2DC_MODE	-	Connect to B6
69	A4	VIO	Ι	1.62~1.92V POWER SUPPLY, 1.8V TYP
70	B4	1V8	0	1.8V DC2DC POWER SUPPLY
71	А3	VBAT	Ι	2.3~4.8V POWER SUPPLY, 3.3V TYP
72	В3	VDD_LDO_IN_CLASS1P5	I	BT CLASS2/CLASS1.5 POWER SUPPLY
73	D4	PCM_AUD_CLK	1/0	PCM I/F
74	E4	PCM_AUD_IN	1/0	PCM I/F
75	F4	GND	GND	GROUND
76	G4	N.C.	-	Not connected
77	H4	GND	GND	GROUND
78	Н5	N.C.	-	Not connected
79	Н6	N.C.	-	Not connected
80	H7	WL_UART_DBG	0	WL_UART_DBG (reserved for debug)
81	Н8	CLK_REQ_OUT	0	CLK_REQ positive polarity
82	G8	WLAN_IRQ	0	WLAN interrupt request
83	F8	HCI_RX	I	BT UART I/F
84	E8	HCI_TX	0	BT UART I/F
85	D8	N.C.	-	Not connected
86	D7	HCI_RTS	1/0	BT UART I/F
87	D6	HCI_CTS	1/0	BT UART I/F
88	D5	PCM_AUD_FSYNC	1/0	PCM I/F
89	E5	PCM_AUD_OUT	0	PCM I/F
90	F5	GND	GND	GROUND
91	G5	GND	GND	GROUND
92	G6	GND	GND	GROUND
93	G7	GND	GND	GROUND
94	F7	GND	GND	GROUND
95	E7	GND	GND	GROUND
96	E6	GND	GND	GROUND

6. Power Sequence

6.1. WLAN Power on Sequence

The sequence describes device power up from shutdown.

6.2. Bluetooth Power Up Sequence

Power up requirements:

- 1. BT_EN must be low
- 2. VIO must be stable before releasing BT_EN.
- 3. Slow clock must be stable within 2 ms of BT_EN high.

Copyright © JORJIN TECHNOLOGIES INC. LIMITED 2011 http://WWW.JORJIN.COM.TW CONFIDENTIAL

Bluetooth Power Up sequence

WG7311 indicates completion of power up sequence by asserting RTS low. This occurs up to 100ms after BT_EN goes high.

7. Interface Characteristics

7.1. WLAN SDIO Characteristic

7.1.1. SDIO Read Timing

SDIO Single Block Read

Table 2. SDIO Read Switching characteristics

Table 3.

	PARAMETER			MAX	UNIT
t _{CR}	Read-command CMD valid to card-response CMD valid to card-response CMD valid		2	64	Clock cycles
t _{cc}	t _{CC} Delay time, CMD command valid to CMD command valid				Clock cycles
t _{RC}	t _{RC} Delay time, CMD response valid to CMD command valid				Clock cycles
t _{AC}	Access time, CMD command valid to SD3–SD0 read data valid				Clock cycles

7.1.2. SDIO Interface Write Timing

(1) CRC status and busy waveforms are only for data line 0. Data lines 1-3 are N/A. The busy waveform is optional and may not be present.

SDIO Single Block Write

Table 4. SDIO Write Switching characteristics

	PARAMETER	MIN	MAX	UNIT
t_{d1}	Delay time, CMD card response invalid to SD3-SD0 write data valid	2		Clock cycles
t_{d2}	Delay time, SD3-SD0 write data invalid end to CRC status valid	2	2	Clock cycles

7.1.3. SDIO Clock Timing

SDIO Clock Timing

Table 5. SDIO Timing requirement

	PARAMETER			MAX	UNIT
f _{clock}	Clock frequency, CLK	C _L ≤ 30 pF	0	26	MHz
DC	Low/high duty cycle	C _L ≤ 30 pF	40	60	%
t _{TLH}	Rise time, CLK	C _L ≤ 30 pF		4.3	ns
t _{THL}	Fall time, CLK	C _L ≤ 30 pF		3.5	ns
t _{ISU}	Setup time, input valid before CLK ↑	C _L ≤ 30 pF	4		ns
t _{IH}	Hold time, input valid after CLK ↑	C _L ≤ 30 pF	5		ns
t _{odly}	Delay time, CLK↓ to output valid	C _L ≤ 30 pF	2	12	ns

7.2. Bluetooth HCI Interface

^{*} STR: Start bit;

D0...Dn: Data bits (LSB first);

PAR: Parity bit (if parity is used); STP: Stop bit

Table 6. BT HCI Timing characteristics

Characteristics	Condition	Symbol	Min	Тур.	Max	Unit
Baud rate	Any rate (1)		37.5	115.2	4000	kbps
Baud rate accuracy	Receive,Transmit	t5, t7			-2.5to+1.5	%
CTS low to TX_DATA on		t3	0	2		US
CTS high to TX_DATA off	Hardware flow control	†4			1	Byte
CTS high pulse width		†6	1			bit
RTS low to RX_DATA on		†1	0	2		US
RTS high to RX_DATA off	Interrupt set to 1/4 FIFO	†2			16	Bytes

Exception for 19.2MHz: Maximum baud rate = 3.84Mbps.

7.3. Bluetooth PCM Interface

Bluetooth can be setting as master or slave mode. For more stable voice performance, slave mode is recommended.

Table 7. BT PCM Slave mode Timing characteristics

Characteristics	Symbol	Min	Тур.	Max	Unit
Master clock frequency	1/†1	64		16000	KHz
Clock duty cycle		40	50	60	%
Synchronization clock frequency	1/†3	1/(8xt1)		1/(65535xt1)	KHz
Synchronization signal width		†1		165545xt1	
Setup time for AUD_FSYNC high to AUD_CLK	t2	-			10.0
low	12	5			ns
Hold time from AUD_CLK low to AUD_FSYNC	†4	8			ns
low	14	0			ns
Setup time for AUD_IN valid to AUD_CLK low	t8	5			ns
Hold time from AUD_CLK low to AUD_IN	† 9	8			25
invalid	19	ŏ			ns
Delay time from AUD_CLK high to AUD_OUT	†5			20	25
data valid	15			20	ns
Delay time from AUD_CLK low to last data bit	†7			20	ns
of AUD_OUT output set to high impedance	17			20	ns

8. Debug Interface

The debug interface helps customers to evaluate the HW/SW features for their application. It also helps to debug during the development stage. The WG7311 module support RS232 signals and UART signals for debug purpose. Connect RS232 and UART signals to the test points for future debug support.

8.1. WLAN RS232 Testing Port

"Direct" serial interface (RS232_TX, RS232_RX) used by WLAN TrioScope software package for WLAN RF performance test, debug and manufacturing application.

8.2. Bluetooth HCI Testing Port

HCI_TX and HCI_RX are used by Bluetooth "HCI Tester" software package for Bluetooth RF performance test, debug and manufacturing application.

9. Reference Schematic

ANTENNA CIRCUITS

Scheme Brief

WiFi Interface: SDIO BT Interface: UART, PCM

FM Interface: UART (with BT together),

Audio IN/OUT

Fast Clock: 38.4MHz built-inside Slow Clock: 32.768KHz from outside

** Boot Conditions

VBAT_IN: 2.7~4.8V => 3.3V TYP VIO_IN: 1.62~1.92V => 1.8V TYP

Slow Clock: 32.768KHz for module boot

and deep sleep

1V8 FM AUDIO Output (Option)

10. Layout Recommendation

10.1. Recommended Bump Pad Design

Recommended Bump Pad Design for WG7311

COMMENT:

SMD = Solder Mask Define

S/M= Solder Mask

B/P= Bump Pad

10.2. Recommended Stencil Design

The bump pad size, it's solder mask opening and the relevant stencil Via diameter described in **Section 10.1** and **Section 10.2** shall be followed completely otherwise the module mounting yield rate couldn't be insured. The recommended stencil via diameter is 570um.

10.3. Recommended Trace Layout

XTALP and XTALM

Having ground plane in Layer2 under the two floating pins to avoid unwanted central frequency offset

Digital Signals Layout

- > SDIO signals traces (CMD, D0, D1, D2 and D3) should be routed in parallel to each other and as short as possible.
- > SDIO Clock, Audio Clock (PCM_AUD_CLK), FM I2S Clock (FM_I2S_CLK), FM I2C Clock (FM_SCL), these digital clock signals are a source of noise. Keep the traces of these signals as short as possible. Whenever possible, maintain a clearance around them.

• RF Trace & Antenna

- > 50 ohm trace impedance match on the trace to the antenna.
- Recommended 50ohm trace design for PCB layout

Height Between L1 and L2 (H): 10.0 mil

Trace (W): 14.3 mil

(W1): 14.3 mil

Thickness (T): 2.1 mil

Separation (S): 10.0 mil

Dielectric (Er): 4.3

- Move all the high-speed traces and components far away from the antenna.
- Check ANT vendor for the layout guideline and clearance.
- Matching circuit layout should be as following figure.

Power Trace

Power trace for VBAT should be 40mil wide. 1.8V trace should be 18mil wide.

Ground

- Having a complete Ground and more GND vias under module in layer1 for system stable and thermal dissipation as following figure.
- ➤ Have a complete Ground pour in layer 2 for thermal dissipation.
- Increase the GND pour in the 1st layer, move all the traces from the 1st layer to the inner layers if possible.
- Move GND vias close to the pad.

Slow Clock

- FM RF module uses the 32-kHz clock, it is extremely important that the slow-clock trace not be routed next to any digital signals.
- The slow clock trace should not be routed above or below digital signals on other layers.

11. PACKAGE INFORMATION

11.1. Module Mechanical Outline

Top and Side View

unit: mm

Bottom View

- Pin array = 11x11
- Pin number = 96 pins
- Bump pitch = 0.85mm
- Bump diameter = 0.5mm
- Dimension tolerance±0.05mm

11.2. Ordering Information

Part number:	WG7311-0A	Normal temperature device
Part number:	WG7311-EA	Extended temperature device

11.3. Package Marking

Part Number: WG7311-XA

X = 0: WG7311-0AX = E: WG7311-EA

Date Code: YYWWSSF

YY = Digit of the year, ex: 2008=08

WW = Week $(01 \sim 53)$

SS = Serial number from 01 ~99 match to manufacture's lot number

F = Reserve for internal use

12. SMT and Baking Recommendation

12.1. Baking Recommendation

- Baking condition:
 - Follow MSL Level 4 to do baking process.
 - After bag is opened, devices that will be subjected to reflow solder or other high temperature process must be
 - a) Mounted within 72 hours of factory conditions <30°C/60% RH, or
 - b) Stored at <10% RH.
 - Devices require bake, before mounting, if Humidity Indicator Card reads > 10%

If baking is required, Devices may be baked for 8 hrs at 125 °C.

12.2. SMT Recommendation

Recommended Reflow profile :

No.	Item	Temperature (°C)	Time (sec)		
1	Pre-heat	D1: 140 ~ D2: 200	T1: 80 ~ 120		
2	Soldering	D2: = 220	T2: 60 +/- 10		
3	Peak-Temp.	D3: 250 °C max			

Note: (1) Reflow soldering is recommended two times maximum.

- (2) Add Nitrogen while Reflow process: SMT solder ability will be better.
- Stencil thickness: 0.1~0.15 mm (Recommended)
- Soldering paste (without Pb): Recommended SENJU N705-GRN3360-K2-V can get better soldering effects.

13. History Change

Revision	Date	Description
R 0.1	2011/5/20	Release 0.1
R 0.2	2011/9/16	Add Extended temperature device
R 0.3	2011/9/22	Add Power Consumption