Introduction to mathematical statistics ゼミ (第?回)

担当: 伊藤真道

未定

3 Chap.3 Some Special Distributions

3.5 The Multivariate Normal Distribution

(D くんがやってくれたところの続きの残ってる部分だけです。まずは軽い復習から) $Z_1,\dots,Z_n\stackrel{iid}{\sim}N(0,1)$ である確率変数からなる確率変数ベクトル $\mathbf{Z}:=(Z_1,\dots,Z_n)'$ の密度関数は、 $\mathbf{z}\in\mathbb{R}^n$ について

$$f_{\mathbf{Z}}(\mathbf{z}) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{1}{2}z_i^2\right\} = \left(\frac{1}{2\pi}\right)^{n/2} \exp\left\{-\frac{1}{2}\sum_{i=1}^{n} z_i^2\right\}$$
$$= \left(\frac{1}{2\pi}\right)^{n/2} \exp\left\{-\frac{1}{2}\mathbf{z}'\mathbf{z}\right\}$$
(3.5.1)

と表されるのだった. $Z_i \sim N(0,1)$ であり、これらは、無作為標本 (=iid) であることから、 ${\bf Z}$ の 平均と分散は、

$$E[\mathbf{Z}] = \mathbf{0}_n, \ V[\mathbf{Z}] = I_n \tag{3.5.2}$$

である。また、N(0,1) の mgf は $E[e^{t_i Z_i}] = \exp(0 \cdot t_i + (1 \cdot t_i)^2/2) = \exp(t_i^2/2)$ であったことを思い出すと、 Z_i が iid であることから、Z の mgf は、

$$M_{\mathbf{Z}}(t) = E[\exp(t'\mathbf{Z})] = \exp\left\{\frac{1}{2}t't\right\}$$
 (3.5.3)

となる。特に二つ目の等号は間を飛ばしているので、気になる方は、私に聞くか、自分で調べてください。また、ここで、 $t\in\mathbb{R}^n$ である。以上のような性質を持つ確率変数ベクトル Z は n 次元多変量標準正規分布 $N(\mathbf{0}_n,I_n)$ に従うといい、 $Z\sim N(\mathbf{0}_n,I_n)$ と表す。

1 変数の場合と同様に、多変数の場合にも標準でない正規分布も存在する。それを紹介するために、 $n \times n$ 半正定値対称行列 (=グラム行列, Gramian) Σ を用意する。線形代数の初歩的な知見か

 $ら, \Sigma$ は常に、

$$\Sigma = \Gamma' \Lambda \Gamma \tag{3.5.4}$$

のように、固有値を対角成分として持つ対角行列 $\Lambda=diag(\lambda_1,\ldots,\lambda_n)$ と、それに対応する固有ベクトルを列として持つ直交行列 Γ' を用いて固有値分解を行うことができることがわかっている。但し、 $\lambda_1\geq \lambda_2\geq \cdots \geq \lambda_n\geq 0$ である。 Σ の半正定値性から、 λ_i は非負であり、 $\Lambda^{1/2}:=diag(\sqrt{\lambda_1},\ldots,\sqrt{\lambda_n})$ を用いて、

$$\Sigma = \Gamma' \Lambda^{1/2} \Gamma \Gamma' \Lambda^{1/2} \Gamma = \Sigma^{1/2} \Sigma^{1/2}$$

のように表すことができる. ここで, グラム行列の平方根を

$$\Sigma^{1/2} := \Gamma' \Lambda^{1/2} \Gamma$$

と定義した. さらに, Σ が正定値行列 (=全ての固有値 > 0) と仮定すると,

$$\left(\Sigma^{1/2}\right)^{-1} = \Gamma' \Lambda^{-1/2} \Gamma$$

と逆行列の計算が可能である. 詳しくは、伊藤レクチャー第一回を参照.

さて、一般の多変量正規分布についての話に戻ろう。先ほどと同様の半正定値対称行列 Σ と、 $n \times 1$ の定数ベクトル μ を用いて、 $\mathbf{Z} \sim N(\mathbf{0}_n, I_n)$ を変換することを考える。

$$\boldsymbol{X} := \Sigma^{1/2} \boldsymbol{Z} + \boldsymbol{\mu} \tag{3.5.8}$$

と定義された Z の線形変換 X の平均, 分散, mgf は,

$$E[X] = \mu, \ V[X] = \Sigma \tag{3.5.9}$$

$$M_{\boldsymbol{X}}(\boldsymbol{t}) = \exp(\boldsymbol{t}'\boldsymbol{\mu} + \frac{1}{2}\boldsymbol{t}'\boldsymbol{\Sigma}\boldsymbol{t})$$
 (3.5.10)

となる. 証明は略. 気になったら私に聞いてください.

もし、ここで、 Σ が正定値行列ならば、 $\Sigma^{-1/2}$ が存在し、X、Z は一対一に対応し、X を

$$Z = \Sigma^{-1/2}(X - \mu), \ det(\Sigma^{-1/2}) = det(\Sigma)^{-1/2}$$

と変換することで、 Z を求めることができる. 以上から, 多変量正規分布の密度関数は,

$$f_{\boldsymbol{X}}(\boldsymbol{x}) = \frac{1}{(2\pi)^{n/2} det(\Sigma)^{1/2}} \exp\left\{-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu})' \Sigma^{-1}(\boldsymbol{x} - \boldsymbol{\mu})\right\}, \text{ for } \boldsymbol{x} \in \mathbb{R}^n$$
 (3.5.12)

と表される. 以上を一旦まとめる.

多変量正規分布の密度関数,平均,分散,mgf —

多変量正規分布 $N(\mu, \Sigma)$ の密度関数は,

$$f_{\mathbf{X}}(\mathbf{x}) = \frac{1}{(2\pi)^{n/2} det(\Sigma)^{1/2}} \exp\left\{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})' \Sigma^{-1}(\mathbf{x} - \boldsymbol{\mu})\right\}, \text{ for } \mathbf{x} \in \mathbb{R}^n$$
 (3.5.12)

であり, 平均, 分散は,

$$E[X] = \mu,$$
$$V[X] = \Sigma$$

であり、mgf は

$$M_{\boldsymbol{X}}(\boldsymbol{t}) = \exp(\boldsymbol{t}'\boldsymbol{\mu} + \frac{1}{2}\boldsymbol{t}'\boldsymbol{\Sigma}\boldsymbol{t})$$

である.

inoteį

以下頻繁に利用される定理を紹介する。証明は、前回の D くん担当のゼミでやっているため、省略するが、気になる方は私に聞くか、テキストを読んでください。

Theorem 3.5.1 ──

 $m{X}\sim N_n(m{\mu},\Sigma)$ とし、 $m{Y}:=m{A}m{X}+m{b}$ という変換を考える.この時、 $m{Y}\sim N_m(m{A}m{\mu}+m{b},m{A}m{\Sigma}m{A'})$ である.

証明は, mgf を使う.

inotei

Corollary 3.5.1

Theorem 3.5.1 $\mathcal{C} A = [I_m : O_{mp}],$

$$m{X} = egin{bmatrix} m{X}_1 \\ m{X}_2 \end{bmatrix}, \; m{\mu} = egin{bmatrix} m{\mu}_1 \\ m{\mu}_2 \end{bmatrix}, \; \Sigma = egin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix}$$

であったとする. この時, $X_1 = AX$ であり, $X_1 \sim N_m(\mu_1, \Sigma_{11})$ である.

証明は、Theorem3.5.1 の結果を利用する. inote;

Theorem 3.5.2

(上記のセッティングで、) $m{X}_1$ と $m{X}_2$ が独立であるとは、 $\Sigma_{12}=O$ であることを言う.

証明は, $\Sigma'_{12}=\Sigma_{21}$ であることに注意して, \pmb{X}_1,\pmb{X}_2 の jmgf をみる. inote;

Theorem 3.5.3

(上記のセッティングで, $)\Sigma$ が正定値行列であることを仮定する.この時, $m{X}_1|m{X}_2$ の条件付き分布は,

$$N_m(\boldsymbol{\mu}_1 + \Sigma_{12}\Sigma_{22}^{-1}(\boldsymbol{X}_2 - \boldsymbol{\mu}_2), \Sigma_{11} - \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21})$$
 (3.5.12)

となる.

以降面倒なので、ベクトルの太字はやめます.本当に面倒なので.その時の状況で判断してください.わからなかったら、書き方が悪い!と私を詰ってください.

Proof 3.1. まず、確率変数ベクトル $W=X_1-\Sigma_{12}\Sigma_{22}^{-1}X_2$ と X_2 について考える.これらの確率変数ベクトルの分布は、 $X=[X_1,X_2]'$ の線形変換、

$$\begin{bmatrix} W \\ X_2 \end{bmatrix} = \begin{bmatrix} I_m & -\Sigma_{12}\Sigma_{22}^{-1} \\ O_m & I_p \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$$

によって得られる. つまり、Theorem~3.5.1(多変量正規分布に従う確率変数ベクトルの線形変換)

が適用できて, $E[W] = \mu_1 - \Sigma_{12}\Sigma_{22}^{-1}\mu_2$, $E[X_2] = \mu_2$ であり,共分散行列は,

$$\begin{split} V[(W,X_2)'] &= \begin{bmatrix} I_m & -\Sigma_{12}\Sigma_{22}^{-1} \\ O_m & I_p \end{bmatrix} V[X] \begin{bmatrix} I_m & -\Sigma_{12}\Sigma_{22}^{-1} \\ O_m & I_p \end{bmatrix}' \\ &= \begin{bmatrix} I_m & -\Sigma_{12}\Sigma_{22}^{-1} \\ O_m & I_p \end{bmatrix} \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix} \begin{bmatrix} I_m & -\Sigma_{12}\Sigma_{22}^{-1} \\ O_m & I_p \end{bmatrix}' \\ &= \begin{bmatrix} \Sigma_{11} - \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21} & O' \\ O & \Sigma_{22} \end{bmatrix} \end{split}$$

ここで、 $\Sigma_{12}=O$ から Theorem 3.5.2 が適用できて、 W,X_2 は独立であることがわかる. よって、 $W|X_2$ の分布と、W の周辺分布は等しい. つまり、

$$W|X_2 \sim N_m(\mu_1 - \Sigma_{12}\Sigma_{22}^{-1}\mu_2, \Sigma_{11} - \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21})$$

さらに, $X_1|X_2=W+\Sigma_{12}\Sigma_{22}^{-1}X_2|X_2=W+\Sigma_{12}\Sigma_{22}^{-1}X_2$ から, 再び, Theorem 3.5.1 を適用して,

$$X_1|X_2 \sim N_m(\mu_1 - \Sigma_{12}\Sigma_{22}^{-1}\mu_2 + \Sigma_{12}\Sigma_{22}^{-1}X_2, \Sigma_{11} - \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21})$$

= $N_m(\mu_1 + \Sigma_{12}\Sigma_{22}^{-1}(X_2 - \mu_2), \Sigma_{11} - \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21})$ \square

(最初のWと X_2 の導入とか天才すぎて自力で思いつかんやろ…) inote;

- Theorem 3.5.4 -

(Theorem 3.5.3 と同様にセッティングで.) 確率変数 W を $W:=(X-\mu)'\Sigma^{-1}(X-\mu)$ と定義すると,

$$W \sim \chi_n^2$$

であろ

Proof 3.2. Σ の正定値性から, $\Sigma = \Sigma^{1/2}\Sigma^{1/2}$ とかける.これを用いて, $Z = \Sigma^{-1/2}(X - \mu)$ に対して,Theorem~3.5.1 を適用すると, $Z \sim N_n(0_n, I_n)$ である.また, $W = (X - \mu)'\Sigma^{-1}(X - \mu) = (X - \mu)'\Sigma^{-1/2}\Sigma^{-1/2}(X - \mu) = Z'Z = \sum_i^n Z_i^2$ とかけ, Z_i はそれぞれ独立であることに注意すると,定理の結果を得る.

jnoteį

3.5.1 Applications

 $X \sim N_n(\mu, \Sigma)$ で, Σ は正定値行列とする.この時,以前紹介したように, $\Sigma = \Gamma' \Lambda \Gamma$ と固有値分解可能である. $Y := \Gamma(X - \mu)$ と定義し, $\Gamma \Sigma \Gamma' = \Lambda$ であることに注意すると, $Y \sim N_n(0_n, \Lambda)$ である. Λ が対角行列であることから, Y_1, \ldots, Y_n はそれぞれ独立であり, $N(0, \lambda_i)$ という分布に従う.このように定義された確率変数ベクトル Y を主成分 (principal components)と呼ぶ.

また、確率変数ベクトルの<u>総変動 ($Total\ Variation$)</u>とは、その成分の分散の総和である。X の総変動は、

$$TV(X) = \sum_{i=1}^{n} \sigma_i^2 = tr\Sigma = tr\Gamma'\Lambda\Gamma = tr\Lambda\Gamma\Gamma' = \sum_{i=1}^{n} \lambda_i = TV(Y)$$

と変形でき、主成分Yと同一の総変動を持つことがわかる.

次に、Y の最初の成分 $Y_1=v_1'(X-\mu)$ について考えよう。これは、 $(X-\mu)$ の成分の $\|v_1\|=1$ なる v_1 による線型結合である。さらに、別の $(X-\mu)$ の線型結合を考える。仮にこれを $a'(X-\mu)$ とし、こちらも $\|a\|=1$ であるとする。 $\{v_1,v_2\ldots,v_n\}$ は \mathbb{R}^n の基底であり、 $a\in\mathbb{R}^n$ であることから、何らかのスカラー (c_1,\ldots,c_n) を用いて、 $a=\sum_{i=1}^n c_i v_i$ と書けるはずである。さらに、 $\{v_1,v_2\ldots,v_n\}$ は直交しているため、

$$a'v_i = \left(\sum_{j=1}^n c_j v_j\right)' v_i = c_i v_i' v_i = c_i$$

となる. 線形変換 a'X の分散は,

$$Var(a'X) = a'\Sigma a$$

$$= \sum_{i=1}^{n} \lambda_i (a'v_i)^2$$

$$= \sum_{i=1}^{n} \lambda_i a_i^2 \le \lambda_1 \sum_{i=1}^{n} a_i^2 = \lambda ||a||^2 = \lambda_1 = Var(Y_1)$$
(3.5.24)

よって, Y_1 は直交ベクトル a による線形変換の中で最大の分散を持つ. そのため, Y_1 は X の First principal component と呼ばれる.

Theorem 3.5.5

(上につらつら書いたセッティングで) $j=2,\ldots,n,\ i=1,2,\ldots,j-1$ に対して, $a\perp v_i$ なる直交ベクトルに関して, $Var[a'X]\leq \lambda_j=Var[Y_j]$ となる.

jnoteį