<u>Problem Set 3 – Random Vectors, Conditional Expectation</u>

Problem 1:

Consider two random variables X, Y with joint PDF as follows:

$$f_{XY}(x,y) = \begin{cases} A \cdot x \cdot y & \begin{pmatrix} -1 \le x < 0, & -1 \le y < 0 \\ 0 \le x \le 1, & 0 \le y \le 1 \end{pmatrix} \\ 0 & elsewhere \end{cases}$$

- 1. Find *A* .
- 2. Find $f_{x}(x)$.

Problem 2:

Consider two random variables X, Y with joint CDF as follows:

$$F_{xy}(x,y) = (1-e^{-x})(1-e^{-y})u(x)u(y)$$

- 1. What is the joint PDF, $f_{XY}(x, y)$?
- 2. What are the marginal PDFs, $f_X(x)$, $f_Y(y)$?
- 3. Are X, Y independent?

Now, let us define the random variables W,Z as follows:

$$W = X + Y$$
$$Z = X - Y$$

- 4. Find $f_{WZ}(w, z)$.
- 5. Are W,Z independent?

Problem 3:

The point A is drawn uniformly from the section [0,1]. Afterwards, the point B is drawn uniformly in the section [A,1]. Find the expected value and the variance of the distance between A and B.

Problem 4:

A sequence of N <u>continuous</u> random variables is given, $X_1,...,X_N$, which all have the same PDF, $f_X(x)$. The random variables are mutually independent. The following two random variables are defined:

$$W = Min_{i} \{X_{i}\} \quad ; \quad Z = Max_{i} \{X_{i}\}$$

Find the PDF of W and of Z.

Problem 5:

Let $X_1, X_2, \dots X_n$ be a sequence of i.i.d random variables with expected value 0 and variance 1, and let M be a random variables that takes the values 1,2,...n, each with probability $\frac{1}{n}$, and independent of $X_1, X_2, \dots X_n$. Let us define:

$$Y = \sum_{i=1}^{M} X_i$$

- 1. Find the expectation of Y given X_1 .
- 2. Find the variance of Y given X_1 .
- 3. Find the variance of Y.

Problem 6:

Consider a continuous random variable with uniform distribution:

$$X \sim U[-\pi,\pi)$$

Let us define the following random variables:

$$Y = \cos(X) \cdot Z = \sin(X)$$

Moreover, we define $W = Y^2 + Z^2$.

- 1. Find E(W).
- 2. Find $E(Y^2)$.
- 3. Find $E(Y^2 | Y \ge 0)$.

Problem 7:

In this problem, we will deal with a general linear transformation of random vectors.

1. Given is a linear transformation $g:R^n \to R^n$, which may be expressed by means of $n \times n$ matrix T, such that $\vec{Y} = g(\vec{X}) = T\vec{X}$. In addition, it is given that the inverse transformation is known (namely, the inverse of the matrix is known). Prove that the PDF of the random vector \underline{Y} , as defined by this transformation, is given by:

$$f_{\vec{y}}(\vec{y}) = \frac{1}{|\det T|} f_{\vec{x}}(T^{-1}\vec{y})$$

2. Now assume that a specific transformation is known: $\begin{cases} Y_1 = X_1 \\ Y_2 = X_1 + X_2 \end{cases}$

Find the joint PDF of the random variables Y_1 and Y_2 .

Use this result to prove that for two independent random variables, the PDF of their sum is the convolution of the separate PDFs.

(<u>Hint:</u> You may and should use Y_2 , and you must assume that X_1 and X_2 are independent.)