1. Inequalities of cones of bisection fans

Let F, G be two facet cones of a polytope $P \subset \mathbb{R}^d$ given by $F = \{x \in \mathbb{R}^d : A_1 x \leq 0\}$ and $G = \{x \in \mathbb{R}^d : A_2 x \leq 0\}$, where $A_1 \in \mathbb{R}^{m_1 \times d}$ and $A_2 \in \mathbb{R}^{m_2 \times d}$.

We know that each $\operatorname{bis}_{F,G}(0,a)$ is a polyhedron and that $\operatorname{dist}(x,\cdot)$ restricted to each facet cone is a linear function in x. Let z_1^{\top}, z_2^{\top} be the linear functionals corresponding to the distance function restricted to F and G respectively. The H-description of $\operatorname{bis}_{F,G}(0,a)$ can be computed as below:

$$\begin{aligned} \operatorname{bis}_{F,G}(0,a) &= \operatorname{bis}(0,a) \cap F \cap (G+a) \\ &= \{x \in \mathbb{R}^d : A_1 x \le 0, A_2 (x-a) \le 0, \operatorname{dist}(x,0) = \operatorname{dist}(x,a) \} \\ &= \{x \in \mathbb{R}^d : A_1 x \le 0, A_2 x \le A_2 a, z_1^\top x = z_2^\top (x-a) \} \\ &= \{x \in \mathbb{R}^d : A_1 x \le 0, A_2 x \le A_2 a, (z_1 - z_2)^\top x \le -z_2^\top a, (z_2 - z_1)^\top x \le z_2^\top a \} \\ &= \{x \in \mathbb{R}^d : A x \le z_a \} \end{aligned}$$

where
$$A = \begin{pmatrix} A_1 \\ A_2 \\ z_1^\top - z_2^\top \\ z_2^\top - z_1^\top \end{pmatrix}_{(m_1 + m_2 + 2) \times d}$$
 and $z_a = \begin{pmatrix} 0 \\ A_2 a \\ -z_2^\top a \\ z_2^\top a \end{pmatrix}_{(m_1 + m_2 + 2) \times 1}$.

We are interested in the set $\mathcal{B}_{F,G} = \{a \in \mathbb{R}^d : \mathrm{bis}_{F,G}(0,a) \neq \emptyset\}$. The fact that it is a convex cone follows from $\mathrm{bis}_{F,G}(0,a)$ being a polyhedron.

Next, we will show that it is also a polyhedral cone and determine its inequalities:

$$\mathcal{B}_{F,G} = \{ a \in \mathbb{R}^d : \text{bis}_{F,G}(0, a) \neq \emptyset \}$$

$$= \{ a \in \mathbb{R}^d : \exists x \in \mathbb{R}^d, Ax \leq z_a \}$$

$$= \{ a \in \mathbb{R}^d : \forall c \in \mathbb{R}^{m_1 + m_2 + 2} \text{ satisfying } cA = 0 \text{ and } c \geq 0, \langle c, z_a \rangle \geq 0 \}.$$

The last equality holds from the Farkas lemma [1] and allows us to further compute the inequal-

ities of
$$\mathcal{B}_{F,G}$$
 explicitly. Let us set $C = \{c \in \mathbb{R}^{m_1 + m_2 + 2} : Xc \ge 0\}$ where $X = \begin{pmatrix} I_{m_1 + m_2 + 2} \\ A^\top \\ -A^\top \end{pmatrix}$

Now write $c \in C$ as $c = (c_1, c_2, c_3, c_4)$ where $c_1 \in \mathbb{R}^{1 \times m_1}, c_2 \in \mathbb{R}^{1 \times m_2}$ and $c_3, c_4 \in \mathbb{R}$. Then the above condition can be simplified as:

$$\mathcal{B}_{F,G} = \{ a \in \mathbb{R}^d : \forall c \in C, \langle c, z_a \rangle \ge 0 \}$$

$$= \left\{ a \in \mathbb{R}^d : \forall (c_1, c_2, c_3, c_4) \in C, (c_1, c_2, c_3, c_4) \begin{pmatrix} 0 \\ A_2 a \\ -z_2^\top a \\ z_2^\top a \end{pmatrix} \ge 0 \right\}$$

By the convexity of C, it suffices that the inequality be verified by the rays of C only.

$$\mathcal{B}_{F,G} = \{ a \in \mathbb{R}^d : \forall c \in \text{rays}(C), \langle c_2, A_2 a \rangle - c_3 z_2^\top a + c_4 z_2^\top a \ge 0, \}$$

$$= \{ a \in \mathbb{R}^d : \forall c \in \text{rays}(C), \langle A_2^\top c - c_3 z_2 + c_4 z_2, a \rangle \ge 0 \}$$

$$= \{ a \in \mathbb{R}^d : Y^C a > 0 \}$$

where
$$Y^C = \left(-A_2^\top c^i - c_3^i z_2 + c_4^i z_2 - \right)_{n \times d}$$
 and $c^i, i = 1, \dots, n$ are the rays of C .

This implies that each $\mathcal{A}_{F,G}$ is a polyhedral cone and hence it is of interest to ask if $\mathcal{B} = \{\mathcal{A}_{F,G} : F, G \text{ are facet cones of P}\}$ is a polyhedral fan.

References

[1] G. M. Ziegler, Lectures on polytopes, vol. 152 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1995