BASIC NUMBER THEORY: LECTURE 9

WENHAN DAI

HILBERT CLASS FIELD (CONTINUED)

Let L/K be a finite Galois extension and $\mathfrak{p} \subseteq \mathcal{O}_K$ be a prime that is unramified in L. Let $\mathfrak{q} \subseteq \mathcal{O}_L$ be an ideal lying above \mathfrak{p} . Recall that the Artin symbol is a unique element of $\operatorname{Gal}(L/K)$ such that for each $\alpha \in \mathcal{O}_L$,

$$\left(\frac{L/K}{\mathfrak{q}}\right)(\alpha) = \alpha^{N(\mathfrak{p})} \bmod \mathfrak{q}.$$

It enjoys the following basic properties.

Corollary 1. Resume the same notation as before.

(1) For each $\sigma \in \operatorname{Gal}(L/K)$,

$$\left(\frac{L/K}{\sigma(\mathfrak{q})}\right) = \sigma\left(\frac{L/K}{\mathfrak{q}}\right)\sigma^{-1}.$$

- (2) The order of $\left(\frac{L/K}{\mathfrak{q}}\right)$ is the inertia degree $f(\mathfrak{q}\mid\mathfrak{p})$.
- (3) The prime $\mathfrak p$ splits completely in L if and only if $\left(\frac{L/K}{\mathfrak q}\right)=1$.

By Corollary 1(1), if L/K is abelian, then the artin symbol $\left(\frac{L/K}{\mathfrak{q}}\right)$ is independent of the choice of the prime \mathfrak{q} above \mathfrak{p} . In this case, we denote it by $\left(\frac{L/K}{\mathfrak{p}}\right)$ if no confusion arises. The reader must be careful on the definition that \mathfrak{p} must be unramified.

Example 2. Let $K = \mathbb{Q}(\sqrt{-3})$ with $\mathcal{O}_K = \mathbb{Z}[\omega]$. Suppose $L = K(\sqrt[3]{2})$. It turns out that $\operatorname{Gal}(L/K) \simeq \mathbb{Z}/3\mathbb{Z}$, $\operatorname{Gal}(L/\mathbb{Q}) \simeq S_3$.

We first check the ramification. Say $\alpha = \sqrt[3]{2}$ has a minimal polynomial $f(x) = x^3 - 2$, whose discriminant has only two prime divisors 2, 3. Hence p is unramified in $\mathbb{Q}(\sqrt[3]{2})$ whenever $p \neq 2, 3$. On the other hand, $d_K = -3$ and thus for $p \neq 3$, p is unramified in K. Combining these, p unramifies in L when $p \neq 2, 3$. The claim on Artin symbol goes as follows. Let $\pi \nmid 2, 3$ be a prime ideal in \mathcal{O}_K . Then

$$\left(\frac{L/K}{\pi}\right)(\sqrt[3]{2}) = \left(\frac{2}{\pi}\right)_3 \cdot \sqrt[3]{2}.$$

To prove it, let $\mathfrak{q} \subseteq \mathcal{O}_L$ be any prime above (π) . Then $\left(\frac{L/K}{\mathfrak{q}}\right) = \left(\frac{L/K}{\pi}\right)$, and by definition,

$$\left(\frac{L/K}{\pi}\right)(\sqrt[3]{2}) \equiv (\sqrt[3]{2})^{N(\pi)} \bmod \mathfrak{q}.$$

Date: November 3, 2020.

¹Recall that for the Galois extension L/K, all inertia degrees for \mathfrak{q} over \mathfrak{p} are the same.

Also,

$$(\sqrt[3]{2})^{N(\pi)} = 2^{\frac{N(\pi)-1}{3}} \cdot \sqrt[3]{2} \equiv \left(\frac{2}{\pi}\right)_3 \cdot \sqrt[3]{2} \bmod \mathfrak{q}.$$

This proves the claim.

Recall that the inertia group I_K is the free abelian group generated by all finite prime ideals of K. Via quotienting by the principal ideal group P_K , we get the ideal class group $Cl(\mathcal{O}_K) = I_K/P_K$.

Definition 3 (Artin reciprocity map). Let L/K be the Hilbert class field (i.e. the maximal unramified abelian extension). The Artin reciprocity map is a group homomorphism

$$\left(\frac{L/K}{\cdot}\right): I_K \longrightarrow \operatorname{Gal}(L/K) = G_{L/K}^{\operatorname{ab}}$$

sending a prime $\mathfrak{p} \subseteq \mathcal{O}_K$ to the Artin symbol $\left(\frac{L/K}{\mathfrak{p}}\right)$.

Definition 4. A finitely generated \mathcal{O}_K -submodule of K is called a fractional ideal. Among the fractional ideals, those of the form $\alpha \mathcal{O}_K$ for $\alpha \in K^{\times}$ are called principal fractional ideals.

Proposition 5. (1) If \mathfrak{a} is a nonzero fractional ideal, then there is a fractional ideal \mathfrak{b} such that $\mathfrak{ab} = \mathcal{O}_K$.

(2) The set of fractional ideals is

$$\{\mathfrak{p}_1^{r_1}\cdots\mathfrak{p}_n^{r_n}\mid \mathfrak{p}_i \text{ distinct prime ideals, } r_i\in\mathbb{Z}\}.$$

Namely, the fractional ideals admit unique prime factorizations with integral exponents.

It turns out that I_K is isomorphic to the abelian group of fractional ideals. The most important ingredient is that

Theorem 6. The group of principal fractional ideals, denoted by P_K , is exactly the kernel of Artin reciprocity map, i.e.

$$P_K = \ker\left(\frac{L/K}{\cdot}\right).$$

Corollary 7. Let L be the Hilbert class field of a number field K. The following are equivalent:

- $\mathfrak{p} \subseteq \mathcal{O}_K$ is a prime that splits completely in L;
- \mathfrak{p} is a principal fractional ideal, i.e. $\mathfrak{p} \in P_K$;
- $\bullet \left(\frac{L/K}{\mathfrak{p}}\right) = 1;$
- $p \in \ker\left(\frac{L/K}{\cdot}\right)$.

Using these results, we are ready to state the main theorem about the course topic.

Theorem 8. Let $K = \mathbb{Q}(\sqrt{-n})$ for $n \not\equiv 3 \mod 4$ square-free. Denote L the Hilbert class field of K. Fix $p \nmid n$ an odd prime. Then

$$p = x^2 + ny^2 \iff p \ splits \ completely \ in \ L.$$

Proof. The condition that $n \not\equiv 3 \mod 4$ is square-free implies $\mathcal{O}_K = \mathbb{Z}[\sqrt{-n}]$. Assume $p = x^2 + ny^2 = (x + \sqrt{-n}y)(x - \sqrt{-n}y)$. Then there is some principal prime ideal $\mathfrak{p} \subseteq \mathcal{O}_K$ such that $p\mathcal{O}_K = \mathfrak{p} \cdot \overline{\mathfrak{p}}$. By Corollary 7, \mathfrak{p} and $\overline{\mathfrak{p}}$ split completely in L. On the other hand, since $p \nmid 2n$ we see $\mathfrak{p} \neq \overline{\mathfrak{p}}$. Hence $p\mathcal{O}_K$ splits completely in L.

Conversely, suppose p splits completely in L. Then it splits completely in K in particular. Let $p = \mathfrak{p}_1\mathfrak{p}_2$ where $\mathfrak{p}_1 \neq \mathfrak{p}_2$ both split completely in L. Hence $\mathfrak{p}_1, \mathfrak{p}_2$ are principal by Corollary 6. Taking $\mathfrak{p}_1 = (x + \sqrt{-n}y)$ and $\mathfrak{p}_2 = (x - \sqrt{-n}y)$ finishes the proof.

Lemma 9. Let K be an imaginary quadratic field and L be its Hilbert class field. Then L/\mathbb{Q} is a Galois extension.

Proof. Denote τ the complex conjugation on K. Then $\tau(K) = K$ and $\tau(L) = \tau(K)^{\text{Hilb}}$. Hence $\tau(L) = L$ with $L^{\tau} \cap K = \mathbb{Q}$. This shows L/\mathbb{Q} is Galois.

Proposition 10. Let K be an imaginary quadratic field and L/K a finite extension such that L/\mathbb{Q} is Galois. Then

- (1) $L = K(\alpha)$ for some real algebraic integer α ;
- (2) let f be the monic minimal polynomial of α as in (1) over \mathbb{Q} . Fix a prime number $p \nmid \operatorname{disc} f$. Then p splits completely in L if and only if $\left(\frac{d_K}{p}\right) = 1$ and $f(x) \equiv 0 \mod p$ has an integer solution.

Proof. (1) Note that for the complex conjugation τ on K,

$$[L:L^{\tau}] = 2, \quad L = KL^{\tau}.$$

Hence $L^{\tau} = \mathbb{Q}(\alpha)$ for some algebraic integer α . Note that $\tau(\alpha) = \alpha$, which implies $\alpha \in \mathbb{R}$.

(2) We already know p splits completely in K if and only if $\left(\frac{d_K}{p}\right) = 1$. If so, we say $p\mathcal{O}_K = \mathfrak{p} \cdot \overline{\mathfrak{p}}$. Moreover, p splits completely in L if and only if \mathfrak{p} splits completely in L. Since $L = K(\alpha)$, we see $\mathcal{O}_K[\alpha] \subseteq \mathcal{O}_L$. Also, f is the monic minimal polynomial of α over K. We obtain

$$\mathcal{O}_K/\mathfrak{p} \simeq \mathbb{Z}/p\mathbb{Z} \implies \overline{f} \in (\mathcal{O}_K/\mathfrak{p})[x] \simeq (\mathbb{Z}/p\mathbb{Z})[x].$$

By assumption $p \nmid \operatorname{disc} f$. Hence $\mathfrak{p} \nmid \operatorname{disc} f$ as well. Therefore, \mathfrak{p} splits completely in L if and only if \overline{f} splits completely in $\mathbb{F}_p[x]$; equivalently, $f \equiv 0 \mod p$ has an integer solution.

Theorem 11. Let K be an imaginary quadratic field. We have the ideal class group

$$Cl(\mathcal{O}_K) = C(\mathcal{O}_K) := I_K/P_K \simeq Gal(K^{Hilb}/K).$$

Moreover, let $C(d_K)$ be the class group for primitive positive definite forms of discriminant d_K . Then

$$C(\mathcal{O}_K) \simeq C(d_K)$$
.

The theorem above shows the coincidence of the classifications for ppdfs with discriminant d_K and fractional ideals in \mathcal{O}_K .

Theorem 12 (Primes of the form $p = x^2 + ny^2$). Fix a square-free integer n > 0 satisfying $n \not\equiv 3 \bmod 4$. Then there is a monic irreducible $f_n \in \mathbb{Z}[x]$ of degree $h(-4n) = [K^{\mathrm{Hilb}} : K]$ such that if p is an odd prime, with $p \nmid n \cdot \mathrm{disc}(f_n)$, then $p = x^2 + ny^2$ if and only if $\left(\frac{-n}{p}\right) = 1$ and $f_n(x) \equiv 0 \bmod p$ has an integer solution.

School of Mathematical Sciences, Peking University, 100871, Beijing, China $\it Email\ address$: daiwenhan@pku.edu.cn