Image Enhancement Techniques

Image Enhancement

- Image Enhancement is the process of manipulating an image so that the result is more suitable than the original for a specific application.
- Image enhancement can be done in :
 - ☐ Spatial Domain
 - ☐ Frequency Domain
- Spatial Domain Transformation are :
 - ☐ Point operations
 - Mask Operations

Point Operation

- Operation deals with pixel intensity values individually.
- The intensity values are altered using particular transformation techniques as per the requirement.
- ❖The transformed output pixel value does not depend on any of the neighbouring pixel value of the input image.

Examples:				
	Image Negative.			
	Contrast Stretching.			
	Thresholding.			
	Brightness Enhancement.			
	Log Transformation.			
	Power Law Transformation			

Mask Operation

- Mask is a small matrix useful for blurring, sharpening, edge-detection and more.
- New image is generated by multiplying the input image with the mask matrix.
- ❖ The output pixel values thus depend on the neighbouring input pixel values.
- ❖The mask may be of any dimension 3X3 4X4

Mask Operation

0	3	0	0
0	6	1	16
0	0	2	46
0	0	2	43

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

Transfer function for different Intensity Transformations

$$s = L - 1 - r. \tag{3}$$

Transfer function of

- a) Negative
- b) Log
- c) Nth root
- d) Identity
- e) Nth power
- f) Inverse log

Negative images are useful for enhancing white or grey detail embedded in dark regions of an image.

The negative of an image with gray levels in the range [0,L-1] is obtained by using the expression

$$s = L - 1 - r$$

L-1 = Maximum pixel value.

r = Pixel value of an image.

Original Image

Image negative

Matlab code:

```
% program for image enhancement using image negative
clear all
clc
close all
a=imread('clown.png');
[m,n]=size(a);
for i=1:1:m
  for j=1:1:n
    b(i,j)=255-a(i,j);
  end
end
subplot(1,2,1),subimage((a)),title('Original Image');
subplot(1,2,2),subimage((b)),title('Image after image
negative transformation')
```


- ☐ Contrast basically the difference between the intensity values of darker and brighter pixels .
- Contrast stretching expands the range of intensity levels in an image.
- Contrast stretching is done in three ways:
- Multiplying each input pixel intensity value with a constant scalar.

Example: s=2*r

- Using Histogram Equivalent
- ❖ Applying a transform which makes dark portion darker by assigning slope of < 1 and bright portion brighter by assigning slope of > 1.

Contrast Stretching (Using Transfer Function)

Formulation is given below:

$$s = l*r;$$
 for $0 <= r <= a$
= $m(r-a) + v;$ for $a < r <= b$
= $n(r-b) + WGIJAL IMAGFOPCESWGr$

Original Image

Contrast Enhanced Image

Contrast Stretching By Multiplication of each pixel with a scalar.

Matlab code:

```
% program to increase the contrast of an image
x=input('Enter the factor which contrast should be
increased');
a=imread('clown.png');
[m,n]=size(a);
for i=1:1:m
  for j=1:1:n
    b(i,j)=a(i,j)*x;
  end
end
subplot(1,2,1), subimage(a), title('Original Image');
subplot(1,2,2),subimage(b),title('contrast
Image'),xlabel(sprintf('Contrast increased by a factor of
%g',x));
```


Contrast Stretching by using threshold function.

Matlab code:

```
% program to increase the contrast of an image
x=input('Enter the factor which contrast should be
increased');
a=imread('clown.png');
[m,n]=size(a);
for i=1:1:m
  for j=1:1:n
    if(a(i,j) < 50)
       b(i,j)=a(i,j);%slope of transfer function between i/p
and o/p is 1
    elseif (a(i,j)>200)
       b(i,j)=a(i,j);
       else
    b(i,j)=a(i,j)*x;%slope of transfer function between i/p
and o/p is x. Hence contrast of some particular pixel value
range increased
```

Matlab code:

```
end
end
subplot(1,2,1),subimage(a),title('Original Image');
subplot(1,2,2),subimage(b),title('contrast
Image'),xlabel(sprintf('Contrast increased by a factor of %g
in the range 50 to 200',x));
```


Contrast Stretching By Histogram Equalisation.

Matlab code: % program to increase the contrast of an image by histogram equivalent

```
a=imread('clown.png');
b=histeq(a);
subplot(2,2,1),subimage(a),title('Original Image');
subplot(2,2,2),subimage(b),title('contrast
Image'),xlabel(sprintf('Contrast increased by Histogram equivalent'));
subplot(2,2,3),imhist(a),title('Histogram of Original Image');
subplot(2,2,4),imhist(b),title('Histogram of Contrast Image');
```


- Extreme Contrast Stretching yields Thresholding.
- Thresholded image has maximum contrast as it has only BLACK & WHITE gray values.
- In Contrast Stretching figure, if I & n slope are made ZERO & if m slope is increased then we get Thresholding Transformation
- ❖ If r1 = r2, s1 = 0 & s2 = L-1, then we get Thresholding function.

Thresholding Function

Expression goes as under:

Original Image

Transformed Image

Matlab code:

```
% program for image thresholding
a=imread('pout.tif');
[m,n]=size(a);
for i=1:1:m
  for j=1:1:n
    if(a(i,j)<125)
      b(i,j)=0;%pixel values below 125 are mapped to zero
      else
    b(i,j)=255;%pixel values equal or above 125 are mapped to 255
    end
  end
end
subplot(1,2,1),subimage(a),title('Original Image');
subplot(1,2,2),subimage(b),title('threshold Image');
```


Brightness Enhancement

- Brightness Enhancement is shifting of intensity values to a higher level.
- The darker and the lighter pixels both get their values shifted by some constant value.
- ❖ Example: In x-ray images brightness can be enhanced to find the darker spots.

Brightness Enhancement

Matlab code: % program to increase the brightness of an image x=input('Enter the factor which brightness should be increased'); a=imread('clown.png'); [m,n]=size(a); for i=1:1:m for j=1:1:n b(i,j)=a(i,j)+x; end end

subplot(1,2,1), subimage(a), title('Original Image');

Image'),xlabel(sprintf('Brightness increased by a factor of %g',x));

subplot(1,2,2), subimage(b), title('Brighter

Brightness Enhancement

Log Transformation

The log transformation is given by the expression

$$s = c \log(1 + r)$$

where c is a constant and it is assumed that $r \ge 0$.

- This transformation maps a narrow range of lowlevel grey scale intensities into a wider range of output values.
- Similarly maps the wide range of high-level grey scale intensities into a narrow range of high level output values.
- This transform is used to expand values of dark pixels and compress values of bright pixels.

Logarithmic Transformation Contd...

Original Image

Transformed Image

Log Transformation

Matlab code:

```
% program for image enhancement using logarithmic
transformation
A=input('Enter the value of constant A');
a=imread('clown.jpg');
a=rgb2gray(a);
[m,n]=size(a);
a=double(a);
for i=1:1:m
  for j=1:1:n
    b(i,j)=A*log(1+a(i,j));
  end
end
figure, subplot(1,2,1), subimage(uint8(a)), title('Original Image');
subplot(1,2,2),subimage(uint8(b)),title('Image after logarithmic
transformation'),xlabel(sprintf('Constant is %g',A));
```

Log Transformation

Expression for power law transformation is given by:

$$s = c *(r^{\gamma})$$

s is the output pixels value.

r is the input pixel value.

c and γ are real numbers.

- \Box For various values of γ different levels of enhancements can be obtained.
- ☐ This technique is quite commonly called as *Gamma Correction*, used in monitor displays.

- Different display monitors display images at different intensities and clarity because every monitor has built-in gamma correction in it with certain gamma ranges.
- A good monitor automatically corrects all the images displayed on it for the best contrast to give user the best experience.
- **The difference between the log-transformation function** and the power-law functions is that using the power-law function a family of possible transformation curves can be obtained just by varying the γ .

A : original image

For c=1

B: $\gamma = 3.0$

C: $\gamma = 4.0$

D: $\gamma = 5.0$

Matlab code:

```
% program for image enhancement using power law
A=input('Enter the value of constant A');
x=input('Enter the value of power x');
a=imread('clown.png');
[m,n]=size(a);
for i=1:1:m
  for j=1:1:n
    b(i,j)=A*(a(i,j)^x);
  end
end
subplot(1,2,1), subimage(a), title('Original Image');
subplot(1,2,2), subimage(b), title('Image after power law
transformation'),xlabel(sprintf('Constant is %g\nPower is
%g',A,x));
```


References:

- Digital Image Processing by Gonzalez And Woods.
- Wikipedia
- ❖ Matlab Help

*THANK YOU