

Circuiti Sequenziali Introduzione ai circuiti sequenziali sincroni

Circuiti combinatori e sequenziali Concetto di memoria e di stato Dalla specifica al dispositivo

Introduzione

- I circuiti digitali si possono classificare in due categorie
- Circuiti combinatori
 - Il valore delle uscite ad un determinato istante dipende unicamente dal valore degli ingressi in quello stesso istante
- Circuiti sequenziali
 - Il valore delle uscite in un determinato istante dipende
 - Dalla condizione di partenza del circuito
 - Dal valore degli ingressi in quell'istante
 - Dal valore degli ingressi in istanti precedenti
 - Per definire il comportamento di un circuito sequenziale è necessario tenere conto della storia passata del circuito stesso

Memoria e concetto di stato

- Le uscite di un circuito sequenziale in un dato istante di tempo dipendono
 - Dalla condizione iniziale del circuito
 - Dalla sequenza di ingressi, applicata in un arco temporale finito, fino all'istante considerato
- Questo aspetto implica che il dispositivo ha memoria degli eventi passati
 - All'istante t l'informazione relativa al "contenuto" di questa memoria è rappresentata nel concetto di stato
 - Le reti combinatorie possono essere considerate un caso particolare di sistema sequenziale dove lo stato è unico

Memoria e concetto di stato

- Trattiamo solo macchine a stati finiti deterministiche
 - Per ragioni legate alla realizzabilità fisica, la memoria di una rete sequenziale è di dimensioni finite
 - Dato uno stato ed una configurazione di ingresso il nuovo stato è identificato univocamente

Esempio: Specifiche

Serratura a combinazione di una porta

"Fornire la combinazione di 3 valori in sequenza per aprire una porta. Se si riconosce un errore la serratura deve rimanere chiusa ed è necessario ripartire dall'inizio. Quando la porta viene chiusa, il circuito di controllo della serratura deve essere ri-inizializzato in attesa di una nuova sequenza."

Ingressi:

- Valore in ingresso che appartiene alla sequenza
- Reset (per inizializzare il sistema)

Uscite:

Porta aperta/chiusa

Esempio: Specifiche

- Combinazione:
 - Funzionalità cablata
 - La combinazione è parte della struttura del dispositivo da realizzare e staticamente definta
 - Funzionalità programmata
 - Fornita in ingresso

Esempio: Implementazione software


```
int SerraturaCombinazione()
 int c[3] = \{ 3, 4, 8 \};
                                 /* Sequenza da riconoscere
                                                                         */
int v[3];
                                 /* Sequenza immessa
                                                                         * /
 int error = 0;
while( ! WaitValue() );
                                 /* Attendi nuovo valore
                                                                         * /
v[0] = ReadValue();
                                 /* Leggi nuovo valore: prima cifra
                                                                         * /
 if(v[0] != c[0])
                                 /* Controllo della cifra
                                                                         * /
  error = 1:
while( ! WaitValue() );
                                 /* Attendi nuovo valore
                                                                         * /
v[1] = ReadValue();
                                 /* Leggi nuovo valore: seconda cifra
                                                                         */
                                 /* Controllo della cifra
 if(v[1] != c[1])
                                                                         * /
  error = 1;
while( ! WaitValue() );
                                 /* Attendi nuovo valore
                                                                         * /
                                 /* Leggi nuovo valore: terza cifra
v[2] = ReadValue();
                                                                         */
                                 /* Controllo della cifra
 if(v[2] != c[2])
                                                                         * /
  error = 1;
 return error;
```


- La specifica è incompleta
 - Alcuni aspetti richiedono successive riflessioni
 - Aspetti impliciti da evidenziare
 - Aspetti rilevanti e non espressi nemmeno implicitamente
- Aspetti non definiti e non impliciti
 - Numero bit per la codifica del valore in ingresso e in uscita
 - Si specifica che le cifre lette sono 3 ma non se ne definisce l'intervallo d'appartenenza
 - Non è implicito che la tastiera sia costituita dalle cifre 0-9
- Aspetti impliciti da evidenziare
 - È indispensabile identificare che è stato fornito un nuovo valore in ingresso per evitare che l'inserimento di un valore sia considerato più di una volta
 - Dipende da come sarà il dispositivo: sincrono o asincrono

- Il sistema è sequenziale
 - È necessario fornire una sequenza di valori ricordando la storia degli ingressi
 - È necessario ricordare se si è verificato un errore
 - L'errore deve essere rivelato solo alla fine della sequenza
 - Per ragioni di sicurezza

- Identificare che è stato immesso un nuovo valore
 - Dispositivo sincrono
 - Il clock regola l'evoluzione temporale dei sistema
 - Gli ingressi devono essere campionati solo quando sono stabili
 - È indispensabile avere un segnale di ingresso che rappresenti la validità del dato e la sua unicità
 - Non si vuole che la pressione di un tasto venga preso in considerazione più di una volta
 - Il dispositivo è asincrono
 - Il sistema evolve sulla base di eventi di ingresso

Esempio: Considerazioni

- Si ragiona su sistemi con stati stabili (astrazione)
 - Osservazione delle uscite avviene solo dopo che è trascorso un tempo sufficientemente lungo affinché il sistema possa effettuare i cambiamenti e stabilizzare le uscite
- I progettisti implementano tale astrazione
 - La memoria del sistema è rappresentata dal suo stato
 - I cambiamenti di stato del sistema sono ammessi solo in particolari istanti di tempo controllati da un segnale esterno periodico detto clock
 - Il periodo del clock è il tempo tra i cambiamenti di stato
 - Deve essere sufficientemente lungo per permettere al sistema di raggiungere lo stato stabile prima che avvenga il successivo cambiamento di stato al termine del periodo

- Rappresentazione logica del dispositivo
 - ▶ Pin-out logico

- Si hanno due possibili modi per implementare il sistema
- Come un'unica Macchina a Stati Finiti
 - ► FSM: Finite State Machine
- Come Unità di Controllo e Unità di Elaborazione
 - FSMD: Finite State Machine + Data-path

- Come un'unica Macchina a Stati Finiti
 - Ogni ingresso porta il sistema in uno stato che corrisponde
 - Ad uno stato che relativo alla sequenza riconosciuta, oppure
 - Ad uno stato che identifica la presenza di un errore
 - L'identificazione della validità del valore immesso è definita nel comportamento della macchina a stati. Si hanno due possibilità:
 - Gli ingressi raggiungono direttamente la macchina a stati
 - Struttura priva di flessibilità
 - Rete combinatoria per la codifica dell'ingresso alla macchina a stati (normalizzazione degli ingressi)
 - La struttura è più flessibile rispetto alla precedente poiché una modifica della sequenza incide solo sulla parte combinatoria di codifica degli ingressi

- Come Unità di Controllo e Unità di Elaborazione
 - L'unità di controllo è realizzata come macchina a stati
 - È generale ed indipendente dalla sequenza da riconoscere
 - Comanda l'unità di elaborazione
 - L'unità di elaborazione
 - È controlla i valori immessi
 - Restituisce all'unità di controllo un valore che modifica la sequenza di controllo

- La descrizione del comportamento di una macchina a stati è ottenuto attraverso un diagramma degli stati
 - Rappresenta il modo con cui la macchina a stati evolve
 - Gli stati
 - Il modo in cui gli ingressi agiscono causando il passaggio da uno stato all'altro (transizioni di stato)
 - Una configurazione d'uscita
 - È associata ad ogni stato (come in questo caso), oppure
 - È associata ad ogni transizione tra gli stati

Descrizione comportamentale

- Ipotesi:
 - Valori da riconoscere: 3, 4, 8
 - 4 bit di ingresso (minimo valore)

Dimensione dei segnali:

reset 1 bit nuovo 1 bit valore 4 bit chiuso/aperto 2 bit

Esempio: Codifica degli ingressi

- La rete combinatoria codifica i valori di ingresso
 - Uniformandoli a quelli per cui la macchina è progettata
 - Il funzionamento è indipendente dai valori da identificare
 - Valori da riconoscere arbitrariamente scelti in {0, 1, 2}
 - 2 bit (minimo) o 3 bit (massimo) di ingresso

Esempio: Codifica degli ingressi

Esempio: Sequenza (3, 4, 8)

valore

V_{3}	V_2	V_1	V_0	A	В	
0	0	1	1	0	0	$A = P_0 * (V_3 + V_2' + V_1 + V_0)$
0	1	0	0	0	1	$B = P_0 * (V_3' + V_2 + V_1 + V_0)$
1	0	0	0	1	0	$P_0 = (V_3 + V_2 + V_1' + V_0')$
						0 ' 3 2 1 0'

Esempio: Sequenza (7, 0, 15)

valore

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$V_3V_2V_1V_0$	AB	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 1 1 1	0 0	$A = P_0 * (V3 + V2 + V1 + V0)$
1 1 1 1 1 A	0 0 0 0	0 1	•
	1 1 1 1	1 0	$P_0 = (V3+V2'+V1'+V0')$

Esempio: Controllo e Elaborazione

- È possibile realizzare funzionalità programmabili
- Le configurazioni sono memorizzate e confrontate con i valori immessi passo dopo passo
 - Flessibilità molto alta
 - Maggior compessità di realizzazione

Esempio: Struttura Circuitale

Architettura

Esempio: Macchina a Stati

Diagramma degli stati

Esempio: Macchina a Stati

Tabella degli stati

reset	nuovo	eq	stato-presente	stato-futuro	sel	uscita
1	_	_	_	S0	C1	chiuso
0	0	_	S0	S0	C1	chiuso
0	1	1	S0	S1	C2	chiuso
0	1	0	S0	S3	_	chiuso
0	0	_	S1	S1	C2	chiuso
0	1	1	S1	S2	C3	chiuso
0	1	0	S1	S4	_	chiuso
0	0	_	S2	S2	C3	chiuso
0	1	1	S2	APERTO	_	aperto
0	1	0	S2	ERRORE	_	chiuso
0	0	_	S3	S3	_	chiuso
0	1	_	S3	S4	_	chiuso
0	0	_	S4	S4	_	chiuso
0	1	_	S4	ERRORE	_	chiuso
0	_	_	ERRORE	ERRORE	_	chiuso
0	_	_	APERTO	APERTO	_	aperto

Esempio: Macchina a Stati - Codifica

- Nella tabella degli stati compaiono valori simbolici
 - Devono essere tradotti in bit
 - Si hanno molti gradi di libertà
 - Numero di bit
 - Valore
 - Ad ogni possibile scelta corrisponde una rappresentazione circuitale differente anche in costo
- SI tratta di scegliere una opportuna codifica per tutti i valori simbolici che compaiono nella descrizione del comportamento

Esempio: Macchina a Stati - Codifica

- Stati: s0, s1, s2, s3, s4, APERTO, ERRORE
 - Codifica minima: 7 stati richiedono 3 bit (scelta)
 001, 010, 100, 000, 011, 101, 110
 - Codifica One-hot: 7 stati richiedono 7 bit
 0000001, 0000010, 0000100, 0001000, 0010000, 0100000, 1000000
- Uscita del MUX: C1, C2, o C3
 - Codifica minima: 3 valori richiedono 2 bit 00, 01, 10
 - Codifica minima: 3 valori richiedono 3 bit (scelta)
 001, 010, 100
- Uscita: aperto, chiuso
 - Codifica minima: 2 valori richiedono 1 bit (scelta)
 0, 1
 - Codifica minima: 2 valori richiedono 2 bit 01, 10

Esempio: Macchina a Stati - Codifica

Tabella delle transizioni

reset	nuovo	eq	stato-presente	stato-futuro	sel	uscita
1	_	_		001	001	0
0	0	_	001	001	001	0
0	1	1	001	010	010	0
0	1	0	001	000		0
0	0	_	010	010	010	0
0	1	1	010	100	100	0
0	1	0	010	011		0
0	0	_	100	100	100	0
0	1	1	100	110		1
0	1	0	100	101		0
0	0	_	000	000		0
0	1	_	000	011		0
0	0	_	011	011		0
0	1	_	011	101		0
0	_	_	101	101		0
0	_	-	110	110		1

- 27 -

Esempio: Unità di Controllo

Esempio: Unità di Controllo

- Passi per l'implementazione della unità di controllo (in generale, di una Macchina a Stati Finiti)
 - Separare la Rete Combinatoria e la memoria
 - Identificare i dispositivi di memoria da utilizzare
 - Modificano la rete combinatoria
 - Trasformare la tabella delle transizioni in tabella delle eccitazioni
 - Nuova tabella degli implicanti che descrive la funzione della rete combinatoria
 - Sintetizzare la rete combinatoria a più uscite utilizzando le procedure note
 - Collegare nuovamente la memoria alla rete combinatoria sintetizzata