Akademia Górniczo Hutnicza im. St. Staszica w Krakowie Laboratorium Optoelektroniki i Fotoniki, II rok EiT 2023/2024					
Grupa Numer:	ımer: Ćwiczenie numer: 4 Data wykonania ćwiczenia:				
5	Pomiar tłumienia w światłowodach 4.04.2024				
Czw. 13:15	Data wysłania sprawozdania:				
Dawid Makowski	Pawid Makowski 14.04.2024				
Miłosz Mynarczuk					
Ryszard Mleczko					

1.

Ćwiczenie dotyczyło pomiaru tłumienia w światłowodach za pomocą:

- stabilizowanego źródła lasera 816A
- miernika mocy optycznej INT-TC-36-E
- światłowodu o długości 1m
- dwóch światłowodów o długościach w przedziale 25km-30km

Pomiary kabla 1m, jako referencyjnego:

Długość fali [nm]	Częstotliwość	Tłumienie	Błąd [dB/km]
	[Hz]	[dB/km]	
1310	0	6,02	0,1806
1310	1000	8,72	0,2616
1550	0	7,12	0,2136
1550	1000	9,79	0,2937

2.

Decybel [dB] jest stosowany do wyrażania stosunków wielkości. Jest to bezwymiarowa, logarytmiczna jednostka, która opisuje stosunek między dwiema wielkościami, na przykład między mocą wejściową a wyjściową.

Decybel miliwatowy jest logarytmiczną jednostką mocy, która ma zdefiniowane odniesienie - 1 mW (miliwata). Jest używany do bezpośredniego pomiaru mocy, zwykle w kontekście urządzeń i systemów elektronicznych.

Zatem:

- Decybel [dB] jest stosowany do porównywania stosunków wielkości, podczas gdy decybel miliwatowy [dBm] jest używany do

bezpośredniego pomiaru mocy względem określonego punktu odniesienia.

- Decybele są bezwymiarowe, podczas gdy decybel miliwatowy jest jednostką mocy.

3.

Światłowód nr. 1

Długość fali [nm]	Częstotliwość [Hz]	Tłumienie [dB/km]	Błąd [dB/km]
1310	0	15,61	0,4683
1310	1000	18,36	0,5508
1550	0	12,6	0,378
1550	1000	15,29	0,4587

Światłowód nr. 2

Długość fali [nm]	Częstotliwość	Tłumienie	Błąd [dB/km]
	[Hz]	[dB/km]	
1310	0	15,71	0,4713
1310	1000	18,43	0,5529
1550	0	12,75	0,3825
1550	1000	15,36	0,4608

4. Długości przewodów

$$A[dB] = \alpha \left[\frac{db}{km} \right] * L => L = \frac{A}{\alpha}$$

Od tłumienia odjęto tłumienie zmierzone na kablu referencyjnym w celu usunięcia z wartości dodatkowych tłumień, dla połączonych przewodów odjęto dodatkowe 0,3dB połączenia

Światłowód nr. 1

Długość fali [nm]	Częstotliwość	Tłumienność	Długość [km]
	[Hz]	jednostkowa	
		[dB/km]	
1310	0	0,35	27,45714286
1310	1000	0,35	27,54285714
1550	0	0,25	21,92
1550	1000	0,25	22

Światłowód nr. 2

Długość fali [nm]	Częstotliwość	Tłumienność	Długość [km]
	[Hz]	jednostkowa	
		[dB/km]	
1310	0	0,35	27,68571429
1310	1000	0,35	27,74285714
1550	0	0,25	22,52
1550	1000	0,25	22,28

Połączone światłowody

Długość fali [nm]	Częstotliwość	Tłumienność	Długość [km]
	[Hz]	jednostkowa	
		[dB/km]	
1310	0	0,35	54,51428571
1310	1000	0,35	54,74285714
1550	0	0,25	43,08
1550	1000	0,25	43,8

Zawinięty kabel referencyjny:

Długość fali [nm]	Częstotliwość	Tłumienie
	[Hz]	[dB/km]
1310	0	6,17
1310	1000	8,88
1550	0	8,52
1550	1000	11,4

Zawinięty Światłowód nr. 1

Długość fali [nm]	Częstotliwość	Tłumienność	Długość [km]
	[Hz]	jednostkowa	
		[dB/km]	
1310	0	0,35	27,28571429
1310	1000	0,35	27,4
1550	0	0,25	18,52
1550	1000	0,25	17,72

Zawinięty Światłowód nr. 2

Długość fali [nm]	Częstotliwość	Tłumienność	Długość [km]
	[Hz]	jednostkowa	
		[dB/km]	
1310	0	0,35	27,37142857
1310	1000	0,35	27,45714286
1550	0	0,25	17,8
1550	1000	0,25	17,16

Wnioski:

Po odjęciu wartości zmierzonych na kablu 1m wyliczone długości dla 1310m przypominają wartości rzeczywiste również w przypadku zawiniętego światłowodu do którego użyto wartości z zawiniętego 1m przewodu, w niektórych przypadkach mogą się różnić co mogło wyniknąć z różnego zakrzywienia dla różnych światłowodów.

5. Różnice dla różnych długości fal

Obliczone długości przewodów się różnią w zależności od długości fali może to wynikać z dobranych współczynników, dla 1310nm długość przewodów jest przybliżona do rzeczywistej jednak dla 1550nm wartość ta znacznie się różni, mniejsza wyliczona długość może wskazywać na to, że rzeczywisty współczynnik tłumienia jest mniejszy, albo w obliczeniach przyjęto większe dodatkowe tłumienia niż te, które miały miejsce w rzeczywistości.

6.

Światłowód typu G652D jest jednym z najczęściej stosowanych światłowodów jednomodowych w telekomunikacji. Jego rdzeń ma średnicę około 9 mikrometrów, a płaszcz około 125 mikrometrów.

Zastosowanie:

- Telekomunikacja dalekiego zasięgu
- Sieci metro i dostępowe
- Sieci WAN (Wide Area Network)

Światłowody G652D są więc wszechstronnym rozwiązaniem do przesyłania danych w różnych zastosowaniach telekomunikacyjnych, zapewniając wysoką jakość transmisji na duże odległości oraz szerokie pasmo transmisyjne. Ich popularność wynika z wyważonej kombinacji parametrów, która spełnia wymagania większości sieci telekomunikacyjnych.