

POST OPERATIVE PATIENT DATA

GROUP NUMBER.: 7&8

- □Alekhya Bulusu
- □Sushma Alimineti
- □ Amulya Kuntala
- □Nagaphani Musunuri

Background:

-unp-

Post operative care refers to any of your needs after a surgery. This could include cleaning the cuts, pain medication, dressing cuts, eating or monitoring while sleeping. It is important that it's done right in order for your body to recover properly.

Objective:

To predict the discharge decision based on the attributes given using python programming.

Path:

A data set is considered to predict the discharge decision based on the attributes. The data is analyzed using machine learning algorithms, one of which is logistic regression.

A glimpse of the patient data

INDEX	L-CO RE	L-SU RF	L-O2	L-BP	SURF -STBL	CORE -STBL	BP-ST BL	COM FORT	decisi on ADM- DECS
0	mid	low	excell ent	mid	stable	stable	stable	15	A
1	mid	high	excell ent	high	stable	stable	stable	10	S
2	high	low	excell ent	high	stable	stable	mod-s table	10	A
3	mid	low	good	high	stable	unsta ble	mod-s table	15	A
4	mid	mid	excell ent	high	stable	stable	stable	10	A

•L-CORE = Patient's internal temperature

•L-SURF = Patient's surface temperature

L-O2 = Oxygen saturation

•L-BP = Last measurement of BP

•SURF-STBL = Stability of patient's surface temp.

CORE-STBL= Stability of patient's core temp.

BP-STBL= Stability of patient's BP.

Data and data quality check:

- ☐ The given data contains 9 attributes & 90 observations.
- Output variables : Discharge Decision.
- ☐ The remaining 8 attributes are input variables.
- ☐ The characteristic of attributes are categorical.
- ☐ The missing values are in COMFORT column and are in row 46,48 & 70

EDA INSIGHTS

- The missing values in our data are replaced by mode.
- To analyze the data we created different plots.

HEATMAP:

decision ADM-DECS -	1	0.057	-0.024	0.019	0.06	0.023	-0.11	0.15	2.8e-18	-0.11	0.14	0.14	-0.065
low -	0.057	1	-0.7	0.1	-0.062	0.11	-0.096	0.055	0.027	0.15	-0.14	0.12	-0.053
mid -	-0.024	-0.7	1	-0.0058	0.14	-0.013	0.0086	0.061	-0.046	-0.042	0.012	0.11	-0.15
low -	0.019	0.1	-0.0058	1	-0.66	-0.0028	-0.12	-0.094	-0.12	-0.098	0.13	-0.088	0.035
mid -	0.06	-0.062	0.14	-0.66	1	-0.092	0.05	0.12	-0.045	0.061	-0.018	0.2	-0.065
good -	0.023	0.11	-0.013	-0.0028	-0.092	1	0.054	0.057	0.11	0.054	-0.1	0.044	-0.052
low -	-0.11	-0.096	0.0086	-0.12	0.05	0.054	1	-0.24	-0.062	0.054	-0.05	0.058	-0.11
mid -	0.15	0.055	0.061	-0.094	0.12	0.057	-0.24	1	0.12	-0.049	0.018	0.086	0.13
unstable -	2.8e-18	0.027	-0.046	-0.12	-0.045	0.11	-0.062	0.12	1	-0.21	0.18	0	0.076
stable -	-0.11	0.15	-0.042	-0.098	0.061	0.054	0.054	-0.049	-0.21	1	-0.92	0.048	-0.02
unstable -	0.14	-0.14	0.012	0.13	-0.018	-0.1	-0.05	0.018	0.18	-0.92	1	-0.0059	0.048
stable -	0.14	0.12	0.11	-0.088	0.2	0.044	0.058	0.086	0	0.048	-0.0059	1	-0.6
unstable -	-0.065	-0.053	-0.15	0.035	-0.065	-0.052	-0.11	0.13	0.076	-0.02	0.048	-0.6	1
	cision ADM-DECS -	- wol	mid -	- wol	- pim	- poab	- wol	mid -	unstable -	stable -	unstable -	stable -	unstable -

☐ Heat map is the graphical representation of correlation matrix representing correlation between different variables.

☐ Correlation ranges from -1 to 1. So, all the values in the heat map also are ranging from -1 to 1.

☐ If the value is positive then there is positive correlation between the attributes. If value is negative then there is negative correlation and if the value is 0 there is no correlation i.e. the 2 attributes are independent.

--0.50

- -0.75

Algorithms:

- Depending on the response, the output variable is a categorical, so we use logistic regression.
- Logistic regression is a machine learning classification algorithm that is used to predict the probability of a categorical dependent variable.
- In this case, the dependent variable is a binary variable that contains data code as 0 & 1.
- We use train and test split method to get best accuracy value.

SPLIT SIZE BETWEEN TRAIN AND TEST	ACCURACY			
TRAIN:50% , TEST:50%	75%			
TRAIN:75% , TEST:25%	61%			
TRAIN:67% , TEST:33%	70%			
TRAIN:80% , TEST:20%	83%			

Here we took 4 splits with different test and train percentages. As we can observe from the table above, we obtain best accuracy when split size between train and test is 80% and 20% respectively. Hence we obtain the best result at train:80% and test 20%.

Model statistics:

Accuracy:

It is the proportion of correct predictions over total predictions.

Code for finding accuracy:

from sklearn.metrics import accuracy_score accuracy_score(y_test,predictions)

Output: 83% accuracy

	PRECISION	RECALL	F1-SCORE	SUPPORT
0	0.88	0.93	0.90	15
1	0.50	0.33	0.40	3
ACCURACY			0.83	18
MACRO AVG	0.69	0.63	0.65	18
WEIGHTED AVG	0.81	0.83	0.82	18

The classification task of the data is to determine where the patients in a post operative recovery state should be send to next, because hypothermia is significant concern after surgery.

RECOMMENDATIONS:

- Based on the promising results, we conclude with the following recommendations for future work on risk and warning scores for post operative patient deterioration detection as follows:
- Continuous monitoring
- Feature extraction
- Physiological modelling
- Personal health data, Lab data
- Combine pre, intra & post-operative data
- Temporal behavior

Codes for logistic regression :

```
from sklearn.linear_model import LogisticRegression predictions=logreg.predict(X_test) from sklearn.metrics import classification_report classification_report(y_test,predictions)
```

- Confusion Matrix: It describes the performance of a classification model on a set of test data for which the true values are known.
- Code: from sklearn.metrics import confusion_matrixz=confusion matrix(y test,predictions)
- Output:

```
array([[14, 1], [2, 1]])
```

References:

Github link:

□ Alekhya Bulusu: https://github.com/alekhyabulusu/unp.project-.git

□Sushma Alimineti:

☐Amulya Kuntala:

□Nagaphani Musunuri: https://github.com/phanimusunuri1234/UNP_Assignment/blob/main/unp.ipynb

