

Lecture 7: The ElGamal Cryptosystem and Discrete Logarithms

-Cryptographic Algorithms and Protocols

Huang, Xiujie (黄秀姐)

Office: Nanhai Building, #411

E-mail: t_xiujie@jnu.edu.cn

Dept. Computer Science

Review

Public-key Cryptography (PKC)

◆ 1. RSA

Review

Public-key Cryptography (PKC)

Others???

Outline

- ▶ 1. The ElGamal Cryptosystem
 - Discrete Logarithm Problem (DLP)
 - The ElGamal Cryptosystem
- ▶ 2. Algorithms for the DLP
 - Shanks' Algorithm
- ▶ 3. Suitable Groups for the DLP
 - Finite Fields & Elliptic Curves
 - Suitable Groups for the DLP
- ▶ 4. Security of ElGamal Systems
 - Bit Security and Semantic Security
 - The Diffie-Hellman Problems

The Finite Group

- * Finite multiplicative group (G, \cdot)
 - Cyclic subgroup $\langle \alpha \rangle = \{ \alpha^i : 0 \le i \le n-1 \}$
- $\checkmark G = \mathbb{Z}_p^*, p \text{ is prime}$
 - $\langle \alpha \rangle = G$ since $G = \mathbb{Z}_p^*$ is a cyclic group.
 - $\alpha = b^{(p-1)/q}$, where b is the primitive of element in G, i.e.,

$$\langle \alpha \rangle = \{ \alpha^i : 0 \le i \le q - 1 \}$$

Examples:

① $Z_5^* = \{1,2,3,4\}$. ord(1)=1, ord(2)=4, ord(3)=4, ord(4)=2.

$$Z_5^* = \langle 2 \rangle = \langle 3 \rangle; \langle 4 \rangle = \{1, 4\}$$

② $Z_{13}^* = \{1,2,3,\ldots,11,12\}.$ < 2 > = Z_{13}^* , (2⁵=6 (mod 13), 2¹¹=7 (mod 13));

$$< 5 > = \{1,5, 8,12\}, (5^3 \equiv 8 \pmod{13}).$$

The Discrete Logarithm Problem (DLP)

Problem 7.1: Discrete Logarithm

Instance: A multiplicative group (G, \cdot) , an element $\alpha \in G$ having order

n, and an element $\beta \in \langle \alpha \rangle$.

Question: Find the unique integer $a, 0 \le a \le n-1$, such that

$$\alpha^a = \beta.$$

We will denote this integer a by $\log_{\alpha} \beta$; it is called the *discrete*

logarithm of β .

 $a = \log_{\alpha} \beta$

- Exponentiation is a <u>one-way</u> function in <u>suitable groups G</u>.
 - ◆ Operation of exponentiation is computable: Algorithm 6.5
 - Finding a is (probably) difficult

The ElGamal Cryptosystem, 1985

♦ Set-up of Key Generation:

- 1) Generate a large prime p such that the DLP in \mathbb{Z}_p^* is infeasible
- 2) Choose a primitive element $\alpha \in \mathbb{Z}_p^*$
- 3) Choose a random number α and Compute $\beta \equiv \alpha^{\alpha} \pmod{p}$
- 4) Output: $pk = (p, \alpha, \beta), sk = (a)$

Encryption:

Randomized: one plaintext, *p*-1 ciphertexts

- 1) Choose a secret random number k in \mathbb{Z}_{p-1}
- 2) Compute $e_{pk}(x) = (y_1, y_2)$ where $y_1 = \alpha^k \mod p$ and $y_2 = x\beta^k \mod p$
- Decryption:

Correctness: $d_{sk}(y_1, y_2) = x$?

1) Compute $d_{sk}(y_1, y_2) = y_2(y_1^a)^{-1}$ m $d_{sk}(y_1, y_2) = y_2(y_1^a)^{-1}$

Cryptosystem 7.1, P25

$$d_{sk}(y_1, y_2) = y_2(y_1^a)^{-1}$$

$$= x\beta^k ((\alpha^k)^a)^{-1} = x\beta^k ((\alpha^a)^k)^{-1}$$

$$= x\beta^k (\beta)^k)^{-1} = x$$

Example 1

- $p = 13, \alpha = 2, \alpha = 5, \beta = 2^5 \mod 13 = 6$
 - ightharpoonup pk = (13, 2, 6), sk = (5)
- Encryption of x = 10
 - 1) Choose a secret random number k = 7 in \mathbb{Z}_{p-1}
- 2) Compute $e_{pk}(x) = (y_1, y_2)$ where $y_1 = \alpha^k \mod p = 2^7 \mod 13 = 11$, and $y_2 = x\beta^k \mod p = 10.6^7 \mod 13 = 5$.
- Decryption
- 1) Compute $d_{sk}(y_1, y_2) = y_2(y_1^a)^{-1} \mod p = 5 \cdot (11^5)^{-1} \mod 13$ = $5 \cdot (7)^{-1} \mod 13 = 5 \cdot 2 \mod 13 = 10$.

Example 2

Example 7.1: Suppose p=2579 and $\alpha=2$. α is a primitive element modulo p. Let a=765, so $\beta=2^{765} \bmod 2579=949$.

- \star Case 1: x = 1299, k = 853
 - $e_K(x, k) = (y_1, y_2): y_1 = \alpha^k \mod p = 2^{853} \mod 2579$ = 435, $y_2 = x\beta^k \mod p = 1299 \times 949^{853} \mod 2579$ = 2396.
 - $d_K(y_1, y_2) = y_2(y_1^a)^{-1} \mod p$ $= 2396 \times (435^{765})^{-1} \mod 2579$ = 1299,
- Case 2: x = 1299, k = 1000?

The ElGamal Cryptosystem, 1985

Set-up of Key Generation:

- 1) Generate a large prime p such that the DLP in \mathbb{Z}_p^* is infeasible
- 2) Choose a primitive element $\alpha \in \mathbb{Z}_p^*$
- 3) Choose a random number α and Compute $\beta \equiv \alpha^a \pmod{p}$
- 4) Output: $pk = (p, \alpha, \beta)$, sk = (a)

Encryption:

- 1) Choose a secret random number k in \mathbb{Z}_{p-1}
- 2) Compute $e_{pk}(x) = (y_1, y_2)$ where $y_1 = \alpha^k \mod p$ and $y_2 = x\beta^k \mod p$

Decryption:

1) Compute $d_{sk}(y_1, y_2) = y_2(y_1^a)^{-1} \mod p$

Choices of Large Prime p

- * A necessary condition to be secure:
 - the Discrete Logarithm problem in \mathbb{Z}_p^* is infeasible, i.e., there is no known polynomial-time algorithm to solve DLP
 - \checkmark p should have at least 2048 bits
 - ✓ p-1 should have at least one "large" prime factor

Outline

- ▶ 1. The ElGamal Cryptosystem
 - Discrete Logarithm Problem (DLP)
 - The ElGamal Cryptosystem
- ▶ 2. Algorithms for the DLP
 - Shanks' Algorithm
- ▶ 3. Suitable Groups for the DLP
 - Finite Fields & Elliptic Curves
 - Suitable Groups for the DLP
- ▶ 4. Security of ElGamal Systems
 - Bit Security and Semantic Security
 - The Diffie-Hellman Problems

DLP

Problem 7.1: Discrete Logarithm

Instance: A multiplicative group (G, \cdot) , an element $\alpha \in G$ having order

n, and an element $\beta \in \langle \alpha \rangle$.

Question: Find the unique integer $a, 0 \le a \le n-1$, such that

 $\alpha^a = \beta$.

We will denote this integer a by $\log_{\alpha} \beta$; it is called the *discrete*

logarithm of β .

 $a = \log_{\alpha} \beta$

Algorithms for DLP

An assumption: computing the product of two elements requires constant (i.e., O(1)) time.

- Some trivial algorithms:
 - \blacktriangleleft 1) Exhaustive search: O(n) time, O(1) memory
 - **⋄**2) Precomputing (i, α^i) → sorting → searching:

O(n) time; $O(n \log n)$ time; $O(\log n)$ time; O(n) memory

Algorithms for DLP

- Some non-trivial algorithms:
 - ★ 1. Shanks' Alogrithm
 - ❖ 2. The Pollard Rho Discrete Logarithm Algorithm
 - **⋄**3. The Pohig-Hellman Algorithm
 - **⋄**4. The Index Calculus Method (for \mathbb{Z}_p^* only)

Generic algorithm:

- if the algorithm for the DLP can be applied in any group.
- ◆ 1, 2, and 3 are generic algorithms, while 4 is not.

Shanks' Algorithm for DLP

Algorithm 7.1: SHANKS (G, n, α, β)

- 1. $m \leftarrow \lceil \sqrt{n} \rceil$
- 2. **for** $j \leftarrow 0$ **to** m-1**do** compute α^{mj} --O(m) time, O(m) memory
- 3. Sort the m ordered pairs (j, α^{mj}) with respect to their second coordinates, obtaining a list L_1 -- $O(m \log(m))$ time, O(m) memory
- 4. **for** $i \leftarrow 0$ **to** m-1 **--O**(m) time, O(m) memory **do** compute $\beta \alpha^{-i}$
- 5. Sort the m ordered pairs $(i, \beta \alpha^{-i})$ with respect to their second coordinates, obtaining a list L_2 --O($m \log(m)$) time, O(m) memory
- 6. Find a pair $(j, y) \in L_1$ and a pair $(i, y) \in L_2$ (i.e., find two pairs having identical second coordinates) -- O (m) time, O (m) memory
- 7. $\log_{\alpha} \beta \leftarrow (mj+i) \mod n$

An Example of Shanks' Algorithm

Example 7.2: Suppose we wish to find $\log_3 525$ in $(\mathbb{Z}_{809}^*, \cdot)$. Note that 809 is prime and 3 is a primitive element in \mathbb{Z}_{809}^* , so we have $\alpha = 3$, n = 808, $\beta = 525$ and $m = \lceil \sqrt{808} \rceil = 29$. Then

```
precompute \alpha^m \mod p: \alpha^{29} \mod 809 = 99.
```

First, we compute the ordered pairs $(j, 99^j \mod 809)$ for $0 \le j \le 28$. We obtain the list $(j, \alpha^{mj} \mod p)$

which is then sorted to produce L_1 .

An Example of Shanks' Algorithm

See Example 7.2

The second list contains the ordered pairs $(i, 525 \times (3^i)^{-1} \mod 809), 0 \le j \le 28$. It is as follows: $(i, \beta \alpha^{-i} \mod p)$

After sorting this list, we get L_2 .

Now, if we proceed simultaneously through the two sorted lists, we find that (10, 644) is in L_1 and (19, 644) is in L_2 . Hence, we can compute

$$\log_3 525 = (29 \times 10 + 19) \mod 808$$

$$= 309. \qquad a = \log_\alpha \beta = (mj + i) \mod n$$

As a check, it can be verified that $3^{309} \equiv 525 \pmod{809}$.

Outline

- ▶ 1. The ElGamal Cryptosystem
 - Discrete Logarithm Problem (DLP)
 - The ElGamal Cryptosystem
- ▶ 2. Algorithms for the DLP
 - Shanks' Algorithm
- ▶ 3. Suitable Groups for the DLP
 - Finite Fields & Elliptic Curves
 - Suitable Groups for the DLP
- ▶ 4. Security of ElGamal Systems
 - Bit Security and Semantic Security
 - The Diffie-Hellman Problems

Suitable Groups for ElGamal Crypt

* The ElGamal Cryptosystem can be implemented in any group where the DLP is infeasible

```
\mathbb{Z}_p^*, p is a large prime
```

- **⋄**1. the multiplicative group of the Finite Field \mathbb{F}_{p^n} , p is prime
- **2.** the group of an Elliptic Curve defined over a finite field

Finite Field

- \blacktriangleleft (\mathbb{Z}_p^* , +, ·), p is prime

Construction of Finite Field \mathbb{F}_{p^n}

Congruence of polynomials

Definition 7.1: Suppose p is prime. Define $\mathbb{Z}_p[x]$ to be the set of all polynomials in the indeterminate x. By defining addition and multiplication of polynomials in the usual way (and reducing coefficients modulo p), we construct a ring.

For $f(x), g(x) \in \mathbb{Z}_p[x]$, we say that f(x) divides g(x) (notation: $f(x) \mid g(x)$) if there exists $g(x) \in \mathbb{Z}_p[x]$ such that

$$g(x) = q(x)f(x).$$

For $f(x) \in \mathbb{Z}_p[x]$, define $\deg(f)$, the degree of f, to be the highest exponent in a term of f.

Suppose $f(x), g(x), h(x) \in \mathbb{Z}_p[x]$, and $\deg(f) = n \ge 1$. We define

$$g(x) \equiv h(x) \pmod{f(x)}$$

if

$$f(x) \mid (g(x) - h(x)).$$

Construction of Finite Field \mathbb{F}_{p^n}

• Quotient Ring: $\mathbb{Z}_p[x]/(f(x)) = \{g(x) \mod f(x)\}$ g(x) is in $\mathbb{Z}_p[x]$

Suppose deg(f) = n.

Now we define the elements of $\mathbb{Z}_p[x]/(f(x))$ to be the p^n polynomials in $\mathbb{Z}_p[x]$ of degree at most n-1. Addition and multiplication in $\mathbb{Z}_p[x]/(f(x))$ is defined as in $\mathbb{Z}_p[x]$, followed by a reduction modulo f(x). Equipped with these operations, $\mathbb{Z}_p[x]/(f(x))$ is a ring.

$$\mathbb{Z}_p[x]/(f(x)) = \{a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0 : a_i \text{ in } \mathbb{Z}_p \}$$

Construction of Finite Field \mathbb{F}_{p^n}

Irreducible polynomial

Definition 7.2: A polynomial $f(x) \in \mathbb{Z}_p[x]$ is said to be *irreducible* if there do not exist polynomials $f_1(x), f_2(x) \in \mathbb{Z}_p[x]$ such that

$$f(x) = f_1(x)f_2(x),$$

where $deg(f_1) > 0$ and $deg(f_2) > 0$.

A very important fact is that $\mathbb{Z}_p[x]/(f(x))$ is a field if and only if f(x) is irreducible. Further, multiplicative inverses in $\mathbb{Z}_p[x]/(f(x))$ can be computed using a straightforward modification of the (extended) Euclidean algorithm.

- Existence and Uniqueness:
 - **Existence for the irreducible poly. of any** *n*
 - Isomorphism of any two finite fields with same p and n

Example of the Finite Field

- Order: 2ⁿ
- $ightharpoonup \mathbf{Z}_2[x]/(\mathbf{f}(x))$: f(x) is irreducible and $\deg(f) = n$
- $a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$ $\longleftrightarrow (a_{n-1} \dots a_2 a_1 a_0)$
- ▶ See Example on Pages 273-274

For example, to compute $(x^2 + 1)(x^2 + x + 1)$ in $\mathbb{Z}_2[x]/(x^3 + x + 1)$, we first compute the product in $\mathbb{Z}_2[x]$, which is $x^4 + x^3 + x + 1$. Then we divide by $x^3 + x + 1$, obtaining the expression Extended Euclidean Alg. for Polynomials

$$x^4 + x^3 + x + 1 = (x+1)(x^3 + x + 1) + x^2 + x.$$

Hence, in the field $\mathbb{Z}_2[x]/(x^3+x+1)$, we have that

$$(x^2 + 1)(x^2 + x + 1) = x^2 + x.$$

Elliptic Curves (椭圆曲线)

Elliptic Curves over the Reals

Definition 7.3: Let $a, b \in \mathbb{R}$ be constants such that $4a^3 + 27b^2 \neq 0$. A non-singular elliptic curve is the set \mathcal{E} of solutions $(x, y) \in \mathbb{R} \times \mathbb{R}$ to the equation

$$y^2 = x^3 + ax + b,$$

together with a special point O called the point at infinity.

$$4a^3 + 27b^2 \neq 0$$
 $\Rightarrow x^3 + ax + b = 0$ has three distinct roots

\mathcal{E} is an abelian addition group P+Q=R

- 1. addition is closed on the set \mathcal{E} ,
- 2. addition is commutative,
- 3. \mathcal{O} is an identity with respect to addition, and
- 4. every point on \mathcal{E} has an inverse with respect to addition.
- 5. addition is associative

& Elliptic Curves over the Reals

• Example: the elliptic curve $y^2 = x^3 - 4x$.

Elliptic Curves over the Reals

Abelian group

Suppose E is a non-singular elliptic curve. We will define a binary operation over E which makes E into an abelian group. This operation is usually denoted by addition. The point at infinity, O, will be the identity element, so P + O =0 + P = P for all $P \in E$.

Suppose
$$P, Q \in E$$
, where $P = (x_1, y_1)$ and $Q = (x_2, y_2)$. $P + Q = (x_3, y_3)$

1.
$$x_1 \neq x_2$$

$$x_3 = \lambda^2 - x_1 - x_2,$$
 $\lambda = \frac{y_2 - y_1}{x_2 - x_1}.$

2.
$$x_1 = x_2$$
 and $y_1 = -y_2$ $(x, y) + (x, -y) = 0$

$$(x,y)+(x,-y)=0$$

3.
$$x_1 = x_2$$
 and $y_1 = y_2$

$$x_3 = \lambda^2 - x_1 - x_2,$$
 $\lambda = \frac{3x_1^2 + a}{2y_1}.$

Elliptic Curves Modulo a Prime

& Elliptic Curves over \mathbb{Z}_p , where p > 3 is prime

Definition 7.4: Let p > 3 be prime. The *elliptic curve* $y^2 = x^3 + ax + b$ over \mathbb{Z}_p is the set of solutions $(x, y) \in \mathbb{Z}_p \times \mathbb{Z}_p$ to the congruence

$$y^2 \equiv x^3 + ax + b \pmod{p},\tag{7.10}$$

where $a, b \in \mathbb{Z}_p$ are constants such that $4a^3 + 27b^2 \not\equiv 0 \pmod{p}$, together with a special point 0 called the *point at infinity*.

Suppose $P, Q \in E$, where $P = (x_1, y_1)$ and $Q = (x_2, y_2)$.

If
$$x_2 = x_1$$
 and $y_2 = -y_1$, then $P + Q = 0$;

else:
$$P + Q = (x_3, y_3)$$

$$x_3 = \lambda^2 - x_1 - x_2, \\ y_3 = \lambda(x_1 - x_3) - y_1, \quad \lambda = \begin{cases} (y_2 - y_1)(x_2 - x_1)^{-1}, & \text{if } P \neq Q \\ (3x_1^2 + a)(2y_1)^{-1}, & \text{if } P = Q. \end{cases}$$

$$P + 0 = 0 + P = P$$

Elliptic Curves (椭圆曲线)

- * 1. Elliptic Curves over the Reals
- * 2. Elliptic Curves over \mathbb{Z}_p , where p > 3 is prime
 - Example 7.9
- * 3. Elliptic Curves over Finite Fields \mathbb{F}_{p^n}
 - **♦** Example 7.10

4. Properties of Elliptic Curves

An elliptic curve \mathcal{E} defined over \mathbb{F}_q (where $q=p^n$ for p prime,) Hasse asserts: $q+1-2\sqrt{q} \le \#\mathcal{E} \le q+1+2\sqrt{q}$

Schoof's algorithm: to compute # \mathcal{E} efficiently

THEOREM 7.1 Let \mathcal{E} be an elliptic curve defined over \mathbb{F}_q , where $q = p^n$ for some prime p. Then there exist positive integers n_1 and n_2 such that $(\mathcal{E}, +)$ is isomorphic to $\mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2}$. Further, $n_2 \mid n_1$.

- \spadesuit An elliptic curve having a cyclic subgroup G of size about 2^{224} will provide a secure setting for a cryptosystem, provided that #G is divisible by at least one large prime factor.
 - **◆** The ECDLP is hard to be solved

ECDLP:

Given P, Q \subseteq G (where Q = mP). Find m.

5.ElGamal Cryptosystems on Elliptic Curves

Cryptosystem 7.2: Elliptic Curve ElGamal

Let \mathcal{E} be an elliptic curve defined over \mathbb{Z}_p (where p > 3 is prime) such that \mathcal{E} contains a cyclic subgroup $H = \langle P \rangle$ of prime order n in which the **Discrete** Logarithm problem is infeasible. Let $h : \mathcal{E} \to \mathbb{Z}_p$ be a secure hash function.

Let
$$\mathcal{P} = \mathbb{Z}_p$$
 and $\mathcal{C} = (\mathbb{Z}_p \times \mathbb{Z}_2) \times \mathbb{Z}_p$. Define

$$\mathcal{K} = \{ (\mathcal{E}, P, m, Q, n, h) : Q = mP \},$$

where P and O are points on E and $m \in \mathbb{Z}$..* The values E P O n and h are the pult EC-ElGamal Crypt:

For K
plainte

- 1. KeyGen(θ): pk = (\mathcal{E} , P, Q, n, h), sk = (m);
- 2. Enc_{pk} $(x)=(y_1, y_2)$: first choose k randomly, then compute $y_1 = kP$, $y_2 = x + h(kQ) \mod p$;
- For a ci 3. $\operatorname{Dec}_{sk}(y_1, y_2) = y_2 h(my_1) \mod p$.

Correctness: $R = my_1 = mkP = kQ$.

where

 $R = m \text{ POINT-DECOMPRESS}(y_1).$

or a

6. Pairings on Elliptic Curves

- First used in Cryptography by Menezes, Okamoto and Vanstone for solving DLP
- widely used in identity-based cryptosystems

Definition 7.5: A *pairing* is a function e that takes elements P_1 from an abelian group G_1 and P_2 from an abelian group G_2 and returns an element $e(P_1, P_2) = g$ belonging to a group G_3 :

$$e: G_1 \times G_2 \rightarrow G_3,$$

 $(P_1, P_2) \mapsto g.$

We follow the convention of using additive notation for the group operations in G_1 and G_2 , but multiplicative notation for G_3 .

A pairing *e* should also satisfy the *bilinear* property: for all $P_1, Q_1 \in G_1$ and $P_2, Q_2 \in G_2$, we have

$$e(P_1 + Q_1, P_2) = e(P_1, P_2)e(Q_1, P_2),$$

 $e(aP, bQ) = e(P, Q)^{ab}$

and

$$e(P_1, P_2 + Q_2) = e(P_1, P_2)e(P_1, Q_2).$$

for positive integers a and b

6. Pairings on Elliptic Curves

Paring-based DLP (Skipped)

Algorithm 7.4: PAIRING-BASED-DL(\mathcal{E}, m, P, R)

- 1. Find the smallest integer k for which the points of $\mathcal{E}[m]$ all have coordinates from \mathbb{F}_{q^k} .
- 2. Find $Q \in \mathcal{E}[m]$ for which $\alpha = e_m(P, Q)$ has order m.
- 3. Compute $\beta = e_m(R, Q)$.
- 4. Determine the discrete logarithm r of β with respect to the base α .
 - $\mathcal{E}[m]$: m-torsion subgroup of \mathcal{E} A point P on \mathcal{E} is an m-torsion point if $mP = \mathcal{O}$ is isomorphic to $\mathbb{Z}_m \times \mathbb{Z}_m$ for proper choices of m and q

Suitable Groups of the "Difficult" DLP

The most important settings (G, α) for the **Discrete Logarithm** problem in cryptographic applications are the following:

- 1. $G = (\mathbb{Z}_p^*, \cdot)$, p prime, α a primitive el $p > 2^{2048}$ ulo p;
- 2. $G = (\mathbb{Z}_p^*, \cdot), p, q \text{ prime, } p \equiv 1 \mod q \text{ } p > 2^{2048} \text{ ent } q > 2^{224} \text{ ng order } q;$
- 3. $G = (\mathbb{F}_{2^n}^*, \cdot), \underline{\alpha}$ a primitive element in $\mathbb{F}_{2^n}^-$;
- 4. G = (E, +), where E is an ellip $p > 2^{224}$ nodulo a prime p, $\alpha \in E$ is a point having prime order q = #E/h, where (typically) h = 1, 2 or 4; and
- 5. G=(E,+), where E is an elliphate $n\approx 224$ were a finite field \mathbb{F}_{2^n} , $\alpha\in E$ is a point having prime order q=#E/n, where (typically) h=2 or 4. (Note that we have defined elliptic curve over finite fields \mathbb{F}_p only when p is a prime exceeding 3. Elliptic curves can be defined over any finite field, though a different equation is required if the field has characteristic 2 or 3.)

Outline

- ▶ 1. The ElGamal Cryptosystem
 - Discrete Logarithm Problem (DLP)
 - The ElGamal Cryptosystem
- ▶ 2. Algorithms for the DLP
 - Shanks' Algorithm
- ▶ 3. Suitable Groups for the DLP
 - Finite Fields & Elliptic Curves
 - Suitable Groups for the DLP
- ▶ 4. Security of ElGamal Systems
 - Bit Security and Semantic Security
 - The Diffie-Hellman Problems

Different Attack Goals

- ▶ Total Break: to know the private key or the secret key
- Partial Break: be able to decrypt a previously <u>unseen</u>

 <u>ciphertext</u> without the key, or to determine <u>some specific</u>

 <u>information about the plaintext</u> given the ciphertext, with nonnegligible probability
- Distinguishability of Ciphertexts: be able to distinguish between encryptions of two given plaintexts, or between an encryption of a given plaintext and a random string, with probability exceeding 1/2

Security (against Total Break)

- **❖** Security (Choice of proper *p*)
 - based on that the Discrete Logarithm problem in \mathbb{Z}_p^* is infeasible, i.e., there is no polynomial-time algorithm to solve DLP
 - \checkmark p should have at least 2048 bits
 - \checkmark p-1 should have at least one large prime factor
 - ◆ The secret key a and the random number k used in encryption can not be small
 - **◆** The random number *k* is used once and changed for a new encryption

Misuse of the secret *k*

- lacktriangle If the same k is used for two encryptions:
 - 1) Choose a secret random number k in \mathbb{Z}_{p-1}
 - 2) Encrypt 1: $e_{pk}(x_1) = (y_1, y_2)$ where $y_1 = \alpha^k \mod p$ and $y_2 = x_1 \beta^k \mod p$
 - 3) Encrypt 2: $e_{pk}(x_2) = (z_1, z_2)$ where $z_1 = \alpha^k \mod p$ and $z_2 = x_2 \beta^k \mod p$

$$z_2/y_2 = x_2/x_1$$

If the plaintext x_1 is known (for example, under the known plaintext attack), then it is easy to obtain x_2 .

Bit Security (against Partial Break)

Problem 7.2: Discrete Logarithm ith Bit

Instance: $I = (p, \alpha, \beta, i)$, where p is prime, $\alpha \in \mathbb{Z}_p^*$ is a primitive

element, $\beta \in \mathbb{Z}_p^*$, and i is an integer such that $1 \leq i \leq j$

 $\lceil \log_2(p-1) \rceil$.

Question: Compute $L_i(\beta)$, which (for the specified α and p) denotes the

ith least significant bit in the binary representation of $\log_{\alpha} \beta$.

$$L_1(\beta) = \begin{cases} 0 & \text{if } \beta^{(p-1)/2} \equiv 1 \pmod{p} \\ 1 & \text{otherwise.} \end{cases}$$

- \leftarrow Computing the least significant bit $L_1(\beta)$ of a DL is easy.
- **Computing** $L_i(\beta)$ (where $i \le s$, $p-1=2^st$, and t is odd) is easy.

Suppose s=1 since p-1 should have at least one large prime factor.

So $L_2(\beta)$ is difficult to obtain, while $L_1(\beta)$ is easy to compute.

Semantic Security

▶ <u>A cryptosystem is said to achieve semantic security</u> if the cryptosystem satisfies that the adversary cannot (in polynomial time) distinguish ciphertexts.

Problem 6.3: Ciphertext Distinguishability

Instance: An encryption function $f: X \to X$; two plaintexts $x_1, x_2 \in$

X; and a ciphertext $y = f(x_i)$, where $i \in \{1, 2\}$.

Question: Is i = 1?

Semantic Security of ElGamals

- The basic ElGamal Cryptosystem, as described in Cryptosystem7.1, is not semantically secure.
 - By the properties of the quadratic residuosity and Euler's criterion
 - $ightharpoonup x_1$ is a quadratic residue modulo p, i.e., x_1 is in $QR(p) = \{x^2 \mod p : x \in \mathbb{Z}_p^*\}$
 - $\triangleright x_2$ is a quadratic non-residue modulo p
 - $ightharpoonup (y_1, y_2)$ is an encryption of x_1 iff β^k and y_2 are both quadratic residues or both quadratic non-residues (i.e., $L_1(\beta^k) = 0$ and $L_1(y_2) = 0$, or $L_1(\beta^k) = 1$ and $L_1(y_2) = 1$, which are easy to compute).
- ▶ A variant of the ElGamal Cryptosystem is conjectured to be semantically secure if the DLP in $QR(p) \subset \mathbb{Z}_p^*$ is infeasible
 - Over the subgroup (cyclic, of order q) of quadratic residues modulo p and p=2q+1 where p and q are prime

The Diffie-Hellman Problems

♦ Connection with Diffie-Hellman key agreement protocols in Section 12.2

Problem 7.3: Computational Diffie-Hellman CDH

Instance: A multiplicative group (G, \cdot) , an element $\alpha \in G$ having order n, and two elements $\beta, \gamma \in \langle \alpha \rangle$.

Question: Find $\delta \in \langle \alpha \rangle$ such that $\log_{\alpha} \delta \equiv \log_{\alpha} \beta \times \log_{\alpha} \gamma \pmod{n}$. (Equivalently, given α^b and α^c , find α^{bc} .)

Problem 7.4: Decision Diffie-Hellman DDH

Instance: A multiplicative group (G, \cdot) , an element $\alpha \in G$ having order n, and three elements $\beta, \gamma, \delta \in \langle \alpha \rangle$.

Question: Is it the case that $\log_{\alpha} \delta \equiv \log_{\alpha} \beta \times \log_{\alpha} \gamma \pmod{n}$? (Equivalently, given α^b , α^c and α^d , determine if $d \equiv bc \pmod{n}$.)

Reductions of DHPs

$DDH \propto_T CDH$

The first reduction is proven as follows: Let α , β , γ , δ be given. Use an algorithm that solves **CDH** to find the value δ' such that

orcale

$$\log_{\alpha} \delta' \equiv \log_{\alpha} \beta \times \log_{\alpha} \gamma \pmod{n}.$$

Then check to see if $\delta' = \delta$.

CDH \propto_T Discrete Logarithm

The second reduction is also very simple. Let α , β , γ be given. Use an algorithm that solves **Discrete Logarithm** to find $b = \log_{\alpha} \beta$ and $c = \log_{\alpha} \gamma$. Then compute $d = bc \mod n$ and $\delta = \alpha^d$.

These reductions show that the assumption that **DDH** is infeasible is at least as strong as the assumption that **CDH** is infeasible, which in turn is at least as strong as the assumption that **Discrete Logarithm** is infeasible.

Security of DHPs

- ▶ The security of DDH, CDH, DL may not be equivalent.
 - semantic security of the ElGamal Crypt ←→ infeasibility of DDH See Ex7.23
 - ElGamal decryption ← → solving CDH See next slide
 - necessary assumption to prove the security of the ElGamal Crypt is stronger than the infeasibility of DL

the ElGamal Cryptosystem in \mathbb{Z}_p^* is not semantically secure, whereas the **Discrete Logarithm** problem is conjectured to be infeasible in \mathbb{Z}_p^* for appropriately chosen primes p.

ElGamal decryption ← CDH

EIG Dec \propto_T CDH we give a proof that any algorithm that solves CDH can be used to decrypt ElGamal ciphertexts, and vice versa. Suppose first that ORACLECDH is an algorithm for CDH, and let (y_1, y_2) be a ciphertext for the ElGamal Cryptosystem with public key α and β . Compute

$$\delta = \mathsf{ORACLECDH}(\alpha, \beta, y_1),$$

and then define

$$x = y_2 \delta^{-1}.$$

It is easy to see that x is the decryption of the ciphertext (y_1, y_2) .

Suppose that ORACLE-ELGAMAL-DECRYPT is an algorithm that decrypts ElGamal ciphertexts. Let α, β, γ be given as in CDH. Define α and β to be the public key for the ElGamal Cryptosystem. Then define $y_1 = \gamma$ and let $y_2 \in \langle \alpha \rangle$ be chosen randomly. Compute

$$x = \text{Oracle-ElGamal-Decrypt}(\alpha, \beta, (y_1, y_2)),$$

which is the decryption of the ciphertext (y_1, y_2) . Finally, compute

$$\delta = y_2 x^{-1}.$$

 δ is the solution to the given instance of **CDH**.

Summary

- ▶ 1. The ElGamal Cryptosystem
 - Discrete Logarithm Problem (DLP)
 - The ElGamal Cryptosystem
- ▶ 2. Algorithms for the DLP
 - Shanks' Algorithm
- ▶ 3. Suitable Groups for the DLP
 - Finite Fields & Elliptic Curves
 - Suitable Groups for the DLP
- ▶ 4. Security of ElGamal Systems
 - Bit Security and Semantic Security
 - The Diffie-Hellman Problems

Homework 6:

Exercises: 7.1, 7.9(show the basic idea), 7.17, 7.23.

7.9 Decrypt the ElGamal ciphertext presented in Table 7.4. The parameters of the system are p = 31847, $\alpha = 5$, a = 7899 and $\beta = 18074$. Each element of \mathbb{Z}_n represents three alphabetic characters as in Exercise 6.12.

6.13

Thank you!

Questions?