Loi de la quantité de mouvement

Définition expérimentale

Définition: Masse inertielle

L'inertie d'un point matériel est sa résistance à tout changement de son état de mouvement. Elle est caractérisée par la *masse inertielle*, de symbole *m*.

- c'est une grandeur scalaire positive intrinsèque, indépendante du référentiel,
- elle est *conservée* pour tout système *fermé*
- sa dimension est notée M. l'unité légale de masse inertielle est le kilogramme; il est défini en prenant la valeur numérique fixée de la constante de Planck, h, égale à $6,626\,070\,15\cdot10^{-34}$ lorsqu'elle est exprimée en kg·m²·s⁻¹, le mètre et la seconde étant définis en fonction de c et Δv_{Cs} de symbole kg

Modèle

Modèle du point matériel

Un *point matériel* est un modèle idéalisé d'objet physique sans dimension, pourvu d'une masse, et pour lequel on peut établir une équation différentielle régissant le mouvement.

Quantité de mouvement

Définition : Quantité de mouvement

On définit la *quantité de mouvement dans* \mathscr{R} , notée $\overrightarrow{p_{\mathscr{R}}}(M)$, d'un point matériel comme le produit de sa masse inertielle m par sa vitesse $\overrightarrow{v}_{\mathscr{R}}$:

$$\overrightarrow{p_{\mathscr{R}}}(M) = m\overrightarrow{v_{\mathscr{R}}}(M).$$

Système de points matériels

Définition : Centre d'inertie d'un système fermé

On nomme *centre d'inertie* d'un système fermé de N points matériels, noté $\{M_i\}_{i=1..N}$ de masses $\{m_i\}_{i=1..N}$, de masse totale $m_{\text{tot}} = \sum_i m_i$, le point noté G tel que :

$$\forall A: \sum_{i} m_{i} \overrightarrow{AM_{i}} = m_{\text{tot}} \overrightarrow{AG}$$
 équivalent à : $\sum_{i} m_{i} \overrightarrow{GM_{i}} = \overrightarrow{0}$.

 $\mathbf{Cas}\ N=2$

Centre d'inertie d'un système de 2 points matériels

$$\overrightarrow{GM_2} = \frac{m_1}{m_{\text{tot}}} \overrightarrow{M_1 M_2}$$
 et $\overrightarrow{GM_1} = -\frac{m_2}{m_{\text{tot}}} \overrightarrow{M_1 M_2}$

Quantité de mouvement

Quantité de mouvement d'un système de points matériels

La *quantité de mouvement* dans un référentiel \mathscr{R} d'un *système* \mathscr{S} de N points matériels, notée $\overrightarrow{p}_{\mathscr{R}}(\mathscr{S})$, est égale à la quantité de mouvement dans \mathscr{R} d'un point matériel de masse $m_{\text{tot}} = \sum_i m_i$ et situé au centre d'inertie de \mathscr{S} .

$$\overrightarrow{p}_{\mathcal{R}}(\mathcal{S}) = m_{\text{tot}} \overrightarrow{v_{\mathcal{R}}}(G)$$

Énoncé

Principe d'inertie

Il existe une classe de référentiels privilégiés dans lesquels le mouvement de tout point matériel *isolé* est rectiligne uniforme. Ils sont dits *galiléens*, notés \mathcal{R}_g .

Référentiel terrestre

Loi de la quantité de mouvement

Caractère galiléen approché du référentiel terrestre

Le référentiel terrestre \mathcal{R}_t , lié à la surface de la Terre, sera considéré galiléen pour la durée des expériences envisagées. L'accélération $\overrightarrow{a}_{\mathcal{R}_t}$ de tout point matériel *isolé* y sera donc nulle.

Classe des référentiels galiléens

Classe des référentiels galiléens

La classe des référentiels galiléens est constituée des référentiels en *translation rectiligne uniforme* par rapport à l'un d'entre eux.

Autres référentiels usuels

Définition : Référentiels usuels

Le référentiel de *Copernic* (\mathcal{R}_C) est le référentiel :

- dans lequel le centre d'inertie du système solaire est fixe;
- dont les axes cartésiens pointent vers trois étoiles fixes.

Le référentiel de *Kepler* (\mathcal{R}_K), dit *héliocentrique*, est le référentiel en translation par rapport au référentiel de Copernic mais dont l'origine est confondue avec le centre d'inertie du Soleil.

Le référentiel *géocentrique* (\mathcal{R}_G), est le référentiel en translation par rapport au référentiel de Copernic mais dont l'origine est confondue avec le centre d'inertie de la Terre.

Référentiels de Copernic \mathcal{R}_C , Kepler \mathcal{R}_K

Référentiels géocentrique \mathcal{R}_G , et terrestre \mathcal{R}_T

Loi de la quantité de mouvement

Dans un référentiel galiléen \mathcal{R}_g , la force \overrightarrow{F} qui s'exerce sur un point matériel est égale à la dérivée temporelle dans \mathcal{R}_g de sa quantité de mouvement dans \mathcal{R}_g :

$$\vec{F} = \left(\frac{\mathrm{d}\vec{p}_{\mathscr{R}_{\mathrm{g}}}}{\mathrm{d}t}\right)_{\mathscr{R}_{\mathrm{g}}} = m\vec{a}_{\mathscr{R}_{\mathrm{g}}}$$
 Relation fondamentale de la dynamique.

Une telle force, définie *expérimentalement* dans \mathcal{R}_g , est dite *galiléenne*.

Additivité vectorielle

Loi de la quantité de mouvement

Additivité vectorielle

Si des objets S_i exercent, dans certaines conditions et séparément, la force \vec{F}_i sur un point matériel, l'ensemble des objets S_i exerce, dans les mêmes conditions, sur le point matériel la force :

$$\vec{F} = \sum_{i} \vec{F}_{i},$$

nommée résultante des forces appliquées au point matériel.

Point matériel pseudo-isolé

Point matériel pseudo-isolé

Un point matériel est dit *pseudo-isolé* si la résultante des forces galiléennes auxquelles il est soumis est nulle.

Mouvement d'un point matériel pseudo-isolé

Un point matériel *pseudo-isolé* est animé, dans un référentiel galiléen, d'un mouvement rectiligne uniforme.

Équilibre d'un point matériel

Définition : Équilibre

Un point matériel est dit *en équilibre dans un référentiel* \mathscr{R} si $\overrightarrow{v_{\mathscr{R}}}(M)(t) = \overrightarrow{0}$ à chaque instant t.

Condition nécessaire d'équilibre

La résultante des forces appliquées à un point matériel en équilibre dans \mathcal{R}_g galiléen est *nécessairement* nulle :

$$\sum \vec{F}_i = \vec{0}.$$

Déterminisme mécanique

Déterminisme mécanique

L'étude du mouvement d'un point matériel de position M et de vitesse $\overrightarrow{v_{\mathscr{R}}}(M)$ dans un référentiel \mathscr{R} , soumis à une résultante \overrightarrow{F} ne dépendant que de sa position M, de sa vitesse $\overrightarrow{v_{\mathscr{R}}}(M)$ et du temps t est un problème déterministe : il est défini de manière unique par la position M_0 et la vitesse $\overrightarrow{v_{\mathscr{R}}}(M)_0$ à un même instant t_0 .

Évolutions libres et forcées

Définition : Évolutions libres et forcées

L'évolution d'un système mécanique est dite :

libre si les forces ne dépendent pas explicitement du temps,

forcée dans le cas contraire.

Pas d'intersection

Deux trajectoires dans l'espace des phases d'un même système mécanique *libre* ne se croisent iamais.

Principe des actions réciproques

Principe des actions réciproques

Soient M_1 et M_2 deux points matériels en interaction. Si M_1 exerce la force $\overrightarrow{F}_{1\rightarrow 2}$ sur 2, alors :

- M_2 exerce une force $\overrightarrow{F}_{2\rightarrow 1}$ sur 1,
- ces deux forces sont opposées : $\vec{F}_{2\rightarrow 1} = -\vec{F}_{1\rightarrow 2}$,

Dynamique d'un système de points

Théorème : Théorème de la quantité de mouvement pour un système

Le mouvement, dans un référentiel \mathcal{R}_g galiléen, du centre d'inertie G d'un système fermé de points matériels de masse totale m est celui d'un point matériel de masse m soumis à la résultante des seules forces *extérieures*, notée $\overrightarrow{F}_{\text{ext}}$:

$$\left(\frac{\mathrm{d}\overrightarrow{p_{\mathscr{R}_g}}}{\mathrm{d}t}\right)_{\mathscr{R}_g} = m\overrightarrow{a_{\mathscr{R}_g}}(G) = \overrightarrow{F}_{\mathrm{ext}}.$$

Interaction gravitationnelle et masse pesante

Loi de la gravitation (Newton 1687)

Soient deux points matériels, l'un situé en M_1 et de *masse pesante* m_{p1} et l'autre situé en M_2 et de *masse pesante* m_{p2} . Ils exercent l'un sur l'autre la *force de gravitation* :

$$\vec{F}_{i \to j} = -\mathcal{G} \frac{m_{pi} m_{pj}}{(M_i M_j)^2} \vec{e}_{i \to j},$$
unitaire

avec $\mathcal{G} = 6,6742(10) \cdot 10^{-11} \,\mathrm{m}^3 \cdot \mathrm{kg}^{-1} \cdot \mathrm{s}^{-2}$. la constante gravitationnelle.

Masse inertielle et masse pesante

Masse inertielle et masse pesante

On admet, en mécanique newtonienne, la coïncidence de la masse pesante et de la masse inertielle.

Interaction électrostatique et charge électrique

Loi de Coulomb (1785)

Deux points matériels *immobiles*, l'un en M_1 de *charge électrique* q_1 et l'autre en M_2 de *charge électrique* q_2 , exercent l'un sur l'autre la *force de Coulomb* :

$$\vec{F}_{i \to j} = \frac{q_i q_j}{4\pi\varepsilon_0 (M_i M_j)^2} \underbrace{\vec{e}_{i \to j}}_{\text{unitaire}},$$

avec $\varepsilon_0 = 8,854\,187\,817\cdot 10^{-12}\,\mathrm{F}\cdot\mathrm{m}^{-1}$ la *permittivité diélectrique du vide*, telle que $\frac{1}{4\pi\varepsilon_0} \simeq 9,0\cdot 10^9\,\mathrm{m}\cdot\mathrm{F}^{-1}$.

Autres cas

Interactions nucléaires

Il existe également :

l'interaction nucléaire forte attractive, dominante devant l'interaction électrostatique à des distances de l'ordre du fm responsable de la cohésion des nucléons et des noyaux,

l'interaction nucléaire faible de portée 100 fois plus faible, responsable entre autres de la désintégration radioactive du neutron en proton dans $\beta^ (n \rightarrow p + e^- + \overline{v_e})$, de la fusion nucléaire

Forces de Van der Waals

Définition : Forces de Van der Waals

On nomme *forces de van der Waals* les forces d'interaction entre des atomes ou molécules neutres, à «longue» distance. Elles sont faiblement attractives et négligeables pour des distances supérieures à quelques dizaines de nanomètres.

Interactions entre espèces neutres

Interactions entre espèces neutres

On peut décrire les interactions entre atomes ou molécules *neutres* comme la somme :

à courte distance (< 1 nm) d'une interaction fortement répulsive due à l'impénétrabilité mutuelle des atomes,

à longue distance (quelques nm) des forces de van der Waals, faiblement attractives.

Liaison et frottement

Définition : Forces de contact

On nomme *forces de contact* les forces qui s'exercent entre des objets macroscopiques séparés par une distance non mesurable à l'échelle macroscopique. On distingue en particulier les *forces de liaison* et les *forces de frottement*.

Force de liaison

Définition : Force de liaison

On nomme *force de liaison* une force exercée par un support matériel et contraignant la trajectoire de tout point matériel en contact avec le support à demeurer sur une surface ou courbe particulière, caractéristique du support.

Détermination

Détermination des forces de liaison

Les forces de liaison ne peuvent pas être déterminées par l'étude du support. On déduira leur valeur des *contraintes qu'elles imposent* au mouvement macroscopique.

Fils

Modèle du fil idéal

Un fil souple tendu exerce sur un point matériel fixé à une de ses extrémités une force de liaison dite *de tension* \overrightarrow{T} dirigée selon la direction du fil, vers celui-ci.

Le fil se détend dès que la tension \overrightarrow{T} s'annule.

Le fil est *idéal* s'il est *inextensible* et de *masse négligeable*. La tension T est alors uniforme le long du fil.

Poulie idéale

Modèle de la poulie idéale

Une poulie est dite idéale si sa *masse est négligeable* et si *aucun frottement* n'entrave sa rotation. On admet que la *tension est uniforme* le long d'un fil idéal placé sur une poulie idéale.

Réaction d'un support

Définition : Réactions normale et tangentielle

La force de contact exercée par un support solide sur un point matériel se déplaçant à sa surface est appelée *réaction*, notée \overrightarrow{R} .

On la décompose en :

- une force de liaison, normale à la surface du support au point considéré et répulsive, nommée *réaction normale* et notée $\overrightarrow{R}_{\perp}$,
- une force de frottement, dit *solide*, tangente à la surface du support au point considéré, nommée *réaction tangentielle* et notée $\overrightarrow{R}_{||}$.

La liaison est dite *sans frottements* si la composante tangentielle est nulle. Le contact est rompu dès que la composante normale $\overrightarrow{R}_{\perp}$ s'annule.

Forces de frottement

Définition : Force de frottement

Une force \vec{f} exercée par un milieu sur un objet ponctuel animé d'une vitesse \vec{v} par rapport au milieu est dite de frottement si elle est de même direction que \vec{v} et de sens opposé à \vec{v} quelle que soit \vec{v} .

Indispensable

Indispensable

- énoncés des 3 lois de Newton
- expressions des forces fondamentales (avec schémas),
- schémas des forces de liaison.
 - énoncés des 3 lois de Newton
 - expressions des forces fondamentales (avec schémas),
 - schémas des forces de liaison.