```
# Programmer Name:
              Jacob Yim
# Class: CIS4321
# Programming Assignment : Final Project
# Date: 12/1/21
```

Import Libraries

```
#computational
   import pandas as pd
   import numpy as np
   #Visualizations
   import seaborn as sns
   import matplotlib.pyplot as plt
   #sets graph design
   sns.set_style("white")
   #filters warnings
   import warnings
   #ignore warnings
   warnings.filterwarnings("ignore")
   #allow matplotlib to allow graph in notebook
   %matplotlib inline
   #normalization and preprocessing
   from sklearn.preprocessing import StandardScaler
https://colab.research.google.com/drive/1GNLSK65lFSPGd3nZjxO2h40AMCH6Aa_n#printMode=true
```

```
from sklearn.model_selection import train_test_split

#modeling
from sklearn.model_selection import GridSearchCV
from sklearn.linear_model import LinearRegression
from sklearn.feature_selection import RFE

#import metrics
from sklearn import metrics
```

Import Data

```
energy = pd.read_csv('/content/energy_dataset.csv')
energy.head()
```

time generation generation foss:

biomass fossil brown coal coal/lignite derive

2015-01-01

Exploratory Data Analysis

Data Exploration

#number of rows and cols
energy.shape

(35064, 29)

#check for duplicates
energy[energy.duplicated()]

time generation generation fossil fossil brown coal-coal/lignite derived gas

Notes:

• There are no duplicated rows

#describe the data
energy.describe()

	generation biomass	generation fossil brown coal/lignite	generation fossil coal- derived gas	gener fossi
count	35045.000000	35046.000000	35046.0	35046.0
mean	383.513540	448.059208	0.0	5622.7
std	85.353943	354.568590	0.0	2201.8
min	0.000000	0.000000	0.0	0.0
25%	333.000000	0.000000	0.0	4126.0
50%	367.000000	509.000000	0.0	4969.0
75%	433.000000	757.000000	0.0	6429.0
max	592.000000	999.000000	0.0	20034.0

Notes:

There are a lot of nan values and 0s.

#since target varibale will be 'price actual'
energy[['price actual']].describe()

	price actual
count	35064.000000
mean	57.884023
std	14.204083
min	9.330000
25%	49.347500
50%	58.020000
75%	68.010000
max	116.800000

• There are no negative prices, which is good.

```
#check out dtypes
energy.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 35064 entries, 0 to 35063
Data columns (total 29 columns):
    # Column
```

#	Column		N
			_
0	time		3
1	generation biom	nass	3
2	generation foss	sil brown coal/lignite	3
3	generation foss	sil coal-derived gas	3
4	generation foss	sil gas	3
5	generation foss	sil hard coal	3

• Dtypes look accurate.

```
#total number of null values
energy.isnull().sum()
```

```
time
generation biomass
```

1

generation	fossil brown coal/lignite	1
generation	fossil coal-derived gas	1
generation	fossil gas	1
generation	fossil hard coal	1
generation	fossil oil	1
generation	fossil oil shale	1
generation	fossil peat	1
generation	geothermal	1
generation	hydro pumped storage aggregated	3506
generation	hydro pumped storage consumption	1
generation	hydro run-of-river and poundage	1
generation	hydro water reservoir	1
generation	marine	1
generation	nuclear	1
generation	other	1
generation	other renewable	1
generation	solar	1
generation	waste	1
generation	wind offshore	1
generation	wind onshore	1
forecast so	lar day ahead	
forecast wi	nd offshore eday ahead	3506
forecast wi	nd onshore day ahead	
total load	forecast	
total load	actual	3
price day a	head	
price actua	.1	
dtype: int6	4	

- Some columns have the same amount of null values as rows.
- some rows are fluctuating

```
#correlation matrix
corr = energy.corr(method = 'pearson')
fig, ax = plt.subplots(figsize=(12, 9))
sns.heatmap(corr, linewidths=.5, cmap='YlGnBu');
```


 Clean up will include the removal of blank rows or items with an index of 0

> gen gen hydr ion h gu for for

#correlation matrix
corr = energy.drop(drop cols, axis = 1).corr(method = 'p

fig, ax = plt.subplots(figsize=(12, 9))
sns.heatmap(corr, linewidths=.5, cmap='YlGnBu');

#top 6 correlations to price actual
corr.nlargest(6, 'price actual')['price actual']

price actual	1.000000
price day ahead	0.732155
generation fossil hard coal	0.465641
generation fossil gas	0.461706
total load forecast	0.435864
generation fossil brown coal/lignite	0.364088
Name: price actual, dtype: float64	

enera

Notes

 only price day ahead has a relatively positive correlation, all other values are closer to no correlation at all

```
#Sturges Rule number of bins
bins = round(1+3.322*np.log(energy.shape[0]))

#Histogram
fig, ax = plt.subplots(figsize=(12, 9))
#Bins Calculated from the Square Root method
sns.distplot(energy['price actual'], rug=True, rug kws={
```

```
ax.set_title('Actual Price Histogram')
ax.set_xlabel(f'Actual Price (bins = {39})')
ax.set_ylabel('Probability')

#set legends
ax.text(x=0.97, y=0.27, transform=ax.transAxes, s="Skewn fontweight='demibold', fontsize=12, verticalalignment= color='xkcd:mustard')
ax.text(x=0.97, y=0.21, transform=ax.transAxes, s="Kurto fontweight='demibold', fontsize=12, verticalalignment= color='xkcd:aquamarine')
```

sns.despine(offset=2, trim=True)

Actual Price Histogram

Notes:

- Judging from the skewness, the histogram is fairly symetrical with a relatively normal distribution
- Kurtosis show that the prices are Platykurtic, which is a good indicator of less outliers
- Rugplot shows the distribution of values within histogram, and the values are rather centralized.

Data Cleaning

```
#these orginial columns are dropped
energy.drop(columns = drop_cols, inplace = True)
#shows all rows with nan values
energy[energy.isna().any(axis=1)]
```

	generation biomass	generation fossil brown coal/lignite	generation fossil gas	genera for hard
99	NaN	NaN	NaN	
108	NaN	NaN	NaN	
109	NaN	NaN	NaN	
110	NaN	NaN	NaN	

 threshold of 14 would be sufficient to clean the majority of the dataset

#shows all rows with nan values after a thresh of 14 energy.dropna(thresh =14, axis = 0)[energy.dropna(thresh

generation generation generation

Notes:

 There wouldn't be too much data loss if we removed these rows.

#These rows with na values more than 19 will be removed.
energy.dropna(thresh =19, axis = 0).isnull().sum()

```
generation biomass
                                                  0
generation fossil brown coal/lignite
                                                  0
generation fossil gas
                                                  0
generation fossil hard coal
                                                  0
generation fossil oil
                                                  0
generation hydro pumped storage consumption
                                                  0
generation hydro run-of-river and poundage
                                                  0
generation hydro water reservoir
                                                  0
generation nuclear
                                                  0
generation other
                                                  0
generation other renewable
                                                  0
generation solar
                                                  0
generation waste
                                                  0
generation wind onshore
                                                  0
forecast solar day ahead
                                                  0
forecast wind onshore day ahead
                                                  0
total load forecast
                                                  0
price day ahead
                                                  0
price actual
                                                  0
dtype: int64
```

#show number remaining after shape
energy.dropna(thresh =19, axis = 0).shape

```
(35041, 19)
```

```
#confirm dropping the rows and columns
energy.dropna(thresh =19, axis = 0, inplace = True)
```

 After dropping certain columns and cleaning up rows, the shape shows that we still have a significant amount of data to work with.

Modeling and Machine Learning

Split Features and Target Data

```
#define X and y

#feature matrix
X_defined = energy.drop(columns= ['price actual'])

#target variable
y_defined = energy['price actual']
```

Normalize the feature matrix using Standard Scaler

```
#normalize data
X = StandardScaler().fit_transform(X_defined)

#split train test data
X_train, X_test, y_train, y_test = train_test_split(X_de
```

Train on Linear Regression Model

```
#build linear model classifier
lr_model = LinearRegression()

#fit the data
lr_model.fit(X_train,y_train)

#make prediction using X_test data
lr_y_pred = lr_model.predict(X_test)
```

▼ Residuals

```
#create dataframe or results of preddicted, actual, and
energy_result_df = pd.DataFrame({
    'Predicted': lr_y_pred,
    'Actual': y_test,
    'Residual': y_test - lr_y_pred})
```

plt.figure(figsize=[15,7])

```
plt.scatter(energy_result_df.Predicted, energy_result_df
plt.title('Residuals for Regression Model')
plt.xlabel('Predicted Value "price actual"')
plt.ylabel('Residuals')
plt.axhline(y = 0, color = 'r', ls= '--')
```

<matplotlib.lines.Line2D at 0x7f3fc28f0890>

Notes:

- Most of the residuals lie between 40 and 80 of the predicted value.
- due to the shape of the model, this indicates that there isn't really any form of trending pattern in the algorithm. Linear regression is most likely not a good fit to predict the independent variable.

GridSearch

```
#gridsearch Hyper Parameters
lr_parameter_space = {
    'fit_intercept': [True, False],
    'normalize': [True, False],
    'positive' : [True, False],
    'n_jobs' : [-1,1]
}

#gridsearch object
clf_lr = GridSearchCV(lr_model, lr_parameter_space)

#fit the data
clf_lr.fit(X_train,y_train)

#make prediction using X_test data
clf_lr_y_pred = clf_lr.predict(X_test)
```

Feature Selection

```
### Feature Selection
#construct RFE, model select top 6
rfe = RFE(lr_model,n_features_to_select = 6)
#fit the RFE model
rfe.fit(X_train,y_train)
```

RFE(estimator=LinearRegression(), n_features_to_sel

#tells us what column was selected .. (first column is n
rfe.support_

array([False, False, False, True, False, True, True, True, False, True, False, False,

#visualize the columns with all columns
selected = pd.DataFrame(data= rfe.support_, index = X_de

#shows only RFE True Selection
selected[selected[0]==True]

#shows the top 6 most correlated to price actual
corr.nlargest(6, 'price actual')['price actual']

price actual	1.000000
price day ahead	0.732155
generation fossil hard coal	0.465641
generation fossil gas	0.461706
total load forecast	0.435864
generation fossil brown coal/lignite	0.364088
Name: price actual, dtype: float64	

Notes:

 Compared to the correlation, only Price Day Ahead was selected in RFE selection

```
#original X_test col
X test.head()
```

dtype='object')

	generation biomass	generation fossil brown coal/lignite	generation fossil gas	genera for hard
2850	388.0	625.0	4635.0	44
1368	39 2.0	0.0	3812.0	2-
3252	20 368.0	479.0	4332.0	49
2/7/	DE 0040	100 0	44E0 0	Ot

#updated X_test
X_test = X_test[X_defined.columns[rfe.support_]]
X_test.head()

	generation fossil oil	generation hydro run- of-river and poundage	generation other	generati oth renewab
28504	248.0	909.0	61.0	96
13685	242.0	668.0	56.0	81
32520	262.0	669.0	57.0	83

#updated X_train
X_train = X_train[X_defined.columns[rfe.support_]]
X train.head()

	generation fossil oil	generation hydro run- of-river and poundage	generation other	generati oth renewab
3790	415.0	711.0	86.0	71
17121	32U U	710 N	56.0	106

#rebuld MLR model using the subset columns
lr_model.fit(X_train, y_train)

```
#make prediction using X_test data
rfe_lr_y_pred = lr_model.predict(X_test)
```

Accuracy Reports

```
#explained variance no gridsearch
print("R2: ", metrics.r2_score(y_test, lr_y_pred).round(
print("MSE: ", metrics.mean_squared_error(y_test, lr_y_p
print("RMSE: ", np.sqrt(metrics.mean_squared_error(y_test))
```

R2: 0.56 MSE: 88.79 RMSE: 9.42

```
#explained variance with gridsearch
print("R2: ", metrics.r2_score(y_test, clf_lr_y_pred).ro
print("MSE: ", metrics.mean_squared_error(y_test, clf_lr
print("RMSE: ", np.sqrt(metrics.mean squared error(y tes
```

R2: 0.56 MSE: 88.79

RMSE: 9.42

#explained variance with RFE Feature Selection
print("R2: ", metrics.r2_score(y_test, rfe_lr_y_pred).ro
print("MSE: ", metrics.mean_squared_error(y_test, rfe_lr
print("RMSE: ", np.sqrt(metrics.mean_squared_error(y_test))

R2: 0.54

MSE: 92.33

RMSE: 9.61

#data

columns=['R2', 'MSE', 'RMS

accuracy_df

	R2	MSE	RMSE
Linear Regression Model	0.560213	88.788416	9.422761
GridSearch Linear Regression Model	0.560213	88.788416	9.422761
RFE Linear Regression	0 540677	ററ ഉറ്റാറ	0 600700

Notes:

- Linear Regression Model showed low accuracy on all metrics.
- Gridsearch showed the same accuracy on all metrics. The linear regression model without hyperparameters is already the best result.
- With Recursive Feature Elimination (RFE), there is a significant amount of data removal, which should stem with higher accuracy. Since this metric shows lower accuracy than without feature importance, there must be other columns that are important within the dataset that justifies its accuracy.

