- 8 4 2 2 b. Show that the vector field $\vec{F} = (x^2 - y^2 + x)\vec{i} - (2xy + y)\vec{j}$ is irrotational and hence find its scalar potential
- 23. a. Find the laplace transform of the function $f(t) = \begin{cases} t \text{ for } 0 < t < a \\ 2a - t \text{ for } a < t < 2a \end{cases} \text{ where } f(t + 2a) = f(t).$

b. Solve
$$\frac{d^2y}{dx^2} + 6\frac{dy}{dx} + 8y = 2$$
 given $y(0) = 1, y'(0) = 1$.

24. a. If
$$f(z) = u + iv$$
 is analytic find $f(z)$ and v if $u = \frac{\sin 2x}{\cos 2x + \cosh 2y}$.

b. Find the bilinear transformation which maps the points
$$z = -2$$
, 0, 2 into the points $\omega = 0$, i , $-i$ respectively.

25. a.i. Using Cauchy integral formula evaluate
$$\int_{c} \frac{z}{z-2} dz$$
, where c is the circle $|z-2| = \frac{3}{2}$.

ii. Evaluate
$$\int_{c}^{c} \frac{\sin \pi z^2 + \cos \pi z^2}{(z-1)(z-2)} dz$$
 where C:|z|=3 by Cauchy's residue theorem.

b. Expand
$$f(z) = \frac{z^2 - 1}{(z+2)(z+3)}$$
 in a Laurent's series if

(i)
$$|z| < 2$$

(ii) $|z| > 3$

(ii)
$$|z| > 3$$

(iii) $2 < |z| < 3$

$$PART - C (1 \times 15 = 15 Marks)$$

Answer ANY ONE Question

26. Verify Gauss divergence theorem for
$$\vec{F} = (x^2 - yz)\vec{i} + (y^2 - zx)\vec{j} + (z^2 - xy)\vec{k}$$
 taken over the rectangular

parallelopiped enclosed by x=0, x=a, y=0, y=b, z=0 and z=c.

Evaluate
$$\int_{0}^{2\pi} \frac{d\theta}{13 + 5\sin\theta}$$
 using contour integration.

* * * * *

Reg. No.

B.Tech. / M.Tech (Integrated) DEGREE EXAMINATION, MAY 2023 Second Semester

21MAB102T - ADVANCED CALCULUS AND COMPLEX ANALYSIS (For the candidates admitted from the academic year 2021 - 2022 & 2022 - 2023)

Note:

8 4 3 2

- Part A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed over to hall invigilator at the end of 40th minute.
- Part B and Part C should be answered in answer booklet.

Time: 3 Hours Max. Marks: 75 Marks BL CO PO $PART - A (20 \times 1 = 20 Marks)$ Answer ALL Questions 1 2 1 1 Evaluation of $\int dxdy$ is (A) 0(B) 1

- (C) 4 (D) 2 1 1 1 2 2. Area of the double integral in Cartesian co-ordinate is
 - (A) $\iint dy dx$ (B) $\iint x dx dy$ (D) ∬rdrdθ (C) $\iint x^2 dx dy$
- 1 2 1 1 The region of integration of the integral $\iint f(x,y) dxdy$ is
 - (B) Rectangle (A) Square (C) Triangle (D) Circle
- 1 2 1 1 Evaluation of $\iiint dxdydz$ is equal to
 - (A) 3 (B) 4 (C) 2 (D) 6
- 1 1 2 1 5. If \vec{r} is the position vector of the point (x,y,z) with respect to the origin then $\nabla \cdot \vec{r}$ is
 - (A) 2 (B) 3 (C) 0 (D) 1
- 1 2 2 2 6. If $\phi = xyz$ then $\nabla \phi$ is
- (B) $xy\vec{i} + yz\vec{j} + zx\vec{k}$ (D) 0 (A) $yz\vec{i} + zx\vec{j} + xy\vec{k}$ (C) $zx\vec{i} + xy\vec{j} + yz\vec{k}$

Marks BL CO PO

(The unit normal vector to the surface (A) $(\vec{i} + \vec{j} - \vec{k})/\sqrt{3}$	(B) $\left(2\vec{i}+2\vec{j}-2\vec{k}\right)/\sqrt{2}$	1	2	2	1			The transformation ω=z+c where c is a complex constant represents (A) Rotation (B) Magnification (C) Translation (D) Magnification and rotation	1	4	
	C) $\left(3\vec{i} + 3\vec{j} - 3\vec{k}\right)/2\sqrt{3}$	× ×						17.	The value of $\int \frac{zdz}{z-2}$, where c is the circle $ z =1$ is	2	5	:
	f \vec{u} and \vec{v} are irrotational then $\vec{u} \times \vec{v}$ if A) Solenoidal	is (B) Irrotational	1	1	2	1 5			(A) 0 (B) $\frac{\pi}{i}$			
(C) Constant vector	(D) Zero vector					*		(C) $\pi/2$ (D) 2			
	Find $L\left[e^{-at}\right]$		1	1	3	1			Let $C_1: z-a =R_1$ and $C_2: z-a =R_2$ be two concentric circles $(R_2 < R_1)$,	1	5	
(A) $\frac{1}{s+1}$	(B) $\frac{1}{s-1}$		55					the annular region is defined as			
($C) \frac{s+1}{s+a}$	(D) <u>1</u>		=					 (A) Within C₁ (B) Within C₂ (C) Within C₂ and outside C₁ (D) Within C₁ and outside C₂ 			
	•	s-a	1	I	3	2		19.	If $f(z) = \frac{\sin z}{z}$, then	1,	5	
	If $L[f(t)] = F(s)$ then $L[tf(t)] = A$ $\frac{d}{d}F(s)$			•	_	-			(A) z=0 is a simple pole (B) z=0 is a pole of order 2 (C) z=0 is a removable singularity (D) z=0 is a zero of f(z)			
((A) $\frac{d}{ds}F(s)$ (C) $(-1)^n \frac{d}{ds}F(s)$	(B) $-\frac{d}{ds}F(s)$ (D) $-\frac{d^2}{ds^2}F(s)$	2					20.		1	5	
11. I	Find $L^{-1}\left[\frac{1}{\left(s-1\right)^2}\right]$	as	1	1	3	2			simple closed curve and 'a' is any point within C is (A) $f(a)$ (B) $2\pi i f(a)$ (C) $2\pi i f'(a)$ (D) 0			
((B) $t e^t$ (D) t		•					PART – B ($5 \times 8 = 40$ Marks) Answer ALL Questions		L CO	
	Using the final value theorem, $f(t) = 1 + e^{-t} (\sin t + \cos t)$	find the value of the function	1	2	3	2		21. a.	By changing the order of integration, evaluate $\int_{0}^{4a} \int_{x^2/4a}^{4a} dy dx$.	4	1	
(A) 1 C) ∞	(B) 0 (D) -2					·e		,			
13.]	f a function $u(x, y)$ satisfies $u_{xx} + u$ A) Analytic C) Differentiable	yy = 0 then u is (B) Harmonic (D) Continuous	1	1	4	1		b.	Evaluate $\int_{0}^{a\sqrt{a^2-x^2}} \int_{0}^{\sqrt{a^2-x^2-y^2}} \frac{dzdydx}{\sqrt{a^2-x^2-y^2-z^2}}.$		1	
	The points at which the function $f(z)$		1	1	4	1			Find the directional derivative of $\phi = x^2yz + 4xz^2 + xyz$ at $(1,2,3)$ in the direction of $2\vec{i} + \vec{j} - \vec{k}$.	3	3 2	
	(A) $z = \pm 1$ (C) $z = \pm i$	(B) $z = 0$ (D) $z = \pm 2$						ii.	Find the angle between the surfaces $z = x^2 + y^2 - 3$ and $x^2 + y^2 + z^2 = 9$	3	3 2	
	An analytic function with constant m (A) Zero	odulus is (B) Analytic	1	1	4	1			at(2,-1,2).			
	C) Constant	(D) Harmonic							(OR)			