1. The application I am going to design is a database for baseball statistics. In organized baseball, there are many players, and each of these players has many statistics to their name. There are also many statistics for teams as a whole. To keep track of all these stats, Major League Baseball keeps large databases. For this project, I will create a database that holds player statistics. I will have three different entity sets: Player, Season, and Teams. The attributes for Team will be Team, Team_city, and team_division. For the Player entity set, the attributes will be player_id, player_name, and age. For Season, the attributes are season_id, year, batting_avg, home_runs, and rbis.

2.

Unnormalized Form

Player Season Statistics

Player season Team division Team city player_id player name age season id batting_avg home_runs rbis team 2276352866, 94 Chicago North 33466. 27, 1999. 0.302, 40 Cubs Andrew Johnson, 2276352867. 32 81 2000 0.275, 2276352868 2001 0.245 27 67 27897, Babe Davis, 30, 5103019944, 1999, 0.268, 7 45 5103019945 2000 0.234 27 5 South 34778 Darius Williams 3290652485, 72 Blackhawks Arizona 22 1999. 0.315, 8 3290652486 0.308 12 99

3. With first normalization, I need to get rid of repeating groups. In the unnormalized relation, there is one line for each team, but there are multiple players and seasons on each line. To make the first normalized form table, I separated the data into distinct rows, instead of separating the same kinds of data within one team with a comma. I had to repeat the team and player data for each line in order to get to 1NF.

First Normalized Form (1NF)

Player Season Statistics

<u>team</u>	Team_city	Team_division	player_id	player_name	age	S	eason_id	year	batting_avg	home_runs	rbis
Cubs	Chicago	North	3346	66 Andrew Johnson	27	7	2276352866	1999	0.302	40	94
Cubs	Chicago	North	3340	66 Andrew Johnson	27	7	2276352867	2000	0.275	32	81
Cubs	Chicago	North	3346	66 Andrew Johnson	27	7	2276352868	2001	0.245	27	67
Cubs	Chicago	North	2789	97 Babe Davis	30	0	5103019944	1999	0.268	7	45
Cubs	Chicago	North	2789	97 Babe Davis	30	0	5103019945	2000	0.234	. 5	27
Blackhawks	Arizona	South	347	78 Darius Williams	22	2	3290652485	1999	0.315	8	72
Blackhawks	Arizona	South	347	78 Darius Williams	22	2	3290652486	2000	0.308	12	99

1NF still leaves some repeating data, so I had to break up the tables further into 2nd normalized form. The team city and team division are dependent on team name (there could be more than one team in the same city, but two teams in one league would not have the same name, so that's a solid primary key). I have a team table, and similarly I will add a player table. With each player ID, there is a name and age.

Each season of statistics belongs to a particular player, so season ID is dependent on player ID. I'll create a table displaying that. The final table in 2NF is for the season. Each player-season has a corresponding year, home run, RBI, and batting average total. With these new tables, every attribute is dependent on the primary key. That is 2NF.

Second Normalized Form (2NF)

Teams

Players

player id

<u>team</u>	Team_city	Team_division
Cubs	Chicago	North
Blackhawks	Arizona	South

33466	Andrew Johnson	27
27897	Babe Davis	30
34778	Darius Williams	22

age

player_name

Season_id_number

player	<u>id</u>	season_id
--------	-----------	-----------

33466	2276352866
33466	2276352867
33466	2276352868
27897	5103019944
27897	5103019945
34778	3290652485
34778	3290652486

Season

season id	year	batting_avg	home_runs	rbis	
	1				
2276352866	1999	0.302	40	94	
2276352867	2000	0.275	32	81	
2276352868	2001	0.245	27	67	
5103019944	1999	0.268	7	45	
5103019945	2000	0.234	5	27	
3290652485	1999	0.315	8	72	
3290652486	2000	0.308	12	99	

5. (next page)

6. (next page)

- 7. a. \prod batting_avg (σ home runs > 30 (season))
 - b. \prod player_name (σ age < 25 (Players))
- 8. a. SELECT player_name, year FROM players, season, season_id_number WHERE players.player_id = season_id_number.player_id AND season.player_id = season_id_number.player_id AND season.rbis > 100;
 - b. SELECT team, team_cityFROM teamsWHERE team_division = 'south';
- 10. CREATE TABLE teams (team VARCHAR2(30), team_city VARCHAR2(30), team_division VARCHAR2(5),

PRIMARY KEY (team));

CREATE TABLE Players
(player_id NUMBER(5),
player_name VARCHAR2(40),
age NUMBER(2),
PRIMARY KEY (player_id));

CREATE TABLE season_id_number

(player_id NUMBER(5), season_id NUMBER(10), PRIMARY KEY(player_id), FOREIGN KEY(player_id) REFERENCES player);

CREATE TABLE season

(season_id NUMBER(10),
year NUMBER(4),
batting_avg NUMBER(0,3),
home_runs NUMERIC,
rbis NUMERIC,
PRIMARY KEY(season_id),
FOREIGN KEY(season_id) REFERENCES season_id_number);

11.

INSERT INTO teams (team, team_city, team_division) VALUES ('Pirates', 'Pittsburgh', 'East');

INSERT INTO teams (team, team_city, team_division) VALUES ('Eagles', 'San Antonio', 'South');

INSERT INTO teams (team, team_city, team_division) VALUES ('Miners', 'West Virginia', 'East');

INSERT INTO players (player_id, player_name, age) VALUES (24531, 'Matt Jacobs', 24);

INSERT INTO players (player_id, player_name, age) VALUES (89567, 'Adam Reynolds', 31);

INSERT INTO players (player_id, player_name, age) VALUES (44609, 'Brian Tatum', 26);

12. The least challenging part of the project was making the SQL statements. I've had plenty of practice with those through both this course and outside of it, so I was very ready to develop some queries and also create the tables themselves. The study guide in Course Resources also helped with any proofreading of my statements that I needed. The most difficult part was building the normalized tables. Trying to figure out the best way to separate and display data can be tricky. I still figured it out eventually, though. Overall, it was a fun project, and I liked that we had the liberty to create our own type of database system.