Classification

ACTL3143 & ACTL5111 Deep Learning for Actuaries
Patrick Laub

Lecture Outline

- Classification
- Stroke Prediction

Iris dataset

```
from sklearn.datasets import load_iris
iris = load_iris()
names = ["SepalLength", "SepalWidth", "PetalLength", "PetalWidth"]
features = pd.DataFrame(iris.data, columns = names)
features
```

	SepalLength	SepalWidth	PetalLength	PetalWidth
O	5.1	3.5	1.4	0.2
1	4.9	3.0	1.4	0.2
•••	•••	•••	•••	•••
148	6.2	3.4	5.4	2.3
149	5.9	3.0	5.1	1.8

150 rows × 4 columns

Target variable

```
1 iris.target_names
array(['setosa', 'versicolor', 'virginica'],
dtype='<U10')</pre>
  1 iris.target[:8]
array([0, 0, 0, 0, 0, 0, 0, 0])
  1 target = iris.target
  2 target = target.reshape(-1, 1)
  3 target[:8]
array([[0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0]])
```

```
classes, counts = np.unique(
             target,
             return_counts=True
  5 print(classes)
  6 print(counts)
[0 1 2]
[50 50 50]
   1 iris.target_names[
       target[[0, 30, 60]]
array([['setosa'],
       ['setosa'],
       ['versicolor']], dtype='<U10')
```


Split the data into train and test

- 1 X_train, X_test, y_train, y_test = train_test_split(features, target, random_state=24)
- 2 X_train

	SepalLength	SepalWidth	PetalLength	PetalWidth
53	5.5	2.3	4.0	1.3
58	6.6	2.9	4.6	1.3
95	5.7	3.0	4.2	1.2
•••	•••	•••	•••	•••
145	6.7	3.0	5.2	2.3
87	6.3	2.3	4.4	1.3
131	7.9	3.8	6.4	2.0

112 rows × 4 columns

1 X_test.shape, y_test.shape

((38, 4), (38, 1))

A basic classifier network

A basic network for classifying into three categories.

Create a classifier model

```
1 NUM_FEATURES = len(features.columns)
2 NUM_CATS = len(np.unique(target))
3
4 print("Number of features:", NUM_FEATURES)
5 print("Number of categories:", NUM_CATS)

Number of features: 4
Number of categories: 3
```

Make a function to return a Keras model:

Fit the model

```
1 model = build_model()
2 model.compile("adam", "sparse_categorical_crossentropy")
3
4 model.fit(X_train, y_train, epochs=5, verbose=2);

Epoch 1/5
4/4 - 0s - 119ms/step - loss: 1.3502
Epoch 2/5
4/4 - 0s - 4ms/step - loss: 1.2852
Epoch 3/5
4/4 - 0s - 5ms/step - loss: 1.2337
Epoch 4/5
4/4 - 0s - 4ms/step - loss: 1.1915
Epoch 5/5
4/4 - 0s - 5ms/step - loss: 1.1556
```


Track accuracy as the model trains

Run a long fit

```
model = build_model()
model.compile("adam", "sparse_categorical_crossentropy", \
metrics=["accuracy"])

%time hist = model.fit(X_train, y_train, epochs=500, \
validation_split=0.25, verbose=False)
```

CPU times: user 17.7 s, sys: 2.32 s, total: 20 s Wall time: 17.9 s

Evaluation now returns both *loss* and *accuracy*.

```
1 model.evaluate(X_test, y_test, verbose=False)
```

[0.09586220979690552, 0.9736841917037964]

Add early stopping

```
CPU times: user 2.78 s, sys: 374 ms, total: 3.15 s Wall time: 2.91 s Stopped after 68 epochs.
```

Evaluation on test set:

```
1 model.evaluate(X_test, y_test, verbose=False)
```

```
[0.9856260418891907, 0.5263158082962036]
```


Fitting metrics

What is the softmax activation?

It creates a "probability" vector: Softmax(\boldsymbol{x}) = $\frac{\mathbf{e}_i^x}{\sum_j \mathbf{e}_j^x}$.

In NumPy:

```
1 out = np.array([5, -1, 6])
2 (np.exp(out) / np.exp(out).sum()).round(3)
array([0.269, 0.001, 0.731])
```

In Keras:

```
1 out = keras.ops.convert_to_tensor([[5.0, -1.0, 6.0]])
2 keras.ops.round(keras.ops.softmax(out), 3)

<tf.Tensor: shape=(1, 3), dtype=float32, numpy=array([[0.269, 0.001, 0.731]], dtype=float32)>
```


Prediction using classifiers

```
1 y_test[:4]
array([[2],
       [2],
       [1],
       [1]])
  1 y_pred = model.predict(X_test.head(4), verbose=0)
  2 y_pred
array([[0.1397096 , 0.5175301 , 0.34276026],
       [0.24611065, 0.44371164, 0.3101777],
       [0.26309973, 0.43174297, 0.3051573],
       [0.259089 , 0.44883674, 0.29207426]], dtype=float32)
  1 # Add 'keepdims=True' to get a column vector.
  2 np.argmax(y pred, axis=1)
array([1, 1, 1, 1])
  1 iris.target_names[np.argmax(y_pred, axis=1)]
array(['versicolor', 'versicolor', 'versicolor', 'versicolor'],
      dtype='<U10')
```


Cross-entropy loss: ELI5

Why use cross-entropy loss?

```
1  p = np.linspace(0, 1, 100)
2  plt.plot(p, (1-p)**2)
3  plt.plot(p, -np.log(p))
4  plt.legend(["MSE", "Cross-entropy"]);
```


One-hot encoding

```
from sklearn.preprocessing import OneHotEncoder

enc = OneHotEncoder(sparse_output=False)

y_train_oh = enc.fit_transform(y_train)
y_test_oh = enc.transform(y_test)
```

```
array([[1],
[1],
[1],
[0],
[0]])
```

1 y_train[:5]

1 y_train_oh[:5]

	xo_o	XO_1	XO_2
0	0.0	1.0	0.0
1	0.0	1.0	0.0
2	0.0	1.0	0.0
3	1.0	0.0	0.0
4	1.0	0.0	0.0

Classifier given one-hot outputs

Create the model (*new loss function*):

```
1 model = build_model()
2 model.compile("adam", "categorical_crossentropy", \
3 metrics=["accuracy"])
```

Fit the model (*new target variables*):

```
1 model.fit(X_train, y_train_oh, epochs=100, verbose=False);
```

Evaluate the model (*new target variables*):

```
1 model.evaluate(X_test, y_test_oh, verbose=False)
```

[0.347093790769577, 0.9473684430122375]

Lecture Outline

- Classification
- Stroke Prediction

The data

Dataset source: Kaggle Stroke Prediction Dataset.

```
1 data = pd.read_csv("stroke.csv")
2 data.head()
```

	id	gender	age	hypertension	heart_disease	ever_married	work_type	Residenc
0	9046	Male	67.0	О	1	Yes	Private	Urban
1	51676	Female	61.0	О	0	Yes	Self- employed	Rural
2	31112	Male	80.0	O	1	Yes	Private	Rural
3	60182	Female	49.0	O	0	Yes	Private	Urban
4	1665	Female	79.0	1	О	Yes	Self- employed	Rural

Data description

- 1. id: unique identifier
- 2. gender: "Male", "Female" or "Other"
- 3. age: age of the patient
- 4. hypertension: o or 1 if the patient has hypertension
- 5. heart_disease: o or 1 if the patient has any heart disease
- 6. ever_married: "No" or "Yes"

- 8. Residence_type: "Rural" or "Urban"
- 9. avg_glucose_level: average glucose level in blood
- 10. bmi: body mass index
- 11. smoking_status: "formerly smoked", "never smoked", "smokes" or "Unknown"
- 12. **stroke**: o or 1 if the patient had a stroke

Split the data

First, look for missing values.

```
1 number_missing = data.isna().sum()
  2 number missing[number missing > 0]
bmi
       201
dtype: int64
  1 features = data.drop(["id", "stroke"], axis=1)
    target = data["stroke"]
  4 X_main, X_test, y_main, y_test = train_test_split(
         features, target, test_size=0.2, random_state=7)
  6 X_train, X_val, y_train, y_val = train_test_split(
         X_main, y_main, test_size=0.25, random_state=12)
  8
  9 X_train.shape, X_val.shape, X_test.shape
((3066, 10), (1022, 10), (1022, 10))
```


What values do we see in the data?

```
1 X_train["gender"].value_counts()
gender
                                                  work type
          1802
                                                  Private
Female
          1264
Male
                                                  Self-employed
Name: count, dtype: int64
                                                  children
                                                  Govt job
  1 X_train["ever_married"].value_counts()
                                                  Never worked
ever_married
       2007
Yes
No
       1059
Name: count, dtype: int64
                                                  never smoked
  1 X_train["Residence_type"].value_counts(
                                                  Unknown
                                                  smokes
Residence_type
Urban
         1536
         1530
Rural
Name: count, dtype: int64
```

```
smoking_status
never smoked 1130
Unknown 944
formerly smoked 522
smokes 470
Name: count, dtype: int64
```


Preprocess columns individually

- 1. Take categorical columns \hookrightarrow one-hot vectors
- 2. binary columns \hookrightarrow do nothing
- 3. continuous columns \hookrightarrow impute NaNs & standardise.

Scikit-learn column transformer

```
from sklearn.pipeline import make_pipeline
   cat_vars = ["gender", "ever_married", "Residence_type",
       "work type", "smoking status"]
 6 ct = make column transformer(
     (OneHotEncoder(sparse output=False, handle unknown="ignore"), cat vars),
     ("passthrough", ["hypertension", "heart disease"]),
     remainder=make_pipeline(SimpleImputer(), StandardScaler()),
     verbose feature names out=False
10
11 )
12
13 X_train_ct = ct.fit_transform(X_train)
14 X_val_ct = ct.transform(X_val)
15 X test ct = ct.transform(X test)
16
   for name, X in zip(("train", "val", "test"), (X train ct, X val ct, X test ct)):
       num_na = X.isna().sum().sum()
18
       print(f"The {name} set has shape {X_train_ct.shape} & with {num_na} NAs.")
19
```

The train set has shape (3066, 20) & with 0 NAs. The val set has shape (3066, 20) & with 0 NAs. The test set has shape (3066, 20) & with 0 NAs.

Handling unseen categories

```
1 X_train["gender"].value_counts()
```

gender Female

1802

Male 1264

Name: count, dtype: int64

```
1 ind = np.argmax(X_val["gender"] == "Oth
2 X_val.iloc[ind-1:ind+3][["gender"]]
```

<pre>1 X_val["gender"].value_counts()</pre>	<pre>gender"].value_counts()</pre>
---	------------------------------------

gender

Female 615 Male 406

Other 1

Name: count, dtype: int64

```
1 gender_cols = X_val_ct[["gender_Female"
2 gender_cols.iloc[ind-1:ind+3]
```

gender

4970	Male
3116	Other
4140	Male
2505	Female

gender_Female gender_

	30110101_	3
4970	0.0	1.0
3116	0.0	0.0
4140	0.0	1.0
2505	1.0	0.0

Setup a binary classification model

```
def create_model(seed=42):
    random.seed(seed)
    model = Sequential()
    model.add(Input(X_train_ct.shape[1:]))
    model.add(Dense(32, "leaky_relu"))
    model.add(Dense(16, "leaky_relu"))
    model.add(Dense(1, "sigmoid"))
    return model

1 model = create_model()
    model.summary()
```

Model: "sequential_5"

Layer (type)	Output Shape	Param #
dense_10 (Dense)	(None, 32)	672
dense_11 (Dense)	(None, 16)	528
dense_12 (Dense)	(None, 1)	17

Total params: 1,217 (4.75 KB)
Trainable params: 1,217 (4.75 KB)
Non-trainable params: 0 (0.00 B)

Add metrics, compile, and fit

```
model = create_model()
     pr auc = keras.metrics.AUC(curve="PR", name="pr auc")
    model.compile(optimizer="adam", loss="binary_crossentropy",
         metrics=[pr_auc, "accuracy", "auc"])
     es = EarlyStopping(patience=50, restore_best_weights=True,
         monitor="val_pr_auc", verbose=1)
     model.fit(X_train_ct, y_train, callbacks=[es], epochs=1_000, verbose=0,
       validation data=(X val ct, y val));
Epoch 65: early stopping
Restoring model weights from the end of the best epoch: 15.
    model.evaluate(X_val_ct, y_val, verbose
[0.14444081485271454,
0.13122102618217468,
0.9589040875434875,
0.8215014934539795]
```


Overweight the minority class

model = create_model()

```
pr auc = keras.metrics.AUC(curve="PR", name="pr auc")
    model.compile(optimizer="adam", loss="binary_crossentropy",
         metrics=[pr auc, "accuracy", "auc"])
     es = EarlyStopping(patience=50, restore best weights=True,
         monitor="val pr auc", verbose=1)
     model.fit(X train ct, y train.to numpy(), callbacks=[es], epochs=1 000, verbose=0,
       validation data=(X val ct, y val), class weight={0: 1, 1: 10});
Epoch 74: early stopping
Restoring model weights from the end of the best epoch: 24.
    model.evaluate(X val ct, y val, verbose
                                                      model.evaluate(X test ct, y test, verbo
[0.3345569670200348,
                                                 [0.3590189516544342,
0.13615098595619202,
                                                  0.1449822038412094,
0.8062622547149658,
                                                  0.8023483157157898,
                                                  0.79156380891799931
0.8122206330299377
```


Classification Metrics

```
from sklearn.metrics import confusion_matrix, RocCurveDisplay, PrecisionRecallDisplay
y_pred = model.predict(X_test_ct, verbose=0)
```

1 RocCurveDisplay.from_predictions(y_test, y_pred, name="");

1 PrecisionRecallDisplay.from_predictions(y_test, y_pred, na


```
1 y_pred_stroke = y_pred > 0.5
2 confusion_matrix(y_test, y_pred_stroke)
```

1 y_pred_stroke = y_pred > 0.3
2 confusion_matrix(y_test, y_pred_stroke)

array([[662, 310],

array([[792, 180],

[22 2011)

Package Versions

```
1 from watermark import watermark
2 print(watermark(python=True, packages="keras,matplotlib,numpy,pandas,seaborn,scipy,torch
```

Python implementation: CPython Python version : 3.11.9
IPython version : 8.24.0

keras : 3.3.3
matplotlib: 3.9.0
numpy : 1.26.4
pandas : 2.2.2
seaborn : 0.13.2
scipy : 1.11.0
torch : 2.0.1
tensorflow: 2.16.1
tf_keras : 2.16.0

Glossary

- classification problem
- confusion matrix
- cross-entropy loss
- sigmoid activation function

