Comunicação entre processos

António Pinto apinto@estg.ipp.pt

Escola Superior de Tecnologia e Gestão

Novembro, 2017

Sumário

Troca de mensagens

Endereçamento

Sincronismo

Buffering

Processo cooperativo

Processo que partilha dados com outros processos e que, por isso, pode afetar ou ser afetado por estes.

Processo cooperativo

Processo que partilha dados com outros processos e que, por isso, pode afetar ou ser afetado por estes.

 Forma mais elementar de partilha de dados ocorre por partilha de memória

Processo cooperativo

Processo que partilha dados com outros processos e que, por isso, pode afetar ou ser afetado por estes.

- Forma mais elementar de partilha de dados ocorre por partilha de memória
- Partilha de memória só está disponível para processos que executem no mesmo PC

Processo cooperativo

Processo que partilha dados com outros processos e que, por isso, pode afetar ou ser afetado por estes.

- Forma mais elementar de partilha de dados ocorre por partilha de memória
- Partilha de memória só está disponível para processos que executem no mesmo PC
- Não é possível entre processos que não usem o mesmo espaço de endereçamento de memória

Processo cooperativo

Processo que partilha dados com outros processos e que, por isso, pode afetar ou ser afetado por estes.

- Forma mais elementar de partilha de dados ocorre por partilha de memória
- Partilha de memória só está disponível para processos que executem no mesmo PC
- Não é possível entre processos que não usem o mesmo espaço de endereçamento de memória
- É necessário mecanismo alternativo de comunicação entre processos

Formas de comunicação

 Uma forma de comunicação entre processos que não partilhem memória pode ser conseguida com um mecanismo de troca de mensagens

Formas de comunicação

- Uma forma de comunicação entre processos que não partilhem memória pode ser conseguida com um mecanismo de troca de mensagens
- Troca de mensagens pode ocorrer também entre processos a correr em equipamentos distintos

Formas de comunicação

- Uma forma de comunicação entre processos que não partilhem memória pode ser conseguida com um mecanismo de troca de mensagens
- Troca de mensagens pode ocorrer também entre processos a correr em equipamentos distintos
- Internet, com os pacotes IP, é exemplo de um sistema de troca de mensagens global

Conteúdos

Troca de mensagens

Endereçamento

Sincronismo

Buffering

Sistema de troca de mensagens

 Funcionalidade elementar deste sistema é o de permitir comunicação entre processos, sem recorrer à partilha de memória

Sistema de troca de mensagens

- Funcionalidade elementar deste sistema é o de permitir comunicação entre processos, sem recorrer à partilha de memória
- Deve providenciar, pelo menos, as seguintes funções
 - enviar(mensagem)
 - receber(mensagem)

Sistema de troca de mensagens

- Funcionalidade elementar deste sistema é o de permitir comunicação entre processos, sem recorrer à partilha de memória
- Deve providenciar, pelo menos, as seguintes funções
 - enviar(mensagem)
 - receber(mensagem)
- Mensagens podem ter tamanho fixo ou variável
 - Fixo é mais fácil de implementar pelo sistema operativo
 - Variável é mais útil para quem desenvolve aplicações

 Comunicação entre dois quaisquer processos requer que consigam mandar e receber mensagens entre eles

- Comunicação entre dois quaisquer processos requer que consigam mandar e receber mensagens entre eles
- Uma ligação entre estes é necessária

- Comunicação entre dois quaisquer processos requer que consigam mandar e receber mensagens entre eles
- Uma ligação entre estes é necessária
- Ligação pode ser implementada de muitas formas

- Comunicação entre dois quaisquer processos requer que consigam mandar e receber mensagens entre eles
- Uma ligação entre estes é necessária
- Ligação pode ser implementada de muitas formas
- Existem fatores que afetam a forma como uma ligação é utilizada/implementada
 - Se a comunicação é direta ou indireta
 - Se a comunicação é síncrona ou assíncrona
 - Se a comunicação usa buffering ou não

Conteúdos

Troca de mensagens

Endereçamento

Sincronismo

Buffering

Endereçamento 8/2

Endereçamento

 Processos para comunicar, necessitam de uma forma de se identificarem (endereços)

Endereçamento 9/2

Endereçamento

- Processos para comunicar, necessitam de uma forma de se identificarem (endereços)
- Uso de endereçamento tem impacto nos tipos de comunicação disponíveis
 - Comunicação direta
 - ► Comunicação indireta

Endereçamento 9/2

Endereçamento simétrico

 Em comunicação direta, cada processo comunicante têm de explicitamente de identificar o outro processo

Endereçamento 10/25

Endereçamento simétrico

- Em comunicação direta, cada processo comunicante têm de explicitamente de identificar o outro processo
 - ► enviar(P,M) → Enviar mensagem M para processo P
 - receber(Q,M) → Receber mensagem M do processo Q
 - Denominado de endereçamento simétrico

Endereçamento 10/25

Endereçamento simétrico

- Em comunicação direta, cada processo comunicante têm de explicitamente de identificar o outro processo
 - ► enviar(P,M) → Enviar mensagem M para processo P
 - receber(Q,M) → Receber mensagem M do processo Q
 - Denominado de endereçamento simétrico
- Características deste tipo de ligação
 - Processo necessitam conhecer endereços uns dos outros
 - Ligação associada a exatamente 2 processos
 - Só permite uma ligação entre 2 processos

Enderecamento 10/25

Endereçamento assimétrico

 Quando é permitido ao processo receber mensagens sem conhecer previamente o emissor, estamos perante endereçamento assimétrico

Endereçamento 11/25

Endereçamento assimétrico

- Quando é permitido ao processo receber mensagens sem conhecer previamente o emissor, estamos perante endereçamento assimétrico
 - ► enviar(P,M) → Enviar mensagem M para processo P
 - receber(?,M) → Receber mensagem M de qualquer processo. Mensagem inclui identificação processo emissor

Endereçamento 11/25

 Comunicação pode ser efetuada com recurso a armazenamento temporário

Endereçamento 12/25

- Comunicação pode ser efetuada com recurso a armazenamento temporário
- Mensagens são armazenadas num repositório fora do processo

Endereçamento 12/25

- Comunicação pode ser efetuada com recurso a armazenamento temporário
- Mensagens são armazenadas num repositório fora do processo
- Repositórios passam a ter endereços

Endereçamento 12/25

- Comunicação pode ser efetuada com recurso a armazenamento temporário
- Mensagens são armazenadas num repositório fora do processo
- Repositórios passam a ter endereços
- Dois processos comunicam partilhando um repositório
 - ► enviar(R,M) → Enviar mensagem M para repositório R
 - receber(R,M) → Receber mensagem M de repositório R

Enderecamento 12/25

Características

► Ligação só é estabelecida entre 2 processos se estes partilharem um repositório

Endereçamento 13/25

Características

- Ligação só é estabelecida entre 2 processos se estes partilharem um repositório
- Ligação pode servir mais do que 2 processos

Endereçamento 13/25

Características

- Ligação só é estabelecida entre 2 processos se estes partilharem um repositório
- Ligação pode servir mais do que 2 processos
- Podem existir múltiplas ligações (repositórios) entre cada 2 processos

Endereçamento 13/25

Utilização de repositório por mais do que 2 processos

Assumindo que

- Processos P₁,P₂ e P₃ partilham o repositório A
- P₁ envia mensagem para o repositório A
- ▶ P₂ e P₃ executam receber(A,M)

Quem recebe mensagem?

Endereçamento 14/25

Utilização de repositório por mais do que 2 processos

Assumindo que

- Processos P₁,P₂ e P₃ partilham o repositório A
- P₁ envia mensagem para o repositório A
- ▶ P₂ e P₃ executam receber(A,M)

Quem recebe mensagem? \rightarrow **Depende**

Endereçamento 14/25

Utilização de repositório por mais do que 2 processos

Assumindo que

- Processos P₁,P₂ e P₃ partilham o repositório A
- P₁ envia mensagem para o repositório A
- ▶ P₂ e P₃ executam receber(A,M)

Quem recebe mensagem? \rightarrow **Depende**

Pode-se limitar partilha de repositório a 2 processos

Endereçamento 14/25

Utilização de repositório por mais do que 2 processos

Assumindo que

- Processos P₁,P₂ e P₃ partilham o repositório A
- P₁ envia mensagem para o repositório A
- ▶ P₂ e P₃ executam receber(A,M)

Quem recebe mensagem? \rightarrow **Depende**

- Pode-se limitar partilha de repositório a 2 processos
- ▶ Pode-se impedir a execução simultânea de receber(A,M)

Enderecamento 14/25

Utilização de repositório por mais do que 2 processos

Assumindo que

- Processos P₁,P₂ e P₃ partilham o repositório A
- P₁ envia mensagem para o repositório A
- ▶ P₂ e P₃ executam receber(A,M)

Quem recebe mensagem? \rightarrow **Depende**

- Pode-se limitar partilha de repositório a 2 processos
- Pode-se impedir a execução simultânea de receber(A,M)
- Pode-se deixar o sistema escolher aleatoriamente

Enderecamento 14/25

Autoridade sobre repositórios

 Repositórios podem pertencer ao sistema operativo ou ao processo

Endereçamento 15/25

Autoridade sobre repositórios

- Repositórios podem pertencer ao sistema operativo ou ao processo
- Pertença ao processo
 - Apenas o processo pode ler do repositório
 - Repositório é eliminado aquando do término do processo

Endereçamento 15/25

Autoridade sobre repositórios

- Repositórios podem pertencer ao sistema operativo ou ao processo
- Pertença ao processo
 - Apenas o processo pode ler do repositório
 - Repositório é eliminado aquando do término do processo
- Pertença ao sistema operativo
 - Repositório tem existência própria
 - Requer funções de gestão de repositórios (criar, eliminar, editar, . . .)

Endereçamento 15/25

Conteúdos

Troca de mensagens

Endereçamento

Sincronismo

Buffering

 Comunicação entre processos ocorre com a utilização das funções enviar() e receber()

- Comunicação entre processos ocorre com a utilização das funções enviar() e receber()
- Estas funções podem ser implementadas adotando-se um abordagem bloqueante (síncrona) ou não bloqueante (assíncrona)

Funções

 enviar() bloqueante: Função de envio só termina quando a mensagem é recebida pelo destinatário (processo ou repositório)

Funções

- enviar() bloqueante: Função de envio só termina quando a mensagem é recebida pelo destinatário (processo ou repositório)
- enviar() não bloqueante: Função de envio termina mal acaba de enviar a mensagem

Funções

- enviar() bloqueante: Função de envio só termina quando a mensagem é recebida pelo destinatário (processo ou repositório)
- enviar() não bloqueante: Função de envio termina mal acaba de enviar a mensagem
- receber() bloqueante: Função de receção só termina quando for efetivamente recebida uma mensagem pelo destinatário

Funções

- enviar() bloqueante: Função de envio só termina quando a mensagem é recebida pelo destinatário (processo ou repositório)
- enviar() não bloqueante: Função de envio termina mal acaba de enviar a mensagem
- receber() bloqueante: Função de receção só termina quando for efetivamente recebida uma mensagem pelo destinatário
- receber() não bloqueante: Função de receção verifica se existe mensagem, terminando de imediato (devolvendo a mensagem ou null)

Funções

Qualquer combinação destas funções é possível

Funções

- Qualquer combinação destas funções é possível
- Quando enviar() e receber() são bloqueantes
 - Dá-se o rendezvous dos processos
 - Ambos os processo têm de estar a executar em simultâneo para que se dê a comunicação

Conteúdos

Troca de mensagens

Endereçamento

Sincronismo

Buffering

 Capacidade de comunicação está associada a utilização de zonas de armazenamento de informação

- Capacidade de comunicação está associada a utilização de zonas de armazenamento de informação
- O armazenamento é temporário já que acontece só até ao momento de leitura

- Capacidade de comunicação está associada a utilização de zonas de armazenamento de informação
- O armazenamento é temporário já que acontece só até ao momento de leitura
- Zonas de armazenamento temporário são organizadas como filas (queues)

- Capacidade de comunicação está associada a utilização de zonas de armazenamento de informação
- O armazenamento é temporário já que acontece só até ao momento de leitura
- Zonas de armazenamento temporário são organizadas como filas (queues)
- Existem 3 tipos de filas
 - Filas com capacidade zero
 - Filas com capacidade limitada
 - Filas com capacidade ilimitada

Filas com capacidade zero

- ► Fila tem 0 (zero) capacidade de armazenamento
- Não é capaz de conter mensagens

Filas com capacidade zero

- Fila tem 0 (zero) capacidade de armazenamento
- Não é capaz de conter mensagens
- Emissor bloqueia até que a mensagem seja lida
- Implica o rendezvous

Filas com capacidade limitada

 Fila tem capacidade de armazenamento de algumas mensagens

Filas com capacidade limitada

- Fila tem capacidade de armazenamento de algumas mensagens
- Fila tem limite máximo de mensagens

Filas com capacidade limitada

- Fila tem capacidade de armazenamento de algumas mensagens
- Fila tem limite máximo de mensagens
- Se fila n\u00e3o estiver cheia, a mensagem \u00e9 armazenada e o emissor pode continuar
- Se fila estiver cheia, emissor tem de aguardar até que seja libertado espaço para armazenar a mensagem

Filas com capacidade ilimitada

- Fila tem capacidade de armazenamento infinito
- Emissor nunca bloqueia na operação de envio de mensagem

Bibliografia

Baseado na bibliografia da unidade curricular.

Bibliografia 25/2