Package 'dilutionrisk'

April 12, 2023	
Type Package	
Title Modelling and assessment of risk based on aerobic plate count (APC) on diluted testing	
Version 0.0.1	
Authors Mayooran Thevaraja [aut, cre], Kondaswamy Govindaraju [aut], Mark Bebbington [aut]	
<pre>URL https://github.com/Mayooran1987/dilutionrisk</pre>	
BugReports https://github.com/Mayooran1987/dilutionrisk/issues	
Description This package aims to develop for getting probability estimations and graphical displays in the study associated with Modelling and assessment of risk based on aerobic plate count (APC) on diluted testing.	
License GPL (>= 2)	
Encoding UTF-8	
LazyData true	
Imports extraDistr, ggplot2, ggthemes, reshape2, Rcpp, stats, poilog	
LinkingTo Rcpp	
Suggests spelling, testthat (>= 3.0.0), covr	
RoxygenNote 7.2.3	
Depends R (>= 4.0)	
Maintainer Mayooran Thevaraja <mayooran@eng.jfn.ac.lk></mayooran@eng.jfn.ac.lk>	
Language en-US	
Config/testthat/edition 3	
R topics documented:	
AQL_LQL_heterogeneous AQL_LQL_homogeneous 4 compare_plans_dilution_1_pd_betabinom_pln 5 compare_plans_dilution_1_pd_betabinom_pois 6 compare_plans_dilution_1_pd_binom_pln 7 compare_plans_dilution_1_pd_binom_pois 8 compare_plans_dilution_2_pd_betabinom_pln 9 compare_plans_dilution_2_pd_betabinom_pois 10	

43

compare_plans_dilution_2_pd_binom_pln	11
compare_plans_dilution_2_pd_binom_pois	12
cv_heterogeneous	13
cv_homogeneous	15
dilutionrisk	16
OC_curves_heterogeneous	16
OC_curves_homogeneous	17
pd_curves_heterogeneous	18
pd_curves_homogeneous	19
pd_validation_heterogeneous	20
pd_validation_homogeneous	21
prob_acceptance_heterogeneous	22
prob_acceptance_heterogeneous_multiple	23
prob_acceptance_homogeneous	24
prob_acceptance_homogeneous_multiple	25
prob_detection_heterogeneous	26
prob_detection_heterogeneous_multiple	27
prob_detection_homogeneous	28
prob_detection_homogeneous_multiple	29
prob_detect_dilution_1_betabinom_pln	30
prob_detect_dilution_1_betabinom_pois	31
prob_detect_dilution_1_binom_pln	32
prob_detect_dilution_1_binom_pois	33
prob_detect_dilution_2_betabinom_pln	34
prob_detect_dilution_2_betabinom_pois	35
prob_detect_dilution_2_binom_pln	36
prob_detect_dilution_2_binom_pois	37
rtrunpoilog	38
true_concentration_heterogeneous	39
true_concentration_homogeneous	40

AQL_LQL_heterogeneous AQL and LQL estimations for given dilution schemes when diluted samples are collected from a heterogeneous batch.

Description

Index

 $\label{eq:local_AQL_LQL_heterogeneous} \ provides \ estimated \ AQL \ and \ LQL \ values \ for \ given \ dilution \ schemes \ when samples are collected from a heterogeneous batch.$

Usage

 $AQL_LQL_heterogeneous(c,mu_low,mu_high,sd,a,b,f,u,USL,n,type,alpha,beta,OC,n_sim)$

С	acceptance number
mu_low	the lower value of the mean microbial $\operatorname{count}(\mu)$ for use in the graphical display's x-axis.
mu_high	the upper value of the mean microbial $\operatorname{count}(\mu)$ for use in the graphical display's x-axis.
sd	the standard deviation of the normal distribution (on the log scale).
а	lower domain of the number of microbial count.
b	upper domain of the number of microbial count.
f	final dilution factor.
u	amount put on the plate.
USL	upper specification limit.
n	number of samples which are used for inspection.
type	what type of the results you would like to consider such as "theory" or "simulation" (default "theory").
alpha	producer's risk
beta	consumer's risk
OC	if we need AQL and LQL displayed with the OC curve, set OC = "TRUE"; otherwise, the output only provides the estimated values.
n_sim	number of simulations (large simulations provide more precise estimations).

Details

AQL_LQL_heterogeneous provides estimated AQL and LQL values for given dilution schemes when samples are collected from a heterogeneous batch. Acceptable Quality Level (AQL) is the acceptable or good quality level at which the probability of acceptance is kept at a high level, which is associated with the producer's risk. Conversely, the limiting Quality Level (LQL) refers to the rejectable or poor quality level at which the probability of acceptance is kept at a low level, which is associated with the consumer's risk.

Value

AQL and LQL when diluted samples are collected from a heterogeneous batch.

Examples

```
c <- 2
mu_low <- 4
mu_high <- 9
sd <- 0.2
a <- 0
b <- 300
f <- 0.01
u <- 0.1
USL <- 1000
alpha <- 0.05
beta <- 0.10
n <- 5
AQL_LQL_heterogeneous(c, mu_low, mu_high, sd, a, b, f, u, USL, n, type = "theory",</pre>
```

AQL_LQL_homogeneous AQL and LQL

AQL and LQL estimations for given dilution schemes when diluted samples are collected from a homogeneous batch.

Description

AQL_LQL_homogeneous provides estimated AQL and LQL values for given dilution schemes when samples are collected from a homogeneous batch.

Usage

```
AQL\_LQL\_homogeneous(c,lambda\_low,lambda\_high,a,b,f,u,USL,n,type,alpha,beta,OC,n\_sim)
```

Arguments

С	acceptance number
lambda_low	the lower value of the expected microbial count(λ) for use in the graphical display's x-axis.
lambda_high	the upper value of the expected microbial $\operatorname{count}(\lambda)$ for use in the graphical display's x-axis.
а	lower domain of the number of microbial count.
b	upper domain of the number of microbial count.
f	final dilution factor.
u	amount put on the plate.
USL	upper specification limit.
n	number of samples which are used for inspection.
type	what type of the results you would like to consider such as "theory" or "simulation" (default "theory").
alpha	producer's risk
beta	consumer's risk
OC	if we need AQL and LQL displayed with the OC curve, set OC = "TRUE"; otherwise, the output only provides the estimated values.
n_sim	number of simulations (large simulations provide more precise estimations).

Details

AQL_LQL_homogeneous provides estimated AQL and LQL values for given dilution schemes when samples are collected from a homogeneous batch. Acceptable Quality Level (AQL) is the acceptable or good quality level at which the probability of acceptance is kept at a high level, which is associated with the producer's risk. Conversely, the limiting Quality Level (LQL) refers to the rejectable or poor quality level at which the probability of acceptance is kept at a low level, which is associated with the consumer's risk.

Value

AQL and LQL when diluted samples are collected from a homogeneous batch.

Examples

```
compare_plans_dilution_1_pd_betabinom_pln
```

Comparison based on beta binomial distribution-based probability of detection curves for different dilution schemes in the first dilution stage.

Description

compare_plans_dilution_1_pd_betabinom_pln provides graphical displays of the probability of the detection curves for dilution schemes in the first dilution stage based on the binomial distribution, while the count of microorganisms is modelled by Poisson lognormal distribution.

Usage

```
compare\_plans\_dilution\_1\_pd\_betabinom\_pln(S, sd, V0, V1, mu\_lower, mu\_upper, alpha, beta)
```

S	amount of sample (in grams) used for diluted solution preparation
sd	the standard deviation of the normal distribution (on the log scale).
V0	dilution volume in the first dilution stage testing.
V1	the volume of the diluted solution used for testing (which is equal to the plated amount in this study)
mu_lower	the lower value of the mean microbial $\operatorname{count}(\mu)$ for use in the graphical display's x-axis.
mu_upper	the upper value of the mean microbial $\operatorname{count}(\mu)$ for use in the graphical display's x-axis.
alpha	non-negative parameters of the beta distribution.
beta	non-negative parameters of the beta distribution.

compare_plans_dilution_1_pd_betabinom_pln provides graphical displays of the probability of the detection curves for dilution schemes in the first dilution stage based on the binomial distribution, while the count of microorganisms is modelled by Poisson lognormal distribution. (This section will be updated later on.)

Value

Comparison based on probability of detection curves for different dilution schemes in the first dilution stage.

Examples

```
S <- c(25,125,250)
sd <- 0.8
V0 <- 100
V1 <- 1
mu_lower <- -8
mu_upper <- 8
alpha <- 1
beta <- 5
compare_plans_dilution_1_pd_betabinom_pln(S, sd, V0, V1, mu_lower, mu_upper, alpha, beta)</pre>
```

```
compare_plans_dilution_1_pd_betabinom_pois
```

Comparison based on beta binomial distribution-based probability of detection curves for different dilution schemes in the first dilution stage.

Description

compare_plans_dilution_1_pd_betabinom_pois provides graphical displays of the probability of the detection curves for dilution schemes in the first dilution stage based on the beta binomial distribution, while the count of microorganisms is modelled by Poisson distribution.

Usage

```
compare_plans_dilution_1_pd_betabinom_pois(S, V0, V1, lambda_lower, lambda_upper, alpha, beta)
```

S	amount of sample (in grams) used for diluted solution preparation
V0	dilution volume in the first dilution stage testing.
V1	the volume of the diluted solution used for testing (which is equal to the plated amount in this study)
lambda_lower	an lower value of the expected number of microorganisms count per gram.
lambda_upper	an upper value of the expected number of microorganisms count per gram.
alpha	non-negative parameters of the beta distribution.
beta	non-negative parameters of the beta distribution.

compare_plans_dilution_1_pd_betabinom_pois provides graphical displays of the probability of the detection curves for dilution schemes in the first dilution stage based on the beta binomial distribution, while the count of microorganisms is modelled by Poisson distribution. (This section will be updated later on.)

Value

Comparison based on probability of detection curves for different dilution schemes in the first dilution stage.

Examples

```
S <- c(25,125,250)
V0 <- 100
V1 <- 1
lambda_lower <- 0
lambda_upper <- 40
alpha <- 1
beta <- 5
compare_plans_dilution_1_pd_betabinom_pois(S, V0, V1, lambda_lower, lambda_upper, alpha, beta)</pre>
```

```
compare_plans_dilution_1_pd_binom_pln
```

Comparison based on binomial distribution-based probability of detection curves for different dilution schemes in the first dilution stage.

Description

compare_plans_dilution_1_pd_binom_pln provides graphical displays of the probability of the detection curves for dilution schemes in the first dilution stage based on the binomial distribution, while the count of microorganisms is modelled by Poisson lognormal distribution.

Usage

```
compare_plans_dilution_1_pd_binom_pln(S, sd, V0, V1, mu_lower, mu_upper)
```

S	amount of sample (in grams) used for diluted solution preparation
sd	the standard deviation of the normal distribution (on the log scale).
VØ	dilution volume in the first dilution stage testing.
V1	the volume of the diluted solution used for testing (which is equal to the plated amount in this study)
mu_lower	the lower value of the mean microbial $\operatorname{count}(\mu)$ for use in the graphical display's x-axis.
mu_upper	the upper value of the mean microbial $\operatorname{count}(\mu)$ for use in the graphical display's x-axis.

compare_plans_dilution_1_pd_binom_pln provides graphical displays of the probability of the detection curves for dilution schemes in the first dilution stage based on the binomial distribution, while the count of microorganisms is modelled by Poisson lognormal distribution. (This section will be updated later on.)

Value

Comparison based on probability of detection curves for different dilution schemes in the first dilution stage.

Examples

```
S <- c(25,125,250)
sd <- 0.8
V0 <- 100
V1 <- 1
mu_lower <- -4
mu_upper <- -1
compare_plans_dilution_1_pd_binom_pln(S, sd, V0, V1, mu_lower, mu_upper)</pre>
```

```
compare_plans_dilution_1_pd_binom_pois
```

Comparison based on binomial distribution-based probability of detection curves for different dilution schemes in the first dilution stage.

Description

compare_plans_dilution_1_pd_binom_pois provides graphical displays of the probability of the detection curves for dilution schemes in the first dilution stage based on the binomial distribution, while the count of microorganisms is modelled by Poisson distribution.

Usage

```
compare_plans_dilution_1_pd_binom_pois (S, V0, V1, lambda_lower, lambda_upper)
```

Arguments

S amount of sample (in grams) used for diluted solution preparation

V0 dilution volume in the first dilution stage testing.

V1 the volume of the diluted solution used for testing (which is equal to the plated

amount in this study)

lambda_lower an lower value of the expected number of microorganisms count per gram.

lambda_upper an upper value of the expected number of microorganisms count per gram.

Details

compare_plans_dilution_1_pd_binom_pois provides graphical displays of the probability of the detection curves for dilution schemes in the first dilution stage based on the binomial distribution, while the count of microorganisms is modelled by Poisson distribution. (This section will be updated later on.)

Value

Comparison based on probability of detection curves for different dilution schemes in the first dilution stage.

Examples

```
S \leftarrow c(25,125,250) V0 \leftarrow 100 V1 \leftarrow 1 lambda\_lower \leftarrow 0 lambda\_upper \leftarrow 30 compare\_plans\_dilution\_1\_pd\_binom\_pois (S, V0, V1, lambda\_lower, lambda\_upper)
```

```
compare_plans_dilution_2_pd_betabinom_pln
```

Comparison based on beta binomial distribution-based probability of detection curves for different dilution schemes in the second dilution stage.

Description

compare_plans_dilution_2_pd_betabinom_pln provides graphical displays of the probability of the detection curves for dilution schemes in the second dilution stage based on the binomial distribution, while the count of microorganisms is modelled by Poisson lognormal distribution.

Usage

```
compare\_plans\_dilution\_2\_pd\_betabinom\_pln~(S,sd,~V0,~V1,~V2,~V3,~n\_sim,~mu\_lower,~mu\_upper,~alpha,~response to the compare\_plans\_dilution\_2\_pd\_betabinom\_pln~(S,sd,~V0,~V1,~V2,~V3,~n\_sim,~mu\_lower,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_upper,~mu\_uppe
```

S	amount of sample (in grams) used for diluted solution preparation
sd	the standard deviation of the normal distribution (on the log scale).
VØ	dilution volume in the first dilution stage testing.
V1	the volume of the diluted solution used for testing (which is equal to the plated amount in this study) $\frac{1}{2}$
V2	dilution volume in the first dilution stage testing.
V3	the volume of the diluted solution used for testing (which is equal to the plated amount in this study) $\frac{1}{2}$
n_sim	number of simulations (large simulations provide a more precise estimation).
mu_lower	the lower value of the mean microbial $\operatorname{count}(\mu)$ for use in the graphical display's x-axis.
mu_upper	the upper value of the mean microbial $\operatorname{count}(\mu)$ for use in the graphical display's x-axis.
alpha	non-negative parameters of the beta distribution.
beta	non-negative parameters of the beta distribution.

compare_plans_dilution_2_pd_betabinom_pln provides graphical displays of the probability of the detection curves for dilution schemes in the second dilution stage based on the binomial distribution, while the count of microorganisms is modelled by Poisson lognormal distribution. (This section will be updated later on.)

Value

Comparison based on probability of detection curves for different dilution schemes in the second dilution stage.

Examples

```
S <- c(25,125,250)
V0 <- 100
V1 <- 1
V2 <- 10
V3 <- 1
n_sim <- 20000
mu_lower <- -3
mu_upper <- -1
alpha <- 1
beta <- 5
compare_plans_dilution_2_pd_betabinom_pln (S,sd, V0, V1, V2, V3, n_sim, mu_lower, mu_upper, alpha, beta)</pre>
```

```
compare_plans_dilution_2_pd_betabinom_pois
```

Comparison based on beta binomial distribution-based probability of detection curves for different dilution schemes in the second dilution stage.

Description

compare_plans_dilution_2_pd_betabinom_pois provides graphical displays of the probability of the detection curves for dilution schemes in the second dilution stage based on the beta binomial distribution, while the count of microorganisms is modelled by Poisson distribution.

Usage

```
compare_plans_dilution_2_pd_betabinom_pois(S, V0, V1, V2, V3, n_sim, lambda_lower, lambda_upper, a
```

S	amount of sample (in grams) used for diluted solution preparation
V0	dilution volume in the first dilution stage testing.
V1	the volume of the diluted solution used for testing (which is equal to the plated amount in this study)
V2	dilution volume in the first dilution stage testing.
V3	the volume of the diluted solution used for testing (which is equal to the plated amount in this study)

n_sim number of simulations (large simulations provide a more precise estimation).

lambda_lower an lower value of the expected number of microorganisms count per gram.

lambda_upper an upper value of the expected number of microorganisms count per gram alpha non-negative parameters of the beta distribution.

beta non-negative parameters of the beta distribution.

Details

compare_plans_dilution_2_pd_betabinom_pois provides graphical displays of the probability of the detection curves for dilution schemes in the second dilution stage based on the beta binomial distribution, while the count of microorganisms is modelled by Poisson distribution. (This section will be updated later on.)

Value

Comparison based on probability of detection curves for different dilution schemes in the second dilution stage.

Examples

```
S <- c(25,125,250)
V0 <- 100
V1 <- 1
V2 <- 10
V3 <- 1
n_sim <- 20000
lambda_lower <- 0
lambda_upper <- 50
alpha <- 1
beta <- 5
compare_plans_dilution_2_pd_betabinom_pois(S, V0, V1, V2, V3, n_sim, lambda_lower, lambda_upper, alpha, beta)</pre>
```

```
compare_plans_dilution_2_pd_binom_pln
```

Comparison based on binomial distribution-based probability of detection curves for different dilution schemes in the second dilution stage.

Description

compare_plans_dilution_2_pd_binom_pln provides graphical displays of the probability of the detection curves for dilution schemes in the second dilution stage based on the binomial distribution, while the count of microorganisms is modelled by Poisson lognormal distribution.

```
compare_plans_dilution_2_pd_binom_pln(S, sd,V0, V1, V2, V3, n_sim, mu_lower, mu_upper)
```

S	amount of sample (in grams) used for diluted solution preparation
sd	the standard deviation of the normal distribution (on the log scale).
V0	dilution volume in the first dilution stage testing.
V1	the volume of the diluted solution used for testing (which is equal to the plated amount in this study)
V2	dilution volume in the first dilution stage testing.
V3	the volume of the diluted solution used for testing (which is equal to the plated amount in this study)
n_sim	number of simulations (large simulations provide a more precise estimation).
mu_lower	the lower value of the mean microbial $\operatorname{count}(\mu)$ for use in the graphical display's x-axis.
mu_upper	the upper value of the mean microbial $\operatorname{count}(\mu)$ for use in the graphical display's x-axis.

Details

compare_plans_dilution_2_pd_binom_pln provides graphical displays of the probability of the detection curves for dilution schemes in the second dilution stage based on the binomial distribution, while the count of microorganisms is modelled by Poisson lognormal distribution. (This section will be updated later on.)

Value

Comparison based on probability of detection curves for different dilution schemes in the second dilution stage.

Examples

```
S <- c(25,125,250)
sd <- 0.8
V0 <- 100
V1 <- 1
V2 <- 10
V3 <- 1
n_sim <- 20000
mu_lower <- -3
mu_upper <- 6
compare_plans_dilution_2_pd_binom_pln(S, sd,V0, V1, V2, V3, n_sim, mu_lower, mu_upper)</pre>
```

```
compare_plans_dilution_2_pd_binom_pois
```

Comparison based on binomial distribution-based probability of detection curves for different dilution schemes in the second dilution stage.

Description

compare_plans_dilution_2_pd_binom_pois provides graphical displays of the probability of the detection curves for dilution schemes in the second dilution stage based on the binomial distribution, while the count of microorganisms is modelled by Poisson distribution.

cv_heterogeneous 13

Usage

```
compare_plans_dilution_2_pd_binom_pois(S, V0, V1, V2, V3, n_sim, lambda_lower, lambda_upper)
```

Arguments

S	amount of sample (in grams) used for diluted solution preparation
VØ	dilution volume in the first dilution stage testing.
V1	the volume of the diluted solution used for testing (which is equal to the plated amount in this study)
V2	dilution volume in the first dilution stage testing.
V3	the volume of the diluted solution used for testing (which is equal to the plated amount in this study)
n_sim	number of simulations (large simulations provide a more precise estimation).
lambda_lower	an lower value of the expected number of microorganisms count per gram.
lambda_upper	an upper value of the expected number of microorganisms count per gram.

Details

compare_plans_dilution_2_pd_binom_pois provides graphical displays of the probability of the detection curves for dilution schemes in the second dilution stage based on the binomial distribution, while the count of microorganisms is modelled by Poisson distribution. (This section will be updated later on.)

Value

Comparison based on probability of detection curves for different dilution schemes in the second dilution stage.

Examples

```
S <- c(25,125,250)
V0 <- 100
V1 <- 1
V2 <- 10
V3 <- 1
n_sim <- 20000
lambda_lower <- 1
lambda_upper <- 30
compare_plans_dilution_2_pd_binom_pois(S, V0, V1, V2, V3, n_sim, lambda_lower, lambda_upper)</pre>
```

 $\begin{array}{ll} {\it cv_heterogeneous} & {\it coefficient\ of\ variation\ estimation\ when\ diluted\ sample\ collected\ from\ a\ heterogeneous\ batch.} \end{array}$

Description

These functions provides coefficient of variation in the original sample when diluted samples collected from a heterogeneous batch.

14 cv_heterogeneous

Usage

```
cv_heterogeneous(mu, sd, a, b, f, u, USL, n_sim)
cv_heterogeneous_multiple(mu, sd, a, b, f, u, USL, n_sim)
cv_curves_heterogeneous(mu_low, mu_high, sd, a, b, f, u, USL, n_sim)
```

Arguments

mu	the mean microbial count (on the log scale).
sd	the standard deviation of the normal distribution (on the log scale).
а	lower domain of the number of cell counts.
b	upper domain of the number of cell counts.
f	final dilution factor.
u	amount put on the plate.
USL	upper specification limit.
n_sim	number of simulations (large simulations provide a more precise estimation).
mu_low	the lower value of the mean microbial count (μ) for use in the graphical display's x-axis (on the log scale).
mu_high	the upper value of the mean microbial count (μ) for use in the graphical display's x-axis (on the log scale).

Details

These functions provides coefficient of variation in the original sample when diluted samples collected from a heterogeneous batch.

Value

coefficient of variation when sample collected from a heterogeneous batch.

Examples

```
mu_low <- -5
mu_high <- 10
sd <- 0.2
a <- 0
b <- 300
f <- c(0.01,0.1)
u <- c(0.1,0.1)
USL <- 1000
n_sim <- 500
cv_curves_heterogeneous(mu_low, mu_high, sd, a, b, f, u, USL, n_sim)</pre>
```

cv_homogeneous 15

cv_homogeneous	coefficient of variation estimation when diluted sample collected from a homogeneous batch.

Description

These functions provides coefficient of variation in the original sample when diluted samples collected from a homogeneous batch.

Usage

```
cv_homogeneous(lambda, a, b, f, u, USL, n_sim)
cv_homogeneous_multiple(lambda, a, b, f, u, USL, n_sim)
cv_curves_homogeneous(lambda_low, lambda_high, a, b, f, u, USL, n_sim)
```

Arguments

lambda	the expected microbial count (λ) .
а	lower domain of the number of microbial count.
b	upper domain of the number of microbial count.
f	final dilution factor.
u	amount put on the plate.
USL	upper specification limit.
n_sim	number of simulations (large simulations provide a more precise estimation).
lambda_low	the lower value of the expected microbial count (λ) for use in the graphical display's x-axis.
lambda_high	the upper value of the expected microbial count (λ) for use in the graphical display's x-axis.

Details

These functions provides coefficient of variation in the original sample when diluted samples collected from a homogeneous batch.

Value

coefficient of variation when the diluted sample collected from a homogeneous batch.

Examples

```
lambda_low <- 1000
lambda_high <- 8000
a <- 0
b <- 300
f <- c(0.01,0.1)
u <- c(0.1,0.1)
USL <- 1000
n_sim <- 500
cv_curves_homogeneous(lambda_low, lambda_high, a, b, f, u, USL, n_sim)</pre>
```

dilutionrisk	Probability estimations and graphical displays in modelling and assessment of risk based on aerobic plate count (APC) on diluted testing

Description

This package aims to develop for getting probability estimations and graphical displays in the study associated with Modelling and assessment of risk based on aerobic plate count (APC) on diluted testing.

Details

This package aims to develop probability estimations and graphical displays in the modelling and assessing risk based on aerobic plate count (APC) on diluted testing. Mainly focuses on the risk assessment based on bounded distributions such as truncated Poisson and truncated Poisson lognormal distributions to model homogeneous and heterogeneous scenarios, respectively. Also, this package attempts to develop truncated Poisson lognormal distributions theory with validation by simulation-based results (this part will be updated later on).

OC_curves_heterogeneous

Comparison based on OC curves for different dilution schemes when the diluted samples collected from a heterogeneous batch.

Description

OC_curves_heterogeneous provides the operating characteristic(OC) curves when samples collected from a heterogeneous batch.

Usage

```
OC_curves_heterogeneous(c, mu_low, mu_high, sd, a, b, f, u, USL, n, type, n_sim)
```

С	acceptance number
mu_low	the lower value of the mean microbial $\operatorname{count}(\mu)$ for use in the graphical display's x-axis.
mu_high	the upper value of the mean microbial $\operatorname{count}(\mu)$ for use in the graphical display's x-axis.
sd	the standard deviation of the normal distribution (on the log scale).
а	lower domain of the number of cell counts.
b	upper domain of the number of cell counts.
f	final dilution factor.
u	amount put on the plate.
USL	upper specification limit.

n number of samples which are used for inspection.

type what type of the results you would like to consider such as "theory" or "simula-

tion" (default "theory").

n_sim number of simulations (large simulations provide more precise estimations).

Details

OC_curves_heterogeneous provides OC curves for different dilution schemes when the diluted samples collected from a heterogeneous batch (this section will be updated later on).

Value

OC curves when samples collected from a heterogeneous batch.

Examples

```
c <- 2
mu_low <- 4
mu_high <- 9
sd <- 0.2
a <- 0
b <- 300
f <- c(0.01,0.1)
u <- c(0.1,0.1)
USL <- 1000
n <- 5
OC_curves_heterogeneous(c, mu_low, mu_high, sd, a, b, f, u, USL, n)</pre>
```

OC_curves_homogeneous Comparison based on OC curves for different dilution schemes when diluted samples collected from a homogeneous batch.

Description

 ${\tt OC_curves_homogeneous}$ provides the operating characteristic (OC) curves when diluted sample has homogeneous contaminants.

Usage

```
OC_curves_homogeneous(c, lambda_low, lambda_high, a, b, f, u, USL, n, type, n_sim)
```

С	acceptance number
lambda_low	the lower value of the expected microbial count(λ) for use in the graphical display's x-axis.
lambda_high	the upper value of the expected microbial count(λ) for use in the graphical display's x-axis.
а	lower domain of the number of cell counts.
b	upper domain of the number of cell counts.
f	final dilution factor.

u amount put on the plate.USL upper specification limit.

n number of samples which are used for inspection.

type what type of the results you would like to consider such as "theory" or "simula-

tion" (default "theory").

n_sim number of simulations (large simulations provide more precise estimations).

Details

OC_curves_homogeneous provides OC curves for different dilution schemes when samples collected from a homogeneous batch (this section will be updated later on).

Value

OC curves when diluted samples collected from a homogeneous batch.

Examples

```
c <- 2
lambda_low <- 1
lambda_high <- 5000
a <- 0
b <- 300
f <- c(0.01,0.1)
u <- c(0.1,0.1)
USL <- 1000
n <- 5
OC_curves_homogeneous(c, lambda_low, lambda_high, a, b, f, u, USL, n)</pre>
```

pd_curves_heterogeneous

Comparison based on probability of detection curves for different dilution schemes when the diluted samples collected from a heterogeneous batch.

Description

pd_curves_heterogeneous provides the probability of detection curves when samples collected from a heterogeneous batch.

Usage

```
pd_curves_heterogeneous(mu_low, mu_high, sd, a, b, f, u, USL, type, n_sim)
```

mu_low	the lower value of the mean microbial count (μ) for use in the graphical display's x-axis (on the log scale).
mu_high	the upper value of the mean microbial count (μ) for use in the graphical display's x-axis (on the log scale).
sd	the standard deviation of the normal distribution (on the log scale).

a	lower domain of the number of cell counts.
b	upper domain of the number of cell counts.
f	final dilution factor.
u	amount put on the plate.
USL	upper specification limit.
type	what type of the results you would like to consider such as "theory" or "simulation" (default "theory").
n_sim	number of simulations (large simulations provide more precise estimations).

pd_curves_heterogeneous provides probability of detection curves for different dilution schemes when the diluted samples collected from a heterogeneous batch (this section will be updated later on).

Value

Probability of detection curves when samples collected from a heterogeneous batch.

Examples

```
mu_low <- 0
mu_high <- 10
sd <- 0.2
a <- 0
b <- 300
f <- c(0.01,0.1)
u <- c(0.1,0.1)
USL <- 1000
pd_curves_heterogeneous(mu_low, mu_high, sd, a, b, f, u, USL)</pre>
```

pd_curves_homogeneous Comparison based on probability of detection curves for different dilution schemes when diluted samples collected from a homogeneous batch.

Description

pd_curves_homogeneous provides the probability of detection curves when samples collected from a homogeneous batch.

```
pd_curves_homogeneous(lambda_low, lambda_high, a, b, f, u, USL, type, n_sim)
```

lambda_low	the lower value of the expected microbial count (λ) for use in the graphical display's x-axis.
lambda_high	the upper value of the expected microbial count (λ) for use in the graphical display's x-axis.
а	lower domain of the number of microbial count.
b	upper domain of the number of microbial count.
f	final dilution factor.
u	amount put on the plate.
USL	upper specification limit.
type	what type of the results you would like to consider such as "theory" or "simulation" (default "theory").
n_sim	number of simulations (large simulations provide more precise estimations).

Details

pd_curves_homogeneous provides probability of detection curves for different dilution schemes when samples collected from a homogeneous batch (this section will be updated later on).

Value

Probability of detection curves when diluted samples collected from a homogeneous batch.

Examples

```
lambda_low <- 0
lambda_high <- 5000
a <- 0
b <- 300
f <- c(0.01,0.1)
u <- c(0.1,0.1)
USL <- 1000
pd_curves_homogeneous(lambda_low, lambda_high, a, b, f, u, USL)</pre>
```

pd_validation_heterogeneous

Comparison based on probability of detection curves for different dilution schemes when diluted samples collected from a heterogeneous batch.

Description

pd_validation_heterogeneous provides the probability of detection curves for validate the results when samples collected from a heterogeneous batch.

```
pd_validation_heterogeneous(mu_low, mu_high, sd, a, b, f, u, USL, n_sim)
```

mu_low	the lower value of the mean microbial count (μ) for use in the graphical display's x-axis (on the log scale).
mu_high	the upper value of the mean microbial count (μ) for use in the graphical display's x-axis (on the log scale).
sd	the standard deviation of the normal distribution (on the log scale).
а	lower domain of the number of cell counts.
b	upper domain of the number of cell counts.
f	final dilution factor.
u	amount put on the plate.
USL	upper specification limit.
n_sim	number of simulations (large simulations provide more precise estimations).

Details

pd_curves_heterogeneous provides probability of detection curves for different dilution schemes when samples collected from a heterogeneous batch (this section will be updated later on).

Value

Probability of detection curves when diluted samples collected from a heterogeneous batch.

Examples

```
mu_low <- 1
mu_high <- 12
sd <- 0.2
a <- 0
b <- 300
f <- 0.01
u <- 0.1
USL <- 1000
n_sim <- 50000
pd_validation_heterogeneous(mu_low, mu_high, sd, a, b, f, u, USL, n_sim)</pre>
```

pd_validation_homogeneous

Comparison based on probability of detection curves for different dilution schemes when diluted samples collected from a homogeneous batch.

Description

pd_validation_homogeneous provides the probability of detection curves for validate the results when samples collected from a homogeneous batch.

```
pd_validation_homogeneous(lambda_low, lambda_high, a, b, f, u, USL, n_sim)
```

lambda_low	the lower value of the expected microbial count (λ) for use in the graphical display's x-axis.
lambda_high	the upper value of the expected microbial count (λ) for use in the graphical display's x-axis.
а	lower domain of the number of microbial count.
b	upper domain of the number of microbial count.
f	final dilution factor.
u	amount put on the plate.
USL	upper specification limit.
n_sim	number of simulations (large simulations provide more precise estimations).

Details

pd_curves_homogeneous provides probability of detection curves for different dilution schemes when samples collected from a homogeneous batch (this section will be updated later on).

Value

Probability of detection curves when diluted samples collected from a homogeneous batch.

Examples

```
lambda_low <- 0
lambda_high <- 5000
a <- 0
b <- 300
f <- 0.01
u <- 0.1
USL <- 1000
n_sim <- 50000
pd_validation_homogeneous(lambda_low, lambda_high, a, b, f, u, USL, n_sim = 500)
pd_validation_homogeneous(lambda_low, lambda_high, a, b, f, u, USL, n_sim = 50000)</pre>
```

prob_acceptance_heterogeneous

Probability of acceptance estimation when diluted sample collected from a heterogeneous batch.

Description

prob_acceptance_heterogeneous provides a probability of acceptance in the original sample when samples collected from a heterogeneous batch.

```
prob_acceptance_heterogeneous(c, mu, sd, a, b, f, u, USL, n, type, n_sim)
```

С	acceptance number
mu	the mean microbial count (on the log scale).
sd	the standard deviation of the normal distribution (on the log scale).
a	lower domain of the number of cell counts.
b	upper domain of the number of cell counts.
f	final dilution factor.
u	amount put on the plate.
USL	upper specification limit.
n	number of samples which are used for inspection.
type	what type of the results you would like to consider such as "theory" or "simulation" (default "theory").
n_sim	number of simulations (large simulations provide a more precise estimation).

Details

prob_detection_heterogeneous provides a probability of acceptance when diluted sample collected from a heterogeneous batch (this section will be updated later on).

Value

Probability of acceptance when sample collected from a heterogeneous batch.

Examples

```
 \begin{array}{l} c <- 2 \\ mu <- 7 \\ sd <- 0.2 \\ a <- 0 \\ b <- 300 \\ f <- 0.01 \\ u <- 0.1 \\ USL <- 1000 \\ n <- 5 \\ prob_acceptance_heterogeneous(c, mu, sd, a, b, f, u, USL, n) \\ \end{array}
```

```
prob_acceptance_heterogeneous_multiple
```

Probability of acceptance estimation when diluted samples are collected from a heterogeneous batch.

Description

prob_acceptance_heterogeneous_multiple provides a probability of acceptance in the original sample when samples collected from a heterogeneous batch.

```
prob_acceptance_heterogeneous_multiple (c, mu, sd, a, b, f, u, USL, n, type, n_sim)
```

С	acceptance number
mu	the mean microbial count (on the log scale).
sd	the standard deviation of the normal distribution (on the log scale).
а	lower domain of the number of cell counts.
b	upper domain of the number of cell counts.
f	final dilution factor.
u	amount put on the plate.
USL	upper specification limit.
n	number of samples which are used for inspection.
type	what type of the results you would like to consider such as "theory" or "simulation" (default "theory").
n_sim	number of simulations (large simulations provide more precise estimations).

Details

prob_acceptance_heterogeneous_multiple provides a probability of acceptance when diluted samples are collected from a heterogeneous batch (this section will be updated later on).

Value

Probability of acceptance when samples collected from a heterogeneous batch.

Examples

```
 c <- 2 \\ mu <- 7 \\ sd <- 0.2 \\ a <- 0 \\ b <- 300 \\ f <- c(0.01,0.1) \\ u <- c(0.1,0.1) \\ USL <- 1000 \\ n <- 5 \\ prob_acceptance_heterogeneous_multiple (c, mu, sd, a, b, f, u, USL, n)
```

prob_acceptance_homogeneous

Probability of acceptance estimation when diluted sample collected from a homogeneous batch.

Description

prob_acceptance_homogeneous provides a probability of acceptance in the original sample when samples collected from a homogeneous batch.

```
prob_acceptance_homogeneous(c, lambda, a, b, f, u, USL, n, type, n_sim)
```

С	acceptance number
lambda	the expected cell count (λ) .
а	lower domain of the number of cell counts.
b	upper domain of the number of cell counts.
f	final dilution factor.
u	amount put on the plate.
USL	upper specification limit.
n	number of samples which are used for inspection.
type	what type of the results you would like to consider such as "theory" or "simulation" (default "theory").
n_sim	number of simulations (large simulations provide a more precise estimation).

Details

prob_detection_homogeneous provides a probability of acceptance when samples collected from a homogeneous batch (this section will be updated later on).

Value

Probability of acceptance when the diluted sample collected from a homogeneous batch.

Examples

```
c <- 2
lambda <- 2000
a <- 0
b <- 300
f <- 0.01
u <- 0.1
USL <- 1000
n <- 5
prob_acceptance_homogeneous(c, lambda, a, b, f, u, USL, n)</pre>
```

```
prob_acceptance_homogeneous_multiple
```

Probability of acceptance estimation for multiple dilution schemes when diluted samples are collected from a homogeneous batch.

Description

prob_acceptance_homogeneous_multiple provides a probability of acceptance for multiple dilution schemes in the original sample when samples collected from a homogeneous batch

```
prob_acceptance_homogeneous_multiple(c, lambda, a, b, f, u, USL, n, type, n_sim)
```

С	acceptance number
lambda	the expected microbial count (λ) .
а	lower domain of the number of microbial count.
b	upper domain of the number of microbial count.
f	final dilution factor.
u	amount put on the plate.
USL	upper specification limit.
n	number of samples which are used for inspection.
type	what type of the results you would like to consider such as "theory" or "simulation" (default "theory").
n_sim	number of simulations (large simulations provide more precise estimations).

Details

prob_detection_homogeneous_multiple provides a probability of acceptance for multiple dilution schemes in the original sample when samples collected from a homogeneous batch (this section will be updated later on).

Value

Probability of acceptance when diluted samples are collected from a homogeneous batch.

Examples

```
 \begin{array}{l} c <- 2 \\ lambda <- \ 1000 \\ a <- \ 0 \\ b <- \ 300 \\ f <- \ c(0.01,0.1) \\ u <- \ c(0.1,0.1) \\ USL <- \ 1000 \\ n <- \ 5 \\ prob_acceptance_homogeneous_multiple(c, \ lambda, \ a, \ b, \ f, \ u, \ USL, \ n) \\ \end{array}
```

prob_detection_heterogeneous

Probability of detection estimation when diluted sample collected from a heterogeneous batch.

Description

prob_detection_heterogeneous provides a probability of detection in the original sample when samples collected from a heterogeneous batch.

```
prob_detection_heterogeneous(mu, sd, a, b, f, u, USL, type, n_sim)
```

mu	the mean microbial count (on the log scale).
sd	the standard deviation of the normal distribution (on the log scale).
а	lower domain of the number of cell counts.
b	upper domain of the number of cell counts.
f	final dilution factor.
u	amount put on the plate.
USL	upper specification limit.
type	what type of the results you would like to consider such as "theory" or "simulation" (default "theory").
n_sim	number of simulations (large simulations provide a more precise estimation).

Details

prob_detection_heterogeneous provides a probability of detection when the diluted sample has heterogeneous contaminants. We define the random variable X_i is the number of colonies on the i^{th} plate. In practice, the acceptance for countable numbers of colonies on a plate must be between 30 and 300. Therefore, we can utilise bounded distributions to model the number of colonies on a plate. In the heterogeneous case, we employed truncated Poisson lognormal distribution to model (this section will be updated later on).

Value

Probability of detection when sample collected from a heterogeneous batch.

Examples

```
mu <- 2
sd <- 0.2
a <- 0
b <- 300
f <- 0.01
u <- 0.1
USL <- 1000
prob_detection_heterogeneous(mu, sd, a, b, f, u, USL)</pre>
```

```
prob_detection_heterogeneous_multiple
```

Probability of detection estimation for multiple dilution schemes when diluted samples are collected from a heterogeneous batch.

Description

prob_detection_heterogeneous_multiple provides a probability of detection for multiple dilution schemes in the original sample when samples collected from a heterogeneous batch.

```
prob_detection_heterogeneous_multiple(mu, sd, a, b, f, u, USL, type , n_sim)
```

mu	the mean microbial count (on the log scale).
sd	the standard deviation of the normal distribution (on the log scale).
а	lower domain of the number of cell counts.
b	upper domain of the number of cell counts.
f	vector of final dilution factor.
u	vector of amount put on the plate.
USL	upper specification limit.
type	what type of the results you would like to consider such as "theory" or "simulation" (default "theory").
n_sim	number of simulations (large simulations provide a more precise estimation).

Details

prob_detection_heterogeneous_multiple provides a probability of detection when diluted samples are collected from a heterogeneous batch. We define the random variable X_i is the number of colonies on the i^{th} plate. In practice, the acceptance for countable numbers of colonies on a plate must be between 30 and 300. Therefore, we can utilise bounded distributions to model the number of colonies on a plate. In the heterogeneous case, we employed truncated Poisson lognormal distribution to the model. (this section will be updated later on).

Value

Probability of detection when samples collected from a heterogeneous batch.

Examples

```
\begin{array}{l} mu <- \ 7 \\ sd <- \ 0.2 \\ a <- \ 0 \\ b <- \ 300 \\ f <- \ c(0.01,0.1) \\ u <- \ c(0.1,0.1) \\ USL <- \ 1000 \\ prob_detection_heterogeneous_multiple(mu, sd, a, b, f, u, USL) \end{array}
```

prob_detection_homogeneous

Probability of detection estimation when diluted sample collected from a homogeneous batch.

Description

prob_detection_homogeneous provides a probability of detection in the original sample when samples collected from a homogeneous batch.

```
prob_detection_homogeneous(lambda, a, b, f, u, USL, type, n_sim)
```

lambda	the expected microbial count (λ) .
а	lower domain of the number of microbial count.
b	upper domain of the number of microbial count.
f	final dilution factor.
u	amount put on the plate.
USL	upper specification limit.
type	what type of the results you would like to consider such as "theory" or "simulation" (default "theory").
n_sim	number of simulations (large simulations provide a more precise estimation).

Details

prob_detection_homogeneous provides a probability of detection when the diluted sample has homogeneous contaminants. We define the random variable X_i is the number of colonies on the i^{th} plate. In practice, the acceptance for countable numbers of colonies on a plate must be between 30 and 300. Therefore, we can utilise bounded distributions to model the number of colonies on a plate. In the homogeneous case, we employed truncated Poisson distribution to model (this section will be updated later on).

Value

Probability of detection when the diluted sample collected from a homogeneous batch.

Examples

```
lambda <- 2000
a <- 0
b <- 300
f <- 0.01
u <- 0.1
USL <- 1000
n_sim <- 50000
prob_detection_homogeneous(lambda, a, b, f, u, USL)
prob_detection_homogeneous(lambda, a, b, f, u, USL, type = "simulation", n_sim)</pre>
```

prob_detection_homogeneous_multiple

Probability of detection estimation for multiple dilution schemes when diluted samples are collected from a homogeneous batch.

Description

prob_detection_homogeneous_multiple provides a probability of detection for multiple dilution schemes in the original sample when samples collected from a homogeneous batch.

```
prob_detection_homogeneous_multiple(lambda, a, b, f, u, USL, type, n_sim)
```

lambda	the expected microbial count (λ) .
а	lower domain of the number of microbial count.
b	upper domain of the number of microbial count.
f	final dilution factor.
u	amount put on the plate.
USL	upper specification limit.
type	what type of the results you would like to consider such as "theory" or "simulation" (default "theory").
n_sim	number of simulations (large simulations provide more precise estimations).

Details

prob_detection_homogeneous_multiple provides a probability of detection when the diluted sample has homogeneous contaminants. We define the random variable X_i is the number of colonies on the i^{th} plate. In practice, the acceptance for countable numbers of colonies on a plate must be between 30 and 300. Therefore, we can utilise bounded distributions to model the number of colonies on a plate. In the homogeneous case, we employed truncated Poisson distribution to model (this section will be updated later on).

Value

Probability of detection when diluted samples are collected from a homogeneous batch.

Examples

```
lambda <- 1000
a <- 0
b <- 300
f <- c(0.01,0.1,1)
u <- c(0.1,0.1,0.1)
USL <- 1000
n_sim <- 50000
prob_detection_homogeneous_multiple(lambda, a, b, f, u, USL)</pre>
```

```
prob_detect_dilution_1_betabinom_pln
```

Beta binomial distribution-based probability of detection for a dilution scheme in the first dilution stage testing.

Description

prob_detect_dilution_1_betabinom_pln provides a probability of detection for a dilution scheme in the first dilution stage based on the beta binomial distribution, while the count of microorganisms is modelled by Poisson lognormal distribution.

```
prob_detect_dilution_1_betabinom_pln(S, mu, sd, V0, V1, alpha, beta)
```

S	amount of sample (in grams) used for diluted solution preparation
mu	the mean microbial count (on the log scale).
sd	the standard deviation of the normal distribution (on the log scale).
V0	dilution volume in the first dilution stage testing.
V1	the volume of the diluted solution used for testing (which is equal to the plated amount in this study)
alpha	non-negative parameters of the beta distribution.
beta	non-negative parameters of the beta distribution.

Details

prob_detect_dilution_1_betabinom_pln provides a probability of detection for a dilution scheme in the first dilution stage based on the beta binomial distribution, while the count of microorganisms is modelled by Poisson lognormal distribution. (This section will be updated later on.)

Value

Probability of detection for a dilution scheme in the first dilution stage testing.

Examples

```
S <- 25
mu <- -1
sd <- 0.8
V0 <- 100
V1 <- 1
alpha <- 1
beta <- 5
prob_detect_dilution_1_betabinom_pln(S, mu, sd, V0, V1, alpha, beta)</pre>
```

```
prob_detect_dilution_1_betabinom_pois
```

Beta binomial distribution-based probability of detection for a dilution scheme in the first dilution stage testing.

Description

prob_detect_dilution_1_betabinom_pois provides a probability of detection for a dilution scheme in the first dilution stage based on the beta binomial distribution, while the count of microorganisms is modelled by Poisson distribution.

```
prob_detect_dilution_1_betabinom_pois(S, lambda, V0, V1, alpha, beta)
```

S	amount of sample (in grams) used for diluted solution preparation
lambda	the expected number of microorganisms count per gram
V0	dilution volume in the first dilution stage testing.
V1	the volume of the diluted solution used for testing (which is equal to the plated amount in this study)
alpha	non-negative parameters of the beta distribution.
beta	non-negative parameters of the beta distribution.

Details

prob_detect_dilution_1_betabinom_pois provides a probability of detection for a dilution scheme in the first dilution stage based on the beta binomial distribution, while the count of microorganisms is modelled by Poisson distribution.(This section will be updated later on.)

Value

Probability of detection for a dilution scheme in the first dilution stage testing.

Examples

```
S <- 25
lambda <- 10
V0 <- 100
V1 <- 1
alpha <- 1
beta <- 5
prob_detect_dilution_1_betabinom_pois(S, lambda, V0, V1, alpha, beta)</pre>
```

```
prob_detect_dilution_1_binom_pln
```

Binomial distribution-based probability of detection for a dilution scheme in the first dilution stage testing.

Description

prob_detect_dilution_1_binom_pln provides a probability of detection for a dilution scheme in the first dilution stage based on the binomial distribution, while the count of microorganisms is modelled by Poisson lognormal distribution.

Usage

```
prob_detect_dilution_1_binom_pln(S,mu,sd, V0, V1)
```

S	amount of sample (in grams) used for diluted solution preparation
mu	the mean microbial count (on the log scale).
sd	the standard deviation of the normal distribution (on the log scale).
V0	dilution volume in the first dilution stage testing.
V1	the volume of the diluted solution used for testing (which is equal to the plated amount in this study)

prob_detect_dilution_1_binom_pln provides a probability of detection for a dilution scheme in the first dilution stage based on the binomial distribution, while the count of microorganisms is modelled by Poisson lognormal distribution. (This section will be updated later on.)

Value

Probability of detection for a dilution scheme in the first dilution stage testing.

Examples

```
S \leftarrow c(1,10,20)
mu <- 25
sd <- 0.8
V0 <- 100
V1 <- 1
prob_detect_dilution_1_binom_pln(S,mu,sd, V0, V1)
```

```
prob_detect_dilution_1_binom_pois
```

Binomial distribution-based probability of detection for a dilution scheme in the first dilution stage testing.

Description

prob_detect_dilution_1_binom_pois provides a probability of detection for a dilution scheme in the first dilution stage based on the binomial distribution, while the count of microorganisms is modelled by Poisson distribution.

Usage

```
prob_detect_dilution_1_binom_pois(S,lambda, V0, V1)
```

Arguments

S amount of sample (in grams) used for diluted solution preparation lambda

the expected number of microorganisms count per gram

۷0 dilution volume in the first dilution stage testing.

the volume of the diluted solution used for testing (which is equal to the plated ۷1

amount in this study)

Details

prob_detect_dilution_1_binom_pois provides a probability of detection for a dilution scheme in the first dilution stage based on the binomial distribution, while the count of microorganisms is modelled by Poisson distribution.(This section will be updated later on.)

Value

Probability of detection for a dilution scheme in the first dilution stage testing.

Examples

```
S <- c(1,10,20)
lambda <- 10
V0 <- 100
V1 <- 1
prob_detect_dilution_1_binom_pois(S,lambda, V0, V1)</pre>
```

```
prob_detect_dilution_2_betabinom_pln
```

Beta binomial distribution-based probability of detection for a dilution scheme in the second dilution stage testing.

Description

prob_detect_dilution_2_betabinom_pln provides a probability of detection for a dilution scheme in the second dilution stage based on the beta binomial distribution, while the count of microorganisms is modelled by Poisson lognormal distribution.

Usage

```
prob_detect_dilution_2_betabinom_pln(S,mu,sd, V0, V1, V2, V3, n_sim, alpha, beta)
```

Arguments

S	amount of sample (in grams) used for diluted solution preparation
mu	the mean microbial count (on the log scale).
sd	the standard deviation of the normal distribution (on the log scale).
VØ	dilution volume in the first dilution stage testing.
V1	the volume of the diluted solution used for testing (which is equal to the plated amount in this study)
V2	dilution volume in the first dilution stage testing.
V3	the volume of the diluted solution used for testing (which is equal to the plated amount in this study)
n_sim	number of simulations (large simulations provide a more precise estimation).
alpha	non-negative parameters of the beta distribution.
beta	non-negative parameters of the beta distribution.

Details

prob_detect_dilution_2_betabinom_pln provides a probability of detection for a dilution scheme
in the second dilution stage based on the beta binomial distribution, while the count of microorganisms is modelled by Poisson lognormal distribution. (This section will be updated later on.)

Value

Probability of detection for a dilution scheme in the second dilution stage testing.

Examples

```
S <- 20
mu <- -1
sd <- 0.8
V0 <- 100
V1 <- 1
V2 <- 10
V3 <- 1
n_sim <- 25000
alpha <- 1
beta <- 5
prob_detect_dilution_2_betabinom_pln(S,mu,sd, V0, V1, V2, V3, n_sim, alpha, beta)</pre>
```

```
prob_detect_dilution_2_betabinom_pois
```

Beta binomial distribution-based probability of detection for a dilution scheme in the second dilution stage testing.

Description

prob_detect_dilution_2_betabinom_pois provides a probability of detection for a dilution scheme in the second dilution stage based on the beta binomial distribution, while the count of microorganisms is modelled by Poisson distribution.

Usage

```
prob_detect_dilution_2_betabinom_pois(S, lambda, V0, V1, V2, V3, n_sim, alpha, beta)
```

Arguments

S	amount of sample (in grams) used for diluted solution preparation
lambda	the expected number of microorganisms count per gram
VØ	dilution volume in the first dilution stage testing.
V1	the volume of the diluted solution used for testing (which is equal to the plated amount in this study)
V2	dilution volume in the first dilution stage testing.
V3	the volume of the diluted solution used for testing (which is equal to the plated amount in this study)
n_sim	number of simulations (large simulations provide a more precise estimation).
alpha	non-negative parameters of the beta distribution.
beta	non-negative parameters of the beta distribution.

Details

prob_detect_dilution_2_betabinom_pois provides a probability of detection for a dilution scheme in the second dilution stage based on the beta binomial distribution, while the count of microorganisms is modelled by Poisson distribution. (This section will be updated later on.)

Value

Probability of detection for a dilution scheme in the second dilution stage testing.

Examples

```
S <- 20
lambda <- 10
V0 <- 100
V1 <- 1
V2 <- 10
V3 <- 1
n_sim <- 25000
alpha <- 1
beta <- 5
prob_detect_dilution_2_betabinom_pois(S, lambda, V0, V1, V2, V3, n_sim, alpha, beta)</pre>
```

```
prob_detect_dilution_2_binom_pln
```

Binomial distribution-based probability of detection for a dilution scheme in the second dilution stage testing.

Description

prob_detect_dilution_2_binom_pln provides a probability of detection for a dilution scheme in the second dilution stage based on the binomial distribution, while the count of microorganisms is modelled by Poisson lognormal distribution.

Usage

```
prob_detect_dilution_2_binom_pln (S,mu,sd, V0, V1, V2, V3, n_sim)
```

Arguments

S	amount of sample (in grams) used for diluted solution preparation
mu	the mean microbial count (on the log scale).
sd	the standard deviation of the normal distribution (on the log scale).
V0	dilution volume in the first dilution stage testing.
V1	the volume of the diluted solution used for testing (which is equal to the plated amount in this study)
V2	dilution volume in the first dilution stage testing.
V3	the volume of the diluted solution used for testing (which is equal to the plated amount in this study)
n_sim	number of simulations (large simulations provide a more precise estimation).

Details

prob_detect_dilution_2_binom_pln provides a probability of detection for a dilution scheme in the second dilution stage based on the binomial distribution, while the count of microorganisms is modelled by Poisson lognormal distribution. (This section will be updated later on.)

Value

Probability of detection for a dilution scheme in the second dilution stage testing.

Examples

```
S <- 20
mu <- 25
sd <- 0.8
V0 <- 100
V1 <- 1
V2 <- 10
V3 <- 1
n_sim <- 25000
prob_detect_dilution_2_binom_pln (S,mu,sd, V0, V1, V2, V3, n_sim)</pre>
```

```
prob_detect_dilution_2_binom_pois
```

Binomial distribution-based probability of detection for a dilution scheme in the second dilution stage testing.

Description

prob_detect_dilution_2_binom_pois provides a probability of detection for a dilution scheme in the second dilution stage based on the binomial distribution, while the count of microorganisms is modelled by Poisson distribution.

Usage

```
prob_detect_dilution_2_binom_pois(S,lambda, V0, V1, V2, V3, n_sim)
```

Arguments

S	amount of sample (in grams) used for diluted solution preparation
lambda	the expected number of microorganisms count per gram
V0	dilution volume in the first dilution stage testing.
V1	the volume of the diluted solution used for testing (which is equal to the plated amount in this study)
V2	dilution volume in the first dilution stage testing.
V3	the volume of the diluted solution used for testing (which is equal to the plated amount in this study)
n_sim	number of simulations (large simulations provide a more precise estimation).

Details

prob_detect_dilution_2_binom_pois provides a probability of detection for a dilution scheme in the second dilution stage based on the binomial distribution, while the count of microorganisms is modelled by Poisson distribution.(This section will be updated later on.)

Value

Probability of detection for a dilution scheme in the second dilution stage testing.

38 rtrunpoilog

Examples

```
S <- 20
lambda <- 10
V0 <- 100
V1 <- 1
V2 <- 10
V3 <- 1
n_sim <- 25000
prob_detect_dilution_2_binom_pois(S,lambda, V0, V1, V2, V3, n_sim)</pre>
```

rtrunpoilog

Generates random deviates from truncated Poisson lognormal distribution.

Description

rtrunpoilog provides generated random numbers from truncated Poisson lognormal distribution with given parameters.

Usage

```
rtrunpoilog(n, mu, sd, a, b)
```

Arguments

n	number of observations. If $length(n) > 1$ then the length is taken to be the number required.
mu	the mean microbial count (on the log scale).
sd	the standard deviation of the normal distribution (on the log scale).
а	lower truncation points (lower domain of the number of microbial count).
b	upper truncation points (upper domain of the number of microbial count).

Details

rtrunpoilog provides generated random numbers from truncated Poisson lognormal distribution with given parameters. (this section will be updated later on).

Value

rtrunpoilog generates random numbers from truncated Poisson lognormal distribution.

Examples

```
n <- 100
mu <- 0
sd <- 1
a <- 0
b <- 300
rtrunpoilog(n, mu, sd, a, b)</pre>
```

```
true_concentration_heterogeneous
```

True concentration level estimation when diluted sample collected from a heterogeneous batch.

Description

These functions provides true concentration level in the original sample when diluted samples collected from a heterogeneous batch.

Usage

```
true_concentration_heterogeneous(mu, sd, a, b, f, u, USL, n_sim)

true_concentration_heterogeneous_multiple(mu, sd, a, b, f, u, USL, n_sim)

true_concentration_curves_heterogeneous(
    mu_low,
    mu_high,
    sd,
    a,
    b,
    f,
    u,
    USL,
    n_sim
)
```

Arguments

mu	the mean microbial count (on the log scale).
sd	the standard deviation of the normal distribution (on the log scale).
a	lower domain of the number of cell counts.
b	upper domain of the number of cell counts.
f	final dilution factor.
u	amount put on the plate.
USL	upper specification limit.
n_sim	number of simulations (large simulations provide a more precise estimation).
mu_low	the lower value of the mean microbial count (μ) for use in the graphical display's x-axis (on the log scale).
mu_high	the upper value of the mean microbial count (μ) for use in the graphical display's x-axis (on the log scale).

Details

Let Y be the count of microorganisms and C be the true concentration level (in counts per ml). When diluted sample collected from heterogeneous (non-homogeneous) batch, Y can be modelled by Poisson lognormal distribution with parameter μ, σ . Let X be the count of microorganisms

on a plate, and it can be modelled by truncated Poisson lognormal distribution with parameters μ_d , σ , a, b. Also, λ_d can be written in terms of μ , f and g. It is given by

$$\mu_d = \mu + \log(f) + \log(u)$$

And the true concentration level is given by

$$C = \frac{X}{f * u}$$

where f is final dilution factor and u is amount of diluted sample on plate. Based on the literatures, we used $\sigma = 0.2$ in these dilution process; see Gonzales-Barron et al. (2013, p. 370) and Schothorst et al. (2009).

Value

true concentration level when sample collected from a heterogeneous batch.

References

- Gonzales-Barron, U.A., Pilão Cadavez, V.A., Butler, F., 2013. Statistical approaches for the design of sampling plans for microbiological monitoring of foods, in: Mathematical and Statistical Methods in Food Science and Technology. Wiley, Chichester, UK, pp.363–384.
- Schothorst, M. van, Zwietering, M.H., Ross, T., Buchanan, R.L., Cole, M.B., 2009. Relating microbiological criteria to food safety objectives and performance objectives. Food Control 20, 967–979.

Examples

```
mu_low <- 0
mu_high <- 10
sd <- 0.2
a <- 0
b <- 300
f <- c(0.01,0.1)
u <- c(0.1,0.1)
USL <- 1000
n_sim <- 5000
true_concentration_curves_heterogeneous(mu_low, mu_high, sd, a, b, f, u, USL, n_sim)</pre>
```

true_concentration_homogeneous

True concentration level estimation when diluted sample collected from a homogeneous batch.

Description

These functions provides true concentration level in the original sample when diluted samples collected from a homogeneous batch.

Usage

```
true_concentration_homogeneous(lambda, a, b, f, u, USL, n_sim)

true_concentration_homogeneous_multiple(lambda, a, b, f, u, USL, n_sim)

true_concentration_curves_homogeneous(
   lambda_low,
   lambda_high,
   a,
   b,
   f,
   u,
   USL,
   n_sim
)
```

Arguments

lambda	the expected microbial count (λ).
а	lower domain of the number of microbial count.
b	upper domain of the number of microbial count.
f	final dilution factor.
u	amount put on the plate.
USL	upper specification limit.
n_sim	number of simulations (large simulations provide a more precise estimation).
lambda_low	the lower value of the expected microbial count (λ) for use in the graphical display's x-axis.
lambda_high	the upper value of the expected microbial count (λ) for use in the graphical display's x-axis.

Details

Let Y be the count of microorganisms and C be the true concentration level (in counts per ml). When diluted sample collected from homogeneous batch, Y can be modelled by Poisson distribution with parameter λ . Let X be the count of microorganisms on a plate, and it can be modelled by truncated Poisson distribution with parameters λ_d , a, b. Also, λ_d can be written in terms of λ , f and u. It is given by

$$\lambda_d = \lambda * f * u$$

And the true concentration level is given by

$$C = \frac{X}{f * u}$$

Value

true concentration level when the diluted sample collected from a homogeneous batch.

Examples

```
lambda_low <- 1
lambda_high <- 5000
a <- 0
b <- 300
f <- c(0.01,0.1)
u <- c(0.1,0.1)
USL <- 1000
n_sim <- 50000
true_concentration_curves_homogeneous(lambda_low, lambda_high, a, b, f, u, USL, n_sim)</pre>
```

Index

25, 25

```
AQL_LQL_heterogeneous, 2, 2, 3
                                                prob_detect_dilution_1_betabinom_pln,
AQL_LQL_homogeneous, 4, 4
                                                        30, 30, 31
                                                prob_detect_dilution_1_betabinom_pois,
compare_plans_dilution_1_pd_betabinom_pln,
                                                        31, 31, 32
                                                prob_detect_dilution_1_binom_pln, 32,
compare_plans_dilution_1_pd_betabinom_pois,
                                                        32, 33
        6, 6, 7
                                                prob_detect_dilution_1_binom_pois, 33,
compare_plans_dilution_1_pd_binom_pln,
        7, 7, 8
                                                prob_detect_dilution_2_betabinom_pln,
compare_plans_dilution_1_pd_binom_pois,
                                                        34, 34
                                                prob_detect_dilution_2_betabinom_pois,
compare_plans_dilution_2_pd_betabinom_pln,
        9, 9, 10
                                                prob_detect_dilution_2_binom_pln, 36,
compare_plans_dilution_2_pd_betabinom_pois,
        10, 10, 11
                                                prob_detect_dilution_2_binom_pois, 37,
compare_plans_dilution_2_pd_binom_pln,
        11, 11, 12
                                                prob_detection_heterogeneous, 23, 26, 26,
compare_plans_dilution_2_pd_binom_pois,
        12, 12, 13
                                                prob_detection_heterogeneous_multiple,
cv_curves_heterogeneous
                                                        27, 27, 28
        (cv_heterogeneous), 13
                                                prob_detection_homogeneous, 25, 28, 28,
cv_curves_homogeneous (cv_homogeneous),
        15
                                                prob_detection_homogeneous_multiple,
cv_heterogeneous, 13
                                                        26, 29, 29, 30
cv_heterogeneous_multiple
        (cv_heterogeneous), 13
                                                rtrunpoilog, 38, 38
cv_homogeneous, 15
                                                true_concentration_curves_heterogeneous
cv_homogeneous_multiple
        (cv_homogeneous), 15
                                                        (true_concentration_heterogeneous),
dilutionrisk. 16
                                                true_concentration_curves_homogeneous
                                                        (true_concentration_homogeneous),
OC_curves_heterogeneous, 16, 16, 17
OC_curves_homogeneous, 17, 17, 18
                                                true_concentration_heterogeneous, 39
                                                true_concentration_heterogeneous_multiple
\verb"pd_curves_heterogeneous", $18, 18, 19, 21"
                                                        (true_concentration_heterogeneous),
pd_curves_homogeneous, 19, 19, 20, 22
pd_validation_heterogeneous, 20, 20
                                                true_concentration_homogeneous, 40
pd_validation_homogeneous, 21, 21
                                                true_concentration_homogeneous_multiple
prob_acceptance_heterogeneous, 22, 22
                                                        (true_concentration_homogeneous),
prob_acceptance_heterogeneous_multiple,
                                                        40
        23, 23, 24
\verb|prob_acceptance_homogeneous|, 24, 24|
prob_acceptance_homogeneous_multiple,
```