THU-DiscreteMathmatics-Homework-2

He Yuhui 2022012050

September 2024

1 Homework

1.1 Transform to Polish Notation

- $1 \rightarrow \forall PQ \lor RS$
- $2 \leftrightarrow \land \neg PR \land PQ$
- $3 \lor \lor \neg \neg P \land WR \neg Q$
- $4 \land P \rightarrow Q \neg R$

1.2 Prove

1 We have

$$P \rightarrow Q$$
 (Implication Equivalence) $\Leftrightarrow \neg P \lor Q$ (Commutative) $\Leftrightarrow Q \lor \neg P$ (Double Negation) $\Leftrightarrow \neg (\neg Q) \lor (\neg P)$ (Implication Equivalence) $\Leftrightarrow \neg Q \rightarrow \neg P$

2 We have

$$((P \to \neg Q) \to (Q \to \neg P)) \land R$$
 (Implication Equivalence) $\Leftrightarrow ((\neg P \lor \neg Q) \to (\neg Q \lor \neg P)) \land R$ (Implication Equivalence) $\Leftrightarrow (\neg (\neg P \lor \neg Q) \lor (\neg Q \lor \neg P)) \land R$ (De Morgan Law) $\Leftrightarrow ((P \land Q) \lor \neg (Q \land P)) \land R$ (Commutative) $\Leftrightarrow ((P \land Q) \lor \neg (P \land Q)) \land R$ (Use S to denote $P \land Q$) $\Leftrightarrow (S \lor \neg S) \land R$ (Negation) $\Leftrightarrow T \land R$ (Absorption) $\Leftrightarrow R$

3 We have

$$(P \leftrightarrow Q) \leftrightarrow ((P \land \neg Q) \lor (Q \land \neg P))$$
 (Equivalence Law) $\Leftrightarrow ((P \to Q) \land (Q \to P)) \leftrightarrow ((P \land \neg Q) \lor (Q \land \neg P))$ (Implication Equivalence) $\Leftrightarrow ((\neg P \lor Q) \land (\neg Q \lor P)) \leftrightarrow ((P \land \neg Q) \lor (Q \land \neg P))$ (De Morgan Law) $\Leftrightarrow \neg ((P \land \neg Q) \lor (Q \land \neg P)) \leftrightarrow ((P \land \neg Q) \lor (Q \land \neg P))$ (Use R to denote $(P \land \neg Q) \lor (Q \land \neg P)) \Leftrightarrow \neg R \leftrightarrow R$ (Complement Law) \Leftrightarrow F
$$(\text{Negation}) \Leftrightarrow P \land \neg P$$

4 We have

$$P \rightarrow (Q \rightarrow R)$$
 (Implication Equivalence) $\Leftrightarrow P \rightarrow (\neg Q \lor R)$ (Implication Equivalence) $\Leftrightarrow \neg P \lor (\neg Q \lor R)$ (Associative) $\Leftrightarrow (\neg P \lor \neg Q) \lor R$ (De Morgan Law) $\Leftrightarrow \neg (P \land Q) \lor R$ (Implication Equivalence) $\Leftrightarrow (P \land Q) \rightarrow R$

1.3 Write the Statement of A and B

A We have

$$A = (\neg P \land \neg Q)$$
$$= \neg (P \lor Q)$$

B We have

$$B = \neg (P \land \neg Q)$$
$$= \neg P \lor Q$$

1.4 Using \uparrow and \downarrow to denote \neg , \land , \lor and \rightarrow

We know that

$$A \uparrow B \Leftrightarrow \neg (A \land B), \quad A \downarrow B \Leftrightarrow \neg (A \lor B)$$

 \neg We have

$$\neg A = \neg (A \land A) = A \uparrow A$$
$$\neg A = \neg (A \lor A) = A \downarrow A$$

 \wedge We have

$$\begin{split} A \wedge B &= \neg \neg (A \wedge B) \\ &= \neg (A \uparrow B) \\ &= (A \uparrow B) \uparrow (A \uparrow B) \\ A \wedge B &= \neg (\neg A \vee \neg B) \\ &= (\neg A) \downarrow (\neg B) \\ &= (A \downarrow A) \downarrow (B \downarrow B) \end{split}$$

∨ We have

$$A \lor B = \neg(\neg A \land \neg B)$$

$$= (\neg A) \uparrow (\neg B)$$

$$= (A \uparrow A) \uparrow (B \uparrow B)$$

$$A \lor B = \neg \neg (A \lor B)$$

$$= \neg(A \downarrow B)$$

$$= (A \downarrow B) \downarrow (A \downarrow B)$$

 $\rightarrow\,$ We have

$$A \rightarrow B = \neg A \lor B$$

$$= \neg (A \land \neg B)$$

$$= A \uparrow (\neg B)$$

$$= A \uparrow (B \uparrow B)$$

$$A \rightarrow B = \neg A \lor B$$

$$= \neg \neg (\neg A \lor B)$$

$$= \neg (\neg A \downarrow B)$$

$$= \neg ((A \downarrow A) \downarrow B)$$

$$= ((A \downarrow A) \downarrow B) \downarrow ((A \downarrow A) \downarrow B)$$