Modelling of complex, non-linear relationships in time series data while accounting for delayed effects 3

Robbie M Parks, PhD 22nd July 2025

Email: robbie.parks@columbia.edu

BlueSky: @robbiemparks

Website: sparklabnyc.github.io

Outline from previous lecture

- Case crossover design
- Time series design

Outline

- Distributed lag non-linear models (DLNM)
- Case crossover with hybrid DLNM
- Treed distributed non-linear models (TDLNMs)

Critical windows of exposure

- When is exposure most important?
- Think of the examples we've seen so far in class:
- County-level annual PM_{2.5} and BMI
- Daily PM_{2.5} and CVD admissions
- 3-day average PM_{2.5} and CVD admissions

What assumption were we making?

What if we do not know?

Critical windows of exposure

- Examine multiple different windows of exposure
 - Given some expert knowledge (hopefully!) and prior hypothesis
 - E.g. look at short-term exposure to PM $_{2.5}$ and CVD
- How?
- Before we go into that, what is a lag?

Critical windows of exposure

- Run a different model for each lag of interest
 - Any issues with that?

Other options?

Unconstrained distributed lag models

Include multiple lags in the same model

$$\log(E[CVD_t] = \beta_0 + \beta_1 PM2.5_t + \beta_2 PM2.5_{t-1} + \beta_3 PM2.5_{t-2} + \cdots$$

- $-\beta_1$ effect estimate for lag 0 (same day)
- $-\beta_2$ effect estimate for lag 1 (day before the event)
- $-\beta_3$ effect estimate for lag 2 (2 days before the event)

— ...

• Independent effect for each lag, adjusting for other lags

Unconstrained distributed lag models

Include multiple lags in the same model

$$\log(E[CVD_t] = \beta_0 + \beta_1 PM2.5_t + \beta_2 PM2.5_{t-1} + \beta_3 PM2.5_{t-2} + \cdots$$

Cumulative effect of exposure over K lags $\sum_{k=1}^{K} \beta_k$

- Can I do this with lag-specific models?
- Variance of the cumulative effect?
 - $-Var(\beta_1 + \beta_2) = Var(\beta_1) + Var(\beta_2) + 2Covar(\beta_1, \beta_2)$
 - (Can be extended for more than two variables
- For <u>small</u> in magnitude effect estimates, the estimated cumulative effect will be very similar to the effect of the average exposure of the same period

Unconstrained distributed lag models

Any issues now with this approach?

• Other options?

Constrain the distributed lag models

- Add an additional constrain on how the effect estimates can vary over time (i.e., lags)
- k = f(t)
- Underlying biology suggesting that day-to-day (or
- week-to-week etc) effects k likely have some structure
- How do we select f (t)? Any ideas?

Constrain the distributed lag models

Polynomials

- Up until recently that people had to hard code these, a polynomial of 4th degree was most commonly used
- —Up to how many changes in direction for a 4th degree polynomial?
- Recent coding advances allow for more parameterizations
 - dlnm package in R, provided by Antonio Gasparrini
- E.g. natural splines

Constrain the distributed lag models

- Now add non-linear element: dlnm:
- We can also now fit non-linear functions for the exposureresponse curve
 - What does this mean?
 - E.g. polynomials and natural splines
- Also, allowing a different shape of the exposure-response curve at each lag

Few more notes on DLNMs

- The exposure windows need to have equal duration
 - E.g. one day, one week, 5 weeks, etc
- In lab we'll learn about DLNMs in time series
- DLNMs can also be used in other study designs as well
 - Cohort, Case crossover, Survival, etc
- For time series, the dlnm package will create the exposure matrix for us
- For other designs, we have to create it ourselves
- In Bayesian world, can spatially smooth for small areas (cutting edge)
- As always emphasis on interpretation and biological plausibility!

Case crossover with hybrid DLNM

- Combining case crossover study design with distributed lag non-linear terms:
- In practise, this becomes:
 - Long table with case and crossover controls
 - Wide table with lagged exposures

Case crossover with hybrid DLNM

- Combining case crossover study design with distributed lag non-linear terms:
- In practise, this becomes:
 - Long table with case and crossover controls
 - Wide table with lagged exposures

Case crossover with hybrid DLNM

										Q		
nr	÷	zcta 🗦	DayName [‡]	date_control [‡]	ck [‡]	lag0 [‡]	lag1 [‡]	lag2 [‡]	lag3 [‡]	lag4 [‡]	lag5 [‡]	lag6
	1	14727	CaseDay_0	1995-08-03	1	23.70	23.29	22.65	20.98	20.10	23.58	23.32
	1	14727	After_1	1995-08-10	0	19.95	17.85	17.48	19.84	20.31	20.25	23.03
	1	14727	After_2	1995-08-17	0	22.37	24.54	25.13	24.57	20.65	22.10	21.48
	1	14727	After_3	1995-08-24	0	17.03	17.15	16.16	21.36	21.13	20.78	22.40
	1	14727	After_4	1995-08-31	0	21.52	16.93	19.41	17.91	18.33	17.32	12.99
	2	14739	CaseDay_0	1995-10-12	1	14.46	12.96	12.41	9.12	9.19	14.69	17.48
	2	14739	After_1	1995-10-19	0	13.51	11.10	5.79	4.41	5.37	12.94	15.75
	2	14739	After_2	1995-10-26	0	5.65	5.95	10.69	10.49	5.43	8.09	12.56
	2	14739	Before_1	1995-10-05	0	13.20	15.50	11.93	14.66	14.41	12.84	12.67
	3	14895	CaseDay_0	1995-12-27	1	-9.89	-8.96	-6.41	-5.98	-5.41	-6.96	-9.85
	3	14895	Before_1	1995-12-20	0	-12.05	-9.78	-6.82	-6.70	-4.06	-1.96	-3.60
	3	14895	Before_2	1995-12-13	0	-11.10	-12.85	-12.95	-13.27	-5.60	-6.46	-6.47
	3	14895	Before_3	1995-12-06	0	-4.05	-1.34	-1.98	-0.33	-2.92	0.36	-4.41
	4	14715	CaseDay_0	1995-05-01	1	6.46	6.09	6.86	6.12	11.09	6.61	5.25
	4	14715	After_1	1995-05-08	0	4.09	6.20	7.58	8.79	9.51	8.84	7.84
	4	14715	After_2	1995-05-15	0	11.28	13.06	12.85	10.27	11.54	13.27	7.20
	4	14715	After_3	1995-05-22	0	9.70	12.81	11.49	9.31	10.33	12.23	11.72
	4	14715	After_4	1995-05-29	0	15.72	11.95	12.13	11.76	12.25	15.92	13.71
	6	14895	CaseDay_0	1995-07-07	1	20.05	22.30	21.94	18.85	13.68	14.19	19.22

Treed distributed non-linear models (TDLNMs)

What Are Treed DLNMs?

- Extension of DLNMs using recursive partitioning (tree-based methods)
- Allows for data-driven identification of effect heterogeneity
- Combines exposure-lag-response modeling with subgroup detection

Why Use Treed DLNMs?

- Capture non-linear, lagged, and heterogeneous exposure—response relationships
- Identify subgroups with differing temporal risk profiles
- Avoids pre-specification of strata or interaction terms

How Do They Work?

- Fit a DLNM at each node of a regression tree
- Recursive splits based on covariates (e.g., age, SES, geography)
- Each terminal node represents a subgroup with its own DLNM

Treed distributed non-linear models (TDLNMs)

Strengths

- Flexible modeling of complex temporal effects
- Uncovers effect modification without a priori assumptions
- Useful for high-dimensional data or unknown structure

Limitations

- Computationally intensive
- Risk of overfitting without cross-validation
- Interpretation can be complex for large trees

Applications

- Environmental epidemiology: temperature, air pollution, etc.
- Useful when time-varying effects differ across populations

Outline

- Distributed lag non-linear models (DLNM)
- Case crossover with hybrid DLNM
- Treed distributed non-linear models (TDLNMs)

Getting ready for the lab

 This lab will involve taking some models and concepts from the Modelling of complex, non-linear relationships in time series data while accounting for delayed effects 3 lecture and introduce you to the way non-linear regression works:

Application

 How can you imagine applying this learning to your data and your research questions?

Questions

• Questions?

Modelling of complex, non-linear relationships in time series data while accounting for delayed effects 3

Robbie M Parks, PhD 22nd July 2025

Email: robbie.parks@columbia.edu

BlueSky: @robbiemparks

Website: sparklabnyc.github.io

