Problems in variables

Problems with variables

- Problems found in data
- Impact on machine learning models

Problems in variables

Missing data
Missing values within a variable

LabelsCardinality

Labels
Infrequent categories

Outliers
Unusual or
unexpected values

Missing data

Missing values for certain observations

Affects all machine learning models

Scikit-learn

Mechanisms of missing data

Missing data completely at random MCAR

- the probability of being missing is the same for all the observations
- there is absolutely no relationship between the data missing and any other values, observed or missing, within the dataset
- disregarding those cases would not bias the inferences made

Missing data at random MAR

the probability an
 observation being missing
 depends only on available
 information

Gender	Weight	
Male	60 kg	
Male	NA	
Male	NA	
Male	77 kg	
Male	80 kg	
Male	62 kg	
Female	NA	
Female	NA	
Female	60 kg	
Female	55 kg	
Female	NA	
Female	58 kg	

2 NA / 6 men = 33%

3 NA / 6 women = 50%

Missing data not at random MNAR

 there is a mechanism or a reason why missing values are introduced in the dataset.

Target = depression	No of clinic visits	No sports classes weekly
Yes	1	NA
Yes	NA	NA
Yes	NA	0
Yes	4	2
Yes	NA	1
Yes	3	NA
No	0	0
No	NA	5
No	1	2
No	1	1
No	2	1
No	NA	2

More NA overall for depressed patients

Less NA for non-depressed patients

Labels

- Cardinality: high number of labels
- Rare Labels: infrequent categories
- Categories: strings
 - Scikit-learn

Labels

- Cardinality: Variables with too many labels tend to dominate over those with only a few labels, particularly in Tree based algorithms
- Rare Labels: Rare labels may be present in training set,
 but not in test set, causing over-fitting to the train set
- Rare Labels: Rare labels may appear in the test set, and not in the train set. Thus, the machine learning model will not know how to evaluate it for scoring.

Outliers 12 10 Linear 8 8 models 10 12 14 16 18 x_3 **Tremendous** weights Adaboost Bad generalisation

How can we address these variable problems?

Problems with variables

- Practical examples of missing data
- Practical examples of how outliers, highly cardinal variables and rare labels affect ML algorithms performance
- Table with comparison of different machine learning models
- Additional reading resources