Optimisation via Adiabatic Quantum Computing

Vivek Katial

22/01/2020

Main Research Question

 What instances characteristics of optimisation problems make them predisposed to being solved on a Quantum Computer?

Background

 Adiabatic Quantum Computation is a computational model which relies on the adiabatic thereom of quantum mechanics to compute calculations.

- Adiabatic Quantum Computation is a computational model which relies on the adiabatic thereom of quantum mechanics to compute calculations.
- The famous *Schrödinger Equation* is well-known to describe the time evolution of a quantum state:

- Adiabatic Quantum Computation is a computational model which relies on the adiabatic thereom of quantum mechanics to compute calculations.
- The famous *Schrödinger Equation* is well-known to describe the time evolution of a quantum state:

$$i\hbar \frac{d}{dt} |\psi(t)\rangle = H(t) |\psi t\rangle$$

- Adiabatic Quantum Computation is a computational model which relies on the adiabatic thereom of quantum mechanics to compute calculations.
- The famous *Schrödinger Equation* is well-known to describe the time evolution of a quantum state:

$$i\hbar \frac{d}{dt} |\psi(t)\rangle = H(t) |\psi t\rangle$$

• $|\psi(t)\rangle$ is our state vector, H(t) is the time dependent Hamiltonian. A Hamiltonian of an n-qubit system H(t) is given by $2^n \times 2^n$ matrix.

• An adiabatic computation can be expressed by specifying two Hamiltonians, denoted by H_B and H_P where H_B is our *initial* Hamiltonian and H_P is the *final* or *problem* Hamiltonian.

• An adiabatic computation can be expressed by specifying two Hamiltonians, denoted by H_B and H_P where H_B is our *initial* Hamiltonian and H_P is the *final* or *problem* Hamiltonian.

 $egin{array}{cccc} H_B & & \longrightarrow & H_P \ |\psi_B
angle & {
m transform} \; H(t) & |\psi_P
angle \ {
m known \; state} & {
m unknown} \end{array}$

• An adiabatic computation can be expressed by specifying two Hamiltonians, denoted by H_B and H_P where H_B is our *initial* Hamiltonian and H_P is the *final* or *problem* Hamiltonian.

 $egin{array}{cccc} H_B & & \longrightarrow & H_P \\ |\psi_B
angle & & {
m transform} \; H(t) & |\psi_P
angle \\ {
m known \; state} & & {
m unknown} \end{array}$

 Loosely speaking, the adiabatic theorem tells us that if we vary from H_B to H_P slowly enough the system will remain in its ground state. This fact is a direct result of the Adiabatic Theorem.

• To conduct the computation we evolve $|\psi(t)\rangle$ till time t=T such that $|\psi(t=T)\rangle$ encodes the answer. The computation is done using a Hamiltonian which linearly interpolates between H_B and H_P . Specifically as below:

• To conduct the computation we evolve $|\psi(t)\rangle$ till time t=T such that $|\psi(t=T)\rangle$ encodes the answer. The computation is done using a Hamiltonian which linearly interpolates between H_B and H_P . Specifically as below:

$$H(t) = \left(1 - \frac{t}{T}\right)H_B + \frac{t}{T}H_P$$

• To conduct the computation we evolve $|\psi(t)\rangle$ till time t=T such that $|\psi(t=T)\rangle$ encodes the answer. The computation is done using a Hamiltonian which linearly interpolates between H_B and H_P . Specifically as below:

$$H(t) = \left(1 - \frac{t}{T}\right)H_B + \frac{t}{T}H_P$$

How fast?

• To conduct the computation we evolve $|\psi(t)\rangle$ till time t=T such that $|\psi(t=T)\rangle$ encodes the answer. The computation is done using a Hamiltonian which linearly interpolates between H_B and H_P . Specifically as below:

$$H(t) = \left(1 - \frac{t}{T}\right)H_B + \frac{t}{T}H_P$$

How fast?

$$T = \frac{1}{\min_t g(t)^2}$$

• To conduct the computation we evolve $|\psi(t)\rangle$ till time t=T such that $|\psi(t=T)\rangle$ encodes the answer. The computation is done using a Hamiltonian which linearly interpolates between H_B and H_P . Specifically as below:

$$H(t) = \left(1 - \frac{t}{T}\right)H_B + \frac{t}{T}H_P$$

• How fast?

$$T = \frac{1}{\min_t g(t)^2}$$

• Where g(t) is the difference between the first two smallest eigenvalues of H(t)

3SAT (Exact Cover)

• The satisfiability problem, abbreviated SAT, is a classic example of an NP-complete problem [1]

3SAT (Exact Cover)

- The satisfiability problem, abbreviated SAT, is a classic example of an NP-complete problem [1]
- The basic SAT formulation can be described as follows: Given a boolean formula (AND \land , OR \lor , NOT \neg) over n variables $(z_1, z_2, ..., z_n)$. Can one set z_i 's in a manner such that the Boolean formula is true?

3SAT (Exact Cover)

- The satisfiability problem, abbreviated SAT, is a classic example of an NP-complete problem [1]
- The basic SAT formulation can be described as follows: Given a boolean formula (AND \land , OR \lor , NOT \neg) over n variables $(z_1, z_2, ..., z_n)$. Can one set z_i 's in a manner such that the Boolean formula is true?
- A clause is an expression which the variables must satisfy. For example $z_1 \wedge z_2 \implies z_1 = z_2 = 1$

• Consider a 3-bit number with two clauses:

- Consider a 3-bit number with two clauses:
 - $z_1 + z_2 = 1$

- Consider a 3-bit number with two clauses:
 - $z_1 + z_2 = 1$
 - $z_1 + z_3 = 1$

- Consider a 3-bit number with two clauses:
 - $z_1 + z_2 = 1$
 - $z_1 + z_3 = 1$
- Here we have 8 possible assignments, namely {000, 001, 010, 011, 100, 101, 110, 111}

- Consider a 3-bit number with two clauses:
 - $z_1 + z_2 = 1$
 - $z_1 + z_3 = 1$
- Here we have 8 possible assignments, namely {000, 001, 010, 011, 100, 101, 110, 111}
- However, our **satisfying assignments** are $z_1 = 1, z_2 = 0, z_3 = 0$ or $z_1 = 0, z_2 = 1, z_3 = 1$

- Consider a 3-bit number with two clauses:
 - $z_1 + z_2 = 1$
 - $z_1 + z_3 = 1$
- Here we have 8 possible assignments, namely {000, 001, 010, 011, 100, 101, 110, 111}
- However, our satisfying assignments are $z_1 = 1, z_2 = 0, z_3 = 0$ or $z_1 = 0, z_2 = 1, z_3 = 1$
- The 3-SAT problem in particular is a problem where each clause is comprised of 3 literals.

Mapping 3SAT to AQC

• How do we construct H_B and H_P so that we can solve our optimisation problem?

Mapping 3SAT to AQC

- How do we construct H_B and H_P so that we can solve our optimisation problem?
- Farhi et al describes it very well.

• Finally we express our problem Hamiltonian as follows:

• Finally we express our problem Hamiltonian as follows:

$$H_P = \sum_C H_P^C$$

Finally we express our problem Hamiltonian as follows:

$$H_P = \sum_C H_P^C$$

• We then evolve our system with the following interpolation:

• Finally we express our problem Hamiltonian as follows:

$$H_P = \sum_C H_P^C$$

• We then evolve our system with the following interpolation:

$$H(t) = \left(1 - \frac{t}{T}\right)H_B + \frac{t}{T}H_P$$

• Finally we express our problem Hamiltonian as follows:

$$H_P = \sum_C H_P^C$$

• We then evolve our system with the following interpolation:

$$H(t) = \left(1 - rac{t}{T}
ight)H_B + rac{t}{T}H_P$$

Finally, complete measurement

 Depending on different structures of instances, classical algorithms may perform differently to Quantum ones.

- Depending on different structures of instances, classical algorithms may perform differently to Quantum ones.
- We are looking to investigate which types of instances are more pre-disposed to being solved on Quantum Computers:

- Depending on different structures of instances, classical algorithms may perform differently to Quantum ones.
- We are looking to investigate which types of instances are more pre-disposed to being solved on Quantum Computers:
- To do this we will simulate AQC and measure the "quantum-ness" of each instance:

- Depending on different structures of instances, classical algorithms may perform differently to Quantum ones.
- We are looking to investigate which types of instances are more pre-disposed to being solved on Quantum Computers:
- To do this we will simulate AQC and measure the "quantum-ness" of each instance:
 - 1. Minimum Energy Gap g_{min}

- Depending on different structures of instances, classical algorithms may perform differently to Quantum ones.
- We are looking to investigate which types of instances are more pre-disposed to being solved on Quantum Computers:
- To do this we will simulate AQC and measure the "quantum-ness" of each instance:
 - 1. Minimum Energy Gap g_{min}
 - 2. Maximum Entropy of Entanglement

• This will involve large amounts of generating experimental data

- This will involve large amounts of generating experimental data
- To survey the instances we will deploy the instance space analysis methodology

- This will involve large amounts of generating experimental data
- To survey the instances we will deploy the instance space analysis methodology
- Ultimately, we can build a prediction model which maps instance features of different 3SAT instances to their inherent "Quantumness"

 Given that we have access to IBM's Quantum Computer, we may also apply a discretized version of AQC, QAOA and produce results from a real quantum computer

- Given that we have access to IBM's Quantum Computer, we may also apply a discretized version of AQC, QAOA and produce results from a real quantum computer
- This methodology can then be further extended to other optmisation problems that can be mapped to Quadratic Unconstrained Binary Optimisation (QUBO) problems.

Algorithm Selection

• Given a set of problem instances, predicting which algorithm is most likely to best perform was first explored by Rice. [2]

Algorithm Selection

• Given a set of problem instances, predicting which algorithm is most likely to best perform was first explored by Rice. [2]

Algorithm Selection

 Given a set of problem instances, predicting which algorithm is most likely to best perform was first explored by Rice. [2]

 However, what we are interested in is probing the strengths and weaknesses of AQC for different instances of SAT.

Instance Space Methodology

• The instance space methodology presented in [3–5] extends Rice's framework.

Instance Space Methodology

• The instance space methodology presented in [3–5] extends Rice's framework.

Hardness Features for 3SAT

•

Quantum Computing Research into Hard SAT problems

- Different Paths (Farhi 2009)
- Hamiltonian Parameters (Choi)
- Volks group research on SAT

1. Learning Quantum Mechanics and Quantum Computing

- 1. Learning Quantum Mechanics and Quantum Computing
- 2. Conducting literature review on current advances in Adiabatic Quantum Computing.

- 1. Learning Quantum Mechanics and Quantum Computing
- Conducting literature review on current advances in Adiabatic Quantum Computing.
- Developed working environment, set up GitHub, scripts, organizational tools enabling an efficient working environment.

4. Developed an architecture to run reproducible experiments at scale

- 4. Developed an architecture to run reproducible experiments at scale
- 5. Provisioned all infrastructure required for above on Melbourne Research Cloud and SPARTAN

- 4. Developed an architecture to run reproducible experiments at scale
- Provisioned all infrastructure required for above on Melbourne Research Cloud and SPARTAN
- Developed a working implementation of Adiabatic Quantum Computing on different instances of 3SAT.

1. Complete Literature Review of current advances in AQC.

- 1. Complete Literature Review of current advances in AQC.
- 2. Implement scripts to generate **hard** instances of 3SAT with respect to *instance characteristics*.

- 1. Complete Literature Review of current advances in AQC.
- 2. Implement scripts to generate **hard** instances of 3SAT with respect to *instance characteristics*.
- Apply Instance Space Methodology from MATILDA to find decision boundaries for Entanglement Entropy and Minimum Energy Gap

Extend implementation to work on QAOA and VQE (discretized version of AQC)

- Extend implementation to work on QAOA and VQE (discretized version of AQC)
- 5. Learn C++ effectively, this will be required when implementing larger simulations.

- Extend implementation to work on QAOA and VQE (discretized version of AQC)
- 5. Learn C++ effectively, this will be required when implementing larger simulations.
- 6. Apply Tensor Network methodology on current simulations

- Extend implementation to work on QAOA and VQE (discretized version of AQC)
- 5. Learn C++ effectively, this will be required when implementing larger simulations.
- 6. Apply Tensor Network methodology on current simulations
- 7. Further advance knowledge of Quantum Physics (possibly through taking a course in Quantum Computing)

- Extend implementation to work on QAOA and VQE (discretized version of AQC)
- 5. Learn C++ effectively, this will be required when implementing larger simulations.
- 6. Apply Tensor Network methodology on current simulations
- 7. Further advance knowledge of Quantum Physics (possibly through taking a course in Quantum Computing)
- 8. Extend research to look at other optimisation problems

About Me

- Vivek Katial (vkatial@student.unimelb.edu.au)
 - PhD Candidate (Optimisation on Quantum Computers)
- Check out the slides at https://tinyurl.com/vkatial-preconfirmation

References

References

- 1. Cook SA (1971) The complexity of theorem-proving procedures, In, *Proceedings of the third annual acm symposium on theory of computing*, ACM, 151–158.
- 2. Rice JR, others (1976) The algorithm selection problem. *Advances in computers* 15: 5.
- 3. Smith-Miles K, Bowly S (2015) Generating new test instances by evolving in instance space. *Computers & Operations Research* 63: 102–113.
- 4. Smith-Miles K, Lopes L (2012) Measuring instance difficulty for combinatorial optimization problems. *Computers & Operations Research* 39: 875–889.
- 5. Smith-Miles K, Baatar D, Wreford B, et al. (2014) Towards objective measures of algorithm performance across instance space. *Computers & Operations Research* 45: 12–24.