

Model-Based Reinforcement Learning (Day 1: Introduction)

Michael L. Littman

Rutgers University

Department of Computer Science

Rutgers Laboratory for Real-Life Reinforcement Learning

Plan

- Day 1: Introduction
 - RL
 - Q-learning
 - Convergence
 - Model-based RL
 - PAC-MDP
 - KWIK

- Day 2: Current Trends
 - Model-free RL & KWIK
 - Model/value approximation
 - Bayesian RL
 - UCT
 - Searchless planning

Start With Game...

Participation of the state of t

- up
- down
- left
- right
- A
- B

Find The Ball: Elements of RL

In reinforcement learning:

- agent interacts with its environment
- perceptions (state), actions, rewards [repeat]
- task is to choose actions to maximize rewards
- complete background knowledge unavailable

Learn:

- which way to turn
- to minimize time
- to see goal (ball)
- from camera input
- given experience.

Problem To Solve

Three core issues in the dream RL system.

- generalize experience
 - use knowledge gained in similar situations
 - "learning"
- sequential decisions
 - deal properly with delayed gratification
 - "planning"
- exploration/exploitation
 - must strike a balance
 - unique to RL?

Markov Decision Processes

Model of sequential environments (Bellman 57)

- n states, k actions, discount 0≤Y≤1
- step t, agent informed state is st, chooses at
- receives payoff r_t ; expected value is $R(s_t, a_t)$
- probability that next state is s' is T(s_t, a_t, s')

$$\begin{array}{c|c}
 & S_t \\
\hline
 & agent \\
\hline
 & r_t \\
\end{array}$$
environment:
$$T, R$$

$$Q(s,a) = R(s,a) + \gamma \sum_{s'} T(s,a,s') \max_{a'} Q(s',a')$$

- Optimal behavior is $a_t = \operatorname{argmax}_a Q(s_t, a)$
- R, T unknown; some experimentation needed

Find the Ball: MDP Version

Actions: rotate left/right

• States: orientation

• Reward: +1 for facing ball, 0 otherwise

Families of RL Approaches

policy value-function search based model based

More direct use, less direct learning

Search for action that maximizes value

Solve Bellman equations

More direct learning, less direct use

Q-learning

On experience $\langle s_t, a_t, r_t, s_{t+1} \rangle$:

If:

- All <s,a> visited infinitely often.
- $\sum_{t} \alpha_{t} = \infty$, $\sum_{t} \alpha_{t}^{2} < \infty$

Then: $\mathbb{Q}(s,a) \to \mathbb{Q}(s,a)$ (Watkins & Dayan 92).

Model-based MDP Learner

On experience $\langle s_t, a_t, r_t, s_{t+1} \rangle$:

- $R(s_t,a_t) \leftarrow R(s_t,a_t) + \alpha_t(r_t-R(s_t,a_t))$
- $1(s_t, a_t, s_{t+1}) \leftarrow 1(s_t, a_t, s_{t+1}) + \alpha_t(1 1(s_t, a_t, s_{t+1}))$
- $\Im(s_t, a_t, s') \leftarrow \Im(s_t, a_t, s') + \alpha_t(0 \Im(s_t, a_t, s'))$
- $\mathbb{Q}(s,a) = \mathbb{R}(s,a) + \gamma \sum_{s'} \mathbb{I}(s,a,s') \max_{a'} \mathbb{Q}(s',a')$ If:
- All <s,a> visited infinitely often.
- $\sum_{t} \alpha_{t} = \infty$, $\sum_{t} \alpha_{t}^{2} < \infty$

Then: $\mathbb{Q}(s,a) \to \mathbb{Q}(s,a)$ (Littman 96).

PAC-MDP Reinforcement Learning

PAC: Probably approximately correct (Valiant 84) Extended to RL (Fiechter 95, Kakade 03, etc.).

- Given $\epsilon > 0$, $\delta > 0$, k actions, n states, Υ .
- We say a strategy makes a <u>mistake</u> each timestep t s.t. $Q(s_t, a_t) < \max_a Q(s_t, a) \epsilon$.
- Let m be a bound on the number of mistakes that holds with probability $1-\delta$.
- Want m poly in k, n, $1/\epsilon$, $1/\delta$, $1/(1-\Upsilon)$. Must balance <u>exploration</u> and <u>exploitation</u>!

Q-learning Not PAC-MDP

- Family: initialization, exploration, α_t decay
- Combination lock

- Initialize low, random exploration (∈-greedy)
 - 2^n to find near-optimal reward. Keeps resetting.
 - Needs more external direction.

Model-based Can Be PAC-MDP

• Behavior differs depending on assumption

	truth:	truth:
	? = low	? = high
assume: ? = low	ignore ?, optimal	ignore?
assume: ? = high	visit ?, explore	visit ?, optimal

No PAC-MDP guarantee

←PAC-MDP if not too much exploration

Optimism Under Uncertainty

- Idea of exploration bonus well known.
- Shown to provide PAC-MDP guarantee (Kearns & Singh 02, Brafman & Tennenholtz 02).
- Key ideas:
 - Simulation lemma: Optimal for approximate model is near-optimal.
 - Explore or exploit lemma: If can't reach unknown states quickly, can achieve near-optimal reward.
- Extend to factored dynamics (Kearns & Koller 99)
 and metric spaces (Kakade et al. 03).

Model-free PAC-MDP

- Although not directly relevant, this problem was solved (Strehl, Li, Wiewiora, Langford, Littman 06).
- Modifies Q-learning to build rough model from recent experience.
- Total mistakes in learning $\approx nk/((1-\Upsilon)^8 \epsilon^4)$.
- Compare to model-based methods: mistakes in learning $\approx n^2 k/((1-\Upsilon)^6 \epsilon^3)$. (Better in states, worse in horizon.)
- Lower bound, also (Li 09).

Generalization in PAC-MDP

- Can we draw on classical ML theory?
- Model learning is a supervised problem.
 - Given examples of s,a pairs, predict s'.
- Not just for table lookup anymore!
- Extend results to functions that generalize by defining the right learning problem...

- PAC: Inputs drawn from Condition distribution. Observe inputs. For future inputs. For future inputs that learner cannot improve (change) behavior!
- <u>Mistake bound</u>: Inpute procented online. For each, procented Not PAC-MDP. Mistakes mean that a high reward can be assumed low—suboptimal.
- KWIK: Inputs presented online.

 For each, can predict output or say "I don't know" a Can be PAC-MDP...

 label. No mistakes, but can say "I no mistakes don't know" m times.

KWIK Learning

- "Knows What It Knows"
 - Like PAC, no mistakes.
 - Like mistake bound, no distribution assumption.
- Harder problem
 - PAC ≤ mistake bound ≤ KWIK
- Very well suited to model learning:
 - experience distribution changes during learning
 - distribution varies with behavior, which should change!
 - exploration driven by known/unknown distinction
 - don't want to be wrong and stop exploring too soon

KWIK Learn a Coin Probability

- Given m trials, x successes, p = x/m
- Hoeffding bound:
 - Probability of an empirical estimate of a random variable in the range [a,b] based on m samples being more than ϵ away from the true value is bounded by $\exp\left(-\frac{2m\epsilon^2}{(b-a)^2}\right)$
- So, can KWIK learn a transition probability:
 - say "I don't know" until m is big enough so that p is ϵ -accurate with probability $1-\delta$.

Some Things to KWIK Learn

- coin probability
- an output vector, each component is KWIK learnable
 - multinomial probability (dice learning)
- a mapping from input partition to outputs where partition is known and mapping within each partition is KWIK learnable
 - That's a standard transition function (s,a to vector of coins) (Li, Littman, Walsh 08).
- Also, union of two KWIK learnable classes.

R_{MAX} and KWIK Learning

- RMAX (Brafman & Tennenholtz 02)
 - KWIK learn model ($T(s,a,\cdot)$ unknown m times).
 - For unknown parts, assume max possible reward $(\mathbb{Q}(s,a) = \text{rmax}/(1-\Upsilon))$.
 - Solve for Q and use resulting policy until something new becomes known.
- Total mistakes in learning ≈ n²k/((1-Y)³∈³)
 (Strehl, Li, Wiewiora, Langford, Littman 06; Li 09).

RMAX Speeds Learning

Task: Exit room using bird's-eye state representation.

Details: Discretized 15x15 grid x 18 orientation (4050 states); 6 actions: forward, backward, turn L ,turn R, slide L, slide R. (Nouri)

Generalizing Transitions

- In MDPs, states are viewed as independent.
 - Transition knowledge doesn't transfer.
- Real-life action outcomes generalize.
 - Learn in one state, apply to others.
- Needed:
 - MDP variants that capture transition regularities.
 - Continuous MDPs
 - RAM-MDPs
 - Factored-state MDPs
 - Object oriented MDPs

Continuous Transition Model

(Nouri)

Relocatable Action Models

Decompose MDP transitions into state-independent outcomes (Sherstov, Stone 05).

$$T'(s,a,s') = \sum_{o \text{ s.t. } \eta(s,o)=s'} t(\kappa(s),a,o)$$

- κ : S → C is the type function. It maps each state to a type (or cluster or class) c ∈ C.
- t: C × A → Pr(O) is the relocatable action model.
 It captures the outcomes of different actions in a state-independent way by mapping a type and action to a probability distribution over possible outcomes.
- η: S × O → S is the next-state function. It takes a state and an outcome and provides the next state that results.

RAM Example

- η: the geometry
- t: actions effects
- κ: the local walls

Example: .8 in intended direction, .1 at right angles, unless wall blocks motion.

Action "go N" in a state with a walls to the N&E will go W wp .1, not move wp . 9 (.8 N + .1 E).

(Leffler, Edmunds, Littman 07)

Speeds Up Learning

- Cumulative reward is larger for RAM-R_{MAX} than R_{MAX} or Q-learning.
- KWIK bound depends on classes, not states.
- (It also has more background knowledge.)

Cumulative Reward in Simulated Domain

Robotic Example

- States: position and orientation
- Goal: Reach box as quickly as possible
- <u>Types</u>: sand, wood
- Actions: L, R, F

RAM Learning #2

QuickTime™ and a decompressor are needed to see this picture.

(Leffler, Mansley, Edmunds)

Factored-state MDPs

- Generalizing MDP states via DBN factoring of transition function (Boutilier et al. 99).
- 2ⁿ states, k actions
- Blends planning-type state representations with Bayes net probability distributions
- R, T unknown; some experimentation needed
- KWIK learnable: Just a different partition of the input space.

Factored-state MDP

State is a cross product.

• Example: Taxi (Dietterich 98).

Primitive actions:

• N,S,E,W, pickup, dropoff.

Passenger is at R, Y, G, B.

Destination is R, Y, G, B.

Reward for successful delivery.

Approx. 500 states, but related.

state = (taxi loc, pass. loc, dest)

Passenger: R Destination: Y Fuel: 5

Compact Model

Abstraction: Use a factored (DBN) model.

independence relations for "pickup"

(further, can use context-specific independence, Boutilier et al. 95)

- Model generalizes because transitions for multiple states share structure/parameters.
- If graph known, KWIK learnable: composition of output vector and input partition.

World of Objects

- Objects in taxi:
 - taxi (location)
 - passenger (location/in taxi)
 - walls (location)
 - destination (location)

- Not states or state features, instead try objects and object attributes.
- Model: What happens when objects interact?
- More "human like" exploration.

Comparing Taxi Results

- North, not touchN(taxi,wall) → taxi.y++
- Drop, pass.in, touch(taxi, dest) → ¬pass.in
- KWIK bound: poly in types, exp in condition
- Taxi: How long until optimal behavior?

Exploration style	Algorithm	# of steps
€ greedy	Q-learning	47157
count on states	Flat Rmax	4151
count on features	Factored Rmax	1839
count on interaction	Objects	143
whatever people do	People	50

Pitfall!

A childhood dream fulfilled... (Diuk, Cohen)

Model-Based Reinforcement Learning (Day 2: Other Stuff)

Michael L. Littman

Rutgers University

Department of Computer Science

Rutgers Laboratory for Real-Life Reinforcement Learning

Plan

- Day 1: Introduction
 - RL
 - Q-learning
 - Convergence
 - Model-based RL
 - PAC-MDP
 - KWIK

- Day 2: Current Trends
 - Bayesian RL
 - Model/value approximation
 - UCT
 - Searchless planning

Structure Learning in DBNs

- Unknown structure fundamentally different.
- How can you keep statistics if you don't know what they depend on?
- Can be solved using a technique for a simpler "hidden bit" problem:
 - n-bit input, one bit (unknown) controls output
 - one output distribution if bit is on, another if off
 - Find DBN structure by same idea: one parent set controls output...

Hidden-Bit Problem

Assume the simpler deterministic setting.

Output is copy or flip of one input.

$$1101 \rightarrow 1$$

$$0000 \rightarrow 1$$

$$0011 \rightarrow 0$$

$$1111 \rightarrow 0$$

$$1110 \rightarrow 0$$

$$1100 \rightarrow 1$$

Is it 0, 1, or "I don't know"?

If noisy, can't predict with each bit position separately, don't know which to trust. Can learn about all 2ⁿ bit patterns separately, but that's too much.

Hidden-bit Problem via KWIK

- Can observe predictions to figure out which
 of k "adaptive meteorologists" to trust
 (Strehl, Diuk, Littman 07; Diuk et al. 09).
- Solvable with bound of $O\left(\frac{k}{\epsilon^2}\ln\frac{k}{\delta}\right) + \sum_{i=1}^k \zeta_i\left(\frac{\epsilon}{8}, \frac{\delta}{k+1}\right)$
- By considering all k-size parent sets, get a structure-learning algorithm with a KWIK bound of

$$\kappa = O\left(\frac{n^{D+3}AD}{\epsilon^3(1-\gamma)^6}\ln\frac{nA}{\delta}\ln\frac{1}{\epsilon(1-\gamma)}\right)$$

Artificial Stock Example

Discovers the structure and exploits it much faster than R_{MAX} can learn the MDP.

Factored-R_{MAX}:

Knows DBNs

SLF-R_{MAX}: Knows size of parent sets

R_{MAX}: It's an MDP

Improved Bounds

- SLF-R_{MAX} runs in roughly $k^2 \log k$
- MET-R_{MAX} faster, like k log k
 Bounds weak, but
- Bounds weak, bu suggest a better algorithm!
- Also selected visual pattern for terrain learning.

Many Learnable Problems

Many hypothesis classes KWIK learnable:

- coin flip probability
- Dynamic Bayes net probabilities given graph
- k Dynamic Bayes net
- k Meteorologist problem
- k-CNF
- k-depth decision tree
- unions of KWIK-learnable classes
- k feature linear function

Grid World Demo (expt2)

- Unknown: What's a wall?
- (Purpose: What doesn't KWIK do?)

People Learn to Learn

- expt1: Always + (no mistakes)
- expt2: Always one shape (one mistake).
- expt3: Always some feature (two mistakes).
- Last maze is always +, but people perform differently depending on their experience.
- Transfer learning in RL (Taylor & Stone 07, e.g.).
- KWIK can learn any of these classes, but if all are possible, devolves to worst case.

Playing the Odds

- Standard PAC-MDP algorithms can't say:
 - I know you told me all states independent,
 - but every wall I've seen has been painful.
 - Can I just walk around now, please?
- Rmax vs. RAM-Rmax
 - Rmax: states independent
 - RAM-Rmax: Types known
- What if states "cluster"?
 - new state likely to be familiar

Bayesian Perspective

- Start with a prior over models.
- Maintain a posterior across tasks.
- Now, we can talk about more/less likely models instead of just possible models.
- How can we use the Bayesian view in exploration?

Bayes Optimal Exploration

- With a Bayesian representation of models, we can plan in the space of posteriors.
 - Can use posterior to evaluate the likelihood of any possible outcome of an action.
 - Can model how that outcome will change the posterior.
 - Can choose actions that truly maximize expected reward: No artificial distinction between exploring and exploiting or learning and acting.
- Hideously intractable except in some special cases (bandits, short horizons).

Concrete Example

MDP has one state, 3 actions (bandit)

- X:
$$\{.7.1.8\}$$
, Y: $\{.8.6.7\}$, $\gamma = 0.8$

Concrete Example

• MDP has one state, 3 actions (bandit)

- X:
$$\{.7.1.8\}$$
, Y: $\{.8.6.7\}$, $\gamma = 0.8$

$$(+.750)$$

Representing Posteriors

- T: s,a→multinomial over states
- If independent for each s,a:
 Dirichlet!
- Keep counts for each observed outcome.
- Can recover uncertainty in overall estimate.
- Unlike example, distribution over an infinite set.

Bayes Optimal Plans

- Many attempts (Duff & Barto 97; Dearden et al. 99)
- State of the art, BEETLE (Poupart et al. 06)
 - Latest ideas from solving continuous POMDPs
 - α functions are multivariate polynomials + PBVI
 - Can exploit "parameter tying" prior
 - Near optimal plan in "combination lock".
 - Less optimal in bigger problem.

Near Bayes Optimal Behavior

- Recall PAC-MDP, whp makes few mistakes.
- Near Bayesian: mistakes are actions taken with values far from Bayes optimal.
- Bayesian Exploration Bonus (Kolter & Ng 09)
 keeps mean of posterior and adds 1/n
 bonus to actions taken n times.
 - BEB is computationally simple.
 - BEB is Near Bayesian.
 - BEB is not PAC-MDP, though...

Bayes Optimal not PAC-MDP

- Examples where Bayes optimal does not find near optimal actions (Kolter & Ng 09; Li 09)
- Not clear which is "right".
- Who gets near optimal reward?
 - PAC-MDP: Future self
 - Near Bayesian: Current self
- Human behavior somewhere in between?
 - Hyperbolic discounting

PAC-MDP with Bayesian Priors

- With a prior that all similar colored squares are the same, we can bound the chance generalization will lead to sub-optimality.
- Idea: Don't worry about it if it's small!

X:
$$\{.7.1.8\}$$
, Y: $\{.8.6.7\}$
 ϵ =0.0001, δ =0.05
 $<.99..01>$

R is near optimal whp

BOSS: Algorithmic Approach

- Optimism under uncertainty, not Bayes optimal
 - Sample models from the posterior.
 - Stitch together into a meta-MDP.
 - Solve to find optimal behavior: best of sampled set
 - Act accordingly until something new learned.
- If set big, near optimality whp (Asmuth et al. 09)
- Several ideas appear to be viable here

$$O\left(\frac{SAB}{\epsilon(1-\gamma)^2}\ln\frac{1}{\delta}\ln\frac{1}{\epsilon(1-\gamma)}\right)$$

BOSS in Maze

- To learn in maze:
 - Chinese Restaurant Process prior
 - Finds (empirical) clusters
 - Outperforms Rmax, 1-cluster RAM-Rmax

- Fewer than states
- Fewer than types
- Some types grouped
- Rare states nonsense

Computation Matters

- Learning/exploration can be made efficient
 - model-based RL
 - PAC-MDP for studying efficient learning
 - KWIK for acquiring transition model
- Planning "just" a computational problem.
 - But, with powerful generalization, can quickly learn accurate yet intractible models!
 - Something needs to be done or the models are useless. (Not as focused on guarantees today.)

"Nesting" RL Approaches

value function

model-based

policy search inside model-based

value function inside model-based

Example: Autonomous Flight

- Outer approach: Model-based RL.
 - Experts parameterize model space
 - Parameters learned quickly from expert demonstration (no exploration needed)
- s a Π
- Resulting model very high dimensional (S,A)
- Inner approach: Policy-search RL.
 - Experts parameterize space of policies
 - Offline search finds excellent policy on model
 - Methodology robust to error in model
- Learns amazing stunts (Ng et al. 03).

Tricks and Treats

Linear Models

• Linear value function approaches: LSTD/LSPI

(Boyan 99; Lagoudakis & Parr 03)

• Give the same result!

(Parr et al. 08)

Fitted Value Iteration

- Represent value function via anchor points and local smoothing (Gordon 95)
- Some guarantees if points densely sampled (Chow & Tsitsiklis 91)
- Combined with KWIK learning of model

(Brunskill et al. 08)

UCT: Upper Conf. in Trees

- Narrow, deep game-tree search via bandits (Kocsis & Szepsvári 06)
- Huge success in Go (Gelly & Wang 06)
- Good fit w/ learned model.
 - Just needs to be able to simulate transitions
 - KWIK-like methods are also "auerv" based
- Not aware of work using it in RL setting.

Do Kids Explore?

- Statistics of play sensitive to confounding
- Show kid 2-lever toy (Schulz/Bonawitz 07).
 - Demonstrate both. Kid becomes interested in new toy.
 - Demonstrate them together. Kids stays interested in old toy.
- Experiment design intractable. KWIK-like heuristic?

Do People Explore? (xkcd)

Wrap Up

Self aporatory to a general first

- Introduction
 - Q-learning
 - MDPs
 - Model-based RL
 - PAC-MDP
 - KWIK

- Current topics
 - Bayesian RL
 - "Recursive" RL
 - Function approximation
 - Human exploration