

Revision For Mid-Sem Test

Covered Topics

- Textbook "Dive into Deep Learning": Chapter 1 -Chapter 6
- Tutorials: 1-4
- Lecture Notes: Lecture 1 Lecture 5, and Lecture 6
 Part 1 (i.e., CNN-Part 2.jpynb)

Machine Learning Problem Formulation

- Four major components:
 - Data
 - Model
 - Objective function
 - Optimization algorithm
- Biggest challenge
 - Overfitting
 - Generalization

- Training data, Validation data, Test data
- Gap between training and testing performance
- Data preprocessing
- Data augmentation (to reduce risk of overfitting)
- Implemetation: split data into batches for training

Models-Linear

- ➤ What is a linear model?
- > Limitations
- > Implementation

Models-MLP

- Multilayer perception
 - What is a neuron?
 - Activation function
 - How neurons are organised in neural networks
 - Hidden layer
 - Forward/backward propagation, computational graph
 - Universal approximation power
 - The activation function is not a polynomial
- Implementations
 - Neurons, layers, blocks, entire network
 - Initialization
 - Parameter management
 - Implementation of a neural network model

Models-CNN

- What is convolution?
 - Kernel, stride, padding, channnels
 - Receptive field
- Why we need convolution for image classification?
 - Compare with MLP: advantages and disadvantages
- Use convolution to build convolution layers and convolution neural networks
- Regularization: Batch normalization
- Implementations
 - layers, blocks, entire network
 - Initialization
 - Parameter management

- Mean Squared Error
 - Connection to maximum likelihood estimation
- Cross-entropy loss
- Regularization
 - Weight decay

- Parameters and Hyper-parameters
- Stochastic Gradient Descent method
- Regularization methods
 - Dropout

- Hyper-parameter search
- Use validation data
- Cross-validation
- Overfitting, underfitting