7210 HW 3

Duncan Wilkie

13 September 2022

3.1.25. A subgroup N of a group G is normal iff $gNg^{-1} \subseteq N$ for all $g \in G$.

Proof. The definition of $N \leq G$ is that $gNg^{-1} = N$ for all $g \in G$. The forward equivalence is therefore trivial. Conversely, suppose $gNg^{-1} \subseteq N$ for all g.

$$N = \{n \in N \mid n \in N\} = \{n \in N \mid gg^{-1}ngg^{-1} \in N\} = \{n \in N \mid g(g^{-1}n^{-1}g)^{-1}g^{-1} \in N\}$$

Take any element $n \in N$;

$$n = gg^{-1}ngg^{-1} = g(g^{-1}n^{-1}g)^{-1}g^{-1} = g(g'n'(g')^{-1})^{-1}g^{-1} = gn''g^{-1}$$

where $g'=g^{-1}$, $n'=n^{-1}\in N$ by closure, and $n''\in N$ is that which must then exist to satisfy $g'n'(g')^{-1}\subseteq N$. This demonstrates that every element of N equals an element of gNg^{-1} , so that $N\subseteq gNg^{-1}$ and consequently $gNg^{-1}=N$.

3.1.36. *If* G *is a group such that* G/Z(G) *is cyclic, then* G *is Abelian.*

Proof. If G/Z(G) is cyclic, it has a single generator xZ(G). This means any element of G/Z(G) may be written $x^aZ(G)$ for some $a \in \mathbb{Z}$.

Any element $g \in G$ generates a coset gZ(G). Since the factor group is cyclic, this coset is $x^aZ(G)$ for some integer a. Symbolically,

$$gZ(G) = x^a Z(G) \Leftrightarrow (x^a Z(G))^{-1} (gZ(G)) = 1 \cdot Z(G) \Leftrightarrow x^{-a} gZ(G) = Z(G) \Leftrightarrow x^{-a} g = z \in Z(G).$$

Thus all $g \in G$ can be written $x^a z$ for some integer a, some central element z, and x a representative of the generator coset. Therefore, since central z commute with all elements of G,

$$ab = x^{a_1}z_1x^{a_2}z_2 = z_2x^{a_1}x^{a_2}z_1 = z_2x^{a_1+a_2}z_1 = z_2x^{a_2}x^{a_1}z_1 = x^{a_2}z_2x^{a_1}z_1 = ba$$

for any $a, b \in G$.

3.1.41. Let G be a group. Then $N = \langle x^{-1}y^{-1}xy \mid x,y \in G \rangle$ is a normal subgroup of G and G/N is Abelian.

Proof. Consider $g \in G$ and $n \in N$.

$$gng^{-1} = gng^{-1}n^{-1}n = (gng^{-1}n^{-1})n$$

The left factor is in N by taking $x = g^{-1}$ and $y = n^{-1}$. The right factor is in N by assumption, and N is a (sub)group, and therefore closed under multiplication. This proves this subgroup is closed under conjugation, and is therefore normal.

In G/N, consider the coset $ghN = \{ghn \mid n \in N\}$. The element of ghN corresponding to the element of N with x = h and y = g is $ghh^{-1}g^{-1}hg = hg$. This implies that gh and hg generate the same coset, as cosets by partition G. In other words,

$$qhN = (qN)(hN) = hqN = (hN)(qN),$$

therefore G/N is Abelian.

3.2.16. If p is prime then $a^p \equiv a \pmod{p}$ for all $a \in \mathbb{Z}$.

Proof. Consider $\frac{(\mathbb{Z}/p\mathbb{Z})^{\times}}{\langle a \rangle}$, where the generator is multiplicative, of course. The order of the numerator group is p-1; the order of the denominator group is |a|. Since the order of the factor group must be integral, $|a| \mid p-1$, implying $a^{p-1} \equiv 1 \pmod{p} \Leftrightarrow a^p = a \pmod{p}$.

3.2.19. If N is a normal subgroup of the finite group G and |N| and |G:N| are relatively prime then N is the unique subgroup of G of order |N|.

Proof. If there exists some other subgroup H with |H| = |N|, $HN \le G$ since N is normal (Corollary 15). Then we can take |G:HN|; $|HN| = |H||N|/|H \cap N|$ (Proposition 13), so

$$|G:HN| = \frac{|G|}{|HN|} = \frac{|G|\cdot|H\cap N|}{|H|\cdot|N|}$$

By assumption, |G|/|N| is coprime to |N| = |H|, so |H| must divide $|H \cap N|$ if |G : HN| is to remain integral (no factor of |H| divides |G|/|N|, so they must all divide $|H \cap N|$).

However, since H and N are of the same size, $|H \cap N|$ is at most |H|, so it must equal |H|. This implies that H and H are identical, since each of their elements is in the intersection.

3.2.21. \mathbb{Q} has no proper subgroups of finite index, as does \mathbb{Q}/\mathbb{Z} .

Proof. The left cosets by N are of the form

$$\frac{p}{q} + N = \left\{ \frac{p}{q} + n \mid n \in N \right\}$$

For a fixed N, each $\frac{p}{q}$ generates a different coset, since elementwise addition by $\frac{p}{q}$ is a nonidentity (since $N \neq \mathbb{Q}$, so there exists a "hole" that gets moved) set automorphism on $\mathcal{P}(\mathbb{Q})$ with inverse elementwise subtraction by $\frac{p}{q}$. Therefore the cosets are in bijection with \mathbb{Q} , i.e. $|\mathbb{Q}:N|$ is infinite.

Using this, elements of \mathbb{Q}/\mathbb{Z} are of the form q+Z, and each q generates a distinct coset. The left cosets by another N of this group are of the form

$$\frac{p}{q} + N = \left\{ \left(\frac{p}{q} + \mathbb{Z} \right) + (n + \mathbb{Z}) \mid n + \mathbb{Z} \in N \right\} = \left\{ \left(\frac{p}{q} + n + \mathbb{Z} \right) \mid n + \mathbb{Z} \in N \right\}$$

The representative is another element of \mathbb{Q} that's distinct for every $\frac{p}{q}$, and since distinct such elements generate distinct cosets, the cosets are in bijection with \mathbb{Q} , i.e. $|\mathbb{Q}/\mathbb{Z}:N|$ is infinite. \square

3.3.3. If H is a normal subgroup of G of prime index p then for all $K \leq G$ either $K \leq H$ or G = HK and $|K: K \cap H| = p$.

First of all, $HK \leq G$ since H is normal; equivalently, HK = KH. If $K \not\leq H$, then there's some element $k \in K$ that's not in H. Then kH generates G/H: by Lagrange's theorem, $|\langle kH \rangle|$ must divide |G/H|, but |G/H| = |G:H| is prime, and $\langle kH \rangle$ is nontrivial since $k \cdot 1 \not\in H \Rightarrow kH \neq H$.

Stating that another way, all cosets by H in G are of the form k^iH . This implies $HK = KH = \{k'h \mid k' \in K, h \in H\} \supseteq \cup_i k^iH$, and since cosets of the quotient group partition G, the last equals G. Since all elements are in G by default, G = HK = KH.

We can now apply the second isomorphism theorem with the knowledge that KH=G. Since H is normal, $K \leq N_G(H)$, since H normalizes to G. This implies $K \cap H \leq K$ and $KH/H=G/H \cong K/K \cap H$ by the second isomorphism theorem. In particular,

$$|K:K\cap H|=|G:H|=p$$