Test Flight Question 10

Marcel Goh

30 June 2018

Theorem. There exists a family of intervals A_n , n = 1, 2, ..., such that $A_{n+1} \subset A_n$ for all n and $\bigcap_{n=1}^{\infty} A_n$ consists of a single real number.

Proof. Let A_n be the family of closed intervals $[0, \frac{1}{n}]$. For all natural numbers n, $\frac{1}{n+1} < \frac{1}{n}$, so the interval $[0, \frac{1}{n+1}] \subset [0, \frac{1}{n}]$. Because each interval in the sequence is subset of the previous interval,

$$\bigcap_{n=1}^{\infty} A_n = [0, L]$$

where L is the limit as n approaches infinity of the sequence $\{\frac{1}{n}\}_{n=1}^{\infty}$. This limit approaches 0, so we have:

$$\bigcap_{n=1}^{\infty} A_n = [0,0] = 0$$

The intersection is the single real number 0 so the existence of such a family of intervals is shown and the theorem is proved. \Box