Sistemas	linealec	do	ecuaciones	algebráicas
	THUULES	96	TI DUUDIU -	MADVIALLAS
	-			()

Ej:

$$X_1 - X_2 = 5$$
.

Obs. Definiendo $\vec{b} := \begin{pmatrix} 0 \\ 5 \end{pmatrix}$, $\vec{A} := \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ y $\vec{X} := \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$, podemos reescribir el sistema de ecuaciones anterior como una ecuación vectorial de la siguiente forma:

donde $\vec{X} = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix}$ es nuestro vector incógnita.

Así, en general, podemos reescribir sistemas lineales de ecuaciones algebráicas como ecuaciones vectoriales de la porma $A \neq B$, donde el vector $A \neq B$ es nuestra incógnita.

En el caso particular cuando $\vec{b} = \vec{O}$, decimos que tenemos un sistema homogéneo. Observemos que, en ese caso, $A\vec{x} = \vec{b} \iff \vec{x} \in \text{Ker}(A)$. En particular, tenemos que el conjunto de soluciones de un sistema lineal homogéneo de ecuaciones algebráicas forma un espacio vectorial.

En el caso general de la ecuación $A\vec{x}=\vec{b}$, si encontramos un vector \vec{v} tal que $A\vec{v}=\vec{b}$, entonces $\forall \vec{k} \in \text{Ker}(A)$ tendremos que $A(\vec{k}+\vec{v})=\vec{b}$ (¿por qué?). Si $\xi \vec{k_1}, \vec{k_2}, ..., \vec{k_m} \xi$ es una base de Ker(A), entonces

$$A\left(\sum_{i=1}^{\infty} C_i \vec{K}_i + \vec{V}\right) = \vec{b}$$
 para todo escalar C_i .

En este caso, decimos que \overrightarrow{V} es una solución particular a la ecuación $\overrightarrow{A}\overrightarrow{X}=\overrightarrow{b}$ y que $\overset{\sim}{=}$ Ci $\overrightarrow{K}_i+\overrightarrow{V}$ es la solución general a $\overrightarrow{A}\overrightarrow{X}=\overrightarrow{b}$.