Implement K-Nearest Neighbors algorithm on diabetes.csv dataset. Compute confusion matrix, accuracy, error rate, precision and recall on the given dataset

```
In [1]:
             import numpy as np
             import pandas as pd
             import warnings
             warnings.filterwarnings('ignore')
         data = pd.read_csv('./diabetes.csv')
In [2]:
         data.head()
Out[2]:
           Pregnancies
                      Glucose BloodPressure SkinThickness Insulin BMI
                                                                      Pedigree Age
                                                                                   Outcome
                    6
                           148
                                         72
                                                      35
                                                              0 33.6
                                                                         0.627
                                                                                50
                                                                                          1
                                                                                          0
         1
                            85
                                         66
                                                       29
                                                              0 26.6
                                                                         0.351
                                                                                31
         2
                                                                                32
                    8
                           183
                                         64
                                                       0
                                                              0 23.3
                                                                         0.672
                                                                                          1
         3
                           89
                                         66
                                                                 28.1
                                                                         0.167
                    0
                           137
                                         40
                                                       35
                                                             168 43.1
                                                                         2.288
                                                                                33
                                                                                          1
In [3]:
         #Check for null or missing values
         data.isnull().sum()
         Pregnancies
Out[3]:
         Glucose
                           0
         BloodPressure
         SkinThickness
                           0
         Insulin
         BMI
                           0
         Pedigree
                           0
         Age
         Outcome
         dtype: int64
         #Replace zero values with mean values
In [4]:
         for column in data.columns[1:-3]:
             data[column].replace(0, np.NaN, inplace = True)
             data[column].fillna(round(data[column].mean(skipna=True)), inplace = True)
         data.head(10)
```

	i regnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	Pedigree	Age	Outcome
	0 6	148.0	72.0	35.0	156.0	33.6	0.627	50	1
	1 1	85.0	66.0	29.0	156.0	26.6	0.351	31	0
	2 8	183.0	64.0	29.0	156.0	23.3	0.672	32	1
	3 1	89.0	66.0	23.0	94.0	28.1	0.167	21	0
	4 0	137.0	40.0	35.0	168.0	43.1	2.288	33	1
	5 5	116.0	74.0	29.0	156.0	25.6	0.201	30	0
	6 3	78.0	50.0	32.0	88.0	31.0	0.248	26	1
	7 10	115.0	72.0	29.0	156.0	35.3	0.134	29	0
	8 2	197.0	70.0	45.0	543.0	30.5	0.158	53	1
	9 8	125.0	96.0	29.0	156.0	32.0	0.232	54	1
III [O].	from sklearn	.model_s		ort train_tes = train_test			′, test_s	ize=	0.2, rando
In [6]:	<pre>from sklearn X_train, X_t #KNN from sklearn knn = KNeigh knn_fit = kn</pre>	<pre>.model_s est, Y_t .neighbo borsClas n.fit(X_</pre>	rain, Y_test rs import KNosifier()	= train_test eighborsClass in.values.rav	_split		, test_s	size=	0.2, rando
	<pre>from sklearn X_train, X_t #KNN from sklearn knn = KNeigh knn_fit = kn knn_pred = k from sklearn print("Confus print(confus print("Accur print("Reaca print("F1 Sc</pre>	.model_s est, Y_t .neighbo borsClas n.fit(X_ nn_fit.p .metrics sion Mat ion_matr acy Score: ore:", f	rain, Y_test rs import KNr sifier() train, Y_tra redict(X_tes import confrix") ix(Y_test, kr e:", accuracy ", recall_scr 1_score(Y_test)	= train_test eighborsClass in.values.rav t) usion_matrix,	c_split sifier vel()) preci	sion_ _precd))	_score, r		