

ECO 1005

Date Printed: 05 September 2022

Opamp Instrumentation Amplifier

PART NUMBER	04A-020
GROUP NAME	Opamp Amplifiers (04A)
CIRCUIT NAME	Instrumentation Amplifier
VARIANT DESCRIPTION	Single Supply, THD, Gain Trimmer, DC Bias Trimmer, Testpoints
BOARD DESIGN	PCB50/100-A-07
PRODUCT DESCRIPTION	Panel of #04A-020 miniPCBs, v-scored (1 Panel = 2 Pieces)

Circuit Description

This circuit amplifies a small voltage signal.

Panel Board

TOT VIEW

www.miniPCB.com 1 of 22

ECO 1005

Date Printed: 05 September 2022

Single Board

Part Locations

TOP VIEW

BOTTOM VIEW

www.miniPCB.com 2 of 22

ECO 1005

Date Printed: 05 September 2022

Schematic

www.miniPCB.com 3 of 22

ECO 1005

Date Printed: 05 September 2022

Gerber Files

This section contains images of the layers included in each Gerber file.

TOP COPPER (GLTX)

www.miniPCB.com 4 of 22

04A-020

ECO 1005

Date Printed: 05 September 2022

TOP CREAM (GCTX)

www.miniPCB.com 5 of 22

04A-020

ECO 1005

Date Printed: 05 September 2022

BOTTOM CREAM (GCBX)

www.miniPCB.com 6 of 22

ECO 1005

Date Printed: 05 September 2022

BOTTOM COPPER (GLBX)

www.miniPCB.com 7 of 22

ECO 1005

Date Printed: 05 September 2022

TOP SILKSCREEN (GOTX)

www.miniPCB.com 8 of 22

04A-020

ECO 1005

Date Printed: 05 September 2022

BOTTOM SILKSCREEN (GOBX)

www.miniPCB.com 9 of 22

04A-020

ECO 1005

Date Printed: 05 September 2022

TOP SOLDERMASK (GSTX)

www.miniPCB.com 10 of 22

ECO 1005

Date Printed: 05 September 2022

BOTTOM SOLDER MASK (GSBX)

www.miniPCB.com 11 of 22

ECO 1005

Date Printed: 05 September 2022

EDGE (GM1)

www.miniPCB.com 12 of 22

04A-020

ECO 1005

Date Printed: 05 September 2022

VSCORE (GM2)

www.miniPCB.com 13 of 22

04A-020

ECO 1005

Date Printed: 05 September 2022

MILLING (GM3)

www.miniPCB.com 14 of 22

04A-020

ECO 1005

Date Printed: 05 September 2022

Theory of Operation

The purpose of this circuit is to...

This circuit is supplied with a positive DC voltage...

The input stimuli is DC coupled...

The output signal is DC coupled...

www.miniPCB.com 15 of 22

04A-020

ECO 1005

Date Printed: 05 September 2022

Design Inputs

Design Requirements Form

POWER REQUIREMENTS

PARAMETER NAME	SYMBOL	UNITS	LOWER LIMIT	TARGET VALUE	UPPER LIMIT
Postive DC Supply	+V	V			
Negative DC Supply	-V	V			

STIMULI REQUIREMENTS

PARAMETER NAME	SYMBOL	UNITS	LOWER LIMIT	TARGET VALUE	UPPER LIMIT
Signal Voltage, Peak to Peak	V_{s}	V			
Signal Frequency	f_s	Hz			
Common Mode	V_{cm}	V			
Source Impedance	R_{s}	Ω			

PERFORMANCE CHARACTERISTICS

PARAMETER NAME	SYMBOL	UNITS	LOWER LIMIT	TARGET VALUE	UPPER LIMIT
Quiescient Current	I_q	Α			
Voltage Gain	A_v	V/V			
Current Gain	A_i	A/A			
Power Gain	A_p	P/P			
Input Impedance	R_i	Ω			
Output Impedance	R_i	Ω			

www.miniPCB.com 16 of 22

04A-020

ECO 1005

Date Printed: 05 September 2022

Design Outputs

Parts List Form

REF DES	PART TYPE	MFG PART NUMBER	PART DESCRIPTION	FIND
				1
				2
				3
				4
				5
				6
				7
				8
				9
				10
				11

www.miniPCB.com 17 of 22

ECO 1005

Date Printed: 05 September 2022

Testing Plans

Developmental Testing

- 1. Plan each calibration and service test.
- 2. Predict expected values for each test measurement.
- 3. Determine if expected values satisfy design requirements.
- 4. Assemble a prototype that is representative of what might be the final design.
- 5. Perform the calibration and service testing plans.
- 6. Determine if the design outputs satisfy design requirements.

Calibration and Service Testing

- 1. With power off, measure resistances between each pin.
- 2. If measured resistances are not as expected, end testing fail, components need to be replaced.
- 3. With power on, measure voltages at each pin.
- 4. If measured voltages are not as expected, end testing fail, components need to be replaced.
- 5. With power on, adjust potentiometer PX such that the voltage at test point TPX is ##.
- 6. If measured voltages cannot be adjusted to an expected value, end testing fail, components need to be replaced.
- 7. With power on, apply stimuli and measure outputs.
- 8. If measured output signals are not as expected, end testing fail, components need to be replaced.
- If measured output signals are as expected, end testing pass.-

www.miniPCB.com 18 of 22

04A-020

ECO 1005

Date Printed: 05 September 2022

Design Example

Design Inputs

POWER REQUIREMENTS

PARAMETER NAME	SYMBOL	UNITS	LOWER LIMIT	TARGET VALUE	UPPER LIMIT
Postive DC Supply	+V	V	4.9	5	5.1
Negative DC Supply	-V	V			

STIMULI REQUIREMENTS

PARAMETER NAME	SYMBOL	UNITS	LOWER LIMIT	TARGET VALUE	UPPER LIMIT
Signal Voltage, Peak to Peak	V_{s}	V	0.015	0.02	0.025
Signal Frequency	f_s	Hz			
Common Mode	V_{cm}	V			
Source Impedance	R_{s}	Ω			

PERFORMANCE CHARACTERISTICS

PARAMETER NAME	SYMBOL	UNITS	LOWER LIMIT	TARGET VALUE	UPPER LIMIT
Quiescient Current	I_q	Α			
Voltage Gain	A_v	V/V			
Current Gain	A_i	A/A			
Power Gain	A_p	P/P			
Input Impedance	R_i	Ω			
Output Impedance	R_i	Ω			

www.miniPCB.com 19 of 22

04A-020

ECO 1005

Date Printed: 05 September 2022

Design Outputs

PARTS LIST

QTY REQ	REFERENCE DESIGNATORS	MFG PART NUMBER	PART DESCRIPTION	FIND
3	R1, R2, R5		RESISTOR, 1.5K, 1/4W, 1%	1
2	R3, R4		100	2
1	Q1		2N2222	3
1	C1		10u	4
1	C2		1u	5
1	C3		0.1u	6

www.miniPCB.com 20 of 22

04A-020

ECO 1005

Date Printed: 05 September 2022

Developmental Tests per Example

Test Report per Example

www.miniPCB.com 21 of 22

ECO 1005

Date Printed: 05 September 2022

Change and Liability Notice

This document is subject to change without notice. While effort has been made to ensure the accuracy of the material contained within this document, Nolan Manteufel shall under no circumstances be liable for incidental or consequential damages or related expenses resulting from the use of this document.

Trademark Notice

miniPCB is a trademark of Nolan Manteufel.

This datasheet does not constitute permission to use the miniPCB trademark.

WORDMARK	FIGUREMARK	FIGUREMARK
miniPCB™	mjntPCB _M	□ TT _{TM}

Revision History

REV	DESCRIPTION	ECO	DATE
Α	Initial Release		

www.miniPCB.com 22 of 22