Matrix games

Axel Böhm

September 8, 2021

Introduction

Introduction

Given

- Player I (rows, Alice)
- Player II (columns, Bob)
- a payoff matrix $A \in \mathbb{R}^{m \times n}$

Every round

- Alice picks (row) strategy $i \in [m] := \{1, ..., m\}$ Bob picks (col) strategy $j \in [n]$
- 2 Bob pays Alice the amount $a_{i,j}$

zero-sum game

Example: penalty game

Figure: penalty game

Example: prisoners dilemma

	Confess A	Stay quiet A
Confess	6	10
В	6	0
Stay quiet	0	2

Alice gets

 $\min_{j \in [n]} a_{i,j}$

• Alice gets $\max_{j \in [m]} \min_{j \in [n]} a_{i,j}$

- Alice gets $\max_{j \in [m]} \min_{j \in [n]} a_{i,j}$
- $\bullet \ \, \mathsf{Bob} \ \, \mathsf{gets} \ \, \mathsf{min}_{j \in [n]} \, \mathsf{max}_{j \in [m]} \, a_{i,j} \\$

- Alice gets $\max_{j \in [m]} \min_{j \in [n]} a_{i,j}$
- Bob gets $\min_{j \in [n]} \max_{j \in [m]} a_{i,j}$

We claim:

$$\max_{i} \min_{j} a_{i,j} \leq \min_{j} \max_{i} a_{i,j}$$

"Tallest dwarf is not as tall as the smallest giant."

But equality does not hold in general!

Proof of the min-max theorem

$$a_{ij} \leq a_{ij} \qquad \forall i, j$$

Proof of the min-max theorem

$$a_{ij} \le a_{ij}$$
 $\forall i, j$
 $a_{ij} \le \max_{i} a_{ij}$ $\forall i, j$

Proof of the min-max theorem

$$a_{ij} \le a_{ij} \qquad \forall i, j$$
 $a_{ij} \le \max_{i} a_{ij} \qquad \forall i, j$
 $\min_{j} a_{ij} \le \min_{i} \max_{i} a_{ij} \qquad \forall i$