MADM

Simple Additive Weighting

Pengampu : Yampi R. Kaesmetan , M.KOM

- Secara umum, model *Multi-Attribute Decision Making* (MADM) dapat didefinisikan sebagai berikut (Zimermann, 1991):
 - Misalkan A = $\{a_i \mid i=1,...,n\}$ adalah himpunan alternatif-alternatif keputusan dan C = $\{c_j \mid j=1,...,m\}$ adalah himpunan tujuan yang diharapkan, maka akan ditentukan alternatif x_o yang memiliki derajat harapan tertinggi terhadap tujuan—tujuan yang relevan c_j .

- Janko (2005) memberikan batasan tentang adanya beberapa fitur umum yang akan digunakan dalam MADM, yaitu:
 - Alternatif, adalah obyek-obyek yang berbeda dan memiliki kesempatan yang sama untuk dipilih oleh pengambil keputusan.
 - Atribut, sering juga disebut sebagai karakteristik, komponen, atau kriteria keputusan. Meskipun pada kebanyakan kriteria bersifat satu level, namun tidak menutup kemungkinan adanya sub kriteria yang berhubungan dengan kriteria yang telah diberikan.

- Konflik antar kriteria, beberapa kriteria biasanya mempunyai konflik antara satu dengan yang lainnya, misalnya kriteria keuntungan akan mengalami konflik dengan kriteria biaya.
- Bobot keputusan, bobot keputusan menunjukkan kepentingan relatif dari setiap kriteria, $W = (w_1, w_2, ..., w_n)$. Pada MADM akan dicari bobot kepentingan dari setiap kriteria.
- Matriks keputusan, suatu matriks keputusan X yang berukuran m x n, berisi elemen-elemen x_{ij}, yang merepresentasikan rating dari alternatif A_i (i=1,2,...,m) terhadap kriteria C_i (j=1,2,...,n).

- Masalah MADM adalah mengevaluasi m alternatif A_i
 (i=1,2,...,m) terhadap sekumpulan atribut atau kriteria C_j
 (j=1,2,...,n), dimana setiap atribut saling tidak bergantung satu dengan yang lainnya.
- Kriteria atau atribut dapat dibagi menjadi dua kategori, yaitu:
 - Kriteria keuntungan adalah kriteria yang nilainya akan dimaksimumkan, misalnya: keuntungan, IPK (untuk kasus pemilihan mahasiswa berprestasi), dll.
 - Kriteria biaya adalah kriteria yang nilainya akan diminimumkan, misalnya: harga produk yang akan dibeli, biaya produksi, dll.

• Pada MADM, *matriks keputusan* setiap alternatif terhadap setiap atribut, X, diberikan sebagai:

$$\mathbf{X} = \begin{bmatrix} \mathbf{x}_{11} & \mathbf{x}_{12} & \cdots & \mathbf{x}_{1n} \\ \mathbf{x}_{21} & \mathbf{x}_{22} & \cdots & \mathbf{x}_{2n} \\ \vdots & \vdots & & \vdots \\ \mathbf{x}_{m1} & \mathbf{x}_{m2} & \cdots & \mathbf{x}_{mn} \end{bmatrix}$$

dengan x_{ij} merupakan rating kinerja alternatif ke-i terhadap atribut ke-j.

• *Nilai bobot* yang menunjukkan tingkat kepentingan relatif setiap atribut, diberikan sebagai, W:

$$W = \{W_{1}, W_{2}, ..., W_{n}\}$$

- Rating kinerja (X), dan nilai bobot (W) merupakan nilai utama yang merepresentasikan preferensi absolut dari pengambil keputusan.
- Masalah MADM diakhiri dengan proses perankingan untuk mendapatkan alternatif terbaik yang diperoleh berdasarkan nilai keseluruhan preferensi yang diberikan (Yeh, 2002).
- Pada MADM, umumnya akan dicari solusi ideal.
- Pada solusi ideal akan memaksimumkan semua kriteria keuntungan dan meminimumkan semua kriteria biaya.

- Ada beberapa metode yang dapat digunakan untuk menyelesaikan masalah MADM, antara lain:
 - a. Simple Additive Weighting (SAW)

 \Rightarrow

Today Focus

- b. <u>Weighted Product</u> (WP)
- c. <u>TOPSIS</u>
- d. <u>Analytic Hierarchy Process</u> (AHP)

- Metode *Simple Additive Weighting* (SAW) sering juga dikenal istilah metode penjumlahan terbobot.
- Konsep dasar metode SAW adalah mencari penjumlahan terbobot dari rating kinerja pada setiap alternatif pada semua atribut (Fishburn, 1967)(MacCrimmon, 1968).
- Metode SAW membutuhkan proses normalisasi matriks keputusan (X) ke suatu skala yang dapat diperbandingkan dengan semua rating alternatif yang ada.

• Formula untuk melakukan normalisasi tersebut adalah sebagai berikut:

$$r_{ij} = \begin{cases} \frac{x_{ij}}{\text{Max } x_{ij}} & \text{jika j adalah atribut keuntungan (benefit)} \\ \frac{\text{Min } x_{ij}}{x_{ij}} & \text{jika j adalah atribut biaya (cost)} \end{cases}$$

dengan r_{ij} adalah rating kinerja ternormalisasi dari alternatif A_i pada atribut C_i ; i=1,2,...,m dan j=1,2,...,n.

• Nilai preferensi untuk setiap alternatif (V_i) diberikan sebagai:

$$V_i = \sum_{j=1}^n w_j r_{ij}$$

• Nilai V_i yang lebih besar mengindikasikan bahwa alternatif A_i lebih terpilih.

• Contoh-1:

- Suatu institusi perguruan tinggi akan memilih seorang karyawannya untuk dipromosikan sebagai kepala unit sistem informasi.
- Ada empat kriteria yang digunakan untuk melakukan penilaian, yaitu:
 - C1 = tes pengetahuan (wawasan) sistem informasi
 - C2 = praktek instalasi jaringan
 - C₃ = tes kepribadian
 - C4 = tes pengetahuan agama

- Pengambil keputusan memberikan bobot untuk setiap kriteria sebagai berikut: C1 = 35%; C2 = 25%; C3 = 25%; dan C4 = 15%.
- Ada enam orang karyawan yang menjadi kandidat (alternatif) untuk dipromosikan sebagai kepala unit, yaitu:
 - A1 = Indra,
 - A2 = Roni,
 - A₃ = Putri,
 - A4 = Dani,
 - A₅ = Ratna, dan
 - A6 = Mira.

• Tabel nilai alternatif di setiap kriteria:

Alternatif	Kriteria				
Allemalii	C1	C2	C3	C4	
Indra	70	50	80	60	
Roni	50	60	82	70	
Putri	85	55	80	75	
Dani	82	70	65	85	
Ratna	75	75	85	74	
Mira	62	50	75	80	

• Normalisasi:

$$r_{11} = \frac{70}{\max\{70;50;85;82;75;62\}} = \frac{70}{85} = 0,82$$

$$r_{21} = \frac{50}{\max\{70;50;85;82;75;62\}} = \frac{50}{85} = 0,59$$

$$r_{12} = \frac{50}{\max\{50;60;55;70;75;50\}} = \frac{50}{75} = 0,67$$

$$r_{22} = \frac{60}{\max\{50;60;55;70;75;50\}} = \frac{60}{75} = 0,80$$
dst

• Hasil normalisasi:

$$R = \begin{bmatrix} 0,82 & 0,67 & 0,94 & 0,71 \\ 0,59 & 0,80 & 0,96 & 0,82 \\ 1 & 0,73 & 0,94 & 0,88 \\ 0,96 & 0,93 & 0,76 & 1 \\ 0,88 & 1 & 1 & 0,87 \\ 0,73 & 0,67 & 0,88 & 0,94 \end{bmatrix}$$

- Proses perankingan dengan menggunakan bobot yang telah diberikan oleh pengambil keputusan: w = [0,35 0,25 0,25 0,15]
- Hasil yang diperoleh adalah sebagai berikut:

$$V_1 = (0,35)(0,82) + (0,25)(0,67) + (0,25)(0,94) + (0,15)(0,71) = 0,796$$

$$V_2 = (0,35)(0,59) + (0,25)(0,80) + (0,25)(0,96) + (0,15)(0,82) = 0,770$$

$$V_3 = (0,35)(1,00) + (0,25)(0,73) + (0,25)(0,94) + (0,15)(0,88) = 0,900$$

$$V_4 = (0,35)(0,96) + (0,25)(0,93) + (0,25)(0,76) + (0,15)(1,00) = 0,909$$

$$V_5 = (0,35)(0,88) + (0,25)(1,00) + (0,25)(1,00) + (0,15)(0,87) = 0,939$$

$$V_6 = (0,35)(0,73) + (0,25)(0,67) + (0,25)(0,88) + (0,15)(0,94) = 0,784$$

- Nilai terbesar ada pada V_5 sehingga alternatif A_5 adalah alternatif yang terpilih sebagai alternatif terbaik.
- Dengan kata lain, Ratna akan terpilih sebagai kepala unit sistem informasi.

• Contoh-2:

- Sebuah perusahaan makanan ringan XYZ akan menginvestasikan sisa usahanya dalam satu tahun.
- Beberapa alternatif investasi telah akan diidentifikasi. Pemilihan alternatif terbaik ditujukan selain untuk keperluan investasi, juga dalam rangka meningkatkan kinerja perusahaan ke depan.

- Beberapa kriteria digunakan sebagai bahan pertimbangan untuk mengambil keputusan, yaitu:
 - C1 = *Harga*, yaitu seberapa besar harga barang tersebut.
 - C2 = Nilai investasi 10 tahun ke depan, yaitu seberapa besar nilai investasi barang dalam jangka waktu 10 tahun ke depan.

- C3 = Daya dukung terhadap produktivitas perusahaan, yaitu seberapa besar peranan barang dalam mendukung naiknya tingkat produktivitas perusahaan. Daya dukung diberi nilai: 1 = kurang mendukung, 2 = cukup mendukung; dan 3 = sangat mendukung.
- C4 = *Prioritas kebutuhan*, merupakan tingkat kepentingan (ke-mendesak-an) barang untuk dimiliki perusahaan. Prioritas diberi nilai: 1 = sangat berprioritas, 2 = berprioritas; dan 3 = cukup berprioritas.

- C5 = Ketersediaan atau kemudahan, merupakan ketersediaan barang di pasaran. Ketersediaan diberi nilai: 1 = sulit diperoleh, 2 = cukup mudah diperoleh; dan 3 = sangat mudah diperoleh.
- Dari pertama dan keempat kriteria tersebut, kriteria pertama dan keempat merupakan kriteria biaya, sedangkan kriteria kedua, ketiga, dan kelima merupakan kriteria keuntungan.
- Pengambil keputusan memberikan bobot untuk setiap kriteria sebagai berikut: C1 = 25%; C2 = 15%; C3 = 30%; C4 = 25; dan C5 = 5%.

- Ada empat alternatif yang diberikan, yaitu:
 - A1 = Membeli mobil box untuk distribusi barang ke gudang;
 - A2 = Membeli tanah untuk membangun gudang baru;
 - A3 = Maintenance sarana teknologi informasi;
 - A4 = Pengembangan produk baru.

• Nilai setiap alternatif pada setiap kriteria:

	Kriteria					
Alternatif	C1 (juta Rp)	C2 (%)	C3	C4	C5	
A1	150	15	2	2	3	
A2	500	200	2	3	2	
A3	200	10	3	1	3	
A4	350	100	3	1	2	

• Normalisasi:

$$r_{11} = \frac{\min\{150;500;200;350\}}{150} = \frac{150}{150} = 1$$

$$r_{21} = \frac{15}{\max\{15;200;10;100\}} = \frac{15}{200} = 0,075$$

$$r_{35} = \frac{2}{\max\{2;2;3;3\}} = \frac{2}{3} = 0,667$$

$$r_{45} = \frac{\min\{2;3;1;1\}}{2} = \frac{1}{2} = 0,5$$

• dst

• Hasil normalisasi:

$$R = \begin{bmatrix} 1 & 0,08 & 0,67 & 0,50 & 1 \\ 0,30 & 1 & 0,67 & 0,33 & 0,67 \\ 0,75 & 0,05 & 1 & 1 & 1 \\ 0,43 & 0,50 & 1 & 1 & 0,67 \end{bmatrix}$$

• Proses perankingan dengan menggunakan bobot yang telah diberikan oleh pengambil keputusan:

$$W = [0,25 0,15 0,30 0,25 0,05]$$

Hasil yang diperoleh adalah sebagai berikut:

$$V_1 = (0,25)(1) + (0,15)(0,08) + (0,3)(0,67) + (0,25)(0,5) + (0,05)(1) = 0,638$$

$$V_2 = (0,25)(0,3) + (0,15)(1) + (0,3)(0,67) + (0,25)(0,33) + (0,05)(0,67) = 0,542$$

$$V_3 = (0,25)(0,75) + (0,15)(0,05) + (0,3)(1) + (0,25)(1) + (0,05)(1) = 0,795$$

$$V_4 = (0,25)(0,43) + (0,15)(0,5) + (0,3)(1) + (0,25)(1) + (0,05)(0,67) = 0,766$$

• Nilai terbesar ada pada V3 sehingga alternatif A3 adalah alternatif yang terpilih sebagai alternatif terbaik. Dengan kata lain, maintenance sarana teknologi informasi akan terpilih sebagai solusi untuk investasi sisa usaha

- clear; %untuk membersihkan jendela command windows
- x=[0.75 2000 18 50 500 0.50 1500 20 40 450 0.90 2050 35 35 800]; %nilai input untuk tiap-tiap kriteria k= [o 1 o 1 o]; %o= atribut biaya &1= atribut keuntungan w= [5 3 4 4 2]; %bobot untuk tiap-tiap kriteria [m n]=size (x); %matriks m x n dengan ukuran sebanyak variabel x (input) %tahapan 1. normalisasi matriks R=zeros (m,n); %membuat matriks R, yang merupakan matriks kosong Y=zeros (m,n); %membuat matriks Y, yang merupakan titik kosong for j=1:n, if k(j)==1, %statement untuk kriteria dengan atribut keuntungan R(:,j)=x(:,j)./max(x(:,j));else

```
R(:,j)=min(x(:,j))./x(:,j);
end;
end;
disp ('nilai iput x=')
disp (x)
disp ('bobot yang diberikan w=')
disp (w)
disp ('atribut tiap kriteria k=')
disp (k)
disp ('matriks yang sudah ternomalisasi R=')
disp(R)
%tahapan kedua, proses perangkingan
for i=1:m,
V(i) = sum(w.*R(i,:))
end;
```

TUGAS (dikumpulkan Besok Pagi Jam o8.oo Wita)

- Jika kriteria penerima beasiswa adalah sebagai berikut : C1: IPK, C2 : Kemahasiswaan (1 = buruk, 2 = sedang, 3 = baik, 4 = sangat baik), C3 : Keaktifan (1 = buruk, 2 = cukup, 3 = baik), C4 : penghasilan orang tua.
- Jika C4 adalah kriteria biaya dan yang lainnya adalah keuntungan, tentukan siapa yang menerima beasiswa dari 5 orang kandidat Corry, Ricky, Tia, Andre, dan Titus.

• Matriks keputusannya adalah sebagai berikut

Alternatif	Kriteria					
	C1	C ₂	C ₃	C ₄		
BUDI	2.98	3	3	3.3		
RICKY	3.13	4	2	2.4		
TIA	2.99	2	4	2.5		
CINDY	3.0	4	3	3		
TERRY	3.10	3	2	2.4		

• Kerjakan Manual dan dengan Matlab. Bagaimana hasilnya? Sama atau tidak? Silahkan Anda lakukan Analisis..

GOOD LUCK ^^

Thank You