🕏 Formule di "Dispositivi Elettronici" 🗧

- \rightarrow $\sigma = q(\mu_n \cdot n + \mu_p \cdot p)$, N.B. il contributo del portatore minoritario è spesso trascurabile
- $\rightarrow b$ $j_{\text{drift}} = \sigma E$, $v = \mu E$. \cancel{X} j densità corrente deriva, μ mobilità, v velocità delle cariche. \cancel{X} N.B. v non supera mai $\overline{v_{\text{th}}}$
- → Mobilità portatori (no p) $\mu_{n,p} = q\tau_m/m^*$. \bigstar τ_m tempo collisione medio, m^* massa efficace
- Tensione termica $V_T = kT/q$. \bigstar Energia termica: $E = \frac{l}{2}kT$. \bigstar v terimca $\overline{v_{\rm th}} = \sqrt{lkT/m^*}$, $l \in \{1, 2, 3\}$, gradi di libertà
- Concentrazione intrinseca $n_i(T) = n_i (300K) \cdot (T/300K)^{3/2} \cdot \exp\left(-\frac{E_g}{2k} \left(\frac{1}{T} \frac{1}{300K}\right)\right)$. $\bigstar n_i(T) = \sqrt{N_C N_V} \cdot \exp\left(-\frac{E_g}{2kT}\right)$
- Legge di azione di massa (valida solo all'equilibrio) $n \cdot p = n_i^2$. $\Re n(o p)$ concentrazione di elettroni (o lacune)
- → In caso di ionizzazione completa (ipotesi di default): Drogaggio $n \to n \simeq N_D$, Drogaggio $p \to p \simeq N_A$
- op Diffusione $D_n = V_T \cdot \mu_n$, $D_p = V_T \cdot \mu_p$. op D_n , D_p coefficiente di diffusione delle lacune, elettroni. $D_{n,p} = \overline{v_{
 m th}}^2 \cdot au_{n,p}$
- Fick: $\Phi = -D_{n,p} \cdot \partial N/\partial x$. \bigstar Corrente di diffusione $j_{\text{diff}} = \pm q\Phi$, N portatore (sostituire o n o p). $D_{n,p}$ diffusività portatore
- op Eq. continuità della carica: $\frac{\partial N}{\partial t} = G \frac{N N_0}{\tau_r} \pm \frac{1}{q} \frac{\partial j_N}{\partial x}$. op Con $G_n = G_p$ tasso generazione, $\frac{N N_0}{\tau_r} = R_N$, tasso ricombinazione
- $\Rightarrow j_N = j_{\text{drift}} + j_{\text{diff}} = |q| \, N \mu_N E \mp q D_N \tfrac{dN}{dx} \; . \; \not\!\!\!\! \times \; \tfrac{\partial N}{\partial t} = G \tfrac{N N_0}{\tau_r} \mp \mu_N \tfrac{\partial (N \cdot E)}{\partial x} + D_N \tfrac{\partial^2 N}{\partial x^2} \; . \; \not\!\!\!\! \times \; \text{Con} \mp \text{considerare} \; + \; \text{per elettronical decrease} \; .$
- Tensione di built-in $V_{\text{bi}} = V_T \cdot \ln \left(\frac{N_A \cdot N_D}{n_i^2} \right) = \phi_{F,p} \phi_{F,n}$. $\bigstar \phi_i = (V_{\text{bi}} + V_R) = F_{\text{max}} W/2$. \bigstar Con V_R Tensione inversa
- \longrightarrow Larghezza regione svuotata: $W = x_n + x_p = \sqrt{2\varepsilon_{\text{Si}}\phi_i/q\cdot\left(1/N_A + 1/N_D\right)}$. \cancel{X} Giunzione unilatera: $W \simeq \sqrt{2\varepsilon_{\text{Si}}\phi_i/q\cdot\left(1/N_{\text{min}}\right)}$
- Campo elettrico massimo: $F_{\text{max}} = \frac{2\phi_i}{W} = \sqrt{\frac{2q\phi_i \cdot N_A N_D}{\varepsilon_{\text{Si}} \cdot (N_A + N_D)}}$. Regione svuotata nelle zone: $x_p = \frac{\varepsilon_{\text{Si}} F_{\text{max}}}{qN_A}$, $x_n = \frac{\varepsilon_{\text{Si}} F_{\text{max}}}{qN_D}$.
- Lunghezza di diffusione: $L_n = \sqrt{D_n \tau_n}$, $L_p = \sqrt{D_p \tau_p}$, se $L_n, L_p \ll W_n, W_p$ (condizione di base corta, altrimenti base lunga)
- $\rightarrow \bullet \text{ Densità di minoritari (in zona } p, \text{ analogo per } n) : n\left(0\right) = n_0 e^{V/V_T} = n_i^2/N_A e^{V/V_T}, \, n'\left(0\right) = n_0 \cdot \left(e^{V/V_T} 1\right).$ $\overset{*}{\times}$ Per base lunga: $n(x) = n_0 + n'(0) \cdot e^{-x/L_n}$. \bigstar Per base corta $n(x) = n_0 + n'(0) \cdot (1 - x/W_p)$
- o Densità di corrente dei minoritari in zona p (analogo in zona n) $\mathcal{J}_n(x) = -q\Phi_n = qD_n\frac{\partial n}{\partial x}$. Φ_n flusso, applica Fick.
- → Densità di corrente di saturazione inversa nel diodo (alcuni termini potrebbero essere trascurabili): Usa W_n , W_p al posto di L_p , L_n se si verifica la condizine di base corta. $\bigstar J_s = q \cdot n_i^2 \left(\frac{D_p}{(L_p, W_n)N_D} + \frac{D_n}{(L_n, W_p)N_A} \right)$
- $\rightarrow \bullet$ Densità di corrente diretta nel diodo: $J(V) = J_s \cdot (e^{V/V_T} 1)$. $\bigstar V$ tensione diretta, $J = |\mathcal{J}_n(0)| + |\mathcal{J}_p(0)|$
- Corrente totale nel diodo: $I_S = J_S \cdot A \times I(V) = J(V) \cdot A = I_s \cdot (e^{V/V_T} 1) \times A$ area giunzione.
- Livelli di Fermi: \bigstar Tipo n: $\phi_F = -V_T \ln{(N_D/n_i)}$. \bigstar Tipo p: $\phi_F = V_T \ln{(N_A/n_i)}$. \bigstar $\phi_F = V_T \ln{(p/n_i)} = -V_T \ln{(n/n_i)}$
- o Differenza delle funzioni lavoro: $\phi_{\rm ms} = \Phi_G q\phi_F = \phi_m (\chi_{\rm Si} + E_{\rm gap}/2 + q\phi_F)$ \not \not ϕ_F livello di Fermi, $\chi_{\rm Si}$ affinità elettronica
- op Capacità ossido: $c'_{\text{ox}} = \varepsilon_{\text{ox}}/t_{\text{ox}}$ op tox spessore dell'ossido. op $c_{\text{ox}} = c'_{\text{ox}} \cdot W \cdot L$ op con W, L, larghezza e lunghezza del MOS
- Tensione di banda piatta: $V_{\rm FB} = \phi_{\rm ms} \frac{Q'_{\rm ox}}{c'_{\rm ox}} \not \otimes c'_{\rm ox}$ capacità ossido per superficie, $Q'_{\rm ox}$ carica sepolta nell'ossido per superficie
- Tensione di soglia: $V_{\rm th} = V_{\rm FB} + \Psi_S + Q'_d/c'_{ox}$, $\bigstar \Psi_S = 2\phi_F$, potenziale di superficie a soglia $(Q'_c = 0)$, vale sempre $\Psi_S \lesssim 2\phi_F$
- op Carica svuotata: $Q_d'(\Psi) = \sqrt{2\varepsilon_{\mathrm{Si}}qN_{A,D}\Psi_s}$ carica svuotata, $op \Psi_S$ potenziale di superficie, $Q_{\mathrm{d,max}}'(\Psi_{\mathrm{max}})$, con $\Psi_S \simeq 2\phi_F$
- Lunghezza svuotata: $W = Q'_d/qN_A$. \bigstar Concentrazione di carica svuotata: $qn'_d = Q'_d$, \bigstar con n'_d concentrazione di elettroni
- $\rightarrow \bullet \text{ Carica nel canale: } V_{\text{GS}} = V_C + V_{\text{th}} + \frac{Q_d'(\Psi + V_C) Q_d'(\Psi)}{c_{ox}'} + \frac{Q_c'}{c_{ox}'} \text{ & Effetto body: } \gamma = \frac{\sqrt{2\varepsilon_{\text{Si}} q N_{A,D}}}{c_{ox}'}, V_{\text{th,x}} = V_{\text{th}} + \gamma \left(\sqrt{V_{\text{SB}} + \Psi_S} \sqrt{\Psi_S}\right)$
- o Campi MOS: $F_{\Psi} = \frac{Q_c' + Q_d'}{\varepsilon_{\text{Si}}}, F_{\Psi^-} = \frac{Q_d'}{\varepsilon_{\text{Si}}}, F_{\text{ox}} = F_{\Psi} \frac{\varepsilon_{\text{Si}}}{\varepsilon_{\text{ox}}} + \frac{Q_{\text{ox}}'}{\varepsilon_{\text{ox}}}, F_{\Psi}$ campo sulla superificie, F_{Ψ^-} limite campo sotto la superficie
- Correnti n-MOSFET: $k = \frac{1}{2}\mu_n c'_{ox} \frac{W}{L}$. \bigstar Saturazione: $I_{D,\text{sat}} = k \cdot (V_{\text{GS}} V_{\text{th}})^2$. \bigstar Triodo: $I_D = k \cdot [2(V_{\text{GS}} V_{\text{th}}) V_{\text{DS}}] \cdot V_{\text{DS}}$
- o Conduttanza (G_{canale}), Resistenza (R_{canale}) MOSFET triodo: $G_{\text{canale}} = \frac{\partial I_D}{\partial V_{\text{DS}}} = 2k \cdot (V_{\text{GS}} V_{\text{th}} V_{\text{DS}}), R_{\text{canale}} = G_{\text{canale}}^{-1}$
- $\rightarrow \rightarrow$ Altre correnti MOSFET: $I_{DS} = qn'_cWv = Q'_cWv$. \bigstar Corrente massima trasportabile: $I_{DS,max} = (V_{GS} V_C V_{th})Wv_{sat}$
- Velocità media cariche nel canale: $v = \mu^{(V_{\rm GS} \overline{v_{\rm th}})}/L$. ** Tempo di attraversamento: $\tau = L^2/\mu(V_{\rm GS} \overline{v_{\rm th}}), v_{\rm sat} \approx \overline{v_{\rm th}}$
- Frequenza di taglio MOSFET: $f_t = 1/2\pi\tau$. ** Tempo risposta: $\tau = L/v$, $v \approx \frac{\mu F}{1+F/F_{\text{max}}}$, v velocità cariche

