# Multivariate Gaussians

Sinho Chewi

Spring 2017

University of California, Berkeley

$$Z_1, ..., Z_n$$
 are i.i.d.  $\mathcal{N}(0,1)$ .

 $Z_1, \ldots, Z_n$  are i.i.d.  $\mathcal{N}(0,1)$ . Density?

 $Z_1, \ldots, Z_n$  are i.i.d.  $\mathcal{N}(0,1)$ . Density?

$$f_Z(z) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}z_i^2\right) = \frac{1}{(2\pi)^{n/2}} \exp\left(-\frac{1}{2}z^\top z\right).$$

 $Z_1, \ldots, Z_n$  are i.i.d.  $\mathcal{N}(0,1)$ . Density?

$$f_Z(z) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}z_i^2\right) = \frac{1}{(2\pi)^{n/2}} \exp\left(-\frac{1}{2}z^\top z\right).$$

 $A \in \mathbb{R}^{n \times n}$  is an invertible matrix.

 $Z_1, \ldots, Z_n$  are i.i.d.  $\mathcal{N}(0,1)$ . Density?

$$f_Z(z) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}z_i^2\right) = \frac{1}{(2\pi)^{n/2}} \exp\left(-\frac{1}{2}z^\top z\right).$$

 $A \in \mathbb{R}^{n \times n}$  is an invertible matrix.

 $\mu \in \mathbb{R}^n$  is a vector of means.

 $Z_1, \ldots, Z_n$  are i.i.d.  $\mathcal{N}(0,1)$ . Density?

$$f_Z(z) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}z_i^2\right) = \frac{1}{(2\pi)^{n/2}} \exp\left(-\frac{1}{2}z^\top z\right).$$

 $A \in \mathbb{R}^{n \times n}$  is an invertible matrix.

 $\mu \in \mathbb{R}^n$  is a vector of means.

Change of variables:  $X = AZ + \mu$ .

 $Z_1, \ldots, Z_n$  are i.i.d.  $\mathcal{N}(0,1)$ . Density?

$$f_Z(z) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}z_i^2\right) = \frac{1}{(2\pi)^{n/2}} \exp\left(-\frac{1}{2}z^\top z\right).$$

 $A \in \mathbb{R}^{n \times n}$  is an invertible matrix.

 $\mu \in \mathbb{R}^n$  is a vector of means.

Change of variables:  $X = AZ + \mu$ .

$$f_X(x) dx = f_Z(z) dz.$$

 $Z_1, \ldots, Z_n$  are i.i.d.  $\mathcal{N}(0,1)$ . Density?

$$f_Z(z) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}z_i^2\right) = \frac{1}{(2\pi)^{n/2}} \exp\left(-\frac{1}{2}z^\top z\right).$$

 $A \in \mathbb{R}^{n \times n}$  is an invertible matrix.

 $\mu \in \mathbb{R}^n$  is a vector of means.

Change of variables:  $X = AZ + \mu$ .

$$f_X(x) dx = f_Z(z) dz.$$

Multivariate calculus: dx = det(A) dz.

 $Z_1, \ldots, Z_n$  are i.i.d.  $\mathcal{N}(0,1)$ . Density?

$$f_Z(z) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}z_i^2\right) = \frac{1}{(2\pi)^{n/2}} \exp\left(-\frac{1}{2}z^\top z\right).$$

 $A \in \mathbb{R}^{n \times n}$  is an invertible matrix.

 $\mu \in \mathbb{R}^n$  is a vector of means.

Change of variables:  $X = AZ + \mu$ .

$$f_X(x) dx = f_Z(z) dz.$$

Multivariate calculus: dx = det(A) dz.

$$f_X(x) = \frac{1}{\det(A)} f_Z(A^{-1}(x - \mu))$$

$$= \frac{1}{(2\pi)^{n/2} \det(A)} \exp\left(-\frac{1}{2}(x - \mu)^{\top} (A^{-1})^{\top} A^{-1}(x - \mu)\right).$$

$$f_X(x) = \frac{1}{(2\pi)^{n/2} \det(A)} \exp\left(-\frac{1}{2}(x-\mu)^{\top} (AA^{\top})^{-1} (x-\mu)\right).$$

$$f_X(x) = \frac{1}{(2\pi)^{n/2} \det(A)} \exp\left(-\frac{1}{2}(x-\mu)^{\top} (AA^{\top})^{-1} (x-\mu)\right).$$

Let  $\Sigma = AA^{\top}$ .

$$f_X(x) = \frac{1}{(2\pi)^{n/2} \det(A)} \exp\left(-\frac{1}{2}(x-\mu)^{\top} (AA^{\top})^{-1} (x-\mu)\right).$$

Let 
$$\Sigma = AA^{\top}$$
.  
 $det(A) = det(\Sigma)^{1/2}$ .

$$f_X(x) = \frac{1}{(2\pi)^{n/2} \det(A)} \exp\left(-\frac{1}{2}(x-\mu)^{\top} (AA^{\top})^{-1} (x-\mu)\right).$$

Let  $\Sigma = AA^{\top}$ .  $\det(A) = \det(\Sigma)^{1/2}$ .

$$f_X(x) = \frac{1}{(2\pi)^{n/2}(\det(\Sigma))^{1/2}} \exp\left(-\frac{1}{2}(x-\mu)^{\top}\Sigma^{-1}(x-\mu)\right).$$

$$f_X(x) = \frac{1}{(2\pi)^{n/2} \det(A)} \exp\left(-\frac{1}{2}(x-\mu)^\top (AA^\top)^{-1}(x-\mu)\right).$$

Let  $\Sigma = AA^{\top}$ .  $det(A) = det(\Sigma)^{1/2}$ .

$$f_X(x) = \frac{1}{(2\pi)^{n/2} (\det(\Sigma))^{1/2}} \exp\left(-\frac{1}{2}(x-\mu)^{\top} \Sigma^{-1}(x-\mu)\right).$$

We assumed A is invertible (non-degenerate case).

$$f_X(x) = \frac{1}{(2\pi)^{n/2} \det(A)} \exp\left(-\frac{1}{2}(x-\mu)^\top (AA^\top)^{-1}(x-\mu)\right).$$

Let  $\Sigma = AA^{\top}$ .  $det(A) = det(\Sigma)^{1/2}$ .

$$f_X(x) = \frac{1}{(2\pi)^{n/2} (\det(\Sigma))^{1/2}} \exp\left(-\frac{1}{2}(x-\mu)^{\top} \Sigma^{-1}(x-\mu)\right).$$

We assumed A is invertible (non-degenerate case).

 $\Sigma$  is the covariance matrix:  $\Sigma_{i,j} = \text{cov}(X_i, X_j)$ .

$$f_X(x) = \frac{1}{(2\pi)^{n/2} \det(A)} \exp\left(-\frac{1}{2}(x-\mu)^\top (AA^\top)^{-1}(x-\mu)\right).$$

Let  $\Sigma = AA^{\top}$ .  $det(A) = det(\Sigma)^{1/2}$ .

$$f_X(x) = \frac{1}{(2\pi)^{n/2} (\det(\Sigma))^{1/2}} \exp\left(-\frac{1}{2}(x-\mu)^{\top} \Sigma^{-1}(x-\mu)\right).$$

We assumed A is invertible (non-degenerate case).

$$\Sigma$$
 is the covariance matrix:  $\Sigma_{i,j} = \text{cov}(X_i, X_j)$ .  
**Proof**:  $\text{cov}((AZ)_i, (AZ)_j) = \text{cov}(\sum_{k=1}^n A_{i,k}Z_k, \sum_{l=1}^n A_{j,l}Z_l)$   
 $= \sum_{k=1}^n A_{i,k}A_{j,k} = (AA^\top)_{i,j}$ .

Linear combinations of jointly Gaussian random variables are jointly Gaussian.

Linear combinations of jointly Gaussian random variables are jointly Gaussian.

Write  $X = AZ + \mu$ .

Linear combinations of jointly Gaussian random variables are jointly Gaussian.

Write 
$$X = AZ + \mu$$
.

Then, 
$$BX = (BA)Z + B\mu$$
.

Linear combinations of jointly Gaussian random variables are jointly Gaussian.

```
Write X = AZ + \mu.
Then, BX = (BA)Z + B\mu.
\implies BX is jointly Gaussian.
```

Linear combinations of jointly Gaussian random variables are jointly Gaussian.

```
Write X = AZ + \mu.
```

Then, 
$$BX = (BA)Z + B\mu$$
.

 $\implies$  BX is jointly Gaussian.

Conversely, if any linear combination of  $X_1, ..., X_n$  is Gaussian, then  $X_1, ..., X_n$  are jointly Gaussian.

Linear combinations of jointly Gaussian random variables are jointly Gaussian.

```
Write X = AZ + \mu.
```

Then, 
$$BX = (BA)Z + B\mu$$
.

 $\implies$  BX is jointly Gaussian.

Conversely, if any linear combination of  $X_1, ..., X_n$  is Gaussian, then  $X_1, ..., X_n$  are jointly Gaussian.

**Example**: Let  $X \sim \mathcal{N}(0,1)$  and  $\Pr(Z = \pm 1) = 1/2$  be independent.

Linear combinations of jointly Gaussian random variables are jointly Gaussian.

Write  $X = AZ + \mu$ .

Then,  $BX = (BA)Z + B\mu$ .

 $\implies$  BX is jointly Gaussian.

Conversely, if any linear combination of  $X_1, ..., X_n$  is Gaussian, then  $X_1, ..., X_n$  are jointly Gaussian.

**Example**: Let  $X \sim \mathcal{N}(0,1)$  and  $\Pr(Z = \pm 1) = 1/2$  be independent.

X and Y = XZ are marginally Gaussian.

Linear combinations of jointly Gaussian random variables are jointly Gaussian.

Write  $X = AZ + \mu$ .

Then,  $BX = (BA)Z + B\mu$ .

 $\implies$  BX is jointly Gaussian.

Conversely, if any linear combination of  $X_1, ..., X_n$  is Gaussian, then  $X_1, ..., X_n$  are jointly Gaussian.

**Example**: Let  $X \sim \mathcal{N}(0,1)$  and  $\Pr(Z = \pm 1) = 1/2$  be independent.

X and Y = XZ are marginally Gaussian.

X and Y = XZ are not jointly Gaussian.

Linear combinations of jointly Gaussian random variables are jointly Gaussian.

Write  $X = AZ + \mu$ .

Then,  $BX = (BA)Z + B\mu$ .

 $\implies$  BX is jointly Gaussian.

Conversely, if any linear combination of  $X_1, \ldots, X_n$  is Gaussian, then  $X_1, \ldots, X_n$  are jointly Gaussian.

**Example**: Let  $X \sim \mathcal{N}(0,1)$  and  $\Pr(Z = \pm 1) = 1/2$  be independent.

X and Y = XZ are marginally Gaussian.

X and Y = XZ are not jointly Gaussian.

$$X - Y = (1 - Z)X.$$

Linear combinations of jointly Gaussian random variables are jointly Gaussian.

Write  $X = AZ + \mu$ .

Then,  $BX = (BA)Z + B\mu$ .

 $\implies$  BX is jointly Gaussian.

Conversely, if any linear combination of  $X_1, ..., X_n$  is Gaussian, then  $X_1, ..., X_n$  are jointly Gaussian.

**Example**: Let  $X \sim \mathcal{N}(0,1)$  and  $\Pr(Z = \pm 1) = 1/2$  be independent.

X and Y = XZ are marginally Gaussian.

X and Y = XZ are not jointly Gaussian.

$$X - Y = (1 - Z)X.$$

$$Pr(X - Y = 0) = 1/2.$$

### **Uncorrelated Random Variables**

Uncorrelated random variables are not necessarily independent.

### Uncorrelated Random Variables

Uncorrelated random variables are not necessarily independent.



If  $X_1, ..., X_n$  are uncorrelated, jointly Gaussian, they are independent.

If  $X_1, ..., X_n$  are uncorrelated, jointly Gaussian, they are independent.

uncorrelated  $\Longrightarrow \Sigma$  is diagonal

If  $X_1, ..., X_n$  are uncorrelated, jointly Gaussian, they are independent.

```
uncorrelated \Longrightarrow \Sigma is diagonal
Let \Sigma^{-1} = \text{diag}(\sigma_1^{-2}, \dots, \sigma_n^{-2}).
```

If  $X_1, ..., X_n$  are uncorrelated, jointly Gaussian, they are independent.

uncorrelated  $\Longrightarrow \Sigma$  is diagonal Let  $\Sigma^{-1} = \text{diag}(\sigma_1^{-2}, \dots, \sigma_n^{-2})$ .

$$f_X(x) = \frac{1}{(2\pi)^{n/2} (\det(\Sigma))^{1/2}} \exp\left(-\frac{1}{2}(x-\mu)^{\top} \Sigma^{-1}(x-\mu)\right)$$

If  $X_1, \ldots, X_n$  are uncorrelated, jointly Gaussian, they are independent.

uncorrelated  $\Longrightarrow \Sigma$  is diagonal Let  $\Sigma^{-1} = \text{diag}(\sigma_1^{-2}, \dots, \sigma_n^{-2})$ .

$$f_X(x) = \frac{1}{(2\pi)^{n/2} (\det(\Sigma))^{1/2}} \exp\left(-\frac{1}{2} (x - \mu)^{\top} \Sigma^{-1} (x - \mu)\right)$$
$$= \frac{1}{(2\pi)^{n/2} \sigma_1 \cdots \sigma_n} \exp\left(-\frac{1}{2} \sum_{i=1}^n \frac{1}{\sigma_i^2} (x_i - \mu_i)^2\right)$$

If  $X_1, ..., X_n$  are uncorrelated, jointly Gaussian, they are independent.

uncorrelated  $\Longrightarrow \Sigma$  is diagonal Let  $\Sigma^{-1} = \text{diag}(\sigma_1^{-2}, \dots, \sigma_n^{-2})$ .

$$f_X(x) = \frac{1}{(2\pi)^{n/2} (\det(\Sigma))^{1/2}} \exp\left(-\frac{1}{2} (x - \mu)^{\top} \Sigma^{-1} (x - \mu)\right)$$

$$= \frac{1}{(2\pi)^{n/2} \sigma_1 \cdots \sigma_n} \exp\left(-\frac{1}{2} \sum_{i=1}^n \frac{1}{\sigma_i^2} (x_i - \mu_i)^2\right)$$

$$= \prod_{i=1}^n \frac{1}{\sqrt{2\pi} \sigma_i} \exp\left(-\frac{1}{2\sigma_i^2} (x_i - \mu_i)^2\right).$$

If  $X_1, ..., X_n$  are uncorrelated, jointly Gaussian, they are independent.

uncorrelated  $\Longrightarrow \Sigma$  is diagonal Let  $\Sigma^{-1} = \text{diag}(\sigma_1^{-2}, \dots, \sigma_n^{-2})$ .

$$f_X(x) = \frac{1}{(2\pi)^{n/2} (\det(\Sigma))^{1/2}} \exp\left(-\frac{1}{2} (x - \mu)^{\top} \Sigma^{-1} (x - \mu)\right)$$

$$= \frac{1}{(2\pi)^{n/2} \sigma_1 \cdots \sigma_n} \exp\left(-\frac{1}{2} \sum_{i=1}^n \frac{1}{\sigma_i^2} (x_i - \mu_i)^2\right)$$

$$= \prod_{i=1}^n \frac{1}{\sqrt{2\pi} \sigma_i} \exp\left(-\frac{1}{2\sigma_i^2} (x_i - \mu_i)^2\right).$$

#### **Uncorrelated Gaussians**

If  $X_1, \ldots, X_n$  are uncorrelated, jointly Gaussian, they are independent.

uncorrelated  $\Longrightarrow \Sigma$  is diagonal Let  $\Sigma^{-1} = \text{diag}(\sigma_1^{-2}, \dots, \sigma_n^{-2})$ .

$$f_X(x) = \frac{1}{(2\pi)^{n/2} (\det(\Sigma))^{1/2}} \exp\left(-\frac{1}{2}(x-\mu)^{\top} \Sigma^{-1}(x-\mu)\right)$$

$$= \frac{1}{(2\pi)^{n/2} \sigma_1 \cdots \sigma_n} \exp\left(-\frac{1}{2} \sum_{i=1}^n \frac{1}{\sigma_i^2} (x_i - \mu_i)^2\right)$$

$$= \prod_{i=1}^n \frac{1}{\sqrt{2\pi} \sigma_i} \exp\left(-\frac{1}{2\sigma_i^2} (x_i - \mu_i)^2\right).$$

Joint density factors into product of marginal densities.

$$\Pr(X \in A, \phi(Y) \in B) = \Pr(X \in A, Y \in \phi^{-1}(B))$$

$$Pr(X \in A, \phi(Y) \in B) = Pr(X \in A, Y \in \phi^{-1}(B))$$
$$= Pr(X \in A) Pr(Y \in \phi^{-1}(B))$$

$$Pr(X \in A, \phi(Y) \in B) = Pr(X \in A, Y \in \phi^{-1}(B))$$
$$= Pr(X \in A) Pr(Y \in \phi^{-1}(B))$$
$$= Pr(X \in A) Pr(\phi(Y) \in B).$$

$$Pr(X \in A, \phi(Y) \in B) = Pr(X \in A, Y \in \phi^{-1}(B))$$
$$= Pr(X \in A) Pr(Y \in \phi^{-1}(B))$$
$$= Pr(X \in A) Pr(\phi(Y) \in B).$$

If X and Y are independent, then so are X and  $\phi(Y)$ . **Proof**:

$$Pr(X \in A, \phi(Y) \in B) = Pr(X \in A, Y \in \phi^{-1}(B))$$
$$= Pr(X \in A) Pr(Y \in \phi^{-1}(B))$$
$$= Pr(X \in A) Pr(\phi(Y) \in B).$$

Also recall:

If X and Y are independent, zero-mean, they are orthogonal.

If X and Y are independent, then so are X and  $\phi(Y)$ . **Proof**:

$$Pr(X \in A, \phi(Y) \in B) = Pr(X \in A, Y \in \phi^{-1}(B))$$
$$= Pr(X \in A) Pr(Y \in \phi^{-1}(B))$$
$$= Pr(X \in A) Pr(\phi(Y) \in B).$$

#### Also recall:

If X and Y are independent, zero-mean, they are orthogonal.

 $Y - L[Y \mid X]$  is orthogonal to any linear function of X.

If X and Y are independent, then so are X and  $\phi(Y)$ . **Proof**:

$$Pr(X \in A, \phi(Y) \in B) = Pr(X \in A, Y \in \phi^{-1}(B))$$
$$= Pr(X \in A) Pr(Y \in \phi^{-1}(B))$$
$$= Pr(X \in A) Pr(\phi(Y) \in B).$$

#### Also recall:

If X and Y are independent, zero-mean, they are orthogonal.

 $Y - L[Y \mid X]$  is orthogonal to any linear function of X.

 $Y - E[Y \mid X]$  is orthogonal to any function of x.

If X and Y are independent, then so are X and  $\phi(Y)$ . **Proof**:

$$Pr(X \in A, \phi(Y) \in B) = Pr(X \in A, Y \in \phi^{-1}(B))$$
$$= Pr(X \in A) Pr(Y \in \phi^{-1}(B))$$
$$= Pr(X \in A) Pr(\phi(Y) \in B).$$

#### Also recall:

If X and Y are independent, zero-mean, they are orthogonal.

 $Y - L[Y \mid X]$  is orthogonal to any linear function of X.

 $Y - E[Y \mid X]$  is orthogonal to any function of x.

For jointly Gaussian X and Y,  $L[Y \mid X]$  is Gaussian.

For jointly Gaussian X, Y, the LLSE and the MMSE coincide.

For jointly Gaussian X, Y, the LLSE and the MMSE coincide.

 $Y - L[Y \mid X]$  and X are orthogonal.

For jointly Gaussian X, Y, the LLSE and the MMSE coincide.

 $Y - L[Y \mid X]$  and X are orthogonal.

 $Y - L[Y \mid X]$  and X are uncorrelated.

For jointly Gaussian X, Y, the LLSE and the MMSE coincide.

 $Y - L[Y \mid X]$  and X are orthogonal.

 $Y - L[Y \mid X]$  and X are uncorrelated.

 $Y - L[Y \mid X]$  and X are independent.

#### For jointly Gaussian X, Y, the LLSE and the MMSE coincide.

 $Y - L[Y \mid X]$  and X are orthogonal.

 $Y - L[Y \mid X]$  and X are uncorrelated.

 $Y - L[Y \mid X]$  and X are independent.

 $Y - L[Y \mid X]$  and  $\phi(X)$  are independent.

#### For jointly Gaussian X, Y, the LLSE and the MMSE coincide.

- $Y L[Y \mid X]$  and X are orthogonal.
- $Y L[Y \mid X]$  and X are uncorrelated.
- $Y L[Y \mid X]$  and X are independent.
- $Y L[Y \mid X]$  and  $\phi(X)$  are independent.
- $Y L[Y \mid X]$  and  $\phi(X)$  are orthogonal.

#### For jointly Gaussian X, Y, the LLSE and the MMSE coincide.

 $Y - L[Y \mid X]$  and X are orthogonal.

 $Y - L[Y \mid X]$  and X are uncorrelated.

 $Y - L[Y \mid X]$  and X are independent.

 $Y - L[Y \mid X]$  and  $\phi(X)$  are independent.

 $Y - L[Y \mid X]$  and  $\phi(X)$  are orthogonal.

 $\implies$  Y - L[Y | X] is orthogonal to any  $\phi(X)$ , so

#### For jointly Gaussian X, Y, the LLSE and the MMSE coincide.

 $Y - L[Y \mid X]$  and X are orthogonal.

 $Y - L[Y \mid X]$  and X are uncorrelated.

 $Y - L[Y \mid X]$  and X are independent.

 $Y - L[Y \mid X]$  and  $\phi(X)$  are independent.

 $Y - L[Y \mid X]$  and  $\phi(X)$  are orthogonal.

 $\implies$   $Y - L[Y \mid X]$  is orthogonal to any  $\phi(X)$ , so  $L[Y \mid X] = E[Y \mid X]$ .

#### Visualization

$$X \sim \mathcal{N}\left(\begin{bmatrix} -1\\2 \end{bmatrix}, \begin{bmatrix} 2 & 1\\1 & 3 \end{bmatrix}\right).$$



# Eigenvectors of $\Sigma$ :

$$\lambda_1 = 3.62, \qquad v_1 = \begin{bmatrix} 0.526 \\ 0.851 \end{bmatrix}$$

$$\lambda_2 = 1.38, \qquad v_2 = \begin{bmatrix} -0.851\\ 0.525 \end{bmatrix}$$