Севастопольский государственный университет Кафедра «Информационные системы»

Управление данными курс лекций

лектор:

ст. преподаватель кафедры ИС Абрамович А.Ю.

Лекция 5 РЕЛЯЦИОННАЯ МОДЕЛЬ ДАННЫХ

Реляционная Алгебра

Реляционная модель данных предложена сотрудником фирмы IBM Эдгаром Коддом и основывается на понятии отношение (relation).

Реляционная модель данных представляет собой **совокупность данных, содержащихся в двухмерных таблицах,** соединённых между собой отношениями. Любые данные можно преобразовать в простую таблицу. **Такое представление является наиболее удобным и для пользователя, для и машины.**

РЕЛЯЦИОННАЯ МОДЕЛЬ ДАННЫХ

РЕЛЯЦИОННАЯ МОДЕЛЬ СОСТОИТ ИЗ ТРЕХ ЧАСТЕЙ:

Структурная часть

• описывает, какие объекты рассматриваются реляционной моделью.

Целостная часть

• описывает ограничения специального вида, которые должны выполняться для любых отношений в любых реляционных базах данных. Это целостность сущностей и целостность внешних ключей.

Манипуляционная часть

• описывает два эквивалентных способа манипулирования реляционными данными - реляционную алгебру и реляционное исчисление.

Единственные **структуры данных, используемые в реляционной модели**, являются нормализованные **n-арные отношения**.

РЕЛЯЦИОННАЯ АЛГЕБРА ИЛИ РЕЛЯЦИОННОЕ ИСЧИСЛЕНИЕ

Выражения реляционной алгебры строятся на основе алгебраических операций (высокого уровня), и подобно тому, как интерпретируются арифметические и логические выражения, выражение реляционной алгебры также имеет процедурную интерпретацию.

Теоретико-множественные операции

- объединение 🔾
- вычитание (разность)
- пересечение \cap
- декартово произведение ×

Специальные реляционные операции

- проекция π
- выборка (селекция) **σ**
- соединение ><
- деление /

Операции объединения, пересечения и разности требуют от операндов совместимости по типу.

Два отношения совместимы по типу, если:

- 1. каждое из них имеет одно и то же множество имен атрибутов (одна и та же степень),
- 2. соответствующие атрибуты (с одинаковыми именами) определены на одном и том же домене.

Проекция (project)

Проекция является операцией, при которой из отношения выделяются атрибуты только из указанных доменов, то есть **из таблицы выбираются только нужные столбцы**, при этом, если получится несколько одинаковых кортежей, то в результирующем отношении остается только по одному экземпляру подобного кортежа.

Отношение А

COMPANY	PRODUCT	DRIVERS
ООО «Темная сторона»	Печеньки	Петр
ООО «Темная сторона»	Чай	Петр
ОАО «Овощи»	Огурцы	Олег
000 «Молочко»	Йогурт	Иван

Проекция $\mathcal{\pi}_{\text{COMPANY,DRIVERS}}(A)$

COMPANY	DRIVERS
ООО «Темная сторона»	Петр
ОАО «Овощи»	Олег
ООО «Молочко»	Иван

Селекция (select)

Селекция — это операция, которая **выделяет множество строк в таблице, удовлетворяющих заданным условиям.** Условием может быть любое логическое выражение.

Отношение А

COMPANY	DRIVERS
ООО «Темная сторона»	Петр
ОАО «Овощи»	Петр
ООО «Молочко»	Иван

Селекция $\sigma_{\text{DRIVERS='}\Pi\text{etp'}}$ (A)

COMPANY	DRIVERS
ООО «Темная сторона»	Петр
ОАО «Овощи»	Петр

Соединение (JOIN)

Эта операция определяет подмножество декартова произведения двух разносхемных отношений. Кортеж декартова произведения входит в результирующее отношение, если для атрибутов разных исходных отношений выполняется некоторое условие соединения *F*. Соединение может быть выражено следующим образом:

$$R \triangleright \triangleleft_{F} S = \sigma_{F} (R \times S).$$

Соединение имеет две разновидности: естественное соединение и соединение по условию (0 - соединение).

Естественным соединением отношений **A**(**X**,**Y**) и **B**(**Y**,**T**) (**A JOIN B**) называется отношение с заголовком {**X**, **Y**, **T**} и с телом, содержащим множество всех кортежей вида **<X**:**x**, **Y**:**y**, **T**:**t**> таких, для которых в отношении **A** значение атрибута **X** равно **x**, а значение атрибута **Y** равно **y**, и в отношении **B** значение атрибута **Y** равно **y**, а атрибута **T** равно **t**. **При естественном соединении производится сцепление строк операндов соединения по общим атрибутам.**

SELLERS

ID	COMPANY
234	ООО «Темная сторона»
124	ОАО «Овощи»
188	000 «Молочко»

PRODUCTS

ID	NAME	COMPANY	PRICE
23	Печеньки	ООО «Темная сторона»	90
12	Молоко	000 «Молочко»	220
18	Огурцы	ОАО «Овощи»	108

SELLERS ▷

SELLERS.ID	COMPANY	PRODUCTS.ID	NAME	COMPANY	PRICE
234	ООО «Темная сторона»	23	Печеньки	ООО «Темная сторона»	90
124	ОАО «Овощи»	18	Огурцы	ОАО «Овощи»	108
188	000 «Молочко»	12	Молоко	ООО «Молочко»	220

Замечание 1. Соединения не всегда выполняются по внешнему ключу и соответствующему потенциальному ключу, хотя такие соединения очень распространены и являются важным частным случаем.

Замечание 2. Если отношения **A** и **B** не имеют общих атрибутов, то выражение **A JOIN B** эквивалентно **A** ×**B**.

 θ - соединение — это отношение с тем же заголовком, что и при декартовом произведении отношений **A** и **B**, и с телом, содержащим множество кортежей **t** \in **A**×**B**, таких что вычисление условия **X** $\triangleright \triangleleft$ **Y** дает значение истина для данного кортежа.

Атрибуты X и Y должны быть определены на одном и том же домене, а оператор должен иметь смысл для этого домена.

SELLERS

ID	COMPANY
234	ООО «Темная сторона»
124	ОАО «Овощи»
188	ООО «Молочко»

PRODUCTS

ID	NAME	PRICE
23	Печеньки	90
12	Молоко	220
18	Огурцы	108

SELLERS $\triangleright \triangleleft$ **PRODUCTS** $\sigma_{PRICE>100}(Products)$

SELLERS.ID	COMPANY	PRODUCTS.ID	NAME	COMPANY	PRICE
124	ОАО «Овощи»	18	Огурцы	ОАО «Овощи»	108
188	000 «Молочко»	12	Молоко	000 «Молочко»	220

Операция θ -соединение эквивалентна двум операциям: нахождению расширенного декартова произведения двух отношений (при необходимости с переименованием соответствующих атрибутов) и последующему выполнению указанной выборки из полученного результата.

Дана реляционная база данных:

Рейс (№ рейса, пункт_отправления, пункт_назначения, время_вылета, стоимость); Полет (дата полета, № рейса, код_экипажа, свободные_места, тип_самолета, объем_груза); Самолет (тип_самолета, число_экипажа, количество_мест, вес_груза);

Форма представления запроса на РА:

R= $\pi_{\text{столбцы, которые}}$ (наименование выбираются отношения)

Определить число свободных мест по всем рейсам на 20.06.22.

R = π №рейса, свободные_места (*о*дата = 20.06.22.(Полет))

Определить рейсы и время вылета из Симферополя в Москву.

R = π №рейса, время_вылета (*о* пункт_отправления = « Симферополь » ∧ пункт_назначения = « Москва » (Рейс))

Определить даты рейсов Москва – Калининград.

R = π дата, номер_рейса (σпункт_отправления = « Москва » линкт_назначения = «Калининград» (Рейс ▷ Лолет))

Объединение (UNION)

Объединением двух совместимых по типу отношений **A и B (A U B)** называется отношение с тем же заголовком, как в отношениях **A** и **B**, и с телом, состоящим из множества кортежей **t**, принадлежащих **A** или **B** или обоим отношениям.

Α

ID_NUM	NAME	CITY	AGE
1809	Петров	Москва	43
1996	Иванов	Рязань	23
1777	Сидоров	Тверь	42

$A \cup B$

ID_NUM	NAME	CITY	AGE
1809	Петров	Москва	43
1996	Иванов	Рязань	23
1777	Сидоров	Тверь	42
1744	Липко	Сочи	22

E

ID_NUM	NAME	CITY	AGE
1809	Петров	Москва	43
1744	Липко	Сочи	22

Пересечение (intersect)

Пересечением двух совместимых по типу отношений **A и B (A ∩ B)** называется отношение с тем же заголовком, как в отношениях **A** и **B**, и с телом, состоящим из множества кортежей **t**, принадлежащих одновременно обоим отношениям **A** и **B**.

Α

В

ID_NUM	NAME	CITY	AGE
1809	Петров	Москва	43
1996	Иванов	Рязань	23
1777	Сидоров	Тверь	42

$A \cap B$

ID_NUM	NAME	CITY	AGE
1809	Петров	Москва	43

ID NUM NAME CITY AGE

1809 Петров Москва 43 1744 Липко Сочи 22 Создает отношение, включающее все кортежи, входящие в оба отношения-операнда.

Разность (except)

Разностью двух совместимых по типу отношений **A и B (A – B)** называется отношение с тем же заголовком, как в отношениях **A и B**, и с телом, состоящим из множества кортежей **t**, принадлежащих отношению **B**.

Α

ID_NUM	NAME	CITY	AGE	
1809	Петров	Москва	43	
1996	Иванов	Рязань	23	_
1777	Сидоров	Тверь	42	

A - **B**

ID_NUM	NAME	CITY	AGE
1996	Иванов	Рязань	23
1777	Сидоров	Тверь	42

B

ID_NUM	NAME	CITY	AGE
1809	Петров	Москва	43
1744	Липко	Сочи	22

Все кортежи, входящие в первое отношение, такие, что ни один из них не входит во второе отношение.

Декартово произведение (cartesian product)

Декартово произведение двух отношений **A и B (A × B)**, где **A** и **B** не имеют общих имен атрибутов, определяется как отношение с заголовком, представляющим собой сцепление двух заголовков исходных отношений **A** и **B**, и телом, состоящим из множества кортежей **t** таких что первым является любой кортеж отношения **A**, а вторым – любой кортеж, принадлежащий отношению **B**.

SELLERS

ID	COMPANY
234	ООО «Темная сторона»
124	ОАО «Овощи»
188	000 «Молочко»

PRODUCTS

ID	NAME	PRICE
234	Печеньки	90
188	Молоко	220
140	Чай	120
124	Огурцы	108

SELLERS × **PRODUCTS**

SELLERS.ID	COMPANY	PRODUCTS.ID	NAME	PRICE
234	ООО «Темная сторона»	234	Печеньки	90
234	ООО «Темная сторона»	188	Молоко	220
188	ООО «Молочко»	234	Печеньки	90
188	000 «Молочко»	188	Молоко	220

Дана реляционная база данных:

```
Рейс (№ рейса, пункт_отправления, пункт_назначения, время_вылета, стоимость); Полет (дата полета, № рейса, код_экипажа, свободные_места, тип_самолета, объем_груза); Самолет (тип_самолета, число_экипажа, количество_мест, вес_груза);
```

```
Определить типы самолетов , которые использовались как в январе, так и в феврале 2021 года. R1=\pi ТИП_самолета (\sigmaдата > =01.01.21 \wedge дата <=31.01.21(Полет )); R2=\pi ТИП_самолета (\sigma дата >= 01.02.21 \wedge дата < 29.02.21(Полет )); R=R1\cap R2
```

```
Определить номера рейсов, которые не производились с даты А по дату Б. R1 = \pi N _{perca} (Peйc); R2 = \pi N _{perca} (\sigma \text{ дата >A } \land \text{ дата <B( Полет ))}; R = R1 - R2;
```

Деление (division)

Делением отношений **A**(**X**,**Y**) на **B**(**Y**) (**A**/**B**) называется отношение с заголовком {**X**} и телом, содержащим множество всех кортежей {**X**:**x**}, таких что существует кортеж {**X**:**x**, **Y**:**y**}, который принадлежит отношению **A** для всех кортежей {**Y**:**y**}, принадлежащих отношению **B**.

Отношение А

S	Р
S1	P1
S1	P2
S1	Р3
S1	P4
S2	P1
S2	Р3
S3	P2
S3	Р3

Отношение В

Отношение В1

Отношение В2

Р	
P1	

ОПЕРАЦИЯ ДЕЛЕНИЯ ПОЛЕЗНА ТОГДА, КОГДА ЗАПРОС СОДЕРЖИТ СЛОВО «ВСЕ».

A/B

S	
S1	
S2	

A/B1

S	
S1	
S3	

A/B2

Дана реляционная база данных:

```
Рейс (№ рейса, пункт_отправления, пункт_назначения, время_вылета, стоимость); Полет (дата полета, № рейса, код_экипажа, свободные_места, тип_самолета, объем_груза); Самолет (тип_самолета, число_экипажа, количество_мест, вес_груза);
```

Определить дату, когда осуществляют рейсы все возможные типы самолетов.

```
R1 = \piдата_полета, тип_самолета (Полет);
```

 $R2 = \pi$ тип_самолета (Самолет);

R = R1/R2

Определить типы самолетов, осуществляющие рейсы из Москвы по всем возможным направлениям.

```
R1 = πтип_самолета, пункт_назначения ((σпункт_отправления = 'Москва' (Рейс ▷◁ Полет) );
```

 $R2 = \pi$ пункт_назначения(Рейс);

R = R1/R2

ВСПОМОГАТЕЛЬНЫЕ ОПЕРАЦИИ РЕЛЯЦИОННОЙ АЛГЕБРЫ

Переименование (rename)

Операция переименования производит отношение, тело которого совпадает с телом операнда, но имена атрибутов изменены.

Присваивание (:=)

Операция присваивания позволяет сохранить результат вычисления реляционного выражения в существующем отношении БД.

В построении реляционного выражения могут участвовать все реляционные операции, кроме операции присваивания.