Esame di Ricerca Operativa del 12/06/18

(Cognome)	(Nome)	(Numero di Matricola)
Esercizio 1. Effettuare due iterazioni dell'al	goritmo del simplesso duale:	

	min $2 y_1 + 2 y_2 + 6 y_3 + 12 y_4 + 4 y_5 + 5 y_6$
J	$ \min 2 y_1 + 2 y_2 + 6 y_3 + 12 y_4 + 4 y_5 + 5 y_6 -2 y_1 - 2 y_2 - y_3 + 3 y_4 + y_5 = 7 y_1 - 3 y_2 + 3 y_2 + y_4 - y_5 + y_6 = 4 $
)	$y_1 - 3y_2 + 3y_3 + y_4 - y_5 + y_6 = 4$

	Base	x	Degenere?	y	Indice uscente	Rapporti	Indice entrante
1° passo	{5,6}						
2° passo							

Esercizio 2. Un'azienda produce 4 tipi di smartphone (S1, S2, S3 e S4) ed è divisa in 2 stabilimenti (A e B). L'azienda dispone di 40 tecnici in A e 50 in B ognuno dei quali lavora 7 ore al giorno per 5 giorni alla settimana. Le ore necessarie per produrre gli smartphone e le richieste minime da soddisfare sono indicate nella seguente tabella:

Smartphone	S1	S2	S3	S4
Stabilimento A	1.2	1.5	1.7	2
Stabilimento B	1.5	1.6	1.8	2.2
Richiesta	200	140	120	80

Sapendo che i 4 tipi di smartphone vengono venduti rispettivamente a 400, 600, 1000, e 1500 euro, l'azienda vuole determinare quanti smartphone di ogni tipo produrre nei due stabilimenti in modo da massimizzare il profitto.

variabili decisionali:	
modello:	
COMANDI DI MATLAR	
COMANDIDIMATLAR	

c=	intcon=
A=	b=
Aeq=	beq=
lb=	ub=

Esercizio 3. Effettuare due iterazioni dell'algoritmo del simplesso sulla seguente rete (su ogni arco sono indicati, nell'ordine, il costo e la capacità).

	1° iterazione	2° iterazione
Archi di T	(1,2) (1,4) (3,5) (4,6) (5,7) (6,7)	
Archi di U	(2,4)	
x		
degenere?		
π		
degenere?		
Arco entrante		
ϑ^+,ϑ^-		
Arco uscente		

Esercizio 4. Si consideri il seguente problema di programmazione lineare intera:

$$\begin{cases} \max 7 x_1 + 14 x_2 \\ 11 x_1 + 6 x_2 \le 46 \\ 7 x_1 + 9 x_2 \le 50 \\ x_1 \ge 0 \\ x_2 \ge 0 \\ x_1, x_2 \in \mathbb{Z} \end{cases}$$

a) Calcolare una valutazione superiore del valore ottimo.

sol. ottima del rilassamento = $v_S(P) =$

b) Calcolare una valutazione inferiore del valore ottimo.

sol. ammissibile = $v_I(P)$ =

c) Calcolare un taglio di Gomory.

r = taglio:

Esercizio 5. a) Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.

	ite	r 1	ite	r 2	ite	r 3	ite	r 4	ite	r 5	ite	r 6	ite	r 7
	π	p												
nodo visitato														
nodo 2														
nodo 3														
nodo 4														
nodo 5														
nodo 6														
nodo 7														
insieme Q														

b) Applicare l'algoritmo FFEK per trovare il flusso massimo tra il nodo 1 ed il nodo 7 sulla seguente rete.

cammino aumentante	δ	x	v

Esercizio 6. Si consideri il problema di trovare il ciclo hamiltoniano di costo minimo su una rete di 5 città, le cui distanze reciproche sono indicate in tabella:

città	2	3	4	5
1	29	24	28	47
2		18	94	61
3			53	26
4				20

a) Trovare una valutazione inferiore del valore ottimo calcolando il 2-albero di costo minimo.

2-albero:	$v_I(P) =$
b) Trovare una valutazione superiore applicando l'algoritmo del nodo più	vicino a partire dal nodo 4.
ciclo:	$v_S(P) =$

c) Applicare il metodo del Branch and Bound, utilizzando il 2-albero di costo minimo come rilassamento di ogni sottoproblema ed istanziando, nell'ordine, le variabili x_{14} , x_{24} , x_{45} . Dire se l'algoritmo é terminato.

Esercizio 7. Trovare massimi e minimi della funzione $f(x_1, x_2) = x_1^2 + x_2^2 + 10x_1$ sull'insieme

$${x \in \mathbb{R}^2 : x_2^2 + 8x_2 + 15 \le 0, \quad x_1^2 + 8x_1 + 15 \le 0}.$$

Soluzioni del sis	Soluzioni del sistema LKT		Massimo		Minimo		Sella
x	λ	μ	globale	locale	globale	locale	
(-5, -3)							
(-3, -3)							
(-5, -5)							
(-3, -5)							

Esercizio 8. Si consideri il seguente problema:

2-albero:

$$\left\{ \begin{array}{l} \min \ 6 \ x_1^2 - 4 \ x_1 \, x_2 - 2 \ x_2^2 + 5 \ x_1 - 2 \ x_2 \\ x \in P \end{array} \right.$$

e i vertici di P sono (1,5), (5,0), (-3,5) e (-1,0). Fare un passo del metodo del gradiente proiettato.

Punto	Matrice M	Matrice H	Direzione	Max spostamento possibile	Passo	Nuovo punto
$\left(-\frac{5}{3},5\right)$						

SOLUZIONI

Esercizio 1. Effettuare due iterazioni dell'algoritmo del simplesso duale .

	Base	x	y	Indice	Rapporti	Indice
				entrante		uscente
1° iterazione	{5, 6}	(9, 5) (SI)	(0, 0, 0, 0, 7, 11)	4	$\frac{7}{3}, \frac{11}{4}$	5
2° iterazione	{4, 6}	$\left(\frac{7}{3}, 5\right)$ (NO)	$\left(0,\ 0,\ 0,\ \frac{7}{3},\ 0,\ \frac{5}{3}\right)$	3	$\frac{1}{2}$	6

Esercizio 2. variabili decisionali: x_{ij} = numero di smartphone di tipo i prodotti nello stabilimento j, con i = 1, 2, 3, 4 e j = A, B.

modello:

$$\begin{cases} \max 400 \left(x_{1A} + x_{1B}\right) + 600 \left(x_{2A} + x_{2B}\right) + 1000 \left(x_{3A} + x_{3B}\right) + 1500 \left(x_{4A} + x_{4B}\right) \\ 1.2 \, x_{1A} + 1.5 \, x_{2A} + 1.7 \, x_{3A} + 2 \, x_{4A} \le 1400 \\ 1.5 \, x_{1B} + 1.6 \, x_{2B} + 1.8 \, x_{3B} + 2.2 \, x_{4B} \le 1750 \\ x_{1A} + x_{1B} \ge 200 \\ x_{2A} + x_{2B} \ge 140 \\ x_{3A} + x_{3B} \ge 120 \\ x_{4A} + x_{4B} \ge 80 \\ x_{ij} \ge 0 \\ x_{ij} \in \mathbb{Z} \end{cases}$$

Esercizio 3.

	1° iterazione	2° iterazione
Archi di T	(1,2) (1,4) (3,5) (4,6) (5,7) (6,7)	(1,2) (1,3) (1,4) (4,6) (5,7) (6,7)
Archi di U	(2,4)	(2,4) (3,5)
x	(0, 0, 7, 4, 4, 0, 8, 0, 0, 0, 4) (SI)	(0, 1, 6, 4, 5, 0, 7, 0, 1, 0, 3) (SI)
π	(0, 3, 17, 10, 23, 20, 26) (SI)	(0, 3, 10, 10, 23, 20, 26) (SI)
Arco entrante	(1,3)	(2,4)
ϑ^+,ϑ^-	$1\;,4$	2,0
Arco uscente	(3,5)	(1,2)

Esercizio 4. Si consideri il seguente problema di programmazione lineare intera:

$$\begin{cases} \max & 7 \ x_1 + 14 \ x_2 \\ 11 \ x_1 + 6 \ x_2 \le 46 \\ 7 \ x_1 + 9 \ x_2 \le 50 \\ x_1 \ge 0 \\ x_2 \ge 0 \\ x_1, x_2 \in \mathbb{Z} \end{cases}$$

a) Calcolare una valutazione superiore del valore ottimo.

sol. ottima del rilassamento = $\left(0, \frac{50}{9}\right)$ $v_S(P) = 77$

b) Calcolare una valutazione inferiore del valore ottimo.

sol. ammissibile = (0,5)

c) Calcolare un taglio di Gomory.

$$\begin{vmatrix} r = 2 \\ r = 3 \end{vmatrix} \qquad x_2 \le 5 \\ 2x_1 + 3x_2 \le 16$$

Esercizio 5. a) Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.

	iter 1		iter	· 2	iter	. 3	iter	4	ite	r 5	ite	r 6	ite	r 7
	π	p	π	p	π	p	π	p	π	p	π	p	π	p
nodo visitato	1		3		2		5		4	Į.	7	7	6	;
nodo 2	16	1	16	1	16	1	16	1	16	1	16	1	16	1
nodo 3	11	1	11	1	11	1	11	1	11	1	11	1	11	1
nodo 4	$+\infty$	-1	$+\infty$	-1	26	2	22	5	22	5	22	5	22	5
nodo 5	$+\infty$	-1	16	3	16	3	16	3	16	3	16	3	16	3
nodo 6	$+\infty$	-1	$+\infty$	-1	$+\infty$	-1	$+\infty$	-1	34	4	33	7	33	7
nodo 7	$+\infty$	-1	$+\infty$	-1	$+\infty$	-1	27	5	27	5	27	5	27	5
$\stackrel{\text{insieme}}{Q}$	2,	3	2,	5	4,	5	4,	7	6,	7	(3	Q)

b) Applicare l'algoritmo di Ford-Fulkerson (con la procedura di Edmonds-Karp per la ricerca del cammino aumentante) per trovare il flusso massimo tra il nodo 1 ed il nodo 7 sulla seguente rete.

cammino aumentante	δ	x	v
1 - 2 - 5 - 7	6	(6, 0, 0, 6, 0, 0, 0, 0, 6, 0, 0)	6
1 - 3 - 5 - 7	5	(6, 5, 0, 6, 0, 5, 0, 0, 11, 0, 0)	11
1 - 2 - 4 - 6 - 5 - 7	5	(11, 5, 5, 6, 0, 5, 5, 0, 16, 5, 0)	16

Taglio di capacità minima: $N_s = \{1, 2, 3, 4, 5, 6\}$ $N_t = \{7\}$

Esercizio 6. Si consideri il problema di trovare il ciclo hamiltoniano di costo minimo su una rete di 5 città, le cui distanze reciproche sono indicate in tabella:

città	2	3	4	5
1	29	24	28	47
2		18	94	61
3			53	26
4				20

a) Trovare una valutazione inferiore del valore ottimo calcolando il 2-albero di costo minimo.

2-albero:
$$(1,2)(1,3)(2,3)(3,5)(4,5)$$
 $v_I(P)=117$

b) Trovare una valutazione superiore applicando l'algoritmo del nodo più vicino a partire dal nodo 4.

ciclo:
$$4-5-3-2-1$$
 $v_S(P)=121$

c) Applicare il metodo del $Branch\ and\ Bound$, utilizzando il 2-albero di costo minimo come rilassamento di ogni sottoproblema ed istanziando, nell'ordine, le variabili $x_{14},\,x_{24},\,x_{45}$.

Esercizio 7. Trovare massimi e minimi della funzione $f(x_1, x_2) = x_1^2 + x_2^2 + 10x_1$ sull'insieme

$$\{x \in \mathbb{R}^2 : x_2^2 + 8x_2 + 15 \le 0, \quad x_1^2 + 8x_1 + 15 \le 0\}.$$

Soluzioni del s	Mass	imo	Minimo		Sella		
x	λ	μ	globale	locale	globale	locale	
(-5, -3)	(3,0)		NO	NO	SI	SI	NO
(-3, -3)	(3, -2)		NO	NO	NO	NO	SI
(-5, -5)	(-5,0)		NO	NO	NO	NO	SI
(-3, -5)	(-5, -2)		SI	SI	NO	NO	NO

Esercizio 8. Si consideri il seguente problema:

$$\left\{ \begin{array}{l} \min \ 6 \ x_1^2 - 4 \ x_1 \, x_2 - 2 \ x_2^2 + 5 \ x_1 - 2 \ x_2 \\ x \in P \end{array} \right.$$

dove P è il poliedro di vertici (1,5), (5,0), (-3,5) e (-1,0). Fare una iterazione del metodo del gradiente proiettato.

Punto	Matrice M	Matrice H	Direzione	Max spostamento	Passo	Nuovo punto
				possibile		
$\left(-\frac{5}{3},5\right)$	(0,1)	$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$	(35,0)	$\frac{8}{105} \ (\frac{8}{3})$	$\frac{8}{105} \left(\frac{8}{3} \right)$	(1,5)