Student: Nguyen Huy Son

DISCRETE MATH - ASSIGNMENT 1 (CHAPTER 1-4)

Exercise 1. Express the following sentences in propositional expressions. Set your own propositional variables or predicates if needed.

1. If I have money I will buy the new Iphone 6s.

Let "I have money" is ${\bf p}$

Let "I will buy the new Iphone 6s" is q

 $\mathbf{p} \longrightarrow \mathbf{q}$

2. Passenger can pass the check-in door if the metal detector doesn't make sound.

Let "Passenger can pass the check-in door" is ${f p}$

Let "The metal detector makes sound" is q

 $\neg \mathbf{q} \longrightarrow \mathbf{p}$

3. Susan has a friend who makes friend with everyone in school.

Let "x has a friend" is A(x,y)

Let "y makes friend with z in school" is B(y,z)

 $A(Susan,y) \wedge \forall zB(y,z)$

4. Patience can check out if and only if the doctor signs a permission document.

Let "Patience can check out" is **p**

Let "The doctor signs a permission document" is q

 $\mathbf{p} \longleftrightarrow \mathbf{q}$

5. Every one who doesn't like Donald Trump will vote for the other candidate.

Let "Every one likes Donald Trump" is **p**

Let "People will vote for the other candidate" is \mathbf{q}

 $\neg \mathbf{p} \longrightarrow \mathbf{q}$

Exercise 2. Construct a truth table for each of these compound propositions.

a.
$$(p \lor q) \longrightarrow \neg r$$

p	q	r	$\mathbf{p} \lor \mathbf{q}$	$\neg \mathbf{r}$	$(\mathbf{p} ee\mathbf{q}) \longrightarrow eg \mathbf{r}$
Т	Т	Т	Т	F	F
T	Т	F	Τ	Τ	${ m T}$
T	F	F	${ m T}$	${ m T}$	T
T	F	F	${ m T}$	${ m T}$	T
F	Т	Т	${ m T}$	F	F
F	Т	F	${ m T}$	Τ	T
F	F	F	F	\mathbf{T}	T
F	F	F	F	Τ	Т

b.
$$(p \longrightarrow q) \longleftrightarrow (\neg p \lor q)$$

p	q	$\neg \mathbf{p}$	$\mathbf{p} \longrightarrow \mathbf{q}$	$\neg \mathbf{p} \lor \mathbf{q}$	$(\mathbf{p} \longrightarrow \mathbf{q}) \longleftrightarrow (\neg \mathbf{p} \lor \mathbf{q})$
T	Τ	F	Т	Τ	T
\mathbf{T}	F	F	F	\mathbf{F}	${f T}$
F	T	Τ	${ m T}$	${ m T}$	${f T}$
F	F	Т	Т	${ m T}$	${f T}$

Exercise 3. Are $p \longrightarrow (\neg q \lor r)$ and $q \longrightarrow (\neg p \lor r)$ logically equivalent? Prove your statement by using laws and verify by using truth table.

• p
$$\longrightarrow$$
 ($\neg q \lor r$) $\equiv \neg p \lor (\neg q \lor r)$ (Involving Conditional Statements)
$$\equiv \neg q \lor (\neg p \lor r)$$
 (Associative laws)
$$\equiv q \longrightarrow (\neg p \lor r)$$
 (Involving Conditional Statements)

•
$$\mathbf{p} \longrightarrow (\neg \mathbf{q} \vee \mathbf{r})$$
 (1)

p	q	$\neg \mathbf{q}$	r	$\neg \mathbf{q} \lor \mathbf{r}$	$\mathbf{p} \longrightarrow (\neg \mathbf{q} ee \mathbf{r})$
Τ	Т	F	Т	Т	T
T	Τ	F	F	F	${ m T}$
T	F	Τ	F	Т	${ m T}$
T	F	Τ	F	Т	${ m T}$
F	Τ	F	\mathbf{T}	Т	F
F	Τ	F	F	F	T
F	F	Τ	F	T	${ m T}$
F	F	Т	F	Т	T

 $\bullet \ \mathbf{q} \longrightarrow (\neg \mathbf{p} \lor \mathbf{r}) \tag{2}$

p	q	$\neg \mathbf{p}$	r	$\neg \mathbf{p} \lor \mathbf{r}$	$\mathbf{q} \longrightarrow (\lnot \mathbf{p} \lor \mathbf{r})$
T	Т	F	Т	Т	T
\mathbf{T}	Т	F	F	F	T
\mathbf{T}	\mathbf{F}	F	F	F	T
\mathbf{T}	F	F	F	F	${ m T}$
F	Т	T	Т	T	F
F	Т	T	F	Т	T
F	F	T	F	T	${ m T}$
F	F	T	F	T	T

$$(1),\,(2)\Rightarrow p\longrightarrow (\neg q\vee r)\equiv q\longrightarrow (\neg p\vee r)$$

Exercise 4. Translate these sentences into English where B(x) is "x is a teen boy", G(x) is "x is a teen girl", V(x) is "x likes video games", L(x, y) is "x likes y", and the domain consists of all teenagers.

- a. $\forall x(G(x) \longrightarrow \neg V(x))$ Every teen girl doesn't like video games.
- b. $\exists x (G(x) \longrightarrow V(x))$

There is a teen girl who likes video games.

- c. $\forall x(B(x) \longrightarrow V(x))$ Every teen boy likes teen girl.
- d. $(G(x) \land V(x)) \longrightarrow (\forall y B(y) \longrightarrow L(y, x))$ Every teen boy like teen girls who play video games.

Exercise 5. For these sets of premises, what rules of inference used to obtain the conclu-sion from the premises.

- "There is a person who has read a book but doesn't remember it"
- "Everyone have read a book"
- Conclusion: "There is a person who doesn't remember a book"

Solution:

Let A(x) is "x has read a book" Let B(x) is "x remember a book"

Permises:

 $\exists x (A(x) \land \neg B(x)) \\ \forall x (A(x))$

Conclusion:

 $\exists x (\neg B(x))$

$\begin{array}{ccc} \textbf{Step} & \textbf{Reason} \\ 1. \ \exists x (A(x) \land \neg B(x)) & \text{Permise} \\ 2. \ A(e) \land \neg B(e) & \text{Existential instantiation from (1)} \\ 3. \ \neg B(e) \land A(e) & \text{Commutative laws from (2)} \\ 4. \ \neg B(e) & \text{Simplification from (3)} \\ 5. \ \exists x (\neg B(x)) & \text{Existential generalization from (4)} \end{array}$

Exercise 6. Write you own at least 4 premises. Use rules of inferences to get a conclusion from these hypothesis.

- "I feel not good today and the test is really hard"
- "I wil get high score only if I feed good"
- "I get high score or I fail the exam"
- "If I fail the exam, then I will be punished"
- Conclusion: "I will be punished"

Solution:

```
Let p is "I feel good"
Let q is "The test is hard"
Let j is "I will get high score"
Let k is "I fall the exam"
Let s is "I will be punished"
```

Permises:

 $\begin{array}{l} \neg p \wedge q \\ j \longrightarrow p \\ j \vee k \\ k \longrightarrow s \end{array}$

Conclusion:

 \mathbf{S}

Step	Reason
1. $\neg p \wedge q$	Permise
2. ¬p	Simplification using (1)
$3. j \longrightarrow p$	Permise
4. ¬j	Modus tollens using (2) and (3)
5. j ∨ k	Permise
5. k	Disjunctive syllogism using (4) and (5)
$5. k \longrightarrow s$	Permise
5. s	Modus ponens using (6) and (7)