MA 544: Homework 10

Carlos Salinas

April 11, 2016

PROBLEM 10.1 (WHEEDEN & ZYGMUND §7, Ex. 1)

Let f be measurable in \mathbf{R}^n and different from zero in some set of positive measure. Show that there is a positive constant c such that $f^*(\mathbf{x}) \ge c \|\mathbf{x}\|^{-n}$ for $\|\mathbf{x}\| \ge 1$.

Proof. Suppose that f is measurable and nonzero on a subset E of \mathbf{R}^n with positive measure. Assume E is bounded. Since f is measurable |f| is measurable so the set $E_a := \{ \mathbf{x} \in E : |f|(\mathbf{x}) > a \}$, for a finite, is a measurable bounded subset of \mathbf{R}^n . Let χ_a denote the characteristic function of E_a . Then, by Chebyshev's inequality, we have

$$\chi_a^*(\mathbf{x}) = \sup_{Q} \frac{1}{|Q|} \int_{Q} |\chi_a(\mathbf{y})| d\mathbf{y}$$

$$\leq \sup_{Q} \frac{1}{|Q|} \left[\frac{1}{a} \int_{Q} |f(\mathbf{y})| d\mathbf{y} \right]$$

$$= \frac{1}{a} f^*(\mathbf{x}). \tag{10.1}$$

By the commentary on p. 138, there exists constants c_1 and c_2 such that

$$c_1 \frac{|E_a|}{\|\mathbf{x}\|^n} \le \chi_a^*(\mathbf{x}) \le c_2 \frac{|E_a|}{\|\mathbf{x}\|^n}$$

$$(10.2)$$

for all large $\|\mathbf{x}\|$. Putting (10.1) and (10.2) together, we obtain

$$ac_1 \frac{|E_a|}{\|\mathbf{x}\|^n} \le f^*(\mathbf{x}). \tag{10.3}$$

Setting $c := ac_1|E|$, we have the desired lower bound $c\|\mathbf{x}\|^{-n} \le f^*(\mathbf{x})$ (assuming $\|\mathbf{x}\|$ is large).

PROBLEM 10.2 (WHEEDEN & ZYGMUND §7, Ex. 2)

Let $\varphi(\mathbf{x}), \mathbf{x} \in \mathbf{R}^n$, be a bounded measurable function such that $\varphi(\mathbf{x}) = 0$ for $||\mathbf{x}|| \ge 1$ and $\int \varphi = 1$. For $\varepsilon > 0$, let $\varphi_{\varepsilon}(\mathbf{x}) = \varepsilon^{-n} \varphi(\mathbf{x}/\varepsilon)$. (φ_{ε} is called an approximation to the identity.) If $f \in L(\mathbf{R}^n)$, show that

$$\lim_{\varepsilon \to 0} (f * \varphi_{\varepsilon})(\mathbf{x}) = f(\mathbf{x})$$

in the Lebesgue set of f. (Note that $\int \varphi_{\varepsilon} = 1$, $\varepsilon > 0$, so that

$$(f * \varphi_{\varepsilon})(\mathbf{x}) - f(\mathbf{x}) = \int [f(\mathbf{x} - \mathbf{y}) - f(\mathbf{x})] \varphi_{\varepsilon}(\mathbf{y}) d\mathbf{y}.$$

Use Theorem 7.16.)

Proof. First note that, making the change of variables $\mathbf{u} = \mathbf{x}/\varepsilon$ (with Jacobian $\mathbf{J}(\mathbf{x}, \mathbf{u}) = \varepsilon^n$), we have

$$\int \varphi_{\varepsilon}(\mathbf{x}) d\mathbf{x} = \int \varepsilon^{-n} \varphi(\mathbf{x}/\varepsilon) d\mathbf{x}$$

$$= \int_{B(\mathbf{0},\varepsilon)} \varepsilon^{-n} \varphi(\mathbf{x}/\varepsilon) d\mathbf{x}$$

$$= \int_{B(\mathbf{0},1)} \varphi(\mathbf{u}) d\mathbf{u}$$

$$= \int \varphi(\mathbf{x}) d\mathbf{u}$$

$$= 1$$
(10.4)

Hence, by the hint and the definition of the convolution, we have

$$|(f * \varphi_{\varepsilon})(\mathbf{x}) - f(\mathbf{x})| = \left| \int [f(\mathbf{x} - \mathbf{y}) - f(\mathbf{x})] \varphi_{\varepsilon}(\mathbf{x}) d\mathbf{x} \right|$$

$$= \left| \int_{B(\mathbf{0}, \varepsilon)} [f(\mathbf{x} - \mathbf{y}) - f(\mathbf{x})] \varphi_{\varepsilon}(\mathbf{x}) d\mathbf{x} \right|$$

$$\leq \int_{B(\mathbf{0}, \varepsilon)} |[f(\mathbf{x} - \mathbf{y}) - f(\mathbf{x})] \varphi_{\varepsilon}(\mathbf{x})| d\mathbf{x}.$$
(10.5)

Now, since φ is bounded, say by M, we have

$$\varphi_{\varepsilon}(\mathbf{y}) = \varepsilon^{-n} \varphi(\mathbf{x}/\varepsilon) \le M. \tag{10.6}$$

Then, we have an estimate on (10.5)

$$\int_{B(\mathbf{0},\varepsilon)} |[f(\mathbf{x} - \mathbf{y}) - f(\mathbf{x})]\varphi_{\varepsilon}(\mathbf{x})| d\mathbf{x} \leq \frac{M}{\varepsilon^{n}} \int_{B\mathbf{0},\varepsilon} |f(\mathbf{x} - \mathbf{y}) - f(\mathbf{x})| \\
\leq \frac{M}{\varepsilon^{n}} \int_{B(\mathbf{0},\varepsilon)} |f(\mathbf{x} - \mathbf{y}) - f(\mathbf{x})|. \tag{10.7}$$

MA 544: Homework 10

Now, let Q_{ε} be the larges cube centered at \mathbf{x} contained in $B(\mathbf{0}, \mathbf{x})$. Then, as we have previously shown, the volume of Q_{ε} is $C\varepsilon^n$ for some positive real number C. Making a change of variables $\mathbf{v} = \mathbf{x} - \mathbf{y}$ gives us

$$|(f * \varphi_{\varepsilon})(\mathbf{x}) - f(\mathbf{x})| \le C \frac{M}{|Q_{\varepsilon}|} \int_{Q_{\varepsilon} + bfx} |f(\mathbf{v}) - f(\mathbf{x})| d\mathbf{v}, \tag{10.8}$$

which goes to 0 an $\varepsilon \to 0$ by Theorem 7.16 since **x** is a point in the Lebesgue set of f.

PROBLEM 10.3 (WHEEDEN & ZYGMUND §7, Ex. 6)

Show that if $\alpha > 0$, then x^{α} is absolutely continuous on every bounded subinterval of $[0, \infty)$.

Proof. Recall that a function $f: [a, b] \to \mathbf{R}$ is absolutely continuous on [a, b] if given $\varepsilon > 0$, there exists $\delta > 0$ such that for any collection $\{[a_j, b_j]\}$ of nonoverlapping subintervals of [a, b], $\sum |b_i - a_i| < \delta$ implies $\sum |f(b_i) - f(a_i)| < \varepsilon$.

Now, by Theorem 7.29 on the bounded interval $[a,b] \subset [0,\infty)$ we may write $F(x)=x^{\alpha}$ as the integral

$$F(x) = \alpha \int_{a}^{x} x^{\alpha - 1} + c \tag{10.9}$$

for some finite constant c. Since constants and indefinite integrals are absolutely continuous, F is absolutely continuous if we can show $x^{\alpha-1}$ is integrable on [a,b]. This is true unless a=0 and $\alpha<1$. If $a\neq 0$ and $\alpha\geq 1$, $x^{\alpha-1}$ is Riemann integrable and positive, so it is Lebesgue integrable and its Riemann integral equals its Lebesgue integral.

PROBLEM 10.4 (WHEEDEN & ZYGMUND §7, Ex. 8)

Prove the following converse of Theorem 7.31: If f is of bounded variation on [a, b], and if the function V(x) = V[a, x] is absolutely continuous on [a, b], then f is absolutely continuous on [a, b].

Proof.

PROBLEM 10.5 (WHEEDEN & ZYGMUND §7, Ex. 9)

If f is of bounded variation on [a, b], show that

$$\int_{a}^{b} |f'| \le V[a, b].$$

Show that if equality holds in this inequality, then f is absolutely continuous on [a, b]. (For the second part, use Theorems 2.2(ii) and 7.24 to show that V(x) is absolutely continuous and then use the result of Exercise 8).

Proof. (Sorry, I skipped this and the last one since I was at a conference and its easier to show things about concavity...)

PROBLEM 10.6 (WHEEDEN & ZYGMUND §7, Ex. 12)

Use Jensen's inequality to prove that if $a, b \ge 0, p, q > 1, (1/p) + (1/q) = 1$, then

$$ab \le \frac{a^p}{p} + \frac{b^q}{q}.$$

More generally, show that

$$a_1 \cdots a_N = \sum_{j=1}^N \frac{a_j^{p_j}}{p_j},$$

where $a_j \ge 0$, $p_j > 1$, $\sum_{j=1}^{N} (1/p_j) = 1$. (Write $a_j = e^{x_j/p_j}$ and use the convexity of e^x).

Proof. Suppose that a, b, p and q satisfy the conditions given in the statement of the problem. The claim is true if a = 0 and b = 0, so assume a, b > 0. Set t := 1/p and (1 - t) = 1/q. Then, since the logarithm \ln is strictly concave, we have

$$\ln(ta^{p} + (1-t)b^{q}) \ge t \ln(a^{p}) + (1-t)\ln(b^{q})$$

$$= \ln(a) + \ln(b)$$

$$= \ln(ab).$$
(10.10)

Lastly, exponentiating the left and right inequalities in (10.10), we have

$$ab \le ta^p + (1-t)b^q$$

$$= \frac{a^p}{p} + \frac{b^q}{q}$$
(10.11)

as desired. The generalization follows from Jensen's inequality.

Problem 10.7 (Wheeden & Zygmund §7, Ex. 13)

Prove Theorem 7.36.

Proof. Recall the statement of Theorem 7.36

Theorem. (i) If φ_1 and φ_2 are convex in (a,b), then $\varphi_1 + \varphi_2$ is convex in (a,b).

- (ii) If φ is convex in (a,b) and c is a positive constant, then $c\varphi$ is convex in (a,b).
- (iii) If φ_k , $k = 1, 2, \ldots$, are convex in (a, b) and $\varphi_k \to \varphi$ in (a, b), then φ is convex in (a, b).
 - (i) Let $x, y \in (a, b)$ and φ_1 and φ_2 be convex. Then for every $t \in [0, 1]$, we have

$$\varphi_1(tx + (1-t)y) + \varphi_2(tx + (1-t)y) \le t\varphi_1(x) + (1-t)\varphi_1(y) + t\varphi_2(x) + (1-t)\varphi_2(y)$$

$$= t(\varphi_1(x) + \varphi_2(x)) + (1-t)(\varphi_1(y) + \varphi_2(y)).$$
(10.12)

Hence, $\varphi_1 + \varphi_2$ is convex.

(ii) Let c > 0. Then for all $t \in [0, 1]$, we have

$$c\varphi(tx + (1-t)y) \le ct\varphi(x) + c(1-t)\varphi(y)$$

$$= c(t\varphi(x) + (1-t)\varphi(y))$$
(10.13)

So $c\varphi$ is convex.

(iii) For $t \in [0,1]$ and all $k \ge 1$, we have

$$\varphi_k(tx + (1-t)y) \le t\varphi_k(x) + (1-t)\varphi_k(y). \tag{10.14}$$

Letting $k \to \infty$, since $\varphi_k \to \varphi$ pointwise on (a, b), we have

$$\varphi(tx + (1 - t)y) = \lim_{k \to \infty} \varphi_k(tx + (1 - t)y)$$

$$\leq \lim_{k \to \infty} [t\varphi_k(x) + (1 - t)\varphi_k(y)]$$

$$= t\varphi(x) + (1 - t)\varphi(y).$$
(10.15)

Hence φ is convex on (a, b).