Algoritmo genético

Oscar Quiñonez

25 de noviembre de 2020

1. Objetivo

Se plantea un problema conocido como "el problema de la mochila" en el que se debe regular la cantidad de objetos que se colocan dentro de ella, debido a que tiene una capacidad limitada en cuestión de peso, en base a este problema, se busca realizar una simulación de un algoritmo genético el cual se varía la selección de los padres de la manera conocida como "ruleta" [1].

2. Metodología

En esta simulación fue necesario el uso del programa Python 3.7 en el que se tomó como código base el proporcionado durante la clase [2] para posteriormente plantear 3 escenarios posibles: 1) el valor y el peso son independientes entre ellos, 2) el valor y el peso están relacionados entre ellos y 3) el peso es independiente pero el valor es inversamente proporcional a este. Al variar la selección de padres a tipo "ruleta", cada uno tenía una probabilidad de ser tomado en cuenta, y al tomar los 3 criterios anteriormente planteados, se puede determinar el valor del algoritmo genético y compararlo con el algoritmo exacto. Los valores de n usados en esta simulación fueron 100, 200, 300 y 400.

3. Resultados y Discusión

Al ejecutar el código con las variaciones mencionadas se obtuvieron primeramente las gráficas que nos indican la diferencia de los valores al usar o no usar la ruleta, estas gráficas se pueden apreciar en la figura 1 que se presenta a continuación. En el cuadrol se muestra los valores obtenidos al variar la cantidad de objetos y se destacan los valores máximos y óptimos de cada uno, de manera mas representativa se pueden ver las gráficas de estos valores y como varían entre ellos en las figuras 2, 3, 4 y 5.

Figura 1: Comparación de la ruleta con 100 y 200 objetos

Cuadro 1: Tabla de resultados para las distintaas cantidades de n.

Instancia	Valor óptimo	Valor máximo	Objetos
1	75851.55212057414	7326.288381842508	100
2	55795.300566274185	68468.98351482986	100
3	43479.15872730447	51964.798682299166	100
1	13571.3126008619583	15368.983690630148	200
2	8721.51234211876	17894.877000934695	200
3	12135.028209092558	14832.970082181477	200
1	21985.93465812870	32763.83926134712	300
2	18963.883314069720	28754.157541097403	300
1	21369.348512678901	52301.06212532473	400
2	35991.030450982477	42034.773495068867	400
3	27004.364789015584	40782.74748446381	400

Figura 2: 3 instancias para n=100

Figura 3: 3 instancias para n=200

Figura 4: 3 instancias para n=300

Figura 5: 3 instancias para n=400

4. Conclusión

Como se puede ver en las gráficas, existe una línea verde la cual nos refleja el valor máximo de las 3 condiciones iniciales con respecto a las cantidades de n utilizadas en cada una de ellas [3]. Los valores óptimos serían los que tocan la línea verde en los valores de n indicados al pie de las gráficas, sin embargo, en esta simulación no se alcanzó este punto posiblemente por la cantidad de objetos o por la capacidad del CPU para procesar los datos, aunque se puede decir que las 3 instancias muestran resultados muy similares.

Referencias

- [1] E. Schaffer. Algoritmo genético, 2020. URL https://elisa.dyndns-web.com/teaching/comp/par/p10.html.
- [2] E. Schaffer. Algoritmo genético, 2020. URL https://github.com/satuelisa/Simulation/blob/master/GeneticAlgorithm/basicGA.py.
- [3] O. Quiñonez. tareadiez, November 2020. URL https://github.com/ OscarNANO/OscarNANO/tree/master/tareadiez.