

Department of Computer Science and Engineering

P.E.S College of Engineering, Mandya, (An Autonomous Institution under VTU)

Course Title: Theory of Computation							
Course Code: P18CS42	Semester: 4	L:T	:P:H: 4:0:0:4	Credits: 3			
Contact Period: Lecture	e: 52 Hrs, Exan	Weightage: CII	E:50%, SEE:50%				

Course Content Unit-1

Introduction to Finite Automata: Introduction to Finite Automata; The central concepts of Automata theory; Deterministic finite automata; Nondeterministic finite automata. Application of finite automata; Finite automata with Epsilon transitions; Equivalence and minimization of automata.

Self Study Components: Extended transitions and languages for E-NFA

10 Hours

Unit-2

Regular Expression, Regular Languages, Properties of Regular Languages: Regular expressions; Finite Automata and Regular Expressions; Applications of Regular Expressions. Regular languages; Proving languages not to be regular languages; Closure properties of regular languages; Decision properties of regular languages.

Self Study Components: Applications of Regular expressions

10 Hours

Unit-3

Context-Free Grammars And properties of Context-Free Languages: Context – free grammars; Parse trees; Applications; Ambiguity in grammars and Languages, Definitions of Normal forms for CFGs; The pumping lemma for CFGs; Closure properties of CFLs. Self Study Components: Removing ambiguity in grammars, normal forms for CFG

10 Hours

Unit-4

Pushdown Automata: Definition of the Pushdown automata; the languages of a PDA; Equivalence of PDA's and CFG's; Deterministic Pushdown Automata.

Self Study Components: CFG to PDA, PDA to CFG

12 Hours

Unit-5

Introduction to Turing Machine, Undecidability: Problems that Computers cannot solve; The turning machine; Programming techniques for Turning Machines; Extensions to the basic Turning Machines; Turing Machine and Computers. Undecidable problem that is RE; Post's Correspondence problem.

Self Study Components: Tuning machine and computers

10 Hours

Text Book:

1. John E., Hopcroft, Rajeev Motwani, Jeffrey D.Ullman: Introduction to Automata Theory, Languages and Computation, 3rd Edition, Pearson education, 2014.

Reference Books:

- 1. Raymond Greenlaw, H.James Hoover: Fundamentals of the Theory of Computation, Principles and Practice, Morgan Kaufmann, 1998.
- 2. John C Martin: Introduction to Languages and Automata Theory, 3rd Edition, Tata McGraw Hill, 2007.
- 3. Daniel I.A. Cohen: Introduction to Computer Theory, 2nd Edition, John Wiley & Sons, 2004.

Department of Computer Science and Engineering

P.E.S College of Engineering, Mandya, (An Autonomous Institution under VTU)

4. Thomas A. Sudkamp: An Introduction to the Theory of Computer Science, Languages and Machines, 3rd Edition, Pearson Education, 2006

Course Outcomes:

After learning all the units of the course, the student is able to

- 1. Design finite automata
- 2. Apply regular expression for lexical analysis phases
- 3. Design grammars for various languages
- 4. Design push-down automata from grammars and grammar to pda
- 5. Design Turing machines for simple languages and design problem reductions to determine the undecidability of languages

CO-PO Mapping

		T														
		Course code :		Title: Theory of Computation												
P18CS42																
CO		Statement	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS
			1	2	3	4	5	6	7	8	9	10	11	12	01	O2
CO-1	Design finite automata		2	3	-	-	-	-	-	-	-	-	-	-	3	-
CO-2	Apply	regular expression	2	2	3	-	-	-	-	-	-	-	-	-	3	
	for lex	ical analysis phases														
CO-3	Design grammars for		2	2	2		2	2	2						3	
	various	s languages														
CO-4	Design	push-down	2	2	2		2	2	2						2	
		ata from grammars														
		ammar to PDA														
CO-5	Design	Turing machines for	2	2	2		2	2	2						2	
		languages and														
		problem reductions														
		rmine the														
	undeci	dability of languages														
		, ,	2	2.2	2.25		2	2	2						2.6	