COT3210–Computability and Automata Answers to HW4 Supplementary Exercises

- 1. For each of the fifteen unordered pairs of functions f and g chosen from the functions given below, determine whether f(n) = O(g(n)), $f(n) = \Omega(g(n))$, or $f(n) = \Theta(g(n))$.
 - a. n^3

b. $2^{n \log_2 n}$

c. n^6

d. $n2^n$

e. $n^3 \log_2 n$

f. 2^2

For any two functions f(n) and g(n), we wish to determine constants K and n_0 such that a relationship of the form

$$f(n) \le Kg(n)$$
 for $n \ge n_0$

is satisfied in order to conclude f(n) = O(g(n)). We may also conclude in this case that $g(n) = \Omega(f(n))$. Also, if f(n) = O(g(n)) and g(n) = O(f(n)), we conclude that $f(n) = \Theta(g(n))$ and $g(n) = \Theta(f(n))$.

We consider the fifteen pairs below, one pair at a time.

- Let $f(n)=n^3$ and $g(n)=2^{n\log_2 n}$. Since $g(n)=n^n$, we can conclude that $n^3\leq n^n$ for $n\geq 3$. Therefore, $n^3=O(2^{n\log_2 n})$ and $2^{n\log_2 n}=\Omega(n^3)$.
- Let $f(n)=n^3$ and $g(n)=n^6$. We have $n^3\leq n^6$ for all $n\geq 1$. Hence $n^3=O(n^6)$ and $n^6=\Omega(n^3)$.
- Let $f(n)=n^3$ and $g(n)=n2^n$. We would like to determine n_0 such that $n^3 \leq n2^n$ for all $n \geq n_0$. Since $n^3 \leq n2^n \Rightarrow n^2 \leq 2^n$ for $n \geq 4$, it follows that $n^3 = O(n2^n)$ and $n2^n = O(n3^n)$.
- Let $f(n)=n^3$ and $g(n)=n^3\log_2 n$. Clearly, $n^3\leq n^3\log_2 n$ for $n\geq 2$. Therefore, $n^3=O(n^3\log_2 n)$ and $n^3\log_2 n=\Omega(n^3)$.
- Let $f(n)=n^3$ and $g(n)=2^{2^n}$. Clearly, $n^3 \leq 2^{2^n}$ for $n \geq 1$. Therefore, $n^3=O(2^{2^n})$ and $2^{2^n}=\Omega(n^3)$.
- Let $f(n) = 2^{n \log_2 n}$ and $g(n) = n^6$. Since $2^{n \log_2 n} = n^n$, and since $n^n \ge n^6$ for $n \ge 6$, it follows that $2^{n \log_2 n} > n^6$, and we conclude $2^{n \log_2 n} = \Omega(n^6)$ and $n^6 = O(2^{n \log_2 n})$.
- Let $f(n)=2^{n\log_2 n}$ and $g(n)=n2^n$. Since $2^{n\log_2 n}=n^n$, and since $n^n\geq n2^n$ for $n\geq 3$, it follows that $2^{n\log_2 n}\geq n2^n$, and we conclude $2^{n\log_2 n}=\Omega(n2^n)$ and $n2^n=O(2^{n\log_2 n})$.
- Let $f(n)=2^{n\log_2 n}$ and $g(n)=n^3\log_2 n$. Since $2^{n\log_2 n}=n^n$, and since $n^n\geq n^3\log_2 n$ for $n\geq 3$, it follows that $2^{n\log_2 n}\geq n^3\log_2 n$ for $n\geq 3$, and we conclude $2^{n\log_2 n}=\Omega(n^3\log_2 n)$ and $n^3\log_2 n=O(2^{n\log_2 n})$.
- Let $f(n) = 2^{n \log_2 n}$ and $g(n) = 2^{2^n}$. Since $2^{n \log_2 n} = n^n$, and since $n^n \le 2^{2^n}$ for $n \ge 1$, it follows that $2^{n \log_2 n} \le 2^{2^n}$ for $n \ge 1$, and we conclude $2^{n \log_2 n} = O(2^{2^n})$ and $2^{2^n} = O(2^{n \log_2 n})$.

- Let $f(n)=n^6$ and $g(n)=n2^n$. In order to find n_0 such that $n^6 \leq n2^n$ (or, equivalently, $n^5 \leq 2^n$) for $n \geq n_0$. We can either plot n^5 and n^5 and determine this value, or plot $n^5 \log_2 n$ and $n^5 \log_2 n$ and $n^5 \log_2 n$ and $n^5 \log_2 n$ and $n^5 \log_2 n$ are powers of 2. We see that for $n \geq 32$ it is true that $n^5 \log_2 n \leq n$. A tighter bound can be obtained by actually plotting these functions and inding out where they intersect. This yields $n^5 \log_2 n \leq n$. We conclude $n^6 \log_2 n \leq n$ and $n^5 \log_2 n \leq n$.
- Let $f(n) = n^6$ and $g(n) = n^3 \log_2 n$. Clearly, $n^6 \ge n^3 \log_2 n$ for $n \ge 1$. Therefore $n^6 = \Omega(n^3 \log_2 n)$.
- Let $f(n) = n^6$ and $g(n) = 2^{2^n}$. Clearly, $n^6 \le 2^{2^n}$ for $n \ge 1$. Thereore, $n^6 = O(2^{2^n})$ and $2^{2^n} = \Omega(n^6)$.
- Let $f(n) = n2^n$ and $g(n) = n^3 \log_2 n$. By plotting these functions we see that $n2^n \ge n^3 \log_2 n$ for $n \ge 8$. Therefore, $n2^n = \Omega(n^3 \log_2 n)$ and $n^3 \log_2 n = O(n2^n)$.
- Let $f(n) = n2^n$ and $g(n) = 2^{2^n}$. Clearly, $n2^n \le 2^{2^n}$ for $n \ge 1$. Therefore, $n2^n = O(2^{2^n})$ ans $2^{2^n} = \Omega(n2^n)$.
- Let $f(n) = n^3 \log_2 n$ and $g(n) = 2^{2^n}$. Clearly, $n^3 \log_2 n \le 2^{2^n}$ for $n \ge 1$. Therefore, $n^3 \log_2 n = O(2^{2^n})$ and $2^{2^n} = \Omega(n^3 \log_2 n)$.

The following table summarizes the results for the fifteen pairs of functions in this exercise.

f(n)	g(n)	Inequality	K	n_0	Relationship
n^3	$2^{n\log_2 n}$	$n^3 \le 2^{n \log_2 n}$	1	3	f = O(g)
n^3	n^6	$n^3 \le n^6$	1	1	f = O(g)
n^3	$n2^n$	$n^3 \le n2^n$	1	4	f = O(g)
n^3	$n^3 \log_2 n$	$n^3 \le n^3 \log_2 n$	1	2	f = O(g)
n^3	2^{2^n}	$n^3 \le 2^{2^n}$	1	1	f = O(g)
$2^{n \log_2 n}$	n^6	$2^{n\log_2 n} \ge n^6$	1	6	$f = \Omega(g)$
$2^{n \log_2 n}$	$n2^n$	$2^{n\log_2 n} \ge n2^n$	1	3	$f = \Omega(g)$
$2^{n \log_2 n}$	$n^3 \log_2 n$	$2^{n\log_2 n} \ge n^3 \log_2 nn^6$	1	3	$f = \Omega(g)$
$2^{n \log_2 n}$	2^{2^n}	$2^{n\log_2 n} \le 2^{2^n}$	1	1	f = O(g)
n^6	$n2^n$	$n^6 \le n2^n$	1	23	f = O(g)
n^6	$n^3 \log_2 n$	$n^6 \ge n^3 \log_2 n$	1	1	$f = \Omega(g)$
n^6	2^{2^n}	$n^6 \le 2^{2^n}$	1	1	f = O(g)
$n2^n$	$n^3 \log_2 n$	$n2^n \ge n^3 \log 2n$	1	8	$f = \Omega(g)$
$n2^n$	2^{2^n}	$n2^n \le 2^{2^n}$	1	1	f = O(g)
$n^3 \log_2 n$	2^{2^n}	$n^3 \log_2 n \le 2^{2^n}$	1	1	f = O(g)

- Assume f(n) = O(g(n)). Then there exist constants K and n_0 satisfying that $f(n) \leq Kg(n)$ for $n \ge n_0$. This means that $g(n) \ge \frac{1}{K} f(n)$ for $n \ge n_0$, or $g(n) = \Omega(f(n))$. In a similar manner, we can show that if $g(n) = \Omega(f(n))$, then f(n) = O(g(n)).
- Assume that $f(n) = \Theta(g(n))$. Then there exist constants c_1 , c_2 , and n_0 satisfying $c_1g(n) \leq f(n) \leq 1$ $c_2g(n)$ for $n\geq n_0$. This means that $\frac{1}{c_2}f(n)\leq g(n)\leq \frac{1}{c_1}f(n)$, or $g(n)=\Theta(f(n))$. In a similar manner, we can show that if $g(n) = \Theta(f(n))$, then $f(n) = \Theta(g(n))$.
- We start with the basic fact that $n^j \leq n^m$ for all $j \leq m$. Now, if we let $g(n) = \sum_{j=0}^k a_j n^j$, we can conclude that $g(n) \leq \sum_{j=0}^{k} |a_j| n^m$ for all $k \leq m$. Thus, $g(n) \leq K n^m$ with $K = \sum_{j=0}^{k} |a_j|$, or $q(n) = O(n^m).$
- By replacing n with 2^n , the comparison of $\log n$ and n^k is the same as comparing n and 2^{kn} . Since $n = O(2^{kn})$ it follows that $\log n = O(n^k)$.
- $n^k \leq n^{\log n}$ for $n \geq b^k$, where b is the base of the logarithm used. Therefore we may conclude that $n^k = O(n^{\log n})$. However, since k is a constant and does not vary with n, it is not possible to find an n_0 such that $\log n \le k$ for all $n \ge n_0$. Therefore, $n^{\log n}$ can never be less than n^k , or $n^{\log n}$ can never be $O(n^k)$.
- Instead of comparing c^n and $n^{\log n}$ as n grows, we will compare the corresponding functions that we obtain by replacing $\log n$ with k. We may assume that the base of the logarithm is 2 without loss of generality, and the functions we need to compare are c^{2^k} and $(2^k)^k=2^{k^2}$ as k grows. If $f(k)=c^{2^k}$ and $g(k) = 2^{k^2}$, we have $\log(f) = 2^k \log c$ and $\log(g) = k^2$. It is clear that $\log(f) = \Omega(\log(g))$, implying $c^n = \Omega(n^{\log n})$. Of course, since k^2 can never be $\Omega(2^k)$, it follows that $n^{\log n}$ can never be $\Omega(c^n)$.
- The answers are shown below: 8.

a.
$$\frac{n}{1000000000} + 9999999999 = O(n)$$

b.
$$\log(n^2 + 1) = O(\log n)$$

$$c. \quad \sqrt{n^2 + 1} = O(n)$$

d.
$$(n^2 + 1)(n \log n + 1) = O(n^3 \log n)$$

e.
$$10^{1000} = O(1)$$

$$f. \quad \frac{n+3}{n+1} = O(1)$$

$$\begin{aligned} & \text{g.} & \frac{n^3+1}{n+1} = O(n^2) \\ & \text{h.} & 2^{3\log n} + n^3 + 4 = O(n^3) \end{aligned}$$

h.
$$2^{3\log n} + n^3 + 4 = O(n^3)$$

i.
$$\frac{n!}{99999999} + 99999999999 \cdot 2^n = O(n!)$$
 j.
$$\log_{10} 2^n + 10^{10} n^2 = O(n^2)$$

j.
$$\log_{10} 2^n + 10^{10} n^2 = O(n^2)$$

- 9. The answers are shown below:
 - a. $n^3 47n^{5/2} + 17n 7 < (1 + 47 + 17 + 7)n^3 = 72n^3 = O(n^3)$; Answer: 72
 - b. $n \log n + n^2 \le (1+1)n^2 = 2n^2 = O(n^2)$; Answer: 2
 - c. $7n \log n + n^{3/2} < (7+1)n^2 = 8n^2 = O(n^2)$: Answer: 8
 - d. $n \log n^7 + n^{3/2} < (7+1)n^{3/2} = 8n^{3/2} = O(n^{3/2})$: Answer: 8

- 10. Since i gets squared ater each execution of the loop, the value of i after k executions of the loop will be 2^{2^k} . Therefore, we must estimate k that satisfies $2^{2^k} \approx n$. We get $k \approx \log_2(\log_2 n)$.
- 11. The trace table is shown below:

m	n	p
2	67	1
2^{2}	33	2
2^{4}	16	2^{3}
2^{8}	8	2^{3}
2^{16}	4	2^{3}
2^{32}	2	2^{3}
2^{64}	1	2^3
2^{128}	0	2^{67}

- 12. The answers are provided below (the maximum number of division steps are also provided):
 - a. 227, 143, 84, 59, 25, 9, 7, 2, 1, 0; 8 division steps $\leq \log 227/\log 1.618 \approx 11.27$
 - b. 131, 71, 60, 11, 5, 1, 0; 5 division steps $\leq \log 131/\log 1.618 \approx 10.13$
 - c. 259, 93, 73, 20, 13, 7, 6, 1, 0; 7 division steps $\leq \log 259/\log 1.618 \approx 11.55$
- 13. The graph is shown below:

