IT4130E LẬP TRÌNH SONG SONG VÀ PHÂN TÁN

PARALLEL AND DISTRIBUTED PROGRAMMING

Version: 2019.05.30

1. THÔNG TIN CHUNG GENERAL INFORMATION

Tên học phần Lập trình song song và phân tán

Course name: Parallel and Distributed Programming

Mã học phần IT4130E

Code:

Khối lượng 3(3-1-0-6)

Credit: - Lý thuyết - Lecture: 45 hours

- Bài tập - Exercise: 15 hours

Introduction to Programming

Học phần tiên quyết

Prerequisite:

Học phần học trước

Prior course:

Học phần song hành

Paralell course:

2. MÔ TẢ HỌC PHẦN - COURSE DESCRIPTION

Mục tiêu: Môn học này giới thiệu kiến thức tổng quan về lập trình song song và phân tán, ứng dụng vào giải các bài toán hiệu năng cao, chạy trên các nền tảng tính toán song song hoặc phân tán. Nội dung môn học bao gồm các chủ đề sau: kiến trúc tính toán song song và phân tán như kiến trúc đa luồng, đa lõi hay kiến trúc tính toán trên GPU đa dụng; cách thiết kế các giải thuật tính toán song song cho các bài toán hiệu năng cao; các mô hình lập trình song song như mô hình lập trình song song đa luồng OpenMP, mô hình lập trình song song dựa trên message pasing trên nền tảng đa lõi MPI, mô hình lập trình song song đa mức đa luồng trên nền tảng GPU đa dụng CUDA; ứng dụng xây dựng các chương trình song song cho một số bài toán điển hình như tính toán ma trận, đồ thị, sắp xếp, hệ phương trình đạo hàm riêng, ... Sau khóa học, sinh viên có thể tự xây dựng giải thuật và cài đặt chương trình song song dùng các mô hình lập trình song song khác nhau, áp dụng cho nhiều bài toán hiệu năng cao trong thực tế.

Objectives: This course introduces an overview of parallel and distributed programming, applying to solve high-performance problems, runing on parallel or distributed computing platforms. The course consists of following topics: parallel and distributed computational architectures such as multi-threaded architecture, multi-core computational architecture, general purpose GPUs; how to design parallel algorithms for high-performance problems; Parallel programming models such as OpenMP, MPI, CUDA; write parallel programs for several typical problems such as matrix computation, graph, sorting, partial differential equation, ... After the course, students can build algorithms themselves and write parallel program using different parallel programming models, applied to many high-performance problems in practice.

Nội dung: Môn học bao gồm các chủ đề sau: kiến trúc tính toán song song và phân tán như kiến trúc đa luồng, đa lõi hay kiến trúc tính toán trên GPU đa dụng; cách thiết kế các giải thuật tính toán song song cho các bài toán hiệu năng cao; các mô hình lập trình song song như mô hình lập trình song song đa luồng OpenMP, mô hình lập trình song song dựa trên message pasing trên nền tảng đa lõi MPI, mô hình lập trình song song đa mức đa luồng trên nền tảng GPU đa dụng CUDA; ứng dụng xây dựng các chương trình song song cho một số bài toán điển hình như tính toán ma trận, đồ thị, sắp xếp, hệ phương trình đạo hàm riêng,

Content: The course consists of following topics: parallel and distributed computational architectures such as multi-threaded architecture, multi-core computational architecture, general purpose GPUs; how to design parallel algorithms for high-performance problems; Parallel programming models such as OpenMP, MPI, CUDA; write parallel programs for several typical problems such as matrix computation, graph, sorting, partial differential equation.

3. MỤC TIÊU VÀ CHUẨN ĐẦU RA CỦA HỌC PHẦN

GOAL AND OUTPUT REQUIREMENT

Sinh viên hoàn thành học phần này có khả năng:

After this course the student will obtain the followings:

Mục tiêu/CĐ R Goal	Mô tả mục tiêu/Chuẩn đầu ra của học phần Description of the goal or output requirement	CĐR được phân bổ cho HP/Mức độ(I/T/U) Output division/Level(I/T/U
[1]	[2]	[3]
M1	Understand and be able to design and manage the systems which are based on Data Science	1.2.1, 1.2.2
M1.1	Nắm vững các kiến thức cơ bản về cấu trúc dữ liệu, giải thuật, kỹ thuật lập trình và áp dụng trong xây dựng các giải thuật song song cho các bài toán hiệu năng cao Understanding the basic knowledge of data structure, algorithms, programming techniques and apply in building parallel algorithms for high-performance problems	1.2.1 [IU]
M1.2	Nắm vững kiến thức về các nền tảng tính toán hiệu năng cao như nền tảng đa luồng, nền tảng đa lõi, và kiến trúc bộ xử lý đồ họa đa dụng Understanding the knowledge of high-performance computing platforms such as multi-threaded platforms, multi-core platforms, and multi-use graphics processor architecture.	1.2.2 [IU]
M2	Identify and manage the opportunities from Data Science to boost the existing organizations or develop new organizations	1.3.3, 1.3.4, 1.3.5
M2.1	Nắm vững các khái niệm về tính toán hiệu năng cao Understanding concepts of high performance computing	1.3.3 [T]
M2.2	Nắm vững các mô hình lập trình song song như lập	1.3.4 [TU]

	trình song song đa luồng OpenMP, lập trình song song đa lõi MPI, và lập trình song song trên bộ xử lý đồ họa đa dụng CUDA. Understand parallel programming models such as multi-threaded parallel programming with OpenMP, parallel multi-core using MPI programming and parallel programming on multi-purpose graphics processors with CUDA.	
M2.3	Hiểu và sử dụng thành thạo các công cụ và ngôn ngữ lập trình, các framework phát triển và khung kiến trúc ứng dụng phổ biến trong xây dựng các ứng dụng nghiệp vụ, vận hành trên các nền tảng tính toán khác nhau. Understanding and proficient use of programming tools and languages, development frameworks and common application architecture frameworks in building business applications, operating on different computing platforms.	1.3.4 [TU]
M2.4	Vận dụng các kiến thức học được để viết các chương trình song song cho các bài toán hiệu năng cao chạy trên các nền tảng đa luồng, đa lõi, hoặc GPU đã dụng Ability To write parallel programs for high-performance problems running on multi-threaded, multi-core, or GPU-based platforms	1.3.5 [TU]
M3	Identify in Data Science that are able to support development in organizations	4.1.1; 4.1.2; 4.1.3
M3.1	Actively update and identify the most advances in Data Science	[4.1.1; 4.1.2] (T)
M3.2	Identify the opportunities from Data Science to develop their organizations	[4.1.3] (U)

4. TÀI LIỆU HỌC TẬP

Toàn bộ bài giảng Slide và Handout

Textbook

- [1] Quinn, Michael J: Parallel Programming in C with MPI and OpenMP. McGraw Hill, 2004, ISBN: 0072822562, 1st Edition
- [2] Braunl, T., Parallel Image Processing, Springer, 2001, ISBN 3-540-67400-4

5. CÁCH ĐÁNH GIÁ HỌC PHẦN - EVALUATION

Phương pháp đánh giá cụ thể Evaluation method	Mô tả Detail	CĐR được đánh giá Output	Tỷ trọng Percen t
[2]	[3]	[4]	[5]
Đánh giá quá trình <i>Progress</i>			40%
	giá cụ thể Evaluation method [2]	giá cụ thể Evaluation method [2] Dánh giá quá trình	giá cụ thể Detail đánh giá Output [2] [3] [4] Đánh giá quá trình

	A1.1. Bài tập về nhà <i>Homework</i>	Chương trình <i>Program</i>	M2.3, M2.4	20%
	A1.2. Bài tập nhóm Capstone Project	Chương trình và Báo cáo	M2.3, M2.4	20%
		Program and Presentatio n		
A2. Điểm cuối kỳ Final term	A2.1. Thi cuối kỳ Final exam	Thi viết Written exam	M1.2, M2.1, M2.2, M2.3, M2.4	60%

^{*} Điểm quá trình sẽ được điều chỉnh bằng cách cộng thêm điểm chuyên cần. Điểm chuyên cần có giá trị từ -2 đến +1, theo Quy chế Đào tạo đại học hệ chính quy của Trường ĐH Bách khoa Hà Nôi.

The evaluation about the progress can be adjusted with some bonus. The bonus should belong to [-2, +1], according to the policy of Hanoi University of Science and Technology.

6. KÉ HOẠCH GIẢNG DẠY - SCHEDULE

Tuần Week	Nội dung Content	CĐR học phần Output	Hoạt động dạy và học Teaching activities	Bài đánh giá Evaluate d in
[1]	[2]	[3]	[4]	[5]
1	Chapter 1: Parallel Architectures 1.1. Hardware platforms 1.2. Software platforms	M1.1, M1.2	Lecture	A2
2	Chapter 2: Parallel Algorithm Design 2.1. Parallel model 2.2. Functional parallel 2.3. Data parallel	M1.1, M1.2	Lecture	A2
3	Chapter 3: Message-Passing Programming, MPI 3.1. Distributed memory 3.2. Domain decomposition 3.3 MPI parallel programming model 3.4. Synchronization and communication issues in the MPI program	M2.1 - M2.4	Lecture	A1, A2
4	Chapter 4: Shared-memory Programming, OpenMP 4.1. Shared memory 4.2. Multi-threaded programming 5.3. OpenMP	M2.1 - M2.4	Lecture, Assignment	A1, A2

5	Chapter 5: General purpose PGPU, CUDA	M2.1 -	Lecture,	A1, A2
	5.1. General purpose GPU architecture	M2.4	Assignment	
	5.2. CUDA programming model			
	5.3. Synchronization and communication issues in the CUDA program			
6	Chapter 6: Parallel model and Domain decomposition	M2.1 - M2.4	Lecture	A1, A2
7	Chapter 7: Data dependency problem, Synchronization and Communication	M2.1 - M2.4	Lecture	A1, A2
8	Chapter 8: Performance Analysis	M2.1 - M2.4	Lecture	A1, A2
9	Chapter 9: Parallel in matrix computation problems	M2.1 - M2.4	Lecture, Assignment	
	9.1. Numerical algorithm to solve the dense matrix problem			
	9.2.Domain decomposition methods in matrix problems			
	9.3. Write parallel programs using OpenMP, MPI, and CUDA for matrix problems			
10	Chapter 10: Parallel in PDE problems	M2.1 -	Lecture,	A1, A2
	10.1. Numerical approach for PDE problems	M2.4	Assignment	
	10.2.Domain decomposition methods in PDE problems problems			
	10.3. Write parallel programs using OpenMP, MPI, and CUDA for PDE problems			
11	Chapter 11: Parallel in graph problems	M2.1 -	Lecture,	A1, A2
	11.1. Parallel algorithms for some graph problems	M2.4	Assignment	
	11.2. Write parallel programs using OpenMP,			
	MPI, and CUDA for graph problems			
12	Chapter 12: Parallel in sorting problems	M2.1 -	Lecture,	A1, A2
	12.1. Problems when parallelizing sorting algorithms	M2.4	Assignment	
	12.2. Parallel algorithms in sorting problems			
	12.3. Write parallel programs OpenMP, MPI, and CUDA for the sorting problems			
13	Project presentation			A1
14	Project presentation			A1
15	Summary			

7. QUY ĐỊNH CỦA HỌC PHẦN - COURSE REQUIREMENT

(The specific requirements if any)

8. NGÀY PHÊ DUYỆT - DATE:

9. QUÁ TRÌNH CẬP NHẬT - UPDATE INFORMATION

ST T No	Nội dung điều chỉnh Content of the update	Ngày tháng được phê duyệt Date accepted	Áp dụng từ kỳ/ khóa A pplicable from	Ghi chú Note
1				
2				