第二章 线性表 (一)

马嫄 2021/09/17

多项式的表示

[例] 一元多项式及其运算

一元多项式 $f(x) = a_0 + a_1 x + \dots + a_{n-1} x^{n-1} + a_n x^n$

主要运算:多项式相加、相减、相乘等

[分析] 如何表示多项式?

多项式的关键数据:

- > 多项式项数 n
- ▶ 各项系数a_i及指数 i

方法1: 顺序存储结构直接表示

> 数组各分量对应多项式各项:

a[i]: 项 x^i 的系数 a_i

例如: $f(x) = 4x^5 - 3x^2 + 1$

问题: 如何表示多项式 $x + 3x^{2000}$?

表示成:

下标i	0	1	2	3	. 4	5		
a[i]	1	0	-3	0	0	4		
·	1	-3x ²			4x ⁵			

两个多项式相加: 两个数组对应分量相加

方法2: 顺序存储结构表示非零项

- 一每个非零项 $a_i x^i$ 涉及两个信息:系数 a_i 和指数 i可以将一个多项式看成是一个(a_i , i)二元组的集合
- 》用结构数组表示:数组分量是由系数 a_i ,指数i组成的结构,对应一个非零项

例如: $P_1(x) = 9x^{12} + 15x^8 + 3x^2$ 和 $P_2(x) = 26x^{19} - 4x^8 - 13x^6 + 82$

下标i 系数aⁱ

~	•	~	•	•
ŧ	匕日	发	Į	i

0	1	2	
9	15	3	_
12	8	2	_

下标i 系数**a**ⁱ 指数i

0	1	2	3	
26	-4	-13	82	
19	8	6	0	_

(a) $P_1(x)$

(b) $P_2(x)$

按指数大小有序存储!

方法3: 链表结构存储非零项

▶链表中每个结点存储多项式中的一个非零项,包括系数和指数两个数据域以及一个指针域

- 101	LIA NUL	the fall and
系数 a_i	指数i	指针link
		,,,,

例如: $P_1(x) = 9x^{12} + 15x^8 + 3x^2$ 和 $P_2(x) = 26x^{19} - 4x^8 - 13x^6 + 82$

链表存储形式为:

P1
$$\longrightarrow$$
 9 | 12 \longrightarrow 15 | 8 \longrightarrow 3 | 2 NULL
P2 \longrightarrow 26 | 19 \longrightarrow -4 | 8 \longrightarrow -13 | 6 \longrightarrow 82 | 0 NULL

什么是线性表?

多项式表示问题的启示:

- I. 同一个问题可以有不同的表示(存储)方法
- II. 有一类共性问题: 有序线性序列的组织和管理

线性表(Linear List): 由同类型数据元素构成有序序列的线性结构

$$(a_1, a_2, ..., a_i, ..., a_n)$$

其中, a_i 是表中元素,i表示元素 a_i 的位置,n是表的长度

线性表

- □表中元素个数称为线性表的长度
- □ 线性表没有元素时,称为空表
- □ 表起始位置称表头,表结束位置称表尾
- □ 除第一个元素外,每个数据元素均只有一个前驱
- □ 除最后一个元素外,每个数据元素均只有一个后驱

顺序表

- 顺序表是线性表的顺序存储表示
- □ 顺序表采用一组地址连续的存储单元依次存储线性表的数据元素
- □ 顺序表元素的位置:

$$LOC(a_i) = LOC(a_{i-1}) + l$$

$$LOC(a_i) = LOC(a_1) + (i-1)*l$$

l-元素占用的内存单元数

可以在已知第一个元素的存储起始地址,以及每个元素所占用的存储单元个数基础上,直接计算表中任意指定元素的存储地址

顺序表的定义和创建

• 采用C语言中的数组表示(定义)顺序表

表中元素需 要保存

一维数组 存储

*elem

length

顺序表的定义和创建

• 采用C语言中的数组表示(定义)顺序表

下标i 0 1 ······ i-1 i ····· n-1 ····· MAXSIZE-1 Data a_1 a_2 ····· a_i a_{i+1} ····· a_n ···· a_n -

typedef struct{

抽象表示

ElemType *elem; //存储的是数组第一个元素的地址

int length; //顺序表的当前长度

数据类型 /SqList //定义了结构体数据类型SqList, 用于表示顺序表

SqList L;

线性表的长度: L.length; 访问第i个元素: L.elem[i-1]

顺序表的查找

- 根据给定元素的序号进行查找 (通过数组下标定位)
- 根据给定的元素值进行查找

基本思想: 将给定的元素e和顺序表中的每个元素依次进行比较

- ✓ 若找到与e相等的元素,则查找成功,返回其在表中的位序值;
- ✓ 若找遍整个顺序表,没有找到与e相等的元素,则查找失败,返回-1

顺序表的查找

```
int Locate_Sq(SqList L, ElemType e)
{ int i=0;
 while(i<L.length && e!=L.elem[i])</pre>
      i++;
 if (i>=L.length) return -1; //如果没找到,返回-1
 else return i; //找到后返回的是存储位置
```

查找成功的平均比较次数为 (n+1)/2, 平均时间性能为 O(n)。

顺序表的插入

■ 第 $i(1 \le i \le n+1)$ 个位置上插入一个值为X的新元素

下标 i	0	1	•••••	i-1	i	•••••	n-1	•••••	MAXSIZE-1
Data	a ₁	\mathbf{a}_2	•••••	a_{i}	a _{i+1}	•••••	a_n	••••	_

先移动,再插入

下标 i	0	1	••••	i-1	i	i+1	••••	n	•••••	SIZE -1
Data	a_1	a_2	•••••	X	a_i	a_{i+1}		a_n	•••••	-

顺序表的插入

- 在顺序表中,第i个位置上插入一个元素,需要向后移动元素的个数为: n-i+1
- 平均移动元素数为:

$$E_{is} = \sum_{i=1}^{n+1} p_i \times (n-i+1)$$

当插入位置等概论时, $p_i=1/(n+1)$,因此

$$E_{is} = \sum_{i=1}^{n+1} [1/(n+1)] \times (n-i+1) = n/2$$

• 顺序表插入操作的时间复杂度为O(n)

顺序表的插入

```
Status Insert_Sq( SqList &L, int i, ElementType x)
{ if ( i<1 || i>L.length+1) /* 位置不合法*/
    return ERROR;
if (L.length>=MAXSIZE) /* 表空间已满,不能插入*/
    return ERROR;
for ( k=L.length-1; k >= i-1; k--)
    L.elem[k+1]=L.elem[k]; /*将 a_i \sim a_n倒序向后移动*/
L.elem[i-1]=x; /*新元素插入*/
L.length++; /*表长+1*/
return OK;
```


顺序表的删除

■ 删除表的第 $i(1 \le i \le n)$ 个位置上的元素

下标 i	0	1	•••••	i-1	i	•••••	n-1	•••••	MAXSIZE-1
Data	a_1	\mathbf{a}_2	•••	a_{i}	a _{i+1}	•••••	a_n	••••	_

后面的元素依次前移

下标 i	0	1	•••••	i-1	••••	n-2	n-1	••••	MAXSIZE-1
Data	a_1	\mathbf{a}_2	•••••	a _{i+1}		ar	\mathbf{a}_{n}	•	_

顺序表的删除

- 在顺序表中,删除第i个位置上的元素,需要向前移动元素的个数为: n-i
- 平均移动元素数为:

$$E_{dl} = \sum_{i=1}^{n} q_i \times (n-i)$$

当插入位置等概论时, $q_i=1/(n)$,因此

$$E_{is} = \sum_{i=1}^{n} [1/n] \times (n-i) = (n-1)/2$$

• 顺序表删除操作的时间复杂度为O(n)

