Problem Set 5

Parvesh Adi Lachman

October 2023

1 Problem 1

a) Claim: $\forall w, x, y, z \in \mathbb{Z} : 3 \mid (w - y)(w - z)(x - w)(x - y)(x - z)(y - z)$

Proof:

- Let the pigeons (A) be the set $\{x, y, z, w\}$ where $x, y, z, w \in \mathbb{Z}$;
- Let the pigeonholes (B) be the set $\{0,1,2\}$;
- Let $f:A\to B$ be defined f(a):=remainderDivBy3(a). Note that f is a well defined function:
 - 1. for any pigeon $a \in \{x, y, z, w\}$, f(a) = remainderDivBy3(a) is computable because $a \div 3$ is defined,
 - 2. for any pigeon $a \in \{x, y, z, w\}$, if remainderDivBy3(a) = b and remainderDivBy3(a) = c then b = c,
 - 3. for any pigeon $a \in \{x, y, z, w\}$, remainderDivBy3(a) is within the codomain $\{0, 1, 2\}$ by def of divisible by 3

	Mathematical Reasoning	Reason this Statement is True
		(From the Approved List)
\Rightarrow	A = 4	Because $A = \{x, y, z, w\}$
\Rightarrow	B = 3	Because $B = \{0, 1, 2\}$
\Rightarrow	A > B	Since $4 > 3$
\Rightarrow	$\exists a_1, a_2 \in A : [(a_1 \neq a_2) \land (f(a_1) = f(a_2))]$	By def of pigeonhole principle
	(i.e. pigeons $a_1 \neq a_2$ with same pigeonhole)	
\Rightarrow	$a_1, a_2 \in x, y, z, w \land (a_1 \neq a_1)$	By def of A and f
	a_2 \land $(remainderDivBy3(a_1) = 0$	
	$remainder Div By 3(a_2))$	
\Rightarrow	$3 \mid (a_1 - a_2) \text{ and } 3 \mid (a_2 - a_1)$	Since difference of two ints of the
		same function is also divisible by 3,
		and by def of equivalence class
\Rightarrow	at least one of $(w-y), (w-z), (x-w), (x-w)$	Since this is all pairs and $a_1 \neq a_2$
	y), (x-z), (y-z) is divisible by 3	
\Rightarrow	(w-y)(w-z)(x-w)(x-y)(x-z)(y-z)	Since prod of div by 3 ints is still div
	is divisible by 3	by 3
\Rightarrow	$3 \mid (w-y)(w-z)(x-w)(x-y)(x-z)(y-z)$	By def of divisible by 3

b) The claim would hold true. Let us remove (w-z).

Proof:

	Mathematical Reasoning	Reason this Statement is True
		(From the Approved List)
\Rightarrow	A = 4	Because $A = \{x, y, z, w\}$
\Rightarrow	B = 3	Because $B = \{0, 1, 2\}$
\Rightarrow	A > B	Since $4 > 3$
\Rightarrow	$\exists a_1, a_2 \in A : [(a_1 \neq a_2) \land (f(a_1) = a_2)) \land (f(a_1) = a_2) \land (f(a_$	By def of pigeonhole principle
	$f(a_2)$ (i.e. pigeons $a_1 \neq a_2$ with	
	same pigeonhole)	
\Rightarrow	$a_1, a_2 \in x, y, z, w \land (a_1 \neq a_1)$	By def of A and f
	a_2 \land $(remainderDivBy3(a_1) =$	
	$remainder Div By 3(a_2))$	
\Rightarrow	$3 \mid (a_1 - a_2) \text{ and } 3 \mid (a_2 - a_1)$	Since difference of two ints of the same
		function is also divisible by 3, and by
		def of equivalence class
\Rightarrow	at least one of $(w-y), (x-w), (x-w)$	Since this is all pairs and $a_1 \neq a_2$
	y, $(x-z)$, $(y-z)$ is divisible by 3	
\Rightarrow	(w-y)(x-w)(x-y)(x-z)(y-z)	Since prod of div by 3 ints is still div by
	is divisible by 3	3
\Rightarrow	$3 \mid (w-y)(x-w)(x-y)(x-z)(y-z)$	By def of divisible by 3

2 Problem 2

a) Let n be any positive integer, let $A_n=\{1,2,....,n\}$ and let $f_n:\mathcal{P}(A_n)\to\{0,1\}^n$ be defined by $f_n(A)=b_1b_2...b_n$ where

$$b_i = \begin{cases} 1 & \text{if } i \in A \\ 0 & \text{if otherwise} \end{cases} \tag{1}$$

n=1	$A_1 = \{1\}$		
$f_1(\emptyset) = 0$	$f_1(\{1\}) = 1$		
n=2	$A_2 = \{1, 2\}$		
$f_2(\emptyset) = 00$	$f_2(\{1\}) = 10$	$f_2(\{2\}) = 01$	$f_2(\{1,2\}) = 11$
n=3	$A_3 = \{1, 2, 3\}$		
$f_3(\emptyset) = 000$	$f_3(\{1\}) = 100$	$f_3(\{2\}) = 010$	$f_3(\{1,2\}) = 110$
$f_3({3}) = 001$	$f_3(\{1,3\}) = 101$	$f_3(\{2,3\}) = 011$	$f_3(\{1,2,3\}) = 111$

b) **Prove:** $f_n: \mathcal{P}(A_n) \to \{0,1\}^n$ is onto, for any positive integer n.

Formal definition: $\forall b \in B \ \exists a \in A : f(a) = b$.

To prove f, WTS $\forall b \in B \ \exists a \in A : f(a) = b \equiv \text{if } b \in B \text{ then } \exists a \in A : f(a) = b \equiv \text{if } b \in B \text{ then } \exists a \in A : f(a) = b \equiv \text{if } b \in B \text{ then } \exists a \in A : f(a) = b \equiv \text{if } b \in B \text{ then } \exists a \in A : f(a) = b \equiv \text{if } b \in B \text{ then } \exists a \in A : f(a) = b \equiv \text{if } b \in B \text{ then } \exists a \in A : f(a) = b \equiv \text{if } b \in B \text{ then } \exists a \in A : f(a) = b \equiv \text{if } b \in B \text{ then } \exists a \in A : f(a) = b \equiv \text{if } b \in B \text{ then } \exists a \in A : f(a) = b \equiv \text{if } b \in B \text{ then } \exists a \in A : f(a) = b \equiv \text{if } b \in B \text{ then } \exists a \in A : f(a) = b \equiv \text{if } b \in B \text{ then } \exists a \in A : f(a) = b \equiv \text{if } b \in B \text{ then } \exists a \in A : f(a) = b \equiv \text{if } b \in B \text{ then } \exists a \in A : f(a) = b \equiv \text{if } b \in B \text{ then } \exists a \in A : f(a) = b \equiv \text{if } b \in B \text{ then } \exists a \in A : f(a) = b \equiv \text{if } b \in B \text{ then } \exists a \in A : f(a) = b \equiv \text{if } b \in B \text{ then } \exists a \in A : f(a) = b \equiv \text{if } b \in B \text{ then } b \in B \text{ the$

b.

Proof:

	Mathematical Reasoning	Reason this Statement is True
		(From the Approved List)
Suppose	$B \in \{0,1\}^n$	By assumption
\Rightarrow	$b_1b_2b_i \in \{0,1\}$	By def of n
\Rightarrow	$b = b_1 b_2 \dots b_n$	By def of b_i
\Rightarrow	$A = \{i \in A_n \mid b_i = 1\}$	Def of b_i and A
\Rightarrow	$f_n(A) = b' = b'_1 b'_2 b'_n$	By def of f and b'_n
\Rightarrow	$f_n(A) = b_1 b_2 \dots b_n$	Since $b'_i = 1$ iff $i \in A$ iff $b_i = 1$

c) The ChatGPT proof is a direct proof since it assumed that A and B are distinct sets meaning $A \neq B$ and shows that $f(A) \neq f(B)$. Which is a direct proof.

d) A proof by contrapositive: Suppose $a_1a_2\in A$ and $f(a_1)=f(a_2),$ WTS $a_1=a_2$ Proof:

	Mathematical Reasoning	Reason this Statement is True
		(From the Approved List)
Suppose	$if f_n(A) = f_n(B)$	By assumption
WTS	A = B	
\Rightarrow	$b_1b_2b_n = b'_1b'_2b'_n$	By def of f_n
\Rightarrow	$WLOG A = \{i \in A_n \mid b_i = 1\}$	By def of b_i and A
\Rightarrow	$b_1b_2b_n = b'_1b'_2b'_n$	Since $b'_i = 1$ iff $i \in A$ iff $b_i = 1$ defined
		by f_n , since $f_n(A) = f_n(B)$
\Rightarrow	$b_1b_2b_n = b_1b_2b_n$	Since $b'_i = b_i$ iff $i \in A$
\Rightarrow	A = B	By substitution

3 Problem 3

Claim: Let n, k be positive integers such that $k < 2^n$ and let S be a set of nintegers, e.g. $S \subseteq \mathbb{Z}$ and |S| = n. Then there are distinct $U, V \subseteq S$ such that

$$\left[\sum_{x \in U} x\right] \bmod k = \left[\sum_{x \in V} x\right] \bmod k \tag{2}$$

Pigeons: Let the pigeons (A) be possible subsets of S

Pigeonholes: Let the pigeonholes (B) be $\left[\sum_{x\in U}x\right] \mod k$ **Function:** Thus $f(U):=\left[\sum_{x\in U}x\right] \mod k$ such that there exist distinct subsets U and V in S such that f(U)=f(V)

	Mathematical Reasoning	Reason this Statement is True
		(From the Approved List)
\Rightarrow	$ A = 2^n$	By def of A and claim
\Rightarrow	B = k	By def of B since it represents the num-
		ber of possible remainders of the sum-
		mation mod k
\Rightarrow	A > B	Since $k < 2^n$
\Rightarrow	$\exists a_1, a_2 \in A : [(a_1 \neq a_2) \land (f(a_1) = a_2)]$	By def of the Pigeonhole Principle
	$f(a_2)$	
\Rightarrow	$\exists U, V \subseteq S : [(U \neq V) \land]$	By def of f , a_1 being U , and a_2 being
	$\left[\sum_{x \in U} x \mod k = \sum_{x \in V} x \mod k \right]$	V as subsets of S