Test di auto-valutazione

Cognome:

Nome:

Anno di Immatricolazione:

Quanti bit ci sono in 1 Terabyte?

- $\sim 10^3$
- $\sim 10^6$
- $\sim 10^{8}$
- ~ 109
- $\sim 10^{12}$
- ~ 10¹³
- ~ 10¹⁵
- ~ 10¹⁶
- ~ 10¹⁸

Che grandezza misura l'oscilloscopio?

- corrente
- frequenza
- energia
- capacità
- differenza di potenziale
 - oscillazione
 - temperatura
 - campo elettrico
 - induttanza

Quanto vale l'impedenza in ingresso di un oscilloscopio?

~ 10Ω

Se pensavano al bottone a 50Ω

~ 1MΩ

 $\sim 50 M\Omega$

 $\sim 1G\Omega$

 $\sim 100G\Omega$

 $\sim 5T\Omega$

~ 100TΩ

Quanta RAM ha il vostro pc o smartphone?

- ~ 1Kb
- ~ 100KB
- ~ 1MB
- ~ 1GB
- ~ 100GB
- ~ 1Tb
- ~ 10TB
- ~ 1PB
- ~ 1Pb

Quanta corrente può fornire la porta USB di un

computer?

- $\sim 1 \text{mA}$
- ~ 10mA
- $\sim 1kA$
- ~ 1A
 - ~ 10A
 - ~ 1nA
 - ~ 1MA
 - ~1GA

Qual è la velocità di banda di un dispositivo USB?

- ~ 1Kb/s
- ~ 10Kb/s
- ~ 10KB/s
- ~1Mb/s
- ~ 1MB/s
- ~ 10GB/s

Scrivere il codice C/C++ per fare il prodotto dei primi *n* numeri interi

```
int n = <numero voluto>;
int prodotto = 1;

for (int ii=0; ii<n; ii++) {
      prodotto *= i;
}</pre>
```

questo codice è ovviamente stupido in quanto si parte da 0 (è un intero) quindi il prodotto farà zero...

Quanto vale l'AND fra i numeri binari "01010100" e "10010001"?

- 01010100
- 10010001
- 10000000
- 10010001
- 10101010
- 11111111
- 00000000
- 00010100

la risposta giusta non c'era... 00010000

Qual è la velocità di upload della vostra ADSL di casa?

- ~ 56Kb/s
- ~ 128Kb/s
- ~ 20Mb/s
- ~ 20MB/s
- ~ 10Gb/s
- ~ 10GB/s
- ~ 1MB/s

Quale è la frequenza della tensione di rete?

- 8Hz
- 440Hz
- 50Hz
- 220Hz
- 44100Hz
- 16Hz
- 666Hz
- 130Hz
- 110Hz

Quanto vale V?

- 9V
- 4.5V
- 0.9V

E*R2/(R1+R2)

- 5V
- 3.5V
- 90V
- 0.9mV
- 1V
- 500V

Quanta potenza consuma un asciugacapelli?

- ~ 100W
- ~ 1GW
- ~ 1MW
- ~ 1kW
- ~ 10W
- ~ 1nW
- $\sim 1 \mu W$
- ~ 10kW
- ~ 1mW

Quanta potenza è in grado di dissipare un resistore standard prima di rompersi?

- ~0.25W
- ~0.33mW
- ~ 0.2MW
- ~ 12kW
- ~ 45W
- ~ 1.5nW
- $\sim 0.2 \mu W$
- ~ 15kW

Quale è l'accuratezza di questa misura?

- 1V
- 0.1V
- 0.01V
- 1mV
- 10V
- 100V
- 1µV
- 1kV
- 1nV

Un laser verde emette fotoni a quale lunghezza d'onda?

- ~ 2m
- ~ 500km
- ~ 70mm
- ~ 20nm
- ~ 300nm
- ~ 200pm
- $\sim 3\mu m$
- ~ 2km

Quale è la massima frequenza udibile dall'orecchio umano?

- ~ 1Hz
- ~ 200Hz
- ~ 1kHz
- ~3MHz
- ~2GHz
- ~ 100MHz
- ~ 2THz
- ~ 20kHz

Quanti caratteri differenti possono essere rappresentati con un codice ASCII a 7 bit?

- 10⁷
- 7¹⁰
- 128 che sì, è 27...
 - 2256
 - 2128
 - **7**²
 - 256
 - 96

```
"#$%&'()*+,-.
0123456789:;<=>?
@ABCDEFGHIJKLMNO
PQRSTUVWXYZ[\]^
`abcdefghijklmno
pqrstuvwxyz{
```

Quale è il massimo numero intero scrivibile con un *int* (32 bit)?

Table 7—simple-type-specifiers and the types they specify

- 2³²
- 2³¹
- 2³²-1
- · 2³¹-1

"-1" perché c'è lo 0

"31" perché un bit per il segno

- 10³²
- 10³¹
- 10³²-1
- 10³¹-1

1 11 1 1 1 1				
Specifier(s)	Type			
type-name	the type named			
char	"char"			
unsigned char	"unsigned char"			
signed char	"signed char"			
bool	"bool"			
unsigned	"unsigned int"			
unsigned int	"unsigned int"			
signed	"int"			
signed int	"int"			
int	"int"			
unsigned short int	"unsigned short int"			
unsigned short	"unsigned short int"			
unsigned long int	"unsigned long int"			
unsigned long	"unsigned long int"			
signed long int	"long int"			
signed long	"long int"			
long int	"long int"			
long	"long int"			
signed short int	"short int"			
signed short	"short int"			
short int	"short int"			
short	"short int"			
wchar_t	"wchar_t"			
float	"float"			
double	"double"			
long double	"long double"			
void	"void"			

Attraverso una resistenza R=10±0.5 k Ω scorre una corrente di 10±0.5 mA. Con che accuratezza conosciamo il ΔV ai capi di R?

~ 100V

 $\sim 0.5 V$

~ 1V

~ 25%

 $\sim 0.25 \text{V}$

Se la somma degli errori relativi è fatta lineare invece che in quadratura

Quanto vale la differenza di potenziale ai capi di un diodo scollegato?

