```
import numpy as np
import scipy.stats as stats
```

1-4 задачи решать с помощью функций, 5ю вручную

Выбрать тест и проверить, есть ли различия между выборками:

Задача 1. Даны две независимые выборки. Не соблюдается условие нормальности x1 380,420, 290 y1 140,360,200,900

Сделайте вывод по результатам, полученным с помощью функции

Для решения данной задачи выбираем критерий Манна-Уитни

```
alpha = 0.05
x1 = np.array([380, 420, 290])
y1 = np.array([140, 360, 200, 900])
stats.mannwhitneyu(x1, y1)

MannwhitneyuResult(statistic=8.0, pvalue=0.6285714285714286)
```

Ответ: Так как pvalue > alpha, то это дает нам право сделать выбор в пользу нулевой гипотезы H0, статистически значимых отличий нет.

Задача 2. Исследовалось влияние препарата на уровень давления пациентов. Сначала измерялось давление до приема препарата, потом через 10 минут и через 30 минут. Есть ли статистически значимые различия?

1е измерение до приема препарата: 150, 160, 165, 145, 155 2е измерение через 10 минут: 140, 155, 150, 130, 135 3е измерение через 30 минут: 130, 130, 120, 130, 125

Для решения данной задачи выбираем критерий Фридмана

```
alpha = 0.05
x1 = np.array([150, 160, 165, 145, 155])
x2 = np.array([140, 155, 150, 130, 135])
x3 = np.array([130, 130, 120, 130, 125])

stats.friedmanchisquare(x1, x2, x3)

FriedmanchisquareResult(statistic=9.578947368421062, pvalue=0.00831683351100441)
```

Ответ: Так как pvalue < alpha, то это дает нам право сделать выбор в пользу H1 гипотезы, H0 гипотеза отвергается, есть статистически значимые отличия

Задача 3. Сравните 1 и 2е измерения, предполагая, что 3го измерения через 30 минут не было.

Для решения данной задачи выбираем критерий Уилкоксона

```
alpha = 0.05
x1 = np.array([150, 160, 165, 145, 155])
x2 = np.array([140, 155, 150, 130, 135])
stats.wilcoxon(x1, x2)
WilcoxonResult(statistic=0.0, pvalue=0.0625)
```

Ответ: Так как pvalue > alpha, то это дает нам право сделать выбор в пользу нулевой гипотезы H0, статистически значимых отличий

Задача 4. Даны 3 группы учеников плавания. В 1 группе время на дистанцию 50 м составляют: 56, 60, 62, 55, 71, 67, 59, 58, 64, 67 Вторая группа : 57, 58, 69, 48, 72, 70, 68, 71, 50, 53 Третья группа: 57, 67, 49, 48, 47, 55, 66, 51, 54

Для решения данной задачи выбираем критерий Крускала-Уоллиса

```
alpha = 0.05
x1 = np.array([56, 60, 62, 55, 71, 67, 59, 58, 64, 67])
x2 = np.array([57, 58, 69, 48, 72, 70, 68, 71, 50, 53])
x3 = np.array([57, 67, 49, 48, 47, 55, 66, 51, 54])
stats.kruskal(x1, x2, x3)
KruskalResult(statistic=5.465564058257224, pvalue=0.0650380998590494)
```

Ответ: Так как pvalue > alpha, то это дает нам право сделать выбор в пользу нулевой гипотезы H0, статистически значимых отличий нет.

Задача 5. Заявляется, что партия изготавливается со средним арифметическим 2,5 см. Проверить данную гипотезу, если известно, что размеры изделий подчинены нормальному закону распределения. Объем выборки 10, уровень статистической значимости 5%.

2.51, 2.35, 2.74, 2.56, 2.40, 2.36, 2.65, 2.7, 2.67, 2.34

```
 \begin{array}{l} X = np.array([2.51,\ 2.35,\ 2.74,\ 2.56,\ 2.40,\ 2.36,\ 2.65,\ 2.7,\ 2.67,\ 2.34]) \\ alpha = 0.05 \\ n = 10 \\ mu = 2.5 \end{array}
```

Так как неизвестна σ генеральной совокупности, то для проверки гипотезы будем использовать t-критерий:

$$t=rac{X \mathsf{cp} - \mu}{\sigma \mathsf{H}/\sqrt{n}}$$

Табличное значение t-критерия tтабл.= 2.2622, расчётное tрасч. = 0.56

Ответ: Так как tтабл. > tpacч., то принимаем нулевую гипотезу H0