3 3 9 1 2 1 7 6 4 8 9 4 3 7 5 9 2 7 3 5 1 3









3 3 9 1 2 1 7 6 4 8 9 4 3 7 5 9 2 7 3 5 1 3

3 3 9 1 2 1 7 6 4 8 9 4 3 7 5 9 2 7 3 5 1 3



3 3 9 1 2 1 7 6 4 8 9 4 3 7 5 2 9 7 3 5 1 3









#### Input

- sequence of length  $N = 10^6$
- values in the range  $[-10^9, 10^9]$
- ▶  $10^5$  (online) queries of either type  $Q_1$  or  $Q_2$

#### Task

► report the answer to queries of type  $Q_1$  considering the updates  $Q_2$ 

## Wavelet Trees for Competitive Programming

Robinson Castro, Nico Lehmann, Jorge Pérez, Bernardo Subercaseaux

Universidad de Chile, École Centrale Paris

#### Wavelet Tree

- $\triangleright$  represents sequences over a (potentially big) alphabet  $\Sigma$
- ▶ basic (tree) structure can be built in  $O(N \times \log |\Sigma|)$
- ▶ answer several interesting queries in time  $O(\log |\Sigma|)$

#### Wavelet Tree

- ightharpoonup represents sequences over a (potentially big) alphabet  $\Sigma$
- ▶ basic (tree) structure can be built in  $O(N \times \log |\Sigma|)$
- ▶ answer several interesting queries in time  $O(\log |\Sigma|)$
- can be smoothly composed with more classical structures

#### 3 SPOJ problems solvable with Wavelet Trees

|       | Submitted | Accepted |
|-------|-----------|----------|
| ILKQ1 | 49        | 9        |
| ILKQ2 | 32        | 6        |
| ILKQ3 | 35        | 2        |

Submissions until April 2016

#### 3 SPOJ problems solvable with Wavelet Trees

|       | Submitted | Accepted |
|-------|-----------|----------|
| ILKQ1 | 49        | 9        |
| ILKQ2 | 32        | 6        |
| ILKQ3 | 35        | 2        |

Submissions until April 2016

# The Wavelet Tree

3 3 9 1 2 1 7 6 4 8 9 4 3 7 5 9 2 7 3 5 1 3

 3
 3
 9
 1
 2
 1
 7
 6
 4
 8
 9
 4
 3
 7
 5
 9
 2
 7
 3
 5
 1
 3

 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1



3 3 9 1 2 1 7 6 4 8 9 4 3 7 5 9 2 7 3 5 1 3













































































# Queries

















































#### Wavelet Trees support many other queries

- ▶ How many elements with values between a and b?
- Rectangular queries in a grid
- ▶ Augment with other structures in every level

#### Wavelet Trees support many other queries

- ▶ How many elements with values between a and b?
- Rectangular queries in a grid
- Augment with other structures in every level
- Push/pop back/front

#### Wavelet Trees support many other queries

- ▶ How many elements with values between a and b?
- Rectangular queries in a grid
- Augment with other structures in every level
- Push/pop back/front

#### and with a bit more effort

► Update the value of arbitrary elements in the list (not in the paper)













https://github.com/nilehmann/wavelet-tree

# Performance



200ms for input of size  $10^6$ 2s for input of size  $10^7$ 



 $10^6$  rank queries in 1s for input of size  $10^6$ .



 $\sim 10^6$  quantile queries in 1s for input of size  $10^6. \,$ 



 $\sim 10^5$  range queries in 1s for input of size  $10^6.$ 

|       | Submitted | Accepted |
|-------|-----------|----------|
| ILKQ1 | 49        | 9        |
| ILKQ2 | 32        | 6        |
| ILKQ3 | 35        | 2        |

Submissions until April 2016

|       | Submitted | Accepted |
|-------|-----------|----------|
| ILKQ1 | 49        | 9        |
| ILKQ2 | 32        | 6        |
| ILKQ3 | 35        | 2        |

Submissions until April 2016

As of today:

|       | Submitted | Accepted |
|-------|-----------|----------|
| ILKQ1 | 49        | 9        |
| ILKQ2 | 32        | 6        |
| ILKQ3 | 35        | 2        |

Submissions until April 2016

As of today: two users submitted correct solutions using Wavelet Trees!

### Wavelet Trees for Competitive Programming

Robinson Castro, Nico Lehmann, Jorge Pérez, Bernardo Subercaseaux

Universidad de Chile, École Centrale Paris

#### Outline

Motivation

The Wavelet Tree

Queries

**Implementation** 

Performance

Conclusions