

Instituto Politécnico Nacional

Escuela Superior de Cómputo

ESQUELETIZACIÓN DEL CUERPO HUMANO

(MEX - CULTURE)

EQUIPO:

FLORES ISLAS GUADALUPE OROZCO GARCÍA MARIANO

(MEX-CULTURE)

MULTIMEDIA LIBRARIES
INDEXING FOR
PRESERVATION AND
DISSEMINATION OF THE
MEXICAN CULTURE

INTRODUCCIÓN

- En esta investigación se buscó clasificar material multimedia sobre la cultura mexicana de manera rápida y eficaz.
- Utilizamos Matlab, una herramienta de software matemático, para la creación del descriptor de video.

DESCRIPTOR

DE IMAGEN Y VIDEO

¿QUÉ ES UNA ESQUELETIZACIÓN?

- También es llamado esqueleto morfológico.
- Esta ubicada al centro de la forma original.
- Es una línea de solo un pixel de espesor.

ESQUELETO

 Nos ayuda a conocer la existencia de personas en un fotograma. Así como su posición y con está tener una idea de las acciones que realiza.

El lugar geométrico por donde pasan los centros de los discos máximos contenidos dentro de la forma.

DISTANCIA GEODÉSICA

Es la distancia mínima que Matemáticamente: une dos puntos dentro de una región.

$$Geod(A_i, A_j) = \sum_{k=1}^{n-1} d(a_k, a_{k+1})$$

Donde:

- Ai y Aj son el punto de origen y el de partida.
- $d(a_k,a_{k+1})$ es la distancia entre el pixel actual y el adyacente dentro de la región.

DESCOMPOSICIÓN DE FIGURAS

- Es la extracción de las partes significativas de un objeto.
- En este caso serán las partes del cuerpo.
- La descomposición se rige por reglas de percepción:
 - ✓ Convexidad aproximada de las partes
 - ✓ Cortes entre muescas con mayor concavidad.
 - ✓ Cortes *cortos*.

PROCESO...

..de esqueletización del cuerpo humano

ETAPAS

Imagen Original Imagen Binaria

Etiquetas

- Pre-procesado:
 - Segmentación
 - Binarización
- Descomposición
- Etiquetado

- Distancias geodésicas
- Esqueleto

IMAGEN ORIGINAL

BINARIZACIÓN DEL OBJETO Y CAPARAZÓN CONVEXO

CORTE EN 2 SECCIONES CON MAYOR SOLIDEZ

DESCOMPOSICIÓN CONVEXA

MAPEO DE DISTANCIAS GEODÉSICAS

TRAYECTORIAS GEODÉSICAS E INTERSECCIÓN DE PARTES CONVEXAS

ESQUELETIZACIÓN DEL OBJETO

OTRAS APLICACIONES

OTRAS APLICACIONES

CONCLUSIONES

- Se diseño para analizar el video a partir de imágenes, por lo que una etapa de segmentación, que no se incluye en el presente trabajo, es requerida previo a este algoritmo y una posterior etapa de interpretación de datos.
- El programa presentado es simple y lo suficientemente general.
- El programa es una aproximación y sin embargo es suficientemente buena para los fines que son requeridos; sacrifica exactitud pero optimiza tiempos de ejecución.

REFERENCIAS:

- 1. Skeletonization of labeled gray-tone images, Carlo Arcelli, Luca Serino, Elsevier, Junio 29, 2004.
- 2. A Method of Perceptual-based Shape Decomposition, Chang Ma, et al, IEEE publication.
- 3. Approximate convex decomposition and its applications, Jyh-Ming Lien, Doctor grade Tesis, Texas A&M University, December 2006.
- 4. Approximate convex decomposition of polygons, Jyh-Ming Lien, Nancy M. Amanto, Elsevier, 20 Julio 2005.
- 5. A Robust Method for Human Pose Estimation based on Geodesic Distance Features, Sebastian Handrich and Ayoub Al-Hamadi Institute of Information Technology and Communications, IEEE International Conference, 2013.

REFERENCIAS:

- 6. An Efficient Algorithm for Approximating Geodesic Distances in Tree Space, Simone Battagliero, Giuseppe Puglia, Saverio Vicario, Francesco Rubino, Gaetano Scioscia, and Pietro Leo, IEEE/ACM Transaction on computacional biology and bioinformatics, Vol. 8 No. 5, September/October 2011.
- 7. MinimumNear-Convex Decomposition for Robust Shape Representation, Zhou Ren, Junsong Yuan Chunyuan Li, Wenyu Liu Nanyang Technological University, Singapore Huazhong Univ. of Sci. & Tech., P.R. China.
- 8. Parts-based 2D shape decomposition by convex hull, Lili Wan Institute of Information Science, Beijing Jiaotong University, Beijing 100044, P.R. China, IEEE International Conference on shape modeling and applications, 2009.
- 9. Weak Convex Decomposition by Lines-of-sight, Shmuel Asafi Avi Goren Daniel Cohen-Or, School of Computer Science, Tel Aviv University, Eurographics Symposium on Geometry Processing, Volume 32, Number 5, 2013.

GRACIAS