- 1. For each given regular expression P, construct a DFA (Deterministic Finite Automaton), and find the number of accepted word of length at most 5, i.e. the size of the set $\mathcal{L}' = \{w \in \mathcal{L}(P) \mid |w| \leq 5\}$. For "any" (.) and "negative" ([^.]) matches, assume that the alphabet is $\Sigma = \{a, b, c, d\}$.
 - (a) $P_1 = ab*$

- (c) $P_3 = [^cd] + c{3}$
- (e) $P_5 = d(a|bc)*$

(b) $P_2 = a+b?c$

- (d) $P_4 = [\hat{a}] (.|ddd)$?
- (f) $P_6 = ((a|ab)[cd]){2}$
- 2. Describe the set of strings defined by each of these sets of productions in EBNF[™] (extended Backus-Naur form).
 - (a) $\langle string \rangle ::= \langle L \rangle + \langle D \rangle ? \langle L \rangle +$
 - $\langle L \rangle$::= a | b | c
 - $\langle D \rangle$::= 0 | 1
 - (b) $\langle string \rangle ::= \langle sign \rangle ? \langle N \rangle$

- $\langle N \rangle \qquad ::= \langle D \rangle (\langle D \rangle \mid 0)^*$
- $\langle D \rangle$::= 1 | ... | 9

- (c) $\langle string \rangle ::= \langle L \rangle^* (\langle D \rangle +)? \langle L \rangle^*$
 - $\langle L \rangle$::= x | y
 - $\langle D \rangle$::= 0 | 1
- (d) $\langle string \rangle ::= \langle C \rangle \langle R \rangle^*$
 - $\langle C \rangle$::= a | ... | z | A | ... | Z
 - $\langle D \rangle$::= 0 | ... | 9
 - $\langle R \rangle$::= $\langle C \rangle \mid \langle D \rangle \mid '$ _'
- 3. Let $\mathcal{G} = \langle V, T, S, P \rangle$ be the phrase-structure grammar with vocabulary $V = \{A, S\}$, terminal symbols $T = \{0, 1\}$, start symbol S = S, and set of productions $P: S \to 1S$, $S \to 00A$, $A \to 0A$, $A \to 0$.
 - (a) Show that 111000 belongs to the language generated by G.
 - (b) Show that 11001 does not belong to the language generated by \mathcal{G} .
 - (c) What is the language generated by G?
- 4. Find the output generated from the input string 01110 for each of the following Mealy machines.

- 5. Construct a Moore machine for each of the following descriptions.
 - (a) Determine the residue modulo 3 of the input treated as a binary number. For example, for input ε (which corresponds to "value" 0) the residue is 0; 101 (5 in decimal) has residue 2; and 1010 (value 10) has residue 1.
 - (b) Output the residue modulo 5 of the input from $\{0, 1, 2\}^*$ treated as a ternary (base 3) number.
 - (c) Output *A* if the binary input ends with 101; output *B* if it ends with 110; otherwise output *C*.
- 6. Show that regular languages are *closed* under the following operations.
 - (a) Union, that is, if L_1 and L_2 are regular languages, then $L_1 \cup L_2$ is also regular.
 - (b) Concatenation, that is, if L_1 and L_2 are regular languages, then $L_1 \cdot L_2$ is also regular.
 - (c) Kleene star, that is, if L is a regular language, then L^* is also regular.
 - (d) Complement, that is, if L is a regular language, then $\overline{L} = \Sigma^* L$ is also regular.
 - (e) Intersection, that is, if L_1 and L_2 are regular languages, then $L_1 \cap L_2$ is also regular.

- 7. Determine whether the following languages are regular or not. For non-regular languages, use Pumping lemma to prove that they are not regular. For each regular language, provide a regular expression and construct an ε -NFA.
 - (a) $L_1 = \{ w \in \{0, 1\}^* \mid \text{length of } w \text{ is odd} \}$
 - (b) $L_2 = \{0^n 1^n \mid n \in \mathbb{N}\}$
 - (c) $L_3 = \{w \in \{0, 1\}^* \mid w \text{ contains an even number of 1s}\}$
 - (d) $L_4 = \{1^{n^2} \mid n \in \mathbb{N}\}$
- 8. Consider a finite-state automaton $M = (\Sigma, Q, q_0, F, \delta)$ and a non-negative integer k. Let R_k be the relation on the set of states of M such that s R_k t if and only if for every input string $w \in \Sigma^*$ with $|w| \le k$, $\delta(s, w)$ and $\delta(t, w)$ are both final states or both not final states. Furthermore, let R^* be the relation on the set of states of M such that s R^* t if and only if for every input string $w \in \Sigma^*$, regardless of length, $\delta(s, w)$ and $\delta(t, w)$ are both final states or both not final states.
 - (a) Show that for every nonnegative integer k, R_k is an equivalence relation on S. Two states s and t are called k-equivalent if s R_k t.
 - (b) Show that R^* is an equivalence relation on S. Two states s and t are called *-equivalent if s R^* t.
 - (c) Show that if two states s and t are k-equivalent (k > 0), then they are also (k 1)-equivalent.
 - (d) Show that the equivalence classes of R_k are a refinement of the equivalence classes of R_{k-1} .
 - (e) Show that if two states s and t are k-equivalent for every non-negative integer k, then they are *-equivalent.
 - (f) Show that all states in a given R^* -equivalence class are final or all are not final.
 - (g) Show that if two states s and t are *-equivalent, then $\delta(s,a)$ and $\delta(t,a)$ are also *-equivalent for all $a \in \Sigma$.
- 9. Consider the finite-state automaton $M = (\Sigma, Q, q_0, F, \delta)$ depicted below.

- (a) Find the k-equivalence classes of M for k = 0, 1, 2, 3.
- (b) Find the *-equivalence classes of *M*.
- (c) Construct the quotient automaton M of M.
 - ▶ The quotient automaton \overline{M} of the deterministic finite-state automaton $M = (\Sigma, S, s_0, F, \delta)$ is the finite state automaton $\overline{M} = (\Sigma, \overline{S}, [s_0]_{R^*}, \overline{F}, \overline{\delta})$, where the set of states \overline{S} is the set of R^* -equivalence classes of S; the transition function $\overline{\delta}$ is defined by $\overline{\delta}([s]_{R^*}, a) = [\delta(s, a)]_{R^*}$ for all states $[s]_{R^*}$ of \overline{M} and input symbols $a \in \Sigma$; and \overline{F} is the set consiting of R^* -equivalence classes of final states of M.

10. Solve the following regex crosswords¹. Fill each cell with a single ASCII character (an uppercase letter, a digit, a punctuation mark, or a space). Each row/column, when read left to right or top to bottom must match the regular expression(s) given for that row/column.

(SPEAK)	TO Ex				Ŕ	(*)/A)×	(.) (?) (?)	(NO		, \$\chi^{\chi}
HE LL O+				(Y F	F)(.)\2[DAF]\1					
[PLEASE]+				J)	J 0 I)*T[FRO]+					
	•	_			[KANE]*[GIN]*					
(.)*DO\1	[RUNT] * D. * [HAT]				(CAT A-T)+ [^KI\sP]+ [MA\-\sE]+ (M APS EA)					EA)*
(,) ₁₂ (c) (soly x) x				.*L+ (EP ST)*						
.[LUH]+				.*L+	(EP	ST)*				
(P K)[^U]+				[PUF\s]*	T [<i>I</i>	A-Z]∗				
.*C+[TIF]				[TIC]*		.M.T				
(NO ONE ION)*				[NOI\sE]+	.*P.[S	S-X]+				
	(D)	`*^^	(TW) (E)*	, (*) (*)						

¹ Credits: https://regexcrossword.com