

HEXFET® Power MOSFET

V _{DS}	30	٧
V _{gs max}	± 20	٧
$R_{DS(on) max}$ (@V _{GS} = 10V)	3.1	$\mathbf{m}\Omega$
$(@V_{GS} = 4.5V)$	4.6	
Q _{g typ}	19	nC
I _D (@T _{c(Bottom)} = 25°C)	50 ⑦	A

Applications

• Synchronous MOSFET for high frequency buck converters

Features and Benefits

Features

Low Thermal Resistance to PCB (< 1.7°C/W)
Low Profile (<1.2mm)
Industry-Standard Pinout
Compatible with Existing Surface Mount Techniques
RoHS Compliant Containing no Lead, no Bromide and no Halogen
MSL1, Consumer Qualification

Benefits

	Enable better thermal dissipation
results in	Increased Power Density
\Rightarrow	Multi-Vendor Compatibility
	Easier Manufacturing
	Environmentally Friendlier
	Increased Reliability

Oudemable west sussibles	Balana Tana		Standard Pack		
Orderable part number	Package Type	Form	Quantity	Note	
IRFH8318TRPBF	PQFN 5mm x 6mm	Tape and Reel	4000		
IRFH8318TR2PBF	PQFN 5mm x 6mm	Tape and Reel	400	EOL notice # 259	

Absolute Maximum Ratings

	Parameter	Max.	Units
V_{DS}	Drain-to-Source Voltage	30	V
V _{GS}	Gate-to-Source Voltage	± 20	□
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V	27	
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 10V	21	
I _D @ T _{C(Bottom)} = 25°C	Continuous Drain Current, V _{GS} @ 10V	120®⑦	1
I _D @ T _{C(Bottom)} = 100°C	Continuous Drain Current, V _{GS} @ 10V	76® Ø	- A
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V (Package Limited)	50⑦	
I _{DM}	Pulsed Drain Current ①	400	
P _D @T _A = 25°C	Power Dissipation ^⑤	3.6	14/
P _D @T _{C(Bottom)} = 25°C	Power Dissipation ^⑤	59	W
	Linear Derating Factor ®	0.029	W/°C
T _J	Operating Junction and	-55 to + 150	°C
T _{STG}	Storage Temperature Range		°C

Notes ① through ⑦ are on page 9

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
BV _{DSS}	Drain-to-Source Breakdown Voltage	30			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		0.019		V/°C	Reference to 25°C, I _D = 1.0mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		2.5	3.1	mΩ	V _{GS} = 10V, I _D = 20A ③
, ,			3.6	4.6	ms2	V _{GS} = 4.5V, I _D = 16A ③
$V_{GS(th)}$	Gate Threshold Voltage	1.35	1.8	2.35	V	$V_{DS} = V_{GS}$, $I_D = 50\mu A$
$\Delta V_{GS(th)}$	Gate Threshold Voltage Coefficient		-6.0		mV/°C	$\mathbf{v}_{\mathrm{DS}} = \mathbf{v}_{\mathrm{GS}}, \mathbf{v}_{\mathrm{D}} = 30\mu\mathrm{A}$
I _{DSS}	Drain-to-Source Leakage Current			1	uА	$V_{DS} = 24V, V_{GS} = 0V$
				150	μΑ	$V_{DS} = 24V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			100	nA	$V_{GS} = 20V$
	Gate-to-Source Reverse Leakage			-100	TIA	V _{GS} = -20V
gfs	Forward Transconductance	81			S	$V_{DS} = 10V, I_D = 20A$
Q_g	Total Gate Charge		41		nC	$V_{GS} = 10V, V_{DS} = 15V, I_D = 20A$
Q_q	Total Gate Charge		19			
Q _{gs1}	Pre-Vth Gate-to-Source Charge		5.8			$V_{DS} = 15V$
Q _{gs2}	Post-Vth Gate-to-Source Charge		2.3		nC	$V_{GS} = 4.5V$
Q_{qd}	Gate-to-Drain Charge		4.4			$I_D = 20A$
Q_{godr}	Gate Charge Overdrive		6.5			
Q _{sw}	Switch Charge (Q _{gs2} + Q _{gd})		6.7			
Q _{oss}	Output Charge		18		nC	$V_{DS} = 16V, V_{GS} = 0V$
R _G	Gate Resistance	T	1.7		Ω	
t _{d(on)}	Turn-On Delay Time		15			$V_{DD} = 15V, V_{GS} = 4.5V$
t _r	Rise Time		33		ns	$I_D = 20A$
t _{d(off)}	Turn-Off Delay Time		18] 115	$R_G=1.8\Omega$
t _f	Fall Time		12			
C _{iss}	Input Capacitance		3180			$V_{GS} = 0V$
C _{oss}	Output Capacitance		700		pF	$V_{DS} = 10V$
C _{rss}	Reverse Transfer Capacitance		270			f = 1.0MHz

Avalanche Characteristics

	Parameter	Тур.	Max.	Units
E _{AS}	Single Pulse Avalanche Energy ©		160	mJ
IAR	Avalanche Current ①		20	Α

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			50⑦		MOSFET symbol
	(Body Diode)					showing the
I _{SM}	Pulsed Source Current			400	A	integral reverse
	(Body Diode) ①			400		p-n junction diode.
V_{SD}	Diode Forward Voltage			1.0	V	$T_J = 25^{\circ}C$, $I_S = 20A$, $V_{GS} = 0V$ ³
t _{rr}	Reverse Recovery Time		16	24	ns	$T_J = 25^{\circ}C$, $I_F = 20A$, $V_{DD} = 15V$
Q _{rr}	Reverse Recovery Charge		35	53	nC	di/dt = 380A/µs ③
t _{on}	Forward Turn-On Time	Time is	domina	ted by pa	arasitic I	nductance

Thermal Resistance

	Parameter	Тур.	Max.	Units
R _{θJC} (Bottom)	Junction-to-Case		1.7	
R _{eJC} (Top)	Junction-to-Case		32	°C/W
$R_{\theta JA}$	Junction-to-Ambient ^⑤		35	
R _{0JA} (<10s)	Junction-to-Ambient ®		22	

Fig 1. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 5. Typical Capacitance vs.Drain-to-Source Voltage

Fig 2. Typical Output Characteristics

Fig 4. Normalized On-Resistance vs. Temperature

Fig 6. Typical Gate Charge vs.Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 9. Maximum Drain Current vs. Case (Bottom) Temperature

Fig 8. Maximum Safe Operating Area

Fig 10. Threshold Voltage vs. Temperature

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case (Bottom)

Fig 12. On-Resistance vs. Gate Voltage

Fig 13. Maximum Avalanche Energy vs. Drain Current

Fig 14a. Unclamped Inductive Test Circuit

Fig 14b. Unclamped Inductive Waveforms

Fig 15a. Switching Time Test Circuit

Fig 15b. Switching Time Waveforms

Fig 16. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

Vgs(th)

Qgs1 Qgs2 Qgd Qgodr

Fig 17. Gate Charge Test Circuit

Fig 18. Gate Charge Waveform

PQFN 5x6 Outline "E" Package Details

TOP VIEW

STARO	OUTLINE PQFN 5X6E			
Str.	MIN.	NOM	MAX.	
Α	0.90	1.03	1.1 7	
b	0.33	0.41	0.48	
С	0.20	0.25	0.35	
D	4.80	4.98	5.15	
D1	3.91	4.11	4.31	
D 2	4.80	4.90	5.00	
Е	5.90	6.02	6.15	
E1	5.65	5.75	5.85	
E2	1.10	_	_	
е		1.27 BSC)	
L	0.05	0.1 5	0.25	
L1	0.38	0.44	0.50	
L2	0.51	0.68	0.86	
Н	3.32	3.45	3.58	
I			0.18	

BOTTOM VIEW

For footprint and stencil design recommendations, please refer to application note AN-1154 at $\underline{ http://www.irf.com/technical-info/appnotes/an-1154.pdf}$

PQFN 5x6 Outline "E" Part Marking

Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/

-Reel Width (W1)

PQFN 5x6 Outline "E" Tape and Reel

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

	DIMENS	SION (MM)	DIMENS	ION (INCH)
CODE	MIN	MAX	MIN	MAX
Ao	6.20	6.40	.244	.252
Во	5.20	5.40	.205	.213
Ko	1.10	1.30	.043	.051
P ₁	7.90	8.10	.311	.319
W	11.80	12.20	.465	.480
W ₁	12.30	12.50	.484	.492
Qty	4000			
Reel Diameter			13 Inches	

CODE	DESCRIPTION
Ao	Dimension design to accommodate the component width
Во	Dimension design to accommodate the component lenght
Ko	Dimension design to accommodate the component thickness
W	Overall width of the carrier tape
P ₁	Pitch between successive cavity centers

Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/

Qualification information[†]

Qualification level	Consumer ^{††}		
	(per JEDEC JESD47F ^{†††} guidelines)		
Moisture Sensitivity Level	PQFN 5mm x 6mm	MSL1	
		(per JEDEC J-STD-020D ^{†††})	
RoHS compliant	Yes		

- † Qualification standards can be found at International Rectifier's web site http://www.irf.com/product-info/reliability
- †† Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information: http://www.irf.com/whoto-call/salesrep/
- ††† Applicable version of JEDEC standard at the time of product release.

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Starting $T_J = 25$ °C, L = 0.78mH, $R_G = 50\Omega$, $I_{AS} = 20$ A.
- $\ \, \oplus \, \, \mathsf{R}_{\theta}$ is measured at T_{J} of approximately 90°C.
- ⑤ When mounted on 1 inch square 2 oz copper pad on 1.5x1.5 in. board of FR-4 material.
- $\hbox{ @ Calculated continuous current based on maximum allowable junction temperature.}\\$
- ② Current is limited to 50A by source bonding technology.

Revision History

Date	Comment	
	Updated ordering information to reflect the End-Of-life (EOL) of the mini-reel option (EOL notice #259)	
5/13/2014	Updated Tape and Reel on page 8.	
	Updated data sheet based on corporate template.	

IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA

To contact International Rectifier, please visit http://www.irf.com/whoto-call/

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.