1 Accretion rate

Eddington luminosity $L_{\rm Edd}$ は以下で定義される:

$$L_{\rm Edd} = \frac{4\pi G M_* m_p c}{\sigma_{\rm T}} = 1.26 \times 10^{38} \, {\rm erg/s} \, \left(\frac{M_*}{M_{\odot}}\right)$$

 G, M_*, m_p, c, σ_T はそれぞれ重力定数、中性子星の質量、陽子の質量、真空中の光速、トムソン散乱断面積. Eddington accretion rate $\dot{M}_{\rm Edd}$ を以下で定義する:

$$\dot{M}_{\rm Edd} := L_{\rm Edd}/c^2 = 1.34 \times 10^{17} \,\mathrm{g/s} \,\left(\frac{M_*}{M_\odot}\right)$$
$$= 2.22 \times 10^{-9} \,M_\odot/\mathrm{yr} \,\left(\frac{M_*}{M_\odot}\right)$$

4U 1728-34 の fiducial value として, mass $M_* = 1.4 M_{\odot}$ (Shaposhnikov et al. 2003), accretion rate $\dot{M} = 0.1 \dot{M}_{\rm Edd}$ (Galloway et al. 2008) を, それぞれ採用する. すなわち,

$$\dot{M} = \epsilon \dot{M}_{\rm Edd} (1.4 M_{\odot}) = 1.96 \times 10^{16} \,\mathrm{g/s} \,\epsilon_{0.1} \,M_{*.1.4}$$

2 Shock の形成

X-ray burst の duration time $t_X \approx 10\,\mathrm{s}$ の間に飛んでいったモノが shock ejecta を形成すると仮定する. Ejecta の運動する速さを $v_\mathrm{sh}=0.3c$ とすると, shock の厚み l_sh は

$$l_{\rm sh} \approx v_{\rm sh} t_X = 9 \times 10^{10} \, {\rm cm} \ v_{\rm sh.0.3} \ t_{\rm X.10}$$

shock ejecta の質量 $M_{\rm ej}$ は, recurrence time $t_{\rm rec} \approx 200\,{
m min}$ の間に降着する質量の η 倍に等しいとすると

$$M_{\rm ej} \approx \eta \dot{M} t_{\rm rec} = 2.3 \times 10^{20} \,\mathrm{g} \,\eta \,\epsilon_{0.1} \,M_{*,1.4} \,t_{\rm rec,200}$$

電波が立ち上がるのは, X–ray burst が起きてから $t_{
m rise} pprox 3 \, {
m min}$ 後である. ${
m shock}$ が形成される位置 $r_{
m sh}$ は

$$r_{\rm sh} \approx v_{\rm sh} t_{\rm rise} = 1.6 \times 10^{12} \, {\rm cm} \ v_{\rm sh.0.3} \ t_{\rm rise.3} = 0.11 \, {\rm AU} \ v_{\rm sh.0.3} \ t_{\rm rise.3}$$

3 磁場の強さ

collisionless–shock はそのエネルギーの一部を磁場へ渡す. 変換効率を ϵ_B とすると, エネルギー密度について

$$\epsilon_{\rm B} \frac{M_{\rm ej} v_{\rm sh}^2/2}{4\pi r_{\rm sh}^2 l_{\rm sh}} = \frac{B^2}{8\pi}$$

B について解くと

$$B^{2} = \frac{\epsilon_{\rm B} M_{\rm ej} v_{\rm sh}^{2}}{r_{\rm sh}^{2} l_{\rm sh}} = 8.1 \times 10^{2} \, \rm erg \, cm^{-3} \, \eta \, \epsilon_{0.1} \, \epsilon_{\rm B,0.01} \, M_{*,1.4} \, v_{\rm sh,0.3}^{-1} \, t_{\rm rec,200} \, t_{\rm rise,3}^{-1} \, t_{\rm X,10}^{-1}$$

$$B\approx 28\,\mathrm{G}\,\sqrt{\eta}\,\,\epsilon_{0.1}^{1/2}\,\,\epsilon_{\mathrm{B},0.01}^{1/2}\,\,M_{*,1.4}^{1/2}\,\,v_{\mathrm{sh},0.3}^{-1/2}\,\,t_{\mathrm{rec},200}^{1/2}\,\,t_{\mathrm{rise},3}^{-1/2}\,\,t_{\mathrm{X},10}^{-1/2}$$

 $\epsilon_{\rm B}=0.01$ は Kashiyama et al.(2018) から引用.

4 周辺ガスの密度

電波は $\tau\approx 10\,{
m min}$ の時間で減衰する. この間に shock は $4\pi r_{
m sh}^2 v_{
m sh} \tau$ の領域を掃く. 掃過領域にあるガス (一様密度 $ho_{
m amb}$ を仮定) の全質量が $M_{
m ej}$ に等しいとすると

$$4\pi r_{\rm sh}^2 \rho_{\rm amb} v_{\rm sh} \tau = M_{\rm ei}$$

を満たす. $\rho_{\rm amb}$ について解くと

$$\begin{split} \rho_{\rm amb} &= \frac{M_{\rm ej}}{4\pi r_{\rm sh}^2 v_{\rm sh} \tau} \\ &= 1.3 \times 10^{-18} \, {\rm g \, cm^{-3}} \epsilon_{0.1} \, \, M_{*,1.4} \, \, v_{\rm sh,0.3}^{-3} \, \, t_{\rm rec,200} \, \, t_{\rm rise,3}^{-2} \, \, \tau_{10}^{-1} \end{split}$$

ガスがすべて水素で構成されているとすると、電子数密度は

$$n_{\rm amb,e} = \rho_{\rm amb}/(1 \cdot m_u) = 7 \times 10^5 \, {\rm cm}^{-3} \, \epsilon_{0.1} \, M_{*,1.4} \, v_{\rm sh,0.3}^{-3} \, t_{\rm rec,200} \, t_{\rm rise,3}^{-2} \, \tau_{10}^{-1}$$

5 Power–law の比例係数

工事中.

6 放射電子の最小エネルギー

プラズマガスは shock からエネルギーを受け取り熱化される. 電子の熱エネルギー kT_e が, $v_{\rm sh}$ で走る電子の運動エネルギーに等しいと仮定すると

$$kT_e = \frac{m_e}{2}v_{\rm sh}^2 = 0.045m_ec^2 v_{\rm sh,0.3}^2$$

プラズマが電子と陽子のみから構成されていると仮定する. 陽子の熱化についても電子と同様に考えると, 各々の Lorentz factor はいずれも

$$\gamma_{\rm th} = \frac{kT_i}{m_i c^2} \approx 0.045 \quad (i = e, p)$$

となる.

熱化された陽子と電子とが互いにエネルギーをやりとりできるのであれば、電子が陽子の熱エネルギーの一部を受け取れるはずである。電子が受け取る、陽子の熱エネルギーの割合を ζ とする。電子の Lorentz factorは、もともとの熱エネルギーに陽子からもらった分が加わると考えて

$$\gamma_{\min} = \frac{1}{m_e c^2} (kT_e + \zeta kT_p)$$

$$\approx \zeta \frac{kT_p}{m_e c^2} \text{ (ignoring } kT_e)$$

$$= \zeta \frac{m_p}{2m_e} \frac{v_{\text{sh}}^2}{c^2}$$

$$= 33 \zeta_{0.4} v_{\text{sh},0.3}^2$$

となる. ζ =0.4 は Kashiyama et al.(2018) の値を引用.

7 シンクロトロン放射

 γ_e の Lorenz factor をもつ電子からのシンクロトロン放射を考える. 放射の典型的な振動数 ν_e は

$$\nu_e = \gamma_e^3 \nu_B \sin \alpha = \frac{\gamma_e^2 eB}{2\pi m_e c} \sin \alpha$$

である (Rybicki & Lightman (1979)). ここで ν_B はサイクロトロン振動数, α はピッチ角である. 磁場がランダムな方向を向いていると仮定し, $\sin\alpha$ の平均をとると

$$\int_0^{\pi/2} \sin \alpha \, \mathrm{d}\alpha = 1$$

ゆえ

$$\nu_e = \frac{\gamma_e^2 eB}{2\pi m_e c}$$

 $\gamma_e = \gamma_{\min}$ として値を代入すると

$$\nu_e \approx 87\,\mathrm{GHz}\ \sqrt{\eta}\ \epsilon_{0.1}^{1/2}\ \epsilon_{\mathrm{B},0.01}^{1/2}\ \zeta_{0.4}^2\ M_{*,1.4}^{1/2}\ v_{\mathrm{sh},0.3}^{3/2}\ t_{\mathrm{rec},200}^{1/2}$$

シンクロトロン放射した電子はその分エネルギーを失う。ある Lorentz factor γ をもつ電子がエネルギー密度 U_B の磁場の中で単位時間に放射するエネルギー (=電子のエネルギー損失率) は

$$P(\gamma, B) = \frac{4}{3}\sigma_{\rm T}c\beta^2\gamma^2 U_B$$

と表せる (Rybicki&Lightman, 1979). いまの場合,

$$\gamma = \gamma_{\rm min} = 33 \zeta_{0.4} v_{\rm sh,0.3}^2$$
,

$$\beta^2 = 1 - \frac{1}{\gamma_{\min}^2} \ (= 0.999) \ \approx 1$$

$$U_B = \frac{B^2}{8\pi} = 32 \,\mathrm{erg} \,\mathrm{em}^{-3} \,\eta \,\epsilon_{0.1} \,\epsilon_{\mathrm{B},0.01} \,M_{*,1.4} \,v_{\mathrm{sh},0.3}^{-1} \,t_{\mathrm{rec},200} \,t_{\mathrm{rise},3}^{-1} \,t_{\mathrm{X},10}^{-1}$$

なので

$$P = 9.3 \times 10^{-10} \,\mathrm{erg/s} \,\, \eta \,\, \epsilon_{0.1} \,\, \epsilon_{\mathrm{B},0.01} \,\, \zeta_{0.4}^2 M_{*,1.4} \,\, v_{\mathrm{sh},0.3}^3 \,\, t_{\mathrm{rec},200} \,\, t_{\mathrm{rise},3}^{-1} \,\, t_{\mathrm{X},10}^{-1}$$
$$= 0.58 \,\mathrm{keV/s} \,\, \eta \,\, \epsilon_{0.1} \,\, \epsilon_{\mathrm{B},0.01} \,\, \zeta_{0.4}^2 M_{*,1.4} \,\, v_{\mathrm{sh},0.3}^3 \,\, t_{\mathrm{rec},200} \,\, t_{\mathrm{rise},3}^{-1} \,\, t_{\mathrm{X},10}^{-1}$$

となる. よって、シンクロトロン放射の寄与だけを考えた冷却時間は

$$t_{\rm cool} \approx \frac{\gamma_{\rm min} m_e c^2}{P} \approx 484 \,{\rm min} \,\, \eta^{-1} \,\, \epsilon_{\rm B,0.01}^{-1} \,\, \epsilon_{0.1}^{-1} \,\, \zeta_{0.4}^{-1} \,\, M_{*,1.4}^{-1} \,\, v_{\rm sh,0.3}^{-2} \,\, t_{\rm rec,200}^{-1} \,\, t_{\rm rise,3} \,\, t_{\rm X,10}^{-1}$$

上で求めた P は 1 個の電子による放射パワーである. shock で掃かれたガスに含まれる電子がすべて γ_{\min} のシンクロトロン放射しているならば, ビーミングを考慮した上での電子の総数 N_e は

$$N_e \approx \frac{M_{\rm ej}}{m_u} \times \frac{2\gamma_{\rm min}^{-1}}{2\pi} = 1.4 \times 10^{42} \ \eta \ \epsilon_{0.1} \ \zeta_{0.4} \ M_{*,1.4} \ v_{\rm sh,0.3}^2 \ t_{\rm rec,200}$$

となる.

$$P_{\rm tot} = N_e P = 1.3 \times 10^{33} \, {\rm erg/s} \ \eta^2 \ \epsilon_{0.1}^2 \ \epsilon_{\rm B,0.01} \ \zeta_{0.4}^3 \ M_{*,1.4}^2 \ v_{\rm sh,0.3}^5 \ t_{\rm rec,200}^2 \ t_{\rm rise,3}^{-1} \ t_{\rm X,10}^{-1}$$

4U 1728-34 までの距離 $d \approx 4.5\,\mathrm{kpc} = 1.4 \times 10^{22}\,\mathrm{cm}$ (Shaposhnikov et al.(2003)) を用いると、flux は

$$\begin{split} F &\approx P_{\rm tot}/(4\pi d^2\nu_e) \\ &= 6\times 10^2\,{\rm mJy}~\eta^{1/2}~\epsilon_{0.1}^{3/2}~\epsilon_{{\rm B},0.01}^{1/2}~\zeta_{0.4}^{-1}~M_{*,1.4}^{3/2}~v_{{\rm sh},0.3}^{7/2}~t_{{\rm rec},200}^{3/2}~t_{{\rm rise},3}^{-1}~t_{{\rm X},10}^{-1}~d_{4.5}^{-2} \end{split}$$

となる. (Rassell et al.(2024) の 100 倍)