Assignment 02

Question 1: Intensity Transformations

Tasks you have to do to complete the assignment:

- 1. Take a RGB photo
- 2. Make it a grayscale image, say I
- 3. Calculate and plot histogram of image I
- 4. Take gamma value input from user, say Y = 2.5
- 5. Apply Power Law Transformation on image I with c = 1.5 6. Calculate and plot histogram of the Power Law transformed image
- 7. Take a threshold value input from user, say A = 200
- 8. Increase brightness by 50% for pixels with intensity smaller than A; else decrease it by 25% of image I
- 9. Calculate and plot histogram of the thresholded image
- 10. Apply Log Transformation on image I with c = 1.9
- 11. Calculate and plot histogram of the log transformed image 12. Apply Negation Transformation on I
- 13. Calculate and plot histogram of the negative image
- 14. Understand the histograms, differences, and their indications.
- ***Note That: im2double: the function scales any integer image values to the range [0,1].

Question 2: Contrast Stretching

$\overline{}$		
a.	Take a RGB photo. Make it grayscale image, say <i>I</i>	
b.	Find the minimum pixel value of the input image. Store the value in	1
	a variable, say A.	
c.	Find the maximum pixel value of the input image. Store the value in	1
	a variable, say B .	
d.	Store the difference of variable \boldsymbol{B} and \boldsymbol{A} in a variable \boldsymbol{D} .	1
	Store the highest possible intensity value in a variable <i>M</i> .	
	(If your input image is 4 bit, highest possible intensity value = $2^4 - 1$	
	1 = 15)	
e.	Say your output image is R .	3
	Use the following equation for each pixel of the input image <i>I</i> -	
	$\mathbf{R} = \frac{I - A}{D} * M + A$	
f.	Display the input image I and output image R .	1
g.	Show the histogram of the input image I and output image R.	3
	Do not use any built-in function.	