A Formal Semantics of the Final Rise

ESSLLI 2015

Julian J. Schlöder Institute for Logic, Language and Computation University of Amsterdam

Observations

Framework

Formal Model

Applications

Conclusion

Are you asking me or telling me?

Are you asking me or telling me?

(1) Sheldon: What's the sixth noble gas?

> Leonard: Uh, RADON. H* LH%

Sheldon: Are you asking me or telling me?

Leonard: TELLING you.

Leonard: TELLING you.

Are you asking me or telling me?

(1) Sheldon: What's the sixth noble gas?

Leonard: Uh, RADON.

H* LH%

Sheldon: Are you asking me or telling me?

Leonard: Telling you.

H* LH%

Leonard: Telling you.

H* LL%

I am presenting a formal semantics of the final rise in English

- ▶ that is underspecified to account for the range of observed phenomena.
- that is resolved in context.

► The pitch contour of an utterance reveals something about the attitudes of its speaker towards certain propositions.

► The pitch contour of an utterance reveals something about the attitudes of its speaker towards certain propositions.

```
(2) A: You're a millionaire.

a. B: I'm a MILLIONAIRE. \leadsto 'I am.'

b. B: I'm a MILLIONAIRE. \leadsto 'Am I?'

H* LH%
```

► The pitch contour of an utterance reveals something about the attitudes of its speaker towards certain propositions.

```
(2) A: You're a millionaire.

a. B: I'm a MILLIONAIRE.  

H* LL%

b. B: I'm a MILLIONAIRE.  

H* LH%

b. Am I?'

H* LH%
```

(3) A: Are you rich?

a. B: I'm a MILLIONAIRE.

b. B: I'm a MILLIONAIRE.

H*

LH%

'Yes, a millionaire.'

'Does that count?'

LH%

► The pitch contour of an utterance reveals something about the attitudes of its speaker towards certain propositions.

```
(2) A: You're a millionaire.

a. B: I'm a MILLIONAIRE.  → 'I am.'

b. B: I'm a MILLIONAIRE.  → 'Am I?'

H* LH%
```

- (3) A: Are you rich?

 a. B: I'm a MILLIONAIRE. → 'Yes, a millionaire.'

 b. B: I'm a MILLIONAIRE. → 'Does that count?'

 H* LH%
 - ► There is a difference in B's public commitments.

Commonly understood, the final rise signals incompleteness.

▶ Pierrehumbert/Hirschberg (1990) "to interpret an utterance with particular attention to subsequent utterances."

- ▶ Pierrehumbert/Hirschberg (1990) "to interpret an utterance with particular attention to subsequent utterances."
- ▶ Šafăřová (2005) incompleteness ≈ uncertainty.

- ▶ Pierrehumbert/Hirschberg (1990) "to interpret an utterance with particular attention to subsequent utterances."
- ▶ Šafăřová (2005) incompleteness ≈ uncertainty.
- Westera (2013) uncertainty regarding:
 - → Truthfulness (Quality)
 - → Sufficienty (Quantity)
 - → Appropriateness (Relation)

- ▶ Pierrehumbert/Hirschberg (1990) "to interpret an utterance with particular attention to subsequent utterances."
- ▶ Šafăřová (2005) incompleteness ≈ uncertainty.
- ▶ Westera (2013) uncertainty regarding:
 - → Truthfulness (Quality)
 - → Sufficienty (Quantity)
 - → Appropriateness (Relation)
- (4) a. A: Where are you from?
 - b. B: I'm from SKOKIE.
 - c. B: That's in Illinois.

- ▶ Pierrehumbert/Hirschberg (1990) "to interpret an utterance with particular attention to subsequent utterances."
- ▶ Šafăřová (2005) incompleteness ≈ uncertainty.
- ▶ Westera (2013) uncertainty regarding:
 - → Truthfulness (Quality)
 - → Sufficienty (Quantity)
 - → Appropriateness (Relation)
- (4) a. A: Where are you from?
 - b. B: I'm from SKOKIE.
 - c. B: That's in Illinois.
 - c.' A: Okay, good. / Where is that?

We model incompleteness as follows:

- ► A final rise utterance demands a follow-up to resolve the incompleteness.
- Permissible follow-ups are underspecified.
- Usually, question force is assumed.
- ► Additionally, the speaker displays an uncertain attitude, prompting a need for resolution.
- ⇒ Incompleteness demands to be resolved, but resolution is negotiated online.

Follow-ups

(5) A: What did you do today?

B: I sat in on a history class.

LH%

B: I learned about housing prices.

LH%

B: And I watched a cool documentary.

LL%

(4) a.A: Where are you from?
b.B: I'm from SKOKIE.
H* LH%
c.B: That's in Illinois.

Follow-ups

(5) A: What did you do today?

B: I sat in on a history class.

LH%

B: I learned about housing prices.

LH%

B: And I watched a cool documentary.

LL%

(4) a.A: Where are you from? b.B: I'm from SKOKIE.

H* LH%
c.B: That's in Illinois.

► Final Rise: 'I am not done.'

Uncertainty

```
(4) a.A: Where are you from?
b.B: I'm from SKOKIE.
H* LH%
c.'A: Where is that?
```

- (1) A: What's the sixth noble gas?
 B: Uh, RADON.
 H* LH%
- ► Final Rise: 'Does this answer your question?'

Inferred Question Force

(1) A: What's the sixth noble gas?

B: Uh, RADON. H* LH%

A: Are you asking me or telling me?

(2) A: You're a millionaire.

b.B: I'm a MILLIONAIRE. H* LH%

► Final Rise: 'Is this true?'

Inferred Question Force: Details

- (6) a.A: Did you go to the cinema last night? LH% b.A: # You went to the cinema last night. LH%
- (7) A: You are rich.

 a.B: I'm rich. 'Am I?'
 LH%

 b.B: # I'm a millionaire.
 LH%
- ▶ Inferring question force needs a suitable antecedent.

Oh

Observations

Framework

Formal Model

Applications

Conclusion

SDRT: Example

(7) A: Max fell.

B: John pushed him.

Information content:

Turn	A's SDRS	B's SDRS
1	$\pi_1: \mathit{fall}(e,m)$	Ø
2	$\pi_1: \mathit{fall}(e,m)$	$\pi: \textit{Explanation}(\pi_1, \pi_2)$
		$\pi_2: extstyle{\sf push}(e',j,m)$

SDRT: Example

(7) A: Max fell.

B: John pushed him.

Information content:

Turn	A's SDRS	B's SDRS
1	$\pi_1: \mathit{fall}(e,m)$	Ø
2	$\pi_1: \mathit{fall}(e,m)$	$\pi: \textit{Explanation}(\pi_1, \pi_2)$
		$\pi_2: extstyle{\sf push}(e',j,m)$

- Explanation (π_1, π_2) entails π_1 .
 - $\rightarrow \ \, \text{B agrees with A}.$

SDRT: Example

(7) A: Max fell.

B: John pushed him.

Information content:

Turn	A's SDRS	B's SDRS
1	$\pi_1: \mathit{fall}(e,m)$	Ø
2	$\pi_1: \mathit{fall}(e,m)$	$\pi: \textit{Explanation}(\pi_1, \pi_2)$
		$\pi_2: extstyle{\it push}(e',j,m)$

- Explanation (π_1, π_2) entails π_1 .
 - \rightarrow B agrees with A.

Construction via Glue Logic Axioms:

Explanation Axiom.

$$(\lambda : ?(\alpha, \beta) \land cause_D(\beta, \alpha)) > (\lambda : Explanation(\alpha, \beta)).$$

Observations Framework

Formal Model

Conclusion

Applications

Semantics

Semantics of the Final Rise.

$$LH\%(\pi) \mapsto \exists R, \pi', \pi'' \ (R(\pi', \pi'') \land \pi' \succeq \pi).$$

'This needs a follow-up.'

▶ The final rise segment π is part of a discourse segment π' that is projecting a discourse relation R.

Semantics

Semantics of the Final Rise.

$$LH\%(\pi) \mapsto \exists R, \pi', \pi'' \ (R(\pi', \pi'') \land \pi' \succeq \pi).$$

'This needs a follow-up.'

▶ The final rise segment π is part of a discourse segment π' that is projecting a discourse relation R.

Axiom to infer Question Force.

$$\big(\beta: LH\% \wedge \lambda: ?(\alpha,\beta) \wedge \square(K_\alpha \to \textit{prop}(K_\beta))\big) > \lambda: \textit{CR}(\alpha,\beta).$$

'Are you sure?'

▶ $\square(K_{\alpha} \to prop(K_{\beta}))$ is the appropriateness constraint.

Cognitive Contribution

Cognitive Contribution of the Final Rise.

```
\pi: LH\% \wedge \lambda: R(\alpha, \pi) \wedge \neg \pi: ?prop(K_{\pi}) > P_S \neg B_S I_H P_H R(\alpha, \pi).
'I'm not sure you are going to accept this.'
```

- ► The speaker displays uncertainty regarding the uptake of their speech act.
- In a cooperative conversation, this uncertainty needs to be addressed.

Cognitive Contribution

Cognitive Contribution of the Final Rise.

```
\pi: LH\% \wedge \lambda: R(\alpha,\pi) \wedge \neg \pi: ?prop(K_{\pi}) > P_S \neg B_S I_H P_H R(\alpha,\pi).
'I'm not sure you are going to accept this.'
```

- ► The speaker displays uncertainty regarding the uptake of their speech act.
- In a cooperative conversation, this uncertainty needs to be addressed.
- Note that Question Force and Uncertainty are mutually exclusive.

Applications

Observations
Framework
Formal Model

Conclusion

Public Commitments

- (2) A: You're a millionaire.
 b. B: I'm a MILLIONAIRE. → 'Am I?'
 H* LH%
- ► The appropriateness constraint for Inferring Question Force is satisfied.
- ► We infer that B is asking a question, hence making no commitment.

Public Commitments

- ► The appropriateness constraint for Inferring Question Force is satisfied.
- ► We infer that B is asking a question, hence making no commitment.
- (3) A: Are you rich?
 b. B: I'm a MILLIONAIRE. → 'Does that count?'
 H* LH%
- ► The appropriateness constraint for Inferring Question force is not satisfied.
- ▶ We infer that B is making a commitment, but is uncertain if A will accept it as an answer.

Underspecified Follow-Ups

(4) a.A: Where are you from? b.B: I'm from $\begin{array}{c} S_{KOKIE}. \\ H^* \ LH\% \end{array}$

	A's SDRS	B's SDRS
1	$\pi_1: K_{\pi_1}$	$ \emptyset $
	$\begin{vmatrix} \pi_1 : K_{\pi_1} \\ \pi_{1H} : \exists \pi_1' QAP(\pi_1, \pi_1') \end{vmatrix}$	
2	$\pi_1:K_{\pi_1}$	$\pi_2: K_{\pi_2}$
	$\pi_{1H}:\exists\pi_1'\;QAP(\pi_1,\pi_1')$	$\pi_{1H}:\exists\pi_1'\;QAP(\pi_1,\pi_1')$
		$\pi_{2S} : \exists R, \pi'_2, \pi''_2 \ R(\pi'_2, \pi''_2) \land (\pi'_2 \succeq \pi_2)$

I'm from Skokie (c)

(4) a.A: Where are you from?
b.B: I'm from SKOKIE.
H* LH%
c.B: That's in Illinois.

	A's SDRS	B's SDRS
1	$\pi_1: K_{\pi_1}$	Ø
	$\begin{vmatrix} \pi_1 : K_{\pi_1} \\ \pi_{1H} : \exists \pi_1' QAP(\pi_1, \pi_1') \end{vmatrix}$	
2		$\pi_2:K_{\pi_2}$
	$\pi_{1H}:\exists\pi_1'\;QAP(\pi_1,\pi_1')$	$\pi_{1H}:\exists\pi_1'\;QAP(\pi_1,\pi_1')$
		$\pi_{2S} : \exists R, \pi'_2, \pi''_2 \ R(\pi'_2, \pi''_2) \land (\pi'_2 \succeq \pi_2)$
		$\pi_2, \ \pi_2''$ is π_3 and R is Elaboration.
3	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\pi_2: K_{\pi_2}$
	$\pi_{1H}:\exists\pi_1'\;QAP(\pi_1,\pi_1')$	$ \pi_{1H}:QAP(\pi_1,\pi_{3S}) $
		$\pi_{2S}: Elaboration(\pi_2,\pi_3)$
		$ \pi_3:K_{\pi_3} $
		π_{3S} : Elaboration (π_2, π_3)

I'm from Skokie (c')

(4) a.A: Where are you from? b.B: I'm from SKOKIE.

H* LH%
c.'A: Okay, good.

	A's SDRS	B's SDRS
1	$\pi_1: K_{\pi_1}$	Ø
	$\pi_{1H}:\exists\pi_1'\;QAP(\pi_1,\pi_1')$	
2	$\pi_1: K_{\pi_1}$	$\pi_2: K_{\pi_2}$
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\pi_{1H}:\exists\pi_1'\;QAP(\pi_1,\pi_1')$
		$\pi_{2S}: \exists R, \pi'_2, \pi''_2 \ R(\pi'_2, \pi''_2) \land (\pi'_2 \succeq \pi_2)$
	Resolution: π_2' is	π_{1H} , π_2'' is π_3 and R is Accept.
3	$\pi_1:K_{\pi_1}$	$\pi_2:K_{\pi_2}$
	$egin{array}{c} \pi_1: K_{\pi_1} \ \pi_{1H}: QAP(\pi_1,\pi_2) \end{array}$	$\pi_{1H}:\exists\pi_1'\;QAP(\pi_1,\pi_1')$
	$\pi_2: K_{\pi_2}$	$\pi_{2S} : \exists R, \pi'_2, \pi''_2 (R(\pi'_2, \pi''_2) \land \pi'_2 \succeq \pi_2)$
	$\pi_{2S}:Accept(\pi_{1H},\pi_3)$	
	$\pi_3: K_{\pi_3}$	
	$\pi_{3H}:Accept(\pi_{1H},\pi_3)$	

Observations Framework Formal Model Applications Conclusion

In Sum

- ▶ Informally, we give a unified account of some major discussions of the final rise.
- ▶ We formalize this account in the SDRT framework.
- Our model makes computable predictions, corresponding to the informal observations.
 - \rightarrow In fact, the predictions are strong enough to infer incoherence.

In Sum

- Informally, we give a unified account of some major discussions of the final rise.
- ▶ We formalize this account in the SDRT framework.
- Our model makes computable predictions, corresponding to the informal observations.
 - ightarrow In fact, the predictions are strong enough to infer incoherence.
- Further work:
 - → Questions and imperatives.
 - → Full Pitch Contour: the contributions of H* and L*.
 - Schlöder & Lascarides. Interpreting English Pitch Contours in Context. SemDial 2015.

In Sum

- Informally, we give a unified account of some major discussions of the final rise.
- ▶ We formalize this account in the SDRT framework.
- Our model makes computable predictions, corresponding to the informal observations.
 - $\,\,\,\,\,\,\,\,\,\,\,\,$ In fact, the predictions are strong enough to infer incoherence.
- Further work:
 - \rightarrow Questions and imperatives.
 - → Full Pitch Contour: the contributions of H* and L*.
 - Schlöder & Lascarides. Interpreting English Pitch Contours in Context. SemDial 2015.

Thank you!