Algebra I

Andrea Gallese

October 16, 2017

G Teoria dei Gruppi

G.1 Automorfismi e Azioni

Teorema G.1. Se G
in un gruppo, $(Aut(G), \circ)
in un gruppo$.

Esempi.

- 1. Aut $(\mathbb{Z}) \cong \{\pm id\} \cong \mathbb{Z}_2$
- 2. Aut $(\mathbb{Z}_n) \cong \mathbb{Z}_n^{\times}$
- 3. Aut $(\mathbb{Q}) \cong \mathbb{Q}^{\times}$
- 4. Aut $(\mathbb{R}) \cong ?$

Definizione G.2 (Gruppo degli automorfismi interni). Sia Int $(G) = \{\varphi_g \mid g \in G\}$ l'insieme di tutti gli automorfismi interni, i.e. degli automorfismi di coniugio:

$$\varphi_g(x) = gxg^{-1} \quad \forall x \in G$$

Osservazione. è immediato osservare che Int $(G) \triangleleft Aut(G)$.

Teorema G.3.

Int
$$(G) \cong {}^{G}\!/_{Z(G)}$$

Proof. La funzione

$$\Phi \colon G \to \operatorname{Int} (G)$$
$$g \mapsto \varphi_g$$

è un omomorfismo con kernel Z(G). La tesi segue dal Primo Teorema di Omomorfismo.

Osservazione.

$$H \triangleleft G \Leftrightarrow \varphi_q(H) = H \quad \forall \varphi_q \in \operatorname{Int}(G)$$

Definizione G.4 (Sottogruppo caratteristico). Un sottogruppo H < G si dice caratteristico se è invariante per tutto $\operatorname{Aut}(G)$, i.e.

$$\varphi(H) = H \quad \forall \varphi \in \text{Aut}(G)$$

Osservazione. Un sottogruppo caratteristico è anche normale, ma non è vero il viceversa: basta considerare $\langle (0,1) \rangle \lhd \mathbb{Z}_2 \times \mathbb{Z}_2$

Definizione G.5 (Azione). Si dice azione di un gruppo G su un insieme X un omomorfismo φ tale che

$$\varphi \colon G \to \mathcal{S}(X)$$

 $g \mapsto \phi_g(x) = g \cdot x.$

Esempio. Siano $G=\{z\in\mathbb{C}\mid |z|=1\}$ e $X=\mathbb{R}^2$. E sia ϕ l'azione:

$$\varphi \colon C \to \mathcal{S}\left(\mathbb{R}^2\right)$$

$$z \mapsto \mathcal{R}(O, \arg z)$$

Osservazione. Un'azione induce naturalmente una relazione di equivalenza su X: $x \sim y \Leftrightarrow \exists g \in G \ t.c. \ g \cdot x = y$. Viene quindi spontaneo prendere in considerazione gli elementi della partizione così ottenuta.

Definizione G.6 (Orbita). Si dice orbita di un elemento $x \in X$ l'insieme di tutti gli elementi che posso essere raggiunti da x tramite l'azione:

$$\mathcal{O}rb\left(x\right) = \left\{g \cdot x \mid \forall g \in G\right\}$$

Osservazione. Detto R un insieme di rappresentanti delle varie orbite, per il partizionamento prima considerato:

$$X = \bigcup_{x \in R} \mathcal{O}rb\left(x\right) \; \Rightarrow \; |X| = \sum_{x \in R} |\mathcal{O}rb\left(x\right)|$$

Definizione G.7 (Stabilizzatore). Si dice stabilizzatore di un elemento $x \in X$ l'insieme di tutti gli elementi di G che agiscono in modo banale su x:

$$Stab\left(x\right) = \left\{g \in G \mid g \cdot x = x\right\}$$

Osservazione. è immediato osservare che Stab(x) < G, ma non necessariamente normale.

Teorema G.8.

$$|G| = |\mathcal{O}rb(x)||\mathcal{S}tab(x)|$$

Proof. La funzione f così definita

$$f \colon \{gStab\left(x\right) \mid g \in G\} \to \{\mathcal{O}rb\left(x\right) \mid x \in X\}$$
$$gStab\left(x\right) \mapsto g \cdot x$$

è biunivoca, infatti:

$$g \cdot x = h \cdot x \Leftrightarrow \varphi_g(x) = \varphi_h(x)$$

$$\Leftrightarrow \varphi_h^{-1} \varphi_g(x) = x$$

$$\Leftrightarrow \varphi_{h^{-1}g}(x) = x$$

$$\Leftrightarrow h^{-1}g \cdot x = x$$

$$\Leftrightarrow h^{-1}g \in \mathcal{S}tab(x)$$

$$\Leftrightarrow g \in h\mathcal{S}tab(x)$$

$$\Leftrightarrow g\mathcal{S}tab(x) = h\mathcal{S}tab(x)$$

Osservazione. Dall'osservazione precedente

$$|X| = \sum_{x \in R} \frac{|G|}{|\mathcal{S}tab(x)|}$$

Esempi.

1. $[G = C, X = \mathbb{R}^2]$ e l'azione dell'ultimo esempio. Questa sposta ruota ogni punto attorno all'origine, pertanto le orbite sono circonferenze centrate nell'origine e gli stabilizzatori sono tutti banali, tranne quello dell'origine che coincide con G.

- 2. $[G=\mathbb{R},\ X=\mathbb{R}^2]$ e l'azione che trasforma $r\in\mathbb{R}$ nella traslazione orizzontale di lunghezza r. Le orbite sono le rette parallele alla traslazione e gli stabilizzatori sono tutti banali.
- 3. [G, X = G] e l'azione sia la mappa che manda un elemento g nel coniugio per questo $\varphi_g(x) = gxg^{-1}$. L'orbita di un elemento contiene tutti i coniugati di questo ed è detta classe di coniugio di x (C_x). Lo stabilizzatore di x contiene tutti e soli gli elementi tali che
- xg = gx, ovvero il sottogruppo di tutti gli elementi che commutano con x, è detto centralizzatore di x ($Z_G(x)$).
- 4. $[G, X = \{H \mid H < G\}]$ e l'azione di coniugio. Le orbite non sono particolarmente interessanti, mentre lo stabilizzatore di un sottogruppo è detto *Normalizzatore* di H, N(H) ed è il più grande sottogruppo di G in cui H è normale.

Osservazione. $H \triangleleft G \Leftrightarrow N(H) = G$

G.2 Formula delle Classi e Cauchy

Teorema G.9 (Formula delle Classi). Per ogni gruppo finito vale

 $|G| = |Z(G)| + \sum_{x \in R'} \frac{|G|}{|Z_G(x)|}$

Proof. Riprendiamo la partizione di X in orbite, ma separando quelle banali da quelle non

$$|X| = \sum_{\substack{x \in R \\ \mathcal{O}rb(x) = \{x\}}} 1 + \sum_{\substack{x \in R \\ \mathcal{O}rb(x) \neq \{x\}}} \frac{|G|}{|\mathcal{S}tab\left(x\right)|}$$

Osserviamo cosa succede nel caso dell'azione di coniugo da un gruppo in se (l'esempio 3 della lezione precedente). L'orbita di x è banale se e solo se $gxg^{-1}=x, \forall g\in G$, ovvero nel caso in cui x commuti con tutti gli elementi di G (stia nel centro). Dunque la formula di sopra si riscrive come desiderato.

Definizione G.10 (p-gruppo). Si dice p-gruppo un gruppo finito G di ordine potenza di un primo $p: |G| = p^n$.

Esempi.

1. Un p-gruppo G ha centro non banale. Tutti i centralizzatori degli elementi di R' hanno dimensione p^k per un intero $0 \le k < n$, dunque

$$p \mid \frac{|G|}{|Z_G(x)|} \forall x \in R'$$

pertanto, per la formula delle classi,

$$p \mid |G| - \sum_{x \in R'} \frac{|G|}{|Z_G(x)|} = |Z(G)|$$

che quindi, contenendo e, deve avere almeno p elementi.

2. I gruppi di ordine p^2 sono abeliani. Il centro di G avrà, per quanto appena dimostrato, ordine p o p^2 . Nel secondo caso abbiamo finito. Nel primo

$$\left| \frac{G}{Z(G)} \right| = p$$

dunque il quoziente è ciclico. Presi due elementi qualunque $x,y \in G$ possiamo esprimerli come $x=g^ha$ e $y=g^kb$, dove g è il generatore del quoziente e $a,b \in Z(G)$. Allora, sfruttando la commutatività degli elementi del centro

$$xy = (a)(g^k b) = g^{h+k}ab = g^{k+h}ba = (g^k b)(g^h a) = yx$$

ricaviamo la commutativa per tutti gli elementi del gruppo.

3. Una possibile dimostrazione del Teorema di Cauchy:

Teorema G.11 (di Cauchy). Per ogni fattore primo p di |G| esiste un elemento g di G di ordine p.

Dimostrazione Classica. Sia |G|=pn, procediamo per induzione su n.

Se $n=1,\,G$ è ciclico, quindi ha un generatore di ordine p. Supponiamo ora che tutti i gruppi di ordine $kp \quad \forall k < m$ abbiamo un elemento di ordine p. Se |G|=pm ci sono due casi:

- 1. Esiste un sottogruppo proprio H di ordine multiplo di p, da cui ricadiamo nell'ipotesi induttiva.
- 2. Se nessun sottogruppo di ${\cal G}$ ha ordine divisibile per p, allora

 $p \mid \frac{|G|}{|Z_G(x)|} \forall x \in R'$

perché i $Z_G(x) < G$. Per la formula delle classi

$$p \mid |G| - \sum_{x \in R'} \frac{|G|}{|Z_G(x)|} = |Z(G)|$$

ma abbiamo supposto che i sottogruppi propri non abbiamo ordine multiplo di p, dunque il centro deve coincidere con l'intero gruppo, che risulta pertanto commutativo.

Dimostrazione Magica. Sia

$$X = \{(x_1, \dots, x_p) \in G^p \mid x_1 \cdots x_n = 1\}$$

questo insieme ha esattamente $|G|^{p-1}$ elementi, infatti scelti i primi (p-1) l'ultimo è univocamente determinato come il suo unico inverso. Se una p-upla non è composta da un solo elemento ripetuto, allora possiamo ciclare i suoi termini per ottenere altre (p-1) p-uple in X. Dunque, detto n il numero di g tali che $g^p=1$

$$p \mid |G|^{p-1} - n \Rightarrow p \mid n$$

e poiché $e^p = e$ ci sono almeno p elementi di ordine p.

Osservazione. Cosa riusciamo a dire su un possibile teorema inverso a quello di Lagrange?

- 1. per Gruppi Abeliani?
 - (a) elementi di ordine divisore? no, basti guardare $\mathbb{Z}_2 \times \mathbb{Z}_2$
 - (b) sottogruppi di ordine divisore? sì! esercizio.
- 2. per Gruppi non Abeliani?
 - (a) a maggior ragione no
 - (b) no

Esercizio. Classificare i gruppi G di ordine 6.

Per Cauchy esistono $x,y\in G$ di ordine, rispettivamente, 2 e 3.

- ▶ Se G è abeliano, ord(xy) = 6, quindi G è ciclico e pertanto isomorfo a \mathbb{Z}_6 .
- ▶ Se non lo è, costruiamo un isomorfismo esplicito...

Teorema G.12 (Caylay). Possiamo immergere ogni gruppo G in S(G).

Proof. Esibiamo un'azione fedele (ovvero, iniettiva):

$$\Phi \colon G \to \mathcal{S}(G)$$
$$q \mapsto \varphi_q(x) = qx$$

è ora sufficiente verificare che Φ è ben definito (φ_g è una bigezione) e iniettivo.

Definizione G.13 (Sottogruppo generato). Sia $S \subset G$ un sottoinsieme su G, chiamiamo il più sottogruppo contenente S sottogruppo generato da S ($\langle S \rangle$).

$$\langle S \rangle = \bigcap_{\substack{H \leq G \\ S \subset H}} H$$

Teorema G.14 (Caratterizzazione dei sottogruppi generati).

$$\langle S \rangle = \{ s_1 \cdots s_k \mid k \in \mathbb{N}, \ s_i \in S \cup S^{-1} \}$$

Proof. Chiamiamo X il magico insieme nel RHS. Chiaramente $S \subseteq X$ e pertanto X, che è facile verificare essere un gruppo, è parte della famiglia sotto intersezione: $X \subseteq \bigcap \mathcal{F}$. Inoltre se $S \subseteq H < G$ sicuramente in H compaiono tutte le k-uple di X e quindi X < H per ogni sottogruppo di \mathcal{F} . Dunque $X \subseteq \bigcap \mathcal{F}$.

Esempi.

- 1. $\langle S \rangle$ è abeliano se e solo se tutti gli elementi di S commutano fra loro.
- 2. $\langle S \rangle$ è normale se e solo se ogni ogni elemento di S rimane in $\langle S \rangle$ per coniugio.
- 3. $\langle S \rangle$ è caratteristico se e solo se ogni elemento di S viene mandato in $\langle S \rangle$ da ogni automorfismo di G.
- 4. $G'=\langle ghg^{-1}h^{-1}\mid g,h\in G\rangle$ è detto Gruppo dei Commuatatori o Gruppo Derviato di G. Questo gruppo gode di alcune proprietà fondamentali
 - (a) $G' = \{e\} \Leftrightarrow G \text{ abeliano.}$
 - (b) G' è caratteristico e pertanto normale in G.

(c) Dato $H \lhd G$, il quoziente G/H è abeliano se e solo se G' < H.

Proof. La verifica delle proprietà (a) e (b) è banale. Rimane l'ultima (c):

$$\begin{split} G_{/H} \text{ abeliano} &\Leftrightarrow xHyH = yHxH & \forall x,y \in G \\ &\Leftrightarrow xyH = yxH & \forall x,y \in G \\ &\Leftrightarrow x^{-1}y^{-1}xy \in H & \forall x,y \in G \\ &\Leftrightarrow g' \in H & \forall g' \in G' \end{split}$$

Definizione G.15. ${}^{G}\!\!/_{G'}$ è detto l'abelianizzato di G, perché è sempre abeliano!

G.3 Gruppi Diedrali D_n

Definizione G.16 (Gruppo Diedrale). Sia D_n il gruppo delle isometrie dell'n-agono regolare.

Teorema G.17 (Caratterizzazione di D_n). Si ha

$$D_n = \langle \rho, \sigma \mid \rho^n = e, \sigma^2 = e, \sigma \rho \sigma = \rho^{-1} \rangle$$

Proof. Tutti gli elementi sopra definiti possiamo ridurli a un elemento della forma ρ^k o $\sigma \rho^k$ per un qualche $0 \le k < n$. Questo perché così sono fatti i generatori e ogni operazione permessa (composizione e inversione) si riducono a questa forma attraverso le leggi a disposizione. Inoltre possiamo immergere D_n in un sottogruppo di $\mathbf{O}_2(\mathbb{R})$ di ordine 2n attraverso un omomorfismo suriettivo:

$$\Phi \colon D_n \to \mathbf{O}_2(\mathbb{R})$$

$$\sigma \mapsto \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\rho \mapsto \begin{pmatrix} \cos \frac{2\pi}{n_2} & \sin \frac{2\pi}{n} \\ -\sin \frac{2\pi}{n} & \cos \frac{2\pi}{n} \end{pmatrix}$$

Pertanto ognuno dei rappresentati sopra individua un'effettiva trasformazione distinta.

Osservazione. Conosciamo già un gruppo diedrale: $D_3 \cong S_3$. Osservazione. Il sottogruppo C_n delle rotazioni, generato da ρ , è ovviamente ciclico e, avendo indice 2, è anche normale in D_n .

$$\langle \rho \rangle = C_n \lhd D_n$$

Teorema G.18 (Ordine degli elementi di D_n). Sappiamo che

- ▶ tutte le simmetrie hanno ordine 2.
- ightharpoonup ci sono $\varphi(m)$ rotazioni di ordine m, per ogni $m \mid n$.

Proof. La seconda parte è immediata conseguenza della ciclicità del sottogruppo delle rotazioni. L'ordine delle riflessioni possiamo calcolarlo esplicitamente notando che $(\sigma \rho^k) (\sigma \rho^k) = (\sigma \rho^k \sigma) \rho^k = \rho^{-k} \rho^k = e$ grazie alla terza proprietà imposta nella caratterizzazione.

Teorema G.19 (Sottogruppi di D_n). I sottogruppi $H < D_n$ rientrano in una di queste due categorie:

▶ $H < C_n$: di cui ne abbiamo esattamente uno per ogni ordine divisore di n.

▶ $H = (H \cap C_n) \sqcup \tau(H \cap C_n)$: di cui ce ne sono d di ordine $\frac{2n}{d}$ per ogni $d \mid n$.

Proof. Se $H < C_n$ il risultato viene da Aritmetica. Se $H \nleq C_n$, H contiene almeno una rotazione $\tau = \sigma \rho^i$. Consideriamo l'omomorfismo f che fa commutare il diagramma

$$D_n \xrightarrow{\Phi} \mathbf{O}_2(\mathbb{R})$$

$$\downarrow^{det}$$

$$\{\pm 1\} \cong \mathbb{Z}_2$$

Notiamo che ker $f = C_n \triangleleft D_n$ e osserviamo cosa succede quando restringiamo l'omomorfismo trovato ad H

$$H \xrightarrow{f_{\mid H}} f(H)$$

$$\downarrow^{id} \qquad \downarrow^{id}$$

$$D_n \xrightarrow{f} \mathbb{Z}_2$$

Abbiamo così scomposto il nostro sottogruppo come desiderato, poiché conosciamo il ker della trasformazione

$$H = f^{-1}(0) \sqcup f^{-1}(1) = (H \cap C_n) \sqcup \tau(H \cap C_n)$$

Poiché $(H \cap C_n) < C_n$ possiamo vederlo come il sottogruppo generato da una potenza della rotazione elementare

$$H \cap C_n = \langle \rho^d \colon d \mid n \rangle$$

Il suo unico laterale sarà allora composto dagli \boldsymbol{d} elementi della forma

$$\tau(H \cap C_n) = \{\tau \rho^d, \tau \rho^2 d, \dots, \tau \rho^{n-m}\}$$
$$= \{\sigma \rho^{d+i}, \sigma \rho^{2d+i}, \dots, \sigma \rho^{n-m+i}\}$$

che è facile convincersi dipendere solamente dalla classe di i mod m.

Esercizi.

- 1. Quali sottogruppi di D_n sono normali?
- 2. Quali sottogruppi di D_n sono caratteristici?
- 3. Quali sono i quozienti di D_n ?
- 4. (\star) Chi è Aut (D_n) ?

G.4 Gruppi di Permutazioni S_n

Definizione G.20 (Gruppi di Permutazioni). Dato un insieme X, chiamiamo

$$S(X) = \{ f : X \to X \mid f \text{ è bigettiva} \}$$

con l'operazione di composizione, il gruppo delle permutazioni di X. Se l'insieme è finito |X|=n, allora

$$S(X) \cong S(\{1, 2, \dots, n\})$$

lo chiamiamo S_n .

Teorema G.21. Ogni permutazione $\sigma \in S_n$ si scrive in modo unico come prodotto di cicli disgiunti.

Osservazione. Cicli disgiunti commutano.

Teorema G.22. S_n è generato dai suoi cicli.

Esercizi.

- 1. Quanti k-cicli ci sono in S_n ?
- 2. Come conto gli elementi con una composizione fissata in un S_n dato? Per esempio, come calcolo le permutazioni del tipo 3 + 3 + 2 + 2 + 2 in S_{10} ?
- 3. L'ordine di σ è il minimo comune multiplo delle lunghezze dei suoi k-cicli.

Teorema G.23. S_n è generato dalle sue trasposizioni.

Osservazione. La decomposizione in trasposizioni non è unica. Ma la parità del numeri di trasposizioni lo è:

Teorema G.24. La parità del numero di trasposizioni della scomposizione di una qualunque permutazione $\sigma \in \mathcal{S}_n$ non dipende dalla scomposizione.

Proof. Consideriamo

$$\operatorname{sgn} \colon \mathcal{S}_n \to \mathbb{Z}^{\times} = \{\pm 1\}$$
$$\sigma \mapsto \prod_{1 \le i \le j \le n} \frac{\sigma(i) - \sigma(j)}{i - j}$$

questo è un omomorfismo di gruppi. Infatti:

1. è ben definito, ovvero $|\operatorname{sgn}(\sigma)| = 1$: tutte le differenze che compaiono a denominatore compaiono anche a numeratore, poiché σ è una permutazione, magari con ordine o segno, differente.

2. Si comporta bene con la composizione

$$\operatorname{sgn}(\sigma \circ \tau) = \prod_{i < j} \frac{\sigma(\tau(i)) - \sigma(\tau(j))}{i - j}$$

$$= \prod_{i < j} \frac{\sigma(\tau(i)) - \sigma(\tau(j))}{\tau(i) - \tau(j)} \cdot \frac{\tau(i) - \tau(j)}{i - j}$$

$$= \prod_{i < j} \frac{\sigma(\tau(i)) - \sigma(\tau(j))}{\tau(i) - \tau(j)} \cdot \prod_{i < j} \frac{\tau(i) - \tau(j)}{i - j}$$

$$= \operatorname{sgn}(\sigma) \cdot \operatorname{sgn}(\tau)$$

Infine, tutte le trasposizioni hanno segno negativo.

Definizione G.25 (Gruppo Alterno). Chiamiamo A_n o gruppo alterno il sottogruppo delle permutazioni pari

$$\ker(\operatorname{sgn}) = A_n \triangleleft \mathcal{S}_n$$

Teorema G.26. Due permutazioni $\sigma, \tau \in S_n$ sono coniugate se e solo se hanno lo stesso tipo di decomposizione in cicli.

Proof. \Rightarrow . Ci basta dimostrare che dato un ciclo $\sigma = (a_1 \cdots a_k)$ e una permutazione tale che $\tau(a_i) = b_i$. Allora le immagini del ciclo vengono mandati nel loro "successore"

$$\tau \sigma \tau^{-1}(b_i) = \tau \sigma(a_i) = \tau(a_{i+1}) = b_{i+1}$$

mentre le non immagini di alcun a_i , con controimmagini invarianti per σ , rimangono fisse

$$\tau \sigma \tau^{-1}(x) = \tau \tau^{-1}(x) = x$$

pertanto

$$\tau \sigma \tau^{-1} = (b_1 \cdots b_k)$$

 \Leftarrow . Se vogliamo mandare il ciclo $(a_1 \cdots a_k)$ in $(b_1 \cdots b_k)$ ci basta coniugare per la stessa permutazione di prima: $\tau(a_i) = b_i$. Possiamo poi costruire il coniugio moltiplicando tra loro tutte le τ relative ai vari cicli.

Osservazione. Notiamo che il centralizzatore di σ coincide con lo stabilizzatore dell'azione di coniugio di S_n in se. Dunque

$$|Z(\sigma)| = \frac{n!}{|\mathcal{C}(x)|}$$

Esercizio. Data una permutazione σ trovare $N(\langle \sigma \rangle)$

G.5 Prodotti diretti

A un certo punto vorremo arrivare a dimostrare il seguente risultato, che ora enunciamo un po' a caso.

Teorema G.27 (di Struttura dei gruppi abeliani finitamente generati). Possiamo scrivere ogni gruppo abeliano finitamente generato G, in modo unico, come prodotto diretto di gruppi ciclici nel modo seguente

$$G \cong \mathbb{Z}^r \times \mathbb{Z}_{n_1} \times \cdots \times \mathbb{Z}_{n_k}$$

dove n_1, \ldots, n_k sono interi tali che $n_1 \mid n_2 \mid \cdots \mid n_k$.

Definizione G.28. Chiamiamo p-sylow ogni p-sottogruppo di ordine massimo. Ovvero H < G, dove $|G| = p^m n$ con (m,n) = 1 e $|H| = p^m$.

Teorema G.29. Sia G un gruppo e H, $K \triangleleft G$ due sottogruppi normali. Se

- 1. HK = G
- 2. $H \cup K = \{e\}$

allora $G \cong H \times K$.

Proof. Mostriamo innanzitutto che $hkh^{-1}k^{-1}$ appartiene ad entrambi i sottogruppi, infatti:

$$H \ni h(kh^{-1}k^{-1}) = h(kh^{-1}k^{-1}) = (hkh^{-1})k^{-1} \in K$$

dunque, per la seconda ipotesi,

$$hkh^{-1}k^{-1} = e$$

quindi gli elementi di un sottogruppo commutano con quelli dell'altro hk=kh.

Consideriamo ora l'isomorfismo

$$\Phi \colon H \times K \to G$$
$$(h, q) \mapsto hq$$

e verifichiamo che

- 1. è ben definito.
- 2. è un omomorfismo: infatti

$$\Phi(hh',kk')=hh'kk'=hkh'k'=\Phi(h,k)\Phi(h',k')$$

- 3. è suriettivo per la prima ipotesi.
- 4. è iniettivo per la seconda, infatti

$$\ker\Phi=\{(h,k)\mid hk=e\}=\{(e,e)\}$$

 $Osservazione. \ \ {\rm Nel\ prodotto\ diretto\ i\ fattori\ commutano.}$

Proprietà di $G = H \times K$.

- 1. $Z(G) = Z(H) \times Z(K)$.
- 2. $\operatorname{Int}(G) \cong \operatorname{Int}(H) \times \operatorname{Int}(K)$.
- 3. $\operatorname{Aut}(H) \times \operatorname{Aut}(K) < \operatorname{Aut}(G)$.

Teorema G.30. Si ha $\operatorname{Aut}(H) \times \operatorname{Aut}(K) < \operatorname{Aut}(H \times K)$ e sono isomorfi se e solo se H e K sono caratteristici.

Proof. Consideriamo l'omomorfismo

$$\Phi \colon \operatorname{Aut}(H) \times \operatorname{Aut}(K) \to \operatorname{Aut}(H \times K)$$
$$(f,g) \mapsto \varphi_{fg} \colon (h,k) \mapsto (f(h),g(k))$$

e verifichiamo che

- \blacktriangleright è bene definito, ovvero φ è un automorfismo. Immediata conseguenza del fatto che f e g sono a loro volta automorfismi.
- ▶ è un omomorfismo.

$$\Phi(ff', gg') = (f(f'(h)), g(g'(k)))$$

$$= \varphi_{fg}(\varphi_{f'g'}(h, k))$$

$$= \Phi(f, g)\Phi(f', g')$$

▶ è iniettivo.

$$\ker \Phi = \{(id, id)\}\$$

altrimenti c'è almeno un elemento di uno dei due gruppi che non va in se stesso.

- ▶ è suriettivo se e solo se $H \times \{e_K\}$ e $\{e_H\} \times K$ sono caratteristici in $H \times K$.
 - \Rightarrow . Se Φ è suriettivo, allora tutti gli automorfismi di $H \times K$ sono della forma di cui sopra e pertanto φ_{fg} agisce sugli elementi di H come $\varphi_{fg|H} = f \in \text{Aut}(H)$.
 - \Leftarrow . Viceversa, supponiamo H e K caratteristici, preso un automorfismo $\varphi \in \operatorname{Aut}(H \times K)$ consideriamo le sue restrizioni ai due sottogruppi caratteristici.

$$f = \Pi_H \left(\varphi_{|H \times \{e_K\}} \right) \qquad g = \Pi_K \left(\varphi_{|\{e_H\} \times K} \right)$$

Notiamo che $f \in Aut(H)$.

-f è iniettiva. Se f(h) = f(h') allora

$$\Pi_H \left(\varphi(h, e_K) \right) = \Pi_H \left(\varphi(h', e_K) \right)$$

poiché $H \times \{e_K\}$ è caratteristico

$$\varphi(h, e_K) = (a, e_K)$$
 $\varphi(h', e_K) = (b, e_K)$

ma necessariamente a = f(h) e b = f(h'), per-

$$\varphi(a, e_K) = (f(h), e_K) = (f(h'), e_K) = \varphi(b, e_K)$$

e, visto che φ è iniettivo, h = h'.

-f è suriettiva. Fissiamo un qualunque $h \in H$. Essendo $H \times \{e_K\}$ caratteristico, necessariamente la controimmagine di (h, e_K) è un suo elemento

$$\varphi^{-1}(h, e_K) = (h', e_K)$$

dunque

$$f(h') = \Pi_H \left(\varphi(h', e_K) \right) = \Pi_H \left(h, e_K \right) = h$$

Infine osserviamo che $\Phi(f,g) = \varphi$. Infatti

$$\varphi_{fg}(h,k) = (f(h), g(k))$$

$$= (\Pi_H (\varphi(h, e_K)), \Pi_K (\varphi(e_H, k)))$$

$$= (\Pi_H (\varphi(h, k)), \Pi_K (\varphi(h, k)))$$

$$= \varphi(h, k)$$

dove la terza uguaglianza segue da

$$\Pi_{H} (\varphi(h, e_{K})) = \Pi_{H} (\varphi(h, e_{K})) \Pi_{H} (\varphi(e_{H}, k))$$
$$= \Pi_{H} (\varphi(h, e_{K}) \varphi(e_{H}, k))$$
$$= \Pi_{H} (\varphi(h, k))$$

Esercizio. Trovare Aut $(\mathbb{Z}_{20} \times \mathbb{Z}_2)$.

G.6 Classificazione dei Gruppi di ordine 8

$$\exists g \mid \operatorname{ord}(g) = 8
 \xrightarrow{no} \mathbb{Z}_8$$

$$\boxed{g^2 = e \quad \forall g} \xrightarrow{\text{sì}} (\mathbb{Z}_2)^3$$

$$\xrightarrow{no} \qquad \qquad \downarrow \text{-id}$$

$$\boxed{\varphi_h \mid h \notin C_4} \xrightarrow{\text{si}} \mathbb{Z}_2 \times \mathbb{Z}_4$$

$$\xrightarrow{\downarrow \text{-id}} \qquad \qquad \downarrow \text{-id}$$

$$\boxed{\operatorname{ord}(h) = 2} \xrightarrow{\text{si}} D_4$$

$$\xrightarrow{no} \qquad \qquad \downarrow Q_8$$

Prendiamo un gruppo G di ordine 8.

- ▶ Se esiste un elemento di ordine 8 il gruppo è ciclico e pertanto isomorfo a Z₈.
- ▶ Se G ha solo elementi di ordine 2, allora è isomorfo a $(\mathbb{Z}_2)^3$. Mostriamo un risultato appena più generale.

Teorema G.31. Se |G| ha solo elementi di ordine due ed è finito, allora $G \cong (\mathbb{Z}_2)^n$.

Proof. Osserviamo che $a^2b^2=e=(ab)^2=abab$ e, moltiplicando per a a sinistra e per b a destra, otteniamo ab=ba per ogni $a,b\in G$. Pertanto G è abeliano. Possiamo ora procedere per induzione sulla dimensione di G. Se |G|=2 il risultato è chiaro. Supponiamo ora che sia vero per tutti i gruppi di ordine $<2^n$ e supponiamo $2^n\leq |G|<2^{n+1}$. Quando prendiamo un insieme minimale di h< n generatori $\langle g_1,\ldots g_h\rangle$ di un sottogruppo di H< G, questo sarà isomorfo a $(\mathbb{Z}_2)^h$ per ipotesi induttiva. Prendiamo un elemento $g\notin H$, abbiamo che H e $\langle g\rangle\cong \mathbb{Z}_2$ sono sottoinsiemi normali e con intersezione banale, pertanto il sottoinsieme

$$\langle g, g_1, \dots g_h \rangle \cong H \times \langle g \rangle \cong (\mathbb{Z}_2)^h \times \mathbb{Z}_2 \cong (\mathbb{Z}_2)^{h+1}$$

per il teorema di struttura G.29. Così facendo possiamo continuare ad aggiungere elementi fino a saturare il gruppo e raggiungere la tesi.

Sia ora $g \in G$ l'elemento di ordine 4 richiesto e $C_4 = \langle g \rangle$. Sia $h \notin C_4$ e consideriamo l'azione di coniugio di h su C_4

$$\phi_g \colon C_4 \to C_4$$
$$x \mapsto hxh^{-1}$$

ben definita perché C_4 , avendo indice 2, è normale in G. Poiché $\operatorname{Aut}(\mathbb{Z}_4)\cong\mathbb{Z}_2$, abbiamo solo due possibilità:

$$\varphi_g = id^{\pm 1}$$

▶ $[\varphi_g = id, \operatorname{ord}(h) = 2]$. Dunque gli elementi di C_4 commutano con h, l'intersezione tra C_4 e $\langle h \rangle$ è banale e il loro prodotto genera G per ragioni di cardinalità, pertanto

$$G \cong \langle h \rangle \times C_4 \cong \mathbb{Z}_2 \times \mathbb{Z}_4$$

- ▶ $[\varphi_g = id, \operatorname{ord}(h) = 4]$. Possiamo considerare h^2 e ricondurci al caso precedente.
- ▶ $[\varphi_g = id^{-1}, \operatorname{ord}(h) = 2]$. Abbiamo che $hgh = g^-1$, quindi per la nostra caratterizzazione dei gruppi diodrali

$$G \cong D_4$$

 $\blacktriangleright [\varphi_g = id^{-1}, \operatorname{ord}(h) = 4]$. Anche $\operatorname{ord}(gh) = 4$. Infatti

$$e = qhqh = qhqh^{-1}hh = hh \neq e$$

Dunque abbiamo trovato l'ordine di tutti gli elementi, possiamo costruire un'isomorfismo esplicito con Q_8 .

Definizione G.32 (Quaternioni). Sia Q_8 l'insieme $\{\pm 1, \pm i, \pm j, \pm, k\}$ con l'operazione che soddisfa

$$i^2 = j^2 = k^2 = ijk = -1$$

G.7 Lemmi vari

Teorema G.33. Siano G un gruppo finito e H un sottogruppo che ha come ordine il più piccolo primo p che divide G, allora $H \triangleleft G$.

 ${\it Proof.}$ Consideriamo l'azione di G sull'insieme X dei laterali di H per moltiplicazione a sinistra

$$\Phi \colon G \to \mathcal{S}_p$$
$$g \mapsto \Pi_q : xH \mapsto gxH$$

Osserviamo che

$$g \in Stab(xH) \Leftrightarrow gxH = xH$$

 $\Leftrightarrow x^{-1}gx \in H$
 $\Leftrightarrow g \in xHx^{-1}$

dunque $Stab(xH) = xHx^{-1}$ è il sottogruppo coniugato di H rispetto ad x. Possiamo ora riscrivere il nucleo come

$$\ker \Phi = \bigcap_{x \in G} x H x^{-1} < H$$

e osservare che, per il Primo Teorema di Omomorfismo

$$\Phi': G_{\ker \Phi} \to \mathcal{S}_p$$

è iniettivo e pertanto

$$\left| \frac{G}{\ker \Phi} \right| \mid |\mathcal{S}_p| = p!$$

ma p era il più piccolo primo a dividere |G|, quindi non potendo ker Φ coincidere con tutto il gruppo, dovrà essere proprio H. Il che conclude la dimostrazione.

Osservazione. Sia G un gruppo abeliano. Sia

$$\psi_n \colon G \to G$$
$$x \mapsto x^n$$

preso un qualunque automorfismo $\varphi\in \operatorname{Aut}\left(G\right)$ il seguente diagramma è commutativo

$$G \xrightarrow{\psi_n} G$$

$$\varphi \downarrow \qquad \qquad \downarrow \varphi$$

$$G \xrightarrow{\psi_n} G$$

quindi $\ker \psi_n \in \psi_n(G)$ sono caratteristici in G.

Esercizi.

- 1. Trova Aut $(\mathbb{Z} \times \mathbb{Z}_n)$.
- 2. Trova Aut $(\mathbb{Z}_2 \times \mathbb{Z}_4 \times \mathbb{Z}_4)$.
- 3. Trova Aut $(Q_8 \times D_4)$.
- 4. Sia G un gruppo abeliano finito. Se $H \lhd G$ è ciclico e lo è anche il loro quoziente, allora anche G è ciclico.

G.8 Prodotto Semidiretto

Definizione G.34 (Prodotto semidiretto). Siano H,K due gruppi e $\varphi:K\to {\rm Aut}\,(H)$ un'omomorfismo. Si dice prodotto semidiretto

$$H \rtimes_{\varphi} K$$

l'insieme dato dal prodotto cartesiano, dotato dell'operazione

$$(h,k)\cdot(h',k')=(h\varphi_k(h'),kk')$$

Osservazione. Il prodotto semidiretto è un gruppo.

Osservazione. Il prodotto diretto è un prodotto semidiretto in cui φ manda tutti gli elementi di K nell'identità su H.

Osservazione. Sia $\bar{H} = H \times e_k$. Si ha

$$\ker \Pi_K = \bar{H} \lhd H \rtimes_{\varphi} K$$

qualunque sia l'omomorfismo $\varphi.$ Infatti \bar{H} è il nucleo dell'omomorfismo di proiezione su K.

Osservazione. Inoltre \bar{K} se e solo se il prodotto è diretto.

$$\bar{K} \triangleleft H \rtimes_{\omega} K \Leftrightarrow \rtimes = \times$$

Teorema G.35 (Teorema di decomposizione in prodotto semidiretto). Siano G un gruppo e H, K < G sottogruppi, con $H \lhd G$ normale. Se

1.
$$HK = G$$

$$2. \ H \cap G = \{e\}$$

allora $G \cong H \rtimes_{\varphi} K$ dove φ manda k nella corrispondente azione di coniugio

$$\varphi \colon K \to \operatorname{Aut}(H)$$

 $k \mapsto \varphi_k \colon h \mapsto hkh^{-1}$

Proof. Consideriamo

$$\Phi \colon H \rtimes_{\varphi} K \to G$$
$$(h,k) \mapsto hk$$

questo

▶ è un omomorfismo, perché

$$\Phi((h,k)(h',k')) = \Phi(h\varphi_k(h'),kk')$$

$$= \Phi(hkh'k^{-1},kk')$$

$$= hkh'k^{-1}kk'$$

$$= hkh'k'$$

$$= \Phi(h,k)\Phi(h',k')$$

▶ è iniettivo e suriettivo per le ipotesi, come nella decomposizione in prodotto diretto.

dunque Φ è un isomorfismo come desiderato.

Esempi.

- 1. $S_n \cong A_n \rtimes_{\varphi} \langle (1\ 2) \rangle$, con φ di coniugio.
- 2. $D_n \cong \langle \rho \rangle \rtimes_{\varphi} \langle \sigma \rangle$, con φ di coniugio.

G.9 Sottogruppi di Ordine pq

Se p=q, allora $|G|=p^2,$ quindi G è abeliano. Allora necessariamente

$$G \cong \mathbb{Z}_{p^2}$$
 oppure $G \cong \mathbb{Z}_p \times \mathbb{Z}_p$

Se p < q, allora ho due elementi x,y di ordine, rispettivamente, p e q, che generano relativi gruppi ciclici. Il più grande dei quali sarà normale

$$K = \langle x \rangle < G$$
 e $H = \langle y \rangle \lhd G$

per il teorema G.33. Inoltre osserviamo che HK=Ge i due sottogruppi hanno intersezione banale. Quindi

$$G \cong H \rtimes_{\varphi} K$$

dove

$$\varphi_1 \colon K \to \operatorname{Aut}(H) \cong \mathbb{Z}_q^{\times}$$

 $y \mapsto \varphi_y \colon x \mapsto yxy^{-1}$

e necessariamente dobbiamo avere che

$$yxy^{-1} = x^k \qquad \text{con} \quad (k, q) = 1$$

ma, poiché φ è un omomorfismo, abbiamo che

$$\operatorname{ord}(\varphi_y) \mid \operatorname{ord}(y) = p$$

quindi abbiamo solo due casi: ord $(\varphi_y) = 1$ e ord $(\varphi_y) = p$. Nel primo caso φ manda ogni elemento nell'identità, dunque il prodotto semidiretto è in realtà diretto e dunque

$$G \cong \mathbb{Z}_p \times \mathbb{Z}_q$$

Nel secondo caso dobbiamo avere

$$p = \operatorname{ord}(\varphi_y) \mid \operatorname{ord}(x^k) \mid q - 1$$

Vogliamo mostrare che qualunque omomorfismo ψ da K a Aut (H), non banale, costruisce un prodotto semidiretto isomorfo a G e ci è pertanto concesso scrivere

$$G\cong H\rtimes K$$

Osserviamo innanzitutto che le azioni del tipo

$$\varphi_i : y \mapsto \varphi_{y^i} : x \mapsto y^i x y^{-i} \qquad 0 \le i < p$$

sono tutte e sole le azioni di K su H.

Queste sono p e sono tutte distinte.

Inoltre una qualunque azione è un omomorfismo da K ad $\operatorname{Aut}(H)\cong\operatorname{Aut}(\mathbb{Z}_q)\cong\mathbb{Z}_{q-1}$. Dovendo l'azione avere ordine p, dev'essere un omomorfismo da K al sottogruppo ciclico di ordine p di $\operatorname{Aut}(H)$. Pertanto, escluso l'omomorfismo banale φ_0 , gli omomorfismi sono isomorfismi del gruppo ciclico sopracitato e perciò sono in totale $1+|\operatorname{Aut}(\mathbb{Z}_p)|=1+(p-1)=p$. A questo punto è facile convincersi che la mappa

$$\Phi \colon H \rtimes_{\varphi_1} K \to H \rtimes_{\varphi_i} K$$
$$(x, y) \mapsto (x, y^k)$$

è un'isomorfismo tra tutti i possibili prodotti semidiretti.