Understanding and Verifying Deep Neural Networks

Divya Gopinath

Research Scientist, RSE group NASA AMES, KBR Inc.

Outline

- Introduction
- Background
- Our Approach
- Case Studies
- Future work
- Conclusion

SafeDNN: Safety of Deep Neural Networks

https://ti.arc.nasa.gov/tech/rse/research/safednn/

- NASA project that explores techniques and tools to ensure that systems that use Deep Neural Networks (DNN) are safe, robust and interpretable
- Project Members: Corina Pasareanu, Divya Gopinath
 - Many students and collaborators
- This talk focuses on Prophecy¹, for formal analysis of Deep Neural Networks, specifically describing its application in understanding and verifying networks used in autonomous systems

Outline

- Introduction
- Background
- Our Approach
- Case Studies
- Future work
- Conclusion

Deep Neural Networks

Deep Networks (DNNs) Neural have widespread usage, even in safety-critical applications such as autonomous driving

Sentiment Analysis

Autonomous

Image Classification

neuron

Layer L₂

Layer L₁

ReLU activation function

$$h_{W,b}(x) = f(W^T x) = f(\sum_{i=1}^3 Wixi + b)$$

Challenges

- Lack of explainability
 - It is not well understood why the network makes its decisions
 - Design not amenable for analysis, Logic not interpretable
 - Impacts reliability, impedes trust

- Lack of guarantees for network behavior
 - Often networks do not have formal input-output specifications defining functional correctness
 - Networks are large and complex inhibiting efficient analysis and verification

Existing work (Explainable AI)

- Work done mostly in the fields of computer vision and NLP
- Explaining behavior of pre-trained models (Model-Specific)
 - Saliency Maps, Gradient descent, DeepLIFT, Integrated Gradients identify portions of the image that impact network prediction
 - DeepExplain, Guided-Back propagation visualize features learnt by the network at different layers
 - Class Activation Maps (GradCAM, GradCAM++) indicate discriminative regions of an image used by a CNN to categorize them into different classes
 - Concept Activation Vectors determine how sensitive a prediction is to a user-defined concept such as a "human" or "animal"
 - LRP is an attribution technique applicable to images and text, Rationale is an interpretability method for text (NLP)
- Explaining any black-box model (Model Agnostic): LIME, Ancor, SHAP, PDP

Existing work on Explainable Al (Open issues)

- Not much work on generating explanations for more complex output properties and behaviors than classification
- Most techniques are typically local and generate explanations wrt a single image or a set of images
- There aren't techniques that generate formal explanations which can be proved
- There isn't a common or generic approach that is applicable to different types of networks (classification, regression, recurrent networks so on)

Existing work (Verification)

 Number of approaches have been developed to verify if a given DNN model satisfies a property

$$\forall x \ Pre(x) \Rightarrow Post(F(x))$$

- For perception networks, the property is mainly Adversarial Robustness
- For some networks (ACAS Xu; controller network with low-dimensional sensor inputs), predefined input-output specifications are available and have been verified
- Search-Based techniques: Reluplex, Marabou, Planet use SMT solvers such as Gurobi and Yikes
- Reachability-Based techniques: DeepZono, DeepPoly,AI2
- Optimization-Based techniques: MIPVerify
- Search+Optimization: Neurify, VeriNet

Existing work on Verification (Open Issues)

- Mainly applicable to feed-forward networks, Piece-wise linear activation functions (ReLU)
- Not scalable to large complex networks
- Guarantees of robustness in small local regions around inputs
- Need richer, more expressive properties capturing the overall functional behavior of the DNN

Outline

- Introduction
- Background
- Our Approach
- Case Studies
- Future work
- Conclusion

Our Approach

- Decompose the complex DNN model into a set of simple rules, amenable to analysis
 - \circ Assume-guarantee type rules are inferred from a trained DNN; $\forall x \ \sigma(x) \Rightarrow P(F(x))$
 - P is a property of the network function; functional property
 - \circ σ (X) are formal constraints on neurons at inner layers of the network (neuron activation patterns)
 - Prophecy: Property Inference for Deep Neural Networks (ASE 2019)

Prophecy Property Inference for Deep Neural Networks [ASE 2019]

Our Approach (Benefits)

- Rules act as "likely" specifications, richer and more expressive properties of functional behavior
 - Faithful to network behavior
- Mathematical formulation is amenable to verification, providing *guarantees wrt functional behavior* $\forall x \sigma(x) \Rightarrow P(F(x))$
 - Enable more efficient (compositional verification) of inputoutput properties
- Visualization of rules enable explainability and interpretability
 - Obtaining formal explanations which can be proved
- Applicable to any type of input (image, text, sensory signals) and complex output properties

Applications

- The properties extracted using Prophecy have many applications
 - Obtaining formal guarantees of network behavior
 - Interpretability and Explainability of network behavior
 - Network Distillation
 - Proof Decomposition
 - Debugging and repair
- Case studies on perception networks, controller networks, classifier and regression models
 - Feed forward networks
 - With fully connected, convolution layers, maxpool layers
 - ReLU , eLU activation functions
- This talk will focus on our case-studies on DNNs used as perception and controller modules in autonomous driving

Outline

- Introduction
- Background
- Our Approach
- Case Studies
 - Regression Model for Perception
- Future work
- Conclusion

Case study on a Regression model for Perception [2]

- TaxiNet is a neural network designed to take a single picture of the runway as input and return the plane's position w.r.t. the center of the runway
 - Returns 2 numerical outputs; Cross track error (y0): The distance of the plane from the middle line,
 Heading error (y1): The angle of the plane w.r.t. the middle line
- Input data is a sequence of images captured by the camera as the plane moves on the runway
 - A simulator (Xplane) used to generate data for training and testing

[2]: Burak Kadron, Divya Gopinath, Corina Pasareanu, Huafeng Yu: Case Study: Analysis of Autonomous Center lineTracking Neural Networks. VSTTE21

Problem Statement

- Desired properties of the network outputs
 - Safety property: In order to ensure that the plane is in the safe zone within the runway |y0| < 10.0m, $|y1| < 90^{\circ}$
 - Correctness property: Based on data whose ideal outputs are known |y0-y0ideal| < 1.5m, |y1-y1ideal| < 5°
- Can we understand why the network behaves (correctly/incorrectly) in some scenarios vs.
 others?
 - We want to identify *input features* that impact network behavior w.r.t *correctness constraints*
 - The feature should be a characteristic of a sequence of images
 - Useful in debugging, generating additional testing scenarios, Runtime monitors
- Can we generate guarantees for the safe operation?
 - We want to generate guarantees over sequence of images (or a time window)
 - O We would like to generate *new image sequences that can lead to failure*
 - Important to build trust and certify network behavior
- Can we produce sound results despite considering the network as a standalone entity without the feedback loop with the simulator?

Prophecy on TaxiNet

TaxiNet Architectures

- O **Boeing TaxiNet [REF]**: CONV network with 24 layers, input is a 360x200x3 image, 5 CONV layers, 5 activation layers and 3 dense layers (100,50,10 eLU neurons respy) before the output layer with 2 outputs
- Prophecy used to extract patterns using a labeled dataset with 13885 inputs
 - Wrt three correctness properties; $|y_0-y_{0ideal}| \le 1.0$, $|y_1-y_{1ideal}| \le 5.0$, $|y_0-y_{0ideal}| \le 1.0 \land |y_1-y_{1ideal}| \le 5.0$
 - At each of the three dense layers and all of them together
 - Patterns for satisfaction (396 patterns for class 1), patterns for violation of the correctness properties (418 patterns for class 0)
- O **Tiny Taxinet [3]:** Smaller network takes in a down-sampled version of the image (128 pixels), 3 dense layers (16,8,8 ReLU neurons respy) and output layer with 2 outputs
- Prophecy used to extract patterns using a labeled dataset with 51462 inputs
 - Wrt three safety properties; $|y_0| \le 10.0$, $|y_0| \le 8.0$, $|y_0| \le 5.0$
 - At each of the three dense layers and all of them together, patterns for satisfaction and violation of the safety properties were extracted

Patterns for Explainability

- A pattern represents features of the input images that impact network behavior,
 - Activation pattern from dense layer 1 for the satisfaction of the correctness property w.r.t y0 (cross-track error)

off(N1,53) / off(N1,71) / off(N1,64) / off(N1,67) => |y0-y0| deal | <= 1.0, Support = 1792

- We visualize these features by highlighting the input pixels that impact the pattern
 - For an image satisfying the pattern, highlight pixels that impact the neurons in the pattern (using GradCAM++ [4])
 - Identifies portion of the image impacting network's behavior w.r.t the cross-track error output
 - Highlighting pixels that impact the output variable y0 (aka existing attribution approaches) is not as helpful

Explaining Correct Behavior

- Extracting a common characteristic (feature) over a sequence of images
 - 44 sequences (length > 5) satisfy the example pattern
 - The summary of important pixels (average GradCAM values across all images) represents the feature for the scenario that impacts the output property the most
 - O The feature; distance between the center line of the runway and the airplane; is relevant for cross-track error determination enabling the network to produce the correct output for this scenario

Summary of

important pixels

Sequence of 12 images satisfying pattern for correct behavior

Explaining Incorrect Behavior

Pattern from dense layer 1 for the violation of the correctness property w.r.t y0 (cross-track error)

on(N1,53) / off(N1,29) / on(N1,20) / off(N1,49) / off(N1,15) / off(N1,95) / off(N1,25) => |y0-y0ideal| > 1.0, Support: 403 | 0.0, Support: 403 |

- 18 sequences (length > 5) satisfy the example pattern
- Scenario 1: Highlighted pixels indicate that the noise (blue line) interferes with correct determination of the cross-track error
- Scenario 2: None of the pixels are highlighted, indicating the absence of a distinct feature that the network could use to make a correct estimation of the cross-track error

Formal guarantees of safety

- We employed the Marabou[5] solver to check if all inputs satisfying a pattern satisfy
 the output property
 - Formal proof of consistent behavior of the network over the input region representing the sequence of images (a time interval)
 - We were unable to use Marabou on the Boeing Model since it is unable to handle the complexity of the network, specifically the eLU activation functions
 - We were able to check the safety properties on the TinyTaxinet model using Marabou $\forall x \in [x_{min}, x_{max}] \land pattern => |y_0| \le 10m$
 - Obtained proofs for 33 sequences with at least 5 images, the longest sequence with proof had 17 images

Counter-examples

- Generating scenarios where the plane can run out of the runway is very useful for debugging
- Counter-example to the check $\forall x \in [x_{min}, x_{max}] \land pattern => |y_0| \le 10m$
- An image similar to the other valid images in the sequence but causes the network output to violate the safety property |y0| > 10m
- The inclusion of the pattern and the bounds around valid inputs in the sequence makes the counter-example more likely to occur in an actual closed-loop system

Counterexample for an image sequence of length 39 for $|y_0| \leq 10m$

Counterexample for an image sequence of length 5 for $|y_0| \leq 10m$

Outline

- Introduction
- Background
- Our Approach
- Case Studies
 - Regression Model for Perception
 - Object Detection Network in Autonomous vehicles
- Future work
- Conclusion

Case study on an Object Detection Network [6]

- SqueezeDet is a convolutional neural network for object detection in autonomous cars
- **SCENIC** is a probabilistic programming language used to describe environments or scenes
 - o Generates values for environment variables describing a scene using high level semantic features
- The environment variables fed to a simulator to create realistic images for the object detector

Problem Statement

- Can we generate explanations for behavior in terms of higher-level features (such as weather, vehicle type ...)?
 - Most existing techniques identify important portions at a pixel level on images and require human intervention to determine what these portions correspond to in terms of a feature
- Can we generate tests that will specifically increase the correction /incorrect detection rates of the object detector, which would help with debugging?

Prophecy on SqueezeDet

SqueezeDet Architecture:

- Labelling the outputs: For each image, the network's output is labelled correct or incorrect
 - Correct Label: F1 of correct detection > 0.8, Incorrect Label: F1 of correct detection <= 0.8
 - TP: # of ground truth boxes correctly predicted (IoU>0.5), TN: # of ground truth boxes not detected, FP: # of bounding boxes falsely predicting ground truth, F1 > 0.8

Extracting Semantic Explanations

- Given a set of labelled data, we used
 Prophecy to extract the neuron activations
 patterns from the three Maxpool layers
 - Patterns for both correct and incorrect labels were extracted
- Each input also has an associated feature vector in terms of the environment features
 - We labelled the feature vectors into 4 classes;
 correct-pattern, correct-nopattern, incorrect-pattern, incorrect-nopattern
 - We then used Ancor and Decision-Tree learning to extract rules in terms of the features

Generating Test Inputs for Debugging

- The failure inducing rule is used to refine the scenic program to generate more failure inducing images
- The success inducing rule is used to refine or correct the program to generate more passing tests
- Increased correct detection rate from 65.3% to 89.4% and incorrect detection rate from 34.7% to 87.2%
- These additional tests could be used to debug and/re-train the object detector network

Outline

- Introduction
- Background
- Our Approach
- Case Studies
 - Regression Model for Perception
 - Object Detection Network in Autonomous vehicles
 - Controller network for Collision Avoidance
- Current/Future work
- Conclusion

Case study on a Controller network

ACAS-Xu (Airborne Collision Avoidance System-Xu)

Architecture and Properties

- 45 DNNs, Each with 5 inputs, 5 outputs, Fully connected, ReLU activations, 6 layers with a total of 300 Nodes
- System has 10 desirable properties (input-output specifications)
 - For a far away intruder, the network advises COC,
 - 36000 ≤ range ≤ 60760, 0.7 ≤ θ ≤ 3.14, -3.14 ≤ ψ ≤ 3.14 + 0.01, 900 ≤ vown ≤ 1200, 600 ≤ vint ≤ 1200, has turning advisory COC
 - If the intruder is near and approaching from the left, the network advises "strong right"
 - 250 ≤ range ≤ 400, $0.2 \le \theta \le 0.4$, $-3.14 \le \psi \le 3.14 + 0.005$, $100 \le vown \le 400$, $0 \le vint \le 400$, has turning advisory Strong Right

Problem Statement

- Existing work
 - There is a lot of work on proving adversarial robustness on this network
 - Proving the system level input-output properties such as [7] which uses the Reluplex solver to prove the input-output properties
 - Recent work explores repairing the ACASXU network with formal guarantees[8]

- Can we simplify the verification of the domain-level specifications?
 - O It took several hours to prove the properties in [7] and couple of them timing out after 12 hours
- Can we infer new input-output specifications based on the trained models?
 - Helps in validating the model with the user, requirements elicitation

Proof Decomposition, Specifications Inference

- ACAS Xu has domain-level specifications that the network needs to satisfy
 - A => B, where A represents a predicate on the input space and B is a turning advisory
 - Proof on the full network consumes a lot of time using Reluplex
- Decomposed proofs of properties of the form A => B, using "layer patterns" σ,
 - By checking A => σ and σ => B separately w/ Reluplex;
 - Speedup of upto 75% obtained speedup obtained
 - Checked property that timed out with

- ACAS Xu has meaningful input variables
 - Representing network properties in terms of input variables leads to the discovery of the specifications of the domain
 - 31900 ≤ range ≤ 37976, 1.684 ≤ θ ≤
 2.5133, ψ = -2.83, 414.3 ≤ vown ≤
 506.86, vint = 300, has turning advisory
 COC
 - range = 499, -0.314 $\le \theta \le$ -3.14, -3.14 $\le \psi \le 0$, 100 \le vown \le 571, 0 \le vint \le 150, has turning advisory **Strong Left**
 - range = 48608, θ = -3.14, ψ = -2.83, vown(full range), vint (full range) has turning advisory **COC**

Future Work

Runtime monitors

- Monitor for abnormal behaviors (deviations from expected behavior) based on patterns for correct and incorrect behavior
- Exploring structural coverage metrics for Neural Networks
 - Patterns extracted by Prophecy have the potential to capture the behavioral / functional / feature coverage

_o Talk about certifiability, EXTENSION TO OTHER TYPES OF NETWORKS

Thank You!

https://ti.arc.nasa.gov/tech/rse/research/safednn/