Computational Drug Discovery

Dr. Bryce, 6 lectures Room 2.031, r.a.bryce@manchester.ac.uk

Aim

to provide you with an understanding of the role of molecular modelling in the process of rational design of small-molecule drugs, with an appreciation of its strengths and limitations

Objectives

By the end of this subsection, you should be able to:

- 1. describe briefly the sources from which **drug leads** are obtained
- 2. outline the concept of structure-based drug design and within this, the role of **molecular modelling**

- 3. discuss the key molecular modelling technique of **conformational searching**, which includes the concept of a potential energy surface; the force field method to score geometry through the calculation of energy; and three approaches to exploration of conformation (energy minimisation, Monte Carlo simulation, molecular dynamics)
- 4. describe virtual screening approaches based on molecular docking and/or a pharmacophore; consider the content of compound libraries used for virtual screening; discuss how some common problems in virtual screening are addressed, in regard to scoring function, receptor availability and receptor flexibility
- 5. appreciate the principles, strengths and limitations of computer-based **de novo design methods** that use active site analysis and connection methods.
- 6. Discuss the **3D QSAR** approach to computational design.

The needle in the haystack

4. virtual screening

The Structure-Based Drug Design Paradigm propose new ligand L based on synthesise/purchase L interaction with R assay L in vitro LEAD LEAD OPTIMISATION DISCOVERY determine structure of RL determine structure of R assay L in vivo (cell, tissue, etc. models) select appropriate drug candidate target receptor R

4.1. Docking

- · How well does ligand L fit into active site?
 - what is the ligand's bound pose?

4.1.1. Experimental docking: use X-ray crystallography

Experimental docking: NMR spectroscopy

3D coordinates of X-ray/NMR protein structures are archived in the Protein Data Bank (PDB):

http://www.rcsb.org

4.1.2. Manual docking

HIV-1 protease inhibitors

4.1.3. Automated docking

- much faster for predicting RL structure!
- for a given X-ray/NMR 3D structure of receptor R - predict how ligand L binds

ligand's correct bound geometry in receptor binding site = binding mode or bound pose

receptor-ligand docking

- need to find global minimum structure on energy surface (without knowing topology of surface in advance)

Conformational search

- possible techniques to generate bound conformations:
 - Monte Carlo
 - molecular dynamics
 - genetic algorithm
 - particle swarms - graph theory

- can also use 'local knowledge' to bias predictions eg. known coordination to a metal or conserved hydrogen bond

receptor-ligand docking

- 1. Characterization of protein active site
- 2. Conformational search
 - generation of orientations of ligand in active site
- 3. Scoring of ligand poses

4.1.3.1. Characterisation

- eg. AutoDock program
 - uses a grid to define active site region

4.1.3.2. Conformational search

#1) make random change in ligand geometry x in the protein active site, to give new structure $x+\Delta x$

#2) compare energies of old and new structures

- accept new structure if its interaction energy is lower than that of the old structure: $U(x+\Delta x) < U(x)$
- accept new structure if Boltzmann factor exp[-{U(x+Dx) -U(x)}/RT] > random number between 0 and 1

- otherwise reject

#3) go to #1

Generate ligand geometries in protein active site using Monte Carlo

4.1.3.3. Scoring

require a "scoring function"
 eg. a molecular mechanics force field

$$U_{tot}(r_{ij}) = \sum_{i,j}^{atoms} \left(\frac{A}{r_{ij}^{12}} - \frac{C}{r_{ij}^{6}}\right) + \sum_{i,j}^{atoms} \frac{q_i q_j}{r_{ij}} + \text{other terms}$$

– often use difference in energy ΔU_{inter} rather than total energy U_{tot} of complex, for scoring:

$$\Delta U_{\text{inter}}(r_{ij}) = U_{tot}^{L-R} - U_{tot}^{L} - U_{tot}^{R}$$

Example docking programs

Program	Search strategy	Free for academia	Website		
AutoDock (10)	GA/MC	Yes	http://autodock.scripps.edu		
Dock (11)	IC	Yes	http://dock.compbio.ucsf.edu		
FlexX (12)	IC	No	http://www.biosolveit.de/flexx		
Glide (13)	Hybrid	No	http://www.schrodinger.com		
Gold (14)	GA	No	http://www.ccdc.cam.ac.uk/products/life_sciences/gole		
Surflex (15)	IC	No	http://www.tripos.com/index.php		
ICM (16)	MC	No	http://www.molsoft.com/docking.html		
LigandFit (17)	MC	No	http://accelrys.com/products/discovery-studio		
cHiTS (18)	IC	No	http://www.simbiosys.ca/ehits/index.html		

GA genetic algorithm, MC Monte Carlo, IC incremental construction

Go deeper: Patrick, Introduction to Medicinal Chemistry, Ch. 17. Section 17.12

Cheng et al. "Structure-Based Virtual Screening for Drug Discovery: a Problem-Centric Review", The AAPS Journal, Vol. 14, No. 1, March 2012 (# 2012)

Successful docking

prediction = experiment (X-ray pose)

Docking predicts the true ligand pose as the top-scored pose about 70-80% of time

JMB **1997**, 267, 727

Ligand binding can be subtle

- eg. two different X-ray poses for very similar

ligands

human rhinovirus 14

N-0-W-0-0-N

P. S. Charifson, Practical Application of Computer-Aided Drug Design (Taylor & Francis, 1997

4.2. Receptor-based virtual screening

Library of 3D structure of compounds often ~105 - 106

4.2.1. Compound libraries for screening

- virtual compound libraries
 - databases of 3D structure of small molecule compounds
 - often ~105 106 compounds
- sources:
 - 1. in-house compound collections of pharmaceutical companies
 - 2. computationally generated set of compounds that could be synthesised *in principle*. Consider:
 - $-\ 10^4$ commonly used chemical scaffolds
 - usually ~3 side-chains in molecules generally
 - 10³ different side-chains in known drugs

 $10^4 \text{ x} (10^3)^3 = 10^{13} \text{ compounds}$

Compound libraries for screening

- 3. open-access compound repositories
 - NCI, National Cancer Institute
 - dtp.nci.nih.gov
- 4. commercially-available reagent catalogues
 - ZINC. "ZINC Is Not Commercial"
 - blaster.docking.org/zinc
 - eg. "All purchasable" set
 » 17.8M compounds

Compound libraries

Database	Type	No. of compounds*	Website	
PubChem	Public	30 million	http://pubchem.ncbi.nlm.nih.gov	
ChEMBL	Public	1 million	https://www.ebi.ac.uk/ehembldh/index.php	
NCI Set	Public	140,000	http://dtp.nci.nih.gov/index.html	
ChemSpider	Public	26 million	http://www.chemspider.com	
CoCoCo	Public	7 million	http://cococo.unimore.it/tiki-index.php	
TCM	Public	32,000	http://tcm.cmu.edu.tw	
ZINC	Public	13 million	http://zinc.docking.ore	
ChemBridge	Commercial	700,000	http://www.chembridge.com	
Spees	Commercial	240,000	http://www.specs.net	
Asinex	Commercial	550,000	http://www.asinex.com	
Enamine	Commercial	1.7 million	http://www.enamine.net	
Maybridge	Commercial	56,000	http://www.maybridge.com	
WOMBAT	Commercial	263,000	http://www.sunsetmolecular.com	
ChemDiv	Commercial	1.5 million	http://www.chemdiv.com	
ChemNavigator	Commercial	55.3 million	http://www.chemnavigator.com	
ACD	Commercial	3,870,000	http://accelrys.com/products/databases/sourcing/available-chemicals-directory.htm	
MDDR	Commercial	150,000	http://accelrys.com/products/databases/bioactivity/mddr.html	

Approximate numbers

Cheng et al. "Structure-Based Virtual Screening for Drug Discovery: a Problem-Centric Review", The AAPS Journal, Vol. 14, No. 1, March 2012 (# 2012)

ZINC libraries

- "Drug-Like" subset
 - Lipinski filter applied
 - 10.6M compounds

Lipinski's Rule of Five

Compounds may have problem with oral absorption <u>unless</u> they have:

- molecular weight ≤ 500 g/mol
- $LogP/CLogP \le 5$
- ≤ 5 H-bond donors (usually, sum of NH and OH)
- ≤ 10 H-bond acceptors (usually, sum of N and O)
- "Drugs Now" subset
 - delivery less than 2 weeks usually
 - excludes make-on-demand compounds
 - 6M compounds

Compound libraries: issues

- · Does library contain desired range of compounds?
 - eg. does it contain too many examples of a particular type of molecule?
- Does library contain "swill"?
 - ie. reactive compounds (eg. aldehydes), non-Lipinski compounds, etc.?

Examples of swill

ELIMINATE METALS Sc,Ti,V,Cr,Mn,Fe,Co,Ni,Cu,Zn,Y,Zr,Nb,M o,Tc,Ru,Rh,Pd,Ag,Cd

#specific, undesirable functional groups

RULE 0 Carbazides

RULE 0 Acid anhydrides

RULE 0 Pentafluorophenyl_esters

RULE 0 Paranitrophenyl_esters RULE 0 HOBT_esters

RULE 0 Triflates

RULE 0 Lawesson_s_reagent

RULE 0 Phosphoramides

RULE 0 Aromatic_azides

RULE 0 Beta_carbonyl_quart_nitrogen

#RULE 0 Acylhydrazide

RULE 0 Quarternary_C_CI_I_P_or_S

RULE 0 Isonitrile RULE 0 Triacyloxime

RULE 0 Cyanohydrins

RULF 0 Acvl cyanides

RULE 0 Sulfonyl_cyanides RULE 0 Cvanophosphonates

RULE 0 Azocyanamides

RIJIE O Azoalkanals RULE 0 Polyenes

RULE 0 Saponin_derivatives RULE 0 Cytochalasin_derivatives

RULE 0 Cycloheximide_derivatives RULE 0 Monensin_derivatives

RULE 0 Cyanidin_derivatives RULE 0 Squalestatin_derivatives

RULE 0 Phosphoranes RULE 0 Chloramidines

RULE 0 Nitroso RULE 0 P S Halides

RULE 0 Carbodiimide

Compound libraries: issues

- · How quickly can compounds be delivered?
- How much do compounds cost?
- Are compounds pure?

4.2.2. Docking-based virtual screening

Virtual screening funnel

6

Example: VS against Hsp90

- molecular chaperone protein Hsp90 involved in cancer onset and progression
 - attractive oncology target
- Geldanamycin-derived inhibitor 17-AAG (1b) entered phase I trials
 - but poor solubility and bioavailability, toxicity and extensive metabolism

Protocol

- · rDOCK software
- 700,000 compounds screened
 - from 3.5M based on reactive groups and delivery time
- 9000 from docking
- · Post-processing:
 - all X-ray structures show ligands donate hydrogen bond to Asp93 C=O and accept hydrogen bond from Hsp90-bound water molecule
 - use this "pharmacophore" to filter down hits
- pharmacophore =

Results

- After applying pharmacophore and after reducing overrepresented chemical scaffolds, 1000 compounds selected for purchase
 - only 719 actually available
- From 719 tested, discovered 3 hits from new chemical scaffold:

Virtual screening funnel

 From same lab (Vernalis and Institute of Cancer Research), a Hsp90 inhibitor called NVP-AUY922 is currently in clinical trials (conducted under licence by Novartis):

4.2.3. Pharmacophore-based virtual screening

pharmacophore = 3D arrangement of atoms/groups required for biological activity

- anion (An)
- cation (Cat)
- aromatic ring (Aro)
- hydrophobic group (Hyd)

Pharmacophore-based virtual screening

- to each library compound
- (b) rank compounds according to this similarity

Score: how well do ligands fit pharmacophore?

Example of pharmacophore-based virtual screening

e.g. HIV protease (P.S. Lam et al., Science 1994, 263, 380)

X-ray structure shows bound water molecule at active site

Pharmacophore hypothesis

Pharmacophore-based virtual screening

Pharmacophore-based virtual screening

Advantages

- · very fast
- can also be used in the absence of a receptor structure

Limitations

- · requires correct pharmacophore
 - need receptor and/or active ligand structures
 - can be subjective, assumes certain interactions to be key
- requires representative 3D conformations of smallmolecule compounds in virtual library

49

Docking-based virtual screening

Advantages

- provides easily interpreted binding modes of protein-ligand
 identify key interactions
- can identify unanticipated binding modes

Limitations

- · requires a receptor structure
- software may not allow for ligand, protein side-chain or protein main-chain flexibility during docking
- slower than pharmacophore-based VS
 - but can use pharmacophore pre-screen to cut down number of compounds to dock
- scoring functions can fail to predict (a) correct docked pose of a ligand and/or (b) the correct ranking of different ligands
- requires representative 3D conformations of small-molecule compounds in virtual library

Flies in the ointment

4.3. problems in virtual screening

4.3.1. Problem #1 What if you don't have a protein structure?

4.3.1.1. Solution #1 - Use knowledge of active ligands: generate a pharmacophore hypothesis

- Generate low energy conformations of known active molecule
- Superimpose them on top of each other
- · Look for common chemical features across molecules

Then can perform virtual screen of library using this pharmacophore

4.3.1.2. Solution #2 - Use knowledge of active ligand: compare shape of active ligand to other (as yet untested) ligands

eg. How similar is A to B?

Compare space-filling models of A and B

 maximise overlap volume of A and B (by translating/rotating molecules to maximise overlap)

 eg. discovered an antagonist of Ca²⁺-releasing second messenger NAADP (nicotinic acid adenine dinucleotide phosphate)

4.3.2. Problem #2 What if the protein is flexible?

• in and out conformations of c-Abl kinase

• calmodulin

Nature Reviews Drug Discovery 2, 527-541 (July 2003)

4.3.2.1. Solution #1: Induced fit docking

Allow protein to move during docking
 Amino acid side-chain flexibility eg. AutoDock 4

· Peptide backbone flexibility eg. ROSETTALIGAND - Monte Carlo sampling of ligand and receptor

CDK2/staurosporine

J. Mol. Biol. (2009) 385, 381-392

4.3.2.2. Solution #2: Ensemble-based docking

• If we know what the range of conformations are (eg. from different X-ray structures), then dock into each of these conformations

4.3.2.3. Solution #3: Relaxed complex method

- If we don't know what the conformations are
 - perform long MD simulation of protein
 - dock into different conformations observed during MD

- called "relaxed complex method"

HIV integrase

Hidden trench (2004) guided Merck to design of raltegravir (Isentress),

Advantage of MD – can uncover "cryptic" hidden pockets, not visible from X-ray structures

"butterfly" inhibitors

4.3.3. Problem #3 What if my scoring function is no good?

4.3.3.1. Solution: use "consensus scoring"

Consensus scoring

Score each ligand in library using several scoring functions

- then calculate *overall rank* by adding ranks from each scoring function

		Ligand 1	Ligand 2	Ligand 3	Ligand 4
	Experiment	1	3	2	4
	AMBER	2	3	1	4
	BLEEP	1	3	2	4
	ChemPLP	1	2	3	4
•	Summed ranks	4	8	6	12 68

4.4. Virtual screening - Summary

- Faster and cheaper than experimental screening via HTS or NMR-based approaches
- VS predictions are tempered by problems in docking (bound geometry, ranking) or determination of correct pharmacophore
- Nevertheless, VS is a useful tool to reduce the number of compounds selected for subsequent HTS