# Московский государственный технический университет им. Н.Э. Баумана

Факультет «Информатика и системы управления» Кафедра «Системы обработки информации и управления»



## Рубежный контроль № 2

### По курсу «методы машинного обучения в АСОИУ»

#### Выполнил:

Студент ИУ5-23M Коротков Н.К.

#### Проверил:

Гапанюк Ю.Е.

Подпись:

#### Задание

Необходимо решить задачу классификации текстов на основе любого выбранного Вами датасета (кроме примера, который рассматривался в лекции). Классификация может быть бинарной или многоклассовой. Целевой признак из выбранного Вами датасета может иметь любой физический смысл, примером является задача анализа тональности текста.

Необходимо сформировать два варианта векторизации признаков - на основе CountVectorizer и на основе TfidfVectorizer.

В качестве классификаторов необходимо использовать два классификатора по варианту для Вашей группы:

| Группа                          | Классификатор №1                  | Классификатор<br>№2       |
|---------------------------------|-----------------------------------|---------------------------|
| ИУ5-21М, ИУ5И-<br>21М, ИУ5Ц-21М | KNeighborsClassifier              | LogisticRegression        |
| ИУ5-22М, ИУ5И-22М               | RandomForestClassifier            | LogisticRegression        |
| ИУ5-23М, ИУ5И-<br>23М           | <u>LinearSVC</u>                  | <b>LogisticRegression</b> |
| ИУ5-24М, ИУ5И-24М               | <u>GradientBoostingClassifier</u> | LogisticRegression        |
| ИУ5-25М, ИУ5И-<br>25М, ИУ5И-26М | <u>SVC</u>                        | LogisticRegression        |

Для каждого метода необходимо оценить качество классификации. Сделайте вывод о том, какой вариант векторизации признаков в паре с каким классификатором показал лучшее качество.

#### Решение

Загружаем датасет

```
/ [[]] # Загрузка данных
df = pd.read_csv('cherry_blossom_forecasts.csv')
```

## Разделяем данные на тестовую и обучающую выборку и векторизуем их с помощью CountVectorizer и TfidfVectorizer

```
[38] # Разделим набор данных на обучающую и тестувую выборки

X, Y = df['mankai_date'], df['kaika_date']

X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.2, random_state=42)

time_arr = []

| **Beкторизация признаков с помощью CountVectorizer count_vect = CountVectorizer()

X_train_counts = count_vect.fit_transform(X_train)

X_test_counts = count_vect.transform(X_test)

| **All **Beкторизация признаков с помощью TfidfVectorizer tfidf_vect = TfidfVectorizer()

X_train_tfidf = tfidf_vect.fit_transform(X_train)

X_test_tfidf = tfidf_vect.transform(X_test)
```

#### Обучаем классификаторы CountVectorizer и TfidfVectorizer

Точность (CountVectorizer + LinearSVC): 0.27104514030093535

```
# LinearSVC
gbc = LinearSVC()
start_time = time.time()
gbc.fit(X_train_counts, y_train)
train_time = time.time() - start_time
time_arr.append(train_time)
pred_gbc_counts = gbc.predict(X_test_counts)
print("Точность (CountVectorizer + LinearSVC):", accuracy_score(y_test, pred_gbc_counts))
# Logistic Regression
lr = LogisticRegression(max iter=1000)
start_time = time.time()
)lr.fit(X_train_counts, y_train)
train_time = time.time() - start_time
time arr.append(train time)
pred lr counts = lr.predict(X test counts)
print("Точность (CountVectorizer + LogisticRegression):", accuracy_score(y_test, pred_lr_counts))
```

```
# Произведем обучения вдух классификаторов (по варианту) для TfidfVectorizer
# LinearSVC
gbc = LinearSVC()
start_time = time.time()
gbc.fit(X_train_tfidf, y_train)
train_time = time.time() - start_time
time_arr.append(train_time)
pred_gbc_tfidf = gbc.predict(X_test_tfidf)
print("Точность (TfidfVectorizer + LinearSVC):", accuracy_score(y_test, pred_gbc_tfidf))
# Logistic Regression
lr = LogisticRegression(max_iter=1000)
start_time = time.time()
lr.fit(X_train_tfidf, y_train)
train_time = time.time() - start_time
time_arr.append(train_time)
pred_lr_tfidf = lr.predict(X_test_tfidf)
print("Точность (TfidfVectorizer + LogisticRegression):", accuracy_score(y_test, pred_lr_tfidf))
```

#### Выводим отсортированные данные

| ₹ | +                                      |          | Время обучения |
|---|----------------------------------------|----------|----------------|
|   | (CountVectorizer + LogisticRegression) | '        | 15.4454        |
|   | (CountVectorizer + LinearSVC)          | 0.271045 | 80.2609        |
|   | (TfidfVectorizer + LinearSVC)          | 0.271045 | 44.3085        |
|   | (TfidfVectorizer + LogisticRegression) | 0.270571 | 6.57759        |