High Performance, 3D-Printable Dielectric

Nanocomposites for Millimeter Wave Devices

Michael Lis, Maxwell Plaut, Andrew Zai, David Cipolle, John Russo, Theodore Fedynyshyn*

MIT Lincoln Laboratory, Lexington MA

SUPPORTING INFORMATION

Table S1. Tabulated rheological properties of the polymeric inks used in this study.

Formulation	Yield Stress (Pa)*	G'/G'' @ 10 rad/s, 1% Strain	η at low shear bound (Pa*s)	Thinning Threshold (rad/s)	$log(\eta)/log(\gamma')$, thinning region
1a	5.73E+03	1.00	1.02E+05	2.52E-03	-0.543
1b	1.34E+04	1.29	2.16E+05	<1E-3	-0.546
1c	3.27E+03	0.93	4.81E+04	<1E-3	-0.528
1d	6.63E+03	1.02	2.80E+05	<1E-3	-0.660
1e	1.39E+03	0.90	1.03E+05	<1E-3	-0.520
1f	1.53E+03	1.47	7.59E+04	<1E-3	-0.650
2a	7.84E+02	0.91	3.50E+04	<1E-3	-0.539
2b	8.88E+02	1.53	1.70E+04	1.00E-02	-0.660
2c	1.97E+03	1.79	5.99E+04	1.58E-03	-0.596
2d	7.88E+02	1.14	1.32E+04	<1E-3	-0.533
2e	1.69E+03	1.65	8.05E+04	<1E-3	-0.578
2f	1.53E+03	1.47	7.59E+04	<1E-3	-0.650
3a	1.22E+03	0.97	1.29E+04	<1E-3	-0.369
3b	1.36E+03	1.07	3.18E+04	<1E-3	-0.595
3c	1.51E+03	1.24	6.00E+04	<1E-3	-0.537

This material is based upon work supported by the Assistant Secretary of Defense for Research and Engineering under Air Force Contract No. FA8721-05-C-0002 and/or FA8702-15-D-0001. Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Assistant Secretary of Defense for Research and Engineering.