Home Work 1

Machine Learning Techniques

R04323050

經濟碩三 陳伯駒

1.

Pictorially, the optimal separating hyperplane is the equation: $z_1=5\,$ °.

2.

By implementing the sklearn.svm package in python:

 $\alpha = (-0.21970141, -0.28015714, 0.33323258, 0.06819373, 0.09843225)$

 $\mathbf{b} = -1.66633495 \, \text{.} \ \, \text{Support Vector indices:} \ \, [1,2,3,4,5] = \{\mathbf{x}_2,\mathbf{x}_3,\mathbf{x}_4,\mathbf{x}_5,\mathbf{x}_6\} \, .$

The optimal separating hyperplane:

$$g_{svm}(\mathbf{x}) = \sum_{\text{SV indices n}} sign(\alpha_n y_n K(\mathbf{x}_n, \mathbf{x}) + \mathbf{b})$$

$$= -0.219 \cdot (-1) \cdot (1 + 2x_2)^2 - 0.28 \cdot (-1) \cdot (1 - 2x_2)^2 + 0.333 \cdot 1 \cdot (1 - 2x_2)^2$$

$$+ 0.068 \cdot 1 \cdot (1 + 4x_2)^2 + 0.098 \cdot 1 \cdot (1 - 4x_2)^2 - 1.66$$

$$= 0.219 \cdot (1 + 2x_2)^2 + 0.28 \cdot (1 - 2x_2)^2 + 0.333 \cdot (1 - 2x)^2 + 0.068 \cdot (1 + 4x_2)^2$$

$$+ 0.098 \cdot (1 - 4x_2)^2 - 1.66$$

4.

 $K(\mathbf{x}, \mathbf{x}')$ 所對應到的 z-space 為: $(1, 2x_1, 2x_2, 2x_1^2, 2x_2^2)$ 。 明顯地與第一題對應到的 z-space: $(2x_2^2 - 4x_1 + 2, x_1^2 - 2x_2 - 1)$ 不同,因此推導出的 hyperplane 顯然會不一樣。

5.

Let α_n be the Largrange multuplier for constraint $y_n(\mathbf{w}^T\mathbf{x}_n + b) \geq \rho_n - \xi_n$ and β_n is for the constraint $\xi_n \geq 0$, then the primal problem will be:

$$\min_{\mathbf{b}, \mathbf{w}, \boldsymbol{\xi}} \max_{\alpha_n > 0, \beta_n > 0} \mathcal{L}((b, \mathbf{w}, \boldsymbol{\xi}), \boldsymbol{\alpha}, \boldsymbol{\beta}) = \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_{n=1}^{N} \mu_n \xi_n + \sum_{n=1}^{N} \alpha_n (\rho_n - \xi_n - y_n (\mathbf{w}^T \mathbf{x}_n + b)) + \sum_{n=1}^{N} \beta_n \cdot (-\xi_n)$$

First, we simplify β_n by taking the derivative of ξ_n :

$$\frac{\partial \mathcal{L}}{\partial \xi_n} : C \cdot \mu_n - \alpha_n - \beta_n = 0 \Longrightarrow \begin{cases} \text{implicit constraint:} & \beta_n = C \cdot \mu_n - \alpha_n \\ \text{explicit constraint:} & 0 \le \alpha_n \le C \cdot \mu_n \end{cases}$$

then we can rewrite the problem as:

$$\min_{\mathbf{b}, \mathbf{w}, \boldsymbol{\xi}} \max_{\substack{0 \le \alpha_n \le C \cdot \mu_n \\ \beta_n = C \cdot \mu_n - \alpha_n}} \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_{n=1}^N \mu_n \xi_n + \sum_{n=1}^N \alpha_n (\rho_n - \xi_n - y_n (\mathbf{w}^T \mathbf{x}_n + b)) + \sum_{n=1}^N (C \cdot \mu_n - \alpha_n) \cdot (-\xi_n)$$

$$\therefore \mathcal{L}((b, \mathbf{w}, \xi), \boldsymbol{\alpha}) = \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_{n=1}^N \mu_n \xi_n + \sum_{n=1}^N \alpha_n (\rho_n - \xi_n - y_n (\mathbf{w}^T \mathbf{x}_n + b)) + \sum_{n=1}^N (C \cdot \mu_n - \alpha_n) \cdot (-\xi_n)$$

6.

By strong duality, the solution would be same as:

$$\max_{\substack{0 \le \alpha_n \le C \cdot \mu_n \\ \beta_n = C \cdot \mu_n - \alpha_n}} \min_{\mathbf{b}, \mathbf{w}, \boldsymbol{\xi}} \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_{n=1}^N \mu_n \xi_n + \sum_{n=1}^N \alpha_n (\rho_n - \xi_n - y_n (\mathbf{w}^T \mathbf{x}_n + b)) + \sum_{n=1}^N (C \cdot \mu_n - \alpha_n) \cdot (-\xi_n)$$

Now we simplify the ξ_n :

$$\max_{\substack{0 \le \alpha_n \le C \cdot \mu_n \\ \beta_n = C \cdot \mu_n - \alpha_n}} \min_{\mathbf{b}, \mathbf{w}} \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_{n=1}^N \mu_n \xi_n + \sum_{n=1}^N \alpha_n (\rho_n - y_n (\mathbf{w}^T \mathbf{x}_n + b))) \equiv \mathcal{L}((b, \mathbf{w}, \xi), \boldsymbol{\alpha})$$

which is the inner problem same as hard-margin SVM:

$$\frac{\partial \mathcal{L}}{\partial b} = 0 \Rightarrow \text{no loss of optimality if solving with constraint} : \sum_{n=1}^{N} \alpha_n y_n = 0.$$

$$\frac{\partial \mathcal{L}}{\partial w_i} = 0 \Rightarrow \text{no loss of optimality if solving with constraint}: \mathbf{w} = \sum_{n=1}^{N} \alpha_n y_n \mathbf{z}_n.$$

Hence, by the KKT conditions and Complementary Slackness, the dual problem will be:

$$\min_{\alpha} \quad \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} \alpha_n \alpha_m y_n y_m \mathbf{z}_n^T \mathbf{z}_m - \sum_{n=1}^{N} \rho_n \alpha_n$$

subject to
$$\sum_{n=1}^{N} \alpha_n y_n = 0$$
$$0 \le \alpha_n \le C \cdot \mu_n, \text{ for } n = 1, 2, \dots N$$

implicity
$$\mathbf{w} = \sum_{n=1}^{N} \alpha_n y_n \mathbf{z}_n$$

$$\beta_n = C \cdot \mu_n - \alpha_n, \text{ for } n = 1, 2, \dots N$$

If $\rho_n = 0.25$ and $\mu_n = 1$ for all n. The dual problem will be:

$$\min_{\alpha} \quad \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} \alpha_n \alpha_m y_n y_m \mathbf{z}_n^T \mathbf{z}_m - \sum_{n=1}^{N} 0.25 \alpha_n$$

subject to
$$\sum_{n=1}^{N} \alpha_n y_n = 0$$
$$0 \le \alpha_n \le C, \text{ for } n = 1, 2, \dots N$$

Let α'^* be the solution for P_1' ; α^* be the solution for P_1 . We know the dual problem for P_1 is:

$$\min_{\alpha} \quad \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} \alpha_n \alpha_m y_n y_m \mathbf{z}_n^T \mathbf{z}_m - \sum_{n=1}^{N} \alpha_n$$

subject to
$$\sum_{n=1}^{N} \alpha_n y_n = 0$$

$$0 \le \alpha_n \le C, \text{ for } n = 1, 2, \dots N$$

Hence, the optimal $\alpha^* \times 0.25 = \alpha'^*$ By implicity: $\mathbf{w}'^* = 0.25 \times \mathbf{w}^* \Rightarrow \mathbf{w}^* = 4\mathbf{w}^*$ Now we can solve for b'^* by complementary slackness:

$$b'^* = y_s \rho_s - y_s \xi_s - \mathbf{w}'^T \mathbf{z}_s$$
 , s denotes as the support vector
 $= 0.25 y_s - y_s \xi_s - 0.25 \mathbf{w}^T \mathbf{z}_s$
 $= 0.25 b^* - 0.75 y_s \xi_s$, where b^* is the solution for P_1

$$b^* = 4b'^* + 3y_s \xi_s$$

In the class and slides p.10, we know the only difference between hard-margin and softmargin SVM in dual problem is adding the upper bound C on α_n in soft-margin SVM.

$$\min_{\alpha} \quad \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} \alpha_n \alpha_m y_n y_m \mathbf{z}_n^T \mathbf{z}_m - \sum_{n=1}^{N} \alpha_n$$

subject to
$$\sum_{n=1}^{N} \alpha_n y_n = 0$$

$$0 \le \alpha_n \le C, \text{ for } n = 1, 2, \dots N$$

Let α^* be the solution in hard-margin. If we set $C \ge \max_{1 \le n \le N} \alpha_n$, then the solution is also optimal in soft-margin problem intuitively.

9.

(a). Let
$$K_1 = \begin{bmatrix} \frac{4}{5} & \frac{1}{5} \\ \frac{1}{5} & \frac{4}{5} \end{bmatrix}$$
, then $K_= \begin{bmatrix} 1.2 & 1.8 \\ 1.8 & 1.2 \end{bmatrix} \Rightarrow det(K) < 0$. If the matrix is positive-semidefinite, determinants of all upper left sub-matrices are non-negative. (\textbf{X})

(b).
$$K(\mathbf{x}, \mathbf{x}') = \mathbf{I}$$
, let **a** be any vector in \mathbb{R}^n , then $\mathbf{a}^T \mathbf{I} \mathbf{a} = \mathbf{a}^T \mathbf{a} \ge 0$ ()

(c). $K(\mathbf{x}, \mathbf{x}') = (2 - K_1(\mathbf{x}, \mathbf{x}'))^{-1}$. Let **a** be any vector in \mathbb{R}^m , then:

$$\mathbf{a}^{T} K \mathbf{a} = \sum_{i,j=1}^{m} a_{i} \frac{1}{2 - K_{1}(x_{i}, x_{j})} a_{j} = \sum_{i,j=1}^{m} a_{i} \frac{K_{1}(x_{i}, x_{j})}{[2 - K_{1}(x_{i}, x_{j})] (K_{1}(x_{i}, x_{j}))} a_{j}$$

$$> \sum_{i,j=1}^{m} a_{i} K_{1}(x_{i}, x_{j}) a_{j} = \mathbf{a}^{T} K_{1} \mathbf{a} \ge 0 \quad \left(\checkmark \right)$$

(d). $K(\mathbf{x}, \mathbf{x}') = (2 - K_1(\mathbf{x}, \mathbf{x}'))^{-2}$. Let **a** be any vector in \mathbb{R}^m , then:

$$\mathbf{a}^{T} K \mathbf{a} = \sum_{i,j=1}^{m} a_{i} \frac{1}{(2 - K_{1}(x_{i}, x_{j})) \cdot (2 - K_{1}(x_{i}, x_{j}))} a_{j}$$

$$= \sum_{i,j=1}^{m} a_{i} \frac{K_{1}(x_{i}, x_{j})}{[2 - K_{1}(x_{i}, x_{j})]^{2} (K_{1}(x_{i}, x_{j}))} a_{j}$$

$$> \sum_{i,j=1}^{m} a_{i} K_{1}(x_{i}, x_{j}) a_{j} = \mathbf{a}^{T} K_{1} \mathbf{a} \ge 0 \quad (\checkmark)$$

By the slides in class 3, we know:

$$g_{svm}(\mathbf{x}) = sign(\sum_{\text{SV indices n}} \alpha_n y_n K(\mathbf{x}_n, \mathbf{x}) + b)$$

= c

s denotes as the support vector.

Now we are using $\tilde{K} = p \cdot K(\mathbf{x}, \mathbf{x}')$. To make the result same, we then let $\alpha'_n = \frac{\alpha_n}{p}$ and $\tilde{C} = \frac{C}{p}$, we can solve the dual problem based on \tilde{K}, α'_n and \tilde{C} :

$$\min_{\alpha} \quad \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} \alpha'_n \alpha'_m y_n y_m \tilde{K} - \sum_{n=1}^{N} \alpha'_n$$

subject to
$$\sum_{n=1}^{N} \alpha'_n y_n = 0$$
$$0 \le \alpha'_n \le \tilde{C}, \text{ for } n = 1, 2, \dots N$$

the we know the optimal separating hyperplane will be:

$$\begin{split} g_{svm}(\mathbf{x}) &= sign(\sum_{SV} \alpha_n' y_n \tilde{K}(\mathbf{x}_n, \mathbf{x}) + b) \\ &= sign(\sum_{SV} \alpha_n' y_n \tilde{K}(\mathbf{x}_n, \mathbf{x}) + y_s - \sum_{SV} \alpha_n' y_n \tilde{K}(\mathbf{x}_n, \mathbf{x}_s)) \\ &= sign(\sum_{SV} \frac{\alpha_n}{p} y_n p \cdot K(\mathbf{x}_n, \mathbf{x}) + y_s - \sum_{SV} \frac{\alpha_n}{p} y_n p \cdot K(\mathbf{x}_n, \mathbf{x}_s)) \\ &= sign(\sum_{SV} \alpha_n y_n K(\mathbf{x}_n, \mathbf{x}) + y_s - \sum_{SV} \alpha_n y_n K(\mathbf{x}_n, \mathbf{x}_s)) \end{split}$$

, which is equivalent to the solution of original problem.

隨著 C 的提升, \mathbf{w} 的長度會越來越長。如下圖:

12.

隨著 C 的提升, E_{in} 維持不變。如下圖:

在 C = 0.1 時,有 optimal # of support vectors= 1729

14.

If we choose any free support vector, and compute its distance to separating hyperplane. By the slides in class 1, we know in the primal hard-margin SVM, the distance would be $dist(z, b, \mathbf{w}) = \frac{1}{\|\mathbf{w}\|} |\mathbf{w}^T z + b|$. Hence, the distance is tend to decrease as C increases due to the increment of $\|\mathbf{w}\|$.

隨著 γ 增加、 E_{out} 先降後升,並在 $\gamma=10$ 時達到最小值。

16.

隨著 γ 增加、 E_{val} 先降後升,並在 $\gamma=10$ 時達到最小值,與我們所期待的結果相符合 (透過 validation 選擇的 γ 也能使 E_{out} 極小)

The optimal kernel SVM solution is: $\mathbf{w} = \sum_{n=1}^{N} \alpha_n y_n \mathbf{z}_n$, for those constant feature component $z_i = \mathbf{c}$:

$$\sum_{n=1}^{N} \alpha_n y_n z_i = c \cdot \sum_{n=1}^{N} \alpha_n y_n = 0$$

直觀: Constant features will be capture in b^* , which is the intercept term. Unlike what we've learned in PLA, we do not stack up the intercept term.

18.

Let λ be the Lagrange multiplier for constraint $\mathbf{w}^T\mathbf{w} \leq C$, then the Lagrange dual problem will be:

$$\min_{\mathbf{w},\lambda} \quad \frac{1}{N} \sum_{n=1}^{N} (y_n - \mathbf{w}^T \mathbf{x}_n)^2 + \lambda (\mathbf{w}^T \mathbf{w} - C), \text{ which is a convex problem by slides in class 2.}$$

f.o.c.

$$\frac{\partial \mathcal{L}}{\partial \mathbf{w}} : \frac{2}{N} \sum (y_n - \mathbf{w}^T \mathbf{x}_n)(-\mathbf{x}_n) + 2\lambda \mathbf{w} = 0 \Rightarrow \sum (y_n - \mathbf{w}^T \mathbf{x}_n)(-\mathbf{x}_n) = N\lambda \mathbf{w} - 0$$

$$\frac{\partial \mathcal{L}}{\partial \lambda} : \mathbf{w}^T \mathbf{w} - C = 0 - 0$$

Transform Φ condition to the matrix form:

$$\mathbf{x}^{T}\mathbf{y} - \mathbf{x}^{T}\mathbf{X}\mathbf{w} = N\lambda\mathbf{w} \Rightarrow \mathbf{x}^{T}\mathbf{y} = \mathbf{x}^{T}\mathbf{x}\mathbf{w} + N\lambda\mathbf{u} = (\mathbf{x}^{T}\mathbf{x} + N\lambda\mathbf{I}_{k})\mathbf{w}$$
$$\Rightarrow \mathbf{w}^{*} = (\mathbf{w}^{T}\mathbf{w} + N\lambda\mathbf{I}_{k})^{-1}\mathbf{x}^{T}\mathbf{y}$$