January 15, 2020

Homework 1 Problem 2

Problem 2 (10 points):

Show that the stable matching problem may have an exponential number of solutions. To be specific, show that for every n, there is an instance of stable matching on sets M and W with |M| = |W| = n where there are at least c^n stable matchings, for some c > 1. (Hint: Suppose you have an instance of size n with k solutions, show that you can create an instance of size 2n with k^2 solutions.)

Answer:

Base case (i = 2, n = 2):

$$\exists M_2, W_2 : |M_2| = |W_2| = 2 = n_2, k_2 = k;$$

Induction Hypothesis:

Assume there are M_i, W_i satisfy that:

- (1) $|M_i| = |W_i| = 2 \times |M_{i/2}| = 2 \times |W_{i/2}| = n;$
- (2) concatenate two duplicated (and relabeling) M_i and W_i to form M_{2i} and W_{2i} ; And $\forall w \in W_{i/2}$ and $m \in M_{i/2}$, append the duplicated w and m to the end of their preference list. Then the $k_i = k^{\frac{n}{2}}$

Example:

when
$$i = 2$$
 $M_2 =$

$$\begin{bmatrix} w_0 & w_1 \\ w_1 & w_0 \end{bmatrix}$$

 $W_2 =$

$$\begin{bmatrix} m_1 & m_0 \\ m_0 & m_1 \end{bmatrix}$$

then after concatenation, when i = 2

$$M_4 =$$

$$\begin{bmatrix} w_0 & w_1 & w_2 & w_3 \\ w_1 & w_0 & w_3 & w_2 \\ w_2 & w_3 & w_0 & w_1 \\ w_3 & w_2 & w_1 & w_0 \end{bmatrix}$$

and
$$W_4 =$$

$$\begin{bmatrix} m_1 & m_0 & m_3 & m_2 \\ m_0 & m_1 & m_2 & m_3 \\ m_3 & m_2 & m_1 & m_0 \\ m_2 & m_3 & m_0 & m_1 \end{bmatrix}$$

when n is even:

Since M_i, W_i was concatenated by two duplicates of $M_{i/2}, W_{i/2}$, and since any cross duplicates matching will not be stable (each party can improve because the duplicates are lower preference of original, original are lower preference duplicates) each concatenated sub-part are independent when they combines to the instance size as a whole. The $k_i = k_{i/2}^2$

when n is odd:

Assume |M| = |W| = n, consider $\forall w \in W$ appending w' to its preference list, and $\forall m \in M$ appending m' to its preference list, and w', m' has each other on top of preference. After appending, the |W'| = |W| + 1 = n + 1 and |M'| = |M| + 1, while k does not change because w', m' will not affected the match result of $\forall m \in M$ and $\forall w \in W$, for the same reason that if $\exists m$ or $w \in M, W$ match with w' or m', either m or w' (or w and m') can improve its match (non-stable), the final match won't happen to cross w with m' or m with w', the $k_m = k_{m-1}$.

Example:

when n = 3:

 $W_3 =$

$$\begin{bmatrix} w_0 & w_1 & w_2 \\ w_1 & w_0 & w_2 \\ w_2 & w_0 & w_1 \\ w_2 & w_1 & w_0 \end{bmatrix}$$

 $M_4 =$

$$\begin{bmatrix} w_1 & w_0 & w_2 \\ w_0 & w_1 & w_2 \\ w_2 & w_1 & w_0 \\ w_2 & w_0 & w_1 \end{bmatrix}$$

Therefore, k of |M|=|N|=n should equal to |M|=|N|=n+1, so we have $k_n=k^{\frac{n-1}{2}}$; Similarly, $\exists c>1$ to make $k^{\frac{n-1}{2}}>=c^n$ assume $k=2, \forall n>1$, $k_n=2^{\frac{n-1}{2}}=\sqrt{2}^{n-1}>>1.01^n$ Therefore, when n is odd, there are at least c^n stable matchings, for some c>1.