Основные понятия в машинном обучении

Данная лекция сделана на основе лекций Воронцова Константина Вячеславовича, которые он читает на кафедре «Интеллектуальные системы» ФУПМ МФТИ.

1 Постановка задачи

1.1 Что задано?

- задано множество объектов X,
- задано множество ответов Y,
- ullet задана некоторая неизвестная функция $\mathbf{f}: \mathbf{X}
 ightarrow \mathbf{Y}.$

Очевидно, что мы не знаем истиной **f**. Тогда давайте будем играть в следующую игру, нам дают некоторые $x \in \mathbf{X}$ и дают ответ $y = \mathbf{f}(x)$, а мы хотим найти истинное **f**.

1.2 Формальная постановка задачи

- дано множество объектов $\{x_1, \cdots x_l\} \subset \mathbf{X}$,
- дано множество ответов $y_i = \mathbf{f}(x_i), i = 1, \dots, l,$
- ullet найти алгоритм ${f a}:{f X} o{f Y}$ приближающий неизвестную функцию ${f f}.$

Под $\mathbf{a}: \mathbf{X} \to \mathbf{Y}$ понимается некоторая функция, которая каждому объекту из множества \mathbf{X} ставит в соответствие некоторый элемент из \mathbf{Y} .

1.3 В чем задача машинного обучения?

- понять как задаются объекты и какими могут быть ответы
- ответить на вопрос в каком смысле **a** приближает **f**
- понять как строить отображение а

На эти 3 вопроса мы и будем пытаться отвечать в течении нашего курса.

2 Задание объектов

Каждый объект выборки задается некоторым набором признаков (features). Что такое признаки? Признаком может быть все что угодно. Например если объект это человек, то в качестве признаков может быть рост, цвет глаз, вес, цвет волос, пол человека и т.д.

2.1 Как задать описание объктов?

$$f_j: X \to D_j, \quad j = 1, \cdots, n,$$
 (1)

где n это количество признаков для каждого элемента в нашей выборке.

Что такое f_j ? f_j это такая функция над объектом x, которая возвращает j-й признак объекта. Например у нас выборка ${\bf X}$ это люди, тогда f_j это например функция которая по заданному человеку x возвращает его вес.

Тогда рассмотрим матрицу «объект-признак»:

$$\mathbf{F} = ||f_j(x_i)||_{l \times n} = \begin{bmatrix} f_1(x_1) & \cdots & f_n(x_1) \\ \cdots & \cdots & \cdots \\ f_1(x_l) & \cdots & f_n(x_l) \end{bmatrix}.$$
 (2)

Тоесть матрица \mathbf{F} это матрица которая имеет количество строк равное количеству объектов, а количество столбцов равно количеству признаков.

В нас в курсе у нас всегда изначально будет задана матрица **F**. Но в общем случаи придумать признаковое описание объектов является достаточно трудной задачей.

3 Задание ответов

Классификация

- $\mathbf{Y} = \{0,1\}$ классификация на 2 класса (если в примере с людьми то м. или ж.),
- $\mathbf{Y} = \{0, 1, \cdots, M\}$ классификация на M классов (к пример с людьми это цвет волос).

Регрессия:

ullet $\mathbf{Y}=\mathbb{R}^n$ — в качестве ответом у нас может быть вся числовая ось при n=1.

4 Примеры смысла «а приближает f»

Задача регрессии.

Пусть у нас есть множество истинных ответов $\{\mathbf{y}_1,\cdots,\mathbf{y}_l\}$ и множество ответов которые нам дает алгоритм \mathbf{a} .

Определим $\delta(\mathbf{a})$ — как ошибку которую допускает алгоритм \mathbf{a} на данном нам множестве $\{x_1, \cdots x_l\} \subset \mathbf{X}$.

$$\delta \mathbf{a} = \sum_{k=1}^{l} ||\mathbf{a}(x_k) - y_k||^2, \tag{3}$$

где под $||\mathbf{a}(x_k) - y_k||$ — подразумевается расстояние от предсказанного ответа до истинного. К примеру, если $Y = \mathbb{R}$, то в качестве расстояния можно взять модуль разности чисел.

Задача классификации.

Определим $\delta(\mathbf{a})$ — как ошибку которую допускает алгоритм \mathbf{a} на данном нам множестве $\{x_1, \cdots x_l\} \subset \mathbf{X}$.

$$\delta \mathbf{a} = \sum_{k=1}^{l} [\mathbf{a}(x_k) \neq y_k], \tag{4}$$

где $[\mathbf{a}(x_k) \neq y_k]$ это 1, если условие в скобках истинное и 0 если ложное. Простыми словами $\delta \mathbf{a}$ определили как количество ошибок в классификации.

5 Примеры задач

Задача регрессии.

Рассмотрим постановочную задачу регрессии.

5.1 Что дано?

- $\mathbf{X} = \mathbb{R}$ множество объектов,
- $\mathbf{Y} = \mathbb{R}$ множество ответов,
- неизвестная функция \mathbf{f} пусть будет просто квадратичная, то есть $y = \mathbf{f}(x) = x^2$

5.2 По каким данным мы восстанавливаем неизвестную функцию?

Рис. 1: Данные данные для нахождения а

На рис. 1 показаны данные по которым мы должно построить отображение **a**. По оси абсцисс отложены значения $\{x_1, \cdots, x_{10}\} \subset X$, а по оси ординат отложены значения $\{y_1, \cdots, y_{10}\} \subset Y$. Также на графике построен график функции $y = x^2$. Как видно из графика синие точке не ложатся идеально на красный график. Это все из-за того, что данные не бывают идеальные, об этом мы поговорим чуть позже.

Задача классификации.

Рассмотрим постановочную задачу классификации.

5.3 Что дано?

- $\mathbf{X} = \mathbb{R}^2$ множество объектов,
- $Y = \{0, 1\}$ множество ответов,
- ullet неизвестная функция ${f f}$

5.4 По каким данным мы восстанавливаем неизвестную функцию?

Рис. 2: Данные данные для нахождения а

6 Метод k - ближайших соседей

Задача классификации.

Данный метод является очень простым. Пусть мы можем измерить расстояние между любыми объектами из множества \mathbf{X} . Тогда алгоритм заключается в том, чтобы найти тот класс которого больше всего среди k-ближайших соседей.

6.1 Алгоритм

```
k=9— сколько соседей будем учитывать M=2— количество классов \{x_1,\cdots,x_l\}— объекты для которых мы знаем ответы \{y_1,\cdots,y_l\}— ответы х— нужно класифицировать mesure— строим массив расстояний от х до каждого x_i mesure— mesure.sort— сортируем его по возрастанию (паралельно нужно сортировать и у) агг— массив счетчик каждого класса среди k ближайших for i in k ....arr[y_i]= \operatorname{arr}[y_i]+1
```

Список литературы

[1] Воронцов К. В. Машинное обучение // Годовой курс кафедры «Интеллектуальные системы» Москва, 2018. http://www.machinelearning.ru/wiki/index.php?title=Vokov