THE RERESERVER TO SERVER TO SERVER

91390M

SUPERVISOR'S USE ONLY

QUALIFY FOR THE FUTURE WORLD KIA NOHO TAKATŪ KI TŌ ĀMUA AO!

Te Mātauranga Matū, Kaupae 3, 2017 91390M Te whakaatu māramatanga ki ngā tikanga matūrewarau me ngā āhuatanga o ngā korakora me ngā matū

2.00 i te ahiahi Rāapa 15 Whiringa-ā-rangi 2017 Whiwhinga: Rima

Paetae	Kaiaka	Kairangi
Te whakaatu māramatanga ki ngā tikanga matūrewarau me ngā āhuatanga o ngā korakora me ngā matū.	Te whakaatu māramatanga hōhonu ki ngā tikanga matūrewarau me ngā āhuatanga o ngā korakora me ngā matū.	Te whakaatu māramatanga matawhānui ki ngā tikanga matūrewarau me ngā āhuatanga o ngā korakora me ngā matū.

Tirohia mēnā e rite ana te Tau Ākonga ā-Motu (NSN) kei runga i tō puka whakauru ki te tau kei runga i tēnei whārangi.

Me whakamātau koe i ngā tūmahi KATOA kei roto i tēnei pukapuka.

He taka pūmotu kua whakaritea ki te Puka Rauemi L3-CHEMMR.

Mēnā ka hiahia whārangi atu anō mō ō tuhinga, whakamahia ngā whārangi wātea kei muri o tēnei pukapuka, ka āta tohu ai i ngā tau tūmahi.

Tirohia mēnā e tika ana te raupapatanga o ngā whārangi 2–19 kei roto i tēnei pukapuka, ka mutu, kāore tētahi o aua whārangi i te takoto kau.

HOATU TE PUKAPUKA NEI KI TE KAIWHAKAHAERE HEI TE MUTUNGA O TE WHAKAMĀTAUTAU.

TAPEKE

TŪMAHI TUATAHI

(a) Whakaotihia te tūtohi e whai ake nei.

Tohu korakora	Whakanaha irahiko (whakamahia te tuhinga s, p, d)	Whana hiko	Tau Iraoho
C1		0	
		+2	20
Mn ²⁺			

(b)	(i)	Tautuhia te kupu tōrarotanga hiko.
	(ii)	Whakam \bar{a} ramahia mai he aha i nui ake ai te t \bar{o} rarotanga hiko o te haum \bar{a} ota i t \bar{o} te p \bar{u} t \bar{u} taewhet \bar{u}^1 .

¹ poporahi

QUESTION ONE

ASSESSOR'S USE ONLY

(a) Complete the following table.

Symbol of particle	Electron configuration (use s, p, d notation)	Charge	Atomic number
Cl		0	
		+2	20
Mn ²⁺			

(b)	(i)	Define the term electronegativity.
	(ii)	Explain why the electronegativity of chlorine is greater than that of phosphorus.

MĀ TE KAIMĀKA ANAKE

(c) E whakaatu ana te kauwhata i raro i ngā pūngao katotetanga tuatahi o ngā pūmotu Rōpū 2 mai i Be ki Ba.

Ngā pūngao katotetanga tuatahi o ngā pūmotu Rōpū 2

1000
900
800
700
Be Mg Ca Sr Ba

Pūmotu

Tuhia he whārite hei whakaatu i te pūngao katotetanga tuatahi o te pūmotu konupūmā.

(i)

Whakam	iramahia te ia kua whakaaturia o ngā pūngao katotetanga tuatahi o ngā pūmo
	Tamama te ia kua whakaaturia o nga pungao katotetanga tuatam o nga pumo
Rōpū 2.	
Ι	

The following graph shows the first ionisation energies of the Group 2 elements from Be to Ba. (c)

ASSESSOR'S USE ONLY

First ionisation energies of Group 2 elements

(i)	Write an	equation to sh	now the fi	irst ionisati	ion energy f	for the e	lement cal	cium
-----	----------	----------------	------------	---------------	--------------	-----------	------------	------

(ii)	Explain	the trend	shown of fir	rst ionisation	n energies	of the Grou	up 2 element	S
(11)	Explain	the trent	SHOWH OF TH	ist iomsano	ii chergies	of the Orot	up z cicincin	S.

Explain the trend shown of first ionisation energies of the Group 2 elements.				

TŪMAHI TUARUA

MĀ TE KAIMĀKA ANAKE

Rāpoi ngota	Pae koropupū /°C	M / g mol ⁻¹
Haitarahine, N ₂ H ₄	114	32
Hautawa mewaro, CH ₃ I	42.4	142
Ngawaro, C ₁₀ H ₂₂	174	142

Whakamahia ngā mōhiohio kei te tūtohi i runga nei ka whakataurite i ngā pae koropupū o ngā matū i raro.

I ō tuhinga, me:

- whakarārangi i ngā momo tōpana kume i waenga rāpoi ngota mō ia matū
- whakamārama i te kaha hāngai i waenga i ngā korakora kei roto.

(a)	(i)	Haitarahine me te hautawa mewaro.
	(ii)	Hautawa mewaro me te ngawaro.

QUESTION TWO

AS	SES	sso	R'S
113	SF	ONI	V

Molecule	Boiling Point / °C	M / g mol ⁻¹
Hydrazine, N ₂ H ₄	114	32
Iodomethane, CH ₃ I	42.4	142
Decane, C ₁₀ H ₂₂	174	142

Use the information in the table above to compare and contrast the boiling points of the substances below.

In your answers, you should:

- list the types of intermolecular forces present for each substance
- explain the relative strength between the particles involved.

(a)	(i)	Hydrazine and iodomethane.
	(ii)	Iodomethane and decane.
	(11)	

MĀ TE KAIMĀKA ANAKE

tauhohenga ki te whārite i $C_{10}H_{22}(\ell) + 15\frac{1}{2}C$	$O_2(g) \rightarrow 10 \mathrm{CO}_2(g) + 11 \mathrm{H}_2 \mathrm{O}(\ell)$	na te
tauhohenga ki te whārite i $C_{10}H_{22}(\ell) + 15\frac{1}{2}C_{10}$ Tātaitia te hāwera o te ng $\Delta_f H^\circ (C_{10}H_{22})$	raro. $O_2(g) \rightarrow 10 \text{CO}_2(g) + 11 \text{H}_2 \text{O}(\ell)$ ingiha mō te ngawaro, e ai ki ngā raraunga i raro nei: $O(\ell) = -301 \text{ kJ mol}^{-1}$	na te
tauhohenga ki te whārite i $C_{10}H_{22}(\ell) + 15\frac{1}{2}C_{10}$ Tātaitia te hāwera o te ng $\Delta_f H^\circ (C_{10}H_{22})$	raro. $O_2(g) \rightarrow 10 \text{CO}_2(g) + 11 \text{H}_2 \text{O}(\ell)$ ngiha mō te ngawaro, e ai ki ngā raraunga i raro nei:	na te
tauhohenga ki te whārite is $C_{10}H_{22}(\ell) + 15\frac{1}{2}C$ Tātaitia te hāwera o te ng $\Delta_{f}H^{\circ}(C_{10}H_{22}G)$ $\Delta_{c}H^{\circ}(C)$	raro. $O_2(g) \rightarrow 10 \text{CO}_2(g) + 11 \text{H}_2 \text{O}(\ell)$ ingiha mō te ngawaro, e ai ki ngā raraunga i raro nei: $O(\ell) = -301 \text{ kJ mol}^{-1}$	na te
tauhohenga ki te whārite is $C_{10}H_{22}(\ell) + 15\frac{1}{2}C$ Tātaitia te hāwera o te ng $\Delta_{f}H^{\circ}(C_{10}H_{22}G)$ $\Delta_{c}H^{\circ}(C)$	raro. $O_2(g) \rightarrow 10 \text{CO}_2(g) + 11 \text{H}_2\text{O}(\ell)$ angiha mō te ngawaro, e ai ki ngā raraunga i raro nei: $O(\ell) = -301 \text{ kJ mol}^{-1}$ $O(\ell) = -393 \text{ kJ mol}^{-1}$	na to
tauhohenga ki te whārite is $C_{10}H_{22}(\ell) + 15\frac{1}{2}C$ Tātaitia te hāwera o te ng $\Delta_{f}H^{\circ}(C_{10}H_{22}G)$ $\Delta_{c}H^{\circ}(C)$	raro. $O_2(g) \rightarrow 10 \text{CO}_2(g) + 11 \text{H}_2\text{O}(\ell)$ angiha mō te ngawaro, e ai ki ngā raraunga i raro nei: $O(\ell) = -301 \text{ kJ mol}^{-1}$ $O(\ell) = -393 \text{ kJ mol}^{-1}$	na te
tauhohenga ki te whārite is $C_{10}H_{22}(\ell) + 15\frac{1}{2}C$ Tātaitia te hāwera o te ng $\Delta_{f}H^{\circ}(C_{10}H_{22}G)$ $\Delta_{c}H^{\circ}(C)$	raro. $O_2(g) \rightarrow 10 \text{CO}_2(g) + 11 \text{H}_2\text{O}(\ell)$ angiha mō te ngawaro, e ai ki ngā raraunga i raro nei: $O(\ell) = -301 \text{ kJ mol}^{-1}$ $O(\ell) = -393 \text{ kJ mol}^{-1}$	na te
tauhohenga ki te whārite is $C_{10}H_{22}(\ell) + 15\frac{1}{2}C$ Tātaitia te hāwera o te ng $\Delta_{f}H^{\circ}(C_{10}H_{22}G)$ $\Delta_{c}H^{\circ}(C)$	raro. $O_2(g) \rightarrow 10 \text{CO}_2(g) + 11 \text{H}_2\text{O}(\ell)$ angiha mō te ngawaro, e ai ki ngā raraunga i raro nei: $O(\ell) = -301 \text{ kJ mol}^{-1}$ $O(\ell) = -393 \text{ kJ mol}^{-1}$	na te
tauhohenga ki te whārite is $C_{10}H_{22}(\ell) + 15\frac{1}{2}C$ Tātaitia te hāwera o te ng $\Delta_{f}H^{\circ}(C_{10}H_{22}G)$ $\Delta_{c}H^{\circ}(C)$	raro. $O_2(g) \rightarrow 10 \text{CO}_2(g) + 11 \text{H}_2\text{O}(\ell)$ angiha mō te ngawaro, e ai ki ngā raraunga i raro nei: $O(\ell) = -301 \text{ kJ mol}^{-1}$ $O(\ell) = -393 \text{ kJ mol}^{-1}$	na te
tauhohenga ki te whārite is $C_{10}H_{22}(\ell) + 15\frac{1}{2}C$ Tātaitia te hāwera o te ng $\Delta_{f}H^{\circ}(C_{10}H_{22}G)$ $\Delta_{c}H^{\circ}(C)$	raro. $O_2(g) \rightarrow 10 \text{CO}_2(g) + 11 \text{H}_2\text{O}(\ell)$ angiha mō te ngawaro, e ai ki ngā raraunga i raro nei: $O(\ell) = -301 \text{ kJ mol}^{-1}$ $O(\ell) = -393 \text{ kJ mol}^{-1}$	na te
tauhohenga ki te whārite is $C_{10}H_{22}(\ell) + 15\frac{1}{2}C$ Tātaitia te hāwera o te ng $\Delta_{f}H^{\circ}(C_{10}H_{22}G)$ $\Delta_{c}H^{\circ}(C)$	raro. $O_2(g) \rightarrow 10 \text{CO}_2(g) + 11 \text{H}_2\text{O}(\ell)$ angiha mō te ngawaro, e ai ki ngā raraunga i raro nei: $O(\ell) = -301 \text{ kJ mol}^{-1}$ $O(\ell) = -393 \text{ kJ mol}^{-1}$	na te
tauhohenga ki te whārite is $C_{10}H_{22}(\ell) + 15\frac{1}{2}C$ Tātaitia te hāwera o te ng $\Delta_{f}H^{\circ}(C_{10}H_{22}G)$ $\Delta_{c}H^{\circ}(C)$	raro. $O_2(g) \rightarrow 10 \text{CO}_2(g) + 11 \text{H}_2\text{O}(\ell)$ angiha mō te ngawaro, e ai ki ngā raraunga i raro nei: $O(\ell) = -301 \text{ kJ mol}^{-1}$ $O(\ell) = -393 \text{ kJ mol}^{-1}$	na te
tauhohenga ki te whārite is $C_{10}H_{22}(\ell) + 15\frac{1}{2}C$ Tātaitia te hāwera o te ng $\Delta_{f}H^{\circ}(C_{10}H_{22}G)$ $\Delta_{c}H^{\circ}(C)$	raro. $O_2(g) \rightarrow 10 \text{CO}_2(g) + 11 \text{H}_2\text{O}(\ell)$ angiha mō te ngawaro, e ai ki ngā raraunga i raro nei: $O(\ell) = -301 \text{ kJ mol}^{-1}$ $O(\ell) = -393 \text{ kJ mol}^{-1}$	na te
tauhohenga ki te whārite is $C_{10}H_{22}(\ell) + 15\frac{1}{2}C$ Tātaitia te hāwera o te ng $\Delta_{f}H^{\circ}(C_{10}H_{22}G)$ $\Delta_{c}H^{\circ}(C)$	raro. $O_2(g) \rightarrow 10 \text{CO}_2(g) + 11 \text{H}_2\text{O}(\ell)$ angiha mō te ngawaro, e ai ki ngā raraunga i raro nei: $O(\ell) = -301 \text{ kJ mol}^{-1}$ $O(\ell) = -393 \text{ kJ mol}^{-1}$	na te

ASSESSOR'S USE ONLY

is shown in the equation by	r are formed when decane burns completely in oxygen. The reaction
	Delow. $D_2(g) o 10 \mathrm{CO}_2(g) + 11 \mathrm{H}_2 \mathrm{O}(\ell)$
$C_{10}H_{22}(\ell) + 15\frac{1}{2}C$	$O_2(g) \rightarrow 10CO_2(g) + 11H_2O(\ell)$
$C_{10}H_{22}(\ell) + 15\frac{1}{2}C_{22}(\ell)$ Calculate the enthalpy of	$O_2(g) \rightarrow 10CO_2(g) + 11H_2O(\ell)$ combustion for decane, given the following data:
$C_{10}H_{22}(\ell) + 15\frac{1}{2}C$ Calculate the enthalpy of $\Delta_f H^o (C_{10}H_{22})$	$O_2(g) \rightarrow 10CO_2(g) + 11H_2O(\ell)$ combustion for decane, given the following data: $O(\ell) = -301 \text{ kJ mol}^{-1}$
$C_{10}H_{22}(\ell) + 15\frac{1}{2}C_{10}$ Calculate the enthalpy of $\Delta_{f}H^{\circ}(C_{10}H_{22}G_{10})$ $\Delta_{c}H^{\circ}(C)$	$O_2(g) \rightarrow 10 CO_2(g) + 11 H_2 O(\ell)$ combustion for decane, given the following data: $(\ell) = -301 \text{ kJ mol}^{-1}$ $= -393 \text{ kJ mol}^{-1}$
$C_{10}H_{22}(\ell) + 15\frac{1}{2}C_{10}$ Calculate the enthalpy of $\Delta_{f}H^{\circ}(C_{10}H_{22}G_{10})$ $\Delta_{c}H^{\circ}(C)$	$O_2(g) \rightarrow 10CO_2(g) + 11H_2O(\ell)$ combustion for decane, given the following data: $O(\ell) = -301 \text{ kJ mol}^{-1}$
$C_{10}H_{22}(\ell) + 15\frac{1}{2}C_{10}$ Calculate the enthalpy of $\Delta_{f}H^{\circ}(C_{10}H_{22}G_{10})$ $\Delta_{c}H^{\circ}(C)$	$O_2(g) \rightarrow 10 CO_2(g) + 11 H_2 O(\ell)$ combustion for decane, given the following data: $(\ell) = -301 \text{ kJ mol}^{-1}$ $= -393 \text{ kJ mol}^{-1}$
$C_{10}H_{22}(\ell) + 15\frac{1}{2}C_{10}$ Calculate the enthalpy of $\Delta_{f}H^{\circ}(C_{10}H_{22}G_{10})$ $\Delta_{c}H^{\circ}(C)$	$O_2(g) \rightarrow 10 CO_2(g) + 11 H_2 O(\ell)$ combustion for decane, given the following data: $(\ell) = -301 \text{ kJ mol}^{-1}$ $= -393 \text{ kJ mol}^{-1}$
$C_{10}H_{22}(\ell) + 15\frac{1}{2}C_{10}$ Calculate the enthalpy of $\Delta_{f}H^{\circ}(C_{10}H_{22}G_{10})$ $\Delta_{c}H^{\circ}(C)$	$O_2(g) \rightarrow 10 CO_2(g) + 11 H_2 O(\ell)$ combustion for decane, given the following data: $(\ell) = -301 \text{ kJ mol}^{-1}$ $= -393 \text{ kJ mol}^{-1}$
$C_{10}H_{22}(\ell) + 15\frac{1}{2}C_{10}$ Calculate the enthalpy of $\Delta_{f}H^{\circ}(C_{10}H_{22}G_{10})$ $\Delta_{c}H^{\circ}(C)$	$O_2(g) \rightarrow 10 CO_2(g) + 11 H_2 O(\ell)$ combustion for decane, given the following data: $(\ell) = -301 \text{ kJ mol}^{-1}$ $= -393 \text{ kJ mol}^{-1}$
$C_{10}H_{22}(\ell) + 15\frac{1}{2}C_{10}$ Calculate the enthalpy of $\Delta_{f}H^{\circ}(C_{10}H_{22}G_{10})$ $\Delta_{c}H^{\circ}(C)$	$O_2(g) \rightarrow 10 CO_2(g) + 11 H_2 O(\ell)$ combustion for decane, given the following data: $(\ell) = -301 \text{ kJ mol}^{-1}$ $= -393 \text{ kJ mol}^{-1}$
$C_{10}H_{22}(\ell) + 15\frac{1}{2}C_{10}$ Calculate the enthalpy of $\Delta_{f}H^{\circ}(C_{10}H_{22}G_{10})$ $\Delta_{c}H^{\circ}(C)$	$O_2(g) \rightarrow 10 CO_2(g) + 11 H_2 O(\ell)$ combustion for decane, given the following data: $(\ell) = -301 \text{ kJ mol}^{-1}$ $= -393 \text{ kJ mol}^{-1}$
$C_{10}H_{22}(\ell) + 15\frac{1}{2}C_{10}$ Calculate the enthalpy of $\Delta_{f}H^{\circ}(C_{10}H_{22}G_{10})$ $\Delta_{c}H^{\circ}(C)$	$O_2(g) \rightarrow 10 CO_2(g) + 11 H_2 O(\ell)$ combustion for decane, given the following data: $(\ell) = -301 \text{ kJ mol}^{-1}$ $= -393 \text{ kJ mol}^{-1}$
$C_{10}H_{22}(\ell) + 15\frac{1}{2}C_{10}$ Calculate the enthalpy of $\Delta_{f}H^{\circ}(C_{10}H_{22}G_{10})$ $\Delta_{c}H^{\circ}(C)$	$O_2(g) \rightarrow 10 CO_2(g) + 11 H_2 O(\ell)$ combustion for decane, given the following data: $(\ell) = -301 \text{ kJ mol}^{-1}$ $= -393 \text{ kJ mol}^{-1}$
$C_{10}H_{22}(\ell) + 15\frac{1}{2}C_{10}$ Calculate the enthalpy of $\Delta_{f}H^{\circ}(C_{10}H_{22}G_{10})$ $\Delta_{c}H^{\circ}(C)$	$O_2(g) \rightarrow 10 CO_2(g) + 11 H_2 O(\ell)$ combustion for decane, given the following data: $(\ell) = -301 \text{ kJ mol}^{-1}$ $= -393 \text{ kJ mol}^{-1}$
$C_{10}H_{22}(\ell) + 15\frac{1}{2}C_{10}$ Calculate the enthalpy of $\Delta_{f}H^{\circ}(C_{10}H_{22}G_{10})$ $\Delta_{c}H^{\circ}(C)$	$O_2(g) \rightarrow 10 CO_2(g) + 11 H_2 O(\ell)$ combustion for decane, given the following data: $(\ell) = -301 \text{ kJ mol}^{-1}$ $= -393 \text{ kJ mol}^{-1}$
$C_{10}H_{22}(\ell) + 15\frac{1}{2}C_{10}$ Calculate the enthalpy of $\Delta_{f}H^{\circ}(C_{10}H_{22}G_{10})$ $\Delta_{c}H^{\circ}(C)$	$O_2(g) \rightarrow 10 CO_2(g) + 11 H_2 O(\ell)$ combustion for decane, given the following data: $(\ell) = -301 \text{ kJ mol}^{-1}$ $= -393 \text{ kJ mol}^{-1}$
$C_{10}H_{22}(\ell) + 15\frac{1}{2}C_{10}$ Calculate the enthalpy of $\Delta_{f}H^{\circ}(C_{10}H_{22}G_{10})$ $\Delta_{c}H^{\circ}(C)$	$O_2(g) \rightarrow 10 CO_2(g) + 11 H_2 O(\ell)$ combustion for decane, given the following data: $(\ell) = -301 \text{ kJ mol}^{-1}$ $= -393 \text{ kJ mol}^{-1}$
$C_{10}H_{22}(\ell) + 15\frac{1}{2}C_{10}$ Calculate the enthalpy of $\Delta_{f}H^{\circ}(C_{10}H_{22}G_{10})$ $\Delta_{c}H^{\circ}(C)$	$O_2(g) \rightarrow 10 CO_2(g) + 11 H_2 O(\ell)$ combustion for decane, given the following data: $(\ell) = -301 \text{ kJ mol}^{-1}$ $= -393 \text{ kJ mol}^{-1}$

$N_2H_4(\ell) + O_2(g) \rightarrow N_2$ He tauhohenga putawera tēr		
rie taunonenga putawera ter	ici.	
Whakamāramahia ngā hurir	nga pūngao ngoikore (entropy) i roto i tēnei tauhohen	ga.

This is an exothermic reac	etion.	
Explain the entropy chang	ges associated with this reaction.	

TŪMAHI TUATORU

MĀ TE KAIMĀKA

Ko te haumāota, Cl_2 , te pūkane, Br_2 , me te hautawa, I_2 , he kōnakonako katoa. He wē te pūkane i te paemahana rūma.

(a) (i) I te pouaka i raro, tohua ng \bar{a} momo t \bar{o} pana kume i waenga r \bar{a} poi ngota kei roto i te p \bar{u} kane $w\bar{e}$.

Tōpana kume i waenga rāpoi ngota	Tohu (🗸)
Ngā tōpana kume wehewhana-wehewhana rangitahi	
Ngā tōpana kume wehewhana-wehewhana pūmau	
Hononga hauwai	

	(ii)	Whakamāramahia mai he aha i wē ai te pūkane i te paemahana rūma, engari he haurehu te haumāota.
(b)	(i)	Tuhia he whārite mō te whāhaurehu o te hautawa i roto i te pouaka i raro.
	(ii)	Tautuhia te hāwera (enthalpy) o te whāhaurehu mō te hautawa.

Ka haere tonu te Tūmahi Tuatoru i te whārangi 14.

QUESTION THREE

ASSESSOR'S USE ONLY

Chlorine, Cl_2 , bromine, Br_2 , and iodine, I_2 , are all halogens. Bromine is a liquid at room temperature.

(a) (i) In the box below, tick the type(s) of intermolecular attractions in **liquid** bromine.

Intermolecular attraction	Tick (🗸)
Temporary dipole-dipole attractions	
Permanent dipole-dipole attractions	
Hydrogen bonding	

Write an equation for the sublimation of iodine in the box below.

Question Three continues on page 15.

MĀ TE KAIMĀKA ANAKE

(iii)	Whakamāramahia te take he ohorere noa te whāhaurehu o te hautawa, ahakoa he uara tōrunga te hāwera o te whāhaurehu.
Von	vita i ta hautawa ha katata I = rārangi
(i)	outa i te hautawa he katote I_3^- rārangi. Tātuhia te hoahoa Lewis mō te katote I_3^- ki te pouaka i raro.
(1)	Tatama te nounou Eewis mo te katote 13 ki te podaka 1 taro.
(ii)	Whakamāramahia he aha te take he rārangi te āhua o te katote I_3^- .

	sublimation is a positive value.		
odir	ne forms a linear I_3^- ion.		
i)	Draw the Lewis structure for the I_3^- ion in the box below.		
	3		
••			
ii)	Explain why the I ₃ ⁻ ion has a linear shape.		

He koeke-tapawhā hāngai te āhua o te IF ₅ . Me tohu mēnā he pitorua, pitokore rānei te rāpoi ngota IF ₅ .			
Porowhitatia tō kōwhiringa.	pitorua	pitokore	
Parahautia tō kōwhiringa.			

${\rm IF}_5$ has a square pyramidal shape. Indicate whether the molecule ${\rm IF}_5$ is polar or non-polar.				
Circle your choice.	polar	non-polar		
Justify your choice.				

	He whārangi anō ki te hiahiatia.	M KA
TAU TŪMAHI	Tuhia te (ngā) tau tūmahi mēnā e tika ana.	A

		Extra paper if required.	
QUESTION NUMBER		Write the question number(s) if applicable.	
NUMBER			

ASSESSOR'S USE ONLY

English translation of the wording on the front cover

Level 3 Chemistry, 2017

91390 Demonstrate understanding of thermochemical principles and the properties of particles and substances

2.00 p.m. Wednesday 15 November 2017 Credits: Five

Achievement	Achievement with Merit	Achievement with Excellence
Demonstrate understanding of thermochemical principles and the properties of particles and substances.	Demonstrate in-depth understanding of thermochemical principles and the properties of particles and substances.	Demonstrate comprehensive understanding of thermochemical principles and the properties of particles and substances.

Check that the National Student Number (NSN) on your admission slip is the same as the number at the top of this page.

You should attempt ALL the questions in this booklet.

A periodic table is provided on the Resource Sheet L3–CHEMR.

If you need more room for any answer, use the extra space provided at the back of this booklet and clearly number the question.

Check that this booklet has pages 2–19 in the correct order and that none of these pages is blank.

YOU MUST HAND THIS BOOKLET TO THE SUPERVISOR AT THE END OF THE EXAMINATION.