CS 107 Section A - Probability

Spring 2020, AUA

Homework No. 11

Due time/date: 28 April, 2020

Note: Supplementary Problems will not be graded, but you are very advised to solve them and to discuss later with TA or Instructor.

Joint Distribution of r.v.s

A Joint PDFs

Problem 1. Is the function f(x,y) a Joint PDF for some r.v.'s X and Y? Explain your reasoning.

a.
$$f(x,y) = \begin{cases} 2, & (x,y) \in [0,1] \times [0,0.5]; \\ 1, & (x,y) \in [1,2] \times [0.5,1]; \\ 0, & otherwise. \end{cases}$$

b. $f(x,y) = \begin{cases} x \cdot y, & \text{if } 0 \le x \le 1, \ 0 \le y \le x; \\ 0, & otherwise. \end{cases}$

Problem 2. Let *X* and *Y* be Jointly distributed r.v.s with the following Joint PDF:

$$f(x,y) = \begin{cases} 4xy \cdot e^{-x^2 - y^2}, & \text{if } x \ge 0, \ y \ge 0; \\ 0, & \text{otherwise.} \end{cases}$$

- a. Calculate $\mathbb{P}(X < 3, Y > 2)$;
- b. Calculate $\mathbb{P}(2X 3Y = 1)$;
- c. Calculate $\mathbb{P}(X^2 + Y^2 \le 4)$;
- d. Find the Marginal PDFs of *X* and *Y*;
- e. Calculate $\mathbb{P}(X > 1)$ by using the Joint PDF or the Marginal PDF of X.

Problem 3. (Supplementary, but placed here) Assume the PDF of the random vector (X, Y) is

$$f(x,y) = \begin{cases} K \cdot (x+2y), & \text{if } 0 \le x \le 1, \ 0 \le y \le 1; \\ 0, & \text{otherwise.} \end{cases}$$

for some constant *K*.

a. Find *K*;

- b. Calculate $\mathbb{P}((X,Y) \in D)$, where D is a trapezoid with vertices at (0,0), (0,1), (1,1) and (3,0);
- c. Calculate $\mathbb{P}(X^2 + Y^2 \le 1)$;
- d. Find the Marginal PDF of Y.

B Some important Multivariate Distributions

Problem 4. Assume we are picking at random a point, uniformly, in $D \subset \mathbb{R}^2$, and let X and Y be the x- and y- coordinates of that point. We consider two cases, when

- I. *D* is the triangle with vertices at (-1,0), (1,0) and (0,1);
- II. (Supplementary) $D = \{(x, y) : 1 \le x^2 + y^2 \le 4\}.$

For each case of *D*,

- a. Find the Joint PDF of *X* and *Y*;
- b. Find the (Marginal) PDFs of *X* and *Y*;
- c. Calculate $\mathbb{P}(X \in [0, 1], Y \in [0, 1])$.

Problem 5. Assume

$$\mu = \begin{bmatrix} 2 \\ 3 \end{bmatrix}, \qquad \Sigma = \begin{bmatrix} 1 & -2 \\ -2 & 6 \end{bmatrix}.$$

Let $(X, Y) \sim \mathcal{N}(\mu, \Sigma)$.

- a. Construct the PDF of (X, Y);
- b. Plot some level curves of the PDF of (X, Y).
- c. (Supplementary) Calculate, using **R** or any other software, the probabilities

$$\mathbb{P}(X^2 + (Y - 3)^2 < 3)$$
 and $\mathbb{P}(X > 2)$;

d. (Supplementary) Plot, using some software, or your calculus knowledge, the graph of the Joint PDF of *X* and *Y*;

C Independence of r.v.s

Problem 6. a. Assume that X and Y are Discrete r.v.'s, and assume X and Y are Independent: $X \perp \!\!\! \perp Y$. Find the Joint PMF of X and Y, if

$Y \setminus X$	-2	1	2	PMF of Y
-10				$\frac{1}{4}$
10				$\frac{3}{4}$
PMF of X	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	

b. Assume that the Joint PMF of Discrete r.v. X and Y is given by

$Y \setminus X$	2	3
-3	0.1	0.3
1	0.2	0.4

Are *X* and *Y* Independent? Prove your statement.

c. Assume *X* and *Y* are Discrete r.v. with the following PMFs:

X	0		– and	Y	0	2
$\mathbb{P}(X=x)$	0.3	0.7	– and	$\mathbb{P}(Y = y)$	0.3	0.7

Are *X* and *Y* Dependent? Explain.

Problem 7. Assume $X \sim Binom(4,0.2)$ and $Y \sim Pois(1)$ and X and Y are Independent: $X \perp \!\!\! \perp Y$. Calculate

$$\mathbb{P}(X + Y < 2)$$
.

Problem 8. Assume $(X,Y) \sim Unif(D)$, where D is the square $D = \{(x,y) : |x| + |y| \le 1\}$. Are X and Y Independent? Prove your statement.

Problem 9. Assume $X \sim Unif[-1,2]$ and $Y \sim Exp(3)$, and X and Y are Independent.

- a. Find the Joint PDF of X and Y;
- b. Calculate $\mathbb{P}(X \in [1, 2], Y \in [0, 1])$.

Problem 10. a. Assume $X \sim \mathcal{N}(1, 2^2)$ and $Y \sim \mathcal{N}(2, 4^2)$. Are X and Y Independent? Explain.

b. Assume again that $X \sim \mathcal{N}(1,2^2)$ and $Y \sim \mathcal{N}(2,4^2)$, and now assume that X and Y are Independent. Calculate the Joint PDF of X and Y.

D Supplementary Problems

Problem 11. (Supplementary) Assume $X \sim Unif([0,2])$, $Y \sim Bernoulli(0.5)$ and $X \perp \!\!\! \perp Y$. Find the CDF of X + Y.

Problem 12. (Supplementary) Assume $X_1 \sim Unif([0,1])$, $X_2 \equiv 1$, $Y \sim Bernoulli(0.5)$ and Y is independent of X_1 and X_2 . Consider the r.v.

$$Z = \left\{ \begin{array}{ll} X_1, & Y = 0 \\ X_2, & Y = 1. \end{array} \right.$$

Find and plot the CDF of *Z*.

Problem 13. (Supplementary) Let q_{α} be the α -level quantile of some distribution \mathcal{D} with continuous and strictly increasing CDF F, i.e. , for $X \sim \mathcal{D}$,

$$\mathbb{P}(X \le q_{\alpha}) = \alpha.$$

Which one is larger: $q_{0.7}$ or $q_{0.8}$?

- **Problem 14.** (Supplementary) Express the Joint CDF (PDF) of U, V in terms of the Joint CDF (PDF) of X, Y, if
 - a. U = 3X + 2, V = 4Y 2;
 - b. U = X + Y, V = X Y.
- **Problem 15.** (Supplementary) Assume X and Y are Jointly Continuous with Joint CDF F(x, y) and Joint PDF f(x, y). Express (no proof is necessary):
 - a. F(x,y) in terms of f(x,y);
 - b. f(x,y) in terms of F(x,y);
 - c1. the (Marginal) CDF of X, $F_X(x)$ in terms of F(x,y);
 - c2. the (Marginal) CDF of X, $F_X(x)$ in terms of f(x, y);
 - d1. the (Marginal) PDF of Y, $f_Y(x)$ in terms of F(x,y);
 - d2. the (Marginal) PDF of Y, $f_Y(x)$ in terms of f(x,y);
 - e1. $\mathbb{P}(a \le X \le b, Y \ge c)$ in terms of F(x, y);
 - e2. $\mathbb{P}(a \le X \le b, Y \ge c)$ in terms of f(x, y);
 - f1. $\mathbb{P}(X \ge a, Y \le b)$ in terms of F(x, y);
 - f2. $\mathbb{P}(X \ge a, Y \le b)$ in terms of f(x, y);
 - g. $\mathbb{P}(X^4 + Y^4 \le 5)$ in terms of f(x,y); write also the double integral in the iterated integrals form;
 - h. $\mathbb{P}(|X| + Y \le 5)$ in terms of f(x,y); write also the double integral in the iterated integrals form;
 - i. $\mathbb{P}(X \in [0,2], Y \leq \sin(X))$ in terms of f(x,y); write also the double integral in the iterated integrals form;
 - j. the CDF of the 1D random variable Z = X + Y in terms of f(x, y);
 - k. the CDF of the 1D random variable $Z = \max\{X,Y\}$ in terms of F(x,y) and f(x,y);
 - l. the CDF of the 1D random variable $Z = \min\{X,Y\}$ in terms of F(x,y) and f(x,y).
- **Problem 16.** (Supplementary) Assume X and Y are discrete r.v.'s with values x_1, x_2, \dots and y_1, y_2, \dots , respectively, and their Joint PMF is $\mathbb{P}(X = x_i, Y = y_j)$ for $i = 1, 2, \dots, j = 1, 2, \dots$. Express in terms of the Joint PMF:
 - a. Their Joint CDF F(x, y);

¹Finite or countably infinite, also not necessarily of the same size.

- b. $\mathbb{P}(a \leq X \leq b, c \leq Y \leq d)$;
- c. The (Marginal) CDF of X, $F_X(x)$;
- d. $\mathbb{P}(X = x, Y \leq y)$;
- e. $\mathbb{P}(a \leq X \leq b)$.
- **Problem 17.** (Supplementary) Assume X and Y are Independent. Prove that 2X + 1 and Y^3 are Independent too.
- **Problem 18.** (Supplementary) Assume $(U, V) \sim \mathcal{N}(\mu, \Sigma)$, where

$$\mu = \begin{bmatrix} -2 \\ 3 \end{bmatrix}, \qquad \Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 6 \end{bmatrix}.$$

Prove that *U* and *V* are Independent.

Problem 19. (Supplementary) Assume X, Y and Z are IID, i.e., Independent and Identically Distributed, i.e., they all have the same CDF F(x). Calculate the CDF of

$$U = \max\{X, Y, Z\}$$
 and $V = \min\{X, Y, Z\}.$

Generalize for n IID random variables.

Note: This result is important in Statistics.