Géométrie Différentielle, TD 6 du 15 mars 2019

- 1. Compléments sur le crochet de Lie (À FAIRE AVANT LE TD)
- 1- Dans \mathbb{R}^n , Montrer que $[X,Y](x) = d_x Y[X(x)] d_x X[Y(x)]$.
- 2- Soit M une variété, $X \in \Gamma(TM)$. Montrer que si pour tout champ de vecteurs $Y \in \Gamma(TM)$, on a [X,Y] = 0, alors X = 0.

Solution:

- 1- Direct en utilisant la formule du crochet en coordonnées.
- 2– En coordonnées locales, on a $0 = [X,Y]_i = \sum_j X_j \frac{\partial Y_i}{\partial x_j} Y_j \frac{\partial X_i}{\partial x_j}$. En prenant pour Y le champ constant $Y = \frac{\partial}{\partial x_k}$, on obtient $0 = [X,Y]_i = -\frac{\partial X_i}{\partial x_k}$, donc les X_i sont constants. En prenant pour Y le champ $Y = x_i \frac{\partial}{\partial x_i}$ et comme les X_i sont constants, on obtient $0 = [X,Y]_i = X_i$, et donc X = 0.
- 2. Quelques flots classiques (À FAIRE AVANT LE TD)

Calculer les flots des champs de vecteurs suivants :

- 1- Sur \mathbb{R}^n , $X(x) = \frac{\partial}{\partial x_1}$.
- 2- Sur $\mathbb{R}^n \setminus \{0\}$, $X(x) = \frac{x}{\|x\|}$ (vecteur radial).
- 3– Sur $\mathbb{R}^2\setminus\{0\}$, X(x) défini tel que $(\frac{x}{\|x\|},X(x))$ soit une base orthonormée directe.
- 4– Sur $\mathbb{R}^2/\mathbb{Z}^2$, $X(x)=a\frac{\partial}{\partial x_1}+b\frac{\partial}{\partial x_2}$. Discuter des trajectoires selon que (a,b) est \mathbb{Q} -libre ou non.
- 5– Sur S^2 , $X=\psi^*(\frac{\partial}{\partial x_1})$ sur $S^2\setminus\{N\}$ et X(N)=0, où $\psi:S^2\setminus\{N\}\to\mathbb{R}^2$ est la projection stéréographique.

Solution:

- $1-\varphi_t(x_1,\ldots,x_n)=(x_1+t,x_2,\ldots,x_n),$ défini sur \mathbb{R} .
- 2– $\varphi_t(x) = x + t \frac{x}{\|x\|}$, défini sur] $\frac{1}{\|x\|}$, + ∞ [.
- 3– $\varphi_t(re^{i\theta}) = re^{i\theta + t/r}$), défini sur \mathbb{R} .
- $\begin{array}{l} 4-\ \varphi_t(\pi(x,y))=\pi(x+ta,y+tb), & \text{d\'efini sur }\mathbb{R}. \text{ Si } a \text{ et } b \text{ sont }\mathbb{Q}\text{-li\'es, les orbites sont }\\ \text{p\'eriodique}: & \text{si } a=\frac{p}{q}b,\ \varphi_{q/b}(\pi(x,y))=\pi(x+p,y+q)=\pi(x,y).\\ \text{Si } (a,b) \text{ est }\mathbb{Q}\text{-libre, les orbites sont denses. En effet, \'etant donn\'e}\ z\in[0,1] \text{ et } n\in\mathbb{Z},\\ \varphi_{(z-x+n)/a}(\pi(x,y))=\pi(z+n,y+(z-x)\frac{b}{a}+n\frac{b}{a})=\pi(z,y+(z-x)\frac{b}{a}+n\frac{b}{a}). \text{ Par densit\'et} \end{array}$

de $\mathbb{Z} + \frac{b}{a}\mathbb{Z}$ dans \mathbb{R} , on en déduit que $\{\pi(z, y + (z - x)\frac{b}{a} + n\frac{b}{a}) \mid n \in \mathbb{Z}\}$ est dense dans $\{z\} \times \mathbb{R}/\mathbb{Z}$, et donc $\{\varphi_t(\pi(x,y)) \mid t \in \mathbb{R}\}$ est dense dans $\mathbb{R}^2/\mathbb{Z}^2$.

5- On commence par vérifier que le champ est bien C^{∞} (laissé au lecteur). Si x = N, alors $\varphi_t(x) = x$, défini sur \mathbb{R} . Si $x \in S^2 \setminus \{N\}$, en posant $\psi(x) = (x_1, \dots, x_n)$, on a $\varphi_t(x) = \psi^{-1}(x_1 + t, \dots, x_n)$, défini sur \mathbb{R} .

3. Redressement d'un champ de vecteurs

On montre qu'un champ de vecteurs sans point d'annulation sur une variété peut être représenté localement par un champ de vecteurs constant.

- 1- Soit X un champ de vecteurs C^{∞} défini sur un voisinage de l'origine de \mathbb{R}^n . On suppose que $X(0) = \frac{\partial}{\partial x_1}$. Notons φ_t le flot local de X. Montrer que l'application $F(x_1, \ldots, x_n) = \varphi_{x_1}(0, x_2, \ldots, x_n)$ est un difféomorphisme local au voisinage de 0.
- 2- Soit G un inverse local de F au voisinage de l'origine. Calculer G_*X .
- 3- Soit M une variété C^{∞} de dimension n, X un champ de vecteurs C^{∞} sur M, et $x \in M$ tel que $X(x) \neq 0$. Montrer qu'il existe un difféomorphisme ψ entre un voisinage U de x dans M et un voisinage V de 0 dans \mathbb{R}^n tel que $\psi_*X|_U = \frac{\partial}{\partial x_1}|_V$.
- 4- En déduire qu'il existe des champs de vecteurs X_2, \dots, X_n tels que (X, X_2, \dots, X_n) soit une base de l'espace tangent sur un voisinage de x.

Solution:

1- On calcule la différentielle de F en 0:

$$\frac{\partial}{\partial x_1} F(0) = \frac{\partial}{\partial x_1} (x_1 \mapsto \varphi_{x_1}(0)) = X(0) = \frac{\partial}{\partial x_1}$$
$$\frac{\partial}{\partial x_i} F(0) = \frac{\partial}{\partial x_i} (x_i \mapsto (0, \dots, 0, x_i, 0 \dots, 0)) = \frac{\partial}{\partial x_i}$$

Donc dF(0) = Id, donc par le théorème d'inversion locale, F est un difféomorphisme local au voisinage de 0.

- 2- Soit y = F(x). $F_* \frac{\partial}{\partial x_1}(y) = dF_{(x_1, \dots, x_n)}(\frac{\partial}{\partial x_1}) = \frac{\partial}{\partial x_1} F(x_1, \dots, x_n) = \frac{\partial}{\partial x_1} (x_1 \mapsto \varphi_{x_1}(0, x_2, \dots, x_n))_{|(x_1, \dots, x_n)|} = X(\varphi_{x_1}(0, x_2, \dots, x_n)) = X(y).$ Donc $F_* \frac{\partial}{\partial x_1} = X$, d'où $G_* X = \frac{\partial}{\partial x_1}$.
- 3– Soit $f:M\to\mathbb{R}^n$ une carte locale de M en x:f est un difféomorphisme entre un voisinage de x dans M et un voisinage de 0 dans \mathbb{R}^n . Quitte à composer f avec un isomorphisme linéaire, on peut supposer $f_*X(x)=\frac{\partial}{\partial x_1}$. On a alors, d'après les questions précédentes, G un difféomorphisme local de $(\mathbb{R}^n,0)$ vers $(\mathbb{R}^n,0)$ tel que $G_*(F_*X)=\frac{\partial}{\partial x_1}$. En posant $\psi=G\circ f$, on obtient le résultat voulu.

4- Soit ψ comme dans la question précédente. On pose, au voisinage de x,

$$X_i = \psi_*^{-1}(\frac{\partial}{\partial x_i})$$

et on vérifie que ces vecteurs conviennent.

Remarque: On peut répondre à la question 4 directement. Il suffit de se donner des champs de vecteurs X_2, X_n au voisinage de x tels que la famille (X_1, \ldots, X_n) soit libre au point x dans T_xM . Cela reste alors vrai sur un petit voisinage de x.

4. Transitivité des difféomorphismes

- 1– Soient $x, y \in \mathbb{R}^n$ tels que ||x||, ||y|| < r. Montrer qu'il existe un difféomorphisme φ de \mathbb{R}^n tel que $\varphi(x) = y$ et $\varphi(z) = z$ si ||z|| > r. On pourra utiliser le flot d'un champ de vecteurs adéquat.
- 2- Soit M une variété de dimension n et $x \in M$. Montrer qu'il existe un voisinage V de x tel que, si $y \in V$, il existe un difféomorphisme φ de M tel que $\varphi(x) = y$.
- 3- Soit M une variété connexe. Montrer que le groupe des difféomorphismes de M agit transitivement sur M.
- 4- Soit M une variété connexe de dimension $\geqslant 2$, et soit $k \geqslant 1$. Montrer que le groupe des difféomorphismes de M agit k-transitivement sur M: si $x_1, \ldots, x_k \in M$ sont distincts et si $y_1, \ldots, y_k \in M$ sont distincts, il existe un difféomorphisme φ de M tel que $\varphi(x_i) = y_i$ pour $1 \leqslant i \leqslant k$.

Solution:

1- Considérons le champ de vecteurs X constant égal à y-x. Soit ρ tel que $||x||, ||y|| < \rho < r$ et notons $f: \mathbb{R}^n \to \mathbb{R}$ une fonction plateau égale à 1 sur $B(0, \rho)$ et égale à 0 hors de B(0, r). Posons Y = fX. Le flot de Y est défini pour tout temps, par le théorème des bouts. En effet, hors de B(0, r), il est constant, de sorte qu'il ne peut sortir de tout compact.

Notons φ le flot de Y au temps 1. Il vérifie les propriétés voulues.

- 2- On choisit un voisinage U de x difféomorphe à \mathbb{R}^n ; on l'identifie à \mathbb{R}^n de sorte que x en soit l'origine. On pose V la boule unité ouverte dans U. Montrons que V convient. Soit $y \in V$. Par la question précédente, on trouve un difféomorphisme φ de U envoyant x sur y, et qui peut se prolonger en un difféomorphisme de M en posant $\varphi(z) = z$ pour $z \notin U$.
- 3– La question précédente montre que les orbites de l'action du groupe des difféomorphismes sont ouvertes. Comme M est connexe, et partitionnée en orbites, il ne peut y avoir qu'une orbite, égale à M tout entier.

4- On raisonne par récurrence sur k. Pour k=1, c'est le résultat ci-dessus. Si c'est vrai pour k-1, on considère un difféomorphisme ψ envoyant x_i sur y_i pour $1 \le i \le k-1$. Posons $x=\psi(x_k)$. On va construire un difféomorphisme ψ' tel que $\psi'(y_i)=y_i$ pour $1 \le i \le k-1$ et $\psi'(x)=y_k$. On pourra alors poser $\varphi=\psi'\circ\psi$.

On considère pour cela l'action sur M du groupe des difféomorphismes fixant y_1, \ldots, y_{k-1} . En raisonnant comme dans les questions précédentes (et en particulier en exploitant la connexité de $M \setminus \{y_1, \ldots, y_{k-1}\}$, vraie car $\dim(M) \geq 2$), on montre qu'il agit transitivement sur $M \setminus \{y_1, \ldots, y_{k-1}\}$, ce qui conclut.

5. Dilatation d'un champ de vecteurs

On considère X un champ de vecteurs défini sur une variété M.

- 1- Montrer qu'il existe une fonction lisse f strictement positive de M dans \mathbb{R} telle que fX est un champ de vecteurs complet.
- 2- Comparer les trajectoires de X et fX.

Solution:

Le lemme fondamental est le suivant : soient $K \subset L$ deux compacts de \mathbb{R}^n tels que K est contenu dans l'intérieur de L. Soit ε tel que pour tout x dans K, le flot de X partant de x est défini sur $]-\varepsilon,\varepsilon[$ et est à valeurs dans L. Soit f une fonction positive sur \mathbb{R}^n ; notons C son maximum sur L. Alors le flot de fX partant de $x \in K$ est défini sur $]-\varepsilon/C,\varepsilon/C[$ et est à valeurs dans L.

Démonstration. Notons $\varphi(t,x)$ le flot de X défini sur $]-\varepsilon,\varepsilon[\times K]$. On cherche le flot de fX sous la forme $\psi(t,x)=\varphi(s(t,x),x)$ où s est définie sur un voisinage de $\{0\}\times K$, est à valeurs dans $]-\varepsilon,\varepsilon[$ et vérifie s(0,x)=0, pour tout x dans K. On doit avoir

$$\partial_t \psi(t, x) = f(\psi(t, x)) X(\psi(t, x)),$$

soit

$$\partial_t s(t,x)X(\psi(t,x)) = f(\psi(t,x))X(\psi(t,x)),$$

ce qui sera satisfait dès que

$$\partial_t s(t,x) = f(\varphi(s(t,x),x)).$$

C'est une équation différentielle en la fonction s. Par le théorème de Cauchy-Lipschitz, il existe une constante $\alpha>0$ tel que s(t,x) est défini sur $]-\alpha,\alpha[\times K$ et est à valeurs dans $]-\varepsilon,\varepsilon[$. Si $\alpha<\varepsilon/C$, alors comme $\varphi(s(t,x),x)\in L$, on a $|\partial_t s(t,x)|\leqslant C$, d'où $|s(t,x)|\leqslant Ct$, pour $|t|\leqslant\alpha$. Cette inégalité prouve qu'on peut augmenter la valeur de α , de telle sorte que s(t,x) est encore à valeurs dans $]-\varepsilon,\varepsilon[$. Donc, on peut supposer $\alpha=\varepsilon/C$.

Finalement, on a montré que le flot de fX est donné par $\psi(t,x) = \varphi(s(t,x),x)$, où s(t,x) est définie sur $]-\varepsilon/C, \varepsilon/C[\times K.$

Considérons alors une suite exhaustive de compacts $(K_i)_{i\in\mathbb{N}}$ de \mathbb{R}^n . On a donc $K_i\subset K_{i+1}$ et $\mathbb{R}^n=\bigcup_i K_i$. Notons $L_i=K_i-K_{i-1}$ et $M_i=K_{i+1}-K_{i-2}$ de sorte que M_i est un voisinage compact de L_i . Soit ε_i une constante positive telle que le flot de X démarrant en tout point $x\in L_i$ reste dans M_i pendant un temps ε_i . Soit alors f une fonction strictement positive telle que $|f|\leqslant \varepsilon_i$ sur M_i (une telle fonction existe). D'après ce qui précède, le flot de fX démarrant en un point de L_i reste dans M_i pendant un temps au moins 1. En particulier, le flot reste dans un compact en temps fini, donc est défini sur tout \mathbb{R} .

On a vu au cours de la preuve que les trajectoires de fX et de X étaient les mêmes, après reparamétrage. Soyons plus précis :

Définition 1. Soit X un champ de vecteurs sur \mathbb{R}^n . Soit x un point de \mathbb{R}^n , notons I l'ouvert maximal de définition du flot de X, partant de x. Notant $\varphi(t,x)$ ce flot, défini pour $t \in I$, on appelle trajectoire de x pour le champ X l'image $\varphi(I,x)$.

Les trajectoires d'un champ de vecteurs X forment une partition de \mathbb{R}^n , par les propriétés du flot d'un champ de vecteurs. Montrons que, si f est une fonction strictement positive, alors les trajectoires du champ X et du champ fX sont les mêmes.

On a vu précédemment que si $\psi(t,x)$ est le flot de fX et $\varphi(t,x)$ celui de X, alors $\psi(t,x) = \varphi(s(t,x),x)$, pour une certaine fonction s et pour un temps t assez petit. Ainsi, pour tout x dans \mathbb{R}^n , il existe un ouvert U_x de la trajectoire de x pour le champ fX tel que U_x contient x et est contenu dans la trajectoire de x pour le champ X. Ceci implique que toute la trajectoire de x pour le champ fX est contenue dans la trajectoire de x pour le champ X.

En effet, soit y dans la trajectoire de x pour le champ fX, écrivons $y = \psi(t_0, x)$. Pour tout t dans $[0, t_0]$, considérons U_t un ouvert de la trajectoire de $z_t := \psi(t, x)$ pour le champ fX (égale par définition à la trajectoire de x pour le champ fX) tel que U_t contient z_t et U_t est contenu dans la trajectoire de z_t pour le champ X. Par compacité de $[0, t_0]$, il existe des temps $0 = t_1 < t_2 < \cdots < t_N = t_0$ tels que les U_{t_i} recouvrent $\psi([0, t_0], x)$. On peut de plus supposer les intersections $U_{t_i} \cap U_{t_{i+1}}$ non vides. Alors, par construction, $U_{t_i} \cap U_{t_{i+1}}$ est contenu à la fois dans la trajectoire de z_{t_i} pour le champ X et dans la trajectoire de $z_{t_{i+1}}$ pour le champ X. Par une récurrence immédiate, toutes ces trajectoires doivent être les mêmes, nécessairement égales à la trajectoire de x pour le champ X. Finalement, y est bien dans la trajectoire de x pour le champ X.

On a montré l'inclusion des trajectoires du champ fX dans les trajectoires du champ X. En raisonnant avec 1/f, on montre l'inclusion réciproque.

6. Dérivation du flot selon le champ de vecteurs

Soit M variété de dimension n, X champ de vecteurs sur M et φ_t son flot. Soit $x \in M$ et $]-a,b[\subset \mathbb{R}$ l'intervalle sur lequel $\varphi_t(x)$ est défini. Montrer que :

$$\forall t \in]-a, b[, T_x \varphi_t(X(x)) = X(\varphi_t(x))$$

Solution:

Vérifions d'abord que cet énoncé fait sens même si le champ de vecteur X n'est pas complet. Soit $t \in]-a,b[$. Comme le domaine $\Omega \subseteq M \times \mathbb{R}$ de définition du flot est ouvert et contient (x,t), il contient un certain $U \times \{t\}$ où $U \subseteq M$ est un voisinage ouvert de x. Le flot définit donc une application $\varphi_t : U \to M$ de classe C^{∞} . On calcule ensuite que :

$$T_x \varphi_t(X(x)) = T_x \varphi_t \frac{d}{ds} \varphi_s(x)$$

$$= \frac{d}{ds} \varphi_{t+s}(x)$$

$$= X(\varphi_t(x))$$

7. Flot d'un champ de vecteurs incompressible

Soit X un champ de vecteurs sur \mathbb{R}^n , de coordonées (X^1, \ldots, X^n) . Il est dit *incompressible* si sa divergence est nulle, c'est-à-dire si $\sum_i \frac{\partial X^i}{\partial x_i} \equiv 0$. Montrer qu'alors la différentielle (spatiale) du flot de X a pour déterminant 1.

Solution:

Soit V un ouvert de $\mathbb{R} \times \mathbb{R}^n$ sur lequel le flot est défini. Par définition, en tout point de V,

$$\partial_t \varphi(t, x) = X(\varphi(t, x)).$$

Dans ce qui suit, d^s désigne la différentielle spatiale d'une fonction définie sur un ouvert de $\mathbb{R} \times \mathbb{R}^n$. En différentiant spatialement l'égalité précédente, il vient :

$$\partial_t d_x^s \varphi(t,\cdot) = d_{\varphi(t,x)} X \circ d_x^s \varphi(t,\cdot),$$

où X est vu comme une fonction de \mathbb{R}^n dans \mathbb{R}^n . Notons $D(t,x) = \det d_x \varphi(t,\cdot)$. On rappelle que la différentielle du déterminant est donné par la formule :

$$d_M \det(H) = \operatorname{Tr}(\widetilde{M}H),$$

où \widetilde{M} est la comatrice de M, égale à $\det(M).M^{-1}$ si M est inversible. En particulier, si $A:\mathbb{R}\to M(n,\mathbb{R})$ est un chemin de matrices et si $f(t)=\det(A(t))$, on a la formule :

$$\partial_t f(t) = \operatorname{Tr}(\widetilde{A}(t)\partial_t A(t)).$$

On peut maintenant calculer $\partial_t D(t,x)$:

$$\partial_t D(t,x) = \operatorname{Tr}((d_x^s)^{-1} \varphi(t,\cdot) \times d_{\varphi(t,x)} X \circ d_x^s \varphi(t,\cdot)) \times \det d_x^s \varphi(t,\cdot).$$

En faisant commuter les matrices à l'intérieur de la trace, il vient :

$$\partial_t D(t,x) = \text{Tr}(d_{\varphi(t,x)}X) \times \det d_x^s \varphi(t,\cdot).$$

Mais l'hypothèse d'incompressibilité se traduit par Tr(dX) = 0, donc D(t, x) est constant en t. Comme par définition, D(0, x) est le déterminant de l'identité, cela conclut l'exercice.