Name:	 	 •	 	

Maths Class:

Year 12

Mathematics Extension 2

HSC Course

Assessment 3

TERM 2 2017

Time allowed: 90 minutes

General Instruction

- Marks for each question are indicated on the question.
- Approved calculators may be used
- All necessary working should be shown
- Full marks may not be awarded for careless work or illegible writing
- Begin each question on a new page
- Write using black or blue pen
- All answers are to be in the writing booklet provided
- BOSTES reference sheet has been supplied for your use.

Section 1 Multiple Choice Questions 1-5 5 Marks

Allow approximately 10 minutes for this section

Section II Questions 6 - 9 49 Marks

Allow approximately 80 minutes for this section

Section 1

5 marks

Attempt Questions 1-5

Allow about 10 minutes for this section

Use the Multiple Choice answer sheet for questions 1-5

- 1. If the line y = mx + b is a tangent to the hyperbola $xy = c^2$, which of the following is true?
 - $(A) b^2 = -4mc^2$
 - (B) $b^2 = 4mc^2$
 - (C) b = 4mc
 - (D) $c^2 = 4mb$
- 2. For the hyperbola, with equation, $x^2 4y^2 = 4$, the distance between its directrices is:
 - (A) $\sqrt{5}$
 - (B) $\frac{4}{\sqrt{5}}$
 - (C) $2\sqrt{5}$
 - (D) $\frac{8\sqrt{5}}{5}$
- 3. Which expression is equal to $\int x^2 \sec^2 x dx$
 - (A) $2x \tan x 2 \int \tan x dx$
 - (B) $\frac{1}{3}(x^3 \sec^2 x \int x^3 \tan x dx)$
 - (C) $x^2 \tan x 2 \int x \tan x dx$
 - (D) $x^2 \tan x 2 \int x \sec^2 x dx$

4. Which of the following is the range of $f(x) = \sin^{-1} x + \tan^{-1} x$

$$(A) - \pi < y < \pi$$

(B)
$$-\pi \le y \le \pi$$

(C)
$$-\frac{\pi}{2} < y < \frac{\pi}{2}$$

$$(D) - \frac{3\pi}{4} \le y \le \frac{3\pi}{4}$$

5. Given that $\int \frac{dx}{\sqrt{x^2 + a^2}} = \ln\left(x + \sqrt{x^2 + a^2}\right) + C$, evaluate, $\int_1^e \frac{1}{x\sqrt{1 + \left(\ln x\right)^2}} dx$;

(A)
$$-\frac{\pi}{4} + \tan^{-1} e$$

(B)
$$\ln\left(\frac{e+\sqrt{e^2+1}}{1+\sqrt{2}}\right)$$

(C)
$$\frac{\pi}{4}$$

(D)
$$\ln\left(1+\sqrt{2}\right)$$

End of Section 1

Section II

Attempt Questions 6 – 11

Allow about 1 hour and 20 minutes for this section.

Answer each question in your answer booklet STARTING EACH QUESTION ON A NEW PAGE.

In Questions 6-11 your responses should include all relevant mathematical reasoning and / or calculations.

Question 6 - 12 marks

a. i. Find the derivative of
$$\sin^{-1}\sqrt{x}$$
 and state the domain for which $\frac{d}{dx}(\sin^{-1}\sqrt{x})$ exists.

ii. Hence, evaluate
$$\int_{0.25}^{0.5} \frac{dx}{\sqrt{x-x^2}}$$
 (answer to 3 sig fig)

b. Find;

i.
$$\int \cos^3 x \sin x dx$$

ii. $\int \cos^3 x \sin^2 x dx$

c. Consider the sketch of y = f(x) given below

On separate diagrams, one third of a page each, sketch;

i.
$$y = \ln f(x)$$

ii. $y = f(e^x)$

Question 7 - 12 marks

Begin this question on a NEW PAGE in your answer booklet.

a. Evaluate
$$\int_{0}^{1} \tan^{-1} x dx$$

b. Find
$$\int \frac{2}{\sqrt{16-9x^2}} dx$$

2

c. Use an appropriate substitution, or otherwise to evaluate
$$\int_{0}^{1} x \sqrt{1-x} dx$$

4

d. Find
$$\int \sqrt{\frac{6-x}{6+x}} dx$$

3

Assessment continues on the next page

Question 8 - 12 marks

Begin this question on a NEW PAGE in your answer booklet.

a. i. Find the values of A, B and C such that,

$$\frac{3-x}{\left(1+2x^2\right)\left(1+6x\right)} = \frac{Ax+B}{1+2x^2} + \frac{C}{1+6x}$$

ii. Hence, show that,

$$\int_{0}^{2} \frac{3-x}{\left(1+2x^{2}\right)\left(1+6x\right)} dx = \frac{1}{2} \ln \frac{13}{3}$$

- b. The point $T\left(ct, \frac{c}{t}\right)$ lies on the rectangular hyperbola $xy = c^2$. The normal at T meets the line y = x at R.
 - i. Sketch the parabola $xy = c^2$ showing the foci and asymptotes, in terms of c. 1
 - ii. Find the equation of the normal at T
 - iii. Hence find the coordinates of R and show that the x-coordinate of R is the sum of the co-ordinates of T.

c. Given $\int_{0}^{2a} f(x) dx = \int_{-a}^{a} f(a-x) dx \text{ for } a > 0$

Show that,
$$\int_{0}^{1} \sqrt{x(1-x)} dx = \frac{\pi}{8}$$

2

Question 9 - 13 marks

Begin this question on a NEW PAGE in your answer booklet.

a. i. Show that
$$\cos^6 \theta - \sin^6 \theta = \cos 2\theta \left(1 - \frac{1}{4}\sin^2 2\theta\right)$$

2

ii. Hence, evaluate, in exact form,
$$\int_{0}^{\frac{\pi}{12}} \cos^{6} \theta - \sin^{6} \theta d\theta$$

2

b. For each integer $n \ge 0$ let $I_n = \int_0^1 x^{2n+1} e^{x^2} dx$

i. Show that for $n \ge 1$, $I_n = \frac{e}{2} - nI_{n-1}$

2

ii. Hence, or otherwise, show that $I_2 = \frac{e}{2} - 1$

2

c. Consider the hyperbola H with equation; $\frac{x^2}{4} - \frac{y^2}{2} = 1$

1

i. Find the value of the eccentricity of H

_

ii. Write down the equations of the asymptotes of H

1

iii. Given the tangent at the point $P(2\sec\theta, \sqrt{2}\tan\theta)$ has the equation:

 $\frac{x \sec \theta}{2} - \frac{y \tan \theta}{\sqrt{2}} = 1$, prove that the area bounded by this tangent and the asymptotes of H

is independent of the position of P.

3

• S(c√2, c√2) • S(c√2, c√2) • S(c√2, c√2) ** Aρρθ ¹⁹ (¹⁰ · · · · · · · · · · · · · · · · · · ·	11) $2y = c^2$ $y = c^2$ x x x^2 x^2 x^2 $x = -c^2$ ad $x = ct$ x^2 $x^$) Now if weeks line $y=x$ sub $y=x$ into 0 $tx - c = t^3x - ct^4$ $x(t-t^3) = c(1-t^4)$ $x(t-t^3) = c(1-t^2)(1+t^2)$ $x(t-t^3) = c(1+t^2)$ $x(t-t^3) = c(1+t^3)$ $x(t-t^3) = c(1+t^2)$ $x(t-t^3) = c(1+t^3)$ $x(t-$
Question 8 $3-x = (Ax+8)(1+6x) + C(1+2x^2)$ 16+x=0 16+x=1	$c = \frac{1}{4} \frac{1}{2x^2} + \frac{1}{4} \frac{3}{4x} = 0$ $c = \frac{-x}{4} + \frac{3}{4x^2} + \frac{3}{4} \frac{3}{4x} = 1$ $c = \frac{-x}{4} \frac{1}{4x} \frac{3}{4x^2} + \frac{1}{4} \frac{4}{4x} \frac{1}{4x} 1$	= 1 n 13 - 1 x + m 9 = 1 n 13 - 1 x + m 9 = 2 n 13 - 2 (n 3)

