Tutorial 9

CSC 343 Winter 2019

Oluwaseun Cardoso (<u>OLUWASEUN.CARDOSO@MAIL.UTORONTO.CA</u>)
Saihiel Bakshi (<u>SAIHIEL.BAKSHI@MAIL.UTORONTO.CA</u>)

Functional Dependencies (FDs)

Need a special type of constraint to help us with normalization.

 $X \rightarrow Y$ is an assertion about relation R that whenever two tuples of R agree on all the attributes in set X, they must also agree on all attributes in set Y.

R

e.g. Let's say that
$$X = \{AB\}$$
 and $Y = \{C\}$

Α	В	С
x1	y1	c2
x1	y1	c2
x2	y2	c3

Armstrong's Axioms

X, Y, Z are sets of attributes

- 1. Reflexivity: If $Y \supseteq X$, then $Y \rightarrow X$.
- 2. Augmentation: If $X \rightarrow Y$, then $XZ \rightarrow YZ$ for any Z.
- 3. Transitivity: If $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$.
- **4.** Union: If $X \rightarrow Y$ and $X \rightarrow Z$, then $X \rightarrow YZ$.
- **5. Decomposition**: If $X \rightarrow YZ$, then $X \rightarrow Y$ and $X \rightarrow Z$.

Example: Closure

Given F (i.e. the Functional Dependencies):

 $AB \rightarrow C$

 $A \rightarrow D$

 $D \longrightarrow EF$

 $AC \rightarrow B$

Calculate the following closures:

- A⁺
- AB⁺
- AC⁺
- B⁺
- D⁺

Who wants to share their solution?

- A⁻¹
- AB⁺
- AC+
- B

• D¹

Example: Closure

- \bullet A⁺ = ADEF
- ◆ AB⁺= ABCDEF
- AC⁺= ACBDEF
- \bullet B⁺= B
- D⁺= DEF

Given a relation R(A, B, C, D) and a defined set of FDs F = $\{A \rightarrow BC, B \rightarrow CE, A \rightarrow E, AC \rightarrow H, D \rightarrow B\}$, find the minimal basis M of F.

Given a relation R(A, B, C, D) and a defined set of FDs F = $\{A \rightarrow BC, B \rightarrow CE, A \rightarrow E, AC \rightarrow H, D \rightarrow B\}$, find the minimal basis M of F.

1st Step

-
$$H = \{A \rightarrow B, A \rightarrow C, B \rightarrow C, B \rightarrow E, A \rightarrow E, AC \rightarrow H, D \rightarrow B\}$$

Given a relation R(A, B, C, D) and a defined set of FDs F = $\{A \rightarrow BC, B \rightarrow CE, A \rightarrow E, AC \rightarrow H, D \rightarrow B\}$, find the minimal basis M of F.

1st Step

- $H = \{A \rightarrow B, A \rightarrow C, B \rightarrow C, B \rightarrow E, A \rightarrow E, AC \rightarrow H, D \rightarrow B\}$

2nd Step

- A→B: cannot be removed, A^+ = ACEH
- $A \rightarrow C$: can be removed, $A^+ = ABC$
- B→C, B->E: cannot be removed, B^+ =BE, B^+ = BC, respectively
- A→E: can be removed, A⁺ = ABCE
- AC \rightarrow H: cannot be removed, AC $^+$ = AC
- D→B: cannot be removed, $D^+ = D$

Step outcome: $H = \{A \rightarrow B, B \rightarrow CE, AC \rightarrow H, D \rightarrow B\}$

Given a relation R(A, B, C, D) and a defined set of FDs F = $\{A \rightarrow BC, B \rightarrow CE, A \rightarrow E, AC \rightarrow H, D \rightarrow B\}$, find the minimal basis M of F.

1st Step

$$- H = \{A \rightarrow B, \longrightarrow C, B \rightarrow E, \longrightarrow E, AC \rightarrow H, D \rightarrow B\}$$

2nd Step

- $A \rightarrow B$: cannot be removed, $A^+ = ACEH$
- A→C: can be removed, A^+ = ABC
- B \rightarrow C, B->E: cannot be removed, B⁺ =BE, B⁺ = BC, respectively
- $A \rightarrow E$: can be removed, $A^+ = ABCE$
- AC \rightarrow H: cannot be removed, AC $^+$ = AC
- D \rightarrow B: cannot be removed, D⁺ = D

Step outcome: $H = \{A \rightarrow B, B \rightarrow CE, AC \rightarrow H, D \rightarrow B\}$

3rd Step

 $H = \{A->B, B->C, B->E, AC->H, D->B\}$

3rd Step

H = {A->B, B->C, B->E, AC->H, D->D

 $A^{+} = \{A,B,C\}$

Since C can be derived, it is redundant.

3rd Step

C->H H = {A->B, B->C, B->E, AC->H, D->D;

 $A^{+} = \{A,B,C\}$

Since C can be derived, it is redundant.

$$\mathsf{C}^+ = \{\mathsf{C}\}$$

Since A cannot be derived, it is not redundant.

3rd Step

C->H H = {A->B, B->C, B->E, AC->H, D->D;

 $A^{+} = \{A,B,C\}$

Since C can be derived, it is redundant.

 $C^+ = \{C\}$

Since A cannot be derived, it is not redundant.

4th Step

H doesn't change

Minimal Basis: $M = H = \{A \rightarrow BH, B \rightarrow CE, D \rightarrow B\}$

Checkpoint

Given the ERD posted in association to A2 (Ministry of Health), find **two** design flaws in that diagram.

- 1. Justify your reasoning as to why you think it is a flaw.
- 2. Explain how you would re-work the ERD/Schema to account for a better overall design.

Write these on a sheet of paper (include your name and student number) and submit them to me for tutorial credit.

Any Questions?

- Do you have any questions?
 - 1. Check piazza
 - 2. Post the question on piazza (unless it's a personal question then email one of the TAs)
- If you have any content that you would like to be added in a Tutorial, please let me know by Friday!
- Email requests to:
 - abdulqader.saafan@mail.utoronto.ca OR
 - a.seraliyeva@mail.utoronto.ca