On Multiphase-Linear Ranking Functions

Xie Li

May 12, 2020

Single Path Linear Constraint Loop Example

while
$$(x \ge -z)$$
 do $x' = x + y$, $y' = y + z$, $z' = z - 1$

Let
$$B = (-1, 0, 1)$$
, $\mathbf{x} = (x, y, z)^T$, $\mathbf{b} = 0$.
Let $\mathbf{x}'' = (x, y, z, x', y', z')$,

$$A = \begin{bmatrix} 1 & 1 & 0 - 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & -1 & 0 \\ 0 & 0 & 1 & 0 & 0 & -1 \end{bmatrix}$$
 (1)

and $\mathbf{c} = (0, 0, 1)^T$

Definition (SLC)

while
$$(B\mathbf{x} \leq \mathbf{b})$$
 do $A\begin{pmatrix} \mathbf{x} \\ \mathbf{x}' \end{pmatrix} \leq \mathbf{c}$

$$A'' = \begin{pmatrix} B & 0 \\ A \end{pmatrix} \qquad \qquad \mathbf{c}'' = \begin{pmatrix} \mathbf{b} \\ \mathbf{c} \end{pmatrix}$$

 $A''\mathbf{x}'' < \mathbf{c}''$

Ranking Functions

Definition (Single Linear Ranking Function(LRF))

$$f(x_1, ..., x_n) = a_1 x_1 + ... a_n x_n + a_0$$
, such that

- ▶ $f(\mathbf{x}) \ge 0$ for any \mathbf{x} satisfies the loop constraints.
- ▶ $f(\mathbf{x}) f(\mathbf{x}') \ge 1$ for any transition from \mathbf{x} to \mathbf{x}' .

Example

while
$$(x-1>0)$$
do $x'=x-5$

LRF: f(x) = ax + b.

- $ax + b \ge 0 \Rightarrow x \ge -\frac{b}{a} = 1.$
- $ax + b (ax' + b) = a(x x') = 5a \Rightarrow 5a \ge 1$

A possible SLRF: f(x) = x - 1

Limitation of SLRF

while
$$(q > 0)$$
do $q' = q - y, y' = y + 1$

Assume there is a LRF for this loop, say $f(q,y) = a_1q + a_2y + b$

$$f(q,y) - f(q',y') = a_1y + a_2$$

Since y is not bounded, we cannot guarantee $\Delta f(q,y,q',y')>0$ The loop does not has a SLRF, however, it does terminate. We still wish to use q for ranking function, but to distinguish different "phase" of q base on either $y\geq 0$ or y<0

Nested RF

Definition (Nested Ranking Function)

A tuple $\langle f_1,\dots,f_d\rangle$ is a nested ranking function for T if the following requirements are satisfied for all $\mathbf{x}''\in T$

$$f_d(\mathbf{x}) \ge 0$$

 $(\Delta f_i(\mathbf{x}'') - 1) + f_{i-1}(\mathbf{x}) \ge 0$ for all $i = 1, \dots, d$.

Let
$$f_0 = 0$$
.

Example: Nested RF

$$f_d(\mathbf{x}) \ge 0$$

$$(\Delta f_i(\mathbf{x}'') - 1) + f_{i-1}(\mathbf{x}) \ge 0 \qquad \text{for all } i = 1, \dots, d.$$

while
$$(q > 0)$$
do $q' = q - y, y' = y + 1$

▶ Above loop has Nested RF $\langle 1-y, q+1 \rangle$

Linear Loop Program

Definition

A linear loop program LOOP(x, x') is a binary relation defined by a formula with the free variables x and x' of the form

$$\bigvee_{i \in I} \left(A_i \begin{pmatrix} x \\ x' \end{pmatrix} \le b_i \land C_i \begin{pmatrix} x \\ x' \end{pmatrix} < d_i \right)$$

for some finite index set I.

Example

while
$$(q > 0)\{\text{if } (y > 0): q' = q - y - 1; \text{else } : q' = q + y - 1\}$$

can be represented by

$$(q > 0 \land y > 0 \land y' = y \land q' = q - y - 1)$$

 $\forall (q > 0 \land y < 0 \land y' = y \land q' = q + y - 1)$

Limitation of Nested RF

Example

while
$$(q>0 \lor y>0)$$

$$\{\text{if } (y>0): y'=y-1; q'=q; \text{else } : q'=q-1\}$$

This program does not have a nested ranking function for we require $f_d \geq 0$ but the guard is $q > 0 \lor y > 0$.

Howerver, this loop does terminate. Then we use a "multi-phase" ranking function $\langle y, q \rangle$ to prove the termination.

Multiphase Ranking Function

Definition

Given a set of transitions $T\subseteq \mathbb{Q}^{2n}$, we say $\langle f_1,\ldots,f_d\rangle$ is a multiphase ranking function for T if for every $\mathbf{x}''\in T$, there is an index $i\in [1,d]$, s.t.

$$\forall j \le i . \Delta f_j(\mathbf{x}'') \ge 1,$$

$$f_i(\mathbf{x}) \ge 0,$$

$$\forall j < i . \qquad f_j(\mathbf{x}) \le 0.$$

We say that \mathbf{x}'' is ranked by f_i (for the minimal).

Example: Multiphase Ranking Function

while
$$(x > -z)$$
do $x' = x + y, y' = y + z, z = z - 1$

Attempt to use a ranking function that has several phases: $\langle z+1,y+1,x\rangle$

x	y	z	z+1	y+1	x
1	1	1	2	2	1
2	2	0	1	3	2
4	2	-1	0	3	4
6	1	-2	-1	2	6
7	-1	-3	-2	0	7
6	-4	-4	-3	-3	6
2	-8	-5	-4	-7	2
-6	-13	-6	-5	-12	-6

Example: Multiphase Ranking Function

while
$$(x>-z)$$
do $x'=x+y, y'=y+z, z'=z-1$
$$\langle z+1, y+1, x \rangle$$

 \mathbf{x}'' is ranked by f_k when i=k. In this example, $f_1(x,y,z)=z+1,\ f_2(x,y,z)=y+1$ and $f_3(x,y,z)=x$

M⊕RF to Nested RF

Theorem (1)

If $\mathcal Q$ has a $M\Phi RF$ of depth d, then it has a nested ranking function of depth at most d.

Proof.

By induction on the depth d.

- ▶ d = 1: M Φ RF and nested RF are both LRF.
- ▶ d > 1: d = 2 e.g. $\langle f_1, f_2 \rangle$. When index i = 1, we do not impose bound on $f_2(\mathbf{x})$. However, a bound is needed for $f_2'(\mathbf{x})$ in nested RF $\langle f_1', f_2' \rangle$.

To solve the problem that $f_2(\mathbf{x})$ might goes under 0, when \mathbf{x}'' is ranked by f_1 . Consider $\mathcal{Q}' = \mathcal{Q} \cap \{\mathbf{x}'' \in \mathbb{Q}^{2n} \mid f_1(\mathbf{x}) \leq 0\}$

M⊕RF to Nested RF

Lemma (1)

Let $\tau = \langle f_1, \dots, f_d \rangle$ be an irredundant $M\Phi RF$ for \mathcal{Q} , such that $\langle f_2, \dots, f_d \rangle$ is a nested ranking function for $\mathcal{Q}' = \mathcal{Q} \cap \{\mathbf{x}'' \in \mathbb{Q}^{2n} \mid f_1(\mathbf{x}) \leq 0\}$. Then there is a nested ranking function of depth d for \mathcal{Q} .

Prove by construction: construct a nested RF $\langle f_1', \dots, f_d' \rangle$

$$f_d(\mathbf{x}) \ge 0$$

$$(\Delta f_i(\mathbf{x}'') - 1) + f_{i-1}(\mathbf{x}) \ge 0 \qquad \text{for all } i = 1, \dots, d.$$

If f_d is non-negative on \mathcal{Q} , then $f_d' = f_d$. Otherwise, $\mathbf{x}'' \in \mathcal{Q} \to f_d(\mathbf{x}) \geq 0 \lor f_1(\mathbf{x}) > 0$

Lemma (0)

Given an non-empty polyhedron $\mathcal P$ and linear functions f_1,\ldots,f_k such that

1.
$$\mathbf{x} \in \mathcal{P} \to f_1(\mathbf{x}) \ge 0 \lor \ldots \lor f_{k-1}(\mathbf{x}) \ge 0 \lor f_k(\mathbf{x}) \ge 0$$

2.
$$\mathbf{x} \in \mathcal{P} \not\to f_1(\mathbf{x}) \ge 0 \lor \ldots \lor f_{k-1}(\mathbf{x}) \ge 0$$

There exists a non-negative constants μ_1, \ldots, μ_{k-1} such that

$$\mathbf{x} \in \mathcal{P} \to \mu_1 f_1(\mathbf{x}) + \ldots + \mu_{k-1} f_{k-1}(\mathbf{x}) + f_k(\mathbf{x}) \ge 0$$

Motzkin's Transposition Theorem

Theorem (Motzkin's Transposition Theorem)

For $A \in \mathbb{K}^{m \times n}, C \in \mathbb{K}^{l \times n}, b \in \mathbb{K}^m$, and $d \in \mathbb{K}^l$. The formulae below are equivalent.

- $\forall x \in \mathbb{K}^n. \neg (Ax \le b \land Cx < d)$
- ► $\exists \lambda \in \mathbb{K}^m . \exists \mu \in \mathbb{K}^l .$ $\lambda \ge 0 \land \mu \ge 0$ $\land \lambda^T A + \mu^T C = 0 \land \lambda^T b + \mu^T d \le 0$ $\land (\lambda^T b < 0 \lor \mu \ne 0)$

Proof of Lemma (0)

Let \mathcal{P} be $B\mathbf{x} \leq c$, $f_i = \vec{a}_i\mathbf{x} - b_i$. Then (i) is equivalent to the infeasibility of $B\mathbf{x} \leq c \wedge A\mathbf{x} < b$, by the theorem we have $\vec{\lambda}, \vec{\mu}$ s.t.

$$\vec{\lambda}B + \vec{\mu}A = 0 \land \vec{\lambda}\mathbf{c} + \vec{\mu}\mathbf{b} \le 0 \quad \land (\vec{\mu} \ne 0 \lor \vec{\lambda}\mathbf{c} + \vec{\mu}\mathbf{b} < 0)$$

Then for all $\mathbf{x} \in \mathcal{P}$

$$\sum_{i} \mu_{i} f_{i}(\mathbf{x}) = \vec{\mu} A \mathbf{x} - \vec{\mu} \mathbf{b} = -\vec{\lambda} B \mathbf{x} - \vec{\mu} \mathbf{b} \ge -\vec{\lambda} \mathbf{c} - \vec{\mu} \mathbf{b} \ge 0$$

M⊕RF to Nested RF

$$f_d(\mathbf{x}) \ge 0$$

$$(\Delta f_i(\mathbf{x}'') - 1) + f_{i-1}(\mathbf{x}) \ge 0 \qquad \text{for all } i = 1, \dots, d.$$

Assume $f_n'(\mathbf{x}) = f_n(\mathbf{x}) + \mu_n f_1(\mathbf{x})$ and f_d', \dots, f_i' has already been computed.

$$\mathbf{x}'' \in \mathcal{Q}' \to (\Delta f_i(\mathbf{x}'') - 1) + f_{i-1}(\mathbf{x}) \ge 0$$

$$\mathbf{x}'' \in \mathcal{Q}' \to (\Delta f_i'(\mathbf{x}'') - 1) + f_{i-1}(\mathbf{x}) \ge 0$$

If above inequation also holds for Q, then $f'_{i-1} = f_{i-1}$, Otherwise

$$\mathbf{x}'' \in \mathcal{Q} \to (\Delta f_i'(\mathbf{x}'') - 1) + f_{i-1}(\mathbf{x}) \ge 0 \lor f_1(\mathbf{x}) \ge 0$$

$\mathsf{BM}\Phi\mathsf{RF}(\mathbb{Q})\in\mathsf{PTIME}$

Theorem (2)

 $BM\Phi RF(\mathbb{Q}) \in PTIME$.

Proof.

Leike et al..Ranking Templates for Linear Loops.

The Depth of a $M\Phi RF$

Idea: pre-compute the depth d for M Φ RF synthesis.

Theorem (5)

For integer B > 0, the following loop Q_B

while
$$(x \ge 1, y \ge 1, x \ge y, 2^B y \ge x)$$
 do $x' = 2x, y' = 3y$

needs at least B+1 components in any M Φ RF.

Proof.

Define $R_I = \{(2^i c, c, 2^{i+1} c, 3c) \mid c \geq 1\}$ and note that for $i \in [0, B]$, we have $R_i \in \mathcal{Q}_B$.

Assume the loop has a M Φ RF with depth B, then it is obvious that there are R_i and $R_j, i \neq j$ that are ranked by the same phase f_k , w.l.o.g., assume j > i and $f_k(x,y) = a_1x + a_2y + a_0$, we have

Proof of Theorem (5)

$$\begin{aligned} j > i \text{ and } f_k(x,y) &= a_1 x + a_2 y + a_0 \\ f_k(2^i,1) - f_k(2^{i+1},3) &= -a_1 2^i - a_2 2 > 0 \\ f_k(2^j,1) - f_k(2^{j+1},3) &= -a_1 2^j - a_2 2 > 0 \\ f_k(2^i,1) - f_k(0,0) &= a_1 2^i + a_2 &\geq 0 \\ f_k(2^j,1) - f_k(0,0) &= a_1 2^j + a_2 &\geq 0 \end{aligned}$$

$$j>i$$

$$a_12^{i-1}>0\Rightarrow a_1>0$$

$$a_1(2^i-2^{j-1})>0\Rightarrow i+1>j\Rightarrow i\geq j.$$
 Contradiction.

Iteration Bounds from M⊕RFs

Example

while
$$(x \ge 0)$$
do $x' = x + y, y' = y - 1$

M
$$\Phi$$
RF: $\langle y+1, x \rangle$

When start from $x = x_0$ and $y = y_0...$

$$x_0 + \frac{y_0(y_0+1)}{2} - 1$$

Iteration Bounds from M⊕RFs

Overview: Given a SLC loop and a corresponding M Φ RF $\tau = \langle f_1, \dots, f_d \rangle$.

- ▶ $F_k(t)$: the value of f_k after iteration t.
- ▶ $UB_k(t)$: bound for f_k . For $t > T_k$, $UB_k(T_k)$ becomes negative.
- ▶ *T_k*: an upper bound on the time in which the *k*-th phase ends.
- ▶ The whole loop must terminate before $\max_k T_k$ iterations.

 \mathbf{x}_t be te state after iteration t. Define $F_k(t) = f_k(\mathbf{x}_t)$. Let $M = \max(f_1(\mathbf{x}_0), \dots, f_k(\mathbf{x}_0))$

Iteration Bounds from M⊕RF

Lemma (4)

For all $k \in [1,d]$, there are $\mu_1,\ldots,\mu_{k-2} \geq 0$ and $\mu_{k-1} > 0$ such that $\mathbf{x}'' \in \mathcal{Q} \rightarrow \mu_1 f_1(\mathbf{x}) + \cdots + \mu_{k-1} f_{k-1}(\mathbf{x}) + (\Delta f_k(\mathbf{x}'') - 1) \geq 0$.

Proof.

$$\mathbf{x}'' \in \mathcal{Q} \to f_1(\mathbf{x}) \ge 0 \lor \cdots \lor f_{k-1}(\mathbf{x}) \ge 0 \lor \Delta f_k(\mathbf{x}'') \ge 1.$$

Lemma (5)

For all $k \in [1,d]$, there are constants $c_k,d_k>0$ such that $F_k(t) \leq c_k M t^{k-1} - d_k t^k$, for all $t \geq 1$.

[6] Proof Idea: Use the bound for $-\Delta f_k(\mathbf{x}_i'')$ to bound $F_k(t)$.

Proof of Lemma (6)

$$\begin{split} F_k(t) &= f_k(\mathbf{x}_0) + \Sigma_{i=0}^{t-1}(f_k(\mathbf{x}_{i+1}) - f_k(\mathbf{x}_i)) \\ &< M + \Sigma_{i=0}^{t-1}\left(\mu_1 F_1(i) + \dots + \mu_{k-1} F_{k-1}(i)\right) \\ &\leq M(1+\mu) + \Sigma_{i=1}^{t-1}\left(\mu_1 F_1(i) + \dots + \mu_{k-1} F_{k-1}(i)\right) \\ &\leq M(1+\mu) + \Sigma_{i=1}^{t-1} \Sigma_{j=1}^{k-1}\left(\mu_j c_j M i^{j-1} - \mu_j d_j i^j\right) \\ &\leq M(1+\mu) + \Sigma_{i=1}^{t-1}\left((\Sigma_{j=1}^{k-1} \mu_j c_j M i^{j-1}) - \mu_{k-1} d_{k-1} i^{k-1}\right) \\ &\leq M(1+\mu) + \Sigma_{i=1}^{t-1}\left(M(\Sigma_{j=1}^{k-1} \mu_j c_j) i^{k-2} - \mu_{k-1} d_{k-1} i^{k-1}\right) \\ &= M(1+\mu) + M(\Sigma_{j=1}^{k-1} \mu_j c_j)(\Sigma_{i=1}^{t-1} i^{k-2}) - \mu_{k-1} d_{k-1} \Sigma_{i=1}^{t-1} i^{k-1} \\ &\leq M(1+\mu) + M(\Sigma_{j=1}^{k-1} \mu_j c_j)\left(\frac{t^{k-1}}{k-1}\right) - \mu_{k-1} d_{k-1}\left(\frac{t^k}{k} - t^{k-1}\right) \\ &= c_k M t^{k-1} - d_k t^k \end{split}$$

where
$$\mu_1 f_1(\mathbf{x}) + \dots + \mu_{k-1} f_{k-1}(\mathbf{x}) \ge \Delta f_k(\mathbf{x}'') = f_k(\mathbf{x}_{i+1} - f_k(\mathbf{x}_i))$$

Theorem (6)

An SLC loop that has a M Φ RF terminates in a number of iterations bounded by $O(||\mathbf{x}_0||_{\infty})$

Proof.

$$F_k(t) \leq c_k M t^{k-1} - d_k t^k.$$
 For $t > \max\{1, (c_k/d_k)M\}$, we have $F_k(t) < 0.$

Thus, the loop terminates by the time $\max\{1, (c_i/d_i)M, \dots, (c_k/d_k)M\}$ where $M = \max(f_1(\mathbf{x}_0), \dots, f_k(\mathbf{x}_0)).$