d) π

d) 9

Assignment-6

AI24BTECH11036- Shreedhanvi Yadlapally

I. MCQ - 2 marks

1) Let u(x, y) be the real part of an entire function f(z) = u(x, y) + iv(x, y) for for $z = x + iy \in \mathbb{C}$. If C is the positively oriented boundary of a rectangular region R in \mathbb{R}^2 , then $\oint_C \left[\frac{\partial u}{\partial y} dx - \frac{\partial u}{\partial x} dy \right] =$

c) 2π

b) 0

b) 19

a) 1

a) 28

2) Let $\phi : [0,1] \to \mathbb{R}$ be three times cont $x_{n+1} = \phi(x_n), n \ge 0$ converge to the fixe			
a) $\phi'(\xi) = 0$, $\phi''(\xi) = 0$ b) $\phi'(\xi) \neq 0$, $\phi''(\xi) = 0$	c) $\phi'(\xi) = 0, \ \phi'$ d) $\phi'(\xi) \neq 0, \ \phi'$	137	
3) Let $f: [0,2] \to \mathbb{R}$ be a twice continuo in the approximation is	usly differentiable function.	If $\int_0^2 dx = 2f(1)$, then the error	
a) $\frac{f'(\xi)}{12}$ for some $\xi \in (0,2)$ b) $\frac{f'(\xi)}{2}$ for some $\xi \in (0,2)$	c) $\frac{f''(\xi)}{3}$ for some d) $\frac{f''(\xi)}{6}$ for some	c) $\frac{f''(\xi)}{3}$ for some $\xi \in (0,2)$ d) $\frac{f''(\xi)}{6}$ for some $\xi \in (0,2)$	
4) For a fixed $t \in \mathbb{R}$, consider the linear pr	ogramming problem:		
I	Maximize z = 3x + 4y		
S	subject to $x + y \le 100$		
	$x + 3y \le t$		
	and $x \ge 0, y \ge 0$		
The maximium value of z is 400 for t =	=		
a) 50 b) 100	c) 200	d) 300	
5) The minimum value of $z = 2x_1 - x_2 + x_3$	$x_3 - 5x_4 + 22x_5$ subject to		
	$x_1 - 2x_4 + x_5 = 6$		
	$x_2 + x_4 - 4x_5 = 3$		
	$x_3 + 3x_4 + 2x_5 = 10$		
is			

6) Using the Hungarian method, the optimal value of the assignment problem whose cost matrix is given by

c) 10

5	23	14	8
10	25	1	23
35	16	15	12
16	23	11	7

a) 29

b) 52

c) 26

d) 44

7) Which of the following sequence $\{f_n\}_{n=1}^{\infty}$ of functions does NOT converge uniformly on [[] 0, 1]?

a)
$$f_n(x) = \frac{e^{-x}}{n}$$

b) $f_n(x) = (1 - x)^n$

c) $f_n(x) = \frac{x^2 + nx}{n}$ d) $f_n(x) = \frac{\sin(nx + n)}{n}$

8) Let $E = \{(x, y) \in \mathbb{R}^2 : 0 < x < y\}$. Then $\iint_E y e^{-(x+y)} dx dy = 0$

a) $\frac{1}{4}$ b) $\frac{3}{2}$

c) $\frac{4}{3}$

9) Let $f_n(x) = \frac{1}{n} \sum_{k=0}^n \sqrt{k(n-k)} \binom{n}{k} x^k (1-x)^{n-k}$ for $x \in [0,1], n = 1,2,...$ If $\lim_{n \to \infty} f_n(x) = f(x)$ for $x \in [0,1]$, then the maximum value of f(x) on [0,1] is

a) 1

b) $\frac{1}{2}$

c) $\frac{1}{3}$

d) $\frac{1}{4}$

10) Let $f:(c_{00},\|\cdot\|_1)\to\mathbb{C}$ be a non-zero continuous linear function. The number of Hahn-Banach extensions of f to $(l^1,\|\cdot\|_1)$ is

a) one

c) three

b) two

d) infinite

11) If $I: (l^1, ||\cdot||_2) \to (l^1, ||\cdot||_1)$ is the identity map, then

- a) both I and I^{-1} are continuous
- b) I is continuous but I^{-1} is NOT continuous
- c) I^{-1} is continuous but I is NOT continuous
- d) neither I nor I^{-1} is continuous

12) Consider the topology $\tau = \{G \subseteq \mathbb{R} : \mathbb{R} | G \text{ is compact in } (\mathbb{R}, \tau_u)\} \cup \{\phi, \mathbb{R}\} \text{ on } \mathbb{R}, \text{ where } \tau_u \text{ is the usual topology on } \mathbb{R} \text{ and } \phi \text{ is the empty set. Then } (\mathbb{R}, \tau) \text{ is}$

- a) a connected Hausdorff space
- b) connected but NOT Hausdorff
- c) Hausdorff but NOT connected
- d) neither connected nor Hausdorff