Exercise 6.1

In the lecture, we saw that the correlation-based methods can be interpreted as a feedforward comb filter. This filter is given by

$$e(n) = x(n) - ax(n - \tau) \tag{1}$$

where x(n) is the input signal and e(n) is the output signal.

(a) Compute the frequency response and the amplitude response. Sketch the latter for a delay of τ, 2τ, and 3τ. What is the consequence of this for pitch estimation?

Exercise 6.2

On Moodle, you can download the viola signal 09viola.flac and the speech signal roy.wav. We would like to estimate the fundamental frequency/pitch of these signals.

- (a) Implement the comb filtering pitch estimation method as a function in, e.g., MAT-LAB. The function should have the following input:
 - a segment of data and
 - the lower and upper limits for the fundamental frequency in cycles/sample.

The output of the function should be the estimated fundamental frequency.

The above function can estimate the fundamental frequency for a segment of data. We now wish to analyse entire audio files.

- (b) Write a function that takes in an audio file and displays the estimated fundamental frequency track in cycles/second (Hz). The function should have the following input
 - Filename of the audio file,
 - the segment length in seconds,
 - the overlap between segments as a percentage,
 - the lower and upper limits for the fundamental frequency in cycles/sample

The output of the function should be the estimated fundamental frequencies as a function of time.