Assignment 6: Rigid Body Dynamics

Robot Kinematics and Dynamics Prof. Jeff Ichnowski Shahram Najam Syed Yuemin Mao

Contents

1	Overview	3
	Background 2.1 Standard Form	4 4
3	Instructions	5
4	Written Section	6
5	Code Questions	18
6	Submission Checklist	19

1 Overview

This assignment reinforces the following topics:

• Rigid Body Dynamics

2 Background

2.1 Standard Form

As a reminder, the standard form for writing equations of motion is as follows:

 $n \times n$ symmetric positivedefinite **mass matrix**

3 Instructions

- The deadline for this project is 26th September, 2024 09:00 P.M.
- Zip your code into a single file named <AndrewId>.zip. See the complete submission checklist at the end, to ensure you have everything. Submit your PDF file to Gradescope.
- Each question (for points) is marked with a **points** heading.
- Start early! This homework may take a long time to complete.
- During submission indicate the answer/page correspondence carefully when submitting on Gradescope. If you skip a written question, just submit a blank page for it. This makes our work much easier to grade.
- If you have any questions or need clarifications, please post in Piazza or visit the TAs during the office hours.
- Unless otherwise specified, all units are in radians, meters, and seconds, where appropriate.

4 Written Section

1) Rigid Body Dynamics

Please use the diagram of the arm below for the following questions:

The arm has a link length of l_1 where the center of mass is located in the center of the link at $\frac{l_1}{2}$. The link's mass is m_1 and it has moment of inertia I_1 .

(1) [5 points] Determine the Kinetic Energy for the R arm shown above.

(2) [5 points] Determine the Potential Energy for the R arm shown above.

(3)	[5 points]	Write th	e Lagrangi	an for the I	R arm show	n above.	

(4) [5 points] Determine the Equations of Motion for the R arm shown above using the

Lagrangian.			

(5)	[5 points]	Rewrite the equations of motion into standard form.

1) RR robot Consider the following robot

Given the above RR arm, each with a mass of m_i located at $l_i/2$ and a moment of intertia of I_i about their com

(1)	[5 points]	Determine th	ie ranetie Ei	1018) 101 1110 1			
(2)	[5 points]	Determine th	ne Potential	Energy for the	RR arm shown	above.	
(2)	[5 points]	Determine th	ne Potential	Energy for the	RR arm shown	above.	
(2)	[5 points]	Determine th	ne Potential	Energy for the	RR arm shown	above.	
(2)	[5 points]	Determine th	ne Potential	Energy for the	RR arm shown	above.	
(2)	[5 points]	Determine th	ne Potential	Energy for the	RR arm shown	above.	
(2)	[5 points]	Determine th	ne Potential	Energy for the	RR arm shown	above.	
(2)	[5 points]	Determine th	ne Potential	Energy for the	RR arm shown	above.	
(2)	[5 points]	Determine th	ne Potential	Energy for the	RR arm shown	above.	
(2)	[5 points]	Determine th	ne Potential	Energy for the	RR arm shown	above.	
(2)	[5 points]	Determine th	ne Potential	Energy for the	RR arm shown	above.	
(2)	[5 points]	Determine th	ne Potential	Energy for the	RR arm shown	above.	
(2)	[5 points]	Determine th	ne Potential	Energy for the	RR arm shown	above.	
(2)	[5 points]	Determine th	ne Potential	Energy for the	RR arm shown	above.	

	[2 points] Write the Lagrangian for the RR arm shown above.
4)	
	[10 points] Determine the Equations of Mation with respect to θ for the DD arm shown
4)	[10 points] Determine the Equations of Motion with respect to $ heta_1$ for the RR arm shown above using the Lagrangian.
+)	[10 points] Determine the Equations of Motion with respect to $ heta_1$ for the RR arm shown above using the Lagrangian.
+)	[10 points] Determine the Equations of Motion with respect to $ heta_1$ for the RR arm shown above using the Lagrangian.
+)	[10 points] Determine the Equations of Motion with respect to $ heta_1$ for the RR arm shown above using the Lagrangian.
+)	[10 points] Determine the Equations of Motion with respect to $ heta_1$ for the RR arm shown above using the Lagrangian.
+)	[10 points] Determine the Equations of Motion with respect to $ heta_1$ for the RR arm shown above using the Lagrangian.
' ')	[10 points] Determine the Equations of Motion with respect to $ heta_1$ for the RR arm shown above using the Lagrangian.
4)	[10 points] Determine the Equations of Motion with respect to $ heta_1$ for the RR arm shown above using the Lagrangian.
4)	[10 points] Determine the Equations of Motion with respect to $ heta_1$ for the RR arm shown above using the Lagrangian.
4)	[10 points] Determine the Equations of Motion with respect to $ heta_1$ for the RR arm shown above using the Lagrangian.
4)	[10 points] Determine the Equations of Motion with respect to $ heta_1$ for the RR arm shown above using the Lagrangian.
4)	[10 points] Determine the Equations of Motion with respect to $ heta_1$ for the RR arm shown above using the Lagrangian.
4)	[10 points] Determine the Equations of Motion with respect to $ heta_1$ for the RR arm shown above using the Lagrangian.
4)	[10 points] Determine the Equations of Motion with respect to $ heta_1$ for the RR arm shown above using the Lagrangian.

above as:	ng the Lagrangian.				
6) [5 points]	Rewrite the equat	tions of motio	n into standard	form.	
	remite the equa-				
	- Normito the equal				

2) 3D Pendulum Consider the following robot

Given a pendulum that can move anywhere in 3D space, with a fixed length I and a mass m, solve for its equations of motion. Hint: use spherical coordinates.

(1)	[5 points]	Determine			- р		
							·
(-)				–			
(2)	[5 points]	Determine	the Potent	ial Energy fo	or the 3D pe	endulum.	_
(2)	[5 points]	Determine	the Potent	ial Energy fo	or the 3D pe	endulum.	_
(2)	[5 points]	Determine	the Potent	ial Energy fo	or the 3D pe	endulum.	
(2)	[5 points]	Determine	the Potent	ial Energy fo	or the 3D pe	endulum.	
(2)	[5 points]	Determine	the Potent	ial Energy fo	or the 3D pe	endulum.	
(2)	[5 points]	Determine	the Potent	ial Energy fo	or the 3D pe	endulum.	
(2)	[5 points]	Determine	the Potent	ial Energy fo	or the 3D pe	endulum.	
(2)	[5 points]	Determine	the Potent	ial Energy fo	or the 3D pe	endulum.	
(2)	[5 points]	Determine	the Potent	ial Energy fo	or the 3D pe	endulum.	
(2)	[5 points]	Determine	the Potent	ial Energy fo	or the 3D pe	endulum.	
(2)	[5 points]	Determine	the Potent	ial Energy fo	or the 3D pe	endulum.	
(2)	[5 points]	Determine	the Potent	ial Energy fo	or the 3D pe	endulum.	

(3)	[2 points]	Write the Lagrangian for the 3D pendulum.
(4)	[10 points	s] Determine the Equations of Motion with respect to $ heta$ for the 3D pendulum
(4)	[10 points	s] Determine the Equations of Motion with respect to $ heta$ for the 3D pendulum
(4)	[10 points	s] Determine the Equations of Motion with respect to $ heta$ for the 3D pendulum
(4)	[10 points	s] Determine the Equations of Motion with respect to $ heta$ for the 3D pendulum
(4)	[10 points	s] Determine the Equations of Motion with respect to $ heta$ for the 3D pendulum
(4)	[10 points	s] Determine the Equations of Motion with respect to $ heta$ for the 3D pendulum
(4)	[10 points	Determine the Equations of Motion with respect to $ heta$ for the 3D pendulum
(4)	[10 points	Determine the Equations of Motion with respect to $ heta$ for the 3D pendulum
(4)	[10 points	per
(4)	[10 points	s] Determine the Equations of Motion with respect to $ heta$ for the 3D pendulum
(4)	[10 points	s] Determine the Equations of Motion with respect to $ heta$ for the 3D pendulum

(5)	[10 points]	Determine the	Equations (of Motion wi	th respect to	ϕ for the 3	SD pendulum
1							
(6)	[5 points]	$f \phi$ is kent con	stant what	do the equa	tions above r	educe to?	What system
(6)	[5 points] I that we've	f ϕ is kept constudied in class	stant, what s has similar	do the equa EOMs?	tions above r	educe to?	What system
(6)	[5 points] I that we've	f ϕ is kept corstudied in class	stant, what s has similar	do the equa EOMs?	tions above r	educe to?	What system
(6)	[5 points] I that we've	f ϕ is kept cor studied in clas	stant, what s has similar	do the equa EOMs?	tions above r	educe to?	What system
(6)	[5 points] I that we've	f ϕ is kept cor studied in clas	stant, what s has similar	do the equa EOMs?	tions above r	educe to?	What system
(6)	[5 points] I that we've	f ϕ is kept corstudied in clas	stant, what s has similar	do the equa	tions above r	educe to?	What system
(6)	[5 points] I that we've	f ϕ is kept corstudied in clas	stant, what s has similar	do the equa	tions above r	educe to?	What system
(6)	[5 points] I that we've	f ϕ is kept corstudied in clas	stant, what s has similar	do the equa	tions above r	educe to?	What system
(6)	[5 points] I that we've	f ϕ is kept cor studied in clas	stant, what s has similar	do the equa	tions above r	educe to?	What system
(6)	[5 points] I that we've	f ϕ is kept cor studied in clas	stant, what s has similar	do the equa	tions above r	educe to?	What system
(6)	[5 points] I	f ϕ is kept corstudied in clas	stant, what s has similar	do the equa	tions above r	educe to?	What system
(6)	[5 points] I	f ϕ is kept corstudied in clas	stant, what s has similar	do the equa	tions above r	educe to?	What system
(6)	[5 points] I	f ϕ is kept corstudied in clas	stant, what s has similar	do the equa	tions above r	educe to?	What system
(6)	[5 points] I	f ϕ is kept corstudied in clas	stant, what s has similar	do the equa	tions above r	educe to?	What system

5 Code Questions

There is no coding portion in this homework.

6 Submission Checklist

 $\hfill\Box$ Upload <andrew_id>.pdf to Gradescope.