

SEQ ID NO: 17

TT
T T
G:C
C:G
A:T
A:T
G:C
C:G
T:A
T:A
[CG]
5' 3'

SEQ ID NO: 19

TT
T T
G:C
C:G
A:T
A:T
G:C
C:G
T:A
T:A
[TA]
5' 3'

SEQ ID NO: 20

TT
T T
G:C
C:G
A:T
A:T
G:C
C:G
T:A
T:A
[TG]
5' 3'

Figure 3c

Title: METHODS AND DEVICES FOR
CHARACTERIZING DUPLEX NUCLEIC ACID
MOLECULES
Applicant: Akesson -
Application No.: 09/990,102
Docket No.: UCAL-199
Substitute Figure 3C (Clean Copy)

RECEIVED
JULY 1999
U.S. PATENT AND TRADEMARK OFFICE

SEQ ID NO:17

SEQ ID NO:19

SEQ ID NO:20

TT
T T
G:C
C:G
A:T
A:T
G:C
C:G
T:A
T:A
[C:G]
5' 3'

TT
T T
G:C
C:G
A:T
A:T
G:C
C:G
T:A
T:A
[A:T]
5' 3'

TT
T T
G:C
C:G
A:T
A:T
G:C
C:G
T:A
T:A
[T:G]
5' 3'

Figure 3c

Figure 8

2

Table X. DNA hairpins used in this study. Primary sequence reads from 5' end at bottom left to 3' end at bottom right. Each hairpin has a 9 base-pair-long stem, and a four dT loop. The terminal base-pair and its nearest neighbor are highlighted by a box. These are the base-pairs in closest proximity to the pore limiting aperture when a given hairpin is captured in the α -hemolysin vestibule.

SEQ ID No: 12	SEQ ID No: 13	SEQ ID No: 14	SEQ ID No: 15	SEQ ID No: 16	SEQ ID No: 17	SEQ ID No: 18	SEQ ID No: 19	SEQ ID No: 20	SEQ ID No: 21	SEQ ID No: 22
TT T G C C G A T A T G C C G T A 5' G C 3'	TT T G C C G A T A T G C C G T A T A C G	TT T G C C G A T A T G C C G T A T A C G	TT T G C C G A T A T G C C G T A T A C G	TT T G C C G A T A T G C C G T A T A C G	TT T G C C G A T A T G C C G T A T A C G	TT T G C C G A T A T G C C G T A T A C G	TT T G C C G A T A T G C C G T A T A C G	TT T G C C G A T A T G C C G T A T A C G	TT T G C C G A T A T G C C G T A T A C G	TT T G C C G A T A T G C C G T A T A C G
T A T A C G	T A T A C G	T A T A C G	T A T A C G	T A T A C G	T A T A C G	T A T A C G	T A T A C G	T A T A C G	T A T A C G	T A T A C G
9bpCT/GA	9bpATT/AA	9bpTT/AA	9bpTT/GA	9bpTT/AA	9bpTT/GA	9bpFT/AA	9bpCA/CT	9bpGA/GT	9bpAA/TT	9bpTA/AT

Title: METHODS AND DEVICES FOR
CHARACTERIZING DUPLEX NUCLEIC ACID
MOLECULES
Applicant: Akeson
Application No.: 09/990,102
Docket No.: UCAL-199
Substitute Figure 8 (Clean Copy)

Figure 8

Table 2. DNA hairpins used in this study. Primary sequence reads from 5' end at bottom left to 3' end at bottom right. Each hairpin has a 9 base-pair-long stem, and a four dT loop. The terminal base-pair and its nearest neighbor are highlighted by a box. These are the base-pairs in closest proximity to the pore limiting aperture when a given hairpin is captured in the α -hemolysin vestibule.

SEQ ID NO:12	SEQ ID NO: 13	SEQ ID NO: 14	SEQ ID NO: 15	SEQ ID NO: 16	SEQ ID NO: 17	SEQ ID NO: 18	SEQ ID NO: 19	SEQ ID NO: 20	SEQ ID NO: 21	SEQ ID NO: 22
T T G C C G A T A T A T G C C G T A 5' G C T G C G A T A T A T G C C G T A 3'	T T G C C G A T A T A T G C C G T A 5' G C T G C G A T A T A T G C C G T A 3'	T T G C C G A T A T A T G C C G T A 5' G C T G C G A T A T A T G C C G T A 3'	T T G C C G A T A T A T G C C G T A 5' G C T G C G A T A T A T G C C G T A 3'	T T G C C G A T A T A T G C C G T A 5' G C T G C G A T A T A T G C C G T A 3'	T T G C C G A T A T A T G C C G T A 5' G C T G C G A T A T A T G C C G T A 3'	T T G C C G A T A T A T G C C G T A 5' G C T G C G A T A T A T G C C G T A 3'	T T G C C G A T A T A T G C C G T A 5' G C T G C G A T A T A T G C C G T A 3'	T T G C C G A T A T A T G C C G T A 5' G C T G C G A T A T A T G C C G T A 3'	T T G C C G A T A T A T G C C G T A 5' G C T G C G A T A T A T G C C G T A 3'	T T G C C G A T A T A T G C C G T A 5' G C T G C G A T A T A T G C C G T A 3'
9bpGT/CA	9bpCT/GA	9bpATT/AA	9bpTT/AA	9bpTT/AA	9bpTT/AA	9bpGAA/CT	9bpCA/GT	9bpTA/AT	9bpAA/TT	9bpTA/AT