Introduction to quantum mechanics I

Tristan Villain – Pierre-François Cohadon – Qinhan Wang Séance de tutorat du 8 janvier 2025

TD de tutorat 9 : oscillateur harmonique quantique

1 Oscillateur harmonique quantique et parité

Soit \widehat{H} le hamiltonien d'un oscillateur harmonique 1D de pulsation ω .

- 1. Rappeler l'expression de \widehat{H} en fonction des opérateurs création et annihilation \widehat{a}^{\dagger} et \widehat{a} . Quel est le spectre de \widehat{H} (on notera E_n l'énergie du n-ème état $|n\rangle$)?
- 2. Rappeler l'expression de l'observable \widehat{X} en fonction des opérateurs création et annihilation. Calculer $[\widehat{X}, \widehat{a}^{\dagger}]$ et en déduire $[\widehat{X}^k, \widehat{a}^{\dagger}]$ (on notera $X_0 = \sqrt{\hbar/m\omega}$).

Dans la suite du TD, on cherche à calculer $\langle \widehat{X}^k \rangle_0$, où la valeur moyenne est prise dans l'état fondamental $|n=0\rangle$.

- 3. On rappelle que l'état fondamental de \widehat{H} possède une fonction d'onde paire. En déduire $\widehat{\Pi}|0\rangle$, où $\widehat{\Pi}$ est l'opérateur parité.
- 4. Calculer l'opérateur $\widehat{\Pi}^{\dagger} \widehat{X} \widehat{\Pi}$.
- 5. Calculer $\langle \widehat{\Pi}^{\dagger} \widehat{X}^k \widehat{\Pi} \rangle_0$ de deux façons différentes et en déduire $\langle \widehat{X}^k \rangle_0$ pour k impair.
- 6. Rappeler la valeur de $\widehat{a}|n\rangle$ et $\widehat{a}^{\dagger}|n\rangle$. En déduire $\widehat{a}|0\rangle$ et $\widehat{a}^{\dagger}|0\rangle$ et $\langle 0|\widehat{a}^{\dagger}$ et $\langle 0|\widehat{a}$. Montrer que l'on a la relation de récurrence

$$\langle \widehat{X}^{k+1} \rangle_0 = k \frac{X_0^2}{2} \langle \widehat{X}^{k-1} \rangle_0.$$

7. En déduire l'expression de $\langle \widehat{X}^k \rangle_0$ pour k pair.

On s'intéresse maintenant à la parité d'un état $|n\rangle$.

- 8. Calculer $\widehat{\Pi}^{\dagger} \widehat{a}^{\dagger} \widehat{\Pi}$ et en déduire $\widehat{\Pi} \widehat{a}^{\dagger} \widehat{\Pi}^{\dagger}$
- 9. En déduire que l'état $|n\rangle$ est de parité bien définie que l'on précisera.
- 10. Un état cohérent $|\alpha\rangle$ a-t-il une parité bien définie?