abc416_d Match, Mod, Minimize 2 题解

题目大意

给你两个长度为 N 的序列 A 和 B。

你可以任意调整序列的顺序。

求能够得到的 $\sum\limits_{i=1}^{N}((A_i+B_i) mod M)$ 的最小值。

解题思路

由于 $0 \le A_i + B_i < M$, 所以我们可以发现,

- 若 $A_i + B_i \geq M$,则 $(A_i + B_i) \mod M = A_i + B_i M$
- 若 $A_i + B_i < M$,则 $(A_i + B_i) \mod M = A_i + B_i$

也就是说,如果我们选择 A_i 和 B_j 配对,且 $A_i+B_j\geq M$ 时,对结果的贡献会减小 M。

所以,这道题目我们需要配对最多的 A_i 和 B_j ,满足 $A_i+B_j\geq M$ 。

可以先给 A和 B数组从小到大排序。

然后使用 双下标。

初始时 i=1, j=N。

若 $A_i+B_j\geq M$,则 A_i 和 B_j 配对,且答案减少 M,同时 i++, j--。

否则, A_i 无法和任何未使用的 B_j 配对且满足 $A_i+B_j\geq M$,则 i++ 。

思考: 为什么要 i++?

因为:此时的 B_j 是未配对的 B_j 中最大的,肯定优先配对。

而 A_i 和 B 中未配对的最大的数加起来都小于 M ,它和 B 其其它未配对的数加起来肯定也小于 M ,所以此时肯定无法将 A_i 配对,所以 i++ 。