Pour tout $n \in \mathbb{N}^*$, on note $E_n = [1, n]$. On note $S_{n,p}$ le nombre de surjections de E_n sur E_p .

- 1. Calculer $S_{n,p}$ si p > n.
- 2. Justifier grâce au cardinal qu'une surjection de E_n dans E_n est une bijection. En déduire $S_{n,n}$.
- 3. Déterminer $S_{n,1}$.
- 4. Combien y-a-t-il d'applications de E_n dans E_2 ? Parmi ces applications lesquelles ne sont pas surjectives? En déduire $S_{n,2}$.
- 5. Soit f une surjection de E_{p+1} dans E_p , justifier que tous les éléments de E_p ont exactement un antécédent sauf un qui en a exactement deux. En déduire que $S_{p+1,p} = \frac{p}{2}(p+1)!$

On suppose désormais que 0 .

- 6. Montrer que $\sum_{k=0}^{p} {p \choose k} (-1)^k = 0$
- 7. Montrer que pour tout (k, q) tel que $0 \le k \le q \le p$

$$\binom{p}{q}\binom{q}{k} = \binom{p}{k}\binom{p-k}{q-k}.$$

- 8. (a) En déduire que, si $0 \le k < p$, alors $\sum_{q=k}^{p} \binom{p}{q} \binom{q}{k} (-1)^q = 0$.
 - (b) Que vaut la somme précédente quand k = p?
- 9. Montrer que pour tout entier q de E_p le nombre d'applications de E_n dans E_p ayant un enemble d'image à q éléments est égal à $\binom{p}{q}S_{n,q}$.
- 10. En déduire que $p^n = \sum_{q=1}^p \binom{p}{q} S_{n,q}$.
- 11. A l'aide d'une inversion de sommes montrer que : $\sum_{k=1}^{p} (-1)^k \binom{p}{k} k^n = \binom{p}{k} \binom{p}{p} \binom{p}{k} \binom{p}{p} \binom{p}{k} \binom{p}{k} \binom{p}{k} \binom{p}{k} \binom{p}{k} \binom{p}{k} \binom{p}{k} \binom{p}{p}{k} \binom{p}{k} \binom{p$

$$\sum_{q=1}^{p} \left(\sum_{k=q}^{p} (-1)^k \binom{p}{k} \binom{k}{q} \right) S_{n,q}.$$

12. A l'aide des questions précédentes (8, 10, 11 notamment), en déduire que $S_{n,p} = (-1)^p \sum_{k=1}^p (-1)^k \binom{p}{k} k^n.$

Dans les questions suivantes on va essayer de déterminer une relation de récurrence entre $S_{n,p}$ et les valeurs de $S_{n-1,p}$ et $S_{n-1,p-1}$

- 13. Soit $\varphi: E_n \to E_p$ une surjection. (Combien y-a-t-il de possibilités pour φ ?) On note φ_1 la restriction de φ à E_{n-1} .
 - (a) Supposons que φ_1 est surjective. Combien y-a-t-il de possibilité pour φ_1 ?
 - (b) Supposons que φ_1 n'est pas surjective, en déduire que $Im(\varphi) = Im(\varphi_1) \cup \{\varphi(n)\}$ cette union étant disjointe. $Im(\varphi)$ désigne l'image de la fonction, c'est-à-dire $\{\varphi(e) \mid e \in E_n\}$. Montrer ainsi que φ_1 est surjective de E_{n-1} sur $E_p \setminus \{\varphi(n)\}$. Combien y-a-t-il de possibilités pour φ_1 ?
 - (c) En déduire que $S_{n,p} = p(S_{n-1,p} + S_{n-1,p-1})$.
 - (d) A l'image du triangle de Pascal, construire une table des $S_{n,p}$ pour $0 \le p \le n \le 5$
 - (e) Ecrire un programme Python qui prend en argument (n, p) et retourne la valeur de $S_{n,p}$.