

MOSFET

600V CoolMOS™ SJ S7 Power Device

IPT60T022S7 enables the best price performance for low-frequency switching applications. CoolMOS™ S7 boasts the lowest Rdson values for an HV SJ MOSFET, with a distinctive increase in energy efficiency. The embedded Temperature sensor increases junction temperature sensing accuracy and robustness while keeping an easy and seamless implementation. CoolMOS™ S7 is optimized for "static switching" and high current applications. It is an ideal fit for solid-state relay, circuit breaker designs, and line rectification in SMPS and inverter topologies. The new temperature sensor enhances S7 features, allowing the best possible utilization of the power transistor.

Features

- CoolMOS $^{\text{TM}}$ S7 technology enables lowest $R_{\text{DS(on)}}$ in the smallest footprint
- Optimized price performance in low-frequency switching applications
- · High pulse current capability
- Seamless diagnostics at the lowest system
- Temperature sense feature for protection and optimized thermal device utilization cost

Benefits

- Minimized conduction losses (eliminate/reduce heat sink)
- Increased system performance
- More compact and more straightforward design
- Lower BOM or/and TCO over a prolonged lifetime
- Reduction of external sensing elements

Compared to electromechanical devices:

- Faster switching times
- More reliability and longer system lifetime
- Shock & Vibration resistance
- · No contact arcing or bouncing

Potential applications

- · Solid state relays and circuit breakers
- Line rectification in high power/performance applications e.g. Computing, Telecom, UPS and Solar

Product validation

Fully qualified according to JEDEC for Industrial Applications

rabio i Roy i cricimanco i arametere							
Parameter	Value	Unit					
R _{DS(on),max}	65	mΩ					
$Q_{g,typ}$	51	nC					
V _{SD}	0.82	V					
Pulsed I _{SD} , I _{DS}	123	A					
ESD class (HBM)	2	JEDEC JS-001					

Type / Ordering Code	Package	Marking	Related Links
IPT60T065S7	PG-HSOF-8	60I065S7	see Appendix A

Table of Contents

escription
aximum ratings
nermal characteristics
ectrical characteristics
emperature Sensor parameters
ectrical characteristics diagrams
est Circuits
ackage Outlines
ppendix A
evision History
ademarks 1
sclaimer

600V CoolMOS™ SJ S7 Power Device

1 Maximum ratings at $T_j = 25$ °C, unless otherwise specified

Table 2 **Maximum MOSFET ratings**

Parameter	Cumbal		Value	s	l lmi4	Note / Test Condition
	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition
Drain current rating ¹⁾	I _D	-	-	8	A	T _C =140°C Current is limited by T _{j max} = 150°C; Lower case temp does increase current capability
Pulsed drain current ²⁾	I _{D,pulse}	-	-	123	Α	T _C =25°C
Avalanche energy, single pulse	E _{AS}	-	-	95	mJ	I _D =2.3A; V _{DD} =50V; see table 11
Avalanche current, single pulse	I _{AS}	-	-	2.3	Α	-
MOSFET dv/dt ruggedness ³⁾	dv/dt	-	-	20	V/ns	V _{DS} = 0V to 300V
Gate source voltage (static)	V _{GS}	-20	-	20	V	static
Gate source voltage (dynamic)	V_{GS}	-30	-	30	V	AC (f>1 Hz)
Power dissipation	P _{tot}	-	-	167	W	T _C =25°C
Storage temperature	$T_{ m stg}$	-55	-	150	°C	-
Operating junction temperature ¹⁾	T _j	-55	-	150	°C	-
Extended operating junction temperature	T _j	150	-	175	°C	≤50 h in the application lifetime
Mounting torque	-	-	-	n.a.	Ncm	-
Diode forward current rating	Is	-	-	8	А	T_C =25°C Current is limited by $T_{j max}$ = 150°C
Diode pulse current ¹⁾	I _{S,pulse}	-	-	123	Α	T _C =25°C
Reverse diode dv/dt ⁴⁾	dv/dt	-	-	5	V/ns	V_{DS} =0 to 300V, I_{SD} <=8A, T_j =25°C see table 9
Maximum diode commutation speed	di _f /dt	-	-	800	A/μs	V_{DS} =0 to 300V, I_{SD} <=8A, T_j =25°C see table 9
Insulation withstand voltage	V _{ISO}	-	-	n.a.	V	-

 $^{^{1)}}$ Please consider the App Note: AN_2308_PL52_2309_111546 for high delta $T_{\rm J}$ usage $^{2)}$ Pulse width t_p limited by $T_{\rm j,max}$ $^{3)}$ The dv/dt has to be limited by appropriate gate resistor $^{4)}$ Identical low side and high side switch

2 Thermal characteristics

Table 3 Thermal characteristics

Damamatan	Ob. a.l	Values			11:4	Nata / Tank Oam distant
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition
Thermal resistance, junction - case	R _{thJC}	-	-	0.75	°C/W	-
Thermal resistance, junction - ambient	R _{thJA}	-	-	62	°C/W	device on PCB, minimal footprint
Thermal resistance, junction - ambient for SMD version	R_{thJA}	-	35	45	°C/W	Device on 40mm*40mm*1.5mm epoxy PCB FR4 with 6cm² (one layer, 70µm thickness) copper area for drain connection and cooling. PCB is vertical without air stream cooling.
Soldering temperature, wave- & reflow soldering allowed	T _{sold}	-	-	260	°C	reflow MSL1

3 Electrical characteristics

at T_j=25°C, unless otherwise specified

Table 4 Static characteristics

For applications with applied blocking voltage >420V, it is required that the customer evaluates the impact of cosmic radiation effect in early design phase and contacts the Infineon sales office for the necessary technical support by Infineon

Danamatan	Cumbal		Values			Nata / Tank Oam Hittan
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition
Drain-source breakdown voltage	$V_{(BR)DSS}$	600	-	-	V	V_{GS} =0V, I_D =1mA
Gate threshold voltage	$V_{(GS)th}$	3.5	4	4.5	V	$V_{\rm DS}=V_{\rm GS},\ I_{\rm D}=0.47{\rm mA}$
Zero gate voltage drain current ¹⁾	I _{DSS}	-	- 10	1 -	μΑ	V _{DS} =600V, V _{GS} =0V, T _j =25°C V _{DS} =600V, V _{GS} =0V, T _j =150°C
Gate-source leakage current	I _{GSS}	-	-	100	nA	V _{GS} =20V, V _{DS} =0V
Drain-source on-state resistance	R _{DS(on)}	-	0.059 0.137	0.065	Ω	V _{GS} =12V, I _D =8.0A, T _j =25°C V _{GS} =12V, I _D =8.0A, T _j =150°C
Gate resistance	R _G	-	0.8	-	Ω	f=1MHz, open drain

Table 5 Dynamic characteristics

Davamatav	Cumbal	Values			11	Nata / Tank Oam differen
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition
Input capacitance	C _{iss}	-	1932	-	pF	V _{GS} =0V, V _{DS} =300V, f=250kHz
Output capacitance	Coss	-	32	-	pF	V _{GS} =0V, V _{DS} =300V, f=250kHz
Effective output capacitance, energy related ²⁾	C _{o(er)}	-	104	-	pF	V _{GS} =0V, V _{DS} =0 to 300V
Effective output capacitance, time related ³⁾	C _{o(tr)}	-	904	-	pF	I_D =constant, V_{GS} =0V, V_{DS} =0 to 300V
Output charge	Qoss	-	271	-	nC	V _{GS} =0V, V _{DS} =0 to 300V
Turn-on delay time	$t_{ m d(on)}$	-	15	-	ns	$V_{\rm DD}$ =300V, $V_{\rm GS}$ =13V, $I_{\rm D}$ =8.0A, $R_{\rm G}$ =10.0Ω; see table 9
Rise time	t _r	-	9	-	ns	$V_{\rm DD}$ =300V, $V_{\rm GS}$ =13V, $I_{\rm D}$ =8.0A, $R_{\rm G}$ =10.0Ω; see table 9
Turn-off delay time	$t_{ m d(off)}$	-	100	-	ns	$V_{\rm DD}$ =300V, $V_{\rm GS}$ =13V, $I_{\rm D}$ =8.0A, $R_{\rm G}$ =10.0 Ω ; see table 9
Fall time	t _f	-	9	-	ns	$V_{\rm DD}$ =300V, $V_{\rm GS}$ =13V, $I_{\rm D}$ =8.0A, $R_{\rm G}$ =10.0 Ω ; see table 9

¹⁾ Oper

²⁾ $C_{o(er)}$ is a fixed capacitance that gives the same stored energy as C_{oss} while V_{DS} is rising from 0 to 300V $C_{o(tr)}$ is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 300V

600V CoolMOS™ SJ S7 Power Device

IPT60T065S7

 Table 6
 Gate charge characteristics

Parameter	Cumbal	Values			11	Note / Test Condition
	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition
Gate to source charge	Q _{gs}	-	11	-	nC	$V_{\rm DD}$ =300V, $I_{\rm D}$ =8.0A, $V_{\rm GS}$ =0 to 12V
Gate to drain charge	Q_{gd}	-	17	-	nC	V_{DD} =300V, I_{D} =8.0A, V_{GS} =0 to 12V
Gate charge total	Qg	-	51	-	nC	$V_{\rm DD}$ =300V, $I_{\rm D}$ =8.0A, $V_{\rm GS}$ =0 to 12V
Gate plateau voltage	V _{plateau}	-	5.4	-	V	$V_{\rm DD}$ =300V, $I_{\rm D}$ =8.0A, $V_{\rm GS}$ =0 to 12V

Table 7 Reverse diode characteristics

Damanatan	Cymphal	Values			11	Nata / Tant Can dition
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition
Diode forward voltage	V _{SD}	-	0.82	-	V	V _{GS} =0V, I _F =8.0A, T _j =25°C
Reverse recovery time	t _{rr}	-	310	-	ns	V_R =400V, I_F =8.0A, di_F/dt =100A/ μ s; see table 8
Reverse recovery charge	Q _{rr}	-	3.90	-	μC	V_R =400V, I_F =8.0A, di_F/dt =100A/ μ s; see table 8
Peak reverse recovery current	I _{rrm}	-	27.0	-	А	V_R =400V, I_F =8.0A, di_F/dt =100A/ μ s; see table 8

4 Temperature Sensor parameters at T_j =25°C, unless otherwise specified

Table 8 **Maximum ratings**

Demonstra	Cumbal		Values			Nata / Tank Oran Ilitian
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition
Repetitive Peak Reverse Voltage	V_{RRM}	-	-	15	V	<i>I</i> _R = 100 μA
Sensor forward current	I _F	-	-	5	mA	-
Repetitive peak forward current	I _{F_pulse}	-	-	25	mA	t _{pulse} = 1 ms, T _{period} = 10 ms
Non-repetitive peak forward current	I _{FSM}	- - -	- - -	1.5 0.2 0.1	A	T_C = 25°C, t_{pulse} = 1 μs T_C = 25°C, t_{pulse} = 1 ms T_C = 25°C, t_{pulse} = 1 s
Junction Temperature	T _j	-	-	185	°C	t < 50h, Sensor only

Electrical characteristics Table 9

Parameter	Symbol	Values			Unit	Note / Test Condition
raiailletei	Symbol	Min.	Тур.	Max.	Ullit	Note / Test Condition
Sensor forward voltage ¹⁾	V _{F_25}	1.5601 - - 2.0665	1.6019 1.8103 1.9806 2.0966	-	V	$T_{j} = 25^{\circ}\text{C}, \ I_{F} = 10 \ \mu\text{A}$ $T_{j} = 25^{\circ}\text{C}, \ I_{F} = 50 \ \mu\text{A}$ $T_{j} = 25^{\circ}\text{C}, \ I_{F} = 200 \ \mu\text{A}$ $T_{j} = 25^{\circ}\text{C}, \ I_{F} = 500 \ \mu\text{A}$
Sensor forward voltage temperature coefficient	TC	- - -	5.9644 5.5880 5.2287 5.0135	-	mV/K	$\begin{array}{l} 25^{\circ}C \leq T_{j} \leq 175^{\circ}C, \ I_{F} = 10 \ \mu A \\ 25^{\circ}C \leq T_{j} \leq 175^{\circ}C, \ I_{F} = 50 \ \mu A \\ 25^{\circ}C \leq T_{j} \leq 175^{\circ}C, \ I_{F} = 200 \ \mu A \\ 25^{\circ}C \leq T_{j} \leq 175^{\circ}C, \ I_{F} = 500 \ \mu A \\ \end{array}$
Sensor forward voltage	V _{F_175}	-	0.7072 0.9721 1.1963 1.3445	-	V	$T_{j} = 175^{\circ}\text{C}, \ I_{F} = 10 \ \mu\text{A}$ $T_{j} = 175^{\circ}\text{C}, \ I_{F} = 50 \ \mu\text{A}$ $T_{j} = 175^{\circ}\text{C}, \ I_{F} = 200 \ \mu\text{A}$ $T_{j} = 175^{\circ}\text{C}, \ I_{F} = 500 \ \mu\text{A}$
Reverse leakage current	I _R	-	-	1 20	μA	V _R = 10V, T _j = 25°C V _R = 10V, T _j = 175°C
Sensor G Capacitance	C _{GTS}	-	4.2	-	pF	f = 1 MHz, I _F = 50 μA
Sensor Capacitance	C _{STS}	-	4.8	-	pF	f = 1 MHz, I _F = 50 μA
Anode-Drain Capacitance	C _{DTS}	-	0.5	-	pF	f = 1 MHz, V _{DS} = 0 V

7

Rev. 2.1, 2023-09-25

5 Electrical characteristics diagrams

6 Test Circuits

Table 10 Diode characteristics

Table 11 Switching times (ss)

Table 12 Unclamped inductive load (ss)

7 Package Outlines

PACKAGE - GROUP NUMBER:	PG-HSC	F-8-U02					
DIMENSIONS	MILLIMETERS						
DIMENSIONS	MIN.	MAX.					
Α	2.20	2.40					
b	0.70	0.90					
b1	9.70	9.90					
b2	0.42	0.50					
С	0.40	0.60					
D	10.28	10.58					
D1	3.30						
E	9.70	10.10					
E1	7.50						
E2	8.50						
E3	9.46						
е	1.20 (BSC)						
Н	11.48	11.88					
H1	6.55	6.95					
H2	7.15						
H3	3.59						
H4	3.26						
N	8						
K1	4.18						
L	1.40	1.80					
L1	0.50	0.90					
L2	0.50	0.70					
L3	1.00	1.30					
L4	2.62	2.81					

1) PARTIALLY COVERED WITH MOLD FLASH

Figure 1 Outline PG-HSOF-8, dimensions in mm

8 Appendix A

Table 13 Related Links

• IFX CoolMOS S7T Webpage: www.infineon.com

• IFX CoolMOS S7T application note: www.infineon.com

• IFX CoolMOS S7T simulation model: www.infineon.com

• IFX Design tools: www.infineon.com

600V CoolMOS™ SJ S7 Power Device

IPT60T065S7

Revision History

IPT60T065S7

Revision: 2023-09-25, Rev. 2.1

Previous	
PIEWINIE	RAMEION

1 Tevious Nevision		
Revision	Date	Subjects (major changes since last revision)
2.0	2023-09-18	Release of final version
2.1	2023-09-25	Drain current – change of test condition

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: erratum@infineon.com

Published by Infineon Technologies AG 81726 München, Germany © 2023 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

The Infineon Technologies component described in this Data Sheet may be used in life-support devices or systems and/or automotive, aviation and aerospace applications or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support, automotive, aviation and aerospace device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.