1. Let $\{\lambda_i\}_I \cup \{\lambda_j\}_J$ be a partition of unity subordinate to A^c, B^c , with $i \in I \iff \operatorname{supp}(\lambda_i) \subset A^c$. Then $f = \sum_I \lambda_i$ is smooth (smoothness is a local property and locally it is a finite sum of smooth functions), and $f \equiv 0$ on A by construction. Finally on B we have $1 = f + \sum_J \lambda_j = f + 0 = f$ since λ_j are only supported on B^c .

2. In order to make sense of the problem, we first should check that for a linear map A, $\operatorname{Graph}(A) \subset \mathbb{R}^{2k}$ is a submanifold. To do so we can take the chart on $(\mathbb{R}^k)^2$ to be $(x,y) \mapsto (x,y-Ax)$, this map is clearly smooth and with smooth inverse (to get the inverse just add Ax), moreover we see that $\operatorname{Graph}(A)$ is a linear subspace by construction on this chart, now that everything makes sense we should forget about ever doing this and just use the standard coordinate chart on \mathbb{R}^{2k} .

Now if 1 is not an eigenvalue of A we are done trivially, since $\operatorname{Graph}(A) \cap \Delta = \emptyset$ so that transversality is vacuously true. Now suppose that 1 is an eigenvalue of A with eigenvector v, then since $\operatorname{Graph}(A)$ and Δ are both k dimensional, it suffices to check that the intersection of their tangent spaces is non-zero at (v,v) to see that they are not transverse. Noticing that a path in $\operatorname{Graph}(A)$ is of the form $(\gamma(t),A\gamma(t))$, we can take $\gamma(t)=tv$, to see that $\begin{pmatrix} v \\ v \end{pmatrix} \in T_{(v,v)}\operatorname{Graph}(A)$, by virtually the same argument $\begin{pmatrix} v \\ v \end{pmatrix}$ is also in $T_{(v,v)}\Delta$, so that $T_{(v,v)}\operatorname{Graph}(A)\cap T_{(v,v)}\Delta\supset\operatorname{span}(v)$ has dimension at least one, from here we are done since

$$2k > 2k - 1 \ge \dim T_{(v,v)} \operatorname{Graph}(A) + \dim T_{(v,v)} \Delta - \dim T_{(v,v)} (\operatorname{Graph}(A) \cap T_{(v,v)} \Delta)$$
$$= \dim (T_{(v,v)} \operatorname{Graph}(A) + T_{(v,v)} \Delta)$$

3. (a) The convention chosen effectively fixes our polygon up to rotation and translation. This is because for any fixed rotation, we choose the translate of the polygon with $p_1 = 0$, which is a unique representative for this fixed rotation. Fixing the rotation is fine since the rotation can be chosen independent of translation as the unique representative with $p_n - p_1 \in \mathbb{R}_{>0} \times \{0\}$.

(b) Define the function