

EV Cybersecurity

Q-AI - Powered EV Battery Fire Prevention System

Sudarshana Karkala

EV.Engineer, AI-Driven Battery Safety

Electric Vehicle Engineering & Development, CODE, IIT Madraş

What is Quantum Computing?

 Quantum Computing is a new paradigm of computing that leverages the principles of quantum mechanics to perform complex calculations at unprecedented speeds.

- Unlike classical computers that use bits (0 or 1),
 Quantum computers use qubits,
 which exist in superposition (both 0 and 1 simultaneously).
- Quantum properties like superposition, entanglement, and interference provide exponential speed-ups for solving specific problems.

Why Quantum Computing is Revolutionary?

Classical vs Quantum Comparison

- Classical AI: Sequential processing, limited by binary logic.
- Quantum AI: Parallel processing using qubits, enabling faster problem-solving.

Exponential Speedup

Quantum computers can solve problems that would take classical computers millions of years in just minutes.

Key Applications

- Cryptography
- Al & Machine Learning
- **Material Science**
- **EV** Battery Optimisation

Key Quantum Concepts

• Qubits:

The fundamental unit of quantum computation, capable of existing in multiple states at once.

Superposition:

A qubit can be both 0 and 1 at the same time, enabling parallel computation.

• Entanglement:

A unique quantum phenomenon where qubits are interconnected, allowing instantaneous information transfer.

Quantum Interference:

The ability to manipulate qubit probability distributions to achieve optimal outcomes.

Real-World Quantum Applications in Energy & EVs

Battery Chemistry Optimisation:

 Quantum computing accelerates the discovery of new battery materials with higher energy density and faster charging.

Predictive Battery Health Management:

· Quantum Al models improve battery lifespan predictions and prevent thermal runaway.

Quantum-Powered Energy Optimisation:

 Quantum Approximate Optimisation Algorithms (QAOA) enable more efficient charging, discharging, and energy distribution in EVs.

Quantum Cryptography for EV Security:

Quantum Key Distribution (QKD) ensures unbreakable encryption for EV communication networks.

Quantum Computing vs Classical Computing in EV Batteries

Classical EV Battery Simulations:

- Uses numerical methods for battery chemistry and performance modelling.
- Limited by processing power and complexity of equations.
- Example: Traditional simulations struggle to predict degradation patterns in high-capacity solid-state batteries.

Quantum-Powered EV Battery Simulations:

- Uses Quantum Chemistry Algorithms for molecular-level material discovery.
- Optimises electrochemical reactions for next-gen battery efficiency.
- Example: IBM and Daimler successfully used quantum simulations to study lithium-sulfur battery mate improving efficiency and reducing computational time significantly.

Quantum Machine Learning (QML) for EV Batteries

Why QML?

- Enhances pattern recognition in battery failure detection.
- Can model high-dimensional battery degradation faster than classical Al.
- Integrates with existing Battery Management Systems (BMS) to provide real-time insights and predictive maintenance alerts.
- Works alongside classical Al models to optimise battery performance while reducing computational overhead.

QML Use Cases in EV Batteries:

- Battery Health Prediction using Variational Quantum Circuits (VQC).
- Thermal Runaway Risk Analysis using Quantum Neural Networks (QNNs).
- Quantum-enhanced BMS Decision-Making: Helps optimise battery usage based on real-time conditions.

Quantum Optimisation for Battery Charging & Discharging

Challenges in Battery Optimisation:

- Classical algorithms struggle with multi-variable optimisation in real-time energy management.
- Limited efficiency in predicting battery degradation and optimal charge cycles.

Quantum Approximate Optimisation Algorithm (QAOA):

- Optimises charging cycles to extend battery lifespan.
- Reduces charging time while preventing overcharging risks.
- Real-World Study: Researchers at Volkswagen and D-Wave Systems have explored QAOA for
 optimising battery performance and EV fleet energy management, showing significant
 improvements in energy distribution and longevity.

Quantum Cryptography for EV Battery Cybersecurity

Why Cybersecurity Matters?

• EV batteries are connected devices, vulnerable to hacking and data breaches.

Quantum Cryptography Solutions:

- Quantum Key Distribution (QKD): Ensures secure communication in EV networks.
- Post-Quantum Cryptography (PQC): Protects battery data storage and firmware updates.

The Future of Quantum Computing in EV Batteries

Next-Generation Battery Materials:

Quantum simulations will discover new high-density, fast-charging materials.

Al-Quantum Hybrid Models:

Future EVs will combine AI & Quantum AI for maximum efficiency.

Scalable Quantum Computing for Commercial EV Use:

Quantum computers will become cost-effective and mainstream in battery R&D.

The Future of Quantum Computing in EV Batteries

Challenges & Limitations:

- Hardware Scalability: Current quantum processors have limited qubit stability and error rates.
- Cost & Infrastructure: Quantum computing requires specialised cryogenic environments, making widespread deployment costly.
- Integration with Classical Systems: Quantum computing needs to work alongside classical AI & existing BMS for practical adoption.
- Standardisation & Regulation: EV industry standards for quantum-driven optimisations and security protocols are still evolving.

TO BE DONE

Join Us in Creating a Fire-Free EV Future!

Looking for Strategic Partners, Pilot Customers & Investors.

Thank you

Sudarshana Karkala

EV. Engineer, AI-Driven Battery Safety

Electric Vehicle Engineering & Development, CODE, IIT Madras