A few notable things

Note the following about the proof.

H accepts $\langle M, w \rangle$ when M accepts w.

D rejects $\langle M \rangle$ when M accepts $\langle M \rangle$.

D rejects $\langle D \rangle$ when D accepts $\langle D \rangle$.

Note also the following things about similar problems.

 $A_{DFA} = \{(M, w) \mid DFA M \text{ accepts } w\} \text{ is decidable.}$

Similarly, $A_{PDA} = \{(M, w) \mid PDA M \text{ accepts } w\}$ is also decidable.

Diagonalization inside the proof

Behaviour of D on itself.

	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\ldots \langle D \rangle \ldots$	
M_1	<i>\(\/ \)</i>	×	✓	✓	
M_2	✓	* ✓	×	×	✓×✓
<i>M</i> ₃ : : :	×	×	₩//×	×	
D				?	

Other undecidable problems and reducibility

Reducing A_{TM} to another problem to prove undecidibility.

$$Halt = \{(M, w) \mid M \text{ halts on } w\}$$

We would like to show that Halt is undecidable.

Assume that Halt is decidable. Let \mathcal{H} be the TM deciding Halt.

 \mathcal{A} : Run \mathcal{H} on (M, w). If it rejects then reject, else do as per M on w.

 \mathcal{A} accepts (M, w) if M accepts w and rejects it if either M rejects w or M loops forever on w.

 ${\mathcal H}$ decides Halt if and only if ${\mathcal A}$ decides A_{TM} .

The halting problem

Lemma

The halting problem, $Halt = \{(M, w) \mid M \text{ halts on } w\}$, is undecidable.

Another way to describe the same proof.

If Halt is decidable then A decides A_{TM} , which is a contradiction.