МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №3

по дисциплине «Организация ЭВМ и систем»

Тема: «Представление и обработка целых чисел. Организация ветвящихся процессов»

Студентка гр. 1381	 Васильева О. М
Преподаватель	Ефремов М. А.

Санкт-Петербург 2022

Задание (Шифр 1.4.3.)

Разработать на языке Ассемблера программу, которая по заданным целочисленным

значениям параметров a, b, i, k вычисляет:

- а) значения функций i1 = f1(a,b,i) и i2 = f2(a,b,i);
- b) значения результирующей функции res = f3(i1,i2,k),

где вид функций f1 и f2 определяется из табл. 2, а функции f3 - из табл.3 по цифрам шифра

индивидуального задания (n1,n2,n3), приведенным в табл.4.

Значения a, b, i, k являются исходными данными, которые должны выбираться студентом самостоятельно и задаваться в процессе исполнения программы в режиме

отладки. При этом следует рассмотреть всевозможные комбинации параметров a, b и k,

позволяющие проверить различные маршруты выполнения программы, а также различные

знаки параметров а и b.

Выполнение работы.

1. Функции в соответствие с указанным шифром:

f1 =
$$\langle 15-2*i, \pi pu \ a>b$$

 $\langle 3*i+4, \pi pu \ a<=b$
f4 = $\langle -(6*i-4), \pi pu \ a>b$
 $\langle 3*(i+2), \pi pu \ a<=b$
f3 = $\langle -(1+i2), \pi pu \ b=0$
 $\langle \pi in(i1,i2), \pi pu \ b=0$

- 2. В начале программы описана модель памяти с помощью директивы .model. Модель памяти .small.
 - 3. Описание директив сегментации:

.stack - начало указания сегмента стека;

.code — начало указания сегмента кода;

.data — начало указания сегмента данных.

- 4. Также в начале мы инициализируем переменные i, k, a, b и выбираем размер стека.
- 5. С помощью команды cmp мы сравниваем значения а и b, если a>b, то переходим к метке f12_else, иначе f12_then.
- 6. Затем вычисляются значения i1 и i2, которые записываются в регистры ах и сх соответственно.
- 7. Финальная функция по заданию должна сравнивать k с 0. При k=0 вычисляется модуль суммы i1 и i2, иначе эти два значения сравниваются. Из минимальное записывается в ах.
 - 8. Результат сохраняется в переменной res.

Минимизация длины кода.

• a<=b

$$i1 = 3i+4;$$
 $i2 = 3*(i+2) = 3i+6$
Пусть $g= 3i+4$, тогда $i2 = g+2;$ $g=i1.$

• a>b

$$i1 = 15-2i;$$
 $i2 = -(6i-4)$
Пусть $g=15-2i$, тогда $i2 = 3*g-11;$ $g=i1.$

Вывод.

В ходе лабораторной работы мы познакомились с организацией ветвления на языке Ассемблер и написали программу в соответствие с индивидуальным заданием.

ПРИЛОЖЕНИЕ А. Код программ.

Имя файла: lr3.asm dosseg .model small .stack 100h

.data i dw 1

a dw -5

b dw 8

k dw 4

res dw ?

.code

mov ax, @data

mov ds, ax

mov ax, a

стр ах, b ;сравниваем а и b.

jg f12_else ;выполняет короткий переход, если а больше b

```
f12_that: ;if(a<=b)</pre>
```

mov cx, i ;i

add cx, i ;2i

add cx, i ;3i

add cx, 4;3i+4

mov ax, cx ;3i+4

add ax, 2 ;3*(i+2) = 3i+6

jmp final

f12_else: ;if(a>b)

mov cx, 15 ;15

sub cx, i ;15-i

sub cx, i ;15-2i

mov ax, cx ;15-2i

```
sub ax, i ;15-3i
sal ax, 1 ;30-6i
sub ax, 26 ; -(6i-4) = -6i+4
final:
abs_that:
cmp k,0
jnz abs_else ;перейти если не равно
add ax, cx
neg ax
jmp results
abs_else:
стр сх, ах ;сравниваем і1 и і2
jl min
jmp results
min: mov ax, cx
results:
mov res, ax
mov ah, 4ch
int 21h
end
```

ПРИЛОЖЕНИЕ В. Листинг успешной трансляции программы.

Текст сообщения (lr3.lst).

#Microsoft	(R) Macro	Assembler	Version	5.10
11/13/22 19:	56:0			

1-1	Page
	dosseg
el small	.mod
ck 100h	.sta
a	.dat
0000 0001	i dw 1
0002 FFFB	a dw -5
0004 0008	b dw 8
0006 0004	k dw 4
0008 0000	res
dw ?	163
e	.cod
0000 B8 R ax, @data	mov
0003 8E D8	
ax	mov ds,
0005 A1 0002 R ax, a	mov
0008 3B 06 0004 R ax, b ;сравниваем а и b.	cmp
000C 7F 17	
f12_else ;выполняет коротки	jg

000E

f12_that: ;if(a<=b)</pre> 000E 8B 0E 0000 R

cx, i ;i

0016 03 0E 0000 R cx, i ;3i

001A 83 C1 04

4;31+4

001D 8B C1

cx ;3i+4

001F 05 0002

2;3*(i+2) = 3i+60022 EB 17 90

final

0025

15 ;15

f12_else: ;if(a>b)

0025 B9 000F

0028 2B 0E 0000 R cx, i ;15-i

002C 2B 0E 0000 R cx, i ;15-2i

0030 8B C1

cx ;15-2i

0012 03 0E 0000 R add cx, i ;2i

add

add cx,

mov

mov ax,

add ax,

jmp

mov cx,

sub

sub

mov ax,

0032 2B 06 0000 R ax, i ;15-3i	sub
0036 D1 E0 1 ;30-6i	sal ax,
0038 2D 001A 26 ;-(6i-4) = -6i+4	sub ax,
003B 003B	final:
abs_that:	
003B 83 3E 0006 R 00 k,0	стр
0040 75 07	jnz
abs_else ;перейти если не ра	
	вно
0042 03 C1	add ax,
cx 0044 F7 D8	neg ax
0046 EB 0A 90	imp
results	jmp
0049	
abs_else:	
0049 3B C8	cmp cx,
ах ;сравниваем і1 и і2	5p 5//
004B 7C 03	jl min
004D EB 03 90	jmp
results	۲۲

0050 8B C1 min: mov ax, cx 0052 results: #Microsoft (R) Macro Assembler Version 5.10 11/13/22 19:56:0 Page 1-2 0052 A3 0008 R mov res, ax 0055 B4 4C mov ah, 4ch 0057 CD 21 int 21h end #Microsoft (R) Macro Assembler Version 5.10 11/13/22 19:56:0 Symbols-1 Segments and Groups: Name Length Align Combine Class DGROUP **GROUP** _DATA 000A WORD **PUBLIC** 'DATA' 0100 **PARA STACK** 'STACK'

_TEXT

0059 WORD PUBLIC

@DATASIZE	TEXT	0
@FILENAME	TEXT	
@VERSION	TEXT	
56 Source Lines		
56 Total Lines		
29 Symbols		
48004 + 459256 Bytes symbol space free		
0 Warning Errors		
0 Severe Errors		