BÀI 5A: Các kĩ thuật điều chế và giải điều chế số dải qua

Mục đích:

- Hiểu được các kĩ thuật điều chế và giải điều chế số dải qua, BASK, BPSK, BPSK, DPSK ứng dụng trong truyền thông không dây
- Luyện tập các kĩ năng mô phỏng

Bài 5A.1: Hệ thống điều chế và giải điều chế BASK với đầu thu coherent trong kênh truyền AWGN

- 1. Tín hiệu: $f_b = 1kbps$;
- 2. Sóng mang ở đầu phát và thu: 5V, $f_c = 5kHz$, sample time = 2e-5
- 3. Constant = biên độ sóng mang phát * biên độ sóng mang coherent ở đầu thu * số sample trong 1 chu kì bit/4
- 4. Kênh truyền AWGN với Mode = Signal to Noise Ratio (Eb/No)
- 5. Giải thích các thông số và hoạt động của hệ thống.
- 6. Cho biết băng thông first null của tín hiệu BASK
- 7. Thay đổi các chỉ số Eb/No của kênh truyền AWGN và thiết lập bảng đếm lỗi sau: (Chú ý: chỉ đếm tới 2e4 bit)

Eb/No dB	BER
12	
10	
8	
6	
4	
2	
0	

Bài 5A.2: Hệ thống điều chế và giải điều chế BPSK với đầu thu coherent trong kênh truyền AWGN

- 1. Tín hiệu: $T_b = 1/1000$ (s)
- 2. Sóng mang: $f_c = 5kHz$, sample time = 2e-5
- 3. Kênh truyền AWGN với Mode = Signal to Noise Ratio (Eb/No)
- 4. Giải thích các thông số và hoạt động của hệ thống.
- 5. Cho biết băng thông first null của tín hiệu BPSK
- 6. Thay đổi các chỉ số Eb/No của kênh truyền AWGN và thiết lập bảng đếm lỗi sau: (Chú ý: chỉ đếm tới 2e4 bit)

Eb/No dB	BER
12	
10	
8	
6	
4	
2	
0	

Bài 5A.3: Hệ thống điều chế và giải điều chế BFSK với đầu thu coherent trong kênh truyền AWGN

1. Sinh viên thiết lập mô phỏng hệ thống như hình dưới.

- 2. Tín hiệu: $T_b = 1/1000$ (s)
- 3. Sóng mang mức 1: fc = 6kHz, sóng mang mức 0: 4kHz; sample time = 2e-5
- 4. Kênh truyền AWGN với Mode = Signal to Noise Ratio (Eb/No)
- 5. Giải thích các thông số và hoat đông của hệ thống.
- 6. Cho biết băng thông first null của tín hiệu BFSK
- 7. Thay đổi các chỉ số Eb/No của kênh truyền AWGN và thiết lập bảng đếm lỗi sau: (Chú ý: chỉ đếm tới 2e4 bit)

Eb/No dB	BER
12	
10	
8	
6	
4	
2	
0	

7. *So sánh BER và phổ của hệ thống BASK, BPSK, BFSK. Nhận xét

Bài 5A.4: Hệ thống điều chế và giải điều chế DPSK với đầu thu noncoherent trong kênh truyền AWGN

Khối Differential Binary Encoder:

- 1. Tín hiệu: $T_b = 1/1000$ (s)
- 2. Sóng mang: $f_c = 5kHz$, sample time = 2e-5
- 3. Kênh truyền AWGN với Mode = Signal to Noise Ratio (Eb/No)
- 4. Giải thích các thông số và hoạt động của hệ thống.
- 5. Cho biết băng thông first null của tín hiệu DPSK
- 6. Thay đổi các chỉ số Eb/No của kênh truyền AWGN và thiết lập bảng đếm lỗi sau: (Chú ý: chỉ đếm tới 2e4 bit)

Eb/No dB	BER
12	
10	
8	
6	
4	
2	
0	

7. *So sánh BER của DPSK với BASK, BPSK và BFSK. Nhận xét

BÀI 5B: Các kĩ thuật điều chế và giải điều chế số dải qua

Mục đích:

- Hiểu được các kĩ thuật điều chế và giải điều chế số dải qua, QPSK, QFSK, QAM ứng dụng trong truyền thông không dây
- Luyện tập các kĩ năng mô phỏng

Bài 5B.1: Hệ thống điều chế và giải điều chế Gray Coded QPSK với đầu thu coherent trong kênh truyền AWGN

Khối QPSK I-Q Correlation Receiver:

- 1. Tín hiệu: $T_b = 1/1000$ (s)
- 2. Sóng mang: $f_c = 5kHz$, sample time = 2e-5
- 3. Kênh truyền AWGN với Mode = Signal to Noise Ratio (Eb/No)
- 4. Các khối 4-Level Gray Coded thiết kế tương tự trong bài thực hành số 4
- 5. Giải thích các thông số và hoạt động của hệ thống.
- 6. Cho biết băng thông first null của tín hiệu 4-Gray Coded QPSK
- 7. Thay đổi các chỉ số Eb/No của kênh truyền AWGN và thiết lập bảng đếm lỗi sau: (Chú ý: chỉ đếm tới 2e4 bit)

Eb/No dB	BER
12	
10	
8	
6	
4	
2	
0	

8. *So sánh BER và phổ của hệ thống 4-Gray Coded QPSK và BPSK. Giải thích.

Bài 5B.2: Hệ thống điều chế và giải điều chế QFSK với đầu thu coherent trong kênh truyền AWGN

Khối 4-FSK Correlation Receiver:

- 1. Tín hiệu: $T_b = 1/1000$ (s)
- 2. Sóng mang: $f_c = 2-4-6-8kHz$, sample time = 2e-5
- 3. Kênh truyền AWGN với Mode = Signal to Noise Ratio (Eb/No)
- 4. Các khối 4-Level PAM thiết kế tương tự trong bài thực hành số 4
- 5. Giải thích các thông số và hoạt động của hệ thống.
- 6. Phân tích phổ và cho biết băng thông first null của tín hiệu QFSK
- 7. Thay đổi các chỉ số Eb/No của kênh truyền AWGN và thiết lập bảng đếm lỗi sau: (Chú ý: chỉ đếm tới 2e4 bit)

Eb/No dB	BER
30	
25	
20	
15	
10	
8	
0	

8. *So sánh BER và phổ của hệ thống QFSK và QPSK. Giải thích.

Bài 5B.3: Hệ thống điều chế và giải điều chế 16-QAM với đầu thu coherent trong kênh truyền AWGN

Khối 16-Level Bit to I-Q Symbol:

Bảng Giá trị I-Q dùng trong bài:

Input	I	Q	Input	I	Q	Input	I	Q
0	-1	1	6	1	3	12	1	-1
1	-3	1	7	3	3	13	3	-1
2	-1	3	8	-1	-1	14	1	-3
3	-3	3	9	-3	-1	15	3	-3
4	1	1	10	-1	-3			
5	3	1	11	-3	-3			

Khối QAM Modulation:

Khối 16-QAM I-Q Correlation Receiver:

Khối 16-Level Symbol to Bit:

- 1. Tín hiệu: $T_b = 1/1000$ (s)
- 2. Sóng mang: $f_c = 5kHz$, sample time = 2e-5
- 3. Kênh truyền AWGN với Mode = Signal to Noise Ratio (Eb/No)
- 4. Giải thích các thông số và hoạt động của hệ thống.
- 5. Cho biết băng thông first null của tín hiệu 16-QAM
- 6. Thay đổi các chỉ số Eb/No của kênh truyền AWGN và thiết lập bảng đếm lỗi sau: (Chú ý: chỉ đếm tới 2e4 bit)

Eb/No dB	BER
12	
10	
8	
6	
4	
2	
0	

7. *So sánh BER và phổ của 16-QAM với QPSK và BPSK. Nhận xét