

Reporte de comprobación de hipótesis

Para esta esta práctica se tomó como población los 30 datos recolectados de la columna humedad de la tabla "Últimos datos recolectados de la planta"

Agrupamiento de los datos

Ordenamos los datos de la población desde el mas pequeño hasta el más grande así para facilitar los cálculos que se realizaran.

107, 886, 964, 1213, 1243, 1305, 1320, 1331, 1376, 1385, 1414, 1429, 1452, 1526, 1573, 1614, 1736, 2007, 2023, 2128, 2345, 2668, 4079, 4095, 4095, 4095, 4095, 4095, 4095, 4323

Se calculo el rango:

$$rango = 4323 - 107 \approx 4216$$

Se calculo k para saber el número de clases:

$$k = 1 + 3.322 \log(30) = 5.90699 \approx 6$$

Se calculo la amplitud en este caso todos los datos de la población son enteros:

$$amplitud = 4216 \div 6 = 702.666667 = 703$$

Una vez obtenidos estos datos procedemos a agrupar todos los datos en una tabla de frecuencias:

Clase	Lim inf	Lim sup	Lim inf ex	Lim sup ex	Frecuencia ads	Frecuencia acum	Frecuencia rel	Marca de clase
1	107	809	107.5	809.5	1	1	0.0333	458
2	810	1512	810.5	1512.5	12	13	0.4	1161
3	1513	2215	1513.5	2215.5	7	20	0.233	1864
4	2216	2918	2216.5	2918.5	2	22	0.6666	2567
5	2919	3621	2919.5	3621.5	0	22	0	3270
6	3622	4324	3622.5	4324.5	8	30	0.266	3973

Calculo de la media poblacional

Se calculo la media poblacional usando la fórmula para datos agrupados:

$$media = \frac{(458)(1) + (1161)(12) + (1864)(7) + (2567)(2) + (3270)(0) + (3973)(8)}{30}$$
$$= 2145.2$$

Cálculo de la desviación estándar de la población

Se calculo la desviación estándar usando la fórmula para datos agrupados:

Clase	Frecuencia	Marca de clase	Marca-media	(Marca- media) ²	(Marca- media)²(f)
1	1	458	-1687.2	2846643.84	2846643.84
2	12	1161	-984.2	968649.64	11623795.68
3	7	1864	-281.2	79073.44	553514.08
4	2	2567	421.8	177915.24	355830.48
5	0	3270	1124.8	1265175.04	0
6	8	3973	1827.8	3340852.84	26726822.72

$$\sigma^2 = \frac{42,106,606.8}{30} = 1,403,553.56 \qquad \qquad \sigma = 1184.71676$$

Calculo del tamaño de la muestra

Utilizando un nivel de confianza del 95% y un margen de erro del 5% calculamos el tamaño de la muestra:

tamaño de la muestra =
$$\frac{(30)(1.96)^2(0.5)(0.5)}{0.05^2(30-1)+1.96^2(0.5)(0.5)}$$
 = 27.8942=28

Comprobación de la media muestral

Utilizando la formula de la media para datos no agrupados, nosotros calculamos la media de la muestra:

media de la muestra =
$$\frac{86017}{28}$$
 = 3,072.03571

Comprobación de Hipótesis

1. Definir hipótesis en términos prácticos

 H_0 : La media de la humeddad del suelo es de 62.0666 H_1 La media de la humedad del suelo es dirente a 62.066

2. Definir hipótesis en términos numéricos

$$H_0$$
: $\mu = 62.0666$
 H_0 : $\mu \neq 62.0666$

3. Definir el nivel de significancia

Nivel de significancia =
$$\alpha = 0.05$$

Nivel de significancia = $1 - \alpha = 0.95$

4. Representación gráfica del problema

5. Determinar los limites según el nivel de confianza

$$\frac{\alpha}{2} - \frac{0.05}{2} - 0.025$$

$$0.5 - 0.025 - 0.475 \approx 1.96$$

6. Determinar el tamaño de la muestra

El tamaña de esta muestra ya fue calculada en pasos previos que se realizaron.

7. Recopilar los datos de la muestra

Los de dicha muestra ya fueron todos recopilados en pasos anteriores que se llevaron a cabo.

8. Analizar los datos mediante analítica estadística descriptiva

$$n = 28$$

 $\bar{x} = 3,072.03571$
 $\delta = 1184.71676$

9. Calcular z-calculada

$$Z_C = \frac{3,072.03571}{\frac{1184.71676}{\sqrt{28}}} = 13.7211$$

10. Localizar el estadístico dentro del grafico

11. Conclusión en términos estadísticos

Con el valor dado de 13.7211 localizado dentro de H_0 podemos concluir que la media es a los datos presentes en la población dada.

12. Conclusión en términos prácticos La humedad del suelo es igual a 62.0666