

Sun-Yuan Hsieh 謝孫源 教授 成功大學資訊工程學系

Overview

Problem

- A town has a set of houses and a set of roads.
- A road connects 2 and only 2 houses.
- \triangleright A road connecting houses *u* and *v* has a repair cost w(u, v).
- ▶ *Goal*: Repair enough (and no more) roads such that
 - 1. everyone stays connected: can reach every house from all other houses, and
 - 2. total repair cost is minimum.

Overview

- Model as a graph:
 - \triangleright Undirected graph G = (V, E)
 - ▶ **Weight** w(u, v) on each edge $(u, v) \in E$
 - \triangleright Find $T \subseteq E$ such that
 - 1. *T* connects all vertices (*T* is a *spanning tree*), and
 - 2. $w(T) = \sum_{(u,v) \in T} w(u,v)$ is minimized.

Overview

源 成份大學

- HITTARIA STATE
- ▶ A spanning tree whose weight is minimum over all spanning trees is called a *minimum spanning tree*, or *MST*.
 - Example of such a graph [edges in MST are shaded] :

- In this example, there is more than one MST. Replace edge (e, f) by (c, e).
- **–** Get a different spanning tree with the same weight.

Growing a minimum spanning tree

- Some properties of an MST:
 - ightharpoonup It has |V|-1 edges.
 - ▶ It has no cycles.
 - ▶ It might not be unique.

Building up the solution

- ▶ We will build a set *A* of edges.
- ▶ Initially, *A* has no edges.
- \triangleright As we add edges to *A*, maintain a loop invariant:

Loop invariant: *A* is a subset of some MST.

Growing a minimum spanning tree

Generic MST algorithm

GENERIC-MST(G, w)

- **1.** $A \leftarrow \emptyset$
- **2. while** *A* is not a spanning tree
- **3. do** find an edge (u, v) that is safe for A
- **4.** $A \leftarrow A \cup \{(u, v)\}$
- 5. return A

- Use the loop invariant to show that this generic algorithm works.
 - ▶ **Initialization**: The empty set trivially satisfies the loop invariant.
 - ▶ **Maintenance**: Since we add only safe edges, *A* remains a subset of some MST.
 - ▶ **Termination**: All edges added to *A* are in an MST, so when we stop, *A* is spanning tree that is also an MST.

Finding a safe edge

How do we find safe edges?

- Let's look at the example. Edge (c, f) has the lowest weight of any edge in the Graph. Is it safe for $A = \emptyset$?
- Intuitively: Let $S \subset V$ be any set of vertices that includes c but not f (so that f is in V S). In any MST, there has to be one edge (at least) that connects S with V S. Why not choose the edge with minimum weight? (Which would be (c, f) in this case.)

- ▶ Some definitions: Let $S \subset V$ and $A \subseteq E$.
 - ho A *cut* (*S*, *V*-*S*) is a partition of vertices into disjoint sets *S* and *V*-*S*.
 - ▶ Edge $(u, v) \in E$ *crosses* cut (S, V-S) if one endpoint is in S and the other is in V-S.
 - A cut *respects A* if and only if no edge in *A* crosses the cut.
 - An edge is a *light edge* crossing a cut if and only if its weight is minimum over all edges crossing the cut. For a given cut, there can be > 1 light edge crossing it.

► Theorem

Let A be a subset of some MST, (S, V-S) be a cut that respects A, and (u, v) be a light edge crossing (S, V-S). Then (u, v) is safe for A.

Proof Let *T* be an MST that includes *A*.

If T contains (u, v), done.

So now assume that T does not contain (u, v). We'll construct a different MST T that includes $A \cup \{(u, v)\}$.

Recall: a tree has unique path between each pair of vertices. Since T is an MST, it contains a unique path p between u and v. Path p must cross the cut (S, V-S) at least once. Let (x, y) be an edge of p that crosses the cut. From how We chose (u, v), must have $w(u, v) \le w(x, y)$

[Except for the dashed edge (u, v), all edges shown are in T. A is some subset of the edges of T, but A cannot contain any edges that cross the cut (S,

V-S), since this cut respects *A*. Shaded edges are the path *p*.]

Since the cut respects A, edge (x, y) is not in A.

To from T' from T:

- \triangleright Remove (x, y) . Breaks T into two components.
- ightharpoonup Add (u, v) . Reconnects.

So
$$T' = T - \{(x, y)\} \cup \{(u, v)\}.$$

T 'is a spanning tree.

$$w(T') = w(T) - w(x, y) + w(u, v)$$

$$\leq w(T)$$

since
$$w(u, v) \le w(x, y)$$

Since T' is a spanning tree, $w(T') \le w(T)$, and T is an MST, then T' must be an MST.

Need to show that (u, v) is safe for A:

- $\triangleright A \subseteq T$ and $(x, y) \notin A \Rightarrow A \subseteq T'$
- $\triangleright A \cup \{(u, v)\} \subseteq T'$
- \triangleright Since T is an MST, (u, v) is safe for A.

GENERIC-MST:

- ▶ *A* is a forest containing connected components. Initially, each component is a single vertex.
- Any safe edge merge two of these components into one. Each component is a tree.
- ▶ Since an MST has exactly |*V*|-1 edges, the **for** loop iterates |*V*|-1 times.
 - Equivalently, after adding |V|-1 safe edges, we're down to just one component.

Corollary

If $C = (V_C, E_C)$ is a connected component in the forest $G_A = (V, A)$ and (u, v) is a light edge connecting C to some other component in G_A (i.e., (u, v) is a Light edge crossing the cut $(V_C, V-V_C)$), then (u, v) is safe for A.

Proof Set $S = V_C$ in the theorem.

► This naturally leads to the algorithm called Kruskal's algorithm to solve the Minimum-spanning-tree problem.

Kruskal's algorithm

ightharpoonup G = (V,E) is a connected, undirected, weighted graph.

$$w: E \to \Re$$

- Starts with each vertex being its own component.
- ▶ Repeatedly merges two components into one by choosing the light edge that connects them (i.e., the light edge crossing the cut between them).
- Scans the set of edges in monotonically increasing order by weight.
- Uses a disjoint-set data structure to determine whether an edge connects vertices in different components.

- ightharpoonup KRUSKAL(V, E, w)
- 1. $A \leftarrow \emptyset$
- **2. for** each vertex $v \in V[G]$
- **3. do** MAKE-SET(v)
- **4.** sort *E* into nondecreasing order by weight *w*
- **5. for** each (u, v) taken from the sorted list
- **6. do if** FIND-SET(u) \neq FIND-SET(v)
- 7. **then** $A \leftarrow A \cup \{(u, v)\}$
- 8. UNION(u,v)
- 9. return A

Run through the above example to see how Kruskal's algorithm works on it:

(*c*, *f*) : chosen

(*g*, *i*) : chosen

(*e*, *f*) : chosen

(*c*, *e*) : reject

(*d*, *h*) : chosen

(*f*, *h*) : chosen

(*e*, *d*) : reject

(*b*, *d*) : chosen

(d, g): chosen

(*b*, *c*) : reject

(*g*, *h*) : reject

(*a*, *b*) : chosen

- ▶ At this point, we have only one component, so all other edges will be rejected.
 - ▶ [We could add a test to the main loop of KRUSKAL to stop once |*V*|-1 edges have been added to *A*.]
- Get the shaded edges shown in the figure.

Suppose we had examined (c, e) before (e, f). Then, would have found (c, e) safe and would have rejected (e, f).

Analysis

Initialize A: O(1)

First **for** loop: |V|MAKE-SETS

Sort E: $O(E \lg E)$

Second **for** loop: O(E) FIND-SETS and UNIONS

- Assuming the implementation of disjoint-set data structure, already seen in chapter 21, that uses union by rank and path compression: $O((V + E)\alpha(V)) + O(E \lg E)$
- ▷ Since *G* is connected, $|E| \ge |V| 1 \Rightarrow O(E \alpha(V)) + O(E \lg E)$.
- \triangleright Therefore, total time is $O(E \lg E)$.
- $\triangleright |E| \le |V|^2 \Rightarrow \lg |E| = O(2 \lg V) = O(\lg V)$
- ► Therefore, $O(E \lg V)$ time. (If edges are already sorted, $O(E\alpha(V))$, which is almost linear.)

Prim's algorithm

- Builds one tree, so A is always a tree.
- ▶ Starts from an arbitrary "root" *r*.

A.

At each step, find a light edge crossing cut $(V_A, V-V_A)$, where V_A = vertices that A is incident on. Add this edge to

 $V - V_A$ Light edge

[Edges of *A* are shaded.]

- ► How to find the light edge quickly? Use a priority queue *Q*:
 - \triangleright Each object is a vertex in V- V_A .
 - ▷ Key of *v* is minimum weight of any edge (u, v), where $u \in V_A$.
 - ▶ Then the vertex returned by EXTRACT-MIN is v such that there exists $u \in V_A$ and (u, v) is light edge crossing $(V_A, V-V_A)$.
 - \triangleright Key of v is ∞ if v is not adjacent to any vertices in V_A .

- ▶ The edges of *A* will form a rooted tree with root *r*:
 - hd r is given as an input to the algorithm, but it can be any vertex.
 - Each vertex knows its parent in the tree by the attribute $\pi[v]$ parent of v. $\pi[v]$ = NIL if v = r or v has no parent.
 - \triangleright As algorithm progresses, $A = \{(v, \pi[v]) : v \in V \{r\} Q\}.$
 - At termination,

$$V_A = V \Rightarrow Q = \emptyset$$
, so MST is $A = \{(v, \pi[v]) : v \in V - \{r\}\}$.


```
PRIM(V, E, w, r)
     Q \leftarrow \emptyset
      for each u \in V[G]
2.
3.
            do key[u] \leftarrow \infty
4.
               \pi[u] \leftarrow \text{NIL}
5.
               INSERT(Q, u)
     DECREASE-KEY(Q, r, 0)
6.
      while Q \neq \emptyset
7.
8.
           do u \leftarrow \text{EXTRACT-MIN}(Q)
                for each v \in Adj[u]
9.
                     do if v \in Q and w(u, v) < key[v]
10.
                            then \pi[v] \leftarrow u
11.
12.
                                   DECREASE-KEY(Q, v, w(u, v))
```


Run through the above example to see how Prim's algorithm works on it: Vertex c has been chosen as a starting point.

Analysis

- Depends on how the priority queue is implemented:
 - Suppose *Q* is a binary heap.
 - Initialize Q and first **for** loop: $O(V \lg V)$
 - Decrease key of r: $O(\lg V)$
 - **while** loop: |V| EXTRACT-MIN calls

 $\Rightarrow O(V \lg V)$

 $\leq |E|$ DECREASE-KEY calls

 \Rightarrow $O(E \lg E)$

- Total: $O(E \lg V)$

Suppose we could do DECREASE-KEY in O(1) amortized time. Then $\leq |E|$ DECREASE-KEY calls take O(E) time altogether \Rightarrow total time becomes $O(V \lg V + E)$ In fact, there is a way to do DECREASE-KEY in O(1) amortized time: Fibonacci heaps, in chapter 20.