CS307 Operating Systems

Introduction

Fan Wu

Department of Computer Science and Engineering Shanghai Jiao Tong University Spring 2020

Operating Systems

хм™

Operating Systems

- UNIX-family: BSD(Berkeley Software Distribution), System-V, GNU/Linux, MINIX, Nachos, OS X, iOS
- BSD-family: FreeBSD, NetBSD, OpenBSD
- System-V-family: AIX, HP-UX, IRIX, Solaris
- Linux-family: Red Hat, Debian, Ubuntu, Fedora, openSUSE, Linux Mint, Google's Android, WebOS, Meego
- MS-DOS, Microsoft Windows, Windows Mobile, Win-CE, WP8
- AmigaOS
- Symbian, MeeGo
- Google Chrome OS
- OS/2
- XrossMediaBar(XMB) for PS3, Orbis OS for PS4
- Input Output System for Wii
- Tiny-OS, LynxOS, QNX, VxWorks

Four Components of a Computer System

Computer System Structure

- Hardware provides basic computing resources
 - CPU, memory, I/O devices
- Operating system Controls and coordinates use of hardware among various applications and users
- System programs are computer software designed to operate the computer hardware and to provide a platform for running application programs
 - BIOS and device drivers
- Application programs define the ways in which the system resources are used to solve the computing problems of the users
 - Word processors, compilers, web browsers, database systems, video games
- Users
 - People, machines, other computers

What is an Operating System?

- An operating system is a program that manages the computer hardware
- A program that acts as an intermediary between the computer user and the computer hardware
- Operating system goals:
 - Execute user programs and make solving user problems easier
 - Make the computer system convenient to use
 - Use the computer hardware in an efficient manner

Operating System Definition

- OS is a resource allocator
 - Manages all resources
 - Decides between conflicting requests for efficient and fair resource use
- OS is a control program
 - Controls execution of programs to prevent errors and improper use of the computer

Operating System Definition (Cont.)

- No universally accepted definition
- "Everything a vendor ships when you order an operating system" is good approximation
 - But varies wildly
- "The one program running at all times on the computer" is the kernel. Everything else is either a system program (ships with the operating system) or an application program.
- "An operating system (OS) is software, consisting of programs and data, that runs on computers, manages computer hardware resources, and provides common services for execution of various application software." --- From Wikipedia

Operating System Structures

Virtual Machines

Course Outline

Process Scheduling

Single and Multithreaded Processes

single-threaded process

multithreaded process

CPU Scheduling

- First-Come, First-Served (FCFS) Scheduling
- Shortest-Job-First (SJF) Scheduling
- Priority Scheduling
- Round-Robin Scheduling
- Multilevel Queue Scheduling
- Multilevel Feedback Queue Scheduling

Process Synchronization

Dining-Philosophers Problem

- Philosophers spend their lives thinking and eating
- Don't interact with their neighbors, occasionally try to pick up 2 chopsticks (one at a time) to eat from bowl
 - Need both to eat, then release both when done
- In the case of 5 philosophers
 - Shared data
 - Bowl of rice (data set)
 - Semaphore chopstick [5] initialized to 1

Deadlock Avoidance

Example of Banker's Algorithm

5 processes P₀ through P₄;

3 resource types:

A (10 instances), B (5 instances), and C (7 instances)

Snapshot at time T_0 :

	Max	Allocation	Need	Available
	ABC	ABC	ABC	ABC
P_0	753	010	7 4 3	3 3 2
P_1	322	200	122	
P_2	902	302	600	
P_3	222	211	011	
P_4	4 3 3	002	4 3 1	

■ The system is in a safe state since the sequence $\langle P_1, P_3, P_0, P_2, P_4 \rangle$ satisfies safety criteria

Memory Management

Paging Hardware

Virtual Memory Management

Mass-Storage Systems

File-System

Combined Scheme with UNIX I-node

I/O Systems

Distributed System Structure

Homework

- Reading
 - Chapter 1: Introduction

