CSc 8530 Parallel Algorithms

Spring 2019

January 31st, 2019

Example: sum on the PRAM model

- Given an array A with $n=2^k$ values and a PRAM with p processors
- We wish to compute $S = A[1] + A[2] + \dots A[n]$
- A parallel implementation will run fastest with n processors
- However, not all processors are needed at every iteration

PRAM variations

- PRAM variants differ in how they handle simultaneous access to the same location in shared memory
 - Exclusive read exclusive write (EREW)
 - Concurrent read exclusive write (CREW)
 - Concurrent read concurrent write (CRCW)
- Furthermore, we have three subtypes of CRCW:
 - Common CRCW PRAM
 - Allows concurrent writes only when all processors attempt to write the same value
 - Arbitrary CRCW PRAM
 - Allows an arbitrary processor to succeed
 - Priority CRCW PRAM
 - Assumes processors have a priority (based on their ids)
 - The lowest id wins
- EREW, CREW, and, CRCW differ slightly in their computational power
 - i.e., in the space of functions they can theoretically compute

The network model

- A **network** is a graph G = (V, E)
 - ullet The nodes V are the processors
 - \bullet The edges E are two-way communication links between processors
- There is no shared memory
 - Each processor does have local memory
- The model can be either synchronous or asynchronous
- send(X, i) instruction: sends X to processor P_i (and continue executing the next instruction immediately)
- $\mathbf{receive}(Y, j)$ operation: wait for Y from processor P_j (and suspend execution until data is received)

Linear array - matrix-vector multiplication

We split the computations as follows (for p = n/2):

$$y_1 = a_{1,1}x_1 + a_{1,2}x_2 + a_{1,3}x_3 + a_{1,4}x_4 + \dots + a_{1,n-1}x_{n-1} + a_{1,n}x_n$$

$$y_2 = a_{2,1}x_1 + a_{2,2}x_2 + a_{2,3}x_3 + a_{2,4}x_4 + \dots + a_{2,n-1}x_{n-1} + a_{2,n}x_n$$

$$\vdots$$

$$y_n = a_{n,1}x_1 + a_{n,2}x_2 + a_{n,3}x_3 + a_{n,4}x_4 + \dots + a_{n,n-1}x_{n-1} + a_{n,n}x_n$$

for processors P_1 , P_2 , ..., P_p resp.

Linear array – matrix-vector multiplication

We split the computations as follows:

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} z_{1,1} \\ z_{2,1} \\ \vdots \\ z_{n,1} \end{bmatrix} + \begin{bmatrix} z_{1,2} \\ z_{2,2} \\ \vdots \\ z_{n,2} \end{bmatrix} + \ldots + \begin{bmatrix} z_{1,p} \\ z_{2,p} \\ \vdots \\ z_{n,p} \end{bmatrix}$$

for processors P_1 , P_2 , ..., P_p resp.

Linear array – matrix-vector multiplication

Computation time:

$$T_{comp} = O(n^2/p)$$

- Approx $\alpha(n^2/p)$ for some constant α
- However, P_1 has to wait until the p-1 partial sums have been transmitted to execute the last instruction

Communication time:

$$T_{comm} = p * comm(n)$$

 comm(n) is the time needed to transmit n numbers between adjacent processors

ALGORITHM 1.4

(Asynchronous Matrix Vector Product on a Ring)

Input: (1) The processor number i; (2) the number p of processors; (3) the ith submatrix B = A(1:n, (i-1)r+1:ir) of size $n \times r$, where r = nip; (4) the ith subvector w = x(i-1)r+1:ir) of size $n \times r$. Output: Processor P_i computes the vector $y = A_1x_1 + \cdots + A_ix_i$ and spaces the result to the right. When the algorithm terminates, P_1 will hold the product Ax.

begin

- 1. Compute the matrix vector product z = Bw.
- 2. if i = 1 then set y := 0
- else receive(y, left) 3. Set y: = y + z
- 4. send(v, right)
- 5. if i = 1 then receive(y, left) end

Linear array - matrix-vector multiplication

- $comm(n) \approx \sigma + n\tau$
 - σ : startup time
 - τ : transfer rate
- Total execution time:

$$T = T_{comp} + T_{comm}$$

 $\approx \alpha(n^2/p) + p(\sigma + n\tau)$

- There is a trade-off between the two terms
- The sum is minimized when $\alpha(n^2/p) = p(\sigma + n\tau)$
 - Such that $p = n\sqrt{\alpha/(\sigma + n\tau)}$

ALGORITHM 1.4

(Asynchronous Matrix Vector Product on a Ring)

Input: (1) The processor number i; (2) the number p of processors; (3) the ith submatrix B = A(1:n, (i-1)r+1:ir) of size $n \times r$, where r = nip; (4) the ith subvector w = x(i-1)r+1:ir) of size $n \times r$. Output: Processor p; computes the vector $y = A_1x_1 + \cdots + A_rx_r$ and spaces the result to the right. When the algorithm terminates, P_1 will hold the product Ax.

begin

- 1. Compute the matrix vector product z = Bw.
- if i = 1 then set y: = 0 else receive(v, left)
- 3. Set v: = v + z
- 4. send(y, right)
- 5. if i = 1 then receive(y, left)

end

Other topologies

2D mesh

- Both topologies are sparse
 - ullet The number of connections k << p
- Routing becomes more important, the more complex the network

PRAM justification

- Dags, shared-memory, and network models capture parallel processing at different levels of abstraction
- However, both dags and networks have significant drawbacks:
 - Dags can be hard to analyze
 - Dags require additional scheduling specifics
 - Dags have no formalism for memory management
 - Algorithms for the network model are very hard to analyze
 - The network model is highly dependent on the underlying topology
 - Different topologies may require completely different algorithms
- Thus, we will focus on the synchronous shared-memory model (PRAM)

PRAM justification

- The PRAM model has a number of strengths:
 - Well-developed body of techniques
 - Removes algorithmic details concerning synchronization and communication
 - Captures the allocation of jobs to processors over time
 - Many network algorithms can be mapped directly to the PRAM architecture
 - If needed, synchronization and communication can easily be added to the formalism

Worst-case analysis

- Let Q be a problem that we can solve in T(n) with P(n) processors
- Parallel cost: C(n) = T(n)P(n)
- The parallel algorithm can be converted to a sequential algorithm that runs in O(C(n))
- More generally, we can simulate a single step in O(P(n)/p) sub-steps:
 - In sub-step 1: simulate processors [1, p]
 - In sub-step 2: simulate processors [p+1,2p], etc.
- We can simulate the entire process in O(T(n)P(n)/p)

Worst-case analysis

- The following four measures are asymptotically equivalent:
 - lacksquare P(n) processors and T(n) time
 - ② C(n) = P(n)T(n) cost and T(n) time
 - $O(T(n)P(n)/p) \text{ for } p \leq P(n) \text{ processors }$
 - $O(\frac{C(n)}{p} + T(n)) \text{ time for any } p$
- ullet PRAM example: sum of n elements
 - **1** n processors and $O(\log(n))$ time
 - ② $O(n \log(n))$ cost and $O(\log(n))$ time
 - $O(\frac{n\log(n)}{p}), \text{ for } p \leq P(n)$
 - $O(\frac{n\log(n)}{n} + \log(n)), \text{ for all } p$
- Note that the O(n+m) notation really means $O(\max{(n,m)})$
 - Depending on the input, one term may be bigger than the other

Work-time (WT) paradigm

- The work-time (WT) paradigm provides a two-level description of parallel algorithms
 - Upper level suppresses specific details
 - Lower level follows a general scheduling principle
- Upper Level: Describe the algorithm in terms of a sequence of time units
 - Each time unit may include any number of concurrent operations
- Work: total number of operations
- For convenience, at this level we can use a pardo statement
 - for $l \le i \le u$ pardo {statement(s)}
 - All the statements, for all valid indices, are executed concurrently

Memory-explicit vs. WT pseudocode

ALGORITHM 1.2

end

(Sum on the PRAM Model)

Input: An array A of order $n = 2^k$ stored in the shared memory of a PRAM with n processors. The initialized local variables are n and the processor number i.

Output: The sum of the entries of A stored in the shared location S. The array A holds its initial value.

```
begin

1. global read(A(i), a)
2. global write(a, B(i))
3. for h = 1 to \log n do
if (i \le n/2^n) then
begin
global read(B(2i - 1), x)
global read(B(2i, y))
Set z := x + y
global write(x, B(i))
end
4. if i = 1 then global write(x, S)
```

Memory-explicit pseudocode

```
ALGORITHM 1.7 (Sum) Input: n = 2^k numbers stored in an array A. Output: The sum S = \sum_{i=1}^n A(i) begin I. for 1 \le i \le n pardo Set B(i) := A(i) 2. for h = 1 to \log n do for 1 \le i \le n/2^n pardo Set B(i) := B(2i-1) + B(2i) 3. Set S := B(1) end
```

- The WT pseudocode makes no mention of number of processors or allocation
- Stated only in terms of time units
- Each time unit may contain any number of concurrent operations
- Time units:
- Breakdown:

```
ALGORITHM 1.7 (Sum) Input: n = 2^k numbers stored in an array A. Output: The sum S = \sum_{i=1}^n A(i) begin 1. for 1 \le i \le n pardo Set B(i) := A(i) 2. for h = 1 to \log n do for 1 \le i \le n/2^k pardo Set B(i) := B(2i-1) + B(2i) 3. Set S := B(1) end
```

- The WT pseudocode makes no mention of number of processors or allocation
- Stated only in terms of time units
- Each time unit may contain any number of concurrent operations
- Time units:
 - $\log(n) + 2$
- Breakdown:

(Sum) Input: $n = 2^k$ numbers stored in an array A. Output: The sum $S = \sum_{i=1}^n A(i)$ begin 1. for $1 \le i \le n$ pardo Set B(i) := A(i)2. for h = 1 to $\log n$ do for $1 \le i \le n 2^k$ pardo

ALGORITHM 1.7

Set
$$B(i) := A(i)$$

2. for $h = 1$ to $\log n$ do
for $1 \le i \le n/2^h$ pardo
Set $B(i) := B(2i - 1) + B(2i)$
3. Set $S := B(1)$
end

- The WT pseudocode makes no mention of number of processors or allocation
- Stated only in terms of time units
- Each time unit may contain any number of concurrent operations
- Time units:
 - $\log(n) + 2$
- Breakdown:
 - ullet Step 1: n operations
 - Step j: $n/2^{j-1}$ operations
 - Last step: one operation

ALGORITHM 1.7

(Sum)

Input: $n = 2^k$ numbers stored in an array A. **Output:** The sum $S = \sum_{i=1}^n A(i)$

begin

l. for $1 \le i \le n$ pardo Set B(i): = A(i)

> 2. for h = 1 to $\log n$ do for $1 \le i \le n/2^h$ pardo Set B(i) := B(2i - 1) + B(2i)

3. Set S: = B(1) end

Total work:

• Running time:

```
ALGORITHM 1.7 (Sum)
Input: n=2^k numbers stored in an array A. Output: The sum S=\sum_{i=1}^n A(i) begin
1. for 1 \le i \le n pardo
Set B(i) = A(i)
2. for h=1 to \log n do
for <math>1 \le i \le n 2^{2n} pardo
Set B(i) = B(2i-1) + B(2i)
3. Set S := B(1) end
```

- Total work:
 - $W(n) = n + \sum_{j=1}^{\log(n)} (n/2^j) + 1$
- Running time:

ALGORITHM 1.7

- Total work:
 - $W(n) = n + \sum_{j=1}^{\log(n)} (n/2^j) + 1$ • W(n) = O(n)
- Running time:

```
ALGORITHM 1.7 (Signal and a strong of the following state of the fo
```

Total work:

•
$$W(n) = n + \sum_{j=1}^{\log(n)} (n/2^j) + 1$$

• $W(n) = O(n)$

• Running time:

•
$$T(n) = O(\log(n))$$

```
ALGORITHM 1.7 (Sum)
Input: n=2^k numbers stored in an array A.
Output: The sum S=\sum_{i=1}^n A(i)
begin
I. for 1 \le i \le n pardo
Set B(i) := A(i)
2 for h=1 to \log n do
for <math>1 \le i \le n n 2^k pardo
Set B(i) := B(2^i-1) + B(2^i)
3. Set S := B(1)
end

WT pseudocode
```

Total work:

•
$$W(n) = n + \sum_{j=1}^{\log(n)} (n/2^j) + 1$$

• $W(n) = O(n)$

Running time:

•
$$T(n) = O(\log(n))$$

- Parallelization can reduce the running time, but not the total work
 - We do more operations at once, but not fewer operations in total

```
(Sum)
Input: n = 2^k numbers stored in an array A.
Output: The sum S = \sum_{i=1}^n A(i)
begin

1. for 1 \le i \le n pardo
Set B(i): = A(i)
2. for h = 1 to \log n do
```

for $1 \le i \le n/2^h$ pardo

Set B(i) := B(2i - 1) + B(2i)

3. Set S: = B(1)

ALGORITHM 1.7

Work-time (WT) paradigm

- Lower Level: Suppose an upper-level description yields an algorithm with T(n) running time and W(n) work
 - We can almost always adapt this algorithm to run in $\lfloor \frac{W(n)}{p} + T(n) \rfloor$ parallel steps
- WT Scheduling Principle: let $W_i(n)$ be the number of operations in time unit $i, 1 \le i \le T(n)$
 - Simulate each $W_i(n)$ in $\leq \lceil \frac{W_i(n)}{p} \rceil$
- The p-processor PRAM takes

$$\leq \sum_{i} \lfloor \frac{W(n)}{p} \rfloor \leq \sum_{i} (\lfloor \frac{W(n)}{p} \rfloor + 1) \leq \lfloor \frac{W(n)}{p} \rfloor + T(n)$$

parallel steps

- We assume that we calculate $W_i(n)$ for each i
- We also assume each processor knows what instruction it needs to execute

WT Scheduling Principle

WT vs. lower-level pseudocode

```
ALGORITHM 1.7 (Sum)
Input: n = 2^k numbers stored in an array A.
Output: The sum S = \sum_{i=1}^n A(i)
begin
1. for 1 \le i \le n pardo
Set B(i) := A(i)
2. for h = 1 to \log n do
for 1 \le i \le n/2^k pardo
Set B(i) := B(2i-1) + B(2i)
3. Set S := B(1)
end
```

WT pseudocode

ALGORITHM 1.8

(Sum Algorithm for Processor Ps)

Input: An array A of size $n = 2^k$ stored in the shared memory. The initialized local variables are (1) the order n: (2) the number p of processors, where $p = 2^n \le n$, and (3) the processor number s. Output: The sum of the elements of A stored in the shared variable S. The array A retains its original value.

begin

1. for j = 1 to $l\left(=\frac{n}{p}\right)$ do

Set B(l(s-1)+j) := A(l(s-1)+j)2. for h = 1 to $\log n$ do

2.1. if $(k-h-q \ge 0)$ then

for $j = 2^{k-h} - q(s-1) + 1$ to $2^{k-h-q}s$ do

Set B(j) := B(2j-1) + B(2j)2.2. else {if $(s \le 2^{k-h})$ then

Set B(s) := B(2s-1) + B(2s)}

3. if (s = 1) then set S := B(1) end

Lower-level pseudocode

Work vs. cost

- If a parallel algorithm runs in T(n) with a total of W(n) operations
 - \bullet Can be simulated in $O(\frac{W(n)}{p} + T(n))$ on a p-processor PRAM
 - The cost is $C_p(n) = T_p(n)p = O(W(n) + T(n)p)$
- Work and cost coincide asymptotically for $p = O(\frac{W(n)}{T(n)})$
- Otherwise they differ:
 - Work is independent of the number of processors
 - Cost is measured relative to the number of available processors
 - Cost ≥ Work due to inefficient processor utilization
- ullet For computing the sum of n numbers:
 - Work: O(n), running time: $O(\log(n))$
 - Cost: $C_p(n) = O(n + p \log(n))$
 - With n processors, the cost is $O(n \log (n))$, not O(n) (Why?)

Work vs. cost

- If a parallel algorithm runs in T(n) with a total of W(n) operations
 - \bullet Can be simulated in $O(\frac{W(n)}{p} + T(n))$ on a p-processor PRAM
 - The cost is $C_p(n) = T_p(n)p = O(W(n) + T(n)p)$
- Work and cost coincide asymptotically for $p = O(\frac{W(n)}{T(n)})$
- Otherwise they differ:
 - Work is independent of the number of processors
 - Cost is measured relative to the number of available processors
 - Cost ≥ Work due to inefficient processor utilization
- ullet For computing the sum of n numbers:
 - Work: O(n), running time: $O(\log(n))$
 - Cost: $C_p(n) = O(n + p \log(n))$
 - With n processors, the cost is $O(n \log (n))$, not O(n) (Why?)
 - We cannot use all the processors at all time steps, so the cost is higher than the total work

