Analysis of Projected Gradient Descent

Anton Xue and Nikolai Matni

1 Introduction

Projected Gradient Descent

2 Background

Stephen Boyd and Lieven Vandenberghe [1].

2.1 Quadratic Programs with Linear Equality

A quadratic program with equality constraints [1] is

$$minimize \quad \frac{1}{2}x^{\top}Mx \tag{1}$$

subject to
$$Ax = b$$
 (2)

with variable in $x \in \mathbb{R}^n$, where $Q \succeq 0$ and the constraint $A \in \mathbb{R}^{m \times n}$ is, for our purposes, fat and full rank.

2.2 Projected Gradient Descent

Projected gradient descent has the step rule

$$x^{+} = \hat{x} + (I - A^{+}A)(I - tM)x$$

where A^+ is the Moore-Penrose pseudoinverse of A (such that $I - A^+A$ projects onto ker A); the least-norm solution of the linear constraint is $\hat{x} = A^+b$; and t < 1/L where $L = \lambda_{\max}(M)$ is the Lipschitz constant of the gradient.

3 Taking steps

We seek to characterize the space in which projected gradient descent traverses.

Starting at some initial x_0 , note that

$$x_{k+1} = (I - A^{+}A)(I - tM)x_{k} + \hat{x} = \left[(I - A^{+}A)(I - tM) \right]^{k} x_{0} + \sum_{l=0}^{k-1} \left[(I - A^{+}A)(I - tM) \right]^{l} \hat{x}$$

However since $t < 1/\lambda_{\text{max}}(M)$, the matrix I - tM is invertible; furthermore, since $I - A^+A$ is symmetric, the two commute (c.f., [2] Theorem 4.5.17(a)):

$$(I - A^{+}A)(I - tM) = (I - tM)(I - A^{+}A)$$

and because $I - A^+A$ is a projection matrix, $(I - A^+A)^l = I - A^+A$ for l > 0. By definition of \hat{x} , we also have that $(I - A^+A)\hat{x} = 0$. Thus, the recursion simplifies to

$$x_{k+1} = (I - A^{+}A)(I - tM)^{k}x_{0} + \hat{x}$$

and in the limit, supposing that $W^{\top}W$ projects onto ker M,

$$x_{\infty} = (I - A^{+}A)W^{\top}Wx_{0} + \hat{x}$$

References

- [1] Stephen P Boyd and Lieven Vandenberghe. *Convex Optimization*. Cambridge University Press, 2004.
- [2] Roger A Horn and Charles R Johnson. *Matrix Analysis*. Cambridge University Press, 2012.