

Investigating Deep Neural Networks (DNNs) Through Learning Rule-Specific Representational Profiles

By: Bati Yilmaz, Omid Amiratashani, Chengcheng Du, Ghanendra Singh

Pod name: Appreciative Nemesia

Group name: µRepresent

Introduction

Main Question

How and to what extent

DNNs having the same architecture, trained on the same dataset but using different learning rules exhibit unique representational profiles?

Side Quest

Specifically, the comparison of an artificial and a bio-plausible learning rule: Backpropagation (BP) and Feedback Alignment (FA), respectively.

Methodology

Utilized Pytorch and BioTorch (Sanfiz and Akrout, 2021) library to implement FA.

We used the same parameters:

- Cross Entropy Loss
- Adam Optimizer
- Learning Rate 0.0001
- 100 epochs

We Used CIFAR-10 dataset.

Credits to Dennis Layh in the memes channel

Same CNN Architecture

Architecture:

Height | Width | Depth | filter Height | filter Width

Vector Length

Made with https://alexlenail.me/NN-SVG/AlexNet.html

Results

Losses across (FA vs BP)

Results

RDMs across layers for Trained Backpropagation Model with Standard Images

RDMs BP

Trained BP

Accuracy

72.31%

RDMs across layers for Random Backpropagation Model with Standard Images

RDM: Representational Dissimilarity Matrix

Results

RDMs across layers for Trained Feedback Alignment Model with Standard Images

RDMs FA

Trained FA

Accuracy

62.86%

RDMs across layers for Random Feedback Alignment Model with Standard Images

RDM: Representational Dissimilarity Matrix

Conclusion / Discussion

- **Representations** of the same category of clean images appear remarkably similar in deeper layers, exhibiting a block diagonal structure, while earlier layers captures more general and granular visual features in DNN.
- **Backpropagation** achieves higher accuracy than feedback alignment as it uses precise gradient information to update weights, ensuring more effective and optimal learning of the network parameters.
- **Feedback alignment** shows competitive performance on **simpler tasks** but 3. falls behind with more complex ones like CIFAR-10, which are crucial for understanding (biologically plausible) learning processes in human brain with insights from neuroscience. (Kolen and Pollack, 1994; Lillicrap et al., 2016; Sanfiz and Akrout, 2021)

References

- Ahmad N, Ambrogioni L, van Gerven MA (2020) Overcoming the weight transport problem via spike-timing-dependent weight inference. arXiv: 2003.03988.
- Cichy RM, Kaiser D (2019) Deep neural networks as scientific models. Trends Cogn Sci 23:305–317.
- Kolen JF, Pollack JB (1994) Backpropagation without weight transport. In: Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94), pp 1375–1380 vol.3.
- Lillicrap TP, Cownden D, Tweed DB, Akerman CJ (2016) Random synaptic feedback weights support error backpropagation for deep learning. Nat Commun 7:13276.
- Lillicrap TP, Santoro A, Marris L, Akerman CJ, Hinton G (2020) Backpropagation and the brain. Nat Rev Neurosci 21:335–346.
- Mehrer J, Spoerer CJ, Kriegeskorte N, Kietzmann TC (2020) Individual differences among deep neural network models.
 Nat Commun 11:5725.
- Sanfiz AJ, Akrout M (2021) Benchmarking the accuracy and robustness of feedback alignment algorithms. arXiv: 2108.13446.

Aakash Agrawal

Thank you for your attention!

And a special thanks to our TA, Alish Dipani, our project TA, Aakash Agrawal!

Also the Kolen-Pollack algorithm (Kolen and Pollack, 1994), which proposed a very similar bio-plausible learning rule idea before.

General Discussion / Q&A

Do you have any questions or remarks?

