Count of Subset Sum

count of sumset sum explain all the mathods and code in c++

The **Count of Subset Sum** problem involves finding the number of subsets in an array whose elements sum to a given target value, `sum`. Below, I'll explain different methods to solve this problem, along with their respective C++ implementations.

Problem Statement

Given an array `arr` of size `n` and a target sum `\$`, find the number of subsets in `arr` whose sum equals `\$`.

Method 1: Recursive Approach (Brute Force)

Explanation

This method explores all possible subsets using recursion. For each element in the array:

- Include the element in the current subset.
- Exclude the element from the current subset.

Algorithm

- 1. Base Case:
 - If `sum == 0`, return 1 (empty subset counts as a valid subset).
 - If `n == 0` and `sum != 0`, return 0 (no subsets possible).
- 2. Recursive Case:
 - Include the current element and reduce the sum.
 - o Exclude the current element and keep the sum unchanged.
- 3. Return the sum of the above two cases.

Code (Recursive)

```
#include <iostream>
using namespace std;
int countSubsetsRecursive(int arr[], int n, int sum) {
   if (sum == 0) return 1; // Found a valid subset
   if (n == 0) return 0; // No elements left

   if (arr[n - 1] <= sum) {
        // Include the element and exclude the element</pre>
```

Method 2: Recursive with Memoization

Explanation

The recursive approach has overlapping subproblems, so we can use **Dynamic Programming** (**Memoization**) to store results of previously solved subproblems to optimize the solution.

Algorithm

• Use a 2D `dp` table where `dp[i][j]` represents the count of subsets from the first `i` elements that sum up to `j`.

Code (Recursive with Memoization)

```
срр
 #include <iostream>
 #include <vector>
 using namespace std;
 int countSubsetsMemo(int arr[], int n, int sum, vector<vector<int>> &dp) {
      if (sum == 0) return 1;
      if (n == 0) return 0;
      if (dp[n][sum] != -1) return dp[n][sum];
      if (arr[n - 1] <= sum) {</pre>
          dp[n][sum] = countSubsetsMemo(arr, n - 1, sum - arr[n - 1], dp) +
                         countSubsetsMemo(arr, n - 1, sum, dp);
      } else {
          dp[n][sum] = countSubsetsMemo(arr, n - 1, sum, dp);
      return dp[n][sum];
 }
 int main() {
      int arr[] = \{1, 2, 3, 3\};
      int sum = 6;
      int n = sizeof(arr) / sizeof(arr[0]);
      vector<vector<int>> dp(n + 1, vector<int>(sum + 1, -1));
cout << "Count of subsets: " << countSubsetsMemo(arr, n, sum, dp) << endl;</pre>
      return 0;
 }
```

Method 3: Tabulation (Bottom-Up DP)

Explanation

Use a 2D `dp` array to iteratively fill in the number of subsets that achieve a given sum.

Steps

- 1. Create a `dp` table of size `(n+1) x (sum+1)`.
- 2. Initialize:
 - o `dp[i][0] = 1` (one way to make sum 0, by taking no elements).
 - \circ `dp[0][j] = 0` for `j > 0` (no way to make positive sum with zero elements).
- 3. Iterate over the array and fill the table.

Code (Tabulation)

```
срр
 #include <iostream>
 #include <vector>
 using namespace std;
 int countSubsetsTabulation(int arr[], int n, int sum) {
      vector<vector<int>> dp(n + 1, vector<int>(sum + 1, 0));
      for (int i = 0; i \le n; i++) dp[i][0] = 1;
      for (int i = 1; i <= n; i++) {</pre>
          for (int j = 1; j <= sum; j++) {
   if (arr[i - 1] <= j) {</pre>
                   dp[i][j] = dp[i - 1][j - arr[i - 1]] + dp[i - 1][j];
              } else {
                   dp[i][j] = dp[i - 1][j];
          }
      }
      return dp[n][sum];
 int main() {
      int arr[] = \{1, 2, 3, 3\};
      int sum = 6;
      int n = sizeof(arr) / sizeof(arr[0]);
      cout << "Count of subsets: " << countSubsetsTabulation(arr, n, sum) << endl;</pre>
      return 0;
 }
```

Method 4: Space Optimized DP

Explanation

Instead of using a 2D 'dp' array, we use a 1D array to store results. This reduces space complexity from $O(n \times \text{sum})$ to O(sum).

Code (Space Optimized)

```
срр
 #include <iostream>
  #include <vector>
  using namespace std;
  int countSubsetsSpaceOptimized(int arr[], int n, int sum) {
      vector<int> dp(sum + 1, 0);
      dp[0] = 1;
      for (int i = 0; i < n; i++) {</pre>
           for (int j = sum; j >= arr[i]; j--) {
    dp[j] += dp[j - arr[i]];
       return dp[sum];
  }
  int main() {
      int arr[] = {1, 2, 3, 3};
      int sum = 6;
      int n = sizeof(arr) / sizeof(arr[0]);
cout << "Count of subsets: " << countSubsetsSpaceOptimized(arr, n, sum) << endl;</pre>
  }
```

Time and Space Complexities

Method	Time Complexity	Space Complexity
Recursive (Brute Force)	$O(2^n)$	O(n)
Recursive with Memoization	O(n imes S)	O(n imes S)
Tabulation (Bottom-Up)	O(n imes S)	O(n imes S)
Space Optimized DP	O(n imes S)	O(S)

Each method is suitable for different use cases, depending on the size of the input and the need for optimization.