```
log_{n} = NewtonRaphsonErroriter[x0_, n_, error_, f_] := Module[xx1, xk = N[x0], k = 0;
         Output = {{k, x0, f[x0], None}};
         approxError = 10000000;
         While [n > k && approxError > error, fPrimexk = f'[xk];
          If[fPrimexk == 0,
           Print["The derivative of function at ", k,
            "ith iteration is zero, we can not proceed further with the iterative scheme"];
           Break[]];
          xk1 = xk - f[xk] / fPrimexk;
          approxError = Abs[xk1 - xk];
          xk = xk1;
          k++;
          Output = Append[Output, {k, xk, f[xk], approxError}];];
         Print[NumberForm[
            TableForm[Output, TableHeadings \rightarrow {None, {"k", "x<sub>k</sub>", "f[x<sub>k</sub>]", "ApproxError"}}], 8]] \times
          If [k < n, Print["The stated accuracy achieved in fewer iterations (less than",
     Print["Maximum allowed ", n,
            " iterations are performed, stated accuracy is not achieved"]];
     Print["Root after ", k," iterations x_k=", NumberForm[xk, 8]];
         Print["Function value at approximated root, f[x_k] = ", NumberForm[f[x_k], 8]];
     f[x] := x^4 - x - 10;
     error = 10^{(-4)};
     Plot[f[x], \{x, 0, 4\}]
     200
     150
Out[ • ]=
     100
      50
```

In[*]:= NewtonRaphsonErroriter[2, 5, error, f]

k	x_k	$f[x_k]$	ApproxError
0	2	4	None
1	1.8709677	0.38267457	0.12903226
2	1.8557807	0.0048181285	0.01518704
3	1.8555846	7.9489422×10^{-7}	0.00019614069
4	1.8555845	$1.9539925 \times 10^{-14}$	3.2369946×10^{-8}

The stated accuracy achieved in fewer iterations (less than5)

Root after 4 iterations $x_k=1.8555845$

Function value at approximated root , $f[x_k] = 1.9539925 \times 10^{-14}$

In[@]:= NewtonRaphsonErroriter[1, 7, error, f]

```
k
                   f[x_k]
                                   ApproxError
     \mathbf{x}_{k}
0
     1
                                   None
1
     4.2685954
                    -9.1443575
                                   3.2685954
                                   1.4960618
2
     5.7646573
                   -12.676557
     8.4311492
                   -9.8802893
                                   2.6664919
4
                                   0.14701717
     8.5781664
                   -18.568188
     8.9341748
                   -15.14397
                                   0.35600842
6
     15.576656
                   -25.648537
                                   6.6424808
7
     16.049615
                   -21.89247
                                   0.47295955
```

Maximum allowed 7 iterations are performed, stated accuracy is not achieved

Root after 7 iterations $x_k=16.049615$

Function value at approximated root , $f[x_k] = -21.89247$

Question 2:

```
l_{n/e}:= NewtonRaphsonErroriter[x0_, n_, error_, f_] := Module[{xk1, xk = N[x0]}, k = 0;
        Output = {{k, x0, f[x0], None}};
        approxError = 10000000;
        While [n > k && approxError > error, fPrimexk = f'[xk];
         If[fPrimexk == 0,
          Print["The derivative of function at ", k,
           "ith iteration is zero, we can not proceed further with the iterative scheme"];
          Break[]];
         xk1 = xk - f[xk] / fPrimexk;
         approxError = Abs[xk1 - xk];
         xk = xk1;
         k++;
         Output = Append[Output, {k, xk, f[xk], approxError}];];
        Print[NumberForm[
           If [k < n, Print ["The stated accuracy achieved in fewer iterations (less than ",
           n, ")"],
    Print["Maximum allowed", n,
           " iterations are performed, stated accuracy is not achieved"]];
    Print["Root after ", k," iterations x_k=", NumberForm[xk, 8]];
        Print["Function value at approximated root, f[x_k] = ", NumberForm[f[x_k], 8]];];
    f[x_] := Tan[Pi * x] - x - 6;
    error = 10^{(-5)};
    Plot[f[x], \{x, 0, 4\}]
                             2
                                         3
Out[ • ]=
     -10
     -15
```

In[@]:= NewtonRaphsonErroriter[0.45, 20, error, f]

k	x_k	$f[x_k]$	ApproxError
0	0.45	-0.13624849	None
1	0.45106965	0.0029771478	0.001069653
2	0.45104727	1.3607342×10^{-6}	0.000022383938
3	0.45104726	$\textbf{2.8510527} \times \textbf{10}^{-13}$	$\textbf{1.0240154} \!\times\! \textbf{10}^{-8}$

The stated $\mbox{accuracy}$ $\mbox{achieved in fewer iterations}$ (less than 20)

Root after 3 iterations $x_k=0.45104726$

Function value at approximated root , $\texttt{f}\left[\left.x_{k}\right.\right] = 2.8510527 \times 10^{-13}$

NewtonRaphsonErroriter[0.52, 20, error, f];

k	xk	f[xk]	ApproxError
0	0.52	-22.414545	None
1	0.54816525	-13.106354	0.028165248
2	0.64365016	-8.7070057	0.095484917
3	1.2047871	-6.4550114	0.5611369
4	2.8566646	-9.3400915	1.6518775
5	6.104502	-11.763872	3.2478374
6	10.798585	-17.531943	4.6940825
7	15.374695	-18.967001	4.5761109
8	16.30658	-20.868605	0.93188455
9	18.722573	-25.911666	2.4159925
10	22.658345	-30.499949	3.9357729
11	25.041839	-30.909635	2.3834937
12	39.114056	-44.739572	14.072217
13	56.440441	-57.15851	17.326385
14	57.077033	-62.830188	0.63659239
15	84.007891	-89.983095	26.930858
16	125.98693	-132.02801	41.979041
17	187.48416	-173.40522	61.497228
18	187.62084	-196.12726	0.13667754
19	196.58562	-206.21309	8.9647854
20	201.3283	-205.65784	4.7426748

Maximum allowed 20iterations are performed, stated accuracy is not achieved

Root after 20iterations xk= 201.3283

Function value at approximated root, f[xk] = -205.65784

Question 3:

```
log_{n} = NewtonRaphsonErroriter[x0_, n_, error_, f_] := Module[xx1, xk = N[x0], k = 0;
        Output = {{k, x0, f[x0], None}};
        approxError = 10000000;
        While [n > k && approxError > error, fPrimexk = f'[xk];
         If[fPrimexk == 0,
          Print["The derivative of function at ", k,
            "ith iteration is zero, we can not proceed further with the iterative scheme"];
          Break[]];
         xk1 = xk - f[xk] / fPrimexk;
         approxError = Abs[xk1 - xk];
         xk = xk1;
         k++;
         Output = Append[Output, {k, xk, f[xk], approxError}];];
        Print[NumberForm[
            TableForm[Output, TableHeadings \rightarrow {None, {"k", "x<sub>k</sub>", "f[x<sub>k</sub>]", "ApproxError"}}], 8]] \times
         If [k < n], Print ["The stated accuracy achieved in fewer iterations (less than",
    Print["Maximum allowed", n,
            "iterations are performed, stated accuracy is not achieved"]];
    Print["Root after ", k," iterations x_k=", NumberForm[xk, 8]];
        Print["Function value at approximated root, f[x_k] = ", NumberForm[f[x_k], 8]];
    f[x] := 2 * x^3 - 9 * x^2 + 12 * x + 5;
    tangentAt1[x_] = f[1] + f'[1] * (x - 1);
    Plot[\{f[x], tangentAt1[x]\}, \{x, -1, 2\}, PlotLegends \rightarrow "Expressions"]
    NewtonRaphsonErroriter[1, 20, error, f]
                      8
```


The derivative of function at 0

ith iteration is zero, we can not proceed further with the iterative scheme

k	x_k	$f[x_k]$	ApproxError
0	1	10	None

The stated accuracy achieved in fewer iterations (less than20)

Root after 0 iterations $x_k=1$.

Function value at approximated root , $f[x_k] = 10$.