EAIiIB	Piotr Morawiecki, Tymoteusz Paszun		Rok II	Grupa 3a	Zespół 6
Temat: Fale podłużne w ciałach stałych			Numer ćwiczenia: 29		
Data wykonania: 8.11.2017r.	Data oddania: Zwrot do poprawki: 15.11.2017r.		Data oddania:	Data zaliczenia:	Ocena:

1 Cel ćwiczenia

Celem ćwiczenia jest wyznaczenie modułu Younga dla różnych materiałów na bazie pomiarów prędkości rozchodzenia się fal dźwiękowych (podłóżnych) w prętach.

2 Wstęp teoretyczny

Moduł Younga (E) to współczynnik sprężystości podłużnej. Określa on własnści sprężyste ciała stałego, charakteryzując podatność materiału na odkształcenia podłużne: rozciąganie, ściskanie, zgniatanie. Jego jednostką jest pascal (Pa). Z teorii drgań sprężystych oraz równania ruchu fali wiemy, że prędkość rozchodzeniasię fali wciele stałym zależy od gęstości oraz Modułu Younga, co opisuje wzór:

$$v = \sqrt{\frac{E}{\rho}}$$

Przekształcając powyższy wzór otzrymujemy:

$$E = \rho v^2$$

Interferencja fal jest to zjawisko nakładania się fal na siebie, w wyniku czego powstaje nowy, przestrzenny rozkład amplitudy fali. Jeśli w pręcie interferują fala stojąca i fala padająca to powstaje fala stojąca. Wzór na długość fali stojącej:

$$l = \frac{1}{2}\lambda$$

l - długość między węzłami fali, λ - długość fali Korzystając z tego wzoru możemy wyliczyć wzór na prędkość fali w pręcie:

$$v = 2lf$$

Wyprowadzamy wzór na moduł Younga, z którego skorzystamy w ćwiczeniu:

$$E = 4\rho l^2 f^2$$

Szybka transformata Fouriera jest to algorytm wyliczania dyskretnej transformaty Fouriera oraz transformaty do niej odwrotnej. Wykorzystamy ją w ćwiczeniu, aby wyznaczyć częstotliwości kolejnych harmonicznych fali.

$$v_i = \lambda_i f$$

3 Wykonanie ćwiczenia

- Pomiary wymiarów próbek badanych materiałów.
- Pomiary masy próbek badanych materiałów.
- Pomiary częstotliwości dźwieku wydawanego przez pręty po uderzeniu.

4 Wyniki pomiarów

4.1 Wymiary oraz masa próbek

4.2 Pręt miedziany

Zmierzona długość pręta miedzianego: $l=1802\,\mathrm{mm}$.

Tablica 1: Pomiary masy i wymiarów próbek badanych materiałów

Materiał	Masa [g]	Wymiary [mm]	Objętość [mm³]	Gęstość $\left[\frac{kg}{m^3}\right]$
$\operatorname{mied} olimits$	66	d = 4,85, l = 385	7112,69	$9279,\!19$
stal	30,851	a = 14, 15, b = 14, 25, c = 19, 8	3992,42	7727,39
${ m mosiadz}$	74	d=6, l=312	$8821,\!59$	8388,51
aluminium	24	d=5, l=442	8678,65	$2765,\!41$

Tablica 2: Pomiary częstotliwości dla pręta miedzianego

Harmoniczna	Częstotliwość [Hz]	Delta pomiaru częstotliwości [Hz]	Długość fali [mm]	Prędkość fali $\left[\frac{m}{s}\right]$
f_0	$\frac{1027,1+1031,8}{2} = 1029,45$	4,81	3604,00	3710,14
f_1	$\frac{2059,7+2062,1}{2} = 2060,90$	$2,\!35$	1802,00	3713,74
f_2	$\frac{3090,9+3094,4}{2} = 3092,65$	$3,\!53$	$1201,\!33$	3715,30
f_3	$\frac{4121,7+4125,2}{2} = 4123,45$	$3,\!53$	901,00	$3715,\!23$
f_4	$\frac{5154,0+5157,6}{2} = 5155,80$	3,53	720,80	3716,30
			Średnia:	3714,14

4.3 Pręt stalowy

Zmierzona długość pręta stalowego: $l=1802\,\mathrm{mm}.$

Tablica 3: Pomiary częstotliwości dla pręta stalowego

Harmoniczna	Częstotliwość [Hz]	Delta pomiaru częstotliwości [Hz]	Długość fali [mm]	Prędkość fali $\left[\frac{m}{s}\right]$
f_0	$\frac{1401,80+1407,70}{2} = 1404,75$	5,88	3604,00	5062,72
f_1	$\frac{2903,80+2907,40}{2} = 2905,60$	$3,\!53$	1802,00	$5235,\!89$
f_2	$\frac{4309,90+4314,60}{2} = 4312,25$	4,71	$1201,\!33$	5180,45
f_3	$\frac{5715,40+5719,00}{2} = 5717,20$	$3,\!53$	901,00	$5151,\!20$
f_4	$\frac{7123,30+7217,40}{2} = 7170,35$	94,12	720,80	$5168,\!38$
			Średnia:	5159,73

4.4 Pręt z mosiądzu

Zmierzona długość pręta wykonanego z mosiądzu: $l=998\,\mathrm{mm}.$

4.5 Pręt aluminiowy

Zmierzona długość pręta wykonanego z aluminium: $l=1800\,\mathrm{mm}.$

Tablica 4: Pomiary częstotliwości dla pręta z mosiądzu

Harmoniczna	Częstotliwość [Hz]	Delta pomiaru częstotliwości [Hz]	Długość fali [mm]	Prędkość fali $\left[\frac{m}{s}\right]$
f_0	$\frac{1679,80+1685,70}{2} = 1682,75$	5,88	1996,00	3358,77
f_1	$\frac{3463,20+3472,10}{2} = 3467,65$	8,82	998,00	3460,71
f_2	$\frac{5149,20+5161,00}{2} = 5155,10$	11,76	$665,\!33$	3429,86
f_3	$\frac{6837,50+6940,40}{2} = 6888,95$	$102,\!94$	499,00	3437,59
f_4	$\frac{8615,10+8629,80}{2} = 8622,45$	14,71	399,20	3442,08
			Średnia:	3425,80

Tablica 5: Pomiary częstotliwości dla pręta aluminiowego

Harmoniczna	Częstotliwość [Hz]	Delta pomiaru częstotliwości [Hz]	Długość fali [mm]	Prędkość fali $\left[rac{m}{s} ight]$
f_0	$\frac{2422,10+2439,70}{2} = 2430,90$	17,65	3600,00	8751,24
f_1	$\frac{4954,40+4972,10}{2} = 4963,25$	$17,\!65$	1800,00	$8933,\!85$
f_2	$\frac{7389,70+7407,40}{2} = 7398,55$	$17,\!65$	1200,00	8878,26
f_3	$\frac{9832,70+9926,80}{2} = 9879,75$	$94,\!12$	900,00	8891,78
f_4	$\frac{11415,00+11432,00}{2} = 11423,50$	17,65	720,00	8224,92 (wynik odstający)
			Średnia:	8863,78

5 Wykresy

6 Opracowanie wyników

6.1 Analiza błędów

W uzyskanych pomiarach zauważyliśmy odstający wynik pomiaru częstotliwości czwartej harmonicznej dla pręta aluminiowego. Odstający wynik wyłączyliśmy z analizy średniej prędkości rozchodzenia się fali w tym ośrodku.

6.2 Niepewności pomiarów

Wymiary próbek badanych materiałów zostały wykonane:

- suwmiarką o dokładności 0,01 mm dla wymiarów poniżej 50 mm,
- taśmą mierniczą o dokładności 1 mm dla pozostałych wymiarów.

Masa próbek miedzi, mosiądzu i aluminium została zmierzona wagą o dokładności 1 g, masa próbki stali wagą o dokładności 0,001 g.

Długości badanych prętów zostały zmierzone taśmą mierniczą o dokładności 1 mm.

Niepewność złożona powierzchni prostokąta:

$$u(P_p) = \sqrt{\left(\frac{\partial P_p}{\partial b}u(b)\right)^2 + \left(\frac{\partial P_p}{\partial a}u(a)\right)^2} = \sqrt{\left(bu(a)\right)^2 + \left(au(b)\right)^2}$$

Niepewność złożona powierzchnii koła:

$$u(P_p) = \sqrt{\left(\frac{\partial P_p}{\partial d}u(d)\right)^2} = \sqrt{\left(\frac{\pi}{2}du(d)\right)^2}$$

Niepewność złożona objętości:

$$u(V) = \sqrt{\left(\frac{\partial V}{\partial h}u(h)\right)^2 + \left(\frac{\partial V}{\partial P_p}u(P_p)\right)^2} = \sqrt{\left(hu(P_p)\right)^2 + \left(P_pu(h)\right)^2}$$

Niepewność złożona gęstości:

$$u(V) = \sqrt{\left(\frac{\partial \rho}{\partial V} u(V)\right)^2 + \left(\frac{\partial \rho}{\partial \lambda} u(\lambda)\right)^2} = \sqrt{\left(-\frac{m}{V^2} u(V)\right)^2 + \left(\frac{1}{V} u(m)\right)^2}$$

Niepewność złożona gęstości:

$$u(V) = \sqrt{\left(\frac{\partial v}{\partial f}u(f)\right)^2 + \left(\frac{\partial v}{\partial \lambda}u(\lambda)\right)^2} = \sqrt{\left(\lambda u(f)\right)^2 + \left(fu(\lambda)\right)^2}$$

Niepewność złożona modułu Younga:

$$u(V) = \sqrt{\left(\frac{\partial E}{\partial \rho}u(\rho)\right)^2 + \left(\frac{\partial E}{\partial v}u(v)\right)^2} = \sqrt{\left(v^2u(\rho)\right)^2 + \left(2\rho v u(v)\right)^2}$$

6.3 Ocena zgodności uzyskanych wyników

7 Wnioski