Esame del 24.06.2024

Algoritmi e Laboratorio

Parte B

Esercizio 1. Si consideri l'equazione di ricorrenza

$$T(n) = 2T\left(\frac{n}{b}\right) + \sqrt[3]{n}.\tag{1}$$

- **A**. Si risolva l'equazione (1) al variare del parametro reale b > 1, utilizzando il metodo Master.
- **B**. Si stabilisca per quali valori di b la soluzione T(n) all'equazione (1) soddisfa le seguenti condizioni

(i.)
$$T(n) = \Theta(n)$$
 (ii.) $T(n) = \Omega(\sqrt[3]{n}\log(n))$ (iii.) $T(n) = o(\sqrt[3]{n}\log(n))$.

C. Si disegni uno sketch dell'albero di ricorrenza associato all'equazione (1) per b=2.

Esercizio 2. Sia * l'operazione si numeri natural definita da

$$a \star b := 2a + 3b$$
.

L'operazione \star non è associative, infatti, ad esempio, $(1 \star 5) \star 2 = 2(2+15) + 3 \cdot 2 = 40$ è diverso da $1 \star (5 \star 2) = 2 + 3(10+6) = 50$. Ha allora senso considerare il seguente problema di ottimizzazione computazionale.

Max-*-Value Problem

INPUT: $a_1, a_2, \ldots, a_n \in \mathbb{N}$.

GOAL: trovare una parentesizzazione di $a_1 \star a_2 \star \cdots \star a_n$ che ne massimizza il valore (cioè il risultato).

Si dimostri che MAX-*-VALUE PROBLEM gode della proprietà di sottostruttura ottima. Suggerimento: il problema è molto simile a MATRIX-CHAIN MULTIPLY.

Soluzioni

Esercizio 1. A. La funzione driving e la funzione watershed sono $f(n) = \sqrt[3]{n}$ e $w(n) = n^{\log_b 2}$, rispettivamente.

<u>Caso 1 < b < 8:</u> $\log_b 2 < \frac{1}{3}$ e quindi per $0 < \varepsilon < \log_b 2 - \frac{1}{3}$ si ha che $f(n) = \sqrt[3]{n} = \mathcal{O}\left(n^{\log_b 2 - \varepsilon}\right)$. Allora, per il Teorema Master, $T(n) = \Theta(n^{\log_b 2})$.

<u>Caso b = 8:</u> $\log_b 2 = \frac{1}{3}$ e quindi per k = 0 si ha che $f(n) = \sqrt[3]{n} = \Theta\left(n^{\log_b 2} \log^k n\right) = \Theta\left(n^{\log_8 2} \log^0 n\right)$. Allora, per il Teorema Master, $T(n) = \Theta(\sqrt[3]{n} \log n)$.

<u>Caso b > 8:</u> $\log_b 2 < \frac{1}{3}$ e quindi per $0 < \varepsilon < \frac{1}{3} - \log_b 2$ si ha che $f(n) = \sqrt[3]{n} = \Omega\left(n^{\log_b 2 - \varepsilon}\right)$. Inoltre, è soddisfatta la condizione di regolarità; infatti, per $\frac{2}{\sqrt[3]{b}} \le c < 1$ si ha $\frac{2}{\sqrt[3]{b}} \sqrt[3]{n} < c\sqrt[3]{n}$, e per mostrare che un tale c esiste basta osservare che $\frac{2}{\sqrt[3]{b}} < 1$. Allora, per il Teorema Master, $T(n) = \Theta(\sqrt[3]{n})$.

- **B**. (i) $T(n) = \Theta(n)$ si verifica solo per b = 2, poiché entrambi gli ordini di grandezza $\Theta(\sqrt[3]{n}\log(n))$ e $\Theta(\sqrt[3]{n})$ sono asintoticamente inferiori a n.
 - (ii) Per $1 < b \le 8$, si ha $T(n) = \Omega(\sqrt[3]{n})$, infatti entrambi gli ordini di grandezza $\Theta(\sqrt[3]{n} \log n)$ e $\Theta(n^{\log_b 2})$ sono superiori o uguali a $\sqrt[3]{n} \log n$.
 - (iii) Per b > 8, si ha $T(n) = \Theta(\sqrt[3]{n})$ che è $o(\sqrt[3]{n})$, mentre entrambi gli ordini di grandezza $\Theta(\sqrt[3]{n}\log n)$ e $\Theta(n^{\log_b 2})$ sono superiori o uguali a $\sqrt[3]{n}\log n$.
- C. La radice ha costo $\sqrt[3]{n}$. Ogni nodo ha 2 figli. All'*i*-esimo livello dell'albero ci sono 2^i nodi, ciascuno di costo $\sqrt[3]{\frac{n}{2^i}}$. L'altezza dell'albero è $h = \log_2 n$ e ci sono $2^h = 2^{\log_2 n} = n$ foglie.

Esercizio 2. Siano $1 \leq i < j \leq n$. Consideriamo il problema di parentesizzare $a_i \star a_{i+1} \star \cdots \star a_j$. Sia \mathcal{P}^{\max} una parentesizzazione ottima di $a_i \star a_{i+1} \star \cdots \star a_j$, ovvero tale che $\mathcal{P}^{\max}(a_i \star a_{i+1} \star \cdots \star a_j) \geq \mathcal{P}(a_i \star a_{i+1} \star \cdots \star a_j)$ per ogni parentesizzazione \mathcal{P} di $a_i \star a_{i+1} \star \cdots \star a_j$. Supponiamo, senza perdere generalità, che $\mathcal{P}^{\max}(a_i \star a_{i+1} \star \cdots \star a_j) = \mathcal{P}^1(a_i \star \cdots \star a_k) \star \mathcal{P}^2(a_{k+1} \star \cdots \star a_j) = 2 \cdot \mathcal{P}^1(a_i \star \cdots \star a_k) + 3 \cdot \mathcal{P}^2(a_{k+1} \star \cdots \star a_j)$.

Per dimostrare che Max-*-Value Problem ha la proprietà di sottostruttura ottima supponiamo per assurdo che la restrizione di \mathcal{P}^{\max} a uno dei due sottoproblemi, ad esempio ad $a_i \star \cdots \star a_k$, sia non ottima e facciamo vedere che questo implica una contraddizione.

Sia allora $\tilde{\mathcal{P}}^1$ una parentesizzazione di $a_i \star \cdots \star a_k$ tale che $\tilde{\mathcal{P}}^1(a_i \star \cdots \star a_k) > \mathcal{P}^1(a_i \star \cdots \star a_k)$. Possiamo definire una nuova parentesizzazione \mathcal{P}^* di $a_i \star \cdots \star a_j$ ponendo $\mathcal{P}^*(a_i \star \cdots \star a_j) = (\tilde{\mathcal{P}}^1(a_i \star \cdots \star a_k)) \star (\mathcal{P}^2(a_{k+1} \star \cdots \star a_j))$. Avremo che $\mathcal{P}^*(a_i \cdots a_j) = 2 \cdot \tilde{\mathcal{P}}^1(a_i \star \cdots \star a_k) + 3 \cdot \mathcal{P}^2(a_{k+1} \star \cdots \star a_j) > 2 \cdot \mathcal{P}^1(a_i \star \cdots \star a_k) + 3 \cdot \mathcal{P}^2(a_{k+1} \star \cdots \star a_j) > 2 \cdot \mathcal{P}^1(a_i \star \cdots \star a_k) + 3 \cdot \mathcal{P}^2(a_{k+1} \star \cdots \star a_j) = \mathcal{P}^{\max}(a_i \star \cdots \star a_j)$, che contraddice l'ipotesi per cui $\mathcal{P}^{\max}(a_i \star a_{i+1} \star \cdots \star a_j) \geq \mathcal{P}(a_i \star a_{i+1} \star \cdots \star a_j)$ per ogni parentesizzazione \mathcal{P} di $a_i \star a_{i+1} \star \cdots \star a_j$.