EDUCACIÓN
SECRETARÍA DE EDUCACIÓN PÚBLICA

Implementación del Buffer

Autor(es):

Mario Eduardo Sánchez Mejía Fidel Alberto Zarco Áviles

> 21120721@morelia.tecnm.mx l20121258@morelia.tecnm.mx

> > Asesor(@s):

Luis Ulises Chávez Campos

Resumen

Se desarrolla un sistema de piano digital mediante Arduino, integrando elementos electrónicos como buzzers, LEDs y botones pulsadores. El proyecto permite la comprensión de generación de tonos musicales a través de programación, empleando un buzzer pasivo y la función tone() de Arduino. El sistema implementa las ocho notas musicales básicas y una función para reproducir melodías MIDI convertidas. La práctica integra conceptos de electrónica digital, programación y principios musicales fundamentales.

Palabras clave: Arduino, Electrónica Digital, Programación, Piano Digital, Sistemas Programables

Plantilla de Reporte Laboratorio Sistemas Programables

Subdirección Académica
Departamento de Sistemas y Computación
Laboratorio de Sistemas Programables
Página 2 de 5

Índice

1.1 LEDs (Diodos Emisores de Luz)

1.	Introducción	2	
	1.1. LEDs (Diodos Emisores de Luz)	2	Características y Conexión (Platt, 2014)
	1.2. Botones Pulsadores	3	, , , , , ,
	1.3. Buzzer Pasivo	3	■ Polaridad:
	1.4. Resistencias	3	 Ánodo (+): Pata más larga Cátodo (-): Pata más corta
2.	Consideraciones de Diseño	3	■ Especificaciones:
3.	Objetivo del Proyecto	4	 Voltaje típico: 2,0 V - 3,3 V Corriente: 20 mA
			■ Conexión:
Referencias		5	• Ánodo \rightarrow Resistencia \rightarrow Pin • Cátodo \rightarrow GND

Índice de figuras

1 Introducción

Esta práctica se centra en la creación de 9 un piano básico utilizando Arduino, donde 10 aprenderemos a integrar múltiples componen-12 tes electrónicos para crear un sistema interactivo musical (Monk, 2017). Los pianos electrónicos modernos utilizan circuitos y componentes para generar distintas notas musicales, y en esta práctica simularemos este funcionamiento de manera simplificada (Evans et al., 2013).

```
const int ledPin = 13;

void setup() {
    pinMode(ledPin, OUTPUT);
}

void loop() {
    digitalWrite(ledPin, HIGH); // Encender
    delay(1000);
    digitalWrite(ledPin, LOW); // Apagar
    delay(1000);
}
```

Figura 1: Código de control de LED en Arduino

Subdirección Académica Departamento de Sistemas y Computación Laboratorio de Sistemas Programables Página 3 de 5

Botones Pulsadores 1.2

Características y Conexión (Scherz and Monk, 2016)

- **Tipo**: Interruptores (NO)
- Características:
 - Sin polaridad específica
 - Requieren resistencia pull-up
 - Estado normal: Abierto
- Conexión:
 - Terminal $1 \to Pin Arduino$
 - Terminal $2 \to \text{GND}$
 - R pull-up $10 \text{ k}\Omega \rightarrow 5 \text{ V}$

1.4 Resistencias

Tipos y Usos (Platt, 2014)

- Para LEDs:
 - Rango: $220 \Omega 1 k\Omega$
 - Limitan corriente
 - $R = \frac{V_{\text{fuente}} V_{\text{led}}}{r}$
- Pull-up:
 - Valor: $10 \,\mathrm{k}\Omega$
 - Mantiene estado lógico
- Código de colores:
 - 220 Ω: Rojo-Rojo-Marrón
 - 1 kΩ: Marrón-Negro-Rojo
 - 10 kΩ: Marrón-Negro-Naranja

Buzzer Pasivo 1.3

Características y Operación (Arduino, 2024)

- Características:
 - Sin oscilador interno
 - Requiere señal PWM
 - Voltaje: 3 V-12 V
- Conexión:
 - $(+) \rightarrow \text{Pin PWM Arduino}$
 - $(-) \rightarrow \text{GND}$
- Notas musicales:
 - DO (C4): 261,63 Hz
- SOL (G4): $392,00 \, \text{Hz}$
- RE (D4): 293,66 Hz
- LA (A4): $440,00\,\mathrm{Hz}$
- MI (E4): $329.63 \, \text{Hz}$
- SI (B4): $493.88\,\mathrm{Hz}$
- FA (F4): $349,23 \, \text{Hz}$
- DO (C5): $523,25\,\mathrm{Hz}$

Consideraciones de Dise-2 ño

Recomendaciones Importantes (Banzi and Shiloh, 2014)

- Pines Arduino:
 - PWM $(3,5,6,9,10,11) \to \text{buzzer}$
 - LEDs en pines consecutivos
 - Botones con pull-up interno
- Seguridad:
 - Verificar polaridad
 - Máx. $40 \,\mathrm{mA/pin}$
 - Resistencias adecuadas
 - Desconectar al modificar
- Código:
 - Constantes para pines/notas
 - Debounce en botones
 - Funciones estructuradas

EDUCACIÓN SECRETARÍA DE EDUCACIÓN PÚBLICA

3 Objetivo del Proyecto

Objetivos

El objetivo es crear un piano digital funcional que integre múltiples componentes electrónicos (Evans et al., 2013). Se desarrollarán habilidades en:

- Manejo de entradas/salidas digitales
- Generación de tonos con PWM
- Interacciones usuario-dispositivo
- Sistemas multicomponente

Instituto Tecnológico de Morelia

Subdirección Académica Departamento de Sistemas y Computación Laboratorio de Sistemas Programables Página 5 de 5

Referencias

- Arduino. Tone function reference. https://www.arduino.cc/reference/en/language/ functions/advanced-io/tone/, 2024.Available at https://www.arduino.cc/ reference/en/language/functions/advanced-io/tone/.
- Massimo Banzi and Michael Shiloh. Getting Started with Arduino. Maker Media, Inc., 3 edition, 2014. ISBN 978-1449363338.
- Martin Evans, Joshua Noble, and Jordan Hochenbaum. Arduino in Action. Manning Publications, 2013. ISBN 978-1617290244.
- Simon Monk. Programming Arduino: Getting Started with Sketches. McGraw-Hill Education, 2 edition, 2017. ISBN 978-1259641633.
- Charles Platt. Encyclopedia of Electronic Components Volume 2: LEDs, LCDs, Audio, Thyristors, Digital Logic, and Amplification. Make Community, LLC, 2014. ISBN 978-1449334185.
- Paul Scherz and Simon Monk. Practical Electronics for Inventors. McGraw-Hill Education, 4 edition, 2016. ISBN 978-1259587542.