Homework Assignment 14

Arjun Subramanian

1.
$$E[X] = \sum_{i=1}^{k} i \times 1/k \text{ or } E[X] = 1/k \times k(k+1) \div 2 \text{ or } E[X] = (k+1) \div 2.$$

2.
$$E[X] = \sum_{i=1}^{6} i^2 \times 1/6 \text{ or } 1/6 \times (1+4+9+16+25+36) \text{ or } \$91/6 \text{ or about } \$15.17.$$

3.
$$E[R] = \frac{1}{6^6} \times \sum_{i=1}^{6} i \times (i^6 - (i-1)^6) \text{ or } \frac{1}{6^6} \times (6 \times 6^6 - 5^6 - 4^6 - 3^6 - 2^6 - 1^6).$$

Calculating each term gives $E[R] = \frac{259421}{46656}$ or about 5.56.

4.

c.
$$E[S]$$
 is $1/2 \times 4 + 1/2 \times 16$ or \$10. I should switch, the expected value \$10 > \$8.

d. Switch. Since 7 is not even, it can't be the doubled box. Other box has
$$2 \times 7 = $14$$
.

5. Let
$$X_i$$
 be the random value of a pair having people with opposite sex. That way $X = \sum_{i=1}^{14} X_i$

so
$$E[X] = \sum_{i=1}^{14} E[X_i]$$
. Since every X_i has to same probability of $2(8/15 \times 7/14)$,

$$E[X_i] = 8/15$$
. Substituting $E[X] = 14 \times 8/15$ or $112/15$ about 7.47 pairs.

6. Let X_i the the random variable that the string "math" appears at index i. $E[X_i] = (1/26)^4$.

That means that
$$X$$
 (total times) is $\sum_{i=1}^{1000000-4} X_i$, so $E[X] = (1000000-4)(1/26)^4$.

Simplifying gives E[X] = 999996/456976 or 249999/114244 about 2.19 times.

- 7. Let X_i be a random variable that a pair is male-female. $E[X_i] = 2 \times n/2n \times n/(2n-1)$ or n/(2n-1). There are n pairs so, E[X] (number of male-female) is $n^2/(2n-1)$.
- 8. Let X_i be if the the i^{th} number is underlined. That means

$$E[X_i] = \frac{1}{n} (\frac{n-1}{n-1} + \frac{n-2}{n-1} \dots \frac{0}{n-1}) \text{ or } \frac{1}{n(n-1)} (n-1+n-2+\dots+0) \text{ or } \frac{1}{n(n-1)} \times \frac{n(n-1)}{2} \text{ or } \frac{1}{2}.$$
 There are $n-1$ such number so $E[X] = \frac{n-1}{2}.$

- 9.
- a. $1 (1/2)^3 = 7/8$
- b. Since $E[X_i] = 7/8$, $E[X] = 7 \times 7/8 = 49/8$ or 6.125.
- c. If there is no way to make > 6 or 7 propositions true then $E[X] \le 6$. Since the expected number of propositions is > 6 the must be at least 1 way to make all propositions true. Letting all x_i be true is an example of this.