Homework1

刘喆骐 2020013163 探微化01

T1

a.

即证明 $2n=O(n^2)$ 。由于存在 $n_0=1, c=4$,使得对于任意 $n>n_0$,有 $2n<4n^2$,故 $2n=O(n^2)$,原式得证。

b.

取 $f(n)=\Theta(g(n))$,由定义有存在 n_0,c ,使得对于任意 $n>n_0,f(n)\geq cg(n)$,这和f(n)=o(g(n))矛盾,故原命题得证。

C.

只需要寻找到一个例子即可。

例如取f(n)=cos(x)+1, g(n)=1,则有 $f(n)\leq 2\times 1=2g(n)$,故g(n)=O(f(n))。 显然,对于f(n)而言,无法找到正数 n_0,c ,使得 $f(n)\geq c\times g(n)=c$,因为f(n) 值域为[-1,1],故 g(n)不属于O(f(n))。

又由于对于任意的c>0,无法找到 n_0 使得对于任意 $n>n_0$,有f(n)< c imes g(n),故g(n)不属于o(g(n))。

故存在g(n)属于O(g(n)),而不属于O(f(n))和o(g(n))。得证。

d.

不妨假设当 $n>n_0$ 时,有f(n)>g(n).那么当 $n>n_0$ 时, $\max(f(n),g(n))>0.1(f(n)+g(n))$

显然也有max(f(n),g(n)) < 2(f(n)+g(n))

故存在 $c_1=0.1, c_2=2, n_0$,使得对任意 $n>n_0, c_1 imes(f(n)+g(n))< max(f(n),g(n))< c_2 imes(f(n)+g(n))$

故 $max(f(n), g(n)) = \Theta(f(n) + g(n))$

T3-2

\overline{A}	В	0	0	Ω	ω	Θ
$-lg^k n$	n^ϵ	T	T	F	F	\overline{F}
n^k	c^n	T	T	F	F	F
\sqrt{n}	n^{sinn}	F	F	F	F	F
2^n	$2^{rac{n}{2}}$	F	F	T	T	F
n^{lgc}	c^{lgn}	T	F	T	F	T
lg(n!)	$lg(n^n)$	T	F	T	F	T

T3-3

```
1. 顺序: 从小到大
1, n^{rac{1}{lg(n)}}
lg(lg^*(n))
lg^*(lg(n))
lg^*(n)
2^{lg^*n}
ln(ln(n))
 \sqrt{lg(n)}
ln(n)
(lgn)^2
2^{\sqrt{2lgn}}
\sqrt{2}^{lgn}
n,2^{lgn}
nlgn, log(n!)
n^2,4^{lgn}
n^3
n^{lglgn}, lg(n)!
lgn^{lgn}
1.5^{n}
2^n
e^n
n*2^n
n!
```

(n + 1)!

$$2^{2^n} \ 2^{2^{n+1}}$$

2. $f(n) = 4^{4^n} + cos(n\pi/2)4^{4^n}$,n为正整数。