

Builders Online Series

9 ways to optimize your costs in the cloud

Gabe Hollombe Senior Developer Advocate, Amazon Web Services

@gabehollombe

Today's focus

Tools and approaches that you can use to optimize AWS costs

Before we start...

the nine ways

- 1. Stop paying for idle Amazon EC2 and Amazon RDS instances
- 2. Use Arm-based Amazon EC2 instances
- 3. Choose Amazon EC2 Spot Instances
- 4. Stop paying for under-utilized Amazon EC2 instances
- 5. Use an Amazon S3 lifecycle policy to transition objects to S3 IA or S3 Glacier
- 6. Use the Amazon S3 Intelligent Tiering storage class
- 7. Use an Amazon S3 Gateway endpoint from your VPC private subnets
- 8. Use on-demand capacity mode for Amazon DynamoDB
- Use Compute Savings Plans

Implementation time: Minutes to hours

Stop paying for idle Amazon Elastic Compute Cloud (Amazon EC2) and Amazon Relational Database Service (Amazon RDS) instances

Scenario

- You leave instances running during evenings, weekends, and holidays
- You might be paying for Amazon EC2 and Amazon RDS instances even when they are idle

Solution: AWS Instance Scheduler

Pay for what you need

Days of the week

Schedule Amazon EC2 and Amazon RDS instances in non-production environments

Implementation time	Savings potential	Time to realize savings	Commitment required
Minutes to hours	Reduce on-demand costs by up to 35%*	Minutes	None

^{*} For an example instance schedule that stops them on Friday at 6pm and starts them again on Monday at 6am

Get started

1 Install the AWS Instance Scheduler

Create schedule based on business requirements

Tag non-production Amazon EC2 and Amazon RDS instances to be scheduled

https://aws.amazon.com/solutions/instance-scheduler/

Implementation time: Minutes to hours

Use Arm-based Amazon EC2 instances

Scenario

- You are running typical open-source application stacks deployed on Intel x86-64 architectures
- You might be able to run the same software on instances using AWS Graviton2
 Arm-based chip

Solution: Migrate to AWS Graviton2-based instances like the Amazon EC2 M6g, C6g, and R6g

Resize, pause, and resume Amazon Redshift clusters

Implementation	Savings	Time to realize	Commitment
time	potential	savings	required
Hours to days	Up to 40% better price performance over comparable x86-based instances for many workloads	Hours	None

Get started

Select the Amazon Machine Image (AMI) corresponding to the Arm version of your favorite distribution when launching an instance in the AWS Management Console.

Be sure to select the 64-bit (Arm) button on the right part of the screen.

For info on building for AWS Graviton2 see https://github.com/aws/aws-graviton-gettting-started

Implementation time: Hours/days to weeks

Choose Amazon EC2 Spot instances

Scenario

- You are running big data, containerized workloads, CI/CD, web servers, high-performance computing, or other test & development workloads that are fault-tolerant
- You are paying the default on-demand pricing

Solution: Amazon EC2 Spot

Choose Amazon EC2 Spot for workloads that are stateless, fault-tolerant, and loosely-coupled

Implementation time	Savings potential	Time to realize savings	Commitment required
Hours/days to weeks	Up to 90% less than on-demand pricing	Hours	None

Getting started

Self-service Amazon EC2 Spot references

Amazon EC2 Spot workshops

https://ec2spotworkshops.com/

Cost Optimize Big Data Workloads

https://aws.amazon.com/ec2/spot/use-case/emr/

Amazon ECS, Amazon EKS, and AWS Fargate Spot

https://aws.amazon.com/ec2/spot/containers-for-less/get-started/

https://aws.amazon.com/blogs/compute/run-your-kubernetes-workloads-on-amazon-ec2-spot-instances-with-amazon-eks/

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/fargate-capacity-providers.html

Implementation time: Minutes/hours to days

Stop paying for underutilized Amazon EC2 instances

Scenario

- You are running Amazon EC2 workloads that are compute-intensive but CPU usage stays under 40%
- You may be paying for overprovisioned instances

Solution: Amazon EC2 Resource Optimization Recommendations in AWS Cost Explorer

Right size or terminate underutilized Amazon EC2 instances identified by AWS Cost Explorer

Implementation	Savings	Time to realize	Commitment required
time	potential	savings	
Minutes/hours to days	\$100s to \$1000s	Hours	None

Get started

AWS Cost Explorer will provide you with Amazon EC2 rightsizing recommendations

- Enable rightsizing recommendations in the AWS Cost Explorer
- Review individual rightsizing recommendations
- Perform the Amazon EC2 instance size modifications

Underutilized Amazon EC2 instance details Details Account name Account ID Instance ID Region US East (Oh Utilization () On-Demand hours Total running hours @ Network capacity @ 333 Recommended action We recommend that you modify your underutilized m5.xlarge instance to a m5.large instance in order to save an estimated \$828 annually. You can improve these recommendations by installing the CloudWatch Agent. Learn more AWS recommendation m5.large Network capacity: Up to 10 Gigabit estimated savings per month Projected utilization: CPU: 296 | Disk: - | Memory: 396 Go to the Amazon EG2 console

Receive Amazon EC2 resource recommendations

Enable Amazon EC2 Rightsizing Recommendations which examine your historical usage patter

Recommendations

recommendations.

https://aws.amazon.com/blogs/aws-cost-management/launch-resource-optimization-recommendations,

Settings

Implementation time: Minutes/hours to days

Use an Amazon Simple Storage Service (Amazon S3) lifecycle configuration to transition objects to cost-optimized storage classes

Scenario

- You keep all of your data in Amazon S3 buckets using the default Standard storage class
- You are paying more than you need to for data that you don't frequently access

Solution: Amazon S3 Lifecycle configuration rules

Use Amazon S3's Infrequent Access (IA) storage class to save on costs for appropriate data

Implementation	Savings	Time to realize savings	Commitment
time	potential		required
Minutes	Close to 50% less than the <i>Standard</i> storage class	30 days	30 days minimum storage period

Get started

Add a lifecycle rule to your Amazon S3 bucket

- Select a bucket and optionally provide a prefix or tag to select objects for transitioning
- Select a storage class to transition to and specify the number of days to wait before transitioning
- Review and save your configuration

https://docs.aws.amazon.com/AmazonS3/latest/dev/object-lifecycle-mgmt.html

Enable Amazon S3 Intelligent-Tiering

Scenario

- You are using Amazon S3 the Standard storage class and you have data with changing access patterns
- You might benefit from monitoring and transitioning data to a lower cost/frequency storage class

Solution: Amazon S3 Intelligent-Tiering

Enable Amazon S3 Intelligent-Tiering for objects with changing access patterns

Implementation time	Savings potential	Time to realize savings	Commitment required
Minutes	20% – 30% (for S3 Standard objects transitioned to S3 INT)	30 days	30 days minimum storage period

Get started

Upload objects directly into S3 Intelligent-Tier (API)

Create Lifecycle rules that make use of Intelligent-Tiering (UI)

https://aws.amazon.com/blogs/aws/new-automatic-cost-optimization-for-amazon-s3-via-intelligent-tiering/

Use an Amazon S3 Gateway endpoint from your private subnet instances inside a VPC

Scenario

- You have Amazon EC2 instances in a private subnet that need to communicate with an Amazon S3 bucket in the same region
- You can terminate your NAT Gateway and communicate with Amazon S3 directly from your private subnets

Solution: Amazon S3 Gateway endpoint

Use an Amazon S3 Gateway endpoint for same-region traffic

Implementation	Savings	Time to realize savings	Commitment
time	potential		required
Minutes	About \$30 per month per terminated NAT gateway & About \$45 per TB of network data	Hours	None

Get started

Access Amazon S3 using an Amazon S3 Gateway endpoint without using NAT or Internet gateways

You can also restrict access to your Amazon S3 bucket from traffic originating from outside of your VPC

Use on-demand capacity mode for Amazon DynamoDB

Scenario

- You are using Amazon DynamoDB Tables configured using provisioned capacity
- You might be paying for provisioned capacity that you aren't using

Solution: Amazon DynamoDB On-Demand

Configure on-demand capacity mode for Amazon DynamoDB tables that are idle, or for unpredictable workloads

Implementation time	Savings potential	Time to realize savings	Commitment required
Minutes	Requires estimating and/or evaluating	Minutes	24 hours

Get started

Configure on-demand capacity mode for existing or new Amazon DynamoDB Tables

https://aws.amazon.com/blogs/aws/amazon-dynamodb-on-demand-no-capacity-planning-and-pay-per-request-pricing/

Implementation time: Hours

Use Compute Savings Plans

Scenario

- You have Amazon EC2 or AWS Fargate workloads that are always on
- You are leveraging AWS Lambda in your architecture
- You are paying the default on-demand pricing

Solution: Compute Savings Plans

Compute Savings Plans

Provides the most flexibility across...

- Instance family: e.g. Move from C5 to M5
- Region: e.g. change from EU (Ireland) to EU (London)
- OS: e.g. Windows to Linux
- Tenancy: e.g. switch dedicated tenancy to default tenancy
- Compute options: e.g. move from Amazon EC2 to AWS Fargate or AWS Lambda

Choose 1 year, no upfront Compute Savings Plans

Implementation	Savings	Time to realize savings	Commitment
time	potential		required
Hours	Up to 54% (Amazon EC2), 20% (AWS Fargate), 12% (AWS Lambda) less than on-demand	Hours	1 year, No upfront costs

Get started

AWS Cost Explorer will provide you with Savings Plans recommendations

- Review your Savings Plans recommendations in the AWS Cost Explorer
- Customize recommendations based on your needs (Term length: 1 Year, payment option: no upfront)
- Add preferred Savings Plans amount to cart and purchase

Final thoughts

To understand your costs

AWS Cost Explorer

To control your costs

AWS Budgets

To optimize your costs

AWS Recommendations

AWS Digital Training

Flexibility to Learn Your Way

Build cloud skills with 550+ free digital training courses, or dive deep with classroom training

Featured Courses

- <u>AWS Cloud Practitioner Essentials (Second Edition)</u>
 Learn the fundamentals of the AWS Cloud and prepare for the AWS Certified Cloud Practitioner exam.
- Amazon DynamoDB for Serverless Architectures
 An introduction to Amazon DynamoDB and how it's leveraged in building a serverless architecture.
- AWS Security Fundamentals
 Learn fundamental cloud computing and AWS security concepts, including AWS access control and management, governance, logging, and encryption methods.
- Getting Started with Amazon Simple Storage Service (Amazon S3)
 The course provides you with the knowledge to determine when to use Amazon S3 by reviewing typical use cases and understanding how the service provides object storage for your applications.

Thank you for attending AWS Builders Online Series

We hope you found it interesting! A kind reminder to **complete the survey**. Let us know what you thought of today's event and how we can improve the event experience for you in the future.

- 😙 aws-apac-marketing@amazon.com
- twitter.com/AWSCloud
- **f** facebook.com/AmazonWebServices
- youtube.com/user/AmazonWebServices
- slideshare.net/AmazonWebServices
- twitch.tv/aws

Builders Online Series

Thank you

Gabe Hollombe

in y @gabehollombe