THE UNIVERSITY OF NEW SOUTH WALES SCHOOL OF MATHEMATICS AND STATISTICS MATH1131 Calculus

Section 5: - Mean Value Theorem.

Mean Value Theorem:

Suppose f is cts on [a,b] and diffble on (a,b). Then there is a real number $c \in (a,b)$ such that

Ex: Demonstrate the Mean Value Theorem for the function, $f(x) = 6 - 2x + x^2$, on [-2, 2].

$$f ct, on [-2,2], displie on (-2,2).$$

$$f(z) - f(-2) = f'(c), c \in (-2,2)$$

$$f(c) = -2.$$

We can use the MVT to do a range of problems.

Ex: Use the MVT to find an approximate value of $\sqrt{17}$.

Let
$$f(\pi) = \sqrt{\pi}$$
 on $[16, 17]$... $\sqrt{17} - 4 = \frac{1}{2\sqrt{6}}$

for an $[16, 17]$, for $f(0) = \sqrt{17} - 4 = \frac{1}{2\sqrt{16}}$

By m.v.T.

 $f(17) - f(16) = \sqrt{17} - 4 = \frac{1}{2\sqrt{6}}$
 $f(17) - f(16) = \sqrt{17} - 4 = \frac{1}{2\sqrt{6}}$
 $f(17) - f(16) = \sqrt{17} - 4 = \frac{1}{2\sqrt{6}}$
 $f(17) - f(16) = \sqrt{17} - 4 = \frac{1}{2\sqrt{6}}$
 $f(17) - f(16) = \sqrt{17} - 4 = \frac{1}{2\sqrt{6}}$
 $f(17) - f(16) = \sqrt{17} - 4 = \frac{1}{2\sqrt{6}}$
 $f(17) - f(16) = \sqrt{17} - 4 = \frac{1}{2\sqrt{6}}$
 $f(17) - f(16) = \sqrt{17} - 4 = \frac{1}{2\sqrt{6}}$
 $f(17) - f(16) = \sqrt{17} - 4 = \frac{1}{2\sqrt{6}}$
 $f(17) - f(16) = \sqrt{17} - 4 = \frac{1}{2\sqrt{6}}$
 $f(17) - f(16) = \sqrt{17} - 4 = \frac{1}{2\sqrt{6}}$
 $f(17) - f(16) = \sqrt{17} - 4 = \frac{1}{2\sqrt{6}}$
 $f(17) - f(16) = \sqrt{17} - 4 = \frac{1}{2\sqrt{6}}$
 $f(17) - f(16) = \sqrt{17} - 4 = \frac{1}{2\sqrt{6}}$
 $f(17) - f(16) = \sqrt{17} - 4 = \frac{1}{2\sqrt{6}}$
 $f(17) - f(16) = \sqrt{17} - 4 = \frac{1}{2\sqrt{6}}$
 $f(17) - f(16) = \sqrt{17} - 4 = \frac{1}{2\sqrt{6}}$
 $f(17) - f(16) = \sqrt{17} - 4 = \frac{1}{2\sqrt{6}}$
 $f(17) - f(16) = \sqrt{17} - 4 = \frac{1}{2\sqrt{6}}$
 $f(17) - f(16) = \sqrt{17} - 4 = \frac{1}{2\sqrt{6}}$
 $f(17) - f(16) = \sqrt{17} - 4 = \frac{1}{2\sqrt{6}}$
 $f(17) - f(16) = \sqrt{17} - 4 = \frac{1}{2\sqrt{6}}$
 $f(17) - f(16) = \sqrt{17} - 4 = \frac{1}{2\sqrt{6}}$
 $f(17) - f(16) = \sqrt{17} - 4 = \frac{1}{2\sqrt{6}}$
 $f(17) - f(16) = \sqrt{17} - 4 = \frac{1}{2\sqrt{6}}$
 $f(17) - f(16) = \sqrt{17} - 4 = \frac{1}{2\sqrt{6}}$
 $f(17) - f(16) = \sqrt{17} - 4 = \frac{1}{2\sqrt{6}}$
 $f(17) - f(16) = \sqrt{17} - 4 = \frac{1}{2\sqrt{6}}$
 $f(17) - f(16) = \sqrt{17} - 4 = \frac{1}{2\sqrt{6}}$

Ex: Use the MVT to prove that
$$\tan x \ge x$$
 for all $x \in [0, \frac{\pi}{2})$.

Let $f(n) = t$ and $f(n) \in [0, \frac{\pi}{2}]$, for some $x \in [0, \frac{\pi}{2}]$

Let $f(n) = t$ and $f(n) \in [0, \frac{\pi}{2}]$, for some $x \in [0, \frac{\pi}{2}]$

Let $f(n) = t$ and $f(n) \in [0, \frac{\pi}{2}]$.

Let $f(n) = t$ and $f(n) \in [0, \frac{\pi}{2}]$.

Let $f(n) = t$ and $f(n) \in [0, \frac{\pi}{2}]$.

Let $f(n) = t$ and $f(n) \in [0, \frac{\pi}{2}]$.

Let $f(n) = t$ and $f(n) \in [0, \frac{\pi}{2}]$.

Let $f(n) = t$ and $f(n) \in [0, \frac{\pi}{2}]$.

Let $f(n) = t$ and $f(n) \in [0, \frac{\pi}{2}]$.

Let $f(n) = t$ and $f(n) \in [0, \frac{\pi}{2}]$.

Let $f(n) = t$ and $f(n) \in [0, \frac{\pi}{2}]$.

Let $f(n) = t$ and $f(n) \in [0, \frac{\pi}{2}]$.

Let $f(n) = t$ and $f(n) \in [0, \frac{\pi}{2}]$.

Let $f(n) = t$ and $f(n) \in [0, \frac{\pi}{2}]$.

Let $f(n) = t$ and $f(n) \in [0, \frac{\pi}{2}]$.

Let $f(n) = t$ and $f(n) \in [0, \frac{\pi}{2}]$.

Let $f(n) = t$ and $f(n) \in [0, \frac{\pi}{2}]$.

Let $f(n) = t$ and $f(n) \in [0, \frac{\pi}{2}]$.

Let $f(n) = t$ and $f(n) \in [0, \frac{\pi}{2}]$.

Let $f(n) = t$ and $f(n) \in [0, \frac{\pi}{2}]$.

Let $f(n) = t$ and $f(n) \in [0, \frac{\pi}{2}]$.

Let $f(n) = t$ and $f(n) \in [0, \frac{\pi}{2}]$.

Let $f(n) = t$ and $f(n) \in [0, \frac{\pi}{2}]$.

Let $f(n) = t$ and $f(n) \in [0, \frac{\pi}{2}]$.

Let $f(n) = t$ and $f(n) \in [0, \frac{\pi}{2}]$.

Let $f(n) = t$ and $f(n) = t$ and

Ex: Prove that for all real x and y, $|\sin x - \sin y| \le |x - y|$.

Consider
$$f(x) = sint$$
 on $[y, \pi]$, $y \le x$. $\Rightarrow |sin\pi - siny| \le |\pi - y|$
 $f(x) - f(y) = f'(k)$, $Ce(y, \pi)$
 $f(x) - siny = cosc$
 $f(x) - siny = cosc$

Error Estimates:

Suppose I measure an angle in radians to be 0.7^c and I take the sine of that angle. If the error involved in my measurement is approximately 0.01^c what is the worst error involved in taking the sine of this number?

That is, if $f(x) = \sin x$ and $\Delta x = \pm 0.01$, we want a bound on the size of

$$|\Delta f(x)| = |f(x + \Delta x) - f(x)|.$$

Theorem: If f'(x) exists, then

$$|\Delta f(x)| = |f(x + \Delta x) - f(x)| \approx f'(x)\Delta x.$$

stet. (V

Ex: In the above example, $\Delta f(x) \approx \cos 0.7 \times 0.01 \approx 7.65 \times 10^{-3}$.

Ex: In an isosceles triangle with two equal sides a and included angle 60^{o} , the percentage change in a is 10%. Find the percentage change in the area.

of the in a is
$$\frac{\Delta a}{a}$$
?

$$\frac{\Delta a}{a} = 0.1. \Rightarrow |\Delta a = 0.1a|$$

Area = $\frac{1}{2}a\sin 60^{\circ}$

$$= \frac{1}{2}a\sin 60^{\circ}$$

$$= \frac{1}{2}a\sin 60^{\circ$$

Here are some consequences of the MVT:

Definition: A function f defined on [a,b] is said to be **increasing** if f(x) > f(y) whenever x > y, and **decreasing** when f(x) < f(y) whenever x > y.

Theorem: Suppose f is diffble on (a, b),

- (i) If f'(x) > 0 for all $x \in (a, b)$ then f is increasing on (a, b).
- (ii) If f'(x) = 0 for all $x \in (a, b)$ then f is constant on (a, b)
- (iii) If f'(x) < 0 for all $x \in (a, b)$ then f is decreasing on (a, b).

Proof: The proof of all of these comes from applying the MVT to f on (x, y), any subset of (a, b) giving

$$\frac{f(y) - f(x)}{y - x} = f'(c).$$

In the first case we have f(y) > f(x) whenever y > x so f is increasing. Similarly for (iii). For (ii), we have f(x) = f(y), for all x and y so f is a constant.

Theorem: Suppose that f is cts on [a,b] and diffble on (a,b) and that f(a) and f(b) have opposite signs. If f'(x) > 0 for all $x \in (a,b)$ (or f'(x) < 0 for all $x \in (a,b)$), then f has **exactly** one real zero in (a,b).

Ex: $f(x) = x^3 + x + 1$ on [-1, 1]. f cts & $diff^{il}$ everywhere. f(1) = 3, f(-1) = -1 < 0 f(1) = 3, f(-1) = -1 < 0 f(1) = 3, f(-1) = -1 < 0 f(1) = 3, f(1) = -1 < 0 f(2) = 3, f(1) = -1 < 0 f(3) = 3, f(4) = -1, f(4) = -1. f(4) = 3, f(4) = -1, f(4) = -1. f(4) = 3, f(4) = -1, f(4) = -1.

Ex: Show that $5x^5 + 2x + 1 = 0$ has exactly one real solution.

Let $f(\pi) = 5\pi + 7\pi + 1 \quad \text{m} \quad [-1, 0]$ If the delth everywhere. $f(0) = 170 \quad , f(-1) = -6 < 0$ $f(0) = 170 \quad , f(-1) = -6 < 0$ $f(0) = 170 \quad , f(-1) = -6 < 0$ $f(0) = 170 \quad , f(-1) = -6 < 0$ $f(0) = 170 \quad , f(-1) = -6 < 0$ $f(0) = 170 \quad , f(0) = -6 < 0$ $f(0) = 170 \quad , f(0) = -6 < 0$ $f(0) = 170 \quad , f(0) = -6 < 0$ $f(0) = 170 \quad , f(0) = -6 < 0$ $f(0) = 170 \quad , f(0) = -6 < 0$ $f(0) = 170 \quad , f(0) = -6 < 0$ $f(0) = 170 \quad , f(0) = -6 < 0$ $f(0) = 170 \quad , f(0) = -6 < 0$ $f(0) = 170 \quad , f(0) = -6 < 0$ $f(0) = 170 \quad , f(0) = -6 < 0$ $f(0) = 170 \quad , f(0) = -6 < 0$ $f(0) = 170 \quad , f(0) = -6 < 0$ $f(0) = 170 \quad , f(0) = -6 < 0$ $f(0) = 170 \quad , f(0) = -6 < 0$ $f(0) = 170 \quad , f(0) = -6 < 0$ $f(0) = 170 \quad , f(0) = -6 < 0$ $f(0) = 170 \quad , f(0) = -6 < 0$ $f(0) = 170 \quad , f(0) = -6 < 0$ $f(0) = 170 \quad , f(0) = -6 < 0$ $f(0) = 170 \quad , f(0) = -6 < 0$ $f(0) = 170 \quad , f(0) = -6 < 0$ $f(0) = 170 \quad , f(0) = -6 < 0$ $f(0) = 170 \quad , f(0) = -6 < 0$ $f(0) = 170 \quad , f(0) = -6 < 0$ $f(0) = 170 \quad , f(0) = -6 < 0$ $f(0) = 170 \quad , f(0) = -6 < 0$ $f(0) = 170 \quad , f(0) = -6 < 0$ $f(0) = 170 \quad , f(0) = -6 < 0$ $f(0) = 170 \quad , f(0) = -6 < 0$ $f(0) = 170 \quad , f(0) = -6 < 0$ $f(0) = 170 \quad , f(0) = -6 < 0$ $f(0) = 170 \quad , f(0) = -6 < 0$ $f(0) = 170 \quad , f(0) = -6 < 0$ $f(0) = 170 \quad , f(0) = -6 < 0$ $f(0) = 170 \quad , f(0) = -6 < 0$ $f(0) = 170 \quad , f(0) = -6 < 0$ $f(0) = 170 \quad , f(0) = -6 < 0$ $f(0) = 170 \quad , f(0) = -6 < 0$ $f(0) = 170 \quad , f(0) = -6 < 0$ $f(0) = 170 \quad , f(0) = -6 < 0$ $f(0) = 170 \quad , f(0) = -6 < 0$ $f(0) = 170 \quad , f(0) = -6 < 0$ $f(0) = 170 \quad , f(0) = -6 < 0$ $f(0) = 170 \quad , f(0) = -6 < 0$ $f(0) = 170 \quad , f(0) = -6 < 0$ $f(0) = 170 \quad , f(0) = -6 < 0$ $f(0) = 170 \quad , f(0) = -6 < 0$ $f(0) = 170 \quad , f(0) = -6 < 0$ $f(0) = 170 \quad , f(0) = -6 < 0$ $f(0) = 170 \quad , f(0) = -6 < 0$ $f(0) = 170 \quad , f(0) = -6 < 0$ $f(0) = 170 \quad , f(0) = -6 < 0$ $f(0) = 170 \quad , f(0) = -6 < 0$ $f(0) = 170 \quad , f(0) = -6 < 0$ $f(0) = 170 \quad , f(0) = -6 < 0$ $f(0) = 170 \quad , f(0) = -6 < 0$ $f(0) = 170 \quad , f(0) = -6 < 0$ $f(0) = 170 \quad , f(0) = -6 < 0$ $f(0) = 170 \quad , f(0$

. Since 9,6 are arbitray, f has

exactly I real not on IR.

So Soi+ 71+1 has exactly

į

Theorem: Suppose that f, g are differentiable functions such that f(a) = g(a) and for all x > a, we have f'(x) > g'(x). Then f(x) > g(x) for all x > a.

Ex: Prove that
$$\sin x < x$$
 for all $x > 0$.

Let
$$f(\pi) = \sin \pi$$
 $g(\pi) = \pi$

For $x \in (0, \frac{\pi}{2})$
 $f'(\pi) = \cos \pi , g'(\pi) = 1$
 $x \in (0, \frac{\pi}{2})$
 $x \in (0, \frac{\pi}{2})$

Types of points:

We wish to classify all the sorts of interesting points a function can have.

Definition:

Suppose that f is a function defined on an interval [a, b] and let $x_0 \in [a, b]$.

- (i) x_0 is called a **critical point** if $f'(x_0) = 0$ or if f is not differentiable at x_0 .
- (ii) x_0 is called an **extreme point** if x_0 is a local maximum or local minimum.
- (iii) x_0 is called a stationary point if $f'(x_0) = 0$.

In practise, to find the (global) maximum and minimum, we need to find the stationary points and check their y values and also check the y values at the end points.

Ex: Find the global max and min of $f(x) = x^3 - 3x^2 + 1$ on the interval [0, 4].

$$f(0) = 1$$

$$f(4) = 64 - 48 + 1 = 17$$

$$f(11) = 3x^{2} - 6x = 0 \text{ at } 5.0^{2}$$

$$x = 0, \quad x = 2$$

$$f(0) = 1$$

$$f(12) = 8 - 12 + 1 = -3$$

Global min. is - 3 Global med is 17.

Ex: Find the local max and min of f(x) = |x - 3||x|

(fhon no global max)
fhon global min O.

Local max at $n = \frac{3}{2}$ of $\frac{9}{4}$

Local min of O at n = 0, n = 3.

Ex: Find the dimensions of the rectangle (with vertical and horizontal sides) of maximum area which can be inscribed in the ellipse, $\frac{x^2}{4} + \frac{y^2}{9} = 1$.

We return to the problem of calculating limits.

Theorem: (L'Hôpital's Rule)

Suppose that f and g are differentiable functions (except possibly at a) and that f(a) and g(a) are both equal to 0, or both tend to ∞ as $x \to a$.

If
$$\lim_{x \to a} \frac{f'(x)}{g'(x)}$$
 exists, then
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}.$$

Proof: (Outline). Suppose we have the case f(a) = g(a) = 0. Apply the MVT to f and g on the interval (a, x), where x > a, so that for some $c, d \in (a, x)$ we have $\frac{f(x) - 0}{x - a} = f'(c)$ and $\frac{g(x) - 0}{x - a} = g'(d)$.

Hence

$$\frac{f(x)}{g(x)} = \frac{\frac{f(x)}{x-a}}{\frac{g(x)}{x-a}} = \frac{f'(c)}{g'(d)}.$$

Hence as $x \to a^+$ we have $c \to a^+$ and $d \to a^+$, so that if the limit of $\frac{f'(x)}{g'(x)}$ exists as $x \to a$, we have $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$.

Ex:
$$\lim_{x \to 0} \frac{e^x - 1}{\sin 2x}$$
.

$$= \underbrace{1}_{26727} = \underbrace{1}_{2}$$

Ex:
$$\lim_{x \to 1} \frac{1 - x + \log x}{1 + \cos \pi x}$$
.

$$= \lim_{x \to 1} \frac{1 - x + \log x}{1 + \cos \pi x}$$

$$= \lim_{x \to 1} \frac{1 - \lim_{x \to 1} \frac{1}{x}}{1 + \cos \pi x}$$

$$= \lim_{x \to 1} \frac{1 - \lim_{x \to 1} \frac{1}{x}}{1 + \cos \pi x}$$

$$= \lim_{x \to 1} \frac{1 - \lim_{x \to 1} \frac{1}{x}}{1 + \cos \pi x}$$

When dealing with limits to infinity, we need the following version of L'Hôpital's rule.

Theorem: Suppose f and g are differentiable. Suppose further that $f(x) \to 0$ and $g(x) \to 0$ as $x \to \infty$ (or $f(x) \to \infty$ and $g(x) \to \infty$ as $x \to \infty$). If $\lim_{x \to \infty} \frac{f'(x)}{g'(x)}$ exists, then

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)}.$$

Ex:
$$\lim_{x \to \infty} \frac{\log x}{x}$$
.

= $\lim_{x \to \infty} \frac{\log x}{x}$.

Ex:
$$\lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x = L$$
 $\ln L = \lim_{x \to \infty} \mathcal{H} \ln \left(1 + \frac{1}{x}\right)$
 $= \lim_{x \to \infty} \ln \left($

THE UNIVERSITY OF NEW SOUTH WALES SCHOOL OF MATHEMATICS AND STATISTICS MATH1131 Calculus

Section 6: - Inverse Functions.

We have intuitively thought of a function as a rule, which starts from one real number and produces another. We now ask the question as to when we can *reverse* the procedure. For example, under the function $f: \mathbb{R} \to \mathbb{R}$, given by f(x) = 2x + 3, the real number 5 maps to 13. On the other hand what number maps on to 10? Answer 3.5. Indeed given the y value, the corresponding x-value it came from is $\frac{y-3}{2}$. This new rule, is itself a function, which can be written as $g(x) = \frac{x-3}{2}$. We say that these two functions are **inverses** of each other the write $g(x) = f^{-1}(x)$. (Note that the index does NOT mean 'one over').

Also note that if we compose f and g we obtain the identity function, i.e. $f \circ g(x) = f(g(x)) = f(\frac{x-3}{2}) = x$ and $g \circ f(x) = g(f(x)) = g(2x+3) = x$. Hence:

Definition: Given a function $f:A\to B$, if there is a function $g:B\to A$ such that $f\circ g(x)=x$ and $g\circ f(x)=x$, then we say that g is the inverse of f and write $g=f^{-1}$.

Ex: Show that if $f(x) = e^x$ then $g(x) = \log x$ is the inverse of f.

$$fog(x) = f(inx) = e^{inx} = x$$

 $gof(x) = g(e^{ix}) = lne^{ix} = x$
 $f = g^{-1}$

Clearly not all functions have inverses, for example $f(x) = x^2$. The y value 9 came from both 3 and -3.

When does a given function f defined on an interval [a, b] have an inverse?

= x(x1-1)

One simple test is known as the horizontal line test. It says that if we look at the graph of f with domain D and co-domain R and draw any horizontal line, y = b, where $b \in R$ then f will have an inverse if the line cuts the graph at **exactly one point**.

1

Ex: Draw $y = x^3 + x + 1$ and $y = x^4 - x^2$ to illustrate this.

Theorem: Suppose f is differentiable on (a, b) and $f'(x) \neq 0$ for all $x \in (a, b)$ then f has an inverse on (a, b).

Ex: $y = x^3 + x + 1$. (Note that although this function has an inverse, it is not easy to explicitly write down the formula for the inverse.)

$$y'=3x^2+1\neq 0$$
 for any real x .
 $f(x)=x^2+x+1$ has an inverse on iR

Ex:
$$f(x) = 2x + \sin x$$
.

We can sometimes restrict the domain of a function f so that although f does not have an inverse on its natural domain, it does on this restricted domain.

Ex: Find maximal regions on which the function $f(x) = x^3 - x$ has an inverse.

f has inverse for
$$x > \frac{1}{\sqrt{3}}$$

& for $-\frac{1}{\sqrt{3}} \le z \le \frac{1}{\sqrt{3}}$
& for $z \le -\frac{1}{\sqrt{3}}$

Suppose f has an inverse on (a,b) and f is differentiable on (a,b). How do we find the derivative of the inverse?

Theorem: Suppose f is diffble on (a, b) and has an inverse g(x) on (a, b), then

$$g'(x) = \frac{1}{f'(g(x))}.$$

Proof:
$$f \circ g(\pi) = \pi$$

$$f(g(\pi)) = \pi$$

$$f'(g(\pi)) \cdot g'(\pi) = 1$$

$$f'(g(\pi)) \cdot g'(\pi) = \frac{1}{f'(g(\pi))}$$

Ex: Let $f(x) = x^3 + x + 1$, with inverse function g. Find g'(1).

Note that
$$f(0) = 1$$

$$= g(1) = 0$$

$$g'(1) = \frac{1}{f'(g(1))} = \frac{1}{f'(0)} = 1$$

Ex: Let $f(x) = 2x + \sin x$. Find $(f^{-1})'(\nearrow)$. (27)

$$f(\pi) = 2\pi$$

$$g'(\pi) = \frac{1}{f'(\pi)}$$

$$f'(g(2\pi))$$

$$= \frac{1}{f'(\pi)}$$

Inverse Trigonometric Functions:

From $y = \sin x$, restrict domain to $-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$ to obtain an

-\frac{1}{\tau} \rightarrow \r

Dom: -1 5 x 5

Pare: - Tisys I.

F(x) = sin x is odd,
ie. sin (-x) = - sin (x)

For y = Gora, restrict don'to

~1

Dom: -1 = n = 1

-1 = n | Dom: -1 = n = 1

-1 = n | Dom: -1 = n = 1

N-B. col (-x) = 11- col 1/1/

y = tax, restrict doms to $-I \in X \in II$. y = tax y = tax y = tax

Dom: -06 260

Pure - E & y & E

ta (-1) = - tom(x) (odd f ")

Denvirtues

 $\frac{d}{dn} \sin x = \frac{1}{\sqrt{1-x^2}}$

d (60 'a) = - 1

 $\frac{d}{dn}\left(tu^{2}u\right)=\frac{1}{1+u^{2}}$

Ex: Find
$$\frac{d}{dx}\csc^{-1}x$$

Let
$$y = \cos e^{-1}x = \frac{1}{\sin y}$$
 $x = \cos e^{-1}y = \frac{1}{x}$
 $\frac{dx}{dy} = -1(\sin y)^{-2}$, $\cos y$

$$= \frac{-\cos y}{\sin^2 y}$$

$$= \sqrt{\pi - 1} \cdot x^2 = \pi / \pi / x$$

$$= \frac{dy}{du} = \frac{1}{\pi / \pi - 1}$$

$$valid to -15 \times 51, x \neq 0$$

Ex: a. Find $\frac{d}{dx}(\cot^{-1}(x))$.

b. A statue 2 metres high is mounted on a pedestal. The base of the statute is 6m above the eye-level of an observer. How far from the base of the pedestal should the observer stand to get the 'best' view.

6

$$ton \varphi = \frac{6}{24}$$

$$ton (0+0) = 8$$

$$tan(\varphi+\varphi)=\frac{8}{x}$$
.

$$\frac{d0}{dx} = \frac{-8/\pi}{1+64} + \frac{6}{\pi}$$

$$\frac{1+64}{1+36}$$

$$=\frac{-8}{\pi^{1}+64}+\frac{6}{\pi^{1}+36}$$

$$\frac{dn}{3} = \frac{6}{n+36} = \frac{6}{n+36} = 2n^{2} = 8 \times 36 + 6 \times 84$$

Ex: Find a.
$$\sin^{-1}(\sin(\frac{5\pi}{3}))$$
 b. $\sin(\sin^{-1}(-\frac{1}{2}))$, c. $\sin(2\cos^{-1}(\frac{4}{5}))$.

a)
$$\sin^2\left(\sin\frac{5\pi}{3}\right)$$
 | 5) $\sin\left(\sin^2\left(-\frac{1}{2}\right)\right)$ | c) $\cot^2\alpha = \cos^2\frac{4\pi}{5}$ | $= -\sin\left(\sin^2\left(\frac{1}{2}\right)\right)$ | $= -\sin\left(\cos^2\left(\frac{1}{2}\right)\right)$ | $= -\sin\left(\sin^2\left(\frac{1}{2}\right)\right)$ | $= -\sin\left(\sin^2\left(\frac{1}{2}\right)\right)$

Theorem

For $-1 \le x \le 1$ we have

$$\cos^{-1} x + \sin^{-1} x = \frac{\pi}{2}.$$

Proof:

Let
$$f(n) = con'n + fin' \neq .$$

$$f(n) = \frac{1}{2} f(n) = \frac{\pi}{2} f(n)$$

$$f(n) = \frac{\pi}{2} f($$

Ex: Prove that
$$\sin^{-1}(x) + \sin^{-1}\sqrt{1 - x^2} = \frac{\pi}{2}$$
.
Let $f(n) = \sin(n) + \sin^{-1}\sqrt{1 - x^2} = \frac{\pi}{2}$.

$$f(n) = \frac{1}{\sqrt{1-x^2}} + \frac{1}{\sqrt{1-(1-x^2)}} - \frac{\pi}{\sqrt{1-x^2}} \qquad f(0) = \frac{\pi}{\sqrt{$$

i. for constitution
$$[-1,1]$$
.

$$f(\alpha) = \frac{\pi}{2}$$

$$f(\alpha) = \frac{\pi}{2}$$

$$f(\alpha) = \frac{\pi}{2}$$
for all $\pi \in [-1,1]$

Integrals Involving Inverse Trigonometric Functions:

Since
$$\frac{d}{dn} \left(\sin^2 n \right) = \frac{1}{\sqrt{1-n^2}}$$

we have
$$\int \frac{1}{\sqrt{121}} M = (in') + C$$

$$2 \int \frac{1}{1+2i} dn = +i \frac{1}{2} + C$$

