INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

74HC/HCT154 4-to-16 line decoder/demultiplexer

Product specification
File under Integrated Circuits, IC06

September 1993

74HC/HCT154

FEATURES

- 16-line demultiplexing capability
- Decodes 4 binary-coded inputs into one of 16 mutually exclusive outputs
- 2-input enable gate for strobing or expansion
- · Output capability: standard
- I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT154 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT154 decoders accept four active HIGH binary address inputs and provide 16 mutually exclusive active LOW outputs.

The 2-input enable gate can be used to strobe the decoder to eliminate the normal decoding "glitches" on the outputs, or it can be used for the expansion of the decoder.

The enable gate has two AND'ed inputs which must be LOW to enable the outputs.

The "154" can be used as a 1-to-16 demultiplexer by using one of the enable inputs as the multiplexed data input.

When the other enable is LOW, the addressed output will follow the state of the applied data.

QUICK REFERENCE DATA

GND = 0 V; $T_{amb} = 25 \, ^{\circ}C$; $t_r = t_f = 6 \, \text{ns}$

SYMBOL	PARAMETER	CONDITIONS	TYP	UNIT	
STWIBUL	PARAIVIETER	CONDITIONS	НС	нст	ONII
t _{PHL} / t _{PLH}	propagation delay A_n , \overline{E}_n to \overline{Y}_n	C _L = 15 pF; V _{CC} = 5 V	11	13	ns
C _I	input capacitance		3.5	3.5	pF
C _{PD}	power dissipation capacitance per package	notes 1 and 2	60	60	pF

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

$$P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_1 \times V_{CC}^2 \times f_0)$$
 where:

f_i = input frequency in MHz

f_o = output frequency in MHz

 $\sum (C_L \times V_{CC}^2 \times f_o) = \text{sum of outputs}$

C_L = output load capacitance in pF

V_{CC} = supply voltage in V

2. For HC the condition is $V_I = GND$ to V_{CC} For HCT the condition is $V_I = GND$ to $V_{CC} - 1.5$ V

ORDERING INFORMATION

See "74HC/HCT/HCU/HCMOS Logic Package Information".

74HC/HCT154

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17	\overline{Y}_0 to \overline{Y}_{15}	outputs (active LOW)
18, 19	$\overline{E}_0, \overline{E}_1$	enable inputs (active LOW)
12	GND	ground (0 V)
23, 22, 21, 20	A_0 to A_3	address inputs
24	V _{CC}	positive supply voltage

74HC/HCT154

FUNCTION TABLE

			INPU	JTS		OUTPUTS															
E ₀	Ē ₁	A ₀	A ₁	A ₂	A ₃	\overline{Y}_0	<u>Y</u> 1	₹ ₂	Y ₃	Y ₄	Y ₅	7 ₆	Y ₇	₹ ₈	₹ ₉	Y ₁₀	Y ₁₁	Y ₁₂	∀ 13	Y ₁₄	7 ₁₅
Н	Н	Х	Х	Х	Х	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
Н	L	Х	Χ	Χ	Х	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
L	Н	Х	Х	Χ	Х	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	H
L	L	L	L	L	L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
L	L	Н	L	L	L	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Η
L	L	L	Н	L	L	Н	Н	L	Н	Н	Η	Н	Н	H	Н	Н	Η	Н	Н	Н	H
L	L	Н	Н	L	L	Н	Н	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
L	L	L	L	Н	L	Н	Н	Н	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
L	L	Н	L	Н	L	Н	Н	Н	Н	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
L	L	L	Н	Н	L	Н	Н	Н	Н	Н	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н
L	L	Н	Н	Н	L	Н	Н	Н	Н	Н	Н	Н	L	Н	Н	Н	Н	Н	Н	Н	Η
L	L	L	L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	L	Н	Н	Н	Н	Н	Н	Н
L	L	Н	L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L	Н	Н	Н	Н	Н	Н
L	L	L	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L	Н	Н	Н	Н	Н
L	L	Н	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L	Н	Н	Н	H
L	L	L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L	Н	Н	Н
L	L	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L	Н	Н
L	L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L	Н
L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L

Note

- 1. H = HIGH voltage level
 - L = LOW voltage level
 - X = don't care

Philips Semiconductors Product specification

4-to-16 line decoder/demultiplexer

74HC/HCT154

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard

I_{CC} category: MSI

AC CHARACTERISTICS FOR 74HC

 $GND = 0 \ V; \ t_r = t_f = 6 \ ns; \ C_L = 50 \ pF$

SYMBOL	PARAMETER			-		TEST CONDITIONS						
							WAVEFORMS					
		+25			-40 t	to +85	-40 to	o +125	UNIT	V _{CC} (V)	WAVEFORMS	
		min.	typ.	max.	min.	max.	min.	max.		(,,		
t _{PHL} / t _{PLH}	propagation delay A_n to \overline{Y}_n		36 13 10	150 30 26		190 38 33		225 45 38	ns	2.0 4.5 6.0	Fig.6	
t _{PHL} / t _{PLH}	propagation delay \overline{E}_n to \overline{Y}_n		39 14 11	150 30 26		190 38 33		225 45 38	ns	2.0 4.5 6.0	Fig.7	
t _{THL} / t _{TLH}	output transition time		19 7 6	75 15 13		95 19 16		110 22 19	ns	2.0 4.5 6.0	Figs 6 and 7	

Philips Semiconductors Product specification

4-to-16 line decoder/demultiplexer

74HC/HCT154

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard

I_{CC} category: MSI

Note to HCT types

The value of additional quiescent supply current (Δ I_{CC}) for a unit load of 1 is given in the family specifications. To determine Δ I_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT
A _n	1.0
E _n	1.0

AC CHARACTERISTICS FOR 74HCT

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

SYMBOL	PARAMETER			7		TEST CONDITIONS						
		74HCT									WAVEFORMS	
		+25			-40 to +85		-40 to +125		UNIT	V _{CC}	VVAVLPORIVIS	
		min.	typ.	max.	min.	max.	min.	max.		()		
t _{PHL} / t _{PLH}	propagation delay A_n to \overline{Y}_n		16	35		44		53	ns	4.5	Fig.6	
t _{PHL} / t _{PLH}	propagation delay \overline{E}_n to \overline{Y}_n		15	32		40		48	ns	4.5	Fig.7	
t _{THL} / t _{TLH}	output transition time		7	15		19		22	ns	4.5	Figs 6 and 7	

74HC/HCT154

AC WAVEFORMS

(1) HC : V_M = 50%; V_I = GND to V_{CC} . HCT: V_M = 1.3 V; V_I = GND to 3 V.

Fig.6 Waveforms showing the address input (A_n) to output (\overline{Y}_n) propagation delays and the output transition times.

(1) HC : V_M = 50%; V_I = GND to V_{CC} . HCT: V_M = 1.3 V; V_I = GND to 3 V.

Fig.7 Waveforms showing the enable input $(\overline{E}n)$ to output (\overline{Y}_n) propagation delays and the output transition times.

APPLICATION INFORMATION

outputs follow the logic level on the data input.

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".