CS 4240: Compilers

Lecture 22: LL(1) Parsing

Instructor: Vivek Sarkar

(vsarkar@gatech.edu)

April 10, 2019

ANNOUNCEMENTS & REMINDERS

- » Project 3 assigned on April 8th
 - » Due by 11:59pm on Tuesday, April 23rd
 - » Automatic penalty-free extension until 11:59pm on Tuesday, April 30th
 - » 10% of course grade
- » Homework 3 assigned today
 - » Due by 11:59pm on Tuesday, April 23rd
 - » Automatic penalty-free extension until 11:59pm on Friday, April 26th
 - » 5% of course grade
- » FINAL EXAM: Wednesday, May 1, 2:40 pm 5:30 pm
 - » 30% of course grade

Worksheet # 21 Solution

(From Lecture #21 given on 4/8/2019)

Consider the following left recursive grammar.

$$S \rightarrow Aa \mid b$$

 $A \rightarrow Ac \mid Sd \mid \epsilon$

Convert the above grammar to one that is suitable for LL parsing by removing left recursion from it.

The grammar can be represented as a 4-tuple. G = (S, NT, T, P)

```
S is the start symbol NT = \{S, A\} (Set of non-terminal variables) T = \{a, b, c, d\} (Set of terminal variables) P = \{S \Rightarrow Aa, S \Rightarrow b, A \Rightarrow Ac, A \Rightarrow Sd, A \Rightarrow \epsilon\} (Set of productions)
```

Consider the following left recursive grammar.

$$S \rightarrow Aa \mid b$$

 $A \rightarrow Ac \mid Sd \mid \epsilon$

Convert the above grammar to one that is suitable for LL parsing by removing left recursion from it.

- A grammar is left recursive if ∃ A ∈ NT such that
 ∃ a derivation A ⇒+ Aa, for some string a ∈ (NT ∪ T)+
- S ⇒ Aa ⇒ Sda (indirect left recursion)
- A ⇒ Ac (direct left recursion)

Algorithm to remove left recursion

- The algorithm removes left recursion via 2 techniques.
 - 1. convert indirect left recursion to direct left recursion
 - 2. Rewrite direct left recursion as right recursion

```
impose an order on the nonterminals, A_1, A_2, ..., A_n for i \leftarrow 1 to n do; for j \leftarrow 1 to i - 1 do; if \exists a production A_i \rightarrow A_j \gamma then replace A_i \rightarrow A_j \gamma with one or more productions that expand A_j
```

2

rewrite the productions to eliminate any direct left recursion on A_i

end;

end:

Using the algorithm: 1st iteration of outer loop

Let's impose the order of non-terminals : S, A

```
impose an order on the nonterminals, A_1, A_2, ..., A_n for i \leftarrow 1 to n do; for j \leftarrow 1 to i - 1 do; if \exists a production A_i {\rightarrow} A_j \gamma with one or more then replace A_i {\rightarrow} A_j \gamma with one or more productions that expand A_j end; rewrite the productions to eliminate any direct left recursion on A_i end;
```

$$S \to Aa \mid b$$

 $A \to Ac \mid Sd \mid \epsilon$

Nothing is done in the inner loop.

No direct recursion on S exists.

No change is made to the grammar.

Using the algorithm: 2nd iteration of outer loop

Imposed order of non-terminals : S, A

```
impose an order on the nonterminals, A_1, A_2, ..., A_n for i \leftarrow 1 to n do; for j \leftarrow 1 to i - 1 do; if \exists a production A_i {\rightarrow} A_j \gamma then replace A_i {\rightarrow} A_j \gamma with one or more productions that expand A_j end;
```

rewrite the productions to eliminate any direct left recursion on \mathbf{A}_i end:

 $S \Rightarrow Aalb$

 $A \Rightarrow Ac \mid Sd \mid \epsilon$

In the inner loop, production **A** ⇒ **Sd** is replaced with **A** ⇒**Aad**, **A** ⇒**bd**.

 $S \Rightarrow Aalb$

 $A \Rightarrow Ac \mid Aad \mid bd \mid \epsilon$

Using the algorithm: 2nd iteration of outer loop

```
• Imposed order of non-terminals : A_1 = S, A_2 = A impose an order on the nonterminals, A_1, A_2, ..., A_n for i \leftarrow 1 to i of i \leftarrow 1 to i - 1 do; if \exists a production A_i \rightarrow A_j \gamma with one or more productions that expand A_j end; rewrite the productions to eliminate any direct left recursion on A_i end;
```

```
S \Rightarrow Aa \mid b
A \Rightarrow Ac \mid Aad \mid b
bd \mid \epsilon
```

We have to rewrite direct left recursion as right recursion.

Removing direct left recursion in the grammar

```
A_productions = [A \Rightarrow Ac, A \Rightarrow Aad, A \Rightarrow bd, A \Rightarrow \epsilon]
Aprime productions = []
for production in A_productions:
    if production result starts with A:
         move A in the production result to end of result
                                                                   bd I ε
         popped = A_productions.pop(production)
         replace every A in popped to A'
         A_prime_productions.push(popped)
    else:
         append A' to the production result
Aprime_productions.push(A' \Rightarrow \epsilon)
```

 $S \Rightarrow Aa \mid b$ $A \Rightarrow Ac \mid Aad \mid$

Resulting grammar (right-recursive grammar)

$$S \Rightarrow Aa \mid b$$

 $A \Rightarrow bdA' \mid A'$
 $A' \Rightarrow cA' \mid adA' \mid \epsilon$

Page 27 of slides from lecture21, covers on how to remove direct left recursion in a grammar.

Roadmap (Where are we?)

We set out to study parsing

- » Specifying syntax
 - Context-free grammars ✓
 - Ambiguity
- » Top-down parsers
 - Algorithm & its problem with left recursion
 - Left-recursion removal ✓
- » Predictive top-down parsing
 - The LL(1) condition
 - Simple recursive descent parsers
 - Table-driven LL(1) parsers

Predictive Parsing

Basic idea

Given $A \rightarrow \alpha \mid \beta$, the parser should be able to choose between $\alpha \& \beta$

FIRST sets

For some rhs $\alpha \in G$, define First(α) as the set of tokens that appear as the first symbol in some string that derives from α

That is, $\underline{x} \in FIRST(\alpha)$ iff $\alpha \Rightarrow^* \underline{x} \gamma$, for some γ

The LL(1) Property

If $A \rightarrow \alpha$ and $A \rightarrow \beta$ both appear in the grammar, we would like

$$FIRST(\alpha) \cap FIRST(\beta) = \emptyset$$

This would allow the parser to make a correct choice with a lookahead of exactly one symbol!

This is almost correct See the next slide

Predictive Parsing

What about ε -productions?

- ⇒ They complicate the definition of LL(1)
- If $A \to \alpha$ and $A \to \beta$ and $\epsilon \in FIRST(\alpha)$, then we need to ensure that $FIRST(\beta)$ is disjoint from FOLLOW(A), too, where
- Follow(A) = the set of terminal symbols that can immediately follow A in a sentential form

Define FIRST+ $(A \rightarrow \alpha)$ as

- » $FIRST(\alpha) \cup FOLLOW(A)$, if $\epsilon \in FIRST(\alpha)$
- » FIRST(α), otherwise

Then, a grammar is LL(1) iff $A \rightarrow \alpha$ and $A \rightarrow \beta$ implies

$$FIRST^+(A \rightarrow \alpha) \cap FIRST^+(A \rightarrow \beta) = \emptyset$$

Predictive Parsing

Given a grammar that has the LL(1) property

- » Can write a simple routine to recognize each lhs
- » Code is both simple & fast Consider $A \rightarrow \beta_1 \mid \beta_2 \mid \beta_3$, with FIRST+ $(A \rightarrow \beta_i) \cap FIRST$ + $(A \rightarrow \beta_i) = \emptyset$ if $i \neq j$

```
/* find an A */
if (current_word \in FIRST(A \rightarrow \beta_1))
  find a \beta_1 and return true
else if (current_word \in FIRST(A \rightarrow \beta_2))
  find a \beta_2 and return true
else if (current_word \in FIRST(A \rightarrow \beta_3))
  find a \beta_3 and return true
else
report an error and return false
```

Grammars with the LL(1) property are called <u>predictive</u> <u>grammars</u> because the parser can "predict" the correct expansion at each point in the parse.

Parsers that capitalize on the LL(1) property are called <u>predictive parsers</u>.

One kind of predictive parser is the <u>recursive descent</u> parser.

Recursive Descent Parsing

Recall the expression grammar, after transformation

```
Goal
             \rightarrow Expr
    Expr \rightarrow Term Expr'
    Expr' \rightarrow + Term Expr'
                 - Term Expr'
4
5
                 3
6
             → Factor Term'
    Term
    Term'
             → * Factor Term′
                 / Factor Term'
                 3
10
    Factor
                 number
11
                  <u>id</u>
                 (Expr)
12
```

This produces a parser with six mutually recursive routines:

- · Goal
- Expr
- EPrime
- Term
- TPrime
- Factor

Each recognizes one NT or T

The term <u>descent</u> refers to the direction in which the parse tree is built.

Recursive Descent Parsing

(Procedural)

A couple of routines from the expression parser

```
Goal()
  token ← next_token();
  if (Expr() = true & token = EOF)
      then next compilation step;
  else
      report syntax error;
      return false;

Expr()
  if (Term() = false)
      then return false;
  else return Eprime();
```

```
looking for Number, Identifier, or "(", found token instead, or failed to find Expr or ")" after "("
```

```
Factor()
  if (token = Number) then
    token \leftarrow next\_token();
    return true:
  else if (token = Identifier) then
     token \leftarrow next\_token();
     return true;
  else if (token = Lparen)
     token \leftarrow next\_token();
     if (Expr() = true & token = Rparen) then
        token \leftarrow next\_token();
        return true:
  // fall out of if statement
  report syntax error;
      return false;
```

Recursive Descent (Summary)

- 1. Massage grammar to have LL(1) condition
 - a. Remove left recursion
 - b. Build FIRST (and FOLLOW) sets
 - c. Left factor it, as needed
- 2. Define a procedure for each non-terminal
 - a. Implement a case for each right-hand side
 - b. Call procedures as needed for non-terminals
- 3. Add extra code, as needed
 - a. Perform context-sensitive checking
 - b. Build an IR to record the code

Can we automate this process?

Roadmap (Where are we?)

We set out to study parsing

- » Specifying syntax
 - Context-free grammars ✓
 - Ambiguity ✓
- » Top-down parsers
 - Algorithm & its problem with left recursion ✓
 - Left-recursion removal
- » Predictive top-down parsing
 - The LL(1) condition ✓
 - Simple recursive descent parsers
 - First and Follow sets
 - Table-driven LL(1) parsers

FIRST and FOLLOW Sets

$FIRST(\alpha)$

For some $\alpha \in (T \cup NT)^*$, define $FIRST(\alpha)$ as the set of tokens that appear as the first symbol in some string that derives from α

That is, $\underline{x} \in FIRST(\alpha)$ iff $\alpha \Rightarrow^* \underline{x} \gamma$, for some γ

Follow(A)

For some $A \in NT$, define Follow(A) as the set of symbols that can occur immediately after A in a valid sentential form

 $Follow(S) = {EOF}$, where S is the start symbol

To build FOLLOW sets, we need FIRST sets ...

Computing FIRST Sets

```
for each x \in T, FIRST(x) \leftarrow \{x\}
for each A \in NT, FIRST(A) \leftarrow \emptyset
while (FIRST sets are still changing) do
   for each p \in P, of the form A \rightarrow \beta do
      if \beta is B_1B_2...B_k then begin;
         rhs \leftarrow FIRST(B<sub>1</sub>) - {\varepsilon}
         for i \leftarrow 1 to k-1 by 1 while \epsilon \in FIRST(B_i) do
              rhs ← rhs ∪ (FIRST(B_{i+1}) - { ε })
              end // for loop
                     // if-then
       end
        if i = k and \varepsilon \in FIRST(B_k)
           then rhs \leftarrow rhs \cup {\epsilon}
         FIRST(A) \leftarrow FIRST(A) \cup rhs
        end // for loop
              // while loop
    end
```

Outer loop is monotone increasing for FIRST sets

 \rightarrow | T \cup NT \cup ϵ | is bounded, so it terminates

Inner loop is bounded by the length of the productions in the grammar

Computing FOLLOW Sets

```
for each A \in NT, FOLLOW(A) \leftarrow \emptyset
FOLLOW(S) \leftarrow \{EOF\}
while (FOLLOW sets are still changing)
    for each p \in P, of the form A \rightarrow B_1B_2 \dots B_k
        TRAILER \leftarrow FOLLOW(A)
        for i \leftarrow k down to 1
            if B_i \in NT then
                                                        // domain check
                 FOLLOW(B_i) \leftarrow FOLLOW(B_i) \cup TRAILER
                 if \epsilon \in FIRST(B_i) // add right context
                    then TRAILER \leftarrow TRAILER \cup (FIRST(B<sub>i</sub>) - {\epsilon})
                    else TRAILER \leftarrow FIRST(B<sub>i</sub>) // no \epsilon => no right context
                                         // B_i \in T \Rightarrow only 1 symbol
            else TRAILER \leftarrow \{B_i\}
```

Example of FIRST and FOLLOW sets

1	Goal	\rightarrow	Expr
2	Expr	\rightarrow	Term Expr'
3	Expr'	\rightarrow	+ Term Expr'
4			- Term Expr'
5			ε
6	Term	\rightarrow	Factor Term'
7	Term'	\rightarrow	* Factor Term'
8			/ Factor Term'
9		1	ε
10	Factor	\rightarrow	<u>number</u>
11			<u>id</u>
12			<u>(Expr</u>)

FIRST+ $(A \rightarrow \beta)$ is identical to FIRST(β) except for productions 5 and 9

FIRST+(Expr' $\rightarrow \varepsilon$) is $\{\varepsilon_{,}\}$, eof

FIRST+(Term' $\rightarrow \epsilon$) is $\{\epsilon,+,-,\}$, eof

Symbol	FIRST	FOLLOW
<u>num</u>	num	
<u>name</u>	<u>name</u>	
+	+	
-	-	
*	*	
/	/	
Ĺ	(
J	J	
<u>eof</u>	eof	
3	3	
Goal	(,name,num	eof
Expr	(,name,num), eof
Expr'	+, -, ε), eof
Term	(,name,num	+, -, <u>)</u> , eof
Term'	*,/,ε	+,-,), eof
Factor	(,name,num	+, -, *, /, <u>),</u> eof

Example of FIRST+ sets

1	Goal	\rightarrow	Expr
2	Expr	\rightarrow	Term Expr'
3	Expr'	\rightarrow	+ Term Expr'
4			- Term Expr'
5			ε
6	Term	\rightarrow	Factor Term'
7	Term'	\rightarrow	* Factor Term'
8			/ Factor Term'
9		1	ε
10	Factor	\rightarrow	<u>number</u>
11			<u>id</u>
12			<u>(Expr)</u>

Prod'n	FIRST+
1	(,name,num
2	(,name,num
3	+
4	-
5	ε,), eof
6	(,name,num
7	*
8	/
9	ε,+,-,), eof
10	number
11	name
12	(

Building Top-down Parsers

Strategy

- » Encode knowledge in a table
- Use a standard "skeleton" parser to interpret the table

Example

- The non-terminal Factor has 3 expansions
 - (Expr) or <u>Identifier</u> or <u>Number</u>
- » Table might look like:

Terminal Symbols

1	Goal	\rightarrow	Expr
2	Expr	\rightarrow	Term Expr'
3	Expr'	\rightarrow	+ Term Expr'
4			- Term Expr'
5		-	ε
6	Term	\rightarrow	Factor Term'
7	Term'	\rightarrow	* Factor Term'
8			/ Factor Term'
9		-	ε
10	Factor	\rightarrow	number
11			<u>id</u>
12			(Expr)

		<i>(</i>								1
Non-		+	ı	*	/	Num	Id	()	EOF
terminal Symbols	<u>Factor</u>					10	11	12		

Error on `+'

Reduce by rule 10 on Num

Building Top Down Parsers

Building the complete table

- » Need an interpreter for the table (skeleton parser)
- » Need a row for every NT & a column for every T

LL(1) Skeleton Parser

```
word ← NextWord() // Initial conditions, including
push EOF onto Stack // a stack to track local goals
push the start symbol, S, onto Stack
TOS ← top of Stack
loop forever
 if TOS = EOF and word = EOF then
    break & report success // exit on success
  else if TOS is a terminal then
    if TOS matches word then
      pop Stack // recognized TOS
      word ← NextWord()
    else report error looking for TOS // error exit
  else
                            // TOS is a non-terminal
    if TABLE[TOS, word] is A \rightarrow B_1B_2...B_k then
      pop Stack // get rid of A
      push B_k, B_{k-1}, ..., B_1 // in that order
    else break & report error expanding TOS
 TOS ← top of Stack
```

Building Top Down Parsers

Building the complete table

- Need a row for every NT & a column for every T
- Need a table-driven interpreter for the table
- Need an algorithm to build the table

Filling in TABLE[X,y], $X \in NT$, $y \in T$

- 1. entry is the rule $X \rightarrow \beta$, if $y \in FIRST^+(X \rightarrow \beta)$
- entry is error if rule 1 does not define

If any entry has more than one rule, G is not LL(1)

This is the LL(1) table construction algorithm

Example of LL(1) Parsing Table (entry = production #)

	+	-	*	/	Num	Id	()	EOF
Goal	_	_	_	_	1	1	1	_	_
Expr	_	_	_	_	2	2	2	_	_
Expr'	3	4	_	_	_	_	_	5	5
Term	_	_	_	_	6	6	6	_	_
Term'	9	9	7	8	_	_	_	9	9
Factor					10	11	12		