WHAT IS CLAIMED IS:

1	1. A method of forming a silicon oxide layer over a substrate			
2	disposed in a substrate processing chamber, the method comprising:			
3	flowing a process gas a silicon-containing gas, an oxygen-containing gas			
4	and a fluorine-containing gas that is different from the silicon-containing gas into the			
5	substrate processing chamber;			
6	depositing the silicon oxide layer over the substrate by forming a high			
7	density plasma from the process gas and biasing the plasma towards the substrate to			
8	generate a sputter etching component simultaneous with film deposition, wherein the			
9	substrate is heated to a temperature of at least 500°C during deposition of the silicon			
10	oxide layer and wherein the deposited silicon oxide layer has a fluorine content of 1.0			
11	at. % or less as measured by using Secondary Ion Mass Spectrometry (SIMS)			
12	techniques.			
1	2. The method of claim 1 wherein the sputtering element of the			
2	deposition process slows deposition on corners of raised surfaces the silicon oxide layer			
3	is deposited over thereby contributing to an increased gapfill capability of the silicon			
4	oxide layer.			
1	3. The method of claim 1 wherein the substrate is heated to a			
2	temperature of between 650-750°C during deposition of the silicon oxide layer and the			
3	silicon oxide layer is used to at least partially fill a trench etched as part of a shallow			
4	trench isolation structure.			
1	4. The method of claim 1 wherein said silicon oxide layer has a			
2	fluorine content of 0.6 at. % or less.			
1	5. The method of claim 4 wherein the silicon-containing gas			
2	comprises SiH ₄ .			
1	6. The method of claim 5 wherein the fluorine-containing gas			
2	comprises NF ₃ .			
1	7. The method of claim 6 wherein the oxygen-containing source			
2	comprises O2			

1		8.	The method of claim 6 wherein the silicon oxide layer is an	
2	undoped silicate glass layer (USG).			
1		9.	The method of claim 6 wherein the silicon oxide layer is doped	
2	with phosphor	us and	the process gas further comprises a phosphorus-containing gas.	
1		10.	The method of claim 9 wherein said phosphorus-containing gas	
2	comprises PH ₃			
1		11.	The method of claim 1 wherein the process gas further comprises	
1 2	an inert gas.	11.	The method of claim 1 wherein the process gas further comprises	
1		12.	The method of claim 11 wherein the inert gas comprises argon.	
1		13.	The method of claim 1 further comprising forming a thin layer of	
2	silicon oxide n	naterial	from a process gas that does not include the fluorine-containing	
3	gas prior to int	roducii	ng the fluorine-containing gas into the process gas.	
1		14.	The method of claim 1 wherein the silicon-containing gas is	
2	introduced into	the ch	namber from gas nozzles surrounding the substrate and from above	
3	the substrate.			
1		15.	The method of claim 14 wherein the oxygen-containing gas is	
2	introduced only from nozzles surrounding the substrate.			
1		16.	The method of claim 15 wherein the fluorine-containing gas is	
2	introduced onl	y from	nozzles surrounding the substrate.	
1		17.	A method of forming a silicon oxide layer over a substrate	
2	disposed in a s	ubstrat	e processing chamber, the method comprising:	
3		flowin	g a process gas a silicon-containing gas, an oxygen-containing gas	
4	and a fluorine-	contair	ning gas that is different from the silicon-containing gas into the	
5	substrate processing chamber;			
6		deposi	ting the silicon oxide layer over the substrate by forming a high	
7	density plasma from the process gas and biasing the plasma towards the substrate to			
8	generate a sputter etching component simultaneous with film deposition, wherein the			

substrate is heated to a temperature of at least 650°C during deposition of the silicon

- 10 oxide layer and wherein the deposited silicon oxide layer has a fluorine content of 0.6
- at. % or less as measured by using Secondary Ion Mass Spectrometry (SIMS)
- 12 techniques.
- 1 18. The method of claim 17 wherein the sputtering element of the
- 2 deposition process slows deposition on corners of raised surfaces the silicon oxide layer
 - is deposited over thereby contributing to an increased gapfill capability of the silicon
- 4 oxide layer.

3

- 1 19. The method of claim 18 wherein the silicon oxide layer is used to
- 2 at least partially fill a trench etched as part of a shallow trench isolation structure.
- 1 20. The method of claim 17 wherein the silicon-containing gas
- 2 comprises SiH₄.
- 1 21. The method of claim 20 wherein the fluorine-containing gas
- 2 comprises NF₃.
- 1 22. The method of claim 21 wherein the oxygen-containing source
- 2 comprises O₂.
- 1 23. The method of claim 17 wherein the silicon oxide layer is an
- 2 undoped silicate glass layer (USG).
- 1 24. The method of claim 17 wherein the silicon oxide layer is doped
- 2 with phosphorus and the process gas further comprises a phosphorus-containing gas.
- 1 25. The method of claim 24 wherein said phosphorus-containing gas
- 2 comprises PH₃.
- 1 26. The method of claim 21 wherein the process gas further
- 2 comprises an inert gas.
- 1 27. The method of claim 26 wherein the inert gas comprises argon.
- 1 28. The method of claim 17 further comprising forming a thin layer
- 2 of silicon oxide material from a process gas that does not include the

- 3 fluorine-containing gas prior to introducing the fluorine-containing gas into the process
- 4 gas.
- 1 29. The method of claim 17 wherein the silicon-containing gas is
- 2 introduced into the chamber from gas nozzles surrounding the substrate and from above
- 3 the substrate.
- 1 30. The method of claim 17 wherein the oxygen-containing gas is
- 2 introduced only from nozzles surrounding the substrate.
- 1 31. The method of claim 17 wherein the fluorine-containing gas is
- 2 introduced only from nozzles surrounding the substrate.