Customer Spending Behavior Analysis Report

1. Load and explore data

```
In [72]: import pandas as pd
         import seaborn as sns
         import matplotlib.pyplot as plt
In [73]: df = pd.read_csv("D:\Dec'24\DSCourse\data\Mall_Customers.csv")
         df.head()
Out[73]:
            CustomerID Gender Age Annual Income (k$) Spending Score (1-100)
          0
                      1
                           Male
                                  19
                                                     15
                                                                           39
          1
                           Male
                                  21
                                                     15
                                                                           81
          2
                                                                            6
                      3 Female
                                  20
                                                     16
          3
                      4 Female
                                  23
                                                     16
                                                                           77
          4
                      5 Female
                                  31
                                                     17
                                                                           40
In [74]: df.shape
Out[74]: (200, 5)
In [75]: print(df.info())
         print()
         print()
         print(df.describe())
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype
0	CustomerID	200 non-null	int64
1	Gender	200 non-null	object
2	Age	200 non-null	int64
3	Annual Income (k\$)	200 non-null	int64
4	Spending Score (1-100)	200 non-null	int64

dtypes: int64(4), object(1)
memory usage: 7.9+ KB

None

	CustomerID	Age	Annual Income (k\$)	Spending Score (1-100)
count	200.000000	200.000000	200.000000	200.000000
mean	100.500000	38.850000	60.560000	50.200000
std	57.879185	13.969007	26.264721	25.823522
min	1.000000	18.000000	15.000000	1.000000
25%	50.750000	28.750000	41.500000	34.750000
50%	100.500000	36.000000	61.500000	50.000000
75%	150.250000	49.000000	78.000000	73.000000
max	200.000000	70.000000	137.000000	99.000000

2. Clean and Preprocess Data

```
In [76]: sns.heatmap(df.isnull(), cbar=False, cmap="viridis")
```

Out[76]: <Axes: >

	uit dender] - uit dender]. map((Mare . 0, Temare . 1))							
[78]: c	<pre>df.head()</pre>							
t[78]:	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)			
(0 1	0	19	15	39			
1	1 2	0	21	15	81			
2	2 3	1	20	16	6			
3	3 4	1	23	16	77			
4	4 5	1	31	17	40			
[]:								

3. Descriptive Statistics

```
In [79]: # Central Tendency
print('Mean Age: ', df['Age'].mean())
print('Meadian income: ', df['Annual Income (k$)'].median())
```

```
# Dispersion
print('Standard Deviation Spending Score: ', df['Spending Score (1-100)'].std())
```

Mean Age: 38.85 Meadian income: 61.5

Standard Deviation Spending Score: 25.823521668370173

4. Visualizations

```
In [80]: # Histogram of Age distribution
sns.histplot(df['Age'], kde=True, color='blue')
plt.title('Age Distribution')
plt.show()
```



```
In [81]: # Scatter plot for Income vs Spending score
sns.scatterplot(x='Annual Income (k$)', y='Spending Score (1-100)',hue='Gender',
plt.title('Income vs Spending')
plt.show()
```

Income vs Spending

5. Statistical Test

```
In [82]: # Correlation Matrix
         print('Correlation matrix: ', df[['Annual Income (k$)', 'Spending Score (1-100)
        Correlation matrix:
                                                     Annual Income (k$) Spending Score
        (1-100)
        Annual Income (k$)
                                          1.000000
                                                                  0.009903
        Spending Score (1-100)
                                          0.009903
                                                                  1.000000
In [83]: # T-test
         from scipy.stats import ttest ind
         # t-test for spending scores by gender
         male_scores = df[df['Gender'] == 0]['Spending Score (1-100)']
         female_scores = df[df['Gender'] == 1]['Spending Score (1-100)']
         t_stat, p_value = ttest_ind(male_scores, female_scores)
         print('T-Statistic: ', t_stat)
         print('P-Value: ', p_value)
        T-Statistic: -0.8190464150660334
        P-Value: 0.4137446589852174
In [92]: from scipy.stats import f_oneway
         # ANOVA for Spending Score by Age Groups
         age_groups = pd.cut(df['Age'], bins=[0, 20, 40, 60, 80])
         anova_result = f_oneway(
```

```
df.loc[age_groups == interval, 'Spending Score (1-100)']
    for interval in age_groups.cat.categories
]
)
print("ANOVA F-Statistic:", anova_result.statistic)
print("P-Value:", anova_result.pvalue)
```

ANOVA F-Statistic: 20.40059070488781 P-Value: 1.510354860990344e-11

```
import seaborn as sns
import matplotlib.pyplot as plt

# Calculate mean spending scores for each age group
age_group_means = df.groupby(age_groups)['Spending Score (1-100)'].mean()

# Plot
age_group_means.plot(kind='bar', color='skyblue')
plt.title('Mean Spending Score by Age Group')
plt.xlabel('Age Group')
plt.ylabel('Mean Spending Score')
plt.show()
```


Report

Key Sections:

1. Introduction:

 This analysis focuses on customer spending behavior using a dataset containing 200 records of customer demographics and spending patterns.

2. Methods:

- Data Cleaning:
 - Encoded Gender as numerical values (Male = 0, Female = 1).
 - Checked for missing values (none were found).
- Statistical Techniques:
 - Correlation Analysis: Examined relationships between Annual Income and Spending Score.
 - **T-Test:** Compared average spending scores between genders.
 - **ANOVA:** Tested if spending scores significantly differ across age groups.
- Visualization Tools:

Used **Matplotlib** and **Seaborn** for scatter plots, histograms, and bar charts.

3. Findings:

- Correlation insights
 - Correlation matrix revealed:
 - Weak correlation between Annual Income and Spending Score (correlation coefficient: 0.0099).
 - Interpretation: Higher income does not necessarily lead to higher spending scores.
- T-test results
 - **T-Statistic**: -0.819
 - **P-Value:** 0.414 (greater than 0.05).
 - Interpretation: There is no significant difference in spending scores between males and females.
- ANOVA results
 - F-Statistic: 20.40
 - **P-Value:** 1.51e-11 (less than 0.05).
 - Interpretation: Spending scores differ significantly across age groups, suggesting that age influences spending behavior.

4. Visuals:

- A. Scatter Plot:
 - **Income vs Spending Score:** Showed no strong trend.
 - B. Histogram:
 - Age Distribution: Highlighted a concentration of customers in their 30s and 40s.

C. Bar Chart:

Mean Spending Score by Age Group: Showed younger customers (e.g., 20-40) had higher spending scores.

5. Conclusion:

• Key Trends:

- Age significantly impacts spending scores, with younger customers showing higher spending tendencies.
- Gender does not influence spending scores significantly.
- Income has little to no relationship with spending scores, suggesting other factors might drive spending habits.

• Actionable Insights:

- Businesses should target younger age groups (20-40) with marketing campaigns to maximize spending potential.
- Further research could analyze additional factors like product categories or time of purchase to uncover deeper trends.