Содержание

1	Мно	жества и отношения	4
	1.1	Основные понятия	4
	1.2	Сравнение множеств	5
	1.3	Свойства включения множеств	5
	1.4	Мощность множества	6
	1.5	Операции над множествами	6
	1.6	Свойства операций над множествами	9
	1.7	Обобщенные тождества алгебры множеств	10
	1.8	Булеан	10
	1.9	Методы доказательств теоретико-множественных тождеств	11
		1.9.1 Метод двух включений	11
		1.9.2 Метод эквивалентных преобразований	11
		1.9.3 Метод характеристических функций	12
	1.10	Упорядоченные пары и наборы	13
	1.11	Прямое произведение множеств	13
	1.12	Бинарные отношения	14
		Многоместные отношения	15
	1.14	Композиция отношений	15
	1.15	Способы задания бинарных отношений	16
		1.15.1 Матричный способ	16
		1.15.2 С помощью ориентированного графа	16
	1.16	Способы задания композиции отношений	17
		1.16.1 Матричный способ	17
		1.16.2 С помощью ориентированного графа	18
	1.17	Свойства бинарных отношений	19
	1.18	Ядро отношения	20
	1.19	Замыкание отношений	20
	1.20	Функциональные отношения	20
	1.21	Тотальные и частичные функции	21
	1.22	Инъекция, сюрьекция и биекция	21
	1.23	Отношения эквивалентности	21
	1.24	Классы эквивалентности	22
	1.25	Фактормножества	22
	1.26	Отношения порядка	22

2	Элем	ленты математической логики 2	3
	2.1	Основные понятия	3
	2.2	Логические связки	3
		2.2.1 Простейшие логические связки	3
		2.2.2 Порядок выполнения логических операций 2	4
		2.2.3 Доказательство тождественной истинности 2	4
		2.2.4 Другие логические связки	5
	2.3	Логические отношения	6
	2.4	Варианты импликации	7
	2.5	Необходимое и достаточное условия	7
	2.6	Основные логические эквивалентности	8
	2.7	Булевы функции	9
	2.8	Множество булевых функций. Булев куб	0
	2.9	Булев порядок	0
	2.10		1
	2.11	Существенные и несущественные переменные	1
	2.12	Булевы функции одной и нескольких переменной	2
	2.13	Мажоритарная функция	3
			3
	2.15	Равносильные формулы	4
	2.16	Законы булевой алгебры	4
	2.17	Двойственная функция	6
			6
	2.19	Самодвойственная функция	6
	2.20	Принцип двойственности	7
	2.21	Нормальные формы	7
	2.22	ДНФиКНФ 3	7
			8
		2.23.1 СДНФ 3	8
		2.23.2 СКНФ	9
	2.24	Нахождение СДНФ	9
	2.25	Нахождение СКНФ	9
	2.26	Замкнутые классы	0
	2.27	Свойства замыкания	0
	2.28	Замкнутые классы	1
	2.29	Полные системы функций	2
	2.30	Полнота двойственной системы	2

2.31	Теорема Поста	43
2.32	Одноместный предикат	44
2.33	n-местный предикат	45
2.34	Кванторные операции	45
2.35	Алфавит логики предикатов	45
2.36	Формулы логики предикатов	45
2.37	Равносильные формулы	46
2.38	Предваренная нормальная форма	47
2.39	Общезначимость и выполнимость	48
2.40	Проблема разрешимость в логике предикатов	48

1 Множества и отношения

1.1 Основные понятия

Множество – любая определенная совокупность объектов. Элементы множества различны и отличными друг от друга.

Под **множеством** понимают любой набор определенных и различимых между собой объектов, мыслимый как единое целое. Объекты, из которых составлено множество, называются его **элементами**.

Множества обычно обозначатся заглавными латинскими буквами: A, B, C, Элементы множества обозначаются строчными латинскими буквами: a, b, c,

Для обозначения того, что объект x является, либо не является элементом множества A, используют символику:

- $x \in A$ объект x является элементом множества A.
- $x \notin A$ объект x не является элементом множества A.

Множество, не содержащее ни одного элемента, называется **пустым** и обозначается символом \varnothing .

Множество, из элементов которого составляют конкретное множество, называют **универсальным** и обозначают символом U.

Множество U называется **универсальным** для данной задачи, если все рассматриваемые в этой задаче множества являются его подмножествами.

Множества можно изображать с помощью кругов, которые называются **кругами Эйлера** или **диаграммами Венна**. Универсальное множество принято обозначать прямоугольником.

Способы задания множества:

1. перечислением всех элементов множества (в фигурных скобках через запятую):

$$A = \{1, 2, 3, 4\};$$

2. характеристическим предикатом, который описывает свойство всех элементов, входящих в множество. Характеристический предикат записывается после двоеточия или символа «|»:

$$A = \{x : P(x)\} \quad \lor \quad A = \{x \mid P(x)\}$$

где P(x) – характеристический предикат.

Обозначения числовых множеств:

- \mathbb{N} множества натуральных чисел, $\mathbb{N} = \{1, 2, 3, ...\};$
- \mathbb{Z} множества целых чисел, $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\};$

- $\mathbb Q$ множество рациональных числе, $\mathbb Q=\left\{\frac{m}{n}(m\in\mathbb Z,n\in\mathbb N)\right\}$;
- \mathbb{R} множество действительных (вещественных) чисел;
- С множество комплексных чисел.

1.2 Сравнение множеств

Множество A называется **подмножеством** множества B (множество A содержится в B, множество B включает множество A), если каждый элемент множества A является элементом множества B:

$$A \subseteq B \iff \forall x \in A \implies x \in B.$$

B называется **надмножеством** множества A.

Под определению пустое множество является подмножеством всех множеств:

$$\forall M \implies \varnothing \subseteq M.$$

Универсальное множество содержит все множества:

$$\forall M \implies M \subseteq U.$$

Два множества называют **равными**, если они являются подмножествами друг друга:

$$A = B \iff A \subseteq B \land B \subseteq A.$$

Если $A\subseteq B$ и $A\neq B$, то множество A называется **собственным** подмножеством множества B, а B – **собственным** надмножеством A.

Множества A и B **сравнимые**, если $A\subseteq B\vee B\subseteq A$. Иначе множества называются **несравнимыми**.

1.3 Свойства включения множеств

Свойство 1.

$$\forall A \implies A \subseteq A.$$

Свойство 2.

$$\forall A, B : A \subseteq B \land B \subseteq A \implies A = B.$$

Свойство 3.

$$\forall A,B,C: A\subseteq B \land B\subseteq C \implies A\subseteq C.$$

1.4 Мощность множества

Говорят, что между множествами A и B установлено **взаимно-однозначное соответствие**, если каждому элементу множества A поставлен в соответствие один и только один элемент множества B, и каждому элементу множества B поставлен в соответствие один и только один элемент множества A:

$$A \sim B \iff \begin{cases} \forall a \in A \mapsto !b \in B \\ \forall b \in B \mapsto !a \in A \end{cases}$$

Два множества (конечных или бесконечных) имеют **одинаковую мощность**, если между этими множествами можно установить взаимно-однозначное соответствие. В этом случае говорят, что множества A и B изоморфны, имеют одинаковую мощность, или что они равномощны, и обозначают |A| = |B|.

Множество A называется **конечным**, если у него нет равномощного собственного подмножества:

$$\forall B: B \subseteq A \land |B| = |A| \implies B = A.$$

Для конечного множества используется запись $|A| < \infty$.

Множество **бесконечно** тогда и только тогда, когда оно имеет одинаковую мощность с некоторым своим подмножеством, не совпадающим с самим этим множеством:

$$\exists B: B\subseteq A \land |B| = |A| \land B \neq A.$$

То есть бесконечное множество равномощно некоторому своему собственному подмножеству. Для бесконечного множества используется запись $|A|=\infty$.

Множество X называется **счетным**, если его мощность равна мощности множества натуральных чисел, т. е. $|X| = |\mathbb{N}|$.

Говорят, что множество X – множество **мощности континуума**, если его мощность равна мощности множества точек на отрезке [0,1].

Теорема (Теорема Кантора о несчетности). Отрезок [0,1] несчетен, т. е.

$$|[0,1]| > |\mathbb{N}|.$$

1.5 Операции над множествами

Объединением двух множеств называется множество, содержащее все элементы обоих множеств:

$$A \cup B = \{x \mid x \in A \lor x \in B\}.$$

Рис. 1.1: Объединение двух множеств

Пересечением двух множеств называется множество, состоящее из элементов, входящих в каждое из множеств A и B:

$$A \cap B = \{x \mid x \in A \land x \in B\}.$$

Рис. 1.2: Пересечение двух множеств

Разностью множеств A и B называется множество, состоящее из всех элементов множества A, не содержащихся в множестве B:

$$A \setminus B = \{x \mid x \in A \land x \notin B\}.$$

Рис. 1.3: Разность двух множеств

Симметрической разностью множеств A и B называется множество, состоящее из всех элементов множества A, не содержащихся в множестве B, и всех элементов множества B, не содержащихся в множестве A:

$$A \triangle B = \{x \mid (x \in A \land x \notin B) \lor (x \notin A \land x \in B)\}.$$

Рис. 1.4: Симметрическая разность двух множеств

Дополнением (дополнением до универсального множества U) множества A называется множество, состоящее из всех элементов универсального множества, не содержащихся в множестве A:

$$\bar{A} = \{x \mid x \notin A\}.$$

Рис. 1.5: Дополнение множества

1.6 Свойства операций над множествами

Свойство 1 (Идемпотентность).

$$A \cup A = A$$
, $A \cap A = A$.

Свойство 2 (Коммутативность).

$$A \cup B = B \cup A$$
, $A \cap B = B \cap A$.

Свойство 3 (Ассоциативность).

$$A \cup (B \cup C) = (A \cup B) \cup C, \quad A \cap (B \cap C) = (A \cap B) \cap C.$$

Свойство 4 (Дистрибутивность).

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C), \quad A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$$

Свойство 5 (Поглощение).

$$(A\cap B)\cup A=A,\quad (A\cup B)\cap A=A.$$

Свойство 6 (Свойства нуля).

$$A \cup \emptyset = A, \quad A \cap \emptyset = \emptyset.$$

Свойство 7 (Свойства единицы).

$$A \cup U = U, \quad A \cap U = A.$$

Свойство 8 (Инволютивность).

$$\bar{\bar{A}} = A.$$

Свойство 9 (Законы де Моргана).

$$\overline{A \cap B} = \overline{A} \cup \overline{B}, \quad \overline{A \cup B} = \overline{A} \cap \overline{B}.$$

Свойство 10 (Свойства дополнения).

$$A \cup \bar{A} = U, \quad A \cap \bar{A} = \varnothing.$$

Свойство 11 (Свойство разности).

$$A \setminus B = A \cap \bar{B}$$
.

Свойство 12 (Свойство симметрической разности).

$$A \triangle B = (A \setminus B) \cap (B \setminus A).$$

1.7 Обобщенные тождества алгебры множеств

Свойство 1 (Обобщенная дистрибутивность).

$$A\cap\bigcup_{i=1}^n B_i=\bigcup_{i=1}^n (A\cap B_i); \qquad A\cup\bigcap_{i=1}^n B_i=\bigcap_{i=1}^n (A\cup B_i).$$

Свойство 2 (Обобщенный закон де Моргана).

$$\overline{\bigcup_{i=1}^{n} A_i} = \bigcap_{i=1}^{n} \overline{A_i}; \qquad \overline{\bigcap_{i=1}^{n} A_i} = \bigcup_{i=1}^{n} \overline{A_i}.$$

1.8 Булеан

Множество всех подмножеств A называется **булеаном** множества A и обозначается 2^A :

$$2^A = \{B \mid B \subseteq A\}.$$

Теорема. Если множество A конечно, то $|2^A| = 2^{|A|}$.

1.9 Методы доказательств теоретико-множественных тождеств

1.9.1 Метод двух включений

Пусть левая часть теоретико-множественного тождества определяет множество X, а правая часть – множество Y. Чтобы доказать равенство множеств X и Y, достаточно доказать два включения $X \subseteq Y$ и $Y \subseteq X$, т. е. доказать, что

$$\forall x \in X \implies x \in Y \quad \land \quad \forall x \in Y \implies x \in X.$$

Докажем этим методом тождество

$$A \triangle B = (A \cup B) \setminus (A \cap B).$$

Пусть $x \in A \triangle B$. Тогда, согласно определению симметрической разности

$$\begin{split} x \in (A \bigtriangleup B) \implies x \in ((A \backslash B) \cup (B \backslash A)) \implies \\ \implies (x \in A \land x \notin B) \lor (x \in B \land x \notin A) \implies \\ \implies (x \in (A \cup B) \land x \notin (A \cap B)) \lor (x \in (A \cup B) \land x \notin (A \cap B)) \implies \\ \implies x \in (A \cup B) \land x \notin (A \cap B) \implies x \in ((A \cup B) \backslash (A \cap B)). \end{split}$$

Таким образом доказано, что $A \triangle B \subseteq (A \cup B) \setminus (A \cap B)$. Докажем обратное включение $(A \cup B) \setminus (A \cap B) \subseteq A \triangle B$:

$$\begin{split} x \in ((A \cup B) \setminus (A \cap B)) &\implies x \in (A \cup B) \land x \notin (A \cap B) \implies \\ &\implies (x \in A \land x \notin B) \lor (x \in B \land x \notin A) \implies \\ &\implies x \in ((A \setminus B) \cup (B \setminus A)) \implies x \in (A \triangle B). \end{split}$$

Оба включения имеют место и тождество доказано.

1.9.2 Метод эквивалентных преобразований

Теоретико-множественные тождества можно доказывать, используя свойства операций над множествами. Для этого нужно преобразовать левую часть в правую, или правую – в левую, или правую и левую часть в некоторое третье выражение.

Докажем этим методом тождество:

$$(A \cap B) \triangle (A \cap C) = A \cap (B \triangle C).$$

Преобразуем левую часть к правой:

$$(A \cap B) \triangle (A \cap C) =$$

$$= ((A \cap B) \cup (A \cap C)) \cap \overline{(A \cap B) \cap (A \cap C)} =$$

$$= (A \cap (B \cup C)) \cap (\overline{A} \cap \overline{B} \cup \overline{A} \cap \overline{C}) =$$

$$= (A \cap (B \cup C)) \cap (\overline{A} \cup \overline{B} \cup \overline{A} \cup \overline{C}) =$$

$$= (A \cap (B \cup C)) \cap (\overline{A} \cup \overline{B} \cup \overline{C}) =$$

$$= ((A \cap (B \cup C)) \cap \overline{A}) \cup ((A \cap (B \cup C)) \cap (\overline{B} \cup \overline{C})) =$$

$$= (B \cup C) \cap (A \cap (\overline{B} \cup \overline{C})) =$$

$$= (A \cap (B \cup C)) \cap (A \cap (\overline{B} \cap C)) =$$

$$= A \cap ((B \cup C)) \cap (\overline{B} \cap C)) =$$

$$= A \cap ((B \cup C)) \cap (\overline{B} \cap C) =$$

$$= A \cap (B \triangle C).$$

1.9.3 Метод характеристических функций

Характеристическая функция χ_A множества A для $x\in U$ определяется следующим образом:

$$\begin{cases} \chi_A(x) = 1, & x \in A \\ \chi_A(x) = 0, & x \notin A \end{cases}$$

Для характеристической функции справедливы следующие тождества:

- 1. $\chi_A^2(x) = \chi_A(x)$;
- 2. $\chi_{A\cap B}(x) = \chi_A(x) \cdot \chi_B(x)$;
- 3. $\chi_{A \cup B}(x) = \chi_A(x) + \chi_B(x) \chi_A(x) \cdot \chi_B(x)$;
- 4. $\chi_{\bar{A}} = 1 \chi_A(x)$;
- 5. $\chi_{A \setminus B}(x) = \chi_A(x) \chi_A(x) \cdot \chi_B(x)$;
- 6. $\chi_{A\triangle B}=\chi_A(x)+\chi_B(x)-2\cdot\chi_A(x)\cdot\chi_B(x).$ Докажем этим методом тождество

$$(A \triangle B) \cap C = (A \cap C) \triangle (B \cap C).$$

С одной стороны,

$$\begin{split} \chi_{(A\triangle B)\cap C}(x) &= \chi_{(A\triangle B)}(x)\chi_C(x) = \\ &= \left(\chi_A(x) + \chi_B(x) - 2\chi_A(x)\chi_B(x)\right)\chi_C(x) = \\ &= \chi_A(x)\chi_C(x) + \chi_B(x)\chi_C(x) - 2\chi_A(x)\chi_B(x)\chi_C(x). \end{split}$$

С другой стороны,

$$\begin{split} \chi_{(A\cap C)\triangle(B\cap C)}(x) &= \chi_{(A\cap C)}(x) + \chi_{(B\cap C)}(x) - 2\chi_{(A\cap C)}(x)\chi_{(B\cap C)}(x) = \\ &= \chi_A(x)\chi_C(x) + \chi_B(x)\chi_C(x) - 2\chi_A(x)\chi_C(x)\chi_B(x)\chi_C(x) = \\ &= \chi_A(x)\chi_C(x) + \chi_B(x)\chi_C(x) - 2\chi_A(x)\chi_B(x)\chi_C(x). \end{split}$$

Так как $\chi_{(A \triangle B) \cap C}(x) = \chi_{(A \cap C) \triangle (B \cap C)}(x)$, тождество доказано.

1.10 Упорядоченные пары и наборы

(a, b) – упорядоченная пара объектов a и b.

Равенство упорядоченных пар определяется следующим образом:

$$(a,b) = (c,d) \iff a = c \land b = d.$$

Вообще говоря, $(a,b) \neq (b,a)$.

 (a_1,a_2,\dots,a_n) – упорядоченный набор из n элементов (n-ка, кортеж или (конечная) последовательность).

 $|(a_1, a_2, \dots, a_n)|$ – длина набора, т. е. количество элементов в наборе.

Теорема. Два набора одной длины равны, если равны их соответствующие элементы

$$\forall n(a_1,\ldots,a_n)=(b_1,\ldots,b_n)\iff a_1=b_1\wedge\ldots\wedge a_n=b_n.$$

1.11 Прямое произведение множеств

Прямым (декартовым) произведением двух множеств A и B называется множество всех упорядоченных пар, в которых первый элемент принадлежит A, а второй принадлежит B:

$$A\times B=\{(a,b)\mid a\in A\wedge b\in B\}.$$

$$A\times B\neq B\times A.$$

Теорема. Для конечных множества A и B

$$|A \times B| = |A| \cdot |B|.$$

Понятие прямого произведения допускает обобщение. Прямое произведение множеств A_1,\dots,A_n – это множество наборов (кортежей):

$$A_1 \times ... \times A_n = \{(a_1, ..., a_n) \mid a_1 \in A_1 \wedge ... \wedge a_n \in A_n\}.$$

Множества A_i необязательно различны.

Степенью множества A называется его n-кратное произведение самого на себя:

$$A^n = \underbrace{A \times \ldots \times A}_{n-\mathrm{pas}}; \qquad |A^n| = |A|^n.$$

1.12 Бинарные отношения

Бинарным отношением между множествами A и B называется такая тройка $\langle A, B, R \rangle$, где R – подмножество прямого произведения A и B:

$$R \subset A \times B$$
.

Эти множества именуют следующим образом:

- R график отношения;
- A область отправления;
- B область прибытия.

Область определения отношения:

$${\rm Dom}R=\{a\in A\mid \exists b\in B: (a,b)\in R\}.$$

Область значений:

$$\mathrm{Im}R=\{b\in B\mid \exists a\in A: (a,b)\in R\}.$$

Если A=B (т. е. $R\subset A^2$), то говорят, что R есть отношение на множестве A.

Для бинарных отношений обычно используется инфиксная форма записи:

$$aRb \iff (a,b) \in R \subset A \times B.$$

Инфиксная форма позволяет более кратко записывать некоторые формы утверждений относительно отношений:

$$aRbRc \iff (a,b) \in R \land (b,c) \in R$$

Обратное отношение:

$$R^{-1} = \{(b, a) \mid (a, b) \in R\} \subset B \times A.$$

Дополнение отношения:

$$\bar{R} = \{(a,b) \mid (a,b) \notin R\} \subset A \times B.$$

Тождественное отношение:

$$I = \{(a, a) \mid a \in A\} \subset A^2.$$

Универсальное отношение:

$$U = \{(a, b) \mid a \in A \land b \in B\} = A \times B.$$

1.13 Многоместные отношения

n-местное (n-арное) отношение R – это подмножество прямого произведения n множеств, т. е. множество упорядоченных наборов (кортежей):

$$R \subset A_1 \times ... \times A_n \iff \{(a_1, ..., a_n) \mid a_1 \in A_1 \wedge ... \wedge a_n \in A_n\},$$

где n – вместимость (длина кортежей отношения).

1.14 Композиция отношений

Пусть $R_1\subset A\times B$ – отношение между множествами A и B, а $R_2\subset B\times C$ – отношение между множествами B и C. **Композицией** двух отношений R_1 и R_2 называется отношение $R\subset A\times C$ между множествами A и C, определяется следующим образом:

$$R = R_1 \circ R_2 = \{(a, c) \mid a \in A \land c \in C \land \exists b \in B : aR_1b \land bR_2c\}.$$

Композиция отношений ассоциативна, т. е.

$$\forall R_1 \subset A \times B, R_2 \subset B \times C, R_3 \subset C \times D \implies (R_1 \circ R_2) \circ R_3 = R_1 \circ (R_2 \circ R_3).$$

Композиция отношений на множестве A является отношением на множестве A.

Степенью отношения R на множестве A называется его n-кратная композиция с самим собой:

$$R^n = \underbrace{R \circ \dots \circ R}_{n-\text{pas}}.$$

1.15 Способы задания бинарных отношений

1.15.1 Матричный способ

Отношение $R\subset A\times B$ задается с помощью прямоугольной таблицы (матрицы), состоящей из нулей и единиц, в которой строки – первые координаты, а столбцы – вторые, причем на пересечении i-ой строки и j-го столбца будет стоять 1, если имеется отношение a_iRb_j , и 0 в противном случае.

Пример. Пусть

$$A = \{1, 2, 3\}, \quad B = \{2, 3, 4, 5, 6\}.$$

Отношение

$$R = \{(1,2), (1,4), (2,3), (3,4), (3,6)\}.$$

Отношение можно записать в виде матрицы:

$$[R] = \begin{pmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 \end{pmatrix}$$

Матрица **универсального** (полного) отношения – это квадратная матрица, состоящая только из единиц.

Матрица **тождественного** (диагонального) отношения – это квадратная матрица, элементами главной диагонали которой являются единицы, а остальные элементы равны нулю.

Матрица **пустого** отношения – это квадратная матрица, состоящая только из нулей.

Матрица **обратного** отношения R^{-1} для отношения R – это транспонированная матрица отношения R.

1.15.2 С помощью ориентированного графа

Элементы множеств A и B изображаются в виде точек на плоскости (вершины двудольного графа), а упорядоченные пары – линией со стрелкой (дуги ориентированного графа), которая направленна от a к b, если aRb.

Пример. Пусть

$$A = \{1, 2, 3\}, \quad B = \{2, 3, 4, 5, 6\}.$$

Отношение

$$R = \{(1,2), (1,4), (2,3), (3,3), (3,6)\}.$$

Рис. 1.6: Отношение в виде ориентированного графа

1.16 Способы задания композиции отношений

1.16.1 Матричный способ

Матрица композиции отношений $R \circ S$ получается как произведение матриц отношений R и S с дальнейшей заменой отличных от нуля элементов единицами.

Пример. Пусть

$$R = \{(1,2), (2,1), (2,2), (3,3), (3,4)\},$$

$$S = \{(1,1), (1,2), (2,3), (2,5), (3,2), (3,4), (4,2), (4,3)\}.$$

Тогда композиция равна

$$[R \circ S] = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 0 & 2 & 1 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 \end{pmatrix}$$

$$R \circ S = \{(1, 3), (1, 5), (2, 1), (2, 2), (2, 3), (2, 5), (3, 2), (3, 3), (3, 4)\}.$$

1.16.2 С помощью ориентированного графа

Пусть $R\subset A\times B$ и $S\subset B\times C$. Чтобы получить граф $T=R\circ S$, надо к графу отношения R добавить граф отношения S. Граф композиции отношений получим, если исключим вершины, которые являются элементами множества B.

Пример. Пусть

$$R = \{(1,2), (2,1), (2,2), (3,3), (3,4)\},$$

$$S = \{(1,1), (1,2), (2,3), (2,5), (3,2), (3,4), (4,2), (4,3)\}.$$

Рис. 1.7: Композиция в виде ориентированного графа

$$R \circ S = \{(1,3), (1,5), (2,1), (2,2), (2,3), (2,5), (3,2), (3,3), (3,4)\}.$$

1.17 Свойства бинарных отношений

Бинарное отношение R на множестве A называется

• рефлексивным, если

$$\forall x \in A : (x, x) \in R;$$

• антирефлексивным, если

$$\forall x \in A : (x, x) \notin R;$$

• симметричным, если

$$\forall x, y \in A : (x, y) \in R \implies (y, x) \in R;$$

• антисимметричным, если

$$\forall x,y \in A: (x,y) \in R \land (y,x) \in R \implies x = y;$$

• транзитивным, если

$$\forall x,y,z\in A: (x,y)\in R \wedge (y,z)\in R \implies (x,z)\in R;$$

• линейным (полным), если

$$\forall x,y \in A: x = y \lor (x,y) \in R \lor (y,x) \in R.$$

Теорема. Пусть $R\subset A\times A$ – отношение на A. Тогда

- R рефлексивно $\iff I \subset R$;
- R антирефлексивно $\iff R \cap I = \emptyset$;
- R симметрично $\iff R = R^{-1}$;
- R антисимметрично $\iff R \cap R^{-1} = I$;
- R транзитивно $\iff R \circ R \subset R$;
- R линейно $\iff R \cup I \cup R^{-1} = U$.

1.18 Ядро отношения

Если $R\subset A\times B$ – отношение между множествами A и B, то композиция $R\circ R^{-1}$ называется **ядром** отношения R и обозначается kerR:

$$\ker R = R \circ R^{-1}$$
.

Ядро отношения R между A и B является отношением на A:

$$R \subset A \times B \implies \ker R \subset A^2$$
.

Теорема. Ядро любого отношения рефлексивно и симметрично на области определения.

1.19 Замыкание отношений

Пусть R и R^{\times} – отношения на множестве M. Отношение R^{\times} называется замыканием R относительно свойства C, если

- 1. R^{\times} обладает свойством $C: C(R^{\times});$
- 2. R^{\times} является надмножеством $R: R \subset R^{\times}$;
- 3. R^{\times} является наименьшим таким объектом:

$$C(R^{\times\times}) \wedge R \subset R^{\times} \implies R^{\times} \subset R^{\times\times}.$$

Теорема. Пусть R – отношение на множестве M. Тогда

- $R \cup I$ есть рефлексивное замыкание R;
- $R \cup R^{-1}$ есть симметричное замыкание R;
- если M конечное множество, содержащее n элементов, то отношение

$$R \cup R^2 \cup R^3 \cup ... \cup R^n$$

есть транзитивное замыкание R.

1.20 Функциональные отношения

Пусть f – отношение между A и B такое, что

$$\forall a: (a,b) \in f \land (a,c) \in f \implies b = c.$$

Такое свойство отношений называется **однозначностью** или **функциональ- ным**, а само отношение называется **функцией** из A в B.

$$f:A o B$$
 или $A\stackrel{f}{ o}B.$

$$b = f(a) \iff (a, b) \in f$$
.

1.21 Тотальные и частичные функции

$$Dom f \subset A; \qquad Im f \subset B$$

Если $\mathrm{Dom} f = A$, то функция называется **тотальной**, а если $\mathrm{Dom} f \neq A$, то **частичной**.

1.22 Инъекция, сюрьекция и биекция

Пусть $f:A \to B$, тогда функция f называется

• инъективной (или инъекцией), если

$$b = f(a_1) \wedge b = f(a_2) \implies a_1 = a_2;$$

• сюрьективной (или сюрьекцией), если

$$\forall b \in B \ \exists a \in A : b = f(a);$$

• биективной (или биекцией), если она инъективная и сюрьективная.

1.23 Отношения эквивалентности

Отношение называется отношением **эквивалентности** (эквивалентностью), если оно рефлексивно, симметрично и транзитивно. Эквивалентности обозначают символами E, \sim (тильда) и =:

$$xEy$$
, $x \sim y$, $x = y$.

Пример. Отношение равенства x=y является эквивалентностью на любом множестве A, так как оно

- рефлексивно (x = x);
- симметрично ($x = y \implies y = x$);
- транзитивно ($x = y, y = z \implies x = z$).

1.24 Классы эквивалентности

Пусть E – отношение эквивалентности на множестве A. Классом эквивалентности элемента $x \in A$ называется подмножество элементов множества A, эквивалентных x:

$$E(x) = \{y \in A \mid xEy\}$$
 или
$$[x]_E = \{y \in A \mid y \equiv x\}.$$

1.25 Фактормножества

Если E – отношение эквивалентности на множестве A, то множество классов эквивалентности называется фактормножеством множества A относительно эквивалентности E и обозначается A/E:

$$A/E = \{E(x) \mid x \in A\}$$
 или $A/E = \{[x]_E\}_{x \in A}.$

1.26 Отношения порядка

Антисимметричное транзитивное отношение называется **отношением порядка**. Отношение порядка в общем случае обозначается символом \prec . Отношение порядка может обладать также дополнительными свойствами, которые сведены в следующую таблицу:

Дополнительное свойство, которым обладает отношением порядка	Название отношения порядка, обладающего дополнительным свойством	
рефлексивность	отношение нестрогого порядка \leq	
антирефлексивность	отношение строгого порядка <	
линейность	отношение линейного порядка	
не обладает свойством линейности	отношение частичного порядка	

Множества, на котором задано отношение частичного порядка, называется **частично упорядоченным**.

Множество, на котором задано отношение линейного порядка, называется **линейно упорядоченным**.

2 Элементы математической логики

2.1 Основные понятия

Математическая логика – это анализ методом рассуждений, при этом в первую очередь исследуются формы рассуждений, а не их содержание, т. е. математическая логика исследует соотношения между основными понятиями математики, на базе которых доказываются математические утверждения.

Простейшую из формальных логических теорий называют алгеброй высказываний.

Высказыванием называется утверждение (повествовательное предложение), о котором в данной ситуации можно сказать, что оно истинно или ложно, но не то и другое одновременно.

Высказыванию ставят в соответствие логическую переменную, которая принимает значение 1, если высказывание истинно, и 0, если высказывание ложно.

Из простых высказываний с помощью **логических связок** могут быть построены **составные высказывания**.

2.2 Логические связки

2.2.1 Простейшие логические связки

В таблице 2.1 представлены простейшие логические связки.

Название	Прочтение	Обозначение
отрицание	рицание не	
конъюнкция	И	٨
дизъюнкция	или	V
импликация	если, то	\rightarrow
эквивалентность	тогда и только тогда, когда	\leftrightarrow

Таблица 2.1: Простейшие логические связки

Таблица 2.2 представляет собой таблицу истинности простейших логических связок.

A	В	\bar{A}	$A \wedge B$	$A \lor B$	$A \rightarrow B$	$A \leftrightarrow B$
0	0	1	0	0	1	1
0	1	1	0	1	1	0
1	0	0	0	1	0	0
1	1	0	1	1	1	1

Таблица 2.2: Таблица истинности простейших логических связок

2.2.2 Порядок выполнения логических операций

Если скобок нет, то операции выполняются в следующем порядке:

- 1. отрицание;
- 2. конъюнкция;
- 3. дизъюнкция;
- 4. импликация;
- 5. эквивалентность.

2.2.3 Доказательство тождественной истинности

Пример. Необходимо доказать тождественную истинность формулы

$$\bar{A} \to (A \to B)$$
.

A	В	\bar{A}	$A \rightarrow B$	$\bar{A} \to (A \to B)$
0	0	1	1	1

0	1	1	1	1
1	0	0	0	1
1	1	0	1	1

Таблица 2.3: Пример доказательства тождественной истинности

2.2.4 Другие логические связки

В таблице 2.4 представлены другие логические связки, которые мы в дальнейшем будем использовать.

Название	Прочтение	Обозначение
Штрих Шеффера	антиконъюнкция	
Стрелка Пирса	антидизъюнкция	↓
Сумма по модулю два	антиэквивалентность	⊕

Таблица 2.4: Другие логические связки

Эти логические связки можно представить следующим образом:

$$A \, \big| \, B = \overline{A \wedge B}; \quad A \downarrow B = \overline{A \vee B}; \quad A \oplus B = \overline{A \leftrightarrow B}.$$

Таблица 2.5 представляет собой таблицу истинности других логических связок.

A	B	$A \mid B$	$A \downarrow B$	$A \oplus B$
0	0	1	1	0
0	1	1	0	1
1	0	1	0	1
1	1	0	0	0

Таблица 2.5: Таблица истинности других логических связок

Замечание. Таблицы истинности содержат 2^n строк, где n – число простых логических высказываний.

2.3 Логические отношения

Отношение следствия: из A следует B, если B истинно всякий раз, когда истинно A.

Пример. Рассмотрим высказывания $A \leftrightarrow B$, $A \rightarrow B$, $A \lor B$:

A	В	$A \leftrightarrow B$	$A \to B$	$A \lor B$
0	0	1	1	0
0	1	0	1	1
1	0	0	0	1
1	1	1	1	1

Из $A \leftrightarrow B$ следует $A \to B$, однако из $A \leftrightarrow B$ не следует $A \vee B$.

Два составных высказывания **эквивалентны**, если они имеют одинаковые истинностные значения на одинаковых наборах, т. е. последние столбцы их таблиц истинности должны совпадать.

Пример. Проверим, являются ли высказывания $A \to B$ и $\bar{A} \lor B$ эквивалентными:

A	В	$A \rightarrow B$
0	0	1
0	1	1
1	0	0
1	1	1

A	В	\bar{A}	$\bar{A} \lor B$
0	0	1	1
0	1	1	1
1	0	0	0
1	1	0	1

Итого получим, что

$$A \to B \equiv \bar{A} \lor B.$$

2.4 Варианты импликации

Импликация двух высказываний отличается от эквивалентности, а также от дизъюнкции и конъюнкции тем, что она **несимметрична** (т. е. $A \to B$ не эквивалентно $B \to A$).

Для высказывания $A \to B$:

- высказывание $B \to A$ называется конверсией;
- высказывание $ar{A}
 ightarrow ar{B}$ называется конверсией контрапозиции;
- высказывание $ar{B}
 ightarrow ar{A}$ называется контрапозицией.

Таблица 2.9 представляет собой таблицу истинности этих вариантов импликации.

A	В	\bar{A}	\bar{B}	$A \to B$	$B \to A$	$\bar{A} o \bar{B}$	$\bar{B} o \bar{A}$
0	0	1	1	1	1	1	1
0	1	1	0	1	0	0	1
1	0	0	1	0	1	1	0
1	1	0	0	1	1	1	1

Таблица 2.9: Таблица истинности вариантов импликации

2.5 Необходимое и достаточное условия

Условие	Описание	Операция
A является достаточным условием для B	Если имеет место A , то B также будет иметь место	Импликация $A o B$
A является необходимым условием для B	Если имеет место B , то A также будет иметь место	Конверсия достаточного условия $B o A$
A является необходимым и достаточным условием для B	A имеет место тогда и только тогда, когда имеет место B	Двойная импликация, т. е. эквивалентность $A \leftrightarrow B$

2.6 Основные логические эквивалентности

Свойство 1 (Идемпотентность).

$$A \lor A = A$$
, $A \land A = A$.

Свойство 2 (Коммутативность).

$$A \lor B = B \lor A, \quad A \land B = B \land A.$$

Свойство 3 (Ассоциативность).

$$A \lor (B \lor C) = (A \lor B) \lor C, \quad A \land (B \land C) = (A \land B) \land C.$$

Свойство 4 (Дистрибутивность).

$$A \lor (B \land C) = (A \lor B) \land (A \lor C), \quad A \land (B \lor C) = (A \land B) \lor (A \land C).$$

Свойство 5 (Поглощение).

$$(A \wedge B) \vee A = A, \quad (A \vee B) \wedge A = A.$$

Свойство 6 (Свойства нуля).

$$A \lor 0 = A, \quad A \land 0 = 0.$$

Свойство 7 (Свойства единицы).

$$A \lor 1 = 1, \quad A \land 1 = A.$$

Свойство 8 (Инволютивность).

$$\bar{\bar{A}} = A.$$

Свойство 9 (Законы де Моргана).

$$\overline{A \wedge B} = \overline{A} \vee \overline{B}, \quad \overline{A \vee B} = \overline{A} \wedge \overline{B}.$$

Свойство 10 (Свойства дополнения).

$$A \vee \bar{A} = 1, \quad A \wedge \bar{A} = 0.$$

Свойство 11 (Свойство импликации).

$$A \to B = \bar{A} \lor B.$$

Свойство 12 (Свойство эквивалентности).

$$A \leftrightarrow B = (A \to B) \land (B \to A).$$

2.7 Булевы функции

Булевы функции находят применение в конструировании и упрощении логических схем.

Обозначим $E_2 = \{0,1\}$, тогда

$$E_2^n = \underbrace{E_2 \times E_2 \times \dots \times E_2}_{n}.$$

Функции $f:E_2^n \to E_2$ называются функции алгебры логики или булевыми функциями от n переменных. Множество булевых функций от n переменных обозначают P_n :

$$P_n = \{ f \mid f : E_2^n \to E_2 \}.$$

2.8 Множество булевых функций. Булев куб

 P_2 - множество всех булевых функций.

 $P_{2,n}$ – множество всех булевых функций от n переменных:

$$P_{2,n} = \{ f \mid f : E_2^n \to E_2 \}, \qquad P_2 = \bigcup_{n \geq 0} P_{2,n}.$$

 $\{0,1\}^n$ – **булев куб** размерности n. Число всех элементов булева куба $\{0,1\}^n$ составляет 2^n .

2.9 Булев порядок

Для произвольных наборов $\bar{\alpha}=(\alpha_1,\dots,\alpha_n)$ и $\bar{\beta}=(\beta_1,\dots,\beta_n)$ имеет место

$$\bar{\alpha} \leq \bar{\beta} \iff \alpha_i \leq \beta_i, \forall i = \overline{1, n}$$

то есть

$$ar{lpha} \leq ar{eta} \iff lpha_i = eta_i$$
 или $lpha_i, eta_i = 1, orall i = \overline{1,n}.$

Если существует хотя бы одно i, для которого $\alpha_i=0$, $\beta_i=1$, то имеет место строгое неравенство $\bar{\alpha}<\bar{\beta}$.

Если существует ровно одно i, для которого $\alpha_i=0$, $\beta_i=1$, то набор $\bar{\beta}$ доминирует над набором $\bar{\alpha}$.

Рассмотренное отношение порядка на B^n , где B^n – n-я декартова степень

$$B = (\{0,1\}, \vee, \wedge, 0, 1)$$

будем называть булевым порядком.

Булев куб как упорядоченное множество можно изобразить в виде диаграммы Xacce

Рис. 2.1: Примеры булевых кубов в виде диаграммы Хассе

2.10 Мощность множества булевых функций

Число булевых функций от n переменных находится по формуле

$$|P_{2,n}| = 2^{2^n}$$
.

x_1		x_{n-1}	x_n	$f(x_1, \dots x_n)$
0		0	0	$f(0,\dots,0,0)$
0		0	1	$f(0,\dots,0,1)$
0		1	0	$f(0,\dots,1,0)$
	•••			
1		1	1	$f(1,\dots,1,1)$

Таблица 2.11: Таблица булевых функций

2.11 Существенные и несущественные переменные

Булева функция $f \in P_n$ существенно зависит от переменной x_i , если существует такой набор значений

$$a_1, \ldots, a_{i-1}, a_{i+1}, \ldots, a_n$$

что

$$f(a_1,\dots,a_{i-1},0,a_{i+1},\dots,a_n) \neq f(a_1,\dots,a_{i-1},0,a_{i+1},\dots,a_n).$$

В этом случае x_i называют **существенной** переменной, в противном случае x_i называют **несущественной** (фиктивной) переменной.

Пример. Рассмотрим следующую таблицу истинности:

x_1	x_2	f_1	f_2
0	0	0	1
0	1	0	1
1	0	1	0
1	1	1	0

В данном случае x_1 – существенная переменная, а x_2 – несущественная, поскольку

$$f_1(0,0) = f_1(0,1),$$
 $f_1(1,0) = f_1(1,1).$
 $f_2(0,0) = f_2(0,1),$ $f_2(1,0) = f_2(1,1).$

2.12 Булевы функции одной и нескольких переменной

x	f_1	f_2	f_3	f_4
0	0	0	1	1
1	0	1	0	1

Таблица 2.13: Булевы функции одной переменной

x_1	x_2	f_1	f_2	f_3	f_4	f_5	f_6	f_7	f_8	f_9	f_{10}	f_{11}	f_{12}	f_{13}	f_{14}	f_{15}	f_{16}
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

Таблица 2.14: Булевы функции двух переменных

2.13 Мажоритарная функция

	x_1	x_2	x_3	$f(x_1, x_2, x_3)$
0	0	0	0	0
1	0	0	1	0
2	0	1	0	0
3	0	1	1	1
4	1	0	0	0
5	1	0	1	1
6	1	1	0	1
7	1	1	1	1

Таблица 2.15: Мажоритарная функция (функция голосования)

2.14 Реализация функций формулами

Так же, как составные высказывания строятся из более простых, с помощью логических операций, можно комбинировать булевы переменные с помощью булевых операций, получая булевы выражения, которые называются формулами. Всякой формуле однозначно соответствует некоторая функция, при этом говорят, что формула реализует функцию.

Пример. Построим таблицу истинности для формулы

$$((x_1 \wedge x_2) \oplus x_1) \oplus x_2.$$

x_1	x_2	$x_1 \wedge x_2$	$(x_1 \wedge x_2) \oplus x_1$	$((x_1 \land x_2) \oplus x_1) \oplus x_2$
0	0	0	0	0
0	1	0	0	1
1	0	0	1	1
1	1	1	0	1

Формула $((x_1 \land x_2) \oplus x_1) \oplus x_2$ реализует функцию $f_8(x_1, x_2) = 0111$.

2.15 Равносильные формулы

Одна функция может иметь множество реализацией. Формулы, реализующие одну и ту же функцию, называются **равносильными**:

$$\mathcal{F}_1 = \mathcal{F}_2 \iff \exists f: \text{func } \mathcal{F}_1 = f \land \text{func } \mathcal{F}_2 = f.$$

Другими словами, булевы функции f и g называют равносильными, если их существенные переменные соответственно равны и на каждом наборе значений этих переменных функции f и g принимают равные значения.

Пример. Пусть

$$f(x,y) = x \vee y, \quad g(x,y,z) = xz \vee x\bar{z} \vee yz \vee y\bar{z}.$$

Упростим функцию g(x, y, z):

$$g(x,y,z) = xz \vee x\bar{z} \vee yz \vee y\bar{z} = x(z \vee \bar{z}) \vee y(z \vee \bar{z}) = x \vee y.$$

Получили, что функции f(x,y) и g(x,y,z) равносильны.

2.16 Законы булевой алгебры

Свойство 1 (Идемпотентность).

$$a \lor a = a, \quad a \land a = a.$$

Свойство 2 (Коммутативность).

$$a \lor b = b \lor a$$
, $a \land b = b \land a$.

Свойство 3 (Ассоциативность).

$$a \lor (b \lor c) = (a \lor b) \lor c, \quad a \land (b \land c) = (a \land b) \land c.$$

Свойство 4 (Дистрибутивность).

$$a \lor (b \land c) = (a \lor b) \land (a \lor c), \quad a \land (b \lor c) = (a \land b) \lor (a \land c).$$

Свойство 5 (Поглощение).

$$(a \wedge b) \vee a = a, \quad (a \vee b) \wedge a = a.$$

Свойство 6 (Свойства нуля).

$$a \lor 0 = a$$
, $a \land 0 = 0$.

Свойство 7 (Свойства единицы).

$$a \lor 1 = 1$$
, $a \land 1 = a$.

Свойство 8 (Инволютивность).

$$\bar{\bar{a}} = a$$
.

Свойство 9 (Законы де Моргана).

$$\overline{a \wedge b} = \bar{a} \vee \bar{b}, \quad \overline{a \vee b} = \bar{a} \wedge \bar{b}.$$

Свойство 10 (Свойства дополнения).

$$a \vee \bar{a} = 1, \quad a \wedge \bar{a} = 0.$$

Свойство 11 (Свойство импликации).

$$a \to b = \bar{a} \lor b$$
.

Свойство 12 (Свойство эквивалентности).

$$a \leftrightarrow b = (a \to b) \land (b \to a).$$

2.17 Двойственная функция

Пусть $f(x_1,\ldots,x_n)\in P_n$ – булева функция. Тогда функция

$$f^*(x_1,\dots,x_n) = \overline{f(\bar{x}_1,\dots,\bar{x}_n)}$$

называется **двойственной** к функции f.

Пример 1.

$$0^* = \bar{0} = 1.$$

Пример 2.

$$1^* = \bar{1} = 0.$$

Пример 3.

$$x^* = \bar{\bar{x}} = x.$$

Т. к. x в данном случае и функция, и переменная, мы применяем двойное отрицание.

Пример 4.

$$(x \wedge y)^* = \overline{\bar{x} \wedge \bar{y}} = x \vee y.$$

Пример 5.

$$(x\vee y)^*=\overline{\bar x\vee\bar y}=x\wedge y.$$

2.18 Инволютивность двойственности

Из определения видно, что двойственность инволютивна: $f^{**}=f$, поэтому отношение «быть двойственной к» на множестве булевых функций симметрично, то есть, если $f^*=g$, то $g^*=f$.

Если в таблице истинности булевой функции f инвертировать все значения, то получим таблицу истинности двойственной функции f^* .

2.19 Самодвойственная функция

Функция называется **самодвойственной**, если $f^* = f$. Примером такой функции может служить функция f(x) = x:

$$x^* = \bar{\bar{x}} = x.$$

2.20 Принцип двойственности

Теорема. Пусть $F=\{f_1,\dots,f_m\}$ – система булевых функций, а $F^*=\{f_1^*,\dots,f_n^*\}$ – система двойственных функций. Тогда если формула $\mathcal F$ над базисом F реализует функцию f, то формула $\mathcal F^*$ над базисом F^* , полученная заменой функций f_i , двойственными функциями f_i^* , реализует функцию f^* :

$$\operatorname{func}\, \mathcal{F}|F|=f \implies \operatorname{func}\, \mathcal{F}^*|F^*|=f^*.$$

Следствие. Если две равносильные формулы заменить двойственными, то равносильность сохранится:

$$\mathcal{F}_1 = \mathcal{F}_2 \implies \mathcal{F}_1^* = \mathcal{F}_2^*.$$

Замечание. Формула, двойственная к булевой формуле, может быть получена заменой констант 0 на 1, 1 на 0, операций \wedge на \vee , \vee на \wedge и сохранением структуры формулы.

2.21 Нормальные формы

Если x – логическая переменная, $\sigma \in \{0,1\}$, то выражение

$$x^{\sigma} = egin{cases} x, \text{если } \sigma = 1, \ ar{x}, \text{если } \sigma = 0. \end{cases}$$

называется литерой. Литеры x и \bar{x} называются контрарными. Элементарной конъюнкцией называется конъюнкция литер. Элементарной дизъюнкцией называется дизъюнкция литер.

2.22 ДНФ и КНФ

Дизъюнкция элементарных конъюнкций называется **дизъюнктивной нор-** мальной формой (ДНФ).

Конъюнкция элементарных дизъюнкций называется **конъюнктивной нор- мальной формой (КНФ)**.

Пример 1. ДНФ:

$$(x \wedge \bar{y}) \vee (y \wedge z).$$

Пример 2. КНФ:

$$(x \lor z \lor \bar{y}) \land (x \lor y) \land z.$$

Пример 3. Одновременно и КНФ, и ДНФ:

$$x \wedge \bar{y}$$
.

Теорема.

- 1. Любая формула эквивалентна некоторой ДНФ.
- 2. Любая формула эквивалентна некоторой КНФ.

Алгоритм приведения формулы к ДНФ:

- 1. выразить все логические операции, участвующие в построении формулы, через дизъюнкцию, конъюнкцию и отрицание;
- 2. используя законы де Моргана, перенести все отрицания к переменным;
- 3. убрать двойные отрицания;
- 4. используя закон дистрибутивности, преобразовать формулу так, чтобы все конъюнкции выполнялись раньше дизъюнкций.

Алгоритм приведения формулы к КНФ:

- 1. выразить все логические операции, участвующие в построении формулы, через дизъюнкцию, конъюнкцию и отрицание;
- 2. используя законы де Моргана, перенести все отрицания к переменным;
- 3. убрать двойные отрицания;
- 4. используя закон дистрибутивности, преобразовать формулу так, чтобы все дизъюнкции выполнялись раньше, чем конъюнкции.

2.23 Совершенные нормальные формы

2.23.1 СДНФ

Реализация булевой функции $f(x_1, ..., x_n)$ в виде формулы

$$f(x_1, \dots, x_n) = \bigvee x_1^{\sigma_1} \wedge \dots \wedge x_n^{\sigma_n}$$

называется **совершенной дизъюнктивной нормальной формой (СДНФ)**. Таким образом, СДНФ есть ДНФ, в которой нет одинаковых элементарных конъюнкций, и в каждой элементарной конъюнкции каждая переменная x_i , из набора $\{x_1,\ldots,x_n\}$ входит ровно один раз, причем входит либо сама x_i , либо ее отрицание \bar{x}_i .

Теорема. Каждая булева функция, отличная от константы 0, имеет единственную СДНФ.

2.23.2 CKHΦ

Реализация булевой функции $f(x_1, ..., x_n)$ в виде формулы

$$f(x_1, \dots, x_n) = \bigwedge x_1^{\sigma_1} \vee \dots \vee x_n^{\sigma_n}$$

называется совершенной конъюнктивной нормальной формой (СКНФ). Таким образом, СКНФ есть КНФ, в которой нет одинаковых элементарных дизъюнкций, и в каждой элементарной дизъюнкции каждая переменная x_i из набора $\{x_1,\ldots,x_n\}$ входит ровно один раз, причем входит либо сама x_i , либо ее отрицание \bar{x}_i .

Теорема. Всякая булева функция, отличная от константы 1, имеет единственную СКНФ.

2.24 Нахождение СДНФ

При нахождении СДНФ пользуются следующим правилом:

- 1. каждый набор аргументов определяет элементарную конъюнкцию, в которой значению 0 соответствует отрицание переменной, а значению 1 сама переменная.
- 2. СДНФ функции образуют те элементарные конъюнкции, которые соответствуют наборам аргументов, дающим 1.

Каждый набор аргументов, на котором функция принимает значение 1, называется конституентой единицы функции.

Пример. Найдем СДНФ для $x_1 o x_2$.

x_1	x_2	$x_1 \rightarrow x_2$	элем. конъюнкции
0	0	1	$\bar{x}_1 \wedge \bar{x}_2$
0	1	1	$\bar{x}_1 \wedge x_2$
1	0	0	$x_1 \wedge \bar{x}_2$
1	1	1	$x_1 \wedge x_2$

СДНФ: $(\bar{x}_1 \wedge \bar{x}_2) \vee (\bar{x}_1 \wedge x_2) \vee (x_1 \wedge x_2)$.

2.25 Нахождение СКНФ

При нахождении СКНФ пользуются следующим правилом:

- 1. каждый набор аргументов определяет элементарную дизъюнкцию, в которой значению 1 соответствует инверсия переменной, а значению 0 сама переменная;
- 2. СКН Φ функции образуют те элементарные конъюнкции, которые соответствуют наборам аргументов, дающим 0.

Каждый набор аргументов, на котором функция принимает значение 0, называется конституентой нуля функции.

Пример 1. Найдем СКНФ для $x_1 \to x_2$.

x_1	x_2	$x_1 \to x_2$	элем. дизъюнкции
0	0	1	$x_1 \vee x_2$
0	1	1	$x_1 \vee \bar{x}_2$
1	0	0	$\bar{x}_1 \vee x_2$
1	1	1	$\bar{x}_1 \vee \bar{x}_2$

СКНФ: $\bar{x}_1 \vee x_2$.

2.26 Замкнутые классы

Пусть

$$F = \{f_1, \dots, f_m\}, f_i \in P_2 \ \forall i \in \overline{1, m}.$$

Замыканием F называется множество всех булевых функций, реализуемых формулами над F:

$$[F]=\{f\in P_2\mid f=\mathrm{func}\; F[F]\}.$$

2.27 Свойства замыкания

Свойство 1.

$$F \subset [F]$$

Свойство 2 (Идемпотентность).

$$[[F]] = [F]$$

Свойство 3 (Монотонность).

$$F_1 \subset F_2 \implies [F_1] \subset [F_2]$$

Свойство 4.

$$([F_1] \cup [F_2]) \subset [F_1 \cup F_2].$$

Класс (множество) функций F называется **замкнутым**, если [F]=F.

2.28 Замкнутые классы

Класс функций, сохраняющих 0:

$$T_0 = \{ f \in P_2 \mid f(0, \dots, 0) = 0 \}.$$

Класс функций, сохраняющих 1:

$$T_1 = \{ f \in P_2 \mid f(1, \dots, 1) = 1 \}.$$

Класс самодвойственных функций:

$$S = \{ f \in P_2 \mid f = f^* \}.$$

Класс монотонных функций:

$$M = \{ f \in P_2 \mid \forall \alpha, \beta : \alpha \leq \beta \implies f(\alpha) \leq f(\beta) \}.$$

Класс линейных функций:

$$L = \{ f \in P_2 \mid f(x_1, \dots, x_n) = a_0 \oplus a_1 x_1 \oplus \dots \oplus a_n x_n \}.$$

Теорема. Классы T_0 , T_1 , S, M, L – замкнуты.

Пример. Рассмотрим конъюнкцию и введем обозначение $\psi(x,y)=x\wedge y$. Тогда

- $\psi \in T_0$, T. K. $0 \wedge 0 = 0$;
- $\psi \in T_1$, T. K. $1 \wedge 1 = 1$;
- $\psi \notin S$, t. k. $\psi(x,y) = \overline{\bar{x} \wedge \bar{y}} = x \vee y \neq \psi(x,y)$;
- $\psi \in M$, можно убедиться, построив таблицу истинности;
- $\psi \notin L$, можно убедиться, построив полином Жегалкина.

2.29 Полные системы функций

Класс функций F называется **полным**, если его замыкание совпадает с P_2 :

$$[F] = P_2.$$

Другими словами, множество функции F образует полную систему, если любая булева функция реализуема в виде формулы над F.

Теорема. Пусть заданы две системы функций

$$F = \{f_1, \dots, f_m\}, \quad G = \{g_1, \dots, g_k\}$$

Тогда, если система F полна и все функции из F реализуемы формулами над G, то система G также полна.

Пример. Система $\{\lor,\land,\lnot\}$ полная, т. к. всякая булева функция (в силу того, что она имеет единственную СДНФ) может быть выражена через дизъюнкцию, конъюнкцию и отрицание. Тогда

• система $\{\neg, \land\}$ полная, т. к.

$$x_1 \vee x_2 = \overline{\bar{x}_1 \wedge \bar{x}_2};$$

• система $\{\neg, \lor\}$ полная, т. к.

$$x_1 \wedge x_2 = \overline{\bar{x}_1 \vee \bar{x}_2};$$

• система $\{|\}$ полная, т. к.

$$\bar{x} = x \mid x$$
, $x_1 \wedge x_2 = \overline{x_1 \mid x_2} = (x_1 \mid x_2) \mid (x_1 \mid x_2)$;

• система $\{0, 1, \land, \oplus\}$ полная, т. к.

$$\bar{x} = x + 1.$$

2.30 Полнота двойственной системы

Теорема. Если система $F=\{f_1,\dots,f_m\}$ полна, то система $F^*=\{f_1^*,\dots,f_m^*\}$ также полна.

Пример 1. Система $\{0,1,\wedge,\oplus\}$ полна, следовательно, система $\{1,0,\vee,\leftrightarrow\}$ также полна.

2.31 Теорема Поста

Теорема. Система булевых функций F полна тогда и только тогда, когда она содержит:

- хотя бы одну функцию, не сохраняющую ноль;
- хотя бы одну функцию, не сохраняющую единицу;
- хотя бы одну несамодвойственную функцию;
- хотя бы одну немонотонную функцию;
- хотя бы одну нелинейную функцию.

$$[F] = P_2 \iff \overline{F \subset T_0 \vee F \subset T_1 \vee F \subset S \vee F \subset M \vee F \subset L}.$$

Пример 1. Рассмотрим систему $\{\lor, \land, \neg\}$:

	T_0	T_1	S	M	L
\bar{x}	_	_	+	_	+
$x_1 \wedge x_2$	+	+	_	+	
$x_1 \lor x_2$	+	+	_	+	

Так как в каждом столбике есть —, система $\{\lor,\land,\lnot\}$ – полная. Также очевидно, что $\{\land,\lnot\}$ и \lor,\lnot являются полными, а значит являются базисами для исходной системы.

Пример 2. Рассмотрим систему $\{|\}$:

x	y	$f(x,y) = x \mid y$
0	0	1
0	1	1
1	0	1
1	1	0

1.
$$f(0,0) = 1 \implies f \notin T_0$$
;

2.
$$f(1,1) = 0 \implies f \notin T_1$$
;

3.
$$f(0,1) = 1, f(1,0) = 1 \implies f \notin S$$
;

4.
$$(0,0) < (1,1), f(0,0) > f(1,1) \implies f \notin M$$
;

5.
$$f(x,y) = 1 \oplus xy \implies f \notin L$$
.

	T_0	T_1	S	M	L
$x \mid y$	_	_	_		

Следовательно, система $\{|\}$ является полной по критерию Поста. Таким же образом можно доказать, что \downarrow также является полной.

Замечание. Число шефферовых функций от n переменных равно

$$2^{2^{n}-2} - 2^{2^{n-1}-1}.$$

2.32 Одноместный предикат

Одноместный предикат P(x) – это функция переменной x, определенная на множестве M и принимающая значения на множестве $\{0,1\}$. Те значения переменной, на которых предикат принимает истинное значение, образуют **множество истинности предиката**. Так как предикаты принимают значения 0 и 1, то к ним применяются логические операции.

Пример. Пусть даны предикаты P(x)= «x – четное число» и Q(x)= «x кратно 3», определенные на множестве $M=\{1,2,3,4,5,6,7,8,9\}$. Необходимо найти область истинности предикатов:

- 1. $P(x) \wedge Q(x)$;
- 2. $P(x) \vee Q(x)$;
- 3. $\bar{P}(x)$;
- 4. $P(x) \rightarrow Q(x)$.

Решение:

1.
$$I_{P \wedge Q} = I_P \cap I_Q = \{6\};$$

2.
$$I_{P \vee Q} = I_P \cup I_Q = \{2, 3, 4, 6, 8, 9\};$$

3.
$$I_{\bar{P}} = \bar{I}_P = M \setminus I_P = \{1, 3, 5, 7, 9\};$$

4.
$$I_{P\to Q} = \bar{I}_P \cup I_Q = \{1, 3, 5, 6, 7, 9\}.$$

2.33 п-местный предикат

n-местным предикатом называется функция n переменных $P(x_1,\dots,x_n)$, определенная на множестве $M=M_1\times\ldots\times M_n$ и принимающая на этом множестве одно из двух значений: истина или ложь:

$$P(x_1,\ldots,x_n):M_1\times\ldots\times M_n\to E_2.$$

2.34 Кванторные операции

Пусть P(x) – одноместный предикат, определенный на множестве M. Квантор общности \forall превращает предикат P(x) в высказывание:

$$\forall P(x) =$$
«для всякого элемента x высказывание $P(x)$ истинно».

Квантор существования \exists превращает предикат P(x) в высказывание

 $\exists P(x) =$ «существует элемент x такой, что высказывание P(x) истинно».

Операция приписывания к предикату квантора называется **навешиванием квантора**. Переменная, к которой квантор связывается квантором и называется **связанной переменной**. Переменная, не связанная квантором, называется **свободной переменной**.

2.35 Алфавит логики предикатов

- 1. предметные константы p, q, r, ... (принимают значения 0 или 1);
- 2. предметные переменные x, y, z, ..., пробегающие значения некоторого множества M;
- 3. функциональные переменные f, g, h, ...;
- 4. предикатные переменные P, Q, R, ...;
- 5. символы логических операций \land , \lor , \rightarrow , \neg ;
- 6. кванторные символы \forall , \exists ;
- 7. запятая, скобки.

2.36 Формулы логики предикатов

Определим понятие терма:

- 1. Всякая предметная константа есть терм.
- 2. Всякая предметная переменная есть терм.
- 3. Если t_1,\dots,t_n термы, а f функциональная переменная, то $f(t_1,\dots,t_n)$ есть терм.

Определим понятие формулы:

- 1. Если t_1,\dots,t_n термы, $\{x_1,\dots,x_n\}$ множество всех переменных в термах t_1,\dots,t_n , P предикатная переменная, то $P(t_1,\dots,t_n)$ элементарная формула со свободными переменными x_1,\dots,x_n .
- 2. Если A формула, то \bar{A} формула. Свободные переменные формулы A являются свободными переменными формулы \bar{A} .
- 3. Если A и B есть формулы, то $(A \wedge B)$, $(A \vee B)$, $(A \to B)$ тоже есть формулы. Их свободные переменные это свободные переменные формул A и B.
- 4. Если A(x) формула с множеством свободных переменных $\{x,x_1,\dots,x_n\}$, то выражения $\exists x\ A(x)$ и $\forall x\ A(x)$ есть формулы. Переменные x_1,\dots,x_n в этих формулах свободны, а переменная x связана квантором.

При построении новых формул надо внимательно следить за тем, чтобы предметные переменные, свободные в одной формуле, были свободными и в других формулах. Тогда эти переменные будут свободными и в построенной формуле.

Формула без свободных переменных называется замкнутой.

При построении формул в логике предикатов действуют те же правила опускания скобок, что и в исчислении высказываний. Кванторы имеют высший приоритет.

В формулах $\exists x\; A(x)$ и $\forall x\; A(x)$ формула A(x) есть область действия квантора.

Пример.

- $\forall x \ P(x)$ является формулой;
- $\exists x \ (Q(x) \to P(x,y))$ является формулой;
- $\exists x \; P(x,y) \lor Q(x)$ не является формулой, т. к. нет скобочек.

2.37 Равносильные формулы

Две формулы логики предикатов называются **равносильными** на области M, если они принимают одинаковые значения для всех значений переменных

из области M.

Равносильные формулы - это формулы, равносильные на любой области.

Пример 1.

$$\overline{\forall x \ A(x)} = \exists x \ \overline{A(x)}.$$

Пример 2.

$$\overline{\exists x \ A(x)} = \forall x \ \overline{A(x)}.$$

Пример 3.

$$C \wedge \forall x \ B(x) = \forall x \ (C \wedge B(x)).$$

Пример 4.

$$C \vee \forall x \ B(x) = \forall x \ (C \vee B(x)).$$

Пример 5.

$$C \wedge \exists x \ B(x) = \exists x \ (C \wedge B(x)).$$

Пример 6.

$$C \vee \exists x \ B(x) = \exists x \ (C \vee B(x)).$$

Пример 7.

$$\forall x \ A(x) \land \forall x \ B(x) = \forall x \ (A(x) \land B(x)).$$

Пример 8.

$$\exists x\; A(x) \vee \exists x\; B(x) = \exists x\; (A(x) \vee B(x)).$$

Пример 9.

$$\exists x \ A(x) \land \exists x \ B(x) = \exists x \exists y \ (A(x) \land B(y)).$$

Пример 10.

$$\forall x \ A(x) \lor \forall x \ B(x) = \forall x \forall y \ (A(x) \lor B(y))$$

2.38 Предваренная нормальная форма

Предваренная нормальная форма имеет следующий вид:

$$Q_1x_1\dots Q_nx_n\ B(x_1,\dots,x_n),$$

где Q_i – один из кванторов, формула $B(x_1,\dots,x_n)$ не содержит кванторов. **Теорема.** Любую формулу логики предикатов можно привести к предваренной нормальной форме.

Пример. Необходимо привести формулу

$$\overline{\forall x\; (P(x))} \vee \exists x\; (Q(x,y))$$

к предварительной формуле.

$$\overline{\forall x\ (P(x))} \lor \exists x\ (Q(x,y)) = \exists x\ (\overline{P(x)}) \lor \exists x\ (Q(x,y)) = \exists x\ (\overline{P(x)} \lor Q(x,y)).$$

2.39 Общезначимость и выполнимость

Формула логики предикатов называется **выполнимой** в некоторой области M, если существуют значения переменных, входящих в эту формулу и отнесенных к области M, при которых формула принимает истинное значение. Формула **выполнима**, если существует область, на которой выполнима эта формула.

Формула логики предикатов называется **тождественно истинной** в области M, если для всех значений переменных из области M формула принимает истинное значение. Формула, тождественно истинная в любой области, называется **общезначимой** (логическим законом).

2.40 Проблема разрешимость в логике предикатов

Проблема разрешимость в логике предикатов формулируется следующим образом. Существуют ли алгоритмы, позволяющие определить общезначимость, выполнимость или тождественную ложность любой формулы логики предикатов? Показано, что эта проблема алгоритмически не разрешима.