Design of CMOS Operational Amplifier

Savan Prajapati

Agenda

- Specification
- Schematic and Initial approach
- Equations
- In a Search of design parameters
- Parameters
- Other simulations
- Layout
- Outcome

Specifications

Parameter	Value
VDD	1V
Temperature Range	0°C to 100 °C
Capacitive Load	10pF
Reference Current	10 μΑ
CMRR	> 50 dB
Open Loop Gain	> 50 dB
Phase Margin	> 50 dB
Gain Bandwidth	> 5 MHz
Slew Rate	> 8 V/µs
ICMR	Withing 200mV of VDD and VSS
Output Swing	Withing 5mV of both the rails

Schematic

Initial approach

► Small signal model and bode analysis

- Pole location by inspection
- $P1 = \frac{1}{r_{01} c_1} & P2 = \frac{1}{r_{02} c_2}$
- Ideas
 - ▶ To improve PM, change the position of poles.

Equations

- $P1 = {}^{1}/g_{m_2} R_1 R_2 C_c$
- $P2 = \frac{g_{m2}}{C_2}$
- $A_{dc} = g_{m1} R_1 g_{m2} R_2$

- \triangleright Slew Rate = I_0/C_c

In a Search of design parameters

Parameters obtained

MOSFET	W/L ratio (Initial)	W/L ratio (Final)
M1 , M2	4/1	5/1
M3 , M4	14/1	15/1
M5	3/1	3/1
M6	85/1	90/1
M7	10/1	10/1

- ➤ Simulation done in Cadence 45 nm technology
- $ightharpoonup C_c = 2.5 \, pF \, \text{ and } I_0 = 20 \mu A$

Other simulations

- Process corners
- Temperature variations (0 to 100 °C)
- Monte Carlo analysis for 30 runs

Layout

- Interdigitation
- Fingers
- Multipliers
- Dummy
- Area = $16*28 \ \mu m^2$

Outcome

- ► Gain = 55 dB
- Phase margin = 52 dB
- ► Bandwidth = 5.1 MHz
- \sim CMR+ = 0.75 V, CMR- = 0.24 V
- Slew rate = 8.1 V/ μs
- ► CMRR = 53 dB
- Power consumed = 85 μW
- Layout Area = $448 \mu m^2$