/home/nicole/Jupyter/JG3/Data/0.5a0/M/5

```
;ls
In [4]:
        Correlation.G5.M.C*.txt
        Correlation.G5.M.J.txt
        Correlation.G5.M.JC*.txt
        Correlation.G5.M.JC.txt
        G0.Genotype.ID
        G0.ID
        G0.noGenotype.ID
        G1.Genotype.ID
        G1.ID
        G1.noGenotype.ID
        G2.Genotype.ID
        G2.ID
        G2.noGenotype.ID
        G3.Genotype.ID
        G3.ID
        G3.noGenotype.ID
        G4.Genotype.ID
        G4.ID
        G4.noGenotype.ID
        G5.Genotype.ID
        G5.ID
        G5.noGenotype.ID
        MarNF.txt
        MarNFCenter.txt
        PedAll.txt
        Phe.txt
        PheAll.txt
        Regression.G5.M.C*.txt
        Regression.G5.M.J.txt
        Regression.G5.M.JC*.txt
        Regression.G5.M.JC.txt
        all.ID
        alphaEstimatesJ
        alphaEstimatesJC
        alphaEstimatesLeggaraC
        alphaEstimatesLeggaraJC
        epsiEstimatesJ
        epsiEstimatesJC
        epsiEstimatesLeggaraC
        epsiEstimatesLeggaraJC
        genotype.ID
        meanOfSNPMAll
        meanOfSNPMG0
        meanOfSNPMG1
        meanOfSNPMG2
        meanOfSNPMG3
        meanOfSNPMG4
        meanOfSNPMG5
        noGenotype.ID
        sim.bv
        sim.phenotype
```

```
In [5]: ;awk '{print $1}' PedAll.txt | sort -b > all.ID
```

```
;awk '{print $1}' MarNF.txt | sort -b > genotype.ID
         ;join -v1 all.ID genotype.ID > noGenotype.ID
 In [8]:
         ;awk '{print $1,$2}' Phe.txt > sim.phenotype
         ;awk '{print $1,$3}' PheAll.txt > sim.bv
         ; awk 'NR >=1 && NR <=8000 {print $1}' PedAll.txt | sort -b > G0.ID
In [11]:
         ; awk 'NR >=8001 && NR <=16000 {print $1}' PedAll.txt | sort -b > G1.ID
         ; awk 'NR >=16001 && NR <=24000 {print $1}' PedAll.txt | sort -b > G2.ID
In [12]:
In [13]:
         ; awk 'NR >=24001 && NR <=32000 {print $1}' PedAll.txt | sort -b > G3.ID
         ; awk 'NR >=32001 && NR <=40000 {print $1}' PedAll.txt | sort -b > G4.ID
         ; awk 'NR >=40001 && NR <=48000 {print $1}' PedAll.txt | sort -b > G5.ID
In [16]:
         ; join G0.ID genotype.ID > G0.Genotype.ID
         ; join G1.ID genotype.ID > G1.Genotype.ID
In [17]:
In [18]:
         ; join G2.ID genotype.ID > G2.Genotype.ID
In [19]:
         ;join G3.ID genotype.ID > G3.Genotype.ID
In [20]:
         ; join G4.ID genotype.ID > G4.Genotype.ID
In [21]:
         ; join G5.ID genotype.ID > G5.Genotype.ID
In [22]:
         ;join -v1 G0.ID genotype.ID > G0.noGenotype.ID
In [23]:
         ;join -v1 G1.ID genotype.ID > G1.noGenotype.ID
In [24]:
         ;join -v1 G2.ID genotype.ID > G2.noGenotype.ID
         ;join -v1 G3.ID genotype.ID > G3.noGenotype.ID
In [25]:
In [26]:
         ;join -v1 G4.ID genotype.ID > G4.noGenotype.ID
In [27]: |;join -v1 G5.ID genotype.ID > G5.noGenotype.ID
```

```
;wc G0.Genotype.ID;wc G1.Genotype.ID;wc G2.Genotype.ID;wc G3.Genotype.ID;wc (
In [28]:
               200 1200 GO.Genotype.ID
          200 200 1200 G1.Genotype.ID
          200 200 1200 G2.Genotype.ID
          200 200 1200 G3.Genotype.ID
          200 200 1200 G4.Genotype.ID
          8000 8000 48000 G5.Genotype.ID
In [29]: ;wc G0.noGenotype.ID;wc G1.noGenotype.ID;wc G2.noGenotype.ID;wc G3.noGenotype
                7800 46800 G0.noGenotype.ID
          7800
                7800 46800 Gl.noGenotype.ID
          7800
                7800 46800 G2.noGenotype.ID
          7800 7800 46800 G3.noGenotype.ID
          7800 7800 46800 G4.noGenotype.ID
         0 0 0 G5.noGenotype.ID
         ped,A Mats,numSSBayes = calc Ai("PedAll.txt", "genotype.ID", calculateInbreedia
In [30]:
         nothing
         df
                = read_genotypes("MarNF.txt",numSSBayes)
         M Mats = make MMats(df,A Mats,ped);
                                                                                 # with
         y Vecs = make yVecs("sim.phenotype",ped,numSSBayes);
         Z_Mats = make_ZMats(ped,y_Vecs,numSSBayes)
         X_Mats, W_Mats = make_XWMats(Z_Mats,M_Mats,numSSBayes)
                                                                                 # no
         nothing
In [31]:
         vRes
                = 0.767
                = 0.767
         vG
         nIter = 50000
         @time aHat1,alphaHat,betaHat,epsiHat =
         ssGibbs(M_Mats,y_Vecs,Z_Mats,X_Mats,W_Mats,A_Mats, numSSBayes,vRes,vG,nIter,
         nothing
         This is iteration 5000
         This is iteration 10000
         This is iteration 15000
         This is iteration 20000
         This is iteration 25000
         This is iteration 30000
         This is iteration 35000
         This is iteration 40000
         This is iteration 45000
         This is iteration 50000
         4350.978290 seconds (23.03 G allocations: 723.654 GB, 6.98% gc time)
In [32]: betaHat
Out[32]: 1-element Array{Float64,1}:
          3.43591
```

```
alphaHat
In [33]:
Out[33]: 150-element Array{Float64,1}:
          -0.0661846
          -0.177683
          -0.0541196
            0.0593262
            0.156944
            0.122477
           0.145244
           0.129759
          -0.0550109
           0.0230997
          -0.0226458
           0.025889
          -0.00652566
           0.0699499
           0.0797361
           0.00541467
          -0.00909498
          -0.0528024
           0.0518622
          -0.0217061
           0.0714327
           0.0356998
          -0.0467803
          -0.0369169
            0.0408556
In [34]: writedlm("alphaEstimatesN",alphaHat)
```

```
In [35]: epsiHat
Out[35]: 45924-element Array{Float64,1}:
          -0.151118
          -0.502084
          -0.37642
          -1.30357
           0.326649
           0.222514
          -0.0163185
          -0.426572
          -0.53188
           0.104636
          -0.0965096
           0.00842251
          -0.395054
           0.324743
          -0.232673
           0.541019
          -0.406228
           0.375574
          -0.404994
           0.638272
          -0.112097
           0.484402
          -0.536796
          -0.362542
          -0.277071
In [36]: writedlm("epsiEstimatesN",epsiHat)
In [37]: using DataFrames
In [38]: df = readtable("sim.bv", eltypes =[UTF8String, Float64], separator = ' ',head
         a = Array(Float64, numSSBayes.num ped)
         for (i,ID) in enumerate(df[:,1])
             j = ped.idMap[ID].seqID
             a[j] = df[i,2]
         end
In [39]: IDs = readtable("all.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor1 = cor(a[posAi],aHat1[posAi])[1,1]
         reg1 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - all.ID : correlation = %6.3f\n", cor1 ) # with 
         @printf("SSBRJC from Gibbs - all.ID : regression of TBV on GEBV = %6.3f\n",
         JCAll = cor1
         SSBRJC from Gibbs - all.ID : correlation = 0.902
         SSBRJC from Gibbs - all.ID : regression of TBV on GEBV = 0.983
Out[39]: 0.9023506751095764
```

```
In [40]: GEBV = aHat1[posAi]
         mean (GEBV)
Out[40]: 1.509731149564548
In [41]: IDs = readtable("genotype.ID", eltypes =[UTF8String], separator = ' ',header:
         posAi = getPos(ped,IDs)
         cor2 = cor(a[posAi],aHat1[posAi])[1,1]
         reg2 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - genotype.ID : correlation = %6.3f\n", cor2 ) # |
         @printf("SSBRJC from Gibbs - genotype.ID : regression of TBV on GEBV = %6.3:
         JCAll = cor2
         SSBRJC from Gibbs - genotype.ID : correlation = 0.886
         SSBRJC from Gibbs - genotype.ID : regression of TBV on GEBV = 1.001
Out[41]: 0.8863571216537428
In [42]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[42]: 2.674445302401514
In [43]: IDs = readtable("noGenotype.ID", eltypes =[UTF8String], separator = ' ',heade
         posAi = getPos(ped,IDs)
         cor3 = cor(a[posAi],aHat1[posAi])[1,1]
         req3 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - noGenotype.ID : correlation = %6.3f\n", cor3 );
         @printf("SSBRJC from Gibbs - noGenotype.ID : regression of TBV on GEBV = %6
         JCAll = cor3
         SSBRJC from Gibbs - noGenotype.ID : correlation = 0.867
         SSBRJC from Gibbs - noGenotype.ID : regression of TBV on GEBV = 0.962
Out[43]: 0.8672222002774557
In [44]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[44]: 1.240950960448325
In [45]: IDs = readtable("G0.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor4 = cor(a[posAi],aHat1[posAi])[1,1]
         reg4 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G0.ID : correlation = %6.3f\n", cor4 ) # with ep
         @printf("SSBRJC from Gibbs - G0.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor4
         SSBRJC from Gibbs - G0.ID : correlation = 0.714
         SSBRJC from Gibbs - G0.ID: regression of TBV on GEBV = 0.891
Out[45]: 0.7136394462452463
```

```
In [46]: GEBV = aHat1[posAi]
         G1GEBV=mean(GEBV)
Out[46]: 0.12181087394273168
In [47]: IDs = readtable("G1.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor4 = cor(a[posAi],aHat1[posAi])[1,1]
         reg4 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G1.ID : correlation = %6.3f\n", cor4 ) # with e;
         @printf("SSBRJC from Gibbs - G1.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor4
         SSBRJC from Gibbs - G1.ID : correlation =
         SSBRJC from Gibbs - G1.ID: regression of TBV on GEBV = 0.981
Out[47]: 0.7653760407329069
In [48]: GEBV = aHat1[posAi]
         G1GEBV=mean(GEBV)
Out[48]: 0.7824728686446502
In [49]: IDs = readtable("G2.ID", eltypes =[UTF8String], separator = ' ', header=false
         posAi = getPos(ped,IDs)
         cor5 = cor(a[posAi],aHat1[posAi])[1,1]
         req5 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G2.ID : correlation = %6.3f\n", cor5 ) # with ep
         @printf("SSBRJC from Gibbs - G2.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor5
         SSBRJC from Gibbs - G2.ID : correlation = 0.762
         SSBRJC from Gibbs - G2.ID : regression of TBV on GEBV = 1.001
Out[49]: 0.7618175548565126
In [50]: GEBV = aHat1[posAi]
         G2GEBV=mean(GEBV)
Out[50]: 1.3394255431394382
In [51]: IDs = readtable("G3.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor6 = cor(a[posAi],aHat1[posAi])[1,1]
         reg6 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G3.ID : correlation = %6.3f\n", cor6 ) # with ep
         @printf("SSBRJC from Gibbs - G3.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor6
         SSBRJC from Gibbs - G3.ID : correlation = 0.757
         SSBRJC from Gibbs - G3.ID: regression of TBV on GEBV = 1.009
Out[51]: 0.7574090694007437
```

```
In [52]: | GEBV = aHat1[posAi]
         G3GEBV=mean(GEBV)
Out[52]: 1.8227651927831166
In [53]: IDs = readtable("G4.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor7 = cor(a[posAi],aHat1[posAi])[1,1]
         reg7 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G4.ID : correlation = %6.3f\n", cor7 ) # with e;
         @printf("SSBRJC from Gibbs - G4.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor7
         SSBRJC from Gibbs - G4.ID : correlation =
         SSBRJC from Gibbs - G4.ID : regression of TBV on GEBV = 0.981
Out[53]: 0.7466076201000912
In [54]: GEBV = aHat1[posAi]
         G4GEBV=mean(GEBV)
Out[54]: 2.274603739305578
In [55]: IDs = readtable("G5.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor8 = cor(a[posAi],aHat1[posAi])[1,1]
         reg8 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G5.ID : correlation = %6.3f\n", cor8 ) # with ep
         @printf("SSBRJC from Gibbs - G5.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor8
         SSBRJC from Gibbs - G5.ID : correlation = 0.871
         SSBRJC from Gibbs - G5.ID: regression of TBV on GEBV = 0.976
Out[55]: 0.8709563587025191
In [56]: GEBV = aHat1[posAi]
         G5GEBV=mean(GEBV)
Out[56]: 2.7173086795717736
In [57]: GEBVG5G1=G5GEBV-G1GEBV
Out[57]: 1.9348358109271233
In [58]: GEBVG1G5=[G1GEBV;G2GEBV;G3GEBV;G4GEBV;G5GEBV]
Out[58]: 5-element Array{Float64,1}:
          0.782473
          1.33943
          1.82277
          2.2746
          2.71731
```

```
In [59]: reg8 = linreg(aHat1[posAi], a[posAi])
Out[59]: 2-element Array{Float64,1}:
          3.5583
          0.975678
In [60]: VarGEBV=var(aHat1[posAi])
Out[60]: 0.3932665430182818
In [61]: VarTBV=var(a[posAi])
Out[61]: 0.49352325556280474
In [62]: Cov=cov(aHat1[posAi], a[posAi])
Out[62]: 0.3837016842684024
In [63]: b=Cov/VarGEBV
Out[63]: 0.9756784325550044
In [64]: IDs = readtable("G0.Genotype.ID", eltypes =[UTF8String], separator = ' ',head
         posAi = getPos(ped,IDs)
         cor9 = cor(a[posAi],aHat1[posAi])[1,1]
         \#TBV = a[posAi]
         #GEBV = aHat1[posAi]
         \#reg = linreg(X,Y)
         \#reg = linreg(GEBV, TBV)[2,1]
         reg9 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G0.Genotype.ID : correlation = %6.3f\n", cor9 )
         @printf("SSBRJC from Gibbs - G0.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor9
         SSBRJC from Gibbs - G0.Genotype.ID : correlation = 0.864
         SSBRJC from Gibbs - G0.Genotype.ID: regression of TBV on GEBV = 0.944
Out[64]: 0.8637596130790767
In [65]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[65]: 1.4961888204989091
```

```
In [66]: IDs = readtable("G1.Genotype.ID", eltypes =[UTF8String], separator = ' ',heac
         posAi = getPos(ped,IDs)
         cor9 = cor(a[posAi],aHat1[posAi])[1,1]
         \#TBV = a[posAi]
         #GEBV = aHat1[posAi]
         \#reg = linreg(X,Y)
         \#reg = linreg(GEBV, TBV)[2,1]
         reg9 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G1.Genotype.ID : correlation = %6.3f\n", cor9 )
         @printf("SSBRJC from Gibbs - G1.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor9
         SSBRJC from Gibbs - G1.Genotype.ID : correlation = 0.884
         SSBRJC from Gibbs - G1.Genotype.ID : regression of TBV on GEBV = 0.978
Out[66]: 0.8841809532380696
In [67]: | GEBV = aHat1[posAi]
         mean(GEBV)
Out[67]: 1.9758017475141296
In [68]: IDs = readtable("G2.Genotype.ID", eltypes =[UTF8String], separator = ' ',head
         posAi = getPos(ped,IDs)
         cor10 = cor(a[posAi],aHat1[posAi])[1,1]
         reg10 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G2.Genotype.ID : correlation = %6.3f\n", cor10
         @printf("SSBRJC from Gibbs - G2.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor10
         SSBRJC from Gibbs - G2.Genotype.ID : correlation = 0.883
         SSBRJC from Gibbs - G2.Genotype.ID: regression of TBV on GEBV = 0.954
Out[68]: 0.8834304233703436
In [69]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[69]: 2.331805975090036
In [70]: IDs = readtable("G3.Genotype.ID", eltypes =[UTF8String], separator = ' ',head
         posAi = getPos(ped,IDs)
         cor11 = cor(a[posAi],aHat1[posAi])[1,1]
         reg11 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G3.Genotype.ID : correlation = %6.3f\n", corll
         @printf("SSBRJC from Gibbs - G3.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor11
         SSBRJC from Gibbs - G3.Genotype.ID : correlation = 0.869
         SSBRJC from Gibbs - G3.Genotype.ID : regression of TBV on GEBV = 0.917
Out[70]: 0.8689930555102464
```

```
In [71]: | GEBV = aHat1[posAi]
         mean(GEBV)
Out[71]: 2.7428870979867552
In [72]: IDs = readtable("G4.Genotype.ID", eltypes =[UTF8String], separator = ' ',head
         posAi = getPos(ped,IDs)
         cor12 = cor(a[posAi],aHat1[posAi])[1,1]
         reg12 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G4.Genotype.ID : correlation = %6.3f\n", cor12
         @printf("SSBRJC from Gibbs - G4.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor12
         SSBRJC from Gibbs - G4.Genotype.ID : correlation =
         SSBRJC from Gibbs - G4.Genotype.ID : regression of TBV on GEBV = 0.871
Out[72]: 0.820783673400466
In [73]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[73]: 3.1110077841073434
In [74]: IDs = readtable("G5.Genotype.ID", eltypes =[UTF8String], separator = ' ',head
         posAi = getPos(ped,IDs)
         cor13 = cor(a[posAi],aHat1[posAi])[1,1]
         reg13 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G5.Genotype.ID : correlation = %6.3f\n", cor13
         @printf("SSBRJC from Gibbs - G5.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor13
         SSBRJC from Gibbs - G5.Genotype.ID : correlation = 0.871
         SSBRJC from Gibbs - G5.Genotype.ID : regression of TBV on GEBV = 0.976
Out[74]: 0.8709563587025191
In [75]: writedlm("Correlation.G5.M.N.txt",cor13)
In [76]: | writedlm("Regression.G5.M.N.txt",reg13)
In [77]: TBVG5Gall = a[posAi]
         TBVG5G=mean(TBVG5Gall)
Out[77]: 6.209524375
In [78]: | GEBVG5Gall = aHat1[posAi]
         GEBVG5G=mean(GEBVG5Gall)
Out[78]: 2.7173086795717736
```

```
In [79]: | IDs = readtable("G0.noGenotype.ID", eltypes =[UTF8String], separator = ' ',he
         posAi = getPos(ped,IDs)
         cor14 = cor(a[posAi],aHat1[posAi])[1,1]
         reg14 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G0.noGenotype.ID : correlation = %6.3f\n", corl
         @printf("SSBRJC from Gibbs - G0.noGenotype.ID : regression of TBV on GEBV = '
         JCAll = cor14
         SSBRJC from Gibbs - G0.noGenotype.ID : correlation = 0.698
         SSBRJC from Gibbs - G0.noGenotype.ID: regression of TBV on GEBV = 0.901
Out[79]: 0.6977100451317846
In [80]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[80]: 0.08657041377462459
In [81]: IDs = readtable("G1.noGenotype.ID", eltypes =[UTF8String], separator = ' ',he
         posAi = getPos(ped,IDs)
         cor14 = cor(a[posAi],aHat1[posAi])[1,1]
         reg14 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G1.noGenotype.ID : correlation = %6.3f\n", corl
         @printf("SSBRJC from Gibbs - G1.noGenotype.ID : regression of TBV on GEBV = '
         JCAll = cor14
         SSBRJC from Gibbs - G1.noGenotype.ID : correlation = 0.750
         SSBRJC from Gibbs - G1.noGenotype.ID: regression of TBV on GEBV = 0.987
Out[81]: 0.7497577579044847
In [82]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[82]: 0.7518746922633813
In [83]: IDs = readtable("G2.noGenotype.ID", eltypes =[UTF8String], separator = ' ',he
         posAi = getPos(ped,IDs)
         cor15 = cor(a[posAi],aHat1[posAi])[1,1]
         reg15 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G2.noGenotype.ID : correlation = %6.3f\n", cor1!
         @printf("SSBRJC from Gibbs - G2.noGenotype.ID : regression of TBV on GEBV = '
         JCAll = cor15
         SSBRJC from Gibbs - G2.noGenotype.ID : correlation = 0.747
         SSBRJC from Gibbs - G2.noGenotype.ID : regression of TBV on GEBV = 1.002
Out[83]: 0.7468252282042209
In [84]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[84]: 1.3139798910381404
```

```
In [85]: IDs = readtable("G3.noGenotype.ID", eltypes =[UTF8String], separator = ' ',he
         posAi = getPos(ped,IDs)
         cor16 = cor(a[posAi],aHat1[posAi])[1,1]
         reg16 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G3.noGenotype.ID : correlation = %6.3f\n", cor1
         @printf("SSBRJC from Gibbs - G3.noGenotype.ID : regression of TBV on GEBV = '
         JCAll = cor16
         SSBRJC from Gibbs - G3.noGenotype.ID : correlation = 0.743
         SSBRJC from Gibbs - G3.noGenotype.ID : regression of TBV on GEBV = 1.008
Out[85]: 0.7434325987562198
In [86]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[86]: 1.7991723234189205
In [87]: IDs = readtable("G4.noGenotype.ID", eltypes =[UTF8String], separator = ' ',he
         posAi = getPos(ped,IDs)
         cor17 = cor(a[posAi],aHat1[posAi])[1,1]
         reg17 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G4.noGenotype.ID : correlation = %6.3f\n", corl
         @printf("SSBRJC from Gibbs - G4.noGenotype.ID : regression of TBV on GEBV = '
         JCAll = cor17
         SSBRJC from Gibbs - G4.noGenotype.ID : correlation = 0.731
         SSBRJC from Gibbs - G4.noGenotype.ID : regression of TBV on GEBV = 0.970
Out[87]: 0.7314018336397028
In [88]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[88]: 2.253157481746559
In [89]: numSSBayes
Out[89]: SSBR.NumSSBayes(54924,45924,9000,40000,39000,1000,150)
```