ML: Intro to Machine Learning

Classification

S perception

Contradient Descent

tre (+1)

-ve (-1)

Maths Linear algebra

Calculus

optimis edion

Summary

ML - 1 - Supervixed Learning

ML - 1.2 - Un & upervixed Learning

ML - 1.2 - Un & upervixed Learning

ML - 1.2 - Time series of Recommendation System

Pick one of NLP / NN / CV /

Motivation

People (computer scientists) sterked using Rule based Logic [Hord coding] to enable the computes take a decision.

As a Loan Approval Manager at a bank, I have gained valuable experience in approving and rejecting loans for customers over the past 5 years. Through this experience, I have observed a pattern: customers with a monthly income above 50k and an age between 18 to 30 consistently have their loans approved, whereas customers earning below 50k a month and having a credit score below 500 tend to default on their loans.

To streamline and automate the loan approval process based on this information, write a pseudo code that can be used as an automatic machine for future loan approvals

Motivation Behind Rule Based Modelling

Motivation Behind Rule Based Modelling

Outlook	Humidity	Play golf
^Rainy —	— High	— No
∕Rainy _	High	—→ No
Sunny	High_	Yes
Sunny	Normal	Yes
Sunny	Normal	No
Rainy	High	No
Rainy	Normal	Yes
Sunny	Normal -	Yes
→ Rainy	Normal —	Yes
Sunny -	High -	No

Motivation Behind Rule Based Modelling

1 2 3

- 1			-	
Outlook	Temperature	Humidity	Windy	Play golf
Rainy	Hot	High	FALSE	No
Rainy	Hot	High	TRUE	No
Overcast	Hot	High	FALSE	Yes
Sunny	Mild	High	FALSE	Yes
Sunny	Cool	Normal	FALSE	Yes
Sunny	Cool	Normal	TRUE	No
Overcast	Cool	Normal	TRUE	Yes
Rainy	Mild	High	FALSE	No
Rainy	Cool	Normal	FALSE	Yes
Sunny	Mild	Normal	FALSE	Yes
Rainy	Mild	Normal	TRUE	Yes
Overcast	Mild	High	TRUE	Yes
Overcast	Hot	Normal	FALSE	Yes
Sunny	Mild	High	TRUE	No

- Difficult to formulate sules when provided with huge data and multiple features
- 2) The sole will feil if new feature
 is insoduce or if the
 sole is provided with inputs
 which are not coded in the logic

		<u> </u>
Input1	Input2	Output
1	2	1.00
2	4	2.00
4	6	3.33
5	9	4.67
3	1	1.33
9	0	3.00
3	6	3.00

using formula learnt in the last slide

Input1	Input2	Qut put
10	4	4.67

of this new entary

$$\frac{1}{3} = 0/\rho$$

Data	HUMOS BEALD	
i/P1 i/P2 O/P	Leorning (How input-18) input-2 is generating the output using the formula)	-> predict the outcome using the fermula learnt

ML VS Classical Programming output -> chosen based on what we are intrested in predicting

- 1) Set of Examples
- 2 Input dates
- 3 Historical data

> Independent features predictors input variables

What is Machine Learning

Tom Mitchell provides a more modern definition: "A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E."

Branches Of Machine Learning

Quiz

- 1. Which of the following provides the best explanation of Machine Learning?
 - a. Machine learning learns from labelled data
 - b. Machine learning is the field of giving robots the ability to act intelligently.
 - ML enables computers to learn without explicit programming
 - d. Machine learning is the science of programming computers.
- 1. What is the main objective of an ML pipeline?
 - a. To optimize code performance
 - b. To build and train ML models for data analysis and prediction
 - c. To handle real-time data input and output
 - d. To interact with users and provide real-time responses

Machine Learning Explained

Machine Learning Explained

Machine Learning Explained

tank ix not to

predict onything

Unsupervised Machine - Learning

Task — find Similarly among various customers

		total purchase value	# of
age	income	purchase value	agos
C)			_
C2			
C 3			
CY			
C5			
1			
1			

clustering - to find groups.

1) | mr-by