Dark State Optical Lattice with a Subwavelength Spatial Structure

180319

Group Intro.

- James V. Porto
- Ph. D: Cornell University
 - Superfluidity of ³He in aerogel
- University of Maryland, NIST
- Research Areas
 - Cold Atoms in Optical Lattices
 - Interacting Photons
 - Ultracold Rb/Yb Mixtures

Publication

Dark State **Optical Lattice** with a Subwavelength Spatial Structure — Today's paper Dissipation induced dipole blockade and anti-blockade in driven **Rydberg** systems Spontaneous avalanche dephasing in large **Rydberg** ensembles Anomalous Broadening in Driven Dissipative **Rydberg** Systems Nonlinear looped band structure of Bose-Einstein condensates in an **optical lattice**

What they did

- Optical potentials with subwavelength spatial structure
- Kronig-Penney potential(widths below $\lambda/50 \sim 10$ nm)
- Study the band structure
- Subwavelength motional control of atoms
 - creation of narrow tunnel junctions for quantum gases
 - building sharp-wall box-like traps
 - studying Anderson localization with random strength in the barrier height

Schematics

- Standing wave light along x axis(Ω_c), traveling wave light along y axis(Ω_p)
- Dark state: $|E_0(x)\rangle = \sin(\alpha(x))|g_1\rangle \cos(\alpha(x))|g_2\rangle$ Eigenstate of internal state basis where $\alpha(x) = \arctan[\Omega_c(x)/\Omega_p]$ for fixed x
- If $\Omega_p/\Omega_c = \epsilon \ll 1$, dark state changes composition over a narrow region.
- Atoms remain in the dark state under a adiabatic approx.(slowly moving atom)

Schematics

• Atoms remain in the dark state under a adiabatic approx.(slowly moving atom)

•
$$\langle x|H|E_0(x)\rangle = \langle x|\left(\frac{P^2}{2M} + U\right)|E_0(x)\rangle \Rightarrow \left(\frac{(P-A)^2}{2M} + U(x) + \frac{V(x)}{V(x)}\right)\psi_{E_0}(x)$$

- For example, $P|E_0(x)\rangle = -i\hbar\nabla|E_0(x)\rangle$
- $= -i\hbar\nabla\sin(\alpha(x))|g_1\rangle + i\hbar\nabla\cos(\alpha(x))|g_2\rangle + \sin(\alpha(x))P|g_1\rangle \cos(\alpha(x))P|g_2\rangle$ Momentum term due to the state composition change Usual momentum term
- Kinetic energy associated with large gradient($P = i\hbar \nabla$) in the wave function gives rise to a potential. => Artificial scalar gauge potential

Experimental details

- Atom: 171Yb
- Sympathetic cooling with ⁸⁷Rb atoms
- Yb MOT Rb MOT RF evaporation load Rb Dipole evaporation remove Rb (T ~ 300 nK)
- Optically pump to $|g_1\rangle$ state and populate dark state by turning on Ω_{c1} , Ω_{p} , and Ω_{c2} , one by one.

Band mapping

- Use time-of-flight (TOF) images to measure the momentum
- Excite atoms to higher bands by shaking the lattice
- Excitation depends on shaking frequency
- Energy spacing increases as n increases $(E_n \text{ scales as } n^2 E_R)$

Barrier strength and perturbation

- Energy of KP lattice is independent of barrier strength
- By varying $\Omega_p(\epsilon)$, measured energy spacing
- When $\delta \neq 0$, the state experience additional potential and band structure changes

$$V(x) = \frac{\hbar^2}{2m} \left(\frac{d\alpha}{dx}\right)^2 = E_R \frac{\epsilon^2 \cos^2(kx)}{[\epsilon^2 + \sin^2(kx)]^2},$$

Dissipation

- Dark state lifetime is significantly longer for $\Delta > 0$.
- When Δ < 0, exiting into the energy allowed E_{-} state via nonadiabatic bright state coupling
- Nonadiabatic bright state coupling also leads to dissipation dependence on the laser power.

