PATENT ABSTRACTS OF JAPAN

(11) Publication number: 2005352437 A

(43) Date of publication of application: 22.12.05

(51) Int. CI

G09G 3/36 G02F 1/133 G09G 3/20

(21) Application number: 2004232920

(22) Date of filing: 10.08.04

(30) Priority:

12.05.04 JP 2004142486

(71) Applicant:

SHARP CORP

(72) Inventor:

KONDO NAOKO FURUKAWA HIROYUKI UENO MASAFUMI YOSHIDA YASUHIRO

(54) LIQUID CRYSTAL DISPLAY DEVICE, COLOR MANAGEMENT CIRCUIT, AND DISPLAY CONTROL METHOD

(57) Abstract:

PROBLEM TO BE SOLVED: To perform a color management of the whole screen which corrects, in real time, the mutual affections caused by the primary colors in each of the pixels and the inter-pixel affections without using any complicated correction circuits and which includes prevention of cross-talk over the whole screen.

SOLUTION: A pixel signal of a predetermined level m to be inputted to a pixel electrode is corrected such that the display brightness obtained by the pixel signal is approximately constant independently of the level of pixel signals to be inputted to adjacent pixel electrodes. Pixel signals of a local color, an adjacent color and a second adjacent color, which is a color adjacent to that adjacent color, are used for a calculation to obtain a signal that is to present the local color. That is, a pixel signal to be inputted to a noticed pixel electrode is corrected by use of the pixel signal to be inputted to the noticed pixel electrode, a pixel signal to be inputted to an adjacent pixel electrode that is adjacent to the noticed pixel electrode in a predetermined direction, and a pixel signal to be inputted to a next adjacent pixel electrode that is adjacent to the foregoing adjacent pixel

electrode in the predetermined direction. For example, in a case of obtaining a signal $(G_n)_{out}$, a signal of a local color $(G_n)_{in}$, a signal of an adjacent color $(B_n)_{in}$, and a signal of a next adjacent color $(R_{n+1})_{in}$ are used for the calculation using conversion formula 2.

COPYRIGHT: (C)2006, JPO&NCIPI

(12)公開特許公報(A)

(11)特許出願公開番号

特開2005-352437 (P2005-352437A)

(43) 公開日 平成17年12月22日 (2005.12.22)

(51) Int.C1.7		FI				テーマコー	ド(参考)	
GO9G 3/3		G09G	3/36			2HO93		
GO2F	1/133	GO2F	1/133	510		5C006		
GOSG	3/20	GO2F	1/133	550		5C080		
		G09G	3/20	6111	D			
		GO9G	3/20	6121	U	•		
		審査請 す	有精	求項の数 2	O O L	(全 44 頁)	最終頁に続く	
(21) 出願番号		特願2004-232920 (P2004-232920)	(71) 出風	i人 00000	05049			
(22) 出願日		平成16年8月10日 (2004.8.10)		シャ・	ープ株式	会社		
(31) 優先権主張番号		特願2004-142486 (P2004-142486)		大阪	府大阪市隊	可倍野区長池町	[22番22号	
(32) 優先日		平成16年5月12日 (2004.5.12)	(74) 代理	人 1000	79843			
(33) 優先権主張国		日本国(JP)		弁理:	士 高野	明近		
			(74) 代理	人 1001	12313			
					士 岩野	進		
			(72) 発明		尚子			
						方阿倍野区長池町22番22号 		
			()		ャープ株式	式会社内		
			(72)発明		古川浩之			
			大阪府大阪市阿倍野区長池町22番22号 シャープ株式会社内					
				シ	ャーフ株	八云在闪		
						ä	段終頁に続く	

(54) 【発明の名称】液晶表示装置、カラーマネージメント回路、及び表示制御方法

(57)【要約】

【課題】複雑な補正回路なく、画素内の各原色相互の影響及び画素間の影響をリアルタイムで補正し、画面全体に対するクロストーク防止も含めた画面全体のカラーマネージメントを行う。

【選択図】図1

BEST AVAILABLE COPY

【特許請求の範囲】

【請求項1】

液晶セルのそれぞれに対応する絵素電極を有する液晶表示装置であって、

各絵素電極へ入力される絵素信号を補正する補正手段を備え、

該補正手段は、ある絵素電極へ入力される所定レベルmの絵素信号による表示輝度が、 その隣接絵素電極へ入力される絵素信号レベルに関わらず、略一定となるように、前記絵 素電極へ入力される絵素信号を補正することを特徴とする液晶表示装置。

【請求項2】

前記絵素電極は、赤、緑、青の各原色を表現する電極から構成され、

前記補正手段は、各原色における所定レベルmの絵素信号による白,赤,緑,青の表示輝度をそれぞれW。,R。,G。,B。とした時、W。≒R。+G。+B。を満たすように、前記絵素電極へ入力される絵素信号を補正することを特徴とする請求項1に記載の液晶表示装置。

【請求項3】

前記所定レベルmは、人間の視感度が高い輝度値付近であることを特徴とする請求項1 又は2に記載の液晶表示装置。

【請求項4】

前記所定レベルmは、隣接画素から受ける影響が最大となる輝度値付近であることを特徴とする請求項1又は2に記載の液晶表示装置。

【請求項5】

前記補正手段は、着目絵素電極へ入力される絵素信号と、該着目絵素電極に対して所定方向に隣接した隣接絵素電極へ入力される絵素信号と、前記隣接絵素電極に対して前記所定方向に隣接した隣々接電極へ入力される絵素信号とから、前記着目絵素電極へ入力される絵素信号に対する補正信号を生成することを特徴とする請求項1乃至4のいずれか1項に記載の液晶表示装置。

【請求項6】

前記補正手段は、前記着目絵素電極、前記隣接絵素電極、前記隣々接絵素電極のそれぞれへ入力される各絵素信号を用いて、1×3色変換マトリクス演算を施すことにより、前記着目絵素電極へ入力される絵素信号に対する補正信号を生成することを特徴とする請求項5に記載の液晶表示装置。

【請求項7】

前記着目絵素電極が、赤を表現する電極であるとき、緑を表現する電極であるとき、青を表現する電極であるときのそれぞれに対して、前記1×3色変換マトリクス演算の演算係数を異ならせることを特徴とする請求項6に記載の液晶表示装置。

【請求項8】

液晶セルのそれぞれに対応する絵素電極を有する液晶表示装置であって、

各絵素電極へ入力される絵素信号を補正する補正手段を備え、

該補正手段は、着目絵素電極へ入力される絵素信号と、該着目絵素電極に対して所定方向に隣接した隣接絵素電極へ入力される絵素信号と、前記隣接絵素電極に対して前記所定方向に隣接した隣々接電極へ入力される絵素信号とから、前記着目絵素電極へ入力される絵素信号に対する補正信号を生成することを特徴とする液晶表示装置。

【請求項9】

前記補正手段は、前記着目絵素電極、前記隣接絵素電極、前記隣々接絵素電極のそれぞれへ入力される各絵素信号を用いて、1×3色変換マトリクス演算を施すことにより、前記着目絵素電極へ入力される絵素信号に対する補正信号を生成することを特徴とする請求項8に記載の液晶表示装置。

【請求項10】

前記着目絵素電極が、赤を表現する電極であるとき、緑を表現する電極であるとき、脊を表現する電極であるときのそれぞれに対して、前記1×3色変換マトリクス演算の演算係数を異ならせることを特徴とする請求項9に記載の液晶表示装置。

10

20

30

【請求項11】

前記補正手段は、3×3色変換マトリクス演算の演算係数を記憶する係数記憶メモリと

各絵素電極へ入力される絵素信号を順次取得する絵素取得回路と、

該絵素取得回路で取得した絵素信号のうち、前記着目絵素電極への入力される着目絵素信号と、前記隣接絵素電極へ入力される隣接絵素信号と、前記隣々接絵素電極へ入力される隣接絵素信号とを入力し、それぞれの絵素信号に前記係数記憶メモリに記憶された1行目の演算係数を乗じて加算し、前記着目絵素信号の補正信号として出力する第1の積和演算回路と、

前記絵素取得回路で取得した絵素信号のうち、前記第1の積和演算回路における前記隣接絵素電極に対応する絵素電極を着目絵素電極とした場合の、該着目絵素電極へ入力される着目絵素信号と、該着目絵素電極の隣接絵素電極へ入力される隣接絵素信号と、前記着目絵素電極の隣々接絵素電極へ入力される隣々接絵素信号とを入力し、それぞれの絵素信号に前記係数記憶メモリに記憶された2行目の演算係数を乗じて加算し、前記着目絵素電極に対する着目絵素信号の補正信号として出力する第2の積和演算回路と、

前記絵素取得回路で取得した絵素信号のうち、前記第2の積和演算回路における前記隣接絵素電極に対応する絵素電極を着目絵素電極とした場合の、該着目絵素電極へ入力される着目絵素信号と、該着目絵素電極の隣接絵素電極へ入力される隣接絵素信号と、前記着目絵素電極の隣々接絵素電極へ入力される隣々接絵素信号とを入力し、それぞれの絵素信号に前記係数記憶メモリに記憶された3行目の演算係数を乗じて加算し、前記着目絵素電極に対する着目絵素信号の補正信号として出力する第3の積和演算回路と、

を有することを特徴とする請求項8乃至10のいずれか1項に記載の液晶表示装置。

【請求項12】

前記所定方向は、前記着目絵素電極から、該着目絵素電極へクロストークの影響を与えている隣接絵素電極へ向かう方向であることを特徴とする請求項8乃至11のいずれか1項に記載の液晶表示装置。

【請求項13】

前記補正手段は、前記着目画素電極をソース信号の流れる方向へ順番にずらし、補正信号を生成することを特徴とする請求項12に記載の液晶表示装置。

【請求項14】

前記変換マトリクス演算の演算係数は、隣接絵素信号の1レベルの変化が及ぼす着目絵素信号による表示輝度の変化をレベルに換算した補正係数を、所定の変換式で計算することによって導出されるものであることを特徴とする請求項8乃至13のいずれか1項に記載の液晶表示装置。

【請求項15】

液晶セルのそれぞれに対応する絵素電極を有する液晶表示装置のカラーマネージメント 回路であって、

各絵素電極へ入力される絵素信号を補正する補正手段を備え、

該補正手段は、ある絵素電極へ入力される所定レベルmの絵素信号による表示輝度が、 その隣接絵素電極へ入力される絵素信号レベルに関わらず、略一定となるように、前記絵 素電極へ入力される絵素信号を補正することを特徴とするカラーマネージメント回路。

【請求項16】

液晶セルのそれぞれに対応する絵素電極を有する液晶表示装置におけるカラーマネージ メント回路であって、

各絵素電極へ入力される絵素信号を補正する補正手段を備え、

該補正手段は、着目絵素電極へ入力される絵素信号と、該着目絵素電極に対して所定方向に隣接した隣接絵素電極へ入力される絵素信号と、前記隣接絵素電極に対して前記所定方向に隣接した隣々接電極へ入力される絵素信号とから、前記着目絵素電極へ入力される絵素信号に対する補正信号を生成することを特徴とするカラーマネージメント回路。

【請求項17】

10

20

30

40

10

20

30

40

50

液晶セルのそれぞれに対応する絵素電極を有する液晶表示装置の表示制御方法であって

各絵素電極へ入力される絵素信号を補正するに際し、ある絵素電極へ入力される所定のレベルmの絵素信号による表示輝度が、その隣接絵素電極へ入力される絵素信号レベルに関わらず、略一定となるように、前記絵素電極へ入力される絵素信号を補正することを特徴とする表示制御方法。

【請求項18】

赤、緑、青の各原色を表現する絵素電極へ入力される絵素信号に対し、各原色における 所定レベルmの絵素信号による白、赤、緑、青の表示輝度をそれぞれW。、R。、G。、B。 とした時、W。≒R。+G。+B。を満たすように、前記絵素電極へ入力される絵素信号を補 正することを特徴とする請求項17に記載の表示制御方法。

【請求項19】

各絵素電極へ入力される絵素信号を補正するに際し、着目絵素電極へ入力される絵素信号と、該着目絵素電極に対して所定方向に隣接した隣接絵素電極へ入力される絵素信号と、前記隣接絵素電極に対して前記所定方向に隣接した隣々接電極へ入力される絵素信号とから、前記着目絵素電極へ入力される絵素信号に対する補正信号を生成することを特徴とする請求項17又は18に記載の表示制御方法。

【請求項20】

前記着目絵素電極、前記隣接絵素電極、前記隣々接絵素電極のそれぞれへ入力される各絵素信号を用いて、1×3色変換マトリクス演算を施すことにより、前記着目絵素電極へ入力される絵素信号に対する補正信号を生成することを特徴とする請求項19に記載の表示制御方法。

【請求項21】

液晶セルのそれぞれに対応する絵素電極を有する液晶表示装置の表示制御方法であって

各絵素電極へ入力される絵素信号を補正するに際し、着目絵素電極へ入力される絵素信号と、該着目絵素電極に対して所定方向に隣接した隣接絵素電極へ入力される絵素信号と、前記隣接絵素電極に対して前記所定方向に隣接した隣々接電極へ入力される絵素信号とから、前記着目絵素電極へ入力される絵素信号に対する補正信号を生成することを特徴とする表示制御方法。

【発明の詳細な説明】

【技術分野】

[0001]

本発明は、液晶表示装置、液晶表示装置のカラーマネージメント回路、及び液晶表示装置の表示制御方法に関する。

【背景技術】

[0002]

現在、液晶表示装置(LCD:Liquid Crystal Display)の普及は目覚しく、表示装置として欠かせないものになっている。これに伴い高画質化の要求が高まっており、色情報を管理するカラーマネージメントの標準化が、International Electrotechnical Commission (IEC) やInternational Color Consortium (ICC) を中心に進められている。

[0003]

LCDの高画質化のための手段には様々なものがあり、ICCでは、その中の一つである3×3色変換マトリクス方式を表示色の補正アルゴリズムとして定めている。この3×3色変換マトリクス方式は、LCDのカラーバランスが崩れて正確なカラー表示ができないといった問題を解決するための次のような方式である。

[0004]

LCDの発色モデルでは、任意のデジタル信号値CV,,。(ある画案の値)と三

20

30

40

50

刺激値(X, Y, Z) は以下の関係で表すことができる。これによって、LCDでの発色が三刺激値(X, Y, Z) であるデジタル信号値(CV, , CV。, CV。)を演算によって求めることができる。

[0005]

【数1】

$$\begin{pmatrix}
X \\
Y \\
Z
\end{pmatrix} = k(M) \begin{pmatrix}
CVr \\
CVg \\
CVb
\end{pmatrix} k(M) = \begin{pmatrix}
k_{XR} & k_{YR} & k_{ZR} \\
k_{XG} & k_{YG} & k_{ZG} \\
k_{XB} & k_{YB} & k_{ZB}
\end{pmatrix}$$

[0006]

k (M)で表されるマトリクスは、任意の色の三刺激値が各原色の三刺激値の和に等しいという加法則と、各原色の三刺激値が任意のデジタル信号値CVに対して比例するという比例則とが成り立つ仮定の下で決められている。k (M) の各係数値は、入力値と出力値の誤差から最小二乗法によって求められたり、人間の色覚による評価によって最適化して求められたりしている。

[0007]

図10は、従来技術による3×3色変換マトリクス方式による補正の概念図で、図中、P。は自画素、P。+、は隣接画素、R。は自画素 P。における赤のサブピクセル、G。は自画素 P。における緑のサブピクセル、B。は自画素 P。における青のサブピクセル、R。+、は隣接画素 P。+、における赤のサブピクセル、G。+、は隣接画素 P。+、における緑のサブピクセル、B。+、は隣接画素 P。+、における青のサブピクセル、50は補正の変換式である。ここで、サブピクセルとは R,G,Bの各絵素を指し、通常 R,G,Bの各色いずれかを表示するために用いられ、また、RGBの3つの絵素のまとまりで1つの画素を形成する。

[0008]

従来技術による 3 × 3 色変換マトリクス方式の補正は、ある画素 (P , 等) で表示される色 (3 つのサブピクセルで表現する色) を対象にしており、従って、補正に用いる入力信号は同一画素 (P 。等) 内の信号に限られている。例えば、自画素 P 。に対しては、入力された自画素 P 。内の各サブピクセル (R 。, G 。, B 。) 。。の信号を変換式 5 0 でマトリクス演算し、(R 。, G 。, B 。) 。。、を補正信号として出力している。

[0009]

図11は、初期値として三刺激値を設定した場合に、PCを経てLCDで観察者が見るという過程を概念的に示した図で、図中、51はPC(パーソナルコンピュータ)、52はLCDである。初期値として上述の 3×3 色変換マトリクス演算に基づいて設定された三刺激値(X, Y, Z)」は、PC51等の入力装置でデジタル信号(CVr, CVb, CVg)に変換され、LCD52へ入力される。LCD52では、入力された(CVr, CVb, CVg)が(R, G, B)として表示され、観察者はその(R, G, B)を三刺激値(X, Y, Z)」として得る。ここで、観察者が得た(X, Y, Z)」は、理想的には、上述の 3×3 色変換マトリクス演算に基づいて設定された初期値の三刺激値(X, Y, Z)」と同じになるはずである。

[0010]

しかしながら、実際のLCDでは、各原色間の相互の影響が存在する。その一例がクロストークである。クロストークについてVA(垂直配向:Vertical Alignment)型LCDを例に説明する。

[0011]

図12は、VA型LCDの断面構造を説明するための概略図で、図中、61,66はガラス基盤、62は対向電極、63a,63b(以下、63で表す)は絵素容量、64a,64b,64c(以下、64で表す)は絵素電極、65a,65b,65cはTFT、6

7 a, 6 7 b, 6 7 c (以下、6 7 で表す) は浮遊容量、6 8 a, 6 8 b, 6 8 c はソースラインである。絵素電極 6 4 は絶縁物 (図示せず) によって支持され、また、実際の液晶は対向電極 6 2 と絵素電極 6 4 の間に挟みこまれ、絵素容量 6 3 による電界によって駆動されている。絵素電極 6 4 a, 6 4 b, 6 4 c は例えばそれぞれ R, G, B の絵素に対応する。

[0012]

ここで、LCDは、ゲートライン(図示せず)がTFTを駆動したときソースラインの電圧がTFTを経て絵素電極に通電され、その電圧が絵素容量63に保持されることで液晶分子を駆動し、表示画面が得られる仕組みである。

[0013]

ここで、同図に示すように、絵素電極64には、隣接絵素側のソースラインとの間に浮遊容量67が発生する。このような浮遊容量は、絵素電極64とソースライン68が互いに垂直に部分的に重なり合って配置された構造になっていることから、やむを得ず発生するものである。このため、隣接する絵素のソースラインの状況が自絵素の絵素電極に影響を及ぼす。

[0014]

例えば、64a,64b,64cをそれぞれ画素 P。の絵素 R。,G。,B。であるとすると、R。は浮遊容量 67aを経て G。を駆動するソースライン 68aの影響を受ける。また、G。は浮遊容量 67bを経て B。を駆動するソースライン 68bの影響を受ける。このように、LCDの構造上、電極とソースラインとの間に発生する容量結合等による電気的要因によって、R,G、Bチャンネル間の予期せぬ相互結合が発生する。云わば電気的クロストークである。このクロストークは、上述のように特定方向に向けて発生する。つまり、上述の例では右絵素の色成分が左絵素の色成分に影響するようになる。影響の方向は、電極と TFT の配置に依存する。

[0015]

また、図13には一般的なカラーフィルタの分光特性を例示しているが、同図に示すように、カラーフィルタの透過率は各原色が重なり合っており表示色の色純度に影響を及ぼす。このような光透過率の波長依存性などの他に偏光板からの漏れ光等の光学的要因によっても誘発される。云わば光学的クロストークである。

[0016]

なお、クロストーク低減を目的とした従来の補正方法の一つとして、液晶特有の色特性を補正するために 2 次元又は 3 次元構造のルックアップテーブル(以下、LUTと略す)を用いクロストークノイズを低減して色再現性を向上させる液晶表示装置が提案されている(例えば、特許文献 1 を参照)。また、クロストークによる輝度、色度、飽和度の変化を防止し、忠実に輝度と色の再現を行なうことを目的としたプラズマアドレス型表示装置も提案されている(例えば、特許文献 2 を参照)。

【特許文献1】特開2002-41000号公報

【特許文献2】特開2000-321559号公報

【発明の開示】

【発明が解決しようとする課題】

[0017]

上述した種々の問題によってクロストークは発生し、図4に示すように、自絵素の入力レベルが変化しないにも拘わらず、周辺絵素のデジタル信号値CVの影響によって表示される表示輝度が変化するためLCDの表示色に誤差が生じる。このようなLCDでは、加法則及び比例則が成り立たず、色度に対するデジタル信号値CVの電気的特性の非線形性を単一常数のべき乗で表すことができない。従って、上述の法則の下で決められた従来のマトリクスでは、適切な補正値を得ることができない。このために、初期値として設定した三刺激値(X, Y, Z)」と、PC等の入力装置を経てLCDが出力した(R, G, B)から観察者が得る三刺激値(X, Y, Z)」とが一致しないという問題が生ずる(図11を参照)。

10

20

30

[0018]

また、マトリクスの最適化は、上述したように表示色の測定値や人間の感覚によって評価され、それを繰り返しフィードバックして決められており、評価の基準が不安定であることや非常に手間がかかる等の問題がある。このとき、評価の基準として人間の目の感覚を使うと、一部はよく補正できるが他ではうまくいかないというように、全色域にわたって表示色の誤差を減らすことは難しい。

[0019]

さらに、液晶パネル上にはRGB各々に対応する各ドットは物理的に定義できるが、RGB3つを1組とした画素という概念はロジカルな概念であるため、実際にはドット毎の結合が画素を飛び越えて存在する。例えば、図10における自画素P。の青サブピクセルB。と隣接画素P。+ 、の赤サブピクセルR。+ 、との結合などである。

[0020]

実際、従来の補正方法の一つである一般的な3×3色変換マトリクス方式や特許文献1に記載の液晶表示装置では、図10を参照して説明したように、同一画素内の入力信号のみを用いて補正しており、例えば、自画素 P。の青サブピクセル B。の補正値は自画素のサブピクセルである R。や G。の値を用いて算出される。このため、1画素の表示色を対象とした補正は可能であるが、上述のごとき画素を飛び越えた各原色間に発生するクロストークなど、周辺の入力信号が表示色に及ぼす影響を補正することはできないという問題を有している。また、この補正回路のように複数のLUTを使用する場合には、ハードウエアの規模が拡大するという問題も有している。

[0021]

さらに、特許文献2に記載のプラズマアドレス型表示装置では、隣接絵素の影響を考慮して着目絵素の両隣の絵素の信号を用いて補正を行ってはいるが、この補正は、クロストーク成分を打ち消す条件として任意の絵素が1画素隣の同色の絵素と相関性があることを前提としたものである。従って、着目絵素が属する画素とその隣接画素との差が大きい場合、すなわち着目絵素と隣接画素中の同色の絵素との信号の差が大きい場合には、補正に誤差(その大きさに従った誤差)が生じるという問題を有している。また、この補正で行われるような非線形の処理を行う場合には、演算は非常に複雑となり、回路規模の拡大や処理速度の遅延の問題が発生し易い。

[0022]

以上のように、従来の技術では、隣接絵素の信号レベルに関わらず、その隣接絵素の信号による自絵素の表示輝度への影響を補正することや、画素境界にとらわれることなく隣接画素の信号による自絵素の表示輝度への影響を補正することが非常に難しく、画面全体に対する電気的及び光学的クロストークを防止するように絵素信号を補正することができない。また、従来の技術では、非線形の非常に複雑な補正回路や、大量のLUTが必要であり、ハードウエアの規模の拡大や処理速度の遅延等の問題を有している。

[0023]

本発明は、上述のごとき実情に鑑みてなされたものであり、複雑な補正回路を必要とせず簡単な構成で、画面全体に対するクロストークを含めた画素内の各原色の相互の影響や画素境界を越えた画素間の影響を、リアルタイムに補正することが可能な、液晶表示装置、液晶表示装置のカラーマネージメント回路、及び液晶表示装置の表示制御方法、を提供することをその目的とする。

[0024]

また、本発明は、上述の補正に使用できる補正係数マトリクスの導出手法を提供することを他の目的とする。

【課題を解決するための手段】

[0025]

本発明は、上述のごとき課題を解決するために、以下の各技術手段でそれぞれ構成される。

第1の技術手段は、液晶セルのそれぞれに対応する絵案電極を有する液晶表示装置であ

10

20

30

って、各絵素電極へ入力される絵素信号を補正する補正手段を備え、該補正手段は、ある絵素電極へ入力される所定レベルmの絵素信号による表示輝度が、その隣接絵素電極へ入力される絵素信号レベルに関わらず、略一定となるように、前記絵素電極へ入力される絵素信号を補正することを特徴としたものである。

[0026]

第2の技術手段は、第1の技術手段において、前記絵素電極は、赤,緑,青の各原色を表現する電極から構成され、前記補正手段は、各原色における所定レベルmの絵素信号による白,赤,緑,青の表示輝度をそれぞれ W_m , R_m , G_m , B_m とした時、 W_m 与 R_m + G_m + B_m を満たすように、前記絵素電極へ入力される絵素信号を補正することを特徴としたものである。

[0027]

第3の技術手段は、第1又は第2の技術手段において、前記所定レベルmは、人間の視感度が高い輝度値付近であることを特徴としたものである。

[0028]

第4の技術手段は、第1又は第2の技術手段において、前記所定レベルmは、隣接画素から受ける影響が最大となる輝度値付近であることを特徴としたものである。

[0029]

第5の技術手段は、第1乃至第4のいずれかの技術手段において、前記補正手段は、着目絵素電極へ入力される絵素信号と、該着目絵素電極に対して所定方向に隣接した隣接絵素電極へ入力される絵素信号と、前記隣接絵素電極に対して前記所定方向に隣接した隣々接電極へ入力される絵素信号とから、前記着目絵素電極へ入力される絵素信号に対する補正信号を生成することを特徴としたものである。

[0030]

第6の技術手段は、第5の技術手段において、前記補正手段は、前記着目絵素電極、前記隣接絵素電極、前記隣々接絵素電極のそれぞれへ入力される各絵素信号を用いて、1×3色変換マトリクス演算を施すことにより、前記着目絵素電極へ入力される絵素信号に対する補正信号を生成することを特徴としたものである。

[0031]

第7の技術手段は、第6の技術手段において、前記着目絵素電極が、赤を表現する電極であるとき、緑を表現する電極であるとき、青を表現する電極であるときのそれぞれに対して、前記1×3色変換マトリクス演算の演算係数を異ならせることを特徴としたものである。

[0032]

第8の技術手段は、液晶セルのそれぞれに対応する絵素電極を有する液晶表示装置であって、各絵素電極へ入力される絵素信号を補正する補正手段を備え、該補正手段は、着目絵素電極へ入力される絵素信号と、該着目絵素電極に対して所定方向に隣接した隣接絵素電極へ入力される絵素信号と、前記隣接絵素電極に対して前記所定方向に隣接した隣々接電極へ入力される絵素信号とから、前記着目絵素電極へ入力される絵素信号に対する補正信号を生成することを特徴としたものである。

[0033]

第9の技術手段は、第8の技術手段において、前記補正手段は、前記着目絵素電極、前記隣接絵素電極、前記隣々接絵素電極のそれぞれへ入力される各絵素信号を用いて、1×3色変換マトリクス演算を施すことにより、前記着目絵素電極へ入力される絵素信号に対する補正信号を生成することを特徴としたものである。

[0034]

第10の技術手段は、第9の技術手段において、前記着目絵素電極が、赤を表現する電極であるとき、緑を表現する電極であるとき、青を表現する電極であるときのそれぞれに対して、前記1×3色変換マトリクス演算の演算係数を異ならせることを特徴としたものである。

[0035]

10

20

30

10

20

30

40

50

第11の技術手段は、第8乃至第10のいずれかの技術手段において、前記補正手段は、 3×3色変換マトリクス演算の演算係数を記憶する係数記憶メモリと、各絵素電極へ入力 される絵素信号を順次取得する絵素取得回路と、該絵素取得回路で取得した絵素信号のう ち、前記着目絵素電極への入力される着目絵素信号と、前記隣接絵素電極へ入力される隣 接絵素信号と、前記隣々接絵素電極へ入力される隣々接絵素信号とを入力し、それぞれの 絵素信号に前記係数記憶メモリに記憶された1行目の演算係数を乗じて加算し、前記着目 絵素信号の補正信号として出力する第1の積和演算回路と、前記絵素取得回路で取得した 絵素信号のうち、前記第1の積和演算回路における前記隣接絵素電極に対応する絵素電極 を着目絵素電極とした場合の、該着目絵素電極へ入力される着目絵素信号と、該着目絵素 電極の隣接絵素電極へ入力される隣接絵素信号と、前記着目絵素電極の隣々接絵素電極へ 入力される隣々接絵素信号とを入力し、それぞれの絵素信号に前記係数記憶メモリに記憶 された 2 行目の演算係数を乗じて加算し、前記着目絵素電極に対する着目絵素信号の補正 信号として出力する第2の積和演算回路と、前記絵素取得回路で取得した絵素信号のうち 、前記第 2 の 積和 演算 回 路 に お け る 前 記 隣 接 絵 素 電 極 に 対 応 す る 絵 素 電 極 を 着 目 絵 素 電 極 とした場合の、該着目絵素電極へ入力される着目絵素信号と、該着目絵素電極の隣接絵素 電極へ入力される隣接絵素信号と、前記着目絵素電極の隣々接絵素電極へ入力される隣々 接絵素信号とを入力し、それぞれの絵素信号に前記係数記憶メモリに記憶された3行目の 演算係数を乗じて加算し、前記着目絵素電極に対する着目絵素信号の補正信号として出力 する第3の積和演算回路と、を有することを特徴としたものである。

[0036]

第12の技術手段は、第8乃至第11のいずれかの技術手段において、前記所定方向は、前記着目絵素電極から、該着目絵素電極へクロストークの影響を与えている隣接絵素電極へ向かう方向であることを特徴としたものである。

[0037]

第13の技術手段は、第12の技術手段において、前記補正手段は、前記着目画素電極をソース信号の流れる方向へ順番にずらし、補正信号を生成することを特徴としたものである。

[0038]

第14の技術手段は、第8乃至第13のいずれかの技術手段において、前記変換マトリクス演算の演算係数は、隣接絵素信号の1レベルの変化が及ぼす着目絵素信号による表示輝度の変化をレベルに換算した補正係数を、所定の変換式で計算することによって導出されるものであることを特徴としたものである。

[0039]

第15の技術手段は、液晶セルのそれぞれに対応する絵素電極を有する液晶表示装置のカラーマネージメント回路であって、各絵素電極へ入力される絵素信号を補正する補正手段を備え、該補正手段は、ある絵素電極へ入力される所定レベルmの絵素信号による表示輝度が、その隣接絵素電極へ入力される絵素信号レベルに関わらず、略一定となるように、前記絵素電極へ入力される絵素信号を補正することを特徴としたものである。

[0040]

第16の技術手段は、液晶セルのそれぞれに対応する絵素電極を有する液晶表示装置におけるカラーマネージメント回路であって、各絵素電極へ入力される絵素信号を補正する補正手段を備え、該補正手段は、着目絵素電極へ入力される絵素信号と、該着目絵素電極に対して所定方向に隣接した隣接絵素電極へ入力される絵素信号と、前記隣接絵素電極に対して前記所定方向に隣接した隣々接電極へ入力される絵素信号とから、前記着目絵素電極へ入力される絵素信号に対する補正信号を生成することを特徴としたものである。

[0041]

第17の技術手段は、液晶セルのそれぞれに対応する絵素電極を有する液晶表示装置の表示制御方法であって、各絵素電極へ入力される絵素信号を補正するに際し、ある絵素電極へ入力される所定のレベルmの絵素信号による表示輝度が、その隣接絵素電極へ入力される絵素信号レベルに関わらず、略一定となるように、前記絵素電極へ入力される絵素信

号を補正することを特徴としたものである。

[0042]

第18の技術手段は、第17の技術手段において、赤、緑、青の各原色を表現する絵素電極へ入力される絵素信号に対し、各原色における所定レベルmの絵素信号による白、赤、緑、青の表示輝度をそれぞれ W_m 、 R_m , G_m , B_m とした時、 W_m 与 R_m + G_m + B_m を満たすように、前記絵素電極へ入力される絵素信号を補正することを特徴としたものである。

[0043]

第19の技術手段は、第17又は第18の技術手段において、各絵素電極へ入力される 絵素信号を補正するに際し、着目絵素電極へ入力される絵素信号と、該着目絵素電極に対 して所定方向に隣接した隣接絵素電極へ入力される絵素信号と、前記隣接絵素電極に対し て前記所定方向に隣接した隣々接電極へ入力される絵素信号とから、前記着目絵素電極へ 入力される絵素信号に対する補正信号を生成することを特徴としたものである。

[0044]

第20の技術手段は、第19の技術手段において、前記着目絵素電極、前記隣接絵素電極、前記隣々接絵素電極のそれぞれへ入力される各絵素信号を用いて、1×3色変換マトリクス演算を施すことにより、前記着目絵素電極へ入力される絵素信号に対する補正信号を生成することを特徴としたものである。

[0045]

第21の技術手段は、液晶セルのそれぞれに対応する絵素電極を有する液晶表示装置の表示制御方法であって、各絵素電極へ入力される絵素信号を補正するに際し、着目絵素電極へ入力される絵素信号と、該着目絵素電極に対して所定方向に隣接した隣接絵素電極へ入力される絵素信号と、前記隣接絵素電極に対して前記所定方向に隣接した隣々接電極へ入力される絵素信号とから、前記着目絵素電極へ入力される絵素信号に対する補正信号を生成することを特徴としたものである。

【発明の効果】

[0046]

本発明によれば、複雑な補正回路を必要とせず簡単な構成で、画面全体に対するクロストークを含めた画素内の各原色(各絵素)相互の影響や画素境界を越えた画素間の影響を、リアルタイムに補正することが可能となる。また、本発明によれば、上述の補正に使用可能な補正係数マトリクスの導出手法をも提供でき、完成後の表示パネル個々に対して、任意のマトリクス演算の演算係数を短時間で与えることが可能となる。

[0047]

特に、上述した本発明の各技術手段に対しては、次のような効果を奏す。

第1の技術手段によれば、少なくとも所定レベルm付近の自絵素に対する隣接絵素の影響を取り除くように、自絵素の入力信号に対する補正を行うので、所定レベルmを決めてそのレベルに応じた簡単な計算を行うだけの非常に簡単な構成及び処理にて、隣接絵素の入力信号レベルの変動に拘わらず、自絵素が表示する輝度を所望のレベルに保持することが可能となる。

[0048]

第2の技術手段によれば、第1の技術手段による効果に加えて、3原色表示を行う場合の、各原色の輝度が変化するために発生する無彩色の色づきを防ぎ、略一定の色度で表示することが可能となる。

[0049]

第3の技術手段によれば、第1又は第2の技術手段による効果に加えて、人間の視覚感度が鈍くモニタ性能に対する影響が少ない領域へ誤差を分散させることができ、モニタの 視覚に対する特性を向上させることができる。

[0050]

第4の技術手段によれば、第1又は第2の技術手段による効果に加えて、特定の色域に 偏在していた誤差を全ての色域に平均化することができ、モニタの表示特性を向上させる 10

20

30

50

ことができる。

[0051]

第5の技術手段によれば、第1乃至第4のいずれかの技術手段による効果に加えて、画素境界にとらわれることなく、着目絵素(自絵素)に対して影響を与える隣接絵素を元に、補正値を算出することができる。さらに、隣接絵素の入力信号を隣々接絵素の影響を考慮した値として扱うことで、自絵素に対する補正をより正確に行うことができる。

[0052]

第6の技術手段によれば、第5の技術手段による効果に加えて、LUTや複雑な計算を必要とせず、簡単な回路構成により、隣接絵素信号による着目絵素(自絵素)への影響を 算出して、表示輝度の補正をすることができる。

[0053]

第7の技術手段によれば、第6の技術手段による効果に加えて、表示輝度の値が異なる 各原色それぞれに対して適した補正値を与えることができる。

[0054]

第8の技術手段によれば、画素境界にとらわれることなく、着目絵素(自絵素)に対して影響を与える隣接絵素を元に、補正値を算出することができる。さらに、隣接絵素の入力信号を隣々接絵素の影響を考慮した値として扱うことで、自絵素に対する補正をより正確に行うことができる。

[0055]

第9の技術手段によれば、第8の技術手段による効果に加えて、LUTや複雑な計算を必要とせず、簡単な回路構成により、隣接絵素信号による着目絵素(自絵素)への影響を 算出して、表示輝度の補正をすることができる。

[0056]

第10の技術手段によれば、第9の技術手段による効果に加えて、表示輝度の値が異なる各原色それぞれに対して適した補正値を与えることができる。

[0057]

第11の技術手段によれば、第8乃至第10の技術手段による効果に加えて、非常に小規模な回路構成で、着目絵素(自絵素)に対する補正を行うことができ、ハードウエア及びコストの縮小と処理速度の向上を実現することが可能である。

[0058]

第12の技術手段によれば、第8乃至第11の技術手段による効果に加えて、表示パネルの構造上発生するクロストークの影響に対して正確な補正値を与えることができる。

[0059]

第13の技術手段によれば、第12の技術手段による効果に加えて、表示装置に信号が入力される方向へ着目絵素(自絵素)を一つ一つ順次ずらしながら連続的に補正値を演算することができる。

【0060】

第14の技術手段によれば、第8乃至第13の技術手段による効果に加えて、複雑な測定や計算をすることなく、演算係数を求めることができる。また、表示パネルによる輝度の実測値から補正係数を導くことができるため、表示パネル個々に適した値を与えることができる。

[0061]

第15の技術手段によれば、少なくとも所定レベルm付近の自絵素に対する隣接絵素の 影響を取り除くように、自絵素の入力信号に対する補正を行うので、隣接絵素の入力信号 レベルの変動に拘わらず、自絵素が表示する輝度を所望のレベルに保持することが可能と なる。

[0062]

第16の技術手段によれば、画素境界にとらわれることなく、着目絵素(自絵素)に対して影響を与える隣接絵素を元に、補正値を算出することができる。さらに、隣接絵素の入力信号を隣々接絵素の影響を考慮した値として扱うことで、自絵素に対する補正をより

10

20

30

40

正確に行うことができる。

[0063]

第17の技術手段によれば、少なくとも所定レベルm付近の自絵素に対する隣接絵素の影響を取り除くように、自絵素の入力信号に対する補正を行うので、隣接絵素の入力信号レベルの変動に拘わらず、自絵素が表示する輝度を所望のレベルに保持することが可能となる。

[0064]

第18の技術手段によれば、第17の技術手段による効果に加えて、3原色表示を行う場合の、各原色の輝度が変化するために発生する無彩色の色づきを防ぎ、略一定の色度で表示することが可能となる。

[0065]

第19の技術手段によれば、第17又は第18の技術手段による効果に加えて、画素境界にとらわれることなく、着目絵素(自絵素)に対して影響を与える隣接絵素を元に、補正値を算出することができる。さらに、隣接絵素の入力信号を隣々接絵素の影響を考慮した値として扱うことで、自絵素に対する補正をより正確に行うことができる。

[0066]

第20の技術手段によれば、第19の技術手段による効果に加えて、LUTや複雑な計算を必要とせず、簡単な回路構成により、隣接絵素信号による着目絵素(自絵素)への影響を算出して、表示輝度の補正をすることができる。

[0067]

第21の技術手段によれば、画素境界にとらわれることなく、着目絵素(自絵素)に対して影響を与える隣接絵素を元に、補正値を算出することができる。さらに、隣接絵素の入力信号を隣々接絵素の影響を考慮した値として扱うことで、自絵素に対する補正をより正確に行うことができる。

【発明を実施するための最良の形態】

[0068]

本発明に係る液晶表示装置、及びそのカラーマネージメント回路では、液晶セルのそれぞれに対応する絵素電極を有するLCDの画素の表示色が周囲の様々な影響を受けることを鑑み、この影響を補正するために、画素境界にとらわれずにLCDにおける液晶セルのそれぞれに対応する絵素電極へ入力される絵素信号を補正する補正手段を導入する。この補正手段は、LCDにおける液晶セルのそれぞれに対応する絵素電極へ入力される絵素信号に対し、隣接絵素の影響を取り除いた補正信号を生成する手段であり、補正信号生成手段とも呼ぶ。

[0069]

本発明では、隣接絵素の影響を取り除く補正を行うために、次の補正手段Ⅰ及び/又は補正手段ⅠⅠを導入する。

[0070]

補正手段Ⅰは、ある絵素電極へ入力される所定レベルmの絵素信号による表示輝度が、その隣接絵素電極へ入力される絵素信号レベルに関わらず略一定となるように、その絵素電極へ入力される絵素信号を補正する手段である。すなわち、補正手段Ⅰで補正した絵素信号は、少なくとも所定レベルm付近では隣接絵素電極への入力絵素信号を考慮した補正であればよい。補正手段Ⅰは、少なくとも隣接絵素電極への入力絵素信号を考慮した補正であればよい。補正手段Ⅰは、ある絵素電極へ入力される所定レベルmの絵素信号による表示輝度がその隣接絵素電極へ入力される絵素信号レベルの高低に依らず略一定になるように、所定レベルmにおける輝度の実測値に基づいて算出した補正係数で、各絵素電極へ入力される絵素信号を補正することが好ましい。

[0071]

補正手段IIは、着目絵素電極へ入力される絵素信号と、その着目絵素電極に対して所定方向に隣接した隣接絵素電極へ入力される絵素信号と、その隣接絵素電極に対して同じ所定方向に隣接した隣々接電極へ入力される絵素信号とから、着目絵素電極へ入力される

10

20

30

40

絵素信号に対する補正信号を生成する手段である。すなわち、補正手段IIでは、着目絵素電極への絵素信号を補正するに際し、隣接絵素電極だけでなく隣々接絵素電極への絵素信号も考慮する。

[0072]

また、本発明は、上述のごとき補正手段を備えた液晶表示装置として実現させる他に、この補正手段を備えたカラーマネージメント回路、或いは、この回路を備えた、液晶表示装置又は液晶表示装置の外部機器として実現させてもよい。以下、この補正手段を有するカラーマネージメント回路、及びこの回路を備えた液晶表示装置についてのみを説明するが、その他の場合も以下の説明が流用できる。さらに、本発明は、この液晶表示装置における表示制御方法としての形態もあり、この方法は上述の補正手段における補正処理によって表示パネルの表示を制御するものであり、その説明も以下の説明が流用できる。

[0073]

また、上述した補正手段Iを説明するにあたり、補正手段Iが隣接絵素電極への入力絵素信号を考慮した補正であることに加え、実際には、その隣接絵素電極へ入力絵素信号を考慮した補正であることに加え、実際には、その隣接絵素電極への入力絵素信号に影響されるため、そこまで考慮した実施形態を例示する。そして、この実施形態は例えば上述領した補正手段IIを採用することで実現できるため、以下では、まず補正手段IIに係る種々の実施形態を説明し、その形態の中で、補正係数マトリクスの演算に際し、補正手段Iにおける「所定レベルmの絵素信号による表示輝度を略一定にする」ことを実現させる実施形態(補正手段I及びIIを併用した実施形態)を中心に説明を行う。しかしながら、本発明は、後述する補正手段II単独の補正手段だけでなく、補正手段I単独の補正手段で実現も可能であり、その場合にも以下の説明が流用できる。

[0074]

図1は、本発明の一実施形態に係るカラーマネージメント回路における補正を概念的に説明するための図で、図中、 P。は自画素、 P。 + 」は隣接画素、 R。は自画素 P。における赤のサブピクセル、 B。は自画素 P。における緑のサブピクセル、 B。は自画素 P。における赤のサブピクセル、 B。は自画素 P。における赤のサブピクセル、 G。は隣接画素 P。 - 」における赤のサブピクセル、 G。 + 」は隣接画素 P。 - 」における赤のサブピクセル、 G。 に対する補正の変換式、 2はサブピクセル G。に対する補正の変換式、 1はサブピクセル B。に対する補正の変換式である。なお、変換式 1、 2、 3において、 R、 G、 Bのそれぞれに対し、 (R) 」。, (G)」。, (B)」。は入力信号を、 (R)。。」, (G)。。、, (B)。。」はマトリクス演算後の出力信号(それぞれの絵素電極へ入力されるべき絵素信号)を指す。

[0075]

本発明に係るカラーマネージメント回路は、表示領域を液晶セルで形成した液晶表示装置に組み込まれるか、液晶表示装置に接続される外部機器に組み込まれる回路であり、使用する各周辺機器に依存しないで一貫した色再現を得るためのハードウエア (一部をソフトウェアで構成することもある) であり、システムLSIに実装されることもある。このカラーマネージメント回路は、例えば、赤、緑、青の3色で表現する画像データ(R、G、B): 。を入力し、その画像データを補正して、LCDにおける各液晶セル(それぞれの液晶セルがそれぞれの絵素電極に対応する)へ出力する。

[0076]

本発明の一実施形態に係るカラーマネージメント回路においては、補正信号生成手段(上述の補正手段 I I)により、その入力信号の値として、自色の絵素信号、隣接色の絵素信号、隣接色の絵素信号を演算に用い、自色が表示するべき信号を得る。この補正信号生成手段は、着目した絵素電極である着目絵素電極の絵素信号(自色の絵素信号)と、その着目絵素電極に所定方向に隣接した絵素電極である隣接絵素電極へ入力される絵素信号と、その隣接絵素電極に同じく所定方向に隣接した絵素電極である隣々接電極へ入力される絵素信号とから、着目絵素電極へ入力される絵素信号の補正信号を生成する。【0077】

50

10

20

30

このように、補正処理に用いる信号には、隣接色と隣々接色の信号を用いるため、画素の境界を飛び越えた影響を補正することができ、画面全体のカラーマネージメントが可能である。また、自画素に対して影響を与える隣接絵素の信号値から補正信号を算出し、隣接絵素の信号は隣々接絵素の影響を考慮された値として扱うことができるので、自画素に対する補正をより正確に行うことが可能となる。

[0078]

また、補正信号生成手段は、着目絵素電極、隣接絵素電極、隣々接絵素電極へそれぞれ入力される各絵素信号を用いて、1×3色変換マトリクス演算を施して着目絵素電極へ入力される絵素信号に対する補正信号を生成するようにすることが好ましい。例えば、信号(Rn)。。、を得る場合には、自色の信号(Rn)。。、隣接色の信号(G。)。。、隣接色の信号(G。)。。、「を得る場合には、自色の信号(G。)。。、「隣接色の信号(B。)。。、「を得る場合には、自色の信号(Co。)。。、「隣接色の信号(B。)。。」「会得る場合には、自色の信号(B。)。。」「会得る「B。)。」「会別では、自色の信号(B。)」。、「会得る「B。」」。、「会別では、自色の信号(B。)」。、「会別では、自色の信号(B。)。、「会別では(a、」」、「会別ではれぞれの1×3色変換マトリクス演算の演算係数は、この例では(a、」、「会別であったとき、緑色を表現する電極であったとき、青色を表現する電極であったとき、のそれぞれに対して、1×3色変換マトリクス演算の演算係数を異ならせることが好ましい。

[0079]

このように、マトリクス演算の演算係数を原色それぞれに個別の値を与えることによって、原色それぞれで隣接絵素から受ける影響によって変化する輝度が異なる場合にも対応することが可能となり、より正確な表示輝度を得ることができる。

[0080]

さらに、ここで示した演算例は、クロストークの影響方向を考慮して所定方向を決めた好適な例であり、図3のような構造のLCDでは、着目絵素電極から、その着目絵素電極へ絵素信号を供給するために配置されたソースラインへの向かう方向と反対の方向を、上述の所定方向と定めることが好ましい。すなわち、図1に示すように、所定方向は、着目絵素がクロストークの影響を受ける側の隣接絵素の方向であり、隣接絵素は、着目絵素にクロストークの影響を受ける側の隣接絵素の方向であり、隣接絵素の信号から受ける自絵素の輝度への影響を捉えることができ、正確な補正値を得ることができる。また、着目絵素は、表示装置に信号が入力される方向へ一つ一つ順次ずらしながら連続的に演算され、表示装置の描画速度を損なうことなくリアルタイムで処理される。

[0081]

図2は、本発明の他の実施形態に係るカラーマネージメント回路の回路構成例を示すブロック図で、図中、10はカラーマネージメント回路、11は絵素取得回路、12はマトリクス係数記憶メモリ、13g,13gは積和演算回路、21は同期信号発生回路、22はタイミング制御回路(TC)、23はソースドライバ、24はゲートドライバ、25はTFT(ThinFilm Transistor)-LCDである。

[0082]

図 3 は、図 2 のカラーマネージメント回路における積和演算回路及びLCDの詳細を示す図で、図 3 (A) は積和演算回路を、図 3 (B) はTFT-LCDの一部の液晶セルを、それぞれ例示している。図中、 1 3 は積和演算回路、 1 4 は係数選択器、 1 5 $_{\rm R}$, 1 5 $_{\rm B}$, 1 5 。はそれぞれ R (R $^{\prime}$) 信号用, G (G $^{\prime}$) 信号用, B 信号用の乗算器、 1 6 は加算器である。

[0083]

図2及び図3で例示する本発明の他の実施形態において、補正信号生成手段は、絵素取得回路(以下、隣接絵素取得回路という)11,係数記憶メモリ12,第1の積和演算回路13g,第2の積和演算回路13gを備えるものとする。

[0084]

10

20

30

10

20

30

40

50

係数記憶メモリ12は、3×3色変換マトリクス演算の演算係数を記憶するメモリである。 隣接絵素取得回路11は、絵素電極へ入力される絵素信号を順次取得する回路である。第1の積和演算回路13g, 第2の積和演算回路13c, 第3の積和演算回路13gは、積和演算を行う回路であり、それぞれR, G, Bに対する補正信号を演算するためのものとして例示する。

[0085]

第1の積和演算回路13mは、隣接絵素取得回路11で取得した絵素信号のうち、着目 絵素電極25aへの入力信号である着目絵素信号と、隣接絵素電極25bへの入力信号で ある隣接絵素信号と、隣々接絵素電極25cへの入力信号である隣々接絵素信号と、を入 力し、それぞれの絵素値に、係数記憶メモリ12に記憶された1行目の演算係数M(n, 1)を乗じて加算して、着目絵素信号の補正信号として出力する。同様に、第2の積和演 算回路13。は、隣接絵素取得回路11で取得した絵素信号のうち、第1の積和演算回路 13 Rにおける隣接絵素電極25bに対応する絵素電極を着目絵素電極とした場合の、着 目絵素電極25bへの入力信号である着目絵素信号と、着目絵素電極25bの隣接絵素電 極25cへの入力信号である隣接絵素信号と、着目絵素電極25bの隣々接絵素電極(図 示せず)への入力信号である隣々接絵素信号と、を入力し、それぞれの絵素値に、係数記 憶メモリ12に記憶された2行目の演算係数M(n,2)を乗じて加算して、着目絵素電 極25bに対する着目絵素信号の補正信号として出力する。また、第3の積和演算回路1 3。は、隣接絵素取得回路11で取得した絵素信号のうち、第2の積和演算回路13。に おける隣接絵素電極25cに対応する絵素電極を着目絵素電極とした場合の、着目絵素電 極25cへの入力信号である着目絵素信号と、着目絵素電極25cの隣接絵素電極(図示 せず)への入力信号である隣接絵素信号と、着目絵素電極25cの隣々接絵素電極(図示 せず)への入力信号である隣々接絵素信号と、を入力し、それぞれの絵素値に、係数記憶 メモリ12に記憶された3行目の演算係数M(n,3)を乗じて加算して、着目絵素電極 2 5 c に 対 す る 着 目 絵 素 信 号 の 補 正 信 号 と し て 出 力 す る。

[0086]

図2及び図3で示す例では、カラーマネージメント回路10は、上述のごとく絵素取得回路11,マトリクス係数記憶メモリ12,積和演算回路13k,13c,13kからなり、各積和演算回路13は、図3(A)に示すように、乗算器にて乗算する係数をマトリクス係数記憶メモリ12のマトリクス係数から選択する係数選択器14と、R(R')信号用乗算器15k,G(G')信号用乗算器15c,B信号用の乗算器15kと、各乗算器15k,15c,15kの出力を合計する加算器16からなる。

[0087]

これらの回路は、大量のLUTや非線形の複雑な計算を必要としない簡単な回路であるため、ハードウエアの規模は小規模なもので済む。また、液晶表示パネル自体に改良の必要がないため、コストの削減が可能である。さらに、小規模なハードウエアであるので処理速度が速く、入力信号に対して遅延を生じない。

[0088]

そして、この液晶表示装置は、カラーマネージメント回路10における各積和演算回路13g,13g,13gの出力を入力するタイミング制御回路(TC)22と、TC22での制御に用いる同期信号を発生する同期信号発生回路21と、ソースドライバ23と、ゲートドライバ24と、TFT-LCD25とからなる。ここで、TC22へ入力された各積和演算回路13g,13g,13。の出力は、そのタイミングを制御されてソースドライバ23及びゲートドライバ24を制御し、TFT-LCD25における各絵素電極の駆動を制御する。

[0089]

図3 (B) に示すように、TFT-LCD25のアクティブマトリクス基板上には、複数の絵素電極25a, 25b, 25c等 (以下、25′で表す) がマトリクス状に形成されており、これらの絵素電極25′には、それぞれスイッチング素子であるTFT28a, 28b, 28c等 (以下、28で表す) が接続されて設けられている。このTFT28

のゲート電極には走査信号を供給するためのゲート配線(ゲートライン)27」,272 等(以下、27で表す)が接続され、ゲート電極に入力されるゲート信号によってTFT 30が駆動制御される。

[0090]

また、TFT30のソース電極には表示信号(データ信号)を供給するためのソース配 線(ソースライン)26a,26b,26c等(以下、26で表す)が接続され、TFT 30を駆動させる時に、表示信号がTFT30を介して絵素電極25′に入力する。各ゲ ートライン27とソースライン26とは、マトリクス状に配列された絵素電極25′の周 囲を通り、互いに直交差するように設けられている。さらに、TFT30のドレイン電極 は、絵素電極25′に接続されている。

[0091]

次に、上述した各実施形態に係るカラーマネージメント回路において、その好適な補正 信号生成処理と共に、3×3色変換マトリクス(各絵素に対しては1×3色変換マトリク スに該当する)の決定方法を説明する。ここで説明するマトリクス決定方法においては、 まず、本来表示されるべき色と隣接色が自色に及ぼす影響を表示輝度に着目して測定し、 レベル差として数値化する。そして、この値を元に簡単な計算によって3×3色変換マト リクスを得る。

[0092]

<色変換(補正信号生成)>

まず、色変換について再度説明する。本実施形態においては、各原色の相互の影響を補 正すると共に画素間の影響も補正し、画面全体のカラーマネージメントを可能とするため に、入力の値は画素の境界には関係なく、自色に対してクロストークの影響を及ぼしてい る隣接色及び隣々接色の入力レベルを変換に用いる。画面端の画素の場合は、隣接画素の 各絵素の入力レベルを0として扱うとよい。

[0093]

例えば、クロストークの影響を右方向から受ける場合、自画素の入力信号を(R」、G ı, Bı), a、右の画素の入力信号を(R2, G2, B2), aとし、任意のマトリク スをA(M)とする時、A(M)による補正後の出力値(R, , G, , B,)。。、は次 の演算によって求める。R」の出力値は(R」、G」、B」)」。の入力値を用いて演算 する。G」は隣接画案のR』を用い、入力値を(R』、G」、B」)」。として演算する 。同様にB」では(R2、G2、B」)。。を演算に用いて出力値を得る。B」の次には 隣接絵素R。の出力を求める。

[0094]

【数2】

$$A(M) \ = \left(\begin{array}{ccc} a & b & c \\ d & e & f \\ g & h & i \end{array} \right) \qquad \left\{ \begin{array}{ccc} R_{out1} = aR_{in1} + bG_{in1} + cB_{in1} \\ G_{out1} = dR_{in2} + eG_{in1} + fB_{in1} \\ B_{out1} = gR_{in2} + hG_{in2} + iB_{in1} \end{array} \right.$$

[0095]

このように、各絵素にクロストークの影響を及ぼしている右方向へ常にスライドさせな がら演算に使用する入力値を設定する(図1を参照)。すなわち、補正信号生成手段は、 着目画素電極をソース信号の流れる方向へ順番にずらし、補正信号を生成するとよい。逆 に、左から影響を受ける場合は左ヘスライドさせるとよい。この色変換は、加減算及び掛 け算のみの簡単で小規模な演算によって補正後の信号を得ることが可能である。

[0096]

<マトリクスA(M)の決定>

[補正係数の算出]

図4は、Gの入力レベルに対する表示輝度への隣接色Bの入力レベルによる影響(補正

10

20

30

前)を示すグラフ図で、図5は、図4の基準レベル付近での拡大図と直線近似を示すグラフ図で、図6は、隣接色Bの入力レベルに対する自色Gの基準とするレベルからの変化量 (差)を示すグラフ図である。なお、ここでは、256階調で例示するが、これに限定されるものではない。

[0097]

マトリクスの演算係数を算出するために必要な補正係数を決定するために、ターゲットとなる自色の入力レベルと基準とする隣接色の入力レベルを任意に設定する。図4は、あるLCDの輝度特性を測定したもので、原色の入力レベルに対する表示輝度が、隣接絵素の入力レベルによって受ける影響を表している。図4において、Bが0の状態でGの入力レベルを0~255段階とした場合の表示輝度を測定した線をL_B0で、同様に、Bが64,128,192,255で表している。この例の設定においては、入力レベル136で輝度差が最大となっており、輝度差が最大となった入力レベル136をターゲットレベル、つまり所定の入力レベルmとし、また、隣接色の入力レベルが0の場合を基準としている。

[0098]

図5において、直線近似の傾きは自色の入力信号における1レベルの変化に対する表示輝度の変化を示している。この例では、近似直線の傾きが1.3547(cd/cm²・レベル))、切片が-117.47(cd/cm²)となっている。この値から、隣接絵素の変化による、表示輝度の基準に対する変化量をレベルに変換してプロットする。これを示したのが図6である。つまり、図6の傾き(0.0579)は、隣接色の入力信号における1レベルの変化が及ぼす自色の表示輝度への影響をレベルで表している。この値を原色Gの補正係数とし、同様の方法によって各原色それぞれに設定する。

[0099]

[マトリクスの各演算係数の算出]

図7は、補正係数による補正と補正後の誤差の概念図で、図8は、隣接及び隣々接演算係数による補正の概念図である。

[0100]

補正係数によって隣接色の影響を補正した後の出力は、補正後の隣接色の出力に対しては適切な補正とはいえない。この隣接色が補正されたことによる出力レベルの誤差を、隣々接色の演算係数によって補正する。自色をRとした場合、G、。のときのR。」、をR。、、、、、G。」、のときのR。」、をR。、、2、Rの補正係数をNr、Gの補正係数をNg、Bの補正係数をNbとすると、次のように表すことができる。

$$R_{n} u_{i} = (a R_{i} - N r G_{i})$$

 $R_{n} u_{i} = (a R_{i} - N r G_{n})$

[0101]

出力時に生じる補正の誤差は、次のようになる。

[0102]

従って、隣接色の影響を隣接色演算係数で補正した後、この誤差を修正する式は、下式で与えられる。

= Nr (e-1) G; n-Nr Ng B; n

[0103]

同様に、G及びBについても下式で与えられる。

50

10

20

30

 G_{\circ} , $= N g N b R_{\circ}$, $- e G_{\circ}$, $+ N g i B_{\circ}$, B_{\circ} , $= N b a R i n - N r N b G_{\circ}$, $+ i B_{\circ}$,

[0104]

以上から、それぞれの隣接演算係数は、b=Nre、f=Ngi、g=Nbaとなり、 隣々接演算係数は、c=NrNg、d=NgNb、h=NrNbとなる。

[0105]

ディスプレイの表示色は、無彩色に色が付いてはならない。よって、 R_1 。= G_1 。= B_1 。のとき R 。。、= G 。。、 = B 。。、である必要がある。これを満たす条件は、K を任意の実数として、以下の通りである。

[0106]

a + b + c = K

d + e + f = K

g + h + i = K

[0107]

特に、K=1の時、R: a=R au 、 G: a=G au 、 B: a=B au 、 を満たし、白色(255, 255, 255)の輝度(256階調の例)を保存することができる。

以上のように、入力絵素信号におけるターゲットレベル(所定レベルm)を指定し、表示輝度の測定結果から補正係数を3つ求めることで、3×3色変換マトリクスの9つの値を決定する。この色変換マトリクスは、比例則や加法則の成立の有無に関係なく適応することが可能である。

[0109]

また、補正を行わない場合には各原色が隣接絵素からの影響を受けるため、例えばRの場合には、任意の入力レベルmにおいて隣接絵素 G が表示される場合の表示輝度 R_m ' と、単独に表示される状態での表示輝度(G の入力レベルが G である場合の表示輝度) R_m とが、一致しなかった。このため、全ての原色が入力レベルmで表示される場合の白色の輝度 R_m と、各原色が単独で表示される場合の輝度 R_m , R_m 。 R_m を全て合計した値とが、一致しなかった。つまり、 R_m の場合には R_m ' R_m 。 R_m 。

[0110]

しかし、上述のごとき本発明に係る補正によって、隣接絵素による自絵素への影響を打ち消すことができるため、隣接する絵素Gが表示されている場合の絵素Rの表示輝度Rm と、絵素Rが単独で表示される(隣接する絵素G入力レベルがOである)場合の表示輝度Rm とがほぼ等しい値となる。これはG、Bついても同様に成り立ち、従って本発明に係る補正により下式が成立することとなる。

[0111]

 $R_m' \Leftarrow R_m$

 $G_m' = G_m$

 $B_m' = B_m$

[0112]

よって、任意の入力レベルmにおいては、隣接絵素の入力レベルがどのような値であっても、各々の原色は常に一定の表示輝度を得ることができるので、下式を満たすことが可能となる。

 $W_m = R_m' + G_m' + B_m' = R_m + G_m + B_m$

[0113]

図9は、各入力レベルに対する表示輝度の隣接色の入力レベルによる影響(補正後)を示す図である。図9には、K=1の時の補正後のグラフを示しているが、ターゲット(入力レベル136)付近に存在した周辺絵素信号の影響による輝度差を、ターゲット以外の色域へ分散させていることが分かる。

[0114]

50

10

20

30

このような手法によれば、自絵素の入力信号が所定レベルm付近である場合には、周辺絵素からの影響が補正され、隣接絵素がどのような入力レベルであっても、自絵素が表示する輝度を一定とすることができる。また、所定レベルmに対する白・灰・黒などの無彩色の表示輝度と、所定レベルmに対する各原色の表示輝度の合計とを一致させることができ、原色の表示輝度が変化することによる無彩色の色づきを防ぎ、一定の色度で表示することが可能となる。

[0115]

また、補正係数は加法則や比例則の条件下に捕らわれることなく、ターゲットレベルmにおける表示輝度の実測値をもとに設定するので、任意のモニタに表示される任意の色域の補正が可能である。ここで、任意の色域を人間の視覚が鋭い領域(中間調付近)に設定することで、表示色の誤差を人間の視覚感度が鈍くモニタ視覚的性能への影響が少ない領域に分散させることが可能である。また、任意の色域を隣接絵素から受ける影響による表示輝度の誤差が最大値となる領域に設定することで、特定の色域に偏在していた誤差を全ての色域に平均化することができ、最大誤差を減少させることができる。

[0116]

なお、人間の視覚が鋭い領域と、隣接絵素から受ける影響による表示輝度の誤差が最大値となる領域とが一致しない場合には、補正の強度を調整することによって、所定レベルmの入力絵素信号による表示輝度を略一定に保持(誤差を所定範囲内に抑制)しつつ、表示色の誤差を全色域に渡って補正することが可能となり、トータルとしての表示特性を向上させることができる。

[0117]

さらに、マトリクスは、9つ全ての演算係数を補正係数を用いた単純な計算によって導くことができるので、人間の色覚に頼る評価やフィードバックによる微調整などの複雑な処理を必要とせず、短時間に設定することができるため、表示パネル完成後に、図2における係数記憶メモリ12に任意のマトリクスを短時間で与えることができ、LCD個々の特性に対応することができる。

[0118]

なお、本発明は、上述の実施例のような3原色表示を行うLCDに限られるものではない。例えば、6原色表示の場合には6×3のマトリクスを設定するというように、マトリクスの構造を原色の個数に合わせて設定することで、単色及び多数の原色を使用するLCDに対しても同様に補正することができる。

[0119]

以上詳述したとおり、本発明によれば、複雑な回路構成を必要とせず、リアルタイムの処理で、画素内における各原色の相互の影響を補正すると共に、画素境界も越えて画素間の影響も補正することができ、画面全体に対するクロストークの防止も含めた画面全体のカラーマネージメントを行うことが可能となる。

【図面の簡単な説明】

[0120]

【図1】本発明の一実施形態に係るカラーマネージメント回路における補正を概念的に説明するための図である。

【図2】本発明の他の実施形態に係るカラーマネージメント回路の回路構成例を示すプロック図である。

【図3】図2のカラーマネージメント回路における積和演算回路及びLCDの詳細を示す図である。

【図4】入力レベルに対する表示輝度への隣接色のレベルによる影響(補正前)を示すグラフ図である。

【図5】図4の基準レベル付近での拡大図と直線近似を示すグラフ図である。

【図6】隣接色の入力レベルに対する自色の基準とするレベルからの変化量(差)を示す グラフ図である。

【図7】隣接演算係数による補正と補正後の誤差の概念図である。

20

10

20

30

【図8】隣々接演算係数による補正の概念図である。

【図9】各入力レベルに対する表示輝度の隣接色の入力レベルによる影響(補正後)を示す図である。

【図10】従来技術による3×3色変換マトリクス方式による補正の概念図である。

【図11】初期値として三刺激値を設定した場合に、PCを経てLCDで観察者が見るという過程を概念的に示した図である。

【図12】VA型LCDの断面構造を説明するための概略図である。

【図13】一般的なカラーフィルタの分光特性を示した図である。

【符号の説明】

[0121]

1, 2, 3 … 補正の変換式、10 … カラーマネージメント回路、11 … 絵素取得回路、12 … マトリクス係数記憶メモリ、13, 13 m, 13 m, 13 c … 積和演算回路、14 … 係数選択器、15 m, 15 m, 15 c … 乗算器、16 … 加算器、21 … 同期信号発生回路、22 … タイミング制御回路、23 … ソースドライバ、24 … ゲートドライバ、25 … TFT-LCD、25 a, 25 b, 25 c, 25′ … 絵素電極、26, 26 a, 26 b, 26 c … ソースライン、27, 27 m, 27 m,

【図1】

10

【図3】

【図4】

【図5】

【図6】

【図8】

【図7】

【図9】

【図10】

【図12】

【図11】

【図13】

【手続補正書】

【提出日】平成16年8月30日(2004.8.30)

【手続補正1】

【補正対象書類名】特許請求の範囲

【補正対象項目名】全文

【補正方法】変更

【補正の内容】

【特許請求の範囲】

【請求項1】

液晶セルのそれぞれに対応する絵素電極を有する液晶表示装置であって、

各絵素電極へ入力される絵素信号を補正する補正手段を備え、

該補正手段は、ある絵素電極へ入力される所定レベルmの絵素信号による表示輝度が、 その隣接絵素電極へ入力される絵素信号レベルに関わらず、略一定となるように、前記絵 素電極へ入力される絵素信号を補正することを特徴とする液晶表示装置。

【請求項2】

前記絵素電極は、赤、緑、青の各原色を表現する電極から構成され、

前記補正手段は、各原色における所定レベルmの絵素信号による白,赤,緑,青の表示輝度をそれぞれW。,R。,G。,B。とした時、W。≒R。+G。+B。を満たすように、前記絵素電極へ入力される絵素信号を補正することを特徴とする請求項1に記載の液晶表示装置。

【請求項3】

前記所定レベルmは、人間の視感度が高い輝度値付近であることを特徴とする請求項1 又は2に記載の液晶表示装置。

【請求項4】

前記所定レベルmは、隣接画素から受ける影響が最大となる輝度値付近であることを特

徴とする請求項1又は2に記載の液晶表示装置。

【請求項5】

前記補正手段は、着目絵素電極へ入力される絵素信号と、該着目絵素電極に対して所定方向に隣接した隣接絵素電極へ入力される絵素信号と、前記隣接絵素電極に対して前記所定方向に隣接した隣々接電極へ入力される絵素信号とから、前記着目絵素電極へ入力される絵素信号に対する補正信号を生成することを特徴とする請求項1乃至4のいずれか1項に記載の液晶表示装置。

【請求項6】

前記補正手段は、前記着目絵素電極、前記隣接絵素電極、前記隣々接絵素電極のそれぞれへ入力される各絵素信号を用いて、1×3色変換マトリクス演算を施すことにより、前記着目絵素電極へ入力される絵素信号に対する補正信号を生成することを特徴とする請求項5に記載の液晶表示装置。

【請求項7】

前記着目絵素電極が、赤を表現する電極であるとき、緑を表現する電極であるとき、青を表現する電極であるときのそれぞれに対して、前記1×3色変換マトリクス演算の演算係数を異ならせることを特徴とする請求項6に記載の液晶表示装置。

【請求項8】

液晶セルのそれぞれに対応する絵素電極を有する液晶表示装置であって、

各絵素電極へ入力される絵素信号を補正する補正手段を備え、

該補正手段は、着目絵素電極へ入力される絵素信号と、該着目絵素電極に対して所定方向に隣接した隣接絵素電極へ入力される絵素信号と、前記隣接絵素電極に対して前記所定方向に隣接した隣々接電極へ入力される絵素信号とから、前記着目絵素電極へ入力される絵素信号に対する補正信号を生成することを特徴とする液晶表示装置。

【請求項9】

前記補正手段は、前記着目絵素電極、前記隣接絵素電極、前記隣々接絵素電極のそれぞれへ入力される各絵素信号を用いて、1×3色変換マトリクス演算を施すことにより、前記着目絵素電極へ入力される絵素信号に対する補正信号を生成することを特徴とする請求項8に記載の液晶表示装置。

【請求項10】

前記着目絵素電極が、赤を表現する電極であるとき、緑を表現する電極であるとき、青を表現する電極であるときのそれぞれに対して、前記1×3色変換マトリクス演算の演算係数を異ならせることを特徴とする請求項9に記載の液晶表示装置。

【請求項11】

前記補正手段は、3×3色変換マトリクス演算の演算係数を記憶する係数記憶メモリと

各絵素電極へ入力される絵素信号を順次取得する絵素取得回路と、

該絵素取得回路で取得した絵素信号のうち、前記着目絵素電極への入力される着目絵素信号と、前記隣接絵素電極へ入力される隣接絵素信号と、前記隣々接絵素電極へ入力される隣接絵素信号とを入力し、それぞれの絵素信号に前記係数記憶メモリに記憶された1行目の演算係数を乗じて加算し、前記着目絵素信号の補正信号として出力する第1の積和演算回路と、

前記絵素取得回路で取得した絵素信号のうち、前記第1の積和演算回路における前記隣接絵素電極に対応する絵素電極を着目絵素電極とした場合の、該着目絵素電極へ入力される着目絵素信号と、該着目絵素電極の隣接絵素電極へ入力される隣接絵素信号と、前記着目絵素電極の隣々接絵素電極へ入力される隣々接絵素信号とを入力し、それぞれの絵素信号に前記係数記憶メモリに記憶された2行目の演算係数を乗じて加算し、前記着目絵素電極に対する着目絵素信号の補正信号として出力する第2の積和演算回路と、

前記絵素取得回路で取得した絵素信号のうち、前記第2の積和演算回路における前記隣接絵素電極に対応する絵素電極を着目絵素電極とした場合の、該着目絵素電極へ入力される る着目絵素信号と、該着目絵素電極の隣接絵素電極へ入力される隣接絵素信号と、前記着 目絵素電極の隣々接絵素電極へ入力される隣々接絵素信号とを入力し、それぞれの絵素信号に前記係数記憶メモリに記憶された3行目の演算係数を乗じて加算し、前記着目絵素電極に対する着目絵素信号の補正信号として出力する第3の積和演算回路と、

を有することを特徴とする請求項8乃至10のいずれか1項に記載の液晶表示装置。

【請求項12】

前記所定方向は、前記着目絵素電極から、該着目絵素電極へクロストークの影響を与えている隣接絵素電極へ向かう方向であることを特徴とする請求項8乃至11のいずれか1項に記載の液晶表示装置。

【請求項13】

前記補正手段は、前記着目画素電極をソース信号の流れる方向へ順番にずらし、補正信号を生成することを特徴とする請求項12に記載の液晶表示装置。

【請求項14】

前記変換マトリクス演算の演算係数は、隣接絵素信号の1レベルの変化が及ぼす着目絵素信号による表示輝度の変化をレベルに換算した補正係数を、所定の変換式で計算することによって導出されるものであることを特徴とする請求項<u>9</u>乃至13のいずれか1項に記載の液晶表示装置。

【請求項15】

液晶セルのそれぞれに対応する絵素電極を有する液晶表示装置のカラーマネージメント 回路であって、

各絵素電極へ入力される絵素信号を補正する補正手段を備え、

該補正手段は、ある絵素電極へ入力される所定レベルmの絵素信号による表示輝度が、 その隣接絵素電極へ入力される絵素信号レベルに関わらず、略一定となるように、前記絵 素電極へ入力される絵素信号を補正することを特徴とするカラーマネージメント回路。

【請求項16】

液晶セルのそれぞれに対応する絵素電極を有する液晶表示装置におけるカラーマネージメント回路であって、

各絵素電極へ入力される絵素信号を補正する補正手段を備え、

該補正手段は、着目絵素電極へ入力される絵素信号と、該着目絵素電極に対して所定方向に隣接した隣接絵素電極へ入力される絵素信号と、前記隣接絵素電極に対して前記所定方向に隣接した隣々接電極へ入力される絵素信号とから、前記着目絵素電極へ入力される絵素信号に対する補正信号を生成することを特徴とするカラーマネージメント回路。

【請求項17】

液晶セルのそれぞれに対応する絵素電極を有する液晶表示装置の表示制御方法であって

各絵素電極へ入力される絵素信号を補正するに際し、ある絵素電極へ入力される所定のレベルmの絵素信号による表示輝度が、その隣接絵素電極へ入力される絵素信号レベルに関わらず、略一定となるように、前記絵素電極へ入力される絵素信号を補正することを特徴とする表示制御方法。

【請求項18】

赤、緑、青の各原色を表現する絵素電極へ入力される絵素信号に対し、各原色における 所定レベルmの絵素信号による白、赤、緑、青の表示輝度をそれぞれW』、R』、G』、B』 とした時、W』≒R』+G』+B』を満たすように、前記絵素電極へ入力される絵素信号を補 正することを特徴とする請求項17に記載の表示制御方法。

【請求項19】

各絵素電極へ入力される絵素信号を補正するに際し、着目絵素電極へ入力される絵素信号と、該着目絵素電極に対して所定方向に隣接した隣接絵素電極へ入力される絵素信号と、前記隣接絵素電極に対して前記所定方向に隣接した隣々接電極へ入力される絵素信号とから、前記着目絵素電極へ入力される絵素信号に対する補正信号を生成することを特徴とする請求項17又は18に記載の表示制御方法。

【請求項20】

前記着目絵素電極、前記隣接絵素電極、前記隣々接絵素電極のそれぞれへ入力される各絵素信号を用いて、1×3色変換マトリクス演算を施すことにより、前記着目絵素電極へ入力される絵素信号に対する補正信号を生成することを特徴とする請求項19に記載の表示制御方法。

【請求項21】

液晶セルのそれぞれに対応する絵素電極を有する液晶表示装置の表示制御方法であって

各絵素電極へ入力される絵素信号を補正するに際し、着目絵素電極へ入力される絵素信号と、該着目絵素電極に対して所定方向に隣接した隣接絵素電極へ入力される絵素信号と、前記隣接絵素電極に対して前記所定方向に隣接した隣々接電極へ入力される絵素信号とから、前記着目絵素電極へ入力される絵素信号に対する補正信号を生成することを特徴とする表示制御方法。

【手続補正2】

【補正対象書類名】明細書

【補正対象項目名】 0 0 3 8

【補正方法】変更

【補正の内容】

[0038]

第14の技術手段は、第<u>9</u>乃至第13のいずれかの技術手段において、前記変換マトリクス演算の演算係数は、隣接絵素信号の1レベルの変化が及ぼす着目絵素信号による表示輝度の変化をレベルに換算した補正係数を、所定の変換式で計算することによって導出されるものであることを特徴としたものである。

【手続補正書】

【提出日】平成17年1月20日(2005.1.20)

【手続補正1】

【補正対象書類名】特許請求の範囲

【補正対象項目名】全文

【補正方法】変更

【補正の内容】

【特許請求の範囲】

【請求項1】

液晶セルのそれぞれに対応する絵素電極を有<u>し、該絵素電極に通電される電圧レベルに</u> <u>応じて液晶分子を駆動することに</u>より、カラー画像を表示する液晶表示装置であって、

各絵素電極へ入力される絵素信号を補正する補正手段を備え、

該補正手段は、ある絵素電極へ入力される所定レベルmの絵素信号による表示輝度が、その<u>絵素電極のソースラインと垂直な方向に隣接する</u>隣接絵素電極へ入力される絵素信号レベル、及び、その隣接絵素電極の前記ソースラインと垂直な方向に隣接する隣々接絵素電極へ入力される絵素信号レベルに関わらず、一定となるように、前記絵素電極へ入力される絵素信号を補正することを特徴とする液晶表示装置。

【請求項2】

前記絵素電極は、赤、緑、青の各原色を表現する電極から構成され、

前記補正手段は、各原色における所定レベルmの絵素信号による白、赤、緑、青の表示輝度をそれぞれ W_a 、 R_a 、 G_a 、 B_a とした時、 W_a = R_a + G_a + B_a を満たすように、前記絵素電極へ入力される絵素信号を補正することを特徴とする請求項1に記載の液晶表示装置。

【請求項3】

前記所定レベルmは、隣接画素から受ける影響が最大となる輝度<u>値で</u>あることを特徴とする請求項1又は2に記載の液晶表示装置。

【請求項4】

前記補正手段は、 着目絵素 電極へ入力される絵素信号と、 該着目絵素 電極に対して <u>ソー</u>

スラインと垂直な方向に隣接した隣接絵素電極へ入力される絵素信号と、前記隣接絵素電極に対して前記<u>ソースラインと垂直な</u>方向に隣接した隣々接電極へ入力される絵素信号とから、前記着目絵素電極へ入力される絵素信号に対する補正信号を生成することを特徴とする請求項1乃至3のいずれか1項に記載の液晶表示装置。

【請求項5】

前記補正手段は、前記着目絵素電極、前記隣接絵素電極、前記隣々接絵素電極のそれぞれへ入力される各絵素信号を用いて、1×3色変換マトリクス演算を施すことにより、前記着目絵素電極へ入力される絵素信号に対する補正信号を生成することを特徴とする請求項4に記載の液晶表示装置。

【請求項6】

前記着目絵素電極が、赤を表現する電極であるとき、緑を表現する電極であるとき、青を表現する電極であるときのそれぞれに対して、前記1×3色変換マトリクス演算の演算係数を異ならせることを特徴とする請求項<u>5</u>に記載の液晶表示装置。

【請求項7】

液晶セルのそれぞれに対応する絵素電極を有<u>し、該絵素電極に通電される電圧レベルに</u> <u>応じて液晶分子を駆動することにより、カラー画像を表示</u>する液晶表示装置であって、

各絵素電極へ入力される絵素信号を補正する補正手段を備え、

該補正手段は、着目絵素電極へ入力される絵素信号と、該着目絵素電極に対して<u>ソースラインと垂直な</u>方向に隣接した隣接絵素電極へ入力される絵素信号と、前記隣接絵素電極に対して前記<u>ソースラインと垂直な</u>方向に隣接した隣々接電極へ入力される絵素信号とから、前記着目絵素電極へ入力される絵素信号に対する補正信号を生成することを特徴とする液晶表示装置。

【請求項8】

前記補正手段は、前記着目絵素電極、前記隣接絵素電極、前記隣々接絵素電極のそれぞれへ入力される各絵素信号を用いて、1×3色変換マトリクス演算を施すことにより、前記着目絵素電極へ入力される絵素信号に対する補正信号を生成することを特徴とする請求項7に記載の液晶表示装置。

【請求項9】

前記着目絵素電極が、赤を表現する電極であるとき、緑を表現する電極であるとき、青を表現する電極であるときのそれぞれに対して、前記 1 × 3 色変換マトリクス演算の演算係数を異ならせることを特徴とする請求項<u>8</u>に記載の液晶表示装置。

【請求項10】

前記補正手段は、3×3色変換マトリクス演算の演算係数を記憶する係数記憶メモリと

各絵素電極へ入力される絵素信号を順次取得する絵素取得回路と、

該絵素取得回路で取得した絵素信号のうち、前記着目絵素電極への入力される着目絵素信号と、前記隣接絵素電極へ入力される隣接絵素信号と、前記隣々接絵素電極へ入力される隣接絵素信号とを入力し、それぞれの絵素信号に前記係数記憶メモリに記憶された1行目の演算係数を乗じて加算し、前記着目絵素信号の補正信号として出力する第1の積和演算回路と、

前記絵素取得回路で取得した絵素信号のうち、前記第1の積和演算回路における前記隣接絵素電極に対応する絵素電極を着目絵素電極とした場合の、該着目絵素電極へ入力される着目絵素信号と、該着目絵素電極の隣接絵素電極へ入力される隣接絵素信号と、前記着目絵素電極の隣々接絵素電極へ入力される隣々接絵素信号とを入力し、それぞれの絵素信号に前記係数記憶メモリに記憶された2行目の演算係数を乗じて加算し、前記着目絵素電極に対する着目絵素信号の補正信号として出力する第2の積和演算回路と、

前記絵素取得回路で取得した絵素信号のうち、前記第2の積和演算回路における前記隣接絵素電極に対応する絵素電極を着目絵素電極とした場合の、該着目絵素電極へ入力される着目絵素信号と、該着目絵素電極の隣接絵素電極へ入力される隣接絵素信号と、前記着目絵素電極の隣々接絵素電極へ入力される隣々接絵素信号とを入力し、それぞれの絵素信

号に前記係数記憶メモリに記憶された3行目の演算係数を乗じて加算し、前記着目絵素電極に対する着目絵素信号の補正信号として出力する第3の積和演算回路と、

を有することを特徴とする請求項7乃至9のいずれか1項に記載の液晶表示装置。

【請求項11】

前記<u>ソースラインと垂直な</u>方向は、前記着目絵素電極から、該着目絵素電極へクロストークの影響を与えている隣接絵素電極へ向かう方向であることを特徴とする請求項<u>7</u>乃至 1<u>0</u>のいずれか1項に記載の液晶表示装置。

【請求項12】

前記補正手段は、前記着目画素電極をソース信号の流れる方向へ順番にずらし、補正信号を生成することを特徴とする請求項1<u>1</u>に記載の液晶表示装置。

【請求項13】

前記変換マトリクス演算の演算係数は、隣接絵素信号の1レベルの変化が及ぼす着目絵素信号による表示輝度の変化をレベルに換算した補正係数を、所定の変換式で計算することによって導出されるものであることを特徴とする請求項<u>8</u>乃至1<u>2</u>のいずれか1項に記載の液晶表示装置。

【請求項14】

液晶セルのそれぞれに対応する絵素電極を有<u>し、該絵素電極に通電される電圧レベルに応じて液晶分子を駆動することにより、カラー画像を表示</u>する液晶表示装置のカラーマネージメント回路であって、

各絵素電極へ入力される絵素信号を補正する補正手段を備え、

該補正手段は、ある絵素電極へ入力される所定レベルmの絵素信号による表示輝度が、その<u>絵素電極のソースラインと垂直な方向に隣接する</u>隣接絵素電極へ入力される絵素信号レベル、及び、その隣接絵素電極の前記ソースラインと垂直な方向に隣接する隣々接絵素電極へ入力される絵素信号レベルに関わらず、一定となるように、前記絵素電極へ入力される絵素信号を補正することを特徴とするカラーマネージメント回路。

【請求項15】

液晶セルのそれぞれに対応する絵素電極を有<u>し、該絵素電極に通電される電圧レベルに応じて液晶分子を駆動することにより、カラー画像を表示</u>する液晶表示装置におけるカラーマネージメント回路であって、

各絵素電極へ入力される絵素信号を補正する補正手段を備え、

該補正手段は、着目絵素電極へ入力される絵素信号と、該着目絵素電極に対して<u>ソースラインと垂直な</u>方向に隣接した隣接絵素電極へ入力される絵素信号と、前記隣接絵素電極に対して前記<u>ソースラインと垂直な</u>方向に隣接した隣々接電極へ入力される絵素信号とから、前記着目絵素電極へ入力される絵素信号に対する補正信号を生成することを特徴とするカラーマネージメント回路。

【請求項16】

液晶セルのそれぞれに対応する絵素電極を有<u>し、該絵素電極に通電される電圧レベルに</u> <u>応じて液晶分子を駆動することにより、カラー画像を表示</u>する液晶表示装置の表示制御方 法であって、

各絵素電極へ入力される絵素信号を補正するに際し、ある絵素電極へ入力される所定のレベルmの絵素信号による表示輝度が、その<u>絵素電極のソースラインと垂直な方向に隣接する</u>隣接絵素電極へ入力される絵素信号レベル、<u>及び、その隣接絵素電極の前記ソースラインと垂直な方向に隣接する隣々接絵素電極へ入力される絵素信号レベル</u>に関わらず、一定となるように、前記絵素電極へ入力される絵素信号を補正することを特徴とする表示制御方法。

【請求項17】

赤、緑、青の各原色を表現する絵素電極へ入力される絵素信号に対し、各原色における所定レベルmの絵素信号による白、赤、緑、青の表示輝度をそれぞれW。, R。, G。, B。とした時、W。三R。+G。+B。を満たすように、前記絵素電極へ入力される絵素信号を補正することを特徴とする請求項1<u>6</u>に記載の表示制御方法。

【請求項18】

各絵素電極へ入力される絵素信号を補正するに際し、着目絵素電極へ入力される絵素信号と、該着目絵素電極に対して<u>ソースラインと垂直な</u>方向に隣接した隣接絵素電極へ入力される絵素信号と、前記隣接絵素電極に対して前記<u>ソースラインと垂直な</u>方向に隣接した隣々接電極へ入力される絵素信号とから、前記着目絵素電極へ入力される絵素信号に対する補正信号を生成することを特徴とする請求項1<u>6</u>又は1<u>7</u>に記載の表示制御方法。

【請求項19】

前記着目絵素電極、前記隣接絵素電極、前記隣々接絵素電極のそれぞれへ入力される各絵素信号を用いて、1×3色変換マトリクス演算を施すことにより、前記着目絵素電極へ入力される絵素信号に対する補正信号を生成することを特徴とする請求項1<u>8</u>に記載の表示制御方法。

【請求項20】

液晶セルのそれぞれに対応する絵素電極を有<u>し、該絵素電極に通電される電圧レベルに応じて液晶分子を駆動することにより、カラー画像を表示</u>する液晶表示装置の表示制御方法であって、

各絵素電極へ入力される絵素信号を補正するに際し、着目絵素電極へ入力される絵素信号と、該着目絵素電極に対して<u>ソースラインと垂直な</u>方向に隣接した隣接絵素電極へ入力される絵素信号と、前記隣接絵素電極に対して前記<u>ソースラインと垂直な</u>方向に隣接した隣々接電極へ入力される絵素信号とから、前記着目絵素電極へ入力される絵素信号に対する補正信号を生成することを特徴とする表示制御方法。

【手続補正2】

【補正対象書類名】明細書

【補正対象項目名】 0 0 2 5

【補正方法】変更

【補正の内容】

[0025]

本発明は、上述のごとき課題を解決するために、以下の各技術手段でそれぞれ構成される

第1の技術手段は、液晶セルのそれぞれに対応する絵素電極を有<u>し、該絵素電極に通電される電圧レベルに応じて液晶分子を駆動することにより、カラー画像を表示</u>する液晶表示装置であって、各絵素電極へ入力される絵素信号を補正する補正手段を備え、該補正手段は、ある絵素電極へ入力される所定レベルmの絵素信号による表示輝度が、その<u>絵素電極のソースラインと垂直な方向に隣接する</u>隣接絵素電極へ入力される絵素信号レベル、及び、その隣接絵素電極の前記ソースラインと垂直な方向に隣接する隣々接絵素電極へ入力される絵素信号レベルに関わらず、一定となるように、前記絵素電極へ入力される絵素信号を補正することを特徴としたものである。

【手続補正3】

【補正対象書類名】明細書

【補正対象項目名】 0 0 2 6

【補正方法】変更

【補正の内容】

[0026]

第2の技術手段は、第1の技術手段において、前記絵素電極は、赤、緑、青の各原色を表現する電極から構成され、前記補正手段は、各原色における所定レベルmの絵案信号による白、赤、緑、青の表示輝度をそれぞれw。、R。、G。、B。とした時、w。=R。+G。+B。を満たすように、前記絵素電極へ入力される絵素信号を補正することを特徴としたものである。

【手続補正4】

【補正対象書類名】明細書

【補正対象項目名】 0 0 2 7

2

【補正の内容】

【手続補正5】

【補正対象醬類名】明細書

【補正対象項目名】 0 0 2 8

【補正方法】変更

【補正の内容】

[0028]

第<u>3</u>の技術手段は、第1又は第2の技術手段において、前記所定レベルmは、隣接画素から受ける影響が最大となる輝度<u>値で</u>あることを特徴としたものである。

【手続補正6】

【補正対象書類名】明細書

【補正対象項目名】 0 0 2 9

【補正方法】変更

【補正の内容】

[0029]

第4の技術手段は、第1乃至第3のいずれかの技術手段において、前記補正手段は、着目絵素電極へ入力される絵素信号と、該着目絵素電極に対して<u>ソースラインと垂直な</u>方向に隣接した隣接絵素電極へ入力される絵素信号と、前記隣接絵素電極に対して前記<u>ソースラインと垂直な</u>方向に隣接した隣々接電極へ入力される絵素信号とから、前記着目絵素電極へ入力される絵素信号に対する補正信号を生成することを特徴としたものである。

【手続補正7】

【補正対象書類名】明細書

【補正対象項目名】 0 0 3 0

【補正方法】変更

【補正の内容】

[0030]

第<u>5</u>の技術手段は、第<u>4</u>の技術手段において、前記補正手段は、前記着目絵素電極、前記隣接絵素電極、前記隣々接絵素電極のそれぞれへ入力される各絵素信号を用いて、1×3色変換マトリクス演算を施すことにより、前記着目絵素電極へ入力される絵素信号に対する補正信号を生成することを特徴としたものである。

【手続補正8】

【補正対象書類名】明細書

【補正対象項目名】 0 0 3 1

【補正方法】変更

【補正の内容】

[0031]

第<u>6</u>の技術手段は、第<u>5</u>の技術手段において、前記着目絵素電極が、赤を表現する電極であるとき、緑を表現する電極であるとき、青を表現する電極であるときのそれぞれに対して、前記 1 × 3 色変換マトリクス演算の演算係数を異ならせることを特徴としたものである。

【手続補正9】

【補正対象書類名】明細書

【補正対象項目名】 0 0 3 2

【補正方法】変更

【補正の内容】

[0032]

第<u>7</u>の技術手段は、液晶セルのそれぞれに対応する絵素電極を有<u>し、該絵素電極に通電される電圧レベルに応じて液晶分子を駆動することにより、カラー画像を表示</u>する液晶表示装置であって、各絵素電極へ入力される絵素信号を補正する補正手段を備え、該補正手

段は、着目絵素電極へ入力される絵素信号と、該着目絵素電極に対して<u>ソースラインと垂直な</u>方向に隣接した隣接絵素電極へ入力される絵素信号と、前記隣接絵素電極に対して前記<u>ソースラインと垂直な</u>方向に隣接した隣々接電極へ入力される絵素信号とから、前記着目絵素電極へ入力される絵素信号に対する補正信号を生成することを特徴としたものである。

【手続補正10】

【補正対象書類名】明細書

【補正対象項目名】0033

【補正方法】変更

【補正の内容】

[0033]

第8の技術手段は、第7の技術手段において、前記補正手段は、前記着目絵素電極、前記隣接絵素電極、前記隣々接絵素電極のそれぞれへ入力される各絵素信号を用いて、1×3色変換マトリクス演算を施すことにより、前記着目絵素電極へ入力される絵素信号に対する補正信号を生成することを特徴としたものである。

【手続補正11】

【補正対象書類名】明細書

【補正対象項目名】 0 0 3 4

【補正方法】変更

【補正の内容】

[0034]

第<u>9</u>の技術手段は、第<u>8</u>の技術手段において、前記着目絵素電極が、赤を表現する電極であるとき、緑を表現する電極であるとき、青を表現する電極であるときのそれぞれに対して、前記1×3色変換マトリクス演算の演算係数を異ならせることを特徴としたものである。

【手続補正12】

【補正対象書類名】明細書

【補正対象項目名】 0 0 3 5

【補正方法】変更

【補正の内容】

[0035]

第 1 <u>0</u> の 技 術 手 段 は 、 第 <u>7 </u>乃 至 第 <u>9</u> の い ず れ か の 技 術 手 段 に お い て 、 前 記 補 正 手 段 は 、 3×3色変換マトリクス演算の演算係数を記憶する係数記憶メモリと、各絵素電極へ入力 される絵素信号を順次取得する絵素取得回路と、該絵素取得回路で取得した絵素信号のう ち、前記着目絵素電極への入力される着目絵素信号と、前記隣接絵素電極へ入力される隣 接絵素信号と、前記隣々接絵素電極へ入力される隣々接絵素信号とを入力し、それぞれの 絵素信号に前記係数記憶メモリに記憶された1行目の演算係数を乗じて加算し、前記着目 絵素信号の補正信号として出力する第1の積和演算回路と、前記絵素取得回路で取得した 絵 素 信 号 の う ち 、 前 記 第 1 の 積 和 演 算 回 路 に お け る 前 記 隣 接 絵 素 電 極 に 対 応 す る 絵 素 電 極 を着目絵素電極とした場合の、該着目絵素電極へ入力される着目絵素信号と、該着目絵素 電極の隣接絵素電極へ入力される隣接絵素信号と、前記着目絵素電極の隣々接絵素電極へ 入力される隣々接絵素信号とを入力し、それぞれの絵素信号に前記係数記憶メモリに記憶 された 2 行目の演算係数を乗じて加算し、前記着目絵素電極に対する着目絵素信号の補正 信号として出力する第2の積和演算回路と、前記絵素取得回路で取得した絵素信号のうち 、前記第2の積和演算回路における前記隣接絵素電極に対応する絵素電極を着目絵素電極 とした場合の、該着目絵素電極へ入力される着目絵素信号と、該着目絵素電極の隣接絵素 電極へ入力される隣接絵素信号と、前記着目絵素電極の隣々接絵素電極へ入力される隣々 接 絵 素 信 号 と を 入 力 し 、 そ れ ぞ れ の 絵 素 信 号 に 前 記 係 数 記 憶 メ モ リ に 記 憶 さ れ た 3 行 目 の 演算係数を乗じて加算し、前記着目絵素電極に対する着目絵素信号の補正信号として出力 する第3の積和演算回路と、を有することを特徴としたものである。

【手続補正13】

【補正対象書類名】明細書

【補正対象項目名】 0 0 3 6

【補正方法】変更

【補正の内容】

[0036]

第1<u>1</u>の技術手段は、第<u>7</u>乃至第1<u>0</u>のいずれかの技術手段において、前記<u>ソースラインと垂直な</u>方向は、前記着目絵素電極から、該着目絵素電極へクロストークの影響を与えている隣接絵素電極へ向かう方向であることを特徴としたものである。

【手続補正14】

【補正対象書類名】明細書

【補正対象項目名】 0 0 3 7

【補正方法】変更

【補正の内容】

[0037]

第1<u>2</u>の技術手段は、第1<u>1</u>の技術手段において、前記補正手段は、前記着目画素電極をソース信号の流れる方向へ順番にずらし、補正信号を生成することを特徴としたものである。

【手続補正15】

【補正対象書類名】明細書

【補正対象項目名】 0 0 3 8

【補正方法】変更

【補正の内容】

[0038]

第1<u>3</u>の技術手段は、第<u>8</u>乃至第1<u>2</u>のいずれかの技術手段において、前記変換マトリクス演算の演算係数は、隣接絵素信号の1レベルの変化が及ぼす着目絵素信号による表示輝度の変化をレベルに換算した補正係数を、所定の変換式で計算することによって導出されるものであることを特徴としたものである。

【手続補正16】

【補正対象書類名】明細書

【補正対象項目名】 0 0 3 9

【補正方法】変更

【補正の内容】

[0039]

第1<u>4</u>の技術手段は、液晶セルのそれぞれに対応する絵素電極を有<u>し、該絵素電極に通電される電圧レベルに応じて液晶分子を駆動することにより、カラー画像を表示</u>する液晶表示装置のカラーマネージメント回路であって、各絵素電極へ入力される絵素信号を補正する補正手段を備え、該補正手段は、ある絵素電極へ入力される所定レベルmの絵素信号による表示輝度が、その<u>絵素電極のソースラインと垂直な方向に隣接する</u>隣接絵素電極へ入力される絵素信号レベル、及び、その隣接絵素電極の前記ソースラインと垂直な方向に <u>隣接する隣々接絵素電極へ入力される絵素信号レベル</u>に関わらず、一定となるように、前記絵素電極へ入力される絵素信号を補正することを特徴としたものである。

【 手 続 補 正 17】

【補正対象書類名】明細書

【補正対象項目名】 0 0 4 0

【補正方法】変更

【補正の内容】

[0040]

第1<u>5</u>の技術手段は、液晶セルのそれぞれに対応する絵素電極を有<u>し、該絵素電極に通電される電圧レベルに応じて液晶分子を駆動することにより、カラー画像を表示</u>する液晶

表示装置におけるカラーマネージメント回路であって、各絵素電極へ入力される絵素信号を補正する補正手段を備え、該補正手段は、着目絵素電極へ入力される絵素信号と、該着目絵素電極に対して<u>ソースラインと垂直な</u>方向に隣接した隣接絵素電極へ入力される絵素信号と、前記隣接絵素電極に対して前記<u>ソースラインと垂直な</u>方向に隣接した隣々接電極へ入力される絵素信号とから、前記着目絵素電極へ入力される絵素信号に対する補正信号を生成することを特徴としたものである。

【手続補正18】

【補正対象書類名】明細書

【補正対象項目名】 0 0 4 1

【補正方法】変更

【補正の内容】

[0041]

第1<u>6</u>の技術手段は、液晶セルのそれぞれに対応する絵素電極を有<u>し、該絵素電極に通電される電圧レベルに応じて液晶分子を駆動することにより、カラー画像を表示</u>する液晶表示装置の表示制御方法であって、各絵素電極へ入力される絵素信号を補正するに際し、ある絵素電極へ入力される所定のレベルmの絵素信号による表示輝度が、その<u>絵素電極のソースラインと垂直な方向に隣接する</u>隣接絵素電極へ入力される絵素信号レベル、及び、その隣接絵素電極の前記ソースラインと垂直な方向に隣接する隣々接絵素電極へ入力される絵素信号レベルに関わらず、一定となるように、前記絵素電極へ入力される絵素信号を補正することを特徴としたものである。

【手続補正19】

【補正対象書類名】明細書

【補正対象項目名】 0 0 4 2

【補正方法】変更

【補正の内容】

[0042]

第1<u>7</u>の技術手段は、第1<u>6</u>の技術手段において、赤、緑、青の各原色を表現する絵素電極へ入力される絵素信号に対し、各原色における所定レベルmの絵素信号による白、赤、緑、青の表示輝度をそれぞれW。、R。、G。、B。とした時、W。<u>三</u>R。+G。+B。を満たすように、前記絵素電極へ入力される絵素信号を補正することを特徴としたものである。

【手続補正20】

【補正対象書類名】明細書

【補正対象項目名】 0 0 4 3

【補正方法】変更

【補正の内容】

[0043]

第1<u>8</u>の技術手段は、第1<u>6</u>又は第1<u>7</u>の技術手段において、各絵素電極へ入力される 絵素信号を補正するに際し、着目絵素電極へ入力される絵素信号と、該着目絵素電極に対 して<u>ソースラインと垂直な</u>方向に隣接した隣接絵素電極へ入力される絵素信号と、前記隣 接絵素電極に対して前記<u>ソースラインと垂直な</u>方向に隣接した隣々接電極へ入力される絵 素信号とから、前記着目絵素電極へ入力される絵素信号に対する補正信号を生成すること を特徴としたものである。

【手続補正21】

【補正対象書類名】明細書

【補正対象項目名】 0 0 4 4

【補正方法】変更

【補正の内容】

[0044]

第<u>19</u>の技術手段は、第1<u>8</u>の技術手段において、前記着目絵素電極、前記隣接絵素電極、前記隣々接絵素電極のそれぞれへ入力される各絵素信号を用いて、1×3色変換マト

リクス演算を施すことにより、前記着目絵素電極へ入力される絵素信号に対する補正信号 を生成することを特徴としたものである。

【手続補正22】

【補正対象書類名】明細書

【補正対象項目名】 0 0 4 5

【補正方法】変更

【補正の内容】

[0045]

第2<u>0</u>の技術手段は、液晶セルのそれぞれに対応する絵素電極を有<u>し、該絵素電極に通電される電圧レベルに応じて液晶分子を駆動することにより、カラー画像を表示</u>する液晶表示装置の表示制御方法であって、各絵素電極へ入力される絵素信号を補正するに際し、着目絵素電極へ入力される絵素信号と、該着目絵素電極に対して<u>ソースラインと垂直な</u>方向に隣接した隣接絵素電極へ入力される絵素信号と、前記隣接絵素電極に対して前記<u>ソースラインと垂直な</u>方向に隣接した隣々接電極へ入力される絵素信号とから、前記着目絵素電極へ入力される絵素信号に対する補正信号を生成することを特徴としたものである。

【手続補正23】

【補正対象書類名】明細書

【補正対象項目名】 0 0 4 7

【補正方法】変更

【補正の内容】

[0047]

特に、上述した本発明の各技術手段に対しては、次のような効果を奏す。

第1の技術手段によれば、少なくとも所定レベルm付近の自絵素に対する隣接絵素及び <u>隣々接絵素</u>の影響を取り除くように、自絵素の入力信号に対する補正を行うので、所定レ ベルmを決めてそのレベルに応じた簡単な計算を行うだけの非常に簡単な構成及び処理に て、隣接絵素の入力信号レベル及び<u>隣々接絵素の入力信号レベル</u>の変動に拘わらず、自絵 素が表示する輝度を所望のレベルに保持することが可能となる。

【手続補正24】

【補正対象書類名】明細書

【補正対象項目名】 0 0 4 9

【補正方法】変更

【補正の内容】:

[0049]

また、前記所定レベルmを人間の視感度が高い輝度値付近とすることで、</u>人間の視覚感度が鈍くモニタ性能に対する影響が少ない領域へ誤差を分散させることができ、モニタの 視覚に対する特性を向上させることができる。

【手続補正25】

【補正対象書類名】明細書

【補正対象項目名】 0 0 5 0

【補正方法】変更

【補正の内容】

[0050]

第<u>3</u>の技術手段によれば、第1又は第2の技術手段による効果に加えて、特定の色域に偏在していた誤差を全ての色域に平均化することができ、モニタの表示特性を向上させることができる。

【手続補正26】

【補正対象書類名】明細書

【補正対象項目名】 0 0 5 1

【補正方法】変更

【補正の内容】

[0051]

第<u>4</u>の技術手段によれば、第1乃至第<u>3</u>のいずれかの技術手段による効果に加えて、画素境界にとらわれることなく、着目絵素(自絵素)に対して影響を与える隣接絵素を元に、補正値を算出することができる。さらに、隣接絵素の入力信号を隣々接絵素の影響を考慮した値として扱うことで、自絵素に対する補正をより正確に行うことができる。

【手続補正27】

【補正対象書類名】明細書

【補正対象項目名】 0 0 5 2

【補正方法】変更

【補正の内容】

[0052]

第<u>5</u>の技術手段によれば、第<u>4</u>の技術手段による効果に加えて、LUTや複雑な計算を必要とせず、簡単な回路構成により、隣接絵素信号による着目絵素(自絵素)への影響を 算出して、表示輝度の補正をすることができる。

【手続補正28】

【補正対象書類名】明細書

【補正対象項目名】 0 0 5 3

【補正方法】変更

【補正の内容】

[0053]

第<u>6</u>の技術手段によれば、第<u>5</u>の技術手段による効果に加えて、表示輝度の値が異なる 各原色それぞれに対して適した補正値を与えることができる。

【手続補正29】

【補正対象書類名】明細書

【補正対象項目名】 0 0 5 4

【補正方法】変更

【補正の内容】

[0054]

第<u>7</u>の技術手段によれば、画素境界にとらわれることなく、着目絵素(自絵素)に対して影響を与える隣接絵素を元に、補正値を算出することができる。さらに、隣接絵素の入力信号を隣々接絵素の影響を考慮した値として扱うことで、自絵素に対する補正をより正確に行うことができる。

【手続補正30】

【補正対象書類名】明細書

【補正対象項目名】 0 0 5 5

【補正方法】変更

【補正の内容】

[0055]

第<u>8</u>の技術手段によれば、第<u>7</u>の技術手段による効果に加えて、LUTや複雑な計算を必要とせず、簡単な回路構成により、隣接絵素信号による着目絵素(自絵素)への影響を 算出して、表示輝度の補正をすることができる。

【手続補正31】

【補正対象書類名】明細書

【補正対象項目名】 0 0 5 6

【補正方法】変更

【補正の内容】

[0056]

第<u>9</u>の技術手段によれば、第<u>8</u>の技術手段による効果に加えて、表示輝度の値が異なる 各原色それぞれに対して適した補正値を与えることができる。

【手続補正32】

A16330

0 0 5 7

3

【補正の内容】

[0057]

第1<u>0</u>の技術手段によれば、第<u>7</u>乃至第<u>9</u>の技術手段による効果に加えて、非常に小規模な回路構成で、着目絵素(自絵素)に対する補正を行うことができ、ハードウエア及びコストの縮小と処理速度の向上を実現することが可能である。

【手続補正33】

【補正対象書類名】明細書

【補正対象項目名】 0 0 5 8

【補正方法】変更

【補正の内容】

[0058]

第1<u>1</u>の技術手段によれば、第<u>7</u>乃至第1<u>0</u>の技術手段による効果に加えて、表示パネルの構造上発生するクロストークの影響に対して正確な補正値を与えることができる。

【手続補正34】

【補正対象書類名】明細書

【補正対象項目名】 0 0 5 9

【補正方法】変更

【補正の内容】

[0059]

第1<u>2</u>の技術手段によれば、第1<u>1</u>の技術手段による効果に加えて、表示装置に信号が入力される方向へ着目絵素(自絵素)を一つ一つ順次ずらしながら連続的に補正値を演算することができる。

【手続補正35】

【補正対象書類名】明細書

【補正対象項目名】 0 0 6 0

【補正方法】変更

【補正の内容】

[0060]

第1<u>3</u>の技術手段によれば、第<u>8</u>乃至第1<u>2</u>の技術手段による効果に加えて、複雑な測定や計算をすることなく、演算係数を求めることができる。また、表示パネルによる輝度の実測値から補正係数を導くことができるため、表示パネル個々に適した値を与えることができる。

【手続補正36】

【補正対象書類名】明細書

【補正対象項目名】 0 0 6 1

【補正方法】変更

【補正の内容】

[0061]

第1<u>4</u>の技術手段によれば、少なくとも所定レベルm付近の自絵素に対する隣接絵素<u>及び隣々接絵素</u>の影響を取り除くように、自絵素の入力信号に対する補正を行うので、隣接絵素の入力信号レベル<u>及び隣々接絵素の入力信号レベル</u>の変動に拘わらず、自絵素が表示する輝度を所望のレベルに保持することが可能となる。

【手続補正37】

【補正対象書類名】明細書

【補正対象項目名】 0 0 6 2

【補正方法】変更

【補正の内容】

[0062]

第1<u>5</u>の技術手段によれば、画素境界にとらわれることなく、着目絵素(自絵素)に対して影響を与える隣接絵素を元に、補正値を算出することができる。さらに、隣接絵素の入力信号を隣々接絵素の影響を考慮した値として扱うことで、自絵素に対する補正をより正確に行うことができる。

【手続補正38】

【補正対象書類名】明細書

【補正対象項目名】 0 0 6 3

【補正方法】変更

【補正の内容】

[0063]

第1<u>6</u>の技術手段によれば、少なくとも所定レベルm付近の自絵素に対する隣接絵素及 び隣々接絵素の影響を取り除くように、自絵素の入力信号に対する補正を行うので、隣接 絵素の入力信号レベル及び隣々接絵素の入力信号レベルの変動に拘わらず、自絵素が表示 する輝度を所望のレベルに保持することが可能となる。

【手続補正39】

【補正対象書類名】明細書

【補正対象項目名】 0 0 6 4

【補正方法】変更

【補正の内容】

[0064]

第1<u>7</u>の技術手段によれば、第1<u>6</u>の技術手段による効果に加えて、3原色表示を行う場合の、各原色の輝度が変化するために発生する無彩色の色づきを防ぎ、略一定の色度で表示することが可能となる。

【手続補正40】

【補正対象書類名】明細書

【補正対象項目名】 0 0 6 5

【補正方法】変更

【補正の内容】

[0065]

第1<u>8</u>の技術手段によれば、第1<u>6</u>又は第1<u>7</u>の技術手段による効果に加えて、画素境界にとらわれることなく、着目絵素(自絵素)に対して影響を与える隣接絵素を元に、補正値を算出することができる。さらに、隣接絵素の入力信号を隣々接絵素の影響を考慮した値として扱うことで、自絵素に対する補正をより正確に行うことができる。

【手続補正41】

【補正対象書類名】明細書

【補正対象項目名】 0 0 6 6

【補正方法】変更

【補正の内容】

[0066]

第<u>19</u>の技術手段によれば、第1<u>8</u>の技術手段による効果に加えて、LUTや複雑な計算を必要とせず、簡単な回路構成により、隣接絵素信号による着目絵素(自絵素)への影響を算出して、表示輝度の補正をすることができる。

【手続補正42】

【補正対象書類名】明細書

【補正対象項目名】 0 0 6 7

【補正方法】変更

【補正の内容】

[0067]

第20の技術手段によれば、画素境界にとらわれることなく、着目絵素(自絵素)に対

して影響を与える隣接絵素を元に、補正値を算出することができる。さらに、隣接絵素の入力信号を隣々接絵素の影響を考慮した値として扱うことで、自絵素に対する補正をより 正確に行うことができる。

【手続補正書】

【提出日】平成17年9月16日(2005.9.16)

【手続補正1】

【補正対象書類名】特許請求の範囲

【補正対象項目名】全文

【補正方法】変更

【補正の内容】

【特許請求の範囲】

【請求項1】

液晶セルのそれぞれに対応する絵素電極を有し、該絵素電極に通電される電圧レベルに応じて液晶分子を駆動することにより、カラー画像を表示する液晶表示装置であって、

各絵素電極へ入力される絵素信号を補正する補正手段を備え、

該補正手段は、ある絵素電極へ入力される<u>予め決められた</u>所定レベルmの絵素信号による表示輝度が、その絵素電極のソースラインと垂直な<u>一</u>方向に隣接する隣接絵素電極へ入力される絵素信号レベル、及び、その隣接絵素電極の前記ソースラインと垂直な<u>一</u>方向に隣接する隣々接絵素電極へ入力される絵素信号レベルに関わらず、一定となるように、前記絵素電極へ入力される絵素信号を補正することを特徴とする液晶表示装置。

【請求項2】

前記絵素電極は、赤、緑、青の各原色を表現する電極から構成され、

前記補正手段は、各原色における所定レベルmの絵素信号による白、赤、緑、青の表示輝度をそれぞれW。, R。, G。, B。とした時、W。=R。+G。+B。を満たすように、前記絵素電極へ入力される絵素信号を補正することを特徴とする請求項1に記載の液晶表示装置。

【請求項3】

前記所定レベルmは、隣接絵素から受ける影響が最大となる輝度値であることを特徴とする請求項1又は2に記載の液晶表示装置。

【請求項4】

前記補正手段は、着目絵素電極へ入力される絵素信号と、該着目絵素電極に対してソースラインと垂直な一方向に隣接した隣接絵素電極へ入力される絵素信号と、前記隣接絵素電極に対して前記ソースラインと垂直な一方向に隣接した隣々接電極へ入力される絵素信号とから、前記着目絵素電極へ入力される絵素信号を補正することを特徴とする請求項1万至3のいずれか1項に記載の液晶表示装置。

【請求項5】

前記補正手段は、前記着目絵素電極、前記隣接絵素電極、前記隣々接絵素電極のそれぞれへ入力される各絵素信号を用いて、1×3色変換マトリクス演算を施すことにより、前記着目絵素電極へ入力される絵素信号を補正することを特徴とする請求項4に記載の液晶表示装置。

【請求項6】

前記着目絵素電極が、赤を表現する電極であるとき、緑を表現する電極であるとき、青を表現する電極であるときのそれぞれに対して、前記1×3色変換マトリクス演算の演算係数を異ならせることを特徴とする請求項5に記載の液晶表示装置。

【請求項7】

液晶セルのそれぞれに対応する絵素電極を有し、該絵素電極に通電される電圧レベルに 応じて液晶分子を駆動することにより、カラー画像を表示する液晶表示装置であって、

各絵素電極へ入力される絵素信号を補正する補正手段を備え、

該補正手段は、着目絵素電極へ入力される絵素信号と、該着目絵素電極に対してソースラインと垂直な一方向に隣接した隣接絵素電極へ入力される絵素信号と、前記隣接絵素電

極に対して前記ソースラインと垂直な一方向に隣接した隣々接電極へ入力される絵素信号とから、前記着目絵素電極へ入力される絵素信号を補正することを特徴とする液晶表示装置。

【請求項8】

前記補正手段は、前記着目絵素電極、前記隣接絵素電極、前記隣々接絵素電極のそれぞれへ入力される各絵素信号を用いて、1×3色変換マトリクス演算を施すことにより、前記着目絵素電極へ入力される絵素信号を補正することを特徴とする請求項7に記載の液晶表示装置。

【請求項9】

前記着目絵素電極が、赤を表現する電極であるとき、緑を表現する電極であるとき、青を表現する電極であるときのそれぞれに対して、前記1×3色変換マトリクス演算の演算係数を異ならせることを特徴とする請求項8に記載の液晶表示装置。

【請求項10】

前記補正手段は、3×3色変換マトリクス演算の演算係数を記憶する係数記憶メモリと

各絵素電極へ入力される絵素信号を順次取得する絵素取得回路と、

該絵素取得回路で取得した絵素信号のうち、前記着目絵素電極への入力される着目絵素信号と、前記隣接絵素電極へ入力される隣接絵素信号と、前記隣々接絵素電極へ入力される隣々接絵素信号とを入力し、それぞれの絵素信号に前記係数記憶メモリに記憶された1行目の演算係数を乗じて加算し、前記着目絵素信号の補正信号として出力する第1の積和演算回路と、

前記絵素取得回路で取得した絵素信号のうち、前記第1の積和演算回路における前記隣接絵素電極に対応する絵素電極を着目絵素電極とした場合の、該着目絵素電極へ入力される着目絵素信号と、該着目絵素電極の隣接絵素電極へ入力される隣接絵素信号と、前記着目絵素電極の隣々接絵素電極へ入力される隣々接絵素信号とを入力し、それぞれの絵素信号に前記係数記憶メモリに記憶された2行目の演算係数を乗じて加算し、前記着目絵素電極に対する着目絵素信号の補正信号として出力する第2の積和演算回路と、

前記絵素取得回路で取得した絵素信号のうち、前記第2の積和演算回路における前記隣接絵素電極に対応する絵素電極を着目絵素電極とした場合の、該着目絵素電極へ入力される着目絵素信号と、該着目絵素電極の隣接絵素電極へ入力される隣接絵素信号と、前記着目絵素電極の隣々接絵素電極へ入力される隣々接絵素信号とを入力し、それぞれの絵素信号に前記係数記憶メモリに記憶された3行目の演算係数を乗じて加算し、前記着目絵素電極に対する着目絵素信号の補正信号として出力する第3の積和演算回路と、

を有することを特徴とする請求項7乃至9のいずれか1項に記載の液晶表示装置。

【請求項11】

前記ソースラインと垂直な一方向は、前記着目絵素電極から、該着目絵素電極へクロストークの影響を与えている隣接絵素電極へ向かう方向であることを特徴とする請求項7乃至10のいずれか1項に記載の液晶表示装置。

【請求項12】

前記補正手段は、前記着目画素電極をソース信号の流れる方向へ順番にずらし、<u>前記着</u> <u>目絵素電極へ入力される絵素信号を</u>補<u>正す</u>ることを特徴とする請求項11に記載の液晶表示装置。

【請求項13】

前記変換マトリクス演算の演算係数は、隣接絵素信号の1レベルの変化が及ぼす着目絵素信号による表示輝度の変化をレベルに換算した補正係数を、所定の変換式で計算することによって導出されるものであることを特徴とする請求項8乃至12のいずれか1項に記載の液晶表示装置。

【請求項14】

液晶セルのそれぞれに対応する絵素電極を有し、該絵素電極に通電される電圧レベルに応じて液晶分子を駆動することにより、カラー画像を表示する液晶表示装置のカラーマネ

ージメント回路であって、

各絵素電極へ入力される絵素信号を補正する補正手段を備え、

該補正手段は、ある絵素電極へ入力される<u>予め決められた</u>所定レベルmの絵素信号による表示輝度が、その絵素電極のソースラインと垂直な一方向に隣接する隣接絵素電極へ入力される絵素信号レベル、及び、その隣接絵素電極の前記ソースラインと垂直な一方向に隣接する隣々接絵素電極へ入力される絵素信号レベルに関わらず、一定となるように、前記絵素電極へ入力される絵素信号を補正することを特徴とするカラーマネージメント回路。

【請求項15】

液晶セルのそれぞれに対応する絵素電極を有し、該絵素電極に通電される電圧レベルに応じて液晶分子を駆動することにより、カラー画像を表示する液晶表示装置におけるカラーマネージメント回路であって、

各絵素電極へ入力される絵素信号を補正する補正手段を備え、

該補正手段は、着目絵素電極へ入力される絵素信号と、該着目絵素電極に対してソースラインと垂直な一方向に隣接した隣接絵素電極へ入力される絵素信号と、前記隣接絵素電極に対して前記ソースラインと垂直な一方向に隣接した隣々接電極へ入力される絵素信号とから、前記着目絵素電極へ入力される絵素信号を補正することを特徴とするカラーマネージメント回路。

【請求項16】

液晶セルのそれぞれに対応する絵素電極を有し、該絵素電極に通電される電圧レベルに応じて液晶分子を駆動することにより、カラー画像を表示する液晶表示装置の表示制御方法であって、

各絵素電極へ入力される絵素信号を補正するに際し、ある絵素電極へ入力される<u>予め決められた</u>所定のレベルmの絵素信号による表示輝度が、その絵素電極のソースラインと垂直な一方向に隣接する隣接絵素電極へ入力される絵素信号レベル、及び、その隣接絵素電極の前記ソースラインと垂直な一方向に隣接する隣々接絵素電極へ入力される絵素信号レベルに関わらず、一定となるように、前記絵素電極へ入力される絵素信号を補正することを特徴とする表示制御方法。

【請求項17】

赤、緑、青の各原色を表現する絵素電極へ入力される絵素信号に対し、各原色における所定レベルmの絵素信号による白、赤、緑、青の表示輝度をそれぞれW。、R。、G。、B。とした時、W。=R。+G。+B。を満たすように、前記絵素電極へ入力される絵素信号を補正することを特徴とする請求項16に記載の表示制御方法。

【請求項18】

各絵素電極へ入力される絵素信号を補正するに際し、着目絵素電極へ入力される絵素信号と、該着目絵素電極に対してソースラインと垂直な一方向に隣接した隣接絵素電極へ入力される絵素信号と、前記隣接絵素電極に対して前記ソースラインと垂直な一方向に隣接した隣々接電極へ入力される絵素信号とから、前記着目絵素電極へ入力される絵素信号を補正することを特徴とする請求項16又は17に記載の表示制御方法。

【請求項19】

前記着目絵素電極、前記隣接絵素電極、前記隣々接絵素電極のそれぞれへ入力される各絵素信号を用いて、1×3色変換マトリクス演算を施すことにより、前記着目絵素電極へ入力される絵素信号を補正することを特徴とする請求項18に記載の表示制御方法。

【請求項20】

液晶セルのそれぞれに対応する絵素電極を有し、該絵素電極に通電される電圧レベルに応じて液晶分子を駆動することにより、カラー画像を表示する液晶表示装置の表示制御方法であって、

各絵素電極へ入力される絵素信号を補正するに際し、着目絵素電極へ入力される絵素信号と、該着目絵素電極に対してソースラインと垂直な一方向に隣接した隣接絵素電極へ入力される絵素信号と、前記隣接絵素電極に対して前記ソースラインと垂直な一方向に隣接

した隣々接電極へ入力される絵素信号とから、前記着目絵素電極へ入力される絵素信号<u>を</u>補正することを特徴とする表示制御方法。

【手続補正2】

【補正対象書類名】明細書

【補正対象項目名】 0 0 2 5

【補正方法】変更

【補正の内容】

[0025]

本発明は、上述のごとき課題を解決するために、以下の各技術手段でそれぞれ構成される。

第1の技術手段は、液晶セルのそれぞれに対応する絵素電極を有し、該絵素電極に通電される電圧レベルに応じて液晶分子を駆動することにより、カラー画像を表示する液晶表示装置であって、各絵素電極へ入力される絵素信号を補正する補正手段を備え、該補正手段は、ある絵素電極へ入力される予め決められた所定レベルmの絵素信号による表示輝度が、その絵素電極のソースラインと垂直な一方向に隣接する隣接絵素電極へ入力される絵素信号レベル、及び、その隣接絵素電極の前記ソースラインと垂直な一方向に隣接する隣接絵素電極へ入力される絵素信号レベルに関わらず、一定となるように、前記絵素電極へ入力される絵素信号レベルに関わらず、一定となるように、前記絵素電極へ入力される絵素信号を補正することを特徴としたものである。

【手続補正3】

【補正対象書類名】明細書

【補正対象項目名】 0 0 2 8

【補正方法】変更

【補正の内容】

[0028]

第3の技術手段は、第1又は第2の技術手段において、前記所定レベルmは、隣接<u>絵</u>素から受ける影響が最大となる輝度値であることを特徴としたものである。

【手続補正4】

【補正対象書類名】明細書

【補正対象項目名】 0 0 2 9

【補正方法】変更

【補正の内容】

[0029]

第4の技術手段は、第1乃至第3のいずれかの技術手段において、前記補正手段は、着目絵素電極へ入力される絵素信号と、該着目絵素電極に対してソースラインと垂直な一方向に隣接した隣接絵素電極へ入力される絵素信号と、前記隣接絵素電極に対して前記ソースラインと垂直な一方向に隣接した隣々接電極へ入力される絵素信号とから、前記着目絵素電極へ入力される絵素信号を補正することを特徴としたものである。

【手続補正5】

【補正対象書類名】明細書

【補正対象項目名】0030

【補正方法】変更

【補正の内容】

[0030]

第5の技術手段は、第4の技術手段において、前記補正手段は、前記着目絵素電極、前記隣接絵素電極、前記隣々接絵素電極のそれぞれへ入力される各絵素信号を用いて、1×3色変換マトリクス演算を施すことにより、前記着目絵素電極へ入力される絵案信号<u>を</u>補正することを特徴としたものである。

【手続補正6】

【補正対象書類名】明細書

【補正対象項目名】0032

3

【補正の内容】

[0032]

第7の技術手段は、液晶セルのそれぞれに対応する絵素電極を有し、該絵素電極に通電される電圧レベルに応じて液晶分子を駆動することにより、カラー画像を表示する液晶表示装置であって、各絵素電極へ入力される絵素信号を補正する補正手段を備え、該補正手段は、着目絵素電極へ入力される絵素信号と、該着目絵素電極に対してソースラインと垂直な一方向に隣接した隣々接電極へ入力される絵素信号とから、前記ソースラインと垂直な一方向に隣接した隣々接電極へ入力される絵素信号とから、前記着目絵素電極へ入力される絵素信号を補正することを特徴としたものである。

【手続補正7】

【補正対象書類名】明細書

【補正対象項目名】 0 0 3 3

【補正方法】変更

【補正の内容】

[0033]

第8の技術手段は、第7の技術手段において、前記補正手段は、前記着目絵素電極、前記隣接絵素電極、前記隣々接絵素電極のそれぞれへ入力される各絵素信号を用いて、1×3色変換マトリクス演算を施すことにより、前記着目絵素電極へ入力される絵素信号<u>を</u>補正することを特徴としたものである。

【手続補正8】

【補正対象書類名】明細書

【補正対象項目名】 0 0 3 6

【補正方法】変更

【補正の内容】

[0036]

第11の技術手段は、第7乃至第10のいずれかの技術手段において、前記ソースラインと垂直な一方向は、前記着目絵素電極から、該着目絵素電極へクロストークの影響を与えている隣接絵素電極へ向かう方向であることを特徴としたものである。

【手続補正9】

【補正対象書類名】明細書

【補正対象項目名】 0 0 3 7

【補正方法】変更

【補正の内容】

[0037]

第12の技術手段は、第11の技術手段において、前記補正手段は、前記着目画素電極をソース信号の流れる方向へ順番にずらし、<u>前記着目絵素電極へ入力される絵素信号を</u>補<u>正す</u>ることを特徴としたものである。

【手続補正10】

【補正対象書類名】明細書

【補正対象項目名】 0 0 3 9

【補正方法】変更

【補正の内容】

[0039]

第14の技術手段は、液晶セルのそれぞれに対応する絵素電極を有し、該絵素電極に通電される電圧レベルに応じて液晶分子を駆動することにより、カラー画像を表示する液晶表示装置のカラーマネージメント回路であって、各絵素電極へ入力される絵素信号を補正する補正手段を備え、該補正手段は、ある絵素電極へ入力される予め決められた所定レベルmの絵素信号による表示輝度が、その絵素電極のソースラインと垂直な一方向に隣接する隣接絵素電極へ入力される絵素信号レベル、及び、その隣接絵素電極の前記ソースライ

ンと垂直な一方向に隣接する隣々接絵素電極へ入力される絵素信号レベルに関わらず、一定となるように、前記絵素電極へ入力される絵素信号を補正することを特徴としたものである。

【手続補正11】

【補正対象書類名】明細書

【補正対象項目名】0040

【補正方法】変更

【補正の内容】

[0040]

第15の技術手段は、液晶セルのそれぞれに対応する絵素電極を有し、該絵素電極に通電される電圧レベルに応じて液晶分子を駆動することにより、カラー画像を表示する液晶表示装置におけるカラーマネージメント回路であって、各絵素電極へ入力される絵素信号を補正する補正手段を備え、該補正手段は、着目絵素電極へ入力される絵素信号と、該着目絵素電極に対してソースラインと垂直な一方向に隣接した隣接絵素電極へ入力される絵素信号と、前記隣接絵素電極に対して前記ソースラインと垂直な一方向に隣接した隣々接電極へ入力される絵素信号とから、前記着目絵素電極へ入力される絵素信号を補正することを特徴としたものである。

【手続補正12】

【補正対象書類名】明細書

【補正対象項目名】 0 0 4 1

【補正方法】変更

【補正の内容】

[0041]

第16の技術手段は、液晶セルのそれぞれに対応する絵素電極を有し、該絵素電極に通電される電圧レベルに応じて液晶分子を駆動することにより、カラー画像を表示する液晶表示装置の表示制御方法であって、各絵素電極へ入力される絵素信号を補正するに際し、ある絵素電極へ入力される予め決められた所定のレベルmの絵素信号による表示輝度が、その絵素電極のソースラインと垂直な一方向に隣接する隣接絵素電極へ入力される絵素信号レベル、及び、その隣接絵素電極の前記ソースラインと垂直な一方向に隣接する隣々接絵素電極へ入力される絵素信号レベルに関わらず、一定となるように、前記絵素電極へ入力される絵素信号を補正することを特徴としたものである。

【手続補正13】

【補正対象書類名】明細書

【補正対象項目名】0043

【補正方法】変更

【補正の内容】

[0043]

第18の技術手段は、第16又は第17の技術手段において、各絵素電極へ入力される 絵素信号を補正するに際し、着目絵素電極へ入力される絵素信号と、該着目絵素電極に対 してソースラインと垂直な一方向に隣接した隣接絵素電極へ入力される絵素信号と、前記 隣接絵素電極に対して前記ソースラインと垂直な一方向に隣接した隣々接電極へ入力される る絵素信号とから、前記着目絵素電極へ入力される絵素信号を補正することを特徴とした ものである。

【手続補正14】

【補正対象書類名】明細書

【補正対象項目名】 0 0 4 4

【補正方法】変更

【補正の内容】

[0044]

第19の技術手段は、第18の技術手段において、前記着目絵素電極、前記隣接絵素電

極、前記隣々接絵素電極のそれぞれへ入力される各絵素信号を用いて、 1 × 3 色変換マトリクス演算を施すことにより、前記着目絵素電極へ入力される絵素信号<u>を</u>補<u>正す</u>ることを特徴としたものである。

【手続補正15】

【補正対象書類名】明細書

【補正対象項目名】 0 0 4 5

【補正方法】変更

【補正の内容】

[0045]

第20の技術手段は、液晶セルのそれぞれに対応する絵素電極を有し、該絵素電極に通電される電圧レベルに応じて液晶分子を駆動することにより、カラー画像を表示する液晶表示装置の表示制御方法であって、各絵素電極へ入力される絵素信号を補正するに際し、着目絵素電極へ入力される絵素信号と、該着目絵素電極に対してソースラインと垂直な一方向に隣接した隣接絵素電極へ入力される絵素信号と、前記隣接絵素電極に対して前記ソースラインと垂直な一方向に隣接した隣々接電極へ入力される絵素信号とから、前記着目絵素電極へ入力される絵素信号を補正することを特徴としたものである。

フロントページの続き

(51) Int. Cl. '

FΙ

テーマコード(参考)

G 0 9 G 3/20 6 4 2 L

(72)発明者 上野 雅史

大阪府大阪市阿倍野区長池町22番22号 シャープ株式会社内

(72)発明者 吉田 育弘

大阪府大阪市阿倍野区長池町22番22号 シャープ株式会社内

Fターム(参考) 2H093 NA16 NA61 NC13 ND17 ND24

5C006 AA22 AC21 AF04 AF43 AF45 AF46 AF51 AF53 AF85 BB16

BF02 FA36 FA56

5C080 AA10 BB05 CC03 DD10 EE29 EE30 FF11 GG17 JJ02 JJ03

JJ05 JJ06 JJ07