Проблемы внедрения технологических инноваций на цифровом предприятии

И. А. Брусакова

Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» им. В.И. Ульянова (Ленина) e-mail: brusakovai@mail.ru

статье представлена особая Аннотация. В технологических иннований. заключающаяся распространении технологических инноваций на изменение технологий управления любым бизнес-процессом цифрового предприятия. Цифровое предприятие рассматривается как киберфизическая система. статье представлен измерительный аспект управления технологическими инновациями, позволяющий описывать вхолную выходную информацию о киберфизической системе в виде экономических и электрических измерений. перечислены основные проблемы внедрения технологических инноваций в архитектуру цифрового предприятия, обусловленные незрелостью ИКТнесовершенством инфраструктуры, организационноуправленческой деятельности и отсутствием необходимой профессиональной подготовки человеческих ресурсов. Предлагается рассматривать технологические инновации цифрового предприятия как отдельный самостоятельный ресурс предприятия.

Ключевые слова: Цифровое предприятие; киберфизическая система; технологическая инновация; инжиниринг ресурсов

I. Введение

Новая парадигма цифровой экономики — экономики, основанной на знаниях, экономики в условиях современной инфокоммуникационной (ИКТ) инфраструктуры, «экономики в облаках», SMART-GRID-экономики, Индустрии 4.0 — в конечном итоге приводит к размышлениям об интеграции вычислительных ресурсов, физических процессов, бизнес-процессов цифрового предприятия в единую информационно-технологическую концепцию, называемую киберфизической системой (CPS — Cyber-Phisical System) [1].

Приведенная в [2, 3] архитектура цифрового предприятия рассматривается как многомерная процессноориентированная модель, реализованная на базе стандарта ISO/IEC/IEEE 42010, интегрированная в ИКТинфраструктуру информационной системы предприятия с использованием когнитивных технологий по принципам CALS.

Измерительный аспект управления процессами цифрового предприятия заключается как раз в необходимости одновременного приобретения, обработки, интерпретации физических (электрических) и

экономических измерений. Цифровое предприятие рассматривается как сложная динамическая система, как интеграция технических и социально-экономических подсистем. Кибернетика «первого поколения» по Винеру описывает процессы управления физическими ресурсами цифрового предприятия. Наличие петли обратной связи управления физическими процессами позволяет вносить изменения в вычислительные процессы наоборот. Но движение цифрового общества сращиванию инфраструктуры управления физическими и вычислительными процессами приводит к появлению кибернетики «второго поколения» для управления процессами киберфизической системы. Фактически, для описания процессов управления в такой киберфизической системе требуется применять теорию «второго поколения кибернетики по Грегори Бэйтсону и Джону Бойду», где корректировки деятельности применяются не только обратные связи в технических системах (подсистемах) управления, но и автопоэфиз, «экономики обратной связи», «обратные связи обратных связей» для корректировки изменений в пространствах Интернета вещей, Интернета людей, Интернета сервисов [4], интегрированных в ИКТ-инфраструктуру цифрового предприятия.

II. НОВОЕ ЗВУЧАНИЕ ТЕХНОЛОГИЧЕСКИХ ИННОВАЦИЙ

Новое звучание приобретают и классификационные свойства инноваций. Так, технологические инновации еще лет 20 назад описываемые как инновационные приемы в технологических производственных процессах, сейчас, описывают процессы информатизации управления ресурсами цифрового предприятия. Особая технологических инноваций заключается распространении технологических иннований на изменение технологий управления любым бизнес-Стремление при процессом цифрового предприятия. внедрении таких технологических инноваций перейти от бизнес-процесса «как есть» к бизнес-процессу «как надо» реализуется процедурой РСDA и набором ИТ-сервисов, поддерживающих ЭТУ процедуру. Если ресурсное обеспечение цифрового предприятия рассматривается в сервисно-ориентированной информационной системы, то управление изменениями для таких и реализует как раз «кибернетику второго поколения».

Для сложной динамической системы характерно «сращивание» с биосферой, социумом, техносферой пространствами Интернетом вещей, Интернетом людей, Интернетом сервисов. Проблемы технологических инноваций для управления современным, например, производственным комплексом, природнотехнической системой, предприятием в условиях «умного бережливого производства», «умным городом» и т.д. необходимости прежде заключаются R промоделировать, исследовать, проанализировать входные и выходные процессы. Средства бизнес-аналитики, интегрированные в ИКТ-инфраструктуру цифрового предприятия, должны обеспечить обработку первичной, прогнозной, учетной и т.д. экономической информации. Требуется обеспечить «приращение ценности» в описании бизнес-процессов таких киберфизических систем, доказать адекватность, достоверность, эффективность управления такими системами.

Итак, теоретическая инноватика посредством методов и моделей теории систем и системного анализа взаимоувязана с положениями теории измерений, теории информатики, теории управления техническими социально-экономическими системами. Формализация и структурирование первичной информации киберфизической системе невозможно без изучения и исследования как технической, физической, так и экономической информации. Выработка управляющих степени одинаковой связана воздействий В особенностями как технической, так и социальноэкономической подсистем киберфизической системы.

Технологическая инновация *TECH_INN* для киберфизической системы в формализованном виде может быть представлена в виде

TECH INN =

$=<INCR_CAP$, NameRESOURS, M_{cond} , M_{instr} , $M_{comp}>$,

INCR CAP «прирашение ценности» трансформации бизнес-процесса «как есть» к бизнеспроцессу «как надо» после внедрения технологической инновации; NameRESOURS - наименование ресурса, для управления которым внедряется технологическая инновация; M_{cond} – модель условий внедрения технологической инновации: описание модели предприятия, цифрового архитектуры подразделения – владельца «улучшаемого» бизнеспроцесса, определенный временной интервал, на котором планируется внедрение технологической инновации; M_{instr} – инструменальные средства внедрения лля технологической инновации; M_{comp} – компетентностная профессиональной подготовки ресурсов для внедрения технологической инновации.

К показателям «приращения ценности» при трансформации бизнес-процесса «как есть» к бизнес-процессу «как надо» после внедрения технологической инновации могут относиться, например, созданная добавленная стоимость, ценность для потребителя,

уменьшение количества организационных звеньев управления и т.д. С точки зрения измерений таких показателей мы сталкиваемся с проблемой управления «в смешанных шкалах». Тогда цифровой контент управления по «приращению ценности» регулируется с использованием методов и моделей управления знаниями. Добиться адекватности управления, семантической, синтаксической адекватности сложно.

Модель условий, при которой внедряется технологическая инновация, должна учитывать изменения за рассматриваемый промежуток времени, в социосфере, техносфере, биосфере и т.д. внешнего мира. Требуется определиться с моделью архитектуры цифрового предприятия, моделью архитектуры информационной системы управления, прежде всего составляющими технико-технологической платформы.

Компетентностная модель профессиональной подготовки человеческих ресурсов для внедрения технологической инновации требует отдельной тщательной подготовки, изучения профессиональных стандартов и предметной области конкретного наукоемкого производства, и должна быть ориентирована на стандарты подготовки инновационного инженера СDIO.

Незрелость ИКТ-инфраструктуры высокотехнологичных предприятий объясняется «фрагментарностью» автоматизации процессов управления, отсутствием единой интеграции процессов управления технических и социально-экономических подсистем; отсутствием единой системы мониторинга за показателями эффективности деятельности предприятия.

III. ЗАКЛЮЧЕНИЕ

Таким образом, основные проблемы технологических инноваций в архитектуру цифрового ИКТпредприятия обусловлены незрелостью инфраструктуры, организационнонесовершенством управленческой деятельности, быстроменяющимися VСЛОВИЯМИ исследования поведения сложной динамической системы, отсутствием наработанного проверенного математического аппарата исследования киберфизических систем, отсутствием необходимой профессиональной подготовки человеческих ресурсов.

Список литературы

- [1] Васильев Ю.С., Козлов В.Н., Волкова В.Н. Кибернетика теория систем киберфизика//Системный анализ в проектировании и управлении: сб. науч. Тр. XXI Межд. Научно-практ. конф. 29-30 июня 2017 Ч.1 / Изд-во Политехн. Ун-та. СПб, 2017. С.5-14.
- [2] Irina A.Brusakova, Roman E. Shepelev Innovations in the technique and economy for the digital enterprise /Proceedings of: Strategic Partnership of Universities and Enterprises of Hi-Tech Branches (Science. Education. Innovations), 2016 IEEE V Forum 16-18 Nov. 2016, INSPEC Accession Number: 16622886, DOI: 10.1109/IVForum. 2016.7835844, Publisher: IEEE, http://ieeexplore.ieee.org/document/7835844/
- [3] Теоретическая инноватика: учебник и практикум для бакалавриата и магистратуры / под ред. И.А. Брусаковой. М.: Изд-во Юрайт, 2017. 333 с.