

Парадигма процедурного програмування

к.т.н., доцент кафедри прикладної математики Рижа Ірина Андріївна

Про що ця лекція???

- ▶ Опишемо модульну структуру алгоритму.
- Викладемо особливості процедурного програмування.

Модульна структура алгоритму

Модульний принцип побудови алгоритмів

полягає в розбитті початкової задачі на більш прості підзадачі (підалгоритми).

- ▶ Алгоритми для підзадач будуються достатньо просто;
- Уже існують відповідні побудовані та протестовані алгоритми;
- Розрахунок на майбутне використання як складових частин більш складних задач.

Модуль

 алгоритм, який розрахований на багаторазове використання, як складова частина при побудові алгоритмів різних задач, і є оформлений відповідним чином.

Вимоги до модулів

1. Простота

Кожен модуль - це алгоритм розв'язання окремої задачі.

2. Список формальних параметрів

Модуль повинен мати один вхід (вхідні дані для роботи модуля) і один вихід (результати роботи модуля). Порядок передачі модулю вхідних даних і повернення результатів роботи є строго обумовленим.

Вимоги до модулів

3. Самодостатність

Модуль не залежить від інших модулів і його активізація проводиться шляхом виклику і передачі фактичних параметрів

4. Принцип "екранування" змінних

Змінні величини, які використовуються модулем, як правило, це не однойменні змінні інших модулів.

Звертання до модулів

Символ "попередньо створених і окремо описаних алгоритмів і програм":

Ім'я модуля та список **фактичних** параметрів

Приклад 1.

Побудувати алгоритм обчислення числа сполук з n елементів множини по m:

$$\binom{n}{m} = \frac{n!}{m!(n-m)!}.$$

- ► FACT (P, S) модуль обчислення n!;
- Р вхідний параметр число, факторіал якого обчислюється;
- lacktriangledown S вихідний параметр результат (S=P!)

Поміркуймо...

Чи буде описаний вище алгоритм ефективним????

Принцип процедурного програмування

Процедурне (структурне) програмування

– це поетапна розробка та уточнення алгоритму.

Метод проектування "зверху-вниз" або метод покрокової деталізації

- метод проектування та розробки алгоритму згідно якого
 - будується узагальнена структура алгоритму алгоритм розбивається на декілька етапів (підзадач);
 - 2. кожен з етапів деталізується і оформлюється у вигляді модуля;
 - етапи в свою чергу можуть розбиватись на підетапи і уточнюватись;
 - 3. відбувається процес "згортання" етапів та підетапів у єдиний алгоритм.

Схема методу проектування "зверху-вниз"

Приклад 2.

Побудувати алгоритм обчислення площі випуклого n-кутника, заданого координатами своїх вершин на площині.

Площу багатокутника $A_1A_2A_3\dots A_n$ можна знайти як суму площ трикутників

$$A_1 A_i A_{i+1}, \quad i = \overline{2, n-1}.$$

- $oldsymbol{0}$: обчислити площу випуклого n-кутника, заданого координатами своїх вершин:
 - 0-1: ввести координати вершин п-кутника;
 - **0-2:** обчислити площу n-кутника;
 - 0-3: вивести результати обчислень.

- **0-1:** ввести координати вершин n-кутника:
 - **0-1-1:** задати число вершин багатокутника ціле число n;
 - **0-1-2:** ввести координати вершин n-кутника у масив A(n,2);

0-2: обчислити площу n-кутника:

- **0-2-1:** розбити n-кутник на трикутники $A_1A_iA_{i+1},$ $i=\overline{2,n-1};$
- **0-2-2:** обчислити площу трикутника $A_1A_iA_{i+1}$;

- **0-2-2:** обчислити площу трикутника $A_1A_iA_{i+1}$:
 - 0-2-2-1: обчислити за заданими номерами вершин довжину сторони трикутника:

$$A_{i}\left(x_{i};y_{i}\right),A_{i+1}\left(x_{i+1};y_{i+1}\right)\colon l_{A_{i}A_{i+1}}=\sqrt{(x_{i+1}-x_{i})^{2}+(y_{i+1}-y_{i})^{2}};$$

0-2-2-2: обчислити площу трикутника за формулою Герона:

$$S=\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)},\quad p=\frac{\left(a+b+c\right)}{2}.$$

Модуль обчислення довжини відрізка (0-2-2-1)

- ▶ $A(n \times 2)$ масив координат вершин n-кутника;
- n1, n2 номери вершин;
- ightharpoonup R довжина відрізка $A_{n1}A_{n2}$.

	1	2
1	x_1	y_1
2	x_2	y_2
:	:	:
n	x_n	y_n

Модуль обчислення площі трикутника (0-2-2)

- ▶ $A(n \times 2)$ масив координат вершин n-кутника;
- n1, n2, n3 номери вершин;
- ightharpoonup R площа трикутника $A_{n1}A_{n2}A_{n3}$.

Модуль обчислення площі n-кутника (0-2)

- ▶ $A(n \times 2)$ масив координат вершин n-кутника;
- ▶ S площа n-кутника.

Модуль вводу координат вершин (0-1)

Загальний алгоритм

Приклад 3.

Обчислити значення матричного многочлена:

$$\sum_{i=0}^{k} b_i A^{k-i} = b_0 A^k + b_1 A^{k-1} + \dots + b_{k-1} A + b_k I,$$

де A – квадратна матриця розмірності $n \times n;$

 $b_i,\ i=\overline{0,k}$ – коефіцієнти;

I – одинична матриця розмірності $n \times n.$

Матричний многочлен

$$\begin{split} \sum_{i=0}^k b_i A^{k-i} &= b_0 A^k + b_1 A^{k-1} + \dots + b_{k-1} A + b_k I = \\ &= \left(\dots \left(\left(\underbrace{b_0 I}_{\text{bard}} A + b_1 I \right) A + b_2 I \right) A + \dots + b_{k-1} I \right) A + b_k I \end{split}$$

- 0: обчислити значення матричного многочлена:
 - **0-1:** сформувати **ядро** $C = b_0 I$;
 - **0-2:** перемножити матриці $D = C \cdot A;$
 - **0-3:** додати матриці $D + b_i I$.

- ightharpoonup n розмірність матриці;
- b коефіцієнт при найбільшому степені;
- $ightharpoonup C (n \times n)$ матриця-ядро.

$$C = b_0 I = \begin{pmatrix} b_0 & 0 & \dots & 0 \\ 0 & b_0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & b_0 \end{pmatrix}$$

- n розмірність;
- ▶ A, B дві матриці розмірності $n \times n$, які потрібно перемножити;
- $ightharpoonup C\ (n imes n)$ матриця-результат.

$$c_{ij} = \sum_{k=1}^{n} a_{ik} \cdot b_{kj}$$

- n розмірність;
- \triangleright D матриця розмірності $n \times n$;
- ▶ b коефіцієнт (число);
- С матриця-результат.

$$C = D + b_i \cdot I =$$

$$= \begin{pmatrix} d_{11} + b_i & d_{12} & \dots & d_{1n} \\ d_{21} & d_{11} + b_i & \dots & d_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ d_{n1} & d_{n2} & \dots & d_{nn} + b_i \end{pmatrix}$$

Основна програма

Дякую за увагу!

Далі буде...