Algebra Linear e Aplicações - Listas de Exercícios

Jorge Augusto Salgado Salhani

Agosto, 2022

1 Lista 1 - Revisão de Geometria Analítica

- 1.1 Em cada um dos casos abaixo dê a equação da reta $r \subset \mathbb{R}^2$ que cumpre as condições desejadas na forma geral (r: ax + by = c) e na forma vetorial $(r: P + t\overrightarrow{v})$.
 - (a) r passa pelos pontos (2, -1) e (-1, 1)

Sendo um ponto $A=(x_1,y_1)$ e um vetor $\overrightarrow{v}=(a,b,c)$, um ponto P=(x,y) pertence a r se o vetor \overrightarrow{AP} é paralelo a \overrightarrow{v} tal que

$$\overrightarrow{AP} = t \overrightarrow{v}$$

$$P - A = t \overrightarrow{v} \implies P = A + t \overrightarrow{v}$$

$$(x, y) = (x_1, y_1) + t(a, b)$$

Dessa forma, seja $A=(2,-1),\,P=(-1,1)$ e t=1. Assim, $\overrightarrow{v}=P-A=(-3,2).$ Logo, temos que

$$r:(x,y)=(-1,1)+t(-3,2)$$

(b) r é paralela à reta l: x + y = 0 e passa pelo ponto (-5, 5).

Como vale para a reta l: x+y=0, temos que essa reta passa pelos pontos $x=1 \implies y=-1$, resultando em A=(1,-1) e $x=-1 \implies y=1$, resultando em B=(-1,1). Logo, $\overrightarrow{v}=\overrightarrow{AB}=B-A=(-2,2)$. Logo

$$r:(x,y)=(-5,5)+t(-2,2)$$

(c) r é paralela à reta $l:(2,3)+t\overline{(2,-1)}$ e passa pelo ponto (-4, -9).

Sendo paralela ao vetor $\overrightarrow{v} = (2, -1)$, segue que

$$r:(x,y)=(-4,-9)+t(2,-1)$$

(d) r é perpendicular ao eixo X e passa pelo ponto (2,3)

Sendo perpendicular ao eixo X, sabemos que o vetor diretor da reta r é dado por $\overrightarrow{v} = \alpha(0,1) = (0,\alpha)$.

Sendo $\alpha = 3$, fazemos com que o vetor \overrightarrow{v} passe pelo ponto (2,3). Logo

$$r:(x,y)=(2,3)+t(0,3)$$

(e) r é perpendicular à reta $l:(0,2)+t\overrightarrow{(1,1)}$ no ponto (4,2)

Como a reta l contém o ponto (4,2), e para r perpendicular a l temos que seus vetores diretores devem ser tais que $\overrightarrow{v_l} \cdot \overrightarrow{v_r} = 0$. Sendo $\overrightarrow{v_r} = (\alpha, \beta)$, $1\alpha + 1\beta = 0$. Um dos possíveis vetores é $\overrightarrow{v_r} = (-1, 1)$. Logo

$$r:(x,y)=(4,2)+t(-1,1)$$

1.2 Sejam A = (1,2), B = (3,-2), C = (-3,4), D = (0,y) pontos do plano, r a reta que passa por A e B, e l a reta que passa por C e D. Determine o valor de y para que as retas r e l sejam paralelas e para que sejam perpendiculares.

Pelos pontos que passam as retas r e l, temos que

$$r: (x', y') = (1, 2) + t(2, -4)$$
$$l: (x', y') = (-3, 4) + t(3, y - 4)$$

Para que sejam perpendiculares,
$$y$$
 é tal que $\overrightarrow{v_r} \cdot \overrightarrow{v_l} = 0 = (2, -4) \cdot (3, y - 4)$. Logo $y = 11/2$.

Para que sejam paralelas, os vetores diretores de ambas precisam ser linearmente dependentes, ou seja, $\overrightarrow{v_r} = \alpha \overrightarrow{v_l}$, onde $\overrightarrow{v_r}$ representa o vetor diretor da reta r e $\alpha \in \mathbf{R}$. Assim, temos que $(3, y-4) = \alpha(2, -4)$ e, portanto $\alpha = 3/2$ e y = -2 para que sejam paralelas.

1.3 Determine se as retas dadas são paralelas ou concorrentes. Caso elas sejam concorrentes, determine em que ponto elas se intersectam.

(a)
$$2x - y = 2 e 3x + y = 3$$

Primeiro, vamos encontrar os vetores diretores das retas. Para isso, precisamos encontrar y caso x = 0 e x caso y = 0.

Sendo r: 2x - y = 2, r passa pelos pontos (0, -2) e (1,0). Sendo l: 3x + y = 3, l passa pelos pontos (0, 3) e (1,0).

Para que sejam paralelas, $\overrightarrow{v_r} = \alpha \overrightarrow{v_l} \implies (-1, -2) = \alpha(-1, 3)$. Como não existe α que satisfaça, r e l são linearmente independentes e, portanto, concorrentes com intersecção em (1, 0).

(b)
$$5x - 7y = 3 e 10x - 14y = 5$$

Sendo r: 5x - 7y = 3, a reta passa pelos pontos (0, -3/7) e (3/5, 0), temos portanto $\overrightarrow{v_r} = (3/5, 3/7)$.

Sendo l:10x-14y=5, a reta passa pelos pontos (0,-5/14) e (5/10,0), temos portanto $\overrightarrow{v_l}=(5/10,5/14)$

Como $\overrightarrow{v_l} = \alpha \overrightarrow{v_r} \implies (5/10, 5/14) = \alpha(3/5, 3/7)$ válido para $\alpha = 5/6$, ambos vetores diretores são linearmente dependentes, e portanto, $r \in l$ são paralelas.

(c)
$$x + 2y = 4 e 3x + 4y = 10$$

Sendo r: x+2y=4, os pontos (0,4/2) e (4,0) pertencem à reta r, cujo vetor diretor é $\overrightarrow{v_r}=(4,-4/2)$.

Sendo l: 3x+4y=10, os pontos (0,10/4) e (10/3,0) pertencem à reta l, cujo vetor diretor é $\overrightarrow{v_l}=(10/3,-10/4)$.

Para que sejam paralelas, $\overrightarrow{v_r} = \alpha \overrightarrow{v_l}$; $\alpha \in \mathbf{R}$. Como não existe α tal que $(4, -4/2) = \alpha(10/3, -10/4)$ seja satisfeita, as retas são concorrentes.

O ponto onde r e l se cruzam ocorre quando r = l. Assim, (x, y) = (2, 1) representa o ponto de intersecção das retas.

1.4 Os lados de um triângulo estão sobre as retas y = 2x + 1, y = 3x - 2 e y = 1 - x. Encontre os vértices desse triângulo

Os vértices do triângulo formado pelas retas acontecem onde as mesmas se encontram. Logo, igualando as equações, temos os vértices em $(x, y) = \{(3, 7), (0, 1), (3/4, 1/4)\}.$

1.5 Sejam A, B e C pontos no plano

(a) Que condição os pontos $A, B \in C$ devem cumprir para que eles sejam vértices de um triângulo? O que isso significa em termos dos vetores $\overrightarrow{AB} \in \overrightarrow{AC}$?

Para que formem um triângulo, os três pontos devem ser coplanares e distintos e não podem pertencer à mesma reta. Logo $A \neq B \neq C$ e $\overrightarrow{AB} \neq \overrightarrow{BC} \neq \overrightarrow{AC}$, sendo $\overrightarrow{AB} \neq \alpha \overrightarrow{AC}$ $\forall \alpha \in \mathbf{R}$, ou seja, devem ser linearmente independentes.

- 1.6 Sejam A, B, C pontos em \mathbb{R}^2 não colineares. Em cada item, explique quais são os pontos do plano que cumprem a condição desejada.
 - (a) Estão na mediatriz do lado \overline{AC}

A mediatriz do seguimento \overline{AC} é relativa à reta perpendicular ao seguimento que passa sobre o ponto equidistante de A e C. Assim, sendo $A=(x_A,y_A), C=(x_C,y_C)$, temos o ponto da mediatriz $M=(x_M,y_M)$ dado por

$$(x_M, y_M) = [(x_A, y_A) + (x_C, y_C)](1/2)$$

Sendo também o vetor diretor do seguimento \overline{AC} dado por $\overrightarrow{v_{AC}} = A - C = (x_A, y_A) - (x_C, y_C)$, o vetor diretor da mediatriz $\overrightarrow{v_M} = (\alpha, \beta)$ é tal que $\overrightarrow{v_M} \cdot \overrightarrow{v_{AC}}$. Logo deve ser válido que

$$\alpha(x_A - x_C) + \beta(y_A - y_C) = 0$$

Por fim, teremos que os pontos estão contidos na reta

$$(x,y) = (x_M, y_M) + t(\alpha, \beta)$$