Distance from a Point to a Plane

Machine Learning Foundations

1 Introduction

Calculating the distance from a point to a plane/hyperplane is crucial for:

- Support Vector Machines (margin optimization)
- Logistic Regression (decision boundaries)
- Anomaly detection (distance to separation surface)

For a plane π passing through origin: $\mathbf{w}^T\mathbf{x} = 0$ where \mathbf{w} is the normal vector.

2 Distance Formula

The distance d from point $\mathbf{s} = (s_1, s_2, \dots, s_n)$ to the plane is:

$$d = \frac{|\mathbf{w}^T \mathbf{s}|}{\|\mathbf{w}\|}$$

- $\mathbf{w}^T \mathbf{s}$: Dot product (projection)
- $\|\mathbf{w}\|$: Magnitude of normal vector

3 Geometric Interpretation

$$\mathbf{w}^T \mathbf{s} = \|\mathbf{w}\| \|\mathbf{s}\| \cos \theta$$

where θ is the angle between vectors **w** and **s**.

3.1 Side Determination

1

- Above plane (d > 0): $\theta < 90^{\circ} \Rightarrow \cos \theta > 0$
- Below plane (d < 0): $\theta > 90^{\circ} \Rightarrow \cos \theta < 0$
- Distance magnitude: $|d| = \frac{|\mathbf{w}^T \mathbf{s}|}{\|\mathbf{w}\|}$

4 Vector Form Derivation

The distance is the projection of \mathbf{s} onto \mathbf{w} :

$$d = \frac{\mathbf{w}^T \mathbf{s}}{\|\mathbf{w}\|} = \|\mathbf{s}\| \cos \theta$$

5 Machine Learning Significance

• Classification: Signed distance indicates class membership

• Confidence: |d| measures certainty of classification

6 3D Visualization

7 Key Formulas Summary

Plane equation $\mathbf{w}^T \mathbf{x} = 0$ Distance $d = \frac{\mathbf{w}^T \mathbf{s}}{\|\mathbf{w}\|}$ Magnitude $|d| = \frac{|\mathbf{w}^T \mathbf{s}|}{\|\mathbf{w}\|}$

Side determination $\operatorname{sign}(d) = \operatorname{sign}(\mathbf{w}^T \mathbf{s})$

8 Applications in ML

• SVM: Uses d to define margin $\frac{2}{\|\mathbf{w}\|}$

 \bullet ${\bf Logistic}$ ${\bf Regression} :$ Signed distance inputs to sigmoid function

• Outlier Detection: Large |d| indicates anomalies

• Multi-class: Distances to multiple hyperplanes