VISVESVARAYA TECHNOLOGICAL UNIVERSITY

"JnanaSangama", Belgaum -590014, Karnataka.

LAB RECORD

Bio Inspired Systems (23CS5BSBIS)

Submitted by

Shreya Bharamanna Patil(1BM23CS420)

in partial fulfillment for the award of the degree of

BACHELOR OF ENGINEERING in COMPUTER SCIENCE AND ENGINEERING

B.M.S. COLLEGE OF ENGINEERING
(Autonomous Institution under VTU)
BENGALURU-560019
Sep-2024 to Jan-2025

B.M.S. College of Engineering,

Bull Temple Road, Bangalore 560019

(Affiliated To Visvesvaraya Technological University, Belgaum)

Department of Computer Science and Engineering

CERTIFICATE

This is to certify that the Lab work entitled "Bio Inspired Systems (23CS5BSBIS)" carried out by **Shreya Bharamanna Patil (1BM23CS420)**, who is bonafide student of **B.M.S. College of Engineering.** It is in partial fulfillment for the award of **Bachelor of Engineering in Computer Science and Engineering** of the Visvesvaraya Technological University, Belgaum. The Lab report has been approved as it satisfies the academic requirements of the above mention subject and the work prescribed for the said degree.

Saritha A N	Dr. Kavitha Soodha
Assistant Professor	Professor & HOD
Department of CSE, BMSCE	Department of CSE, BMSCE

Index

Sl. No.	Date	Experiment Title	Page No.
1	24-10-24	Genetic Algorithm for Optimization Problems	1
2	7-11-24	Particle Swarm Optimization for Function Optimization	5
3	14-11-24	Ant Colony Optimization for the Traveling Salesman Problem	9
4	21-11-24	Cuckoo Search (CS)	14
5	28-11-24	Grey Wolf Optimizer (GWO)	17
6	5-12-24	Parallel Cellular Algorithms and Programs	20
7	12-12-24	Optimization via Gene Expression Algorithms	22

Github Link:

https://github.com/PatilShreya22/BIS

Algorithm:

Genetic Algorithm for Optimization Problems

Genetic Algorithms (GA) are inspired by the process of natural selection and genetics, where the fittest individuals are selected for reproduction to produce the next generation. GAs are widely used for solving optimization and search problems. Implement a Genetic Algorithm using Python to solve a basic optimization problem, such as finding the maximum value of a mathematical function.

Implementation Steps:

- 1. Define the Problem: Create a mathematical function to optimize.
- 2. Initialize Parameters: Set the population size, mutation rate, crossover rate, and number of generations.
- 3. Create Initial Population: Generate an initial population of potential solutions.
- 4. Evaluate Fitness: Evaluate the fitness of each individual in the population.
- 5. Selection: Select individuals based on their fitness to reproduce.
- 6. Crossover: Perform crossover between selected individuals to produce offspring.
- 7. Mutation: Apply mutation to the offspring to maintain genetic diversity.
- 8. Iteration: Repeat the evaluation, selection, crossover, and mutation processes for a fixed number of generations or until convergence criteria are met.
- 9. Output the Best Solution: Track and output the best solution found during the generations.

Genetic Algorithm for Optimization Problems:

A genetic algorithm (GA) is a seasch housistic inspired by the process of natural selection. It is used to solve aptimized and solve problem by miniching biological collection. The algorithm starts with population of potential solutions, represented as charmonimes. Each solution is evaluated based on the fitness function which measures how well it solves the problem.

The best performing solutions are selected to expectage combining their attributes through charges and material concentration minimal part of two presents solution to create affection, while mutation introduces random changes to premate diversity. This cycle of selection, reproduction, and evaluation continues for multiple generations. As generations progress, the population tends to evalue towards bettern solution.

Physicism Delicitic Examples had the population him.

The Total Delicitic Examples and surface of an exactive state of a surface of another side and surface and another of an example state of the physicism of the given and surface of an example state of an example s

Allegand maning as any standard and the standard and the

occaseous cate = 0.5

num_generations - 100

bounds = (-10, 10)

best solution = genetic algorithm (population = 5°29,
mutation = occaseous rate, num_generations,
tounds)

print ("Best solution: ", best solution)

0/P: Best solution: 9.938839884834982

```
Code:
#GENETIC ALGORITHM
import numpy as np
import random
# Define the fitness function
def fitness function(x):
  return x ** 2
# Initialize parameters
population size = 100
mutation_rate = 0.1
num generations = 50
bounds = (-10, 10)
# Step 1: Create initial population
def create_initial_population(size, bounds):
  return [random.uniform(bounds[0], bounds[1]) for _ in range(size)]
# Step 2: Evaluate fitness of the population
def evaluate_population(population):
  return [fitness_function(individual) for individual in population]
# Step 3: Selection using roulette-wheel selection
def selection(population, fitness):
  total_fitness = sum(fitness)
  selection probs = [f / total fitness for f in fitness]
  return np.random.choice(population, size=2, p=selection_probs)
# Step 4: Crossover operation
def crossover(parent1, parent2):
  alpha = random.uniform(0, 1)
  offspring1 = alpha * parent1 + (1 - alpha) * parent2
  offspring2 = alpha * parent2 + (1 - alpha) * parent1
  return offspring1, offspring2
# Step 5: Mutation operation
def mutate(individual, bounds):
  if random.random() < mutation_rate:</pre>
     return random.uniform(bounds[0], bounds[1])
  return individual
# Main Genetic Algorithm loop
def genetic_algorithm(bounds):
  # Step 1: Create initial population
  population = create_initial_population(population_size, bounds)
```

```
best solution = None
  best_fitness = float('-inf')
  for generation in range(num_generations):
    # Step 2: Evaluate fitness
    fitness = evaluate_population(population)
    # Track the best solution
    current_best_fitness = max(fitness)
    if current_best_fitness > best_fitness:
       best_fitness = current_best_fitness
       best_solution = population[fitness.index(current_best_fitness)]
    # Step 3: Create new population
    new_population = []
    while len(new_population) < population_size:
       parent1, parent2 = selection(population, fitness)
       offspring1, offspring2 = crossover(parent1, parent2)
       new_population.append(mutate(offspring1, bounds))
       new_population.append(mutate(offspring2, bounds))
    # Replace the old population with the new population
    population = new_population[:population_size]
  return best_solution, best_fitness
# Run the Genetic Algorithm
best_solution, best_fitness = genetic_algorithm(bounds)
print(f"Best Solution: x = {best_solution}")
print(f"Best Fitness: f(x) = {best_fitness}")
Output:
```

Best Solution: x = 9.97704555295002 Best Fitness: f(x) = 99.54143796563977

Particle Swarm Optimization for Function Optimization

Particle Swarm Optimization (PSO) is inspired by the social behavior of birds flocking or fish schooling. PSO is used to find optimal solutions by iteratively improving a candidate solution with regard to a given measure of quality. Implement the PSO algorithm using Python to optimize a mathematical function.

Implementation Steps:

- 1. Define the Problem: Create a mathematical function to optimize.
- 2. Initialize Parameters: Set the number of particles, inertia weight, cognitive and social coefficients.
- 3. Initialize Particles: Generate an initial population of particles with random positions and velocities.
- 4. Evaluate Fitness: Evaluate the fitness of each particle based on the optimization function.
- 5. Update Velocities and Positions: Update the velocity and position of each particle based on its own best position and the global best position.
- 6. Iterate: Repeat the evaluation, updating, and position adjustment for a fixed number of iterations or until convergence criteria are met.
- 7. Output the Best Solution: Track and output the best solution found during the iterations.

riigorium		
	Bafna Gold —	
No.	7/11/002+	
	Pasticle Swam Optimization for Function Optimization:	
	impost numpy as np	
	and the Dr.	
To 19 100 11	# Define mostrigin function	
2000	det rastrigin_function(x):	
	*x-i) for x: in x)	
-	X-17 100 X-1 117 X	
	ut O 10 1 . 10 t all	
120	# Particle swarm optimization algorithm	
	class Particleis	
	def -init - (self-atim):	
	self. position = np. gardom. uniform (-5.12, 5.12,	
The state of the s		
	solf. volocity = np. random, uniform (-1,1, dim)	
1000	self best position = np. copy (self position)	
1 (10)	self, best value = rastrigin_function (self position)	
	class Pso:	
1	def _init_ (self, num-particles, dim, inertio-weigh	
	econitive coeff, social coeff, max item):	
	self num particles = num particles	
Brown Land	self. dim = dim	
	self inortia weight inertia weight	
	self confine coeff = confine coeff	
	self social coeff = social coeff	
The same	self, max they - max ites	
	self swarm = [Pasticle (dim) for in range	
	[(abitice Comp to the comp	
	solf. global_best_position = self. swarm[o] best_	
The same of	position	
	Position	
British St.	The state of the s	

Code: #PARTICLE SWARM OPTIMIZATION

import numpy as np

n dimensions))

```
def rastrigin(x):

A = 10

# Calculate the Rastrigin function value based on the input vector x return A * len(x) + sum(x_i**2 - A * np.cos(2 * np.pi * x_i) for x_i in x)

# Particle Swarm Optimization class class ParticleSwarmOptimizer:

def __init__(self, func, n_particles, n_dimensions, n_iterations, inertia_weight=0.7, cognitive_coeff=1.5, social_coeff=1.5, bounds=(-5.12, 5.12)):

self.func = func # The function to optimize self.n_particles = n_particles # Number of particles in the swarm self.n_dimensions = n_dimensions # Dimensions of the search space self.n_iterations = n_iterations # Number of iterations for the optimization self.lower_bound, self.upper_bound = bounds # Bounds for the search space

# Initialize particle positions randomly within the specified bounds
```

self.positions = np.random.uniform(self.lower_bound, self.upper_bound, (n_particles,

Rastrigin function: A benchmark function for optimization problems

```
# Initialize particle velocities randomly
     self.velocities = np.random.uniform(-1, 1, (n_particles, n_dimensions))
     # Personal best positions and scores for each particle
     self.pbest_positions = np.copy(self.positions)
     self.pbest scores = np.array([func(p) for p in self.positions]) # Evaluate initial fitness
     # Global best position and score among all particles
     self.gbest_position = self.pbest_positions[np.argmin(self.pbest_scores)]
     self.gbest_score = np.min(self.pbest_scores)
  def optimize(self):
     # Main loop for the optimization process
     for _ in range(self.n_iterations):
       for i in range(self.n_particles):
          # Evaluate the fitness of the current position
          fitness = self.func(self.positions[i])
          # Update personal best if the current fitness is better
          if fitness < self.pbest_scores[i]:
            self.pbest_scores[i] = fitness
            self.pbest_positions[i] = self.positions[i]
          # Update global best if the current fitness is better
          if fitness < self.gbest_score:
            self.gbest_score = fitness
            self.gbest position = self.positions[i]
       # Generate random coefficients for cognitive and social components
       r1, r2 = np.random.rand(self.n_dimensions), np.random.rand(self.n_dimensions)
       # Update velocities based on inertia, personal best, and global best
       self.velocities = (self.velocities * 0.7 + # Inertia weight
                    1.5 * r1 * (self.pbest_positions - self.positions) + # Cognitive component
                   1.5 * r2 * (self.gbest_position - self.positions)) # Social component
       # Update positions based on new velocities and clip to stay within bounds
       self.positions = np.clip(self.positions + self.velocities, self.lower_bound, self.upper_bound)
       # Print the best fitness found so far in this iteration
       print(f"Best Fitness: {self.gbest_score}")
     # Return the best position and score found after all iterations
     return self.gbest_position, self.gbest_score
# Create and run the optimizer
pso = ParticleSwarmOptimizer(func=rastrigin, n_particles=30, n_dimensions=2, n_iterations=100)
best position, best score = pso.optimize()
# Print the best position and corresponding fitness score found
print("\nBest Position Found:", best_position)
print("Best Fitness Score:", best score)
```

Output:

```
Best Fitness: 7.523349690449162
                                                   Best Fitness: 0.00042484148907107055
Best Fitness: 5.479012944526062
                                                   Best Fitness: 0.00042484148907107055
Best Fitness: 5.479012944526062
Best Fitness: 5.479012944526062
Best Fitness: 5.479012944526062
Best Fitness: 5.479012944526062
                                                   Best Fitness: 0.00019896058490331825
                                                   Best Fitness: 0.00019896058490331825
                                                   Best Fitness: 0.00019896058490331825
                                                   Best Fitness: 0.00019896058490331825
                                                   Best Fitness: 0.00019896058490331825
Best Fitness: 5.479012944526062
                                                   Best Fitness: 0.00019896058490331825
Best Fitness: 5.479012944526062
                                                   Best Fitness: 9.185587018123442e-06
Best Fitness: 5.35158483420342
                                                   Best Fitness: 9.185587018123442e-06
                                                   Best Fitness: 9.185587018123442e-06
Best Fitness: 4.23336222695108
                                                   Best Fitness: 9.185587018123442e-06
Best Fitness: 2.3059731550465656
                                                   Best Fitness: 8.17354336390963e-06
Best Fitness: 2.2923779383497873
                                                   Best Fitness: 8.17354336390963e-06
                                                   Best Fitness: 3.993851240835511e-06
Best Fitness: 2.2923779383497873
                                                   Best Fitness: 1.6462023069152565e-06
Best Fitness: 2.2923779383497873
                                                   Best Fitness: 1.6462023069152565e-06
                                                   Best Fitness: 1.6462023069152565e-06
Best Fitness: 2.2923779383497873
                                                   Best Fitness: 1.6462023069152565e-06
Best Fitness: 2.2923779383497873
                                                   Best Fitness: 1.6462023069152565e-06
Best Fitness: 2.2923779383497873
                                                   Best Fitness: 1.6462023069152565e-06
Best Fitness: 1.4393114014934305
                                                   Best Fitness: 1.6462023069152565e-06
Best Fitness: 1.4393114014934305
                                                   Best Fitness: 1.5764355048020207e-06
Best Fitness: 1.3002025319518147
                                                   Best Position Found: [3.76308963e-05 8.08082678e-05]
Best Fitness: 1.3002025319518147
                                                   Best Fitness Score: 1.5764355048020207e-06
Best Fitness: 1.3002025319518147
```

Ant Colony Optimization for the Traveling Salesman Problem

The foraging behaviour of ants has inspired the development of optimization algorithms that can solve complex problems such as the Traveling Salesman Problem (TSP). Ant Colony Optimization (ACO) simulates the way ants find the shortest path between food sources and their nest. Implement the ACO algorithm using Python to solve the TSP, where the objective is to find the shortest possible route that visits a list of cities and returns to the origin city. Implementation Steps:

- 1. Define the Problem: Create a set of cities with their coordinates.
- 2. Initialize Parameters: Set the number of ants, the importance of pheromone (alpha), the importance of heuristic information (beta), the evaporation rate (rho), and the initial pheromone value.
- 3. Construct Solutions: Each ant constructs a solution by probabilistically choosing the next city based on pheromone trails and heuristic information.
- 4. Update Pheromones: After all ants have constructed their solutions, update the pheromone trails based on the quality of the solutions found.
- 5. Iterate: Repeat the construction and updating process for a fixed number of iterations or until convergence criteria are met.
- 6. Output the Best Solution: Keep track of and output the best solution found during the iterations.

14/11/24	Regina stable
Plat Calony Optimization using Travelling Salesman Problem	def construct adultionCodIO:
do so some production product	higher C1 for and in range Coalkin-anhors
del garerate cities (a cities, sced-4s):	cath - Enp. sandom , sandint (solf in cities)
no mandem (seed (wed)	while len(parti) < self: molties:
return up mandon and (n. offere)	custoff sily = path [1] next sily = Bell : choose next sily (ear
def distance_motive Critical:	- cily , path)
n - lan(elties)	path append (next-city)
diel mahist = np.zence((n,n))	path append (path(ol)
for it to marge (n):	naths, append Cpath (%)
for ; in range (n):	longthe appead (self-puth length (puth))
dist matric [:]] = op. linalg - torm (diss [) -	return paths, lengths
action distination	del choose next city (self current city, visited):
def class AntiColonyOptimizers:	for ally in mange (self-in-other):
del init Collin ants, alpha, belo, a he, n. iterations	it offy not in visited:
initial pheromone adist matrix):	phonomone = salf phonomones [current_sity.
acid n-ants - n. ants	** splf.alpha
Self, alpha = alpha	havistic (1/ac) ! dist making [ownerstaily
self, beta = beta	** solf, beta
estil aho = aho	probabilities, appoint Coherence + houristic
self, n. ilerations - n. ilevations	else:
self. p. cities = len(dist_matrix)	probabilities, append(s)
self matrix distination	probabilities = rp. array (probabilities)
self. phonomenos - np. PallC (salk n. oties, gelf. n. oties	probabilities /= probabilities, samo
), initial_phenomene)	redum np. random. cheixe (range (self. in affes) . p =
self. best-path = None	probabilities)
self, best length float ("inf")	
	def path_length(self, path):

Code:

#ANT COLONY OPTIMIZATION

```
import random
import numpy as np
# Distance calculation (Euclidean distance)
def euclidean distance(city1, city2):
  return np.sqrt((city1[0] - city2[0])**2 + (city1[1] - city2[1])**2)
# Ant Colony Optimization Algorithm
class ACO:
  def init (self, cities, num ants=10, num iterations=100, alpha=1.0, beta=2.0, rho=0.5, Q=100):
    self.cities = cities
    self.num_ants = num_ants
     self.num iterations = num iterations
    self.alpha = alpha
                           # Importance of pheromone
     self.beta = beta
                          # Importance of heuristic information (distance)
    self.rho = rho
                          # Pheromone evaporation rate
                         # Total pheromone deposited per ant per tour
    self.Q = Q
    self.num cities = len(cities)
    # Initialize pheromone matrix (for each pair of cities)
    self.pheromone = np.ones((self.num_cities, self.num_cities)) / self.num_cities
     self.distances = np.zeros((self.num_cities, self.num_cities))
    # Compute distance matrix
    for i in range(self.num_cities):
```

```
for j in range(i + 1, self.num_cities):
       self.distances[i][i] = self.distances[i][i] = euclidean_distance(cities[i], cities[i])
def _choose_next_city(self, ant, visited):
  # Calculate the probability of moving to each city
  current\_city = ant[-1]
  probabilities = []
  for i in range(self.num_cities):
     if i not in visited:
       pheromone = self.pheromone[current_city][i] ** self.alpha
       heuristic = (1.0 / self.distances[current_city][i]) ** self.beta
       probabilities.append(pheromone * heuristic)
     else:
       probabilities.append(0)
  # Normalize probabilities
  total = sum(probabilities)
  if total == 0: # In case there's no valid path (shouldn't happen with good settings)
    return random.choice([i for i in range(self.num_cities) if i not in visited])
  probabilities = [prob / total for prob in probabilities]
  # Choose next city based on probabilities
  next city = random.choices(range(self.num cities), probabilities)[0]
  return next_city
def _construct_solution(self):
  # Each ant starts at a random city
  ant = [random.randint(0, self.num_cities - 1)]
  visited = set(ant)
  while len(ant) < self.num cities:
     next_city = self._choose_next_city(ant, visited)
     ant.append(next city)
     visited.add(next_city)
  # Return to the starting city
  ant.append(ant[0])
  return ant
def evaluate solution(self, solution):
  # Calculate the total distance of the tour
  total distance = 0
  for i in range(len(solution) - 1):
     total_distance += self.distances[solution[i]][solution[i + 1]]
```

```
return total_distance
  def update pheromone(self, all solutions):
     # Initialize pheromone update matrix
     pheromone delta = np.zeros((self.num cities, self.num cities))
     # For each solution, deposit pheromone
     for solution in all solutions:
       tour_length = self._evaluate_solution(solution)
       for i in range(len(solution) - 1):
          pheromone_delta[solution[i]][solution[i + 1]] += self.Q / tour_length
     # Evaporate pheromone
     self.pheromone = (1 - self.rho) * self.pheromone + pheromone_delta
  def solve(self):
     best\_solution = None
     best_distance = float('inf')
     for iteration in range(self.num_iterations):
       all_solutions = []
       # Each ant constructs a solution
       for ant in range(self.num_ants):
          solution = self._construct_solution()
          all_solutions.append(solution)
          tour_length = self._evaluate_solution(solution)
          # Update best solution if necessary
          if tour_length < best_distance:
            best_solution = solution
            best_distance = tour_length
       # Update pheromones based on solutions found
       self._update_pheromone(all_solutions)
       print(f"Iteration {iteration + 1}, Best Distance: {best distance}")
     return best_solution, best_distance
# Function to take user input for cities
def get user input():
  num cities = int(input("Enter the number of cities: "))
  cities = []
  print("Enter the coordinates of each city (x, y):")
  for i in range(num_cities):
```

```
x, y = map(float, input(f''City \{i+1\}: '').split())
     cities.append((x, y))
  return cities
# Example usage:
if __name__ == "__main__":
  # Take user input for cities
  cities = get_user_input()
  # Take user input for ACO parameters
  num_ants = int(input("Enter the number of ants: "))
  num_iterations = int(input("Enter the number of iterations: "))
  alpha = float(input("Enter the value of alpha (pheromone importance): "))
  beta = float(input("Enter the value of beta (distance importance): "))
  rho = float(input("Enter the value of rho (pheromone evaporation rate): "))
  Q = float(input("Enter the value of Q (pheromone deposit per ant): "))
  # Create an instance of ACO and solve the problem
  aco = ACO(cities, num_ants, num_iterations, alpha, beta, rho, Q)
  best_solution, best_distance = aco.solve()
  print(f"\nBest Solution (Tour): {best solution}")
  print(f"Best Distance: {best_distance}")
```

Output:

```
Enter the number of cities: 5
Enter the coordinates of each city (x, y):
City 1: 0 0
City 2: 1 3
City 3: 4 3
City 4: 6 1
City 5: 3 0
Enter the number of ants: 10
Enter the number of iterations: 100
Enter the value of alpha (pheromone importance): 1.0
Enter the value of beta (distance importance): 2.0
Enter the value of rho (pheromone evaporation rate): 0.5
Enter the value of Q (pheromone deposit per ant): 100
```

```
Best Solution (Tour): [1, 0, 4, 3, 2, 1]
Best Distance: 15.15298244508295
```

Cuckoo Search (CS)

Cuckoo Search (CS) is a nature-inspired optimization algorithm based on the brood parasitism of some cuckoo species. This behavior involves laying eggs in the nests of other birds, leading to the optimization of survival strategies. CS uses Lévy flights to generate new solutions, promoting global search capabilities and avoiding local minima. The algorithm is widely used for solving continuous optimization problems and has applications in various domains, including engineering design, machine learning, and data mining.

Implementation Steps:

- 1. Define the Problem: Create a mathematical function to optimize.
- 2. Initialize Parameters: Set the number of nests, the probability of discovery, and the number of iterations.
- 3. Initialize Population: Generate an initial population of nests with random positions.
- 4. Evaluate Fitness: Evaluate the fitness of each nest based on the optimization function.
- 5. Generate New Solutions: Create new solutions via Lévy flights.
- 6. Abandon Worst Nests: Abandon a fraction of the worst nests and replace them with new random positions.
- 7. Iterate: Repeat the evaluation, updating, and replacement process for a fixed number of iterations or until convergence criteria are met.
- 8. Output the Best Solution: Track and output the best solution found during the iterations.

	Rafne Gold
Cuckee Search(co):	nents - initialize _population(n-nests, n-din, low
Cartes Search is nature inspired seach based on the	bound appear bound)
broad peresition of some cuchoo spocies. This behing	Princes = op. array (I Pitness - Kanchien (next) Rox
involves laying eggs to the needs of other binds, lead	nest in he nestal)
to the optimization of aurical strategies co uses lay	
Flights to governte new solutions, promoting global	bost ida = np. organia (Pitness)
search capabilities and avoiding local rooms.	best nest = pests [best_idx]
and the same of th	best Pilvess - Pitress [best ide]
impost numpy as ap	Dent- Catalon Indiana
import random	for theration in range (mace there) :
from suppy special impost gamma	fire i in range (n-needs):
man or the storm united from	exp = levy_flight(d=n_dim)
del long Hight (beta . 1.5 , d. 1):	news nest = nests[i] + slop + (nests[i] - be
signa u = op power (Lgamos (1+beta) & op sia Coppe	nest)
beta 12) / gamma ((1+beta) /2) + beta +	new-next = np.clip(new_next, bases be
np. cos (np.pi * beta/2) *+2) . 1/beta)	uppers bound)
u - np - sundom - normal (0, sigmo_u, size=d)	new-Princes = Princes-function (new-root
V= op. mandem normal (0, 1, 520 = d)	12 new_fitness < fitness [1]:
alop = u/np. popers (np. abs (v), 1/beta)	nestatil = neur_nest
seturo step	Princes Ell - neo - Miness
and the same of th	
del citialise population (n. nests, n. din, lover bound,	18 new Pitness < best Filmess :
urper_bound):	best-nest = new_nest
meturn op random uniform Clower bound upper trind,	book_ Pitness = now_Biness
(n. nests , n. dim))	THE RESERVE THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER.
	for the range (numbers):
Hel Intialize population	if gardom gardom () 4 pa:
clet Princes - Runction (x):	neds[:] = np. random uniferm (
roturn no. sum (x+x2)	lower-board, upper bound, n. di
The same of the sa	Pitness[t] = Pitness_ function(nest
def cuckes - search of neste, no dim, lower bound, uppers	
bound , mox los , pa:0.26):	12 (desertion +1) -6 100 == 0 or theostion == m

```
print ( P " Theration fiteration + 13, Best Filipss:
                               Ebest Atness 3")
         geturn best nest best Pitness
      # Parameters
      12 nests = 25
      n-dim = 10
      lowers - bound = - 5
      uppers_bound = 5
      max _1+er = 1000
      pa = 0.95
      best_solution, best_solution-fitness = cuckoo_search (
             n-nests, n-dim, lower-bound, upper-bound,
             max iter, pa)
       print (" In Bast solution found: " best-solution)
       print ( " Bast fitness value : " best-solution fitness )
Output: Theration 100, Best Fitness: 21.8838830
      Iteration 200, Best Fitness: 19.9284380
      Theration 300, Best Pitness: 13.112907884
      Iteration 400, Best Fitness: 6.66542881
      Tresation 500, Best Fitness: 6.03505198
      Iteration 600, Best Fitness: 6.006307
      Iteration 700, Bost Fitness: 3.110868
      Horation 800, Best Fitness: 3.110868
      Heration 300, Best Pitness: 3.110868
      Iteration 1000, Best Fitness: 3,110868
      Best solution found: [-0.187303 -1.057242
      -0.354139 0.46531 0.20347 -0.2975].
      Best Fitness value : 8.110868
```

Code: #CUCKOO SEARCH

```
nests = np.random.rand(n, dim)
  for i in range(dim):
     nests[:, i] = nests[:, i] * (bounds[i][1] - bounds[i][0]) + bounds[i][0]
  fitness = np.array([obj_function(nest) for nest in nests])
  # Start optimization
  for _ in range(max_iter):
     for i in range(n):
       # Generate a new solution via Levy flight
       new_nest = nests[i] + levy_flight(1.5) * np.random.randn(dim)
       # Apply bounds
       new_nest = np.clip(new_nest, [b[0] for b in bounds], [b[1] for b in bounds])
       new fitness = obj function(new nest)
       # Update if new solution is better
       if new fitness < fitness[i]:
          nests[i] = new_nest
          fitness[i] = new_fitness
     # Abandon some nests and create new ones
     abandon_idx = np.random.rand(n) < pa
     for i in np.where(abandon_idx)[0]:
       nests[i] = np.random.rand(dim) * (np.array([b[1] for b in bounds]) - np.array([b[0] for b in
bounds])) + np.array([b[0] for b in bounds])
       fitness[i] = obj_function(nests[i])
  # Return the best solution
  best idx = np.argmin(fitness)
  return nests[best_idx], fitness[best_idx]
# Example usage: Minimize f(x) = x^2
def objective(x):
  return sum(xi**2 for xi in x)
bounds = [(-10, 10), (-10, 10)] # 2D problem
best_solution, best_fitness = cuckoo_search(objective, bounds)
print("Best Solution:", best_solution)
print("Best Fitness:", best_fitness)
```

Output:

Best Solution: [-0.14023741 0.59049343] Best Fitness: 0.36834901994989167

Grey Wolf Optimizer (GWO)

The Grey Wolf Optimizer (GWO) algorithm is a swarm intelligence algorithm inspired by the social hierarchy and hunting behavior of grey wolves. It mimics the leadership structure of alpha, beta, delta, and omega wolves and their collaborative hunting strategies. The GWO algorithm uses these social hierarchies to model the optimization process, where the alpha wolves guide the search process while beta and delta wolves assist in refining the search direction. This algorithm is effective for continuous optimization problems and has applications in engineering, data analysis, and machine learning.

Implementation Steps:

- 1. Define the Problem: Create a mathematical function to optimize.
- 2. Initialize Parameters: Set the number of wolves and the number of iterations.
- 3. Initialize Population: Generate an initial population of wolves with random positions.
- 4. Evaluate Fitness: Evaluate the fitness of each wolf based on the optimization function.
- 5. Update Positions: Update the positions of the wolves based on the positions of alpha, beta, and delta wolves.
- 6. Iterate: Repeat the evaluation and position updating process for a fixed number of iterations or until convergence criteria are met.
- 7. Output the Best Solution: Track and output the best solution found during the iterations.

	Topica Civil
	Grey Holf Optimizer Caulos: The Grey Holf Optimizer Caulos algorithm is a swam intelligence algorithm inspired by the social heroschy and bunking between of grey wolver. It mimies the leadership structure of alpha bata, and emega wolves and their collaborative hunting strategies
	import numpy as op
	del objective Runction (x):
	def grey welf optimizes Cobj-func, dim, lb, ub, walves
	alpha pos = np. zeros(dim)
	delta-pos = np.zeros (dim)
	alpha_score = float ("inf") beto_score = float ("inf")
	Jelto_Score = float ("inf")
	wolves_positions = np. vandom. uniform (16, ub, (wolves_count, dim))
	for iteration in range (Herations):
100	for i in range (wolves - court): fitness = obj func (wdves - positions [i]
	if fitness 2 alpha_score:
	atpha_score, atpha_pos = fitness, wolves_positions [i].copg:
	elif Pilness < beta-scense:

```
belta terms in the past filtress.

att filtress delite corne

delite terms delite corne

delite terms delite corne

delite terms positions [1] copp()

for it is sarge (wolces tours):

for it is sarg
```

```
Code:
#Grey Wolf Optimizer (GWO)
import numpy as np
def objective_function(x):
  """Example objective function: Sphere function."""
  return sum(x**2)
def initialize_population(dim, n_wolves, bounds):
  """Initialize the positions of the wolves randomly within the given bounds."""
  return np.random.uniform(bounds[0], bounds[1], (n_wolves, dim))
def gwo(objective_function, bounds, dim, n_wolves, n_iterations):
  # Initialize population
  wolves = initialize population(dim, n wolves, bounds)
  fitness = np.apply_along_axis(objective_function, 1, wolves)
  # Initialize alpha, beta, and delta
  alpha, beta, delta = np.argsort(fitness)[:3]
  alpha pos, alpha score = wolves[alpha], fitness[alpha]
  beta pos, beta score = wolves[beta], fitness[beta]
  delta_pos, delta_score = wolves[delta], fitness[delta]
  # Main optimization loop
  for iteration in range(n iterations):
     a = 2 - 2 * (iteration / n_iterations) # Linearly decreasing a
     for i in range(n_wolves):
       for j in range(dim):
```

```
# Update each wolf's position
         r1, r2 = np.random.rand(), np.random.rand()
         A1, C1 = 2 * a * r1 - a, 2 * r2
         D_{alpha} = abs(C1 * alpha_pos[j] - wolves[i, j])
         X1 = alpha pos[i] - A1 * D alpha
         r1, r2 = np.random.rand(), np.random.rand()
         A2, C2 = 2 * a * r1 - a, 2 * r2
         D_beta = abs(C2 * beta_pos[i] - wolves[i, i])
         X2 = beta_pos[j] - A2 * D_beta
         r1, r2 = np.random.rand(), np.random.rand()
         A3, C3 = 2 * a * r1 - a, 2 * r2
         D delta = abs(C3 * delta_pos[j] - wolves[i, j])
         X3 = delta pos[i] - A3 * D delta
         # Average position update
         wolves[i, j] = (X1 + X2 + X3) / 3.0
       # Enforce bounds
       wolves[i, :] = np.clip(wolves[i, :], bounds[0], bounds[1])
    # Evaluate fitness and update alpha, beta, delta
    fitness = np.apply_along_axis(objective_function, 1, wolves)
    sorted indices = np.argsort(fitness)
    alpha, beta, delta = sorted_indices[:3]
    alpha pos, alpha score = wolves[alpha], fitness[alpha]
    beta_pos, beta_score = wolves[beta], fitness[beta]
    delta_pos, delta_score = wolves[delta], fitness[delta]
  return alpha_pos, alpha_score
# Example usage
dim = 5 # Number of dimensions
bounds = (-10, 10) # Search space bounds
n_wolves = 30 # Number of wolves
n iterations = 100 # Number of iterations
best_solution, best_score = gwo(objective_function, bounds, dim, n_wolves, n_iterations)
print(f"Best solution: {best solution}")
print(f"Best score: {best_score}")
Output:
 Best solution: [-1.48263895e-11 -1.24732979e-11 1.51277899e-11 1.54330567e-11
```

1.16834722e-11]

Best score: 9.78937775690888e-22

Parallel Cellular Algorithms and Programs

Parallel Cellular Algorithms are inspired by the functioning of biological cells that operate in a highly parallel and distributed manner. These algorithms leverage the principles of cellular automata and parallel computing to solve complex optimization problems efficiently. Each cell represents a potential solution and interacts with its neighbors to update its state based on predefined rules. This interaction models the diffusion of information across the cellular grid, enabling the algorithm to explore the search space effectively. Parallel Cellular Algorithms are particularly suitable for large-scale optimization problems and can be implemented on parallel computing architectures for enhanced performance.

Implementation Steps:

- 1. Define the Problem: Create a mathematical function to optimize.
- 2. Initialize Parameters: Set the number of cells, grid size, neighborhood structure, and number of iterations.
- 3. Initialize Population: Generate an initial population of cells with random positions in the solution space.
- 4. Evaluate Fitness: Evaluate the fitness of each cell based on the optimization function.
- 5. Update States: Update the state of each cell based on the states of its neighboring cells and predefined update rules.
- 6. Iterate: Repeat the evaluation and state updating process for a fixed number of iterations or until convergence criteria are met.
- 7. Output the Best Solution: Track and output the best solution found during the iterations.

	Diese and D		- Salas (All-
Parallel Cellular Algorithms and Programs:	cell heat Attens - Acet (*int*)	Pavallal Callular Algorithms and Programs:	cell hash Altres - Asid (*1487)
- and of biological relia that operate in a legal purallal and distributed monner. I here algorithms	def qualuate_ffrees(spif):	and of historian relations of the special in a high	def pullate_filmon(solf)?
learnings the principles of cellular automate and	Er in mage (self-grin time(s)):	namps the principles of cellular extracts and	Er in range (self-grid tiet (1))
resident authorities and a solve of fortunal alone	Le j in away (Salt gold size (12); self, Abriks (1,1) = moderight - Aunation	ment of purious in solid complex operionalism process	Er I to august all gold started
efficiantly	Call gald Dig Day	efficiently.	Salt. Holland D. makright. (ark. gold D. D.)
Impart numpy as no	If self, Africa [] a self, book Africa	Tripoti numpy as no	If self, Physical (1) and b
del medicije kindlin (s):	self but filmen self. Hitses I'd	del pedenjin krelin (c):	soft but filmen sall
A=0	self, best-solution - self-gold/Gillel	A+ (0	salf, bast-solution - sol
waken # looke) a sum (ei ** a - a * no . ans (a *	181	salan A* (a)(4)4 sum (41 + 0 - A + 10, 211 (2+	
rp.gi)) for xi in x)	del get respiters (self-jej):	rp. pi)) he xi h x)	del get registers (self-ja)
class Parallel Callular Figurithm	d'actions : 11	class Parallel Callular Piperithm	Sweling : []
##Init(solf_grid_size = (%,5) , dm-2 ,	12 self, reighborhood as 'mone' t	# - Init (1011, 2010, olg = (5,5), dm-2.	If self reight-proof on 'mone' t
Register head = "means", "less fore : 150 tounds	1,0) (1,1), (0,1), (0,1) (colonic	Regularities of "means", "lessions - 150, hounds	Suction 3 ((0, 10, (0, 0), (1
+ (-3,12,5,12)):	t(1,1),(1,0),(1,0)	- (-3,12, 5,12)):	+(1,11),(1,0),(1,0)
sall grid size = grid size	diff self-neighborhead - "van neumann";	salk grid size = grid size	eff self-reighbothead a "von neon
self, din = tim	(Co.12 (1,0) (c.20) (0,1) = moleculo	self, din o tim	decolor = [(1,0),(0,1)(0
self- neighborhood = neighborhood		telf, reighborhood = reighborhood	
sulf, thristians - the affirm	for did in distribute t	sulf iterations - iterations	for did in decision :
self, knurds - brunds	ting itdi. jidi	self, knurds - brunds	rings indicated
	11 0 a mic self, gold size [0] and occup		11 o a mic cell, gold, size (0)
self gold - rp. random, uniform (bounds la).	(mill gold girefs):	still grid op norden unliken (hourds [4]).	(miligrid-corts)
hourdatis), are stand shetel, and seld,	nightern oppord (sett grid in in)	Mordali), Green pridestate [6], grid stall,	nightern oppord (self.
den ()	telven neighbors	(m))	tendepon nedate
salf, Rivers - np. zeros (Cgsid size (c).	THE RESIDENCE OF THE PARTY OF T	sall, Brain + op, zeros ((grid. tire (s),	14 11 11 11 11
grid size (s f))	del update stotes(self):	prid. size (rf))	del upion stoles (MIP):
-10 L at 1 to 1	naci geld - tell grad coggC	2014115	new grid stell, grid areged
self, bush, selution : None	Are in range (Self, grid alors (03) is	sulf. bash_solution= Nano	Ar i'm marge (fell grid nize (a))

```
Code:
#Parallel Cellular Algorithms and Programs
import numpy as np
# Define the optimization function
def fitness_function(x):
  return x**2
# Initialize parameters
num cells = 10
grid size = 1.0
iterations = 100
neighborhood\_size = 1
# Initialize population
cells = np.random.uniform(-grid_size, grid_size, num_cells)
# Main loop
for _ in range(iterations):
  # Evaluate fitness
  fitness = np.array([fitness_function(cell) for cell in cells])
  # Update states
  new_cells = np.copy(cells)
  for i in range(num_cells):
    # Get neighbors
    neighbors = cells[max(0, i-neighborhood_size):min(num_cells, i+neighborhood_size+1)]
    # Update cell based on neighbors
    new_cells[i] = np.mean(neighbors) + np.random.uniform(-0.1, 0.1) # Add some noise
  cells = new_cells
# Output the best solution
best_cell = cells[np.argmin(fitness)]
print(f"Best solution found: {best cell}")
print(f"Fitness: {fitness_function(best_cell)}")
Output:
Best solution found: -0.11165744078455692
```

Fitness: 0.012467384082556834

Optimization via Gene Expression Algorithms

Gene Expression Algorithms (GEA) are inspired by the biological process of gene expression in living organisms. This process involves the translation of genetic information encoded in DNA into functional proteins. In GEA, solutions to optimization problems are encoded in a manner similar to genetic sequences. The algorithm evolves these solutions through selection, crossover, mutation, and gene expression to find optimal or near-optimal solutions. GEA is effective for solving complex optimization problems in various domains, including engineering, data analysis, and machine learning.

Implementation Steps:

- 1. Define the Problem: Create a mathematical function to optimize.
- 2. Initialize Parameters: Set the population size, number of genes, mutation rate, crossover rate, and number of generations.
- 3. Initialize Population: Generate an initial population of random genetic sequences.
- 4. Evaluate Fitness: Evaluate the fitness of each genetic sequence based on the optimization function.
- 5. Selection: Select genetic sequences based on their fitness for reproduction.
- 6. Crossover: Perform crossover between selected sequences to produce offspring.
- 7. Mutation: Apply mutation to the offspring to introduce variability.
- 8. Gene Expression: Translate genetic sequences into functional solutions.
- 9. Iterate: Repeat the selection, crossover, mutation, and gene expression processes for a fixed number of generations or until convergence criteria are met.
- 10. Output the Best Solution: Track and output the best solution found during the iterations.


```
def sun(will)
                     Experience in supplicably governments from a finest value of the solution from the college popular control in self-popular con
                                            but the op asprin Chinese value
                                             TR Kiness-venues Coast Jum I self.
                                                                  beat Elects
                                                                  nell hest filmess - Biness solves
                                                                                                                                    [best_idn]
                                                                  ealf Look solution - sail population
                                                                                                 Cheel Liber Loopy ()
                                    selected population - self - wheeling ()
                                    next population til
                                  for 1 in arrange CO. self population shall population CO.
                                                 porter a selected population (* 1)
                                               affeprings, offeprings - self crossove
                                                                                              (porunit, porunis)
                                                 ners's population, opposed Citality, markle
                                               (offsprings))
                                                                                                                                 (officerings))
                       2018 population = react population
print LP "Greentin Egonoration + 13/
Escly generations, Best Fibress."
                                                                                   CastP.best Piness : . 67973
point ("Optimization Complete")
point (P" Best Column : Feelf, best solution?"
print (P" Best Filmes: Eself, best Rhoes: - CFS
```


Code:

#Optimization via Gene Expression Algorithms import numpy as np

```
# Define the optimization function
def fitness_function(x):
   return x**2
```

Convert binary string to decimal def binary_to_decimal(binary_str): return int(binary_str, 2) / (2**len(binary_str) - 1) * 10 - 5 # Scale to [-5, 5]

```
# Initialize parameters
population_size = 20
num_genes = 10
mutation_rate = 0.1
crossover_rate = 0.7
generations = 100
```

Initialize population
population = [".join(np.random.choice(['0', '1'], num_genes)) for _ in range(population_size)]

```
# Main loop
for in range(generations):
  # Evaluate fitness
  fitness = [fitness function(binary to decimal(ind)) for ind in population]
  # Selection (roulette wheel)
  total fitness = sum(fitness)
  probabilities = [f / total_fitness for f in fitness]
  selected = np.random.choice(population, size=population size, p=probabilities)
  # Crossover
  offspring = []
  for i in range(0, population_size, 2):
    if np.random.rand() < crossover rate:
       point = np.random.randint(1, num_genes)
       offspring.append(selected[i][:point] + selected[i+1][point:])
       offspring.append(selected[i+1][:point] + selected[i][point:])
    else:
       offspring.append(selected[i])
       offspring.append(selected[i+1])
  # Mutation
  for i in range(population_size):
    if np.random.rand() < mutation_rate:
       point = np.random.randint(num_genes)
       offspring[i] = offspring[i][:point] + ('1' if offspring[i][point] == '0' else '0') +
offspring[i][point+1:]
  population = offspring
# Output the best solution
best individual = min(population, key=lambda ind: fitness function(binary to decimal(ind)))
best_fitness = fitness_function(binary_to_decimal(best_individual))
print(f"Best solution found: {binary_to_decimal(best_individual)}")
print(f" Fitness: {best_fitness}")
Output:
 Best solution found: -4.872922776148583
   Fitness: 23.74537638230761
```