

Paradigmes et Langages de Programmation

Haute École d'Ingénierie et de Gestion du Canton de Vaud

2. Haskell / Système de types

2022

Exercice 1

Donnez une expression pour chacun des types suivants :

```
[[[Integer]]]
[(Integer, Char)]
(Double, [[Integer]])
((Integer, Integer), [Bool], Double)
```

Exercice 2

Inférez le type des expressions ci-dessous :

```
(* 9) 6
head [(0,"doge"),(1,"kitteh")]
head [(0 :: Integer ,"doge"),(1,"kitteh")]
if False then True else False
length [1, 2, 3, 4, 5]
(length [1, 2, 3, 4]) > (length "TACOCAT")
```

Exercice 3

Inférez le type des expressions ci-dessous :

```
3 * pi
(1.5,"3")
head "Hello " ++ "World !"
[[1,2],[]]
[('a',1),('b',2)]
```

Exercice 4

Inférez le type des fonctions ci-dessous :

a. [Char]

Soient les fonctions suivantes :	
a. not	
b. length	
c. concat	
d. head	
e. (<)	
et les signatures de type :	
1. $_::[a] \to a$	
2::[[a]] -> [a]	
3 :: [a] -> Int	
$4. \underline{\hspace{0.1cm}} :: Ord \ a \Rightarrow a \Rightarrow a \Rightarrow Bool$	
5 :: Bool -> Bool	
Faites correspondre chaque fonction à sa signature de type.	
Exercice 6	
1. Si le type de f est $a \rightarrow a \rightarrow a \rightarrow a$ et le type de x est $Char$, alors le type de fx est :	
a. Char -> Char -> Char	
b. <i>x</i> -> <i>x</i> -> <i>x</i>	
c. a -> a -> a	
d. <i>a -> a -> a -> Char</i>	
2. Si le type de g est $a \rightarrow b \rightarrow c \rightarrow b$, alors le type de g 0 'c' "woot" est :	
a. String	
b. Char -> String	
c. Int	
d. Char	
3. Si le type de h est $(Num\ a, Num\ b) \Rightarrow a \rightarrow b$, alors le type de h 1.0 2 est :	
a. Double	
b. Integer	
c. Integral $b \Rightarrow b$	
d. $Num \ b \Rightarrow b$	
4. Si le type de h est $(Num\ a,\ Num\ b) \Rightarrow a \rightarrow b$, alors le type de h 1 $(5.5::Double)$ est :	
a. Integer	
b. Fractional $b \Rightarrow b$	
c. Double	
d. $Num \ b \Rightarrow b$	
5. Si le type de j est $(Ord\ a, Eq\ b) \Rightarrow a \Rightarrow b \Rightarrow a$, alors le type de j "keyboard" "has the word jack in it" est :	al

- b. $Eq b \Rightarrow b$
- c. *b* -> [Char]
- d. *b*
- e. Eq b => b -> [Char]
- 6. Si le type de j est $(Ord\ a, Eq\ b) \Rightarrow a \Rightarrow b \Rightarrow a$, alors le type de j "keyboard" est :
 - a. *b*
 - b. $Eq b \Rightarrow b$
 - c. *b* -> [Char]
 - d. *b*
 - e. $Eq b \Rightarrow b \rightarrow [Char]$
- 7. Si le type de k est $(Ord\ a, Num\ b) \Rightarrow a \rightarrow b \rightarrow a$, alors le type de k 1 2 est :
 - a. Integer
 - b. Int
 - c. *a*
 - d. $(Num\ a,\ Ord\ a) \Longrightarrow a$
 - e. $Ord\ a \Rightarrow a$
 - f. Num $a \Rightarrow a$
- 8. Si le type de k est $(Ord\ a, Num\ b) \Rightarrow a \Rightarrow b \Rightarrow a$, alors le type de $1\ (2::Integer)$ est :
 - a. $(Num\ a,\ Ord\ a) \Longrightarrow a$
 - b. Int
 - c. *a*
 - d. $Num\ a \Rightarrow a$
 - e. $Ord\ a \Rightarrow a$
 - f. Integer
- 9. Si le type de k est $(Ord\ a, Num\ b) \Rightarrow a \Rightarrow b \Rightarrow a$, alors le type de $(1::Integer)\ 2$ est :
 - a. $Num\ a \Rightarrow a$
 - b. $Ord\ a \Rightarrow a$
 - c. Integer
 - d. $(Num\ a,\ Ord\ a) \Rightarrow a$
 - e. *a*

- 1. Une valeur de type [a] est
 - a. une liste de caractères alphabétiques
 - b. une liste de listes
 - c. une liste où les éléments sont tous de type a
 - d. une liste où les éléments sont tous de type différent
- 2. Une fonction de type $\lceil \lceil a \rceil \rceil \rightarrow \lceil a \rceil$ peut
 - a. prendre une liste de chaînes de caractères en argument

- b. transformer un caractère en chaîne de caractères
- c. transformer une chaîne de caractères en une liste de chaînes de caractères
- d. prendre deux arguments
- 3. Une fonction de type $[a] \rightarrow Int \rightarrow a$
 - a. prend un seul argument
 - b. retourne un élément de type a de la liste
 - c. doit retourner une valeur de type Int
 - d. est complètement fictive
- 4. Une fonction de type $(a, b) \rightarrow a$
 - a. prend une liste en argument et retourne une valeur de type Char
 - b. a zéro arguments
 - c. prend un tuple en argument et retourne la première valeur
 - d. exige que a et b soient de types différents

```
1. Sachant
x = 5
y = x + 5
w = y * 10
   Quel est le type de w?
2. Sachant
x = 5
y = x + 5
z y = y * 10
   Quel est le type de z?
3. Sachant
y = x + 5
f = 4 / y
   Quel est le type de f?
4. Sachant
x = "Julie"
y = " < 3 "
z = "Haskell"
f = x + y + z
   Quel est le type de f?
5. Sachant
```

x = 3.14 y = x + 5 z = show y

Quel est le type de z?

On souhaite modéliser des ensembles à travers des listes Haskell. Décrivez les signatures des fonctions de manipulation d'ensembles suivantes :

- Insertion d'un élément *x*
- Suppression d'un élément *x*
- \blacksquare Appartenance d'un élément x
- Union de deux ensembles s_1 et s_2
- Différence de deux ensembles s_1 et s_2

Implémentez ces fonctions.

Exercice 10

Soit l'extrait de code suivant :

```
d (v, e) n
  | null [] = []
  | otherwise = d' (v,e) [n]

d' ([],_) _ = []
  d' (_,_) [] = []
  d' (v,e) (t:r)
  | [x | x <-v , x == t] == [] = d' (n, e) r
  | otherwise = t : d' (n, e) (a ++ r)
  where
  a = [x | (x,y) <- e, y== t] ++ [x | (y,x) <- e, y == t]
  n = [x | x <- v, x /= t]</pre>
```

Inférez le type des fonctions d et d'.

Bon travail!