Zachary Derwin

RTOS SP23 Final Project

Summary Statement

All required deliverables are functional except for PWM signal for LED0 from force.

Summary Effort

I have completed roughly **95%** of my expected project scope. I have completed roughly 28 hours of work in total for the project out of my originally scoped 46 hours..

List of In-Scope Items

- Project planning: 2 hours
 - Create task diagram and scope work
- Project Framework: 4 hours
 - Create all task functions, ITC resources, and other necessary resources
- Implement input: 3 hour
 - Source code from previous projects to get input from buttons and slider using interrupts
- Validating Input: 2 hour
 - Test that hardware input is being added to message queue
- Physics Engine Framework: 3 hours
 - Create all functions and variables needed for the task
- Data Structures: 3 hours
 - Implement different data structures for each data component following project guidelines
- Physics Engine Output: 6 hours
 - Physics Engine implementation including ITC and references to data structures
- Physics Output Validation: 2 hours
 - Testing physics engine for correct output to data structures
- Framework for display task and led driver: 6 hours
 - Declare functions and initialize necessary resources
- Fully implement and test output tasks: 4 hours
 - Implement task functions for both the LCD output and led driver and test functionality, create ITC to pull from data structures
- Begin testing: 2 hour
 - Test proper functionality of project and attempt full playthrough of game
- Debug: 5 hours

 Inevitably spend time making lots of adjustments and digging through code to find out where they need to be made to make sure game meets project requirements

Optimize game settings: 4 hours

 Choose some creative liberties and begin iterating to make the game more playable and balanced

Solution Analysis

Slider input is at 5 (highest). Physics and LCD are both set to 10 and Led Output is set to 15. There are no conflicts, everything is functioning smoothly.

My code is somewhat space efficient, I think I could consolidate the physics engine a little bit and streamline some of the code there.

Overall my physics engine works very well. It is not the cleanest and I struggled the most with tuning it (ie unit calculations). After the initial implementation, things did not react to input the way I wanted them to and I had to change a lot of constants to get the gameplay where I wanted it.

I ended up taking a ton of liberties on the configuration data and only loosely followed the project guidelines. While this approach might not earn me a full grade, I do think it was a better approach overall because I was not bottlenecked into a specific implementation strategy, I was able to apply my own thinking and lessons learned throughout the semester.

If I had more time, I would like to figure out the PWM functionality and maybe add a few more bells and whistles such as object collision with the escaping prisoner (satchel, cart, railgun shot) or a game menu upon startup.

