Distributed Information Systems: Spring Semester 2015 Quiz 6: Association Rules + Clustering & Classification

			1 May 2015 1:15AM to 11:30AM		
Total number of questions: 8 Each question has a single answer!					
Consider the followi	ng $D(Transaction ID, Item$	List) database.			
	TID T100 T200 T300 T400 T500 T600 T700 T800 T900	I2,I4 I2,I3 I1, I2, I4 I1, I3, I5 I2, I3 I1, I3 I1, I2, I3			
Let L_k be the set of fre	quent k -itemsets and the n	ninimum support count for t	the apriori algorithm be 3.		
1. Which of the follo	wing itemsets has a support	count 3?			
$\Box a)$ {I1,I2}	\Box b) {I1,I3}	$\boxtimes c) $ {I1,I5}	$\Box d$) {I2,I3}		
2. What is the size of	of set L_2 ?				
$\Box a) \ 3$	$\Box \ b) \ \ 4$	$\boxtimes c)$ 5	$\Box d)$ 6		
3. Which statement	about Association Rules Mi	ning is correct ?			
frequent k-ite	emset as a result.	, ·	by one item, we will always get		
,	ep of the apriori algorithm in frequent itemset is always	-	cess.		
,	-	_	r generation of frequent item sets		
, -	about Association Rules Mi		1		
	ation of frequent itemsets ne		nfidence level defined.		
, -	cretization allows transform		to categorical ones, based on the		
\Box c) Confidence n	netrics determines for a freq	uent itemset whether a rule	e is implied.		
$\Box d$) A very low so in the same t		le indicates that the body a	and the head rarely occur togethe		

5. Which one is in general of	considered as a main	advantage of the k-means	clustering algorithm?
\Box a) It often terminates \Box b) It detects exclusivel \Box c) It is necessary to sp \boxtimes d) It is efficient.	y convex clusters.		
6. Consider the 4 clusters C	C_1 to C_4 and the foll	owing initial assignment of	f points:
C1 = (3, 10), (4, 11), (5, 1) C2 = (10, 10), (11, 10), (11) C3 = (3, 3), (4.5, 8), (5, 9) C4 = (7, 4), (8, 7), (8, 8), (10)	(2, 10) (5.5, 9)		
To which cluster would to	he k-means algorithr	m assign the point $(7,9)$ ini	tially (i.e., after the first iteration)?
$\Box a) \ C_1$	\Box b) C_2	$\Box c) C_3$	$\boxtimes d)$ C_4
7. While building a decision	n tree using C4.5, we	e cannot split a leaf furthe	er when
$\boxtimes a)$ all samples below $\Box b)$ all attributes have $\Box c)$ every sample below $\Box d)$ all remaining att	ve already been used ongs to a different c	lass.	
8. Which property is comm	on to clustering and	classification?	
\Box b) They need a trainin \Box c) They are unsupervisit	g set with the classe	es assigned.	al and categorical attributes.