By Jonathan Duran

SHA-3 (Keccak)



# SHA-3 Competition by NIST

Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche



ArbitraryInput length4 Outputlengths.



#### Collision Resistance

| SHA-3 256                 | SHA-3 384                 | SHA-3 512                 | SHA-3 224                    |
|---------------------------|---------------------------|---------------------------|------------------------------|
| Collision resistance: 128 | Collision resistance: 192 | Collision resistance: 256 | Collision resistance: 112    |
| AES-128                   | AES-192                   | AES-256                   | 3DES: effective security 112 |

$$t \approx 2^{(n+1)/2} \sqrt{\ln\left(\frac{1}{1-\lambda}\right)}$$
. Collision  $\approx 2^{n/2}$ 

#### SHA-3 Parameters

- State Size 1600 bits
- 24 Rounds
- Block size & Capacity Dependent on the SHA-3 bit implementation.

• 
$$b = r + c$$

| Output | b (State) | r (block size) | c (capacity) |
|--------|-----------|----------------|--------------|
| 224    | 1600      | 1152           | 448          |
| 256    | 1600      | 1088           | 512          |
| 384    | 1600      | 832            | 768          |
| 512    | 1600      | 576            | 1024         |

# High Level View of Keccak

#### Sponge construction

- 1. Absorbing Phase: Input x<sub>i</sub> is read-in & processed. Where x<sub>i</sub> the is block size.
- 2. Squeezing Phase: Output is produced

# High Level

Padding to make sure input will conform to block size



#### High-Level Model



# F-Function

- 24 Rounds
- 5 subfunctions
- Theta (θ)
- Rho (ρ)
- Pi (π)
- Chi (χ)
- lota (ι)



# State 3-D Array



Theta Step

$$C[x] = A[x,0] \oplus A[x,1] \oplus A[x,2] \oplus A[x,3] \oplus A[x,4], x = 0,1,2,3,4$$
  
 $D[x] = C[x-1] \oplus \text{rot}(C[x+1],1), x = 0,1,2,3,4$   
 $A[x,y] = A[x,y] \oplus D[x], x,y = 0,1,2,3,4$ 



# Rho Step



Table 1.4 The rotation constants (aka rotation offsets)

|     | x = 3 | x = 4 | x = 0 | x = 1 | x = 2 |
|-----|-------|-------|-------|-------|-------|
| y=2 | 25    | 39    | 3     | 10    | 43    |
| y=1 | 55    | 20    | 36    | 44    | 6     |
| y=0 | 28    | 27    | 0     | 1     | 62    |
| y=4 | 56    | 14    | 18    | 2     | 61    |
| y=3 | 21    | 8     | 41    | 45    | 15    |

Pi Step



$$B[y,2x+3y] = rot(A[x,y],r[x,y])$$
 ,  $x,y=0,1,2,3,4$ 

### Chi Step

B<sup>-</sup>[i, j] denotes the bitwise complement of the lane at address [i, j], and ∧ is the bitwise Boolean AND operation of the two operands.



$$A[x,y] = B[x,y] \oplus ((\bar{B}[x+1,y]) \wedge B[x+2,y])$$
,  $x,y = 0,1,2,3,4$ 

#### **lota Step**

# $A[0,0] = A[0,0] \oplus RC[i]$

**Table 1.5** The round constants RC[i], where each constant is 64 bits long and given in hexadecimal notation

| RC[0] = 0x00000000000000001 | RC[12] = 0x000000008000808B                    |
|-----------------------------|------------------------------------------------|
| RC[1] = 0x00000000000008082 | RC[13] = 0x8000000000000008B                   |
| RC[2] = 0x8000000000000808A | RC[14] = 0x80000000000008089                   |
| RC[3] = 0x8000000080008000  | RC[15] = 0x80000000000008003                   |
| RC[4] = 0x0000000000000808B | RC[16] = 0x80000000000008002                   |
| RC[5] = 0x0000000080000001  | RC[17] = 0x80000000000000000000000000000000000 |
| RC[6] = 0x8000000080008081  | RC[18] = 0x0000000000000800A                   |
| RC[7] = 0x8000000000008009  | RC[19] = 0x800000008000000A                    |
| RC[8] = 0x000000000000008A  | RC[20] = 0x8000000080008081                    |
| RC[9] = 0x0000000000000088  | RC[21] = 0x80000000000008080                   |
| RC[10] = 0x0000000080008009 | RC[22] = 0x0000000080000001                    |
| RC[11] = 0x000000008000000A | RC[23] = 0x8000000080008008                    |

#### Resources Used

- Understanding Cryptography: A Textbook for Students and Practitioners, Christof Paar, Jan Pelz, Springer; 1st Edition, July 8, 2010.
- https://www.crypto-textbook.com/download/Understanding-Cryptography-Keccak.pdf
- https://keccak.team/figures.html