Scilab Textbook Companion for Linear Algebra by K. Hoffman and R. Kunze¹

Created by
Gagandeep Kaur
B.Tech
Computer Engineering
Rajasthan Technical University
College Teacher
None
Cross-Checked by
Spandana

June 11, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Linear Algebra

Author: K. Hoffman and R. Kunze

 ${\bf Publisher:}\ {\bf Prentice\text{-}Hall}\ ({\bf India})$

Edition: 2

Year: 1986

ISBN: 978-0135367971

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	List of Scilab Codes		
1	Linear Equations	5	
2	Vector Spaces	15	
3	Linear Transformations	27	
4	Polynomials	36	
5	Determinants	41	
6	Elementary Canonical Forms	47	
7	The Rational and Jordan Forms	54	
8	Inner Product Spaces	58	
10	Bilinear Forms	66	

List of Scilab Codes

Exa 1.5	Elementary Row Operations
Exa 1.6	Elementary Row Operations
Exa 1.7	Row reduced echelon Matrix
Exa 1.8	Row reduced echelon Matrix
Exa 1.9	System of Equations
Exa 1.10	Product of Matrices
Exa 1.14	Inverse of a matrix
Exa 1.15	Inverse of a matrix
Exa 1.16	Inverse of a matrix
Exa 2.8	Vector Subspace
Exa 2.10	Row space of matrix
Exa 2.11	Space of polynomial function
Exa 2.12	Linear Dependency
Exa 2.13	Standard basis of Matrix
Exa 2.20	Inverse of a matrix
Exa 2.21	Standard basis of matrix
Exa 2.22	Standard basis of Matrix
Exa 3.6	Linear Transformation function
Exa 3.12	Singular and onto linear transformation
Exa 3.14	Standard Ordered Basis
Exa 3.15	Matrix in Ordered basis
Exa 3.16	Standard Ordered Basis
Exa 3.17	Matrix in ordered basis
Exa 3.19	Trace of a matrix
Exa 3.23	Linear functional on vector space
Exa 3.24	Linear functional on vector space
Exa 4.3	Algebra of linear operators
Exa 4.7	Ideal of a polynomial

Exa 4.8	G C D of polynomials
Exa 4.9	Ideal of a Polynomial
Exa 4.10	Reducible Polynomial
Exa 5.3	Two linear function 41
Exa 5.4	Alternating 3 Linear Functions
Exa 5.5	Determinant of a matrix
Exa 5.6	Determinant of a matrix
Exa 5.7	Inverse of a matrix
Exa 5.8	Inverse of a matrix
Exa 6.1	Characteristic Polynomial of a matrix
Exa 6.2	Characteristic Polynomial of a matrix
Exa 6.3	Characteristic Polynomial of a matrix 48
Exa 6.4	Diagonalizable Operator
Exa 6.5	Characteristic Polynomial of matrix
Exa 6.12	Symmetric and skew symmetric matrix
Exa 7.3	Linear operator annihilator
Exa 7.6	Characteristic and minimal polynomial of matrix 55
Exa 7.7	Characteristic and minimal polynomial of matrix 56
Exa 8.1	Standard Inner Product
Exa 8.2	Standard Inner Product
Exa 8.9	Standard Inner Product
Exa 8.12	Orthogonal Vectors
Exa 8.13	Orthogonal Vectors 61
Exa 8.14	Orthogonal Projection
Exa 8.15	Orthogonal sets
Exa 8.17	Inner product space and orthogonal projection 63
Exa 8.28	Unitary matrix
Exa 10.4	Bilinear Form of vectors
Exa. 10.5	Bilinear Form of vectors

Chapter 1

Linear Equations

Scilab code Exa 1.5 Elementary Row Operations

```
1 //page 8
2 //Example 1.5
3 clear;
4 close;
5 clc;
6 a = [2 -1 3 2; 1 4 0 -1; 2 6 -1 5];
7 disp(a, 'a=');
8 disp('Applying row transformations:');
9 \text{ disp}('R1 = R1-2*R2');
10 a(1,:) = a(1,:) - 2*a(2,:);
11 disp(a, 'a = ');
12 disp('R3 = R3-2*R2');
13 a(3,:) = a(3,:) - 2*a(2,:);
14 disp(a, 'a = ');
15 disp('R3 = R3/-2');
16 \ a(3,:) = -1/2*a(3,:);
17 disp(a, 'a = ');
18 disp('R2 = R2-4*R3');
19 a(2,:) = a(2,:) - 4*a(3,:);
20 \text{ disp(a,'a = ');}
21 disp('R1 = R1+9*R3');
```

```
22 \ a(1,:) = a(1,:) + 9*a(3,:);
23 \text{ disp(a,'a = ');}
24 disp('R1 = R1*2/15');
25 \ a(1,:) = a(1,:) * 2/15;
26 \text{ disp(a,'a = ');}
27 disp('R2 = R2+2*R1');
28 \ a(2,:) = a(2,:) + 2*a(1,:);
29 disp(a, 'a = ');
30 disp('R3 = R3-R1/2');
31 \ a(3,:) = a(3,:) - 1/2*a(1,:);
32 \text{ disp}(a, 'a = ');
33 disp('We get the system of equations as:');
34 disp('2*x1 - x2 + 3*x3 + 2*x4 = 0');
35 disp('x1 + 4*x2 - x4 = 0');
36 disp('2*x1 + 6*x2 - x3 + 5*x4 = 0');
37 disp('and');
38 disp('x2 - 5/3*x4 = 0', 'x1 + 17/3*x4 = 0', 'x3 -
      11/3*x4 = 0');
39 disp('now by assigning any rational value c to x4 in
       system second, the solution is evaluated as: ');
40 disp('(-17/3*c,5/3,11/3*c,c)');
41 // end
```

Scilab code Exa 1.6 Elementary Row Operations

```
1 //page 9
2 //Example 1.6
3 clear;
4 close;
5 clc;
6 a=[-1 %i;-%i 3;1 2];
7 disp(a, 'a = ');
8 disp('Applying row transformations:');
9 disp('R1 = R1+R3 and R2 = R2 + i *R3');
10 a(1,:) = a(1,:) +a(3,:);
```

```
11 a(2,:) = a(2,:) + %i * a(3,:);
12 disp(a, 'a = ');
13 disp('R1 = R1 * (1/2+i)');
14 a(1,:) = 1/(2 + %i) * a(1,:);
15 disp(a, 'a = ');
16 disp('R2 = R2-R1*(3+2i) and R3 = R3 - 2 *R1');
17 a(2,:) = round(a(2,:) - (3 + 2 * %i) * a(1,:));
18 a(3,:) = round(a(3,:) - 2 * a(1,:));
19 disp(a, 'a = ');
20 disp('Thus the system of equations is:');
21 disp('x1 + 2*x2 = 0', '-i*x1 + 3*x2 = 0', '-x1+i*x2 = 0');
22 disp('It has only trivial solution x1 = x2 = 0');
23 //end
```

Scilab code Exa 1.7 Row reduced echelon Matrix

```
1 //page 9
2 //Example 1.7
3 clear;
4 close;
5 clc;
6 n = rand();
7 n = round(n*10);
8 disp(eye(n,n));
9 printf('This is an Identity matrix of order %d * %d',n,n);
10 disp('And It is a row reduced matrix.');
11 //end
```

Scilab code Exa 1.8 Row reduced echelon Matrix

```
1 //page 12
```

```
2 //Example 1.8
3 clear;
4 close;
5 clc;
6 n = rand();
7 n = round(n*10);
8 \text{ disp(eye(n,n))};
9 printf('This is an Identity matrix of order %d * %d'
10 disp('And It is a row reduced matrix.');
11 m = rand();
12 n = rand();
13 m = round(m*10);
14 \quad n = round(n*10);
15 disp(zeros(m,n));
16 printf('This is an Zero matrix of order %d * %d',m,n
      );
17 disp('And It is also a row reduced matrix.');
18 \ a = [0 \ 1 \ -3 \ 0 \ 1/2; 0 \ 0 \ 0 \ 1 \ 2; 0 \ 0 \ 0 \ 0];
19 disp(a, 'a = ');
20 disp('This is a non-trivial row reduced matrix.');
21 //end
```

Scilab code Exa 1.9 System of Equations

```
1 //page 14
2 //Example 1.9
3 clear;
4 close;
5 clc;
6 A = [1 -2 1; 2 1 1; 0 5 -1];
7 disp(A, 'A = ');
8 disp('Applying row transformations:');
9 disp('R2 = R2 - 2*R1');
10 A(2,:) = A(2,:) - 2*A(1,:);
```

```
11 disp(A, 'A = ');
12 disp('R3 = R3 - R2');
13 A(3,:) = A(3,:) - A(2,:);
14 disp(A, 'A = ');
15 disp('R2 = 1/5*R2');
16 A(2,:) = 1/5*A(2,:);
17 disp(A, 'A = ');
18 disp('R1 = R1 - 2*R2');
19 A(1,:) = A(1,:) + 2*A(2,:);
20 \text{ disp}(A, 'A = ');
21 disp ('The condition that the system have a solution
      is: ');
22 disp('2*y1 - y2 + y3 = 0');
23 disp('where, y1,y2,y3 are some scalars');
24 disp('If the condition is satisfied then solutions
      are obtained by assigning a value c to x3');
25 disp('Solutions are:');
26 disp('x2 = 1/5*c + 1/5*(y2 - 2*y1)', 'x1 = -3/5*c +
      1/5*(y1 + 2*y2)');
27 // end
```

Scilab code Exa 1.10 Product of Matrices

```
1 //page 17
2 //Example 1.10
3 clear;
4 close;
5 clc;
6 //Part a
7 a = [1 0; -3 1];
8 b = [5 -1 2; 15 4 8];
9 disp(a, 'a=');
10 disp(b, 'b=');
11 disp(a*b, 'ab = ');
12 disp('
```

```
');
13 // Part b
14 \ a = [1 \ 0; -2 \ 3; 5 \ 4; 0 \ 1];
15 b = [0 6 1; 3 8 -2];
16 disp(a, 'a=');
17 disp(b, 'b=');
18 disp(a*b, 'ab = ');
19 disp('
       <sup>'</sup>);
20 // Part c
21 a = [2 1;5 4];
22 b = [1;6];
23 disp(a, 'a=');
24 disp(b, 'b=');
25 \text{ disp(a*b,'ab = ');}
26 disp('
       ');
27 // Part d
28 \ a = [-1;3];
29 b = [2 4];
30 disp(a, 'a=');
31 disp(b, 'b=');
32 \text{ disp(a*b,'ab = ');}
33 disp('
       <sup>'</sup>);
34 // Part e
35 a = [2 4];
36 b = [-1;3];
37 disp(a, 'a=');
38 disp(b, 'b=');
39 \text{ disp(a*b,'ab = ');}
40 disp('
       ');
```

Scilab code Exa 1.14 Inverse of a matrix

```
1 //page 22
2 //Example 1.14
3 clear;
4 close;
5 clc;
6 a = [0 1;1 0];
7 disp(a, 'a = ');
8 disp(inv(a), 'inverse a = ');
9 //end
```

Scilab code Exa 1.15 Inverse of a matrix

```
1 //page 25
2 //Example 1.15
```

```
3 clear;
4 close;
5 clc;
6 = [2 -1; 1 3];
7 \text{ disp(a,'a = ');}
8 b = a;
                         //Temporary variable to store a
9 disp('Applying row tranformations');
10 disp('Interchange R1 and R2');
11 x = a(1,:);
12 \ a(1,:) = a(2,:);
13 a(2,:) = x;
14 disp(a, 'a = ');
15 disp('R2 = R2 - 2 * R1');
16 \ a(2,:) = a(2,:) - 2 * a(1,:);
17 disp(a, 'a = ');
18 disp('R2 = R2 *1/(-7)');
19 a(2,:) = (-1/7) * a(2,:);
20 \text{ disp(a,'a = ');}
21 disp('R1 = R1 - 3 * R2');
22 \ a(1,:) = a(1,:) - 3 * a(2,:);
23 \text{ disp(a,'a = ');}
24 disp('Since a has become an identity matrix. So, a
      is invertible');
25 disp('inverse of a = ');
26 disp(inv(b)); //a was stored in b
27 //end
```

Scilab code Exa 1.16 Inverse of a matrix

```
1 //page 25
2 //Example 1.16
3 clear;
4 close;
5 clc;
6 a = [1 1/2 1/3;1/2 1/3 1/4;1/3 1/4 1/5];
```

```
7 \text{ disp(a,'a = ');}
8 b = eye(3,3);
9 \text{ disp(b,'b = ');}
10 disp('Applying row transformations on a and b
      simultaneously,');
11 disp('R2 = R2 - 1/2 * R1 and R3 = R3 - 1/3*R1');
12 a(2,:) = a(2,:) - 1/2 * a(1,:);
13 a(3,:) = a(3,:) - 1/3 * a(1,:);
14 b(2,:) = b(2,:) - 1/2 * b(1,:);
15 b(3,:) = b(3,:) - 1/3 * b(1,:);
16 disp(a, 'a = ');
17 \text{ disp(b,'b = ');}
18 disp('R3 = R3 - R2');
19 a(3,:) = a(3,:) - a(2,:);
20 b(3,:) = b(3,:) - b(2,:);
21 \text{ disp(a,'a = ');}
22 \text{ disp(b,'b = ');}
23 disp('R2 = R2 * 12 and R3 = R3 * 180');
24 \ a(2,:) = a(2,:) *12;
25 \ a(3,:) = a(3,:) * 180;
26 b(2,:) = b(2,:) * 12;
27 b(3,:) = b(3,:) * 180;
28 \text{ disp(a,'a = ');}
29 disp(b, b = ');
30 disp('R2 = R2 - R3 and R1 = R1 - 1/3*R3');
31 \ a(2,:) = a(2,:) - a(3,:);
32 \ a(1,:) = a(1,:) - 1/3 * a(3,:);
33 b(2,:) = b(2,:) - b(3,:);
34 b(1,:) = b(1,:) - 1/3 * b(3,:);
35 \text{ disp}(a, 'a = ');
36 \text{ disp(b,'b = ');}
37 disp('R1 = R1 - 1/2 * R2');
38 \ a(1,:) = a(1,:) - 1/2 * a(2,:);
39 b(1,:) = b(1,:) - 1/2 * b(2,:);
40 disp(round(a), 'a = ');
41 disp(b, b = ');
42 disp('Since, a = identity matrix of order 3*3. So, b
       is inverse of a');
```

```
43 disp(b, 'inverse(a) = ');
44 //end
```

Chapter 2

Vector Spaces

Scilab code Exa 2.8 Vector Subspace

```
1 //page 37
2 / \text{Example } 2.8
3 clear;
4 clc;
5 close;
6 	 a1 = [1 	 2 	 0 	 3 	 0];
7 	 a2 = [0 	 0 	 1 	 4 	 0];
8 \ a3 = [0 \ 0 \ 0 \ 0 \ 1];
9 \text{ disp(a1,'a1 = ');}
10 disp(a2, 'a2 = ');
11 disp(a3, 'a3 = ');
12 disp('By theorem 3, vector a is in subspace W of F<sup>5</sup>
       spanned by a1, a2, a3');
13 disp('if and only if there exist scalars c1, c2, c3
      such that');
14 disp('a= c1a1 + c2a2 + c3a3');
15 \operatorname{disp}('So, a = (c1, 2*c1, c2, 3c1+4c2, c3)');
16 c1 = -3;
17 c2 = 1;
18 c3 = 2;
19 \ a = c1*a1 + c2*a2 + c3*a3;
```

```
20 disp(c1,'c1 = ');
21 disp(c2,'c2 = ');
22 disp(c3,'c3 = ');
23 disp(a,'Therefore, a = ');
24 disp('This shows, a is in W');
25 disp('And (2,4,6,7,8) is not in W as there is no value of c1 c2 c3 that satisfies the equation');
26 //end
```

Scilab code Exa 2.10 Row space of matrix

```
1 //page 38
2 //Example 2.10
3 clear;
4 clc;
5 close;
6 A = [1 2 0 3 0; 0 0 1 4 0; 0 0 0 0 1];
7 \text{ disp}(A, 'A = ');
8 disp('The subspace of F<sup>5</sup> spanned by a1 a2 a3(row
      vectors of A) is called row space of A.');
9 \text{ a1} = A(1,:);
10 a2 = A(2,:);
11 a3 = A(3,:);
12 \text{ disp(a1,'a1 = ');}
13 disp(a2, 'a2 = ');
14 disp(a3, 'a3 = ');
15 disp('And, it is also the row space of B.');
16 B = [1 2 0 3 0; 0 0 1 4 0; 0 0 0 0 1; -4 -8 1 -8 0];
17 disp(B, 'B = ');
18 // end
```

Scilab code Exa 2.11 Space of polynomial function

```
1 //page 39
2 //Example 2.11
3 clear;
4 clc;
5 close;
6 disp('V is the space of all polynomial functions
      over F.');
7 disp('S contains the functions as:')
8 x = poly(0, "x");
9 n = round(rand()*10);
10 disp(n, 'n = ');
11 \text{ for } i = 0 : n
12
       f = x^i;
       printf('f\%d(x) = ',i);
13
14
       disp(f);
15 end
16 disp('Then, V is the subspace spanned by set S.');
17 / end
```

Scilab code Exa 2.12 Linear Dependency

```
1 //page 41
2 //Example 2.12
3 clear;
4 clc;
5 close;
6 a1 = [3 0 -3];
7 a2 = [-1 1 2];
8 a3 = [4 2 -2];
9 a4 = [2 1 1];
10 disp(a1, 'a1 = ');
11 disp(a2, 'a2 = ');
12 disp(a3, 'a3 = ');
13 disp(a4, 'a4 = ');
14 t = 2 * a1 + 2 * a2 - a3 + 0 * a4;
```

Scilab code Exa 2.13 Standard basis of Matrix

```
1 //page 41
2 //Example 2.13
3 clear;
4 clc;
5 close;
6 disp('S is the subset of F'n consisting of n vectors
      . ');
7 n = round(rand() *10 + 1);
8 \text{ disp(n,'n = ');}
9 I = eye(n,n);
10 \text{ for } i = 0 : n-1
        e = I(i+1,:);
11
        printf('e\%d = ',i+1);
12
13
        disp(e);
14 end
15 \operatorname{disp}('x1, x2, x3...xn \text{ are the scalars in } F');
16 disp('Putting a = x1*e1 + x2*e2 + x3*e3 + .... + xn*
      en');
17 disp('So, a = (x1, x2, x3, ..., xn)');
18 disp('Therefore, e1, e2.., en span F^n');
19 disp('a = 0 \text{ if } x1 = x2 = x3 = ... = xn = 0');
```

```
20 disp('So,e1,e2,e3,...,en are linearly independent.'); 21 disp('The set S = \{e1,e2,...,en\} is called standard basis of F^n'); 22 //end
```

Scilab code Exa 2.20 Inverse of a matrix

```
1 //page 54
2 //Example 2.20
3 clear;
4 clc;
5 close;
6 P = [-1 \ 4 \ 5; \ 0 \ 2 \ -3; \ 0 \ 0 \ 8];
7 \text{ disp}(P, 'P = ');
8 disp(inv(P), 'inverse(P) = ');
9 	 a1 = P(:,1);
10 a2 = P(:,2);
11 a3 = P(:,3);
12 disp('The vectors forming basis of F<sup>3</sup> are a1'', a2'
      ', a3''');
13 disp(a1', 'a1'' = ');
14 disp(a2', 'a2', '= ');
15 disp(a3', 'a3', = ');
16 disp('The coordinates x1'', x2'', x3'' of vector a = [
      x1, x2, x3 is given by inverse (P) * [x1; x2; x3]');
17 t = -10*a1 - 1/2*a2 - a3;
18 disp(t, 'And, -10*a1'' - 1/2*a2'' - a3'' = ');
19 //end
```

Scilab code Exa 2.21 Standard basis of matrix

```
1 //page 60
2 //Example 2.21
```

```
3 clear;
4 clc;
5 close;
6 	 a1 = [1 	 2 	 2 	 1];
7 	 a2 = [0 	 2 	 0 	 1];
8 \ a3 = [-2 \ 0 \ -4 \ 3];
9 disp('Given row vectors are:');
10 disp(a1, 'a1 = ');
11 disp(a2, 'a2 = ');
12 \text{ disp}(a3, 'a3 = ');
13 disp('The matrix A from these vectors will be:');
14 A = [a1; a2; a3];
15 disp(A, 'A = ');
16 disp('Finding Row reduced echelon matrix of A that
      is given by R');
17 disp('And applying same operations on identity
      matrix Q such that R = QA');
18 \ Q = eye(3,3);
19 disp(Q, 'Q = ');
20 \quad T = A;
                          //Temporary matrix to store A
21 disp('Applying row transformations on A and Q, we get
22 disp('R1 = R1-R2');
23 A(1,:) = A(1,:) - A(2,:);
24 Q(1,:) = Q(1,:) - Q(2,:);
25 \text{ disp}(A, 'A = ');
26 \text{ disp}(Q, 'Q = ');
27 disp('R3 = R3 + 2*R1');
28 A(3,:) = A(3,:) + 2*A(1,:);
29  Q(3,:) = Q(3,:) + 2*Q(1,:);
30 \text{ disp}(A, 'A = ');
31 disp(Q, 'Q = ');
32 \text{ disp}('R3 = R3/3');
33 A(3,:) = 1/3*A(3,:);
34 Q(3,:) = 1/3*Q(3,:);
35 \text{ disp}(A, 'A = ');
36 \text{ disp}(Q, Q = Y);
37 disp('R2 = R2/2');
```

```
38 A(2,:) = 1/2*A(2,:);
39 Q(2,:) = 1/2*Q(2,:);
40 disp(A, 'A = ');
41 disp(Q, 'Q = ');
42 disp('R2 = R2 - 1/2*R3');
43 A(2,:) = A(2,:) - 1/2*A(3,:);
44 Q(2,:) = Q(2,:) - 1/2*Q(3,:);
45 \text{ disp}(A, 'A = ');
46 disp(Q, 'Q = ');
47 R = A;
48 \quad A = T;
49 disp('Row reduced echelon matrix:');
50 \text{ disp}(R, 'R = ');
51 disp(Q, 'Q = ');
52 //part a
53 disp(rank(R), rank of R = );
54 disp('Since, Rank of R is 3, so a1, a2, a3 are
      independent');
55 //part b
56 disp('Now, basis for W can be given by row vectors
      of R i.e. p1, p2, p3');
57 \operatorname{disp}(b \text{ is any vector in } W. b = [b1 b2 b3 b4]');
58 disp('Span of vectors p1, p2, p3 consist of vector b
      with b3 = 2*b1');
59 disp('So, b = b1p1 + b2p2 + b4p3');
60 disp('And, [p1 p2 p3] = R = Q*A');
61 disp('So, b = [b1 \ b2 \ b3] * Q * A');
62 disp('hence, b = x1a1 + x2a2 + x3a3 where x1 = [b1]
      b2 b4] * Q(1) and so on'); //Equation 1
63 // part c
64 disp('Now, given 3 vectors a1', a2', a3',:');
65 	 c1 = [1 	 0 	 2 	 0];
66 c2 = [0 2 0 1];
67 \quad c3 = [0 \quad 0 \quad 0 \quad 3];
68 disp(c1, 'a1'' = ');
69 disp(c2, 'a2', = ');
70 disp(c3, 'a3', '= ');
71 disp('Since a1', a2', a3', are all of the form (y1
```

```
y2 y3 y4) with y3 = 2*y1, hence they are in W.');
72 disp('So, they are independent.');
73 //part d
74 c = [c1; c2; c3];
75 P = eye(3,3);
76 \text{ for } i = 1:3
77
       b1 = c(i,1);
       b2 = c(i,2);
78
       b4 = c(i,4);
79
       x1 = [b1 \ b2 \ b4] * Q(:,1);
80
       x2 = [b1 b2 b4]*Q(:,2);
81
       x3 = [b1 \ b2 \ b4] *Q(:,3);
83
      P(:,i) = [x1; x2; x3];
84 end
85 disp('Required matrix P such that X = PX'' is:');
86 disp(P, 'P = ');
87 / \text{end}
```

Scilab code Exa 2.22 Standard basis of Matrix

```
1 //page 63
2 //Example 2.22
3 clear;
4 clc;
5 close;
6 A = [1 2 0 3 0; 1 2 -1 -1 0; 0 0 1 4 0; 2 4 1 10 1; 0 0]
     0 0 1];
7 \text{ disp}(A, 'A = ');
8 // part a
9 T = A;
                             //Temporary storing A in T
10 disp('Taking an identity matrix P:');
11 P = eye(5,5);
12 disp(P, 'P = ');
13 disp('Applying row transformations on P and A to get
       a row reduced echelon matrix R:');
```

```
14 disp('R2 = R2 - R1 and R4 = R4 - 2* R1');
15 A(2,:) = A(2,:) - A(1,:);
16 P(2,:) = P(2,:) - P(1,:);
17 \ A(4,:) = A(4,:) - 2 * A(1,:);
18 P(4,:) = P(4,:) - 2 * P(1,:);
19 disp(A, 'A = ');
20 \text{ disp}(P, P = );
21 disp(R2 = -R2), R3 = R3 - R1 + R2 and R4 = R4 - R1
       + R2');
22 \quad A(2,:) = -A(2,:);
23 P(2,:) = -P(2,:);
24 A(3,:) = A(3,:) - A(2,:);
25 P(3,:) = P(3,:) - P(2,:);
26 \quad A(4,:) = A(4,:) - A(2,:);
27 P(4,:) = P(4,:) - P(2,:);
28 \text{ disp}(A, 'A = ');
29 disp(P, 'P = ');
30 disp('Mutually interchanging R3, R4 and R5');
31 x = A(3,:);
32 \quad A(3,:) = A(5,:);
33 y = A(4,:);
34 \quad A(4,:) = x;
35 A(5,:) = y - A(3,:);
36 \times P(3,:);
37 P(3,:) = P(5,:);
38 y = P(4,:);
39 P(4,:) = x;
40 P(5,:) = y - P(3,:);
41 R = A;
42 \quad A = T;
43 disp(R, 'Row reduced echelon matrix R = ');
44 \operatorname{disp}(P, 'Invertible Matrix P = ');
45 disp('Invertible matrix P is not unique. There can
      be many that depends on operations used to reduce
46 disp('--
                                                     — ');
47 // part b
48 disp('For the basis of row space W of A, we can take
```

```
the non-zero rows of R');
49 disp('It can be given by p1, p2, p3');
50 p1 = R(1,:);
51 p2 = R(2,:);
52 p3 = R(3,:);
53 \text{ disp}(p1, 'p1 = ');
54 \text{ disp(p2,'p2 = ');}
55 \text{ disp}(p3, p3 = ');
                                                       - ');
56 disp('---
57 // part c
58 disp('The row space W consists of vectors of the
      form: ');
59 disp('b = c1p1 + c2p2 + c3p3');
60 disp('i.e. b = (c1,2*c1,c2,3*c1+4*c2,c3) where, c1
      c2 c3 are scalars.');
61 disp('So, if b2 = 2*b1 and b4 = 3*b1 + 4*b3
      (b2, b3, b4, b5) = b1p1 + b3p2 + b5p3');
62 disp('then, (b1, b2, b3, b4, b5)) is in W');
                                                      - ');
63 disp('—
64 //part d
65 disp('The coordinate matrix of the vector (b1,2*b1,
      b2,3*b1+4*b2,b3) in the basis (p1,p2,p3) is
      column matrix of b1, b2, b3 such that: ');
66 disp('
            b1');
67 disp('
            b2');
68 disp('
            b3');
69 disp('—
                                                       - ');
70 //part e
71 disp('Now, to write each vector in W as a linear
      combination of rows of A:');
72 disp('Let b = (b1, b2, b3, b4, b5)) and if b is in W,
      then');
73 disp('we know, b = (b1, 2*b1, b3, 3*b1 + 4*b3, b5) \implies
      b1, b3, b5, 0, 0] *R';
  disp('=>b = [b1, b3, b5, 0, 0] * P*A => b = [b1+b3, -
      b3,0,0,b5] * A');
75 disp('if b = (-5, -10, 1, -11, 20)');
76 \text{ b1} = -5;
```

```
77 	 b2 = -10;
78 \text{ b3} = 1;
79 \text{ b4} = -11;
80 b5 = 20;
81 x = [b1 + b3, -b3, 0, 0, b5];
82 disp(']',A,'[','*',')',x,'(','b = ');
                                                     -----·,);
83 disp('-
84 // part f
85 disp('The equations in system RX = 0 are given by R
       * [x1 x2 x3 x4 x5]');
86 disp('i.e., x1 + 2*x2 + 3*x4');
87 disp('x3 + 4*x4');
88 disp('x5');
89 disp('so, V consists of all columns of the form');
90 disp('[','X=');
            -2*x2 - 3*x4');
91 disp('
           x2');
92 disp('
93 disp(' -4*x4');
94 \text{ disp('} x4');
95 disp(' 0');
96 disp('where x2 and x4 are arbitrary',']');
97 disp('---
98 //part g
99 disp('Let x^2 = 1, x^4 = 0 then the given column forms
       a basis of V');
100 \times 2 = 1;
101 \times 4 = 0;
102 disp([-2*x2-3*x4; x2; -4*x4; x4; 0]);
103 disp('Similarly, if x^2 = 0, x^4 = 1 then the given
       column forms a basis of V');
104 \times 2 = 0;
105 \times 4 = 1;
106 \text{ disp}([-2*x2-3*x4; x2; -4*x4; x4; 0]);
                                                        --- <sup>'</sup>);
107 disp('--
108 //part h
109 \operatorname{disp}('The equation AX = Y \text{ has solutions } X \text{ if and }
       only if');
110 disp('-y1 + y2 + y3 = 0');
```

```
111 disp('-3*y1 + y2 + y4 -y5 = 0');
112 disp('where, Y = (y1 y2 y3 y4 y5)');
113 //end
```

Chapter 3

Linear Transformations

Scilab code Exa 3.6 Linear Transformation function

```
1 //page 70
2 //Example 3.6
3 clc;
4 clear;
5 close;
6 	 a1 = [1 	 2];
7 	 a2 = [3 	 4];
8 \text{ disp(a1,'a1 = ');}
9 \text{ disp(a2, 'a2 = ');}
10 disp('a1 and a2 are linearly independent and hence
      form a basis for R<sup>2</sup>');
11 disp('According to theorem 1, there is a linear
      transformation from R<sup>2</sup> to R<sup>3</sup> with the
      transformation functions as: ');
12 \text{ Ta1} = [3 \ 2 \ 1];
13 \text{ Ta2} = [6 5 4];
14 disp(Ta1, 'Ta1 = ');
15 disp(Ta2, 'Ta2 = ');
16 disp('Now, we find scalars c1 and c2 for that we
      know T(c1a1 + c2a2) = c1(Ta1) + c2(Ta2));
17 disp('if(1,0) = c1(1,2) + c2(3,4), then ');
```

```
18 c = inv([a1;a2]') * [1;0];
19 c1 = c(1,1);
20 c2 = c(2,1);
21 disp(c1,'c1 = ');
22 disp(c2,'c2 = ');
23 disp('The transformation function T(1,0) will be:');
24 T = c1*Ta1 + c2*Ta2;
25 disp(T,'T(1,0) = ');
26 //end
```

Scilab code Exa 3.12 Singular and onto linear transformation

```
1 //page 81
2 //Example 3.12
3 clc;
4 clear;
5 close;
6 x = round(rand(1,2) * 10);
7 x1 = x(1);
8 x2 = x(2);
9 T = [x1+x2 x1];
10 disp(x1, 'x1 = ');
11 disp(x2, 'x2 = ');
12 printf('T(\%d,\%d) = ',x1,x2);
13 disp(T);
14 disp('If, T(x1, x2) = 0, then');
15 disp('x1 = x2 = 0');
16 disp('So, T is non-singular');
17 disp('z1, z2 are two scalars in F');
18 z1 = round(rand() * 10);
19 z2 = round(rand() * 10);
20 \text{ disp}(z1, z1 = );
21 \text{ disp}(z2, z2 = ');
22 \times 1 = 22;
23 \times 2 = z1 - z2;
```

```
24 disp(x1, 'So, x1 = ');
25 disp(x2, 'x2 = ');
26 disp('Hence, T is onto.');
27 Tinv = [z2 z1-z2];
28 disp(Tinv, 'inverse(T) = ');
29 //end
```

Scilab code Exa 3.14 Standard Ordered Basis

```
1 //page 89
2 //Example 3.14
3 clc;
4 clear;
5 close;
6 disp('T is a linear operator on F<sup>2</sup> defined as:');
7 disp('T(x1,x2) = (x1,0)');
  disp('B = \{e1, e2\}) is a standard ordered basis for F
      ^2, then ');
9 \times 1 = 1;
10 \times 2 = 0;
11 Te1 = [x1 \ 0];
12 \times 1 = 0;
13 \times 2 = 1;
14 \text{ Te2} = [x1 \ 0];
15 disp(Te1, 'So, Te1 = T(1,0) = ');
16 disp(Te2, 'So, Te2 = T(0,1) = ');
17 disp('so, matrix T in ordered basis B is: ');
18 T = [Te1; Te2];
19 disp(T, 'T = ');
20 //end
```

Scilab code Exa 3.15 Matrix in Ordered basis

```
1 //page 89
2 //Example 3.15
3 clc;
4 clear;
5 close;
6 disp('Differentiation operator D is defined as:');
7 D = zeros(4,4);
8 x = poly(0, "x");
9 \text{ for } i = 1:4
10
       t = i - 1;
       f = derivat(x^t);
11
12
       printf ('(Df%d)(x) = ',i);
13
       disp(f);
       if ~(i == 1) then
14
       D(i-1,i) = i-1;
15
16
       end
17 end
18 disp('Matrix of D in ordered basis is:');
19 disp(D, '[D] = ');
20 //end
```

Scilab code Exa 3.16 Standard Ordered Basis

```
1 //page 92
2 //Example 3.16
3 clc;
4 clear;
5 close;
6 disp('T is a linear operator on R^2 defined as T(x1, x2) = (x1,0)');
7 disp('So, the matrix T in standard ordered basis B = {e1,e2} is ');
8 T = [1 0 ;0 0];
9 disp(T,'[T]B = ');
10 disp('Let B'' is the ordered basis for R^2
```

Scilab code Exa 3.17 Matrix in ordered basis

```
1 //page 93
2 //Example 3.17
3 \text{ clc};
4 clear;
5 close;
6 t = poly(0,"t");
7 \text{ disp}('g1 = f1');
8 disp('g2 = t*f1 + f2');
9 disp('g3 = t^2*f1 + 2*t*f2 + f3');
10 disp('g4 = t^3*f1 + 3*t^2*f2 + 3*t*f3 + f4');
11 P = [1 t t^2 t^3; 0 1 2*t 3*t^2; 0 0 1 3*t; 0 0 0 1];
12 \text{ disp}(P, P = );
13 disp(inv(P), 'inverse P = ');
14 disp('Matrix of differentiation operator D in
      ordered basis B is:'); //As found in example 15
15 D = [0 1 0 0; 0 0 2 0; 0 0 0 3; 0 0 0 0];
16 disp(D, 'D = ');
17 disp('Matrix of D in ordered basis B'' is:');
18 \operatorname{disp}(\operatorname{inv}(P) * D * P, \operatorname{inverse}(P) * D * P = ');
```

Scilab code Exa 3.19 Trace of a matrix

```
1 //page 98
2 //Example 3.19
3 clc;
4 clear;
5 close;
6 function [tr] = trace_matrix(M,n)
       for i = 1 : n
8
       tr = tr + M(i,i);
       end
10 endfunction
11 n = round(rand() * 10 + 2);
12 disp(n, 'n = ');
13 A = round(rand(n,n) * 10);
14 disp(A, 'A = ');
15 \text{ tr} = 0;
16 disp('Trace of A:');
17 tr1 = trace_matrix(A,n);
18 disp(tr1, 'tr(A) = ');
                                        ----·;);
19 disp('-----
20 c = round(rand() * 10 + 2);
21 \text{ disp(c,'c = ');}
22 B = round(rand(n,n) * 10);
23 \text{ disp}(B, 'B = ');
24 disp('Trace of B:');
25 tr2 = trace_matrix(B,n);
26 disp(tr2, 'tr(B) = ');
27 disp(c*tr1+tr2, 'tr(cA + B) = ');
28 // end
```

Scilab code Exa 3.23 Linear functional on vector space

```
1 / page 103
2 //Example 3.23
3 clc;
4 clear;
5 close;
6 disp('Matrix represented by given linear functionals
       on R<sup>4</sup>: ');
7 A = [1 2 2 1; 0 2 0 1; -2 0 -4 3];
8 \text{ disp}(A, 'A = ');
                         //Temporary matrix to store A
9 T = A;
10 disp('To find Row reduced echelon matrix of A given
      by R: ')
11 disp('Applying row transformations on A, we get');
12 \text{ disp}('R1 = R1-R2');
13 A(1,:) = A(1,:) - A(2,:);
14 disp(A, 'A = ');
15 disp('R3 = R3 + 2*R1');
16 A(3,:) = A(3,:) + 2*A(1,:);
17 disp(A, 'A = ');
18 disp('R3 = R3/3');
19 A(3,:) = 1/3*A(3,:);
20 \text{ disp}(A, 'A = ');
21 disp('R2 = R2/2');
22 A(2,:) = 1/2*A(2,:);
23 disp(A, 'A = ');
24 disp('R2 = R2 - 1/2*R3');
25 \quad A(2,:) = A(2,:) - 1/2*A(3,:);
26 \text{ disp}(A, 'A = ');
27 R = A;
28 A = T;
29 disp('Row reduced echelon matrix of A is:');
30 disp(R, 'R = ');
31 disp('Therefore, linear functionals g1,g2,g3 span the
       same subspace of (R^4) as f1, f2, f3 are given by
      : ');
32 disp('g1(x1,x2,x3,x4) = x1 + 2*x3');
```

```
33 disp('g1(x1,x2,x3,x4) = x2');
34 disp('g1(x1,x2,x3,x4) = x4');
35 disp('The subspace consists of the vectors with');
36 disp('x1 = -2*x3');
37 disp('x2 = x4 = 0');
38 //end
```

Scilab code Exa 3.24 Linear functional on vector space

```
1 / page 104
2 //Example 3.24
3 clc;
4 clear;
5 close;
6 disp('W be the subspace of R<sup>5</sup> spanned by vectors:')
7 	 a1 = [2 -2 3 4 -1];
8 \ a2 = [-1 \ 1 \ 2 \ 5 \ 2];
9 \quad a3 = [0 \quad 0 \quad -1 \quad -2 \quad 3];
10 \quad a4 = [1 -1 2 3 0];
11 disp(a1, 'a1 = ');
12 disp(a2, 'a2 = ');
13 disp(a3, 'a3 = ');
14 disp(a4, 'a4 = ');
15 disp ('Matrix A by the row vectors a1, a2, a3, a4 will
      be: ');
16 A = [a1; a2; a3; a4];
17 disp(A, 'A = ');
18 disp('After Applying row transformations, we get the
       row reduced echelon matrix R of A; ');
19 T = A;
                                //Temporary matrix to store
       Α
20 / R1 = R1 - R4 and R2 = R2 + R4
21 \quad A(1,:) = A(1,:) - A(4,:);
22 A(2,:) = A(2,:) + A(4,:);
```

```
23 / R2 = R2/2
24 A(2,:) = 1/2 * A(2,:);
25 / R3 = R3 + R2 \text{ and } R4 = R4 - R1
26 \quad A(3,:) = A(3,:) + A(2,:);
27 A(4,:) = A(4,:) - A(1,:);
28 / R3 = R3 - R4
29 A(3,:) = A(3,:) - A(4,:);
30 / R3 = R3/3
31 A(3,:) = 1/3 * A(3,:);
32 / R2 = R2 - R3
33 A(2,:) = A(2,:) - A(3,:);
34 / R2 = R2/2 and R4 = R4 - R2 - R3
35 A(2,:) = 1/2 * A(2,:);
36 \quad A(4,:) = A(4,:) - A(2,:) - A(3,:);
37 / R1 = R1 - R2 + R3
38 A(1,:) = A(1,:) - A(2,:) + A(3,:);
39 R = A;
40 \quad A = T;
41 disp(R, 'R = ');
42 disp('Then we obtain all the linear functionals f by
       assigning arbitrary values to c2 and c4');
43 disp('Let c2 = a, c4 = b then c1 = a+b, c3 = -2b, c5
      = 0.;
44 disp('So, W0 consists all linear functionals f of
      the form');
  disp('f(x1,x2,x3,x4,x5)) = (a+b)x1 + ax2 - 2bx3 + bx4'
      );
46 disp('Dimension of W0 = 2 and basis \{f1, f2\} can be
      found by first taking a = 1, b = 0. Then a = 0, b
     = 1');
47 / \text{end}
```

Polynomials

Scilab code Exa 4.3 Algebra of linear operators

```
1 / page 121
2 //Example 4.3
3 \text{ clc};
4 clear;
5 close;
6 disp('C is the field of complex numbers');
7 x = poly(0, "x");
8 f = x^2 + 2;
9 \text{ disp}(f, 'f = ');
10 //part a
11 disp('if a = C and z belongs to C, then f(z) = z^2 +
       2;
12 disp(horner(f,2), 'f(2) = ');
13 disp(horner(f,(1+%i)/(1-%i)), 'f(1+%i/1-%i) = ');
14 disp('-----
15 // part b
16 disp('If a is the algebra of all 2*2 matrices over C
      and ');
17 B = [1 0; -1 2];
18 disp(B, 'B = ');
19 disp(2*eye(2,2) + B^2, 'then, f(B) = ');
```

```
20 disp('-
                                                    - ');
21 //part c
22 disp('If a is algebra of all linear operators on C^3
      ');
23 disp('And T is element of a as:');
24 disp('T(c1,c2,c3) = (i*2^1/2*c1,c2,i*2^1/2*c3)');
25 disp('Then, f(T)(c1,c2,c3) = (0,3*c2,0)');
26 disp('--
27 //part d
28 disp('If a is the algebra of all polynomials over C'
      );
29 g = x^4 + 3*\%i;
30 \operatorname{disp}(g, 'And, g = ');
31 disp(horner(f,g), 'Then f(g) = ');
32 //end
```

Scilab code Exa 4.7 Ideal of a polynomial

```
1 //page 131
2 //Example 4.7
3 clc;
4 clear;
5 close;
6 x = poly(0, "x");
7 p1 = x + 2;
8 p2 = x^2 + 8*x + 16;
9 disp('M = (x+2)F[x] + (x^2 + 8x + 16)F[x]');
10 disp('We assert, M = F[x]');
11 disp('M contains:');
12 t = p2 - x*p1;
13 disp(t);
14 disp('And hence M contains:');
15 \text{ disp}(t - 6*p1);
16 disp('Thus the scalar polynomial 1 belongs to M as
      well all its multiples.')
```

Scilab code Exa 4.8 G C D of polynomials

```
1 //page 133
2 //Example 4.8
3 clc;
4 clear;
5 close;
6 x = poly(0, "x");
7 //part a
8 p1 = x + 2;
9 p2 = x^2 + 8*x + 16;
10 disp(p1, 'p1 = ');
11 disp(p2, p2 = ');
12 disp('M = (x+2)F[x] + (x^2 + 8x + 16)F[x]');
13 disp('We assert, M = F[x]');
14 disp('M contains:');
15 t = p2 - x*p1;
16 disp(t);
17 disp('And hence M contains:');
18 \text{ disp}(t - 6*p1);
19 disp('Thus the scalar polynomial 1 belongs to M as
      well all its multiples');
20 disp('So, gcd(p1, p2) = 1');
21 disp('--
      ');
22 //part b
23 p1 = (x - 2)^2*(x+\%i);
24 p2 = (x-2)*(x^2 + 1);
25 \text{ disp(p1,'p1 = ');}
26 \text{ disp}(p2, p2 = ');
27 disp('M = (x - 2)^2*(x+\%i)F[x] + (x-2)*(x^2 + 1');
28 disp('The ideal M contains p1 - p2 i.e.,');
29 \ disp(p1 - p2);
```

Scilab code Exa 4.9 Ideal of a Polynomial

```
1 //page 133
2 //Example 4.9
3 clc;
4 clear;
5 close;
6 disp('M is the ideal in F[x] generated by:');
7 disp('(x-1)*(x+2)^2');
8 disp('(x+2)^2*(x+3)');
9 disp('(x-3)', 'and');
10 x = poly(0, "x");
11 p1 = (x-1)*(x+2)^2;
12 p2 = (x+2)^2*(x-3);
13 p3 = (x-3);
14 disp('M = (x-1)*(x+2)^2 F[x] + (x+2)^2*(x-3) + (x-3)
      ');
15 disp('Then M contains:');
16 t = 1/2*(x+2)^2*((x-1) - (x-3));
17 disp(t);
18 disp('i.e., M contains (x+2)^2');
19 disp('and since, (x+2)^2 = (x-3)(x-7) - 17');
20 disp('So M contains the scalar polynomial 1.');
21 disp('So, M = F[x] and given polynomials are
      relatively prime.');
22 //end
```

Scilab code Exa 4.10 Reducible Polynomial

```
1 / page 135
2 //Example 4.10
3 clc;
4 clear;
5 close;
6 x = poly(0, "x");
7 P = x^2 + 1;
8 \text{ disp}(P, 'P = ');
9 disp('P is reducible over complex numbers as: ');
10 disp('=',P);
11 disp('(x-i)(x+i)');
12 disp('Whereas, P is irreducible over real numbers as
      :. ');
13 disp('=',P);
14 disp('(ax + b)(a''x + b'')');
15 disp('For, a,a'',b,b'' to be in R,');
16 disp('aa'' = 1');
17 disp('ab'' + ba'' = 0');
18 disp('bb'' = 1');
19 disp('=> a^2 + b^2 = 0');
20 disp('=> a = b = 0');
21 / end
```

Determinants

Scilab code Exa 5.3 Two linear function

```
1 //page 143
2 //Example 5.3
3 clc;
4 clear;
5 close;
6 A = round(rand(2,2) *10 );
7 disp(A, 'A = ');
8 D1 = A(1,1)*A(2,2);
9 D2 = - A(1,2)*A(2,1);
10 disp(D1, 'D1(A) = ');
11 disp(D2, 'D2(A) = ');
12 disp(D1 + D2, 'D(A) = D1(A) + D2(A) = ');
13 disp('That is, D is a 2-linear function.');
14 //end
```

Scilab code Exa 5.4 Alternating 3 Linear Functions

```
1 //page 145
```

```
2 //Example 5.4
3 clc;
4 clear;
5 close;
6 x = poly(0, "x");
7 A = [x 0 -x^2; 0 1 0; 1 0 x^3];
8 \text{ disp}(A, 'A = ');
9 disp('e1, e2, e3 are the rows of 3*3 identity matrix,
      then');
10 T = eye(3,3);
11 e1 = T(1,:);
12 e2 = T(2,:);
13 = T(3,:);
14 disp(e1, 'e1 = ');
15 disp(e2, 'e2 = ');
16 \text{ disp(e3,'e3} = ');
17 disp('D(A) = D(x*e1 - x^2*e3, e2, e1 + x^3*e3)');
18 disp('Since, D is linear as a function of each row,'
  disp('D(A) = x*D(e1, e2, e1 + x^3*e3) - x^2*D(e3, e2, e1)
      + x^3*e3);
20 disp('D(A) = x*D(e1,e2,e1) + x^4*D(e1,e2,e3) - x^2*D
      (e3, e2, e1) - x^5*D(e3, e2, e3)');
21 disp('As D is alternating, So');
22 disp('D(A) = (x^4 + x^2)*D(e1, e2, e3)');
23 //end
```

Scilab code Exa 5.5 Determinant of a matrix

```
1 //page 147
2 //Example 5.5
3 clc;
4 clear;
5 close;
6 function [E1 , E2 , E3] = determinant(A)
```

```
7
       E1 = A(1,1)*det([A(2,2) A(2,3);A(3,2) A(3,3)]) -
           A(2,1)*det([A(1,2) A(1,3);A(3,2) A(3,3)]) +
          A(3,1)*det([A(1,2) A(1,3);A(2,2) A(2,3)]);
       E2 = -A(1,2)*det([A(2,1) A(2,3);A(3,1) A(3,3)])
8
          + A(2,2)*det([A(1,1) A(1,3);A(3,1) A(3,3)]) +
           A(3,2)*det([A(1,1) A(1,3);A(2,1) A(2,3)]);
9
       E3 = A(1,3)*det([A(2,1) A(2,2);A(3,1) A(3,2)]) -
           A(2,3)*det([A(1,1) A(1,2);A(3,1) A(3,2)]) +
          A(3,3)*det([A(1,1) A(1,2);A(2,1) A(2,2)]);
10 endfunction
11
12 // part a
13 x = poly(0, "x");
14 A = [x-1 x^2 x^3; 0 x-2 1; 0 0 x-3];
15 disp(A, 'A = ');
16 [E1, E2, E3] = determinant(A);
17 disp(E1, 'E1(A) = ');
18 disp(E2, 'E2(A) = ');
19 disp(E3, 'E3(A) = ');
20 disp('---
                                                 - ');
21 //part b
22 A = [0 1 0; 0 0 1; 1 0 0];
23 disp(A, 'A = ');
[E1, E2, E3] = determinant(A);
25 disp(E1, 'E1(A) = ');
26 \text{ disp}(E2, E2(A) = ');
27 disp(E3, 'E3(A) = ');
28 / \text{end}
```

Scilab code Exa 5.6 Determinant of a matrix

```
1 //page 158
2 //Example 5.6
3 clc;
4 clear;
```

```
5 close;
6 disp('Given Matrix:');
7 A = [1 -1 2 3; 2 2 0 2; 4 1 -1 -1; 1 2 3 0];
8 \text{ disp}(A, 'A = ');
9 disp('After, Subtracting muliples of row 1 from rows
       2 3 4');
10 disp('R2 = R2 - 2*R1');
11 A(2,:) = A(2,:) - 2 * A(1,:);
12 disp('R3 = R3 - 4*R1');
13 A(3,:) = A(3,:) - 4 * A(1,:);
14 disp('R4 = R4 - R1');
15 A(4,:) = A(4,:) - A(1,:);
16 disp(A, 'A = ');
17 T = A;
                            //Temporary matrix to store
     A
18 disp('We obtain the same determinant as before.');
19 disp('Now, applying some more row transformations as
     : ');
20 disp('R3 = R3 - 5/4 * R2');
21 T(3,:) = T(3,:) - 5/4 * T(2,:);
22 disp('R4 = R4 - 3/4 * R2');
23 T(4,:) = T(4,:) - 3/4 * T(2,:);
24 B = T;
25 disp('We get B as:');
26 \text{ disp}(B, 'B = ');
27 disp('Now, determinant of A and B will be same');
28 disp(det(B), 'det A = det B = ');
29 //end
```

Scilab code Exa 5.7 Inverse of a matrix

```
1 //page 160
2 //Example 5.7
3 clc;
4 clear;
```

```
5 close;
6 x = poly(0, "x");
 7 A = [x^2+x x+1; x-1 1];
8 B = [x^2-1 x+2; x^2-2*x+3 x];
9 \text{ disp}(A, 'A = ');
10 disp(B, 'B = ');
11 \operatorname{disp}(\det(A), \det(A = ');
12 disp(det(B), 'det B = ');
13 disp('Thus, A is not invertible over K whereas B is
        invertible');
14 \operatorname{disp}(\operatorname{inv}(A) * \operatorname{det}(A), \operatorname{adj}(A = ');
15 \operatorname{disp}(\operatorname{inv}(B) * \operatorname{det}(B), \operatorname{adj}(B = ');
16 disp('(adj A)A = (x+1)I');
17 disp('(adj B)B = -6I');
18 disp(inv(B), 'B inverse = ');
19 / \text{end}
```

Scilab code Exa 5.8 Inverse of a matrix

```
1 //page 161
2 //Example 5.8
3 \text{ clc};
4 clear;
5 close;
6 A = [1 2; 3 4];
7 \text{ disp}(A, 'A = ');
8 d = det(A);
9 disp(d, 'det A = ', 'Determinant of A is:');
10 ad = (\det(A) * eye(2,2)) / A;
11 disp(ad, 'adj A = ', 'Adjoint of A is:');
12 disp('Thus, A is not invertible as a matrix over the
       ring of integers.');
13 disp('But, A can be regarded as a matrix over field
      of rational numbers.');
14 in = inv(A);
```

```
15 //The A inverse matrix given in book has a wrong
      entry of 1/2. It should be -1/2.
16 disp(in,'inv(A) = ','Then, A is invertible and
      Inverse of A is:');
17 //end
```

Elementary Canonical Forms

Scilab code Exa 6.1 Characteristic Polynomial of a matrix

```
1 //page 184
2 //Example 6.1
3 clc;
4 clear;
5 close;
6 disp('Standard ordered matrix for Linear operator T
      on R<sup>2</sup> is:');
7 A = [0 -1; 1 0];
8 \text{ disp}(A, A = ');
9 disp('The characteristic polynomial for T or A is:')
10 x = poly(0, "x");
11 p = detr(x*eye(2,2)-A);
12 disp(p);
13 disp('Since this polynomial has no real roots, T has
      no characteristic values.');
14 // end
```

Scilab code Exa 6.2 Characteristic Polynomial of a matrix

```
1 / page 184
2 //Example 6.2
3 clc;
4 clear;
5 close;
6 A = [3 1 -1; 2 2 -1; 2 2 0];
7 \text{ disp}(A, 'A = ');
8 disp('Characteristic polynomial for A is:');
9 p = poly(A, "x");
10 disp(p);
11 disp('or');
12 disp('(x-1)(x-2)^2');
13 r = roots(p);
14 [m,n] = size(A);
15 disp('The characteristic values of A are:');
16 disp(round(r));
17 B = A - eye(m,n);
18 disp(B, 'Now, A-I = ');
19 \operatorname{disp}(\operatorname{rank}(B), \operatorname{rank} \text{ of } A - I = ');
20 disp('So, nullity of T-I = 1');
21 	 a1 = [1 	 0 	 2];
22 disp(a1, 'The vector that spans the null space of T-I
       = ');
23 B = A-2*eve(m,n);
24 disp(B, 'Now, A-2I = ');
25 disp(rank(B), 'rank of A - 2I = ');
26 disp('T*alpha = 2*alpha if alpha is a scalar
      multiple of a2');
27 	 a2 = [1 	 1 	 2];
28 \text{ disp(a2, 'a2 = ');}
29 //end
```

Scilab code Exa 6.3 Characteristic Polynomial of a matrix

```
1 //page 187
```

```
2 //Example 6.3
3 clc;
4 clear;
5 close;
6 disp('Standard ordered matrix for Linear operator T
      on R<sup>3</sup> is:');
7 A = [5 -6 -6; -1 4 2; 3 -6 -4];
8 \text{ disp}(A, 'A = ');
9 \text{ disp}('xI - A = ');
10 B = eye(3,3);
11 x = poly(0, "x");
12 P = x*B - A;
13 disp(P);
14 disp('Applying row and column transformations:');
15 disp('C2 = C2 - C3');
16 P(:,2) = P(:,2) - P(:,3);
17 disp('=>');
18 disp(P);
19 \operatorname{disp}('\operatorname{Taking}(x-2)) common from C2');
20 c = x-2;
P(:,2) = P(:,2) / (x-2);
22 disp('=>');
23 disp(' * ', c);
24 disp(P);
25 \text{ disp}('R3 = R3 + R2');
26 P(3,:) = P(3,:) + P(2,:);
27 disp('=>');
28 disp(' * ', c);
29 disp(P);
30 P = [P(1,1) P(1,3); P(3,1) P(3,3)];
31 disp('=>');
32 disp(' * ', c);
33 disp(P);
34 disp('=>');
35 disp(' * ',c);
36 disp(det(P));
37 disp('This is the characteristic polynomial');
38 disp(A-B, 'Now, A - I = ');
```

```
39 disp(A-2*B, 'And, A- 2I = ');
40 disp(rank(A-B), 'rank(A-I) = ');
41 \operatorname{disp}(\operatorname{rank}(A-2*B), \operatorname{rank}(A-2I) = ');
42 disp ('W1, W2 be the spaces of characteristic vectors
       associated with values 1,2');
43 disp('So by theorem 2, T is diagonalizable');
44 \text{ a1} = [3 -1 3];
45 	 a2 = [2 	 1 	 0];
46 	 a3 = [2 	 0 	 1];
47 disp(a1, 'Null space of (T- I) i.e basis of W1 is
      spanned by a1 = ');
48 disp('Null space of (T-2I) i.e. basis of W2 is
      spanned by vectors x1, x2, x3 such that x1 = 2x1 +
      2x3');
49 disp('One example are;');
50 \text{ disp}(a2, a2 = i);
51 \text{ disp}(a3, 'a3 = ');
52 disp('The diagonal matrix is:');
53 D = [1 0 0 ; 0 2 0; 0 0 2];
54 \text{ disp}(D, 'D = ');
55 disp('The standard basis matrix is denoted as:');
56 P = [a1; a2; a3]';
57 \text{ disp}(P, 'P = ');
58 \text{ disp}(A*P, 'AP = ');
59 \text{ disp}(P*D, 'PD = ');
60 disp('That is, AP = PD');
61 \operatorname{disp}('=> \operatorname{inverse}(P)*A*P = D');
62 //end
```

Scilab code Exa 6.4 Diagonalizable Operator

```
1 // page 193
2 // Example 6.4
3 clc;
4 clear;
```

```
5 close;
6 x = poly(0, "x");
7 A = [5 -6 -6; -1 \ 4 \ 2; \ 3 -6 \ -4]; // Matrix given
     in Example 3
8 \text{ disp}(A, 'A = ');
9 f = (x-1)*(x-2)^2;
10 disp('Characteristic polynomial of A is:');
11 disp('f = (x-1)(x-2)^2');
12 disp(f, 'i.e., f = ');
13 p = (x-1)*(x-2);
14 disp((A-eye(3,3))*(A-2 * eye(3,3)), '(A-I)(A-2I) = ')
15 disp('Since, (A-I)(A-2I) = 0. So, Minimal polynomial
       for above is: ');
16 \text{ disp}(p, p = ');
17 disp('-----
18 A = [3 \ 1 \ -1; \ 2 \ 2 \ -1; \ 2 \ 2 \ 0]; //Matrix given in
     Example 2
19 disp(A, 'A = ');
20 f = (x-1)*(x-2)^2;
21 disp('Characteristic polynomial of A is:');
22 disp('f = (x-1)(x-2)^2');
23 disp(f, 'i.e., f = ');
24 disp((A-eye(3,3))*(A-2 * eye(3,3)), '(A-I)(A-2I) = ')
25 disp('Since, (A-I)(A-2I) is not equal to 0. T is not
       diagonalizable. So, Minimal polynomial cannot be
       p. ');
26 disp('---
27 A = [0 -1; 1 0];
28 disp(A, 'A = ');
29 f = x^2 + 1;
30 disp('Characteristic polynomial of A is:');
31 \text{ disp}(f, 'f = ');
32 disp(A^2 + eye(2,2), A^2 + I = ');
33 disp('Since, A^2 + I = 0, so minimal polynomial is')
34 p = x^2 + 1;
```

```
35 disp(p,'p = ');
36 //end
```

Scilab code Exa 6.5 Characteristic Polynomial of matrix

```
1 //page 197
2 //Example 6.5
3 clc;
4 clear;
5 close;
6 A = [0 1 0 1; 1 0 1 0; 0 1 0 1; 1 0 1 0];
7 \text{ disp}(A, 'A = ');
8 disp('Computing powers on A:');
9 disp(A*A, 'A^2 = ');
10 disp(A*A*A, 'A^3 = ');
11 deff('[p] = p(x)', 'p = x^3 - 4*x');
12 disp('if p = x^3 - 4x, then');
13 disp(p(A), p(A) = ');
14 x = poly(0, "x");
15 f = x^3 - 4*x;
16 disp(f,'Minimal polynomial for A is: ');
17 disp(roots(f), 'Characteristic values for A are:');
18 disp(rank(A), 'Rank(A) = ');
19 disp(round(poly(A,"x")), 'So, from theorem 2,
      characteristic polynomial for A is: ');
20 / \text{end}
```

Scilab code Exa 6.12 Symmetric and skew symmetric matrix

```
1 //page 210
2 //Example 6.12
3 clc;
4 clear;
```

```
5 close;
6 A = round(rand(3,3) * 10);
7 \text{ disp}(A, 'A = ');
8 disp('A transpose is:');
9 \text{ disp}(A', A'' = ');
10 if A' == A then
       disp('Since, A'' = A, A is a symmetric matrix.')
11
12 else
       disp('Since, A'' is not equal to A, A is not a
13
           symmetric matrix.');
14 end
15 if A' == -A then
       disp('Since, A'' = -A, A is a skew-symmetric)
16
           matrix.');
17 else
        disp('Since, A'' is not equal to -A, A is not a
18
          skew-symmetric matrix.');
19 end
20 \text{ A1} = 1/2*(A + A');
21 \quad A2 = 1/2*(A - A');
22 disp('A can be expressed as sum of A1 and A2');
23 disp('i.e., A = A1 + A2');
24 \text{ disp}(A1, 'A1 = ');
25 \text{ disp}(A2, A2 = ');
26 \text{ disp}(A1 + A2, 'A1 + A2 = ');
27 //end
```

The Rational and Jordan Forms

Scilab code Exa 7.3 Linear operator annihilator

```
1 / page 239
2 //Example 7.3
3 \text{ clc};
4 clear;
5 close;
6 A = [5 -6 -6; -1 \ 4 \ 2; 3 -6 \ -4];
7 \text{ disp}(A, 'A = ');
8 	ext{ f = poly(A,"x");}
9 disp('Characteristic polynomial for linear operator
      T on R<sup>3</sup> will be: ');
10 disp(f, 'f = ');
11 disp('or');
12 disp('(x-1)(x-2)^2');
13 x = poly(0, "x");
14 disp('The minimal polynomial for T is:');
15 p = (x-1)*(x-2);
16 \text{ disp}(p, p = ');
17 disp('or');
18 disp('p = (x-1)(x-2)');
19 disp('So in cyclic decomposition of T, al will have
      p as its T-annihilator.');
```

Scilab code Exa 7.6 Characteristic and minimal polynomial of matrix

```
1 / page 247
2 //Example 7.6
3 clc;
4 clear;
5 close;
6 \text{ disp}('A = ');
                  0');
7 disp('2
              0
8 disp('a
              2
                   0');
9 disp('b
                  -1';
              ^{\mathrm{c}}
10 \ a = 1;
11 b = 0;
12 c = 0;
13 A = [2 0 0; a 2 0; b c -1];
14 disp(A, 'A = ');
15 disp('Characteristic polynomial for A is:');
16 disp(poly(A,"x"), 'p = ');
17 disp('In this case, minimal polynomial is same as
      characteristic polynomial.');
                                                       - ');
18 disp('-
```

```
19 \ a = 0;
20 \ b = 0;
21 c = 0;
22 A = [2 0 0; a 2 0; b c -1];
23 disp(A, 'A = ');
24 disp('Characteristic polynomial for A is:');
25 disp(poly(A,"x"), 'p = ');
26 disp('In this case, minimal polynomial is:');
27 disp('(x-2)(x+1)');
28 disp('or');
29 x = poly(0, "x");
30 s = (x-2)*(x+1);
31 disp(s);
32 disp('(A-2I)(A+I) = ');
33 disp('0
              0
                   0;
                   0;
34 disp('3a
              0
                   0;
35 disp('ac
              0
36 disp('if a = 0, A is similar to diagonal matrix.')
37 / \text{end}
```

Scilab code Exa 7.7 Characteristic and minimal polynomial of matrix

```
1 / page 247
\frac{2}{\text{Example }7.7}
3 clc;
4 clear;
5 close;
6 \text{ disp}('A = ');
7 disp('2
               0
                        0');
                   0
8 disp('1
               2
                        0;
                   0
                   2
                        0');
9 disp('0
               0
10 disp('0
               0
                   a
                        2;
11 disp('Considering a = 1');
12 A = [2 0 0 0; 1 2 0 0; 0 0 2 0; 0 0 1 2];
13 p = poly(A, "x");
```

```
disp('Characteristic polynomial for A is:');
disp(p,'p = ');
disp('or');
disp('(x-2)^4');
disp('Minimal polynomial for A =');
disp('(x-2)^2');
disp('For a = 0 and a = 1, characteristic and minimal polynomial are same.');
disp('But for a=0, the solution space of (A - 2I) has 3 dimension whereas for a = 1, it has 2 dimension.')
//end
```

Inner Product Spaces

Scilab code Exa 8.1 Standard Inner Product

```
1 //page 271
2 //Example 8.1
3 clc;
4 clear;
5 close;
6 n = round(rand() * 10 + 2);
7 a = round(rand(1,n) * 10)
8 b = round(rand(1,n) * 10)
9 disp(n, 'n = ');
10 disp(a, 'a = ');
11 disp(b, 'b = ');
12 disp(a*b', 'Then, (a|b) = ');
13 //end
```

Scilab code Exa 8.2 Standard Inner Product

```
1 //page 271
2 //Example 8.2
```

```
3 clc;
4 clear;
5 close;
6 a = round(rand(1,2) * 10)
7 b = round(rand(1,2) * 10)
8 disp(a, 'a = ');
9 disp(b, 'b = ');
10 x1 = a(1);
11 x2 = a(2);
12 y1 = b(1);
13 y2 = b(2);
14 t = x1*y1 - x2*y1 - x1*y2 + 4*x2*y2;
15 disp(t, 'Then, a|b = ');
16 //end
```

Scilab code Exa 8.9 Standard Inner Product

```
1 / page 278
2 //Example 8.9
3 clc;
4 clear;
5 close;
6 = round(rand(1,2) * 10);
7 x = a(1);
8 y = a(2);
9 b = [-y x];
10 disp(a, '(x, y) = ');
11 disp(b, (-y, x) = ');
12 disp('Inner product of these vectors is:');
13 t = -x*y + y*x;
14 disp(t, '(x,y)|(-y,x) = ');
15 disp('So, these are orthogonal.');
                                                    - ');
16 disp('-
17 disp('If inner product is defined as:');
18 disp('(x1,x2)|(y1,y2) = x1y1 - x2y1 - x1y2 + 4x2y2');
```

```
19 disp('Then, (x,y)|(-y,x) = -x*y+y^2-x^2+4*x*y = 0 if
20 disp('y = 1/2(-3 + sqrt(13))*x');
21 disp('or');
22 disp('y = 1/2(-3 - \operatorname{sqrt}(13))*x');
23 disp('Hence,');
24 if y == 1/2*(-3 + sqrt(13))*x | y == 1/2*(-3 - sqrt)
      (13))*x then
25 disp(a);
26 disp('is orthogonal to');
27 disp(b);
28 else
29 disp(a);
30 disp('is not orthogonal to');
31 disp(b);
32 end
33 //end
```

Scilab code Exa 8.12 Orthogonal Vectors

```
15 a2 = b2-((b2*b1')'/25*b1);
16 disp(a2, 'a2 = ');
17 a3 = b3-((b3*b1')'/25*b1) - ((b3*a2')'/25*a2);
18 disp(a3, 'a3 = ');
19 disp('{a1,a2,a3} are mutually orthogonal and hence
      forms orthogonal basis for R<sup>3</sup>');
20 disp('Any arbitrary vector \{x1, x2, x3\} in \mathbb{R}^3 can be
      expressed as: ');
21 disp('y = \{x1, x2, x3\} = (3*x1 + 4*x3)/25*a1 + (-4*x1)
      + 3*x3)/25*a2 + x2/9*a3';
22 \times 1 = 1;
23 \times 2 = 2;
24 \times 3 = 3;
25 \text{ y} = (3*x1 + 4*x3)/25*a1 + (-4*x1 + 3*x3)/25*a2 + x2
      /9*a3;
26 \text{ disp}(x1, 'x1 = ');
27 \text{ disp}(x2, x2 = ');
28 \text{ disp}(x3, x3 = ');
29 disp(y, 'y = ');
30 disp('i.e. y = [x1 \ x2 \ x3], according to above
      equation.');
31 disp('Hence, we get the orthonormal basis as:');
32 disp(',',1/5*a1);
33 disp(',',1/5*a2);
34 \text{ disp}(1/9*a3);
35 //end
```

Scilab code Exa 8.13 Orthogonal Vectors

```
1 //page 283
2 //Example 8.13
3 clc;
4 clear;
5 close;
6 A = rand(2,2);
```

```
7 A(1,:) = A(1,:) + 1; //so b1 is not equal to zero
8 = A(1,1);
9 b = A(1,2);
10 c = A(2,1);
11 d = A(2,2);
12 b1 = A(1,:);
13 b2 = A(2,:);
14 disp(A, 'A = ');
15 disp(b1, b1 = ');
16 disp(b2, b2 = ');
17 disp('Applying the orthogonalization process to b1,
     b2:');
18 \ a1 = [a \ b];
19 a2 = (\det(A)/(a^2 + b^2))*[-b' a'];
20 \text{ disp}(a1, 'a1 = ');
21 \text{ disp}(a2, a2 = ');
22 disp('a2 is not equal to zero if and only if b1 and
      b2 are linearly independent.');
23 disp('That is, if determinant of A is non-zero.');
24 //end
```

Scilab code Exa 8.14 Orthogonal Projection

```
1 //page 286
2 //Example 8.14
3 clc;
4 clear;
5 close;
6 v = [-10 2 8];
7 u = [3 12 -1]
8 disp(v, 'v = ');
9 disp(u, 'v = ');
10 disp('Orthogonal projection of v1 on subspace W spanned by v2 is given by:');
11 a = ((u*v')')/(u(1)^2 + u(2)^2 + u(3)^2) * u;
```

```
12 disp(a);
13 disp('Orthogonal projection of R^3 on W is the
        linear transformation E given by:');
14 printf('(x1,x2,x3) -> (3*x1 + 12*x2 - x3)/%d * (3 12
        -1)',(u(1)^2 + u(2)^2 + u(3)^2));
15 disp('Rank(E) = 1');
16 disp('Nullity(E) = 2');
17 //end
```

Scilab code Exa 8.15 Orthogonal sets

```
1 //page 288
2 //Example 8.15
3 clc;
4 clear;
5 close;
6 //part c
7 disp('f = (sqrt(2)*cos(2*pi*t) + sqrt(2)*sin(4*pi*t))^2');
8 disp('Integration (f dt) in limits 0 to 1 = ');
9 x0 = 0;
10 x1 = 1;
11 X = integrate('(sqrt(2)*cos(2*%pi*t) + sqrt(2)*sin(4*%pi*t))^2', 't', x0, x1);
12 disp(X);
13 //end
```

Scilab code Exa 8.17 Inner product space and orthogonal projection

```
1 //page 294
2 //Example 8.17
3 //Equation given in example 14 is used.
4 clc;
```

```
5 clear;
6 close;
7 \text{ function } [m] = transform(x,y,z)
8
        x1 = 3*x;
9
        x2 = 12*y;
        x3 = -z;
10
11
        m = [x1 \ x2 \ x3];
12 endfunction
13
14 disp('Matrix of projection E in orthonormal basis is
      : ');
15 t1 = transform(3,3,3);
16 	 t2 = transform(12, 12, 12);
17 t3 = transform(-1, -1, -1);
18 A = [t1; t2; t3];
19 disp(A, 'A = 1/154
20 \quad A1 = (conj(A))';
21 disp(A1, 'A* = ');
22 disp('Since, E = E* and A = A*, then A is also the
       matrix of E*');
23 	 a1 = [154 	 0 	 0];
24 	 a2 = [145 - 36 3];
25 \quad a3 = [-36 \quad 10 \quad 12];
26 \text{ disp(a1, 'a1 = ')};
27 \text{ disp(a2,'a2 = ');}
28 \text{ disp}(a3, 'a3 = ');
29 disp('\{a1, a2, a3\}) is the basis.');
30 \text{ Ea1} = [9 \ 36 \ -3];
31 \text{ Ea2} = [0 \ 0 \ 0];
32 \text{ Ea3} = [0 \ 0 \ 0];
33 disp(Ea1, 'Ea1 = ');
34 \text{ disp}(Ea2, 'Ea2 = ');
35 \text{ disp(Ea3, 'Ea3 = ');}
36 B = [-1 0 0; -1 0 0; 0 0 0];
37 disp('Matrix B of E in the basis is:');
38 \text{ disp}(B, 'B = ');
39 B1 = (conj(B))';
40 disp(B1, 'B* = ');
```

```
41 disp('Since, B is not equal to B*, B is not the matrix of E*');
42 //end
```

Scilab code Exa 8.28 Unitary matrix

```
1 / page 307
2 //Example 8.28
3 clc;
4 clear;
5 close;
6 disp('x1 and x2 are two real nos. i.e., x1^2 + x2^2
        = 1');
7 \times 1 = rand();
8 x2 = sqrt(1 - x1^2);
9 \text{ disp}(x1, 'x1 = ');
10 disp(x2, 'x2 = ');
11 B = [x1 x2 0; 0 1 0; 0 0 1];
12 disp(B, 'B = ');
13 disp('Applying Gram-Schmidt process to B:')
14 \ a1 = [x1 \ x2 \ 0];
15 \ a2 = [0 \ 1 \ 0] - x2 * [x1 \ x2 \ 0];
16 \quad a3 = [0 \quad 0 \quad 1];
17 \text{ disp}(a1, 'a1 = ');
18 disp(a2, 'a2 = ');
19 disp(a3, 'a3 = ');
20 \ U = [a1;a2/x1;a3];
21 \text{ disp}(U, 'U = ');
22 M = [1 0 0; -x2/x1 1/x1 0; 0 0 1];
23 \operatorname{disp}(M, M = ')
24 \operatorname{disp}(\operatorname{inv}(M) * U, \operatorname{inverse}(M) * U = ');
25 \operatorname{disp}('So, B = \operatorname{inverse}(M) * U');
26 //end
```

Bilinear Forms

Scilab code Exa 10.4 Bilinear Form of vectors

```
1 //page 363
2 //Example 10.4
3 \text{ clc};
4 clear;
5 close;
6 disp('a = [x1 \ x2]');
7 \text{ disp}('b = [y1 \ y2]');
8 disp('f(a,b) = x1*y1 + x1*y2 + x2*y1 + x2*y2');
9 \text{ disp}('so, f(a,b) = ');
10 disp('[x1 \ x2] * |1]
                               1 | *
                                       | y1 | ');
                          | 1
                                        |y2|');
11 disp('
                               1 |
12 disp('So the matrix of f in standard order basis B =
       \{e1, e2\} is: ');
13 \text{ fb} = [1 1; 1 1];
14 disp(fb, '[f]B = ');
15 P = [1 1; -1 1];
16 disp(P, 'P = ');
17 disp('Thus, [f]B'' = P''*[f]B*P');
18 \text{ fb1} = P' * fb * P;
19 disp(fb1, '[f]B', = ');
20 //end
```

Scilab code Exa 10.5 Bilinear Form of vectors

```
1 //page 365
2 //Example 10.5
3 clc;
4 clear;
5 close;
6 n = round(rand() * 10 + 2);
7 a = round(rand(1,n) * 10);
8 b = round(rand(1,n) * 10);
9 disp(n, 'n = ');
10 disp(a, 'a = ');
11 disp(b, 'b = ');
12 f = a * b';
13 disp(f, 'f(a,b) = ');
14 disp('f is non-degenerate billinear form on R^n.');
15 //end
```