The Harmonic Oscillator

Adam Wilson

Salt Lake Community College

Newton's Dot Notation

Scientists and Engineers who work with many variables where the independent variables is always t commonly use the notation:

$$\dot{x} = \frac{dx}{dt}$$
 and $\ddot{x} = \frac{dx^2}{d^2t}$ and $\ddot{x} = \frac{dx^3}{d^3t}$ and $\ddot{x} = \frac{dx^4}{d^4t}$

Newton's Dot Notation

Scientists and Engineers who work with many variables where the independent variables is always t commonly use the notation:

$$\dot{x} = \frac{dx}{dt}$$
 and $\ddot{x} = \frac{dx^2}{d^2t}$ and $\ddot{\ddot{x}} = \frac{dx^3}{d^3t}$ and $\ddot{\ddot{x}} = \frac{dx^4}{d^4t}$

Definition

A very important DE is the second-order homogeneous equation

$$m\ddot{x} + b\dot{x} + kx = 0$$

where m > 0, b, and k are constants.

This models a class of phenomena called damped harmonic oscillators.

The Mass-Spring System

We will model the Mass-Sprint system using Newton's Second Law of Motion, $F=m\ddot{x}$, where F is the sum of the following forces:

The Mass-Spring System

We will model the Mass-Sprint system using Newton's Second Law of Motion, $F = m\ddot{x}$, where F is the sum of the following forces:

• The restoring force of the spring. $F_{\text{restoring}} = -kz$ where k > 0

The Mass-Spring System

We will model the Mass-Sprint system using Newton's Second Law of Motion, $F = m\ddot{x}$, where F is the sum of the following forces:

- The restoring force of the spring. $F_{\text{restoring}} = -kz$ where k > 0
- The damping force. $F_{\text{damping}} = -bx$ where $b \ge 0$

The Mass-Spring System

We will model the Mass-Sprint system using Newton's Second Law of Motion, $F = m\ddot{x}$, where F is the sum of the following forces:

- The restoring force of the spring. $F_{\text{restoring}} = -kz$ where k > 0
- The damping force. $F_{\text{damping}} = -bx$ where $b \ge 0$
- Any external "driving" forces. $F_{\text{external}} = f(t)$ where f(t) is the sum of all external forces.

The Mass-Spring System

We will model the Mass-Sprint system using Newton's Second Law of Motion, $F = m\ddot{x}$, where F is the sum of the following forces:

- The restoring force of the spring. $F_{\text{restoring}} = -kz$ where k > 0
- The damping force. $F_{\text{damping}} = -bx$ where $b \ge 0$
- Any external "driving" forces. $F_{\text{external}} = f(t)$ where f(t) is the sum of all external forces.

Summing these forces gives:
mass × acceleration =
$$F_{\text{restoring}}$$
 + F_{damping} + F_{external}
 $m\ddot{x} = -kx$ - $b\dot{x}$ + $f(t)$

Simple Harmonic Oscillator

The simple harmonic oscillator equation is

$$m\ddot{x} + b\dot{x} + kx = f(t)$$

with constant coefficients m > 0, k > 0, and $b \ge 0$.

Simple Harmonic Oscillator

The simple harmonic oscillator equation is

$$m\ddot{x} + b\dot{x} + kx = f(t)$$

with constant coefficients m > 0, k > 0, and $b \ge 0$.

 When b = 0, the motion is called undamped; otherwise it is damped.

Simple Harmonic Oscillator

The simple harmonic oscillator equation is

$$m\ddot{x} + b\dot{x} + kx = f(t)$$

with constant coefficients m > 0, k > 0, and $b \ge 0$.

- When b = 0, the motion is called undamped; otherwise it is damped.
- If f(t) = 0 for all t, then the equation is homogeneous:

$$m\ddot{x} + b\dot{x} + kx = 0$$

and the motion is called **unforced**, **undriven**, or **free**; otherwise it is called **forced** or **driven**.

Example

Let us consider a mass of 1kg resting on a table that is attached to the wall by a spring.

Example

Let us consider a mass of 1kg resting on a table that is attached to the wall by a spring.

We discover that it takes a force of 1 newton to push the mass 0.25 meters from it's resting position.

$$k = \frac{1 \text{ newton}}{0.25 \text{ meter}} = 4 \frac{\text{newton}}{\text{meter}}$$

Example

Let us consider a mass of 1kg resting on a table that is attached to the wall by a spring.

We discover that it takes a force of 1 newton to push the mass 0.25 meters from it's resting position.

$$k = \frac{1 \text{ newton}}{0.25 \text{ meter}} = 4 \frac{\text{newton}}{\text{meter}}$$

We also measure the damping force of the object sliding on the table to be 0.5 newtons when the velocity is 0.25 meters per second.

$$b = \frac{0.5 \text{ newton}}{0.25 \frac{\text{meter}}{\text{second}}} = 2 \frac{\text{newton second}}{\text{meter}}$$

Example

The object is pulled to the right until the spring is stretched 0.5 meters and then released. (The motion is unforced.)

Example

The object is pulled to the right until the spring is stretched 0.5 meters and then released. (The motion is unforced.) So, the initial conditions are

$$x(0) = 0.5$$
 meters and $\dot{x}(0) = 0 \frac{\text{meter}}{\text{second}}$

Example

The object is pulled to the right until the spring is stretched 0.5 meters and then released. (The motion is unforced.) So, the initial conditions are

$$x(0) = 0.5$$
 meters and $\dot{x}(0) = 0 \frac{\text{meter}}{\text{second}}$

We can now formulate the IVP that describes this system

$$m\ddot{x} + b\dot{x} + kx = f(t)$$

Example

The object is pulled to the right until the spring is stretched 0.5 meters and then released. (The motion is unforced.) So, the initial conditions are

$$x(0) = 0.5$$
 meters and $\dot{x}(0) = 0 \frac{\text{meter}}{\text{second}}$

We can now formulate the IVP that describes this system

$$m\ddot{x} + b\dot{x} + kx = f(t)$$

 $\ddot{x} + 2\dot{x} + 4x = 0$ $x(0) = 0.5, \dot{x}(0) = 0$

Example

The object is pulled to the right until the spring is stretched 0.5 meters and then released. (The motion is unforced.) So, the initial conditions are

$$x(0) = 0.5$$
 meters and $\dot{x}(0) = 0 \frac{\text{meter}}{\text{second}}$

We can now formulate the IVP that describes this system

$$m\ddot{x} + b\dot{x} + kx = f(t)$$

 $\ddot{x} + 2\dot{x} + 4x = 0$ $x(0) = 0.5, \dot{x}(0) = 0$

Notice that a second-order DE requires **two** initial conditions.

Systems of Units

There are three systems of units you are likely to encounter:

Systems of Units

There are three systems of units you are likely to encounter:

• International System of Units (SI).

Systems of Units

There are three systems of units you are likely to encounter:

- International System of Units (SI).
- Centimetre-Gram-Second system of units, a precursor to SI.

Systems of Units

There are three systems of units you are likely to encounter:

- International System of Units (SI).
- Centimetre-Gram-Second system of units, a precursor to SI.
- United States customary units, the variant of Imperial Units that the United States uses.

Systems of Units

There are three systems of units you are likely to encounter:

- International System of Units (SI).
- Centimetre-Gram-Second system of units, a precursor to SI.
- United States customary units, the variant of Imperial Units that the United States uses.

Quantity	SI	CGS	US Customary
Force	newton (N)	dyne	pound (lb)

Systems of Units

There are three systems of units you are likely to encounter:

- International System of Units (SI).
- Centimetre-Gram-Second system of units, a precursor to SI.
- **United States customary units**, the variant of Imperial Units that the United States uses.

Quantity	SI	CGS	US Customary
Force	newton (N)	dyne	pound (lb)
Mass	kilogram (kg)	gram (gm)	slug (lb sec^2/ft)

Systems of Units

There are three systems of units you are likely to encounter:

- International System of Units (SI).
- Centimetre-Gram-Second system of units, a precursor to SI.
- **United States customary units**, the variant of Imperial Units that the United States uses.

Quantity	SI	CGS	US Customary
Force	newton (N)	dyne	pound (lb)
Mass	kilogram (kg)	gram (gm)	slug (lb sec^2/ft)
Length	meter (m)	centimeter (cm)	foot (ft)

Systems of Units

There are three systems of units you are likely to encounter:

- International System of Units (SI).
- Centimetre-Gram-Second system of units, a precursor to SI.
- United States customary units, the variant of Imperial Units that the United States uses.

Quantity	SI	CGS	US Customary
Force	newton (N)	dyne	pound (lb)
Mass	kilogram (kg)	gram (gm)	slug (lb sec^2/ft)
Length	meter (m)	centimeter (cm)	foot (ft)
Energy	joule	erg	foot-pound (ft-lb)

Systems of Units

There are three systems of units you are likely to encounter:

- International System of Units (SI).
- Centimetre-Gram-Second system of units, a precursor to SI.
- United States customary units, the variant of Imperial Units that the United States uses.

Quantity	SI	CGS	US Customary
Force	newton (N)	dyne	pound (lb)
Mass	kilogram (kg)	gram (gm)	slug (lb sec^2/ft)
Length	meter (m)	centimeter (cm)	foot (ft)
Energy	joule	erg	foot-pound (ft-lb)
Gravity (Earth)	9.8 $\frac{m}{s^2}$	980.665 $\frac{\text{cm}}{\text{s}^2}$	$32 \frac{ft}{s^2}$

We can easily guess a solution to

$$m\ddot{x} + kx = 0$$

We can easily guess a solution to

$$m\ddot{x} + kx = 0$$

We know that $(\sin(t))'' = -\sin(t)$ and $(\cos(t))'' = -\cos(t)$. So, a solution to the DE is probably going to contain sines and cosines.

We can easily guess a solution to

$$m\ddot{x} + kx = 0$$

We know that $(\sin(t))'' = -\sin(t)$ and $(\cos(t))'' = -\cos(t)$. So, a solution to the DE is probably going to contain sines and cosines. Comparing

$$(\sin(\omega_0 t))'' = -\omega_0^2 \sin(\omega_0 t)$$
 and $\ddot{x} = -\frac{k}{m}x$

we see that if $\omega_0 = \sqrt{\frac{k}{m}}$, then $x(t) = \sin(\omega_0 t)$ is a solution.

We can easily guess a solution to

$$m\ddot{x} + kx = 0$$

We know that $(\sin(t))'' = -\sin(t)$ and $(\cos(t))'' = -\cos(t)$. So, a solution to the DE is probably going to contain sines and cosines. Comparing

$$(\sin(\omega_0 t))'' = -\omega_0^2 \sin(\omega_0 t)$$
 and $\ddot{x} = -\frac{k}{m}x$

we see that if $\omega_0 = \sqrt{\frac{k}{m}}$, then $x(t) = \sin(\omega_0 t)$ is a solution.

Another solutions is $x(t) = \cos(\omega_0 t)$.

Solution of the Undamped Unforced Oscillator

For the undamped unforced oscillator

$$m\ddot{x} + kx = 0$$

we know two solutions:

$$x(t)=\cos{(\omega_0 t)}$$
 and $x(t)=\sin{(\omega_0 t)}$ where $\omega_0=\sqrt{\frac{k}{m}}$

Solution of the Undamped Unforced Oscillator

For the undamped unforced oscillator

$$m\ddot{x} + kx = 0$$

we know two solutions:

$$x(t)=\cos{(\omega_0 t)}$$
 and $x(t)=\sin{(\omega_0 t)}$ where $\omega_0=\sqrt{\frac{k}{m}}$

The Superposition Principle tells us that any linear combination of these two solutions is itself a solution. Thus, for $c_1,c_2\in\mathbb{R}$, the family of solutions is

$$x(t) = c_1 \cos(\omega_0 t) + c_2 \sin(\omega_0 t)$$

Solution of the Undamped Unforced Oscillator

For the undamped unforced oscillator

$$m\ddot{x} + kx = 0$$

we know two solutions:

$$x(t)=\cos{(\omega_0 t)}$$
 and $x(t)=\sin{(\omega_0 t)}$ where $\omega_0=\sqrt{\frac{k}{m}}$

The Superposition Principle tells us that any linear combination of these two solutions is itself a solution. Thus, for $c_1,c_2\in\mathbb{R}$, the family of solutions is

$$x(t) = c_1 \cos(\omega_0 t) + c_2 \sin(\omega_0 t)$$

We will see next section that these are all of the solutions.

Alternate Form of the Undamped Unforced Oscillator Solution

Solutions to the undamped unforced oscillator may also be expressed as

$$x(t) = A\cos\left(\omega_0 t - \delta\right)$$

- *A* is the **amplitude**
- ullet δ is the **phase angle**, measured in radians.

• The motion has **circular frequency**
$$\omega_o = \sqrt{\frac{k}{m}}$$
, measured in $\frac{\text{radians}}{\text{second}}$

- The natural frequency is $f_0 = \frac{\omega_0}{2\pi}$
- The **period** is $\frac{1}{f_0} = \frac{2\pi}{\omega_0} = 2\pi \sqrt{\frac{m}{k}}$, measured in seconds.
- This is a horizontal translation of $A\cos{(\omega_o t)}$ with **phase shift** $\frac{\partial}{\partial t}$

Alternate Form of the Undamped Unforced Oscillator Solution

$$x(t) = A\cos\left(\omega_0 t - \delta\right)$$

- *A* is the **amplitude**.
- ullet δ is the **phase angle**, measured in radians.
- The motion has **circular frequency** $\omega_o = \sqrt{\frac{k}{m}}$, measured in $\frac{\text{radians}}{\text{second}}$
- The natural frequency is $f_0 = \frac{\omega_0}{2\pi}$
- The **period** is $\frac{1}{f_0} = \frac{2\pi}{\omega_0} = 2\pi \sqrt{\frac{m}{k}}$, measured in seconds.
- This is a horizontal translation of $A\cos{(\omega_o t)}$ with **phase shift** $\frac{c}{\omega}$

Alternate Form of the Undamped Unforced Oscillator Solution

$$x(t) = A\cos\left(\omega_0 t - \delta\right)$$

- A is the amplitude.
- $\bullet~\delta$ is the **phase angle**, measured in radians.
- The motion has **circular frequency** $\omega_o = \sqrt{\frac{k}{m}}$, measured in $\frac{\text{radians}}{\text{second}}$
- The natural frequency is $f_0 = \frac{\omega_0}{2\pi}$
- The **period** is $\frac{1}{f_0} = \frac{2\pi}{\omega_0} = 2\pi \sqrt{\frac{m}{k}}$, measured in seconds.
- This is a horizontal translation of $A\cos{(\omega_o t)}$ with **phase shift** $\frac{c}{\omega}$

Alternate Form of the Undamped Unforced Oscillator Solution

$$x(t) = A\cos\left(\omega_0 t - \delta\right)$$

- *A* is the **amplitude**.
- δ is the **phase angle**, measured in radians.
- The motion has **circular frequency** $\omega_o = \sqrt{\frac{k}{m}}$, measured in $\frac{\text{radians}}{\text{second}}$.
- The natural frequency is $f_0 = \frac{\omega_0}{2\pi}$
- The **period** is $\frac{1}{f_0} = \frac{2\pi}{\omega_0} = 2\pi \sqrt{\frac{m}{k}}$, measured in seconds.
- This is a horizontal translation of $A\cos(\omega_o t)$ with **phase shift** $\frac{\sigma}{\omega}$

Alternate Form of the Undamped Unforced Oscillator Solution

$$x(t) = A\cos\left(\omega_0 t - \delta\right)$$

- A is the amplitude.
- δ is the **phase angle**, measured in radians.
- The motion has **circular frequency** $\omega_o = \sqrt{\frac{k}{m}}$, measured in $\frac{\text{radians}}{\text{second}}$.
- The **natural frequency** is $f_0 = \frac{\omega_0}{2\pi}$.
- The **period** is $\frac{1}{f_0} = \frac{2\pi}{\omega_0} = 2\pi \sqrt{\frac{m}{k}}$, measured in seconds.
- This is a horizontal translation of $A\cos(\omega_o t)$ with **phase shift** $\frac{\partial}{\partial t}$

Alternate Form of the Undamped Unforced Oscillator Solution

$$x(t) = A\cos(\omega_0 t - \delta)$$

- A is the amplitude.
- δ is the **phase angle**, measured in radians.
- The motion has **circular frequency** $\omega_o = \sqrt{\frac{k}{m}}$, measured in $\frac{\text{radians}}{\text{second}}$.
- The **natural frequency** is $f_0 = \frac{\omega_0}{2\pi}$.
- The **period** is $\frac{1}{f_0} = \frac{2\pi}{\omega_0} = 2\pi\sqrt{\frac{m}{k}}$, measured in seconds.
- This is a horizontal translation of $A\cos(\omega_o t)$ with **phase shift** $\frac{\partial}{\partial t}$

Alternate Form of the Undamped Unforced Oscillator Solution

$$x(t) = A\cos(\omega_0 t - \delta)$$

- A is the amplitude.
- δ is the **phase angle**, measured in radians.
- The motion has **circular frequency** $\omega_o = \sqrt{\frac{k}{m}}$, measured in $\frac{\text{radians}}{\text{second}}$.
- The **natural frequency** is $f_0 = \frac{\omega_0}{2\pi}$.
- The **period** is $\frac{1}{f_0} = \frac{2\pi}{\omega_0} = 2\pi\sqrt{\frac{m}{k}}$, measured in seconds.
- This is a horizontal translation of $A\cos(\omega_o t)$ with **phase shift** $\frac{\delta}{\omega_0}$.

Converting from one form to the other

The translation is given by

$$A=\sqrt{c_1^2+c_2^2}, \qquad an\left(\delta
ight)=rac{c_2}{c_1}$$

and

$$c_1 = A\cos(\delta), \qquad c_2 = A\sin(\delta)$$

Example

Let us solve the following second-order IVP.

$$\ddot{x} + x = 0$$
, $x(0) = 0$, $\dot{x}(0) = 1$

Example

Let us solve the following second-order IVP.

$$\ddot{x} + x = 0$$
, $x(0) = 0$, $\dot{x}(0) = 1$

So,
$$m = 1$$
, $k = 1$, and $\omega_0 = \sqrt{\frac{1}{1}} = 1$.

Example

Let us solve the following second-order IVP.

$$\ddot{x} + x = 0$$
, $x(0) = 0$, $\dot{x}(0) = 1$

So,
$$m = 1$$
, $k = 1$, and $\omega_0 = \sqrt{\frac{1}{1}} = 1$.

The general solution is

$$x(t) = c_1 \cos(t) + c_2 \sin(t)$$

and differentitating gives

$$\dot{x} = -c_1 \sin(t) + c_2 \cos(t)$$

Example

Let us solve the following second-order IVP.

$$\ddot{x} + x = 0$$
, $x(0) = 0$, $\dot{x}(0) = 1$

So,
$$m = 1$$
, $k = 1$, and $\omega_0 = \sqrt{\frac{1}{1}} = 1$.

The general solution is

$$x(t) = c_1 \cos(t) + c_2 \sin(t)$$

and differentitating gives

$$\dot{x} = -c_1 \sin(t) + c_2 \cos(t)$$

Substituting t = 0, x(0) = 0, and $\dot{x}(0) = 1$ into this system gives the solution $c_1 = 0$ and $c_2 = 1$.

Example

Let us look at some plots concerning $\ddot{x} + 0.25x = 0$:

Phase Portraits

For any autonomous second-order differential equation

$$\ddot{x} = F(x, \dot{x})$$

the **phase plane** is the two-dimensional graph with x and \dot{x} axes.

Phase Portraits

For any autonomous second-order differential equation

$$\ddot{x} = F(x, \dot{x})$$

the **phase plane** is the two-dimensional graph with x and \dot{x} axes. The phase plane has a **vector field** specified by the DE, which at any point in the phase plane gives a direction vector with

horizontal component $dx/dt = \dot{x}$ vertical component $d\dot{x}/dt = \ddot{x}$

Phase Portraits

For any autonomous second-order differential equation

$$\ddot{x} = F(x, \dot{x})$$

the **phase plane** is the two-dimensional graph with x and \dot{x} axes. The phase plane has a **vector field** specified by the DE, which at any point in the phase plane gives a direction vector with

horizontal component $dx/dt = \dot{x}$ vertical component $d\dot{x}/dt = \ddot{x}$

A **trajectory** is a path formed parametrically by the DE solutions x(t) and $\dot{x}(t)$ as they follow the vector field. A graph showing phase plane trajectories is called a **phase portrait**.

Phase Portraits

For any autonomous second-order differential equation

$$\ddot{x} = F(x, \dot{x})$$

the **phase plane** is the two-dimensional graph with x and \dot{x} axes. The phase plane has a **vector field** specified by the DE, which at any point in the phase plane gives a direction vector with

horizontal component
$$dx/dt = \dot{x}$$

vertical component $d\dot{x}/dt = \ddot{x}$

A **trajectory** is a path formed parametrically by the DE solutions x(t) and $\dot{x}(t)$ as they follow the vector field. A graph showing phase plane trajectories is called a **phase portrait**.

Note: Phase portraits can be graphed without solving the DE.

Definition

The second-order differential equation

$$m\ddot{x} + b\dot{x} + kx = f(t)$$

is equivalent to the system of first-order equations:

$$\dot{x} = y$$
 $\dot{y} = \ddot{x} = \frac{f(t)}{m} - \frac{k}{m}x - \frac{b}{m}y$

Definition

The second-order differential equation

$$m\ddot{x} + b\dot{x} + kx = f(t)$$

is equivalent to the system of first-order equations:

$$\dot{x} = y$$

$$\dot{y} = \ddot{x} = \frac{f(t)}{m} - \frac{k}{m}x - \frac{b}{m}y$$

Example

To draw the vector field for $\ddot{x} + 0.25x = 0$ we can build the system:

Definition

The second-order differential equation

$$m\ddot{x} + b\dot{x} + kx = f(t)$$

is equivalent to the system of first-order equations:

$$\dot{x} = y$$
 $\dot{y} = \ddot{x} = \frac{f(t)}{m} - \frac{k}{m}x - \frac{b}{m}y$

Example

To draw the vector field for $\ddot{x} + 0.25x = 0$ we can build the system:

$$\dot{x} = y
\dot{y} = 0.25x$$

Definition

The second-order differential equation

$$m\ddot{x} + b\dot{x} + kx = f(t)$$

is equivalent to the system of first-order equations:

$$\dot{x} = y$$
 $\dot{y} = \ddot{x} = \frac{f(t)}{m} - \frac{k}{m}x - \frac{b}{m}y$

Example

To draw the vector field for $\ddot{x} + 0.25x = 0$ we can build the system:

$$\dot{x} = y$$
 $\dot{y} = 0.25x$

Then, pplane may be used to plot the phase portrait.

Electrical Circuits

The current I in a wire, measured in amperes, is the flow of charge Q. That is, the current is the rate of change of the charge

$$I(t) = \dot{Q}(t)$$

Electrical Circuits

The current I in a wire, measured in amperes, is the flow of charge Q. That is, the current is the rate of change of the charge

$$I(t) = \dot{Q}(t)$$

Kirchoff's Voltage Law tell us that the input voltage V(t) is the sum of voltage drops around the circuit. In our circuit, we have three such voltage drops.

Electrical Circuits

Drop across a Resistor: By **Ohm's Law**, the voltage drop across a resistor is proportional to the current passing through it.

$$V_R(t) = RI(t)$$

Where *R* is the **resistance** of the resistor and is measured in *ohms*.

Electrical Circuits

Drop across an Inductor: By Faraday's Law, the voltage drop across an inductor is proportional to the time rate of change of the current passing through it.

$$V_L(t) = L\dot{I}(t)$$

where *L* is the **inductance** and is measured in *henries*.

Electrical Circuits

Drop across a Capacitor: The voltage drop across a capacitor is proportional to the charge Q(t) on the capacitor.

$$V_C(t) = rac{1}{C}Q(t) = rac{1}{C}\int I(t)dt$$

where *C* is the **capacitance** of the capacitor and is measured in *farads*.

Electrical Circuits

Thus, the voltage drop across the circuit is

$$V(t) = RI + L\dot{I} + \frac{1}{C}\int I(t)dt$$

This is called an **integro-differential equation** because it contains both a derivative and an integral.

Using the fact that $I(t) = \dot{Q}(t)$ we can build the following equations.

Using the fact that $I(t) = \dot{Q}(t)$ we can build the following equations.

Series Circuit Equation (Charge)

$$L\ddot{Q} + R\dot{Q} + \frac{1}{C}Q = V(t)$$

If there is no voltage source (V(t) = 0), then

$$L\ddot{Q} + R\dot{Q} + \frac{1}{C}Q = 0$$

Using the fact that $I(t) = \dot{Q}(t)$ we can build the following equations.

Series Circuit Equation (Charge)

$$L\ddot{Q} + R\dot{Q} + \frac{1}{C}Q = V(t)$$

If there is no voltage source (V(t) = 0), then

$$L\ddot{Q} + R\dot{Q} + \frac{1}{C}Q = 0$$

Series Circuit Equation (Current)

$$L\ddot{I} + R\dot{I} + \frac{1}{C}I = \dot{V}(t)$$

If there is no voltage source (V(t) = 0), then

$$L\ddot{I} + R\dot{I} + \frac{1}{6}I = 0$$

Example

Consider a circuit composed of a capacitor and inductor hooked up in series. Suppose that at t=0 a charge Q_0 is put on the capacitor.

Example

Consider a circuit composed of a capacitor and inductor hooked up in series. Suppose that at t=0 a charge Q_0 is put on the capacitor.

The IVP is

$$L\ddot{Q} + \frac{1}{C} = 0, \quad Q(0) = Q_0, \quad \dot{Q}(0) = 0$$

Example

Consider a circuit composed of a capacitor and inductor hooked up in series. Suppose that at t=0 a charge Q_0 is put on the capacitor.

The IVP is

$$L\ddot{Q} + \frac{1}{C} = 0, \quad Q(0) = Q_0, \quad \dot{Q}(0) = 0$$

Thus, the solution is

$$Q(t) = c_1 \cos(\omega_0 t) + c_2 \sin(\omega_0 t)$$

where

$$\omega_0 = \sqrt{\frac{1}{LC}}$$