Graph Convolutional Network

Lexa

Rec-sys 04 March 21, 2022

Outline

- **Preliminaries**
- Graph convolution and Fourier transform
 - Laplacian matrix
 - Basic concepts on linear algebra
 - Graph Fourier transform and convolution
- Mathematical review on the paper

Outline

- Preliminaries
- 2 Graph convolution and Fourier transform
 - Laplacian matrix
 - Basic concepts on linear algebra
 - Graph Fourier transform and convolution
- Mathematical review on the paper

What is the convolution?

Let $f, g : \mathbb{R} \to \mathbb{R}$. For $x \in \mathbb{R}$,

$$(f*g)(x) := \int_{-\infty}^{\infty} f(x-y)g(y)dy = \int_{-\infty}^{\infty} g(x-y)f(y)dy.$$

Let $f, g : \mathbb{R} \to \mathbb{R}$. For $x, \xi \in \mathbb{R}$,

$$\mathcal{F}[f](\xi) := \int_{-\infty}^{\infty} f(x)e^{-2\pi ix\xi} dx, \quad \mathcal{F}^{-1}[f](x) := \mathcal{F}[f](-x)$$

Note: The convolution and Fourier transform are operators, that means,

input, output = functions.

Properties of FT and convolution

Let $f, g : \mathbb{R} \to \mathbb{R}$.

The composition of \mathcal{F} and \mathcal{F}^{-1} are identity. That means,

$$\mathcal{F}[\mathcal{F}^{-1}[f]] = f, \quad \mathcal{F}^{-1}[\mathcal{F}[g]] = g.$$

The Fourier transform of convolution is a pointwise multiplication.

$$\mathcal{F}[f * g] = \mathcal{F}[f]\mathcal{F}[g].$$

Outline

- Graph convolution and Fourier transform
 - Laplacian matrix
 - Basic concepts on linear algebra
 - Graph Fourier transform and convolution

Laplacian matrix

Let G = (V, E) be a graph. Here, V is the set of nodes and E is the set of edges. A graph laplacian $L_G = D - A$, where D is the degree matrix and A is the adjacency matrix.

Laplacian matrix

We say that $N \times N$ matrix L is a *symmetric* matrix if

$$L = L^T$$
.

Theorem

Let G = (V, E) be a undirected graph with |V| = N, |E| = M.

- **1** The graph laplacian L_G is a real symmetric matrix.
- 2 There exists a $M \times N$ matrix B such that.

$$L_G = B^T B$$
.

Laplacian matrix

Therefore, for $x \in \mathbb{R}^N$,

$$x^{T}L_{G}x = x^{T}B^{T}Bx = \|Bx\|_{2}^{2} \ge 0.$$

This implies that L_G is positive semidefinite, thus,

$$0=\lambda_1\leq\cdots\leq\lambda_N,$$

where λ_i 's are eigenvalues of L_G .

Remark

We can easily find the smallest eigenvalue λ_1 and its eigenvector v_1 . Let

$$v_1:=(1/\sqrt{N},\cdots,1/\sqrt{N}).$$

Then,

$$L_G v_1 = (0, \cdots, 0).$$

Basic concepts on linear algebra

We say that a set of vectors $\{e_1,\cdots,e_m\}\subset\mathbb{R}^d$ is orthonormal if $\|e_i\|_2=1$ for all $i=1,\cdots,m$ and

$$\langle e_i, e_j \rangle = 0$$
 for $i \neq j$.

$\mathsf{Theorem}$

Let A be a $N \times N$ matrix. The followings are equivalent.

- A is real and symmetric.
- ① All eigenvalues are real and a set of eigenvectors $\{v_1, \dots, v_N\}$ is orthonormal and linearly independent.

Consequently, the graph laplacian L_G is represented by $Q\Lambda Q^T$ where $\Lambda = diag\{\lambda_1, \dots, \lambda_N\}$ and $Q = [v_1, \dots, v_N]$. (v_i is a column vector)

We say that $f:V\to\mathbb{R}$ is a graph signal. Any graph signal f can be represented by

$$f: V \to \mathbb{R} \iff F = (f(V_1), \cdots, f(V_N)) \in \mathbb{R}^N.$$

A graph Fourier transform of signal F are defined by

$$\mathcal{F}[F] := Q^T F$$

A graph FT of F can be represented by

$$\mathcal{F}[F] = (v_1^T F, \cdots, v_N^T F) \in \mathbb{R}^N \quad \Longleftrightarrow \quad \mathcal{F}[f] : \{\lambda_1, \cdots, \lambda_N\} \to \mathbb{R},$$

where

Preliminaries

$$\mathcal{F}[f](\lambda_i) := \mathbf{v}_i^T F.$$

A graph inverse Fourier transform of $g: \{\lambda_1, \dots, \lambda_N\} \to \mathbb{R}$ are defined by

$$\mathcal{F}^{-1}[g] := QG, \quad G := (g(\lambda_1), \cdots, g(\lambda_N)).$$

Graph Fourier transform

Summarizing this, GFT, IGFT : $\mathbb{R}^N \to \mathbb{R}^N$.

Graph convolution

For $x, y \in \mathbb{R}^N$ (signals), a graph convolution of x and y is defined by

$$x * y := \mathcal{F}^{-1}[\mathcal{F}[x]\mathcal{F}[y]] = Q[diag(Q^Tx)](Q^Ty).$$

Outline

Preliminaries

- - Laplacian matrix
 - Basic concepts on linear algebra
 - Graph Fourier transform and convolution
- Mathematical review on the paper

Normalized laplacian matrix

For a given graph G=(V,E), a normalized graph laplacian \widetilde{L}_G is defined by

$$\tilde{L}_G = D^{-1/2} L_G D^{-1/2} = I_N - D^{-1/2} A D^{-1/2}.$$

Remark

In general, we don't know upper bounds of eigenvalues of L_G . However, by mathematical computation (omit), we conclude that

$$0=\tilde{\lambda}_1\leq\cdots,\leq\tilde{\lambda}_N\leq 2,$$

where $\tilde{\lambda}_i$'s are eigenvalues of \tilde{L}_G . From now and after, U is a matrix of eigenvectors of \tilde{L}_G and $\Lambda = diag\{\tilde{\lambda}_1, \cdots, \tilde{\lambda}_N\}$.

Preliminaries

For
$$\theta=(\theta_1,\cdots,\theta_N)\in\mathbb{R}^N$$
, $g_\theta:\{\tilde{\lambda}_1,\cdots,\tilde{\lambda}_N\}\to\mathbb{R}^N$ $g_\theta(\tilde{\lambda}_i)=\theta_i$.

Hence, we denote

$$g_{\theta}(\Lambda) = diag\{\theta_1, \cdots, \theta_N\}, \quad G_{\theta} := \mathcal{F}^{-1}[g_{\theta}(\Lambda)] = Qg_{\theta}(\Lambda).$$

The spectral convolution of signal $x \in \mathbb{R}^N$ with filter $g_{\theta} = g_{\theta}(\Lambda)$ is defined bν

$$g_{\theta} \star x := G_{\theta} * x = Ug_{\theta}(\Lambda)U^{T}x$$

Note: To calculate this, we need eigendocomposition of \tilde{L}_G . However. this is computationally expansive. \rightarrow Approximation!

Chebyshev polynomials

The Chebyshev polynomials T_n $(n = 1, 2, \dots)$ is defined by

$$T_0(x) = 1$$
, $T_1(x) = x$, $T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)$.

Theorem

Let $f: [-1,1] \to \mathbb{R}$ be a piecewise smooth and continuous. Then, there exists $\{a_0, a_1, \dots\} \subset \mathbb{R}$ such that

$$f(x) = \sum_{n=0}^{\infty} a_n T_n(x).$$

Note: Since $0 = \tilde{\lambda}_0 < \dots < \tilde{\lambda}_N < 2$

$$-1 \leq \frac{2}{\tilde{\lambda}_N} \tilde{\lambda}_i - 1 \leq 1.$$

Chebyshev polynomials

In [Wavelets on Graphs via Spectral Graph Theory, 2012], the authors proved that

$$g_{\theta}(\Lambda) \approx \sum_{i=0}^{K} \theta'_{k} T_{k}((2/\tilde{\lambda_{N}})\Lambda - I_{N}).$$

Therefore,

$$Ug_{\theta}(\Lambda)U^{T} \approx \sum_{i=0}^{K} \theta'_{k} UT_{k}((2/\tilde{\lambda_{N}})\Lambda - I_{N})U^{T}$$

and using the fact that

$$U((2/\tilde{\lambda_N}) \Lambda - I_N)^k U^T = (U[(2/\tilde{\lambda_N}) \Lambda - I_N] U^T)^k = ((2/\tilde{\lambda_N}) \tilde{L}_G - I_N)^k$$

=: $(\bar{L}_G)^k$,

we have

$$g_{\theta} \star x = Ug_{\theta}(\Lambda)U^Tx \approx \sum_{i=0}^K \theta'_k T_k(\bar{L}_G)x.$$
 (More computable!)

Layer-wise linear model

In this article, the authors assume that $\tilde{\lambda_N} \approx 2$. Using first order approximation (K=1),

$$g_{\theta} \star x \approx \theta'_{0}x + \theta'_{1}\bar{L}_{G}x = \theta'_{0}x - \theta'_{1}(D^{-1/2}AD^{-1/2})x.$$

Here, we have two free parameters, θ_0', θ_1' . The authors claim that $\theta_0'=-\theta_1'=\theta''$, thus,

$$g_{\theta} \star x \approx \theta'' (I_N + D^{-1/2}AD^{-1/2})x.$$

For numerical stability, the authors used renormalization ttrick;

$$g_{\theta} \star x \approx \theta''(\bar{D}^{-1/2}\bar{A}\bar{D}^{-1/2})x,$$

where $\bar{A} := A + I_N$ and $\bar{D} := D + I_N$.

Layer-wise linear model

Now, we consider a signal vector $X=(X_1,\cdots,X_C)$. Each signal represents different features. That means, a signal is a matrix $X\in\mathbb{R}^{N\times C}$. Let $\Theta\in\mathbb{R}^{C\times F}$ be a matrix of filter parameters (weight matrix). Then, the convolution of X with filter Θ is defined by

$$Z:=(\bar{D}^{-1/2}\bar{A}\bar{D}^{-1/2})X\Theta\in\mathbb{R}^{N imes F}.$$