Exercícios - Conceitos básicos

Matheus Souza D'Andrea Alves

2018.2

1.1

Tal demonstração é proporcional a demonstrar que em qualquer grafo com $n \geq 6$ ou existe um K_3 ou um I_3 induzido.

Suponha por absurdo que G não possui nem K_3 ou I_3 induzidos. Observe que se G é bipartido ele necessariamente possui um I_3 , para que não exista é necessário um ciclo ímpar.

Porém ele não pode possuir um K_3 e portanto deve possuir um ciclo de tamanho 5, pois ciclos de tamanho maior que 5 possuem I_3 .

Como sabemos que G não possuí um ciclo induzido de tamanho 3 todo ciclo de tamanho cinco é da seguinte forma

Figura 1: C_5

Observe que neste C_5 sempre é possível obter um I_2 . Sabemos que G possui pelo menos seis vértices, suponha sem perda de generalidade um $I_2 = \{D, C\}$, suponha um vértice $v \in V(G) - V(C_5)$ para que não exista um I_3 em G é necessário que v seja vizinho de pelo menos s dos seguintes vértices s0, s0, s0, s0, s1, porém qualquer composição dessa nos dá um s3 e é portanto absurda .

Logo todo G com n > 5 possui ou um K_3 ou um I_3 .

1.2

Suponha que G é um grafo conexo que possui 2 caminhos distintos de forma que $|p_1| = |p_2|$ onde ambos são os maiores caminhos. Como G é conexo existe pelo menos um caminho entre quaisquer vértices de p_1 e p_2 , porém tal caminho é absurdo pois se o mesmo existir p_1 e p_2 não são os maiores caminhos, já que o caminho necessário teria uma soma dos vértices de p_1 e p_2 .

1.3

Suponha $u,v \in V(G)$ os vértices de grau ímpar. Sem perda de generalidade considere u, como u possui grau ímpar ele precisa possuir necessariamente pelo menos um vizinho. Se tal vizinho w_1 não é v então w_1 é par e precisa de mais um vizinho, e assim sucessivamente.

Figura 2: Construção

Observe que tal recursão só para quando ou existe um ciclo ou se atinge um vértice de grau ímpar (i.e v). Porém para que qualquer w_i seja o fecho de um ciclo e não seja necessário a adição de mais um vértice ele precisa ser v e portanto $\exists P[u,v]$