Fixpoint Theorem

July 8, 2016

Theorem 1. Every continuous function $f: X \to X$ has a least fixpoint, which is the limit of the chain $\bot \sqsubseteq f(\bot) \sqsubseteq f^2(\bot) \sqsubseteq ...$

Proof. Define the fixpoint function $fix(f) \equiv \sqcup f^i(\bot)$. This is the limit of the chain in the theorem. We know this limit exists because as f is continuous, (X, \sqsubseteq, \bot) must form a domain, and by the definition of domain, all chains of X have a limit.

 $\sqcup f^i(\bot)$ is a fixpoint For the limit to be a fixpoint we must have $f(\sqcup f^i(\bot)) = \sqcup f^i(\bot)$. As f is continuous, we have $f(\sqcup f^i(\bot)) = \sqcup f(f^i(\bot)) = \sqcup f^{i+1}(\bot)$. The chain formed by f^{i+1} is $f(\bot) \sqsubseteq f^2(\bot) \sqsubseteq \ldots$ This is the same as our original chain, but without \bot at the start. Because X is a domain, we know that X has a least element, so $\forall x \in X$. $\bot \sqsubseteq x$. Therefore \bot has no effect on the limit because every element is higher than it, so removing \bot will not change the limit. This means that $\sqcup f^{i+1}(\bot) = \sqcup f^i(\bot)$.

 $\sqcup f^i(\bot)$ is the least fixpoint Let x be an element of our chain such that fix(x) = x. Then for $\sqcup f^i(\bot)$ to be the least fixpoint, we must have $\sqcup f^i(\bot) \sqsubseteq x$, so x is an upper bound that is higher than $\sqcup f^i(\bot)$. To prove this, first we prove x is an upper bound, so $\forall n$. $f^n(\bot) \sqsubseteq x$. We prove by this by induction on n:

if n = 0, then $f^0(\bot) \sqsubseteq x$, This is the same as $\bot \sqsubseteq x$, which is true because \bot is the least element of the chain.

Our inductive hypothesis is $f^n(\bot) \sqsubseteq x$. As f is continous, f is monotone, so $f(f^n(\bot)) \sqsubseteq f(x) = f^{n+1}(\bot) \sqsubseteq x$. Therefore we know that for any element $f^n(\bot)$ in the chain, $f^n(\bot) \sqsubseteq x$.

As $\sqcup f^i(\bot)$ is a least upper bound, we know that $\forall x \in X$. $\forall n. (f^n(\bot) \sqsubseteq x) \Rightarrow \sqcup f^i(\bot) \sqsubseteq x$. We have just proved the left hand side of this, so we now have $\sqcup f^i(\bot) \sqsubseteq x$.

Now we have proved that $\sqcup f^i(\bot)$ is the least fixpoint of f.