Lecture - 3, Indeterminate forms (contd---)

Some Standard Machiarin's Series

1)
$$Smx = 7 - \frac{\pi^3}{3!} + \frac{\pi^5}{5!} - \cdots$$

$$9 \text{ mod}$$
 $y = S \text{ min}$
 $y(0) = S \text{ mo} = 6$
 $y_1 = C \text{ sin}$
 $y_1 = C \text{ sin}$
 $y_2 = C \text{ min}$

$$y_1 = (x)^{2}$$

$$y_1 = (3)^{3}$$

 $y_2 = -S_{mn}$
 $y_3 = -(3)^{3}$
 $y_3 = -(3)^{3}$
 $y_4 = S_{mn}$
 $y_5 = (3)^{3}$
 $y_5 = (3)^{3}$
 $y_6 = -(3)^{3}$
 $y_7 = (3)^{3}$
 $y_7 = (3)^{3}$

$$y_{+}(0) = 0 = 0$$

$$y_{5} = \cos x$$
 $y_{5}(0) = \cos 0$
Machiasins
 $y_{5} = \cos x$ $y_{5}(0) = \cos 0$
 $y_{5}(0) = \cos 0$

$$x) = f(0) + \chi f(0) + \frac{\chi}{2} f(0) + \frac{\chi}{3} f(0)$$

$$S(m) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$$

2) Sunha =
$$\frac{2}{3!} + \frac{3}{5!} + \frac{3}{7!} + - \cdots$$

3) (8)
$$x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$$

4) Cosh
$$x = 1 + \frac{2^2}{2!} + \frac{2^4}{4!} + --$$

5)
$$lam 2 = 71 + \frac{2}{3} + \frac{2}{15}x^{5} + \cdots$$

6)
$$e^{\chi} = 1 + \chi + \frac{\chi^2}{2!} + \frac{\chi^3}{3!} + - \cdots$$

7)
$$\log(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots$$

8)
$$\log(1-x) = -\left[x + \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + --\right]$$

$$e^{Smx} = \frac{Smx}{2!} + \frac{(Smx)^{2}}{3!} + \frac{(Smx)^{3}}{3!} + \dots$$
 $e^{Smx} = \frac{1 + Smx + (Smx)^{2}}{2!} + \frac{(Smx)^{3}}{3!} + \dots$
 $e^{Smx} = \frac{1 + Smx + (Smx)^{2}}{2!} + \frac{(Smx)^{3}}{3!} + \dots$

3) ft (
$$a^{1/2} - 1$$
) x

Solution the ($a^{1/2} - 1$) x ($a^{1/2} - 1$) x ($a^{1/2} - 1$) x

Let $a^{1/2} - 1$ ($a^{1/2} - 1$) x

Put $a = 1$
 $a^{1/2} - 1$

Let $a = 1$

Solution
$$\frac{1}{2}$$
 log $\left(\frac{Sinhx}{x}\right)$
Solution $\frac{1}{2}$ log $\left(\frac{Sinhx}{x}\right)$ $\left(\frac{0}{0}\right)$
 $\frac{1}{2}$ $\frac{1}{2$

Lim
$$(2a) - x$$
 $(2a)$ $(2a)$

$$\frac{\sin x}{x^{2} + \frac{x^{4}}{5!}} = \frac{1}{1+(\omega x)} = \frac{1}{1+(\omega x)$$

(1-Con)(1+Con)

$$\frac{\left[\text{Sm}^{2} n - n^{2} \right]}{n^{2} n^{2}} \frac{\text{Sm}^{2} n}{n^{2}} \frac{\text{Sm}^{2} n}{n^{2}} \frac{\text{Sm}^{2} n}{n^{4}} \frac{\text{Sm}^{2} n - n^{2}}{n^{4}} \frac{\text{O}}{\text{O}}$$

$$\frac{\text{M}}{\text{M}} \frac{\text{Sm}^{2} n - 2n}{n^{4}} \frac{\text{O}}{\text{O}}$$

$$\frac{\text{M}}{\text{M}} \frac{\text{M}}{\text{M}} \frac{\text{M}}{\text{M}} \frac{\text{M}}{\text{M}} \frac{\text{M}}{\text{M}} \frac{\text{M}}{\text{M}}$$

$$\frac{\text{M}}{\text{M}} \frac{\text{M}}{$$

His dim
$$(\frac{1}{2} - \cot^2 x)$$
 (a) $\int_{x\to 0}^{\infty} \frac{1}{x} - \cot^2 x$

Ans $= (\frac{1}{2})$ (Ans $= \frac{1}{2}$)

N ($\int_{x\to a}^{\infty} \int_{x\to a}^{\infty} \int_{x\to 0}^{\infty} \int_{x\to a}^{\infty} \int_{$

4)
$$\lim_{N\to 0} \left(\frac{a^{2}+b^{2}}{2}\right)^{\frac{1}{2}}$$

Solution $\left(\frac{a^{2}+b^{2}}{2}\right)^{\frac{1}{2}}$
 $\log y = \lim_{N\to 0} \frac{1}{a^{2}+b^{2}} \left(\frac{a^{2}\log a+b^{2}\log b}{2}\right)$
 $= \frac{\log a+\log b}{2}$
 $= \frac{\log a+\log b}{2}$
 $= \frac{\log a}{2} = \log \left(ab\right)^{\frac{1}{2}}$
 $y = \left(ab\right)^{\frac{1}{2}} \text{ or } \sqrt{ab}$

1) $\lim_{N\to 0} \left(\frac{1}{2}\right)^{\frac{1}{2}} \left(\frac{1$