To Do

Read Sections 6.1 – 6.2.

Assignment 4 is due Friday November 25.

Last Class

- (1) Least Squares Estimates
- (2) Simple Linear Regression Model
- (3) Maximum Likelihood Estimates for Simple Linear Regression Model

Today's Class

- (1) Distribution of $\tilde{\beta}$ the Maximum Likelihood Estimator of the Slope (with Proof)
- (2) Distribution of S_e^2 the Estimator of σ^2 (no Proof)

Least Squares Line

The least squares line is

$$y = \hat{\alpha} + \hat{\beta}x$$

where

$$\hat{\beta} = \frac{S_{XY}}{S_{XX}}$$
 and $\hat{\alpha} = \overline{y} - \hat{\beta} \overline{x}$

STAT 231 versus STAT 230 Scatterplot with Least Squares Line

Least Squares and Estimation

The least squares line can be used to estimate y for a given x:

$$y = \hat{\alpha} + \hat{\beta}x$$

However to quantity the uncertainty in this estimate we need a statistical model.

Simple Linear Regression Model

For data (x_i, y_i) , i = 1, 2, ..., nwe assume the model

$$Y_i \sim G(\alpha + \beta x_i, \sigma)$$
 for $i = 1, 2, ..., n$
independently and where the x_i 's, $i = 1, 2, ..., n$
are assumed to be known constants.

Theorem

For the model

$$Y_i \sim G(\alpha + \beta x_i, \sigma)$$
 for $i = 1, 2, ..., n$

independently where the x_i 's, i = 1,2,...,n are known constants, the maximum likelihood estimates of α and β are given by

$$\hat{\beta} = \frac{S_{XY}}{S_{XY}}$$
 and $\hat{\alpha} = \overline{y} - \hat{\beta} \, \overline{x}$

which are also the least squares estimates.

Interval Estimation

Now that we have a statistical model for our data we can now develop a pivotal quantity which can be used to find an interval estimate for the STAT 231 final grade for a student with a STAT 230 final grade of x.

This will require several other results first.

Theorem – Distribution of $\widetilde{\beta}$

$$Y_i \sim G(\alpha + \beta x_i, \sigma)$$
 for $i = 1, 2, ..., n$

independently where the x_i 's, i = 1,2,...,n are known constants and then

$$\widetilde{\beta} \sim G\left(\beta, \frac{\sigma}{\sqrt{S_{XX}}}\right)$$

where

$$\widetilde{\beta} = \frac{S_{XY}}{S_{XX}} = \frac{1}{S_{XX}} \sum_{i=1}^{n} (x_i - \overline{x}) (Y_i - \overline{Y}) = \sum_{i=1}^{n} \frac{(x_i - \overline{x})}{S_{XX}} Y_i$$

Pivotal Quantity for β

Since

$$\widetilde{\beta} \sim G \left(\beta, \frac{\sigma}{\sqrt{S_{XX}}} \right)$$

then

$$\frac{\widetilde{\beta} - \beta}{\sigma / S_{XX}} \sim G(0,1)$$

is a pivotal quantity which could be used for finding confidence intervals and a test statistic if we knew σ . Usually we don't know σ .

Estimate of σ^2 in Simple Linear Regression

In general σ^2 is unknown so we estimate it using

$$s_e^2 = \frac{1}{n-2} \sum_{i=1}^n (y_i - \hat{\alpha} - \hat{\beta}x_i)^2$$

Note:
$$\sum_{i=1}^{n} \left(y_i - \hat{\alpha} - \hat{\beta} x_i \right)^2$$

is called the sum of squared errors and s_e^2 is called the mean squared error.

 s_e^2 is more easily calculated using

$$s_e^2 = \frac{1}{n-2} \left(S_{YY} - \hat{\beta} S_{XY} \right)$$

Estimate of σ^2 in Simple Linear Regression

 s_e^2 is not the maximum likelihood estimate of σ^2 but we use it to estimate σ^2 since $E(S_e^2) = \sigma^2$ where

$$S_e^2 = \frac{1}{n-2} \sum_{i=1}^n \left(Y_i - \widetilde{\alpha} - \widetilde{\beta} x_i \right)^2$$

$$\widetilde{\beta} = \frac{1}{S_{yy}} \sum_{i=1}^{n} (x_i - \overline{x})^2 Y_i$$
 and $\widetilde{\alpha} = \overline{Y} - \widetilde{\beta} \overline{x}$

Distribution of S_e^2

It can also be shown that

$$\frac{(n-2)S_e^2}{\sigma^2} \sim \chi^2(n-2)$$

Note that there are *n* - 2 degrees of freedom due to the two restrictions:

$$\sum_{i=1}^{n} \left(y_i - \widetilde{\alpha} - \widetilde{\beta} x_i \right) = 0 \quad \text{and}$$

$$\sum_{i=1}^{n} \left(y_i - \widetilde{\alpha} - \widetilde{\beta} x_i \right) x_i = 0$$

These 2 equations in 2 unknowns determine the maximum likelihood estimates of α and β .

Theorem

Since

$$\frac{\widetilde{\beta} - \beta}{\sigma / \sqrt{S_{XX}}} \sim G(0,1) \text{ and } \frac{(n-2)S_e^2}{\sigma^2} \sim \chi^2(n-2)$$

independently then

$$\frac{\widetilde{\beta} - \beta}{S_e / \sqrt{S_{XX}}} \sim t(n-2)$$

This pivotal quantity can be used to construct confidence intervals and test hypotheses for β .