

Compléments sur les groupes

Je me souviens			
	1.1	Loi de composition interne	
	1.2	Structure de groupe	
	1.3	Morphisme de groupes	
	1.4	Les entiers	
Cours			
2	Sous-	groupe engendré par une partie	
3		ude : le groupe $(\mathbb{Z}/n\mathbb{Z},+)$	
4		pes monogènes et groupes cycliques	
5		e d'un élément dans un groupe	
6		Xes	
U	6.1	Annexe: pourquoi l'ordre d'un élément divise le cardinal du groupe	
	6.2	Annexe : théorème de Lagrange	
Exerci	ces		
Exe	rcices e	et résultats classiques à connaître	
LAC		ntre d'un groupe	
		bus-groupes de $(\mathbb{R},+)$	
Erro			
Pet	ıts proc	olèmes d'entrainement	

Je me souviens

1.1 Loi de composition interne

- 1. Qu'est-ce qu'une loi de composition interne?
- 2. Comment noter une loi de composition interne?
- 3. Que signifient :
 - associatif?
 - commutatif?
 - élément neutre?
 - symétrique?
- 4. Soit E un ensemble, muni d'une loi de composition interne *. On suppose l'existence d'un élément neutre noté e. Soit a et b deux éléments de E qui admettent un symétrique. Est-ce que (a*b) admet un symétrique?
- 5. Pour un élément a et un entier n, qu'est-ce que a^n ?
- 6. Qu'est-ce qu'une partie stable de E pour *?

1.2 Structure de groupe

- 7. C'est quoi, un groupe?
- 8. C'est quoi, un groupe abélien?
- 9. Donner des exemples de groupes.
- 10. Comment définir le **groupe produit** de deux groupes?
- 11. C'est quoi, un sous-groupe?
- 12. Quels sont les deux sous-groupes triviaux de (G, *)?

1.3 Morphisme de groupes

- 13. Qu'est-ce qu'un morphisme de groupe?
- 14. Donner des exemples de morphismes de groupes.

On considère $f:(G,*)\to (H,\cdot)$ un morphisme de groupe.

- 15. Quelle est l'image du neutre, du symétrique, par f?
- 16. Que dire de l'image (directe) d'un sous-groupe par f?
- 17. Que dire de l'image réciproque d'un sous-groupe par f?
- 18. C'est quoi, le noyau de f? Quel lien avec l'injectivité de f?
- 19. C'est quoi, l'image de f? Quel lien avec la surjectivité de f?
- 20. Qu'est-ce qu'un **isomorphisme** de groupes.
- 21. Comment montrer qu'une application est un isomorphisme?

1.4 Les entiers

- 22. Que désigne \mathbb{Z} ? $7\mathbb{Z}$?
- 23. Énoncer le théorème de la division euclidienne dans Z.

2 Sous-groupe engendré par une partie

<u>Proposition.</u> Une intersection de sous-groupes est un sous-groupe : si $(H_i)_{i \in I}$ une famille de sous-groupes de (G, *), alors $\bigcap_{i \in I} H_i$ est un sous-groupe de G.

<u>Définition</u>. Soit (G,*) un groupe et A une partie de G. On appelle sous-groupe engendré par A le plus petit sous-groupe H de (G,*) qui contient A.

Remarque. On note $\langle A \rangle$ le sous-groupe engendré par A, mais cette notation n'est pas dans le programme officiel.

Remarque. La définition signifie que H est le sous-groupe de (G,*) engendré par A si et seulement si :

- H est un sous-groupe de (G, *)
- $A \subset H$
- Pour tout sous-groupe K de (G,*), $A \subset K \implies H \subset K$

Proposition. Avec les notations précédentes :

$$\langle A \rangle = \bigcap_{A \subset H} H$$
H sous-groupe de G

Description du sous-groupe engendré par A. Soit G un groupe noté multiplicativement. $\langle A \rangle$ est l'ensemble des éléments de G qui s'écrivent sous la forme :

$$a_1^{\varepsilon_1} \dots a_n^{\varepsilon_n}$$

où
$$n \in \mathbb{N}$$
, $a_1, \ldots, a_n \in A$, $\varepsilon_1, \ldots, \varepsilon_n = \pm 1$.

Remarque. Lorsque G est commutatif et noté additivement, le sous-groupe engendré par A est l'ensemble des éléments qui s'écrivent sous la forme :

$$k_1a_1 + \cdots + k_pa_p$$

où $p \in \mathbb{N}$, $a_1, \ldots, a_p \in A$ sont distincts, et $k_1, \ldots, k_p \in \mathbb{Z}$. Ce ne sont pas tout à fait des combinaisons linéaires, puisque les « scalaires » sont ici entiers.

Proposition. Les sous-groupes de \mathbb{Z} sont les $a\mathbb{Z} = \langle a \rangle$, où $a \in \mathbb{N}$.

<u>Définition.</u> La partie A de (G,*) est dite **génératrice de** G lorsque le sous-groupe de (G,*) engendré par A est G.

3 Interlude : le groupe $(\mathbb{Z}/n\mathbb{Z},+)$

Proposition. Pour $n \in \mathbb{N}$, la relation de **congruence modulo** n sur \mathbb{Z} est définie par :

$$a \equiv b \ [n] \iff a - b \in n\mathbb{Z}$$
$$\iff n \mid a - b$$

C'est une relation d'équivalence.

Remarque. Si n = 0, il s'agit simplement de l'égalité. Si n = 1, tous les entiers sont en relation.

Proposition. Pour $n \ge 2$, il y a exactement n classes d'équivalences :

$$\{\overline{0},\overline{1},\ldots,\overline{n-1}\}$$

Définition. On note $\mathbb{Z}/n\mathbb{Z} = \{\overline{0}, \overline{1}, \dots, \overline{n-1}\}$, appelé « \mathbb{Z} sur $n\mathbb{Z}$ ».

Remarque. On a bien $\operatorname{Card}(\mathbb{Z}/n\mathbb{Z}) = n$.

<u>Proposition.</u> Pour $n \geqslant 2$, il existe une unique loi de groupe sur $\mathbb{Z}/n\mathbb{Z}$, encore notée +, pour laquelle l'application $\pi: k \mapsto \overline{k}$ soit un morphisme de groupes, i.e. :

$$\forall a, b \in \mathbb{Z}, \ \overline{a+b} = \overline{a} + \overline{b}$$

De plus, $\operatorname{Ker} \pi = n\mathbb{Z}$.

Remarque. Ainsi, pour additionner deux classes d'équivalences, on additionne deux représentants de ces classes d'équivalences.

Proposition. Muni de cette loi, $(\mathbb{Z}/n\mathbb{Z}, +)$ est donc bien un groupe commutatif.

Exemple. Construire la table de la loi + dans $\mathbb{Z}/4\mathbb{Z}$.

Corollaire. Pour $n \in \mathbb{N}^*$, $\overline{a} \in \mathbb{Z}/n\mathbb{Z}$ et $k \in \mathbb{Z}$,

$$k \cdot \overline{a} = \overline{ka}$$

Générateurs de $\mathbb{Z}/n\mathbb{Z}$.

Soit n entier ≥ 2 . Sont équivalentes :

- (i) $\mathbb{Z}/n\mathbb{Z} = \langle \overline{a} \rangle$
- (ii) il existe $k \in \mathbb{N}$ tel que $\overline{ka} = 1$
- (iii) $a \wedge n = 1$

Remarque. Ainsi, $(\mathbb{Z}/n\mathbb{Z}, +)$ est engendré par chaque \overline{k} , où $k \in \{0, \dots, n-1\}$ est premier avec n.

Exemple. Donner la liste des éléments qui engendrent $(\mathbb{Z}/12\mathbb{Z}, +)$.

Comment définir un morphisme $\mathbb{Z}/n\mathbb{Z} \to G$.

Soit
$$n$$
 entier $\geqslant 2$, et $\pi: \mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$.
 $k \mapsto \overline{k}$

Si G est un groupe et $f: \mathbb{Z} \to G$ un morphisme de groupes, alors les propriétés suivantes sont équivalentes :

- (i) il existe un morphisme $g: \mathbb{Z}/n\mathbb{Z} \to G$ tel que $f = g \circ \pi$
- (ii) $n\mathbb{Z} \subset \operatorname{Ker} f$

Remarque. Ainsi, pour définir un morphisme de groupe $\mathbb{Z}/n\mathbb{Z} \to G$, on définit un morphisme de groupe $\mathbb{Z} \to G$ dont le noyau contient $n\mathbb{Z}$, et on « passe au quotient ».

Proposition. Les groupes $(\mathbb{Z}/n\mathbb{Z}, +)$ et (\mathbb{U}_n, \times) sont isomorphes.

4 Groupes monogènes et groupes cycliques

Définition.

- Un groupe G est monogène s'il existe $x \in G$ tel que $G = \langle x \rangle$. On dit que x est un générateur de x.
- Lorsque G est un groupe fini et monogène, on dit que c'est un groupe cyclique.

Exemple.

- ($\mathbb{Z},+$) est monogène, engendré par 1 (et par -1).
- Tous les sous-groupes de $\mathbb Z$ sont monogènes.
- $(\mathbb{Z}/n\mathbb{Z}, +)$ est monogène. Ses générateurs sont les \overline{k} , où k est premier avec n.
- (\mathbb{U}_n, \times) est monogène. Ses générateurs sont les $e^{\frac{2ik\pi}{n}}$, où k est premier avec n.

Proposition. Soit (G, *) un groupe et $x \in G$. Alors :

$$\langle x \rangle = \{ x^k, \ k \in \mathbb{Z} \}$$

Ainsi
$$\langle x \rangle = \operatorname{Im} \varphi_x$$
 où $\varphi_x : \mathbb{Z} \to G$. $k \mapsto x^k$

Théorème.

Tout groupe monogène $\langle x \rangle$ est isomorphe :

- soit à $(\mathbb{Z}, +)$, lorsque $\operatorname{Ker} \varphi_x = \{0\}$;
- soit à $(\mathbb{Z}/n\mathbb{Z}, +)$, lorsque $\operatorname{Ker} \varphi_x = n\mathbb{Z}$.

Remarque. Dans le second cas, $n = \min\{k \in \mathbb{N}^*, x^k = e\}$.

5 Ordre d'un élément dans un groupe

<u>Définition.</u> Soit (G, *) un groupe dont le neutre est noté e, et $x \in G$. Lorsque $\langle x \rangle$ est fini, on dit que x est d'ordre fini et on note :

$$\operatorname{ord}(x) = \operatorname{Min}\{n \in \mathbb{N}^*, \ x^n = e\}$$

l'**ordre** de x.

Remarque.

- $\operatorname{ord}(x) = n \iff \operatorname{Ker} \varphi_x = n\mathbb{Z}$
- Si $\langle x \rangle$ est infini, on convient parfois que x est d'ordre infini.

Exemple. Quel est l'ordre de $\overline{1}$ (resp. de $\overline{12}$) dans $\mathbb{Z}/42\mathbb{Z}$?

Proposition. Avec les notations précédentes, lorsque x est d'ordre fini n, on a :

$$x^k = e \iff n \mid k$$

Théorème.

Avec les notations précédentes,

$$\operatorname{ord}(x) = \operatorname{Card}(\langle x \rangle)$$

Corollaire. Si G est un groupe fini, alors tout $x \in G$ est d'ordre fini.

Théorème.

Soit G un groupe fini, et $x \in G$. Alors :

$$\operatorname{ord}(x) \mid \operatorname{Card}(G)$$

c'est-à-dire que $x^{\operatorname{Card} G} = e$.

<u>Corollaire.</u> Tout groupe fini dont le cardinal est premier est cyclique, et engendré par chacun de ses éléments différent du neutre.

6 Annexes

6.1 Annexe : pourquoi l'ordre d'un élément divise le cardinal du groupe

Théorème.

Soit (G, *) un groupe fini et $a \in G$. Alors l'ordre de a divise $\operatorname{Card}(G)$.

Preuve lorsque G est abélien.

On note $n=\operatorname{Card}(G)$ et on énumère les éléments de $G:G=\{g_1,\ldots,g_n\}.$ On considère $a\in G$ (c'est l'un des g_i) et d son ordre.

L'application $\sigma: x\mapsto a*x$ est un permutation de G, de réciproque $x\mapsto a^{-1}*x,$ et donc :

$$g_1 * \cdots * g_n = \prod_{g \in G} g$$

$$= \prod_{g \in G} \sigma(g)$$

$$= (a * g_1) * \cdots * (a * g_n)$$

$$= a^n * (g_1 * \cdots * g_n)$$

en réordonnant les termes, puisque * est commutative. Ainsi, en multipliant par $(g_1*\cdots*g_n)^{-1}$, on en déduit :

$$e = a^n$$

et donc, $d \mid n$.

Preuve dans le cas général, non exigible. Soit $a\in G$ et d son ordre. On considère la relation :

$$x\Re y \iff x^{-1}y \in \langle a \rangle$$

C'est une relation d'équivalence (réflexive, symétrique, transitive). Pour $x \in G$, la classe d'équivalence de x est :

$$\overline{x} = \{ y \in G, \ x^{-1}y \in \langle a \rangle \}$$

$$= \{ y \in G, \ \exists k \in \mathbb{Z}, \ y = xa^k \}$$

$$= \{ x, xa, xa^2, \dots, xa^{d-1} \}$$

Cette classe contient exactement d éléments.

En effet, si $xa^k=xa^\ell$ où $0\leqslant k\leqslant \ell\leqslant d-1$, alors $a^{\ell-k}=e$ donc $d\mid \ell-k$ et donc $\ell=k$ car $0\leqslant \ell-k< d$.

L'ensemble G est donc partitionné en ses classes d'équivalences, que l'on note $\overline{x_1},\dots,\overline{x_p}$:

$$G = \bigcup_{\substack{i=1\\ \text{union}\\ \text{disjointe}}}^{p} \overline{x_i}$$

donc:

$$\operatorname{Card}(G) = \sum_{i=1}^{p} \operatorname{Card}(\overline{x_i}) = \sum_{i=1}^{p} d = pd$$

donc $d \mid Card(G)$.

Remarque. Cette seconde démonstration, même si elle n'est pas exigible, est intéressante, parce qu'elle nous permet d'accéder à la démonstration du théorème de Lagrange.

6.2 Annexe : théorème de Lagrange

Théorème de Lagrange, hors programme.

Si G est un groupe fini de cardinal n, alors pour tout H sous-groupe de G, Card $H \mid \operatorname{Card} G$.

Preuve du théroème de Lagrange.

Soit ${\cal H}$ un sous-groupe de G et d son cardinal. On considère la relation :

$$x\Re y \iff x^{-1}y \in H$$

C'est une relation d'équivalence (réflexive, symétrique, transitive). Pour $x\in G$, la classe d'équivalence de x est :

$$\overline{x} = \{ y \in G, \ x^{-1}y \in H \}$$
$$= \{ y \in G, \ \exists h \in H, \ y = xh \}$$
$$= xH$$

Cette classe contient exactement d éléments, comme H. L'ensemble G est donc partitionné en ses classes d'équivalences, que l'on note $\overline{x_1},\dots,\overline{x_p}$:

$$G = \bigcup_{\substack{i=1\\ \text{union}\\ \text{disjointe}}}^{p} \overline{x_i}$$

donc:

$$\operatorname{Card}(G) = \sum_{i=1}^{p} \operatorname{Card}(\overline{x_i}) = \sum_{i=1}^{p} d = pd$$

donc $d \mid Card(G)$.

Exercices et résultats classiques à connaître

Le centre d'un groupe

110.1

Soit (G,\star) un groupe. On définit son **centre** comme l'ensemble des éléments de G qui commutent avec tous les éléments de G:

$$C = \{g \in C, \; \forall h \in G, \; g \star h = h \star g\}$$

Montrer que C est un sous-groupe de (G, \star) .

Les sous-groupes de $(\mathbb{R},+)$

110.2

Montrer que, si G est un sous-groupe de $(\mathbb{R},+)$, alors il est soit de la forme $\alpha \mathbb{Z}$ avec $\alpha \in \mathbb{R}$, soit dense dans \mathbb{R} . Dans le cas où $G \neq \{0\}$, on s'intéressera à $\alpha = \text{Inf}(G \cap \mathbb{R}_+^*)$ et on discutera selon que $\alpha > 0$ ou $\alpha = 0$.

110.3

Soit E un ensemble non vide muni d'une loi * possédant un neutre e. Montrer que a admet un inverse si et seulement si l'application $f:E\to E$ $x\mapsto a*x$ est bijective.

110.4

Soit $n \in \mathbb{N}^*$. On considère $\mathbb{U}_n = \{z \in \mathbb{C}, z^n = 1\}$ l'ensemble des racines n-èmes de l'unité. Montrer que (\mathbb{U}_n, \times) est un groupe.

110.5

Soit E un ensemble non vide, $a \in E$. On considère :

$$H = \{ f \in \mathfrak{S}(E), \ f(a) = a \}$$

l'ensemble des permutations de E fixant a. Montrer que (H, \circ) est un groupe.

110.6

Montrer que :

$$\mathrm{SL}_n(\mathbb{K}) = \{ M \in \mathcal{M}_n(\mathbb{K}), \ \det(M) = 1 \}$$

est un groupe pour la multiplication.

110.7

Montrer que :

$$H = \{x + y\sqrt{3}, \ x, y \in \mathbb{Z}, \ x^2 - 3y^2 = 1\}$$

est un sous-groupe de (\mathbb{R}^*, \times) .

110.8

Déterminer le sous-groupe de $(\mathbb{Z}, +)$ engendré par $\{-27, 12, 18\}$.

110.9

Montrer que le sous-groupe de (\mathbb{C}^*, \times) engendré par $\{i = e^{i\frac{\pi}{2}}, j = e^{i\frac{2\pi}{3}}\}$ est \mathbb{U}_{12} , l'ensemble des racines 12-ièmes de l'unité.

Déterminer tous les morphismes de groupes de $(\mathbb{Q}, +)$ dans $(\mathbb{Z}, +)$.

110.11

Soit G et G' deux groupes notés additivement, et $f:G\to G'$ un morphisme de groupes.

- (a) Montrer que, pour tout $x \in G$ et tout $n \in \mathbb{N}$, f(nx) = nf(x).
- (b) Est-ce encore vrai lorsque $n \in \mathbb{Z}$?
- (c) Comment s'écrivent ces résultats lorsque les groupes sont notés multiplicativement ?

110.12

Soit (G,*) un groupe commutatif. On considère g_1,g_2 deux élements d'ordre d_1,d_2 respectivement. On suppose que $d_1 \wedge d_2 = 1$. Montrer que g_1*g_2 est d'ordre fini, et calculer cet ordre.

110.13

Démontrer que la matrice :

$$\begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix}$$

est d'ordre fini dans $GL_2(\mathbb{R})$.

110.14

Dans \mathfrak{S}_{10} , déterminer l'ordre de :

(14378)(257)

110.15

Voici la liste des éléments de \mathfrak{S}_3 :

$$\{\mathrm{Id}, (12), (13), (23), (123), (132)\}$$

Indiquer pour chaque élément son ordre.

Petits problèmes d'entrainement

110.16

Soit (G, \star) un groupe, et \mathfrak{S} l'ensemble des permutations de G. On rappelle que (\mathfrak{S}, \circ) est un groupe. Pour $g \in G$, on définit :

$$\phi_g: G \to G
h \mapsto g \star h \star g^{-1}$$

- (a) Montrer que $\phi: g \mapsto \phi_g$ est un morphisme de (G, \star) dans (\mathfrak{S}, \circ) .
- (b) Caractériser les éléments du noyau de ϕ .

110.17

(a) Soit (G,*) un groupe. Pour tout $g \in G$, on note :

$$\phi_g: G \to G \\
x \mapsto g * x$$

Montrer que $g \mapsto \phi_g$ est un morphisme de groupes de (G,*) dans (\mathfrak{S}_G, \circ) , et qu'il est injectif.

- (b) En déduire que tout groupe fini ayant n éléments se plonge dans \mathfrak{S}_n , c'est-à-dire est isomorphe à un sous-groupe de \mathfrak{S}_n .
- (c) Dans le cas où n=4, identifier dans \mathfrak{S}_4 un sous-groupe isomorphe à $\mathbb{Z}/4\mathbb{Z}$ et un autre isomorphe à $(\mathbb{Z}/2\mathbb{Z})^2$.

110.18

On note $GL_2(\mathbb{Z})$ l'ensemble des matrices carrées d'ordre 2 à coefficients dans \mathbb{Z} dont le déterminant vaut 1 ou -1.

- (a) Soit M une matrice carrée d'ordre 2 à coefficients entiers. Montrer que si M est inversible et que M^{-1} est à coefficients entiers, alors $\det(M) = \pm 1$.
- (b) Montrer que $(GL_2(\mathbb{Z}), \times)$ est un groupe.
- (c) On considère $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ et $B = \begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix}$. Calculer l'ordre de A, de B et de AB. Que peut-on en conclure?

110.19

- (a) Soit H et K deux sous-groupes d'un même groupe G. On suppose $Card(H) = \alpha$ et $Card(K) = \beta$ avec $\alpha \wedge \beta = 1$. Montrer que $H \cap K = \{e\}$.
- (b) Soit H et K deux sous-groupes de G de même cardinal p premier. Montrer que H = K ou $H \cap K = \{e\}$.

110.20

Soit G un groupe abélien noté multiplicativement, H et K deux sous-groupes de G.

- (a) Montrer que $HK = \{hk, h \in H, k \in K\}$ est un sous-groupe de G.
- (b) Montrer que $HK = \langle H \cup K \rangle$.
- (c) Montrer que, si $H \cap K = \{e\}$, alors HK est isomorphe au produit cartésien $H \times K$.
- (d) On suppose que G est de cardinal p^2 , où p est premier. Montrer que tout sous-groupe de G est de cardinal 1, p ou p^2 .

110.21

Soit G un groupe non réduit à $\{e\}$. Montrer que G n'admet aucun sous-groupe propre si et seulement si il est cyclique de cardinal p premier.

110.22

Pour $n \in \mathbb{N}^*$, \mathfrak{S}_n désigne le groupe symétrique, c'est-à-dire l'ensemble des permutations de $[\![1,n]\!]$.

(a) Montrer que, pour tout $\sigma \in \mathfrak{S}_n$ et tout $a_1, \ldots, a_k \in [1, n]$ distincts :

$$\sigma \circ (a_1 \quad a_2 \quad \dots \quad a_k) \circ \sigma^{-1} = (a_{\sigma(1)} \quad a_{\sigma(2)} \quad \dots \quad a_{\sigma(k)})$$

On rappelle que la notation $(a_1 \ a_2 \ \dots \ a_k)$ désigne la permutation γ telle que $\gamma(a_i) = a_{i+1}$ avec $\gamma(a_k) = a_1$, les autres éléments étant laissés invariants.

(b) En déduire qu'il n'y a que deux morphismes de groupes de (\mathfrak{S}_n, \circ) dans (\mathbb{C}^*, \times) : le morphisme constant égal à 1, et la signature.

110.23

Soit (G,*) un groupe et $\varphi:G\to E$ une application bijective. On définit sur E une loi en posant :

$$x \top y = \varphi(\varphi^{-1}(x) * \varphi^{-1}(y))$$

Montrer que (E, \top) est un groupe.

110.24

Montrer que :

$$H = \{ z \in \mathbb{C}, \ \exists n \in \mathbb{N}, \ z^n = 1 \}$$

est un sous-groupe de (\mathbb{C}^*, \times) .

110.25

On s'intéresse à l'équation :

$$(E)$$
; $x^2 - 2y^2 = 1$

d'inconnue $(x,y) \in \mathbb{Z}^2$. On considère l'ensemble :

$$G = \{(x, y) \in \mathbb{N}^* \times \mathbb{Z}, \ x^2 - 2y^2 = 1\}$$

Pour $(x, y), (x', y) \in G$ on pose :

$$(x,y) \star (x',y') = (xx' + 2yy', xy' + x'y)$$
 et $\varphi(x,y) = \ln(x + \sqrt{2}y)$

- (a) Montrer que (G, \star) est un groupe, dont on précisera le neutre e.
- (b) On pose $a = (3, 2) \in G$. Montrer que:

$$\forall (x,y) \in G, \ 0 \leqslant \varphi(x,y) < \varphi(a) \implies (x,y) = e$$

(c) Vérifier que, pour tout $(x, y), (x', y') \in G$:

$$\varphi((x,y)\star(x',y')) = \varphi(x,y) + \varphi(x',y')$$

(d) En déduire que les élements de G sont les a^n , pour $n \in \mathbb{Z}$.

110.26

Soit H une partie finie non vide d'un groupe (G, *). On suppose que H est stable pour la loi *. Montrer que H est un sous-groupe de G.

110.27

Soit H,K deux sous-groupes d'un groupe G noté multiplicativement. On considère :

$$HK = \{xy, x \in H \text{ et } y \in K\} \text{ et } KK = \{yx, x \in H \text{ et } y \in K\}$$

- (a) Montrer que HK est un sous-groupe de G si et seulement si $KH \subset HK$.
- (b) Montrer que, dans ce cas, HK = KH.

110.28

Lorsque (G, *) est un groupe, on appelle **caractère** de (G, *) tout morphisme de groupes de (G, *) dans (\mathbb{C}^*, \times) . L'ensemble des caractères est noté \widehat{G} .

- (a) Soit $n \in \mathbb{N}^*$. Déterminer tous les caractères de $(\mathbb{Z}/n\mathbb{Z}, +)$. On pourra commencer par montrer que l'image d'un caractère est incluse dans \mathbb{U}_n .
- (b) Soit (G, \star) un groupe fini, et f_1, \ldots, f_n des élements distincts dans \overline{G} . Montrer que la famille (f_1, \ldots, f_n) est libre dans le \mathbb{C} -espace vectoriel $\mathcal{F}(G, \mathbb{C}) = \mathbb{C}^G$. On pourra procéder par récurrence.
- (c) En déduire que $\mathrm{Card}(\overline{G})\leqslant\mathrm{Card}(G),$ et montrer que cette inégalité peut-être stricte.

110.29

Soit G un groupe fini, noté multiplicativement.

(a) Pour $x \in G$, on appelle **normalisateur de** x l'ensemble :

$$N(x) = \{ g \in G, \ gxg^{-1} = x \}$$

Montrer que N(x) est un sous-groupe de G.

(b) Montrer que l'on définit une relation d'équivalence en posant, pour $x,y\in G$:

 $x \mathcal{R} y \iff \exists g \in G, \ y = gxg^{-1}$

(c) On note $\mathrm{Cl}(x)$ la classe d'équivalence d'un élément x pour la relation $\mathcal{R}.$ Montrer que :

 $\operatorname{Card}(G) = \operatorname{Card}\left(\operatorname{Cl}(x)\right) \times \operatorname{Card}\left(N(x)\right)$

(d) On suppose dans cette question que G est de cardinal p^{α} , où p est premier et $\alpha \in \mathbb{N}^*$. Montrer que le centre C(G) n'est pas réduit à $\{1\}$.