Diszkrét modellek

Fibonacci számok

$$x(t+2) = x(t) + x(t+1)$$

$$t = 2 \quad x(2) = x(0) + x(1) = 2$$

$$t = 3 \quad x(3) = x(1) + s(2) = 3$$

$$t = 4 \quad x(4) = x(2) + x(3) = 5$$

$$1,1,2,3,5,8,13,21,...$$

Diferencia egyenletek

A diszkrét rendszerek diferenciaegyenletek segítségével vannak leírva. A rendszer csak bizonyos időpontokban változtatja állapotát.

$$x(t+1) = f(x(t),t)$$

 $x((t+1)\Delta) = f(x(\Delta t), \Delta t)$
 $t \in N$, Δ lépéshossz

$$x(t+1) = F(x(t-(n-1)), x(t-(n-2)), ..., x(t))$$
 $x_1(t) = x(t-(n-1))$
 $x_2(t) = x(t-(n-2))$
.
.
.
 $x_n(t) = x(t)$

Álltalános alak

$$x(t+1) = F(x(t-(n-1)), x(t-(n-2)), ..., x(t))$$
 $x_1(t) = x(t-(n-1))$
 $x_2(t) = x(t-(n-2))$
.
.
.
 $x_n(t) = x(t)$

$$x_1(t+1) = x_2(t)$$

$$x_2(t+1) = x_3(t)$$

•

$$x_{n-1}(t+1) = x_n(t)$$

$$x_n(t+1) = F(x_1(t), x_2(t), ..., x_n(t))$$

Unit dealy block

$$x(t) \to \boxed{\frac{1}{z}} \to x(t-1)$$

Példa (Kmet_disk_str_8_ruk)

$$x(t+1) = x(t) + x(t-1) + x(t-2)$$

$$t = 0$$
 $x(1) = x(0) + x(-1) + x(-2) = 3$

$$t = 1$$
 $x(2) = x(1) + x(0) + x(-1)$ = 5

$$t = 2$$
 $x(3) = x(2) + x(1) + x(0)$ = 9

$$t = 3$$
 $x(4) = x(3) + x(2) + x(1)$ = 17

sample time 1

Kölcsöntörlesztés ex6_1.mdl

▶ b(t) - kölcsön, p(t) - havi törlesztés, i - havi kamat

$$b(t) = rb(t-1) - p(t)$$
$$r = i + 1$$

2.Discrete – time integrator block

 $ex6_2.mdl$

$$x(t) = x(t-1) + \int_{\Delta(t-1)}^{\Delta t} y(r)dr$$

$$b(t) = b(t-1) + \int_{\Delta(t-1)}^{\Delta t} (ib(u-1) - p(u)) du$$

Exponenciális növekedés modellje

Jelöljük
$$x_t = x(t)$$
, akkor $x_1 = x_0 + rx_0$, $x_2 = x_1 + rx_1$, $x_{t+1} = x_t + rx_t$ $x_1 = x_0 (1+r)$, $x_2 = x_0 (1+r)^2$, $x_{t+1} = x_0 (1+r)^{t+1}$ Geometriai sorozat, konvergál ha $|1+r| < 1$, tehát $r \in (-2,0)$

Diszkrét modellek tulajdonságai

 $Definició: Az s^* \in \mathbb{R}^n$ pontot az F függvény

 $F: \mathbb{R}^n \to \mathbb{R}^n$, fixpontjának nevezzük,

ha érvényes $s^* = F(s^*)$.

Linearizálás $\frac{\partial F(s^*)}{\partial x}$ saját értékei $|\lambda_i| < 1$, akkor a fixpont

aszimptotikusan stabil. Ha $|\lambda_i| > 1$, instabil.

Logisztikai növekedés modellje

$$x(t+1) = x(t) + rx(t) \left(1 - \frac{x(t)}{K}\right)$$
$$x(0) = x_0$$

Logisztikai növekedés Simulink modellje

Fixpont meghatározása

$$x = F(x(t), t) = x + rx \left(1 - \frac{x(t)}{K}\right)$$
, ahol $r > 0$ és K>0

tehát
$$rx\left(1 - \frac{x(t)}{K}\right) = 0, x^* = 0, x^* = K$$

Linearizálás
$$\frac{\partial F}{\partial x} = 1 + r \left(1 - \frac{x}{K} \right) - \frac{rx}{K}$$

$$\frac{\partial F(0)}{\partial x} = 1 + r(1 - \frac{0}{K}) - \frac{r0}{K} = 1 + r > 1, \text{ instabil}$$

$$\frac{\partial F(K)}{\partial x} = 1 + r(1 - \frac{K}{K}) - \frac{rK}{K} = 1 - r, \text{ felt\'etel stab. } |1 - r| < 1, \text{ teh\'at } 0 < r < 2$$

Feigenbaum diagramm

$$Jel\"{o}lj\ddot{u}k \ x_t = x(t).$$

Próbáljuk meghatározni az

$$x_{t+2} = x_{t+1} + rx_{t+1}(1 - \frac{x_{t+1}}{K}),$$

értékét az x_t segítségével, ahol

$$x_{t+1} = x_t + rx_t (1 - \frac{x_t}{K}).$$

Behelyettesítés után a következő kifejezést kapjuk:

$$x_{t+2} = x_t + rx_t (1 - \frac{x_t}{K}) + rx_t + rx_t (1 - \frac{x_t}{K}) \left(1 - \frac{x_t + rx_t (1 - \frac{x_t}{K})}{K} \right).$$

Feigenbaum diagramm

Keressük a következő egyenlet megoldását, ami az $f^2(x)$ függvény fixpontja

$$x = x + rx\left(1 - \frac{x}{K}\right) + rx + rx\left(1 - \frac{x}{K}\right)\left(1 - \frac{x + rx\left(1 - \frac{x}{K}\right)}{K}\right)$$

Egyszerűsítés után

$$x(K-x)(r^{3}x^{2}-r^{2}K(r+2)x+rK^{2}(r+2))=0$$

Fixpontok x = 0, x = K,

Feigenbaum diagramm

További fixpontok és kritikus értékek

$$r_1 = 2$$
,

$$x_{+} = K \frac{r + 2 + \sqrt{r^2 - 4}}{2r}$$

$$x_{-} = K \frac{r+2-\sqrt{r^2-4}}{2r}$$

Feigenbaum diagramm
$$f(x) = x + rx \left(1 - \frac{x}{K}\right)$$

$$f(x_{+}) = K \frac{r + 2 + \sqrt{r^{2} - 4}}{2r} + rK \frac{r + 2 + \sqrt{r^{2} - 4}}{2r}$$

$$\left(K \frac{r + 2 + \sqrt{r^{2} - 4}}{2r}\right) = K \frac{r + 2 - \sqrt{r^{2} - 4}}{2r}$$

Érvényes
$$f(x_+) = x_-, f(x_-) = x_+$$
, tehát $f^2(x_+) = x_+, f^2(x_-) = x_ r_2 = 2,2449, r_3 = 2,544, r_4 = 2,828$

https://www.youtube.com/watch?v=PtfPDfoF-iY

Példa: Logisztikai növekedés modellje (Kmet_disk_str_7_ruk)

$$x(t+1) = x(t) + rx(t)(1 - \frac{x(t-1)}{K})$$

$$x_1(t) = x(t-1)$$

$$x_2(t) = x(t)$$

$$x_1(t+1) = x_2(t)$$

$$x_2(t+1) = x_2(t) + rx_2(t)(1 - \frac{x_1(t)}{K})$$

LV modell

y – ragadozó

$$x_{t+1} = x_t + x_t (a - by_t), y_{t+1} = y_t + y_t (cx_t - d)$$

Linearizálás alakja

$$\frac{\partial F\left(\frac{d}{c}, \frac{a}{b}\right)}{\partial x(y)} = \begin{pmatrix} 1 & -b\frac{d}{c} \\ c\frac{a}{b} & 1 \end{pmatrix}$$
 Saját értékek det
$$\begin{pmatrix} 1-\lambda & -b\frac{d}{c} \\ c\frac{a}{b} & 1-\lambda \end{pmatrix} = 0$$

$$\lambda^2 - 2\lambda + ad + 1 = 0$$

Megoldás

$$\lambda_{1,2} = 1 \pm i\sqrt{da}$$
, tehát $\left|\lambda_1 = 1 + i\sqrt{da}\right| > 1$

Harvesting modell

$$x(t+1) = x(t) + rx(t)(1 - \frac{x(t)}{K}) - b$$

$$x(0) = x_0$$

Fixpont

$$x = F(x(t), t) = x + rx(1 - \frac{x}{K}) - b$$

tehát
$$rx(1-\frac{x}{K})-b=0, x_1^* = \frac{r+\sqrt{r(r-\frac{4b}{K})}}{2\frac{r}{K}},$$

$$x_{2}^{*} = \frac{r - \sqrt{r(r - \frac{4b}{K})}}{2\frac{r}{K}}, r > \frac{4b}{K}$$

Linearizálás
$$\frac{\partial F}{\partial x} = 1 + r(1 - \frac{x}{K}) - \frac{rx}{K}$$

$$\frac{\partial F(x_2)}{\partial x} = 1 + \sqrt{r(r - \frac{4b}{K})}$$

$$\frac{\partial F(x_1)}{\partial x} = 1 - \sqrt{r(r - \frac{4b}{K})}$$
feltétel stab. $\left|1 - \sqrt{r(r - \frac{4b}{K})}\right| < 1$,
$$\sqrt{r(r - \frac{4b}{K})} < 2, \frac{4b}{K} < r < \frac{2b}{K} + \sqrt{\left(\frac{2b}{K}\right)^2 + 1}$$

Lineáris modell Kmet_disk_str_5a_ruk

