

# Future Challenges for Software Data Collection and Analysis

Barry Boehm, USC-CSSE PROMISE 2009 Keynote May 18, 2009

## **Future Software Measurement Challenges**

- Emergent requirements
  - Example: Virtual global collaboration support systems
  - Need to manage early concurrent engineering
- Rapid change
  - In competitive threats, technology, organizations, environment
- Net-centric systems of systems
  - Incomplete visibility and control of elements
- Model-driven, service-oriented, Brownfield systems
  - New phenomenology, counting rules
- Always-on, never-fail systems
  - Need to balance agility and discipline



# **Emergent Requirements**

- Example: Virtual global collaboration support systems
  - View sharing, navigation, modification; agenda control; access control
  - Mix of synchronous and asynchronous participation
  - No way to specify collaboration support requirements in advance
  - Need greater investments in concurrent engineering
    - of needs, opportunities, requirements, solutions, plans, resources





### The Broadening Early Cone of Uncertainty (CU)



- Need greater investments in narrowing CU
  - Mission, investment, legacy analysis
  - Competitive prototyping
  - Concurrent engineering
  - Associated estimation methods and management metrics
- Larger systems will often have subsystems with narrower CU's



#### The Incremental Commitment Life Cycle Process: Overview





### **ICM HSI Levels of Activity for Complex Systems**





#### **Nature of FEDs and Anchor Point Milestones**

 <u>Evidence</u> provided by developer and validated by independent experts that:

If the system is built to the specified architecture, it will

- Satisfy the specified operational concept and requirements
  - Capability, interfaces, level of service, and evolution
- Be buildable within the budgets and schedules in the plan
- Generate a viable return on investment
- Generate satisfactory outcomes for all of the success-critical stakeholders
- Shortfalls in evidence are uncertainties and risks
  - Should be resolved or covered by risk management plans
- Assessed in increasing detail at major anchor point milestones
  - Serves as basis for stakeholders' commitment to proceed
  - Serves to synchronize and stabilize concurrently engineered elements
  - Can be used to strengthen current schedule- or event-based reviews

03/19/2008 ©USC-CSSE 7



### **Key Point: Need to Show Evidence**

- Not just traceability matrices and PowerPoint charts
- Evidence can include results of
  - Prototypes: networks, robots, user interfaces, COTS interoperability
  - Benchmarks: performance, scalability, accuracy
  - Exercises: mission performance, interoperability, security
  - Models: cost, schedule, performance, reliability; tradeoffs
  - Simulations: mission scalability, performance, reliability
  - Early working versions: infrastructure, data fusion, legacy compatibility
  - Representative past projects
  - Combinations of the above
- Validated by independent experts
  - Realism of assumptions
  - Representativeness of scenarios
  - Thoroughness of analysis
  - Coverage of key off-nominal conditions
- Much more effort data, product data to collect and analyze

4/15/05 © USC-CSE 8



# **COSYSMO Operational Concept**





#### **Center for Systems and Software Engineering**

| тос                                                                                                                                                              |                                    |                                                            | cos                                                                                   | YSMO                                                   | Appli                                                     | cation                                      | Factor                                                  | Selec                                                   | tion                                                  |                                                   |                                               | See Embedded Comments for<br>Descriptions and Selection Criteria                                                                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| COSYSMO Application<br>Factor Description                                                                                                                        | ldentifier                         | Current<br>Prod.<br>Range                                  | Suggested<br>Prod.<br>Range                                                           | ν.<br>γνοw                                             | LOW<br>(L)                                                | NOM<br>(N)                                  | HIGH<br>(H)                                             | VHIGH<br>(VH)                                           | XHIGH<br>(XH)                                         | Rating<br>Selected                                | Resulting<br>Multiplier                       | Application Factor Rating Selection<br>Comments                                                                                                                    |
| Requirements<br>Understanding                                                                                                                                    | RQMT                               | 1.73                                                       | 1.73                                                                                  | 1.40                                                   | 1.20                                                      | 1.00                                        | 0.90                                                    | 0.81                                                    | ****                                                  | N                                                 | 1.00                                          |                                                                                                                                                                    |
| Architecture<br>Complexity                                                                                                                                       | ARCH                               | 1/66                                                       | 1.66                                                                                  | 1.28                                                   | 1.14                                                      | 1:00                                        | 0.88                                                    | 0.77                                                    | ****                                                  | N                                                 | 1.00                                          |                                                                                                                                                                    |
| Level of Service (KPP)<br>Requirements                                                                                                                           | LSVC                               | 2.50                                                       | 2.50                                                                                  | 0.66                                                   | 0.83                                                      | 1.00                                        | 1,33                                                    | 1.65                                                    | <del></del>                                           | N                                                 | 1.00                                          |                                                                                                                                                                    |
| Migration Complexity                                                                                                                                             | MIGR                               | 1.50                                                       | 1.50                                                                                  | ***                                                    |                                                           | 1.00                                        | 1.25                                                    | 1.50                                                    |                                                       | N                                                 | 1.00                                          |                                                                                                                                                                    |
| No. and Diversity of<br>Installations/Platforms                                                                                                                  | INST                               | 1.50                                                       | 1.50                                                                                  | ***                                                    | ***                                                       | 1.00                                        | 1.25                                                    | 1.50                                                    | ****                                                  | N                                                 | 1.00                                          |                                                                                                                                                                    |
| No. of Recursive Levels<br>in the Design                                                                                                                         | RECU                               | 1.50                                                       | 1.50                                                                                  | 0.82                                                   | 0.91                                                      | 1.00                                        | 1.12                                                    | 1.23                                                    |                                                       | N                                                 | 1.00                                          |                                                                                                                                                                    |
| Documentation to<br>Match Lifecycle Needs                                                                                                                        | роси                               | 0.67                                                       | 0.67                                                                                  | 0.82                                                   | 0.91                                                      | 1.00                                        | 1.12                                                    | 1.23                                                    |                                                       | N                                                 | 1.00                                          |                                                                                                                                                                    |
| Technology Maturity                                                                                                                                              | TMAT                               | 2.50                                                       | 2.50                                                                                  | 1.75                                                   | 1.37                                                      | 1.00                                        | 0.85                                                    | 0.70                                                    | ****                                                  | N                                                 | 1,00                                          | Select the Rating from the pullo                                                                                                                                   |
| Productivity Range (PR) the Highest Number / Lowest Number and is ar indication of the "Relativ Degree of Influence" of this parameter on SE effort as currently | However inputs based If you curren | ver, for tl<br>as to wh<br>upon you<br>agree wi<br>t numbe | d" column he COSYSMenat you thin ur overall exith the "Curry with a new taffing Table | D SE Da<br>nk the "I<br>kperienc<br>rent" no<br>w numb | ta Collec<br>Relative<br>e (not s<br>umber, c<br>er n (n> | ction Mo<br>Degree<br>specific t<br>do noth | ode, it so<br>of Influ<br>to the paing. If y<br>the app | erves as<br>ence" o<br>ast prog<br>ou disag<br>ropriate | a mean<br>f this pa<br>gram bei<br>gree, sin<br>cell. | s of collect<br>arameter <u>sl</u><br>ing charact | ing your<br>hould be<br>rerized).<br>rite the | that best represents the Rating program being estimated in the Mode or in the SE Data Collectic Rating that best characterizes to program for which you are proved |



## **Next-Generation Systems Challenges**

- Emergent requirements
  - Example: Virtual global collaboration support systems
  - Need to manage early concurrent engineering



- Rapid change
  - In competitive threats, technology, organizations, environment
- Net-centric systems of systems
  - Incomplete visibility and control of elements
- Model-driven, service-oriented, Brownfield systems
  - New phenomenology, counting rules
- Always-on, never-fail systems
  - Need to balance agility and discipline



### Rapid Change Creates a Late Cone of Uncertainty

- Need evolutionary/incremental vs. one-shot development
- - No simple boundary between development and maintenance



Phases and Milestones Copyright © USC-CSSE

May 18, 2009

# **Incremental Development Productivity Decline (IDPD)**

- Example: Site Defense BMD Software
  - 5 builds, 7 years, \$100M
  - Build 1 productivity over 300 SLOC/person month
  - Build 5 productivity under 150 SLOC/PM
    - Including Build 1-4 breakage, integration, rework
    - 318% change in requirements across all builds
    - IDPD factor = 20% productivity decrease per build
  - Similar trends in later unprecedented systems
  - Not unique to DoD: key source of Windows Vista delays
- Maintenance of full non-COTS SLOC, not ESLOC
  - Build 1: 200 KSLOC new; 200K reused@20% = 240K ESLOC
  - Build 2: 400 KSLOC of Build 1 software to maintain, integrate



## "Equivalent SLOC" Paradoxes

- Not a measure of software size
- Not a measure of software effort
- Not a measure of delivered software capability
- A quantity derived from software component sizes and reuse factors that helps estimate effort
- Once a product or increment is developed, its ESLOC loses its identity
  - Its size expands into full SLOC
  - Some people apply reuse factors to this to determine an ESLOC quantity for the next increment
    - But this has no relation to the product's size



## IDPD Cost Drivers: Conservative 4-Increment Example

- Some savings: more experienced personnel (5-20%)
  - Depending on personnel turnover rates
- Some increases: code base growth, diseconomies of scale, requirements volatility, user requests
  - Breakage, maintenance of full code base (20-40%)
  - Diseconomies of scale in development, integration (10-25%)
  - Requirements volatility; user requests (10-25%)
- Best case: 20% more effort (IDPD=6%)
- Worst case: 85% (IDPD=23%)



#### **Effects of IDPD on Number of Increments**

- Model relating productivity decline to number of builds needed to reach 8M SLOC Full Operational Capability
- Assumes Build 1 production of 2M SLOC
   @ 100 SLOC/PM
  - 20000 PM/ 24 mo. = 833 developers
  - Constant staff size for all builds
- Analysis varies the productivity decline per build
  - Extremely important to determine the incremental development productivity decline (IDPD) factor per build





# **Choosing and Costing Incremental Development Forms**

| Type                         | Examples                                           | Pros                                              | Cons                                                | <b>Cost Estimation</b>                                    |  |  |
|------------------------------|----------------------------------------------------|---------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------|--|--|
| Evolutionary<br>Sequential   | Small: Agile<br>Large: Evolutionary<br>Development | Adaptability to change                            | Easiest-first; late, costly breakage                | Small: Planning-poker-type<br>Large: Parametric with IDPD |  |  |
| Prespecified<br>Sequential   | Platform base plus<br>PPPIs                        | Prespecifiable<br>full-capability<br>requirements | Emergent requirements or rapid change               | COINCOMO with no increment overlap                        |  |  |
| Overlapped<br>Evolutionary   | Product lines with ultrafast change                | Modular product                                   | Cross-increment breakage                            | Parametric with IDPD and Requirements Volatility          |  |  |
| Rebaselining<br>Evolutionary | Mainstream product lines; Systems of systems       | High assurance with rapid change                  | Highly coupled<br>systems with<br>very rapid change | COINCOMO, IDPD for development; COSYSMO for rebaselining  |  |  |

IDPD: Incremental Development Productivity Decline, due to earlier increments breakage, increasing code base to integrate

**PPPIs: Pre-Planned Product Improvements** 

COINCOMO: COCOMO Incremental Development Model (COCOMO II book, Appendix B)

COSYSMO: Systems Engineering Cost Model (in-process COSYSMO book)

All Cost Estimation approaches also include expert-judgment cross-check.



## **Next-Generation Systems Challenges**

- Emergent requirements
  - Example: Virtual global collaboration support systems
  - Need to manage early concurrent engineering
- Rapid change
  - In competitive threats, technology, organizations, environment



- Net-centric systems of systems
  - Incomplete visibility and control of elements
- Model-driven, service-oriented, Brownfield systems
  - New phenomenology, counting rules
- Always-on, never-fail systems
- May 18, 2009 Need to balance agility and discipline



# **Further Attributes of Future Challenges**

| Type                        | Examples                                                                                                      | Pros                                                                        | Cons                                                                                                                                                  | Cost Estimation                                                                                                                                                                             |  |
|-----------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Systems of<br>Systems       | Directed: Future<br>Combat Systems     Acknowledged:<br>Missile Defense<br>Agency                             | •Interoperability •Rapid Observe- Orient-Decide- Act (OODA) loop            | Often-conflicting partner priorities     Change processing very complex                                                                               | Staged hybrid models Systems engineering: COSYSMO Multi-organization development costing Lead Systems integrator costing Requirements volatility effects Integration&test: new cost drivers |  |
| Model-Driven<br>Development | Business 4th- generation languages (4GLs)     Vehicle-model driven development                                | Cost savings  User- development advantages  Fewer error sources             | Multi-model composition incapabilities     Model extensions for special cases (platform-payload)     Brownfield complexities     User-development V&V | <ul> <li>•Models directives as 4GL source code</li> <li>•Multi-model composition similar to COTS integration, Brownfield integration</li> </ul>                                             |  |
| Brownfield                  | <ul> <li>Legacy C4ISR System</li> <li>Net-Centric weapons platform</li> <li>Multicore-CPU upgrades</li> </ul> | Continuity of service  Modernization of infrastructure  Ease of maintenance | Legacy re-engineering often complex     Mega-refactoring often complex                                                                                | Models for legacy re-<br>engineering, mega-refactoring     Reuse model for refactored<br>legacy                                                                                             |  |



# Further Attributes of Future Challenges (Continued)

| Type                       | Examples                                                                             | Pros                                                                          | Cons                                                                                                                  | Cost Estimation                                                                                                                                                                                                         |  |
|----------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Ultrareliable<br>Systems   | Safety-critical systems Security-critical systems High-performance real-time systems | System resilence, survivability Service-oriented usage opportunities          | Conflicts among attribute objectives Compatibility with rapid change                                                  | Cost model extensions for added assurance levels     Change impact analysis models                                                                                                                                      |  |
| Competitive<br>Prototyping | Stealth vehicle fly-offs  Agent-based RPV control  Combinations of challenges        | •Risk buy-down •Innovation modification •In-depth exploration of alternatives | Competitor evaluation often complex Higher up-front cost But generally good ROI Tech-leveling avoidance often complex | <ul> <li>Competition preparation,<br/>management costing</li> <li>Evaluation criteria, scenarios, testbeds</li> <li>Competitor budget estimation</li> <li>Virtual, proof-of-principle, robust<br/>prototypes</li> </ul> |  |

May 18, 2009 Copy@d/8@CSSECSSE 20

### **Net-Centric Systems of Systems Challenges**

- Need for rapid adaptation to change
  - See first, understand first, act first, finish decisively
- Built-in authority-responsibility mismatches
  - Increasing as authority decreases through Directed,
     Acknowledged, Collaborative, and Virtual SoS classes
    - Incompatible element management chains, legacy constraints, architectures, service priorities, data, operational controls, standards, change priorities...
- High priority on leadership skills, collaboration incentives, negotiation support such as cost models
  - SoS variety and complexity makes compositional cost models more helpful than one-size-fits-all models



## **Example: SoSE Synchronization Points**



22



# **Average Change Processing Time: Two Complex Systems of Systems**



Incompatible with turning within adversary's OODA loop

03/19/2008 Copy@dB@CSSECSSE

#### USC CSSE

### Compositional approaches: Directed systems of systems





## **How Much Architecting is Enough?**

- Larger projects need more



Risk Resolution



## **Comparison of Cost Model Parameters**

| Parameter Aspects         | COSYSMO                                                                                                                                                                                                                                 | COSOSIMO                                                                                                                                                               |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Size drivers              | # of system requirements # of system interfaces # operational scenarios # algorithms                                                                                                                                                    | # of SoS requirements # of SoS interface protocols # of constituent systems # of constituent system organizations # operational scenarios                              |
| "Product" characteristics | Size/complexity Requirements understanding Architecture understanding Level of service requirements # of recursive levels in design Migration complexity Technology risk #/ diversity of platforms/installations Level of documentation | Size/complexity Requirements understanding Architecture understanding Level of service requirements Component system maturity and stability Component system readiness |
| Process characteristics   | Process capability  Multi-site coordination  Tool support                                                                                                                                                                               | Maturity of processes Tool support Cost/schedule compatibility SoS risk resolution                                                                                     |
| People characteristics    | Stakeholder team cohesion Personnel/team capability Personnel experience/continuity                                                                                                                                                     | Stakeholder team cohesion SoS team capability                                                                                                                          |

# Model-Driven, Service-Oriented, Brownfield Systems New phenomenology, counting rules

- Product generation from model directives
  - Treat as very high level language: count directives
- Model reuse feasibility, multi-model incompatibilities
  - Use Feasibility Evidence progress tracking measures
- Functional vs. service-oriented architecture mismatches
  - Part-of (one-many) vs. served-by (many-many)
- Brownfield legacy constraints, reverse engineering
  - Reverse-engineer legacy code to fit new architecture
  - Elaborate COSYSMO Migration Complexity cost driver
  - Elaborate COCOMO II reuse model for reverse engineering



# Failed Greenfield Corporate Financial System

- Used waterfall approach
  - Gathered requirements
  - Chose best-fit ERP system
  - Provided remaining enhancements
- Needed to ensure continuity of service
  - Planned incremental phase-in of new services
- Failed due to inability to selectively phase out legacy services
  - Dropped after 2 failed tries at cost of \$40M



# Legacy Systems Patched, Highly Coupled Financial and Non-Financial Services

**Legacy Business Services Contract Services Project Services** Deliverable **Staffing** Management Earned Value Management Subcontracting Schedulint Rrogies Change Tracking Regs, Configuration Management

## ICM Approach to Brownfield Engineering

- Understanding needs
  - Analysis of legacy system difficulties
- Envisioning opportunities
  - Concurrently decouple legacy financial and non-financial services, explore new system phase-in and architecture options
- System scoping and architecting
  - Extract legacy financial, non-financial services
  - Prioritize, plan for incremental financial services phase-in/out
- Feasibility evidence development
  - Successful examples of representative service extractions
  - Evidence of cost, schedule, performance feasibility



# Result of Legacy Re-engineering





# Always-on, never-fail systems Consider using "weighted SLOC" as a productivity metric

- Some SLOC are "heavier to move into place" than others
  - And largely management uncontrollables
  - Examples: high values of COCOMO II cost drivers
    - RELY: Required Software Reliability
    - DATA: Database Size
    - CPLX: Software Complexity
    - DOCU: Required Documentation
    - RUSE: Required Development for Future Reuse
    - TIME: Execution Time Constraint
    - STOR: Main Storage Constraint
    - SCED: Required Schedule Compression
- Provides way to compare productivities across projects
  - And to develop profiles of project classes



# COSECMO Estimation Trends Effort by Assurance Levels for Different Size Projects



- Plot of projects where only SECU & effort increasing drivers
- Efforts seem a little low based on values from Orange Book projects

Copyright © USC-CSSE 33 May 18, 2009



## **Balancing Agility and Assurance**

- No one-size-fits-all estimation and metrics approach
  - Need compositional approach for both phases and components
- ICM decision table provides criteria for component processes, estimation methods, management metrics
  - Agile: Planning poker/ Wideband Delphi; story burndown
  - Architected agile: planning and implementation sprints: agile plus FED preparation estimation and progress monitoring
  - Mission platforms: hardware, software cost models plus FED preparation estimation and progress monitoring; Leading Indicators and Macro Risk Tool
  - Systems of Systems: composite estimation models; FED estimation and monitoring; extended Macro Risk Tool

#### **Common Risk-Driven Special Cases of the ICM**

| Special | Case                                    | Example                                           | Size,<br>Complexity | Change Rate<br>%<br>/Month | Criticality                         | NDI Support                 | Org, Personnel<br>Capability           | Key Stage I Activities : Incremental Definition                                                                  | Key Stage II Activities: Incremental<br>Development, Operations                                        | Time per Build; per<br>Increment           |
|---------|-----------------------------------------|---------------------------------------------------|---------------------|----------------------------|-------------------------------------|-----------------------------|----------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------|
| 1       | Use NDI                                 | Small Accounting                                  |                     |                            |                                     | Complete                    |                                        | Acquire NDI                                                                                                      | Use NDI                                                                                                |                                            |
| 2       | Agile                                   | E-services                                        | Low                 | 1 – 30                     | Low-Med                             | Good;<br>in place           | Agile-ready<br>Med-high                | Skip Valuation , Architecting phases                                                                             | Scrum plus agile methods of choice                                                                     | <= 1 day;<br>2-6 weeks                     |
| 3       | Architected Agile                       | Business data processing                          | Med                 | 1 – 10                     | Med-High                            | Good;<br>most in place      | Agile-ready<br>Med-high                | Combine Valuation, Architecting phases. Complete NDI preparation                                                 | Architecture-based Scrum of Scrums                                                                     | 2-4 weeks;<br>2-6 months                   |
| 4       | Formal Methods                          | Security kernel or<br>safety-critical LSI<br>chip | Low                 | 0.3 – 1                    | Extra high                          | None                        | Strong formal<br>methods<br>experience | Precise formal specification                                                                                     | Formally-based programming language; formal verification                                               | 1-5 days;<br>1-4 weeks                     |
| 5       | HW component with embedded SW           | Multi-sensor control device                       | Low                 | 0.3 – 1                    | Med-Very<br>High                    | Good;<br>In place           | Experienced; med-<br>high              | Concurrent HW/SW engineering.<br>CDR-level ICM DCR                                                               | IOC Development, LRIP, FRP.<br>Concurrent Version N+1<br>engineering                                   | SW: 1-5 days;<br>Market-driven             |
| 6       | Indivisible IOC                         | Complete vehicle platform                         | Med –<br>High       | 0.3 – 1                    | High-Very<br>High                   | Some in place               | Experienced; med-<br>high              | Determine minimum-IOC likely,<br>conservative cost. Add deferrable<br>SW features as risk reserve                | Drop deferrable features to<br>meet conservative cost.<br>Strong award fee for features<br>not dropped | SW: 2-6 weeks;<br>Platform: 6-18<br>months |
| 7       | NDI- Intensive                          | Supply Chain<br>Management                        | Med –<br>High       | 0.3 – 3                    | Med- Very<br>High                   | NDI-driven architecture     | NDI-experienced;<br>Med-high           | Thorough NDI-suite life cycle cost-benefit analysis, selection, concurrent requirements/ architecture definition | Pro-active NDI evolution influencing, NDI upgrade synchronization                                      | SW: 1-4 weeks;<br>System: 6-18<br>months   |
| 8       | Hybrid agile /<br>plan-driven<br>system | C4ISR                                             | Med –<br>Very High  | Mixed parts:<br>1 – 10     | Mixed<br>parts;<br>Med-Very<br>High | Mixed parts                 | Mixed parts                            | Full ICM; encapsulated agile in high change, low-medium criticality parts (Often HMI, external interfaces)       | Full ICM ,three-team incremental development, concurrent V&V, next-increment rebaselining              | 1-2 months;<br>9-18 months                 |
| 9       | Multi-owner<br>system of<br>systems     | Net-centric military operations                   | Very High           | Mixed parts:<br>1 - 10     | Very High                           | Many NDIs;<br>some in place | Related<br>experience, med-<br>high    | Full ICM; extensive multi-owner team building, negotiation                                                       | Full ICM; large ongoing<br>system/software engineering<br>effort                                       | 2-4 months; 18-24<br>months                |
| 10      | Family of systems                       | Medical Device<br>Product Line                    | Med –<br>Very High  | 1-3                        | Med –<br>Very High                  | Some in place               | Related<br>experience, med –<br>high   | Full ICM; Full stakeholder participation in product line scoping. Strong business case                           | Full ICM. Extra resources for first system, version control, multi-stakeholder support                 | 1-2 months; 9-18<br>months                 |

**C4ISR:** Command, Control, Computing, Communications, Intelligence, Surveillance, Reconnaissance. **CDR:** Critical Design Review.

**DCR:** Development Commitment Review. **FRP:** Full-Rate Production. **HMI:** Human-Machine Interface. **HW:** Hard ware. **IOC:** Initial Operational Capability. **LRIP:** Low-Rate Initial Production. **NDI:** Non-Development Item. **SW:** Software



### **Conclusions**

- Future trends imply need to concurrently address new estimation and management metrics challenges
  - Emergent requirements, rapid change, net-centric systems of systems, MDD/SOA/Brownfield, ultrahigh assurance
- Need to work out cost drivers, estimating relationships for new phenomena
  - Incremental Development Productivity Decline (IDPD)
  - ESLOC and milestone definitions
  - Compositional approach for systems of systems
  - NDI, model, and service composability
  - Re-engineering, migration of legacy systems
  - Ultra-reliable systems development
  - Cost/schedule tradeoffs
- Need adaptive data collection & analysis feedback cycle



# TRW/COCOMO II Experience Factory: II



University of Southern California



# TRW/COCOMO II Experience Factory: IV





### References

- Boehm, B., "Some Future Trends and Implications for Systems and Software Engineering Processes", Systems Engineering 9(1), pp. 1-19, 2006.
- Boehm, B. and Lane J., "21st Century Processes for Acquiring 21st Century Software-Intensive Systems of Systems." *CrossTalk*: Vol. 19, No. 5, pp.4-9, 2006.
- Boehm, B., and Lane, J., "Using the ICM to Integrate System Acquisition, Systems Engineering, and Software Engineering," *CrossTalk*, October 2007, pp. 4-9.
- Boehm, B., Brown, A.W.. Clark, B., Madachy, R., Reifer, D., et al., Software Cost Estimation with COCOMO II, Prentice Hall, 2000.
- Dahmann, J. (2007); "Systems of Systems Challenges for Systems Engineering", Systems and Software Technology Conference, June 2007.
- Department of Defense (DoD), Defense Acquisition Guidebook, version 1.6, http://akss.dau.mil/dag/, 2006.
- Department of Defense (DoD), Instruction 5000.2, Operation of the Defense Acquisition System, May 2003.
- Department of Defense (DoD), Systems Engineering Plan Preparation Guide, USD(AT&L), 2004.
- Galorath, D., and Evans, M., Software Sizing, Estimation, and Risk Management, Auerbach, 2006.
- Lane, J. and Boehm, B., "Modern Tools to Support DoD Software-Intensive System of Systems Cost Estimation, DACS State of the Art Report, also Tech Report USC-CSSE-2007-716
- Lane, J., Valerdi, R., "Synthesizing System-of-Systems Concepts for Use in Cost Modeling," *Systems Engineering*, Vol. 10, No. 4, December 2007.
- Madachy, R., "Cost Model Comparison," Proceedings 21st, COCOMO/SCM Forum, November, 2006, http://csse.usc.edu/events/2006/CIIForum/pages/program.html
- Maier, M., "Architecting Principles for Systems-of-Systems"; Systems Engineering, Vol. 1, No. 4 (pp 267-284).
- Northrop, L., et al., *Ultra-Large-Scale Systems: The Software Challenge of the Future*, Software Engineering Institute, 2006.
- Reifer, D., "Let the Numbers Do the Talking," CrossTalk, March 2002, pp. 4-8.
- Valerdi, R, Systems Engineering Cost Estimation with COSYSMO, Wiley, 2009 (to appear)



## **List of Acronyms**

AA Assessment and Assimilation

AAF Adaptation Adjustment Factor
AAM Adaptation Adjustment Modifier

COCOMO Constructive Cost Model

COSOSIMO Constructive System of Systems Integration Cost Model

COSYSMO Constructive Systems Engineering Cost Model

COTS Commercial Off-The-Shelf

CU Cone of Uncertainty

DCR Development Commitment Review

DoD Department of Defense

ECR Exploration Commitment Review ESLOC Equivalent Source Lines of Code

EVMS Earned Value Management System

FCR Foundations Commitment Review

FDN Foundations, as in FDN Package

FED Feasibility Evidence Description

GD General Dynamics

GOTS Government Off-The-Shelf



## List of Acronyms (continued)

ICM Incremental Commitment Model

IDPD Incremental Development Productivity Decline

IOC Initial Operational Capability

LCA Life Cycle Architecture

LCO Life Cycle Objectives

LMCO Lockheed Martin Corporation

LSI Lead System Integrator

MDA Model-Driven Architecture
NDA Non-Disclosure Agreement

NDI Non-Developmental Item

NGC Northrop Grumman Corporation

OC Operational Capability

OCR Operations Commitment Review

OO Object-Oriented

OODA Observe, Orient, Decide, Act
O&M Operations and Maintenance
PDR Preliminary Design Review

PM Program Manager



## List of Acronyms (continued)

RFP Request for Proposal

SAIC Science Applications international Corporation

SLOC Source Lines of Code

SoS System of Systems

SoSE System of Systems Engineering

SRDR Software Resources Data Report

SSCM Systems and Software Cost Modeling

SU Software Understanding

SW Software

SwE Software Engineering
SysE Systems Engineering

Sys Engr Systems Engineer

S&SE Systems and Software Engineering

ToC Table of Contents

USD (AT&L) Under Secretary of Defense for Acquisition, Technology, and Logistics

VCR Validation Commitment Review

V&V Verification and Validation

WBS Work Breakdown Structure