2) Probability-Statistics

frequency

occurences of A # trials.

04P(A) < 1.

Conditional Probability

$$P(A|B) = \frac{P(A \cap B)}{P(B)} P(B|A) = \frac{P(A \cap B)}{P(A)}$$

Many events Ai

- i) Mutually exclusive
- ii) Their probabilities add up to 1.

$$P(B) = P(A_1 \cap B) + P(A_2 \cap B) + \dots + P(A_n \cap B)$$

$$P(B) = \sum_{i} P(B|A_i)P(A_i)$$

Total probability theorem

Example:

$$P(A=H|C=1)=0.6$$
 $P(C=1)=0.7$
 $P(A=H|C=2)=0.4$ $P(C=2)=0.3$ Ma priori

probabilities

$$P(c=1|A=H) = P(A=H|C=1)P(c=1)$$

A posteriori

$$= \frac{0.42}{0.42 + 0.12} \sim 0.77$$

Decide that coin 1 was tossed

Random variables.

E.g. Z=outcome of throwing a die 1,3,3,4,5,6 discrete

X: Hoight of a person: Continuous.

Probability density

1.68 1.20 1.72

A discrete, x, y continuous.

Total probability.

$$P(A) = \int P(A|x)p(x) dx$$

Expectation value:

Standard deviation:

Gaussian (Normal) distribution

Muttidimensional Gaussian:

Z: Covariance matrix

$$\sum = E\left[\left(\overline{x}-\overline{h}\right)\left(\overline{x}-\overline{h}\right)_{\perp}\right]$$

3) Optimization.

Optinize of (x)

×z dd dz

Constrained optimization:

Optimize &(x) subject to: g(x)=0

df, dg collinear:

$$\exists \lambda: \frac{d\xi}{dx} + \lambda \frac{dg}{dx} = 0 \Rightarrow \frac{d(\xi + \lambda g)}{dx} = 0.$$

Then:
$$\frac{\partial L}{\partial x} = 0$$
, $\frac{\partial L}{\partial y} = 0$. $\frac{\partial L}{\partial y} = 0$.

Optimum point / is a saddle point /

With many constraints: gi(x), i=1,...v

$$\frac{\partial \mathcal{L}}{\partial x} = 0 \qquad \frac{\partial \mathcal{L}}{\partial x} = 0.$$

Example:

Minimize
$$f = x^2 + y^2$$

s.t. $x + y = 1$.

$$\frac{\partial L}{\partial x} = 0 \Rightarrow 2x + \lambda = 0 \Rightarrow x = -\frac{\lambda}{2}$$

Therefore:
$$-\frac{\lambda}{2} - \frac{\lambda}{2} = 1 \Rightarrow \lambda = 1$$