Задача А. Разрезание графа

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 512 мебибайт

Дан неориентированный граф. Над ним в заданном порядке производят операции следующих двух типов:

- cut разрезать граф, то есть удалить из него ребро;
- ask проверить, лежат ли две вершины графа в одной компоненте связности.

Известно, что после выполнения всех операций типа cut рёбер в графе не осталось. Найдите результат выполнения каждой из операций типа ask.

Формат входных данных

Первая строка ввода содержит три целых числа, разделённых пробелами — количество вершин графа n, количество рёбер m и количество операций k ($1 \le n \le 50\,000$, $0 \le m \le 100\,000$, $m \le k \le 150\,000$).

Следующие m строк задают рёбра графа; i-ая из этих строк содержит два числа u_i и v_i ($1 \leqslant u_i, v_i \leqslant n$), разделённые пробелами— номера концов i-го ребра. Вершины нумеруются с единицы; граф не содержит петель и кратных рёбер.

Далее следуют k строк, описывающих операции. Операция типа cut задаётся строкой «cut u v» $(1 \leqslant u, v \leqslant n)$, которая означает, что из графа удаляют ребро между вершинами u и v. Операция типа ask задаётся строкой «ask u v» $(1 \leqslant u, v \leqslant n)$, которая означает, что необходимо узнать, лежат ли в данный момент вершины u и v в одной компоненте связности. Гарантируется, что каждое ребро графа встретится в операциях типа cut ровно один раз.

Формат выходных данных

Для каждой операции ask выведите в отдельной строке слово «YES», если две указанные вершины лежат в одной компоненте связности, и «NO» в противном случае. Порядок ответов должен соответствовать порядку операций ask во вводе.

стандартный ввод	стандартный вывод
3 3 7	YES
1 2	YES
2 3	NO
3 1	NO
ask 3 3	
cut 1 2	
ask 1 2	
cut 1 3	
ask 2 1	
cut 2 3	
ask 3 1	

Математические основы алгоритмов, первый курс, 2024–2025 Структуры данных, вторник, 5 ноября 2024 года, МКН СПбГУ

Задача В. Рёбра добавляются, граф растёт

Имя входного файла: *стандартный ввод*Имя выходного файла: *стандартный вывод*

Ограничение по времени: 2 секунды Ограничение по памяти: 512 мебибайт

В неориентированный граф последовательно добавляются новые рёбра. Изначально граф пустой. После каждого добавления нужно говорить, является ли текущий граф двудольным.

Формат входных данных

На первой строке n — количество вершин, m — количество операций «добавить ребро» ($1\leqslant n,m\leqslant 300\,000$). Следующие m строк содержат пары чисел от 1 до n — описания добавляемых рёбер.

Формат выходных данных

Выведите в строчку m нулей и единиц: i-й символ должен быть равен единице, если граф, состоящий из первых i рёбер, является двудольным.

стандартный ввод	стандартный вывод
3 3	110
1 2	
2 3	
3 1	

Задача С. Система непересекающихся множеств

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 5 секунд Ограничение по памяти: 512 мебибайт

Система непересекающихся множеств — структура данных, хранящая для некоторого множества его разбиение на подмножества в каждый момент времени. Она поддерживает две операции: слияние двух подмножеств и проверку принадлежности двух элементов одному подмножеству.

В этой задаче структура используется так. Дан граф из n вершин, изначально не имеющий рёбер. В граф последовательно предлагаются рёбра для добавления. Каждый раз, когда предлагается ребро между какими-то вершинами u и v веса c, следует проверить, лежат ли на этот момент u и v в одной компоненте связности. Если да, ребро игнорируется. Если нет, ребро добавляется в граф.

Найдите суммарный вес ребёр, добавленных в граф после всех указанных операций.

Формат входных данных

В первой строке заданы через пробел целые числа n и k-количество вершин в графе и количество строк, описывающих рёбра $(1\leqslant n\leqslant 10^7,\ 0\leqslant k\leqslant 10^5).$

В следующих k строках заданы рёбра. Каждая из них имеет вид $u\ v\ c\ \Delta u\ \Delta v\ \Delta c\ m\ (0\leqslant u,v< n,\ 0\leqslant c<10^9,\ |\Delta u|,|\Delta v|,|\Delta c|<10^9,\ 1\leqslant m\leqslant 10^7,$ все числа в строке целые). Такая строка означает, что последовательно поступают предложения о добавлении в граф m рёбер. Первое из них — ребро между вершинами $u\ v$, имеющее вес c. Второе — ребро между $(u+\Delta u)\ \mathrm{mod}\ n$ и $(v+\Delta v)\ \mathrm{mod}\ n$, имеющее вес $(c+\Delta c)\ \mathrm{mod}\ 10^9$, и так далее. Последнее из этих m рёбер соединяет вершины $(u+(m-1)\cdot\Delta u)\ \mathrm{mod}\ n$ и $(v+(m-1)\cdot\Delta v)\ \mathrm{mod}\ n$, а его вес равен $(c+(m-1)\cdot\Delta c)\ \mathrm{mod}\ 10^9$. Напомним, что $x\ \mathrm{mod}\ y$ — это наименьшее неотрицательное число $z\ \mathrm{такоe}$, что величина z-x делится нацело на y.

Общее количество предлагаемых рёбер, равное сумме чисел m во всех строках, не превосходит 10^7 . Среди предлагаемых рёбер могут быть кратные рёбра и петли. Обратите внимание на то, что вершины в графе нумеруются с нуля.

Формат выходных данных

В первой строке выведите одно число – суммарный вес рёбер, добавлен-

ных в граф после всех указанных операций.

стандартный ввод	стандартный вывод
8 3	29
0 1 1 2 2 0 4	
0 1 2 1 1 0 5	
0 3 6 9 12 15 2	
4 1	3
1 2 1 1 1 1 2	

Задача D. Всем чмоки в этом чатике!

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 512 мебибайт

Сегодня Мэри, как программисту социальной сети «Телеграфчик», предстоит реализовать сложную систему управления чатами.

Задача Мэри усложняется тем, что в социальную сеть «Телеграфчик» внедрена продвинутая система шифрования «ZergRus», простая, как всё гениальное. Суть её в том, что в системе хранится одна переменная zerg, которая принимает значения от 0 (включительно) до $p=10^6+3$ (исключая p) и меняется в зависимости от событий в системе.

В социальной сети всего n пользователей ($1 \le n \le 10^5$). В начале дня каждый пользователь оказывается в своём собственном чате, в котором больше никого нет. Переменная zerg в начале дня устанавливается равной 0.

В течение дня происходят события типов:

- 1. Участник с номером $(i+zerg) \bmod n$ посылает сообщение всем участникам, сидящим с ним в чате (в том числе и себе самому), при этом переменная zerg заменяется на $(30 \cdot zerg + 239) \bmod p$.
- 2. Происходит слияние чатов, в которых сидят участники с номерами $(i+zerg) \bmod n$ и $(j+zerg) \bmod n$. Если участники и так сидели в одном чате, то ничего не происходит. Если в разных, то чаты объединяются, а переменной zerg присваивается значение $(13 \cdot zerg + 11) \bmod p$.
- 3. Участник с номером $(i+zerg) \mod n$ хочет узнать, сколько сообщений он не прочитал, и прочитать их. Если участник прочитал q новых сообщений, то переменной zerg присваивается значение $(100\,500\cdot zerg+q) \mod p$.

Вы поможете Мэри реализовать систему, обрабатывающую эти события?

Формат входных данных

В первой строке входных данных записаны натуральные числа n $(1 \leqslant n \leqslant 10^5)$ — число пользователей социальной сети. и m $(1 \leqslant m \leqslant 3 \cdot 10^5)$ — число событий, произошедших за день. В следующих m строках содержится описание событий. Первое целое число в строке означает тип события t $(1 \leqslant t \leqslant 3)$. Если t=1, далее следует число i $(0 \leqslant i < n)$, по которому можно вычислить, какой участник послал сообщение. Если t=2, далее следуют числа i и j $(0 \leqslant i, j < n)$, по которым можно вычислить номера участников,

чаты с которыми должны объединиться. Если t=3, далее следует число i ($0 \leqslant i < n$), по которому можно вычислить номер участника, желающего узнать, сколько у него сообщений, и прочитать их.

Формат выходных данных

Для каждого события типа 3 нужно вывести число непрочитанных сообщений у участника.

Пример

PILITOP		
стандартный ввод	стандартный вывод	Пояснение
4 10	1	4 10
1 0	1	1 0
1 2	2	1 1
1 1		1 2
1 2		1 3
3 1		3 0
2 1 2		2 0 1
1 3		1 1
3 3		3 0
2 3 2		2 2 1
3 2		3 1

Замечание

Справа указаны номера участников в запросах после декодирования.

Задача Е. СНМ и персистентность

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 512 мебибайт

Ваша задача — реализовать **Persistent Disjoint Set Union** (персистентную систему непересекающихся множеств). Что это значит?

Про **Disjoint Set Union**:

Изначально у вас есть n элементов, пронумерованных целыми числами от 1 до n и лежащих каждый в своём множестве. Нужно научиться обрабатывать два типа запросов.

- ullet + a b объединить множества, в которых лежат элементы a и b
- ullet ? a b сказать, лежат ли элементы a и b сейчас в одном множестве

Про **Persistent**:

Теперь у нас будет несколько копий (версий) структуры данных **Disjoint Set Union**.

Запросы будут выглядеть так:

- + і а b—запрос к i-й структуре: объединить множества, в которых лежат элементы a и b. При этом i-я структура остаётся неизменной, создаётся новая версия, ей присваивается новый номер (какой? читайте дальше)
- ? і а b запрос к i-й структуре: сказать, лежат ли в ней элементы a и b в одном множестве

Формат входных данных

В первой строке заданы два целых числа: число элементов в структуре N и число запросов K ($1\leqslant N\leqslant 10^5$, $0\leqslant K\leqslant 10^5$). Изначальная копия (версия) структуры имеет номер 0.

Далее следуют K строк, в каждой из которых записан очередной запрос. Формат запросов описан выше. Запросы нумеруются целыми числами от 1 до K. При обработке j-го запроса, если он имеет вид «+ i a b», новая версия получит номер j.

Формат выходных данных

 Δ ля каждого запроса вида «? і а b» в отдельной строке нужно вывести «YES» или «NO».

P		P	
		стандартный ввод	стандартный вывод
4	7		NO
+	0	1 2	YES
?	0	1 2	YES
?	1	1 2	YES
+	1	2 3	NO
?	4	3 1	
?	0	4 4	
?	4	1 4	
1			

Задача F. Гармонический ряд

Имя входного файла: *стандартный ввод*Имя выходного файла: *стандартный вывод*

Ограничение по времени: 2 секунды Ограничение по памяти: 512 мебибайт

Дано целое число n. Выведите число, которое получится в r после выполнения следующей программы на языке, аналогичном C++:

```
r = 0;
for (i = 1; i <= n; i++)
  for (j = i; j <= n; j += i)
  r += 1;
```

Все переменные — 64-битные целые числа со знаком.

Формат входных данных

В первой строке записано целое число $n \ (1 \le n \le 10^{14})$.

Формат выходных данных

В первой строке выведите одно целое число r — значение результата после выполнения программы.

стандартный ввод	стандартный вывод
3	5
10	27

Задача G. Список степеней

Имя входного файла: *стандартный ввод*Имя выходного файла: *стандартный вывод*

Ограничение по времени: 3.5 секунды Ограничение по памяти: 512 мебибайт

Пусть задано простое число p и число a такое, что 0 < a < p. Рассмотрим все числа от l до r включительно, представимые в виде $a^k \bmod p$ для какого-то целого неотрицательного числа k. Пусть известно, что таких чисел не более 100. Выведите все эти числа в порядке возрастания.

Формат входных данных

В единственной строке заданы через пробел четыре целых числа p, a, l и r (0 < a < p \leqslant 10^9 , p простое, 0 \leqslant l \leqslant r < p).

Формат выходных данных

Выведите все числа от l до r включительно, представимые в виде $a^k \mod p$ для какого-то целого неотрицательного числа k, в порядке возрастания, разделяя соседние числа пробелом. Гарантируется, что входные данные таковы, что в правильном ответе не более 100 чисел.

Примеры

стандартный ввод	стандартный вывод
5 3 0 3	1 2 3
5 4 2 3	

Пояснения к примерам

В первом примере требуется найти все числа от l=0 до r=3 включительно, которые представимы в виде $3^k \mod 5$ для некоторого целого $k\geqslant 0$. Это числа $3^0 \mod 5=1$, $3^1 \mod 5=3$ и $3^3 \mod 5=27 \mod 5=2$. Число 0 не представимо в таком виде, поскольку 3^k не делится на 5 ни для какого целого $k\geqslant 0$. Значит, следует вывести числа 1, 2 и 3 в порядке возрастания.

Во втором примере требуется найти все числа от l=2 до r=3 включительно, которые представимы в виде $4^k \bmod 5$ для некоторого целого $k\geqslant 0$. Выпишем первые несколько чисел такого вида:

```
4^0 \mod 5 = 1,

4^1 \mod 5 = 4,

4^2 \mod 5 = 16 \mod 5 = 1,

4^3 \mod 5 = 64 \mod 5 = 4,

4^4 \mod 5 = 256 \mod 5 = 1, ....
```

Можно доказать, что в этой последовательности встречаются лишь числа 1 и 4. Поэтому список в ответе будет пустым.

Задача Н. Поиск суммы на отрезке

Имя входного файла: *стандартный ввод*Имя выходного файла: *стандартный вывод*

Ограничение по времени: 2 секунды Ограничение по памяти: 512 мебибайт

Задана последовательность целых чисел A длины N. Для каждой заданной пары чисел (k,l) требуется найти значение суммы элементов в последовательности A, начиная с индекса k и заканчивая индексом l.

Формат входных данных

В первой строке входных данных содержатся два числа N и M — количество элементов последовательности $1\leqslant N\leqslant 100\,000$ и количество запросов $1\leqslant M\leqslant 100\,000$. В следующей строке через пробел перечислены элементы последовательности A. Все числа не превышают границ 32-битного числа со знаком. Последующие M строк содержат по два числа (k,l) — начало и конец отрезков, на которых требуется найти сумму элементов.

Формат выходных данных

Выведите суммы элементов последовательности A на заданных отрезках для всех запросов.

стандартный ввод	стандартный вывод
6 3	28
1 8 4 5 3 7	8
1 6	12
2 2	
3 5	

Задача І. Поиск минимума на отрезке

Имя входного файла: *стандартный ввод*Имя выходного файла: *стандартный вывод*

Ограничение по времени: 2 секунды Ограничение по памяти: 512 мебибайт

Задана последовательность целых чисел A длины N. Для каждой заданной пары чисел (k,l) требуется найти значение индекса минимального элемента в последовательности A, начиная с индекса k и заканчивая индексом l.

Формат входных данных

В первой строке входных данных содержатся два числа N и M — количество элементов последовательности $1\leqslant N\leqslant 100\,000$ и количество запросов $1\leqslant M\leqslant 100\,000$. В следующей строке через пробел перечислены элементы последовательности A. Все числа не превышают границ 32-битного числа со знаком. Последующие M строк содержат по два числа (k,l) — начало и конец отрезков, на которых требуется найти индекс минимального элемента.

Формат выходных данных

Выведите индексы минимальных элементов последовательности A на заданных отрезках для всех запросов.

	стандартный ввод	стандартный вывод
6	3	1
1	8 4 5 3 7	2
1	6	5
2	2	
3	5	

Задача J. Range Variation Query

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 512 мебибайт

В начальный момент времени последовательность a_n задана следующей формулой: $a_n=n^2 \bmod 12\,345+n^3 \bmod 23\,456$.

Требуется много раз обрабатывать запросы следующего вида:

- найти разность между максимальным и минимальным значением среди элементов $a_i, a_{i+1}, \ldots, a_j$;
- присвоить элементу a_i значение j.

Формат входных данных

Первая строка содержит целое число k – количество запросов (1 $\leq k \leq 100\,000$). Следующие k строк содержат запросы, по одному на строке. Запрос номер i описывается двумя целыми числами x_i, y_i .

Если $x_i > 0$, то требуется найти разность между максимальным и минимальным значением среди элементов $a_{x_i} \dots a_{y_i}$. При этом $1 \leqslant x_i \leqslant y_i \leqslant 100\,000$.

Если $x_i < 0$, то требуется присвоить элементу $a_{|x_i|}$ значение y_i . При этом $-100\,000 \leqslant x_i \leqslant -1$ и $|y_i| \leqslant 100\,000$.

Формат выходных данных

Для каждого запроса первого типа выведите одну строку, содержащую разность между максимальным и минимальным значением на соответствующем отрезке.

стандартный ввод	стандартный вывод
7	34
1 3	68
2 4	250
-2 -100	234
1 5	1
8 9	
-3 -101	
2 3	

Задача К. Числа на отрезке

Имя входного файла: *стандартный ввод*Имя выходного файла: *стандартный вывод*

Ограничение по времени: 2 секунды Ограничение по памяти: 512 мебибайт

Вова нарисовал на доске горизонтальную прямую, отметил на ней N точек и пронумеровал их слева направо натуральными числами от 1 до N. После этого он стал обводить некоторые точки кружочками. Время от времени Паша, чтобы оторвать его от этого занятия, спрашивает его, сколько точек на отрезке от A до B, включительно, Вова уже обвёл кружочками. Ответьте Паше на все его вопросы, чтобы не отвлекать Вову.

Формат входных данных

В первой строке входных данных записаны два целых числа N и K- количество точек на отрезке и количество событий, соответственно (1 $\leq N \leq$ 1000000, 1 $\leq K \leq$ 100000).

В следующих K строках заданы события в порядке, в котором они случались. Каждая из этих строк либо содержит целое число C от 1 до N, включительно, которое означает, что Вова обвёл кружочком точку с номером C, либо имеет вид «0 A B», где $1\leqslant A\leqslant B\leqslant N$, что означает, что Паша спросил, сколько точек на отрезке от A до B, включительно, уже обведено кружочками.

Вова обводит каждую точку не более одного раза.

Формат выходных данных

Выведите ответ на каждый вопрос Паши на отдельной строке в том порядке, в котором эти вопросы даны во входных данных.

стандартный ввод	стандартный вывод
3 4	1
1	2
0 1 1	
2	
0 1 3	
10 6	0
0 1 10	2
6	
1	
4	
0 2 9	
8	

Задача L. Добавление и GCD

Имя входного файла: *стандартный ввод*Имя выходного файла: *стандартный вывод*

Ограничение по времени: 3 секунды Ограничение по памяти: 512 мебибайт

Дан массив из n целых чисел: a_1, a_2, \ldots, a_n . Поступают q запросов двух типов:

• «1 ℓ r x» — ко всем элементам массива с индексами от ℓ до r включительно прибавить число x;

• «2 ℓ r» — вывести $gcd(a_{\ell}, a_{\ell+1}, \ldots, a_r)$.

Здесь $\gcd(S)$ обозначает наибольший общий делитель множества чисел S.

Формат входных данных

В первой строке заданы два целых числа n и q $(1\leqslant n,q\leqslant 2\cdot 10^5)$ — длина массива и количество запросов.

Во второй строке заданы n целых чисел a_1, a_2, \ldots, a_n $(1 \leqslant a_i \leqslant 10^9)$ — элементы массива a.

Каждая из следующих q строк описывает запрос в формате, указанном в условии ($1 \le \ell \le r \le n$, $1 \le x \le 10^9$).

Гарантируется, что хотя бы один запрос имеет тип 2.

Формат выходных данных

На каждый запрос второго типа выведите \gcd всех чисел из соответствующего отрезка.

стандартный ввод	стандартный вывод
6 8	3
10 6 15 12 18 30	6
2 2 6	3
1 1 1 8	3
2 1 2	3
2 1 4	3
1 3 4 3	
2 1 6	
2 2 5	
2 3 4	