CS353 ML Lab EndSem

Name: K V Sumanth Reddy

Roll No: 181CO225

Batch: Section 2

Date: 13/04/2021

Q: Predict Daily Deaths in Canada with the given dataset

Dataset Used: time_series_covid19_deaths_global.csv

Import Libraries

```
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from statsmodels.tsa.arima_model import ARIMA
#using ARIMA model - Auto Regressive Integrated Moving Average
```

/usr/local/lib/python3.7/dist-packages/statsmodels/tools/_testing.py:19: Futue import pandas.util.testing as tm

Data Preprocessing

df=pd.read_csv('time_series_covid19_deaths_global.csv')
dataset = df.loc[df['Country/Region'] == 'Canada'] #print only canada'
print(dataset)

	Province/State	Country/Region	Lat	 4/8/21	4/9/21	4
39	Alberta	Canada	53.9333	 2005	2007	
40	British Columbia	Canada	53.7267	 1493	1495	
41	Diamond Princess	Canada	0.0000	 1	1	
42	Grand Princess	Canada	0.0000	 0	0	
43	Manitoba	Canada	53.7609	 946	949	
44	New Brunswick	Canada	46.5653	 31	32	
45	Newfoundland and Labrador	Canada	53.1355	 6	6	
46	Northwest Territories	Canada	64.8255	 0	0	
47	Nova Scotia	Canada	44.6820	 66	66	
48	Nunavut	Canada	70.2998	 4	4	
49	Ontario	Canada	51.2538	 7478	7496	

50	Prince Edward Island	Canada	46.5107	 0	0
51	Quebec	Canada	52.9399	 10718	10726
52	Repatriated Travellers	Canada	NaN	 0	0
53	Saskatchewan	Canada	52.9399	 447	453
54	Yukon	Canada	64.2823	 1	1

[16 rows x 449 columns]

#dropping columns and cleaning the dataset
dataset = dataset.drop(['Country/Region','Province/State','Lat','Lor
dataset.head(10)

	1/22/20	1/23/20	1/24/20	1/25/20	1/26/20	1/27/20	1/28/20	1/29/20	1/
39	0	0	0	0	0	0	0	0	
40	0	0	0	0	0	0	0	0	
41	0	0	0	0	0	0	0	0	
42	0	0	0	0	0	0	0	0	
43	0	0	0	0	0	0	0	0	
44	0	0	0	0	0	0	0	0	
45	0	0	0	0	0	0	0	0	
46	0	0	0	0	0	0	0	0	
47	0	0	0	0	0	0	0	0	
48	0	0	0	0	0	0	0	0	

10 rows × 445 columns

#adding all the canadian state death cases into one column
newdataset = pd.DataFrame(columns = dataset.columns)
newdataset.loc['Cases'] = df.sum(numeric_only=True, axis=0)
print(newdataset)

[1 rows x 445 columns]

newdataset = newdataset.T
print(newdataset)

	Cases
1/22/20	17.0
1/23/20	18.0
1/24/20	26.0
1/25/20	42.0
1/26/20	56.0

```
4/6/21 2872453.0

4/7/21 2887278.0

4/8/21 2901909.0

4/9/21 2915400.0

4/10/21 2927807.0

[445 rows x 1 columns]
```

Plotting Cases Trend

```
plt.plot(np.log(newdataset['Cases']),color= 'blue')
plt.xlabel("Dates")
plt.ylabel("Cases (in log values)")
plt.title('Canadian COVID deaths')
plt.savefig('Death Trend.png')
plt.show()
```


Training the dataset on ARIMA model and predicting cases

```
model = ARIMA(newdataset, order=(1,1,1))
model = model.fit()

#Now we predict cases 5 days ahead and 5 days behind from current day_hat = model.predict(len(newdataset)-5,len(newdataset)+5, typ='leve
    /usr/local/lib/python3.7/dist-packages/statsmodels/tsa/base/tsa_model.py:165:
    % freq, ValueWarning)
    /usr/local/lib/python3.7/dist-packages/statsmodels/tsa/base/tsa_model.py:165:
    % freq, ValueWarning)
```

→ Prediction values

```
#printing all the predictions of 5 days ahead and 5 days from the la
y_hat = pd.DataFrame({'Cases':y_hat})
y_hat['Cases']=y_hat['Cases'].astype('int64')
y_hat.head(10)
```

	Cases
2021-04-06	2868192
2021-04-07	2884533
2021-04-08	2901646
2021-04-09	2915547
2021-04-10	2927954
2021-04-11	2939418
2021-04-12	2950372
2021-04-13	2960753
2021-04-14	2970636
2021-04-15	2980086

newdataset.tail(5)

	Cases
4/6/21	2872453.0
4/7/21	2887278.0
4/8/21	2901909.0
4/9/21	2915400.0
4/10/21	2927807.0

▼ Error percentage in prediction

```
temp1 = newdataset.tail(5)
temp2 = y_hat.head(5)

#Now, we print error in prediction of the last 5 day death cases wifeeror = abs(temp1 - temp2)
print("Error in death cases")
print("-----")
print(error)
print("-----")
```

```
print("Error percentage")
print((error/temp1)*100)
```

```
Cases
4/6/21 4261.0
4/7/21 2745.0
4/8/21 263.0
4/9/21 147.0
4/10/21 147.0
Error percentage
Cases
4/6/21 0.148340
4/7/21 0.095072
4/8/21 0.009063
4/9/21 0.005042
4/10/21 0.005021
```

We can see that the error precentage using a ARIMA model is very less and hence ARIMA model can be used to predict Canadian COVID death cases