1 Notes on Quantum computation and quantum information by Nielsen and Chuang

2 Chapter 2: Linear algebra

2.I vector space

• C^n : space of all n-tuple complex numbers (c numbers)

i.e.
$$(z_1, z_2, z_3, ..., z_n)$$

• a vector space is closed under scalar multiplicationa nd addition

2.II Dirac notation

Symbols	Meaning
$ v\rangle$	ket, a vector in vec space
$\langle v $	bra, a dual vector in vec space; the complex transpose of ket $\left\langle v ight = \left(\left v ight angle^* ight)^T$
$\langle v w angle$	inner product of $ v angle$ and $ w angle$
$ arphi angle\otimes \psi angle$	tensor product of $ \varphi\rangle$ and $ \psi\rangle$ abbriviates as $ \varphi\rangle \psi\rangle$
A^*	complex conjugate of $oldsymbol{A}$
A^T	transpose of $oldsymbol{A}$
A^\dagger	hermitian conjugate of $m{A}$ i.e. $m{A}^\dagger = \left(m{A}^* \right)^T$ $ \begin{pmatrix} a & b \\ c & d \end{pmatrix}^\dagger = \begin{pmatrix} a^* & c^* \\ b^* & d^* \end{pmatrix} $
$\langle arphi m{A} \psi angle$	inner product betweeen $ arphi angle$ and $oldsymbol{A} \psi angle$

2.III Span

a set of bec $|v_1\rangle, |v_2\rangle, ..., |v_n\rangle$ spans the vector space if any vector in the space can be written as

$$|v\rangle = \sum_i a_i |v_i\rangle$$

for some complex numbers a_i

2.IV Linear Independence

a set of non-zero vectors $|v_1\rangle, |v_2\rangle, ..., |v_n\rangle$ are liinearly dependent if there exists a set of complex numbers $a_1, a_2, ..., a_n$, s.t.

$$a_1|v_1\rangle + a_2|v_2\rangle + \dots + a_n|v_n\rangle = 0$$

If the only solution to the above equation is $a_1=a_2=\ldots=a_n=0$, then the vectors are **linearly** independent

2.V Linear operators

A linear operator A is any linear function that

$$A\Biggl(\sum_i a_i |v_i\rangle\Biggr) = \sum_i a_i A(|v_i\rangle)$$

It is convention to write $A(|v_i\rangle) = A|v_i\rangle$

- Identity Operator $I_V:I_V|v\rangle\equiv|v\rangle$. It is convinent to write I if no confution arises.
- zero operator $0|v\rangle \equiv 0$
- composition of linear operators A and B is AB

We observe that the above is equivalent to the matrix representation of linear transformations.

In other words, for a linear operator $A: V \to W$, and suppose $|v_1\rangle, |v_2\rangle, ..., |v_m\rangle$

2.VI Hilbert Space

Given a vector basis $\{|E_i\rangle\}$, when attempting to represent a polynomial as $p=\sum_{i=0}^\infty a_i E_i$, the sum is in the form of, according to taylor series, an exponential function. But the exponential function is not a polynomial, i.e. outside of our vector space, so we have landed on a paradox. To avoid this, we define a **Hilbert Space** to handle infinite dimensional vector spaces.

• A Hilbert spsace is a vector space that is 1. complete and 2. has an inner product defined on it. In other words, every converging set of vectors must converge to an element **inside** the vector space.

$$|\psi\rangle\in\mathcal{H}$$

2.VII Inner product

- Review on dot product
 - ▶ orthogonality & angle
 - norm $\|\vec{v}\| = \sqrt{\vec{v} \cdot \vec{v}}$

For kets $|\psi\rangle$, $|\varphi\rangle$, $|\zeta\rangle$, and scalar a, an inner product has the following rules:

• Linearity in the second argument:

$$\begin{cases} \langle \psi | \varphi + \zeta \rangle = \langle \psi | \varphi \rangle + \langle \psi | \zeta \rangle \\ \langle \psi | a \varphi \rangle = a \langle \psi | \varphi \rangle \end{cases}$$

• COmplex commutation:

$$\langle \psi | \varphi \rangle = \langle \varphi | \psi \rangle^*$$

• Positive definiteness (think of norm):

$$|\psi\rangle \neq 0 \Rightarrow \langle \psi | \psi \rangle > 0$$

• Magnitude of a vector:

$$\||\psi\rangle\| = \sqrt{\langle\psi|\psi\rangle}$$

Orthogonality:

$$\langle \psi | \varphi \rangle = 0 \Rightarrow | \psi \rangle$$
 and $| \varphi \rangle$ are orthogonal

• antilinearity in the first argument:

$$\langle a\psi + b\zeta | \varphi \rangle = a^* \langle \psi | \varphi \rangle + b^* \langle \zeta | \varphi \rangle$$

2.VIII Orthonormal basis

$$\{|E_i\rangle\} \text{ s.t. } \left\langle E_i \middle| E_j \right\rangle = \delta_{ij} \text{ is an orthonormal basis, with kroneker delta } \delta_{ij} = \begin{cases} 1 & i=j \\ 0 & i\neq j \end{cases}$$

In English, the inner product of two vectors is 1 if they are the same (norm = 1), and 0 if they are different (orthogonal).

Using the orthonormal basis, we can write any vector as a linear combination of the basis vectors:

$$|\psi\rangle = \sum_i c_i |E_i\rangle$$

Notice that

$$\begin{split} \langle E_i | \psi \rangle &= \left\langle E_i \middle| \sum_j c_j E_j \right\rangle \\ &= \sum_j c_j \left\langle E_i \middle| E_j \right\rangle \\ &= c_i \end{split}$$

And we use the above to calculate the coefficients c_i .

2.VIII.I Inner product between two vectors

$$\begin{split} \langle \psi | \varphi \rangle &= \left\langle \sum_i c_i E_i \middle| \sum_j d_j E_j \right\rangle \\ &= \sum_i \sum_j c_i^* d_j \langle E_i | E_j \rangle \\ &= \sum_i \sum_j c_i^* d_j \delta_{ij} \\ &= \sum_i c_i^* d_i \end{split}$$

When $c,d\in\mathbb{N},$ $\langle\varphi|\psi\rangle=\sum_{i}c_{i}d_{i}$ is simply the dot product.