Linear Algebra Foundations Part 2

Multiplying transformation matrices

Multiplying transformation matrices combines their transformations.

Matrix multiplication is non-commutative!

p = MT * MR * C

p = MR * MT * c

p = MT * MS * C

$$\begin{bmatrix} 1 & 0 & 5 \\ 0 & 1 & 4 \\ 0 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} 2 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 5 \\ 0 & 4 & 4 \\ 0 & 0 & 1 \end{bmatrix}$$

p = MS * MT * C

Reference frames

A matrix that "undoes" the transformation of the original matrix.

- Scaled by 1/scale (determinant of the matrix)

- Scaled by 1/scale (determinant of the matrix)
- Rotated by the transpose of the linear part of the matrix.

- Scaled by 1/scale (determinant of the matrix)

- Rotated by the transpose of the rotation.
- Translated by the translation * -1

Transforming between coordinate spaces.

To express an **object space** coordinate vector in terms of **world space**, multiply the vector by that object's **transform matrix**.

To express a world space coordinate vector in terms of an entity's **object space**, multiply the vector by the **inverse** of that object's transform matrix.

Frame hierarchies

