Cryptographic Hash Functions

Dr. B C Dhara

Department of Information Technology

Jadavpur University

Objectives

- ☐ Introduce general ideas behind cryptographic hash functions
- ☐ Discuss the Merkle-Damgard scheme as the basis for iterated hash functions
- Distinguish between two categories of hash functions
- ☐ Discuss the structure of SHA-512
- Discuss the structure of Whirlpool

Introduction

- A cryptographic hash function takes a message of arbitrary length and creates a message digest of fixed length
- The ultimate goal of this chapter is to discuss the details of the two most promising cryptographic hash algorithms
 - SHA-512 and
 - Whirlpool.

Herated Hash Function

- ☐ Hash function creates fixed length digest out of a variable size message
 - Instead of variable size input, a fixed size input is ereated and may be iterated a number of times
 - I Fixed size input function is referred as compression function
 - □ Normally n-bit string is mapped to m-bit string where n > m
 - ☐ This seheme is referred as iterated cryptographic hash function

Merkle-Damgard Scheme

H₀ is the initial digest, also known as initial vector (IV)

 $H_i = f(H_{i-1}, M_i)$, f is the compression function

$$H_t = h(M)$$

If compression function is collision resistance, the hash function is also collision resistance

Two Groups of Compression Functions

- ☐ The compression function is made from scratch
 - Message Digest (MD), SHA

- A symmetric-key block cipher serves as a compression function
 - Whirlpool

Hash function: Rabin Scheme

- In this scheme, compression function is replaced by any encrypting cipher
- ☐ Message block is used as key
- □ Previously created digest is used as plaintext
- □ Algorithm is simple, subject to meet-in-the-middle attack

Hash function: Davies-Meyer Scheme

- ☐ To protect against meet-in-middle-attack
- □ Digest is used as feed-forward to protect ...

Hash function: Davies-Meyer-Oseas Scheme

- MPSJay! > P(PINN to ☐ Message is used as plaintext
- Digest is used as key

Hash function: Miyaguchi-Preneel Scheme It is extended version of Davies-Meyer-Oseas

- Scheme

 Scheme
- Plaintext, cipher key, ciphertext are all XOR-ed to create new digest
- ☐ This scheme is used in whirlpool

MD hash family

MD4 is a very efficient hash function based on the principles by Merkle and Damgard

- The compression function can be split into two parts:
 - message expansion: input message block is expanded into a number of words
 - Step operations: where expanded message is processed

□ Basic structure is as follows:

SHA-512

- □ SHA-512 is the version of SHA with a 512-bit message digest
- This version, like the others in the SHA family of algorithms, is based on the Merkle-Damgard scheme

 Table 12.1
 Characteristics of Secure Hash Algorithms (SHAs)

Characteristics	SHA-1	SHA-224	SHA-256	SHA-384	SHA-512
Maximum Message size	$2^{64} - 1$	$2^{64} - 1$	$2^{64} - 1$	$2^{128} - 1$	$2^{128} - 1$
Block size	512	512	512	1024	1024
Message digest size	160	224	256	384	512
Number of rounds	80	64	64	80	80
Word size	32	32	32	64	64

SHA-512 (contd...)

SHA-512 creates a 512-bit message digest out of a message less than 2^{128} .

Example: SHA-512

This example shows that the message length limitation of SHA-512 is not a serious problem. Suppose we need to send a message that is 2^{128} bits in length. How long does it take for a communications network with a data rate of 2^{64} bits per second to send this message?

Solution

A communications network that can send 2⁶⁴ bits per second is not yet available. Even if it were, it would take many years to send this message. This tells us that we do not need to worry about the SHA-512 message length restriction.

Example: SHA-512 (contd...)

This example also concerns the message length in SHA-512. How many pages are occupied by a message of 2^{128} bits?

Solution

Suppose that a character is 32, or 2^6 , bits. Each page is less than 2048, or approximately 2^{12} , characters. So 2^{128} bits need at least $2^{128} / 2^{18}$, or 2^{110} , pages. This again shows that we need not worry about the message length restriction.

SHA-512: length field and padding

$$|M| + |P| + 128 \equiv 0 \mod 1924 \Rightarrow |P| = (-|M| - 128) \mod 1024$$

What is the number of padding bits if the length of the original message is 2590 bits?

$$|P| = (-2590 - 128) \mod 1024 = -2718 \mod 1024 = 354$$

The padding consists of one 1 followed by 353 0's.

padding Litt. 17

SHA-512: length field and padding (contd...)

Do we need padding if the length of the original message is already a multiple of 1024 bits?

Solution

Yes we do, because we need to add the length field. So padding is needed to make the new block a multiple of 1024 bits.

SHA-512: length field and padding (contd...)

What is the minimum and maximum number of padding bits that can be added to a message?

- a. The minimum length of padding is 0 and it happens when $(-M-128) \mod 1024$ is 0. This means that $|M| = -128 \mod 1024$ = 896 mod 1024 bits. In other words, the last block in the original message is 896 bits.
- b) The maximum length of padding is 1023 and it happens when $(-|M|-128) = 1023 \mod 1024$. This means that the length of the original message is $|M| = (-128 1023) \mod 1024$ or the length is $|M| = 897 \mod 1024$. In this case, we cannot just add the length field because the length of the last block exceeds one bit more than 1024. So we need to add 897 bits to complete this block and create a second block of 896 bits.

Words and word expansion

Words and word expansion (contd...)

□ We have 16 words; we will see that 80 words
 are needed in the processing → word expansion

 $RotShift_{I-m-n}(x): RotR_I(x) \bigoplus RotR_m(x) \bigoplus ShL_n(x)$

 $RotR_i(x)$: Right-rotation of the argument x by i bits

 $ShL_i(x)$: Shift-left of the argument x by i bits and padding the right by 0's

Example: word expansion

□ How w60 is made?

$$W_{60} = W_{44} \oplus RotShift_{1-8-7} (W_{45}) \oplus W_{53} \oplus RotShift_{19-61-6} (W_{58})$$

Message digest initialization

□ SHA-512 uses following IV

Table 12.2 Values of constants in message digest initialization of SHA-512

Buffer	Value (in hexadecimal)	Buffer	Value (in hexadecimal)
A_0	6A09E667F3BCC908	E_0	510E527FADE682D1
B_0	BB67AE8584CAA73B	F_0	9B05688C2B3E6C1F
C_0	3C6EF372EF94F828	G_0	1F83D9ABFB41BD6B
D_0	A54FE53A5F1D36F1	H_0	5BE0CD19137E2179

First 8 prime numbers: 2, 3, 5, 7, 11, 13, 17, 19
Sqrt(prime) and binary representation of fraction and consider 64 bits

- Each block is processed in 80 rounds (one word in each round)
- □ In each round:
- □ Values in eight buffer (prev round/block-512 bits), word (64-bits) and key (64-bits) are mixed
- Initial value of the registers are saved and added with result of 79-th round to achieve the value for next block/ final digest

Compression function

SHA-512 creates a 512-bits digest from multiple 1024 blocks

Structure of each round of SHA-512

Round

Н (See below) (See below) В В Majority Conditional Rotate (A) Rotate (E) Conditional: (E, F, G)(A, B, C)If x then y else z Mixer 1 Mixer 2 (to A) (to E) Majority (x, y, z)Rotate (x) $(x \text{ AND } y) \oplus (y \text{ AND } z) \oplus (z \text{ AND } x)$ $RotR_{28}(x)$ + $RotR_{34}(x)$ + $RotR_{39}(x)$ Conditional (x, y, z)+ addition modulo 2^{64} (x AND y) + (NOT x AND z)4/26/2022 $RotR_i(x)$: Right-rotation of the argument x by i bits

Round keys

Table 12.3 Eighty constants used for eighty rounds in SHA-512

	428A2F98D728AE22	7137449123EF65CD	B5C0FBCFEC4D3B2F	E9B5DBA58189DBBC
	3956C25BF348B538	59F111F1B605D019	923F82A4AF194F9B	AB1C5ED5DA6D8118
	D807AA98A3030242	12835B0145706FBE	243185BE4EE4B28C	550C7DC3D5FFB4E2
	72BE5D74F27B896F	80DEB1FE3B1696B1	9BDC06A725C71235	C19BF174CF692694
	E49B69C19EF14AD2	EFBE4786384F25E3	0FC19DC68B8CD5B5	240CA1CC77AC9C65
	2DE92C6F592B0275	4A7484AA6EA6E483	5CBOA9DCBD41FBD4	76F988DA831153B5
	983E5152EE66DFAB	A831C66D2DB43210	B00327C898FB213F	BF597FC7BEEF0EE4
	C6E00BF33DA88FC2	D5A79147930AA725	06CA6351E003826F	142929670A0E6E70
	27B70A8546D22FFC	2E1B21385C26C926	4D2C6DFC5AC42AED	53380D139D95B3DF
	650A73548BAF63DE	766A0ABB3C77B2A8	81C2C92E47EDAEE6	92722C851482353B
	A2BFE8A14CF10364	A81A664BBC423001	C24B8B70D0F89791	C76C51A30654BE30
	D192E819D6EF5218	D69906245565A910	F40E35855771202A	106AA07032BBD1B8
	19A4C116B8D2D0C8	1E376C085141AB53	2748774CDF8EEB99	34B0BCB5E19B48A8
	391C0CB3C5C95A63	4ED8AA4AE3418ACB	5B9CCA4F7763E373	682E6FF3D6B2B8A3
	748F82EE5DEFB2FC	78A5636F43172F60	84C87814A1F0AB72	8CC702081A6439EC
	90BEFFFA23631E28	A4506CEBDE82BDE9	BEF9A3F7B2C67915	C67178F2E372532B
	CA273ECEEA26619C	D186B8C721C0C207	EADA7DD6CDE0EB1E	F57D4F7FEE6ED178
	06F067AA72176FBA	0A637DC5A2C898A6	113F9804BEF90DAE	1B710B35131C471B
	28DB77F523047D84	32CAAB7B40C72493	3C9EBEOA15C9BEBC	431D67C49C100D4C
	4CC5D4BECB3E42B6	4597F299CFC657E2	5FCB6FAB3AD6FAEC	6C44198C4A475817

First 80 prime numbers: 2, 3, 5, 7, 11, 13, 17, 19 ...

Cube-root(prime) and binary representation of fraction and consider 64 bits

Round keys

For example, the 80th prime is 409, with the cubic root $(409)^{1/3} = 7.42291412044$. Converting this number to binary with only 64 bits in the fraction part, we get

```
(111.0110\ 1100\ 0100\ 0100\ \dots\ 0111)_2 \rightarrow (7.6C44198C4A475817)_{16}
```

The fraction part: (6C44198C4A475817)₁₆

Example: majority function

We apply the Majority function on buffers A, B, and C. If the leftmost hexadecimal digits of these buffers are 0x7, 0xA, and 0xE, respectively, what is the leftmost digit of the result?

Solution

The digits in binary are 0111, 1010, and 1110.

- a. The first bits are 0, 1, and 1. The majority is 1.
- b. The second bits are 1, 0, and 1. The majority is 1.
- c. The third bits are 1, 1, and 1. The majority is 1.
- d. The fourth bits are 1, 0, and 0. The majority is 0.

The result is 1110, or 0xE in hexadecimal.

Example: conditional function

We apply the Conditional function on E, F, and G buffers. If the leftmost hexadecimal digits of these buffers are 0x9, 0xA, and 0xF respectively, what is the leftmost digit of the result?

Solution

The digits in binary are 1001, 1010, and 1111.

- a. The first bits are 1, 1, and 1. The result is F_1 , which is 1.
- b. The second bits are 0, 0, and 1. The result is G_2 , which is 1.
- c. The third bits are 0, 1, and 1. The result is G_3 , which is 1.
- d. The fourth bits are 1, 0, and 1. The result is F_4 , which is 0.

The result is 1110, or 0xE in hexadecimal.

Analysis of SHA-512

With a message digest of 512 bits, SHA-512 expected to be resistant to all attacks, including collision attacks.

□ Whirlpool is an iterated cryptographic hash function, based on the Miyaguchi-Preneel scheme, that uses a symmetric-key block cipher in place of the

Rounds of Whirlpool cipher

Block and state in the Whirlpool cipher

Structure of each round

SubBytes transformations in the Whirlpool cipher

□ SubBytes Like in AES, SubBytes provide a nonlinear transformation.

SubBytes transformation table

 Table 12.4
 SubBytes transformation table (S-Box)

			-													
	0	1	2	3	4	5	6	7	8	9	\boldsymbol{A}	В	C	D	\boldsymbol{E}	F
0	18	23	C6	E8	87	B8	01	4F	36	A6	D2	F5	79	6F	91	52
1	16	ВС	9B	8E	A3	0C	7B	35	1D	E0	D7	C2	2E	4B	FE	57
2	15	77	37	E5	9F	F0	4A	CA	58	C9	29	0A	B1	A0	6B	85
3	RD	5D	10	F4	CR	3E	05	67	F4	27	41	8R	Δ7	7D	95	C8
4	Algebrically this table can be computed in $GF(2^4)$ with												ı –			
5	the irreducible polynomial $x^4 + x + 1$,				
6	E9	0F	D5	80	BE	CD	34	48	FF	7A	90	5F	20	68	1A	AE
7	B4	54	93	22	64	F1	73	12	40	08	C3	EC	DB	A1	8D	3D
8	97	00	CF	2B	76	82	D6	1B	В5	AF	6A	50	45	F3	30	EF
9	3F	55	A2	EA	65	BA	2F	C0	DE	1C	FD	4D	92	75	06	8A
\boldsymbol{A}	B2	E6	0E	1F	62	D4	A8	96	F9	C5	25	59	84	72	39	4C
В	5E	78	38	8C	C1	A5	E2	61	В3	21	9C	1E	43	C7	FC	04
C	51	99	6D	0D	FA	DF	7E	24	3B	AB	CE	11	8F	4E	В7	EB
D	3C	81	94	F7	9B	13	2C	D3	E7	6E	C4	03	56	44	7E	A9
E	2A	BB	C1	53	DC	0B	9D	6C	31	74	F6	46	AC	89	14	E1
F	16	3A	69	09	70	В6	C0	ED	CC	42	98	A4	28	5C	F8	86

ShiftColumns transformation in the Whirlpool cipher

MixRows transformation in the Whirlpool cipher

AddRoundKey transformation in the Whirlpool cipher

Key expansion in the Whirlpool cipher

Round constant

- Round constant is 8x8 matrix, a state, second last row all are zero
- \square RC_{round}(row, col)=SubByte(8*(rounrd-1)+col) if row =0
- \Box else RC_{round}(row, col)=0

4/26/2022

Characteristics of Whirlpool

Table 12.5 Main characteristics of the Whirlpool cipher

Block size: 512 bits

Cipher key size: 512 bits

Number of rounds: 10

Key expansion: using the cipher itself with round constants as round keys

Substitution: SubBytes transformation

Permutation: ShiftColumns transformation

Mixing: MixRows transformation

Round Constant: cubic roots of the first eighty prime numbers