Stratégies modernes pour l'intégration des équations d'advection-réaction-diffusion

(ImEx & MultiRésolution Adaptative)

Alexandre EDELINE

ENSTA Paris Laboratoire : CMAP

Tuteurs laboratoire : Marc MASSOT, Christian TENAUD

Tuteur ENSTA : Patrick CIARLET

Avril - Octobre 2025

Plan

Compléments

Introduction	
Les équations d'advection-diffusion-réaction ((ADR
Problématique	
1ère contribution	
2 ^{ème} contribution	
3 ^{ème} contribution	

Plan

Introduction

Les équations d'advection-diffusion-réaction (ADR)

Problématique

 $1^{
m \grave{e}^{re}}$ contribution

2ème contribution

3^{ème} contribution

Compléments

Introduction Motivations et objectifs

Plan

Introduction

Les équations d'advection-diffusion-réaction (ADR)

Problématique

 $1^{
m erg}$ contribution

2ème contribution

3^{ème} contribution

Complément

Equations d'ADR Applications Physiques

Equations d'ADR Applications Physiques

$$\begin{cases} \partial_t u(x,t) = \underbrace{\overbrace{Au}}_{c\partial_x u} + \underbrace{\overbrace{Du}}_{\partial_x (\eta\partial_x u)} + \underbrace{\overbrace{R(u)}}_{\text{Non-lin.}} \\ u(x,0) = u_0. \end{cases}$$

(1)

Le couplage des opérateurs

Les trois opérateurs ont des propriétés très différentes :

- Advection : Peu raide, raisonnant (spectre autour de $i\mathbb{R}$).
- ightharpoonup Diffusion : Moyennement raide, spectre autour de \mathbb{R}^- .
- ▶ Réaction : Très raide, hautement non-linéaire, local.
- ⇒ les approches monolithiques peinent

Le couplage des opérateurs

Les trois opérateurs ont des propriétés très différentes :

- Advection : Peu raide, raisonnant (spectre autour de $i\mathbb{R}$).
- ▶ Diffusion : Moyennement raide, spectre autour de R⁻.
- ▶ Réaction : Très raide, hautement non-linéaire, local.
- ⇒ les approches monolithiques peinent

Les solutions multi-échelles

- plusieurs échelles de temps
- plusieurs échelles d'espace

Équations d'ADR Stratégies de simulation

Stratégie $n^{\circ}1$: Différencier le traitement sur chaque opérateurs

Ne pas faire un schéma monolithique.

- ► Séparation d'opérateurs (splitting)
- ► Méthodes ImEx (Additive Runge et Kutta)

Stratégie $n^{\circ}1$: Différencier le traitement sur chaque opérateurs

Ne pas faire un schéma monolithique.

- Séparation d'opérateurs (splitting)
- ► Méthodes ImEx (Additive Runge et Kutta)

Stratégie n°2 : Adaptation en espace

La multirésolution adaptative :

- Des grilles de résolution multiples,
- Deux opérateurs de projection/reconstruction,
- Représentation de la solution comme une suite de détails,
- Une stratégie d'adaptation.

Niveau	de	résolution $j=1$
Niveau	de	${\it r\'esolution}\ j=2$
Niveau	de	résolution $j = 3$

u_0^1		u_1^1					
a	/2 0	d_1^2		d_2^2		d_3^2	
d_0^3	d_1^3	d_2^3	d_3^3	d_4^3	d_5^3	d_6^3	d_7^3

Plan

Introduction

Les équations d'advection-diffusion-réaction (ADR

Problématique

 $1^{
m ere}$ contribution

2ème contribution

3^{ème} contribution

Complément

Problématique

Présentation des contributions

Contribution $n^{\circ}1$:		
Contribution n°2:		
Contribution n°3:		

Plan

Introduction

Les équations d'advection-diffusion-réaction (ADR

Problématique

1ère contribution

2ème contribution

3^{ème} contribution

Complément

Comparaison ImEx - Splitting

$\begin{array}{c|c} \textbf{Contribution 1} & \textbf{Comparaison ImEx - Splitting} \\ \textbf{L'équation de Nagumo} \end{array}$

L'équation de Nagumo 1D :

Il s'agit d'une équation de diffusion-réaction faisant apparaître des dynamiques de fronts :

$$\partial_t u = \underbrace{D\partial_{xx} u}_{\text{diffusion}} - \underbrace{ku(1 - u^2)}_{\text{réaction non. lin.}} \quad k, D \in \mathbb{R}_+^*. \tag{2}$$

L'équation de Nagumo 1D :

Il s'agit d'une équation de diffusion-réaction faisant apparaître des dynamiques de fronts :

$$\partial_t u = \underbrace{D\partial_{xx} u}_{\text{diffusion}} - \underbrace{ku(1 - u^2)}_{\text{réaction non, lin.}} \quad k, D \in \mathbb{R}_+^*. \tag{2}$$

Les solutions :

En domaine infini, cette équation admet des solutions sous forme d'ondes progressives :

$$u(x-ct) = \frac{e^{\sqrt{\frac{k}{2D}}((x-x_0)-ct)}}{1+e^{-\sqrt{\frac{k}{2D}}((x-x_0)-ct)}}, \quad c = \sqrt{\frac{kD}{2}}.$$
 (3)

Contribution 1 | Comparaison ImEx - Splitting Présentation des méthodes

Méthode ImEx232:

Schéma à trois étages explicites et deux étages implicites, avec $\gamma = \frac{2-\sqrt{2}}{2}$ et $\delta = -\frac{2\sqrt{2}}{2}$:

$$\text{Explicite} : \underbrace{ \begin{array}{c|cccc} 0 & 0 & 0 & 0 \\ \gamma & \gamma & 0 & 0 \\ \hline 1 & \delta & 1-\delta & 0 \\ \hline & 0 & 1-\gamma & \gamma \end{array} }_{} \text{Implicite} : \underbrace{ \begin{array}{c|cccc} \gamma & \gamma & 0 \\ \hline 1 & 1-\gamma & \gamma \\ \hline & 1-\gamma & \gamma \end{array} }_{}$$

Contribution 1 | Comparaison ImEx - Splitting Présentation des méthodes

Méthode ImEx232 :

Schéma à trois étages explicites et deux étages implicites, avec $\gamma = \frac{2-\sqrt{2}}{2}$ et $\delta = -\frac{2\sqrt{2}}{2}$:

Explicite:
$$\begin{array}{c|cccc} 0 & 0 & 0 & 0 \\ \gamma & \gamma & 0 & 0 \\ \hline 1 & \delta & 1-\delta & 0 \\ \hline & 0 & 1-\gamma & \gamma \end{array} \quad \text{Implicite}: \begin{array}{c|cccc} \gamma & \gamma & 0 \\ \hline 1 & 1-\gamma & \gamma \\ \hline & 1-\gamma & \gamma \end{array}$$

Implicite :
$$egin{array}{c|c} \gamma & \gamma & 0 \\ \hline 1 & 1-\gamma & \gamma \\ \hline & 1-\gamma & \gamma \end{array}$$

Méthode ImEx222:

Schéma à deux étages explicites et deux étages implicites, avec $\gamma = \frac{2-\sqrt{2}}{2}$ et $\delta = 1 - \frac{1}{2\alpha}$:

Explicite:
$$\begin{array}{c|cccc} 0 & 0 & 0 & 0 \\ \gamma & \gamma & 0 & 0 \\ \hline 1 & 1-\delta & \delta & 0 \\ \hline & 1-\delta & \delta & 0 \\ \end{array}$$
 Implicite:
$$\begin{array}{c|ccccc} \gamma & \gamma & 0 \\ \hline 1 & 1-\gamma & \gamma \\ \hline & 1-\gamma & \gamma \\ \end{array}$$

$$\mathsf{Implicite} : \begin{array}{c|cccc} \gamma & \gamma & 0 \\ \hline 1 & 1 - \gamma & \gamma \\ \hline & 1 - \gamma & \gamma \end{array}$$

Méthode ImEx232:

Schéma à trois étages explicites et deux étages implicites, avec $\gamma = \frac{2-\sqrt{2}}{2}$ et $\delta = -\frac{2\sqrt{2}}{3}$:

Explicite:
$$\begin{array}{c|cccc}
0 & 0 & 0 & 0 \\
\gamma & \gamma & 0 & 0 \\
\hline
1 & \delta & 1 - \delta & 0 \\
\hline
0 & 1 - \gamma & \gamma
\end{array}$$
 Implicite:
$$\begin{array}{c|cccc}
\gamma & \gamma & 0 \\
\hline
1 & 1 - \gamma & \gamma \\
\hline
1 - \gamma & \gamma
\end{array}$$

Méthode ImEx222:

Schéma à deux étages explicites et deux étages implicites, avec $\gamma = \frac{2-\sqrt{2}}{2}$ et $\delta = 1 - \frac{1}{2\gamma}$:

Explicite:
$$\begin{array}{c|cccc} 0 & 0 & 0 & 0 \\ \gamma & \gamma & 0 & 0 \\ \hline 1 & 1-\delta & \delta & 0 \\ \hline & 1-\delta & \delta & 0 \\ \end{array}$$
 Implicite:
$$\begin{array}{c|ccccc} \gamma & \gamma & 0 \\ \hline 1 & 1-\gamma & \gamma \\ \hline & 1-\gamma & \gamma \\ \end{array}$$

Méthode Splitting:

Splitting de Strang | Réaction : ERK2 (Heun) | Diffusion : SDIRK2 (celle des méthode ImEx). $_{15/41}$

Méthode ImEx232:

Schéma à trois étages explicites et deux étages implicites, avec $\gamma=\frac{2-\sqrt{2}}{2}$ et $\delta=-\frac{2\sqrt{2}}{3}$:

Méthode ImEx232:

Schéma à trois étages explicites et deux étages implicites, avec $\gamma=\frac{2-\sqrt{2}}{2}$ et $\delta=-\frac{2\sqrt{2}}{3}$:

Méthode ImEx232:

Schéma à trois étages explicites et deux étages implicites, avec $\gamma=\frac{2-\sqrt{2}}{2}$ et $\delta=-\frac{2\sqrt{2}}{3}$:

Calcul:

_____Initialisation _____

$$u_0 = u^n$$
,

_ 1^{er} étage _____

$$k_1^E = f_E(u_0), k_1^I = f_I(u_1).$$

Méthode ImEx232:

Schéma à trois étages explicites et deux étages implicites, avec $\gamma=\frac{2-\sqrt{2}}{2}$ et $\delta=-\frac{2\sqrt{2}}{3}$:

Calcul:

_____Initialisation _____

$$u_0 = u^n$$

1er étage

$$k_1^E = f_E(u_0), \, k_1^I = f_I(u_1).$$

$$u_1 = u_0 + \gamma \Delta t k_1^E + \gamma \Delta t \underbrace{f_I(u_1)}_{f_I(u_1)}$$

Méthode ImEx232:

Schéma à trois étages explicites et deux étages implicites, avec $\gamma=rac{2-\sqrt{2}}{2}$ et $\delta=-rac{2\sqrt{2}}{3}$:

Calcul:

 $u_0 = u^n$, $\frac{1^{er} \text{ \'etage}}{k_1^E = f_E(u_0), k_1^I = f_I(u_1).}$

_____Initialisation _____

$$\Rightarrow u_1 = \left[ld - \gamma \Delta t f_I(\cdot) \right]^{-1} (u_0 + \gamma \Delta t k_1^E),$$

Méthode ImEx232:

Schéma à trois étages explicites et deux étages implicites, avec $\gamma=\frac{2-\sqrt{2}}{2}$ et $\delta=-\frac{2\sqrt{2}}{3}$:

Initialisation
$$u_0 = u^n,$$

$$1^{er} \text{ étage}$$

$$k_1^E = f_E(u_0), k_1^I = f_I(u_1).$$

$$u_1 = u_0 + \gamma \Delta t k_1^E + \gamma \Delta t \underbrace{f_I(u_1)}_{f_I(u_1)},$$

$$\Rightarrow u_1 = \begin{bmatrix} Id - \gamma \Delta t f_I(\cdot) \end{bmatrix}^{-1} (u_0 + \gamma \Delta t k_1^E),$$

$$\Rightarrow k_1^I = f_I(u_1).$$

Méthode ImEx232:

Schéma à trois étages explicites et deux étages implicites, avec $\gamma=\frac{2-\sqrt{2}}{2}$ et $\delta=-\frac{2\sqrt{2}}{3}$:

Initialisation
$$2^{eme} \text{ \'etage}$$

$$u_0 = u^n,$$

$$k_2^E = f_E(u_1), k_2^I = f_I(u_2).$$

$$k_1^E = f_E(u_0), k_1^I = f_I(u_1).$$

$$u_1 = u_0 + \gamma \Delta t k_1^E + \gamma \Delta t \underbrace{f_I(u_1)}_{f_I(u_1)},$$

$$\Rightarrow u_1 = \left[ld - \gamma \Delta t f_I(\cdot) \right]^{-1} (u_0 + \gamma \Delta t k_1^E),$$

$$\Rightarrow k_1^I = f_I(u_1).$$

Méthode ImEx232:

Schéma à trois étages explicites et deux étages implicites, avec $\gamma=\frac{2-\sqrt{2}}{2}$ et $\delta=-\frac{2\sqrt{2}}{3}$:

$$u_0 = u^n,$$

$$1^{er} \text{ étage}$$

$$k_1^E = f_E(u_0), k_1^I = f_I(u_1).$$

$$u_1 = u_0 + \gamma \Delta t k_1^E + \gamma \Delta t \underbrace{f_I(u_1)}_{f_I(u_1)},$$

$$\Rightarrow u_1 = \left[ld - \gamma \Delta t f_I(\cdot) \right]^{-1} (u_0 + \gamma \Delta t k_1^E),$$

$$\Rightarrow k_1^I = f_I(u_1).$$

$$\begin{aligned} & 2^{eme} \text{ \'etage} \\ k_2^E &= f_E(u_1), \, k_2^I = f_I(u_2). \end{aligned}$$

$$u_2 &= u_0 + \delta \Delta t k_1^E + (1 - \delta) \Delta t k_2^E + (1 - \gamma) \Delta t k_1^I + \underbrace{\gamma \Delta t f_I(u_2)}_{=k_2^I},$$

$$\implies u_1 = \left[td - \gamma \Delta t f_I(\cdot) \right]^{-1} \left(u_0 + \delta \Delta t k_1^E + (1 - \delta) \Delta t k_2^E + (1 - \gamma) \Delta t k_1^I \right),$$

$$\implies k_2^I &= f_I(u_2).$$

Méthode ImEx232:

Schéma à trois étages explicites et deux étages implicites, avec $\gamma=\frac{2-\sqrt{2}}{2}$ et $\delta=-\frac{2\sqrt{2}}{3}$:

$$u_0 = u^n,$$

$$k_1^E = f_E(u_0), k_1^I = f_I(u_1).$$

$$u_1 = u_0 + \gamma \Delta t k_1^E + \gamma \Delta t \underbrace{f_I(u_1)}_{f_I(u_1)},$$

$$\Rightarrow u_1 = \left[ld - \gamma \Delta t f_I(\cdot) \right]^{-1} (u_0 + \gamma \Delta t k_1^E),$$

$$\Rightarrow k_1^I = f_I(u_1).$$

$$\begin{aligned} & 2^{eme} \text{ \'etage} \\ & k_2^E = f_E(u_1), \, k_2^I = f_I(u_2). \end{aligned}$$

$$u_2 = u_0 + \delta \Delta t k_1^E + (1 - \delta) \Delta t k_2^E + (1 - \gamma) \Delta t k_1^I + \overbrace{\gamma \Delta t f_I(u_2)}^{=k_2^I},$$

$$\implies u_1 = \begin{bmatrix} Id - \gamma \Delta t f_I(\cdot) \end{bmatrix}^{-1} \left(u_0 + \delta \Delta t k_1^E + (1 - \delta) \Delta t k_2^E + (1 - \gamma) \Delta t k_1^I \right),$$

$$\implies k_2^I = f_I(u_2).$$

$$\frac{3^{eme}}{k_2^E} \text{ \'etage}$$

$$k_2^E = f_E(u_2).$$

Méthode ImEx232:

Schéma à trois étages explicites et deux étages implicites, avec $\gamma=\frac{2-\sqrt{2}}{2}$ et $\delta=-\frac{2\sqrt{2}}{3}$:

Initialisation
$$u_0 = u^n,$$

$$1^{er} \text{ étage}$$

$$k_1^E = f_E(u_0), k_1^I = f_I(u_1).$$

$$u_1 = u_0 + \gamma \Delta t k_1^E + \gamma \Delta t \underbrace{f_I(u_1)}_{f_I(u_1)},$$

$$\Rightarrow u_1 = \left[kl - \gamma \Delta t f_I(\cdot)\right]^{-1} (u_0 + \gamma \Delta t k_1^E),$$

$$\Rightarrow k_1^I = f_I(u_1).$$

$$\begin{aligned} & \frac{2^{eme}}{k_2^E} \in f_E(u_1), \ k_2^I = f_I(u_2). \\ & u_2 = u_0 + \delta \Delta t k_1^E + (1 - \delta) \Delta t k_2^E + (1 - \gamma) \Delta t k_1^I + \gamma \Delta t f_I(u_2), \\ & \Longrightarrow u_1 = \left[Id - \gamma \Delta t f_I(\cdot) \right]^{-1} \left(u_0 + \delta \Delta t k_1^E + (1 - \delta) \Delta t k_2^E + (1 - \gamma) \Delta t k_1^I \right), \\ & \Longrightarrow k_2^I = f_I(u_2). \\ & \frac{3^{eme}}{t} \text{ etage} \\ & k_3^E = f_E(u_2). \end{aligned}$$

$$\frac{Recombinaison \ des \ etages}{u^{n+1} = u^n + \Delta t \left((1 - \gamma) k_2^F + \gamma k_3^F + (1 - \gamma) k_1^I + \gamma k_2^I \right)}.$$

$\begin{array}{c|c} \textbf{Contribution 1} & \textbf{Comparaison ImEx - Splitting} \\ \textbf{Convergence (\emptyset MRA)} \end{array}$

Contexte:

- k = 10, D = 0.1,
- $\Delta x = 2.4 \, 10^{-3}$.
- conditions de Neumann au bord (quasi infini).

$\begin{array}{c|c} \textbf{Contribution 1} & \textbf{Comparaison ImEx - Splitting} \\ \textbf{Convergence (avec MRA)} & \textbf{Comparaison ImEx - Splitting} \\ \end{array}$

Contexte:

- k = 10, D = 0.1,
- ▶ Solution représentée du 12 ($\Delta x = 910^{-3}$) à 6,
- conditions de Neumann au bord (quasi infini).

$\underset{\tiny{\mathsf{Conclusion}}}{\mathsf{Contribution}} \ 1 \mid \mathsf{Comparaison} \ \mathsf{ImEx} \ \mathsf{-} \ \mathsf{Splitting}$

Plan

Introduction

Les équations d'advection-diffusion-réaction (ADR

Problématique

 $1^{
m erg}$ contribution

2ème contribution

3^{ème} contribution

Compléments

Équation cible :
$$\partial_t u = \partial_x (D\partial_x u), \quad D > 0.$$
 (5)

Schéma numérique

Méthode des lignes : Volumes finis ordre deux + Runge Kutta explicite d'ordre deux.

o **Semi-discrétisation spatiale** : Sur un maillage 1D constitué de cellules C_i de tailles Δx :

$$\forall j, \quad \int_{C_j} u(x, t) dx = \partial_x \int_{C_j} \partial_x u(x, t) dx. \tag{6}$$

$$\forall j, \quad U_j(t) = \frac{D}{\Delta x} \left[\partial_x u(x, t) \right]_{x_{j-1/2}}^{x_{j+1/2}} \tag{7}$$

$$\forall j, \quad U_j(t) = \underbrace{\frac{D}{\Delta x} \left[\frac{U_{j+1}(t) - U_j(t)}{\Delta x} - \frac{U_j(t) - U_{j-1}(t)}{\Delta x} \right]}_{} + \mathcal{O}(\Delta x^2)$$
(8)

 $\mathsf{not\acute{e}}:\mathcal{D}$

 \circ Intégration en temps : Pour un pas de temps Δt :

$$u^{n+1} = u^n + \Delta t \mathcal{D} u^n + \frac{\Delta t^2}{2} \mathcal{D}^2 u^n \to \text{stabilit\'e} : \lambda = \frac{D\Delta t}{\Delta x^2} < \frac{1}{2}.$$
 (9)

Flux numériques :

$$\Phi_k^- = \frac{u_k - u_{k-1}}{\Delta x}$$

Flux numériques :

$$\Phi_k^+ = \frac{u_{k+1} - u_k}{\Delta x}$$

$$\Phi_k^- = \frac{u_k - u_{k-1}}{\Delta x}$$

Pas d'adaptation -----

Flux numériques :

$$\Phi_k^+ = \frac{u_{k+1} - u_k}{\Delta x}$$

$$\Phi_k^- = \frac{u_k - u_{k-1}}{\Delta x}$$

Flux numériques :

$$\Phi_k^+ = \frac{u_{k+1} - u_k}{\Delta x}$$

$$\Phi_k^- = \frac{u_k - u_{k-1}}{\Delta x}$$

Flux numériques :

$$\Phi_k^+ = \frac{u_{k+1} - u_k}{\Delta x}$$

$$\Phi_k^- = \frac{u_k - u_{k-1}}{\Delta x}$$

MRA sans reconstruction des flux. — MRA avec reconstruction des flux au niveau le plus fin. —

Flux numériques :

$$\Phi_k^+ = \frac{u_{k+1} - u_k}{\Delta x}$$

$$\Phi_k^- = \frac{u_k - u_{k-1}}{\Delta x}$$

MRA avec reconstruction des flux au niveau le plus fin. - MRA avec reconstruction des flux au niveau le plus proche. -

Contribution 2 | Équations Équivalentes, diffusion et MRA Méthode d'obtention des équivalentes

Méthode d'obtention des équations équivalentes : Automatisation via

Contribution 2 Équations Équivalentes, diffusion et MRA Méthode d'obtention des équations équivalentes

Méthode d'obtention des équations équivalentes : Automatisation via

Multirésolution adaptative sans reconstruction des flux :

Remplacer Δx par $2^{\Delta l} \Delta x$.

Contribution 2 | Équations Équivalentes, diffusion et MRA Méthode d'obtention des équations équivalentes

Méthode d'obtention des équations équivalentes : Automatisation via

Multirésolution adaptative sans reconstruction des flux :

Remplacer Δx par $2^{\Delta l} \Delta x$.

Prise en compte de la reconstruction des flux :

- $\qquad \text{Reconstruction}: \left[u_{2^{\Delta I}k-1}^{\bar{I}}, u_{2^{\Delta I}k}^{\bar{I}}, u_{2^{\Delta I}k+1}^{\bar{I}}, u_{2^{\Delta I}k+2}^{\bar{I}} \right]^T = P^{\Delta I} \left[u_{k-1}^{\bar{I}-\Delta I}, u_k^{\bar{I}-\Delta I}, u_{k+1}^{\bar{I}}, u_{k+2}^{\bar{I}-\Delta I} \right]^T$
- ▶ Taille cellule : $2^{\Delta l}\Delta x$, Pas approximation gradient Δx .

 ΔI écart de niveau - D>0 coefficient de diffusion - Δx pas spatial de la grille fine - Δt pas temporel

Sans multirésolution adaptative :

$$\frac{\partial u}{\partial t} = D \frac{\partial^2 u}{\partial x^2} + \Delta x^2 \frac{D}{12} \frac{\partial^4 u}{\partial x^4} - \Delta t^2 \frac{D^3}{6} \frac{\partial^6 u}{\partial x^6} - \Delta t^3 \frac{D^4}{24} \frac{\partial^8 u}{\partial x^8} + \mathcal{O}(\Delta x^4, \Delta t^4). \tag{10}$$

 ΔI écart de niveau - D>0 coefficient de diffusion - Δx pas spatial de la grille fine - Δt pas temporel

Sans multirésolution adaptative :

$$\frac{\partial u}{\partial t} = D \frac{\partial^2 u}{\partial x^2} + \Delta x^2 \frac{D}{12} \frac{\partial^4 u}{\partial x^4} - \Delta t^2 \frac{D^3}{6} \frac{\partial^6 u}{\partial x^6} - \Delta t^3 \frac{D^4}{24} \frac{\partial^8 u}{\partial x^8} + \mathcal{O}(\Delta x^4, \Delta t^4). \tag{10}$$

Avec multirésolution adaptative - sans reconstruction des flux :

$$\frac{\partial}{\partial t}u = D\frac{\partial^2 u}{\partial x^2} + (2^{\Delta I}\Delta x)^2 \frac{D}{12} \frac{\partial^4 u}{\partial x^4} - \Delta t^2 \frac{D^3}{6} \frac{\partial^6 u}{\partial x^6} - \Delta t^3 \frac{D^4}{24} \frac{\partial^8 u}{\partial x^8} + \mathcal{O}(\Delta x^4, \Delta t^4). \tag{11}$$

 ΔI écart de niveau - D > 0 coefficient de diffusion - Δx pas spatial de la grille fine - Δt pas temporel

Sans multirésolution adaptative :

$$\frac{\partial u}{\partial t} = D \frac{\partial^2 u}{\partial x^2} + \Delta x^2 \frac{D}{12} \frac{\partial^4 u}{\partial x^4} - \Delta t^2 \frac{D^3}{6} \frac{\partial^6 u}{\partial x^6} - \Delta t^3 \frac{D^4}{24} \frac{\partial^8 u}{\partial x^8} + \mathcal{O}(\Delta x^4, \Delta t^4). \tag{10}$$

Avec multirésolution adaptative - sans reconstruction des flux :

$$\frac{\partial}{\partial t}u = D\frac{\partial^2 u}{\partial x^2} + (2^{\Delta I}\Delta x)^2 \frac{D}{12} \frac{\partial^4 u}{\partial x^4} - \Delta t^2 \frac{D^3}{6} \frac{\partial^6 u}{\partial x^6} - \Delta t^3 \frac{D^4}{24} \frac{\partial^8 u}{\partial x^8} + \mathcal{O}(\Delta x^4, \Delta t^4). \tag{11}$$

Avec multirésolution adaptative - avec reconstruction des flux :

$$\frac{\partial u}{\partial t} = D \frac{\partial^2 u}{\partial x^2} - \Delta t \frac{D^2}{2} \left(2^{2\Delta l} - 1 \right) \frac{\partial^4 u}{\partial x^4} - \Delta t^2 \frac{D^3}{6} \frac{\partial^6 u}{\partial x^6} - \Delta t^3 \frac{D^4}{24} \frac{\partial^8 u}{\partial x^8} + \Delta x^2 \frac{2^{2\Delta l} D}{12} (1 - 3\Delta l) \frac{\partial^4 u}{\partial x^4} + \mathcal{O}(\Delta x^4, \Delta t^4). \tag{12}$$

 Δl écart de niveau - D>0 coefficient de diffusion - Δx pas spatial de la grille fine - $\lambda=D\frac{\Delta t}{\Delta x^2}$ c^{ste} Von Neumann

Sans multirésolution adaptative :

$$\frac{\partial u}{\partial t} = D \frac{\partial^2 u}{\partial x^2} + \Delta x^2 \frac{D}{12} \frac{\partial^4 u}{\partial x^4} - \lambda^2 \Delta x^4 \frac{D}{6} \frac{\partial^6 u}{\partial x^6} - \lambda^3 \Delta x^6 \frac{D}{24} \frac{\partial^8 u}{\partial x^8} + \mathcal{O}(\Delta x^7). \tag{13}$$

 Δl écart de niveau - D>0 coefficient de diffusion - Δx pas spatial de la grille fine - $\lambda=D\frac{\Delta t}{\Delta x^2}$ c^{ste} Von Neumann

Sans multirésolution adaptative :

$$\frac{\partial u}{\partial t} = D \frac{\partial^2 u}{\partial x^2} + \Delta x^2 \frac{D}{12} \frac{\partial^4 u}{\partial x^4} - \lambda^2 \Delta x^4 \frac{D}{6} \frac{\partial^6 u}{\partial x^6} - \lambda^3 \Delta x^6 \frac{D}{24} \frac{\partial^8 u}{\partial x^8} + \mathcal{O}(\Delta x^7). \tag{13}$$

Avec multirésolution adaptative - sans reconstruction des flux :

$$\frac{\partial}{\partial t}u = D\frac{\partial^2 u}{\partial x^2} + (2^{\Delta I}\Delta x)^2 \frac{D}{12} \frac{\partial^4 u}{\partial x^4} - \lambda^2 \Delta x^4 \frac{D}{6} \frac{\partial^6 u}{\partial x^6} - \lambda^3 \Delta x^6 \frac{D}{24} \frac{\partial^8 u}{\partial x^8} + \mathcal{O}(\Delta x^7)$$
(14)

 Δl écart de niveau - D>0 coefficient de diffusion - Δx pas spatial de la grille fine - $\lambda=D\frac{\Delta t}{\Delta x^2}$ c^{ste} Von Neumann

Sans multirésolution adaptative :

$$\frac{\partial u}{\partial t} = D \frac{\partial^2 u}{\partial x^2} + \Delta x^2 \frac{D}{12} \frac{\partial^4 u}{\partial x^4} - \lambda^2 \Delta x^4 \frac{D}{6} \frac{\partial^6 u}{\partial x^6} - \lambda^3 \Delta x^6 \frac{D}{24} \frac{\partial^8 u}{\partial x^8} + \mathcal{O}(\Delta x^7). \tag{13}$$

Avec multirésolution adaptative - sans reconstruction des flux :

$$\frac{\partial}{\partial t}u = D\frac{\partial^2 u}{\partial x^2} + (2^{\Delta I}\Delta x)^2 \frac{D}{12} \frac{\partial^4 u}{\partial x^4} - \lambda^2 \Delta x^4 \frac{D}{6} \frac{\partial^6 u}{\partial x^6} - \lambda^3 \Delta x^6 \frac{D}{24} \frac{\partial^8 u}{\partial x^8} + \mathcal{O}(\Delta x^7)$$
(14)

Avec multirésolution adaptative - avec reconstruction des flux :

$$\frac{\partial u}{\partial t} = +D\frac{\partial^2 u}{\partial x^2} + \Delta x^2 D\left(\frac{\lambda}{2}(2^{2\Delta l} - 1) + \frac{2^{2\Delta l}}{12}(1 - 3\Delta l)\right)\frac{\partial^4 u}{\partial x^4} - \Delta x^4 \frac{D\lambda^2 \frac{\partial^6 u}{\partial x^6}}{6} - \Delta x^6 \frac{D\lambda^3 \frac{\partial^8 u}{\partial x^8}}{24} + \mathcal{O}(\Delta x^7).$$
 (15)

Plan

Introduction

Les équations d'advection-diffusion-réaction (ADR

Problématique

 $1^{
m erg}$ contribution

2ème contribution

3^{ème} contribution

Compléments

Schéma <i>n</i> °	Niveau d'évaluation des flux Erreur L^2	
I	Ø MRA	2×10^{-5}
II	Courant	1×10^{-4}
III	Plus fin I ^{max}	3×10^{-4}
IV	Inférieur direct $(\mathit{I}+1)$	2×10^{-4}

Etude de stabilité

Erreur par rapport à une solution convergée en temps selon la méthode d'évaluation des flux

Visualisation de la distribution des erreurs.

Correspondance Erreur Num. $\propto \alpha \partial_{\nu}^{4} u + \beta \partial_{\nu}^{6} u$

Chute prématurée de l'erreur :

Les dérivées ∂_x^4 et ∂_x^6 ont des poids différents dans lerreur selon la constante de Von Neumann λ . Leurs profils se "compensent" quand elles ont un poids comparable.

Moins bonne performances quand l'erreur temporelle est faible

Plus de termes d'erreur dans la contribution dominante de l'erreur :

Schéma nº	Évaluation des flux	Constante pondérant l'erreur en $\Delta x^2 \partial_x^4 u$ (dominante quand λ est petite)
1	Ø AMR	$\frac{D}{12}$
II	Sans reconstruction	$2^{\Delta I} \frac{D}{12}$
III	Avec reconstruction	$D\left(\frac{\lambda}{2}\left(2^{2\Delta I}-1\right)+\frac{2^{2\Delta I}}{12}\left(1-3\Delta I\right)\right)$

Plan

Introduction

Les équations d'advection-diffusion-réaction (ADR

Problématique

 $1^{
m \grave{e}^{re}}$ contribution

2ème contribution

3^{ème} contribution

Compléments

