

Análise Matemática II (2012/2013)

Exame de Época Especial 11/09/2013 **Duração:** 3h

Nome:

Número: Curso:

1. Considere a função $f = (f_1, f_2)$, onde

$$f_1(x,y) = xe^{x/y}, \quad f_2(x,y) = \sqrt{1 - x^2 - y^2}.$$

Seja D o domínio de f.

- (a) Determine e esboce o conjunto D.
- (b) Indique o interior, a fronteira e o fecho de D, e conclua se D é aberto e/ou fechado.
- (c) Justifique que f é contínua no seu domínio.
- (d) Diga se f_1 é prolongável por continuidade à origem. Em caso afirmativo, escreva a sua função prolongamento F_1 .
- (e) Justifique que f_1 é diferenciável em D e determine o seu diferencial no ponto $(\frac{1}{2}, \frac{1}{2})$.
- (f) Calcule $D(f\circ g)(0)$ sendo $g:\mathbb{R}\to\mathbb{R}^2$ a função dada por

$$g(t) = (\frac{1}{2} + t^2, \frac{1}{2} + \sin(2t)).$$

- 2. Considere o campo vectorial $f: \mathbb{R}^2 \to \mathbb{R}^2$ dado por $f(x,y) = (y+2xe^y, x-2y+x^2e^y)$.
 - (a) Verifique que f é conservativo, e determine uma sua função potencial.
 - (b) Calcule o trabalho realizado por f para deslocar uma partícula do ponto (1,1) para o ponto (2,4) ao longo da parábola $y=x^2$.
- 3. Calcule o volume do sólido definido por $z \le 6 x^2 y^2, x^2 + y^2 \le 4$ e $z \ge 0$.
- 4. Considere $R \subset \mathbb{R}^2$ limitado pelas rectas

$$y = 2x$$
, $y = 2x - 1$, $y = -x$ e $y = -x + 1$.

(a) Esboce graficamente a região referida indicando o integral duplo iterado que permite calcular a respectiva área.

- (b) Calcule a massa de uma chapa com a forma da região R e com massa específica f(x,y) = 2x y.
- 5. Considere a função $f(x,y) = x^2 e^{-x^2} y^2$.
 - (a) Determine o gradiente e a matriz Hessiana de f.
 - (b) Determine e classifique os pontos críticos de f.
- 6. Usando o Teorema de Stokes calcule $\int_S \operatorname{rot} F \cdot ndS$, sendo $F: \mathbb{R}^3 \to \mathbb{R}^3$ dada por $F(x,y,z) = (x,y,(x^2+y^2)\frac{z}{2})$,

$$S = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 9, -2 < z < 2\}$$

e n o vector normal unitário apontando para o exterior de S.

BOM TRABALHO!