

Scaling

What is a scaling?

- The scaling is a process of altering the size of objects.
- Scaling operation can be achieved by multiplying each vertex coordinate by scaling factor, S.
 - 2D scaling example: $(x, y) \times (s_x, s_y)$
 - 3D scaling example: $(x, y, z) \times (s_x, s_y, s_z)$
- If the scaling factor is less than 1, the size of the object will be reduced.
- If the scaling factor is greater than 1, the size of the object will be increased.

Scaling

2D scaling

• 2D scaling, denoted as S, is represented by a 2×2 matrix.

$$S = \begin{pmatrix} s_x & 0 \\ 0 & s_y \end{pmatrix}$$

- S_x and S_y are the scaling factors along the x-axis and y-axis, respectively.
- A 2D vector, (x, y) is scaled through matrix-vector multiplication.

$$\begin{pmatrix} S_{\chi} & 0 \\ 0 & S_{y} \end{pmatrix} \begin{pmatrix} \chi \\ y \end{pmatrix} = \begin{pmatrix} S_{\chi} \chi \\ S_{y} \chi \end{pmatrix}$$

2D scaling examples: every vertex of a polygon is multiplied by the same scaling matrix

What is a rotation?

- Rotation is the process of rotating an object around an axis of rotation.
- There are two types of rotations depending on the direction of the movement:
 - Clockwise rotation
 - Counterclockwise (anti-clockwise) rotation
- Mostly, the positive value of the rotation angle rotates an object in the counterclockwise direction.

counterclockwise rotation

Let's consider the 2D rotation of a vector.

- Vector p is rotated about the origin by θ to define p'.
- When the length of p is r, its coordinates are defined as follows:

$$x = rcos\phi$$
$$y = rsin\phi$$

• Then, the coordinates of p' can be computed as follows:

$$x' = r\cos(\phi + \theta)$$
 $y' = r\sin(\phi + \theta)$
= $r\cos\phi\cos\theta - r\sin\phi\sin\theta$ $= r\cos\phi\sin\theta + r\sin\phi\cos\theta$
= $x\cos\theta - y\sin\theta$ $= x\sin\theta + y\cos\theta$

These can be combined into a matrix-vector multiplication form:

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

An example

Counter-clockwise rotation and clockwise rotation

■ By default, the rotation is *counter-clockwise*.

The matrix for the *clockwise rotation* by θ is obtained by inserting $-\theta$ into the $\mathop{^{2}D}_{y}$ rotation matrix.

$$R(-90^\circ) = \begin{pmatrix} \cos(-90^\circ) & -\sin(-90^\circ) \\ \sin(-90^\circ) & \cos(-90^\circ) \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

 $(0,-2) \xrightarrow{(2,0)} x$

• Note that rotation by $-\theta$ is equivalent to rotation by $2\pi - \theta$: 360 - 90 = 270.

$$R(270^{\circ}) = \begin{pmatrix} \cos 270^{\circ} & -\sin 270^{\circ} \\ \sin 270^{\circ} & \cos 270^{\circ} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

Translation

Unlike scaling and rotation, translation is represented as vector addition.

- Translation displaces a point at (x, y) to $(x + d_x, y + d_y)$.
- We call (d_x, d_y) the translation vector.

$$\binom{x}{y} + \binom{d_x}{d_y} = \binom{x + dx}{y + dy}$$

- Given the 2D Cartesian coordinates (x, y) of a point, we can take the 3D vector (x, y, 1) as its homogeneous coordinates.
- Then, we can describe *translation* as *matrix multiplication*.

$$\begin{pmatrix} 1 & 0 & d_x \\ 0 & 1 & d_y \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = \begin{pmatrix} x + dx \\ y + dy \\ 1 \end{pmatrix}$$

Homogeneous coordinates

Homogeneous coordinates

• Given a 2D point, (x, y), its homogeneous coordinates are not necessarily (x, y, 1) but (wx, wy, w) with non-zero w.

• For example, the Cartesian coordinates (2, 1) can be converted into homogeneous coordinates of (2, 1, 1), (4, 2, 2), (6, 3, 3), etc.

Homogeneous coordinates

Homogeneous coordinates

- Suppose that we are given the homogeneous coordinates, (X, Y, w).
- By dividing every coordinate by w, we obtain (X/w, Y/w, 1).
- This corresponds to projecting a point on the line onto the plane, w = 1.
- We then take the first two components, (X/w, Y/w), as the Cartesian coordinates.

Homogeneous coordinates

Homogeneous coordinates

• For handling the homogeneous coordinates, the 3×3 matrices for scaling and rotation need to be altered.

$$\begin{pmatrix} s_x & 0 \\ 0 & s_y \end{pmatrix} \implies \begin{pmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \implies \begin{pmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Practice

1. Write the 3×3 matrices for scaling, translation and rotation.

Practice - Solution

1. Write the 3×3 matrices for scaling, translation and rotation.

An object may go through multiple transforms.

Let's rotate and translate the polygon.

• We denote the rotation by $R(90^\circ)$ and the translation by T(7, 0):

$$R(90^{\circ}) = \begin{pmatrix} \cos 90^{\circ} & -\sin 90^{\circ} & 0\\ \sin 90^{\circ} & \cos 90^{\circ} & 0\\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & -1 & 0\\ 1 & 0 & 0\\ 0 & 0 & 1 \end{pmatrix} \qquad T(7,0) = \begin{pmatrix} 1 & 0 & 7\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{pmatrix}$$

An object may go through multiple transforms.

The vertex located at (0, 4) is rotated to (-4, 0) by $R(90^{\circ})$. Then, the vertex at (-4, 0) is translated to (3, 0) by T(7, 0).

$$\begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 4 \\ 1 \end{pmatrix} = \begin{pmatrix} -4 \\ 0 \\ 1 \end{pmatrix} \qquad \begin{pmatrix} 1 & 0 & 7 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -4 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ 0 \\ 1 \end{pmatrix}$$

Combine matrices

As both $R(90^\circ)$ and T(7, 0) are represented in 3×3 matrices, they can be concatenated to make a 3×3 matrix:

$$T(7,0)R(90^{\circ}) = \begin{pmatrix} 1 & 0 & 7 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & -1 & 7 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

■ The vertex originally located at (0, 4) is instantly transformed to (3, 0) by the combined matrix.

Noncommutative

- Matrix multiplication is noncommutative, which means "order matters".
- Rotation (R) followed by translation (T) vs. T followed by R

$$TR = \begin{pmatrix} 1 & 0 & d_x \\ 0 & 1 & d_y \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} \cos\theta & -\sin\theta & d_x \\ \sin\theta & \cos\theta & d_y \\ 0 & 0 & 1 \end{pmatrix}$$

Rotation about an arbitrary point.

- The rotation we learned so far is "about the origin".
- Now consider rotation about arbitrary point, which is not the origin.

Rotating a point at (x, y) about an arbitrary point, (a, b)

- Translating (x, y) by (-a, -b)
- Rotating the translated point about the origin
- Back-translating the rotated point by (a, b)

Example: rotation (5, 2) about (3, 2)

- Translating (5, 2) by (-3, -2)
- Rotating the translated point about the origin
- Back-translating the rotated point by (3, 2)

Affine transform

- Linear transform (Scaling, Rotation, etc.)
- Translation (Translation does not fall into the linear transform class)

No matter how many affine matrices are given, they can be combined into a matrix.

$$RT = \begin{pmatrix} \cos\theta - \sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & d_x \\ 0 & 1 & d_y \\ 0 & 0 & 1 \end{pmatrix}$$

$$SRT = \begin{pmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos\theta - \sin\theta & d_x \cos\theta - d_y \sin\theta \\ \sin\theta & \cos\theta & d_x \sin\theta + d_y \cos\theta \\ 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} \cos\theta - \sin\theta & d_x \cos\theta - d_y \sin\theta \\ \sin\theta & \cos\theta & d_x \sin\theta + d_y \cos\theta \\ \sin\theta & \cos\theta & d_x \sin\theta + d_y \cos\theta \\ 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} s_x \cos\theta - s_x \sin\theta & s_x d_x \cos\theta - s_x d_y \sin\theta \\ s_y \sin\theta & s_y \cos\theta & s_y d_x \sin\theta + s_y d_y \cos\theta \\ 0 & 0 & 1 \end{pmatrix}$$

Ignoring the third row, we often denote the remaining 2×3 elements [L|t], where L is a 2×2 matrix and t is a 2D column vector.

- L represents the 'combined' linear transform.
- In contrast, t represents a 'combined' translation, which may contain the input linear-transform terms.

$$TR = \begin{pmatrix} 1 & 0 & d_x \\ 0 & 1 & d_y \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & d_y \\ \sin\theta & \cos\theta & d_y \\ 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ \sin\theta & \cos\theta & d_x \\ \sin\theta & \cos\theta & d_x \\ 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} \cos\theta & -\sin\theta & 0 \\ \cos\theta & -\sin\theta & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} \cos\theta & -\sin\theta & 0 \\ \cos\theta & -\sin\theta & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & d_x \\ \sin\theta & \cos\theta & d_x \\ 0 & 0 & 1 \end{pmatrix}$$

$$SRT = \begin{pmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} cos\theta & -sin\theta & d_x cos\theta - d_y sin\theta \\ sin\theta & cos\theta & d_x sin\theta + d_y cos\theta \\ 0 & 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} s_x cos\theta & -s_x sin\theta \\ s_y sin\theta & s_y cos\theta \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} s_x d_x cos\theta - s_x d_y sin\theta \\ s_y d_x sin\theta + s_y d_y cos\theta \\ 0 & 1 \end{pmatrix}$$

Revisit $T(7,0)R(90^{\circ})$.

$$\begin{split} TR &= \begin{pmatrix} 1 & 0 & d_x \\ 0 & 1 & d_y \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \\ &= \begin{pmatrix} \cos\theta & -\sin\theta & d_x \\ \sin\theta & \cos\theta & d_y \\ 0 & 0 & 1 \end{pmatrix} \\ &= \begin{pmatrix} 0 & -1 & 7 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \leftarrow [L|t] \end{split}$$

Revisit $R(90^{\circ})T(7,0)$.

$$RT = \begin{pmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & d_x \\ 0 & 1 & d_y \\ 0 & 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} \cos\theta & -\sin\theta & d_x \cos\theta - d_y \sin\theta \\ \sin\theta & \cos\theta & d_x \sin\theta + d_y \cos\theta \\ 0 & 0 & 1 \end{pmatrix}$$

Conceptual decomposition of [L|t]

- [L|t] transforms a point, p, is Lp+t.
- *L* is applied first.
- The linear-transformed object is translated by *t*.

$$R(90^{\circ})T(7,0) = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 7 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 7 \\ 0 & 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 7 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Rigid Motion

Consider a combination of rotations and translations only, e.g., no scaling is involved.

- When the combined affine matrix applies to an object, the pose (position + orientation) of the object is changed but its shape is not.
- In this sense, the transform is named *rigid-body motion* or simply *rigid motion*.

No matter how many rotations and translations are combined, the resulting matrix is of the structure, [R|t].

- R represents the 'combined' rotation, which does not include any translation terms.
- t represents the 'combined' translation, which usually includes the rotation terms.

Transforming an object by [R|t] is conceptually decomposed into two steps: R is applied first and then the rotated object is translated by t, i.e., the way [R|t] transforms a point, p, is Rp+t.

Practice

- 1. For matrix-vector multiplication, let us use row vectors (w = 1).
 - Write the translation matrix that translates (x, y) by (dx, dy).
 - Write the rotation matrix that rotates (x, y) by θ .
 - Write the scaling matrix with scaling factors s_x and s_y .

Practice - Solution

- 1. For matrix-vector multiplication, let us use row vectors (w = 1).
 - Write the translation matrix that translates (x, y) by (dx, dy).

$$(x \ y \ 1) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ dx & dy & 1 \end{pmatrix}$$

• Write the rotation matrix that rotates (x, y) by θ .

$$(x \quad y \quad 1) \begin{pmatrix} \cos(\theta) & \sin(\theta) & 0 \\ -\sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

• Write the scaling matrix with scaling factors s_x and s_y .

$$(x \ y \ 1) \begin{pmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Practice

1. Write a 3 × 3 transform matrix that rotates $(x, y)^T$ by 60°, and translates by (2, -1).

2. Write a 3 \times 3 transform matrix that rotates (x, y) by 60°, and translates by (2, -1).

Practice - Solution

1. Write a 3 × 3 transform matrix that rotates $(x, y)^T$ by 60°, and translates by (2, -1).

$$\begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} & 2\\ \frac{\sqrt{3}}{2} & \frac{1}{2} & -1\\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x\\ y\\ 1 \end{pmatrix}$$

2. Write a 3 \times 3 transform matrix that rotates (x, y) by 60°, and translates by (2, -1).

$$(x \quad y \quad 1) \begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} & 0 \\ 2 & -1 & 1 \end{pmatrix}$$

3D Scaling

3D scaling with the scaling factors, s_x , s_y and s_z .

$$\begin{pmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & s_z \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} s_x x \\ s_y y \\ s_z z \end{pmatrix}$$

If all of the scaling factors are identical, the scaling is called uniform. Otherwise, it is a non-uniform scaling.

Unlike 2D rotation which requires a center of rotation, 3D rotation requires an axis of rotation.

- Let's consider 3D rotations about x-axis (R_x) , y-axis (R_y) , and z-axis (R_z)
- Following example shows an rotation about R_z .

$$x' = x\cos\theta - y\sin\theta$$
$$y' = x\sin\theta + y\cos\theta$$
$$z' = z$$

$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} \cos\theta - \sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

The following example shows a rotation about R_x .

$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

- Obviously, x' = x.
- When the thumb of the right hand is aligned with the rotation axis, the other fingers curl from the y-axis to the z-axis.
- Returning to R_z , observe the fingers curl from the x-axis to the y-axis.
- Shifting from R_z to R_x , the x-axis is replaced with the y-axis, and the y-axis is replaced with the z-axis.
- By making such replacements, the matrix for R_x is obtained.

The rotation matrix for R_y is as follows:

CCW vs. CW rotations

- If the rotation is CCW with respect to the axis pointing toward you, the rotation angle is positive.
- If the rotation is CW, its matrix is defined with the negated rotation angle.
- Note that rotation by $-\theta$ is equivalent to rotation by $2\pi \theta$.

3D Translation

Recall that, translation is represented as vector addition.

■ To represent translation as matrix multiplication, homogeneous coordinates is exploited.

$$\begin{pmatrix} 1 & 0 & 0 & d_x \\ 0 & 1 & 0 & d_y \\ 0 & 0 & 1 & d_z \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} = \begin{pmatrix} x + d_x \\ y + d_y \\ z + d_z \\ 1 \end{pmatrix}$$

The 3×3 matrices developed for 3D scaling and rotation are extended to 4×4 matrices. See the scaling example.

$$\left(egin{array}{cccc} s_x & 0 & 0 & 0 \ 0 & s_y & 0 & 0 \ 0 & 0 & s_z & 0 \ 0 & 0 & 0 & 1 \end{array}
ight)$$

Application: World Transform

Object space vs. world space

- The coordinate system used for creating an object is named object space.
- The object space for a model typically has no relationship to that of another model.
- The world transform 'assembles' all models into a single coordinate system called

world space.

$$\left(\begin{array}{cccc}
s_x & 0 & 0 & 0 \\
0 & s_y & 0 & 0 \\
0 & 0 & s_z & 0 \\
0 & 0 & 0 & 1
\end{array}\right)$$

$$\begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 2 \\ 0 \\ 1 \end{pmatrix}$$

Application: World Transform

$$R_{y}(\theta) = \begin{pmatrix} \cos\theta & 0 \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 \cos\theta \end{pmatrix} \qquad R_{y}(90^{\circ}) = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \qquad \Longrightarrow \qquad \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 2 \\ 3 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \\ 0 \\ 1 \end{pmatrix}$$

$$T(7,0,0) = \begin{pmatrix} 1 & 0 & 0 & 7 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \implies \begin{pmatrix} 1 & 0 & 0 & 7 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 3 \\ 2 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 10 \\ 2 \\ 0 \\ 1 \end{pmatrix}$$

$$T(7,0,0)R_{y}(90^{\circ}) = \begin{pmatrix} 1 & 0 & 0 & 7 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 & 7 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \implies \begin{pmatrix} 0 & 0 & 1 & 7 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 10 \\ 2 \\ 3 \\ 1 \end{pmatrix} = \begin{pmatrix} 10 \\ 2 \\ 0 \\ 1 \end{pmatrix}$$

3D Affine Transforms

The discussions we had on 2D affine transforms apply to 3D affine transforms.

• Recall that the matrix multiplication is not commutative.

3D Affine Transforms

Concatenating matrices

- When 3D scaling, rotation, and translation matrices are concatenated to make a 4×4 matrix, the fourth row is always (0 0 0 1).
- Ignoring the fourth row of an affine matrix, we often denote the remaining 3×4 elements by [L|t], where L is a 3×3 matrix that represents a 'combined' linear transform, and t is a 3D column vector that represents a 'combined' translation.
- [L|t] is conceptually decomposed into two steps: L is applied first and then the linear-transformed object is translated by t.

Basis of the world space and object space

- $\{e_1, e_2, e_3\}$ represents the standard basis of the world space.
- $\{u, v, n\}$ represents the orthonormal basis of the object space.
- In the following figure, world space basis and object space basis are identical.

Rotating Object-space basis

- A rotation applied to an object changes its orientation, which can be described by the 'rotated' basis of the object space.
- Let *R* denote the rotation.

R relates e_1 and u, which was initially identical to e_1 .

$$Re_1 = R \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} u_x \\ u_y \\ u_z \end{pmatrix}$$

Similarly, R transforms e_2 and e_3 into v and n, respectively:

$$Re_2 = R \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} v_x \\ v_y \\ v_z \end{pmatrix} \qquad Re_3 = R \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} n_x \\ n_y \\ n_z \end{pmatrix}$$

The above three are combined:

$$R \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} u_x & v_x & n_x \\ u_y & v_y & n_y \\ u_z & v_z & n_z \end{pmatrix}$$

$$R_y(90^\circ) = \begin{pmatrix} \cos 90^\circ & 0 \sin 90^\circ \\ 0 & 1 & 0 \\ -\sin 90^\circ & 0 \cos 90^\circ \end{pmatrix}$$
$$= \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{pmatrix}$$

R's columns are u, v, and n. Given the 'rotated' object-space basis, $\{u, v, n\}$, the rotation matrix is immediately determined, and vice versa.

The observation we have made holds in general.

$$R = \begin{pmatrix} u_x & v_x & n_x \\ u_y & v_y & n_y \\ u_z & v_z & n_z \end{pmatrix}$$

Inverses of Translation and Scaling

Inverse translation

$$\begin{pmatrix} 1 & 0 & 0 & -d_x \\ 0 & 1 & 0 & -d_y \\ 0 & 0 & 1 & -d_z \\ 0 & 0 & 0 & 1 \end{pmatrix} \iff \begin{pmatrix} 1 & 0 & 0 & d_x \\ 0 & 1 & 0 & d_y \\ 0 & 0 & 1 & d_z \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 & -d_x \\ 0 & 1 & 0 & -d_y \\ 0 & 0 & 1 & -d_z \\ 0 & 0 & 0 & 1 \end{pmatrix} \iff \begin{pmatrix} 1 & 0 & 0 & d_x \\ 0 & 1 & 0 & d_y \\ 0 & 0 & 1 & d_z \\ 0 & 0 & 0 & 1 \end{pmatrix} \tag{(x, y, z)} \tag{(x, y, z)}$$

Inverse transform in inverse matrix

$$T^{-1}T = \begin{pmatrix} 1 & 0 & 0 & -d_x \\ 0 & 1 & 0 & -d_y \\ 0 & 0 & 1 & -d_z \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & d_x \\ 0 & 1 & 0 & d_y \\ 0 & 0 & 1 & d_z \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = I$$

Inverse scaling

$$\begin{pmatrix} \frac{1}{s_x} & 0 & 0 & 0 \\ 0 & \frac{1}{s_y} & 0 & 0 \\ 0 & 0 & \frac{1}{s_z} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \iff \begin{pmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Inverse Rotation

Given a rotation matrix R, its columns (u, v, and n) make up an orthonormal basis, i.e., $u \cdot u = v \cdot v = n \cdot n = 1$ and $u \cdot v = v \cdot n = n \cdot u = 0$.

• Let's multiply R's transpose (R^T) with R:

$$R^{T}R = \begin{pmatrix} u_{x} & u_{y} & u_{z} \\ v_{x} & v_{y} & v_{z} \\ n_{x} & n_{y} & n_{z} \end{pmatrix} \begin{pmatrix} u_{x} & v_{x} & n_{x} \\ u_{y} & v_{y} & n_{y} \\ u_{z} & v_{z} & n_{z} \end{pmatrix}$$

$$= \begin{pmatrix} u \cdot u & u \cdot v & u \cdot n \\ v \cdot u & v \cdot v & v \cdot n \\ n \cdot u & n \cdot v & n \cdot n \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$= I$$

- This says that $R^{-1}=R^T$, i.e., the inverse of a rotation matrix is its transpose.
- Because u, v, and n form the columns of R, they form the rows of R^{-1} .

Inverse Rotation

Recall that u, v, and n form the columns of R. As $R^{-1}=R^T$, u, v, and n form the rows of R^{-1} .

$$R_{y}(90^{\circ}) = \begin{pmatrix} u & v & n \\ v & n \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{pmatrix}$$

$$R = \begin{pmatrix} u_x & v_x & n_x \\ u_y & v_y & n_z \\ u_z & v_z & n_z \end{pmatrix}$$

$$R^{-1} = \begin{pmatrix} u_x & u_y & u_z \\ v_x & v_y & v_z \\ n_x & n_y & n_z \end{pmatrix}$$

Practice

1. Write a 4 × 4 rotation matrix of $(R_y(90^\circ))^{-1}$.

Practice - Solution

1. Write a 4 × 4 rotation matrix of $(R_{\nu}(90^{\circ}))^{-1}$.

$$R_{y}(-90^{\circ}) = \begin{pmatrix} \cos -90^{\circ} & 0 & \sin -90^{\circ} & 0 \\ 0 & 1 & 0 & 0 \\ -\sin -90^{\circ} & 0 & \cos -90^{\circ} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
 transpose($R_{y}(90^{\circ})$) =
$$\begin{pmatrix} 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix}
\cos\theta & 0\sin\theta \\
0 & 1 & 0 \\
-\sin\theta & 0\cos\theta
\end{pmatrix}$$