SPRINT 1

Team ID	PNT2022TMID30419
Project Name	Exploratory Analysis Of Rainfall Data In India For
	Agriculture

DATA READ AND PREPROCESSING

 $df = pd.read_csv(r"C:/Users/NIVEDITHA/Downloads/rainfall.csv") \\$

df = df.fillna(df.mean())

df.info()

OUTPUT:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4116 entries, 0 to 4115
Data columns (total 19 columns):

#	Column	Non-Null Count	Dtype
0	SUBDIVISION	4116 non-null	object
1	YEAR	4116 non-null	_
2	JAN	4116 non-null	float64
3	FEB	4116 non-null	float64
4	MAR	4116 non-null	float64
5	APR	4116 non-null	float64
6	MAY	4116 non-null	float64
7	JUN	4116 non-null	float64
8	JUL	4116 non-null	float64
9	AUG	4116 non-null	float64
10	SEP	4116 non-null	float64
11	OCT	4116 non-null	float64
12	NOV	4116 non-null	float64
13	DEC	4116 non-null	float64
14	ANNUAL	4116 non-null	float64
15	Jan-Feb	4116 non-null	float64
16	Mar-May	4116 non-null	float64
17	Jun-Sep	4116 non-null	float64
18	Oct-Dec	4116 non-null	float64
17 18	Jun-Sep Oct-Dec	4116 non-null	float64 float64

dtypes: float64(17), int64(1), object(1) memory usage: 611.1+ ${\tt KB}$

df.head()

df.describe()

OUTPUT:

PREPROCESSING THE DATASET:

TO CHECK FOR NULL VALUES AND FILLING THEM:

df.isnull().sum()

SUBDIVISION	0
YEAR	0
JAN	4
FEB	3
MAR	6
APR	4
MAY	3
JUN	5
JUL	7
AUG	4
SEP	6
OCT	7
NOV	11
DEC	10
ANNUAL	26
Jan-Feb	6
Mar-May	9
Jun-Sep	10
Oct-Dec	13
dtype: int64	

df=df.fillna(df.mean(numeric_only=True).round(1))

DATA VISUALIZATION

```
1)
```

plt.show()

```
df[["SUBDIVISION","ANNUAL"]].groupby("SUBDIVISION").sum().sort_values(by='AN NUAL',ascending=False).plot(kind='barh',stacked=True,figsize=(18,15))
plt.xlabel("Rainfall in mm",size=14)
plt.ylabel("Sub-Division",size=14)
plt.title("Annual Rainfall for all SubDivisions")
plt.grid(axis="x",linestyle="-.")
```



```
plt.figure(figsize=(15,8))

df.groupby("YEAR").sum()['ANNUAL'].plot(kind="line",color="g",marker="*")

plt.xlabel("YEARS",size=12)

plt.ylabel("RAINFALL IN MM",size=12)

plt.grid(axis="both",linestyle="-.")
```

plt.title("Rainfall over Years")
plt.show()

3)

df[['YEAR', 'JAN', 'FEB', 'MAR', 'APR', 'MAY', 'JUN', 'JUL','AUG', 'SEP',

'OCT', 'NOV', 'DEC']].groupby("YEAR").sum().plot(kind="line",figsize=(18,8))

plt.xlabel("Year",size=13)

plt.ylabel("Rainfall in mm",size=15)

plt.title("Year and its Rainfall in each month",size=20)

lt.show()

4)
plt.figure(figsize=(16,6),dpi=80)
plt.xticks(rotation=90)
plt.plot(df['Jan-Feb'],label='Jan-Feb')
plt.plot(df['Mar-May'],label='Mar-May')
plt.plot(df['Jun-Sep'],label='Jun-Sep')
plt.plot(df['Oct-Dec'],label='Oct-Dec')
plt.legend(loc='best')

5)

6)

df[['SUBDIVISION', 'JAN', 'FEB', 'MAR', 'APR', 'MAY', 'JUN', 'JUL',

'AUG', 'SEP', 'OCT', 'NOV',
'DEC']].groupby("SUBDIVISION").sum().plot(kind="barh",stacked=True,figsize=(13,8))

plt.title("Sub-Division v/s Rainfall in each month")

plt.xlabel("Rainfall in MM",size=12)

plt.ylabel("Sub-Division",size=12)

plt.grid(axis="x",linestyle="-.")

plt.show()

7)

#Highest rainfall receiving regions

plt.figure(figsize=(15,8))

 $\label{lem:cont_values} $$df.groupby(['SUBDIVISION','YEAR'])['ANNUAL'].sum().sort_values(ascending=False).plot()$

plt.grid()

plt.xlabel("State, Year", fontsize=15)

plt.ylabel("Annual Rainfall received",fontsize=15)

plt.title('Highest Rainfall year Data of States',fontsize=20)

8)#Month with highest rainfall

These are the visualizations that we have made for our analysis of rainfall in India. These predictions show the highest rainfall region, average rainfall, the rainfall in each month with respect to the region, etc.