- 9.149 w_i произвольная перестановка
 - $y(w_i)$ количество неподвижных точек в ней
 - $p(w_i) = \frac{1}{n!}$ вероятность случайной перестановки
 - $E(y) = \sum_{i} y(w_i)p(w_i) = \frac{1}{n!} \sum_{i} y(w_i)$
 - Будем считать общее количество неподвижных точек во всех перестановках по рядам.
 - Мы нарисуем двудольный граф, где слева все точки, а справа все перестановки, где ребро есть между точкой и перестановкой только, когда точка неподвижна в данной перестановке. Количество ребер равно необходимому количеству. Кол-во ребер можно посчитать используя только левые точки.
 - Зафиксируем a_i , возможных перестановок, где a_i будет неподвижной точкой (n-1)!, включая те, где больше одной неподвижной точки.
 - n(n-1)! необходимое количество $\implies E(y)=1$
- 10.152 for i in range(n): for j in range(k): dp[i + j + 1] = min(dp[i + j + 1], dp[i] + a[i + j + 1])
- 10.153 На і-том шаге поддерживаем очередь на минимум из предыдущих к элементов
 - Очередь на двух стеках
 - Элемент очереди: (элемент, минимальный элемент в этом стеке среди элементов добавленных ранее)
 - Добавление: (элемент, q1.front || элемент)
 - При переходе добавляем элемент в очередь и удаляем q.front
 - Очередь работает за $\mathcal{O}(1)$ так как каждый элемент добавляется и удаляется только 1 раз, в итоге 3n операций
- 10.154 1. $dp[i-1] > dp[i-2] \implies dp_{path}[i] = dp_{path}[i-2]$
 - 2. $dp[i-1] < dp[i-2] \implies dp_{path}[i] = dp_{path}[i-1]$
 - 3. $dp[i-1] == dp[i-2] \implies dp_{nath}[i] = dp_{nath}[i-1] + dp_{nath}[i-2]$
- 10.155 1. $dp[i-1] > dp[i-2] \implies dp_{path}[i] = dp_{path}[i-2]$
 - 2. $dp[i-1] < dp[i-2] \implies dp_{path}[i] = dp_{path}[i-1]$
 - 3. $dp[i-1] == dp[i-2] \implies dp_{path}[i] = dp_{path}[i-1] + dp_{path}[i-2]$
- 10.156 На і-том шаге ищем лексиграфически минимальный префикс среди [0,i-1]
 - $dp[i] = findMinPrefix(0, i 1) + a_i$
- 10.157 Поддерживаем dp_{even}, dp_{odd} , каждый элемент которых представляет максимальную сумму в данном элементе.
 - a_i odd \Longrightarrow

$$dp_{even}[i][j] = max(dp_{odd}[i-1][j], dp_{odd}[i][j-1]) + a_i$$

 $dp_{odd}[i][j] = max(dp_{even}[i-1][j], dp_{even}[i][j-1]) + a_i$

- Аналогично с a_i even
- Сумма максимальна так как мы всегда прибавляем к максимальной