Computational Study of the Mono- and Dianions of SO_2 , SO_3 , SO_4 , S_2O_3 , S_2O_4 , S_2O_6 , and S_2O_8

Michael L. McKee

Department of Chemistry, Auburn University, Auburn, Alabama 36849 Received: August 15, 1995; In Final Form: November 3, 1995[®]

DFT theory (B3LYP/6-311+G(2d)//B3LYP/6-31+G(d)) has been used to characterize sulfoxy anions and dianions as large as $S_2O_8{}^{2-}$, while post-HF theory ([QCISD(T)/6-31+G(2df)]//MP2/6-31+G(d)) has been used for systems as large as $S_2O_3{}^{2-}$. Adiabatic and vertical ionization potentials have been computed to assess the gas-phase stability of the dianions. Three dianions ($S_2O_6{}^{2-}$, $S_2O_8{}^{2-}$, and $SO_4{}^{2-}$ •4H₂O) are predicted to have positive vertical ionization energies. $S_2O_6{}^{2-}$ is predicted to have a negative (exothermic) adiabatic ionization potential; however, a large predicted geometry change between the dianion and monoanion rationalizes the measurable experimental lifetime of the dianion in the gas phase. Isotropic hyperfine coupling constants for ${}^{33}S$ have been calculated for the sulfoxy monoanions and compared with experiment.

Introduction

There has been considerable recent interest in gas-phase molecular anions and dianions. $^{1-8}$ In polar solvents, polyanions such as SO_4^{2-} and PO_4^{3-} are quite stable due to the interaction of the negative charge with the solvent. In the gas phase, such stabilization is not possible and common anions such as SO_4^{2-} and PO_4^{3-} are unstable with respect to electron autodetachment. 9,10 However, larger molecular systems have been designed which are stable in the gas phase with two or more extra electrons. For example C_n^{2-} with $n \ge 7$ are predicted to be stable in the gas phase. 3 In addition, C_{60}^{n-} with $n \le 3$ have been prepared experimentally. 2 The key to success is to have the charge separated, either radially as in MY_3^{2-} where M is positively charged and Y negatively charged, or to allow charge to localize at opposite ends of a linear molecule (C_n^{2-}) .

The recent development of electrospray mass spectrometry¹¹ has enabled solution-phase ions to be transferred into the gas phase. Using this technique, Blades and Kebarle¹² have produced gas phase ions of S₂O₆²⁻, S₂O₈²⁻, and SO₄²⁻•4H₂O. Clusters smaller than SO₄²⁻•3H₂O could not be prepared due to intramolecular proton transfer which forms HSO₄⁻ and OH⁻.¹²

Method

Calculations have used the GAUSSIAN 92 and 94 systems.¹³ Geometries were fully optimized within the appropriate point group and frequencies calculated at the B3LYP/6-31+G(d) level, while single-point calculations were carried out at the B3LYP/ 6-311+G(2d) level.¹⁴ For smaller systems, geometries have also been optimized at the MP2/6-31+G(d) level. Additional singlepoint calculations on MP2/6-31+G(d) geometries were made at the MP2/6-31+G(2df) and OCISD(T)/6-31+G(d) levels in order to estimate relative energies at the [QCISD(T)/6-31+G-(2df)] level. Zero-point corrections are included without any weighting factor at the B3LYP/6-31+G(d) level. The standard DFT level is B3LYP/6-311+G(2d)//B3LYP/6-31+G(d)+ZPC and the standard QCI level is [QCISD(T)/6-31+G(2df)]//MP2/ 6-31+G(d)+ZPC/DFT. All post-HF calculations employed the frozen-core approximation. A table of total energies (hartrees) and zero-point energies (kcal/mol) is provided as supporting information.

For the anions $S_2O_4^-$, $S_2O_6^-$, and $S_2O_8^-$, a small imaginary frequency remained in the lowest-energy structure, indicating

that the global minimum was not found. In each case, an inspection of the transition vector revealed that a distortion to C_1 symmetry was favorable. Previous experience has shown that these distortions result in a stabilization of less than 1 kcal/mol and are often reversed when the effects of zero-point corrections are added.

Adiabatic electron affinities of the monoanions were calculated at DFT and QCI levels for smaller systems and at the DFT level for larger systems. Calculated electron affinities were available ^{15,16} for O, S, O₂, and SO₂ at G2¹⁵ which is effectively at the [QCISD(T)/6-311+G(3df,2p)]//MP2/6-31G(d) level with zero-point and higher level corrections. G2 calculations made in this work extend the list of electron affinities for sulfoxy compounds to include SO and SO₃.

Vertical ionization energies of the dianions were calculated in two ways. The first was the Δ method at the B3LYP/6-311+G(2d) level and the second was outer valence Green's function (OVGF) method 17 using the 6-31+G(d) basis set. Discussion of electron affinities and ionization energies will be in units of kcal/mol rather than the more common units of eV in order to maintain uniformity.

Calculations on small dianions present special difficulties for ab initio calculations.³ If the dianion is unstable to electron autodetachment, then a sufficiently flexible method should give the monoanion and a free electron as the lowest energy solution. Some closed-shell dianions, such as SO_4^{2-} , are unstable to electron autodetachment but have all negative eigenvalues of the HF wave function, signifying that all pairs of electrons are bound. Such systems can probably be treated reliably with conventional computational methods. However, closed-shell dianions with at least one positive eigenvalue of the HF wave function, such as SO_2^{2-} or $S_2O_4^{2-}$ require, special care.¹⁸ All calculations were checked to ensure that diffuse functions were not significantly occupied.

Results and Discussion

Smaller Systems (O, S, O₂, SO, SO₂, SO₃, SO₄, S₂O₃). The computed and experimental^{19,20} geometries of SO (triplet), SO₂ SO₂⁻, and SO₃ are compared in Table 1. The B3LYP/6-31+G-(d) values are closer to experiment than MP2/6-31+G(d) but still too long by about 0.03 Å. As the SO_x species becomes negatively charged, the S-O bond length increases and the O-S-O bond angle decreases (Table 2) due to the increase of

[⊗] Abstract published in *Advance ACS Abstracts*, January 15, 1996.

TABLE 1: Comparison of Calculated and Experimental Geometries for SO, SO₂, SO₂⁻, and SO₃

	MP2/6-31+G(d)	B3LYP/6-31+G(d)	$exptl^a$
SO(triplet)	1.524	1.516	1.481
SO_2	1.482	1.466	1.432
SO_2^-	1.550	1.548	1.523^{b}
SO_3	1.463	1.454	1.43

^a Reference 19. ^b Reference 20.

TABLE 2: Increase of SO Bond Distance (Å) or Decrease of OSO Bond Angle (deg) with Increase of Negative Charge

	MP2/6-31+G(d)			В3	LYP/6-3	1+G(d	l)	
charge	SO_2	SO_3	SO_4^a	$S_2O_3^a$	SO_2	SO_3	SO_4^a	$S_2O_3^a$
Bond Distance Change								
$0 \rightarrow -1$	0.068	0.049			0.082	0.062		
$-1 \rightarrow -2$	0.078	0.057	0.017	0.029	0.075	0.056	0.018	0.028
	Bond Angle Change							
$0 \rightarrow -1$	-4.1	-5.8			-3.6	-6.3		
$-1 \rightarrow -2$	-4.4	-6.5			-4.2	-5.9		

^a From C_{3v} symmetry structure for monoanion.

antibonding character of the S-O bond. The electron affinities for S/O compounds are compared in Table 3. In almost every case, the DFT and QCI values bracket the experimental value. For O, S, SO, and SO₂, the DFT value is an average of 4.2 kcal/mol too high, while the QCI value is an average of 4.1 kcal/mol too low. Electron affinities at G2 theory (available for O, S, O₂, SO, and SO₂) have an average deviation of 1.6 kcal/mol.

The standard experimental EA of SO₃ (39.2 kcal/mol) is a lower bound determined by collisional ionization.²¹ Both calculated values are higher (57.7 kcal/mol, DFT; 49.8 kcal/mol, QCI) and suggest that the experimental value from Lias²¹ is too low. Two alternative values are available from the literature. One is from electron-transfer experiments²² (43.8 kcal/mol) and the other is from ion/molecular equilibrium techniques²³ (50.7 kcal/mol). Present calculations at the G2 level give an electron affinity of 49.5 kcal/mol, in closest agreement with the ion/molecular equilibrium measurement.²³

Neutral SO₄ and S₂O₃ have been previously studied at the MP2/6-31+G(d) level.²⁴ The most stable structure for both species is a three-membered ring (SOO for SO₄ and SSO for S₂O₃) with two terminal oxygens attached to a ring sulfur. In SO₄, the ring O-O distance is sensitive to computational method. At the DFT level, the O-O distance (1.586 Å) is significantly shorter than that computed at the MP2 level (1.632) Å). An optimization at the QCISD/6-31+G(d) level produced an intermediate O-O distance of 1.614 Å. In an earlier study of SO₄, MP2/6-31+G(d) frequencies of the three-membered ring were compared with the measured frequencies of a matrixisolated species²⁵ in an attempt to determine its structure. Table 4 extends the comparison to DFT and QCISD/6-31+G(d) frequencies. The agreement between both methods and experiment remains acceptable, and further supports the identification of the $C_{2\nu}$ structure.²⁴

While many experimental papers have dealt with the oxidative ability of SO_4^- in solution phase, 26 its gas-phase properties remain almost completely unknown. In earlier work on single crystals at 300 K, Morton et al. 27 tried to determine the ESR parameters of SO_4^- and $S_2O_3^-$. The hyperfine structure of ^{33}S in SO_4^- could not detected, however; it was determined that the symmetry of SO_4^- could not be higher than $C_{2\nu}$.

Three different structures of C_{2v} , C_{3v} , and D_{2d} symmetries were considered for SO_4^- . Spin contamination was serious for the HF/MP2 calculations and probably accounted for the 8 kcal/mol change (Table 5) in relative energies between MP2/6-

31+G(d) and MP2/6-31+G(2df). The spin-squared values for the three structures were 0.80, 0.85, and 0.83 for the $C_{2\nu}$, $C_{3\nu}$, and D_{2d} symmetry structures, respectively.

In contrast, spin contamination was not as serious at the DFT level as found at the HF level, which is recognized as one of the advantages of the DFT method.²⁸ At the DFT level, the $C_{2\nu}$ symmetry structure was 0.5 kcal/mol more stable than the $C_{3\nu}$ structure and 1.6 kcal/mol more stable than the D_{2d} structure (Table 5). The $SO_4^ C_{2\nu}$ structure can best be viewed as derived from neutral SO_4 with the extra electron added to the σ^*_{OO} LUMO. The resulting O—O interaction is an example of an internal two-center three-electron bond ($\sigma^2\sigma^{*1}$) which has increased in length from 1.586 Å in SO_4 to 2.271 Å in SO_4^- (nonbonded O—O distances in D_{2d} SO_4^- are 2.445 and 2.506 Å). An analysis of the unpaired spin density reveals that all of the unpaired spin is equally distributed between the two oxygen centers of the 2c-3e bond.

The lowest-energy $C_{3\nu}$ state of $S_2O_3^-$ is formed by removing one electron from the HOMO of $S_2O_3^{2-}$ which is of e symmetry. The resulting 2E state is Jahn—Teller unstable and can distort to C_s symmetry and form a lower-symmetry ${}^2A'$ or ${}^2A''$ state. The ${}^2A'$ state is predicted to be more stable than the ${}^2A''$ by 0.2 and 0.6 kcal/mol more stable than the 2E state at the DFT level without zero-point correction. Inclusion of zero-point correction leads to the paradoxical result that the 2E state is slightly more stable than the ${}^2A'$ or ${}^2A''$ state. A rigorous study of the $S_2O_3^-$ surface would require solving the electronic and nuclear (vibrational) wave functions simultaneously. Since the J–T distortion from $C_{3\nu}$ is likely to be very small, the 2E state of $S_2O_3^-$ will be taken as the ground state.

The first electron affinity of SO_4 is larger than S_2O_3 indicating that the first added electron is more tightly bound in SO_4^- . The EA of SO_4 is 121.9 kcal/mol by DFT and 111.5 by QCI, while for S_2O_3 the EA values are 94.8 and 86.5 kcal/mol by DFT and QCI, respectively. The second EA ($SO_4^- \rightarrow SO_4^{2-}$) is negative (i.e., unbound) for both SO_4^- (-39.0, DFT; -36.1 kcal/mol, QCI) and $S_2O_3^-$ (-37.0, DFT; -38.1 kcal/mol, QCI). Previous calculations 9,10 have been reported for the vertical IP of SO_4^{2-} in which the SO_4^- energy is evaluated at the SO_4^{2-} optimized geometry. These calculations show that gaseous SO_4^{2-} should spontaneously emit an electron. Using experimental heats of formation of gaseous SO_4^- and SO_4^{2-} , 29,30 the EA of SO_4^- (g) is 3 kcal/mol. It is likely that the experimental estimate of $\Delta H_f(SO_4^{2-}(g))$ is too low, since the predicted exothermicity of eq 1 is in good agreement with experiment.

$$SO_2^- + SO_4^- \rightarrow 2SO_3^-$$
 ($\Delta H_r = -14.6$, exptl;
-11.3 kcal/mol, DFT) (1)

Oxygen atom and oxygen anion (O⁻) affinities are tabulated in Tables 6 and 7, respectively, at the DFT level. The addition of O and O⁻ is predicted to be exothermic in all cases except for addition of O⁻ to SO⁻ and SO₂⁻. The most exothermic process is the addition of O to SO₂²⁻ and SO₃²⁻, where the stabilization is due to the additional center for charge delocalization. The exothermic process O⁻ + SO₃⁻ \rightarrow SO₄²⁻ (6.3 kcal/mol) indicates that the gas-phase sulfate ion (if it existed) would be stable to fragmentation.

Larger Systems (SO₅, S₂O₄, S₂O₆, S₂O₈, SO₄·4H₂O). The previous discussion indicates that geometries by DFT closely parallel geometries by MP2 and the DFT energetics are similar in quality to QCI. Therefore, the larger systems were only studied with DFT.

 SO_5^{2-} and SO_5^{-} . The most stable forms of SO_5^{2-} and SO_5^{-} have a tetracoordinate sulfur and a peroxide linkage. A X-ray

TABLE 3: Adiabatic Electron Affinities (kcal/mol) of Various Sulfoxy Compounds

	1st electron affinity ^a			2nd electro	on affinity ^a	
	$\overline{\mathrm{DFT}^b}$	QCI^c	$G2^d$	$exptl^e$	DFT^b	QCI^c
0	37.1 (1.61)	27.3 (1.18)	32.3 (1.40)	33.7 (1.46)		
S	50.6 (2.19)	41.0 (1.78)	46.1 (2.00)	47.9 (2.08)		
O_2	13.6 (0.59)	7.1 (0.31)	10.9 (0.47)	10.1 (0.44)		
SO	27.8 (1.20)	22.0 (0.95)	27.7 (1.20)f	25.1 (1.09)		
SO_2	34.1 (1.48)	24.3 (1.05)	26.7 (1.16) ^g	25.5 (1.10)	-125.9(-5.46)	-129.7(-5.62)
SO_3	57.7 (2.50)	49.8 (2.16)	49.5 (2.15) ^f	39.2 (1.70) 43.8 (1.90) ^h 50.7 (2.20) ⁱ	-78.2 (-3.39)	-80.3 (-3.48)
SO_4	121.9 (5.28)	111.5 (4.84)		` ,	-39.0(-1.69)	-36.1(-1.56)
S_2O_3	94.8 (4.11)	86.5 (3.75)			-37.0(-1.60)	-38.1(-1.65)
SO_5	78.1 (3.39) ^j	` /		$<76.2 (3.30)^k$	-62.7(-2.72)	, ,
S_2O_4	` ,			` ,	-61.3(-2.66)	
S_2O_6					-9.1(-0.39)	
S_2O_8					8.1 (0.35)	

^a The ionization potential in eV is given in parentheses. ^b At the B3LYP/6-311+G(2d)+ZPC level. ^c At the [QCISD(T)/6-31+G(2df)]+ZPC level. ^d Reference 15. ^e Reference 19. ^f This work. ^g Reference 16. ^h Reference 22. ⁱ Reference 23. ^j Neutral SO₅ assumed to be SO₃ + O₂. ^k Heat of formation of SO₅[−](g) taken from ref 33.

TABLE 4: Calculated Vibrational Frequencies (cm $^{-1}$) for SO₄ and SO₄ $^{-}$

		SO ₄ neut	ral		$\mathrm{SO_4}^-$
1	MP2/	B3LYP/	QCISD/	,1h	B3LYP/
mode	$6-31+G(d)^a$	6-31+G(d)	6-31+G(d)	exptl ^b	6-31+G(d)
b_1	1436	1378	1401	1437	1174
a_1	1245	1214	1237	1267	1095
a_1	876	932	921	927	889
b_2	795	683	730	777	709
a_1	643	662	637	611	517
b_2	455	456	475		427
a_1	460	454	469	498	341
b_1	450	447	463	490	501
b_2	283	287	298		337

^a Reference 24. ^b Reference 25.

structure of the HSO_5^- anion (related to SO_5^{2-}) reveals three S-O distances of 1.44 Å and one of 1.63 Å. 31 The calculated gas-phase O_3SOO^{2-} structure has three S-O distances of 1.509 Å and one of 1.657 Å (Figure 1). Two SO_5^{2-} structures with a pentacoordinate sulfur were calculated and found to be much higher in energy. A C_{4v} symmetry structure was 64.2 kcal/mol higher than the trans C_s structure and a D_{3h} symmetry structure was 80.5 kcal/mol higher in energy (Table 8). Rotation about the O-O bond in SO_5^{2-} is quite facile as shown by a calculated 3.4 kcal/mol barrier.

In the absence of a stabilizing medium (solid-state ionic lattice or polar solvent) $SO_5{}^{2-}$ is unstable to decomposition to $SO_4{}^-+O^-$ (42.1 kcal/mol exothermic, Table 9) or to $SO_3{}^-+O_2{}^-$ (–55.9 kcal/mol exothermic, Table 9). The best way to view the bonding in $SO_5{}^{2-}$ is the coupling of the unpaired electrons in $SO_3{}^-$ and $O_2{}^-$ to form a long (and weak) σ bond similar to the formation of O_2NNO_2 from two NO_2 radicals. 32

Removing an electron from SO_5^{2-} to form SO_5^- does not change the preferred structure. In the radical anion, three S-O bonds have shortened to 1.475 Å and one S-O bond has lengthened to 1.885 Å. Despite the longer S-O bond, SO_5^- is stable with respect to dissociation into SO_3^- and O_2 (20.4 kcal/mol endothermic). The only pentacoordinate SO_5^- species considered was a π -complex between SO_3 and O_2^- which was 67.1 kcal/mol higher in energy than the global minimum (Table 8). Both the cis and trans orientations of the OOS bond in SO_5^- are predicted to be minima which indicates that the rotational transition state must have C_1 symmetry.

Using the flowing afterglow technique, Möhler et al.³³ showed that SO_5^- forms in the gas phase by association of O_2 and SO_3^- . From the estimated upper limit of $\Delta H_f(SO_5^-(g))$ (-170.9 kcal/

mol), the exothermicity of the process $SO_3 + O_2 + e^- \rightarrow SO_5^-$ can be placed at less than 76.2 kcal/mol. The corresponding DFT value (78.1 kcal/mol) is consistent with this estimate since electron affinities are overestimated by an average of 4 kcal/mol (Table 3).

The bonding in SO_5^- can be viewed as the interaction of SO_3^- with O_2 or of SO_3 with O_2^- . Since the EA of SO_3 is 44.0 kcal/mol greater than O_2 , the SO_3 moiety is more likely to have the negative charge. However, SO_3 is "an extremely strong Lewis acid",³⁴ and the donor/acceptor interaction could provide a strong thermodynamic driving force.

The SO_3^-/O_2 interaction can be placed in context of a recent discussion of other radicals interacting with O_2 .³² Depending on the strength of the 2c-2e O_2^- radical bond compared to promotion energy, O_2 can rehybridize to form a strong 2c-2e bond or avoid rehybridization and form a weak 2c-3e interaction with the π -bond. The fact that the O-O bond increases from 1.215 Å (O_2) to 1.308 Å (SO_5^-) indicates that rehybridization takes place.

 $S_2O_4^{2-}$ and $S_2O_4^{-}$. The X-ray structure of Na₂S₂O₄ reveals a dianion with eclipsed SO₂ units ($C_{2\nu}$ symmetry) and a S-S distance of 2.39 Å.35 In solution, spectroscopic evidence has been present for a centrosymmetric (\hat{C}_{2h} , staggered) orientation.³⁶ Computationally, Leszczynski and Zerner³⁷ found the S₂O₄²⁻ staggered structure (C_{2h}) to be lower than the eclipsed structure (C_{2v}) by 9.2 kcal/mol at the MP2/6-31G*//3-21G level. Carter et al.³⁸ used a charge-stabilized LCAO-Xα method to calculate the relative energies of the staggered, gauche, and eclipsed conformers as 0.0, 0.6, and 6.0 kcal/mol, respectively. In the present work, the staggered (C_{2h}) , gauche (C_2) , and eclipsed (C_{2v}) conformers are ordered 0.0, 0.1, and 4.4 kcal/mol, respectively. It should be pointed out that at the B3LYP/6-31+G(d) level, the C_{2h} structure is a transition state and the C_2 structure a minimum but that the order reverses at the B3LYP/ 6-311+G(2d) level.

The dithionite anion is predicted to be unstable to autode-tachment by 61.3 kcal/mol ($S_2O_4^{2-} \rightarrow S_2O_4^- + e^-$) and to fragmentation ($S_2O_4^{2-} \rightarrow 2SO_2^-$) by 68.0 kcal/mol.

The monoanion $S_2O_4^-$ has been studied by both experimental^{39,40} and theoretical⁴¹ techniques. Keesee et al.³⁹ have determined the binding energy of $(SO_2)_2^-$ to be 24.0 kcal/mol. Bowers and co-workers⁴⁰ have studied the photodissociation dynamics of $(SO_2)_2^-$ using a high pressure mass spectrometer. Applying an impulse model⁴² to their data, they concluded that the two SO_2 moieties were bound through two oxygen atoms rather than through the sulfurs. At the PMP4/6-31+G*//MP2/

TABLE 5: Comparison of Relative Energies (kcal/mol) at the DFT and QCI Levels for Several Sulfoxy Anions^a

	DFT level					QCI Level		
	B3LYP/a	B3LYP/b	+ZPC	MP2/a	MP2/c	QCISD(T)/a	[QCI/c] ^b	+ZPC
$SO_4^- C_{2\nu} (^2B_1)$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
$SO_4^- C_{3\nu}$ (2E)	1.8	1.7	0.5	-0.2	3.1	0.6	4.0	2.8
$SO_4^- D_{2d} (^2A_2)$	3.7	3.5	1.6	-1.9	6.2	-0.9	7.2	5.2
$S_2O_3^- C_{3v}$ (2E)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
$S_2O_3^- C_s (^2A')$	-0.7	-0.6	0.1	-0.4	-0.6	-0.5	-0.6	0.1
$S_2O_3^- C_s(^2A'')$	-0.4	-0.4	0.1	-0.2	-0.4	-0.3	-0.3	0.1

^a Basis set "a" is 6-31+G(d); basis set "b" is 6-311+G(2d); basis set "c" is 6-31+G(2df). "+ZPC" indicates inclusion of zero-point energies. ^b Additivity approximation. $\Delta E[QCI/c] = \Delta E(MP2/c) + \Delta E(QCI/a) - \Delta E(MP2/a)$.

TABLE 6: O Atom Affinities (kcal/mol) Calculated at the DFT Level

	binding		binding		binding
SO	113.9	SO^-	120.1		
SO_2	70.0	SO_2^-	93.7	SO_2^{2-}	141.3
SO_3	17.4	SO_3^-	82.4	SO_3^{2-}	121.6

TABLE 7: O^- Atom Affinities (kcal/mol) Calculated at the DFT Level

	binding		binding
SO	110.8	SO ⁻	-42.9
SO_2	90.6	$\mathrm{SO_2}^-$	-21.7
SO_3	102.9	SO_3^-	6.3

6-31+G* level, Berthe-Gaujac et al.⁴¹ calculated the S-S oneelectron-bonded structure and found the staggered conformer (2.1 kcal/mol lower in energy than the eclipsed conformer) to be bound by 20.1 kcal/mol.

In this study, three conformers of the 2c-1e bonded complex (staggered, gauche, and eclipsed) were considered, with relative energies of 0.0, 0.1, and 1.8 kcal/mol, respectively. At the B3LYP/6-31+G(d) level, the C_2 structure is lower in energy than the C_{2h} or C_{2v} structures but still characterized by an imaginary frequency. Further optimization was not undertaken since the B3LYP/6-311+G(2d) level reversed the energy order of the C_2 and C_{2h} structures. At the DFT level, (SO₂)₂⁻ is bound by 27.5 kcal/mol. The next higher product channel is SO₃⁻ + SO with an endothermicity of 47.8 kcal/mol.

A number of alternative geometries were considered for the cluster with a O-O or S-O intermoiety interaction. However, no reasonable candidate structures could be found and we are unable to support the interpretation of Bowers and co-workers⁴⁰ for the structure of the (SO₂)₂⁻ cluster.

 $S_2O_6^{2-}$ and $S_2O_6^{-}$. The $S_2O_6^{2-}$ anion has very recently been observed in the gas phase using electrospray mass spectrometry. Since the SO_4^{2-} anion could not be observed in the gas phase, it is likely the larger size of the anion, which allows the negative charge to be distributed over more atoms, 43,44 is the reason for its increased stability.

Several X-ray structures have been determined for $S_2O_6^{2-}$ with various counterions. Most recently, Kirfel and Will^{45a,b} solved the structure of $Na_2S_2O_6 \cdot 2H_2O$ in which the anion was staggered with a S-S bond length of 2.14 Å. The S-S bond in the anion was calculated longer than the X-ray distance (2.20 Å) by the LCAO-X α method, but the agreement was improved considerably (2.16 Å) when the charge-stabilized LCAO-X α method was used. When the charge-stabilized LCAO-X α method was used.

Two different structures of the $S_2O_6^{2-}$ anion were considered, D_{3d} with staggered SO_3 groups and a $O_2SO-OSO_2^{2-}$ structure of C_{2h} symmetry (Figure 1) with a peroxy linkage. While the latter structure is the known structure for $S_2O_8^{2-}$, it is predicted to be 58.9 kcal/mol higher than the D_{3d} structure for $S_2O_6^{2-}$ (Table 8).

The adiabatic ionization potential of $S_2O_6^{2-}$ is predicted to be positive (bound) by 9.1 kcal/mol. This result does not con-

tradict the fact that $S_2O_6^{2-}$ can be observed in the electrospray experiments¹² since, as will be discussed below, the *vertical* ionization potential is negative (unbound). Decomposition into monocharged anions is predicted to be exothermic; 39.7 kcal/mol to two SO_3^- and 28.4 kcal/mol into SO_4^- plus SO_2^- .

The $S_2O_6^-$ ion is perhaps the most interesting of the sulfoxy anions in that the global minimum has a SOS linkage $(O_2SOSO_3^-)$ while the dianion has a SS linkage $(O_3SSO_3^{2-})$. Four $O_2SOSO_3^-$ structures (Figure 1) were calculated within 1.6 kcal/mol of each other. The precise nature of the conformer surface is ambiguous since three of the four structures (including the lowest-energy one) had at least one (albeit small) imaginary frequency. However, it can be concluded that rotation about the SO bond on either side of the SOS linkage is nearly unhindered.

The lowest energy pathway for $S_2O_6^-$ decomposition is to SO_4^- plus SO_2 which is 16.3 kcal/mol endothermic, followed by SO_3^- plus SO_3 , which is 27.1 kcal/mol endothermic. Since the SO_4^-/SO_2 channel is more exothermic, it might be expected that the oxygen in the SO_3 linkage would be shorter on the SO_3 side rather than the SO_2 side. However, exactly the opposite is observed (Figure 1).

The dominant interaction between SO_3 and SO_3^- is an acceptor—donor interaction, $O_3S \leftarrow OSO_2^-$, while between SO_4^- and SO_2 it is a 2c-3e interaction to form $O_3SO :: SO_2^-$. If SO_4^- and SO_2 are brought together, the 2c-3e interaction between SO_4^- and SO_2 is converted into a donor—acceptor interaction between SO_3^- and SO_3 by the transfer of an oxygen atom (Figure 2). Thus, the donor—acceptor interaction controls the geometry of the cluster. As the S-S distance is increased, the oxygen atom should transfer back toward the SO_3 so that the products begin to resemble SO_4^-/SO_2 .

The 2c-1e S·S bonded complex is 4.9 kcal/mol higher in energy than the global minimum with a S·S distance of 2.683 Å (Figure 1). With respect to SO_3^- and SO_3 , the 2c-1e complex is bound by 32.0 kcal/mol, a relative strong S-S interaction.⁴⁶ The highest energy form of $S_2O_6^-$ considered was the peroxy structure (Figure 1) which was calculated to be 33.8 kcal/mol above the global minimum on the $S_2O_6^-$ potential energy surface (Table 8).

 $S_2O_8^{2-}$ and $S_2O_8^{-}$. Peroxodisulfate ion, $S_2O_8^{2-}$, has been described as "one of the most powerful and useful of oxidizing agents". While the properties of $S_2O_8^{2-}$ in the aqueous phase have been well studied, ^{47b} its gas-phase properties have received only recent attention. In their study using electrospray mass spectrometry, Blades and Kebarle¹² noted that $S_2O_8^{2-}$ was not prone to thermal detachment. Our adiabatic ionization potential is in agreement with this observation since it is the first sulfoxy dianion with an endothermic IP (8.1 kcal/mol). It was determined from the CID of $S_2O_8^{2-}$, that the major daughter ions are SO_3^- and SO_5^- . From a careful analysis of intensity patterns (due to natural isotopic abundances), ¹² it was also concluded that $S_2O_8^{2-}$ also decomposed into two SO_4^- ions. The DFT results predict three exit channels for $S_2O_8^{2-}$ to be exothermic:

Figure 1. Selected geometric parameters (in angstroms and degrees) are given at the B3LYP/6-31+G(d) level for various species. Values in parentheses are at the MP2/6-31+G(d) level and values in brackets (for SO_4) are at the QCISD/6-31+G(d) level.

-50.9 kcal/mol to two $SO_4^-,\ -26.2$ kcal/mol to SO_5^- plus $SO_3^-,$ and -5.9 kcal/mol to two SO_3^- plus $O_2.$

Removing one electron from $S_2O_8^{2-}$ produces an anion with a short O-O bond (1.298 Å) and two long SO bonds (2.034

Å). Thus, the cluster resembles three interacting species, SO_3^- , SO_3 , and O_2 . However, noting that the S-O distance is very long in SO_5^- (1.885 Å), the molecule may also be thought of as SO_5^- interacting with SO_3 . The first available fragmentation pathway for $S_2O_8^-$ is to SO_5^- plus SO_3 which is endothermic by 24.0 kcal/mol. Once SO_5^- is formed, elimination of O_2 to form a second SO_3^- is predicted to be endothermic by 20.4 kcal/mol. Forming SO_4^- and SO_4 from $S_2O_8^-$ is much more endothermic (64.3 kcal/mol, Table 9).

Two structures were considered for $S_2O_8^-$, differing only in the orientation of the SO_3 group. A staggered arrangement of the O_2 group with SO_3 is preferred for the anion but only by 0.6 kcal/mol (Table 8).

It is interesting to compare the decomposition of the peroxy structure of $S_2O_8^{2-}$, which is the known dianion structure, and the peroxy structure of $S_2O_6^{2-}$, which is not the known structure (eq 2 and 3). For both species, the structural parameters are

$$O_2S - OO - SO_2^{2-} \rightarrow SO_2^{-} + O_2 + SO_2^{-}$$

 $\Delta H_4 = -5.9 \text{ kcal/mol } (2)$

$$\Delta H_4 = -5.9 \text{ kcal/mol } (2)$$
 $O_3 \text{S} - \text{OO} - \text{SO}_3^{2-} \rightarrow \text{SO}_3^{-} + O_2 + \text{SO}_3^{-}$

$$\Delta H_r = -5.9 \text{ kcal/mol } (3)$$

very similar (Figure 1) as well as the decomposition energetics. Therefore, the difference in observed structure is not due to a difference in the nature of the peroxy bonding. Rather, it is due to the fact that in $S_2O_6{}^{2-}$, SO_3 , a strong Lewis acid, can interact with sulfur in the Lewis base, $SO_3{}^{2-}$, to form the dative—covalent S–S bond. In $S_2O_8{}^{2-}$, such a S–S dative—covalent bond is not possible, which leaves the Lewis acid, SO_3 , interacting with the Lewis base, O_3SOO^{2-} , as the next best alternative. The similarity of the peroxy structure is retained, even after one electron is removed as shown in Figure 1 and eqs 4 and 5. The peroxy structure is the global minimum on

$$O_2S-OO-SO_2^- \rightarrow SO_2 + O_2 + SO_2^-$$

 $\Delta H_r = 37.3 \text{ kcal/mol (4)}$

$$O_3S - OO - SO_3^- \rightarrow SO_3 + O_2 + SO_3^-$$

 $\Delta H_r = 38.2 \text{ kcal/mol } (5)$

the $S_2O_8^-$ potential energy surface but not on the $S_2O_6^-$ surface. $SO_4^{2-} \cdot 4H_2O$. While the SO_4^{2-} dianion could not be observed in the gas phase by electrospray methods, the tetraaqua species $SO_4^{2-} \cdot 4H_2O$ could be.¹² The four coordinated waters allow the negative charge to be delocalized sufficiently for autodetachment not to be spontaneous.

In a recent condensed-phase simulation of SO₄²⁻, 48 it was determined that the first solvation shell contained approximately 13 waters arranged such that one hydrogen pointed toward a sulfate oxygen and the other toward a water oxygen. For the discrete SO₄²-•4H₂O cluster, a structure of C₂ symmetry was considered with the aforementioned orientation of water around sulfate (Figure 3). While a thorough search of conformational minima was not attempted, it was confirmed that the C_2 structure is a minimum at the DFT level. At our standard level, the waters are bound by an average of 21.9 kcal/mol (24.5 kcal/mol without zero-point correction). The interaction energy of one water with sulfate is not known. However, a theoretical value of -26.4kcal/mol has been calculated⁴⁸ at the [MP4/6-311+G(d)] level (with addivitity approximation and without zero-point correction). As more waters are added, it is expected that the binding energy will decrease. It is interesting that the average water binding energy in SO₄²⁻·4H₂O (21.9 kcal/mol) is not much less

TABLE 8: Relative Energies (kcal/mol) of Various Sulfoxy Mono- and Dianions at the DFT Level^a

	B3LYP/a	B3LYP/b	+ZPC
SO_5^{2-} trans C_s (¹ A')	0.0	0.0	0.0
SO_5^{2-} cis C_s (1 A')	3.5	3.8	3.4
$SO_5^{2-} C_{4\nu} (^1A_1)$	65.4	66.3	64.2
$SO_5^{2-}D_{3h}(^1A_1')$	82.3	82.9	80.5
SO_5^- trans C_s (2 A")	0.0	0.0	0.0
SO_5^- cis C_s (2 A")	0.7	0.8	0.7
$SO_5^- C_s (^2A')$	66.3	68.3	67.1
$S_2O_4^{2-}C_{2h}(^1A_g)$	0.0	0.0	0.0
$S_2O_4^{2-}C_2(^1A)$	0.0	0.1	0.1
$S_2O_4^{2-}C_{2v}(^1A_1)$	4.7	4.7	4.4
$S_2O_4^- C_{2h} (^2A_g)$	0.0	0.0	0.0
$S_2O_4^- C_2 (^2A)$	-0.1	0.5	0.6
$S_2O_4^- C_{2v} (^2A_1)$	2.1	1.9	1.8
$S_2O_6^{2-}D_{3d}(^1A_{1g})$	0.0	0.0	0.0
$S_2O_6^{2-}C_{2h}(^1A_g)$	50.1	61.5	58.9
$S_2O_6^-$ a C_s (2 A')	0.0	0.0	0.0
$S_2O_6^-$ b C_s (2 A')	0.3	0.4	0.3
$S_2O_6^-$ c C_s (2 A')	2.0	1.2	1.1
$S_2O_6^-$ d C_s (2 A')	2.4	1.6	1.6
$S_2O_6^- D_{3d} (^2A_{1g})$	10.3	5.1	4.9
$S_2O_6^- C_{2h} (^2B_g)$	30.3	36.4	33.8
$S_2O_8^-$ a C_{2h} (2B_g)	0.0	0.0	0.0
$S_2O_8^-$ b C_{2h} (2B_g)	0.5	0.6	0.6

^a Basis set "a" is 6-31+G(d); basis set "b" is 6-311+G(2d). "+ZPC" indicates inclusion of zero-point energies.

than the water binding energy in OH⁻·H₂O (26.7 kcal/mol).⁴⁹ The extent of charge transfer from SO₄²⁻ to the four water is 0.13 e⁻ as determined by a Mulliken analysis at the DFT level.

The water–sulfate cluster with only four waters is already beginning to resemble the structure found from simulations of the bulk solution. For example, the S– O_w distances of 3.40 and 3.90 Å in $SO_4{}^{2-} \cdot 4H_2O$ (Figure 3) can be compared to a peak in the pair correlation function at 3.8 Å and the O_s-O_w distances of 2.77 and 2.81 Å can be compared to an O_s-O_w peak at 2.7 Å.

Vertical Ionization Energies of Dianions. Dianions may be observed in the gas phase if (1) their vertical ionization energy is positive (endothermic) and (2) all fragmentation pathways are either endothermic or have kinetic barriers. For all dianions considered in this study, except SO₄²⁻•4H₂O, exothermic fragmentation pathways exist where both fragments carry a negative charge, which means that for these dianions to be observable, kinetic barriers to fragmentation must exist. For all dianions, the thermodynamically unstable bond is a 2c-2e bond which means that considerable electronic reorganization must take place prior to bond breaking. Using S₂O₆²⁻ as an example with a thermodynamically unstable S-S bond (BDE = -39.7 kcal/mol), the short S-S 2c-2e bond (2.308 Å) and positive stretching frequency (198 cm⁻¹) both indicate a significant barrier to cleavage. Very similar arguments were used³ to suggest that a significant kinetic barrier exists for cleavage of the thermodynamically unstable Si-Si bond in $Si_2O_4^{2-}$.

Vertical ionization energies have been calculated directly by use of the outer-valence Green's function (OVGF) approach^{8,17} and by computing the difference in energy (at the DFT level) between the dianion and the monoanion fixed in the optimized geometry of the dianion (Δ DFT method, Table 10). The OVGF approach and other propagator-based approaches have enjoyed great success in predicting a number of properties including ionization energies and electron affinities.¹⁷ In particular, several research groups have used OVGF to predict the ionization energies of dianions such as C_n^{2-} , $C_2O_n^{2-}$, and $Si_2O_4^{2-}$.^{3-5,8}

Ionization energies in kcal/mol are given in Table 10 by Koopmans' theorem, OVGF, and Δ DFT. Several features are

TABLE 9: Calculated Fragmentation Energies for Various Sulfoxy Monoanions and Dianions at the DFT Level

	anion reaction energies				dianion reaction energies				
reactant	product	B3LYP/a	B3LYP/b	+ZPC	reactant	product	B3LYP/a	B3LYP/b	+ZPC
SO ₅ ⁻	$SO_4^- + O$	60.8	60.1	57.7	SO ₅ ²⁻	$SO_4^- + O^-$	-37.0	-40.1	-42.1
	$SO_4 + O^-$	145.0	144.9	143.3		$SO_3^- + O_2^-$	-53.9	-52.9	-55.9
	$SO_3^- + O_2$	20.2	22.6	20.4					
	$SO_3 + O_2^-$	68.5	66.9	64.4					
$\mathrm{S_2O_4}^-$	$SO_2^- + SO_2$	27.1	28.4	27.5	$S_2O_4^{2-}$	$2SO_2^-$	-67.6	-66.4	-68.0
	$SO_3^- + SO$	43.9	48.3	47.8		$SO_3^- + SO^-$	-42.4	-40.8	-41.5
	$SO_3 + SO^-$	76.7	77.5	77.6		$2SO^{-} + O_{2}$	43.2	56.0	52.6
	$2SO + O_2^-$	145.0	160.2	156.1		$SO + SO^{-} + O_{2}^{-}$	58.7	71.1	66.8
	$SO + SO^- + O_2$	129.5	145.1	141.8					
$\mathrm{S_2O_6}^-$	$SO_3^- + SO_3$	31.2	28.3	27.1	$S_2O_6^{2-}$	$2SO_3^-$	-40.7	-37.1	-39.7
	$SO_4^- + SO_2$	21.0	20.4	16.3		$SO_4^- + SO_2^-$	-30.2	-25.1	-28.4
	$SO_4 + SO_2^-$	101.4	105.5	103.4		$SO_5^- + SO^-$	24.8	37.0	34.0
	$SO_5^- + SO$	63.9	73.3	70.9		$SO_5^{2-} + SO$	114.3	127.7	124.5
	$2SO_2 + O_2^-$	91.1	96.8	91.5		$2SO_2^- + O_2$	19.8	34.0	27.9
	$SO_2 + SO_2^- + O_2$	67.3	76.0	71.1		$SO_2 + SO_2^- + O_2^-$	43.6	54.9	48.4
$\mathrm{S_2O_8}^-$	$SO_4^- + SO_4$	64.8	65.9	64.3	$S_2O_8^{2-}$	$2SO_4^-$	-44.4	-47.9	-50.9
	$SO_5^- + SO_3$	24.5	25.1	24.0		$SO_5^- + SO_3^-$	-25.1	-23.4	-26.2
	$2SO_3 + O_2^-$	92.9	92.0	88.4		$SO_5^{2-} + SO_3$	97.3	96.4	94.1
	$SO_3 + SO_3^- + O_2$	44.6	47.8	44.3		$2SO_3^- + O_2$	-4.9	-0.8	-5.9
						$SO_3 + SO_3^- + O_2^-$	43.4	43.5	38.2

Figure 2. Depiction of the $S_2O_6^-$ global minimum with respect to the fragments SO_4^-/SO_2 or SO_3/SO_3^- . From the lower-energy SO_4^-/SO_2 fragments, only a weak 2c-3e interaction between O and S is possible. From the higher energy SO_3/SO_3^- fragments, a donor—acceptor interaction between SO_3^- and the strong Lewis acid, SO_3 , is possible. The donor—acceptor interaction determines the geometry of the complex.

Figure 3. Plot of the $SO_4^{2-} \cdot 4H_2O$ cluster optimized at the B3LYP/ 6-31+G(d) level in C_2 symmetry. Hydrogen bonding interactions are shown as dotted lines.

revealed: first, the IEs become more positive (more bound) by all three methods as the number of sulfur and oxygen atoms increase; second, the OVGF method gives IEs more negative (less bound) than Koopmans' theorem; and third, ΔDFT gives IEs slightly more negative (less bound) than OVGF. At the OVGF and ΔDFT levels, only $S_2O_6^{2-}$, $SO_4^{2-} \cdot 4H_2O$, and $S_2O_8^{2-}$ have positive IEs.

The lifetime of the $S_2O_6^{2-}$ is expected to be relatively short because, while the vertical IE is positive (14.4 kcal/mol, Table 10), the adiabatic IE is negative (-9.1 kcal/mol, Table 3). Following Cederbaum,³ the dianion lacks adiabatic stability because the monoanion potential energy surface crosses below

TABLE 10: Calculated Vertical Ionization Energies (kcal/mol)^a

$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		•	OVGF^b	$\Delta \mathrm{DFT}^c$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SO ₂ ²⁻	-103.0(-4.47)	-115.3(-5.00)	-119.7(-5.19)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SO_3^{2-}	-44.1(-1.91)	-61.1(-2.65)	-65.7(-2.85)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SO_4^{2-}	18.1(0.78)	-15.2(-0.66)	-30.8(-1.34)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$S_2O_3^{2-}$	-6.1(-0.26)	-32.5(-1.41)	-30.6(-1.33)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SO_5^{2-}	15.0(0.65)	-31.4(-1.36)	-37.8(-1.64)
$S_2O_8^{2-}$ 102.5(4.44) 63.2(2.74) 36.1(1.56)	$S_2O_4{}^{2-}$	-38.0(-1.65)	-55.2(-2.39)	-51.5(-2.23)
	$S_2O_6{}^{2-}$	46.7(2.02)	14.1(0.61)	14.4(0.62)
$SO_4^{2-} \cdot 4H_2O$ 80.8(3.50) 43.5(1.89) 29.1(1.26)	$S_2O_8{}^{2-}$	102.5(4.44)	63.2(2.74)	36.1(1.56)
	$SO_4^{2-} \cdot 4H_2O$	80.8(3.50)	43.5(1.89)	29.1(1.26)

^a The ionization potential in eV is given in parentheses. ^b Outer valence Green's function approach. References 8 and 17. ^c At the B3LYP/6-311+G(2d) level.

the dianion surface. If the crossing occurs for a geometry very different from the dianion geometry, Franck—Condon factors will be small which will increase the lifetime of the anion. For $S_2O_6^{2-}$, the dianion geometry (D_{3d} symmetry with a S—S bond) is very different from the global minimum of the monoanion (C_s symmetry with a S—O—S linkage).

For $S_2O_8^{2-}$, the IE is positive by both OVGF and Δ DFT, although the difference between the two methods is rather large (27.1 kcal/mol). It is possible that the OVGF method is not converged with respect to the size of the basis set (6-31+G-(d)). For SO_4^{2-} , where the OVGF and Δ DFT methods differ by 15.6 kcal/mol, higher level calculations at the Δ QCISD(T) level¹⁰ agree much better with the Δ DFT value (-30.9 and -30.8 kcal/mol, respectively). In the case of $S_2O_8^{2-}$, both the vertical IE (36.1 kcal/mol) and the adiabatic IE (8.1 kcal/mol) are positive, suggesting that the $S_2O_8^{2-}$ lifetime will be much longer than $S_2O_6^{2-}$.

The calculated vertical IE for $SO_4^{2-} \cdot 4H_2O$ is positive for OVGF and ΔDFT methods (43.5 and 36.1 kcal/mol, respectively). Since fragmentation pathways will be endothermic (waters are more electrostatically bound to the dianion than the monoanion), a positive IE indicates that the sulfate—water cluster should be observable in the gas phase which is in agreement with the electrospray results of Blades and Kebarle. Upon associating with four water molecules, the IE is predicted to increase 58.7 kcal/mol by OVGF and 59.9 kcal/mol by ΔDFT . While the adiabatic IE was not calculated for the sulfate-water cluster, the size of the vertical IE would suggest that the dianion should have adiabatic stability as well. If the increase in vertical

TABLE 11: Comparison of DFT 33 S a_{hfcc} (G) with Experiment for Sulfoxy Anions

	DFT/b ^a	exptl
SO⁻ C∞v	0.0	
$SO_2^- C_{2\nu}$	18.2	$\pm 15^{b}$
$SO_3^- C_{3v}$	263.8	$\pm 130^{b}$
$SO_3^- D_{3h}^c$	587.0	
$SO_4^- C_{2v}$	-17.9	
$S_2O_3^- C_{3v}^d$	-7.9/4.4(exo)/-1.8(ave)	$\pm 131^{e}$
$SO_5^- C_s$	-8.2	<±3 ^f
$S_2O_4^- C_{2h}$	-2.7	
$S_2O_6^-C_s$	$279.9(SO_3)/-1.2(SO_4)/139(ave)$	$\pm 142^{b}$
$S_2O_6^-D_{3d}$	45.2	$\pm 142^{b}$
$S_2O_8^- C_{2h}$	-1.8	$\pm 3.5^{f}$
$SO_4^- C_{2v}^g$	-19.6	
$SO_4^- \cdot 4H_2O C_{2v}^g$	-18.8	

 a B3LYP/6-311+G(2d) method. b Reference 55. c Inversion barrier is 32.3 kcal/mol at standard DFT level. d The value of 33 S $a_{\rm hfcc}$ for the 2 A′ state are -8.4/6.0(exo) and for the 2 A″ state -8.3/4.8(exo). e Reference 27. f Reference 56. g Geometry fixed to the dianion.

IE is linear with number of water molecules (15 kcal/mol per H_2O), the present ΔDFT results would predict that the IE would remain positive for three water molecules but not two.

Spin Densities and Predicted ESR Parameters. There is ample evidence that DFT can provide reliable spin densities for radical systems.^{50–54} Since experimental ESR data is available for several sulfoxy radical anions, comparison with theoretical values may aid interpretation.

In a methanol glass at 77 K, Mishra and Symons⁵⁵ recently measured the ESR spectra (and the ³³S isotropic hyperfine coupling constant) for SO₂⁻, SO₃⁻, and S₂O₆⁻. For S₂O₃⁻, Morton et al.²⁷ measured an isotropic hyperfine coupling constant of 131 G for ³³S. While the authors²⁷ noted that the ³³S isotropic $a_{\rm hfcc}$ in S₂O₃⁻ was almost identical to that in SO₃⁻, they discard the possibility that S₂O₃⁻ had undergone S–S bond cleavage to form SO₃⁻.⁵⁶ By irradiating a crystal or powder of K₂S₂O₈, Symons and Barnes⁵⁷ detected ESR signals which they attributed to the radicals, SO₅⁻ and S₂O₈⁻. Over many heat—light cycles, they were able to interconvert the two radical through eq 1. The present calculation predict eq 6 to be the most favorable fragmentation pathway with an endothermicity of 24.0 kcal/mol.

$$S_2O_8^{-\frac{h\nu}{80^{\circ}C}}SO_5^{-} + SO_3$$
 (6)

While a glass or single crystal may represent conditions very different from the gas phase, comparisons are warranted if used with caution (Table 11). For example, calculations show that the ESR parameters of $H_2S :: SH_2^+$ are not sensitive to the present of explicitly coordinated waters. For SO₄ if one compares the ³³S isotropic $a_{\rm hfcc}$ for SO₄ (-19.6 G) and $SO_4^- \cdot 4H_2O$ (-18.8 G) evaluated using the dianion optimized geometry, the shift is less than 1 G (Table 11).

There is reasonable agreement between theory and experiment for SO_2^- , SO_5^- , and $S_2O_8^-$. However, for several radicals there are serious disagreements between DFT and experiment. Perhaps most baffling is for SO_3^- , a radical of $C_{3\nu}$ symmetry, where the disagreement is over 130 G (Table 11). Geometric averaging over the umbrella mode of SO_3^- will not improve agreement because the inversion barrier is too high to be accessible (32.3 kcal/mol at DFT level) and the predicted isotropic $a_{\rm hfcc}$ constant of the D_{3h} structure is even further from the experimental value (587.0 G, DFT; ± 130 G, exptl⁵⁵). It is possible that the measured values in the glass correspond to a different species such as $O_3S \cdot SO_3^-$ or $O_3S \cdot SO_3^{3-}$. The predicted $a_{\rm hfcc}$ for $D_{3d} O_3S \cdot SO_3^-$ is 45.2 G, a significant change

from the free SO₃⁻ values, which is due to the fact that the spin density is symmetric distributed between the two sulfur centers.

For $S_2O_3^-$, the calculated ³³S $a_{\rm hfcc}$ values are so different from experiment (-7.9 and 4.4 G, DFT; ± 131 G, $\exp(1^{27})$), that the experiment spectrum is likely due to a different species. Mishra and Symons ⁵⁵ report an $a_{\rm hfcc}$ value of ± 142 G for $S_2O_6^-$ in a D_{3d} orientation. However, the predicted $a_{\rm hfcc}$ for the D_{3d} structure is nearly 100 G different from the observed value. As mention in the section above, the D_{3d} structure is 4.9 kcal/mol above the gas-phase global minimum. The $a_{\rm hfcc}$ of the two different sulfurs in the global minimum are 270.9 G (tricoordinate sulfur) and -1.2 G (tetracoordinate sulfur). If the tricoordinate and tetracoordinate sulfurs were to rapidly exchange through the symmetrical D_{3d} structure, the average $a_{\rm hfcc}$ of 139 G is very close to the experimental value of ± 142 G. If the D_{3d} structure were the transition state, the process would have an activation barrier of 4.9 kcal/mol.

Conclusion

There is fair agreement between DFT and QCI for the electron affinities of SO₂, SO₃, SO₄, and S₂O₃; the DFT values are too large and the QCI values too small. The G2 EA of SO₃ (49.5 kcal/mol) is 10.3 kcal/mol larger than the standard experimental value but close to a more recent value. For SO₅²⁻, S₂O₄²⁻, and S₂O₈²⁻, the preferred structure does not change when an electron is removed. However, for $S_2O_6{}^{2-}$, the lowest energy structure is characterized by a S-S bond, while for S₂O₆⁻ it is a structure with an SOS linkage. The S₂O₆²⁻ dianion has a positive (endothermic) vertical ionization energy (14.4 kcal/mol) but a negative adiabatic ionization energy (-9.1 kcal/mol). $S_2O_6^{2-}$ can be observed in the gas phase because there is a significant change in geometry between the dianion and monoanion. The dianions, $S_2O_8^{2-}$ and $SO_4^{2-} \cdot 4H_2O$, which have both been observed in the gas phase, also have positive ionization energies. The calculated ³³S hyperfine coupling constants (a_{hfcc}) for SO_3^- and $S_2O_3^-$ are in very poor agreement with experimental assignments.

Acknowledgment. Computer time for this study was made available by the Alabama Supercomputer Network and the NSF-supported Pittsburgh Supercomputer Center. I thank Dr. Nico J. R. van Eikema Hommes for making Molecule available, which was used for drawing the SO₄²⁻·4H₂O structure in Figure 1. Dr. David Stanbury is acknowledged for many helpful discussions.

Supporting Information Available: Table of total energies (hartrees) and zero-point energies (kcal/mol) (2 pages). This material is contained in many libraries on microfiche, immediately follows this article in the microfilm version of the journal, can be ordered from the ACS, and can be downloaded from the Internet; see any current masthead page for ordering instructions and Internet access instructions.

Note Added in Proof. Experimental free energies of hydration in the gas phase have recently been reported for the dianions SO_4^{2-} , $S_2O_3^{2-}$, $S_2O_6^{2-}$, and $S_2O_8^{2-}$ (Blades, A. T.; Klassen, J. S.; Kelarle, P. *J. Am. Chem. Soc.* **1995**, *117*, 10563).

References and Notes

- (1) Kalcher, J.; Sax, A. F. Chem. Rev. 1994, 94, 2291.
- (2) Compton, R. N., In *Negative Ions*; Esaulov, V., Ed.; Cambridge University Press: Cambridge, 1994.
- (3) Sommerfeld, T.; Schneller, M. K.; Cederbaum, L. S. J. Chem. Phys. 1995, 103, 1057 and references cited therein.

- (4) (a) Scheller, M. K.; Cederbaum, L. S. J. Chem. Phys. 1994, 101, 3962. (b) Scheller, M. K.; Cederbaum, L. S. J. Chem. Phys. 1994, 100, 8934.
- (5) Scheller, M. K.; Compton, R. N.; Cederbaum, L. S. Science 1995, 270, 1160.
 - (6) Simons, J.; Gutowski, M. Chem. Rev. 1991, 91, 669.
 - (7) Jordan, K. D.; Burrow, P. D. Acc. Chem. Res. 1978, 11, 341.
 - (8) Zakrzewski, V. G.; Ortiz, J. V. J. Chem. Phys. 1995, 102, 294.
 - (9) Janoschek, R. Z. Anorg. Allg. Chem. 1992, 616, 101.
 (10) Boldyrev, A. I.; Simons, J. J. Phys. Chem. 1994, 98, 2298.
- (11) Kebarle, P.; Tang, L. *Anal. Chem.* **1993**, *65*, 272A and references therein.
- (12) Blades, A. T.; Kebarle, P. J. Am. Chem. Soc. 1994, 116, 10761. (13) (a) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Wong, M. W.; Foresman, J. B.; Robb, M. A.; Head-Gordon, M.; Replogle, E. S.; Gomperts, R.; Andres, J. L.; Raghavachari, K.; Binkley, J. S.; Gonzalez, C.; Martin, R. L.; Fox, D. J.; Defrees, D. J.; Baker, J.; Stewart, J. J. P.; Pople, J. A. Gaussian92/DFT (Rev. G.2); Gaussian, Inc.: Pittsburgh, PA, 1993. (b) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A. Gaussian94 (Rev. B.1); Gaussian, Inc.: Pittsburgh, PA, 1995.
- (14) For a general description see: Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. *Ab Initio Molecular Orbital Theory*, Wiley: New York, 1986.
- (15) Curtiss, L. A.; Raghavachari, K.; Trucks G. W.; Pople, J. A. J. Chem. Phys. **1991**, 94, 7221.
- (16) Yu, D.; Rauk, A.; Armstrong, D. A. J. Phys. Chem. 1992, 96, 6031.
 (17) (a) Ortiz, J. V. J. Chem. Phys. 1988, 89, 6348. (b) Cederbaum, L.
 S. J. Phys. 1975, B8, 290. (c) Niessen, W. v.; Schirmer, J.; Cederbaum, L.
 S. Comput. Phys. Rep. 1984, 1, 57. (d) Zakrzewski, V. G.; Niessen, W. v.
 J. Comput. Chem. 1993, 14, 13. (e) Ortiz, J. V. Int. J. Quantum Chem., Quantum Chem. Symp. 1988, 22, 431. (f) Ortiz, J. V. Int. J. Quantum Chem., Quantum Chem. Symp. 1989, 23, 321.
- (18) (a) Guerra, M. Chem. Phys. Lett. 1990, 167, 315. (b) Guerra, M. Chem. Phys. Lett. 1992, 197, 205. (c) Delahay, P.; Dziedzic, A. Chem. Phys. Lett. 1986, 128, 372.
- (19) Chase, M. W., Jr.; Davies, C. A.; Downey, J. R., Jr.; Frurip, D. J.; McDonald, R. A.; Syverud, A. N. *J. Phys. Chem. Ref. Data* **1985**, *14*, Suppl. 1; *JANAF Thermochemical Tables*, 3rd ed.
 - (20) Nimlos, M. R.; Ellison, G. B. J. Phys. Chem. 1986, 90, 2574.
- (21) Lias, S. G.; Bartmess, J. E.; Liebman, J. F.; Holmes, J. L.; Levin, R. D.; Mallard, W. G. J. Phys. Chem. Ref. Data 1988, 17, Suppl. 1.
- (22) EA for SO₃ quoted as 1.9 ± 0.1 eV in: Miller, T. M.; Viggiano, A. A.; Arnold, S. T.; Jayne, J. T. *J. Chem. Phys.* **1995**, *102*, 6021.
- (23) Rudnyi, E. B.; Vovk, O. M.; Kaibicheva, E. A.; Sidorov, L. N. J. Chem. Thermodyn. 1989, 21, 247.
 - (24) McKee, M. L. J. Am. Chem. Soc. 1993, 115, 9136.
 - (25) Kugel, R.; Taube, H. J. Phys. Chem. 1975, 79, 2130.
- (26) (a) Merga, G.; Rao, B. S. M.; Mohan, H.; Mittal, J. P. *J. Phys. Chem.* **1994**, *98*, 9158. (b) Merga, G.; Aravindakumar, C. T.; Rao, B. S. M. *J. Chem. Soc., Faraday Trans.* **1994**, *90*, 597. (c) Herrmann, H.; Zellner, R. *J. Mol. Struct.* **1995**, *348*, 183.
- (27) Morton, J. R., Bishop, D. M.; Randič, M. J. Chem. Phys. 1966, 45, 1885.

- (28) Baker, J.; Scheiner, A.; Andzelm, J. Chem. Phys. Lett. 1993, 216, 380
- (29) The heat of formation of $SO_4^-(g)$ has been estimated²³ as -178 kcal/mol from ion/molecular equilibrium measurements, while the heat of formation of $SO_4^{2-}(g)$ has been estimated³⁰ as -181 kcal/mol from lattice energy calculations.
 - (30) Jenkins, H. D. B. Mol. Phys. 1975, 30, 1843.
- (31) (a) Cotton, F. A.; Wilkinson, G. *Advanced Inorganic Chemistry*, 5th ed.; Wiley: New York, 1988; p 525. (b) Schlemper, E. O.; Thompson, R. C.; Fair, C. K.; Ross, F. K.; Appelman, E. H.; Basile, L. J. *Acta Crystallogr.* **1984**, *40C*, 1781.
 - (32) McKee, M. L. J. Am. Chem. Soc. 1995, 117, 1629.
 - (33) Möhler, O.; Reiner, T.; Arnold, F. J. Chem. Phys. 1992, 97, 8233.
- (34) Purcell, K. F.; Kotz, J. C. *Inorganic Chemistry*; Saunders Co.: Philadelphia, 1977; p 345.
 - (35) Duntiz, J. D. Acta Crystallogr. 1956, 9, 579.
- (36) (a) Peter, L.; Meyer, B. J. *J. Mol. Struct.* **1982**, *95*, 131. (b) Takahashi, H.; Kaneko, N.; Miwa, K. *Spectrochim. Acta* **1982**, *38A*, 1147.
 - (37) Leszczynski, J.; Zerner, M. C. Chem. Phys. Lett. 1989, 159, 143.
- (38) Carter, K. L.; Weinrach, J. B.; Bennett, D. W. J. Am. Chem. Soc. 1993, 115, 10981.
- (39) Keesee, R. G.; Lee, N.; Castleman, Jr., A. W. J. Chem. Phys. 1980, 73, 2195.
 - (40) Kim, H.-S.; Bowers, M. T. J. Chem. Phys. 1986, 85, 2718.
- (41) Berthe-Gaujac, N.; Demachy, I.; Jean, Y.; Volatron, F. Chem. Phys. Lett. 1994, 221, 145.
 - (42) Busch, G. E.; Wilson, K. R. J. Chem. Phys. 1972, 56, 3626.
 - (43) Gutsev, G. L.; Boldyrev, A. I. Chem. Phys. 1981, 56, 277.
 - (44) Gutsev, G. L.; Boldyrev, A. I. Chem. Phys. Lett. 1984, 108, 250.
- (45) (a) Kirfel, A.; Will, G. *Acta Crystallogr.* **1980**, *B36*, 223. (b) Kirfel, A.; Will, G. *Acta Crystallogr.* **1980**, *B36*, 512. (c) Baggio, S. *Acta Crystallogr.* **1971**, *B27*, 517. (d) Lindqvist, I.; Mortsell, M. *Acta Crystallogr.* **1957**. *10*. 406.
- (46) Deng, Y.; Illies, A. J.; James, M. A.; McKee, M. L.; Peschke, M. J. Am. Chem. Soc. **1995**, 117, 420.
- (47) (a) Cotton, F. A.; Wilkinson, G. Advanced Inorganic Chemistry, 5th ed.; Wiley: New York, 1988; p 524. (b) Minisci, F.; Citterio, A.; Giordano, C. Acc. Chem. Res. 1983, 16, 27.
- (48) Cannon, W. R.; Pettitt, B. M.; McCammon, J. A. J. Phys. Chem. 1994 98 6225
 - (49) Paul, G.; Kebarle, P. J. Phys. Chem. 1990, 94, 5184.
- (50) Austen, M.; Eriksson, L. A.; Boyd, R. J. Can. J. Chem. 1994, 72, 695.
- (51) Eriksson, L. A.; Malkina, O. L.; Malkin, V. G.; Salahub, D. R. J. Chem. Phys. **1994**, 100, 5066.
 - (52) Qin, Y.; Wheeler, R. A. J. Chem. Phys. 1995, 102, 1689.
 - (53) Barone, V. Theor. Chim. Acta 1995, 91, 113.
- (54) Adamo, C.; Barone, V.; Fortunelli, A. J. Chem. Phys. 1995, 102, 384.
- (55) Mishra, S. P.; Symons, M. C. R. J. Chem. Soc., Dalton Trans. 1994, 1271.
- (56) At the DFT level, the BDE energy is postive (53.1 kcal/mol) for the S–S bond in $S_2O_3^-$ but negative (–34.6 kcal/mol) for the S–S bond in $S_2O_3^{2-}$.
- (57) Symons, M. C. R.; Barnes, S. B. J. Chem. Soc. A 1970, 2000.
 JP952361K