

Department of Computer Science & Engineering IPS Academy, Institute of Engineering & Science Indore

IEEE
International
Conference
on

Computational, Communication and Information Technology

[ICCCIT2025]

(7th & 8th Feb 2025)

PAPER TITLE

Paper ID: 655

Authors Details:

Prashanth Sreenivasan

Yogesh H. Kulkarni

OVERVIEW

1	Abstract	
2	Introduction	
3	Literature/ Related Work	
4	Methodology/Proposed Work	
5	Result & Discussion	
6	Visual Results	
7	Conclusion	

Abstract

- Midcurve computation: dimension reduction from 2D to 1D
- Applications in CAD/CAE and robot path planning
- Two new neural architectures:
 - Multi-layer dense network
 - CNN-based architecture with skip connections
- Key achievement: Tenfold reduction in average loss

Introduction

- What is Midcurve?
- Why is it important?
- Applications: FEA Robot path planning Character animation

Literature/Related Work

- Traditional Methods:
 - MAT (Medial Axis Transform)
 - CAT (Chordal Axis Transform)
 - Thinning-based methods
- Limitations of existing approaches

Methodology

- Image-based representation
- Two proposed architectures:
 - Dense Network
 - CNN with skip connections
- Data preprocessing: 128x128 pixels

Dense Network Architecture

- Gradual dimension reduction
- Multiple dense layers
- ReLU activation
- Symmetric encoder-decoder

CNN Architecture

- 4 convolutional blocks
- Skip connections
- Batch normalization
- Dynamic learning rate

Results

- Performance Metrics
- Comparative Analysis

Metric	Simple	Dense	CNN
Best Epoch	100	62	93
Training Loss	0.0034	0.0049	0.0003
Training MAE	0.0023	0.0032	0.0003
Validation Loss	0.0080	0.0121	0.0005

Visual Results

- Input shapes
- Generated Midcurves
- Quality comparison

Conclusion

- CNN architecture performs best
- 10x reduction in loss
- Improved geometric accuracy

