CHEM-1211

Fall 2013

First Examination Form A

Multiple Choice - Choose the BEST Answer

- 1. An Erlenmeyer flask weighs 38.57 g when it is empty. A student fills the flask to the top with H_2O (density = 1.0000 g/mL) and reweighs it to find it now weights 167.33 g. The student then pours out the H_2O , dries the flask and fills to top again with a different liquid. The student finds the new mass to be 139.78 g. What is the density of the 2^{nd} liquid?
 - A) 0.78604 g/mL
 - B) 1.2722 g/mL
 - C) 0.83536 g/mL
 - D) 1.1971 g/mL
 - E) 0.2759 g/mL
- 2. Which of the following is the most correct balanced chemical equation for a reaction of solid magnesium with atmospheric nitrogen to form solid magnesium nitride?

A)
$$Mg(s) + N(g) \rightarrow MgN(s)$$

B)
$$Mg(s) + N_2(g) \rightarrow Mg_3N_2(s)$$

C)
$$3 \text{ Mg(s)} + 2 \text{ N(g)} \rightarrow \text{ Mg}_3\text{N}_2(\text{s})$$

D)
$$2 \text{ Mg(s)} + \text{N}_2(g) \rightarrow 2 \text{ MgN(s)}$$

E)
$$3 \text{ Mg(s)} + \text{N}_2(\text{g}) \rightarrow \text{Mg}_3\text{N}_2(\text{s})$$

3. Which of the following molecule/compound is classified incorrectly?

A) SF₄ binary covalent compound

B) H₂SO₃ ternary acid

C) NH₄Br pseudobinary ionic compound

D) Fe₂S₃ binary ionic compound

- E) All molecules/compounds are classified correctly
- 4. Lithium Carbonate, Li₂CO₃ is a drug used to treat bipolar I and bipolar II disorders. When placed in the body, the lithium ion is the active ingredient in the compound. If your friend was prescribed 200. mg of Li₂CO₃ per day, how many mg of Li⁺ would they be taking each day?
 - A) 18.79 mg Li+
 - B) 9.39 mg Li+
 - C) 37.6 mg Li+
 - D) 27.8 mg Li+
 - E) 40.0 mg Li+

5.	А	compound contains	32.56% potassium	, 1.68%	hydrogen,	25.79%	phosphorou	s and the	remainder	oxygen.
Wł	nat	is the empirical form	iula of this compor	ınd?						

- A) KH_2PO_3
- B) K₂HPO₄
- C) KH₂PO₄
- D) K₂HPO₃
- E) KHPO₄
- 6. In 3.4 mole of (NH₄)₂CO₃ how many atoms of hydrogen are present?
 - A) 2.0 x 10²⁴ H atoms
 - B) 1.6 x 10²⁵ H atoms
 - C) 2.1 x 10²² H atoms
 - D) 1.7 x 10²³ H atoms
 - E) $1.2 \times 10^{25} \text{ H atoms}$
- 7. A solution is prepared by placing 0.500 g of NaNO₃ 0.500 g of Na₃PO₄ and 0.500 g of NaCl in H₂O. The total solution volume is 250. mL. What is concentration in molarity, M, of the final solution of sodium ions?

The molecular weights of the compounds are as follows:

 $NaNO_3 = 85.00 \text{ g/mol}$

 $Na_3PO_4 = 163.94 \text{ g/mol}$

NaCl= 58.44 g/mol

- A) 0.109 M Na+
- B) 0.0944 *M* Na⁺
- C) 0.0700 M Na+
- D) 0.0175 M Na+
- E) 0.0856 M Na+
- 8. In lab 100.0 mL of 0.0750 M NaOH (aq) is needed for an experiment. You come across a bottle labeled 0.0500 M NaOH (aq) containing 50.0 mL of solution. Solid NaOH is also readily available. You decide to add all of the 50.0 mL 0.0500 M NaOH(aq) to a 100.0 mL volumetric flask and then weigh out _____ g of NaOH and add to the flask. You then add H_2O to the 100.0 mL line to make the required 100.0 mL of 0.0750 M NaOH.
 - A) 0.100 g NaOH(s)
 - B) 0.0075 g NaOH(s)
 - C) 0.300 g NaOH(s)
 - D) 0.200 g NaOH(s)
 - E) Not enough information is given

9. A reaction vessel contains 3.06 g of HBr(g) and 0.943 g of O₂(g). The first reaction takes place is the formation of HOOBr(g):

$$HBr(g) + O_2(g) \rightarrow HOOBr(g)$$

If enough HBr(g) is present, it will react with HOOBr(g) to produce HOBr(g):

$$HOOBr(g) + HBr(g) \rightarrow 2 HOBr(g)$$

What is the mass of HOBr(g) produced?

MW's: HBr = 80.91 g/mol; $O_2 = 32.00 \text{ g/mol}$; HOOBr = 112.91 g/mol; HOBr = 96.91 g/mol

- A) 7.33 g of HOBr
- B) 5.71 g of HOBr
- C) 1.62 g of HOBr
- D) The 2nd reaction does not take place.
- E) Not enough information is given.

10. The atomic mass of silicon in a natural sample on earth is 28.0855 amu. The sample is known to consist 92.23 % of ²⁸Si (27.97693 amu). The remainder is composed of ²⁹Si (28.97649 amu) and ³⁰Si (29.97377 amu). What is the percentage of abundance of ²⁹Si?

- A) 4.67 %
- B) 3.885 %
- C) 7.77 %
- D) 2.282 %
- E) 7.87 %

11. In lab you have an aqueous homogenous mixture of two metal ions, K^+ and Zn^{2+} . Which of the following could you add to precipitate out one of the ions into an ionic compound?

- A) HCl
- B) HClO₃
- C) H₂SO₄
- D) CH₃COOH
- $E) H_2S$

- 12. How many unpaired electrons are predicted for the ground-state configuration of an atom of iron, Fe?
 - A) 0
 - B) 6
 - C) 2
 - D) 4
 - E) 8
- 13. One difference between an s and p orbital is that:
 - A) An s orbital has a probability density of an electron of zero at the nucleus and a p orbital does not.
 - B) The p orbital is present when $m_{\ell} = -1$ and the s orbital is present when $m_{\ell} = 0$.
 - C) The p orbital can hold two electrons in each lobe and the s orbital can hold two electrons.
 - D) The s orbital is spherically symmetrically whereas the p orbital has a node separating its \pm -lobes.
 - E) A p orbital has a different n quantum number than an s orbital.
- 14. What is the difference between the ℓ and m_{ℓ} quantum numbers?
 - A) The ℓ quantum number represents a specific orbital whereas the m_{ℓ} represents a subshell in an atom.
 - B) The m_{ℓ} is the positive and negative lobes of the ℓ quantum number.
 - C) The ℓ quantum number is represented by (+) and (-) values where the m_{ℓ} quantum number is only represented by (+) values.
 - D) The ℓ quantum number is said to be degenerate whereas the m, quantum number is said to be non-degenerate.
 - E) None of the above.
- 15. How many values of m_e are allowed for an electron in a 4p-subshell?
 - A) 6
 - B) 4
 - C) 3
 - D) 16
 - E) 1
- 16. Which of the following transitions, for a hydrogen atom, will lead to the emission of the highest energy photon?
 - A) $n = 2 \rightarrow n = 5$
 - B) $n = 1 \rightarrow n = 5$
 - C) $n = 3 \rightarrow n = 4$
 - D) $n = 5 \rightarrow n = 2$
 - E) $n = 4 \rightarrow n = 2$

- 17. The equation: $\lambda = h/mv$ is used to describe_____.
 - A) the wave-particle duality of small particles.
 - B) the relationship between frequency and speed of light
 - C) that $n_2 < n_1$
 - D) that electrons in an atom reside in discrete energy levels
 - E) how the position and the momentum of an electron cannot be known simultaneously with precision
- 18. The following types of photons of electromagnetic radiation are in order of increasing energy. What is the order of these types of electromagnetic radiation in longest to shortest wavelength?
 - A) Infrared; Visible; Ultraviolet; X-ray
 - B) X-ray; Ultraviolet; Visible; Infrared
 - C) X-ray; Visible; Ultraviolet; Infrared
 - D) Visible; Ultraviolet; Infrared; X-ray
 - E) All types electromagnetic radiation has a variety of wavelengths; it does not follow an order.
- 19. Calculate the difference in energy (in joules) between a photon with $\lambda = 680$. nm (red light) and a photon with $\lambda = 442$ nm (blue light).
 - A) 1.57 x 10⁻¹⁹ J
 - B) 2.92 x 10⁻¹⁹ J
 - C) 2.38 x 10-7 J
 - D) 8.35 x 10⁻¹⁹ J
 - E) 4.50 x 10⁻¹⁹ J
- 20. How are the actual nuclear charge and the effective nuclear charge, experienced by an electron in a many electron atom, related to one another?
 - A) The actual nuclear charge is always less than the effective nuclear charge.
 - B) The actual nuclear charge is always greater than the effective nuclear charge.
 - C) The actual nuclear charge and the effective nuclear charge are equal.
 - D) A, B and C are correct; it depends on the number of protons and electrons
 - E) All are incorrect