CP Tensor Decomposition

Илья Белько, Данила Андреев, Владислав Муджиков

Постановка задачи

$$\mathbf{X} pprox \llbracket \mathbf{A}, \mathbf{B}, \mathbf{C}
rbracket \equiv \sum_{r=1}^R \mathbf{a}_r \circ \mathbf{b}_r \circ \mathbf{c}_r.$$

Найти А, В и С

$$\min_{\mathbf{A}, \mathbf{B}, \mathbf{C}} \|\mathbf{X} - \mathbf{M}\|^2 \text{ s.t. } \mathbf{M} = [\![\mathbf{A}, \mathbf{B}, \mathbf{C}]\!]$$

$$\min_{\mathbf{A},\mathbf{B},\mathbf{C}} \sum_{ijk} \left(x_{ijk} - \sum_{\ell} a_{i\ell} b_{j\ell} c_{k\ell} \right)^2$$

Как решить? Alternating Least Squares.

$$\min_{\mathbf{A}} \sum_{ijk} \left(x_{ijk} - \sum_{\ell} a_{i\ell} b_{j\ell} c_{k\ell} \right)^2$$
 $\min_{\mathbf{B}} \sum_{ijk} \left(x_{ijk} - \sum_{\ell} a_{i\ell} b_{j\ell} c_{k\ell} \right)^2$
 $\min_{\mathbf{C}} \sum_{ijk} \left(x_{ijk} - \sum_{\ell} a_{i\ell} b_{j\ell} c_{k\ell} \right)^2$

Khatri-Rao Product

$$\mathbf{C} = \left[egin{array}{c|c} \mathbf{C}_1 & \mathbf{C}_2 & \mathbf{C}_3 \end{array}
ight] = \left[egin{array}{c|c} 1 & 2 & 3 \ 4 & 5 & 6 \ 7 & 8 & 9 \end{array}
ight], \quad \mathbf{D} = \left[egin{array}{c|c} \mathbf{D}_1 & \mathbf{D}_2 & \mathbf{D}_3 \end{array}
ight] = \left[egin{array}{c|c} 1 & 4 & 7 \ 2 & 5 & 8 \ 3 & 6 & 9 \end{array}
ight],$$

$$\left[egin{array}{c|cccc} \mathbf{C}_1\otimes\mathbf{D}_1 & \mathbf{C}_2\otimes\mathbf{D}_2 & \mathbf{C}_3\otimes\mathbf{D}_3 \end{array}
ight] = \left[egin{array}{c|ccccc} 1 & 8 & 21 \ 2 & 10 & 24 \ 3 & 12 & 27 \ 4 & 20 & 42 \ 8 & 25 & 48 \ 12 & 30 & 54 \ 7 & 32 & 63 \ 14 & 40 & 72 \ 21 & 48 & 81 \end{array}
ight]$$

$$\min_{\mathbf{A}} \sum_{ijk} \left(x_{ijk} - \sum_{\ell} \mathbf{a}_{i\ell} \, b_{j\ell} \, c_{k\ell} \right)^2 \qquad \qquad \min_{\mathbf{A}} \|\mathbf{X}_{(1)} - \mathbf{A} (\mathbf{C} \odot \mathbf{B})'\|_F^2$$

$$\min_{\hat{\mathbf{A}}} \|\mathbf{X}_{(1)} - \hat{\mathbf{A}}(\mathbf{C} \odot \mathbf{B})^{\mathsf{T}}\|_{F},$$

$$\hat{\mathbf{A}} = \mathbf{X}_{(1)} \left[(\mathbf{C} \odot \mathbf{B})^{\mathsf{T}} \right]^{\dagger}.$$

$$(\mathbf{A} \odot \mathbf{B})^{\mathsf{T}} (\mathbf{A} \odot \mathbf{B}) = \mathbf{A}^{\mathsf{T}} \mathbf{A} * \mathbf{B}^{\mathsf{T}} \mathbf{B},$$
$$(\mathbf{A} \odot \mathbf{B})^{\dagger} = ((\mathbf{A}^{\mathsf{T}} \mathbf{A}) * (\mathbf{B}^{\mathsf{T}} \mathbf{B}))^{\dagger} (\mathbf{A} \odot \mathbf{B})^{\mathsf{T}}.$$

$$\hat{\mathbf{A}} = \mathbf{X}_{(1)} (\mathbf{C} \odot \mathbf{B}) (\mathbf{C}^{\mathsf{T}} \mathbf{C} * \mathbf{B}^{\mathsf{T}} \mathbf{B})^{\dagger}.$$

Сходимость

Обычный алгоритм

Рандомизированный алгоритм

Время работы алгоритма

Время работы по размерности тензора

Естественная проблема с размерностью тензора

Сравнение времени работы по размерности тензора

Относительная ошибка в зависимости от размерности тензора

С закрепленным рангом разложения

Неинтересные графики (

Сравнение минимальной относительной ошибки трех моделей

Сравнение времени работы трех моделей

Сравнение минимальной относительной ошибки моделей

Зависимость относительной ошибки от ранга разложения выглядит линейной

Сравнение относительной ошибки по рангу разложения

Исследование метода на реальном наборе данных

- Возьмем датасет с пробами caxapa(https://ucphchemometrics.com/sugar-process-data/). Это трехмерный тензор размерности (268,571,7), где:
 - 268 количество взятых проб;
 - 571 диапазон измерения эмиссионного спектра(Emission spectrum);
 - 7 диапазон измерения спектра возбуждения (Excitation Spectrum).

X 268 x 571 x 7 Fluorescence data	
-----------------------------------	--

CP разложение, реализованное библиотекой Tensorly

СР разложение собственной реализации

Место для результатов и выводов

- Были реализованы некоторые основные методы тензорного разложения, связанные с каноническим разложением(СР)
- Попытка реализовать рандомизированный подход
- Приложение данных методов к реальному набору данных проб сахара

Место для используемой литературы

- https://msimposium.github.io/files/170930/ tensordecompositions.pdf - основная статья по теме
- https://github.com/CyberKachok/CP-tensor-decomposition