原创 卖萌酱 夕小瑶的卖萌屋 2022-03-02 14:36

卖萌屋今日学术精选

大家好,我是卖萌酱。

今天下午卖萌屋作者群里一位MILA实验室的大佬在临睡前(蒙特利尔时间凌晨0点半)甩出来一篇论文:

DeepNet: Scaling Transformers to 1,000 Layers

Hongyu Wang* Shuming Ma* Li Dong Shaohan Huang Dongdong Zhang Furu Wei[†]
Microsoft Research
https://github.com/microsoft/unilm

大佬表示太困了,肝不动了,于是卖萌酱左手抄起一罐咖啡,右手接过论文就开始肝了,必须第一时间分享给卖萌屋的读者小伙伴们!

论文链接:

https://arxiv.org/pdf/2203.00555.pdf

首先,把Transformer模型训深最大的问题是什么?

耗显存?

训练慢?

都不是! 最大的问题是压根就不收敛啊...

所以这篇论文最关键的贡献就是提出了一种新的Normalization方式——DeepNorm,有效解决了Transformer训练困难的问题。

其实早在2019年,就有研究者针对Transformer训练困难的问题,提出了Pre-LN来提升 Transformer的训练稳定性,但是随后有人发现,Pre-LN会导致模型底层的梯度比顶层的还要 大,这显然是不合理的,因此往往训练出的模型效果不如传统的Post-LN。

尽管后续也有一些补丁来试图解决这些问题,但这些既有的尝试都只能让Transformer的模型深度最多训练到几百层,始终无法突破千层的天花板。

本文提出的DeepNorm,则成功打破了这个天花板。

def	deepnorm(x): return LayerNorm(x * α + f(x))
def	<pre>deepnorm_init(w): if w is ['ffn', 'v_proj', 'out_proj']: nn.init.xavier_normal_(w, gain=β) elif w is ['q_proj', 'k_proj']: nn.init.xavier_normal_(w, gain=1)</pre>

Architectures	Enc	Decoder		
Architectures	α	β	α	β
Encoder-only (e.g., BERT)	$(2N)^{\frac{1}{4}}$	$(8N)^{-\frac{1}{4}}$	-	-
Decoder-only (e.g., GPT)	-	-	$(2M)^{\frac{1}{4}}$	$(8M)^{-\frac{1}{4}}$
Encoder-decoder (e.g., NMT, T5)	$0.81(N^4M)^{\frac{1}{16}}$	$0.87(N^4M)^{-\frac{1}{16}}$	$(3M)^{\frac{1}{4}}$	$(12M)^{-\frac{1}{4}}$

Figure 2: (a) Pseudocode for DEEPNORM. We take Xavier initialization (Glorot and Bengio, 2010) as an example, and it can be replaced with other standard initialization. Notice that α is a constant. (b) Parameters of DEEPNORM for different architectures (N-layer encoder, M-layer decoder).

DeepNorm

从以上DeepNorm伪代码实现中,可以看到这确实是simple but effective的方法,作者也给出了几个不同场景下的参数经验取值。

效果层面,作者在机器翻译benchmark上做了实验:

可以看到随着模型深度从10层到100层再到1000层,机器翻译BLEU指标持续上升。

Models	# Layers	# Params	WMT	OPUS	TED	Flores
M2M-100 (Fan et al., 2021)	48	12B	31.9	18.4	18.7	13.6
DEEPNET (ours)	200	3.2B	33.9	23.0	20.1	18.6

Table 3: BLEU scores for DEEPNET and M2M-100 on various evaluation sets.

而在与前人工作的比较上,200层的DeepNet(3.2B参数量)比Facebook M2M 48层的矮胖大模型(12B参数量)有足足5个点的BLEU值提升。

此外,作者表示将来会尝试将DeepNet往更多NLP任务上迁移(包括预训练语言模型),期待 DeepNet能给NLP带来下一波春天!

上期回顾:

别再双塔了!谷歌提出DSI索引,检索效果吊打双塔,零样本超BM25!

后台回复关键词【入群】
加入卖萌屋NLP/IR/Rec与求职讨论群
后台回复关键词【顶会】

喜欢此内容的人还喜欢

