Álgebra 1 - Lista de Resultados 2 - 2009

- (I) Ideais
- (1) Se I e J são ideais de um anel A então $\frac{I+J}{J} \cong \frac{I}{I \cap J}$.
- (2) Seja I um ideal de A e considere J' um ideal do anel quociente A/I. Então existe um ideal J de A tal que $I \subset J$ e J' = J/I.
- (II) Domínios Euclidianos, D.I.P. e D.F.U

Obs.: De (1) a (8), D denota um domínio euclidiano com norma φ .

- (3) Se u é elemento não nulo de D, são equivalentes:
 - (i) u é unidade de D;
 - (ii) $\varphi(u) = \varphi(1)$;
 - (iii) $\varphi(c) = \varphi(uc)$, para algum elemento não nulo $c \in D$.
- (4) Consequências:
 - (i) $\mathcal{U}(D) = \{ a \in D^* \mid \varphi(a) = \varphi(1) \}.$
 - (ii) Sejam $a, b \in D^*$. Se $b \notin \mathcal{U}(D)$ então $\varphi(a) < \varphi(ab)$.
- (5) (Existência do mdc) Dados $a, b \in D^*$, existe δ um mdc(a, b) e além disso, $\delta = \alpha a + \beta b$, para algum $\alpha, \beta \in D$.
- (6) $\delta \in \delta'$ são mdc de $a \in b$ se, e somente se, $\delta = u.\delta'$, para algum $u \in \mathcal{U}(D)$.
- (7) $D \in D.I.P.$, ou seja, se $I \in U$ de de U então existe $u \in D$ tal que I = (u).

(**Obs.:** O gerador do ideal é um elemento $a \in I$ tal que $\varphi(a) \leq \varphi(\lambda)$, $\forall \lambda \in I$).

(8) p é irredutível em D e $a \in D^*$ então p|a ou mdc(a, p) é elemento de $\mathcal{U}(D)$.

(**Def.:** $a \in irredutivel \text{ em } D \Leftrightarrow a \in D^* \setminus \mathcal{U}(D) \text{ e se } a = bc \text{ então } b \in \mathcal{U}(D) \text{ ou } c \in \mathcal{U}(D)$).

- (9) Sejam $a, b \in D^*$. Se p é irredutível em D e p|ab então p|a ou p|b.
- (10) D é um D.F.U (ou seja, o domínio euclidiano D é um domínio de fatoração única. Isto significa que todo elemento não invertível $a \in D^*$ pode ser escrito como um produto de elementos irredutíveis, de maneira única a menos de unidades).
- (11) Todo D.I.P. satisfaz a condição ascendente de cadeia para ideais A.C. C.- (ou seja, para toda cadeia $(a_1) \subset (a_2) \subset \cdots \subset (a_m) \subset \cdots$ de ideais principais existe um inteiro positivo n tal que $(a_i) = (a_n), \forall i \geq n$.
- (12) $\mathbb{Z}[\sqrt{2}] = \{ a + b\sqrt{2} \mid a, b \in \mathbb{Z} \}$ é domínio euclidiano, onde $\varphi(a + b\sqrt{2}) = |a^2 2b^2|$.
- (13) $\mathbb{Z}[\sqrt{5}] = \{ a + b\sqrt{5} \mid a, b \in \mathbb{Z} \}$ não é domínio euclidiano (pois não é D.F.U.).

- (14) $\mathbb{Z}[i] = \{ a + bi \mid i^2 = -1; a, b \in \mathbb{Z} \}$ é um domínio euclidiano com a norma $\varphi(a + bi) = a^2 + b^2$. Além disso, $\varphi(\alpha\beta) = \varphi(\alpha)d(\beta)$, $\forall \alpha, \beta \in \mathbb{Z}[i]$ e $\mathcal{U}(\mathbb{Z}[i]) = \{ \pm 1, \pm i \}$.
- (15) Seja $a + bi \in \mathbb{Z}[i]$.
 - (i) Se $a + bi \in \mathcal{U}(\mathbb{Z}[i])$ então $a bi \in \mathcal{U}(\mathbb{Z}[i])$.
 - (ii) Se a + bi é irredutível de $\mathbb{Z}[i]$ então a bi é irredutível de $\mathbb{Z}[i]$.

(III) Anéis de Polinômios

- (16) Se A é um domínio de integridade então:
 - (i) A[x] é um domínio de integridade.
 - (ii) Se $f(x), g(x) \in A[x]$ então $\deg(f(x)g(x)) = \deg(f(x)) + \deg(g(x))$.
- (17) Se F é um corpo, temos:
- (i) Se $f(x), g(x) \in F[x]$ com $g(x) \neq 0$ então existem $q(x), r(x) \in F[x]$ tais que f(x) = g(x)q(x) + r(x), onde r(x) = 0 ou $\deg(r(x)) < \deg(g(x))$ (ou seja, F[x] é um D.E. com norma sendo o grau).
- (ii) Se I é um ideal de F[x] então existe $f(x) \in F[x]$ tal que I = (f(x)) (ou seja, F[x] é um D.I.P).
- (iii) $\mathcal{U}(F[x]) = F^*$, ou seja, os elementos invertíveis em F[x] são os elementos não nulos de F.
- (iv) Todo polinômio de $F[x] \{0\}$ de degau ≥ 1 pode ser escrito de maneira única (a menos de elementos invertíveis) como um produto de irredutíveis (ou seja, F[x] é um D.F.U.).
- (18) $\mathbb{Z}[x]$ não é domínio euclidiano (pois não é D.I.P.).
- (19) $Q_{\mathbb{Z}}[x]$, o anel dos polinômios em $\mathbb{Q}[x]$ com termo independente sendo um inteiro, não é domínio euclidiano (pois não satisfaz A.C.C.).
- (20) Um polinômio f(x) de $F[x] \{0\}$ é irredutível se, e somente se, o ideal (f(x)) é maximal.