SEGUNDO PARCIAL

ANÁLISIS MATEMÁTICO II

Noviembre 28 de 2014

- P1) Calcular el volumen del cuerpo definido por $\sqrt{x^2 + y^2} \le z \le 8 \sqrt{x^2 + y^2}$
- P2) Calcular la integral de $\overline{f}(x,y) = (x^2, -xy)$ desde $\overline{A} = (1,2)$ hasta $\overline{B} = (2,1)$ a lo largo de la curva xy = 2
- P3) Dada la superficie Σ definida implicitamente por $xz + e^{yz-2} 2 = 0$, calcular el área del trozo de plano tangente a Σ en (1,2,1) cuyos puntos cumplen con $x^2 + y^2 \le 2y$
- P4) Siendo $\bar{f} \in C^1$ un campo vectorial tal que $\operatorname{div} \bar{f}(x,y,z) = y$, sabiendo que en los puntos del plano xy resulta $\bar{f}(x,y,0) = (xy,x,2)$, calcular el flujo de \bar{f} a través de la superficie abierta Σ de ecuación $z = 4 x^2 y^2$ con $z \ge 0$. Indicar gráficamente la orientación adoptada para Σ .
- T1) Enunciar el Teorema de Green. Calcular la circulación de $\vec{f}(x,y) = (2xy \cdot e^{x^2}, x^2 + e^{x^2})$ a lo largo de la frontera de la región plana definida por $x^2 + y^2 \le 9$, $x \ge 0$. Indicar gráficamente la orientación asignada a la curva.
- T2) Enunciar y demostrar la condición necesaria para que el campo $\vec{f}(x, y) = (f_1, f_2)$ admita función potencial.