

INTRODUCTION TO INVEST

May 21, 2014

Stacie Wolny swolny@stanford.edu

Free, open-source toolkit

Simple models

Relatively low data needs

Quantify, map and value the benefits provided by terrestrial, freshwater and marine systems

TYPES OF QUESTIONS INVEST CAN HELP ANSWER

Where would reforestation achieve the greatest downstream water quality benefits?

Which areas in a landscape provide the greatest carbon sequestration, habitat and tourism values?

Where should payments for environmental services be targeted to be most cost-effective?

INVEST WITHIN DECISION MAKING

INVEST IS USED AROUND THE WORLD

Guiding development and investment in Sumatra

Policy questions:

How can sustainable spatial planning be implemented and financed?

Where are cost-effective investments in ecosystem services advisable/possible?

Audience: District governments, investors

Partners: WWF-Indonesia, National and local Indonesian governments

– 23 May, zu 14

SCENARIOS

(a) 2008 land cover

(b) Sumatra ecosystem Vision

(c) Government spatial plan

INVEST TOOLSET

natural capital

Aquaculture **Fisheries** Coastal Protection Coastal Vulnerability Wave Energy Offshore Wind Energy **Aesthetic Quality** Marine Water Quality Recreation

Water Purification

Water Yield

Sediment Retention

Crop Pollination

Carbon Sequestration

Timber Production

Habitat Risk

Habitat Quality

Overlap Analysis

WATER YIELD

Water Yield = Precipitation - Evapotranspiration

MODEL INPUTS

Climate

Precipitation, Potential Evapotranspiration

Watersheds

Main and sub-watersheds for point of interest

Soils

Soil depth, Plant Available Water Content

Water demand

Land Use/Land Cover

Root depth, Evapotranspiration coefficient

Economic

Hydropower plant data, price of energy

MODEL OUTPUTS

- Actual Evapotranspiration mm/year
- Water yield mm/year
- Water supply m³/year
- Energy/value for hydropower
 Kw/currency over timespan

SEDIMENT RETENTION

natural capital

- Based on the Universal Soil Loss Equation (USLE)
 - Includes geomorphology and climate
 - Potential erosion on a parcel
- Enhanced by hydraulic connectivity
 - What happens as the parcel's sediment moves downslope?
 - Influence of intervening landcover
- Sediment retention valued as ecosystem service

MODEL INPUTS

Land use/Land cover Vegetation retention, land practice and management

Streams
Used to determine where sediment flows to

Topography Digital elevation model

Watershed Areas
Catchments flowing into reservoirs

ErosivityIntensity of rainfall

Reservoir Features

Dead volume, lifetime of reservoir, allowed load

ErodibilitySoil detachment due to rainfall

Economic data
Reservoir dredging or
water quality filtering costs

MODEL OUTPUTS

- Potential soil loss (USLE) tons/year
- Sediment retained tons/year
- Sediment exported tons/year
- Value of sediment removal
 For drinking water and/or dredging

