

planetmath.org

Math for the people, by the people.

Fekete's subadditive lemma

 ${\bf Canonical\ name} \quad {\bf Feketes Subadditive Lemma}$

Date of creation 2014-03-19 22:15:10 Last modified on 2014-03-19 22:15:10

Owner Filipe (28191) Last modified by Filipe (28191)

Numerical id 4

Author Filipe (28191) Entry type Theorem Let $(a_n)_n$ be a subadditive sequence in $[-\infty, \infty)$. Then, the following limit exists in $[-\infty, \infty)$ and equals the infimum of the same sequence:

$$\lim_{n} \frac{a_n}{n} = \inf_{n} \frac{a_n}{n}$$

Although the lemma is usually stated for subadditive sequences, an analogue conclusion is valid for superadditive sequences. In that case, for $(a_n)_n$ a subadditive sequence in $(-\infty, \infty]$, one has:

$$\lim_{n} \frac{a_n}{n} = \sup_{n} \frac{a_n}{n}$$

The proof of the superadditive case is obtained by taking the symmetric sequence $(-a_n)_n$ and applying the subadditive version of the theorem.