2.4 RAT

- 1. Given the two documents:
 - q = To be or not to be.
 - d = To think and therefore to be.

What is the Jaccard similarity between them (ignoring punctuation)?

2. In a set of 806,791 documents, we get the following data on a few terms and a few documents:

term	document frequency	Doc 1	Doc 2	Doc 3	
car	18,165	27	4	24	
auto	6,723	3	33	0	
insurance	19,241	0	39	29	
best	25,235	14	0	17	

What is the tf-idf value for the term *insurance* in Document 2? Recall: $w_{t,d} = (1 + \log_{10} \mathrm{tf}_{t,d}) \times \log_{10} (N/\mathrm{df}_t)$

- 1. 39/19241
- 2. (1+log10(39))*log10(806791/19241.)
- 3. $(1+\log 10(806791/19241.))*\log 10(39)$
- 4. (1+log10(19241))*log10(806791/39.)

3. What is the cosine similarity between the query and document? Use tf-idf weighting (Inc.ltc variation, see table below):

Term Frequencies & Document Frequencies

Term	Query					Document			Prod		
	tf- raw	tf- wt	df	idf	wt	n'lize	tf- raw	tf- wt	wt	n'lize	
happiness	0	0.00	3,000	0.12	0.00	0.000	0	0.00	0.00	0.000	0.000
surprise	0	0.00	3,000	0.12	0.00	0.000	6	1.78	1.78	0.514	0.000
family	1	1.00	3,000	0.12	0.12	0.383	12	2.08	2.08	0.601	0.231
adventure	1	1.00	2,000	0.30	0.30	0.924	13	2.11	2.11	0.611	0.565

4. What is the average precision for the following sequence of retrieved documents, where R denotes a relevant document and N denotes an irrelevant document?

RNNRN

Term frequency		Document frequency		Normalization		
n (natural)	$tf_{t,d}$	n (no)	1	n (none)	1	
I (logarithm)	$1 + \log(tf_{t,d})$	t (idf)	$\log \frac{N}{\mathrm{df_t}}$	c (cosine)	$\frac{1}{\sqrt{w_1^2 + w_2^2 + \ldots + w_M^2}}$	
a (augmented)	$0.5 + \frac{0.5 \times tf_{t,d}}{max_t(tf_{t,d})}$	p (prob idf)	$\max\{0,\log\frac{\mathit{N}-\mathrm{df}_t}{\mathrm{df}_t}\}$	u (pivoted unique)	1/u	
b (boolean)	$egin{cases} 1 & ext{if } \operatorname{tf}_{t,d} > 0 \ 0 & ext{otherwise} \end{cases}$			b (byte size)	$1/\mathit{CharLength}^{lpha}, \ lpha < 1$	
L (log ave)	$\frac{1 + \log(\operatorname{tf}_{t,d})}{1 + \log(\operatorname{ave}_{t \in d}(\operatorname{tf}_{t,d}))}$					