

St. MARTIN'S ENGINEERING COLLEGE

UGC Autonomous

www.smec.ac.in

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE (AI & DS)

ASSIGNMENT-I

Course Name: CRYPTOGRAPHY AND NETWORK SECURITY

Course Code: AID735PE

Question Number	List of Questions	Bloom's Taxonomy Levels
1	A college online exam system was hacked, and the attacker: 1. Read confidential question papers. 2. Changed some student marks. 3. Blocked the exam portal for 2 hours. Identify these three attacks by name (Confidentiality, Integrity, Availability).	BTL-2
2	Encrypt the plaintext "DATA" using a Caesar Cipher with shift = 3. Then decrypt it back.	BTL-3
3	Use the 2×2 Hill cipher with key matrix $K = \begin{bmatrix} 3 & 3 \\ 2 & 5 \end{bmatrix}$ to encrypt the plaintext "MEET" (use the mapping A=0, B=1,, Z=25 and group letters in pairs). Then, using K^{-1} , decrypt your ciphertext to recover the original text.	BTL-3
4	AES can use keys of 128 , 192 , or 256 bits . If AES-128 is used, calculate the total number of possible keys.	BTL-5
5	RSA system uses: $p = 5$, $q = 11$, $e = 3$. Find modulus n , $\varphi(n)$, private key d , and encrypt the message $M = 9$.	BTL-6

Actual Date of Submission: 01.09.2025
Last Date of Submission: 06.09.2025