Module 2 - The LP Model

Problem 1: Back Savers Backpack Production

a) Decision Variables

Symbol	Definition
x1	Collegiate backpacks produced per week
x2	Mini backpacks produced per week

b) Objective Function

Maximize weekly profit:

$$Z = 32x1 + 24x2$$

c) Constraints

Туре	Constraint per week
Material -> Nylon	$3x1 + 2x2 \le 5000 \text{ sq ft}$
Labor	$45x1 + 40x2 \le 84000$ minutes
Sales limits	$x1 \le 1000; x2 \le 1200$
Non-negativity	$x1, x2 \ge 0$

d) Full Mathematical Formulation

Maximize Z = 32x1 + 24x2

Subject to:

$$3x1 + 2x2 \le 5000 \ 45x1 + 40x2 \le 84000 \ x1 \le 1000$$

 $x2 \le 1200$
 $x1, x2 \ge 0$

Problem 2: Weigelt Corporation Plant Allocation

a) Decision Variables

Symbol	Meaning
x1L	Large units at Plant 1
x2L	Large units at Plant 2
x3L	Large units at Plant 3
x1M	Medium units at Plant 1
x2M	Medium units at Plant 2
x3M	Medium units at Plant 3

x1S	Small units at Plant 1
x2S	Small units at Plant 2
x3S	Small units at Plant 3

Product Data:

Size	Profit/ unit \$	Storage / Unit (sq ft)	Daily Demand Cap (units)
Large (L)	420	20	900
Medium (M)	360	15	1200
Small (S)	300	12	750

Plant data:

Plant	Excess Capacity (units/day)	Storage Available (sq ft/day)
1	750	13000
2	900	12000
3	450	5000

b) Objective Function

Maximize daily profit:

$$Z = 420(x1L+x2L+x3L) + 360(x1M+x2M+x3M) + 300(x1S+x2S+x3S)$$

c) Constraints

Constraint Group	Constraint
Plant capacity (P1)	$x1L + x1M + x1S \le 750$
Plant capacity (P2)	$x2L + x2M + x2S \le 900$
Plant capacity (P3)	$x3L + x3M + x3S \le 450$

Constraint Group	Constraint
Storage (P1)	$20x1L + 15x1M + 12x1S \le 13000$
Storage (P2)	$20x2L + 15x2M + 12x2S \le 12000$
Storage (P3)	$20x3L + 15x3M + 12x3S \le 5000$

Constraint Group	Constraint
Demand (L)	$x1L + x2L + x3L \le 900$
Demand (M)	$x1M + x2M + x3M \le 1200$
Demand (S)	$x1S + x2S + x3S \le 750$

Constraint Group	Constraint
Equal % capacity use	(x1L+x1M+x1S)/750 = (x2L+x2M+x2S)/900 = (x3L+x3M+x3S)/450

Constraint Group	Constraint
Non-negativity	$xij \ge 0$ for all i E {1,2,3}, j E {L,M,S}

d) Full Mathematical Formulation

Maximize Z = 420(x1L+x2L+x3L) + 360(x1M+x2M+x3M) + 300(x1S+x2S+x3S) with taking into consideration all the constraints.