Grupy, grupy abelowe

- 1. Sprawdzić, czy podane zbiory z działaniami są grupami (abelowymi).
 - (a) (\mathbb{R}, \circ) , gdzie $x \circ y = x + y + 1$,
 - (b) (\mathbb{R}, \star) , gdzie $x \star y = xy x y + 2$,
 - (c) $(\mathbb{R} \setminus \{-1\}, \circ)$, gdzie $x \circ y = x + y + xy$,
 - (d) (\mathbb{R}, \star) , gdzie $x \star y = \frac{x+y}{2}$,
 - (e) (\mathbb{Q}, \circ) , gdzie $x \circ y = 2xy$,
 - (f) $(\mathbb{R} \times \mathbb{R}, \oplus)$, gdzie $\langle a, b \rangle \oplus \langle c, d \rangle = \langle a + c, b + d \rangle$.
- 2. Rozstrzygnąć (uzasadniając odpowiedź), czy podane zbiory z działaniami są grupami:
 - (a) $(\mathbb{N}, +)$,
 - (b) $(\mathbb{Z}, +),$
 - (c) $(\mathbb{R}, +)$,
 - (d) (\mathbb{Z},\cdot) ,
 - (e) (\mathbb{Q},\cdot) ,
 - (f) (\mathbb{R}^+,\cdot) ,
 - (g) $(\mathbb{Q}(\sqrt{2}), +),$

gdzie
$$\mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} : a, b \in \mathbb{Q}\}.$$

3. W zbiorze $\mathbb{R} \times \mathbb{R}$ definiujemy działania \circledast oraz \circledcirc wzorami

$$\langle a, b \rangle \circledast \langle c, d \rangle = \langle a + c, b + d \rangle,$$

$$\langle a, b \rangle \circledast \langle c, d \rangle = \langle ac, bd \rangle.$$

Zbadać własności tych działań. Czy \odot jest rozdzielne względem \circledast ? Które elementy mają elementy odwrotne względem działania \odot ?

- 4. Podać resztę z dzielenia liczby a przez b, jeżeli
 - (a) a = 321, b = 35,
 - (b) a = -321, b = 35,
 - (c) a = 321, b = -35,
 - (d) a = -321, b = -35.
- 5. Korzystając z Algorytmu Euklidesa obliczyć:
 - (a) NWD(72, 32),
 - (b) NWD(321, 35),
 - (c) NWD(172, 32),
 - (d) NWD(3712, 231),
 - (e) NWD(120175, 60775)