ThreatKG: A System for Automated Cyber Threat Knowledge Gathering and Management

Zhengjie Ji^{1*}, Xiaoyuan Liu^{2*} (*equal contribution), Edward Choi², Sibo Ma², Xinyu Yang¹, Dawn Song², Peng Gao¹

OSCTI Reports Contain Rich Threat Knowledge

Unstructured report snippet from Securelis

Challenge: open-source cyber threat intelligence (OSCTI) reports collected from different sources have diverse formats and new reports are being published every day.

Solution: a system that automatically gathers high-fidelity cyber threat knowledge from a large number of OSCTI reports. We built a robust multi-threaded crawler framework that manages crawlers to collect OSCTI reports from 40 major security websites, including threat encyclopedias, enterprise security blogs, security news, etc.

Threat Knowledge Extraction

Challenge: OSCTI reports contain various other types of entities and relations that capture threat behaviors. However, existing OSCTI gathering and management systems ignore many entity and relation types.

Solution: ThreatKG employs a specialized NLP pipeline for extracting knowledge from OSCTI text.

Threat Knowledge Entity Extraction: regex rules for extracting IOCs, Bidirectional LSTM-

CRF model for performing named entity recognition on other types of entities.

Threat Knowledge Relation Extraction: dependency parsing-based relation extractor to
extract interaction verbs between two entities, Piecewise Convolutional Neural Networks
(PCNN) model to extract relations that are not explicitly associated with words in the text.

	Precision	Recall	F1
Seen Sources	99.98%	99.98%	99.98%
Unseen Sources	99.83%	99.83%	99.83%

	Precision	Recall	Accuracy	F1
W/O Data Programming	80%	78%	78%	79%
W/ Data Programming	85%	85%	85%	85%

Relation extraction performance

Hierarchical Threat Knowledge Ontology

To comprehensively model the threats, we construct a hierarchical threat knowledge ontology that includes various threat knowledge entities and relations for capturing both low-level threat behaviors and high-level threat contexts.

- Report context layer contains report-level knowledge.
- Threat behavior layer contains knowledge of low-level threat behaviors.
- Threat context layer provides high-level contexts for threats in addition to detailed threat behavior steps.

The three layers of ontology collectively model the threats from multiple dimensions and in different granularities.

Scalable and Extensible System Architecture

ThreatKG constructs the **threat knowledge graph** from the extracted threat knowledge and stores it in the backend database for persistence.

- For scalability, we parallelize the system components for the processing steps.
- For extensibility, we allow multiple system components in the same processing step to work together with the same input/output interface.

ThreatKG is fully automated and continuously running to provide the latest threat knowledge timely.

Stage	Processing Time (h)	Percent	age	
Porter	0.54			0.6%
Checker	0.03			0.0%
Parser	1.45			1.7%
			Content relevance analysis	2.1%
Extractor	85.26	97.7%	Dependency parsing for IOC relation extraction	83.1%
			BiLSTM CRF entity extraction recognition	6.0%
			Potential relation marking	0.9%
			PCNN-ATT relation extraction	5.7%

Downstream Security Applications

Threat Search and Exploration: to facilitate threat search and knowledge graph exploration, we built a web GUI using React and Elasticsearch. The GUI interacts with the database and provides various interactivity.

	What is	the type of Davinloader.Sime?	Se	arch
Question:		What is t	he type of Downloader.Slims	27
Intent Classific	ation:	Malware.type		
	cognition	: What is the type of Downloa	der.Slime (Manage Same) ?	SIMILARIT
Entity Linking:		Downloader Slime	Downloader.Slime	SIMILANI I

Threat Question Answering: to enable flexible and intuitive threat knowledge acquisition, we build a question-answering system using the Transformer model.