IN THE CLAIMS:

This listing of claims replaces any and all prior claim lists.

Listing of Claims:

Claim 1 (Currently Amended). A carbon nanotube composition that contains a <u>water</u> <u>soluble</u> conducting polymer <u>having an acidic group</u> (a), a solvent (b) and carbon nanotubes (c).

Claim 2 (Withdrawn). A carbon nanotube composition that contains a heterocyclic compound trimer (i), a solvent (b) and carbon nanotubes (c).

Claim 3 (Previously Amended). A carbon nanotube composition according to claim 1, wherein the carbon nanotube composition additionally contains a high molecular weight compound (d).

Claim 4 (Previously Amended). A carbon nanotube composition according to claim 1, wherein the carbon nanotube composition additionally contains a basic compound (e).

Claim 5 (Previously Amended). A carbon nanotube composition according to claim 1, wherein the carbon nanotube composition additionally contains a surfactant (f).

Claim 6 (Previously Amended). A carbon nanotube composition according to claim 1, wherein the carbon nanotube composition additionally contains a silane coupling agent (g) represented by the following formula (1):

$$\begin{array}{c} R^{242} \\ Y - X - Si - R^{243} \\ R^{244} & \cdots _{(1),} \end{array}$$

wherein in the formula (1) R²⁴², R²⁴³ and R²⁴⁴ respectively and independently represent a group selected from the group consisting of hydrogen, a linear or branched alkyl group having 1 to 6 carbon atoms, linear or branched alkoxy group having 1 to 6 carbon atoms, amino group, acetyl group, phenyl group and halogen group, X represents the following:

$$-\left(\begin{array}{c} CH_2 \end{array}\right)_1$$
 or $-\left(\begin{array}{c} CH_2 \end{array}\right)_1$ O $-\left(\begin{array}{c} CH_2 \end{array}\right)_m$

I and m represent values from 0 to 6, and Y represents a group selected from the group consisting of a hydroxyl group, thiol group, amino group, epoxy group and epoxycyclohexyl group.

Claim 7 (Previously Amended). A carbon nanotube composition according to claim 1, wherein the carbon nanotube composition additionally contains a colloidal silica (h).

Claim 8 (Canceled).

Claim 9 (Currently Amended). A carbon nanotube composition according to claim 18, wherein the water soluble conducting polymer has at least one of a sulfonic acid group and a carboxyl group.

3

Claim 10 (Previously Amended). A carbon nanotube composition according to claim 9, wherein the water soluble conducting polymer having at least one of a sulfonic acid group and a carboxyl group is a water soluble conducting polymer that contains 20 to 100% of at least one type of the repeating units selected from the following formulas (2) to (10) relative to the total number of repeating units throughout the entire polymer:

$$\mathbb{R}^1$$
 \mathbb{R}^2

wherein in the formula (2) R¹ and R² are respectively and independently selected from the group consisting of H, -SO₃, -SO₃H, -R³⁵SO₃, -R³⁵SO₃H, -OCH₃, -CH₃, -C₂H₅, -F, -Cl, -Br, -I, -N(R³⁵)₂, -NHCOR³⁵, -OH, -O', -SR³⁵, -OR³⁵, -OCOR³⁵, -NO₂, -COOH, -R³⁵COOH, -COOR³⁵, -COR³⁵, -CHO and -CN, where R³⁵ represents an alkyl, aryl or aralkyl group having 1 to 24 carbon atoms or an alkylene, arylene or aralkylene group having 1 to 24 carbon atoms, and at least one of R¹ and R² is a group selected from the group consisting of -SO₃, -SO₃H, -R³⁵SO₃, -R³⁵SO₃H, -COOH and -R³⁵COOH;

wherein in the formula (3) R³ and R⁴ are respectively and independently selected from the group consisting of H, -SO₃, -SO₃H, -R³⁵SO₃, -R³⁵SO₃H, -OCH₃, -CH₃, -C₂H₅, -F, -Cl, -Br, -I, -N(R³⁵)₂, -NHCOR³⁵, -OH, -O', -SR³⁵, -OCOR³⁵, -OCOR³⁵, -NO₂, -COOH, -R³⁵COOH, -COOR³⁵, -COR³⁵, -CHO

and -CN, where R^{35} represents an alkyl, aryl or aralkyl group having 1 to 24 carbon atoms or an alkylene, arylene or aralkylene group having 1 to 24 carbon atoms, and at least one of R^3 and R^4 is a group selected from the group consisting of -SO₃, -SO₃H, - R^{35} SO₃, - R^{35} SO₃H, -COOH and - R^{35} COOH:

$$\begin{array}{cccc}
R^5 & R^6 \\
\hline
R^7 & R^8
\end{array}$$
(4)

wherein in the formula (4) R⁵ to R⁸ are respectively and independently selected from the group consisting of H, -SO₃', -SO₃H, -R³⁵SO₃', -R³⁵SO₃H, -OCH₃, -CH₃, -C₂H₅, -F, -Cl, -Br, -I, -N(R³⁵)₂, -NHCOR³⁵, -OH, -O', -SR³⁵, -OR³⁵, -OCOR³⁵, -NO₂, -COOH, -R³⁵COOH, -COOR³⁵, -COR³⁵, -CHO and -CN, where R³⁵ represents an alkyl, aryl or aralkyl group having 1 to 24 carbon atoms or an alkylene, arylene or aralkylene group having 1 to 24 carbon atoms, and at least one of R⁵ to R⁸ is a group selected from the group consisting of -SO₃', -SO₃H, -R³⁵SO₃', -R³⁵SO₃H, -COOH and -R³⁵COOH;

$$\begin{array}{c|c}
R^{9} & R^{10} \\
\hline
N & R^{13}
\end{array}$$
(5)

wherein in the formula (5) R⁹ to R¹³ are respectively and independently selected from the group consisting of H, -SO₃, -SO₃H, -R³⁵SO₃, -R³⁵SO₃H, -OCH₃, -CH₃, -C₂H₅, -F, -Cl, -Br, -I, -N(R³⁵)₂, -NHCOR³⁵, -OH, -O', -SR³⁵, -OR³⁵, -OCOR³⁵, -NO₂, -COOH, -R³⁵COOH, -COOR³⁵, -COR³⁵, -CHO

and -CN, where R³⁵ represents an alkyl, aryl or aralkyl group having 1 to 24 carbon atoms or an alkylene, arylene or aralkylene group having 1 to 24 carbon atoms, and at least one of R⁹ to R¹³ is a group selected from the group consisting of -SO₃*, -SO₃H, -R³⁵SO₃*, -R³⁵SO₃H, -COOH and -R³⁵COOH:

wherein in the formula (6) R^{14} is selected from the group consisting of -SO₃*, -SO₃H, -R⁴²SO₃*, - R^{42} SO₃H, -COOH and -R⁴²COOH, where R^{42} represents an alkylene, arylene or aralkylene group having 1 to 24 carbon atoms:

$$R^{55}$$
 R^{54} R^{57} R^{52} R^{57} R^{52} R^{57} R^{52} R^{57} R^{52} R^{57} R^{52} R^{57} R^{52} R^{57} R^{52}

wherein in the formula (7) R^{52} to R^{57} are respectively and independently selected from the group consisting of H, -SO₃', -SO₃H, -R³⁵SO₃', -R³⁵SO₃H, -OCH₃, -CH₃, -C₂H₅, -F, -Cl, -Br, -I, -N(R^{35})₂, -NHCOR³⁵, -OH, -O', -SR³⁵, -OR³⁵, -OCOR³⁵, -NO₂, -COOH, -R³⁵COOH, -COOR³⁵, -COR³⁵, -CHO and -CN, where R^{35} represents an alkyl, aryl or aralkyl group having 1 to 24 carbon atoms or an alkylene, arylene or aralkylene group having 1 to 24 carbon atoms, at least one of R^{52} to R^{57} is a group selected from the group consisting of -SO₃', -SO₃H, -R³⁵SO₃', -R³⁵SO₃H, -COOH and -

R³⁵COOH, Ht represents a heteroatom group selected from the group consisting of NR⁸², S, O, Se and Te, where R⁸² represents hydrogen, a linear or branched alkyl group having 1 to 24 carbon atoms, or a substituted or non-substituted aryl group having 1 to 24 carbon atoms, the hydrocarbon chains of R⁵² to R⁵⁷ mutually bond at arbitrary locations and may form a bivalent chain that forms at least one cyclic structure of saturated or unsaturated hydrocarbons of a 3 to 7-member ring together with the carbon atoms substituted by the groups, the cyclic bonded chain formed in this manner may contain a carbonyl ether, ester, amide, sulfingl, sulfinyl, sulfonyl or imino bond at arbitrary locations, and n represents the number of condensed rings sandwiched between a hetero ring and a benzene ring having substituents R⁵³ to R⁵⁶, and is 0 or an integer of 1 to 3;

wherein in the formula (8) R⁵⁸ to R⁶⁶ are respectively and independently selected from the group consisting of H, -SO₃, -SO₃H, -R³⁵SO₃, -R³⁵SO₃H, -OCH₃, -CH₃, -C₂H₅, -F, -Cl, -Br, -I, -N(R³⁵)₂, -NHCOR³⁵, -OH, -O', -SR³⁵, -OR³⁵, -OCOR³⁵, -NO₂, -COOH, -R³⁵COOH, -COOR³⁵, -COR³⁵, -CHO and -CN, where R³⁵ represents an alkyl, aryl or aralkyl group having 1 to 24 carbon atoms or an alkylene, arylene or aralkylene group having 1 to 24 carbon atoms, at least one of R⁵⁸ to R⁶⁶ is a group selected from the group consisting of -SO₃', -SO₃H, -R³⁵SO₃', -R³⁵SO₃H, -COOH and -R³⁵COOH, and n represents the number of condensed rings sandwiched between a benzene ring

having substituents R^{58} and R^{59} and a benzene ring having substituents R^{61} to R^{64} , and is 0 or an integer of 1 to 3;

wherein in the formula (9) R⁶⁷ to R⁷⁶ are respectively and independently selected from the group consisting of H, -SO₃', -SO₃H, -R³⁵SO₃', -R³⁵SO₃H, -OCH₃, -CH₃, -C₂H₅, -F, -Cl, -Br, -I, -N(R³⁵)₂, -NHCOR³⁵, -OH, -O', -SR³⁵, -OR³⁵, -OCOR³⁵, -NO₂, -COOH, -R³⁵COOH, -COOR³⁵, -COR³⁵, -CHO and -CN, where R³⁵ represents an alkyl, aryl or aralkyl group having 1 to 24 carbon atoms or an alkylene, arylene or aralkylene group having 1 to 24 carbon atoms, at least one of R⁶⁷ to R⁷⁶ is a group selected from the group consisting of -SO₃', -SO₃H, -R³⁵SO₃', -R³⁵SO₃H, -COOH and -R³⁵COOH, and n represents the number of condensed rings sandwiched between a benzene ring having substituents R⁶⁷ to R⁶⁹ and a benzoquinone ring, and is 0 or an integer of 1 to 3; and,

wherein in the formula (10) R⁷⁷ to R⁸¹ are respectively and independently selected from the group consisting of H, -SO₃', -SO₃H, -R³⁵SO₃', -R³⁵SO₃H, -OCH₃, -CH₃, -C₂H₅, -F, -Cl, -Br, -I, -N(R³⁵)₂, -NHCOR³⁵, -OH, -O', -SR³⁵, -OR³⁵, -OCR³⁵, -NO₂, -COOH, -R³⁵COOH, -COOR³⁵, -COR³⁵, -CHO and -CN, where R³⁵ represents an alkyl, aryl or aralkyl group or alkylene, arylene having 1 to 24 carbon atoms or an aralkylene group having 1 to 24 carbon atoms, at least one of R⁷⁷ to R⁸¹ is a group selected from the group consisting of -SO₃', -SO₃H, -R³⁵SO₃', -R³⁵SO₃H, -COOH and -R³⁵COOH, Xa' is at least one type of anion selected from the group of anions having a valence of 1 to 3 consisting of a chlorine ion, bromine ion, iodine ion, fluorine ion, nitrate ion, sulfate ion, hydrogensulfate ion, phosphate ion, borofluoride ion, perchlorate ion, thiocyanate ion, acetate ion, propionate ion, methane sulfonate ion, p-toluene sulfonate ion, trifluoroacetate ion and trifluoromethane sulfonate ion, a represents the ion valence of X and is an integer of 1 to 3, and p represents the doping ratio and has a value of 0.001 to 1.

Claim 11 (Withdrawn). A carbon nanotube composition according to claim 9, wherein the water soluble conducting polymer having at least one of a sulfonic acid group and a carboxyl group is a water soluble conducting polymer that contains 20 to 100% of the repeating unit represented by the following formula (11) relative to the total number of repeating units throughout the entire polymer:

$$\begin{bmatrix} R^{31} & R^{16} & R^{32} & R^{19} & R^{20} \\ R^{31} & R^{18} & R^{21} & R^{22} \end{bmatrix}_{1-y} \begin{bmatrix} R^{23} & R^{24} & R^{27} & R^{28} \\ R^{25} & R^{26} & R^{29} & R^{30} \end{bmatrix}_{y}$$

$$(11)$$

wherein in the formula (11) y represents an arbitrary number such that 0 < y < 1, R^{15} to R^{32} are respectively and independently selected from the group consisting of H, -SO₃, -SO₃H, -R²⁵SO₃, -R³⁵SO₃H, -OCH₃, -CH₃, -C₂H₅, -F, -Cl, -Br, -I, -N(R²⁵)₂, -NHCOR²⁵, -OH, -O, -SR²⁵, -OR²⁵, -OCOR³⁵, -NO₂, -COOH, -R³⁵COOH, -COOR³⁵, -COR³⁵, -CHO and -CN, where R³⁵ represents an alkyl, aryl or aralkyl group having 1 to 24 carbon atoms or an alkylene, arylene or aralkylene group having 1 to 24 carbon atoms, and at least one of R¹⁵ to R³² is a group selected from the group consisting of -SO₃, -SO₃H, -R³⁵SO₃, -R³⁵SO₃H, -COOH and -R³⁵COOH.

Claim 12 (Withdrawn). A carbon nanotube composition according to claim 9, wherein the water soluble conducting polymer having at least one of a sulfonic acid group and a carboxyl group is represented by the following formula (12):

wherein in the formula (12) R^{33} represents one group selected from the group consisting of a sulfonic acid group, carboxyl group, their alkaline metal salts, ammonium salts and substituted ammonium salts, R^{34} represents one group selected from the group consisting of a methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, sec-butyl group, tetracosyl group, methoxy group, ethoxy group, n-propoxy group, iso-butoxy group, sec-butoxy group, tetracoxy group, theoxy group, hexoxy group, octoxy group, dodecoxy group, tetracoxy group, fluoro group, chloro group and bromo group, X represents an arbitrary number such that 0 < X < 1, and n represents the degree of polymerization and has a value of 3 or more.

Claim 13 (Withdrawn). A carbon nanotube composition according to claim 9, wherein the water soluble conducting polymer having at least one of a sulfonic acid group and a carboxyl group is a water soluble conducting polymer obtained by polymerizing at least one of type of acidic group-substituted aniline represented by the following formula (13), its alkaline metal salt, ammonium salt and substituted ammonium salt, with an oxidizing agent in a solution containing a basic compound:

wherein in the formula (13) R³⁶ to R⁴¹ are respectively and independently selected from the group consisting of H, -SO₃, -SO₃H, -R³⁵SO₃, -R³⁵SO₃H, -OCH₃, -CH₃, -C₂H₅, -F, -Cl, -Br, -I, -N(R³⁵)₂, -NHCOR³⁵, -OH, -O', -SR³⁵, -OR³⁵, -OCOR³⁵, -NO₂, -COOH, -R³⁵COOH, -COOR³⁵, -COR³⁵, -CHO and -CN, where R³⁵ represents an alkyl, aryl or aralkyl group having 1 to 24 carbon atoms or an alkylene, arylene or aralkylene group having 1 to 24 carbon atoms, and at least one of R³⁶ to R⁴¹ is a group selected from the group consisting of -SO₃', -SO₃H, -R³⁵SO₃', -R³⁵SO₃H, -COOH and -R³⁵COOH.

Claim 14 (Original). A carbon nanotube composition according to claim 9, wherein the water soluble conducting polymer having at least one of a sulfonic acid group and a carboxyl group is a water soluble conducting polymer obtained by polymerizing at least one type of alkoxy group-substituted aminobenzene sulfonic acid, its alkaline metal salt, ammonium salt and substituted ammonium salt, with an oxidizing agent in a solution containing a basic compound.

Claim 15 (Withdrawn). A carbon nanotube composition according to claim 9, wherein the water soluble conducting polymer having at least one of a sulfonic acid group and a carboxyl group is polyethylene dioxythiophene polystyrene sulfate.

Claim 16 (Withdrawn). A carbon nanotube composition according to claim 2, wherein the composition contains a heterocyclic compound trimer (i) that is a heterocyclic compound trimer represented by the following formula (16):

wherein in the formula (16) R¹⁰ to R¹¹² are substituents respectively and independently selected from the group consisting of hydrogen, a linear or branched alkyl group having 1 to 24 carbon atoms, a linear or branched alkoxy group having 1 to 24 carbon atoms, linear or branched acyl group having 2 to 24 carbon atoms, aldehyde group, carboxyl group, linear or branched carboxylic ester group having 2 to 24 carbon atoms, sulfonic acid group, linear or branched sulfonic ester group having 1 to 24 carbon atoms, cyano group, hydroxyl group, nitro group, amino group, amido group, dicyanovinyl group, alkyl (linear or branched alkyl group having 1 to 8 carbon atoms) oxycarbonylcyanovinyl group, nitrophenylcyanovinyl group and halogen group;

Ht represents a heteroatom group selected from the group consisting of NR¹⁵⁴, S, O, Se and Te, and R¹⁵⁴ represents a substituent selected from the group consisting of hydrogen and a linear or branched alkyl group having 1 to 24 carbon atoms;

X* represents at least one type of anion selected from the group consisting of anions having a valence of 1 to 3 consisting of a chlorine ion, bromine ion, iodine ion, fluorine ion, nitrate ion, sulfate ion, hydrogensulfate ion, phosphate ion, borofluoride ion, perchlorate ion, thiocyanate ion, acetate ion, propionate ion, methane sulfonate ion, p-toluene sulfonate ion, trifluoroacetate ion and trifluoromethane sulfonate ion; a represents the ion valence of X and is an integer of 1 to 3; and, m represents the doping ratio and has a value of 0 to 3.0.

Claim 17 (Withdrawn). A carbon nanotube composition according to claim 2, wherein the composition contains a heterocyclic compound trimer (i) that is a heterocyclic compound trimer represented by the following general formula (17):

wherein in the formula (17) R¹¹³ to R¹²⁴ represent substituents respectively and independently selected from the group consisting of hydrogen, a linear or branched alkyl group having 1 to 24 carbon atoms, linear or branched alkoxy group having 1 to 24 carbon atoms, linear or branched acyl group having 2 to 24 carbon atoms, aldehyde group, carboxyl group, linear or branched carboxylic ester group having 2 to 24 carbon atoms, sulfonic acid group, linear or branched sulfonic ester group

having 1 to 24 carbon atoms, cyano group, hydroxyl group, nitro group, amino group, amido group, dicyanovinyl group, alkyl (linear or branched alkyl group having 1 to 8 carbon atoms) oxycarbonylcyanovinyl group, nitrophenylcyanovinyl group and halogen group; at least one of R^{113} to R^{124} is a cyano group, nitro group, amide group, halogen group, sulfonic acid group, and carboxyl group;

Ht represents a heteroatom group selected from the group consisting of NR¹⁵⁴, S, O, Se and Te, and R¹⁵⁴ represents a substituent selected from the group consisting of hydrogen and a linear or branched alkyl group having 1 to 24 carbon atoms;

X* represents at least one type of anion selected from the group consisting of anions having a valence of 1 to 3 consisting of a chlorine ion, bromine ion, iodine ion, fluorine ion, nitrate ion, sulfate ion, hydrogen sulfate ion, phosphate ion, borofluoride ion, perchlorate ion, thiocyanate ion, acetate ion, propionate ion, methane sulfonate ion, p-toluene sulfonate ion, trifluoroacetate ion and trifluoromethane sulfonate ion; a represents the ion valence of X and is an integer of 1 to 3; and, m represents the doping ratio and has a value of 0 to 3.0.

Claim 18 (Withdrawn). A carbon nanotube composition according to claim 2, wherein the composition contains a heterocyclic compound trimer (i) that is a heterocyclic compound trimer represented by the following general formula (18):

wherein in the formula (18) R¹²⁵ to R¹³⁶ are substituents respectively and independently selected from the group consisting of hydrogen, a linear or branched alkyl group having 1 to 24 carbon atoms, linear or branched alkoxy group having 1 to 24 carbon atoms, linear or branched acyl group having 2 to 24 carbon atoms, aldehyde group, carboxylic acid group and its alkaline metal salt, ammonium salt and substituted ammonium salt, linear or branched carboxylic ester group having 2 to 24 carbon atoms, sulfonic acid group and its alkaline metal salt, ammonium salt and substituted ammonium salt, linear or branched sulfonic ester group having 1 to 24 carbon atoms, cyano group, hydroxyl group, nitro group, amino group, amido group, dicyanovinyl group, alkyl (linear or branched alkyl group having 1 to 8 carbon atoms)oxycarbonylcyanovinyl group, nitrophenylcyanovinyl group and halogen group;

X* represents at least one type of anion selected from the group consisting of anions having a valence of 1 to 3 consisting of a chlorine ion, bromine ion, iodine ion, fluorine ion, nitrate ion, sulfate ion, hydrogen sulfate ion, phosphate ion, borofluoride ion, perchlorate ion, thiocyanate ion, acetate

ion, propionate ion, methane sulfonate ion, p-toluene sulfonate ion, trifluoroacetate ion and trifluoromethane sulfonate ion; a represents the ion valence of X and is an integer of 1 to 3; and, m represents the doping ratio and has a value of 0 to 3.0.

Claim 19 (Withdrawn). A carbon nanotube composition according to claim 2, wherein the composition contains a heterocyclic compound trimer (i) that is a heterocyclic compound trimer represented by the following general formula (19):

wherein in the formula (19) R¹³⁷ to R¹⁴⁸ are substituents respectively and independently selected from the group consisting of hydrogen, a linear or branched alkyl group having 1 to 24 carbon atoms, linear or branched alkoxy group having 1 to 24 carbon atoms, linear or branched acyl group having 2 to 24 carbon atoms, aldehyde group, carboxyl group, linear or branched carboxylic ester group having 2 to 24 carbon atoms, sulfonic acid group, linear or branched sulfonic ester group having 1 to 24 carbon atoms, cyano group, hydroxyl group, nitro group, amino group, amido group, dicyanovinyl

group, alkyl (linear or branched alkyl group having 1 to 8 carbon atoms)oxycarbonylcyanovinyl group, nitrophenylcyanovinyl group and halogen group;

Ht represents a heteroatom group selected from the group consisting of NR¹⁵⁴, S, O, Se and Te, and R¹⁵⁴ represents a substituent selected from the group consisting of hydrogen and a linear or branched alkyl group having 1 to 24 carbon atoms;

X* represents at least one type of anion selected from the group consisting of anions having a valence of 1 to 3 consisting of a chlorine ion, bromine ion, iodine ion, fluorine ion, nitrate ion, sulfate ion, hydrogen sulfate ion, phosphate ion, borofluoride ion, perchlorate ion, thiocyanate ion, acetate ion, propionate ion, methane sulfonate ion, p-toluene sulfonate ion, trifluoroacetate ion and trifluoromethane sulfonate ion; a represents the ion valence of X and is an integer of 1 to 3; and, m represents the doping ratio and has a value of 0 to 3.0.

Claim 20 (Withdrawn). A carbon nanotube composition according to claim 2, wherein the composition contains a heterocyclic compound trimer (i) that is a heterocyclic compound trimer obtained by reacting at least one type of heterocyclic compound represented by the following general formula (20) in a reaction mixture containing at least one type of oxidizing agent and at least one type of solvent:

wherein in the formula (20) R¹⁵⁰ to R¹⁵³ are substituents respectively and independently selected from the group consisting of hydrogen, a linear or branched alkyl group having 1 to 24 carbon atoms, linear or branched alkoxy group having 1 to 24 carbon atoms, linear or branched acyl group having 2 to 24 carbon atoms, aldehyde group, carboxyl group, linear or branched carboxylic ester group having 2 to 24 carbon atoms, sulfonic acid group, linear or branched sulfonic ester group having 1 to 24 carbon atoms, cyano group, hydroxyl group, nitro group, amino group, amido group, dicyanovinyl group, alkyl (linear or branched alkyl group having 1 to 8 carbon atoms)oxycarbonylcyanovinyl group, nitrophenylcyanovinyl group and halogen group; and,

Ht represents a heteroatom group selected from the group consisting of NR¹⁵⁴, S, O, Se and Te, and R¹⁵⁴ represents a substituent selected from the group consisting of hydrogen and a linear or branched alkyl group having 1 to 24 carbon atoms.

Claim 21 (Withdrawn). A carbon nanotube composition according to claim 2, wherein said carbon nanotube composition includes a the heterocyclic compound trimer (i) having a layered structure.

Claim 22 (Previously Amended). A production method of a carbon nanotube composition comprising: irradiating a carbon nanotube composition according to claim 1 with ultrasonic waves and mixing.

Claim 23 (Previously Amended). A composite comprising a base material, and a coated film composed of the carbon nanotube composition according to claim 1 on at least one surface of the base material.

Claim 24 (Previously Amended). A method of producing a composite comprising: coating the carbon nanotube composition according to claim 1 onto at least one surface of a base material, and forming a coated film by allowing the coated carbon nanotube to stand at room temperature or subjecting it to heat treatment.

Claim 25 (original). A production method of a composite according to claim 24, wherein the heat treatment is carried out within a temperature range of normal temperature to 250°C.