

Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks

Chelsea Finn, Pieter Abbeel, Sergey Levine, 2017, ICML

Wonhee Cho

Vision and Learning Laboratory School of Computer Science and Engineering, Chung-Ang University, Seoul, Republic of Korea Emails: wonhee4274@cau.ac.kr

Index

- Background
- Model-Agnostic Meta-Learning
- Experiments
- Conclusion

Few-shot Learning

Test data point

By Braque or Cezanne?

Chelsea Finn, 2019, ICML Tutorial.

Few-shot Learning(FSL)

- Few-shot learning is to classify new data having seen only a few training examples.
- Few-shot learning is useful when training examples are hard to find (e.g., cases of a rare disease), or where the cost of labelling data is high.

N-way K-shot classification

https://www.borealisai.com/en/blog/tutorial-2-few-shot-learning-and-meta-learning-i/

Few-shot Learning

N-way K-shot

- Classes: N

- Examples: K

2-way 1-shot classification

Meta Learning: Learning to learn

- In the meta-learning framework, we *learn how to learn* to classify given a set of *training tasks* and evaluate using a set of test tasks.
- In other words, we use one set of classification problems to help solve other unrelated sets.

Testing

Optimal model parameter

$$heta^* = rg \min_{ heta} \mathbb{E}_{\mathcal{D} \sim p(\mathcal{D})}[\mathcal{L}_{ heta}(\mathcal{D})]$$

Each task consists of a dataset D.

https://www.borealisai.com/en/blog/tutorial-2-few-shot-learning-and-meta-learning-i/

Meta Learning vs Multi-task Learning

Multi-task Learning standpoint

- Optimal parameters ϕ_i for each Task(T1, T2, ...) are same.
- 하나의 파라미터를 공유하는 하나의 큰 모델이 모든 task를 해결함.

Meta Learning standpoint

- Optimal parameters ϕ_i for each Task(T1, T2, ...) are different.
- 데이터 특성과 \emptyset_i 사이의 정보 (θ) 를 학습하고 추후 새로운 데이터에 대해 θ 를 이용.

Problem Definition

- Model f parameterized by θ
 - a = f(x): mapping function
 - P(T): tasks distribution
 - $T = \{L(x_1, a_1, ..., x_H, a_H), q(x_1), q(x_{t+1}|x_t, a_t), H\}$
 - Supervised learning: H=1
 - ullet K-shot learning: K samples drawn from q_i

L: loss function $q(x_1)$: a distribution over initial observations $q(x_{t+1}|x_t,a_t)$: a transition distribution

- Method
 - For task T_I model's parameter θ become

Fixed as a hyperparameter or meta-learned

$$\theta_i' = \theta - \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$$

- Multiple gradient update also is extendable
- Meta-objective

$$\min_{\theta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta_i'}) = \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta - \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})})$$

Algorithm 1 Model-Agnostic Meta-Learning

```
Require: p(\mathcal{T}): distribution over tasks
```

Require: α , β : step size hyperparameters

- 1: randomly initialize θ
- 2: **while** not done **do**
- 3: Sample batch of tasks $\mathcal{T}_i \sim p(\mathcal{T})$
- 4: for all \mathcal{T}_i do
- 5: Evaluate $\nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$ with respect to K examples
- 6: Compute adapted parameters with gradient descent: $\theta'_i = \theta \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$
- 7: end for
- 8: Update $\theta \leftarrow \theta \beta \nabla_{\theta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta_i'})$
- 9: end while

Regression

• Few-shot Regression: the goal is to predict the outputs of a continuous-valued function from only a few datapoints sampled from that function.

$$\mathcal{L}_{\mathcal{T}_i}(f_{\phi}) = \sum_{\mathbf{x}^{(j)}, \mathbf{y}^{(j)} \sim \mathcal{T}_i} \|f_{\phi}(\mathbf{x}^{(j)}) - \mathbf{y}^{(j)}\|_2^2,$$

Using mean-squared error(MSE)

Classification

Using cross-entropy loss

$$\mathcal{L}_{\mathcal{T}_i}(f_{\phi}) = \sum_{\mathbf{x}^{(j)}, \mathbf{y}^{(j)} \sim \mathcal{T}_i} \mathbf{y}^{(j)} \log f_{\phi}(\mathbf{x}^{(j)}) + (1 - \mathbf{y}^{(j)}) \log(1 - f_{\phi}(\mathbf{x}^{(j)}))$$

Experimental Evaluation

- 1) Can MAML enable fast learning of new tasks?
- 2) Can MAML be used for meta-learning in multiple different domains, including supervised regression, classification, and reinforcement learning?
- 3) Can a model learned with MAML continue to improve with additional gradient updates and/or examples?

- Sine wave experiments
 - Meta Training (700000)
 - Amplitude[0.1, 5.0]
 - Phase $[0, \pi]$
 - K points sampled from [-0.5, 5.0]
 - Meta Testing
 - K samples from a sine wave
 - Evaluation
 - Mean squared error for 600 points

 θ_{i}

- Sine wave experiments
 - Meta Training (700000)
 - Amplitude[0.1, 5.0]
 - Phase $[0, \pi]$
 - K points sampled from [-0.5, 5.0]
 - Meta Testing
 - K samples from a sine wave
 - Evaluation
 - Mean squared error for 600 points

Figure 3. Quantitative sinusoid regression results showing the learning curve at meta test-time. Note that MAML continues to improve with additional gradient steps without overfitting to the extremely small dataset during meta-testing, achieving a loss that is substantially lower than the baseline fine-tuning approach.

Experiments_Classification

- N-way classification
 - Use N class during test with K-shot learning
- Network Architecture
 - 4 modules
 - 3 x 3 convolutions and 64 filters
 - ReLU nonlinearity
 - 2 x 2 max-pooling

Dataset

- Omniglot
 - 1623 characters from 50 alphabets
 - 20 instances each drawn by a different person
 - Training
 - 1200 characters
 - Testing
 - 423 characters

- Mini-ImageNet
 - 80 training classes
 - 20 test classes

Experiments_Classification

	5-way Accuracy		20-way Accuracy	
Omniglot (Lake et al., 2011)	1-shot	5-shot	1-shot	5-shot
MANN, no conv (Santoro et al., 2016)	82.8%	94.9%	_	_
MAML, no conv (ours)	$89.7 \pm 1.1\%$	$97.5 \pm 0.6\%$	_	_
Siamese nets (Koch, 2015)	97.3%	98.4%	88.2%	97.0%
matching nets (Vinyals et al., 2016)	98.1%	98.9%	93.8%	98.5%
neural statistician (Edwards & Storkey, 2017)	98.1%	99.5%	93.2%	98.1%
memory mod. (Kaiser et al., 2017)	98.4%	99.6%	95.0%	98.6%
MAML (ours)	$98.7 \pm 0.4\%$	$99.9 \pm 0.1\%$	$95.8 \pm 0.3\%$	$98.9 \pm 0.2\%$

	5-way Accuracy	
MiniImagenet (Ravi & Larochelle, 2017)	1-shot	5-shot
fine-tuning baseline	$28.86 \pm 0.54\%$	$49.79 \pm 0.79\%$
nearest neighbor baseline	$41.08 \pm 0.70\%$	$51.04 \pm 0.65\%$
matching nets (Vinyals et al., 2016)	$43.56 \pm 0.84\%$	$55.31 \pm 0.73\%$
meta-learner LSTM (Ravi & Larochelle, 2017)	$43.44 \pm 0.77\%$	$60.60 \pm 0.71\%$
MAML, first order approx. (ours)	$48.07 \pm 1.75\%$	$63.15 \pm 0.91\%$
MAML (ours)	$48.70 \pm 1.84\%$	${\bf 63.11 \pm 0.92\%}$

Q & A

Thank You