

Tópicos de Matemática II - 2016/ 2017 1º Teste - Tópicos de resolução

Exercício 1

a)
$$u_{n+1} - u_n = \frac{3}{2+5(n+1)} - \frac{3}{2+5n} = \frac{3}{7+5n} - \frac{3}{2+5n} = \frac{-15}{(7+5n)(2+5n)} < 0, \forall n \in IN$$

Logo, $(u_n)_n$ é monótona (estritamente) decrescente.

b) $\lim_{n} u_n = \frac{3}{(+\infty)} = 0$. $(u_n)_n$ é convergente pois tende para um número real.

Exercício 2

$$a_n = \begin{cases} \frac{1}{n+4} & \text{se } n \text{ \'e par} \\ \frac{-1}{n+4} & \text{se } n \text{ \'e \'impar} \end{cases}$$

$$\bullet \quad \lim_{n} \frac{1}{n+4} = \frac{1}{(+\infty)} = 0$$

$$\bullet \quad \lim_{n} \frac{-1}{n+4} = \frac{-1}{(+\infty)} = 0$$

Logo, a sucessão $(a_n)_n$ é convergente (para zero) e, sendo convergente, é necessariamente limitada.

Nota: Pode também verificar-se que $-\frac{1}{5} \le a_n \le \frac{1}{6}$, $\forall n \in IN$.

Exercício 3

a)
$$\lim_{n} \frac{\sqrt{n^2 \left(1 + \frac{1}{n^2}\right)}}{n \left(3 - \frac{2}{n}\right)} = \lim_{n} \frac{n \sqrt{1 + \frac{1}{n^2}}}{n \left(3 - \frac{2}{n}\right)} = \lim_{n} \frac{\sqrt{1 + \frac{1}{n^2}}}{3 - \frac{2}{n}} = \frac{\sqrt{1 + 0}}{3 - 0} = \frac{1}{3}$$

b)
$$\lim_{n} \frac{\left(2n - \sqrt{2 + 4n^2}\right)\left(2n + \sqrt{2 + 4n^2}\right)}{2n + \sqrt{2 + 4n^2}} = \lim_{n} \frac{4n^2 - 2 - 4n^2}{2n + \sqrt{2 + 4n^2}} = \lim_{n} \frac{-2}{2n + \sqrt{2 + 4n^2}} = \lim_{n$$

$$=\frac{-2}{(+\infty)}=0.$$

c)
$$\lim_{n} \left(1 + \frac{3}{n}\right)^{2n} = \left(\lim_{n} \left(1 + \frac{3}{n}\right)^{n}\right)^{2} = \left(e^{3}\right)^{2} = e^{6}$$

Uma outra resolução poderia ser: $\lim_{n} \left(1 + \frac{3}{n}\right)^{2n} = \lim_{n} \left(1 + \frac{6}{2n}\right)^{2n} = e^{6}$

Exercício 4

a)
$$D_f = \{ x \in IR : -x^2 + 25 \ge 0 \land x - 5 \ne 0 \}$$

Cálculos auxiliares:

•
$$x-5=0 \Leftrightarrow x=5$$

•
$$-x^2 + 25 = 0 \Leftrightarrow x^2 = 25 \Leftrightarrow x = \pm 5$$

$$-x^{2}+25 \ge 0 \Leftrightarrow x \in [-5,5]$$

Logo:
$$D_f = [-5,5] \setminus \{5\} = [-5,5[$$

Exercício 5

i)
$$-3,-1$$
 e 5

i)
$$-3,-1$$
 e 5 ii) e iii) Por ex: $]-4,-3[$ iv) 4 v) $\{-2\}\cup]0,2]$

v)
$$\{-2\}\cup]0,2$$

Exercício 6

a) Abcissa do vértice:
$$-\frac{b}{2a} = -\frac{4}{2(-2)} = 1$$

Ordenada do vértice:
$$f(1)=-2\times1^2+4\times1-4=-2$$

Logo, o vértice da parábola tem coordenadas (1,-2) e o seu eixo de simetria tem equação x=1.

b) A parábola representativa do gráfico de f tem concavidade "voltada para baixo" e a ordenada do seu vértice é -2; logo: $D'_f = -\infty, -2$.

Exercício 7

Exercício 8

$$x^3 - 6x \le 0 \Leftrightarrow x(x^2 - 6) \le 0$$

Cálculo auxiliar: $x^2 - 6 = 0 \Leftrightarrow x = \pm \sqrt{6}$

X	$-\infty$	$-\sqrt{6}$		0		$\sqrt{6}$	+∞
X	_	_	_	0	+	+	+
$x^{2}-6$	+	0	_	_	_	0	+
$x\left(x^2-6\right)$	_	0	+	0	_	0	+

$$C.S. = \left] -\infty, -\sqrt{6} \right] \cup \left[0, \sqrt{6} \right]$$

Exercício 9

$$-2x^{2} + 4x = k \Leftrightarrow -2x^{2} + 4x - k = 0$$

Para que esta equação tenha duas soluções distintas:

$$4^{2}-4\times(-2)\times(-k)>0 \Leftrightarrow -8k>-16 \Leftrightarrow k<2 \Leftrightarrow k\in]-\infty,2[$$

Nota: a parábola representativa do gráfico de f tem concavidade "voltada para baixo" e pode verificar-se que a ordenada do seu vértice é 2. Assim sendo, qualquer reta horizontal de equação y=k, com $k\in]-\infty,2[$, interseta essa parábola em dois pontos distintos.