CORSO DI LAUREA IN INFORMATICA PROVA SCRITTA DI ALGEBRA (GRUPPI I, II, RECUPERO) **10 DICEMBRE 2014**

Svolgere i seguenti esercizi, giustificando pienamente tutte le risposte. Sui fogli consegnati vanno indicati: nome, cognome, matricola e gruppo di appartenenza. Non è necessario consegnare la traccia.

Esercizio 1. Dare la definizione di anello e quella di campo. Ricordando di giustificare le risposte:

- (i) $(\mathbb{N}, +, \cdot)$ è un anello?
- (ii) Se S è un insieme, $(\mathcal{P}(S), \triangle, \setminus)$ è un anello?
- (iii) Se S è un insieme e |S| > 1, $(\mathcal{P}(S), \triangle, \cap)$ è un campo?

Dare un esempio di campo infinito ed uno di campo finito.

Esercizio 2. Si considerino le applicazioni

$$\varphi_3 \colon x \in \mathbb{Z}_{125} \mapsto \bar{3}x \in \mathbb{Z}_{125};$$
 e $\varphi_5 \colon x \in \mathbb{Z}_{125} \mapsto \bar{5}x \in \mathbb{Z}_{125}.$

- (i) φ_3 è iniettiva? φ_5 è iniettiva? φ_5 è suriettiva? Quale proprietà algebrica, che differenzia $\bar{3}$ e $\bar{5}$ in \mathbb{Z}_{125} , influisce sull'iniettività di φ_3 e φ_5 ?
- (ii) Determinare gli interi positivi n tali che $\varphi_n \colon x \in \mathbb{Z}_{125} \mapsto \bar{n}x \in \mathbb{Z}_{125}$ sia biettiva.
- (iii) Detto \mathcal{R}_{φ_5} il nucleo di equivalenza di φ_5 , descrivere esplicitamente $[\bar{0}]_{\mathcal{R}_{\varphi_5}}$, e calcolare le cardinalità di $[0]_{\mathcal{R}_{\varphi_5}}$ e di $\vec{\varphi}_5(\mathbb{Z}_{125})$.

Esercizio 3. Si definisca in \mathbb{Z} la relazione binaria Σ ponendo, per ogni $a, b \in \mathbb{Z}$:

$$a \Sigma b \iff (\exists h \in 2\mathbb{N})(a+h=b).$$

- (i) Verificare che Σ è una relazione d'ordine e che non è totale.
- (ii) Fissato $x \in 2\mathbb{Z}$, quali sono gli elementi $y \in \mathbb{Z}$ confrontabili con x? E se, invece, $x \in \mathbb{Z} \setminus 2\mathbb{Z}$?
- (iii) Determinare, se esistono (o spiegare perché non esistono), gli elementi minimali, massimali, minimo, massimo in (\mathbb{Z}, Σ) .
- (iv) Dimostrare che, se X è una parte di \mathbb{Z} tale che (X,Σ) sia un reticolo, (X,Σ) è necessariamente totalmente ordinato.

Esercizio 4. Si definisca in $\mathbb{Z} \times \mathbb{Z}$ l'operazione binaria * ponendo, per ogni $a, b, c, d \in \mathbb{Z}$;

$$(a,b)*(c,d) = (a+c+2,-bd).$$

Dando per noto (e quindi non verificando) che questa operazione è commutativa e associativa,

- (i) determinare (se esiste) l'elemento neutro di $(\mathbb{Z} \times \mathbb{Z}, *)$. Nel caso, stabilire quali sono gli elementi simmetrizzabili, descrivendone i corrispondenti simmetrici;
- (ii) determinare una parte infinita A di $\mathbb{Z} \times \mathbb{Z}$ che sia chiusa rispetto a * e tale che (A, *) sia un gruppo;
- (iii) determinare una parte propria infinita B di $\mathbb{Z} \times \mathbb{Z}$ che sia chiusa rispetto a * e tale che (B,*)non sia un gruppo;
- (iv) determinare una parte infinita C di $\mathbb{Z} \times \mathbb{Z}$ che non sia chiusa rispetto a *.

Esercizio 5. Per p=2 e per p=7 si consideri il polinomio $f_p:=x^4-\bar{2}x^3+x^2-\bar{1}\in\mathbb{Z}_p[x]$ e

- (i) si scriva f_p come prodotto di polinomi irriducibili monici in $\mathbb{Z}_p[x]$. (ii) Solo per p=7, si costruisca l'associato monico \tilde{g} di $g:=\bar{4}x^4-x^3-\bar{3}x^2-\bar{4}$ in $\mathbb{Z}_7[x]$. \tilde{g} è associato a f_7 ?