TP8: Primalité

Résumé du TP

Bertrand Meyer 27 avril 2022

Contexte

- · Gros besoins industriels de nombres premiers.
- Test de primalité déterministes en temps polynomial mais non efficace.
- Tests probabilistes efficaces.
- Générer un nombre premier : cas classique de « chercher du foin dans une botte de foin ».

Rabin-Miller

Un test raté: Fermat

Théorème (Fermat)

Si p premier, alors $a^{p-1} = 1 \mod p$.

Raison

 \mathbb{F}_p^{\times} est un groupe cyclique d'ordre p-1.

Test de Fermat

S'il existe a premier avec n tel que $a^{n-1} \neq 1 \mod n$, alors n est composé.

Limite : il existe des entiers *n* qui ne sont jamais détectés par ce test.

Rafinement: Rabin-Miller

Proposition

Soit $2^{\vee}m$ la factorisation de p-1. Alors soit $a^m=1 \mod p$ ou l'un des carrés successifs de a^m vaut -1.

Raison

Si p est premier, on passe par la suite de carrés

$$a^m$$
; a^{2m} ; a^{4m} ; ...; $a^{p-1} = 1$

Or dans un corps, il n'y a que ±1 comme racines carrées de 1.

Test de Rabin-Miller

S'il existe a qui viole la proposition, n est composé.

Avantage : si n est composé, il y a au moins $\frac{3}{4}\varphi(n)$ témoins.

Solovay-Strassen

Solovay-Strassen

Symbole de Legendre :
$$\binom{a}{n} = \begin{cases} 1 & \text{si } a \text{ est carr\'e} \\ -1 & \text{si } a \text{ est non-carr\'e} \end{cases}$$

(se calcule avec les règles de réciprocité quadratique).

Proposition

n (impair) est premier ssi pour tout a, $\binom{a}{n} = a^{(n-1)/2} \mod n$

Test de Solovay-Strassen S'il existe *a* qui viole la proposition, *n* est composé.

Avantage: si *n* est composé, il y a au moins $\frac{1}{2}\varphi(n)$ témoins.