

UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address: COMMISSIONER FOR PATENTS PO Box 1450 Alexandria, Virginia 22313-1450 www.wepto.gov

| APPLICATION NO.                                                    | FILING DATE | FIRST NAMED INVENTOR | ATTORNEY DOCKET NO. | CONFIRMATION NO. |
|--------------------------------------------------------------------|-------------|----------------------|---------------------|------------------|
| 10/680,839                                                         | 10/07/2003  | Irena Maravic        | 080465              | 2991             |
| 25696 7590 662S2910<br>QUALCOMM INCORPORATED<br>5775 MOREHOUSE DR. |             |                      | EXAMINER            |                  |
|                                                                    |             |                      | PEREZ, JAMES M      |                  |
| SAN DIEGO,                                                         | CA 92121    |                      | ART UNIT            | PAPER NUMBER     |
|                                                                    |             |                      | 2611                | •                |
|                                                                    |             |                      |                     |                  |
|                                                                    |             |                      | NOTIFICATION DATE   | DELIVERY MODE    |
|                                                                    |             |                      | 06/25/2010          | ELECTRONIC       |

# Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Notice of the Office communication was sent electronically on above-indicated "Notification Date" to the following e-mail address(es):

us-docketing@qualcomm.com

# Office Action Summary

| Application No. | Applicant(s)   | Applicant(s) |  |
|-----------------|----------------|--------------|--|
| 10/680,839      | MARAVIC ET AL. |              |  |
| Examiner        | Art Unit       |              |  |
| JAMES M. PEREZ  | 2611           |              |  |

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address -- Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS,

WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed
- after SIX (6) MONTHS from the mailing date of this communication.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication
   Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133).

|          | Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b). |  |  |  |  |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Status   |                                                                                                                                                                                                 |  |  |  |  |
| 1)🛛      | Responsive to communication(s) filed on <u>01 March 2010</u> .                                                                                                                                  |  |  |  |  |
| 2a)⊠     | This action is FINAL. 2b) This action is non-final.                                                                                                                                             |  |  |  |  |
| 3)       | Since this application is in condition for allowance except for formal matters, prosecution as to the merits is                                                                                 |  |  |  |  |
|          | closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11, 453 O.G. 213.                                                                                                       |  |  |  |  |
| Disposit | ion of Claims                                                                                                                                                                                   |  |  |  |  |
| 4)🛛      | Claim(s) 1-62 is/are pending in the application.                                                                                                                                                |  |  |  |  |
|          | 4a) Of the above claim(s) is/are withdrawn from consideration.                                                                                                                                  |  |  |  |  |
| 5)       | Claim(s) is/are allowed.                                                                                                                                                                        |  |  |  |  |

# Application Papers

- 9) The specification is objected to by the Examiner.
- 10) ☐ The drawing(s) filed on <u>07 October 2003</u> is/are: a) ☐ accepted or b) ☐ objected to by the Examiner. Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).

Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).

11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

### Priority under 35 U.S.C. § 119

- 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
  - a) ☐ All b) ☐ Some \* c) ☑ None of:

6) Claim(s) <u>1-62</u> is/are rejected.
7) Claim(s) \_\_\_\_\_ is/are objected to.

1. Certified copies of the priority documents have been received.

8) Claim(s) \_\_\_\_\_ are subject to restriction and/or election requirement.

- 2. Certified copies of the priority documents have been received in Application No. \_\_\_
- Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).
- \* See the attached detailed Office action for a list of the certified copies not received.

| 4) Interview Summary (PTO-413) |
|--------------------------------|
|                                |

2) | Notice of Draftsperson's Patent Drawing Review (PTO-948) | Paper No(s)/Mail Date. | Old Other | Date No(s)/Mail Date. | Old Other | Old Other | Date No(s)/Mail Date. | Old Other | Old Other

Art Unit: 2611

#### Detailed Action

This action is responsive to the amendments filed on 3/1/2010.

Currently, claims 1-62 are pending.

### Priority

 Acknowledgment is made of applicant's claim for foreign priority based on an application filed in Europe on 3/26/2001 and 8/15/2001. It is noted, however, that applicant has not filed a certified copy of the EPO-01107530.6 and EPO-01119537.7 applications as required by 35 U.S.C. 119(b).

### Response to Arguments

- Applicant's arguments filed 3/1/2010 have been fully considered but they are not persuasive.
- (1) The examiner will now further explain the previous art rejection. Evidence that supports the examiner's interpretation is found in references which disclose known properties and optimization motivations for the sub/under-sampling rate (sampling below the Nyquist frequency), where said references where previously cited as pertinent art.

Pedersen et al. (US 2004/0057593) discloses under-sampling (below the Nyquist frequency) at least one received signal to yield the benefits of reducing the computational loading of a digital signal processor (DSP), even though under-sampling introduces distortion (due to aliasing) into the sampling signal (paragraph 81).

Furthermore, an under-sampling factor is selected (having a value between 2 to 8, and

Art Unit: 2611

thus the under-sampling rate is clearly adjustable) to optimize the sampling frequency (rate) (paragraph 81: optimizing the sampling frequency/rate being that the undersampling rate is adjustable).

Haga et al. (USPN 6,507,603) discloses a CDMA communication system wherein the sampling rate is adapted (optimized) with reference to the channel condition (col. 4, lines 23-39 and col. 11, line 61 through col. 12, line 6). Specifically when the reception state (channel quality) is good the sampling rate is decreased in order to reduce the operation speed of the processing elements thus reducing power consumption; and when reception state is poor the sampling rate is enlarged to improve precision (col. 4, lines 23-39 and col. 11, line 61 through col. 12, line 6). Wherein sampling at the chip frequency of a spread spectrum signal is discloses as being known in the art (col. 3, lines 7-13).

Pawelski (USPN 4,716,453) discloses that the sampling rate (bits per sample) is directly related to the quality of the received signal, efforts to balance (optimize) signal quality vs. cost (of the communication system) have led receivers to sample at sub-Nyquist sampling rates even though sampling at sub-Nyquist rates introduces distortion (such as aliasing) in the wanted signal (col. 1, lines 40-53 and col. 1, line 67 through col. 2, line 9).

Thus after establishing the knowledge of one of ordinary skill in the art at the time of the invention, the examiner holds that the advantages of optimizing a sub-sampling frequency (rate) is well-known and expected in the art, where decreasing the sub-sampling rate has the advantage of decreasing processing speed and power dissipation

Art Unit: 2611

of the processing elements, and increasing the sub-sampling rate has known advantage of decreasing distortion due to aliasing.

Therefore it would have been obvious to one of orindary skill in the art at the time of the invention to modify to the known sampling system of Affes in view of Unser to sample in-between the known sampling thresholds since such a modification yields predictable results and benefits such as optimizing a sub-Nyquist sampling frequency in a CDMA communication system, and with respect to Affes reduces the processing speed and power dissipation by decreasing the sampling frequency to be below the chip rate/frequency and thus be between the disclosed sampling thresholds.

(2) Section A of the applicant's arguments state that the combination of Affes and

Usner fails to disclose a sampling frequency that is lower than the chip rate, but greater than the rate of innovation.

In response to applicant's arguments against the references individually, one cannot show nonobviousness by attacking references individually where the rejections are based on combinations of references. See *In re Keller*, 642 F.2d 413, 208 USPQ 871 (CCPA 1981); *In re Merck & Co.*, 800 F.2d 1091, 231 USPQ 375 (Fed. Cir. 1986).

In response to applicant's argument that there is no teaching, suggestion, or motivation to combine the references, the examiner recognizes that obviousness may be established by combining or modifying the teachings of the prior art to produce the claimed invention where there is some teaching, suggestion, or motivation to do so found either in the references themselves or in the knowledge generally available to one

Art Unit: 2611

of ordinary skill in the art. See *In re Fine*, 837 F.2d 1071, 5 USPQ2d 1596 (Fed. Cir. 1988), *In re Jones*, 958 F.2d 347, 21 USPQ2d 1941 (Fed. Cir. 1992), and *KSR International Co. v. Teleflex, Inc.*, 550 U.S. 398, 82 USPQ2d 1385 (2007). In this case, the teachings references above disclose specific advantages to modify the sampling rate/frequency to be between the claimed thresholds (chip rate and rate of innovation). In other words one of ordinary skill in the art at the time of the invention would <u>expect</u> these benefits of decreasing processing speed and power dissipation of the processing elements when sampling at a rate/frequency lower than the chip rate (emphasis added). Clearly the dates of these teaching references show that these benefits are well-known and expected in the art at the time of the invention.

(3) Section B of the applicant's arguments state that Affes teaches away from a sampling frequency that is lower than the chip rate, but greater than the rate of innovation.

In response to applicant's arguments against the references individually, one cannot show nonobviousness by attacking references individually where the rejections are based on combinations of references. See *In re Keller*, 642 F.2d 413, 208 USPQ 871 (CCPA 1981); *In re Merck & Co.*, 800 F.2d 1091, 231 USPQ 375 (Fed. Cir. 1986).

(4) Section C of the applicant's arguments state that modifying Affes with a sampling frequency that is lower than the chip rate, but greater than the rate of innovation would render the system of Affes inoperable for its intended purpose.

Art Unit: 2611

Applicant arguments are based on statement which asserts that Affes would be unable to reduce ISI as result of the lower sampling frequency (i.e. sampling below the chip rate/frequency). The examiner notes that sampling below the Nyquist frequency inherently induces ISI into the samples, thus the samples generated by Affes already have ISI as would any sub-sampling receiver (note that Affes samples at the chip frequency/rate). Furthermore, Nguyen (USPN 5,963,105) discloses many different types of oscillators (the devices used to generate clock signals) where all of these different oscillators frequency fluctuations/variations (col. 1, lines 15-63). Therefore it would unreasonable for the applicant to assume that the sampling functions of Affes would stop working if the sampling rate fell below the chip rate by even the smallest value, since it is well-know and expected in the art that oscillator circuits have frequency fluctuations. Furthermore, Applicant has not provided any evidence (aside from mere allegations) which support their arguments that the sampling functions of Affes would completely stop working if the sampling rate was lowered.

(5) Section D of the applicant's arguments state that the Examiner's rationale for combining Affes and Usner is improper.

The teaching reference Pawelski, Haga, and Pedersen (disclosed above) show that these motivation used the art rejection was available to others before the applicant's effective filing date, thus applicant's arguments are moot.

(6) Section E of the applicant's arguments state that the Examiner's allegation of obviousness lacks sufficient documentary evidence.

Art Unit: 2611

The teaching reference Pawelski, Haga, and Pedersen (disclosed above) show that these motivation used the art rejection was available to others before the applicant's effective filing date, thus applicant's arguments are moot.

(7) Section F of the applicant's arguments state that the Examiner has failed to establish a proper prima facie case of obviousness.

The teaching reference Pawelski, Haga, and Pedersen (disclosed above) show that these motivation used the art rejection was available to others before the applicant's effective filing date, thus applicant's arguments are moot.

## Claim Rejections - 35 USC § 103

- The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:
  - (a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.
- 4. Claims 1-8, 16-18, 20-21, 29, 34-41, 49-51, 53-54, and 61-62 are rejected under 35 U.S.C. 103(a) as being unpatentable over Affes (US 2002/0051433) in view of Unser ("Sampling 50 Years After Shannon", Proceedings of the IEEE, Vol. 88, No.4: pages 569-587, April 2000).

With regards to claims 1, 29, 34, and 61-62, Affes teaches a receiver, mobile station, and method for processing a signal sent over a wireless communication channel (abstract and paragraphs 14-23), comprising:

Art Unit: 2611

at least one antenna (fig. 1: elements 12.1 through 12.M); and

a receiver configured to receive a signal over a wireless communication channel (paragraphs 14-23), and sample the received signal with a sampling frequency (rate) lower than the sampling frequency given by the Shannon theorem (figs. 6 and 9: elements 18 and 23: paragraphs 119 and 138) for generating a set of sampled values (figs. 6 and 9: elements 18 and 23: paragraphs 119 and 138), wherein said sampling frequency is the chip rate (figs. 6 and 9: elements 18 and 23: paragraphs 119 and 138).

Affes does not explicitly teach the sampling rate is lower than the chip rate of said received signal, but greater than the rate of innovation of said received signal.

Unser teaches the reconstruction [of a consistent signal] is generally possible provided there are as long as there are as many measurements (samples) as there are degrees of freedom in the signal (page 580: Section V, B. "Generalized Sampling").

One of ordinary skill in the art at the time of the invention would recognize that since the rate of innovation is defined by the total degrees of freedom of the wanted signal (p. 5, lines 27-29 of the instant specification) it would be obvious that Unser discloses sampling a signal at the rate of innovation for reconstructing in the digital domain. Therefore, it would have been obvious to one of orindary skill in the art at the time of the invention that Affes in view of Unser discloses two useful sampling thresholds (useful in this case meaning that the reconstruction of the signal is possible): the first is being sampling at the chip rate, and the second being sampling at the rate of innovation.

Art Unit: 2611

Furthermore, the examiner holds that the advantages of optimizing a sampling frequency (rate) is well-known and expected in the art, where decreasing a sampling rate has the advantage of decreasing processing speed and power dissipation of the processing elements, and increasing a sampling rate has known advantage of decreasing distortion due to aliasing. Therefore it would have been obvious to one of orindary skill in the art at the time of the invention to modify to the known sampling system of Affes in view of Unser to sample in between the known sampling thresholds since such a modification yields predictable results and benefits such as optimizing a sub-Nyquist sampling frequency in a CDMA (minimizing processing speed and power dissipation in relation to minimizing distortion due to aliasing).

With regards to claims 2-3 and 35-36, Affes in view of Unser teaches the limitations of claims 1 and 34.

Affes teaches pre-processing of the received signal (fig. 13: element 18).

Affes does explicitly teach the preliminary step of filtering said received signal (y(t)) with a filter (f).

Unser teaches pre-filter using a low-pass filter (Section II: fig. 2)

Therefore it would be obvious to one of ordinary skill in the art at the time of the invention to combine the spread spectrum communication sampling method of Affes with the sampling method disclosed by Unser in order to create an improved method and system for sampling and reconstructing the information from the original signal while minimizing errors in the reconstructed information.

Art Unit: 2611

With regards to claims 4 and 37, Affes in view of Unser teaches the limitations of claim 3 and 36.

Affes teaches pre-processing of the received signal (fig. 13: element 18).

Affes does explicitly teach said filter (f) is a sinc filter.

Unser teaches the use of a sinc filter (Section II: fig. 2).

Therefore it would be obvious to one of ordinary skill in the art at the time of the invention to combine the spread spectrum communication sampling method of Affes with the sampling method disclosed by Unser in order to create an improved method and system for sampling and reconstructing the information from the original signal while minimizing errors in the reconstructed information.

With regards to claims 5 and 38, Affes in view of Unser teaches the limitations of claims 3 and 36

Affes teaches pre-processing of the received signal (fig. 13: element 18).

Affes does explicitly teach said filter (f) is a Gaussian filter.

Unser teaches the use of B-splines with a Gaussian-like response as the n degree increases (Section III: fig. 3). One of ordinary skill in the art would clearly recognize that Gaussian filters have fast decay which would allow for more accurate signal filtering while minimizing computational burden in a digital system. Therefore it would have been obvious to one of ordinary skill to use a Gaussian filter to pre-filter the

Art Unit: 2611

input signal in order to for more accurate signal filtering while minimizing computational burden in a digital system.

With regards to claims 6 and 39, Affes in view of Unser teaches the limitations of claims 1 and 38.

Affes teaches said wireless communication channel comprises: a multipath fading transmission channel (paragraph 116).

With regards to claims 7 and 40, Affes in view of Unser teaches the limitations of claims 1 and 34.

Affes teaches said wireless communication channel comprises: a CDMA system (paragraph 116-117).

With regards to claims 8 and 41, Affes in view of Unser teaches the limitations of claims 1 and 34, including sampling at a frequency between the chip rate (frequency) and rate of innovation.

Affes does not explicitly teach said sampling at a frequency greater than the information rate of the received signal.

Unser teaches the reconstruction of a consistent signal (which yields the same measurements as the original signal) as long as there are as many measurements (samples) as there are degrees of freedom in the signal (Section V, B).

Art Unit: 2611

One of ordinary skill in the art at the time of the invention would recognize that since the rate of innovation is defined by the total degrees of freedom of the wanted signal it would be obvious that Unser obviously discloses sampling a signal at the rate of innovation for reconstructing in the digital domain. Furthermore, one of ordinary skill in the art at the time of the invention would clearly recognize that the rate of innovation (defined by the degree of freedom) is at least equal to the information rate (symbol/baud rate).

Therefore it would be obvious to one of ordinary skill in the art at the time of the invention to modify (lower) the sampling rate (frequency) of Affes with the teachings. Unser in order to sample the received signal at a frequency lower than the chip rate of said received signal, but greater than the rate of innovation and information rate of said received signal, since such a modification has the advantages of minimizing the receiver complexity (i.e. processing speed and power dissipation), and minimizing the distortion (due to aliasing) introduced into the wanted signal due to sampling below the Nyquist frequency.

With regards to claims 16 and 49, Affes in view of Unser teaches the limitations of claims 1 and 34.

Affes further teaches the method wherein said sent signal includes a plurality of symbols (figs. 1-2: elements 10, and 13-16) each encoded with said user specific coding sequence (figs. 1-2: elements 10, and 13-16) and transmitted by said users (figs. 1-2: elements 10, and 13-16), said method further comprising the steps of

Art Unit: 2611

running a multiuser detection scheme (fig. 16: output of element 18: to receiver for other desired users: note that the signal processing for each user is repeated) using known delays (paragraphs 178-186) and amplitude attenuations (paragraph 114) induced by said communication signal on said sent signal (figs. 1-2, 5, and 9: signal X(t)) and using said set of sampled values (fig. 16: output of element 18) and for estimating the value of the symbol (fig. 16: elements 29: paragraph 21) sent by each said user (fig. 16: output of element 18: to receiver for other desired users: note that the signal processing for each user is repeated).

With regards to claims 17 and 50, Affes in view of Unser teaches the limitations of claims 16 and 49.

Affes further teaches said multiuser detection scheme (fig. 16: output of element 18: to receiver for other desired users: note that the signal processing for each user is repeated) is a decorrelating detection scheme (paragraph 7).

With regards to claims 18 and 51, Affes in view of Unser in further view of Agee teaches the limitations of claims 16 and 49.

Affes further teaches said multiuser detection scheme (fig. 16: output of element 18: to receiver for other desired users: note that the signal processing for each user is repeated) is a minimum mean-square error detection scheme (paragraph 8).

Art Unit: 2611

With regards to claims 20 and 53, Affes in view of Unser teaches the limitations of claims 1 and 34.

Affes teaches said sent signal includes a plurality of symbols (fig. 2: elements b.sub.n and 13: paragraphs 302-306) each encoded with a user specific coding sequence (sk(t)) (paragraphs 302-306) being chosen, method further comprising the steps of:

sampling the received signal (y(t)) with a sampling frequency (fs) lower than the sampling frequency given by the Shannon theorem (paragraph 119) for generating a set of sampled values (fig. 9: output of element 18).

filtering said set of sampled values (y(nTs)) with a bank of matched filters (fig. 16: element group 19: paragraph 119), each filter being matched to said user specific coding sequence (fig. 16: element group 19: despreader) filtered, for estimating the value of the symbol (bk) sent by each said user (fig. 16: elements 19, 42, 29-30).

Affes does not teach that when lowpass filtered, the signal is orthogonal to any other user's specific coding sequence (sk(t)) used in said communication channel; the sampling rate is greater than the rate of innovation (rho) of said received signal (y(t)); and said match filter uses a lowpass filter.

Unser teaches that when lowpass filtered, the signal is orthogonal to any other user's specific coding sequence (sk(t)) used in said communication channel (Section II and fig. 2);

said match filter uses a lowpass filter (Section II and fig. 2); and

Art Unit: 2611

the reconstruction of a consistent signal (which yields the same measurements as the original signal) as long as there are as many measurements (samples) as there are degrees of freedom in the signal (Section V, B).

One of ordinary skill in the art at the time of the invention would recognize that since the rate of innovation is defined by the total degrees of freedom of the wanted signal it would be obvious that Unser discloses sampling a signal at the rate of innovation for reconstructing in the digital domain. Furthermore, one of ordinary skill in the art at the time of the invention would clearly recognize the benefits of optimizing the sampling frequency, where sampling at a lower rate has the advantages of decreasing processing speed and power dissipation of the processing elements, while sampling at a higher rate decreases distortion (due to aliasing) in the sampled signal.

Therefore it would be obvious to one of ordinary skill in the art at the time of the invention to modify (lower) the sampling rate (frequency) of Affes with the teachings. Unser in order to sample the received signal at a frequency lower than the chip rate of said received signal, but greater than the rate of innovation of said received signal, since such a modification has the advantages of minimizing the receiver complexity (i.e. processing speed and power dissipation), and minimizing the distortion (due to aliasing) introduced into the wanted signal due to sampling below the Nyquist frequency (rate).

With regards to claims 21 and 54, Affes in view of Unser teaches the limitations of claims 1 and 34.

Art Unit: 2611

Affes teaches said communication channel comprises an array of antennas (fig. 1: antennas 1 through M).

5. Claims 9-15, 19, 22-25, 30, 42-48, 52, and 55-58 are rejected under 35 U.S.C. 103(a) as being unpatentable over Affes (US 2002/0051433) in view of Unser ("Sampling – 50 Years After Shannon", Proceedings of the IEEE, Vol. 88, No.4: pages 569-587, April 2000.) as applied to claims 1, 21, 30, 34, and 54, and further in view of Agee (US 2003/0123384).

With regards to claims 9 and 42, Affes in view of Unser teaches the limitations of claims 1 and 34.

Affes teaches said sent signal includes a plurality of training sequences (paragraphs 302-306: pilot symbol) each encoded with a user specific coding sequence (paragraphs 114, 132-134, and 302-306: user spreading code, denoted as 'c') and transmitted by said users (k) (paragraphs 114, 132-134, and 302-306: users), said method further comprising the steps of:

retrieving the delays (paragraphs 132-134 and 178-186: propagation delay, denoted as 't', tau) and the amplitude attenuations (paragraphs 114, 132-134, and 178-186: power along each path, denoted as 't', epsilon) induced by said communication channel on said sent signal (paragraphs 114, 132-134, and 178-186), corresponding to said received signal (114, 132-134, and 178-186) and corresponding to each of said

Art Unit: 2611

user specific coding sequence (paragraphs 114, 132-134, and 178-186: user spread code);

Affes does not explicitly teach determining the set of spectral values corresponding to said received signal from said set of sampled values, recovering spectral values corresponding to each of said user specific coding sequence, wherein the determined amplitude and delays were determined from spectral values of the signal and spectral values of the user specific coding sequence.

Agee teaches determining a set of spectral values corresponding to said received signal from said set of sampled values (figs. 8-9: elements 234, 236, 264, and 266: paragraphs 15, 30, 57, 108, 118, and 124);

recovering spectral values corresponding to each of said user specific coding sequence (figs. 8-9: paragraphs 15, 30, 108, 118, and 124);

wherein the determined amplitude and delays (figs. 8-9: paragraphs 15, 30, 108, 118, and 124: propagation/multipath delay and fading) were determined from spectral values of the signal and spectral values of the user specific coding sequence (figs. 8-9: paragraphs 15, 30, 108, 118, and 124: propagation delay and channel fading).

One of orindary skill in the art at the time of the invention would clearly recognize the benefits of performing the described above in the spectral (frequency) domain, since such a modification has the advantages simplifying the calculation and correction of linear channel distortion, the mitigation of Doppler shifts, and carrier offset. Therefore it would be obvious to one of orindary skill in the art at the time of the invention to modify the CDMA receiver of Affes with the teachings of Agee since such a modification has

Art Unit: 2611

the benefits of simplifying the calculation and correction of linear channel distortion, the mitigation of Doppler shifts, and carrier offset.

With regards to claims 10 and 43, Affes in view of Unser in further view of Agee teaches the limitations of claims 9 and 42.

Affes teaches retrieving said delays and said amplitude attenuations includes solving a series of one-dimensional estimation problems (paragraphs 55 and 230: wherein receiver only has one antenna), the size of each said one-dimensional estimation problem being equal to the number of said sampled values generated during one symbol duration (fig. 16: element 29: paragraph 21).

With regards to claims 11 and 44, Affes in view of Unser in further view of Agee teaches the limitations of claims 10 and 43.

Affes further teaches said series of one-dimensional equation systems (figs. 16 and 44: elements 59, 43, 47, 25, and 29-32) is derived from said received signal (fig. 44: element 18), each of said user specific coding sequence (fig. 44: element 19) and the value of the bits of said training sequences (fig. 44: elements 29-35).

Affes does not explicitly teach the spectral value of the received signal and said user specific coding.

Agee teaches the use of Fast Fourier transform (FFT) before the dispreading unit (figs. 8-9: element 236, 242, 266, and 272) computing a set of spectral values (Y[m]) corresponding to said received signal (y(t)) from said set of sampled values (fig. 7B and

Art Unit: 2611

8-9: ADC output, and front end);

recovering spectral values (Sk[m]) corresponding to each of said user specific coding sequence (figs. 8-9: elements 242 and 272).

Therefore it would be obvious to one of ordinary skill in the art at the time of the invention to combine the CDMA-OFDM communication system of Affes with the CDMA-OFDM system of Agee in order to create an improved system and method with lower complexity by using simple equalization of linear channel distortion (paragraph 30).

With regards to claims 12 and 45, Affes in view of Unser in further view of Agee teaches the limitations of claims 11 and 44.

Affes further teaches processing a second sent signal (figs. 1 and 16: element group 10, 14, and output to other receiver for other desired users) including a plurality of symbols (fig. 1 and 2: elements 13-16) each encoded with said user specific coding sequence (sk(t)) and transmitted by said users (k), sampling said second sent signal (y(t)) with a sampling frequency lower than the sampling frequency given by the Shannon theorem (paragraph 119).

Affes does not explicitly teach the sampling rate is greater than the rate of innovation (rho) of said received signal (y(t)).

Unser teaches the reconstruction of a consistent signal (which yields the same measurements as the original signal) as long as there are as many measurements (samples) as there are degrees of freedom in the signal (Section V, B). One of ordinary skill in the art at the time of the invention would recognize that since the rate of

Art Unit: 2611

innovation is defined by the total degrees of freedom of the wanted signal it would be obvious to sample at a greater than or equal to the rate of innovation in order to reconstruct information of the original signal with minimum error. Therefore it would be obvious to one of ordinary skill in the art at the time of the invention to combine the spread spectrum communication sampling method of Affes with the sampling method disclosed by Unser in order to create an improved method and system for sampling and reconstructing the information from the original signal while minimizing errors in the reconstructed information.

With regards to claims 13 and 46, Affes in view of Unser in further view of Agee teaches the limitations of claims 12 and 45.

Affes further teaches running a multiuser detection scheme using said second set of sampled values (fig. 16: output of element 18: to receiver for other desired users: note that the signal processing for each user is repeated) and previously computed said delays (paragraphs 178-186) and said amplitude attenuations (paragraph 114) for estimating the value of the symbol (bk) sent by each said user (fig. 16: elements 29: paragraph 21).

With regards to claims 14 and 47, Affes in view of Unser in further view of Agee teaches the limitations of claims 13 and 46.

Affes further teaches said multiuser detection scheme (fig. 16: output of element 18: to receiver for other desired users: note that the signal processing for each user is

Art Unit: 2611

repeated) is a decorrelating detection scheme (paragraph 7).

With regards to claims 15 and 48, Affes in view of Unser in further view of Agee teaches the limitations of claims 13 and 46.

Affes further teaches said multiuser detection scheme (fig. 16: output of element 18: to receiver for other desired users: note that the signal processing for each user is repeated) is a minimum mean-square error detection scheme (paragraph 8).

With regards to claims 19 and 52, Affes in view of Unser teaches the limitations of claims 1 and 34, including sampling between the chip rate and rate of innovation.

Affes teaches said sent signal includes a plurality of training sequences (paragraphs 302-306) each encoded with a user specific coding sequence (sk(t)) (paragraphs 302-306) and transmitted by said users (k) (paragraphs 302-306), said method further comprising the steps of:

computing a set sampled values from said received signal (fig. 16: output of element 18).

computing a set of channel dependant values (figs. 1-2, 5, and 9: signal X(t): paragraphs 114 and 178-186) from the sampled signal (fig. 44: output of element 18) and said training sequences (fig. 44: paragraphs 302-306).

processing a second sent signal (figs. 1 and 16: element group 10, 14, and output to other receiver for other desired users) including a plurality of symbols (fig. 1 and 2: elements 13-16) each encoded with said user specific coding sequence (sk(t))

Art Unit: 2611

and transmitted by said users (k), sampling said second sent signal (y(t)) with a sampling frequency lower than the sampling frequency given by the Shannon theorem (paragraph 119).

retrieving the value of the symbol (figs. 16 and 44: elements 28-30, 47, 43, 29-35) by each said user by solving a linear matrix system (figs. 16 and 44: elements 28-30, 47, 43, 29-35) including said second set of sampled values (figs. 16 and 44: output of element 18: "to receivers for other desired users": note that the recovery process is repeated for each desired user) and said set of channel dependant values (figs. 16 and 44: elements 28-30, 47, 43, 29-35)).

Affes does not explicitly teach determining the a set of spectral values (Y[m]) corresponding to said received signal (y(t)) from said set of sampled values (y(nTs)), wherein the determined channel values were determined from spectral values of the signal and spectral values of the user specific coding sequence.

Affes does not explicitly teach determining the a set of spectral values (Y[m]) corresponding to said received signal (y(t)) from said set of sampled values (y(nTs)), wherein the determined channel values were determined from spectral values of the signal and spectral values of the user specific coding sequence.

Agee teaches determining a set of spectral values corresponding to said received signal from said set of sampled values (figs. 8-9: elements 234, 236, 264, and 266: paragraphs 15, 30, 57, 108, 118, and 124);

recovering spectral values corresponding to each of said user specific coding sequence (figs. 8-9: paragraphs 15, 30, 108, 118, and 124);

Art Unit: 2611

wherein the determined amplitude and delays (figs. 8-9: paragraphs 15, 30, 108, 118, and 124: propagation/multipath delay and fading) were determined from spectral values of the signal and spectral values of the user specific coding sequence (figs. 8-9: paragraphs 15, 30, 108, 118, and 124: propagation delay and channel fading).

One of orindary skill in the art at the time of the invention would clearly recognize the benefits of performing the described above in the spectral (frequency) domain, since such a modification has the advantages simplifying the calculation and correction of linear channel distortion, the mitigation of Doppler shifts, and carrier offset. Therefore it would be obvious to one of orindary skill in the art at the time of the invention to modify the CDMA receiver of Affes with the teachings of Agee since such a modification has the benefits of simplifying the calculation and correction of linear channel distortion, the mitigation of Doppler shifts, and carrier offset.

With regards to claims 22 and 55, Affes in view of Unser teaches the limitations of claims 21 and 54.

Affes teaches said sent signal includes a plurality of training sequences (paragraphs 302-306) each encoded with a user specific coding sequence (sk(t)) (paragraphs 302-306) and transmitted by said users (k) (paragraphs 302-306), said method further comprising the steps of:

sampling the received signal (y(t)) from each antenna (figs. 1 and 16: elements 11-12 and 18-19) with a sampling frequency (fs) lower than the sampling frequency given by the Shannon theorem (paragraph 119) for generating a set of sampled values

Art Unit: 2611

(fig. 9: output of element 18).

retrieving the delays (paragraphs 178-186) and the amplitude attenuations (paragraph 114) and direction of arrival (paragraphs 133-135 and 155) induced by said communication channel on said sent signal (figs. 1-2, 5, and 9: signal X(t)), corresponding to said received signal (y(t)) and corresponding to each of said user specific coding sequence (fig. 5: elements 18, 19 and 20).

Affes does not explicitly determining the a set of spectral values (Y[m]) corresponding to said received signal (y(t)) from said set of sampled values (y(nTs)), recovering spectral values (Sk[m]) corresponding to each of said user specific coding sequence (sk(t)), wherein the determined amplitude and delays were determined from spectral values of the signal and spectral values of the user specific coding sequence; and determining the direction of arrival of the received signal.

Agee teaches determining a set of spectral values corresponding to said received signal from said set of sampled values (figs. 8-9: elements 234, 236, 264, and 266: paragraphs 15, 30, 57, 108, 118, and 124);

recovering spectral values corresponding to each of said user specific coding sequence (figs. 8-9: paragraphs 15, 30, 108, 118, and 124);

wherein the determined amplitude and delays (figs. 8-9: paragraphs 15, 30, 108, 118, and 124: propagation/multipath delay and fading) were determined from spectral values of the signal and spectral values of the user specific coding sequence (figs. 8-9: paragraphs 15, 30, 108, 118, and 124: propagation delay and channel fading).

Art Unit: 2611

One of orindary skill in the art at the time of the invention would clearly recognize the benefits of performing the described above in the spectral (frequency) domain, since such a modification has the advantages simplifying the calculation and correction of linear channel distortion, the mitigation of Doppler shifts, and carrier offset. Therefore it would be obvious to one of orindary skill in the art at the time of the invention to modify the CDMA receiver of Affes with the teachings of Agee since such a modification has the benefits of simplifying the calculation and correction of linear channel distortion, the mitigation of Doppler shifts, and carrier offset.

With regards to claims 23 and 56, Affes in view of Unser in further view of Agee teaches the limitations of claims 22 and 55.

Affes teaches the step of retrieving said delays and said amplitude attenuations and directions of arrival includes solving a series of two-dimensional estimation problems (paragraphs 55 and 230: wherein receiver combines the signal from two antennas), the size of each said two-dimensional estimation problem being equal to the number of said sampled values generated during one symbol duration (fig. 16: element 29: paragraph 21).

With regards to claims 24 and 57, Affes in view of Unser in further view of Agee teaches the limitations of claims 23 and 56.

Affes teaches said sent signal includes a plurality of training sequences (paragraphs 302-306) each encoded with a user specific coding sequence (sk(t))

Art Unit: 2611

(paragraphs 302-306) and transmitted by said users (k) (paragraphs 302-306), said method further comprising the steps of:

sampling the received signal (y(t)) from each antenna (figs. 1 and 16: elements 11-12 and 18-19) with a sampling frequency (fs) lower than the sampling frequency given by the Shannon theorem (paragraph 119) for generating a set of sampled values (fig. 9: output of element 18).

retrieving the delays (paragraphs 178-186) and the amplitude attenuations (paragraph 114) and direction of arrival induced by said communication channel on said sent signal (figs. 1-2, 5, and 9: signal X(t)), corresponding to said received signal (y(t)) and corresponding to each of said user specific coding sequence (fig. 5: elements 18, 19 and 20);

Affes does not explicitly determining the a set of spectral values (Y[m]) corresponding to said received signal (y(t)) from said set of sampled values (y(nTs)), recovering spectral values (Sk[m]) corresponding to each of said user specific coding sequence (sk(t)), wherein the determined amplitude and delays were determined from spectral values of the signal and spectral values of the user specific coding sequence; and determining the direction of arrival of the received signal.

Agee teaches determining a set of spectral values corresponding to said received signal from said set of sampled values (figs. 8-9: elements 234, 236, 264, and 266: paragraphs 15, 30, 57, 108, 118, and 124);

recovering spectral values corresponding to each of said user specific coding sequence (figs. 8-9: paragraphs 15, 30, 108, 118, and 124);

Art Unit: 2611

wherein the determined amplitude and delays (figs. 8-9: paragraphs 15, 30, 108, 118, and 124: propagation/multipath delay and fading) were determined from spectral values of the signal and spectral values of the user specific coding sequence (figs. 8-9: paragraphs 15, 30, 108, 118, and 124: propagation delay and channel fading).

One of orindary skill in the art at the time of the invention would clearly recognize the benefits of performing the described above in the spectral (frequency) domain, since such a modification has the advantages simplifying the calculation and correction of linear channel distortion, the mitigation of Doppler shifts, and carrier offset. Therefore it would be obvious to one of orindary skill in the art at the time of the invention to modify the CDMA receiver of Affes with the teachings of Agee since such a modification has the benefits of simplifying the calculation and correction of linear channel distortion, the mitigation of Doppler shifts, and carrier offset.

With regards to claims 25 and 58, Affes in view of Unser in further view of Agee teaches the limitations of claims 24 and 57.

processing a second sent signal (figs. 1 and 16: element group 10, 14, and output to other receiver for other desired users) including a plurality of symbols (fig. 1 and 2: elements 13-16) each encoded with said user specific coding sequence (sk(t)) and transmitted by said users (k), sampling said second sent signal and first sent signal with a sampling frequency lower than the sampling frequency given by the Shannon theorem (paragraph 119).

Art Unit: 2611

Affes does not explicitly teach orienting the beams of said array of antennas (i) towards previously determined said arrival directions.

Agee teaches orienting the beams of said array of antennas (i) towards previously determined said arrival directions (paragraphs 127-135).

Therefore it would be obvious to one of ordinary skill in the art at the time of the invention to combine the CDMA communication system of Affes with the teachings of Agee in order to create an improved system and method with lower complexity by using simple equalization of linear channel distortion and adaptive antennas.

With regards to claim 30, Affes in view of Unser teaches the limitations of claim 29.

Affes teaches comprising a memory for storing said signature sequences (fig. 16: elements 18-19: wherein the de-spreaders would inherently store the signature sequences in memory).

Affes does not explicitly teach having said spectral values of said signature sequences.

Agee teaches the use of Fast Fourier transform (FFT) before the dispreading unit (figs. 8-9: element 236, 242, 266, and 272) computing a set of spectral values (Y[m]) corresponding to said received signal (y(t)) from said set of sampled values (fig. 7B and 8-9: ADC output, and front end);

One of orindary skill in the art at the time of the invention would clearly recognize the benefits of performing the described above in the spectral (frequency) domain, since such a modification has the advantages simplifying the calculation and correction of

Art Unit: 2611

linear channel distortion, the mitigation of Doppler shifts, and carrier offset. Therefore it would be obvious to one of orindary skill in the art at the time of the invention to modify the CDMA receiver of Affes with the teachings of Agee since such a modification has the benefits of simplifying the calculation and correction of linear channel distortion, the mitigation of Doppler shifts, and carrier offset.

6. Claims 26 and 59 are rejected under 35 U.S.C. 103(a) as being unpatentable over Affes (US 2002/0051433) in view of Unser ("Sampling – 50 Years After Shannon", Proceedings of the IEEE, Vol. 88, No.4: pages 569-587, April 2000.) with Agee (US 2003/0123384) as applied to claims 25 and 58 above, and further in view of Huang (USPN 6.370.129).

With regards to claims 26 and 59, Affes in view of Unser in further view of Agee teaches the limitations of claims 25 and 58.

Affes further teaches running a detection scheme using said second set of sampled values (fig. 16: output of element 18: to receiver for other desired users: note that the signal processing for each user is repeated) and previously computed said delays (paragraphs 178-186) and said amplitude attenuations (paragraph 114) for estimating the value of the symbol (bk) sent by each said user (fig. 16: elements 29: paragraph 21).

Affes does not explicitly teach running a 2D-RAKE.

Huang teaches using a 2D-Rake (col. 6. lines 3-25).

Art Unit: 2611

Therefore it would be obvious to one of ordinary skill in the art at the time of the invention to combine the CDMA multi-user communication system of Affes with the teachings of Huang in order to implement an improved multi-user detection scheme which mitigates multi-user interference in a high speed mixed traffic environment (col. 2, line 1-5 and col. 5, line 62 through col. 6, line 25).

Claims 27 and 60 are rejected under 35 U.S.C. 103(a) as being unpatentable over Affes (US 2002/0051433) in view of Unser ("Sampling – 50 Years After Shannon", Proceedings of the IEEE, Vol. 88, No.4: pages 569-587, April 2000.) as applied to claims 1 and 34 above, and further in view of Shattil (USPN 7,076,168).

With regards to claims 27 and 60, Affes in view of Usner teachings the limitations of claims 1 and 34, including sampling between the chip rate and rate of innovation.

Affes teaches a method for processing a signal (y(t)) sent over a wireless communication channel (paragraphs 14-23), comprising the step of sampling the received signal (y(t)) with a sampling frequency (fs) lower than the sampling frequency given by the Shannon theorem (paragraph 119) for generating a set of sampled values (fig. 9: output of element 18).

Affes does not explicitly teach said wireless communication channel is an Ultra Wideband (UWB) communication system.

Shattil teaches said bandwidth-expanding communication channel is an Ultra Wideband (UWB) communication system (col. 17, lines 1-10 and col. 19, lines 15-32).

Art Unit: 2611

One of orindary skill in the art at the time of the invention would clearly recognize that UWB (used as a spread spectrum technique) has the benefits of a low power frequency spectrum.

Therefore it would have been obvious to one of ordinary skill in the art to modify the CDMA system and method of Affes with the teachings of Shattil since such a modification has the benefits of a low power frequency spectrum.

 Claims 31-33 are rejected under 35 U.S.C. 103(a) as being unpatentable over Affes (US 2002/0051433) in view of Unser ("Sampling – 50 Years After Shannon", Proceedings of the IEEE, Vol. 88, No.4: pages 569-587, April 2000.) as applied to claim 29 above, and further in view of Baum (USPN 7,218,666).

With regards to claim 31, Affes in view of Unser teaches the limitations of claim 29.

Affes teaches a set of at least two encoders (figs. 16 and 44: elements 18-19, 27-30, and 35), each encoder of said set of encoders being assigned at least one training sequence (fig. 44: elements 18, 28-32, and 35) to be sent over a bandwidth-expanding channel during a training phase (paragraphs 302-306),

Affes does not explicitly teach the at least one training sequence (paragraphs 302-306) is chosen such that it is linearly independent from any other training sequence (paragraphs 302-306) assigned to any other encoder (paragraphs 302-306) of said set of encoders.

Art Unit: 2611

Baum teaches the at least one training sequence (col. 12, line 40 through col. 13, line 7) is chosen such that it is linearly independent from any other training sequence (col. 12, line 40 through col. 13, line 7) assigned to any other encoder (col. 12, line 40 through col. 13, line 7) of said set of encoders.

Therefore it would be obvious to one of ordinary skill in the art at the time of the invention to modify the CDMA communication system of Affes with the pilot chip symbol teachings of Baum in order to create an improved system capable of more actually measuring the frequency response of the channel with less interference from other user signals.

With regards to claim 32, Affes in view of Unser in further view of Baum teaches the limitations of claim 31.

Affes teaches a set of at least two encoders, each said encoder (50) being assigned at least one said training sequences (bkt), wherein each said encoder (50) is designed to select from said at least one training sequences (bkt) the training sequence (bkt) to be sent during said training phase (30).

Affes does not explicitly teach assigned at least two said training sequences (bkt), and said encoder is designed to select from said at least two training sequences.

Baum teaches assigned at least two said training sequences, and said encoder is designed to select from said at least two training sequences (col. 12, line 40 through col. 13, line 7).

Art Unit: 2611

Therefore it would be obvious to one of ordinary skill in the art at the time of the invention to modify the CDMA communication system of Affes with the pilot chip symbols teachings of Baum in order to create an improved system capable of more actually measuring the frequency response of the channel with less interference from other user signals.

With regards to claim 33, Affes in view of Unser in further view of Baum teaches the limitations of claim 31.

Affes teaches each of two said encoder being assigned a specific coding sequence (fig. 2: elements b<sub>n</sub> and 13: paragraphs 302-306) for coding a signal to be sent over said bandwidth-expanding channel (fig. 2: elements b.sub.n and 13: paragraphs 302-306), wherein said coding sequence (sk(t)) is chosen such that, when filtered, for estimating the value of the symbol (bk) sent by each said user (fig. 16: elements 19, 42, 29-30).

Affes does not explicitly teach said filter being a lowpass filter such that the signal is filtered with a lowpass filter (f), it is orthogonal to any specific coding sequence (sk(t)) assigned to any other encoder (50) of said set of encoders filtered with said lowpass filter (f).

Unser teaches that when lowpass filtered, the signal is orthogonal to any other user's specific coding sequence (sk(t)) used in said communication channel (Section II and fig. 2):

said match filter uses a lowpass filter (Section II and fig. 2); and

Art Unit: 2611

the reconstruction of a consistent signal (which yields the same measurements as the original signal) as long as there are as many measurements (samples) as there are degrees of freedom in the signal (Section V, B). One of ordinary skill in the art at the time of the invention would recognize that since the rate of innovation is defined by the total degrees of freedom of the wanted signal it would be obvious that Unser discloses sampling a signal at the rate of innovation for reconstructing in the digital domain. Furthermore, one of ordinary skill in the art at the time of the invention would clearly recognize the benefits of optimizing the sampling frequency, where sampling at a lower rate has the advantages of decreasing processing speed and power dissipation of the processing elements, while sampling at a higher rate decreases distortion (due to aliasing) in the sampled signal.

Therefore it would be obvious to one of ordinary skill in the art at the time of the invention to modify (lower) the sampling rate (frequency) of Affes with the teachings Unser in order to sample the received signal at a frequency lower than the chip rate of said received signal, but greater than the rate of innovation of said received signal, since such a modification has the advantages of minimizing the receiver complexity (i.e. processing speed and power dissipation), and minimizing the distortion (due to aliasing) introduced into the wanted signal due to sampling below the Nyquist frequency (rate).

 Claim 28 is rejected under 35 U.S.C. 103(a) as being unpatentable over Affes (US 2002/0051433) in view of Unser ("Sampling – 50 Years After Shannon",

Art Unit: 2611

Proceedings of the IEEE, Vol. 88, No.4: pages 569-587, April 2000.), and further in view of Langberg (USPN 5.852.630).

With regards to claim 28, Affes teaches a receiver and method for processing a signal sent over a wireless communication channel (paragraphs 14-23), comprising the step of:

receiving a signal over a wireless communication channel (paragraphs 14-23), and sampling the received signal with a sampling frequency (rate) lower than the sampling frequency given by the Shannon theorem (figs. 6 and 9: elements 18 and 23: paragraphs 119 and 138) for generating a set of sampled values (figs. 6 and 9: elements 18 and 23: paragraphs 119 and 138), wherein said sampling frequency is the chip rate (figs. 6 and 9: elements 18 and 23: paragraphs 119 and 138). sampling the received signal with a sampling frequency lower than the sampling frequency given by the Shannon theorem (paragraph 119) for generating a set of sampled values (fig. 9: output of element 18).

Affes does not explicitly teach two Limitations: Limitation 1) the sampling rate is lower than the chip rate of said received signal, but greater than the rate of innovation of said received signal; and Limitation 2) a computer-readable medium on which is recorded a control program for a data processor, the computer-readable medium, comprising instructions for causing the data processor to perform the process as disclosed above.

Limitation 1)

Art Unit: 2611

Unser teaches the reconstruction of a consistent signal (which yields the same measurements as the original signal) as long as there are as many measurements (samples) as there are degrees of freedom in the signal (Section V, B).

One of ordinary skill in the art at the time of the invention would recognize that since the rate of innovation is defined by the total degrees of freedom of the wanted signal it would be obvious that Unser discloses sampling a signal at the rate of innovation for reconstructing in the digital domain. Furthermore, one of ordinary skill in the art at the time of the invention would clearly recognize the benefits of optimizing the sampling frequency, where sampling at a lower rate has the advantages of decreasing processing speed and power dissipation of the processing elements, while sampling at a higher rate decreases distortion (due to aliasing) in the sampled signal.

Therefore it would be obvious to one of ordinary skill in the art at the time of the invention to modify (lower) the sampling rate (frequency) of Affes with the teachings Unser in order to sample the received signal at a frequency lower than the chip rate of said received signal, but greater than the rate of innovation of said received signal, since such a modification has the advantages of minimizing the receiver complexity (i.e. processing speed and power dissipation), and minimizing the distortion (due to aliasing) introduced into the wanted signal due to sampling below the Nyquist frequency (rate). Limitation 2)

Affes in view of Unser teaches all of the subject matter as described above except for the method written by a software program loadable into the internal memory

Art Unit: 2611

of the digital processing system, said program embodied in a computer-readable medium.

Langberg et al. teaches that the method and apparatus for a transceiver warm start activation procedure with pre-coding can be implemented in software stored in a computer-readable medium. The computer-readable medium is an electronic, magnetic, optical, or other physical device or means that can contain or store a computer program for use by or in connection with a computer-related system or method (col. 3, lines 51-65). One skilled in the art would have clearly recognized that the method of Affes in view of Unser would have been implemented in software. The implemented software would perform the same function of the hardware for less expense, and have increased adaptability, and flexibility. Therefore, it would have been obvious to one of ordinary skill in the art at the time of the invention to use the software as taught by Langberg et al. in the method of Affes in view of Unser in order to reduce cost and improve the adaptability and flexibility of the communication system.

#### Conclusion

- The prior art made of record and not relied upon is considered pertinent to applicant's disclosure.
- 11. Pedersen et al. (US 2004/0057593) discloses under-sampling (below the Nyquist frequency) at least one received signal to yield the benefits of reducing the computational loading of a digital signal processor (DSP), even though under-sampling introduces distortion (due to aliasing) into the sampling signal (paragraph 81).

Art Unit: 2611

Furthermore, an under-sampling factor is selected (having a value between 2 and 8) to optimize the sampling frequency (rate) (paragraph 81).

Haga et al. (USPN 6,507,603) discloses a CDMA communication system wherein the sampling rate is adapted (optimized) with reference to the channel condition (col. 4, lines 23-39 and col. 11, line 61 through col. 12, line 6). Specifically when the reception state (channel quality) is good the sampling rate is decreased in order to reduce the operation speed of the processing elements thus reducing power consumption; and when reception state is poor the sampling rate is enlarged to improve precision (col. 4, lines 23-39 and col. 11, line 61 through col. 12, line 6). Wherein sampling at the chip frequency of a spread spectrum signal is discloses as being known in the art (col. 3, lines 7-13).

Pawelski (USPN 4,716,453) discloses that the sampling rate (bits per sample) is directly related to the quality of the received signal, efforts to balance (optimize) signal quality vs. cost (of the communication system) have led receivers to sample at sub-Nyquist sampling rates even though sampling at sub-Nyquist rates introduces distortion (such as aliasing) in the wanted signal (col. 1, lines 40-53 and col. 1, line 67 through col. 2, line 9).

 THIS ACTION IS MADE FINAL. Applicant is reminded of the extension of time policy as set forth in 37 CFR 1.136(a).

A shortened statutory period for reply to this final action is set to expire THREE MONTHS from the mailing date of this action. In the event a first reply is filed within TWO MONTHS of the mailing date of this final action and the advisory action is not

Art Unit: 2611

mailed until after the end of the THREE-MONTH shortened statutory period, then the shortened statutory period will expire on the date the advisory action is mailed, and any extension fee pursuant to 37 CFR 1.136(a) will be calculated from the mailing date of the advisory action. In no event, however, will the statutory period for reply expire later than SIX MONTHS from the mailing date of this final action.

Any inquiry concerning this communication or earlier communications from the examiner should be directed to JAMES M. PEREZ whose telephone number is (571)270-3231. The examiner can normally be reached on Monday through Friday: 9am to 5pm EST.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, David Payne can be reached on 571-272-3024. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

Application/Control Number: 10/680,839 Page 40

Art Unit: 2611

/James M Perez/ Examiner, Art Unit 2611 5/25/2010

/David C. Payne/ Supervisory Patent Examiner, Art Unit 2611