

(12)特許協力条約に基づいて公開された国際出願

(19)世界知的所有権機関
国際事務局

(43)国際公開日
2003年12月18日 (18.12.2003)

PCT

(10)国際公開番号
WO 03/104460 A1

- (51) 国際特許分類?: C12N 15/12, 1/21, 5/10, C07K 14/435, 19/00, G01N 21/78
- (21) 国際出願番号: PCT/JP03/07336
- (22) 国際出願日: 2003年6月10日 (10.06.2003)
- (25) 国際出願の言語: 日本語
- (26) 国際公開の言語: 日本語
- (30) 優先権データ:
特願2002-168583 2002年6月10日 (10.06.2002) JP
- (71) 出願人(米国を除く全ての指定国について): 理化学研究所 (RIKEN) [JP/JP]; 〒351-0198 埼玉県和光市広沢2番1号 Saitama (JP). 株式会社医学生物学研究所 (MEDICAL & BIOLOGICAL LABORATORIES CO., LTD.) [JP/JP]; 〒460-0002 愛知県名古屋市中区丸の内3丁目5番10号 住友商事丸の内ビル5F Aichi (JP).
- (72) 発明者: および
- (75) 発明者/出願人(米国についてのみ): 宮脇 敦史 (MIYAWAKI,Atsushi) [JP/JP]; 〒351-0198 埼玉県和光市広沢2番1号 理化学研究所内 Saitama (JP). 唐澤智司 (KARASAWA,Satoshi) [JP/JP]; 〒396-0002 長野県伊那市大字手良沢岡字大原1063-103 株式会社医学生物学研究所伊那研究所内 Nagano (JP).
- (74) 代理人: 特許業務法人特許事務所サイクス (SIKS & CO.); 〒104-0031 東京都中央区京橋一丁目8番7号京橋日殖ビル8階 Tokyo (JP).
- (81) 指定国(国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) 指定国(広域): ARIPO 特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許 (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:
— 国際調査報告書

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイドスノート」を参照。

(54) Title: PIGMENT PROTEIN

(54) 発明の名称: 色素蛋白質

(57) Abstract: It is intended to provide a novel pigment protein originating in *Cnidopus japonicus*. Namely, a pigment protein originating in *Cnidopus japonicus* which has the following characteristics is provided: (1) having a maximum absorption wavelength of 610 nm and being non-fluorescent; (2) having a molar absorption coefficient at 610 nm of 66700; and (3) the pH sensitivity of the absorption properties being stable at pH 4 to 10.

WO 03/104460 A1

(57) 要約: 本発明の目的は、コモチイソギンチャク (*Cnidopus japonicus*) に由来する新規な色素蛋白質を提供することである。本発明によれば、コモチイソギンチャク (*Cnidopus japonicus*) 由来の下記の特性を有する色素蛋白質が提供される。(1) 吸収極大波長が 610 nm であり、蛍光を発しない;(2) 610 nm におけるモル吸光係数が 66700 である;(3) 吸光特性の pH 感受性が pH 4 ~ 10 で安定である:

明細書
色素蛋白質

技術分野

本発明は、新規な色素蛋白質に関する。より詳細には、本発明は、コモチイソギンチャク (*Cnidopus japonicus*) 由来の新規な色素蛋白質及びその利用に関する。

背景技術

クラゲのエクオレア・ビクトリア (*Aequorea victoria*) に由来する緑色蛍光蛋白質 (GFP) は、生物系において多くの用途を有する。最近、ランダム突然変異誘発法および半合理的(semi-rational)突然変異誘発法に基づいて、色を変化させたり、折りたたみ特性を改善したり、輝度を高めたり、あるいはpH感受性を改変したといった様々なGFP変異体が作製されている。遺伝子組み換え技術により他の蛋白質をGFP等の蛍光蛋白質に融合させて、それらの発現および輸送のモニタリングを行うことが行われている。

最もよく使用されるGFP変異体の一つとして黄色蛍光蛋白質 (YFP) が挙げられる。YFPは、クラゲ (*Aequorea*) GFP変異体の中でも最長波長の蛍光を示す。大部分のYFPの ϵ および Φ は、それぞれ $60,000\sim100,000 M^{-1} cm^{-1}$ および $0.6\sim0.8$ であり (Tsien, R. Y. (1998). Ann. Rev. Biochem. 67, 509-544)、これらの値は、一般的な蛍光団 (フルオレセインおよびローダミンなど) の値に匹敵する。従ってYFPの絶対的輝度の改善は、ほぼ限界に達しつつある。

また、GFP変異体の他の例として、シアン蛍光蛋白質 (CFP) があり、E-CFP (enhanced cyan fluorescent protein) が知られている。また、イソギンチャク (*Discosoma sp.*) からは赤色蛍光蛋白質 (RFP) も単離されており、DsRed が知られている。このように蛍光蛋白質は、緑色、黄色、シアン色、赤色の4種が次々と開発されスペクトルの範囲は大幅に広がっている。

発明の開示

本発明は、コモチイソギンチャク (*Cnidopus japonicus*) に由来する新規な色素蛋白質を提供することを解決すべき課題とした。

上記課題を解決するために本発明者らは鋭意検討し、既知の蛍光蛋白質のアミノ酸配列の情報に基づいて好適なプライマーを設計し、緑色を呈するコモチイソギンチャク (*Cnidopus japonicus*) の cDNA ライブライリーから上記プライマーを用いて新規な色素蛋白質をコードする遺伝子を増幅してクローニングすることに成功した。さらに本発明者らは、得られたコモチイソギンチャク (*Cnidopus japonicus*) 由来の色素蛋白質の光吸収特性及び pH 感受性を解析した。本発明は、これらの知見に基づいて完成したものである。

即ち、本発明によれば、コモチイソギンチャク (*Cnidopus japonicus*) 由来の下記の特性を有する色素蛋白質が提供される。

- (1) 吸收極大波長が 610 nm であり、蛍光を発しない；
- (2) 610 nm におけるモル吸光係数が 66700 である；
- (3) 吸光特性の pH 感受性が pH 4～10 で安定である；

本発明の別の側面によれば、以下の何れかのアミノ酸配列を有する色素蛋白質が提供される。

- (a) 配列番号 1 に記載のアミノ酸配列；又は、
- (b) 配列番号 1 に記載のアミノ酸配列において 1 から数個のアミノ酸の欠失、置換及び／又は付加を有するアミノ酸配列を有し、吸光特性を有するアミノ酸配列；

本発明のさらに別の側面によれば、配列番号 1 に記載のアミノ酸配列において、28 番目のアミノ酸残基であるアラニンがグリシンに置換され、41 番目のアミノ酸残基であるグルタミン酸がメチオニンに置換され、145 番目のアミノ酸残基であるシステインがセリンに置換され、そして 158 番目のアミノ酸残基であるトレオニンがイソロイシンに置換されているアミノ酸配列を有する、蛍光を発することができる色素蛋白質が提供される。

本発明のさらに別の側面によれば、

配列番号 1 に記載のアミノ酸配列において、 64 番目のアミノ酸残基であるチロシンがロイシンに置換されているアミノ酸配列を有する、色素蛋白質；

配列番号 1 に記載のアミノ酸配列において、 64 番目のアミノ酸残基であるチロシンがメチオニンに置換されているアミノ酸配列を有する、色素蛋白質；

配列番号 1 に記載のアミノ酸配列において、 41 番目のアミノ酸残基であるグルタミン酸がロイシンに置換され、 80 番目のアミノ酸残基であるフェニルアラニンがグリシンに置換されているアミノ酸配列を有する、色素蛋白質；

配列番号 1 に記載のアミノ酸配列において、 64 番目のアミノ酸残基であるチロシンがフェニルアラニンに置換されているアミノ酸配列を有する、蛍光を発することができる色素蛋白質；

配列番号 1 に記載のアミノ酸配列において、 64 番目のアミノ酸残基であるチロシンがヒスチジンに置換されているアミノ酸配列を有する、蛍光を発することができる色素蛋白質；及び、

配列番号 1 に記載のアミノ酸配列において、 26 番目のアミノ酸残基であるシステインがバリンに置換され、 143 番目のアミノ酸残基であるシステインがセリンに置換され、 199 番目のアミノ酸残基であるプロリンがロイシンに置換されているアミノ酸配列を有する、蛍光を発することができる色素蛋白質が提供される。

本発明のさらに別の側面によれば、本発明の蛋白質をコードする DNA が提供される。

本発明のさらに別の側面によれば、以下の何れかの DNA が提供される。

(a) 配列番号 1 に記載のアミノ酸配列をコードする DNA ; 又は、

(b) 配列番号 1 に記載のアミノ酸配列において 1 から数個のアミノ酸の欠失、置換及び／又は付加を有するアミノ酸配列を有し、吸光特性を有するアミノ酸配列をコードする DNA :

本発明のさらに別の側面によれば、以下の何れかの塩基配列を有する DNA が

提供される。

- (a) 配列番号 2 に記載の塩基配列；又は、
- (b) 配列番号 2 に記載の塩基配列において 1 から数個の塩基の欠失、置換及び／又は付加を有する塩基配列を有し、吸光特性を有する蛋白質をコードする塩基配列：

本発明のさらに別の側面によれば、配列番号 12、14、16、18、20 又は 22 の何れかに記載の塩基配列を有する DNA が提供される。

本発明のさらに別の側面によれば、本発明の DNA を有する組み換えベクターが提供される。

本発明のさらに別の側面によれば、本発明の DNA 又は組み換えベクターを有する形質転換体が提供される。

本発明のさらに別の側面によれば、本発明の色素蛋白質と他の蛋白質とから成る融合蛋白質が提供される。

本発明のさらに別の側面によれば、本発明の色素蛋白質をアクセプター蛋白質として用いて FRET (蛍光共鳴エネルギー転移) 法を行うことを特徴とする、生理活性物質の分析方法が提供される。

本発明のさらに別の側面によれば、本発明の色素蛋白質、DNA、組み換えベクター、形質転換体、又は融合蛋白質を含む、吸光試薬キットが提供される。

図面の簡単な説明

図 1 は、本発明のコモチイソギンチャク由来の色素蛋白質 (KG r) の吸光スペクトルを測定した結果を示す。横軸は吸収光の波長を示し、縦軸は吸光度を示す。

図 2 は、本発明のコモチイソギンチャク由来の色素蛋白質 (KG r) の吸光スペクトルの pH 感受性を示す。横軸は pH 値を示し、縦軸は吸光度を示す。610nm は本発明のコモチイソギンチャク由来の色素蛋白質 (KG r) 特有の吸光度を示し、277nm は一般的に蛋白質定量として使われる吸光度 (芳香族アミノ酸の吸光) を示す。つまり、277nm の値で蛋白質量が一定である事を示し、610nm の値で本発

明のコモチイソギンチャク由来の色素蛋白質（KG_r）特有の吸光度がpH4～pH10においてほとんど変化しないことを示す。

図3は、本発明のコモチイソギンチャク由来の色素蛋白質（KG_r）の変異体（KG_rのアミノ酸配列中の28番目のAをGに、41番目のEをMに、145番目のCをSに、158番目のTをIに改変した変異体）の蛍光スペクトルを示す。横軸は波長を示し、縦軸は蛍光の強度を示す。emは蛍光スペクトルを示し、exは励起スペクトルを示す。

図4は、本発明のコモチイソギンチャク由来の色素蛋白質（KG_r）の変異体（KG_rのアミノ酸配列中の64番目のYをLに改変した変異体）の吸収スペクトルを示す。

図5は、本発明のコモチイソギンチャク由来の色素蛋白質（KG_r）の変異体（KG_rのアミノ酸配列中の64番目のYをMに改変した変異体）の吸収スペクトルを示す。

図6は、本発明のコモチイソギンチャク由来の色素蛋白質（KG_r）の変異体（KG_rのアミノ酸配列中の41番目のEをLに、80番目のFをGに改変した変異体）の吸収スペクトルを示す。

図7は、本発明のコモチイソギンチャク由来の色素蛋白質（KG_r）の変異体（KG_rのアミノ酸配列中の64番目のYをFに改変した変異体）の蛍光、励起スペクトルを示す。

図8は、本発明のコモチイソギンチャク由来の色素蛋白質（KG_r）の変異体（KG_rのアミノ酸配列中の64番目のYをFに改変した変異体）の吸収スペクトルを示す。

図9は、本発明のコモチイソギンチャク由来の色素蛋白質（KG_r）の変異体（KG_rのアミノ酸配列中の64番目のYをHに改変した変異体）の蛍光、励起スペクトルを示す。

図10は、本発明のコモチイソギンチャク由来の色素蛋白質（KG_r）の変異体（KG_rのアミノ酸配列中の64番目のYをHに改変した変異体）の吸収スペクトルを示す。

トルを示す。

図11は、本発明のコモチイソギンチャク由来の色素蛋白質（KG_r）の変異体（KG_rのアミノ酸配列中の26番目のCをVに、143番目のCをSに、199番目のPをIに改変した変異体）の蛍光、励起スペクトルを示す。

図12は、本発明のコモチイソギンチャク由来の色素蛋白質（KG_r）の変異体（KG_rのアミノ酸配列中の26番目のCをVに、143番目のCをSに、199番目のPをIに改変した変異体）の吸収スペクトルを示す。

発明を実施するための最良の形態

以下、本発明の実施の形態について詳細に説明する。

(1) 本発明の色素蛋白質

本発明の色素蛋白質は、コモチイソギンチャク (*Cnidopus japonicus*) 由来のものであり、下記の特性を有することを特徴とする。

- (1) 吸收極大波長が610nmであり、蛍光を発しない；
- (2) 610nmにおけるモル吸光係数が66700である；
- (3) 吸光特性のpH感受性がpH4～10で安定である；

コモチイソギンチャク (*Cnidopus japonicus*) は、刺胞動物 (CNIDARIA) の花虫綱 (Anthozoa) に属するイソギンチャクの1種であり、わが国のイソギンチャクのなかで、最も色彩変異が多い。体高は常に低く、体壁にたくさんのイボをもつ。触手は約200本で短い。親は発生の進んだ胚を口部から吐き出し、自分の体壁に着ける。胚はさらに発生が進み親の体壁上で赤ちゃんイソギンチャクとなるためにコモチイソギンチャクとの名が付いた。本種は北海道～房総半島の岩礁海岸の潮間帯とその直下に分布する。

なお、本書中以下の実施例では、コモチイソギンチャク (*Cnidopus japonicus*) を出発材料として上記特性を有する色素蛋白質を単離したが、コモチイソギンチャク以外のイソギンチャクから本発明の色素蛋白質を取得することができる場合もあり、そのような色素蛋白質も本発明の範囲内である。

本発明の色素蛋白質は、以下の実施例で示す通り、吸収極大波長が 610 nm であり、蛍光を発しない。また、610 nm におけるモル吸光係数が 66700 である。なお、モル吸光係数は分子 1 モルあたりの光子の吸収量を表す。本発明の色素蛋白質は蛍光を発しないことから、本発明の色素蛋白質は、(1) FRET のアクセプター分子（エネルギー受容体）として用いたり、(2) 照射した光のエネルギーを光以外のエネルギーに変換させるシステムの開発に利用したり、あるいは(3) 蛋白質のアミノ酸配列に変異を導入して蛍光を発するように改変することなどに用いることができる。

また、本発明の色素蛋白質は、光吸収特性の pH 感受性が pH 4～10 で安定であることを特徴とする。即ち、本発明の色素蛋白質では、pH 4～10 の範囲において吸収スペクトルのピーク値の変動が少ない。従って、本発明の色素蛋白質は、広範囲の pH 環境において同様の条件で使用することができ、生体内での使用に際しての制約は少ない。

本発明の色素蛋白質の具体例としては、以下の何れかのアミノ酸配列を有する色素蛋白質が挙げられる。

- (a) 配列番号 1 に記載のアミノ酸配列；又は、
- (b) 配列番号 1 に記載のアミノ酸配列において 1 から数個のアミノ酸の欠失、置換及び／又は付加を有するアミノ酸配列を有し、吸光特性を有するアミノ酸配列：

本明細書で言う「1 から数個のアミノ酸の欠失、置換及び／又は付加を有するアミノ酸配列」における「1 から数個」の範囲は特に限定されないが、例えば、1 から 20 個、好ましくは 1 から 10 個、より好ましくは 1 から 7 個、さらに好ましくは 1 から 5 個、特に好ましくは 1 から 3 個程度を意味する。

本明細書で言う「吸光特性」とは、ある波長の光を吸収できる特性を意味し、例えば、本明細書に示した色素蛋白質と同様に吸収極大波長が 610 nm であつてもよいし、あるいは吸収極大波長の値がシフトしたものであつてもよい。なお、光吸収特性の pH 感受性は、pH 4～10 で安定であることが好ましい。

本発明の配列表の配列番号1に記載したアミノ酸配列を有する色素蛋白質は蛍光を発しないものである。本発明においては、配列番号1に記載したアミノ酸配列に対して1から数個のアミノ酸の欠失、置換及び／又は付加を導入することにより、吸光特性を改変させた蛋白質や、場合によっては蛍光を発する蛋白質を作製してもよく、このような蛋白質も本発明の範囲内に含まれる。

このようなアミノ酸変異を導入することにより作製される蛍光蛋白質の具体例としては、配列番号1に記載のアミノ酸配列において、28番目のアミノ酸残基であるアラニンがグリシンに置換され、41番目のアミノ酸残基であるグルタミン酸がメチオニンに置換され、145番目のアミノ酸残基であるシステインがセリンに置換され、そして158番目のアミノ酸残基であるトレオニンがイソロイシンに置換されているアミノ酸配列を有する蛍光蛋白質が挙げられる。

このようなアミノ酸変異を導入することにより作製される蛍光蛋白質の別の具体例としては、配列番号1に記載のアミノ酸配列において、64番目のアミノ酸残基であるチロシンがロイシンに置換されているアミノ酸配列を有する、色素蛋白質；配列番号1に記載のアミノ酸配列において、64番目のアミノ酸残基であるチロシンがメチオニンに置換されているアミノ酸配列を有する、色素蛋白質；配列番号1に記載のアミノ酸配列において、41番目のアミノ酸残基であるグルタミン酸がロイシンに置換され、80番目のアミノ酸残基であるフェニルアラニンがグリシンに置換されているアミノ酸配列を有する、色素蛋白質；配列番号1に記載のアミノ酸配列において、64番目のアミノ酸残基であるチロシンがフェニルアラニンに置換されているアミノ酸配列を有する、蛍光を発することができる色素蛋白質；配列番号1に記載のアミノ酸配列において、64番目のアミノ酸残基であるチロシンがヒスチジンに置換されているアミノ酸配列を有する、蛍光を発することができる色素蛋白質；及び、配列番号1に記載のアミノ酸配列において、26番目のアミノ酸残基であるシステインがバリンに置換され、143番目のアミノ酸残基であるシステインがセリンに置換され、199番目のアミノ酸残基であるプロリンがロイシンに置換されているアミノ酸配列を有する、蛍光を

発することができる色素蛋白質などが挙げられる。

本発明の色素蛋白質の取得方法については特に制限はなく、化学合成により合成した蛋白質でもよいし、遺伝子組み換え技術による作製した組み換え蛋白質でもよい。

組み換え蛋白質を作製する場合には、先ず当該蛋白質をコードするDNA入手することが必要である。本明細書の配列表の配列番号1に記載したアミノ酸配列並びに配列番号2に記載した塩基配列の情報を利用することにより適当なプライマーを設計し、それらを用いて、コモチイソギンチャク (*Cnidopus japonicus*) 由来のcDNAライブラリーを鋳型にしてPCRを行うことにより、本発明の色素蛋白質をコードするDNAを取得することができる。このDNAを適当な発現系に導入することにより、本発明の色素蛋白質を産生することができる。発現系での発現については本明細書中後記する。

(2) 本発明のDNA

本発明によれば、本発明の色素蛋白質をコードする遺伝子が提供される。

本発明の色素蛋白質をコードするDNAの具体例としては、以下の何れかのDNAが挙げられる。

- (a) 配列番号1に記載のアミノ酸配列をコードするDNA；又は、
- (b) 配列番号1に記載のアミノ酸配列において1から数個のアミノ酸の欠失、置換及び／又は付加を有するアミノ酸配列を有し、吸光特性を有するアミノ酸配列をコードするDNA；

本発明の色素蛋白質をコードするDNAの更なる具体例としては、以下の何れかの塩基配列を有するDNAが挙げられる。

- (a) 配列番号2に記載の塩基配列；又は、
- (b) 配列番号2に記載の塩基配列において1から数個の塩基の欠失、置換及び／又は付加を有する塩基配列を有し、吸光特性を有する蛋白質をコードする塩基配列；

また、配列番号 2 に記載の塩基配列において 1 から数個の塩基の欠失、置換及び／又は付加を有する塩基配列を有し、吸光特性を有する蛋白質をコードする塩基配列を有するDNAの具体例としては、配列番号 12、14、16、18、20 又は 22 の何れかに記載の塩基配列を有するDNAが挙げられる。

本発明のDNAは、例えばホスホアミダイト法などにより合成することができるし、特異的プライマーを用いたポリメラーゼ連鎖反応（PCR）によって製造することもできる。本発明のDNAの作製方法については、本明細書中上述した通りである。

また、所定の核酸配列に所望の変異を導入する方法は当業者に公知である。例えば、部位特異的変異誘発法、縮重オリゴヌクレオチドを用いるPCR、核酸を含む細胞の変異誘発剤又は放射線への露出等の公知の技術を適宜使用することによって、変異を有するDNAを構築することができる。このような公知の技術は、例えば、Molecular Cloning: A laboratory Manual, 2nd Ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY., 1989、並びに Current Protocols in Molecular Biology, Supplement 1~38, John Wiley & Sons (1987~1997)に記載されている。

(3) 本発明の組み換えベクター

本発明のDNAは適当なベクター中に挿入して使用することができる。本発明で用いるベクターの種類は特に限定されず、例えば、自立的に複製するベクター（例えばプラスミド等）でもよいし、あるいは、宿主細胞に導入された際に宿主細胞のゲノムに組み込まれ、組み込まれた染色体と共に複製されるものであってもよい。

好ましくは、本発明で用いるベクターは発現ベクターである。発現ベクターにおいて本発明のDNAは、転写に必要な要素（例えば、プロモーター等）が機能的に連結されている。プロモータは宿主細胞において転写活性を示すDNA配列であり、宿主の種類に応じて適宜することができる。

細菌細胞で作動可能なプロモータとしては、バチルス・ステアロテルモフィルス・マルトジエニック・アミラーゼ遺伝子 (*Bacillus stearothermophilus maltogenic amylase gene*)、バチルス・リケニホルミス α アミラーゼ遺伝子 (*Bacillus licheniformis alpha-amylase gene*)、バチルス・アミロリケファチエンス・BAN アミラーゼ遺伝子 (*Bacillus amyloliquefaciens BAN amylase gene*)、バチルス・サブチリス・アルカリプロテアーゼ遺伝子 (*Bacillus Subtilis alkaline protease gene*) もしくはバチルス・プミルス・キシロシダーゼ遺伝子 (*Bacillus pumilus xylosidase gene*) のプロモータ、またはファージ・ラムダの P_R 若しくは P_L プロモータ、大腸菌の *lac*、*trp* 若しくは *tac* プロモータなどが挙げられる。

哺乳動物細胞で作動可能なプロモータの例としては、SV40 プロモータ、MT-1 (メタロチオネイン遺伝子) プロモータ、またはアデノウイルス2主後期プロモータなどがある。昆虫細胞で作動可能なプロモータの例としては、ポリヘドリンプロモータ、P10 プロモータ、オートグラファ・カリホルニカ・ポリヘドロシス塩基性タンパクプロモータ、バキュウロウイルス即時型初期遺伝子1プロモータ、またはバキュウロウイルス39K遅延型初期遺伝子プロモータ等がある。酵母宿主細胞で作動可能なプロモータの例としては、酵母解糖系遺伝子由來のプロモータ、アルコールデヒドログナーゼ遺伝子プロモータ、TP11 プロモータ、ADH2-4c プロモータなどが挙げられる。

糸状菌細胞で作動可能なプロモータの例としては、ADH3 プロモータまたはtpiA プロモータなどがある。

また、本発明のDNAは必要に応じて、例えばヒト成長ホルモンターミネータまたは真菌宿主についてはTP11ターミネータ若しくはADH3ターミネータのような適切なターミネータに機能的に結合されてもよい。本発明の組み換えベクターは更に、ポリアデニレーションシグナル(例えばSV40またはアデノウイルス5E1b領域由來のもの)、転写エンハンサ配列(例えばSV40エンハンサ)および翻訳エンハンサ配列(例えばアデノウイルスVA RNAをコードするも

の)のような要素を有していてもよい。

本発明の組み換えベクターは更に、該ベクターが宿主細胞内で複製することを可能にするDNA配列を具備してもよく、その一例としてはSV40複製起点(宿主細胞が哺乳類細胞のとき)が挙げられる。

本発明の組み換えベクターはさらに選択マーカーを含有してもよい。選択マーカーとしては、例えば、ジヒドロ葉酸レダクターゼ(DHFR)またはシゾサッカロマイセス・ポンベTP I遺伝子等のようなその補体が宿主細胞に欠けている遺伝子、または例えばアンピシリン、カナマイシン、テトラサイクリン、クロラムフェニコール、ネオマイシン若しくはヒグロマイシンのような薬剤耐性遺伝子を挙げることができる。

本発明のDNA、プロモータ、および所望によりターミネータおよび/または分泌シグナル配列をそれぞれ連結し、これらを適切なベクターに挿入する方法は当業者に周知である。

(4) 本発明の形質転換体

本発明のDNA又は組み換えベクターを適當な宿主に導入することによって形質転換体を作製することができる。

本発明のDNAまたは組み換えベクターを導入される宿主細胞は、本発明のDNA構築物を発現できれば任意の細胞でよく、細菌、酵母、真菌および高等真核細胞等が挙げられる。

細菌細胞の例としては、バチルスまたはストレプトマイセス等のグラム陽性菌又は大腸菌等のグラム陰性菌が挙げられる。これら細菌の形質転換は、プロトプラスト法、または公知の方法でコンピテント細胞を用いることにより行なえばよい。

哺乳類細胞の例としては、HEK293細胞、HeLa細胞、COS細胞、BHK細胞、CHL細胞またはCHO細胞等が挙げられる。哺乳類細胞を形質転換し、該細胞に導入されたDNA配列を発現させる方法も公知であり、例えば、エ

レクトロポーレーション法、リン酸カルシウム法、リポフェクション法等を用いることができる。

酵母細胞の例としては、サッカロマイセスまたはシゾサッカロマイセスに属する細胞が挙げられ、例えば、サッカロマイセス・セレビシエ (*Saccharomyces cerevisiae*) またはサッカロマイセス・クルイベリ (*Saccharomyces kluyveri*) 等が挙げられる。酵母宿主への組み換えベクターの導入方法としては、例えば、エレクトロポレーション法、スフェロプラスト法、酢酸リチウム法等を挙げることができる。

他の真菌細胞の例は、糸状菌、例えばアスペルギルス、ニューロスボラ、フザリウム、またはトリコデルマに属する細胞である。宿主細胞として糸状菌を用いる場合、DNA構築物を宿主染色体に組み込んで組換え宿主細胞を得ることにより形質転換を行うことができる。DNA構築物の宿主染色体への組み込みは、公知の方法に従い、例えば相同組換えまたは異種組換えにより行うことができる。

昆虫細胞を宿主として用いる場合には、組換え遺伝子導入ベクターおよびバキュロウイルスを昆虫細胞に共導入して昆虫細胞培養上清中に組換えウイルスを得た後、さらに組換えウイルスを昆虫細胞に感染させ、蛋白質を発現させることができる（例えば、*Baculovirus Expression Vectors, A Laboratory Manual*；及びカレント・プロトコールズ・イン・モレキュラー・バイオロジー、*Bio/Technology*, 6, 47(1988) 等に記載）。

バキュロウイルスとしては、例えば、ヨトウガ科昆虫に感染するウイルスであるアウトグラファ・カリフォルニカ・ヌクレア・ポリヘドロシス・ウイルス (*Autographa californica nuclear polyhedrosis virus*) 等を用いることができる。

昆虫細胞としては、*Spodoptera frugiperda* の卵巣細胞である S f 9、S f 2 1 [バキュロウイルス・エクスプレッション・ベクターズ、ア・ラボラトリ・マニュアル、ダブリュー・エイチ・フリーマン・アンド・カンパニー (W. H. Freeman and Company)、ニューヨーク (New York)、(1992)]、*Trichoplusia ni* の卵巣細胞である Hi Fi ve (インビトロジェン社製) 等を用いることができる。

組換えウイルスを調製するための、昆虫細胞への組換え遺伝子導入ベクターと上記バキュロウイルスの共導入方法としては、例えば、リン酸カルシウム法又はリポフェクション法等を挙げることができる。

上記の形質転換体は、導入されたDNA構築物の発現を可能にする条件下で適切な栄養培地中で培養する。形質転換体の培養物から、本発明の蛋白質を単離精製するには、通常の蛋白質の単離、精製法を用いればよい。

例えば、本発明の蛋白質が、細胞内に溶解状態で発現した場合には、培養終了後、細胞を遠心分離により回収し水系緩衝液に懸濁後、超音波破碎機等により細胞を破碎し、無細胞抽出液を得る。該無細胞抽出液を遠心分離することにより得られた上清から、通常の蛋白質の単離精製法、即ち、溶媒抽出法、硫安等による塩析法、脱塩法、有機溶媒による沈殿法、ジエチルアミノエチル(DEAE)セファロース等のレジンを用いた陰イオン交換クロマトグラフィー法、S-Sepharose FF(ファルマシア社製)等のレジンを用いた陽イオン交換クロマトグラフィー法、ブチルセファロース、フェニルセファロース等のレジンを用いた疎水性クロマトグラフィー法、分子篩を用いたゲルろ過法、アフィニティーコロマトグラフィー法、クロマトフォーカシング法、等電点電気泳動等の電気泳動法等の手法を単独あるいは組み合わせて用い、精製標品を得ることができる。

(5) 本発明の色素蛋白質及びそれを含む融合蛋白質の利用

本発明の色素蛋白質は、他の蛋白質と融合させることにより、融合蛋白質を構築することができる。本発明の色素蛋白質に融合させる他の蛋白質の種類は特に限定されないが、他の分子と相互作用する蛋白質であることが好ましく、例えば、受容体蛋白質又はそのリガンド、あるいは抗原又は抗体などが挙げられる。

本発明の融合蛋白質の取得方法については特に制限はなく、化学合成により合成した蛋白質でもよいし、遺伝子組み換え技術による作製した組み換え蛋白質でもよい。

組み換え融合蛋白質を作製する場合には、先ず当該蛋白質をコードするDNA

を入手することが必要である。本発明の色素蛋白質をコードするDNAおよびそれに融合すべき他の蛋白質をコードするDNAは、本明細書中上記した方法またはそれに準じてそれぞれ入手することができる。次いで、これらのDNA断片を順番に遺伝子組み換え技術により連結することにより、所望の融合蛋白質をコードするDNAを得ることができる。このDNAを適当な発現系に導入することにより、本発明の融合蛋白質を産生することができる。

分子間の相互作用を分析する手法の一つとして、FRET（蛍光共鳴エネルギー転移）が知られている。FRETでは、例えば、第一の蛍光蛋白質としてのシアン蛍光蛋白質（CFP）で標識した第一の分子と、第二の蛍光蛋白質としての黄色蛍光蛋白質（YFP）で標識した第二の分子とを共存させることにより、黄色蛍光蛋白質（YFP）をアクセプター分子として作用させ、シアン蛍光蛋白質（CFP）をドナー分子として作用させ、両者の間でFRET（蛍光共鳴エネルギー転移）を生じさせることにより、第一の分子と第二の分子との間の相互作用を可視化することができる。即ち、FRETでは2種類の分子にそれぞれ異なる色素を導入し、エネルギーレベルの高い方の色素（ドナー分子）を選択的に励起し、その色素の蛍光を測定し、もう一方の色素（アクセプター分子）からの長波長蛍光も測定して、それらの蛍光変化量によって分子間の相互作用を可視化する。両方の色素が、2種類の分子の相互作用によって近接したときのみドナー分子の蛍光の減少とアクセプター分子の蛍光の増加が1波長励起2波長測光法により観測される。しかし、アクセプター分子に色素蛋白質を用いた場合は、両方の色素が、2種類の分子の相互作用によって近接したときのみドナー分子の蛍光の減少を生じ1波長励起1波長測光法により観測することができる。即ち、測定機器の簡易化が可能となる。

本発明の色素蛋白質は、特に、FRET（蛍光共鳴エネルギー転移）におけるアクセプター分子としての利用価値が高い。即ち、本発明の色素蛋白質と被験物質との融合体（第一の融合体）を作製する。次いで、該被験物質と相互作用する別の被験物質と別の蛍光蛋白質との融合体（第2の融合体）を作製する。そして、

第一の融合体と第2の融合体とを相互作用させ、発する蛍光を分析することにより、上記2種類の被験物質間の相互作用を分析することができる。なお、本発明の色素蛋白質を用いたF R E T（蛍光共鳴エネルギー転移）は、試験管内で行つてもよいし、細胞内で行つてもよい。

(6) 本発明のキット

本発明によれば、本明細書に記載した色素蛋白質、融合蛋白質、DNA、組み換えベクター又は形質転換体から選択される少なくとも1種以上を含むことを特徴とする、吸光試薬キットが提供される。本発明のキットは、それ自体既知の通常用いられる材料及び手法で調製することができる。

色素蛋白質又はDNAなどの試薬は、適当な溶媒に溶解することにより保存に適した形態に調製することができる。溶媒としては、水、エタノール、各種緩衝液などを用いることができる。

以下の実施例により本発明を具体的に説明するが、本発明は実施例によって限定されるものではない。

実施例

実施例1：イソギンチャクからの新規色素蛋白質をコードする遺伝子の単離

(1) 全RNAの抽出

緑色を呈するイソギンチャクより色素蛋白質遺伝子の単離を行った。材料には緑色を呈するコモチイソギンチャク (*Chidopus japonicus*) を用いた。凍結したコモチイソギンチャクを乳鉢で碎き、湿重量1グラムに”TRIzol” (GIBCO BRL) を7.5ml加えてホモジナイズし、1500×gで10分間遠心した。上清にクロロホルム1.5mlを加え、15秒間攪拌した後、3分間静置した。7500×gで15分間遠心した。上清にイソプロパノール3.75mlを加え、15秒間攪拌した後、10分間静置した。17000×gで10分間遠心した。上清を捨て70%エタノールを6ml加えて、17000×gで10分間遠心した。上清を捨て沈殿をDEPC水200ulで溶解した。

DEPC 水で溶解した全 RNA を 100 倍に希釈して、O. D. 260 と O. D. 280 の値を測定して RNA 濃度を測った。緑色の個体から 1.2mg の全 RNA を得た。

(2) First strand cDNA の合成

全 RNA 4 μ g を使用し、First strand cDNA の合成キット”Ready To Go” (Amersham Pharmacia) により cDNA(33 μ l) を合成した。

(3) Degenerated PCR

合成した First strand cDNA(33 μ l) のうち 3 μ l を鋳型として PCR を行った。プライマーのデザインは既知の蛍光蛋白のアミノ酸配列を見比べて、似ている部分を抜き出し、塩基配列に変換し直し、作製した。使用プライマーの配列を以下に示す。

5' - GIGSICCIHTISCITT-3' (primer1) (配列番号 3)

5' - AACTGGAAGAATTGGCGGCCGCAGAATTTTTTTTTTTTTT-3' (primer2) (配列番号 4)

I はイノシン、S は C 又は G、H は A 又は T 又は C を示す。

PCR 反応液組成

テンプレート (first strand cDNA)	3 μ l
X10 taq バッファー	5 μ l
2.5 mM dNTPs	4 μ l
100uM primer3	1 μ l
100uM primer4	1 μ l
ミリ Q	35 μ l
taq polymerase (5U/ μ l)	1 μ l

PCR 反応条件

94°C 1 分 (PAD)

94°C 30 秒 (denaturation)

52°C 30 秒 (プライマーのテンプレートへのアニーリング)

72°C 1 分 (プライマー伸長)

上記 3 ステップを 30 サイクル行い、アニーリング温度を 1 サイクルごとに 0.3°C 下げた。即ち、30 サイクル時のアニーリング温度は 43°C になる。

72°C 7 分（最後の伸長）

4°Cで保持

一回目の PCR 反応で得られた増幅産物 1 μl をテンプレートとして、もう一度同じ条件で PCR を行った。アガロースゲル電気泳動で、800bp（緑色の個体由来）を切り出し、精製した。この 800bp の断片は 3' -UTR 部分全体を含んでいた。

（4）サブクローニング及び塩基配列の決定

精製した DNA 断片を pT7-blue vector (Novagen) にライゲーションした。大腸菌株 (TG1) にトランスフォーメーションしてブルーホワイトセレクションを行い、白いコロニーの大腸菌よりプラスミド DNA を精製して、挿入された DNA 断片の塩基配列を DNA シークエンサーにより決定した。得られた塩基配列を他の蛍光蛋白遺伝子の塩基配列と比較してその DNA 塩基配列が蛍光蛋白由来のものであるかを判断した。蛍光蛋白遺伝子の一部であると判断したものに関して、5' -RACE 法および 3' -RACE 法による遺伝子全長のクローニングを行った。

（5）5' -RACE 法

Degenerated PCR で得られた DNA 断片の 5' 側の塩基配列を決定するために 5' -RACE System for Rapid Amplification of cDNA Ends, Version 2.0 (GIBCO BRL) を用いて、5' -RACE 法を行った。鑄型として（1）で調整した全 RNA を 3 μg 使用した。

緑色の個体の DC-tailed cDNA の一回目の増幅には

5' -GGCCACGCGTCGACTAGTACGGGIIGGGIIGGGIIG-3' (primer3) (配列番号 5)

5' -AGACGAGGCAATTCCATCAAG -3' (primer4) (配列番号 6)

のプライマーを用いた。

I=イノシン

二回目の増幅には

5' -GGCCACGCGTCGACTAGTAC-3' (primer5) (配列番号 7)

5' - GGCTACGCTTCCATATTGGCAGTT -3' (primer6) (配列番号 8)

のプライマーを用いた。PCR 反応条件等はキットのプロトコールに準じた。

アガロースゲル電気泳動で、増幅された 350bp のバンドを切り出し、精製した。精製した DNA 断片を pT7-blue vector (Novagen) にライゲーションした。大腸菌株 (TG1) にトランスフォーメーションしてブルーホワイトセレクションを行い、白いコロニーの大腸菌より plasmid DNA を精製して、挿入された DNA 断片の塩基配列を DNA シークエンサーにより決定した。全塩基配列は配列表の配列番号 2 に示し、全アミノ酸配列は配列表の配列番号 1 に示す。

実施例 2：大腸菌での蛋白発現

得られた全長の塩基配列より、蛋白の N 末端、C 末端に相当する部分でプライマーを作製し、(2) で調整した First strand cDNA を鋳型として PCR を行った。使用プライマーは以下の通りである。

5' - CGGGATCCGACCATGGCTTCAAAATCAGC-3' (primer7) (配列番号 9)

5' -CCGGAATTCTTAATTGTGACCAAGTTAGATGGGCA-3' (primer8) (配列番号 10)

PCR 反応液組成

テンプレート (first strand cDNA)	3 μ l
X10 pyrobest バッファー	5 μ l
2.5mM dNTPs	4 μ l
100 μ M primer7	1 μ l
100 μ M primer8	1 μ l
ミリ Q	35 μ l
pyrobest polymerase (5U/ μ l)	1 μ l

PCR 反応条件

94°C 1 分 (PAD)

94°C 30 秒 (変性)

55°C 30 秒 (プライマーのテンプレートへのアニーリング)

72°C 1分（プライマー伸長）

上記3ステップを30サイクル行った。

72°C 7分（最後の伸長）

4°Cで保持

アガロースゲルの電気泳動で、増幅された約700bpのバンドを切り出し、精製してpRSET vector(Invitrogen)のBamH I、EcoR I部位にサブクローニングして、大腸菌株(JM109-DE3)で発現させた。発現蛋白はN末端にHis-tagが付くようにコンストラクトしたので発現蛋白はNi-Agarose gel(QIAGEN)で精製した。精製の方法は付属のプロトコールに準じた。

実施例3：蛋白質の解析

(1) 光吸収特性の解析

実施例2で発現させた蛋白質を用いて光吸収特性を解析した。

20 μMの色素蛋白、50mM HEPES pH7.5溶液を用いて吸収スペクトルを測定した。このスペクトルのピークの値よりモル吸光係数を計算した。緑色個体由来色素蛋白(KGrとした)では610nmに吸収のピークが認められ、蛍光は検出されなかつた(表1、図1)。

表1

色素蛋白質(KGr)の性質

吸収極大	蛍光極大	モル吸光係数	量子収率	pH感受性	アミノ酸数
610nm	—	66700(610nm)	—	なし	232

(2) pH感受性の測定

実施例2で発現させた蛋白質を用いてpH感受性を解析した。

100mMの下記の緩衝液中で蛋白質の吸収スペクトルを測定した(図2)。

各pHの緩衝液は次の通り、

- pH4、5 : 酢酸バッファー
 pH6 : MES バッファー
 pH7、8 : HEPES バッファー
 pH9、10 : グリシンバッファー

各 pH でピークの値はほとんど変化しなかった。

実施例 4 : KG r の改変

KG r の 28 番目の A を G に、41 番目の E を M に、145 番目の C を S に、158 番目の T を I に改変することによって、444nm に吸収のピークを持ち、534nm にピークを持つ黄色の蛍光を放つようになった（図 3）。

実施例 5 : KG r のアミノ酸置換による特性の改変

KG r の発色団形成アミノ酸 (Q Y G) である 64 番目の Y を L または M に置換することによって吸収ピークは 418nm となり、本来の 610nm の吸収ピークよりも短波長側に吸収ピークが移行する（図 1、2）。64 番目の Y を L に置換した蛋白質のアミノ酸配列を配列番号 1 1 に示し、塩基配列を配列番号 1 2 に示す。64 番目の Y を M に置換した蛋白質のアミノ酸配列を配列番号 1 3 に示し、塩基配列を配列番号 1 4 に示す。

41 番目の E を L に、80 番目の F を G に置換する事によって吸収ピークは 528nm となり、本来の 610nm の吸収ピークよりも短波長側に吸収ピークが移行する（図 3）。この蛋白質のアミノ酸配列を配列番号 1 5 に示し、塩基配列を配列番号 1 6 に示す。

発色団形成アミノ酸 (Q Y G) である 64 番目の Y を F に置換することによって吸収ピークは 412nm となり、本来の 610nm の吸収ピークよりも短波長側に吸収ピークが移行し、さらに 504nm をピークとする蛍光を発するようになる（図 4、5）。この蛋白質のアミノ酸配列を配列番号 1 7 に示し、塩基配列を配列番号 1 8 に示す。

発色団形成アミノ酸 (Q Y G) である 64 番目の Y を H に置換することによって吸収ピークは 418nm となり、本来の 610nm の吸収ピークよりも短波長側に吸収ピークが移行し、さらに 520nm をピークとする蛍光を発するようになる(図 6、7)。この蛋白質のアミノ酸配列を配列番号 19 に示し、塩基配列を配列番号 20 に示す。

26 番目の C を V に、143 番目の C を S に、199 番目の P を L に置換する事によって吸収ピークは 585nm となり、本来の 610nm の吸収ピークよりも短波長側に吸収ピークが移行し、さらに 625nm をピークとする蛍光を発するようになる。本蛍光蛋白質を KG r Rb とした (図 8、9)。この蛋白質のアミノ酸配列を配列番号 21 に示し、塩基配列を配列番号 22 に示す。

産業上の利用の可能性

本発明により、コモチイソギンチャク (*Cnidopus japonicus*) 由来の新規な色素蛋白質が提供されることになった。本発明の色素蛋白質は、所望の蛍光特性を有し、また pH 感受性が低いことから、分子生物学的分析において有用である。

請求の範囲

1. コモチイソギンチャク (*Cnidopus japonicus*) 由来の下記の特性を有する色素蛋白質。

- (1) 吸收極大波長が 610 nm であり、蛍光を発しない；
- (2) 610 nm におけるモル吸光係数が 66700 である；
- (3) 吸光特性の pH 感受性が pH 4～10 で安定である；

2. 以下の何れかのアミノ酸配列を有する色素蛋白質。

- (a) 配列番号 1 に記載のアミノ酸配列；又は、
- (b) 配列番号 1 に記載のアミノ酸配列において 1 から数個のアミノ酸の欠失、置換及び／又は付加を有するアミノ酸配列を有し、吸光特性を有するアミノ酸配列；

3. 配列番号 1 に記載のアミノ酸配列において、28 番目のアミノ酸残基であるアラニンがグリシンに置換され、41 番目のアミノ酸残基であるグルタミン酸がメチオニンに置換され、145 番目のアミノ酸残基であるシステインがセリンに置換され、そして 158 番目のアミノ酸残基であるトレオニンがイソロイシンに置換されているアミノ酸配列を有する、蛍光を発することができる色素蛋白質。

4. 配列番号 1 に記載のアミノ酸配列において、64 番目のアミノ酸残基であるチロシンがロイシンに置換されているアミノ酸配列を有する、色素蛋白質。

5. 配列番号 1 に記載のアミノ酸配列において、64 番目のアミノ酸残基であるチロシンがメチオニンに置換されているアミノ酸配列を有する、色素蛋白質。

6. 配列番号 1 に記載のアミノ酸配列において、41 番目のアミノ酸残基であるグルタミン酸がロイシンに置換され、80 番目のアミノ酸残基であるフェニルアラニンがグリシンに置換されているアミノ酸配列を有する、色素蛋白質。

7. 配列番号 1 に記載のアミノ酸配列において、64 番目のアミノ酸残基であるチロシンがフェニルアラニンに置換されているアミノ酸配列を有する、蛍光

を発することができる色素蛋白質。

8. 配列番号1に記載のアミノ酸配列において、64番目のアミノ酸残基であるチロシンがヒスチジンに置換されているアミノ酸配列を有する、蛍光を発することができる色素蛋白質。

9. 配列番号1に記載のアミノ酸配列において、26番目のアミノ酸残基であるシステインがバリンに置換され、143番目のアミノ酸残基であるシステインがセリンに置換され、199番目のアミノ酸残基であるプロリンがロイシンに置換されているアミノ酸配列を有する、蛍光を発することができる色素蛋白質。

10. 請求項1から9の何れかに記載の蛋白質をコードするDNA。

11. 以下の何れかのDNA。

(a) 配列番号1に記載のアミノ酸配列をコードするDNA; 又は、

(b) 配列番号1に記載のアミノ酸配列において1から数個のアミノ酸の欠失、置換及び／又は付加を有するアミノ酸配列を有し、吸光特性を有するアミノ酸配列をコードするDNA:

12. 以下の何れかの塩基配列を有するDNA。

(a) 配列番号2に記載の塩基配列; 又は、

(b) 配列番号2に記載の塩基配列において1から数個の塩基の欠失、置換及び／又は付加を有する塩基配列を有し、吸光特性を有する蛋白質をコードする塩基配列:

13. 配列番号12、14、16、18、20又は22の何れかに記載の塩基配列を有するDNA。

14. 請求項10から13の何れかに記載のDNAを有する組み換えベクター。

15. 請求項10から13の何れかに記載のDNA又は請求項14に記載の組み換えベクターを有する形質転換体。

16. 請求項1から9の何れかに記載の色素蛋白質と他の蛋白質とから成る融合蛋白質。

17. 請求項1から9の何れかに記載の色素蛋白質をアクセプター蛋白質として用いてFRET(蛍光共鳴エネルギー転移)法を行うことを特徴とする、生理活性物質の分析方法。

18. 請求項1から9の何れかに記載の色素蛋白質、請求項10から13の何れかに記載のDNA、請求項14に記載の組み換えベクター、請求項15に記載の形質転換体、又は請求項16に記載の融合蛋白質を含む、吸光試薬キット。

図1

図2

図3

KGr A28G,E41M,C145S,T158I

図4

Y64L

図 5

図 6

図 7

図 8

図 9

図 10

図 1 1

図 1 2

WO 03/104460

SEQUENCE LISTING

<110> RIKEN

<120> Chromo protein

<130> A31347A

<160> 22

<210> 1

<211> 232

<212> PRT

<213> Cnidopus japonicus

<400> 1

Met Ala Ser Lys Ile Ser Asp Asn Val Arg Ile Lys Leu Tyr Met Glu

1 5 10 15

Gly Thr Val Asn Asn His His Phe Met Cys Glu Ala Glu Gly Glu Gly

20 25 30

Lys Pro Tyr Glu Gly Thr Gln Met Glu Asn Ile Lys Val Thr Lys Gly

35 40 45

Gly Pro Leu Pro Phe Ser Phe Asp Ile Leu Thr Pro Asn Cys Gln Tyr

50 55 60

Gly Ser Val Ala Ile Thr Lys Tyr Thr Ser Gly Ile Pro Asp Tyr Phe

65 70 75 80

Lys Gln Ser Phe Pro Glu Gly Phe Thr Trp Glu Arg Thr Thr Ile Tyr

85 90 95

Glu Asp Gly Ala Tyr Leu Thr Thr Gln Gln Glu Thr Lys Leu Asp Gly

100 105 110

Asn Cys Leu Val Tyr Asn Ile Lys Ile Leu Gly Cys Asn Phe Pro Pro

115 120 125

Asn Gly Pro Val Met Gln Lys Lys Thr Gln Gly Trp Glu Pro Cys Cys
 130 135 140
 Glu Met Arg Tyr Thr Arg Asp Gly Val Leu Cys Gly Gln Thr Leu Met
 145 150 155 160
 Ala Leu Lys Cys Ala Asp Gly Asn His Leu Thr Cys His Leu Arg Thr
 165 170 175
 Thr Tyr Arg Ser Lys Lys Ala Ala Lys Ala Leu Gln Met Pro Pro Phe
 180 185 190
 His Phe Ser Asp His Arg Pro Glu Ile Val Lys Val Ser Glu Asn Gly
 195 200 205
 Thr Leu Phe Glu Gln His Glu Ser Ser Val Ala Arg Tyr Cys Gln Thr
 210 215 220
 Cys Pro Ser Lys Leu Gly His Asn
 225 230

<210> 2

<211> 699

<212> DNA

<213> Cnidopus japonicus

<400> 2

atg gct tcc aaa atc agc gac aat gta cgt atc aag tta tat atg gag 48

Met Ala Ser Lys Ile Ser Asp Asn Val Arg Ile Lys Leu Tyr Met Glu

1 5 10 15

ggc aca gtc aac aat cat cac ttc atg tgc gaa gct gaa gga gag ggc 96

Gly Thr Val Asn Asn His His Phe Met Cys Glu Ala Glu Gly Glu Gly

20 25 30

aag cca tac gag gga act caa atg gag aac ata aaa gtc acc aaa gga 144

Lys Pro Tyr Glu Gly Thr Gln Met Glu Asn Ile Lys Val Thr Lys Gly
35 40 45
ggc cct ctg ccg ttc tct ttt gat atc ttg acg cct aac tgc caa tat 192
Gly Pro Leu Pro Phe Ser Phe Asp Ile Leu Thr Pro Asn Cys Gln Tyr
50 55 60
gga agc gta gcc ata acc aag tat aca tca ggg att cca gac tac ttt 240
Gly Ser Val Ala Ile Thr Lys Tyr Thr Ser Gly Ile Pro Asp Tyr Phe
65 70 75 80
aag caa tct ttt cct gaa gga ttt acc tgg gaa aga acc aca atc tac 288
Lys Gln Ser Phe Pro Glu Gly Phe Thr Trp Glu Arg Thr Thr Ile Tyr
85 90 95
gaa gat ggg gct tac ctt aca act caa caa gaa acc aaa ctt gat gga 336
Glu Asp Gly Ala Tyr Leu Thr Thr Gln Gln Glu Thr Lys Leu Asp Gly
100 105 110
aat tgc ctc gtc tac aat att aaa atc ctt gga tgt aat ttt ccc ccc 384
Asn Cys Leu Val Tyr Asn Ile Lys Ile Leu Gly Cys Asn Phe Pro Pro
115 120 125
aat ggt cct gtg atg cag aag aaa acc caa ggc tgg gaa ccc tgt tgc 432
Asn Gly Pro Val Met Gln Lys Lys Thr Gln Gly Trp Glu Pro Cys Cys
130 135 140
gag atg cgc tat aca cgt gat ggt gtg cta tgt ggc caa aca tta atg 480
Glu Met Arg Tyr Thr Arg Asp Gly Val Leu Cys Gly Gln Thr Leu Met
145 150 155 160
gca ctt aaa tgc gcc gat ggg aac cac ctc act tgc cat ctg aga act 528
Ala Leu Lys Cys Ala Asp Gly Asn His Leu Thr Cys His Leu Arg Thr
165 170 175
act tac agg tcc aaa aag gca gca aag gcg ttg cag atg cca ccc ttc 576

Thr Tyr Arg Ser Lys Lys Ala Ala Lys Ala Leu Gln Met Pro Pro Phe
180 185 190
cat ttt tca gac cat cgt cct gaa ata gtg aag gtt tca gag aac ggc 624
His Phe Ser Asp His Arg Pro Glu Ile Val Lys Val Ser Glu Asn Gly
195 200 205
aca cta ttt gaa cag cac gaa agt tca gtg gcc agg tac tgt caa aca 672
Thr Leu Phe Glu Gln His Glu Ser Ser Val Ala Arg Tyr Cys Gln Thr
210 215 220
tgc cca tct aaa ctt ggt cac aat taa 699
Cys Pro Ser Lys Leu Gly His Asn
225 230

<210> 3

<211> 17

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic DNA

<400> 3

ggigsiccih tiscitt 17

<210> 4

<211> 44

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic DNA

<400> 4

aactggaga attcgccggcc gcagaatttt tttttttttt tttt 44

<210> 5

<211> 36

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic DNA

<400> 5

ggccacgcgt cgactagtagc gggiiiggii gggiiig 36

<210> 6

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic DNA

<400> 6

agacgaggca atttccatca ag 22

<210> 7

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic DNA

<400> 7

ggccacgcgt cgactagtagc 20

<210> 8

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic DNA

<400> 8

ggctacgctt ccatattggc agtt 24

<210> 9

<211> 30

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic DNA

<400> 9

cgggatccga ccatggcttc caaaatcagc 30

<210> 10

<211> 36

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic DNA

<400> 10

ccggaattct taattgtgac caagtttaga tgggca 36

<210> 11

<211> 232

<212> PRT

<213> Cnidopus japonicus

<400> 11

Met Ala Ser Lys Ile Ser Asp Asn Val Arg Ile Lys Leu Tyr Met Glu

1 5 10 15

Gly Thr Val Asn Asn His His Phe Met Cys Glu Ala Glu Gly Glu Gly

20 25 30

Lys Pro Tyr Glu Gly Thr Gln Met Glu Asn Ile Lys Val Thr Lys Gly

35 40 45

Gly Pro Leu Pro Phe Ser Phe Asp Ile Leu Thr Pro Asn Cys Gln Leu

50 55 60

Gly Ser Val Ala Ile Thr Lys Tyr Thr Ser Gly Ile Pro Asp Tyr Phe

65 70 75 80

Lys Gln Ser Phe Pro Glu Gly Phe Thr Trp Glu Arg Thr Thr Ile Tyr

85 90 95

Glu Asp Gly Ala Tyr Leu Thr Thr Gln Gln Glu Thr Lys Leu Asp Gly

100 105 110

Asn Cys Leu Val Tyr Asn Ile Lys Ile Leu Gly Cys Asn Phe Pro Pro

115 120 125

Asn Gly Pro Val Met Gln Lys Lys Thr Gln Gly Trp Glu Pro Cys Cys

130 135 144

Glu Met Arg Tyr Thr Arg Asp Gly Val Leu Cys Gly Gln Thr Leu Met

145 150 155 160
Ala Leu Lys Cys Ala Asp Gly Asn His Leu Thr Cys His Leu Arg Thr
165 170 175
Thr Tyr Arg Ser Lys Lys Ala Ala Lys Ala Leu Gln Met Pro Pro Phe
180 185 190
His Phe Ser Asp His Arg Pro Glu Ile Val Lys Val Ser Glu Asn Gly
195 200 205
Thr Leu Phe Glu Gln His Glu Ser Ser Val Ala Arg Tyr Cys Gln Thr
210 215 220
Cys Pro Ser Lys Leu Gly His Asn
225 230

<210> 12
<211> 699
<212> DNA
<213> Cnidopus japonicus
<400> 12
atg gct tcc aaa atc agc gac aat gta cgt atc aag tta tat atg gag 48
Met Ala Ser Lys Ile Ser Asp Asn Val Arg Ile Lys Leu Tyr Met Glu
1 5 10 15
ggc aca gtc aac aat cat cac ttc atg tgc gaa gct gaa gga gag ggc 96
Gly Thr Val Asn Asn His His Phe Met Cys Glu Ala Glu Gly Glu Gly
20 25 30
aag cca tac gag gga actcaa atg gag aac ata aaa gtc acc aaa gga 144
Lys Pro Tyr Glu Gly Thr Gln Met Glu Asn Ile Lys Val Thr Lys Gly
35 40 45
ggc cct ctg ccg ttc tct ttt gat atc ttg acg cct aac tgc caa ctt 192

Gly Pro Leu Pro Phe Ser Phe Asp Ile Leu Thr Pro Asn Cys Gln Leu
50 55 60
gga agc gta gcc ata acc aag tat aca tca ggg att cca gac tac ttt 240
Gly Ser Val Ala Ile Thr Lys Tyr Thr Ser Gly Ile Pro Asp Tyr Phe
65 70 75 80
aag caa tct ttt cct gaa gga ttt acc tgg gaa aga acc aca atc tac 288
Lys Gln Ser Phe Pro Glu Gly Phe Thr Trp Glu Arg Thr Thr Ile Tyr
85 90 95
gaa gat ggg gct tac ctt aca act caa caa gaa acc aaa ctt gat gga 336
Glu Asp Gly Ala Tyr Leu Thr Thr Gln Gln Glu Thr Lys Leu Asp Gly
100 105 110
aat tgc ctc gtc tac aat att aaa atc ctt gga tgt aat ttt ccc ccc 384
Asn Cys Leu Val Tyr Asn Ile Lys Ile Leu Gly Cys Asn Phe Pro Pro
115 120 125
aat ggt cct gtg atg cag aag aaa acc caa ggc tgg gaa ccc tgt tgc 432
Asn Gly Pro Val Met Gln Lys Lys Thr Gln Gly Trp Glu Pro Cys Cys
130 135 144
gag atg cgc tat aca cgt gat ggt gtg cta tgt ggc caa aca tta atg 480
Glu Met Arg Tyr Thr Arg Asp Gly Val Leu Cys Gly Gln Thr Leu Met
145 150 155 160
gca ctt aaa tgc gcc gat ggg aac cac ctc act tgc cat ctg aga act 528
Ala Leu Lys Cys Ala Asp Gly Asn His Leu Thr Cys His Leu Arg Thr
165 170 175
act tac agg tcc aaa aag gca gca aag gcg ttg cag atg cca ccc ttc 576
Thr Tyr Arg Ser Lys Lys Ala Ala Lys Ala Leu Gln Met Pro Pro Phe
180 185 190
cat ttt tca gac cat cgt cct gaa ata gtg aag gtt tca gag aac ggc 624

His Phe Ser Asp His Arg Pro Glu Ile Val Lys Val Ser Glu Asn Gly
 195 200 205
 aca cta ttt gaa cag cac gaa agt tca gtg gcc agg tac tgt caa aca 672
 Thr Leu Phe Glu Gln His Glu Ser Ser Val Ala Arg Tyr Cys Gln Thr
 210 215 220
 tgc cca tct aaa ctt ggt cac aat taa 699
 Cys Pro Ser Lys Leu Gly His Asn
 225 230

<210> 13

<211> 232

<212> PRT

<213> Cnidopus japonicus

<400> 13

Met Ala Ser Lys Ile Ser Asp Asn Val Arg Ile Lys Leu Tyr Met Glu

1	5	10	15
---	---	----	----

Gly Thr Val Asn Asn His His Phe Met Cys Glu Ala Glu Gly Glu Gly

20	25	30
----	----	----

Lys Pro Tyr Glu Gly Thr Gln Met Glu Asn Ile Lys Val Thr Lys Gly

35	40	45
----	----	----

Gly Pro Leu Pro Phe Ser Phe Asp Ile Leu Thr Pro Asn Cys Gln Met

50	55	60
----	----	----

Gly Ser Val Ala Ile Thr Lys Tyr Thr Ser Gly Ile Pro Asp Tyr Phe

65	70	75	80
----	----	----	----

Lys Gln Ser Phe Pro Glu Gly Phe Thr Trp Glu Arg Thr Thr Ile Tyr

85	90	95
----	----	----

Glu Asp Gly Ala Tyr Leu Thr Thr Gln Gln Glu Thr Lys Leu Asp Gly

100	105	110
Asn Cys Leu Val Tyr Asn Ile Lys Ile Leu Gly Cys Asn Phe Pro Pro		
115	120	125
Asn Gly Pro Val Met Gln Lys Lys Thr Gln Gly Trp Glu Pro Cys Cys		
130	135	140
Glu Met Arg Tyr Thr Arg Asp Gly Val Leu Cys Gly Gln Thr Leu Met		
145	150	155
Ala Leu Lys Cys Ala Asp Gly Asn His Leu Thr Cys His Leu Arg Thr		
165	170	175
Thr Tyr Arg Ser Lys Lys Ala Ala Lys Ala Leu Gln Met Pro Pro Phe		
180	185	190
His Phe Ser Asp His Arg Pro Glu Ile Val Lys Val Ser Glu Asn Gly		
195	200	205
Thr Leu Phe Glu Gln His Glu Ser Ser Val Ala Arg Tyr Cys Gln Thr		
210	215	220
Cys Pro Ser Lys Leu Gly His Asn		
225	230	

<210> 14

<211> 699

<212> DNA

<213> Cnidopus japonicus

<400> 14

atg gct tcc aaa atc agc gac aat gta cgt atc aag tta tat atg gag 48

Met Ala Ser Lys Ile Ser Asp Asn Val Arg Ile Lys Leu Tyr Met Glu

1

5

10

15

ggc aca gtc aac aat cat cac ttc atg tgc gaa gct gaa gga gag ggc 96

Gly Thr Val Asn Asn His His Phe Met Cys Glu Ala Glu Gly Glu Gly
20 25 30
aag cca tac gag gga act caa atg gag aac ata aaa gtc acc aaa gga 144
Lys Pro Tyr Glu Gly Thr Gln Met Glu Asn Ile Lys Val Thr Lys Gly
35 40 45
ggc cct ctg ccg ttc tct ttt gat atc ttg acg cct aac tgc caa atg 192
Gly Pro Leu Pro Phe Ser Phe Asp Ile Leu Thr Pro Asn Cys Gln Met
50 55 60
gga agc gta gcc ata acc aag tat aca tca ggg att cca gac tac ttt 240
Gly Ser Val Ala Ile Thr Lys Tyr Thr Ser Gly Ile Pro Asp Tyr Phe
65 70 75 80
aag caa tct ttt cct gaa gga ttt acc tgg gaa aga acc aca atc tac 288
Lys Gln Ser Phe Pro Glu Gly Phe Thr Trp Glu Arg Thr Thr Ile Tyr
85 90 95
gaa gat ggg gct tac ctt aca act caa caa gaa acc aaa ctt gat gga 336
Glu Asp Gly Ala Tyr Leu Thr Thr Gln Gln Glu Thr Lys Leu Asp Gly
100 105 110
aat tgc ctc gtc tac aat att aaa atc ctt gga tgt aat ttt ccc ccc 384
Asn Cys Leu Val Tyr Asn Ile Lys Ile Leu Gly Cys Asn Phe Pro Pro
115 120 125
aat ggt cct gtg atg cag aag aaa acc caa ggc tgg gaa ccc tgt tgc 432
Asn Gly Pro Val Met Gln Lys Lys Thr Gln Gly Trp Glu Pro Cys Cys
130 135 140
gag atg cgc tat aca cgt gat ggt gtg cta tgt ggc caa aca tta atg 480
Glu Met Arg Tyr Thr Arg Asp Gly Val Leu Cys Gly Gln Thr Leu Met
145 150 155 160
gca ctt aaa tgc gcc gat ggg aac cac ctc act tgc cat ctg aga act 528

Ala Leu Lys Cys Ala Asp Gly Asn His Leu Thr Cys His Leu Arg Thr
165 170 175
act tac agg tcc aaa aag gca gca aag gcg ttg cag atg cca ccc ttc 576
Thr Tyr Arg Ser Lys Lys Ala Ala Lys Ala Leu Gln Met Pro Pro Phe
180 185 190
cat ttt tca gac cat cgt cct gaa ata gtg aag gtt tca gag aac ggc 624
His Phe Ser Asp His Arg Pro Glu Ile Val Lys Val Ser Glu Asn Gly
195 200 205
aca cta ttt gaa cag cac gaa agt tca gtg gcc agg tac tgt caa aca 672
Thr Leu Phe Glu Gln His Glu Ser Ser Val Ala Arg Tyr Cys Gln Thr
210 215 220
tgc cca tct aaa ctt ggt cac aat taa 699
Cys Pro Ser Lys Leu Gly His Asn
225 230

<210> 15

<211> 232

<212> PRT

<213> Cnidopus japonicus

<400> 15

Met Ala Ser Lys Ile Ser Asp Asn Val Arg Ile Lys Leu Tyr Met Glu

1 5 10 15

Gly Thr Val Asn Asn His His Phe Met Cys Glu Ala Glu Gly Glu Gly

20 25 30

Lys Pro Tyr Glu Gly Thr Gln Met Leu Asn Ile Lys Val Thr Lys Gly

35 40 45

Gly Pro Leu Pro Phe Ser Phe Asp Ile Leu Thr Pro Asn Cys Gln Met

50 55 60
Gly Ser Val Ala Ile Thr Lys Tyr Thr Ser Gly Ile Pro Asp Tyr Gly
65 70 75 80
Lys Gln Ser Phe Pro Glu Gly Phe Thr Trp Glu Arg Thr Thr Ile Tyr
85 90 95
Glu Asp Gly Ala Tyr Leu Thr Thr Gln Gln Glu Thr Lys Leu Asp Gly
100 105 110
Asn Cys Leu Val Tyr Asn Ile Lys Ile Leu Gly Cys Asn Phe Pro Pro
115 120 125
Asn Gly Pro Val Met Gln Lys Lys Thr Gln Gly Trp Glu Pro Cys Cys
130 135 140
Glu Met Arg Tyr Thr Arg Asp Gly Val Leu Cys Gly Gln Thr Leu Met
145 150 155 160
Ala Leu Lys Cys Ala Asp Gly Asn His Leu Thr Cys His Leu Arg Thr
165 170 175
Thr Tyr Arg Ser Lys Lys Ala Ala Lys Ala Leu Gln Met Pro Pro Phe
180 185 190
His Phe Ser Asp His Arg Pro Glu Ile Val Lys Val Ser Glu Asn Gly
195 200 205
Thr Leu Phe Glu Gln His Glu Ser Ser Val Ala Arg Tyr Cys Gln Thr
210 215 220
Cys Pro Ser Lys Leu Gly His Asn
225 230

<210> 16

<211> 699

<212> DNA

<213> Cnidopus japonicus

<400> 16

atg gct tcc aaa atc agc gac aat gta cgt atc aag tta tat atg ctg 48

Met Ala Ser Lys Ile Ser Asp Asn Val Arg Ile Lys Leu Tyr Met Glu

1

5

10

15

ggc aca gtc aac aat cat cac ttc atg tgc gaa gct gaa gga gag ggc 96

Gly Thr Val Asn Asn His His Phe Met Cys Glu Ala Glu Gly Glu Gly

20

25

30

aag cca tac gag gga actcaa atg ctt aac ata aaa gtc acc aaa gga 144

Lys Pro Tyr Glu Gly Thr Gln Met Leu Asn Ile Lys Val Thr Lys Gly

35

40

45

ggc cct ctg ccg ttc tct ttt gat atc ttg acg cct aac tgc caa tat 192

Gly Pro Leu Pro Phe Ser Phe Asp Ile Leu Thr Pro Asn Cys Gln Met

50

55

60

gga agc gta gcc ata acc aag tat aca tca ggg att cca gac tac ggt 240

Gly Ser Val Ala Ile Thr Lys Tyr Thr Ser Gly Ile Pro Asp Tyr Gly

65

70

75

80

aag caa tct ttt cct gaa gga ttt acc tgg gaa aga acc aca atc tac 288

Lys Gln Ser Phe Pro Glu Gly Phe Thr Trp Glu Arg Thr Thr Ile Tyr

85

90

95

gaa gat ggg gct tac ctt aca act caa caa gaa acc aaa ctt gat gga 336

Glu Asp Gly Ala Tyr Leu Thr Thr Gln Gln Glu Thr Lys Leu Asp Gly

100

105

110

aat tgc ctc gtc tac aat att aaa atc ctt gga tgt aat ttt ccc ccc 384

Asn Cys Leu Val Tyr Asn Ile Lys Ile Leu Gly Cys Asn Phe Pro Pro

115

120

125

aat ggt cct gtg atg cag aag aaa acc caa ggc tgg gaa ccc tgt tgc 432

Asn Gly Pro Val Met Gln Lys Lys Thr Gln Gly Trp Glu Pro Cys Cys

130	135	140
gag atg cgc tat aca cgt gat ggt gtg cta tgt ggc caa aca tta atg 480		
Glu Met Arg Tyr Thr Arg Asp Gly Val Leu Cys Gly Gln Thr Leu Met		
145	150	155
160		
gca ctt aaa tgc gcc gat ggg aac cac ctc act tgc cat ctg aga act 528		
Ala Leu Lys Cys Ala Asp Gly Asn His Leu Thr Cys His Leu Arg Thr		
165	170	175
act tac agg tcc aaa aag gca gca aag gcg ttg cag atg cca ccc ttc 576		
Thr Tyr Arg Ser Lys Lys Ala Ala Lys Ala Leu Gln Met Pro Pro Phe		
180	185	190
cat ttt tca gac cat cgt cct gaa ata gtg aag gtt tca gag aac ggc 624		
His Phe Ser Asp His Arg Pro Glu Ile Val Lys Val Ser Glu Asn Gly		
195	200	205
aca cta ttt gaa cag cac gaa agt tca gtg gcc agg tac tgt caa aca 672		
Thr Leu Phe Glu Gln His Glu Ser Ser Val Ala Arg Tyr Cys Gln Thr		
210	215	220
tgc cca tct aaa ctt ggt cac aat taa 699		
Cys Pro Ser Lys Leu Gly His Asn		
225	230	

<210> 17

<211> 232

<212> PRT

<213> Cnidopus japonicus

<400> 17

Met Ala Ser Lys Ile Ser Asp Asn Val Arg Ile Lys Leu Tyr Met Glu

5 10 15

Gly Thr Val Asn Asn His His Phe Met Cys Glu Ala Glu Gly Glu Gly

20 25 30

Lys Pro Tyr Glu Gly Thr Gln Met Glu Asn Ile Lys Val Thr Lys Gly

35 40 45

Gly Pro Leu Pro Phe Ser Phe Asp Ile Leu Thr Pro Asn Cys Gln Phe

50 55 60

Gly Ser Val Ala Ile Thr Lys Tyr Thr Ser Gly Ile Pro Asp Tyr Phe

65 70 75 80

Lys Gln Ser Phe Pro Glu Gly Phe Thr Trp Glu Arg Thr Thr Ile Tyr

85 90 95

Glu Asp Gly Ala Tyr Leu Thr Thr Gln Gln Glu Thr Lys Leu Asp Gly

100 105 110

Asn Cys Leu Val Tyr Asn Ile Lys Ile Leu Gly Cys Asn Phe Pro Pro

115 120 125

Asn Gly Pro Val Met Gln Lys Lys Thr Gln Gly Trp Glu Pro Cys Cys

130 135 140

Glu Met Arg Tyr Thr Arg Asp Gly Val Leu Cys Gly Gln Thr Leu Met

145 150 155 160

Ala Leu Lys Cys Ala Asp Gly Asn His Leu Thr Cys His Leu Arg Thr

165 170 175

Thr Tyr Arg Ser Lys Lys Ala Ala Lys Ala Leu Gln Met Pro Pro Phe

180 185 190

His Phe Ser Asp His Arg Pro Glu Ile Val Lys Val Ser Glu Asn Gly

195 200 205

Thr Leu Phe Glu Gln His Glu Ser Ser Val Ala Arg Tyr Cys Gln Thr

210 215 220

Cys Pro Ser Lys Leu Gly His Asn

225 230

<210> 18

<211> 699

<212> DNA

<213> Cnidopus japonicus

<400> 18

atg gct tcc aaa atc agc gac aat gta cgt atc aag tta tat atg gag 48

Met Ala Ser Lys Ile Ser Asp Asn Val Arg Ile Lys Leu Tyr Met Glu

 5 10 15

ggc aca gtc aac aat cat cac ttc atg tgc gaa gct gaa gga gag ggc 96

Gly Thr Val Asn Asn His His Phe Met Cys Glu Ala Glu Gly Glu Gly

 20 25 30

aag cca tac gag gga actcaa atg gag aac ata aaa gtc acc aaa gga 144

Lys Pro Tyr Glu Gly Thr Gln Met Glu Asn Ile Lys Val Thr Lys Gly

 35 40 45

ggc cct ctg ccg ttc tct ttt gat atc ttg acg cct aac tgc caa ttt 192

Gly Pro Leu Pro Phe Ser Phe Asp Ile Leu Thr Pro Asn Cys Gln Phe

 50 55 60

gga agc gta gcc ata acc aag tat aca tca ggg att cca gac tac ttt 240

Gly Ser Val Ala Ile Thr Lys Tyr Thr Ser Gly Ile Pro Asp Tyr Phe

 65 70 75 80

aag caa tct ttt cct gaa gga ttt acc tgg gaa aga acc aca atc tac 288

Lys Gln Ser Phe Pro Glu Gly Phe Thr Trp Glu Arg Thr Thr Ile Tyr

 85 90 95

gaa gat ggg gct tac ctt aca act caa caa gaa acc aaa ctt gat gga 336

Glu Asp Gly Ala Tyr Leu Thr Thr Gln Gln Glu Thr Lys Leu Asp Gly
 100 105 110
 aat tgc ctc gtc tac aat att aaa atc ctt gga tgt aat ttt ccc ccc 384
 Asn Cys Leu Val Tyr Asn Ile Lys Ile Leu Gly Cys Asn Phe Pro Pro
 115 120 125
 aat ggt cct gtg atg cag aag aaa acc caa ggc tgg gaa ccc tgt tgc 432
 Asn Gly Pro Val Met Gln Lys Lys Thr Gln Gly Trp Glu Pro Cys Cys
 130 135 140
 gag atg cgc tat aca cgt gat ggt gtg cta tgt ggc caa aca tta atg 480
 Glu Met Arg Tyr Thr Arg Asp Gly Val Leu Cys Gly Gln Thr Leu Met
 145 150 155 160
 gca ctt aaa tgc gcc gat ggg aac cac ctc act tgc cat ctg aga act 528
 Ala Leu Lys Cys Ala Asp Gly Asn His Leu Thr Cys His Leu Arg Thr
 165 170 175
 act tac agg tcc aaa aag gca gca aag gcg ttg cag atg cca ccc ttc 576
 Thr Tyr Arg Ser Lys Lys Ala Ala Lys Ala Leu Gln Met Pro Pro Phe
 180 185 190
 cat ttt tca gac cat cgt cct gaa ata gtg aag gtt tca gag aac ggc 624
 His Phe Ser Asp His Arg Pro Glu Ile Val Lys Val Ser Glu Asn Gly
 195 200 205
 aca cta ttt gaa cag cac gaa agt tca gtg gcc agg tac tgt caa aca 672
 Thr Leu Phe Glu Gln His Glu Ser Ser Val Ala Arg Tyr Cys Gln Thr
 210 215 220
 tgc cca tct aaa ctt ggt cac aat taa 699
 Cys Pro Ser Lys Leu Gly His Asn
 225 230

<210> 19

<211> 232

<212> PRT

<213> Cnidopus japonicus

<400> 19

Met Ala Ser Lys Ile Ser Asp Asn Val Arg Ile Lys Leu Tyr Met Glu

1

5

10

15

Gly Thr Val Asn Asn His His Phe Met Cys Glu Ala Glu Gly Glu Gly

20

25

30

Lys Pro Tyr Glu Gly Thr Gln Met Glu Asn Ile Lys Val Thr Lys Gly

35

40

45

Gly Pro Leu Pro Phe Ser Phe Asp Ile Leu Thr Pro Asn Cys Gln His

50

55

60

Gly Ser Val Ala Ile Thr Lys Tyr Thr Ser Gly Ile Pro Asp Tyr Phe

65

70

75

80

Lys Gln Ser Phe Pro Glu Gly Phe Thr Trp Glu Arg Thr Thr Ile Tyr

85

90

95

Glu Asp Gly Ala Tyr Leu Thr Thr Gln Gln Glu Thr Lys Leu Asp Gly

100

105

110

Asn Cys Leu Val Tyr Asn Ile Lys Ile Leu Gly Cys Asn Phe Pro Pro

115

120

125

Asn Gly Pro Val Met Gln Lys Lys Thr Gln Gly Trp Glu Pro Cys Cys

130

135

140

Glu Met Arg Tyr Thr Arg Asp Gly Val Leu Cys Gly Gln Thr Leu Met

145

150

155

160

Ala Leu Lys Cys Ala Asp Gly Asn His Leu Thr Cys His Leu Arg Thr

165

170

175

Thr Tyr Arg Ser Lys Lys Ala Ala Lys Ala Leu Gln Met Pro Pro Phe

180 185 190

His Phe Ser Asp His Arg Pro Glu Ile Val Lys Val Ser Glu Asn Gly

195 200 205

Thr Leu Phe Glu Gln His Glu Ser Ser Val Ala Arg Tyr Cys Gln Thr

210 215 220

Cys Pro Ser Lys Leu Gly His Asn

225 230

<210> 20

<211> 699

<212> DNA

<213> Cnidopus japonicus

<400> 20

atg gct tcc aaa atc agc gac aat gta cgt atc aag tta tat atg gag 48

Met Ala Ser Lys Ile Ser Asp Asn Val Arg Ile Lys Leu Tyr Met Glu

1 5 10 15

ggc aca gtc aac aat cat cac ttc atg tgc gaa gct gaa gga gag ggc 96

Gly Thr Val Asn Asn His His Phe Met Cys Glu Ala Glu Gly Glu Gly

20 25 30

aag cca tac gag gga act caa atg gag aac ata aaa gtc acc aaa gga 144

Lys Pro Tyr Glu Gly Thr Gln Met Glu Asn Ile Lys Val Thr Lys Gly

35 40 45

ggc cct ctg ccg ttc tct ttt gat atc ttg acg cct aac tgc caa cat 192

Gly Pro Leu Pro Phe Ser Phe Asp Ile Leu Thr Pro Asn Cys Gln His

50 55 60

gga agc gta gcc ata acc aag tat aca tca ggg att cca gac tac ttt 240

Gly Ser Val Ala Ile Thr Lys Tyr Thr Ser Gly Ile Pro Asp Tyr Phe
65 70 75 80
aag caa tct ttt cct gaa gga ttt acc tgg gaa aga acc aca atc tac 288
Lys Gln Ser Phe Pro Glu Gly Phe Thr Trp Glu Arg Thr Thr Ile Tyr
85 90 95
gaa gat ggg gct tac ctt aca act caa caa gaa acc aaa ctt gat gga 336
Glu Asp Gly Ala Tyr Leu Thr Thr Gln Gln Glu Thr Lys Leu Asp Gly
100 105 110
aat tgc ctc gtc tac aat att aaa atc ctt gga tgt aat ttt ccc ccc 384
Asn Cys Leu Val Tyr Asn Ile Lys Ile Leu Gly Cys Asn Phe Pro Pro
115 120 125
aat ggt cct gtg atg cag aag aaa acc caa ggc tgg gaa ccc tgt tgc 432
Asn Gly Pro Val Met Gln Lys Lys Thr Gln Gly Trp Glu Pro Cys Cys
130 135 140
gag atg cgc tat aca cgt gat ggt gtg cta tgt ggc caa aca tta atg 480
Glu Met Arg Tyr Thr Arg Asp Gly Val Leu Cys Gly Gln Thr Leu Met
145 150 155 160
gca ctt aaa tgc gcc gat ggg aac cac ctc act tgc cat ctg aga act 528
Ala Leu Lys Cys Ala Asp Gly Asn His Leu Thr Cys His Leu Arg Thr
165 170 175
act tac agg tcc aaa aag gca gca aag gcg ttg cag atg cca ccc ttc 576
Thr Tyr Arg Ser Lys Lys Ala Ala Lys Ala Leu Gln Met Pro Pro Phe
180 185 190
cat ttt tca gac cat cgt cct gaa ata gtg aag gtt tca gag aac ggc 624
His Phe Ser Asp His Arg Pro Glu Ile Val Lys Val Ser Glu Asn Gly
195 200 205
aca cta ttt gaa cag cac gaa agt tca gtg gcc agg tac tgt caa aca 672

Thr Leu Phe Glu Gln His Glu Ser Ser Val Ala Arg Tyr Cys Gln Thr

210 215 220

tgc cca tct aaa ctt ggt cac aat taa 699

Cys Pro Ser Lys Leu Gly His Asn

225 230

<210> 21

<211> 232

<212> PRT

<213> Cnidopus japonicus

<400> 21

Met Ala Ser Lys Ile Ser Asp Asn Val Arg Ile Lys Leu Tyr Met Glu

1 5 10 15

Gly Thr Val Asn Asn His His Phe Met Val Glu Ala Glu Gly Glu Gly

20 25 30

Lys Pro Tyr Glu Gly Thr Gln Met Glu Asn Ile Lys Val Thr Lys Gly

35 40 45

Gly Pro Leu Pro Phe Ser Phe Asp Ile Leu Thr Pro Asn Cys Gln Met

50 55 60

Gly Ser Val Ala Ile Thr Lys Tyr Thr Ser Gly Ile Pro Asp Tyr Phe

65 70 75 80

Lys Gln Ser Phe Pro Glu Gly Phe Thr Trp Glu Arg Thr Thr Ile Tyr

85 90 95

Glu Asp Gly Ala Tyr Leu Thr Thr Gln Gln Glu Thr Lys Leu Asp Gly

100 105 110

Asn Cys Leu Val Tyr Asn Ile Lys Ile Leu Gly Cys Asn Phe Pro Pro

115 120 125

Asn Gly Pro Val Met Gln Lys Lys Thr Gln Gly Trp Glu Pro Ser Cys

130 135 140

Glu Met Arg Tyr Thr Arg Asp Gly Val Leu Cys Gly Gln Thr Leu Met

145 150 155 160

Ala Leu Lys Cys Ala Asp Gly Asn His Leu Thr Cys His Leu Arg Thr

165 170 175

Thr Tyr Arg Ser Lys Lys Ala Ala Lys Ala Leu Gln Met Pro Pro Phe

180 185 190

His Phe Ser Asp His Arg Leu Glu Ile Val Lys Val Ser Glu Asn Gly

195 200 205

Thr Leu Phe Glu Gln His Glu Ser Ser Val Ala Arg Tyr Cys Gln Thr

210 215 220

Cys Pro Ser Lys Leu Gly His Asn

225 230

<210> 22

<211> 699

<212> DNA

<213> Cnidopus japonicus

<400> 22

atg gct tcc aaa atc agc gac aat gta cgt atc aag tta tat atg gag 48

Met Ala Ser Lys Ile Ser Asp Asn Val Arg Ile Lys Leu Tyr Met Glu

1 5 10 15

ggc aca gtc aac aat cat cac ttc atg gtc gaa gct gaa gga gag ggc 96

Gly Thr Val Asn Asn His His Phe Met Val Glu Ala Glu Gly Glu Gly

20 25 30

aag cca tac gag gga act caa atg gag aac ata aaa gtc acc aaa gga 144

Lys Pro Tyr Glu Gly Thr Gln Met Glu Asn Ile Lys Val Thr Lys Gly
35 40 45
ggc cct ctg ccg ttc tct ttt gat atc ttg acg cct aac tgc caa tat 192
Gly Pro Leu Pro Phe Ser Phe Asp Ile Leu Thr Pro Asn Cys Gln Met
50 55 60
gga agc gta gcc ata acc aag tat aca tca ggg att cca gac tac ttt 240
Gly Ser Val Ala Ile Thr Lys Tyr Thr Ser Gly Ile Pro Asp Tyr Phe
65 70 75 80
aag caa tct ttt cct gaa gga ttt acc tgg gaa aga acc aca atc tac 288
Lys Gln Ser Phe Pro Glu Gly Phe Thr Trp Glu Arg Thr Thr Ile Tyr
85 90 95
gaa gat ggg gct tac ctt aca act caa caa gaa acc aaa ctt gat gga 336
Glu Asp Gly Ala Tyr Leu Thr Thr Gln Gln Glu Thr Lys Leu Asp Gly
100 105 110
aat tgc ctc gtc tac aat att aaa atc ctt gga tgt aat ttt ccc ccc 384
Asn Cys Leu Val Tyr Asn Ile Lys Ile Leu Gly Cys Asn Phe Pro Pro
115 120 125
aat ggt cct gtg atg cag aag aaa acc caa ggc tgg gaa ccc agt tgc 432
Asn Gly Pro Val Met Gln Lys Lys Thr Gln Gly Trp Glu Pro Ser Cys
130 135 140
gag atg cgc tat aca cgt gat ggt gtg cta tgt ggc caa aca tta atg 480
Glu Met Arg Tyr Thr Arg Asp Gly Val Leu Cys Gly Gln Thr Leu Met
145 150 155 160
gca ctt aaa tgc gcc gat ggg aac cac ctc act tgc cat ctg aga act 528
Ala Leu Lys Cys Ala Asp Gly Asn His Leu Thr Cys His Leu Arg Thr
165 170 175
act tac agg tcc aaa aag gca gca aag gcg ttg cag atg cca ccc ttc 576

Thr Tyr Arg Ser Lys Lys Ala Ala Lys Ala Leu Gln Met Pro Pro Phe
180 185 190
cat ttt tca gac cat cgt ctt gaa ata gtg aag gtt tca gag aac ggc 624
His Phe Ser Asp His Arg Leu Glu Ile Val Lys Val Ser Glu Asn Gly
195 200 205
aca cta ttt gaa cag cac gaa agt tca gtg gcc agg tac tgt caa aca 672
Thr Leu Phe Glu Gln His Glu Ser Ser Val Ala Arg Tyr Cys Gln Thr
210 215 220
tgc cca tct aaa ctt ggt cac aat taa 699
Cys Pro Ser Lys Leu Gly His Asn
225 230

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP03/07336

A. CLASSIFICATION OF SUBJECT MATTER

Int.Cl' C12N15/12, 1/21, 5/10, C07K14/435, 19/00, G01N21/78

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Int.Cl' C12N15/00-15/90, 1/21, 5/10, C07K14/00-14/825, 19/00,
G01N21/78

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

MEDLINE (STN), WPI/BIOSIS (DIALOG), JSTPlus (JOIS)
GenBank/EMBL/DDBJ/GeneSeq, SwissProt/PIR/GeneSeq

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	Atsushi MIYAWAKI, "Shiho Dobutsu to Keiko Tanpaku-shitsu", Midoriishi, March, 2002, No.13, pages 1 to 4	1-18
A	WO 01/27150 A2 (CLONTECH LABORATORIES INC.), 19 April, 2001 (19.04.01), & EP 1305412 A2	1-18

 Further documents are listed in the continuation of Box C. See patent family annex.

- * Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier document but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed

- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 "&" document member of the same patent family

Date of the actual completion of the international search
27 June, 2003 (27.06.03)Date of mailing of the international search report
15 July, 2003 (15.07.03)Name and mailing address of the ISA/
Japanese Patent Office

Authorized officer

Facsimile No.

Telephone No.

国際調査報告

国際出願番号 PCT/JP03/07336

A. 発明の属する分野の分類（国際特許分類（IPC））

Int. Cl' C12N 15/12, 1/21, 5/10, C07K 14/435, 19/00, G01N 21/78

B. 調査を行った分野

調査を行った最小限資料（国際特許分類（IPC））

Int. Cl' C12N 15/00-15/90, 1/21, 5/10, C07K 14/00-14/825, 19/00, G01N 21/78

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース（データベースの名称、調査に使用した用語）

MEDLINE (STN), WPI/BIOSIS (DIALOG), JSTplus (J01S)
GenBank/EMBL/DDBJ/GeneSeq, SwissProt/PIR/GeneSeq

C. 関連すると認められる文献

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
X	宮脇 敦史, 刺胞動物と蛍光タンパク質, みどりいし, 3月. 2002, 第13号, p. 1-4	1-18
A	WO 01/27150 A2 (CLONTECH LABORATORIES INC.) 2001. 04. 19 & EP 1305412 A2	1-18

 C欄の続きにも文献が列挙されている。 パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

- 「A」特に関連のある文献ではなく、一般的技術水準を示すもの
- 「E」国際出願日前の出願または特許であるが、国際出願日以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献（理由を付す）
- 「O」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

「T」国際出願日又は優先日後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの

「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの

「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの

「&」同一パテントファミリー文献

国際調査を完了した日 27.06.03	国際調査報告の発送日 15.07.03	
国際調査機関の名称及びあて先 日本国特許庁 (ISA/JP) 郵便番号 100-8915 東京都千代田区霞が関三丁目4番3号	特許庁審査官（権限のある職員） 三原 健治 電話番号 03-3581-1101 内線 3488	4N 2937