Porównanie metod klasyfikacji obrazów w rozpoznawaniu typu odpadu komunalnego

Sieć konwolucyjna, SVM (Support Vector Machine) z transfer-learning oraz Naive Bayes i k-NN za pomocą histogramów koloru.

Baza zdjęć - TrashNet (~2500 zdjęć).

6 rodzajów odpadów:

Preprocessing dla k-NN i Naive Bayes

- Wczytanie obrazów z dysku i skalowanie do 224x224px.
- Konwersja z RGB na HSV. H (Hue) odcień (0–180), S (Saturation) – nasycenie (0–255), V (Value) – jasność (0–255).
- Tworzymy histogram dla każdego kanału (wektor 32 wartości, ilość pikseli w danych przedziale.
- Łączymy wektory trzech kanałów w jeden wektor 96 wartości.
- Normalizujemy dzielimy każdą wartość przez sumę wartości wektora (sumują się do 1).
- Dzielimy zbiór na 80% danych treningowych i 20% testowych.

Osie 0-31 \rightarrow histogram dla odcienia (H), 32-63 \rightarrow nasycenie (S), 64-95 \rightarrow wartość/jasność (V).

Preprocessing w CNN od zera

- Wszystkie obrazy z katalogu klas ładowane są i przeskalowane do 224x224 px.
- Piksele dzielone przez 255 → wartości w zakresie [0.0, 1.0].
- •
- Augmentacja on-the-fly:
 - Obrót losowy w zakresie ±15°.
 - Przesunięcie w poziomie/pionie do ±10% rozmiaru obrazu.
 - Odbicie poziome z prawdopodobieństwem 50%.
- Dzielimy zbiór na 80% danych treningowych i 20% testowych.

Preprocessing dla SVM, używając sieci MobileNetV2 (transfer-learning)

- Skalujemy obrazy do rozmiaru 224x224px.
- Używamy Keras-owego preprocess_input (ImageNet):
 - centrowanie po kanałach (od każdej wartości piksela w kanale R,
 G i B odejmujemy średnią wartość tego kanału).
 - skalowanie tak, by wartości odpowiadały oryginalnemu treningowi MobileNetV2
 - (przeskalowania pikseli z zakresu [0–255] do [–1...+1], dzielenie
 przez 127.5 i przesunięcie o 1).
- Przepuszczamy obraz przez MobileNetV2 (include_top=False, pooling='avg'). Usuwamy 1000-klasowy head (softmax) sieci pretrenowanej na ImageNet.
- Zamrożone wszystkie wagi (nie uczymy ich dalej).
- Otrzymujemy wektor cech 1×1280 opisujący treść obrazu.

Budowa mojej sieci CNN.

Architektura:

- Input:
 - o obrazy 224×224×3 (RGB).
- Blok 1:
 - Conv2D(32, 3×3) + ReLU
 - MaxPool 2x2
- Blok 2:
 - o Conv2D(64, 3x3) + ReLU
 - MaxPool 2x2
- Blok 3:
 - Conv2D(128, 3×3) + ReLU
 - GlobalAvgPool → wektor 128D
- Głowa klasyfikatora:
 - Dense(128) + ReLU
 - Dense(num_classes) + Softmax → rozkład prawdopodobieństw

Trening i zapisywanie wag:

- Optymalizator
 - Adam
- Strata
 - CategoricalCrossentropy
- Batch size:
 - 0 32
- Epochs:
 - o 100

Jak działa SVM (Support Vector Machine)?

Celem SVM jest narysować taką "linię" (w wielowymiarowej przestrzeni – tzw. hiperpłaszczyznę), która najlepiej oddziela punkty z dwóch klas. Najlepiej" oznacza: linia ta jest odsunięta jak najdalej od najbliższych punktów obu klas – tworzymy więc największy możliwy "margines" między klasami.

• Soft Margin:

- Dopuszcza niewielkie naruszenia marginesu, karane parametrem C:
 - Małe C → wiekszy margines, wiecej naruszeń
 - Duże $C \rightarrow \text{ścisłe}$ dopasowanie, mniejszy margines

Support Vectors:

- Podczas uczenia SVM szuka tej idealnej granicy, jednocześnie dopuszczając, by kilka punktów znalazło się w marginesie lub po niewłaściwej stronie granicy.
- leżą najbliżej granicy (na samym brzegu marginesu) lub nawet naruszają margines (są po "złej" stronie).

Predykcja:

- Dla nowego punktu SVM sprawdza, z którymi support vectors jest najbardziej "podobny" (przez funkcję jądra, np. RBF),
- Następnie na podstawie tych najbliższych support vectors decyduje, po której stronie granicy ten punkt leży → etykieta klasy.

Krzywa uczenia mojego CNN

- Szybki wzrost na początku:
 - W 5 epokach train_acc: \sim 0.28 \rightarrow 0.55, val_acc: \sim 0.28 \rightarrow 0.50.
- Divergencja po ~10 epokach:
 - train_acc ≈0.65 vs. val_acc ≈0.50 zaczyna się
 zbytnie dopasowanie do treningu.
- Wyraźny overfitting:
 - Końcowo train_acc≈0.85, val_acc≈0.65 (20-25 p.p. różnicy).
- Fluktuacje walidacji:
 - Nieregularne skoki val_acc →potencjalnie zbyt mały zbiór walidacyjny lub zbyt agresywna augmentacja

Podsumowanie:

Szybkie uczenie, ale rosnąca różnica między train/val to sygnał overfittingu – wprowadzenie early stoppingu i regularizacji może poprawić generalizację.

Macierze błędów klasyfikatorów

Porównanie wyników

Model	Średnia trafień na diagonalnej	Najlepsza klasa	Najgorsza klasa	Typowe pomyłki
TL+SVM	~81 %	paper (111/119)	trash (16/27)	plastic→glass, metal→glass
CNN	~78%	paper (115/119)	trash (19/27)	metal→glass, plastic→glass
k-NN	~71 %	paper (96 / 119)	metal (29 / 52)	cardboard→paper, glass→paper
NaiveBayes	~55 %	plastic (58 / 97)	glass (40 / 80)	glass→trash, paper→plastic

Najlepszy wynik

TL+SVM:

Silna diagonalna dominacja: duża część próbek każdej klasy trafiona poprawnie.

Główne błędy: plastic ↔ glass (np. 15 plastików uznanych za szkło), metal ↔ glass (6 metal → glass).

Niewiele gorszy

CNN:

Paper niemal doskonale (115/119),

Nadal myli metal ze szkłem (7 prób) i plastik ze szkłem (6),

Trash lepiej niż k-NN/NB, ale ciągle trudna klasa.

Umiarkowanie dobry

k-NN:

Spore problemy z metal (29/52) i glass (75/100).

Cardboard i paper najstabilniejsze, ale znacznie gorzej niż TL+SVM.

Najsłabszy

Naive Bayes:

Dobre only dla plastic (58/97),

Dramatyczne pomyłki glass→trash (35/80) i paper→plastic (40/119).

Zakres kolorów w histogramach nie rozdziela dobrze wszystkich klas.

Końcowe wnioski

$$F1 = 2 imes rac{ ext{precision} imes ext{recall}}{ ext{precision} + ext{recall}}$$

$$precision = \frac{TP}{TP + FP}$$

$$recall = \frac{TP}{TP + FN}$$

Model	Accuracy	Macro-F1	Train time (s)
TL+SVM	0.8439	0.8203	4.3400
CNN (from scratch)	0.8300	0.8143	1402.6700
k-NN (HSV)	0.6482	0.6137	0.0011
Naive Bayes (HSV)	0.4921	0.4917	0.0016

Najlepszy kompromis – TL+SVM:

- -Accuracy 84 %, macro-F1 0.82 przy kilku sekundach trenowania.
- -Ekstrakcja 1280-wymiarowych cech z MobileNetV2 + szybki SVM daje świetne rezultaty bez kosztu długiego treningu sieci.

CNN od zera:

- -Bardzo dobra jakość (83 % acc, F1 0.81), ale ponad 1 400 s (23 min) trenowania na GPU.
- -Umożliwia samodzielne wyciąganie cech, ale kosztem czasu i mocy obliczeniowej.

k-NN na histogramach HSV:

- -Średnia dokładność (65 %), bardzo szybki "trening" (pamięta tylko dane).
- -Nadaje się jako szybki baseline, ale nie wyłapuje złożonych wzorców kolorystycznych.

Naive Bayes na histogramach HSV:

- -Najsłabsze wyniki (<50 % accuracy), pomimo błyskawicznego "trenowania".
- -Założenie niezależności koszyków histogramu okazuje się zbyt uproszczone.