UNIVERSITETET I OSLO

Det matematisk-naturvitenskapelige fakultet

Eksamen i: MEK2200 — Kontinuumsmekanikk

Eksamensdag: Onsdag 13. desember 2017

Tid for eksamen: 14.30 - 18.30

Oppgavesettet er på 3 sider.

Vedlegg: Ingen

Tillatte hjelpemidler: Rottmann: Matematische Formelsamlung,

godkjent kalkulator

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene.

Oppgave 1 (vekt 40%)

I det kartesiske koordinatsystem x,y er spenningstensoren gitt ved

$$\mathcal{P} = \begin{pmatrix} 0 & \tau \\ \tau & 0 \end{pmatrix}$$

hvor skjærspenningskomponenten τ er konstant. Enhetsvektorene i koordinatsystemet er \boldsymbol{i} og \boldsymbol{j} henholdsvis i x- og y-retning. Vi ser på et objekt som skissert i figuren under. Objektets sideflater kan deles inn i tre, basert på vinkelen ϕ . For $\phi = [0, \pi]$ har vi en halvsirkel med flate Γ_1 , radius r og sentrum i origo. For $\phi = [\pi, 1.5\pi]$ og $\phi = [1.5\pi, 2\pi]$ har vi henholdsvis de to rette sideflatene Γ_2 og Γ_3 med lengde $\sqrt{2}r$.

1a

Finn spenningen P_n på de tre sideflatene.

1b

Finn størrelse og retning av normal- og tangensialspenningenene på de tre sideflatene.

1c

Finn den samlede spenningskraften på hver enkelt sideflate, og gi den totale spenningskraften som virker på objektet.

1d

Finn prinsipalspenningene og prinsipalspenningsretningene for spenningstensoren \mathcal{P} på de tre flatene.

Oppgave 2 (vekt 60%)

I denne oppgaven ser vi på en to-dimensjonal, stasjonær strøm i x,z-planet av en homogen inkompressibel Newtonsk væske mellom to parallelle vertikale plan. Avstanden mellom planene er h. z-aksen er orientert vertikalt midt mellom planene og x-aksen står normalt på planene. Tettheten i væsken er ρ og viskositetskoeffisienten er μ , ($\nu = \mu/\rho$). I væsken er det en trykkgradient

$$\frac{dp}{dz} = -\beta$$

i z-retning, hvor β er en konstant som er større enn 0. Eneste ytre volumkraft er tyngden som virker i negativ z-retning, og tyngdens akselerasjon er som vanlig gitt ved konstanten q.

2a

Forklar hvorfor væskehastigheten mellom platene kan skrives på formen

$$\mathbf{v} = \{0, 0, w(x)\}\$$

Hva er grenseflatebetingelsene til w?

2b

Finn strømprofilen w(x).

2c

Finn skjærspenningen (størrelse og retning) på planene $x=\pm \frac{h}{2}.$

(Fortsettes på side 3.)

2d

Bestem energidissipasjon ($\triangle = 2\mu\varepsilon_{ij}\varepsilon_{ij}$) per volumenhet i væsken.

2e

Finn temperatur
feltet i væsken, T(x), når temperaturen på de to planen
e $x=\pm\frac{h}{2}$ holdes konstant på henholdsvis $T_0\pm\frac{\triangle T}{2}.$

2f

Beregn varmestrømmen (i x-retning) gjennom planene. Varmeledningstallet (termisk konduktivitet) i væsken er κ .

SLUTT