

#### CHƯƠNG II:

#### MA TRẬN-ĐỊNH THỰC -HỆ PHƯƠNG TRÌNH TUYẾN TÍNH

- I. MATRÂN
- II. ĐỊNH THỨC
- III. HẠNG MA TRẬN-MA TRẬN NGHỊCH ĐẢO
- IV. HỆ PHƯƠNG TRÌNH TUYẾN TÍNH











#### 1.1 Các khái niệm

a) Định nghĩa: Ma trận là một bảng gồm m.n số thực (phức) được viết thành m hàng và n cột như sau:

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

Ký hiệu: 
$$A = [a_{ij}]_{mn}$$





| _        |                |       |                 |      | _              | _                                      |
|----------|----------------|-------|-----------------|------|----------------|----------------------------------------|
| $a_{11}$ | $Q_{12}$       |       | $Q_{1}$ .       |      | $Q_1$          | $oldsymbol{oldsymbol{oldsymbol{eta}}}$ |
|          | 12             |       | 1j              |      | $a_{1n}$       |                                        |
| $a_{21}$ | $a_{22}$       | • • • | $a_{2j}$        | •••  | $a_{2n}$       |                                        |
| •••      | • • •          | • • • | •••             | •••  | • • •          |                                        |
| $a_{i1}$ | $\vec{a}_{i2}$ | • • • | a <sub>ij</sub> | •••  | $\hat{a}_{in}$ |                                        |
| •••      | • • •          | • • • | •••             | \··· | • • •          |                                        |
| $a_{m1}$ | $a_{m2}$       | • • • | A <sub>mj</sub> | •••  | $a_{mn}$       |                                        |
|          | \              |       | 7               |      |                |                                        |

Cột thứ 2 Cột thứ j

Hàng thứ nhất

Hàng thứ i

mn: gọi là cấp của ma trận

 $a_{ij}$ : Phần tử nằm ở hàng i cột j





#### Ví dụ:

$$A = \begin{bmatrix} 1 & 0 & \sqrt{2} \\ -3 & 1.5 & 5 \end{bmatrix}_{23}$$

$$B = \begin{bmatrix} 2 & 8 & -6 \\ 2 & 9 & 0 \\ 0 & -7 & -2 \end{bmatrix}_{33}$$

đường chéo chính





#### b) Các ma trận đặc biệt.

1. Ma trận không  $\alpha_{ij} = 0, \forall i, j$ .

 $(t\hat{a}t \ cac \ cac \ phần tử đều = 0)$ 

Ví dụ:

$$O = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$





2. Ma trận vuông: m = n. (số hàng = số cột)

<u>Đ/n:</u> Ma trận vuông n hàng, n cột được gọi là ma trận vuông cấp n.

Ví dụ:

Ma trận vuông cấp 3

$$\begin{bmatrix} 1 & 3 \\ -2 & 7 \end{bmatrix}; \begin{bmatrix} 0 & 7 & 8 \\ 4 & -2 & 0 \\ 5 & 0 & 2 \end{bmatrix}$$

Ma trận vuông cấp 2





Cho ma trận vuông cấp n  $A=[a_{ij}]$ . Các phân tử  $a_{ii}$  gọi là các phần tử chéo. Đường thẳng qua các phần tử chéo gọi là đường chéo chính.

Ví dụ:

$$B = \begin{bmatrix} 2 & 8 & -6 \\ 2 & 9 & 0 \\ 0 & -7 & -2 \end{bmatrix}_{33}$$

đường chéo chính





3. Ma trận chéo: là ma trận vuông có:

$$a_{ij} = 0, \forall i \neq j.$$

(các phần tử ngoài đường chéo chính = 0)

#### Ví dụ:

$$\begin{bmatrix} 2 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 9 \end{bmatrix}$$

$$\begin{bmatrix} a_{11} & 0 & \dots & 0 \\ 0 & a_{22} & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & a_{nn} \end{bmatrix}$$





4. Ma trận đơn vị: là ma trận chéo có:

$$a_{ii} = 1, \forall i = 1, 2, ..., n.$$

Ký hiệu: E, E<sub>n</sub> (hoặc I, I<sub>n)</sub>.

Ví dụ:

$$E_{2} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, E_{3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, E_{n} = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix}$$







5. Ma trận tam giác: là ma trận vuông có

$$a_{ij} = 0, \forall i > j$$
. (tam giác trên)

$$a_{ij} = 0, \forall i < j.$$
 (tam giác dưới)

Ví dụ:

| 1           | 2 | 5  | 4 |
|-------------|---|----|---|
| 0           | 3 | -1 | 0 |
| 0           | 0 | 2  | 6 |
| $\lfloor 0$ | 0 | 0  | 9 |

MT tam giác trên

MT tam giác dưới





6. Ma trận cột: là ma trận có n=1.

Ma trận cột có dạng:

$$\begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix} := [a_i]_m$$

7. Ma trận hàng: là ma trận có m=1.

Ma trận hàng có dạng:  $\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \end{bmatrix}$ 





8. Ma trận chuyển vị: cho ma trận  $A = [a_{ij}]_{mn}$ , ma trận chuyển vị của ma trận A ký hiệu:  $A^T$  và xác định  $A^T = [b_{ij}]_{nm}$  với  $b_{ij} = a_{ji}$  với mọi i,j.

(chuyển hàng thành cột, cột thành hàng)

Ví dụ:

Ví dụ:
$$A = \begin{bmatrix} 1 & 2 & 5 \\ \hline 6 & 7 & 9 \end{bmatrix} \rightarrow A^{T} = \begin{bmatrix} 1 & 6 \\ 2 & 7 \\ 5 & 9 \end{bmatrix}$$
NX: 
$$(A^{T})^{T} = A$$

$$\mathbf{NX:} \quad (A^T)^T = A$$





#### 1.2. Ma trận bằng nhau:

$$A = \left[ a_{ij} \right]_{m \times n} = \left[ b_{ij} \right]_{m \times n} = B \iff a_{ij} = b_{ij}, \forall i, j.$$

#### **VD**

$$\begin{bmatrix} a & 1 & -2 \\ 9 & b & 0 \end{bmatrix} = \begin{bmatrix} -1 & 1 & y \\ x & 3 & 0 \end{bmatrix} \implies \begin{cases} a = -1 \\ b = 3 \\ x = 9 \\ y = -2 \end{cases}$$

Chú ý: Chỉ xét 2 ma trận bằng nhau nếu chúng cùng cỡ.







#### 1.3. Các phép toán trên ma trận:

a. Phép cộng hai ma trận: (cùng cỡ)

$$\left[a_{ij}\right]_{mn} + \left[b_{ij}\right]_{mn} = \left[a_{ij} + b_{ij}\right]_{mn}$$

(cộng theo từng vị trí tương ứng)

#### Ví dụ:

$$\begin{bmatrix} 1 & 2 \\ -3 & 5 \\ 4 & -2 \end{bmatrix} + \begin{bmatrix} 0 & 3 \\ 2 & -4 \\ 1 & 5 \end{bmatrix} = \begin{bmatrix} -1 & 1 \\ 5 & 3 \end{bmatrix}$$





Bài tập: Tính

$$\begin{bmatrix} 2 & 3 & -3 \\ 1 & 4 & 6 \\ 4 & -2 & 0 \end{bmatrix} + \begin{bmatrix} 3 & 4 & 2 \\ -1 & 7 & 2 \\ -6 & 3 & 2 \end{bmatrix} = \begin{bmatrix} 5 & 7 & -1 \\ 0 & 11 & 8 \\ -2 & 1 & 2 \end{bmatrix}$$





Các tính chất: Giả sử  $A,B,C,\theta$  là các ma trận cùng cấp, khi đó:

$$i) A + B = B + A$$

$$ii) A + \theta = A$$

$$iii) A + (B + C) = (A + B) + C$$







#### 1.3. Các phép toán trên ma trận:

b. Phép nhân một số với một ma trận:

$$\lambda [a_{ij}]_{mn} = [\lambda . a_{ij}]_{mn}, \lambda \in \mathbb{R}$$

(các phần tử của ma trận đều được nhân cho  $\lambda$  )

#### Ví dụ:

$$\begin{bmatrix}
3 & -2 & 0 \\
7 & 4 & 5 \\
0 & -2 & 1
\end{bmatrix} = \begin{bmatrix}
0 \\
14 & 8 & 10 \\
0 & -4 & 2
\end{bmatrix}$$





Bài tập: Tính

$$\begin{bmatrix} 2 & -3 \\ 4 & 0 \\ 5 & -1 \end{bmatrix} = \begin{bmatrix} -9 \\ 12 & 0 \\ 15 & -3 \end{bmatrix}$$





Các tính chất:  $\forall \alpha, \beta \in R, \forall A, B$  là hai ma trận cùng cấp, khi đó

i) 
$$\alpha(A+B) = \alpha A + \alpha B$$

$$ii) (\alpha + \beta)A = \alpha A + \beta A$$

$$iii) \alpha(\beta A) = (\alpha \beta)A$$

$$iv)$$
  $1A = A$ 







- Chú ý: A B = A + (-1)B
- Nhận xét: trừ 2 ma trận là trừ theo vị trí tương ứng

$$\begin{bmatrix} 1 & 3 \\ 4 & 5 \end{bmatrix} - \begin{bmatrix} 6 & 5 \\ 1 & 3 \end{bmatrix} = \begin{bmatrix} -5 & -2 \\ 3 & 2 \end{bmatrix}$$





Bài tập: Tính

$$2+(-2).1=0$$

$$\begin{bmatrix} 2 & 4 \\ 3 & 7 \end{bmatrix} - 2 \begin{bmatrix} 1 & 3 \\ -2 & 4 \end{bmatrix} = \begin{bmatrix} 0 & -2 \\ 7 & -1 \end{bmatrix}$$





#### 1.3 Các phép toán trên ma trận:

c. Phép nhân hai ma trận: Cho hai ma trận  $A_{mp}; B_{pn}$ , Khi đó ma trận  $A_{mp}B_{pn} = [c_{ij}]_{mn}$  gọi là tích của hai ma trận A, B. Trong đó:

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + ... + a_{ip}b_{pj}, \forall i = 1, m; j = 1, n.$$

$$a_{i1} \qquad a_{i2} \qquad b_{pj} \qquad \text{Hàng thứ } i \text{ của ma trận } A.$$

$$b_{1j} \qquad b_{2j} \qquad b_{pj} \qquad \text{Cột thứ } j \text{ của ma trận } B.$$

Như vậy  $\mathbf{c}_{ij}$  = hàng thứ i của ma trận A nhân tương ứng với cột thứ j của ma trận B rồi cộng lại.





Ví dụ: Nhân hai ma trận sau:

$$\begin{bmatrix} 3 & 2 & 1 \\ 0 & -1 & 4 \\ -2 & 3 & 0 \end{bmatrix}_{33} \begin{bmatrix} 1 & 2 \\ 3 & 0 \\ 4 & -1 \end{bmatrix}_{32} = \begin{bmatrix} \\ \\ \end{bmatrix}_{32}$$

số cột của A= số hàng  $\overline{c}$ ủa B Chú ý: hàng 1 nhân cột 2 viết vào vị trí  $C_{12}$ 





Ví dụ: Nhân hai ma trận sau:

$$\begin{bmatrix} 3 & 2 & 1 \\ 0 & -1 & 4 \\ -2 & 3 & 0 \end{bmatrix}_{33} \begin{bmatrix} 1 & 2 \\ 3 & 0 \\ 4 & -1 \end{bmatrix}_{32} = \begin{bmatrix} 13 & 5 \\ & & \\ & -4 \end{bmatrix}_{32}$$





Ví dụ: Tính

$$\begin{array}{c|c}
\text{Cột 1} \\
\text{Hàng 1} \\
= \\
\end{array}$$







Bài tập: Tính

 $\begin{bmatrix} 1 & 2 & 3 \\ 0 & -4 & 2 \\ 5 & 1 & -1 \end{bmatrix} \begin{bmatrix} 3 & -1 \\ 2 & 0 \\ 6 & -3 \end{bmatrix}$ 





#### Chú ý:

- Muốn nhân A với B thì số cột của A = số hàng của B.
   Do đó, việc tồn tại AB không suy ra được việc tồn tại BA.
- -Nói chung AB ≠ BA

#### Ví dụ:

$$\begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} 3 \\ 4 \end{bmatrix} = \begin{bmatrix} 11 \end{bmatrix} \neq \begin{bmatrix} 3 \\ 4 \end{bmatrix} \begin{bmatrix} 1 & 2 \end{bmatrix} = \begin{bmatrix} 3 & 6 \\ 4 & 8 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 4 \\ 5 & 2 \end{bmatrix} \begin{bmatrix} 3 & -1 \\ 4 & 0 \end{bmatrix} = \begin{bmatrix} 19 & -1 \\ 23 & -5 \end{bmatrix} \neq \begin{bmatrix} 3 & -1 \\ 4 & 0 \end{bmatrix} \begin{bmatrix} 1 & 4 \\ 5 & 2 \end{bmatrix} = \begin{bmatrix} -2 & 10 \\ 4 & 16 \end{bmatrix}$$





Các tính chất: Ta giả sử các ma trận có cấp phù hợp để tồn tại ma trận tích

$$i) A(BC) = (AB)C$$

$$ii) A(B+C) = AB + AC$$

$$iii)(A+B)C = AC+BC$$

$$iv) AE = EA = A$$
 (E là MT đơn vị)







#### ■ Ví dụ:

$$AE = \begin{bmatrix} 1 & 5 & 7 \\ 8 & 4 & 2 \\ 3 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 5 & 7 \\ 8 & 4 & 2 \\ 3 & 1 & 0 \end{bmatrix} = A$$

$$EA = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 5 & 7 \\ 8 & 4 & 2 \\ 3 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 5 & 7 \\ 8 & 4 & 2 \\ 3 & 1 & 0 \end{bmatrix} = A$$





#### \*Chú ý:

- Nếu A, B là các ma trân vuông cấp n thì AB và BA tồn tại và cũng là ma trận vuông cấp n.
- Kí hiệu:  $A^m = A.A...A$  (m ma trận A)
- Đa thức của ma trận:

Cho đa thức  $P_n(x) = a_0 x^n + a_1 x^{n-1} + ... + a_n$ 

và ma trận vuông  $A = [a_{ij}]_n$ 

Khi đó:

$$P_n(A) = a_0 A^n + a_1 A^{n-1} + \dots + a_n E_n$$





■ **Bài tập:** Cho  $f(x) = x^2 + 3x - 4$ 

và ma trận 
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 3 & 4 \\ 0 & 0 & 2 \end{bmatrix}$$

Tính f(A) = ?







$$f(A) = A^2 + 3A - 4I_3$$

$$= \begin{bmatrix} 1 & 2 & 3 \\ 0 & 3 & 4 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 0 & 3 & 4 \\ 0 & 0 & 2 \end{bmatrix} + 3 \begin{bmatrix} 1 & 2 & 3 \\ 0 & 3 & 4 \\ 0 & 0 & 2 \end{bmatrix} - 4 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 14 & 26 \\ 0 & 14 & 32 \\ 0 & 0 & 6 \end{bmatrix}$$





#### 1.4 Các phép biến đổi sơ cấp trên ma trận:

- 1. Nhân một số khác không với một hàng (cột) của ma trận. Ký hiệu:  $A \xrightarrow{\lambda h_i \ (\lambda c_i)} B$
- 2. Đổi chỗ hai hàng (cột) của ma trận. Ký hiệu:  $A \xrightarrow{h_i \leftrightarrow h_j \ (c_i \leftrightarrow c_j)} B$
- 3. Cộng vào một hàng (cột) với một hàng (cột) khác đã nhân thêm một số khác không. Ký hiệu:  $A \xrightarrow{h_i + \lambda h_j \ (c_i + \lambda c_j)} B$





■ Ví dụ: Đưa ma trận sau về dạng ma trận hình thang. -5=-1+(-2)2

$$\begin{bmatrix} 1 & 1 & 2 & 0 \\ 2 & 1 & -1 & 3 \\ -4 & 5 & 2 & -1 \\ -1 & 7 & 3 & 2 \end{bmatrix} \xrightarrow[h_2 + (-2)h_1]{h_2 + (-2)h_1} \begin{bmatrix} 1 & 1 & 2 & 0 \\ 0 & -P & -5 & 3 \\ 0 & 9 & 10 & -1 \\ 0 & 8 & 5 & 2 \end{bmatrix}$$

- Ta làm cho phần dưới
   đường chéo chính = 0.
- Ta lặp lại như trên cho phần ma trận này







$$\begin{bmatrix} 1 & 1 & 2 & 0 \\ 2 & 1 & -1 & 3 \\ -4 & 5 & 2 & -1 \\ -1 & 7 & 3 & 2 \end{bmatrix} \xrightarrow[h_2 + (-2)h_1]{h_2 + (-2)h_1} \begin{bmatrix} 1 & 1 & 2 & 0 \\ 0 & -1 & -5 & 3 \\ 0 & 9 & 10 & -1 \\ 0 & 8 & 5 & 2 \end{bmatrix}$$





Ví dụ: Đưa ma trận sau về dạng ma trận hình thang:

$$\begin{bmatrix} 0 & 2 & -1 \\ 2 & 1 & 3 \\ 3 & 0 & 5 \end{bmatrix} \xrightarrow{h_1 \leftrightarrow h_2} \begin{bmatrix} 2 & 1 & 3 \\ 0 & 2 & -1 \\ 3 & 0 & 5 \end{bmatrix} \xrightarrow{2h_3 + (-3)h_1} \xrightarrow{2h_3 + (-3)h_1}$$

$$\begin{bmatrix} 2 & 1 & 3 \\ 0 & 2 & -1 \\ 0 & -3 & 1 \end{bmatrix} \xrightarrow{2h_3 + 3h_2} \begin{bmatrix} 2 & 1 & 3 \\ 0 & 2 & -1 \\ 0 & 0 & -1 \end{bmatrix}$$





■ Bài tập: Đưa ma trận sau về dạng ma trận hình thang:

| \[ \begin{array}{cccccccccccccccccccccccccccccccccccc |                                       |              |      |   |   |                  |
|-------------------------------------------------------|---------------------------------------|--------------|------|---|---|------------------|
| 2 3 0<br>4 1 3<br>-3 0 3                              | $\begin{bmatrix} 5 \end{bmatrix}$     | $h_2-2h_1$   | 0 -1 | 2 | 5 | $h_3 - 7h_2$     |
| 4 1                                                   | $\begin{bmatrix} 2 & 0 \end{bmatrix}$ | $h_3-4h_1$   | 0 -7 | 6 | 0 | h + 6h           |
| $\begin{bmatrix} -3 & 0 & 3 \end{bmatrix}$            | 5 7                                   | $h_4 + 3h_1$ | 0 6  | 2 | 7 | $n_4 \cdot on_2$ |





| $\lceil 1$ | 2  | -1 | 0 -  | $\xrightarrow{8h_4+14h_3}$ | Γ1          | 2  | -1 | 0 7   |
|------------|----|----|------|----------------------------|-------------|----|----|-------|
| 0          | -1 | 2  | 5    | $8h_4 + 14h_3$             | 0           | -1 | 2  | 5     |
| 0          | 0  | -8 | -35  | <del></del>                | 0           | 0  | -8 | -35   |
| 0          | 0  | 14 | 37 _ |                            | $\lfloor 0$ | 0  | 0  | -194] |



#### MỘT SỐ ĐỀ THI



Câu 1. Cho ma trận  $A = \begin{bmatrix} 2 & 1 \\ 5 & 3 \end{bmatrix}$  và đa thức  $f(x) = 3x^2 - 5x + 1$ Tính f(A). Tìm ma trận X thỏa mãn  $(5A^2 - A^3)X = A^t$ 

(Đề 1- K55)

Câu 2. Cho ma trận  $A = \begin{bmatrix} 1 & 3 \\ 2 & 7 \end{bmatrix}$  và đa thức  $f(x) = x^2 - 8x + 1$ Tính f(A). Tìm ma trận Y thỏa mãn  $Y(8A^2 - A^3) = A^t$ 

 $( \div ) = ( \div$ 

Câu 3. (6/2014) Tìm ma trận X thỏa mãn