

Properties of Triangles Ex 15.2 Q15

Answer:

(i) In △ ABC and △ ADE, we have:

∠ADE = ∠ABC (corresponding angles)

 $\Rightarrow x^{\circ} = 40^{\circ}$

 $\angle AED = \angle ACB$ (corresponding angles)

 \Rightarrow y° = 30°

We know that the sum of all the three angles of a triangle is equal to 180°.

 \therefore $x^{\circ} + y^{\circ} + z^{\circ} = 180^{\circ}$ (Angles of \triangle ADE)

Which means: $40^{\circ} + 30^{\circ} + z^{\circ} = 180^{\circ}$

 $\Rightarrow z^{\circ} = 180^{\circ} - 70^{\circ}$

 $\Rightarrow z^{\circ} = 110^{\circ}$

Therefore, we can conclude that the three angles of the given triangle are 40°, 30° and 110°.

(ii) We can see that in △ ADC, ∠ ADC is equal to 90°.

(△ ADC is a right triangle)

We also know that the sum of all the angles of a triangle is equal to 180°.

Which means: $45^{\circ} + 90^{\circ} + y^{\circ} = 180^{\circ}$ (Sum of the angles of \triangle ADC)

 $\Rightarrow 135^{\circ} + y^{\circ} = 180^{\circ}$

 \Rightarrow y° = 180° - 135°

 \Rightarrow y° = 45°

We can also say that in \triangle ABC, \angle ABC + \angle ACB + \angle BAC is equal to 180°. (Sum of the angles of \triangle ABC)

 $\Rightarrow 40^{\circ} + y^{\circ} + (x^{\circ} + 45^{\circ}) = 180^{\circ}$

 $\Rightarrow 40^{\circ} + 45^{\circ} + x^{\circ} + 45^{\circ} = 180^{\circ}$ $(:: y^\circ = 45^\circ)$

 $\Rightarrow \mathbf{x}^{\circ} = 180^{\circ} - 130^{\circ}$ $\Rightarrow \mathbf{x}^{\circ} = \mathbf{50}^{\circ}$

Therefore, we can say that the required angles are 45° and 50° .

(iii) We know that the sum of all the angles of a triangle is equal to 180°. Therefore, for \triangle ABD: $\angle ABD + \angle ADB + \angle BAD = 180^{\circ}$ (Sum of the angles of $\triangle ABD$) $\Rightarrow 50^{\circ} + x^{\circ} + 50^{\circ} = 180^{\circ}$ $\Rightarrow 100^{\circ} + \mathbf{x}^{\circ} = 180^{\circ}$ $\Rightarrow x^{\circ} = 180^{\circ} - 100^{\circ}$ $\Rightarrow x^{\circ} = 80^{\circ}$ For \triangle ABC: $\angle ABC + \angle ACB + \angle BAC = 180\,^{\circ}$ (Sum of the angles of \triangle ABC) $\Rightarrow 50^{\circ} + z^{\circ} + (50^{\circ} + 30^{\circ}) = 180^{\circ}$ $\Rightarrow 50^{\circ} + z^{\circ} + 50^{\circ} + 30^{\circ} = 180^{\circ}$ $\Rightarrow z^{\circ} = 180^{\circ} - 130^{\circ}$ $\Rightarrow \mathbf{z}^{\circ} = 50^{\circ}$ Using the same argument for \triangle ADC: $\angle ADC + \angle ACD + \angle DAC = 180^{\circ}$ (Sum of angles of \triangle ADC) \Rightarrow y° + z° + 30° = 180° \Rightarrow y° + 50° + 30° = 180° (: z° = 50°) \Rightarrow y° = 180° - 80° \Rightarrow y° = 100°

Therefore, we can conclude that the required angles are 80°, 50° and 100°.

********* END *******