

Computabilidad y Algoritmia:

Práctica 5

Autómatas finitos en JFLAP

Cheuk Kelly Ng Pante (alu0101364544@ull.edu.es)

Índice:

1. DFA's.	2
2. NFA's.	6

1. DFA's.

1. Diseñar un autómata finito determinista que reconozca cadenas binarias que contengan un número impar de unos y un número impar de ceros.

Diseño del DFA:

Simulación en el DFA:

2. Diseñar un autómata finito determinista que reconozca cadenas binarias de longitud par.

Diseño del DFA:

Simulación del DFA:

3. Diseñar un autómata finito determinista que reconozca cadenas sobre el alfabeto Σ = {a, b, c} que no contengan la subcadena abc. Diseño del DFA:

Simulación del DFA:

4. Diseñar un autómata finito determinista que acepte números reales. El alfabeto que usa el autómata se define como Σ = {+, -, ., E, e, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9} y las cadenas a aceptar se definen de la siguiente forma: Diseño del DFA:

Simulación del DFA:

2. NFA's.

1. Diseñar un autómata finito no determinista que reconozca cadenas sobre el alfabeto Σ = {a, b} que tengan un número de a's múltiplo de tres o longitud par. A partir del NFA diseñado, obtenga un DFA mínimo equivalente.

NFA diseñado:

Simulación del NFA:

NFA a DFA minimizado:

2. Diseñar un autómata finito no determinista que reconozca cadenas sobre el alfabeto Σ = {0, 1} tales que contengan la subcadena 0110. A partir del NFA diseñado, obtenga un DFA mínimo equivalente.

Diseño del NFA:

Simulación del NFA:

NFA a DFA minimizado:

