Date: Mar 27 Made by Eric

Definitions and Theorems

Theorem 1. Let p be prime, and let $f(x) = a_d x^d + \cdots + a_1 x + a_0$ be a polynomial with integer coefficients, where $a_i \not\equiv_p 0$ for some i

The congruence $f(x) \equiv_p 0$ is satisfied by at most d congruence classes $[x] \in \mathbb{Z}_p$ Proof.

Theorem 2. (Fermat's Little Theorem) Let p be a prime

$$\forall a \in \mathbb{N}, a^{p-1} \equiv_p 1$$

Proof. We now prove the non-zero elements of \mathbb{Z}_p constitute a group

Notice \mathbb{Z}_p is a field, so $\forall a, b \neq 0 \in \mathbb{Z}_p, ab \neq 0$

$$\forall a \in \mathbb{Z}_p, 1a = a$$

Because p is a prime, so $\forall a \in \mathbb{Z}_p, gcd(a, p) = 1$

Then $\forall a \in \mathbb{Z}_p, \exists \alpha, \beta \in \mathbb{Z}, \alpha a + \beta p = 1$

Pick the α that satisfy $\alpha a + \beta p = 1$

We see $\alpha a \equiv_p 1$

Then α (you can choose to use the remainder of α divided by p, instead of α) is the inverse of a (done)

This group G is of order p-1

So
$$\forall a \in G, a^{p-1} = e = 1$$

Theorem 3. Every finite multiplicative group of some field is cyclic

Proof. Let G be a finite multiplicative group of some field $\mathbb F$

G is abelian, since it is a multiplicative subgroup of $\mathbb F$

So by Fundamental Theorem of Finitely Generated Abelian Group, we have $G=\mathbb{Z}_{p_1^{c_1}}\times\mathbb{Z}_{p_2^{c_2}}\times\cdots\times\mathbb{Z}_{p_s^{c_s}}$

We prove by induction

Base step:
$$|G| = p^n \implies G$$
 is cyclic

Assume G is not cyclic

So $\forall a \in G, ord(a) < |G|, and ord(a) divides |G| = p^n$

This give us $\forall a \in G, ord(a) | p^{n-1}$

Then every element of G satisfy the equation $a^{p^{n-1}} = e$, where e is the unity of the field \mathbb{F} .

This CaC, since the equation $a^{p^{n-1}}$ can have at most p^{n-1} roots

Induction step:
$$|G| = nr$$
, where $gcd(n, r) = 1$

We see
$$G=(\mathbb{Z}_{p_1^{c_1}} \times \cdots \times \mathbb{Z}_{p_u^{c_u}}) \times (\mathbb{Z}_{p_{u+1}^{c_{u+1}}} \times \cdots \times \mathbb{Z}_{p_s^{c_s}})$$

The product of the generator of $\mathbb{Z}_{p_1^{c_1}} \times \cdots \times \mathbb{Z}_{p_u^{c_u}}$ and the generator of $\mathbb{Z}_{p_{u+1}^{c_{u+1}}} \times \cdots \times \mathbb{Z}_{p_s^{c_s}}$ is a generator of G

Exercises

Example 4.9

Solve $2x \equiv_{5^i} 3$, for each $i \in \mathbb{N}$

Proof. We first prove $2x \equiv_{5^i} 3 \implies 2x \equiv_{5^{i-1}} 3$

$$5^{i}|2x-3 \implies 5^{i-1}|2x-3$$

Solve $2x \equiv_5 3$, we have $x \equiv_5 4$ (i=1) done

Let $2y \equiv_{25} 3$, we know $2y \equiv_{5} 3$, so we know $y \equiv_{5} 4$

Write y = 5k + 4

$$2y-3=10k+5$$
 and $2y\equiv_{25}3\implies 25|10k+5\implies k=2,7,12,\cdots\implies k\equiv_{5}2$

So $y \equiv_{25} 14$ (i=2) done

Let $2x \equiv_{125} 3$, we know $2x \equiv_{25} 3$

So we know $x \equiv_{25} 14$

Write x = 25m + 14

$$2x-3 = 50m+25$$
 and $2x \equiv_{125} 3 \implies 125|50m+25 \implies m = 2,12,22,\cdots \implies x \equiv_{125} 64$ (i=3) done

4.15

Find the solutions of $f(x) = x^3 + 4x^2 + 19x + 1 \equiv_{5^2} 0$

Proof. $f(x) \equiv_{25} 0$ only if $f(x) \equiv_{5} 0$

We first solve $f(x) \equiv_5 0$

$$0 \equiv_5 x^3 + 4x^2 + 19x + 1 \equiv_5 x^3 - x^2 - x + 1 \equiv_5 (x - 1)(x^2 - 1) \equiv_5 (x - 1)^2(x + 1)$$

 \mathbb{Z}_5 is a field, so either $x-1\equiv_5 0$ or $x+1\equiv_5 0$

Then $x \equiv_5 1$ or -1

case:
$$x \equiv_5 1$$

We write $x = 5k + 1, \exists k \in \mathbb{Z}$

$$0 \equiv_{25} f(x) = (5k+1)^3 + 4(5k+1)^2 + 19(5k+1) + 1$$

$$\equiv_{25} (15k+1) + 4(10k+1) + 19(5k+1) + 1$$

$$\equiv_{25} 170k + 25 \equiv_{25} 20k$$

$$20k \equiv_{25} 0 \iff 4k \equiv_{5} 0 \iff 5|k$$

Because x = 5k + 1, so $x \equiv_{25} 1$

case:
$$x \equiv_5 -1$$

We write $x = 5m - 1, \exists m \in \mathbb{Z}$

$$0 \equiv_{25} f(x) = (5m-1)^3 + 4(5m-1)^2 + 19(5m-1) + 1$$

$$\equiv_{25} (15m-1) + 4(-10m+1) + 19(5m-1) + 1$$

$$\equiv_{25} 70m - 15 \equiv_{25} 20m - 15$$

$$20m \equiv_{25} 15 \iff 4m \equiv_{5} 3 \iff m \equiv_{5} 2$$

Let
$$m = 5n + 2, \exists n \in \mathbb{Z}$$

$$x = 5m - 1 = 5(5n + 2) - 1 = 25n + 9 \equiv_{25} 9$$

4.18

Let p and q be two primes, and $\Phi(x) = 1 + x + \cdots + x^{q-1}$ Show

$$p=q \Longrightarrow \Phi(x) \equiv_p 0$$
 have one congruence solution $p \equiv_q 1 \Longrightarrow \Phi(x) \equiv_p 0$ have $q-1$ congruence solutions $p>q$ and $p \not\equiv_q 1 \Longrightarrow \Phi(x) \equiv_p 0$ have no solution

Proof.
$$\Phi(x) \equiv_p 0$$
 only if $(x-1)\Phi(x) \equiv_p 0$

Notice
$$(x-1)\Phi(x) = x^q - 1$$

So
$$\Phi(x) \equiv_p 0$$
 only if $x^q - 1 \equiv_p 0$

In each case, we first solve $x^q \equiv_p 1$, then we

Case:
$$p = q$$

Because $x^{p-1} \equiv_p 1$, by Fermat's little Theorem

$$x^p \equiv_p 1 \implies x \equiv_p 1$$

Then
$$\Phi(x) = 1 + x + \cdots + x^{q-1} \equiv_p q = p \equiv_p 0$$

So the only solution is $x \equiv_p 1$

Case
$$p \equiv_q 1$$

Let G be the multiplicative subgroup of \mathbb{Z}_p

Clearly,
$$|G| = p - 1$$

$$x^q \equiv_p 1 \iff ord(x) = q$$

By Theorem 2, we know $G \simeq \mathbb{Z}_{p-1}$

$$p \equiv_q 1 \implies q|p-1$$

We see in \mathbb{Z}_{p-1} , there are elements $x=0,\frac{p-1}{q},\frac{2(p-1)}{q},\ldots,\frac{(q-1)(p-1)}{q}$ satisfy ord(x)=q

So there are q elements satisfy ord(x) = q, that is $x^q \equiv_p 1$

Yet we notice if x = 0 in $\mathbb{Z}_{p-1} \simeq G$, $x = 1 \in \mathbb{N}$

Yet x=1 is clearly not a solution of $\Phi(x)\equiv_p 0$, by direct computation, but a byproduct of multiplying x-1 with $\Phi(x)$

So there are q-1 elements, eg, congruence classes satisfy $\Phi(x) \equiv_p 0$

Case:
$$p > q$$
 and $p \not\equiv_q 1$

Let G be the multiplicative subgroup of \mathbb{Z}_p

Clearly,
$$|G| = p - 1$$

$$x^q \equiv_p 1 \iff ord(x) = q$$

Yet $p \not\equiv_q 1$ give us $q \not\mid p-1 = |G|$, so no element x is of the order q