

Lecture 9:

Eigenvalues and Eigenvectors

Markus Hohle

University California, Berkeley

Numerical Methods for Computational Science

Numerical Methods for Computational Science

Course Map

Week 1: Introduction to Scientific Computing and Python Libraries

Week 2: Linear Algebra Fundamentals

Week 3: Vector Calculus

Week 4: Numerical Differentiation and Integration

Week 5: Solving Nonlinear Equations

Week 6: Probability Theory Basics

Week 7: Random Variables and Distributions

Week 8: Statistics for Data Science

Week 9: Eigenvalues and Eigenvectors

Week 10: Simulation and Monte Carlo Method

Week 11: Data Fitting and Regression

Week 12: Optimization Techniques

Week 13: Machine Learning Fundamentals

Berkeley Numerical Methods for Computational Science:

angryfermion

<u>Outline</u>

- A Geometrical Approach
- Finding Eigenvectors and Eigenvalues
- PCA
- Example I
- Example II

Berkeley Numerical Methods for Computational Science:

angryfermion

<u>Outline</u>

- A Geometrical Approach
- Finding Eigenvectors and Eigenvalues
- PCA
- Example I
- Example II

about quadratic forms

circle

"distance to a reference point is constant"

$$x^2 + y^2 = const = r^2$$

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = const$$

$$a = b \rightarrow x^2 + y^2 = r^2$$

ellipse

"stretching the coordinate system"

$$a \neq b$$

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = const$$

about quadratic forms

ellipse

"moving the center of the ellipse"

$$\frac{(x-\mu_x)^2}{a^2} + \frac{(y-\mu_y)^2}{b^2} = const$$

$$x_0 = 0, x_0 \to \mu_x$$

$$y_0 = 0, y_0 \to \mu_y$$

"turning the ellipse by an angle ϕ "

$$\varphi = \frac{1}{2} atan \left(\frac{c}{\frac{1}{a^2} - \frac{1}{b^2}} \right)$$

$$\frac{(x - \mu_x)^2}{a^2} + \frac{(y - \mu_y)^2}{b^2} + c(x - \mu_x)(y - \mu_y) = const$$

about quadratic forms

$$\frac{(x - \mu_x)^2}{a^2} + \frac{(y - \mu_y)^2}{b^2} + c(x - \mu_x)(y - \mu_y) = const$$

matrix form:

$$const = \begin{pmatrix} x - \mu_x \\ y - \mu_y \end{pmatrix}^T \begin{pmatrix} 1/a^2 & c/2 \\ c/2 & 1/b^2 \end{pmatrix} \begin{pmatrix} x - \mu_x \\ y - \mu_y \end{pmatrix}$$

often:

$$const = \begin{pmatrix} x - \mu_x \\ y - \mu_y \end{pmatrix}^T \begin{pmatrix} A & C/2 \\ C/2 & B \end{pmatrix} \begin{pmatrix} x - \mu_x \\ y - \mu_y \end{pmatrix}$$

more general:

$$const = \begin{pmatrix} x - \mu_x \\ y - \mu_y \\ 1 \end{pmatrix}^T \begin{pmatrix} A & C/2 & D/2 \\ C/2 & B & E/2 \\ D/2 & E/2 & F \end{pmatrix} \begin{pmatrix} x - \mu_x \\ y - \mu_y \\ 1 \end{pmatrix}$$

depending on A, B, C, D, E, F

- circle
- ellipse
- parabola
- hyperbola

about quadratic forms

turning the coordinate system

$$\frac{\left(x_{new} - \mu_{x(new)}\right)^{2}}{a_{new}^{2}} + \frac{\left(y_{new} - \mu_{y(new)}\right)^{2}}{b_{new}^{2}} = \begin{pmatrix} x_{new} - \mu_{x(new)} \\ y_{new} - \mu_{y(new)} \end{pmatrix}^{T} \begin{pmatrix} 1/a_{new}^{2} & 0 \\ 0 & 1/b_{new}^{2} \end{pmatrix} \begin{pmatrix} x_{new} - \mu_{x(new)} \\ y_{new} - \mu_{y(new)} \end{pmatrix} = const$$

about quadratic forms

non – diagonal elements:

diagonal elements:

- turn/shear the object

- stretches (or flips, if negative) the object

turning the coordinate system

not turned/sheared

E-1 E-1

$$\begin{pmatrix}
\lambda_1 & 0 \dots & 0 \\
0 & \lambda_i & 0 \\
0 & 0 & \lambda_N
\end{pmatrix}$$

→ principal axes of the object are parallel to the coordinate axes

new coord. axis are called: eigenvectors \vec{v} ("eigen", German for "proper") \rightarrow they span the proper coordinate system!

in the proper coordinate system: matrix is diagonal (entries are called "eigenvalues" λ)

about quadratic forms

non – diagonal elements: - turn/shear the object

diagonal elements: - stretches (or flips, if negative) the object

turning the coordinate system

In a coordinate system in which the principal axes are parallel to the coordinate axes

- the matrix that defines the form is diagonal
- the entries of the now diagonal matrix are called eigenvalues λ
- the axes of this coordinates system are called eigenvectors \vec{v}
- eigen means "proper", i. e. it is the "most suitable" coordinate system

$$\begin{pmatrix} \lambda_1 & 0 \dots & 0 \\ 0 & \lambda_i & 0 \\ 0 & 0 & \lambda_N \end{pmatrix}$$

about quadratic forms

not turned/sheared

→ principal axes of the object are parallel to the coordinate axis

Berkeley Numerical Methods for Computational Science:

angryfermion

<u>Outline</u>

- A Geometrical Approach
- Finding Eigenvectors and Eigenvalues
- PCA
- Example I
- Example II

1) turned ellipse

$$\begin{pmatrix} x \\ y \end{pmatrix}^T \begin{pmatrix} A & C/2 \\ C/2 & B \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = A x^2 + B y^2 + C xy$$

$$M$$

2) turning the coordinate system, such that principal axes of the are parallel to the coordinate

$$\begin{pmatrix} x_{new} \\ y_{new} \end{pmatrix}^T \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} \begin{pmatrix} x_{new} \\ y_{new} \end{pmatrix} = \lambda_1 x_{new}^2 + \lambda_2 y_{new}^2$$

$$M_{new}$$

eigenvalues λ

How to turn M into M_{new} ?

How to turn M into M_{new} ?

we assume, we have a set of eigenvectors \vec{v}_i

transforming M with $B = (\vec{v}_1, \vec{v}_2, ... \vec{v}_N)$ should turn M into a **diagonal matrix** M_{new}

$$M_{new} = B^T M B$$

after some algebra:

$$M\vec{v}_i = \lambda_i\vec{v}_i$$

which can be solved with:

$$\det(M - \lambda_i I) = 0$$

$$M\vec{v}_i = \lambda_i\vec{v}_i$$

characteristic equation

simple example:

$$det(M - \lambda I) = 0$$

$$x_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \quad x_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$M = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$$

$$\det(M - \lambda_i I) = 0 = \det \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} - \begin{pmatrix} \lambda_i & 0 \\ 0 & \lambda_i \end{bmatrix} = \det \begin{bmatrix} 2 - \lambda_i & 1 \\ 1 & 2 - \lambda_i \end{bmatrix}$$

$$= 3 - 4\lambda_i + {\lambda_i}^2 = 0$$

characteristic polynomial

N eigenvalues and N eigenvectors for N coordinates

$$\lambda_1 = 1$$
 $\lambda_2 = 3$

$$\lambda_1 = 1$$
 $\lambda_2 = 3$

 $det(M - \lambda I) = 0$

calculating the eigenvectors \vec{v}_i :

$$M\vec{v}_i = \lambda_i \vec{v}_i$$

characteristic equation

$$(M - \lambda_i I) \vec{v}_i = 0$$

for
$$\lambda_1 = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} - \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} v_{1x} \\ v_{1y} \end{pmatrix} = \begin{pmatrix} v_{1x} & -v_{1y} \\ -v_{1x} & v_{1y} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \qquad v_{1x} = v_{1y}$$
 e.g. $\vec{v}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

for
$$\lambda_2$$
 $\begin{bmatrix} \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} - \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix} \end{bmatrix} \begin{pmatrix} v_{2x} \\ v_{2y} \end{pmatrix} = \begin{pmatrix} -v_{2x} & -v_{2y} \\ -v_{2x} & -v_{2y} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ $v_{2x} = -v_{2y}$ e.g. $\vec{v}_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$

$$x_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 $x_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ $M = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$ $\lambda_1 = 1$ $\lambda_2 = 3$

$$M = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$$

$$\lambda_1 = 1$$
 $\lambda_2 = 3$

$$\overrightarrow{v_1} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$\overrightarrow{v_1} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \qquad \overrightarrow{v_2} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

recall:
$$B = (\overrightarrow{v_1} \overrightarrow{v_2})$$
 and $M_{new} = B^T M B$

M in the new coordinates is
$$\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}^T \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = 2 \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}$$
 $\lambda_2 = 3$

$$x_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \quad x_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \qquad M = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} \qquad \lambda_1 = 1 \qquad \lambda_2 = 3 \qquad \overrightarrow{v_2} = \begin{pmatrix} 1 \\ -1 \end{pmatrix} \qquad \overrightarrow{v_1} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$M = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$$

$$\lambda_1 = 1$$
 $\lambda_2 = 3$

$$\overrightarrow{v_2} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$\overrightarrow{v_1} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

the old coordinates

$$M = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$$

$$x_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \quad x_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

the new coordinates

$$M_{new} = 2 \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}$$

Berkeley Numerical Methods for Computational Science:

angryfermion

<u>Outline</u>

- A Geometrical Approach
- Finding Eigenvectors and Eigenvalues
- PCA
- Example I
- Example II

Goals:

- Dimension reduction!
- Reducing the complexity of the dataset without loosing information
- Removing redundancies
- Reducing the number of features
- → trick: using **correlation** between different features

Lecture 8: correlation

	label	molecular_weight	electronegativity	bond_lengths	num_hydrogen_bonds	logP
Tox	кic	382.602	2.00269	3.61153	3	9.82666
Tox	кіс	408.961	2.93626	3.47904	6	9.85889
No	n-Toxic	239.548	2.71413	2.63922	8	6.75962
No	n-Toxic	315.58	2.85598	2.86034	9	8.70674
No	n-Toxic	282.521	2.83877	2.9664	1	7.8173

Lecture 8: correlation

correlation means:

- features are **not mutually independent**
- we can predict feature a
 from feature b to some extend
- we don't need all features
- → reducing number of features (dimensions) without losing information

label	molecular_weight	electronegativity	bond_lengths	num_hydrogen_bonds	logP
Toxic	382.602	2.00269	3.61153	3	9.82666
Toxic	408.961	2.93626	3.47904	6	9.85889
Non-Toxic	239.548	2.71413	2.63922	8	6.75962
Non-Toxic	315.58	2.85598	2.86034	9	8.70674
Non-Toxic	282.521	2.83877	2.9664	1	7.8173

Lecture 8: correlation

each data point is represented by **three** features...

... but those features correlate $(x, y) \rightarrow z$

new coordinate system

some features correlate!

some features correlate!

How do we find these coordinates?

Lecture 8: correlation

$$corr(x, y) := \frac{cov(x, y)}{\sqrt{var(x)var(y)}}$$

$$var(x) \equiv \sigma_x^2 := \sum_{i}^{N} (x_i - \mu_x)^2$$

$$cov(x,y) := \sum_{j}^{M} \sum_{i}^{N} (x_i - \mu_x)(y_j - \mu_y)$$

$$\sigma_{tot}^2 = \sigma_x^2 + \sigma_y^2 + 2 cov(x, y)$$

$$\sigma_{tot}^{2} = \sigma_{x}^{2} + \sigma_{y}^{2} + 2 cov(x, y)$$

$$= \sum_{i}^{N} (x_{i} - \mu_{x})^{2} + \sum_{j}^{M} (y_{j} - \mu_{y})^{2} + 2 \sum_{j}^{M} \sum_{i}^{N} (x_{i} - \mu_{x})(y_{j} - \mu_{y})$$

It is the same structure!

$$const = \begin{pmatrix} x - \mu_x \\ y - \mu_y \end{pmatrix}^T \begin{pmatrix} 1/a^2 & c \\ c & 1/b^2 \end{pmatrix} \begin{pmatrix} x - \mu_x \\ y - \mu_y \end{pmatrix}$$

$$C = \begin{pmatrix} x - \mu_x \\ y - \mu_y \end{pmatrix}^T \begin{pmatrix} \sigma_x^2 & cov(y, x) \\ cov(x, y) & \sigma_y^2 \end{pmatrix} \begin{pmatrix} x - \mu_x \\ y - \mu_y \end{pmatrix} \qquad cov(y, x) = cov(x, y)$$

$$\sigma_{tot}^{2} = \sigma_{x}^{2} + \sigma_{y}^{2} + 2 cov(x, y)$$

$$= \sum_{i}^{N} (x_{i} - \mu_{x})^{2} + \sum_{j}^{M} (y_{j} - \mu_{y})^{2} + 2 \sum_{j}^{M} \sum_{i}^{N} (x_{i} - \mu_{x})(y_{j} - \mu_{y})$$

$$const = \frac{(x - \mu_x)^2}{a^2} + \frac{(y - \mu_y)^2}{b^2} + 2c(x - \mu_x)(y - \mu_y)$$

It is the same structure!

$$const = \begin{pmatrix} x - \mu_x \\ y - \mu_y \end{pmatrix}^T \begin{pmatrix} 1/a^2 & c \\ c & 1/b^2 \end{pmatrix} \begin{pmatrix} x - \mu_x \\ y - \mu_y \end{pmatrix}$$

$$C = \begin{pmatrix} x - \mu_x \\ y - \mu_y \end{pmatrix}^T \begin{pmatrix} \sigma_x^2 \\ cov(x, y) \end{pmatrix} \begin{pmatrix} cov(y, x) \\ \sigma_y^2 \end{pmatrix} \begin{pmatrix} x - \mu_x \\ y - \mu_y \end{pmatrix} \qquad cov(y, x) = cov(x, y)$$

$$C = \begin{pmatrix} x - \mu_x \\ y - \mu_y \end{pmatrix}^T \begin{pmatrix} \sigma_x^2 \\ cov(x, y) \end{pmatrix} \begin{pmatrix} cov(y, x) \\ \sigma_y^2 \end{pmatrix} \begin{pmatrix} x - \mu_x \\ y - \mu_y \end{pmatrix} \qquad cov(y, x) = cov(x, y)$$

covariance matrix Σ

- geometrically, the covariance matrix can be interpreted as quadratic form
- the covariances are the **non-diagonal** elements of the **covariance matrix**
- aim: finding a coordinate transformation, where the covariance matrix is diagonal

$$\begin{pmatrix} \lambda_1 \dots 0 \dots & 0 \\ 0 & \lambda_i \dots & 0 \\ 0 & 0 & \lambda_N \end{pmatrix}$$
 the diagonal entries are called eigenvalues (= variances in new coordinate system)

- → all variables **are independent**
- → principal components of the covariance matrix are parallel to the new coordinate axes (= eigenvectors)

Berkeley Numerical Methods for Computational Science:

angryfermion

<u>Outline</u>

- A Geometrical Approach
- Finding Eigenvectors and Eigenvalues
- PCA
- Example I
- Example II

from sklearn.decomposition import PCA

Let us take a look at some artificial data first:

see PCA_simple.ipynb

- 3D data cloud
- however, all data points seem to be located on one plane
- PCA should be able to reduce dimensions

from sklearn.decomposition import PCA

Let us take a look at some artificial data first:

- 3D data cloud
- however, all data points seem to be located on one plane
- PCA should be able to reduce dimensions

from sklearn.decomposition import PCA

Let us take a look at some artificial data first:

- 3D data cloud
- however, all data points seem to be located on one plane
- PCA should be able to reduce dimensions


```
performing the actual PCA:
                                                          3D data cloud
                                                          however, all data points seem to
                                                          be located on one plane
out = PCA(n_{components} = 3).fit(XYZ)
                                                          PCA should be able to reduce
                                                          dimensions
eigenVec = out.components_
eigenVal = out.explained variance
eigenXYZ = out.transform(XYZ)
plotting the eigenvalue spectrum:
xplot = np.arange(1,4)
plt.bar(xplot, eigenVal, color = (0.8, 0.8, 0.8), edgecolor = 'black')
plt.xlabel('dimension')
plt.ylabel('eigenvalue')
plt.yscale('log')
plt.xticks(xplot)
plt.show()
```

```
out = PCA(n_components = 3).fit(XYZ)
eigenVec = out.components_
eigenVal = out.explained_variance_
eigenXYZ = out.transform(XYZ)
```

plotting the eigenvalue spectrum:

```
xplot = np.arange(1,4)

plt.bar(xplot, eigenVal, color = (0.8, 0.8, 0.8), edgecolor = 'black')
plt.xlabel('dimension')
plt.ylabel('eigenvalue')
plt.yscale('log')
plt.xticks(xplot)
plt.show()
```


one eigenvalue

is zero

B 10⁻¹² 記 10⁻¹⁶

Berkeley Eigenvalues and Eigenvectors:

plotting the eigenvalue spectrum:

```
xplot = np.arange(1,4)
plt.bar(xplot, eigenVal, color = (0.8, 0.8, 0.8), edgecolor = 'black')
plt.xlabel('dimension')
plt.ylabel('eigenvalue')
plt.yscale('log')
plt.xticks(xplot)
plt.show()
fig = plt.figure(figsize = (12, 12))
ax = fig.add_subplot(projection = '3d')
ax.scatter(eigenXYZ[:,0], eigenXYZ[:,1], eigenXYZ[:,2], c = 'black', \
            marker = 0, s = 40)
ax.set xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')
ax.tick_params(axis = 'both', which = 'major', labelsize = 30)
plt.show()
```


plotting the eigenvalue spectrum:

```
xplot = np.arange(1,4)
plt.bar(xplot, eigenVal, color = (0.8, 0.8, 0.8), edgecolor = 'black')
plt.xlabel('dimension')
plt.ylabel('eigenvalue')
plt.yscale('log')
plt.xticks(xplot)
plt.show()
fig = plt.figure(figsize = (12, 12))
ax = fig.add_subplot(projection = '3d')
ax.scatter(eigenXYZ[:,0], eigenXYZ[:,1], eigenXYZ[:,2], c = 'bl
ax.set xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')
ax.tick_params(axis = 'both', which = 'major', labelsize = 30)
plt.show()
```

check also eg:

```
np.dot(eigenVec[:,0],eigenVec[:,1])
```


almost no variance along new z-coord

Summary:

- We don't need three coordinates in order to describe the data points
 some of the directions (features) correlate
- running a PCA in order to find the proper coordinate system
- one of three eigenvalues is a lot smaller than the other two
- → We only need two coordinates for the data set

We can reduce the complexity of the data set without loosing information

Berkeley Numerical Methods for Computational Science:

angryfermion

<u>Outline</u>

- A Geometrical Approach
- Finding Eigenvectors and Eigenvalues
- PCA
- Example I
- Example II

label	molecular_weight	electronegativity	bond_lengths	num_hydrogen_bonds	logP
Toxic	382.602	2.00269	3.61153	3	9.82666
Toxic	408.961	2.93626	3.47904	6	9.85889
Non-Toxic	239.548	2.71413	2.63922	8	6.75962
Non-Toxic	315.58	2.85598	2.86034	9	8.70674
Non-Toxic	282.521	2.83877	2.9664	1	7.8173

Lecture Exercise!

Berkeley Numerical Methods for Computational Science:

Thank you very much for your attention!

