Roadmap

C:

```
car *c = malloc(sizeof(car));
c->miles = 100;
c->gals = 17;
float mpg = get_mpg(c);
free(c);
```

Java:

Memory & data Integers & floats

Machine code & C
x86 assembly
Procedures & stacks
Arrays & structs
Memory & caches
Processes
Virtual memory
Memory allocation
Java vs. C

Assembly language:

```
get_mpg:
    pushq %rbp
    movq %rsp, %rbp
    ...
    popq %rbp
    ret
```

OS:

Machine code:

Computer system:

Section 3: Basics of architecture, machine programming

- What is an ISA (Instruction Set Architecture)?
- A brief history of Intel processors and architectures
- C, assembly, machine code
- x86 basics: registers

Translation

What makes programs run fast?

Translation Impacts Performance

- The time required to execute a program depends on:
 - The program (as written in C, for instance)
 - The compiler: what set of assembler instructions it translates the C program into
 - The instruction set architecture (ISA): what set of instructions it makes available to the compiler
 - The hardware implementation: how much time it takes to execute an instruction

Instruction Set Architectures

The ISA defines:

- The system's state (e.g. registers, memory, program counter)
- The instructions the CPU can execute abb , way
 - The effect that each of these instructions will have on the system state

General ISA Design Decisions

Instructions

What instructions are available? What do they do?

• How are they encoded?

Registers

- How many registers are there?
- How wide are they? 5251+5,645;+5,
- Memory addressing mades
 - How do you specify a memory location?

x86

 Processors that implement the x86 ISA completely dominate the server, desktop and laptop markets

Evolutionary design

- Backwards compatible up until 8086, introduced in 1978
- Added more features as time goes on

Complex instruction set computer (CISC)

- Many different instructions with many different formats
 - But, only small subset encountered with Linux programs
- (as opposed to Reduced Instruction Set Computers (RISC), which use simpler instructions)

Intel x86 Evolution: Milestones

Name	Date	Transistors	MHz	
8086	1978	29K	5-10	
First 16-bit	processor. Bas	sis for IBM PC & DOS		
1MB addre	ess space	•		
386	1985	275K	16-33	
First 32 bit processor, referred to as IA32				
Added "fla	t addressing"			
Capable of	running Unix	$-/_{\ell}$	0.0	
32-bit Linu	x/gcc targets i3	886 by default	0000X	
■ Pentium 4F	2005	230M	2800-3800	

First 64-bit Intel x86 processor, referred to as x86-64

Intel x86 Processors

■ Machine Evolution

106

480	1989	1.9101
Pentium	1993	3.1M
Pentium/MMX	1997	4.5M
PentiumPro	1995	6,5M
Pentium III	1999	8.2M
Pentium 4	2001	42M

1000 /

Intel Core i7

Added Features

Core 2 Duo

Core i7

Instructions to support multimedia operations

2006

2008

- Parallel operations on 1, 2, and 4-byte data
- Instructions to enable more efficient conditional operations
- More cores!

1 01/1

291M

731M

More information

- References for Intel processor specifications:
 - Intel's "automated relational knowledgebase":
 - http://ark.intel.com/
 - Wikipedia:
 - http://en.wikipedia.org/wiki/List_of_Intel_microprocessors

x86 Clones: Advanced Micro Devices (AMD)

Historically

- AMD has followed just behind Intel
- A little bit slower, a lot cheaper

Then

- Recruited top circuit designers from Digital Equipment and other downward trending companies
- Built Opteron: tough competitor to Pentium 4
- Developed x86-64, their own extension of x86 to 64 bits

Our Coverage

■ IA32

- 325
- The traditional x86
- **x86-64**
 - The emerging standard all lab assignments use x86-64!