3. EXPECTATION AND VARIANCE OF A DISCRETE RANDOM VARIABLE

Concept

If a random variable X takes values $x_1, x_2, x_3, \ldots, x_n$ with corresponding probabilities $p_1, p_2, p_3, \ldots, p_n$ respectively, the expectation of the random variable "X" is denoted by E(X) and is given by:

$$E(X) = \sum_{i=1}^{n} x_i p_i \text{ where } \sum_{i=1}^{n} p_i = 1$$

Note that E(X) = arithmetic mean of X

$$E(X) = \overline{X} = \frac{\sum_{i=1}^{n} f_i x_i}{\sum_{i=1}^{n} f_i}$$
 where f_i is the frequency corresponding to x_i

Note that when frequencies are given and $N = \sum_{i=1}^{n} f_i = \text{total number of observations, and}$

$$p_i = \frac{f_i}{N}$$

Variance of random variable X is given by:

$$V(X) = E[X - E(X)]^2 = [E(X^2)] - [E(X)]^2$$
 where $E(X^2) = \sum_{i=1}^{n} x_i^2 p_i$

Square root of variance is called standard deviation. \therefore S.D = $\sqrt{V(X)}$

Certain Properties of expected value:

- 1. E(aX) = aE(X), where "a" is a real constant.
- 2. E(aX + b) = aE(X) + b, where a and b are real constants.
- 3. E(X + Y) = E(X) + E(Y) where X and Y are independent variables
- 4. $E(X \cdot Y) = E(X) \cdot E(Y)$ where X and Y are independent variables

Certain Properties of Variance:

- 1. V(X + a) = V(X), where "a" is a real constant.
- 2. V(X-a) = V(X).
- 3. $V(aX) = a^2V(X)$
- 4. $V(aX \pm b) = a^2V(X)$
- 5. V(a) = 0
- 6. $V(X \pm Y) = V(X) + V(Y)$ where X and Y are independent variables.

The Probability Mass Function:

For a discrete random variable the probability function is called as probability mass function, where the probability function can be listed in a tabular form. The probability mass function P(X)

satisfies the condition:
$$P(X) = \sum_{i=1}^{n} p_i = 1$$
.

The Probability Density Function:

For a continuous random variable the probability function is called as probability density For a continuous random variable the probability function. As the continuous random function. Here probability function cannot be listed in a tabular form. As the continuous random function. Here probability function cannot be listed in a tabular form. runction. Here probability function cannot be listed in a labular probabilities are measured over variable can assume any value within a given range, the distribution probabilities are measured over interest. variable can assume any value within a given range, the distinct points defines the intervals and not single points. The area under the curve between two distinct points defines the probability for that interval.

Let "X" be a continuous random variable taking values over the interval [c, d], then the probability density function P(X) of the variable "X" satisfies the following given properties:

- For any two distinct values $a, b \in [c, d]$, $P(a \le X \le b) = area under the probability curve$ 2. between a and b.
- Total area under the probability curve is equal to unity (one).

$$4. \quad \int_{-\infty}^{\infty} P(x) \ dx = 1$$

Note: For continuous random variable:

1.
$$P(c \le X \le d) = \int_{c}^{d} P(X) dx$$

- P(a) = 0, where "a" is a real constant.
- $P(a \le X \le b) = P(a \le X \le b) = P(a \le X \le b) = P(a \le X \le b)$

4.
$$E(X) = \int_{-\infty}^{\infty} xP(x) dx$$

5.
$$E(X^2) = \int_{-\infty}^{\infty} x^2 P(x) dx$$

6.
$$V(X) = E[X - E(X)]^2 = [E(X^2)] - [E(X)]^2$$

The expected value measures the center of the probability distribution - center of mass, while variance measures the amount of spread of data from the center value.

Note: If the cumulative distribution (of simply distribution function) is given say F(x), then the relation between PDF (probability density function) P(x) and F(x) is:

$$P(x) = \frac{d}{dx} F(x)$$

NUMERICALS: DISCRETE RANDOM VARIABLE

Problem: 1

For a random variable X the following data is available, find its probability mass function, expected value and the variance;

x_i	fi
5,4	10
10	5
15	20
20	nama 10 m
25	5
	THE WAR OF THE

Solution:

The random variable X is discrete. The Probability mass function is given by

xi.	fi	$P(X = x_i) = \frac{f_i}{N} = p_i$	xi pi	xi²pi
5	10	0.2	1	5
10	5	0.1	1	10
15	20	0.4	6	90
20	10	0.2	4	80
25	5	0.1	2.5	62.5
Total	$\sum f_i = 50 = N$	$\sum P(X = x_i) = 1$	$\sum_{i=1}^{n} x_i p_i = 14.5$	$\sum x^2 i p_i = 247.5$

The expected value is

$$E(X) = E(X) = \sum_{i=1}^{n} x_i p_i = 14.5$$

Variance is

$$V(X) = E[X - E(X)]^2 = [E(X^2)] - [E(X)]^2 = 247.5 - (14.5)^2 = 247.5 - 210.25 = 37.25$$

Problem: 2

In a game of throwing fair dice, A wins ₹ 60 if a 6 is thrown. He gains ₹ 30 if the dice shows 2 or 4 and he loses ₹ 30 if odd number occurs on the uppermost face of the dice. Find the probability mas function, expected gain and the variance.

Solution:

			2170.7667	
Number on the uppermost face of the die	Gain to A x_i (in $\stackrel{?}{\sim}$)	$P(X = x_i) = p_i$	$x_i p_i$	$x_i^2 p_i$
6	60	$\frac{1}{6}$	10	600
2 or 4	30	<u>2</u> 6	10	300
1,3 or 5	-30	<u>3</u>	-15	450
Total		$\sum P(X=x_i)=1$	$\sum_{i=1}^{n} x_i p_i = 5$	$\sum x^2 i p_i = 1350$

The expected value is

$$E(X) = E(X) = \sum_{i=1}^{n} x_i p_i = 5$$

Variance is
$$V(X) = E[X - E(X)]^2 = [E(X^2)] - [E(X)]^2 = 1350 - 25 = 1325$$

Problem: 3

F	Problem: 3					and (v) V	(X)
	For the	following prob	ability distribu	tion: $x = 2$ or 3	(iv) E(X)) and (1)	(11)
	Obtain ((i) $P(X > 2)$	(ii) $P(X \le 1)$	tion: $(iii) P (X = 2 \text{ or } 3)$	1	2	3
	X	-2	-1	0	0.3	0.15	0.05
21	P (X)	0.1	0.2	0.2			

Solution:

- ii) $P(X \le 1) = (P(X = -2) + P(X = -1) + P(X = 0) + P(X = 1) = 0.1 + 0.2 + 0.2 + 0.3 = 0.8$ iii) $P(X \le 1) = (P(X = -2) + P(X = -1) + P(X = 0) + P(X = 0) + P(X = 0) = 0.1 + 0.2 + 0.3 = 0.8$
- iii) P(X = 2 or 3) = P(X = 2) + P(X = 3) = 0.15 + 0.05 = 0.2

iv) $E(X)$:				2	3	TOTAL
X	-2	-1	0	1 - 1	2 15	0.05	
$P(X) = p_i$	0.1	0.2	0.2	0.3	0.15	0.00	n
$x_i p_i$	-0.2	-0.2	0	0.3	0.3	0.15	$\sum_{i=1}^{\infty} x_i p_i = 0.35$
$x_i^2 p_i$	0.4	0.2	0	0.3	0.6	0.45	$\sum x^2_i p_i = 1.95$

$$E(X) = E(X) = \sum_{i=1}^{n} x_i p_i = 0.35$$

Variance is V (X) = E $[X - E(X)]^2 = [E(X^2)] - [E(X)]^2 = 1.95 - 0.1225 = 1.8275$

Problem: 4

An unbiased coin is tossed thrice. X denotes the number of heads in the three tosses. If the probability distribution of X is given as:

$$(P(X = x_i) = \frac{5}{16}; x_i = 0,1)$$

= $\frac{1}{8}; x_i = 2$
= $\frac{1}{4}; x_i = 3$
= 0; otherwise

Find E (X) and V (X)

Solution:

Solution.			
$X = x_i$ (number of heads)	$P(X = x_i) = p_i$	$x_i p_i$	$x_i^2 p_i$
0	<u>5</u> 16	0	0
1	<u>5</u> 16	<u>5</u> 16	5 16
2	1/8	<u>1</u> 4	$\frac{1}{2}$
3	$\frac{1}{4}$	$\frac{3}{4}$.94
Total	$\sum P(X = x_i) = 1$	$\sum_{i=1}^{n} x_i p_i = \frac{21}{16}$	$\sum x^2_{i} p_i = \frac{49}{16}$

$$E(X) = E(X) = \sum_{i=1}^{n} x_i p_i = \frac{21}{16} = 1.3125$$

Variance is $V(X) = E[X - E(X)]^2 = [E(X^2)] - [E(X)]^2 = \frac{49}{16} - (1.3125)^2 = 3.0625 - 1.7227 =$

1.3398

Problem: 5

Let X be a discrete random variable with probability mass function defined as:

$$P(X = x_i) = \frac{x+1}{10}$$
; $x_i = 0, 1, 2, 3$

= 0; otherwise

Find expected value of X and Standard Deviation of X.

Solution:

Solution:			
$X = x_i$	$P(X = x_i) = p_i$	$x_i p_i$	$x_i^2 p_i$
0	$\frac{1}{10}$	0	0
1	2 10	$\frac{2}{10}$	2 10
2	3 10	$\frac{6}{10}$	12 10
3	- 4 10	12	36 10
Total	$\sum P(X = x_i) = 1$	$\sum_{i=1}^{n} x_i p_i = \frac{20}{10} = 2$	$\sum x^2_{i} p_{i} = \frac{50}{10} = 5$

$$E(X) = E(X) = \sum_{i=1}^{n} x_i p_i = 2$$

Variance is
$$V(X) = E[X - E(X)]^2 = [E(X^2)] - [E(X)]^2 = 5 - 4 = 1$$

:. S.D. =
$$\sqrt{V(X)} = 1$$

Problem: 6

If X denotes the number of heads appearing when an unbiased coin is tossed thrice, find the expected value and variance of X, if P (X = 0) = 0.125, P (X = 1) = P(X = 2) = 0.375, P (X = 3) = p.

Solution:

$$\sum P(X = x_i) = 1$$

$$0.125 + 0.375 + 0.375 + p = 1$$

p = 0.125

To find the expected value of X:

$X = x_i$	$P(X=x_i)=p_i$	$x_i p_i$	$x_i^2 p_i$
$\frac{X-X_1}{0}$	0.125	0	0
1	0.375	0.375	0.375
2	0.375	0.75	1.5
2	0.125	0.375	1.125
Total	$\sum P(X = x_i) = 1$	$\sum_{i=1}^{n} x_i p_i = 1.5$	$\sum x^2 i p_i = 3$

100

\$7°\$7*\$7°

Computational Logic and Discrete Structures (F.Y.B.Sc.-I.T.) (Sem. -1)

$$E(X) = E(X) = \sum_{i=1}^{n} x_i p_i = 1.5$$

Variance is V (X) = E $[X - E(X)]^2 = [E(X^2)] - [E(X)]^2 = 3 - 2.25 = 0.75$