Math 10350 – Example Set 05A Sections 3.1 & 3.2 Product Rule & Quotient Rule

Product and Quotient Rule. Let f(x) and g(x) be differentiable functions. Derive formulas for the derivatives of $p(x) = f(x) \cdot g(x)$ and $q(x) = \frac{f(x)}{g(x)}$.

Product Rule: $\frac{d}{dx}(f(x)g(x)) = \frac{\int_{-\infty}^{\infty} (x) + g'(x) + g'(x)}{\int_{-\infty}^{\infty} (x) + g'(x)}$ common notation: fig+gif gdf + fdg

Quotient Rule: $\frac{d}{dx}\left(\frac{f(x)}{g(x)}\right) = \frac{\int_{-\infty}^{\infty} \frac{f'(x)g(x) - g'(x)f(x)}{g(x)}}{\int_{-\infty}^{\infty} \frac{f'(y)g(x) - g'(x)f(x)}{g^2}} = \frac{\int_{-\infty}^{\infty} \frac{f'(x)g(x) - g'(x)f(x)}{g(x)}}{\int_{-\infty}^{\infty} \frac{f'(y)g(x) - g'(x)f(x)}{g^2}} = \frac{\int_{-\infty}^{\infty} \frac{f'(x)g(x) - g'(x)f(x)}{g(x)}}{\int_{-\infty}^{\infty} \frac{f'(y)g(x) - g'(x)f(x)}{g^2}} = \frac{\int_{-\infty}^{\infty} \frac{f'(x)g(x) - g'(x)f(x)}{g^2}}{\int_{-\infty}^{\infty} \frac{f'(y)g(x) - g'(x)f(x)}{g^2}} = \frac{\int_{-\infty}^{\infty} \frac{f'(x)g(x) - g'(x)f(x)}{g^2}}{\int_{-\infty}^{\infty} \frac{f'(x)g(x) - g'(x)f(x)}{g^2}} = \frac{\int_{-\infty}^{\infty} \frac{f'(x)g(x) - g'(x)}{g^2}} = \frac{\int_{-\infty}^{\infty} \frac{f'(x)g(x)}{g^2}} = \frac{\int_{-\infty}^{\infty} \frac{f'(x)g(x)}{g^2}} = \frac{\int_{-\infty}^{\infty} \frac{f'($

1. The stationary points in the domain of a function f(x) are the values of x such that f'(x) = 0. What can you say about the tangent line at stationary points? Find the stationary points of the following functions: Since the derivative is the slope of the tangent line, the tangent line at a stationary point is zero i.e. the line is horizontal.

1a. $f(x) = (x^2 - 3)e^x$.

1b.
$$y = \frac{2x-1}{x^2+1}$$
.

- **2.** Let $p(x) = (x^3 5x + 1)g(x)$ and $q(x) = \frac{f(x)}{g(x) + 1}$. Given that f(2) = 2, g(2) = 3, f'(2) = -1 and g'(2) = -4, find the following values:
- **a.** The instantaneous rate of change of p(x) at x = 2.
- **b.** The slope of the tangent line to the graph of y = q(x) when x = 2.

1a.
$$f(x) = (x^2 - 3)e^x$$
.
Product rule: f'g t g'f
 $f(x) = x^2 - 3$ g(x) = e^x
 $f'(x) = 2x$ g'(x) = e^x
 $f'(x) = 2x$ g'(x) = e^x
 $f'(x) = 2x$ g'(x) = e^x

$$y' = (2x)e^x + e^x(x^2-3)$$
 When is $y' = 0$?
= $2xe^x + e^xx^2 - 3e^x$ $e^x = 0$ $x+3=0$ $x-1=0$
= $e^x(2x+x^2-3)$ never $x=-3$ $x=1$

$$= e^{x} (x^{2} + 2x - 3)$$

 $= e^{x} (x+3)(x-1)$

1b.
$$y = \frac{2x-1}{x^2+1}$$
. $\frac{1}{3}$ or $\frac{high}{low}$

quotient rule:
$$\frac{f'g-g'f}{g^2}$$

 $f(x) = 2x-1$ $g(x) = x^2+1$
 $f'(x) = 2$ $g'(x) = 2x$

$$= \frac{(x_2t)/5}{5x + t}$$

$$= \frac{(x_2t)/5}{(x_2t)/5}$$

$$= \frac{(x_2t)/5}{(x_2t)/5}$$

$$= \frac{(x_2t)/5}{(5)(x_2t) - (5x)(5x-1)}$$

when is
$$y'=0$$
?
 $\frac{2x+1}{(x^2+1)^2}=0$

2. Let
$$p(x) = (x^3 - 5x + 1)g(x)$$
 and $q(x) = \frac{f(x)}{g(x) + 1}$. Given that $f(2) = 2$, $g(2) = 3$, $f'(2) = -1$ and $g'(2) = -4$, find the following values:

derivative a. The instantaneous rate of change of p(x) at x = 2.

$$p(x) = (x^3 - 5x + 1) \cdot g(x)$$

f
power rule: f'g + g'f
 $f(x) = x^3 - 5x + 1$ $g(x) = g(x)$
 $f'(x) = 3x^2 - 5$ $g'(x) = g'(x)$

$$p'(x) = (3x^{2}-5) \cdot g(x) + g'(x) \cdot (x^{3}-5x+1)$$

$$p'(2) = (3(2)^{2}-5) \cdot g(2) + g'(2) \cdot ((2)^{3}-5(2)+1)$$

$$= (3\cdot4-5) \cdot 3 + (-4) \cdot (4-10+1)$$

$$= (12-5) \cdot 3 + (-4) \cdot (-5)$$

$$= 7 \cdot 3 + 20$$

$$= 21 + 20$$

derivative

b. The slope of the tangent line to the graph of y = q(x) when x = 2.

$$q(x) = \frac{f(x)}{g(x)+1} \cdot \frac{1}{3}$$

$$q'(x) = \frac{f'(x) \cdot (g(x)+1) - g'(x) \cdot f(x)}{(g(x)+1)^2 \cdot g'(x) \cdot f(x)}$$

quotient rule:
$$\frac{f'g - g'f}{g^2}$$

 $f = f(x)$ $g = g(x) + 1$
 $f' = f'(x)$ $g' = g'(x) + 0$