read other user's files

modify OS's memory

read other user's data in memory

read other user's files

modify OS's memory

read other user's data in memory

privileged instructions

can't let any program run some instructions

example: talk to I/O device

allows machines to be shared between users (e.g. lab servers)

processor has two modes:

kernel mode — privileged instructions work user mode — privileged instructions cause exception instead

only trusted OS code runs in kernel mode

kernel mode

extra one-bit register: "are we in kernel mode"

processor switches to kernel mode to run OS

OS switches processor back to use mode when running normal code

calling the OS?

controlled entry to kernel mode

- OS specifies where to start executing code in kernel mode typically set at boot requires privileged instructions to change
- OS makes sure the code it says to start is "safe" (hopefully) example: checks whether current program is allowed to read file before reading it

Linux x86-64 system calls

special instruction: syscall

runs OS specified code in kernel mode

Linux syscall calling convention

before syscall:

%rax — system call number

%rdi, %rsi, %rdx, %r10, %r8, %r9 — args

after syscall:

%rax — return value

on error: %rax contains -1 times "error number"

almost the same as normal function calls

Linux x86-64 hello world

```
.globl start
data
hello_str: .asciz "Hello, World!\n"
.text
start:
  movg $1, %rax # 1 = "write"
  movq $1, %rdi # file descriptor 1 = stdout
  mova $hello str. %rsi
  movg $15, %rdx # 15 = strlen("Hello, World!\n")
  svscall
  movg $60, %rax # 60 = exit
  movq $0, %rdi
  syscall
```

approx. system call handler

```
sys call table:
    .quad handle_read_syscall
    .quad handle write syscall
    // ...
handle syscall:
    ... // save old PC, etc.
    pushq %rcx // save registers
    pusha %rdi
    . . .
    call *sys call table(,%rax,8)
    . . .
    popq %rdi
    popq %rcx
    return from exception
```

Linux system call examples

```
mmap, brk — allocate memory
fork — create new process
execve — run a program in the current process
exit — terminate a process
open, read, write — access files
socket, accept, getpeername — socket-related
```

system call wrappers

can't write C code to generate syscall instruction

solution: call "wrapper" function written in assembly

read other user's files

modify OS's memory

read other user's data in memory

read other user's files

modify OS's memory

read other user's data in memory

backup slides