

Accurate and Robust Object SLAM with 3D Quadric Landmark Reconstruction in Outdoors

IEEE Robotics and Automation Letters (RA-L)
IEEE International Conference on Robotics and Automation (ICRA)

Rui Tian¹, Yunzhou Zhang^{1*}, Yonghui Feng¹, Linghao Yang¹, Zhenzhong Cao¹, Sonya Coleman², Dermot Kerr²

Object-oriented and semantic-enhanced map

- To effectively overcome the observation noise, we propose an accurate and robust quadric landmark initialization method based on the SQP algorithm by separating of quadric parameters.
- We proposed an ODA algorithm that combines semantic inliers distribution, Kalman-based motion prediction, and ellipsoidal projection to achieve accurate object data association and pose estimation.
- Jointly estimate the camera pose and the quadric landmarks of objects.
- Based on the proposed algorithms, we implement a real-time stereo visual SLAM with accurate and robust ellipsoids representation of objects, aming to build an object-oriented and semantically-enhanced map for outdoor navigation.

Facing problems

The state-of-the-art quadric-based SLAM algorithms always face observability problems and are sensitive to observation noise, which limits their application in outdoor scenes.t

System Overview

Decoupling of Quadric Parameters (DQP)
Object Data Association (ODA)

Estimating camera pose and initializing quadrics by the SQP algorithm

plane error

Prior axial

length error

Local mapping and jointly optimizing camera pose & ellipsoids

Separating of Quadric Parameters (SQP) initialization algorithm

Independently estimate quadric center translation

Object Data Association (ODA)

Object Observation Optimization

Real-time performance with GPU

RUNNING TIME (MS) OF THE MAIN MODULES OF THE PROPOSED SYSTEM ON THE KITTI RAW DATA DATASET.

	Sequence	-09	-22	-23	-36
Settings	Resolution	1242×375	1242×375	1242×375	1242×375
	Camera FPS	10 Hz	10 Hz	10 Hz	10 Hz
	ORB Features	2000	2000	2000	2000
Detection	Segmentation	57.61± 6.75	53.51±5.69	59.86±5.56	54.36±6.38
Tracking	ORB Extraction	59.67±7.93	59.15±8.37	60.99±8.84	56.94±8.25
	ODA	2.04 ± 3.34	0.94 ± 0.77	2.12 ± 0.78	0.93 ± 1.01
	SQP	0.17 ± 0.21	0.24 ± 0.15	0.14 ± 0.12	0.11 ± 0.31
	Total time	90.14 ± 8.47	86.61 ± 9.31	93.30 ± 10.74	85.88±9.12
Local Mapping	Local BA	220.06±119.05	211.92±93.86	204.23±68.10	208.33±89.2
	Total time	327.29 ± 126.71	314.45±114.46	321.18 ± 79.24	309.98±92.2

Experiments

Robustness to observation noise

Accuracy in initialization success rate, IOU, object pose estimation and localization

