INE5607 – Organização e Arquitetura de Computadores

Hierarquia e Gerência de Memória

Aula 25: Caches associativas e associativas por conjunto

Prof. Laércio Lima Pilla laercio.pilla@ufsc.br

Sumário

- Problemas do mapeamento direto
- Caches associativas
- Caches associativas por conjunto
- Comparação
- Considerações finais

PROBLEMAS DO MAPEAMENTO DIRETO

- Rápida revisão
 - Mapeamento direto
 - Mapeamento = E módulo N
 - E: endereço do bloco (não da palavra ou byte)
 - N: número de blocos na cache

- Exemplo
 - Cache com quatro blocos
 - Mapeamento direto

• Sequência de acesso a blocos: 0, 8, 0, 6, 8

End. do bloco		Conteúdo dos blocos de cache após referência			
DIOCO	falha	0	1	2	3
Bloco 0					
Bloco 8					
Bloco 0					
Bloco 6					
Bloco 8					

- Exemplo
 - Cache com quatro blocos
 - Mapeamento direto

• Sequência de acesso a blocos: 0, 8, 0, 6, 8

End. do			Conteúdo dos blocos de cache após referência				
DIOCO	bloco falha	0	1	2	3		
Bloco 0	Falha	Mem[0]					
Bloco 8	Falha	Mem[8]					
Bloco 0	Falha	Mem[0]					
Bloco 6	Falha	Mem[0]		Mem[6]			
Bloco 8	Falha	Mem[8]		Mem[6]	(co) [9] [9]		

- Mas isso nunca aconteceria....
 - Cache com dois blocos
 - Blocos de duas words
 - Item do array: int acc, int val, int x, int y;

```
for ( i=1; i<=N; i++ )
    array.acc[i] = array.val[i] + array.acc[i-1];</pre>
```

- Mas esse caso é um exagero...
 - Cache com quatro blocos de uma palavra cada

```
int matriz[N][N];  //N = 100
for ( j=0 ; j < N ; j++)
  for ( i=1 ; i < N ; i++)
      matriz[i-1][j] = matriz[i][j];</pre>
```

- Acesso à memória
 - matriz[i][j] -> matriz[i*N+j]
 - No caso
 - matriz[3][4] -> matriz[304]
 - Mapeamento: 304 módulo 4 = 0
 - matriz[2][4] -> matriz[204]
 - Mapeamento: 204 módulo 4 = 0
 - -Ou seja, falhas e mais falhas....

- Como poderíamos resolver esse problema de conflito?
 - Que tal um mapeamento mais flexível?

End. do			Conteúdo dos blocos de cache após referência				
DIOCO	bloco falha	0	1	2	3		
Bloco 0	Falha	Mem[0]					
Bloco 8	Falha	Mem[8]					
Bloco 0	Falha	Mem[0]					
Bloco 6	Falha	Mem[0]		Mem[6]			
Bloco 8	Falha	Mem[8]		Mem[6]	(cc) (1) (9)		

CACHES ASSOCIATIVAS

- Extremo oposto a caches com mapeamento direto
 - Mapeamento direto: apenas uma posição para um endereço de bloco
 - Mapeamento associativo: todas as posições para um endereço de bloco!

- Exemplo
 - Cache com quatro blocos
 - Cache associativa

• Sequência de acesso a blocos: 0, 8, 0, 6, 8

End. do bloco	Acerto ou	Conteúdo dos blocos de cache após referência			
	falha	0	1	2	3
Bloco 0					
Bloco 8					
Bloco 0					
Bloco 6					
Bloco 8					

- Exemplo
 - Cache com quatro blocos
 - Cache associativa

• Sequência de acesso a blocos: 0, 8, 0, 6, 8

End. do	Acerto ou	Conteúdo dos blocos de cache após referência			
bloco	o falha	0	1	2	3
Bloco 0	Falha		Mem[0]		
Bloco 8	Falha		Mem[0]		Mem[8]
Bloco 0	Acerto		Mem[0]		Mem[8]
Bloco 6	Falha	Mem[6]	Mem[0]		Mem[8]
Bloco 8	Acerto	Mem[6]	Mem[0]		Mem[8]

- Como calcular o mapeamento?
 - -É só escolher um slot disponível
- E se não houver slot disponível?
 - Políticas de substituição
 - Circular
 - Aleatório
 - Least Recently Used (LRU)
 - Substitui bloco que foi acessado menos recentemente
- Como identificar quem está mapeado?
 - Tag

Exemplo

- Memória de 4KB (2¹² bytes)
- -Palavras de 32 bits
- Blocos de 2 palavras
- -Cache de 16 blocos
- Endereço de memória: 0110 0101 1010

Cacha	Tag	End. bloco	End. Interno		
Cache	Tag	Elia. Dioco	word	byte	
Map. Direto	01100	1011	0	10	
Associativa	011001011	-	0	10	

- Cálculo do tamanho da cache e da tag
 - Memória de 2^m bytes (endereçáveis)
 - -Cache com 2^c blocos
 - Blocos de 2^p palavras
 - Palavras de 2^b bytes (2^{b+3} bits)
 - —1 bit de validade por bloco
 - -Tamanho do tag: m (p+b) bits
 - -Armazenamento da cache: 2^(c+p+b) bytes
 - -Tamanho efetivo: $2^{c*}(2^{p+b+3}+1+m-(p+b))$ bits

- Vantagens (vs mapeamento direto)
 - Maior taxa de acertos
 - Maior desempenho: D
- Desvantagens
 - Circuito mais complexo
 - Múltiplas comparações de tag em paralelo
 - Muito caro para caches grandes :<
 - Reduções
 - Pode levar a tempo de acesso maior :~

- Falácia: Caches associativas comparam tags em sequência
 - Circuitos trabalham em paralelo
 - N comparadores para N blocos
 - -Árvore de redução

CACHES ASSOCIATIVAS POR CONJUNTO

- Caminho do meio
 - Agrupa blocos de cache em conjuntos
 - Um endereço só pode ser mapeado para um conjunto
 - Dentro do conjunto, o endereço pode ser mapeado para qualquer posição

- Vantagens
 - Maior grau de associatividade leva a maior taxa de acertos
 - Menos conflitos
 - Menor grau de associatividade requer menos recursos
 - Comparações apenas dentro de um conjunto

- Exemplo
 - Cache com quatro blocos
 - Cache 2-associativa

• Sequência de acesso a blocos: 0, 8, 0, 6, 8

	Acerto	Conteúdo d	dos blocos d	e cache após	s referência
End. do bloco	ou	Conju	Conjunto 0		into 1
falha	Posição 0	Posição 1	Posição 0	Posição 1	
Bloco 0					
Bloco 8					
Bloco 0					
Bloco 6					
Bloco 8			01. Laprojo 11ma Pilia		

- Exemplo
 - Cache com quatro blocos
 - Cache 2-associativa (conjuntos de dois blocos)
 - Sequência de acesso a blocos: 0, 8, 0, 6, 8

Acerto		Conteúdo dos blocos de cache após referência					
End. do bloco	ou	Conju	into 0	Conjunto 1			
Dioco	falha	Posição 0	Posição 1	Posição 0	Posição 1		
Bloco 0	Falha	Mem[0]					
Bloco 8	Falha	Mem[0]	Mem[8]				
Bloco 0	Acerto	Mem[0]	Mem[8]				
Bloco 6	Falha	Mem[0]	Mem[6]				
Bloco 8	Falha	Mem[0]	Mem[8]				

Exemplo

- Memória de 4KB (2¹² bytes)
- Palavras de 32 bits, blocos de 2 palavras
- -Cache de 16 blocos
- Endereço de memória: 0110 0101 1010

Cache	Tog	End. bloco	End. Interno		
Cache	Tag	ou conj.	word	byte	
Map. Direto	01100	1011	0	10	
Associativa	011001011	-	0	10	
2-Associativa	011001	011	0	10	
8-Associativa	01100101	1	0	10	

Comparação para cache com oito blocos

Cache 1-associativa (mapeamento direto)

	(
TAG	D	
	(0)	
	(1)	
	(2)	
	(3)	
	(4)	
	(5)	
	(6)	
	(7)	

Cache 2-associativa

TAG	D	TAG	D
	(0)		(4)
	(1)		(5)
	(2)		(6)
	(3)		(7)

Cache 4-associativa

TAG	D	TAG	D	TAG	D	TAG	D
	(0)		(2)		(4)		(6)
	(1)		(3)		(5)		(7)

Cache 8-associativa (totalmente associativa)

TAG	D	TAG	D	TAG	D	TAG	D	TAG	D	TAG	D	TAG	D	TAG	D
	(0)		(1)		(2)		(3)		(4)		(5)		(6)		(7)
INE5607 - Prof. Laércio Lima Pilla														\odot \odot	26

- Maior associatividade
 - Mais blocos por conjunto
 - Maior número de comparações
 - Maiores tags
 - Menor índice para escolher conjunto
 - Maior taxa de acertos

- Cálculo do tamanho da cache e da tag
 - Memória de 2^m bytes (endereçáveis)
 - Cache com 2ⁿ conjuntos

Total de blocos = 2^{n+c}

- -Conjuntos com 2^c blocos
- -Blocos de 2^p palavras
- -Palavras de 2^b bytes (2^{b+3} bits)
- -1 bit de validade por bloco
- -Tamanho do tag: m (n+p+b) bits
- -Armazenamento da cache: 2^(n+c+p+b) bytes
- -Tamanho: $2^{n+c*}(2^{p+b+3}+1+m-(n+p+b))$ bits

Exercício

- Memória de 4GB (2³² bytes)
- -Palavras de 32 bits
- Blocos de 8 palavras
- -Cache de 128 blocos
- Endereço de memória: 0xBEBAC0CA
- -Qual o mapeamento do bloco e a tag para
 - Cache com mapeamento direto?
 - Cache totalmente associativa?
 - Cache 4-associativa?

Exercício

- Memória de 4GB (2³² bytes)
- -Palavras de 32 bits
- Blocos de 8 palavras
- -Cache de 128 blocos
- Qual o tamanho efetivo da cache
 - com mapeamento direto?
 - totalmente associativa?
 - 4-associativa?

CONSIDERAÇÕES FINAIS

Considerações finais

- Cache de mapeamento direto
- Cache associativa
- Cache associativa em conjunto
- Tags e tamanhos efetivos

INE5607 – Organização e Arquitetura de Computadores

Hierarquia e Gerência de Memória

Aula 25: Caches associativas e associativas por conjunto

Prof. Laércio Lima Pilla laercio.pilla@ufsc.br

