RL: Recap

План

Взаимодействие среды и агента

- В каждый момент времени t агент:
 - Выполняет действие a_t
 - Получает наблюдение o_t
 - Получает скалярное вознаграждение r_t
- В каждый момент времени t среда:
 - Реагирует на действие a_t
 - lacktriangle Выдает следующее наблюдение o_{t+1}
 - Выдает скалярное вознаграждение r_{t+1}
- □ Переход к шагу t+1

Вознаграждение (reward). Суммарное вознаграждение (отдача, return)

$$G_t = r_{t+1} + \gamma r_{t+2} + \cdots \gamma^{T-1} r_T$$

- Дисконтирующий множитель $\gamma \in [0,1]$ оценка значений будущих вознаграждений
- 3начение получаемых вознаграждений после k + 1 шагов $\gamma^k r$
- Моментальное вознаграждение важнее отложенных будущих:
 - \circ $\gamma \sim 0$ близорукий агент
 - $\gamma \sim 1$ дальнозоркий агент

Строение RL агента

- □ Агент RL может включать один или несколько из этих компонентов:
 - □ Стратегия (policy): функция поведения агента
 - Функция полезности (value function): оценка насколько хорошо каждое состояние и/или действие
 - Модель (model): представление агента о среды

- □ Стратегия (политика) это функция поведения агента. Обычно это отображения состояния в действие
- Она представляет собой отображение из состояния в действие, например
 - ✓ Детерминированная политика: $a = \pi(s)$
 - ✓ Стохастическая политика: $\pi(a|s) = P[a_t = a|s_t = s]$

Функция полезности

- □ Функция полезности это предсказание будущего вознаграждения и используется для оценки состояния
- □ Используется для оценки на сколько состояние является ценным и, следовательно, для выбора между действиями, например

$$V^{\pi} = E_{\pi}[r_t + \Upsilon r_{t+1} + \Upsilon^2 r_{t+2} + \dots | s_t = s] = E_{\pi}[G_t | s_t = s]$$

□ Функция полезности действия

$$Q^{\pi} = E_{\pi}[r_t + \Upsilon r_{t+1} + \Upsilon^2 r_{t+2} + \dots | s_t = s, a_t = a] = E_{\pi}[G_t | s_t = s, a_t = a]$$

Модель

- Модель предсказывает, что произойдет в среде в следующий момент времениПримеры:
 - Модель переходов Р предсказывает следующее состояние

$$P_{SS'}^a = P[s_{t+1} = s' | s_t = s, a_t = a]$$

• Модель вознаграждений R предсказывает следующее (мгновенное) вознаграждение:

$$R_s^a = E[r_t|s_t = s, a_t = a]$$

Типизация RL агентов

- □ Оценивающие функцию полезности (value base)
 - Стратегия не представлена явно
 - Функция полезности
- □ Оценивающие стратегию (policy base)
 - Стратегия
 - Функция полезности не вычисляется явно
- □ Актор-критик (actor-critic)
 - Стратегия
 - Функция полезности

Типизация RL агентов

- Безмодельные (model free)
 - Стратегия и/или функция полезности,
 - Нет модели
- □ Основанные на модели (model based):
 - Стратегия и/или функция полезности
 - Строят модель

Марковский процесс принятия решений

- □ Марковский процесс принятия решения (МППР, MDP) моделирует
- взаимодействие агента и среды
- □ Предполагается что среда полностью наблюдаема (fully observable)
- □ Текущее состояние полностью характеризует весь процесс взаимодействия
- □ Почти все задачи RL могут быть сведены к задаче с MDP
 - Оптимальное управление MDP непрерывным множеством состояний и действий
 - Частично наблюдаемы среды могут быть сведены к MDP
 - Игровые автоматы пример MDP с одним состоянием

Марковское свойство

Будущее не зависит от прошлого и определяется только настоящим

Определение

 \square Состояние s_t называется марковским если и только если

$$P[s_{t+1}|s_t] = P[s_{t+1}|s_1, s_2, ..., s_t]$$

- □ Текущее состояние содержит всю информация из истории взаимодействия
- □ Если есть текущее состояние, история далее может не учитываться
- □ Состояние содержит достаточно статистики для определения будущего

Матрица переходов

□ Вероятность перехода для марковского состояния s в следующее состояниеs' определяется как:

$$P_{ss'} = P[s_{t+1} = s' | s_t = s]$$

Матрица переходов Р определяет вероятности переходов между всеми

возможными состояниями

$$P = \begin{bmatrix} P_{11} & \dots & P_{1n} \\ \dots & \dots & \dots \\ P_{n1} & \dots & P_{nn} \end{bmatrix}$$

Каждая строчка матрицы в сумме дает 1

Марковский процесс (принятия решений)

□ Марковский процесс (Markov process, Markov chain) - это случайный процесс без памяти, т.е. Последовательность случайных состояний s1, s2, ..., обладающая свойством Маркова.

Определение

Марковский процесс (или цепь Маркова) - это пара < S, P >, где

- S (конечное) множество состояний
- Р матрица вероятностей перехода между состояниями,

$$P_{ss'} = P[s_{t+1} = s' | s_t = s]$$

Марковский процесс вознаграждения

■ Марковский процесс вознаграждения - это марковская цепь с дополнительными значениями вознаграждений за переходы

Определение

Марковский процесс вознаграждений - это тройка <S,P, R, у>, где

- S (конечное) множество состояний
- Р матрица вероятностей перехода между состояниями,

$$P_{ss'} = P[s_{t+1} = s' | s_t = s]$$

- R функция вознаграждения $R_s = E[r_{t+1}|s_t = s]$
- $\gamma \in [0,1]$ дисконтирующий множитель

Марковский процесс принятия решений

Марковский процесс принятия решений – это марковский процесс вознаграждения для действий. Он описывает взаимодействие со средой с марковским состояниями

□ Определение

Марковский процесс принятия решений — это кортеж $< S, A, P, R, \gamma >$, где

- S конечное множество состояний
- А − конечное множество действий
- P матрица перехода

$$P_{ss'}^a = P[s_{t+1} = s' | s_t = s, a_t = a]$$

- R функция вознаграждения $R_s^a = E[r_{t+1}|s_t = s, a_t = a]$
- $\gamma \in [0,1]$ дисконтирующий множитель

Уравнение Беллмана для MRP

Функцию полезности V(s) можно представить в виде суммы двух слагаемых:

- немедленное вознаграждение r_{t+1}
- Дисконтированное значение следующего состояния $\gamma V(s_{t+1})$:

$$G_t = r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \dots = r_{t+1} + \gamma (r_{t+2} + \gamma r_{t+3} + \dots) = r_{t+1} + \gamma G_{t+1}$$

$$V(s) = E[G_t | s_t = s] = E[r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \dots | s_t = s] =$$

$$E[r_{t+1} + \gamma (r_{t+2} + \gamma r_{t+3} + \dots) | s_t = s] = E[r_{t+1} + \gamma G_{t+1} | s_t = s] = E[r_{t+1} + \gamma V(s_{t+1}) | s_t = s]$$

Уравнение Беллмана в матричной форме

$$V = R + \gamma PV$$

Где V – это вектор колонка с одной компонентой на состояние

$$\begin{pmatrix} V(1) \\ \dots \\ V(n) \end{pmatrix} = \begin{pmatrix} R(1) \\ \dots \\ R(n) \end{pmatrix} + \gamma \begin{pmatrix} P_{11} & \dots & P_{1n} \\ \dots & \dots & \dots \\ P_{n1} & \dots & P_{nn} \end{pmatrix} \begin{pmatrix} V(1) \\ \dots \\ V(n) \end{pmatrix}$$

$$V(s) = R_s + \gamma \sum_{s' \in S} P_{ss'} V(s')$$

□ Определение

Стратегией π будем называть вероятностное распределение на множестве действий действиям при текущем состоянии s:

$$\pi(a|s) = P[a_t = a|s_t = s]$$

- Стратегия полностью определяет поведение агента
- MDP стратегии зависят от текущего состояния (не от истории).
- Стратегии стационарны (не зависят от времени)

$$a_t \sim = \pi(\cdot | s_t), \forall t > 0$$

- Пусть дан MDP $M = \langle S, A, P, R, \gamma \rangle$ и стратегия π .
- Последовательность состояний s1, s2, ... является марковским процессом $\langle S, P^{\pi} \rangle$
- Последовательность состояний и вознаграждений s1,r2,s2,... представляет собой марковский процесс вознаграждения $\langle S, P^{\pi}, R^{\pi}, \gamma \rangle$

$$P_{ss'}^{\pi} = \sum_{a \in A} \pi \ (a|s) P_{ss'}^a$$

$$R_{ss'}^{\pi} = \sum_{a \in A} \pi \ (a|s) R_{ss'}^{a}$$

□ Определение

• Функция полезности состояний MDP $V^{\pi}(s)$ - это математическое ожидание отдачи, начиная с состояния s, при выполнении политики π :

$$V^{\pi}(s) = E_{\pi}[G_t|s_t = s]$$

□ Определение

• Функция полезности действия MDP $Q^{\pi}(s,a)$ - это математическое ожидание отдачи, начиная с состояния s, выбранного действия a, при выполнении стратегии

π

$$Q^{\pi}(s,a) = E_{\pi}[G_t|s_t = s, a_t = a]$$

Оптимальная функция полезности

Определение

Оптимальная функция полезности состояний $V^*(s)$ - это максимальное значение функции полезности по всем стратегиям

$$V^*(s) = \max_{\pi} V^{\pi}(s)$$

Оптимальная функции полезности действия $Q^*(s,a)$ - это максимальное значение функции полезности действия по всем стратегиям

$$Q^*(s,a) = \max_{\pi} Q^{\pi}(s,a)$$

- Оптимальные стратегии характеризуют лучшее поведение в MDP
- Говорят, что задача MDP решена, когда найдена оптимальная функция полезности

Оптимальная стратегия

Определим частичный порядок на множестве стратегий:

$$\pi \geq \pi' \text{ if } V^{\pi}(s) \geq V^{\pi'}(s), \forall s$$

Теорема

Для любого MDP

- Существует оптимальная стратегия, π_* которая лучше или равна всем другим стратегиям $\pi_* \geq \pi, \forall \; \pi$
- Все оптимальные стратегии доставляют оптимум функции (ценности) состояния -

действия
$$V^{\pi^*}(s) \ge V^{\pi}(s)$$
 $Q^{\pi^*}(s,a) \ge Q^{\pi}(s,a)$

Поиск оптимальной стратегии

Оптимальная стратегия π_* может быть найдена максимизацией функцией полезности действий $Q^{\pi^*}(s,a)$:

$$\pi^*(a|s) = \begin{cases} 1, \text{если } a = arg \max_{a \in A} Q^*(s, a) \\ 0, \text{иначе} \end{cases}$$

- Для любого MDP существует оптимальная детерменированная стратегия
- Если известна $Q^*(s,a)$, то мы получаем одновременно и оптимальную стратегию

Уравнение Беллмана для MDP

 Функция полезности состояния может быть разложена на немедленное вознаграждение плюс дисконтированная стоимость следующего состояния

$$V^{\pi}(s) = E_{\pi}[r_{t+1} + \gamma V^{\pi}(s_{t+1}) | s_t = s]$$

• Аналогично можно разложить функцию полезности действия,

$$Q^{\pi}(s,a) = E_{\pi}[r_{t+1} + \gamma Q^{\pi}(s_{t+1}, a_{t+1}) | s_t = s, a_t = a]$$

Итерационные алгоритмы

Итерационная оценка стратегии

- $lue{}$ Задача: оценить текущую стратегию π
- □ Решение: итеративное применение уравнения Беллмана:

$$V^1 \to V^2 \to V^3 \to \cdots \to V^n$$
, $V(s) = R_s + \gamma \sum_{s' \in S} P_{ss'} V(s')$

- □ Использование синхронных шагов:
 - Для каждой итерации k + 1:
 - Для каждого состояния *a* ∈ *A*
 - Обновить $V^{k+1}(s)$ по $V^k(s')$, где s' следующее состояние после s
- □ Можно использовать асинхронные шаги
- \square Сходится к истинным значениям V^{π}

Пример: клеточный мир

		<u> </u>	Т
	1	2	3
4	5	6	7
8	9	10	11
12	13	14	

r = -1 on all transitions

Пример: клеточный мир

$$V^{k+1} = R^{\pi} + \Upsilon P^{\pi} V^k$$

0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0

0.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	0.0

		\leftrightarrow	\bigoplus
1	\leftrightarrow	\leftrightarrow	\Leftrightarrow
\leftrightarrow	\leftrightarrow	\leftrightarrow	1
\leftrightarrow	\leftrightarrow	\rightarrow	

- 1				
	0.0	-1.7	-2.0	-2.0
	-1.7	-2.0	-2.0	-2.0
	-2.0	-2.0	-2.0	-1.7
	-2.0	-2.0	-1.7	0.0

Детерменированные итерации по полезностям

- \square Пусти мы знаем решение для подзадачи $V^*(s')$,
- □ Тогда мы можем найти решение за один шаг

$$V^*(s) \leftarrow \max_{a \in A} \left(R_s^a + \gamma \sum_{s' \in S} P_{ss'}^a V^*(s') \right)$$

- □ Идея итераций по ценностям применять эти обновления рекурсивно
- □ Интуиция: начать с конечных вознаграждений и двигаться назад

Пример: кратчайший путь

0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
	V	1	

0	-1	-2	-2
-1	-2	-2	-2
-2	-2	-2	-2
-2	-2	-2	-2

0	-1	-2	-3
-1	-2	-3	-3
-2	-3	-3	-3
-3	-3	-3	-3

0	-1	-2	-3
-1	-2	-3	-4
-2	-3	-4	-5
-3	-4	-5	-5

0	-1	-2	-3
-1	-2	-3	-4
-2	-3	-4	-5
-3	-4	-5	-6

 V_7

Базовые алгоритмы

- □ Монте Карло
- □ Временные различия
- □ Q обучение
- ☐ SARSA

Среднее приращение (МК)

□ Средние значения могут быть вычислены последовательно:

$$\mu_k = \frac{1}{k} \sum_{i=1}^k x_i = \frac{1}{k} (x_k + \sum_{i=1}^{k-1} x_i) =$$

$$= \frac{1}{k}(x_k + (k-1)\mu_{k-1}) \Rightarrow$$

$$\Rightarrow \mu_k = \mu_{k-1} + \frac{1}{k}(x_k - \mu_{k-1})$$

Монте Карло для приращений

- \square Обновим V(s) с приращением для эпизода $s_1, a_1, r_1, ..., s_T$:
- \square Для каждого состояния s_t с отдачей R_t :

$$N(s_t) \leftarrow N(s_t) + 1$$

$$V(s_t) \leftarrow V(s_t) + \frac{1}{N(s_t)} (R_t - V(s_t))$$

□ Для нестационарных задач м.б. полезно отслеживать текущее среднее:

$$V(s_t) \leftarrow V(s_t) + \alpha(R_t - V(s_t))$$

MC u TD

- lacktriangle Цель: построить V^π интерактивно (online) по эпизодам взаимодействия со стратегией π
- lacktriangled МС с каждым посещением для приращений: обновляем $V(s_t)$ на основе текущей отдачи R_t

$$V(s_t) \leftarrow V(s_t) + \alpha(R_t - V(s_t))$$

- □ Подход TD:
 - Обновляем на основе ожидаемой отдачи $r_t + \gamma V(s_{t+1})$

$$V(s_t) \leftarrow V(s_t) + \alpha(r_t + \gamma V(s_{t+1}) - V(s_t))$$

- $r_t + \gamma V(s_{t+1})$ называется TD показателем
- $\delta_t = r_t + \gamma V(s_{t+1}) V(s_t)$ называется TD ошибкой
- □ ТD приближает значения на основе предыдущего приближения

Обновление функции полезности по SARSA

$$Q(s,a) \leftarrow Q(s,a) + \alpha(r + \gamma Q(s',a') - Q(s,a))$$

Алгоритм управления с Q обучением (SARSAMAX)

$$Q(s,a) \leftarrow Q(s,a) + \alpha(r + \gamma \max_{a'} Q(s',a') - Q(s,a))$$