信号处理导论:

概念: 消息 (message)、信息 (signal)、信号 (information 信息的载体)

时域 (连续/离散信号), 频域

激励(输入信号)——系统——响应(输出信号)

通信系统:信息源->发送->信道(噪声)->接收->受信者

信号

描述: 信息的物理体现, 按物理属性分为: 电, 非电信号

分类: 确定/随机,连续/离散,周期/非周期,能量/功率,一维/多维信号

确定:可用确定时间函数表示

随机: 取值具有不确定性

伪随机:按照严格规律产生的随机信号

连续: 连续时间范围内有定义的信号(t 为连续时间变量)

离散: 仅在一些离散瞬间才有定义的信号(k 为离散时间序列 等间隔)

模拟信号(时幅连续)-抽样-抽样信号(时间离散)-量化-数字信号(时幅离散)

周期信号: f(t)=f(t+mT)), $m=0,\pm 1,\pm 2,\cdots$ (T 为信号周期,抽样信号的间隔与周期的比为有理数)

两周期序列和的周期为最小公倍数

连续周期信号和: T1/T2 为有理数, 取最小公倍数

$$E = \sum f(t)^2$$
 $P = \lim_{T \to T} \sum f(t)^2$

能量信号: f(t)的能量有界 P=0 功率信号: f(t)的功率有界 E-> ∞

一维/多维: 描述信号的自变量数

指数信号:对时间的微,积分仍为指数形式

Sampling Signal: f(t)=sin(t)/t 抽样信号

先平移,后反转和展缩 逆运算反之

奇异信号:函数本身或其导数有不连续点的信号

阶跃函数:

可表示锯齿型信号(累加),可对信号进行截取(与被截相乘)

$$\begin{cases} \varepsilon(t) = 0 \ (t < 0) \\ \varepsilon(t) = \frac{1}{2} \ (t = 0) \ (阶跃点) \\ \varepsilon(t) = 1 \ (t > 0) \end{cases}$$

延迟单位:将阶跃函数平移

阶跃函数 $-\infty^{\sim}0$ 的积分=t δ(t)

冲击函数 (狄拉克):

高度无穷大, 宽度无穷小, 对称窄脉冲

$$\begin{cases} \int_{-\infty}^{+\infty} \delta(t) \, dt = 1 \\ \delta(t) = 0 \, (t \neq 0) \end{cases}$$

取样性: $f(t)\delta(t) = f(0)\delta(t)$

冲击偶:冲击函数的一阶导数(奇函数)

$$f(t)\delta'(t) = f(0)\delta'(t) = f'(0)\delta(t)$$

复合函数形式冲击函数:

 $\delta[f(t)]$ 且 f(t)=0 有 n 个**互不相等**的实根

 $f(t) \neq 0$ 时 $\delta[f(t)]=0$, f(t)=0 时 $\delta[f(t)]=1$

单位冲击序列: $\delta(k)$ k=0 时为 1 k≠0 时为 0

单位阶跃序列: ε(k)=0(k<0) ε(k)=1(k>0)(离散点集)

判断周期性: $aT = 2\pi N$

判断线性:分解特性,零状态线性,零输入线性

(2)
$$y(t) = f(t)x(0) + \int_{0}^{t} f(x) dx$$

(・) $+\alpha_2 f_2$ (・)] $=\alpha_1 T[f_1(\cdot)]+\alpha_2 T[f_2(\cdot)]$ 。
 依据线性系统的定义,依次判断系统是否具有分解特性、零状态线性和零性。若系统均满足以上特性,则系统为线性系统,否则为非线性系统。
 用 $y_x(t)$ 表示零输入响应, $y_f(t)$ 表示零状态响应。
 (1) $y_x(t) = e^{-t}x(0)$, $y_f(t) = \int_0^t \sin x f(x) dx$ 则 $y(t) = y_x(t) + y_f(t)$,满足可分解性。
 又 $y_x(t)$ 、 $y_f(t)$ 分别满足零输入线性和零状态线性,则系统是线性系统。
 (2) 由系统表示式可知
 $y_x(t) = 0$, $y_f(t) = \int_0^t f(x) dx$ 可得
 $y(t) \neq y_x(t) + y_f(t)$ 因此系统不是线性系统。

系统: 特定功能的总体

连续(t),离散(k),混合系统(系统激励一个是连续,一个是离散信号) 动态(记忆,**内部激励** $\{f()\}$,**初始状态** $\{x(0)\}$)

单/多 输入输出

线性:输出、输入序列均为一次关系项(**齐次性,可加性**/可分解,零状态,零输入性)

时不变: 输入时间加减 td, 输出仅相应平移 td f(t-td)-y(t-td) (出现变系数或反转展缩则为时变)

Linear Time-Invariant 线性时不变: f(t)->v(t)微分与积分相等

因果系统: 输出晚于输入 t < t0, f(t) = 0 有 yzs(t) = 0 (t = 0 时输入信号为因果信号) 稳定系统: **有界输入输出** |f(t)|, $|v(t)| < \infty$

系统描述:

数学模型: 物理特性数学抽象

框图模型: 功能的形象表示

连续系统描述: **微分**方程 **离散**系统描述: **差分**方程($y(k)-(1+\beta)y(k-1)=f(k)$)

通过框图,消去中间变量,得到输入输出关系

系统分析方法:外部法(时域分析,变换域法(连续,离散)),内部法

零输入,零状态响应分开,多个基本信号作用于线性系统等效于各个基本信号引起 响应之和

连续系统时域分析:

LT1: 时域分析(涉及函数变量均为时间 t 微分方程: 全解=齐次解+特解)

齐次解激励函数无关: **自有响应**,

特解激励函数相关:强迫响应

 $y^{(j)}(\mathbf{0}_{+})$:接入 f(t)后的系统, $y^{(j)}(\mathbf{0}_{-})$:接入 f(t)前系统状态系数匹配法分析

零输入响应:
$$y_{zi}^{(j)}(\mathbf{0}_{+}) = y_{zi}^{(j)}(\mathbf{0}_{-}) = \mathbf{y}^{(j)}(\mathbf{0}_{-})$$

零状态响应: $y_{zs}^{(j)}(\mathbf{0}_{-}) = \mathbf{0}$

冲激响应: $\delta(t)$ 引起的**零状态响应** $(f(t)=\delta(t)$ 求解响应方程,引入微分算子/)

阶跃响应: $\varepsilon(t)$ 引起的零状态响应(因果 $\mathbf{0}_{-} \sim t$,冲激响应的积分)

卷积积分:

信号分解:任意信号可由无限个门函数拟合(门函数在门宽→0 时变为阶跃函数) 冲激函数与其它函数卷积为函数本身

$$\lim_{\Lambda \to 0} \hat{f}(t) = f(t) = \int_{-\infty}^{\infty} f(\tau) \, \delta(\tau) d\tau$$

卷积积分:
$$y_{zs}(t) = f(t) = \int_{-\infty}^{\infty} f_1(\tau) f_2(t-\tau) d\tau = f(t) * \hbar(t)$$
(交换律)

卷积过程 (**换元** $t \to \tau$, **反转平移** $f_2(\tau) \to f_2(t-\tau)$, **乘积**, **积分**)(τ 直接取代 t, 选取简单函数进行反转平移,注意积分区间)

卷积性质:交换,结合,分配律

信号与冲激函数卷积=信号本身

信号与冲激函数的时延/冲激函数导数卷积=信号本身时延/求导

卷积:
$$f(t) * \delta(t-t0) = f(t-t0)$$
 乘积: $f(t)\delta(t-t_0) = f(t_0)$

阶跃函数乘积:
$$ε(t) * ε(t) = tε(t)$$

卷积的微分=微分后卷积(等号左右微分算子可交换)

微分算子:
$$e^{-2t}\varepsilon(t) = \frac{1}{\rho+2}\delta(t)$$

$$(\rho + 2)e^{-2t}\varepsilon(t) = e^{-2t}\delta(t)$$

$$e^{-2t} \, \varepsilon(t) = \frac{1}{\rho + 2} e^{-2t} \delta(t) = \frac{1}{\rho + 2} \delta(t) \, \left(e^{-2t} \delta(t) = e^0 \delta(t) \right)$$

系统并联: 总系统冲激响应=各系统之和

系统级联: 总系统冲激响应=各系统响应的卷积

时移特性:信号卷积时移可换

$$f1(t-t1) * f2(t-t2) = f1(t-t1-t2) * f2(t) = f1(t) * f2(t-t1-t2)$$

(1) 定义式(2) 图解法(3) 积分性质

相关函数: $R_{12}(\tau) = R_{21}(-\tau) = \int_{-\infty}^{\infty} f1(x) * f2(x-t)dx$ (f1, f2 为实偶函数与卷积相同,注意积分范围)

卷积积分:

(5)
$$f_1(t) = te(t)$$
, $f_2(t) = e^{-2t}\varepsilon(t)$
(6) $f_1(t) = \varepsilon(t+2)$, $f_2(t) = \varepsilon(t-3)$
(7) $f_1(t) = \varepsilon(t) - \varepsilon(t-4)$, $f_2(t) = \sin(\pi t)\varepsilon(t)$

$$(5) f_{1}(t) * f_{2}(t) = t\varepsilon(t) * e^{-2t}\varepsilon(t) = \int_{-\infty}^{\infty} \tau\varepsilon(\tau) \cdot e^{-2(t-\tau)}\varepsilon(t-\tau)d\tau$$

$$= e^{-t} \int_{0}^{t} \tau e^{2t} d\tau \cdot \varepsilon(t) = \frac{1}{4}(-1+2t+e^{-2t})\varepsilon(t)$$

$$(6) f_{1}(t) * f_{2}(t) = \varepsilon(t+2) * \varepsilon(t-3)$$

$$= \left[\varepsilon(t) * \delta(t+2)\right] * \left[\varepsilon(t) * \delta(t-3)\right]$$

$$= \left[\varepsilon(t) * \delta(t+2)\right] * \left[\delta(t+2) * \delta(t-3)\right]$$

$$= t\varepsilon(t) * \delta(t-1) = (t-1)\varepsilon(t-1)$$

$$(7) f_{1}(t) * f_{2}(t) = \left[\varepsilon(t) - \varepsilon(t-4)\right] * \left[\sin(\pi t) \cdot \varepsilon(t)\right]$$

$$= \varepsilon(t) * \left[\delta(t) - \delta(t-4)\right] * \left[\sin(\pi t) \cdot \varepsilon(t)\right]$$

$$= \left[\varepsilon(t) * \sin(\pi t) \cdot \varepsilon(t)\right] * \left[\delta(t) - \delta(t-4)\right]$$

$$= \frac{1}{\pi} \left[1 - \cos(\pi t)\right] \varepsilon(t) * \left[\delta(t) - \delta(t-4)\right]$$

$$= \frac{1}{\pi} \left[1 - \cos(\pi t)\right] \varepsilon(t) - \frac{1}{\pi} \left[1 - \cos(\pi t - 4\pi)\right] \varepsilon(t-4)$$

$$= \frac{1}{\pi} \left[1 - \cos(\pi t)\right] \left[\varepsilon(t) - \varepsilon(t-4)\right]$$

冲激响应:

根据系统的齐次性、可加性写出加法器的输出,进而利用系统级联的性质得出系统复合后的冲激响应。

解題 は
$$f(t) = \delta(t)$$
,利用系统的齐次性和可加性以及系统级联的性质可得出加法器的输出为
$$y_1(t) = \delta(t) + \delta(t) * h_a(t) + \delta(t) * h_a(t) * h_a(t) = \delta(t) + h_a(t) * h_a(t)$$
则复合系统的冲激响应为
$$y(t) = y_1(t) * h_b(t)$$

$$= [\delta(t) + \delta(t-1) + \delta(t-2)] * [\epsilon(t) - \epsilon(t-3)]$$

$$= \epsilon(t) + \epsilon(t-1) + \epsilon(t-2) - \epsilon(t-3) - \epsilon(t-4) - \epsilon(t-5)$$
即
$$h(t) = \epsilon(t) + \epsilon(t-1) + \epsilon(t-2) - \epsilon(t-3) - \epsilon(t-4) - \epsilon(t-5)$$

离散系统时域分析:

差分: 前向 $(\Delta f(k) = f(k+1) - f(k))$, 后向 $(\nabla f(k) = f(k) - f(k-1))$

二阶差分: $\nabla^2 f(k) = \nabla[\nabla f(k)] = f(k) - 2f(k-1) + f(k-2)$ (进行 n 次差分)

零输入响应: 齐次解 $(c(\lambda)^k)$ (将f(k) = 0代入求特征根与 C)

零状态响应: 齐次解+特解 / 卷积法 $(k < 0, y_{zs}(k) = 0, 求出齐次解与特解)$

卷积和:将激励信号分为一系列冲激响应,相加得到系统零状态响应

 $y_{zs}(k) = \sum_{i=-\infty}^{\infty} f(i)h(k-i)$ 卷积: f(k) = f1(k) * f2(k) (符合交换律)

图解法:换元,反转平移,乘积,求和

不进位乘法: 序列卷积使用大乘法, 前后为 0 (非零个数 $(n_1 + n_3) \le k \le (n_2 + n_4)$) 交换律, 分配率, 结合律

y(k) + 2y(k-1) + y(k-2) = f(k),

$$\frac{2}{(2+1)^2} = 0$$

$$y_x(k) + 2y_x(k-1) + y_x(k-2) = 0$$

特征根 λ = λ = -1.其齐次解为

$$y_{s}(k) = C_{1}(-1)^{s} + C_{2}k(-1)^{k}, k \ge 0$$

将初始值代人,得

$$v_r(-1) = -C_1 + C_2 = 3$$

$$y_x(-2) = C_1 - 2C_2 = -5$$

解以上两式得 $C_1 = -1$, $C_2 = 2$,于是系统的零输入响应为

$$y_s(k) = [(2k-1)(-1)^k] \varepsilon(k)$$

零状态响应满足方程

$$y_{\ell}(k) + 2y_{\ell}(k-1) + y_{\ell}(k-2) = f(k)$$

和初始条件 $y_f(-1) = y_f(-2) = 0$ 。由上式得

$$y_f(k) = f(k) - 2y_f(k-1) - y_f(k-2)$$

则有

$$y_f(0) = f(0) - 2y_f(-1) - y_f(-2) = 3$$

$$y_f(1) = f(1) - 2y_f(0) - y_f(-1) = -\frac{9}{2}$$

系统的零状态响应是非齐次方程的全解,分别求出非齐次方程的齐次解和特解,得

$$y_{\ell}(k) = C_1(-1)^k + C_2k(-1)^k + \frac{1}{3}(\frac{1}{2})^k$$

将 yr(k)的初始值代人,得

$$y_f(0) = C_1 + \frac{1}{3} = 3$$

$$y/(1) = -C_1 - C_2 + \frac{1}{6} = +\frac{9}{2}$$

解以上两式得 $C_1 = \frac{8}{2}$, $C_2 = 2$,于是系统的零状态响应

$$y_f(k) = \left[\frac{8}{3}(-1)^k + 2k(-1)^k + \frac{1}{3}(\frac{1}{2})^k\right] \varepsilon(k)$$

系统的全响应为

$$y(k) = y_x(k) + y_f(k) = \left[(4k + \frac{5}{3})(-1)^k + \frac{1}{3}(\frac{1}{2})^k \right] \varepsilon(k)$$

单位序列响应:

$$\int y(k) - 4y(k-1) + 8y(k-2) = f(k)$$

(5)当系统激励 $f(k) = \delta(k)$ 时,原差分方程可化为

$$h(k)-4h(k-1)+8h(k-2)=\delta(k)$$

则有h(-1)=h(-2)=0,方程的解为

$$h(k) = (2\sqrt{2})^{k} \left[C_1 \cos(\frac{k\pi}{4}) + C_2 \sin(\frac{k\pi}{4}) \right], k \geqslant 0$$

又

$$h(k) = \delta(k) + 4h(k-1) - 8h(k-2)$$

则

$$h(0) = \delta(0) + 4h(-1) - 8h(-2) = 1$$

$$h(1) = \delta(1) + 4h(0) - 8h(-1) = 4$$

将初始值代入,得

$$h(0) = C_1 = 1$$

$$h(1) = 2\sqrt{2}(C_1 \cdot \frac{\sqrt{2}}{2} + C_2 \cdot \frac{\sqrt{2}}{2}) = 4$$

解以上两式得 $C_1=1,C_2=1,则系统的单位序列响应为$

$$h(k) = (2\sqrt{2})^{k} \left[\cos(\frac{k\pi}{4}) + \sin(\frac{k\pi}{4})\right] \varepsilon(k)$$

傅里叶变换与频域分析:

将任意输入信号分解为不同频率正弦信号与虚指数信号和

矢量正交:
$$V_x V_y^T = \sum_{i=1}^3 v_{xi} v_{yi} = 0$$
 则 $V_x = (v_{x1}, v_{x2}, v_{x3})$ 与 $V_y = (v_{y1}, v_{y2}, v_{y3})$ 正交

$$(t_1,t_2)$$
内两个信号正交: $\int_{t_1}^{t_2} \varphi_1(t) \varphi_2^*(t) dx = 0$

正交函数集: ,
$$\int_{t_1}^{t_2} \varphi_i(t) \varphi_j^*(t) dx = \begin{cases} 0 \ (i \neq j) \\ K_i \neq 0 \ (i = j) \end{cases} \ (\ \boxtimes \ \exists \ (t_1, t_2) \)$$

完备正交函数集: 不存在集合之外正交函数($\{1,\sin(\Omega t),\sin(2\Omega t)...\}$, $\{e^{j\Omega t},e^{2j\Omega t}...\}$)

信号分解:用 n 个正交函数线性组合近似表示 $f(t) = \sum_{j=1}^{n} C_{j} \varphi_{j}(t)$

均方误差: $\overline{\varepsilon^2} = \frac{1}{t_2 - t_1} \int_{t_1}^{t_2} [f(t) - \sum_{j=1}^n C_j \varphi_j(t)]^2 dt$ (f(t)与近似函数 $C_j \varphi_j(t)$ 间误差)

$$C_i = \frac{1}{K_i} \int_{t_1}^{t_2} f(t) \, \varphi_i(t) dt$$
(方向) $K_i = \int_{t_1}^{t_2} \varphi_i^2(t) \, dt$

帕斯瓦尔能量: $\int_{t_1}^{t_2} f^2(t) dt = \sum_{i=1}^{\infty} C_j^2 K_j$ (总能量=方向*分能量之和)

傅里叶级数: $f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(n\Omega t) + \sum_{n=1}^{\infty} b_n \sin(n\Omega t)$ $(a_n(0,1...), b_n(1,2...))$

傅里叶系数:
$$a_n = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \cos(n\Omega t) dt$$
, $b_n = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \sin(n\Omega t) dt$

其它形式: $f(n) = \frac{A_0}{2} + \sum_{n=1}^{\infty} A_n \cos(n\Omega t + \varphi_n) (A_n = \sqrt{a_n^2 + b_n^2}, \varphi_n = -\arctan\frac{b_n}{a_n})$

周期信号可分解为: $\frac{A_0}{2}$ 直流分量 $,A_n\cos(n\Omega t+\varphi_n)n$ 次谐波 $(A_1$ 为基波)

指数形式: $f(t) = \sum_{n=-\infty}^{\infty} F_n e^{jn\Omega t}$ 复傅里叶系数: $F_n = \frac{1}{T} \int_{-T}^{\frac{T}{2}} f(t) e^{jn\Omega t} dt$

偶函数: $a_n, A_n, |F_n|$

奇函数: $b_n \varphi_n$

周期信号平均功率: $\frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f^2(t) dt = \left(\frac{A_0}{2}\right)^2 + \sum_{n=-\infty}^{\infty} \frac{1}{2} A_n^2 = \sum_{n=-\infty}^{\infty} |F_n|^2$

频谱:幅值,相位随频率变化关系

周期信号频谱:谐波(离散)性,收敛性。

频带宽度: $B_{\omega} = \frac{2\pi}{\tau}$ (第一个零点)

零点之间谐波数: $\frac{\omega_1}{o} = \frac{T}{\tau}$ (T无限大,周期信号离散谱过度到非周期信号连续谱)

傅里叶正反变换: F(jω) ⇔ f(t) (频谱密度⇔原函数)

频谱密度:
$$F_n = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) e^{jn\Omega t} dt$$
, $f(t) = \sum_{n=-\infty}^{\infty} F_n e^{jn\Omega t}$

使用单边/双边指数函数逼近,对不满足绝对可积的函数进行变换

Tips:
$$\delta(t) \Leftrightarrow 1$$
, $1 \Leftrightarrow 2\pi\delta(\omega)$, $\operatorname{sgn}(t) \Leftrightarrow \frac{2}{j\omega}$ (符号函数)

$$\cos \omega_0 t = \frac{1}{2} \left(e^{j\omega_0 t} + e^{-j\omega_0 t} \right) \Leftrightarrow \pi [\delta(\omega + \omega_0) + \delta(\omega - \omega_0)]$$

$$\sin \omega_0 t = \frac{1}{2j} \left(e^{j\omega_0 t} + e^{-j\omega_0 t} \right) \Leftrightarrow j\pi \left[\delta(\omega + \omega_0) - \delta(\omega - \omega_0) \right]$$

双边指数函数 $e^{-a|t|} \Leftrightarrow \frac{2a}{a^2+\omega^2}$, 门函数 $g_2(t) \Leftrightarrow 2Sa(j\omega) = \frac{2\sin(j\omega)}{\omega}$

傅里叶变换性质:

非周期信号频谱函数: $F(j\omega) = \lim_{T \to \infty} F_n T = \int_{-\infty}^{\infty} f(t) e^{-j\omega t} dt$ (分解为虚指数函数和)

线性: $af_1(t) \Leftrightarrow aF_1(j\omega)$

偶实奇虚:
$$\begin{cases} R(\omega) = \int_{-\infty}^{\infty} f(t) \cos(\omega t) dt \ (实部) \\ X(\omega) = \int_{-\infty}^{\infty} f(t) \sin(\omega t) dt \ (虚部) \end{cases}$$

对称性: $f(t) \Leftrightarrow F(j\omega) \to F(jt) \Leftrightarrow 2\pi f(-\omega) \ (t->\omega, \omega->-\omega)$

尺度变换:
$$f(at) \Leftrightarrow \frac{1}{|a|} F(\frac{j\omega}{a}) (f(-t) \Leftrightarrow F(-j\omega))$$

时移特性: $f(t-t_0) \Leftrightarrow e^{-j\omega t_0} F(j\omega)$, $f(t+t_0) \Leftrightarrow e^{j\omega t_0} F(j\omega)$

频移特性: $e^{j\omega_0t}f(t) \Leftrightarrow F(j(\omega-\omega_0)), e^{-j\omega_0t}f(t) \Leftrightarrow F(j(\omega+\omega_0))$

调制:将信号频谱搬移至高频段,方便信号发送(接收搜索范围广)

卷积定理: $f_1(t) * f_2(t) \Leftrightarrow F_1(j\omega)F_2(j\omega)$, $f_1(t)f_2(t) \Leftrightarrow \frac{1}{2\pi}F_1(j\omega) * F_2(j\omega)$ 微积分:

时域:
$$f^{(n)}(t) \Leftrightarrow (j\omega)^n F(j\omega)$$
, $\int_{-\infty}^t f(x) dx \Leftrightarrow \pi F(0) \delta(\omega) + \frac{1}{j\omega} F(j\omega)$

频域:
$$(-jt)^n f(t) \Leftrightarrow F^n(j\omega), \ \pi f(0)\delta(t) + -\frac{1}{it}f(t) \Leftrightarrow \int_{-\infty}^{\omega} F(jx)dx$$

相关定理:
$$\begin{cases} R_{12}(\tau) = \int_{-\infty}^{\infty} f_1(t) f_2(t-\tau) dt \\ R_{21}(\tau) = \int_{-\infty}^{\infty} f_1(t-\tau) f_2(t) dt \end{cases} \rightarrow \begin{cases} F[R_{12}(\tau)] = F_1(j\omega) F_2^*(j\omega) \\ F[R_{21}(\tau)] = F_1^*(j\omega) F_2(j\omega) \end{cases}$$

$$F[R(\tau)] = |F(j\omega)|^2$$

能量功率谱:

能量谱: 单位信号频率能量 $E(\omega)$, $E(\omega) = |F(j\omega)|^2$

功率谱: 单位频率信号功率 $P(\omega)$, $P(\omega) = \lim_{T \to \infty} \frac{|F_T(j(\omega))|^2}{T}$

 $R(\tau) \Leftrightarrow E(\omega)$, $R(\tau) \Leftrightarrow P(\omega)$ (相关函数与能量/功率谱均为傅里叶变换) $E_y(\omega) = |H(j\omega)|^2 E_f(\omega)$, $P_y(\omega) = |H(j\omega)|^2 P_f(\omega)$ (能量功率的激励与响应关系)

$$H(j\omega) = \frac{Y(j\omega)}{H(j\omega)}$$

周期信号傅里叶变换:

周期信号可由复指数信号组成,复指数信号的频谱为冲激函数 $e^{j\omega_0t} \leftrightarrow 2\pi\delta(\omega-\omega_0)$, $e^{-j\omega_0t} \leftrightarrow 2\pi\delta(\omega+\omega_0)$

傅里叶系数为傅里叶变换的 1/T, $F_n = \frac{1}{T}F_0(jn\Omega) = \frac{1}{T}F_0(j\omega)|_{\omega=n\Omega}$

LT1 系统: $Y(j\omega) = H(j\omega)F(j\omega)$ (也可由时域卷积定理得出) 求系统输出时,转到时域算乘积再反变换得到输出

无失真传输:输入与输出信号仅**幅度**和**出现顺序**变化,波形不变

频响函数: $Y(j\omega) = F(j\omega)Ke^{-j\omega t_d} = H(j\omega)e^{j\omega t}$

理想条件:
$$H(j\omega) = \frac{Y(j\omega)}{F(j\omega)} = Ke^{-j\omega t_d}$$

滤波器:选择函数,仅保留相应频段信息 理想低通滤波:

滤波器频响函数:
$$H(j\omega) = \begin{cases} e^{-j\omega t_d, |\omega| < \omega_c} \\ 0, |\omega| > \omega_c \end{cases} = e^{-j\omega t_d} g_{2\omega_c}(\omega)$$

冲激响应: 不可实现的非因果 $h(t) = \frac{\omega_c}{\pi} Sa(\omega_c(t - t_d))$

阶跃响应:
$$g(t) = \frac{1}{2} + \frac{1}{\pi} Si(\omega_c(t - t_d)) t_d$$
为系统延时

物理可实现条件: 时域(响应在激励以后 h(t) = 0 (t < 0)), 频域(平方绝对可积) **取样定理:**

CFS 连续周期 → CTFT 连续非周期

DFS 离散周期 → DTFT 离散非周期

取样: 利用取样脉冲序列 s(t), 从连续信号抽取离散样本值

冲激信号取样: $\omega_s \geq 2\omega_m$,频谱不发生混叠,便于信号恢复(奈奎斯特 $f_{\text{pyt}} \geq 2f$)

时域:
$$f(t) = \sum_{n=-\infty}^{\infty} f(nT_s) \operatorname{Sa}(\frac{\omega_s t}{2} - n\pi)$$

频域:
$$F(j\omega) = \sum_{n=-\infty}^{\infty} F\left(j\frac{n\pi}{t_m}\right) Sa(\omega t_m - n\pi) (t_m = \frac{1}{2f_s})$$

信号恢复: 低通滤波(原信号〈截止频率〈取样频率)

序列分析:

离散傅里叶级数展开:
$$dfs[F_n(K)] = F_N(n) = \sum_{k=0}^{N-1} f_N(k) W^{nk}$$

DTFT[f(k)] =
$$F(e^{j\theta}) = \sum_{k=-\infty}^{\infty} f_N(k)e^{-jk\theta}$$

DFT: 时域频域均为离散有限长序列 $(0^{\circ} N-1)$

DFT[f(k)] =
$$\sum_{k=0}^{N-1} f_N(k) e^{-jk\frac{2\pi}{N}}$$

性质: 线性, 对称性($F(k) \Leftrightarrow Nf((-n))$, 时移(DFT $\left[f((k-m))_N G_n(k)\right] = W^{mn} F(n)$

周期延拓后反转),时域循环($f_1(k)*f_2(k)$ 卷积 $\Leftrightarrow \sum_{k=0}^{N-1} f_1(m)*f_2\big((k-m)\big)_N$),频域循环

 $(f_1(k)f_2(k) \Leftrightarrow \frac{1}{N}F_1(n)*F_2(n)$ 卷积), 巴塞瓦尔 (在频率带限内, 功率谱与能量正比)

连续系统 s 域分析:

连续时间系统傅里叶变换拓展到复频域 $s=a+i\omega$ (增加实常数 $e^{j\omega} \rightarrow e^s$)

$$H(.) = \frac{B(.)}{A(.)}$$
 (上 0 零点,下 0 极点)

附录一 卷积积分表

		The beautiful to the second state of the second state of the second seco
$f_1(t)$	$f_1(t)$	$f_1(t) * f_2(t)$
f(i)	8'(1)	f'(i)
f(t)	8(1)	一日 日本
f(t)	$\varepsilon(t)$	$\int_{-\pi}^{\pi} f(\lambda) d\lambda$
e(t)	e(t)	te(t)
te(t)	ε(t)	$\frac{1}{2}t^2\varepsilon(t)$
e - "g(t)	g(t)	$\frac{1}{\alpha}(1-e^{-at})\varepsilon(t)$
$e^{-s_1t}\varepsilon(t)$	$e^{-a z^t} \varepsilon(t)$	$\frac{1}{\alpha_2 - \alpha_1} \left(e^{-\alpha_1 t} - e^{-\alpha_2 t} \right) \varepsilon(t) , \alpha_1 \neq \alpha_2$
$e^{-st}\varepsilon(t)$	e ^{-st} e(t)	te ^{-et} ε(t)
te(t)	e ***e(t)	$\left(\frac{\alpha t-1}{\alpha^2} + \frac{1}{\alpha^2} e^{-at}\right) \varepsilon(t)$
$te^{-v_1t}\varepsilon(t)$	$e^{-a_2t}\varepsilon(t)$	$\left[\frac{(\alpha_2 - \alpha_1)t - 1}{(\alpha_2 - \alpha_1)^2} e^{-a_1t} + \frac{1}{(\alpha_2 - \alpha_1)^2} e^{-a_2t}\right] \varepsilon(t)$ $a_1 \neq a_2$
$te^{-at}\varepsilon(t)$	$e^{-st}\varepsilon(t)$	$\frac{1}{2}t^2e^{-at}\varepsilon(t)$
$e^{-a_1t}\cos(\beta t + \theta) \varepsilon(t)$	$e^{-a_2t}\varepsilon(t)$	$\left[\frac{e^{-\alpha_1 t}\cos(\beta t + \theta - \varphi)}{\sqrt{(\alpha_2 - \alpha_1)^2 + \beta^2}} - \frac{e^{-\alpha_2 t}\cos(\theta - \varphi)}{\sqrt{(\alpha_2 - \alpha_1)^2 + \beta^2}}\right]$ $\sharp \div \varphi = \arctan\left(\frac{\beta}{\alpha_2 - \alpha_1}\right)$

附录二 卷积和表

序号	$f_i(k)$	$f_{t}(k)$	$f_1(k) * f_2(k)$
1	f(k)	5(k)	f(k)
2	f(k)	e(k)	$\sum_{i=-n}^{k} f(i)$
3	<i>e</i> (<i>k</i>)	ε(k)	(k+1)e(k)
4	ke(k)	$\varepsilon(k)$	$\frac{1}{2}(k+1)ke(k)$
	o'e(k)	$\varepsilon(k)$	$\frac{1-a^{k+1}}{1-a}\varepsilon(k), a\neq 0$
	$a_1^*e(k)$	$a_2^i e(k)$	$\frac{a_1^{k+1} - a_2^{k+1}}{a_1 - a_2} \varepsilon(k), a_1 \neq a_2$
	$a^k e(k)$	$a^*\varepsilon(k)$	$(k+1)a^k\varepsilon(k)$
1	ke(k)	$a^{k}\varepsilon(k)$	$\frac{k}{1-a}\varepsilon(k) + \frac{a(a^{1}-1)}{(1-a)^{2}}\varepsilon(k)$
	ke(k)	$k\varepsilon(k)$	$\frac{1}{6}(k+1)k(k-1)\varepsilon(k)$
a, co	$\cos(\beta k + \theta)\varepsilon(k)$	$a_2^k \mathcal{E}(k)$	$\frac{a_1^{k+1}\cos[\beta(k+1)+\theta-\varphi]-a_2^{k+1}\cos(\theta-\varphi)}{\sqrt{a_1^2+a_2^2-2a_1a_2\cos\beta}}\varepsilon(k+1)$ $\varphi=\arctan\left[\frac{a_1\sin\beta}{a_1\cos\beta-a_2}\right]$

附录三 常用周期信号的傅里叶系数表

		傅里叶系数 $\left(\Omega = \frac{2\pi}{T}\right)$
-81	作号波形	$\frac{a_k}{2} = \frac{\tau}{T}$
班形象	*	$a_{\infty} = \frac{2\sin\left(\frac{n\Omega\tau}{2}\right)}{n\pi}, n = 1, 2, 3, \dots$ $b_{\infty} = 0$
#		$b_{*} = \begin{cases} 0, & n = 2, 4, 6, \cdots \\ \frac{4}{n\pi}, & n = 1, 3, 5, \cdots \\ \frac{\pi}{2}, & b_{*} = \frac{4}{n\pi} \sin^{2} \left(\frac{n\pi}{2} \right) \end{cases}$
	-T 0 T	$\frac{a_0}{2} = \frac{1}{2}$ $a_* = 0$ $b_* = \frac{1}{n\pi}, n = 1, 2, 3, \cdots$
₩భ放	$\begin{array}{c c} & & & & \\ \hline \end{array}$	$a_n = 0$ $b_n = (-1)^{n+1} \frac{2}{n\pi}, n = 1, 2, 3, \dots$
三角脉冲	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{a_0}{2} = \frac{\tau}{2T}$ $a_n = \frac{4T}{\tau} \cdot \frac{1}{(n\pi)^2} \sin^2\left(\frac{n\Omega\tau}{4}\right)$ $b_n = 0$
三角波	$\begin{array}{c c} & & & & \\ \hline -T & -\frac{T}{2} & & & \\ \hline \end{array}$	$a_n = 0$ $b_n = \frac{8}{(n\pi)^2} \sin\left(\frac{n\pi}{2}\right)$

附录四 常用信号的傅里叶变换表

	表1 能	量信号	傅里叶变换 F(jar)
名称	时间函数f(t) 表示式	波形图	
矩形脉冲(门函数)	$g_{s}(t) = \begin{cases} 1, t < \frac{\tau}{2}, \\ 0, t > \frac{\tau}{2} \end{cases}$	$\frac{1}{-\frac{\tau}{2}} \circ \frac{\tau}{2}$	$rSa\left(\frac{\omega\tau}{2}\right) = \frac{2}{\omega}sin\left(\frac{\omega\tau}{2}\right)$
三角脉冲	$f_k(t) = \begin{cases} 1 - \frac{2(t)}{\tau}, & t < \frac{\tau}{2} \\ 0, & t > \frac{\tau}{2} \end{cases}$	$\frac{1}{\frac{\tau}{2}} \frac{1}{0} \frac{\tau}{2} = \frac{1}{1}$	$\frac{\tau}{2} \operatorname{Sa}^{3} \left(\frac{\omega \tau}{4} \right)$
磁齿脉冲	$\begin{cases} \frac{1}{\tau} \left(t + \frac{\tau}{2} \right), & t < \frac{\tau}{2} \\ 0, & t > \frac{\tau}{2} \end{cases}$	$\frac{1}{-\frac{\tau}{2}} \circ \frac{\tau}{2} = i$	$j\frac{1}{\omega}\left[e^{-\frac{\omega^{2}}{2T}}-Sa\left(\frac{\omega\tau}{2}\right)\right]$
排形脉冲	$\begin{cases} 1, & t < \frac{\tau_1}{2} \\ \frac{\tau}{\tau - \tau_1} \left(1 - \frac{2 t }{\tau} \right), & \frac{\tau_1}{2} < t < \frac{\tau}{2} \\ 0, & t > \frac{\tau}{2} \end{cases}$	$-\frac{\overline{\tau}}{2} - \frac{\overline{\tau}_1}{2} \circ \frac{\overline{\tau}_1}{2} \cdot \frac{\overline{\tau}}{2} \cdot \overline{\tau}$	$\frac{8}{\omega^{2}(\tau-\tau_{1})}\sin\left[\frac{\omega(\tau+\tau_{1})}{4}\right]$ $\times\sin\left[\frac{\omega(\tau-\tau_{1})}{4}\right]$
单边指数脉冲	$e^{-\alpha t}s(t), \alpha > 0$	1	$\frac{1}{\alpha + j\omega}$
偶双边指 数脉冲	$e^{-a^{(s)}} \varepsilon(t), \alpha > 0$	1	$\frac{2\alpha}{\alpha^2 + \omega^2}$

	表 2 奇异信号和功率信号		
序号	时间函数 f(t)	傅里叶变换 F(jω)	
1	8(1)	1	
2	1	2 πδ(ω)	
3	ε (1)	$\pi\delta(\omega) + \frac{1}{\mathrm{j}\omega}$	
4	$\operatorname{sgn}(t)$	$\frac{2}{j\omega}$	
5	δ'(t)	jω	
5	1	j2 πδ'(ω)	
	8 ⁽ⁿ⁾ (t)	(jω) ⁿ	