AQUO2SDN mapping

Willem Stolte

2022-07-19

Contents

1	Voorwoord		5	
2	\mathbf{AQ}	UO	7	
	2.1	Relevante AQUO vocabulaires (domeintabellen)	7	
	2.2	Gebruik van AQUO in RWS datadistributielaag	8	
3	во	DC semantic standard	9	
	3.1	De "wat" beschrijving - koppeling P01 met S tabellen (one-armed bandit)	9	
	3.2	Gebruik van de koppelingstabel	10	
4	Ma	pping van "wat" tabellen	13	
	4.1	Vergelijking DDL metadata en P01 vocabulaire	13	
	4.2	Uitsplitsing in onderdelen van P01	15	
5	Ma	pping van eenheden	23	
	5.1	Welke eenheden komen voor?	23	
6	Kw	aliteitsoordeel	31	
7	Ber	nonstering	35	
	7.1	Bemonsteringsapparaat of Veldapparaat	35	
	7.2	Bemonsteringsmethode	39	
	7.3	Bemonsteringssoort	40	
	7.4	Meetapparaat	40	

4	CONTENTS

	7.5	Kleur	40
	7.6	Statistischeparameter	40
	7.7	$\label{thm:wardebepalingsmethode} Waardebepalingsmethode \ $	40
	7.8	Waardebepalingstechniek	40
	7.9	$\label{thm:wardebewerkingsmethode} Waardebewerkingsmethode \ \ldots \ \ldots \ \ldots \ \ldots \ \ldots$	40
	7.10	Biologie: Orgaan	40
	7.11	Biologie: Biologisch Kenmerk	40
8	Biol	ogie overig	41
	8.1	Biologie: Orgaan	41
	8.2	Biologie: Biologisch Kenmerk	41

Voorwoord

Uitwisseling van watergerelateerde data met andere landen is belangrijk voor analyses en beoordelingen van internationale wateren. Van oudsher is er veel uitwisseling van mariene data. Sinds SeaDataNet (SDN) zijn hiervoor internationale standaarden gebruikt en ontwikkeld. Als uitgangspunt is het systeem van de Brittisch Oceanographic Data Center (BODC) genomen. Dit heeft geleid tot een set internationaal geaccepteerde semantische standaarden (vocabulaires) voor registratie van in situ metingen in het mariene domein.

Er zijn binnen SeaDataNet ook technische standaarden ontwikkeld voor het zoeken, vinden en transporteren van metadata en data. Het gangbare formaat voor metadata is de Common Data Index (CDI), en voor data het Ocean Data View (ODV) formaat.

De nederlandse standaard voor waterdata is AQUO. Er is op dit moment geen eenduidigen en complete mapping om AQUO-gestandaardiseerde data te transformeren naar SDN-gestandaardiseerde data. De technische standaard voor uitlevering van data variëert.

We beperken ons in dit project tot het mappen van de semantische standaarden.

AQUO

AQUO is de nederlandse standaard voor watergerelateerde data. Voor uitwisseling van meetgegevens is er het informatiemodel IM-AQUO. Dit model beschrijft voor in situ metingen de "wat" en "hoe".

2.1 Relevante AQUO vocabulaires (domeintabellen)

De belangrijkste tabellen voor een goede mapping van in situ waarnemingen zijn:

- **Grootheid of Typering** Beschrijving en code van de grootheid (quantitatief) of typering (kwalitatief). Voor elke grootheid is een of meerdere Eenheden beschikbaar in de Eenheid tabel.
- **Parameter** Dit is een samengestelde tabel/veld. In AQUO is dit onderverdeeld in Chemische Stof, Taxonnaam, of
- **Hoedanigheid** Deze tabel bevat diverse informatie die te maken heeft met bijvoorbeeld monstervoorberking (opgeloste of deeltjesgebonden fractie), grootteklassen, leeftijdsklasse.
- Monstercriterium Deze tabel bevat informatie over overige criteria, bijvoorbeeld in een fractie kleiner dan een bepaalde korrelgrootte. In de datadistributielaag zijn de velden Hoedanigheid en Monstercriterium samengevoegd in een veld (genaamd Hoedanigheid)
- **Eenheid** Gebruikte eenheid. Elke eenheid is gekoppeld aan een of meerdere grootheden.

```
#> # A tibble: 0 x 7
#> # ... with 7 variables: domeintabel <chr>,
#> # domeintabelsoort <chr>, wijzigingsdatum <date>,
#> # begin_geldigheid <date>, eind_geldigheid <date>,
#> # kolommen <list>, guid <chr>
#> # A tibble: 0 x 10
#> # ... with 10 variables: id <dbl>, codes <chr>,
#> # omschrijving <chr>, begin_geldigheid <date>,
#> # eind_geldigheid <date>, guid <chr>, dimensie <chr>,
#> # gerelateerd <chr>, groep <chr>, omrekenfactor <chr>
```

2.2 Gebruik van AQUO in RWS datadistributielaag

BODC semantic standard

De Brittisch Oceanographic Data Centre (BODC) is in 1969 ingesteld door de Natural Environmental Research Council (NERC), en beheert een set vocabulaires voor gebruik in het mariene domein. Bij de oprichting van SeaDataNet, een infrastructuur voor het zoeken, vinden en distribueren van in situ data, zijn deze vocabulaires geadopteerd als "common vocabularies"voor gebruik als semantische standaard. SeaDataNet houdt daarnaast catalogi bij van metadataformats voor bijv cruise rapporten (CSR), projecten (EDMERP), datasets (EDMED) en platforms (EDIOS).

Voor de beschrijving van parameter namen is indertijd de P01 vocabulaire opgezet. Dit is een verzameling van beschrijvinde namen die de grootheid, parameter, eventuele details in de bemonstering en/of meetmethode en de matrix vastlegt. De tabel is "organisch" gegroeid doordat veel verschillende Europese databeheerders hieraan hun eigen specifieke waarde aan toevoegden. Later is de P01 tabel onderverdeeld in de verschillende onderdelen ("S-tabellen"). De relatie hiertussen is vastgelegd in de "one-armed bandit" tabel. Merk op dat door het combineren van de verschillende S-tabelwaarden in principe nieuwe P01 namen gemaakt kunnen worden. Een mapping op het niveau van de "S"-componenten kan daarom leiden tot niet-bestaande P01 namen.

3.1 De "wat" beschrijving - koppeling P01 met S tabellen (one-armed bandit)

De relatie tussen de primaire parameternamen (P01) en de afzonderlijke componenten voor bestaande P01 namen kan interactief doorzocht worden in deze link.

P01 preflabel n code P01 conceptid Concentration of 2,2',5,5'-tetrachlorobiphenyl {PCB52 CAS 35693-99-3} I 7712 CBIOM019 31310 Q1175174 Length (from the front of the eye to the tip of the telson) of Thysanoessa 33342 SICUIIPF Uptake rate of carbon {C} per day per unit area of the water body [parti 14817 G0497119 Concentration of benzo(b)fluoranthene {CAS 205-99-2} per unit dry weig 12191 D2930021 Concentration of total mercury {total_Hg CAS 7439-97-6} per unit dry v 26550 P247M04Z Abundance of Monoraphidium convolutum (WoRMS 160592) per unit vol NTOTCN20 24645Concentration of total nitrogen {total_N} {PON} per unit volume of the ASSEDBD1 Concentration of arsenic {As CAS 7440-38-2} per unit dry weight of sedin 3511 5297 C040WSD2 Concentration of dieldrin {CAS 60-57-1} per unit dry weight of biota {Sq

Concentration of dibenzo(a,h)anthracene {CAS 53-70-3} per unit wet wei

Table 3.1: Voorbeeld 10 elementen uit de tabel [P01 VOCABULARY - FACET SEARCH ON SEMANTIC COMPONENTS].

3.2 Gebruik van de koppelingstabel

AHMMCF19

2475

Voor veel combinaties van AQUO (um-aquo) velden zijn in het verleden P01 parameternamen gezocht. Deels staan deze in de mappingP01 tabel die onderhouden wordt door AQUO. Deels staan deze in andere locale bestanden die ad hoc mappings hebben gefaciliteerd (bronnen: RWS, MARIS, Deltares). In dit project hebben we in eerste instantie geprobeerd om AQUO codes te koppelen aan P01 namen. In een tweede stap worden de P01 namen opgesplitst in hun semantische onderdelen, en deze zullen dan gematcht worden met de afzonderlijke AQUO namen in de daarvoor geschikte velden. Hiervoor is het nodig de verschillende "S" velden te koppelen aan AQUO tabellen. De waarden in deze tabellen worden dan gekoppeld met behulp van tabel 3.1.

Op 25 mei 2022 zijn de volgende "S" tabellen gevonden

Table 3.2: Beschrijving van tabellen met semantische componenten voor de P01 beschrijvende parameters. Deze versie is op 25 mei 2022 van de [seadata website](https://vocab.seadatanet.org/search) opgehaaald.

Library	Title	Alt.Title
S02	BODC parameter semantic model relationships between what theme and where theme	Where/what re
S03	BODC parameter semantic model sample preparation entity descriptions	Sample prepara
S04	BODC parameter semantic model analytical method entity descriptions	Analytical met
S05	BODC parameter semantic model data processing entity descriptions	Data processin
S06	BODC parameter semantic model parameter entity names	Parameter enti
S07	BODC parameter semantic model parameter statistic	Parameter stat
S11	BODC parameter semantic model biological entity development stage terms	Biological entit
S21	BODC parameter semantic model sphere names	Sphere names
S23	BODC semantic model sphere phase names	Sphere phase n
S25	BODC parameter semantic model biological entity names	Biological entit
S26	BODC parameter semantic model matrices	BODC matrice
S27	BODC parameter semantic model chemical substances	BODC substar

Mapping van "wat" tabellen

4.1 Vergelijking DDL metadata en P01 vocabulaire

De Data Distributie Laag (DDL) bevat fysische, chemische en deels biologische gegevens van Rijkswaterstaat in het waterdomein. Zie voor een overzicht deze weblink. Hier staan ook links naar instructies voor benadering van de webservices. Een beknopt overzicht van de DDL kan worden opgevraagd via de metadata service. Hieruit blijkt dat het totale aantal unieke combinaties van de metadatavelden Compartiment.Code, Grootheid.Code, Hoedanigheid.Code, Parameter.Code in de DDL is 1710.

Binnen de aquo domeintabellen is in eerdere projecten de mapping tabel idsw_aquo_map_PO1 gemaakt om sommige elementen van aquo te koppelen aan de seadatanet semantiek. Deze tabel wordt hier als uitgangspunt gebruikt om P01 termen te koppelen aan metadata uit de Data Distributielaag (DDL). Hierna moeten de P01 termen uitgesplitst worden in de verschillende onderliggende componenten om een 1:1 mapping te verkrijgen van de individuele S-termen.

De AquoMetadataLijst uit de DDL metadata is grotendeels opgebouwd volgens AQUO IM-metingen, maar wijkt op een aantal punten af. Onder andere doordat het veld Hoedanigheid.code is opgebouwd uit twee verschillende AQUO codes, namelijk Hoedanigheid.code en Monstercriterium.code. Idem voor de omschrijvingen. In de idsw_aquo_map_PO1 zijn deze twee velden niet gecombineerd. Voor een kansrijke automatische mapping worden in idsw_aquo_map_PO1 deze velden aan elkaar geplakt. In idsw_aquo_map_PO1 zijn "lege" velden echt leeg terwijl deze in de DDL metadata gevuld zijn met "NVT". Dus, vóórdat de P01 koppeltabel gekoppeld kan worden aan de AQUO catalogustabel worden Hoedanigheid.code en Monstercriterium.code gecombineerd in één veld

4.2 Uitsplitsing in onderdelen van P01

Library	Alt.Title	Title
S02	Where/what	BODC parameter
	relationships	semantic model
		relationships between
		what theme and where
		theme
S03	Sample preparation	BODC parameter
		semantic model sample
		preparation entity
		descriptions
S04	Analytical method	BODC parameter
		semantic model
		analytical method
		entity descriptions
S05	Data processing	BODC parameter
		semantic model data
		processing entity
		descriptions
S06	Parameter entity	BODC parameter
	names	semantic model
		parameter entity names
S07	Parameter statistic	BODC parameter
		semantic model
		parameter statistic
S11	Biological entity life	BODC parameter
	stage terms	semantic model
		biological entity
		development stage
COA	0.1	terms
S21	Sphere names	BODC parameter
		semantic model sphere
S23	Sphere phase names	names BODC semantic model
525	Sphere phase names	
S25	Biological entity names	sphere phase names BODC parameter
520	Diological entity hames	semantic model
		biological entity names
S26	BODC matrices	BODC parameter
220	DODO maniecis	semantic model
		matrices
S27	BODC substances	BODC parameter
·- •	_ 0 _ 0 _ 0 _ 0 _ 0 _ 0 _ 0 _ 0 _ 0 _ 0	semantic model
		chemical substances

4.2.1 parameter vs BODC substances

!!! Een eenduidige mapping kan onafhankelijk van eerdere mappings worden gemaakt door het vergelijken van CAS nummers, deze staan in p
01s tabel, maar het staat verborgen in de P01 beschrijving. Een betere manier is waarschijnlijk om de S27 termen te relateren aan CAS nummers door deze op te halen via https://www.w3.org/2002/07/owl#sameAs, bijvoorbeeld:

S27 http://vocab.nerc.ac.uk/collection/S27/current/CS026903/ https://www.w3.org/2002/07/owl#sameAs https://chem.nlm.nih.gov/chemidplus/rn/17181-37-2

zo is voor Silicate een van de bijbehorende links "same as" naar https://chem. nlm.nih.gov/chemidplus/rn/17181-37-2. Hierin staat een CAS nummer. Door deze te relateren kan een verbinding worden gemaakt met de technische tabel "chemische stof".

Vanuit de gekoppelde tabel wordt een mapping geëxtraheerd door de unieke combinaties van relevante AQUO (parameter.code, parameter.omschrijving) en SDN (S27_preflabel, S27_altlabel, s27_conceptid) velden te combineren. Deze lijst dient nog handmatig gecontroleerd te worden. Met deze methode kunnen 161 van de 875 (totaal aantal unieke parameter.code waarden) gecombineerd worden met een S27 term.

Parameter.Code	Parameter.Omschrijving	s27_conceptid	S27_preflabel
O2	zuurstof	CS002779	oxygen
Fe	ijzer	CS000284	total iron
Ca	calcium	CS002921	calcium
K	kalium	CS002923	potassium
Mg	magnesium	CS002981	magnesium
Na	natrium	CS002904	sodium
DC4ySn	dibutyltin (kation)	CS000431	dibutyltin
DFySn	difenyltin (kation)	CS000452	diphenyltin
TC4ySn	tributyltin (kation)	CS002650	tributyltin cation
T4C4ySn	tetrabutyltin	CS003148	tetrabutyltin
Ag	zilver	CS002615	silver
As	arseen	CS002318	arsenic
В	boor	CS002326 CS003263	boron
Ba	barium	CS003203 CS002335	barium
Be	beryllium	CS002333 CS003266	beryllium
Cd	cadmium	CS003200 CS002363	cadmium
Co	kobalt	CS002303 CS002447	cobalt
Cr	chroom	CS002447 CS002377	chromium
Cu		CS002377 CS002454	
	koper kwik	CS002454 CS001621	copper
Hg		CS001621 CS002552	total mercury
Li	lithium		lithium
Mn	mangaan	CS000305	total manganese
Mo	molybdeen	CS003003	molybdenum
Ni	nikkel	CS002566	nickel
Pb	lood	CS002545	lead
Rb	rubidium	CS003116	rubidium
Sb	antimoon	CS002962	antimony
Se	seleen	CS002608	selenium
Sn	tin	CS003004	tin
Sr	strontium	CS002622	strontium
Те	tellurium	CS003145	tellurium
Ti	titaan	CS002918	titanium
Tl	thallium	CS003132	thallium
U	uranium	CS026907	uranium
V	vanadium	CS002664	vanadium
Zn	zink	CS002678	zinc
aedsfn	alfa-endosulfan	CS002307	alpha-endosulfan
aHCH	alfa-hexachloorcyclohexaan	CS002321	alpha-hexachlorocyclohexane
alCl	alachloor	CS001173	alachlor
aldn	aldrin	CS002293	aldrin
Ant	antraceen	CS002027	anthracene
atzne	atrazine	CS001579	atrazine
BaP	benzo(a)pyreen	CS001908	benzo(a)pyrene
BbF	benzo(b)fluorantheen	CS001915	benzo(b)fluoranthene
bedsfn	beta-endosulfan	CS003282	beta-endosulfan
Ben	benzeen	CS003272	benzene
bentzn	bentazon	CS001187	bentazone
BghiPe	benzo(ghi)peryleen	CS001936	benzo(g,h,i)perylene
bHCH	beta-hexachloorcyclohexaan	CS002349	beta-hexachlorocyclohexane
BkF	benzo(k)fluorantheen	CS001950	benzo(k)fluoranthene
captn	captan	CS003284	captan
снСН	gamma-hexachloorcyclohexaan (lindaan)	CS003284 CS002503	gamma-hexachlorocyclohexan
CHLFa	chlorofyl-a		chlorophyllide-a
Опьга	сшогогу1-а	CS002942	cmoropnymae-a

4.2.2 Compartimenten vs S26 BODC matrices

Compartiment.Code	Compartiment.Omschrijving	Hoedanigheid.Code	S26_conceptid	S26_pre
BS	Bodem/Sediment	NVT	MAT00850	bed
OW	Oppervlaktewater	NVT	MAT00633	water be
OW	Oppervlaktewater	NVT	MAT00640	water be
OW	Oppervlaktewater	nf	MAT00626	water be
OW	Oppervlaktewater	NVT	MAT00997	water be
ZS	Zwevende stof	dg	MAT00528	suspend

4.2.3 Grootheden vs S06 Parameter entity names

Grootheid.Code	Grootheid.Omschrijving	Hoedanigheid.Code	S06_conceptid	S06_preflabel
AANTPOPVTE	Aantal per oppervlakte	NVT	S0600002	Abundance
VERZDGGD	Verzadigingsgraad	NVT	S0600045	Concentration
SALNTT	Saliniteit	NVT	S0600085	Salinity
CONCTTE	(massa)Concentratie	nf	S0600045	Concentration
CONCTTE	(massa)Concentratie	NVT	S0600045	Concentration
T	Temperatuur	NVT	S0600082	Temperature
CONCTTE	(massa)Concentratie	NVT		
MASSFTE	Massafractie	dg	S0600045	Concentration

4.2.4 Specials - Grain size

in water

n_code	P01_conceptid	P01_preflabel	SO
23075	MNGSIXAG	Grain-size mean of aggregates in the water body by image analysis	SC
23239	MSAGIXPZ	Grain-size median of aggregates in the water body by image analysis	S0

in sediment

n_code	P01_conceptid	P01_preflabel
15531	GRSIZEMM	Grain-size minimum of particles in sediment by visual estimation
15532	GRSIZEMX	Grain-size maximum of particles in sediment by visual estimation
21902	KRGSPSXX	Grain-size kurtosis of particles in sediment by particle sizer
21903	KRGSSSXX	Grain-size kurtosis of particles in sediment by sieving and settling tube method
21905	KRTSSSXX	Grain-size kurtosis of particles in sediment by sieving and settling tube method
22696	MDGSPPXX	Grain-size median of particles in sediment by optical microscopy (coarse fraction) and
22698	MDGSPSXX	Grain-size median of particles in sediment by particle sizer
22699	MDGSSSXX	Grain-size median of particles in sediment by sieving and settling tube method
23076	MNGSPSNC	Grain-size mean of particles in sediment [non-carbonate phase] by acidification and pa
23078	MNGSPSSA	Grain-size mean of particles in sediment 63-1000um by particle sizer
23079	MNGSPSXX	Grain-size mean of particles in sediment by particle sizer
23081	MNGSSSXX	Grain-size mean of particles in sediment by sieving and settling tube method
23133	MOGSPSXX	Grain-size mode of particles in sediment by particle sizer
23134	MOGSSSXX	Grain-size mode of particles in sediment by sieving and settling tube method
27891	PC01SSXX	Grain-size 1st percentile of particles in sediment by sieving and settling tube method a
27893	PC05PSXX	Grain-size 5th percentile of particles in sediment by particle sizer and analysis of cumu
27894	PC05SSXX	Grain-size 5th percentile of particles in sediment by sieving and settling tube method
27895	PC10PSNC	Grain-size 10th percentile of particles in sediment [non-carbonate phase] by acidification
27896	PC10PSXX	Grain-size 10th percentile of particles in sediment by particle sizer and analysis of cum
27898	PC16PSXX	Grain-size 16th percentile of particles in sediment by particle sizer and analysis of cum
27899	PC16SSXX	Grain-size 16th percentile of particles in sediment by sieving and settling tube method
27900	PC25PSXX	Grain-size 25th percentile of particles in sediment by particle sizer and analysis of cum
27901	PC25SSXX	Grain-size 25th percentile of particles in sediment by sieving and settling tube method
27902	PC50PSNC	Grain-size 50th percentile of particles {grain-size median} in sediment [non-carbonate
27903	PC50PSXX	Grain-size 50th percentile of particles {grain-size median} in sediment by particle size
27904	PC50SSXX	Grain-size 50th percentile of particles {grain-size median} in sediment by sieving and
27906	PC75PSXX	Grain-size 75th percentile of particles in sediment by particle sizer and analysis of cum
27907	PC75SSXX	Grain-size 75th percentile of particles in sediment by sieving and settling tube method
27908	PC84PSXX	Grain-size 84th percentile of particles in sediment by particle sizer and analysis of cum
27909	PC84SSXX	Grain-size 84th percentile of particles in sediment by sieving and settling tube method
27910	PC90PSNC	Grain-size 90th percentile of particles in sediment [non-carbonate phase] by acidification
27911	PC90PSXX	Grain-size 90th percentile of particles in sediment by particle sizer and analysis of cum
27913	PC90SSXX	Grain-size 90th percentile of particles in sediment by sieving and settling tube method
27915	PC95PSXX	Grain-size 95th percentile of particles in sediment by particle sizer and analysis of cum
27916	PC95SSXX	Grain-size 95th percentile of particles in sediment by sieving and settling tube method
33147	SED50VIS	Grain-size median of particles in sediment by visual estimation
33410	SKGSPSXX	Grain-size skewness of particles in sediment by particle sizer
33411	SKGSSSXX	Grain-size skewness of particles in sediment by sieving and settling tube method
33522	SND50VIS	Grain-size median of particles (sand size-fraction) in sediment by visual estimation
	i e e e e e e e e e e e e e e e e e e e	· / /

4.2.5Specials - Taxonomical names

S25_preflabel Coscinodiscus (ITIS: 2546: WoRMS 148917) Navicula directa (ITIS: 3669: WoRMS 149467) Nitzschia (ITIS: 5070: WoRMS 119270) Rhizosolenia shrubsoleii (ITIS: 2910) Thalassiosira (ITIS: 2484: WoRMS 148912) Tropodoneis Torodinium (ITIS: 10121: WoRMS 109479) [Size: medium] Sula nebouxii (ITIS: 174702: WoRMS 343959) Thysanoessa inermis (ITIS: 95573: WoRMS 110708) [Stage: adult Sex: male Subgroup: with spermatophores at the stage of the Pseudo-nitzschia (ITIS: 584561: WoRMS 149151) Umbellula (ITIS: 52384: WoRMS 128499) Amphidinium (ITIS: 9997: WoRMS 109473) Ceratium furca (ITIS: 10399: WoRMS 109950) Ceratium fusus (ITIS: 10400: WoRMS 109951) Ceratium lineatum (ITIS: 10401: WoRMS 109963) Gonyaulax polygramma (ITIS: 10371: WoRMS 110035) Gymnodinium splendens (ITIS: 10037: WoRMS 109832) Gyrodinium (ITIS: 10077: WoRMS 109476) Gyrodinium (ITIS: 10077: WoRMS 109476) [Subgroup: sp. B heterotrophic] Calanus finmarchicus/helgolandicus/glacialis (ITIS: 85263: WoRMS 104152) [Stage: eggs] Chaetoceros radicans (ITIS: 2822: WoRMS 163112) Prorocentrum (ITIS: 9877: WoRMS 109566) Amphorellopsis (WoRMS 136791) [Size: 80-99um] Mesodinium (ITIS: 46287: WoRMS 179320) [Size: <30um] Stylocheiron (ITIS: 95556: WoRMS 110678) [Stage: adult Sex: female Subgroup: without spermatophores] Thalassiosira gravida (ITIS: 2490: WoRMS 149102) [Size: 25um] Oxytoxum scolopax (ITIS: 10472: WoRMS 110115) Protoperidinium (ITIS: 10340: WoRMS 109553) Ptychodiscus noctiluca (ITIS: 331267: WoRMS 109888) Balanion (WoRMS 292899) [Size: <20um Subgroup: sp. 2] Torodinium (ITIS: 10121: WoRMS 109479) Protoperidinium ovum (ITIS: 573488: WoRMS 110243) Eumicrotremus spinosus (ITIS: 167545: WoRMS 127217) Amphipoda (ITIS: 93294: WoRMS 1135) [Size: >1000um] Nematobrachion boopis (ITIS: 95537: WoRMS 110691) [Stage: sub-adult Sex: female Euphausia krohnii (ITIS: 660849: WoRMS 110687) [Sex: male Urotricha (ITIS: 46243) [Size: <20um] Chaetoceros atlanticus (ITIS: 2769: WoRMS 149288) Calanus finmarchicus (ITIS: 85272: WoRMS 104464) [Stage: copepodites C3] Calanus finmarchicus (ITIS: 85272: WoRMS 104464) [Stage: copepodites C2] Thysanoessa inermis (ITIS: 95573: WoRMS 110708) [Stage: adult Sex: female] Hymenaster (ITIS: 157097: WoRMS 123333) [Morphology: visible interbrachial membrane] Calanus finmarchicus (ITIS: 85272: WoRMS 104464) [Stage: adult Sex: male]

Podolampas elegans (ITIS: 10500: WoRMS 110201) Fragilariopsis kerguelensis (ITIS: 573688: WoRMS 341555) [Subgroup: colonial

Microsetella (ITIS: 86208: WoRMS 115341) [Stage: copepodites plus adults

Ceriantharia (ITIS: 51984: WoRMS 1361) [Size: diameter ~10cm Morphology: many brown tentacles

Demospongiae (ITIS: 47528: WoRMS 164811) [Size: height ~10cm, diameter 30cm Morphology: mass of branches

Thysanoessa raschi (ITIS: 95577: WoRMS 416602) [Stage: juvenile]

Prorocentrum lenticulatum (WoRMS 232417)

Mapping van eenheden

5.1 Welke eenheden komen voor?

Er is uitgegaan van de volgende lijsten met eenheden:

- BODC De vocabulary P06
- AQUO De door AQUO beheerde lijst Eenheid
- DDL Eenheden in de metadata van in de praktijk uitgeleverde gegevens uit de Data Distributielaag

De eenheden in de DDL zouden moeten voldoen aan AQUO, de verwachting is dus dat we alle eenheden in DDL kunnen matchen met eenheden in AQUO.

5.1.1 Vergelijking DDL en AQUO

De verwachting is dat alle eenheden die in de DDL gebruikt worden in de AQUO Eenheid lijst voorkomen. Dit is onderzocht door de eenheidcodes van de DDL te vergelijken met de eenheidcodes in de AQUO tabel Eenheid. Verreweg de meeste eenheden uit de DDL werden teruggevonden in de AQUO tabel. Tabel 5.1 laat de eenheden zien die wel in de DDL gebruikt worden, maar niet teruggevonden konden worden in de AQUO Eenheid tabel, met de bijbehorende parameter.wat.omschrijving uit de DDL.

Hierbij moet aangetekend worden dat de eenheid "/l" in dit geval ook gelijkgesteld kan worden met de eenheid "n/l", die wel in de AQUO lijst voorkomt.

AANBEVELING: verander eenheid "/l" in "n/l" in de DDL.

Eenheid.Code	Eenheid.Omschrijving	Parameter_Wat_Omschrijving
<u>/l</u>	per liter	Aantal per volume Faecale coliformen in Organisme (b
RFU	Relative Fluorescence Units	(massa)Concentratie Chlorofyl fluorescentie in rel. fluo
RFU	Relative Fluorescence Units	Fluorescentie Oppervlaktewater RFU
U	Unit	Fluorescentie Oppervlaktewater U

Table 5.1: DDL eenheid codes die niet in de AQUO eenheid lijst voorkomen.

5.1.2 Vergelijking DDL en SDN (P0)

Het "Eenheid.Code" veld uit de ddl tabel lijkt op het veld "altlabel" uit de SDN tabel. Hierbij zijn alle "^" (bijv. in g/m^2) tekens uit de SDN tabel voor de vergelijking verwijderd. Een eerste poging om de twee modellen te mappen wordt daarom gedaan op die twee velden. Het blijkt (tabel 5.2) dat er 30 codes precies gelijk zijn. De validiteit van deze mapping kan in de tabel 5.2) geïnspecteerd worden.

Eenheden uit de DDL waar met de automatische methode geen exacte match gevonden werd in de SDN eenhedentabel (23) staan in tabel 5.3.

5.1.3 Handmatige mapping

Voor de niet-gematchte eenheden uit tabel 5.3 wordt hieronder een voorstel gedaan voor een handmatige mapping.

```
DDL_SDN_eenheid_hand <- DDL_SDN_verschil %>%
 mutate(altlabel =
           case_when(
             Eenheid.Code == "mg" ~ NA_character_, # Grams (UGRM) en Micrograms (UGUG)
             Eenheid.Code == "n" ~ NA_character_, # in BODC altijd gerelateerd aan vol
             Eenheid.Code == "n/m2" ~ "\#/m^2",
             Eenheid.Code == "n/1" \sim "#/1",
             Eenheid.Code == "DIMSLS" ~ ""
             Eenheid.Code == "graad" ~ "deg",
             Eenheid.Code == "oC" ~ "degC",
             Eenheid.Code == "/1" \sim "#/1",
             Eenheid.Code == "n/hm" ~ NA_character_, # (#/m komt wel voor)
             Eenheid.Code == "FTU" ~ NA_character_, # komt ook niet in AQUO voor
             Eenheid.Code == "JTU" ~ NA_character_, # komt ook niet in AQUO voor
             Eenheid.Code == "meq/l" ~ "mEquiv/l",
             Eenheid.Code == "mHz" ~ NA_character_, # (Hz komt wel voor)
             Eenheid.Code == "m3/d" ~ NA_character_, # (m^3/s komt wel voor)
             Eenheid.Code == "n/ml" ~ "#/ml",
             Eenheid.Code == "oD" ~ NA_character_, # (duitse graad, komt in mariene m
```

Table 5.2: Eenheidcodes uit de DDL die direct vergelijkbaar zijn met de eenheidcodes uit de SDN tabel (veldnaam altlabel).

% procent % Percent UPCT Bq/kg becquerel per kilogram Bq/kg Becquerels per kilogram UBQK g gram g Grams UGRM g/kg gram per kilogram g/kg Grams per kilogram UGKG mg/g milligram per gram mg/g Milligrams per gram MGPG mg/kg milligram per kilogram mg/kg Milligrams per kilogram UMKG mg/m2 milligram per vierkante meter mg/m^2 Milligrams per kilogram UMKG mm milligram per kilogram ug/kg Milligrams per square metre UMMS mm microgram per kilogram ug/kg Milligrams per square metre UMMS um microgram per kilogram ug/kg Micrograms per kilogram UUKG um microgram per kilogram ug/kg Micrograms per kilogram UUKG um microgram per kilogram ug/kg Micrograms per kilogram UUKG um meter m Metres ULAA <	Eenheid.Code	Eenheid.Omschrijving	altlabel	preflabel	conceptid
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	%	procent	%	Percent	UPCT
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Bq/kg	becquerel per kilogram	Bq/kg	Becquerels per kilogram	UBQK
g/kggram per kilogramg/kgGrams per kilogramUGKG mg/g milligram per gram mg/g Milligrams per gramMGPG mg/kg milligram per kilogram mg/kg Milligrams per kilogramUMKG mg/m^2 milligram per vierkante meter mg/m^2 Milligrams per kilogramUUKG mm millimeter mm Milligrams per kilogramUUKG um microgram per kilogram ug/kg Micrograms per kilogramUUKG um micrometer um Micrograms per kilogramUUKG um meter m Metres per secondUVAA m meter m Metres per secondUVAA um deg d DaysUTAA um deg d DaysUTAA um deg d DaysUTAA um decibel d DecibelsUDBL d d DecimetresULDM d decimeter d DecimetresULDM d d DecimetresULDM d d DecimetresULDM d d DecimetresUUKMC d d DecimetresUUKMC <td>g</td> <td>gram</td> <td>g</td> <td>Grams</td> <td></td>	g	gram	g	Grams	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	g/kg	gram per kilogram	g/kg	Grams per kilogram	UGKG
mg/kgmilligram per kilogrammg/kgMilligrams per kilogramUMKGmg/m2milligram per vierkante metermg/m^2Milligrams per square metreUMMSmmmillimetermmMillimetresUXMMug/kgmicrogram per kilogramug/kgMicrograms per kilogramUUKGummicrometerumMicrometres (microns)UMIChPahectopascalhPaHectopascalsHPAXmmetermMetresULAAm/smeter per secondem/sMetres per secondUVAAcmcentimetercmCentimetresULCMddagdDaysUTAAcm2vierkante centimetercm^2Square centimetresSQCMdBdecibeldBDecibelsUDBLdmdecimeterdmDecimetresULDMHzhertzHzHertzUTHZkg/m3kilogram per kubieke meterkg/m^3Kilograms per cubic metreUKMCmBq/lmillibecquerel per litermBq/lMillibecquerels per litreUMBQmg/lmilligram per litermg/lMilligrams per litreUMGLminminuutminMinutesUMINms/mmillisiemens per metermS/mMillisiemens per metreMSPMm3/skubieke meter per secondem^3/sCubic metres per secondCMPSng/lnanogram per literng/lNanograms per litreUECAug/lmicr		milligram per gram	mg/g	Milligrams per gram	MGPG
mmmillimetermmMillimetresUXMMug/kgmicrogram per kilogramug/kgMicrograms per kilogramUUKGummicrometerumMicrometres (microns)UMIChPahectopascalhPaHectopascalsHPAXmmetermMetresULAAm/smeter per secondem/sMetres per secondUVAAcmcentimetercmCentimetresULCMddagdDaysUTAAcm2vierkante centimetercm^2Square centimetresSQCMdBdecibeldBDecibelsUDBLdmdecimeterdmDecimetresULDMHzhertzHzHertzUTHZkg/m3kilogram per kubieke meterkg/m^3Kilograms per cubic metreUKMCmBq/lmillibecquerel per litermBq/lMillibecquerels per litreUMBQmg/lmilligram per litermg/lMilligrams per litreUMGLminminutminMinutesUMINmS/mmillisiemens per metermS/mMillisiemens per metreUMSPMng/lnanogram per literng/lNanograms per litreUNGLNTUNephelometric Turbidity UnitNTUNephelometric Turbidity UnitsUSTUssecondesSecondsUTBBS/msiemens per meterS/mSiemens per metreUECAug/lmicrogram per literug/lMicrograms per litre <td>mg/kg</td> <td>milligram per kilogram</td> <td></td> <td>Milligrams per kilogram</td> <td>UMKG</td>	mg/kg	milligram per kilogram		Milligrams per kilogram	UMKG
mmmillimetermmMillimetresUXMMug/kgmicrogram per kilogramug/kgMicrograms per kilogramUUKGummicrometerumMicrometres (microns)UMIChPahectopascalhPaHectopascalsHPAXmmetermMetresULAAm/smeter per secondem/sMetres per secondUVAAcmcentimetercmCentimetresULCMddagdDaysUTAAcm2vierkante centimetercm^2Square centimetresSQCMdBdecibeldBDecibelsUDBLdmdecimeterdmDecimetresULDMHzhertzHzHertzUTHZkg/m3kilogram per kubieke meterkg/m^3Kilograms per cubic metreUKMCmBq/lmillibecquerel per litermBq/lMillibecquerels per litreUMBQmg/lmilligram per litermg/lMilligrams per litreUMGLminminutminMinutesUMINmS/mmillisiemens per metermS/mMillisiemens per metreUMSPMng/lnanogram per literng/lNanograms per litreUNGLNTUNephelometric Turbidity UnitNTUNephelometric Turbidity UnitsUSTUssecondesSecondsUTBBS/msiemens per meterS/mSiemens per metreUECAug/lmicrogram per literug/lMicrograms per litre <td>mg/m2</td> <td>milligram per vierkante meter</td> <td>mg/m^2</td> <td>Milligrams per square metre</td> <td>UMMS</td>	mg/m2	milligram per vierkante meter	mg/m^2	Milligrams per square metre	UMMS
um micrometer um Micrometres (microns) UMIC hPa hectopascal hPa Hectopascals HPAX m meter m Metres ULAA m/s meter per seconde m/s Metres per second UVAA cm centimeter cm Centimetres ULCM d dag d Days UTAA cm2 vierkante centimeter cm^2 Square centimetres SQCM dB decibel dB Decibels UDBL dm decimeter dm Decimetres ULDM Hz hertz Hz Hertz UTHZ kg/m3 kilogram per kubieke meter kg/m^3 Kilograms per cubic metre UKMC mBq/1 millibrecquerel per liter mBq/l Millibrecquerels per litre UMMC mg/1 milligram per liter mg/l Milligrams per litre UMGL mm/s millisiemens per meter mS/m Millisiemens per metre MSPM <td></td> <td>millimeter</td> <td>mm</td> <td>Millimetres</td> <td>UXMM</td>		millimeter	mm	Millimetres	UXMM
um micrometer um Micrometres (microns) UMIC hPa hectopascal hPa Hectopascals HPAX m meter m Metres ULAA m/s meter per seconde m/s Metres per second UVAA cm centimeter cm Centimetres ULCM d dag d Days UTAA cm2 vierkante centimeter cm^22 Square centimetres SQCM dB decibel dB Decibels UDBL dm decimeter dm Decimetres ULDM Hz hertz Hz Hertz ULDM Hz hertz Hz Hertz UTHZ kg/m3 kilogram per kubieke meter kg/m^3 Kilograms per cubic metre UKMC mBq/1 millibecquerel per liter mBq/l Millibecquerels per litre UMMC mg/1 milligram per liter mg/l Milligrams per litre UMGL ms/m </td <td>ug/kg</td> <td>microgram per kilogram</td> <td>ug/kg</td> <td>Micrograms per kilogram</td> <td>UUKG</td>	ug/kg	microgram per kilogram	ug/kg	Micrograms per kilogram	UUKG
m meter m Metres ULAA m/s meter per seconde m/s Metres per second UVAA cm centimeter cm Centimetres ULCM d dag d Days UTAA cm2 vierkante centimeter cm^2 Square centimetres SQCM dB decibel dB Decibels UDBL dm decimeter dm Decimetres ULDM Hz hertz Hz Hertz UTHZ kg/m3 kilogram per kubieke meter kg/m^3 Kilograms per cubic metre UKMC mBq/l millibecquerel per liter mBq/l Millibecquerels per litre UMBQ mg/l milligram per liter mg/l Millisemens per metre UMGL min minuut min Minutes UMIN mS/m millisiemens per meter mS/m Millisiemens per metre MSPM m3/s kubieke meter per seconde m^3/s Cubic metres per second CMPS ng/l nanogram per liter ng/l Nanograms per litre UNGL NTU Nephelometric Turbidity Unit NTU Nephelometric Turbidity Units USTU s seconde s Seconds S/m siemens per meter ug/l Micrograms per litre UGCA ug/l microgram per liter ug/l Micrograms per litre UGPL h uur h Hours ULIT ng/g nanogram per gram ng/g Nanograms per gram NGPG		micrometer	um	Micrometres (microns)	UMIC
m/s meter per seconde m/s Metres per second UVAA cm centimeter cm Centimetres ULCM d dag d Days UTAA cm2 vierkante centimeter cm^2 Square centimetres SQCM dB decibel dB Decibels UDBL dm decimeter dm Decimetres ULDM Hz hertz Hz Hertz UTHZ kg/m3 kilogram per kubieke meter kg/m^3 Kilograms per cubic metre UKMC mBq/l millibecquerel per liter mBq/l Millibecquerels per litre UMGL min minuut min Minutes UMIN mS/m millisiemens per meter mS/m Millisiemens per metre MSPM m3/s kubieke meter per seconde m^3/s Cubic metres per second CMPS ng/l nanogram per liter ng/l Nanograms per litre UNGL NTU Nephelometric Turbidity Unit NTU Nephelometric Turbidity Units Seconds S/m siemens per meter UGPL h uur h Hours UHIR liter l Litres ULIT ng/g nanogram per gram ng/g Nanograms per gram NGPG	hPa	hectopascal	hPa	Hectopascals	HPAX
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	m	meter	m	Metres	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	m/s	meter per seconde	m/s	Metres per second	
cm2 vierkante centimeter cm^2 Square centimetres SQCM dB decibel dB Decibels UDBL dm decimeter dm Decimetres ULDM Hz hertz Hz Hertz UTHZ kg/m3 kilogram per kubieke meter kg/m^3 Kilograms per cubic metre UKMC mBq/l millibecquerel per liter mBq/l Millibecquerels per litre UMBQ mg/l milligram per liter mg/l Milligrams per litre UMGL min minuut min Minutes UMIN mS/m millisiemens per meter mS/m MilliSiemens per metre MSPM m3/s kubieke meter per seconde m^3/s Cubic metres per second CMPS ng/l nanogram per liter ng/l Nanograms per litre UNGL NTU Nephelometric Turbidity Unit NTU Nephelometric Turbidity Units USTU s seconde s Seconds UTBB S/m siemens per meter ug/l Micrograms per litre UGPL h uur h Hours UHOR l liter l Litres ULIT ng/g nanogram per gram ng/g Nanograms per gram NGPG	cm	centimeter	cm	Centimetres	ULCM
dB decibel dB Decibels UDBL dm decimeter dm Decimetres ULDM Hz hertz Hz Hertz UTHZ kg/m3 kilogram per kubieke meter kg/m^3 Kilograms per cubic metre UKMC mBq/l millibecquerel per liter mBq/l Millibecquerels per litre UMGL mg/l milligram per liter mg/l Milligrams per litre UMGL min minuut min Minutes UMIN mS/m millisiemens per meter mS/m Millisiemens per metre MSPM m3/s kubieke meter per seconde m^3/s Cubic metres per second CMPS ng/l nanogram per liter ng/l Nanograms per litre UNGL NTU Nephelometric Turbidity Unit NTU Nephelometric Turbidity Units USTU s seconde s Seconds S/m siemens per meter ug/l Micrograms per litre UECA ug/l microgram per liter ug/l Micrograms per litre UGPL h uur h Hours UHOR l liter l Litres ULIT ng/g nanogram per gram ng/g Nanograms per gram NGPG	d	dag	d	Days	UTAA
dmdecimeterdmDecimetresULDMHzhertzHzHertzUTHZkg/m3kilogram per kubieke meterkg/m^3Kilograms per cubic metreUKMCmBq/lmillibecquerel per litermBq/lMillibecquerels per litreUMBQmg/lmilligram per litermg/lMilligrams per litreUMGLminminutminMinutesUMINmS/mmillisiemens per metermS/mMilliSiemens per metreMSPMm3/skubieke meter per secondem^3/sCubic metres per secondCMPSng/lnanogram per literng/lNanograms per litreUNGLNTUNephelometric Turbidity UnitNTUNephelometric Turbidity UnitsUSTUssecondesSecondsUTBBS/msiemens per meterS/mSiemens per metreUECAug/lmicrogram per literug/lMicrograms per litreUGPLhuurhHoursUHORlliterlLitresULITng/gnanogram per gramng/gNanograms per gramNGPG	cm2	vierkante centimeter	cm^2	Square centimetres	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	dB	decibel	dB	Decibels	UDBL
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	dm	decimeter	dm	Decimetres	ULDM
mBq/l millibecquerel per liter mBq/l Millibecquerels per litre UMBQ mg/l milligram per liter mg/l Milligrams per litre UMGL min minuut min Minutes UMIN mS/m millisiemens per meter mS/m MilliSiemens per metre MSPM m3/s kubieke meter per seconde m^3/s Cubic metres per second CMPS ng/l nanogram per liter ng/l Nanograms per litre UNGL NTU Nephelometric Turbidity Unit NTU Nephelometric Turbidity Units USTU s seconde s Seconds UTBB S/m siemens per meter S/m Siemens per metre UECA ug/l microgram per liter ug/l Micrograms per litre UGPL h uur h Hours UHOR l liter l Litres ULIT ng/g nanogram per gram ng/g Nanograms per gram NGPG	Hz	hertz	Hz	Hertz	UTHZ
mg/l milligram per liter mg/l Milligrams per litre UMGL min minuut min Minutes UMIN mS/m millisiemens per meter mS/m MilliSiemens per metre MSPM m3/s kubieke meter per seconde m^3/s Cubic metres per second CMPS ng/l nanogram per liter ng/l Nanograms per litre UNGL NTU Nephelometric Turbidity Unit NTU Nephelometric Turbidity Units USTU s seconde s Seconds UTBB S/m siemens per meter S/m Siemens per metre UECA ug/l microgram per liter ug/l Micrograms per litre UGPL h uur h Hours UHOR l liter l Litres ULIT ng/g nanogram per gram ng/g Nanograms per gram NGPG	kg/m3		kg/m^3	Kilograms per cubic metre	UKMC
min minuut min Minutes UMIN mS/m millisiemens per meter mS/m MilliSiemens per metre MSPM m3/s kubieke meter per seconde m^3/s Cubic metres per second CMPS ng/l nanogram per liter ng/l Nanograms per litre UNGL NTU Nephelometric Turbidity Unit NTU Nephelometric Turbidity Units USTU s seconde s Seconds UTBB S/m siemens per meter S/m Siemens per metre UECA ug/l microgram per liter ug/l Micrograms per litre UGPL h uur h Hours UHOR l liter l Litres ULIT ng/g nanogram per gram ng/g Nanograms per gram NGPG	mBq/l	millibecquerel per liter	mBq/l	Millibecquerels per litre	UMBQ
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	mg/l	milligram per liter	mg/l	Milligrams per litre	UMGL
m3/s kubieke meter per seconde m^3/s Cubic metres per second CMPS ng/l nanogram per liter ng/l Nanograms per litre UNGL NTU Nephelometric Turbidity Unit NTU Nephelometric Turbidity Units USTU s seconde s Seconds UTBB S/m siemens per meter S/m Siemens per metre UECA ug/l microgram per liter ug/l Micrograms per litre UGPL h uur h Hours UHOR l liter l Litres ULIT ng/g nanogram per gram ng/g Nanograms per gram NGPG		minuut		Minutes	UMIN
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	mS/m	millisiemens per meter	mS/m	MilliSiemens per metre	MSPM
NTU Nephelometric Turbidity Unit NTU Nephelometric Turbidity Units USTU s seconde s Seconds UTBB S/m siemens per meter S/m Siemens per metre UECA ug/l microgram per liter ug/l Micrograms per litre UGPL h Hours UHOR liter l Litres ULIT ng/g nanogram per gram ng/g Nanograms per gram NGPG	m3/s	kubieke meter per seconde	m^3/s	Cubic metres per second	CMPS
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ng/l	nanogram per liter	ng/l	Nanograms per litre	UNGL
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	NTU	Nephelometric Turbidity Unit	NTU	Nephelometric Turbidity Units	USTU
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	S	seconde	S	Seconds	UTBB
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		siemens per meter	S/m	Siemens per metre	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ug/l	microgram per liter	ug/l	Micrograms per litre	
ng/g nanogram per gram ng/g Nanograms per gram NGPG	h	uur	h	Hours	
	1	liter	1	Litres	
		nanogram per gram	ng/g	Nanograms per gram	NGPG
		nanogram per kilogram	ng/kg	Nanograms per kilogram	NGKG

Table 5.3: Eenheidcodes uit de DDL die niet direct vergelijkbaar zijn met de eenheidcodes uit de SDN tabel (veldnaam altlabel).

Eenheid.Code	Eenheid.Omschrijving
mg	milligram
n	exemplaren
n/m2	exemplaren per vierkante meter
n/l	exemplaren per liter
DIMSLS	dimensieloos
graad	graad
oC	graad Celsius
<u>/l</u>	per liter
n/hm	exemplaren per hectometer
FTU	Formazine Turbidity Unit
JTU	Jackson Turbidity Unit
meq/l	milliequivalent per liter
mHz	millihertz
m3/d	kubieke meter per dag
n/ml	exemplaren per milliliter
oD	Duitse graad
RFU	Relative Fluorescence Units
U	Unit
uE	microeinstein

```
Eenheid.Code == "RFU" ~ NA_character_, # komt ook niet in AQUO voor
Eenheid.Code == "U" ~ NA_character_, # komt ook niet in AQUO voor
Eenheid.Code == "uE" ~ NA_character_ # waarschijnlijk uE/cm^2/s, vraag is of het o
)
)
```

Er is een probleem bij het mappen van de eenheid "DIMSLS" die in de DDL gebruikt wordt. Weliswaar is er een eenheid met preflabel = "Dimensionless" in de P06 tabel, maar dit leidt vermoedelijk niet tot een goede mapping.

De eenheid "DIMSLS" wordt in de DDL gebruikt voor de parameter.wat.omschrijvingen zoals in tabel 5.4). Hier zitten grootheden als Extinctie, Zuurgraad en Saliniteit tussen, die in SDN termen een eigen eenheid hebben. In de P06 tabel zijn de eenheden "pH units", "per metre" en "g/kg" te vinden die gangbaar zijn voor respectievelijk Zuurgraad, Extinctie en Saliniteit. Een mapping hiervan kan in de huidige situatie niet alleen op grond van eenheidcode, maar moet ook de grootheid meenemen.

Afgezien van het feit dat er geen een-op-een mapping mogelijk is, is ook de meer inhoudelijke vraag belangrijk of "dimensieloos" wel informatief is in deze gevallen.

Aanbeveling

De AQUO eenheidcode DIMSLS (Dimensieloos) die in de DDL gebruikt wordt is misschien formeel correct, maar is niet informatief. Bovendien zorgt dit ervoor dat eenheden niet te converteren zijn naar BODC termen. Het verdient daarom aanbeveling om deze te veranderen naar een meer informatieve eenheid. Voor een koppeling naar BODC (beperkt tot waarnemingen in mariene milie) zijn vooral eenheden voor de volgende grootheden van belang:

Grootheid	Huidige eenheid DDL	Voorstel nieuwe eenheid
Saliniteit Zuurgraad Extinctie	DIMSLS	g/kg pH-eenheid /m

5.1.4 Uiteindelijke mapping van eenheden.

Door de tabellen met de automatische en de handmatige mapping samen te voegen, wordt een mappingtabel gemaakt die zo veel mogelijk compleet is.

Table 5.4: DDL Grootheid. Omschrijving waarden die de eenheid DIMSLS hebben.

Parameter_Wat_Omschrijving	Grootheid.
Bewolkingsgraad Lucht	Waarde is
Intersexindex Organisme (biota) Littorina littorea	Intersexind
Vas Deferens Sequence Index (zaadleider index) Organisme (biota) Nassarius reticulatus	Vas Defere
Aanwezigheid Geur in Oppervlaktewater	Aanwezigh
Aanwezigheid Kleur in Oppervlaktewater	Aanwezigh
Aanwezigheid Olie in Oppervlaktewater	Aanwezigh
Aanwezigheid Schuim in Oppervlaktewater	Aanwezigh
Aanwezigheid Vuil in Oppervlaktewater	Aanwezigh
Aantal golven in 20 minuten periode Oppervlaktewater	Aantal golv
Anomalie Oppervlaktewater Uitgedrukt in Gadolinium na filtratie in	Anomalie
Aantal vrijheidsgraden bij het variantiedichtheidspectrum Oppervlaktewater	Aantal vrij
Aantal vrijheidsgraden behorend bij het golfrichtingspectrum Oppervlaktewater	Aantal vrij
Extinctie Oppervlaktewater	Extinctie
Geurverdunningsfactor Oppervlaktewater	Geurverdu
Getijextreemtype Oppervlaktewater	Waarde is:
Kleur intensiteit Oppervlaktewater uitgedrukt volgens PtCo-schaal in	Waarde is:
Zuurgraad Oppervlaktewater	Zuurgraad
Reuk Oppervlaktewater	Reuk
Saliniteit Oppervlaktewater	Saliniteit

RFU

Table 5.6: Samengevoegde tabel (automatisch en handmatig gematcht.

Eenheid.Code	Eenheid.Omschrijving	altlabel	preflabel	uri
%	procent	%	Percent	http://vocab.ne
Bq/kg	becquerel per kilogram	Bq/kg	Becquerels per kilogram	http://vocab.ne
· · · · · · · · · · · · · · · · · · ·	gram	g	Grams	http://vocab.ne
g g/kg	gram per kilogram	g/kg	Grams per kilogram	http://vocab.ne
mg/g	milligram per gram	mg/g	Milligrams per gram	http://vocab.ne
mg/kg	milligram per kilogram	mg/kg	Milligrams per kilogram	http://vocab.ne
mg/m2	milligram per vierkante meter	mg/m^2	Milligrams per square metre	http://vocab.ne
mm	millimeter	mm	Millimetres	http://vocab.ne
ug/kg	microgram per kilogram	ug/kg	Micrograms per kilogram	http://vocab.ne
um	micrometer	um	Micrometres (microns)	http://vocab.ne
hPa	hectopascal	hPa	Hectopascals	http://vocab.ne
m	meter	m	Metres	http://vocab.ne
m/s	meter per seconde	m/s	Metres per second	http://vocab.ne
cm	centimeter	cm	Centimetres	http://vocab.ne
d	dag	d	Days	http://vocab.ne
cm2	vierkante centimeter	cm^2	Square centimetres	http://vocab.ne
dB	decibel	dB	Decibels	http://vocab.ne
dm	decimeter	dm	Decimetres	http://vocab.ne
Hz	hertz	Hz	Hertz	http://vocab.ne
kg/m3	kilogram per kubieke meter	kg/m^3	Kilograms per cubic metre	http://vocab.ne
$\frac{mg/mg}{mBq/l}$	millibecquerel per liter	mBq/l	Millibecquerels per litre	http://vocab.ne
mg/l	milligram per liter	mg/l	Milligrams per litre	http://vocab.ne
min	minuut	min	Minutes	http://vocab.ne
mS/m	millisiemens per meter	mS/m	MilliSiemens per metre	http://vocab.ne
$\frac{\text{m3/m}}{\text{m3/s}}$	kubieke meter per seconde	m^3/s	Cubic metres per second	http://vocab.ne
ng/l	nanogram per liter	ng/l	Nanograms per litre	http://vocab.ne
NTU	Nephelometric Turbidity Unit	NTU	Nephelometric Turbidity Units	http://vocab.ne
S S	seconde	s	Seconds	http://vocab.ne
$\frac{\rm S}{\rm S/m}$	siemens per meter	S/m	Siemens per metre	http://vocab.ne
ug/l	microgram per liter	ug/l	Micrograms per litre	http://vocab.ne
h	uur	h	Hours	http://vocab.ne
1	liter	1	Litres	http://vocab.ne
ng/g	nanogram per gram	ng/g	Nanograms per gram	http://vocab.ne
ng/kg	nanogram per kilogram	ng/kg	Nanograms per kilogram	http://vocab.ne
mg	milligram	NA NA	NA	http://vocab.ne
n m /m 2	exemplaren	NA ///ma^2	NA	http://vocab.ne
n/m2	exemplaren per vierkante meter	#/m^2	NA	http://vocab.ne
n/l	exemplaren per liter	#/1	NA	http://vocab.ne
DIMSLS	dimensieloos	1	NA	http://vocab.ne
graad	graad	deg	NA	http://vocab.ne
oC	graad Celsius	degC	NA	http://vocab.ne
/1	per liter	#/l	NA	http://vocab.ne
n/hm	exemplaren per hectometer	NA	NA	http://vocab.ne
FTU	Formazine Turbidity Unit	NA	NA	http://vocab.ne
JTU	Jackson Turbidity Unit	NA	NA	http://vocab.ne
meq/l	milliequivalent per liter	mEquiv/l	NA	http://vocab.ne
mHz	millihertz	NA	NA	http://vocab.ne
m3/d	kubieke meter per dag	NA	NA	http://vocab.ne
n/ml	exemplaren per milliliter	#/ml	NA	http://vocab.ne
oD BEII	Duitse graad	NA	NA	http://vocab.ne
	Rolativo Fluoroscopco Units	NΛ	NΛ	http://wocah.no

NA

NA

Kwaliteitsoordeel

In AQUO kunnen verschillende kwaliteitsoordelen worden toegekend aan een meetwaarde (tabel 6.1). Het is niet eenvoudig om te bepalen welke codes in de praktijk worden toegepast. Het gebruik in de Data Distributielaag kan alleen bepaald worden wanneer data daadwerkelijk gedownloadt worden.

De corresponderende tabel met algemene kwalititeitsoordelen van BODC is de tabel L20 (figuur ??). BODC hanteert hiernaast tabellen met meer specifieke "quality flags" voor bepaalde apparaten of organisaties (IODE). Hier gaan we nu niet verder op in.

conceptid	preflabel	definition
0	no quality control	No quality control procedures have been applied to the data valu
1	good value	Good quality data value that is not part of any identified malfun
2	probably good value	Data value that is probably consistent with real phenomena but
3	probably bad value	Data value recognised as unusual during quality control that form
4	bad value	An obviously erroneous data value.
5	changed value	Data value adjusted during quality control. Best practice strongly
6	value below detection	The level of the measured phenomenon was less than the limit of
7	value in excess	The level of the measured phenomenon was too large to be quant
8	interpolated value	This value has been derived by interpolation from other values in
9	missing value	The data value is missing. There should be no accompanying val-
A	value phenomenon uncertain	There is uncertainty in the description of the measured phenome
Q	value below limit of quantification	The level of the measured phenomenon was less than the limit of

In eerder werk (NWDM) is een mapping gemaakt op basis van data uit de DDL voor Noordzee en Waddenzee (fysische-chemische data). Het voorstel is om deze als basis te gebruiken. De tabel

Dit

Table 6.1: Aquo kwaliteitsoordeel
codes en -omschrijvingen. $\,$

	Codes	Omschrijving
1	00	Normale waarde
5	03	Waarde heeft een grotere spreiding dan beschreven
7	04	Bepaald met hele detectiegrens
8	05	Bepaald met halve detectiegrens
12	06	Bepaald met nul waarde voor detectiegrens
14	07	Waarde is verhoogde rapportagegrens
2	10	In de ruimte geïnterpoleerde waarde
3	20	In de tijd geïnterpoleerde waarde
4	25	In ruimte en tijd geïnterpoleerde waarde
6	30	Waarde beïnvloedt door ruimtelijke activiteiten
9	50	Niet-plausibele waarde
10	55	Gevlagde waarde, bepaald met halve detectiegrens
11	56	Gevlagde waarde, bepaald met nul waarde voor detectiegrens
13	61	Gecorrigeerde waarde op basis van systematische fout
15	70	Afgekeurde waarde op basis van trendgedrag
16	71	Afgekeurde waarde op basis van harde grenzen
17	72	Afgekeurde waarde op basis van ionenbalans
18	73	Afgekeurde waarde op basis van springerigheid
19	74	Afgekeurde waarde op basis van levendigheid
20	75	Afgekeurde waarde op basis van uitbijter
21	76	Afgekeurde waarde o.b.v. correlatie tussen meetlocaties
22	77	Afgekeurde waarde op basis van correlatie tussen parameters
23	78	Afgekeurde waarde opgeloste parameter is hoger dan totaal
24	79	Afgekeurde waarde agv rapportage lager dan rapportagegrens
25	80	Afgekeurde waarde op basis van trendbreuk
26	81	Afgekeurde waarde op basis van controlemeting
27	82	Afgekeurde waarde op basis van waterbalans
28	83	Afwijkende waarde als gevolg van buiten meetbereik
29	84	Afwijkende waarde als gevolg van foutieve nulpunt
30	90	Afwijkende waarde na validatie goedgekeurd
31	91	Afwijkende waarde i.v.m. extreme situatie (calamiteit)
32	98	Waarde bepaald op onvolledige basis
33	99	Hiaat waarde

Table 6.2: Voorgestelde apping van kwaliteitscodes.

aquo_code	aquo_omschrijving	conceptid	preflabel
00	Normale waarde	1	good value
03	Waarde heeft een grotere spreiding dan beschreven	2	probably good value
04	Bepaald met hele detectiegrens	2	probably good value
05	Bepaald met halve detectiegrens	2	probably good value
06	Bepaald met nul waarde voor detectiegrens	2	probably good value
07	Waarde is verhoogde rapportagegrens	2	probably good value
10	In de ruimte geïnterpoleerde waarde	2	probably good value
20	In de tijd geïnterpoleerde waarde	2	probably good value
25	In ruimte en tijd geïnterpoleerde waarde	2	probably good value
			probably good value
30	Waarde beïnvloedt door ruimtelijke activiteiten	2	probably good value
50	Niet-plausibele waarde	3	probably bad value
98	Waarde bepaald op onvolledige basis	3	probably bad value
99	Hiaat waarde	4	bad value
55	Gevlagde waarde, bepaald met halve detectiegrens	NA	NA
56	Gevlagde waarde, bepaald met nul waarde voor detectiegrens	NA	NA
61	Gecorrigeerde waarde op basis van systematische fout	NA	NA
70	Afgekeurde waarde op basis van trendgedrag	NA	NA
71	Afgekeurde waarde op basis van harde grenzen	NA	NA
72	Afgekeurde waarde op basis van ionenbalans	NA	NA
73	Afgekeurde waarde op basis van springerigheid	NA	NA
74	Afgekeurde waarde op basis van levendigheid	NA	NA
75	Afgekeurde waarde op basis van uitbijter	NA	NA
76	Afgekeurde waarde o.b.v. correlatie tussen meetlocaties	NA	NA
77	Afgekeurde waarde op basis van correlatie tussen parameters	NA	NA
78	Afgekeurde waarde opgeloste parameter is hoger dan totaal	NA	NA
79	Afgekeurde waarde agv rapportage lager dan rapportagegrens	NA	NA
80	Afgekeurde waarde op basis van trendbreuk	NA	NA
81	Afgekeurde waarde op basis van controlemeting	NA	NA
82	Afgekeurde waarde op basis van waterbalans	NA	NA
83	Afwijkende waarde als gevolg van buiten meetbereik	NA	NA
84	Afwijkende waarde als gevolg van foutieve nulpunt	NA	NA
90	Afwijkende waarde na validatie goedgekeurd	NA	NA
91	Afwijkende waarde i.v.m. extreme situatie (calamiteit)	NA	NA
NA	NA	0	no quality control
NA	NA	5	changed value
NA	NA	6	value below detection
NA	NA	7	value in excess
NA	NA	8	interpolated value
NA	NA	9	missing value
NA	NA	A	value phenomenon unce
NA	NA	Q	value below limit of qua

Bemonstering

7.1 Bemonsteringsapparaat of Veldapparaat

#> [1] 0

BODC onderhoudt verschillende tabellen waar bemonsteringsapparaten in voorkomen. De meest gedetailleerde tabel is de SeaVoX Device Catalogue L22. Een minder gedetailleerde (broader) tabel is SeaDataNet device category.

De mapping die hier gepresenteerd wordt is slechts

In eerdere transformaties van Nederlandse data naar EMODnet Biologie zijn wel eens mappings gemaakt. Hieruit is de ad hoc handmatige mapping hieronder samengesteld.

Table 7.1: Lijst met bemonsteringsapparaten in AQUO domeintabel "bemonsterinsapparaat"

	Omschrijving
1	Edelmanboor
21	Riversideboor
64	Puinboor
2	Ramguts
13	Gutsboor
14	Steektoestel zonder folie
15	Aqualock
16	Avegaarboor
17	Beeker-sampler
18	Begeman-sampler
19	Box-corer
20	Continuous soil sampler
22	Drukkend boorsysteem
23	Eckman-Birge happer
24	Foliesteektoestel
25	Grindboor
26	Hamerend boorsysteem
27	Handpuls
28	Holle avegaar
29	Jenkins-mudsampler
30	Kernboor
31	Mostap
32	Multi-sampler
33	Akkermanboor
34	Pulsboor
35	Sonisch boorsysteem
36	Spitsmuisboor
37	Valbom
38	Van der Horst-steektoestel
39	Van Veen happer
40	Veenboor
41	Vibro-corer
42	Vrijwitboor
43	Zuigerboor
44	Akoestische zandtransportmeter
45	Automatisch monstername apparaat
46	Bodemschaaf
47	Boomkor
48	Dompelpomp
49	Doorstroomcentrifuge
50	Elektrisch schepnet
51	Emmer
52	Flushing sampler
53	Fuik
54	Handnet
55	Korf
56	Kuil
57	Modderpuls
58	Mosselkorf
59	Pelagic trawl

Veenboor

Table 7.2: Eerste elementen van BODC L22 tabel SeaVoX Device Catalogue.

conceptid	preflabel
NETT0001	Adriatic plankton sampler - Krsinic (1990)
NETT0002	High-speed sampler - Apstein (1906)
NETT0003	Apstein net as described by Apstein (1896); Dakin (1908)
NETT0004	Autosampling and Recording Instrumental Environmental Sampler - Dunn et al. (1993)
NETT0005	Automatic high-speed plankton sampler - Williamson (1962, 1963)
NETT0006	Closing net - Barnes (1953)

aquo_omschrijving	aquo_cijfercode	bodc code
Pelagic trawl	62	http://vocab.nerc.ac.uk/collection/L05/current/23/
Videocamera	96	http://vocab.nerc.ac.uk/collection/L05/current/311/
Vacuüm steekbuis	108	http://vocab.nerc.ac.uk/collection/L05/current/391/
Piston-corer	13	http://vocab.nerc.ac.uk/collection/L05/current/51/
Fuik	57	http://vocab.nerc.ac.uk/collection/L05/current/63/
Zuigkor	94	http://vocab.nerc.ac.uk/collection/L05/current/64/
Pomp	68	http://vocab.nerc.ac.uk/collection/L22/current/NETTO
Bodemschaaf	45	http://vocab.nerc.ac.uk/collection/L22/current/NETTO
Emmer	33	http://vocab.nerc.ac.uk/collection/L22/current/TOOL0
Boomkor	55	http://vocab.nerc.ac.uk/collection/L22/current/TOOL0
Van Veen happer	15	http://vocab.nerc.ac.uk/collection/L22/current/TOOL0
Hamon happer	95	http://vocab.nerc.ac.uk/collection/L22/current/TOOL0
Box-corer	46	http://vocab.nerc.ac.uk/collection/L22/current/TOOL1
Edelmanboor	20	NA
Riversideboor	25	NA
Puinboor	87	NA
Ramguts	27	NA
Gutsboor	31	NA
Steektoestel zonder folie	53	NA
Aqualock	83	NA
Avegaarboor	54	NA
Beeker-sampler	12	NA
Begeman-sampler	44	NA
Continuous soil sampler	72	NA
Drukkend boorsysteem	73	NA
Eckman-Birge happer	41	NA
Foliesteektoestel	74	NA
Grindboor	24	NA
Hamerend boorsysteem	75	NA
Handpuls	76	NA
Holle avegaar	77	NA
Jenkins-mudsampler	78	NA
Kernboor	79	NA
Mostap	80	NA
Multi-sampler	48	NA
Akkermanboor	42	NA
Pulsboor	26	NA
Sonisch boorsysteem	81	NA
Spitsmuisboor	29	NA
Valbom	14	NA
Van der Horst-steektoestel	82	NA
	4.0	374

NA

18

7.2 Bemonsteringsmethode

Omschrijving
HH-W10A:2010 Bemonstering van zoöplankton voor EBeo
HH-W11A:2010 Inventarisatie van vegetatie
HH-W12A:2010 Bemonstering van macrofauna
HH-W13A:2010 Bestandsopname van vis voor de KRW
HH-W7A:2010 Bemonstering van fytoplankton in opp.water
HH-W8A:2010 Bemonstering van sieralgen in opp.water
HH-W9A:2010 Bemonstering van kiezelwieren in opp.water
Stowa 2002-07 - HVB-AM
Stowa 2002-07 - HVB-BOM
Stowa 2002-07 - HVB-KVM
Stowa 2002-07 - HVB-MTM
NEN-EN-ISO 16665:2005 en
NEN-EN-ISO 19458:2007 en
NEN-ISO 23893-1:2007 en
ISO 5667-10:1992 en
ISO 5667-11:1993 en
ISO 5667-12:1995 en
NEN-EN-ISO 5667-13:1998 en
NEN-EN-ISO 5667-16:1998 en
ISO 5667-17:2000 en
ISO 5667-18:2001 en
NEN-EN-ISO 5667-19:2004
ISO 5667-4:1987 en
NEN-ISO 5667-5:2007
ISO 5667-6:2005
ISO 5667-7:1993
ISO 5667-8:1993
ISO 5667-9:1992
NEN-ISO 7828:1994 en
NEN-ISO 9391:1995 en
NEN-EN-13O 9391.1999 en NEN-EN 13946:2003 en
NEN-EN 13940.2003 en NEN-EN 14011:2003 en
NEN-EN 14011:2003 en NEN-EN 14184:2003 en
NEN-EN 14757:2005 en NEN-EN 15196:2006 en
NEN-EN 15460:2007 en
NEN-EN 15708:2007 en
NEN 5625:2007 nl
NEN 6600-1:2002 nl
NEN 6600-2:2002 nl
RWSV - 913.00.B001b
RWSV - 913.00.B002
RWSV - 913.00.B004b
RWSV - 913.00.B005
RWSV - 913.00.B007
RWSV - 913.00.B050
RWSV - 913.00.B051
RWSV - 913.00.B200
RWSV - 913.00.W001
RWSV - 913.00.W002
DWCV 012 00 W002

RWSV - 913.00.W003

Conclusie: Vooral Nederlandse methodieken. Best lastig te vergelijken met internationale codes. Even parkeren.

7.3 Bemonsteringssoort

	Omschrijving
5	Mengbemonstering
6	Verzamelbemonstering
1	Steekbemonstering
2	Volumeproportionele bemonstering
3	Tijdsproportionele bemonstering
4	Passieve bemonstering

Mappen naar welke BODC tabel?

- 7.4 Meetapparaat
- 7.5 Kleur
- 7.6 Statistischeparameter
- 7.7 Waardebepalingsmethode
- $7.8 \quad Waarde bepalingstechniek$
- $7.9 \quad Waarde bewerkings methode$
- 7.10 Biologie: Orgaan
- 7.11 Biologie: Biologisch Kenmerk

Biologie overig

Voor biologische termen zijn de BODC vocabulaires over het algemeen minder goed geschikt.

Er is een zoekmachine voor biologische ontologieën kunnen gevonden worden via https://www.ebi.ac.uk/ols/index. Mogelijk kan deze in sommige gevallen uitkomst bieden. Hieronder wordt verder ingegaan op de AQUO vocabulaires die te maken hebben met biologie.

8.1 Biologie: Orgaan

De AQUO tabel "Orgaan" bevat standaardnamen voor de verschillende lichaamsonderdelen en organen, waarin of waaraan metingen zijn gedaan. Er is geen corresponderende tabel in de BODC bibliotheek.

8.2 Biologie: Biologisch Kenmerk

BiologischKenmerk

De BODC vocabulaire die hier het meest mee verwant is S11. Deze bevat voornamelijk grootteklassen voor zoöplankton alsmede algemene namen voor biologische ontwikkelingsstadia.

Op dit moment is geen poging gedaan om een mapping te maken. Het is waarschijnlijk nodig om bijna alle AQUO termen aan te vragen als uitbreiding op de S11 tabel.

Table 8.1: Lijst met organen in AQUO domeintabel "Orgaan"

	Omashuiiwina
1	Omschrijving
1	Bloed
12	Dijbeen
23	Dierlijk weefsel
29	Darm
30	Dooier
31	Embryo
32	Ellepijp
33	Eierschaal
34	Eivlies
2	Filet
3	Gal
4	Handwortelbeen
5	Hersenen
6	Hart
7	Kop
8	Levercel
9	Lever
10	Maag
11	Nier
13	Opperarmbeen
14	Oog
15	Plasma
16	Penis
17	Scheenbeen
18	Struif
19	Snavel
20	Schelp
21	Staart
22	Spierweefsel
24	genetisch gemodificeerde T47D-cellijn
25	Vin
26	Vlees
27	Vleugel
28	Bruinvlees

Table 8.2: Lijst met biologische kenmerken in AQUO domeintabel "Biologisch
Kenmerk"

	Omschrijving
1	dood
16	Levend
27	Geslacht-Man
38	Geslacht-Vrouw
49	Geslacht-Onbekend
60	Fytoplanktonl.klasse groter dan 10 en kleiner of gelijk 20um
71	Fytoplanktonl.klasse groter dan 1 en kleiner of gelijk 2 um
82	Fytoplanktonl.klasse groter dan 2 en kleiner of gelijk 5 um
113	Fytoplanktonl.klasse groter dan 5 en kleiner of gelijk 10 um
2	Fytoplanktonlengteklasse groter dan 20 um
7	Fytoplanktonlengteklasse groter dan 5 um
8	Fytoplanktonlengteklasse kleiner of gelijk aan 10 um
9	Fytoplanktonlengteklasse kleiner of gelijk aan 1 um
10	Fytoplanktonlengteklasse kleiner of gelijk aan 5 um
11	Vislengteklasse-0 (0+: vis in het eerste levensjaar)
12	Vislengteklasse-1 (ouder dan 0+ en met een lengte t/m 15 cm)
13	Vislengteklasse-2 (16 t/m 25 cm)
14	Vislengteklasse-3 (26 t/m 40 cm)
15	Vislengteklasse-4 (groter dan 40 cm)
17	Vislengte snoek klasse 1 (0 t/m 15 cm)
18	Vislengte snoek klasse 2 (16 t/m 35 cm)
19	Vislengte snoek klasse 3 (36 t/m 44 cm)
20	Vislengte snoek klasse 4 (45 t/m 54 cm)
21	Vislengte snoek klasse 5 (groter dan 54 cm)
22	Zoöplanktonlengteklasse 100-360 um
23	Zoöplanktonlengteklasse 50-100 um
24	Zoöplanktonlengteklasse groter dan 100 um
25	Zoöplanktonlengteklasse groter dan 1 mm
26	Zoöplanktonlengteklasse groter dan 360 um
28	Zoöplanktonlengteklasse kleiner dan 1 mm
29	Levensstadium-Adult
30	Levensstadium-Cercarie
31	Levensstadium-Copepodiet
32	Levensstadium-Dauer larve
33	Levensstadium-Ei
34	Levensstadium-Eerste levensjaar
35	Levensstadium-Embryo
36	Levensstadium-Ephippium
37	Levensstadium-Exuvium
39	Levensstadium-Flagellaat
40	Levensstadium-Juveniel
41	Levensstadium-Kuiken
42	Levensstadium-Larve
43	Levensstadium-Nauplius
44	Levensstadium-Nimf
45	Levensstadium-Onvolwassen
46	Levensstadium-Pop
47	Levensstadium-Pul of donsjong
48	Levensstadium-Spore
50	Levensstadium-Veliger