

MSIN0095: Operations Analytics

Class 1-4: Process Analysis Class 5,7: Waiting Time Analysis

Class 6: Inventory Management - Newsvendor Model

Class 8: Inventory Management – Newsvendor, Periodic Review

Class 9: Inventory Management - EOQ

Class 10: Inventory Management – Amazon Distribution Strategy

Class 11: Supply Chain Management I: Beer Game

Class 12: Supply Chain Management II

Class 13: Supply Chain Management III: Strategic Sourcing, Sustainable

Supply Chains

Class 14: Demand Forecasting

1

Forecasting in Operations

- It is important for firms to forecast demand to make decisions
 - Inventory planning
 - Capacity planning
 - Workforce planning
 - Marketing investments

Learning Objectives

- Time series methods
 - "Can you outpredict an OT instructor?" challenge
- Machine learning and data mining methods
- Measuring accuracy of forecasts

Components of a Time Series

$$Y = f(T, C, S, R)$$

- Trend (T) is a long-term upward or downward pattern
 - Due to changes in technology
- Cyclical variation (C) is a sizable fluctuation over 2-10 years above and below the trend
 - Due to cycles of recession, depression, and recovery
- Seasonal variation (S) is a recurring seasonal pattern
 - Due to weather, holidays, days of week
 - Occurs within 1 year (e.g., quarterly, monthly, weekly, etc.)
- Random variation (R) is erratic, unsystematic, 'residual' fluctuations
 - Due to unforeseen events like union strike, tornado

8

8

q

Trend Method

 Useful when time series has a clear linear trend with little variation around trend line

$$Y_t = a + b t$$

10

10

Moving average method

- Moving average
 - The average of *n* most recent data

Month	Sales	Two-month	Two-month
		Moving Total	Moving Average
Jan	1,325		
Feb	1,353		
Mar	1,305	2,678	1,339
Apr	1,275	2,658	1,329
May	1,210	2,580	1,290
Jun	1,195	2,485	1,242.5
Jul	?	2,405	1,202.5

Window size = 2 months

Moving average method

Month	Sales	Three-month	Three-month
		Moving Total	Moving Average
Jan	1,325		
Feb	1,353		
Mar	1,305		
Apr	1,275	3,983	1,327.7
May	1,210	3,933	1,311
Jun	1,195	3,970	1,263.3
Jul	5	3,680	1,226.7

Window size = 3 months

12

Moving average Method

- Choosing the window size
 - Large n → smoother, but less responsive to data
 - Small n → more responsive, but less stable
- When to use moving averages?
 - Moving average method smoothens <u>short-term</u> fluctuations in the time-series.
 - Useful if data has fairly linear trend or cyclical (long-term)
 pattern

14

14

Decomposition Method

- When is it used?
 - If there are short-term seasonal patterns (e.g. weekly, monthly, or quarterly) and long-term trends.
- How it works?
 - <u>Deseasonalizing:</u> Remove short-term fluctuation to forecast long-term effects (trend, cycle)
 - Reseasonalizing: Adjust forecast with seasonal effect

Computing the seasonal indexes

Quarterly Sales of Toys International (\$ millions)

Year	Winter	Spring	Summer	Fall
2011	6.7	4.6	10.0	12.7
2012	6.5	4.6	9.8	13.6
2013	6.9	5.0	10.4	14.1
2014	7.0	5.5	10.8	15.0
2015	7.1	5.7	11.1	14.5
2016	8.0	6.2	11.4	14.9

18

Computing the seasonal indexes

Remove short-term fluctuations by computing the **centered moving averages (CMA)**

			Centered	
Year	Season	Sales	Moving Average	
2011	Winter	6.7	1	
2011	Spring	4.6		
2011	Summer	10	8.5	
2011	Fall	12.7	8.45	
2012	Winter	6.5	8.45	
2012	Spring	4.6	8.4 8.625	
2012	Summer	9.8	8.725	
2012	Fall	13.6	8.825	
2013	Winter	6.9	8.975	
2013	Spring	5	9.1	
2013	Summer	10.4	9.125	
2013	Fall	14.1	9.25	
2014	Winter	7	9.35	
2014	Spring	5.5	9.575	
2014	Summer	10.8	9.6	
2014	Fall	15	9.65	

- Choose window size as a multiple of the number of periods ("seasons") before pattern repeats.
 E.g., 4 quarters or 8 quarters
- "Place" the average roughly in the center of the interval used

Sales = Trend,Cyc,Seas,Random CMA = Trend,Cycle

19

Computing the seasonal indexes

Determine the effect of season in each period by computing the **specific seasonal index (SSI)**.

			Centered	Specific Seasonal
Year	Season	Sales	Moving Average	Index
2011	Winter	6.7		
2011	Spring	4.6	8.5	
2011	Summer	10	8.45	10/8.45*100=118.3
2011	Fall	12.7	8.45	150.3
2012	Winter	6.5	8.4	77.4
2012	Spring	4.6	8.625	53.3
2012	Summer	9.8	8.725	112.3
2012	Fall	13.6	8.825	154.1
2013	Winter	6.9	8.975	76.9
2013	Spring	5	9.1	54.9
2013	Summer	10.4	9.125	114.0
2013	Fall	14.1	9.25	152.4
2014	Winter	7	9.35	74.9
2014	Spring	5.5	9.575	57.4
2014	Summer	10.8	9.6	112.5
2014	Fall	15	9.65	155.4

Sales = Trend, Cycle, Seasonality, Random

CMA = Trend, Cycle

SSI = Seasonality, Random

20

20

Computing the seasonal indexes

Find the average effect of a season by computing the **typical seasonal index (SI)** = the average SSI of periods in the same season

Year	Winter	Spring	Summer	Fall
2011		54.1	118.3	150.3
2012	77.4	53.3	112.3	154.1
2013	76.9	54.9	114.0	152.4
2014	74.9	57.4	112.5	155.4
2015	73.0	59.4	113.0	145.7
2016	79.8	61.2		
Mean	76.4	56.7	114.0	151.6

Sales = Trend, Cycle, Seasonal, Random

CMA = Trend, Cycle

Specific Seas. Ind. = Seasonal, Random

Typical Seasonal Ind = Seasonal

Step 2: Deseasonalization

Use seasonal indexes to remove the seasonal effect on sales.

			Seasonal	Deseasonalized
Year	Season	Sales	Index	Sales
2011	Winter	6.7	76.4	6.7/76.4*100=8.8
2011	Spring	4.6	56.7	4.6/56.7*100=8.1
2011	Summer	10	114.0	8.8
2011	Fall	12.7	151.6	8.4
2012	Winter	6.5	76.4	8.5
2012	Spring	4.6	56.7	8.1
2012	Summer	9.8	114.0	8.6
2012	Fall	13.6	151.6	9.0
2013	Winter	6.9	76.4	9.0
2013	Spring	5	56.7	8.8
2013	Summer	10.4	114.0	9.1
2013	Fall	14.1	151.6	9.3
2014	Winter	7	76.4	9.2
2014	Spring	5.5	56.7	9.7
2014	Summer	10.8	114.0	9.5
2014	Fall	15	151.6	9.9

Deseaonalized Sales = Trend, Cycle, Random

22

Step 4: Reseasonalization

- Trend/cycle forecast and seasonal indexes can be combined to yield seasonally adjusted forecasts.
- Example: Provide a demand forecast for Toys Incorporated 2017 Quarterly Sales.

	Quarter		Seasonal	Reseasonalized
Quarter	index, t	Trend	Index	Data
		.0902*24+8.15		10.3*76.4/100
Winter 2017	24	=10.3	76.4	=7.9
Spring 2017	25	10.4	56.7	5.9
Summer 2017	26	10.5	114	12.0
Fall 2017	27	10.6	151.6	16.0

*Winter 2011 quarter index = 0

Machine learning and data mining

- Demand can be affected by many things
 - Price or promotions
 - Weather patterns
 - Holidays (e.g. Thanksgiving, Christmas)
 - Social network

- Basic: Multiple Linear Regression
- Supervised Learning
- Unsupervised Learning

Learning Objectives

- Time series methods
 - "Can you outpredict a TO instructor?" challenge
- Machine learning and data mining methods
- Measuring accuracy of forecasts

29

A forecast is always wrong. But how wrong?

We need a metric that provides estimation of accuracy. All are functions of forecast error:

$$E_t = A_t - F_t$$

Actual value Forecast value

Common metrics:

- 1. Mean Absolute Error (MAE) = $\frac{\sum_{t=1}^{T} |E_t|}{T}$
- 2. Mean Absolute Percentage Error (MAPE) = $\frac{\sum_{t=1}^{T} |E_t|/A_t}{T}$
- 3. Mean Percentage Error (MPE) = $\frac{\sum_{t=1}^{T} E_t / A_t}{T}$

Comparing forecasting models

- An important purpose for demand forecasting models is their use in making predictions.
- We test the predictive power of a model on a test set or "outof-sample" set.

31

Summary

- Demand forecasting is important for making good decisions
- Time series forecasts detect short-term and longterm patterns
- Machine learning is becoming popular due to its ability to detect complex relationships from many factors