# 《编译原理》习题解答:

第一次作业:

P14 2、何谓源程序、目标程序、翻译程序、汇编程序、编译程序和解释程序?它们之间可能有何种关系?

答:被翻译的程序称为源程序;

翻译出来的程序称为目标程序或目标代码:

将汇编语言和高级语言编写的程序翻译成等价的机器语言,实现此功能的程序称为翻译程序:

把汇编语言写的源程序翻译成机器语言的目标程序称为汇编程序;

解释程序不是直接将高级语言的源程序翻译成目标程序后再执行,而是一个个语句读入源程序,即边解释边执行;

编译程序是将高级语言写的源程序翻译成目标语言的程序。

关系: 汇编程序、解释程序和编译程序都是翻译程序, 具体见 P4 图 1.3。

#### P14 3、编译程序是由哪些部分组成? 试述各部分的功能?

答:编译程序主要由 8 个部分组成: (1)词法分析程序; (2)语法分析程序; (3)语义分析程序; (4)中间代码生成; (5)代码优化程序; (6)目标代码生成程序; (7)错误检查和处理程序; (8)信息表管理程序。具体功能见 P7-9。

P14 4、语法分析和语义分析有什么不同? 试举例说明。

答:语法分析是将单词流分析如何组成句子而句子又如何组成程序,看句子乃至程序是否符合语法规则,例如:对变量 x:=y符合语法规则就通过。语义分析是对语句意义进行检查,如赋值语句中 x 与 y 类型要一致,否则语法分析正确,语义分析则错误。

#### P15 5、编译程序分遍由哪些因素决定?

答: 计算机存储容量大小; 编译程序功能强弱; 源语言繁简; 目标程序优化程度; 设计和实现编译程序时使用工具的先进程度以及参加人员多少和素质等等。

补充: 1、为什么要对单词进行内部编码? 其原则是什么? 对标识符是如何进行内部编码的?

答:内部编码从"源字符串"中识别单词并确定单词的类型和值;原则:长度统一,即刻画了单词本身,也刻画了它所具有的属性,以供其它部分分析使用。对于标识符编码,先判断出该单词是标识符,然后在类别编码中写入相关信息,以表示为标识符,再根据具体标识符的含义编码该单词的值。

补充: 2、赋值语句: A: =5\*C的语法和语义指的是什么?

答: 语法分析将检查该语句是否符合赋值语句规则,语义是指将 5 \* C 的结果赋值为 A 。

#### 第二次作业:

P38 1、设 $T_1 = \{11, 010\}, T_2 = \{0, 01, 1001\},$  计算:  $T_2T_1, T_1^*, T_2^+$ 。

 $T_2T_1=\{011, 0010, 0111, 01010, 100111, 1001010\}$ 

 $T_1^* = \{ \epsilon, 11, 010, 1111, 11010, 01011, 010010 \dots \}$ 

 $T_2^+=\{0, 01, 1001, 00, 001, 01001, 010, 0101\cdots\}$ 

P38 3、令 A={0, 1, 2}, 写出集合 A+和 A\*的七个最短符号串。

A+: 0, 1, 2, 00, 01, 02, 10 (有多种可能)

A\*: ε, 0, 1, 2, 00, 01, 02 (有多种可能)

P38 5、试证明: A+=AA\*=A\*A。

证明: A+=A1UA2U ·······UAnU ·······

 $A^* = A^0$  (即{ $\epsilon$ })  $\cup A^+$ 

 $AA^* = A (A^0 \cup A^+) = A \cup A^2 \cup A^3 \cup A^4 \dots = A^+ = A^+ \cup A = (A^0 \cup A^+) A = A^*A (\overline{u} + \overline{u})$ 

P38 7、设有文法 G[S]:

S := A

 $A ::= B \mid IF A THEN A ELSE A$ 

 $B := C \mid B+C \mid +C$ 

C := D | C\*D | \*D

D := X | (A) | -D

试写出 V<sub>N</sub>和 V<sub>T</sub>。

 $V_N = \{S, A, B, C, D\}$ 

 $V_T=\{IF, THEN, ELSE, +, *, X, (, ), -\}$ 

P38-39 8、设有文法 G[S]:

S := aAb

 $A := BcA \mid B$ 

 $B := idt \mid \varepsilon$ 

试问下列符号串(1)aidtcBcAb (3)ab (5)aidtcidtcidtb 是否为该文法的句型或句子。

- (1) S ⇒ aAb ⇒ aBcAb ⇒ aidtcAb ⇒ aidtcBcAb 句型但不是句子;
- (3) S⇒aAb⇒aBb⇒a ε b⇒ab 是句型也是句子:
- (5)S ⇒ aAb ⇒ aBcAb ⇒ aidtcAb ⇒ aidtcBcAb ⇒ aidtcidtcBb ⇒ aidtcidtcidtb 句型也是句子。
- P39 10、给定文法:

 $S := aB \mid bA$ 

 $A := aS \mid bAA \mid a$ 

 $B := bS \mid aBB \mid b$ 

该文法所描述的语言是什么?

L(G)={相同个数的 a 与 b 以任意次序连接而成的非空符号串}。

- P39 11、试分别描述下列文法所产生的语言(文法开始符号为 S):
  - (1)  $S := 0S \mid 01$
  - (2)  $S := aaS \mid bc$
  - $(3) S:: =aSd \mid aAd$

 $A::=aAc \mid bc$ 

(4) S::=AB

 $A:: =aAb \mid ab$ 

 $B::=cBd \mid \varepsilon$ 

(1)  $L(G) = \{0^n 1 | n \ge 1\};$ 

{解题思路:将文法转换为正规表达式}

- (2)  $L(G) = \{a^{2n}bc \mid n \ge 0\};$
- (3)  $L(G) = \{a^{i}bc^{j}d^{k} \mid i, j, k \ge 1, i=j+k-1\};$ 或者  $L(G) = \{a^{j+k-1}bc^{j}d^{k} \mid j, k \ge 1\};$
- (4)  $L(G) = \{a^n b^n c^m d^m \mid m \ge 0, n \ge 1\}.$

P39 12、试分别构造产生下列语言的文法:

- (1)  $\{ab^na \mid n=0, 1, 2, 3\cdots\}$
- (2) { a "b" | n=1, 2, 3, 4 ······ } 无法转换成正规表达式, 因为 a 和 b 的个数相同
- (3) {aba<sup>n</sup> | n≥1} 可以转换但慎用
- (4) { a<sup>n</sup>ba<sup>m</sup> | n, m≥1} 可以转换但慎用
- (5) {a<sup>n</sup>b<sup>m</sup>c<sup>p</sup> | n, m, p≥0} 可以转换
- (6) {a<sup>m</sup>b<sup>m</sup>c<sup>p</sup> | m, p≥0} 无法转换

(1)  $G = \{V_N, V_T, P, S\}$ ,  $V_N = \{S, A\}$ ,  $V_T = \{a, b\}$ , [可将其看成正规表达式 ab\*a, 再画出其状态转换图来求解]

P: 
$$S := aAa$$
 或  $S := aB$  A :=  $bA \mid \epsilon$  B :=  $bB \mid a$ 

(2)  $G = \{V_N, V_T, P, S\}, V_N = \{S\}, V_T = \{a, b\},$  $P: S ::= aSb \mid \epsilon$ 

(3)  $G = \{V_N, V_T, P, S\}, V_N = \{S, A\}, V_T = \{a, b\},$ P: S ::= abA 或  $S ::= Sa \mid aba$ 

 $A := aA \mid a$ 

(4)  $G=\{V_N, V_T, P, S\}, V_N=\{S, A\}, V_T=\{a, b\},$ 

P:  $S ::= aS \mid abA$  或  $S ::= aS \mid aA$  A ::= bZ 或 S ::= aA  $A ::= bZ \mid aA$   $A ::= aZ \mid a$   $Z ::= aZ \mid a$ 

(5)  $G=\{V_N, V_T, P, S\}, V_N=\{S, A, B, C\}, V_T=\{a, b, c\},\$ 

P: 
$$S := ABC$$
  $S := aS \mid bS \mid cS \mid \epsilon$   $A := aA \mid \epsilon$  或

 $B ::= bB \mid \varepsilon$  $C ::= cC \mid \varepsilon$ 

(6)  $G=\{V_N, V_T, P, S\}, V_N=\{S, A\}, V_T=\{a, b, c\},$ 

P: 
$$S := aSbA \mid \varepsilon$$
  
 $A := cA \mid \varepsilon$ 

第三次作业:

P39 15. 设文法 G 规则为:

$$S:: =AB$$

$$B: = a|Sb$$

$$A: : =Aa|bB$$

对下列句型给出推导语法树,并求出其句型短语,简单短语和句柄。

- (2) baabaab (3)bBABb
- (2)





句型 baabaab 的短语 a, ba, baa, baab, baabaab, 简单短语 a, 句柄 a

(3) S B b

短语 bB, AB, ABb, bBABb 简单短语 bB, AB, 句柄 bB

P40 18. 分别对 i+i\*i 和 i+i+i 中每一个句子构造两棵语法树,从而证明下述文法 G[<表达式>] 是二义的。

<表达式>:: =i|(<表达式>)|<表达式><运算符><表达式> <运算符>:: =+|-|\*|/

1. i+i\*i





由于句子 i+i\*i 可构造两棵不同的语法树,所以证明该文法是二义的。

# 2. i+i+i







由于句子 i+i+i 可构造两棵不同的语法树,所以证明该文法是二义的。

P40 19. 证明下述文法是二义的

1) S::=iSeS|iS|i

2) S::=iEtS| iEtSeS|a E::=b 存在句子 ibtibtaeibta 或者 ibtibtaea 有两颗不同的语法树

3) S::=A|B

A::=aCbA|a

B::=BCC|a

C::=ba (最简单的就是 a 为句型)

1) 对于句子 iiieii 可构造两棵不同的语法树,所以证明该文法是二义的。





3) 对于句子 ababa 可构造两棵不同的语法树,所以证明该文法是二义的。





P41 21. 令文法 N:: =D|ND

D: = 0|1|2|3|4|5|6|7|8|9

给出句子 0127, 34, 568 最左推导和最右推导。

解: 0127 的最左推导 N=>ND=>NDD=>DDDD=>0DDD=>01DD=>012D=>0127

0127 的最右推导 N=>ND=>N7=>ND7=>N27=>ND27=>N127=>D127=>0127

34 的最左推导 N=>ND=>DD=>3D=>34

34 的最右推导 N=>ND=>N4=>D4=>34

568 的最左推导 N=>ND=>NDD=>5DD=>56D=>568

568 的最右推导 N=>ND=>N8=>ND8=>N68=>D68=>568

#### P41 23. 设有文法如下:

<目标>::=V1

V1::=V2|V1iV2

V2::=V3|V2+V3|iV3

V3::=)V1\*|(

试分析句子(,)(\*,i(,(+(,(+(i(,(+)(i(\*i(。

解 <目标>=> V1=>V2=>V3=>(

<目标>=> V1=>V2=>V3=>)V1\*=>)V2\*=>)V3\*=>)(\*

<目标>=> V1=>V2=>iV3=>i(

<目标>=> V1=>V2=>V2+V3=>V3+V3=>(+V3=>(+(

<目标>=> V1=>V1iV2=> V2iV2=> V2+V3iV2=> V3+V3iV2=> (+V3iV2=>(+)V1\*iV2

=>(+) V1iV2\*iV2=>(+) V2iV2\*iV2=>(+) V3iV2\*iV2=>(+) (iV2\*iV2=>(+) (iV2\*iV2=>(+)

(iV3\*iV2=>(+) (i(\*iV2=>(+) (i(\*iV3=>(+) (i(\*i(-1)))))))

P41 24. 下面文法那些是短语结构文法,上下文有关文法,上下文无关文法,及正规文法? 1.S::=aB B::= cB B::=b C::=c

2.S::=aB B::=bC C::=ε C::=ε

3.S::=aAb aA::=aB aA::=aaA B::=b A::=a

4.S::=aCd aC::=B aC::=aaA B::=b

5.S::=AB A::=a B::=bC B::=b C::=c

6. S::=AB A::=a B::=bC C::=c C::=ε

7. S:=aA  $S:=\epsilon$  A:=aA A:=aB A:=a B:=b

8. S::=aA S::= $\epsilon$  A::=bAb A::=a

正规文法 1 2 7 或者 1

上下文无关文法 5 6 8 或者 2 5 6 7 8

上下文有关文法 3

短语结构文法 4

P41 26. 给出产生下列语言 L (G) ={W|W∈{0, 1}+L W 不含相邻 1}的正规文法。

 $G=({S, A, B}, {0, 1}, P, S)$ 

P: S::=0|1|0S|1A

A:=0|0S

解题思路一: 写出满足要求的符号串,例如 0, 1, 00, 01, 10, 000, 101, 010, 001 等,根据符号串从左至右的次序画出状态转换图,然后根据状态转换图来推导出文法。 这将会得到 S::=0|1|0S|1A|0Z|1Z A::=0|0S|0Z 经过分析其中 Z 为多余状态可删去。



解题思路二:写出其正规表达式(0|10)\*(10|0|1)【如果仅有(0|10)\*的话推导不出 1,因为是连接关系,后面缺了 10 的话就会以 1 结尾,同样的道理还要推导出 0,所以得到此正规式】,画出转换系统,然后根据转换系统来推导出文法。也可以根据正规表达式直接写文法,例如正规表达式(0|10)\*(10|0|1)可以看成是 a\*b,推导出 A::= (0|10)A|10|0|1,即 A::= 0A|1B|10|0|1,其中 B::=0A,但是 10 此项不符合正规文法的选项,可以进行改写从而得到 A::= 0A|1B|0|1 B::=0A|0。

P41 27. 给出一个产生下列语言  $L(G) = \{W | W \in \{a,b\}^* L W + c \}$  的个数是 b 个数两倍的前后文无关文法。

文法 G=({S, A, B}, {a, b}, P, S)

P:  $S:=AAB|ABA|BAA|\epsilon$ 

[非终结符号插位法]

A:=aS

B:=bS

或者

S::=Saab|aSab|aaSb|aabS|Saba|aSba|abSa|abaS|Sbaa|bSaa|baSa|baaS|ε [终结符号插位法] 或者

S::=aaB|aBa|Baa|ε

[非终结符号与终结符混合插位法]

#### B::=SbS

P41 28. 给出一个产生下列语言  $L(G)=\{w\mid w\in\{a,b,c\}^+$ 且 w 由相同个数的 a,b,c 组成的前后文有关文法。

文法 G=({S, A, B}, {a, b, c}, P, S)

P: S:=ABC

 $A:=aS \mid a$ 

 $B:=bS \mid b$ 

 $C:=cS \mid c$ 

AB::=BA

BC::=CB

AC::=CA

#### P42 29. 用扩充的 BNF 表示以下文法规则:

- 1. Z:=AB|AC|A
- 2. A::=BC|BCD|AXZ|AXY
- 3. S::=aABb|ab
- 4. A::=Aab|ε

解:

- 1.  $Z::=A (B|C|\varepsilon) ::=A[B|C]$
- 2. A::=BC ( $\epsilon$ |D) |{X (Z|Y)}::=BC[D]|{X (Z|Y)}
- 3. A::= $a((AB|\varepsilon)b)$ ::=a[AB|b]
- 4. A::= $\{ab | \epsilon\}$ ::= $\{ab\}$

#### 第四次作业:

P74 2. 什么叫超前搜索? 扫描缓冲区的作用是什么?

词法分析程序在识别单词的时候,为进一步判明情况,确定下一步要做什么,一般采用超前读字符的方法,称超前搜索,扫描缓冲区的作用是为了识别单词符号。

#### P74 4. 画出下列文法的状态图:

Z:: =Be

B: = Af

A:: =e|Ae 并使用该状态图检查下列句子是否该文法的合法句子: f, eeff, eefe。



由状态图可知只有 eefe 是该文法的合法句子。

P74 5. 设右线性文法 G=({S, A, B}, {a, b}, S, P), 其中 P 组成如下:

S:: =bA A:: =bB A:: =aA A:: =b B:: =a 画出该文法的状态转换图。



#### 第五次作业:

P74 6. 构造下述文法 G[Z]的自动机,该自动机是确定的吗?它相应的语言是什么?

$$Z:: =A0$$
  $A:: =A0|Z1|0$ 

解 1: 将左线性文法转换为右线性文法,由于在规则中出现了识别符号出现在规则右部的情形,因此不能直接使用书上的左右线性文法对应规则,可以引入非终结符号 B,将左线性文法变为 Z::=A0 A:: =A0|B1|0 B:: =A0, 具体为:

$$\begin{cases} A := Z1 \\ Z := A0 \end{cases} A := A01$$
 
$$B := A0$$

将所得的新左线性文法转换成右线性文法:

此时利用书上规则,其对应的右线性文法为: A:: =0A|0B|0 Z:: =0A B:: =1A 解 2: 先画出该文法状态转换图:



NFA= 
$$({S, A, Z}, {0, 1}, M, {S}, {Z})$$

其中 M:  $M(S, 0) = \{A\}$   $M(S, 1) = \emptyset$   $M(A, 0) = \{A, Z\}$   $M(A, 1) = \emptyset$   $M(Z, 0) = \emptyset$   $M(Z, 1) = \{A\}$ 

显然该文法的自动机是非确定的;它相应的语言为: {0,1}上所有满足以00开头以0结尾且每个1必有0直接跟在其后的字符串的集合;也可以通过求解正规表达式得到A-0(0)01)\*\* 7-0(0)01)\*\*0



根据其转换系统可得状态转换集、状态子集转换矩阵如下表所示: (其中 S'可以忽略,结果是一样的)

| I          | I <sub>0</sub> | I <sub>1</sub> | S | 0 | 1 |
|------------|----------------|----------------|---|---|---|
| {S', S}    | { <b>A</b> }   | Φ              | 0 | 1 | Φ |
| {A}        | {A, Z, Z'}     | Ф              | 1 | 2 | Φ |
| {A, Z, Z'} | {A, Z, Z'}     | {A}            | 2 | 2 | 1 |

则其相应的 DFA 为:



P74 7. 构造一个 DFA, 它接受{0,1}上所有满足下述条件的字符串, 其条件是:字符串中每个1都有0直接跟在右边, 然后, 再构造该语言的正规文法。【其它解法可参考 P41-26 题】

解(一): 其状态转换图为 (状态 S 表示空串开始, 状态 A 表明串的末尾是 1, 状态 Z 表示串的末尾是 0)



DFA=  $({S, A, Z}, {0, 1}, M, S, {Z})$ 

其中 M: M(S, 0) = Z M(S, 1) = A

M(A, 0) = Z

 $M(Z, 0) = Z \qquad M(Z, 1) = A$ 

该语言的正规文法 GIZI为:

右线性文法: //S:: =0|1A|0Z 左线性文法:

A:: =0|0Z A:: =1|Z1

 $Z_{::} = 0|1A|0Z$   $Z_{::} = 0|A0|Z0$ 

若终止状态只引入不引出则适合构造右线性文法,若开始状态只引出不引入则适合构造左线性文法,若终态和初态均既有引入又有引出,则构造文法要注意。

解(二): 可以先写出该文法的正规表达式为(0 | 10)\*,根据该正规式构造转换系统



对于该转换系统可以采用子集法将 其转变为 DFA, 再根据 DFA 写出其 正规文法; 但是注意观察后, 发现开始 状态 S 通过£到达 A 状态,可以直接删去 S 状态,由 A 状态作为新的开始状态, 同理,只有 A 状态通过£才能到达终止状态 Z, 因此可以删去 Z 状态,由 A 状态 作为终止状态。这样, A 状态就既为开 始状态又为终止状态。可画出化简后的

转换图。可写出右线性文法为:

A: : =0|0A|1B B: : =0|0A

(写出该右线性文法时应注意,开始状态和终止状态都为 A,右线性文法转换为状态转换图时,增加了虚假的终止状态,因此要判定该状态是否是多余的,由于增加的终止状态只有引入而无引出,而该图中的终止状态既有引入又有引出,所以不是多余状态,转换为左线性文法时也是如此考虑)

解(一)和解(二)的结果是等价的,但是依据课本上介绍的 DFA 的化简方法,由解(一)化不出解(二),但是解(一)中的 S 和 Z 是等价的(由图可知)。

P74 8. 设 (NFA) M = ( {A, B}, {a, b}, M, {A}, {B} ), 其中 M 定义如下:

 $M(A, a) = \{A, B\}$   $M(A, b) = \{B\}$   $M(B, a) = \emptyset$   $M(B, b) = \{A, B\}$ 

请构造相应确定有穷自动机(DFA) M'。

解: 构造一个如下的自动机(DFA) M', (DFA) M'={K', {a, b}, M', S', Z'}

K'的元素是[A] [B] [A, B]

由于 M (A, a) ={A, B}, 故有 M'([A], a) =[A, B]

同样 M'([A], b) =[B]

 $M'([B], a) = \emptyset$ 

M'([B], b) = [A, B]

由于 M ( $\{A, B\}$ , a) = M (A, a) U M (B, a) =  $\{A, B\}$ U  $\emptyset$ =  $\{A, B\}$ 

故 M'([A, B], a) = [A, B]

由于 M ( $\{A, B\}, b$ ) = M (A, b) U M (B, b) = $\{B\}$ U  $\{A, B\}$  =  $\{A, B\}$ 

故 M'([A, B], b) = [A, B]

S'=[A], 终态集 Z'={[A, B], [B]}

重新定义: 令 0=[A] 1=[B] 2=[A, B],则 DFA 如下所示:



P74 9. 设有穷自动机 M = ({S, A, E}, {a, b, c}, M, S, {E}), 其中 M 定义为

M(S, c) = A M(A, b) = A M(A, a) = E 请构造一个左线性文法。

解: 先求右线性文法

 $V_N = \{A, S\}$   $V_T = \{a, b, c\}$  根据书上左右线性文法的转换规则,得到  $P: A \rightarrow c$   $A \rightarrow Ab$   $S \rightarrow Aa$   $\{E \rightarrow Aa$  实际上是多余的规则,应该去掉} 画出状态转换图之后就非常清晰。

P74 10. 已知正规文法 G = ({S, B, C}, {a, b, c}, P, S), 其中 P 内包含如下产生式:

 $S:=aS \mid aB$  .....(1)

B::=bB | bC .....2

解:  $M=({S, B, C, T}, {a, b, c}, M, {S}, {T})$ 

M(S, a)=S M(S, a)=B  $M(S, b)=\emptyset$   $M(S, c)=\emptyset$ 

 $M(B, a)=\emptyset$  M(B, b)=B M(B, b)=C  $M(B, c)=\emptyset$ 

 $M(C, a)=\emptyset$   $M(C, b)=\emptyset$  M(C, c)=T M(C, c)=C

### 第六次作业:

P74 11. 构造下列正规式相应的 DFA:

(1) 1(0|1)\*101 【老课本】

解: 先构造该正规式的转换系统:



由上述转换系统可得状态转换集 K={S, 1, 2, 3, 4, 5, Z}, 状态子集转换矩阵如下表所示:

| I                    | I <sub>0</sub> | I <sub>1</sub> | K | 0 | 1 |
|----------------------|----------------|----------------|---|---|---|
| <b>{S}</b>           | Φ              | {1, 2, 3}      | 0 | Ф | 1 |
| {1, 2, 3}            | {2, 3}         | {2, 3, 4}      | 1 | 2 | 3 |
| {2, 3}               | {2, 3}         | {2, 3, 4}      | 2 | 2 | 3 |
| {2, 3, 4}            | {2, 3, 5}      | {2, 3, 4}      | 3 | 4 | 3 |
| {2, 3, 5}            | {2, 3}         | {2, 3, 4, Z}   | 4 | 2 | 5 |
| {2, 3, 4, <b>Z</b> } | {2, 3, 5}      | {2, 3, 4}      | 5 | 4 | 3 |

其对应的 DFA 状态转换图为:



现在对该 DFA 进行化简,最终得到下列化简后的状态转换图(先将其分成两组——终态组 {5}和非终态组 {0, 1, 2, 3, 4},再根据是否可继续划分来确定最后的组数):



# (1) (0 | 11\*0)\* 【新课本】

解: 先构造该正规式的转换系统:



由上述转换系统可得状态转换集  $K=\{S, 1, 2, 3, 4, Z\}$ ,状态子集转换矩阵如下表所示:

| $\varepsilon$ |
|---------------------------------------------------------------------------------------------------------------------------------------------|
| 2                                                                                                                                           |
| $\epsilon$ 3 $\epsilon$ 1                                                                                                                   |

| I              | I <sub>0</sub> | I <sub>1</sub> | K | 0 | 1 |
|----------------|----------------|----------------|---|---|---|
| ${S, 1, Z}$    | {1, <b>Z</b> } | {2, 3, 4}      | 0 | 1 | 2 |
| {1, <b>Z</b> } | {1, Z}         | {2, 3, 4}      | 1 | 1 | 2 |
| {2, 3, 4}      | {1, Z}         | {3, 4}         | 2 | 1 | 3 |
| {3, 4}         | {1, Z}         | {3, 4}         | 3 | 1 | 3 |



由状态子集转换矩阵可知, 状态 0 和 1 是等价的,而状态 2 和 3 是等价的,因此,合并等价 状态之后只剩下 2 个状态,也即 是最少状态的 DFA。

P74 12. 将图 3.24 非确定有穷自动机 NFA 确定化和最少化。[一眼可看出 a,b 箭弧上的 a 是

多余的] a

图 3.24 NFA 状态转换图

解: 设(DFA)M = {K, V<sub>T</sub>, M, S, Z}, 其中, K={[0], [0, 1], [1]}, V<sub>T</sub> ={a, b}, M: M([1], a) =[0] M([1], b) =  $\Phi$  M([0, 1], a) =[0, 1] M([0, 1], b) =[1]

$$\begin{split} &M \ ([0],a) = [0,1] \qquad M \ ([0],b) = [1] \\ &S = [1], \ Z = \{[0],[0,1]\} \end{split}$$

令[0,1]=2,则其相应的状态转换图为: 现在对该 DFA 进行化简,先把状态分为两组: 终态组 {0,2} 和非终态组 {1},易于发现 {0,2} 不可以继续划分,因此化简后的状态转换图如下:





正规文法为: S→a | aZ Z→aZ | a | bS

将 S→a | aZ 代入第二个式子,得到 Z→ (a | ba) Z | a | ba 得到 Z 的正规表达式为(a | ba)+ S 的正规表达式 a(a | ba)+|a

同理转换前的正规表达式为: a(a | (aa | ba))+| a 可证两个正规表达式等价。

#### P74 13. 构造下列正规式的 DFA:

(1) b(a|b)\*bab

此题的与 P74 第 11 题基本一样, 见上;

P74 15. 用两种方法将(NFA) M = ({X, Y, Z}, {0, 1}, M, {X}, {Z}), 构造相应的 DFA, 其中:

$$M(X, 0) = \{Z\}$$

$$M(X, 1) = {X}$$

$$M(Y, 0) = \{X, Y\}$$

$$M(Y,1) = \Phi$$

$$M(Z, 0) = \{X, Z\}$$

$$M(Z, 1) = {Y}$$

第一种方法: 先画出其状态转换图, 利用非子集法:



假设(DFA) M'=(K',  $V_T$ ', M', S', Z'),其中 K'={[X], [Y], [Z], [X,Y], [X, Z], [Y, Z], [X, Y, Z]},  $V_T$ '={0, 1},M'的规则如下表:

| I      | $I_0$     | $I_1$  | K | 0 | 1 |
|--------|-----------|--------|---|---|---|
| [X]    | [Z]       | [X]    | 0 | 2 | 0 |
| [Y]    | [X, Y]    | Φ      | 1 | 3 | Φ |
| [Z]    | [X, Z]    | [Y]    | 2 | 4 | 1 |
| [X, Y] | [X, Y, Z] | [X]    | 3 | 6 | 0 |
| [X, Z] | [X, Z]    | [X, Y] | 4 | 4 | 3 |
| [Y, Z] | [X, Y, Z] | [Y]    | 5 | 6 | 1 |

| $[X, Y, Z] \qquad [X, Y, Z]$ | [X, Y] | 6 | 6 | 3 |
|------------------------------|--------|---|---|---|
|------------------------------|--------|---|---|---|

其中[Y, Z]为不可到达状态,应该删去,所以 S'={[X]}, Z'={[Z], [X, Z], [X, Y, Z]}, 再进行 化简,发现4和6两状态等价,最后其DFA如下所示:



第二种方法: 先构造其对应的转换系统:



由上述转换系统可得状态转换集、状态子集转换矩阵如下表所示:

| I                        | I <sub>0</sub>           | I <sub>1</sub> | K | 0 | 1 |
|--------------------------|--------------------------|----------------|---|---|---|
| {S, X}                   | { <b>Z</b> , <b>Z</b> '} | {X}            | 0 | 1 | 2 |
| { <b>Z</b> , <b>Z</b> '} | {X, Z, Z'}               | { <b>Y</b> }   | 1 | 3 | 4 |
| {X}                      | { <b>Z</b> , <b>Z</b> '} | {X}            | 2 | 1 | 2 |
| {X, Z, Z'}               | {X, Z, Z'}               | {X, Y}         | 3 | 3 | 5 |
| <b>{Y}</b>               | {X, Y}                   | Ф              | 4 | 5 | Ф |
| {X, Y}                   | $\{X, Y, Z, Z'\}$        | {X}            | 5 | 6 | 2 |
| $\{X, Y, Z, Z'\}$        | $\{X, Y, Z, Z'\}$        | {X, Y}         | 6 | 6 | 5 |

先化简,分为非终态集  $\{2,4,5,0\}$  和终态集  $\{6,1,3\}$ ,易于发现可划分为 $\{0,2\}$ , $\{1\}$ , $\{3,6\}$ , {4}, {5}, 其 DFA 如下所示:



P74 16. 已知  $e_1 = (a|b)^*$ ,  $e_2 = (a^*b^*)^*$ , 试证明  $e_1 = e_2$ 。

证明:  $L(e_1)=L((a|b)^*)=(L(a|b))^*=(L(a)\cup L(b))^*=\{a,b\}^*$ ;

 $L(e_2)=L((a*b*)*)=(L(a*b*))*=(L(a*)L(b*))*=\{\{a\}*\{b\}*\}*=\{a,b\}*;$ 

#### 因此 e<sub>1</sub>= e<sub>2</sub> (得证)

P74 18. 根据下面正规文法构造等价的正规表达式:

$$B::=aB \mid c \qquad \cdots \quad 3$$

$$C:=aS \mid aA \mid bB \mid cC \mid a$$
 ······

解: 由③式可得 B= aB+c → B=a\*c

曲②式可得 A= cA + aB → A= c\*aa\*c

由①式可得 S= cC + a

由④式可得  $C = aS + aA + bB + cC + a \rightarrow C = c*(aS + aA + bB + a) \rightarrow$ 

C= c\*( aS + ac\*aa\*c + ba\*c + a) → S= cc\*( aS + ac\*aa\*c + ba\*c + a) + a = cc\*aS+ cc\*( ac\*aa\*c + ba\*c + a) + a = (cc\*a)\*( cc\*( ac\*aa\*c + ba\*c + a) + a) = (cc\*a)\*( cc\*( ac\*aa\*c | ba\*c | a) | a) 另一种答案是 S= c(ac | c)\*( ac\*aa\*c | ba\*c | aa | a) | a

P74 19.  $\Sigma = \{a, b\}$ , 写出下列正规集:

(1) (a | b)\*(aa | bb)(a | b)\*

解:  $L((a \mid b)*(aa \mid bb)(a \mid b)*) = L((a \mid b)*) L((aa \mid bb)) L((a \mid b)*) = (L (a \mid b))* {aa, bb} (L (a \mid b))* = {a, b}*{aa, bb}{a, b}*$ 

P75 20. 证明下列关系式成立,其中A、B是任意正规表达式。

- (1) A | A = A
- (3)  $A^* = \varepsilon |AA^*|$
- (4) (AB)\*A = A(BA)\*
- (1) 解:  $L(A|A) = L(A) \cup L(A) = L(A)$ , 所以 A|A = A;
- (3) 解:  $L(A^*) = (L(A))^*$ , $L(\varepsilon | AA^*) = \{\varepsilon\} \cup L(A)L(A^*) = (L(A))^*$ ,所以  $A^* = \varepsilon | AA^*$ ;
- (4) 解:  $(AB)^*A = ((AB)^0 \cup (AB)^1 \cup (AB)^2 \cup \cdots )A = A \cup ABA \cup ABABA \cup \cdots = A((BA)^0 \cup (BA)^1 \cup (BA)^2 \cup \cdots ) = A(BA)^*$ 。

第七次作业:

P142 1. 试分别消除下列文法的直接左递归(采用两种方法——重复法和改写法)

(1) G[E]:

 $E:=T\{AT\}$ 

$$E::=T \mid EAT \qquad \cdots \cdots \textcircled{1}$$

$$F::=(E) \mid i$$
 ······3

解: 先采用"重复法": 再采用"改写法":

$$T::=F\{MF\}$$

$$E'::=ATE' \mid \epsilon$$

$$F::=(E) \mid i \qquad \qquad T::=FT'$$

A::=+ | - 
$$T'$$
::=MFT' |  $\epsilon$ 

$$M:=* | / F:=(E) | i$$

A::=+ | -

M::=\* | /

(4) G[Z]:

```
Z::=V_1 ······①
          V_1::=V_2 | V_1 i V_2 ······②
                            ....③
          V_2::=V_3 | V_2+V_3
          V_3::=)V_1*|( ......
解: 先采用"重复法":
                                     再采用"改写法":
    Z:=V_1
                                       Z:=V_1
                                        V_1::=V_2V_1'
    V_1::=V_2\{iV_2\}
                                       V_1'::=i V_2 V_1' | \epsilon
    V_2::=V_3\{+V_3\}
                                        V_2::=V_3 V_2'
    V_3::=)V_1*|(
                                       V_2'::=+V_3V_2' | \epsilon
                                        V_3::=)V_1*|(
P142 2. 试分别消除下列文法的间接左递归
 (2) G[Z]:
          Z:=AZ \mid b ······①
          A::=\mathbb{Z} A \mid a \quad \cdots \quad 2
解(一): 将②式代入①式可得, Z::=ZAZ|aZ|b 消除左递归后得到:
          Z:=(aZ \mid b)Z'
          Z':=AZZ'| \epsilon
          A:=ZA \mid a
解(二): 将①式代入②式可得, A::= AZA | bA | a 消除左递归后得到:
          Z:=AZ|b
          A:=bAA' \mid aA'
          A'::=ZAA' \mid \varepsilon
P142 4. 试分别用两种方法(框图法和类 Pascal 语言或类 C 语言)写一个识别下面文法句
子的递归子程序
    文法 G[A]:
          A := [B \quad \cdots ]
          \mathbf{B} ::= \mathbf{X} | | \mathbf{B} \mathbf{A} \qquad \cdots \cdots \mathbf{2}
                            ....(3)
          X:=Xa \mid Xb \mid a \mid b
    解: 消除该文法的左递归和回溯,得到文法如下:
          A::=[B
          B:=X]B'
          B'::=AB'|\epsilon
          X:=aX' \mid bX'
          X'::=aX'|bX'|\epsilon
    用类 Pascal 语言写出其递归子程序:
    P(A): SCIN
            IF ch='[' THEN READ (ch) ELSE ERROR
            P(B)
            SCOUT
    P(B):
            SCIN
```

P(X)

IF ch=']' THEN READ (ch) ELSE ERROR **P(B') SCOUT SCIN P(B')**: IF ch='#' THEN **SCOUT** ELSE P(A) **P(B') SCOUT P(X)**: **SCIN** IF ch='a' THEN { READ (ch) P(X') } **ELSE** IF ch='b' THEN { READ (ch) P(X') } **ELSE ERROR SCOUT P(X'): SCIN** IF ch=']' THEN **SCOUT ELSE** IF ch='a' THEN { READ (ch) P(X') } **ELSE** IF ch='b' THEN { READ (ch) P(X') } ELSE **ERROR SCOUT** 

用框图法来表述: (此处仅给出 P(A)和 P(X')的框图形式, 其余相似从略)

当消除左递归和回溯之后,可能某些非终结符号例如 U 的右部会出现 $\epsilon$ 的情况,书上的处理方法是 $\epsilon$ 将自动获得匹配,并无对此类规则的具体处理方法,实际上应该求出 FOLLOW(U),对于 FOLLOW(U)中的每个终结符号进行判定,例如此例中的 P(X'),否则将无法判定出[a]



```
第八次作业:
P143 5. 对下面的文法 G[E]:
          E:=TE'
          E'::=+E | ε
          T::=FT'
          T'::=Τ | ε
          F::=PF'
          F'::=*F' | ε
          P := (E) |a|b| \wedge
 (1) 计算这个文法的每个非终结符号的 FIRST 和 FOLLOW;
 (2) 证明这个文法是 LL(1) 文法;
 (3) 构造它的 LL(1) 分析表并分析符号串 a*b+b;
解: (1) 构造 FIRST 集:
     FIRST(E')=\{+, \epsilon\}
     FIRST(F')=\{*, \epsilon\}
     FIRST(E)=FIRST(T)=FIRST(F)=FIRST(P)=\{(, a, b, \land)\}
     FIRST(T')=\{(, a, b, \epsilon, \land)\}
        构造 FOLLOW 集:
规则一
        \# \in FOLLOW(E)
                                           FOLLOW(E)={#}
规则二
        )∈FOLLOW(E)
                                            FOLLOE(E)={ ), #}
FIRST(E')-{ ε }⊆FOLLOW(T)
                                 FOLLOW(T)=\{+\}
FIRST(T')-\{\epsilon\}\subseteq FOLLOW(F)
                                 FOLLOW(F)=\{(, a, b, \land)\}
FIRST(F')-\{\epsilon\}\subseteq FOLLOW(P)
                                 FOLLOW(P)={*}
规则三
FOLLOW(E) \subseteq FOLLOW(E')
                                   FOLLOW(E')={# , )}
FOLLOW(E) \subseteq FOLLOW(T)
                                   FOLLOW(T)={+, #,) }
FOLLOW(T) \subseteq FOLLOW(T')
                                   FOLLOW(T')= {+, #,) }
FOLLOW(T) \subseteq FOLLOW(F)
                                    FOLLOW(F)=\{(, ), a, b, +, \#, \land\}
FOLLOW(F) \subseteq FOLLOW(F')
                                    FOLLOW(F')=\{(, ), a, b, +, \#, \land\}
FOLLOW(F) \subseteq FOLLOW(P)
```

FOLLOW(P)=  $\{(, ), a, b, +, \#, \land, *\}$ 

#### 最后结果为:

```
FIRST(E')={+, ε}

FIRST(F')={*, ε}

FIRST(E)=FIRST(T)=FIRST(F)=FIRST(P)={(, a, b, Λ)}

FIRST(T')={(, a, b, ε, Λ)}

FOLLOE(E)={), #}

FOLLOW(E')={#, )}

FOLLOW(T')={+, #, )}

FOLLOW(F')={(, ), a, b, +, #, Λ}

FOLLOW(F)={(, ), a, b, +, #, Λ}

FOLLOW(P)={(, ), a, b, +, #, Λ,*}
```

## (2) 证明该文法是 LL(1) 文法:

#### (3) 构造文法分析表

|    | a      | b      | +      | *      | (      | )      | Λ      | #      |
|----|--------|--------|--------|--------|--------|--------|--------|--------|
| E  | E→TE'  | E→TE'  |        |        | E→TE'  |        | E→TE'  |        |
| E' |        |        | E'→+E  |        |        | Ε'→ ε  |        | Ε'→ ε  |
| T  | T→FT'  | T→FT'  |        |        | T→FT'  |        | T→FT'  |        |
| T' | T' →T  | T' →T  | Τ' → ε |        | T' →T  | Τ' → ε | T' →T  | T' → ε |
| F  | F→PF'  | F→PF'  |        |        | F→PF'  |        | F→PF'  |        |
| F' | F' → ε | F' → ε | F' → ε | F'→*F' | F' → ε | F' → ε | F' → ε | F' → ε |
| P  | P →a   | P →b   |        |        | P →(E) |        | P → ∧  |        |

#### 下面分析符号串 a\*b+b

| 1       #E $a*b+b#$ $E \rightarrow TE'$ 2       #E'T $a*b+b#$ $T \rightarrow FT'$ 3       #E'T'F $a*b+b#$ $F \rightarrow PF'$ 4       #E'T'F'P $a*b+b#$ $P \rightarrow a$ 5       #E'T'F'a $a*b+b#$ $P \rightarrow a$ 6       #E'T'F' $p \rightarrow b$ $p \rightarrow a$ 6       #E'T'F' $p \rightarrow b$ $p \rightarrow b$ 7       #E'T'F' $p \rightarrow b$ $p \rightarrow b$ 8       #E'T'F'P $p \rightarrow b$ $p \rightarrow b$ 9       #E'T' $p \rightarrow b$ $p \rightarrow b$ 10       #E'T' $p \rightarrow b$ $p \rightarrow b$ 11       #E'T'F'P $p \rightarrow b$ $p \rightarrow b$ 12       #E'T'F'P $p \rightarrow b$ $p \rightarrow b$ 13       #E'T'F'B $p \rightarrow b$ | 步骤 | 分析栈       | 余留输入串                 | 所用的产生式                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----------|-----------------------|---------------------------|
| 3 #E'T'F a*b+b# F→PF' 4 #E'T'F'P a*b+b# P →a 5 #E'T'F'a a*b+b# 6 #E'T'F' *b+b# 7 #E'T'F'* b+b# 8 #E'T'F' b+b# 9 #E'T' b+b# 10 #E'T b+b# 11 #E'T'F b+b# 12 #E'T'F'P b+b# $F \to F$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1  | #E        | a*b+b#                | $E \rightarrow TE'$       |
| 4 #E'T'F'P a*b+b# P →a  5 #E'T'F'a a*b+b#  6 #E'T'F' *b+b# F'→*F'  7 #E'T'F'* b+b# F' → $\epsilon$ 9 #E'T' b+b# T' →T  10 #E'T b+b# T→FT'  11 #E'T'F b+b# F→PF'  12 #E'T'F'P b+b# P →b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2  | #E'T      | a*b+b#                | T→FT'                     |
| 5 #E'T'F'a a*b+b# 6 #E'T'F' *b+b# 7 #E'T'F'* *b+b# 8 #E'T'F' b+b# 9 #E'T' b+b# 10 #E'T b+b# 11 #E'T'F b+b# 12 #E'T'F'P b+b# $F' \rightarrow \epsilon$ $F \rightarrow \epsilon$ $F \rightarrow \epsilon$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3  | #E'T'F    | a*b+b#                | F→PF'                     |
| 6 #E'T'F' *b+b# F'→*F' 7 #E'T'F'* *b+b# 8 #E'T'F' b+b# F' → ε 9 #E'T' b+b# T→FT' 10 #E'T b+b# F→PF' 11 #E'T'F b+b# F→PF' 12 #E'T'F'P b+b# P→b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4  | #E'T'F'P  | a*b+b#                | $P \rightarrow a$         |
| 7 # E'T'F'* *b+b# 8 # E'T'F' b+b# F' $\rightarrow \epsilon$ 9 # E'T' b+b# T' $\rightarrow$ T 10 # E'T b+b# T $\rightarrow$ FT' 11 # E'T'F b+b# F $\rightarrow$ PF' 12 # E'T'F'P b+b# P $\rightarrow$ b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5  | #E'T'F'a  | a*b+b#                |                           |
| 8       # E'T'F' $b+b#$ $F' \rightarrow \epsilon$ 9       # E'T' $b+b#$ $T' \rightarrow T$ 10       # E'T $b+b#$ $T \rightarrow FT'$ 11       # E'T'F $b+b#$ $F \rightarrow PF'$ 12       # E'T'F'P $b+b#$ $P \rightarrow b$                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6  | # E'T'F'  | *b+b#                 | F'→*F'                    |
| 9 #E'T' b+b# T' →T 10 #E'T b+b# T→FT' 11 #E'T'F b+b# F→PF' 12 #E'T'F'P b+b# P →b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7  | # E'T'F'* | *b+b#                 |                           |
| 10 #E'T b+b# T→FT' 11 #E'T'F b+b# F→PF' 12 #E'T'F'P b+b# P→b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8  | # E'T'F'  | <b>b</b> + <b>b</b> # | $F' \rightarrow \epsilon$ |
| 11 #E'T'F b+b# F→PF' 12 #E'T'F'P b+b# P→b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9  | # E'T'    | b+b#                  | T' →T                     |
| 12 # E'T'F'P b+b# P →b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10 | # E'T     | <b>b</b> + <b>b</b> # | T→FT'                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11 | # E'T'F   | <b>b</b> + <b>b</b> # | F→PF'                     |
| 13 #E'T'F'b b+b#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12 | # E'T'F'P | b+b#                  | P →b                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13 | #E'T'F'b  | b+b#                  |                           |

| 14 | #E'T'F'        | + <b>b</b> # | $F' \rightarrow \epsilon$ |
|----|----------------|--------------|---------------------------|
| 15 | #E'T'          | +b#          | $T' \rightarrow \epsilon$ |
| 16 | #E'            | + <b>b</b> # | <b>E</b> '→+ <b>E</b>     |
| 17 | # <b>E</b> +   | + <b>b</b> # |                           |
| 18 | $\#\mathbf{E}$ | b#           | E→TE'                     |
| 19 | #E'T           | b#           | T→FT'                     |
| 20 | #E'T'F         | b#           | F→PF'                     |
| 21 | # E'T'F'P      | b#           | $P \rightarrow b$         |
| 22 | # E'T'F'b      | b#           |                           |
| 23 | # E'T'F'       | #            | $F' \rightarrow \epsilon$ |
| 24 | # E'T'         | #            | <b>T</b> ′ → ε            |
| 25 | #E'            | #            | <b>E</b> '→ ε             |
| 26 | #              | #            | 成功                        |
|    |                |              |                           |

所以符号串 a\*b+b 是该文法的句子;

### P144 6. 对下列文法,构造相应的 FIRST 和 FOLLOW:

- (1) S := aAd
  - A ::= BC
  - $B ::= b \mid \epsilon$
  - $C ::= c \mid \varepsilon$
- (2)  $A := BCc \mid gDB$ 
  - $B ::= \epsilon \mid bCDE$
  - $C := DaB \mid ca$
  - $D \colon := \epsilon \mid dD$
  - $E := gAf \mid c$

### 解: (1)

构造 FIRST 集

 $FIRST(S)=\{a\}$ 

FIRST(B)= $\{b, \epsilon\}$ 

FIRST(C)= $\{c, \epsilon\}$ 

FIRST(A)= $\{b, c, \epsilon\}$ 

构造 FOLLOW 集

规则一

 $\# \in FOLLOW(S)$  FOLLOW(S)={#}

规则二

 $d \in FOLLOW(A)$  FOLLOE(A)={d}

 $FIRST(C)-\{ \epsilon \} \subseteq FOLLOW(B)$   $FOLLOW(B)=\{c\}$ 

规则三

 $FOLLOW(A) \subseteq FOLLOW(B)$   $FOLLOW(B)=\{d, c\}$ 

 $FOLLOW(A) \subseteq FOLLOW(C)$   $FOLLOW(C)=\{d\}$ 

最后结果为:

 $FIRST(S)=\{a\}$ 

```
FIRST(A)=\{b, c, \epsilon\}
FIRST(B)=\{b, \epsilon\}
FIRST(C)=\{c, \epsilon\}
FOLLOW(S)={#}
FOLLOW(A)=\{d\}
FOLLOW(B)=\{d, c\}
FOLLOW(C)=\{d\}
 (2)
构造 FIRST 集
规则二
  FIRST(A)=\{g\},
  FIRST(B)=\{b, \epsilon\},\
  FIRST(C)=\{c\},\
  FIRST(D)=\{d, \epsilon\},\
  FIRST(E)=\{g, c\}.
规则三
  FIRST(A)=\{g, b, c\},\
  FIRST(C)=\{a, c, d\},\
  FIRST(A)=\{a, b, c, d, g\}.
构造 FOLLOW 集
规则一
\# \in FOLLOW(A)
                                       FOLLOW(A)={#}
规则二
f∈FOLLOW(A)
                                      FOLLOE(A)={ f, #}
c \in FOLLOW(C)
                                      FOLLOE(C)=\{c\}
a \in FOLLOW(D)
                                       FOLLOE(D)=\{a\}
FIRST(Cc)-\{ \epsilon \} \subseteq FOLLOW(B)
                                       FOLLOW(B)=\{c, d, a\}
FIRST(B)-\{ \epsilon \} \subseteq FOLLOW(D)
                                       FOLLOW(D)=\{b, a\}
FIRST(DE)-{ \epsilon}\subseteqFOLLOW(C)
                                        FOLLOW(C)=\{d, g, c\}
FIRST(E) \subseteq FOLLOW(D)
                                        FOLLOW(D)=\{b, c, a, g\}
规则三
FOLLOW(A) \subseteq FOLLOW(B)
                                     FOLLOW(B)=\{a, c, d, f, \#\}
FOLLOW(A) \subseteq FOLLOW(D)
                                      FOLLOW(D)=\{a, b, c, f, g, \#\}
FOLLOW(B) \subseteq FOLLOW(E)
                                      FOLLOW(E)=\{a, c, d, f, \#\}
FOLLOW(C) \subseteq FOLLOW(B)
                                      FOLLOW(B)=\{a, c, d, g, f, \#\}
```

```
FOLLOW(B) \subseteq FOLLOW(E) FOLLOW(E)= { a, c, d, g, f, #}
最后结果为:
  FIRST(A)=\{a, b, c, d, g\},\
  FIRST(B)=\{b, \epsilon\},\
  FIRST(C)=\{a, c, d\},\
  FIRST(D)=\{d, \epsilon\},\
  FIRST(E)=\{g, c\},\
  FOLLOE(A)={ f, #}
  FOLLOW(B)={a, c, d, g, f, \#},
  FOLLOW(C)=\{d, g, c\},\
  FOLLOW(D)=\{a, b, c, f, g, \#\},
  FOLLOW(E)= \{a, c, d, g, f, \#\}.
P144 9. 设已给文法 G[S]:
    S := SaB \mid bB
    A ::= Sa \mid a
    B := Ac
 (1) 将此文法改写为 LL(1) 文法
 (4) 构造 LL(1) 分析表
解: 该题消除左递归之后, 文法变为 S::=bBS' S'::=aBS'|ε A::=Sa|a
     B := Ac
  FIRST(S)=\{b\},\
  FIRST(A)=\{a, b\},\
  FIRST(B)=\{a, b\},\
  FOLLOE(S)=\{a, \#\},\
  FOLLOW(S')=\{a, \#\},\
  FOLLOW(A) = \{c\},\
  FOLLOW(B)=\{a, \#\}.
```

|    | a                                    | b       | c | #                    |
|----|--------------------------------------|---------|---|----------------------|
| S  |                                      | S∷=bBS' |   |                      |
| A  | A := a                               | A∷=Sa   |   |                      |
| В  | B := Ac                              | B := Ac |   |                      |
| S' | $S' ::= aBS'$ , $S' ::= \varepsilon$ |         |   | $S' ::= \varepsilon$ |

存在冲突,不是 LL(1)文法,主要的冲突在于[S', a]此栏,是 LL(2)文法,即每次遇见当前 非终结符号为 S'时,要向前看两个符号才可,改写以上 LL(1)分析表如下:

|    | a(第一个字符)     |                      | b       | c | #      |
|----|--------------|----------------------|---------|---|--------|
| S  |              |                      | S∷=bBS' |   |        |
| A  | A∷=a         |                      | A∷=Sa   |   |        |
| В  | B∷=Ac        |                      | B∷=Ac   |   |        |
| S' | a 或 b(第二个字符) | c(第二个字符)             |         |   |        |
|    | S' := aBS'   | $S' ::= \varepsilon$ |         |   | S'::=ε |

#### 第九次作业:

P144 10. 证明下述文法不是简单优先文法:

(1) S := bEb

 $E := E + T \mid T$ 

(2) S := bEb

 $E := F \mid F+T \mid T \mid i$ 

 $T := i \mid (E)$ 

#### 证明:

(1)画语法树:



可以得出 b=E 和 b<E,因此该文法不是简单优先文法。

(2)因该文法中含

 $E \mathbin{\raisebox{.3pt}{:}\!=} i$ 

T∷=i

右部两个产生式相同,故该文法不是简单优先文法.

P145 11. 构造下述文法的优先关系矩阵,它们是简单优先文法吗?

 $S := M \mid U$ 

M∷=iEtMeM | a

U∷=iEtS | iEtMeU

E := b

$$\mathbf{B}_{L^{+}} = \begin{array}{c} & \text{S M U E i teab} \\ & \text{O 1 1 0 1 0 0 1 0} \\ & \text{U} \\ & \text{O 0 0 0 1 0 0 1 0} \\ & \text{O 0 0 0 1 0 0 0 0} \\ & \text{O 0 0 0 0 0 0 0 0 0} \\ & \text{t} \\ & \text{e} \\ & \text{a} \end{array}$$

b 000000000

b 000000000

$$B_{\text{R}} = \begin{array}{c} B_{\text{L}} \times B_{\text{L}}^{+} \\ \text{SMUE} i t e a b \\ S & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ M & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ U & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ U & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ U & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ U & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ U & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ U & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ U & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ U & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ i & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ e & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ e & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ e & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ e & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ e & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ e & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ e & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ e & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ e & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ e & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ e & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ e & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ e & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ e & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ e & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ e & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ e & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ e & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ e & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ e & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ e & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ e & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ e & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ e & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ e & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ e & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ e & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ e & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ e & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ e & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ e & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ e & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ e & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ e & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ e & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ e & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ e & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ e & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ e & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ e & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ e & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ e & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ e & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ e & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ e & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ e & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ e & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ e & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ e & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ e & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ e & 0 & 0 & 0 & 0 & 0 & 0 & 0$$





解法二: 找个句型画棵语法树即可:



优先关系矩阵如下:

|   | S | M   | U | i | E | t        | e   | a | b |
|---|---|-----|---|---|---|----------|-----|---|---|
| S |   |     |   |   |   |          |     |   |   |
| M |   |     |   |   |   |          | = > |   |   |
| U |   |     |   |   |   |          |     |   |   |
| i |   |     |   |   | = |          |     |   | < |
| E |   |     |   |   |   | =        |     |   |   |
| t | = | = < | < | < |   |          |     | < |   |
| e |   | =   | = | < |   |          |     | < |   |
| a |   |     |   |   |   |          | >   |   |   |
| b |   |     |   |   |   | <b>→</b> |     |   |   |

其中含多重定义的表项,因而该文法不是简单优先文法。

#### P145 12. 根据图 4.25 的语法树,确定全部优先关系:

P145 13. 利用表 4.6 文法 G[E]的优先关系矩阵,来分析符号串#b(((aa)a)a)b#和#((aa)a)#。

# (1) 是文法的句子

| 1       #       <       b(((aa)a)b#         2       #b        (((aa)a)a)b#         3       #b(        (((aa)a)a)b#         4       #b(()        ((aa)a)a)b#         5       #b(()        (aa)a)a)b#         6       #b(()(a       >       a)a)a)b#         7       #b(()(Ma)       =       a)a)a)b#         9       #b(()(Ma)       =       a)a)b#         10       #b()((L       >       a)a)b#       L::=Ma)         11       #b()(Ma)       =       a)a)b#       M::=(L         12       #b()(Ma)       =       a)b#       L::=Ma)         13       #b()(Ma)       >       a)b#       L::=Ma)         15       #b()M       =       a)b#       M::=(L         16       #b()Ma)       >       b#       L::=Ma)         17       #b()Ma)       >       b#       L::=Ma)         19       #bM       =       b#       M::=(L         20       #bMb       >       # | 步骤 | 符号栈        | 关系 | 输入串           | 规则     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|------------|----|---------------|--------|
| 3       #b(        ((aa)a)a)b#         4       #b(()        (aa)a)a)b#         5       #b(((a)       >       aa)a)a)b#         6       #b(((a)       >       aa)a)a)b#         7       #b(((Ma)       =       a)a)a)b#         8       #b(((Ma)       =       a)a)b#         9       #b(((Ma)       >       a)a)b#         10       #b(((L)       >       a)a)b#       L::=Ma)         11       #b((Ma)       =       a)a)b#       M::=(L         12       #b((Ma)       =       a)b#       L::=Ma)         13       #b((Ma)       >       a)b#       L::=Ma)         15       #b(M       =       a)b#       M::=(L         16       #b(Ma)       >       b#         17       #b(Ma)       >       b#         18       #b(L       >       b#       L::=Ma)         19       #bMb       =       b#       M::=(L         20       #bMb       >       #             | 1  | #          | <  | b(((aa)a)a)b# |        |
| 4       #b(()       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2  | #b         | <  | (((aa)a)a)b#  |        |
| 5 #b(((                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3  | #b(        | <  | ((aa)a)a)b#   |        |
| 6 #b(((a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4  | #b((       | <  | (aa)a)a)b#    |        |
| 7       #b(((Ma)       =       a)a)a)b# M::=a         8       #b(((Ma)       =       )a)a)b#         9       #b(((Ma)       >       a)a)b# L::=Ma)         10       #b(((L       >       a)a)b# M::=(L         12       #b((Ma)       =       )a)b#         13       #b((Ma)       >       a)b#         14       #b((L       >       a)b# L::=Ma)         15       #b(Ma)       =       a)b# M::=(L         16       #b(Ma)       >       b#         17       #b(Ma)       >       b#         18       #b(L       >       b# L::=Ma)         19       #bM       =       b# M::=(L         20       #bMb       >       #                                                                                                                                                                                                                                          | 5  | #b(((      | <  | aa)a)a)b#     |        |
| 8       #b(((Ma)       =       )a)a)b#         9       #b(((Ma)       >       a)a)b#         10       #b(((L       >       a)a)b#       L::=Ma)         11       #b((Ma)       =       a)a)b#       M::=(L         12       #b((Ma)       =       a)b#       L::=Ma)         13       #b((Ma)       >       a)b#       L::=Ma)         14       #b(M       =       a)b#       M::=(L         15       #b(Ma)       =       b#       L::=Ma)         15       #b(Ma)       >       b#       L::=Ma)         17       #b(Ma)       >       b#       L::=Ma)         19       #bM       =       b#       M::=(L         20       #bMb       >       #                                                                                                                                                                                                               | 6  | #b(((a     | >  | a)a)a)b#      |        |
| 9 #b(((Ma) > a)a)b#  10 #b(((L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7  | #b(((M     | =  | a)a)a)b#      | M∷=a   |
| 10       #b(((L       >       a)a)b# L::=Ma)         11       #b((M       =       a)a)b# M::=(L         12       #b((Ma)       =       a)b#         13       #b((Ma)       >       a)b#         14       #b((L       >       a)b# L::=Ma)         15       #b(Ma)       =       a)b# M::=(L         16       #b(Ma)       >       b#         17       #b(Ma)       >       b#         18       #b(L       >       b# L::=Ma)         19       #bM       =       b# M::=(L         20       #bMb       >       #                                                                                                                                                                                                                                                                                                                                                  | 8  | #b(((Ma    | =  | )a)a)b#       |        |
| 11       #b((Ma)       =       a)a)b# M::=(L         12       #b((Ma)       =       )a)b#         13       #b((Ma)       >       a)b#         14       #b((L       >       a)b# L::=Ma)         15       #b(Ma)       =       )b#         16       #b(Ma)       =       )b#         17       #b(Ma)       >       b#         18       #b(L       >       b# L::=Ma)         19       #bM       =       b# M::=(L         20       #bMb       >       #                                                                                                                                                                                                                                                                                                                                                                                                           | 9  | #b(((Ma)   | >  | a)a)b#        |        |
| 12       #b((Ma)       =       )a)b#         13       #b((Ma)       >       a)b#         14       #b((L       >       a)b#       L::=Ma)         15       #b(Ma)       =       a)b#       M::=(L         16       #b(Ma)       =       b#         17       #b(Ma)       >       b#         18       #b(L       >       b#       L::=Ma)         19       #bM       =       b#       M::=(L         20       #bMb       >       #                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10 | #b(((L     | >  | a)a)b#        | L∷=Ma) |
| 13       #b((Ma)       >       a)b#         14       #b((L       >       a)b#       L::=Ma)         15       #b(M       =       a)b#       M::=(L         16       #b(Ma)       =       b#         17       #b(Ma)       >       b#         18       #b(L       >       b#       L::=Ma)         19       #bM       =       b#       M::=(L         20       #bMb       >       #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11 | #b((M      | =  | a)a)b#        | M∷=(L  |
| 14       #b((L)       >       a)b# L::=Ma)         15       #b(M)       =       a)b# M::=(L         16       #b(Ma)       =       b#         17       #b(Ma)       >       b#         18       #b(L)       >       b# L::=Ma)         19       #bM       =       b# M::=(L         20       #bMb       >       #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12 | #b((Ma     | =  | )a)b#         |        |
| 15       #b(M       =       a)b# M::=(L         16       #b(Ma)       =       )b#         17       #b(Ma)       >       b#         18       #b(L       >       b# L::=Ma)         19       #bM       =       b# M::=(L         20       #bMb       >       #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 13 | #b((Ma)    | >  | a)b#          |        |
| 16       #b(Ma       =       )b#         17       #b(Ma)       >       b#         18       #b(L       >       b#       L::=Ma)         19       #bM       =       b#       M::=(L         20       #bMb       >       #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14 | #b((L      | >  | a)b#          | L∷=Ma) |
| 17       #b(Ma)       >       b#         18       #b(L       >       b#       L∷=Ma)         19       #bM       =       b#       M∷=(L         20       #bMb       >       #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 15 | #b(M       | =  | a)b#          | M∷=(L  |
| 18       #b(L       >       b# L::=Ma)         19       #bM       =       b# M::=(L         20       #bMb       >       #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 16 | #b(Ma      | =  | )b#           |        |
| 19 #bM = b# M∷=(L<br>20 #bMb > #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 17 | #b(Ma)     | >  | b#            |        |
| 20 #bMb > #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 18 | #b(L       | >  | <b>b</b> #    | L∷=Ma) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 19 | #bM        | =  | b#            | M::=(L |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20 | #bMb       | >  | #             |        |
| 21 #Z > # Z∷=bMb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 21 | # <b>Z</b> | >  | #             | Z∷=bMb |

# (2) 不是文法的句子

| (-) | 1 /C/CIMHT TT |    |          |        |
|-----|---------------|----|----------|--------|
| 步骤  | 符号栈           | 关系 | 输入串      | 规则     |
| 1   | #             | <  | ((aa)a)# |        |
| 2   | #(            | <  | (aa)a)#  |        |
| 3   | #((           | <  | aa)a)#   |        |
| 4   | #((a          | >  | a)a)#    |        |
| 5   | #((M          | =  | a)a)#    | M∷=a   |
| 6   | #((Ma         | =  | )a)#     |        |
| 7   | #((Ma)        | >  | a)#      |        |
| 8   | #((L          | >  | a)#      | L∷=Ma) |
| 9   | #(M           | =  | a)#      | M∷=(L  |
| 10  | #(Ma          | =  | )#       |        |
| 11  | #(Ma)         | >  | #        |        |
| 12  | #(L           | >  | #        | L∷=Ma) |
| 13  | #M            | >  | #        | M∷=(L  |
|     |               |    |          |        |

第十次作业:

P146 17. 设已给文法 G[S]:

```
E :: = E + T \mid T
T :: = T * F \mid F
F :: = P \uparrow F \mid P
P :: = (E) \mid i
```

- (1) 构造此文法的算符优先矩阵;
- (2) 用迭代法构造优先函数;
- (3) 用有向图法构造优先函数;
- (4) 用优先函数表分析符号串 i+i\*i ↑ i

## 解: (1)

```
0 0 0 0 0 0 0 0 0 0
           )
               0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0
               ETFP(i*+) |
               A111110000-
           T
               0\ 1\ 1\ 1\ 1\ 1\ 0\ 0\ 0\ 0
               0 \ 0 \ 1 \ 1 \ 1 \ 1 \ 0 \ 0 \ 0 \ 0
               0 0 0 1 1 1 0 0 0 0
  B^{\Gamma*}=
               0 0 0 0 1 0 0 0 0 0
               0 0 0 0 0 1 0 0 0 0
               0 0 0 0 0 0 1 0 0 0
               0 0 0 0 0 0 0 1 0 0
           )
               0\ 0\ 0\ 0\ 0\ 0\ 0\ 1\ 0
               9000000001-
               ETFP(i*+) |
           Ε
               ,0000000100-
               0\ 0\ 0\ 0\ 0\ 1\ 0\ 0\ 0
               0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 1
  B_{L_1} =
               0000110000
           P
               0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0
               0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0
           i
               0 0 0 0 0 0 0 0 0 0
               0 0 0 0 0 0 0 0 0 0
               0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0
               ~0000000000°
 B \cdot < B = B = B_{L^*} B_{L_1} =
               ETFP(i*+) |
                                               ETFP(i*+) |
               A 0 0 0 0 0 0 1 1 0-
                                           Ε
                                              -0000000100
           Τ
               0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0
                                           Т
                                                0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0
               0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0
                                           F
                                               0 0 0 0 0 0 0 0 0 1
B • < =
               00000000001
                                           P
                                                0 \ 0 \ 0 \ 0 \ 1 \ 1 \ 0 \ 0 \ 0 \ 0
                                       X
               1 1 1 1 1 1 0 0 0 0
                                                0 0 0 0 0 0 0 0 0 0
                                            i
                                                0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0
               0 0 1 1 1 1 0 0 0 0
                                                0 1 1 1 1 1 0 0 0 0
                                                0 0 0 0 0 0 0 0 0 0
               0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0
           )
                                            )
               9011110000
                                            1-0000000000
               ETFP(i*+) |
           Ε
               ~0 0 0 0 0 0 0 0 0 o
               0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0
           Т
               0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0
B \cdot < P
               0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0
```

```
(
              0 0 0 0 1 1 1 1 0 1
              0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0
              0\ 0\ 0\ 0\ 1\ 1\ 0\ 0\ 0\ 1
              0 0 0 0 1 1 1 0 0 1
          )
              0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0
              0 0 0 0 1 1 0 0 0 1
              ETFP(i*+) |
             $\theta 1 0 0 0 0 0 0 0 0 0 -
          T
              0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0
              0 \ 0 \ 1 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0
B_R =
              0 0 0 0 0 1 0 0 1 0
          (
              0 0 0 0 0 0 0 0 0 0
              0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0
              0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0
              00000000000
              )
              90000000000
```

```
ETFP(i*+) |
          Ε
               A 1 1 1 0 1 0 0 1 0 ·
          Τ
               0 1 1 1 0 1 0 0 1 0
               0 \ 0 \ 1 \ 1 \ 0 \ 1 \ 0 \ 0 \ 1 \ 0
B_{R^*}=
               0 0 0 1 0 1 0 0 1 0
               0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0
               0 0 0 0 0 1 0 0 0 0
           i
               0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0
               0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0
           +
               0 0 0 0 0 0 0 0 1 0
              0000000001
               ETFP(i*+) |
          Ε
               000000100-
               0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0
           T
               0 0 0 0 0 0 0 0 0 1
               0 0 0 0 0 1 0 0 1 0
\mathbf{B}_{\mathbf{R}_1} =
               0 0 0 0 0 0 0 0 0 0
               0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0
               0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0
```

9010000000

3 1

```
+ 1 0 0 0 0 0 0 0 0 0
                                + 0100000000
       ) 1111000000
                               ) 0000000000
       1 1 1 1 0 0 0 0 0 0 0
                               1 0010000000
          ETFP(i*+) |
       Ε
         A0000000000-
       T
          0 0 0 0 0 0 0 0 0 0
         0 0 0 0 0 0 0 0 0 0
B_{>}. =
          0 0 0 0 0 0 0 0 0 0
          0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0
          0 0 0 0 0 0 1 1 1 1
         0 0 0 0 0 0 1 1 1 0
         0000000110
         0000001111
         9000001110
```

|          | (   | i   | *   | +   | )  | <b>↑</b> |
|----------|-----|-----|-----|-----|----|----------|
| (        | • < | • < | • < | • < | =  | • <      |
| i        |     |     | >•  | >•  | >• | >•       |
| *        | • < | • < | >•  | >•  | >• | • <      |
| +        | • < | • < | • < | >•  | >• | • <      |
| )        |     |     | >•  | >•  | >• | >•       |
| <b>†</b> | • < | • < | >•  | >•  | >• | • <      |

#### 或

|          | +   | *   | <b>†</b> | (   | )  | i   |
|----------|-----|-----|----------|-----|----|-----|
| +        | >•  | • < | • <      | • < | >• | • < |
| *        | >•  | >•  | • <      | • < | >• | • < |
| <b>†</b> | >•  | >•  | • <      | • < | >• | • < |
| (        | • < | • < | • <      | • < | =  | • < |
| )        | >•  | >•  | >•       |     | >• |     |
| i        | >•  | >•  | >•       |     | >• |     |

#### (2) 用迭代法构造优先函数

若 R=S 则 f(R) =g(S)

若R·〈S则f(R) <g(S)

若 R> · S 则 f(R) >g(S)

# ① 初始值

|   | + | * | <b>†</b> | ( | ) | i |
|---|---|---|----------|---|---|---|
| f | 1 | 1 | 1        | 1 | 1 | 1 |
| g | 1 | 1 | 1        | 1 | 1 | 1 |

### ②根据•〈的优先关系修改 f 和 g 值

|  | + | * | 1 | (   | ) | i |
|--|---|---|---|-----|---|---|
|  | • |   |   | · · | , | - |

| f | 1 | 1 | 1 | 1 | 1 | 1 |
|---|---|---|---|---|---|---|
| g | 2 | 2 | 2 | 2 | 1 | 2 |

# ③根据>•的优先关系修改 f 和 g 值

|   | + | * | <b>†</b> | ( | ) | i |
|---|---|---|----------|---|---|---|
| f | 3 | 3 | 3        | 1 | 3 | 3 |
| g | 2 | 2 | 2        | 2 | 1 | 2 |

# ④根据=的优先关系修改 f 和 g 值

|   | + | * | <b>†</b> | ( | ) | i |
|---|---|---|----------|---|---|---|
| f | 3 | 3 | 3        | 1 | 3 | 3 |
| g | 2 | 4 | 4        | 4 | 1 | 4 |

# 重复②-④

|   | + | * | <b>†</b> | ( | ) | i |
|---|---|---|----------|---|---|---|
| f | 3 | 5 | 5        | 1 | 5 | 5 |
| g | 2 | 4 | 4        | 4 | 1 | 4 |

|   | + | * | <b>†</b> | ( | ) | i |
|---|---|---|----------|---|---|---|
| f | 3 | 5 | 5        | 1 | 5 | 5 |
| g | 2 | 4 | 6        | 6 | 1 | 6 |

|   | + | * | <b>†</b> | ( | ) | i |
|---|---|---|----------|---|---|---|
| f | 3 | 5 | 5        | 1 | 7 | 7 |
| g | 2 | 4 | 6        | 6 | 1 | 6 |

# 最终结果:

|   | + | * | <b>†</b> | ( | ) | i |
|---|---|---|----------|---|---|---|
| f | 3 | 5 | 5        | 1 | 7 | 7 |
| g | 2 | 4 | 6        | 6 | 1 | 6 |

(3)



# 优先函数为:

|   | + | * | <b>†</b> | ( | ) | i |
|---|---|---|----------|---|---|---|
| f | 4 | 6 | 6        | 2 | 9 | 9 |
| g | 3 | 5 | 8        | 8 | 2 | 8 |

# (4) 用优先函数表分析字符串 i+i\*i ↑ i

| 符号栈          | 关系                          | 输入串          | 最左素短语 |
|--------------|-----------------------------|--------------|-------|
| #            | f(#) • < g(i)               | i+i*i↑i#     |       |
| #i           | $f(i) > \bullet g(+)$       | +i*i↑i#      | i     |
| # \          | f(#) • < g(+)               | +i*i↑i#      |       |
| # \ +        | $f(+) \cdot < g(i)$         | i*i↑i#       |       |
| # V + i      | f(i) > • g(*)               | *i↑i#        | i     |
| #\+\         | f(+) • < g(*)               | *i↑i#        |       |
| #\+\*        | f(*) • < g(i)               | i↑i#         |       |
| # \/ + \/ *i | $f(i) > \cdot g(\uparrow)$  | ↑ <b>i</b> # | i     |
| #\+\*\       | $f(*) \cdot < g(\uparrow)$  | ↑ <b>i</b> # |       |
| #V+V*V↑      | $f(\uparrow) \cdot < g(i)$  | i#           |       |
| #∨+∨*∨↑i     | f(i) > • g(#)               | #            | i     |
| #V+V*V↑V     | $f(\uparrow) > \cdot g(\#)$ | #            | V↑V   |
| #\+\*\       | f(*) > • g#)                | #            | V*V   |
| #\+\         | f(+) > • g(#)               | #            | V+V   |
| # \          |                             | #            | 成功    |

# P146 19. 证明下面文法不是算符优先文法:

S := A[][[

 $A := aA \mid B$ 

B := a

证明: S→A[]

A→aA

 $A \rightarrow aA$ 

 $A \rightarrow B$ 

∴a ·< ]

 $A \rightarrow B$ 

 $B\rightarrow a$ 

∴ a >· ]

a > · ] 和 a · < ]矛盾,所以该文法非算符优先文法

# P146 21. 利用表 4.8 文法 G[E]优先关系矩阵分析下列句子:

i, i+i, i\*i+i, i\*(i\*i)以及 i\*(i+i\*i)+((i+i)\*i

# 解:以i\*i+i为例,其余类似:

| 符号栈      | 关系 | 输入串          | 最左素短语 |
|----------|----|--------------|-------|
| #        | •< | i*i+i#       |       |
| #i       | >· | *i+i#        | i     |
| # \      | •< | *i+i#        |       |
| # \/*    | •< | i+i#         |       |
| #∨*i     | >· | + <b>i</b> # | i     |
| # \/* \/ | >· | + <b>i</b> # | V*V   |
| # \      | •< | + <b>i</b> # |       |
| # \/+    | •< | i#           |       |
| # V+i    | >· | #            | i     |
| # \/+\/  | >· | #            | V+V   |
| # \      |    | #            | 成功    |

# ∴i\*i+i 是文法 G[E]的句子;

# 再以 i\*(i\*i)为例:

| 符号栈       | 关系 | 输入串      | 最左素短语 |
|-----------|----|----------|-------|
| #         | ·< | i*(i*i)# |       |
| #i        | >· | *(i*i)#  | i     |
| # \/      | •< | *(i*i)#  |       |
| # \/*     | •< | (i*i)#   |       |
| # V*(     | •< | i*i)#    |       |
| # \/*(i   | >. | *i)#     | i     |
| # V*(V    | •< | *i)#     |       |
| # \/*(\/* | •< | i)#      |       |

| # \/*(\/*i | >· | )# | i   |
|------------|----|----|-----|
| # V*(V*V   | >· | )# | V*V |
| # V*(V     | ÷  | )# |     |
| # \/*(\/)  | >· | #  | (V) |
| # \/* \/   | >· | #  | V*V |
| # \        |    | #  | 成功  |

∴i\* (i\*i) 是文法 G[E]的句子;

### P146 22. 设有文法 G[Z]:

 $Z := A \mid B$ 

 $A := aAb \mid c$ 

 $B := aBb \mid d$ 

- (1) 试构造能识别此文法的全部活前缀 DFA;
- (2) 试构造 LR(0)分析表;
- (3) 试分析符号串 aacbb 是否为此文法的句子。

解: 在上述文法中引入新的开始符号 Z',并将 Z'::=Z 作为第 0 个规则,从而得到所谓的拓广文法 G',则其 LR (0) 项目有:

- (1) Z' := Z (2) Z' := Z (3) Z := A (4) Z := A
- (5) Z := B (6) Z := B (7) A := aAb (8) A := aAb
- ①  $A := aA \cdot b$  ①  $A := aAb \cdot$  ① B := aBb ②  $B := a \cdot Bb$
- (3)  $B := aB \cdot b$  (4)  $B := aBb \cdot$  (5) B := d

**(1)** 



# (2)构造 LR(0)分析表

| 状态 |    | ACTION |    |           |     |   | GOTO |   |
|----|----|--------|----|-----------|-----|---|------|---|
|    | a  | b      | c  | d         | #   | Z | A    | В |
| 0  | S4 |        | S5 | <b>S6</b> |     | 1 | 2    | 3 |
| 1  |    |        |    |           | acc |   |      |   |
| 2  | r1 | r1     | r1 | r1        | r1  |   |      |   |
| 3  | r2 | r2     | r2 | r2        | r2  |   |      |   |
| 4  | S4 |        | S5 | <b>S6</b> |     |   | 7    | 8 |
| 5  | r4 | r4     | r4 | r4        | r4  |   |      |   |
| 6  | r6 | r6     | r6 | r6        | r6  |   |      |   |
| 7  |    | S9     |    |           |     |   |      |   |
| 8  |    | S10    |    |           |     |   |      |   |
| 9  | r3 | r3     | r3 | r3        | r3  |   |      |   |
| 10 | r5 | r5     | r5 | r5        | r5  |   |      |   |

规则顺序: r1: Z→A

r2:  $Z \rightarrow B$ 

r3: A→aAb

**r4: A→C** 

r5: B→aBb

**r6: B**→**d** 

# (3)分析符号串 aacbb 是否为该文法的句子

| 步骤 | 状态栈 | 符号栈  | 输入串    | 分析动作 | 下一状态 |
|----|-----|------|--------|------|------|
| 1  | 0   | #    | aacbb# | S4   | 4    |
| 2  | 04  | # a  | acbb#  | S4   | 4    |
| 3  | 044 | # aa | cbb#   | S5   | 5    |

| 4  | 0445  | #aac  | bb# | r4  | GOTO[4,A]=7 |
|----|-------|-------|-----|-----|-------------|
| 5  | 0447  | #aaA  | bb# | S9  | 9           |
| 6  | 04479 | #aaAb | b#  | r3  | GOTO[4,A]=7 |
| 7  | 047   | #aA   | b#  | S9  | 9           |
| 8  | 0479  | #aAb  | #   | r3  | GOTO[0,A]=2 |
| 9  | 02    | # A   | #   | r1  | GOTO[0,Z]=1 |
| 10 | 01    | #Z    | #   | acc | 成功          |

### P147 24. 给定文法:

E := EE + | EE \* | a

- (1) 构造它的 LR(0)项目集规范族;
- (2) 它是 SLR(1)文法吗? 若是,构造它的 SLR(1)分析表;
- (3) 它是 LR(1)文法吗? 若是,构造它的 LR(1)分析表;
- (4) 它是 LALR(1)吗? 若是,构造它的 LALR(1)分析表。

# 解:

(1) 在上述文法中引入新的开始符号 E',并将 E'作为第 0 个规则

r1:E::=EE+ r2: E::=EE\* r3: E::=a

# 则基本 LR(0)项目集为:

 $(1)E' ::= \bullet E \qquad (2)E' ::= E \bullet \qquad (3)E ::= \bullet E E + \qquad (4)E ::= E \bullet E + \\ (5)E ::= E E \bullet + \qquad (6)E ::= E E E + \qquad (7)E ::= \bullet E E * \qquad (8)E ::= E \bullet E * \\ (9)E ::= E E \bullet * \qquad (1)E ::= \bullet a \qquad (1/2)E ::= a \bullet$ 



(2) 在  $I_1$  中存在"移进 E o a"和"归约: E' o E o"冲突,因此该文法不是 LR(0)文法,但有  $FOLLOW(E') = \{\#\} \cap \{a\} = \Phi$ ,而该动作冲突可用 SLR(1)方法解决,该文法是 SLR(1) 文法,其分析表如下:

| 状态     |    | GOTO |    |     |   |
|--------|----|------|----|-----|---|
| 1/\125 | +  | *    | a  | #   | E |
| 0      |    |      | S2 |     | 1 |
| 1      |    |      | S2 | acc | 3 |
| 2      | r3 | r3   | r3 | r3  |   |
| 3      | S4 | S5   | S2 |     | 3 |
| 4      | r1 | r1   | r1 | r1  |   |
| 5      | r2 | r2   | r2 | r2  |   |

(3) 拓广文法:

- ① S'::=E
- ② E::= EE+
- ③ E ::= EE\*
- 4 E::=a

# 识别 G[S'] 的 LR(1)项目集及状态转移图如下:



### 文法 G[S'|LR(1)分析表:

|    |                |                | goto           |                |   |
|----|----------------|----------------|----------------|----------------|---|
| 状态 | +              | *              | a              | #              | E |
| 0  |                |                | S <sub>2</sub> |                | 1 |
| 1  |                |                | S <sub>4</sub> | acc            | 3 |
| 2  |                |                | r4             | r4             |   |
| 3  | S <sub>6</sub> | $S_7$          | S <sub>4</sub> |                | 5 |
| 4  | r4             | r4             | r4             |                |   |
| 5  | $S_8$          | $S_9$          | S <sub>4</sub> |                | 5 |
| 6  |                |                | r <sub>2</sub> | r <sub>2</sub> |   |
| 7  |                |                | r3             | r <sub>3</sub> |   |
| 8  | r <sub>2</sub> | r <sub>2</sub> | r <sub>2</sub> |                |   |
| 9  | r <sub>3</sub> | r <sub>3</sub> | r <sub>3</sub> |                |   |
|    |                |                |                |                |   |

不存在多重定义的元素, 所以该文法是 LR(1)文法。

# (4) 为 LALR(1)文法, 其分析如下:

|    |    | goto |                 |     |    |
|----|----|------|-----------------|-----|----|
| 状态 | +  | *    | a               | #   | E  |
| 0  |    |      | S <sub>24</sub> |     | 1  |
| 1  |    |      | S <sub>24</sub> | acc | 35 |
| 24 | r4 | r4   | r4              | r4  |    |

| 35 | S68            | S79            | S <sub>24</sub> |                | 35 |
|----|----------------|----------------|-----------------|----------------|----|
| 68 | r <sub>2</sub> | r <sub>2</sub> | r <sub>2</sub>  | r <sub>2</sub> |    |
| 79 | r3             | r3             | r3              | r3             |    |
|    |                |                |                 |                |    |

# P147 26. 对如下文法 G:

$$S := S(S)$$
  $S := \varepsilon$ 

构造 LR(1)项目规范集以及 LR(1)分析表,并用分析器给出(())的分析过程。解:

引入开始符号 S'。则拓广文法: S'->S, S->S(S), S-> ε。其中 r1: S->S(S) r2: S-> ε



LR(1)分析表如下所示:

| 状态  |           | GOTO      |     |   |
|-----|-----------|-----------|-----|---|
| 1人心 | (         | )         | #   | S |
| 0   | r2        |           | r2  | 1 |
| 1   | <b>S2</b> |           | acc |   |
| 2   | r2        | r2        |     | 3 |
| 3   | <b>S5</b> | S4        |     |   |
| 4   | r1        |           | r1  |   |
| 5   | r2        | r2        |     | 6 |
| 6   | <b>S5</b> | <b>S7</b> |     |   |
| 7   | r1        | r1        |     |   |

# 分析符号串(())

| 步骤 | 状态栈     | 符号栈     | 输入串   | 分析动作 | 下一状态        |
|----|---------|---------|-------|------|-------------|
| 0  | 0       | #       | (())# | r2   | GOTO[0,S]=1 |
| 1  | 01      | #S      | (())# | S2   | 2           |
| 2  | 012     | #S(     | ())#  | r2   | GOTO[2,S]=3 |
| 3  | 0123    | #S(S    | ())#  | S5   | 5           |
| 4  | 01235   | #S(S(   | ))#   | r2   | GOTO[5,S]=6 |
| 5  | 012356  | #S(S(S  | ))#   | S7   | 7           |
| 6  | 0123567 | #S(S(S) | )#    | r1   | GOTO[2,S]=3 |
| 7  | 0123    | #S(S    | )#    | S4   | 4           |
| 8  | 01234   | #S(S)   | #     | r1   | GOTO[0,S]=1 |
| 9  | 01      | #S      | #     | acc  | 成功          |

P148 30. 给出如下文法:

- $G_1[S]: S ::= aSbS \mid aS \mid c$
- $G_2[S]: S := aAa \mid aBb$  A := x B := x
- $G_3[S]: S := aAa \mid aBb \mid bAb$  A := x B := x
- $G_4[S]: S := aAa \mid aBb \mid bAb \mid bBa$  A := x B := x
- (1) 证明二义性文法 G<sub>1</sub>[S]不是 LR(0)文法;
- (2) 证明 G<sub>2</sub>[S]是 SLR(1)文法但不是 LR(0)文法;
- (3) 证明 G<sub>3</sub>[S]是 LR(1)文法但不是 SLR(1)文法;
- (4) 证明 G<sub>4</sub>[S]是 LR(1)文法但不是 LALR 文法。
- (1) 证明: 构造其 LR(0)项目集:
- $I_0: S' \rightarrow s$   $S \rightarrow aSbS$   $S \rightarrow aS$   $S \rightarrow c$
- $I_1: S \rightarrow a \cdot SbS \quad S \rightarrow a \cdot S \quad S \rightarrow c \quad S \rightarrow aSbS \quad S \rightarrow$
- I<sub>2</sub>: S->aS•bS S->aS•

因为 I<sub>2</sub>中出现了"移进-归约"冲突,因此不是 LR(0)文法;

- (2) 证明: 构造其 LR(0)项目集:
- $I_0: S' \rightarrow S \qquad S \rightarrow aAa \qquad S \rightarrow aBb$
- I<sub>1</sub>: S'->S•
- I<sub>2</sub>: S->a•Aa S->a•Bb A->•x B->•x
- I<sub>3</sub>: S->aA•a
- I<sub>4</sub>: S->aB•b
- I<sub>5</sub>: A->x• B->x•
- I<sub>6</sub>: S->aAa•
- I<sub>7</sub>: S->aBb•

由于 I<sub>5</sub>中出现了"归约-规约"冲突,因此 G<sub>2</sub>[S]不是 LR(0)文法;

- **∵**FOLLOW(A)= $\{a\}$  ∩ FOLLOW(B)= $\{b\}$ = $\Phi$
- ∴ACTION[i, a]= "用产生式 A->x 进行归约";

ACTION[i, b]= "用产生式 B->x 进行归约";

因而该文法为 SLR(1)文法。

- (3) 证明: 构造其 LR(1)项目集:
- I<sub>0</sub>: S'->•S, # S->•aAa, # S->•aBb, # S->•bAb, #
- I<sub>1</sub>: S'->S•, #
- $I_2$ : S->a•Aa, # A->•x, a S->a•Bb, # B->•x, b
- I<sub>3</sub>: S-> $b \cdot Ab$ , # A-> $\cdot x$ , b
- $I_4$ : A->x•, a B->x•, b

### (其余从略)

此时由  $I_4$ 可知存在"归约-归约"冲突,且 FOLLOW(A)= $\{a,b\}$   $\cap$  FOLLOW(B)= $\{b\}$   $\neq$   $\Phi$  故该文法不是 SLR(1)文法,但有 ACTION[i, a]="用产生式 A->x 进行归约",ACTION[i, b]= "用产生式 B->x 进行归约",所以是 LR(1)文法。

(4) 证明: 构造其 LR(1)项目规范集:

I<sub>0</sub>: S'->•S, # S->•aAa, # S->•aBb, # S->•bAb, # S->•bBa, #

- I<sub>1</sub>: S'->S•, #
- $I_2$ : S->a•Aa, # S->a•Bb, # A->•x, a B->•x, b
- I<sub>3</sub>: S->  $b \cdot Ab$ , # S-> $b \cdot Ba$ , # A-> $\cdot x$ , b B-> $\cdot x$ , a
- I<sub>4</sub>: S->aA•a, #
- I<sub>5</sub>: S->aB•b, #

I<sub>6</sub>: A-> $x \cdot$ , a B-> $x \cdot$ , b

I<sub>7</sub>: S->bA•b, #

I<sub>8</sub>: S->bB•a, #

I<sub>9</sub>: A-> $x \cdot$ , b B-> $x \cdot$ , a

I<sub>10</sub>: S->aAa•, #

 $I_{11}$ : S->aBb•, #

I<sub>12</sub>: S->bAb•, #

I<sub>13</sub>: S->bBa•, #

对于 I<sub>6</sub>与 I<sub>9</sub>并不存在"归约-归约"冲突,于 LR(1)文法相符;

然合并同心集 I<sub>6</sub>和 I<sub>9</sub>, 得: A->x, a/b B->x, a/b

出现了"归约-归约"冲突,故该文法并非 LALR 文法。

#### 第十一次作业:

P194 1. 按照语法制导翻译的一般原理,给出表达式(5\*4+8)\*2 的语法树各结点并注明语义值 VAL。

### 解:



# P194 2. 给出下面表达式的后缀式表示:

解: (2) ¬ a ∨ ¬ (c ∨ ¬ d) : a ¬ cd ¬ ∨ ¬ ∨

(3) a+b\*(c+d/e) : abcde/+\*+

 $(4) (a \land b) \lor (\neg c \lor d) : ab \land c \neg d \lor \lor$ 

(5) -a+b\*(-c+d) : a-bc-d+\*+

(6)  $(a \lor b) \land (c \lor \neg d \land e)$  :  $ab \lor cd \neg e \land \lor \land$ 

(7) if (x+y)\*z > 0 then  $(a+b) \uparrow c$  else  $a \uparrow b \uparrow c$  : xy+z\*p1 JEZ  $ab+c \uparrow p2$  JUMP  $ab \uparrow c \uparrow$ 

# P195 4. 将下列中缀式改写为后缀式表示:

解: (2)((a\*d+c)\*d+e)\*f+g : ad\*c+d\*e+f\*g+

(3) a+x\*(b+x\*(c+x\*(d+x\*(e+x\*f)))) : axbxcxdxexf\*+\*+\*+\*+

 $(4) x \le -5 \lor x \ge 5 \qquad : \qquad x5 - \le x5 \ge \lor$ 

### P195 5. 将下列后缀式改写为中缀式表示:

解: (1) abc-\*cd+e/- : a\*(b-c)-(c+d)/e

(3)  $abc+ \le a0 > \land ab+0 <> a0 < \land \lor$  :  $(a \le b+c \land a>0) \lor (a+b <> 0 \land a<0)$ 

P195 6. 利用所给的语义子程序给出下列算术表达式语法制导翻译过程:

以(1)(a+b)为例进行分析,(2)(3)两题与(1)类似;

解:参看 P118 表 4.15,该表存在错位,应纠正:

| 步骤 | 状态栈          | 符号栈   | 输入串    | 规约规则                                           | 调用子 程序 | 后缀表示 |
|----|--------------|-------|--------|------------------------------------------------|--------|------|
| 1  | 0            | #     | (a+b)# |                                                |        |      |
| 2  | 04           | #(    | a+b)#  |                                                |        |      |
| 3  | 045          | #(a   | +b)#   | F∷=i                                           | SUB6   | a    |
| 4  | 043          | #(F   | +b)#   | T∷=F                                           | SUB4   | a    |
| 5  | 042          | #(T   | +b)#   | E∷=T                                           | SUB2   | a    |
| 6  | 041          | #(E   | +b)#   |                                                |        | a    |
| 7  | 0416         | #(E+  | b)#    |                                                |        | a    |
| 8  | 04165        | #(E+b | )#     | F∷=i                                           | SUB6   | ab   |
| 9  | 04163        | #(E+F | )#     | T∷=F                                           | SUB4   | ab   |
| 10 | 04169        | #(E+T | )#     | $\mathbf{E} ::= \mathbf{E}^{(1)} + \mathbf{T}$ | SUB1   | ab+  |
| 11 | 048          | #(E   | )#     |                                                |        | ab+  |
| 12 | 048 <u>1</u> | #(E)  | #      | F::=(E)                                        | SUB5   | ab+  |
| 13 | 03           | #F    | #      | T∷=F                                           | SUB4   | ab+  |
| 14 | 02           | #T    | #      | E∷=T                                           | SUB2   | ab+  |
| 15 | 01           | #E    | #      | acc                                            |        |      |

P195 8. 写出下列赋值语句的自下而上语法制导翻译过程,并给出产生四元式序列: a:=b\*(c+d)

| 步骤 | 状态栈  | 符号栈       | PLACE                           | 输入串         | 规约规则   | 调用<br>子程<br>序 | 四元式 |
|----|------|-----------|---------------------------------|-------------|--------|---------------|-----|
| 1  | 0    | #         | -                               | a:=b*(c+d)# |        |               |     |
| 2  | 02   | #a        | $-\mathbf{V}^{\mathbf{a}}$      | :=b*(c+d)#  | V∷=i   | SUB8          |     |
| 3  | 03   | <b>#V</b> | $-\mathbf{V}^{\mathbf{a}}$      | :=b*(c+d)#  |        |               |     |
| 4  | 034  | #V:=      | -V <sup>a</sup> -               | b*(c+d)#    |        |               |     |
| 5  | 0349 | #V:=b     | -V <sup>a</sup> -F <sup>b</sup> | *(c+d)#     | F∷=i   | SUB7          |     |
| 6  | 0347 | #V:=F     | -V <sup>a</sup> -T <sup>b</sup> | *(c+d)#     | T := F | SUB5          |     |

| 7  | 0346                        | #V:=T      | -V <sup>a</sup> -T <sup>b</sup>                                   | *(c+d)# |                     |      |                                          |
|----|-----------------------------|------------|-------------------------------------------------------------------|---------|---------------------|------|------------------------------------------|
| 8  | 0346 <u>1</u>               | #V:=T*     | -V <sup>a</sup> -T <sup>b</sup>                                   | (c+d)#  |                     |      |                                          |
| 9  | 0346 <u>1</u> 8             | #V:=T*(    | -V <sup>a</sup> -T <sup>b</sup> -                                 | c+d)#   |                     |      |                                          |
| 10 | 0346 <u>1</u> 89            | #V:=T*(c   | -Va-Tb-Fc                                                         | +d)#    | F∷=i                | SUB7 |                                          |
| 11 | 0346 <u>1</u> 87            | #V:=T*(F   | -Va-Tb-Tc                                                         | +d)#    | T∷=F                | SUB5 |                                          |
| 12 | 0346 <u>1</u> 86            | #V:=T*(T   | -Va-Tb-Ec                                                         | +d)#    | E := T              | SUB3 |                                          |
| 13 | 0346 <u>1</u> 8 <u>2</u>    | #V:=T*(E   | -Va-Tb-Ec                                                         | +d)#    |                     |      |                                          |
| 14 | 0346 <u>1</u> 8 <u>20</u>   | #V:=T*(E+  | $-V^a-T^b-E^c-$                                                   | d)#     |                     |      |                                          |
| 15 | 0346 <u>1</u> 8 <u>20</u> 9 | #V:=T*(E+d | $-V^a-T^b-E^c-F^d$                                                | )#      | F := i              | SUB7 |                                          |
| 16 | 0346 <u>1</u> 8 <u>20</u> 7 | #V:=T*(E+F | -Va-Tb-Ec-Td                                                      | )#      | T∷=F                | SUB5 |                                          |
| 17 | 0346 <u>1</u> 8 <u>203</u>  | #V:=T*(E+T | $-\mathbf{V}^{\mathbf{a}}-\mathbf{T}^{\mathbf{b}}-\mathbf{T}_{1}$ | )#      | $E ::= E^{(1)} + T$ | SUB2 | (+, c, d, T <sub>1</sub> )               |
| 18 | 0346 <u>1</u> 8 <u>2</u>    | #V:=T*(E   | -V <sup>a</sup> -T <sup>b</sup> -T <sub>1</sub>                   | )#      |                     |      |                                          |
| 19 | 0346 <u>1</u> 8 <u>25</u>   | #V:=T*(E)  | -V <sup>a</sup> -T <sup>b</sup> -T <sub>1</sub>                   | #       | F::=(E)             | SUB6 |                                          |
| 20 | 0346 <u>14</u>              | #V:=T*F    | -V <sup>a</sup> -T <sub>2</sub>                                   | #       | $T ::= T^{(1)*}F$   | SUB4 | (*, b, T <sub>1</sub> , T <sub>2</sub> ) |
| 21 | 0346                        | #V:=T      | -V <sup>a</sup> -T <sub>2</sub>                                   | #       | E := T              | SUB3 | $(*, b, T_1, T_2)$                       |
| 22 | 0345                        | #V:=E      | -V <sup>a</sup> -T <sub>2</sub>                                   | #       | A∷=<br>V:=E         | SUB1 | (:=, T <sub>2</sub> , , a)               |
| 23 | 01                          | #A         | -                                                                 | #       | acc                 |      |                                          |

P195 10. 将下列布尔表达式翻译成四元式序列,并给出语法制导翻译过程(作为条件控制):  $a \land b \land c \gt d$ 

# 解: 四元式序列如下所示:



<BE>•FC 表示<BE>假出口的链首,每个链尾的四元式第 4 分量均为 0,表示结束标记

四元式

语法制导翻译过程

a∧b∧c>d

 $\underline{E} \land b \land c \ge d$  100 (jnz, a, , 0/102)

 $\{E \cdot TC := 100; E \cdot FC := 101\}$  101 (j, , , 0)

 $(2) \qquad \underline{\mathbf{E}}^{\wedge} \mathbf{b} \wedge \mathbf{c} > \mathbf{d}$ 

**(1)** 

(3)  $E^{\wedge}\underline{E} \wedge c > d$  102 (jnz, b, , 0/104) {E•TC:=102; E•FC:=103} 103 (j, , , 0/101)

(4)  $E^{\wedge}\underline{E}^{\wedge}$ 'c>d

```
\{BP(E^{(1)} \bullet TC=102, NXQ=104);
        E^{\wedge, \bullet}FC := E^{(1)} \bullet FC = 103
         \mathbf{E}^{\mathsf{\Lambda}}\mathbf{E}^{\mathsf{\Lambda}'}\mathbf{E}
                                                             104 (j>, c, d, 0)
(5)
       {E•TC:=104; E•FC:=105}
                                                             105 (j, , 0/103)
         E^{\Lambda}E^{(1)}
(6)
      \{E^{(1)} \bullet TC := E \bullet TC = 104; E^{(1)} \bullet FC := MERG(E^{\land `} \bullet FC = 103, E \bullet FC = 105) = 105\}
(7)
       \{ E^{(2)} \bullet TC = E^{(1)} \bullet TC = 104; E^{(2)} \bullet FC := MERG(E^{\land} \bullet FC = 101, E \bullet FC = 105) = 105 \}
第十二次作业:
P195 12. 写出下列条件赋值语句的四元式序列:
          z := if a > c then x+y else x+y-0.5
解:根据语义子程序,其条件赋值语句四元式序列为:
     100 (i>, a, c, 102)
     101 (j, , , 105)
     102 (+, x, y, T_1)
     103 (:=,T_1, , z)
     104 (j, , , 108)
     105 (+, x, y, T_2)
     106 (-, T_2, 0.5, T_3)
     107 (:=,T_3,-,z)
     108
P195 13. 将下列条件语句翻译成四元式序列:
       if x=y+1 then x := x*y else while x<>0 do
      begin x := x-1; y := y+2 end
解:根据语义子程序,其条件赋值语句四元式序列为:
     100 (+, y, 1, T_1)
     101 (j=, x, T_1, 103)
     102 (j, , , 106)
     103 (*, x, y, T_2)
     104 (:=,T_2, , x)
     105 (j, , , 113)
     106 (j <>, x, 0, 108)
     107 (j, , , 113)
     108 (-, x, 1, T_3)
     109 (:=, T_3, , x)
     110 (+, y, 2, T_4)
     111 (:=,T_4, , y)
```

P195 14. 将下列 while 语句翻译成四元式序列:

(2) while  $a < c \land b < d do$ 

112 (j, , , 113)

113

```
while a \le d do a := a+2
一 语法制导翻译过程:
(1) <u>W</u> A<C<B<D do.....
            \{\mathbf{W}\cdot\mathbf{Q}\cup\mathbf{AD}:=100\}
(2) W\underline{E}^{(1)} \wedge B < D
                              do.....
                                                           100(J<,A,C,102);
            \{E^{(1)} \cdot TC := 100, E^{(1)} \cdot FC := 101\}
                                                        101(J,-,-,0);
(3) WE^AB < D
                              do.....
            {BACKPATCH(E^{(1)}.TC:=100,NXQ=102);}
               E^{A} \cdot FC := E^{(1)} \cdot FC := 101
(4) \quad WE^{\mathbf{A}}E^{(2)}
                                                              102(J<,B,D,104)
                             do.....
              \{E^{(2)}\cdot TC:=102;E^{(2)}\cdot FC:=103\}
                                                              103(J,-,-,101)
(5) WE
              {E \cdot TC := E^{(2)} \cdot TC := 102;}
                 E \cdot FC := MERG(E^A \cdot FC = 101, E^{(2)} \cdot FC = 103) = 103
(6) \underline{\mathbf{W}}^{\mathbf{d}} if A:=1 then.....
               {BACKPATCH(E·TC=102,NXQ=104);
                  W^{d}·CHAIN:=E·TC=103;
                  W^d \cdot Q \cup AD := W \cdot Q \cup AD = 100
(7) W^d if \underline{E} then C:=C+1...
               {E·TC:=104;E·FC:=105}
                                                               104(J=,A,'1'.106)
                                                                 105(J,-,-,109)
(8) W^{d}\underline{C} C:=C+1 else.....
               {BACKPATCH(E·TC=104,NXQ=106);
                  C·CHAIN:=E·FC=105}
(9) W^{d}CS^{(1)}
                        else.....
                                                              106(+,C,'1',T_1)
                 {S<sup>(1)</sup>·CHAIN:=0;
                                                              107(:=,T_1,-,C)
                  T_1:=NEWTEMP
(10) W^{d}T^{P} while A \le D
                                      do.....
                    {q:=108;
                                                                   108(J,-,-.100)
                    BACKPATCH(C·CHAIN=105,NXQ=109);
                     T^{P} \cdot CHAIN:=MFRG(S^{(1)} \cdot CHAN=0, q:=108)\}
```

if a=1 then c :=c+1 else

```
(11) W^{\mathbf{d}}T^{\mathbf{P}}\underline{W}^{\mathbf{A}} = \mathbf{D} do.....
                   \{W'\cdot Q \cup AD:=NXQ=109\}
(12) W^{d}T^{P}W'\underline{E} do A:=A+2
                     {E·TC:=109;
                                                               109(J:=,A,D,111)
                       E·FC:=110}
                                                               110(J,-,-,100)
(13) W^dT^P\underline{W}^d A:=A+2
                     {BACKPATCH(E \cdot TC=109,NXQ=111);}
                        W<sup>d</sup>·CHAIN:=E·FC=110;
                        W^d \cdot Q \cup AD \text{:=} W \cdot Q \cup AD \text{=} 109\}
(14) \quad \mathbf{W}^{\mathbf{d}} \mathbf{T}^{\mathbf{P}} \mathbf{W}^{\mathbf{d'}} \mathbf{\underline{S}}^{(1)}
                       {S \cdot CHAIN := 0};
                                                                  111(+,A,'2',T<sub>2</sub>)
                       T_2:=NEWTEMP
                                                                       112(:=,T_2,-,A)
(15) W^{d}T^{P}S^{(2)}
                     {BACKPATCH(S^{(1)}·CHAINW^{d'}·Q \cup AD=109)
                      S^{(2)}·CHAIN:=W^{d'}·CHAIN=110} 113(J,-,-,109)
(16) W^dS^{(1)}
                     {S \cdot CHAIN := MERG(T^P \cdot CHAIN = 108;}
                      S<sup>(1)</sup>·CHAIN=110)=110}
(17) <u>S</u>
                  {BACKPATCH(S^{(1)} \cdot CHAIN=110, W^dQ \cup AD=100);
                   S \cdot CHAIN := W^d \cdot CHAIN = 103
                                                               114(return,-,-,0)
二 序列:
100(J<,A,C,102);
101(J,-,-,0)
102(J<,B,D,104)
103(J,-,-,101)
```

104(J=,A,'1'.106)

```
105(J,-,-,109)
```

$$107(:=,T_1,-,C)$$

$$112(:=,T_2,-,A)$$

P195 15. 根据 for 循环语句和条件语句的语义子程序, for i:=a+b\*2 to c+d+10 do if h>g then p:=p+1 被翻译成如下四元式序列:

100 
$$(*, b, 2, T_1)$$

101 
$$(+, a, T_1, T_2)$$

102 
$$(:=, T_2, , i)$$

103 
$$(+, c, d, T_3)$$

104 
$$(+, T_3, 10, T_4)$$

105 
$$(:=, T_4, , T)$$

111 
$$(+, p, 1, T_5)$$

112 
$$(:=, T_5, , p)$$

114