# 8086、8088 微处理器补充材料

# 2.1 086 的内部结构

8086 微处理器是 Intel 公司分别在 1978 年开发的。8086 均采用双列直插式封装 (DIP), 共有 40 个引脚。

# 2.1.1 8086 微处理器内部结构

微处理器 8086 是由算术逻辑单元 ALU、累加器、专用和通用寄存器、指令寄存器、指令译码器及定时和控制电路等组成。按照功能可以将 8086 的内部分成两个部分——总线接口单元 BIU(Bus Interface Unit)和执行单元 EU。如图 2.1所示。

### 1. 总线接口单元

总线接口单元 BIU 包括 4 个段寄存器、一个指令寄存器、一个与 EU 通信的内部暂存器、 先入先出的指令队列、总线控制逻辑和一个用于计算 20 位实际物理地址的加法器Σ。



图 2.1 8086 微处理器内部结构示意图

BIU 的主要功能是负责与存储器及 I/O 接口传送信息。一方面,BIU 根据计算得到的地址从内存中取出将要执行的指令到指令队列中,同时,如果指令执行需要数据,BIU 还负责根据计算出的地址,通过总线,到内存或者 I/O 端口中将数据取出,送到 EU 中;另一方面,EU 计算的结果如果需要存储到内存或者输出到 I/O 端口,则也是由 BIU 部件根据计算得到的地址将数据通过总线传到内存或 I/O 端口。

# 2. 执行单元

执行单元 EU 由 8 个通用寄存器和 1 个标志寄存器、算术逻辑单元 ALU 和 EU 控制系统 电路组成。EU 的功能是执行指令。

EU 从指令队列中取出指令代码,将其译码,发出相应的控制信号。从内存或 I/O 端口通过总线和 BIU 来的数据以及从 EU 的通用寄存器中来的数据在 ALU 中进行算术和逻辑运算。运算结果的特征将影响到标志寄存器 FLAGS 的相关位。运算的结果根据指令要求,存入通用寄存器或者通过 BIU 传送到内存或 I/O 端口。另外,EU 也负责计算内存地址,并将该地址传送给 BIU。由此可知,EU 负责所有指令的执行。

### 3. 总线接口单元与执行单元的配合

BIU 和 EU 虽然是 8086 处理器中的两个部件,但是他们之间是相互配合工作的。EU 会从指令队列中取出指令执行,由于 EU 从指令队列中将指令取走,指令队列会出现空字节,此时,BIU 就从内存中取出后续的指令代码放入队列中; 当 EU 需要数据时,BIU 根据 EU 给出的有效地址计算出实际的 20 位物理地址,并从指定的内存单元或外设中取出数据供 EU 使用;运算结束以后,BIU 将运算结果送入指定的内存单元或外设。如果指令队列的所有字节全空,EU 就会等待直到有指令为止。通常,当 8088 的指令队列空出 1 个字节、8086 的指令队列空出 2 个字节的时候,BIU 就会自动执行一次取指令周期,将新指令送入队列。一般情况下,程序是顺序执行,如果遇到跳转指令,BIU 就使指令队列复位,从新地址取出指令,并立即传给 EU 去执行。

BIU 和 EU 这两个功能部件是能够相互独立工作的,再加上 BIU 中有指令队列作为缓冲,因此,在大多数情况下,取指令和执行指令是可以重叠进行的。也就是说,当 EU 在执行第一条指令的同时,BIU 可以去取第二条指令,而当 EU 在执行第二条指令的同时,BIU 可以去取第三条指令,……以此类推如图 2.2所示。由此可以看到,大部分时候取指令的时间被执行上一条指令的时间"隐藏"了起来。从宏观上看,BIU 和 EU 两个单元大部分情况下是在并行工作。

| BIU | 取指1 | 取指2 | 取指3  | 取指4 | 取指5 | 取指 6 |      |          |
|-----|-----|-----|------|-----|-----|------|------|----------|
| EU  |     | 执行1 | 执行 2 | 执行3 | 执行4 | 执行 5 | 执行 6 | t        |
|     |     |     |      |     |     |      |      | <b>→</b> |

图 2.2 取指与执行指令的重叠进行

EU 和 BIU 并行工作,减少了 CPU 为取指令而等待的时间,提高了 CPU 的利用率,加快了整机的运行速度。另外,也降低了对存储器存取速度的要求。

但这种并行也会遇到一个问题,当 BIU 正在取指令的时候,执行上一条指令的 EU 可能由于需要数据或输出运算结果而发出了对总线访问的请求,此时,BIU 要通过总线取指令,EU 也要让 BIU 通过总线取数据或者写数据,这显然造成总线的冲突。因此规定,EU 的总线访问请求必须在 BIU 取指令完毕后才会被得到响应。

### 2.1.2 8088 和 8086 内部结构上的区别

Intel8088 微处理器的内部结构实质上与 8086 基本相同,其内部也由 BIU 与 EU 两部分组成,两个部分也是并行工作。但两者在 BIU 上还是表现出以下的区别。

- 8086 的指令队列有 6 个字节, 而 8088 的指令队列只有 4 个字节。
- 8086 的指令队列空出 2 个字节的时候,BIU 自动执行一次取指令周期。而 8088 是在指令队列空出 1 个字节的时候自动执行一次取指令周期。

尽管 8086 和 8088 的内部数据总线都是 16 位,但是与 8086 的 BIU 相连的 CPU 外部的数据总线依然是 16 位,而与 8088 的 BIU 相连的 CPU 外部的数据总线只有 8 位,因此 8088 也称为准 16 位机。

# 2.2 8086 的引脚信号

在微机系统和微机应用系统的分析与设计时,理解微处理器芯片的引脚功能是很重要的。

本节也是本章的重点和难点之一。

#### 1.8086 的工作方式

8086 有两种基本的工作方式: 最小方式和最大方式。

最小方式是指在系统中只有 8086 一个微处理器,系统中的所有总线控制信号都直接由 8086 产生,因此整个系统中的控制线路最简单。因为本课程实验采用 8086 最小方式,所以本书主要介绍最小方式。

最大方式是相对于最小方式而言的,指系统中含有两个或两个以上的总线主设备,其中一个就是8086,它为主处理器,其他都是协处理器。在8086系统中与其配合的协处理器有数值运算协处理器8087和输入/输出协处理器8089。PC机采用了最大工作方式。

8086 工作在何种方式,完全由硬件决定。当微处理器引脚的 MN/ MX 接高电平时,工作在最小方式,接低电平(地)时,则工作在最大方式。

### 2.8086的引脚

8086 外部采用 40 引脚双列直插式封装。图 2.3所示是 8086 引脚图,括号内为最大方式下引脚的定义。



图 2.3 8086 引脚

8086 芯片的各类信号线包括 20 根地址线、16 根 (8086)数据线及控制线、状态线、时钟线、电源线和地线等,总数大大超过了 40 根线。因此,为满足封装的要求,部分引脚必须采用一线多用的办法。

注意,在本教材所列信号中,信号名上有短横线或者信号名后面带#后缀,表明该信号

低电平有效。比如 INTA, IRDY#等。

- 1) 8086 最大方式和最小方式下公共引脚
- V<sub>CC</sub> 电源。8088 采用±10%单一+5V 电源。
- AD15~AD0(Address/Data Bus) 地址/数据复用线,双向工作。在总线周期开始的 T1 周期,作为 20 位地址总线的低 16 位发送地址信息。在总线周期的其他 T 周期,作为数据线读/写 16 位数据。
- A19/S6~A16/S3(Address/Status) 地址/状态复用输出线。S6 恒等于 0; S5 表明中断允许标志位的状态,S5=1 表明 CPU 可以响应可屏蔽中断的请求,S5=0 表明 CPU 禁止一切可屏蔽中断; S4 和 S3 的组合表明当前正在使用的段寄存器,详见
- 表 2.1。
- NMI(Non-Maskable Interrupt) 非屏蔽中断申请输入线。非屏蔽中断申请输入信号必须是一个由低到高的上升沿,这类中断是一种不可用软件屏蔽的中断。
- INTR(Interrupt Request) 可屏蔽中断申请输入线。可屏蔽中断申请信号高电平有效,这类中断可用软件屏蔽。

| S4 | S3 | 当前正在使用的寄存器    |  |  |
|----|----|---------------|--|--|
| 0  | 0  | ES            |  |  |
| 0  | 1  | SS            |  |  |
| 1  | 0  | CS 或未使用任何段寄存器 |  |  |
| 1  | 1  | DS            |  |  |

表 2.1 S4 和 S3 的组合所代表的正在使用的寄存器

- CLK(Clock) 时钟输入线。该引脚接至时钟发生器 8284 集成电路的输出线,由 8284 提供 8088 所需的 4.77MHz、33%占空比(即 1/3 周期为高电平, 2/3 周期为低电平)的系统时钟信号。
- RESET 系统复位信号输入线。RESET 信号高电平有效,8086 要求该信号的有效时间至少为 4 个时钟周期。接通电源或按 RESET 键,都可产生 RESET 信号。CPU接收到 RESET 信号后,立即停止当前操作,完成内部的复位过程,恢复到机器的起始状态,即 CS=FFFFH,而 IP, DS, ES, SS 以及标志寄存器 FLAGS 被清零,指令队列清空。由于复位后,CS:IP=0FFFFH:0000H,所以 PC 机开机或复位后,都会自动从这个地址开始取指令。
- READY "准备好"信号输入线。准备好信号是由被访问的内存或 I/O 设备发出的响应信号,高电平有效。当其有效时,表示内存或 I/O 设备已准备好,CPU 可以进行数据传送。若内存或 I/O 设备还未准备好,则使 READY 信号为低电平。CPU 采集到低电平的 READY 信号后,自动插入 1 个至多个等待周期 T<sub>w</sub>,直到 READY 变为高电平后,CPU 才脱离等待状态,完成数据传送过程。
- TEST 测试信号输入线。当 CPU 执行 WAIT 指令时,每隔 5 个时钟周期对 TEST 引脚进行一次测试。若为高电平,CPU 就仍处于空转状态进行等待,直到 TEST 引脚变为低电平,CPU 结束等待状态,执行下一条指令,以使 CPU 与外部硬件同步。
- RD(Read) 读信号输出线。读信号是一个低电平有效的输出信号,当 RD 为低电平时,表明 CPU 正在对内存或外设进行读操作。
- MN/ MX(Minimum/Maximum Mode Control) 最小/最大方式控制信号输入线。 该引脚接至高电平,8086 工作在最小方式;该引脚接至低电平,8086 工作在最大方式。
- BHE/S7(Bus High Enable/S7) 总线高允许/S7 状态输出。是高 8 位数据总线允许

信号。这是因为 8086 有 16 条数据线,它可以传送一个字,也可以用高 8 位数据线 或低 8 位数据线传送一个字节。 在总线周期开始的 T1 周期, 作为总线高 8 位允许信号,低电平有效。在总线周期的其他 T 周期,该引脚输出状态信号 S7。实际上,S7 时预留的,未被定义。  $\overline{BHE}$  /S7 与 AD0 的不同组合对应了不同的操作,见表 2.2。

| BHE/S7 | AD0 | 有效的数据引脚                                                        | 操作          |
|--------|-----|----------------------------------------------------------------|-------------|
| 0      | 0   | AD15~AD0 (一个总线周期同时访问奇体和偶体,从奇地址单元读/写数据的高 8 位,从偶地址单元读/写数据的低 8 位) | 从偶地址读/写一个字  |
| 1      | 0   | AD7~AD0                                                        | 从偶地址读/写一个字节 |
| 0      | 1   | AD15~AD8                                                       | 从奇地址读/写一个字节 |
| 0      | 1   | AD15~AD8 (第一个总线周期从奇地址读写字数据的低 8 位)                              | 从奇地址读/写一个字  |
| 1      | 0   | AD7~AD0(第二个总线周期从偶地址读写字数据的高 8 位)                                | 从可地址陕/与一个子  |

表 2.2 BHE /S7 与 AD0 的不同组合对应的操作

### 2) 最小方式下的引脚

8086 最小方式的基本配置如图 2.4所示,系统主要由 8086CPU、时钟发生器 8284、地址 锁存器及数据总线收发器组成。

由于地址与数据、状态线分时复用,因此系统中需要地址锁存器将地址锁存。数据线连至内存及外设,负载大,需用数据总线收发器做驱动。而控制总线一般负载较轻不需要驱动,故直接从8086引出。

最小方式下第24~第31引脚信号简介如下:

INTA(Interrupt Acknowledge) 中断响应信号输出线。中断响应信号低电平有效,
当 CPU 响应外设中断申请时,发出两个连续有效的 INTA 信号。



图 2.4 8086 最小方式下的配置

- ALE(Address Latch Enable) 地址锁存允许信号输出线。地址锁存允许信号是 8086 提供给地址锁存器的控制信号,高电平有效。
- DEN (Data Enable) 数据允许信号输出线。CPU 发出的数据允许信号作为数据 总线收发器的输出允许信号。当 CPU 处于 DMA 方式时,此线浮空。
- DT/R (Data Transmit/Receive) 数据发送/接收信号输出线。该信号用来控制数据

总线收发器的传送方向。该引脚为高电平,CPU 向内存或 I/O 端口发送数据;该脚为低电平,CPU 从内存或 I/O 端口接收数据;当 CPU 处于 DMA 方式时, $DT/\overline{R}$  被置为浮空态。

- M/IO(Memory/Input and Output) 存储器/输入和输出控制输出线。该引脚为高电平时,表示 CPU 正与内存进行数据传输;当其为低电平时,表示 CPU 正与 I/O 端口进行数据传送;当 CPU 处于 DMA 方式时,此线浮空。
- WR(Write) 写信号输出线。该引脚低电平表明 CPU 正在对内存或 I/O 端口进行写操作。当 CPU 处于 DMA 方式时,该信号置为浮空态。M/IO, WR 和 RD 信号的组合、对应的操作及 8086 指令之间的关系如表 2.3所示。

|   | WR | $\overline{\text{RD}}$ | 对应的操作          | 相关的指令举例         |
|---|----|------------------------|----------------|-----------------|
| 0 | 0  | 1                      | 写 I/O 端口       | OUT 43H, AL     |
| 0 | 1  | 0                      | 读 I/O 端口       | IN AL, DX       |
| 1 | 0  | 1                      | 写内存            | MOV [BX], AX    |
| 1 | 1  | 0                      | 读内存            | MOV AX, [1234H] |
| X | 0  | 0                      | 无效信号           | -               |
| X | 1  | 1                      | 非存储器或 I/O 读写操作 | MOV AX, BX      |

表  $2.3 \text{ M/}\overline{\text{IO}}$ , WR 和 RD 信号的组合和对应的操作

- HOLD(Hold Request) 总线保持请求信号输入线。当 8086CPU 外的总线主设备 要求占用总线时,通过该引脚向 CPU 发一个高电平的总线保持请求信号。
- HLDA(Hold Acknowledge) 总线保持响应信号输出线。当 CPU 接收到 HOLD 信号后,便发出高电平有效的 HLDA信号给以响应。此时,CPU 让出总线控制权,发出 HOLD请求的总线主设备获得总线的控制权。

### 3) 最大方式下的引脚

8086 最大方式的基本配置如图 2.5所示。



图 2.5 8086 最大方式下的配置

比较最大方式和最小方式的基本配置图,可以看出,最大方式和最小方式有关地址总线

和数据总线的电路部分基本相同,即都需要地址锁存器及数据总线收发器,而控制总线的电路部分有很大的差别。在最小方式下,控制总线直接从 8086 得到,不需外加电路;最大方式是多处理器方式,需要协调主处理器和协处理器的工作。因此,控制总线不能直接从 8086 引脚引出而需外加总线控制器 8288。

下面介绍最大方式下有关引脚的定义。

- QS1和QS0 (Instruction Queue Status) 指令队列状态输出线。QS1和QS0两个信号电平的不同组合指明了8086内部指令队列的状态,当QS1QS0为00,01,10和11的时候,分别代表指令队列无操作、从指令队列的第一个字节中取走代码、队列为空和除第一字节外还取走了后续字节中的代码。
- S2, S1和S0 (Bus Cycle Status) 总线周期状态信号输出线。低电平有效的三个状态信号连接到8288 总线控制器的输入线,8288 对这些信号进行译码后产生内存及 I/O 端口的读/写控制信号。三个状态信号的代码组合、对应的操作及8086产生的控制信号见表2.4。

| <u>S2</u> <u>S1</u> <u>S0</u> | 对应的操作    | 8288产生的控制信号  | 相关的指令举例         |
|-------------------------------|----------|--------------|-----------------|
| 000                           | 发中断响应信号  | ĪNTA         | 无               |
| 001                           | 读 I/O 端口 | TROC         | IN AL, DX       |
| 010                           | 写 I/O 端口 | TOWC 和 AIOWC | OUT DX, AL      |
| 011                           | 暂停       | 无            | NOP             |
| 100                           | 取指令      | MRDC         | 无               |
| 101                           | 读内存      | MRDC         | MOV AX, [1234H] |
| 110                           | 写内存      | MWTC 和 AMWC  | MOV [BX], AX    |
| 111                           | 无效       | 无            | 无               |

表 2.4 S2, S1 及 S0 的组合与相应操作

对于表中的前七种情况, $\overline{S2}$   $\overline{S1}$   $\overline{S0}$  三个状态信号中至少有一个为有效的低电平,每一种情况都对应一种总线操作。而第八种情况, $\overline{S2}$   $\overline{S1}$   $\overline{S0}$  皆为高电平,此时一个总线过程就要结束,另一个新的总线周期还未开始,通常称这种状态为无效状态。

- LOCK 总线封锁信号输出线。当LOCK 信号为低电平时,系统中其他的总线主设备不能获得系统总线的控制权。LOCK 信号由前缀指令 LOCK 产生,LOCK 指令后面的一条指令执行完后,LOCK 信号失效。另外,在 DMA 期间,LOCK 浮空。
- RQ/GT1和RQ/GT0(Request/Grant) 总线请求信号输入/总线请求允许信号输出线。这两个信号端可供 8086以外的 2 个总线主设备向 8086发送使用总线的请求信号 RQ(相当于最小方式时的 HOLD信号)。而 8086在现行总线周期结束后让出总线,发出总线请求允许信号 GT(相当于最小方式时的 HLDA信号),此时,外部的总线主设备便获得了总线的控制权。RQ/GT1比 RQ/GT0的优先级高。在IBMPC及 PC/XT中,8086的 RQ/GT1接至 8087的 RQ/GT0端。

#### 3.8088 与 8086 引脚的不同之处

8086 面世之际,市面上正式 8 位微处理器为主流处理器的时候,因此,当时所有的外部设备群采用的 8 位数据线,为了方便原来的 8 位机用户,1979 年 Intel 公司推出了内部 16 位结构、外部数据总线为 8 位的 Intel 8088,其指令系统和 8086 兼容。IBM 公司利用 Intel 8088 微处理器为核心研制的 IBM PC 成为个人计算机的主流机种之一。

8088 与8086 内部结构基本相同,外部都采用40 引脚双列直插式封装。图2.6所示是8088 引脚图,括号内为最大方式下引脚的定义。



图 2.6 8088 引脚

尽管 8088 与 8086 的大部分引脚是一样的,但依然存在一些不同之处。

- 数据与地址的复用线,8086 为 16 根( $AD_{15}\sim AD_0$ ),而 8088 为 8 根( $AD_7\sim AD_0$ )。 正是由于 8088 对外数据线只有内部数据线的一半,每次只能传输一半的数据,所以,8088 被称为准 16 位结构的微处理器。
- 8088 和 8086 的第 28 脚的功能是相同的,都是输入和输出/存储器控制输出线,但有效电平的高低定义不同,8086 的第 28 脚为 M/ IO,而 8088 的第 28 脚为 IO/ M,电平与 8086 正好相反。
- 8088 和 8086 的第 34 脚有所不同。8086 定义为 BHE /S7, 而在最小方式下, 8088 第 34 脚为 SSO (System Status Output) 是系统状态信号输出线。在最大方式下, 8088 的第 34 脚保持高电平。