Задача: Нека $n \in \mathbb{N}$. Колко са думите $w \in \{0,1\}^{2n}$, за които

- 1. $|w|_0 = |w|_1$
- 2. за всеки префикс $u: |u|_0 \ge |u|_1$?

Задачата има следната еквивалентна формулировка:

- (a) По колко начина може да стигнем от точката (0,0) до точката (n,n) в стандартна квадратна решетка, ако правим единични стъпки само надясно и нагоре? А ако трябва да не преминаваме над диагонала, свързващ тези две точки?
- (b) По колко коректни начина може да съставим дума от n откриващи и n закриващи скоби (пример: "(())" е коректна, а "())(" не)?

Решение:

(*a*)

Нека разгледаме квадратната решетка за n=4. Нейната размерност е 4×4 .

Очевидно за всяко n - пътя от началната до крайната точка ще е с дължина 2n. Нека означим движение надясно с r, а движение нагоре с u.

Съществено е да направим следните наблюдения:

Всеки един път от начлната до крайната точка ще е от вида $\underbrace{rurruu \dots urru}_{2}$

- Всички желани пътища ще имат еднаква дължина
- Ако R е множеството на поетите посоки надясно, а U е множеството на поетите посоки нагоре, то |R| = |U| = n.

Задачата се свежда до това да изберем n елементни подмножества на 2n елементно множество. Това може да стане по $C_{2n}^n = \binom{2n}{n} = \frac{(2n)!}{(n)!(n)!}$ начина.

Нека сега преброим пътищата, които не минават над диагонала свързващ началната и крайната точка, спазвайки същите правила.

Броя на тези пътища ще намерим като от броя на всички пътища извадим броя на "лошите" пътища, т.е. тези които си позволят да преминат през синия диагонал.

Нека разгледаме един такъв път, който е "лош". Например оранжевият такъв от картинката по-горе. Освен това нека разширим решетката с още един ред нагоре. По този начин ще получим решетка от n+1 реда и n колони. Сега, след като лошия път е пресякъл синия диагонал, то той или ще пресича и новия розов диагонал или най-малко ще има точка лежаща на него. От тази точка която лежи на розорвия диагонал, до края на пътя ще направим симетричния му спрямо розовия диагонал и по този начин новия път (със зелената проекция и старото начало на оригиналния път) ще се намират изцяло в решетката с размерност $n+1\times n-1$. Това може да го направим за всеки път, койото си позволи да премине синия диагонал. Така между множеството на всички пътища в решетка с размерност $n+1\times n-1$ и лошите (всички проектирани симетрично спрямо розовия диагонал) построихме биекция.

По този начин на всеки "лош" път съпоставихме път от (0,0) до (n-1,n+1). Обратно, ако имаме път от (0,0) до (n-1,n+1), то той минава над главния диагонал и заменяйки r с u и u с r (т.е. \to с \uparrow и \uparrow с \to) след първия момент k, в който $x_k < y_k$ (където с x_k сме отбелязали броя на x (, а с x_k броя на x) в катия момент/преход от пътя) получаваме "лош" път от (0,0) до (x,n), който минава над главния диагонал в момента x.

Но броя нвсички пътища в решетка с размерност $n+1 \times n-1$ е

$$C_{2n}^{n-1} = C_{2n}^{n+1} = \binom{2n}{n-1}$$
, например избираме $n-1$ подмножества от $2n$ елементно

множество (или аналогично n+1 подмножества от 2n елементно подмножество (биномните коефициенти от един ред са симетрични - τ риъгълник на Паскал))

Следователно броя на търсените пътища е равен на

$$\binom{2n}{n} - |BAD| = \binom{2n}{n} - \binom{2n}{n-1} = \frac{(2n)!}{n!n!} - \frac{(2n)!}{(n-1)!(n+1)!} = \binom{2n}{n} \left(1 - \frac{n}{n+1}\right) = \frac{1}{n+1} \binom{2n}{n}$$

което е *n*-тото число на Kaтaлан (https://en.wikipedia.org/wiki/Catalan_number).