

Chapter_9

Basics of Functional Dependencies and Normalization for Relational Databases

Informal Design Guidelines for Relational Databases

- We first discuss informal guidelines for good relational design
- Then we discuss formal concepts of functional dependencies and normal forms
 - 1NF (First Normal Form)
 - 2NF (Second Normal Form)
 - 3NF (Third Normal Form)
- Additional types of dependencies, further normal forms exist

Figure: A simplified COMPANY relational database schema

Figure A simplified COMPANY relational database schema.

Redundant Information in Tuples and Update Anomalies

- Information is stored redundantly
 - Wastes storage
 - Causes problems with update anomalies
 - Insertion anomalies
 - Deletion anomalies
 - Modification anomalies

Two relation schemas suffering from update anomalies

Figure

Two relation schemas suffering from update anomalies. (a) EMP_DEPT and (b) EMP_PROJ.

Sample states for EMP_DEPT and EMP_PROJ

Figure

Sample states for EMP_DEPT and EMP_PROJ resulting from applying NATURAL JOIN to the relations in Figure 14.2. These may be stored as base relations for performance reasons.

Ename	<u>Ssn</u>	Bdate	Address	Dnumber	Dname	Dmgr_ssn
Smith, John B.	123456789	1965-01-09	731 Fondren, Houston, TX	5	Research	333445555
Wong, Franklin T.	333445555	1955-12-08	638 Voss, Houston, TX	5	Research	333445555
Zelaya, Alicia J.	999887777	1968-07-19	3321 Castle, Spring, TX	4	Administration	987654321
Wallace, Jennifer S.	987654321	1941-06-20	291 Berry, Bellaire, TX	4	Administration	987654321
Narayan, Ramesh K.	666884444	1962-09-15	975 FireOak, Humble, TX	5	Research	333445555
English, Joyce A.	453453453	1972-07-31	5631 Rice, Houston, TX	5	Research	333445555
Jabbar, Ahmad V.	987987987	1969-03-29	980 Dallas, Houston, TX	4	Administration	987654321
Borg, James E.	888665555	1937-11-10	450 Stone, Houston, TX	1	Headquarters	888665555

			Redundancy	Redunda	ancy
EMP_PROJ					
Ssn	Pnumber	Hours	Ename	Pname	Plocation
123456789	1	32.5	Smith, John B.	ProductX	Bellaire
123456789	2	7.5	Smith, John B.	ProductY	Sugarland
666884444	3	40.0	Narayan, Ramesh K.	ProductZ	Houston
453453453	1	20.0	English, Joyce A.	ProductX	Bellaire
453453453	2	20.0	English, Joyce A.	ProductY	Sugarland
333445555	2	10.0	Wong, Franklin T.	ProductY	Sugarland
333445555	3	10.0	Wong, Franklin T.	ProductZ	Houston
333445555	10	10.0	Wong, Franklin T.	Computerization	Stafford
333445555	20	10.0	Wong, Franklin T.	Reorganization	Houston
999887777	30	30.0	Zelaya, Alicia J.	Newbenefits	Stafford
999887777	10	10.0	Zelaya, Alicia J.	Computerization	Stafford
987987987	10	35.0	Jabbar, Ahmad V.	Computerization	Stafford
987987987	30	5.0	Jabbar, Ahmad V.	Newbenefits	Stafford
987654321	30	20.0	Wallace, Jennifer S.	Newbenefits	Stafford
987654321	20	15.0	Wallace, Jennifer S.	Reorganization	Houston

Borg, James E.

Reorganization

Houston

Null

888665555

EXAMPLE OF AN UPDATE ANOMALY

- Consider the relation:
 - EMP_PROJ(Emp#, Proj#, Ename, Pname, No_hours)
- Update Anomaly:
 - Changing the name of project number P1 from "ProjectX" to "Customer-Accounting" may cause this update to be made for all 100 employees working on project P1.

EXAMPLE OF AN INSERT ANOMALY

- Consider the relation:
 - EMP_PROJ(Emp#, Proj#, Ename, Pname, No_hours)
- Insert Anomaly:
 - Cannot insert a project unless an employee is assigned to it.
- Conversely
 - Cannot insert an employee unless an he/she is assigned to a project.

EXAMPLE OF A DELETE ANOMALY

- Consider the relation:
 - EMP_PROJ(Emp#, Proj#, Ename, Pname, No_hours)
- Delete Anomaly:
 - When a project is deleted, it will result in deleting all the employees who work on that project.
 - Alternately, if an employee is the sole employee on a project, deleting that employee would result in deleting the corresponding project.

Guideline for Redundant Information in Tuples and Update Anomalies

- Design a schema that does not suffer from the insertion, deletion and update anomalies.
- If there are any anomalies present, then note them so that applications can be made to take them into account.

Normalization of Relations (1)

Normalization:

 The process of decomposing unsatisfactory "bad" relations by breaking up their attributes into smaller relations

Normal form:

 Condition using keys and FDs of a relation to certify whether a relation schema is in a particular normal form

Functional Dependencies

- Functional dependencies (FDs)
 - Are used to specify formal measures of the "goodness" of relational designs
 - And keys are used to define normal forms for relations
 - Are constraints that are derived from the meaning and interrelationships of the data attributes
- A set of attributes X functionally determines a set of attributes Y if the value of X determines a unique value for Y

Defining Functional Dependencies

- X → Y holds if whenever two tuples have the same value for X, they must have the same value for Y
 - For any two tuples t1 and t2 in any relation instance r(R): If t1[X]=t2[X], then t1[Y]=t2[Y]
- X → Y in R specifies a constraint on all relation instances
 r(R)
- Written as X → Y; can be displayed graphically on a relation schema as in Figures. (denoted by the arrow:).
- FDs are derived from the real-world constraints on the attributes

Examples of FD constraints

- Social security number determines employee name
 - SSN → ENAME
- Project number determines project name and location
 - PNUMBER → {PNAME, PLOCATION}
- Employee ssn and project number determines the hours per week that the employee works on the project
 - SSN, PNUMBER} → HOURS

Normalization of Relations

Normalization:

 The process of decomposing unsatisfactory "bad" relations by breaking up their attributes into smaller relations

Normal form:

 Condition using keys and FDs of a relation to certify whether a relation schema is in a particular normal form

Normal Forms Based on Primary Keys

- First Normal Form
- Second Normal Form
- Third Normal Form
- Boyce Codd Normal Form
- Fourth Normal Form
- etc

First Normal Form

- Disallows
 - composite attributes
 - multivalued attributes
 - nested relations; attributes whose values for an individual tuple are non-atomic
- Considered to be part of the definition of a relation

Normalization into 1NF

(a)

DEPARTMENT

Dname	<u>Dnumber</u>	Dmgr_ssn	Dlocations
†		†	A

Figure 14.9

Normalization into 1NF. (a) A relation schema that is not in 1NF. (b) Sample state of relation DEPARTMENT. (c) 1NF version of the same relation with redundancy.

Dingr_san

987654321

008665555

(b)

DEPARTMENT

Dname	<u>Dnumber</u>	Dmgr_ssn	Dlocations
Research	5	333445555	{Bellaire, Sugarland, Houston}
Administration	4	987654321	{Stafford}
Headquarters	1	888665555	{Houston}

(c)

DEPARTMENT

Dname	<u>Dnumber</u>	Dmgr_ssn	Dlocation
Research	5	333445555	Bellaire
Research	5	333445555	Sugarland
Research	5	333445555	Houston
Administration	4	987654321	Stafford
Headquarters	1	888665555	Houston

DEPARTMENT

Doumber.	Discation.
1	Houston
4	Stafford
- 5	Betwee
5	Sugarland
5	Houston

DEPT LOCATIONS

Normalizing nested relations into 1NF

(a)

EMP_PROJ	Projs		
Ssn	Ename	Pnumber	Hours

(b)

EMP_PROJ

Ssn	Ename	Pnumber	Hours
123456789	Smith, John B.	1	32.5
		2	7.5
666884444	Narayan, Ramesh K.	3	40.0
453453453	English, Joyce A.	1	20.0
		2	20.0
333445555	Wong, Franklin T.	2	10.0
		3	10.0
		10	10.0
Non-The Edward South Reference Control		20	10.0
999887777	Zelaya, Alicia J.	30	30.0
		10	10.0
987987987	Jabbar, Ahmad V.	10	35.0
		30	5.0
987654321	Wallace, Jennifer S.	30	20.0
		20	15.0
888665555	Borg, James E.	20	NULL

(c)

EMP_PROJ1

EMP_PROJ2

207 775	7	
Ssn	Pnumber	Hours

Figure 14.10

og nested relations into 1NF (a) Schema of the EMP PRO1 relation with a

Normalizing nested relations into 1NF. (a) Schema of the EMP_PROJ relation with a *nested relation* attribute PROJS. (b) Sample extension of the EMP_PROJ relation showing nested relations within each tuple. (c) Decomposition of EMP_PROJ into relations EMP_PROJ1 and EMP_PROJ2 by propagating the primary key.

Second Normal Form (1)

- Disallows Partial Dependency
- A relation schema R is in second normal form (2NF) if every non-prime attribute A in R is fully functionally dependent on the primary key
- R can be decomposed into 2NF relations via the process of 2NF normalization

Second Normal Form (2)

- Uses the concepts of FDs, primary key
- Definitions
 - Prime attribute: An attribute that is member of the primary key K
 - Full functional dependency: a FD Y -> Z where removal of any attribute from Y means the FD does not hold any more
- Examples:
 - {SSN, PNUMBER} -> HOURS is a full FD since neither SSN
 -> HOURS nor PNUMBER -> HOURS hold
 - {SSN, PNUMBER} -> ENAME is not a full FD (it is called a partial dependency) since SSN -> ENAME also holds

Normalizing into 2NF and 3NF

Third Normal Form (1)

- Disallows Transitive Dependency
- Definition:
 - Transitive functional dependency: a FD X -> Z that can be derived from two FDs X -> Y and Y -> Z
- Examples:
 - SSN -> DMGRSSN is a transitive FD
 - Since SSN -> DNUMBER and DNUMBER -> DMGRSSN hold
 - SSN -> ENAME is non-transitive
 - Since there is no set of attributes X where SSN -> X and X -> ENAME

Third Normal Form (2)

- A relation schema R is in third normal form (3NF) if it is in 2NF and no non-prime attribute A in R is transitively dependent on the primary key
- R can be decomposed into 3NF relations via the process of 3NF normalization
- NOTE:
 - In X -> Y and Y -> Z, with X as the primary key, we consider this a problem only if Y is not a candidate key.
 - When Y is a candidate key, there is no problem with the transitive dependency.
 - E.g., Consider EMP (SSN, Emp#, Salary).
 - Here, SSN -> Emp# -> Salary and Emp# is a candidate key.

Normal Forms Defined Informally

- 1st normal form
 - All attributes depend on the key
- 2nd normal form
 - All attributes depend on the whole key
- 3rd normal form
 - All attributes depend on nothing but the key

General Normal Form Definitions (For Multiple Keys)

- The above definitions consider the primary key only
- The following more general definitions take into account relations with multiple candidate keys
- Any attribute involved in a candidate key is a prime attribute
- All other attributes are called <u>non-prime</u> <u>attributes.</u>

General Definition of 2NF (For Multiple Candidate Keys)

- A relation schema R is in second normal form
 (2NF) if every non-prime attribute A in R is fully
 functionally dependent on every key of R
- In Figure 14.12 the FD
 County_name → Tax_rate violates 2NF.

So, second normalization converts LOTS into LOTS1 (Property_id#, County_name, Lot#, Area, Price) LOTS2 (County_name, Tax_rate)

Normalization into 2NF and 3NF

Figure 14.12 Normalization

Normalization into 2NF and 3NF. (a) The LOTS relation with its functional dependencies FD1 through FD4. (b) Decomposing into the 2NF relations LOTS1 and LOTS2. (c) Decomposing LOTS1 into the 3NF relations LOTS1A and LOTS1B. (d) Progressive normalization of LOTS into a 3NF design.

Chapter Summary

- Informal Design Guidelines for Relational Databases
- Functional Dependencies (FDs)
- Normal Forms (1NF, 2NF, 3NF)Based on Primary Keys
- General Normal Form Definitions of 2NF and 3NF (For Multiple Keys).