

HANDY HEALER Circuit Functionality & Mechanism Demonstration

Isabella Rossi & Aethar Marhon

PRIMARY USER PERSONA

Name: Joanne Miller (she/her)

Age: 29 y/o

Occupation: Clinical engineer

Role: Device user

Characteristics:

- Joanne's right hand is amputated and has severe burn wounds on her left arm from an accident 6 months ago.
- Joanne lives alone and requires an ongoing wound management device for topical ointment application.

User values:

- Independence in her healing journey
- Ease of use
- Comfort

DESIGN ITERATIONS

2

FINAL MECHANISM

ENGINEERING SPECIFICATIONS

Objective: to assist **severe burn victims** who have undergone an **amputation**, by providing **precise** and **gentle movements** necessary for ongoing **wound management**, including the **application of topical creams**.

Precision

- → Smooth & controlled rotation for topical cream application via the HSR-1425CR motor
- → Achieved through consistent & controlled linear motion

Range of Motion

Device's applicator moves left & right in a smooth & controlled manner due to the motor's 360 deg rotation

Device Weight

- Lightweight to ensure comfort, reduce strain on the residual limb, and prevent irritation.
- → Upper limb prosthetics range from 755 1,400g for optimal function and usability
- → The device weights 347g

Torque → Gentle

Torque and Pressure

→ Gentle & controlled pressure application for burn-affected areas & creams of varying viscosities

Arduino & EMG Integration

Motor exclusively triggered based on EMG signalling (muscle contraction)

ENGINEERING SPECIFICATIONS

→ The maximum torque provided by the HSR-1425CR motor is 0.27-0.33 Nm

The force applied by the applicator is twice the Aorce applied by the crank

Length of rotating arm (r) \Rightarrow 0.017 m Torque from servo motor \Rightarrow 0.27 - 0.33 Nm

$$T = T \times F$$

$$F_{cranx} = \frac{0.27 \text{ Nm}}{0.017\text{m}} \qquad F_{cranx} = \frac{0.33 \text{ Nm}}{0.017\text{m}}$$

$$= 15.88 \text{ N} \qquad = 19.41 \text{ N}$$

$$F_{device} = F_{cranx} \times MA \qquad F_{device} = F_{cranx} \times MA$$

$$= 15.88 \times 2 \qquad = 19.41 \times 2$$

$$= 31.96 \text{ N} \qquad = 38.82 \text{ N}$$

→ Moderate pressure applied for ointment application to delicate wound sites

Pressure =
$$\frac{\text{Force}}{\text{Area}}$$
 \rightarrow Pressure = $\frac{\text{Force}}{\text{Area}}$
= $\frac{31.76 \,\text{N}}{0.04396 \,\text{m}^3}$ = $\frac{38.82 \,\text{N}}{0.04396 \,\text{m}^3}$ = $883.08 \,\text{Pa}$

Angular Displacement (deg) vs. Time (sec)

Linear Displacement (cm) vs. Time (sec)

INSTRUMENTATION AMPLIFIER + VOLTAGE BUFFER

Instrumentation Amplifier:

Desired Gain	1% Standard Table Value of R _G
2	100 kΩ
5	24.9 kΩ
10	11 kΩ
20	5.23 kΩ
33	3.09 kΩ
40	2.55 kΩ
50	2.05 kΩ
65	1.58 kΩ
100	1.02 kΩ
200	499 Ω

Expected Gain: 200

Actual Gain =
$$\frac{V_{out}}{V_{in}}$$
= $\frac{2.09}{0.010}$
= 209

Voltage Buffer:

$$V_{out} = V_{in} \times \frac{R_z}{R_1 + R_z}$$

$$2.5 = 5 \times \frac{R_z}{R_1 + R_z}$$

$$0.5 = \frac{R_z}{R_1 + R_z}$$

$$R_1 = R_z$$
Select $R_1 = R_2 = 1.5 \text{ M.D.}$

- → Large resistor and capacitor values for voltage buffer
- → Ensures stable Vref

MULTIPLE-FEEDBACK BANDPASS FILTER

Multiple-Feedback Bandpass Filter

$$f_{\rm L} = 10\,{\rm Hz}$$
 , $f_{\rm H} = 600\,{\rm Hz}$

Centre Frequency:

Passband Width:

Selectivity Factor:

$$f_0 = \frac{600 - 10}{2} + 10$$

$$Q = \frac{f_0}{\Delta f}$$

$$= \frac{305}{590} \Rightarrow 0.516949$$

$$R_1 = \frac{Q}{G_1 2\pi f_0 C_4}$$

$$= \frac{0.516949}{1 \times 2\pi \times 305 \times 33 \times 10^{-9}}$$

$$R_5 = \frac{Q(C_2 + C_4)}{2\pi f_0 C_2 C_4}$$

$$= \frac{0.516949(1 \times 10^{-6} + 33 \times 10^{-9})}{2\pi \times 305 \times |\times 10^{-6} \times 33 \times 10^{-9}}$$

= 8174.365492 A

= 8444.119553 Ω

≈ 8.2 KA

≈ 8.4 KΩ

$$R_3 = \frac{1}{(2\pi f_0)^2 R_5 C_2 C_4 - \frac{1}{R_1}}$$

$$= \frac{1}{(2\pi \times 305)^2 \times 8444.119553 \times 1 \times 10^{-6} \times 33 \times 10^{-9} - \frac{1}{8174.365492}}$$
$$= 1031.746607 \Omega$$

≈ 1.0 KA

Remove signals below 10 Hz and above 600 Hz

MULTIPLE-FEEDBACK BANDPASS FILTER - BODE PLOT

Actual Cutoffs:

 f_L : 100 Hz \rightarrow 0.76 V f_H : 700 Hz \rightarrow 0.75 V

PRECISION FULL-WAVE RECTIFIER

Half-Wave Rectified

2

Full-Wave Rectified

3

Full-Wave Rectified & Inverted

PRECISION FULL WAVE RECTIFIER

Total:

$$V_0 = V_0' + V_0''$$

$$= \frac{-V_1}{R_1} R_f - \frac{V_z}{R_z} R_f$$

$$= -\left(\frac{V_1}{R_1} + \frac{V_z}{R_z}\right) R_f$$
Inverting

For 0 to
$$\frac{7}{2}$$
:

 $V_0' = -R_F \left(\frac{V_1}{R_1} + \frac{V_2}{R_2} \right)$
 $V_0'' =$

PEAK DETECTOR & NON-INVERTING AMPLIFIER

Time Constant:

Non-Inverting Amplifier

$$A_{V} = \frac{V_{out}}{V_{in}} = 1 + \frac{R_{F}}{R_{i}}$$

$$\frac{3.38}{2.09} = 1 + \frac{2.2 \, \text{K}}{8.2 \, \text{K}}$$

TL-V117 ADJUSTABLE & FIXED LOW-DROPOUT VOLTAGE REGULATOR

DATA SHEET

Vout = Vref
$$(1 + \frac{R_2}{R_1}) + (I_{ADJ} \times R_2)$$

 $6 = 4.75(1 + \frac{R_2}{R_1})$
 $\frac{6}{4.75} - 1 = \frac{\rho_2}{\rho_1}$
 $0.26 = \frac{\rho_2}{\rho_1}$
Select $R_2 = 2.6 \text{ k.} \Omega$ and $R_1 = 10 \text{ k.} \Omega$

Since R2 is adjustable, it can be altered to $1k\Omega$ to get the desired output voltage ranging from 4.8 - 6V

Regulates & stabilizes the 9V input to 5.3V to power the motor **TLV1117-ADJ** OUTPUT INPUT 9V Battery ADJ/GND KI

EMG INTEGRATION

DC

ARDUINO UNO

```
const int motorPin = 9; // PWM pin
const int voltagePin = A0; // Analog input pin
// Define the threshold voltage (3.12V)
const float thresholdVoltage = 3.12;
// Define the reference voltage of the Arduino
const float referenceVoltage = 5.0;
void setup() {
  pinMode(motorPin, OUTPUT);
 // Start the serial communication for debugging
  Serial.begin(9600);
void loop() {
 // Read voltage from analog pin
  int sensorValue = analogRead(voltagePin);
  // Convert analog reading (0-1023) to voltage (0-5V)
  float voltage = sensorValue * (referenceVoltage / 1023.0);
  // Print the voltage to the serial monitor
  Serial.print("Voltage: ");
  Serial.println(voltage);
  // Check if the voltage is greater than the threshold
  if (voltage > thresholdVoltage) {
    // Turn on the motor
    analogWrite(motorPin, 255); // Maximum PWM value (motor on)
  } else {
    // Turn off the motor
    analogWrite(motorPin, 0); // Minimum PWM value (motor off)
  // Delay for stability
  delay(100);
```

3

8

10

11 12

13 14 15

16 17

18 19

20 21

22

23

24 25

26

27

28

29

30

35

36

CIRCUIT SCHEMATIC

Handy Healer

Objective

To assist severe burn victims who have undergone an amputation, by providing precise and gentle movements necessary for ongoing wound management, including the application of topical creams.

Engineering Specifications

Precision

→ Smooth & controlled rotation for topical cream application via the HSR-1425CR motor

Torque and Pressure

Gentle & controlled pressure application for burn-affected areas & creams of varying viscosities

Range of Motion

→ Device's applicator moves left & right in a smooth & controlled manner due to the motor's 360° rotation

Arduino & EMG Integration

→ Motor exclusively triggered based on EMG signalling (muscle contraction)

