# 1 Introduction

#### 1.1 Problem Setup

Suppose  $X \in \mathbb{R}^n$  and  $Z \in \mathbb{R}^m$  with  $X = f(Z) + \varepsilon$ , where  $f : \mathbb{R}^m \to \mathbb{R}^n$  and  $\varepsilon \sim N\left(0, \sigma^2 I\right)$ . Assuming Z is normally distributed with independent marginals, this is equivalent to the following latent variable model (a special case of the well-known *nonlinear ICA* model):

$$Z \sim N(0, I)$$
  
 $X \mid Z \sim N(f(Z), \sigma^2 I)$ 

Let  $\varphi(u; \mu, \Sigma)$  denote the density of a  $N(\mu, \Sigma)$  random variable and  $p_{\theta, \sigma^2}(x, z)$  denote the joint density under the model. It is easy to see that

$$p_{\theta,\sigma^{2}}(x,z) = p_{\theta,\sigma^{2}}(x \mid z) p(z) = \varphi\left(x; f(z), \sigma^{2}I\right) \varphi(z; 0, I)$$

$$L\left(\theta, \sigma^{2}; x\right) = p_{\theta,\sigma^{2}}(x) = \int \varphi\left(x; f(z), \sigma^{2}I\right) \varphi(z; 0, I) dz$$

## 1.2 Objective Function

Now, suppose we let  $g_{\theta}$  denote a family of deep neural network distributions parametrized by  $\theta$ . To approximate the marginal density p(x), we replace f with  $g_{\theta}$  and try to find the choice of  $\theta$  that maximizes the observed data likelihood. Given k observations  $x^{(i)} \stackrel{i.i.d}{\sim} p(x)$ , we wish to solve the following maximum likelihood problem:

$$\max_{\theta, \sigma^2} \underbrace{\sum_{i=1}^k \log \int \varphi\left(x^{(i)}; g_{\theta}(z), \sigma^2 I\right) \varphi(z; 0, I) dz}_{:=\ell(\theta, \sigma^2)}$$

# 2 Direct MLE Method

In this section, we directly solve the MLE problem by computing gradients of  $\ell(\theta, \sigma^2)$  w.r.t  $\theta$  and  $\sigma^2$ . This is, in general, intractable for arbitrary nonlinear ICA models but worst-case thinking does not apply to our special cases.

#### Gradient w.r.t $\theta$

$$\begin{split} \nabla_{\theta}\ell(\theta,\sigma^2) &= \sum_{i=1}^k \frac{1}{L\left(\theta,\sigma^2;x^{(i)}\right)} \int \nabla_{\theta}\varphi\left(x^{(i)};g_{\theta}(z),\sigma^2I\right) \varphi(z;0,I)dz \\ &= \sum_{i=1}^k \frac{1}{L\left(\theta,\sigma^2;x^{(i)}\right)} \int \left(2\pi\sigma^2\right)^{-n/2} \nabla_{\theta} \exp\left(-\frac{\left\|x^{(i)}-g_{\theta}(z)\right\|_2^2}{2\sigma^2}\right) \varphi(z;0,I)dz \\ &= \sum_{i=1}^k \frac{1}{L\left(\theta,\sigma^2;x^{(i)}\right)} \int \nabla_{\theta}\left(-\frac{\left\|x^{(i)}-g_{\theta}(z)\right\|_2^2}{2\sigma^2}\right) \varphi\left(x^{(i)};g_{\theta}(z),\sigma^2I\right) \varphi(z;0,I)dz \\ &= \sum_{i=1}^k \frac{1}{L\left(\theta,\sigma^2;x^{(i)}\right)} \int \left[\frac{1}{\sigma^2} \cdot \left(x^{(i)}-g_{\theta}(z)\right)^T \nabla_{\theta}g_{\theta}(z)\right] \varphi\left(x^{(i)};g_{\theta}(z),\sigma^2I\right) \varphi(z;0,I)dz \end{split}$$

Gradient w.r.t  $\sigma^2$ 

$$\begin{split} \nabla_{\sigma^2}\ell(\theta,\sigma^2) &= \sum_{i=1}^k \frac{1}{L\left(\theta,\sigma^2;x^{(i)}\right)} \int \nabla_{\sigma^2}\varphi\left(x^{(i)};g_{\theta}(z),\sigma^2I\right) \varphi(z;0,I)dz \\ &= \sum_{i=1}^k \frac{1}{L\left(\theta,\sigma^2;x^{(i)}\right)} \int \nabla_{\sigma^2}\left(2\pi\sigma^2\right)^{-n/2} \exp\left(-\frac{\|x^{(i)}-g_{\theta}(z)\|_2^2}{2\sigma^2}\right) \varphi(z;0,I)dz \\ &= \sum_{i=1}^k \frac{1}{L\left(\theta,\sigma^2;x^{(i)}\right)} \int \left[\frac{1}{2\sigma^2} \cdot \left(-n + \frac{\|x^{(i)}-g_{\theta}(z)\|_2^2}{\sigma^2}\right)\right] \varphi\left(x^{(i)};g_{\theta}(z),\sigma^2I\right) \varphi(z;0,I)dz \end{split}$$

From the two results above, we can iteratively update  $\theta$  and  $\sigma^2$  via gradient descent. The integrals can be approximated via numerical integration.

## Algorithm 1 Direct MLE via Gradient Descent

- Initialise  $\theta^{(0)}$  and  $\sigma^{2^{(0)}}$  and set t=0
- Repeat until convergence
  - $\triangleright$  Compute the gradient  $\nabla_{\theta} \ell\left(\theta^{(t)}, \sigma^{2^{(t)}}\right)$  and update the parameters

$$\theta^{(t+1)} = \theta^{(t)} - \eta_1 \nabla_{\theta} \ell \left( \theta^{(t)}, \sigma^{2(t)} \right)$$

ightharpoonup Compute the gradient  $\nabla_{\sigma^2}\ell\left(\theta^{(t+1)},\sigma^{2^{(t)}}\right)$  and update the parameters

$$\sigma^{2(t+1)} = \sigma^{2(t)} - \eta_2 \nabla_{\sigma^2} \ell \left( \theta^{(t+1)}, \sigma^{2(t)} \right)$$

 $\triangleright$  Set  $t \leftarrow t + 1$ 

## 3 Variational Method

In this section, we consider variational inference and VAEs. We use the ELBO to obtain a lower bound on the likelihood  $\ell(\theta, \sigma)$  and optimize the ELBO using SGD. The marginal likelihoods of individual datapoints can each be rewritten as

$$\log p_{\theta}\left(x^{(i)}\right) = D_{KL}\left(q_{\phi}\left(z \mid x^{(i)}\right) \| p_{\theta}\left(z \mid x^{(i)}\right)\right) + \mathcal{L}\left(\theta, \phi; x^{(i)}\right)$$

The second RHS term  $\mathcal{L}(\theta, \phi; x^{(i)})$  is called the evidence lower bound on the marginal likelihood of datapoint i, and can be written as

$$\log p_{\theta}\left(x^{(i)}\right) \ge \mathcal{L}\left(\theta, \phi; x^{(i)}\right) = \mathbb{E}_{q_{\phi}(z|x)}\left[-\log q_{\phi}(z \mid x) + \log p_{\theta}(x, z)\right]$$
$$= -D_{KL}\left(q_{\phi}\left(\mathbf{z} \mid \mathbf{x}^{(i)}\right) \| p_{\theta}(\mathbf{z})\right) + \mathbb{E}_{q_{\phi}\left(\mathbf{z} \mid \mathbf{x}^{(i)}\right)}\left[\log p_{\theta}\left(\mathbf{x}^{(i)} \mid \mathbf{z}\right)\right]$$

We want to differentiate and optimize the lower bound  $\mathcal{L}(\boldsymbol{\theta}, \phi; \mathbf{x}^{(i)})$  w.r.t. both the variational parameters  $\phi$  and generative parameters  $\theta$ .