Computing for Medicine

Google Classroom Code: dnd5qkt5

Monsoon 2025 Lecture 6 Word Vectors

International Classification of Diseases (ICD)

ICD-10 Chapter	Code range	
I Certain infectious and parasitic diseases	A00-B99	
II Neoplasms	C00-D48	
III Diseases of the blood and blood-forming organs and certain disorders involving the immune system	D50-D89	
IV Endocrine, nutritional and metabolic diseases	E00-E90	
V Mental and behavioral disorders	F00-F99	
VI Diseases of the nervous system	G00-G32	
VII Diseases of the eye and adnexia	H00-H59	
VIII Diseases of the ear and mastoid process	H60-H95	
IX Diseases of the circulatory system	100-199	
X Diseases of the respiratory system	J00-J99	
XI Diseases of the digestive system	K00-K93	
XII Diseases of the skin and subcutaneous tissue	L00-L99	
XIII Diseases of the musculoskeletal system and connective tissue	M00- M99	

ICD Coding for Respiratory

Section	Code range
Acute upper respiratory infections	J00-J06
Influenza and pneumonia	J10-J18
Other acute lower respiratory infections	J20-J22
Other diseases of the upper respiratory tract	J30-J39
Chronic lower respiratory diseases	J40-J47
Lung diseases due to external agents	J60-J70
Other respiratory diseases principally affecting the interstitium	J80-J84
Suppurative and necrotic conditions of the lower respiratory tract	J85-J86
Other diseases of the pleura	J90-J94
Other diseases of the respiratory system	J95-J99

Basic Idea Behind All Modern Representations

How will you represent words?

Word Embeddings

Mathematical representation of language units

- 1. Basic vectorization approaches
- 2. Distributed representations
- 3. Universal language representation
- 4. Handcrafted features

Motivation: Capture the meaning of the language rather than structure

- 1. Break the sentence into lexical units such as lexemes, words, and phrases
- 2. Derive the meaning for each of the lexical units
- 3. Understand the syntactic (grammatical) structure of the sentence
- 4. Understand the context in which the sentence appears

Featurization

One Hot Encoding:

Dog Bites Man = [[1 0 0 0 0 0] [0 1 0 0 0 0] [0 0 1 0 0 0]]

BoW:

Dog Bites Man = [1 1 1 0 0 0]

TF-IDF:
$$TF(w) * IDF(w)$$

$$\operatorname{tf}(t,d) = rac{f_{t,d}}{\sum_{t' \in d} f_{t',d}}$$
 ; $IDF(w) = \log rac{N}{n_w}$

One Hot Encoding

- Map each word w -> a unique integer w_{id} between 1 and |V|
- Each word then becomes a V-dimensional binary vector
- E.g. Dog = [1 0 0 0 0 0]
- "Dog Bites Man" = [[1 0 0 0 0 0] [0 1 0 0 0 0] [0 0 1 0 0 0]]

```
def onehot encode(tokenized sentence):
        return [1 if w in tokenized_sentence else 0 for w in vocabulary]
    onehot = [onehot_encode(tokenized_sentence)
             for tokenized sentence in tokenized sentences]
    for (sentence, oh) in zip(sentences, onehot):
        print("%s: %s" % (oh. sentence))
Out:
    [0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1]: It was the best of times
    [1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0]: it was the worst of times
    [0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0]: it was the age of wisdom
    [0, 1, 1, 1, 0, 0, 1, 0, 1, 0]: it was the age of foolishness
```

Challenges of One Hot Encoding

- Sparse representations- matrix full of zeroes
- Storage constraints and overfitting due to sparsity
- Does not give fixed length representation
- Assumes independence between words
- Out of Vocabulary problem- needs retraining every time a new word is added

Bag of Words

- assumes that the text belonging to a given class in the dataset is characterized by a unique set of words
- Knowing the words present in a text, tells about the class (bag)
- Each document is a V-dimensional vector
- "Dog Bites Man" = [1 1 1 0 0 0]
- Gives a fixed length representation
- Captures some semantic similarity of documents

Some challenges with BoW representation

- Sparsity
- Same word may mean different things in different contexts
- Out of Vocabulary (OOV) words
- Order information is lost

Bag of N-Grams (BoN)

- Attempts to preserve context and order information
- Bigrams = {dog bites, bites man, man bites, bites dog, dog eats, eats meat, man eats, eats food}
- Dog Bites Man = [1,1,0,0,0,0,0,0]
- We have Bigram, Trigram, ... n-gram feature selection models
- What are the challenges?

Discriminative vs Generative Al

Probabilistic Autoregressive (Traditional Models)


```
p(John, bought, a, book) = 0.02

p(book, bought, a, John) = 0.01

p(book, a, John, bought) = 0.0001
```

```
John bought a p(John bought a book p)

John bought a book for John bought a book for coloring
```

p(John, bought, a, book) = p(John)p(bought | John)

Vector Space Paradigm: Distributional Hypothesis

"You shall know a word by the company it keeps!" Firth (1957)

- ▼ YYUTUƏ IHAL UUUH III ƏHTIHAL UUTILUALƏ HAYU ƏHTIHAL HIVAHILIYƏ
- Distributional Representation: Inducing Distributional Property from context to generate a representation

Core Idea: Vector Space

- Represent words (or tokens) as vectors
- Words with similar meanings have related vector representations
- Associations between words are captured in shared weights
- Vector weights can be trained using neural networks

Performing Algebra with Words (& other things)

How Embeddings Capture Context

Generation 1 (w2v)

- Continuous bag of words (CBOW)
- Predicts the middle word given the context
- Assigns probability to sentences such that "good" sentences are maximized

Training with CBOW

Skip Gram Variant

Predicts the context given the middle word

Training with Skip Gram

Thanks for attending the class!