

Combining calibration plots from multiple clusters

A phase 2 methodological study

Lasai Barreñada, Bavo D.C. Campo, Laure Wynants & Ben Van Calster

Clustered clinical data

- Examples:
 - Studies in a meta-analysis
 - Centers in a multicenter study

REVIEW

Open Access

Untapped potential of multicenter studies: a review of cardiovascular risk prediction models revealed inappropriate analyses and wide variation in reporting

L. Wynants^{1,5*}, D. M. Kent², D. Timmerman^{1,4}, C. M. Lundquist² and B. Van Calster^{1,3}

Leuven hospital

Birmingham hospital

Evaluation of calibration

- Logistic calibration framework
 - $logit(Y_{ij}) = \alpha + \beta LP$.
 - Flexible: LOESS, Splines...
- Calibration plot is most informative assessment
 - X-axis: Predicted risks
 - Y-axis: Observed proportion
 - Can include 95% CI
- Illustration: Ovarian cancer data
 - N = 2489
 - 14 clusters (size 38 to 369)

Clustered group calibration (CG-C)

Ovarian cancer data

 $PI = \hat{y}_q \mp t_{J-2} \sqrt{\tau_y^2 + SE(\hat{y}_q)^2}$

- I. Group the predicted probabilities by center in Q groups → Quantile or interval
- 2. Calculate prevalence and mean predicted risk per group.
- 3. Meta-analyse each centre's groups
- 4. Calculate confidence and prediction intervals
- Model agnostic center specific approach.
- Easy to compute and explain.
- Very dependant on number of quantiles.
- Not possible to obtain center-specific curves.

Two stage meta-analysis calibration (2MA-C)

Ovarian cancer data

Stage 2 Meta-analyse independently each point Malignant across predicted a

- 1. Fit center specific flexible calibration models.
- 2. Use fitted model to predict center specific observed proportions for a grid of values.
- 3. Meta-analyse each point in the grid per center.
- 4. Calculate confidence and prediction intervals.
- Confidence and prediction intervals based on RE meta-analysis.
- Depends on the model fitted in each center.
- Does not estimate center specific curves.
- Models for each point in the grid are independent
- Computationally costly (~200x)

Mixed model calibration (MIX-C)

- Logistic mixed effects model (GLME) with random slopes and intercepts per center.
- Simulation based confidence intervals.

- for clustering
- Not model agnostic.
- Computationally costly (~400x).

Center specific curves accounting

Simulation study

Superpopulation	AUC	ICC	ER	Formula
P1	0.9	0.2	0.3	logit(p) = -1.605469 + -2.0906250X + res(0,1.5593722)
P2	0.75	0.2	0.3	logit(p) = -1.012207 + 0.4199219X + res(0,1.0024963)
P3	0.9	0.05	0.3	logit(p) = -1.594375 + 2.3875000X + res(0, 0.7827540)
P4	0.75	0.05	0.3	logit(p) = -1.024414 +0.9273437X + res(0, 0.5183335)

- Each superpopulation has 200 centers and 10000 observations per center.
- From them take samples with different EPC (20, 200) and number of centers (5, 30)
- Train a logistic regression model and evaluate in a big sample.
- Mean square calibration error (MSCE): mean square difference of the true average risk (aj = 0) and the estimated observed proportion
- Prediction interval coverage: center specific observed proportion included in the PI.

Standard Flexible logistic

CGC (Grouped)

CGC (Interval)

2MA-C (Splines)

 2MA-C (splines) and MIX-C

 CGC (interval) and LOESS

• Truth is LR

Results (PI coverage)

- 2MA-C (splines) the best method.
- None of the methods correctly estimate the PI.

Take home messages

- Taking clustering into account when evaluating calibration is important
- All methods have suboptimal prediction interval coverage
- We recommend 2MA-C (splines) for the average curve and MIX-C for center specific clustered calibration (results not shown in this presentation)
- Ready to use code and functions available and soon to be incorporated to CalibrationCurves R package

Thank you!

Method	Estimation of observed proportion	Strengths	Limitations
CG-C	Grouped: Bivariate random effects meta-analysis of logit-transformed mean estimated risk and event fraction by quantile per cluster. Interval: Bivariate random effects meta-analysis of logit-transformed mean estimated risk and event fraction by estimated risk interval.	 + Model agnostic + Pointwise confidence and prediction intervals. + All clusters have the same number of groups 	 Computation time Groups can contain observations with very different estimated risks within and between clusters (Grouped version). Clusters may not have the same number of groups (e.g. risk intervals without observations). (Interval version) Curves depend on number of groups
2MA-C	Random effects meta-analysis of estimated smooth observed proportion by cluster	+ Pointwise confidence and prediction intervals.	Computation timeCurve dependent on the smoother used in the

+ Curvewise confidence and

+ Provides also shrunken curves

prediction intervals.

per center.

cubic splines.

MIX-C

Splines: Recommended when clusters are small

LOESS: More flexible but can fail with small clusters.

Logistic generalized linear mixed model with restricted

cluster-specific models.

- Computation time

