

EC20 R2.1

硬件设计手册

LTE 系列

版本: EC20_R2.1_硬件设计手册_V1.1

日期: 2018-01-16

状态: 受控文件

上海移远通信技术股份有限公司始终以为客户提供最及时、最全面的服务为宗旨。如需任何帮助,请随时联系我司上海总部,联系方式如下:

上海移远通信技术股份有限公司 上海市徐汇区虹梅路 1801 号宏业大厦 7 楼 邮编: 200233 电话: +86 21 51086236 邮箱: info@quectel.com

或联系我司当地办事处,详情请登录: http://quectel.com/cn/support/sales.htm

如需技术支持或反馈我司技术文档中的问题,可随时登陆如下网址:

http://quectel.com/cn/support/technical.htm

或发送邮件至: <u>support@quectel.com</u>

前言

上海移远通信技术股份有限公司提供该文档内容用以支持其客户的产品设计。客户须按照文档中提供的规范、参数来设计其产品。由于客户操作不当而造成的人身伤害或财产损失,本公司不承担任何责任。在未声明前,上海移远通信技术股份有限公司有权对该文档进行更新。

版权申明

本文档版权属于上海移远通信技术股份有限公司,任何人未经我司允许而复制转载该文档将承担法律责任。

版权所有 ©上海移远通信技术股份有限公司 2018, 保留一切权利。

Copyright © Quectel Wireless Solutions Co., Ltd. 2018.

文档历史

修订记录

版本	日期	作者	变更表述
1.0	2017-10-31	吴清/张承波	初始版本
1.1	2018-01-16	吴清/张承波	 表 2 中更新 GSM 特性 图 1 和图 2 中增加 SGMII 接口 表 4 中增加 SGMII 管脚定义 3.7.1 章节中 PWRKEY 开机时间由 100ms 改成 500ms 3.12 章节中更新 PCM 接口描述 3.14 章节中增加 SGMII 接口描述 3.9 章节中更新 USB 参考电路 表 33 中更新 EC20 R2.1 耗流 更新图 31, USB_BOOT 上拉电阻改为 4.7K 表 35 中更新模块射频发射功率 6.8 章节中更新散热设计描述 8.1 章节中模块烘烤温度由 125℃ 改为 120℃

目录

文档	当历史		2
目園	₹		3
表格	格索引		6
图片	计索引		8
1	引言		10
	1.1.	安全须知	
2			
	2.1.	基本描述	
	2.2.	主要性能	
	2.3.	功能框图	
	2.4.	评估板	16
3	应用接口		17
	3.1.	基本描述	17
	3.2.	引脚分配	18
	3.3.	引脚描述	19
	3.4.	工作模式	29
	3.5.	节能功能	30
	3.5.	.1. 睡眠模式	30
		3.5.1.1. 串口应用	30
		3.5.1.2. USB 应用(支持 USB 远程唤醒功能)	31
		3.5.1.3. USB 应用(支持 USB Suspend/Resume 和 RI 功能)	31
		3.5.1.4. USB 应用(不支持 USB Suspend 功能)	32
	3.5.	.2. 飞行模式	33
	3.6.	电源设计	33
	3.6.	.1. 引脚介绍	33
	3.6.	.2. 减少电压跌落	34
	3.6.	.3. 供电参考电路	35
	3.6.	.4. 电源电压检测	36
	3.7.	开关机	
	3.7.		
	3.7.	× • • •	
		3.7.2.1. PWRKEY 引脚关机	
		3.7.2.2. AT 命令关机	
		.3. 复位功能	
	3.8.	(U)SIM 接口	
	3.9.	USB 接口	
	3.10.	串口	
	3.11.	SD 卡接口	
	3.12.	PCM 和 I2C 接口	
	3.13.	无线连接接口	50

		S 编码方案	
9		· · · · · · · · · · · · · · · · · · ·	
	,,,,	^E	
U			
8			
	4, 14	上俯视图/底视图	
		学封装	
•		P.机械尺寸	
7	机械尺寸		78
	6.8. 散热	热设计	76
	6.7. 静电	B 防护	76
		顶接收灵敏度	
		F和存储温度	
		「取入恒 原额定值	
U		け最大値	
6		丁靠性	
	5.3.2.	安装天线时推荐使用的 RF 连接器	
	5.3.1.		
		SS 大线按口 B 安装	
	_	- 射频信号线	
	5.1.3. 5.1.4.	射频参考电路射频信号线 Layout 参考指导	
	5.1.2.	工作频段	
	5.1.1.	引脚描述	
		分集接收天线接口	_
5	, , , , , , , , , , , , , , , , , , , ,		
	,		
	_	out 指导	
		^Σ 描述SS 性能	
4		- +++ -\	
		B BOOT接口	
		· 195	
	, , , ,	ATUS	
		C 接口 8状态指示	
		MII 接口	
	3.13.2.	蓝牙接口*	
		WLAN 接口	

11	附录 C GPRS 多时隙	90
12	附录 D DEGE 调制和编码方式	92

表格索引

表 1:	EC20 R2.1 模块支持的频段和 GNSS 功能	12
表 2:	模块主要性能	13
表 3:	I/O 参数定义	19
表 4:	引脚描述	19
表 5:	工作模式	29
表 6:	VBAT 引脚和地引脚	34
表 7:	PWRKEY 引脚定义	36
表 8:	RESET_N 引脚定义	39
表 9:	(U)SIM 接口引脚定义	40
表 10	: USB 接口引脚定义	42
表 11:	主串口引脚定义	44
表 12	: 调试串口引脚定义	44
表 13	: 串口逻辑电平	44
表 14	· SD 卡接口引脚描述	46
表 15	PCM 和 I2C 接口引脚定义	49
表 16	: 无线连接接口引脚定义	50
表 17	· SGMⅡ 接口管脚描述	53
表 18	· ADC 接口引脚定义	55
表 19	· ADC 特性	55
表 20	. 网络指示引脚定义	55
表 21:	网络指示引脚的工作状态	56
表 22	: STATUS 引脚定义	56
表 23	· RI 指示方式	57
表 24	: USB_BOOT 接口引脚定义	58
表 25	· GNSS 性能	59
表 26	: 主/分集接收天线接口引脚定义	61
表 27	: 模块工作频段	61
表 28	· GNSS 天线引脚定义	65
表 29	· GNSS 频率	65
表 30	- 天线要求	66
表 31:	绝对最大值	69
表 32	模块电源额定值	69
表 33	: 工作和存储温度	70
表 34	:EC20 R2.1 耗流	70
表 35	EC20 R2.1 GNSS 耗流	74
表 36	模块射频发射功率	74
表 37	. 模块射频接受灵敏度	75
表 38	: ESD 性能参数(温度: 25 ℃,湿度: 45 %)	76
表 39	. 参考文档	85
表 40	: 术语缩写	85
表 41	. 不同编码方案描述	89

表 42:	不同等级的多时隙分配表	90
∌ 43.	FDGE 调制和解码方式	92

图片索引

冬	1:	功能框图	16
图	2:	引脚分配俯视图	18
图	3:	串口睡眠应用	30
图	4:	带 USB 远程唤醒功能的睡眠应用	31
冬	5:	带 RI 功能的睡眠应用	32
图	6:	不支持 USB SUSPEND 功能的睡眠应用	32
图	7:	突发传输电源要求	34
图	8:	模块供电电路	35
图	9:	供电输入参考设计	35
图	10:	开集驱动参考开机电路	36
图	11:	按键开机参考电路	37
图	12:	开机时序图	37
		关机时序图	
图	14:	RESET_N 复位开集参考电路	39
图	15:	RESET_N 复位按钮参考电路	39
图	16:	RESET_N 复位时序图	40
图	17:	8-PIN (U)SIM 接口参考电路图	41
图	18:	6-PIN (U)SIM 接口参考电路图	41
图	19:	USB 接口参考设计	43
图	20:	电平转换芯片参考电路	45
图	21:	电平转换参考电路	45
图	22:	SD 卡接口电路参考设计	47
图	23:	短帧模式时序图	48
		长帧模式时序图	
图	25:	PCM 和 I2C 接口电路参考设计	49
图	26:	无线连接接口与 FC20 系列模块的电路参考设计	51
图	27:	以太网应用简图	53
冬	28:	SGMII 接口参考设计	54
图	29:	网络指示参考电路	56
图	30:	STATUS 参考电路	57
图	31:	USB_BOOT 接口参考设计电路	58
图	32:	射频参考电路	62
图	33:	两层 PCB 板微带线结构	63
图	34:	两层 PCB 板共面波导结构	63
图	35:	四层 PCB 板共面波导结构(参考地为第三层)	64
图	36:	四层 PCB 板共面波导结构(参考地为第四层)	64
图	37:	GNSS 天线参考电路	65
图	38:	U.FL-R-SMT 连接器尺寸(单位: 毫米)	67
图	39:	U.FL-LP 连接线系列	67
图	40:	安装尺寸(单位:毫米)	86
图	41:	散热设计示例(散热片在模块正面)	77

图 42:	散热设计示例(散热片在 PCB 背面)	77
图 43:	模块俯视及侧视尺寸图	78
图 44:	模块底视尺寸图	79
图 45:	推荐封装(俯视图)	80
图 46:	模块俯视图	81
图 47:	模块底视图	81
图 48:	回流焊温度曲线	83
图 49:	载带尺寸(单位:毫米)	84
图 50:	卷盘尺寸(单位:毫米)	84

1 引言

本文档定义了 EC20 R2.1 模块及其与客户应用连接的空中接口和硬件接口。

本文档可以帮助客户快速了解 EC20 R2.1 模块的硬件接口规范、电气特性、机械规范以及其他相关信息。通过此文档的帮助,结合我们的应用手册和用户指导书,客户可以快速应用 EC20 R2.1 模块于无线应用。

1.1. 安全须知

通过遵循以下安全原则,可确保个人安全并有助于保护产品和工作环境免遭潜在损坏。产品制造商需要将如下的安全须知传达给终端用户。若未遵守这些安全规则,移远通信不会对用户错误使用而产生的后果承担任何责任。

道路行驶安全第一! 当你开车时,请勿使用手持移动终端设备,即使其有免提功能。请先停车,再打电话!

登机前请关闭移动终端设备。移动终端的无线功能在飞机上禁止开启用以防止对飞机通讯系统的干扰。忽略该提示项可能会导致飞行安全,甚至触犯法律。

当在医院或健康看护场所时,请注意是否有移动终端设备使用限制。射频干扰可能会导致医疗设备运行失常,因此可能需要关闭移动终端设备。

移动终端设备并不保障任何情况下都能进行有效连接,例如在移动终端设备没有话费或(U)SIM 无效时。当你在紧急情况下遇见以上情况,请记住使用紧急呼叫,同时保证您的设备开机并且处于信号强度足够的区域。

您的移动终端设备在开机时会接收和发射射频信号。当靠近电视、收音机、电脑或 者其他电子设备时都会产生射频干扰。

请将移动终端设备远离易燃气体。当靠近加油站、油库、化工厂或爆炸作业场所时,请关闭移动终端设备。在任何有潜在爆炸危险场所操作电子设备都有安全隐患。

2 综述

2.1. 基本描述

EC20 R2.1 是一款带分集接收功能的 LTE-FDD/LTE-TDD/WCDMA/TD-SCDMA/CDMA/GSM 无线通信模块,支持 LTE-FDD, LTE-TDD, DC-HSDPA, HSPA+, HSDPA, HSUPA, WCDMA, TD-SCDMA, CDMA, EDGE 和 GPRS 网络数据连接,可为客户特殊应用提供 GNSS¹⁾和语音功能 ²⁾。EC20 R2.1 模块支持的频段和 GNSS 功能如下表所示:

表 1: EC20 R2.1 模块支持的频段和 GNSS 功能

网络制式/GNSS	EC20-CE R2.1
LTE-FDD(支持分集接收)	B1/B3/B5/B8
LTE-TDD(支持分集接收)	B38/B39/B40/B41
WCDMA (支持分集接收)	B1/B8
TD-SCDMA	B34/B39
CDMA	BC0
GSM	900MHz/1800MHz
GNSS 功能	GPS, GLONASS, BeiDou/Compass, Galileo, QZSS

备注

- 1. ¹)GNSS 功能可选。
- 2. ²⁾EC20-CE R2.1 包含 **Data-only** 和 **Telematics** 两个版本。**Data-only** 版本不支持语音功能,**Telematics** 版本支持语音功能。

EC20 R2.1 模块封装紧凑,仅为 29.0mm × 32.0mm × 2.4mm,能满足几乎所有 M2M 应用需求,例如:自动化领域、智能计量、跟踪系统、安防系统、路由器、无线 POS 机、移动计算设备、PDA 电话和平板电脑等。

EC20 R2.1 是贴片式模块, 共有 144 个引脚, 其中 80 个为 LCC 引脚, 其余 64 个为 LGA 引脚。

2.2. 主要性能

下表详细描述了 EC20 R2.1 模块的主要性能。

表 2: 模块主要性能

A- 100	AV soft
参数	说明
供电	● VBAT 供电电压范围: 3.3V~4.3V
洪 电	● 典型供电电压: 3.8V
	Class 4 (33dBm±2dB) for GSM900
	 Class 1 (30dBm±2dB) for DCS1800
	 Class E2 (27dBm±3dB) for GSM900 8-PSK
	 Class E2 (26dBm±3dB) for DCS1800 8-PSK
发射功率	 Class 3 (24dBm+2/-1dB) for CDMA BC0
	 Class 3 (24dBm+1/-3dB) for WCDMA bands
	 Class 2 (24dBm+1/-3dB) for TD-SCDMA bands
	 Class 3 (23dBm±2dB) for LTE-FDD bands
	 Class 3 (23dBm±2dB) for LTE-TDD bands
	● 最大支持 3GPP R8 non-CA Cat 4 FDD 和 TDD
	● 支持 1.4MHz~20MHz 射频带宽
LTE 特性	● 下行支持 MIMO
	● LTE-FDD:最大下行速率 150Mbps,最大上行速率 50Mbps
	● LTE-TDD:最大下行速率 130Mbps,最大上行速率 35Mbps
	● 支持 3GPP R8 DC-HSDPA,HSPA+,HSDPA,HSUPA 和 WCDMA
	● 支持 QPSK, 16-QAM 和 64-QAM 调制
UMTS 特性	● DC-HSDPA: 最大下行速率 42Mbps
	● HSUPA: 最大上行速率 5.76Mbps
	● WCDMA:最大下行速率 384Kbps,最大上行速率 384Kbps
TD-SCDMA 特性	● 支持 CCSA Release 3 TD-SCDMA
ID-3CDIVIA 特性	● 最大下行速率 4.2Mbps,最大上行速率 2.2Mbps
	● 支持 3GPP2 CDMA2000 1X Advanced 和 1xEV-DO Rev.A
CDMA2000 特性	● EVDO:最大下行速率 3.1Mbps,最大上行速率 1.8Mbps
	● 1X Advanced: 最大下行速率 307.2Kbps, 最大上行速率 307.2Kbps
	GPRS:
	● 支持 GPRS 多时隙等级 33 (默认为 33)
GSM 特性	● 编码格式: CS-1/CS-2/CS-3/CS-4
	● 最大下行速率 107Kbps,最大上行速率 85.6Kbps
	EDGE:

	● 支持 EDGE 多时隙等级 33 (默认为 33)
	● 支持 GMSK 和 8-PSK 的调制编码方式
	● 下行编码格式: CS 1-4 和 MCS 1-9
	● 上行编码格式: CS 1-4 和 MCS 1-9
	● 最大下行速率 296Kbps,最大上行速率 236.8Kbps
	● 支持 TCP/UDP/PPP/FTP/HTTP/NTP/PING/QMI/NITZ/CMUX/
网络协议特性	HTTPS/SMTP/MMS/FTPS/SMTPS/SSL/FILE 协议
	● 支持 PAP (Password Authentication Protocol) 和 CHAP (Challenge
	Handshake Authentication Protocol)
	● 文本与 PDU 模式
短消息 (SMS)	● 点对点短信收发
/EIII/III (OIIIO)	● 短信小区广播
	● SMS 存储: 默认存储在模块
(U)SIM 接口	● 支持 USIM/SIM 卡: 1.8V 和 3.0V
	● 支持 1 路数字音频接口: PCM 接口
	 GSM: HR/FR/EFR/AMR/AMR-WB
音频特性	 WCMDA: AMR/AMR-WB
	 LTE: AMR/AMR-WB
	● 支持回音消除和噪声抑制
	● 用于音频使用,需要外接 Codec 芯片
PCM 接口	● 支持 8 位 A-law*, u-law* 和 16 位线性编码格式
PUN 按口	● 支持长帧和短帧模式
	● 支持主模式和从模式,但是在长帧下只可以用作主模式
	● 兼容 USB 2.0 (只支持从模式),数据传输速率最大到 480Mbps
	● 用于 AT 命令传送、数据传输、GNSS NMEA 输出、软件调试、软件
USB 接口	升级和 USB 语音*
USD 按口	● USB 虚拟串口驱动:支持 Windows XP, Windows Vista, Windows
	7/8/8.1/10, Windows CE 5.0/6.0/7.0*, Linux 2.6/3.x/4.1, Android
	4.x/5.x/6.x/7.x 等操作系统下的 USB 驱动
	主串口:
	● 用于 AT 命令传送和数据传输
	● 波特率最大为 921600bps,默认为 115200bps
串口	● 支持 RTS 和 CTS 硬件流控
	调试串口:
	● 用于 Linux 控制,日志输出
	● 波特率为 115200bps
SD 卡接口	● 符合 SD3.0 协议
SGMII 接口	● 支持 10M/100M/1000M 以太网工作模式
无线连接接口	● 支持低功耗 SDIO 3.0 WLAN 和 UART&PCM 蓝牙接口*
分集接收天线接口	● 支持 LTE/WCDMA 分集接收

GNSS 特性	● 高通 Gen8C Lite
GNOO 1寸 I工	● 协议: NMEA 0183
AT 命令	● 3GPP TS 27.007 和 3GPP TS 27.005 定义的命令,以及移远通信增
AI 即令	强型 AT 命令
网络指示	● NET_MODE 和 NET_STATUS 两个引脚指示网络状态
天线接口	● 包括主天线接口(ANT_MAIN),分集接收天线接口(ANT_DIV)和
大线按口 	GNSS 天线接口(ANT_GNSS)
物理特征	● 尺寸: (29.0±0.15)mm × (32.0±0.15)mm × (2.4±0.2)mm
初垤竹仙 	● 重量:约 5.3g
	● 正常工作温度: -35°C ~ +75°C¹)
温度范围	● 扩展工作温度: -40°C ~ +85°C ²⁾
	● 存储温度: -40°C ~ +90°C
软件升级	● 可通过 USB 接口或 DFOTA 升级
RoHS	● 所有器件完全符合 EU RoHS 标准

备注

- 1. ¹⁾表示当模块工作在此温度范围时,模块的相关性能满足 **3GPP** 标准要求。
- 2. ²⁾表示当模块工作在此温度范围时,模块仍能保持正常工作状态,具备语音、短信、数据传输、紧急呼叫等功能;不会出现不可恢复的故障;射频频谱、网络基本不受影响。仅个别指标如输出功率等参数的值可能会超出 3GPP 标准的范围。当温度返回至正常工作温度范围时,模块的各项指标仍符合 3GPP 标准。
- 3. "*"表示正在开发中。

2.3. 功能框图

下图为 EC20 R2.1 模块的功能框图,阐述了其如下主要功能:

- 电源管理
- 基带部分
- DDR+NAND 存储器
- 射频部分
- 外围接口

图 1: 功能框图

备注

"*"表示正在开发中。

2.4. 评估板

移远通信提供一整套评估板,以方便 EC20 R2.1 模块的测试和使用。所述评估板工具包括 EVB 板、USB 转 RS-232 串口线、耳机、天线和其他外设。

3 应用接口

3.1. 基本描述

EC20 R2.1 共有 144 个引脚,其中 80 个为 LCC 引脚,另外 64 个为 LGA 引脚。后续章节详细阐述了模块各组接口的功能:

- 电源供电
- (U)SIM接口
- USB接口
- UART接口
- PCM 和 I2C 接口
- SD 卡接口
- 无线连接接口
- SGMII 接口
- ADC 接口
- 状态指示接口
- USB_BOOT接口

3.2. 引脚分配

下图为 EC20 R2.1 模块引脚分配图:

图 2: 引脚分配俯视图

备注

- 1. 1)表示此引脚在模块开机成功前禁止上拉到高电平。
- 2. 2)由于芯片集内部存在二极管压降, PWRKEY 引脚上电后的输出电压为 0.8V。
- 3. 3)表示仅 Telematics 版本支持此项功能。
- 4. 引脚 37~40、118、127 和 129~139 用于无线连接接口。其中 118、127 和 129~138 为 WLAN 功能引脚,其他的为蓝牙相关功能引脚,蓝牙功能正在开发中。
- 5. 引脚 119~126、128 为 SGMII 功能引脚。
- 6. 所有 RESERVED 和不用的引脚需悬空。
- 7. 引脚 85~112 需做接地处理。预留引脚 73~84 无需进行原理图及 PCB 封装设计,且该区域禁止铺铜

和布线。

8. "*"表示正在开发中。

3.3. 引脚描述

下表详细描述了 EC20 R2.1 模块的引脚定义。

表 3: I/O 参数定义

类型	描述
Ю	双向端口
DI	数字输入
DO	数字输出
PI	电源输入
PO	电源输出
Al	模拟输入
AO	模拟输出
OD	漏极开路

表 4: 引脚描述

电源					
引脚名	引脚号	I/O	描述	DC 特性	备注
VBAT_BB	59, 60	PI	模块基带电源	Vmax=4.3V Vmin=3.3V Vnorm=3.8V	电源必须能够提供达 0.8A的电流。
VBAT_RF	57, 58	PI	模块射频电源	Vmax=4.3V Vmin=3.3V Vnorm=3.8V	电源必须能够提供达 1.8A 的电流。
VDD_EXT	7	РО	输出 1.8V	Vnorm=1.8V I _o max=50mA	可为外部 GPIO 提供上 拉。 不用则悬空。

GND	8, 9, 19, 22, 36, 46, 48, 50~54, 56, 72, 85~112		地		
开关机					
引脚名	引脚号	I/O	描述	DC 特性	备注
PWRKEY	21	DI	模块开机/关机	V _{IH} max=2.1V V _{IH} min=1.3V V _{IL} max=0.5V	由于芯片集内部存在 二极管压降,该引脚 上电后输出电压为 0.8V。
RESET_N	20	DI	模块复位信号	V _{IH} max=2.1V V _{IH} min=1.3V V _{IL} max=0.5V	不用则悬空。
状态指示					
引脚名	引脚号	I/O	描述	DC 特性	备注
STATUS	61	OD	指示模块工作状态	驱动电流应小于 0.9mA	需要外部上拉。 不用则悬空。
NET_MODE	5	DO	指示模块的网络注册状态	V _{OH} min=1.35V V _{OL} max=0.45V	1.8V 电压域。 模块开机成功前禁止 上拉到高电平。 不用则悬空。
NET_ STATUS	6	DO	指示模块的网络运行 状态	V _{OH} min=1.35V V _{OL} max=0.45V	1.8V 电压域。 不用则悬空。
USB 接口					
引脚名	引脚号	I/O	描述	DC 特性	备注
USB_VBUS	71	PI	USB 电源,用于 USB 检测	Vmax=5.25V Vmin=3.0V Vnorm=5.0V	典型值 5.0V 不用则悬空。
USB_DP	69	Ю	USB 差分数据正信号	符合 USB 2.0 规范	要求 90Ω 差分阻抗。 不用则悬空。
USB_DM	70	Ю	USB 差分数据负信号	符合 USB 2.0 规范	要求 90Ω 差分阻抗。 不用则悬空。
(U)SIM 接口					
引脚名	引脚号	I/O	描述	DC 特性	备注
USIM_GND	10		(U)SIM 卡专用地		连接(U)SIM 卡座的 地引脚。

				1.8V (U)SIM: Vmax=1.9V Vmin=1.7V	
USIM_VDD	14	PO	(U)SIM 卡供电电源	3.0V (U)SIM: Vmax=3.05V Vmin=2.7V	模块自动识别 1.8V 或 3.0V (U)SIM 卡。
				Iomax=50mA	
				1.8V (U)SIM:	
				V _{IL} max=0.6V	
				V _{IH} min=1.2V	
				V_{OL} max=0.45 V	
LICIM DATA	15	10	/II)CIM 上粉提停只	V _{OH} min=1.35V	
USIM_DATA	15	Ю	(U)SIM 卡数据信号	3.0V (U)SIM:	
				V _{IL} max=1.0V	
				V _{IH} min=1.95V	
				V _{OL} max=0.45V	
				V _{OH} min=2.55V	
				1.8V (U)SIM:	
				V _{OL} max=0.45V	
				V _{OH} min=1.35V	
USIM_CLK	16	DO	(U)SIM 卡时钟信号		
				3.0V (U)SIM:	
				V _{OL} max=0.45V	
				V _{OH} min=2.55V	
				1.8V (U)SIM:	
				V _{OL} max=0.45V	
LIOINA DOT	47	D.O.		V _{OH} min=1.35V	
USIM_RST	17	DO	(U)SIM 卡复位信号	2 01/ /11/01/	
				3.0V (U)SIM: V _{OL} max=0.45V	
				V _{OH} min=2.55V	
				V _{IL} min=-0.3V	
USIM_				V_{IL} max=0.6V	1.8V 电压域。
PRESENCE	13	DI	(U)SIM 卡检测	V _{IH} min=1.2V	不用则悬空。
				V _{IH} max=2.0V	1 / 14 / 14 / 15 1 1 0
主串口					
引脚名	引脚号	I/O		DC 特性	
DI	62	DO	掛.h.t.h.t.l.t.e.t.h.te.z.	V _{OL} max=0.45V	1.8V 电压域。
RI	62	DO	模块输出振铃提示	V _{OH} min=1.35V	不用则悬空。

DCD	63	DO	模块输出载波检测	V _{OL} max=0.45V V _{OH} min=1.35V	1.8V 电压域。 不用则悬空。
CTS	64	DO	模块清除发送	V _{OL} max=0.45V V _{OH} min=1.35V	1.8V 电压域。 不用则悬空。
RTS	65	DI	DTE 请求发送数据	V _{IL} min=-0.3V V _{IL} max=0.6V V _{IH} min=1.2V V _{IH} max=2.0V	1.8V 电压域。 不用则悬空。
DTR	66	DI	DTE 准备就绪,睡眠 模式控制	V _{IL} min=-0.3V V _{IL} max=0.6V V _{IH} min=1.2V V _{IH} max=2.0V	1.8V 电压域。 默认上拉,低电平唤 醒模块。 不用则悬空。
TXD	67	DO	模块发送数据	V _{OL} max=0.45V V _{OH} min=1.35V	1.8V 电压域。 不用则悬空。
RXD	68	DI	模块接收数据	V _{IL} min=-0.3V V _{IL} max=0.6V V _{IH} min=1.2V V _{IH} max=2.0V	1.8V 电压域。 不用则悬空。
调试串口					
引脚名	引脚号	I/O	描述	DC 特性	备注
DBG_TXD	12	DO	模块发送数据	V _{OL} max=0.45V V _{OH} min=1.35V	1.8V 电压域。 不用则悬空。
DBG_RXD	11	DI	模块接收数据	V _{IL} min=-0.3V V _{IL} max=0.6V V _{IH} min=1.2V V _{IH} max=2.0V	1.8V 电压域。 不用则悬空。
ADC 接口					
引脚名	引脚号	I/O	描述	DC 特性	备注
ADC0	45	Al	通用模数转换接口	电压范围: 0.3V~VBAT_BB	不用则悬空。
ADC1	44	Al	通用模数转换接口	电压范围: 0.3V~VBAT_BB	不用则悬空。
PCM 接口					
引脚名	引脚号	I/O	描述	DC 特性	备注
PCM_IN	24	DI	PCM 数据输入	V _{IL} min=-0.3V V _{IL} max=0.6V V _{IH} min=1.2V V _{IH} max=2.0V	1.8V 电压域。 不用则悬空。

PCM_OUT	25	DO	PCM 数据输出	V _{OL} max=0.45V V _{OH} min=1.35V	1.8V 电压域。 不用则悬空。
PCM_SYNC	26	Ю	PCM 帧同步信号	V_{OL} max=0.45 V V_{OH} min=1.35 V V_{IL} min=-0.3 V V_{IL} max=0.6 V V_{IH} min=1.2 V V_{IH} max=2.0 V	1.8V 电压域。 模块作为主设备时, 该引脚为输出信号。 模块作为从设备时, 该引脚为输入信号。 不用则悬空。
PCM_CLK	27	Ю	PCM 时钟	V _{OL} max=0.45V V _{OH} min=1.35V V _{IL} min=-0.3V V _{IL} max=0.6V V _{IH} min=1.2V V _{IH} max=2.0V	1.8V 电压域。 模块作为主设备时, 该引脚为输出信号。 模块作为从设备时, 该引脚为输入信号。 不用则悬空。
I2C 接口					
引脚名	引脚号	I/O	描述	DC 特性	备注
I2C_SCL	41	OD	I2C 时钟		需外部 1.8V 上拉。 不用则悬空。
I2C_SDA	42	OD	I2C 数据		需外部 1.8V 上拉。 不用则悬空。
SD卡接口					
引脚名	引脚号	I/O	描述	DC 特性	备注
SDC2_ DATA3	28	ΙΟ	SD 卡 SDIO 总线 DATA3	1.8V 信令: V _{OL} max=0.45V V _{OH} min=1.4V V _{IL} min=-0.3V V _{IL} max=0.58V V _{IH} min=1.27V V _{IH} max=2.0V	SDIO 信号电平可根据 SD 卡支持的信号电平进行选择,详情请参考 SD 3.0 协议。
				V_{OL} max=0.38 V V_{OH} min=2.01 V V_{IL} min=-0.3 V V_{IL} max=0.76 V V_{IH} min=1.72 V V_{IH} max=3.34 V	不用则悬空。
SDC2_ DATA2	29	ΙΟ	SD 卡 SDIO 总线 DATA2	V_{OH} min=2.01V V_{IL} min=-0.3V V_{IL} max=0.76V V_{IH} min=1.72V	不用则悬空。 SDIO 信号电平可根据 SD 卡支持的信号电平进行选择,详情请参考 SD 3.0 协议。

				V _{IL} max=0.58V V _{IH} min=1.27V V _{IH} max=2.0V 3.0V 信令: V _{OL} max=0.38V V _{OH} min=2.01V V _{IL} min=-0.3V V _{IL} max=0.76V V _{IH} min=1.72V V _{IH} max=3.34V	不用则悬空。
SDC2_ DATA1	30	ΙΟ	SD 卡 SDIO 总线 DATA1	1.8V 信令: V _{OL} max=0.45V V _{OH} min=1.4V V _{IL} min=-0.3V V _{IL} max=0.58V V _{IH} min=1.27V V _{IH} max=2.0V 3.0V 信令: V _{OL} max=0.38V V _{OH} min=2.01V V _{IL} min=-0.3V V _{IL} max=0.76V V _{IH} min=1.72V V _{IH} max=3.34V	SDIO 信号电平可根据 SD 卡支持的信号电平进行选择,详情请参考 SD 3.0 协议。不用则悬空。
SDC2_ DATA0	31	ΙΟ	SD卡 SDIO 总线 DATA0	1.8V 信令: V _{OL} max=0.45V V _{OH} min=1.4V V _{IL} min=-0.3V V _{IL} max=0.58V V _{IH} min=1.27V V _{IH} max=2.0V 3.0V 信令: V _{OL} max=0.38V V _{OH} min=2.01V V _{IL} min=-0.3V V _{IL} min=-0.3V V _{IH} min=1.72V V _{IH} min=1.72V V _{IH} max=3.34V	SDIO 信号电平可根据 SD 卡支持的信号电平进行选择,详情请参考 SD 3.0协议。不用则悬空。
SDC2_CLK	32	DO	SD 卡 SDIO 总线 时钟	1.8V 信令: V _{OL} max=0.45V V _{OH} min=1.4V	SDIO 信号电平可根据 SD 卡支持的信号电平进行选择,详情

				3.0V 信令: V _{OL} max=0.38V V _{OH} min=2.01V	请参考SD 3.0 协议。 不用则悬空。
SDC2_CMD	33	IO	SD 卡 SDIO 总线 命令	1.8V 信令: V _{OL} max=0.45V V _{OH} min=1.4V V _{IL} min=-0.3V V _{IL} max=0.58V V _{IH} min=1.27V V _{IH} max=2.0V 3.0V 信令: V _{OL} max=0.38V V _{OH} min=2.01V V _{IL} min=-0.3V V _{IL} max=0.76V V _{IH} max=3.34V	SDIO 信号电平可根据 SD卡支持的信号电平进行选择,详情请参考 SD 3.0协议。不用则悬空。
SD_INS_ DET	23	DI	SD 卡插入检测	V_{IL} min=-0.3V V_{IL} max=0.6V V_{IH} min=1.2V V_{IH} max=2.0V	1.8V 电源域。 不用则悬空。
VDD_SDIO	34	PO	SD 卡 SDIO 总线 上拉电源	I _o max=50mA	输出 1.8V/2.85V 可配置。不能用于 SD 卡供电。不用则悬空。
无线连接接口					
引脚名	引脚号	I/O	描述	DC 特性	
WLAN_SLP_ CLK	118	DO	WLAN 睡眠时钟		不用则悬空。
PM_ ENABLE	127	DO	WLAN 电源使能,高 电平有效	V _{OL} max=0.45V V _{OH} min=1.35V	1.8V 电压域。 不用则悬空。
SDC1_ DATA3	129	Ю	WLAN SDIO 总线 DATA3	V_{OL} max=0.45V V_{OH} min=1.35V V_{IL} min=-0.3V V_{IL} max=0.6V V_{IH} min=1.2V V_{IH} max=2.0V	1.8V 电压域。 不用则悬空。
SDC1_ DATA2	130	Ю	WLAN SDIO 总线 DATA2	V_{OL} max=0.45 V V_{OH} min=1.35 V V_{IL} min=-0.3 V V_{IL} max=0.6 V	1.8V 电压域。 不用则悬空。

				V _{IH} min=1.2V	
				V _{IH} max=2.0V	
				V _{OL} max=0.45V	
				V _{OH} min=1.35V	
SDC1_	131	Ю	WLAN SDIO 总线	V _{IL} min=-0.3V	1.8V 电压域。
DATA1	131	Ю	DATA1	V _{IL} max=0.6V	不用则悬空。
				V _{IH} min=1.2V	
				V _{IH} max=2.0V	
				V _{OL} max=0.45V	
				V _{OH} min=1.35V	
SDC1_			WLAN SDIO 总线	V _{IL} min=-0.3V	1.8V 电压域。
DATA0	132	IO	DATA0	V _{IL} max=0.6V	不用则悬空。
2711710			B/ (I/ (O	V _{IH} min=1.2V	1 / 11 // 11 // 11 // 1
				V _{IH} max=2.0V	
				V _{OL} max=0.45V	 1.8V 电压域。
SDC1_CLK	133	DO	WLAN SDIO 时钟	V _{OL} Max=0.45V V _{OH} min=1.35V	T.6V 电压域。 不用则悬空。
SDC1_CMD	134	DO	WLAN SDIO 命令	V _{OL} max=0.45V	1.8V 电压域。
				V _{OH} min=1.35V	不用则悬空。
				V _{IL} min=-0.3V	
WAKE_ON_	135	DI	WLAN 唤醒模块,低	V _{IL} max=0.6V	1.8V 电压域。
WIRELESS	100	Di	电平有效	V _{IH} min=1.2V	不用则悬空。
				V _{IH} max=2.0V	
					1.8V 电压域。
WLAN_	400	DO	WLAN 使能,高电平 有效	V _{OL} max=0.45V	模块开机成功前禁
EN	136			V _{OH} min=1.35V	止上拉到高电平。
					不用则悬空。
				V _{IL} min=-0.3V	1.8V 电压域。
COEX_			LTE/WLAN&BT*共存		模块开机成功前禁
UART_RX	137	DI	接收	V _{IH} min=1.2V	止上拉到高电平。
• / <u>_</u>			1×.IV	V _{IH} max=2.0V	不用则悬空。
				Viiiiii doc 210 V	
COEX_			LTE/WLAN&BT*共存	V _{OL} max=0.45V	模块开机成功前禁
_	138	DO		V _{OH} min=1.35V	性上拉到高电平。 上上拉到高电平。
UART_TX			发送	VCC.1=IIIIIHOV	
					不用则悬空。
			*	V _{IL} min=-0.3V	4014515
BT_RTS*	37	DI	蓝牙串口请求发送数	V _{IL} max=0.6V	1.8V 电压域。
	•	·	据	V _{IH} min=1.2V	不用则悬空。
				V _{IH} max=2.0V	
DT TVD*	38	DO	蓝牙串口发送数据	V _{OL} max=0.45V	1.8V 电压域。
	30	טט	血刀甲口及处数%	V _{OH} min=1.35V	不用则悬空。
BT_TXD*					
םו_ואט				V _{IL} min=-0.3V	4.0\/ + = +
BT_RXD*	39	DI	蓝牙串口接收数据	V _{IL} min=-0.3V V _{IL} max=0.6V	1.8V 电压域。 不用则悬空。

				V _{IH} max=2.0V	
BT_CTS*	40	DO	蓝牙串口清除发送	V _{OL} max=0.45V V _{OH} min=1.35V	1.8V 电压域。 模块开机成功前禁 止上拉到高电平。 不用则悬空。
BT_EN*	139	DO	蓝牙使能	V _{OL} max=0.45V V _{OH} min=1.35V	1.8V 电压域。 不用则悬空。
SGMII 接口					
管脚名	管脚号	I/O	描述	DC 特性	备注
EPHY_RST_ N	119	DO	以太网 PHY 复位	1.8V: V _{OL} max=0.45V V _{OH} min=1.35V 2.85V: V _{OL} max=0.35V V _{OH} min=2.14V	1.8V/2.85V 电源域。 不用则悬空。
EPHY_INT_N	120	DI	以太网 PHY 中断	V _{IL} min=-0.3V V _{IL} max=0.6V V _{IH} min=1.2V V _{IH} max=2.0V	1.8V 电源域。 不用则悬空。
SGMII_ MDATA	121	Ю	SGMII MDIO 数据	1.8V: V _{IL} max=0.58V V _{IH} min=1.27V V _{OL} max=0.45V V _{OH} min=1.4V 2.85V: V _{IL} max=0.71V V _{IH} min=1.78V V _{OL} max=0.35V V _{OH} min=2.14V	1.8V/2.85V 电源域。 需要外部上拉到 USIM2_VDD,上拉 电阻为 1.5K。不用 则悬空。
SGMII_MCLK	122	DO	SGMII MDIO 时钟	1.8V: V _{OL} max=0.45V V _{OH} min=1.4V 2.85V: V _{OL} max=0.35V V _{OH} min=2.14V	1.8V/2.85V 电源域。 不用则悬空。
SGMII_TX_M	123	АО	SGMII 差分数据发送 负信号		不用则悬空。
SGMII_TX_P	124	AO	SGMII 差分数据发送		不用则悬空。

			正信号		
SGMII_RX_P	125	Al	SGMII 差分数据接收 正信号		不用则悬空。
SGMII_RX_M	126	Al	SGMII 差分数据接收 负信号		不用则悬空。
USIM2_VDD	128	РО	SGMII_MDATA 上拉 电源		输出 1.8V/2.85V 可 配置。不用则悬空。
射频接口					
引脚名	引脚号	I/O	描述	DC 特性	备注
ANT_DIV	35	AI	分集天线接口	50Ω特性阻抗	不用则悬空。
ANT_MAIN	49	Ю	主天线接口	50Ω特性阻抗	
ANT_GNSS	47	AI	GNSS 天线接口	50Ω 特性阻抗	不用则悬空。
GPIO 引脚					
引脚名	引脚号	I/O	描述	DC 特性	备注
WAKEUP_IN	1	DI	睡眠模式控制	V _{IL} min=-0.3V V _{IL} max=0.6V V _{IH} min=1.2V V _{IH} max=2.0V	1.8V 电压域。 模块开机成功前禁 止上拉到高电平; 低 电平唤醒模块。 不用则悬空。
W_ DISABLE#	4	DI	飞行模式控制	V _{IL} min=-0.3V V _{IL} max=0.6V V _{IH} min=1.2V V _{IH} max=2.0V	1.8V 电压域。 默认上拉; 低电平可 使模块进入飞行模 式。 不用则悬空。
AP_READY	2	DI	应用处理器睡眠状态 检测	V _{IL} min=-0.3V V _{IL} max=0.6V V _{IH} min=1.2V V _{IH} max=2.0V	1.8V 电压域。 不用则悬空。
USB_BOOT 引	脚				
引脚名	引脚号	I/O	描述	DC 特性	备注
USB_BOOT	115	DI	紧急下载模式控制, 高电平有效	V _{IL} min=-0.3V V _{IL} max=0.6V V _{IH} min=1.2V V _{IH} max=2.0V	1.8V 电压域。 建议预留测试点。
预留引脚					

引脚名	引脚号	I/O	描述	DC 特性	备注
RESERVED	3, 18, 43, 55, 73~84, 113, 114, 116, 117, 140~144		预留		保持悬空。

备注

- 1. 24~27 引脚为多路复用引脚,可用于 Codec 语音或者连接 FC20 的 PCM 以实现蓝牙语音通信功能。
- 2. "*"表示正在开发中。

3.4. 工作模式

下表简要地叙述了模块的各种工作模式。

表 5: 工作模式

模式	功能				
正常工作模式	Idle	软件正常运行。模块注册上网络,能够接收和发送数据。			
	Talk/Data	网络连接正常工作。此模式下,模块功耗取决于网络设置和数据传输速率。			
最少功能模式	不断电情况下,使用 AT+CFUN=0 命令可以将模块设置成最少功能模式。此模式下,射频和(U)SIM 卡不工作。				
飞行模式	AT+CFUN=4 命令或 W_DISABLE#引脚可以将模块设置成飞行模式。此模式下射频不工作。				
睡眠模式	此模式下,模块 TCP/UDP 数据。	的功耗将会降到非常低,但模块仍然可以接收寻呼、短信、电话和			
关机模式	, 2	IU 停止给基带和射频部分的电源供电,软件停止工作,串口不通。但AT_BB 引脚仍然通电。			

3.5. 节能功能

3.5.1. 睡眠模式

在睡眠模式下, EC20 R2.1 可将功耗降低到最低水平,下面的章节将详细介绍使 EC20 R2.1 进入睡眠模式的方式。

3.5.1.1. 串口应用

当主机和 EC20 R2.1 模块通过串口连接的时候,可以通过如下步骤使模块进入睡眠模式:

- 用 AT+QSCLK=1 命令使能睡眠功能。
- 拉高 DTR 引脚。

参考电路如下:

图 3: 串口睡眠应用

- 拉低主机 DTR 可以唤醒模块。
- 当 EC20 R2.1 模块有 URC 需要上报时, RI 信号将会唤醒主机。RI 动作细节请参考 3.18 章节。
- AP_READY 是 EC20 R2.1 用来检测主机是否被唤醒的引脚(可以配置成高电平检测或者低电平 检测)。详情请参考*文档 [2]*中的 AT+QCFG="apready"*命令。

备注

"*"表示正在开发中。

3.5.1.2. USB 应用(支持 USB 远程唤醒功能)

如果主机支持 USB Suspend/Resume 和远程唤醒功能,需同时满足如下 3 个条件使模块进入睡眠模式:

- 用 AT+QSCLK=1 命令使能睡眠功能。
- 确保 DTR 保持高电平或者悬空。
- 连接至模块 USB 接口的主机 USB 总线进入 Suspend 状态。

参考电路如下:

图 4: 带 USB 远程唤醒功能的睡眠应用

- 通过 USB 向 EC20 R2.1 模块发送数据将会唤醒模块。
- 当 EC20 R2.1 模块有 URC 上报时,模块会通过 USB 总线发送远程唤醒信号以唤醒主机。

3.5.1.3. USB 应用(支持 USB Suspend/Resume 和 RI 功能)

如果主机支持 USB Suspend/Resume 但不支持远程唤醒功能,需要有 RI 信号唤醒主机。需同时满足如下 3 个条件使模块进入睡眠模式:

- 用 AT+QSCLK=1 命令使能睡眠功能。
- 确保 DTR 保持高电平或悬空。
- 连接至模块 USB 接口的主机 USB 总线进入 Suspend 状态。

参考电路如下:

图 5: 带 RI 功能的睡眠应用

- 通过 USB 向 EC20 R2.1 模块发送数据将会唤醒模块。
- 当 EC20 R2.1 模块有 URC 上报时, RI 信号会唤醒主机。

3.5.1.4. USB 应用(不支持 USB Suspend 功能)

如果主机不支持 USB Suspend 功能,可以通过外部控制电路断开 USB_VBUS 的方式使模块进入睡眠模式:

- 用 AT+QSCLK=1 命令使能睡眠功能。
- 确保 DTR 保持高电平或悬空。
- 断开 USB_VBUS 供电。

参考电路如下:

图 6: 不支持 USB Suspend 功能的睡眠应用

恢复 USB_VBUS 供电即可唤醒模块。

备注

客户应当注意模块和主机虚线连接信号的电平匹配问题。EC20 R2.1 电源管理应用详情请参考文档 [1]。

3.5.2. 飞行模式

当模块进入飞行模式时,射频功能不可使用,而且所有与射频相关的 AT 命令不可访问。可通过以下方式使模块进入飞行模式:

硬件方式:

W_DISABLE#引脚默认为上拉,拉低该引脚可使模块进入飞行模式。

软件方式:

此模式可以通过发送 AT+CFUN=<fun>命令来设置。<fun>参数可以选择 0, 1 或 4。

- **AT+CFUN=0:** 最少功能模式(关闭 RF 和(U)SIM 卡)。
- **AT+CFUN=1:** 全功能模式 (默认)。
- **AT+CFUN=4**: 关闭 RF 功能(飞行模式)。

备注

- 1. W_DISABLE#引脚对飞行模式的控制功能软件上默认关闭,可通过 **AT+QCFG="airplanecontrol"**命令开启。该命令仍在开发中。
- 2. 执行 AT+CFUN 命令不会影响 GNSS 功能。

3.6. 电源设计

3.6.1. 引脚介绍

EC20 R2.1 有 4 个 VBAT 引脚用于连接外部电源,可以分为两个电压域:

- 两个 VBAT_RF 引脚用于给模块的射频供电。
- 两个 VBAT BB 引脚用于给模块的基带供电。

下表为模块的电源引脚和地引脚分配:

表 6: VBAT 引	脚和地引脚
-------------	-------

引脚名	引脚号	描述	最小值	典型值	最大值	单位
VBAT_RF	57, 58	模块射频电源	3.3	3.8	4.3	V
VBAT_BB	59, 60	模块基带电源	3.3	3.8	4.3	V
GND	8, 9, 19, 22, 36, 46, 48, 50~54, 56, 72, 85~112	地		0		V

3.6.2. 减少电压跌落

EC20 R2.1 的供电范围为 3.3V~4.3V,需要确保输入电压不低于 3.3V。下图是在 2G 网络下突发传输时电压跌落情况, 3G 和 4G 网络下电压跌落比 2G 网络下小。

图 7: 突发传输电源要求

为了减少电压跌落,需要使用低 ESR(ESR=0.7Ω)的 100uF 滤波电容。同时建议分别给 VBAT_BB 和 VBAT_RF 预留 3 个具有最佳 ESR 性能的片式多层陶瓷电容(MLCC)100nF、33pF、10pF),且电容靠近 VBAT 引脚放置。外部供电电源连接模块时,VBAT_BB 和 VBAT_RF 需要采用星型走线。VBAT_BB 走线宽度应不小于 1mm,VBAT_RF 走线宽度应不小于 2mm。原则上,VBAT 走线越长,线宽越宽。

另外,为了保证电源稳定,建议在电源前端加 5.1V、功率 0.5W 以上的齐纳二极管。参考电路如下:

图 8: 模块供电电路

3.6.3. 供电参考电路

电源设计对模块的性能至关重要。EC20 R2.1 必须选择至少能够提供 2A 电流能力的电源。若输入电压与模块供电电压之间的电压差不是很大,则建议选择 LDO 作为供电电源。若输入与输出电压之间存在比较大的电压差,则建议使用开关电源转换器。

下图是+5V 供电电路的参考设计。该设计采用了 Micrel 公司的 LDO, 型号为 MIC29302WU。其典型输出电压为 3.8V,负载电流峰值达到 3A。

图 9: 供电输入参考设计

3.6.4. 电源电压检测

AT+CBC 命令可以用来监测、查询当前 VBAT_BB 的电压。如需了解更多详情,请参考文档 [2]。

3.7. 开关机

3.7.1. PWRKEY 引脚开机

下表为 PWRKEY 引脚定义:

表 7: PWRKEY 引脚定义

引脚名	引脚号	I/O	描述	备注
PWRKEY	21	DI	模块开机/关机	由于芯片集内部存在二极管压降,该引脚上电后的输出电压为 0.8V。

当 EC20 R2.1 模块处于关机模式,可以通过拉低 PWRKEY 至少 500ms 使模块开机。推荐使用开集驱动电路来控制 PWRKEY 引脚。在 STATUS 引脚(需要外部上拉)输出低电平之后,可以释放 PWRKEY 引脚。参考电路如下:

图 10: 开集驱动参考开机电路

另一种控制 PWRKEY 引脚的方式是直接通过一个按钮开关,按钮附近需放置一个 TVS 用于 ESD 保护,参考电路如下:

图 11: 按键开机参考电路

开机时序如下图所示:

图 12: 开机时序图

备注

在拉低 PWRKEY 引脚之前,需保证 VBAT 电压稳定。建议从 VBAT 上电到拉低 PWRKEY 引脚之间的时间间隔不少于 30ms。

3.7.2. 关机

模块可通过以下的方式关机:

- 正常关机:通过 PWRKEY 引脚控制模块关机。
- 正常关机:发送 AT+QPOWD 命令关机。

3.7.2.1. PWRKEY 引脚关机

模块在开机状态下, 拉低 PWRKEY 引脚至少 650ms 后释放, 模块将执行关机流程。关机时序见下图:

图 13: 关机时序图

3.7.2.2. AT 命令关机

AT+QPOWD 命令可被用来执行模块关机。该命令关机过程等同拉低 PWRKEY 引脚关机过程。

详情请参考文档 [2]中的 AT+QPOWD 命令。

备注

- 1. 当模块正常工作时,不要立即切断模块电源,以避免损坏模块内部的Flash。强烈建议先通过PWRKEY或者 AT 命令关闭模块后,再断开电源。
- 2. 使用 AT 命令关机时,请确保在关机命令执行后 PWRKEY 一直处于高电平状态;否则模块完成关机后,会自动再次开机。

3.7.3. 复位功能

RESET_N 引脚可用于使模块复位。拉低 RESET_N 引脚 150ms~460ms 后可使模块复位。RESET_N 信号对于扰比较敏感,因此建议在模块接口板上的走线应尽量的短,且需包地处理。

表 8: RESET_N 引脚定义

引脚名	引脚号	I/O	描述	备注
RESET_N	20	DI	模块复位信号	1.8V 电压域

参考电路与 PWRKEY 控制电路类似,客户可使用开集驱动电路或按钮控制 RESET_N 引脚。

图 14: RESET_N 复位开集参考电路

图 15: RESET_N 复位按钮参考电路

复位时序图如下:

图 16: RESET_N 复位时序图

备注

- 1. 复位功能建议仅仅在 AT+QPOWD 和 PWRKEY 关机失败后使用。
- 2. 确保 PWRKEY 和 RESET_N 引脚没有大负载电容。

3.8. (U)SIM 接口

(U)SIM 接口符合 ETSI 和 IMT-2000 规范, 支持 1.8V 和 3.0V (U)SIM 卡。

表 9: (U)SIM 接口引脚定义

引脚名	引脚号	I/O	描述	备注
USIM_VDD	14	РО	(U)SIM 卡供电电源	模块自动识别 1.8V 或 3.0V (U)SIM卡。
USIM_DATA	15	Ю	(U)SIM 卡数据信号	
USIM_CLK	16	DO	(U)SIM 卡时钟信号	
USIM_RST	17	DO	(U)SIM 卡复位信号	
USIM_ PRESENCE	13	DI	(U)SIM 卡检测	1.8V 电压域。 不用则悬空。
USIM_GND	10		(U)SIM 卡专用地	

通过 USIM_PRESENCE 引脚,EC20 R2.1 模块可支持(U)SIM 卡热插拔功能,并且支持低电平和高电平检测。该功能默认关闭。详情请参考*文档 [2]*中的 **AT+QSIMDET** 命令。

8-pin (U)SIM 接口参考电路如下:

图 17: 8-pin (U)SIM 接口参考电路图

如果无需使用(U)SIM 卡检测功能,请保持 USIM_PRESENCE 引脚悬空。下图为 6-pin (U)SIM 接口参考电路:

图 18: 6-pin (U)SIM 接口参考电路图

在(U)SIM 接口的电路设计中,为了确保(U)SIM 卡的良好性能和可靠性,在电路设计中建议遵循以下原则:

- (U)SIM 卡座靠近模块摆放,尽量保证(U)SIM 卡信号线布线长度不超过 200mm。
- (U)SIM 卡信号线布线远离 RF 线和 VBAT 电源线。
- (U)SIM 卡座的地与模块的 USIM_GND 之间的布线要短而粗;为保证相同的电势,需确保 USIM_VDD 与 USIM_GND 布线宽度不小于 0.5mm;如果客户 PCB 的 GND 很完整,USIM_GND 也可以直接接到 PCB 的 GND。
- 为防止 USIM_CLK 信号与 USIM_DATA 信号相互串扰,两者布线不能太靠近,并且在两条走线之间需增加地屏蔽。
- 为确保良好的ESD性能,建议(U)SIM卡的引脚增加TVS管,选择的TVS管寄生电容不大于15pF。 在模块和(U)SIM卡之间串联 0Ω 的电阻便于调试。在 USIM_DATA, USIM_VDD, USIM_CLK 和 USIM_RST 线上并联 33pF 电容用于滤除 GSM900 频段干扰。(U)SIM卡的外围器件应尽量靠近 (U)SIM卡座摆放。
- USIM_DATA 上的上拉电阻有利于增加(U)SIM 卡的抗干扰能力。当(U)SIM 卡走线过长,或者有比较近的干扰源的情况下,建议靠近卡座位置增加上拉电阻。

3.9. USB 接口

EC20 R2.1 的 USB 接口符合 USB 2.0 规范,支持高速(480Mbps)和全速(12Mbps)模式。该接口可用于 AT 命令传送、数据传输、GNSS NMEA 输出、软件调试、软件升级和 USB 语音*。

下表为 USB 接口的引脚定义:

表 10: USB 接口引脚定义

引脚名	引脚号	I/O	描述	备注
USB_DP	69	Ю	USB 差分数据正信号	要求 90Ω 差分阻抗
USB_DM	70	Ю	USB 差分数据负信号	要求 90Ω 差分阻抗
USB_VBUS	71	PI	USB 电源,用于 USB 检测	典型值 5.0V
GND	72		地	

如需了解更多关于 USB 2.0 规范的信息,请访问 http://www.usb.org/home。

建议客户设计时预留测试点用于调试和软件升级,下图为 USB 接口参考设计:

图 19: USB 接口参考设计

建议在 MCU 与模块间串联一个共模电感 L1 防止 USB 信号产生 EMI 干扰;同时,建议串联 R3、R4 电阻到测试点以便于调试,电阻默认不贴。为了满足 USB 数据线信号完整性要求,L1/R3/R4 需要靠近模块放置,且 R3/R4 之间靠近放置,连接测试点的桩线尽量短。

在 USB 接口的电路设计中,为了确保 USB 的性能,在电路设计中建议遵循以下原则:

- USB 走线周围需要包地处理,走 90Ω 的阻抗差分线。
- 不要在晶振、振荡器、磁性装置和 RF 信号下面走 USB 线,建议走内层差分走线且上下左右立体 包地。
- USB 数据线上的 ESD 器件选型需特别注意,其寄生电容不要超过 2pF。
- USB 的 ESD 器件尽量靠近 USB 接口放置。

备注

- 1. EC20 R2.1 模块只支持从模式。
- 2. "*"表示正在开发中。

3.10. 串口

EC20 R2.1 模块有两个串口: 主串口和调试串口。下面描述了这两个串口的主要特性。

● 主串口支持 4800bps, 9600bps, 19200bps, 38400bps, 57600bps, 115200bps, 230400bps, 460800bps 和 921600bps 波特率,默认波特率为 115200bps, 用于数据传输和 AT 命令传送。

● 调试串口支持 115200bps 波特率,用于 Linux 控制和日志输出。

下表为串口引脚描述:

表 11: 主串口引脚定义

引脚名	引脚号	I/O	描述	备注
RI	62	DO	模块输出振铃提示	
DCD	63	DO	模块输出载波检测	
CTS	64	DO	模块清除发送	
RTS	65	DI	DTE 请求发送数据	1.8V 电压域
DTR	66	DI	DTE 准备就绪,睡眠模式 控制	
TXD	67	DO	模块发送数据	
RXD	68	DI	模块接收数据	

表 12: 调试串口引脚定义

引脚名	引脚号	I/O	描述	备注	
DBG_TXD	12	DO	模块发送数据	1.8V 电压域	
DBG_RXD	11	DI	模块接收数据	——— 1.0V 巴 压埃	

串口逻辑电平如下表所示:

表 13: 串口逻辑电平

参数	最小值	最大值	单位
V _{IL}	-0.3	0.6	V
V _{IH}	1.2	2.0	V
V _{OL}	0	0.45	V
V _{OH}	1.35	1.8	V

EC20 R2.1 模块的串口电平为 1.8V。若客户主机系统电平为 3.3V,则需在模块和主机的串口连接中增加电平转换器,推荐使用 TI 公司的 TXS0108EPWR。下图为使用电平转换芯片的参考电路设计。

图 20: 电平转换芯片参考电路

更多信息请访问 http://www.ti.com。

另一种电平转换电路如下图所示。如下虚线部分的输入和输出电路设计可参考实线部分,但需注意连接方向。

图 21: 电平转换参考电路

备注

电平转换电路不适用于波特率超过 460Kbps 的应用。

3.11. SD 卡接口

EC20 R2.1 模块的 SD 卡接口支持 SD3.0 协议。接口引脚定义如下表:

表 14: SD 卡接口引脚描述

管脚名	管脚号	I/O	描述	备注
SDC2_DATA3	28	Ю	SD 卡 SDIO 总线 DATA3	SDIO 信号电平可根据 SD 卡支持的信号电平进行选择,详情请参考 SD3.0 协议。不用则悬空。
SDC2_DATA2	29	Ю	SD卡 SDIO 总线 DATA2	SDIO 信号电平可根据 SD 卡支持的信号电平进行选择,详情请参考 SD3.0 协议。不用则悬空。
SDC2_DATA1	30	Ю	SD 卡 SDIO 总线 DATA1	SDIO 信号电平可根据 SD 卡支持的信号电平进行选择,详情请参考 SD3.0 协议。不用则悬空。
SDC2_DATA0	31	Ю	SD 卡 SDIO 总线 DATA0	SDIO 信号电平可根据 SD 卡支持的信号电平进行选择,详情请参考 SD3.0 协议。不用则悬空。
SDC2_CLK	32	DO	SD 卡 SDIO 总线时钟	SDIO 信号电平可根据 SD 卡支持的信号电平进行选择,详情请参考 SD3.0 协议。不用则悬空。
SDC2_CMD	33	Ю	SD 卡 SDIO 总线命令	SDIO 信号电平可根据 SD 卡支持的信号电平进行选择,详情请参考 SD3.0 协议。不用则悬空。
VDD_SDIO	34	РО	SD 卡 SDIO 总线上拉电源	输出 2.85V/1.8V 可配置。不能用于 SD 卡供电。不用则悬空。
SD_INS_DET	23	DI	SD 卡插入检测	1.8V 电源域。不用则悬空。

EC20 R2.1 模块与 SD 卡参考设计如下图所示。

图 22: SD 卡接口电路参考设计

在 SD 卡接口的电路设计中,为了确保 SD 卡的良好性能和可靠性,在电路设计中建议遵循以下原则:

- SD卡电源 VDD_3V 电压范围为 2.7V~3.6V,需要提供至少 800mA 电流。模块输出电源 VDD_SDIO 的最大输出电流为 50mA,只能用于 SDIO 总线上拉。SD 卡电源需要从模块外部提供。
- 为了避免总线抖动,需要在 SDIO 信号预留上拉电阻 R7~R11,阻值范围为 10KΩ~100KΩ,推荐 值为 100KΩ。上拉电源必须选择模块 VDD SDIO。
- 为了调节信号质量,需预留 SDIO 信号串联电阻 R1~R6,推荐值为 0Ω; 预留电容 C1~C6,默认不贴。摆件时电阻、电容需要靠近模块侧放置。
- 为了确保良好的 ESD 性能,建议在 SD 卡引脚增加 TVS 管;且尽量靠近 SD 卡座摆放,并保证 TVS 的结电容小于 15pF。
- SDIO 信号线需要远离敏感信号如射频、模拟信号,以及时钟、DCDC 等噪声信号。
- SDIO 信号线需要立体包地,阻抗控制在 50Ω±10%。
- SDIO 信号与其他信号之间的间距需大于 2 倍线宽,并且确保总线负载小于 15pF。
- SDC1_CLK 与 SDC1_DATA[0:3]/SDC1_CMD 需做等长处理(相差小于 1mm),总长度需小于 50mm;由于模块内部走线长度为 27mm,因此外部走线长度需要小于 23mm。

3.12. PCM 和 I2C 接口

EC20 R2.1 提供一个 PCM 接口和一个 I2C 接口。PCM 接口支持以下两种模式:

- 短帧模式:模块可做主设备或者从设备
- 长帧模式:模块只可做主设备

短帧模式下,数据在 PCM_CLK 下降沿采样,上升沿发送。PCM_SYNC 下降沿代表高有效位。PCM接口支持 8kHz PCM_SYNC 下 256kHz,512kHz,1024kHz 和 2048kHz PCM_CLK,以及 16kHz PCM_SYNC 下 4096kHz PCM_CLK。

长帧模式下,数据也在 PCM_CLK 下降沿采样,上升沿发送。但 PCM_SYNC 上升沿代表高有效位。 此模式下,PCM 接口支持 8kHz、50%占空比 PCM_SYNC 下 256kHz, 512kHz, 1024kHz 和 2048kHz PCM_CLK。

EC20 R2.1 模块支持 8 位 A-law*, u-law*和 16 位线性编码格式。下面两图分别为短帧模式时序图 (PCM_SYNC=8kHz, PCM_CLK=2048kHz)和长帧模式时序图 (PCM_SYNC=8kHz, PCM_CLK=256kHz)。

图 23: 短帧模式时序图

图 24: 长帧模式时序图

PCM 和 I2C 接口的引脚定义如下表所示:

表 15: PCM 和 I2C 接口引脚定义

引脚名	引脚号	I/O	描述	备注
PCM_IN	24	DI	PCM 数据输入	1.8V 电压域。 不用则悬空。
PCM_OUT	25	DO	PCM 数据输出	1.8V 电压域。 不用则悬空。
PCM_SYNC	26	Ю	PCM 数据同步信号	1.8V 电压域。 模块作为主设备时,该引脚为输出信号。 模块作为从设备时,该引脚为输入信号。 不用则悬空。
PCM_CLK	27	Ю	PCM 时钟	1.8V 电压域。 模块作为主设备时,该引脚为输出信号。 模块作为从设备时,该引脚为输入信号。 不用则悬空。
I2C_SCL	41	OD	I2C 时钟	需外部 1.8V 上拉。 不用则悬空。
I2C_SDA	42	OD	I2C 数据	需外部 1.8V 上拉。 不用则悬空。

可以通过 AT 指令配置时钟和模式,默认配置为短帧模式,PCM_CLK=2048KHz,PCM_SYNC=8KHz。详情请参考*文档* [2]中的 AT+QDAI 命令。

下图为带外部 Codec 芯片的 PCM 和 I2C 接口的参考设计:

图 25: PCM 和 I2C 接口电路参考设计

备注

- 1. "*"表示正在开发中。
- 2. 建议在 PCM 的信号线上预留 RC (R=22Ω, C=22pF)电路,特别是 PCM_CLK 上。

3. EC20 R2.1 模块在与 I2C 接口有关的应用中只能作为主设备。

3.13. 无线连接接口

EC20 R2.1 为 WLAN 设计提供一个低功耗 SDIO 3.0 接口,为蓝牙设计提供串口和 PCM 接口。

无线连接接口的引脚定义如下表:

表 16: 无线连接接口引脚定义

引脚名	引脚号	I/O	描述	备注
SDIO 接口				
SDC1_DATA3	129	Ю	WLAN SDIO 总线 DATA3	1.8V 电压域
SDC1_DATA2	130	Ю	WLAN SDIO 总线 DATA2	1.8V 电压域
SDC1_DATA1	131	Ю	WLAN SDIO 总线 DATA1	1.8V 电压域
SDC1_DATA0	132	Ю	WLAN SDIO 总线 DATA0	1.8V 电压域
SDC1_CLK	133	DO	WLAN SDIO 时钟	1.8V 电压域
SDC1_CMD	134	Ю	WLAN SDIO 命令	1.8V 电压域
WLAN_EN	136	DO	WLAN 使能,高电平有效	1.8V 电压域 模块开机成功前禁止 上拉到高电平。
共存和控制接口				
WLAN_SLP_CLK	118	DO	WLAN 睡眠时钟	
PM_ENABLE	127	DO	WLAN 电源使能,高电平有效	1.8V 电压域
WAKE_ON_WIRELESS	135	DI	WLAN 唤醒模块	1.8V 电压域
COEX_UART_RX	137	DI	LTE/WLAN&BT*共存接收	1.8V 电压域 模块开机成功前禁止 上拉到高电平。
COEX_UART_TX	138	DO	LTE/WLAN&BT*共存发送	1.8V 电压域 模块开机成功前禁止 上拉到高电平。
蓝牙接口*				

BT_RTS*	37	DI	蓝牙串口请求发送数据	1.8V 电压域。
BT_TXD*	38	DO	蓝牙串口发送数据	1.8V 电压域。
BT_RXD*	39	DI	蓝牙串口接收数据	1.8V 电压域。
BT_CTS*	40	DO	蓝牙串口清除发送	1.8V 电压域。 模块开机成功前禁止 上拉到高电平。
PCM_IN ¹⁾	24	DI	PCM 数据输入	1.8V 电压域。
PCM_OUT ¹⁾	25	DO	PCM 数据输出	1.8V 电压域。
PCM_SYNC ¹⁾	26	Ю	PCM 数据帧同步信号	1.8V 电压域。
PCM_CLK ¹⁾	27	Ю	PCM 数据位时钟	1.8V 电压域。
BT_EN*	139	DO	蓝牙使能,高电平有效	1.8V 电压域。

EC20 R2.1 无线连接接口与 FC20 系列模块的参考设计如下图所示。详细的设计请参考文档 [5]。

图 26: 无线连接接口与 FC20 系列模块的电路参考设计

备注

- 1. FC20 只可作从设备。
- 2. 当 EC20 R2.1 使能蓝牙功能时,PCM_SYNC 和 PCM_CLK 仅用于信号输出。
- 3. 1)24~27 引脚为多路复用引脚,可用于 Codec 语音或者连接 FC20 的 PCM 以实现蓝牙语音通信功能。
- 4. "*"表示正在开发中。

3.13.1. WLAN 接口

EC20 R2.1 提供一个低功耗的 SDIO 3.0 WLAN 和一个控制接口。

SDIO 接口支持单速率模式,最大频率 50MHz。

SDIO 接口速率很高,为了确保接口设计符合 SDIO 3.0 规范,建议遵循以下原则:

- SDIO 信号线需要立体包地,阻抗需控制在 50Ω±10%;
- SDIO 信号线需要远离敏感信号如射频、模拟信号,以及时钟、DCDC 等噪声信号。
- SDC1_CLK 与 SDC1_DATA[0:3]/SDC1_CMD 需做等长处理(相差小于 1mm),总长度需小于 50mm;
- SDC1_CLK 信号线上需要靠近模块放置 15Ω~24Ω 终端匹配电阻,从模块 SDC1_CLK 引脚到电阻之间走线距离需小于 5mm;
- SDIO 信号与其他信号之间的间距需大于 2 倍线宽,并且确保总线负载小于 15pF。

3.13.2. 蓝牙接口*

EC20 R2.1 为蓝牙接口提供一个专有的 UART 接口和一个 PCM 接口。

关于蓝牙接口的详细信息将在本文档的后续版本中添加。

备注

"*"表示正在开发中。

3.14. SGMII 接口

EC20 R2.1 模块提供一个内嵌以太网 MAC 的 SGMII 接口和两线管理接口,关键特性如下:

- 符合 IEEE 802.3 标准
- 支持 10M/100M/1000M 工作模式
- 支持 VLAN 标记
- 支持 IEEE 1588 和 PTP 协议
- 可以连接至外部以太网 PHY 芯片如 AR8033,或者外部开关
- 管理接口支持 1.8V/2.85V 双电压

SGMII 接口的管脚定义如下表:

表 17: SGMII 接口管脚描述

管脚名	管脚号	I/O	描述	备注
SGMII 控制接口				
EPHY_RST_N	119	DO	以太网 PHY 复位	1.8V/2.85V 电源域
EPHY_INT_N	120	DI	以太网 PHY 中断	1.8V 电源域
SGMII_MDATA	121	Ю	SGMII MDIO 数据	1.8V/2.85V 电源域
SGMII_MCLK	122	DO	SGMII MDIO 时钟	1.8V/2.85V 电源域
USIM2_VDD	128	РО	SGMII_MDATA 上拉电源	可配置电源; 1.8V/2.85V 电源域
SGMII 数据接口				
SGMII_TX_M	123	AO	SGMII 差分数据发送负信号	靠近 PHY 芯片端串接 0.1uF 电容
SGMII_TX_P	124	AO	SGMII 差分数据发送正信号	靠近 PHY 芯片端串接 0.1uF 电容
SGMII_RX_P	125	AI	SGMII 差分数据接收正信号	靠近模块端串接 0.1uF 电容
SGMII_RX_M	126	AI	SGMII 差分数据接收负信号	靠近模块端串接 0.1uF 电容

以太网应用方案简图:

图 27: 以太网应用简图

EC20 R2.0 模块 SGMII 接口与以太网 PHY 芯片 AR8033 参考设计如下图。更多详情,请参考文档 [5]。

图 28: SGMII 接口参考设计

SGMII 信号设计原则请参考下面描述:

- SGMII 数据和控制信号需要远离远离敏感信号如射频、模拟信号,以及时钟、DCDC等噪声信号;
- SGMII 差分数据信号走线最大长度不能超过 25.4cm, RX 与 TX 线的长度差不能超过 0.5mm;
- SGMII 差分数据信号阻抗控制在 100Ω±10%, 并且保证完整参考地平面;
- SGMII RX/TX 线间距至少为 3 倍线宽, SGMII 信号与其他信号线的距离也至少保持为 3 倍线宽。

3.15. ADC 接口

EC20 R2.1 提供两路模数转换接口。使用 AT+QADC=0 可以读取 ADC0 的电压值,用 AT+QADC=1 能够读取 ADC1 的电压值。如需了解更多相关 AT 命令的信息,请参考*文档* [2]。

为了让 ADC 电压测量准确度更高, ADC 在布线时需要包地处理。

表 18: ADC 接口引脚定义

引脚名	引脚号	描述
ADC0	45	通用模数转换接口
ADC1	44	通用模数转换接口

表 19: ADC 特性

引脚名	最小	典型	最大	单位
ADC0 电压范围	0.3		VBAT_BB	V
ADC1 电压范围	0.3		VBAT_BB	V
ADC 分辨率		15		bits

备注

- 1. 模块在 VBAT 不供电的情况下, ADC 接口不能直接接任何输入电压。
- 2. 建议 ADC 引脚采用分压电路输入。

3.16. 网络状态指示

网络状态指示引脚主要用于驱动网络状态指示灯。EC20 R2.1 模块有 NET_MODE 和 NET_STATUS 两个网络状态引脚。如下两表分别描述了引脚定义和不同网络状态下的逻辑电平变化。

表 20: 网络指示引脚定义

引脚名	引脚号	I/O	描述	备注
NET_MODE	5	DO	指示模块的网络注册状态	1.8V 电压域。 模块开机成功前禁止上拉到 高电平。 不用则悬空。
NET_STATUS	6	DO	指示模块的网络运行状态	1.8V 电压域。 不用则悬空。

表 21: 网络指示引脚的工作状态

引脚名	引脚工作状态	所指示的网络状态
NET_MODE	高电平	注册 LTE 网络状态
NET_WODE	低电平	其他
NET_STATUS	慢闪(200ms 高/1800ms 低)	找网状态
	慢闪(1800ms 高/200ms 低)	待机状态
	快闪(125ms 高/125ms 低)	数据传输模式
	高电平	通话中

参考电路如下图所示。

图 29: 网络指示参考电路

3.17. STATUS

STATUS 用于指示模块的工作状态,为开漏输出引脚。客户可将此引脚连接至设备带上拉的 GPIO 或下图所示的 LED 指示电路。当模块正常开机时,STATUS 会输出低电平。否则,STATUS 变为高阻抗状态。

表 22: STATUS 引脚定义

引脚名	引脚号	I/O	描述	备注
STATUS	61	OD	指示模块工作状态	需要外部上拉。 不用则悬空。

下图为两种不同的 STATUS 参考电路设计,客户可根据应用需求选择其中任意一种。

图 30: STATUS 参考电路

3.18. RI 信号

客户可以用 **AT+QCFG="risignaltype","physical"**命令来配置 RI 指示动作。不管通过哪个口上报 URC 信息,物理 RI 都会有指示作用。

备注

通过 **AT+QURCCFG** 命令,可将主串口、USB AT 端口或 USB 调制端口设置为 URC 输出串口。默认为 USB AT 端口。

RI作为指示信号可以有多种方式,默认的指示方式如下:

表 23: RI 指示方式

状态	RI 信号
Idle	高电平
URC	新的 URC 返回时 RI 会有 120ms 的低电平

RI 的指示方式可以用 AT+QCFG="urc/ri/ring"来配置,详细信息请参考文档 [2]。

3.19. USB_BOOT 接口

EC20 R2.1 支持 USB_BOOT 功能。开发者可以在模块开机前将 USB_BOOT 上拉至 VDD_EXT,再 开机时模块将进入紧急下载模式。在此模式下,模块可通过 USB 接口进行软件升级。

表 24: USB_BOOT 接口引脚定义

引脚名	引脚号	I/O	描述	备注
USB_BOOT	115	DI	紧急下载模式控制,高电平有效	1.8V 电压域。 建议预留测试点。

USB_BOOT 接口参考设计如下:

图 31: USB_BOOT 接口参考设计电路

4 GNSS接收器

4.1. 基本描述

基于高通先进的 Gen8C Lite 技术,EC20 R2.1 集成了多星座 GNSS 接收机,支持 GPS/GLONASS/BeiDou/Galileo/QZSS 定位系统。

EC20 R2.1 模块支持标准 NMEA 0183 协议, 默认通过 USB 接口输出 NMEA 语句(数据更新率: 1Hz)。

EC20 R2.1 模块的 GNSS 引擎默认关闭,可以通过 AT 命令打开。更多关于 GNSS 引擎的技术和配置细节,请参考*文档 [3]*。

4.2. GNSS 性能

下表列出了 EC20 R2.1 模块的 GNSS 性能。

表 25: GNSS 性能

参数	描述	条件	典型值	单位
	冷启动	Autonomous	-146	dBm
灵敏度 (GNSS)	重捕	Autonomous	-157	dBm
,	追踪	Autonomous	-157	dBm
	冷启动 @open sky	Autonomous	35	S
		XTRA enabled	18	S
首次定位时间 (GNSS)	温启动 @open sky	Autonomous	26	S
, , ,		XTRA enabled	2.2	S
	热启动	Autonomous	2.5	S

	@open sky	XTRA enabled	1.8	S
定位精度 (GNSS)	CEP-50	Autonomous @open sky	<4	m

备注

- 1. 追踪灵敏度:模块持续定位 3 分钟时,相应天线端口的最低 GNSS 信号值。
- 2. 重捕灵敏度:模块在3分钟内重新定位时,相应天线端口的最低 GNSS 信号值。
- 3. 冷启动灵敏度:模块执行冷启动命令 3 分钟内定位时,相应天线端口的最低 GNSS 信号值。

4.3. Layout 指导

客户的应用设计中,需遵循如下的设计原则:

- GNSS 天线、主天线和分集接收天线之间距离尽量大。
- 数字信号如(U)SIM 卡、USB 接口、摄像模块、SD 卡和显示接口等应当远离天线。
- 敏感模拟信号应远离 GNSS 信号路径,并增加地孔做隔离和保护。
- ANT_GNSS 走线保持 50Ω 特性阻抗。

GNSS 天线接口的参考设计和天线注意事项,请参考第5章。

5 天线接口

EC20 R2.1 模块设计有一个主天线接口、一个分集接收天线接口(用于抑制由于高速移动和多路径造成的信号下降)和一个 GNSS 天线接口。天线接口阻抗为 50Ω 。

5.1. 主/分集接收天线接口

5.1.1. 引脚描述

主天线和分集接收天线接口的引脚定义如下表:

表 26: 主/分集接收天线接口引脚定义

引脚名	引脚号	I/O	描述	备注
ANT_MAIN	49	Ю	主天线接口	50Ω 特性阻抗
ANT_DIV	35	AI	分集接收天线接口	50Ω 特性阻抗。 不用则悬空。

5.1.2. 工作频段

表 27: 模块工作频段

3GPP 频段	发送	接收	单位
EGSM900	880~915	925~960	MHz
DCS1800	1710~1785	1805~1880	MHz
CDMA BC0	824~849	869~894	MHz
WCDMA B1	1920~1980	2110~2170	MHz
WCDMA B8	880~915	925~960	MHz

TD-SCDMA B34	2010~2025	2010~2025	MHz
TD-SCDMA B39	1880~1920	1880~1920	MHz
LTE-FDD B1	1920~1980	2110~2170	MHz
LTE-FDD B3	1710~1785	1805~1880	MHz
LTE-FDD B5	824~849	869~894	MHz
LTE-FDD B8	880~915	925~960	MHz
LTE-TDD B38	2570~2620	2570~2620	MHz
LTE-TDD B39	1880~1920	1880~1920	MHz
LTE-TDD B40	2300~2400	2300~2400	MHz
LTE-TDD B41	2555~2655	2555~2655	MHz

5.1.3. 射频参考电路

ANT_MAIN 和 ANT_DIV 天线连接参考电路如下图所示。为获取更佳的射频性能,需预留 π 型匹配电路,电容默认不贴。

图 32: 射频参考电路

备注

- 1. 为提高接收灵敏度,需要保证主天线和分集接收天线距离合适。
- 2. ANT_DIV 功能默认打开,使用 AT+QCFG="diversity",0 命令可以关闭此功能,详情请参考文档 [2]。
- 3. 图中 π型匹配元件(R1&C1&C2, R2&C3&C4)应尽靠近天线放置。

5.1.4. 射频信号线 Layout 参考指导

对于用户 PCB 而言,所有的射频信号线的特性阻抗应控制在 50Ω 。一般情况下,射频信号线的阻抗由 材料的介电常数、走线宽度(W)、对地间隙(S)、以及参考地平面的高度(H)决定。PCB 特性阻抗的控制通常采用微带线与共面波导两种方式。为了体现设计原则,下面几幅图展示了阻抗线控制为 50Ω 时微带线以及共面波导的结构设计。

图 33: 两层 PCB 板微带线结构

图 34: 两层 PCB 板共面波导结构

图 35: 四层 PCB 板共面波导结构(参考地为第三层)

图 36: 四层 PCB 板共面波导结构 (参考地为第四层)

在射频天线接口的电路设计中,为了确保射频信号的良好性能与可靠性,在电路设计中建议遵循以下设计原则:

- 应使用阻抗模拟计算工具对射频信号线进行精确的 50Ω 阻抗控制。
- 与射频引脚相邻的 GND 引脚不做热焊盘,要与地充分接触。
- 射频引脚到 RF 连接器之间的距离应尽量短;同时避免直角走线,建议的走线夹角为 135 度。
- 连接器件封装建立时要注意,信号脚离地要保持一定距离。
- 射频信号线参考的地平面应完整;在信号线和参考地周边增加一定量的地孔可以帮助提升射频性能;地孔和信号线之间的距离应至少为2倍线宽(2*W)。

更多关于射频 Layout 的说明,请参考文档 [6]。

5.2. GNSS 天线接口

下表分别列出了 GNSS 天线接口的引脚定义和频率特性。

表 28: GNSS 天线引脚定义

引脚名	引脚号	I/O	描述	备注
ANT_GNSS	47	AI	GNSS 天线接口	50Ω阻抗特性。 不用则悬空。

表 29: GNSS 频率

类型	频率	单位
GPS/Galileo/QZSS	1575.42±1.023	MHz
GLONASS	1597.5~1605.8	MHz
BeiDou	1561.098±2.046	MHz

GNSS 天线连接参考电路如下图所示。

图 37: GNSS 天线参考电路

备注

- 1. 客户可根据有源天线类型选用外部 LDO 供电。
- 2. 客户设计选用无源天线,则无需设计 VDD 电路。

5.3. 天线安装

5.3.1. 天线要求

主天线、分集接收天线和 GNSS 天线的要求如下表所示:

表 30: 天线要求

类型	·····································
	频率范围: 1561MHz~1615MHz
	极化: RHCP 或 Linear
	VSWR: < 2 (典型值)
GNSS	被动天线增益: > 0dBi
GNOO	主动天线噪声系数: < 1.5dB
	主动天线增益: > -2dBi
	主动天线内嵌 LNA 增益: 20dB (典型值)
	主动天线总增益: > 18dBi (典型值)
	VSWR: ≤2
	增益(dBi): 1
	最大输入功率(W): 50
	输入阻抗(Ω): 50
	极化类型:垂直方向
GSM/WCDMA/LTE	线缆插入损耗: < 1dB
	(GSM900, WCDMA B8, CDMA BC0, LTE B5/B8)
	线缆插入损耗: < 1.5dB
	(GSM1800, WCDMA B1, TD-SCDMA B34/B39, LTE B1/B3/B39)
	线缆插入损耗: < 2dB
	(LTE B38/B40/B41)

5.3.2. 安装天线时推荐使用的 RF 连接器

如果使用 RF 连接器进行天线连接,推荐使用 Hirose 的 U.FL-R-SMT 连接器。

图 38: U.FL-R-SMT 连接器尺寸(单位:毫米)

可以选择 U.FL-LP 系列的连接线来和 U.FL-R-SMT 配合使用。

	U.FL-LP-040	U.FL-LP-066	U.FL-LP(V)-040	U.FL-LP-062	U.FL-LP-088
Part No.	261	£ 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	3.4	87	185 29 19 19 19 19 19 19 19 19 19 19 19 19 19
Mated Height	2.5mm Max. (2.4mm Nom.)	2.5mm Max. (2.4mm Nom.)	2.0mm Max. (1.9mm Nom.)	2.4mm Max. (2.3mm Nom.)	2.4mm Max. (2.3mm Nom.)
Applicable cable	Dia. 0.81mm Coaxial cable	Dia. 1.13mm and Dia. 1.32mm Coaxial cable	Dia. 0.81mm Coaxial cable	Dia. 1mm Coaxial cable	Dia. 1.37mm Coaxial cable
Weight (mg)	53.7	59.1	34.8	45.5	71.7
RoHS			YES		

图 39: U.FL-LP 连接线系列

下图为连接线和连接器安装尺寸:

图 40: 安装尺寸(单位:毫米)

详情请参考 <u>http://www.hirose.com</u>。

6 电气性能和可靠性

6.1. 绝对最大值

下表为模块部分引脚电压或电流的最大耐受值。

表 31: 绝对最大值

参数	最小	最大	单位
VBAT_RF/VBAT_BB	-0.3	4.7	V
USB_VBUS	-0.3	5.5	V
VBAT_BB 最大电流	0	0.8	A
VBAT_RF 最大电流	0	1.8	А
数字接口电压	-0.3	2.3	V
ADC0 电压	0	VBAT_BB	V
ADC1 电压	0	VBAT_BB	V

6.2. 电源额定值

表 32: 模块电源额定值

参数	描述	条件	最小	典型	最大	单位
VBAT	VBAT_BB 和 VBAT_RF	实际输入电压必须在该范围之内	3.3	3.8	4.3	V
	突发发射时的 电压跌落	GSM900 最大发射功率等级时			400	mV

I _{VBAT}	峰值电流(每个 发射时隙下)	GSM900 最大发射功率等级时		1.8	2.0	А
USB_VBUS	USB 检测		3.0	5.0	5.25	V

6.3. 工作和存储温度

表 33: 工作和存储温度

参数	最小	典型	最大	单位
正常工作温度 1)	-35	+25	+75	°C
扩展工作温度 2)	-40		+85	°C
存储温度	-40		+90	°C

备注

- 1. ¹⁾表示当模块工作在此温度范围时,模块的相关性能满足 **3GPP** 标准要求。
- 2. ²⁾表示当模块工作在此温度范围时,模块仍能保持正常工作状态,具备语音、短信、数据传输、紧急呼叫等功能;不会出现不可恢复的故障;射频频谱、网络基本不受影响。仅个别指标如输出功率等参数的值可能会超出 3GPP 标准的范围。当温度返回至正常工作温度范围时,模块的各项指标仍符合 3GPP 标准。

6.4. 耗流

表 34: EC20 R2.1 耗流

参数	描述	条件	典型值	单位
	关机模式	模块关机时	12	uA
L	睡眠模式	AT+CFUN=0 (USB 断开)	1.11	mA
I _{VBAT}		EGSM @DRX=2 (USB 断开)	2.21	mA
		EGSM @DRX=5 (USB 断开)	1.67	mA

EGSM @DRX=5 (USB 挂起)	1.91	mA
EGSM @DRX=9 (USB 断开)	1.51	mA
DCS @DRX=2 (USB 断开)	2.02	mA
DCS @DRX=5 (USB 断开)	1.45	mA
DCS @DRX=5 (USB 挂起)	1.64	mA
DCS @DRX=9 (USB 断开)	1.32	mA
TD-SCDMA Band A @PF=64 (USB 断开)	2.03	mA
TD-SCDMA Band A @PF=128 (USB 断开)	1.67	mA
TD-SCDMA Band A @PF=256 (USB 断开)	1.56	mA
TD-SCDMA Band A @PF=512 (USB 断开)	1.42	mA
BC0 @SCI=1 (USB 断开)	3.45	mA
BC0 @SCI=1 (USB 挂起)	3.74	mA
WCDMA @PF=64 (USB 断开)	2.02	mA
WCDMA @PF=64 (USB 挂起)	2.17	mA
WCDMA @PF=128(USB 断开)	1.71	mA
WCDMA @PF=256(USB 断开)	1.42	mA
WCDMA @ PF=512 (USB 断开)	1.33	mA
LTE-FDD @PF=32 (USB 断开)	3.37	mA
LTE-FDD @PF=64 (USB 断开)	2.27	mA
LTE-FDD @PF=64 (USB 挂起)	2.53	mA
LTE-FDD @PF=128 (USB 断开)	1.86	mA
LTE-FDD @PF=256 (USB 断开)	1.52	mA
LTE-TDD @PF=32 (USB 断开)	3.41	mA
LTE-TDD @PF=64 (USB 断开)	2.27	mA

	LTE-TDD @PF=64 (USB 挂起)	2.51	m
	LTE-TDD @PF=128 (USB 断开)	1.71	m/
	LTE-TDD @PF=256 (USB 断开)	1.42	m/
	EGSM @DRX=5 (USB 断开)	17.54	m/
	EGSM @DRX=5 (USB 连接)	27.67	m/
	BC0 @SCI=1(USB 断开)	18.92	m/
	BC0 @SCI=1(USB 连接)	29.08	m/
	TD-SCDMA Band A @PF=64 (USB 断开)	17.61	m/
空闲模式	TD-SCDMA Band A @PF=64 (USB 连接)	27.60	m <i>l</i>
	WCDMA @PF=64 (USB 断开)	17.92	m.
	WCDMA @PF=64 (USB 连接)	28.00	m/
	LTE-FDD @PF=64 (USB 断开)	17.84	m/
	LTE-FDD @PF=64 (USB 连接)	27.94	m/
	LTE-TDD @ PF=64(USB 断开)	18.11	m/
	LTE-TDD @ PF=64 (USB 连接)	28.08	m/
	GSM900 4DL/1UL @32.62dBm	246.8	m/
	GSM900 3DL/2UL @32.45dBm	418.3	m/
	GSM900 2DL/3UL @30.73dBm	513.2	m/
GPRS 数据传送	GSM900 1DL/4UL @29.75dBm	594.3	m/
(GNSS 美闭)	DCS1800 4DL/1UL @29.57dBm	170.8	m/
	DCS1800 3DL/2UL @29.45dBm	274.9	m/
	DCS1800 2DL/3UL @29.28dBm	374.8	m/
	DCS1800 1DL/4UL @29.11dBm	475.5	m/
EDGE 数据传送	GSM900 4DL/1UL @27.24dBm	157.3	m/
(GNSS 关闭)	GSM900 3DL/2UL @27.14dBm	258.8	m/

		GSM900 2DL/3UL @27.01dBm	358.3	mA
		GSM900 1DL/4UL @26.91dBm	461.0	mA
		DCS1800 4DL/1UL @25.85dBm	143.4	mA
		DCS1800 3DL/2UL @25.57dBm	235.2	mA
		DCS1800 2DL/3UL @25.55dBm	323.7	mA
		DCS1800 1DL/4UL @25.22dBm	415.7	mA
	CDMA/TD-SCDMA	BC0 @23.98dBm	600.7	mA
	数据传送	TD-SCDMA Band A @23.42dBm	130.6	mA
	(GNSS 关闭)	TD-SCDMA Band F @23.32dBm	131.9	mA
		WCDMA B1 HSDPA @21.06dBm	503.8	mA
	WCDMA 数据传送	WCDMA B1 HSUPA @20.56dBm	500.6	mA
	(GNSS 关闭)	WCDMA B8 HSDPA @21.16dBm	469.5	mA
		WCDMA B8 HSUPA @20.83dBm	527.2	mA
		LTE-FDD B1 @22.04dBm	709.7	mA
		LTE-FDD B3 @22.87dBm	717.1	mA
		LTE-FDD B5 @22.11dBm	609.6	mA
	LTE 数据传送	LTE-FDD B8 @22.40dBm	609.4	mA
	(GNSS 关闭)	LTE-TDD B38 @22.75dBm	434.4	mA
		LTE-TDD B39 @22.90dBm	336.5	mA
		LTE-TDD B40 @23.04dBm	360.5	mA
		LTE-TDD B41 @22.95dBm	403.8	mA
		GSM900PCL=5 @32.71dBm	244.4	mA
	COM 医文语工	GSM900PCL=12 @19.53dBm	111.7	mA
	GSM 语音通话	GSM900PCL=19 @5.69dBm	81.2	mA
		DCS1800 PCL=0 @29.64dBm	165.6	mA

	DCS1800 PCL=7 @16.66dBm	126.4	mA
	DCS1800 PCL=15 @0.41dBm	105.0	mA
CDMA 语音通话	BC0 @24.09dBm	686.3	mA
	BC0 @-60.12dBm	114.3	mA
WCDMA 语音通话	WCDMA B1 @23.01dBm	607.9	mA
	WCDMA B8 @22.57dBm	542.3	mA

表 35: EC20 R2.1 GNSS 耗流

参数	描述	条件	典型值	单位
	搜索模式	Cold start @无源天线	51.7	mA
	(AT+CFUN=0)	Lost state @无源天线	51.6	mA
I _{VBAT}		仪器	28.6	mA
	捕获模式 (AT+CFUN=0)	实网 (无源天线)	32.4	mA
		实网 (有源天线)	32.3	mA

6.5. 射频发射功率

EC20 R2.1 模块射频发射功率如下表所示:

表 36: 模块射频发射功率

频率	最大值	最小值
GSM900MHz	33dBm±2dB	5dBm±5dB
DCS1800MHz	30dBm±2dB	0dBm±5dB
GSM900 (8-PSK)	27dBm±3dB	5dBm±5dB
DCS1800 (8-PSK)	26dBm±3dB	0dBm±5dB
WCDMA B1/B8	24dBm+1/-3dB	<-49dBm

TD-SCDMA B34/B39	24dBm+1/-3dB	<-49dBm
CDMA BC0	24dBm+2/-1dB	<-49dBm
LTE-FDD B1/B3/B5/B8	23dBm±2dB	<-39dBm
LTE-TDD B38/B39/B40/B41	23dBm±2dB	<-39dBm

备注

在 GPRS 网络 4 时隙发送模式下,最大输出功率减小 2.5dB。该设计符合 *3GPP TS51.010-1* 中 *13.16 章节*所述的 GSM 规范。

6.6. 射频接收灵敏度

EC20 R2.1 模块射频灵敏度如下表所示:

表 37: 模块射频接受灵敏度

胚	接收灵敏度(身	典型)		
频率	主集	分集	主集+分集	3GPP(主集+分集)
GSM900MHz	-109dBm	NA	NA	-102dBm
DCS1800MHz	-109dBm	NA	NA	-102dBm
CDMA BC0	-108dBm	NA	NA	-104dBm
TD-SCDMA B34	-110dBm	NA	NA	-108dBm
TD-SCDMA B39	-110dBm	NA	NA	-108dBm
WCDMA B1	-110dBm	-109.5dBm	-112dBm	-106.7dBm
WCDMA B8	-110dBm	-109.5dBm	-112dBm	-103.7dBm
LTE-FDD B1 (10M)	-99dBm	-99.3dBm	-101.6dBm	-96.3dBm
LTE-FDD B3 (10M)	-99dBm	-98.9dBm	-101.9dBm	-93.3dBm
LTE-FDD B5 (10M)	-98dBm	-99.8dBm	-102dBm	-94.3dBm

LTE-FDD B8 (10M)	-99dBm	-99.6dBm	-102.1dBm	-93.3dBm
LTE-TDD B38 (10M)	-99dBm	-98.5dBm	-101.3dBm	-96.3dBm
LTE-TDD B39 (10M)	-98dBm	-99.5dBm	-101.2dBm	-96.3dBm
LTE-TDD B40 (10M)	-99dBm	-99.0dBm	-101.4dBm	-96.3dBm
LTE-TDD B41 (10M)	-99dBm	-98.1dBm	-101.4dBm	-94.3dBm

6.7. 静电防护

在模块应用中,由于人体静电、微电子间带电摩擦等产生的静电,通过各种途径放电给模块,可能会对模块造成一定的损坏,因此 ESD 防护应该受到重视。在研发、生产组装和测试等过程中,尤其在产品设计中,均应采取 ESD 防护措施。例如,在电路设计的接口处以及易受静电放电损伤或影响的点,应增加防静电保护;生产中应佩戴防静电手套等。

下表为模块引脚的 ESD 耐受电压情况。

表 38: ESD 性能参数 (温度: 25 ℃,湿度: 45 %)

测试点	接触放电	空气放电	单位
VBAT, GND	±10	±16	KV
天线接口	±10	±16	KV
其他接口	±0.5	±1	KV

6.8. 散热设计

为确保模块拥有更好的性能,建议客户在 PCB 设计时增加散热设计。参考散热措施如下:

- PCB 摆件时将模块远离发热源,如 ARM 处理器、音频功放、电源等大功率器件:
- PCB 上贴有模块区域的背面建议不要放置器件,以便于在需要时增加散热片;
- PCB 上贴有模块区域的背面建议建议做阻焊层开窗,以确保更好的散热性能;
- 确保 PCB 贴模块区域地的完整性,并增加大量地孔连接到主地;
- 模块贴片在 PCB 上时需保证地焊盘的良好接触;
- 根据客户应用需求,可在模块正面或 PCB 上贴有模块区域的背面增加散热片,亦可两面均增加散热片;

● 建议散热片表面尽量多开槽以增加散热面积;散热片和模块/PCB中间请使用高导热率的导热硅胶 垫进行黏合。

如下为两种散热参考设计示意图:

图 41: 散热设计示例(散热片在模块正面)

图 42: 散热设计示例(散热片在 PCB 背面)

备注

模块内部基带芯片最高温度保持在 105°C 以下时,性能最佳。当芯片最高温度达到或超过 105°C 时,模块仍能正常工作,但性能(如射频功率、网络速率等)会受到影响;当芯片最高温度达到或超过 115°C 时,模块将会掉线;待温度降至 115°C 以下时会重新上线。因此,应尽可能增加散热设计,以最大限度地保证模块基带芯片最高温度在 105°C 以下。客户可通过执行 AT+QTEMP 命令,从查询结果中的第一个返回值获取模块内部基带芯片最高温度。

7 机械尺寸

本章节描述了模块的机械尺寸,所有的尺寸单位为毫米;所有未标注公差的尺寸,公差为±0.05mm。

7.1. 模块机械尺寸

图 43: 模块俯视及侧视尺寸图

图 44: 模块底视尺寸图

7.2. 推荐封装

图 45: 推荐封装 (俯视图)

备注

- 1. 73~84 焊盘(Keepout area)无需设计。
- 2. 为保证模块能够正常安装,请保证 PCB 板上模块和其他元器件之间的距离至少为 3mm。

7.3. 模块俯视图/底视图

图 46: 模块俯视图

图 47: 模块底视图

备注

如上为 EC20 R2.1 模块的设计效果图。如需更真实的图片信息,请参照移远通信的模块实物。

8 存储和生产

8.1. 存储

EC20 R2.1 以真空密封袋的形式出货。模块的存储需遵循如下条件:

- 1. 环境温度低于 40 摄氏度,空气湿度小于 90%的情况下,模块可在真空密封袋中存放 12 个月。
- 2. 当真空密封袋打开后,若满足以下条件,模块可直接进行回流焊或其它高温流程:
 - 模块存储空气湿度小于 10%。
 - 模块环境温度低于 30 摄氏度,空气湿度小于 60%,工厂在 168 小时以内完成贴片。
- 3. 若模块处于如下条件,需要在贴片前进行烘烤:
- 当环境温度为23摄氏度(允许上下5摄氏度的波动)时,湿度指示卡显示湿度大于10%。
- 当真空密封袋打开后,模块环境温度低于 30 摄氏度,空气湿度小于 60%,但工厂未能在 168 小时以内完成贴片。
- 当真空密封袋打开后,模块存储空气湿度大于10%。
- 4. 如果模块需要烘烤,请在120摄氏度下(允许上下5摄氏度的波动)烘烤8小时。

备注

模块的包装无法承受高温烘烤。因此在模块烘烤之前,请移除模块包装。如果只需要短时间的烘烤,请参考 *IPC/JEDECJ-STD-033* 规范。

8.2. 生产焊接

用印刷刮板在网板上印刷锡膏,使锡膏通过网板开口漏印到 PCB 上,印刷刮板力度需调整合适。为保证模块印膏质量,EC20 R2.1 模块焊盘部分对应的钢网厚度推荐为 0.20mm。详细信息请参考*文档 [4]*。

推荐的回流焊温度为 235℃~245℃,最高不能超过 260℃。为避免模块因反复受热而损坏,建议客户在完成 PCB 板第一面的回流焊之后再贴模块。推荐的炉温曲线图如下所示:

图 48: 回流焊温度曲线

8.3. 包装

EC20 R2.1 模块采用卷带包装,并用真空密封袋将其封装。每个载带有 11.88 米长,包含 250 个 EC20 R2.1 模块,卷盘直径为 330 毫米。具体规格如下:

图 49: 载带尺寸(单位:毫米)

图 50: 卷盘尺寸(单位:毫米)

9 附录 A 参考文档及术语缩写

表 39:参考文档

序号	文档名称	备注
[1]	Quectel_EC2x&EG9x&EM05_Power_Management_ Application_Note	Power management application note for EC25, EC21, EC20 R2.0, EC20 R2.1, EG95, EG91 and EM05 modules
[2]	Quectel_EC20_R2.1_AT_Commands_Manual	EC20 R2.1 AT commands manual
[3]	Quectel_EC2x&EM05_GNSS_AT_Commands_ Manual	GNSS AT Commands Manual for EC25, EC21, EC20 R2.0, EC20 R2.1 and EM05 modules
[4]	移远通信模块贴片应用指导	移远通信模块贴片应用指导
[5]	Quectel_EC20_R2.1_参考设计手册	EC20 R2.1 参考设计手册
[6]	Quectel_射频 LAYOUT_应用指导	射频 LAYOUT 应用指导

表 40: 术语缩写

术语	描述
ADC	Analog-to-Digital Converter
AMR	Adaptive Multi-rate
APT	Auto Power Tracking
bps	Bits Per Second
CHAP	Challenge Handshake Authentication Protocol
CS	Coding Scheme
CSD	Circuit Switched Data
CTS	Clear to Send

DRX	Discontinuous Reception
DCE	Data Communications Equipment
DTE	Data Terminal Equipment
DTR	Data Terminal Ready
DTX	Discontinuous Transmission
EFR	Enhanced Full Rate
EGSM	Extended GSM900 Band (including standard GSM900 band)
ESD	Electrostatic Discharge
FR	Full Rate
FTP	File Transfer Protocol
FTPS	FTP over SSL
GMSK	Gaussian Minimum Shift Keying
GNSS	Global Navigation Satellite System
GPS	Global Positioning System
GSM	Global System for Mobile Communications
HR	Half Rate
HSDPA	High Speed Down Link Packet Access
HSPA	High Speed Packet Access
HTTP	Hyper Text Transfer Protocol
HTTPS	Hyper Text Transfer Protocol over Secure Socket Layer
Imax	Maximum Load Current
LED	Light Emitting Diode
LNA	Low Noise Amplifier
LSB	Least Significant Bit
MDIO	Management Data Input/Output

ME	Mobile Equipment
MMS	Multimedia Messaging Service
MO	Mobile Originated
MS	Mobile Station
MT	Mobile Terminated
NITZ	Network Identity and Time Zone
NTP	Network Time Protocol
PAP	Password Authentication Protocol
PCB	Printed Circuit Board
PDU	Protocol Data Unit
PF	Paging Frame
PPP	Point-to-Point Protocol
PHY	Physical Layer
PMIC	Power Management Integrated Circuit
PING	Packet Internet Groper
PPP	Point-to-Point Protocol
PSK	Phase Shift Keying
QAM	Quadrature Amplitude Modulation
QMI	Qualcomm Message Interface
QPSK	Quadrature Phase Shift Keying
RF	Radio Frequency
RMS	Root Mean Square
Rx	Receive
SAW	Surface Acoustic Wave
SMS	Short Message Service
SMTP	Simple Mail Transfer Protocol

SMTPS	Simple Mail Transfer Protocol Secure
SSL	Secure Sockets Layer
TCP	Transmission Control Protocol
TX	Transmitting Direction
UART	Universal Asynchronous Receiver & Transmitter
UDP	User Datagram Protocol
UMTS	Universal Mobile Telecommunications System
URC	Unsolicited Result Code
(U)SIM	(Universal) Subscriber Identity Module
USSD	Unstructured Supplementary Service Data
Vmax	Maximum Voltage Value
Vnorm	Normal Voltage Value
Vmin	Minimum Voltage Value
V _{IH} max	Maximum Input High Level Voltage Value
V _{IH} min	Minimum Input High Level Voltage Value
V _{IL} max	Maximum Input Low Level Voltage Value
V _{IL} min	Minimum Input Low Level Voltage Value
V _I max	Absolute Maximum Input Voltage Value
V _I min	Absolute Minimum Input Voltage Value
V _{OH} max	Maximum Output High Level Voltage Value
V _{OH} min	Minimum Output High Level Voltage Value
V _{OL} max	Maximum Output Low Level Voltage Value
V _{OL} min	Minimum Output Low Level Voltage Value
WCDMA	Wideband Code Division Multiple Access

10 附录 B GPRS 编码方案

表 41: 不同编码方案描述

方式	CS-1	CS-2	CS-3	CS-4
码速	1/2	2/3	3/4	1
USF	3	3	3	3
Pre-coded USF	3	6	6	12
Radio Block excl.USF and BCS	181	268	312	428
BCS	40	16	16	16
Tail	4	4	4	-
Coded Bits	456	588	676	456
Punctured Bits	0	132	220	-
数据速率 Kb/s	9.05	13.4	15.6	21.4

11 附录 C GPRS 多时隙

GPRS 规范中,定义了 29 类 GPRS 多时隙模式提供给移动台使用。多时隙类定义了上行和下行的最大速率。表述为 3+1 或者 2+2:第一个数字表示下行时隙数目,第二个数字表示上行时隙数目。Active slots表示 GPRS 设备上行、下行通讯可以同时使用的总时隙数。

不同等级的多时隙分配节选表如下表所示:

表 42: 不同等级的多时隙分配表

Multislot Class	Downlink Slots	Uplink Slots	Active Slots
1	1	1	2
2	2	1	3
3	2	2	3
4	3	1	4
5	2	2	4
6	3	2	4
7	3	3	4
8	4	1	5
9	3	2	5
10	4	2	5
11	4	3	5
12	4	4	5
13	3	3	NA
14	4	4	NA

15	5	5	NA
16	6	6	NA
17	7	7	NA
18	8	8	NA
19	6	2	NA
20	6	3	NA
21	6	4	NA
22	6	4	NA
23	6	6	NA
24	8	2	NA
25	8	3	NA
26	8	4	NA
27	8	4	NA
28	8	6	NA
29	8	8	NA
30	5	1	6
31	5	2	6
32	5	3	6
33	5	4	6

12 附录 D DEGE 调制和编码方式

表 43: EDGE 调制和解码方式

Coding Scheme	Modulation	Coding Family	1 Timeslot	2 Timeslot	4 Timeslot
CS-1:	GMSK	/	9.05kbps	18.1kbps	36.2kbps
CS-2:	GMSK	/	13.4kbps	26.8kbps	53.6kbps
CS-3:	GMSK	/	15.6kbps	31.2kbps	62.4kbps
CS-4:	GMSK	/	21.4kbps	42.8kbps	85.6kbps
MCS-1	GMSK	С	8.80kbps	17.60kbps	35.20kbps
MCS-2	GMSK	В	11.2kbps	22.4kbps	44.8kbps
MCS-3	GMSK	A	14.8kbps	29.6kbps	59.2kbps
MCS-4	GMSK	С	17.6kbps	35.2kbps	70.4kbps
MCS-5	8-PSK	В	22.4kbps	44.8kbps	89.6kbps
MCS-6	8-PSK	A	29.6kbps	59.2kbps	118.4kbps
MCS-7	8-PSK	В	44.8kbps	89.6kbps	179.2kbps
MCS-8	8-PSK	A	54.4kbps	108.8kbps	217.6kbps
MCS-9	8-PSK	А	59.2kbps	118.4kbps	236.8kbps