高精度线性锂电池充电器控制电路

概述

SL1051 是一款专门为高精度的线性锂电池充器而设计的电路,非常适合那些低成本、便携式充电器使用。它集高精度预充电、恒定电流充电、恒定电压充电、电池状态检测、温度监控、充电结束低泄漏、充电状态指示等性能于一身,可以广泛地使用于PDA、移动电话、手持设备等领域。

SL1051 通过检测电池电压来决定其充电 状态: 预充电、恒流充电、恒压充电。当电 池电压小于阈值电压 Vo(MIN)时,处于预充 电状态,以较小的电流对电池进行充电,预 充电的电流可以通过外部电阻进行调整。预 充电使电池电压达到 Vo(MIN) 后,进入恒定 电流充电的快速充电状态, 充电电流可以通 过外围电阻调整,恒定电流充电使电池电压 上升到恒定电压充电电压 Vo(REG)(一般为 4.2V)。然后进入恒定电压充电状态, 充电 电压的精度优于±1%,在该状态下,充电电 流将逐渐减小, 当充电电流小于阈值后, 充 电结束。充电结束后,将始终对电池电压进 行监控, 当电池电压小于阈值 Vo(RCH)时, 对电池进行再充电,进入下一个充电周期。 为了安全起见,在整个充电过程中,

SL1051 利用电池内部的热敏电阻和适当的 外围电阻对电池的温度进行监控,可以使电 池的温度控制在用户设置的范围内。

特点

- 4.2V单节或8.4V双节锂离子或锂聚合物电池充电器的理想控制电路;
- 高于 1%的电压精度;
- 预充电过程,用户可改变预充电电流;
- 恒定电流充电,充电电流可调;
- 恒定电压充电过程;
- 自动再充电过程;
- 充电过程中的温度监控;
- LED 充电状态指示;
- 电池不正常状态的检测;
- 电源电压低时,处于低功耗的 Sleep 模式,电池漏电流极小:
- 极少的外围元器件:
- 小型化的 MSOP8/SOP8 封装;

应用

- 数码相机
- PDA
- 移动电话
- 手持设备

管脚排列

引脚描述

引脚名称	引脚功能
VDD	电源端。
TS	温度监控输入端。该引脚的输入电压必须在 VTS1 与 VTS2之间;否则,将
	视为电池温度超出设置范围。
STAT	充电状态指示。在充电过程中,该引脚被上拉到高电平; 充电结束后,被
	下拉到低电平;电池不正常或 TS 温度超过设置的范围时,输出为高阻态。
GND	接地端。
CC	调整管驱动端。与外部调整管的基极(PNP 晶体管)或栅极(PMOS 管)
	相连。
FB/CE	外部反馈输入或充电使能控制。
CS	电流采样输入。充电电流通过电源和此引角之间的电压差决定。
BATT	电池电压检测输入端。

功能框图

极限参数

\neg	供电电源	$-0.3V\sim9V$
\neg	贮存温度	-65°C∼150°C
\neg	功耗 PD (TA=25℃)	- 300mW
\neg	结温	- 150℃
\neg	工作温度 Ta	-40°C∼+125°C
\neg	ESD HBM	2KV

电气参数(TA=25℃)

参数名称	符号	测试条件	最小值	典型值	最大值	单位
工作电流	IDD(OPE)	4.5V <v<sub>DD<9V</v<sub>		1	2	mA
	_	(不包括外围负载)				
Sleep 模式	IDD(sleep)	VBATT-VDD≥0.2V			3	uA
芯片电流	_					
BATT 端输	IBATT	$V_{BATT} = V_{O(REG)},$		1.5	2.6	uA
入电流		VBATT-VDD≥0.2V				
TS 端输入	Its	$V_{TS} = 5V$,			1.1	uA
电流		VBATT-VDD≥0.2V				
CS 端输入	Ics	$V_{CS} = 5V$,			1.1	uA
电流		VBATT-VDD≥0.2V				
FB/CE 端输	Ice	VCE=5V,			1.1	uA
入电流		VBATT-VDD≥0.2V				
CE 端输入	Vce				1.2	V
低电平						
CE 端输入	Vce		VDD-1.2V			V
高电平						
外部反馈	V_{FB}		2.048	2.10	2.152	V
电压 FB						
输出电压	Vo(reg)		4.16	4.20	4.24	V
恒定电流	VI(SNS)	相对于 VDD,	90	102	115	mV
充电, CS		VI(SNS)=VDD-VCS				
端电压						
预充电电	V(PRE)	相对于 VDD,	4	14	24	mV
流,CS 端		V(PRE)=VDD-VCS				
电压						
预充电阈	Vo(MIN)		2.7	2.9	3.1	V
再充电阈	Vo(rch)		VO(REG)-	VO(REG)-	VO(REG)-	V
值电压			170mV	110mV	50mV	* * *
充电结束	V(TERM)		2	12	22	mV
阈值电压	1 7	T 10 A		0.4	0.6	17
STAT 端输	VSTAT(LOW)	IoL =10mA		0.4	0.6	V
出低电平	17	T 7 A	N 0 537			17
STAT 端输	VSTAT(HIGH)	Іон=5тА	VDD-0.5V			V
出高电平	N		20	21	22	0/17
低温阈值	VTS1		30	31	32	%V _{DD}
电压	Vmaa		50.5	50.5	60.5	0/1/22
高温阈值	VTS2		58.5	59.5	60.5	%V _{DD}
电压						

功能描述

SL1051 是一款专门为高精度线性锂电池 充电器而设计的电路,图 1 是用 PMOS 管 作为调整管的应用线路图,图 2 是用 PNP 晶体管作为调整管的应用线路图,图 3显示了充电过程中的电流、电压曲线。

图 1 用 PMOS 管作为调整管的应用线路图

图 2 用 PNP 晶体管作为调整管的应用线路图

图 3 充电过程中的电流、电压曲线

1、检测

首先,FB/CE 端连到 VDD 或者一个高电平电压,SL1051 检测到如下两种情况之一即开始进入充电周期:

- a)加上适当的电源后,插上锂电池(VBATT <VO(REG):
- b) 已经插上锂电池(VBATT < VO(REG), 然后加上适当的电源;

2、预充电

如果锂电池的初始电压低于预充电阈值

Vo(MIN),则首先进入预充电阶段。在此阶段, 预充电电流大约为恒流充电阶段电流的 10%左右。

3、恒定电流充电

当电池电压达到 VO(MIN),电池将进入下一个充电阶段:恒定电流充电。SL1051 根据 VDD 及 CS 两端之间的电阻 Rcs 上的电压 VI(SNS)调整充电电流。即

4、恒定电压充电

随着恒定电流充电的进行,电池电压上升,当电池达到一定电压 Vo(REG) 时,即进入恒定电压充电阶段。在此阶段,电池电压不再上升,被恒定在 Vo(REG) ,且充电电流逐渐减小。

5、充电结束

在恒定电压充电阶段,充电电流逐渐减小,当电流减小到 ITERM=V(TERM)/RCS 时,电池充电结束,同时,充电电流降为零。

6、温度监控

在整个充电过程中, SL1051 将通过电池内部的热敏电阻和 TS 引脚外部的分压网络对电池的温度实行实时监控, 如图 5。避免由于电池温度过高(或过低)而造成对电池的损坏或发生危险。

一般情况下,当 TS 端电压 VTs 在 VTSI 与 VTS2之间时,SL1051 正常工作。当 VTS <VTSI 或 VTS > VTS2, 说明此时电池温度 "过高"或"过低",则充电过程被暂停; 待 VTS 恢复到 VTS1 与 VTS2 之间,即电池 温度恢复到设定范围内,充电继续进行。

我们可以根据待设定的温度范围来确定应用线路图中的 RT1 和 RT2,现举例说明如下:

假设待设定的温度范围为 TL~TH,(其中 TL<TH);电池中使用的是负温度系数的热敏电阻(NTC),RTL 为其在温度 TL 时的阻值,RTH 为其在温度 TH 时的阻值,则

RTL>RTH, 那么, 在温度 TL 时, TS 端的电压为:

$$V_{TSL} = \frac{\mathbf{R}_{T2} \| \mathbf{R}_{TL}}{\mathbf{R}_{T1} + \mathbf{R}_{T2} \| \mathbf{R}_{TL}} \times V_{DD}$$

在温度 TH 时,TS 端的电压为:

$$V_{TSH} = \frac{R_{T2} \| R_{TH}}{R_{T1} + R_{T2} \| R_{TH}} \times V_{DD}$$

然后,由 VTSL=VTS2,假设取为 k2×VDD, VTSH=VTS1,假设取为 k1×VDD, 则可解得:

$$R_{TI} = \frac{R_{TL}R_{TH}(k_2 - k_1)}{(R_{TL} - R_{TH})k_1k_2}$$

$$R_{T2} = \frac{R_{TL}R_{TH}(k_2 - k_1)}{R_{TH}(k_1 - k_1k_2) - R_{TL}(k_2 - k_1k_2)}$$

同理,如果电池内部是正温度系数 (PTC) 的热敏电阻,则 RTH>RTL,我们可以计算得到:

$$R_{T1} = \frac{R_{TL}R_{TH}(k_2 - k_1)}{(R_{TH} - R_{TL})k_1k_2}$$

$$R_{T2} = \frac{R_{TL}R_{TH}(k_2 - k_1)}{R_{TH}(k_1 - k_1k_2) - R_{TL}(k_2 - k_1k_2)}$$

从以上的推导过程中可以看出,待设定的温度范围与电源电压是无关的,仅与 RTI、RT2、RTH、RTL 有关; 其中,RTH、RTL 可通过查阅相关的电池手册或通过实验测试得到。

如不用此功能时,可将 TS 端与热敏电阻 断开,取值 RTI=RT2

7、FB/CE 功能

FB/CE 此引脚有两个功能。一个功能是使能端,连接此引脚到 Vpp 则开启 SL1051,连接到 GND 则关闭 SL1051。另一个功能是作为反馈端,此引脚如图 6 所示,此时,此引脚作为调整输出电压的电压源,数值为2.1V。

Vo(REG) =
$$2.1 \times (1 + \frac{R_{FB1}}{R_{FB2}})$$
 V

Region of the second control of the seco

8、充电指示

SL1051 的 STAT 有三种状态显示,如下表所示。

状态	STAT 显示
充电	高
充电结束	低
温度错误,FB/CE 为低,	高阻
休眠状态	

9、再充电

充电结束后,电池电压降低到 $V_{O(RCH)}$,SL1051 将进行再次充电循环。

应用中的几个问题

1、选择 PNP 晶体管或者 PMOS 管作为调整管

SL1051 驱动一个 PNP 晶体管或着 PMOS 管作为调整管来控制充电电流。 PNP 晶体管或着 PMOS 管作为一个线性调整器,应考虑其最大允许电流、最大允许功耗、以及各端电压。最大的功耗出现在充电开始阶段,近似可以计算为:

$PD(MAX) = I(SNS) \times (VDD - 0.1V - 2.8V)$

上式中,Rcs上的最小电压为 0.1V,最小预充电电压为 2.8V。在 PCB 布局的时候,必须考虑 PNP 晶体管或者 PMOS 管的散热。

2、选择输入输出电容

在电源和地之间放一个电容,是非常重要的,有助于耦合高频躁声,推荐此电容选择0.1uF的陶瓷电容。如果电源躁声或环境躁声较大,应选择大一些的电容,以减小躁声。

推荐在 VBATT 端和地之间放一个 1uF 的电容,这将有助于当没放电池的时候,输出端有较小的纹波。

3、PCB 板的布局与布线

为了取得最佳的效果,建议尽量缩小 PCB 板的面积及回路的走线。

封装尺寸:

Symbol	Dimensions In Millimeters		Dimensions In Inches		
	Min	Max	Min	Max	
А	0.810	1.100	0.032	0.043	
A1	0.000	0.150	0.000	0.006	
A2	0.750	0.950	0.030	0.037	
b	0.220	0.380	0.009	0.015	
D	2.900	3.100	0.114	0.122	
е	0.650		0.0)26	
Е	4.800	5.000	0.189	0.197	
E1	2.900	3.100	0.114	0.122	
L	0.400	0.800	0.016	0.031	

MSOP8 封装外型尺寸图

SOP8 PACKAGE OUTLINE DIMENSIONS

Ch a l	Dimensions In Millimeters		Dimensions In Inches	
Symbol	Min	Max	Min	Max
A	1. 350	1. 750	0. 053	0.069
A1	0.100	0. 250	0. 004	0. 010
A2	1. 350	1. 550	0. 053	0. 061
b	0. 330	0. 510	0. 013	0. 020
С	0. 170	0. 250	0.006	0. 010
D	4. 700	5. 100	0. 185	0. 200
E	3.800	4. 000	0. 150	0. 157
E1	5. 800	6. 200	0. 228	0. 244
е	1. 270 (BSC)		0. 050	(BSC)
L	0. 400	1. 270	0. 016	0. 050
θ	0°	8°	0°	8°

SOP8 封装外型尺寸图