Lab#7 - Arquitetura de Computadores Pedro Francescon Cittolin e Viviane Lima Bonfim

Codificação das instruções

\mathbf{r} = bit registrador	\mathbf{R} = bit registrador	i = bit de contante	<pre>d = bit de</pre>
destino ou único	secundário (regl)		deslocamento

opcode

ADD reg2, reg1	=> 0001 rrr RRR 00000
ADD reg2, immediate	=> 0010 rrr iiiiiiii
ADDI reg2, reg1, immediate	=> 1101 rrr RRR iiiii
SUB reg2, reg1	=> 0011 rrr RRR 00000
SUB reg2,immediate	=> 0100 rrr iiiiiiii
MOV reg2, reg1	=> 0101 rrr RRR 00000
JMP reg2	=> 0110 rrr 00000000
BL immediate	=> 1010 iiiiiiiiiii
LD.W disp[reg1],reg2	=> 1001 rrr RRR iiiii
ST.W reg2,disp[reg1]	=> 0111 rrr RRR iiiii

Assembly

- 1. ADD reg1,0
- 2. ADD reg2,30
- 3. ST.W reg2,10[reg1] # salva 30 no endereço 10
- 4. ADD reg3,5
- 5. LD.W 5[reg3], reg4 # valor da RAM no endr 10 => reg4
- 6. MOV reg7, reg4
- 7. ST.W reg7,1[reg1]
- 8. ADD reg1,1
- 9. LD.W 0[reg1], reg6
- 10. MOV reg2, reg6
- 11. MOV reg1, reg2

Hexadecimal

- 1. 0010 001 00000000
- 2. 0010 010 00011110
- 3. 0111 010 001 01010
- 4. 0010 011 00000101
- 5. 1001 100 011 00101
- 6. 0101 111 100 00000
- 7. 0111 111 001 00001

- 8. 0010 001 00000001
- 9. 1001 110 001 00000
- 10. 0101 010 110 00000
- 11. 0101 001 010 00000