

WHO'S IOLIE?

- 1。이미지 수집
- 2。 DCGAN 학습
- 3。DCGAN 최종 선정 모델
- 4。DCGAN 추가 적용
- 5。 한계점 및 보완 방향

1. 01011111 今習

1). 이미지 크롤링

다음/인스타그램 이미지 크롤링 → 약 20000장의 이미지 수집

1. 0001111 42

졸리가 아닌 사진 / 졸리와 여러 사람이 함께 있는 사진 → 졸리 선별 필요

1. 이미지 수절

2_1). 이미지 이진 분류

졸리가 아닌 해외 여배우 크롤링

1.%EC%8A%A4% EC%B9%BC%EB %A0%9B%EC%9 A%94%ED%95...

1._109529889_g ettyimages-9319 25212

1.5a8ce14a1e00 0008087ac516

train – Jolie(400)Not jolie(400)

1.250px-Katy_Pe rry_2019_%28cro pped%29

1.2015-07-15-23 -10-14_edit

1.2015-09-14-20 -01-27

validation – Jolie(200)Not jolie(200)

1. 이미지 수절

2_1). 이미지 이진 분류

* CNN → 83.33%

* VGG16 → 85.59%

1. 0101714型

2_1). 이미지 이진 분류

* 졸리 얼굴만 나온 사진

- CNN array([[0.89504904]], dtype=float32)
- VGG16 array([[0.9981931]], dtype=float32)

* 졸리 전신이 나온 사진

- CNN array([[0.21085577]], dtype=float32)
- VGG16 array([[1.3197603e-05]], dtype=float32)

1. 이미지 수절

2_2). 졸리 얼굴영역 crop

- 사전에 학습된 haarcascade_frontalface_default.xml 파일 다운
 - → OpenCV에서 얼굴을 인식하는 함수로 사용

• 졸리 이미지 크롤링 데이터 → 사람 얼굴 crop → 저장

• 손수 졸리만 선별

3). 최종 졸리 데이터

crop_min8

crop_min4

crop_min5

crop_min6

crop_min7

crop_min14

crop_min15

crop_min16

crop_min18

crop_min19

약 7000장의 최종 졸리 얼굴 데이터

1). DCGAN 문제점 및 해결

• GAN 문제점

: GAN이 학습을 진행하다가 일정 시점 넘어가면 학습이 더 이상 안됨

- → 해결방안: 사전 학습된 모델 이용
- ① iteration 마다 생성된 사진과 모델 저장
- ② 학습결과 중, 사진을 가장 잘 생성한 모델의 가중치 저장
- ③ 저장한 모델의 가중치를 읽은 후, 학습률을 낮추어서 다시 같은 모델에 적용

2. DCGAN 学會

1). DCGAN 문제점 및 해결

① 크롤링 후, 졸리 얼굴만 crop한 사진(약 7000장)을 사용하여 DCGAN 학습 → 800 iteration의 성능이 가장 좋음 → 이 때의 가중치 저장

1). DCGAN 문제점 및 해결

- ② 학습된 가중치를 모델에 적용한 후,
 - 1. 졸리 얼굴 사진(약 7000장)을 넣고 DCGAN 학습
 - 2. 고화질 졸리 얼굴 사진(약 1000장)을 넣고 DCGAN 학습

2. DCGAN 单台

1). DCGAN 문제점 및 해결

2). DCGAN tips 활용

- ① maxpooling 대신 convolution stride 사용
- ② Upsampling 사용
- ③ Fully Connected Layer 많이 두지 말 것
- ④ Batch normalization 사용할 것
- ⑤ discriminator: Lekay Relu와 TanH 사용할 것
- ⑥ Adam optimization 사용할 것
- ⑦ Dropout 사용할 것

2). DCGAN tips 활용

Adam 사용

generated_jolie2

generated_jolie2 50

generated_jolie3

generated_jolie3 50

generated_jolie4 50

generated_jolie6 50

generated_jolie7 00

generated_jolie7 50

generated_jolie8 00

generated_jolie8 50

generated_jolie9 00

generated_jolie9 50

generated_jolie1 000

generated_jolie1 050

generated_jolie1

generated_jolie1 250

generated_jolie1 300

generated_jolie1 350

generated_jolie1 400

generated_jolie1 450

generated_jolie1 500

generated_jolie1 550

generated_jolie1 650

generated_jolie1

generated_jolie1 950

generated_jolie2 050

2。DCGAN 学会

2). DCGAN tips 활용

Batch Normalization 적용

3). DCGAN 파라미터 조정

• conv2D layer의 깊이를 더 얕게 학습

2。DCGAN 学会

3). DCGAN 파라미터 조점

• conv2D layer의 깊이를 더 얕게 학습

3). DCGAN 파라미터 조정

3). DCGAN 파라미터 조점

• conv2D layer의 깊이를 더 깊게 학습

DCGAN 최종 선정 모델

1). DCGAN 학습 방법

- 층 수 늘림
- Generator의 conv2D layer 깊이를 점자척으로 얕게 모델링
- Discriminator의 conv2D layer 깊이를 점차적으로 깊게 모델링

3. DCGAN 최종 선정 모델

3. DCGAN 최종 선정 모델

3). Who's Jolie?

4. DCGAN 奉刀 理害

4. DCGAN 奉刀 理書

5. 한계점 및 보완방안

1). 컴퓨터 성능

- 속도의 한계로 더 많은 gan의 파라미터 튜닝 조합을 돌려보지 못함

2). 데이터의 질과 양

- 고화질 이미지의 양이 약 1,000장 정도로 적었음

3). 다양한 연령대의 데이터

Zhiell. Merry Christmas

