Champ magnétique

Champ vectoriel

Définition : Champ vectoriel

Le champ magnétique est un *champ vectoriel* associant à tout *point M* de l'espace un *vecteur* de \mathbb{R}^3 .

Limaille de fer

Définition : Ligne de champ

Une ligne de champ \overrightarrow{B} est une courbe $\mathscr C$ de l'espace telle qu'en chacun de ses points M le champ $\overrightarrow{B}(M)$ est tangent à $\mathscr C$.

Cartes de champ magnétique

Sur une carte de champ

Champ d'une spire circulaire.

Cas du champ d'un fil

Principe de Curie

Lorsque certaines causes produisent certains effets, les éléments de symétrie des causes doivent se retrouver dans les effets produits.

Symétries planes et invariances

Définition : Symétries planes

Un plan Π^+ est *plan de symétrie* pour une distribution de courant si, pour tout point P, en considérant son symétrique P' par rapport à Π^+ , les *courants* en en P et P' sont *symétriques* l'un de l'autre par rapport à Π^+ .

Un plan Π^- est *plan de symétrie avec changement de signe* pour une distribution de courant si, pour tout point P, en considérant son symétrique P' par rapport à Π^- , les *courants* en en P et P' sont *l'opposé du symétrique* l'un de l'autre par rapport à Π^- .

Invariances

Invariances par translation et rotation

Une distribution de courants est *invariante par translation selon un axe dirigé par un* vecteur $\overrightarrow{e_z}$ si le courant en un point P est *indépendant de la coordonnée* z du point P.

Une distribution de courants est *invariante par rotation autour d'un axe dirigé par un vecteur* $\overrightarrow{e_z}$ si le courant en un point P est, en coordonnées cylindriques d'axe $\overrightarrow{e_z}$, *indépendant de la coordonnée* θ θ du point P autour de l'axe $\overrightarrow{e_z}$.

On admet que le champ \overrightarrow{B} possède les mêmes propriétés d'invariances que la distribution de courant qui le produit.

Expression

Champ magnétique d'un fil infini

Le champ créé par un fil rectiligne infini parcouru par un courant ${\it I}$ stationnaire est orthoradial :

$$\overrightarrow{B} = \frac{\mu_0 I}{2\pi r} \overrightarrow{e_\theta}.$$

Courbe

Une seule spire

Champ d'une spire circulaire d'axe Oz.

Composante selon $\overrightarrow{e_z}$ du champ d'une spire d'axe Oz. Rayon R = 10 cm, intensité I = 1 A.

Configuration de Helmholtz

Composante selon $\overrightarrow{e_z}$ du champ d'une paire de bobines d'axe Oz en configuration Helmholtz. Rayon R = 10 cm, intensité 1A, 100 tours.

Champ d'un solénoïde

Champ d'un solénoïde

Le champ d'un solénoïde infini d'axe Oz, formé d'un enroulement de n spires par unité de longueur accolées est

- uniforme dans le solénoïde,
- nul à l'extérieur.

À l'intérieur, on a :

$$\vec{B} = \mu_0 n I \vec{e_z},$$

avec I l'intensité du courant parcourant chaque spire.

Lignes de champ d'un aimant droit vertical

Lignes de champ d'une spire d'axe de révolution vertical, observées à une distance grande devant son rayon

Définition

Définition : Dipôle et moment magnétiques

Un *dipôle magnétique* est une spire circulaire plane de rayon R parcourue par un courant d'intensité I. Il est caractérisé par son *moment dipolaire magnétique*, noté \overrightarrow{m} , défini par :

$$\vec{m} = IA\vec{e_z} = I\pi R^2 \vec{e_z}$$

avec:

- $A = \pi R^2$ la surface de la spire
- $\|\vec{m}\|$ en A·m²
- $\overrightarrow{e_z}$ le vecteur normal au plan de la spire, orienté par la *règle de la main droite*

Approximation dipolaire

Approximation dipolaire

Quand on l'observe à une distance grande devant ses dimensions caractéristiques, toute boucle de courant plane est équivalente au dipôle magnétique correspondant.

Aimants permanents

Ordres de grandeur

dimensionnellement : le champ magnétique caractéristique (à la surface) est $B \simeq \mu_0 \mathcal{M}$

	\mathcal{M}	B
acier	$\simeq 1 \cdot 10^4 \mathrm{A} \cdot \mathrm{m}^{-1}$	$\simeq 1 \cdot 10^{-2} \mathrm{T}$
ferrite (céramique d'oxyde de fer)	$\simeq 2 \cdot 10^5 \mathrm{A} \cdot \mathrm{m}^{-1}$	$\simeq 2 \cdot 10^{-1} \mathrm{T}$
Alnico (alliages AlNiCo)	$\simeq 1 \cdot 10^5 \mathrm{A} \cdot \mathrm{m}^{-1}$	$\simeq 0.1 \mathrm{T}$
aimants au néodyme (alliage NdFeB)	$\simeq 1 \cdot 10^6 \mathrm{A} \cdot \mathrm{m}^{-1}$	≃ 1 T

on peut courber un aimant droit pour obtenir une zone de champ quasi-uniforme dans un aimant en \boldsymbol{U}

Indispensable

Indispensable

- \overrightarrow{B} tourne autour des courants, son sens est donné par la règle de la main droite
- $\|\overrightarrow{B}\|$ croît quand on s'approche des fils, elle y diverge s'ils sont de rayon nul
- $\|\vec{B}\|$ augmente le long d'une ligne de champ quand les lignes de champ se resserrent
- $[B] = \frac{\mu 0 \times \text{intensit\'e}}{\text{longueur}}$
- $\vec{m} = I \vec{Se_z}$ pour un dipôle magnétique