Q1.	Data Structures Final Exam	(30 points)
Q2. Student	Name:	
test		
Q3. Student	Net ID:	
test		
Q4. 1) Mu l	ltiple Choice Questions (10 po	oints):
time in tern	ume that you implement a dictionary wins of big-O for the most efficient searchry, in the worst case scenario? [1 point]	
O(1)		
O(log n)O(n log n)		
O(n)		
○ O(n^2)		
running-tin	ume that you implement a dictionary wine in terms of big-O for the most efficient an entry, in the worst case scenario? [1	nt search algorithm possible to be used
O(1)		
O(log n)		
○ O(n log i	n)	
○ O(n)○ O(n^2)		
⊕ O(ii 2)		

Q7. 1.3) A root node in a multi-way search tree can have: (select all that apply) [1 point]

No entries

- One entryTwo entriesThree entries
- Any positive number of entries

Q8.

- 1.4) Which sorting algorithm is most efficient to use when the underlying system takes minimal time to copy values, but more to compare among them? [1 point]
 - Merge Sort
 - Quick Sort
 - Heap Sort
 - Insertion Sort

Q9. 1.5) Consider the binary search tree below, if we remove 'B', what descendant(s) may be used to replace it? (select all that apply) [1 point]

D

■ E

■ None of the above

Q10. 1.6) A complete binary tree fulfills the height-balance property at every node. True or False? [1 point]

TRUE FALSE

0 0

Q11.

1.7) The performance of merge-sort algorithm may suffer with an input that is a sorted sequence of elements. True or False? [1 point]

Q12. 1.8) The order of which you insert entries into a heap does not impact the final resulted tree. True or False? [1 point]

TRUE FALSE

 \circ

Q13. 1.9) Bottom-up heap construction can be used to insert elements in O(n) time instead of O(n log n) time from a dynamic dataset. True or False? [1 point]

TRUE FALSE

0 0

Q14. 1.10) Which of the following data structures you think is the most suitable fot the task of checking whether you have encountered a particular object before during a process or not? [1 point]

- Stack
- Queue
- Binary Search Tree
- Hashtable

Q15. 2) Short Answer Questions (15 points):

Q15.1. 2.1) [2 point] Consider the below BST and answer the following questions:

15.1.2 What is the exact range	of valid integer values _]	possible for node B? [1 poi	int]
16. 2.2) [4 points] Consider the rms of big-O; if you answer in t			ot i
n/3	n/3	level 1	
		20102	
n/9 $n/9$	n/9 $n/9$	level 2	
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	/ / / / / / / / / / / / / / / / / / / /	407	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	n/27 $n/27$ $n/27$ $n/27$ $n/27$ $n/27$	ı/27 ↓ ↓	
		:	
/ \		/ \	
27 27 /\ /\	2'	7 27 \	
4 4 4 4	4	4 4 4	
	•		
16.1.			
What is the input size per node	in terms of n at any lev	el <i>m</i> ? [0.5 point]	
	any level m ? [0.5 point	1	
	2 21	-	
16.2. What is the number of nodes at			

- What is the height of this tree? [1 point]	7
Q17. 2.3) [5 points] You have the following sequence of keys: [12, 8, 18, 28, 34, 10, 14, 39, 40, 36, 38] to be inserted sequentially into an empty Red-Black tree. Answer the following questions:] 32 ,
Q17.1 How many double red violations did you encounter and fix while building the tree? [2 point]]
Q17.2 How many trinode restructuring operations did you need to apply to fix double red violations? Specify the types of the trinode restructuring operations and after the insertion of which keys. [1.5 point]	<u>,</u>
Q17.3 How many recoloring operations did you need to apply to fix double red violations? Specify after the insertion of which keys. [1.5 point]	
Q18. 2.4) [4 points] Assume that you have a min-heap of 4 nodes, containing entries was keys: 6, 12, 14, and 18. Answer the following questions:	ith
Q18.1 List the structure of every possible min-heap that could match this description For each structure, list the keys in each level (starting from level zero) in order from th left to the right. [2 point]	

Q18.2. - For each of the structures you listed in the previous question, show what happens with removeMin() applied 4 times (describe the heap after each removeMin operation in terms of the keys in each level (starting from level zero) in order from the left to the right). [2 point]

Q21. 3) Algorithm Analysis (5 points):
Q22. 3.1) [2 points] Consider the following C++ implementation to answer the next subquestions:
<pre>void insertElement(int new_element, int list_length, vector<int> &vect) { int indx = 0; bool flag; bool flag = false;</int></pre>
<pre>while ((indx < list_length) && !flag) { if (new_element > vect[indx]) { indx++; } else { flag = true; } }</pre>
<pre>for (int i=list_length; i>indx; i) { vect[i] = vect[i-1]; }</pre>
<pre>vect[indx] = new_element; } }</pre>
Q22.1 What does this function do? [1 point]
Q22.2 What is the running time of the best case scenario in terms of big-O? [0.5 point]
Q22.3 What is the running time of the worst case scenario in terms of big-O? [0.5 point]
Q22.4 How can we improve the running time of this function in the worst case scenario? [1 bonus point]

subquestions:
int func(int n) {
 if (n == 2) {
 return 2;}
 else {
 return n/log(n) + 2*func(n/2);}
}

Q23.1. - What is the base case? [0.5 point]

Q23.2. - What is the recurrence case? [0.5 point]

Q23.3. - What is the running time of func(n) in the worst case scenario in terms of big-O? [2 point]

3.2) [3 points] Consider the following C++ implementation to answer the next

Q23.

No More Questions