Interplay of Negative Quantum and Ferroelectric Capacitances for Low-Power Transistor Operations

Karpur Shukla

Meng-Ju (Mark) Yu

Jingming (Jimmy) Xu

Outline

- Ferroelectric negative capacitance (NC) FET model: motivation and role of quantum capacitance.
- Physical origin of quantum capacitance.
- Consequences of negative channel quantum capacitance in NC-FETs.
- Negative capacitance in FET channels: physical considerations.

Ferroelectric Negative Capacitance (NC) FETs

• Landau-Ginzburg-Devonshire theory of piezoelectrics^[1]: phase transition induced by applied electric field.

$$G = \alpha |\vec{P}|^2 / 2 + \beta |\vec{P}|^4 / 4 + \gamma |\vec{P}|^6 / 6 + |\vec{E}| \cdot |\vec{P}|$$

- $\alpha < 0$: Piezoelectric. $dG/d|\vec{P}| = 0$ gives stability condition: $|\vec{E}| = \alpha |\vec{P}| + \beta |\vec{P}|^3 + \gamma |\vec{P}|^5$. $d|\vec{E}|/d|\vec{P}| < 0$ region gives NC.
- NC for voltage amplification^[2]: use stabilized NC layer.
 - NC region is in unstable equilibrium. (Anderson-Higgs-like.) Stabilize by placing positive capaciting layer in series.
 - Total positive cap. w/ NC enhancement. Gate voltage amp.
 - Can help with e.g., supply/wire thermal noise voltage mismatch.

^{[1] –} S. Sivasubramanian, A. Widom, and Y. N. Srivastava, Ferroelectrics 300, 1, 501 (2003).

^{[2] –} S. Salahuddin and S. Datta, Nano Lett. 8, 2, 405–410 (2008). 2nd image modified from here.

Quantum Capacitance Analysis of NCFET Design

- Generic model^[3]: limited benefits from NC.
 - Body factor < voltage gain: sub-60 mV subthreshold swing.
 - $|C_{NC}|$ < remaining terms: unstable LGD state.
 - $C_{
 m div, < V_{
 m th}}$ moderate to large: large $|C_{
 m NC}|$.
 - Large NC material dielectric constant: thick layers.
- Generic NCFET models^[3]: quantum capacitance dominates design space.
 - Increasing values of C_q yield *smaller* range of hysteresis-free minimum subthreshold swing.

$$C_{\text{div}} \coloneqq C_{\text{q}} + C_{\text{trap}} + C_{\text{dep}} + C_{\text{s,geo}} + C_{\text{d,geo}}$$

$$C_{\text{div}, < V_{\text{th}}} \coloneqq C_{\text{trap}} + C_{\text{dep}} + C_{\text{s,geo}} + C_{\text{d,geo}}$$

$$SS = 60 \left(1 + \frac{C_{\text{div,} < V_{\text{th}}}}{C_{\text{Ox}}} \right) \left(1 - \frac{C_{\text{div,} < V_{\text{th}}} C_{\text{Ox}}}{|C_{\text{NC}}| \left(C_{\text{div,} < V_{\text{th}}} + C_{\text{Ox}} \right)} \right)$$

$$SS_{\min} = \frac{60C_{\rm q}}{C_{\rm q} + C_{\rm div, < V_{\rm Th}}}$$

[3] – W. Cao and S. Banerjee, Nat. Comm. 11, 196 (2020). Image from here.

Role of Quantum Capacitance

- Quantum capacitance^[4]: change in capacitance due to quantum properties of electron gas.
 - Hartree-Fock approx.: all e^- live in single-particle potential (Hartree energy) E_H due to other e^- .
 - Fock energy $E_{F,i}$: spin-statistics (exchange) energy.
 - Correlation energy $E_{C,i}$: beyond HF approx.
 - External energy $E_{\text{ext},i}$.
- Corresponds to isothermal compressibility of electron gas in electron liquid theory.
 - Change in # of particles due to change in chemical potential.

$$E_F = E_H + \sum_{i} T_i + \sum_{i} E_{F,i} + \sum_{i} E_{C,i} + \sum_{i} E_{\text{ext},i}$$

$$\frac{1}{C} = \frac{1}{C_{\text{geo},i}} + \sum_{i} \frac{1}{C_{\text{kin},i}} + \sum_{i} \frac{1}{C_{\text{exc},i}} + \sum_{i} \frac{1}{C_{C,i}} + \sum_{i} \frac{1}{C_{\text{ext},i}}$$

$$C_{\rm q} = Aq^2 \left(\frac{\delta n}{\delta \mu}\right)_{T,V} = \frac{Aq^2 \kappa_T}{n^2}$$

Negative Quantum Capacitance and Consequences

- Low density e⁻ gas $(3/4\pi n)^{1/3} > 5.25 a_0$ exhibits^[5-7] negative compressibility: negative $C_{\rm q}$.
 - Observed^[8,9] e.g. in high-mobility silicon MOSFETs.
 - Highly unclear: charge density wave^[5]? Excitons^[6]?
 Instantons around perturbatively divergent series of phonon modes^[7]?
- $C_q < 0$ in channel with or without stabilizer.
 - For $C_{
 m NC} < 0$ and $C_{
 m SC} \geq 0$ but small, negative $C_{
 m q}$ reduces total $C_{
 m div} = C_{
 m q} + C_{
 m trap} + C_{
 m dep} + C_{
 m geo}$.

 As long as $0 < C_{
 m div} < |C_{
 m NC}|$, design window enhanced.
 - Other cases of \mathcal{C}_{NC} , \mathcal{C}_{q} , and \mathcal{C}_{NC} : same \mathcal{C}_{q} dependence as earlier.

^{[5] –} A. Schakel, Phys. Rev. B 64, 345101 (2001).

^{[6] –} Y. Takada, Phys. Rev. B 94, 245106 (2016).

^{[7] -} T. Banks and B. Zhang, Ann. Phys. 412, 168019 (2020)

Electron Gas Model and Extensions

- Model of NC-FET relies on noninteracting 2D electron gas in channel. Extensions:
 - Simplest: noninteracting 3D electron gas.
 - Evaluating by examining complete FD integral minus Sommerfeld terms.
 - Systematic treatment of $C_q < 0$ in channel:
 - Diagrammatic HF approx^[5,6], apply to polarization insertion.
 - Exact renormalization group technique^[7].
 - Single expression for $C_{\mathbf{q}}$ above and below threshold as function of electron density.
 - Negative quantum compressibility in metal.

$$S = \frac{\mathrm{d}V_{\mathrm{g}}}{\mathrm{d}\ln I_{\mathrm{d}}}$$

$$S = I_{\mathrm{d}} \frac{\mathrm{d}V_{\mathrm{g}}}{\mathrm{d}\varphi_{\mathrm{ch}}} \frac{\mathrm{d}}{\mathrm{d}\mu} \left[Wvq \sum_{i} \int_{0}^{\infty} \mathrm{d}\varepsilon \sqrt{\varepsilon} f_{\mathrm{FD}} - \int_{0}^{E_{c,i}} \mathrm{d}\varepsilon \sqrt{\varepsilon} f_{\mathrm{FD}} \right]$$

^{[5] –} A. Schakel, Phys. Rev. B 64, 345101 (2001).

^{6] –} Y. Takada, Phys. Rev. B 94, 245106 (2016)

^{[7] –} T. Banks and B. Zhang, Ann. Phys. 412, 168019 (2020)

Summary and Next Steps

- NC layers provide restricted benefits to NC-FET voltage amplification.
- Channel quantum capacitance serves as primary influencer of NC-FET behaviour.
 - Small positive C_{q} in positive-capacitance-loaded FETs can help enhance design space.
 - Effect of removing positive capacitance load (stabilization directly via channel) is largely same.
 - For $C_q < 0$, quantum capacitance enhances design window.
- Significant room to expand in fundamental models of negative capacitance (= negative compressibility) in electron channels.
 - Nature of negative compressibility still highly unclear. Designing negative quantum capacitance FET will require deep investigation into nature of low-density electron gases.

Acknowledgements

- Petr Moroshkin (Brown University)
- Akshay Nagar (Brown University)
- Michael P. Frank (Sandia National Laboratories)
- Silverio Johnson (Brown University)
- Hannah Watson (University of Queensland)
- Materials Research Society
- You, for your attention! Thank you!