دورة سنة2007 العادية

امتحانات شهادة الثانوية العامة فرع العلوم العامة

وزارة التربية والتعليم العالي المديرية العامة للتربية دائرة الامتحانات

عدد المسائل: ست مسابقة في مادة الرياضيات الاسم: المدة: أربع ساعات الرقم:

ملاحظة: :يسمح باستعمال آلة حاسبة غير قابلة للبرمجة او اختزان المعلومات او رسم البيانات. يستطيع المرشح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الوارد في المسابقة)

I - (2 points)

Dans le tableau suivant, une seule des réponses proposées à chaque question est correcte. Ecrire le numéro de chaque question et donner, **en justifiant**, la réponse qui lui correspond.

Réponses Nº **Questions** b c d a $z = -\sqrt{3} - i$. 1 5π Un argument de \overline{z} est : $\left(\frac{i\pi}{e^{4}}\right)^{12}$ e^3 2 3 1 -13 $C_{10}^{6} - C_{0}^{6} =$ C_9^5 C_{19}^{6} 0 1 h est une fonction définie sur IR par h(x) = $\frac{1}{4 + x^2}$; $\ln(4+x^2)$ $\frac{1}{2}\arctan\frac{x}{2}$ $\arctan \frac{x}{2}$ 4 2arctanx une primitive H de h est donnée par H(x) = $\lim_{X \to +\infty} \frac{\ln(e^X + 1)}{x} =$ 1 0 e $+\infty$ 5 Si les affixes des points A, B C est le B est le A, B et C sont A, B et C et C vérifient la relation milieu de milieu de forment un sur un même triangle [AB] [AC] cercle $\frac{z_A - z_B}{z_A - z_C} = 2 \text{ ; alors}$ 6 rectangle

II- (3 points)

Dans l'espace rapporté à un repère orthonormé direct (O; i, j, k), on considère les droites (d_1) et (d_2)

$$\text{d\'efinies par}: \ (d_1) : \begin{cases} x=m \\ y=m-1 \\ z=1 \end{cases} \quad \text{et} \quad (d_2) : \begin{cases} x=-t+1 \\ y=t \\ z=-2t+4 \end{cases}$$
 (m et t sont des r\'eels).

- 1) Démontrer que (d₁) et (d₂) sont orthogonales et non coplanaires.
- 2) Vérifier que le vecteur \vec{n} (-1; 1; 1) est orthogonal à (d₁) et (d₂).
- 3) Démontrer qu'une équation du plan (P) contenant (d₁) et parallèle à \overrightarrow{n} est x y + 2z 3 = 0.
- 4) La droite (d₂) coupe le plan (P) en B. Déterminer les coordonnées de B.
- 5) Démontrer que la droite (D) passant par B et de vecteur directeur n coupe la droite (d₁) au point A (1;0;1).
- 6) Soit (Q) le plan contenant (d₁) et perpendiculaire au plan (P) et M un point variable de (d₂). Démontrer que la distance de M à (Q) est égale à AB.

III- (3 points)

Dans un plan orienté, on donne un rectangle direct AEFD

tel que :
$$(\overrightarrow{AE}, \overrightarrow{AD}) = \frac{\pi}{2} (2\pi)$$
, $\overrightarrow{AE} = 2\sqrt{2}$ et $\overrightarrow{AD} = 2$.

On désigne par B et C les milieux respectifs de [AE] et [FD]. Soit S la similitude plane directe qui transforme A en C et E en B.

- 1) a- Déterminer le rapport k et un angle α de S.
 - b- Montrer que S(F) = E et déduire S(D).
- 2) Soit W le centre de S et soit h la transformation définie par h = S o S.
 - a- Déterminer la nature et les éléments caractéristiques de h.
 - b- Trouver h (D) et h (F) et construire le point W.
- 3) On désigne par I le milieu de [BE].
 - a- Démontrer que W, C et I sont alignés.
 - \rightarrow b- Exprimer WC en fonction de WI.

- a- Trouver la forme complexe de S.
- b- Déterminer l'affixe de W.

IV- (2 points)

Monsieur Khalil a trois fils : Sami, Farid et Zahi mariés et pères de familles.

Les enfants de ces trois familles sont répartis selon le tableau suivant :

	Famille de Sami	Famille de Farid	Famille de Zahi
Filles	2	1	3
Garçons	2	3	1

Le grand père Khalil décide de choisir au hasard **un enfant de chaque famille** pour l'accompagner à son village.

- 1) Quelle est la probabilité qu'il choisisse trois filles?
- 2) Soit les événements suivants :

F: «L'enfant choisi de la famille de Sami est une fille ».

G: «L'enfant choisi de la famille de Sami est un garçon ».

A: «Les trois enfants choisis sont deux filles et un garçon ».

a- Démontrer que la probabilité p (A/F) est égale à $\frac{5}{8}$.

b- Calculer p (A/G) et p (A).

3) Soit X la variable aléatoire égale au nombre de filles choisies par le grand père. Déterminer la loi de probabilité de X.

V-(3 points)

Dans le plan rapporté à un repère orthonormé (O; i, j), on considère les points A (5; 0),

F (3; 0) et la droite (δ) d'équation $x = \frac{25}{3}$.

Soit (E) l'ellipse de foyer F, de directrice (δ), d'excentricité e et dont A est un sommet principal.

- 1) a- Vérifier que $\mathbf{e} = \frac{3}{5}$.
 - b- Vérifier que le point A' (-5 ; 0) est l'autre sommet principal de (E) et en déduire le centre de (E).
 - c- Ecrire une équation de (E) et tracer (E).
 - d- Calculer l'aire du domaine limité par l'ellipse (E) et son cercle principal.
- 2) Soit G et G ' les points de (E) d'abscisse 3.
 - a- Ecrire une équation de la tangente (D) en G à (E) et une équation de la tangente (D') en G ' à (E).
 - b- Vérifier que les droites (D), (D') et (δ) se coupent en un même point H sur l'axe des abscisses.
 - c- Montrer que tan $\overrightarrow{FHG} = \mathbf{e}$.

VI- (7points)

- A- Soit f la fonction définie sur IR par f (x) = $x + xe^{-x}$ et (C) sa courbe représentative dans un repère orthonormé (O; i, j) (unité 2 cm).
 - 1) a- Calculer $\lim_{x \to +\infty} f(x)$ et montrer que la droite (d) d'équation y = x est une asymptote à (C).
 - b-Calculer $\lim_{x \to -\infty} f(x)$ et $\lim_{x \to -\infty} \frac{f(x)}{x}$.
 - 2) a- Calculer f'(x) et f''(x).
 - b-Dresser le tableau de variations de f' et en déduire que f'(x) > 0.
 - c- Montrer que la courbe (C) admet un point d'inflexion dont on déterminera les coordonnées.
 - d- Dresser le tableau de variations de f.
- 3) Déterminer les coordonnées du point A de la courbe (C) où la tangente (T) est parallèle à la droite (d) d'équation y = x.
- 4) Montrer que l'équation f(x) = 1 admet une racine unique α et vérifier que $0.65 < \alpha < 0.66$.
- 5) Tracer (d), (T) et (C).
- 6) Calculer, en cm 2 , l'aire du domaine limité par la courbe (C), l'asymptote (d) et les deux droites d'équations x = 0 et x = 1.
- 7) On désigne par g la fonction réciproque de f et par (G) sa courbe représentative dans le $\stackrel{\rightarrow}{\to} \stackrel{\rightarrow}{\to} repère\,(O;\,i\;,\;j\,).$

Préciser l'asymptote et la direction asymptotique de (G) et tracer (G).

B- Soit f_n la fonction définie sur IR par $f_n(x) = x + x^n e^{-x}$ (n est un entier naturel non nul)

et soit la suite
$$(U_n)$$
 définie par : $U_n = \int\limits_0^1 [\,f_n\,(x)\,-\,x\,\,]dx$.

- 1) Déterminer la valeur de U₁.
- 2) Montrer que $0 \le x^n e^{-x} \le 1$ sur [0;1] et en déduire que la suite (U_n) est bornée.
- 3) Démontrer que la suite (U_n) est décroissante. La suite (U_n) est-elle convergente ? Justifier.

- 4 -

Q1	MATH SG \ PREMIERE SESSION 2007		N
1	$\overline{z} = -\sqrt{3} + i = 2(-\frac{\sqrt{3}}{2} + \frac{1}{2}i) = 2e^{i\frac{5\pi}{6}}.$	₽d	
2	$\left(e^{i\frac{\pi}{4}}\right)^{12} = e^{i(3\pi)} = -1.$	₽b	
3	$C_{10}^6 - C_9^6 = C_9^6 + C_9^5 - C_9^6 = C_9^5$.	₽b	
4	$\int \frac{dx}{4+x^2} = \frac{1}{2} \int \frac{\frac{1}{2}dx}{1+(\frac{x}{2})^2} = \frac{1}{2} \arctan \frac{x}{2} + C$ $ \bullet \text{OU : Parmi les réponses données, la fonction } x \longrightarrow \frac{1}{2} \arctan \frac{x}{2} \text{ est la seule qui a comme dérivée} \frac{1}{4+x^2}.$	⊕→ C	4
5	$\lim_{x \to +\infty} \frac{\ln(e^x + 1)}{x} = \lim_{x \to +\infty} \frac{e^x}{e^x + 1} = 1$	₃⊸a	
6	$\frac{z_A - z_B}{z_A - z_C} = 2$; $\overrightarrow{BA} = 2\overrightarrow{CA}$; C est le milieu de [AB].	₽-a	

Q2	MATH SG PREMIERE SESSION 2007	N
1	$\overrightarrow{V}_1.\overrightarrow{V}_2 = -1 + 1 = 0, \text{ d'où } (d_1) \text{ est orthogonale à } (d_2).$ $(d_1) \cap (d_2): \begin{cases} m = -t+1 & m=1 \\ m-1 = t & t=0 & \text{et } (d_1) \text{ non parallèle à } (d_2), \\ 1 = -2t+4 & 1 = 0+4 \text{ non} \end{cases}$ $\overrightarrow{V}_1.\overrightarrow{V}_2 = -1 + 1 = 0, \text{ d'où } (d_1) \text{ est orthogonale à } (d_2).$	1
2	$\vec{n} \cdot \vec{V}_1 = -1 + 1 = 0 \; ; \; \vec{n} \cdot \vec{V}_2 = 1 + 1 - 2 = 0.$	1/2
3	$ (d_1) \subset (P) \text{ car } m - m + 1 + 2 - 3 = 0 ; \overrightarrow{N}_P \perp \overrightarrow{n} \text{ car } \overrightarrow{N}_P . \overrightarrow{n} = -1 - 1 + 2 = 0. $ $ \bullet \in OU : I(0; -1; 1) \in (d_1) ; \overrightarrow{IM} . (\overrightarrow{n} \wedge \overrightarrow{V}_1) = \begin{vmatrix} x & y + 1 & z - 1 \\ -1 & 1 & 1 \\ 1 & 1 & 0 \end{vmatrix} = 0; x - y + 2z - 3 = 0. $	1
4	$(d_2) \cap (P) = \{B\}$; $-t + 1 - t - 4t + 8 - 3 = 0$; $-6t = -6$; $t = 1$, d'où B $(0; 1; 2)$	1
5	n et \overrightarrow{V}_1 non colinéaires donc (D) n'est pas confondue avec (d_1) . $(D) \begin{cases} x = -\lambda \\ y = \lambda + 1 ; A(1; 0; 1) \in (D) \text{ pour } \lambda = -1 \text{ et } A(1; 0; 1) \in (d_1) \text{ pour } m = 1. \\ z = \lambda + 2 \end{cases}$	1
6	$(Q): \overrightarrow{IM}.(\overrightarrow{V_1} \wedge \overrightarrow{N_P}) = 0; \begin{vmatrix} x & y+1 & z-1 \\ 1 & 1 & 0 \\ 1 & -1 & 2 \end{vmatrix} = 0; \ 2x-2(y+1)+(z-1)(-2) = 0; \\ x-y-1-z+1=0; (Q): \ x-y-z=0.$	11/2

	$M(-t+1;t;-2t+4); d(M;(Q)) = \frac{ -t+1-t+2t-4 }{\sqrt{3}} = \sqrt{3}. \overrightarrow{AB}(-1;11); AB = \sqrt{3}.$		
	• OU: (P) \perp (AB) et $(d_2) \perp$ (AB) donc $(d_2) / /$ (P) et tous les points de (d_2) sont à		
	égale distance de (P); or $d(B; (Q)) = BA \operatorname{car} (BA) \perp (Q)$.		
Q.3	MATH SG \ PREMIERE SESSION 2007		
1-a	$S: A \longrightarrow C \text{ et } S: E \longrightarrow B$ $V = BC = 2 \qquad 1 \qquad \sqrt{2} \text{ et } C = \left(\overrightarrow{AE} \cdot \overrightarrow{CP}\right) = \pi$	1/2	
	$K = \frac{BC}{AE} = \frac{2}{2\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2} \text{ et } \alpha = \left(\overrightarrow{AE}, \overrightarrow{CB}\right) = -\frac{\pi}{2}.$		
	$S(E) = B$; $\frac{BE}{EF} = \frac{\sqrt{2}}{2}$ et $(\overrightarrow{EF}, \overrightarrow{BE}) = -\frac{\pi}{2}$. D'où $S(F) = E$.		
1-b	$A \longrightarrow C$ donc S(D) est le $4^{\text{ème}}$ sommet du rectangle direct de sommets C, B, E. car	1	
	$E \longrightarrow B$ AEFD est un rectangle direct, soit $S(D) = F$.		
	$F \longrightarrow E$	-	
	$h = SoS$ c'est donc une similitude de centre W d'angle $-\pi$ et de rapport $\frac{1}{2}$ d'où c'est une		
2-a	(1)	1/2	
	homothétie $h\left(W, -\frac{1}{2}\right)$.		
2-b			
3-a	C milieu de [DF] donc h(C) est le milieu de [BE] d'où h(C) = I et W, I, C alignés.	1 1	
3-b	\rightarrow 1 \rightarrow \rightarrow		
	$\sqrt{2}$ π $\sqrt{2}$ 4-b		
4-a	$\begin{vmatrix} z' = \frac{\sqrt{2}}{2}e^{-i\frac{\pi}{2}} z + b; & z' = -\frac{\sqrt{2}}{2}iz + b. \\ S(A) = C; z_C = b = \sqrt{2} + 2i; & z_W = \frac{\sqrt{2} + 2i}{1 + \frac{\sqrt{2}i}{2}} = \frac{4\sqrt{2}}{3} + \frac{2}{3}i \end{vmatrix}$		
4-a	$\begin{vmatrix} z' = \frac{\sqrt{2}}{2}e^{-i\frac{\pi}{2}} z + b; & z' = -\frac{\sqrt{2}}{2}iz + b. \\ S(A) = C; z_C = b = \sqrt{2} + 2i; & z_W = \frac{\sqrt{2} + 2i}{1 + \frac{\sqrt{2}i}{2}} = \frac{4\sqrt{2}}{3} + \frac{2}{3}i \end{vmatrix}$		
4-a	$z' = \frac{\sqrt{2}}{2}e^{-i\frac{\pi}{2}}z + b; z' = -\frac{\sqrt{2}}{2}iz + b.$ $S(A) = C; z_{C} = b = \sqrt{2} + 2i;$ $z' = -\frac{\sqrt{2}}{2}i.z + \sqrt{2} + 2i$ $z_{W} = \frac{\sqrt{2} + 2i}{1 + \frac{\sqrt{2}i}{2}} = \frac{4\sqrt{2}}{3} + \frac{2}{3}i$ $z' = -\frac{\sqrt{2}}{2}i.z + \sqrt{2} + 2i$		
	$z' = \frac{\sqrt{2}}{2}e^{-i\frac{\pi}{2}}z + b; z' = -\frac{\sqrt{2}}{2}iz + b.$ $S(A) = C; z_{C} = b = \sqrt{2} + 2i;$ $z' = -\frac{\sqrt{2}}{2}i.z + \sqrt{2} + 2i$ $z'' = -\frac{\sqrt{2}}{2}i.z + \sqrt{2} + 2i$ $z'' = -\frac{\sqrt{2}}{2}i.z + \sqrt{2} + 2i$	N	
QIV	$z' = \frac{\sqrt{2}}{2}e^{-\frac{1}{2}}z + b; z' = -\frac{\sqrt{2}}{2}iz + b.$ $S(A) = C; z_{C} = b = \sqrt{2} + 2i;$ $z' = -\frac{\sqrt{2}}{2}i.z + \sqrt{2} + 2i$ 1 $MATH SG \ PREMIERE SESSION$ $z_{W} = \frac{\sqrt{2} + 2i}{1 + \frac{\sqrt{2}i}{2}} = \frac{4\sqrt{2}}{3} + \frac{2}{3}i$	N	
	$z' = \frac{\sqrt{2}}{2}e^{-i\frac{\pi}{2}}z + b; z' = -\frac{\sqrt{2}}{2}iz + b.$ $S(A) = C; z_{C} = b = \sqrt{2} + 2i;$ $z' = -\frac{\sqrt{2}}{2}i.z + \sqrt{2} + 2i$ $z'' = -\frac{\sqrt{2}}{2}i.z + \sqrt{2} + 2i$ $z'' = -\frac{\sqrt{2}}{2}i.z + \sqrt{2} + 2i$	N 1	
QIV	$z' = \frac{\sqrt{2}}{2} e^{-\frac{1}{2}} z + b \; ; z' = -\frac{\sqrt{2}}{2} iz + b \; .$ $S(A) = C \; ; z_{C} = b = \sqrt{2} + 2i \; ;$ $z' = -\frac{\sqrt{2}}{2} i.z + \sqrt{2} + 2i \qquad \qquad z_{W} = \frac{\sqrt{2} + 2i}{1 + \frac{\sqrt{2}i}{2}} = \frac{4\sqrt{2}}{3} + \frac{2}{3}i$ $z' = -\frac{\sqrt{2}}{2} i.z + \sqrt{2} + 2i \qquad \qquad z_{W} = \frac{\sqrt{2} + 2i}{1 + \frac{\sqrt{2}i}{2}} = \frac{4\sqrt{2}}{3} + \frac{2}{3}i$ $z' = -\frac{\sqrt{2}}{2} i.z + \sqrt{2} + 2i \qquad \qquad z_{W} = \frac{\sqrt{2} + 2i}{1 + \frac{\sqrt{2}i}{2}} = \frac{4\sqrt{2}}{3} + \frac{2}{3}i$ $z' = -\frac{\sqrt{2}}{2} i.z + \sqrt{2} + 2i \qquad \qquad z_{W} = \frac{\sqrt{2} + 2i}{1 + \frac{\sqrt{2}i}{2}} = \frac{4\sqrt{2}}{3} + \frac{2}{3}i$ $z' = -\frac{\sqrt{2}}{2} i.z + \sqrt{2} + 2i \qquad \qquad z_{W} = \frac{\sqrt{2} + 2i}{1 + \frac{\sqrt{2}i}{2}} = \frac{4\sqrt{2}}{3} + \frac{2}{3}i$ $z' = -\frac{\sqrt{2}}{2} i.z + \sqrt{2} + 2i \qquad \qquad z_{W} = \frac{\sqrt{2} + 2i}{1 + \frac{\sqrt{2}i}{2}} = \frac{4\sqrt{2}}{3} + \frac{2}{3}i$ $z' = -\frac{\sqrt{2}}{2} i.z + \sqrt{2} + 2i \qquad \qquad z_{W} = \frac{\sqrt{2} + 2i}{1 + \frac{\sqrt{2}i}{2}} = \frac{4\sqrt{2}}{3} + \frac{2}{3}i$ $z' = -\frac{\sqrt{2}}{2} i.z + \sqrt{2} + 2i \qquad \qquad z_{W} = \frac{\sqrt{2} + 2i}{1 + \frac{\sqrt{2}i}{2}} = \frac{4\sqrt{2}}{3} + \frac{2}{3}i$ $z' = -\frac{\sqrt{2}}{2} i.z + \sqrt{2} + 2i \qquad \qquad z_{W} = \frac{\sqrt{2} + 2i}{1 + \frac{\sqrt{2}i}{2}} = \frac{4\sqrt{2}}{3} + \frac{2}{3}i$ $z' = -\frac{\sqrt{2}}{2} i.z + \sqrt{2} + 2i \qquad \qquad z_{W} = \frac{\sqrt{2} + 2i}{1 + \frac{\sqrt{2}i}{2}} = \frac{4\sqrt{2}}{3} + \frac{2}{3}i$ $z' = -\frac{\sqrt{2}}{2} i.z + \sqrt{2} + 2i \qquad \qquad z_{W} = \frac{\sqrt{2} + 2i}{1 + \frac{\sqrt{2}i}{2}} = \frac{4\sqrt{2}}{3} + \frac{2}{3}i$ $z' = -\frac{\sqrt{2}}{2} i.z + \sqrt{2} + 2i \qquad \qquad z_{W} = \frac{\sqrt{2} + 2i}{1 + \frac{\sqrt{2}i}{2}} = \frac{\sqrt{2} + 2i}{3} + \frac{2}{3}i$ $z' = -\frac{\sqrt{2}}{2} i.z + \sqrt{2} + 2i \qquad \qquad z_{W} = \frac{\sqrt{2} + 2i}{1 + \frac{\sqrt{2}i}{2}} = \frac{\sqrt{2} + 2i}{3} + \frac{2}{3}i$ $z' = -\frac{\sqrt{2}}{2} i.z + \sqrt{2} + 2i \qquad \qquad z_{W} = \frac{\sqrt{2} + 2i}{1 + \frac{\sqrt{2}i}{2}} = \frac{\sqrt{2} + 2i}{3} + \frac{2}{3}i$ $z' = -\frac{\sqrt{2}}{2} i.z + \sqrt{2} + 2i \qquad \qquad z_{W} = \frac{\sqrt{2} + 2i}{1 + \frac{\sqrt{2}i}{2}} = \frac{\sqrt{2} + 2i}{3} + \frac{2}{3}i$ $z' = -\frac{\sqrt{2}}{2} i.z + \sqrt{2} + 2i \qquad \qquad z_{W} = \frac{\sqrt{2} + 2i}{3} + \frac{2}{3}i$ $z' = -\frac{\sqrt{2}}{2} i.z + \sqrt{2} + 2i \qquad \qquad z_{W} = \frac{\sqrt{2} + 2i}{3} + \frac{2}{3}i$ $z' = -\frac{\sqrt{2}}{2} i.z + \sqrt{2} + 2i \qquad \qquad z_{W} = \frac{\sqrt{2} + 2i}{3} + \frac{2}{3}i$ $z' = -\frac{\sqrt{2}}{2} i.z + \sqrt{2} i.z + \sqrt{2}i$ $z' = -\frac{\sqrt{2}}{2} i.z + \sqrt{2}i$		
QIV	$z' = \frac{\sqrt{2}}{2}e^{-\frac{1}{2}}z + b \; ; z' = -\frac{\sqrt{2}}{2}iz + b \; .$ $S(A) = C \; ; z_C = b = \sqrt{2} + 2i \; ;$ $z' = -\frac{\sqrt{2}}{2}i.z + \sqrt{2} + 2i \; ;$ 1 $MATH SG PREMIERE SESSION$ $P(3 \text{ filles}) = \frac{2}{4} \times \frac{1}{4} \times \frac{3}{4} = \frac{6}{64} = \frac{3}{32}$ $A/F \text{ est } 1'evénement: Une fille de la famille de Farid et un garçon de celle de Zahi ou un garçon de la famille de Farid et une fille de celle de Zahi.$		
QIV 1	$z' = \frac{\sqrt{2}}{2} e^{-\frac{1}{2}} z + b \; ; z' = -\frac{\sqrt{2}}{2} iz + b \; .$ $S(A) = C \; ; z_{C} = b = \sqrt{2} + 2i \; ;$ $z' = -\frac{\sqrt{2}}{2} i.z + \sqrt{2} + 2i \qquad \qquad z_{W} = \frac{\sqrt{2} + 2i}{1 + \frac{\sqrt{2}i}{2}} = \frac{4\sqrt{2}}{3} + \frac{2}{3}i$ $z' = -\frac{\sqrt{2}}{2} i.z + \sqrt{2} + 2i \qquad \qquad z_{W} = \frac{\sqrt{2} + 2i}{1 + \frac{\sqrt{2}i}{2}} = \frac{4\sqrt{2}}{3} + \frac{2}{3}i$ $z' = -\frac{\sqrt{2}}{2} i.z + \sqrt{2} + 2i \qquad \qquad z_{W} = \frac{\sqrt{2} + 2i}{1 + \frac{\sqrt{2}i}{2}} = \frac{4\sqrt{2}}{3} + \frac{2}{3}i$ $z' = -\frac{\sqrt{2}}{2} i.z + \sqrt{2} + 2i \qquad \qquad z_{W} = \frac{\sqrt{2} + 2i}{1 + \frac{\sqrt{2}i}{2}} = \frac{4\sqrt{2}}{3} + \frac{2}{3}i$ $z' = -\frac{\sqrt{2}}{2} i.z + \sqrt{2} + 2i \qquad \qquad z_{W} = \frac{\sqrt{2} + 2i}{1 + \frac{\sqrt{2}i}{2}} = \frac{4\sqrt{2}}{3} + \frac{2}{3}i$ $z' = -\frac{\sqrt{2}}{2} i.z + \sqrt{2} + 2i \qquad \qquad z_{W} = \frac{\sqrt{2} + 2i}{1 + \frac{\sqrt{2}i}{2}} = \frac{4\sqrt{2}}{3} + \frac{2}{3}i$ $z' = -\frac{\sqrt{2}}{2} i.z + \sqrt{2} + 2i \qquad \qquad z_{W} = \frac{\sqrt{2} + 2i}{1 + \frac{\sqrt{2}i}{2}} = \frac{4\sqrt{2}}{3} + \frac{2}{3}i$ $z' = -\frac{\sqrt{2}}{2} i.z + \sqrt{2} + 2i \qquad \qquad z_{W} = \frac{\sqrt{2} + 2i}{1 + \frac{\sqrt{2}i}{2}} = \frac{4\sqrt{2}}{3} + \frac{2}{3}i$ $z' = -\frac{\sqrt{2}}{2} i.z + \sqrt{2} + 2i \qquad \qquad z_{W} = \frac{\sqrt{2} + 2i}{1 + \frac{\sqrt{2}i}{2}} = \frac{4\sqrt{2}}{3} + \frac{2}{3}i$ $z' = -\frac{\sqrt{2}}{2} i.z + \sqrt{2} + 2i \qquad \qquad z_{W} = \frac{\sqrt{2} + 2i}{1 + \frac{\sqrt{2}i}{2}} = \frac{4\sqrt{2}}{3} + \frac{2}{3}i$ $z' = -\frac{\sqrt{2}}{2} i.z + \sqrt{2} + 2i \qquad \qquad z_{W} = \frac{\sqrt{2} + 2i}{1 + \frac{\sqrt{2}i}{2}} = \frac{4\sqrt{2}}{3} + \frac{2}{3}i$ $z' = -\frac{\sqrt{2}}{2} i.z + \sqrt{2} + 2i \qquad \qquad z_{W} = \frac{\sqrt{2} + 2i}{1 + \frac{\sqrt{2}i}{2}} = \frac{\sqrt{2} + 2i}{3} + \frac{2}{3}i$ $z' = -\frac{\sqrt{2}}{2} i.z + \sqrt{2} + 2i \qquad \qquad z_{W} = \frac{\sqrt{2} + 2i}{1 + \frac{\sqrt{2}i}{2}} = \frac{\sqrt{2} + 2i}{3} + \frac{2}{3}i$ $z' = -\frac{\sqrt{2}}{2} i.z + \sqrt{2} + 2i \qquad \qquad z_{W} = \frac{\sqrt{2} + 2i}{1 + \frac{\sqrt{2}i}{2}} = \frac{\sqrt{2} + 2i}{3} + \frac{2}{3}i$ $z' = -\frac{\sqrt{2}}{2} i.z + \sqrt{2} + 2i \qquad \qquad z_{W} = \frac{\sqrt{2} + 2i}{1 + \frac{\sqrt{2}i}{2}} = \frac{\sqrt{2} + 2i}{3} + \frac{2}{3}i$ $z' = -\frac{\sqrt{2}}{2} i.z + \sqrt{2} + 2i \qquad \qquad z_{W} = \frac{\sqrt{2} + 2i}{3} + \frac{2}{3}i$ $z' = -\frac{\sqrt{2}}{2} i.z + \sqrt{2} + 2i \qquad \qquad z_{W} = \frac{\sqrt{2} + 2i}{3} + \frac{2}{3}i$ $z' = -\frac{\sqrt{2}}{2} i.z + \sqrt{2} + 2i \qquad \qquad z_{W} = \frac{\sqrt{2} + 2i}{3} + \frac{2}{3}i$ $z' = -\frac{\sqrt{2}}{2} i.z + \sqrt{2} i.z + \sqrt{2}i$ $z' = -\frac{\sqrt{2}}{2} i.z + \sqrt{2}i$	1	
QIV 1	$z' = \frac{\sqrt{2}}{2}e^{-\frac{1}{2}}z + b \; ; z' = -\frac{\sqrt{2}}{2}iz + b \; .$ $S(A) = C \; ; z_C = b = \sqrt{2} + 2i \; ;$ $z' = -\frac{\sqrt{2}}{2}i.z + \sqrt{2} + 2i \; ;$ 1 $MATH SG PREMIERE SESSION$ $P(3 \text{ filles}) = \frac{2}{4} \times \frac{1}{4} \times \frac{3}{4} = \frac{6}{64} = \frac{3}{32}$ $A/F \text{ est } 1'evénement: Une fille de la famille de Farid et un garçon de celle de Zahi ou un garçon de la famille de Farid et une fille de celle de Zahi.$	1	
QIV 1 2a	$z' = \frac{\sqrt{2}}{2}e^{-\frac{1}{2}}z + b \; ; z' = -\frac{\sqrt{2}}{2}iz + b \; .$ $S(A) = C \; ; z_{C} = b = \sqrt{2} + 2i \; ;$ $z' = -\frac{\sqrt{2}}{2}i.z + \sqrt{2} + 2i \qquad \qquad 1$ $MATH \; SG \qquad PREMIERE \; SESSION$ $P(3 \; filles) = \frac{2}{4} \times \frac{1}{4} \times \frac{3}{4} = \frac{6}{64} = \frac{3}{32}$ $A/F \; est \; l' \'ev\'enement: \; Une \; fille \; de \; la \; famille \; de \; Farid \; et \; un \; garçon \; de \; celle \; de \; Zahi \; ou \; un \; garçon \; de \; la \; famille \; de \; Farid \; et \; une \; fille \; de \; celle \; de \; Zahi \; .$ $P(A/F) = \frac{1}{4} \times \frac{1}{4} + \frac{3}{4} \times \frac{3}{4} = \frac{10}{16} = \frac{5}{8}$	1 1/2	
QIV 1	$z' = \frac{\sqrt{2}}{2}e^{-\frac{1}{2}}z + b \; ; z' = -\frac{\sqrt{2}}{2}iz + b \; .$ $S(A) = C \; ; z_C = b = \sqrt{2} + 2i \; ;$ $z' = -\frac{\sqrt{2}}{2}i.z + \sqrt{2} + 2i \qquad \qquad 1/2$ $MATH \; SG \ PREMIERE \; SESSION$ $P(3 \; filles) = \frac{2}{4} \times \frac{1}{4} \times \frac{3}{4} = \frac{6}{64} = \frac{3}{32}$ $A/F \; est \; l' \; ev'e'nement: \; Une \; fille \; de \; la \; famille \; de \; Farid \; et \; un \; garçon \; de \; celle \; de \; Zahi \; ou \; un \; garçon \; de \; la \; famille \; de \; Farid \; et \; une \; fille \; de \; celle \; de \; Zahi \; .$ $P(A/F) = \frac{1}{4} \times \frac{1}{4} + \frac{3}{4} \times \frac{3}{4} = \frac{10}{16} = \frac{5}{8}$ $A/G \; est \; l' \; ev'e'nement \; : \; Une \; fille \; de \; la \; famille \; de \; Farid \; et \; une \; fille \; de \; celle \; de \; Zahi \; .$	1	
QIV 1 2a	$z' = \frac{\sqrt{2}}{2}e^{-\frac{1}{2}}z + b \; ; z' = -\frac{\sqrt{2}}{2}iz + b \; .$ $S(A) = C \; ; z_C = b = \sqrt{2} + 2i \; ;$ $z' = -\frac{\sqrt{2}}{2}i.z + \sqrt{2} + 2i \qquad 1/2$ $MATH SG \ PREMIERE SESSION$ $P(3 \; filles) = \frac{2}{4} \times \frac{1}{4} \times \frac{3}{4} = \frac{6}{64} = \frac{3}{32}$ $A/F \; est \; l'événement: \; Une fille de \; la famille de Farid et un garçon de celle de Zahi ou un garçon de la famille de Farid et une fille de celle de Zahi.$ $P(A/F) = \frac{1}{4} \times \frac{1}{4} + \frac{3}{4} \times \frac{3}{4} = \frac{10}{16} = \frac{5}{8}$ $A/G \; est \; l'événement : \; Une fille de \; la famille de Farid et une fille de celle de Zahi.$ $P(A/G) = \frac{1}{4} \times \frac{3}{4} = \frac{3}{16} \; et$ $P(A/G) = P(A \cap F) + P(A \cap G) = P(F) \times P(A/F) + P(G) \times P(A/G)$	1 1/2	
QIV 1 2a	$z' = \frac{\sqrt{2}}{2} e^{-\frac{1}{2}} z + b \; ; z' = -\frac{\sqrt{2}}{2} iz + b \; .$ $S(A) = C \; ; z_C = b = \sqrt{2} + 2i \; ;$ $z' = -\frac{\sqrt{2}}{2} i.z + \sqrt{2} + 2i \; ;$ $z' = -\frac{\sqrt{2}}{2} i.z + \sqrt{2} + 2i \; ;$ $D(A/F) = \frac{1}{4} \times \frac{1}{4} + \frac{3}{4} \times \frac{3}{4} = \frac{10}{16} = \frac{5}{8}$ $A/G \; \text{est l'événement : Une fille de la famille de Farid et une fille de celle de Zahi.}$ $P(A/G) = \frac{1}{4} \times \frac{3}{4} = \frac{3}{16} \; \text{et}$ $P(A/G) = \frac{1}{4} \times \frac{3}{4} = \frac{3}{16} \; \text{et}$	1 1/2	
QIV 1 2a 2b	$z' = \frac{\sqrt{2}}{2} e^{-\frac{1}{2}} z + b \; ; z' = -\frac{\sqrt{2}}{2} i z + b \; .$ $S(A) = C \; ; z_C = b = \sqrt{2} + 2 i \; ;$ $z' = -\frac{\sqrt{2}}{2} i \cdot z + \sqrt{2} + 2 i \qquad \qquad 1 + \frac{\sqrt{2}i}{2} = \frac{4\sqrt{2}}{3} + \frac{2}{3} i $ $= \frac{\sqrt{2} + 2i}{1 + \frac{\sqrt{2}i}{2}} = \frac{4\sqrt{2}}{3} + \frac{2}{3} i $ $= \frac{\sqrt{2} + 2i}{1 + \frac{\sqrt{2}i}{2}} = \frac{4\sqrt{2}}{3} + \frac{2}{3} i $ $= \frac{\sqrt{2} + 2i}{1 + \frac{\sqrt{2}i}{2}} = \frac{4\sqrt{2}}{3} + \frac{2}{3} i $ $= \frac{\sqrt{2} + 2i}{1 + \frac{\sqrt{2}i}{2}} = \frac{4\sqrt{2}}{3} + \frac{2}{3} i $ $= \frac{\sqrt{2} + 2i}{1 + \frac{\sqrt{2}i}{2}} = \frac{4\sqrt{2}}{3} + \frac{2}{3} i $ $= \frac{\sqrt{2} + 2i}{1 + \frac{\sqrt{2}i}{2}} = \frac{4\sqrt{2}}{3} + \frac{2}{3} i $ $= \frac{\sqrt{2} + 2i}{1 + \frac{\sqrt{2}i}{2}} = \frac{4\sqrt{2}}{3} + \frac{2}{3} i $ $= \frac{\sqrt{2} + 2i}{1 + \frac{\sqrt{2}i}{2}} = \frac{4\sqrt{2}}{3} + \frac{2}{3} i $ $= \frac{\sqrt{2} + 2i}{1 + \frac{\sqrt{2}i}{2}} = \frac{4\sqrt{2}}{3} + \frac{2}{3} i $ $= \frac{\sqrt{2} + 2i}{1 + \frac{\sqrt{2}i}{2}} = \frac{4\sqrt{2}}{3} + \frac{2}{3} i $ $= \frac{\sqrt{2} + 2i}{1 + \frac{\sqrt{2}i}{2}} = \frac{4\sqrt{2}}{3} + \frac{2}{3} i $ $= \frac{\sqrt{2} + 2i}{1 + \frac{\sqrt{2}i}{2}} = \frac{4\sqrt{2}}{3} + \frac{2}{3} i $ $= \frac{\sqrt{2} + 2i}{1 + \frac{\sqrt{2}i}{2}} = \frac{4\sqrt{2}}{3} + \frac{2}{3} i $ $= \frac{\sqrt{2} + 2i}{1 + \frac{\sqrt{2}i}{2}} = \frac{4\sqrt{2}}{3} + \frac{2}{3} i $ $= \frac{\sqrt{2} + 2i}{1 + \frac{\sqrt{2}i}{2}} = \frac{4\sqrt{2}}{3} + \frac{2}{3} i $ $= \frac{\sqrt{2} + 2i}{1 + \frac{\sqrt{2}i}{2}} = \frac{4\sqrt{2}}{3} + \frac{2}{3} i $ $= \frac{\sqrt{2} + 2i}{1 + \frac{\sqrt{2}i}{2}} = \frac{4\sqrt{2}}{3} + \frac{2}{3} i $ $= \frac{\sqrt{2} + 2i}{1 + \frac{\sqrt{2}i}{2}} = \frac{4\sqrt{2}}{3} + \frac{2}{3} i $ $= \frac{\sqrt{2} + 2i}{1 + \frac{\sqrt{2}i}{2}} = \frac{4\sqrt{2}}{3} + \frac{2}{3} i $ $= \frac{\sqrt{2} + 2i}{1 + \frac{\sqrt{2}i}{2}} = \frac{4\sqrt{2}}{3} + \frac{2}{3} i $ $= \frac{\sqrt{2} + 2i}{1 + \frac{\sqrt{2}i}{2}} = \frac{4\sqrt{2}}{3} + \frac{2}{3} i $ $= \frac{\sqrt{2} + 2i}{1 + \frac{\sqrt{2}i}{2}} = \frac{4\sqrt{2}}{3} + \frac{2}{3} i $ $= \frac{\sqrt{2} + 2i}{1 + \frac{\sqrt{2}i}{2}} = \frac{4\sqrt{2}}{3} + \frac{2}{3} i $ $= \frac{\sqrt{2} + 2i}{1 + \frac{\sqrt{2}i}{2}} = \frac{4\sqrt{2}}{3} + \frac{2}{3} i $ $= \frac{\sqrt{2} + 2i}{1 + \frac{\sqrt{2}i}{2}} = \frac{4\sqrt{2}}{3} + \frac{2}{3} i $ $= \frac{\sqrt{2} + 2i}{1 + \frac{\sqrt{2}i}{2}} = \frac{4\sqrt{2}}{3} + \frac{2}{3} i $ $= \frac{\sqrt{2} + 2i}{1 + \frac{\sqrt{2}i}{2}} = \frac{4\sqrt{2}}{3} + \frac{2}{3} i $ $= \frac{\sqrt{2} + 2i}{1 + \frac{\sqrt{2}i}{2}} = \frac{\sqrt{2}i}{3} + \frac{2}{3} i $ $= \frac{\sqrt{2} + 2i}{1 + \frac{\sqrt{2}i}{2}} = \frac{\sqrt{2}i}{3} + \frac{2}{3} i $ $= \frac{\sqrt{2} + 2i}{1 + \frac{\sqrt{2}i}{2}} = \frac{\sqrt{2}i}{3} + \frac{2}{3} i $ $= \frac{\sqrt{2} + 2i$	1 1/2	
QIV 1 2a	$z' = \frac{\sqrt{2}}{2} e^{-i\frac{\pi}{2}} z + b \; ; z' = -\frac{\sqrt{2}}{2} i z + b \; .$ $S(A) = C \; ; z_C = b = \sqrt{2} + 2 i \; ;$ $z' = -\frac{\sqrt{2}}{2} i . z + \sqrt{2} + 2 i \qquad \qquad \frac{1}{2}$ $MATH \; SG \; PREMIERE \; SESSION$ $P(3 \; filles) = \frac{2}{4} \times \frac{1}{4} \times \frac{3}{4} = \frac{6}{64} = \frac{3}{32}$ $A/F \; \text{est l'événement: Une fille de la famille de Farid et un garçon de celle de Zahi ou un garçon de la famille de Farid et une fille de celle de Zahi.$ $P(A/F) = \frac{1}{4} \times \frac{1}{4} + \frac{3}{4} \times \frac{3}{4} = \frac{10}{16} = \frac{5}{8}$ $A/G \; \text{est l'événement : Une fille de la famille de Farid et une fille de celle de Zahi.}$ $P(A/G) = \frac{1}{4} \times \frac{3}{4} = \frac{3}{16} \; \text{et}$ $P(A) = P(A \cap F) + P(A \cap G) = P(F) \times P(A/F) + P(G) \times P(A/G)$ $= \frac{1}{2} \times \frac{5}{8} + \frac{1}{2} \times \frac{3}{16} = \frac{10}{32} + \frac{3}{32} = \frac{13}{32}$	1 1/2	

	$P(X=0) = \frac{1}{2} \times \frac{3}{4} \times \frac{1}{4} = \frac{3}{32} ; P(X=1) = 1 - \left(\frac{3}{32} + \frac{13}{32} + \frac{3}{32}\right) = \frac{13}{32}$	
QV	MATH SG \ PREMIERE SESSION	N
1a	$e = \frac{AF}{AH} = \frac{2}{\frac{25}{5} - 5} = \frac{3}{5}$	1/2
1b	$\frac{A'F}{A'H} = \frac{5+3}{\frac{25}{3}+5} = \frac{3}{5}$; et A' appartient à l'axe focal (AF) donc A' est un sommet principale de	1/2
	(E) .Le centre est le milieu O de [AA'].	
1c	a = 5, c = 3, $b^2 = a^2 - c^2 = 25 - 9 =$ 16, d'où l'équation de (E) est $\frac{x^2}{25} + \frac{y^2}{16} = 1.$ 1½ $A = \pi a^2 - \pi ab$	
1d	$A = \pi a^{2} - \pi ab$ $= 25 \pi - 20 \pi = 5\pi u^{2}$ 1	
2a	Pour $x = 3$; $\frac{y^2}{16} = 1 - \frac{9}{25} = \frac{16}{25}$; $y = \frac{16}{5}$ ou $y = -\frac{16}{5}$; $G\left(3; \frac{16}{5}\right)$ et $G\left(3; -\frac{16}{5}\right)$ (D): $\frac{x_0x}{a^2} + \frac{y_0y}{b^2} = 1$ donne $\frac{3x}{25} + \frac{\frac{16}{5}y}{16} = 1$; $\frac{3x}{25} + \frac{y}{5} = 1$; $y = -\frac{3}{5}x + 5$ (D'): $y = \frac{3}{5}x - 5$ par symétrie par rapport à l'axe des abscisses.	1
2b	$\frac{3x}{5} - 5 = -\frac{3x}{5} + 5 \; ; \; x = \frac{25}{3} \text{ et } y = 0 \text{ d'où } (D) \cap (D') = \{H\} \; ; H = \left(\frac{25}{3}, 0\right)$	1
2c	$\tan F\hat{H}G = \frac{FG}{FH} = \frac{16/5}{25/3 - 3} = \frac{16}{5} \times \frac{3}{16} = \frac{3}{5} = e$	1/2
Q.6	MATH SG \ PREMIERE SESSION	N
A- 1.a	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} (x + xe^{-x}) = +\infty + 0 = +\infty$ $\lim_{x \to +\infty} (f(x) - x) = \lim_{x \to +\infty} \left(xe^{-x} \right) = 0 \text{ d'où (d) est asymptote à (C).}$	1
1.b	$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} (x + xe^{-x}) = -\infty - \infty = -\infty \qquad \lim_{x \to -\infty} \frac{f(x)}{x} = \lim_{x \to -\infty} 1 + e^{-x} = +\infty$	1
2.a	$f'(x) = 1 + e^{-x} - xe^{-x} = 1 + (1 - x) e^{-x}.$ $f''(x) = -e^{-x} - (1 - x) e^{-x} = e^{-x} (-1 - 1 + x) = (x - 2) e^{-x}.$	1

2.b	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1
2.c	f"(x) s'annule pour x = 2 en changeant de signe d'où (C) admet un point d'inflexion $I\left(2, 2 + \frac{2}{e^2}\right)$	1
2.d	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
4	f est continue et strictement croissante de - ∞ à + ∞ donc f(x) = 1 admet une racine unique α . f(0, 65) = 0,98 < 1 et f(0,66) = 1,0011 > 1 d'où 0,65 < α < 0,66.	1
5	$\int_{0}^{1} xe^{-x} dx = -\left[(x+1)e^{-x}\right]_{0}^{1}$ $= -\left[2e^{-1} - 1\right] = 1 - \frac{2}{e}; A = (1 - \frac{2}{e}).4$ $= 4 - \frac{8}{e} = 1,057 \text{ cm}^{2}.$ 11/2	1
7	L'asymptote de (G) est la droite d'équation y = x ; la direction asymptotique de (G) est l'axe des abscisses.	
B.1	$U_1 = 1 - \frac{2}{e}$	
2	$0 \le x \le 1 \; ; \; 0 \le x^{n} \le 1 \; ; \; -1 \le -x \le 0 \; ; \; e^{-1} \le e^{-x} \le 1 \; \text{donc} \; 0 \le x^{n} e^{-x} \le 1$ $0 \le \int_{0}^{1} x^{n} e^{-x} dx \le \int_{0}^{1} 1 . dx \; ; \; 0 \le U_{n} \le 1 \; , \text{d'où } (U_{n}) \; \text{est born\'ee}.$	
3	$\begin{aligned} U_{n+1} - U_n &= \int\limits_0^1 (x^{n+1} e^{-x} - x^n e^{-x}) dx = \int\limits_0^1 x^n e^{-x} (x-1) dx \; ; \text{ or } x-1 \leq 0 \text{ sur } [0;1] \; donc \\ x^n e^{-x} (x-1) \leq 0 \; \text{ sur } [0;1] \; \text{et } \; U_{n+1} - U_n \leq 0 \; \text{par suite } \; (U_n) \; \text{ est décroissante.} \\ (U_n) \; \text{ décroissante et minorée par 0 converge vers une limite } \; \ell \end{aligned}$	1