Satcom Lesson Plan

Last Updated: 2021/05/12 Ben Petterborg KE8OMV

Satellite Reception on Inexpensive Equipment

Satellite	
Downlink Frequency	
Encoding	
Pass Start Time	
Pass End Time	
Elevation	
Azimuth	

Supplies Required:

- RTL-SDR or equivalent Any FM radio with a receive bandwidth of >34kHz
- Antenna capable of receiving at 137MHz (~2.2 meters), RHCP. Directional is preferred.
- Laptop or Android phone with SDR control software. I will be using CubicSDR, however other software, such as SDR#, GQRX, or SigDigger will work nicely as well.
- Tripod with antenna mast
- Compass
- Satellite tracker

Satcom Lesson Plan

Last Updated: 2021/05/12 Ben Petterborg KE8OMV

Introduction

Material to cover:

- Weather satellites provide critical information to meteorologists
 - This is important for aircrews
 - Provides a "birds-eye view" of storms
 - Allows us to: ask
 - Track movement of storms
 - Most importantly hurricanes
 - Locate and track wildfires
 - Pollutants
- NOAA/APT background
 - What is APT
 - APT (automatic picture transmission)
 - Form of Slow-Scan Television or SSTV
 - Developed in 1960s
 - First tested on TIROS-8
 - Has resolution of 4km on NOAA POES
 - At one point, many satellites used this
 - Is being phased out in favor of newer LRPT/HRPT/GRB
 - Orbits
 - POES (polar earth-orbiting satellites) ask
 - Polar orbits are lower orbits, that cross over the poles
 - This allows them to cover entire globe
 - Radio
 - Sent over a 137MHz carrier
 - Using a Yagi-Uda antenna ask
 - Same as used on TV aerials
 - Forward, shorter elements direct signal ask
 - Smaller than wavelength ask
 - Rear, large element reflects signal
 - Larger than wavelength
 - Point the antenna towards the clearest signal
 - Should hear a repeating ping and a lower-pitched clunking sound
 - Play audio
 - Shouldn't hear static in between pings
 - Doppler effect ask
 - Adjust radio frequency continuously, it will shift
 - Decoding
 - File is imported to NOAA-APT
 - Don't use map overlay

Satcom Lesson Plan

Last Updated: 2021/05/12 Ben Petterborg KE8OMV

Hands-on (~30min)

- Have students set up tripod and secure antenna mast
- Have students set phones to airplane mode
 - This is to minimize interference
- Attach the antenna to the mast
- Assign jobs:
 - Pointing the antenna
 - Monitoring and adjusting the radio for doppler shift
 - Monitoring and announcing the elevation
- Have student point antenna to correct azimuth, and about 5 degrees above the horizon
 - Begin recording
 - Use 11.025kHz Sample rate
 - Can also do baseband (.IQ) recording if possible
 - Move antenna left and right a few degrees until signal is picked up
- After satellite has passed it's max elevation, roll antenna 180 degrees for proper antenna polarisation
- After the signal is no longer being picked up, continue recording for 1 minute, then stop.
- Disassemble equipment
- Go back inside
- Decode signal