Informe Desafio 1

Por: Kevin Daniel Uribe Peréz

Profesores: Augusto Salazar, Aníbal Guerra.

Informática II

2024-1

Análisis y consideraciones del problema:

- Tengo que hacer una funcion que cree arreglos NxN con N impar si es par se debe de prohibir esa entrada, esta matriz se le asignan números en orden desde la posición 0,0 hasta la posición (N-1)x(N-1) iniciando en 1 hasta (N*N)-1 ya que en la posición $(N/2) \times (N/2)$ (división entera) el valor debe ser " ".
- Tengo que hacer una función que gire esas matrices 90 grados en sentido antihorario para hacer esto me di cuenta que al girar la matriz 90 grados simplemente se cambian las filas por las columnas y se cambia orden de las filas.

Original

1	2	<u>ო</u>
4		5
6	7	8

Transpuesta Girada 90°

1	4	6
2		7
3	5	8

3	5	8
2		7
1	4	6

- Luego de leer varias veces las instrucciones de la regla K me di cuenta, que tiene información bastante valiosa: la fila (primer dato) y la columna (segundo dato) del primer número a observar, por tanto tenemos el valor de la matriz inicial de M1 que es el valor mayor de la fila o la columna siempre y cuando sea par de lo contrario se +1, tenemos si el número de la siguiente estructura es mayor o menor (siguientes datos), por tanto tenemos también el tamaño de la salida de X que será el tamaño de K-1, por tanto la cantidad de matrices.
- Tengo que crear una función que devuelva un arreglo X con tamaño variable utilizando memoria dinámica ya que el tamaño varía dependiendo del tamaño del arreglo K,

los valores de X son las dimensiones de las matrices, la posición O es la dimensión de la M trasera.

																					Α				
								С									1	2	3	4	5	6	7	8	9
		D			1	2	3	4	5	6	7			В			10	11	12	13	14	15	16	17	18
1	2	3	4	5	8	9	10	11	12	13	14	1	2	3	4	5	19	20	21	22	23	24	25	26	27
6	7	8	9	10	15	16	17	18	19	20	21	6	7	8	9	10	28	29	30	31	32	33	34	35	36
11	12	М	13	14	22	23	24	M	25	26	27	11	12	M	13	14	37	38	39	40	M	41	42	43	44
15	16	17	18	19	28	29	30	31	32	33	34	15	16	17	18	19	45	46	47	48	49	50	51	52	53
20	21	22	23	24	35	36	37	38	39	40	41	20	21	22	23	24	54	55	56	57	58	59	60	61	62
					42	43	44	45	46	47	48						63	64	65	66	67	68	69	70	71
																	72	73	74	75	76	77	78	79	80

- Lo que creo que hay que hacer para encontrar la cerradura X de la manera más óptima posible es: la primera M (última en dimensión en X) debe empezar en dimensión igual o +1 a el número mayor de los primeros números del arreglo K,el resto de M deben empezar en dimensión del número menor o +1, si el número debe ser mayor (1) y no se cumple se gira la segunda M máximo 4 veces a la 4, se gira una vez la primera M y se repite lo anterior esto máximo 4 veces a la 4 se amplía la primera M, si el valor es (-1) se hace exactamente lo mismo, con la diferencia de que se amplía M2, este proceso se hace con todas las M.

Al final del todo se comprueba que las rotaciones no hayan dañado las condiciones de la regla K.

1	2	3	4	5	1				-1				1			
6	7	8	9	10		1	2	3		1	2	3		1	2	3
11	12		13	14		4		5		4		5		4		5
15	16	17	18	19		6	7	8		6		8		6	7	8
20	21	22	23	24												
						3	5	8						3	5	8
						2		7						2		7
						1	4	6						1	4	6

Esquemas gráficos:

-Solución problema principal.

Gracias a este diagrama de flujo podemos separar el problema en problemas más pequeños.

- -Función que cuente los elementos de un arreglo.
- -Función que crea arreglo dinámico de tamaño N con Matrices dinámicas dentro, las cuales tienen una dimensión inicial.
- -Función que llena las matrices en su forma normal.
- -Función que crea un arreglo dinámico Giros tamaño N.
- -Función que crea un arreglo dinámico de punteros tamaño N
- -Función que verifique que se cumpla la regla K.

- -Función que se encarga transformar una estructura para que cumpla su condición propia, esta función tiene 2 funciones dentro como mínimo.
 - -función de girar la estructura.
- -función de aumentar la dimensión de la estructura. -Función que crea la salida ${\tt X}$.