제 1 주

디스플레이 및 반도체 소재 교과목의 개요 및 관련산업동향

1차시

강좌 소개

대전대학교 에너지신소재공학과 김경남교수

학습 내용

- ◎ 교과목의 개요
- ♥ 디스플레이 반도체 산업 동향
- 수업에 대한 Overview

학습 목표

- 소재는 현대 반도체 및 디스플레이 산업에 있어 매우 중요한 요소이며,
 앞으로 다가올 여러 산업에 있어 근간이 되는 기초 분야라고 할 수
 있음.
 - 특히, 반도체와 디스플레이 분야에 사용되는 다양한 물질들은 디스플레이와 반도체의 성능을 결정하고, 원하는 물성을 갖으며 미세공정을 가능케 하는 등의 특징을 가지고 있으며, 이를 위해 다양한 물질들이 개발되고 있음.
 - 이러한 소재 및 물질들을 구성하고 제어하는 것은 현대 반도체와 디스플레이로 대변되는 전자소자산업에서 가장 중요한 부분이라고 할 수 있으며, 이를 위해 적용되는 다양한 소재물질 적용 및 제어에 관한 이론적 접근은 방법에 대해 학습.

01 주차 별 수업 제목

DSC공유대학 》

◈ 출석: 20%

Report : 10%

◈ 중간고사 : 30%

◎ 기말고사 : 40%

주별	수업 제목 및 내용
1주	반도체 및 디스플레이 소재 (반디소재) 교과목의 개요 및 관련산업동향
2주	반디 소재 기초개념 : 가스의 유동 및 진공 시스템
3주	반디 소재 기초개념 : Evaporator
4주	반디 소재 기초개념 : 플라즈마 기초
5주	반디 소재 기초개념 : 플라즈마 이론
6주	반디 소재 제조 기술 : PVD (Physical Vapor Deposition)
7주	반디 소재 기초 개념 및 관련 기술 Review
8주	중간고사
9주	반디 소재 제조 기술 : PVD (Physical Vapor Deposition)
10주	반디 소재 제조 기술 : CVD (Chemical Vapor Deposition)
11주	반디소재 제어기술 I
12주	반디소재 제어기술 II
13주	반디소재 제어기술 III
14주	반디소재 기술의 미래 및 Review
15주	기말고사

02 | 반도체 6대 공정

3 확산(Diffusion) - 웨이퍼에 그려진 희로와 희로 사이에 전기가 통하는 물질 주업 - 희로는 이 단계에서 전기적 성질을 땀. 주업 시 고온으로 열처리

- 이때 기체 형태의 불화수소가 녹이는 역할

소재 99.999%보다 높은 고한도 불화수소

(일본 스탤라케미파-모리티-쇼와덴코※)

장비 되니스(Fumace: 용광로) 장비(일본 도쿄일레트론, 한국 피에스티, 일본 히타치-고쿠사이 일레트리)

장비 식각 장비(일본 도쿄일벡트론, 미국 램리서치, 어플라이드머티리얼즈)

4 박막중착(Thin Film)

- 산화막 위에 금속 물질을 입힘
- 회로와 최로 간 전기 간섭이 없도록 그 사이에 절연물질을 입힘

장비 중착 장비(미국 어플라이드머티리얼즈 노벨러스)

소재 텅스텐·알루미늄·구리 등(금속물질), 산화규소·질화규소(절연물질)

5 화학·기계적 연마(CMP, Chemical Mechanical Polishing)

- 박약 중착 후 울퉁불퉁해진 웨이퍼를 팽팽하게 연마

장비 연마기(미국 어플라이드머티리얼즈, 일본 예바라, 한국 케이씨텍)

소재 슬러리용액(미국 캐봇, 일본 후지필름, 후지미)

성정 공정(Cleaning)

- 반도체 최로가 그려진 웨이퍼를 씻는 작업, 불순물 제거
- 공청 사이 사이에 세정 작업

장비 세정 장비(일본 다이니몬스크린, 도쿄일렉트론, 한국 테스)

소재 99.99% 수준의 고순도 불화수소(일본 스텔라케이파-모리타-쇼와덴코※, 한국 솔브레인·후성 등)

01 |반도체 – 디스플레이 핵심소재 - 대외의존도

Photo-resist 반도체를 만들때 쓰이는 Wafer 위에 회로를 인쇄할때 사용되는 감광제

 02
 고순도 불화수소

 Wafer표면의 산화막 제거

폴리이미드: 폴더블 폰등의 유기발광다이오드 (OLED) 디스플레이를 만드는데 사용되는 핵심 재료

일본이 수출 규제 강화한 소재와 공급처 현황 자료: 유진투자증권 국내 업체 일본 업체 반도체 소재 금호석유화학, 리지스트 스미토모, 신에쓰, JSR, (감광제) 동진세미켐, 동우화인켐 FFEM. TOK 솔브레인, 이엔에프테크놀로지 ·에칭가스 (고순도 (스텔라, 모리타 등 일본 업체에서 불화수소) 원재료 수입 후 가공) 유기발광다이오드 소재 스미토모 ·플루오린 없음 폴리이미드

01 │ 반도체 ― 디스플레이 핵심소재 - 대외의존도

01 | 반도체 - 디스플레이 핵심소재 - 대외의존도

반도체 주요 공정별 장비의 국내 기술 수준 및 부품 국산화율

■주요 장비별 시장점유율

	노광장비		증착장비		식각장비		
	기업	점유율	기업	점유율	기업	점유율	
1	ASML	85%	Applied Material	41%	Lam Research	52%	
2	니콘	10%	Lam Research	16%	Tokyo Electron	20%	
3	캐논	4%	Tokyo Electron	14%	Applied Material	18%	
	합계	99%	합계	71%	합계	90%	

주 : 시장점유율 노광장비는 2017년 기준, 증착장비 및 식가장비는 2016년 기준 자료 디인포메이션네트워크

│ 반도체 – 디스플레이 산업 모델

Semiconductor Manufacturing Idustry Tier Model

공정 기술

■ 반도체 회로 집적공정 (종합적 공정 수행 및 검사/측정/평가)

장비기술

(공정장비 계측검사장비)

- 건식 공정장비 (플라즈마 공정장비 / 비 플라즈마 공정장비)
- 습식 공정장비 (CMP&세정장비)

- 계측장비, 검사장비 및 운송장비 박막 증착 소재 (절연체 박막, 유전체 박막, 금속박막 증착용 가스)
 - 박막 식각 소재 (절연체 박막, 유전체 박막, 금속박막 증착용 가스)
 - CMP & 세정용 소재 (슬러리 및 화학소재), PR 등 고분자 소재

공정소재기술

(고순도가스, 화학약품, 고분자소재, 금속소재 등)

부품기술

(RF Component, ESC, Robot, VAlve, Pump, Filter, Chamber, MFC, SW 등)

- 반도체 장비를 구성하는 핵심 부분품 및 부품
- 집적공정기술 중 플라즈마 사용하는 공정이 약 65% 차지
- 장비를 구성하는 핵심 부분품은 수입에 의존 (전략물자 포함)

부품소재기술

(세라믹소재, 금속소재, 실리콘, 강화유리, O-ring, 히터코일, 고온 내열소재, CMP패드/슬러리 등)

- 장비 성능 및 내구성을 좌우하는 부품의 소재기술
- 소모성 부품의 경우 내구성이 강한 소재기술이 요구
- 플라즈마 장비의 경우 오염물 생성저감 소재가 필요
- 소재기업이 부품 및 장비적용을 통한 공정평가 어려움

From 2020 명지대학교 반도체 소부장 용역보고서

01 | 반도체 - 디스플레이 핵심소재 - 대외의존도

▶ 전공정 재료별 시장 현황

소재	제품군	주요 기업
실리콘웨이퍼	실리콘 웨이퍼	신에츠(일), Sumoc(일), 글로벌웨이퍼(대), 실트로닉(독), SK실트론(한)
포토마스크	포토마스크, Blank Maks	Toppan(일), Photronic(미), DNP(일), Hoya(일), S&S Tech(한), 신에츠(일)
포토 소재	PR, SOC, SOD, 공정 부자재	JSR(일), Dow(미), Fuji(일) 등 7개 기업 주도
Wet Chemica (습식 케미칼) ¹⁾	식각액, 세정액	각 제품별 전문기업이 주도
가스	공정용 특수가스류	글로벌 산업용 가스기업이 주도 (에어리퀴드(프), 린데(독일), 프렉스에어(영) 등)
스퍼터링 타겟 ²⁾	알루미늄, 티타늄, 구리 등	글로벌 4개사 과정(Tosoh(일) 등)
CMP 슬러리와 패드	CMP 공정 소재	슬러리 : Cabot(미) 40% 패드 : Dow Electronic Materials(미) 과점(80%)
기타/신규 소재	유전체, Cu-solvent, 프리커서류	각 제품별 전문기업이 주도
Ceramic Parts	실리콘(Si), 탄화규소(SicC), 알루미늄(Al), Quartz류	글로벌 장비업체 부품류 → OEM 공급

주: 1) 반도체 제조공정에서 사용되는 세정, 식각 등에 사용되는 화학제품 2) Sputtering target은 박막증착의 원료로 사용

자료 : IHS, SKC(2017)

)1│반도체 – 디스플레이 산업 해외 의존도

▶ 전공정 재료별 시장 현황

-	공정단계	해외기업	국내기업	국내 기술수준	부품 국산화
	노광	ASML, 니콘, 캐논	세메스	10%	0%
	식각	Lam Research, Tokyo Electron, Applied Materials	APTC, 세메스	85%	50%
	세정	TEL, DNS	세메스, PSK, 케이씨텍	85%	65%
전	평판(CMP)	Applied Materials	케이씨텍	75%	60%
전 공 정	이온주입	Applied Materials, Axcelis	-	20%	0%
	증착	Applied Materials, Tokyo Electron	주성, 원익IPS, 유진테크, 테스	90%	65%
	열처리	Applied Materials, Tokyo Electron	원익IPS, AP시스템	90%	70%
	측정・분석	KLA-Tencor, Applied Materials	오로스테크놀로지, 에스에프에이	35%	30%
후 공	패키징	테스코, 히타치하이텍, ASM PAcific	세메스, 한미반도체, 이오테크닉스	90%	60%
정	테스트	Advantest, Teradyne	엑시콘, 유니테스트	80%	60%

	Total Market		37,40	07.3	51,125.6	36.7%	100.0%
Rank	Rank		Reve	nue	Revenue	Change (%)	Share (%)
2016	2017	4 LOL C 711 7	IN AL 2	016	2017	2017	2017
1	1 Applied Materials	상위 5개 기	. — .	6.9	10,695.8	38.2%	20.9%
2	2 Lam Research	세계 시장 점	덕유육	3.0	8,140.2	56.2%	15.9%
4	3 Tokyo Electron			1.0	7,203.1	48.2%	14.1%
3	4 ASML	의 70.5%를	사시	0.6	7,186.2	41.2%	14.1%
5	5 KLA-Tencor	함.		6.0	2,816.6	17.1%	5.5%
6	6 Screen Semiconductor	Solutions	1,37	4.8	1,389.5	1.1%	2.7%
14	→ 7 SEMES	55000000000000000000000000000000000000		4.0	1,049.4	141.8%	2.1%
7	8 Hitachi High-Technolog	ies	98	0.2	1,031.0	5.2%	2.0%
9	9 Hitachi Kokusai Electric		52	8.4	972.1	84.0%	1.9%
12	10 Daifuku		47	2.3	690.0	46.1%	1.3%
10	11 ASM International	141	게 기자	사이	2001	30.7%	1.3%
8	12 Nikon		계 시장			-15.5%	1.2%
15	13 Canon	OL	ㅐ국내병	밙도ᄎ	네 장비	26.8%	1.0%
13	14 Ebara	•				10.0%	0.9%
11	15 Murata Machinery	Z	업은 단	4/1	正台	-7.3%	0.9%
26	➡ 16 Wonik IPS		13	7.2	372.0	171.1%	0.7%
16	17 Tokyo Seimitsu		30	4.6	319.8	5.0%	0.6%
17	18 NuFlare Technology		26	4.8	296.1	11.8%	0.6%
25	19 Axcelis Technologies		15	4.6	280.0	81.1%	0.5%
32	20 Veeco		V 11	3.3	270.9	139.2%	0.5%
21	21 Disco						0.5%
28	≥ 22 TES						0.4%
23	23 Orbotech		해이	기언	주시(의 반도체	0.4%
19	24 Rudolph Technologies						0.4%
20	25 Nanometrics		•	상비~	기술로	'국내 ,	0.4%
22	26 Aixtron		바로	체진	비소기	대・부품	0.4%
33	→ 27 PSK						0.4%
18	28 Ulvac		기술 '	말선	리 안계	가 나타님	0.4%
30	29 Nova Instruments						0.3%
31	30 Evatec						0.3%
34	31 Zeiss		11	0.6	163.5	47.8%	0.3%
29	32 Mattson Technology			2.8	145.2	18.2%	0.3%

자료: 한국산업기술평가관리원, '반도체 미세화를 위한 반도체 공정장비 기술',

2017

01 □ 2주차 : **반디 소재 기초개념**

DSC공유대학 》

▶ 가스의 유동 및 진공 시스템

- 진공 (Vacuum)
 - 라틴어로 "vacua " 에서 유래
 - 물질이 전혀 존재하지 않는 공간 → 실제로는 불가능한 의미
- 우리주변에서의 진공의 예
 - 진공청소기, 진공팩, 보온병, 흡착판 등

01 □ 3주차 : **반디 소재 기초개념**

Evaporator

일반적인 Evaporator system의 챔버 개략도

01 □ 4주차 : **반디 소재 기초개념**

≫ 플라즈마 기초

Various kinds of plasmas

- Natural plasma
 - : most of solar space/ outer space, sun spot, aurora at the pole, thunder, lighting, solar wind, ionosphere etc.
- Thermal plasma
 - : by highly heated atom/ or molecule of gas is generated by chemical reaction through combustion
- Discharge plasma
 - : ionized gas by electrical discharge
 - : glow discharge/ arc discharge/ corona discharge/ high frequency discharge plasma, etc.

Natural Plasma

Thermal Plasma

Discharge Plasma

01 □ 5주차 : **반디 소재 기초개념**

❷ 플라즈마 이론

- 전체적으로 중성인 부분적으로 이온화된 기체
 - : n_e ~n_i
- 이온화비율 ~ 10^{-2~-6}
- 중성원소, 분해된 가스, 전자, 이온이 존재
 - 전자와 이온은 ionization process 에 의해 생기고 recombination process 에 의해 소멸됨.
- Excited species (metastable 들이 존재)
- 분자가스의 경우 dissociated species인 radical이 존재
- Excitation과 relaxation에 의해 photon이 방출되어 빛을 발함
- 전자와 이온이 free particle과 같이 거동
 - Ion과 electron들 간에 Coulombic interaction이 존재하나 각 방향에서의 interaction이 서로 상쇄되어 이들 electron과 ion각각이 free particle과 같이 거동함

01 6~7주차 : **반디 소재 제조 기술**

PVD (Physical Vapor Deposition)

- Most of incident ion energy are consumed by lattice vibration, that is, by heat.
 - Only 1% of ion energy is transferred to sputtered atom.

Sputtering Yield(S)

- Number of target atoms(molecule) emitted by each incident ion
- Varies with variables such as;
 - sputter ion energy
 - sputter ion species
 - target material
 - ion incident angle, etc.

8주차 : **중간고사**

OVD (Chemical Vapor Deposition)

- 200℃~300℃의 낮은 온도에서도 증착이 가능함
- 반응기에 도입되는 기체의 양에 따라 활성화물(radical)이 만들어지기 때문에 도입되는 반응기체의 유량비 따라 박막의 조성비 (stoichiometry)가 변함
- 수소 결합을 가진 활성화물이 생성되고 박막을 형성하기 때문에 Si-H, N-H 결합을 한 불순물(수소)이 다량 존재함
- 결론적으로 PECVD에 의한 박막을 낮은 온도에서 쉽게 박막을 얻을 수 있는 반면에 조성의 조정과 불순물의 함유 등의 단점을 가지고 있음

01 11~13주차 : **반디 소재 제어기술**

Dry Etching Type

- In the lithography process, the importance of plasma etching increases with the decrease in the lateral dimension.
 - Clean process
 - Compatible with automation
 - Anisotropic etching
 - Precise pattern transfer especially for Nano-scale features

01 │ 14주차 : 반디소재 기술의 미래 및 Review

Classical-ARDE

- Higher aspect ratio features generally etch slower than smaller aspect ratio features
- Four primary mechanisms used to explain ARDE
 - 1. Neutral shadowing
 - 2. Ion shadowing
 - 3. Differential charging
 - 4. Knudsen transport

□ 15주차 : **기말고사**

