## MCSE 568

# Data Encryption Standard Lecture 5

### **Feistel Cipher**

#### **☐** Feistel Cipher Structure

- Feistel proposed a scheme to produced a block cipher using permutation and substitution alternatively.
- The inputs to the encryption algorithm are a plaintext block of length 2w bits and a key K<sub>i</sub>. The plaintext block is divided into two halves, LE<sub>0</sub> and RE<sub>0</sub>.
- The two halves of the data pass through rounds of processing and then combine to produce to sether ciphertext block.



**MCSE 568** 

#### **□** Working of Feistel Cipher Structure

- A *substitution* is performed on the left half of the data. This is done by applying a round function F to the right half of the data and then taking the exclusive-OR of the output of that function and the left half of the data.
- The round function has the same general structure for each round but is parameterized by the round subkey K<sub>i</sub>.
- **Permutation** is performed that consists of the interchange of the two halves of the data.

## **DES (Data Encryption Standard)**

#### Introduction

- · Developed in early 1970's at IBM and submitted to NBS.
- · DES is landmark in cryptographic algorithms.
- · DES works based on Feistel Cipher Structure.
- · DES is symmetric cipher algorithm and use block cipher method for encryption and decryption..

#### Figure shows process of DES





## **DES (Data Encryption Standard)**



#### **Phases**

- i) Permutation and sub key generation
- ii) Plaintext permutation and division
- iii) Round Functions
- iv) Final Permutation



## **DES: Block Diagram**



#### **Step 1: Generating Sub Keys**

64-bit Key=133457799BBCDFF1

Key in Hexadecimal = 133457799BBCDFF1

| 57 | 49 | 41 | 33 | 25 | 17 | 9  |
|----|----|----|----|----|----|----|
| 1  | 58 | 50 | 42 | 34 | 26 | 18 |
| 10 | 2  | 59 | 51 | 43 | 35 | 27 |
| 19 | 11 | 3  | 60 | 52 | 44 | 36 |
| 63 | 55 | 47 | 39 | 31 | 23 | 15 |
|    |    |    |    | 38 |    |    |
|    |    |    |    | 45 |    |    |
| 21 | 13 | 5  | 28 | 20 | 21 | 4  |

#### PC-1

- The 64-bit key is permuted according to the following table, PC-1.
- Note only 56 bits of the original key appear in the permuted key.

we get the 56-bit permutation

K+ = 1111000 0110011 0010101 0101111 0101010 1011001 1001111 0001111

Next, split this key into left and right halves, CO and DO, where each half has 28 bits.

From the permuted key K+, we get

CO\*= 1111000 0110011 0010101 0101111 DO = 0101010 1011001 1001111 0001111

| $C_1 = 1110000110011001010101011111$ $D_1 \stackrel{*}{=} 1010101011001100111100011110$ $C_2 = 1100001100110010101010111111$ $D_2 = 01010101100110011111000111101$ $C_3 = 00001100110011010101011111111$ $D_3 = 01010110011001111100011111111$ $C_4 = 00110011001101010111111111100$ $D_4 = 0101100110010101011111111110000$ | 14 | 1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--------------------------------------------------------------------------------------------------|
| $C_5 = 110011001010101011111111110000000000$                                                                                                                                                                                                                                                                                 | 16 | f "left shifts"                                                                                  |

| <b>C</b> <sub>6</sub> = 001100101010101111111111000011                                                          | <b>C</b> <sub>12</sub> = 01011111111100001100110010101                                                            |
|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| <b>D</b> <sub>6</sub> = 1001100111100011110101010101                                                            | $D_{12} = 00011110101010110011001111$                                                                             |
| <b>C</b> <sub>7</sub> = 11001010101011111111100001100 <b>D</b> <sub>7</sub> = 0110011111000111101010101010      | <b>C</b> <sub>13</sub> = 01111111110000110011001010101<br><b>D</b> <sub>13</sub> = 011110101010110011001100111100 |
| <b>C</b> <sub>8</sub> = 00101010101111111110000110011 <b>D</b> <sub>8</sub> = 1001111000111101010101010101      | <b>C</b> <sub>14</sub> = 1111111000011001100101010101<br><b>D</b> <sub>14</sub> = 1110101010101100110011110001    |
| <b>C</b> <sub>9</sub> = 01010101011111111100001100110 <b>D</b> <sub>9</sub> = 0011110001111010101010110011      | <b>C</b> <sub>15</sub> = 11111000011001100101010101111 <b>D</b> <sub>15</sub> = 101010101011100110011111000111    |
| <b>C</b> <sub>10</sub> = 01010101111111110000110011001<br><b>D</b> <sub>10</sub> = 1111000111101010101011001100 | C <sub>16</sub> = 1111000011001100101010101111<br>D <sub>16</sub> = 010101010110011001111                         |
| $C_{11} = 010101111111111000011001100101$                                                                       |                                                                                                                   |

esh

## **Step 1:** Generating Sub Keys

We now form the keys  $K_n$ , for 1 <= n <= 16, by applying the following permutation table to each of the concatenated pairs  $C_n D_n$ .

PC1

Solve:

PC1

Each pair has 56 bits, but PC-2 only uses 48 of these.

 $C_1 = 1110000110011001010101011111$ 

 $D_1 = 1010101011001100111100011110$ 

#### Use PC2 to calculate key k1

 $C_1D_1 = 1110000 \ 1100110 \ 0101010 \ 1011111 \ 1010101 \ 0110011 \ 0011110 \ 0011110$ 

| PC-2 |    |    |    |    |    |  |  |  |
|------|----|----|----|----|----|--|--|--|
| 14   | 17 | 11 | 24 | 1  | 5  |  |  |  |
| 3    | 28 | 15 | 6  | 21 | 10 |  |  |  |
| 23   | 19 | 12 | 4  | 26 | 8  |  |  |  |
| 16   | 7  | 27 | 20 | 13 | 2  |  |  |  |
| 41   | 52 | 31 | 37 | 47 | 55 |  |  |  |
| 30   | 40 | 51 | 45 | 33 | 48 |  |  |  |
| 44   | 49 | 39 | 56 | 34 | 53 |  |  |  |
| 46   | 42 | 50 | 36 | 29 | 32 |  |  |  |

 $K_1 = 000110 \ 110000 \ 001011 \ 101111 \ 111111 \ 000111 \ 000001 \ 110010$  $K_2 = 011110\ 011010\ 111011\ 011001\ 110110\ 111100\ 100111\ 100101$  $K_3 = 010101\ 011111\ 110010\ 001010\ 010000\ 101100\ 111110\ 011001$  $K_A = 011100\ 101010\ 110111\ 010110\ 110110\ 110011\ 010100\ 011101$  $K_5 = 0111111 \ 001110 \ 110000 \ 000111 \ 111010 \ 110101 \ 001110 \ 101000$  $K_6 = 011000\ 111010\ 010100\ 111110\ 010100\ 000111\ 101100\ 101111$  $K_7 = 111011\ 001000\ 010010\ 110111\ 111101\ 100001\ 100010\ 111100$  $K_8 = 111101\ 111000\ 101000\ 111010\ 110000\ 010011\ 101111\ 111011$  $K_9 = 111000\ 001101\ 101111\ 101011\ 111011\ 011110\ 011110\ 000001$  $K_{10} = 101100\ 011111\ 001101\ 000111\ 101110\ 100100\ 011001\ 001111$  $K_{11} = 001000\ 010101\ 1111111\ 010011\ 110111\ 101101\ 001110\ 000110$  $K_{12} = 011101\ 010111\ 000111\ 110101\ 100101\ 000110\ 011111\ 101001$  $K_{13} = 100101\ 1111100\ 010111\ 010001\ 111110\ 101011\ 101001\ 000001$  $K_{14} = 010111 \ 110100 \ 001110 \ 110111 \ 111100 \ 101110 \ 011100 \ 111010$  $\hat{K}_{15} = 101111 \ 111001 \ 000110 \ 001101 \ 001111 \ 010011 \ 111100 \ 001010$  $K_{16} = 110010 \ 110011 \ 110110 \ 001011 \ 000011 \ 100001 \ 011111 \ 110101$ 

PC2

48 bit

All 16 Sub keys each of 48 bits

(1st Sub key)

 $K_1 = 000110 \ 110000 \ 001011 \ 101111 \ 111111 \ 000111 \ 000001 \ 110010$ 

#### **Step 2: Initial Permutation**

#### Encode each 64-bit block of data.

 $\mathbf{M} = 0000\ 0001\ 0010\ 0011\ 0100\ 0101\ 0110\ 0111\ 1000\ 1001\ 1010\ 1011\ 1100\ 1101\ 1110$ 

There is an initial permutation IP of the 64 bits of the message data M

IP = 1100 1100 0000 0000 1100 1100 1111 1111 1111 0000 1010 1010 1111 0000 1010 1010

Next divide the permuted block IP into a left half  $L_0$  of 32 bits, and a right half  $R_0$  of 32 bits.

 $L_0$  = 1100 1100 0000 0000 1100 1100 1111 1111  $R_0$  = 1111 0000 1010 1010 1111 0000 1010

| Initial Permutation     | Final Permutation       |
|-------------------------|-------------------------|
| 58 50 42 34 26 18 10 02 | 40 08 48 16 56 24 64 32 |
| 60 52 44 36 28 20 12 04 | 39 07 47 15 55 23 63 31 |
| 62 54 46 38 30 22 14 06 | 38 06 46 14 54 22 62 30 |
| 64 56 48 40 32 24 16 08 | 37 05 45 13 53 21 61 29 |
| 57 49 41 33 25 17 09 01 | 36 04 44 12 52 20 60 28 |
| 59 51 43 35 27 19 11 03 | 35 03 43 11 51 19 59 27 |
| 61 53 45 37 29 21 13 05 | 34 02 42 10 50 18 58 26 |
| 63 55 47 39 31 23 15 07 | 33 01 41 09 49 17 57 25 |

**Example 6.1** Find the output of the initial permutation box when the input is given in hexadecimal as:

0x0002 0000 0000 0001

**Solution** The input has only two 1s (bit 15 and bit 64); the output must also have only two 1s (the nature of straight permutation). Using Table 6.1, we can find the output related to these two bits. Bit 15 in the input becomes bit 63 in the output. Bit 64 in the input becomes bit 25 in the output. So the output has only two 1s, bit 25 and bit 63. The result in hexadecimal is

0x0000 0080 0000 0002

 $L_0 = 1100 \ 1100 \ 0000 \ 0000 \ 1100 \ 1100 \ 1111 \ 1111 \ \rightarrow 32 \ bits$  $R_0 = 1111 \ 0000 \ 1010 \ 1010 \ 1111 \ 0000 \ 1010 \ 1010 \ \rightarrow 32 \ bits$ 

$$L_n = R_{n-1}$$
  
 $R_n = L_{n-1} \oplus f(R_{n-1}, K_n)$   
Let + denote XOR addition

$$n=1$$
 for round 1  
 $L_1 = R_{1-1}$   
 $R_1 = L_{1-1} \oplus f(R_{1-1}, K_1)$ 

$$L_1 = R_0$$

$$R_1 = L_0 \oplus f(R_0, K_1)$$

Expand 32 to 48 bit



For n = 1, we have

 $K_1 = 000110 \ 110000 \ 001011 \ 101111 \ 111111 \ 000111 \ 000001 \ 110010 \ \rightarrow 48 \ bits$ 

 $L_1 = R_0 = 1111 0000 1010 1010 1111 0000 1010 1010 \rightarrow 32 \text{ bits}$ 

$$R_1 = L_0 \oplus f(R_0, K_1)$$

 $R_0 = 1111\ 0000\ 1010\ 1010\ 1111\ 0000\ 1010\ 1010$ 

- To calculate f, we first expand each block  $R_0$  from 32 bits to 48 bits.
- This is done by using a selection table that repeats some of the bits in R<sub>0</sub>.
- · We'll call the use of this selection table the function E.
- Thus E(R<sub>0</sub>) has a 32 bit input block, and a 48 bit output block.

|   | 32 | 1  | 2  | 3  | 4  | 5  |
|---|----|----|----|----|----|----|
|   | 4  | 5  | 6  | 7  | 8  | 9  |
| > | 8  | 9  | 10 | 11 | 12 | 13 |
|   | 12 | 13 | 14 | 15 | 16 | 17 |
|   | 16 | 17 | 18 | 19 | 20 | 21 |
|   | 20 | 21 | 22 | 23 | 24 | 25 |
|   | 24 | 25 | 26 | 27 | 28 | 29 |
|   | 28 | 29 | 30 | 31 | 32 | 1  |

 $\mathbf{E}(\mathbf{R}_0) = 0.11110 100001 010101 010101 011110 100001 010101 010101 \rightarrow 48 \text{ bits}$ 

 $K_1 = 000110 \ 110000 \ 001011 \ 101111 \ 111111 \ 000111 \ 000001 \ 110010 \ \rightarrow 48 \ bits$ 

 $f(R_0, K_1) = K \oplus E(R_0) = 011000 \ 010001 \ 011110 \ 111010 \ 100001 \ 100110 \ 010100 \ 100111.$   $\rightarrow 48 \ bits$ 



We now do something strange with each group of six bits: we use them as addresses in tables called "S boxes".

As L0 is 32 bits, k1+E(R0) need to compressed to 32 bits,

 $K + E(R_0) = 011000 \ 010001 \ 011110 \ 111010 \ 100001 \ 100110 \ 010100 \ 100111. \rightarrow 48 \ bits$ 

$$K1 + E(R0) = B1 B2 B3 B4 B5 B6 B7 B8$$

We now calculate  $S_1(B_1) S_2(B_2) S_3(B_3) S_4(B_4) S_5(B_5) S_6(B_6) S_7(B_7) S_8(B_8)$ 

$$B_1 = 011000$$

Row No. = 00 (First bit & Last bit)

Col No. = 1100 (Middle four bits)

So  $S_1(B_1) = 0101 (5)$ 





We now do something strange with each group of six bits: we use them as addresses in tables called "S boxes".

 $\rightarrow$ 48 bits  $K_1 + E(R_0) = 011000 \ 010001 \ 011110 \ 111010 \ 100001 \ 100110 \ 010100 \ 100111.$ 

**B5** 

$$K1+E(R0) = B1$$

**B4** 

We now calculate

 $S_1(B_1) S_2(B_2) S_3(B_3) S_4(B_4) S_5(B_5) S_6(B_6) S_7(B_7) S_8(B_8)$ 

 $B_2 = 010001$ 

Row No. = 01 (First bit & Last bit)

Col No. = 1000 (Middle four bits)

So  $S_2(B_2) = 1100 (12)$ 



| Row |    |    |    |    |    | Co | lumr | Nu | mber |   |    |    |    |    |    |    |  |
|-----|----|----|----|----|----|----|------|----|------|---|----|----|----|----|----|----|--|
| No. | 0  | 1  | 2  | 3  | 4  | 5  | 6    | 7  | 8    | 9 | 10 | 11 | 12 | 13 | 14 | 15 |  |
| 0   | .5 | 1  | 8  | 14 | 6  | 11 | 3    | 4  | 9    | 7 | 2  | 13 | 12 | 0  | 5  | 10 |  |
| 1   | 3  | 13 | 4  | 7  | 15 | 2  | 8    | 14 | 12   | 0 | 1  | 10 | 6  | 9  | 11 | 5  |  |
| 2   | 0  | 14 | 7  | 11 | 10 | 4  | 13   | 1  | 5    | 8 | 12 | 6  | 9  | 3  | 2  | 15 |  |
| 3   | .3 | 8  | 10 | 1  | 3  | 15 | 4    | 2  | 11   | 6 | 7  | 12 | 0  | 5  | 14 | 9  |  |

We now do something strange with each group of six bits: we use them as addresses in tables called "S boxes".

 $K_1 + E(R_0) = 011000 \ 010001 \ 011110 \ 111010 \ 100001 \ 100110 \ 010100 \ 100111. \rightarrow 48 \ bits$ 

$$K1+E(R0) = B1$$

**B2** 

В3

**B4** 

**B5** 

**B7** 

We now calculate

 $S_1(B_1) S_2(B_2) S_3(B_3) S_4(B_4) S_5(B_5) S_6(B_6) S_7(B_7) S_8(B_8)$ 

 $B_3 = 011110$ 

Row No. = 00 (First bit & Last bit)

Col No. = 1111 (Middle four bits)

So  $S_3(B_3) = 1000 (8)$ 





We now do something strange with each group of six bits: we use them as addresses in tables called "S boxes".

 $K_1 + E(R_0) = 011000 \ 010001 \ 011110 \ 111010 \ 100001 \ 100110 \ 010100 \ 100111. \rightarrow 48 \ bits$ 

**B5** 

$$K1+E(R0) = B1$$

**B4** 

We now calculate

 $S_1(B_1) S_2(B_2) S_3(B_3) S_4(B_4) S_5(B_5) S_6(B_6) S_7(B_7) S_8(B_8)$ 

 $B_{A}=111010$ 

Row No. = 10 (First bit & Last bit)

Col No. = 1101 (Middle four bits)

So  $S_4(B_4) = 0010$  (2)



| Row |    |    |    |   | Column Number |    |    |    |    |   |     |    |    |    |    |    |
|-----|----|----|----|---|---------------|----|----|----|----|---|-----|----|----|----|----|----|
| No. | 0  | 1  | 2  | 3 | 4             | 5  | 6  | 7  | 8  | 9 | 10  | 11 | 12 | 13 | 14 | 15 |
| 0   | 7  | 13 | 14 | 3 | 0             | 6  | 9  | 10 | 1  | 2 | 8   | 5  | 11 | 12 | 4  | 15 |
| 1   | 13 | 8  | 11 | 5 | 6             | 15 | 0  | 3  | 4  | 7 | > 2 | 12 | 1  | 10 | 14 | 9  |
| 2   | 10 | 6  | 9  | 0 | 12            | 11 | 7  | 13 | 15 | 1 | 3   | 14 | 5  | 2  | 8  | 4  |
| 3   | 3  | 15 | 0  | 6 | 10            | 1  | 13 | 8  | 9  | 4 | 5   | 11 | 12 | 7  | 2  | 14 |

We now do something strange with each group of six bits: we use them as addresses in tables called "S boxes".

 $K_1 + E(R_0) = 011000 \ 010001 \ 011110 \ 111010 \ 100001 \ 100110 \ 010100 \ 100111.$ 

$$K1+E(R0) = B1$$

**B2** 

**B3** 

**B4** 

Be

**B5** 

**B8** 

We now calculate

 $S_1(B_1) S_2(B_2) S_3(B_3) S_4(B_4) S_5(B_5) S_6(B_6) S_7(B_7) S_8(B_8)$ 

S<sub>5</sub>(B<sub>5</sub>) 100001

S<sub>5</sub>(B<sub>5</sub>) 1011

**S5** 

2 12 4 1 7 10 11 6 8 5 3 15 13 0 14 9 14 11 2 12 4 7 13 1 5 0 15 10 3 9 8 6 4 2 1 11 10 13 7 8 15 9 12 5 6 3 0 14 11 8 12 7 1 14 2 13 6 15 0 9 10 4 5 3

 $S_1(B_1)S_2(B_2)S_3(B_3)S_4(B_4)S_5(B_5)S_6(B_6)S_7(B_7)S_8(B_8)$ 

= 0101 1100 1000 0010 1011 0101 1001 0111

 $\rightarrow$  32 bits

```
S<sub>6</sub>(B<sub>6</sub>) 100110

S<sub>6</sub>(B<sub>6</sub>) 0101

S6

12 1 10 15 9 2 6 8 0 13 3 4 14 7 5 11 10 15 4 2 7 12 9 5 6 1 13 14 0 11 3 8 9 14 15 5 2 8 12 3 7 0 4 10 1 13 11 6 4 3 2 12 9 5 15 10 11 14 1 7 6 0 8 13
```

```
S<sub>7</sub>(B<sub>7</sub>) 010100

* S7

4 11 2 14 15 0 8 13 3 12 9 7 5 10 6 1 13 0 11 7 4 9 1 10 14 3 5 12 2 15 8 6 1 4 11 13 12 3 7 14 10 15 6 8 0 5 9 2 6 11 13 8 1 4 10 7 9 5 0 15 14 2 3 12
```

```
S<sub>8</sub>(B<sub>8</sub>) 0111

S8

13 2 8 4 6 15 11 1 10 9 3 14 5 0 12 7
1 15 13 8 10 3 7 4 12 5 6 11 0 14 9 2
7 11 4 1 9 12 14 2 0 6 10 13 15 3 5 8
2 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11

IVICSE 308 Department of CSE, Stammord University, Bangladesh
```

 $f(R_0,K_1)$  - Final stage of **f- Permutation** 

 $S_1(B_1)S_2(B_2)S_3(B_3)S_4(B_4)S_5(B_5)S_6(B_6)S_7(B_7)S_8(B_8)$ 

= 0101 1100 1000 0010 1011 0101 1001 0111

 $f(R_0, K_1) = 0010\ 0011\ 0100\ 1010\ 1010\ 1001\ 1011\ 1011\ \rightarrow 32\ bits$ 

#### Finding output of Round 1

L0 = 1100 1100 0000 0000 1100 1100 1111 1111  $\rightarrow$  32 bits

R0 = 1111 0000 1010 1010 1111 0000 1010 1010  $\rightarrow$  32 bits

For n = 1, we have

 $L_1 = R_0 = 1111\ 0000\ 1010\ 1010\ 1111\ 0000\ 1010\ 1010$ 

 $R_1 = L_0 \oplus f(R_0, K_1)$ 

= 1100 1100 0000 0000 1100 1100 1111 1111  $\rightarrow$  32 bits

⊕ 0010 0011 0100 1010 1010 1001 1011 1011 →32 bits

R1 = 1110 1111 0100 1010 0110 0101 0100 0100  $\rightarrow$  32 bits

L1 = 1111 0000 1010 1010 1111 0000 1010 1010

→32 bits





#### For Round 2

$$L_2 = R_1$$

$$R_2 = L_1 \oplus f(R_1, K_2)$$

Continue upto round 16...

## **Step 4: Final Permutation**



#### Finally after 16 Rounds

#### **Output of 16 Rounds**

 $L_{16} = 0100\ 0011\ 0100\ 0010\ 0011\ 0010\ 0011\ 0100\ \rightarrow 32\ bits$  $R_{16} = 0000\ 1010\ 0100\ 1100\ 1101\ 1001\ 1001\ 0101\ \rightarrow 32\ bits$ 

We reverse the order of these two blocks and apply the final permutation to

 $R_{16}L_{16} = 00001010\ 01001100\ 11011001\ 10010101\ 01000011\ 01000010\ 00110010\ 00110100$ 

64 bits

MCSE 568

 $IP^{-1} = 10000101\ 11101000\ 00010011\ 01010100\ 00001111\ 00001010\ 10110100\ 00000101$ 

| Cyphertext which in hexadecimal |    |   |    | IP-1 |    |    | 64 bi | ts |
|---------------------------------|----|---|----|------|----|----|-------|----|
| format_is                       | 40 | 8 | 48 | 16   | 56 | 24 | 64    | 32 |
|                                 | 39 | 7 | 47 | 15   | 55 | 23 | 63    | 31 |
| 85E813540F0AB405.               | 38 | 6 | 46 | 14   | 54 | 22 | 62    | 30 |
|                                 | 37 | 5 | 45 | 13   | 53 | 21 | 61    | 29 |
|                                 | 36 | 4 | 44 | 12   | 52 | 20 | 60    | 28 |
|                                 | 35 | 3 | 43 | 11   | 51 | 19 | 59    | 27 |
|                                 | 34 | 2 | 42 | 10   | 50 | 18 | 58    | 26 |
|                                 | 33 | 1 | 41 | 9    | 49 | 17 | 57    | 25 |

Same procedure must be repeated for other blocks

Check the result online using <a href="https://emvlab.org/descalc/">https://emvlab.org/descalc/</a>

#### The Truth

- DES is insecure due to the relatively short 56-bit key size.
- In January 1999, distributed.net and the Electronic Frontier Foundation collaborated to publicly break a DES key in 22 hours and 15 minutes
- This cipher has been superseded by the Advanced Encryption Standard (AES).
- DES has been withdrawn as a standard by the National Institute of Standards and Technology.



## **DES (Data Encryption Standard)**

#### Example 6.3 The input to S-box 1 is 100011. What is the output?

**Solution** If we write the first and the sixth bits together, we get 11 in binary, which is 3 in decimal. The remaining bits are 0001 in binary, which is 1 in decimal. We look for the value in row 3, column 1, in Table 6.3 (S-box 1). The result is 12 in decimal, which in binary is 1100. So the input 100011 yields the output 1100.

#### **Example 6.4** The input to S-box 8 is <u>0</u>00000<u>0</u>. What is the output?

**Solution** If we write the first and the sixth bits together, we get 00 in binary, which is 0 in decimal. The remaining bits are 0000 in binary, which is 0 in decimal. We look for the value in row 0, column 0, in Table 6.10 (S-box 8). The result is 13 in decimal, which is 1101 in binary. So the input 000000 yields the output 1101.

## **DES (Data Encryption Standard)**



**Example 6.5** We choose a random plaintext block and a random key, and determine what the ciphertext block would be (all in hexadecimal):

Plaintext: 123456ABCD132536

Key: AABB09182736CCDD

CipherText: C0B7A8D05F3A829C

Let us show the result of each round and the text created before and after the rounds. Table 6.15 first shows the result of steps before starting the round.

Table 6.15 Trace of data for Example 6.5

Plaintext: 123456ABCD132536

After initial permutation:14A7D67818CA18AD

After splitting:  $L_0=14A7D678 R_0=18CA18AD$ 

| Round   | Left     | Right    | Round Key       |
|---------|----------|----------|-----------------|
| Round 1 | 18CA18AD | 5A78E394 | 194CD072DE8C    |
| Round 2 | 5A78E394 | 4A1210F6 | 4568581ABCCE    |
| Round 3 | 4A1210F6 | B8089591 | 06EDA4ACF5B5    |
| Round 4 | B8089591 | 236779C2 | DA2D032B6EE3    |
| Round 5 | 236779C2 | A15A4B87 | 69A629FEC913    |
| Round 6 | A15A4B87 | 2E8F9C65 | C1948E87475E    |
| Round 7 | 2E8F9C65 | A9FC20A3 | 708AD2DDB3C0    |
| Round 8 | A9FC20A3 | 308BEE97 | 34F822F0C66D    |
| Round 9 | 308BEE97 | 10AF9D37 | 84BB4473DCCC/at |

| Tab | e | 5.15 | ( | Cor | itd. |
|-----|---|------|---|-----|------|
|     |   |      |   |     |      |

| Ciphertext: C0B7A8D0   | 5F3A829C      |          | (after final permutation |
|------------------------|---------------|----------|--------------------------|
| fter combination: 19B. | A9212CF26B472 |          |                          |
| Round 16               | 19BA9212      | CF26B472 | 181C5D75C66D             |
| Round 15               | BD2DD2AB      | CF26B472 | 3330C5D9A36D             |
| Round 14               | 387CCDAA      | BD2DD2AB | 251B8BC717D0             |
| Round 13               | 22A5963B      | 387CCDAA | 99C31397C91F             |
| Round 12               | FF3C485F      | 22A5963B | C2C1E96A4BF3             |
| Round 11               | 6CA6CB20      | FF3C485F | 6D5560AF7CA5             |
| Round 10               | 10AF9D37      | 6CA6CB20 | 02765708B5BF             |

The plaintext goes through the initial permutation to create completely different 64 bits (16 hexadecimal digit). After this step, the text is split into two halves, which we call  $L_0$  and  $R_0$ . The table shows the result of 16 rounds that involve mixing and swapping (except for the last round). The results of the last rounds ( $L_{16}$  and  $R_{16}$ ) are combined. Finally the text goes through final permutation to create the ciphertext.

## Q1: The DES Algorithm Cipher System consists of rounds (iterations)







## Q2: The DES algorithm has a key length of \_\_\_\_

- A 32 bits
- B 48 bits
- 56 bits
- D 64 bits









## Q3: The input and output of S-Box are \_\_\_\_\_

- 48 & 32 bits
- B 32 & 48 bits
- 56 & 32 bits
- 32 & 32 bits









Q4: The Initial Permutation table/matrix is of size



**B** 12x8



D 16x8









## Q5: The number of tests required to break the DES algorithm is\_\_\_\_\_

- 2.8x10<sup>14</sup>
- **B** 4.2×10<sup>9</sup>
- 1.84×10<sup>19</sup>
- 7.2x10<sup>16</sup>







