Exam 3 Chem 1142 Spring 2015

Na	me:	KEY					
MULTIPLE CHOICE. [3 pts ea.] Choose the best response on the scantron sheet. [45 pts total.]							
Q1. Q2.	The conjugate bas a) H ₃ PO ₄ An aqueous solut concentration?	b) H ₂ PO ₄ -	,	d) PO ₄ ³⁻	e) $ ext{OH}^ 4 imes 10^{-8}$ M. What is the hydroxide		
(a) 2.4×10^{-8} M d) 4.2×10^{-7} M	>	b) 7.6×10^{-6} M e) 2.4×10^{6} M	ſ	c) $1.0 \times 10^{-7} \mathrm{M}$		
Q3.	Which of the followa) HNO2	owing is NOT a st b) H2SO4	rong acid? c) HClO4	d) HI	e) HBr		
Q4.	A 0.10 M weak m a) 1.8×10^{-4}	onoprotic acid un b) 0.042	dergoes 4.2 % di c) 0.0042	ssociation in water d) 1.8 × 10 ⁻³	. What is $K_{\rm a}$ for the acid? e) 5.1×10^{-5}		
Q5.	CH ₃ NH ₂ is a weak base. Which chemical equation corresponds to the K_b reaction for CH ₃ NH ₂ ? a) CH ₃ NH ₂ (aq) + OH ⁻ (aq) \rightleftharpoons CH ₃ NH ₃ ⁺ (aq) + O ²⁻ (aq) b) CH ₃ NH ₂ (aq) + H ₂ O(l) \rightleftharpoons CH ₃ NH ₃ ⁺ (aq) + OH ⁻ (aq) c) CH ₃ NH ₃ ⁺ (aq) + H ₂ O(l) \rightleftharpoons CH ₃ NH ₂ (aq) + H ₃ O ⁺ (aq) d) CH ₃ NH ₂ (s) \rightleftharpoons CH ₂ (aq) + NH ₃ (aq) e) CH ₃ NH ₂ (aq) + H ₃ O ⁺ (aq) \rightleftharpoons CH ₃ NH ₃ ⁺ (aq) + H ₂ O(l)						
Q6.	An example of an a) NaNO ₃		c:	d) Fe(ClO ₄) ₃	e) KCl		
Q7.	c) A substance tha	defined as: at forms H ₃ O ⁺ in v at is easily oxidized at can accept electr		b) A substance t d) A substance v	hat donates protons vith a low pH		
Q8.	A few drops of concentrated HCl is added to a solution containing a mixture of HNO3 and NaNO3. The resultant pH change would be: a) A small decrease in pH b) A small increase in pH c) A large decrease in pH d) A large increase in pH e) A neutral pH would result						
Q9.	Which of the followa) HF, $K_a = 7.2 \times d$ HBrO, $K_a = 2.4$	10-4		$K_{\rm a} = 6.5 \times 10^{-5}$	buffer with a pH of 7.50? c) HClO, $K_a = 3.5 \times 10^{-8}$		
Q10.	K _{sp} for lead(II) flu a) 0.0022 M	oride is 4.1 × 10 ⁻⁸ b) 0.0028 M		ar solubility is: d) 3.5×10^{-3} M	e) 6.7×10^{-5} M		

- Q11. If $Q_{\rm sp}$ for a ionic compound in solution is less than $K_{\rm sp}$, we will observe:
 - a) Precipitation, and a solution that is unsaturated
 - b) Precipitation, and a solution that is saturated
 - c) No precipitate, but a saturated solution
 - d) No precipitate, and an unsaturated solution
 - e) No precipitate, but a supersaturated solution that will eventually precipitate
- Q12. Given the following pH titration curve:

which acid-base indicator would give us the most precise end-point?

Table 17.1 Some Common Acid-Base Indicators

Indicator	In Acid	In Base	pH Range*
Thymol blue	Red	Yellow	1.2–2.8
Bromophenol blue	Yellow	Bluish purple	3.0-4.6
Methyl orange	Orange	Yellow	3.1-4.4
Methyl red	Red	Yellow	4.2-6.3
Chlorophenol blue	Yellow	Red	4.8-6.4
Bromothymol blue	Yellow	Blue	6.0-7.6
Cresol red	Yellow	Red	7.2-8.8
Phenolphthalein	Colorless	Reddish pink	8.3-10.0

a) Thymol blue

b) Methyl red

c) Chlorophenol blue

- d) Bromothymol blue
- (e) Phenolphthalein
- Q13. The pH of a 0.10 M solution of Sr(OH)₂(aq) at 25 °C is:
 - a) 0.70
- b) 1.00
- c) 7.00
- d) 13.00
- e) 13.30
- Q14. The molar solubility of CaCO₃(s) would be GREATEST in which of the following solutions?
 - a) pure water

- (b) 0.10 M HNO₃(aq)
- c) 0.10 M Ca(NO₃)₂(aq)

- d) saturated NaCl(aq)
- e) 0.10 M KCl(aq)
- Q15. For a triprotic weak acid:
 - a) $K_{a1} < K_{a2} < K_{a3}$
 - d) $K_{a1} > K_{a2} \approx K_{a3}$
- (b) $K_{a1} > K_{a2} > K_{a3}$ e) $K_{a1} \approx K_{a2} \approx K_{a3}$

c) $K_{a1} \approx K_{a2} > K_{a3}$

Short Response.

Show ALL work to receive credit.

NaF -> Natrag) + Frag)

[15 pts.] 25 mL of 0.100 M HF(aq) is poured into a beaker containing 15 mL of 0.100 M NaF(aq). The solution is stirred. The temperature is 25 °C. K_a (HF) = 7.1×10^{-4} .

i) What is the pH of this solution?
$$pk_a(HF) = -log(k_a) = 3.149$$

$$\frac{[HF]}{M_1 V_1 = M_2 V_2}$$

$$M_2 = \frac{M_1 V_1}{V_2} = \frac{0.100 M \times 25 mL}{40.mL}$$

$$= 0.0625 M$$

$$= 0.0375 M$$

$$= 0.0375 M$$

$$= 2.93$$

ii) 1.00 mL of 0.10 M HNO₃(aq) is added to this solution. Calculate the new pH.

$$H^{+}(aq) + F^{-}(aq) \longrightarrow HF^{-}(aq)$$
 $I(und) 0.00010 0.0015 0.0025$
 $C -0.00010 -0.00010 +0.00010$
 $E 0 0.0014 0.0026$

commend dop of DOS unit

[Opts
$$P_b(NO_3)_2(a_0) + 2L_iF(a_0) \rightarrow 2L_iNO_3(a_0) + PbF_2(s)$$

[Opts $P_b(NO_3)_2(a_0) + 2L_iF(a_0) \rightarrow 2L_iNO_3(a_0) + PbF_2(s)$

[Opts $P_b(NO_3)_2(a_0) + 2L_iF(a_0) \rightarrow Pb^2(a_0) + Predict whether a precipitate will form. $K_{ip}(PbF_2) = 4.1 \times 10^{-8}$.

PbF_2(s) $\Rightarrow Pb^{24}(a_0) + 2F^2(a_0) \rightarrow Pb^2(a_0) + 2NO_3(a_0)$
 $Q_{sp} = [Pb^{24}]_i[F^2]_i$
 $Q_{sp} = [O \cdot 0.122]_i[O \cdot 0.0194]$
 $Q_{sp} = [O \cdot 0.122]_i[O \cdot 0.0194]$
 $Q_{sp} = [O \cdot 0.022]_i[O \cdot 0.0194]$
 $Q_{sp} = [Pb^{24}]_i[F^2]_i$
 $Q_{sp} = [O \cdot 0.022]_i[O \cdot 0.0194]$
 $Q_{sp} = [Pb^{24}]_i[F^2]_i$
 $Q_{sp} = [O \cdot 0.020M \times 55mL]_i$
 $Q_{sp} = [O \cdot 0.022M \times 55mL]_i$
 $Q_{sp} = [O \cdot 0.012M \times 55mL]_i$
 $Q_{sp} = [O \cdot 0.0050M \times 35mL]_i$
 $Q_{sp} = [O \cdot 0.012M \times 55mL]_i$
 $Q_{sp} = [O \cdot 0.012M \times 55mL]_i$
 $Q_{sp} = [O \cdot 0.012M \times 55mL]_i$
 $Q_{sp} = [O \cdot 0.012M \times 35mL]_i$
 $Q_{sp} = [O \cdot$$

Q18. [15 pts.] The solubility of Ag₃PO₄ in 0.0010 M Na₃PO₄(aq) is 1.5×10^{-5} M. Calculate K_{sp} for silver phosphate.

Ag₃PO₄(S) $\rightleftharpoons 3$ Ag⁴(aq) $\dotplus PO_4$ (aq).

=> [PO2] = 0-0010 M

$$\Rightarrow k_{sp} = (3s)^3 (0.0010 + s)$$

$$= (3 \times 1.5 \times 10^{-5})^{3} (0.0010 + 1.5 \times 10^{-5})$$

$$K_{SP} = 9.2 \times 10^{-17}$$

Q19. [15 pts.] Calculate the pH of 0.40 M CH₃NH₃+Cl⁻(aq), given K_b (CH₃NH₂) = 4.4 × 10⁻⁴ at 25 °C.

$$CH_3NH_3^+(ag) + H_2O(P) \Longrightarrow H_3O^+(ag) + CH_3NH_2(ag)$$
 $C \to X \longrightarrow +X +X$

$$K_{a} = \frac{K_{w}}{K_{b}} = 2.27 \times 10^{-11} = \frac{x^{2}}{0.40 \times 2.27 \times 10^{-11}} \Rightarrow x = 3.015 \times 10^{-6} = 5/. \text{ (x)}$$

$$\Rightarrow \text{ pH} = -\log_{10} (\text{H}^{+}) = -\log_{10} (\text{x)} = 5.52$$

[15 pts.] Calculate the pH of the following solutions at 25 °C: Be sure to show your work! Q20.

b) 0.42 M Sr(OH)₂(aq) ->
$$Sr^{2+1}(ag) + 2OH^{-1}(ag)$$

$$pOH = -log (OH^-) = 0.076$$
 $\Rightarrow pH = 14.00 - pOH$
c) 12 M HCl(aq) \rightarrow H[†] + CT

Q21. [18 pts.] i) Write out the chemical equation for the reaction corresponding to K_w .

ii) Set up an ICE-Chart for this reaction, and solve for the equilibrium concentrations of products at 25 °C.

iii) If $K_{\rm w}$ is equal to 2.4×10^{-14} at 37 °C (body temperature), what will the pH be for a **NEUTRAL** solution of water at this temperature?

$$K_{U} = 2.4 \times 10^{-14} = x^{2} \Rightarrow x = \sqrt{K_{W}} = 1.55 \times 10^{-7}$$

 $pH = -\log [H_{3}0^{\dagger}] = -\log (x) = 6.81$

BONUS Question:

Give an example of an:

- i) Acid salt
- ii) Basic salt ___Na F
- iii) Neutral salt Na Q

Seful Information

Periodic Table of the Elements IΙΑ IIIA VIA VIIA VIIIA VA He 1.01 Li Be В С 0 F Ne 12.01 20.18 Mg SI Ar 28.09 Τi ν Ca Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 50.94 52.00 54.94 58.69 63.55 74.92160 63.60 Nb Mo Tc Ru Rh Pd Cd ſn Sn Sb Te Αg 1 Хe 101.07 Cs Ba* Hf Lu Ta W Ir Pt Au 196.97 Pb ВΙ Po Re Os ΤI Hg Αt Rn 160.95 183.84 168.21 190.23 192.22 195.08 207.20 [222] Db Sg Bh Hs Mt

Nd Pm Sm Dy 140.12 140.91 144.24 173.04 Th Pa U Pu Cf Es Fm No

15650

 $N_{\rm A} = 6.022 \times 10^{23} \, \rm mol^{-1}$

$$R = 8.3145 \frac{J}{\text{mol} \cdot K} = 0.08206 \frac{\text{atm} \cdot L}{\text{mol} \cdot K}$$
 $M_1 V_1 = M_2 V_2$

$$pH = -log_{10}[H^+]$$
 $pH + pOH = 14.00 (25 °C)$

$$K_{\rm w} = 1.0 \times 10^{-14} \ (25 \ ^{\rm o}{\rm C})$$
 $K_{\rm a} \cdot K_{\rm b} = K_{\rm w}$

$$pH = pK_a + \log \frac{[Base]}{[Acid]}$$

$$K_{\rm p} = K_{\rm c}(RT)^{{}_{\scriptscriptstyle \Lambda} {\rm n}_{\rm g}}$$

Given:
$$ax^2 + bx + c = 0$$
, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$