Funções

Função afim

Chama-se função afim a toda a função de domínio \mathbb{R} tal que: $f(x) = mx + b, m, b \in \mathbb{R}$.

Se m = 0, f(x) = b e diz-se que f é uma função constante.

f(x) = mx + b	m > 0	m < 0	m = 0	
Domínio	\mathbb{R}	\mathbb{R}	\mathbb{R}	
Contradomínio	R	\mathbb{R}	{b}	
Zeros	$-\frac{b}{m}$	$-\frac{b}{m}$	$-\frac{b}{m}$	
Representação gráfica	-b/m	-b/m	b	
Sinal	$x \in \left] -\infty; -\frac{b}{m} \right[: negativa$ $x \in \left] -\frac{b}{m}; +\infty \right[: positiva$	$x \in \left] -\infty; -\frac{b}{m} \right[: positiva$ $x \in \left] -\frac{b}{m}; +\infty \right[: negativa$	b > 0: positiva b < 0: negativa	
Variação	crescente	decrescente	constante	

Função quadrática

Uma função real de variável real definida por um polinómio do 2^{o} grau, ou seja, definida por uma expressão do tipo $y=ax^2+bx+c$, $a\neq 0$ é designada por função quadrática.

O gráfico da função quadrática é uma parábola.

$$y = ax^2$$

a > 0	a < 0

y = ax ²	0	0		
Domínio	\mathbb{R}	\mathbb{R}		
Contradomínio	\mathbb{R}^+_0	\mathbb{R}_0^-		
Zeros	0	0		
Sinal	Positiva em $\mathbb{R} ackslash \{0\}$	Negativa em $\mathbb{R}ackslash\{0\}$		
Monotonia	Decrescente em]−∞; 0[Crescente em]−∞; 0[
ivioliotolila	Crescente em $]0; +\infty[$	Decrescente em $]0; +\infty[$		
Extremos	Mínimo: 0	Máximo: 0		
EXITERIOS	Minimizante: 0	Maximizante: 0		

$$y = a(x-h)^2$$

	a > 0	a < 0		
y = a(x-h) ²	h	in the second se		
Domínio	\mathbb{R}	\mathbb{R}		
Contradomínio	\mathbb{R}_0^+	\mathbb{R}_0^-		
Zeros	h	h		
Sinal	Positiva em $\mathbb{R}ackslash\{h\}$	Negativa em $\mathbb{R}ackslash\{h\}$		
Monotonia	Decrescente em $]-\infty$; $h[$	Crescente em] $-\infty$; h [
Wionotoma	Crescente em] h ; + ∞ [Decrescente em $]h; +\infty[$		
Extremos	Mínimo: 0	Máximo: 0		
LAUGIIIOS	Minimizante: h	Maximizante: h		

$$y = ax^2 + k$$

	$a>0 \land k>0$	$a > 0 \land k < 0$		
y = ax² + k	\downarrow k			
Domínio	\mathbb{R}	R		
Contradomínio $[k, +\infty[$		[<i>k</i> , +∞[
Zeros	Não tem	X ₁ , X ₂		
Sinal	Positiva em $\mathbb R$	Positiva em] $-\infty$; $x_1[\ \cup\]x_2; +\infty[$ Negativa em] $x_1; x_2[$		
Monotonia	Decrescente em $]-\infty;0]$	Decrescente em] $-\infty$; 0]		
THORIS COINC	Crescente em [0; +∞[Crescente em $[0; +\infty[$		
Extremos	Mínimo: k	Máximo: k		
LAG CIIIOS	Minimizante: 0	Maximizante: 0		

	Crescente em] $-\infty$; 0]	Crescente em] $-\infty$; 0]	
Extremos	Mínimo: k	Máximo: k	
	Minimizante: 0	Maximizante: 0	

$$y = a(x-h)^2$$

O gráfico de uma função do tipo $y=a(x-h)^2+k$, $a\neq 0$ é uma parábola com as seguintes características:

- Concavidade voltada para cima se a > 0; concavidade voltada para baixo se a < 0;
- Vértice no ponto de coordenadas (h; k);
- Eixo de simetria é a reta de equação x = h.

Determinação do vértice da parábola

As coordenas do vértice V são $\left(-\frac{b}{2a}; f\left(-\frac{b}{2a}\right)\right)$, com f(x) = ax² +b + c.

$$f(x) = f(0) \Leftrightarrow ax^2 + bx + c = a * 0^2 + b * 0 + c \Leftrightarrow ax^2 + bx + c = c \Leftrightarrow ax^2 + bx = 0 \Leftrightarrow$$
$$x(ax + b) = 0 \Leftrightarrow x = 0 \lor ax + b = 0 \Leftrightarrow x = 0 \lor x = -\frac{b}{a}$$

Os pontos (0; f(0)) e $\left(-\frac{b}{a}; f\left(-\frac{b}{a}\right)\right)$ são simétricos em relação ao eixo de simetria da função, logo a abcissa do vértice é metade de $-\frac{b}{a}$, daí que o vértice V seja dado por $\left(-\frac{b}{2a}; f\left(-\frac{b}{2a}\right)\right)$.

Função módulo

Uma função módulo, analiticamente, é definida por ramos. Uma função diz-se definida por ramos se é definida por expressões diferentes em partes diferentes do seu Domínio.

Exemplo:

$$f(x) = |x| = f(x) = \begin{cases} -x, & x < 0 \\ x, & x \ge 0 \end{cases}$$

Função soma

$$D_{f+g} = D_f \cap D_g$$

$$(f+g)(x) = f(x) + g(x)$$

Função diferença

$$D_{f-g}=D_f\cap D_g$$

$$(f - g)(x) = f(x) - g(x)$$

Função produto

$$D_{f*g} = D_f \cap D_g$$

$$(f * g)(x) = f(x) * g(x)$$

Função quociente

$$D_{\frac{f}{g}} = D_f \cap D_g \cap \{x \in \mathbb{R} \colon g(x) \neq 0\}$$

$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$$

Igualdade de funções

Dadas as funções f(x) e g(x), estas são iguais se e só se as seguintes igualdades se verificarem:

$$D_f = D_g$$

$$f(x) = g(x), \forall_x \in D$$

Função composta

$$D_{g \circ f} = \{x \in D_f \colon f(x) \in D_g\} \text{ ou } D_{g \circ f} = \{x \in \mathbb{R} \colon x \in D_f \land f(x) \in D_g\}$$

$$(g\circ f)(x)=g(f(x))$$

$$f(x) = \sqrt{x+1}; g(x) = \frac{1}{x}$$

$$(g \circ f)(x) = g(f(x)) = g(\sqrt{x+1}) = \frac{1}{\sqrt{x+1}}$$

$$D_{g \circ f} = \left\{ x \in \mathbb{R} \colon x \in D_f \land f(x) \in D_g \right\} = \left\{ x \in \mathbb{R} \colon x \in [-1; +\infty[\land \sqrt{x+1} \in \mathbb{R} \setminus \{0\}] \right\} = \left\{ x \in \mathbb{R} \colon x \geq -1 \land \sqrt{x+1} \neq 0 \right\} = \left\{ x \in \mathbb{R} \colon x \geq -1 \land x \neq 0 \right\} =]-1; +\infty[$$

$$g\circ f=]-1;+\infty[\to\mathbb{R}$$

$$\chi \hookrightarrow \frac{1}{\sqrt{x+1}}$$

Função racional

$$f: x \hookrightarrow \frac{P(x)}{Q(x)}$$

O Domínio de uma função racional é o conjunto dos números reais que não anulam o denominador: $D_f = \{x \in \mathbb{R}: Q(x) \neq 0\}.$

A reta x = a é uma Assíntota Vertical (A.V.) de f se f(x) tende para $\pm \infty$ quando x tende para a pelos valores à direta de a (a⁺), pelos valores à esquerda de a (a⁻) ou ambos.

A reta y = b é uma Assíntota Horizontal (A.H.) de f se f(x) tende para b quando x tende para $+\infty$ ou $-\infty$ ou ambos.

Funções do tipo
$$y=a+\frac{b}{cx+d}$$
, $a,b,c,d\in\mathbb{R}$

$y = a + \frac{b}{x+d}, b \neq 0$ Domí	ínio: $\mathbb{R}ackslash\{-d\}$
--	----------------------------------

Simplificação de frações racionais

$$\frac{a}{b} \Leftrightarrow d + \frac{c}{b}$$

$$f(x) = \frac{2x^2 + x + 3}{x + 1} = 2x - 1 + \frac{4}{x + 1}$$

$$2x^{2} + x + 3$$

$$-2x^{2} - 2x$$

$$-x + 3$$

$$x + 1$$

$$2x - 1$$

$$+x + 1$$

4

Transformações do gráfico de uma função

• y = f(x) + k

Translação na vertical para cima se k > 0

Translação na vertical para baixo se k < 0

• y = f(x + k)

Translação na horizontal para a esquerda se k > 0

Translação na horizontal para a direita se k < 0

• y = kf(x)

Alongamento vertical se k > 1

Encolhimento vertical se 0 < k < 1

y = f(kx)

Encolhimento horizontal se k > 1

Alongamento horizontal se 0 < k < 1

• y = -f(x)

Simetria em relação ao eixo Ox

• y = f(-x)

Simetria em relação ao eixo Oy

• y = |f(x)|

Módulo de uma função: os intervalos de f(x) com sinal negativo passam a sinal positivo

Monotonia

- Função crescente: $x_1 < x_2 \Leftrightarrow f(x_1) < f(x_2), \forall_{x_1, x_2} \in D_f$;
- $\bullet \quad \text{Função decrescente: } x_1 > x_2 \Leftrightarrow f(x_1) > f(x_2), \forall_{x_1,x_2} \in D_f;$
- Função constante: $f(x_1) = f(x_2)$, $\forall_{x_1,x_2} \in D_f$.

Extremos

- f tem um máximo absoluto em a se $\forall_x \in D_f : f(x) \le f(a)$;
 - A a chama-se maximizante, a f(a) máximo absoluto;
- f tem um mínimo absoluto em a se $\forall_x \in D_f : f(x) \ge f(a)$;
 - o A a chama-se minimizante, a f(a) mínimo absoluto;

- f tem um máximo relativo em a se existir uma vizinhança V de centro a tal que $\forall_x \in V \cap D_f, f(x) \leq f(a)$;
 - A a chama-se maximizante, a f(a) máximo relativo;
- f tem um mínimo relativo em a se existir uma vizinhança V de centro a tal que $\forall_x \in V \cap D_f, f(x) \ge f(a)$;
 - \circ A a chama-se minimizante, a f(a) mínimo relativo.

Injetividade

Dada uma função f de Domínio D, f é injetiva se e só se:

$$\forall_{x_1,x_2} \in D_f$$
, se $x_1 \neq x_2$, então $f(x_1) \neq f(x_2)$ ou

ou
$$f(x_1) = f(x_2) \Leftrightarrow x_1 = x_2, \forall_{x_1, x_2} \in D_f$$

Paridade

Função par

$$f \in par: f(-x) = f(x), \forall_x \in D_f$$

Função ímpar

$$f$$
 é impar: $f(-x) = -f(x), \forall_x \in D_f$

Caso nenhuma das duas condições se verifique, diz-se que a função não é par nem ímpar.

Taxa média de variação

A taxa média de variação de uma função f no intervalo [a; b] representa-se por $tmv_{[a;b]}$ e é dada por: $tmv_{[a;b]}=\frac{f(b)-f(a)}{b-a}$.

- Se f é estritamente crescente em $[a;b] \Rightarrow tmv_{[a;b]} > 0$;
- Se f é estritamente decrescente em $[a; b] \Rightarrow tmv_{[a;b]} < 0$;
- Se f é constante em $[a;b] \Rightarrow tmv_{[a;b]} = 0$;
- Interpretação gráfica: representa o declive da reta secante ao gráfico de f; Seja s a reta secante ao gráfico de f em x=a e x=b.

$$m_S = \frac{y_b - y_a}{x_b - x_a} = \frac{f(b) - f(a)}{b - a} = tmv_{[a;b]}$$

Interpretação física: representa a velocidade média da função no intervalo dado;

• Se uma função for estritamente crescente num intervalo do seu Domínio então a tmv é positiva nesse intervalo, mas o recíproco não é verdadeiro.

Taxa de variação

Dada uma função f chama-se derivada de f (ou taxa de variação de f) num ponto x=a do seu Domínio e presenta-se por f'(a) ao valor de $\lim_{h\to 0}tmv_{[a;b]}$, ou seja,

$$f'(a) = \lim_{h \to 0} \left(\frac{f(a+h) - f(a)}{h} \right) \stackrel{MV}{\longleftrightarrow} x = a + h \\ f'(a) = \lim_{x \to a} \left(\frac{f(x) - f(a)}{x - a} \right)$$

- Interpretação física: f'(a) representa a velocidade instantânea da função em x=a;
- Interpretação gráfica:

$$m_s = tmv[a; a + h]$$

Quando $h \to 0$, a reta secante "transforma-se" numa reta tangente $\Rightarrow f'(a) =$

 m_{tang}

A derivada de uma função num ponto é igual ao declive da reta tangente ao gráfico da função nesse ponto:

$$f'(a) = m_{t_1} > 0$$

$$f'(a) = m_{t_2} = 0$$

$$f'(a) = m_{t_3} < 0$$

Equação reduzida da reta tangente ao gráfico de uma função num ponto

Uma forma de obter a equação de uma reta conhecido o seu declive (m) é um ponto A(a;f(a)) tal que:

$$y - f(a) = m(x - a)$$

No caso da reta em causa ser a reta tangente a x = a, tem-se:

$$y - f(a) = f'(a)(x - a)$$

Exemplo:

Determinar a equação da reta tangente ao gráfico da função $f(x)=x+\ln(x-2)$ no ponto x=3.

$$f(3) = 3 + \ln(3 - 2) = 3 + \ln(1) = 3 + 0 = 3$$

$$f(3+h) = 3+h + \ln(3+h-2) = 3+h + \ln(1+h)$$

$$f'(3) = \lim_{h \to 0} \left(\frac{f(3+h) - f(3)}{h} \right) = \lim_{h \to 0} \left(\frac{(3+h + \ln(1+h)) - 3}{h} \right) = \lim_{h \to 0} \left(\frac{h + \ln(1+h)}{h} \right) = 0 \lim_{h \to 0} \left(\frac{h}{h} + \frac{\ln(1+h)}{h} \right) = 1 + 1 = 2$$

$$y - f(3) = f'(3)(x - 3) \Leftrightarrow y - 3 = 2(x - 3) \Leftrightarrow y = 2x - 6 + 3 \Leftrightarrow y = 2x - 3$$

Função derivada

Seja f uma função, real de variável real, e D o conjunto de todos os elementos do Domínio de f que admitem variável.

Chama-se função derivada de f à função de Domínio D que a cada x faz corresponder o número real f'(x),

A função derivada de f pode ter as seguintes notações: $f'; y'; \frac{df}{dx}; \frac{dy}{dx}$.

Derivabilidade num ponto

Uma função f diz-se derivável (ou diferenciável) num ponto x=a do seu Domínio se e só se existe derivada nesse ponto e é finito, ou seja:

$$\lim_{h \to 0^{-}} \frac{f(a+h) - f(a)}{h} = \lim_{h \to 0^{+}} \frac{f(a+h) - f(a)}{h} = k, k \neq \pm \infty$$

ou
$$\lim_{x \to a^-} f'(x) = \lim_{x \to a^+} f'(x) = k, k \neq \pm \infty$$

Não existe derivada em pontos angulosos.

Só existe derivada num ponto de descontinuidade de abcissa a de uma função f se e só se $\lim_{x\to a^-} f(a) = \lim_{x\to a^+} f(a) = f(a)$.

Teorema: se f é derivável num ponto x = a do seu Domínio, então f é contínua nesse ponto.

Nota: derivável \Rightarrow contínua, mas contínua \Rightarrow derivável.

Sinal da derivada e sentido de variação (exemplo)

- f é estritamente crescente em] $-\infty$; a[e]b; c[;
- f'é positiva em] $-\infty$; a[e]b; c[;
- f é estritamente decrescente em a; b[e em d; $+\infty$ [;
- f'é negativa em a; b[e em $d; +\infty$ [;
- $f \in constante \ em \]c; d[;$
- f' = 0 em c; d, x = a (máximo relativo) e em x = b (mínimo relativo).

Estudo dos extremos relativos de uma função aplicado às derivadas (exemplo)

Seja f uma função contínua em x = a.

Se f'(a) = 0 ou $a \notin D_{f'}(f'(a)$ não está definido) e f' muda de sinal em x = a, então f(a) é extremo relativo (máximo ou mínimo) de f.

$$D_f = \mathbb{R}$$

 $D_{f'} = \mathbb{R} \setminus \{c\} \to f'(c)$ não está definido porque x = c é um ponto anguloso

$$zeros_f, = \{a, b, d\}$$

	$-\infty$	а		b		С		d	+∞
sinal de f'	+	0	1	0	+	N.D.	-	0	-
variação de f	71	máx: f(a)	K	min: f(b)	7	<i>máx: f(c)</i>	K	f(d)	Z

Assim, f(a) e f(c) são máximos relativos de f, e f(b) é um mínimo relativo de f.

Segunda derivada de uma função

Seja $a \in D_f$:

A segunda derivada ou derivada de segunda ordem em x=a representa — se por f''(a) e representa-se por:

$$f''(a) = \lim_{h \to 0} \left(\frac{f'(a+h) - f'(a)}{h} \right) ou \ f''(a) = \lim_{x \to a} \left(\frac{f'(x) - f'(a)}{x - a} \right)$$

A segunda derivada de f é a derivada de f'.

- Significado físico da segunda derivada: f''(a) é o valor da aceleração da função f em x=a;
- Significado gráfico da segunda derivada (concavidade):

Diz-se que uma função tem a concavidade voltada para cima num intervalo do seu Domínio se em qualquer ponto desse intervalo a curva da função está acima da reta tangente nesse ponto caso contrário diz-se que a concavidade está voltada para baixo.

Uma função tem um ponto de inflexão em x=a se o seu gráfico muda o sentido da concavidade nesse ponto.

Sinal de f' e o sentido da concavidade

Concavidade voltada para cima

 m_t está a aumentar $\Rightarrow f'(x)$ é crescente $\Rightarrow (f'(x))' > 0 \Rightarrow f''(x) > 0$

Concavidade voltada para baixo

 m_t está a diminuir $\Rightarrow f'(x)$ é decrescente $\Rightarrow (f'(x))' < 0 \Rightarrow f''(x) < 0$

Conclusão

Seja f duplamente derivável em a; b:

• f tem concavidade voltada para cima em $]a; b[\Leftrightarrow f''(x) > 0, \forall_x \in]a; b[;$

• f tem concavidade voltada para baixo em $]a; b[\Leftrightarrow f''(x) < 0, \forall_x \in]a; b[$.

Estudo analítico das concavidades e pontos de inflexão (exemplos)

1.
$$f(x) = (x - 1)e^x$$

 $f'(x) = ((x - 1)e^x)' = (x - 1)'(e^x) + (x - 1)(e^x)' = e^x + xe^x - e^x = xe^x$
 $f''(x) = (xe^x)' = (x')(e^x) + (x)(e^x)' = e^x + xe^x = e^x(1 + x)$
 $f''(x) = 0 \Leftrightarrow e^x(1 + x) = 0 \Leftrightarrow e^x = 0 \lor 1 + x = 0 \Leftrightarrow x \in \emptyset \lor x = -1 \Leftrightarrow x = 0$

zeros de f'': $\{-1\}$

-1

$$f(-1) = (-1 - 1)e^{-1} = -\frac{2}{e}$$

x	-∞	-1	+∞
f''	-	0	+
f	n	$P.I.: f(-1) = -\frac{2}{e}$	U

f tem concavidade voltada para baixo em] $-\infty$; -1[.

f tem concavidade voltada para cima em] -1; $+\infty$ [.

$$\left(-1; -\frac{2}{e}\right)$$
 é Ponto de Inflexão de f.

2.
$$f(x) = \ln(x^2 + 1)$$

$$f'(x) = (\ln(x^2 + 1))' = \frac{(x^2 + 1)'}{x^2 + 1} = \frac{2x}{x^2 + 1}$$

$$f''(x) = \left(\frac{2x}{x^2 + 1}\right)' = \frac{(2x)' * (x^2 + 1) - (2x) * (x^2 + 1)'}{(x^2 + 1)^2} = \frac{2x^2 + 2 - 4x^2}{(x^2 + 1)^2} = \frac{-2x^2 + 2}{(x^2 + 1)^2}$$

$$f''(x) = 0 \Leftrightarrow \frac{-2x^2 + 2}{(x^2 + 1)^2} = 0 \Leftrightarrow -2x^2 + 2 = 0 \land (x^2 + 1)^2 \neq 0 \Leftrightarrow x = \pm 1 \land x \in \mathbb{R}$$

$$\mathbb{R} \Leftrightarrow x = -1 \lor x = 1$$

$$f(-1) = \ln((-1)^2 + 1) = \ln 2$$

$$f(1) = \ln(1^2 + 1) = \ln 2$$

Х	-∞	-1		1	+∞
f''	-	0	+	0	-
f	Λ	P.I.	U	P.I.	Λ

f tem concavidade voltada para baixo em] $-\infty$; $-1[e]1; +\infty[$;

f tem concavidade voltada para cima em]-1;1[.

Regras de derivação

• $(ax^n)' = nax^{n-1}$

Exemplos:

a)
$$(4x^3)' = 3 * 4x^{3-1} = 12x^2$$

b)
$$\left(-\frac{3}{2}x^4\right)' = -\frac{12}{2}x^3 = -6x^3$$

c)
$$(3)' = 0$$

•
$$(f+g)'(x) = f'(x) + g'(x)$$

Exemplos:

a)
$$\left(5x^3 + \frac{x^2}{2}\right)' = 15x^2 + \frac{2x}{2} = 15x^2 + x$$

b)
$$(4x^2 - 5x + 1)' = 8x - 5$$

$$\bullet \quad (f*g)'(x) = f'(x)*g(x) + f(x)*g'(x), \forall_x \in D_f \cap D_g$$

Exemplos:

a)
$$(x(3x^2 - 4x))' = (x)'(3x^2 - 4x) + (x)(3x^2 - 4x)' = 1(3x^2 - 4x) + (x)(6x - 4) = 3x^2 - 4x + 6x^2 - 4x = 9x^2 - 8x$$

b)
$$\left((x^2 + 6x) \left(\frac{2}{3}x - 4 \right) \right)' = (x^2 + 6x)' \left(\frac{2}{3}x - 4 \right) + (x^2 + 6x) \left(\frac{2}{3}x - 4 \right)' =$$

 $(2x + 6) \left(\frac{2}{3}x - 4 \right) + (x^2 + 6x) \left(\frac{2}{3} \right) = \frac{4}{3}x^2 - 8x + 4x - 24 + \frac{2}{3}x^2 + 4x = 2x^2 - 24 = x^2 - 12$

c)
$$(5(x^3 - 2x))' = (5)'(x^3 - 2x) + (5)(x^3 - 2x)' = 0(x^3 - 2x) + 5(3x^2 - 2) = 15x^2 - 10 = 3x^2 - 2$$

$$\bullet \quad (k * f(x))' = k * f'(x)$$

•
$$\left(\frac{f}{g}\right)'(x) = \frac{f'(x)*g(x)-f(x)*g'(x)}{\left(g(x)\right)^2}, \forall_x \in D_f \cap D_g: g(x) \neq 0$$

$$\left(\frac{x^2 - 3x + 2}{4x + 1}\right)' = \frac{\left(x^2 - 3x + 2\right)' * (4x + 1) - \left(x^2 - 3x + 2\right) * (4x + 1)'}{(4x + 1)^2} = \frac{(2x - 3) * (4x + 1) - \left(x^2 - 3x + 2\right) * 4}{(4x + 1)^2} = \frac{8x^2 + 2x - 12x - 3 - 4x^2 + 12x - 8}{(4x + 1)^2} = \frac{4x^2 + 2x - 11}{(4x + 1)^2}$$

•
$$\left(\frac{k}{f(x)}\right)' = -\frac{kf'(x)}{\left(f(x)\right)^2}, \forall_x \in D_{f'}: f(x) \neq 0$$

Exemplo:

$$\left(\frac{5}{3x^2+x}\right)' = -\frac{5(3x^2+x)'}{(3x^2+x)^2} = -\frac{30x+5}{(3x^2+x)^2}$$

•
$$(f^n)'(x) = n * f^{n-1}(x) * f'(x), \forall_n \in \mathbb{R}$$

Exemplos:

a)
$$((2x-5)^3)' = 3 * (2x-5)^2 * (2x-5)' = 3 * (2x-5)^2 * 2 = 6 * (2x-5)^2$$

b)
$$\left(\sqrt[5]{3x+2}\right)' = \left((3x+2)^{\frac{1}{5}}\right)' = \frac{1}{5} * (3x-2)^{\frac{1}{5}-1} * (3x+2)' = \frac{1}{5} * (3x-2)^{-\frac{4}{5}} * 3 = \frac{3}{5} * (3x-2)^{-\frac{4}{5}} = \frac{3}{5} * \frac{1}{\sqrt[5]{(3x-2)^4}} = \frac{3}{5*\sqrt[5]{(3x-2)^4}}$$

•
$$\left(\sqrt[n]{f(x)}\right)' = \frac{f'(x)}{n*\sqrt[n]{(f(x))^{n-1}}}, \forall_x \in D_{\sqrt{f}}: f(x) \neq 0$$

Exemplo:

$$\left(\sqrt[4]{2x-10}\right)' = \frac{(2x-10)'}{4*\sqrt[4]{(2x-10)^3}} = \frac{2}{4*\sqrt[4]{(2x-10)^3}} = \frac{1}{2*\sqrt[4]{(2x-10)^3}}$$

$$\bullet \quad \left(\sqrt{f(x)}\right)' = \frac{f'(x)}{2*\sqrt{f(x)}}$$

Exemplo:

$$(\sqrt{x^2+1})' = \frac{(x^2+1)'}{2*\sqrt{x^2+1}} = \frac{2x}{2*\sqrt{x^2+1}} = \frac{x}{\sqrt{x^2+1}}$$

- $(\sin(u))' = u' \cos(u)$
- $(\cos(u))' = -u'\sin(u)$
- $(\tan(u))' = \frac{u'}{(\cos(u))^2}$
- $(e^x)' = e^x$
- $(e^u)' = u'e^u$

Exemplo:

$$(e^{6x^2-4x+1})' = (6x^2-4x+1)'(e^{6x^2-4x+1}) = (12x-4)(e^{6x^2-4x+1})$$

•
$$(a^u)' = u' * a^u * \ln(a), a \in \mathbb{R}^+ \setminus \{1\}$$

Exemplo:

$$(5^{6x-4})' = (6x - 4)' * (5^{6x-4}) * \ln(5) = 6 * 5^{6x-4} * \ln(5)$$

•
$$(\ln(x))' = \frac{1}{x}$$

•
$$(\ln(u))' = \frac{u'}{u}$$

$$(\ln(x^2+3))' = \frac{(x^2+3)'}{x^2+3} = \frac{2x}{x^2+3}$$

• $(\log_a(u))' = \frac{u'}{uln(a)}, a \in \mathbb{R}^+ \setminus \{1\}$

Exemplo:

$$\left(\log_5\left(\frac{3}{x^2}\right)\right)' = \frac{\left(\frac{3}{x^2}\right)'}{\left(\frac{3}{x^2}\right)*\ln 5} = \frac{\frac{-6x}{x^4}}{\frac{3\ln 5}{x^2}} = \frac{\frac{-6}{x^3}}{\frac{3\ln 5}{x^2}} = -\frac{6x^2}{3x^3\ln 5} = -\frac{2}{x*\ln 5}$$

• $(f \circ g)'(x) = (f'g(x) * g'(x)) \text{ ou } f'(u) = f'(u) * u$

Exemplo:

$$f(x) = x^{2} - 3x; g(x) = 2x + 1$$

$$f'(x) = 2x - 3; g'(x) = 2$$

$$(f \circ g)'(x) = f'(g(x)) * g'(x) = f'(2x + 1) * 2 = (2(2x + 1) - 3) * 2 = (4x + 2 - 3) *$$

$$2 = (4x - 1) * 2 = 8x - 2 = 4x - 1$$

- Função definida por ramos
 - Derivar cada ramo;
 - Determinar as derivadas laterais (usando limites) nos pontos de transição dos ramos, para verificar se há derivada;
 - Apresentar a função derivada;

$$f(x) = \begin{cases} x^2 + 3, & x < 1 \\ 4\sqrt{x}, & x \ge 1 \end{cases}$$

$$f(1) = 4\sqrt{1} = 4$$

$$(x^2 + 3)' = 2x$$

$$(4\sqrt{x})' = 4(\sqrt{x})' = 4 * \frac{(x)'}{2\sqrt{x}} = 4 * \frac{1}{2\sqrt{x}} = \frac{2}{\sqrt{x}} = \frac{2\sqrt{x}}{x}$$

$$f'(1^-) = \lim_{h \to 0} \left(\frac{f(1+h)-f(1)}{h} \right) = \lim_{h \to 0} \left(\frac{(1+h)^2 + 3 - 4}{h} \right) = \lim_{h \to 0} \left(\frac{1+2h+h^2 - 1}{h} \right) = \lim_{h \to 0} \left(\frac{h^2 + 2h}{h} \right) = \frac{0}{0} \lim_{h \to 0} \left(\frac{h(h+2)}{h} \right) = \lim_{h \to 0} (h+2) = 0 + 2 = 2$$

$$f'(1^+) = \lim_{h \to 0} \left(\frac{f(1+h)-f(1)}{h} \right) = \lim_{h \to 0} \left(\frac{4\sqrt{1+h}-4}{h} \right) = \frac{0}{0} \lim_{h \to 0} \left(\frac{4(\sqrt{1+h}-1)}{h} \right) = 4 \lim_{h \to 0} \left(\frac{\sqrt{1+h}-1}{h} \right) = 4 \lim_{h \to 0} \left(\frac{(\sqrt{1+h}-1)(\sqrt{1+h}+1)}{h(\sqrt{1+h}+1)} \right) = 4 \lim_{h \to 0} \left(\frac{1}{(\sqrt{1+h}+1)} \right) = 4 * \frac{1}{\sqrt{1+0}+1} = 4 * \frac{1}{2} = 2$$

$$f'(1^-) = f'(1^+) = 2 \Rightarrow f'(1) = 2$$

$$f(x) = \begin{cases} 2x, & x < 1 \\ 2, & x = 1 \\ 2\sqrt{x}, & x > 1 \end{cases}$$

Função inversa

Seja f uma função real de variável real de Domínio A e injetiva:

$$f\!:\!A\to\mathbb{R}$$

$$x \hookrightarrow f(x)$$

Se B é o Contradomínio de f, isto é, B = f(A), chama-se função inversa de f e representa-se por f^{-1} à função assim definida:

$$f^{-1}:B\to A$$

$$x \hookrightarrow f^{-1}(x)$$

em que
$$f^{-1}f(x) = x, \forall_x \in A$$
.

Uma função f admite função inversa se e só se f for injetiva.

Funções irracionais

$$f(x) = \sqrt[n]{x}$$
, n par

$$g(x) = \sqrt[n]{x}, n \text{ impar}$$

$$D_f = \{x \in \mathbb{R}: x \ge 0\}$$

$$D_g = \mathbb{R}$$

Numa função irracional g de índice n ímpar, o Domínio de g é \mathbb{R} .

Numa função irracional f de índice n par, o Domínio de f é calculado através da equação $x \ge 0$.

Função exponencial

Chama-se função exponencial de base a $(a>0 \land a\neq 1)$ à função $f(x)=a^x$ ou qualquer função desta família.

Estudo da função $f(x) = a^x com a > 1$

- Domínio: $D_f = \mathbb{R}$;
- Contradomínio: $D'_f =]0; +\infty[\ ou\ \mathbb{R}^+;$
- Zeros: f não tem zeros $a^x = 0 \Leftrightarrow x \in \emptyset$;
- Continuidade: f é contínua;
- Pontos relevantes: $P_1(0; 1)$ e $P_2(1; a)$;
- Monotonia: f é estritamente crescente: $x_1 < x_2 \Leftrightarrow f(x_1) < f(x_2)$, $\forall_{x_1,x_2} \in D_f$, ou seja, $x_1 < x_2 \Leftrightarrow a^{x_1} < a^{x_2}$;
- Injetividade: $f(x_1) = f(x_2) \Leftrightarrow x_1 = x_2, \forall_{x_1, x_2} \in D_f$, ou seja, $a^{x_1} = a^{x_2} \Leftrightarrow x_1 = x_2$;
- Assíntota: A.H.: reta y = 0;
- Paridade: f não é par nem ímpar;
- Limites:

$$\circ \quad \lim_{x \to -\infty} (a^x) = 0;$$

$$\circ \quad \lim_{x \to +\infty} (a^x) = +\infty.$$

O gráfico de $f(x)=a^x$ com 0 < a < 1 pode ser obtido por simetria relativamente ao eixo Oy de uma função $g(x)=b^x$ com b > 1, sendo $b=\frac{1}{a}$

Comparação do crescimento exponencial com o da potência

$$\forall_{a>1,p\in\mathbb{R}},\exists_{x_0}\in\mathbb{R}:x>x_0\Rightarrow a^x>x^p$$

Para $x>x_0$, a^x-x^p aumenta indefinidamente com x:

$$\lim_{x \to +\infty} \left(\frac{a^x}{x^p} \right) = +\infty, a > 1, p \in \mathbb{R}$$

$$\lim_{x \to +\infty} \left(\frac{x^p}{a^x} \right) = 0, a > 1, p \in \mathbb{R}$$

Determinação do Contradomínio de uma função exponencial

a)
$$f(x) = 5 + 3 * 2^{x+4}$$

$$x \in \mathbb{R}$$

$$x + 4 \in \mathbb{R}$$

$$2^{x+4} > 0 \stackrel{*3}{\to} 3 * 2^{x+4} > 0 \stackrel{+5}{\to} 5 + 3 * 2^{x+4} > 5$$

$$D'_f =]5; +\infty[$$

b)
$$g(x) = -1 + 2 * 5^{3-x^2}$$

$$x \in \mathbb{R}$$

$$x^2 \ge 0$$

$$-x^2 \le 0$$

$$3 - x^2 \le 3$$

$$0 < 5^{3-x^2} \le 5^3 \to 0 < 5^{3-x^2} \le 125 \overset{*2}{\to} 0 < 2 * 5^{3-x^2} \le 250 \overset{-1}{\to} -1 < -1 + 2 * 5^{3-x^2} \le$$

$$D'_f =] - 1;249]$$

c)
$$h(x) = 4 + 3e^{1-x^2}$$

$$x \in \mathbb{R}$$

$$x^2 \ge 0$$

$$-x^2 \le 0$$

$$1 - x^{2} \le 1$$

$$0 < e^{1-x^{2}} \le e^{1} \stackrel{*3}{\to} 0 < 3e^{1-x^{2}} \le 3e \stackrel{+4}{\to} 4 < 4 + 3e^{1-x^{2}} \le 4 + 3e$$

$$D'_{f} =]4; 4 + 3e]$$

$$d) \quad i(x) = 2 + 5 * 3^{x^{2}+4}$$

$$x \in \mathbb{R}$$

$$x^{2} \ge 0$$

$$x^{2} + 4 \ge 4$$

$$3^{x^{2}+4} \ge 3^{4} \stackrel{*5}{\to} 5 * 3^{x^{2}+4} \ge 405 \stackrel{+2}{\to} 2 + 5 * 3^{x^{2}+4} \ge 407$$

$$D'_{f} = [407, +\infty[$$

Logaritmo

Equação polinomial vs. Equação exponencial

 $x^3 = 81 \Leftrightarrow x = \sqrt[3]{81} \to \text{equação polinomial (a incógnita está na base): o número que elevado a 3 é 81 e representa-se por <math>\sqrt[3]{81}$.

 $3^x = 81 \Leftrightarrow x = \log_3 81 \Leftrightarrow x = 4 \to \text{equação exponencial (a incógnita está no expoente da potência): o número ao qual se deve elevar 3 para obter 81.$

Outros exemplos:

a)
$$\log_2 8 = 3 (2^3 = 8)$$

b)
$$\log_5 25 = 2 (5^2 = 25)$$

c)
$$\log_2 32 = 5 (2^5 = 32)$$

d)
$$\log_4 64 = 3 (4^3 = 64)$$

Definição

Seja a>0, com $a\neq 1$ e b>0. Chama-se logaritmo de b na base a e representa-se por $\log_a b$ ao expoente a que é necessário elevar a para obter b.

Assim:
$$\log_a b = x \Leftrightarrow a^x = b$$
.

Nota:

$$\log_a b = \frac{\log b}{\log a} \text{ ou } \log_a b = \frac{\ln b}{\ln a}$$

Logaritmo de base 10

Representa-se por $\log a$ e designa-se por logaritmo decimal

$$\log a = \log_{10} a$$

Exemplos:

a)
$$\log 100 = 2 (10^2 = 100)$$

b)
$$\log 10000 = 4 (10^4 = 10000)$$

c)
$$\log 0.01 = -2 (10^{-2} = 0.01)$$

Logaritmo de base e

Representa-se por $\ln a$ e designa-se por logaritmo neperiano ou natural.

Exemplos:

a)
$$\ln e^3 = 3 (e^3 = e^3)$$

b)
$$\ln \frac{1}{e} = -1 \left(\frac{1}{e} = e^{-1} \right)$$

c)
$$\ln \sqrt{e} = \frac{1}{2} \left(\sqrt{e} = e^{\frac{1}{2}} \right)$$

Consequências da definição de logaritmo

$$\log_a b = x \Leftrightarrow a^x = b, a > 0, a \neq 1$$

•
$$\log_a 1 = 0 \ (a^0 = 1)$$

$$\bullet \quad \log_a a = 1 \ (a^1 = a)$$

•
$$\log_a a^x = x (a^x = a^x)$$

•
$$a^{\log_a x} = x$$

a)
$$\log_5 125 = \log_5 5^3 = 3$$

b)
$$\ln \sqrt[3]{\frac{1}{e}} = \ln \sqrt[3]{e^{-1}} = \ln (e^{-1})^{\frac{1}{3}} = \ln e^{-\frac{1}{3}} = -\frac{1}{3}$$

c)
$$\log_8 32 = \log_8 2^5 = (2^3)^{\frac{5}{3}} = \log_8 8^{\frac{5}{3}} = \frac{5}{3}$$

d)
$$\log_9 \sqrt{3} = \log_9 3^{\frac{1}{2}} = \log_9 (\sqrt{9})^{\frac{1}{2}} = \log_9 (9^{\frac{1}{2}})^{\frac{1}{2}} = \log_9 9^{\frac{1}{4}} = \frac{1}{4}$$

e)
$$\log_{\sqrt{2}} \frac{1}{4} = \log_{\sqrt{2}} 2^{-2} \log_{\sqrt{2}} \left(2^{\frac{1}{2}}\right)^{-4} = \log_{\sqrt{2}} \sqrt{2}^{-4} = -4$$

Regras operatórias dos logaritmos

$$a \neq 0 \land a > 1, u > 0, n > 0$$

1)

$$\log_a(u*n) = \log_a u * \log_a n$$

Demonstração:

$$u = a^{\log_a u}, n = a^{\log_a n}$$

$$\log_a(u*n) = \log_a(a^{\log_a u} * a^{\log_a n}) = \log_a(a^{\log_a u + \log_a n}) = \log_a u + \log_a n$$

Exemplo

$$\log_2(8*4) = \log_2 8 + \log_2 4 = \log_2 2^3 + \log_2 2^2 = 3 + 2 = 5$$

2)

$$\log_a\left(\frac{u}{n}\right) = \log_a u - \log_a n$$

Demonstração:

$$u = a^{\log_a u}, n = a^{\log_a n}$$

$$\log_a\left(\frac{u}{n}\right) = \log_a\left(\frac{a^{\log_a u}}{a^{\log_a n}}\right) = \log_a a^{\log_a u - \log_a n} = \log_a u - \log_a n$$

Exemplo:

$$\log_3\left(\frac{81}{27}\right) = \log_3 81 - \log_3 27 = \log_3 3^4 - \log_3 3^3 = 4 - 3 = 1$$

3)

$$\log_a\left(\frac{1}{u}\right) = -\log_a u$$

Demonstração:

$$u = \log_a u$$

$$\log_a\left(\frac{1}{u}\right) = \log_a 1 - \log_a u = 0 - \log_a u = -\log_a u$$

Exemplo:

$$\log_5\left(\frac{1}{4}\right) = -\log_5 4$$

4)

$$\log_a u^n = n * \log_a u$$

Exemplo:

$$\log_2 4^3 = 3 * \log_2 4 = 3 * \log_2 2^2 = 3 * 2 = 6$$

5)

$$\log_a u = \frac{\log_b u}{\log_b u}$$

Exemplos:

$$\log_9 \sqrt{3} = \frac{\log_3 \sqrt{3}}{\log_3 9} = \frac{\log_3 3^{\frac{1}{2}}}{\log_3 3^2} = \frac{\frac{1}{2}}{2} = \frac{1}{4}$$

$$\log_{\sqrt{2}}\left(\frac{1}{4}\right) = \frac{\log_2\left(\frac{1}{4}\right)}{\log_2\sqrt{2}} = \frac{\log_22^{-2}}{\log_22^{\frac{1}{2}}} = \frac{-2}{\frac{1}{2}} = -4$$

6)

$$\log^2_a b = (\log_a b)^2$$

Comparação do crescimento logarítmico com o da potência

A função $y = \log_a x \ (a > 1)$, cresce muito mais lentamente do que $y = x^p \ (p > 0)$. Logo:

•
$$\lim_{x \to +\infty} \frac{x^p}{\log_a x} = +\infty;$$

$$\bullet \quad \lim_{x \to +\infty} \frac{\log_a x}{x^p} = 0;$$

•
$$\lim_{x \to +\infty} \log_a x = +\infty;$$

•
$$\lim_{x \to 0^+} \log_a x = -\infty.$$

Função logarítmica de base superior a 1

Seja
$$f(x) = a^{X}$$
, $a > 1$.

A função inversa de f é dada por: $f(x) = y \Leftrightarrow a^x = y \Leftrightarrow x = \log_a y \to y = \log_a x$

Conclusão: a função inversa de $y = a^x$ é $y = \log_a x$.

Gráfico de $y = \log_a x$:

 $f(c) = d \rightarrow P(c; d)$ pertence ao gráfico de $y = \log_a x$.

 $f^{-1}(d) = c \rightarrow P'(d; c)$ pertence ao gráfico de $y = a^x$.

Assim, o gráfico de $y = \log_a x$ é simétrico do gráfico de $y = a^x$ relativamente à reta y = x.

Estudo do gráfico de $f(x) = log_a x$, a > 1

- Domínio: $D_f =]0; +\infty[= \mathbb{R}^+;$
- Contradomínio: $D'_f = \mathbb{R}$;
- Zeros: $\{1\}$ ($\log_a x = 0 \Leftrightarrow x = 1$);
- Continuidade: f é contínua em todo o Domínio;
- Injetividade: f é injetiva;

$$f(x_1) = f(x_2) \Leftrightarrow x_1 = x_2, \forall_{x_1, x_2} \in D_f$$

$$\log_a x_1 = \log_a x_2 \Leftrightarrow x_1 = x_2$$

• Monotonia: f é estritamente crescente;

$$f(x_1) < f(x_2) \Leftrightarrow x_1 < x_2, \forall_{x_1, x_2} \in D_f$$

$$\log_a x_1 < \log_a x_2 \Leftrightarrow x_1 < x_2$$

• Assíntotas: A.V.: x = 0.

Domínio de uma função logarítmica

$$f(x) = \log_a P(x)$$

$$D_f = \{x \in \mathbb{R}: P(x) > 0\}$$

Função logística

$$f(x) = \frac{c}{1+ae^{-bx}}$$
, $a, b, c \in \mathbb{R}^+$

$$\frac{c}{1+ae^{-\infty}} = \frac{c}{1+a*0} = c$$

Definição de limite de uma função segundo Heine

Limites laterais

$$\lim_{x \to 2^{-}} f(x) = 3 \Rightarrow u_n \to 2^{-} \Rightarrow f(u_n) \to 3$$

$$\lim_{x \to 2^+} f(x) = 5 \Rightarrow u_n \to 2^+ \Rightarrow f(u_n) \to 5$$

Limite à direta de a

Diz-se que $\lim_{x\to a^+} f(x) = b$ se e só se, a toda a sucessão u_n que tende para a, de termos pertencentes a D_f e superiores a a, lhe corresponde uma sucessão de $f(u_n)$ que tende para b.

Limite à esquerda de a

Diz-se que $\lim_{x\to a^-} f(x) = b$ se e só se, a toda a sucessão u_n que tende para a, de termos pertencentes a D_f e inferiores a a, lhe corresponde uma sucessão de $f(u_n)$ que tende para b.

Limite em a

Diz-se que existe $\lim_{x\to a} f(x)$ e $\lim_{x\to a} f(x) = b$ se e só se:

$$\lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x) = b \Rightarrow \text{os limites laterals são iguais.}$$

Limite num ponto segundo Heine

Diz-se que $\lim_{x\to a} f(x) = b$ se e só se toda a sucessão u_n de termos pertencentes ao D_f que tenda para a por valores diferentes de a, a correspondente sucessão $f(u_n)$ tende para b.

Assim, como consequência da definição:
$$u_n o a \Leftrightarrow \lim f(u_n) = \lim_{x o a} f(x)$$

a)
$$f(x) = \frac{1 + \ln x}{x}$$

$$\begin{aligned} u_n &= n^2 \\ \lim u_n &= \lim (n^2) = (+\infty)^2 = +\infty \\ \lim f(u_n) &= \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(\frac{1+\ln x}{x}\right) = \frac{\infty}{\infty} \lim_{x \to +\infty} \left(\frac{1}{x} + \frac{\ln x}{x}\right) = \frac{1}{+\infty} + 0 = 0 \end{aligned}$$
b)
$$f(x) &= \frac{x-1}{e^{x}-1}$$

$$u_n &= -\frac{1}{n}$$

$$\lim u_n &= \lim \left(-\frac{1}{n}\right) = -\frac{1}{+\infty} = -0 = 0^-$$

$$\lim f(u_n) &= \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} \left(\frac{x-1}{e^{x}-1}\right) = \frac{0-1}{e^{0^-}-1} = \frac{-1}{1^--1} = \frac{-1}{0^-} = +\infty$$
c)
$$f(x) &= \ln x$$

$$u_n &= \left(1 + \frac{1}{n}\right)^n$$

$$\lim u_n &= \lim \left(\left(1 + \frac{1}{n}\right)^n\right) = e$$

$$\lim f(u_n) &= \lim_{x \to e} f(x) = \lim_{x \to e} (\ln x) = \ln e = 1$$
d)
$$f(x) &= \ln(e - x)$$

$$u_n &= \left(1 + \frac{1}{n}\right)^n$$

$$\lim u_n &= \lim \left(1 + \frac{1}{n}\right)^n = e$$

$$\lim f(u_n) &= \lim_{x \to e} f(x) = \lim_{x \to e} (\ln(e - x)) = \ln(e - e) = \ln(0^+) = -\infty$$

Continuidade

Uma função f diz-se contínua num ponto x=a do seu Domínio se e só se existe $\lim_{x\to a} f(x)$ e $\lim_{x\to a} f(x) = f(a)$.

Exemplos:

1.

 $\lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x) = f(a) \Rightarrow f \text{ \'e contínua em } a$

2.

$$\lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x) = b, \text{ ou seja, existe } \lim_{x \to a} f(x) \text{ } mas \text{ } \lim_{x \to a} f(x) \neq f(a) \Rightarrow$$

f não é contínua em a

Continuidade lateral

Uma função f diz-se contínua à esquerda no ponto x = a do seu Domínio se e só se $\lim_{x \to a^{-}} f(x) =$

f(a).

Uma função f diz-se contínua à direita no ponto x=a do seu Domínio se e só se $\lim_{x\to a^+} f(x) =$

f(a).

Uma função f é contínua no ponto x = a se e só se for contínua à esquerda e à direita no ponto x

= a.

Exemplos:

1.

 $\lim_{x \to a^{-}} f(x) = fa) \Rightarrow f \text{ \'e contínua \'a esquerda em } x = a$

2.

 $\lim_{x \to a^+} f(x) = f(a) \Rightarrow f \text{ \'e contínua \`a direita em } x = a$

Continuidade num intervalo

Uma função f diz-se contínua num intervalo [a; b] do seu Domínio se e só se for contínua em todos os pontos do intervalo]a; b[e for contínua à direita no ponto x = a e à esquerda em x = b.

Exemplos:

f é contínua em [a; b]

f é contínua em]a; b]

Prolongamento/Restrição de uma função

$$D_f=[a;b]$$

$$D_g = [a; +\infty[$$

$$f(x) = h(x), \forall_x \in D_f \cap D_g \Rightarrow$$

h é um prolongamento de f a $[a; +\infty[$ ou f é uma restrição de h a [a; b]

Operações com funções contínuas

Se f e g são duas funções contínuas em x=a (com $a\in D_f\cap D_g$) então as seguintes funções também são contínuas em x=a:

- f + g
- f-g
- f * g
- $\frac{f}{g}$, se $g(a) \neq 0$
- $f^n, n \in \mathbb{N}$
- $\sqrt[n]{f}$, se $f(a) \in D_{\sqrt{f}}$

Funções contínuas

As seguintes funções são contínuas em todo o seu Domínio:

• Função polinomial ($D = \mathbb{R}$)

Exemplo:

$$f(x) = x^3 + 2x^2 - x + 1 \rightarrow f$$
 é contínua em \mathbb{R}

• Função racional fracionária

Exemplo:

$$f(x) = \frac{x^2 + 2x}{x - 3} \rightarrow D_f = \mathbb{R} \setminus \{3\} \rightarrow f \text{ \'e contínua em } \mathbb{R} \setminus \{3\}$$

• Função exponencial $(y = a^x, a > 1; D = \mathbb{R})$

Exemplo:

$$f(x) = e^x \rightarrow f$$
 é contínua em \mathbb{R}

• Função logarítmica $(y = \log_a x, a > 1)$

Exemplo:

$$f(x) = \ln x \to f$$
 é contínua em \mathbb{R}^+

Exemplos

a)
$$f(x) = 3^x + x^2$$

f é contínua em \mathbb{R} porque é a soma de uma função exponencial $y=3^x$ (contínua em \mathbb{R}) com uma função polinomial $y=x^2$ (contínua em \mathbb{R}).

b)
$$f(x) = \frac{x^2 + 2}{x - 3} * \log x$$

 $D_{\frac{x^2 + 2}{x - 3}} = \mathbb{R} \setminus \{3\}$
 $D_{\log x} = \mathbb{R}^+$

f é contínua em $\mathbb{R}^+\setminus\{3\}$ porque é o produto de uma função racional fracionária $y=\frac{x^2+2}{x-3}$ (contínua em $\mathbb{R}\setminus\{3\}$) por uma função logarítmica $y=\log x$ (contínua em \mathbb{R}^+).

Continuidade da função composta

Sejam f e g duas funções e a um ponto pertencente ao Domínio da função $g\circ f$.

Se f for contínua em a e g for contínua em f(a) então $g \circ f$ é contínua em a.

Exemplos:

a)
$$(g \circ f)(x) = e^{x^2 - 3x}$$

 $g\circ f$ é contínua em $\mathbb R$ porque é a composta de uma função exponencial $y=e^x$ (contínua em $\mathbb R$), com uma função polinomial $y=x^2-3x$ (contínua em $\mathbb R$).

b)
$$(g \circ f)(x) = \ln(x - 2)$$

 $g\circ f$ é contínua em todo o seu Domínio,]2; $+\infty$ [, porque é a composta de uma função logarítmica $y=\ln x$ (contínua em \mathbb{R}^+), com uma função polinomial y=x-2 (contínua em \mathbb{R}).

Teorema de Bolzano-Cauchy

Uma função contínua num intervalo passa de um valor para o outro sem percorrer todos os valores intermédios.

$$f(x) = k \Leftrightarrow x = c$$
 (1 solução)

$$f(x) = k_1 \Leftrightarrow x = c_1 \lor x = c_2 \lor x = c_3$$
 (3 soluções)

f(x) = k não tem solução porque f não é contínua.

Assim:

f é contínua em $[a;b] \land f(a) < k < f(b)$ ou $f(b) < k < f(a) \Rightarrow \exists_c \in]a;b[:f(c) = k$ Exemplos:

a) Provar que a equação $f(x) = \frac{7}{2}$ tem uma solução em $\frac{1}{2}$; 3[sendo $f(x) = \frac{2^x + 1}{x}$

f é contínua em $[\frac{1}{2};3]$ porque é o quociente entre a soma de uma função exponencial $y=2^x$ com uma função constante y=1 e uma função polinomial y=x, sendo todas estas funções contínuas no intervalo dado.

$$f\left(\frac{1}{2}\right) = \frac{2^{\frac{1}{2}+1}}{\frac{1}{2}} = \frac{\sqrt{2}+1}{\frac{1}{2}} = 2\sqrt{2} + 2 \approx 4.8$$

$$f(3) = \frac{2^3 + 1}{3} = 3$$

$$f(3) < \frac{7}{2} < f\left(\frac{1}{2}\right)$$

O Teorema de Bolzano garante que $\exists_c \in]\frac{1}{2}$; $3[:f(c)=\frac{7}{2}]$.

b) Provar que a equação f(x)=10 tem uma solução no intervalo]-3;1[sendo $f(x)=5e^x-1$

f é contínua em [-3;1] porque é a diferença entre o produto de uma função constante y=5 por uma função exponencial $y=e^x$ e uma função constante y=-1, sendo todas estas contínuas no intervalo dado.

$$f(-3) = 5e^{-3} - 1 = \frac{5}{e^3} - 1 = \frac{5 - e^3}{e^3} \approx -0.75$$

$$f(1) = 5e^1 - 1 \approx 12,59$$

$$f(-3) < 10 < f(1)$$

O Teorema de Bolzano garante que $\exists_c \in]-3; 1[:f(c)=10.$

c) Provar que a equação f(x) = x + 5 tem uma solução no intervalo]2; 6[sendo

$$f(x) = x^2 - 3x$$

$$f(x) = x + 5 \Leftrightarrow x^2 - 3x = x + 5 \Leftrightarrow x^2 - 4x = 5$$

$$g(x) = x^2 - 4x$$

g é contínua no intervalo [2; 6] porque é definido por uma função polinomial $y=x^2-4x$, contínua em $\mathbb R$.

$$g(2) = 2^2 - 4 * 2 = -4$$

$$g(6) = 6^2 - 4 * 6 = 12$$

O Teorema de Bolzano garante que $\exists_c \in]2; 6[:g(x)=5,$ ou seja, $\exists_c \in]2; 6[:f(c)=x+5.$

Corolário do Teorema de Bolzano

Se uma função f for contínua num intervalo [a;b] e f(a) e f(b) tiverem sinais contrários podemos garantir que a função f tem pelo menos um zero no intervalo [a;b].

$$f \in \text{continua em } [a; b] \land f(a) * f(b) < 0 \Rightarrow \exists_c \in [a; b[: f(x) = 0]]$$

Mostrar que a função $f(x) = \log_2(x-2)$ tem um zero em] $\frac{5}{2}$; 6[.

$$D_f = \{x \in \mathbb{R} \colon x-2 > 0\} \Leftrightarrow D_f =]2; +\infty[$$

f é contínua em $]2; +\infty[$.

f é contínua em $[\frac{5}{2}; 6]$ porque é contínua em todos o seu Domínio, $]2; +\infty[$, uma vez que é composta por uma função logarítmica $y = \log_2 x$ (contínua em \mathbb{R}^+), e por uma função afim y = x - 2 (contínua em \mathbb{R}).

$$f\left(\frac{5}{2}\right) = \log_2\left(\frac{5}{2} - 2\right) = \log_2\left(\frac{1}{2}\right) = \log_2(2^{-1}) = -1$$

$$f(6) = \log_2(6-2) = \log_2(4) = \log_2(2^2) = 2$$

$$f\left(\frac{5}{2}\right) * f(6) < 0$$

O Corolário do Teorema de Bolzano garante que $\exists_c \in]\frac{5}{2}$; 6[:f(x)=0]

Assintotas

Assíntotas horizontais (A.H.)

A reta de equação y=b é uma A.H. do gráfico da função f se e só se:

$$\lim_{x \to -\infty} f(x) = b$$

$$\lim_{x \to +\infty} f(x) = +\infty$$

- No máximo, uma função tem duas A.H.;
- Uma função pode ter uma A.H. bilateral;
- Uma função de Domínio limitado ([a;b] ou]a;b[ou [a;b[ou]a;b]) não tem A.H.;
- Uma função com Domínio] $-\infty$; α [tem no máximo uma A.H. (em $-\infty$);

ou

• Uma função com Domínio a; $+\infty$ [tem no máximo uma A.H. (em $+\infty$).

Exemplos:

a)
$$f(x) = \frac{3x^2 + 2x}{6x - 3}$$

 $D_f = \{x \in \mathbb{R}: 6x - 3 \neq 0\} = \mathbb{R} \setminus \left\{\frac{1}{2}\right\}$
 $\lim_{x \to \pm \infty} f(x) = \lim_{x \to \pm \infty} \left(\frac{3x^2 + 2x}{6x - 3}\right) = \frac{\infty}{\infty} \lim_{x \to \pm \infty} \left(\frac{3x^2}{6x}\right) = \lim_{x \to \pm \infty} \left(\frac{x}{2}\right) = \frac{+\infty}{2} \vee \frac{-\infty}{2} = +\infty \vee -\infty$

Assim conclui-se que f não tem A.H.

b)
$$f(x) = \frac{5}{1+2e^x}$$

 $D_f = \{x \in \mathbb{R}: 1 + 2e^x \neq 0\} = \mathbb{R}$
 $\lim_{x \to \pm \infty} f(x) = \lim_{x \to \pm \infty} \left(\frac{5}{1+2e^x}\right) = \frac{5}{1+2e^{+\infty}} \vee \frac{5}{1+2e^{-\infty}} = \frac{5}{1+2*(+\infty)} \vee \frac{5}{1+2*0} = \frac{5}{+\infty} \vee \frac{5}{1} = 0 \vee 5$

Assim conclui-se que y = 0 é A. H. de f em $+ \infty$ e y = 5 é A. H. de f em $- \infty$.

c)
$$f(x) = 3 + \ln(4 - x)$$

 $D_f = \{x \in \mathbb{R}: 4 - x > 0\} =] - \infty; 4]$
 $\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} (3 + \ln(4 - x)) = 3 + \ln(4 - (-\infty)) = 3 + \ln(4 + \infty) = 3 + \ln(+\infty) = 3 + (+\infty) = +\infty$

Assim conclui-se que f não tem A.H.

Assintotas verticais (A.V.)

A reta de equação x = a é A.V. do gráfico da função f se e só se:

$$\lim_{x\to a^-} f(x) = -\infty \quad \text{ou} \quad \lim_{x\to a^-} f(x) = +\infty \quad \text{ou} \quad \lim_{x\to a^+} f(x) = -\infty \quad \text{ou} \quad \lim_{x\to a^+} f(x) = +\infty$$

- Uma função pode ter um número infinito de A.V.;
- Testar pontos de acumulação: pontos que não pertencem ao Domínio, mas em cuja vizinhança há pontos do Domínio;
 - o Exemplos:

•
$$D_f = \mathbb{R} \setminus \{3\} \to \text{testar } \lim_{x \to 3^{\pm}} f(x)$$

•
$$D_f =]-\infty; 5[\rightarrow \text{testar } \lim_{x\to 5^-} f(x)]$$

$$D_f =]7; +\infty[\setminus\{10\} \rightarrow \text{testar } \lim_{x \to 7^+} f(x) \text{ e } \lim_{x \to 10^{\pm}} f(x)$$

- Testar pontos de descontinuidade do Domínio;
- Geralmente estes tipos de pontos são os pontos de transição nas funções definidas por ramos;
- Uma função contínua de Domínio $\mathbb R$ não tem A.V.

Exemplos:

a)
$$f(x) = \frac{x-1}{x^2-4x+3}$$

$$D_f = \{x \in \mathbb{R}: x^2 - 4x + 3 \neq 0\} = \mathbb{R} \setminus \{1; 3\}$$

$$\lim_{x \to 1} f(x) = \lim_{x \to 1} \left(\frac{x-1}{x^2-4x+3}\right) = \frac{0}{0} \lim_{x \to 1} \left(\frac{x-1}{(x-1)(x-3)}\right) = \lim_{x \to 1} \left(\frac{1}{x-3}\right) = \frac{1}{1-3}$$

$$= -\frac{1}{2}$$
 Assim
$$\lim_{x \to 1^-} f(x) = \lim_{x \to 1^+} f(x) = -\frac{1}{2} \to x = 1 \text{ não \'e A.V. de f.}$$

$$\lim_{x \to 3^-} f(x) = \lim_{x \to 3} \left(\frac{x-1}{x^2-4x+3}\right) = \frac{3-1}{3^2-4*3+3} = \frac{2}{0}$$

$$\lim_{x \to 3^-} f(x) = \lim_{x \to 3^+} \left(\frac{x-1}{x^2-4x+3}\right) = \frac{3-1}{((3^+)^2-4*(3^+)+3)} = \frac{2}{0^-} = -\infty$$

$$\lim_{x \to 3^+} f(x) = \lim_{x \to 3^+} \left(\frac{x-1}{x^2-4x+3}\right) = \frac{3-1}{((3^+)^2-4*(3^+)+3)} = \frac{2}{0^+} = +\infty$$
 Assim $x = 3$ é A.V. bilateral de f.

b)
$$f(x) = \begin{cases} x^2 + 1, & x \le 5 \\ \ln(x - 5), & x > 5 \end{cases}$$
$$D_f = \mathbb{R}$$
$$\lim_{x \to 5^-} f(x) = \lim_{x \to 5^-} (x^2 + 1) = 5^2 + 1 = 26$$
$$\lim_{x \to 5^+} (\ln(x - 5)) = \ln(5^+ - 5) = \ln(0^+) = -\infty$$

Assim x = 5 é A.V. de f à direita.

Assíntotas oblíquas (A.O.)

A reta de equação $y = mx + b, m \neq 0$, é uma A.O. do gráfico da função f se e só se:

$$\lim_{x \to +\infty} (f(x) - (mx + b)) = 0$$

$$\lim_{x \to -\infty} (f(x) - (mx + b)) = 0$$

Assíntotas não verticais (A.N.V.)

Chamam-se Assíntotas não verticais ao conjunto das A.H. e A.O., ou seja, às assíntotas de equação $y=mx+b, m\in\mathbb{R}$. No máximo, uma função tem duas A.N.V.

ou

$$m = \lim_{x \to +\infty} \left(\frac{f(x)}{x} \right)$$

$$b = \lim_{x \to \pm \infty} (f(x) - mx)$$

Se $m = \pm \infty$ não há A.N.V. (não é preciso calcular b).

Se m=0, a assíntota, se existir, é horizontal (A.H.).

Exemplo:

$$f(x) = \frac{3x^2 - 13x + 5}{x - 4}$$

$$D = \mathbb{R} \setminus \{4\}$$

$$m = \lim_{x \to \infty} \left(\frac{f(x)}{x} \right) = \lim_{x \to \infty} \left(\frac{\frac{3x^2 - 13x + 5}{x - 4}}{x} \right) = \lim_{x \to \infty} \left(\frac{3x^2 - 13x + 5}{x^2 - 4x} \right) = \frac{\infty}{\infty} \lim_{x \to \infty} \left(\frac{3x^2}{x^2} \right) = 3$$

Assim $m = 3 \text{ em } \pm \infty$.

$$b = \lim_{x \to \infty} (f(x) - mx) = \lim_{x \to \infty} \left(\frac{3x^2 - 13x + 5}{x - 4} - 3x \right) = \lim_{x \to \infty} \left(\frac{3x^2 - 13x + 5 - 3x(x - 4)}{x - 4} \right) = \lim_{x \to \infty} \left(\frac{3x^2 - 13x + 5 - 3x^2 + 12x}{x - 4} \right) = \lim_{x \to \infty} \left(\frac{-x + 5}{x - 4} \right) = \lim_{x \to \infty} \left(\frac{-x}{x} \right) = -1$$

Assim b = -1 em $\pm \infty$, logo y = 3x - 1 é A. O. de f em $\pm \infty$.

Aspetos a considerar no estudo analítico de uma função

- Domínio;
- Paridade;
- Assíntotas;
- Interseção com os eixos;
- Monotonia e extremos (1ª derivada);
- Contradomínio (por observação da tabela de variação);
- Concavidades e pontos de inflexão (2ª derivada);
- Representação gráfica.