Escape direction does not matter for some fish prey

Alberto Soto, William J. Stewart and Matthew J. McHenry Department of Ecology & Evolutionary Biology, University of California, Irvine

February 16, 2015

Supplemental Materials

5 Contents

3

6	1	Per	formance Plateau when $K < 1$	2
7		1.1	Distance increases for a range of α values	2
8	2	Init	ial Lateral Displacement	3
9		2.1	Distance function with initial lateral displacement	3
10		2.2	Minimum distance in polar coordinates	4
11		2.3	Greatest minimum distance: solving for α	1

$_{2}$ 1 Performance Plateau when K < 1

In this is section, we provide details to show that when the prey is faster than the predator (K < 1), then there exists a performance plateau. That is, an equivalent greatest minimum distance is achieved for a large range of escape angles α . For escape angles in this range, the prey performs equally well.

17 1.1 Distance increases for a range of α values

Here we show that the minimum distance function is not affected by a large range of escape angles. For reference, the distance function is given by the following equation:

$$D^{2} = ((X_{0} - Ut) + Vt\cos\alpha)^{2} + (Vt\sin\alpha)^{2},$$
(1)

where X_0 is the starting position of the prey. Note that at $t=0, D^2=X_0^2$.

For this case, we are interested in escape angles between the two solutions given by Weihs and Webb (1984)

$$0 \le \alpha \le \arccos(K). \tag{2}$$

23 The above leads to an important inequality given by

$$K \le \cos \alpha \le 1. \tag{3}$$

This inequality plays a crucial role in the following proof. To show that the minimum distance does not change for this range of escape angles and K < 1, it suffices to show that the distance function is always increasing. That is, we want to show that the derivative of Eqn. 1 with respect to time is greater than or equal to zero.

²⁸ Proof. Assume that K < 1 and that Eqn. 3 holds. Taking the derivative of Eqn. 1 with respect to time yields

$$\frac{\partial D^2}{\partial t} = 2(t(U^2 + V^2) - UX_0 + V(X_0 - 2tU)\cos\alpha) \tag{4}$$

Let U = 1. Since K = U/V, the assumption on the predator's speed leads to V > 1. Then equation (4) becomes

$$\frac{\partial D^2}{\partial t} = 2(1 + V^2 - 2V\cos\alpha)t + 2X_0(V\cos\alpha - 1),\tag{5}$$

- which is a linear function in time. To show Eqn. 5 is nonnegative for $t \ge 0$, it suffices to show that the slope is positive and the intercept (when t = 0) is nonnegative.
- Positive slope;
- Eqn. 3 implies $V \cos \alpha \leq V$. Multiplying by -2 and adding $1+V^2$ on both sides yields

$$1 + V^2 - 2V\cos\alpha \ge 1 - 2V + V^2 = (V - 1)^2 > 0.$$
(6)

- Nonnegative intercept;
- Here we simply need to show that $V \cos \alpha 1 \ge 0$. From Eqn. 3 we have:

$$K < \cos \alpha \implies 1 = VK < V \cos \alpha \implies 0 < V \cos \alpha - 1.$$
 (7)

Eqns. 6 and 7 together show that the distance is always increasing for $0 \le \alpha \le \arccos(K)$

$$_{39}$$
 and $K<1$.

- An analogous argument applies for $-\arccos(K) \leq \alpha < 0$. The preceding proof shows
- that the minimum occurs at t=0 and is $D^2=X_0^2$. This defines a performance plateau for
- the prey as a wide range of angles yield equally successful escapes.

⁴³ 2 Initial Lateral Displacement

- 44 The distance function given by Eqn. 1 is based on the assumption that a predator is heading
- 45 in the direction of the prey. To model a predator that does not perfectly align its motion
- with the prey's direction, as is presented in the main text for a predator robot, we introduced
- a lateral initial displacement to the distance function.

⁴⁸ 2.1 Distance function with initial lateral displacement

49 The distance function is now given by

$$D^{2} = ((X_{0} - Ut) + Vt \cos \alpha)^{2} + (Y_{0} + Vt \sin \alpha)^{2}.$$
 (8)

- 50 In the following sections, we detail the steps for finding the optimal escape angle. Note that
- the introduction of Y_0 in the distance function allows us to rewrite the equation in polar
- 52 coordinates.

53 2.2 Minimum distance in polar coordinates

- To simplify the forthcoming analysis, we rewrite Eqn. 8 in polar coordinates (R, θ) . We do
- this by setting $R_0^2 = X_0^2 + Y_0^2$, and $\theta_0 = \arctan(Y_0/X_0)^*$. This yields

$$D_0^2 = R_0^2 + (1 + K^2)t^2V^2 - 2Vt(KVt\cos\alpha - R_0\cos(\alpha - \theta_0) + KR_0\cos\theta_0)$$
 (9)

- To find the time at which Eqn. 9 is minimized, we find the roots of the derivative of Eqn. 9
- with respect to t which yields

$$t_{\min} = \frac{R_0}{V} \frac{\left[K\cos\theta_0 - \cos(\alpha - \theta_0)\right]}{1 - 2K\cos\alpha + K^2} \tag{10}$$

- The above is negative when $K\cos\theta_0<\cos(\alpha-\theta_0)$. Rewriting this inequality gives the range
- of α for which the distance is solely increasing. Explicitly, this is given by

$$\theta_0 - \arccos(K\cos\theta_0) < \alpha < \theta_0 + \arccos(K\cos\theta_0)$$
 (11)

- For these values of α , the minimum distance occurs at t=0 and is thus equal to the initial
- distance R_0^2 . This defines a performance plateau when K < 1.
- If we now substitute t_{\min} for t in Eqn. 9, we get the minimum distance as a function of
- α with parameters K and θ_0 . This is given by the following:

$$\overline{D}_{\min}^{2} = \frac{D_{\min}^{2}}{R_{0}^{2}} = \frac{(\sin(\alpha - \theta_{0}) + K \sin \theta_{0})^{2}}{K^{2} - 2K \cos \alpha + 1}$$
(12)

^{*}For this analysis, we assume $Y_0 \ge 0$, but the final results are presented for the more general case.

$_{ extstyle 64}$ 2.3 Greatest minimum distance: solving for lpha

- To find the escape angle which yields the largest minimum distance, we solve the following
- 66 equation

$$0 = \frac{\partial \overline{D}_{\min}^2}{\partial \alpha} = \frac{2(K\cos\alpha - 1)(K\cos\theta_0 - \cos(\alpha - \theta_0))(K\sin\theta_0 + \sin(\alpha - \theta_0))}{(K^2 - 2K\cos\alpha + 1)^2}$$
(13)

- The solutions to this equation are found by finding where the numerator is equal to zero
- 68 which is done by considering the following three cases:

Case 1: Solving the equation $K \cos \alpha - 1 = 0$ yields

$$\alpha_1 = \pm \arccos K^{-1}$$

- This solution is valid for $K \geq 1$. This solution indicates that prey are equally effective if
- escaping at an optimal angle toward the left $(\alpha > 0)$, or right $(\alpha < 0)$ of the predator's
- 71 heading.
- Case 2: For the equation $K\cos\theta_0 \cos(\alpha \theta_0) = 0$ a more careful analysis (detailed
- below) is required since the solution can be a complex number for some combinations
- of K and θ_0 . Rewriting the equation yields

$$\cos(\alpha - \theta_0) = K \cos \theta_0. \tag{14}$$

This equation gives the conditions that K and θ_0 must satisfy so that solutions are real-valued. Explicitly, the condition is given by the following

$$|K\cos\theta_0| \le 1\tag{15}$$

When K is between 0 and 1, Eqn. 15 is always satisfied. If, on the other hand, K > 1, then we must have that $|\cos \theta_0| \le 1/K$. This leads to the following bound for θ_0 :

$$\arccos(K^{-1}) \le \theta_0 \le \arccos(-K^{-1})$$
 (16)

Note that as the value of K increases, the allowable range for θ_0 decreases and approaches 90°. Keeping these restrictions in mind we proceed to solve Eqn. 14. The

solutions are given by

$$\alpha_2 = \theta_0 + \arccos(K\cos\theta_0)$$

$$\alpha_3 = \theta_0 - \arccos(K\cos\theta_0)$$

For K < 1, the following equation defines the boundaries of the performance plateau.

$$|\alpha - \theta_0| \le \arccos(K \cos \theta_0),$$
 (17)

For K>1 the solutions $\alpha_{2,3}$ are not optimal unless θ_0 satisfies Eqn. 16.

Case 3: Solving the equation $K \sin \theta_0 + \sin(\alpha - \theta_0) = 0$ yields

$$\alpha_4 = \theta_0 - \arcsin(K\sin\theta_0)$$

$$\alpha_5 = \pi + \theta_0 + \arcsin(K\sin\theta_0)$$

For K < 1, α_4 is contained within the bounds defined by Eqn. 11 and α_5 is a local minimum. When K > 1, the solutions are local minimums and thus not optimal.