SREDNJEK VADRATNE APROKSIMACIJE

Gradimir V. Milovanović

MF, Beograd, 21. mart 2011.

Prostor $L^2(a,b)$ (kontinualna aproksimacija):

$$L^{2}(a,b) = \left\{ f : \|f\|_{2} = \left(\int_{a}^{b} |f(t)|^{2} dt \right)^{1/2} < +\infty \right\}$$

Prostor $L^2(a,b)$ (kontinualna aproksimacija):

$$L^{2}(a,b) = \left\{ f : \|f\|_{2} = \left(\int_{a}^{b} |f(t)|^{2} dt \right)^{1/2} < +\infty \right\}$$

Opštije, L_{μ}^2 sa merom (težinom) $d\mu(t) = w(t) dt$ (+ za realne funkcije),

$$L^{2}_{\mu}(a,b) = \left\{ f : \|f\|_{2} = \left(\int_{a}^{b} f(t)^{2} w(t) dt \right)^{1/2} < +\infty \right\}$$

Prostor $L^2(a,b)$ (kontinualna aproksimacija):

$$L^{2}(a,b) = \left\{ f : \|f\|_{2} = \left(\int_{a}^{b} |f(t)|^{2} dt \right)^{1/2} < +\infty \right\}$$

Opštije, L_{μ}^2 sa merom (težinom) $d\mu(t) = w(t) dt$ (+ za realne funkcije),

$$L^{2}_{\mu}(a,b) = \left\{ f : \|f\|_{2} = \left(\int_{a}^{b} f(t)^{2} w(t) dt \right)^{1/2} < +\infty \right\}$$

ightharpoonup w(t) – **težinska** (nenegativna) funkcija

Skup čvorova: $X_m = \{x_1, \dots, x_m\}$

- Skup čvorova: $X_m = \{x_1, \ldots, x_m\}$
- ▶ Informacije za aproksimaciju: $\{x_k, f(x_k)\}_{k=1}^m$

$$||f||_2 = \left(\sum_{k=1}^m f(x_k)^2\right)^{1/2}$$

- Skup čvorova: $X_m = \{x_1, \dots, x_m\}$
- ▶ Informacije za aproksimaciju: $\{x_k, f(x_k)\}_{k=1}^m$

$$||f||_2 = \left(\sum_{k=1}^m f(x_k)^2\right)^{1/2}$$

- Težinska aproksimacija: $w_k = w(x_k) > 0$

$$||f||_2 = \left(\sum_{k=1}^m \mathbf{w_k} f(x_k)^2\right)^{1/2}$$

- Skup čvorova: $X_m = \{x_1, \dots, x_m\}$
- ▶ Informacije za aproksimaciju: $\{x_k, f(x_k)\}_{k=1}^m$

$$||f||_2 = \left(\sum_{k=1}^m f(x_k)^2\right)^{1/2}$$

- Težinska aproksimacija: $w_k = w(x_k) > 0$

$$||f||_2 = \left(\sum_{k=1}^m \mathbf{w_k} f(x_k)^2\right)^{1/2}$$

 $ightharpoonup w_k$ – težinski koeficijenti

$$\phi = p_n \in \mathcal{P}_n$$

$$\phi = p_n \in \mathfrak{P}_n$$

► Minimizacija rastojanja: $d(f, p_n) = ||f - p_n||_2$

$$\phi = p_n \in \mathcal{P}_n$$

▶ Minimizacija rastojanja: $d(f, p_n) = ||f - p_n||_2$

$$\min_{p_n \in \mathcal{P}_n} \|f - p_n\|_2^2$$

$$\phi = p_n \in \mathfrak{P}_n$$

▶ Minimizacija rastojanja: $d(f, p_n) = ||f - p_n||_2$

$$\min_{p_n \in \mathcal{P}_n} \|f - p_n\|_2^2$$

tj.

$$\min_{p_n \in \mathcal{P}_n} \int_a^b [f(t) - p_n(t)]^2 w(t) dt$$

$$\phi = p_n \in \mathfrak{P}_n$$

▶ Minimizacija rastojanja: $d(f, p_n) = ||f - p_n||_2$

$$\min_{p_n \in \mathcal{P}_n} \|f - p_n\|_2^2$$

tj.

$$\min_{p_n \in \mathcal{P}_n} \int_a^b [f(t) - p_n(t)]^2 w(t) dt$$

ili

$$\min_{p_n \in \mathcal{P}_n} \sum_{k=1}^m w_k [f(x_k) - p_n(x_k)]^2$$

Primer: Aproksimacija $f(t) = \sin \pi t$ na [-1, 1]

$$\sin \pi t \approx a_0 + a_1 t + a_2 t^2 + a_3 t^3 = a_1 t + a_3 t^3 = p_3(t)$$

$$\sin \pi t \approx a_0 + a_1 t + a_2 t^2 + a_3 t^3 = a_1 t + a_3 t^3 = p_3(t)$$

(neparnost funkcije f na [-1,1]). Minimizacija

$$\sin \pi t \approx a_0 + a_1 t + a_2 t^2 + a_3 t^3 = a_1 t + a_3 t^3 = p_3(t)$$

(neparnost funkcije f na [-1,1]). Minimizacija

$$\int_{-1}^{1} \left(\sin \pi t - a_1 t - a_3 t^3 \right)^2 dt =: F(a_1, a_3)$$

$$\sin \pi t \approx a_0 + a_1 t + a_2 t^2 + a_3 t^3 = a_1 t + a_3 t^3 = p_3(t)$$

(neparnost funkcije f na [-1, 1]). Minimizacija

$$\int_{-1}^{1} \left(\sin \pi t - a_1 t - a_3 t^3 \right)^2 dt =: F(a_1, a_3)$$

zahteva

$$\frac{\partial F}{\partial a_1} = -2 \int_{-1}^{1} (\sin \pi t - a_1 t - a_3 t^3) t \, dt = 0,$$

$$\frac{\partial F}{\partial a_3} = -2 \int_{-1}^{1} \left(\sin \pi t - a_1 t - a_3 t^3 \right) t^3 dt = 0.$$

Sistem jednačina:

$$\frac{1}{3}a_1 + \frac{1}{5}a_3 = \int_0^1 t\sin\pi t \, dt = \frac{1}{\pi},$$

$$\frac{1}{5}a_1 + \frac{1}{7}a_3 = \int_0^1 t^3 \sin \pi t \, dt = \frac{1}{\pi} - \frac{6}{\pi^3}$$

Sistem jednačina:

$$\frac{1}{3}a_1 + \frac{1}{5}a_3 = \int_0^1 t \sin \pi t \, dt = \frac{1}{\pi},$$

$$\frac{1}{5}a_1 + \frac{1}{7}a_3 = \int_0^1 t^3 \sin \pi t \, dt = \frac{1}{\pi} - \frac{6}{\pi^3}$$

daje

$$a_1 = \frac{315}{2\pi^3} - \frac{15}{2\pi}, \quad a_3 = \frac{35(\pi^2 - 15)}{2\pi^3},$$

Sistem jednačina:

$$\frac{1}{3}a_1 + \frac{1}{5}a_3 = \int_0^1 t\sin\pi t \, dt = \frac{1}{\pi},$$

$$\frac{1}{5}a_1 + \frac{1}{7}a_3 = \int_0^1 t^3 \sin \pi t \, dt = \frac{1}{\pi} - \frac{6}{\pi^3}$$

daje

$$a_1 = \frac{315}{2\pi^3} - \frac{15}{2\pi}, \quad a_3 = \frac{35(\pi^2 - 15)}{2\pi^3},$$

tj.

$$a_1 = 2.69229, \qquad a_3 = -2.8956.$$

Funkcija f(t) i aproksimacioni polinom $p_3(t)$

Funkcija f(t) i aproksimacioni polinom $p_3(t)$

• (f,g) u prostorima $X=L^2(a,b)$ ili ℓ^2

- (f,g) u prostorima $X=L^2(a,b)$ ili ℓ^2
- $||f|| = ||f||_2 := \sqrt{(f, f)}$

- (f,g) u prostorima $X=L^2(a,b)$ ili ℓ^2
- $||f|| = ||f||_2 := \sqrt{(f, f)}$
- ▶ Osobine $(f, g, h \in X, \alpha \in \mathbb{C} \text{ (skalar))}$:

(a)
$$(f+g,h) = (f,h) + (g,h)$$
 (linearnost)

(b)
$$(\alpha f, g) = \alpha(f, g)$$
 (homogenost)

(c)
$$(f,g) = \overline{(g,f)}$$
 (hermitska simetrija)

(d)
$$(f, f) \ge 0, (f, f) = 0 \iff f = 0$$
 (pozitivnost)

- (f,g) u prostorima $X=L^2(a,b)$ ili ℓ^2
- $||f|| = ||f||_2 := \sqrt{(f, f)}$
- ▶ Osobine $(f, g, h \in X, \alpha \in \mathbb{C} \text{ (skalar))}$:
- (a) (f+g,h) = (f,h) + (g,h) (linearnost)
- (b) $(\alpha f, g) = \alpha(f, g)$ (homogenost)
- (c) $(f,g) = \overline{(g,f)}$ (hermitska simetrija)
- (d) $(f, f) \ge 0, (f, f) = 0 \iff f = 0$ (pozitivnost)
 - ightharpoonup Realni prostor X: osobina (c) je simetričnost

- (f,g) u prostorima $X=L^2(a,b)$ ili ℓ^2
- $||f|| = ||f||_2 := \sqrt{(f, f)}$
- ▶ Osobine $(f, g, h \in X, \alpha \in \mathbb{C} \text{ (skalar))}$:
- (a) (f+g,h) = (f,h) + (g,h) (linearnost)
- (b) $(\alpha f, g) = \alpha(f, g)$ (homogenost)
- (c) $(f,g) = \overline{(g,f)}$ (hermitska simetrija)
- (d) $(f, f) \ge 0, (f, f) = 0 \iff f = 0$ (pozitivnost)
 - \blacktriangleright Realni prostor X: osobina (c) je simetričnost
 - C-S-B nejednakost:

$$|(f,g)| \le ||f|| ||g|| \quad (f,g \in X)$$

Sistem S sastavljen od ne-nula elemenata prostora X se naziva $\operatorname{ortogonalan}$ ako (f,g)=0 za svako $f \neq g$ $(f,g \in S)$

- Sistem S sastavljen od ne-nula elemenata prostora X se naziva $\operatorname{ortogonalan}$ ako (f,g)=0 za svako $f \neq g \ (f,g \in S)$
- Ako je (f, f) = 1 za svako $f \in S$, za sistem se kaže da je *ortonormalan*

- Sistem S sastavljen od ne-nula elemenata prostora X se naziva $\operatorname{ortogonalan}$ ako (f,g)=0 za svako $f \neq g$ $(f,g \in S)$
- Ako je (f, f) = 1 za svako $f \in S$, za sistem se kaže da je *ortonormalan*
- Najčešći ortogonalni sistemi:

- Sistem S sastavljen od ne-nula elemenata prostora X se naziva $algorithat{ortogonalan}$ ako $algorithat{ortogonalan}$ ako $algorithat{oldots} = 0$ za svako $algorithat{f} \neq g$ $algorithat{f} = 0$
- Ako je (f, f) = 1 za svako $f \in S$, za sistem se kaže da je *ortonormalan*
- Najčešći ortogonalni sistemi:
 - Polinomialni sistemi (algebarski i trigonometrijski)

- Sistem S sastavljen od ne-nula elemenata prostora X se naziva $algorithat{ortogonalan}$ ako $algorithat{ortogonalan}$ ako $algorithat{oldots} = 0$ za svako $algorithat{f} \neq g$ $algorithat{f} = 0$
- Ako je (f, f) = 1 za svako $f \in S$, za sistem se kaže da je *ortonormalan*
- Najčešći ortogonalni sistemi:

Polinomialni sistemi (algebarski i trigonometrijski)

Nepolinomialni sistemi (npr. Müntzovi sistemi, Malmquist-Takenaka sistemi, generalisani eksponencijalni sistemi, itd.)

Gram-Schmidtov postupak ortogonalizacije

$$U = \{g_0, g_1, g_2, \ldots\} \longrightarrow S = \{\varphi_0, \varphi_1, \varphi_2, \ldots\}$$

Gram-Schmidtov postupak ortogonalizacije

$$U = \{g_0, g_1, g_2, \ldots\} \longrightarrow S = \{\varphi_0, \varphi_1, \varphi_2, \ldots\}$$

► Konstrukcija nestabilna kada broj funkcija koje se ortogonalizuju raste!

► Fourierov razvoj i najbolja aproksimacija

Fourierov razvoj i najbolja aproksimacija

 $f \in X$, S ortonormirani sistem funkcija:

$$f(t) \sim \sum_{k=0}^{\infty} f_k \varphi_k(t), \quad f_k = (f, \varphi_k)$$

Fourierov razvoj i najbolja aproksimacija

 $f \in X$, S ortonormirani sistem funkcija:

$$f(t) \sim \sum_{k=0}^{\infty} f_k \varphi_k(t), \quad f_k = (f, \varphi_k)$$

 f_k – Fourierovi koeficijenti:

$$|f_k| = |(f, \varphi_k)| \le ||f|| ||\varphi_k|| = ||f||$$

Fourierov razvoj i najbolja aproksimacija

 $f \in X$, S ortonormirani sistem funkcija:

$$f(t) \sim \sum_{k=0}^{\infty} f_k \varphi_k(t), \quad f_k = (f, \varphi_k)$$

 f_k – Fourierovi koeficijenti:

$$|f_k| = |(f, \varphi_k)| \le ||f|| ||\varphi_k|| = ||f||$$

 Parcijalna suma Fourierovog razvoja igra značajnu ulogu u teoriji aproksimacija

$$s_n(t) = \sum_{k=0}^n f_k \varphi_k(t).$$

$$\min_{\varphi \in X_n} \|f - \varphi\|^2 = \|f - s_n\|^2 = \|f\|^2 - \sum_{k=0}^n |f_k|^2.$$

$$\min_{\varphi \in X_n} \|f - \varphi\|^2 = \|f - s_n\|^2 = \|f\|^2 - \sum_{k=0}^{\infty} |f_k|^2.$$

Dokaz. Neka je $\varphi = \sum_{k=0}^{n} a_k \varphi_k$. Tada

$$||f - \varphi||^2 = (f - \varphi, f - \varphi) = (f, f) - (f, \varphi) - (\varphi, f) + (\varphi, \varphi).$$

$$\min_{\varphi \in X_n} \|f - \varphi\|^2 = \|f - s_n\|^2 = \|f\|^2 - \sum_{k=0}^n |f_k|^2.$$

Dokaz. Neka je $\varphi = \sum_{k=0}^{n} a_k \varphi_k$. Tada

$$||f - \varphi||^2 = (f - \varphi, f - \varphi) = (f, f) - (f, \varphi) - (\varphi, f) + (\varphi, \varphi).$$

Kako su

$$(f,\varphi) = \sum_{k=0}^{n} \overline{a}_k(f,\varphi_k) = \sum_{k=0}^{n} \overline{a}_k f_k, \quad (\varphi,f) = \sum_{k=0}^{n} a_k \overline{f}_k$$

$$\min_{\varphi \in X_n} \|f - \varphi\|^2 = \|f - s_n\|^2 = \|f\|^2 - \sum_{k=0}^n |f_k|^2.$$

Dokaz. Neka je $\varphi = \sum_{k=0}^{n} a_k \varphi_k$. Tada

$$||f - \varphi||^2 = (f - \varphi, f - \varphi) = (f, f) - (f, \varphi) - (\varphi, f) + (\varphi, \varphi).$$

Kako su

$$(f,\varphi) = \sum_{k=0}^{n} \overline{a}_k(f,\varphi_k) = \sum_{k=0}^{n} \overline{a}_k f_k, \quad (\varphi,f) = \sum_{k=0}^{n} a_k \overline{f}_k$$

i zbog ortogonalnosti, $(\varphi, \varphi) = \sum_{k=0}^{n} a_k \overline{a}_k$, imamo

i zbog ortogonalnosti,
$$(\varphi, \varphi) = \sum_{k=0}^{n} a_k \overline{a}_k$$
, imamo

$$||f - \varphi||^2 = ||f||^2 - \sum_{k=0}^{n} |f_k|^2 + \sum_{k=0}^{n} (f_k \overline{f}_k - \overline{a}_k f - a_k \overline{f}_k + a_k \overline{a}_k)$$

i zbog ortogonalnosti,
$$(\varphi, \varphi) = \sum_{k=0}^{n} a_k \overline{a}_k$$
, imamo

$$||f - \varphi||^2 = ||f||^2 - \sum_{k=0}^{n} |f_k|^2 + \sum_{k=0}^{n} (f_k \overline{f}_k - \overline{a}_k f - a_k \overline{f}_k + a_k \overline{a}_k)$$

$$= ||f||^2 - \sum_{k=0}^n |f_k|^2 + \sum_{k=0}^n |f_k - a_k|^2.$$

i zbog ortogonalnosti,
$$(\varphi, \varphi) = \sum_{k=0}^{n} a_k \overline{a}_k$$
, imamo

$$||f - \varphi||^2 = ||f||^2 - \sum_{k=0}^n |f_k|^2 + \sum_{k=0}^n (f_k \overline{f}_k - \overline{a}_k f - a_k \overline{f}_k + a_k \overline{a}_k)$$

$$= ||f||^2 - \sum_{k=0}^n |f_k|^2 + \sum_{k=0}^n |f_k - a_k|^2.$$

Minimum nastupa ako i samo ako je

$$a_k = f_k$$
 za svako $k = 1, \dots, n$.

i zbog ortogonalnosti,
$$(\varphi, \varphi) = \sum_{k=0}^{n} a_k \overline{a}_k$$
, imamo

$$||f - \varphi||^2 = ||f||^2 - \sum_{k=0}^{n} |f_k|^2 + \sum_{k=0}^{n} (f_k \overline{f}_k - \overline{a}_k f - a_k \overline{f}_k + a_k \overline{a}_k)$$

$$= ||f||^2 - \sum_{k=0}^n |f_k|^2 + \sum_{k=0}^n |f_k - a_k|^2.$$

Minimum nastupa ako i samo ako je

$$a_k = f_k$$
 za svako $k = 1, \dots, n$.

▶ Dakle, $\varphi = s_n$. Q.E.D.

i zbog ortogonalnosti,
$$(\varphi, \varphi) = \sum_{k=0}^{n} a_k \overline{a}_k$$
, imamo

$$||f - \varphi||^2 = ||f||^2 - \sum_{k=0}^{n} |f_k|^2 + \sum_{k=0}^{n} (f_k \overline{f}_k - \overline{a}_k f - a_k \overline{f}_k + a_k \overline{a}_k)$$

$$= ||f||^2 - \sum_{k=0}^n |f_k|^2 + \sum_{k=0}^n |f_k - a_k|^2.$$

Minimum nastupa ako i samo ako je

$$a_k = f_k$$
 za svako $k = 1, \dots, n$.

▶ Dakle, $\varphi = s_n$. Q.E.D.

► Kako je $(f, s_n) = (s_n, s_n) = \sum_{k=0}^n |f_k|^2$,

• Kako je $(f, s_n) = (s_n, s_n) = \sum_{k=0}^n |f_k|^2$,

greška $e_n = f - s_n$ kod najbolje aproksimacije je ortogonalna na s_n ,

$$(e_n, s_n) = (f - s_n, s_n) = 0.$$

• Kako je $(f, s_n) = (s_n, s_n) = \sum_{k=0}^n |f_k|^2$,

greška $e_n = f - s_n$ kod najbolje aproksimacije je ortogonalna na s_n ,

$$(e_n, s_n) = (f - s_n, s_n) = 0.$$

ightharpoonup Takođe, za svako $k=0,1,\ldots,n$,

$$(f-s_n, \varphi_k) = \left(f - \sum_{\nu=0}^n f_{\nu} \varphi_{\nu}, \varphi_k\right) = (f, \varphi_k) - \sum_{\nu=0}^n f_{\nu}(\varphi_{\nu}, \varphi_k) = 0.$$

• Kako je $(f, s_n) = (s_n, s_n) = \sum_{k=0}^n |f_k|^2$,

greška $e_n = f - s_n$ kod najbolje aproksimacije je ortogonalna na s_n ,

$$(e_n, s_n) = (f - s_n, s_n) = 0.$$

ightharpoonup Takođe, za svako $k = 0, 1, \dots, n$,

$$(f-s_n, \varphi_k) = \left(f - \sum_{\nu=0}^n f_{\nu} \varphi_{\nu}, \varphi_k\right) = (f, \varphi_k) - \sum_{\nu=0}^n f_{\nu}(\varphi_{\nu}, \varphi_k) = 0.$$

▶ Dakle, $(\forall k)$ $e_n \perp \varphi_k$, tj. $e_n \perp X_n$.

$$||f - s_0|| \ge ||f - s_1|| \ge ||f - s_2|| \ge \cdots$$

$$||f - s_0|| \ge ||f - s_1|| \ge ||f - s_2|| \ge \cdots$$

$$\sum_{k=0}^{n} |f_k|^2 \le ||f||^2.$$

$$||f - s_0|| \ge ||f - s_1|| \ge ||f - s_2|| \ge \cdots$$

Besselova nejednakost. Za svako $n \in \mathbb{N}$

$$\sum_{k=0}^{n} |f_k|^2 \le ||f||^2.$$

► Kada $n \to +\infty$, imamo $\sum_{k=0}^{+\infty} |f_k|^2 \le ||f||^2$.

$$||f - s_0|| \ge ||f - s_1|| \ge ||f - s_2|| \ge \cdots$$

$$\sum_{k=0}^{n} |f_k|^2 \le ||f||^2.$$

- ► Kada $n \to +\infty$, imamo $\sum_{k=0}^{+\infty} |f_k|^2 \le ||f||^2$.
- ► Red konvergira: $\lim_{k \to +\infty} f_k = \lim_{k \to +\infty} (f, \varphi_k) = 0.$

$$||f - s_0|| \ge ||f - s_1|| \ge ||f - s_2|| \ge \cdots$$

$$\sum_{k=0}^{n} |f_k|^2 \le ||f||^2.$$

- ► Kada $n \to +\infty$, imamo $\sum_{k=0}^{+\infty} |f_k|^2 \le ||f||^2$.
- ► Red konvergira: $\lim_{k \to +\infty} f_k = \lim_{k \to +\infty} (f, \varphi_k) = 0.$
- $ightharpoonup \forall f \in X$ Fourierovi koeficijenti teže nuli.

$$||f - s_0|| \ge ||f - s_1|| \ge ||f - s_2|| \ge \cdots$$

$$\sum_{k=0}^{n} |f_k|^2 \le ||f||^2.$$

- ► Kada $n \to +\infty$, imamo $\sum_{k=0}^{+\infty} |f_k|^2 \le ||f||^2$.
- ► Red konvergira: $\lim_{k \to +\infty} f_k = \lim_{k \to +\infty} (f, \varphi_k) = 0.$
- $ightharpoonup \forall f \in X$ Fourierovi koeficijenti teže nuli.
- ightharpoonup Parsevalova jednakost: Kada je S gusto u X

$$(f,g) = \int_{\mathbb{R}} f(t)g(t) \ d\mu(t)$$

$$(f,g) = \int_{\mathbb{R}} f(t)g(t) \left(d\mu(t)\right)$$

 $d\mu(t)$ -nenegativna mera na $\mathbb R$ sa konačnim ili neograničenim nosačem, za koju su svi momenti $\mu_k = \int_{\mathbb R} t^k d\mu(t)$ konačni i $\mu_0 = \int_{\mathbb R} d\mu(t) > 0$

$$(f,g) = \int_{\mathbb{R}} f(t)g(t) d\mu(t)$$

 $d\mu(t)$ -nenegativna mera na $\mathbb R$ sa konačnim ili neograničenim nosačem, za koju su svi momenti

$$\mu_k = \int_{\mathbb{R}} t^k d\mu(t)$$
 konačni i $\mu_0 = \int_{\mathbb{R}} d\mu(t) > 0$

$$\mu = \mu_{ac} + \mu_{s} + \mu_{j}$$

$$(f,g) = \int_{\mathbb{R}} f(t)g(t) \left(d\mu(t) \right)$$

 $d\mu(t)$ -nenegativna mera na $\mathbb R$ sa konačnim ili neograničenim nosačem, za koju su svi momenti

$$\mu_k = \int_{\mathbb{R}} t^k d\mu(t)$$
 konačni i $\mu_0 = \int_{\mathbb{R}} d\mu(t) > 0$

$$\mu = \mu_{ac} + \mu_{s} + \mu_{j}$$

$$\mu = \mu_{ac} \implies d\mu(t) = w(t)dt, \quad w(t) \ge 0$$

$$(f,g) = \int_{\mathbb{R}} f(t)g(t) \left(d\mu(t) \right)$$

 $d\mu(t)$ -nenegativna mera na $\mathbb R$ sa konačnim ili neograničenim nosačem, za koju su svi momenti

$$\mu_k = \int_{\mathbb{R}} t^k d\mu(t)$$
 konačni i $\mu_0 = \int_{\mathbb{R}} d\mu(t) > 0$

$$\mu = \mu_{ac} + \mu_{s} + \mu_{j}$$

$$\mu = \mu_{ac} \implies d\mu(t) = w(t)dt, \quad w(t) \ge 0$$

w – nenegativna težinska funkcija

Gram-Schmidt-ova ortogonalizacija

$$U = \{1, t, t^2, \ldots\}$$
 daje $S = \{\pi_0, \pi_1, \pi_2, \ldots\}$

Gram-Schmidt-ova ortogonalizacija

$$U = \{1, t, t^2, \ldots\}$$
 daje $S = \{\pi_0, \pi_1, \pi_2, \ldots\}$

monični ortogonalni polinomi

$$\pi_k(t) = t^k +$$
članovi nižeg stepena, $k = 0, 1, \dots$

► Gram-Schmidt-ova ortogonalizacija $U = \{1, t, t^2, \ldots\}$ daje $S = \{\pi_0, \pi_1, \pi_2, \ldots\}$

monični ortogonalni polinomi

$$\pi_k(t) = t^k +$$
članovi nižeg stepena, $k = 0, 1, ...$

ortogonalnost

$$(\pi_k, \pi_n) = \|\pi_n\|^2 \delta_{kn} = \begin{cases} 0, & n \neq k, \\ \|\pi_n\|^2, & n = k. \end{cases}$$

$$\pi_{k+1}(t) = (t - \alpha_k)\pi_k(t) - \beta_k\pi_{k-1}(t), \quad k = 0, 1, \dots,$$
 $\pi_0(t) = 1, \ \pi_{-1}(t) = 0.$

$$(\alpha_k) = (\alpha_k(d\mu)), (\beta_k) = (\beta_k(d\mu)) - \text{nizovi}$$

ightharpoonup Zbog osobine (tf,g)=(f,tg)

$$\pi_{k+1}(t) = (t - \alpha_k)\pi_k(t) - \beta_k\pi_{k-1}(t), \quad k = 0, 1, \dots,$$

$$\pi_0(t) = 1, \ \pi_{-1}(t) = 0.$$

$$(\alpha_k) = (\alpha_k(d\mu)), (\beta_k) = (\beta_k(d\mu)) - \text{nizovi}$$

▶ Pogodno je uzeti $\beta_0 = \int_{\mathbb{R}} d\mu(t)$

$$\pi_{k+1}(t) = (t - \alpha_k)\pi_k(t) - \beta_k\pi_{k-1}(t), \quad k = 0, 1, \dots,$$

 $\pi_0(t) = 1, \ \pi_{-1}(t) = 0.$

$$(\alpha_k) = (\alpha_k(d\mu)), (\beta_k) = (\beta_k(d\mu)) - \text{nizovi}$$

- ▶ Pogodno je uzeti $\beta_0 = \int_{\mathbb{R}} d\mu(t)$
- \blacktriangleright Klasični ortogonalni polinomi $(\alpha, \beta > -1)$

$$\pi_{k+1}(t) = (t - \alpha_k)\pi_k(t) - \beta_k\pi_{k-1}(t), \quad k = 0, 1, \dots,$$
 $\pi_0(t) = 1, \ \pi_{-1}(t) = 0.$

$$(\alpha_k) = (\alpha_k(d\mu)), (\beta_k) = (\beta_k(d\mu)) - \text{nizovi}$$

- ▶ Pogodno je uzeti $\beta_0 = \int_{\mathbb{R}} d\mu(t)$
- ► Klasični ortogonalni polinomi $(\alpha, \beta > -1)$

$$(-1,1)$$
 $w(x) = (1-t)^{\alpha}(1+t)^{\beta}$ Jacobi

$$\pi_{k+1}(t) = (t - \alpha_k)\pi_k(t) - \beta_k\pi_{k-1}(t), \quad k = 0, 1, \dots,$$

$$\pi_0(t) = 1, \ \pi_{-1}(t) = 0.$$

$$(\alpha_k) = (\alpha_k(d\mu)), (\beta_k) = (\beta_k(d\mu)) - \text{nizovi}$$

- Pogodno je uzeti $\beta_0 = \int_{\mathbb{R}} d\mu(t)$
- ► Klasični ortogonalni polinomi $(\alpha, \beta > -1)$

$$(-1,1)$$
 $w(x)=(1-t)^{\alpha}(1+t)^{\beta}$ Jacobi $(0,+\infty)$ $w(t)=t^{\alpha}e^{-t}$ gen. Laguerre

$$\pi_{k+1}(t) = (t - \alpha_k)\pi_k(t) - \beta_k\pi_{k-1}(t), \quad k = 0, 1, \dots,$$

$$\pi_0(t) = 1, \ \pi_{-1}(t) = 0.$$

$$(\alpha_k) = (\alpha_k(d\mu)), (\beta_k) = (\beta_k(d\mu)) - \text{nizovi}$$

- ▶ Pogodno je uzeti $\beta_0 = \int_{\mathbb{R}} d\mu(t)$
- ► Klasični ortogonalni polinomi $(\alpha, \beta > -1)$

$$(-1,1)$$
 $w(x)=(1-t)^{\alpha}(1+t)^{\beta}$ Jacobi $(0,+\infty)$ $w(t)=t^{\alpha}e^{-t}$ gen. Laguerre $(-\infty,+\infty)$ $w(t)=e^{-t^2}$ Hermite

$$\boldsymbol{J}_{n}(d\mu) = \begin{bmatrix} \alpha_{0} & \sqrt{\beta_{1}} & \mathbf{0} \\ \sqrt{\beta_{1}} & \alpha_{1} & \sqrt{\beta_{2}} \\ & \ddots & \ddots & \\ & & \ddots & \sqrt{\beta_{n-1}} \\ \mathbf{0} & & \sqrt{\beta_{n-1}} & \alpha_{n-1} \end{bmatrix}$$

$$m{J}_n(d\mu) = egin{bmatrix} lpha_0 & \sqrt{eta_1} & & m{0} \ \sqrt{eta_1} & lpha_1 & \sqrt{eta_2} \ & \ddots & \ddots & & \ddots \ & & \ddots & \sqrt{eta_{n-1}} \ m{0} & & \sqrt{eta_{n-1}} & lpha_{n-1} \end{bmatrix}$$

Neklasični ortogonalni polinomi

$$oldsymbol{J}_n(d\mu) = egin{bmatrix} lpha_0 & \sqrt{eta_1} & & \mathbf{0} \\ \sqrt{eta_1} & lpha_1 & \sqrt{eta_2} & & \\ & \ddots & \ddots & \ddots & \\ & & & \ddots & \sqrt{eta_{n-1}} \\ \mathbf{0} & & & \sqrt{eta_{n-1}} & lpha_{n-1} \end{bmatrix}$$

Neklasični ortogonalni polinomi

Numerička konstrukcija α_k , β_k , $k = 0, 1, \ldots, n-1$

$$\boldsymbol{J}_{n}(d\mu) = \begin{bmatrix} \alpha_{0} & \sqrt{\beta_{1}} & & \mathbf{0} \\ \sqrt{\beta_{1}} & \alpha_{1} & \sqrt{\beta_{2}} & & \\ & \ddots & \ddots & \\ & & \ddots & \sqrt{\beta_{n-1}} \\ \mathbf{0} & & \sqrt{\beta_{n-1}} & \alpha_{n-1} \end{bmatrix}$$

Neklasični ortogonalni polinomi

Numerička konstrukcija α_k , β_k , $k = 0, 1, \dots, n-1$

Metod modifikovanih momenta

$$\boldsymbol{J}_n(d\mu) = \begin{bmatrix} \alpha_0 & \sqrt{\beta_1} & & \mathbf{0} \\ \sqrt{\beta_1} & \alpha_1 & \sqrt{\beta_2} & & \\ & \ddots & \ddots & \\ & & \ddots & \sqrt{\beta_{n-1}} \\ \mathbf{0} & & \sqrt{\beta_{n-1}} & \alpha_{n-1} \end{bmatrix}$$

Neklasični ortogonalni polinomi

Numerička konstrukcija α_k , β_k , $k = 0, 1, \dots, n-1$

- Metod modifikovanih momenta
- Diskretizovana Stieltjes-Gautschi-jeva procedura