1 General Topology

Definition 1.1 (Topology). A topological space is a set X with a collection of subsets \mathcal{U} , called open sets, such that

- 1. $\emptyset, X \in \mathcal{U}$.
- 2. The arbitrary union of open sets is open.
- 3. The finite union of open sets is open.

The complement X - U of an open set U is called closed.

Definition 1.2. Let (X, \mathcal{U}) , (X, \mathcal{V}) be topologies. \mathcal{U} is called stronger(finer) than \mathcal{V} if $\mathcal{V} \subset \mathcal{U}$, and weaker(coarser) if $\mathcal{U} \subset \mathcal{V}$.

Definition 1.3. A basis \mathcal{B} of a topology for X is a collection of subsets of X such that

- 1. For each $x \in X$ there is at least one $B \in \mathcal{B}$ with $x \in B$.
- 2. If $x \in B_1 \cap B_2$ then there exists a $B_3 \subset B_1 \cap B_2$ with $x \in B_3$.

We say that \mathcal{B} generates the topology \mathcal{U} if U is open iff for every $x \in U$ there exits $B \in \mathcal{B}$ with $x \in B \subset U$.

Lemma 1.4. Let \mathcal{B} be a basis for a topology \mathcal{U} on X. Then \mathcal{U} is equal to the collection of all unions of elements of \mathcal{B} .

Lemma 1.5. If \mathcal{C} is a collection of open sets, such that for each $U \subset X$ open, $x \in U$ there is $C \in \mathcal{C}$ such that $x \in C \subset U$, then \mathcal{C} is a basis for X.

Lemma 1.6. Let \mathcal{B} , \mathcal{B}' be bases for topologies \mathcal{U} , \mathcal{U}' respectively on X. Then the following are equivalent:

- 1. \mathcal{U}' is finer than \mathcal{U} .
- 2. For each $x \in B \in \mathcal{B}$, there is a $B' \in \mathcal{B}'$ with $x \in B' \subset B$.

Definition 1.7. A subbasis S for a topology on X is a collection of subsets whose union equals X. The topology generated by the subbasis is defined to be the collection of all unions of finite intersections of elements of S.

Definition 1.8. The product topology on $X \times Y$ is defined by the basis consisting of all sets of the form $U \times V$, $U \subset X$, $V \subset Y$ open.

Theorem 1.9. If $\mathcal{B}_1, \mathcal{B}_2$ are bases of X_1, X_2 respectively, then

$$\mathcal{B} = \{ B_1 \times B_2 \, | \, B_1 \in \mathcal{B}_1, B_2 \in \mathcal{B}_2 \} \tag{1}$$

is a basis for $X_1 \times X_2$.

Definition 1.10. The projections are defined by

$$\pi_n: X_1 \times X_2 \to X_n; \quad \pi_n(x_1, x_2) = x_n.$$
 (2)

Theorem 1.11. The following is a subbasis for $X \times Y$:

$$\{\pi_1^{-1}(U) \mid U \in X \text{ open}\} \cup \{\pi_2^{-1}(V) \mid V \in Y \text{ open}\}.$$
 (3)