Ludwig-Maximilians-Universität München

FORTGESCHRITTENENPRAKTIKUM II WINTERSEMESTER 22/23

Rheologie

Guido Osterwinter und Jan-Philipp Christ

München, den 3. Dezember 2022

Inhaltsverzeichnis

$2.1 \\ 2.2$		izität und Viskosität	
	Visko	pelastizität	
	suchsdurchführung		
3.1	Wass	er-Saccharose	
	3.1.1	Anmischen der Lösungen	
	3.1.2	Scherratenmessungen	
3.2	Wass	er-Guaran	
	3.2.1	Anmischen der Lösungen	
	3.2.2	Scherratenmessungen	
	3.2.3	Frequenzversuch	
\mathbf{Erg}	ebniss	e und Diskussion	
4.1	Wass	er-Saccharose	
	4.1.1	Anmischen der Lösungen	
	4.1.2	Scherratenmessungen	
4.2	Wass	er-Guaran	
	4.2.1	Anmischen der Lösungen	
	4.2.2	Scherratenmessungen	
	4.2.3	Frequenzversuch	
7	amme	nfassung	

- 1. Zielsetzung und Motivation
- 2. Theoretischer Hintergrund
- 2.1. Elastizität und Viskosität
- 2.2. Klassifizierung von Flüssigkeiten anhand ihres Fließverhaltens
- 2.3. Viskoelastizität
- 2.4. Rotationsrheometer
- 3. Versuchsdurchführung
- 3.1. Wasser-Saccharose
- 3.1.1. Anmischen der Lösungen
- 3.1.2. Scherratenmessungen
- 3.2. Wasser-Guaran
- 3.2.1. Anmischen der Lösungen
- 3.2.2. Scherratenmessungen
- 3.2.3. Frequenzversuch
- 4. Ergebnisse und Diskussion
- 4.1. Wasser-Saccharose
- 4.1.1. Anmischen der Lösungen
- 4.1.2. Scherratenmessungen
- 4.2. Wasser-Guaran
- 4.2.1. Anmischen der Lösungen
- 4.2.2. Scherratenmessungen
- 4.2.3. Frequenzversuch
- [1] [2] [3]

"The significance of under-filling can also be demonstrated by noting that a 100 μ m change in the radius of the sample (corresponding to a 0.2% variation) will cause a 1.6% error in the apparent viscosity for a parallel plate setup, and 1.2% for a cone plate setup."([3])

5. Zusammenfassung

Literatur

- [1] Autor unbekannt, "Praktikumsversuch Rheologie Bachelor." [Online unter https://www.softmatter.physik.uni-muenchen.de/teaching/fortgeschrittenenpraktikum/r3_rheologie/fpraktikumrheologiebdeutsch.pdf; Stand 03. Dezember 2022].
- [2] F. J. Stadler, "What are typical sources of error in rotational rheometry of polymer melts?," *Korea-Australia Rheology Journal*, vol. 26, pp. 277–291, Aug 2014.
- [3] L. H. O. Hellström, M. A. Samaha, K. M. Wang, A. J. Smits, and M. Hultmark, "Errors in parallel-plate and cone-plate rheometer measurements due to sample underfill," *Measurement Science and Technology*, vol. 26, p. 015301, nov 2014.

A. Python-Skripte zur Auswertung

A.1. Bestimmung des Potenzgesetzes