

Machine Learning
Evaluation &
Supervised
Learning

Classification

Rezki Trianto

Data guy who spent the last 7 years to work around data analytics and machine learning. Working in a unicorn company with various domain expertise to work with, from an e-commerce, OTA, and ride-hailing company.

Education Background

Hands On Required

Hands - On: 3. Classification

Klik disini untuk mengakses folder Hands On

P	Review Klasifikasi	P	Hands On - kNN
\Box	Logistic Regression	\Box	Decision Tree - Intuition
<u></u>	Hands On - Logistic Regression - Part 1	\downarrow	Decision Tree - Hyperparameters & Feature Importances
P	Hands On - Logistic Regression - Part 2	ф	Hands On - Decision Tree
$\dot{\Box}$	Hands On - Analyze Learning Curve		Hands On - Feature Importance &
\Box	k-Nearest Neighbor (kNN)		Summary

	Review Klasifikasi	口	Hands On - kNN
ф	Logistic Regression		Decision Tree - Intuition
-	Hands On - Logistic Regression - Part 1	-	Decision Tree - Hyperparameters & Feature Importances
Ċ.	Hands On - Logistic Regression - Part 2	ф	Hands On - Decision Tree
	Hands On - Analyze Learning Curve	Ġ	Hands On - Feature Importance &
	k-Nearest Neighbor (kNN)		Summary

Review Previous Topics

Related to Classification

1. Metrics Evaluation:

- Accuracy -> ketika kepentingan label seimbang, dan jumlah target balance
- Precision -> target balance, dan fokus mengurangi False Positive
- Recall -> target balance, dan fokus mengurangi False Negative
- ROC-AUC -> target imbalance (namun tidak ekstrim), fokus pada label positive & negative
- F1 -> target imbalance (bisa ekstrim), fokus pada label positif

2. Regularization

- Salah satu teknik mencegah overfitting dengan menambahkan bias

Jenis Supervised Learning

Target Label bertipe categorical

Target —	Foaturo	
Idiget ————————————————————————————————————		

is_diabetes	glucose_concentration	blood_pressure	triceps_thickness	two_hour_insulin	bmi	pedigree_function	age
yes	148	72	35	0	33.6	0.627	50
no	85	66	29	0	26.6	0.351	31
yes	183	64	0	0	23.3	0.672	32
no	89	66	23	94	28.1	0.167	21
yes	137	40	35	168	43.1	2.288	33
no	116	74	0	0	25.6	0.201	30
yes	78	50	32	88	31	0.248	26
no	115	0	0	0	35.3	0.134	29
yes	197	70	45	543	30.5	0.158	53
yes	125	96	0	0	0	0.232	54
no	110	92	0	0	37.6	0.191	30
yes	168	74	0	0	38	0.537	34
no	139	80	0	0	27.1	1.441	57
yes	189	60	23	846	30.1	0.398	59
yes	166	72	19	175	25.8	0.587	51
yes	100	0	0	0	30	0.484	32
yes	118	84	47	230	45.8	0.551	31
yes	107	74	0	0	29.6	0.254	31
no	103	30	38	83	43.3	0.183	33

	Review Klasifikasi	早	Hands On - kNN
	Logistic Regression	Image: Control of the	Decision Tree - Intuition
-	Hands On - Logistic Regression - Part 1		Decision Tree - Hyperparameters & Feature Importances
į.	Hands On - Logistic Regression - Part 2	\Box	Hands On - Decision Tree
· 中	Hands On - Analyze Learning Curve		Hands On - Feature Importance &
	k-Nearest Neighbor (kNN)		Summary

	Review Klasifikasi	早	Hands On - kNN
	Logistic Regression	ф	Decision Tree - Intuition
<u></u>	Hands On - Logistic Regression - Part 1	$\frac{1}{2}$	Decision Tree - Hyperparameters & Feature Importances
P	Hands On - Logistic Regression - Part 2	ф	Hands On - Decision Tree
Image: Control of the	Hands On - Analyze Learning Curve		Hands On - Feature Importance &
Ь	k-Nearest Neighbor (kNN)		Summary

Logistic Regression aka. Logit / MaxEnt

Logistic Regression

- Jika Linear regression melakukan prediksi pada data numerik, untuk data dengan tipe categorical, kita dapat menggunakan logistic regression.
- Tujuan dari logistic regression melakukan fitting logistic function yang berbentuk seperti huruf S.

Logistic Regression

Logistic regression mencari weight/parameter yang mempunyai error terkecil (mirip seperti linear regression).

Logistic Regression

Pada logistic regression, jika probabilitas > 0.5, maka kita dapat melakukan klasifikasi bahwa label = Obese

Linear vs. Logistic Model

Kapan menggunakan Logistic Regression?

Asumsi Logistic Regression

- 1. Jika data dapat dipisahkan secara linear*
- 2. Jika butuh model yang simple dan komputasi cukup cepat
- 3. Tidak terdapat extreme outlier yang sangat berpengaruh ke hasil prediksi*
- 4. Tidak ada multikolinearitas atau repeated features*
- 5. Digunakan untuk binary classification. untuk kasus multiclass bisa menggunakan one vs. rest*

Linearly separable

One vs. Rest

 Untuk prediksi kasus multiclass pada logistic regression menggunakan konsep one vs. rest

Pada gambar disamping, one vs. rest membagi menjadi 3 tahap,

- 1. menganggap class 1 sebagai label 1, dan sisanya adalah label lainnya
- 2. menganggap class 2 sebagai label 2, dan sisanya adalah label lainnya
- 3. menganggap class 3 sebagai label 3, dan sisanya adalah label lainnya

Masing-masing akan melakukan prediksi terhadap data test. one vs. rest akan mencari probabilitas yang paling besar diantara ketiga class

	Review Klasifikasi	P	Hands On - kNN
	Logistic Regression	\Box	Decision Tree - Intuition
<u></u>	Hands On - Logistic Regression - Part 1	\downarrow	Decision Tree - Hyperparameters & Feature Importances
P	Hands On - Logistic Regression - Part 2	ф	Hands On - Decision Tree
Image: Control of the	Hands On - Analyze Learning Curve		Hands On - Feature Importance &
Ь	k-Nearest Neighbor (kNN)		Summary

	Review Klasifikasi	P	Hands On - kNN
	Logistic Regression	†	Decision Tree - Intuition
	Hands On - Logistic Regression - Part 1] 🖕	Decision Tree - Hyperparameters & Feature Importances
· 中	Hands On - Logistic Regression - Part 2	Ġ.	Hands On - Decision Tree
	Hands On - Analyze Learning Curve		Hands On - Feature Importance &
4	k-Nearest Neighbor (kNN)		Summary

Implementasi di python

Implementasi di python: Model Validation

from sklearn.model selection import train test split
Xtrain, Xtest, ytrain, ytest = train_test_split(x,y,test_size=1/3, random_state=42)

Split train & test set

Implementasi di python: Fit Model

```
from sklearn.model selection import train test split
Xtrain, Xtest, ytrain, ytest = train_test_split(x,y,test_size=1/3, random_state=42)
```

Split train & test set

```
from sklearn.linear model import LogisticRegression# import logistic regression dari sklearn
logreg = LogisticRegression() # inisiasi object dengan nama logreg
logreg.fit(X_train, y_train) # fit model regression dari data train
```

Latih model pada train set

Dokumentasi sklearn Logistic Regression:

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html

Implementasi di python: Prediksi & Evaluasi

```
from sklearn.model selection import train test split
Xtrain, Xtest, ytrain, ytest = train_test_split(x,y,test_size=1/3, random_state=42)
```

Split train & test set

from sklearn.linear model import LogisticRegression# import logistic regression dari sklearn
logreg = LogisticRegression() # inisiasi object dengan nama logreg
logreg.fit(Xtrain, ytrain) # fit model regression dari data train

Latih model pada train set

```
y_predicted = logreg.predict(Xtest) # prediksi data test

from sklearn.metrics import accuracy score
print(accuracy_score(ytest, y_predicted)) # contoh evaluasi dengan akurasi
```

Prediksi dan Evaluasi Test Set

Dokumentasi sklearn Logistic Regression:

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html

Hands On!

	Review Klasifikasi	早	Hands On - kNN
	Logistic Regression	ф	Decision Tree - Intuition
	Hands On - Logistic Regression - Part 1	þ	Decision Tree - Hyperparameters & Feature Importances
中	Hands On - Logistic Regression - Part 2	\Box	Hands On - Decision Tree
\Box	Hands On - Analyze Learning Curve		Hands On - Feature Importance &
	k-Nearest Neighbor (kNN)		Summary

	Review Klasifikasi	早	Hands On - kNN
	Logistic Regression	ф	Decision Tree - Intuition
	Hands On - Logistic Regression - Part 1	-	Decision Tree - Hyperparameters & Feature Importances
	Hands On - Logistic Regression - Part 2	\Box	Hands On - Decision Tree
	Hands On - Analyze Learning Curve		Hands On - Feature Importance &
	k-Nearest Neighbor (kNN)		Summary

Hands On!

	Review Klasifikasi	P	Hands On - kNN
	Logistic Regression	ф	Decision Tree - Intuition
	Hands On - Logistic Regression - Part 1	<u></u>	Decision Tree - Hyperparameters & Feature Importances
	Hands On - Logistic Regression - Part 2	\Box	Hands On - Decision Tree
$\dot{\Box}$	Hands On - Analyze Learning Curve		Hands On - Feature Importance &
占	k-Nearest Neighbor (kNN)		Summary

	Review Klasifikasi	早	Hands On - kNN
	Logistic Regression	ф	Decision Tree - Intuition
	Hands On - Logistic Regression - Part 1	-	Decision Tree - Hyperparameters & Feature Importances
	Hands On - Logistic Regression - Part 2	ф	Hands On - Decision Tree
	Hands On - Analyze Learning Curve		Hands On - Feature Importance & Summary
4	k-Nearest Neighbor (kNN)		

Model Validation - Learning Curve

Evaluasi machine learning model dengan melihat learning curve, dan pahami bagaimana model machine learning berpotensi untuk mengalami underfit / overfit

Model Validation - Learning Curve

Evaluasi machine learning model dengan melihat learning curve, dan pahami bagaimana model machine learning berpotensi untuk mengalami underfit / overfit

Interpretasi:

C >= 0 and C < 0.02: Underfit

C >= 0.02 and C <= 0.03: Best Fit

C >= 0.04: Overfit

Hands On!

	Review Klasifikasi	早	Hands On - kNN	
	Logistic Regression	ф	Decision Tree - Intuition	
	Hands On - Logistic Regression - Part 1	<u></u>	Decision Tree - Hyperparameters & Feature Importances	
	Hands On - Logistic Regression - Part 2	ф	Hands On - Decision Tree	
	Hands On - Analyze Learning Curve		Hands On - Feature Importance &	
\Box	k-Nearest Neighbor (kNN)		Summary	

Review Klasifikasi	早	Hands On - kNN
Logistic Regression	ф	Decision Tree - Intuition
Hands On - Logistic Regression - Part 1	<u></u>	Decision Tree - Hyperparameters & Feature Importances
Hands On - Logistic Regression - Part 2	ф	Hands On - Decision Tree
Hands On - Analyze Learning Curve		Hands On - Feature Importance &
k-Nearest Neighbor (kNN)		Summary

k-Nearest Neighbor (kNN)

K-Nearest Neighbor

Salah satu algoritma paling sederhana untuk melakukan klasifikasi

Step 1.

Dibutuhkan dataset dengan masing-masing labelnya

Step 2.

Kita mempunyai data test yang baru (warna hitam). Tujuan kita adalah ingin mengetahui label dari data test ini.

Step 3.

Lakukan klasifikasi terhadap data test baru dengan melihat data lainnya yang terdekat yang sudah memiliki label (nearest neighbors). Tentukan nilai K.

- Jika 'K' pada 'K-nearest neighbors' sama dengan 1, maka kita hanya menggunakan nearest neighbor untuk melabeli data test tersebut. pada kasus ini, label data testnya adalah hijau.
- Jika nilai K=7, kita dapat menggunakan 7 nearest neighbors, pada kasus ini, label data testnya masih hijau.

Mari kita mencoba data test baru. Kali ini letaknya di tengah nih.

Jika nilai K=11, data yang sekarang ada diantara 2 (atau lebih) label. Jika hal ini terjadi, kita dapat menentukan label dengan cara **voting**.

Pada kasus ini:

7 nearest neighbors adalah **Merah** 3 nearest neighbors adalah **Orange** 1 nearest neighbors adalah **Hijau**

Mari kita mencoba data test baru. Kali ini letaknya di tengah nih.

Jika nilai K=11, data yang sekarang ada diantara 2 (atau lebih) label. Jika hal ini terjadi, kita dapat menentukan label dengan cara **voting**.

Pada kasus ini:

7 nearest neighbors adalah **Merah** 3 nearest neighbors adalah **Orange** 1 nearest neighbors adalah **Hijau**

Dikarenakan **Merah** mendapatkan voting yang paling banyak, maka label akhirnya adalah **Merah**

Distance: Perhitungan Jarak

Euclidean (p=2)

Umum digunakan ketika menghitung jarak antara 2 numerical feature (float/integer)

$$\sqrt{\sum_{i=1}^{N} (fa_i - fb_i)^2}$$

Manhattan (p=1)

digunakan ketika menghitung jarak dengan sifat grid (seperti chessboard atau city blocks)

$$\sum_{i=1}^{N} |fa_i - fb_i|$$

Minkowski

Generalisasi dari Euclidean & Manhattan. umum digunakan di ML algorithm karena fleksibilitasnya untuk mengukur jarak dari hyperparameter "p"

$$(\sum_{i=1}^{n} |(fa_i - fb_i)^p|)^{\frac{1}{p}}$$

Beberapa tips dan summary

- 1. K adalah jumlah neighbor yang di cek
- 2. K sebaiknya angka ganjil, untuk menghindari voting seri
- 3. Melakukan data scaling penting sebelumnya
- 4. Voting dapat ditambahkan bobot (dengan masing-masing jarak contohnya) pada masing-masing neighbor. (gunakan hyperparameter weight)

Bagaimana menemukan nilai K yang tepat?

Kita dapat menggunakan rule of thumb, dimana n adalah jumlah sampel

Kapan menggunakan K-Nearest Neighbor (kNN)

- 1. Salah satu algoritma paling sederhana, dapat digunakan menjadi baseline
- 2. kNN menghitung jarak antara masing-masing data point, cocok digunakan di data yang bersifat non-linear
- 3. kNN buruk digunakan dalam data yang berjumlah besar (komputasi yang boros)

Contoh:

Jika jumlah data training: 1 juta

Jumlah Data test: 10ribu

Maka, rekomendasi nilai k = √1juta = 1000

Dari setiap data testing, akan dihitung 1000 jarak Total jarak yang dihitung untuk semua data test = 1000 * 10,000 = 10juta

Jumlah iterasi sangat besar

	Review Klasifikasi	早	Hands On - kNN
	Logistic Regression	†	Decision Tree - Intuition
	Hands On - Logistic Regression - Part 1	$\dot{\Box}$	Decision Tree - Hyperparameters & Feature Importances
	Hands On - Logistic Regression - Part 2	†	Hands On - Decision Tree
	Hands On - Analyze Learning Curve		Hands On - Feature Importance &
2	k-Nearest Neighbor (kNN)		Summary

Contoh Implementasi pada sklearn

```
from sklearn.neighbors import KNeighborsClassifier# import knn dari sklearn
knn = KNeighborsClassifier() # inisiasi object dengan nama knn
knn.fit(X train, y train) # fit model KNN dari data train
```

Latih model pada train set

dan lakukan prediksi dan evaluasi dari data test...

Dokumentasi sklearn kNN:

https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html

Hands On!

Review Klasifikasi		Hands On - kNN
Logistic Regression	ф	Decision Tree - Intuition
Hands On - Logistic Regression - Part 1	<u></u>	Decision Tree - Hyperparameters & Feature Importances
Hands On - Logistic Regression - Part 2	ψ.	Hands On - Decision Tree
Hands On - Analyze Learning Curve		Hands On - Feature Importance &
k-Nearest Neighbor (kNN)		Summary

Review Klasifikasi		Hands On - kNN
Logistic Regression		Decision Tree - Intuition
Hands On - Logistic Regression - Part 1	+	Decision Tree - Hyperparameters & Feature Importances
Hands On - Logistic Regression - Part 2	ψ.	Hands On - Decision Tree
Hands On - Analyze Learning Curve		Hands On - Feature Importance &
k-Nearest Neighbor (kNN)		Summary

Decision Tree

aka. CART

Decision Tree

Membangun sebuah `tree` untuk melakukan klasifikasi (bisa berupa categorical atau numerik)

Note:

Pada tree selanjutnya setelah slide ini,

Link yang menuju sebelah **kiri bernilai TRUE,** sedangkan
Link yang menuju sebelah **kanan bernilai FALSE**

Contoh Decision Tree dari dataset yang ada

Chest Pain	Good Blood Circulation	Blocked Arteries	Heart Disease	
No	No	No	No	
Yes	Yes	Yes	Yes	
Yes	Yes	No	No	
Yes	No	???	Yes	
etc	etc	etc	etc	

Hitung Gini Impurity. Cek bagaimana masing-masing feature dapat melakukan prediksi terhadap label heart disease

Chest Pain			Heart Disease
No	No	No	No
Yes	Yes	Yes	Yes
Yes	Yes	No	No
Yes	No	???	Yes
etc	etc	etc	etc

Lakukan pemetaan, jika chest pain bernilai Yes, berapa banyak yang mempunyai label heart disease dan tidak mempunyai heart disease.

Lakukan hal yang sama ketika chest pain bernilai No.

Setiap feature tidak dapat memberikan prediksi yang sempurna untuk melakukan prediksi label heart disease. Kasus ini dapat dikatakan bahwa variabel tersebut impure.

Untuk menentukan variabel mana yang bernilai lebih baik, kita dapat menghitung nilai **impurity**, cara yang paling sederhana adalah dengan menggunakan **Gini** algorithm.

Semakin kecil nilai impurity maka semakin baik. Pendekatan ini menjadi salah satu penentuan feature importance.

Contoh perhitungan Gini Impurity

Pada leaf ini, Gini impurity = 1 - (probability of "yes") 2 - (probability of "no") 2

$$= 1 - \left(\frac{105}{105 + 39}\right)^2 - \left(\frac{39}{105 + 39}\right)^2$$

$$= 0.395$$

Gini Impurity (Chest Pain) = Weighted average dari Gini impurity di masing-masing node

$$= \left(\frac{144}{144 + 159}\right) 0.395 + \left(\frac{159}{144 + 159}\right) 0.336$$

$$= 0.364$$

Feature yang punya impurity paling kecil akan jadi root/node, lakukan terus hingga menjadi sebuah tree seperti dibawah ini

3 Orang No

Chest Pain	Good Blood Circulation	Blocked Arteries	Heart Disease
No	No	No	No
Yes	Yes	Yes	Yes
Yes	Yes	No	No
Yes	No	???	Yes
etc	etc	etc	etc

0 Orang No

Detail Step By Step Decision Tree

Detail dari step by step decision tree dapat dilihat di bagian appendix dengan lebih detail.

Review Klasifikasi		Hands On - kNN
Logistic Regression		Decision Tree - Intuition
Hands On - Logistic Regression - Part 1	-	Decision Tree - Hyperparameters & Feature Importances
Hands On - Logistic Regression - Part 2	Ġ.	Hands On - Decision Tree
Hands On - Analyze Learning Curve		Hands On - Feature Importance &
k-Nearest Neighbor (kNN)		Summary

Beberapa Hyperparameter Decision Tree

Feature Importance

from sklearn.tree import DecisionTreeClassifier# import decision tree dari sklearn
dt = DecisionTreeClassifier() # inisiasi object dengan nama dt
dt.fit(X train, y train) # fit model decision tree dari data train

Latih model pada train set

dt.feature importances

Dapatkan hasil feature importance dari model

Kita dapat menggunakan hasil dari feature importance sebagai business insight dan juga menggunakan feature ini sebagai tambahan eksperimen kita pada model (untuk mengurangi kompleksitas dan menghindari curse of dimensionality)

Review Klasifikasi		Hands On - kNN
Logistic Regression		Decision Tree - Intuition
Hands On - Logistic Regression - Part 1		Decision Tree - Hyperparameters & Feature Importances
Hands On - Logistic Regression - Part 2	ф	Hands On - Decision Tree
Hands On - Analyze Learning Curve		Hands On - Feature Importance &
k-Nearest Neighbor (kNN)		Summary

Review Klasifikasi
Logistic Regression
Hands On - Logistic Regression - Part 1
Hands On - Logistic Regression - Part 2
Hands On - Analyze Learning Curve
k-Nearest Neighbor (kNN)

Contoh Implementasi pada sklearn

```
from sklearn.tree import DecisionTreeClassifier# import decision tree dari sklearn
dt = DecisionTreeClassifier() # inisiasi object dengan nama dt
dt.fit(X train, y train) # fit model decision tree dari data train
```

Latih model pada train set

dan lakukan prediksi dan evaluasi dari data test...

Dokumentasi sklearn Decision Tree:

https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html

Hands on

Topik Supervised Learning: Classification

Review Klasifikasi

Logistic Regression

Hands On - Logistic Regression - Part 1

Hands On - Logistic Regression - Part 2

Hands On - Analyze Learning Curve

k-Nearest Neighbor (kNN)

Hands On - kNN

Decision Tree - Intuition

Decision Tree - Hyperparameters & Feature Importances

Hands On - Decision Tree

Hands On - Feature Importance & Summary

Topik Supervised Learning: Classification

Review Klasifikasi

Logistic Regression

Hands On - Logistic Regression - Part 1

Hands On - Logistic Regression - Part 2

Hands On - Analyze Learning Curve

k-Nearest Neighbor (kNN)

Hands On - kNN

Decision Tree - Intuition

Decision Tree - Hyperparameters & Feature Importances

Hands On - Decision Tree

Hands On - Feature Importance & Summary

Hands on

In Summary: Kapan pakai masing-masing algoritma? Tergantung kasus datanya:)

- Jika datanya bisa dipisahkan secara linear, gunakan logistic regression, sebaliknya jika non linear, decision tree merupakan pendekatan yang lebih baik
 - Namun, jika tidak yakin, kita bisa menggunakan logistic regression sebagai baseline, dan mencoba algoritma lainnya yang menghasilkan performa lebih baik
- Jika data bersifat lebih banyak categorical, decision tree cenderung lebih baik performanya
- Jika mau yang simple dan fast computation, gunakan logistic regression
- Jika datanya tidak balance, decision tree dan improvement-nya cenderung lebih baik

Topik Supervised Learning: Classification

Review Klasifikasi

Logistic Regression

Hands On - Logistic Regression - Part 1

Hands On - Logistic Regression - Part 2

Hands On - Analyze Learning Curve

k-Nearest Neighbor (kNN)

Hands On - kNN

Decision Tree - Intuition

Decision Tree - Hyperparameters & Feature Importances

Hands On - Decision Tree

Hands On - Feature Importance & Summary

Appendix: Step by Step Decision Tree

Bagaimana cara membentuk decision tree dari awal?

Chest Pain	Good Blood Circulation	Blocked Arteries	Heart Disease
No	No	No	No
Yes	Yes	Yes	Yes
Yes	Yes	No	No
Yes	No	???	Yes
etc	etc	etc	etc

Langkah awal yang perlu dilakukan adalah menentukan variabel mana yang akan menjadi root?

Step 1. Cek bagaimana variable Chest Pain saja dapat melakukan prediksi terhadap label heart disease

Chest Pain			Heart Disease
No	No	No	No
Yes	Yes	Yes	Yes
Yes	Yes	No	No
Yes	No	???	Yes
etc	etc	etc	etc

Lakukan pemetaan, jika chest pain bernilai Yes, berapa banyak yang mempunyai label heart disease dan tidak mempunyai heart disease.

Lakukan hal yang sama ketika chest pain bernilai No.

Step 2. Bagaimana variable Blood Circulation saja melakukan prediksi terhadap label heart

	Good Blood Circulation		Heart Disease
No	No	No	No
Yes	Yes	Yes	Yes
Yes	Yes	No	No
Yes	No	???	Yes
etc	etc	etc	etc

Lakukan pemetaan yang serupa seperti chest pain sebelumnya...

Step 3. Bagaimana variable Block Arteries saja melakukan prediksi terhadap label heart disease

	Good Blood Circulation	Blocked Arteries	Heart Disease
No	No	No	No
Yes	Yes	Yes	Yes
Yes	Yes	No	No
Yes	No	???	Yes
etc	etc	etc	etc

Lakukan pemetaan yang serupa seperti chest pain dan blood circulation sebelumnya...

Mari kita summarize hasil sebelumnya

Setiap variable tidak dapat memberikan prediksi yang sempurna untuk melakukan prediksi label heart disease.

Karena tidak ada leaf yang menunjukkan bahwa dengan variabel tersebut dapat melakukan prediksi 100% YES heart disease atau 100% NO heart disease. Kasus ini dapat dikatakan bahwa variabel tersebut **impure.**

Untuk menentukan variabel mana yang bernilai lebih baik, kita dapat menghitung nilai **impurity**, cara yang paling sederhana adalah dengan menggunakan **Gini** algorithm.

Semakin kecil nilai impurity maka semakin baik. Hal ini digunakan dalam penentuan feature importance.

Gini Impurity

Pada leaf ini, Gini impurity = 1 - (probability of "yes")² - (probability of "no")²

$$= 1 - \left(\frac{105}{105 + 39}\right)^2 - \left(\frac{39}{105 + 39}\right)^2$$

$$= 0.395$$

Gini Impurity (Weighted Average)

Dikarenakan
masing-masing leaf
memiliki jumlah sampel
yang berbeda, untuk
menghitung Gini Impurity
dari variabel Chest Pain,
perlu dilakukan weighted
average berdasarkan
jumlah sampel yang
sesuai.

Gini Impurity (Chest Pain) = Weighted average dari Gini impurity di masing-masing node

$$= \left(\frac{144}{144 + 159}\right) 0.395 + \left(\frac{159}{144 + 159}\right) 0.336$$

$$= 0.364$$

Hitung Gini Impurity untuk variabel lainnya

Gini Impurity untuk Chest Pain = 0.364

Gini Impurity untuk Good Blood

Cirlulation = 0.360

Variabel dengan nilai Gini Impurity yang paling rendah digunakan sebagai root pada tree

Gini Impurity untuk Blocked Arteries = 0.381

Good Blood Circulation sebagai Root Tree

Setelah itu kita perlu mengetahui gini impurity dari chest pain / block arteries pada 164 pasien (good blood circlulation) ini untuk prediksi heart disease. Lakukan juga dengan 133 pasien sisanya (not good blood circlulation)

Hitung Gini Impurity pada variabel lainnya

Kemudian, kita akan memiliki tree yang berbentuk seperti ini

Lakukan dengan metode yang sama untuk semua variabel hingga kita mendapatkan semua leaf secara lengkap.

Lakukan terus dengan iterasi yang sama hingga kita memiliki tree yang lengkap untuk melakukan klasifikasi

