Financial Data Science

Lecture 4 Logistic Regression in Finance

Liu Peng liupeng@smu.edu.sg

Two Types of Predictive Models

Regression

• Target variable is continuous

Q:

- Which type of task is more difficult?
- Which direction of conversion makes more sense?
- Examples: house-price prediction, temperature forecasting
- Common algorithms: linear/polynomial regression, ridge & lasso, SVR
- Evaluation metrics: MSE, RMSE, MAE, R2

Classification

- Target variable is categorical
- Examples: spam detection, image recognition
- Common algorithms: logistic regression, k-NN, decision trees/random forests, SVM
- Evaluation metrics: accuracy, precision/recall/F1, confusion matrix, ROC-AUC

Connecting Linear Regression to Classification

y ~ Bernoulli(p)

```
probability if hat{y} > 0.5 \rightarrow 1 if hat{y} <= 0.5 \rightarrow 0
```

- Continuous to discrete:
 - Linear regression estimates
 - For classification, use a threshold: predict class 1 if prediction is above 0.5, else class 0.
- Decision boundary:
 - The threshold 0.5 defines a hyperplane, which separates the two classes.
- Not a good choice for classification:
 - Prediction is unbounded

$$y \sim N(.,.)$$

- Classification outcomes are Bernoulli, not Gaussian; linear regression's constant-variance assumption is violated
- Linear regression doesn't constrain outputs to valid probability ranges, leading to negative or >1 "probabilities"

Figure 13.4 – Visualizing the linear regression model with extended range

Figure 13.6 – Visualizing the logistic regression model with extended range

```
sigmoid fn (-inf, +inf) \longrightarrow (0, 1)
```

How to turn a number to a probability?

Introducing the Sigmoid Function

•
$$p = \sigma(z) = \frac{1}{1 + e^{-z}}$$

•
$$z \rightarrow \infty, \sigma(z) \rightarrow 1; z \rightarrow -\infty, \sigma(z) \rightarrow 0$$

- Hence $\sigma(z) \in [0,1]$
- $\sigma(z)$ represents the probability of an event

Q: what is $\sigma'(z)$? = sigma(z) (1 - sigma(z))

In-class Quiz

• Q1-4

Introducing Logistic Regression

Binary outcome that assumes a Bernoulli distribution

Sigmoid (Logistic) function

Joint Likelihood

Log-likelihood and Crossentropy loss

Binary outcome (Bernoulli distribution)

The binary variable y follows a Bernoulli distribution with probability p:

$$y \sim \mathrm{Bernoulli}(p), \quad y \in \{0,1\}$$

The probability mass function (PMF) is:

$$P(y = 1) = p$$

 $P(y = 0) = 1 - p$

$$P(y\mid p) = p^y (1-p)^{1-y}$$

Logistic regression model with Sigmoid (Logistic) function

$$P(y = 1) = 80\%$$
 odds $lg 8 : 2 = 4$

In logistic regression, we link the linear combination $z=x^{\top}\beta$ to probability p(x) using the sigmoid function:

$$p(x) = \sigma(z) = rac{1}{1+e^{-z}}, \quad ext{where} \quad \overline{z} = \underline{eta_0 + eta_1 x_1 + \cdots + eta_k x_k}$$

This ensures 0 < p(x) < 1, making it a valid Bernoulli parameter.

In other words:
$$P(y = 1) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p)}}$$
 Or equivalently, $\log \frac{P(y = 1)}{P(y = 0)} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p$

Logistic regression model 1

Logistic regression model 2

Obtain the unbounded intermediate output

$$z = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p$$

Convert to probability score using sigmoid function

$$P(y = 1) = \frac{1}{1 + e^{-z}}$$

This is the probability of success

$$\log \frac{P(y=1)}{P(y=0)} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p$$
This is the log odds

Figure 13.2 – Summarizing the logistic regression model

Bernoulli Likelihood for logistic regression

For n independent observations $\{(x_i,y_i)\}_{i=1}^n$, the joint likelihood is:

$$L(eta) = \prod_{i=1}^n p(x_i)^{y_i} [1-p(x_i)]^{1-y_i}$$

Plugging the sigmoid function:

$$L(eta) = \prod_{i=1}^n \left[rac{1}{1+e^{-x_i^ opeta}}
ight]^{y_i} \left[1-rac{1}{1+e^{-x_i^ opeta}}
ight]^{1-y_i}$$

Log-likelihood and Cross-entropy loss

Taking logs to simplify optimization gives the log-likelihood:

$$\ell(eta) = \sum_{i=1}^n \left[y_i \log p(x_i) + (1-y_i) \log (1-p(x_i))
ight]$$

Maximizing the log-likelihood $\ell(\beta)$ is equivalent to minimizing the **binary cross-entropy loss**:

J(beta) =
$$-\ell(eta) = -\sum_{i=1}^n \left[y_i \log p(x_i) + (1-y_i) \log(1-p(x_i)) \right]$$

Figure 13.9 – Illustrating the CEL

if y = 1, $P(y = 1) \rightarrow 1$: close to 0 if $P(y = 1) \rightarrow 0$, then very high

In-class Quiz

• Q5-8

Model Evaluation for Logistic Regression

- Confusion Matrix
 - Tabulates True Positives, True Negatives, False Positives, False Negatives
 - Basis for all threshold-dependent metrics
- Threshold-Dependent Metrics
 - Accuracy = (TP+TN)/(TP+TN+FP+FN)
 - Precision (PPV) = TP/(TP+FP)
 - Recall (TPR / Sensitivity) = TP/(TP+FN)
 - F₁ Score = 2·(Precision·Recall)/(Precision+Recall)
- Threshold-Independent Metrics
 - ROC Curve: plots TPR vs. FPR as threshold varies
 - AUC (Area Under ROC): single-number measure of discrimination

Confusion matrix

\rangle	Predicted $\hat{y} = 0$	Predicted $\hat{y} = 1$	Total
Non-event $y = 0$	a	<u>c</u>	a+c
Event y = ∅	<u>b</u>	\overline{d}	b+d
Total	a + b	c+d	n = a + b + c + d

$$Accuracy = \frac{a+d}{n}$$

Error rate =
$$\frac{b+c}{n}$$

Recall =
$$\frac{d}{b+d}$$
 y = 1

Precision =
$$\frac{d}{c+d}$$

Specificity =
$$\frac{a}{a+c}$$

reward = 100 x recall + 1 x precision

Figure 13.10 – Illustrating the confusion matrix and common evaluation metrics for binary classification tasks

Group Discussion - How to Choose the Evaluation Metrics?

In-class Quiz

• Q9-12

Reading materials

• Chapter 13, The Statistics and Machine Learning with R Workshop

Group Homework

- Predict whether a customer will default on a loan (yes/no) using logistic regression
- Dataset
 - Choose a public credit-default dataset (e.g. UCI Credit Card Default, Kaggle "Give Me Some Credit," or a comparable financial dataset).
- Data processing
 - Clean and impute missing values.
 - Encode categorical variables (one-hot, ordinal, target encoding).
 - Standardize or normalize numeric predictors as needed.
- Modeling
 - Fit a baseline logistic regression (no regularization).
 - Fit L1 (lasso) and L2 (ridge)—penalized logistic models; use cross-validation to select the penalty strength.
- Evalution
 - Accuracy, Precision, Recall, F1–score at a 0.5 threshold
 - ROC curve & AUC

Homework

- Second group homework to submit by one day before class starts next week
- Post learning reflections and questions in the group chat if any
- Review course contents and recording