

Deuterium Electrochemical Charging Method for a Desorption Study Guangdong Technology Frake Plant Charging Method for a Desorption Study (Frake Plant Charging Method for a De

in Low-alloy Steel and Pure Zr

Zuoming Wang a, b, Guocong Lin a, b, Aleksandra Baron-Wiechec a* ^aGuangdong Technion - Israel Institude of Technology, China

^bKey Laboratory of Materials and Technologies for Energy Conversion (MATEC), China ^cNomaten - Centre of Excellence in Multifunctional Materials for Industrial and Medical Application, Poland

Guangdong Technion

Introduction

- The accumulation of the hydrogen isotopes generated from transmutation and diffusion of the plasma isotopes will lead to hydrogen embrittlement. Hydrogen tend to cluster near dislocation and cause small cracks.
- The spite of numerous investigations into the retention and diffusion of Hydrogen in fusion and fission related materials, there is a large scatter in the experimental data and little agreement on the activation energy of H de-trapping.

Characterization Techniques

Ion Beam Analysis (IBA)

Secondary Ion Mass Spectrometry (SIMS)

Image Plate (IP) imaging

Hydrogen retention depends on

- The gap time between introducing H and its analysis
- Temperature
- Pressure
- Complexity to execute the experiment
- Hydrogen sources (natural/ manually introduced)

Electrochemical charging of D

Mass Spectrometry

- Simple and reliable route to introduce deuterium (D) into metals
- Clear distinction between the naturally occurring H in the materials and intentionally introduced for the experiment

Methods used to detect hydrogen and its isotopes

Methology **Anode** Zirconium TRIP steel Annealing 99.9 atom % D₂O **ToF-SIMS** Cathode $0.5 \text{ M H}_2\text{SO}_4 \quad 0.1 \text{M HAsNa}_2\text{O}_4$ **Thermal Desorption Spectroscopy (TDS) Gap time:** 0 0 0 0 0 0 1h 24h 10days Charging 15days

Background **Desorption H** Charging mass spectrometer vacuum sample furnace Ramping rate: 5K/min, 10K/min, 20K/min $2H(ad)\rightarrow H_2(g)$

Kissinger Plot

Temperature with constant ramp rate: $T = T_0 + \phi t$ Substituting to Kissinger equation: $\frac{dx}{dt} = A(1-x)^n \exp\left(\frac{E_d}{RT}\right)$ Differentiating $\rightarrow \ln\left(\frac{\phi}{T_n^2}\right) = -\frac{E_d}{R}\left(\frac{1}{T_p}\right) + \ln(A\frac{R}{E_d})$

Results – TRIP steel

Results - Zr

Conclusions

- Surface-related factors, such as gas formation, phase uncertainty, and surface finishing, influence experimental results.
- The inhomogeneity of charging conditions affect the introduction of hydrogen into the samples stronger than the microstructure conditions for low temperatures traps.
- Among tested electrolytes the best reproducibility of results were obtained for pure D₂O and 0.1 M arsenate solutions respectively.

Conducting complementary tests

- ToF-SIMS measurements: complimentary test of Deuterium profile after D charging in Zr.
- **SQUID** measurements: investigation on the phase composition change in TRIP steel before and after annealing
- An experimental value is to be established that allows to predict the amount of D introduced to the sample according to time of charging and voltage behavior

Acknowledgements

This work has been carried out within the framework of the Key lab and has received funding from the Key lab research and training program 2014-2018 under grant agreement No 633053 and the MAB program [grant number EP/P012450/1].

Contact

Zuoming Wang Research assistant Tel: + 86 13924765019 email: wang06653@gtiit.edu.cn website: https://baron-lab.com/

BARON LAB

Surface Engineering and Corrosion Lab

References: [1] A. Widdowson et al., Overview of fuel inventory in JET with the ITER-like wall, Nuclear Fusion, 57 (2017) 8

- [2] G.F. Matthews et al., JET ITER-like wall—overview and experimental programme, Physica Scripta T145 (2011) 014001
- [3] K. Heinola et al. Experience on divertor fuel retention after two ITER-Like Wall campaigns, Physica Scripta T170 (2017) 014063
- [4] I. Nunes et al., First results from recent JET experiments in Hydrogen and Hydrogen-Deuterium plasmas, 26th IAEA Fusion Energy Conference, Kyoto, Japan, October, 17-22, 2016