Name of special distribution (X)	Properties	What X represents and its range (R_X)	Params	Probability $P(X = x)$	Expected value $E(X)$	Variance Var(X)
Binomial distribution	 You perform n identical experiments and you know n before starting Each experiment or trial is independent of each other The probability of success, p (or seeing a particular event) is the same for every trial 	The number of successes observed \mathbf{R}_{X} : $\{0,1,2,,n\}$	n,p	$\binom{n}{x} p^x (1-p)^{n-x}$	np	np(1-p)
Hypergeometric distribution	 I sample k objects from a finite population with b success and r failures Each sample of k objects is equally likely to be chosen 	The number of successes observed R_X : $\{0,1,,min\{b,k\}\}$	k, b, r	$\frac{\binom{b}{x}\binom{r}{k-x}}{\binom{b+r}{k}}$	$\frac{kb}{b+r}$	$\frac{kbr(b+r-k)}{(b+r)^2(b+r-1)}$
Negative binomial distribution	 You perform identical experiments and you don't know n before starting, rather you keep performing experiments until you observe m successes Each experiment or trial is independent of each other The probability of success, p is same for every trial 	The number of trials before m -th success is observed $R_X: \{m, m + 1,, \infty\}$	m,p	$\begin{cases} \binom{x-1}{m-1} p^m (1-p)^{x-m} \\ 0 \end{cases}$	$\frac{m}{p}$	$\frac{m(1-p)}{p^2}$
Poisson distribution	 An event occurs at an average rate of λ such that: Occurrences of the event are independent of each other More than one of these events can't occur simultaneously 	The number of events R_X : $\{0,1,2,,\infty\}$	λ	$\frac{e^{-\lambda}\lambda^x}{x!}$	λ	λ