

FCC Test Report

Report No.: RF160923E02E

FCC ID: U8G-P1811ACPRO

Test Model: Balance 30 Pro

Series Model: Peplink Balance 30 Pro, BPL-031-LTEA-W-T, Pismo 811AC, B30 Pro

Received Date: Mar. 20, 2019

Test Date: Apr. 27 to May 15, 2019

Issued Date: May 21, 2019

Applicant: PISMO LABS TECHNOLOGY LIMITED

Address: A8, 5/F, HK Spinners Industrial Building, Phase 6, 481 Castle Peak Road,

Cheung Sha Wan, Hong Kong

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

Hsin Chu Laboratory

Lab Address: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300,

Taiwan R.O.C.

Test Location: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300,

Taiwan R.O.C.

FCC Registration /

723255 / TW2022 **Designation Number:**

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies.

Report No.: RF160923E02E Page No. 1 / 66 Report Format Version: 6.1.1 Reference No.: 190320E05

Table of Contents

R	Release Control Record4					
1	Certificate of Conformity5					
2	S	ummary of Test Results	6			
	2.1 2.2	Measurement Uncertainty Modification Record				
3		eneral Information				
	3.1	General Description of EUT	. 7			
	3.2	Description of Test Modes	10			
	3.2.1	Test Mode Applicability and Tested Channel Detail				
	3.3	Duty Cycle of Test Signal				
	3.4	Description of Support Units				
	3.4.1 3.5	Configuration of System under Test				
		·				
4		est Types and Results				
	4.1	Radiated Emission and Bandedge Measurement	18			
		Limits of Radiated Emission and Bandedge Measurement				
		Test Instruments Test Procedures				
		Deviation from Test Standard				
		Test Setup				
		EUT Operating Conditions.				
		Test Results (Mode 1)				
		Test Results (Mode 2)				
	4.2	Conducted Emission Measurement				
		Limits of Conducted Emission Measurement				
		Test Instruments				
		Test Procedures				
		Deviation from Test Standard				
		Test Setup				
		EUT Operating Conditions Test Results (Mode 1)				
		Test Results (Mode 2)				
	4.3	6dB Bandwidth Measurement				
		Limits of 6dB Bandwidth Measurement.				
	4.3.2	Test Setup	46			
	4.3.3	Test Instruments	46			
		Test Procedure				
		Deviation fromTest Standard				
		EUT Operating Conditions				
		Test Result				
	4.4	Conducted Output Power Measurement				
		Limits of Conducted Output Power Measurement				
		Test Instruments				
		Test Procedures				
		Deviation from Test Standard				
	4.4.6	EUT Operating Conditions	49			
		Test Results				
	4.5	Power Spectral Density Measurement				
		Limits of Power Spectral Density Measurement				
		Test Setup				
		Test Instruments				
	+.5.4	IEST LIOPERANIE	IJΙ			

4.5.5 Deviation from Test Standard	51		
4.5.6 EUT Operating Condition	51		
4.5.7 Test Results	52		
4.6 Conducted Out of Band Emission Measurement	55		
4.6.1 Limits of Conducted Out of Band Emission Measurement	55		
4.6.2 Test Setup			
4.6.3 Test Instruments	55		
4.6.4 Test Procedure	55		
4.6.5 Deviation from Test Standard	55		
4.6.6 EUT Operating Condition	55		
4.6.7 Test Results	56		
5 Pictures of Test Arrangements	65		
_			
Appendix – Information of the Testing Laboratories6			

Release Control Record

Issue No.	Description	Date Issued
RF160923E02E	Original release.	May 21, 2019

Page No. 4 / 66 Report Format Version: 6.1.1

1 Certificate of Conformity

Product: PEPWAVE / peplink Wireless Product

Brand: PEPWAVE / peplink

Test Model: Balance 30 Pro

Series Model: Peplink Balance 30 Pro, BPL-031-LTEA-W-T, Pismo 811AC, B30 Pro

Sample Status: PROTOTYPE

Applicant: PISMO LABS TECHNOLOGY LIMITED

Test Date: Apr. 27 to May 15, 2019

Standards: 47 CFR FCC Part 15, Subpart C (Section 15.247)

ANSI C63.10: 2013

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by: , Date: May 21, 2019

Wendy Wu / Specialist

Approved by : , **Date:** May 21, 2019

May Chen / Manager

2 Summary of Test Results

47 CFR FCC Part 15, Subpart C (Section 15.247)						
FCC Clause	Test Item	Result	Remarks			
15.207	AC Power Conducted Emission	PASS	Meet the requirement of limit. Minimum passing margin is -10.03dB at 0.15000MHz.			
15.205 / 15.209 / 15.247(d)	Radiated Emissions and Band Edge Measurement	PASS	Meet the requirement of limit. Minimum passing margin is -0.1dB at 4874MHz, 2390MHz.			
15.247(d)	15.247(d) Antenna Port Emission		Meet the requirement of limit.			
15.247(a)(2) 6dB bandwidth		PASS	Meet the requirement of limit.			
15.247(b)	Conducted power	PASS	Meet the requirement of limit.			
15.247(e)	Power Spectral Density	PASS	Meet the requirement of limit.			
15.203	Antenna Requirement	PASS	Antenna connector is R-SMA not a standard connector.			

Note:

Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)
Conducted Emissions at mains ports	150kHz ~ 30MHz	1.8 dB
Radiated Emissions up to 1 GHz	30MHz ~ 1GHz	4.8 dB
	1GHz ~ 6GHz	5.0 dB
Radiated Emissions above 1 GHz	6GHz ~ 18GHz	5.0 dB
	18GHz ~ 40GHz	5.3 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT

Product	PEPWAVE / peplink Wireless Product
Brand	PEPWAVE / peplink
Test Model	Balance 30 Pro
Series Model	Peplink Balance 30 Pro, BPL-031-LTEA-W-T, Pismo 811AC, B30 Pro
Status of EUT	PROTOTYPE
Power Supply Rating	10 - 56Vdc from power adapter
Modulation Type	CCK, DQPSK, DBPSK for DSSS 64QAM, 16QAM, QPSK, BPSK for OFDM 256QAM for OFDM in 11ac mode only
Modulation Technology	DSSS,OFDM
Transfer Rate	802.11b: up to 11Mbps 802.11a/g: up to 54Mbps 802.11n: up to 300Mbps 802.11ac: up to 866.7Mbps
0	2.4GHz :2.412 ~ 2.462GHz
Operating Frequency	5GHz: 5.18 ~ 5.24GHz, 5.745 ~ 5.825GHz
Number of Channel	2.4GHz: 802.11b, 802.11g, 802.11n (HT20):11 802.11n (HT40):7 5GHz: 802.11a, 802.11n (HT20), 802.11ac (VHT20): 9 802.11n (HT40), 802.11ac (VHT40): 4 802.11ac (VHT80): 2
Output Power	2.4GHz: 997.839mW 5GHz: 5.18 ~ 5.24GHz: 511.334mW 5.745 ~ 5.825GHz: 410.933mW
Antenna Type	Refer to Note
Antenna Connector	Refer to Note
Accessory Device	Adapter x 1
Data Cable Supplied	NA

Note:

- 1. There are WLAN, WWAN(LTE) technology used for the EUT.
- 2. EUT contains two WiFi chip as same model, this chip model support dual band operation, but it will be locked to single band operation by firmware. One chip is supported 2.4GHz, other is supported 5GHz.
- 3. EUT could be applied with a plug in USB cellular device.
- 4. EUT inside has one WWAN(LTE) module which FCC ID: N7NMC7455.

5. Simultaneously transmission condition.

Condition	Technology				
1	1 WLAN (2.4GHz) WLAN (5GHz) 2 WLAN (2.4GHz) WLAN (5GHz)		WWAN(LTE) module (FCC ID: N7NMC7455)	-	
2			WWAN(LTE) module (FCC ID: N7NMC7455)	3G/LTE (USB cellular device)	
Note: The emission of the simultaneous operation has been evaluated and no non-compliance was found					

6. The EUT has below model names, which are identical to each other in all aspects except for the following:

Brand	Model	Difference
	Balance 30 Pro	
	Peplink Balance 30 Pro	
PEPWAVE / peplink	BPL-031-LTEA-W-T	For marketing requirement
	Pismo 811AC	
	B30 Pro	

From the above models, model: Balance 30 Pro was selected as representative model for the test and its data are recorded in this report.

7. The EUT must be supplied with a power adapter as following table:

Adapter 1					
Brand	Model No.	Spec.			
		Input: 100-240Vac, 50/60Hz, 1A			
DVE	DSA-36PFH-12 FUS 120300AN	Output: 12Vdc, 3A			
		DC output cable (Unshielded, 1.5m)			
Adapter 2 (C	Only for test not for sale)				
Model No.	Model No. Spec.				
		Input: 100-240Vac, 47-63Hz, 1.6A			
STD-26021		AC input cable (Unshielded, 1.5m with one core)			
31D-20021		Output: 56Vdc, 2.15A			
		DC output cable (Unshielded, 1.5m)			

8. The antennas provided to the EUT, please refer to the following table:						
For WLAN						
Brand Model		Antenna Net Gain (dBi)	Frequency Range (MHz)	Antenna Type	Connector Type	
Master Wave		2.44	2400 ~ 2500	Dipole	R-SMA	
Technology 98614PRSX000		0 4.10	5150 ~ 5350	Disala	R-SMA	
Co., Ltd		4.73	5725 ~ 5850	Dipole	K-SIVIA	
		For WWAN(LTE)				
Model	Antenna Net Gain(dBi)	Frequency Range (MHz)	Antenna Type	Conne	Connector Type	
aster lave nology	2.5	1920~1980				
	1.82	880~915				
	1.48	1710~1785				
	3.42	2500~2570				
	2	832~862				
	3.52	2570~2620	Dipole SMA		2MA	
	3.02	2300~2400			DIVIA	
	2.39	1850~1910				
	1.69	699~716				
	2.12	777~787				
	2.39	1850~1915				
	3.52	2496~2690				
	Master Wave Technology Co., Ltd	Master Wave Technology Co., Ltd Model	Brand Model Antenna Net Gain (dBi) Master Wave Technology Co., Ltd 98614PRSX000 4.10 For WWAN(LTE) Model Antenna Net Gain(dBi) Frequency Range (MHz) 2.5 1920~1980 1.82 880~915 1.48 1710~1785 3.42 2500~2570 2 832~862 3.52 2570~2620 3.02 2300~2400 2.39 1850~1910 1.69 699~716 2.12 777~787 2.39 1850~1915	Brand Model Antenna Net Gain (dBi) Frequency Range (MHz) Master Wave Technology Co., Ltd 98614PRSX000 4.10 5150 ~ 5350 For WWAN(LTE) Model Antenna Net Gain(dBi) Frequency Range (MHz) Antenna Type 2.5 1920~1980 1.82 880~915 1.48 1710~1785 3.42 2500~2570 2 2 832~862 3.52 2570~2620 Dipole 3.02 2300~2400 2.39 1850~1910 1.69 699~716 2.12 777~787 2.39 1850~1915	Brand Model Antenna Net Gain (dBi) Frequency Range (MHz) Antenna Type Master Wave Technology Co., Ltd 2.44 2400 ~ 2500 Dipole For WWAN(LTE) Model Antenna Net Gain(dBi) Frequency Range (MHz) Antenna Type Conne 2.5 1920~1980 1.82 880~915 1.48 1710~1785 3.42 2500~2570 2 832~862 3.52 2570~2620 Dipole S 3642ZSAX001 3.02 2300~2400 2.39 1850~1910 1.69 699~716 2.12 777~787 2.39 1850~1915 1.85	

9. The EUT incorporates a MIMO function.

2.4GHz Band					
MODULATION MODE	ODULATION MODE TX & RX CONFIGURATION				
802.11b	2TX	2RX			
802.11g	2TX	2RX			
802.11n (HT20)	2TX	2RX			
802.11n (HT40)	2TX	2RX			
5GHz Band					
MODULATION MODE	TX & RX CON	IFIGURATION			
802.11a	2TX	2RX			
802.11n (HT20)	2TX	2RX			
802.11n (HT40)	2TX	2RX			
802.11ac (VHT20)	2TX	2RX			
802.11ac (VHT40)	2TX	2RX			
802.11ac (VHT80)	2TX	2RX			

Note: The modulation and bandwidth are similar for 802.11n mode for 20MHz (40MHz) and 802.11ac mode for 20MHz (40MHz), therefore investigated worst case to representative mode in test report. (Final test mode refer section 3.2.1)

Report No.: RF160923E02E Reference No.: 190320E05 Page No. 9 / 66

Report Format Version: 6.1.1

^{10.} The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or user's manual.

3.2 Description of Test Modes

11 channels are provided for 802.11b, 802.11g and 802.11n (HT20):

Channel	Frequency	Channel	Frequency
1	2412MHz	7	2442MHz
2	2417MHz	8	2447MHz
3	2422MHz	9	2452MHz
4	2427MHz	10	2457MHz
5	2432MHz	11	2462MHz
6	2437MHz		

7 channels are provided for 802.11n (HT40):

Channel	Frequency	Channel	Frequency
3	2422MHz	7	2442MHz
4	2427MHz	8	2447MHz
5	2432MHz	9	2452MHz
6	2437MHz		

3.2.1 Test Mode Applicability and Tested Channel Detail

EUT CONFIGURE		APPLICA	ABLE TO	DESCRIPTION	
MODE	RE≥1G	RE<1G	PLC	APCM	DESCRIPTION
1	\checkmark	\checkmark	\checkmark	\checkmark	With Adapter 1
2	-	V	V	-	With Adapter 2 (for support 802.3af POE function)

Where

RE \geq 1G: Radiated Emission above 1GHz &

Bandedge Measurement

RE<1G: Radiated Emission below 1GHz

PLC: Power Line Conducted Emission

APCM: Antenna Port Conducted Measurement

Note:

1. The EUT had been pre-tested on the positioned of each 3 axis. The worst case was found when positioned on **Z-plane**.

2. "-"means no effect.

Radiated Emission Test (Above 1GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

MODE	AVAILABLE	TESTED	MODULATION	MODULATION	DATA RATE
WODL	CHANNEL	CHANNEL	TECHNOLOGY	TYPE	(Mbps)
802.11b	1 to 11	1, 6, 11	DSSS	DBPSK	1
802.11g	1 to 11	1, 6, 11	OFDM	BPSK	6
802.11n (HT20)	1 to 11	1, 6, 11	OFDM	BPSK	6.5
802.11n (HT40)	3 to 9	3, 6, 9	OFDM	BPSK	13.5

Radiated Emission Test (Below 1GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

MODE	AVAILABLE	TESTED	MODULATION	MODULATION	DATA RATE
	CHANNEL	CHANNEL	TECHNOLOGY	TYPE	(Mbps)
802.11n (HT20)	1 to 11	6	OFDM	BPSK	6.5

Power Line Conducted Emission Test:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

MODE	AVAILABLE	TESTED	MODULATION	MODULATION	DATA RATE
	CHANNEL	CHANNEL	TECHNOLOGY	TYPE	(Mbps)
802.11n (HT20)	1 to 11	6	OFDM	BPSK	6.5

Report No.: RF160923E02E Page No. 11 / 66 Report Format Version: 6.1.1

Reference No.: 190320E05

Antenna Port Conducted Measurement:

- This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	DATA RATE (Mbps)
802.11b	1 to 11	1, 6, 11	DSSS	DBPSK	1
802.11g	1 to 11	1, 6, 11	OFDM	BPSK	6
802.11n (HT20)	1 to 11	1, 6, 11	OFDM	BPSK	6.5
802.11n (HT40)	3 to 9	3, 6, 9	OFDM	BPSK	13.5

Test Condition:

APPLICABLE TO	ENVIRONMENTAL CONDITIONS	INPUT POWER	TESTED BY
RE≥1G	25deg. C, 65%RH	120Vac, 60Hz	Robert Cheng
	25deg. C, 65%RH	120Vac, 60Hz	Nelson Teng
RE<1G	23deg. C, 69%RH	120Vac, 60Hz	Andy Ho
DI O	25deg. C, 68%RH	120Vac, 60Hz	Andy Ho
PLC	25deg. C, 68%RH	120Vac, 60Hz	Weiwei Lo
APCM	25deg. C, 60%RH	120Vac, 60Hz	Jyunchun Lin

Report No.: RF160923E02E Page No. 12 / 66 Report Format Version: 6.1.1

Reference No.: 190320E05

3.3 Duty Cycle of Test Signal

If duty cycle of test signal is \ge 98 %, duty factor is not required. If duty cycle of test signal is < 98%, duty factor shall be considered.

802.11b: Duty cycle = 12.244/12.344 = 0.992

802.11g: Duty cycle = 2.026/2.11 = 0.96, Duty factor = $10 * \log(1/0.96) = 0.18$

802.11n (HT20): Duty cycle = 1.885/1.97 = 0.957, Duty factor = 10 * log(1/0.957) = 0.19**802.11n (HT40):** Duty cycle = 0.926/1.009 = 0.918, Duty factor = 10 * log(1/0.918) = 0.37

3.4 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
A.	3G Donle	D-Link	DWM-156	Q2011A4000812	NA	Provided by Lab
B.	Laptop	DELL	PP32LA	GSLB32S	FCC DoC	Provided by Lab
C.	Laptop	Lenovo	80WG	YD025N5Q	PD93165NGU	Provided by Lab
D.	SIM Card	KeysSight	E7515-10910	NA	NA	Provided by Lab
E.	PoE Load	NA	NA	NA	NA	Provided by Lab
F.	Adapter	NA	STD-26021	NA	NA	Supplied by client

Note:

^{1.} All power cords of the above support units are non-shielded (1.8m).

ID	Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1.	GND Cable	1	3	No	0	Provided by Lab
2.	DC Cable	1	1.5	No	0	Supplied by client
3.	RJ-45 Cable	1	10	No	0	Provided by Lab
4.	RJ-45 Cable	1	10	No	0	Provided by Lab
5.	RJ-45 Cable	1	10	No	0	Provided by Lab
6.	DC Cable	1	1.5	No	1	Supplied by client
7.	AC Cable	1	1.5	No	0	Supplied by client

Note: The core(s) is(are) originally attached to the cable(s).

3.4.1 Configuration of System under Test

For Mode 1

3.5 General Description of Applied Standards

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C (15.247)
KDB 558074 D01 15.247 Meas Guidance v05r02
KDB 662911 D01 Multiple Transmitter Output v02r01
ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

Report No.: RF160923E02E Page No. 17 / 66 Report Format Version: 6.1.1

Reference No.: 190320E05

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least or 30dB below the highest level of the desired power:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level $(dBuV/m) = 20 \log Emission level (uV/m)$.
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

Report No.: RF160923E02E Page No. 18 / 66 Report Format Version: 6.1.1

Reference No.: 190320E05

4.1.2 Test Instruments

For Mode 1

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Test Receiver ESR7 R&S	ESR7	102026	Apr. 24, 2019	Apr. 23, 2020
Spectrum Analyzer Keysight	N9030B	MY57141948	June 01, 2018	May 31, 2019
Pre-Amplifier EMCI	EMC001340	980142	Jan. 25, 2019	Jan. 24, 2020
Loop Antenna Electro-Metrics	EM-6879	269	Sep. 07, 2018	Sep. 06, 2019
RF Cable	NA	LOOPCAB-001	Jan. 14, 2019	Jan. 13, 2020
RF Cable	NA	LOOPCAB-002	Jan. 14, 2019	Jan. 13, 2020
Pre-Amplifier EMCI	EMC330N	980538	May 07, 2018	May 06, 2019
Trilog Broadband Antenna SCHWARZBECK	VULB9168	AMP-ZFL-05	May 07, 2018	May 06, 2019
RF Cable	8D	966-5-1	May 07, 2018	May 06, 2019
RF Cable	8D	966-5-2	May 07, 2018	May 06, 2019
RF Cable	8D	966-5-3	May 07, 2018	May 06, 2019
Fixed attenuator Mini-Circuits	UNAT-5+	PAD-ATT5-02	Jan. 28, 2019	Jan. 27, 2020
Horn_Antenna SCHWARZBECK	BBHA 9120D	9120D-1819	Nov. 25, 2018	Nov. 24, 2019
Pre-Amplifier EMCI	EMC12630SE	980509	May 07, 2018	May 06, 2019
RF Cable EMCI	EMC104-SM-SM-1500	180503	May 07, 2018	May 06, 2019
RF Cable EMCI	EMC104-SM-SM-2000	180501	May 07, 2018	May 06, 2019
RF Cable EMCI	EMC104-SM-SM-6000	180505	May 07, 2018	May 06, 2019
Pre-Amplifier EMCI	EMC184045SE	980387	Jan. 28, 2019	Jan. 27, 2020
Horn_Antenna SCHWARZBECK	BBHA 9170	BBHA9170519	Nov. 25, 2018	Nov. 24, 2019
RF Cable	EMC102-KM-KM-1200	160924	Jan. 28, 2019	Jan. 27, 2020
RF Cable	EMC102-KM-KM-1200	160925	Jan. 28, 2019	Jan. 27, 2020
Software	ADT_Radiated_V8.7.08	NA	NA	NA
Boresight Antenna Tower & Turn Table Max-Full	MF-7802BS	MF780208530	NA	NA
Spectrum Analyzer R&S	FSV40	100964	June 20, 2018	June 19, 2019
Power meter Anritsu	ML2495A	1014008	May 09, 2018	May 08, 2019
Power sensor Anritsu	MA2411B	0917122	May 09, 2018	May 08, 2019
Fixed Attenuator Mini-Circuits	MDCS18N-10	MDCS18N-10-01	Apr. 15, 2019	Apr. 14, 2020
Note:				

Note

- 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 3. The test was performed in 966 Chamber No. 5.
- 5. Loop antenna was used for all emissions below 30 MHz.
- 6. Tested Date: Apr. 27 to May. 02, 2019

For Mode 2

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Test Receiver ESR7 R&S	ESR7	102026	Apr. 24, 2019	Apr. 23, 2020
Spectrum Analyzer Keysight	N9030B	MY57141948	June 01, 2018	May 31, 2019
Pre-Amplifier EMCI	EMC001340	980142	Jan. 25, 2019	Jan. 24, 2020
Loop Antenna Electro-Metrics	EM-6879	269	Sep. 07, 2018	Sep. 06, 2019
RF Cable	NA	LOOPCAB-001	Jan. 14, 2019	Jan. 13, 2020
RF Cable	NA	LOOPCAB-002	Jan. 14, 2019	Jan. 13, 2020
Pre-Amplifier EMCI	EMC330N	980538	Apr. 30, 2019	Apr. 29, 2020
Trilog Broadband Antenna SCHWARZBECK	VULB9168	9168-0842	Nov. 21, 2018	Nov. 20, 2019
RF Cable	8D	966-5-1	May 03, 2019	May 02, 2020
RF Cable	8D	966-5-2	May 03, 2019	May 02, 2020
RF Cable	8D	966-5-3	May 03, 2019	May 02, 2020
Fixed attenuator Mini-Circuits	UNAT-5+	PAD-ATT5-02	Jan. 28, 2019	Jan. 27, 2020
Software	ADT_Radiated_V8.7.08	NA	NA	NA
Boresight Antenna Tower & Turn Table Max-Full	MF-7802BS	MF780208530	NA	NA

Note:

- 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. The test was performed in 966 Chamber No. 5.
- 3. Loop antenna was used for all emissions below 30 MHz.
- 4. Tested Date: May 15, 2019

4.1.3 Test Procedures

For Radiated emission below 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

NOTE:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

For Radiated emission above 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detects function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:

- The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is \geq 1/T (Duty cycle \leq 98%) or 10Hz (Duty cycle \geq 98%) for Average detection (AV) at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.

4.1.4 Deviation from Test Standard

No deviation.

4.1.5 Test Setup

For Radiated emission below 30MHz

For Radiated emission 30MHz to 1GHz

For Radiated emission above 1GHz

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.6 EUT Operating Conditions

- a. Placed the EUT on the testing table.
- b. Controlling software (Atheros Radio Test 2(ART2-GUI) Version:2.3) has been activated to set the EUT under transmission condition continuously.

4.1.7 Test Results (Mode 1)

Above 1GHz Data:

802.11b

CHANNEL	TX Channel 1	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

		ANTENNA	POLARITY 8	& TEST DIS	TANCE: HO	RIZONTAL	AT 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	2386.30	53.7 PK	74.0	-20.3	1.44 H	212	56.9	-3.2
2	2386.30	40.4 AV	54.0	-13.6	1.44 H	212	43.6	-3.2
3	2390.00	54.7 PK	74.0	-19.3	1.50 H	200	57.9	-3.2
4	2390.00	41.8 AV	54.0	-12.2	1.50 H	200	45.0	-3.2
5	*2412.00	102.3 PK			1.53 H	207	105.5	-3.2
6	*2412.00	100.3 AV			1.53 H	207	103.5	-3.2
7	4824.00	41.8 PK	74.0	-32.2	1.17 H	257	41.0	0.8
8	4824.00	38.7 AV	54.0	-15.3	1.17 H	257	37.9	0.8
		ANTENNA	POLARITY	/ & TEST DI	STANCE: V	ERTICAL A	T 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	2386.30	59.6 PK	74.0	-14.4	1.95 V	151	62.8	-3.2
2	2386.30	53.7 AV	54.0	-0.3	1.95 V	151	56.9	-3.2
3	2390.00	56.7 PK	74.0	-17.3	1.95 V	151	59.9	-3.2
4	2390.00	47.7 AV	54.0	-6.3	1.95 V	151	50.9	-3.2
5	*2412.00	112.6 PK			1.95 V	151	115.8	-3.2
6	*2412.00	110.7 AV			1.95 V	151	113.9	-3.2
7	4824.00	50.3 PK	74.0	-23.7	1.37 V	156	49.5	0.8
8	4824.00	48.8 AV	54.0	-5.2	1.37 V	156	48.0	0.8

REMARKS:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. " * ": Fundamental frequency.

CHANNEL	TX Channel 6	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

		ANTENNA	POLARITY	& TEST DIS	TANCE: HO	RIZONTAL	AT 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	2390.00	54.4 PK	74.0	-19.6	1.50 H	204	57.6	-3.2
2	2390.00	41.5 AV	54.0	-12.5	1.50 H	204	44.7	-3.2
3	*2437.00	102.4 PK			1.50 H	204	105.4	-3.0
4	*2437.00	100.6 AV			1.50 H	204	103.6	-3.0
5	2483.50	55.3 PK	74.0	-18.7	1.50 H	204	58.4	-3.1
6	2483.50	42.2 AV	54.0	-11.8	1.50 H	204	45.3	-3.1
7	2485.30	52.6 PK	74.0	-21.4	1.50 H	204	55.7	-3.1
8	2485.30	39.6 AV	54.0	-14.4	1.50 H	204	42.7	-3.1
9	4874.00	50.4 PK	74.0	-23.6	1.19 H	251	49.7	0.7
10	4874.00	47.1 AV	54.0	-6.9	1.19 H	251	46.4	0.7
11	7311.00	43.7 PK	74.0	-30.3	1.49 H	211	37.0	6.7
12	7311.00	35.0 AV	54.0	-19.0	1.49 H	211	28.3	6.7
		ANTENNA	POLARITY	& TEST DI	STANCE: V	ERTICAL A	T 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	2390.00	56.1 PK	74.0	-17.9	1.94 V	156	59.3	-3.2
2	2390.00	46.7 AV	54.0	-7.3	1.94 V	156	49.9	-3.2
3	*2437.00	117.6 PK			1.94 V	156	120.6	-3.0
4	*2437.00	115.7 AV			1.94 V	156	118.7	-3.0
5	2483.50	52.5 PK	74.0	-21.5	1.94 V	156	55.6	-3.1
6	2483.50	44.3 AV	54.0	-9.7	1.94 V	156	47.4	-3.1
7	2485.30	57.5 PK	74.0	-16.5	1.94 V	156	60.6	-3.1
8	2485.30	48.9 AV	54.0	-5.1	1.94 V	156	52.0	-3.1
9	4874.00	54.6 PK	74.0	-19.4	1.50 V	160	53.9	0.7
10	4874.00	53.9 AV	54.0	-0.1	1.50 V	160	53.2	0.7
11	7311.00	46.9 PK	74.0	-27.1	1.45 V	180	40.2	6.7
12	7311.00	40.4 AV	54.0	-13.6	1.45 V	180	33.7	6.7

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. " * ": Fundamental frequency.

Report No.: RF160923E02E Reference No.: 190320E05 Page No. 25 / 66 Report Format Version: 6.1.1

CHANNEL	TX Channel 11	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

		ANTENNA	POLARITY 8	& TEST DIS	TANCE: HO	RIZONTAL	AT 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2462.00	102.1 PK			1.48 H	204	105.2	-3.1
2	*2462.00	100.1 AV			1.48 H	204	103.2	-3.1
3	2483.50	53.2 PK	74.0	-20.8	1.48 H	204	56.3	-3.1
4	2483.50	40.1 AV	54.0	-13.9	1.48 H	204	43.2	-3.1
5	2487.70	54.8 PK	74.0	-19.2	1.48 H	204	57.9	-3.1
6	2487.70	41.9 AV	54.0	-12.1	1.48 H	204	45.0	-3.1
7	4924.00	42.5 PK	74.0	-31.5	1.17 H	245	41.7	0.8
8	4924.00	39.1 AV	54.0	-14.9	1.17 H	245	38.3	0.8
9	7386.00	44.0 PK	74.0	-30.0	1.50 H	210	37.0	7.0
10	7386.00	35.0 AV	54.0	-19.0	1.50 H	210	28.0	7.0
		ANTENNA	POLARITY	& TEST DI	STANCE: V	ERTICAL A	T 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2462.00	116.7 PK			1.92 V	189	119.8	-3.1
2	*2462.00	114.6 AV			1.92 V	189	117.7	-3.1
3	2483.50	58.3 PK	74.0	-15.7	1.92 V	189	61.4	-3.1
4	2483.50	51.8 AV	54.0	-2.2	1.92 V	189	54.9	-3.1
5	2487.70	59.8 PK	74.0	-14.2	1.92 V	189	62.9	-3.1
6	2487.70	53.6 AV	54.0	-0.4	1.92 V	189	56.7	-3.1
7	4924.00	50.4 PK	74.0	-23.6	1.40 V	163	49.6	0.8
8	4924.00	48.7 AV	54.0	-5.3	1.40 V	163	47.9	0.8
9	7386.00	47.0 PK	74.0	-27.0	1.45 V	193	40.0	7.0
10	7386.00	40.6 AV	54.0	-13.4	1.45 V	193	33.6	7.0

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. " * ": Fundamental frequency.

802.11g

CHANNEL	TX Channel 1	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	2390.00	69.8 PK	74.0	-4.2	1.50 H	208	73.0	-3.2	
2	2390.00	51.4 AV	54.0	-2.6	1.50 H	208	54.6	-3.2	
3	*2412.00	113.7 PK			1.50 H	208	116.9	-3.2	
4	*2412.00	102.3 AV			1.50 H	208	105.5	-3.2	
5	4824.00	42.8 PK	74.0	-31.2	1.20 H	267	42.0	0.8	
6	4824.00	41.6 AV	54.0	-12.4	1.20 H	267	40.8	0.8	
	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M								
							D 411/	00000000000	

EMISSION ANTENNA TABLE RAW CORRECTION MARGIN FREQ. LIMIT NO. **ANGLE LEVEL** HEIGHT **VALUE FACTOR** (MHz) (dB) (dBuV/m) (dBuV/m) (Degree) (dBuV) (dB/m) (m) 2390.00 72.1 PK 74.0 -1.9 1.88 V 175 75.3 -3.2 1 53.9 AV 2390.00 54.0 1.88 V 57.1 -0.1 175 -3.2 3 *2412.00 117.6 PK 1.88 V 175 120.8 -3.2 *2412.00 106.3 AV 1.88 V 175 109.5 4 -3.2 5 4824.00 42.7 PK 74.0 -31.3 1.33 V 170 41.9 8.0

-12.7

REMARKS:

6

4824.00

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)

1.33 V

170

40.5

8.0

- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.

54.0

5. " * ": Fundamental frequency.

41.3 AV

CHANNEL	TX Channel 6	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

		ANTENNA	POLARITY 8	& TEST DIS	TANCE: HO	RIZONTAL	AT 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	2390.00	68.7 PK	74.0	-5.3	1.47 H	201	71.9	-3.2
2	2390.00	50.3 AV	54.0	-3.7	1.47 H	201	53.5	-3.2
3	*2437.00	118.9 PK			1.47 H	201	121.9	-3.0
4	*2437.00	107.9 AV			1.47 H	201	110.9	-3.0
5	2483.50	59.8 PK	74.0	-14.2	1.47 H	201	62.9	-3.1
6	2483.50	45.1 AV	54.0	-8.9	1.47 H	201	48.2	-3.1
7	4874.00	42.4 PK	74.0	-31.6	1.21 H	259	41.7	0.7
8	4874.00	39.1 AV	54.0	-14.9	1.21 H	259	38.4	0.7
9	7311.00	44.4 PK	74.0	-29.6	1.55 H	200	37.7	6.7
10	7311.00	35.4 AV	54.0	-18.6	1.55 H	200	28.7	6.7
		ANTENNA	POLARITY	& TEST DI	STANCE: V	ERTICAL A	T 3 M	·
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	2390.00	71.6 PK	74.0	-2.4	1.73 V	174	74.8	-3.2
2	2390.00	53.2 AV	54.0	-0.8	1.73 V	174	56.4	-3.2
3	*2437.00	122.4 PK			1.73 V	174	125.4	-3.0
4	*2437.00	111.7 AV			1.73 V	174	114.7	-3.0
5	2483.50	62.2 PK	74.0	-11.8	1.73 V	174	65.3	-3.1
6	2483.50	47.7 AV	54.0	-6.3	1.73 V	174	50.8	-3.1
7	4874.00	50.0 PK	74.0	-24.0	1.38 V	170	49.3	0.7
8	4874.00	48.4 AV	54.0	-5.6	1.38 V	170	47.7	0.7
9	7311.00	47.4 PK	74.0	-26.6	1.43 V	183	40.7	6.7
10	7311.00	41.1 AV	54.0	-12.9	1.43 V	183	34.4	6.7

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. " * ": Fundamental frequency.

CHANNEL	TX Channel 11	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

								•
		ΔΝΤΕΝΝΔ	POLARITY :	R TEST DIS	TANCE: HO	RIZONTAI	ДТЗМ	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2462.00	116.7 PK			1.45 H	210	119.8	-3.1
2	*2462.00	105.0 AV			1.45 H	210	108.1	-3.1
3	2483.50	66.6 PK	74.0	-7.4	1.45 H	210	69.7	-3.1
4	2483.50	50.1 AV	54.0	-3.9	1.45 H	210	53.2	-3.1
5	4924.00	42.8 PK	74.0	-31.2	1.20 H	261	42.0	0.8
6	4924.00	41.2 AV	54.0	-12.8	1.20 H	261	40.4	0.8
7	7386.00	44.9 PK	74.0	-29.1	1.56 H	197	37.9	7.0
8	7386.00	38.1 AV	54.0	-15.9	1.56 H	197	31.1	7.0
		ANTENNA	A POLARITY	/ & TEST D	ISTANCE: V	ERTICAL A	T 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2462.00	120.6 PK			1.87 V	202	123.7	-3.1
2	*2462.00	109.0 AV			1.87 V	202	112.1	-3.1
3	2483.50	70.0 PK	74.0	-4.0	1.87 V	202	73.1	-3.1
4	2483.50	53.5 AV	54.0	-0.5	1.87 V	202	56.6	-3.1
5	4924.00	42.9 PK	74.0	-31.1	1.35 V	156	42.1	0.8
6	4924.00	41.5 AV	54.0	-12.5	1.35 V	156	40.7	0.8
7	7386.00	44.9 PK	74.0	-29.1	1.38 V	180	37.9	7.0
8	7386.00	38.4 AV	54.0	-15.6	1.38 V	180	31.4	7.0

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. " * ": Fundamental frequency.

Report No.: RF160923E02E Page No. 29 / 66 Report Format Version: 6.1.1

802.11n (HT20)

CHANNEL	TX Channel 1	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	2390.00	70.0 PK	74.0	-4.0	1.47 H	205	73.2	-3.2		
2	2390.00	51.5 AV	54.0	-2.5	1.47 H	205	54.7	-3.2		
3	*2412.00	110.6 PK			1.47 H	205	113.8	-3.2		
4	*2412.00	99.4 AV			1.47 H	205	102.6	-3.2		
5	4824.00	42.2 PK	74.0	-31.8	1.17 H	280	41.4	0.8		
6	4824.00	41.3 AV	54.0	-12.7	1.17 H	280	40.5	0.8		
		ANTENNA	POLARITY	/ & TEST DI	STANCE: V	ERTICAL A	T 3 M			
							D 411/	00000000000		

EMISSION ANTENNA TABLE RAW CORRECTION MARGIN FREQ. LIMIT NO. ANGLE **LEVEL** HEIGHT **VALUE FACTOR** (MHz) (dB) (dBuV/m) (dBuV/m) (Degree) (dBuV) (dB/m) (m) 2390.00 70.5 PK 74.0 -3.5 1.87 V 213 73.7 -3.2 1 53.9 AV 2390.00 54.0 1.87 V -0.1 57.1 -3.2 213 3 *2412.00 113.6 PK 1.87 V 213 116.8 -3.2 *2412.00 103.3 AV 1.87 V 213 106.5 4 -3.2 5 4824.00 43.1 PK 74.0 -30.9 1.32 V 177 42.3 8.0 4824.00

-12.2

REMARKS:

6

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)

1.32 V

177

41.0

8.0

- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.

54.0

5. " * ": Fundamental frequency.

41.8 AV

Report No.: RF160923E02E Page No. 30 / 66 Report Format Version: 6.1.1 Reference No.: 190320E05

CHANNEL	TX Channel 6	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

		ANTENNA	POLARITY 8	& TEST DIS	TANCE: HO	RIZONTAL	AT 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	2390.00	69.2 PK	74.0	-4.8	1.49 H	208	72.4	-3.2
2	2390.00	50.7 AV	54.0	-3.3	1.49 H	208	53.9	-3.2
3	*2437.00	118.6 PK			1.49 H	208	121.6	-3.0
4	*2437.00	107.8 AV			1.49 H	208	110.8	-3.0
5	2483.50	59.8 PK	74.0	-14.2	1.49 H	208	62.9	-3.1
6	2483.50	45.2 AV	54.0	-8.8	1.49 H	208	48.3	-3.1
7	4874.00	42.1 PK	74.0	-31.9	1.12 H	256	41.4	0.7
8	4874.00	38.7 AV	54.0	-15.3	1.12 H	256	38.0	0.7
9	7311.00	44.4 PK	74.0	-29.6	1.44 H	198	37.7	6.7
10	7311.00	35.1 AV	54.0	-18.9	1.44 H	198	28.4	6.7
		ANTENNA	POLARITY	& TEST DI	STANCE: V	ERTICAL A	T 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	2390.00	71.6 PK	74.0	-2.4	2.07 V	176	74.8	-3.2
2	2390.00	53.1 AV	54.0	-0.9	2.07 V	176	56.3	-3.2
3	*2437.00	121.8 PK			2.07 V	176	124.8	-3.0
4	*2437.00	111.2 AV			2.07 V	176	114.2	-3.0
5	2483.50	64.2 PK	74.0	-9.8	2.07 V	176	67.3	-3.1
6	2483.50	49.3 AV	54.0	-4.7	2.07 V	176	52.4	-3.1
7	4874.00	50.3 PK	74.0	-23.7	1.35 V	182	49.6	0.7
8	4874.00	48.7 AV	54.0	-5.3	1.35 V	182	48.0	0.7
9	7311.00	47.2 PK	74.0	-26.8	1.49 V	195	40.5	6.7
10	7311.00	40.8 AV	54.0	-13.2	1.49 V	195	34.1	6.7

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. " * ": Fundamental frequency.

Report No.: RF160923E02E Page No. 31 / 66 Report Format Version: 6.1.1

CHANNEL	TX Channel 11	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

								•
		ΔΝΤΕΝΝΔ	POLARITY :	& TEST DIS	TANCE: HO	PIZONTAI	ДТЗМ	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2462.00	116.6 PK			1.47 H	203	119.7	-3.1
2	*2462.00	104.7 AV			1.47 H	203	107.8	-3.1
3	2483.50	66.7 PK	74.0	-7.3	1.47 H	203	69.8	-3.1
4	2483.50	50.0 AV	54.0	-4.0	1.47 H	203	53.1	-3.1
5	4924.00	42.4 PK	74.0	-31.6	1.13 H	261	41.6	0.8
6	4924.00	41.0 AV	54.0	-13.0	1.13 H	261	40.2	0.8
7	7386.00	45.4 PK	74.0	-28.6	1.40 H	187	38.4	7.0
8	7386.00	38.6 AV	54.0	-15.4	1.40 H	187	31.6	7.0
		ANTENNA	A POLARITY	/ & TEST D	ISTANCE: V	ERTICAL A	T 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2462.00	119.8 PK			1.81 V	211	122.9	-3.1
2	*2462.00	108.8 AV			1.81 V	211	111.9	-3.1
3	2483.50	68.2 PK	74.0	-5.8	1.81 V	211	71.3	-3.1
4	2483.50	53.4 AV	54.0	-0.6	1.81 V	211	56.5	-3.1
5	4924.00	42.9 PK	74.0	-31.1	1.32 V	140	42.1	0.8
6	4924.00	41.4 AV	54.0	-12.6	1.32 V	140	40.6	0.8
7	7386.00	44.8 PK	74.0	-29.2	1.38 V	182	37.8	7.0
8	7386.00	38.5 AV	54.0	-15.5	1.38 V	182	31.5	7.0

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. " * ": Fundamental frequency.

Report No.: RF160923E02E Page No. 32 / 66 Report Format Version: 6.1.1

802.11n (HT40)

CHANNEL	TX Channel 3	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	2390.00	65.1 PK	74.0	-8.9	1.44 H	189	68.3	-3.2	
2	2390.00	50.6 AV	54.0	-3.4	1.44 H	189	53.8	-3.2	
3	*2422.00	104.4 PK			1.44 H	189	107.6	-3.2	
4	*2422.00	94.6 AV			1.44 H	189	97.8	-3.2	
5	4844.00	43.2 PK	74.0	-30.8	1.16 H	265	42.4	0.8	
6	4844.00	41.6 AV	54.0	-12.4	1.16 H	265	40.8	0.8	
7	7266.00	44.2 PK	74.0	-29.8	1.43 H	174	37.5	6.7	
8	7266.00	38.0 AV	54.0	-16.0	1.43 H	174	31.3	6.7	
		ANTENNA	A POLARITY	& TEST DI	STANCE: V	ERTICAL A	T 3 M		
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	2390.00	68.3 PK	74.0	-5.7	2.10 V	182	71.5	-3.2	
2	2390.00	53.9 AV	54.0	-0.1	2.10 V	182	57.1	-3.2	
3	*2422.00	108.7 PK			2.10 V	182	111.9	-3.2	
4	*2422.00	98.7 AV			2.10 V	182	101.9	-3.2	
5	4844.00	42.8 PK	74.0	-31.2	1.37 V	182	42.0	0.8	
6	4844.00	41.3 AV	54.0	-12.7	1.37 V	182	40.5	0.8	
7	7266.00	44.1 PK	74.0	-29.9	1.42 V	173	37.4	6.7	
8	7266.00	38.1 AV	54.0	-15.9	1.42 V	173	31.4	6.7	

REMARKS:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. " * ": Fundamental frequency.

Report No.: RF160923E02E Reference No.: 190320E05 Page No. 33 / 66 Report Format Version: 6.1.1

CHANNEL	TX Channel 6	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

		ANTENNA	POLARITY &	& TEST DIS	TANCE: HO	RIZONTAL	AT 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	2390.00	69.1 PK	74.0	-4.9	1.39 H	180	72.3	-3.2
2	2390.00	50.4 AV	54.0	-3.6	1.39 H	180	53.6	-3.2
3	*2437.00	107.5 PK			1.39 H	180	110.5	-3.0
4	*2437.00	97.7 AV			1.39 H	180	100.7	-3.0
5	2483.50	60.3 PK	74.0	-13.7	1.39 H	180	63.4	-3.1
6	2483.50	45.5 AV	54.0	-8.5	1.39 H	180	48.6	-3.1
7	4874.00	43.2 PK	74.0	-30.8	1.12 H	279	42.5	0.7
8	4874.00	41.7 AV	54.0	-12.3	1.12 H	279	41.0	0.7
9	7311.00	43.8 PK	74.0	-30.2	1.41 H	177	37.1	6.7
10	7311.00	37.6 AV	54.0	-16.4	1.41 H	177	30.9	6.7
		ANTENNA	POLARITY	& TEST DI	STANCE: V	ERTICAL A	T 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	2390.00	69.6 PK	74.0	-4.4	2.09 V	179	72.8	-3.2
2	2390.00	53.9 AV	54.0	-0.1	2.09 V	179	57.1	-3.2
3	*2437.00	111.9 PK			2.09 V	179	114.9	-3.0
4	*2437.00	102.5 AV			2.09 V	179	105.5	-3.0
5	2483.50	68.0 PK	74.0	-6.0	2.09 V	179	71.1	-3.1
6	2483.50	52.0 AV	54.0	-2.0	2.09 V	179	55.1	-3.1
7	4874.00	46.7 PK	74.0	-27.3	1.31 V	177	46.0	0.7
8	4874.00	45.1 AV	54.0	-8.9	1.31 V	177	44.4	0.7
9	7311.00	46.7 PK	74.0	-27.3	1.51 V	208	40.0	6.7
10	7311.00	40.3 AV	54.0	-13.7	1.51 V	208	33.6	6.7

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. " * ": Fundamental frequency.

Report No.: RF160923E02E Page No. 34 / 66 Report Format Version: 6.1.1

CHANNEL	TX Channel 9	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

								•
		ΔΝΤΕΝΝΔ	POLARITY :	R TEST DIS	TANCE: HO	RIZONTAI	ДТЗМ	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2452.00	106.2 PK			1.41 H	181	109.3	-3.1
2	*2452.00	96.5 AV			1.41 H	181	99.6	-3.1
3	2483.50	65.8 PK	74.0	-8.2	1.41 H	181	68.9	-3.1
4	2483.50	50.1 AV	54.0	-3.9	1.41 H	181	53.2	-3.1
5	4904.00	43.5 PK	74.0	-30.5	1.14 H	257	42.8	0.7
6	4904.00	41.8 AV	54.0	-12.2	1.14 H	257	41.1	0.7
7	7356.00	44.2 PK	74.0	-29.8	1.44 H	174	37.3	6.9
8	7356.00	38.2 AV	54.0	-15.8	1.44 H	174	31.3	6.9
		ANTENNA	A POLARITY	/ & TEST D	ISTANCE: V	ERTICAL A	T 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2452.00	111.2 PK			2.09 V	172	114.3	-3.1
2	*2452.00	101.5 AV			2.09 V	172	104.6	-3.1
3	2483.50	67.2 PK	74.0	-6.8	2.09 V	172	70.3	-3.1
4	2483.50	53.8 AV	54.0	-0.2	2.09 V	172	56.9	-3.1
5	4904.00	42.8 PK	74.0	-31.2	1.38 V	168	42.1	0.7
6	4904.00	41.3 AV	54.0	-12.7	1.38 V	168	40.6	0.7
7	7356.00	44.0 PK	74.0	-30.0	1.48 V	170	37.1	6.9
8	7356.00	38.0 AV	54.0	-16.0	1.48 V	170	31.1	6.9

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. " * ": Fundamental frequency.

Report No.: RF160923E02E Page No. 35 / 66 Report Format Version: 6.1.1

Report Format Version: 6.1.1

Below 1GHz Data:

802.11n (HT20)

CHANNEL	TX Channel 6	DETECTOR FUNCTION	Overi Bark (OD)
FREQUENCY RANGE	9kHz ~ 1GHz		Quasi-Peak (QP)

ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M										
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	96.45	34.5 QP	43.5	-9.0	2.00 H	237	52.5	-18.0		
2	162.51	40.1 QP	43.5	-3.4	1.55 H	146	53.1	-13.0		
3	499.99	39.2 QP	46.0	-6.8	2.00 H	138	46.9	-7.7		
4	600.00	38.3 QP	46.0	-7.7	1.00 H	309	43.6	-5.3		
5	750.02	36.0 QP	46.0	-10.0	2.00 H	360	38.8	-2.8		
6	1000.00	42.7 QP	54.0	-11.3	1.00 H	220	43.1	-0.4		

REMARKS:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.
- 5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

CHANNEL	TX Channel 6	DETECTOR	Ougoi Pook (OP)
FREQUENCY RANGE	9kHz ~ 1GHz	FUNCTION	Quasi-Peak (QP)

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M											
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)				
1	62.79	35.5 QP	40.0	-4.5	1.00 V	47	49.5	-14.0				
2	124.97	36.9 QP	43.5	-6.6	1.00 V	239	51.7	-14.8				
3	162.51	41.1 QP	43.5	-2.4	1.00 V	165	54.1	-13.0				
4	750.02	41.3 QP	46.0	-4.7	2.00 V	360	44.1	-2.8				
5	920.02	42.6 QP	46.0	-3.4	1.00 V	198	43.5	-0.9				
6	1000.00	45.9 QP	54.0	-8.1	1.00 V	177	46.3	-0.4				

REMARKS:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.
- 5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

4.1.8 Test Results (Mode 2)

Below 1GHz Data:

802.11n (HT20)

CHANNEL	TX Channel 6	DETECTOR	Overi Beek (OB)
FREQUENCY RANGE	9kHz ~ 1GHz	FUNCTION	Quasi-Peak (QP)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M											
NO.	(MHz) LEVEL (dBuV/m)		MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)					
1	30.63	34.9 QP	40.0	-5.1	2.00 H	221	49.6	-14.7				
2	92.30	36.5 QP	43.5	-7.0	2.00 H	296	54.8	-18.3				
3	160.00	40.1 QP	43.5	-3.4	2.00 H	120	53.1	-13.0				
4	266.68	37.6 QP	46.0	-8.4	1.00 H	12	51.1	-13.5				
5	333.00	39.3 QP	46.0	-6.7	1.00 H	126	50.7	-11.4				
6	1000.00	50.3 QP	54.0	-3.7	1.00 H	153	50.7	-0.4				

REMARKS:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.
- 5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

CHANNEL	TX Channel 6	DETECTOR	Ougai Book (OB)
FREQUENCY RANGE	9kHz ~ 1GHz	FUNCTION	Quasi-Peak (QP)

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M											
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)				
1	62.86	34.8 QP	40.0	-5.2	1.50 V	187	48.8	-14.0				
2	97.17	33.8 QP	43.5	-9.7	1.00 V	126	51.8	-18.0				
3	225.02	33.3 QP	46.0	-12.7	1.00 V	82	48.7	-15.4				
4	333.32	37.5 QP	46.0	-8.5	2.00 V	290	48.9	-11.4				
5	479.96	37.7 QP	46.0	-8.3	1.00 V	108	45.7	-8.0				
6	533.33	36.5 QP	46.0	-9.5	1.00 V	183	43.6	-7.1				
7	999.98	53.8 QP	54.0	-0.2	1.38 V	168	54.2	-0.4				

REMARKS:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.
- 5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

Report No.: RF160923E02E Reference No.: 190320E05

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

Eroguopov (MHz)	Conducted Limit (dBuV)					
Frequency (MHz)	Quasi-peak	Average				
0.15 - 0.5	66 - 56	56 - 46				
0.50 - 5.0	56	46				
5.0 - 30.0	60	50				

Note: 1. The lower limit shall apply at the transition frequencies.

4.2.2 Test Instruments

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Test Receiver R&S	ESCS 30	847124/029	Oct. 24, 2018	Oct. 23, 2019
Line-Impedance Stabilization Network (for EUT) R&S	ESH3-Z5	848773/004	Oct. 22, 2018	Oct. 21, 2019
Line-Impedance Stabilization Network (for Peripheral) R&S	ESH3-Z5	835239/001	Mar. 17, 2019	Mar. 16, 2020
50 ohms Terminator	N/A	3	Oct. 22, 2018	Oct. 21, 2019
RF Cable	5D-FB	COCCAB-001	Sep. 28, 2018	Sep. 27, 2019
Fixed attenuator EMCI	STI02-2200-10	003	Mar. 14, 2019	Mar. 13, 2020
Software BVADT	BVADT_Cond_ V7.3.7.4	NA	NA	NA

Note:

- 1. The calibration interval of the above test instruments are 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. The test was performed in Conduction 1.
- 3 Tested Date: May 02 to 15, 2019

^{2.} The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2.3 Test Procedures

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.

NOTE: The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz.

4.2.4 Deviation from Test Standard

No deviation.

4.2.5 Test Setup

Note: 1.Support units were connected to second LISN.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT Operating Conditions

Same as 4.1.6.

4.2.7 Test Results (Mode 1)

Phase	Line (L)	Detector Function	Quasi-Peak (QP) / Average (AV)
			<u> </u>

	Phase Of Power : Line (L)									
No	Frequency	Correction Factor	Reading Value (dBuV)		Emission Level (dBuV)		Limit (dBuV)		Margin (dB)	
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.15000	10.03	45.93	27.35	55.96	37.38	66.00	56.00	-10.04	-18.62
2	0.15781	10.03	43.02	23.08	53.05	33.11	65.58	55.58	-12.53	-22.47
3	0.17734	10.04	37.95	16.99	47.99	27.03	64.61	54.61	-16.62	-27.58
4	0.20469	10.05	34.29	14.62	44.34	24.67	63.42	53.42	-19.08	-28.75
5	0.43906	10.08	23.58	14.73	33.66	24.81	57.08	47.08	-23.42	-22.27
6	6.82422	10.50	18.01	12.64	28.51	23.14	60.00	50.00	-31.49	-26.86

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

	7		
Phase	Neutral (N)	Detector Function	Quasi-Peak (QP) /
	,		Average (AV)

	Phase Of Power : Neutral (N)										
No	Frequency	Correction Factor		Reading Value (dBuV)		Emission Level (dBuV)		Limit (dBuV)		Margin (dB)	
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	
1	0.15000	9.94	46.03	28.16	55.97	38.10	66.00	56.00	-10.03	-17.90	
2	0.15781	9.94	42.93	23.71	52.87	33.65	65.58	55.58	-12.71	-21.93	
3	0.19297	9.95	36.83	19.39	46.78	29.34	63.91	53.91	-17.13	-24.57	
4	0.24375	9.96	32.09	14.49	42.05	24.45	61.97	51.97	-19.92	-27.52	
5	0.42344	9.98	26.48	15.33	36.46	25.31	57.38	47.38	-20.92	-22.07	
6	16.94531	10.95	14.27	7.39	25.22	18.34	60.00	50.00	-34.78	-31.66	

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

4.2.8 Test Results (Mode 2)

Phase	Line (L)	Detector Function	Quasi-Peak (QP) /
Filase	Line (L)	Detector Function	Average (AV)

	Phase Of Power : Line (L)									
No	Frequency	Correction Factor	9		Limit (dBuV)		Mar (d			
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.20859	10.04	18.48	10.67	28.52	20.71	63.26	53.26	-34.74	-32.55
2	0.45078	10.07	27.31	20.91	37.38	30.98	56.86	46.86	-19.48	-15.88
3	1.81641	10.15	22.35	10.42	32.50	20.57	56.00	46.00	-23.50	-25.43
4	4.07031	10.25	18.58	5.96	28.83	16.21	56.00	46.00	-27.17	-29.79
5	14.04688	10.75	17.29	7.94	28.04	18.69	60.00	50.00	-31.96	-31.31
6	26.31250	11.17	10.97	4.43	22.14	15.60	60.00	50.00	-37.86	-34.40

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

Phase N	Neutral (N)	Detector Function	Quasi-Peak (QP) /
Filase	ineutiai (in)	Detector i unction	Average (AV)

	Phase Of Power : Neutral (N)										
No	Frequency	Correction Factor		Reading Value Emission Level (dBuV) (dBuV)						Maı (d	gin B)
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	
1	0.18516	9.94	20.85	9.87	30.79	19.81	64.25	54.25	-33.46	-34.44	
2	0.45078	9.96	27.84	22.92	37.80	32.88	56.86	46.86	-19.06	-13.98	
3	1.82422	10.03	21.98	12.64	32.01	22.67	56.00	46.00	-23.99	-23.33	
4	14.03516	10.58	28.53	28.06	39.11	38.64	60.00	50.00	-20.89	-11.36	
5	18.31641	10.79	19.57	17.25	30.36	28.04	60.00	50.00	-29.64	-21.96	
6	26.06250	10.93	13.22	7.29	24.15	18.22	60.00	50.00	-35.85	-31.78	

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

4.3 6dB Bandwidth Measurement

4.3.1 Limits of 6dB Bandwidth Measurement

The minimum of 6dB Bandwidth Measurement is 0.5 MHz.

4.3.2 Test Setup

4.3.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.3.4 Test Procedure

- a. Set resolution bandwidth (RBW) = 100kHz
- b. Set the video bandwidth (VBW) \geq 3 x RBW, Detector = Peak.
- c. Trace mode = max hold.
- d. Sweep = auto couple.
- e. Measure the maximum width of the emission that is constrained by the frequencies associated with the two amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission

4.3.5 Deviation fromTest Standard

No deviation.

4.3.6 EUT Operating Conditions

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

4.3.7 Test Result

802.11b

Channel	Frequency (MHz)		ndwidth Hz)	Minimum Limit	Pass / Fail
		Chain 0	Chain 1	(MHz)	
1	2412	9.59	10.07	0.5	PASS
6	2437	9.64	11.11	0.5	PASS
11	2462	10.12	7.59	0.5	PASS

802.11g

Channel	Frequency (MHz)		ndwidth Hz)	Minimum Limit	Pass / Fail	
		Chain 0	Chain 1	(MHz)		
1	2412	15.54	15.76	0.5	PASS	
6	2437	15.77	15.74	0.5	PASS	
11	2462	16.02	13.88	0.5	PASS	

802.11n (HT20)

Channel	nnel Frequency (MHz)		ndwidth Hz)	Minimum Limit	Pass / Fail	
		Chain 0	Chain 1	(MHz)		
1	2412	16.58 16.40		0.5	Pass	
6	2437	16.37	16.41	0.5	Pass	
11	2462	16.58	15.09	0.5	Pass	

802.11n (HT40)

Channel	Frequency (MHz)		ndwidth Hz)	Minimum Limit	Pass / Fail	
		Chain 0	Chain 1	(MHz)		
3	2422	35.90	28.95	0.5	Pass	
6	2437	35.20	35.21	0.5	Pass	
9	2452	35.29	33.89	0.5	Pass	

4.4 Conducted Output Power Measurement

4.4.1 Limits of Conducted Output Power Measurement

For systems using digital modulation in the 2400–2483.5 MHz bands: 1 Watt (30dBm)

Per KDB 662911 D01 Multiple Transmitter Output Method of conducted output power measurement on IEEE 802.11 devices,

Array Gain = 0 dB (i.e., no array gain) for $N_{ANT} \le 4$;

Array Gain = 0 dB (i.e., no array gain) for channel widths ≥ 40 MHz for any N_{ANT};

Array Gain = 5 log(N_{ANT}/N_{SS}) dB or 3 dB, whichever is less for 20-MHz channel widths with N_{ANT} ≥ 5.

For power measurements on all other devices: Array Gain = $10 \log(N_{ANT}/N_{SS})$ dB.

4.4.2 Test Setup

4.4.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.4.4 Test Procedures

Average power sensor was used to perform output power measurement, trigger and gating function of wide band power meter is enabled to measure max output power of TX on burst. Duty factor is not added to measured value..

4.4.5 Deviation from Test Standard

No deviation.

4.4.6 EUT Operating Conditions

Same as Item 4.3.6.

Report No.: RF160923E02E Page No. 49 / 66
Reference No.: 190320E05

4.4.7 Test Results

FOR AVERAGE POWER

802.11b

Frequency Chan. (MHz)	Avg. Pow	ver (dBm)	Total Power	Total Power	
Chan.	(MHz)	Chain 0 Chain		(mW)	(dBm)
1	2412	20.75	21.62	264.061	24.22
6	2437	27.15	23.13	724.389	28.60
11	2462	22.71	24.01	438.406	26.42

802.11g

Ol	Frequency	Avg. Pow	ver (dBm)	Total Power	Total Power	
Chan.	(MHz)	(MHz) Chain 0 Ch		(mW)	(dBm)	
1	2412	18.34	19.50	157.359	21.97	
6	2437	28.38	24.83	992.741	29.97	
11	2462	21.66	21.38	283.959	24.53	

802.11n (HT20)

	Frequency	Avg. Pow	ver (dBm)	Total Power	Total Power	
Chan.	(MHz) Chain 0		Chain 1	(mW)	(dBm)	
1	2412	15.29	16.71	80.687	19.07	
6	2437	28.34	24.99	997.839	29.99	
11	2462	20.76	20.81	239.628	23.80	

802.11n (HT40)

Frequency Chan. (MHz)		Avg. Pow	ver (dBm)	Total Power	Total Power
Chan.	(MHz)	Chain 0	Chain 0 Chain 1		(dBm)
3	2422	14.74	13.09	50.155	17.00
6	2437	19.37	16.73	133.595	21.26
9	2452	17.21	14.31	79.579	19.01

Report No.: RF160923E02E Reference No.: 190320E05

4.5 Power Spectral Density Measurement

4.5.1 Limits of Power Spectral Density Measurement

The Maximum of Power Spectral Density Measurement is 8dBm in any 3 kHz.

4.5.2 Test Setup

4.5.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.5.4 Test Procedure

- a) Measure the duty cycle (x).
- b) Set instrument center frequency to DTS channel center frequency.
- c) Set span to at least 1.5 times the OBW.
- d) Set RBW to: 3 kHz ≤ RBW ≤ 100 kHz..
- e) Set VBW ≥3 x RBW.
- f) Detector = power averaging (RMS) or sample detector (when RMS not available).
- g) Ensure that the number of measurement points in the sweep $\geq 2 \times \text{span/RBW}$.
- h) Sweep time = auto couple.
- i) Do not use sweep triggering. Allow sweep to "free run".
- j) Employ trace averaging (RMS) mode over a minimum of 100 traces.
- k) Use the peak marker function to determine the maximum amplitude level.
- I) Add 10 $\log (1/x)$, where x is the duty cycle measured in step (a, to the measured PSD to compute the average PSD during the actual transmission time.

4.5.5 Deviation from Test Standard

No deviation.

4.5.6 EUT Operating Condition

Same as Item 4.3.6

Report No.: RF160923E02E Page No. 51 / 66 Report Format Version: 6.1.1

Reference No.: 190320E05

4.5.7 Test Results

802.11b

TX chain	Channel	Freq. (MHz)	PSD (dBm/3kHz)	10 log (N=2) dB	Duty Factor (dB)	Total PSD (dBm/3kHz)	Limit (dBm/3kHz)	Pass /Fail
0	1	2412	-11.69	3.01	0.04	-8.68	8	Pass
	6	2437	-4.84	3.01	0.04	-1.83	8	Pass
	11	2462	-9.28	3.01	0.04	-6.27	8	Pass
1	1	2412	-9.79	3.01	0.04	-6.78	8	Pass
	6	2437	-7.91	3.01	0.04	-4.90	8	Pass
	11	2462	-6.14	3.01	0.04	-3.13	8	Pass

Note: 1. Directional gain = 2.44dBi + 10log(2) = 5.45dBi < 6dBi , so the power density limit shall not be reduced.

802.11g

TX chain	Channel	Freq. (MHz)	PSD W/O Duty Factor (dBm/3kHz)	10 log (N=2) dB	Duty Factor (dB)	Total PSD With Duty Factor (dBm/3kHz)	Limit (dBm/3kHz)	Pass /Fail
0	1	2412	-13.61	3.01	0.18	-10.42	8	Pass
	6	2437	-5.40	3.01	0.18	-2.21	8	Pass
	11	2462	-11.08	3.01	0.18	-7.89	8	Pass
1	1	2412	-12.00	3.01	0.18	-8.81	8	Pass
	6	2437	-6.88	3.01	0.18	-3.69	8	Pass
	11	2462	-10.68	3.01	0.18	-7.49	8	Pass

Note: 1. Directional gain = 2.44dBi + 10log(2) = 5.45dBi < 6dBi , so the power density limit shall not be reduced.

2. Refer to section 3.3 for duty cycle spectrum plot.

802.11n (HT20)

TX chain	Channel	Freq. (MHz)	PSD W/O Duty Factor (dBm/3kHz)	10 log (N=2) dB	Duty Factor (dB)	Total PSD With Duty Factor (dBm/3kHz)	Limit (dBm/3kHz)	Pass /Fail
0	1	2412	-17.61	3.01	0.19	-14.41	8	Pass
	6	2437	-4.90	3.01	0.19	-1.70	8	Pass
	11	2462	-10.08	3.01	0.19	-6.88	8	Pass
1	1	2412	-15.48	3.01	0.19	-12.28	8	Pass
	6	2437	-7.55	3.01	0.19	-4.35	8	Pass
	11	2462	-10.48	3.01	0.19	-7.28	8	Pass

Note: 1. Directional gain = 2.44dBi + 10log(2) = 5.45dBi < 6dBi , so the power density limit shall not be reduced.

2. Refer to section 3.3 for duty cycle spectrum plot.

802.11n (HT40)

TX chain	Channel	Freq. (MHz)	PSD W/O Duty Factor (dBm/3kHz)	10 log (N=2) dB	Duty Factor (dB)	Total PSD With Duty Factor (dBm/3kHz)	Limit (dBm/3kHz)	Pass /Fail
0	3	2422	-19.86	3.01	0.37	-16.48	8	Pass
	6	2437	-15.03	3.01	0.37	-11.65	8	Pass
	9	2452	-16.52	3.01	0.37	-13.14	8	Pass
1	3	2422	-19.61	3.01	0.37	-16.23	8	Pass
	6	2437	-16.29	3.01	0.37	-12.91	8	Pass
	9	2452	-17.41	3.01	0.37	-14.03	8	Pass

Note: 1. Directional gain = 2.44dBi + 10log(2) = 5.45dBi < 6dBi , so the power density limit shall not be reduced.

2. Refer to section 3.3 for duty cycle spectrum plot.

4.6 Conducted Out of Band Emission Measurement

4.6.1 Limits of Conducted Out of Band Emission Measurement

Below -30dB of the highest emission level of operating band (in 100kHz Resolution Bandwidth).

4.6.2 Test Setup

4.6.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.6.4 Test Procedure

MEASUREMENT PROCEDURE REF

- 1. Set the RBW = 100 kHz.
- 2. Set the VBW ≥ 300 kHz.
- 3. Detector = peak.
- 4. Sweep time = auto couple.
- 5. Trace mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW.

MEASUREMENT PROCEDURE OOBE

- 1. Set RBW = 100 kHz.
- 2. Set VBW ≥ 300 kHz.
- 3. Detector = peak.
- 4. Sweep = auto couple.
- 5. Trace Mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum amplitude level.

4.6.5 Deviation from Test Standard

No deviation.

4.6.6 EUT Operating Condition

Same as Item 4.3.6

Report No.: RF160923E02E Page No. 55 / 66 Report Format Version: 6.1.1

Reference No.: 190320E05

4.6.7 Test Results								
The spectrum plots are attached on the following pages. D1 line indicates the highest level, and D2 line indicates the 30dB offset below D1. It shows compliance with the requirement.								

Report No.: RF160923E02E Page No. 56 / 66 Report Format Version: 6.1.1 Reference No.: 190320E05

VERITAS

VERITAS

802.11g

VERITAS

Center 2.502 GHz

VERITAS

802.11n (HT20)

802.11n (HT40)

VERITAS

Center 2.526 GHz

(D)

5 Pictures of Test Arrangements								
Please refer to the attached file (Test Setup Photo).								

Appendix - Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

Hsin Chu EMC/RF/Telecom Lab

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab

Tel: 886-2-26052180 Tel: 886-3-6668565 Fax: 886-2-26051924 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab

Tel: 886-3-3183232 Fax: 886-3-3270892

Email: service.adt@tw.bureauveritas.com
Web Site: www.bureauveritas-adt.com

The address and road map of all our labs can be found in our web site also.

--- END ---

Report No.: RF160923E02E Page No. 66 / 66 Report Format Version: 6.1.1 Reference No.: 190320E05