Sistemas Operativos

Introducción

Departamento de Ingeniería en Sistemas y Computación Universidad Católica del Norte, Antofagasta.

Contacto

- Clases:
 - Miércoles: 08.10 → 09.40, Lab. Universia
 - Jueves: 09.55 → 11.25, Lab. Robótica
- Correo: miguel.solis@ucn.cl

Evaluaciones

- 3 Pruebas (P₁, P₂ y P₃)
- 3 Tareas $(T_i, i \in \{1, 2, 3\})$
- 7 Actividades en clases
- Nota de presentación :

$$NP = \sum_{i=1}^{3} 0.2 \cdot P_i + 0.4 \cdot PT$$

Evaluaciones

Si rinde 5 o más actividades en clases:

$$PT = (T_1 + T_2 + T_3 - min(T_1, T_2, T_3))/2$$

Si rinde 2 o menos actividades en clases:

$$PT = (T_1 + T_2 + T_3 - max(T_1, T_2, T_3))/2$$

En otro caso:

$$PT = (T_1 + T_2 + T_3)/3$$

Fechas

Pruebas:

- Prueba 1: 08/11
- Prueba 2: 20/12
- Prueba 3: 17/01

Tareas (entrega online):

- Tarea 1: 08/11
- Tarea 2: 20/12
- Tarea 3: 17/01

Texto guía

Operating System Concepts, 7th edition,
A. Silberschatz, P.B. Galvin, G. Gagne

Unidad I

- Introducción
 - Definición y clasificación de SO
 - Definición y caracterización de procesos
 - Administración de recursos, comunicación con usuarios
 - Estructura en capas del SO

Unidad II

- Administración y sincronización de procesos concurrentes
 - Definición de concurrencia
 - Concepto de paralelismo
 - Región crítica
 - Sincronización de tareas
 - Prueba 1:
 - Interbloqueo
 - Presentación de casos

Unidades III, IV y V

- Administración de recursos
- Casos de estudio Linux
- Análisis de rendimiento

ver Programa y Planificación de la asignatura

 Programa que actúa como intermediario entre el usuario y el hardware

Objetivos:

- Ejecutar programas del usuario y solucionar problemas que puedan ocurrir
- Hacer que un sistema computacional sea conveniente de utilizar
- Usar el hardware computacional de una manera eficiente

 Programa que actúa como intermediario entre el usuario y el hardware

Objetivos:

- Ejecutar programas del usuario y solucionar problemas que puedan ocurrir
- Hacer que un sistema computacional sea conveniente de utilizar
- Usar el hardware computacional de una manera eficiente

 Programa que actúa como intermediario entre el usuario y el hardware

Objetivos:

- Ejecutar programas del usuario y solucionar problemas que puedan ocurrir
- Hacer que un sistema computacional sea conveniente de utilizar
- Usar el hardware computacional de una manera eficiente

 Hardware: proporciona los recursos básicos (CPU, memoria, dispositivos E/S)

 Hardware: proporciona los recursos básicos (CPU, memoria, dispositivos E/S)

 Sistema operativo: Controla y coordina el uso de hardware entre varias aplicaciones y usuarios

 Sistema operativo: Controla y coordina el uso de hardware entre varias aplicaciones y usuarios

 Aplicaciones: Define la forma a través de la cual los recursos del sistema son utilizados para resolver los problemas de los usuarios.

 Aplicaciones: Define la forma a través de la cual los recursos del sistema son utilizados para resolver los problemas de los usuarios.

• Usuarios: Personas, máquinas y otros computadores.

• Usuarios: Personas, máquinas y otros computadores.

• Es un asignador de recursos

- Gestiona todos los recursos
- Toma decisiones entre requerimientos conflictivos para su utilización eficiente y justa
- Es un programa de control
 - Controla la ejecución de programas para evitar errores y usos impropios

- Es un asignador de recursos
 - Gestiona todos los recursos
 - Toma decisiones entre requerimientos conflictivos para su utilización eficiente y justa
- Es un programa de control
 - Controla la ejecución de programas para evitar errores y usos impropios

- Es un asignador de recursos
 - Gestiona todos los recursos
 - Toma decisiones entre requerimientos conflictivos para su utilización eficiente y justa
- Es un programa de control
 - Controla la ejecución de programas para evitar errores y usos impropios

Organización de un sistema computacional

La operación requiere

 Una o más CPU y controladores con acceso a la memoria a través de un bus común

Organización de un sistema computacional

La operación requiere

 Ejecución concurrente de CPU, y que controladores compitan por ciclos de memoria

El bus que interconecta controladores

Operación de un sistema computacional

- La E/S se realiza sólo entre el dispositivo y el buffer local del controlador
- El controlador del dispositivo informa a la CPU que la transferencia a finalizado a través de una interrupciór

Operación de un sistema computacional

- La E/S se realiza sólo entre el dispositivo y el buffer local del controlador
- El controlador del dispositivo informa a la CPU que la transferencia a finalizado a través de una interrupción

- Es una llamada no planificada a una subrutina
- El control se transfiere a una rutina de servicio, normalmente a través del vector de interrupciór
- El vector de interrupción contiene la dirección de la rutina de servicio

- Es una llamada no planificada a una subrutina
- El control se transfiere a una rutina de servicio, normalmente a través del vector de interrupción
- El vector de interrupción contiene la dirección de la rutina de servicio

- Es una llamada no planificada a una subrutina
- El control se transfiere a una rutina de servicio, normalmente a través del vector de interrupción
- El vector de interrupción contiene la dirección de la rutina de servicio

- Trap: interrupción generada por software (por error o por requerimiento)
- Un SO es conducido por interrupciones (cualquiera de sus acciones tiene como causa una interrupción)
- El SO preserva el estado de la CPU almacenando sus registros en un stack

- Trap: interrupción generada por software (por error o por requerimiento)
- Un SO es conducido por interrupciones (cualquiera de sus acciones tiene como causa una interrupción)
- El SO preserva el estado de la CPU almacenando sus registros en un stack

- Trap: interrupción generada por software (por error o por requerimiento)
- Un SO es conducido por interrupciones (cualquiera de sus acciones tiene como causa una interrupción)
- El SO preserva el estado de la CPU almacenando sus registros en un stack

Interrupciones vectorizadas

Al procesar una interrupción, se desactivan otras interrupciones para prevenir pérdidas de interrupción

v: interrupt vector address

Interrupciones

- I/O sincrónico: Una vez que se activa el I/O, el control retorna al usuario cuando el I/O termina.
 - Sólo un I/O a la vez, no es posible concurrencia.
 - Una instrucción wait deja la CPU ociosa hasta la próxima interrupción

- I/O sincrónico: Una vez que se activa el I/O, el control retorna al usuario cuando el I/O termina.
 - Sólo un I/O a la vez, no es posible concurrencia.
 - Una instrucción wait deja la CPU ociosa hasta la próxima interrupción

- I/O sincrónico: Una vez que se activa el I/O, el control retorna al usuario cuando el I/O termina.
 - Sólo un I/O a la vez, no es posible concurrencia.
 - Una instrucción wait deja la CPU ociosa hasta la próxima interrupción

- I/O asincrónico: Una vez que se activa el I/O, el control retorna al usuario sin esperar término de I/O.
 - Se inicia mediante una llamada al sistema.
 - El SO indexa la Tabla de estado de dispositivos para saber su estado y modificarla
 - Esta tabla contiene una entrada para cada dispositivo de I/O indicando tipo, dirección y estado

- I/O asincrónico: Una vez que se activa el I/O, el control retorna al usuario sin esperar término de I/O.
 - Se inicia mediante una llamada al sistema.
 - El SO indexa la Tabla de estado de dispositivos para saber su estado y modificarla
 - Esta tabla contiene una entrada para cada dispositivo de I/O indicando tipo, dirección y estado

- I/O asincrónico: Una vez que se activa el I/O, el control retorna al usuario sin esperar término de I/O.
 - Se inicia mediante una llamada al sistema.
 - El SO indexa la Tabla de estado de dispositivos para saber su estado y modificarla
 - Esta tabla contiene una entrada para cada dispositivo de I/O indicando tipo, dirección y estado

- I/O asincrónico: Una vez que se activa el I/O, el control retorna al usuario sin esperar término de I/O.
 - Se inicia mediante una llamada al sistema.
 - El SO indexa la Tabla de estado de dispositivos para saber su estado y modificarla
 - Esta tabla contiene una entrada para cada dispositivo de I/O indicando tipo, dirección y estado

- Memoria principal: arreglo de bytes, la CPU puede accesar directamente
- Almacenamiento secundario: extensión de la memoria principal, proporciona gran capacidad de memoria no volátil

- Memoria principal: arreglo de bytes, la CPU puede accesar directamente
- Almacenamiento secundario: extensión de la memoria principal, proporciona gran capacidad de memoria no volátil

- Memoria principal: arreglo de bytes, la CPU puede accesar directamente
- Almacenamiento secundario: extensión de la memoria principal, proporciona gran capacidad de memoria no volátil

- Discos magnéticos: discos rígidos cubierto de material magnético.
 - La superficie se divide en tracks, y estos en sectores

- Discos magnéticos: discos rígidos cubierto de material magnético.
 - La superficie se divide en tracks, y estos en sectores

- Discos magnéticos: discos rígidos cubierto de material magnético.
 - La superficie se divide en tracks, y estos en sectores

Jerarquía de almacenamiento

Está determinada por velocidad de transferencia, costo y volatilidad

Jerarquía de almacenamiento

 Está determinada por velocidad de transferencia, costo y volatilidad

Caching

- Consiste en copiar información de dispositivos lentos a dispositivos rápidos
- Memoria principal puede ser vista como una caché para almacenamiento secundario
- La información más utilizada se copia desde memorias lentas a rápidas temporalmente

Caching

- Consiste en copiar información de dispositivos lentos a dispositivos rápidos
- Memoria principal puede ser vista como una caché para almacenamiento secundario
- La información más utilizada se copia desde memorias lentas a rápidas temporalmente

Caching

- Consiste en copiar información de dispositivos lentos a dispositivos rápidos
- Memoria principal puede ser vista como una caché para almacenamiento secundario
- La información más utilizada se copia desde memorias lentas a rápidas temporalmente

Caché

- Es la memoria de de acceso rápido
- Se verifica para determinar si contiene la información correcta. Si la tiene, se usa directamente. Si no, se copiar datos y después se usa.

Caché

- Es la memoria de de acceso rápido
- Se verifica para determinar si contiene la información correcta. Si la tiene, se usa directamente. Si no, se copian datos y después se usa.