FUNCTIONS

1. FUNCTION AS A RELATION:

"A function is a relation in which no two ordered pairs have the same first components."

A function is denoted by f.

2. DOMAIN AND RANGE OF A FUNCTION:

The set of first components of the ordered pairs belonging to the function f is called domain of f and the set of second components is called the range of f.

Example:

Consider the relation R given by

$$R = \{(1,2), (2,3), (3,4), (4,5)\}$$

Since, no two ordered pairs have the same first components. So, R is a function.

Domain =
$$\{a: (a, b) \in R\} = \{1, 2, 3, 4\}$$

Range =
$$\{b: (a, b) \in R\} = \{2, 3, 4, 5\}$$

3. FUNCTION

Let A and B be any two non-empty sets. Then a rule or an association under which every element of A gets associated with a unique element of B, is called a function or mapping from set A to the set B.

Important Remarks:

- (i) Every element of the set A must get associated to a unique (single) element of the set B.
- (ii) Two or more elements of the set A may be associated with the same element of the set B.
- (iii) There may be some elements in the set B, which are not assigned to any element of the set A.
- (iv) A function may sometimes be represented by a formula.

4. DOMAIN AND CODOMAIN OF A FUNCTION

A function f defined from a set A to the set B is denoted by $f: A \to B$. Here, the set A is called the domain and the set B is called Codomain.

B

f

5. IMAGE AND PRE-IMAGE OF A FUNCTION

If an element $x \in A$ is associated to an element $y \in B$ under the function f, then we say that y is the image of x under the function f and we write it as under

$$f(x) = y$$

Here, x is called the pre-image of y.

6. RANGE OF A FUNCTION

The 'set of images' of the elements of the domain set A under a function f is called range of the function f and is denoted by f(A).

i. e.
$$Range(f) = f(A) = \{f(x) : x \in A\}$$

Note:

The range of a function is always a subset of the codomain.

7. REAL VALUED FUNCTION and REAL FUNCTION

A function which has either R or one of its subsets as its range is called *a real valued function*. Further, if its domain is also either R or a subset of R, it is called *a real function*.

8. SOME FUNCTIONS AND THEIR GRAPHS

(1) IDENTITY FUNCTION

A function $f: A \to A$ is called an identity function if each element of the set A is mapped onto itself.

i.e.
$$f(x) = x$$
, $\forall x \in A$

Domain = R and Range = R

Example:

If
$$A = \{1, 2, 3, 4, 5\}$$
 then,

$$f = \{(x, x) : x \in A\}$$

= \{(1, 1), (2, 2), (3, 3), (4, 4), (5, 5)\}

Is an identity function on A.

Note: An identity function on the set A is denoted by I_A and is defined by

$$I_A(x) = x, \quad \forall \ x \in A$$

GRAPH OF THE IDENTITY FUNCTION

Let us obtain some points on the graph of identity function

$$y = f(x) = x$$

x	-3	-2	-1	0	1	2	3	4
y = x	-3	-2	-1	0	1	2	3	4

(2) **CONSTANT FUNCTION**

A function $f: \mathbb{R} \to \mathbb{R}$ is called a constant function

$$i.e. f(x) = c, \forall x \in \mathbb{R}$$

Domain = R and $Range = \{c\}$

Example:

If A = N then, the function defined by

$$f(x) = x^0, \ \forall \ x \in \mathbb{R}$$

is a constant function.

GRAPH OF THE CONSTANT FUNCTION

Let us obtain some points on a constant function

$$y = f(x) = 3$$

х	-3	-2	-1	0	1	2	3	4
y = x	3	3	3	3	3	3	3	3

