CH2 \ Recurrence

遞迴的介紹

考題重點(目錄) (如何選擇適合的方法)

- Substitution Method
- 二、Recursion Tree
- **=** \ Master Theorem
- 四、數學解(迭代、變數變換)

Substitution Method

- \ Concept
 - 1. 先猜一個 Bound(經驗法則)
 - 2. 假設子問題符合此 Bound, 證母問題亦符合此 Bound
- 二、適用時機 分多、單邊、題目要求

三、例

$$T(n) = 2T([n/2]) + n$$
, $\exists T(n) = O(?)$

用 Substitution Method

 $(想法: 已知g(n) = 2g(n/2) + n = O(n \log n)$,覺得有floor 和無floor 不會對order 產生太大影響)

欲證: $T(n) = O(n \log n)$,即證: 存在c, $n_0 > 0$,使得當 $n \ge n_0$, $T(n) \le c n \log n$

假設 $T([n/2]) \le c[n/2] \lg[n/2]$,考慮: $T(n) = 2T([n/2]) + n \le 2 c[n/2] \log[n/2]$ (假設)

 $\leq 2c \, n/2 \log n/2 + n = cn \log n - (1-c)n \, (\sqrt{2c} \, c=2) \leq c \, n \log n$

 \Rightarrow $T(n) = O(n \log n)$

例(97 成大):

$$T(n) = 2T(\sqrt{(n)}) + \log n$$
,用 O 表示

用 Substitution Method

Recursion Tree

一、用到的 term:

$$T(n) = T(n/3) + T(2n/3) + n$$

母問題 子問題

成本

子問題n系數相加

二、適用時機

子問題個數 ≥2 個,子問題: T(n/a)

三、r<1型

例 : T(n) = T(n/2) + T(n/4) + T(n/8) + n,求 Θ

1. 建立 Recursion Tree

T(n)=n + 7n/8 + 49n/64 + ... + c

- \Rightarrow $T(n) = \Theta(n)$

四、r=1型

例(100 政大)(90、91 台大):

T(n) = T(n/3) + T(2n/3) + n

1. 建立 Recursion Tree

T(n) = n+n+...+c

- 2. 求 bound
 - (1) £ x upper bound(O) $T(n) = n+n+...+c \le n+n+...+n = n*h = n(log_{3/2}n+1)) => O(n lg n)$ $(2/3)kn = 1 => n(3/2)k => k = log_{3/2}n => h=k+1 = log_{3/2}n+1$
 - (2) $\overline{\#} \cancel{x} \text{ lower bound}(\Omega)$ $T(n) = n+n+...+c \ge n*h' = n(\log_3 n+1) => T(n)=\Omega(n \lg n)$
- \Rightarrow $T(n) = \Theta(n \lg n)$

Master Theorem

(nlogba 稱其為大個,而 Master Theorem 即與大個比較)

- 一、易錯題目
 - 1. 若存在 e>0,使得 $f(n)=O(n^{logba-e})$,則 $T(n)=\Theta(n^{log}b^a)$
 - 2. 若存在 e>0,0<c<1,使得 f(n)= $\Omega(n^{logba+e})$,且 af(n/b)<cf(n),則 T(n)= $\Theta(f(n))$

例:

- 1. (100 bpt): T(n) = 7T(n/2) + n2
- 2. $(99 \stackrel{.}{\nabla} \cancel{T})$: $T(n) = 3T(n/4) + n \lg n$
- 3. $(98 \, \text{交} \, \text{+}) : T(n) = 3T(n/2) + n \lg n$
- 4. $T(n) = 4T(n/2) + n^2/lgn$
- 1. $n^{\lg 7}$, $f(n)=n^2$, 存在 $e=\lg 7-2$, 使得 $n^2=O(n^{\lg 7-e})$, 則 $T(n)=O(n^{\lg 7})$
- 2. $n^{\log 43}$, f(n)=nlgn,存在 e=1-log43, c=3/4,使得 $nlgn=\Omega(n^{\log 43}+e)$,且 3(n/4)lg(n/4)< nlgn,則 $T(n)=\Theta(nlgn)$
- 3. n^{lg3} , f(n)=nlgn,存在 e=lg3-1.0001,使得 $nlgn=O(n^{lg3-e})$,則 $T(n)=O(n^{lg3})$
- 4. (不可用 Master Theorem)