

Duration: 42 class room hours + 38 Lab hours

Objective: To introduce Linux environment and hands on Linux commands.

Prerequisites: Knowledge of Computer Fundamentals **Evaluation method:** Theory exam – 40% weightage Lab exam – 40% weightage

Internal exam – 20% weightage

List of Books / Other training material

Text Book:

1. Linux: The Complete Reference – Petersen/ TMH 6th Edition

Reference:

- 1. The Linux Programming Interface: Linux and UNIX System Programming Handbook
- 2. Pro Bash Programming: Scripting the GNU/Linux Shell, Second Edition
- 3. Beginning Unix Joe Marilino (Wrox Publication)
- 4. Linux Command Line And Shell Scripting Bible Blum (Wiley India)

Linux Programming

Session 1

Lecture:

Linux History and Operation

- The Evolution of Linux
- The GNU Movement and the GPL
- Linux Operations as a Server
- o The Architecture and Structure of Linux

Installing and Configuring Linux

- Introduction to Installation and Media Types
- Performing a Custom Linux Server Installation
- o Run Levels and the Startup/Shutdown Sequence
- Logging In and Out of a Linux System

Basic Commands

(ls, cp, mv, sort, grep, cat,head,tail, man, locate, find, diff, file, rm, mkdir, rmdir, cd, pwd, ln and ln – s, gzip and gunzip, zip and unzip, tar an its variants, touch, echo, who, whoami, ps, kill,makefile,etc.)

Assignment -Lab:

Getting Acquainted with the Linux Environment Use various commands in Linux system.

Session 2

Lecture:

Gaining confidence with Linux

- Access control list and chmod command
- o chown and chgrp commands
- Commands like telnet, ftp, ssh, and sftp
- Basic of I/O system with mount and unmount.

vi editior

- o Features and different modes of vi editor
- o Editing using vi editor
- Find and replace commands
- o cut-copy-paste commands
- The set command

o Other related commands of vi

Assignment -Lab:

Review Exercises

Session 3 & 4

Lecture:

Users and Groups

- Introduction to Users and Groups
- Essentials of Effective User, Group, and Password Management

The Ext2 Filesystem

- o Introduction to the Second Extended (Ext2) Filesystem
- Partitioning and Formatting
- Mounting and Configuring Filesystems
- Administering Ext2 Filesystems
- Understanding Permissions

Session 5 & 6

Lecture: Linux shell programming

- Introduction to Shells
 - a. What is shell?
 - b. Different types of Linux shells
 - c. Bourne Again Shell (BASH)
 - d. Shell variables (environment and user defined)
 - e. Shell files (.bashrc, .profile, .bash_profile, .bash_logout)
 - f. Positional parameters
- Get start with simple scripts (User variable, expr, multiple command)
- Wild cards (* and ?)
- Command line arguments
- Arithmetic in shell scripts

Assignment -Lab:

Review Exercises

Session 7 & 8

Lecture:

Linux shell programming (Contd.)

- Read and echo commands in shell scripts
- The tput command
- ' Taking decisions:
 - if-then-fi
 - if-then-else-fi
 - The test command (file tests, string tests)
 - Nested if-elses
 - The case control structure

Assignment -Lab:

Review Exercises

Session 9 & 10

Lecture:

Linux shell programming (Contd.)

- The loop control structure
 - a. The while, until and for loop structures
 - b. The break and continue statements

- O Shell metacharacters
- Command line expansion
- ^o Directory stacks manipulation
- ^o Job control, history and processes
- Builtins and functions
- Shell Files

Assignment -Lab:

Review Exercises

PG-DBDA Page 3 of 6

Cloud Computing

Reference:

- 1. Cloud Computing Black Book by Kailash Jayaswal, Dreamtech
- 2. Mastering Cloud Computing by Rajkumar/ McGraw Hill Education
- 3. Cloud Computing a practical Approach by AnthonyT Velte/ McGraw Hill Education
- 4. Architecting the Cloud: Design Decisions for Cloud Computing Service Models (SaaS, PaaS, and IaaS)
- 5. Cloud Computing
- 6. An Introduction to Parallel Computing: Design and Analysis of Algorithms (Authors: Vipin Kumar, Ananth Grama, Anshul Gupta, George Karypis)
- 7. High Performance Cluster Computing: Architectures & Systems (Volume-1) by Rajkumar Buyya, Pearson
- 8. Parallel Programming in C with MPI and Open MPI, Michael, TMH
- 9. High-Performance Computing on Complex Environments

Sessions 11:

Lecture

- Introduction to cloud
- What computing paradigms are there?
- Characteristics and benefits

Lab Assignments:

Study about cloud and other similar configuration

Session 12:

Lecture

- Cloud Infrastructure and Deployment
- Main aspects of a cloud system
- Key properties of cloud computing

Lab Assignments:

- o Explore available solutions
- o Cloud Architecture

Session 13:

Lecture

- o Introduction to SaaS
- o Pros and Cons of SaaS Model
- Traditional Packaged software Vs SaaS
- SaaS examples

Lab Assignments:

Provide a solution on cloud as SAAS using available systems.

Session 14:

Lecture

PG-DBDA

- Introduction to laaS
- Examples
- Reference Model of AWS
- Amazon computes clod services

Lab Assignments:

Install Red hat all in one

Sessions 15:

Lecture

- Introduction to virtualization
- Types and Uses of Virtualization
- Virtual Machine Provisioning
- Virtual Machine Migration Services
- Private Cloud Computing Deployment

Lab Assignments:

- o Install VM on a physical host machine through which every I/O or network communication must pass.
- Explore Xen Architecture
- Implement security mechanism for private cloud(Hardened OS, Role based access etc).
- Implement virtual machine provisioning

Sessions 16:

Lecture

- Introduction to PaaS
- Storage as Service(RAID)
- Challenges of cloud environment
- Hypervisor
- o Comparisons of web services

Lab Assignments:

Install open shift binary on Cent OS.

Session 17 & 18:

Lecture

- Clod Computing and big data
- How does Bigdata relate to Cloud
- Cloud Services for Big Data

Lab Assignments:

- Study about cloud and other similar configuration
- Exposure to big data technologies on cloud

Session 19:

Parallel Processing Concepts (2 Hrs Theory)

Lecture:

- Physical Organization and building blocks of High Performance Computing Systems,
- Processors and Multi-Core Architectures
- Vector processing,
- Super-scalar,
- In-order execution,
- o Instruction-Level Parallelism etc.,
- FMA, 32 and 64 bit types,
- o ISA, Accelerators such as GPGPUs and Xeon Phi
- Threads and Processes,
- Multi-processing OS,
- Data and flow dependence,
- Race conditions,
- Synchronization and communication fundamentals,
- o Concurrency control,
- o Parallel I/O,
- o General concepts

Parallel Programming Models and Parallel Algorithms Design (4 Hrs Theory and 4 Hrs Labs) Session 20 & 21:

Lecture:

- o Application domains of HPC,
- o Decomposition Techniques:
- o Data parallelism,
- Functional parallelism,
- o Divide and Conquer etc.,
- Characteristics of Tasks and Interactions,
- o Mapping Techniques for Load Balancing,
- Methods for Containing Interaction Overheads,
- Granularity of parallelism
- Programming with OpenMP

Assignment -Lab:

- o Installation of OpenMP
- Programming with OpenMP