Math

Random variables and concentration

Linearity of expectation and variance:

For R.V X, Y:

Expectation:

$$\begin{split} \mathbb{E}[X] &= \sum_{s \in S} Pr[X = s] * S \\ \mathbb{E}[\alpha X] &= \alpha \mathbb{E}[X] \\ \mathbb{E}[X + Y] &= \mathbb{E}[X] + \mathbb{E}[Y] \end{split}$$

Variance:

$$\begin{split} & \mathbb{V}\mathrm{ar}[X] = \mathbb{E}[(X - \mathbb{E}[X])^2] \\ & \mathbb{V}\mathrm{ar}[\alpha X] = \alpha^2 \mathbb{V}\mathrm{ar}[X] \\ & \mathbb{V}\mathrm{ar}[X] = \mathbb{E}[X^2] - \mathbb{E}[X]^2 \end{split}$$

When X and Y are independent:

$$\begin{split} \mathbb{E}[XY] &= \mathbb{E}[X]\mathbb{E}[Y] \\ \mathbb{V}\mathrm{ar}[X+Y] &= \mathbb{V}\mathrm{ar}[X] + \mathbb{V}\mathrm{ar}[Y] \end{split}$$

Random event A,B:

$$P(A \cup B) = P(A + B) = P(A) + P(B) - P(AB)$$

 $P(A \cap B) = P(AB) = P(A, B) = P(A|B)P(B)$

One trick to identify if A and B are independent:

if we know B happens or not, does we have any indication that A will happen or not

When A and B are independent:

$$P(A|B) = P(A)$$

 $P(A \cap B) = P(A) * P(B)$

Indicator random variables and how to use them

when to use:

know $\mathbb{E}[d_{i,j}]$, D contains a lot of events and they are dependent $d_{i,j}=0/1$ $D=\sum_{i,j}d_{i,j}$

Inequality

Union bound:

$$P[A_1 \cup A_2 \cup A_3 \cup \ldots \cup A_k] \le P[A_1] + P[A_2] + \ldots + Pr[A_k]$$

How well does a R.V.X concentrate around it's expectation $\mathbb{E}[X]$:

Markov's Inequality:

For any random variable X which only takes non-negative values any positive t:

$$Pr[X \geq t] \leq \frac{\mathbb{E}[X]}{t} \Leftrightarrow Pr[X] \geq \alpha \mathbb{E}[X]] \leq \frac{1}{\alpha}$$

$$E[X] = \sum_{x=0}^{\infty} x Pr[X=x] \geq \sum_{x=t}^{\infty} x Pr[X=x] \geq \sum_{x=t}^{\infty} t Pr[X=x] = t \cdot \sum_{x=0}^{\infty} Pr[X=x] = t \cdot Pr[X \geq t]$$

Chebyshev's Inequality

r.v. X with expectation $\mathbb{E}[x]$ and variance $\sigma^2 = \mathbb{V}ar[X]$. Then for any k > 0:

$$Pr[|X - \mathbb{E}[X] \ge k\sigma|] \le \frac{1}{k^2}$$

Ad: X could be anything, two side

Dis: need to know variance

using linearity of variance

variance deduction: i.i.d, means of many trails

Gaussian Tail Bound

For
$$X \sim N(\mu, \sigma^2)$$
: $Pr[|X - \mathbb{E}X| \geq \alpha \sigma] \leq O(e^{-\alpha^2/2})$

Theorem(CLT-Informal)

Any sum of independent, identically distributed r.v.'s $X_1, \ldots X_k$ with μ and finite variance σ^2 converges to a Gaussian r.v. with mean $k\mu$ and variance $d\sigma^2$ as $k\to\infty$:

$$S = \sum_{i=1}^n X_i o N(k\mu, k\sigma^2)$$

Chernoff Bound

Let $X_1, X_2, \dots X_k$ be independent $\{0,1\}$ - valued R,V. and let $p_i = \mathbb{E}[X_i]$, where $0 < p_i < 1$. Then the sum $S = \sum_{i=1}^k X_i$, which has mean $\mu = \sum_{i=1}^k p_i = \mathbb{E}[S]$ satisfies :

$$Pr[S \geq (1+\epsilon)\mu] \leq e^{rac{-\epsilon^2 \mu}{2+\epsilon}}$$

and for $0 < \epsilon < 1$

$$Pr[S \leq (1-\epsilon)\mu] \leq e^{rac{\epsilon^2 \mu}{2}}$$

Corollary of Chernoff bound:

for
$$0 < \Delta < 1$$
, $Pr[|S - \mu| \ge \Delta \mu] \le 2e^{-\Delta \mu/3}$

Bernstein Inequality

Let X_1, X_2, \dots, X_k be independent random variables with each $X_i \in [-1, 1]$. Let $\mu_i = \mathbb{E}[X_i]$ and $\sigma_i^2 = \mathbb{V}\mathrm{ar}[X_i]$. Let $\mu = \sum_i \mu_i$ and $\sigma^2 = \sum_i \sigma_k^2$. Then, for $\alpha \leq \frac{1}{2}\sigma$, $S = \sum_i X_i$ satisfies: $Pr[|S - \mu| > \alpha\sigma] \leq exp(-\frac{\alpha^2}{4})$

$$Pr[|S-\mu|>lpha\sigma]\leq exp(-rac{lpha^2}{4})$$

Hoeffding Inequality

Let X_1, X_2, \dots, X_k be independent random variables with each $X_i \in [a_i, b_i]$. Let $\mu_i = \mathbb{E}[X_i]$ and $\sigma_i^2 = \mathbb{V}\mathrm{ar}[X_i]$. Let $\mu = \sum_i \mu_i$ and $\sigma^2 = \sum_i \sigma_k^2$. Then, for any $\alpha > 0$, $S = \sum_i X_i$ satisfies: $Pr[|S - \mu| > \alpha] \le 2 \exp(-rac{lpha^2}{\sum_{i=1}^k (b_i - a_i)^2)}$

$$Pr[|S-\mu|>lpha] \leq 2~exp(-rac{lpha^2}{\sum_{i=1}^k (b_i-a_i)^2})$$

Variance is a natural measure of central tendency

 q^{th} central moment: $\mathbb{E}[(X - \mathbb{E}X)^q]$

Some numbers

 $log_21billion = log_21000000 \approx 20$

0! = 1