TD1 SUPPLÉMENT

Exercice 1. On a vu dans TD1 que les suites $(a_n)_{n \in \mathbb{N}^*}$ et $(b_n)_{n \in \mathbb{N}^*}$ définies par $a_n = (1 + n^{-1})^n$ et $b_n = \sum_{k=0}^n 1/k!$ convergent. Montrer que $\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n$.

Solution. On remarque que

$$\left(1 + \frac{1}{n}\right)^n = \sum_{k=0}^n \frac{1}{n^k} \binom{n}{k} = \sum_{k=0}^n \frac{1}{k!} \prod_{j=0}^{k-1} \left(1 - \frac{k}{n}\right)$$

D'un côté, $1-k/n \le 1$ implique que $a_n = (1+n^{-1})^n \le \sum_{k=0}^n 1/k! = b_n$, donc $\lim_{n\to\infty} a_n \le \lim_{n\to\infty} b_n$. De l'autre côté, on fixe $m \in \mathbb{N}^*$ et pour tout $n \ge m$, on a

$$\sum_{k=0}^{n} \frac{1}{k!} \prod_{j=0}^{k-1} \left(1 - \frac{k}{n} \right) \ge \sum_{k=0}^{m} \frac{1}{k!} \prod_{j=0}^{k-1} \left(1 - \frac{k}{n} \right)$$

Quand $n \to \infty$, on a $\lim_{n \to \infty} a_n \ge \sum_{k=0}^m 1/k! = b_m$ pour tout $m \in \mathbb{N}^*$, donc $\lim_{n \to \infty} a_n \ge \lim_{n \to \infty} b_n$.

Exercice 2. On définit une suite $(I_n)_{n\in\mathbb{N}}$ par

$$I_n = \int_0^{\pi/2} \sin^n x \, \mathrm{d}x$$

Montrer que $\lim_{n\to\infty} I_n = 0$.

Solution. Fixons $\eta \in]0, \pi/2[$. On a

$$0 \le I_n = \int_0^{\eta} \sin^n x \, dx + \int_{\eta}^{\pi/2} \sin^n x \, dx \le \sin^n \eta + \left(\frac{\pi}{2} - \eta\right)$$

où on a utilisé le fait que $0 \le \sin^n x \le 1$ pour $x \in [0, \pi/2]$ et que $\sin^n x \le \sin^n \eta$ pour $x \in [0, \eta]$. Prenons $n \to \infty$, on en déduit que $0 \le \liminf_{n \to \infty} I_n \le \limsup_{n \to \infty} I_n \le \frac{\pi}{2} - \eta$ pour tout $\eta \in]0, \pi/2[$, donc $\lim_{n \to \infty} I_n = 0$.