Please download all files from github repository

https://github.com/Theshuvam/ECEN_Group6_Demo.git

Fashion-MNIST Classification with Machine learning algoritms

The Fashion-MNIST dataset

(https://pytorch.org/vision/main/generated/torchvision.datasets.FashionMNIST.html#torch vision.datasets.FashionMNIST) is used to train and test various image classification models and compare their performance. The algorithms that are implemented are K-Nearest Neighbors (KNN), Logistic Regression, Support Vector Machines (SVM), and Convolutional Neural Networks (CNN). You can find these algorithms developed for the Fashion-MNIST dataset and run them at

(https://colab.research.google.com/drive/15nx68petPqHZp381uTuUUdvoUVuLR-x0?usp=sharing). We also developed a Contrastive Language-Image Pretraining (CLIP) that was applied to the Fashion-MNIST dataset to perform zero-shot classification. You can find this algorithm developed for the Fashion-MNIST dataset and run it at (https://colab.research.google.com/drive/1Gt28GaRqMyWwu576ps9g34Gzi-MqPfeb?usp=sharing). The Convolutional Neural Networks (CNN) performed the best and therefore implemented further in this project.

Fashion-MNIST Classification with CNN

This project implements a Convolutional Neural Network (CNN) to classify images in the Fashion-MNIST dataset, a collection of grayscale 28x28 images of clothing items. The project is divided into two main scripts: one for training and saving the model, and another for evaluating the model's performance.

Project Structure

Files:
1. **`cnn_model_train.py`**: Script for training the CNN and saving the trained model as `cnn_model.pth`.
2. **`cnn_main.py`**: Script for loading the saved model, evaluating it on the test dataset, and visualizing results.
3. **Fashion-MNIST Data**: Includes training, validation, and test datasets in CSV format.
Outputs:
- **` cnn_model.pth` **: The saved weights of the trained CNN model.
virtualenvironment
create a virtual environment to install the dependencies and libraries
```bash
virtualenv env_name
for MAC
1. Open your terminal.

2. Install virtualenv using pip:

3. Navigate to your project directory:
cd /path/to/your/project
4. Create a virtual environment:
virtualenv env_name
5. Run the following command to activate the virtual environment:
source env_name/bin/activate
## Requirements
Install the libraries from the requirements.pdf
### Dependencies:
Install the required Python libraries using `pip`:
```bash
pip install torch torchvision pandas numpy matplotlib seaborn scikit-learn
Python Version:
- Python 3.7 or above

pip install virtualenv

Usage

If you want to Train the Model (otherwise skip to step 1 below)

Run the `cnn_model_train.py` script to train the CNN using the training and validation datasets. The trained model will be saved as `cnn_model.pth`.

```
```bash

python cnn_model_train.py
...
```

# ### Step 1: Evaluating the Model

Run the `cnn\_main.py` script to load the saved model, test its performance on the test dataset, and display evaluation metrics.

```
```bash

python cnn_main.py

...
```

Model Architecture

The CNN architecture consists of:

1. **Convolutional Layers**:

- Layer 1: 32 filters with kernel size 3x3, followed by ReLU activation and MaxPooling.
- Layer 2: 64 filters with kernel size 3x3, followed by ReLU activation and MaxPooling.

2. **Fully Connected Layers**:

- Layer 1: 128 neurons with ReLU activation.
- Output Layer: 10 neurons for class predictions.

Evaluation Metrics

The model evaluates performance using:

- **Accuracy**: Percentage of correct predictions.
- **Precision, Recall, F1-Score**: Weighted averages for all classes.
- **Confusion Matrix**: Visual representation of prediction errors.

Dataset

The Fashion-MNIST dataset contains 70,000 grayscale images of size 28x28 pixels, divided into 10 classes such as t-shirts, trousers, sneakers, etc.

| Class ID | Class Name | |------| | 0 | T-shirt/top |

1	Trouser	
2	Pullover	
3	Dress	
4	Coat	
5	Sandal	
6	Shirt	
7	Sneaker	
8	Bag	
9	Ankle boot	
## Acknowledgments		
	project uses the [Fashion-MNIST set](<u>https://github.com/zalandoresearch/fashion-mnist</u>) developed by Zalando arch.	
- Built with [PyTorch](https://pytorch.org/).		
## License		

This project is licensed under the MIT License. See the `LICENSE` file for details.