Step-by-step protocol for TransTag library preparation

Preparing Reagents/Buffers:

In-house Tn5 assembly with adapter ME-B/ME-Rev only:

Purification of Tn5 transposase was performed using the pTXB1-Tn5 plasmid (Addgene, #60240) according to the protocol described previously (Picelli et al., 2014). Purified Tn5 can be stored in aliquots in -20 °C. The concentration of our purified unloaded Tn5 stock is 36 μ M, and assembled Tn5 concentration is 12 μ M. Alternatively, unloaded Tn5 (concentration of 37 μ M) is commercially available to purchase (Diagenode, C01070010-10).

In contrast to original paper using both annealed mosaic end (ME) adapter ME-A /ME-Rev and ME-B/ME-Rev to assemble Tn5, we only used annealed adapter ME-B/ME-Rev to load into Tn5 during the assembly step. Assembled Tn5 can be stored in -20 °C.

• Alkaline lysis buffer: 25 mM NaOH, pH=12.

• **Neutralization buffer**: 100 mM Tris-HCl, pH=8.

• **2**× **Tagmentation buffer** (100 µL):

Reagent	Amount
Tris-HCl, pH 7.5 (1 M)	2 µL
MgCl ₂ (1M)	1 µL
N,N-Dimethylformamide	20 μL
1×PBS	66 μL
10% Tween 20	2 μL
ddH ₂ O	9 μL

Note: 2× Tagmentation buffer is freshly made prior to performing tagmentation.

• 10% SDS

• 80% ethanol: freshly made

Step-By-Step Method Details:

Genomic DNA extraction and cleanup

- 1. Genomic DNA extraction
 - a. Zebrafish genomic DNA can be extracted from adult zebrafish (fin clip), embryos and larvae. Transfer a small piece of adult fin clip or whole embryo/larvae to a clean PCR tube.
 - b. Add 50 μL Alkaline lysis buffer to the PCR tube and incubate the tube at 95 °C for 30 minutes in a PCR machine.
 - c. Briefly vortex the tube and add equal volume (50 μ L) of Neutralization buffer. Spin down briefly on a bench-top microcentrifuge, and transfer supernatant to a new tube to keep

the genomic DNA. Genomic DNA can be stored at 4 °C.

2. DNA clean-up

- a. Extracted genomic DNA can be further cleaned up using a DNA Clean & Concentrator kit (Zymo Research, D4064) or other similar kits according to manufacturer's standard protocol. For genomic DNA, it is recommended to use a volume ratio of 2:1 for DNA binding buffer: sample using the Zymo Research DNA Clean & Concentrator kit.
- b. Elute DNA in 25 μL double-distilled water (ddH₂O), and quantify DNA concentration using a NanoDrop spectrophotometer. Cleaned up DNA can be stored at 4 °C.

Note: Typical concentration of DNA is $> 20 \text{ ng/}\mu\text{L}$.

Tagmentation

1. In a new PCR tube, set up a 50 μ L tagmentation reaction for each sample as stated in the following table.

Reagent	Amount
2× Tagmentation buffer	25 μL
Genomic DNA (100 ng)	Variable volume
ddH ₂ O	Adjust total volume to 50 μL
Assembled Tn5 with ME-B/Rev	1 µL

Note: 100 ng genomic DNA per sample is sufficient to generate a TransTag library.

- 2. Pipet gently to mix the sample. Incubate the tube at 37°C for 30 minutes in a PCR machine.
- 3. Add 1 μ L of 10% SDS to the tube, and mix well by pipetting. Incubate for 5 minutes at room temperature.
- 4. Perform clean-up using AMPure beads.
 - a. Add 40 μ L (0.8 volumes of sample) AMPure beads, mixing by pipetting up and down for at least 10 times.
 - b. Incubate at room temperature for 5 minutes.
 - c. Place on magnet and allow to clear, then withdraw liquid carefully. Keep the tube on magnet.
 - d. Add 200 μ L freshly made 80% ethanol without disturbing the beads. Incubate for 30 seconds.
 - e. Withdraw liquid carefully and add 200 μL freshly made 80% ethanol to incubate for 30 seconds.
 - f. Withdraw liquid and after a quick spin remove the remaining liquid with a 20 µL pipette.
 - g. Air-dry the beads for 5 minutes. Remove the tube from magnet stand, add 25 μ L ddH₂O and vortex on full for 30 seconds.
 - h. Incubate on the bench for 5 minutes, then place it back to magnet stand and allow it to clear.
 - i. Transfer liquid to a new PCR tube with a pipette.

Note: Tagmentation by Tn5 transposase is dependent on magnesium (Mg²⁺), and therefore it is important to avoid any chelators, such as EDTA/EGTA, in reaction buffers. Typical concentration of genomic DNA is 10 -100 ng/µL.

Library preparation by two-steps PCRs

1. Perform Step 1 PCR using NEB Next 2× HiFi Master Mix using the following protocol.

Reagent	Amount
NEB Next 2× HiFi Master Mix	12.5 µL
i7 primer (10 μM)	1 μL
ME-A-Tol2 primer (10 μM)	1 μL
Tagmented DNA	10.5 μL

PCR condition as follows:

72 °C for 5 minutes;

98 °C for 30 seconcs:

20 cycles of 98 °C for 10 seconds, 63 °C for 15 seconds;

72°C for 1 minute.

2. Perform Step 2 PCR with NEB Next 2× HiFi Master Mix using the following protocol.

Reagent	Amount
NEB Next 2× HiFi Master Mix	25 μL
i7 primer (10 μM)	2 μL
i5 primer (10 μM)	2 μL
Step 1 PCR product	12.5 µL
ddH ₂ O	8.5 µL

PCR condition as follows:

98 °C for 30 seconds;

20 cycles of 98 °C for 10 seconds, 63 °C for 15 seconds;

72°C for 1 minute.

Note: If you work with multiple samples, you can order a list of uniquely barcoded i5 and i7 primers. In this step-2 PCR, sample library can be multiplexed using a unique i5/i7 primer pair combination for each sample. Keep good note of primers used for each sample.

Important note: use the same i7 primer for both step 1 and step 2 PCR reactions.

3. Post-PCR library clean-up

- a. Perform library clean-up by adding 55 μ L (1.1 \times volumes of sample) of AMPure beads to each PCR sample. Mix by pipetting up and down for at least 10 times.
- b. Incubate at room temperature for 5 minutes.
- c. Place on magnet and allow to clear, then withdraw liquid carefully. Keep the tube on magnet.

- d. Add 200 µL freshly made 80% ethanol without disturbing the beads. Incubate for 30 seconds.
- e. Withdraw liquid carefully and add 200 μ L freshly made 80% ethanol to incubate for 30 seconds.
- f. Withdraw liquid and after a quick spin remove the remaining liquid with a 20 µL pipette.
- g. Air-dry the beads for 5 minutes. Remove the tube from magnet stand, add 15 μ L ddH₂O and vortex on full for 30 seconds.
- h. Incubate on the bench for 5 minutes, then place it back to magnet stand and allow it to clear.
- i. Transfer liquid to a new PCR tube with a pipette. This is the final TransTag library that is ready for multiplexing and DNA sequencing.

Note: Typical concentration of TransTag library after clean-up is > 20 ng/ μ L. TransTag libraries can be pooled together for an individual sequencing run. Alternatively, they can be pooled together with other genomic libraries as spike-in samples. We recommend sequencing for 1 – 5 million reads using paired-end 150bp as the longer reads would contain longer sequences of flanking genomic regions, increasing chances of confidently identifying insertion sites of transgenes.