Технологии программирования

Лекция 3 Постановка задачи. Анализ и проектирование при структурном подходе к программированию

Факторы, определяющие требования к ПО

Содержание Технического Задания

- техническое задание должно содержать следующие разделы (ГОСТ 19.201-78):
- •введение;
- •основания для разработки;
- •назначение разработки;
- •требования к программе или программному изделию;
- •требования к программной документации;
- •технико-экономические показатели;
- •стадии и этапы разработки;
- •порядок контроля и приемки.

Требования к программному продукту

Требования к спецификациям

- требование *полноты* означает, что спецификации должны содержать всю существенную информацию, где ничего важного не было бы упущено, и отсутствует несущественная информация, например детали реализации, чтобы не препятствовать разработчику в выборе наиболее эффективных решений;
- требование *точности* означает, что спецификации должны однозначно восприниматься как заказчиком, так и разработчиком.

Классификация моделей для разработки спецификаций

Модели этапа анализа и определения спецификаций

Не зависящие от подхода к разработке

Диаграммы переходов состояний

Математические модели предметной области

Структурного подхода

Функциональные диаграммы

Диаграммы потоков данных

Диаграммы отношений компонентов данных Объектного подхода

Диаграммы вариантов использования

Контекстные диаграммы классов

Диаграммы последовательностей

> Диаграммы деятельности

Модели методологии структурного анализа и проектирования

- •диаграмм потоков данных (DFD Data Flow Diagrams), описывающих взаимодействие источников и потребителей информации через процессы, которые должны быть реализованы в системе;
- •диаграмм «сущность-связь» (ERD Entity-Relationship Diagrams), описывающих базы данных разрабатываемой системы;
- •диаграмм переходов состояний (STD State Transition Diagrams), характеризующих поведение системы во времени;
- •спецификаций процессов;
- •словаря терминов.

Спецификации процессов.

Спецификации процессов обычно пред ставляют в виде краткого текстового описания, схем алгоритмов, псевдокодов, Flow-форм или диаграмм Насси-Шнейдермана. Поскольку описание процесса должно быть кратким и понятным как разработчику, так и заказчику, для их спецификации чаще всего используют псевдокоды.

Словарь терминов.

Словарь терминов представляет собой краткое описание основных понятий, используемых при составлении спецификаций. Он должен включать определение основных понятий предметной области, описание структур элементов данных, их типов и форматов, а также всех сокращений и условных обозначений. Он предназначен для повышения степени понимания предметной области и исключения риска возникновения разногласий при обсуждении моделей между заказчиками и разработчиками.

Диаграммы переходов состояний

•Диаграмма переходов состояний является графической формой предоставления конечного автомата - математической абстракции, используемой для моделирования детерминированного поведения технических объектов или объектов реального мира.

Пример: Диаграмма переходов состояний программного обеспечения, активно не взаимодействующего с окружающей средой.

Пример: Диаграмма переходов состояний программы построения графиков/таблиц функций

Рис. 4.6. Диаграмма переходов состояний программы построения графиков/таблиц функций

Диаграммы потоков данных

Диаграммы потоков данных позволяют специфицировать как функции разрабатываемого программного обеспечения, так и обрабатываемые им данные.

В основе модели лежат понятия:

- •Внешняя сущность
- •Процесс
- •Хранилище данных
- •Поток данных

Нотации диаграммы потоков данных

Понятие

Внешняя сущность

Система, подсистема или процесс

Внешняя сущность

Поток

Нотация Йордана

Наименование

Наименование Номер

Наименование

Наименование

Нотация Гейна-Сарсона

Наименование

Номер

Наименование

Механизм

№ Наименование

Наименование

Пример контекстной диаграммы

Детализация

На каждом следующем этапе каждую подсистему контекстной диаграммы детализируют при помощи диаграмм потоков данных.

Решение о завершении детализации процесса принимают в следующих случаях:

- процесс взаимодействует с 2-3-мя потоками данных;
- возможно описание процесса последовательным алгоритмом;
- процесс выполняет единственную логическую функцию преобразования входной информации в выходную.

Этапы разработки модели

- 1 этап построение контекстной диаграммы включает выполнение следующих действий:
- классификацию множества требований и организацию их в основные функциональные группы процессы;
- идентификацию внешних объектов внешних сущностей, с которыми система должна быть связана;
- идентификацию основных видов информации потоков данных, циркулирующей между системой и внешними объектами;
- предварительную разработку контекстной диаграммы;
- изучение предварительной контекстной диаграммы и внесение в нее изменений по результатам ответов на возникающие при изучении вопросы по всем ее частям;
- построение контекстной диаграммы путем объединения всех процессов предварительной диаграммы в один процесс, а также группирования потоков.

Этапы разработки модели

- 2 этап формирование иерархии диаграмм потоков данных включает для каждого уровня:
- проверку и изучение основных требований по диаграмме соответствующего уровня (для первого уровня по контекстной диаграмме);
- декомпозицию каждого процесса текущей диаграммы потоков данных с помощью детализирующей диаграммы или - если некоторую функцию сложно или невозможно выразить комбинацией процессов, построение спецификации процесса;
- добавление определений новых потоков в словарь данных при каждом появлении их на диаграмме;
- •проведение ревизии с целью проверки корректности и улучшения наглядности модели после построения двух-трех уровней.

Пример детализирующей диаграмммы

