

Dual N-Channel Enhancement Mode Field Effect Transistor

Features

 $V_{DS}(V) = 20V$

 $I_D = 7A$

 $R_{DS(ON)}$ < 26m Ω (V_{GS} = 4.5V)

 $R_{DS(ON)}$ < 33m Ω (V_{GS} = 2.5V)

 $R_{DS(ON)} < 42m\Omega (V_{GS} = 1.8V)$

9926A

SOP-8 top view

Absolute Maximum Ratings T_A=25°C unless otherwise noted

Parameter Drain-Source Voltage		Symbol	Maximum	Units
		V_{DS}	20	V
Gate-Source Voltage	;	V_{GS}	±8	V
Continuous Drain	T _A =25°C		7	
Current ^A	T _A =70°C	I _D	6	A
Pulsed Drain Current ^B		I _{DM}	40	
	T _A =25°C	Ь	2	W
Power Dissipation	T _A =70°C	$-P_{D}$	1.44	VV
Junction and Storage	e Temperature Range	T _J , T _{STG}	-55 to 150	°C

Thermal Characteristics

Parameter	Symbol	Тур	Max	Units		
Maximum Junction-to-Ambient ^A	t ≤ 10s	t ≤ 10s $R_{\theta JA}$ 48 62.5		62.5	°C/W	
laximum Junction-to-Ambient ^A Steady-State		ТОДА	74	110	°C/W	
Maximum Junction-to-Lead ^C Steady-State		$R_{ heta JL}$	35	40	°C/W	

9926A

Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
STATIC F	PARAMETERS	-	-		<u>-</u>		
BV_{DSS}	Drain-Source Breakdown Voltage	I _D =250μA, V _{GS} =0V		20			V
I _{DSS}	Zero Gate Voltage Drain Current	V_{DS} =16V, V_{GS} =0V	_			1	μА
			T _J =55°C			5	μΑ
I_{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} =±8V				100	nA
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS} I_{D}=250\mu A$		0.3	0.5	0.8	V
$I_{D(ON)}$	On state drain current	V_{GS} =4.5V, V_{DS} =5V		30			Α
R _{DS(ON)}	Static Drain-Source On-Resistance	V_{GS} =4.5V, I_D =7A			21.6	26	mΩ
			T _J =125°C		29.2	36	
		V_{GS} =2.5V, I_D =5A			26.4	33	mΩ
		V_{GS} =1.8V, I_D =4A			33.3	42	mΩ
g FS	Forward Transconductance	V_{DS} =5V, I_D =5A			22		S
V_{SD}	Diode Forward Voltage	I _S =1A		0.76	1	V	
Is	Maximum Body-Diode Continuous Current					3	Α
DYNAMIC	PARAMETERS						
C _{iss}	Input Capacitance	V _{GS} =0V, V _{DS} =10V, f=1MHz			1050		pF
C _{oss}	Output Capacitance				163		pF
C _{rss}	Reverse Transfer Capacitance				129		pF
R_g	Gate resistance	V _{GS} =0V, V _{DS} =0V, f=1MHz			4		Ω
SWITCHI	NG PARAMETERS	-	-		_		_
Q_g	Total Gate Charge	V _{GS} =4.5V, V _{DS} =10V, I _D =7A			15.2		nC
Q_{gs}	Gate Source Charge				1		nC
Q_{gd}	Gate Drain Charge				4		nC
t _{D(on)}	Turn-On DelayTime				6.5		ns
t _r	Turn-On Rise Time	V_{GS} =5V, V_{DS} =10V, R_L =1.5 Ω , R_{GEN} =3 Ω			9		ns
$t_{D(off)}$	Turn-Off DelayTime				56.5		ns
t _f	Turn-Off Fall Time				13.2		ns
t _{rr}	Body Diode Reverse Recovery time	I _F =5A, dI/dt=100A/μs			21		ns
Q_{rr}	Body Diode Reverse Recovery charge	I _F =5A, dI/dt=100A/μs			7.1		nC

A: The value of $R_{\theta JA}$ is measured with the device mounted on 1in^2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The value in any a given application depends on the user's specific board design. The current rating is based on the t ≤ 10s thermal resistance rating.

B: Repetitive rating, pulse width limited by junction temperature.

C. The R $_{\theta JA}$ is the sum of the thermal impedence from junction to lead $R_{\theta JL}$ and lead to ambient.

D. The static characteristics in Figures 1 to 6 are obtained using $80\mu s$ pulses, duty cycle 0.5% max.

E. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The SOA curve provides a single pulse rating.

9926A

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 5: On-Resistance vs. Gate-Source Voltage

Figure 6: Body-Diode Characteristics

9926A

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 7: Gate-Charge Characteristics

Figure 8: Capacitance Characteristics

Figure 9: Maximum Forward Biased Safe Operating Area (Note E)

Figure 10: Single Pulse Power Rating Junction-to-Ambient (Note E)

Figure 11: Normalized Maximum Transient Thermal Impedance

