EJERCICIO 1 DE LA PRUEBA 2 DE ARQUITECTURA DE COMPUTADORES. Huelva, 19 de Junio de 2020

Apellidos		
Valor de cada:	Respuesta correcta + 0.1	
	Respuesta incorrecta - 0.05	NOTE
	No respuesta - 0.05	$ \text{NOTA} \rightarrow $

TIEMPO REALIZACIÓN EXAMEN: 45 minutos

		Espacio para res	
	Sea un sistema computador A que dedica 10 segundos a un prod		.111111
1	A) El computador B dedica 13 segundos al mismo proceso	C) El computador A dedica 3 segundos más que el B	
•	B) El computador B dedica 30 segundos al mismo proceso	D) El computador A dedica 0,3 segundos menos que el B	
	Sea un computador sobre el que se aplica una mejora que hace		
	del tiempo:	e que dumente su verseiana en un inclor de Ar durante er 1070	
2	[aceleración global = 1/(fracción sin mejora + (fracción mejorac	da/aceleración mejorada))]	
	A) La aceleración global conseguida es de 1.92	C) La fracción mejorada es del 60%	
	B) La aceleración global conseguida es de 1,29	D) La fracción mejorada es de 2	
	En un sistema computador con frecuencia de procesamiento de		
3	A) Equivale a 1 ns por instrucción	C) Equivale a 5 CPI	
	B) Equivale a 180 CPI	D) Equivale a 0.5 ns por instrucción	
	En relación a los MIPS, ¿qué afirmación es correcta?:		
4	A) Son independientes del repertorio de instrucciones	C) Máquinas más rápidas significan menos MIPS	
	B) Pueden variar entre programas en el mismo computador	D) Ninguna de las afirmaciones anteriores es correcta	
	Sea un sistema computador con rendimiento valorado en 1 M	IPS, ¿cuánto tiempo dedicará a la ejecución de un programa	
5	formado por 1000 instrucciones?:		
	A) 100 ms	C) 1 ms	
	Β) 10 μs	D) 12 μs	
	En relación a la M. Principal y M. Caché, indique la afirmación		
6	A) La M. Caché contiene una copia total de la MP	C) La MP tiene menor tamaño que la M. Caché	
	B) La trasferencia de información se hace a nivel de palabra	D) MP y M. Caché comparten el mismo tamaño de bloque	
	En relación a las técnicas de mejora de rendimiento de la memo		
7	A) La memoria principal más ancha reduce el tiempo de		
	penalización por fallo en la M. Caché	única posición pero no el acceso a un bloque D) Ninguna de las afirmaciones anteriores es correcta	
	B) El entrelazado no mejora el sistema de memoria De las funciones de correspondencia de la M. Caché:	D) Ninguna de las alirmaciones anteriores es correcta	
	A) La asociativa por conjuntos necesita una circuitería menos	C) La totalmente asociativa necesita una circuitería más	
8	compleja que la directa	compleja que la asociativa por conjuntos	
	B) La directa requiere definir algoritmo de reemplazo	D) Las tres comparten el mismo formato de dirección	
	Para localizar el bloque donde se encuentra la palabra solicita		
	conjuntos, necesita:	du por la ere, la ranción de correspondencia asociación por	
9	A) Tantos elementos comparadores como bloques tiene en total	C) Tantos elementos comparadores como bloques formen el	
	,	conjunto	
	B) Tantos elementos comparadores como conjuntos tiene	D) Un solo elemento comparador	
	Sea una memoria caché de dos niveles L1 y L2, si de 200 refere	encias a memorias solicitadas por la CPU, el nivel L1 contiene	
10	100 aciertos y L2 40 aciertos:		
10	A) La tasa local de fallos de L1 es del 100%	C) La tasa global de fallos de L2 es del 60%	
	B) La tasa local de fallos de L2 es del 60%	D) La tasa global de aciertos de L2 es del 90%	
	Sea la secuencia de instrucciones LOAD A, ADD B, STORE C,		
	A) En una máquina basada en banco de registros, suma dos		
11	valores y almacena el resultado	memoria y almacena el resultado	
	B) En un computador basado en acumulador, Suma dos valores de la momeria y almacana el recultado	D) Ninguna de las afirmaciones anteriores es correcta	
	la memoria y almacena el resultado ¿Qué secuencia de instrucciones sería correcta en un computa-	dor hasada an hanga ragistros, con modelas de cicanción Des	
	Reg y Reg-Mem, para realizar la suma de dos posiciones de me		
12	A?	2	
12	A) LD R1, A; LD R2, B; ADD R1, R2	C) LD R1, A; ADD R1, B; ST A, R1	
	B) ADD A, B	D) Ninguna de las afirmaciones anteriores es correcta	
	¿Qué secuencia de instrucciones sería correcta en un computad		
	Mem y Mem-Mem, para realizar la suma de dos posiciones		
12	memoria A?		
13	A) ADD A, B	C) LD R1, A; LD R2, B; ADD R1, R2	
	B) ADD R1, A; ADD R1, B; ST A, R1	D) Es imposible de realizar la operación en ese tipo de	
		computador	
	Sea el esquema de computador basado en la arquitectura Von	Neumann estudiada, para realizar una operación de escritura	
	en memoria:		
14	A) Se necesita definir el valor del registro de Datos (RM) siempre	C) Se necesita algunas veces definir el valor del registro de	
		direcciones D	
	B) Se necesita definir el valor del registro PC	D) Se necesita definir el valor del registro SP	
	Sea un computador con unidad de control microprogramada co	on secuenciamiento explícito, repertorio de 512 instrucciones y	
15	Memoria de Control de 2 Kpos:	C) La atama traductora DOM 1- 512 1111/	
13	A) La etapa traductora ROM es de 9 pos x 11 bits	C) La etapa traductora ROM es de 512 pos x 11 bits	
	B) No necesita etapa traductora	D) Ninguna de las afirmaciones anteriores es correcta	

	1	ada con secuenciamiento implícito, y Memoria de Control de 2
16	Kpos:	C) E1 C 11 ' ' ' '
	A) El repertorio está formado por 2 K instrucciones	C) El firmware lo conforman 11 microinstrucciones
	B) El firmware lo conforman 2 ¹¹ microinstrucciones	D) Faltan datos para conocer el nº de microinstrucciones
17	Sea un sistema con arquitectura von Neumann, indica la/s in	
17	A) CALL y BZ	C) ADD .2, .4 con trap por desbordamiento
	B) La instrucción RETI	D) RET y CALL
	Comparando las arquitecturas de un procesador segmentad	
18	A) Ambas son arquitecturas segmentadas	C) Ambas son arquitecturas serie mo D) El procesador superescalar es siempre menos eficiente que el
	superior	segmentado
	Sea la instrucción LF F0, 10(R1) ejecutada en una arquitect	Č
		ipo C) La fase de ejecución pasa por la unidad funcional de enteros
19	flotante	po C) La fase de ejecución pasa por la difidad funcional de efficios
	B) No puede ejecutarse porque R1 debe ser de tipo float	D) No puede ejecutarse porque $F0 = 0$
	Sea la arquitectura DLX estudiada con unidades funcionales	
20	A) Puede presentar riesgos de tipo WAW	C) No puede ejecutar una fase WB una instrucción, antes que
20		otra anterior en la secuencia
	B) Únicamente puede presentar riesgos de tipo RAW	D) Puede presentar riesgos de tipo RAR
	Sea la secuencia de instrucciones LW R1, 10(R2) ST 20(R3),	R1:
21	A) Se beneficia si existe adelantamiento ALU-MEM	C) Se beneficia si existe adelantamiento MEM-MEM
	B) Se beneficia si existe adelantamiento ALU-ALU	D) Se beneficia si existe adelantamiento MEM-ALU
		cutadas sobre una arquitectura DLX con una unidad funcional
22		Multiplicación/División flotante de 5 ciclos segmentada:
22	A) Las fases de ejecución durarán 10 ciclos en total	C) Presenta un riesgo de tipo RAW
	B) Las fases de ejecución durarán 6 ciclos en total	D) Ninguna de las afirmaciones anteriores es correcta
	Para implementar la operación vectorial F0*V1, siendo F0 u	
	A) No se puede multiplicar registros float por un registro vector	ial C) Se emplearía la instrucción vectorial MULTV de la
23		arquitectura DLX escalar
		la D) Se debe emplear la instrucción MULTV y repetirla en un
	arquitectura DLXV	bucle un total de 64 veces en la arquitectura DLXV una operación vectorial en una arquitectura DLXV con longitud
	máxima de vector MVL = 64:	ina operación vectorial en una arquitectura DLAV con longitud
24	A) El vector se divide en 3 secciones de 64 elementos y u	ina C) El vector se divide en 2 secciones
44	última de 2	and C) El vector se divide en 2 secciones
	B) El vector se opera en su totalidad sin seccionamiento	D) El vector se divide en 3 secciones
	Sea un bucle con sentencia S: $B(i) = B(i-1)*K$; $B(0)=2$; $i=1$.	
25	A) La sentencia S no es vectorizable	C) La sentencia es vectorizable porque B(0)=2
25	B) La sentencia es vectorizable porque se multiplica por u	una D) Ninguna de las afirmaciones anteriores es correcta
	constante K	
	Sea la arquitectura DLXV con 16 bancos de memoria, si la C	
26	A) Ésta se ubicará en el Banco 0	C) Ésta se ubicará en el Banco 1
	B) Ésta se ubicará en el Banco 15	D) Ésta se ubicará en el Banco 14
		de 64 elementos) con tiempo de arranque de 6 ciclos y tasa de
27	iniciación de 1 ciclo/resultado, el tiempo de operación vector A) 70 ciclos	C) (3x64x6) ciclos
	B) (64x6) ciclos	C) (3x04x6) ciclos D) (6+1) ciclos
	En base a la clasificación de Flynn sobre los sistemas compu	
28	A) El flujo de instrucciones es compartido	C) No hay memoria para las instrucciones
	B) Hay un flujo de instrucciones por cada procesador	D) Ninguna de las afirmaciones anteriores es correcta
	Atendiendo a la clasificación de los multiprocesadores estud	
		ede C) El tiempo de acceso, sea cual sea la posición, es siempre
29	obtener un dato en más o menos tiempo	mayor que en un multiprocesador UMA
		de D) Todos los procesadores comparten la misma memoria caché
	memoria	obligatoriamente
	Según la clasificación de Flynn, dónde encajaría un array sis	
30	A) En MIMD ambos	C) En MISD ambos
	B) En SIMD ambos	D) En MIMD el sistólico y en MISD el de frente de onda
	Considerando una arquitectura escalar multihebra (o multil	
31	A) Conmuta a otra hebra después de cada ciclo	C) Conmuta a otra hebra después de cada detención
	B) La arquitectura escalar no puede ser multihebra	D) Conmuta a otra hebra cuando finaliza con la anterior
	En el diseño de una arquitectura de computador, indique la	
	A) La arquitectura Von Neumann presenta más ventajas que	
32	resto de arquitecturas estudiadas	cuantas más instrucciones tiene
		de D) En la arquitectura DLX, las etapas para la ejecución de una
	ejecución	instrucción pueden necesitar más de un ciclo
	Comparando dos sistemas, uno con memoria caché partida y	
33	A) El de caché partida es siempre más lento	C) El de caché unificada necesita un controlador de caché más sencillo que el de la partida
	1	
	B) El de caché partida no necesita controlador de caché	D) Ninguna de las afirmaciones anteriores es correcta

EXAMEN DE ARQUITECTURA DE COMPUTADORES. Parte I

Huelva, 15 de Mayo de 2020

PROBLEMA 1. (2,5 ptos.). Un sistema computador (sin memoria virtual) tiene una Memoria Principal de 1 Mpalabras de 8 bits cada una de ellas, dividida en bloques de 256 palabras/bloque; y una Memoria Caché de 2 Kpalabras, con función de correspondencia Totalmente Asociativa.

- 1. Indicar la capacidad en bits de la Memoria Principal.
- 2. Indicar la capacidad en Bytes de la Memoria Caché.
- 3. Indicar el número de bloques que conforman la Memoria Principal y la Memoria Caché.
- 4. Indicar el formato de la dirección que define la unidad central de proceso en base a la función de correspondencia empleada, definiendo cada uno de los campos en los que se divide.
- 5. Se supone que, después de haber estado la memoria caché "vacía", a continuación, en el *instante 1* se encuentran en la memoria caché los bloques de memoria principal B6, B8, B15, B17, B0, B1 y B2, leídos en ese orden y todas sus direcciones ordenadamente una vez. Suponer que el algoritmo de reemplazamiento de bloques es el LRU (Least Recently Used). Mostrar el contenido de la memoria caché en el *instante 1*.
- 6. Identificar cuántos fallos de caché se han producido y de qué tipo y cuántos aciertos hasta ese *instante 1*.
- 7. A continuación, la CPU lee la secuencia de direcciones de memoria: 1530, 1540, 1550, 4000, 2000 y 2048 (*instante 2*), según el orden marcado en la misma. Indicar el contenido de la memoria caché en el *instante 2*.
- 8. En ese *instante 2,* indicar cuántos fallos y de qué tipo se han producido y cuántos aciertos se ha producido en total.
- 9. Indicar el formato de dirección en binario de la dirección que provoca el último fallo.
- 10. Indicar la frecuencia de uso del último bloque introducido en memoria caché respecto del total de referencias a todos los bloques desde el instante 0?

PROBLEMA 2. Para el sistema computador representado en la figura y las tres instrucciones siguientes:

INSTRUCCIÓN (en ensamblador)	
BNC 17(.5) (C=0)	
AND .3, 12(.4++)	
ADD .4, .3 (trap)	

- Mostrar los formatos de las instrucciones.
- 2. Definir la secuencia de operaciones elementales y el solapamiento posible de las mismas, para cada instrucción en el mismo orden mostrado.
- 3. Definir el valor de las señales de control correspondiente a la secuencia ordenada de operaciones elementales SP, D ← SP 1 y M(D) ← PC, realizadas en el menor tiempo posible. Mostrar únicamente el valor de las señales que intervienen directamente en dicha operación.

Teniendo en cuenta:

- a) Las operaciones con la unidad aritmético-lógica se realizan en un periodo.
- b) Los cálculos de las direcciones de los operandos en memoria especificados con direccionamiento relativo, se realizarán después del periodo de decodificación (Periodo de decodificación sencillo).
- c) El resultado de una operación o el operando destino va a ser siempre el especificado en primer lugar en la instrucción de ensamblador.
- d) Las operaciones de L/E en memoria se realizan durante dos periodos.
- e) La pila, que se implementa en el sistema con el registro SP (puntero de pila), funciona de la siguiente forma: 1) La pila crece hacia direcciones decrecientes. 2) El registro puntero de pila SP indica la dirección de memoria principal en la que se introdujo el último dato en la pila.
- f) Para cuando hay que salvar el contenido de SR y el de PC, siempre se almacenará primero el de PC.

EXAMEN DE ARQUITECTURA DE COMPUTADORES

La Rábida, 19 de Junio de 2020

Apellidos:	Nombre:

PROBLEMA 3. (2 ptos.). El siguiente fragmento de código se ejecuta en un procesador con arquitectura DLX. Las latencias (en ciclos de reloj) de las unidades funcionales son las siguientes: Sumador/restador entero: 1; Sumador/restador flotante: 2; y Multiplicador/Divisor: 4 (las unidades funcionales para operaciones en coma flotante están **segmentadas**).

LF F2, 20(R1)

LF F3, 10(R2)

ADDI R1, R1, #4

SUBI R2, R2, #4

FMULT F6, F7, F8

FDIV F7, F2, F3

FADD F6, F2, F5

SF 30(R0), F7

- a) Suponiendo que la **memoria caché** está **unificada** y no existe **ningún tipo de adelantamiento**, indicar el estado de cada instrucción durante los ciclos de ejecución del código; calcular el número de ciclos necesarios para ejecutar este código; indicar si existen detenciones en la cadena, qué tipo de detención y a qué se debe.
- b) Suponiendo que la memoria caché está partida (caché de datos y caché de instrucciones) y existe adelantamiento generalizado, indicar el estado de cada instrucción durante los ciclos de ejecución del código; calcular el número de ciclos necesarios para ejecutar este código; indicar si existen detenciones en la cadena y a qué se deben e indicar los adelantamientos que se realizan y entre qué etapas actúan.

Etapa	Instrucción ALU	Carga/Almacenamiento	Salto/Bifurcación
IF	IR ← M[PC]	IR ← M[PC]	IR ← M[PC]
	PC ← PC+4	PC ← PC+4	PC ← PC+4
ID	A ← Rs1; B ← Rs2	A ← Rs1; B ← Rs2	A ← Rs1; B ← Rs2
	PC1 ← PC	PC1 ← PC	PC1 ← PC
	IR1 ← IR	IR1 ← IR	IR1 ← IR
EX	ALU _{output} ← A op (B or (IR1 ₁₆) ¹⁶ ##IR1 ₁₆₃₁)	MAR ← A+(IR1 ₁₆) ¹⁶ ##IR1 ₁₆₃₁	Salto
		SMDR ← B	ALU _{output} ← PC1+IR1 ₁₆) ¹⁶ ##IR1 ₁₆₃₁)
			Cond ← (Rs1 op 0);
			Bifurcación
			ALU _{output} ← PC1+ IR1 ₂₆) ⁶ ##IR1 ₆₃₁)
MEM	ALU _{output} 1 ← ALU _{output}	LMDR ← M[MAR]	If (cond):
		О	$PC \leftarrow ALU_{output}$
		M[MAR] ← SMDR	
WB	Rd ← ALU _{output} 1	$Rd \leftarrow LMDR$	

Tabla. Eventos en cada etapa de la segmentación de DLX diferenciados según el tipo de instrucción.

Apellidos: Non														Nombre:																		
Apartado a)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30		
LF F2, 20(R1)																																
LF F3, 10(R2)																																
ADDI R1, R1, #4																																
SUBI R2, R2, #4																																
FMULT F6, F7, F8																																
FDIV F7, F2, F3																																
FADD F6, F2, F5																																
SF 30(R0), F7																																
Detenciones							Dete	Detenciones									Adelantamientos								Adelantamientos							

Apartado b)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
LF F2, 20(R1)																														
LF F3, 10(R2)																														
ADDI R1, R1, #4																														
SUBI R2, R2, #4																														
FMULT F6, F7, F8																														
FDIV F7, F2, F3																														
FADD F6, F2, F5																														
SF 30(R0), F7																														
Detenciones	1						Dete	nciones								1	Adel	antamie	entos			1		Adel	antamie	entos				