

Curso 2 – CD, AM e DM

IA BIG ATA

Mineração de Dados

Parte 8
Extração de Padrões
Análise de Grandes Volumes de Dados

Prof. Ricardo M. Marcacini ricardo.marcacini@icmc.usp.br

- Até o momento, estudamos soluções que exploram medidas de proximidade e vizinhos mais próximos
- Limitações
 - Tempo
 - O custo computacional depende do número de objetos e quantidade de atributos
 - Memória
 - Conjunto de dados não pode ser carregado completamente em memória

Acelerar o cálculo da medida de distância

- Amostragem de dados para reduzir uso de memória e custo computacional
- Representações condensadas do conjunto de dados

Acelerar o cálculo da medida de distância

 Amostragem de dados para reduzir uso de memória e custo computacional

Representações condensadas do conjunto de dados

Medidas de Proximidade

- Base para métodos de agrupamento e de classificação baseada em instâncias
- Propriedades desejáveis (para dissimilaridade)
 - \circ Simetria $d(\mathbf{x}_i, \mathbf{x}_j) = d(\mathbf{x}_j, \mathbf{x}_i) \ \forall \mathbf{x}_i, \mathbf{x}_j$ Métrica!
 - \circ Positividade $d(\mathbf{x}_i, \mathbf{x}_j) \geq 0 \ \forall \mathbf{x}_i, \mathbf{x}_j$
 - \circ Reflexividade $d(\mathbf{x}_i, \mathbf{x}_j) = 0$ se, e somente se, $\mathbf{x}_i = \mathbf{x}_j$
 - Desigualdade Triangular

MBA IA BIG DATA

- Desigualdade Triangular
 - O comprimento de um dos lados de um triângulo não excede a soma dos outros dois.

$$d(a,b) \le d(x,b) + d(x,a)$$

Desigualdade Triangular

O comprimento de um dos lados de um triângulo não excede a

soma dos outros dois.

$$d(a,b) \le d(x,b) + d(x,a)$$

Propriedade pode ser explorada para evitar computar uma parcela distâncias, o que promove uma aceleração do processo.

Desigualdade Triangular

O comprimento de um dos lados de um triângulo não excede a

soma dos outros dois.

$$d(a,b) \le d(x,b) + d(x,a)$$

Propriedade pode ser explorada para evitar computar uma parcela distâncias, o que promove uma aceleração do processo.

Desigualdade Triangular

O comprimento de um dos lados de um triângulo não excede a

soma dos outros dois.

$$d(a,b) \le d(x,b) + d(x,a)$$

Propriedade pode ser explorada para evitar computar uma parcela distâncias, o que promove uma aceleração do processo.

Desigualdade Triangular

O comprimento de um dos lados de um triângulo não excede a

soma dos outros dois.

$$d(a,b) \le d(x,b) + d(x,a)$$

Propriedade pode ser explorada para evitar computar uma parcela distâncias, o que promove uma aceleração do processo.

Limitações: seu uso eficiente depende do contexto, como clustering e classificação kNN

Acelerar o cálculo da medida de distância

 Amostragem de dados para reduzir uso de memória e custo computacional

Representações condensadas do conjunto de dados

- Particionamento do Espaço
 - Dividir um espaço (e.g. euclidiano) em dois ou mais subconjuntos disjuntos
 - Qualquer objeto (ponto) no espaço pode ser alocado em uma das regiões
 - Permite buscas mais rápidas por "podar" regiões inteiras do espaço de busca

- Particionamento do Espaço com KD-Tree
 - KD-Tree = Árvore k-dimensional
 - Árvore binária em que cada nó é um ponto k-dimensional
 - Cada nó não folha divide o espaço em duas partes

- Pontos na subárvore com um valor menor do que o nó aparecerão na subárvore esquerda, caso contrário aparecerão na subárvore direita.
- Os níveis da árvore representam ciclos para alternar o atributo utilizado na divisão do espaço

Fonte: https://opendsa-server.cs.vt.edu/ODSA/Books/CS3/html/KDtree.html

Objeto	Atributo #1	Atributo #2
1	5	4
2	2	6
3	13	3
4	8	7
5	3	1
6	10	2

Objeto	Atributo #1	Atributo #2
1	5	4
2	2	6
3	13	3
4	8	7
5	3	1
6	10	2

Objeto	Atributo #1	Atributo #2
1	5	4
2	2	6
3	13	3
4	8	7
5	3	1
6	10	2

[2,6]

Objeto	Atributo #1	Atributo #2
1	5	4
2	2	6
3	13	3
4	8	7
5	3	1
6	10	2

[2,6] [13,3]

Objeto	Atributo #1	Atributo #2
1	5	4
2	2	6
3	13	3
4	8	7
5	3	1
6	10	2

Objeto	Atributo #1	Atributo #2
1	5	4
2	2	6
3	13	3
4	8	7
5	3	1
6	10	2

Objeto	Atributo #1	Atributo #2
1	5	4
2	2	6
3	13	3
4	8	7
5	3	1
6	10	2

Objeto	Atributo #1	Atributo #2
1	5	4
2	2	6
3	13	3
4	8	7
5	3	1
6	10	2

Considerações sobre KD-Tree

- Escolher bons pontos para particionar o espaço é importante balanceamento da KD-Tree
 - Escolher pontos medianos
- A performance é reduzida em altas dimensões
 - Uma grande quantidade de atributos torna a KD-Tree próxima a uma busca linear
 - Alternativa é o uso de busca aproximada de vizinhos mais próximos (Dica: <u>Annoy</u>)
- Ball-Tree usa conceitos similares a KD-Tree, mas dividindo o espaço em (hiper)esferas

Acelerar o cálculo da medida de distância

 Amostragem de dados para reduzir uso de memória e custo computacional

Representações condensadas do conjunto de dados

Amostragem

- MBA IA BIG DAYA
- Analisar uma parcela de dados que representa os principais padrões da base de dados
 - Como gerar a amostra?

- Variante do K-Means que usa mini-batch (amostras) para reduzir memória e tempo
- Amostras geradas aleatoriamente
- Duas etapas:
 - 1. Gerar amostras aleatoriamente do conjunto de dados, para formar um mini-batch e atribuir ao centroide mais próximo
 - 2. Atualizar centroides considerando a amostra atual e os centroides anteriores

Exemplo

1. Conjunto de dados (completo)

- 1. Conjunto de dados (completo)
- 2. Gerar uma amostra aleatoriamente

- 2. Gerar uma amostra aleatória
- 3. Atribuir objetos da amostra ao centroide mais próximo

- 1. Conjunto de dados (completo)
- 2. Gerar uma amostra aleatória
- 3. Atribuir objetos da amostra ao centroide mais próximo
- 4. Gerar uma amostra aleatoriamente

- 1. Conjunto de dados (completo)
- 2. Gerar uma amostra aleatória
- 3. Atribuir objetos da amostra ao centroide mais próximo e atualizar
- 4. Gerar uma amostra aleatória
- 5. Atribuir objetos da amostra ao centroide mais próximo e atualizar

- 1. Conjunto de dados (completo)
- 2. Gerar uma amostra aleatória
- 3. Atribuir objetos da amostra ao centroide mais próximo e atualizar
- 4. Gerar uma amostra aleatória
- 5. Atribuir objetos da amostra ao centroide mais próximo e atualizar
- 6. ...

Considerações: Mini-batch k-Means

- Converge mais rápido que o k-Means
- A qualidade do agrupamento costuma ser ligeiramente pior que o k-Means
- Em termos práticos, a (pouca) diferença de qualidade compensa (grandes bases de dados)

Acelerar o cálculo da medida de distância

- Amostragem de dados para reduzir uso de memória e custo computacional
- Representações condensadas do conjunto de dados

Representações Condensadas

- Ideia geral: substituir pontos originais do conjunto de dados por representantes.
 - Como obter o representantes?

BIRCH (Balanced Iterative Reducing and Clustering using Hierarchies)

NIBA IA BIG DATA

- Um método baseado em multi-level clustering
 - Micro-clustering:
 - Computa um sumário com estatísticas do conjunto de dados
 - Reduz o custo computacional
 - Macro-clustering
 - Aumenta flexibilidade e integração com outros métodos de agrupamento

Geração de uma <u>CF-TREE</u> (*Cluster-Feature Tree*) com uma <u>simples</u> <u>leitura da base de dados</u> permite a geração de micro-clustering.

- Cluster Features (CF)
 - Representação intermediária (condensada) do conjunto de dados

$$CF = (N, LS, SS)$$

- N = Quantidade de objetos
- LS = Soma linear dos vetores de cada objeto
- SS = Soma ao quadrado dos vetores de cada objeto

$$LS = \sum_{i=1}^N X_i \hspace{0.5cm} SS = \sum_{i=1}^N (X_i)^2$$

- Cluster Features (CF)
 - Representação intermediária (condensada) do conjunto de dados

Permite calcular centroide, raio e diâmetro de um micro-cluster sem acessar os dados originais

$$CF = (N, LS, SS)$$

- *N* = Quantidade de objetos
- LS = Soma linear dos vetores de cada objeto
- SS = Soma ao quadrado dos vetores de cada objeto

$$LS = \sum_{i=1}^N X_i \hspace{0.5cm} SS = \sum_{i=1}^N (X_i)^2$$

• CF-Tree

- Percorrer a base de dados para inserção incremental de objetos
- Para cada objeto
 - Encontrar a CF mais próxima
 - Adicionar na CF e atualizar estatísticas
 - Se diâmetro da CF ultrapassar um limiar, então dividir a CF
- Agrupar as CF dos nós folhas em k clusters

MBA IA BIG DATA

• CF-Tree

• Parâmetros:

- B (Branching Factor):
 número máximo de
 ramificação. Número de
 CF por nó da árvore.
- Tamanho Máximo do Diâmetro (ou Raio)
- Número de clusters (k) desejado

Considerações sobre o BIRCH

IA BIG DATA

- Parâmetros difíceis de calibrar
 - O que é um bom Branching Factor?
 - Como definir o raio ou diâmetro mínimo?

 A ordem de processamento dos dados altera o resultado da CF-Tree

- Formato dos clusters
 - Tendência para clusters globulares

Acelerar o cálculo da medida de distância

- Amostragem de dados para reduzir uso de memória e custo computacional
- Representações condensadas do conjunto de dados

Bibliografia

Rezende, S. O. (2003). *Sistemas inteligentes: fundamentos e aplicações*. Editora Manole Ltda.

Tan, P.N.; Steinbach, M.; Karpatne, A.; Kumar, V. (2016). *Introduction to Data Mining (2nd Edition)*. Pearson.

Sculley, David. "Web-scale k-means clustering." In Proceedings of the 19th international conference on World wide web, pp. 1177-1178. 2010.

Zhang, Tian, Raghu Ramakrishnan, and Miron Livny. "BIRCH: an efficient data clustering method for very large databases." ACM sigmod record 25, no. 2 (1996): 103-114.

