

Markus de Koster **Eberhard Waffenschmidt**

Patrick Lehnen Ingo Stadler Technische Hochschule Köln, Germany

Patrick Mack Ahmad Bkira

1. Motivation

Integration of more PV & EV ... causes power quality issues

... requires more monitoring

... which is expensive.

Simulate

What if fewer monitors could do the job if placed just right?

2. Methodology

II. Build affinity matrix

III. Aggregate affinity matrices

Voltage Current **Digital Twin Affinity Matrix (AM) Aggregated AM** Affinity: degree of influence between nodes 2.8kHz At each node: 150Hz **9** simulate 100Hz disturbance 10 12 **≤**11 **13 □ 7** ... repeat for each ... for both voltage and ► Measurement Node frequency **Measurement Node** current measurements

V. Determine number of monitors

- a) Determine applicationspecific thresholds
- b) Repeat *k*-means clustering with different k
- c) Find proportion of variance explained by k amount of measurements
- Accuracy requirements vary by application or use case
- State estimation requires higher precision than basic fault
- recognition What is the right amount of monitors for my application?

Scree plot of the explained variance for the CIGRE LV grid → Voltage: min: 0.0, max: 1.0 Current: min: 0.0, max: 1.0 Voltage: min: 0.5, max: 0.95 Current: min: 0.5, max: 0.95

3. Results

Opacity shows percentage of error recognized

4. Conclusion

Data-driven PQM placement: scalable and efficient

Placement considers use cases through application-specific thresholds

Finds amount of required measurements

Few PQ monitors needed (3-4 in typical grids)

Contact

Markus de Koster markus.de_koster@th-koeln.de

Technology **Arts Sciences** TH Köln

This research was funded by the German Federal Ministry for Economic Affairs and Climate Action grant number 03EI4048R.

¹For voltage-only measurements, ²Conceptual illustration, not literal encoding