Food trend

East Cost(NYC) vs West Coast(LA)

Chris Lee

Agenda

- 1. Data collecting Collect posts using web API (1,000 posts from each subreddit)
- 2. Data cleaning Clean the data and convert text into words by using vectorizer
- 3. Modeling & Evaluating Use classification model and evaluate (RandomforestClassification Model +)
- 4. Conclusion & Recommendation Interpret the result and make a recommendation

Population and Land area

QuickFacts, Census, Last updated: 12/19/18, Retrieved from https://www.census.gov/quickfacts/fact/table/US/PST045218

1. Data Collecting - Reddit API 🚭 reddit

Two Sub-reddits

FoodNYC

- 856 posts
- FoodLosAngeles 882 posts

- **URL** + .json = html text document
- 25 post per request Iterate 40 times to get 1,000 posts

2. Data Cleaning (Natural Language Processing)

• Tokenizing - the process of breaking a stream of text up into words, phrases, symbols, or other meaningful elements called tokens

```
ex) 'How are you?' -> 'How', 'are', 'you', '?'
```

• Lemmatizing / Stemming - forms of shortening words that attempt to return their *lemma*, or the base/dictionary form of a word

```
ex) running -> run, ran -> run, cats -> cat
```

Top 5 model by Accuracy score

(with default parameters setting)

- 1. Logistic Regression
- 2. ExtraTree
- 3. Multinomial Naive Beyes
- 4. AdaBoost
- 5. GradientBoosting

0.735632 LogisticRegression 0.712644 ExtraTree 0.708046 MultinomialNaiveBeyes 0.673563 AdaBoost 0.673563 GradientBoosting **BaggingTree** 0.645977 0.622988 RandomForest DecisionTree 0.611494 0.593103 **KNeighbor** 0.498851 SupportVectorMachine

Accuracy

Accuracy LogisticRegression 0.735632 0.712644 **ExtraTree** 0.708046 MultinomialNaiveBeyes 0.673563 AdaBoost 0.673563 GradientBoosting 0.645977 **BaggingTree** 0.622988 RandomForest 0.611494 **DecisionTree** 0.593103 **KNeighbor** 0.498851 SupportVectorMachine

Accuracy LogisticRegression 0.735632 **ExtraTree** 0.712644 0.708046 MultinomialNaiveBeyes 0.673563 AdaBoost GradientBoosting 0.673563 0.645977 **BaggingTree** 0.622988 RandomForest 0.611494 **DecisionTree** 0.593103 **KNeighbor** 0.498851 SupportVectorMachine

Gridsearch on Logistic regression for the hyperparameter setup

- penalty = specify the norm used in the penalization / default = l2
- C = Inverse of regularization strength / default = 1.0
- tol = tolerance for stopping criteria / default = 0.0001

Random Forest Classification

n_estimators: [10, 20, 50, 100],

max_depth: [None, 2, 3, 4],

Max_features: [auto, 0.5]

After tuning -> 0.678434

	Accuracy
LogisticRegression	0.735632
ExtraTree	0.712644
MultinomialNaiveBeyes	0.708046
AdaBoost	0.673563
GradientBoosting	0.673563
BaggingTree	0.645977
RandomForest	0.622988
DecisionTree	0.611494
KNeighbor	0.593103
SupportVectorMachine	0.498851

Logistic Regression

penalty: [l1, l2],

tol: [0.000001, 0.00001, 0.0001, Ø.001, 0.01],

C: [100, 10, 1, 0.1, 0.01]

After tuning -> 0.735632 (did not change!)

	Accuracy
LogisticRegression	0.735632
ExtraTree	0.712644
MultinomialNaiveBeyes	0.708046
AdaBoost	0.673563
GradientBoosting	0.673563
BaggingTree	0.645977
RandomForest	0.622988
DecisionTree	0.611494
KNeighbor	0.593103
SupportVectorMachine	0.498851

4. Conclusion

queen_x 1.284854 3.614141 brooklyn_x 1.193415 3.298325 manhattan_y 1.184725 3.269787 manhattan_x 1.098076 2.998391 star_x 1.037865 2.823184 midtown_x 0.964830 2.624341 infatu_x 0.898599 2.456161
manhattan_y 1.184725 3.269787 manhattan_x 1.098076 2.998391 star_x 1.037865 2.823184 midtown_x 0.964830 2.624341
manhattan_x 1.098076 2.998391 star_x 1.037865 2.823184 midtown_x 0.964830 2.624341
star_x 1.037865 2.823184 midtown_x 0.964830 2.624341
midtown_x 0.964830 2.624341
materin_x
infatu_x 0.898599 2.456161
flush_x 0.873470 2.395208
ate_x 0.870935 2.389143
brooklyn_y 0.830592 2.294677
momofuku_x 0.826912 2.286249
omakas_x 0.825746 2.283584
cooki 0.818797 2.267771

< Top features

Ex) Omakase has 2.28 time more chance to be called in NYC than LA.

Bottom features >

Ex) Toast has 0.6 time less change to be called in NYC than LA.

	coef	Ratio
toast_x	-0.513436	0.598436
make_x	-0.514424	0.597845
south_x	-0.516736	0.596464
chili_x	-0.520904	0.593983
lo_y	-0.520937	0.593964
thing_x	-0.524165	0.592049
marin	-0.524833	0.591654
oak_x	-0.528460	0.589512
socal_x	-0.530735	0.588173
place get_x	-0.535366	0.585455
santa_y	-0.536147	0.584998
langer	-0.542471	0.581310
venic_x	-0.544352	0.580218

4. Conclusion

- Meaningful features from Top 50 features (more relevant to NYC)
- Momofuku, omakaze, chinese, cookie, bagel, bar, rib,
- restaurant week, food fest, italian, michelin, vegan

- Meaningful features from Bottom 50 features (more relevant to LA)
- Toast, taco, chili, burger, shake shack, potato, donut, tsujita
- Hollywood, cafe

5. Recommendation

- 1. For NYC (East coast)
 - Omakaze, bagel, and italian food are popular in NYC
 - Use food fest, restaurant week, michelin star
 - Better to have vegan menu
- 2. For West coast
 - Burger, taco, chili are popular in LA
- 3. For both
 - Japanese restaurant is familiar for EC and WC in general.