

Présentation de l'étude

Contexte

Entreprise "Prêt à dépenser" Crédit à la consommation

avec peu ou pas d'historique de prêt

<u>Problématiques</u>:

Comment classifier les demandes?

Comment expliquer la décision aux clients?

Objectifs:

Modèle de scoring de la probabilité de défaut de paiement

Dashboard interactif

Dataset (source: https://www.kaggle.com/c/home-credit-default-risk)

Données variées:

- données comportementales
- données provenant d'autres institutions financières
- etc.

Méthodologie

1. Construction du modèle de scoring

2. Création du dashboard

Acquisition Exploration des données

Description des données

(source: https://www.kaggle.com/c/home-credit-default-risk)

	Rows	Columns	%NaN	%Duplicate	object_dtype	float_dtype	int_dtype	bool_dtype	MB_Memory
/Dataset/sample_submission.csv	48744	2	0.00	0.0	0	1	1	0	0.744
/Dataset/bureau.csv	1716428	17	13.50	0.0	3	8	6	0	222.620
/Dataset/HomeCredit_columns_description.csv	219	5	12.15	0.0	4	0	1	0	0.008
/Dataset/application_train.csv	307511	122	24.40	0.0	16	65	41	0	286.227
/Dataset/credit_card_balance.csv	3840312	23	6.65	0.0	1	15	7	0	673.883
/Dataset/POS_CASH_balance.csv	10001358	8	0.07	0.0	1	2	5	0	610.435
/Dataset/installments_payments.csv	13605401	8	0.01	0.0	0	5	3	0	830.408
/Dataset/previous_application.csv	1670214	37	17.98	0.0	16	15	6	0	471.481
/Dataset/application_test.csv	48744	121	23.81	0.0	16	65	40	0	44.998
/Dataset/bureau_balance.csv	27299925	3	0.00	0.0	1	0	2	0	624.846

Jeu de données principal

Data cleaning Feature engineering

Preprocessing

Identification / imputation des valeurs manquantes

- Numérique → median
- Catégorielle → most_frequent

Suppression des outliers / valeurs atypiques

Ex: 'XNA' dans 'CODE_GENDER'

Encodage des variables catégorielles

Standardisation des données

Feature engineering

Application : Création de features "Taux" en divisant certaines features

• Ex: 'PAYMENT_RATE' = 'AMT_ANNUITY' / 'AMT_CREDIT'Division de features → taux

<u>Bureau</u>: Création de features spécifiques pour les Crédits Actifs et les Crédits Fermés

<u>Autres tables</u>: Création de features avec la moyenne des valeurs selon 'SK_ID_CURR'

Train samples: (150000, 122) test samples: (48744, 121) Bureau df shape: (34117, 74)

Previous applications df shape: (110071, 187)

Pos-cash balance df shape: (104063, 11) Installments payments df shape: (58741, 9) Credit card balance df shape: (64370, 27) Join on 'SK_ID_CURR'

Feature selection

Tri des features selon leur importance :

- Correlation avec 'Target'
- Statistique Chi2
- RFE (recursive feature elimination)
- Poids (SelectFromModel): LogisticRegression, RandomForest, LightGBM

	Feature	Pearson	Chi-2	RFE	Logistics	Random Forest	LightGBM	Total
1	index	True	True	True	True	True	True	6
2	REGION_RATING_CLIENT_W_CITY	True	True	True	True	True	True	6
3	NAME_INCOME_TYPE_Pensioner	True	True	True	True	True	True	6
		1						
98	ANNUITY_INCOME_PERC	False	False	True	True	True	True	4
99	AMT_REQ_CREDIT_BUREAU_WEEK	False	False	True	True	True	True	4
100	AMT_REQ_CREDIT_BUREAU_MON	False	False	True	True	True	True	4

→ 100 features importantes selon au moins 4 méthodes

Conception des modèles

Test de cinq modèles de classification :

- LogisticRegression
- RandomForest
- Boosting: LightGBM, XGBoost, CatBoost

Evaluation des modèles

Limiter les risques de perte financière :

→ Pénaliser les Faux Positifs et surtout les Faux Négatifs

$$\frac{\text{Recall}}{\text{VP} + \text{FN}}$$

$$\frac{\text{Precision}}{\text{VP} + \text{FP}}$$

$$F_1 = 2 \cdot \frac{\text{precision \cdot recall}}{\text{precision} + \text{recall}}$$

$$F_{\beta} = (1 + \beta^2)$$
. $\frac{\text{precision . recall}}{(\beta^2 . \text{ precision}) + \text{recall}}$

Métriques

Accuracy Recall Precision

F-score Fbeta-score (beta = 3)

> Valeurs: 0 **⊅** 1

Fonction coût

Bank score

Valeurs : 0 ⊅ 1

$$\begin{split} &P_{VP} = P_{VN} = 1 \\ &P_{FP} = -1 \text{ et } P_{VN} = -10 \\ & \underbrace{\text{model}} = (VN * P_{VN}) + (FP * P_{FP}) + (FN * P_{FN}) + (VP * P_{VP}) \\ & \text{positif model} = (VN + FP) * P_{VN} + (FN + VP) * P_{VP} \\ & \text{negatif model} = (VN + FP) * P_{FP} + (FN + VP) * P_{FN} \end{split}$$

model - negatif model

Optimisation du meilleur modèle

RandomForest

Accuracy	Precision	Recall	F-score	Fbeta	Bank score	
0.81	0.17	0.36	0.23	0.31	0.69	

GridSearchCV

- CV = 5
- <u>Paramètres</u>: n_estimators, max_depth, random_stat, max_samples
- Score: Bank score

RandomForest

Accuracy	Precision	Recall	F-score	Fbeta	Bank score
0.77	0.15	0.42	0.23	0.36	0.68

Interpretabilité

Présentation Dashboard

Schéma fonctionnel

API (partie "Back end") Prédiction à partir de l'ID du client

http://127.0.0.1:5000/ predict?ID=100004

"target": 0

"risk": 0.39

https://p7flaskapi.herokuapp.c om/predict?ID=100004

Dashboard (partie "Front end") Partie graphique

http://localhost:8501/

https://share.streamlit.io/fanjarj/oc_ds_p7/main/Dashboard/dashboard.py

Limites Améliorations

Limites & Améliorations

• <u>Feature engineering</u>: inspiré d'un notebook Kaggle basé principalement sur une table du jeu de données

Définitions de features plus pertinentes en travaillant conjointement avec les équipes métier

 <u>Bank score</u>: basé sur des pondérations hypothétiques des prédictions (Hypothèse forte mais non confirmée)

Définition en collaboration avec les équipes métier

• Interprétabilité :

Prise en compte des variables issues du one hot encoding comme un seul et même feature (en d'autres termes revenir au feature initial)

MERCI

Questions

