인공지능 빅데이터공학과

투박한 백권

- 권성수(팀장)
- 한지선
- 박해성
- 백두렬
- 박태원

컨테이너 환경에서의 CPU 성능측정 방법에 대한 연구

수행배경 및 필요성

예상치 못한 오류

불필요한 비용

신뢰도 감소

테스트에 필요한 프로그램

- < Sysbench >
- 벤치마킹 프로그램

< Docker >

- 컨테이너 환경을 위한 운영체제, 소프트웨어 플랫폼

< Stress >

- 스트레스 부하 프로그램 [실험 2]

수행 방법

- 싱글 코어
- 멀티 코어
- 쿼드 코어

- 싱글 코어
- 멀티 코어
- 쿼드 코어

- 싱글 코어
- 멀티 코어
- 쿼드 코어

- 싱글 코어
- 멀티 코어
- 쿼드 코어

1. CPU 코어 수에 따른 성능의 차이를 분석

AWS EC2 가상환경

ubuntu@ip-172-31-16-184:~\$ sysbench cpu --events=10000 --cpu-max-prime=20000 --t ime=0 --threads=2 run sysbench 1.0.18 (using system LuaJIT 2.1.0-beta3) Running the test with following options: Number of threads: 2 Initializing random number generator from current time Prime numbers limit: 20000 Initializing worker threads... Threads started! CPU speed: 294.57 events per second: General statistics: _33.9461s total time: 10000 total number of events: Latency (ms): 3.33 6.78 avg: 16.59 max: 7.56 95th percentile: 67837.75 sum: Threads fairness: events (avg/stddev): 5000.0000/1.00 execution time (avg/stddev): 33.9189/0.00

Docker 컨테이너 환경

```
ubuntu@ip-172-31-16-184:~$ sudo docker run ubuntu/test:1.0
sysbench 1.0.18 (using system LuaJIT 2.1.0-beta3)
Running the test with following options:
Number of threads: 2
Initializing random number generator from current time
Prime numbers limit: 20000
Initializing worker threads...
Threads started!
CPU speed:
                       293.46
    events per second:
General statistics:
                                        34.0742s
   total time:
    total number of events:
Latency (ms):
        min:
                                                3.28
                                               6.81
        avq:
                                               14.23
        max:
        95th percentile:
                                                7.56
                                            68107.59
Threads fairness:
   events (avg/stddev):
                                  5000.0000/1.00
   execution time (avg/stddev): 34.0538/0.01
```

1. CPU 코어 수에 따른 성능의 차이를 분석

Micro 가상환경 CPU_Speed			Micro 컨테이너 환경	Total_time	Latency_av	Micro Stress 가상환경			Micro Stress 컨테이너		
	Total_time	Latency_av g	CPU_Speed			CPU_Speed	Total_time	Latency_av g	CPU_Speed	Total_time	Latency_avg
294.78	33.9216	6.78	293.47	34.0727	6.81	195.77	51.0798	10.21	147.29	67.8923	13.57
291.56	34.2968	6.85	293.46	34.0742	6.81	195.91	51.0426	10.2	147.29	67.8906	13.57
295.79	33.8055	6.76	294.58	33.9451	6.78	196.16	50.9787	10.19	146.78	68.1253	13.61
295.72	33.814	6.76	294.74	33.9259	6.78	193.21	51.7546	10.34	147.31	67.8834	13.56
295.64	33.8233	6.76	294.24	33.9871	6.79	195.82	51.0646	10.21	147.21	67.9304	13.57
294.68	33.9329	6.78	294.72	33.928	6.78	196.27	50.948	10.18	147.31	67.8806	13.56
295.14	33.8796	6.77	294.3	33.9766	6.79	196.01	51.0162	10.2	147.11	67.9743	13.58
295.01	33.8955	6.78	294.63	33.9388	6.78	196.09	50.9958	10.19	147.18	67.942	13.58
294.99	33.8978	6.77	294.26	33.9821	6.79	195.74	51.087	10.21	147.47	67.8047	13.55
295.56	33.832	6.76	294.54	33.9495	6.78	195.86	51.0548	10.2	147.45	67.8126	13.55
295.18	33.8759	6.77	294.55	33.9481	6.78	195.92	51.0392	10.2	147.41	67.8312	13.56
294.99	33.8978	6.78	293.95	34.0178	6.8	192.79	51.8682	10.37	147.51	67.7841	13.55
294.8	33.9189	6.78	294.12	33.9975	6.8	195.81	51.0679	10.21	147.57	67.7597	13.54
294.96	33.9014	6.78	294.47	33.9574	6.79	195.01	51.2788	10.25	147.18	67.9442	13.57
294.55	33.9485	6.79	295.05	33.8901	6.77	195.83	51.0637	10.21	147.37	67.8538	13.56
295.08	33.8873	6.77	294.57	33.9464	6.79	196.03	51.0107	10.2	147.54	67.7723	13.54
295.72	33.8134	6.76	297.33	33.9736	6.79	195.89	51.0462	10.2	145.56	68.7001	13.73
288.24	34.6911	6.93	293.98	34.0137	6.8	196.09	50.9946	10.19	147.37	67.8487	13.56
294.78	33.9211	6.78	295.07	33.8878	6.77	196.07	51.0012	10.19	147.51	67.7849	13.55
295.02	33.8939	6.78	293.92	34.0212	6.8	195.71	51.0949	10.21	147.27	67.8985	13.57
295.48	33.841	6.76	294.45	33.9592	6.79	195.77	51.0781	10.21	147.37	67.8533	13.56
294.76	33.9235	6.78	294.48	33.9561	6.79	194.06	51.5281	10.3	147.43	67.8286	13.55
294.3	33.9766	6.79	293.53	34.0657	6.81	196.18	50.9706	10.19	146.74	68.147	13.62
295.06	33.8887	6.77	293.91	34.0219	6.8	195.81	51.068	10.21	146.81	68.1098	13.61
294.72	33.9287	6.78	293.78	34.0372	6.8	195.96	51.0282	10.2	145.89	68.5437	13.69
294.9	33.9079	6.78	293.93	34.0198	6.8	195.83	51.0632	10.21	146.45	68.281	13.65
294.6	33.9422	6.79	294.08	34.003	6.8	195.76	51.0797	10.21	146.72	68.1488	13.61
294.73	33.9272	6.78	294.13	33.9971	6.79	195.9	51.0427	10.2	146.83	68.0999	13.62
294.98	33.8983	6.78	294.42	33.9635	6.79	196.15	50.9788	10.19	146.82	68.1105	13.61
294.96	33.9005	6.78	293.6	34.0579	6.81	193.2	51.7547	10.34	146.98	68.0361	13.59

실험 1. 데이터 시각화

T2.XLARGE

실험 1. 데이터 시각화

실험 1. 분산 분석 (가상 환경)

세 가지 인스턴스 유형의 CPU_speed, Total_time, latency_avg 평균의 차이가 있는지에 대한 분산분석

CPU speed:

P-value : 2e-16 , a = 0.001 이므로

귀무 가설 기각.

결론: 세 가지 인스턴스 유형의 CPU_speed

평균 차이가 있다.

Total time:

P-value : 2e-16 , $\alpha = 0.001$ 이므로

귀무 가설 기각.

결론 : **세 가지 인스턴스** 유형의 Total_time

평균 차이가 있다.

Latency avg:

P-value : 2e-16 , $\alpha = 0.001$ 이므로

귀무 가설 기각.

결론 : **세 가지 인스턴스** 유형의 Latency_avg

평균 차이가 있다.

최종결론: CPU 코어 수에 따른 성능의 차이가 있다.

실험 1. 분산 분석 (컨테이너)

세 가지 인스턴스 유형의 CPU_speed, Total_time, latency_avg 평균의 차이가 있는지에 대한 분산분석

CPU_speed:

P-value : 2e-16 , a = 0.001 이므로

귀무 가설 기각.

결론: 세 가지 인스턴스 유형의 CPU_speed

평균 차이가 있다.

Total time:

P-value : 2e-16 , $\alpha = 0.001$ 이므로

귀무 가설 기각.

결론: 세 가지 인스턴스 유형의 Total time

평균 차이가 있다.

Latency_avg:

P-value : 2e-16, $\alpha = 0.001$ 이므로

귀무 가설 기각.

결론 : **세 가지 인스턴스** 유형의 Latency_avg

평균 차이가 있다.

최종결론: CPU 코어 수에 따른 성능의 차이가 있다.

2. Stress 부하 후 각 환경의 성능차이 비교 분석

실험 2. 데이터 시각화 (No Stress)

실험 2. 데이터 시각화 (Stress)

실험 1. T-Test

각 두 환경의 성능의 평균 차이 검정.

CPU Speed:

세 가지 인스턴스 유형 모두

P-value : 2.2e-16 이 0에 가까운 결과를 나타냄으로

귀무 가설 기각.

결론 : 두 환경의 CPU_Speed 평균 차이가 있다.

Total_time:

세 가지 인스턴스 유형 모두

P-value : 2.2e-16 이 0에 가까운 결과를 나타냄으로 귀무 가설 기각.

결론: 두 환경의 Total_time 평균 차이가 있다.

Latency_avg:

세 가지 인스턴스 유형 모두

P-value : 2.2e-16 이 0에 가까운 결과를 나타냄으로 귀무 가설 기각.

결론: 두 환경의 Latency_avg 평균 차이가 있다.

Two Sample t-test data: test2\$t2.micro by test2\$Type t = -252.94, df = 58, p-value < 2.2e-16 alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval: -48.84618 -48.07915 sample estimates: mean in group con mean in group ec2 147.0910 195.5537

Two Sample t-test data: test2\$t2.medium by test2\$Type t = 287.88, df = 58, p-value < 2.2e-16 alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval: 11.16892 11.32533 sample estimates: mean in group con mean in group ec2 29.92342 18.67629

```
Two Sample t-test

data: test2$t2.xlarge by test2$Type

t = 240.23, df = 58, p-value < 2.2e-16

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

1.217768 1.238232

sample estimates:

mean in group con mean in group ec2

7.939333 6.711333
```

활용 방안 및 기대효과

사전 오류 방지

비용 절약

신뢰도 향상

감사합니다.