Problem 6.1: completeness of \rightarrow and \neg

Proof that the two elementary Boolean functions \rightarrow (implication) and \neg (negation) are universal, i.e., they are sufficient to express all possible Boolean functions.

Here For A ,B we have

Α	В	$A \rightarrow B$
0	0	1
0	1	1
1	0	0
1	1	1

Negation

Α	$\neg A$
0	1
1	0

Now

So,

Α	В	$\neg A$	$\neg B$	$(\neg A \to B)$	$(A \rightarrow \neg B)$	$\neg(A \rightarrow \neg B)$
0	0	1	1	0	1	0
0	1	1	0	1	1	0
1	0	0	1	1	1	0
1	1	0	0	1	0	1

Therefore, from the table we can observe that:

$$(\neg A \rightarrow B)$$
 is same as $(A \lor B)$

$$\neg (A \rightarrow \neg B)$$
 is same as $(A \land B)$

Since the functions AND and OR can be expresses by the elementary Boolean functions (\rightarrow) implication and negation (\neg) . We can find the other Boolean functions with these functions.

For Equivalence:

$$(\neg A \rightarrow B) \rightarrow (\neg (A \rightarrow \neg B))$$

For Exclusive OR

$$\neg((\neg A \to B) \to (\neg(A \to \neg B)))$$

For NOT AND

$$(A \rightarrow \neg B)$$

For NOT OR

$$\neg(\neg A \rightarrow B)$$

Problem 6.2: conjunctive and disjunctive normal form Consider the following Boolean formula:

$$\phi(P,Q,R,S) = (\neg P \lor Q) \land (\neg Q \lor R) \land (\neg R \lor S) \land (\neg S \lor P)$$

a) How many interpretations of the variables P, Q, R and S satisfy ϕ ? Provide a proof for your answer.

Н	lei	re
---	-----	----

Р	Q	R	S	ф
0	0	0	0	1
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1

Total no interpretations is $2^4 = 16$.

So ϕ has Boolean value 1 only in 2 interpretations, on the rest 14 interpretation ϕ is 0.

So ϕ is satisfied for boolean value 1 in only 2 interpretations.

b) Given the interpretations that satisfy φ , write the formula for φ in disjunctive normal form (DNF).

So here we have two conditions where $\,\varphi=1\,$ That are when

So

When we have,

Р	Q	R	S	ф
1	1	1	1	1

$$(P \land Q \land R \land S)$$

When we have,

Р	Q	R	S	ф
0	0	0	0	1

$$(\neg P \land \neg Q \land \neg R \land \neg S)$$

So by DNF
We have
$$\phi = (P \land Q \land R \land S) \lor (\neg P \land \neg Q \land \neg R \land \neg S)$$

c) Using the equivalence laws for Boolean expressions, derive the DNF representation of ϕ algebraically from the CNF representation. Write the derivation down stepwise.

Here we have CNF:

$$\phi(P,Q,R,S) = (\neg P \lor Q) \land (\neg Q \lor R) \land (\neg R \lor S) \land (\neg S \lor P)$$

Using Distributive Property, we derive,

$$\phi = (\neg P \lor Q) \land (\neg Q \lor R) \land (\neg R \lor S) \land (\neg S \lor P)$$

Converting from CNF to DNF in steps

We know for for any $(A \land \neg A) = 0$

Therefore, we will be using this throughout to get the solution;

We have

For
$$(\neg P \lor Q) \land (\neg Q \lor R)$$

= $(\neg P \land (\neg Q \lor R)) \lor (Q \land (\neg Q \lor R))$
= $(\neg P \land \neg Q) \lor (\neg P \land R) \lor (Q \land \neg Q) \lor (Q \land R)$
= $(\neg P \land \neg Q) \lor (\neg P \land R) \lor (Q \land R)$

For
$$(\neg P \lor Q) \land (\neg Q \lor R) \land (\neg R \lor S)$$

= $((\neg P \land \neg Q) \lor (\neg P \land R) \lor (Q \land R)) \land (\neg R \lor S)$
= $((S \land (\neg P \land \neg Q)) \lor (S \land (\neg P \land R)) \lor (S \land (Q \land R)) \lor ((\neg R \land (\neg P \land \neg Q)) \lor (\neg R \land (Q \land R))$
= $(\neg R \land \neg P \land \neg Q) \lor ((S \land \neg P \land \neg Q) \lor (S \land \neg P \land R) \lor (S \land Q \land R))$

For
$$(\neg P \lor Q) \land (\neg Q \lor R) \land (\neg R \lor S) \land (\neg S \lor P)$$

$$= ((\neg R \land \neg P \land \neg Q) \lor (S \land \neg P \land \neg Q) \lor (S \land \neg P \land R) \lor (S \land Q \land R)) \land (\neg S \lor P)$$

$$= ((\neg R \land \neg P \land \neg Q) \lor (S \land \neg P \land \neg Q) \lor (S \land \neg P \land R) \lor (S \land Q \land R)) \land (\neg S \lor P)$$

$$= (\neg S \land (\neg R \land \neg P \land \neg Q)) \lor (\neg S \land (S \land \neg P \land \neg Q)) \lor (\neg S \land (S \land \neg P \land R)) \lor (\neg S \land (S \land Q \land R)) \land (P \land (\neg R \land \neg P \land \neg Q)) \lor (P \land (S \land \neg P \land \neg Q)) \lor (P \land (S \land \neg P \land R)) \lor (P \land (S \land Q \land R))$$

$$= (\neg S \land (\neg R \land \neg P \land \neg Q)) \land (P \land (S \land Q \land R))$$

Using Associative Property, we have simplified = $(P \land Q \land R \land S) \lor (\neg P \land \neg Q \land \neg R \land \neg S)$

Here all the terms except $(P \land Q \land R \land S)$ and $(\neg P \land \neg Q \land \neg R \land \neg S)$ have the value 0 because of this property [$(A \land \neg A) = 0$].