

Machine learning: group DRO

Gender Shades

Inequalities arise in machine learning

False arrest due to facial recognition

Wrongfully Accused by an Algorithm

In what may be the first known case of its kind, a faulty facial recognition match led to a Michigan man's arrest for a crime he did not commit.

Real-life consequences

Linear regression with groups

$$f_{\mathbf{w}}(x) = \mathbf{w} \cdot \phi(x)$$
 $\mathbf{w} = [w]$ $\phi(x) = [x]$

Note: predictor $f_{\mathbf{w}}$ does not use group information g

Average loss

$$Loss(x, y, \mathbf{w}) = (f_{\mathbf{w}}(x) - y)^2$$

$$\mathsf{TrainLoss}(\mathbf{w}) = \frac{1}{|\mathcal{D}_{\mathsf{train}}|} \sum_{(x,y) \in \mathcal{D}_{\mathsf{train}}} \mathsf{Loss}(x,y,\mathbf{w})$$

$$\mathsf{TrainLoss}(1) = \tfrac{1}{6}((1-4)^2 + (2-8)^2 + (5-5)^2 + (6-6)^2 + (7-7)^2 + (8-8)^2) = 7.5$$

Per-group loss

$$\mathsf{TrainLoss}_g(\mathbf{w}) = \frac{1}{|\mathcal{D}_{\mathsf{train}}(g)|} \sum_{(x,y) \in \mathcal{D}_{\mathsf{train}}(g)} \mathsf{Loss}(x,y,\mathbf{w})$$

$$\begin{aligned} & \mathsf{TrainLoss}_{\mathsf{A}}(1) = \tfrac{1}{2}((1-4)^2 + (2-8)^2) = 22.5 \\ & \mathsf{TrainLoss}_{\mathsf{B}}(1) = \tfrac{1}{4}((5-5)^2 + (6-6)^2 + (7-7)^2 + (8-8)^2) = 0 \end{aligned}$$

Maximum group loss

$$\mathsf{TrainLoss}_{\mathsf{max}}(\mathbf{w}) = \max_{g} \mathsf{TrainLoss}_{g}(\mathbf{w})$$

 $\begin{aligned} & \mathsf{TrainLoss_A}(1) = 22.5 \\ & \mathsf{TrainLoss_B}(1) = 0 \\ & \mathsf{TrainLoss_{max}}(1) = \max(22.5,0) = 22.5 \end{aligned}$

CS221

Average loss versus maximum group loss

Standard learning:

CS221

minimizer of average loss: $\mathbf{w} = 1.09$

Group distributionally robust optimization (group DRO):

minimizer of maximum group loss: $\mathbf{w} = 1.58$

Training via gradient descent

$$\begin{aligned} \mathsf{TrainLoss}_{\mathsf{max}}(\mathbf{w}) &= \max_{g} \mathsf{TrainLoss}_{g}(\mathbf{w}) \\ \nabla \mathsf{TrainLoss}_{\mathsf{max}}(\mathbf{w}) &= \nabla \mathsf{TrainLoss}_{g^*}(\mathbf{w}) \\ &\qquad \qquad \mathsf{where} \ g^* = \arg\max_{g} \mathsf{TrainLoss}_{g}(\mathbf{w}) \end{aligned}$$

16

Summary

- Maximum group loss \neq average loss
- Group DRO: minimize the maximum group loss
- Many more nuances: intersectionality? don't know groups? overfitting?

CS221