Chapter 4 Word Embeddings and Recurrent NNs

4.1 Word Embeddings for Language Models

- Variable $E_{1,n} = (E_1 ... E_n)$
 - $E_i = a$ word
- Value $e_{1,n}$
 - E.g. $e_{1,6} =$ (We live in a small world) $e_1 =$ We, $e_2 =$ live, ...
- Probability Model

 $p(\text{We live in a small World}) = p(\text{We})p(\text{live}|\text{We})p(\text{in}|\text{We live}) \cdots$

Generally

$$p(E_{1,n} = e_{1,n}) = \prod_{j=1}^{j=n} p(E_j = e_j | E_{1,j-1} = e_{1,j-1})$$

Tokenization

- Breaking the strings into a sequence of words
- Vocabulary set V
 - Punctuation(final period .) is a word
 - *UNK* is unknown words
 - E.g. "132,423" in the sentence "The population of Providence is 132,423."

Penn Treebank(PTB)

- news articles from the Wall Street Journal.
- Files
 - ptb.train.txt, ptb.test.txt, ptb.valid.txt
- Train data
 - 929589 words
- Test data
 - 82430 words
- Vocabulary set V
 - 10000 words

aer banknote berlitz calloway centrust cluett fromstein gitano guterman hydro-quebec ipo kia memotec mlx nahb punts rake regatta rubens sim snack-food ssangyong swapo wachter pierre <unk> N years old will join the board as a nonexecutive director nov. N mr. <unk> is chairman of <unk> n.v. the dutch publishing group

- Probability Model
 - Bigram model

$$p(E_{1,n} = e_{1,n}) = p(E_1 = e_1) \prod_{j=2}^{j=n} p(E_j = e_j | E_{j-1} = e_{j-1})$$

- Sentence padding
 - Put a imaginary word "STOP" at the beginning of every sentence

$$p(E_{1,n} = e_{1,n}) = \prod_{j=1}^{j=n} p(E_j = e_j | E_{j-1} = e_{j-1})$$

Neural Network

- Word embedding
 - word \rightarrow index \rightarrow one hot vector \rightarrow e-dimensional vector
 - e = 20, 100 or 1000

- Words embedding
 - Cosine similarity

•
$$\cos(x, y) = \frac{x \cdot y}{\|x\| \|y\|}$$

 Cosine of angle between x and y

Word Numbers	Word	Largest Cosine Similarity	Most Similar
0	under		
1	above	0.362	0
2	the	-0.160	0
3	a	0.127	2
4	recalls	0.479	1
5	says	0.553	4
6	rules	-0.066	4
7	laws	0.523	6
8	computer	0.249	2
9	machine	0.333	8

4.2 Building Feed-Forward Language Models

```
inpt = tf.placeholder(tf.int32, shape=[batchSz])
answr = tf.placeholder(tf.int32, shape=[batchSz])
E = tf.Variable(tf.random_normal([vocabSz, embedSz], stddev = 0.1))
embed = tf.nn.embedding_lookup(E, inpt)

xEnt = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits,labels=answr)
loss = tf.reduce_sum(xEnt)
```

4.3 Improving Feed-Forward Language Models

1. Adding layer

```
2. Trigram model
    embed2 = tf.nn.embedding_lookup(E, inpt2)
    both = tf.concat([embed,embed2], 1)
```

4.4 Overfitting

- Regularization
 - Early stopping
 - Dropout
 - L2 regularization

Epoch	1	2	3	4	5	6	7	10	15	20	30
Epoch Train	197	122	100	87	78	72	67	56	45	41	35
Dev	172	152	145	143	143	143	145	149	159	169	182

Figure 4.3: Overfitting in a language model

Figure 4.4: Language-model perplexity when using regularization

4.5 Recurrent Networks