Contents

Contents				
1 Measuring Execution Time			1	
	1.1	How to Time Correctly	1	
	1.2	C++11 Example	2	
	1.3	Java Example	2	
	1.4	Python Example	2	
2	Ma	Math Review		
	2.1	FLOOR: Largest int that is $\leq = x$	2	
			3	
	2.3		3	
	2.4	9	3	
	2.5		3	
	#	mode: org		
1	\mathbf{M}	leasuring Execution Time		
	• It's difficult to measure correctly.			
	• Y	our computer is doing too much.		
	• I/	O problems.		
	• M	lay be too fast, hard to measure correctly.		

1.1 How to Time Correctly

• Run out of memory.

- TIME MULTIPLE RUNS!
- \bullet Statistical significance: 29 or more.
- $\bullet\,$ Use high resolution timers:
 - Use the smallest measure of time possible.
- Only time the important stuff.

C++11 Example

The following is c++11 only, it uses a high resolution timer rather than tick from C/C++.

```
double time_function()
  clock_t start, end, total;
  start = clock();
  for (int i=0; i<ITERS; i++)
    function_to_time();
  end = clock();
  total = end - start;;
  return (total / (float)CLOCKS_PER_SEC) / ITERS;
}
```

1.3 Java Example

```
public static float time_method()
  long start, end, total;
  start = System.nanoTime();
  // ITERS defined elsewhere
  for (int i=0; i<ITERS; i++)
    method_to_time()
  end = System.nanoTime();
  total = end = start;
  return total / (float) ITERS;
}
```

Python Example

Refer to python's Timeit Module (3.7).

2 Math Review

- FLOOR: Largest int that is $\leq x$.
 - floor(3.2) = > 3
 - floor(-6.7) => -7

2.2 CEILING: Smallest int that is >= x.

- ceil(3.2) => 4
- ceil(-6.7) = > -6

2.3 LOG

- Let b > 1, x > 0
- Logb(x) = L iff b**L = x
- Log10(1000) = 3
- Log2(8) = 3
- $\lg = \log 2$
- $\lg(16) = > 4$
- floor(lg(10)) => 3

2.4 Log identities

- logb(1) => 0
- logb(b) => 1
- $logb(x^*y) => logb(x) + logb(y)$
- logb(x/y) => logb(x)-logb(y)
- $logb(x^{**}g) => glogb(x)$
- loga(x) => logb(x)/logb(a) [!]

2.5 ADDITION

- $1 + 2 + 3 + \dots + n => sum(1, n, i)$
- sum(1, n, 1) => n
- sum(1, n, i) => n(n+1)/2
- sum(1, n, i*i) => [n(n+1)(2n+1)]/6
- $sum(1, n, c^{**}i) = > (c^{**}(i+1)-1)/(c-1)$ while c is not 1