8)
$$P(\chi < 1) = F(1) = \frac{1}{4}$$

 $P(\chi < 2) = F(\chi) - F(\chi) = \frac{9^2}{4^2} = \frac{1}{4} = \frac{9^2}{4^2} = \frac{1}{4} = \frac{3}{4}$
 $P(\chi = 1) = 0$
2) $Me(\chi) = m$ $P(\chi < m) = \frac{1}{4}$
 $Y = \frac{1}{4} = \frac{1}{4}$ $Q(\chi) = \frac{1}{4}$
 $Q(\chi) = \frac{1}{4}$ $Q(\chi) = \frac{1}{4}$

 $(F(x)) = \begin{cases} 0, & x \leq 0 \\ 2^{\frac{1}{2}}, & 0 < x \leq 1 \end{cases}$

 $(I) F(x) = P(\chi < 9c)$

$$X \in [0, 0, 1]$$

$$S(x) = \begin{cases} 0, x \notin [0, 0, 1] \\ \frac{1}{2}, x \in [0, 0, 1] \end{cases}$$

f(x) = { 0, x = [0;0,1]

F(2) - S faudr =

F(2) = SOdx=0. F(2)=Sodx+Sollx= 5,17/2=

$$F(2) = \int \frac{\partial x}{\partial x} + \int \frac{\partial x}{\partial y} = \int \frac{\partial x}{\partial y} + \int \frac{\partial x}{\partial y} = \int \frac{\partial x}{\partial y} + \int \frac{\partial x}{\partial y} = \int \frac{\partial x}{\partial y} + \int \frac{\partial x}{\partial y} = \int \frac{\partial x}{\partial y} + \int \frac{\partial x}{\partial y} = \int \frac{\partial x}{\partial y} + \int \frac{\partial x}{\partial y} = \int \frac{\partial x}{\partial y} + \int \frac{\partial x}{\partial y} = \int \frac{\partial x}{\partial y} + \int \frac{\partial x}{\partial y} = \int \frac{\partial x}{\partial y} + \int \frac{\partial x}{\partial y} = \int \frac{\partial x}{\partial y} + \int \frac{\partial x}{\partial y} = \int \frac{\partial x}{\partial y} + \int \frac{\partial x}{\partial y} = \int \frac{\partial x}{\partial y} + \int \frac{\partial x}{\partial y} = \int \frac{\partial x}{\partial y} + \int \frac{\partial x}{\partial y} = \int \frac{\partial x}{\partial y} + \int \frac{\partial x}{\partial y} = \int \frac{\partial x}{\partial y} + \int \frac{\partial x}{\partial y} = \int \frac{\partial x}{\partial y} + \int \frac{\partial x}{\partial y} = \int \frac{\partial x}{\partial y} + \int \frac{\partial x}{\partial y} = \int \frac{\partial x}{\partial y} + \int \frac{\partial x}{\partial y} = \int \frac{\partial x}{\partial y} + \int \frac{\partial x}{\partial y} = \int \frac{\partial x}{\partial y} + \int \frac{\partial x}{\partial y} = \int \frac{\partial x}{\partial y} + \int \frac{\partial x}{\partial y} = \int \frac{\partial x}{\partial y} + \int \frac{\partial x}{\partial y} = \int \frac{\partial x}{\partial y} + \int \frac{\partial x}{\partial y} = \int \frac{\partial$$

 $F(2) = \begin{cases} 0 & \times < 0 \\ \log_{10} x & < 1 \\ 1 & \times > 2 \end{cases}$

$$M(t) = \frac{6t0}{2} = \frac{0,1+0}{2} = \frac{0,05}{2} = \frac{(6-0)^{2}}{2} = \frac{(0,1-0)^{2}}{2}$$

 $D(\chi < 0,07) = f(0,07) =$ = (0.0,07 = 0,7)

...

$$0,9973 - 29(5)$$
 $= 5,0$

8=30V=03 an

$$X - CROWEROCRD GENERAL$$
 $X \sim N/N,0)$
 $X < 88 \sim 20% yra$
 $X > 90 \sim 75% yra$
 $X > 90 \sim 75% yra$
 $P(X < 78) = 0, V$
 $P(X > 90) = 9,75$
 $P(X > 90) = 9,75$
 $P(X > 90) = 1 - P(Y < 0, X) =$

miro

$$\Phi\left(\frac{38-34}{6}\right)=-93$$

$$\Phi\left(\frac{30-34}{6}\right)=-93$$

$$\Phi\left(\frac{30-34}{6}\right)=-93$$

$$\Phi\left(\frac{30-34}{6}\right)=-93$$

$$\Phi\left(\frac{30-34}{6}\right)=-93$$

$$-98$$
 -98
 -1376

$$0/33-90)$$

ragenwit 4.6. P()X-MKS P (/X-98 = x) =0,95 29(=) P(=)=0,475

Приведены данные о количестве членов семьи в 50 обследованных фермерских хозяйствах:

255632565666433573555456444474435374

66474467633585.

Требуется:

- а) построить дискретный вариационный ряд;
- б) построить полигон частот и относительных частот;
- в) построить кумулятивную кривую частот (относительных частот);
- г) определить выборочную среднюю;
- д) найти медиану и моду вариационного ряда;

X:	2	3 .	9 7	5 4	G	+	[3]	12
100	2	8	12	12	10	5	1	50
) _r	2/50	8/50	12/50	12/50	10 50	5/50	150	1

$$M_0 = 9$$
 $X = 4, 78 = M_0(X)$
 $M_0 = 5$ $S^2 = X^2 - (X)^2 = 29,82$
 $M_0 = 5$ $S = (X)^2 - (X)^2 = 29,82$
 $M_0 = 5$ $M_0 = 5$
 $M_$

