

# CMOS090 SPICE MODELS DOCUMENTATION

RESISTOR MODEL CARD

**MODELING TEAM** 

### **CONTENTS**

- ☐ Figures Index p.3
- □ Overview p.4
- □ Device Instantiation parameters p.6
- ☐ Pcell & Layout p.7
- ☐ Equivalent Circuit Schematics p.9
- ☐ Modeled effects
  - O Geometry Scaling p.13
  - O Mismatch Model p.18
  - O Temperature Dependence p.20
  - O Noise Model p.21
  - O Voltage Dependence p.22
- □ Parasitic Components p.24
- □ Post Layout Simulation p.25
- □ Corners Construction p.26
- Model Parameter List p.27



# FIGURES INDEX

| - Side view of poly resistors Pcell p.7                                                                   |
|-----------------------------------------------------------------------------------------------------------|
| - Top view of poly resistors Pcell (Layout) p.7                                                           |
| - Side view of unsilicided P+ active resistors Pcell p.8                                                  |
| - Top view of unsilicided P+ active resistor Pcell (Layout) p.8                                           |
| - Circuit diagram of poly resistor device p.9                                                             |
| - Circuit diagram of active resistor device p.10                                                          |
| - Circuit diagram of unsilicided active resistor device p.11                                              |
| - Layout of one two head salicided resistor p.13                                                          |
| - Layout of one two head unsalicided resistor p.14                                                        |
| - Layout of one two head hipo resistor p.16                                                               |
| - Sheet resistance versus length (0.4mm <l<20mm ;="" p.16<="" td="" w="1mm)"></l<20mm>                    |
| - Sheet resistance versus width (L = 20mm) p.17                                                           |
| - Number of resistors out of 5000 versus resistance value for an RNPO resistor (W = 10mm; L = 100mm) p.19 |
| - Sheet resistance versus temperature RNPO and RPPORPO resistors p.20                                     |
| - Noise spectral density versus frequency for RNPORPO resistor p.21                                       |
| - Resistance versus Voltage between Plus and Minus pins for N+ Poly Unsilicided resistor p.23             |



### **OVERVIEW**

The RESISTOR device model is a physical model. The resistance value is calculated using the expression:

$$R = \frac{\rho \times L}{W \times t} = \left(\frac{\rho}{t}\right) \times \left(\frac{L}{W}\right) = R_S \times \frac{L}{W} \tag{1}$$

where:

R : Resistance ( $\Omega$ )

 $\rho$ : resistivity of the material ( $\Omega$ -m)

L<sup>1</sup>: length of the strip (m)

W: width of the strip (m)

t: thickness of the strip (m)

Rs: sheet resistance ( $\Omega$ /square)

#### □ Pins

Resistor is a symmetrical and 3 pins device:

- Plus pin
- Minus pin
- One pin for substrate: Sub

Resistors can be built in the following flavors:

- either Poly or OD (active), according to the layer in which they are fabricated
- 1. The drawn length is defined as the distance between the contacts for silisided resistors and the length of the resulting shape of intersection of the RPO layer and the PO/OD for unsilisided resistors (see DRM RevF 7.3.8.1)



- either N+ or P+, as to the doping type
- either unsilicided or silicided, relying on the presence or not of the silicidation protection

### □ Model nomenclature

Table below contains all available models and their names.

| P+ Unsilicided Active RESISTOR | RPODRPO and RPODRPO_ACC   |
|--------------------------------|---------------------------|
| N+ Unsilicided Active RESISTOR | RNODRPO and RNODRPO_ACC   |
| N+ Silicided Poly RESISTOR     | RNPO and RNPO_ACC         |
| N+ Unsilicided Poly RESISTOR   | RNPORPO and RNPORPO_ACC   |
| P+ Unsilicided Poly RESISTOR   | RPPORPO and RPPORPO_ACC   |
| High-Resistance P+ Poly        | RHIPORPO and RHIPORPO_ACC |



# **DEVICE INSTANTIATION PARAMETERS**

#### → Model CALL:

Xname Plus\_Pin Minus\_Pin Substrate\_Pin ModelName w=resistor\_width l=resistor\_length r=resistance\_value<sup>1</sup> mult=MULT\_value mismatch=mismatch\_flag lpe=LPE\_Value tometer=microns\_to\_meter nhead=head\_number

| Plus_Pin      | is the first resistor terminal                                                           |
|---------------|------------------------------------------------------------------------------------------|
| Minus_Pin     | is the second resistor terminal                                                          |
| Substrate_Pin | the node connected to the substrate                                                      |
| ModelName     | rnpo_acc, rpporpo_acc, rpodrpo_acc, rhiporpo_acc or rnporpo_acc (string)                 |
| w             | is the desired width of the resistor (float)                                             |
| I             | is the desired length of the resistor (float)                                            |
| r             | is the resistance value (not used in the model)                                          |
| mult          | is the multiplication factor (parallel resistors configuration)                          |
| mismatch      | to activate the mismatch effect for the device (0=disable, 1=enable)                     |
| lpe           | flag is a user option to take into account the post-layout extraction mode (0,1, 2 or 3) |
| tometer       | parameter used to transform distances in microns to meters unit                          |
| nhead         | number of heads available in the instantiated device                                     |



<sup>1.</sup> The value specified here is not used in the model.

# PCELL & LAYOUT



Figure 1 - Side view of poly resistors Pcell





Figure 2 - Top view of poly resistors Pcell (Layout)

### ☐ Unsilicided N+/P+ Active Resistors



Figure 3 - Side view of unsilicided P+/N+ active resistors Pcell



Figure 4 - Top view of unsilicided P+/N+ active resistors Pcell (Layout)

4577



### EQUIVALENT CIRCUIT SCHEMATICS

### □ Poly equivalent circuit schematics

Resistor model calculates Rbody and Rhead resistances (Figure 5):



Figure 5 - Circuit diagram of poly resistor device

#### Where:

- Rbody: the intrinsic (main) resistance between the Plus/Minus terminals without head parts.
- Rhead: resistance of one head. Its value depends on contact and silicidation.
- C1: the parasitic capacitor between the PLUS terminal and the substrate.
- C2: the parasitic capacitor between the MINUS terminal and the substrate.

NOTE: for unsilicided poly resistors a detailed circuit schematics<sup>1</sup> is shown in paragraph bellow (figure 7)

457/

<sup>1.</sup> replace P+/NWell diodes by parasitic capacitors.

### **Active equivalent circuit schematics**



Figure 6 - Circuit diagram of active resistor device

#### Where:

- Rbody: the intrinsic (main) resistance between the Plus/Minus terminals without head parts.
- Rhead: resistance of one head. Its value depends on contact and silicidation.
- D1: the parasitic diode (P+/NWell for P+ OD resistor) (N+/Psub for N+ OD resistor) between the PLUS terminal and the substrate.
- D2: the parasitic diode (P+/NWell for P+ OD resistor) (N+/Psub for N+ OD resistor) between the MINUS terminal and the substrate.

<sup>1.</sup> In this case the diode is upside down (reverse biased)

NOTE: detailed unsilisided resistor equivalent circuit schematics is shown in figure below:



Figure 7 - Circuit diagram of unsilicided active resistor device

#### Where:

- Rbody: the intrinsic (main) resistance between the Plus/Minus terminals without head parts.
- Rhi: resistance of interface between head and body
- Rhs: resistance of silisided head part
- Rsc: contact resistance

This configuration can be seen also in poly unsilicided resistors.

NOTE: for high resistive poly resistor another resistive contribution is due to the P+ unsilicided head part. This effect is due to the resulting shape of intersection of the RPO layer and OD for unsilicided resistors (see equation 4).



# Modeled effects



### GEOMETRY SCALING

#### Silicided resistor model

The resistance value is calculated using the expression:

$$R = \text{Rho} \times \frac{L}{W - \Delta W} + 2 \times \frac{\text{Rsc}}{2 \times N_C} = \text{Rbody} + 2 \times \text{Rhead}$$
 (2)

where:

Rho: body sheet resistance ( $\Omega$ /square)

 $\Delta W$ : width offset ( $\mu m$ ) = Drawn width - Effective width

L : body length (μm) W : body width (μm)

Rsc: contact resistance ( $\Omega$ )

Nc: number of contacts in a row for one head (resistors have to be designed with two rows of contacts)



Figure 8 - Layout of one two head salicided resistor

Hypothesis: distance between contacts is constant (no offset)



#### Unsilicided resistor model

The resistance value is calculated using the expression:

$$R = \text{Rho} \times \frac{L - \Delta L}{W - \Delta W} + 2 \times \frac{\text{Rsc}}{2 \times N_C} + 2 \times \frac{\text{Rhs} \times \left(\text{Lhs} + \frac{\Delta L}{2}\right) + \text{Rhi}}{W - \Delta W} = \text{Rbody} + 2 \times \text{Rhead}$$
 (3)

where:

Rho: body sheet resistance ( $\Omega$ /square)

 $\Delta$ L: length offset ( $\mu$ m) = Drawn length - Effective length

 $\Delta W$ : width offset ( $\mu m$ ) = Drawn width - Effective width

L : body length (μm)
W : body width (μm)

vv : body width (μm)

Rhs : silicided head sheet resistance ( $\Omega$ /square)

Lhs: silicided head length (µm)

Rsc: contact resistance ( $\Omega$ )

Rhi : access resistance between head and body ( $\Omega \mu m$ ) (Rhi=0 in the model: its impact is included in the  $\Delta L$  value)

Nc: number of contacts in a row for one head (resistors have to be designed with two rows of contacts)



Figure 9 - Layout of one two head unsilicided resistor



#### ☐ HIPO resistor model

The resistance value is calculated using the expression:

$$R = \text{Rho} \times \frac{L - \Delta L_2}{W - \Delta W} + 2 \times \frac{\text{Rsc}}{2 \times N_C} + 2 \times \frac{\text{Rhs} \times \left(\text{Lhs} + \frac{\Delta L_1}{2}\right) + \text{Rhu} \times \left(\text{Lhu} - \frac{\Delta L_1}{2} + \frac{\Delta L_2}{2}\right) + \text{Rhi}}{W - \Delta W} = \text{Rbody} + 2 \times \text{Rhead}$$
(4)

where (see figure bellow):

Rho: body sheet resistance ( $\Omega$ /square)

 $\Delta$ L<sub>1</sub>: Si-protect length offset ( $\mu$ m), extracted on P+ poly resistors

 $\Delta$ L<sub>2</sub>: P+ diffusion length offset ( $\mu$ m)

 $\Delta W$ : width offset ( $\mu m$ ) = Drawn width - Effective width

 $L: body \ length \ (\mu m)$ 

W: body width (µm)

Rhs : silicided head sheet resistance ( $\Omega$ /square)

Lhs: silicided head length (µm)

Rhu: unsilicided head sheet resistance ( $\Omega$ /square)

Lhu: unsilicided head length (µm)

Rsc: contact resistance ( $\Omega$ )

Rhi : access resistance between head and body ( $\Omega \mu m$ ) (Rhi=0 in the model: its impact is included in the  $\Delta L$  value)

Nc: number of contacts in a row for one head (resistors have to be designed with two rows of contacts)





Figure 10 - Layout of one two head hipo resistor

### ☐ Equivalent sheet resistance



Figure 11 - Sheet resistance versus length (0.4 $\mu$ m<L<400 $\mu$ m; W = 2 $\mu$ m)





Figure 12 - Sheet resistance versus width (L =  $10\mu m$ )

NOTE: for great resistor length the sheet resistance is a fixed value.



### MISMATCH MODEL

A normal distribution is used to estimate the expected main resistance value:

$$R = R_0 \times (1 + \varepsilon)$$

where

- Ro: is the mean resistance value given by the physical equations (2, 3 or 4)

-  $\varepsilon$ : is a normal distribution with a standard deviation given by:

$$\sigma = \frac{\sqrt{\sigma_B^2 + N_C^2 \times \sigma_H^2}}{R_0}$$

where

$$\sigma_B = Rbody \times \frac{r\_A}{\sqrt{2 \times W \times L}}$$
 and  $\sigma_H = Rhead \times \frac{r\_K}{\sqrt{2 \times W}}$ 

where

r\_A: is the mismatch coefficient for body resistor given by measurement values.

r\_K: is the mismatch coefficient for head resistor given by measurement values.

When r\_A and r\_K parameters are not specified no distribution is used and resistance value is equal to R<sub>0</sub>.

The normal distribution is provided using the Eldo function: gauss

$$\varepsilon = 0$$
  $dev/gauss = '\sigma \times mismatch \times fudge'$ 



19/29

ST Confidential Resistor Model Modeling Team

where

mismatch is a flag used to enable or disable mismatch effect. Fudge parameter is used to be sure that the resistance range covers measurements.

Bellow is a result of a mismatch effect simulation:



Figure 13 - Number of resistors out of 1000 versus resistance value for an RNPORPO resistor (W =  $10\mu m$ ; L =  $100\mu m$ )

Example above is done for one RNPORPO resistor (W =  $10\mu m$ ; L =  $100\mu m$ ) simulation gives roughly:  $1111\Omega$  as resistance value.

Standard deviation specified: 1.0424

Standard deviation simulated (1000 random selection using a Monte Carlo Analysis): 1.03460



### TEMPERATURE DEPENDENCE

The model used to determinate the resistance variation versus temperature is:  $R = R_{T0} \times (1 + \text{tc1} \cdot (T - \text{Tref}) + \text{tc2} \cdot (T - \text{Tref})^2)$ 

where:

RT0: is resistance ( $\Omega$ ) at temperature Tref=300K

Tc1 and Tc2 are first and second order temperature parameters

T: is the current resistor temperature

NOTE: Tc1 and Tc2 are given for one typical dimension

Figure bellow shows the variation of sheet resistance versus temperature:



Figure 14 - Sheet resistance versus temperature for all resistors



## Noise Model

The model used to determinate the resistance noise versus frequency and temperature is:

$$S_i(f) = \frac{4k_BT}{R} + \frac{K_f}{f} \times I^{A_f}$$
 = Thermal\_noise + Flicker or low frequency\_noise

where: Si: is the noise spectral density of a resistor

R : resistance value f : current frequency

I: current

kB: Boltzmann coefficient

Af and Kf: are flicker noise model coefficients, they are extracted for each supported resistor



Figure 15 - Noise spectral density versus frequency for RNPORPO ressistor



# VOLTAGE DEPENDENCE (NONLINEARITY)

The model used to determinate the resistance value versus voltage is:

$$R(V_{PB}, V_{MB}) = R_0 \left[ 1 + \frac{vca}{L^2} (V_{PB} - V_{MB})^2 + vcb \left( \frac{V_{PB} + V_{MB}}{2} \right) + vcc \left( \frac{V_{PB} + V_{MB}}{2} \right)^2 \right]$$

where:

R<sub>0</sub>: is the resitstance value at 0V

L : is the length of the resistor

vca, vcb and vcc: are the non-linearity parameters.

Actually for poly resistors the vca, vcb and vcc parameters are calculated as in the following:

$$vca = \frac{\operatorname{tc1} \cdot R_{th\infty}}{R_{sq}} \cdot \frac{W}{W + \beta_{th0}}$$

$$vcb = vcba \cdot \frac{1}{W} + vcbb$$

$$vcc = 0$$

where:

Tc1: is the first order temperature parameter (see "Temperature dependence" paragraph)

R<sub>sq</sub>: is the sheet resistance ( $\Omega$ /square)

W: is the resistor width (m)

vcba and vcbb: are fit parameters

 $R_{th\infty}$  and  $\beta$ tho: are equivalent self heating parameters (see ALLIANCE internal report EC2\_05\_229)





Figure 16 - Resistance versus Voltage between Plus and Minus pins for N+ Poly Unsilicided resistor



### PARASITIC COMPONENTS

### □ P+/NWell and N+/Psub diodes (for active resistors):

The parasitic diodes P+/NWell and N+/Psub must be in reverse-bias mode. The diode models dpsvtlp (P+/NWell) and dnsvt (N+/Psub) are instantiated using:

- Area = area of one head + 1/2 body area
- Perimeter = perimeter of one head + 1/2 body perimeter

The diode is connected to both PLUS or MINUS and substrate as in figure 6.1

### □ Parasitic capacitances (for poly resistors):

Capacitance value is calculated using the expression:

$$C = \text{Ch} + 0.5 \times \text{Cb}$$

where:

$$Cb = cap \times Areab + cfp \times Perimeterb$$

Ch = 
$$cap \times Areah + cfp \times Perimeterh$$

cap : specific capacitance (F/m2)

cfp: perimeter capacitance coefficient (F/m)



<sup>1.</sup> In the case of N+ active resistor the diode is upside down (reverse biased)

### POST LAYOUT SIMULATION

Each device is composed of two description levels (name, name\_acc) coupled with the two pin model definitions. Each one is managed by the LPE flag option, which permits to select the Resistor/Capacitor access modeling mode. See the following table depicting the proposed options:

| LPE | Body  | Access_R | Access_C | Extraction_mode |
|-----|-------|----------|----------|-----------------|
| 0   | yes   | yes      | yes      |                 |
| 1   | 1 yes |          | no       | С               |
| 2   | yes   | no       | yes      | R               |
| 3   | yes   | no       | no       | RC              |

### The Front-End Models (F-E):

name, a simple model which accounts for resistor components (LPE=0).

**name\_acc** is a more suitable model which accounts flicker noise.

#### The Back-End models (B-E):

The **name** B-E model is identical to the **name** F-E model concerning the intrinsic resistance functionnality, but it excludes contributions related to head (LPE=1,2 or 3 according to the user choice).

The **name\_acc** B-E model is identical to the **name\_acc** F-E model but it excludes contributions related to head (LPE=1,2 or 3).



# **CORNERS CONSTRUCTION**

| <u>Parameter</u> | MIN | <u>TYP</u> | MAX | <u>Source</u>    | <u>Definition</u>                       |
|------------------|-----|------------|-----|------------------|-----------------------------------------|
| rho              | min | typ        | max | DRM <sup>a</sup> | (ohm/sq) sheet Res.                     |
| rsc              | min | typ        | max | DRM              | (ohm) contact Res.                      |
| rhi              | min | typ        | max | ECb              | (ohm.m) silicided/Unsilicided Acc. Res. |
| rhu              | min | typ        | max | DRM              | (ohm/sq) unsilicided Head sheet Res.    |
| rhs              | min | typ        | max | DRM              | (ohm/sq) silicided Head sheet Res.      |
| dl               | max | typ        | min | EC               | (m) length Offset                       |
| dw               | min | typ        | max | EC               | (m) width Offset                        |
| tc1              | min | typ        | max | EC               | (1/K) temperature coeff.                |
| tc2              | min | typ        | max | EC               | (1/K^2) temperature coeff.              |
| cap              | min | typ        | max | EC               | (F/m2) area cap for poly resistors      |
| cf0p             | min | typ        | max | EC               | (F/m) fringe cap for poly resistors     |

a. DRM: Design Rule Manual parameterb. EC: Electrical Characterization parameter



# MODEL PARAMETER LIST

| diode   | (string) parasitic diode model name for active resistors |
|---------|----------------------------------------------------------|
| wdef    | (m) Min model Width given by test structures             |
| ldef    | (m) Min model Length given by test structures            |
| wcon    | (m) min Width contact (DRM <sup>a</sup> rule: CO.W.1)    |
| scon    | (m) space between contacts (DRM rule: CO.S.2)            |
| wminabs | (m) min width given by the DRM rule: ROU.W.1             |
| wmin    | (m) min width given by test structures                   |
| Iminabs | (m) min length given by the DRM rule: RPO.W.1.           |
| lmin    | (m) min length given by test structures                  |
| wmax    | (m) max width given by test structures                   |
| lmax    | (m) max length given by test structures                  |
| cea     | (m) Contact enclosure by OD (DRM rule: C0.EN.2)          |
| сер     | (m) Contact enclosure by poly (DRM rule: C0.EN.1)        |
| lhs     | (m) Length of Silicided head part (DRM rule: RPO.D.2)    |
| lhu     | (m) Length of Unsilicided Head part                      |
| ncdef   | () number of contact by default                          |
| af      | () LFNoise coefficient                                   |
| kf      | (m2) LFNoise coefficient                                 |
| r_Abody | (m) for body mismatch                                    |



| r_Khead          | (sqrt(m)) for head mismatch                                    |
|------------------|----------------------------------------------------------------|
| vca              | (m2/V2) for voltage dependence effect (active resistors)       |
| vcb              | (1/V) for voltage dependence effect (active resistors)         |
| vcc              | (1/V2) for voltage dependence effect (active resistors)        |
| rinf             | (K*m2/W)1st equivalent self heating parameter (poly resistors) |
| beta             | (m) 2nd equivalent self heating parameter (poly resistors)     |
| vcba             | (m/V) vcb first order fit parameter (poly resistors)           |
| vcbb             | (1/V) vcb cte fit parameter (poly resistors)                   |
| rho <sup>b</sup> | (ohm/sq) Sheet Res. (DRM)                                      |
| rsc              | (ohm) Contact Res. (DRM)                                       |
| rhi              | (ohm.m) Silicided/Unsilicided Acc. Res.                        |
| rhu              | (ohm/sq) Unsilicided Head sheet Res.                           |
| rhs              | (ohm/sq) Silicided Head sheet Res. (DRM)                       |
| dl               | (m) Length Offset                                              |
| dw               | (m) Width Offset                                               |
| tc1              | (1/K) temperature coeff.                                       |
| tc2              | (1/K^2) temperature coeff.                                     |
| cap              | (F/m2) area cap (poly resistors)                               |
| cf0p             | (F/m) fringe cap (poly resistors)                              |

a. Design Rule Manual (CMOS90nm RevE)



b. In blue: parameters with provided MIN and MAX corners (see paragraph before)