# Solutions Manual to Pattern Recognition and Machine Learning

Hiromichi Inawashiro February 5, 2025

## Contents

| 1 | Introduction                     | 1   |
|---|----------------------------------|-----|
| 2 | Probability Distributions        | 39  |
| 3 | Linear Models for Regression     | 93  |
| 4 | Linear Models for Classification | 117 |

## 1 Introduction

## 1.1

Let

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} (y(x_n, \mathbf{w}) - t_n)^2.$$
 (1.1)

Setting the derivative with respect to  $\mathbf{w}$  to zero gives

$$\mathbf{0} = \sum_{n=1}^{N} \frac{\partial y(x_n, \mathbf{w})}{\partial \mathbf{w}} (y(x_n, \mathbf{w}) - t_n).$$
 (1.2)

If

$$y(x_n, \mathbf{w}) = \mathbf{w}^\mathsf{T} \boldsymbol{\phi}(x_n), \tag{1.3}$$

then

$$\mathbf{0} = \sum_{n=1}^{N} \boldsymbol{\phi}(x_n) \left( \mathbf{w}^{\mathsf{T}} \boldsymbol{\phi}(x_n) - t_n \right). \tag{1.4}$$

Therefore,

$$\left(\sum_{n=1}^{N} \boldsymbol{\phi}(x_n) \boldsymbol{\phi}(x_n)^{\mathsf{T}}\right) \mathbf{w} = \sum_{n=1}^{N} t_n \boldsymbol{\phi}(x_n). \tag{1.5}$$

Thus,

$$\underset{\mathbf{w}}{\operatorname{argmin}} E(\mathbf{w}) = \mathbf{A}^{-1} \mathbf{v}, \tag{1.6}$$

where

$$\mathbf{A} = \sum_{n=1}^{N} \boldsymbol{\phi}(x_n) \boldsymbol{\phi}(x_n)^{\mathsf{T}},$$

$$\mathbf{v} = \sum_{n=1}^{N} t_n \boldsymbol{\phi}(x_n).$$
(1.7)

If

$$\phi(x_n) = \begin{bmatrix} 1 \\ x_n \\ \vdots \\ x_n^M \end{bmatrix},$$

then

$$A_{mm'} = \sum_{n=1}^{N} x_n^{m+m'},$$

$$v_m = \sum_{n=1}^{N} t_n x_n^m.$$
(1.8)

## 1.2

Let

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} (y(x_n, \mathbf{w}) - t_n)^2 + \frac{\lambda}{2} ||\mathbf{w}||^2.$$
 (1.9)

Setting the derivative with respect to  $\mathbf{w}$  to zero gives

$$\mathbf{0} = \sum_{n=1}^{N} \frac{\partial y(x_n, \mathbf{w})}{\partial \mathbf{w}} (y(x_n, \mathbf{w}) - t_n) + \lambda \mathbf{w}.$$
 (1.10)

If

$$y(x_n, \mathbf{w}) = \mathbf{w}^{\mathsf{T}} \phi(x_n), \tag{1.11}$$

then

$$\mathbf{0} = \sum_{n=1}^{N} \phi(x_n) \left( \mathbf{w}^{\mathsf{T}} \phi(x_n) - t_n \right) + \lambda \mathbf{w}. \tag{1.12}$$

Therefore,

$$\left(\sum_{n=1}^{N} \boldsymbol{\phi}(x_n) \boldsymbol{\phi}(x_n)^{\mathsf{T}} + \lambda \mathbf{I}\right) \mathbf{w} = \sum_{n=1}^{N} t_n \boldsymbol{\phi}(x_n). \tag{1.13}$$

Thus,

$$\underset{\mathbf{w}}{\operatorname{argmin}} E(\mathbf{w}) = \mathbf{A}^{-1}\mathbf{v}, \tag{1.14}$$

where

$$\mathbf{A} = \sum_{n=1}^{N} \boldsymbol{\phi}(x_n) \boldsymbol{\phi}(x_n)^{\mathsf{T}} + \lambda \mathbf{I},$$

$$\mathbf{v} = \sum_{n=1}^{N} t_n \boldsymbol{\phi}(x_n).$$
(1.15)

If

$$\phi(x_n) = \begin{bmatrix} 1 \\ x_n \\ \vdots \\ x_n^M \end{bmatrix},$$

then

$$A_{mm'} = \sum_{n=1}^{N} x_n^{m+m'} + \lambda I_{mm'},$$

$$v_m = \sum_{n=1}^{N} t_n x_n^m.$$
(1.16)

#### 1.3

Let a, o and l be the events where an apple, orange and lime are selected respectively. The probability that an apple is selected is given by

$$p(a) = p(a|r)p(r) + p(a|b)p(b) + p(a|g)p(g).$$
(1.17)

Substituting  $p(a|r) = \frac{3}{10}$ ,  $p(r) = \frac{1}{5}$ ,  $p(a|g) = \frac{1}{2}$ ,  $p(r) = \frac{1}{5}$ ,  $p(a|g) = \frac{3}{10}$  and  $p(g) = \frac{3}{5}$  gives

$$p(a) = \frac{17}{50}. (1.18)$$

If an orange is selected, the probability that it came from the geen box is given by

$$p(g|o) = \frac{p(g,o)}{p(o)}.$$
 (1.19)

Here,

$$p(g, o) = p(o|g)p(g),$$
  

$$p(o) = p(o|r)p(r) + p(o|b)p(b) + p(o|g)p(g).$$
(1.20)

Substituting  $p(o|r) = \frac{2}{5}$ ,  $p(r) = \frac{1}{5}$ ,  $p(o|b) = \frac{1}{2}$ ,  $p(b) = \frac{1}{5}$ ,  $p(o|g) = \frac{3}{10}$  and  $p(g) = \frac{3}{5}$  gives  $p(g, o) = \frac{9}{50}$  and  $p(o) = \frac{9}{25}$ . Therefore,

$$p(g|o) = \frac{1}{2}. (1.21)$$

Let

$$x = g(y) \tag{1.22}$$

and  $\hat{x}$  and  $\hat{y}$  be the locations of the maximum of  $p_x(x)$  and  $p_y(y)$  respectively. Let us assume that there exists  $\epsilon > 0$  such that  $g'(y) \neq 0$  for  $|y - \hat{y}| < \epsilon$ . Then, Taking the derivative of the transformation

$$p_y(y) = p_x(g(y)) |g'(y)| (1.23)$$

and substituting  $y = \hat{y}$  gives

$$0 = g'(\hat{y})p'_x(g(\hat{y})) + p_x(g(\hat{y}))g''(\hat{y}). \tag{1.24}$$

Therefore, in general,

$$\hat{x} \neq g\left(\hat{y}\right). \tag{1.25}$$

Here, let us assume that

$$g(y) = ay + b. (1.26)$$

Then, Taking the derivative of the transformation and substituting  $y = \hat{y}$  gives

$$0 = p_r'(g(\hat{y})). \tag{1.27}$$

Therefore,

$$\hat{x} = g(\hat{y}). \tag{1.28}$$

#### 1.5

By the definition,

$$\operatorname{var} f(x) = E(f(x) - Ef(x))^{2}.$$
 (1.29)

The right hand side can be written as

$$E((f(x))^{2} - 2f(x) E f(x) + (E f(x))^{2}) = E(f(x))^{2} - (E f(x))^{2}.$$
 (1.30)

$$\operatorname{var} f(x) = \operatorname{E} (f(x))^{2} - (\operatorname{E} f(x))^{2}.$$
 (1.31)

By the definition,

$$cov(x, y) = E((x - Ex)(y - Ey)).$$
 (1.32)

The right hand side can be written as

$$E xy - E (x E y) - E (y E x) + E (E x E y) = E xy - E x E y.$$
 (1.33)

The right hand side can be written as

$$\int xyp(x,y)dxdy - \int xp(x)dx \int yp(y)dy.$$
 (1.34)

If x and y are independent, by the definition,

$$f(x,y) = f(x)f(y). \tag{1.35}$$

Then,

$$\int xyp(x,y)dxdy = \int p(x)dx \int p(y)dy.$$
 (1.36)

Therefore,

$$cov(x, y) = 0. (1.37)$$

#### 1.7

Let

$$I = \int_{-\infty}^{\infty} \exp\left(-\frac{1}{2\sigma^2}x^2\right) dx. \tag{1.38}$$

Then

$$I^{2} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \exp\left(-\frac{1}{2\sigma^{2}}\left(x^{2} + y^{2}\right)\right) dx dy. \tag{1.39}$$

By the transformation from Cartesian coordinates (x, y) to polar coordinates  $(r, \theta)$ , the right hand side can be written as

$$\int_0^\infty \int_0^{2\pi} \exp\left(-\frac{1}{2\sigma^2}r^2\right) \begin{vmatrix} \cos\theta & -r\sin\theta \\ \sin\theta & r\cos\theta \end{vmatrix} dr d\theta = 2\pi \int_0^\infty \exp\left(-\frac{1}{2\sigma^2}r^2\right) r dr. \tag{1.40}$$

By the transformation  $s = \frac{r}{\sigma}$ , the right hand side can be written as

$$2\pi\sigma^2 \int_0^\infty \exp\left(-\frac{1}{2}s^2\right) s ds = 2\pi\sigma^2 \left[-\exp\left(-\frac{1}{2}s^2\right)\right]_0^\infty. \tag{1.41}$$

Therefore,

$$I = \left(2\pi\sigma^2\right)^{\frac{1}{2}}.\tag{1.42}$$

By the definition,

$$\mathcal{N}\left(x|\mu,\sigma^2\right) = \left(2\pi\sigma^2\right)^{-\frac{1}{2}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right). \tag{1.43}$$

Then

$$\int_{-\infty}^{\infty} \mathcal{N}\left(x|\mu,\sigma^2\right) dx = \left(2\pi\sigma^2\right)^{-\frac{1}{2}} \int_{-\infty}^{\infty} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right) dx. \tag{1.44}$$

By the transformation  $t = x - \mu$ , the right hand side can be written as

$$(2\pi\sigma^2)^{-\frac{1}{2}} \int_{-\infty}^{\infty} \exp\left(-\frac{1}{2\sigma^2}t^2\right) dt = (2\pi\sigma^2)^{-\frac{1}{2}} I.$$
 (1.45)

Therefore,

$$\int_{-\infty}^{\infty} \mathcal{N}\left(x|\mu,\sigma^2\right) dx = 1. \tag{1.46}$$

#### 1.8

Let x be a variable such that

$$p(x) = \mathcal{N}(x|\mu, \sigma^2). \tag{1.47}$$

Then

$$E x = \int_{-\infty}^{\infty} x \mathcal{N}(x|\mu, \sigma^2) dx.$$
 (1.48)

By the definition, the right hand side can be written as

$$(2\pi\sigma^2)^{-\frac{1}{2}} \int_{-\infty}^{\infty} x \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right) dx.$$
 (1.49)

By the transformation  $y = x - \mu$ , it can be written as

$$\left(2\pi\sigma^2\right)^{-\frac{1}{2}} \int_{-\infty}^{\infty} (y+\mu) \exp\left(-\frac{1}{2\sigma^2}y^2\right) dy. \tag{1.50}$$

Since

$$(2\pi\sigma^2)^{-\frac{1}{2}} \int_{-\infty}^{\infty} y \exp\left(-\frac{1}{2\sigma^2}y^2\right) dy = 0,$$
 (1.51)

and

$$(2\pi\sigma^2)^{-\frac{1}{2}} \int_{-\infty}^{\infty} \mu \exp\left(-\frac{1}{2\sigma^2}y^2\right) dy = \mu \int_{-\infty}^{\infty} \mathcal{N}\left(y|\mu,\sigma^2\right) dy, \tag{1.52}$$

we have

$$\mathbf{E} x = \mu. \tag{1.53}$$

By the definition,

$$\int_{-\infty}^{\infty} \mathcal{N}\left(x|\mu,\sigma^2\right) dx = 1 \tag{1.54}$$

can be written as

$$(2\pi\sigma^2)^{-\frac{1}{2}} \int_{-\infty}^{\infty} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right) dx = 1.$$
 (1.55)

Taking the derivative with respect to  $\sigma^2$  gives

$$(2\pi)^{-\frac{1}{2}} \left(-\frac{1}{2}\right) (\sigma^2)^{-\frac{3}{2}} \int_{-\infty}^{\infty} \exp\left(-\frac{1}{2\sigma^2} (x-\mu)^2\right) dx + (2\pi\sigma^2)^{-\frac{1}{2}} \int_{-\infty}^{\infty} \frac{1}{2} (\sigma^2)^{-2} (x-\mu)^2 \exp\left(-\frac{1}{2\sigma^2} (x-\mu)^2\right) dx = 0.$$
 (1.56)

The left hand side can be written as

$$-\frac{1}{2} (\sigma^{2})^{-1} \int_{-\infty}^{\infty} \mathcal{N}(x|\mu, \sigma^{2}) dx + \frac{1}{2} (\sigma^{2})^{-2} \int_{-\infty}^{\infty} (x-\mu)^{2} \mathcal{N}(x|\mu, \sigma^{2}) dx$$

$$= -\frac{1}{2} (\sigma^{2})^{-1} + \frac{1}{2} (\sigma^{2})^{-2} \operatorname{var} x.$$
(1.57)

$$var x = \sigma^2. (1.58)$$

Let

$$\mathcal{N}\left(x|\mu,\sigma^2\right) = \left(2\pi\sigma^2\right)^{-\frac{1}{2}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right). \tag{1.59}$$

Setting its derivative with respect to x to zero gives

$$0 = (2\pi\sigma^2)^{-\frac{1}{2}} \left( -\frac{1}{\sigma^2} (x - \mu) \right) \exp\left( -\frac{1}{2\sigma^2} (x - \mu)^2 \right). \tag{1.60}$$

Therefore, the mode is given by  $\mu$ .

Similarly, let

$$\mathcal{N}(\mathbf{x}|\boldsymbol{\mu},\boldsymbol{\Sigma}) = (2\pi)^{-\frac{D}{2}} (\det \boldsymbol{\Sigma})^{-\frac{1}{2}} \exp\left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathsf{T}} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right). \quad (1.61)$$

Setting its derivative with respect to  $\mathbf{x}$  to zero gives

$$\mathbf{0} = -(2\pi)^{-\frac{D}{2}} \left(\det \mathbf{\Sigma}\right)^{-\frac{1}{2}} \left(\mathbf{\Sigma}^{-1} + \left(\mathbf{\Sigma}^{-1}\right)^{\mathsf{T}}\right) (\mathbf{x} - \boldsymbol{\mu}) \exp\left(-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right).$$
(1.62)

Therefore, the mode is given by  $\mu$ .

#### 1.10

By the definition,

$$E(x+y) = \int \int (x+y)p(x,y)dxdy.$$
 (1.63)

The right hand side can be written as

$$\int x \left( \int p(x,y)dy \right) dx + \int y \left( \int p(x,y)dx \right) dy = \int x p(x)dx + \int y p(y)dy.$$
(1.64)

By the definition, the right hand side can be written as

$$\mathbf{E}\,x + \mathbf{E}\,y. \tag{1.65}$$

$$E(x+y) = Ex + Ey. (1.66)$$

Similarly, by the definition,

$$var(x+y) = E(x+y - E(x+y))^{2}$$
(1.67)

By the result above and the definition, the right hand side can be written as

$$E(x - Ex)^{2} + 2E((x - Ex)(y - Ey)) + E(y - Ey)^{2}$$

$$= var x + 2 cov(x, y) + var y.$$
(1.68)

If x and y are independent, then

$$cov(x,y) = 0, (1.69)$$

by 1.6. Therefore,

$$var(x+y) = var x + var y. (1.70)$$

#### 1.11

Let  $x_1, \dots, x_N$  be variables such that

$$p(x_n) = \mathcal{N}\left(x_n | \mu, \sigma^2\right). \tag{1.71}$$

Then

$$\ln p(\mathbf{x}) = -\frac{N}{2} \ln \left(2\pi\sigma^2\right) - \frac{1}{2\sigma^2} \sum_{n=1}^{N} (x_n - \mu)^2.$$
 (1.72)

To maximise it with respect to  $\mu$  and  $\sigma^2$ , setting the partial derivatives to zero gives

$$0 = \frac{1}{\sigma^2} \sum_{n=1}^{N} (x_n - \mu),$$

$$0 = -\frac{N}{2\sigma^2} + \frac{1}{2(\sigma^2)^2} \sum_{n=1}^{N} (x_n - \mu)^2.$$
(1.73)

$$\mu_{\rm ML} = \frac{1}{N} \sum_{n=1}^{N} x_n,$$

$$\sigma_{\rm ML}^2 = \frac{1}{N} \sum_{n=1}^{N} (x_n - \mu_{\rm ML})^2.$$
(1.74)

Let  $x_m$  and  $x_n$  be independent variables. Then

$$\mathbf{E} x_m x_n = \mathbf{E} x_m \mathbf{E} x_n. \tag{1.75}$$

If they are samples from the Gaussian distribution with mean  $\mu$  and variance  $\sigma^2$ , the right hand side is given by  $\mu^2$ . On the other hand, by the definition,

$$E x_n^2 = var x_n + (E x_n)^2$$
. (1.76)

If  $x_n$  is a sample from the Gaussian distribution with mean  $\mu$  and variance  $\sigma^2$ , the right hand side is given by  $\sigma^2 + \mu^2$ . Therefore,

$$\mathbf{E} x_m x_n = \mu^2 + \delta_{mn} \sigma^2. \tag{1.77}$$

Here, since

$$\mu_{\rm ML} = \frac{1}{N} \sum_{n=1}^{N} x_n, \tag{1.78}$$

we have

$$E \mu_{ML} = \frac{1}{N} \sum_{n=1}^{N} E x_n.$$
 (1.79)

Therefore,

$$E \mu_{ML} = \mu. \tag{1.80}$$

Similarly, since

$$\sigma_{\rm ML}^2 = \frac{1}{N} \sum_{n=1}^{N} (x_n - \mu_{\rm ML})^2,$$
 (1.81)

we have

$$E \sigma_{ML}^2 = \frac{1}{N} \sum_{n=1}^{N} E (x_n - \mu_{ML})^2.$$
 (1.82)

The right hand side can be writen as

$$\frac{1}{N} \sum_{n=1}^{N} E\left(x_n^2 - 2\mu_{\text{ML}}x_n + \mu_{\text{ML}}^2\right) = \frac{1}{N} \sum_{n=1}^{N} E\left(x_n^2 - \frac{2}{N}E\left(\mu_{\text{ML}}\left(\sum_{n=1}^{N} x_n\right)\right) + E\mu_{\text{ML}}^2\right).$$
(1.83)

The first term of the right hand side can be written as

$$\frac{1}{N} \sum_{n=1}^{N} (\mu^2 + \sigma^2) = \mu^2 + \sigma^2, \tag{1.84}$$

while the second and third terms can be writen as

$$-2 E \mu_{\rm ML}^2 + E \mu_{\rm ML}^2 = -E \mu_{\rm ML}^2.$$
 (1.85)

Here,

$$E \mu_{ML}^2 = E \left(\frac{1}{N} \sum_{n=1}^{N} x_n\right)^2.$$
 (1.86)

The right hand side can be written as

$$\frac{1}{N^2} \sum_{n=1}^{N} \operatorname{E} x_n^2 + \frac{2}{N^2} \sum_{1 \le m \le n \le N} \operatorname{E} x_m x_n = \frac{1}{N} \left( \mu^2 + \sigma^2 \right) + \frac{N-1}{N} \mu^2.$$
 (1.87)

Therefore,

$$E \mu_{\rm ML}^2 = \mu^2 + \frac{1}{N} \sigma^2. \tag{1.88}$$

Thus,

$$E \sigma_{\rm ML}^2 = \frac{N-1}{N} \sigma^2. \tag{1.89}$$

#### 1.13

Let  $x_1, \dots, x_N$  be a set of variables whose mean is  $\mu$  and variance is  $\sigma^2$ . Then

$$E\left(\frac{1}{N}\sum_{n=1}^{N}(x_n-\mu)^2\right) = \frac{1}{N}\sum_{n=1}^{N}E(x_n-\mu)^2.$$
 (1.90)

The right hand side can be writen as

$$\frac{1}{N} \sum_{n=1}^{N} \mathrm{E}\left(x_n^2 - 2\mu x_n + \mu^2\right) = \frac{1}{N} \sum_{n=1}^{N} \mathrm{E}\,x_n^2 - \frac{2\mu}{N} \sum_{n=1}^{N} \mathrm{E}\,x_n + \mu^2. \tag{1.91}$$

The first term of the right hand side can be written as

$$\frac{1}{N} \sum_{n=1}^{N} (\mu^2 + \sigma^2) = \mu^2 + \sigma^2, \tag{1.92}$$

while the second term can be writen as

$$-\frac{2\mu}{N}\sum_{n=1}^{N}\mu = -2\mu^2. \tag{1.93}$$

Therefore,

$$E\left(\frac{1}{N}\sum_{n=1}^{N}\left(x_{n}-\mu\right)^{2}\right)=\sigma^{2}.$$
(1.94)

## 1.14

Let

$$w_{ij}^{S} = \frac{1}{2}(w_{ij} + w_{ji}),$$

$$w_{ij}^{A} = \frac{1}{2}(w_{ij} - w_{ji}).$$
(1.95)

Then

$$w_{ij} = w_{ij}^{S} + w_{ij}^{A},$$
  
 $w_{ij}^{S} = w_{ji}^{S},$   
 $w_{ij}^{A} = -w_{ji}^{A}.$  (1.96)

Here,

$$\sum_{i=1}^{D} \sum_{j=1}^{D} w_{ij}^{A} x_i x_j = \frac{1}{2} \sum_{i=1}^{D} \sum_{j=1}^{D} (w_{ij} - w_{ji}) x_i x_j.$$
 (1.97)

The right hand side can be written as

$$\frac{1}{2} \left( \sum_{i=1}^{D} \sum_{j=1}^{D} w_{ij} x_i x_j - \sum_{i=1}^{D} \sum_{j=1}^{D} w_{ji} x_i x_j \right) = 0.$$
 (1.98)

Therefore,

$$\sum_{i=1}^{D} \sum_{j=1}^{D} w_{ij}^{A} x_i x_j = 0. {(1.99)}$$

Additionally,

$$\sum_{i=1}^{D} \sum_{j=1}^{D} w_{ij} x_i x_j = \sum_{i=1}^{D} \sum_{j=1}^{D} \left( w_{ij}^{S} + w_{ij}^{A} \right) x_i x_j.$$
 (1.100)

The right hand side can be written as

$$\sum_{i=1}^{D} \sum_{j=1}^{D} w_{ij}^{S} x_i x_j + \sum_{i=1}^{D} \sum_{j=1}^{D} w_{ij}^{A} x_i x_j = \sum_{i=1}^{D} \sum_{j=1}^{D} w_{ij}^{S} x_i x_j,$$
 (1.101)

where the result above is used. Therefore,

$$\sum_{i=1}^{D} \sum_{j=1}^{D} w_{ij} x_i x_j = \sum_{i=1}^{D} \sum_{j=1}^{D} w_{ij}^{S} x_i x_j.$$
 (1.102)

Finally, since the matrix  $w_{ij}^{\rm S}$  is a  $D \times D$  symmetric matrix, its number of independent parameters is  $\frac{D(D+1)}{2}$ .

#### 1.15

Let n(D, M) be the number of independent parameters of a polynomial in D dimensions and M orders. Then

$$n(1, M) = n(1, M - 1) = 1.$$
 (1.103)

Let us assume that

$$n(D, M) = \sum_{i=1}^{D} n(i, M - 1).$$
(1.104)

The independent terms of a polynomial in D+1 dimensions and M orders can be split into 1. the ones of a polynomial in D dimensions and M orders and 2. the ones generated by multiplying the ones in D+1 dimensions and M orders by the D+1th variable. Therefore,

$$n(D+1,M) = n(D,M) + n(D+1,M-1). (1.105)$$

Thus.

$$n(D+1,M) = \sum_{i=1}^{D+1} n(i,M-1).$$
 (1.106)

Hence, the assumption is proved by induction on D.

Additionally,

$$\sum_{i=1}^{1} \frac{(i+M-2)!}{(i-1)!(M-1)!} = 1.$$
 (1.107)

Let us assume that

$$\sum_{i=1}^{D} \frac{(i+M-2)!}{(i-1)!(M-1)!} = \frac{(D+M-1)!}{(D-1)!M!}.$$
 (1.108)

Then

$$\sum_{i=1}^{D+1} \frac{(i+M-2)!}{(i-1)!(M-1)!} = \frac{(D+M-1)!}{(D-1)!M!} + \frac{(D+M-1)!}{D!(M-1)!}.$$
 (1.109)

The right hand side can be written as

$$\frac{D(D+M-1)! + M(D+M-1)!}{D!M!} = \frac{(D+M)!}{D!M!}.$$
 (1.110)

Therefore, the assumption is proved by induction on D.

Finally, by 1.14,

$$n(D,2) = \frac{D(D+1)}{2}. (1.111)$$

Let us assume that

$$n(D,M) = \frac{(D+M-1)!}{(D-1)!M!}.$$
(1.112)

Then, by the result above,

$$n(D, M+1) = \sum_{i=1}^{D} n(i, M).$$
(1.113)

By the assumption and result above, the right hand side can be written as

$$\sum_{i=1}^{D} \frac{(i+M-1)!}{(i-1)!M!} = \frac{(D+M)!}{(D-1)!(M+1)!}.$$
 (1.114)

Therefore, the assumption is proved by induction on M.

#### 1.16

Let N(D, M) be the number of independent parameters in all of the terms up to and including the ones of D dimensions and M orders. Then, by 1.15,

$$N(D,M) = \sum_{m=0}^{M} n(D,m),$$
(1.115)

where

$$n(D,m) = \frac{(D+m-1)!}{(D-1)!m!}. (1.116)$$

Additionally,

$$N(D,0) = 1. (1.117)$$

Let us assume that

$$\sum_{m=0}^{M} n(D,m) = \frac{(D+M)!}{D!M!}.$$
(1.118)

Then

$$\sum_{m=0}^{M+1} n(D,m) = \frac{(D+M)!}{D!M!} + \frac{(D+M)!}{(D-1)!(M+1)!}.$$
 (1.119)

The right hand side can be written as

$$\frac{(M+1)(D+M)! + D(D+M)!}{D!(M+1)!} = \frac{(D+M+1)!}{D!(M+1)!}.$$
 (1.120)

Therefore, the assumption is proved by induction on M. Thus,

$$N(D, M) = \frac{(D+M)!}{D!M!}. (1.121)$$

Additionally, by the approximation

$$n! \simeq n^n \exp(-n),\tag{1.122}$$

the right hand side can be approximated as

$$\frac{(D+M)^{D+M}\exp(-(D+M))}{D^D\exp(-D)M^M\exp(-M)} = \frac{(D+M)^{D+M}}{D^DM^M}.$$
 (1.123)

The right hand side can be written as

$$D^{M} \left( 1 + \frac{M}{D} \right)^{D} \left( \frac{1}{M} + \frac{1}{D} \right)^{M} = M^{D} \left( 1 + \frac{D}{M} \right)^{M} \left( \frac{1}{D} + \frac{1}{M} \right)^{D}. \quad (1.124)$$

Therefore, N(D, M) can be approximated as  $D^M$  for  $D \gg M$  and as  $M^D$  for  $M \gg D$ .

Finally, by the result above,

$$N(10,3) = 286,$$
  
 $N(100,3) = 176851,$  (1.125)  
 $N(1000,3) = 167668501.$ 

Let

$$\Gamma(x) = \int_0^\infty u^{x-1} \exp(-u) du. \tag{1.126}$$

Then

$$\Gamma(x+1) = \int_0^\infty u^x \exp(-u) du. \tag{1.127}$$

The right hand side can be written as

$$[-u^x \exp(-u)]_{u=0}^{u=\infty} + \int_0^\infty x u^{x-1} \exp(-u) du = x\Gamma(x). \tag{1.128}$$

Therefore,

$$\Gamma(x+1) = x\Gamma(x). \tag{1.129}$$

Since

$$\Gamma(1) = \int_0^1 \exp(-u)du,\tag{1.130}$$

and the right hand side can be written as 1,

$$\Gamma(1) = 0!. \tag{1.131}$$

For a positive integer x, let us assume that

$$\Gamma(x) = (x - 1)!. \tag{1.132}$$

Then,

$$\Gamma(x+1) = x\Gamma(x),\tag{1.133}$$

where the right hand side can be written as x!. Therefore,

$$\Gamma(x+1) = x!. \tag{1.134}$$

Thus, the assumption is proved by induction on x.

Let us consider the transformation from Cartesian to polar coordinates

$$\prod_{i=1}^{D} \int_{-\infty}^{\infty} \exp(-x_i^2) dx_i = S_D \int_{0}^{\infty} \exp(-r^2) r^{D-1} dr,$$
 (1.135)

where  $S_D$  is the surface area of a sphere of unit raidus in D dimensions. By 1.7, the left hand side can be written as  $\pi^{\frac{D}{2}}$ . By the transformation  $s = r^2$ , the right hand side can be written as

$$\frac{S_D}{2} \int_0^\infty \exp(-s) s^{\frac{D-1}{2}} s^{-\frac{1}{2}} ds = \frac{S_D}{2} \Gamma\left(\frac{D}{2}\right). \tag{1.136}$$

Therefore,

$$S_D = \frac{2\pi^{\frac{D}{2}}}{\Gamma\left(\frac{D}{2}\right)}. (1.137)$$

Additionally, the volume of the sphere can can be written as

$$V_D = S_D \int_0^1 r^{D-1} dr. (1.138)$$

The right hand side can be written as

$$S_D \left[ \frac{r^D}{D} \right]_{r=0}^{r=1} = \frac{S_D}{D}. \tag{1.139}$$

Therefore,

$$V_D = \frac{S_D}{D}. ag{1.140}$$

Finally, the results above reduce to

$$S_2 = \frac{2\pi}{\Gamma(1)},$$
 (1.141)  $V_2 = \frac{S_2}{2}.$ 

$$S_2 = 2\pi,$$
  $V_2 = \pi.$  (1.142)

Similarly,

$$S_3 = \frac{2\pi^{\frac{3}{2}}}{\Gamma(\frac{3}{2})},$$

$$V_3 = \frac{S_3}{3}.$$
(1.143)

Therefore,

$$S_3 = 4\pi,$$

$$V_3 = \frac{4}{3}\pi.$$
(1.144)

#### 1.19

The volume of a cube of side 2 in D dimensions is  $2^{D}$ . Therefore, the ratio of the volume of the cocentric sphere of radius 1 divided by the volume of the cube is given by

$$\frac{V_D}{2^D} = \frac{\pi^{\frac{D}{2}}}{D2^{D-1}\Gamma\left(\frac{D}{2}\right)},\tag{1.145}$$

by 1.18.

Additionally, by Stering's formula

$$\Gamma(x+1) \simeq (2\pi)^{\frac{1}{2}} \exp(-x)x^{\frac{x+1}{2}},$$
 (1.146)

the ratio can be approximated as

$$\frac{V_D}{2^D} \simeq \frac{\pi^{\frac{D}{2}}}{D2^{D-1}(2\pi)^{\frac{1}{2}} \exp\left(1 - \frac{D}{2}\right) \left(\frac{D}{2} - 1\right)^{\frac{D}{4}}}.$$
 (1.147)

The right hand side can be written as

$$\frac{1}{2e(2\pi)^{\frac{1}{2}}} \frac{1}{D} \left( \frac{e^2 \pi^2}{8D - 16} \right)^{\frac{D}{4}}.$$
 (1.148)

Therefore, the ratio goes to zero as  $D \to \infty$ .

Finally, the ratio of the distance from the center of the cube to one of the corners divided by the perpendicular distance to one of the sides is given by

$$\frac{\sqrt{\sum_{i=1}^{D} 1^2}}{1} = \sqrt{D}.\tag{1.149}$$

Therefore, the ration goes to  $\infty$  as  $D \to \infty$ .

For a vector  $\mathbf{x}$  in D dimensions, let

$$p(\mathbf{x}) = (2\pi\sigma^2)^{-\frac{D}{2}} \exp\left(-\frac{\|\mathbf{x}\|^2}{2\sigma^2}\right). \tag{1.150}$$

Then

$$\int_{r \le \|\mathbf{x}\| \le r + \epsilon} p(\mathbf{x}) d\mathbf{x} = \int_{r}^{r + \epsilon} \int (2\pi\sigma^{2})^{-\frac{D}{2}} \exp\left(-\frac{r'^{2}}{2\sigma^{2}}\right) J dr' d\phi, \qquad (1.151)$$

where  $\phi$  is the vector of the angular components of the polar coordinate and J is the Jacobian of the transformation from the Cartesian to polar coordinate. For a sufficiently small  $\epsilon$ , the right hand side can be approximated as

$$(2\pi\sigma^2)^{-\frac{D}{2}} \exp\left(-\frac{r^2}{2\sigma^2}\right) \int_r^{r+\epsilon} \int J dr' d\boldsymbol{\phi}$$

$$= (2\pi\sigma^2)^{-\frac{D}{2}} \exp\left(-\frac{r^2}{2\sigma^2}\right) \int_{r<\|\mathbf{x}\| \le r+\epsilon} d\mathbf{x}.$$
(1.152)

Therefore,

$$\int_{r < \|\mathbf{x}\| \le r + \epsilon} p(\mathbf{x}) d\mathbf{x} \simeq p(r) \epsilon, \tag{1.153}$$

where

$$p(r) = (2\pi\sigma^2)^{-\frac{D}{2}} S_D r^{D-1} \exp\left(-\frac{r^2}{2\sigma^2}\right),$$
 (1.154)

and  $S_D$  is the surface area of a unit sphere in D dimensions. Additionally, setting the derivative of p(r) to zero gives

$$0 = (2\pi\sigma^2)^{-\frac{D}{2}} S_D \left( (D-1)r^{D-2} - \frac{r^D}{\sigma^2} \right) \exp\left( -\frac{r^2}{2\sigma^2} \right).$$
 (1.155)

Therefore, p(r) is maximised at a sigle stationary point

$$\hat{r} = \sqrt{D - 1}\sigma. \tag{1.156}$$

Additionally, by the expression of p(r) above,

$$\frac{p(\hat{r}+\epsilon)}{p(\hat{r})} = \left(\frac{\hat{r}+\epsilon}{\hat{r}}\right)^{D-1} \exp\left(-\frac{2\hat{r}\epsilon+\epsilon^2}{2\sigma^2}\right). \tag{1.157}$$

Using the expression of  $\hat{r}$  above, the right hand side can be written as

$$\exp\left((D-1)\ln\left(1+\frac{\epsilon}{\hat{r}}\right) - \frac{2\hat{r}\epsilon + \epsilon^2}{2\sigma^2}\right)$$

$$= \exp\left(\frac{\hat{r}^2}{\sigma^2}\ln\left(1+\frac{\epsilon}{\hat{r}}\right) - \frac{2\hat{r}\epsilon + \epsilon^2}{2\sigma^2}\right). \tag{1.158}$$

By the Taylor series

$$\ln(1+x) = x - \frac{1}{2}x^2 + o(x^3), \qquad (1.159)$$

the right hand side can be approximated as

$$\exp\left(\frac{\hat{r}^2}{\sigma^2}\left(\frac{\epsilon}{\hat{r}} - \frac{\epsilon^2}{2\hat{r}^2}\right) - \frac{2\hat{r}\epsilon + \epsilon^2}{2\sigma^2}\right) = \exp\left(-\frac{\epsilon^2}{\sigma^2}\right). \tag{1.160}$$

Therefore,

$$p(\hat{r} + \epsilon) \simeq p(\hat{r}) \exp\left(-\frac{\epsilon^2}{\sigma^2}\right).$$
 (1.161)

Finally, let a vector of length  $\hat{r}$  be  $\hat{\mathbf{r}}$ . Then, by the definition of  $p(\mathbf{x})$ ,

$$\frac{p(\mathbf{0})}{p(\hat{\mathbf{r}})} = \exp\left(\frac{\hat{r}^2}{2\sigma^2}\right). \tag{1.162}$$

Substituting the expression of  $\hat{r}$  above, the right hand side can be written as  $\exp\left(\frac{D-1}{2}\right)$ . Therefore,

$$\frac{p(\mathbf{0})}{p(\hat{\mathbf{r}})} = \exp\left(\frac{D-1}{2}\right). \tag{1.163}$$

#### 1.21

If  $0 \le a \le b$ , then

$$0 \le a(b-a). \tag{1.164}$$

Therefore,

$$a \le (ab)^{\frac{1}{2}}.\tag{1.165}$$

For a two-class classification problem of  $\mathbf{x}$ , let the classes be  $\mathcal{C}_1$  and  $\mathcal{C}_2$  and let the decision regions be  $\mathcal{R}_1$  and  $\mathcal{R}_2$ . Let us choose the decision regions to minimise the probability of misclassification. Then,

$$p(\mathbf{x}, \mathcal{C}_1) > p(\mathbf{x}, \mathcal{C}_2) \Rightarrow \mathbf{x} \in \mathcal{C}_1,$$
 (1.166)

and

$$p(\mathbf{x}, \mathcal{C}_2) > p(\mathbf{x}, \mathcal{C}_1) \Rightarrow \mathbf{x} \in \mathcal{C}_2.$$
 (1.167)

Then, using the inequality above,

$$\int_{\mathcal{R}_1} p(\mathbf{x}, \mathcal{C}_2) d\mathbf{x} \le \int_{\mathcal{R}_1} \left( p(\mathbf{x}, \mathcal{C}_1) p(\mathbf{x}, \mathcal{C}_2) \right)^{\frac{1}{2}} d\mathbf{x}, \tag{1.168}$$

and

$$\int_{\mathcal{R}_2} p(\mathbf{x}, \mathcal{C}_1) d\mathbf{x} \le \int_{\mathcal{R}_2} \left( p(\mathbf{x}, \mathcal{C}_1) p(\mathbf{x}, \mathcal{C}_2) \right)^{\frac{1}{2}} d\mathbf{x}. \tag{1.169}$$

Therefore,

$$\int_{\mathcal{R}_1} p(\mathbf{x}, \mathcal{C}_2) d\mathbf{x} + \int_{\mathcal{R}_2} p(\mathbf{x}, \mathcal{C}_1) d\mathbf{x} \le \int \left( p(\mathbf{x}, \mathcal{C}_1) p(\mathbf{x}, \mathcal{C}_2) \right)^{\frac{1}{2}} d\mathbf{x}. \tag{1.170}$$

#### 1.22

Let

$$EL = \sum_{k} \sum_{j} \int_{\mathcal{R}_{j}} L_{kj} p(\mathbf{x}, \mathcal{C}_{k}) d\mathbf{x}.$$
 (1.171)

If

$$L_{kj} = 1 - \delta_{kj}, \tag{1.172}$$

then the right hand side can be written as

$$\sum_{k} \sum_{j} \int_{\mathcal{R}_{j}} \left( p(\mathbf{x}, \mathcal{C}_{k}) - p(\mathbf{x}, \mathcal{C}_{j}) \right) d\mathbf{x} = \sum_{j} \int_{\mathcal{R}_{j}} \left( \sum_{k} p(\mathbf{x}, \mathcal{C}_{k}) - p(\mathbf{x}, \mathcal{C}_{j}) \right) d\mathbf{x}.$$
(1.173)

The right hand side can be written as

$$\sum_{j} \int_{\mathcal{R}_{j}} \left( p(\mathbf{x}) - p(\mathbf{x}, \mathcal{C}_{j}) \right) d\mathbf{x} = 1 - \sum_{j} \int_{\mathcal{R}_{j}} p(\mathbf{x}, \mathcal{C}_{j}) d\mathbf{x}.$$
 (1.174)

Therefore,

$$EL = 1 - \sum_{i} \int_{\mathcal{R}_{i}} p(\mathcal{C}_{i}|\mathbf{x}) p(\mathbf{x}) d\mathbf{x}.$$
 (1.175)

Thus, minimising E L reduces to choosing the criterion to maximise the posterior probatility  $p(C_j|\mathbf{x})$ .

Let

$$EL = \sum_{k} \sum_{j} \int_{\mathcal{R}_{j}} L_{kj} p(\mathbf{x}, \mathcal{C}_{k}) d\mathbf{x}.$$
 (1.176)

The right hand side can be written as

$$\sum_{i} \int_{\mathcal{R}_{j}} \sum_{k} L_{kj} p(\mathbf{x}, \mathcal{C}_{k}) d\mathbf{x} = \sum_{i} \int_{\mathcal{R}_{j}} \left( \sum_{k} L_{kj} p(\mathcal{C}_{k} | \mathbf{x}) \right) p(\mathbf{x}) d\mathbf{x}.$$
 (1.177)

Therefore,

$$EL = \sum_{j} \int_{\mathcal{R}_{j}} \left( \sum_{k} L_{kj} p(\mathcal{C}_{k} | \mathbf{x}) \right) p(\mathbf{x}) d\mathbf{x}.$$
 (1.178)

Thus, minimising EL reduces to choosing to minimise  $\sum_k L_{kj} p(\mathcal{C}_k|\mathbf{x})$ .

## 1.24 (Incomplete)

Let

$$EL = \sum_{k} \sum_{j} \int_{\mathcal{R}_{j}} L_{kj} p(\mathbf{x}, \mathcal{C}_{k}) d\mathbf{x} + \lambda \int_{\forall kp(\mathcal{C}_{k}|\mathbf{x}) < \theta} p(\mathbf{x}) d\mathbf{x}.$$
 (1.179)

#### 1.25

Let

$$E L(\mathbf{t}, \mathbf{y}(\mathbf{x})) = \int \int \|\mathbf{y}(\mathbf{x}) - \mathbf{t}\|^2 p(\mathbf{x}, \mathbf{t}) d\mathbf{x} d\mathbf{t}.$$
 (1.180)

Setting the derivative with respect to  $\mathbf{y}(\mathbf{x})$  to zero gives

$$\mathbf{0} = 2 \int (\mathbf{y}(\mathbf{x}) - \mathbf{t}) p(\mathbf{x}, \mathbf{t}) d\mathbf{t}. \tag{1.181}$$

The integral of the right hand side can be written as

$$\mathbf{y}(\mathbf{x}) \int p(\mathbf{x}, \mathbf{t}) d\mathbf{t} - \int \mathbf{t} p(\mathbf{x}, \mathbf{t}) d\mathbf{t} = \mathbf{y}(\mathbf{x}) p(\mathbf{x}) - p(\mathbf{x}) \int \mathbf{t} p(\mathbf{t}|\mathbf{x}) d\mathbf{t}.$$
 (1.182)

The integral in the second term of the right hand side can be written as  $E_{\mathbf{t}}(\mathbf{t}|\mathbf{x})$ . Therefore, the right hand side can be written as

$$\mathbf{0} = p(\mathbf{x}) \left( \mathbf{y}(\mathbf{x}) - \mathbf{E}_{\mathbf{t}}(\mathbf{t}|\mathbf{x}) \right). \tag{1.183}$$

Thus,

$$\underset{\mathbf{y}(\mathbf{x})}{\operatorname{argmin}} E L(\mathbf{t}, \mathbf{y}(\mathbf{x})) = E_{\mathbf{t}}(\mathbf{t}|\mathbf{x}). \tag{1.184}$$

Finally, for a single target variable t, it reduces to

$$\underset{\mathbf{y}(\mathbf{x})}{\operatorname{argmin}} E L(\mathbf{t}, \mathbf{y}(\mathbf{x})) = E_t(t|\mathbf{x}). \tag{1.185}$$

#### 1.26

Let

$$E L(\mathbf{t}, \mathbf{y}(\mathbf{x})) = \int \int \|\mathbf{y}(\mathbf{x}) - \mathbf{t}\|^2 p(\mathbf{x}, \mathbf{t}) d\mathbf{x} d\mathbf{t}.$$
 (1.186)

The right hand side can be written as

$$\int \int \|\mathbf{y}(\mathbf{x}) - \mathbf{E}_{\mathbf{t}}(\mathbf{t}|\mathbf{x}) + \mathbf{E}_{\mathbf{t}}(\mathbf{t}|\mathbf{x}) - \mathbf{t}\|^{2} p(\mathbf{x}, \mathbf{t}) d\mathbf{x} d\mathbf{t}$$

$$= \int \int \|\mathbf{y}(\mathbf{x}) - \mathbf{E}_{\mathbf{t}}(\mathbf{t}|\mathbf{x})\|^{2} p(\mathbf{x}, \mathbf{t}) d\mathbf{x} d\mathbf{t}$$

$$+ 2 \int \int (\mathbf{y}(\mathbf{x}) - \mathbf{E}_{\mathbf{t}}(\mathbf{t}|\mathbf{x}))^{\mathsf{T}} (\mathbf{E}_{\mathbf{t}}(\mathbf{t}|\mathbf{x}) - \mathbf{t}) p(\mathbf{x}, \mathbf{t}) d\mathbf{x} d\mathbf{t}$$

$$+ \int \int \|\mathbf{E}_{\mathbf{t}}(\mathbf{t}|\mathbf{x}) - \mathbf{t}\|^{2} p(\mathbf{x}, \mathbf{t}) d\mathbf{x} d\mathbf{t}.$$
(1.187)

Let us look at each term of the right hand side. The first term can be written as

$$\int \|\mathbf{y}(\mathbf{x}) - \mathbf{E}_{\mathbf{t}}(\mathbf{t}|\mathbf{x})\|^{2} \left( \int p(\mathbf{x}, \mathbf{t}) d\mathbf{t} \right) d\mathbf{x} = \int \|\mathbf{y}(\mathbf{x}) - \mathbf{E}_{\mathbf{t}}(\mathbf{t}|\mathbf{x})\|^{2} p(\mathbf{x}) d\mathbf{x}.$$
(1.188)

The second term can be written as

$$2\int (\mathbf{y}(\mathbf{x}) - \mathbf{E}_{\mathbf{t}}(\mathbf{t}|\mathbf{x}))^{\mathsf{T}} \left( \int (\mathbf{E}_{\mathbf{t}}(\mathbf{t}|\mathbf{x}) - \mathbf{t}) p(\mathbf{t}|\mathbf{x}) d\mathbf{t} \right) p(\mathbf{x}) d\mathbf{x}.$$
 (1.189)

Since

$$\int E_{\mathbf{t}}(\mathbf{t}|\mathbf{x})p(\mathbf{t}|\mathbf{x})d\mathbf{t} = E_{\mathbf{t}}(\mathbf{t}|\mathbf{x})\frac{\int p(\mathbf{x},\mathbf{t})d\mathbf{t}}{p(\mathbf{x})},$$

$$\int \mathbf{t}p(\mathbf{t}|\mathbf{x})d\mathbf{t} = E_{\mathbf{t}}(\mathbf{t}|\mathbf{x}),$$
(1.190)

the second term is zero. The third term can be written as

$$\int \left( \int \|\mathbf{E}_{\mathbf{t}}(\mathbf{t}|\mathbf{x}) - \mathbf{t}\|^2 p(\mathbf{t}|\mathbf{x}) d\mathbf{t} \right) p(\mathbf{x}) d\mathbf{x} = \int \operatorname{var}_{\mathbf{t}}(\mathbf{t}|\mathbf{x}) p(\mathbf{x}) d\mathbf{x}.$$
 (1.191)

Therefore,

$$E L(\mathbf{t}, \mathbf{y}(\mathbf{x})) = \int \|\mathbf{y}(\mathbf{x}) - E_{\mathbf{t}}(\mathbf{t}|\mathbf{x})\|^{2} p(\mathbf{x}) d\mathbf{x} + \int \operatorname{var}_{\mathbf{t}}(\mathbf{t}|\mathbf{x}) p(\mathbf{x}) d\mathbf{x}. \quad (1.192)$$

Thus,

$$\underset{\mathbf{y}(\mathbf{x})}{\operatorname{argmin}} E L(\mathbf{t}, \mathbf{y}(\mathbf{x})) = E_{\mathbf{t}}(\mathbf{t}|\mathbf{x}). \tag{1.193}$$

## 1.27 (Incomplete)

Let

$$EL_q = \int \int |y(\mathbf{x}) - t|^q p(\mathbf{x}, t) d\mathbf{x} dt.$$
 (1.194)

Setting the derivative with respect to  $y(\mathbf{x})$  to zero gives

$$0 = qp(\mathbf{x}) \int |y(\mathbf{x}) - t|^{q-1} \operatorname{sign}(y(\mathbf{x}) - t)p(t|\mathbf{x})dt.$$
 (1.195)

Therefore,

$$\underset{y(\mathbf{x})}{\operatorname{argmin}} \operatorname{E} L_q = \left\{ y(\mathbf{x}) \mid \int |y(\mathbf{x}) - t|^{q-1} \operatorname{sign}(y(\mathbf{x}) - t) p(t|\mathbf{x}) dt = 0 \right\}.$$
(1.196)

Additionally, if q = 1, the integral can be written as

$$p(\mathbf{x}) \int \operatorname{sign}(y(\mathbf{x}) - t) p(t|\mathbf{x}) dt = p(\mathbf{x}) \left( \int_{y(\mathbf{x})}^{\infty} p(t|\mathbf{x}) dt - \int_{-\infty}^{y(\mathbf{x})} p(t|\mathbf{x}) dt \right).$$
(1.197)

Therefore,

$$\underset{y(\mathbf{x})}{\operatorname{argmin}} E L_1 = \operatorname{median}(t|\mathbf{x}). \tag{1.198}$$

Finally,

$$\lim_{q \to 0} \left( \underset{y(\mathbf{x})}{\operatorname{argmin}} \, \mathbf{E} \, L_q \right) = \operatorname{mode}(t|\mathbf{x})? \tag{1.199}$$

Let us assume that

$$p(x,y) = p(x)p(y) \Rightarrow h(x,y) = h(x) + h(y).$$
 (1.200)

Let h(p) be a function to relate h and p. Then

$$h(p^2) = 2h(p).$$
 (1.201)

Let us assume that, for a positive integer n,

$$h\left(p^{n}\right) = nh(p). \tag{1.202}$$

Then, by the first assumption,

$$h(p^{n+1}) = h(p^n) + h(p).$$
 (1.203)

Therefore,

$$h(p^{n+1}) = (n+1)h(p).$$
 (1.204)

Thus, the second assumption is proved by induction on n.

Additionally, for positive integers m and n,

$$h\left(p^{n}\right) = h\left(p^{\frac{n}{m}m}\right). \tag{1.205}$$

By the second assumption, the left hand side can be written as nh(p). By the first assumption, the right hand side can be written as  $mh\left(p^{\frac{n}{m}}\right)$ . Therefore,

$$h\left(p^{\frac{n}{m}}\right) = \frac{n}{m}h(p). \tag{1.206}$$

Finally, by the continuity, for a positive real number a,

$$h\left(p^{a}\right) = ah(p). \tag{1.207}$$

Taking the derivative with respect to a and substituting a = 1 gives

$$(p \ln p)h'(p) = h(p).$$
 (1.208)

Therefore,

$$\int \frac{h'(p)}{h(p)} dp = \int \frac{1}{p \ln p} dp + \text{const}.$$
 (1.209)

Ignorting the constants, the left hand side can be written as  $\ln h(p)$  and the right hand side can be written as  $\ln(\ln p)$ . Thus,

$$h(p) \propto \ln p. \tag{1.210}$$

Let x be an M-state discrete random variable. Then, by the definition,

$$H(x) = -\sum_{i=1}^{M} p(x_i) \ln p(x_i), \qquad (1.211)$$

where

$$\sum_{i=1}^{M} p(x_i) = 1. (1.212)$$

By Jensen's inequality,

$$\sum_{i=1}^{M} p(x_i) \ln \frac{1}{p(x_i)} \le \ln \left( \sum_{i=1}^{M} 1 \right).$$
 (1.213)

Therefore,

$$H(x) \le \ln M. \tag{1.214}$$

#### 1.30

Let

$$p(x) = \mathcal{N}(x|\mu, \sigma^2),$$
  

$$q(x) = \mathcal{N}(x|m, s^2).$$
(1.215)

By the definition,

$$KL(p||q) = -\int p(x) \ln \frac{q(x)}{p(x)} dx. \qquad (1.216)$$

The right hand side can be written as

$$-\int_{-\infty}^{\infty} p(x) \ln \frac{(2\pi s^2)^{-\frac{1}{2}} \exp\left(-\frac{(x-m)^2}{2s^2}\right)}{(2\pi\sigma^2)^{-\frac{1}{2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)} dx$$

$$= -\int_{-\infty}^{\infty} p(x) \left(-\frac{1}{2} \ln \frac{s^2}{\sigma^2} - \frac{(x-m)^2}{2s^2} + \frac{(x-\mu)^2}{2\sigma^2}\right) dx.$$
(1.217)

The right hand side can be written as

$$\ln \frac{s}{\sigma} \int_{-\infty}^{\infty} p(x)dx + \frac{1}{2s^2} \int_{-\infty}^{\infty} (x-m)^2 p(x)dx - \frac{1}{2\sigma^2} \int_{-\infty}^{\infty} (x-\mu)^2 p(x)dx. \quad (1.218)$$

The first term can be written as  $\ln \frac{s}{\sigma}$ . The second term can be written as

$$\frac{1}{2s^2} \int_{-\infty}^{\infty} (x - \mu + \mu - m)^2 p(x) dx = \frac{\sigma^2 + (\mu - m)^2}{2s^2}.$$
 (1.219)

The third term can be written as  $-\frac{1}{2}$ . Therefore,

$$KL(p||q) = \ln \frac{s}{\sigma} + \frac{\sigma^2 + (\mu - m)^2}{2s^2} - \frac{1}{2}.$$
 (1.220)

## 1.31

Let  $\mathbf{x}$  and  $\mathbf{y}$  be two variables. Then, by the definition,

$$H(\mathbf{x}) = -\int p(\mathbf{x}) \ln p(\mathbf{x}) d\mathbf{x},$$

$$H(\mathbf{y}) = -\int p(\mathbf{y}) \ln p(\mathbf{y}) d\mathbf{y},$$

$$H(\mathbf{x}, \mathbf{y}) = -\int \int p(\mathbf{x}, \mathbf{y}) \ln p(\mathbf{x}, \mathbf{y}) d\mathbf{x} d\mathbf{y}.$$
(1.221)

Note that

$$H(\mathbf{x}) = -\int \left(\int p(\mathbf{x}, \mathbf{y}) d\mathbf{y}\right) \ln p(\mathbf{x}) d\mathbf{x},$$

$$H(\mathbf{y}) = -\int \left(\int p(\mathbf{x}, \mathbf{y}) d\mathbf{x}\right) \ln p(\mathbf{y}) d\mathbf{y}.$$
(1.222)

Therefore,

$$H(\mathbf{x}) + H(\mathbf{y}) - H(\mathbf{x}, \mathbf{y}) = -\int \int p(\mathbf{x}, \mathbf{y}) \ln \frac{p(\mathbf{x})p(\mathbf{y})}{p(\mathbf{x}, \mathbf{y})} d\mathbf{x} d\mathbf{y}.$$
 (1.223)

Since

$$\int \int p(\mathbf{x}, \mathbf{y}) d\mathbf{x} d\mathbf{y} = 1, \tag{1.224}$$

Jensen's inequality can be used to write that

$$-\int \int p(\mathbf{x}, \mathbf{y}) \ln \frac{p(\mathbf{x})p(\mathbf{y})}{p(\mathbf{x}, \mathbf{y})} d\mathbf{x} d\mathbf{y} \ge -\ln \left( \int \int p(\mathbf{x})p(\mathbf{y}) d\mathbf{x} d\mathbf{y} \right). \quad (1.225)$$

The right hand side can be written as

$$-\ln\left(\int p(\mathbf{x})d\mathbf{x}\int p(\mathbf{y})d\mathbf{y}\right) = 0. \tag{1.226}$$

Thus,

$$H(\mathbf{x}, \mathbf{y}) \le H(\mathbf{x}) + H(\mathbf{y}). \tag{1.227}$$

Let  $\mathbf{x}$  be a vector of continuous variables and

$$\mathbf{y} = \mathbf{A}\mathbf{x},\tag{1.228}$$

where  $\mathbf{A}$  is a nonsingular matrix. By the definition,

$$H(\mathbf{y}) = -\int p_y(\mathbf{y}) \ln p_y(\mathbf{y}) d\mathbf{y}.$$
 (1.229)

By the transformation

$$p_y(\mathbf{y}) = p_x(\mathbf{A}\mathbf{x}) |\det \mathbf{A}^{-1}|, \qquad (1.230)$$

the right hand side can be written as

$$-\int p_x(\mathbf{A}\mathbf{x})\ln p_x(\mathbf{A}\mathbf{x})|\det \mathbf{A}|d\mathbf{x} - \ln \left|\det \mathbf{A}^{-1}\right| \int p_y(\mathbf{y})d\mathbf{y}. \tag{1.231}$$

By the transformation

$$\mathbf{x}' = \mathbf{A}\mathbf{x},\tag{1.232}$$

the first term can be written as

$$-\int p_x(\mathbf{x}')\ln p_x(\mathbf{x}')d\mathbf{x}' = \mathbf{H}(\mathbf{x}), \qquad (1.233)$$

and the second term can be written as

$$-\ln\left|\det\mathbf{A}^{-1}\right| = \ln\left|\det\mathbf{A}\right|. \tag{1.234}$$

Therefore,

$$H(\mathbf{y}) = H(\mathbf{x}) + \ln|\det \mathbf{A}|. \tag{1.235}$$

#### 1.33

Let x and y be two discrete variables. By the definition,

$$H(y|x) = -\sum_{i} \sum_{j} p(x_i, y_j) \ln p(y_j|x_i).$$
 (1.236)

If H(y|x) is zero, then

$$0 = -\sum_{i} p(x_i) \sum_{j} p(y_j | x_i) \ln p(y_j | x_i).$$
 (1.237)

Since

$$p(x_i) \ge 0,$$
  
 $p(y_j|x_i) \ln p(y_j|x_i) \le 0.$  (1.238)

for all i and j, the equation reduces to

$$p(y_i|x_i) \ln p(y_i|x_i) = 0. (1.239)$$

Therefore,  $p(y_j|x_i)$  is zero or one. Thus, since

$$\sum_{j} p(y_j|x_i) = 1, \tag{1.240}$$

 $p(y_j|x_i)$  is one for a unique  $x_i$  and zero for others.

#### 1.34

Let

$$L(p(x)) = -\int_{-\infty}^{\infty} p(x) \ln p(x) dx + \lambda_1 \left( \int_{-\infty}^{\infty} p(x) dx - 1 \right) + \lambda_2 \left( \int_{-\infty}^{\infty} x p(x) dx - \mu \right) + \lambda_3 \left( \int_{-\infty}^{\infty} (x - \mu)^2 p(x) dx - \sigma^2 \right).$$
(1.241)

Setting the derivtive with respect to p(x) to zero gives

$$0 = -\ln p(x) - 1 + \lambda_1 + \lambda_2 x + \lambda_3 (x - \mu)^2. \tag{1.242}$$

Therefore,

$$p(x) = \exp(-1 + \lambda_1 + \lambda_2 x + \lambda_3 (x - \mu)^2).$$
 (1.243)

$$p(x) = \exp\left(-1 + \lambda_1 - \frac{\lambda_2^2}{4\lambda_3} + \lambda_3 \left(x - \left(\mu - \frac{\lambda_2}{2\lambda_3}\right)\right)^2\right). \tag{1.244}$$

Substituting it to

$$\int_{-\infty}^{\infty} p(x)dx = 1,$$

$$\int_{-\infty}^{\infty} xp(x)dx = \mu,$$

$$\int_{-\infty}^{\infty} (x - \mu)^2 p(x)dx = \sigma^2,$$
(1.245)

gives

$$\exp\left(-1 + \lambda_1 - \frac{\lambda_2^2}{4\lambda_3}\right) \int_{-\infty}^{\infty} \exp\left(\lambda_3 \left(x - \left(\mu - \frac{\lambda_2}{2\lambda_3}\right)\right)^2\right) dx = 1,$$

$$\exp\left(-1 + \lambda_1 - \frac{\lambda_2^2}{4\lambda_3}\right) \int_{-\infty}^{\infty} x \exp\left(\lambda_3 \left(x - \left(\mu - \frac{\lambda_2}{2\lambda_3}\right)\right)^2\right) dx = \mu,$$

$$\exp\left(-1 + \lambda_1 - \frac{\lambda_2^2}{4\lambda_3}\right) \int_{-\infty}^{\infty} (x - \mu)^2 \exp\left(\lambda_3 \left(x - \left(\mu - \frac{\lambda_2}{2\lambda_3}\right)\right)^2\right) dx = \sigma^2.$$

$$(1.246)$$

By the transformation

$$y = \sqrt{-\lambda_3} \left( x - \left( \mu - \frac{\lambda_2}{2\lambda_3} \right) \right), \tag{1.247}$$

they can be written as

$$\exp\left(-1 + \lambda_{1} - \frac{\lambda_{2}^{2}}{4\lambda_{3}}\right) \int_{-\infty}^{\infty} \exp\left(-y^{2}\right) (-\lambda_{3})^{-\frac{1}{2}} dy = 1,$$

$$\exp\left(-1 + \lambda_{1} - \frac{\lambda_{2}^{2}}{4\lambda_{3}}\right) \int_{-\infty}^{\infty} \left((-\lambda_{3})^{-\frac{1}{2}} y + \mu - \frac{\lambda_{2}}{2\lambda_{3}}\right) \exp\left(-y^{2}\right) (-\lambda_{3})^{-\frac{1}{2}} dy = \mu,$$

$$\exp\left(-1 + \lambda_{1} - \frac{\lambda_{2}^{2}}{4\lambda_{3}}\right) \int_{-\infty}^{\infty} \left((-\lambda_{3})^{-\frac{1}{2}} y - \frac{\lambda_{2}}{2\lambda_{3}}\right)^{2} \exp\left(-y^{2}\right) (-\lambda_{3})^{-\frac{1}{2}} dy = \sigma^{2}.$$

$$(1.248)$$

Since

$$\int_{-\infty}^{\infty} \exp(-y^2) dy = \Gamma\left(\frac{1}{2}\right),$$

$$\int_{-\infty}^{\infty} y \exp(-y^2) dy = 0,$$

$$\int_{-\infty}^{\infty} y^2 \exp(-y^2) dy = \Gamma\left(\frac{3}{2}\right),$$
(1.249)

they can be written as

$$\exp\left(-1 + \lambda_1 - \frac{\lambda_2^2}{4\lambda_3}\right) (-\lambda_3)^{-\frac{1}{2}} \Gamma\left(\frac{1}{2}\right) = 1,$$

$$\exp\left(-1 + \lambda_1 - \frac{\lambda_2^2}{4\lambda_3}\right) \left(\mu - \frac{\lambda_2}{2\lambda_3}\right) (-\lambda_3)^{-\frac{1}{2}} \Gamma\left(\frac{1}{2}\right) = \mu,$$

$$\exp\left(-1 + \lambda_1 - \frac{\lambda_2^2}{4\lambda_3}\right) \left((-\lambda_3)^{-\frac{3}{2}} \Gamma\left(\frac{3}{2}\right) + (-\lambda_3)^{-\frac{1}{2}} \frac{\lambda_2^2}{4\lambda_3^2} \Gamma\left(\frac{1}{2}\right)\right) = \sigma^2.$$

$$(1.250)$$

Therefore,

$$\lambda_1 = 1 - \frac{1}{2} \ln \left( 2\pi \sigma^2 \right),$$

$$\lambda_2 = 0,$$

$$\lambda_3 = -\frac{1}{2\sigma^2}.$$
(1.251)

Thus,

$$p(x) = (2\pi\sigma^2)^{-\frac{1}{2}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right).$$
 (1.252)

#### 1.35

Let x be a variable such that

$$p(x) = \mathcal{N}\left(x|\mu, \sigma^2\right). \tag{1.253}$$

Then, by the definition,

$$H(x) = -\int_{-\infty}^{\infty} \mathcal{N}\left(x|\mu,\sigma^2\right) \ln \mathcal{N}\left(x|\mu,\sigma^2\right) dx. \tag{1.254}$$

The right hand side can be written as

$$-\int_{-\infty}^{\infty} \mathcal{N}\left(x|\mu,\sigma^2\right) \left(-\frac{1}{2}\ln\left(2\pi\sigma^2\right) - \frac{1}{2\sigma^2}(x-\mu)^2\right) dx$$

$$= \frac{1}{2}\ln\left(2\pi\sigma^2\right) \int_{-\infty}^{\infty} \mathcal{N}\left(x|\mu,\sigma^2\right) dx + \frac{1}{2\sigma^2} \int_{-\infty}^{\infty} (x-\mu)^2 \mathcal{N}\left(x|\mu,\sigma^2\right) dx.$$
(1.255)

$$H(x) = \frac{1}{2} (1 + \ln(2\pi\sigma^2)).$$
 (1.256)

## 1.36 (Incomplete)

Let f be a strictly convex function. Then, by the definition,

$$f(\lambda a + (1 - \lambda)b) \le \lambda f(a) + (1 - \lambda)f(b), \tag{1.257}$$

where  $a \leq b$  and  $0 \leq \lambda \leq 1$ . Let

$$x = \lambda a + (1 - \lambda)b. \tag{1.258}$$

Then, the inequality can be written as

$$f(x) \le \frac{b-x}{b-a}f(a) + \frac{x-a}{b-a}f(b).$$
 (1.259)

Let

$$g(x) = \frac{b-x}{b-a}f(a) + \frac{x-a}{b-a}f(b) - f(x).$$
 (1.260)

Then,

$$g(x) \ge 0. \tag{1.261}$$

Additionally, for x > a,

$$g(x) = (x - a) \left( \frac{f(b) - f(a)}{b - a} - \frac{f(x) - f(a)}{x - a} \right).$$
 (1.262)

By the mean value theorem, there exists c and y such that  $a \leq c \leq b,$   $a \leq y \leq x$  and

$$f'(c) = \frac{f(b) - f(a)}{b - a},$$
  

$$f'(y) = \frac{f(x) - f(a)}{x - a}.$$
(1.263)

Then, for x > a, the inequality reduces to

$$f'(y) \le f'(c). \tag{1.264}$$

## 1.37

Let  $\mathbf{x}$  and  $\mathbf{y}$  be two variables. Then, by the definition,

$$H(\mathbf{x}, \mathbf{y}) = -\int \int p(\mathbf{x}, \mathbf{y}) \ln p(\mathbf{x}, \mathbf{y}) d\mathbf{x} d\mathbf{y}.$$
 (1.265)

The right hand side can be written as

$$-\int \int p(\mathbf{x}, \mathbf{y}) (\ln p(\mathbf{y}|\mathbf{x}) + \ln p(\mathbf{x})) d\mathbf{x} d\mathbf{y}$$

$$= -\int \int p(\mathbf{x}, \mathbf{y}) \ln p(\mathbf{y}|\mathbf{x}) d\mathbf{x} d\mathbf{y} - \int \left(\int p(\mathbf{x}, \mathbf{y}) d\mathbf{y}\right) \ln p(\mathbf{x}) d\mathbf{x}.$$
(1.266)

By the definition, the first term of the right hand side can be written as  $H(\mathbf{y}|\mathbf{x})$  and the second term can be written as  $H(\mathbf{x})$ . Therefore,

$$H(\mathbf{x}, \mathbf{y}) = H(\mathbf{y}|\mathbf{x}) + H(\mathbf{x}). \tag{1.267}$$

#### 1.38

Let f be a strictly convex function. Then, by the definition,

$$f(\lambda x_1 + (1 - \lambda)x_2) \le \lambda f(x_1) + (1 - \lambda)f(x_2),$$
 (1.268)

where  $0 \le \lambda \le 1$ . Let us assume that

$$f\left(\sum_{i=1}^{M} \lambda_i x_i\right) \le \sum_{i=1}^{M} \lambda_i f(x_i), \tag{1.269}$$

where  $\lambda_i \geq 0$  and

$$\sum_{i=1}^{M} \lambda_i = 1. \tag{1.270}$$

Here, let  $\lambda_i \geq 0$  and

$$\sum_{i=1}^{M+1} \lambda_i = 1. \tag{1.271}$$

Then, by the definition,

$$f\left(\sum_{i=1}^{M+1} \lambda_i x_i\right) \le \lambda_{M+1} f(x_{M+1}) + (1 - \lambda_{M+1}) f\left(\sum_{i=1}^{M} \frac{\lambda_i}{1 - \lambda_{M+1}} x_i\right). \quad (1.272)$$

By the assumption,

$$f\left(\sum_{i=1}^{M} \frac{\lambda_i}{1 - \lambda_{M+1}} x_i\right) \le \sum_{i=1}^{M} \frac{\lambda_i}{1 - \lambda_{M+1}} f(x_i).$$
 (1.273)

Therefore,

$$f\left(\sum_{i=1}^{M+1} \lambda_i x_i\right) \le \lambda_{M+1} f(x_{M+1}) + (1 - \lambda_{M+1}) \sum_{i=1}^{M} \frac{\lambda_i}{1 - \lambda_{M+1}} f(x_i). \quad (1.274)$$

Thus,

$$f\left(\sum_{i=1}^{M+1} \lambda_i x_i\right) \le \sum_{i=1}^{M+1} \lambda_i f(x_i). \tag{1.275}$$

Hence, the assumption is proved by induction on M.

## 1.39

Let x and y be two binary variables where

$$p(x = 0, y = 0) = \frac{1}{3},$$

$$p(x = 0, y = 1) = \frac{1}{3},$$

$$p(x = 1, y = 0) = 0,$$

$$p(x = 1, y = 1) = \frac{1}{3}.$$
(1.276)

(a)

By the definition,

$$H(x) = -\sum p(x) \ln p(x).$$
 (1.277)

By the distribution,

$$p(x=0) = \frac{2}{3},$$

$$p(x=1) = \frac{1}{3}.$$
(1.278)

$$H(x) = \ln 3 - \frac{2}{3} \ln 2. \tag{1.279}$$

(b)

By the definition,

$$H(y) = -\sum p(y) \ln p(y).$$
 (1.280)

By the distribution,

$$p(y=0) = \frac{1}{3},$$

$$p(y=1) = \frac{2}{3}.$$
(1.281)

Therefore,

$$H(y) = \ln 3 - \frac{2}{3} \ln 2. \tag{1.282}$$

(c)

By the definition,

$$H(y|x) = -\sum p(x,y) \ln p(y|x).$$
 (1.283)

By the definition,

$$p(y = 0|x = 0) = \frac{p(x = 0, y = 0)}{p(x = 0)},$$

$$p(y = 0|x = 1) = \frac{p(x = 1, y = 0)}{p(x = 1)},$$

$$p(y = 1|x = 0) = \frac{p(x = 0, y = 1)}{p(x = 0)},$$

$$p(y = 1|x = 1) = \frac{p(x = 1, y = 1)}{p(x = 1)}.$$
(1.284)

Then, by the distribution,

$$p(y = 0|x = 0) = \frac{1}{2},$$

$$p(y = 0|x = 1) = 0,$$

$$p(y = 1|x = 0) = \frac{1}{2},$$

$$p(y = 1|x = 1) = 1.$$
(1.285)

Therefore,

$$H(y|x) = \frac{2}{3}\ln 2. \tag{1.286}$$

(d)

By the definition,

$$H(x|y) = -\sum p(x,y) \ln p(x|y).$$
 (1.287)

By the definition,

$$p(x = 0|y = 0) = \frac{p(x = 0, y = 0)}{p(y = 0)},$$

$$p(x = 0|y = 1) = \frac{p(x = 0, y = 1)}{p(y = 1)},$$

$$p(x = 1|y = 0) = \frac{p(x = 1, y = 0)}{p(y = 0)},$$

$$p(x = 1|y = 1) = \frac{p(x = 1, y = 1)}{p(y = 1)}.$$
(1.288)

Then, by the distribution,

$$p(x = 0|y = 0) = 1,$$

$$p(x = 0|y = 1) = \frac{1}{2},$$

$$p(x = 1|y = 0) = 0,$$

$$p(x = 1|y = 1) = \frac{1}{2}.$$
(1.289)

Therefore,

$$H(x|y) = \frac{2}{3}\ln 2. \tag{1.290}$$

(e)

By the definition,

$$H(x,y) = -\sum p(x,y) \ln p(x,y).$$
 (1.291)

Therefore,

$$H(x,y) = \ln 3.$$
 (1.292)

(f)

By the definition,

$$I(x,y) = -\sum p(x,y) \ln \frac{p(x)p(y)}{p(x,y)}.$$
 (1.293)

By the distribution, the right hand side can be written as

$$H(x) + H(y) - H(x, y).$$
 (1.294)

Therefore,

$$I(x,y) = \ln 3 - \frac{4}{3} \ln 2. \tag{1.295}$$

#### 1.40

Let  $\{x_i\}$  be a set of points where  $x_i > 0$ , and let  $\{\lambda_i\}$  be a set of coefficients where  $\lambda_i \geq 0$  and

$$\sum_{i=1}^{M} \lambda_i = 1. \tag{1.296}$$

By Jensen's inequality,

$$\sum_{i=1}^{M} \lambda_i \ln x_i \le \ln \left( \sum_{i=1}^{M} \lambda_i x_i \right). \tag{1.297}$$

Therefore,

$$\prod_{i=1}^{M} x_i^{\lambda_i} \le \sum_{i=1}^{M} \lambda_i x_i. \tag{1.298}$$

Substituting

$$\lambda_i = \frac{1}{M} \tag{1.299}$$

gives

$$\left(\prod_{i=1}^{M} x_i\right)^{\frac{1}{M}} \le frac1M \sum_{i=1}^{M} x_i. \tag{1.300}$$

# 1.41

Let  $\mathbf{x}$  and  $\mathbf{y}$  be continuous variables. Then, by the definitnion,

$$I(\mathbf{x}, \mathbf{y}) = -\int \int p(\mathbf{x}, \mathbf{y}) \ln \frac{p(\mathbf{x})p(\mathbf{y})}{p(\mathbf{x}, \mathbf{y})} d\mathbf{x} d\mathbf{y}.$$
 (1.301)

The right hand side can be written as

$$-\int \int p(\mathbf{x}, \mathbf{y}) \left( \ln p(\mathbf{x}) + \ln \frac{p(\mathbf{y})}{p(\mathbf{x}, \mathbf{y})} \right) d\mathbf{x} d\mathbf{y}$$

$$= -\int \left( \int p(\mathbf{x}, \mathbf{y}) d\mathbf{y} \right) \ln p(\mathbf{x}) d\mathbf{x} + \int \int p(\mathbf{x}, \mathbf{y}) \ln p(\mathbf{x}|\mathbf{y}) d\mathbf{x} d\mathbf{y}.$$
(1.302)

By the definition, the first term of the right hand side can be written as  $H(\mathbf{x})$  and the second term can be written as  $-H(\mathbf{x}|\mathbf{y})$ . Therefore,

$$I(\mathbf{x}, \mathbf{y}) = H(\mathbf{x}) - H(\mathbf{x}|\mathbf{y}). \tag{1.303}$$

By the definition,

$$I(\mathbf{x}, \mathbf{y}) = I(\mathbf{y}, \mathbf{x}). \tag{1.304}$$

Thus,

$$I(\mathbf{x}, \mathbf{y}) = H(\mathbf{y}) - H(\mathbf{y}|\mathbf{x}). \tag{1.305}$$

# 2 Probability Distributions

# 2.1

Let x be a variable such that

$$p(x|\mu) = \mu^x (1-\mu)^{1-x}, \tag{2.1}$$

where  $x \in \{0, 1\}$ . Then,

$$\sum_{x} p(x|\mu) = 1. \tag{2.2}$$

By the definition,

$$\begin{aligned}
\mathbf{E} \, x &= \mu, \\
\mathbf{E} \, x^2 &= \mu,
\end{aligned} \tag{2.3}$$

Since

$$\operatorname{var} x = \operatorname{E} x^{2} - (\operatorname{E} x)^{2},$$
 (2.4)

we have

$$\operatorname{var} x = \mu(1 - \mu). \tag{2.5}$$

By the definition,

$$H(x) = -\sum_{x} p(x|\mu) \ln p(x|\mu).$$
 (2.6)

Therefore,

$$H(x) = -\mu \ln \mu - (1 - \mu) \ln(1 - \mu). \tag{2.7}$$

# 2.2

Let x be a variable such that

$$p(x|\mu) = \left(\frac{1-\mu}{2}\right)^{\frac{1-x}{2}} \left(\frac{1+\mu}{2}\right)^{\frac{1+x}{2}},\tag{2.8}$$

where  $x \in \{-1, 1\}$ . Then,

$$\sum_{x} p(x|\mu) = 1. \tag{2.9}$$

By the definition,

$$\begin{aligned}
\mathbf{E} \, x &= \mu, \\
\mathbf{E} \, x^2 &= 1,
\end{aligned} \tag{2.10}$$

Since

$$var x = E x^{2} - (E x)^{2}, (2.11)$$

we have

$$var x = 1 - \mu^2. (2.12)$$

By the definition,

$$H(x) = -\sum_{x} p(x|\mu) \ln p(x|\mu).$$
 (2.13)

Therefore,

$$H(x) = -\frac{1-\mu}{2} \ln \frac{1-\mu}{2} - \frac{1+\mu}{2} \ln \frac{1+\mu}{2}.$$
 (2.14)

#### 2.3

By the definition,

$$\binom{N}{m} = \frac{N!}{m!(N-m)!},$$

$$\binom{N}{m-1} = \frac{N!}{(m-1)!(N-m+1)!}$$
(2.15)

Therefore,

$$\binom{N}{m} + \binom{N}{m-1} = \frac{(N-m+1)N! + mN!}{m!(N-m+1)!}.$$
 (2.16)

By the definition, the right hand side can be written as

$$\frac{(N+1)!}{m!(N+1-m)!} = \binom{N+1}{m}.$$
 (2.17)

Thus,

$$\binom{N}{m} + \binom{N}{m-1} = \binom{N+1}{m}. \tag{2.18}$$

Note that

$$1 + x = \sum_{m=0}^{1} {1 \choose m} x^{m}.$$
 (2.19)

Let us assume that

$$(1+x)^N = \sum_{m=0}^N \binom{N}{m} x^m.$$
 (2.20)

Then,

$$(1+x)^{N+1} = \sum_{m=0}^{N} {N \choose m} x^m + \sum_{m=0}^{N} {N \choose m} x^{m+1}.$$
 (2.21)

By the result above, the right hand side can be written as

$$\sum_{m=0}^{N} {N \choose m} x^m + \sum_{m=1}^{N+1} {N \choose m-1} x^m = 1 + x^{N+1} + \sum_{m=1}^{N} {N+1 \choose m} x^m.$$
 (2.22)

Therefore,

$$(1+x)^{N+1} = \sum_{m=0}^{N+1} {N+1 \choose m} x^m.$$
 (2.23)

Thus, the assumption is proved by induction on N.

Finally, let m be a variable such that

$$p(m|\mu) = \binom{N}{m} \mu^m (1-\mu)^{N-m}.$$
 (2.24)

Then

$$\sum_{m=0}^{N} p(m|\mu) = \sum_{m=0}^{N} {N \choose m} \mu^{m} (1-\mu)^{N-m}.$$
 (2.25)

By the result above, the right hand side can be written as

$$(1-\mu)^N \sum_{m=0}^N \binom{N}{m} \left(\frac{\mu}{1-\mu}\right)^m = (1-\mu)^N \left(1 + \frac{\mu}{1-\mu}\right)^N.$$
 (2.26)

Therefore,

$$\sum_{m=0}^{N} p(m|\mu) = 1. (2.27)$$

#### 2.4

Let m be a variable such that

$$p(m|\mu) = \binom{N}{m} \mu^m (1-\mu)^{N-m}.$$
 (2.28)

Then

$$E m = \sum_{m=0}^{N} m \binom{N}{m} \mu^m (1-\mu)^{N-m}.$$
 (2.29)

Taking the derivative of

$$\sum_{m=0}^{N} \binom{N}{m} \mu^m (1-\mu)^{N-m} = 1 \tag{2.30}$$

with respect to  $\mu$  gives

$$\sum_{m=0}^{N} m \binom{N}{m} \mu^{m-1} (1-\mu)^{N-m} - \sum_{m=0}^{N} (N-m) \binom{N}{m} \mu^{m} (1-\mu)^{N-m-1} = 0. \quad (2.31)$$

The first term of the left hand side can be written as  $\frac{1}{\mu} \to m$ . Since

$$(N-m)\binom{N}{m} = N\binom{N-1}{m},\tag{2.32}$$

the second term of the left hand side can be written as

$$-N\sum_{m=0}^{N-1} {N-1 \choose m} \mu^m (1-\mu)^{N-m-1} = -N.$$
 (2.33)

Therefore,

$$E m = N\mu. (2.34)$$

Taking the second derivative of

$$\sum_{m=0}^{N} \binom{N}{m} \mu^m (1-\mu)^{N-m} = 1$$
 (2.35)

with respect to  $\mu$  gives

$$\sum_{m=0}^{N} m(m-1) \binom{N}{m} \mu^{m-2} (1-\mu)^{N-m}$$

$$-2 \sum_{m=0}^{N} m(N-m) \binom{N}{m} \mu^{m-1} (1-\mu)^{N-m-1}$$

$$+ \sum_{m=0}^{N} (N-m)(N-m-1) \binom{N}{m} \mu^{m} (1-\mu)^{N-m-2} = 0.$$
(2.36)

The first term of the left hand side can be written as  $\frac{1}{\mu^2} \operatorname{E} m(m-1)$ . Since

$$m(N-m)\binom{N}{m} = N(N-1)\binom{N-2}{m-1},$$
  

$$(N-m)(N-m-1)\binom{N}{m} = N(N-1)\binom{N-2}{m},$$
(2.37)

the second and third term of the left hand side can be written as

$$-2N(N-1)\sum_{m=1}^{N-1} \binom{N-2}{m-1} \mu^{m-1} (1-\mu)^{N-m-1} = -2N(N-1),$$

$$N(N-1)\sum_{m=0}^{N} \binom{N-2}{m} \mu^{m} (1-\mu)^{N-m-2} = N(N-1).$$
(2.38)

Therefore,

$$E m(m-1) = N(N-1)\mu^{2}. (2.39)$$

Thus, since

$$var m = E m(m-1) + E m - (E m)^{2}, (2.40)$$

we have

$$\operatorname{var} m = N\mu(1-\mu). \tag{2.41}$$

#### 2.5

By the definition,

$$\Gamma(a)\Gamma(b) = \int_0^\infty x^{a-1} \exp(-x) dx \int_0^\infty y^{b-1} \exp(-y) dy.$$
 (2.42)

By the transformation t = x + y, the right hand side can be written as

$$\int_{0}^{\infty} x^{a-1} \left( \int_{x}^{\infty} (t-x)^{b-1} \exp(-t) dt \right) dx$$

$$= \int_{0}^{\infty} \left( \int_{0}^{t} x^{a-1} (t-x)^{b-1} dx \right) \exp(-t) dt.$$
(2.43)

By the transformation  $x = t\mu$ , the right hand side can be written as

$$\int_{0}^{\infty} \left( \int_{0}^{1} (t\mu)^{a-1} t^{b-1} (1-\mu)^{b-1} t d\mu \right) \exp(-t) dt$$

$$= \int_{0}^{1} \mu^{a-1} (1-\mu)^{b-1} d\mu \int_{0}^{\infty} t^{a+b-1} \exp(-t) dt.$$
(2.44)

By the definition, the second integral of the right hand side can be written as  $\Gamma(a+b)$ . Therefore,

$$\int_0^1 \mu^{a-1} (1-\mu)^{b-1} d\mu = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}.$$
 (2.45)

#### 2.6

Let  $\mu$  be a variable such that

$$p(\mu|a,b) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \mu^{a-1} (1-\mu)^{b-1}.$$
 (2.46)

Then

Since

$$\int_{0}^{1} \mu^{a} (1-\mu)^{b-1} d\mu = \frac{\Gamma(a+1)\Gamma(b)}{\Gamma(a+b+1)},$$

$$\int_{0}^{1} \mu^{a+1} (1-\mu)^{b-1} d\mu = \frac{\Gamma(a+2)\Gamma(b)}{\Gamma(a+b+2)},$$
(2.48)

we have

$$E \mu = \frac{a}{a+b},$$

$$E \mu^2 = \frac{a(a+1)}{(a+b)(a+b+1)}.$$
(2.49)

Since

$$\operatorname{var} \mu = \operatorname{E} \mu^2 - (\operatorname{E} \mu)^2,$$
 (2.50)

we have

$$var \mu = \frac{ab}{(a+b)^2(a+b+1)}.$$
 (2.51)

Since

$$\frac{\partial}{\partial \mu} p(\mu|a,b) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \mu^{a-1} (1-\mu)^{b-1} \left( \frac{a-1}{\mu} - \frac{b-1}{1-\mu} \right), \tag{2.52}$$

we have

$$\operatorname{mode} \mu = \frac{a - 1}{a + b - 2}.$$
 (2.53)

# 2.7

Let m and l be a variable such that

$$p(m, l|\mu) = {m+l \choose m} \mu^m (1-\mu)^l,$$
 (2.54)

where

$$p(\mu|a,b) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \mu^{a-1} (1-\mu)^{b-1}.$$
 (2.55)

By 2.6,

$$E(\mu|a,b) = \frac{a}{a+b}. (2.56)$$

Note that

$$\mu_{\rm ML} = \frac{m}{m+l}.\tag{2.57}$$

Since

$$p(\mu|m, l, a, b) \propto p(m, l|\mu)p(\mu|a, b), \tag{2.58}$$

we have

$$p(\mu|m,l,a,b) = \frac{\Gamma(m+l+a+b)}{\Gamma(m+a)\Gamma(l+b)} \mu^{m+a-1} (1-\mu)^{l+b-1}.$$
 (2.59)

Therefore, by 2.6,

$$E(\mu|m, l, a, b) = \frac{m+a}{m+l+a+b}.$$
 (2.60)

Thus,

$$E(\mu|m, l, a, b) = \lambda \mu_{ML} + (1 - \lambda) E(\mu|a, b),$$
 (2.61)

where

$$\lambda = \frac{m+l}{m+l+a+b}. (2.62)$$

#### 2.8

Let x and y be variables. Then, by the definition,

$$\mathbf{E}\,x = \int x p(x) dx. \tag{2.63}$$

The right hand side can be written as

$$\int x \left( \int p(x,y) dy \right) dx = \int \left( \int x p(x|y) dx \right) p(y) dy. \tag{2.64}$$

Therefore,

$$E x = E_y (E_x(x|y)). (2.65)$$

Additionally, by the definition,

$$\operatorname{var} x = \operatorname{E} (x - \operatorname{E} x)^{2}. \tag{2.66}$$

By the result above, the right hand side can be written as

$$E_{y} \left( E_{x} \left( (x - E_{x}(x|y) + E_{x}(x|y) - E_{x})^{2} | y \right) \right)$$

$$= E_{y} \left( E_{x} \left( (x - E_{x}(x|y))^{2} | y \right) \right)$$

$$+ 2 E_{y} \left( \left( (E_{x}(x|y) - E_{x}) E_{x} \left( x - E_{x}(x|y) \right) | y \right) \right)$$

$$+ E_{y} \left( \left( E_{x}(x|y) - E_{x} \right)^{2} | y \right).$$
(2.67)

Let us look at each term of the right hand side. By the definition, the first term can be written as  $E_y(\operatorname{var}_x(x|y))$ . The second term can be written as

$$2 E_y ((E_x(x|y) - E_x) (E_x(x|y) - E_x(x|y))) = 0.$$
 (2.68)

By the result above, the third term can be written as

$$E_y (E_x(x|y) - E_y (E_x(x|y)))^2 = var_y (E_x(x|y)).$$
 (2.69)

Therefore,

$$\operatorname{var} x = \operatorname{E}_{y} \left( \operatorname{var}_{x}(x|y) \right) + \operatorname{var}_{y} \left( \operatorname{E}_{x}(x|y) \right). \tag{2.70}$$

#### 2.9

For a vector  $\boldsymbol{\mu}$  in 2 dimensions, 2.5 gives

$$\int_{\substack{\mu_1 + \mu_2 = 1 \\ \mu_1 > 0, \mu_2 > 0}} \mu_1^{\alpha_1 - 1} \mu_2^{\alpha_2 - 1} d\boldsymbol{\mu} = \frac{\Gamma(\alpha_1) \Gamma(\alpha_2)}{\Gamma(\alpha_1 + \alpha_2)}.$$

For a vector  $\boldsymbol{\mu}$  in M dimensions, let us assume that

$$\int_{\sum_{k=1}^{M} \mu_k = 1} \prod_{k=1}^{M} \mu_k^{\alpha_k - 1} d\mu = \frac{\prod_{k=1}^{M} \Gamma(\alpha_k)}{\Gamma(\sum_{k=1}^{M} \alpha_k)}.$$

Under the constraint

$$\sum_{k=1}^{M+1} \mu_k = 1, \tag{2.71}$$

we have

$$\int_{0}^{1-\sum_{k=1}^{M-1}\mu_{k}} \prod_{k=1}^{M+1} \mu_{k}^{\alpha_{k}-1} d\mu_{M+1} 
= \left(\prod_{k=1}^{M-1}\mu_{k}^{\alpha_{k}-1}\right) \int_{0}^{1-\sum_{k=1}^{M-1}\mu_{k}} \mu_{M+1}^{\alpha_{M+1}-1} \left(1-\sum_{k=1}^{M-1}\mu_{k}-\mu_{M+1}\right)^{\alpha_{M}-1} d\mu_{M+1}.$$
(2.72)

By the transformation

$$\mu'_{M+1} = \frac{\mu_{M+1}}{1 - \sum_{k=1}^{M-1} \mu_k},\tag{2.73}$$

the integral of the right hand side can be written as

$$\int_{0}^{1} \left( \left( 1 - \sum_{k=1}^{M-1} \mu_{k} \right) \mu'_{M+1} \right)^{\alpha_{M+1}-1} \left( \left( 1 - \sum_{k=1}^{M-1} \mu_{k} \right) \left( 1 - \mu'_{M+1} \right) \right)^{\alpha_{M}-1} \left( 1 - \sum_{k=1}^{M-1} \mu_{k} \right) d\mu'_{M+1} \\
= \left( 1 - \sum_{k=1}^{M-1} \mu_{k} \right)^{\alpha_{M}+\alpha_{M+1}-1} \int_{0}^{1} \mu'_{M+1}^{\alpha_{M+1}-1} (1 - \mu'_{M+1})^{\alpha_{M}-1} d\mu'_{M+1}. \tag{2.74}$$

By 2.5, the integral of the right hand side can be written as

$$\frac{\Gamma(\alpha_M)\Gamma(\alpha_{M+1})}{\Gamma(\alpha_M + \alpha_{M+1})}. (2.75)$$

Therefore,

$$\int_{0}^{1-\sum_{k=1}^{M-1}\mu_{k}} \prod_{k=1}^{M+1} \mu_{k}^{\alpha_{k}-1} d\mu_{M+1} = \left(\prod_{k=1}^{M-1}\mu_{k}^{\alpha_{k}-1}\right) \left(1-\sum_{k=1}^{M-1}\mu_{k}\right)^{\alpha_{M}+\alpha_{M+1}-1} \frac{\Gamma(\alpha_{M})\Gamma(\alpha_{M+1})}{\Gamma(\alpha_{M}+\alpha_{M+1})}.$$
(2.76)

By the assumption,

$$\int_{\sum_{k=1}^{M} \mu_{k}=1} \left( \prod_{k=1}^{M-1} \mu_{k}^{\alpha_{k}-1} \right) \mu_{M}^{\alpha_{M}+\alpha_{M+1}-1} d\boldsymbol{\mu} = \frac{\left( \prod_{k=1}^{M-1} \Gamma(\alpha_{k}) \right) \Gamma(\alpha_{M}+\alpha_{M+1})}{\Gamma(\sum_{k=1}^{M+1} \alpha_{k})}.$$

Thus, for a vector  $\boldsymbol{\mu}$  in M+1 dimensions,

$$\int_{\sum_{k=1}^{M+1} \mu_k > 0} \prod_{k=1}^{M+1} \mu_k^{\alpha_k - 1} d\boldsymbol{\mu} = \frac{\Gamma(\alpha_M) \Gamma(\alpha_{M+1})}{\Gamma(\alpha_M + \alpha_{M+1})} \frac{(\prod_{k=1}^{M-1} \Gamma(\alpha_k)) \Gamma(\alpha_M + \alpha_{M+1})}{\Gamma(\sum_{k=1}^{M+1} \alpha_k)}.$$

The right hand side can be written as

$$\frac{\prod_{k=1}^{M+1} \Gamma(\alpha_k)}{\Gamma(\sum_{k=1}^{M+1} \alpha_k)}.$$
(2.77)

Hence, the assumption is proved by induction on M.

#### 2.10

Let  $\mu$  be a variable such that

$$p(\boldsymbol{\mu}|\boldsymbol{\alpha}) = \frac{\Gamma(\sum_{k=1}^{K} \alpha_k)}{\prod_{k=1}^{K} \Gamma(\alpha_k)} \prod_{k=1}^{K} \mu_k^{\alpha_k - 1}.$$
 (2.78)

Then

$$E \mu_{j} = \int \mu_{j} p(\boldsymbol{\mu}|\boldsymbol{\alpha}) d\boldsymbol{\mu},$$

$$E \mu_{j}^{2} = \int \mu_{j}^{2} p(\boldsymbol{\mu}|\boldsymbol{\alpha}) d\boldsymbol{\mu},$$

$$E \mu_{j} \mu_{l} = \int \mu_{j} \mu_{l} p(\boldsymbol{\mu}|\boldsymbol{\alpha}) d\boldsymbol{\mu}.$$

$$(2.79)$$

If  $j \neq l$ , then the right hand sides can be written as

$$\frac{\Gamma(\sum_{k=1}^{K} \alpha_k)}{\prod_{k=1}^{K} \Gamma(\alpha_k)} \frac{\frac{\Gamma(\alpha_j+1)}{\Gamma(\alpha_j)} \prod_{k=1}^{K} \Gamma(\alpha_k)}{\Gamma(\sum_{k=1}^{K} \alpha_k + 1)} = \frac{\alpha_j}{\sum_{k=1}^{K} \alpha_k},$$

$$\frac{\Gamma(\sum_{k=1}^{K} \alpha_k)}{\prod_{k=1}^{K} \Gamma(\alpha_k)} \frac{\frac{\Gamma(\alpha_j+2)}{\Gamma(\alpha_j)} \prod_{k=1}^{K} \Gamma(\alpha_k)}{\Gamma(\sum_{k=1}^{K} \alpha_k + 2)} = \frac{\alpha_j(\alpha_j+1)}{\sum_{k=1}^{K} \alpha_k(\sum_{k=1}^{K} \alpha_k + 1)}, \quad (2.80)$$

$$\frac{\Gamma(\sum_{k=1}^{K} \alpha_k)}{\prod_{k=1}^{K} \Gamma(\alpha_k)} \frac{\frac{\Gamma(\alpha_j+1)\Gamma(\alpha_l+1)}{\Gamma(\alpha_j)\Gamma(\alpha_l)} \prod_{k=1}^{K} \Gamma(\alpha_k)}{\Gamma(\sum_{k=1}^{K} \alpha_k + 2)} = \frac{\alpha_j \alpha_l}{\sum_{k=1}^{K} \alpha_k(\sum_{k=1}^{K} \alpha_k + 1)}.$$

Therefore,

$$E \mu_{j} = \frac{\alpha_{j}}{\sum_{k=1}^{K} \alpha_{k}}.$$

$$E \mu_{j}^{2} = \frac{\alpha_{j}(\alpha_{j}+1)}{\sum_{k=1}^{K} \alpha_{k} \left(\sum_{k=1}^{K} \alpha_{k}+1\right)},$$

$$E \mu_{j} \mu_{l} = \frac{\alpha_{j} \alpha_{l}}{\sum_{k=1}^{K} \alpha_{k} \left(\sum_{k=1}^{K} \alpha_{k}+1\right)}.$$

$$(2.81)$$

Since

$$\operatorname{var} \mu_{j} = \operatorname{E} \mu_{j}^{2} - (\operatorname{E} \mu_{j})^{2},$$

$$\operatorname{cov} (\mu_{j}, \mu_{l}) = \operatorname{E} \mu_{j} \mu_{l} - \operatorname{E} \mu_{j} \operatorname{E} \mu_{l},$$
(2.82)

we have

$$\operatorname{var} \mu_{j} = \frac{\alpha_{j} \left(\sum_{k=1}^{K} \alpha_{k} - \alpha_{j}\right)}{\sum_{k=1}^{K} \alpha_{k}\right)^{2} \left(\sum_{k=1}^{K} \alpha_{k} + 1\right)},$$

$$\operatorname{cov} \left(\mu_{j}, \mu_{l}\right) = -\frac{\alpha_{j} \alpha_{l}}{\left(\sum_{k=1}^{K} \alpha_{k}\right)^{2} \left(\sum_{k=1}^{K} \alpha_{k} + 1\right)}.$$
(2.83)

# 2.11

Let  $\mu$  be a variable such that

$$p(\boldsymbol{\mu}|\boldsymbol{\alpha}) = \frac{\Gamma\left(\sum_{k=1}^{K} \alpha_k\right)}{\prod_{k=1}^{K} \Gamma(\alpha_k)} \prod_{k=1}^{K} \mu_k^{\alpha_k - 1}.$$
 (2.84)

Then

$$E \ln \mu_j = \int (\ln \mu_j) p(\boldsymbol{\mu}|\boldsymbol{\alpha}) d\boldsymbol{\mu}. \qquad (2.85)$$

Since

$$\frac{\partial}{\partial \alpha_j} p(\boldsymbol{\mu}|\boldsymbol{\alpha}) = \left(\frac{\Gamma'\left(\sum_{k=1}^K \alpha_k\right)}{\Gamma\left(\sum_{k=1}^K \alpha_k\right)} - \frac{\Gamma'(\alpha_j)}{\Gamma(\alpha_j)} + \ln \mu_j\right) p(\boldsymbol{\mu}|\boldsymbol{\alpha}), \tag{2.86}$$

we have

$$E \ln \mu_j = \frac{\partial}{\partial \alpha_j} \int p(\boldsymbol{\mu}|\boldsymbol{\alpha}) d\boldsymbol{\mu} + \left(\psi(\alpha_j) - \psi\left(\sum_{k=1}^K \alpha_k\right)\right) \int p(\boldsymbol{\mu}|\boldsymbol{\alpha}) d\boldsymbol{\mu}, \quad (2.87)$$

where

$$\psi(a) = \frac{d}{da} \ln \Gamma(a). \tag{2.88}$$

Therefore,

$$E \ln \mu_j = \psi(\alpha_j) - \psi\left(\sum_{k=1}^K \alpha_k\right). \tag{2.89}$$

# 2.12

Let x be a variable such that

$$p(x|a,b) = \frac{1}{b-a},\tag{2.90}$$

where a < b. Then

$$\int_{a}^{b} p(x|a,b)dx = 1. (2.91)$$

Note that

$$E x = \int_{a}^{b} x p(x|a,b) dx,$$

$$E x^{2} = \int_{a}^{b} x^{2} p(x|a,b) dx.$$
(2.92)

The right hand sides can be written as

$$\frac{1}{b-a} \int_{a}^{b} x dx = \frac{1}{2} (a+b),$$

$$\frac{1}{b-a} \int_{a}^{b} x^{2} dx = \frac{1}{3} (a^{2} + ab + b^{2}).$$
(2.93)

Therefore,

$$E x = \frac{1}{2}(a+b),$$

$$E x^{2} = \frac{1}{3}(a^{2} + ab + b^{2}).$$
(2.94)

Since

$$\operatorname{var} x = \operatorname{E} x^2 - (\operatorname{E} x)^2,$$
 (2.95)

we have

$$var x = \frac{1}{12}(b-a)^2. (2.96)$$

#### 2.13

Let  $\mathbf{x}$  be a variable in D dimensions and

$$p(\mathbf{x}) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}),$$
  

$$q(\mathbf{x}) = \mathcal{N}(\mathbf{x}|\mathbf{m}, \mathbf{L}).$$
(2.97)

Then, by the definition,

$$KL(p||q) = -\int \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) \ln \frac{\mathcal{N}(\mathbf{x}|\mathbf{m}, \mathbf{L})}{\mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma})} d\mathbf{x}.$$
 (2.98)

Since

$$\ln \frac{\mathcal{N}(\mathbf{x}|\mathbf{m}, \mathbf{L})}{\mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma})} = \ln \frac{(2\pi)^{-\frac{D}{2}} \left( |\det \mathbf{L}| \right)^{-\frac{1}{2}} \exp \left( -\frac{1}{2} (\mathbf{x} - \mathbf{m})^{\mathsf{T}} \mathbf{L}^{-1} (\mathbf{x} - \mathbf{m}) \right)}{(2\pi)^{-\frac{D}{2}} \left( |\det \boldsymbol{\Sigma}| \right)^{-\frac{1}{2}} \exp \left( -\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) \right)},$$
(2.99)

The right hand side can be written as

$$\frac{1}{2} \ln \left| \frac{\det \mathbf{L}}{\det \mathbf{\Sigma}} \right| \int \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) d\mathbf{x} 
+ \frac{1}{2} \int (\mathbf{x} - \mathbf{m})^{\mathsf{T}} \mathbf{L}^{-1}(\mathbf{x} - \mathbf{m}) \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) d\mathbf{x} 
- \frac{1}{2} \int (\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu}) \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) d\mathbf{x}.$$
(2.100)

Let us look at each term. Since

$$\int \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) d\mathbf{x} = 1, \qquad (2.101)$$

the first term can be written as  $\frac{1}{2} \ln \left| \frac{\det \mathbf{L}}{\det \Sigma} \right|$ . Since

$$(\mathbf{x} - \mathbf{m})^{\mathsf{T}} \mathbf{L}^{-1} (\mathbf{x} - \mathbf{m}) = (\mathbf{x} - \boldsymbol{\mu} + \boldsymbol{\mu} - \mathbf{m})^{\mathsf{T}} \mathbf{L}^{-1} (\mathbf{x} - \boldsymbol{\mu} + \boldsymbol{\mu} - \mathbf{m}), \quad (2.102)$$

the second term can be written as

$$\frac{1}{2} \int (\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \mathbf{L}^{-1} (\mathbf{x} - \boldsymbol{\mu}) \mathcal{N}(\mathbf{x} | \boldsymbol{\mu}, \boldsymbol{\Sigma}) d\mathbf{x} 
+ (\boldsymbol{\mu} - \mathbf{m})^{\mathsf{T}} \mathbf{L}^{-1} \int (\mathbf{x} - \boldsymbol{\mu}) \mathcal{N}(\mathbf{x} | \boldsymbol{\mu}, \boldsymbol{\Sigma}) d\mathbf{x} 
+ \frac{1}{2} (\boldsymbol{\mu} - \mathbf{m})^{\mathsf{T}} \mathbf{L}^{-1} (\boldsymbol{\mu} - \mathbf{m}) \int \mathcal{N}(\mathbf{x} | \boldsymbol{\mu}, \boldsymbol{\Sigma}) d\mathbf{x}.$$
(2.103)

Since

$$\int \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) d\mathbf{x} = 1,$$

$$\int \mathbf{x} \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) d\mathbf{x} = \boldsymbol{\mu},$$

$$\int (\mathbf{x} - \boldsymbol{\mu}) (\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) d\mathbf{x} = \boldsymbol{\Sigma},$$
(2.104)

it can be written as

$$\frac{1}{2}\operatorname{tr}\left(\mathbf{L}^{-1}\mathbf{\Sigma}\right) + \frac{1}{2}(\boldsymbol{\mu} - \mathbf{m})^{\mathsf{T}}\mathbf{L}^{-1}(\boldsymbol{\mu} - \mathbf{m}). \tag{2.105}$$

Since

$$\int (\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) d\mathbf{x} = \boldsymbol{\Sigma},$$
 (2.106)

the third term can be written as

$$-\frac{1}{2}\operatorname{tr}\left(\mathbf{\Sigma}^{-1}\mathbf{\Sigma}\right) = -\frac{D}{2}.\tag{2.107}$$

Therefore,

$$KL(p||q) = \frac{1}{2} \left( \ln \left| \frac{\det \mathbf{L}}{\det \mathbf{\Sigma}} \right| + \operatorname{tr} \left( \mathbf{L}^{-1} \mathbf{\Sigma} \right) + (\boldsymbol{\mu} - \mathbf{m})^{\mathsf{T}} \mathbf{L}^{-1} (\boldsymbol{\mu} - \mathbf{m}) - D \right).$$
(2.108)

#### 2.14

Let  $\mathbf{x}$  be a variable in D dimensions and

$$\begin{split} L(p(\mathbf{x})) &= -\int p(\mathbf{x}) \ln p(\mathbf{x}) d\mathbf{x} + \lambda \left( \int p(\mathbf{x}) d\mathbf{x} - 1 \right) \\ &+ \mathbf{l}^{\mathsf{T}} \left( \int \mathbf{x} p(\mathbf{x}) d\mathbf{x} - \boldsymbol{\mu} \right) + \mathbf{m}^{\mathsf{T}} \left( \int (\mathbf{x} - \boldsymbol{\mu}) (\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} p(\mathbf{x}) d\mathbf{x} - \boldsymbol{\Sigma} \right) \mathbf{m}. \end{split} \tag{2.109}$$

Then

$$\frac{\delta L(p(\mathbf{x}))}{\delta p(\mathbf{x})} = -\ln p(\mathbf{x}) - 1 + \lambda + \mathbf{l}^{\mathsf{T}}\mathbf{x} + \mathbf{m}^{\mathsf{T}}(\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}}\mathbf{m}.$$
(2.110)

Setting the left hand side to zero gives

$$p(\mathbf{x}) = \exp\left(-1 + \lambda + \mathbf{l}^{\mathsf{T}}\mathbf{x} + \mathbf{m}^{\mathsf{T}}(\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}}\mathbf{m}\right), \tag{2.111}$$

so that

$$p(\mathbf{x}) = \exp\left(-1 + \lambda - \mathbf{l}^{\mathsf{T}}\mathbf{M}\mathbf{l} + (\mathbf{x} - \boldsymbol{\mu} - \mathbf{M}\mathbf{l})^{\mathsf{T}}\mathbf{M}^{-1}(\mathbf{x} - \boldsymbol{\mu} - \mathbf{M}\mathbf{l})\right), (2.112)$$

where

$$\mathbf{M} = (\mathbf{m}\mathbf{m}^{\mathsf{T}})^{-1}. \tag{2.113}$$

Substituting it to

$$\int p(\mathbf{x})d\mathbf{x} = 1,$$

$$\int \mathbf{x}p(\mathbf{x})d\mathbf{x} = \boldsymbol{\mu},$$

$$\int (\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}}p(\mathbf{x})d\mathbf{x} = \boldsymbol{\Sigma},$$
(2.114)

and the transformation

$$y = x - \mu - Ml \tag{2.115}$$

gives

$$\exp(-1 + \lambda - \mathbf{l}^{\mathsf{T}}\mathbf{M}\mathbf{l}) \int \exp(-\mathbf{y}^{\mathsf{T}}\mathbf{M}^{-1}\mathbf{y}) d\mathbf{y} = 1,$$

$$\exp(-1 + \lambda - \mathbf{l}^{\mathsf{T}}\mathbf{M}\mathbf{l}) \int (\mathbf{y} + \boldsymbol{\mu} + \mathbf{M}\mathbf{l}) \exp(-\mathbf{y}^{\mathsf{T}}\mathbf{M}^{-1}\mathbf{y}) d\mathbf{y} = \boldsymbol{\mu},$$

$$\exp(-1 + \lambda - \mathbf{l}^{\mathsf{T}}\mathbf{M}\mathbf{l}) \int (\mathbf{y} + \mathbf{M}\mathbf{l}) (\mathbf{y} + \mathbf{M}\mathbf{l})^{\mathsf{T}} \exp(-\mathbf{y}^{\mathsf{T}}\mathbf{M}^{-1}\mathbf{y}) d\mathbf{y} = \boldsymbol{\Sigma}.$$
(2.116)

Since

$$\int \exp(-\mathbf{y}^{\mathsf{T}}\mathbf{y}) d\mathbf{y} = \left(\Gamma\left(\frac{1}{2}\right)\right)^{D},$$

$$\int \mathbf{y} \exp(-\mathbf{y}^{\mathsf{T}}\mathbf{y}) d\mathbf{y} = \mathbf{0},$$

$$\int \mathbf{y} \mathbf{y}^{\mathsf{T}} \exp(-\mathbf{y}^{\mathsf{T}}\mathbf{y}) d\mathbf{y} = \Gamma\left(\frac{3}{2}\right) \left(\Gamma\left(\frac{1}{2}\right)\right)^{D-1} \mathbf{I},$$
(2.117)

they can be written as

$$\begin{split} \exp\left(-1+\lambda-\mathbf{l}^{\intercal}\mathbf{M}\mathbf{l}\right)\left(\Gamma\left(\frac{1}{2}\right)\right)^{D}\left(\det\mathbf{M}\right)^{\frac{1}{2}}&=1,\\ \exp\left(-1+\lambda-\mathbf{l}^{\intercal}\mathbf{M}\mathbf{l}\right)\left(\boldsymbol{\mu}+\mathbf{M}\mathbf{l}\right)\left(\Gamma\left(\frac{1}{2}\right)\right)^{D}\left(\det\mathbf{M}\right)^{\frac{1}{2}}&=\boldsymbol{\mu},\\ \exp\left(-1+\lambda-\mathbf{l}^{\intercal}\mathbf{M}\mathbf{l}\right)\left(\Gamma\left(\frac{3}{2}\right)\left(\Gamma\left(\frac{1}{2}\right)\right)^{D-1}\mathbf{M}+\mathbf{M}\mathbf{l}(\mathbf{M}\mathbf{l})^{\intercal}\left(\Gamma\left(\frac{1}{2}\right)\right)^{D}\right)\left(\det\mathbf{M}\right)^{\frac{1}{2}}&=\boldsymbol{\Sigma}. \end{split}$$

Therefore,

$$\lambda = 1 - \frac{D}{2} \ln \pi - \frac{1}{2} \ln(\det \mathbf{M}),$$

$$\mathbf{l} = \mathbf{0},$$

$$\mathbf{M} = 2\Sigma.$$
(2.119)

Thus,

$$p(\mathbf{x}) = (2\pi)^{-\frac{D}{2}} (\det \mathbf{\Sigma})^{-\frac{1}{2}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right). \tag{2.120}$$

#### 2.15

Let  $\mathbf{x}$  be a variable in D dimensions such that

$$p(\mathbf{x}) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}). \tag{2.121}$$

Then, by the definition,

$$H(\mathbf{x}) = -\int \mathcal{N}(\mathbf{x}|\mu, \mathbf{\Sigma}) \ln \mathcal{N}(\mathbf{x}|\mu, \mathbf{\Sigma}) d\mathbf{x}.$$
 (2.122)

The right hand side can be written as

$$-\int \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) \left( -\frac{D}{2} \ln(2\pi) - \frac{1}{2} \ln|\det \boldsymbol{\Sigma}| - \frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) \right) d\mathbf{x}$$

$$= \left( \frac{D}{2} \ln(2\pi) + \frac{1}{2} \ln|\det \boldsymbol{\Sigma}| \right) \int \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) d\mathbf{x}$$

$$+ \frac{1}{2} \int (\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) d\mathbf{x}.$$
(2.123)

Since

$$\int \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) d\mathbf{x} = 1,$$

$$\int (\mathbf{x} - \boldsymbol{\mu}) (\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) d\mathbf{x} = \boldsymbol{\Sigma},$$
(2.124)

the first and second term of the right hand side can be written as

$$\frac{D}{2}\ln(2\pi) + \frac{1}{2}\ln|\det\mathbf{\Sigma}| \tag{2.125}$$

and

$$\frac{1}{2}\operatorname{tr}\left(\mathbf{\Sigma}^{-1}\mathbf{\Sigma}\right) = \frac{D}{2}.\tag{2.126}$$

Therefore,

$$H(\mathbf{x}) = \frac{D}{2} (1 + \ln(2\pi)) + \frac{1}{2} \ln|\det \Sigma|.$$
 (2.127)

#### 2.16

Let x be a variable such that

$$x = x_1 + x_2, (2.128)$$

where

$$p(x_1) = \mathcal{N}\left(x_1|\mu_1, \tau_1^{-1}\right), p(x_2) = \mathcal{N}\left(x_2|\mu_2, \tau_2^{-1}\right).$$
 (2.129)

By marginalisation,

$$p(x) = \int_{-\infty}^{\infty} p(x|x_2)p(x_2)dx_2. \tag{2.130}$$

The right hand side can be written as

$$\int_{-\infty}^{\infty} \mathcal{N}\left(x|\mu_1 + x_2, \tau_1^{-1}\right) \mathcal{N}\left(x_2|\mu_2, \tau_2^{-1}\right) dx_2$$

$$= \int_{-\infty}^{\infty} \left(\frac{\tau_1}{2\pi}\right)^{\frac{1}{2}} \exp\left(-\frac{\tau_1}{2}(x - \mu_1 - x_2)^2\right) \left(\frac{\tau_2}{2\pi}\right)^{\frac{1}{2}} \exp\left(-\frac{\tau_2}{2}(x_2 - \mu_2)^2\right) dx_2.$$
(2.131)

The logarithm of the integrand except the terms independent of x and z is given by

$$-\frac{\tau_1 + \tau_2}{2} \left( x_2 - \frac{\tau_1(x - \mu_1) + \tau_2 \mu_2}{\tau_1 + \tau_2} \right)^2 - \frac{\tau_1}{2} (x - \mu_1)^2 - \frac{\tau_2}{2} \mu_2^2$$

$$+ \frac{\tau_1 + \tau_2}{2} \left( \frac{\tau_1(x - \mu_1) + \tau_2 \mu_2}{\tau_1 + \tau_2} \right)^2$$

$$= -\frac{\tau_1 + \tau_2}{2} \left( x_2 - \frac{\tau_1(x - \mu_1) + \tau_2 \mu_2}{\tau_1 + \tau_2} \right)^2 - \frac{\tau_1 \tau_2}{2(\tau_1 + \tau_2)} (x - \mu_1 - \mu_2)^2.$$
(2.132)

Therefore,

$$p(x) = \mathcal{N}\left(x|\mu_1 + \mu_2, \tau_1^{-1} + \tau_2^{-1}\right). \tag{2.133}$$

Thus, by 1.35,

$$H(x) = \frac{1}{2} \left( 1 + \ln(2\pi) + \ln\left(\tau_1^{-1} + \tau_2^{-1}\right) \right). \tag{2.134}$$

#### 2.17

Let  $\Sigma$  be a matrix and

$$\mathbf{S} = \frac{1}{2} \left( \mathbf{\Sigma}^{-1} + \left( \mathbf{\Sigma}^{-1} \right)^{\mathsf{T}} \right),$$

$$\mathbf{A} = \frac{1}{2} \left( \mathbf{\Sigma}^{-1} - \left( \mathbf{\Sigma}^{-1} \right)^{\mathsf{T}} \right).$$
(2.135)

Then

$$\mathbf{\Sigma}^{-1} = \mathbf{S} + \mathbf{A}.\tag{2.136}$$

Therefore,

$$(\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) = (\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \mathbf{S} (\mathbf{x} - \boldsymbol{\mu}) + (\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \mathbf{A} (\mathbf{x} - \boldsymbol{\mu}).$$
 (2.137)

The second term of the right hand side can be written as

$$\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) - \frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} (\boldsymbol{\Sigma}^{-1})^{\mathsf{T}} (\mathbf{x} - \boldsymbol{\mu}). \tag{2.138}$$

The second term of the right hand side can be written as

$$-\frac{1}{2} \left( \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) \right)^{\mathsf{T}} (\mathbf{x} - \boldsymbol{\mu}) = -\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}). \tag{2.139}$$

Thus,

$$(\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \mathbf{A} (\mathbf{x} - \boldsymbol{\mu}) = 0. \tag{2.140}$$

Hence

$$(\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) = (\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \mathbf{S} (\mathbf{x} - \boldsymbol{\mu}). \tag{2.141}$$

# 2.18

Let  $\Sigma$  be a  $D \times D$  real symmetric matrix such that

$$\Sigma \mathbf{u}_i = \lambda_i \mathbf{u}_i, \tag{2.142}$$

where  $i = 1, \dots, D$  and  $\mathbf{u}_i$  are unit vectors. Taking the inner product with  $\overline{\mathbf{u}_i}$  on both sides gives

$$\overline{\mathbf{u}_i}^{\mathsf{T}} \mathbf{\Sigma} \mathbf{u}_i = \lambda_i. \tag{2.143}$$

Since  $\Sigma$  is real and symmetric, the left hand side can be written as

$$\overline{\mathbf{u}_i}^{\mathsf{T}} \overline{\mathbf{\Sigma}}^{\mathsf{T}} \mathbf{u}_i = \left( \overline{\mathbf{\Sigma}} \overline{\mathbf{u}}_i \right)^{\mathsf{T}} \mathbf{u}_i. \tag{2.144}$$

The right hand side can be writtet as

$$\overline{\lambda}_i \overline{\mathbf{u}}_i^{\mathsf{T}} \mathbf{u}_i = \overline{\lambda}_i. \tag{2.145}$$

Therefore,

$$\lambda_i = \overline{\lambda}_i. \tag{2.146}$$

Additionally, for  $i \neq j$ , taking the inner product with  $\mathbf{u}_j$  on n both sides of the original equation gives

$$\mathbf{u}_{j}^{\mathsf{T}} \mathbf{\Sigma} \mathbf{u}_{i} = \lambda_{i} \mathbf{u}_{j}^{\mathsf{T}} \mathbf{u}_{i}. \tag{2.147}$$

Since  $\Sigma$  is symmetric, the left hand side can be written as

$$\mathbf{u}_j^{\mathsf{T}} \mathbf{\Sigma}^{\mathsf{T}} \mathbf{u}_i = (\mathbf{\Sigma} \mathbf{u}_j)^{\mathsf{T}} \mathbf{u}_i. \tag{2.148}$$

The right hand side can be written as  $\lambda_j \mathbf{u}_j^{\mathsf{T}} \mathbf{u}_i$ . Therefore,

$$\lambda_i \mathbf{u}_j^{\mathsf{T}} \mathbf{u}_i = \lambda_j \mathbf{u}_j^{\mathsf{T}} \mathbf{u}_i. \tag{2.149}$$

Thus, if  $\lambda_i \neq \lambda_j$ , then

$$\mathbf{u}_i^{\mathsf{T}} \mathbf{u}_i = 0. \tag{2.150}$$

#### 2.19

Let  $\Sigma$  be a  $D \times D$  real symmetric matrix such that

$$\Sigma \mathbf{u}_i = \lambda_i \mathbf{u}_i, \tag{2.151}$$

where  $i = 1, \dots, D$  and  $\mathbf{u}_i$  are unit vectors. Let

$$\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_D), 
\mathbf{U} = [\mathbf{u}_1 \dots \mathbf{u}_D].$$
(2.152)

Then

$$\Sigma \mathbf{U} = \mathbf{U} \mathbf{\Lambda}. \tag{2.153}$$

By 2.18,

$$\mathbf{U}^{\mathsf{T}}\mathbf{U} = \mathbf{I}.\tag{2.154}$$

Therefore,

$$\Sigma = \mathbf{U}\Lambda\mathbf{U}^{\mathsf{T}},$$
  

$$\Sigma^{-1} = \mathbf{U}\Lambda^{-1}\mathbf{U}^{\mathsf{T}},$$
(2.155)

Thus,

$$\Sigma = \sum_{i=1}^{D} \lambda_i \mathbf{u}_i \mathbf{u}_i^{\mathsf{T}},$$

$$\Sigma^{-1} = \sum_{i=1}^{D} \frac{1}{\lambda_i} \mathbf{u}_i \mathbf{u}_i^{\mathsf{T}}.$$
(2.156)

# 2.20

Let  $\Sigma$  be a  $D \times D$  real symmetric matrix such that

$$\Sigma \mathbf{u}_i = \lambda_i \mathbf{u}_i, \tag{2.157}$$

where  $i = 1, \dots, D$  and  $\mathbf{u}_i$  are unit vectors. Let

$$\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_D), 
\mathbf{U} = [\mathbf{u}_1 \dots \mathbf{u}_D].$$
(2.158)

By 2.19,

$$\mathbf{a}^{\mathsf{T}} \mathbf{\Sigma} \mathbf{a} = \mathbf{b}^{\mathsf{T}} \mathbf{\Lambda} \mathbf{b},\tag{2.159}$$

where

$$\mathbf{b} = \mathbf{U}^{\mathsf{T}} \mathbf{a}.\tag{2.160}$$

The right hand side can be written as  $\sum_{i=1}^{D} \lambda_i b_i^2$ . Therefore, the necessary and sufficient condition for

$$\mathbf{a}^{\mathsf{T}} \mathbf{\Sigma} \mathbf{a} > 0 \tag{2.161}$$

for any real vector **a** is

$$\lambda_i > 0. \tag{2.162}$$

# 2.21

Let  $\Sigma$  be a  $D \times D$  real symmetric matrix. Then the number of independent parameters is  $\frac{D(D+1)}{2}$ .

# 2.22

Let  $\Sigma$  be a  $D \times D$  symmetric matrix and

$$\Sigma \Lambda = I. \tag{2.163}$$

Taking the transpose of the both sides gives

$$\mathbf{\Lambda}^{\mathsf{T}} \mathbf{\Sigma} = \mathbf{I}.\tag{2.164}$$

Therefore,

$$\mathbf{\Lambda}^{\mathsf{T}} = \mathbf{\Lambda}.\tag{2.165}$$

# 2.23

Let  $\Sigma$  be a  $D \times D$  real symmetric matrix such that

$$\Sigma \mathbf{u}_i = \lambda_i \mathbf{u}_i, \tag{2.166}$$

where  $i = 1, \dots, D$  and  $\mathbf{u}_i$  are unit vectors. Let

$$\mathbf{\Lambda}' = \operatorname{diag}\left(\lambda_1^{-\frac{1}{2}}, \cdots, \lambda_D^{-\frac{1}{2}}\right), 
\mathbf{U} = [\mathbf{u}_1 \cdots \mathbf{u}_D].$$
(2.167)

By 2.19,

$$\int_{(\mathbf{x}-\boldsymbol{\mu})^{\mathsf{T}} \mathbf{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu}) = \Delta} d\mathbf{x} = \int_{(\mathbf{x}-\boldsymbol{\mu})^{\mathsf{T}} \mathbf{U} \mathbf{\Lambda}' \mathbf{\Lambda}'^{\mathsf{T}} \mathbf{U}^{\mathsf{T}}(\mathbf{x}-\boldsymbol{\mu}) = \Delta} d\mathbf{x}.$$
 (2.168)

By the transformation

$$\mathbf{y} = \mathbf{\Lambda}^{\prime \mathsf{T}} \mathbf{U}^{\mathsf{T}} (\mathbf{x} - \boldsymbol{\mu}) \tag{2.169}$$

and the property

$$\mathbf{U}^{\mathsf{T}}\mathbf{U} = \mathbf{I},\tag{2.170}$$

the right hand side can be written as

$$\int_{\|\mathbf{y}\|^2 = \Delta} \left| \det \left( \mathbf{U} \mathbf{\Lambda}'^{-1} \right) \right| d\mathbf{y} = \left| \det \mathbf{\Sigma} \right|^{\frac{1}{2}} \int_{\|\mathbf{y}\|^2 = \Delta} d\mathbf{y}. \tag{2.171}$$

Therefore,

$$\int_{(\mathbf{x}-\boldsymbol{\mu})^{\mathsf{T}}\boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})=\Delta} d\mathbf{x} = |\det \boldsymbol{\Sigma}|^{\frac{1}{2}} \Delta^D V_D, \qquad (2.172)$$

where

$$V_D = \int_{\|\mathbf{x}\|=1} d\mathbf{x}.$$
 (2.173)

#### 2.24

Let

$$\begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix}$$

be a partitioned matrix where A is a square matrix and D is an invertible matrix. By an LDU decomposition, we have

$$\begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix} = \begin{bmatrix} \mathbf{I} & \mathbf{B}\mathbf{D}^{-1} \\ \mathbf{O} & \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{A} - \mathbf{B}\mathbf{D}^{-1}\mathbf{C} & \mathbf{O} \\ \mathbf{O} & \mathbf{D} \end{bmatrix} \begin{bmatrix} \mathbf{I} & \mathbf{O} \\ \mathbf{D}^{-1}\mathbf{C} & \mathbf{I} \end{bmatrix}.$$

Therefore,

$$\begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix}^{-1} = \begin{bmatrix} \mathbf{I} & \mathbf{O} \\ -\mathbf{D}^{-1}\mathbf{C} & \mathbf{I} \end{bmatrix} \begin{bmatrix} (\mathbf{A} - \mathbf{B}\mathbf{D}^{-1}\mathbf{C})^{-1} & \mathbf{O} \\ \mathbf{O} & \mathbf{D}^{-1} \end{bmatrix} \begin{bmatrix} \mathbf{I} & -\mathbf{B}\mathbf{D}^{-1} \\ \mathbf{O} & \mathbf{I} \end{bmatrix}.$$

Thus,

$$\begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix}^{-1} = \begin{bmatrix} \left( \mathbf{A} - \mathbf{B} \mathbf{D}^{-1} \mathbf{C} \right)^{-1} & -\mathbf{B} \mathbf{D}^{-1} \left( \mathbf{A} - \mathbf{B} \mathbf{D}^{-1} \mathbf{C} \right)^{-1} \\ -\mathbf{D}^{-1} \mathbf{C} \left( \mathbf{A} - \mathbf{B} \mathbf{D}^{-1} \mathbf{C} \right)^{-1} & \mathbf{D}^{-1} + \mathbf{D}^{-1} \mathbf{C} \left( \mathbf{A} - \mathbf{B} \mathbf{D}^{-1} \mathbf{C} \right)^{-1} \mathbf{B} \mathbf{D}^{-1} \end{bmatrix}.$$

#### 2.25

Let  $\mathbf{x}$  be a variable in D dimensions such that

$$p(\mathbf{x}) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}), \tag{2.174}$$

where

$$\mathbf{x} = egin{bmatrix} \mathbf{x}_a \ \mathbf{x}_b \ \mathbf{x}_c \end{bmatrix}, oldsymbol{\mu} = egin{bmatrix} oldsymbol{\mu}_a \ oldsymbol{\mu}_b \ oldsymbol{\mu}_c \end{bmatrix}, oldsymbol{\Sigma} = egin{bmatrix} oldsymbol{\Sigma}_{aa} & oldsymbol{\Sigma}_{ab} & oldsymbol{\Sigma}_{ac} \ oldsymbol{\Sigma}_{ca} & oldsymbol{\Sigma}_{cb} & oldsymbol{\Sigma}_{cc} \end{bmatrix}.$$

Let

$$\Lambda = \Sigma^{-1},\tag{2.175}$$

where

$$oldsymbol{\Lambda} = egin{bmatrix} oldsymbol{\Lambda}_{aa} & oldsymbol{\Lambda}_{ab} & oldsymbol{\Lambda}_{ac} \ oldsymbol{\Lambda}_{ba} & oldsymbol{\Lambda}_{bb} & oldsymbol{\Lambda}_{bc} \ oldsymbol{\Lambda}_{ca} & oldsymbol{\Lambda}_{cb} & oldsymbol{\Lambda}_{cc} \end{bmatrix}.$$

Then

$$-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathsf{T}}\boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})$$

$$=-\frac{1}{2}(\mathbf{x}_{a}-\boldsymbol{\mu}_{a})^{\mathsf{T}}\boldsymbol{\Lambda}_{aa}(\mathbf{x}_{a}-\boldsymbol{\mu}_{a})-\frac{1}{2}(\mathbf{x}_{a}-\boldsymbol{\mu}_{a})^{\mathsf{T}}\boldsymbol{\Lambda}_{ab}(\mathbf{x}_{b}-\boldsymbol{\mu}_{b})-\frac{1}{2}(\mathbf{x}_{a}-\boldsymbol{\mu}_{a})^{\mathsf{T}}\boldsymbol{\Lambda}_{ac}(\mathbf{x}_{c}-\boldsymbol{\mu}_{c})$$

$$-\frac{1}{2}(\mathbf{x}_{b}-\boldsymbol{\mu}_{b})^{\mathsf{T}}\boldsymbol{\Lambda}_{ba}(\mathbf{x}_{a}-\boldsymbol{\mu}_{a})-\frac{1}{2}(\mathbf{x}_{b}-\boldsymbol{\mu}_{b})^{\mathsf{T}}\boldsymbol{\Lambda}_{bb}(\mathbf{x}_{b}-\boldsymbol{\mu}_{b})-\frac{1}{2}(\mathbf{x}_{b}-\boldsymbol{\mu}_{b})^{\mathsf{T}}\boldsymbol{\Lambda}_{bc}(\mathbf{x}_{c}-\boldsymbol{\mu}_{c})$$

$$-\frac{1}{2}(\mathbf{x}_{c}-\boldsymbol{\mu}_{c})^{\mathsf{T}}\boldsymbol{\Lambda}_{ca}(\mathbf{x}_{a}-\boldsymbol{\mu}_{a})-\frac{1}{2}(\mathbf{x}_{c}-\boldsymbol{\mu}_{c})^{\mathsf{T}}\boldsymbol{\Lambda}_{cb}(\mathbf{x}_{b}-\boldsymbol{\mu}_{b})-\frac{1}{2}(\mathbf{x}_{c}-\boldsymbol{\mu}_{c})^{\mathsf{T}}\boldsymbol{\Lambda}_{cc}(\mathbf{x}_{c}-\boldsymbol{\mu}_{c}).$$
(2.176)

Excluding the terms independent of  $\mathbf{x}_a$ , the right hand side can be written as

$$-\frac{1}{2}(\mathbf{x}_a - \boldsymbol{\mu}_{a|b,c})^{\mathsf{T}} \boldsymbol{\Sigma}_{a|b,c}^{-1}(\mathbf{x}_a - \boldsymbol{\mu}_{a|b,c}), \tag{2.177}$$

where

$$\mu_{a|b,c} = \mu_a - \Lambda_{aa}^{-1} \Lambda_{ab} \left( \mathbf{x}_b - \mu_b \right) - \Lambda_{aa}^{-1} \Lambda_{ac} \left( \mathbf{x}_c - \mu_c \right),$$

$$\Sigma_{a|b,c} = \Lambda_{aa}^{-1}.$$
(2.178)

Therefore,

$$p(\mathbf{x}_a|\mathbf{x}_b, \mathbf{x}_c) = \mathcal{N}(\mathbf{x}_a|\boldsymbol{\mu}_{a|b,c}, \boldsymbol{\Sigma}_{a|b,c}). \tag{2.179}$$

Multiplying both sides by  $p(\mathbf{x}_c)$  and integrating both sides with respect to  $\mathbf{x}_c$  gives

$$p(\mathbf{x}_a|\mathbf{x}_b) = \int \mathcal{N}(\mathbf{x}_a|\boldsymbol{\mu}_{a|b,c}, \boldsymbol{\Sigma}_{a|b,c}) p(\mathbf{x}_c) d\mathbf{x}_c.$$
 (2.180)

Thus,

$$p(\mathbf{x}_a|\mathbf{x}_b) = \mathcal{N}(\mathbf{x}_a|\boldsymbol{\mu}_{a|b}, \boldsymbol{\Sigma}_{a|b}), \qquad (2.181)$$

where

$$\mu_{a|b} = \mu_a - \Lambda_{aa}^{-1} \Lambda_{ab} \left( \mathbf{x}_b - \mu_b \right) + \Lambda_{aa}^{-1} \Lambda_{ac} \mu_c,$$
  

$$\Sigma_{a|b} = \Lambda_{aa}^{-1}.$$
(2.182)

#### 2.26

We have

$$(\mathbf{A}^{-1} - \mathbf{A}^{-1}\mathbf{B} (\mathbf{C}^{-1} + \mathbf{D}\mathbf{A}^{-1}\mathbf{B})^{-1}\mathbf{D}\mathbf{A}^{-1}) (\mathbf{A} + \mathbf{B}\mathbf{C}\mathbf{D})$$

$$= \mathbf{I} - \mathbf{A}^{-1}\mathbf{B} (\mathbf{C}^{-1} + \mathbf{D}\mathbf{A}^{-1}\mathbf{B})^{-1}\mathbf{D} + \mathbf{A}^{-1}\mathbf{B}\mathbf{C}\mathbf{D}$$

$$- \mathbf{A}^{-1}\mathbf{B} (\mathbf{C}^{-1} + \mathbf{D}\mathbf{A}^{-1}\mathbf{B})^{-1}\mathbf{D}\mathbf{A}^{-1}\mathbf{B}\mathbf{C}\mathbf{D}.$$
(2.183)

The right hand side except the first term can be written as

$$\mathbf{A}^{-1}\mathbf{B}\left(\mathbf{C} - \left(\mathbf{C}^{-1} + \mathbf{D}\mathbf{A}^{-1}\mathbf{B}\right)^{-1}\left(\mathbf{I} + \mathbf{D}\mathbf{A}^{-1}\mathbf{B}\mathbf{C}\right)\right)\mathbf{D}$$

$$= \mathbf{A}^{-1}\mathbf{B}\left(\mathbf{C} - \left(\mathbf{C}^{-1} + \mathbf{D}\mathbf{A}^{-1}\mathbf{B}\right)^{-1}\left(\mathbf{C}^{-1} + \mathbf{D}\mathbf{A}^{-1}\mathbf{B}\right)\mathbf{C}\right)\mathbf{D}.$$
(2.184)

The right hand sidde can be written as

$$\mathbf{A}^{-1}\mathbf{B}\left(\mathbf{C} - \mathbf{C}\right)\mathbf{D} = \mathbf{O}.\tag{2.185}$$

Therefore,

$$\left(\mathbf{A}^{-1} - \mathbf{A}^{-1}\mathbf{B}\left(\mathbf{C}^{-1} + \mathbf{D}\mathbf{A}^{-1}\mathbf{B}\right)^{-1}\mathbf{D}\mathbf{A}^{-1}\right)\left(\mathbf{A} + \mathbf{B}\mathbf{C}\mathbf{D}\right) = \mathbf{I}.$$
 (2.186)

Thus,

$$(\mathbf{A} + \mathbf{BCD})^{-1} = \mathbf{A}^{-1} - \mathbf{A}^{-1}\mathbf{B} (\mathbf{C}^{-1} + \mathbf{D}\mathbf{A}^{-1}\mathbf{B})^{-1}\mathbf{D}\mathbf{A}^{-1}.$$
 (2.187)

#### 2.27

Let  $\mathbf{x}$  and  $\mathbf{z}$  be two variables. Then

$$E(\mathbf{x} + \mathbf{z}) = \int \int (\mathbf{x} + \mathbf{z}) p(\mathbf{x}, \mathbf{z}) d\mathbf{x} d\mathbf{z}.$$
 (2.188)

The right hand side can be written as

$$\int \mathbf{x} \left( \int p(\mathbf{x}, \mathbf{z}) d\mathbf{z} \right) d\mathbf{x} + \int \mathbf{z} \left( \int p(\mathbf{x}, \mathbf{z}) d\mathbf{x} \right) d\mathbf{z} = \int \mathbf{x} p(\mathbf{x}) d\mathbf{x} + \int \mathbf{z} p(\mathbf{z}) d\mathbf{z}.$$
(2.189)

The right hand side can be written as  $E \mathbf{x} + E \mathbf{z}$ . Therefore,

$$E(\mathbf{x} + \mathbf{z}) = E\mathbf{x} + E\mathbf{z}. \tag{2.190}$$

Additionally,

$$cov(\mathbf{x} + \mathbf{z}) = \int \int (\mathbf{x} + \mathbf{z} - E(\mathbf{x} + \mathbf{z})) (\mathbf{x} + \mathbf{z} - E(\mathbf{x} + \mathbf{z}))^{\mathsf{T}} p(\mathbf{x}, \mathbf{z}) d\mathbf{x} d\mathbf{z}.$$
(2.191)

The right hand side can be written as

$$\int \int (\mathbf{x} - \mathbf{E} \mathbf{x}) (\mathbf{x} - \mathbf{E} \mathbf{x})^{\mathsf{T}} p(\mathbf{x}, \mathbf{z}) d\mathbf{x} d\mathbf{z} + \int \int (\mathbf{x} - \mathbf{E} \mathbf{x}) (\mathbf{z} - \mathbf{E} \mathbf{z})^{\mathsf{T}} p(\mathbf{x}, \mathbf{z}) d\mathbf{x} d\mathbf{z} 
+ \int \int (\mathbf{z} - \mathbf{E} \mathbf{z}) (\mathbf{x} - \mathbf{E} \mathbf{x})^{\mathsf{T}} p(\mathbf{x}, \mathbf{z}) d\mathbf{x} d\mathbf{z} + \int \int (\mathbf{z} - \mathbf{E} \mathbf{z}) (\mathbf{z} - \mathbf{E} \mathbf{z})^{\mathsf{T}} p(\mathbf{x}, \mathbf{z}) d\mathbf{x} d\mathbf{z}.$$
(2.192)

The first and fourth terms can be written as  $\cos \mathbf{z}$  and  $\cos \mathbf{z}$ . If  $\mathbf{x}$  and  $\mathbf{z}$  are independent, the second and third terms can be written as

$$\int (\mathbf{x} - \mathbf{E} \mathbf{x}) p(\mathbf{x}) d\mathbf{x} \int (\mathbf{z} - \mathbf{E} \mathbf{z})^{\mathsf{T}} p(\mathbf{z}) d\mathbf{z} = \mathbf{O},$$

$$\int (\mathbf{z} - \mathbf{E} \mathbf{z}) p(\mathbf{z}) d\mathbf{z} \int (\mathbf{x} - \mathbf{E} \mathbf{x})^{\mathsf{T}} p(\mathbf{x}) d\mathbf{x} = \mathbf{O}.$$
(2.193)

Therefore,

$$cov(\mathbf{x} + \mathbf{z}) = cov \mathbf{x} + cov \mathbf{z}. \tag{2.194}$$

#### 2.28

Let  $\mathbf{x}$  and  $\mathbf{y}$  be Gaussian variables and

$$\mathbf{z} = \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix},$$

where

$$\mathbf{E}\mathbf{z} = \begin{bmatrix} \boldsymbol{\mu} \\ \mathbf{A}\boldsymbol{\mu} + \mathbf{b} \end{bmatrix}$$

and

$$\operatorname{cov} \mathbf{z} = \begin{bmatrix} \mathbf{\Lambda}^{-1} & \mathbf{\Lambda}^{-1} \mathbf{A}^\mathsf{T} \\ \mathbf{A} \mathbf{\Lambda}^{-1} & \mathbf{L}^{-1} + \mathbf{A} \mathbf{\Lambda}^{-1} \mathbf{A}^\mathsf{T} \end{bmatrix}.$$

Then, by 2.29,

$$(\cos \mathbf{z})^{-1} = \begin{bmatrix} \mathbf{\Lambda} + \mathbf{A}^\intercal \mathbf{L} \mathbf{A} & -\mathbf{A}^\intercal \mathbf{L} \\ -\mathbf{L} \mathbf{A} & \mathbf{L} \end{bmatrix}.$$

Then,  $\ln p(\mathbf{z})$  except the terms independent of  $\mathbf{x}$  and  $\mathbf{y}$  is given by

$$-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} (\boldsymbol{\Lambda} + \mathbf{A}^{\mathsf{T}} \mathbf{L} \mathbf{A}) (\mathbf{x} - \boldsymbol{\mu}) + \frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \mathbf{A}^{\mathsf{T}} \mathbf{L} (\mathbf{y} - \mathbf{A} \boldsymbol{\mu} - \mathbf{b})$$

$$+ \frac{1}{2}(\mathbf{y} - \mathbf{A} \boldsymbol{\mu} - \mathbf{b})^{\mathsf{T}} \mathbf{L} \mathbf{A} (\mathbf{x} - \boldsymbol{\mu}) - \frac{1}{2}(\mathbf{y} - \mathbf{A} \boldsymbol{\mu} - \mathbf{b})^{\mathsf{T}} \mathbf{L} (\mathbf{y} - \mathbf{A} \boldsymbol{\mu} - \mathbf{b})$$

$$= -\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} (\boldsymbol{\Lambda} + \mathbf{A}^{\mathsf{T}} \mathbf{L} \mathbf{A}) (\mathbf{x} - \boldsymbol{\mu}) +$$

$$-\frac{1}{2}(\mathbf{y} - \mathbf{A} \boldsymbol{\mu} - \mathbf{b} - \mathbf{A} (\mathbf{x} - \boldsymbol{\mu}))^{\mathsf{T}} \mathbf{L} (\mathbf{y} - \mathbf{A} \boldsymbol{\mu} - \mathbf{b} - \mathbf{A} (\mathbf{x} - \boldsymbol{\mu}))$$

$$-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \mathbf{A}^{\mathsf{T}} \mathbf{L} \mathbf{A} (\mathbf{x} - \boldsymbol{\mu}).$$
(2.195)

The right hand side can be written as

$$-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \boldsymbol{\Lambda} (\mathbf{x} - \boldsymbol{\mu}) - \frac{1}{2} (\mathbf{y} - \mathbf{A}\mathbf{x} - \mathbf{b})^{\mathsf{T}} \mathbf{L} (\mathbf{y} - \mathbf{A}\mathbf{x} - \mathbf{b}). \tag{2.196}$$

Therefore,

$$p(\mathbf{x}) = \mathcal{N}\left(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Lambda}^{-1}\right),$$
  

$$p(\mathbf{y}|\mathbf{x}) = \mathcal{N}\left(\mathbf{y}|\mathbf{A}\mathbf{x} + \mathbf{b}, \mathbf{L}^{-1}\right).$$
(2.197)

#### 2.29

Let

$$\mathbf{R} = egin{bmatrix} \mathbf{\Lambda} + \mathbf{A}^\intercal \mathbf{L} \mathbf{A} & -\mathbf{A}^\intercal \mathbf{L} \ -\mathbf{L} \mathbf{A} & \mathbf{L} \end{bmatrix}.$$

Then, by 2.24,

$$\mathbf{R}^{-1} = \begin{bmatrix} \mathbf{\Lambda}^{-1} & \mathbf{\Lambda}^{-1} \mathbf{A}^{\mathsf{T}} \\ \mathbf{A} \mathbf{\Lambda}^{-1} & \mathbf{L}^{-1} + \mathbf{A} \mathbf{\Lambda}^{-1} \mathbf{A}^{\mathsf{T}} \end{bmatrix}.$$

#### 2.30

Let

$$\mathbf{R}^{-1} = \begin{bmatrix} \mathbf{\Lambda}^{-1} & \mathbf{\Lambda}^{-1} \mathbf{A}^{\mathsf{T}} \\ \mathbf{A}\mathbf{\Lambda}^{-1} & \mathbf{L}^{-1} + \mathbf{A}\mathbf{\Lambda}^{-1} \mathbf{A}^{\mathsf{T}} \end{bmatrix}.$$

Then

$$\mathbf{R}^{-1} \begin{bmatrix} \mathbf{\Lambda} \boldsymbol{\mu} - \mathbf{A}^\intercal \mathbf{L} \mathbf{b} \\ \mathbf{L} \mathbf{b} \end{bmatrix} = \begin{bmatrix} \boldsymbol{\mu} \\ \mathbf{A} \boldsymbol{\mu} + \mathbf{b} \end{bmatrix}.$$

# 2.31

Let  $\mathbf{y}$  be a variable such that

$$\mathbf{y} = \mathbf{x} + \mathbf{z},\tag{2.198}$$

where

$$p(\mathbf{x}) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_{\mathbf{x}}, \boldsymbol{\Sigma}_{\mathbf{x}}),$$
  

$$p(\mathbf{z}) = \mathcal{N}(\mathbf{z}|\boldsymbol{\mu}_{\mathbf{z}}, \boldsymbol{\Sigma}_{\mathbf{z}}).$$
(2.199)

By marginalisation,

$$p(\mathbf{y}) = \int p(\mathbf{y}|\mathbf{x})p(\mathbf{x})d\mathbf{x}.$$
 (2.200)

The right hand side can be written as

$$\int \mathcal{N}(\mathbf{y}|\mathbf{x} + \boldsymbol{\mu}_{\mathbf{z}}, \boldsymbol{\Sigma}_{\mathbf{z}}) \,\mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_{\mathbf{x}}, \boldsymbol{\Sigma}_{\mathbf{x}}) \, d\mathbf{x}. \tag{2.201}$$

The logarithm of the integrand except the terms independent of  $\mathbf{x}$  and  $\mathbf{y}$  is given by

$$-\frac{1}{2}(\mathbf{y} - \mathbf{x} - \boldsymbol{\mu}_{\mathbf{z}})^{\mathsf{T}} \boldsymbol{\Sigma}_{\mathbf{z}}^{-1} (\mathbf{y} - \mathbf{x} - \boldsymbol{\mu}_{\mathbf{z}}) - \frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_{\mathbf{x}})^{\mathsf{T}} \boldsymbol{\Sigma}_{\mathbf{x}}^{-1} (\mathbf{x} - \boldsymbol{\mu}_{\mathbf{x}}). \quad (2.202)$$

The first and second order terms can be written as

$$-\mathbf{x}^{\mathsf{T}} \left( \mathbf{\Sigma}_{\mathbf{z}}^{-1} \boldsymbol{\mu}_{\mathbf{z}} - \mathbf{\Sigma}_{\mathbf{x}}^{-1} \boldsymbol{\mu}_{\mathbf{x}} \right) + \mathbf{y}^{\mathsf{T}} \mathbf{\Sigma}_{\mathbf{z}}^{-1} \boldsymbol{\mu}_{\mathbf{z}} = \mathbf{u}^{\mathsf{T}} \mathbf{v}$$
 (2.203)

and

$$-\frac{1}{2}\mathbf{x}^{\mathsf{T}}\left(\mathbf{\Sigma}_{\mathbf{x}}^{-1} + \mathbf{\Sigma}_{\mathbf{z}}^{-1}\right)\mathbf{x} + \frac{1}{2}\mathbf{x}^{\mathsf{T}}\mathbf{\Sigma}_{\mathbf{z}}^{-1}\mathbf{y} + \frac{1}{2}\mathbf{y}^{\mathsf{T}}\mathbf{\Sigma}_{\mathbf{z}}^{-1}\mathbf{x} - \frac{1}{2}\mathbf{y}^{\mathsf{T}}\mathbf{\Sigma}_{\mathbf{z}}^{-1}\mathbf{y} = -\frac{1}{2}\mathbf{u}^{\mathsf{T}}\mathbf{R}\mathbf{u},$$
(2.204)

respectively, where

$$\mathbf{u} = \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix}, \mathbf{v} = \begin{bmatrix} \boldsymbol{\Sigma}_{\mathbf{x}}^{-1} \boldsymbol{\mu}_{\mathbf{x}} - \boldsymbol{\Sigma}_{\mathbf{z}}^{-1} \boldsymbol{\mu}_{\mathbf{z}} \\ \boldsymbol{\Sigma}_{\mathbf{z}}^{-1} \boldsymbol{\mu}_{\mathbf{z}} \end{bmatrix}, \mathbf{R} = \begin{bmatrix} \boldsymbol{\Sigma}_{\mathbf{x}}^{-1} & -\boldsymbol{\Sigma}_{\mathbf{z}}^{-1} \\ -\boldsymbol{\Sigma}_{\mathbf{z}}^{-1} & \boldsymbol{\Sigma}_{\mathbf{z}}^{-1} \end{bmatrix}.$$

Therefore, the logarithm of the integrand except the terms independent of  $\mathbf{u}$  can be written as

$$-\frac{1}{2} \left( \mathbf{u} - \mathbf{R}^{-1} \mathbf{v} \right)^{\mathsf{T}} \mathbf{R} \left( \mathbf{u} - \mathbf{R}^{-1} \mathbf{v} \right), \qquad (2.205)$$

where

$$\mathbf{R}^{-1} = \begin{bmatrix} \mathbf{\Sigma_x} & \mathbf{\Sigma_x} \\ \mathbf{\Sigma_x} & \mathbf{\Sigma_x} + \mathbf{\Sigma_z} \end{bmatrix}, \mathbf{R}^{-1}\mathbf{v} = \begin{bmatrix} \boldsymbol{\mu_x} \\ \boldsymbol{\mu_x} + \boldsymbol{\mu_z} \end{bmatrix}.$$

by 2.29 and 2.30. Thus,

$$p(\mathbf{y}) = \mathcal{N} \left( \mathbf{y} | \boldsymbol{\mu}_{\mathbf{x}} + \boldsymbol{\mu}_{\mathbf{z}}, \boldsymbol{\Sigma}_{\mathbf{x}} + \boldsymbol{\Sigma}_{\mathbf{z}} \right). \tag{2.206}$$

#### 2.32

Let  $\mathbf{x}$  and  $\mathbf{y}$  be variables such that

$$p(\mathbf{x}) = \mathcal{N}\left(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Lambda}^{-1}\right),$$
  

$$p(\mathbf{y}|\mathbf{x}) = \mathcal{N}\left(\mathbf{y}|\mathbf{A}\mathbf{x} + \mathbf{b}, \mathbf{L}^{-1}\right).$$
(2.207)

By the Bayes' theorem,

$$p(\mathbf{y}|\mathbf{x})p(\mathbf{x}) = p(\mathbf{x}|\mathbf{y})p(\mathbf{y}). \tag{2.208}$$

The logarithm of the left hand side except the terms independent of  $\mathbf{x}$  and  $\mathbf{y}$  is given by

$$-\frac{1}{2}(\mathbf{y} - \mathbf{A}\mathbf{x} - \mathbf{b})^{\mathsf{T}} \mathbf{L}(\mathbf{y} - \mathbf{A}\mathbf{x} - \mathbf{b}) - \frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \boldsymbol{\Lambda}(\mathbf{x} - \boldsymbol{\mu}). \tag{2.209}$$

Since the first term can be written as

$$-\frac{1}{2}(\mathbf{y} - \mathbf{A}(\mathbf{x} - \boldsymbol{\mu}) - \mathbf{A}\boldsymbol{\mu} - \mathbf{b})^{\mathsf{T}} \mathbf{L}(\mathbf{y} - \mathbf{A}(\mathbf{x} - \boldsymbol{\mu}) - \mathbf{A}\boldsymbol{\mu} - \mathbf{b})$$

$$= -\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \mathbf{A}^{\mathsf{T}} \mathbf{L} \mathbf{A}(\mathbf{x} - \boldsymbol{\mu}) + (\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \mathbf{A}^{\mathsf{T}} \mathbf{L}(\mathbf{y} - \mathbf{A}\boldsymbol{\mu} - \mathbf{b})$$

$$-\frac{1}{2}(\mathbf{y} - \mathbf{A}\boldsymbol{\mu} - \mathbf{b})^{\mathsf{T}} \mathbf{L}(\mathbf{y} - \mathbf{A}\boldsymbol{\mu} - \mathbf{b}),$$
(2.210)

the logarithm except the terms independent of  $\mathbf{x}$  and  $\mathbf{y}$  can be written as

$$-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu} - \mathbf{z})^{\mathsf{T}} (\boldsymbol{\Lambda} + \mathbf{A}^{\mathsf{T}} \mathbf{L} \mathbf{A}) (\mathbf{x} - \boldsymbol{\mu} - \mathbf{z}) + \frac{1}{2} \mathbf{z}^{\mathsf{T}} (\mathbf{A}^{\mathsf{T}} \mathbf{L} \mathbf{A} + \boldsymbol{\Lambda}) \mathbf{z}$$

$$-\frac{1}{2} (\mathbf{y} - \mathbf{A} \boldsymbol{\mu} - \mathbf{b})^{\mathsf{T}} \mathbf{L} (\mathbf{y} - \mathbf{A} \boldsymbol{\mu} - \mathbf{b})$$

$$= -\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu} - \mathbf{z})^{\mathsf{T}} (\boldsymbol{\Lambda} + \mathbf{A}^{\mathsf{T}} \mathbf{L} \mathbf{A}) (\mathbf{x} - \boldsymbol{\mu} - \mathbf{z})$$

$$-\frac{1}{2} (\mathbf{y} - \mathbf{A} \boldsymbol{\mu} - \mathbf{b})^{\mathsf{T}} \mathbf{M} (\mathbf{y} - \mathbf{A} \boldsymbol{\mu} - \mathbf{b}),$$

$$(2.211)$$

where

$$\mathbf{z} = (\mathbf{\Lambda} + \mathbf{A}^{\mathsf{T}} \mathbf{L} \mathbf{A})^{-1} \mathbf{A}^{\mathsf{T}} \mathbf{L} (\mathbf{y} - \mathbf{A} \boldsymbol{\mu} - \mathbf{b}),$$

$$\mathbf{M} = \mathbf{L} - \mathbf{L} \mathbf{A} (\mathbf{\Lambda} + \mathbf{A}^{\mathsf{T}} \mathbf{L} \mathbf{A})^{-1} \mathbf{A}^{\mathsf{T}} \mathbf{L}.$$
(2.212)

we have

$$\mu + \mathbf{z} = (\mathbf{\Lambda} + \mathbf{A}^{\mathsf{T}} \mathbf{L} \mathbf{A})^{-1} (\mathbf{A}^{\mathsf{T}} \mathbf{L} (\mathbf{y} - \mathbf{b}) + \mathbf{\Lambda} \mu).$$
 (2.213)

By 2.26,

$$(\mathbf{\Lambda} + \mathbf{A}^{\mathsf{T}} \mathbf{L} \mathbf{A})^{-1} = \mathbf{\Lambda}^{-1} - \mathbf{\Lambda}^{-1} \mathbf{A}^{\mathsf{T}} (\mathbf{L}^{-1} + \mathbf{A} \mathbf{\Lambda}^{-1} \mathbf{A}^{\mathsf{T}})^{-1} \mathbf{A} \mathbf{\Lambda}^{-1}. \tag{2.214}$$

Therefore,

$$\mathbf{M} = \left(\mathbf{L}^{-1} + \mathbf{A}\boldsymbol{\Lambda}^{-1}\mathbf{A}^{\mathsf{T}}\right)^{-1}.\tag{2.215}$$

Thus,

$$p(\mathbf{x}|\mathbf{y}) = \mathcal{N}\left(\mathbf{x}|\left(\mathbf{\Lambda} + \mathbf{A}^{\mathsf{T}}\mathbf{L}\mathbf{A}\right)^{-1}\left(\mathbf{A}^{\mathsf{T}}\mathbf{L}(\mathbf{y} - \mathbf{b}) + \mathbf{\Lambda}\boldsymbol{\mu}\right), \left(\mathbf{\Lambda} + \mathbf{A}^{\mathsf{T}}\mathbf{L}\mathbf{A}\right)^{-1}\right),$$

$$p(\mathbf{y}) = \mathcal{N}\left(\mathbf{y}|\mathbf{A}\boldsymbol{\mu} + \mathbf{b}, \mathbf{L}^{-1} + \mathbf{A}\mathbf{\Lambda}^{-1}\mathbf{A}^{\mathsf{T}}\right).$$
(2.216)

#### 2.33

Refer to 2.32.

#### 2.34

Let X be a set of N variables such that

$$\ln p\left(\mathbf{X}|\boldsymbol{\mu},\boldsymbol{\Sigma}\right) = -\frac{ND}{2}\ln(2\pi) - \frac{N}{2}\ln(\det\boldsymbol{\Sigma}) - \frac{1}{2}\sum_{n=1}^{N}(\mathbf{x}_{n}-\boldsymbol{\mu})^{\mathsf{T}}\boldsymbol{\Sigma}^{-1}(\mathbf{x}_{n}-\boldsymbol{\mu}).$$
(2.217)

To maximise it with respect to  $\mu$  and  $\Sigma$ , setting the partial derivatives to zero gives

$$\mathbf{0} = \sum_{n=1}^{N} \left( \mathbf{\Sigma}^{-1} + \left( \mathbf{\Sigma}^{-1} \right)^{\mathsf{T}} \right) (\mathbf{x}_{n} - \boldsymbol{\mu}),$$

$$\mathbf{O} = -\frac{N}{2} \left( \mathbf{\Sigma}^{-1} \right)^{\mathsf{T}} + \frac{1}{2} \left( \mathbf{\Sigma}^{-1} \right)^{2} \sum_{n=1}^{N} (\mathbf{x}_{n} - \boldsymbol{\mu}) (\mathbf{x}_{n} - \boldsymbol{\mu})^{\mathsf{T}}.$$

$$(2.218)$$

Therefore,

$$\boldsymbol{\mu}_{\mathrm{ML}} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_{n},$$

$$\boldsymbol{\Sigma}_{\mathrm{ML}} = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{x}_{n} - \boldsymbol{\mu}_{\mathrm{ML}}) (\mathbf{x}_{n} - \boldsymbol{\mu}_{\mathrm{ML}})^{\mathsf{T}}.$$
(2.219)

#### 2.35

Let  $\mathbf{x}$  be a variable such that

$$p(\mathbf{x}) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}). \tag{2.220}$$

Then

$$\mathbf{E} \mathbf{x} \mathbf{x}^{\mathsf{T}} = \int \mathbf{x} \mathbf{x}^{\mathsf{T}} \mathcal{N} \left( \mathbf{x} | \boldsymbol{\mu}, \boldsymbol{\Sigma} \right) d\mathbf{x}. \tag{2.221}$$

The right hand side can be written as

$$\int (\mathbf{x} - \boldsymbol{\mu} + \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu} + \boldsymbol{\mu})^{\mathsf{T}} \mathcal{N} (\mathbf{x} | \boldsymbol{\mu}, \boldsymbol{\Sigma}) d\mathbf{x}$$

$$= \int (\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \mathcal{N} (\mathbf{x} | \boldsymbol{\mu}, \boldsymbol{\Sigma}) d\mathbf{x} + \boldsymbol{\mu} \int (\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \mathcal{N} (\mathbf{x} | \boldsymbol{\mu}, \boldsymbol{\Sigma}) d\mathbf{x} \quad (2.222)$$

$$+ \left( \int (\mathbf{x} - \boldsymbol{\mu}) \mathcal{N} (\mathbf{x} | \boldsymbol{\mu}, \boldsymbol{\Sigma}) d\mathbf{x} \right) \boldsymbol{\mu}^{\mathsf{T}} + \boldsymbol{\mu} \boldsymbol{\mu}^{\mathsf{T}} \int \mathcal{N} (\mathbf{x} | \boldsymbol{\mu}, \boldsymbol{\Sigma}) d\mathbf{x}.$$

Since

$$\int \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) d\mathbf{x} = 1,$$

$$\int \mathbf{x} \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) d\mathbf{x} = \boldsymbol{\mu},$$

$$\int (\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) d\mathbf{x} = \boldsymbol{\Sigma},$$
(2.223)

the right hand side can be written as  $\Sigma + \mu \mu^{\dagger}$ . Therefore,

$$\mathbf{E} \mathbf{x} \mathbf{x}^{\mathsf{T}} = \mathbf{\Sigma} + \boldsymbol{\mu} \boldsymbol{\mu}^{\mathsf{T}}. \tag{2.224}$$

Additionally, let  $\mathbf{x}_n$  and  $\mathbf{x}_m$  be variables such that

$$p(\mathbf{x}_n) = \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}, \boldsymbol{\Sigma}),$$
  

$$p(\mathbf{x}_m) = \mathcal{N}(\mathbf{x}_m | \boldsymbol{\mu}, \boldsymbol{\Sigma}).$$
(2.225)

If  $n \neq m$ , then

$$\mathbf{E} \, \mathbf{x}_n \mathbf{x}_m^{\mathsf{T}} = \mathbf{E} \, \mathbf{x}_n \, \mathbf{E} \, \mathbf{x}_m^{\mathsf{T}}. \tag{2.226}$$

The right hand side can be written as  $\mu\mu^{\dagger}$ . Therefore,

$$\mathbf{E} \, \mathbf{x}_n \mathbf{x}_m^{\mathsf{T}} = \delta_{nm} \mathbf{\Sigma} + \boldsymbol{\mu} \boldsymbol{\mu}^{\mathsf{T}}. \tag{2.227}$$

Finally, let  $\mathbf{x}_1, \dots, \mathbf{x}_N$  be variables such that

$$p(\mathbf{x}_n) = \mathcal{N}\left(\mathbf{x}_n | \boldsymbol{\mu}, \boldsymbol{\Sigma}\right). \tag{2.228}$$

By 2.34,

$$\boldsymbol{\mu}_{\mathrm{ML}} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_{n},$$

$$\boldsymbol{\Sigma}_{\mathrm{ML}} = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{x}_{n} - \boldsymbol{\mu}_{\mathrm{ML}}) (\mathbf{x}_{n} - \boldsymbol{\mu}_{\mathrm{ML}})^{\mathsf{T}}.$$
(2.229)

Then

$$E \Sigma_{\mathrm{ML}} = \frac{1}{N} \sum_{n=1}^{N} E(\mathbf{x}_{n} - \boldsymbol{\mu}_{\mathrm{ML}}) (\mathbf{x}_{n} - \boldsymbol{\mu}_{\mathrm{ML}})^{\mathsf{T}}.$$
 (2.230)

The right hand side can be written as

$$\frac{1}{N} \sum_{n=1}^{N} \mathbf{E} \mathbf{x}_{n} \mathbf{x}_{n}^{\mathsf{T}} - \frac{1}{N^{2}} \sum_{n=1}^{N} \mathbf{E} \left( \sum_{n=1}^{N} \mathbf{x}_{n} \right) \mathbf{x}_{n}^{\mathsf{T}} - \frac{1}{N^{2}} \sum_{n=1}^{N} \mathbf{E} \mathbf{x}_{n} \left( \sum_{n=1}^{N} \mathbf{x}_{n} \right)^{\mathsf{T}} + \frac{1}{N^{3}} \sum_{n=1}^{N} \mathbf{E} \left( \sum_{n=1}^{N} \mathbf{x}_{n} \right) \left( \sum_{n=1}^{N} \mathbf{x}_{n} \right)^{\mathsf{T}}.$$
(2.231)

The first term can be written as  $\Sigma + \mu \mu^{\dagger}$ . The second and third terms can be written as

$$-\frac{1}{N}\left((\boldsymbol{\Sigma} + \boldsymbol{\mu}\boldsymbol{\mu}^{\mathsf{T}}) + (N-1)\boldsymbol{\mu}\boldsymbol{\mu}^{\mathsf{T}}\right) = -\frac{1}{N}\boldsymbol{\Sigma} - \boldsymbol{\mu}\boldsymbol{\mu}^{\mathsf{T}}.$$
 (2.232)

The fourth term can be written as

$$\frac{1}{N^2} \left( N \left( \mathbf{\Sigma} + \boldsymbol{\mu} \boldsymbol{\mu}^{\mathsf{T}} \right) + N (N - 1) \boldsymbol{\mu} \boldsymbol{\mu}^{\mathsf{T}} \right) = \frac{1}{N} \mathbf{\Sigma} + \boldsymbol{\mu} \boldsymbol{\mu}^{\mathsf{T}}. \tag{2.233}$$

Therefore,

$$E \Sigma_{\rm ML} = \frac{N-1}{N} \Sigma. \tag{2.234}$$

#### 2.36

Let  $x_1, \dots, x_N$  be variables such that

$$p(x_n) = \mathcal{N}\left(x_n|\mu, \sigma^2\right). \tag{2.235}$$

Let us assume that  $\mu$  is known. Then, by 2.34,

$$\sigma_{\rm ML}^{2(N)} = \frac{1}{N} \sum_{n=1}^{N} (x_n - \mu)^2.$$
 (2.236)

The right hand side can be written as

$$\frac{1}{N}(x_N - \mu)^2 + \frac{1}{N} \sum_{n=1}^{N-1} (x_n - \mu)^2 = \frac{1}{N}(x_N - \mu)^2 + \frac{N-1}{N} \sigma_{\text{ML}}^{2(N-1)}. \quad (2.237)$$

Therefore,

$$\sigma_{\rm ML}^{2(N)} = \sigma_{\rm ML}^{2(N-1)} + \frac{1}{N} \left( (x_N - \mu)^2 - \sigma_{\rm ML}^{2(N-1)} \right).$$
 (2.238)

Since

$$\frac{\partial}{\partial \sigma^2} \left( -\ln p \left( x_n | \sigma^2 \right) \right) = \frac{1}{2\sigma^2} - \frac{1}{2 \left( \sigma^2 \right)^2} (x_n - \mu)^2, \tag{2.239}$$

we have

$$\sigma_{\rm ML}^{2(N)} = \sigma_{\rm ML}^{2(N-1)} - \frac{\sigma_{\rm ML}^{2(N-1)}}{N} \frac{\partial}{\partial \sigma_{\rm ML}^{2(N-1)}} \left( -\ln p \left( x_N | \sigma_{\rm ML}^{2(N-1)} \right) \right). \tag{2.240}$$

#### 2.37

Let  $\mathbf{x}_1, \dots, \mathbf{x}_N$  be variables such that

$$p(\mathbf{x}_n) = \mathcal{N}\left(\mathbf{x}_n | \boldsymbol{\mu}, \boldsymbol{\Sigma}\right). \tag{2.241}$$

Let us assume that  $\mu$  is known. Then, by 2.34,

$$\Sigma_{\mathrm{ML}}^{(N)} = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{x}_n - \boldsymbol{\mu}) (\mathbf{x}_n - \boldsymbol{\mu})^{\mathsf{T}}.$$
 (2.242)

The right hand side can be written as

$$\frac{1}{N}(\mathbf{x}_N - \boldsymbol{\mu})(\mathbf{x}_N - \boldsymbol{\mu})^{\mathsf{T}} + \frac{1}{N} \sum_{n=1}^{N-1} (\mathbf{x}_n - \boldsymbol{\mu})(\mathbf{x}_n - \boldsymbol{\mu})^{\mathsf{T}} 
= \frac{1}{N} (\mathbf{x}_N - \boldsymbol{\mu})(\mathbf{x}_N - \boldsymbol{\mu})^{\mathsf{T}} + \frac{N-1}{N} \boldsymbol{\Sigma}_{\mathrm{ML}}^{(N-1)}.$$
(2.243)

Therefore,

$$\Sigma_{\mathrm{ML}}^{(N)} = \Sigma_{\mathrm{ML}}^{(N-1)} + \frac{1}{N} \left( (\mathbf{x}_N - \boldsymbol{\mu}) (\mathbf{x}_N - \boldsymbol{\mu})^{\mathsf{T}} - \Sigma_{\mathrm{ML}}^{(N-1)} \right). \tag{2.244}$$

Since

$$\frac{\partial}{\partial \mathbf{\Sigma}} \left( -\ln p(x_n | \mathbf{\Sigma}) \right) = -\frac{1}{2} \left( \mathbf{\Sigma}^{-1} \right)^{\mathsf{T}} + \frac{1}{2} \left( \mathbf{\Sigma}^{-1} \right)^2 (\mathbf{x}_N - \boldsymbol{\mu}) (\mathbf{x}_N - \boldsymbol{\mu})^{\mathsf{T}}, \quad (2.245)$$

we have

$$\Sigma_{\mathrm{ML}}^{(N)} = \Sigma_{\mathrm{ML}}^{(N-1)} - \frac{\Sigma_{\mathrm{ML}}^{(N-1)}}{N} \frac{\partial}{\partial \Sigma_{\mathrm{ML}}^{(N-1)}} \left( -\ln p \left( \mathbf{x}_N | \Sigma_{\mathrm{ML}}^{(N-1)} \right) \right). \tag{2.246}$$

## 2.38

Let  $x_1, \dots, x_N$  be variables such that

$$p(x_n|\mu) = \mathcal{N}\left(x_n|\mu, \sigma^2\right),$$
  

$$p(\mu) = \mathcal{N}\left(\mu|\mu_0, \sigma_0^2\right).$$
(2.247)

By the Bayes' theorem,

$$p(\mu|\mathbf{x})p(\mathbf{x}) = p(\mathbf{x}|\mu)p(\mu). \tag{2.248}$$

The logarithm of the right hand side except the terms independent of  $\mathbf{x}$  and  $\mu$  can be written as

$$-\frac{1}{2\sigma^2} \sum_{n=1}^{N} (x_n - \mu)^2 - \frac{1}{2\sigma_0^2} (\mu - \mu_0)^2.$$
 (2.249)

The first term can be written as

$$-\frac{1}{2\sigma^2} \sum_{n=1}^{N} (x_n - \mu_{\text{ML}} + \mu_{\text{ML}} - \mu)^2 = -\frac{1}{2\sigma^2} \sum_{n=1}^{N} (x_n - \mu_{\text{ML}})^2 - \frac{N}{2\sigma^2} (\mu_{\text{ML}} - \mu)^2.$$
(2.250)

where

$$\mu_{\rm ML} = \frac{1}{N} \sum_{n=1}^{N} x_n, \tag{2.251}$$

as derived in 2.34. Therefore, the logarithm except the terms independent of  $\mathbf{x}$  and  $\mu$  can be written as

$$-\frac{1}{2\sigma^2} \sum_{n=1}^{N} (x_n - \mu_{\rm ML})^2 - \frac{N}{2\sigma^2} (\mu_{\rm ML} - \mu)^2 - \frac{1}{2\sigma_0^2} (\mu - \mu_0)^2$$

$$= -\frac{1}{2\sigma^2} \sum_{n=1}^{N} (x_n - \mu_{\rm ML})^2 - \frac{1}{2\sigma_N^2} (\mu - \mu_N)^2 + \frac{\mu_N^2}{2\sigma_N^2},$$
(2.252)

where

$$\mu_{N} = \frac{N\sigma_{0}^{2}}{N\sigma_{0}^{2} + \sigma^{2}} \mu_{ML} + \frac{\sigma^{2}}{N\sigma_{0}^{2} + \sigma^{2}} \mu_{0},$$

$$\sigma_{N}^{2} = \frac{\sigma^{2}\sigma_{0}^{2}}{N\sigma_{0}^{2} + \sigma^{2}}.$$
(2.253)

Therefore,

$$p(\mu|\mathbf{x}) = \mathcal{N}\left(\mu \mid \frac{N\sigma_0^2}{N\sigma_0^2 + \sigma^2}\mu_{\rm ML} + \frac{\sigma^2}{N\sigma_0^2 + \sigma^2}\mu_0, \frac{\sigma^2\sigma_0^2}{N\sigma_0^2 + \sigma^2}\right). \tag{2.254}$$

# 2.39 (Incomplete)

Let  $x_1, \dots, x_N$  be variables such that

$$p(x_n|\mu) = \mathcal{N}\left(x_n|\mu, \sigma^2\right),$$
  

$$p(\mu) = \mathcal{N}\left(\mu|\mu_0, \sigma_0^2\right).$$
(2.255)

Then, by 2.38,

$$p(\mu|\mathbf{x}) = \mathcal{N}\left(\mu|\mu_N, \sigma_N^2\right), \qquad (2.256)$$

where

$$\mu_N = \frac{\sigma_0^2}{N\sigma_0^2 + \sigma^2} \sum_{n=1}^N x_n + \frac{\sigma^2}{N\sigma_0^2 + \sigma^2} \mu_0,$$

$$\sigma_N^2 = \frac{\sigma^2 \sigma_0^2}{N\sigma_0^2 + \sigma^2}.$$
(2.257)

Then

$$\mu_{N} = \frac{(N-1)\sigma_{0}^{2} + \sigma^{2}}{N\sigma_{0}^{2} + \sigma^{2}} \mu_{N-1} + \frac{\sigma_{0}^{2}}{N\sigma_{0}^{2} + \sigma^{2}} x_{N} + \frac{\sigma^{2} - \sigma_{0}^{2}}{N\sigma_{0}^{2} + \sigma^{2}} \mu_{0},$$

$$\sigma_{N}^{2} = \frac{(N-1)\sigma_{0}^{2} + \sigma^{2}}{N\sigma_{0}^{2} + \sigma^{2}} \sigma_{N-1}^{2}.$$
(2.258)

Additionally, we have

$$p(\mu|x_1, \dots, x_{N-1}) = \mathcal{N}\left(\mu|\mu_{N-1}, \sigma_{N-1}^2\right),$$
  
 $p(x_N|\mu) = \mathcal{N}\left(x_N|\mu, \sigma^2\right).$  (2.259)

Then,  $\ln p(\mu|x_1,\dots,x_{N-1}) + \ln p(x_N|\mu)$  except the terms independent of  $\mu$  or  $x_N$  can be written as

$$-\frac{1}{2\sigma_{N-1}^{2}}(\mu-\mu_{N-1})^{2} - \frac{1}{2\sigma^{2}}(x_{N}-\mu)^{2}$$

$$= -\frac{1}{2\frac{\sigma_{N-1}^{2}\sigma^{2}}{\sigma_{N-1}^{2}+\sigma^{2}}}\left(\mu - \frac{\sigma^{2}}{\sigma_{N-1}^{2}+\sigma^{2}}\mu_{N-1} - \frac{\sigma_{N-1}^{2}}{\sigma_{N-1}^{2}+\sigma^{2}}x_{N}\right)^{2}$$

$$+\frac{1}{2\frac{\sigma_{N-1}^{2}\sigma^{2}}{\sigma_{N-1}^{2}+\sigma^{2}}}\left(\frac{\sigma^{2}}{\sigma_{N-1}^{2}+\sigma^{2}}\mu_{N-1} + \frac{\sigma_{N-1}^{2}}{\sigma_{N-1}^{2}+\sigma^{2}}x_{N}\right) - \frac{\mu_{N-1}^{2}}{2\sigma_{N-1}^{2}} - \frac{x_{N}^{2}}{2\sigma^{2}}.$$
(2.260)

Therefoere,

$$\mu_{N} = \frac{\sigma^{2}}{\sigma_{N-1}^{2} + \sigma^{2}} \mu_{N-1} + \frac{\sigma_{N-1}^{2}}{\sigma_{N-1}^{2} + \sigma^{2}} x_{N},$$

$$\sigma_{N}^{2} = \frac{\sigma_{N-1}^{2} \sigma^{2}}{\sigma_{N-1}^{2} + \sigma^{2}}.$$
(2.261)

#### 2.40

Let  $\mathbf{x}_1, \dots, \mathbf{x}_N$  be variables such that

$$p(\mathbf{x}_n|\boldsymbol{\mu}) = \mathcal{N}(\mathbf{x}_n|\boldsymbol{\mu}, \boldsymbol{\Sigma}),$$
  

$$p(\boldsymbol{\mu}) = \mathcal{N}(\boldsymbol{\mu}|\boldsymbol{\mu}_0, \boldsymbol{\Sigma}).$$
(2.262)

By the Bayes' theorem,

$$p(\boldsymbol{\mu}|\mathbf{X})p(\mathbf{X}) = p(\mathbf{X}|\boldsymbol{\mu})p(\boldsymbol{\mu}). \tag{2.263}$$

The logarithm of the right hand side excpt the terms independent of X and  $\mu$  can be written as

$$-\frac{1}{2}\sum_{n=1}^{N}(\mathbf{x}_{n}-\boldsymbol{\mu})^{\mathsf{T}}\boldsymbol{\Sigma}^{-1}(\mathbf{x}_{n}-\boldsymbol{\mu})-\frac{1}{2}(\boldsymbol{\mu}-\boldsymbol{\mu}_{0})\boldsymbol{\Sigma}_{0}^{-1}(\boldsymbol{\mu}-\boldsymbol{\mu}_{0})^{\mathsf{T}}.$$
 (2.264)

The first term can be written as

$$-\frac{1}{2}\sum_{n=1}^{N}(\mathbf{x}_{n}-\boldsymbol{\mu}_{\mathrm{ML}}+\boldsymbol{\mu}_{\mathrm{ML}}-\boldsymbol{\mu})^{\mathsf{T}}\boldsymbol{\Sigma}^{-1}(\mathbf{x}_{n}-\boldsymbol{\mu}_{\mathrm{ML}}+\boldsymbol{\mu}_{\mathrm{ML}}-\boldsymbol{\mu})$$

$$=-\frac{1}{2}\sum_{n=1}^{N}(\mathbf{x}_{n}-\boldsymbol{\mu}_{\mathrm{ML}})^{\mathsf{T}}\boldsymbol{\Sigma}^{-1}(\mathbf{x}_{n}-\boldsymbol{\mu}_{\mathrm{ML}})-\frac{N}{2}(\boldsymbol{\mu}_{\mathrm{ML}}-\boldsymbol{\mu})^{\mathsf{T}}\boldsymbol{\Sigma}^{-1}(\boldsymbol{\mu}_{\mathrm{ML}}-\boldsymbol{\mu}).$$
(2.265)

where

$$\boldsymbol{\mu}_{\mathrm{ML}} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_{n}, \qquad (2.266)$$

as derived in 2.34. Therefore, the logarithm except the terms independent of X and  $\mu$  can be written as

$$-\frac{1}{2}\sum_{n=1}^{N}(\mathbf{x}_{n}-\boldsymbol{\mu}_{\mathrm{ML}})^{\mathsf{T}}\boldsymbol{\Sigma}^{-1}(\mathbf{x}_{n}-\boldsymbol{\mu}_{\mathrm{ML}}) - \frac{N}{2}(\boldsymbol{\mu}_{\mathrm{ML}}-\boldsymbol{\mu})^{\mathsf{T}}\boldsymbol{\Sigma}^{-1}(\boldsymbol{\mu}_{\mathrm{ML}}-\boldsymbol{\mu})$$

$$-\frac{1}{2}(\boldsymbol{\mu}-\boldsymbol{\mu}_{0})\boldsymbol{\Sigma}_{0}^{-1}(\boldsymbol{\mu}-\boldsymbol{\mu}_{0})^{\mathsf{T}}$$

$$=-\frac{1}{2}\sum_{n=1}^{N}(\mathbf{x}_{n}-\boldsymbol{\mu}_{\mathrm{ML}})^{\mathsf{T}}\boldsymbol{\Sigma}^{-1}(\mathbf{x}_{n}-\boldsymbol{\mu}_{\mathrm{ML}}) - \frac{1}{2}(\boldsymbol{\mu}-\boldsymbol{\mu}_{N})^{\mathsf{T}}\boldsymbol{\Sigma}_{N}^{-1}(\boldsymbol{\mu}-\boldsymbol{\mu}_{N})$$

$$+\frac{1}{2}\boldsymbol{\mu}_{N}^{\mathsf{T}}\boldsymbol{\Sigma}_{N}^{-1}\boldsymbol{\mu}_{N},$$
(2.267)

where

$$\mu_{N} = (N\Sigma_{0}^{-1} + \Sigma^{-1})^{-1} (N\Sigma_{0}^{-1}\mu_{ML} + \Sigma^{-1}\mu_{0}),$$
  

$$\Sigma_{N} = (N\Sigma_{0}^{-1} + \Sigma^{-1})^{-1}.$$
(2.268)

Therefore,

$$p(\boldsymbol{\mu}|\mathbf{X}) = \mathcal{N}\left(\boldsymbol{\mu} \mid \left(N\boldsymbol{\Sigma}_{0}^{-1} + \boldsymbol{\Sigma}^{-1}\right)^{-1} \left(N\boldsymbol{\Sigma}_{0}^{-1}\boldsymbol{\mu}_{\mathrm{ML}} + \boldsymbol{\Sigma}^{-1}\boldsymbol{\mu}_{0}\right), \left(N\boldsymbol{\Sigma}_{0}^{-1} + \boldsymbol{\Sigma}^{-1}\right)^{-1}\right).$$
(2.269)

## 2.41

By the definition,

$$Gam(\lambda|a,b) = \frac{b^a}{\Gamma(a)} \lambda^{a-1} \exp(-b\lambda). \tag{2.270}$$

Then

$$\int_{0}^{\infty} \operatorname{Gam}(\lambda|a,b) d\lambda = \frac{b^{a}}{\Gamma(a)} \int_{0}^{\infty} \lambda^{a-1} \exp(-b\lambda) d\lambda. \tag{2.271}$$

By the transformation

$$\lambda' = b\lambda, \tag{2.272}$$

the right hand side can be written as

$$\frac{b^a}{\Gamma(a)} \int_0^\infty \left(\frac{\lambda'}{b}\right)^{a-1} \exp(-\lambda') \frac{1}{b} d\lambda' = \frac{1}{\Gamma(a)} \int_0^\infty {\lambda'}^{a-1} \exp(-\lambda') d\lambda'. \quad (2.273)$$

The right hand side can be written as

$$\frac{1}{\Gamma(a)}\Gamma(a) = 1. \tag{2.274}$$

Therefore,

$$\int_{0}^{\infty} \operatorname{Gam}(\lambda|a,b)d\lambda = 1. \tag{2.275}$$

#### 2.42

Let  $\lambda$  be a variable such that

$$p(\lambda) = \operatorname{Gam}(\lambda|a, b). \tag{2.276}$$

By the definition,

$$Gam(\lambda|a,b) = \frac{b^a}{\Gamma(a)} \lambda^{a-1} \exp(-b\lambda). \tag{2.277}$$

Then

$$E \lambda = \frac{b^a}{\Gamma(a)} \int_0^\infty \lambda^a \exp\left(-\frac{\lambda}{b}\right) d\lambda. \tag{2.278}$$

By the transformation

$$\lambda' = b\lambda, \tag{2.279}$$

the right hand side can be written as

$$\frac{b^a}{\Gamma(a)} \int_0^\infty \left(\frac{\lambda'}{b}\right)^a \exp(-\lambda') \frac{1}{b} d\lambda' = \frac{1}{b\Gamma(a)} \int_0^\infty {\lambda'}^a \exp(-\lambda') d\lambda'. \tag{2.280}$$

The right hand side can be written as

$$\frac{1}{b\Gamma(a)}\Gamma(a+1) = \frac{a}{b}.$$
(2.281)

Therefore,

$$E\lambda = \frac{a}{b}. (2.282)$$

Additionally,

$$E \lambda^{2} = \frac{b^{a}}{\Gamma(a)} \int_{0}^{\infty} \lambda^{a+1} \exp\left(-\frac{\lambda}{b}\right) d\lambda. \tag{2.283}$$

By the transformation

$$\lambda' = b\lambda, \tag{2.284}$$

the right hand side can be written as

$$\frac{b^a}{\Gamma(a)} \int_0^\infty \left(\frac{\lambda'}{b}\right)^{a+1} \exp(-\lambda') \frac{1}{b} d\lambda' = \frac{1}{b^2 \Gamma(a)} \int_0^\infty \lambda'^{a+1} \exp(-\lambda') d\lambda'. \quad (2.285)$$

The right hand side can be written as

$$\frac{1}{b^2\Gamma(a)}\Gamma(a+2) = \frac{a(a+1)}{b^2}.$$
 (2.286)

Therefore,

$$E \lambda^2 = \frac{a(a+1)}{b^2}.$$
 (2.287)

By the definition,

$$\operatorname{var} \lambda = \operatorname{E} \lambda^2 - (\operatorname{E} \lambda)^2. \tag{2.288}$$

Therefore,

$$\operatorname{var} \lambda = \frac{a}{b^2}.\tag{2.289}$$

Finally, setting the derivative of  $\operatorname{Gam}(\lambda|a,b)$  with respect to  $\lambda$  to zero gives

$$0 = \frac{b^a}{\Gamma(a)} \left( \frac{a-1}{\lambda} - b \right) \lambda^{a-1} \exp\left( -\frac{\lambda}{b} \right). \tag{2.290}$$

Therefore,

$$\operatorname{mode} \lambda = \frac{a-1}{b}.\tag{2.291}$$

#### 2.43

Let

$$p\left(x|\sigma^2,q\right) = \frac{q}{2\Gamma(\frac{1}{q})} \left(2\sigma^2\right)^{-\frac{1}{q}} \exp\left(-\frac{|x|^q}{2\sigma^2}\right). \tag{2.292}$$

Then

$$\int_{-\infty}^{\infty} p\left(x|\sigma^2, q\right) dx = \frac{q}{\Gamma(\frac{1}{q})} \left(2\sigma^2\right)^{-\frac{1}{q}} \int_{0}^{\infty} \exp\left(-\frac{x^q}{2\sigma^2}\right) dx. \tag{2.293}$$

By the transformation

$$x' = \frac{x^q}{2\sigma^2},\tag{2.294}$$

the right hand side can be written as

$$\frac{q}{\Gamma(\frac{1}{q})} \left(2\sigma^{2}\right)^{-\frac{1}{q}} \int_{0}^{\infty} \exp(-x') \left(2\sigma^{2}\right)^{\frac{1}{q}} \frac{1}{q} x^{\frac{1}{q}-1} dx' 
= \frac{1}{\Gamma(\frac{1}{q})} \int_{0}^{\infty} x^{\frac{1}{q}-1} \exp(-x') dx'.$$
(2.295)

The right hand side can be written as

$$\frac{1}{\Gamma(\frac{1}{q})}\Gamma\left(\frac{1}{q}\right) = 1. \tag{2.296}$$

Therefore,

$$\int_{-\infty}^{\infty} p\left(x|\sigma^2, q\right) dx = 1. \tag{2.297}$$

Additionally,

$$p\left(x|\sigma^2,2\right) = \frac{1}{\Gamma(\frac{1}{2})} \left(2\sigma^2\right)^{-\frac{1}{2}} \exp\left(-\frac{x^2}{2\sigma^2}\right). \tag{2.298}$$

Therefore,

$$p(x|\sigma^2, 2) = \mathcal{N}(x|0, \sigma^2). \tag{2.299}$$

Finally, let  $\mathbf{t} = (t_1, \dots, t_N)^{\mathsf{T}}$  and  $\mathbf{X} = \{x_1, \dots, x_N\}$  such that

$$t_n = y(\mathbf{x}_n, \mathbf{w}) + \epsilon_n, \tag{2.300}$$

where

$$p(\epsilon_n) = p\left(\epsilon_n | \sigma^2, q\right). \tag{2.301}$$

Therefore, the logarithm of  $p(\epsilon_n)$  except the terms independent of **w** and  $\sigma^2$  can be written as

$$-\frac{|\epsilon_n|^q}{2\sigma^2} - \frac{1}{q}\ln\left(2\sigma^2\right). \tag{2.302}$$

Thus, the logarithm of  $p(\mathbf{t}|\mathbf{X}, \mathbf{w}, \sigma^2)$  except the terms independent of  $\mathbf{w}$  and  $\sigma^2$  can be written as

$$-\frac{1}{2\sigma^2} \sum_{n=1}^{N} |y(\mathbf{x}_n, \mathbf{w}) - t_n|^q - \frac{N}{q} \ln\left(2\sigma^2\right). \tag{2.303}$$

#### 2.44

Let  $x_1, \dots, x_N$  be variables such that

$$p(x_n|\mu,\tau) = \mathcal{N}\left(x_n|\mu,\tau^{-1}\right),$$
  

$$p(\mu,\tau) = \mathcal{N}\left(\mu|\mu_0,(\beta\tau)^{-1}\right) \operatorname{Gam}(\tau|a,b).$$
(2.304)

By the Bayes' theorem,

$$p(\mu, \tau | \mathbf{x}) p(\mathbf{x}) = p(\mathbf{x} | \mu, \tau) p(\mu, \tau). \tag{2.305}$$

The logrithm of the right hand side except the terms independent of  $\mathbf{x}$ ,  $\mu$  and  $\tau$  can be written as

$$\frac{N}{2}\ln\tau - \frac{\tau}{2}\sum_{n=1}^{N}(x_n - \mu)^2 + \frac{1}{2}\ln\tau - \frac{\beta\tau}{2}(\mu - \mu_0)^2 + (a - 1)\ln\tau - b\tau$$

$$= \left(a + \frac{N-1}{2}\right)\ln\tau - \frac{N\tau}{2}(\bar{x} - \mu)^2 - \frac{\beta\tau}{2}(\mu - \mu_0)^2 - b\tau - \frac{\tau}{2}\sum_{n=1}^{N}(x_n - \bar{x})^2, \tag{2.306}$$

where

$$\bar{x} = \frac{1}{N} \sum_{n=1}^{N} x_n. \tag{2.307}$$

Since

$$-\frac{N\tau}{2}(\bar{x}-\mu)^2 - \frac{\beta\tau}{2}(\mu-\mu_0)^2 = -\frac{(N+\beta)\tau}{2}\left(\mu - \frac{N\bar{x}+\beta\mu_0}{N+\beta}\right)^2 - \frac{N\beta\tau(\bar{x}-\mu_0)^2}{2(N+\beta)},$$
(2.308)

the right hand side can be written as

$$-\frac{(N+\beta)\tau}{2} \left(\mu - \frac{N\bar{x} + \beta\mu_0}{N+\beta}\right)^2 + \left(a + \frac{N-1}{2}\right) \ln \tau - \left(b + \frac{N\beta(\bar{x} - \mu_0)^2}{2(N+\beta)} + \frac{1}{2} \sum_{n=1}^{N} (x_n - \bar{x})^2\right) \tau.$$
 (2.309)

Therefore,

$$p(\mu, \tau | \mathbf{x}) = \mathcal{N} \left( \mu \mid \frac{N\bar{x} + \beta\mu_0}{N + \beta}, ((N + \beta)\tau)^{-1} \right)$$

$$Gam \left( \tau \mid a + \frac{N+1}{2}, b + \frac{N\beta(\bar{x} - \mu_0)^2}{2(N+\beta)} + \frac{1}{2} \sum_{n=1}^{N} (x_n - \bar{x})^2 \right). \tag{2.310}$$

#### 2.45

Let  $\mathbf{x}$  be a variable in D dimensions such that

$$p(\mathbf{x}) = \mathcal{N}\left(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Lambda}^{-1}\right). \tag{2.311}$$

Then

$$p(\mathbf{X}|\mathbf{\Lambda}) = \prod_{n=1}^{N} \mathcal{N}\left(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Lambda}^{-1}\right). \tag{2.312}$$

The right hand side exept the terms independent of  $\Lambda$  can be written as

$$(\det \mathbf{\Lambda})^{\frac{N}{2}} \exp \left( -\frac{1}{2} \sum_{n=1}^{N} (\mathbf{x}_n - \boldsymbol{\mu})^{\mathsf{T}} \mathbf{\Lambda} (\mathbf{x}_n - \boldsymbol{\mu}) \right) = (\det \mathbf{\Lambda})^{\frac{N}{2}} \exp \left( -\frac{1}{2} \operatorname{tr} \left( \mathbf{S} \mathbf{\Lambda} \right) \right),$$
(2.313)

where

$$\mathbf{S} = \sum_{n=1}^{N} (\mathbf{x}_n - \boldsymbol{\mu}) (\mathbf{x}_n - \boldsymbol{\mu})^{\mathsf{T}}.$$
 (2.314)

Therefore,

$$p(\mathbf{X}|\mathbf{\Lambda}) \propto (\det \mathbf{\Lambda})^{\frac{N}{2}} \exp\left(-\frac{1}{2}\operatorname{tr}(\mathbf{S}\mathbf{\Lambda})\right).$$
 (2.315)

Let us assume that a prior distribution of  $\Lambda$  is given by

$$W(\mathbf{\Lambda}|\mathbf{W},\nu) = B(\mathbf{W},\nu)(\det\mathbf{\Lambda})^{\frac{\nu-D-1}{2}} \exp\left(-\frac{1}{2}\operatorname{tr}\left(\mathbf{W}^{-1}\mathbf{\Lambda}\right)\right). \tag{2.316}$$

Then, by the definition,

$$p(\mathbf{\Lambda}|\mathbf{X}, \mathbf{W}, \nu) \propto p(\mathbf{X}|\mathbf{\Lambda})\mathcal{W}(\mathbf{\Lambda}|\mathbf{W}, \nu),$$
 (2.317)

where the right hand side except the terms independent of  $\Lambda$  can be written as

$$(\det \mathbf{\Lambda})^{\frac{\nu+N-D-1}{2}} \exp\left(-\frac{1}{2}\operatorname{tr}\left(\left(\mathbf{W}^{-1}+\mathbf{S}\right)\mathbf{\Lambda}\right)\right). \tag{2.318}$$

Therefore,

$$p(\mathbf{\Lambda}|\mathbf{X}, \mathbf{W}, \nu) = \mathcal{W}\left(\mathbf{\Lambda} \mid (\mathbf{W}^{-1} + \mathbf{S})^{-1}, \nu + N\right).$$
 (2.319)

Thus, W is a conjugate prior distribution of  $\Lambda$ .

## 2.46

Let x be a variable such that

$$p(x|\mu,\tau,a,b) = \mathcal{N}\left(x|\mu,\tau^{-1}\right) \operatorname{Gam}(\tau|a,b). \tag{2.320}$$

Then

$$p(x|\mu, a, b) = \int_0^\infty \mathcal{N}\left(x|\mu, \tau^{-1}\right) \operatorname{Gam}(\tau|a, b) d\tau. \tag{2.321}$$

The right hand side can be written as

$$\int_0^\infty \left(\frac{\tau}{2\pi}\right)^{\frac{1}{2}} \exp\left(-\frac{\tau}{2}(x-\mu)^2\right) \frac{b^a}{\Gamma(a)} \tau^{a-1} \exp(-b\tau) d\tau$$

$$= (2\pi)^{-\frac{1}{2}} \frac{b^a}{\Gamma(a)} \int_0^\infty \tau^{a-\frac{1}{2}} \exp\left(-\left(b + \frac{(x-\mu)^2}{2}\right)\tau\right) d\tau. \tag{2.322}$$

By the transformation

$$\tau' = \left(b + \frac{(x-\mu)^2}{2}\right)\tau,\tag{2.323}$$

the integral of the right hand side can be written as

$$\int_0^\infty \left( \frac{\tau'}{b + \frac{(x-\mu)^2}{2}} \right)^{a - \frac{1}{2}} \exp(-\tau') \frac{d\tau'}{b + \frac{(x-\mu)^2}{2}} = \Gamma\left(a + \frac{1}{2}\right) \left(b + \frac{(x-\mu)^2}{2}\right)^{-a - \frac{1}{2}}.$$
(2.324)

Therefore,

$$p(x|\mu,\tau,a,b) = (2\pi)^{-\frac{1}{2}} \frac{\Gamma(a+\frac{1}{2})}{\Gamma(a)} b^a \left(b + \frac{(x-\mu)^2}{2}\right)^{-a-\frac{1}{2}}.$$
 (2.325)

Let

$$\nu = 2a, 
\lambda = \frac{a}{b}.$$
(2.326)

Then

$$p(x|\mu,\lambda,\nu) = \frac{\Gamma(\frac{\nu+1}{2})}{\Gamma(\frac{\nu}{2})} \left(\frac{\lambda}{\pi\nu}\right)^{\frac{1}{2}} \left(1 + \frac{\lambda(x-\mu)^2}{\nu}\right)^{-\frac{\nu+1}{2}}.$$
 (2.327)

#### 2.47

By the definition,

$$\operatorname{St}(x|\mu,\lambda,\nu) = \frac{\Gamma(\frac{\nu+1}{2})}{\Gamma(\frac{\nu}{2})} \left(\frac{\lambda}{\pi\nu}\right)^{\frac{1}{2}} \left(1 + \frac{\lambda(x-\mu)^2}{\nu}\right)^{-\frac{\nu+1}{2}}.$$
 (2.328)

By the transformation

$$y = \frac{\lambda(x-\mu)^2}{\nu},\tag{2.329}$$

the right hand side except the terms independent of x can be written as

$$(1+y)^{-\frac{\lambda(x-\mu)^2}{2y} - \frac{1}{2}}. (2.330)$$

In the limit  $y \to \infty$ , it becomes

$$\exp\left(-\frac{\lambda}{2}(x-\mu)^2\right). \tag{2.331}$$

Therefore, in the limit  $\nu \to \infty$ ,  $\operatorname{St}(x|\mu,\lambda,\nu)$  becomes  $\mathcal{N}(x|\mu,\lambda^{-1})$ .

#### 2.48

Let  $\mathbf{x}$  be a variable in D dimensions such that

$$p(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Lambda}, \eta, \nu) = \mathcal{N}\left(\mathbf{x}|\boldsymbol{\mu}, (\eta \boldsymbol{\Lambda})^{-1}\right) \operatorname{Gam}\left(\eta \mid \frac{\nu}{2}, \frac{\nu}{2}\right).$$
 (2.332)

Then

$$p(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Lambda}, \nu) = \int_0^\infty \mathcal{N}\left(\mathbf{x}|\boldsymbol{\mu}, (\eta \boldsymbol{\Lambda})^{-1}\right) \operatorname{Gam}\left(\eta \mid \frac{\nu}{2}, \frac{\nu}{2}\right) d\eta.$$
 (2.333)

The right hand side can be written as

$$\int_{0}^{\infty} (2\pi)^{-\frac{D}{2}} (\det(\eta \mathbf{\Lambda}))^{\frac{1}{2}} \exp\left(-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \eta \mathbf{\Lambda} (\mathbf{x} - \boldsymbol{\mu})\right) \frac{(\frac{\nu}{2})^{\frac{\nu}{2}}}{\Gamma(\frac{\nu}{2})} \eta^{\frac{\nu}{2} - 1} \exp\left(-\frac{\nu}{2} \eta\right) d\eta$$

$$= (2\pi)^{-\frac{D}{2}} \frac{(\frac{\nu}{2})^{\frac{\nu}{2}}}{\Gamma(\frac{\nu}{2})} (\det \mathbf{\Lambda})^{\frac{1}{2}} \int_{0}^{\infty} \eta^{\frac{D+\nu}{2} - 1} \exp\left(-\frac{1}{2} (\nu + (\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \mathbf{\Lambda} (\mathbf{x} - \boldsymbol{\mu})) \eta\right) d\eta.$$
(2.334)

By the transformation

$$\eta' = \frac{1}{2} \left( \nu + (\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \boldsymbol{\Lambda} (\mathbf{x} - \boldsymbol{\mu}) \right) \eta, \tag{2.335}$$

the integral of the right hand side can be written as

$$\int_{0}^{\infty} \left( \frac{2\eta'}{\nu + (\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \boldsymbol{\Lambda} (\mathbf{x} - \boldsymbol{\mu})} \right)^{\frac{D+\nu}{2} - 1} \exp(-\eta') \frac{2}{\nu + (\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \boldsymbol{\Lambda} (\mathbf{x} - \boldsymbol{\mu})} d\eta'$$

$$= \left( \frac{2}{\nu + (\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \boldsymbol{\Lambda} (\mathbf{x} - \boldsymbol{\mu})} \right)^{\frac{D+\nu}{2}} \Gamma\left( \frac{D+\nu}{2} \right). \tag{2.336}$$

Therefore,

$$p(\mathbf{x}|\boldsymbol{\mu},\boldsymbol{\Lambda},\nu) = \frac{\Gamma(\frac{D+\nu}{2})}{\Gamma(\frac{\nu}{2})} \frac{(\det \boldsymbol{\Lambda})^{\frac{1}{2}}}{(\pi\nu)^{\frac{D}{2}}} \left(1 + \frac{(\mathbf{x}-\boldsymbol{\mu})^{\mathsf{T}}\boldsymbol{\Lambda}(\mathbf{x}-\boldsymbol{\mu})}{\nu}\right)^{-\frac{D+\nu}{2}}. \quad (2.337)$$

### 2.49

Let  $\mathbf{x}$  be a variable such that

$$p(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Lambda}, \nu) = \text{St}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Lambda}, \nu). \tag{2.338}$$

By the definition,

$$\operatorname{St}(\mathbf{x}|\boldsymbol{\mu},\boldsymbol{\Lambda},\nu) = \int \mathcal{N}\left(\mathbf{x}|\boldsymbol{\mu},(\eta\boldsymbol{\Lambda})^{-1}\right) \operatorname{Gam}\left(\eta \mid \frac{\nu}{2}, \frac{\nu}{2}\right) d\eta. \tag{2.339}$$

First,

$$\mathbf{E}\,\mathbf{x} = \int \mathbf{x} \mathrm{St}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Lambda}, \nu) d\mathbf{x}. \tag{2.340}$$

The right hand side can be written as

$$\int \mathbf{x} \left( \int \mathcal{N} \left( \mathbf{x} | \boldsymbol{\mu}, (\eta \boldsymbol{\Lambda})^{-1} \right) \operatorname{Gam} \left( \eta \mid \frac{\nu}{2}, \frac{\nu}{2} \right) d\eta \right) d\mathbf{x}$$

$$= \int \left( \int \mathbf{x} \mathcal{N} \left( \mathbf{x} | \boldsymbol{\mu}, (\eta \boldsymbol{\Lambda})^{-1} \right) d\mathbf{x} \right) \operatorname{Gam} \left( \eta \mid \frac{\nu}{2}, \frac{\nu}{2} \right) d\eta.$$
(2.341)

The right hand side can be written as

$$\mu \int \operatorname{Gam}\left(\eta \mid \frac{\nu}{2}, \frac{\nu}{2}\right) d\eta = \mu.$$
 (2.342)

Therefore,

$$\mathbf{E} \mathbf{x} = \boldsymbol{\mu}.\tag{2.343}$$

Additionally,

$$\operatorname{cov} \mathbf{x} = \int (\mathbf{x} - \boldsymbol{\mu}) (\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \operatorname{St}(\mathbf{x} | \boldsymbol{\mu}, \boldsymbol{\Lambda}, \nu) d\mathbf{x}. \tag{2.344}$$

The right hand side can be written as

$$\int (\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \left( \int \mathcal{N} \left( \mathbf{x} | \boldsymbol{\mu}, (\eta \boldsymbol{\Lambda})^{-1} \right) \operatorname{Gam} \left( \eta \mid \frac{\nu}{2}, \frac{\nu}{2} \right) d\eta \right) d\mathbf{x}$$

$$= \int \left( \int (\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \mathcal{N} \left( \mathbf{x} | \boldsymbol{\mu}, (\eta \boldsymbol{\Lambda})^{-1} \right) d\mathbf{x} \right) \operatorname{Gam} \left( \eta \mid \frac{\nu}{2}, \frac{\nu}{2} \right) d\eta.$$
(2.345)

The right hand side can be written as

$$\int (\eta \mathbf{\Lambda})^{-1} \operatorname{Gam}\left(\eta \mid \frac{\nu}{2}, \frac{\nu}{2}\right) d\eta = \mathbf{\Lambda}^{-1} \frac{\left(\frac{\nu}{2}\right)^{\frac{\nu}{2}}}{\Gamma\left(\frac{\nu}{2}\right)} \int \eta^{\frac{\nu}{2}-2} \exp\left(-\frac{\nu}{2}\eta\right) d\eta. \quad (2.346)$$

By the transformation

$$\eta' = \frac{\nu}{2}\eta,\tag{2.347}$$

the integral of the right hand side can be written as

$$\int \left(\frac{2}{\nu}\eta'\right)^{-\frac{\nu}{2}-2} \exp(-\eta') \frac{2}{\nu} d\eta' = \left(\frac{2}{\nu}\right)^{\frac{\nu}{2}-1} \Gamma\left(\frac{\nu}{2}-1\right). \tag{2.348}$$

Therefore, the right hand side can be written as

$$\mathbf{\Lambda}^{-1} \frac{\left(\frac{\nu}{2}\right)^{\frac{\nu}{2}}}{\Gamma\left(\frac{\nu}{2}\right)} \left(\frac{2}{\nu}\right)^{\frac{\nu}{2}-1} \Gamma\left(\frac{\nu}{2}-1\right) = \frac{\frac{\nu}{2}}{\frac{\nu}{2}-1} \mathbf{\Lambda}^{-1}. \tag{2.349}$$

Thus,

$$\operatorname{cov} \mathbf{x} = \frac{\nu}{\nu - 2} \mathbf{\Lambda}^{-1}. \tag{2.350}$$

Finally, setting the derivative of  $\mathrm{St}(\mathbf{x}|\boldsymbol{\mu},\boldsymbol{\Lambda},\nu)$  with respect to  $\mathbf{x}$  to zero gives

$$\mathbf{0} = -\frac{1}{2} \left( \mathbf{\Lambda} + \mathbf{\Lambda}^{\mathsf{T}} \right) \left( \mathbf{x} - \boldsymbol{\mu} \right) \int \eta \mathcal{N} \left( \mathbf{x} | \boldsymbol{\mu}, (\eta \mathbf{\Lambda})^{-1} \right) \operatorname{Gam} \left( \eta \mid \frac{\nu}{2}, \frac{\nu}{2} \right) d\eta. \quad (2.351)$$

Therefore,

$$mode \mathbf{x} = \boldsymbol{\mu}. \tag{2.352}$$

#### 2.50

By the definition,

$$\operatorname{St}(\mathbf{x}|\boldsymbol{\mu},\boldsymbol{\Lambda},\nu) = \frac{\Gamma(\frac{D+\nu}{2})}{\Gamma(\frac{\nu}{2})} \frac{(\det \boldsymbol{\Lambda})^{\frac{1}{2}}}{(\pi\nu)^{\frac{D}{2}}} \left(1 + \frac{(\mathbf{x}-\boldsymbol{\mu})^{\mathsf{T}}\boldsymbol{\Lambda}(\mathbf{x}-\boldsymbol{\mu})}{\nu}\right)^{-\frac{D+\nu}{2}}. \quad (2.353)$$

By the transformation

$$y = \frac{(\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \boldsymbol{\Lambda} (\mathbf{x} - \boldsymbol{\mu})}{\nu}, \tag{2.354}$$

the right hand side except the terms independent of x can be written as

$$(1+y)^{-\frac{(\mathbf{x}-\boldsymbol{\mu})^\mathsf{T}\mathbf{\Lambda}(\mathbf{x}-\boldsymbol{\mu})}{2y}-\frac{D}{2}}.$$
 (2.355)

In the limit  $y \to \infty$ , it becomes

$$\exp\left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathsf{T}}\boldsymbol{\Lambda}(\mathbf{x}-\boldsymbol{\mu})\right). \tag{2.356}$$

Therefore, in the limit  $\nu \to \infty$ ,  $\operatorname{St}(\mathbf{x}|\boldsymbol{\mu},\boldsymbol{\Lambda},\nu)$  becomes  $\mathcal{N}(\mathbf{x}|\boldsymbol{\mu},\boldsymbol{\Lambda}^{-1})$ .

#### 2.51

We have

$$\exp(iA)\exp(-iA) = 1. \tag{2.357}$$

The left hand side can be written as

$$(\cos A + i \sin A)(\cos A - i \sin A) = \cos^2 A + \sin^2 A. \tag{2.358}$$

Therefore,

$$\cos^2 A + \sin^2 A = 1. \tag{2.359}$$

Additionally,

$$\cos(A - B) = \operatorname{Re}\left(\exp\left(i(A - B)\right)\right). \tag{2.360}$$

The right hand side can be written as

$$\operatorname{Re}\left(\exp(iA)\exp(-iB)\right) = \operatorname{Re}\left((\cos A + i\sin A)(\cos B - i\sin B)\right). \quad (2.361)$$

The right hand side can be written as  $\cos A \cos B + \sin A \sin B$ . Therefore,

$$\cos(A - B) = \cos A \cos B + \sin A \sin B. \tag{2.362}$$

Finally,

$$\sin(A - B) = \text{Im} (\exp(i(A - B))).$$
 (2.363)

The right hand side can be written as

$$\operatorname{Im}\left(\exp(iA)\exp(-iB)\right) = \left(\left(\cos A + i\sin A\right)\left(\cos B - i\sin B\right)\right). \tag{2.364}$$

The right hand side can be written as  $\sin A \cos B - \cos A \sin B$ . Therefore,

$$\sin(A - B) = \sin A \cos B - \cos A \sin B. \tag{2.365}$$

# 2.52 (Incomplete)

Let  $\theta$  be a variable such that

$$p(\theta|\theta_0, m) = \frac{1}{2\pi I_0(m)} \exp(m\cos(\theta - \theta_0)),$$
 (2.366)

where

$$I_0(m) = \frac{1}{2\pi} \int_0^{2\pi} \exp(m\cos\theta) d\theta. \tag{2.367}$$

By the Taylor series

$$\cos \alpha = 1 - \frac{1}{2}\alpha^2 + O\left(\alpha^4\right) \tag{2.368}$$

and the transformation

$$\xi = m^{\frac{1}{2}}(\theta - \theta_0), \tag{2.369}$$

we have

$$\exp(m\cos(\theta - \theta_0)) = \exp\left(m\left(1 - \frac{1}{2}(\theta - \theta_0)^2 + O((\theta - \theta_0)^4)\right)\right). (2.370)$$

#### 2.53

Let  $\theta_0$  be a parameter such that

$$\sum_{n=1}^{N} \sin(\theta_n - \theta_0) = 0. \tag{2.371}$$

The left hand side can be written as

$$\sum_{n=1}^{N} (\sin \theta_n \cos \theta_0 - \cos \theta_n \sin \theta_0) = \cos \theta_0 \sum_{n=1}^{N} \sin \theta_n - \sin \theta_0 \sum_{n=1}^{N} \cos \theta_n. \quad (2.372)$$

Therefore,

$$\theta_0 = \arctan\left(\frac{\sum_{n=1}^N \sin \theta_n}{\sum_{n=1}^N \cos \theta_n}\right). \tag{2.373}$$

#### 2.54

Let  $\theta$  be a variable such that

$$p(\theta|\theta_0, m) = \frac{1}{2\pi I_0(m)} \exp(m\cos(\theta - \theta_0)),$$
 (2.374)

where

$$I_0(m) = \frac{1}{2\pi} \int_0^{2\pi} \exp(m\cos\theta) d\theta. \tag{2.375}$$

Setting the first and second derivatives with respect to  $\theta$  to zero gives

$$0 = -m\sin(\theta - \theta_0)p(\theta|\theta_0, m),$$
  

$$0 = (m^2\sin^2(\theta - \theta_0) - m\cos(\theta - \theta_0))p(\theta|\theta_0, m).$$
(2.376)

Therefore,

$$\underset{\theta}{\operatorname{argmax}} p(\theta|\theta_0, m) = \theta_0,$$

$$\underset{\theta}{\operatorname{argmin}} p(\theta|\theta_0, m) = \theta_0 - \pi \operatorname{sgn}(\theta_0 - \pi).$$
(2.377)

#### 2.55

Let

$$\theta_0^{\text{ML}} = \arctan\left(\frac{\sum_{n=1}^N \sin \theta_n}{\sum_{n=1}^N \cos \theta_n}\right). \tag{2.378}$$

Let

$$\bar{r}\cos\bar{\theta} = \frac{1}{N} \sum_{n=1}^{N} \cos\theta_n,$$

$$\bar{r}\sin\bar{\theta} = \frac{1}{N} \sum_{n=1}^{N} \sin\theta_n.$$
(2.379)

Then

$$\theta_0^{\rm ML} = \bar{\theta}. \tag{2.380}$$

Here,

$$\frac{1}{N} \sum_{n=1}^{N} \cos \left(\theta_n - \theta_0^{\text{ML}}\right) = \left(\frac{1}{N} \sum_{n=1}^{N} \cos \theta_n\right) \cos \theta_0^{\text{ML}} + \left(\frac{1}{N} \sum_{n=1}^{N} \sin \theta_n\right) \sin \theta_0^{\text{ML}}.$$
(2.381)

By the result above, the right hand side can be written as

$$\bar{r}\cos^2\bar{\theta} + \bar{r}\sin^2\bar{\theta} = \bar{r}.$$
 (2.382)

Therefore,

$$\frac{1}{N} \sum_{n=1}^{N} \cos\left(\theta_n - \theta_0^{\mathrm{ML}}\right) = \bar{r}.$$
(2.383)

## 2.56

By the definition,

Beta
$$(\mu|a,b) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \mu^{a-1} (1-\mu)^{b-1}.$$
 (2.384)

The right hand side can be written as

$$\frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \exp((a-1)\ln\mu + (b-1)\ln(1-\mu))$$
 (2.385)

Therefore, the natural parameters are given by

$$\boldsymbol{\eta} = \begin{bmatrix} a-1 \\ b-1 \end{bmatrix}.$$

Additionally, by the definition,

$$Gam(\lambda|a,b) = \frac{b^a}{\Gamma(a)} \lambda^{a-1} \exp(-b\lambda).$$
 (2.386)

The right hand side can be written as

$$\frac{b^a}{\Gamma(a)} \exp\left((a-1)\ln\lambda - b\lambda\right). \tag{2.387}$$

Therefore, the natural parameters are given by

$$\boldsymbol{\eta} = \begin{bmatrix} a-1 \\ -b \end{bmatrix}.$$

Finally, for

$$p(\theta|\theta_0, m) = \frac{1}{2\pi I_0(m)} \exp(m\cos(\theta - \theta_0)),$$
 (2.388)

where

$$I_0(m) = \frac{1}{2\pi} \int_0^{2\pi} \exp(m\cos\theta) d\theta, \qquad (2.389)$$

the right hand side can be written as

$$\frac{1}{2\pi I_0(m)} \exp(m\cos\theta_0\cos\theta + m\sin\theta_0\sin\theta). \tag{2.390}$$

Therefore, the natural parameters are given by

$$\boldsymbol{\eta} = \begin{bmatrix} m\cos\theta_0 \\ m\sin\theta_0 \end{bmatrix}.$$

## 2.57

By the definition,

$$\mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = (2\pi)^{-\frac{D}{2}} (\det \boldsymbol{\Sigma})^{-\frac{1}{2}} \exp\left(-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right). \quad (2.391)$$

Therefore,

$$\mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = h(\mathbf{x})g(\boldsymbol{\eta}) \exp\left(\boldsymbol{\eta}^{\mathsf{T}} \mathbf{u}(\mathbf{x})\right), \tag{2.392}$$

where

$$h(\mathbf{x}) = (2\pi)^{-\frac{D}{2}},$$

$$g(\boldsymbol{\eta}) = (\det(-2\boldsymbol{\eta}_2))^{-\frac{1}{2}} \exp\left(\frac{1}{4}\boldsymbol{\eta}_1^{\mathsf{T}}\boldsymbol{\eta}_2^{-1}\boldsymbol{\eta}_1\right),$$

$$\boldsymbol{\eta} = \begin{bmatrix} \boldsymbol{\Sigma}^{-1}\boldsymbol{\mu} \\ -\frac{1}{2}\boldsymbol{\Sigma}^{-1} \end{bmatrix},$$

$$\mathbf{u}(\mathbf{x}) = \begin{bmatrix} \mathbf{x} \\ \mathbf{x}\mathbf{x}^{\mathsf{T}} \end{bmatrix}.$$

#### 2.58

Let  $\mathbf{x}$  be a variable such that

$$p(\mathbf{x}|\boldsymbol{\eta}) = h(\mathbf{x})g(\boldsymbol{\eta}) \exp\left(\boldsymbol{\eta}^{\mathsf{T}}\mathbf{u}(\mathbf{x})\right). \tag{2.393}$$

Then, taking the first derivative of

$$\int p(\mathbf{x}|\boldsymbol{\eta})d\mathbf{x} = 1 \tag{2.394}$$

with respect to  $\eta$  gives

$$\nabla g(\boldsymbol{\eta}) \int h(\mathbf{x}) \exp(\boldsymbol{\eta}^{\mathsf{T}} \mathbf{u}(\mathbf{x})) d\mathbf{x} + g(\boldsymbol{\eta}) \int \mathbf{u}(\mathbf{x}) h(\mathbf{x}) \exp(\boldsymbol{\eta}^{\mathsf{T}} \mathbf{u}(\mathbf{x})) d\mathbf{x} = \mathbf{0}.$$
(2.395)

The left hand side can be written as

$$\frac{\nabla g(\boldsymbol{\eta})}{g(\boldsymbol{\eta})} \int p(\mathbf{x}|\boldsymbol{\eta}) d\mathbf{x} + \int \mathbf{u}(\mathbf{x}) p(\mathbf{x}|\boldsymbol{\eta}) d\mathbf{x} = \frac{\nabla g(\boldsymbol{\eta})}{g(\boldsymbol{\eta})} + \operatorname{E} \mathbf{u}(\mathbf{x}). \tag{2.396}$$

Therefore,

$$\mathbf{E}\,\mathbf{u}(\mathbf{x}) = -\frac{\nabla g(\boldsymbol{\eta})}{g(\boldsymbol{\eta})}.\tag{2.397}$$

Thus,

$$\mathbf{E}\,\mathbf{u}(\mathbf{x}) = -\nabla \ln g(\boldsymbol{\eta}). \tag{2.398}$$

Taking the second derivative with respect to  $\eta$  gives

$$\nabla \nabla g(\boldsymbol{\eta}) \int h(\mathbf{x}) \exp(\boldsymbol{\eta}^{\mathsf{T}} \mathbf{u}(\mathbf{x})) d\mathbf{x} + 2\nabla g(\boldsymbol{\eta}) \int \mathbf{u}(\mathbf{x})^{\mathsf{T}} h(\mathbf{x}) \exp(\boldsymbol{\eta}^{\mathsf{T}} \mathbf{u}(\mathbf{x})) d\mathbf{x}$$
$$+ g(\boldsymbol{\eta}) \int \mathbf{u}(\mathbf{x}) \mathbf{u}(\mathbf{x})^{\mathsf{T}} h(\mathbf{x}) \exp(\boldsymbol{\eta}^{\mathsf{T}} \mathbf{u}(\mathbf{x})) d\mathbf{x} = \mathbf{O}.$$
(2.399)

The left hand side can be written as

$$\frac{\nabla \nabla g(\boldsymbol{\eta})}{g(\boldsymbol{\eta})} \int p(\mathbf{x}|\boldsymbol{\eta}) d\mathbf{x} + \frac{2\nabla g(\boldsymbol{\eta})}{g(\boldsymbol{\eta})} \int \mathbf{u}(\mathbf{x})^{\mathsf{T}} p(\mathbf{x}|\boldsymbol{\eta}) d\mathbf{x} + \int \mathbf{u}(\mathbf{x}) \mathbf{u}(\mathbf{x})^{\mathsf{T}} p(\mathbf{x}|\boldsymbol{\eta}) d\mathbf{x} 
= \frac{\nabla \nabla g(\boldsymbol{\eta})}{g(\boldsymbol{\eta})} - 2 \operatorname{E} \mathbf{u}(\mathbf{x}) \operatorname{E} \mathbf{u}(\mathbf{x})^{\mathsf{T}} + \operatorname{E} (\mathbf{u}(\mathbf{x}) \mathbf{u}(\mathbf{x})^{\mathsf{T}}).$$
(2.400)

Therefore,

$$E\left(\mathbf{u}(\mathbf{x})\mathbf{u}(\mathbf{x})^{\mathsf{T}}\right) = -\frac{\nabla\nabla g(\boldsymbol{\eta})}{g(\boldsymbol{\eta})} + \frac{2\nabla g(\boldsymbol{\eta})(\nabla g(\boldsymbol{\eta}))^{\mathsf{T}}}{g^{2}(\boldsymbol{\eta})}.$$
 (2.401)

By the definition,

$$\operatorname{cov} \mathbf{u}(\mathbf{x}) = \operatorname{E} (\mathbf{u}(\mathbf{x})\mathbf{u}(\mathbf{x})^{\mathsf{T}}) - \operatorname{E} \mathbf{u}(\mathbf{x})\operatorname{E} \mathbf{u}(\mathbf{x})^{\mathsf{T}}. \tag{2.402}$$

Thus,

$$\operatorname{cov} \mathbf{u}(\mathbf{x}) = -\frac{\nabla \nabla g(\boldsymbol{\eta})}{g(\boldsymbol{\eta})} + \frac{\nabla g(\boldsymbol{\eta})(\nabla g(\boldsymbol{\eta}))^{\mathsf{T}}}{g^{2}(\boldsymbol{\eta})}.$$
 (2.403)

Hence,

$$\operatorname{cov} \mathbf{u}(\mathbf{x}) = -\nabla \nabla \ln g(\boldsymbol{\eta}). \tag{2.404}$$

2.59

Let

$$p(x|\sigma) = \frac{1}{\sigma} f\left(\frac{x}{\sigma}\right). \tag{2.405}$$

Then

$$\int p(x|\sigma)dx = \frac{1}{\sigma} \int f\left(\frac{x}{\sigma}\right) dx. \tag{2.406}$$

By the transformation

$$x' = \frac{x}{\sigma},\tag{2.407}$$

the right hand side can be written as

$$\frac{1}{\sigma} \int f(x')\sigma dx' = \int f(x')dx'. \tag{2.408}$$

Therefore,  $p(x|\sigma)$  will be normalised if f(x) is normalised.

## 2.60

Let  $\mathbf{x}$  be a variable such that

$$\mathbf{x} \in \mathcal{R}_i \Rightarrow p(\mathbf{x}) = h_i, \tag{2.409}$$

where

$$\int_{\mathcal{R}_i} d\mathbf{x} = \Delta_i. \tag{2.410}$$

Since

$$\int p(\mathbf{x})d\mathbf{x} = 1,\tag{2.411}$$

we have

$$\sum_{i} h_i \Delta_i = 1. \tag{2.412}$$

Let N be the total number of observations and  $n_i$  be the number of observations which fall in  $\mathcal{R}_i$ . Then, the logarithm of the likelihood is given by

$$\ln\left(\prod_{i} h_i^{n_i}\right) = \sum_{i} n_i \ln h_i, \tag{2.413}$$

where

$$\sum_{i} n_i = N. \tag{2.414}$$

Setting the derivatives of

$$\sum_{i} n_{i} \ln h_{i} + \lambda \left( \sum_{i} h_{i} \Delta_{i} - 1 \right) \tag{2.415}$$

with respect to  $h_i$  and  $\lambda$  to zero gives

$$\frac{n_i}{h_i} + \lambda \Delta_i = 0,$$

$$\sum_i h_i \Delta_i - 1 = 0.$$
(2.416)

Then,

$$\lambda = -N,$$

$$h_i = \frac{n_i}{N\Delta_i}.$$
(2.417)

Therefore, the maximum likelihood estimator for the  $\{h_i\}$  is  $\frac{n_i}{N\Delta_i}$ .

# 2.61 (Incomplete)

Let  $\mathbf{x}$  be a variable and  $\mathbf{x}_1, \cdots, \mathbf{x}_N$  be observations. Let

$$p(\mathbf{x}) = \frac{K}{NV(\mathbf{x})},\tag{2.418}$$

where

$$V(\mathbf{x}) = \int_{\|\mathbf{x}' - \mathbf{x}\| \le \|\mathbf{x}_{(K)} - \mathbf{x}\|} d\mathbf{x}', \qquad (2.419)$$

K is a constant and  $\mathbf{x}_{(K)}$  is the Kth nearest observation from the point  $\mathbf{x}$ .

# 3 Linear Models for Regression

## 3.1

By the definition,

$$tanh a = \frac{\exp(a) - \exp(-a)}{\exp(a) + \exp(-a)}.$$
(3.1)

The right hand side can be written as

$$\frac{1 - \exp(-2a)}{1 + \exp(-2a)} = \frac{2}{1 + \exp(-2a)} - 1. \tag{3.2}$$

Therefore,

$$tanh a = 2\sigma(2a) - 1,$$
(3.3)

where

$$\sigma(a) = \frac{1}{1 + \exp(-a)}. (3.4)$$

Let

$$y(x_n, \mathbf{w}) = w_0 + \sum_{m=1}^{M} w_j \sigma\left(\frac{x - \mu_j}{s}\right). \tag{3.5}$$

By the result above, the right hand side can be written as

$$w_0 + \sum_{m=1}^{M} w_m \frac{1 + \tanh\left(\frac{x - \mu_m}{2s}\right)}{2} = w_0 + \frac{1}{2} \sum_{m=1}^{M} w_m + \frac{1}{2} \sum_{m=1}^{M} w_m \tanh\left(\frac{x - \mu_m}{2s}\right).$$
(3.6)

Therefore,  $y(x_n, \mathbf{w})$  is equivalent to

$$y(x_n, \mathbf{u}) = u_0 + \sum_{m=1}^{M} u_m \tanh\left(\frac{x - \mu_m}{2s}\right), \tag{3.7}$$

where

$$u_0 = w_0 + \frac{1}{2} \sum_{m=1}^{M} w_m,$$

$$u_m = \frac{1}{2} w_m.$$
(3.8)

# 3.2 (Incomplete)

Let  $\Phi$  be an  $N \times M$  matarix. Then, for any vector  $\mathbf{v}$  in N dimensions,

$$\mathbf{\Phi} \left(\mathbf{\Phi}^{\mathsf{T}}\mathbf{\Phi}\right)^{-1} \mathbf{\Phi}^{\mathsf{T}}\mathbf{v} \tag{3.9}$$

is a projection of  $\mathbf{v}$  onto the space spanned by the columns of  $\mathbf{\Phi}$ ? Additionally, for a vector  $\mathbf{t}$  in N dimensions,

$$(\mathbf{\Phi}^{\mathsf{T}}\mathbf{\Phi})^{-1}\mathbf{\Phi}^{\mathsf{T}}\mathbf{t} \tag{3.10}$$

is an orthogonal projection of  ${\bf t}$  onto the space spanned by the columns of  ${\bf \Phi}$ ?

## 3.3

Let

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} r_n \left( t_n - \mathbf{w}^{\mathsf{T}} \boldsymbol{\phi}(\mathbf{x}_n) \right)^2.$$
 (3.11)

The right hand side can be written as

$$\frac{1}{2} \|\mathbf{t}' - \mathbf{\Phi}' \mathbf{w}\|^2, \tag{3.12}$$

where

$$\mathbf{t}' = egin{bmatrix} \sqrt{r_1}t_1 \ dots \ \sqrt{r_N}t_N \end{bmatrix}, \mathbf{\Phi}' = egin{bmatrix} \sqrt{r_1}oldsymbol{\phi}(\mathbf{x}_1)^\intercal \ dots \ \sqrt{r_N}oldsymbol{\phi}(\mathbf{x}_N)^\intercal \end{bmatrix}.$$

Setting the derivative with respect to  $\mathbf{w}$  to zero gives

$$\mathbf{0} = -\mathbf{\Phi}^{\prime\mathsf{T}}(\mathbf{t}^{\prime} - \mathbf{\Phi}^{\prime}\mathbf{w}). \tag{3.13}$$

Therefore,

$$\underset{\mathbf{w}}{\operatorname{argmin}} E(\mathbf{w}) = \left(\mathbf{\Phi}^{\prime \mathsf{T}} \mathbf{\Phi}^{\prime}\right)^{-1} \mathbf{\Phi}^{\prime \mathsf{T}} \mathbf{t}^{\prime}. \tag{3.14}$$

# 3.4 (Incomplete)

Let

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left( y(\mathbf{x}_n, \mathbf{w}) - t_n \right)^2, \tag{3.15}$$

where

$$y(\mathbf{x}, \mathbf{w}) = w_0 + \sum_{m=1}^{M} w_m(x_m + \epsilon_m),$$
  

$$p(\epsilon_m) = \mathcal{N}\left(\epsilon_m | 0, \sigma^2\right).$$
(3.16)

Setting the derivative with respect to  $\mathbf{w}$  to zero gives

$$\mathbf{0} = \sum_{n=1}^{N} \begin{bmatrix} 1 \\ \mathbf{x}_n + \boldsymbol{\epsilon}_n \end{bmatrix} (y(\mathbf{x}_n, \mathbf{w}) - t_n).$$

The right hand side can be written as

$$\sum_{n=1}^{N} \begin{bmatrix} 1 \\ \mathbf{x}_n \end{bmatrix} (y(\mathbf{x}_n, \mathbf{w}) - t_n) + \sum_{n=1}^{N} \begin{bmatrix} 0 \\ \boldsymbol{\epsilon}_n \end{bmatrix} (y(\mathbf{x}_n, \mathbf{w}) - t_n).$$

#### 3.5

Let

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} (t_n - \mathbf{w}^{\mathsf{T}} \boldsymbol{\phi}(\mathbf{x}_n))^2.$$
 (3.17)

Then, the minimisation of  $E(\mathbf{w})$  under the constraint

$$\sum_{m=1}^{M} \left| w_m \right|^q \le \eta \tag{3.18}$$

reduces to the minimisation of

$$E(\mathbf{w}) + \lambda \left( \sum_{m=1}^{M} |w_m|^q - \eta \right)$$
 (3.19)

with respect to  $\mathbf{w}$  and  $\lambda$ . Then,

$$\eta = \sum_{m=1}^{M} |w_m^*(\lambda)|^q, \tag{3.20}$$

where

$$\mathbf{w}^*(\lambda) = \underset{\mathbf{w}}{\operatorname{argmin}} \left( E(\mathbf{w}) + \lambda \left( \sum_{m=1}^M |w_m|^q - \eta \right) \right). \tag{3.21}$$

#### 3.6

Let  $\mathbf{t}_1, \dots, \mathbf{t}_N$  be variables in D dimensions such that

$$p(\mathbf{t}_n|\mathbf{W}, \mathbf{\Sigma}) = \mathcal{N}\left(\mathbf{t}_n|\mathbf{y}(\mathbf{x}_n, \mathbf{W}), \mathbf{\Sigma}\right), \tag{3.22}$$

where

$$\mathbf{y}(\mathbf{x}_n, \mathbf{W}) = \mathbf{W}^{\mathsf{T}} \boldsymbol{\phi}(\mathbf{x}_n). \tag{3.23}$$

Then,

$$\ln \left( \prod_{n=1}^{N} p(\mathbf{t}_n | \mathbf{W}, \mathbf{\Sigma}) \right)$$

$$= -\frac{ND}{2} \ln(2\pi) - \frac{N}{2} \ln(\det \mathbf{\Sigma}) - \frac{1}{2} \sum_{n=1}^{N} (\mathbf{t}_n - \mathbf{W}^{\mathsf{T}} \boldsymbol{\phi}(\mathbf{x}_n))^{\mathsf{T}} \mathbf{\Sigma}^{-1} (\mathbf{t}_n - \mathbf{W}^{\mathsf{T}} \boldsymbol{\phi}(\mathbf{x}_n)).$$
(3.24)

By 3.21(a), setting the derivatives with respect to **W** and  $\Sigma$  to zero gives

$$\mathbf{O} = -\frac{1}{2} \left( \mathbf{\Sigma}^{-1} + \left( \mathbf{\Sigma}^{-1} \right)^{\mathsf{T}} \right) \sum_{n=1}^{N} \left( \mathbf{t}_{n} - \mathbf{W}^{\mathsf{T}} \boldsymbol{\phi}(\mathbf{x}_{n}) \right) \left( \boldsymbol{\phi}(\mathbf{x}_{n}) \right)^{\mathsf{T}},$$

$$\mathbf{O} = -\frac{N}{2} \left( \mathbf{\Sigma}^{-1} \right)^{\mathsf{T}} + \frac{1}{2} \left( \mathbf{\Sigma}^{-1} \right)^{2} \sum_{n=1}^{N} \left( \mathbf{t}_{n} - \mathbf{W}^{\mathsf{T}} \boldsymbol{\phi}(\mathbf{x}_{n}) \right) \left( \mathbf{t}_{n} - \mathbf{W}^{\mathsf{T}} \boldsymbol{\phi}(\mathbf{x}_{n}) \right)^{\mathsf{T}}.$$
(3.25)

Therefore,

$$\mathbf{W}_{\mathrm{ML}} = (\mathbf{\Phi}^{\mathsf{T}}\mathbf{\Phi})^{-1} \mathbf{\Phi}^{\mathsf{T}}\mathbf{t},$$

$$\mathbf{\Sigma}_{\mathrm{ML}} = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{t}_{n} - \mathbf{W}_{\mathrm{ML}}^{\mathsf{T}}\boldsymbol{\phi}(\mathbf{x}_{n})) (\mathbf{t}_{n} - \mathbf{W}_{\mathrm{ML}}^{\mathsf{T}}\boldsymbol{\phi}(\mathbf{x}_{n}))^{\mathsf{T}},$$
(3.26)

where

$$oldsymbol{\Phi} = egin{bmatrix} oldsymbol{\phi}(\mathbf{x}_1)^\intercal \ dots \ oldsymbol{\phi}(\mathbf{x}_N)^\intercal \end{bmatrix}.$$

#### 3.7

Let  $t_1, \dots, t_N$  be variables such that

$$p(t_n|\mathbf{w}) = \mathcal{N}\left(t_n|\mathbf{w}^{\mathsf{T}}\boldsymbol{\phi}(\mathbf{x}_n), \beta^{-1}\right),$$
  
$$p(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mathbf{m}_0, \mathbf{S}_0).$$
 (3.27)

By the Bayes' theorem,

$$p(\mathbf{w}|\mathbf{t})p(\mathbf{t}) = p(\mathbf{t}|\mathbf{w})p(\mathbf{w}). \tag{3.28}$$

The logarithm of the right hand side except the terms independent of  $\mathbf{t}$  and  $\mathbf{w}$  can be written as

$$-\frac{\beta}{2} \sum_{n=1}^{N} (t_n - \mathbf{w}^{\mathsf{T}} \boldsymbol{\phi}(\mathbf{x}_n))^2 - \frac{1}{2} (\mathbf{w} - \mathbf{m}_0)^{\mathsf{T}} \mathbf{S}_0^{-1} (\mathbf{w} - \mathbf{m}_0)$$

$$= -\frac{\beta}{2} (\mathbf{t} - \boldsymbol{\Phi} \mathbf{w})^{\mathsf{T}} (\mathbf{t} - \boldsymbol{\Phi} \mathbf{w}) - \frac{1}{2} (\mathbf{w} - \mathbf{m}_0)^{\mathsf{T}} \mathbf{S}_0^{-1} (\mathbf{w} - \mathbf{m}_0),$$
(3.29)

where

$$oldsymbol{\Phi} = egin{bmatrix} oldsymbol{\phi}(\mathbf{x}_1)^\intercal \ dots \ oldsymbol{\phi}(\mathbf{x}_N)^\intercal \end{bmatrix}.$$

The right hand side can be written as

$$-\frac{1}{2} (\mathbf{w} - \mathbf{m}_N)^{\mathsf{T}} \mathbf{S}_N^{-1} (\mathbf{w} - \mathbf{m}_N) + \frac{1}{2} \mathbf{m}_N^{\mathsf{T}} \mathbf{S}_N^{-1} \mathbf{m}_N - \frac{\beta}{2} \mathbf{t}^{\mathsf{T}} \mathbf{t} - \frac{1}{2} \mathbf{m}_0^{\mathsf{T}} \mathbf{S}_0^{-1} \mathbf{m}_0, (3.30)$$

where

$$\mathbf{m}_{N} = \mathbf{S}_{N} \left( \mathbf{S}_{0}^{-1} \mathbf{m}_{0} + \beta \mathbf{\Phi}^{\mathsf{T}} \mathbf{t} \right), \mathbf{S}_{N}^{-1} = \mathbf{S}_{0}^{-1} + \beta \mathbf{\Phi}^{\mathsf{T}} \mathbf{\Phi}.$$
 (3.31)

Therefore,

$$p(\mathbf{w}|\mathbf{t}) = \mathcal{N}(\mathbf{w}|\mathbf{m}_N, \mathbf{S}_N). \tag{3.32}$$

#### 3.8

Let  $t_1, \dots, t_N$  be variables such that

$$p(t_n|\mathbf{w}) = \mathcal{N}\left(t_n|\mathbf{w}^{\mathsf{T}}\boldsymbol{\phi}(\mathbf{x}_n), \beta^{-1}\right),$$
  
$$p(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mathbf{m}_0, \mathbf{S}_0).$$
 (3.33)

Then, by 3.7,

$$p(\mathbf{w}|\mathbf{t}_N) = \mathcal{N}(\mathbf{w}|\mathbf{m}_N, \mathbf{S}_N), \tag{3.34}$$

where

$$\mathbf{m}_{N} = \mathbf{S}_{N} \left( \mathbf{S}_{0}^{-1} \mathbf{m}_{0} + \beta \mathbf{\Phi}_{N}^{\mathsf{T}} \mathbf{t}_{N} \right), \mathbf{S}_{N}^{-1} = \mathbf{S}_{0}^{-1} + \beta \mathbf{\Phi}_{N}^{\mathsf{T}} \mathbf{\Phi}_{N}.$$

$$(3.35)$$

By the Bayes' theorem,

$$p(\mathbf{w}|\mathbf{t}_{N+1})p(\mathbf{t}_{N+1}) = p(\mathbf{t}_{N+1}|\mathbf{w})p(\mathbf{w}). \tag{3.36}$$

The right hand side can be written as

$$p(t_{N+1}|\mathbf{w})p(\mathbf{t}_N|\mathbf{w})p(\mathbf{w}) = p(t_{N+1}|\mathbf{w})p(\mathbf{w}|\mathbf{t}_N)p(\mathbf{t}_N).$$
(3.37)

Therefore,

$$p(\mathbf{w}|\mathbf{t}_{N+1})p(t_{N+1}) = p(t_{N+1}|\mathbf{w})p(\mathbf{w}|\mathbf{t}_N). \tag{3.38}$$

The logarithm of the right hand side except the terms independent of  $\mathbf{w}$  can be written as

$$-\frac{\beta}{2} (t_{N+1} - \mathbf{w}^{\mathsf{T}} \boldsymbol{\phi}(\mathbf{x}_{N+1}))^{2} - \frac{1}{2} (\mathbf{w} - \mathbf{m}_{N})^{\mathsf{T}} \mathbf{S}_{N}^{-1} (\mathbf{w} - \mathbf{m}_{N})$$

$$= -\frac{1}{2} (\mathbf{w} - \boldsymbol{\mu}_{N+1})^{\mathsf{T}} \boldsymbol{\Lambda}_{N+1} (\mathbf{w} - \boldsymbol{\mu}_{N+1}) + \frac{1}{2} \boldsymbol{\mu}_{N+1}^{\mathsf{T}} \boldsymbol{\Lambda}_{N+1} \boldsymbol{\mu}_{N+1}$$

$$-\frac{1}{2} \mathbf{m}_{N}^{\mathsf{T}} \mathbf{S}_{N}^{-1} \mathbf{m}_{N} - \frac{\beta}{2} t_{N+1}^{2},$$
(3.39)

where

$$\boldsymbol{\mu}_{N+1} = \boldsymbol{\Lambda}_{N+1}^{-1} \left( \mathbf{S}_{N}^{-1} \mathbf{m}_{N} + \beta t_{N+1} \boldsymbol{\phi}(\mathbf{x}_{N+1}) \right), \boldsymbol{\Lambda}_{N+1} = \mathbf{S}_{N}^{-1} + \beta \boldsymbol{\phi}(\mathbf{x}_{N+1}) \boldsymbol{\phi}(\mathbf{x}_{N+1})^{\mathsf{T}}.$$
(3.40)

Therefore,

$$\mu_{N+1} = \mathbf{m}_{N+1}, 
\Lambda_{N+1} = \mathbf{S}_{N+1}^{-1}.$$
(3.41)

Thus,

$$p(\mathbf{w}|\mathbf{t}_{N+1}) = \mathcal{N}(\mathbf{w}|\mathbf{m}_{N+1}, \mathbf{S}_{N+1}). \tag{3.42}$$

# 3.9 (Incomplete)

Let  $t_1, \dots, t_N$  be variables such that

$$p(t_n|\mathbf{w}) = \mathcal{N}\left(t_n|\mathbf{w}^{\mathsf{T}}\boldsymbol{\phi}(\mathbf{x}_n), \beta^{-1}\right),$$
  
$$p(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mathbf{m}_0, \mathbf{S}_0).$$
 (3.43)

Then, by 3.7,

$$p(\mathbf{w}|\mathbf{t}_N) = \mathcal{N}(\mathbf{w}|\mathbf{m}_N, \mathbf{S}_N), \tag{3.44}$$

where

$$\mathbf{m}_{N} = \mathbf{S}_{N} \left( \mathbf{S}_{0}^{-1} \mathbf{m}_{0} + \beta \mathbf{\Phi}_{N}^{\mathsf{T}} \mathbf{t}_{N} \right), \mathbf{S}_{N}^{-1} = \mathbf{S}_{0}^{-1} + \beta \mathbf{\Phi}_{N}^{\mathsf{T}} \mathbf{\Phi}_{N}.$$

$$(3.45)$$

By the Bayes' theorem,

$$p(\mathbf{w}|\mathbf{t}_{N+1})p(\mathbf{t}_{N+1}) = p(\mathbf{t}_{N+1}|\mathbf{w})p(\mathbf{w}). \tag{3.46}$$

The right hand side can be written as

$$p(t_{N+1}|\mathbf{w})p(\mathbf{t}_N|\mathbf{w})p(\mathbf{w}) = p(t_{N+1}|\mathbf{w})p(\mathbf{w}|\mathbf{t}_N)p(\mathbf{t}_N). \tag{3.47}$$

Therefore,

$$p(\mathbf{w}|\mathbf{t}_{N+1})p(t_{N+1}) = p(t_{N+1}|\mathbf{w})p(\mathbf{w}|\mathbf{t}_N). \tag{3.48}$$

The logarithm of the right hand side except the terms independent of  ${\bf w}$  can be written as

$$-\frac{\beta}{2} \left(t_{N+1} - \mathbf{w}^{\mathsf{T}} \boldsymbol{\phi}(\mathbf{x}_{N+1})\right)^{2} - \frac{1}{2} \left(\mathbf{w} - \mathbf{m}_{N}\right)^{\mathsf{T}} \mathbf{S}_{N}^{-1} \left(\mathbf{w} - \mathbf{m}_{N}\right). \tag{3.49}$$

#### 3.10

Let t be a variable such that

$$p(t|\mathbf{w}) = \mathcal{N}\left(t|\mathbf{w}^{\mathsf{T}}\boldsymbol{\phi}(\mathbf{x}), \beta^{-1}\right),$$
  

$$p(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mathbf{m}_{0}, \mathbf{S}_{0}).$$
(3.50)

Then, by 3.7,

$$p(\mathbf{w}|\mathbf{t}) = \mathcal{N}(\mathbf{w}|\mathbf{m}_N, \mathbf{S}_N), \tag{3.51}$$

where

$$\mathbf{m}_{N} = \mathbf{S}_{N} \left( \mathbf{S}_{0}^{-1} \mathbf{m}_{0} + \beta \mathbf{\Phi}^{\mathsf{T}} \mathbf{t} \right), \mathbf{S}_{N}^{-1} = \mathbf{S}_{0}^{-1} + \beta \mathbf{\Phi}^{\mathsf{T}} \mathbf{\Phi}.$$
 (3.52)

By marginalisation,

$$p(t|\mathbf{t}) = \int p(t|\mathbf{w})p(\mathbf{w}|\mathbf{t})d\mathbf{w}.$$
 (3.53)

The logarithm of the integrand of the right hand side except the terms independent of t and  $\mathbf{w}$  can be written as

$$-\frac{\beta}{2} (t - \mathbf{w}^{\mathsf{T}} \boldsymbol{\phi}(\mathbf{x}))^{2} - \frac{1}{2} (\mathbf{w} - \mathbf{m}_{N})^{\mathsf{T}} \mathbf{S}_{N}^{-1} (\mathbf{w} - \mathbf{m}_{N}). \tag{3.54}$$

It can be written as

$$-\frac{1}{2}\begin{bmatrix}\mathbf{w}\\t\end{bmatrix}^{\mathsf{T}}\begin{bmatrix}\mathbf{S}_{N}^{-1}+\beta\boldsymbol{\phi}(\mathbf{x})\boldsymbol{\phi}(\mathbf{x})^{\mathsf{T}} & -\beta\boldsymbol{\phi}(\mathbf{x})\\-\beta\boldsymbol{\phi}(\mathbf{x})^{\mathsf{T}} & \beta\end{bmatrix}\begin{bmatrix}\mathbf{w}\\t\end{bmatrix}+\begin{bmatrix}\mathbf{w}\\t\end{bmatrix}^{\mathsf{T}}\begin{bmatrix}\mathbf{S}_{N}^{-1}\mathbf{m}_{N}\\0\end{bmatrix}-\frac{1}{2}\mathbf{m}_{N}^{\mathsf{T}}\mathbf{S}_{N}^{-1}\mathbf{m}_{N}.$$

By 2.24,

$$\begin{bmatrix} \mathbf{S}_N^{-1} + \beta \boldsymbol{\phi}(\mathbf{x}) \boldsymbol{\phi}(\mathbf{x})^{\mathsf{T}} & -\beta \boldsymbol{\phi}(\mathbf{x}) \\ -\beta \boldsymbol{\phi}(\mathbf{x})^{\mathsf{T}} & \beta \end{bmatrix}^{-1} = \begin{bmatrix} \mathbf{S}_N & \mathbf{S}_N \boldsymbol{\phi}(\mathbf{x}) \\ \boldsymbol{\phi}(\mathbf{x})^{\mathsf{T}} \mathbf{S}_N & \frac{1}{\beta} + \boldsymbol{\phi}(\mathbf{x})^{\mathsf{T}} \mathbf{S}_N \boldsymbol{\phi}(\mathbf{x}) \end{bmatrix}.$$

Therefore,

$$\begin{bmatrix} \mathbf{S}_N^{-1} + \beta \boldsymbol{\phi}(\mathbf{x}) \boldsymbol{\phi}(\mathbf{x})^{\mathsf{T}} & \beta \boldsymbol{\phi}(\mathbf{x}) \\ \beta \boldsymbol{\phi}(\mathbf{x})^{\mathsf{T}} & \beta \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{S}_N^{-1} \mathbf{m}_N \\ 0 \end{bmatrix} = \begin{bmatrix} \mathbf{m}_N \\ \mathbf{m}_N^{\mathsf{T}} \boldsymbol{\phi}(\mathbf{x}) \end{bmatrix}.$$

Thus,

$$p(t|\mathbf{t}) = \mathcal{N}\left(t|\mathbf{m}_N^{\mathsf{T}}\boldsymbol{\phi}(\mathbf{x}), \sigma_N^2(\mathbf{x})\right),\tag{3.55}$$

where

$$\sigma_N^2(\mathbf{x}) = \frac{1}{\beta} + \boldsymbol{\phi}(\mathbf{x})^{\mathsf{T}} \mathbf{S}_N \boldsymbol{\phi}(\mathbf{x}). \tag{3.56}$$

#### 3.11

Let t be a variable such that

$$p(t|\mathbf{w}) = \mathcal{N}\left(t|\mathbf{w}^{\mathsf{T}}\boldsymbol{\phi}(\mathbf{x}), \beta^{-1}\right),$$
  

$$p(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mathbf{m}_{0}, \mathbf{S}_{0}).$$
(3.57)

Then, by 3.7,

$$p(\mathbf{w}|\mathbf{t}) = \mathcal{N}(\mathbf{w}|\mathbf{m}_N, \mathbf{S}_N),$$
 (3.58)

where

$$\mathbf{m}_{N} = \mathbf{S}_{N} \left( \mathbf{S}_{0}^{-1} \mathbf{m}_{0} + \beta \mathbf{\Phi}_{N}^{\mathsf{T}} \mathbf{t}_{N} \right), \mathbf{S}_{N}^{-1} = \mathbf{S}_{0}^{-1} + \beta \mathbf{\Phi}_{N}^{\mathsf{T}} \mathbf{\Phi}_{N}.$$

$$(3.59)$$

Then, by 3.10,

$$p(t|\mathbf{t}) = \mathcal{N}\left(t \mid \mathbf{m}_{N}^{\mathsf{T}} \boldsymbol{\phi}(\mathbf{x}), \sigma_{N}^{2}(\mathbf{x})\right), \tag{3.60}$$

where

$$\sigma_N^2(\mathbf{x}) = \frac{1}{\beta} + \boldsymbol{\phi}(\mathbf{x})^{\mathsf{T}} \mathbf{S}_N \boldsymbol{\phi}(\mathbf{x}). \tag{3.61}$$

Then,

$$\sigma_N^2(\mathbf{x}) - \sigma_{N+1}^2(\mathbf{x}) = \phi(\mathbf{x})^{\mathsf{T}} \left( \mathbf{S}_N - \mathbf{S}_{N+1} \right) \phi(\mathbf{x}). \tag{3.62}$$

By the expression of  $\mathbf{S}_N$  above,

$$\mathbf{S}_{N+1} = \left(\mathbf{S}_N^{-1} + \beta \boldsymbol{\phi}(\mathbf{x}_{N+1}) \boldsymbol{\phi}(\mathbf{x}_{N+1})^{\mathsf{T}}\right)^{-1}.$$
 (3.63)

By the identity

$$(\mathbf{M} + \mathbf{v}\mathbf{v}^{\mathsf{T}})^{-1} = \mathbf{M}^{-1} - \frac{(\mathbf{M}^{-1}\mathbf{v})(\mathbf{v}^{\mathsf{T}}\mathbf{M}^{-1})}{1 + \mathbf{v}^{\mathsf{T}}\mathbf{M}^{-1}\mathbf{v}},$$
 (3.64)

the right hand side can be written as

$$\mathbf{S}_{N} - \frac{\beta \left(\mathbf{S}_{N} \boldsymbol{\phi}(\mathbf{x}_{N+1})\right) \left(\boldsymbol{\phi}(\mathbf{x}_{N+1})^{\mathsf{T}} \mathbf{S}_{N}\right)}{1 + \beta \boldsymbol{\phi}(\mathbf{x}_{N+1}) \mathbf{S}_{N} \boldsymbol{\phi}(\mathbf{x}_{N+1})^{\mathsf{T}}}.$$
(3.65)

Therefore,

$$\phi(\mathbf{x})^{\mathsf{T}}(\mathbf{S}_{N} - \mathbf{S}_{N+1})\phi(\mathbf{x}) = \frac{\beta \left(\phi(\mathbf{x})^{\mathsf{T}}\mathbf{S}_{N}\phi(\mathbf{x}_{N+1})\right)^{2}}{1 + \beta\phi(\mathbf{x}_{N+1})\mathbf{S}_{N}\phi(\mathbf{x}_{N+1})^{\mathsf{T}}}.$$
 (3.66)

Thus,

$$\sigma_{N+1}^2(\mathbf{x}) \le \sigma_N^2(\mathbf{x}). \tag{3.67}$$

#### 3.12

Let  $t_1, \dots, t_N$  be variables such that

$$p(t_n|\mathbf{w},\beta) = \mathcal{N}\left(t_n|\mathbf{w}^{\mathsf{T}}\boldsymbol{\phi}(\mathbf{x}_n),\beta^{-1}\right),$$
  

$$p(\mathbf{w},\beta) = \mathcal{N}\left(\mathbf{w}|\mathbf{m}_0,\beta^{-1}\mathbf{S}_0\right)\operatorname{Gam}(\beta|a_0,b_0),$$
(3.68)

where **w** and  $\phi$  are vectors in M dimensions. By the Bayes' theorem,

$$p(\mathbf{w}, \beta | \mathbf{t}) p(\mathbf{t}) = p(\mathbf{t} | \mathbf{w}, \beta) p(\mathbf{w}, \beta). \tag{3.69}$$

The logarithm of the right hand side except the terms independent of  $\mathbf{t}$ ,  $\mathbf{w}$  and  $\beta$  can be written as

$$-\frac{N}{2}\ln\beta^{-1} - \frac{\beta}{2}\sum_{n=1}^{N}(t_n - \mathbf{w}^{\mathsf{T}}\boldsymbol{\phi}(\mathbf{x}_n))^2 - \frac{M}{2}\ln\beta^{-1} - \frac{\beta}{2}(\mathbf{w} - \mathbf{m}_0)^{\mathsf{T}}\mathbf{S}_0^{-1}(\mathbf{w} - \mathbf{m}_0)$$

$$+ (a_0 - 1)\ln\beta - b_0\beta$$

$$= -\frac{M}{2}\ln\beta - \frac{\beta}{2}\mathbf{w}^{\mathsf{T}}\left(\mathbf{S}_0^{-1} + \mathbf{\Phi}^{\mathsf{T}}\mathbf{\Phi}\right)\mathbf{w} + \beta\mathbf{w}^{\mathsf{T}}\left(\mathbf{S}_0^{-1}\mathbf{m}_0 + \mathbf{\Phi}^{\mathsf{T}}\mathbf{t}\right) - \frac{\beta}{2}\|\mathbf{t}\|^2 - \frac{\beta}{2}\mathbf{m}_0^{\mathsf{T}}\mathbf{S}_0^{-1}\mathbf{m}_0$$

$$+ \left(a_0 + \frac{N}{2} - 1\right)\ln\beta - b_0\beta.$$
(3.70)

The right hand side can be written as

$$-\frac{M}{2}\ln\beta - \frac{\beta}{2}(\mathbf{w} - \mathbf{m}_N)^{\mathsf{T}}\mathbf{S}_N^{-1}(\mathbf{w} - \mathbf{m}_N) + (a_N - 1)\ln\beta - b_N\beta, \quad (3.71)$$

where

$$\mathbf{m}_{N} = \mathbf{S}_{N} \left( \mathbf{S}_{0}^{-1} \mathbf{m}_{0} + \mathbf{\Phi}^{\mathsf{T}} \mathbf{t} \right),$$

$$\mathbf{S}_{N}^{-1} = \mathbf{S}_{0}^{-1} + \mathbf{\Phi}^{\mathsf{T}} \mathbf{\Phi},$$

$$a_{N} = a_{0} + \frac{N}{2},$$

$$b_{N} = b_{0} + \frac{1}{2} \|\mathbf{t}\|^{2} + \frac{1}{2} \mathbf{m}_{0}^{\mathsf{T}} \mathbf{S}_{0} \mathbf{m}_{0} - \frac{1}{2} \mathbf{m}_{N}^{\mathsf{T}} \mathbf{S}_{N}^{-1} \mathbf{m}_{N}.$$
(3.72)

Therefore,

$$p(\mathbf{w}, \beta | \mathbf{t}) = \mathcal{N}\left(\mathbf{w} | \mathbf{m}_N, \beta^{-1} \mathbf{S}_N\right) \operatorname{Gam}(\beta | a_N, b_N).$$
 (3.73)

Substituting it to the result of the Bayes' theorem above, we have

$$p(\mathbf{t}) = \frac{\mathcal{N}(\mathbf{t}|\mathbf{\Phi}\mathbf{w}, \beta^{-1}\mathbf{I}) \mathcal{N}(\mathbf{w}|\mathbf{m}_0, \beta^{-1}\mathbf{S}_0) \operatorname{Gam}(\beta|a_0, b_0)}{\mathcal{N}(\mathbf{w}|\mathbf{m}_N, \beta^{-1}\mathbf{S}_N) \operatorname{Gam}(\beta|a_N, b_N)}.$$
 (3.74)

The logarithm of the right hand side can be written as

$$-\frac{N}{2}\ln(2\pi) - \frac{N}{2}\ln\beta^{-1} - \frac{\beta}{2}(\mathbf{t} - \mathbf{\Phi}\mathbf{w})^{\mathsf{T}}(\mathbf{t} - \mathbf{\Phi}\mathbf{w})$$

$$-\frac{M}{2}\ln(2\pi) - \frac{M}{2}\ln\beta^{-1} - \frac{1}{2}\det\mathbf{S}_{0} - \frac{\beta}{2}(\mathbf{w} - \mathbf{m}_{0})^{\mathsf{T}}\mathbf{S}_{0}^{-1}(\mathbf{w} - \mathbf{m}_{0})$$

$$+ a_{0}\ln b_{0} - \ln\Gamma(a_{0}) + (a_{0} - 1)\ln\beta - b_{0}\beta$$

$$+ \frac{M}{2}\ln(2\pi) + \frac{M}{2}\ln\beta^{-1} + \frac{1}{2}\det\mathbf{S}_{N} + \frac{\beta}{2}(\mathbf{w} - \mathbf{m}_{N})^{\mathsf{T}}\mathbf{S}_{N}^{-1}(\mathbf{w} - \mathbf{m}_{0})$$

$$- a_{N}\ln b_{N} + \ln\Gamma(a_{N}) - (a_{N} - 1)\ln\beta + b_{N}\beta$$

$$= -\frac{N}{2}\ln(2\pi) - \frac{1}{2}\det\mathbf{S}_{0} + a_{0}\ln b_{0} - \ln\Gamma(a_{0}) + \frac{1}{2}\det\mathbf{S}_{N} - a_{N}\ln b_{N} + \ln\Gamma(a_{N}).$$
(3.75)

Therefore,

$$p(\mathbf{t}) = (2\pi)^{-\frac{N}{2}} \left( \frac{\det \mathbf{S}_N}{\det \mathbf{S}_0} \right)^{\frac{1}{2}} \frac{\Gamma(a_N)}{\Gamma(a_0)} \frac{b_0^{a_0}}{b_N^{a_N}}.$$
 (3.76)

#### 3.13

Let  $t_1, \dots, t_N$  be variables such that

$$p(t_n|\mathbf{w},\beta) = \mathcal{N}\left(t_n|\mathbf{w}^{\mathsf{T}}\boldsymbol{\phi}(\mathbf{x}_n),\beta^{-1}\right),$$
  

$$p(\mathbf{w},\beta) = \mathcal{N}\left(\mathbf{w}|\mathbf{m}_0,\beta^{-1}\mathbf{S}_0\right)\operatorname{Gam}(\beta|a_0,b_0),$$
(3.77)

where **w** and  $\phi$  are vectors in M dimensions. Then, by 3.12,

$$p(\mathbf{w}, \beta | \mathbf{t}) = \mathcal{N}(\mathbf{w} | \mathbf{m}_N, \beta^{-1} \mathbf{S}_N) \operatorname{Gam}(\beta | a_N, b_N),$$
 (3.78)

where

$$\mathbf{m}_{N} = \mathbf{S}_{N} \left( \mathbf{S}_{0}^{-1} \mathbf{m}_{0} + \mathbf{\Phi}^{\mathsf{T}} \mathbf{t} \right),$$

$$\mathbf{S}_{N}^{-1} = \mathbf{S}_{0}^{-1} + \mathbf{\Phi}^{\mathsf{T}} \mathbf{\Phi},$$

$$a_{N} = a_{0} + \frac{N}{2},$$

$$b_{N} = b_{0} + \frac{1}{2} \|\mathbf{t}\|^{2} + \frac{1}{2} \mathbf{m}_{0}^{\mathsf{T}} \mathbf{S}_{0} \mathbf{m}_{0} - \frac{1}{2} \mathbf{m}_{N}^{\mathsf{T}} \mathbf{S}_{N}^{-1} \mathbf{m}_{N}.$$

$$(3.79)$$

By marginalisation,

$$p(t|\mathbf{t}) = \int \int p(t|\mathbf{w}, \beta)p(\mathbf{w}, \beta|\mathbf{t})d\mathbf{w}d\beta.$$
 (3.80)

The right hand side can be written as

$$\int \left( \int \mathcal{N} \left( t | \mathbf{w}^{\mathsf{T}} \boldsymbol{\phi}(\mathbf{x}), \beta^{-1} \right) \mathcal{N} \left( \mathbf{w} | \mathbf{m}_{N}, \beta^{-1} \mathbf{S}_{N} \right) d\mathbf{w} \right) \operatorname{Gam}(\beta | a_{N}, b_{N}) d\beta.$$
(3.81)

The logarithm of the integrand with respect to  $\mathbf{w}$  except the terms indepndent of  $\mathbf{w}$  can be written as

$$-\frac{\beta}{2} (t - \mathbf{w}^{\mathsf{T}} \boldsymbol{\phi}(\mathbf{x}))^{2} - \frac{\beta}{2} (\mathbf{w} - \mathbf{m}_{N})^{\mathsf{T}} \mathbf{S}_{N}^{-1} (\mathbf{w} - \mathbf{m}_{N}). \tag{3.82}$$

It can be written as

$$-\frac{\beta}{2} \begin{bmatrix} \mathbf{w} \\ t \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} \mathbf{S}_N^{-1} + \boldsymbol{\phi}(\mathbf{x}) \boldsymbol{\phi}(\mathbf{x})^{\mathsf{T}} & -\boldsymbol{\phi}(\mathbf{x}) \\ -\boldsymbol{\phi}(\mathbf{x})^{\mathsf{T}} & 1 \end{bmatrix} \begin{bmatrix} \mathbf{w} \\ t \end{bmatrix} + \beta \begin{bmatrix} \mathbf{w} \\ t \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} \mathbf{S}_N^{-1} \mathbf{m}_N \\ 0 \end{bmatrix} - \frac{\beta}{2} \mathbf{m}_N^{\mathsf{T}} \mathbf{S}_N^{-1} \mathbf{m}_N.$$

By 2.24,

$$\begin{bmatrix} \mathbf{S}_N^{-1} + \boldsymbol{\phi}(\mathbf{x})\boldsymbol{\phi}(\mathbf{x})^\intercal & -\boldsymbol{\phi}(\mathbf{x}) \\ -\boldsymbol{\phi}(\mathbf{x})^\intercal & 1 \end{bmatrix}^{-1} = \begin{bmatrix} \mathbf{S}_N & \mathbf{S}_N\boldsymbol{\phi}(\mathbf{x}) \\ \boldsymbol{\phi}(\mathbf{x})^\intercal\mathbf{S}_N & 1 + \boldsymbol{\phi}(\mathbf{x})^\intercal\mathbf{S}_N\boldsymbol{\phi}(\mathbf{x}) \end{bmatrix}.$$

Then,

$$\begin{bmatrix} \mathbf{S}_N^{-1} + \boldsymbol{\phi}(\mathbf{x})\boldsymbol{\phi}(\mathbf{x})^{\mathsf{T}} & -\boldsymbol{\phi}(\mathbf{x}) \\ -\boldsymbol{\phi}(\mathbf{x})^{\mathsf{T}} & 1 \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{S}_N^{-1}\mathbf{m}_N \\ 0 \end{bmatrix} = \begin{bmatrix} \mathbf{m}_N \\ \mathbf{m}_N^{\mathsf{T}}\boldsymbol{\phi}(\mathbf{x}) \end{bmatrix}.$$

Therefore, the integral with respect to  $\mathbf{w}$  can be written as

$$\mathcal{N}\left(t|\mathbf{m}_{N}^{\mathsf{T}}\boldsymbol{\phi}(\mathbf{x}), \beta^{-1}\left(1+\boldsymbol{\phi}(\mathbf{x})^{\mathsf{T}}\mathbf{S}_{N}\boldsymbol{\phi}(\mathbf{x})\right)\right). \tag{3.83}$$

Then, the logarithm of the integrand with respect to  $\beta$  except the terms independent of  $\beta$  can be written as

$$-\frac{1}{2}\ln\beta^{-1} - \frac{\beta}{2\left(1 + \boldsymbol{\phi}(\mathbf{x})^{\mathsf{T}}\mathbf{S}_{N}\boldsymbol{\phi}(\mathbf{x})\right)} \left(t - \mathbf{m}_{N}^{\mathsf{T}}\boldsymbol{\phi}(\mathbf{x})\right)^{2} + (a_{N} - 1)\ln\beta - b_{N}\beta$$

$$= \left(a_{N} + \frac{1}{2} - 1\right)\ln\beta - \left(b_{N} + \frac{\left(t - \mathbf{m}_{N}^{\mathsf{T}}\boldsymbol{\phi}(\mathbf{x})\right)^{2}}{2\left(1 + \boldsymbol{\phi}(\mathbf{x})^{\mathsf{T}}\mathbf{S}_{N}\boldsymbol{\phi}(\mathbf{x})\right)}\right)\beta.$$
(3.84)

Therefore, the integral with respect to  $\beta$  except the terms independent of t can be written as

$$\left(b_N + \frac{\left(t - \mathbf{m}_N^{\mathsf{T}} \boldsymbol{\phi}(\mathbf{x})\right)^2}{2\left(1 + \boldsymbol{\phi}(\mathbf{x})^{\mathsf{T}} \mathbf{S}_N \boldsymbol{\phi}(\mathbf{x})\right)}\right)^{-a_N - \frac{1}{2}}.$$
(3.85)

Thus,

$$p(t|\mathbf{x}, \mathbf{t}) = \operatorname{St}(t|\mu, \lambda, \nu), \tag{3.86}$$

where

$$\mu = \mathbf{m}_{N}^{\mathsf{T}} \boldsymbol{\phi}(\mathbf{x}),$$

$$\lambda = \frac{a_{N}}{b_{N}} (1 + \boldsymbol{\phi}(\mathbf{x})^{\mathsf{T}} \mathbf{S}_{N} \boldsymbol{\phi}(\mathbf{x}))^{-1},$$

$$\nu = 2a_{N}.$$
(3.87)

# 3.14 (Incomplete)

Let  $t_1, \dots, t_N$  be variables such that

$$p(t_n|\mathbf{w}) = \mathcal{N}\left(t_n|\mathbf{w}^{\mathsf{T}}\boldsymbol{\phi}(\mathbf{x}_n), \beta^{-1}\right),$$
  
$$p(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \alpha^{-1}\mathbf{I}),$$
(3.88)

where **w** and  $\phi$  are vectors in M dimensions. Then, by 3.7,

$$p(\mathbf{w}|\mathbf{t}) = \mathcal{N}(\mathbf{w}|\mathbf{m}_N, \mathbf{S}_N), \tag{3.89}$$

where

$$\mathbf{m}_{N} = \beta \mathbf{S}_{N} \mathbf{\Phi}^{\mathsf{T}} \mathbf{t}, \mathbf{S}_{N}^{-1} = \alpha \mathbf{I} + \beta \mathbf{\Phi}^{\mathsf{T}} \mathbf{\Phi}.$$
 (3.90)

Let

$$y(\mathbf{x}, \mathbf{w}) = \mathbf{w}^{\mathsf{T}} \phi(\mathbf{x}). \tag{3.91}$$

Then,

$$y(\mathbf{x}, \mathbf{m}_N) = \sum_{n=1}^{N} k(\mathbf{x}, \mathbf{x}_n) t_n,$$
 (3.92)

where

$$k(\mathbf{x}, \mathbf{x}') = \beta \phi(\mathbf{x})^{\mathsf{T}} \mathbf{S}_N \phi(\mathbf{x}'). \tag{3.93}$$

Let us suppose that  $\phi_j(\mathbf{x})$  are linearly independent, N > M and

$$\phi_0(\mathbf{x}) = 1. \tag{3.94}$$

Then, we can construct a new basis set  $\psi_i(\mathbf{x})$  such that

$$\mathbf{\Psi}^{\mathsf{T}}\mathbf{\Psi} = \mathbf{I}?\tag{3.95}$$

$$\sum_{n=1}^{N} \psi_j(\mathbf{x}_n) \psi_k(\mathbf{x}_n) = I_{jk}?$$
(3.96)

where

$$oldsymbol{\Psi} = egin{bmatrix} oldsymbol{\psi}(\mathbf{x}_1)^\intercal \ dots \ oldsymbol{\psi}(\mathbf{x}_N)^\intercal \end{bmatrix}$$

and

$$\psi_0(\mathbf{x}) = 1. \tag{3.97}$$

Under the basis set, if  $\alpha = 0$ , then

$$\mathbf{S}_N^{-1} = \beta \mathbf{I},\tag{3.98}$$

so that

$$k(\mathbf{x}, \mathbf{x}') = \boldsymbol{\psi}(\mathbf{x})^{\mathsf{T}} \boldsymbol{\psi}(\mathbf{x}'). \tag{3.99}$$

Then,

$$\sum_{n=1}^{N} k(\mathbf{x}, \mathbf{x}_n) = \sum_{n=1}^{N} \sum_{j=0}^{M-1} \psi_j(\mathbf{x}) \psi_j(\mathbf{x}_n) = 1?$$
 (3.100)

#### 3.15

Let  $t_1, \dots, t_N$  be variables such that

$$p(t_n|\mathbf{w}) = \mathcal{N}\left(t_n|\mathbf{w}^{\mathsf{T}}\boldsymbol{\phi}(\mathbf{x}_n), \beta^{-1}\right),$$
  
$$p(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \alpha^{-1}\mathbf{I}),$$
(3.101)

where **w** and  $\phi$  are vectors in M dimensions. By 3.7,

$$p(\mathbf{w}|\mathbf{t}) = \mathcal{N}(\mathbf{w}|\mathbf{m}_N, \mathbf{S}_N), \tag{3.102}$$

where

$$\mathbf{m}_{N} = \beta \mathbf{S}_{N} \mathbf{\Phi}^{\mathsf{T}} \mathbf{t}, \mathbf{S}_{N}^{-1} = \alpha \mathbf{I} + \beta \mathbf{\Phi}^{\mathsf{T}} \mathbf{\Phi}.$$
 (3.103)

By 3.19,

$$\ln p(\mathbf{t}) = \frac{M}{2} \ln \alpha + \frac{N}{2} \ln \beta - \frac{N}{2} \ln(2\pi) + \frac{1}{2} \ln(\det \mathbf{S}_N) - E(\mathbf{m}_N), \quad (3.104)$$

where

$$E(\mathbf{m}_N) = \frac{\beta}{2} \|\mathbf{t} - \mathbf{\Phi} \mathbf{m}_N\|^2 + \frac{\alpha}{2} \mathbf{m}_N^{\mathsf{T}} \mathbf{m}_N.$$
 (3.105)

By 3.22, setting the derivatives of  $\ln p(\mathbf{t})$  with respect to  $\alpha$  and  $\beta$  to zero gives

$$\alpha = \frac{\gamma}{\mathbf{m}_{N}^{\mathsf{T}} \mathbf{m}_{N}},$$

$$\beta = \frac{N - \gamma}{\|\mathbf{t} - \mathbf{\Phi} \mathbf{m}_{N}\|^{2}},$$
(3.106)

where

$$\gamma = \sum_{m=1}^{M} \frac{\lambda_m}{\alpha + \lambda_m} \tag{3.107}$$

and  $\lambda_1, \dots, \lambda_M$  are the eigenvalues of  $\beta \Phi^{\dagger} \Phi$ . If  $\alpha$  and  $\beta$  are set as above, then

$$E(\mathbf{m}_N) = \frac{N}{2}.\tag{3.108}$$

### 3.16

Let  $t_1, \dots, t_N$  be variables such that

$$p(t_n|\mathbf{w}) = \mathcal{N}\left(t_n|\mathbf{w}^{\mathsf{T}}\boldsymbol{\phi}(\mathbf{x}_n), \beta^{-1}\right),$$
  
$$p(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \alpha^{-1}\mathbf{I}).$$
 (3.109)

where **w** and  $\phi$  are vectors in M dimensions. By the Bayes' theorem,

$$p(\mathbf{t}, \mathbf{w}) = p(\mathbf{t}|\mathbf{w})p(\mathbf{w}). \tag{3.110}$$

Integrating both sides with respect to  $\mathbf{w}$  gives

$$p(\mathbf{t}) = \int p(\mathbf{t}|\mathbf{w})p(\mathbf{w})d\mathbf{w}.$$
 (3.111)

The logarithm of the integrand of the right hand side except the terms independent of  $\mathbf{w}$  can be written as

$$-\frac{\beta}{2} \sum_{n=1}^{N} (t_n - \mathbf{w}^{\mathsf{T}} \boldsymbol{\phi}(\mathbf{x}_n))^2 - \frac{\alpha}{2} \mathbf{w}^{\mathsf{T}} \mathbf{w} = -\frac{1}{2} \begin{bmatrix} \mathbf{w} \\ \mathbf{t} \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} \alpha \mathbf{I} + \beta \mathbf{\Phi}^{\mathsf{T}} \mathbf{\Phi} & -\beta \mathbf{\Phi}^{\mathsf{T}} \\ -\beta \mathbf{\Phi} & \beta \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{w} \\ \mathbf{t} \end{bmatrix}.$$

By 2.24,

$$\begin{bmatrix} \alpha \mathbf{I} + \beta \mathbf{\Phi}^{\mathsf{T}} \mathbf{\Phi} & -\beta \mathbf{\Phi}^{\mathsf{T}} \\ -\beta \mathbf{\Phi} & \beta \mathbf{I} \end{bmatrix}^{-1} = \begin{bmatrix} \alpha^{-1} \mathbf{I} & \alpha^{-1} \mathbf{\Phi}^{\mathsf{T}} \\ \alpha^{-1} \mathbf{\Phi} & \alpha^{-1} \mathbf{\Phi} \mathbf{\Phi}^{\mathsf{T}} + \beta^{-1} \mathbf{I} \end{bmatrix}.$$

Therefore,

$$p(\mathbf{t}) = \mathcal{N}\left(\mathbf{t}|\mathbf{0}, \alpha^{-1}\mathbf{\Phi}\mathbf{\Phi}^{\mathsf{T}} + \beta^{-1}\mathbf{I}\right). \tag{3.112}$$

## 3.17

Let  $t_1, \dots, t_N$  be variables such that

$$p(t_n|\mathbf{w}) = \mathcal{N}\left(t_n|\mathbf{w}^{\mathsf{T}}\boldsymbol{\phi}(\mathbf{x}_n), \beta^{-1}\right),$$
  
$$p(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \alpha^{-1}\mathbf{I}),$$
(3.113)

where **w** and  $\phi$  are vectors in M dimensions. By the Bayes' theorem,

$$p(\mathbf{t}, \mathbf{w}) = p(\mathbf{t}|\mathbf{w})p(\mathbf{w}). \tag{3.114}$$

Then,

$$p(\mathbf{t}) = \int p(\mathbf{t}|\mathbf{w})p(\mathbf{w})d\mathbf{w}.$$
 (3.115)

The logarithm of the integrand of the right hand side can be written as

$$-\frac{N}{2}\ln\left(2\pi\beta^{-1}\right) - \frac{\beta}{2}\sum_{n=1}^{N}\left(t_n - \mathbf{w}^{\mathsf{T}}\boldsymbol{\phi}(\mathbf{x}_n)\right)^2 - \frac{M}{2}\ln\left(2\pi\right) - \frac{1}{2}\ln\left(\det\left(\alpha^{-1}\mathbf{I}\right)\right) - \frac{\alpha}{2}\mathbf{w}^{\mathsf{T}}\mathbf{w}.$$
(3.116)

Therefore,

$$p(\mathbf{t}) = \left(\frac{\beta}{2\pi}\right)^{\frac{N}{2}} \left(\frac{\alpha}{2\pi}\right)^{\frac{M}{2}} \int \exp\left(-E(\mathbf{w})\right) d\mathbf{w}, \tag{3.117}$$

where

$$E(\mathbf{w}) = \frac{\beta}{2} \|\mathbf{t} - \mathbf{\Phi}\mathbf{w}\|^2 + \frac{\alpha}{2} \mathbf{w}^{\mathsf{T}} \mathbf{w}.$$
 (3.118)

### 3.18

Let  $t_1, \dots, t_N$  be variables such that

$$p(t_n|\mathbf{w}) = \mathcal{N}\left(t_n|\mathbf{w}^{\mathsf{T}}\boldsymbol{\phi}(\mathbf{x}_n), \beta^{-1}\right),$$
  
$$p(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \alpha^{-1}\mathbf{I}),$$
(3.119)

where **w** and  $\phi$  are vectors in M dimensions. By 3.7,

$$p(\mathbf{w}|\mathbf{t}) = \mathcal{N}(\mathbf{w}|\mathbf{m}_N, \mathbf{S}_N), \tag{3.120}$$

where

$$\mathbf{m}_{N} = \beta \mathbf{S}_{N} \mathbf{\Phi}^{\mathsf{T}} \mathbf{t}, \mathbf{S}_{N}^{-1} = \alpha \mathbf{I} + \beta \mathbf{\Phi}^{\mathsf{T}} \mathbf{\Phi}.$$
 (3.121)

By 3.17,

$$p(\mathbf{t}) = \left(\frac{\beta}{2\pi}\right)^{\frac{N}{2}} \left(\frac{\alpha}{2\pi}\right)^{\frac{M}{2}} \int \exp\left(-E(\mathbf{w})\right) d\mathbf{w}, \tag{3.122}$$

where

$$E(\mathbf{w}) = \frac{\beta}{2} \|\mathbf{t} - \mathbf{\Phi}\mathbf{w}\|^2 + \frac{\alpha}{2} \mathbf{w}^{\mathsf{T}} \mathbf{w}.$$
 (3.123)

The first term of the definition of  $E(\mathbf{w})$  can be written as

$$\frac{\beta}{2} \|\mathbf{t} - \mathbf{\Phi} \mathbf{m}_N - \mathbf{\Phi} (\mathbf{w} - \mathbf{m}_N)\|^2 
= \frac{\beta}{2} \|\mathbf{t} - \mathbf{\Phi} \mathbf{m}_N\|^2 - \beta (\mathbf{t} - \mathbf{\Phi} \mathbf{m}_N)^{\mathsf{T}} \mathbf{\Phi} (\mathbf{w} - \mathbf{m}_N) + \frac{\beta}{2} (\mathbf{w} - \mathbf{m}_N)^{\mathsf{T}} \mathbf{\Phi}^{\mathsf{T}} \mathbf{\Phi} (\mathbf{w} - \mathbf{m}_N).$$
(3.124)

Similarly, the second term can be written as

$$\frac{\alpha}{2} (\mathbf{w} - \mathbf{m}_N + \mathbf{m}_N)^{\mathsf{T}} (\mathbf{w} - \mathbf{m}_N + \mathbf{m}_N) 
= \frac{\alpha}{2} (\mathbf{w} - \mathbf{m}_N)^{\mathsf{T}} (\mathbf{w} - \mathbf{m}_N) + \alpha \mathbf{m}_N^{\mathsf{T}} (\mathbf{w} - \mathbf{m}_N) + \frac{\alpha}{2} \mathbf{m}_N^{\mathsf{T}} \mathbf{m}_N.$$
(3.125)

Here,

$$-\beta(\mathbf{t} - \mathbf{\Phi}\mathbf{m}_N)^{\mathsf{T}}\mathbf{\Phi}(\mathbf{w} - \mathbf{m}_N) + \alpha\mathbf{m}_N^{\mathsf{T}}(\mathbf{w} - \mathbf{m}_N)$$
  
=  $(-\beta\mathbf{\Phi}^{\mathsf{T}}\mathbf{t} + \beta\mathbf{\Phi}^{\mathsf{T}}\mathbf{\Phi}\mathbf{m}_N + \alpha\mathbf{m}_N)^{\mathsf{T}}(\mathbf{w} - \mathbf{m}_N).$  (3.126)

By the definitions of  $\mathbf{m}_N$  and  $\mathbf{S}_N$  above, the right hand can be written as

$$\left(-\beta \mathbf{\Phi}^{\mathsf{T}} \mathbf{t} + \mathbf{S}_{N}^{-1} \mathbf{m}_{N}\right)^{\mathsf{T}} (\mathbf{w} - \mathbf{m}_{N}) = 0. \tag{3.127}$$

Therefore,

$$E(\mathbf{w}) = E(\mathbf{m}_N) + \frac{1}{2}(\mathbf{w} - \mathbf{m}_N)^{\mathsf{T}} \mathbf{S}_N^{-1}(\mathbf{w} - \mathbf{m}_N). \tag{3.128}$$

## 3.19

Let  $t_1, \dots, t_N$  be variables such that

$$p(t_n|\mathbf{w}) = \mathcal{N}\left(t_n|\mathbf{w}^{\mathsf{T}}\boldsymbol{\phi}(\mathbf{x}_n), \beta^{-1}\right),$$
  
$$p(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \alpha^{-1}\mathbf{I}),$$
(3.129)

where **w** and  $\phi$  are vectors in M dimensions. By 3.7,

$$p(\mathbf{w}|\mathbf{t}) = \mathcal{N}(\mathbf{w}|\mathbf{m}_N, \mathbf{S}_N), \tag{3.130}$$

where

$$\mathbf{m}_{N} = \beta \mathbf{S}_{N} \mathbf{\Phi}^{\mathsf{T}} \mathbf{t}, \mathbf{S}_{N}^{-1} = \alpha \mathbf{I} + \beta \mathbf{\Phi}^{\mathsf{T}} \mathbf{\Phi}.$$
 (3.131)

By 3.17,

$$p(\mathbf{t}) = \left(\frac{\beta}{2\pi}\right)^{\frac{N}{2}} \left(\frac{\alpha}{2\pi}\right)^{\frac{M}{2}} \int \exp\left(-E(\mathbf{w})\right) d\mathbf{w}, \tag{3.132}$$

where

$$E(\mathbf{w}) = \frac{\beta}{2} \|\mathbf{t} - \mathbf{\Phi}\mathbf{w}\|^2 + \frac{\alpha}{2} \mathbf{w}^{\mathsf{T}} \mathbf{w}.$$
 (3.133)

By 3.18,

$$E(\mathbf{w}) = E(\mathbf{m}_N) + \frac{1}{2}(\mathbf{w} - \mathbf{m}_N)^{\mathsf{T}} \mathbf{S}_N^{-1} (\mathbf{w} - \mathbf{m}_N). \tag{3.134}$$

Therefore, the integral in the expression above of p(t) can be written as

$$\exp\left(-E(\mathbf{m}_N)\right) \int \exp\left(-\frac{1}{2}(\mathbf{w} - \mathbf{m}_N)^{\mathsf{T}} \mathbf{S}_N^{-1}(\mathbf{w} - \mathbf{m}_N)\right) d\mathbf{w}$$

$$= (2\pi)^{\frac{M}{2}} (\det \mathbf{S}_N)^{\frac{1}{2}} \exp\left(-E(\mathbf{m}_N)\right). \tag{3.135}$$

Thus,

$$\ln p(\mathbf{t}) = \frac{M}{2} \ln \alpha + \frac{N}{2} \ln \beta - \frac{N}{2} \ln(2\pi) + \frac{1}{2} \ln(\det \mathbf{S}_N) - E(\mathbf{m}_N). \quad (3.136)$$

## 3.20

Let  $t_1, \dots, t_N$  be variables such that

$$p(t_n|\mathbf{w}) = \mathcal{N}\left(t_n|\mathbf{w}^{\mathsf{T}}\boldsymbol{\phi}(\mathbf{x}_n), \beta^{-1}\right),$$
  
$$p(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \alpha^{-1}\mathbf{I}),$$
(3.137)

where **w** and  $\phi$  are vectors in M dimensions. By 3.7,

$$p(\mathbf{w}|\mathbf{t}) = \mathcal{N}(\mathbf{w}|\mathbf{m}_N, \mathbf{S}_N), \tag{3.138}$$

where

$$\mathbf{m}_{N} = \beta \mathbf{S}_{N} \mathbf{\Phi}^{\mathsf{T}} \mathbf{t}, \mathbf{S}_{N}^{-1} = \alpha \mathbf{I} + \beta \mathbf{\Phi}^{\mathsf{T}} \mathbf{\Phi}.$$
 (3.139)

By 3.19,

$$\ln p(\mathbf{t}) = \frac{M}{2} \ln \alpha + \frac{N}{2} \ln \beta - \frac{N}{2} \ln(2\pi) + \frac{1}{2} \ln(\det \mathbf{S}_N) - E(\mathbf{m}_N), \quad (3.140)$$

where

$$E(\mathbf{m}_N) = \frac{\beta}{2} \|\mathbf{t} - \mathbf{\Phi} \mathbf{m}_N\|^2 + \frac{\alpha}{2} \mathbf{m}_N^{\mathsf{T}} \mathbf{m}_N.$$
 (3.141)

Let  $\mathbf{u}_1, \cdots, \mathbf{u}_M$  be eigenvectors of  $\beta \mathbf{\Phi}^{\intercal} \mathbf{\Phi}$  such that

$$\beta \mathbf{\Phi}^{\mathsf{T}} \mathbf{\Phi} \mathbf{u}_m = \lambda_m \mathbf{u}_m. \tag{3.142}$$

Then,

$$\mathbf{S}_N^{-1}\mathbf{u}_m = (\alpha + \lambda_m)\mathbf{u}_m, \tag{3.143}$$

so that

$$\det \mathbf{S}_N = \prod_{m=1}^M \frac{1}{\alpha + \lambda_m}.$$
 (3.144)

Therefore, setting the derivative of  $\ln p(\mathbf{t}|\alpha,\beta)$  with respect to  $\alpha$  to zero gives

$$0 = \frac{M}{2\alpha} - \frac{1}{2} \sum_{m=1}^{M} \frac{1}{\alpha + \lambda_m} - \frac{1}{2} \mathbf{m}_N^{\mathsf{T}} \mathbf{m}_N.$$
 (3.145)

Multiplying both sides by  $2\alpha$  gives

$$\alpha \mathbf{m}_{N}^{\mathsf{T}} \mathbf{m}_{N} = M - \sum_{m=1}^{M} \frac{\alpha}{\alpha + \lambda_{m}}.$$
 (3.146)

The right hand side can be written as

$$\sum_{m=1}^{M} \left( 1 - \frac{\alpha}{\alpha + \lambda_m} \right) = \sum_{m=1}^{M} \frac{\lambda_i}{\alpha + \lambda_m}.$$
 (3.147)

Thus,

$$\alpha = \frac{\gamma}{\mathbf{m}_N^{\mathsf{T}} \mathbf{m}_N},\tag{3.148}$$

where

$$\gamma = \sum_{m=1}^{M} \frac{\lambda_i}{\alpha + \lambda_m}.$$
 (3.149)

## 3.21

(a)

Let  $\Sigma$  be a  $M \times M$  real symmetric matrix such that

$$\Sigma \mathbf{u}_m = \lambda_m \mathbf{u}_m, \tag{3.150}$$

where  $\mathbf{u}_1, \cdots, \mathbf{u}_M$  are unit vectors. Let

$$\mathbf{\Lambda} = \operatorname{diag}(\lambda_1, \cdots, \lambda_M), 
\mathbf{U} = [\mathbf{u}_1 \cdots \mathbf{u}_M].$$
(3.151)

By 2.19,

$$\Sigma = \mathbf{U}\Lambda\mathbf{U}^{\mathsf{T}},$$

$$\mathbf{U}^{\mathsf{T}}\mathbf{U} = \mathbf{I}.$$
(3.152)

Therefore,

$$\det \mathbf{\Sigma} = \prod_{m=1}^{M} \lambda_m, \tag{3.153}$$

so that

$$\ln(\det \mathbf{\Sigma}) = \sum_{m=1}^{M} \ln \lambda_i. \tag{3.154}$$

Then,

$$\frac{\partial}{\partial \alpha} \ln(\det \Sigma) = \sum_{m=1}^{M} \frac{\partial \lambda_m}{\partial \alpha} \frac{1}{\lambda_m}.$$
 (3.155)

Thus,

$$\frac{\partial}{\partial \alpha} \ln(\det \mathbf{\Sigma}) = \operatorname{tr}\left(\mathbf{\Sigma}^{-1} \frac{\partial}{\partial \alpha} \mathbf{\Sigma}\right). \tag{3.156}$$

(b)

Let  $t_1, \dots, t_N$  be variables such that

$$p(t_n|\mathbf{w}) = \mathcal{N}\left(t_n|\mathbf{w}^{\mathsf{T}}\boldsymbol{\phi}(\mathbf{x}_n), \beta^{-1}\right),$$
  
$$p(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \alpha^{-1}\mathbf{I}),$$
(3.157)

where **w** and  $\phi$  are vectors in M dimensions. By 3.7,

$$p(\mathbf{w}|\mathbf{t}) = \mathcal{N}(\mathbf{w}|\mathbf{m}_N, \mathbf{S}_N), \tag{3.158}$$

where

$$\mathbf{m}_{N} = \beta \mathbf{S}_{N} \mathbf{\Phi}^{\mathsf{T}} \mathbf{t}, \mathbf{S}_{N}^{-1} = \alpha \mathbf{I} + \beta \mathbf{\Phi}^{\mathsf{T}} \mathbf{\Phi}.$$
 (3.159)

By 3.19,

$$\ln p(\mathbf{t}) = \frac{M}{2} \ln \alpha + \frac{N}{2} \ln \beta - \frac{N}{2} \ln(2\pi) + \frac{1}{2} \ln(\det \mathbf{S}_N) - E(\mathbf{m}_N), \quad (3.160)$$

where

$$E(\mathbf{m}_N) = \frac{\beta}{2} \|\mathbf{t} - \mathbf{\Phi} \mathbf{m}_N\|^2 + \frac{\alpha}{2} \mathbf{m}_N^{\mathsf{T}} \mathbf{m}_N.$$
 (3.161)

By 3.21(a),

$$\frac{\partial}{\partial \alpha} \ln \left( \det \mathbf{S}_N^{-1} \right) = \operatorname{tr} \left( \mathbf{S}_N \right). \tag{3.162}$$

The right hand side can be written as

$$\sum_{m=1}^{M} \frac{1}{\alpha + \lambda_m},\tag{3.163}$$

where  $\lambda_1, \dots, \lambda_M$  are eigenvalues of  $\beta \Phi^{\dagger} \Phi$ . Therefore, setting the derivative of  $\ln p(\mathbf{t})$  with respect to  $\alpha$  to zero gives

$$0 = \frac{M}{2\alpha} - \frac{1}{2} \sum_{m=1}^{M} \frac{1}{\alpha + \lambda_m} - \frac{1}{2} \mathbf{m}_N^{\mathsf{T}} \mathbf{m}_N, \tag{3.164}$$

Thus,

$$\alpha = \frac{\gamma}{\mathbf{m}_N^{\mathsf{T}} \mathbf{m}_N},\tag{3.165}$$

where

$$\gamma = \sum_{m=1}^{M} \frac{\lambda_m}{\alpha + \lambda_m}.$$
 (3.166)

## 3.22

Let  $t_1, \dots, t_N$  be variables such that

$$p(t_n|\mathbf{w}) = \mathcal{N}\left(t_n|\mathbf{w}^{\mathsf{T}}\boldsymbol{\phi}(\mathbf{x}_n), \beta^{-1}\right),$$
  
$$p(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \alpha^{-1}\mathbf{I}),$$
(3.167)

where **w** and  $\phi$  are vectors in M dimensions. By 3.7,

$$p(\mathbf{w}|\mathbf{t}) = \mathcal{N}(\mathbf{w}|\mathbf{m}_N, \mathbf{S}_N), \tag{3.168}$$

where

$$\mathbf{m}_{N} = \beta \mathbf{S}_{N} \mathbf{\Phi}^{\mathsf{T}} \mathbf{t}, \mathbf{S}_{N}^{-1} = \alpha \mathbf{I} + \beta \mathbf{\Phi}^{\mathsf{T}} \mathbf{\Phi}.$$
 (3.169)

By 3.19,

$$\ln p(\mathbf{t}) = \frac{M}{2} \ln \alpha + \frac{N}{2} \ln \beta - \frac{N}{2} \ln(2\pi) + \frac{1}{2} \ln(\det \mathbf{S}_N) - E(\mathbf{m}_N), \quad (3.170)$$

where

$$E(\mathbf{m}_N) = \frac{\beta}{2} \|\mathbf{t} - \mathbf{\Phi} \mathbf{m}_N\|^2 + \frac{\alpha}{2} \mathbf{m}_N^{\mathsf{T}} \mathbf{m}_N.$$
 (3.171)

By 3.21(a),

$$\frac{\partial}{\partial \beta} \ln \left( \det \mathbf{S}_N^{-1} \right) = \operatorname{tr} \left( \mathbf{S}_N \mathbf{\Phi}^{\mathsf{T}} \mathbf{\Phi} \right). \tag{3.172}$$

Since

$$\mathbf{S}_N \mathbf{\Phi}^{\mathsf{T}} \mathbf{\Phi} = \frac{1}{\beta} \left( \mathbf{I} - \alpha \mathbf{S}_N \right), \tag{3.173}$$

the right hand side can be written as

$$\frac{1}{\beta} \left( M - \alpha \sum_{m=1}^{M} \frac{1}{\alpha + \lambda_m} \right) = \frac{1}{\beta} \sum_{m=1}^{M} \frac{\lambda_m}{\alpha + \lambda_m}, \tag{3.174}$$

where  $\lambda_1, \dots, \lambda_M$  are eigenvalues of  $\beta \Phi^{\dagger} \Phi$ . Therefore, setting the derivative of  $\ln p(\mathbf{t})$  with respect to  $\beta$  to zero gives

$$0 = \frac{N}{2\beta} - \frac{1}{2\beta} \sum_{m=1}^{M} \frac{\lambda_i}{\alpha + \lambda_m} - \frac{1}{2} \|\mathbf{t} - \mathbf{\Phi} \mathbf{m}_N\|^2.$$
 (3.175)

Thus,

$$\beta = \frac{N - \gamma}{\|\mathbf{t} - \mathbf{\Phi} \mathbf{m}_N\|^2},\tag{3.176}$$

where

$$\gamma = \sum_{m=1}^{M} \frac{\lambda_m}{\alpha + \lambda_m}.$$
 (3.177)

### 3.23

Let  $t_1, \dots, t_N$  be variables such that

$$p(t_n|\mathbf{w},\beta) = \mathcal{N}\left(t_n|\mathbf{w}^{\mathsf{T}}\boldsymbol{\phi}(\mathbf{x}_n),\beta^{-1}\right),$$
  

$$p(\mathbf{w},\beta) = \mathcal{N}\left(\mathbf{w}|\mathbf{m}_0,\beta^{-1}\mathbf{S}_0\right)\operatorname{Gam}(\beta|a_0,b_0),$$
(3.178)

where **w** and  $\phi$  are vectors in M dimensions. By marginalisation,

$$p(\mathbf{t}) = \int \int p(\mathbf{t}|\mathbf{w}, \beta)p(\mathbf{w}, \beta)d\mathbf{w}d\beta.$$
 (3.179)

The right hand side can be written as

$$\int \left( \int \left( \prod_{n=1}^{N} \mathcal{N} \left( t_{n} | \mathbf{w}^{\mathsf{T}} \boldsymbol{\phi}(\mathbf{x}_{n}), \beta^{-1} \right) \right) \mathcal{N} \left( \mathbf{w} | \mathbf{m}_{0}, \beta^{-1} \mathbf{S}_{0} \right) d\mathbf{w} \right) \operatorname{Gam}(\beta | a_{0}, b_{0}) d\beta.$$
(3.180)

The logarithm of the integrand with respect to  $\mathbf{w}$  can be written as

$$-\frac{N}{2}\ln(2\pi) - \frac{N}{2}\ln\beta^{-1} - \frac{\beta}{2}\sum_{n=1}^{N}\left(t_{n} - \mathbf{w}^{\mathsf{T}}\boldsymbol{\phi}(\mathbf{x}_{n})\right)^{2}$$

$$-\frac{M}{2}\ln(2\pi) - \frac{1}{2}\ln\det(\beta^{-1}\mathbf{S}_{0}) - \frac{\beta}{2}(\mathbf{w} - \mathbf{m}_{0})^{\mathsf{T}}\mathbf{S}_{0}^{-1}(\mathbf{w} - \mathbf{m}_{0})$$

$$= -\frac{N+M}{2}\ln(2\pi) + \frac{N+M}{2}\ln\beta - \frac{1}{2}\ln(\det\mathbf{S}_{0})$$

$$-\frac{\beta}{2}\mathbf{w}^{\mathsf{T}}\left(\mathbf{S}_{0}^{-1} + \mathbf{\Phi}^{\mathsf{T}}\mathbf{\Phi}\right)\mathbf{w} + \beta\mathbf{w}^{\mathsf{T}}\left(\mathbf{S}_{0}^{-1}\mathbf{m}_{0} + \mathbf{\Phi}^{\mathsf{T}}\mathbf{t}\right) - \frac{\beta}{2}\|\mathbf{t}\|^{2} - \frac{\beta}{2}\mathbf{m}_{0}^{\mathsf{T}}\mathbf{S}_{0}^{-1}\mathbf{m}_{0}.$$
(3.181)

The right hand side can be written as

$$-\frac{N+M}{2}\ln(2\pi) + \frac{N+M}{2}\ln\beta - \frac{1}{2}\ln(\det \mathbf{S}_{0})$$

$$-\frac{\beta}{2}(\mathbf{w} - \mathbf{m}_{N})^{\mathsf{T}}\mathbf{S}_{N}^{-1}(\mathbf{w} - \mathbf{m}_{N}) + \frac{\beta}{2}\mathbf{m}_{N}^{\mathsf{T}}\mathbf{S}_{N}^{-1}\mathbf{m}_{N} - \frac{\beta}{2}\|\mathbf{t}\|^{2} - \frac{\beta}{2}\mathbf{m}_{0}^{\mathsf{T}}\mathbf{S}_{0}^{-1}\mathbf{m}_{0},$$
(3.182)

where

$$\mathbf{m}_{N} = \mathbf{S}_{N} \left( \mathbf{S}_{0}^{-1} \mathbf{m}_{0} + \mathbf{\Phi}^{\mathsf{T}} \mathbf{t} \right), \mathbf{S}_{N}^{-1} = \mathbf{S}_{0}^{-1} + \mathbf{\Phi}^{\mathsf{T}} \mathbf{\Phi}.$$
 (3.183)

Therefore, the logarithm of the integral with respect to  $\mathbf{w}$  can be written as

$$-\frac{N}{2}\ln(2\pi) + \frac{N}{2}\ln\beta - \frac{1}{2}\ln(\det\mathbf{S}_0) + \frac{1}{2}\ln(\det\mathbf{S}_N) + \frac{\beta}{2}\mathbf{m}_N^{\mathsf{T}}\mathbf{S}_N^{-1}\mathbf{m}_N - \frac{\beta}{2}\|\mathbf{t}\|^2 - \frac{\beta}{2}\mathbf{m}_0^{\mathsf{T}}\mathbf{S}_0^{-1}\mathbf{m}_0.$$
(3.184)

Then, the logarithm of the integrand with respect to  $\beta$  can be written as

$$-\frac{N}{2}\ln(2\pi) + \frac{N}{2}\ln\beta - \frac{1}{2}\ln(\det\mathbf{S}_{0}) + \frac{1}{2}\ln(\det\mathbf{S}_{N})$$

$$+\frac{\beta}{2}\mathbf{m}_{N}^{\mathsf{T}}\mathbf{S}_{N}^{-1}\mathbf{m}_{N} - \frac{\beta}{2}\|\mathbf{t}\|^{2} - \frac{\beta}{2}\mathbf{m}_{0}^{\mathsf{T}}\mathbf{S}_{0}^{-1}\mathbf{m}_{0}$$

$$-\ln\Gamma(a_{0}) + a_{0}\ln b_{0} + (a_{0} - 1)\ln\beta - b_{0}\beta$$

$$= -\frac{N}{2}\ln(2\pi) - \frac{1}{2}\ln(\det\mathbf{S}_{0}) + \frac{1}{2}\ln(\det\mathbf{S}_{N})$$

$$-\ln\Gamma(a_{0}) + a_{0}\ln b_{0} + (a_{N} - 1)\ln\beta - b_{N}\beta,$$
(3.185)

where

$$a_{N} = a_{0} + \frac{N}{2},$$

$$b_{N} = b_{0} + \frac{\beta}{2} \|\mathbf{t}\|^{2} + \frac{\beta}{2} \mathbf{m}_{0}^{\mathsf{T}} \mathbf{S}_{0}^{-1} \mathbf{m}_{0} - \frac{\beta}{2} \mathbf{m}_{N}^{\mathsf{T}} \mathbf{S}_{N}^{-1} \mathbf{m}_{N}.$$
(3.186)

Therefore, the logarithm of the integral with respect to  $\beta$  can be written as

$$-\frac{N}{2}\ln(2\pi) - \frac{1}{2}\ln(\det \mathbf{S}_0) + \frac{1}{2}\ln(\det \mathbf{S}_N) - \ln\Gamma(a_0) + a_0\ln b_0 + \ln\Gamma(a_N) - a_N\ln b_N.$$
(3.187)

Thus,

$$p(\mathbf{t}) = (2\pi)^{-\frac{N}{2}} \left( \frac{\det \mathbf{S}_N}{\det \mathbf{S}_0} \right)^{\frac{1}{2}} \frac{\Gamma(a_N)}{\Gamma(a_0)} \frac{b_0^{a_0}}{b_N^{a_N}}.$$
 (3.188)

## 3.24

Refer to 3.12.

## 4 Linear Models for Classification

## 4.1

Let  $x_1, \dots, x_M$  and  $y_1, \dots, y_N$  be two sets of data points. Then, the corresponding convex hulls are defined as the sets of all points  $\mathbf{x}$  and  $\mathbf{y}$  such that

$$\mathbf{x} = \sum_{m=1}^{M} \alpha_m \mathbf{x}_m,$$

$$\mathbf{y} = \sum_{n=1}^{N} \beta_n \mathbf{y}_n,$$
(4.1)

where

$$\sum_{m=1}^{M} \alpha_m = \sum_{n=1}^{N} \beta_n = 1,$$

$$\alpha_m \ge 0, \beta_n \ge 0.$$
(4.2)

Let us assume that  $\alpha_1, \dots, \alpha_M$  and  $\beta_1, \dots, \beta_N$  below are subject to the constraints above.

If the convex hulls intersect, then there exist  $\alpha_1, \dots, \alpha_M$  and  $\beta_1, \dots, \beta_N$  such that

$$\sum_{m=1}^{M} \alpha_m \mathbf{x}_m = \sum_{n=1}^{N} \beta_n \mathbf{y}_n. \tag{4.3}$$

Then,

$$\sum_{m=1}^{M} \alpha_m \left( \hat{\mathbf{w}}^{\mathsf{T}} \mathbf{x}_m + w_0 \right) = \hat{\mathbf{w}}^{\mathsf{T}} \sum_{m=1}^{M} \alpha_m \mathbf{x}_m + w_0 \sum_{m} \alpha_m, \tag{4.4}$$

for any  $\hat{\mathbf{w}}$  and  $w_0$ . The right hand side can be written as

$$\hat{\mathbf{w}}^{\mathsf{T}} \sum_{n=1}^{N} \beta_n \mathbf{y}_n + w_0 \sum_{n=1}^{N} \beta_n = \sum_{n=1}^{N} \beta_n \left( \hat{\mathbf{w}}^{\mathsf{T}} \mathbf{y}_n + w_0 \right). \tag{4.5}$$

Therefore, there do not exist  $\hat{\mathbf{w}}$  and  $w_0$  such that

$$\hat{\mathbf{w}}^{\mathsf{T}} \mathbf{x}_m + w_0 > 0, \hat{\mathbf{w}}^{\mathsf{T}} \mathbf{y}_n + w_0 < 0.$$
 (4.6)

Conversely, if there exist  $\hat{\mathbf{w}}$  and  $w_0$  such that

$$\hat{\mathbf{w}}^{\mathsf{T}} \mathbf{x}_m + w_0 > 0, \\ \hat{\mathbf{w}}^{\mathsf{T}} \mathbf{y}_n + w_0 < 0,$$
 (4.7)

then

$$\sum_{m=1}^{M} \alpha_m \left( \hat{\mathbf{w}}^{\mathsf{T}} \mathbf{x}_m + w_0 \right) > 0,$$

$$\sum_{n=1}^{N} \beta_n \left( \hat{\mathbf{w}}^{\mathsf{T}} \mathbf{y}_n + w_0 \right) < 0.$$
(4.8)

The left hand sides can be written as

$$\hat{\mathbf{w}}^{\mathsf{T}} \sum_{m=1}^{M} \alpha_m \mathbf{x}_m + w_0 \sum_{m=1}^{M} \alpha_m = \hat{\mathbf{w}}^{\mathsf{T}} \sum_{m=1}^{M} \alpha_m \mathbf{x}_m + w_0,$$

$$\hat{\mathbf{w}}^{\mathsf{T}} \sum_{n=1}^{N} \beta_n \mathbf{y}_n + w_0 \sum_{n=1}^{N} \beta_n = \hat{\mathbf{w}}^{\mathsf{T}} \sum_{n=1}^{N} \beta_n \mathbf{y}_n + w_0.$$
(4.9)

Therefore, there do not exist  $\alpha_1, \dots, \alpha_M$  and  $\beta_1, \dots, \beta_N$  such that

$$\sum_{m=1}^{M} \alpha_m \mathbf{x}_m = \sum_{n=1}^{N} \beta_n \mathbf{y}_n. \tag{4.10}$$

Thus, the convex hulls do not intersect.

# 4.2 (Incomplete)

Let  $\mathbf{x}_1, \dots, \mathbf{x}_N$  and  $\mathbf{w}_1, \dots, \mathbf{w}_K$  are variables in M dimensions and  $\mathbf{t}_1, \dots, \mathbf{t}_N$  are ones in K dimensions. Let

$$E(\tilde{\mathbf{W}}) = \frac{1}{2} \operatorname{tr} \left( (\tilde{\mathbf{X}} \tilde{\mathbf{W}} - \mathbf{T})^{\mathsf{T}} (\tilde{\mathbf{X}} \tilde{\mathbf{W}} - \mathbf{T}) \right), \tag{4.11}$$

where

$$\tilde{\mathbf{X}} = \begin{bmatrix} 1 & \mathbf{x}_1^{\mathsf{T}} \\ \vdots & \vdots \\ 1 & \mathbf{x}_N^{\mathsf{T}} \end{bmatrix},$$

$$\tilde{\mathbf{W}} = \begin{bmatrix} w_{10} & \cdots & w_{K0} \\ \mathbf{w}_1 & \cdots & \mathbf{w}_K \end{bmatrix}$$

and

$$\mathbf{T} = egin{bmatrix} \mathbf{t}_1^\intercal \ dots \ \mathbf{t}_N^\intercal \end{bmatrix}.$$

Setting the derivative with respect to  $\tilde{\mathbf{W}}$  to zero gives

$$\mathbf{O} = \tilde{\mathbf{X}}^{\dagger} (\tilde{\mathbf{X}}\tilde{\mathbf{W}} - \mathbf{T}). \tag{4.12}$$

Therefore,

$$\underset{\tilde{\mathbf{W}}}{\operatorname{argmin}} E(\tilde{\mathbf{W}}) = \left(\tilde{\mathbf{X}}^{\mathsf{T}} \tilde{\mathbf{X}}\right)^{-1} \tilde{\mathbf{X}}^{\mathsf{T}} \mathbf{T}. \tag{4.13}$$

Let  $\tilde{\mathbf{W}}^*$  denote the least-square solution above. If

$$\mathbf{a}^{\mathsf{T}}\mathbf{t}_n + b = 0,\tag{4.14}$$

for  $n = 1, \dots, N$ , then

$$\mathbf{a}^{\mathsf{T}}(\tilde{\mathbf{W}}^*)^{\mathsf{T}}\tilde{\mathbf{x}} + b = 0? \tag{4.15}$$

where  $\tilde{\mathbf{x}}$  is a variable in M+1 dimensions whose first element is 1.

$$(\tilde{\mathbf{W}}^*)^{\mathsf{T}}\tilde{\mathbf{x}} = \mathbf{T}^{\mathsf{T}}\tilde{\mathbf{X}} \left( \tilde{\mathbf{X}}^{\mathsf{T}}\tilde{\mathbf{X}} \right)^{-1} \tilde{\mathbf{x}}. \tag{4.16}$$

# 4.3 (Incomplete)

## 4.4

Let  $\mathbf{x}_1, \dots, \mathbf{x}_N$  be variables and let

$$\mathbf{m}_k = \frac{1}{N_k} \sum_{n \in \mathcal{C}_k} \mathbf{x}_n,\tag{4.17}$$

where  $N_k$  is the number of  $\mathbf{x}_n$  such that n is in  $\mathcal{C}_k$ . Setting the derivatives of

$$\mathbf{w}^{\mathsf{T}}(\mathbf{m}_2 - \mathbf{m}_1) + \lambda \left( \|\mathbf{w}\|^2 - 1 \right) \tag{4.18}$$

with respect to  $\mathbf{w}$  and  $\lambda$  to zero gives

$$\mathbf{m}_2 - \mathbf{m}_1 + 2\lambda \mathbf{w} = \mathbf{0},$$
  
$$\|\mathbf{w}\|^2 - 1 = 0.$$
 (4.19)

Therefore,  $\mathbf{w}^{\intercal}(\mathbf{m}_2 - \mathbf{m}_1)$  under the constratint

$$\|\mathbf{w}\|^2 = 1\tag{4.20}$$

is maximised if

$$\mathbf{w} \propto \mathbf{m}_2 - \mathbf{m}_1. \tag{4.21}$$

## 4.5

Let  $\mathbf{x}_1, \dots, \mathbf{x}_N$  be variables and let

$$\mathbf{m}_k = \frac{1}{N_k} \sum_{n \in \mathcal{C}_k} \mathbf{x}_n,\tag{4.22}$$

where  $N_k$  is the number of  $\mathbf{x}_n$  such that n is in  $\mathcal{C}_k$ . Let

$$J(\mathbf{w}) = \frac{(m_2 - m_1)^2}{s_1^2 + s_2^2},\tag{4.23}$$

where

$$s_k^2 = \sum_{n \in \mathcal{C}_k} (y_n - m_k)^2,$$

$$y_n = \mathbf{w}^{\mathsf{T}} \mathbf{x}_n,$$

$$m_k = \mathbf{w}^{\mathsf{T}} \mathbf{m}_k.$$

$$(4.24)$$

Then,  $J(\mathbf{w})$  can be written as

$$\frac{\left(\mathbf{w}^{\mathsf{T}}(\mathbf{m}_{2} - \mathbf{m}_{1})\right)^{2}}{\sum_{n \in \mathcal{C}_{1}} \left(\mathbf{w}^{\mathsf{T}}(\mathbf{x}_{n} - \mathbf{m}_{1})\right)^{2} + \sum_{n \in \mathcal{C}_{2}} \left(\mathbf{w}^{\mathsf{T}}(\mathbf{x}_{n} - \mathbf{m}_{2})\right)^{2}} = \frac{\mathbf{w}^{\mathsf{T}} \mathbf{S}_{B} \mathbf{w}}{\mathbf{w}^{\mathsf{T}} \mathbf{S}_{W} \mathbf{w}}, \quad (4.25)$$

where

$$\mathbf{S}_{\mathrm{B}} = (\mathbf{m}_{2} - \mathbf{m}_{1})(\mathbf{m}_{2} - \mathbf{m}_{1})^{\mathsf{T}},$$

$$\mathbf{S}_{\mathrm{W}} = \sum_{n \in \mathcal{C}_{1}} (\mathbf{x}_{n} - \mathbf{m}_{1})(\mathbf{x}_{n} - \mathbf{m}_{1})^{\mathsf{T}} + \sum_{n \in \mathcal{C}_{2}} (\mathbf{x}_{n} - \mathbf{m}_{2})(\mathbf{x}_{n} - \mathbf{m}_{2})^{\mathsf{T}}.$$

$$(4.26)$$

### 4.6

Let  $\mathbf{x}_1, \dots, \mathbf{x}_N$  be variables and let

$$\mathbf{m}_k = \frac{1}{N_k} \sum_{n \in \mathcal{C}_k} \mathbf{x}_n,\tag{4.27}$$

where  $N_k$  is the number of  $\mathbf{x}_n$  such that n is in  $C_k$ . Let

$$J(\mathbf{w}) = \frac{(m_2 - m_1)^2}{s_1^2 + s_2^2},\tag{4.28}$$

where

$$s_k^2 = \sum_{n \in \mathcal{C}_k} (y_n - m_k)^2,$$

$$y_n = \mathbf{w}^{\mathsf{T}} \mathbf{x}_n,$$

$$m_k = \mathbf{w}^{\mathsf{T}} \mathbf{m}_k.$$

$$(4.29)$$

Then, by 4.5,

$$J(\mathbf{w}) = \frac{\mathbf{w}^{\mathsf{T}} \mathbf{S}_{\mathsf{B}} \mathbf{w}}{\mathbf{w}^{\mathsf{T}} \mathbf{S}_{\mathsf{W}} \mathbf{w}},\tag{4.30}$$

where

$$\mathbf{S}_{\mathrm{B}} = (\mathbf{m}_{2} - \mathbf{m}_{1})(\mathbf{m}_{2} - \mathbf{m}_{1})^{\mathsf{T}},$$

$$\mathbf{S}_{\mathrm{W}} = \sum_{n \in \mathcal{C}_{1}} (\mathbf{x}_{n} - \mathbf{m}_{1})(\mathbf{x}_{n} - \mathbf{m}_{1})^{\mathsf{T}} + \sum_{n \in \mathcal{C}_{2}} (\mathbf{x}_{n} - \mathbf{m}_{2})(\mathbf{x}_{n} - \mathbf{m}_{2})^{\mathsf{T}}.$$

$$(4.31)$$

Let

$$E = \frac{1}{2} \sum_{n=1}^{N} (\mathbf{w}^{\mathsf{T}} \mathbf{x}_n + w_0 - t_n)^2, \qquad (4.32)$$

where

$$t_n = \begin{cases} \frac{N}{N_1}, & n \in \mathcal{C}_1, \\ -\frac{N}{N_2}, & n \in \mathcal{C}_2. \end{cases}$$
 (4.33)

Setting the derivative with respect to  $\mathbf{w}$  and  $w_0$  gives

$$0 = \sum_{n=1}^{N} (\mathbf{w}^{\mathsf{T}} \mathbf{x}_n + w_0 - t_n),$$

$$\mathbf{0} = \sum_{n=1}^{N} (\mathbf{w}^{\mathsf{T}} \mathbf{x}_n + w_0 - t_n) \mathbf{x}_n.$$

$$(4.34)$$

The right hand side of the first equation can be written as

$$\mathbf{w}^{\mathsf{T}} \sum_{n=1}^{N} \mathbf{x}_{n} + Nw_{0} - \sum_{n=1}^{N} t_{n} = N \left( \mathbf{w}^{\mathsf{T}} \mathbf{m} + w_{0} \right),$$
 (4.35)

where

$$\mathbf{m} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_n. \tag{4.36}$$

Therefore,

$$w_0 = -\mathbf{w}^{\mathsf{T}}\mathbf{m}.\tag{4.37}$$

Then, the right hand side of the second equation above can be written as

$$\sum_{n=1}^{N} (\mathbf{w}^{\mathsf{T}} (\mathbf{x}_{n} - \mathbf{m}) - t_{n}) \mathbf{x}_{n}$$

$$= \sum_{n \in \mathcal{C}_{1}} \left( \mathbf{w}^{\mathsf{T}} (\mathbf{x}_{n} - \mathbf{m}) - \frac{N}{N_{1}} \right) \mathbf{x}_{n} + \sum_{n \in \mathcal{C}_{2}} \left( \mathbf{w}^{\mathsf{T}} (\mathbf{x}_{n} - \mathbf{m}) + \frac{N}{N_{2}} \right) \mathbf{x}_{n}.$$
(4.38)

Since

$$\mathbf{m} = \frac{N_1}{N} \mathbf{m}_1 + \frac{N_2}{N} \mathbf{m}_2,$$

$$\sum_{n \in \mathcal{C}_1} (\mathbf{x}_n - \mathbf{m}_1) = \mathbf{0},$$
(4.39)

the first term of the right hand side can be written as

$$\sum_{n \in \mathcal{C}_1} \left( \mathbf{w}^{\mathsf{T}} \left( \mathbf{x}_n - \mathbf{m}_1 + \frac{N_2}{N} (\mathbf{m}_1 - \mathbf{m}_2) \right) - \frac{N}{N_1} \right) (\mathbf{x}_n - \mathbf{m}_1 + \mathbf{m}_1) \\
= \left( \sum_{n \in \mathcal{C}_1} (\mathbf{x}_n - \mathbf{m}_1) (\mathbf{x}_n - \mathbf{m}_1)^{\mathsf{T}} \right) \mathbf{w} + \frac{N_1 N_2}{N} (\mathbf{m}_1 - \mathbf{m}_2) \mathbf{m}_1^{\mathsf{T}} \mathbf{w} - N \mathbf{m}_1. \tag{4.40}$$

Similarly, the second term can be written as

$$\left(\sum_{n\in\mathcal{C}_2} (\mathbf{x}_n - \mathbf{m}_2)(\mathbf{x}_n - \mathbf{m}_2)^{\mathsf{T}}\right) \mathbf{w} + \frac{N_1 N_2}{N} (\mathbf{m}_2 - \mathbf{m}_1) \mathbf{m}_2^{\mathsf{T}} \mathbf{w} - N \mathbf{m}_2. \quad (4.41)$$

Therefore,

$$\mathbf{0} = \left(\sum_{n \in \mathcal{C}_1} (\mathbf{x}_n - \mathbf{m}_1)(\mathbf{x}_n - \mathbf{m}_1)^{\mathsf{T}}\right) \mathbf{w} + \frac{N_1 N_2}{N} (\mathbf{m}_1 - \mathbf{m}_2) \mathbf{m}_1^{\mathsf{T}} \mathbf{w} - N \mathbf{m}_1 + \left(\sum_{n \in \mathcal{C}_2} (\mathbf{x}_n - \mathbf{m}_2)(\mathbf{x}_n - \mathbf{m}_2)^{\mathsf{T}}\right) \mathbf{w} + \frac{N_1 N_2}{N} (\mathbf{m}_2 - \mathbf{m}_1) \mathbf{m}_2^{\mathsf{T}} \mathbf{w} - N \mathbf{m}_2.$$

$$(4.42)$$

Thus,

$$\left(\mathbf{S}_{\mathrm{W}} + \frac{N_1 N_2}{N} \mathbf{S}_{\mathrm{B}}\right) \mathbf{w} = N(\mathbf{m}_1 - \mathbf{m}_2). \tag{4.43}$$

## 4.7

Let

$$\sigma(a) = \frac{1}{1 + \exp(-a)}.\tag{4.44}$$

Then,

$$\sigma(-a) = \frac{1}{1 + \exp(a)}.\tag{4.45}$$

The right hand side can be written as

$$1 - \frac{\exp(a)}{1 + \exp(a)} = 1 - \frac{1}{1 + \exp(-a)}.$$
 (4.46)

Therefore,

$$\sigma(-a) = 1 - \sigma(a). \tag{4.47}$$

Additionally,

$$\exp(-a) = \frac{1}{\sigma(a)} - 1. \tag{4.48}$$

Then,

$$a = -\ln\left(\frac{1}{\sigma(a)} - 1\right). \tag{4.49}$$

Therefore,

$$\sigma^{-1}(y) = \ln\left(\frac{y}{1-y}\right). \tag{4.50}$$

# 4.8 (Incomplete)

Let  $\mathbf{x}$  be a variable in D dimensions such that

$$p(\mathbf{x}|\mathcal{C}_k) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}),$$
 (4.51)

where k = 1, 2. By the Bayes' theorem,

$$p(C_1|\mathbf{x}) = \frac{p(\mathbf{x}|C_1)p(C_1)}{p(\mathbf{x}|C_1)p(C_1) + p(\mathbf{x}|C_2)p(C_2)}.$$
(4.52)