import pandas as pd

Data Exploration:

df=pd.read_csv('/content/Employee.csv')
df

}	Company	Age	Salary	Place	Country	Gender		
0	TCS	20.0	NaN	Chennai	India	0		
1	Infosys	30.0	NaN	Mumbai	India	0		
2	TCS	35.0	2300.0	Calcutta	India	0		
3 4 143	Infosys	40.0	3000.0	Delhi	India	0		
	TCS	23.0	4000.0	Mumbai	India	0		
	TCS	33.0	9024.0	Calcutta	India	1		
144	Infosys	22.0	8787.0	Calcutta	India	1		
145	Infosys	44.0	4034.0	Delhi	India	1		
146	TCS	33.0	5034.0	Mumbai	India	1		
147	Infosys	22.0	8202.0	Cochin	India	0		
148 r	148 rows × 6 columns							

The data set for the employee and its contain Company name, Employee age, Employee salary, Employee place, country and Gender

Complany- Company Name Age- Employee age Salary - Employee salary Place - Employee Place Country - Employee country Gender- Employee Gender

df.info()

```
<<class 'pandas.core.frame.DataFrame'>
    RangeIndex: 148 entries, 0 to 147
    Data columns (total 6 columns):
        Column Non-Null Count Dtype
     0
        Company 140 non-null
                                 object
     1
        Age
                 130 non-null
                                 float64
     2
                124 non-null
                                 float64
         Salary
     3
                 134 non-null
                                 object
        Place
        Country 148 non-null
                                 object
         Gender
                 148 non-null
                                 int64
    dtypes: float64(2), int64(1), object(3)
    memory usage: 7.1+ KB
```

df.describe()

$\overrightarrow{\Rightarrow}$		Age	Salarv	Gender	
	count	130.000000	124.000000	148.000000	111
	mean	30.484615	5312.467742	0.222973	
	std	11.096640	2573.764683	0.417654	
	min	0.000000	1089.000000	0.000000	
	25%	22.000000	3030.000000	0.000000	
	50%	32.500000	5000.000000	0.000000	
	75%	37.750000	8000.000000	0.000000	
	max	54.000000	9876.000000	1.000000	

List down the unique values

df['Company'].value_counts()

	count
Company	
TCS	53
Infosys	45
CTS	36
Tata Consultancy Services	2
Congnizant	2
Infosys Pvt Lmt	2

dtype: int64

df['Place'].value_counts()

count

Place	
Mumbai	37
Calcutta	33
Chennai	14
Delhi	14
Cochin	13
Noida	8
Hyderabad	8
Podicherry	3
Pune	2
Bhopal	1
Nagpur	1

dtype: int64

df['Country'].value_counts()

count

Country India 148

dtype: int64

df['Gender'].value_counts()

count

Gender			
0	115		
1	33		

dtype: int64

#Rename the coulms
df2=df.copy()

df2=df2.rename({'Company':'Comp_name','Age':'Emp_age','Salary':'Emp_salary','Place':'Emp_place','Country':'
df2

→		Comp_name	Emp_age	Emp_salary	Emp_place	Emp_country	Emp_gender	
	0	TCS	20.0	NaN	Chennai	India	0	ılı
	1	Infosys	30.0	NaN	Mumbai	India	0	+/
	2	TCS	35.0	2300.0	Calcutta	India	0	-
	3	Infosys	40.0	3000.0	Delhi	India	0	
	4	TCS	23.0	4000.0	Mumbai	India	0	
	143	TCS	33.0	9024.0	Calcutta	India	1	
	144	Infosys	22.0	8787.0	Calcutta	India	1	
	145	Infosys	44.0	4034.0	Delhi	India	1	
	146	TCS	33.0	5034.0	Mumbai	India	1	
	147	Infosys	22.0	8202.0	Cochin	India	0	
	148 rc	ows × 6 colum	ins					

Next steps:

View recommended plots

New interactive sheet

df2.shape

→ (148, 6)

Data Cleaning:

#Find duplicates
df2.duplicated().sum()

→ 4

#Remove duplicates
df2.drop_duplicates(inplace=True)
df2.shape

→ (144, 6)

#Find null values
df2.isnull().sum()

```
Comp_name 8

Emp_age 17

Emp_salary 23

Emp_place 14

Emp_country 0

Emp_gender 0

dtype: int64
```

round(df2.isnull().mean()*100,2)

```
Comp_name 5.56
Emp_age 11.81
Emp_salary 15.97
Emp_place 9.72
Emp_country 0.00
Emp_gender 0.00
```

dtype: float64

```
#remove rows with null values in company name
df2.dropna(subset=['Comp_name'],axis=0,inplace=True)
```

```
#Replace the value 0 in age as NaN
df2['Emp_age']=df2['Emp_age'].fillna(0)
```

df2.shape

round(df2.isnull().mean()*100,2)

→		0
	Comp_name	0.00
	Emp_age	0.00
	Emp_salary	14.71
	Emp_place	9.56
	Emp_country	0.00
	Emp_gender	0.00
	dtype: float64	

#Treat the null values in all columns using any measures(removing/ replace the values with mean/median/mode

round(df2.isnull().mean()*100,2)

```
Comp_name 0.00
Emp_age 0.00
Emp_salary 14.71
Emp_place 9.56
Emp_country 0.00
Emp_gender 0.00
```

dtype: float64

#Replace Emp_salary null1 values with mean
mean=df2['Emp_salary'].mean()
df2['Emp_salary'].fillna(mean,inplace=True)

round(df2.isnull().mean()*100,2)

₹		0
	Comp_name	0.00
	Emp_age	0.00
	Emp_salary	0.00
	Emp_place	9.56
	Emp_country	0.00
	Emp_gender	0.00

dtype: float64

```
#Replace Emp_place null1 values with mean
mod=df2['Emp_place'].mode()
df2['Emp_place'].fillna(mod[0],inplace=True)
round(df2.isnull().mean()*100,2)
\overline{\Rightarrow}
                      0
       Comp_name
                    0.0
        Emp_age
                     0.0
       Emp_salary
                     0.0
       Emp_place
                     0.0
      Emp_country 0.0
      Emp_gender 0.0
     dtype: float64
```

Find the Outliers

sns.histplot(df2['Emp_salary'],kde=True)

sns.histplot(df2['Emp_age'],kde=True)

sns.histplot(df2['Emp_gender'],kde=True)

Data Analysis:

Filter the data with age >40 and salary<5000

filtred_data=df2[(df2['Emp_age']>40)&(df2['Emp_salary']<5000)]</pre> filtred_data

→	Comp_name	Emp_age	Emp_salary	Emp_place	Emp_country	Emp_gender	
21	Infosys	50.0	3184.0	Delhi	India	0	ıl.
32	Infosys	45.0	4034.0	Calcutta	India	0	+/
39	Infosys	41.0	3000.0	Mumbai	India	0	_
50	Infosys	41.0	3000.0	Chennai	India	0	
57	Infosys	51.0	3184.0	Hyderabad	India	0	
68	Infosys	43.0	4034.0	Mumbai	India	0	
75	Infosys	44.0	3000.0	Cochin	India	0	
86	Infosys	41.0	3000.0	Delhi	India	0	
93	Infosys	54.0	3184.0	Mumbai	India	0	
104	l Infosys	44.0	4034.0	Delhi	India	0	
122	2 Infosys	44.0	3234.0	Mumbai	India	0	
129	Infosys	50.0	3184.0	Calcutta	India	0	
138	B CTS	44.0	3033.0	Cochin	India	0	
140	lnfosys	44.0	4034.0	Hyderabad	India	0	
14	5 Infosys	44.0	4034.0	Delhi	India	1	

Next steps:

View recommended plots

New interactive sheet

Plot the chart with age and salary

```
import matplotlib.pyplot as plt
```

```
x=df2['Emp_age'].sort_values(ascending=True)
y=df2['Emp_salary'].sort_values(ascending=True)
plt.plot(x,y)
plt.show()
```


Count the number of people from each place and represent it visually

```
df2['Emp_place'].value_counts()
\overrightarrow{\exists}
                    count
       Emp_place
        Mumbai
                       46
        Calcutta
                       30
        Chennai
                       13
         Delhi
                       13
        Cochin
                       13
         Noida
                        7
      Hyderabad
                        7
                        3
      Podicherry
         Pune
                        2
        Bhopal
                        1
        Nagpur
     dtype: int64
data=df2['Emp_place'].value_counts()
x=list(data.index)
```

['Mumbai',
 'Calcutta',

```
'Chennai',
    'Delhi',
    'Cochin',
    'Noida',
    'Hyderabad',
    'Podicherry',
    'Pune',
    'Bhopal',
    'Nagpur']

y=df2['Emp_place'].value_counts().values
y

→ array([46, 30, 13, 13, 13, 7, 7, 3, 2, 1, 1])

plt.barh(x,y)
plt.show()
```


Data Encoding:

df2

	Comp_name	Emp_age	Emp_salary	Emp_place	Emp_country	Emp_gender	
0	TCS	20.0	5244.974138	Chennai	India	0	ıl.
1	Infosys	30.0	5244.974138	Mumbai	India	0	+/
2	TCS	35.0	2300.000000	Calcutta	India	0	
3	Infosys	40.0	3000.000000	Delhi	India	0	
4	TCS	23.0	4000.000000	Mumbai	India	0	
			***		***		
142	Infosys Pvt Lmt	22.0	8202.000000	Mumbai	India	0	
143	TCS	33.0	9024.000000	Calcutta	India	1	
145	Infosys	44.0	4034.000000	Delhi	India	1	
146	TCS	33.0	5034.000000	Mumbai	India	1	
147	Infosys	22.0	8202.000000	Cochin	India	0	
136 rc	ows × 6 columns						

Next steps:

View recommended plots

New interactive sheet

label encoding

```
from sklearn import preprocessing
lbl_encoder=preprocessing.LabelEncoder()

df2['place_lbl_encoded']=lbl_encoder.fit_transform(df2['Emp_place'])
df2['Comp_name_lbl_encoded']=lbl_encoder.fit_transform(df2['Comp_name'])
df2
```

$\overline{\Rightarrow}$		Comp_name	Emp_age	Emp_salary	Emp_place	Emp_country	Emp_gender	place_lbl_encoded	Comp_name_]
	0	TCS	20.0	5244.974138	Chennai	India	0	2	
	1	Infosys	30.0	5244.974138	Mumbai	India	0	6	
	2	TCS	35.0	2300.000000	Calcutta	India	0	1	
	3	Infosys	40.0	3000.000000	Delhi	India	0	4	
	4	TCS	23.0	4000.000000	Mumbai	India	0	6	
	142	Infosys Pvt Lmt	22.0	8202.000000	Mumbai	India	0	6	
	143	TCS	33.0	9024.000000	Calcutta	India	1	1	
	145	Infosys	44.0	4034.000000	Delhi	India	1	4	
	146	TCS	33.0	5034.000000	Mumbai	India	1	6	
	147	Infosys	22.0	8202.000000	Cochin	India	0	3	
136 rows × 8 columns									
4									>
Next	Next steps:					ctive sheet			

Feature Scaling:

minmaxscaler

```
from sklearn.preprocessing import MinMaxScaler,StandardScaler
min_max_scaler=MinMaxScaler()
x=df2[['Emp_age']]
age_min_max_scale= min_max_scaler.fit_transform(x)
age_min_max_scale
\Rightarrow array([[0.37037037],
            [0.5555556],
            [0.64814815],
            [0.74074074],
            [0.42592593],
            [0.
            [0.
            [0.42592593],
            [0.62962963],
            [0.83333333],
            [0.42592593],
            [0.62962963],
            [0.83333333],
            [0.33333333],
            [0.74074074],
            [0.42592593],
            [0.42592593],
```

```
[0.62962963],
[0.40740741],
[0.59259259],
[0.68518519],
[0.92592593],
[0.3888889],
[0.
           ],
[0.
           ],
[0.42592593],
[0.62962963],
[0.83333333],
[0.42592593],
[0.64814815],
[0.85185185],
[0.37037037],
[0.83333333],
[0.66666667],
[0.48148148],
[0.64814815],
[0.59259259],
[0.62962963],
[0.75925926],
[0.4444444],
[0.
           ],
[0.
           ],
[0.46296296],
[0.64814815],
[0.85185185],
[0.4444444],
[0.59259259],
[0.7962963],
[0.35185185],
[0.75925926],
[0.3888889],
[0.64814815],
[0.38888889],
[0.59259259],
[0.7037037],
[0.9444444],
[0.42592593],
```

```
import seaborn as sns
sns.histplot(age_min_max_scale,kde=True)
```


Standard scaler

```
x=df2[['Emp_salary']]
standard_scaler=StandardScaler()
sal_standard_scale=standard_scaler.fit_transform(x)
sal_standard_scale
```


[-3.883180/1e-01], [8.01222022e-02], [1.30718811e-01], [1.49345415e+00], [1.49345415e+00], [1.95261838e+00], [-3.83477899e-16], [-1.75231833e+00],