Collision Thoughts

December 23, 2017

We have two objects, A and B which collide. We assume the two objects are uniform density, rigid bodies, and convex polygons.

1 Two objects collide in 1D space

$$p_A^0 = m_A v_A^0$$
 (Momentum of object A)
 $p_B^0 = m_B v_B^0$ (Momentum of object B)
 $c_r = \frac{v_B^1 - v_B^0}{v_A^1 - v_A^0}$ (Coefficient of restitution).

The coefficient of restitution, $c_r \in [0, 1]$, gives a measure of elasticity of the collision. $c_r = 0$ denotes a completely inelastic collision (no change in velocity occurs) and $c_r = 1$ denotes a completely elastic collision (kinetic energy is conserved).

Given a priori values for m_A , m_B , v_A^0 , v_B^0 , c_r , we are interested in determining v_A^1 and v_B^1 . To do this, we solve the linear system

$$m_A v_A^0 + m_B v_B^0 = m_A v_A^1 + m_B v_B^1$$
$$c_r = \frac{v_B^1 - v_B^0}{v_A^1 - v_A^0}.$$

This yields

$$v_A^1 = \frac{m_A v_A^0 + m_B v_B^0 + c_r m_B (v_B^0 - v_A^0)}{m_A + m_B}$$
$$v_B^1 = \frac{m_B v_B^0 + m_A v_A^0 + c_r m_A (v_A^0 - v_B^0)}{m_B + m_A}.$$

Intuitively, we hope the outcome does not explicitly depend on the velocities of the objects, instead in terms of momentum and mass only. We

can reformulate the results as follows. (With $m_A + m_B = m_A + m_B$.)

$$p_A^1 = ((1 - c_r)p_A^0 + (1 + c_r)p_B^0) \left(\frac{m_A}{m_A + m_B}\right)$$
$$p_B^1 = ((1 + c_r)p_A^0 + (1 - c_r)p_B^0) \left(\frac{m_B}{m_A + m_B}\right).$$

1.1 Sanity Checks on some example cases:

1.
$$m_A = m_B =: m$$
, $v_A^0 = -v_B^0 =: v^0$
$$p_A^1 = -c_r p^0$$

$$p_B^1 = c_r p^0$$
.

Here, the interpretation of c_r is upheld as the linear damping of the final momenta of two identical objects with equi-opposite initial momenta.

2.
$$m_A = m_B =: m$$

$$p_A^1 = \frac{1 - c_r}{2} p_A^0 + \frac{1 + c_r}{2} p_B^0$$

$$p_B^1 = \frac{1 + c_r}{2} p_A^0 + \frac{1 - c_r}{2} p_B^0$$

The resulting momenta are weighted averages of the initial momenta. When $c_r = 1$, the two momenta swap so that $p_B^1 = p_A^0$ and vice versa. When $c_r = 0$, the resulting momenta are equal since the two objects are same mass and are stuck together.

3.
$$p_A^0 = -p_B^0 =: p^0$$

$$p_A^1 = -2c_r p^0 \left(\frac{m_A}{m_A + m_B}\right)$$
$$p_B^1 = 2c_r p^0 \left(\frac{m_B}{m_A + m_B}\right)$$

Both objects entered the collision with equi-opposite momentum entering the collision, and so both objects leave the collision with equi-opposite momentum, whose magnitude is linearly damped by the coefficient of restitution, and scaled by what proportion of the total mass that object accounted for.

4. $c_r = 1$ (Perfectly elastic collision)

$$p_A^1 = 2p_B^0 \left(\frac{m_A}{m_A + m_B}\right)$$
$$p_B^1 = 2p_A^0 \left(\frac{m_B}{m_A + m_B}\right).$$

Recall since this is a 1D collision, the two objects' momenta had opposite directions initially. This result shows in a perfectly elastic collision, the objects reverse directions and the magnitude of the resulting momentum is linearly proportional to the proportion of the total mass that object held.

5. $c_r = 0$ (Perfectly inelastic collision)

$$p_A^1 = (p_A^0 + p_B^0) \left(\frac{m_A}{m_A + m_B}\right)$$
$$p_B^1 = (p_A^0 + p_B^0) \left(\frac{m_B}{m_A + m_B}\right).$$

Here, the two objects have the same velocity since they are stuck together, so their final momenta vary only by what their difference in mass is.

Computational Considerations for Simulation

We make the initial assumption that all collisions are instantaneous. Formally, we let δ_t be the time step used in our simulation. All events transpire at some discrete time point t^i where $i = i, 1, 2, \ldots$ and $t^i - t^{i-1} = \delta_t$ for all $i \in \mathbb{N}$. Then, consider two circles A and B. We will adopt the notation of $trait_A$ and $trait_B$ to be analogous traits of the two circles and superscripts denote the time step at which this quantity is measured.

The traits relevant to our discussion here are x^i , v^i , a^i , p^i , R (radius) and m. Let us consider the simplest case:

Clearly at t^1 the two balls will be tangent to each other at the origin. That is, the instant of (instantaneous) collision occurs at a measured time point. Then, we adjust the momenta so that

$$v_A^1 = -c_r$$
$$v_B^1 = c_r.$$

Here, we have a more complicated collision, since the instant of collision occurs between t^0 and t^1 .

With zero acceleration, we have

$$t_{collide} = \frac{x_A^0 - x_B^0}{v_B^0 - v_A^0} = t_0 + \frac{2}{3}\delta_t.$$

Regardless of which instant the collision occurs, we know

$$v_A^1 = \frac{-3c_r}{2} + \frac{1}{2}.v_B^1 \qquad \qquad = \frac{3c_r}{2} + \frac{1}{2}.$$

But since the collision occurs before t_1 , we need a position update at a resolution $\delta_t/3$.

$$x_A^1 = x_A^0 + \left(\frac{2v_A^0}{3} + \frac{v_A^1}{3}\right)\delta_t = -1 + \left(\frac{4}{3} + \frac{1 - 3c_r}{6}\right)\delta_t = -1 + \left(\frac{3}{2} - \frac{c_r}{2}\right)\delta_t$$

$$x_B^1 = x_B^0 + \left(\frac{2v_B^0}{3} + \frac{v_B^1}{3}\right)\delta_t = 1 + \left(\frac{-2}{3} + \frac{1 + 3c_r}{6}\right)\delta_t = 1 + \left(\frac{-1}{2} + \frac{c_r}{2}\right)\delta_t.$$

If we instead assume $\frac{2}{3}\delta_t \approx \delta_t$, we then get

$$x_A^1 = x_A^0 + v_A^0 \delta_t = -1 + 2\delta_t$$
$$x_B^1 = x_B^0 + v_B^0 \delta_t = 1 - \delta_t.$$

The question remains: How large can the error in this approximation get?