

NumProg WS 20/21 : Tutorübung 02

- 1. Kondition + Konditionszahl
- 2. Beispiel für schlechte Kondition
- 3. Stabilität + Epsilontik

Kondition beschreibt das Verhältnis zwischen einem Eingabefehler \tilde{x} und dem daraus resultierenden Ausgabefehler $f(\tilde{x})$.

Kondition beschreibt das Verhältnis zwischen einem Eingabefehler \tilde{x} und dem daraus resultierenden Ausgabefehler $f(\tilde{x})$.

Eingabe	х
\downarrow	f
Ausgabe	f(x)

Kondition beschreibt das Verhältnis zwischen einem Eingabefehler \tilde{x} und dem daraus resultierenden Ausgabefehler $f(\tilde{x})$.

[Störung]	Eingabe	\widetilde{x}
	\downarrow	f
	Ausgabe	f(x)

Kondition beschreibt das Verhältnis zwischen einem Eingabefehler \tilde{x} und dem daraus resultierenden Ausgabefehler $f(\tilde{x})$.

[Störung]	Eingabe	\widetilde{x}
	\downarrow	f
	Ausgabe	f(x)

Kondition beschreibt das Verhältnis zwischen einem Eingabefehler \tilde{x} und dem daraus resultierenden Ausgabefehler $f(\tilde{x})$.

[Störung]	Eingabe	\widetilde{x}
	\downarrow	f
	Ausgabe	$f(\widetilde{x})$

Kondition beschreibt das Verhältnis zwischen einem Eingabefehler \tilde{x} und dem daraus resultierenden Ausgabefehler $f(\tilde{x})$.

[Störung]	Eingabe	\tilde{x}
	\downarrow	f
	Ausgabe	$f(\tilde{x})$

Kondition betrachtet keine internen Fehler eines Algorithmus und kann durch dessen Veränderung nicht verbessert werden!

→ allerdings kann Problem umformuliert werden (Vorkonditionierung)

Konditionszahl

Die **Konditionszahl** kann berechnet werden und ist eine obere Schranke für den Verstärkungsfaktor des Fehlers der Eingabe bis hin zur Ausgabe. Konditionszahl einer Funktion f(x) kann durch Ableitung approximiert werden:

$$\operatorname{cond}(f, x) = \left| \frac{x \cdot f'(x)}{f(x)} \right|$$

Konditionszahl

Die **Konditionszahl** kann berechnet werden und ist eine obere Schranke für den Verstärkungsfaktor des Fehlers der Eingabe bis hin zur Ausgabe. Konditionszahl einer Funktion f(x) kann durch Ableitung approximiert werden:

$$\operatorname{cond}(f, x) = \left| \frac{x \cdot f'(x)}{f(x)} \right|$$

Auswertung der Konditionszahl:

- cond(f,x) ≤ 1
 Maximaler Verstärkungsfaktor ist 1; Fehler kann zur Ausgabe hin nicht wachsen
 gute Konditionierung
- cond(f,x) >> 1
 Maximaler Verstärkungsfaktor wesentlich größer als 1; Fehler zur Ausgabe hin wächst stark
 - → schlechte Konditionierung

Stabilität beschreibt, wie sich **interne Fehler** akkumulieren und auf das Endergebnis auswirken (z.B. Runden).

Eingabe	х
\downarrow	f
Ausgabe	f(x)

Stabilität beschreibt, wie sich **interne Fehler** akkumulieren und auf das Endergebnis auswirken (z.B. Runden).

Eingabe	x
\downarrow	f
Ausgabe	f(x)

Stabilität beschreibt, wie sich **interne Fehler** akkumulieren und auf das Endergebnis auswirken (z.B. Runden).

	Eingabe	х
[Störung]	\downarrow	rd (<i>f</i>)
	Ausgabe	f(x)

Stabilität beschreibt, wie sich **interne Fehler** akkumulieren und auf das Endergebnis auswirken (z.B. Runden).

	Eingabe	х
[Störung]	↓	rd(<i>f</i>)
	Ausgabe	rd(f)(x)

Stabilität beschreibt, wie sich **interne Fehler** akkumulieren und auf das Endergebnis auswirken (z.B. Runden).

	Eingabe	х
[Störung]	↓	rd(<i>f</i>)
	Ausgabe	rd(f)(x)

Analyse der Stabilität einer Funktion f(x) ist mit sogenannter Epsilontik möglich:

- bei jeder Maschinenoperation op_M wird ein neuer relativer Fehler ε_i erzeugt $(a \operatorname{op}_M b) = \operatorname{rd}_M(a \operatorname{op} b) = (a \operatorname{op} b) \cdot (1 + \varepsilon_i)$, wobei $|\varepsilon_i| \le \varepsilon_{\operatorname{Ma}}$ (Maschinengenauigkeit) und $\varepsilon_i \cdot \varepsilon_j \doteq 0$ \to so wird aus f(x) die gerundete Auswertung $\operatorname{rd}(f)(x)$ erstellt
- Stabilität beschreibender relativer Fehler:

$$\left| \frac{\operatorname{rd}(f)(x) - f(x)}{f(x)} \right|$$

Zusammenfassung

Kondition	Stabilität
-----------	------------

[Störung]	Eingabe	\tilde{x}
	\downarrow	f
	Ausgabe	$f(\tilde{x})$

[Störung] \downarrow rd(f)

Ausgabe rd(f)(x)

- Konditionierung eines Problems kann mit Konditionszahl abgeschätzt werden
- Problemspezifisch und nicht von Implementierung abhängig!
- Vorkonditionierung kann da aber helfen

- Stabilität kann mit Epsilontik abgeschätzt werden
- Implementierungsabhängig!
- Umformung der Operation kann helfen