

① (4 pontos) Crie uma máquina de estados do tipo MOORE para implementar um controlador de semáforo inteligente. Um semáforo inteligente é um semáforo que possui sinalização para os motoristas e para os pedestres.

Para os pedestres: Existe um botão em cada lado da calçada e dois indicadores para pedestre (Passagem permitida) e (Passagem proibida). Quando um pedestre deseja cruzar a rua, deve apertar um botao e esperar a luz de Passagem permitida ligar. Quando a luz de Passagem proibida estiver ligada ele não pode cruzar a rua.

Para os carros: Existem 3 luzes (Vermelha, Amarela e Verde). Quando a luz estiver verde os carros podem passar, quando a luz estiver amarela (atenção) significa que os motoristas devem ficar atentos pois o semáforo está a ponto de mudar. Quando a luz for vermelha os carros não podem passar.

Crie o diagrama de estados, tabela de estados, utilize FF do tipo JK (diagrama abaixo - lado direito) e simplifique as equações usando mapas K. Implemente o circuito usando portas lógicas.

Algumas considerações: Assuma que o clock do sistema é lento, tem um período de cerca de 30 segundos (que dá tempo de atravessar a rua). Assuma ainda que quando o sinal transitar para vermelho será permitida a passagem dos pedestres, mas o sinal não pode transitar para verde ao mesmo tempo que o sinal de pedestres proibir a passagem. É necessário um estado intermediário para ainda no sinal vermelho, proibir o pedestre de passar.

1	1CLK	1K	<u>16</u>
<u>2</u> , 3,	1PRE	10	<u>15</u>
	1CLR	10	<u> 14</u>
4	1 J	GND	<u>13</u>
5	VCC	2K	12
<u>6</u>	2CLK	20	11
<u>7</u> ,	2PRE	2Ò	迥
<u>B</u>	$2\overline{\text{CLR}}$	2J	9
L			

② (3 pontos) Um CI X é uma memória RAM estática de 2K palavras de 4 bits. Utilizando este CI, construa uma memória de 6KiB. Mostre quantos pinos de endereços e dados devem ser utilizados, quais as linhas controle para realizar operações nas memórias e habilitar o CI. Faça as interconexões destas memórias com um processador que possui 20 bits no barramento de endereços de tal forma que o processador perceba os diversos CIs como apenas uma memória de 6KiB.

③ (3 pontos) Crie um contador síncrono de números não naturais capaz de contar a sequência cíclica 3, 0, 2, 1, 3, 0, Perceba que a sequencia não inicia no zero.

