

SF1625 Envariabelanalys Lösningsförslag till tentamen 2016-01-11

DEL A

1. Betrakta funktionen f som ges av $f(x) = x - 2 \arctan x$.

A. Bestäm definitionsmängden till f.

B. Bestäm de intervall där f är växande respektive avtagande.

C. Bestäm alla lokala extrempunkter till f.

D. Bestäm alla asymptoter till funktionsgrafen y = f(x).

E. Skissa med hjälp av ovanstående funktionsgrafen y = f(x).

Lösning. A. Vi ser att f(x) är definierat för alla reella tal x så defintionsmängden är \mathbf{R} .

B och C. Vi deriverar och får $f'(x)=1-\frac{2}{1+x^2}=\frac{x^2-1}{1+x^2}$ som existerar för alla x och är noll då $x=\pm 1$ De kritiska punkterna är alltså $x=\pm 1$.

Teckenstudium av derivatan:

Om x < -1 så är f'(x) positivt. Det följer att f är strängt växande här.

Om -1 < x < 1 så är f'(x) negativt. Det följer att f är strängt avtagande här.

Om x>1 så är f'(x) positivt. Det följer att f är strängt växande här.

Det följer av detta att f har en lokal maxpunkt i x=-1 och en lokal minpunkt i x=1 och inga andra extrempunkter.

D. Eftersom $\lim_{x\to\pm\infty}\arctan x=\pm\pi/2$ ser vi att f har asymptoten $y=x-\pi$ i oändligheten och asymptoten $y=x+\pi$ i minus oändligheten.

E. Vi kan nu skissa kurvan.

Svar: A. Alla x. B. Strängt växande på $x \le -1$. Strängt avtagande på $-1 \le x \le 1$. Strängt växande på $x \ge 1$. C. Lokalt max i x = -1 och lokalt min i x = 1. D. $y = x - \pi$ är asymptot i oändligheten och $y = x + \pi$ är asymptot i minus oändligheten. E. Se ovan.

2. Beräkna nedanstående integraler.

A.
$$\int_0^{\ln 3} \frac{e^x}{1 + e^x} dx$$
 (använd gärna substitutionen $u = 1 + e^x$)
B.
$$\int_1^2 \frac{dx}{x^2 - 3x - 4}$$
 (använd gärna partialbråksuppdelning)

Lösning. A. Med substitutionen $u=1+e^x$, där $e^x\,dx=du$ och de nya gränserna blir 2 resp 4, får vi

$$\int_0^{\ln 3} \frac{e^x}{1 + e^x} dx = \int_2^4 \frac{1}{u} du = [\ln u]_2^4 = \ln 2.$$

B. Nämnaren kan faktoriseras som $x^2 - 3x - 4 = (x+1)(x-4)$ så vi kan dela upp integranden i partialbråk

$$\frac{1}{x^2 - 3x - 4} = \frac{A}{x - 4} + \frac{B}{x + 1}$$

där vi kan bestämma konstanterna till A=1/5 och B=-1/5. Vi kan därför beräkna integralen enligt

$$\int_{1}^{2} \frac{dx}{x^{2} - 3x - 4} = \int_{1}^{2} \left(\frac{1/5}{x - 4} - \frac{1/5}{x + 1} \right) dx = \frac{1}{5} [\ln|x - 4| - \ln|x + 1|]_{1}^{2} = \frac{2}{5} \ln\frac{2}{3}.$$

Svar: A. $\ln 2$ B. $\frac{2}{5} \ln \frac{2}{3}$

3. Bestäm den lösning till differentialekvationen

$$2y''(t) - 20y'(t) + 50y(t) = t$$

som också uppfyller initialvillkoren y(0) = 1/125 och y'(0) = 1.

Lösning. Allmänna lösningen y till differentialekvationen har strukturen $y=y_h+y_p$ där y_h är den allmänna lösningen till motsvarande homogena ekvation och y_p är någon partikulärlösning till den givna differentialekvationen.

Vi bestämmer först y_h . Den karaktäristiska ekvationen $2r^2-20r+50=0$ har lösningen r=5, så vi får att

$$y_h(t) = (A + Bt)e^{5t}.$$

Eftersom högerledet är ett förstagradspolynom ansätter vi $y_p(t)=ct+d$. Dess derivata är då c och insättning av detta i differentialekvationen ger -20c+50(ct+d)=t varur fås att c=1/50 och d=1/125

Den allmänna lösningen till differentialekvationen är alltså

$$y(t) = (A + Bt)e^{5t} + \frac{t}{50} + \frac{1}{125}.$$

Villkoret y(0)=1/125 ger direkt att vi måste ha A=0. Villkoret y'(0)=1 ger sedan att B=49/50.

Den lösning till differentialekvationen som uppfyller initialvillkoren är därför

$$y(t) = \frac{49t}{50}e^{5t} + \frac{t}{50} + \frac{1}{125}.$$

Svar: $y(t) = \frac{49t}{50}e^{5t} + \frac{t}{50} + \frac{1}{125}$.

Del B

4. Beräkna integralen $\int_0^{1/2} \frac{1}{2+8x^2} dx$.

(För full poäng krävs att integralen beräknas exakt, men delpoäng kan ges för en approximativ beräkning. Svaret ska förenklas så långt som möjligt.)

Lösning. Vi beräknar integralen med primitiv funktion:

$$\int_0^{1/2} \frac{1}{2 + 8x^2} \, dx = \frac{1}{2} \int_0^{1/2} \frac{1}{1 + (2x)^2} \, dx = \frac{1}{4} \left[\arctan(2x)\right]_0^{1/2} = \frac{\pi}{16}.$$

Svar: $\pi/16$

- 5. Betrakta ekvationen $e^x + \arcsin x = 0$.
 - A. För vilka x är uttrycket $e^x + \arcsin x$ definierat?
 - B. Visa att ekvationen $e^x + \arcsin x = 0$ har exakt en lösning.
 - C. Finn ett närmevärde till lösningen med ett fel på högst 0.5.

Lösning. A. Medan e^x är definierat för alla x så är $\arcsin x$ bara definierat då $-1 \le x \le 1$. Vi ser alltså att uttrycket $e^x + \arcsin x$ är definierad för x sådana att $-1 \le x \le 1$.

B och C. Sätt $f(x)=e^x+\arcsin x$. Ekvationen i uppgiften kan då skrivas f(x)=0. Definitionsmängden till f är $-1\le x\le 1$ och f är kontinuerlig på hela det slutna och begränsade intervallet. Vi konstaterar att $f(-1)=e^{-1}-\pi/2$ som är mindre än 0 och att $f(1)=e^1+\pi/2$ som är större än 0. Med hjälp av satsen om mellanliggande värden får vi från ovanstående att det finns en punkt x^* mellan -1 och 1 sådan att $f(x^*)=0$. I själva verket måste x^* med ett likadant argument ligga mellan -1 och 0 eftersom f(0)=1 som är större än 0. En approximation av x^* som har ett fel på högst 0.5 är därför -0.5.

Eftersom $f'(x) = e^x + \frac{1}{\sqrt{1-x^2}}$ som är positivt i hela det inre av intervallet så är f strängt växande och kan därför inte ha mer än ett nollställe.

Det följer alltså att ekvationen har exakt en lösning. Ett närmevärde till lösningen är -0.5.

Svar: Se lösningen. Närmevärde -0.5

- 6. Ett område som ligger på ena sidan om ett plant snitt genom en sfär kallas en *sfärisk kalott*.
 - A. Beräkna volymen av den sfäriska kalott man får genom att låta området mellan kurvan $y = \sqrt{100 x^2}$ och x-axeln, på intervallet $10 h \le x \le 10$, rotera runt x-axeln (vi antar att 0 < h < 10).
 - B. En sfär med radie 10 meter fylls med vatten i en takt av 0.2 kubikmeter per minut. Med vilken hastighet stiger vattenytan i det ögonblick då vattendjupet h (på det djupaste stället) är 2 meter? (Tips: från uppgift A får du att sambandet mellan vattenvolymen V och vattendjupet h ges av $V = 10h^2\pi h^3\pi/3$.)

Lösning. A. Formeln för rotationsvolymer ger att volymen V ges av

$$V = \pi \int_{10-h}^{10} (100 - x^2) \, dx = 10h^2 \pi - \frac{h^3 \pi}{3}.$$

B. Formeln för vattenvolymen i sfären när djupet är h får vi från uppgift A. Vattenvolymen är

$$V = 10h^2\pi - \frac{h^3\pi}{3}.$$

Här ska man komma ihåg att både V och h beror på tiden t, så om vi deriverar denna formel med avseende på t får vi

$$\frac{dV}{dt} = 20h\pi \frac{dh}{dt} - h^2\pi \frac{dh}{dt}.$$

Vi vet att ändringstakten av volymen är 0.2 kubikmeter per minut, så dV/dt=0.2. Det som söks är dh/dt i det ögonblick då h=2. Detta kan vi nu räkna ut, för när h=2 får vi

$$0.2 = 40\pi \frac{dh}{dt} - 4\pi \frac{dh}{dt},$$

så

$$\frac{dh}{dt} = \frac{1}{180\pi}$$
 meter per minut.

Svar: A. $10h^2\pi - \frac{h^3\pi}{3}$

B. $1/180\pi$ meter per minut

DEL C

- 7. Denna uppgift handlar om teorin för kontinuitet och deriverbarhet.
 - A. Definiera vad det betyder att en funktion är kontinuerlig i en punkt a.
 - B. Definiera vad det betyder att en funktion är deriverbar i en punkt a.
 - C. Bevisa att en funktion som är deriverbar i a också måste vara kontinuerlig i a.
 - D. Ge exempel som visar att en funktion kan vara kontinuerlig utan att vara deriverbar.

Lösning. Se boken, definition 4 i kapitel 1.4, definition 4 i kapitel 2.2, sats 1 i kapitel 2.3, exempel 4 i kapitel 2.2.

Svar: Se boken.

- 8. Betrakta funktionen f given av $f(x) = x^2 + \int_0^x \sin^2 t \, dt$.
 - A. Beräkna Taylorpolynomet av grad 2 till f kring punkten x = 0.
 - B. Ange feltermen och visa att den är begränsad om $|x| \le 1$.
 - C. Beräkna gränsvärdet $\lim_{x\to 0} \frac{f(x)}{x^2}$.

Lösning. Med hjälp av huvudsatsen och kedjeregeln mm får vi att

$$f'(x) = 2x + \sin^2 x$$
 och $f'(0) = 0$,

$$f''(x) = 2 + 2\sin x \cos x$$
 och $f''(0) = 2$,

$$f'''(x) = 2\cos 2x.$$

Eftersom dessutom f(0) = 0 får vi det sökta Taylorpolynomet som $p(x) = x^2$.

Feltermen är $\frac{2\cos 2c}{3!}x^3$ för något c mellan 0 och x. Eftersom $|\cos 2c| \le 1$ får vi att absolutbeloppet av feltermen är $\le 2/3! = 1/3$ när $|x| \le 1$. Den är alltså begränsad.

Med hjälp av ovanstående får vi att

$$\lim_{x \to 0} \frac{f(x)}{x^2} = \lim_{x \to 0} \frac{x^2 + \frac{2\cos 2c}{3!}x^3}{x^2} = 1.$$

Svar: A. $p(x) = x^2$. B. Se lösningen. C. 1

9. Finn tal a och b sådana att $a \leq \sum_{n=1}^{\infty} \frac{1}{n^2} \leq b$. För full poäng krävs, förutom ett korrekt resonemang, att $b-a \leq 0.2$.

Lösning. Vi har först att
$$\sum_{n=1}^{\infty} \frac{1}{n^2} = 1 + \frac{1}{4} + \sum_{n=3}^{\infty} \frac{1}{n^2}$$
.

Med hjälp enkla uppskattningar liknande de som görs i beviset för Cauchys integralkriterium får vi sedan att

$$\int_{3}^{\infty} \frac{1}{x^2} \, dx < \sum_{n=2}^{\infty} \frac{1}{n^2} < \frac{1}{9} + \int_{3}^{\infty} \frac{1}{x^2} \, dx.$$

Sätter vi ihop dessa obeservationer och beräknar integralen (dess värde är 1/3), får vi

$$1 + \frac{1}{4} + \frac{1}{3} < \sum_{n=1}^{\infty} \frac{1}{n^2} < 1 + \frac{1}{4} + \frac{4}{9}.$$

Eftersom 1 + 1/4 + 1/3 = 19/12 = 1.58... och 1 + 1/4 + 4/9 = 61/36 = 1.69... så kan vi välja a = 1.58 och b = 1.7 och konstatera att

$$1.58 \le \sum_{n=1}^{\infty} \frac{1}{n^2} \le 1.7.$$

Svar: Se lösningen.