Notatki Algebra i Geometria Liniowa

Mateusz Kojro

August 11, 2020

1 Wiadomosci wstepne

1.1 Zbiory

Def Zbior pusty: zbior ktory nie zawiera zadnego elementu oznaczamy

$$A = \emptyset \tag{1}$$

Def Podzbior: Mowimy ze A jest podzbiorem B jezeli:

$$(A \subset B) \Leftrightarrow \forall a (a \in A \Rightarrow a \in B) \tag{2}$$

Def Zbiory rowne Zbiory sa rowne jezeli:

$$(A = B) \Leftrightarrow \forall a (a \in A \Leftrightarrow a \in B) \tag{3}$$

Def Suma Zbiorow Suma zbiorow A i B nazywamy

$$A \cup B = \{x : x \in A \lor x \in B\} \tag{4}$$

Def Iloczyn zbiorow Iloczyn zbiorow A i B nazywamy:

$$A \cap B = \{x : x \in A \land x \in B\} \tag{5}$$

Def Roznica zbiorow Roznica zbiorow nazywamy:

$$A - B = \{x : x \in A \land x \notin B\} \tag{6}$$

Def Alternatywa rozlaczna (XOR) chyba

$$A \div B = \{x : (x \in A \land x \notin B) \lor (x \notin A \land x \notin B)\}$$
 (7)

Def Iloczyn Kartezjanski Iloczynem Kartezjanskim zbiorow nazywamy

$$A_1 \times A_2 \times \ldots \times A_n = \{(a_1, a_2, \ldots, a_n) : a_i \in A_i, i = 1, 2, \ldots, n\}$$
(8)

1.2 Odwzorowania

 ${f Def}$ ${f Odwzorowanie}$ zbioru ${f A}$ w zbior ${f B}$ kazdemu elemntowi a z zbioru ${f A}$ przyporzadkujemy dokladnie jeden element b z ${f B}$ oznaczamy:

$$h: A \to B$$
 (9)

Gdzie:

- Dziedzina : A
- Przeciwdziedzina odwzorowania A (obraz zbioru A) : $h(A) \subset B$
- Przeciwobraz zbioru B_1 : $A_1 = h^{-1}(B_1)$ taki ze $h(A_1) \subset B_1$

Def Superpozycja (zlozenie) zlozeniem odwzorowan $h: A \to B$ i $g: B \to C$ nazywamy

$$g \circ h : A \to C$$
 (10)

takie ze

$$(g \circ h)(a) = g(h(a)) \ \forall_{a \in A} \tag{11}$$

Def Iniekcja (odwzorowanie roznowartosciowe) $h: A \to B$ jest Iniekcja gdy:

$$\forall_{a_1, a_2 \in A} \ h(a_1) = h(a_2) \Rightarrow a_1 = a_2 \tag{12}$$

Def Surjekcja (odwzorowanie na) $h: A \to B$ jest Surjekcja gdy:

$$\forall_{b \in B} \exists_{a \in A} \ h(a) = b \tag{13}$$

Def Bijekcja (odwzorowanie wzajemnie jednoznaczne) Odwzorowanie jest Bijekcja jezeli jest Iniekcja i Surjekcja

Def Odwzorowanie odwrotne jezeli $h:A\to B$ jest Bijekcja to Odwzorowaniem odwrotnym nazywamy $h^{-1}:B\to A$ takie ze

$$\forall_{a \in A} (h^{-1} \circ h)(a) = a \tag{14}$$

inaczej

$$h^{-1} \circ h = Id_A \tag{15}$$

Def Identycznosc Odwzorowanie zbioru A w siebie w postaci $Id_A(a) = a$

2 Struktury Algebraiczne

2.1 Grupy

Def Zamknietosc wzoru wzgledem dzialania \oplus Zbior A jest zamkniety wzgledem \oplus (dzialanie \oplus jest wykonalne w zbiorze A) jezeli:

$$\forall_{a,b \in A} \exists_{c \in A} c = a \oplus b \tag{16}$$

Przyklady:

- Zbior N nie jest jest zamkniety wzgledem odejmowania
- Zbior liczb calkowitych Z jest zamkniety wzgledem + i * ale nie jest zamkniety wzgledem \div bo wynik dzielenia liczb calkowitych moze nie byc liczba calkowita

Grupa Grupa nazywamy pare zbioru G z dzialaniem \circ wzgledem ktorego zbior jest zamkniety jezeli spelnione sa aksjomaty grupy:

- Prawo lacznosci: $\forall_{a,b,c \in G} \ \ a \circ (b \circ c) = (a \circ b) \circ c$
- Istnienie elementu neutralnego: $\exists_{e \in G} \forall_{a \in G} \ a \circ e = e \circ a = a$
- Istnienie element odwrotnego: $\forall_{a \in G} \ \exists_{a^{-1} \in G} \ a \circ a^{-1} = a^{-1} \circ a = e$

Grupa Abelowa (przemienna) Grupe nazywamy Abelowa jezeli jej dzialanie jest przemiene:

$$\forall_{a,b \in G} \ a \circ b = b \circ a \tag{17}$$

Przyklady ...

2.2 Ciała

Ciało Cialem nazywamy zbior K zawierajacy wiecej niz jeden element i niech bedzie zamkniety wzgledem dwoch dzialan (\oplus, \circ) jezeli zachodza relacje:

- \bullet Przemiennosc dodawania: $a \oplus b = b \oplus a$
- Przemiennosc mnozenia: $a \circ b = b \circ a$
- Lacznosc dodawania: $a \oplus (b \oplus c) = (a \oplus b) \oplus c$
- Lacznosc mnozenia: $a \circ (b \circ c) = (a \circ b) \circ c$
- Rozdzielnosc \circ wzgledem \oplus : $a \circ (b \oplus c) = a \circ b \oplus a \circ c$
- Istnienie zera: $\exists!_{\theta \in K} \forall_{a \in K} \ a \oplus \theta = a$
- Wykonalnosc odejmowania: $\forall_{a,b \in K} \exists !_{c \in K} \ a \oplus c = b$
- Wykonalnosc dzielenia: $\forall_{a,b \in K \text{ i } a \neq \theta} \exists !_{c \in K} a \circ c = b$

W zwiazku z tym struktura (K, \oplus, \circ) jest cialem wzgledem dzialan (\oplus, \circ) \Leftrightarrow struktury (K, \oplus) i (K, \circ) sa grupami abelowymi z rodzielnościa \circ wzgledem \oplus

2.3 Pierścienie

Def Pierscien (nieprzemienny) Pierścieniem nieprzemiennym nazywamy zbior P bedacy grupa Abelowa wzgledem działania dodawania \oplus o elemencie neutralnym θ w którym spelnione jest Prawo łaczności mnożenia \circ przy czym zachodza oba prawa rodzielności

$$a \circ (b \oplus c) = a \circ b \oplus a \circ \text{,oraz } (a \oplus b) \circ c = a \circ c \oplus b \circ c$$
 (18)

Def Pierscien (przemienny) jezeli w zbiorze P zachodzi takze prawo przemienności to pierscien jest przemienny

3 Cialo liczb zespoloncyh

3.1 Definicja