TYPED-UP (IMPORTANT) NOTES 9/30

LUCAS CHEN

1. Cauchy Sequences Proof via inf = sup

Definition: A Cauchy sequence is a sequence $\{x_n\}, x_n \in \mathbb{R}, n \in \mathbb{N} \text{ s.t. } \forall \epsilon, \exists a \in \mathbb{N} \text{ s.t. } |x_m - x_n| \leq \epsilon, \forall m, n \geq a$

Then, given any sequence $\{y_n\}$ we define $\limsup_{n\to\infty} x_n = \inf\{\sup\{x_m : m \ge n\} n \in \mathbb{N}\}$

We define \liminf similarly with the \inf , sup reversed.

If $\liminf_{n\to\infty} x_n = \limsup_{n\to\infty} x_n$ then the lim exists and the sequence is convergent, as established by the conditions below:

We prove that Cauchy sequences satisfy $\liminf = \limsup$.

Date: September 30, 2024.