

Edson Prestes

Introdução - Isomorfismo

Dois grafos G e G' são isomorfos, ou seja, $G \cong G'$ se eles apresentam as mesmas propriedades estruturais.

Definição: Dois grafos G e G' são isomorfos se existe uma função bijetora $f:V(G) \to V(G')$

$$f\,:V(G) o V(G')$$

$$(u,v) \in A(G)$$
 sse $(f(u),f(v)) \in A(G')$

tal que

$$G \cong G'$$

Introdução – Isomorfismo

Os grafos abaixo são isomorfos ?

G'

V(G)	V(G')
1	d
2	a
3	e
4	b
5	f
6	c

Sim! $G \cong G'$

Introdução — Isomorfismo

Os grafos abaixo são isomorfos ?

Não! O grafo G é bipartido e o G' não é .

Introdução – Isomorfismo

Os grafos abaixo são isomorfos ?

G'

V(G)	V(G')
1	a
2	e
3	c
4	b
5	d
6	f

Sim! $G \cong G'$

Introdução – Isomorfismo

Os grafos abaixo são isomorfos ?

Não!

Introdução - Isomorfismo

A relação de isomorfismo é uma relação de equivalência sobre o conjunto de grafos simples.

Propriedade reflexiva: uma permutação da identidade dos vértices de G é um isomorfismo de G para si próprio.

Propriedade simétrica: Se $f:V(G)\to V(G')$ é uma função que define o isomorfismo entre G e G', então f^{-1} é a função que define o isomorfismo entre G' e G.

Logo,
$$(u, v) \in A(G)$$
 sse $(f(u), f(v)) \in A(G')$
temos que $(x, y) \in A(G')$ sse $(f^{-1}(x), f^{-1}(y)) \in A(G)$

Introdução - Isomorfismo

Propriedade de Transitividade: Suponha que as funções

 $f:V(G)\to V(H)$ e $l:V(H)\to V(M)$ definam a relação de isomorfismo entre os grafos G e H; e H e M, respectivamente.

Sabemos que $(u,v) \in A(G)$ sse $(f(u),f(v)) \in A(H)$ e que $(x,y) \in A(H)$ sse $(l(x),l(y)) \in A(M)$

Como f define uma relação de isomorfismo se $(x,y)\in A(H)$, então existe uma aresta $(u,v)\in A(G)$ tal que f(u)=x e f(v)=y.

Logo, $(u,v)\in A(G)$ sse $(l(f(u)),l(f(v)))\in A(M)$.Portanto, a composição lof define a relação de isomorfismo entre G e M, ou seja,

$$G \cong H \text{ e } H \cong M \text{ implica } G \cong M.$$

Introdução - Isomorfismo

Uma relação de equivalência divide um conjunto de grafos em classes de equivalência, onde dois grafos pertencem ao mesmo conjunto sse eles são isomorfos.

Uma classe isomórfica de grafos é uma classe de equivalência de grafos regida por uma relação de isomorfismo.

Um exemplo de classe isomórfica é a classe chamada grafo de petersen.

Introdução - Grafo de Petersen

Um grafo de Petersen é um grafo simples não orientado gerado usando o seguinte conjunto S={1,2,3,4,5}. Seus vértices estão associados a subconjuntos de dois elementos de S.

Os vértices formados a partir destes subconjuntos serão conectados por uma aresta se seus subconjuntos correspondentes forem disjuntos.

Introdução – Grafo de Petersen

O grafo abaixo é isomórfico ao grafo de Petersen?

Introdução - Grafo de Petersen

Mostre que dois vértices não adjacentes em um grafo de Petersen têm exatamente 1 vizinho em comum.

Dois vértices A e B não adjacentes no grafo de Petersen são subconjuntos de 2 elementos que compartilham um único elemento.

Um vértice adjacente tanto à A quanto à B tem que ser um subconjunto disjunto dos dois subconjuntos associados à A e à B.

Como estes dois vértices são escolhidos a partir do conjunto {1,2,3,4,5}, a quantidade de elementos resultante da união dos subconjuntos associados a eles é igual a 3.

Então existe exatamente uma única combinação de 2 elementos para o terceiro vértice de forma que ele seja adjacente tanto ao vértice A quanto ao vértice B.

Introdução – Automorfismo

Um automorfismo de um grafo G é um isomorfismo de G para si próprio.

Os automorfismos de G são as permutações de V(G) que podem ser aplicadas a ambas as linhas e colunas da matriz de adjacência sem mudar a adjacência entre os vértices de G.

Considere um grafo G representado pela matriz de adjacência abaixo

	1	2	3	4
1	0	1	3	0
2	1	0	1	0
3	0	1	0	1
4	0	0	1	0

Introdução – Automorfismo

G possui 2 automorfismos: ele próprio e a permutação que mapeia o vértice 1 para o vértice 4 e o vértice 2 para o vértice 3.

Realizando o mapeamento

					.					
	1	2	3	4			4	3	2	1
1	0	1	0	0	<i>V</i>	4	0	1	0	0
2	1	0	1	0		3	1	0	1	0
3	0	1	0	1	4	2	0	1	0	1
4	0	0	3 0 1 0 1	0		1	0	3 1 0 1 0	1	0

Re-arranjando linhas e colunas

Introdução – Automorfismo

Apenas trocar a identidade do vértice 1 pela identidade do 4 não é um automorfismo de G.

Embora este grafo seja isomórfico ao grafo G, ele não é um automorfismo de G.

	1	2	3 0	4
1	0	2 1 0	0	
2	1	0	1 0	0
3	0	1	0	1
4	0	0	1	0

Realizando o mapeamento

	4	2	3	1
4	0	1	0	0
2	1	0	1	0
3	0	1	0	1
1	0	0	1	0

	1	2	3	4
1	0 0 1	2 0 0 1	1	0
2	0	0	1	1
3	1	1	0	0
4	0	1	0	0

Re-arranjando linhas e colunas

Introdução – Automorfismo

Quantos automorfismos um biclique $K_{r,s}$ possui?

Em um grafo bipartido completo, a permutação dos vértices de um conjunto independente não muda a matriz de adjacência do grafo.

Logo temos, r!s! automorfismos.

Introdução – Mais sobre grafos..

Cintura

A cintura de um grafo é o comprimento do menor ciclo do grafo. Um grafo sem ciclos tem uma cintura de comprimento infinito.

Diâmetro de um grafo

O diâmetro de um grafo consiste na maior distância entre dois vértices em um grafo.

$$diam(G) = \max_{u,v \in V(G)} d(u,v)$$

Introdução - Mais sobre grafos..

Deleções

A operação de deleção consiste na retirada de vértices ou de arestas de um grafo.

Considere um grafo G = (V,A). A retirada de um vértice v, representada por G-v, causa a retirada de todas as arestas incidentes a v.

Enquanto que a retirada de uma aresta w=(u,v), representada por G-w, leva a quebra da adjacência dos nós u e v, se o grafo for simples.

Introdução – Mais sobre grafos..

Se V_1 é um subconjunto de V(G), então $G-V_1$ é o grafo resultante da retirada de todos os vértices $v \in V_1$ e de suas arestas incidentes.

Esta operação leva ao grafo G', onde

$$V(G') = V(G) - V_1 e$$

$$A(G') = \{(u,v) \in A(G) \mid u,v \in V(G')\}$$

Se A_1 é um subconjunto de A(G), então G- A_1 é o grafo resultante da retirada das arestas $A_1 \subset A(G)$. Esta operação leva ao grafo G'', onde

$$V(G'')=V(G) e$$

$$A(G'')=A(G)-A_1$$

Introdução – Mais sobre grafos..

A operação de arco-contração, denotada por G/a, consiste na retirada da aresta a=(u,v) juntamente com seus vértices u e v, seguida da inserção de um novo vértice w e a re-ligação das arestas incidentes tanto a u quanto a v a este novo vértice.

Introdução – Mais sobre grafos..

Qual é o resultado da execução da sequência (((((G/a)/b)/c)/d)/e) no grafo G abaixo ?

