EXERCICE N°1 (Le corrigé)

On considère la fonction f définie et dérivable sur \mathbb{R} par $f(x)=3x^3-4x$.

1) Calculer la dérivée f' de f.

$$f'(x) = 3 \times 3x^2 - 4 \times 1 = 9x^2 - 4$$

remarque : On a utilisé les formules du cours (fonctions part 2 <u>propriété n°5 et exemple n°3</u>)

2)

2.a) Factoriser f'(x)

$$f'(x) = \underbrace{9x^2 - 4}_{a^2 - b^2} = \underbrace{(3x)^2 - 2^2}_{a^2 - b^2} = \underbrace{(3x + 2)(3x - 2)}_{(a+b)(a-b)}$$

2.b) Étudier le signe de f' sur \mathbb{R}

Nous allons dresser un tableau de signes :

$$3x+2 > 0 \Leftrightarrow 3x > -2 \Leftrightarrow x > -\frac{2}{3}$$

(On mettra donc les + après $-\frac{2}{3}$ dans la ligne : 3x+2)

$$3x-2 > 0 \Leftrightarrow 3x > 2 \Leftrightarrow x > \frac{2}{3}$$

(On mettra donc les + après $\frac{2}{3}$ dans la ligne : 3x-2)

x	$-\infty$		$-\frac{2}{3}$		$\frac{2}{3}$		+∞
3x+2		_		+	0	+	
3x-2		_		_		+	
f'(x)		+	0	_	0	+	

On en déduit que :

$$f'(x)$$
 est strictement positif sur $\left]-\infty ; -\frac{2}{3}\right[\cup \left]\frac{2}{3}; +\infty\right[$

$$f'(x)$$
 est strictement négatif sur $\left] -\frac{2}{3}; \frac{2}{3} \right[$

et que f'(x) vaut zéro sur $\left\{-\frac{2}{3}; \frac{2}{3}\right\}$

3) En déduire le tableau de variations de f sur \mathbb{R} .

Pas demandé ici mais cela permet de faire le lien

x	$-\infty$		$-\frac{2}{3}$		$\frac{2}{3}$		+∞
f'(x)		+	0	_	0	+	
f(x)	-∞		$\sqrt{\frac{16}{9}}$		$-\frac{16}{9}$		+∞

$$f\left(-\frac{2}{3}\right) = 3 \times \left(-\frac{2}{3}\right)^3 - 4 \times \left(-\frac{2}{3}\right) = -\frac{8}{9} + \frac{8}{3} = \frac{-8 + 24}{9} = \frac{16}{9}$$

$$f\left(\frac{2}{3}\right) = 3 \times \left(\frac{2}{3}\right)^3 - 4 \times \left(\frac{2}{3}\right) = \frac{8}{9} - \frac{8}{3} = \frac{8 - 24}{9} = -\frac{16}{9}$$

EXERCICE N°2 (Le corrigé)

On considère la fonction f définie sur [-2; 2] par $f(x)=x^3-0.75x^2-4.5x+3$.

1) Montrer que f'(x)=3(x+1)(x-1,5).

On sait que:

$$f(x)=x^3-0.75x^2-4.5x+3$$

d'où

$$f'(x)=3x^2-0.75\times 2x-4.5\times 1+0 = 3x^2-1.5x-4.5$$

Et:

$$3(x+1)(x-1,5) = 3(x^2-0.5x-1.5) = 3x^2-1.5x-4.5 = f'(x)$$

Remarque:

Toujours la même technique :

- 1) On dérive la forme développée réduite.
- 2) On développe la forme factorisée donnée dans l'exercice et on constate que c'est bien la même chose. (Et on n'écrit f'(x) qu'à la fin.
- 2) Étudier le signe de f'(x) et en déduire les variations de f sur [-2; 2].

Pour étudier le signe, on choisit (presque) toujours la forme forme factorisée.

Nous allons dresser un tableau de signe

- 3 > 0 est vrai pour toute valeur de x
- $x+1 \Leftrightarrow x > -1$
- $-x-1.5 > 0 \Leftrightarrow x > 1.5$

x	-2		-1		1,5		2
3		+		+		+	
x+1		_		+	0	+	
x - 1,5		_		_		+	
f'(x)		+	0	_	0	+	

On en déduit que :

$$f'(x)$$
 est strictement positif sur $]-2;-1[\cup]1,5;2[$

$$f'(x)$$
 est strictement négatif sur $]-1$; 1,5[

et que
$$f'(x)$$
 vaut zéro sur $[-1; 1,5]$

3) $\underbrace{\text{Donner}}_{\mathbf{f}}$ les extremums de f, ainsi que les valeurs pour lesquelles ils sont atteints.

(= pas de justifications)

Pour identifier les extremums, on cherche les valeurs de x où la dérivée change de signe.

On regarde donc les zéros dans la dernière ligne du tableau de signes et on garde ceux entourés par des signes différents (+0- ou -0+ mais pas +0+ ni -0-).

On pense aussi à regarder les valeurs de f(-2) et f(2).

$$f(-2)=1$$
; $f(-1)=5.75$; $f(1.5)=-2.0625$ et $f(2)=-1$

f possède un minimum qui vaut -2,0625 et qui est atteint en 1,5

f possède un maximum qui vaut 5,75 et qui est atteint en -1

EXERCICE N°3

Dresser le tableau de variations de chacune des fonctions polynômes suivantes, après avoir étudier le signe de la dérivée.

1)
$$f(x)=x^3-3x+1$$
 définie sur \mathbb{R} .

$$f(x)=x^{3}-3x+1$$

$$f'(x)=3x^{2}-3$$
Factorisons $f'(x)$

$$f'(x) = 3x^{2}-3 = 3(x^{2}-1) = 3(x+1)(x-1)$$

- 3 > 0 est vrai pour toute valeur de x
- $x+1 \Leftrightarrow x > -1$
- $x-1 > 0 \Leftrightarrow x > 1$

x	$-\infty$		-1		1		+∞
3		+		+	[+	
x+1		_		+	0	+	
x-1		_		_		+	
f'(x)		+	0	_	0	+	
f(x)	-∞		3		-1		+∞

Remarque:

On fait bien attention : l'avant-dernière ligne, c'est pour le signe f' et la dernière, c'est pour les variations de f . On ne se mélange pas les pinceaux dans les « ' »

2)
$$g(x)=2x^3+4x$$
 définie sur \mathbb{R} .

$$g(x)=2x^3+4x$$

 $g'(x) = 2\times 3x^2+4\times 1 = 6x^2+4$

Ici, on réfléchit un peu : x^2 est toujours supérieur ou égal à zéro, cela reste vrai quand on le multiplie par 6 et quand on ajoute 4, cela devient même strictement positif.

De manière évidente, g'(x) > 0

On en déduit que g est strictement croissante sur \mathbb{R}

3)
$$h(x)=x^3+6x^2$$
 définie sur \mathbb{R} .

$$h(x)=x^3+6x^2$$

 $h'(x) = 3x^2+6\times 2x = 3x^2+12x$
Factorisons $h'(x)$
 $h'(x) = 3x^2+12x = 3x(x+4)$

- $3x > 0 \Leftrightarrow x > 0$
- $x+4 > 0 \Leftrightarrow x > -4$

x	$-\infty$		-4		0		+∞
3 x		_		_	0	+	
<i>x</i> +4		_	0	+	1	+	
f'(x)		+	0	-	0	+	
f(x)	-∞		3		→ -1 /		, +∞

EXERCICE N°1

On considère la fonction f définie et dérivable sur \mathbb{R} par $f(x)=3x^3-4x$.

- 1) Calculer la dérivée f' de f.
- 2)
- **2.a)** Factoriser f'(x).
- **2.b)** Étudier le signe de f' sur \mathbb{R} .
- 3) En déduire le tableau de variations de f sur \mathbb{R} .

EXERCICE N°2

On considère la fonction f définie sur [-2; 2] par $f(x)=x^3-0.75x^2-4.5x+3$.

- 1) Montrer que f'(x)=3(x+1)(x-1,5).
- 2) Étudier le signe de f'(x) et en déduire les variations de f sur [-2; 2].
- 3) Donner les extremums de f, ainsi que les valeurs pour lesquelles ils sont atteints.

EXERCICE N°3

Dresser le tableau de variations de chacune des fonctions polynômes suivantes, après avoir étudier le signe de la dérivée.

- 1) $f(x)=x^3-3x+1$ définie sur \mathbb{R} .
- 2) $g(x)=2x^3+4x$ définie sur \mathbb{R} .
- 3) $h(x)=x^3+6x^2$ définie sur \mathbb{R} .

EXERCICE N°1

On considère la fonction f définie et dérivable sur \mathbb{R} par $f(x)=3x^3-4x$.

- 1) Calculer la dérivée f' de f.
- 2)
- **2.a)** Factoriser f'(x).
- **2.b)** Étudier le signe de f' sur \mathbb{R} .
- 3) En déduire le tableau de variations de f sur \mathbb{R} .

EXERCICE N°2

On considère la fonction f définie sur [-2; 2] par $f(x)=x^3-0.75x^2-4.5x+3$.

- 1) Montrer que f'(x)=3(x+1)(x-1,5).
- 2) Étudier le signe de f'(x) et en déduire les variations de f sur [-2; 2].
- 3) Donner les extremums de f, ainsi que les valeurs pour lesquelles ils sont atteints.

EXERCICE N°3

Dresser le tableau de variations de chacune des fonctions polynômes suivantes, après avoir étudier le signe de la dérivée.

- 1) $f(x)=x^3-3x+1$ définie sur \mathbb{R} .
- 2) $g(x)=2x^3+4x$ définie sur \mathbb{R} .
- 3) $h(x)=x^3+6x^2$ définie sur \mathbb{R} .

FONCTIONS PART3 E05

EXERCICE N°1

On considère la fonction f définie et dérivable sur \mathbb{R} par $f(x)=3x^3-4x$.

- 1) Calculer la dérivée f' de f.
- 2)
- **2.a)** Factoriser f'(x).
- **2.b)** Étudier le signe de f' sur \mathbb{R} .
- 3) En déduire le tableau de variations de f sur $\mathbb R$.

EXERCICE N°2

On considère la fonction f définie sur [-2; 2] par $f(x)=x^3-0.75x^2-4.5x+3$.

- 1) Montrer que f'(x)=3(x+1)(x-1,5).
- 2) Étudier le signe de f'(x) et en déduire les variations de f sur [-2; 2].
- 3) Donner les extremums de f, ainsi que les valeurs pour lesquelles ils sont atteints.

EXERCICE N°3

Dresser le tableau de variations de chacune des fonctions polynômes suivantes, après avoir étudier le signe de la dérivée.

- 1) $f(x)=x^3-3x+1$ définie sur \mathbb{R} .
- 2) $g(x)=2x^3+4x$ définie sur \mathbb{R} .
- 3) $h(x)=x^3+6x^2$ définie sur \mathbb{R} .