1. gyakorlat

Téma:

Algoritmusok műveletigényének meghatározása, hatékonyság, hatékonyság jellemzése (aszimptotikus korlátok bevezetése).

Javasolt feladatok:

1. **Polinom helyettesítési értékének kiszámítása**. Adott egy n-ed fokú polinom, határozzuk meg egy adott x helyen felvett értékét: a_n*xⁿ+a_{n-1}*xⁿ⁻¹+ a₁*x+a₀

(Tfh nagyon sok polinomunk van, és nagyon sok helyen kell kiszámítani az értékét, ezért készítsünk minél hatékonyabb megoldást.)

A polinom együtthatóit egy nullától indexelt, n+1 méretű tömbben helyezzük el. (Megállapodás: ha a tömböt nem nullától indexeljük, a deklarációnál és a specifikációnál jelezzük, pl. A/1:T[n]. Most tehát Z:R[] ugyanaz, mint Z/0:R[].) A Z tömb mérete: Z.length (hangsúlyozzuk, hogy: Z.length=n+1).

A megoldásoknál írjuk fel, hogy az egyes lépések hányszor hajtódnak végre. Vizsgáljuk meg a ciklusiterációk it(n), a szorzások S(n) és az összeadások $\ddot{O}(n)$ számát, a polinom fokszámának függvényében.

Feltehető, hogy n≥0, azaz Z.length>0

Első megoldás, az összegzés tételéből származik:

Második megoldás, x hatványait rekurzívan számoljuk a h változóban: $x^i=x^{i-1}*x$, ha i>0, $x^0=1$

it(n) = S(n)

$$S(n) = 2 * n$$

$$\ddot{O}(n) = n$$

$$it(n) = n$$

 $\ddot{O}(n) = n$

Harmadik megoldás, a Horner séma:

$$y=(...(a_n*x+a_{n-1})*x+a_{n-2})*x+...+a_1)*x+a_0$$

$$S(n) = n$$
 $it(n) = n$ $\ddot{O}(n) = n$

Jellemezzük a három megoldást a Θ aszimptotikus korlát segítségével.

Megj: it(n) a futási idő nagyságrendjét általában, minden nemrekurzív program esetében is megadja:

	Polinom1	Rekurzív	Horner
S(n)	$\Theta(n^2)$	$\Theta(n)$	$\Theta(n)$
Ö(n)	$\Theta(n)$	Θ(<i>n</i>)	$\Theta(n)$
it(n)	$\Theta(n^2)$	$\Theta(n)$	$\Theta(n)$

2. **Buborék rendezés** Készítsük el az alap algoritmust, majd a javított változatot. Elemezzük itt is, hogy a struktogram egyes lépései hányszor hajtódnak végre. Nézzük meg az összehasonlítások Öh(n) és cserék számát Cs(n). Cserék elemzésénél használjuk a mCs(n), MCs(n) ACs(n) jelöléseket. Átlagos csere számot nem kell pontosan kiszámolni, elég csak a "megérzés"-re támaszkodni.

Nézzük meg a rendezés menetét egy rövid példán, majd írjuk fel a struktogramot.

Buborék példa:					Csere
3	5	2	4	1	0
3	5 🛑	→ 2	4	1	1
3	2	5 🛑	→ 4	1	1
3	2	4	5 💠	→ 1	1
3	2	4	1	5	1. menet vége, 5 a helyén van
3 🛑	→ 2	4	1	5	1
2	3	4	1	5	0
2	3	4 💠	→ 1	5	1
2	3	1	4	5	2. menet vége
2	3	1	4	5	0
2	3 🛑	→ 1	4	5	1
2	1	3	4	5	3. menet vége
2 🛑) 1	3	4	5	1
1	2	3	4	5	4. menet vége, rendezett a tömb

Csere összesen: 7 Összehaonlítás összesen: 10 A rendezendő kulcsokat (és a hozzájuk tartozó adatokat) egy A nevű tömbben helyeztük el. A.length = n, a rendezendő kulcsok darabszáma.

Az összehasonlítások száma Ö
$$(n)=\sum_{i=1}^{n-1}i=rac{n*(n-1)}{2}=rac{n^2-n}{2}\in\Theta(n^2)$$

Cserék számát hogyan tudjuk meghatározni?

Cserék száma a rendezendő adatsorban található <u>inverziók</u> számával egyenlő. Lásd a példában 7 inverzió van: 3,2 3,1 5,2 5,4 5,1 2,1 4,1

Ebből adódik, hogy mCs(n)=0 (nincs inverzió, azaz növekvően rendezett a bemenet)

MCs(n)= Ö(n) (minden összehasonlítást csere követ, azaz fordítottan rendezett a tömb)

$$ACs(n) = \frac{n*(n-1)}{4} = \Theta(n^2)$$
 Ennek a levezetése a lejjebb megadott linken megtalálható.

Vezessük be az Ω és O aszimptotikus korlátokat, és használjuk a csere számra: mCs(n)=0, MCs(n)= Θ (n²) azaz Cs(n)=O(n²)

Az átlagos futási idő kiszámítása részletesen megtalálható dr Fekete István jegyzetében: https://people.inf.elte.hu/fekete/algoritmusok jegyzet/01 fejezet Muveletigeny.pdf

A buborék rendezés javítási módszerei:

- figyelhetjük egy logikai változóval, hogy volt-e csere, ha nem volt akkor a külső ciklus álljon le,
- megjegyezhetjük az utolsó csere helyét: ha ez u és u+1 indexen történt, akkor u+1-től már a tömb rendezett, a külső ciklus változót u-ra lehet csökkenteni. Itt elég csak a legkedvezőbb és legrosszabb esetet vizsgálni mÖ(n)∈Θ(n), MÖ(n)∈Θ(n²). Megemlíthetjük a futási idő jelölést: mT(n)∈Θ(n), MT(n)∈Θ(n²); azaz mT(n),MT(n)∈Ω(n), mT(n),MT(n)∈O(n)

Példa:

Csere összesen: 2 Összehaonlítás összesen: 5 Struktogramja:

JavítottBuborék(A:T[])

3. **A maximum kiválasztásos rendezés** struktogramjának elkészítése, elemzése.

Mutassuk be a rendezést egy rövid példán, majd írjuk fel a struktogramot. Miért nem érdemes a cserét egy elágazásba tenni? (Maximum értéket azért nem használunk, mert rendezésnél mindig feltesszük, hogy nem csak kulcs, hanem a kulcshoz tartozó rekord is tárolva van a tömbben, melynek mozgatása költséges lenne.)

Példa:

MaxKivRend(A/1:T[n])

Hányszor fut le (A.length=n)

Házi feladatok (ezek megoldását a következő gyakorlaton megbeszéljük):

1. Legendre algoritmus műveletigényének meghatározása *k* függvényében: Mit számol ki az algoritmus? (Érdemes lejátszani egy példán)

Legendre(a:R,k:N):R

2. Adott egy n hosszú, egész számokat tartalmazó tömb. Keressük a tömb azon szakaszát, melynek összege a lehető legnagyobb. (Legyen a tömb neve: A, adjuk meg az a két indexet: $1 \le ind1 \le ind2 \le n$, melyre a $\sum_{i=ind1}^{ind2} A[i]$ a maximális.). Elemezzük a megoldás műveletigényét, készítsünk minél hatékonyabb algoritmust! A "Brute-Force" megoldás $\Theta(n^3)$, könnyen javítható $\Theta(n^2)$ -re, de van $\Theta(n)$ -es megoldás is!