Something We Cannot Build

Think about it:

- Can we built the circuit using the combinational logic?
- If not, what is missing here?

Something We Cannot Build

- One needs the storage unit
- The output is triggered by an event instead of a value.

Use feedback to store a bit

Question: if we want to maintain the state, what voltage should be applied to v_{11} and v_{12} ?

S-R (SET-RESET) Latch

- The output of each gate is connected to an input of the opposite gate to provide a feedback.
- Even the input is removed, the output state is still maintained.
- This is the active high input SR latch

S_{D}	R_{D}	Q	Q*
0	0	0	0
0	0	1	1
1	0	0	1
1	0	1	1
0	1	0	0
0	1	1	0
1	1	0	0 0 [⊕]
1	1	1	0 ^①

 $\begin{array}{c}
\text{The state is undetermined when } S \\
\text{and } R \text{ are removed simultaneously}
\end{array}$

S-R (SET-RESET) Latch

Active low input SR latch

S_{D}^{\prime}	R_{D}^{\prime}	Q	Q*
1	1	0	0
1	1	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	
0	0	0	0 1 [©] 1 [©]
0	0	1	10

S-R (SET-RESET) Latch

Question: plot the waveform of Q and Q'

S-R Latch as a Contact-Bounce Eliminator

- The closure of a mechanical switch is accompanied by the contact bounce
- An S-R latch can be used to eliminate the effects of switch bounce.
- The 1 to 2 transition sets the latch. Any further voltage spikes on the S input do not affect the latch.
- Similarly, a clean transition from HIGH to LOW is made for a 2 to 1 transition.

The gated S-R Latch

CLK	S	R	Q	Q*
0	×	×	0	0
0	×	×	1	1
1	0	.0	0	0
1	0	0	1	1
1	1	0	0	1
1	1	0	1	1
1	0	1	0	0
1	0	1	1	0
1	1	1	0	1 [©]
1.	1	1	1	1 [©]

- C1 denotes that *CLK* is a control signal with the numbering 1
- 1S and 1R denotes that S and R are controlled by C1
- The gated latch is a level-sensitive device

The gated S-R Latch

Question: plot the waveform of Q and Q', assume the initial Q is 0

The asynchronous gated S-R Latch

- When S_D' and R_D' are not used for asynchronous set and reset, one should set them to 1
- When they are used, CLK should be set to 0

The gated D Latch

• Compared to the S-R latch, it lost the keep function

The gated D Latch

Question: plot the waveform of Q and Q', assume the initial Q is 0

The gated D Latch

D latch using transmission gate

D latch using MUX