III. Fonction cube

1) <u>Définition et propriétés algébriques</u>

<u>Définition</u>: La <u>fonction cube</u> f est définie sur \mathbb{R} par $f(x) = x^3$.

Remarque: $f(x) = x^3 = x \times x^2 = x \times x \times x$

Exemple: $f(5) = 5^3 = 5 \times 5 \times 5 = 125$.

Propriétés: Soit k un nombre réel.

- L'équation $x^3 = k$ admet une **unique** solution, appelée racine cubique de k, et notée $\sqrt[3]{k}$.
- L'équation $x^3 < k$ admet pour solution l'intervalle $S =] \infty; \sqrt[3]{k}[$.

Remarque : De manière intéressante, $\sqrt[3]{k}$ est égale à $k^{\frac{1}{3}}$. Une racine cubique est donc aussi une puissance.

2) Variations

Propriété : La fonction cube est **strictement croissante** sur l'intervalle $\mathbb R$.

Exemple:

- Si l'on prend a=2 et b=5, alors f(a) < f(b) car la fonction cube est croissante. On peut le voir en calculant $f(a)=2^3=8$ et $f(5)=5^3=125$.
- ❖ Si l'on prend a=-2 et b=-1, alors f(a) < f(b) car la fonction est croissante. On peut le voir en calculant

$$f(a) = (-2)^3 = -2 \times (-2) \times (-2) = -8$$
 alors que $f(b) = (-1)^3 = -1 \times (-1)^2 = -1$.

3) Représentation graphique

Remplir le tableau de valeurs ci-dessous et tracer la fonction cube :

x	-2	-1	0	1	2
<i>f</i> (<i>x</i>)					

Remarque:

Dans un repère orthogonal, la courbe de la fonction cube est symétrique par rapport à l'origine du repère.

Dans ce cas, f(-x) = -f(x): la fonction est dite impaire.

f(-x) + f(x) = 0 car les images sont opposées.

Exemple: montrons que $f(x) = x^3$ est une fonction impaire par le calcul f(-x) + f(x) = 0 pour tous les x de l'ensemble de définition (ici, $\mathbb R$).

On sait que $f(x) = x^3$.

Calculons
$$f(-x) = (-x)^3 = (-x) \times (-x) \times (-x) = -x \times x^2 = -x^3$$

Donc, en faisant la somme, on trouve $f(-x) + f(x) = x^3 + (-x^3) = 0$. f est donc impaire.

Parité: montrez que $f(x) = x^3 - 2x$ est impaire.

$$f(x) = x^3 - 2x$$

$$f(-x) = (-x)^3 - 2(-x) = -x^3 + 2x$$

$$f(-x) + f(x) = x^3 - 2x - x^3 + 2x = 0$$

donc f est une fonction impaire.

4) Comparaison des fonctions cube et carré

Propriété :

- Pour tout $x \in [0; 1]$, on a $x^3 \le x^2 \le x$;
- Pour tout $x \in [1; +\infty[$, on a $x^3 \ge x^2 \ge x$.

Remarque:

On peut voir dans le graphique ci-contre que cette propriété est graphique. Pour x < 1, la fonction bleue est au-dessus de la fonction rouge qui est au-dessus de la fonction verte.

<u>Démonstration</u> (au programme):

Procédons par disjonction des cas :

♦ Cas 1 :
$$0 \le x \le 1$$

Multiplions chaque membre de cette inégalité par x. Comme x est positif, le sens de l'inégalité n'est pas changé.

On obtient un premier résultat: $0 \le x^2 \le x$.

Multiplions à nouveau par x. On obtient donc : $0 \le x^3 \le x^2$. Or, on vient de démontrer que $x^2 \le x$ donc, on en déduit que $x^3 \le x^2 \le x$.

Cas 2 : $x \ge 1$

Multiplions chaque membre de cette inégalité par x. Comme x est positif, le sens de l'inégalité n'est pas changé.

On obtient $x^2 \ge x$.

On réitère l'opération : $x^3 \ge x^2$ (et $x^2 \ge x$). Donc, on peut en déduire : $x^3 \ge x^2 \ge x$