MAT250 Proof 3

Kishan S Patel

March 7, 2025

This proof is an altered version of one I submitted for MAT258 this semester (about 3 weeks ago for the 2nd proof assignment).

Let A be an $n \times k$ matrix, and let B be a $k \times m$ matrix. AB is their product $n \times m$ matrix.

1. If AB is one-to-one (injective) as a linear transformation, then so is $B(P_1)$.

Proof.

$$\begin{array}{c} \mathrm{let}\ f:Y\to Z\\ f:\vec{x}\mapsto A\vec{x} \end{array}$$

$$\begin{array}{c} \mathrm{let}\ g:X\to Y\\ g:\vec{x}\mapsto B\vec{x} \end{array}$$

 $f \circ g$ is injective because $f \circ g = AB$.

let
$$P_2 = \not\exists x_0, x_1 \in X : (f \circ g)(x_0) = (f \circ g)(x_1) \land x_0 \neq x_1$$

$$\neg P_1 \implies \exists x_0, x_1 \in X : g(x_0) = g(x_1) \land x_0 \neq x_1$$
$$\implies \exists x_0, x_1 \in X : (f \circ g)(x_0) = (f \circ g)(x_1) \land x_0 \neq x_1$$
$$P_2 \land \neg P_1 \implies \neg P_2 \therefore P_1 \text{ is true.}$$

QED

2. If AB is surjective as a transformation, then so is A.

Proof.

$$\forall z \in Z, \exists x \in X : (f \circ g)(x) = z$$

$$f(g(x)) = z$$

$$\text{let } y \in Y = g(x)$$

$$f(y) = f(g(x)) = z$$

 $\therefore f$ is surjective.

QED