R語言與資料視覺化

ALL HOLENIUM

丘祐瑋 David Chiu

環境資訊頁面

- ■所有課程補充資料、投影片皆位於
 - https://github.com/ywchiu/cdc_course

GGPlot2

繪圖語法 (Grammar of Graphics)

- Wilkinson 用Grammar of Graphics 解釋統計圖形 (statistical graphic)的概念
- Wickham 則是以該語法為基礎發展出 ggplot 繪圖系統

GGPlot繪圖架構

- 主題 (Theme)
 - □ 控制資料以外的繪圖組件
- 座標系統 (Coordinates)
 - □ 指定繪圖時所使用的座標系統
- 繪圖面 (Facets)
 - □ 指定如何將資料分散在多張子圖形中繪製
- 統計轉換 (Statistics)
 - □ 指定如何以將資料轉換為各種統計量。
- 幾何圖案 (Geometries)
 - □ 繪製資料用的幾何圖形
- 美學對應 (Aesthetic)
 - □ 指定原始資料與圖形之間的對應關係
- 資料來源 (Data)
 - □ 原始資料來源

繪圖範例

Aesthetics: x, Fill

Movie Name	Budget	Genre	
ABC	\$5 M	Action	
DEF	\$50 M	Action	
GHI	\$12 M	Comedy	

安裝GGPlot2

- ■安裝ggplot2
 - □install.packages("ggplot2")
- 使用ggplot2
 - □ library(ggplot2)
- ■觀看說明頁
 - □help(package='ggplot2')

資料來源(Data)

■ 從疫情中心的開放資料網站蒐集到「地區年齡性別統計表-麻疹」(2003年起各地區、各年齡層、性別之病例數統計表(疾病名稱:麻疹,日期種類:發病日,病例種類:確定病例,感染來源:本土、境外移入)

■讀取資料

library(readr)

measles <- read_csv("https://raw.githubusercontent.com/ywchiu/cdc_course/master/data/measles.csv")
head(measles)</pre>

確定病名 <chr></chr>	發病年份 ⊴int>	發病月份 <int></int>	縣市 <chr></chr>	鄉鎮 <chr></chr>	性別 <chr></chr>	是否為境外移入 <chr></chr>	年齢層 <chr></chr>	確定病例數
麻疹	2009	4	高雄市	小港區	M	否	20-24	2
麻疹	2009	5	基隆市	中山區	M	否	30-34	1
麻疹	2011	6	新北市	蘆洲區	F	是	25-29	1
麻疹	2014	1	高雄市	副 男三	F	是	0	1
麻疹	2017	3	台北市	松山區	F	是	0	1
麻疹	2018	4	桃園市	蘆竹區	F	否	30-34	1

日期資料轉換

- Date
 - □為簡單版的時間資料格式

- POSIXct, POSIXIt
 - □POSIXct: 以整數形式存放時間資料 (1970/01/01至今的秒數)
 - ■POSIXIt: 以年、月、週、日等有效訊息存放資料

日期函式

```
x <- as.Date("2018-05-08")
class(x)
unclass(x)

y <- as.Date("1970-01-01")
unclass(y)</pre>
```

時間處理 (1)

```
■印出系統時間
```

```
x <- Sys.time()
```

X

■時間轉換

```
p <- as.POSIXIt(x)
```

unclass(p)

p\$sec

p1 <- as.POSIXct(x) unclass(p1)

時間處理 (2)

■利用strptime 轉換時間

```
ds <- c("May 8, 2018 12:00")
x <- strptime(ds, "%B %d, %Y %H:%M")</pre>
```

X

■時間運算

x <- strptime(ds, "%B %d, %Y %H:%M")</p>

x1 <- as.POSIXIt(as.Date('2018-05-08'))

x - x1

使用Lubridate 轉換時間資料

- ■安裝lubridate
 - □install.packages("lubridate")
- ■使用lubridate
 - □ library(lubridate)
- ■觀看說明頁
 - help(package='lubridate')

使用Lubridate 轉換時間資料

```
library(lubridate)
ymd("20180605")
ymd("2018/06/05")
dmy("05/06/2011")
ymd_hms('2018-05-06 08:00:00')
```

取得年月等資訊

```
bday <- dmy("15/10/1988")
month(bday)
```

wday(bday, label = TRUE)

year(bday) <- 2018 wday(bday, label = TRUE)

轉換時間資料

measles\$發病時間 <- as.Date(with(measles, paste(發病年份, 發病月

份, '01',sep="-")), "%Y-%m-%d")

With 語法可指名發病年份與發病月份 資料來自measles 資料集

確定病名	發病年份 發	病月份 縣市	鄉鎮 <chr></chr>	性別 <chr></chr>	是否為境外移力 <chr></chr>	年齢層 <chr></chr>	確定病例數	發病時間 <date></date>
麻疹	2009	4 高	小	М	否	20-24	2	2009-04-01
麻疹	2009	5 基	中	M	否	30-34	1	2009-05-01
麻疹	2011	6 新	蘆	F	是	25-29	1	2011-06-01
麻疹	2014	1 高	三	F	是	0	1	2014-01-01
麻疹	2017	3 台	松	F	是	0	1	2017-03-01
麻疹	2018	4 桃	蘆	F	否	30-34	1	2018-04-01

美學對應 (Aesthetic)

繪製散佈圖

```
library(ggplot2)
```

p1 <- ggplot(measles, aes(x = 發病時間, y = 確定病例數))
p1 + geom_point()

修改顏色

p1 <- ggplot(measles, aes(x = 發病時間, y = 確定病例數))
p1 + geom_point(color='red')

修改點的大小、顏色、形狀

p1 + geom_point(color='blue', size = 5, shape = 19)

根據類別 (factor) 修改

p1 + geom_point(aes(color=factor(性別))

指定各類別的顏色

```
p1 +
geom_point(aes(color=factor(性別))) +
scale_color_manual(values = c("orange", "purple"))
```


指定類別顏色

覆載原本的點樣式

```
p1 +
geom_point(color='red') +
geom_point(color='blue')
```


修改原本點的顏色

修改顏色與性別

source('multiplot.R')

p2 <- p1 + geom_point(aes(color=factor(性別)))

p3 <- p1 + geom_point(aes(shape=factor(性別)))

multiplot(p2, p3, cols=2)

multiplot.R 可載自

https://raw.githubusercontent.com/ywchiu/cdc_course/master/script/multiplot.R

修改標籤名稱與標題名稱

```
p1 +
geom_point() +
xlab("時間") +
ylab("病例數") +
ggtitle("麻疹發病趨勢")
```


圖層疊加

```
p1 + geom_point(aes(color=factor(性別))) + geom_line(aes(color=factor(性別))) p1 + geom_line(aes(color=factor(性別))) + geom_point(aes(color=factor(性別)))
```


幾何圖案 (Geometries)

散佈圖 (Scatter Plot)

load('cdc.RData')
plot(wtdesire ~ weight, data = cdc)

load('cdc.RData')
ggplot(data=cdc, aes(x=weight, y =
wtdesire)) + geom_point()

直方圖 (Histogram)

hist(cdc\$weight)

histogram <- ggplot(data=cdc, aes(x=weight))
histogram + geom_histogram(binwidth=10,
color="black")

密度圖 (Density Plot)

```
density <- ggplot(data=cdc, aes(x=weight))
density + geom_density(stat="density", alpha=I(0.2), fill='blue')</pre>
```


箱型圖 (Box Plot)

boxplot(cdc\$weight~ cdc\$gender)

box <- ggplot(data=cdc,
aes(x=gender, y=weight))
box + geom_boxplot(aes(fill=gender))</pre>

長條圖 (Bar Plot)

barplot(table(cdc\$genhlth))

bar <- ggplot(data=cdc, aes(x=genhlth))
bar + geom_bar()</pre>

圓餅圖 (Pie Chart)

pie(table(cdc\$gender))

pie <- ggplot(cdc_sex, aes(x="", y=Freq
,fill=Var1)) + geom_bar(width=1, stat =
"identity") + geom_text(aes(label=Freq, y
=c(15000, 5000)) , size=5)
pie + coord_polar(theta="y", start = 0)</pre>

統計轉換(Statistics)

增添迴歸線 (Smooth)

smooth <- ggplot(data=cdc, aes(x=weight, y=wtdesire, color=gender)) +</pre>

geom_point(aes(shape=gender), size=1.5)

smooth + geom_smooth(method="lm")

可替換方法為 method="loess"

增添資料點到箱型圖上

```
box <- ggplot(data=cdc, aes(x=gender, y=weight))
box + geom_jitter() + geom_boxplot(aes(fill=gender ))</pre>
```


繪圖面 (Facets)

產生多張子圖

```
w <- ggplot(data=cdc, aes(x=weight, y = wtdesire)) + geom_point(aes(color=factor(gender))) +
geom_smooth(method = 'lm')
w1 <- w + facet_grid(gender~.)
w2 <- w + facet_grid(.~genhlth)
multiplot(w1, w2, cols = 1)</pre>
```


產生多張子圖 (2)

w + facet_grid(gender~genhlth)

座標系統 (Coordinates)

局部放大

```
w <- ggplot(data=cdc, aes(x=weight, y = wtdesire)) +
geom_point(aes(color=factor(gender))) + geom_smooth(method = 'lm')
w + xlim(100,200) + ylim(100,200)</pre>
```


並非調整ylim 就可以調整所有圖表

```
histogram <- ggplot(data=cdc, aes(x=weight))
histogram + geom_histogram(binwidth=10, color="black") + ylim(0,1000)
```


調整座標

histogram + geom_histogram(binwidth=10, color="black") + coord_cartesian(ylim = c(0,1000))

調整座標 (2)

```
w <- ggplot(data=cdc, aes(x=weight, y = wtdesire)) + geom_point(aes(color=factor(gender))) +
geom_smooth(method = 'lm')</pre>
```

w + facet_grid(gender~genhlth) + coord_cartesian(ylim = c(100,200))

主題 (Theme)

增加圖表標籤敘述

```
w <- ggplot(data=cdc, aes(x=weight, y = wtdesire)) + geom_point(aes(color=factor(gender))) + geom_smooth(method = 'lm') w + xlab('體重') + ylab('理想體重') + ggtitle('體重 v.s. 理想體重')
```


修改標籤樣式

```
w + xlab('體重') + ylab('理想體重') + ggtitle('體重 v.s. 理想體重') + theme(axis.title.x = element_text(color = 'DarkGreen', size = 10), axis.title.y = element_text(color = 'Red', size = 10), axis.text.x = element_text(size = 15), axis.text.y = element_text(size = 15))
```

善用?theme 觀看選項

調整標題

w + xlab('體重') + ylab('理想體重') + ggtitle('體重 v.s. 理想體重') + theme(plot.title = element_text(size = 20, hjust = 0.5))

修改圖標

```
w + xlab('體重') + ylab('理想體重') + ggtitle('體重 v.s. 理想體重') + scale_color_manual(name = '性別',labels = c("MALE", "FEMALE"), values = c("blue", "red")) + theme(legend.text = element_text(size = 10), legend.title = element_text(size = 10), legend.position = c(1,1), legend.justification = c(1,1))
```


修改圖背景樣式

```
w <- ggplot(data=cdc, aes(x=weight, y = wtdesire)) + geom_point(aes(color=factor(gender))) + geom_smooth(method = 'lm') w1 <- w + xlab('體重') + ylab('理想體重') + ggtitle('體重 v.s. 理想體重') w1 + theme_dark()
```


匯出圖片

使用ggsave 存儲圖片

```
w <- ggplot(data=cdc, aes(x=weight, y = wtdesire)) + geom_point(aes(color=factor(gender))) + geom_smooth(method = 'lm')
w1 <- w + xlab('體重') + ylab('理想體重') + ggtitle('體重 v.s. 理想體重')
w1 + theme_dark()
ggsave("plot1.png")
ggsave(w1, file="plot2.png")
ggsave(w1, file="plot3.png", width=6, height=4)
```

ggmap

安裝ggmap

- ■安裝ggmap
 - □install.packages("ggmap")
- ■使用ggmap
 - □ library(ggmap)
- ■觀看說明頁
 - □help(package='ggmap')

顯示台灣地圖

library(ggmap)
map <- get_map(location = 'Taiwan', zoom = 7)
ggmap(map)</pre>

顯示特定經緯度地圖

map <- $get_map(location = c(lon = 120.12, lat = 23.00),$ zoom = 10, language = "zh-TW")

ggmap(map)

蒐集資料

■ 從疫情中心的開放資料網站蒐集到登革熱1998年起每日確定病例統計數字

library(readr)

Dengue <- read_csv("Dengue_Daily")
head(Dengue)</pre>

將資料點繪製於地圖

```
map <- get_map(location = c(lon = 120.246100, lat = 23.121198), zoom = 10, language = "zh-TW") ggmap(map, darken = c(0.5, "white")) + geom_point(aes(x = 最小統計區中心點X, y = 最小統計區中心點Y), color = "red", data = Dengue_Daily)
```

其他繪圖套件

高級繪圖套件介紹

- plotly · googleVis
- ■其他:
 - □Ggplot2
 - **□**Ggvis
 - □地圖: RgoogleMaps
 - □社會網路: igraph
 - □熱繪圖:heatmap
 - □類別資料視覺化:vcd
 - □多變量條件式繪圖: lattice
 - □股票: quantmod::chartSeries

plotly

■ 可使用Python,R,Matlab,Javascript撰寫的開源繪圖套件,快速、方便

■產生HTML檔

Donut Chart

```
Is a single of the state of th
```


Area Chart

layout(yaxis = list(title = 'rainfall'))

```
Iibrary(plotly)
month<- c(1,2,3,4,5)
taipei <- c(92.5,132.6,168.8,159.1,218.7)
tainan <- c(21.2, 30.6, 37.3, 84.6, 184.3)

plot_ly(x = month, y = taipei, fill = "tozeroy", name="taipei",type='scatter', mode= 'markers') %>%
```

add_trace(x = month, y = tainan, fill = "tozeroy",name="tainan") %>%

Area Chart (Stacked)

```
■ 函數:plot_ly ()
```

■範例:

layout(yaxis = y)

```
library(plotly)
month<- c(1,2,3,4,5)
taipei<- c(92.5,132.6,168.8,159.1,218.7)
tainan <- c(21.2, 30.6, 37.3, 84.6, 184.3)
total <- taipei + tainan
y <- list(title="Rainfall")</pre>
= total, fill = "tonexty", name="tainan") %>%
```


Bubble Chart

■ 函數: plot_ly (mode="markers")

data("diamonds")

diamonds

d <- diamonds[sample(nrow(diamonds), 1000),]

plot_ly(d, x = d\$carat, y= d\$price, color = d\$clarity, type='scatter', mode= 'markers', size = d\$carat, text= paste("Clarity", d\$clarity))

Multiple Plots

p %>% layout(showlegend=FALSE)

■ 函數: subplot(margin,nrows,...)

data("economics")

p <- subplot(
plot_ly(economics, x = economics\$date, y = economics\$unemploy, type='scatter', mode = 'lines'),
plot_ly(economics, x = economics\$date, y = economics\$uempmed, type='scatter', mode = 'lines'),
margin=0.05
)

Multiple Plots

■ 函數: subplot(margin,nrows,...)

```
p <- subplot(
plot_ly(economics, x = economics$date, y = economics$unemploy, type='scatter', mode = 'lines'),
plot_ly(economics, x = economics$date, y = economics$uempmed, type='scatter', mode = 'lines'),
margin=0.05,
nrows = 2
)
p %>% layout(showlegend=FALSE)
```


THANK YOU