Simplex Solver

October 20, 2023

Problem

Given the following linear system and objective function, find the optimal solution.

$$\min(x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + x_8 + x_9 + x_10 + x_11 + x_12 + x_13 + x_14 + x_15 + x_16 + x_17 + x_18 +$$

Solution

Add slack variables to turn all inequalities to equalities.

$$\begin{cases} y_1 - y_2 + s_1 = 1 \\ 2y_1 - 5y_2 + s_2 = 1 \\ -y_1 + 2y_2 + s_3 = 1 \\ -y_1 + 3y_2 + s_4 = 1 \end{cases}$$

Create the initial tableau of the new linear system.

y_1	y_2	s_1	s_2	s_3	s_4	$\mid b \mid$	
1	-1	1	0	0	0	1	s_1
2	-5	0	1	0	0	1	$egin{array}{c} s_1 \\ s_2 \\ s_3 \end{array}$
-1	2	0	0	1	0	1	s_3
-1	3	0	0	0	1	1	s_4
-1	-1	0	0	0	0	0	

There are negative elements in the bottom row, so the current solution is not optimal. Thus, pivot to improve the current solution. The entering variable is y_1 and the departing variable is s_2 .

Perform elementary row operations until the pivot element is 1 and all other elements in the entering column are 0.

	y_1	y_2	s_1	s_2	s_3	s_4	b -]
1	0	3/2	1	-1/2	0	0	1/2	s_1
1	1	-5/2	0	1/2	0	0	1/2	y_1
1	0	-1/2	0	1/2	1	0	3/2	s_3
١	0	1/2	0	1/2	0	1	3/2	s_4
	0	-7/2	0	1/2	0	0	1/2	

There are negative elements in the bottom row, so the current solution is not optimal. Thus, pivot to improve the current solution. The entering variable is y_2 and the departing variable is s_1 .

Perform elementary row operations until the pivot element is 1 and all other elements in the entering column are 0.

ſ	y_1	y_2	s_1	s_2	s_3	s_4	b	
1	0	1	2/3	-1/3	0	0	1/3	y_2
1	1	0	5/3	-1/3	0	0	4/3	y_1
l	0	0	1/3	1/3	1	0	5/3	s_3
1	0	0	-1/3	2/3	0	1	4/3	s_4
	0	0	7/3	-2/3	0	0	5/3	

There are negative elements in the bottom row, so the current solution is not optimal. Thus, pivot to improve the current solution. The entering variable is s_2 and the departing variable is s_4 .

Perform elementary row operations until the pivot element is 1 and all other elements in the entering column are 0.

$$\begin{bmatrix} y_1 & y_2 & s_1 & s_2 & s_3 & s_4 & b \\ 0 & 1 & 1/2 & 0 & 0 & 1/2 & 1 \\ 1 & 0 & 3/2 & 0 & 0 & 1/2 & 2 \\ 0 & 0 & 1/2 & 0 & 1 & -1/2 & 1 \\ 0 & 0 & -1/2 & 1 & 0 & 3/2 & 2 \\ \hline 0 & 0 & 2 & 0 & 0 & 1 & 3 \end{bmatrix} \begin{array}{c} y_2 \\ y_1 \\ s_3 \\ s_2 \\ \end{array}$$

There are no negative elements in the bottom row, so we know the solution is optimal. Thus, the solution is:

$$s_1 = 0, s_2 = 2, s_3 = 1, s_4 = 0, x_1 = 2, x_2 = 0, x_3 = 0, x_4 = 1, y_1 = 2, y_2 = 1, z = 3$$