Plan du cours

I.	Introduction				
n.	Les ensembles de nombres et leur notation				
	1.	Les entiers naturels	1		
	2.	Les entiers relatifs	3		
	3.	Les rationnels	4		
	4.	Les nombres réels	5		
	5.	Initiation à la démonstration	6		
m.	Les intervalles de $\mathbb R$				
	1.	Introduction	8		
	2.	Définition	8		
	3.	Les différents types d'intervalles	9		
IV.	Opérations sur les ensembles				
	1.	L'inclusion : le symbole \subset	11		
	2.	L'intersection : le symbole \cap	11		
	3.	L'union: le symbole ∪	12		

I. Introduction

On est souvent amener en mathématiques à effectuer des regroupements d'éléments ayant certaines caractéristiques.

Par exemple : dans un lycée, on regroupe les élèves dans des classes différentes suivant leur niveau. Un groupe d'élèves de terminale qui ont choisi la spécialité physique notée A et un groupe d'élèves de terminale qui ont choisi la spécialité mathématiques notée B. Ces deux groupes forment des ensembles inclus dans l'ensemble formé par l'établissement noté Ω .

On peut représenter cette situation à l'aide d'un diagramme de Venn :

La notation ensembliste est la suivante : $A \subset \Omega$ et $B \subset \Omega$. On lit : "A est inclus dans oméga" et "B est inclus dans oméga".

II. Les ensembles de nombres et leur notation

1. Les entiers naturels

Les premiers nombres utilisés sont les entiers 0 ; 1 ; 2.. On les appelle les entiers naturels.

Il y a une infinité d'entiers naturels, l'ensemble qu'ils forment est noté $\mathbb{N}.$

Définition

On appelle $\mathbb N$ l'ensemble des entiers naturels, le plus petit entier naturel est 0.

- \to Si l'on considère les entiers naturels non nuls (c'est-à-dire tous sauf 0) on note cet ensemble : \mathbb{N}^*
- → D'une manière générale et <u>par convention</u>, écrire un ensemble avec le symbole * signifie que le nombre 0 est exclu de cet ensemble.

Exercice:

(b) Compléter en utilisant le symbole qui convient parmi \in , \notin , \subset ou $\not\subset$ les phrases suivantes :

2...A; 7...A; $\{1\}...A$; $\{2;6\}...A$

 $2...\mathbb{N}$; $\{2;6\}...\mathbb{N}$; $A...\mathbb{N}$; $-1...\mathbb{N}$; $\mathbb{N}^*...\mathbb{N}$

Les ensembles de nombres

Les entiers relatifs

• Résoudre dans N les équations suivantes :

$$x - 3 = 0$$

$$3t - 6 = 0$$

$$2y + 8 = 2$$

• Il v a donc nécessité de considérer les entiers relatifs. Un entier relatif est constitué d'un signe " - " ou dun signe " + " (ne s'écrivant pas par convention) et d'un entier naturel, l'ensemble qu'ils forment est noté \mathbb{Z} .

Définition

On appelle \mathbb{Z} l'ensemble des entiers relatifs, il n'y a pas de plus petit ni de plus grand entier relatif.

 \rightarrow L'ensemble des entiers relatifs non nuls est noté : \mathbb{Z}^* , celui des entiers relatifs négatifs est noté : \mathbb{Z}^- et celui des entiers relatifs positifs : \mathbb{Z}^+

Exercice:

Compléter en utilisant le symbole qui convient parmi \in , \notin , \subset ou $\not\subset$ les phrases suivantes:

$$2. \ldots \mathbb{Z}$$
 ; $\mathbb{N}. \ldots \mathbb{Z}$; $\{-1;1\}. \ldots \mathbb{Z}$; $\mathbb{Z}^-. \ldots \mathbb{Z}$

Propriété

Entre deux entiers relatifs, il n'y a qu'un nombre fini d'entiers relatifs.

Exercice:

L'ensemble qu'ils forment est $B = \dots \dots \dots$

3. Les rationnels

• Résoudre l'équation 2x + 1 = 6, la ou les solutions appartiennent-elles à \mathbb{N} ? à \mathbb{Z} ?

Définition

On appelle rationnel tout nombre pouvant s'écrire sous la forme d'une fraction de deux entiers $\frac{a}{b}$ avec $\mathbf{a} \in \mathbb{Z}$ et $\mathbf{b} \in \mathbb{N}^*$.

Définition

On appelle Q l'ensemble des nombres rationnels.

Exercice:

Compléter en utilisant le symbole qui convient parmi \in , \notin , \subset ou $\not\subset$ les phrases suivantes :

$$2. \ldots \mathbb{Q}$$
 ; $5. \ldots \mathbb{Q}$; $\frac{1}{2} \ldots \mathbb{Q}$; $\sqrt{225} \ldots \mathbb{Q}$

$$\mathbb{N}....\mathbb{Q}$$
 ; $\sqrt{2}....\mathbb{Q}$; $\mathbb{Z}....\mathbb{Q}$

Propriété

Entre deux nombres rationnels, il existe une infinité de nombres rationnels.

Exercice:

Propriété

Parmi les rationnels, ceux qui admettent une écriture avec une puissance de 10 au dénominateur sont appelés des décimaux, cet ensemble est noté $\mathbb D$

Les ensembles de nombres

Exercice:

Parmi les rationnels suivants, quels sont ceux qui sont aussi des décimaux?

$$\frac{15}{25}$$
 ; $\frac{2}{3}$; $\frac{22}{11}$; $\frac{33}{22}$ $\frac{1}{3}$

4. Les nombres réels

• Résoudre les équations suivantes et préciser la nature de leurs solutions :

<u>Rappel</u>: pour résoudre des équations du type $x^2 = a$ avec $a \ge 0$, il faut transposer l'un des deux membres, l'autre membre devenant alors 0 puis factoriser l'expression obtenue de façon à utiliser la règle : " un produit est nul si et seulement si l'un des facteurs est nul "

$$x^2 = 4$$

$$x^2 = 2$$

• L'ensemble formé par tous les rationnels et les irrationnels (c'est-à-dire ceux qui ne sont pas rationnels) est l'ensemble de tous les nombres que vous connaissez jusqu'à aujourdhui, on le note \mathbb{R} , les réels.

Définition

On appelle $\mathbb R$ l'ensemble des nombres réels (ou réels).

Exercice:

(a) Compléter en utilisant le symbole qui convient parmi \in , \notin , \subset ou $\not\subset$ les phrases suivantes :

 $2...\mathbb{R}$; $\pi...\mathbb{R}$; $\frac{11}{7}...\mathbb{R}$; $\frac{-\pi}{9}...\mathbb{R}$; $\mathbb{Q}...\mathbb{R}$; $\{1;-6\}...\mathbb{R}$

(b) Représenter le diagramme de Venn représentant tous les ensembles définis dans le cours.

CONCLUSION (à retenir) :

5. Initiation à la démonstration

Il existe plusieurs raisonnement pour réussir une démonstration. Nous allons ici utiliser la démonstation par l'absurde.

Voici les différentes étapes d'une démonstration par l'absurde :

- On suppose que le contraire de ce que l'on veut démontrer est vrai.
- On utilise cette hypothèse et des définitions et/ou des propriétés du cours pour faire des déductions jusqu'à arriver à une absurdité.
- La supposition de départ conduisant à une absurdité, elle ne peut être que fausse, donc son contraire est vrai.
- (a) On souhaite démontrer que : $\frac{1}{3}$ n'est pas un nombre décimal.

(b) On souhaite démontrer que : $\sqrt{2}$ est un nombre irrationnel. Nous allons utiliser le raisonnement par l'absurde.

CORRECTION

(a) On souhaite démontrer que : $\frac{1}{3}$ n'est pas un nombre décimal.

Approche de la représentation du nombre par le calcul à la main : $\frac{1}{3} \approx 0$, 33333333... Ce résultat ne permet de pas de justifier que $\frac{1}{3}$ n'est pas décimal.

Prenons alors la la proposition P **contraire** : $\frac{1}{3}$ est un nombre décimal.

Par définition il existe $a \in \mathbb{N}$ et $n \in \mathbb{N}$ tel que $\frac{1}{3} = \frac{a}{10^n}$ On a alors $10^n = 3a$. 10^n serait donc un multiple de 3.

Or la décomposition de 10^n en facteurs premiers : $10^n = (2 \times 5)^n = 2^n \times 5^n$ montre que 10^n n'est pas un multiple de 3 qui lui est premier.

Donc, l'hypothèse de départ nous mène à une contradiction. On en déduit qu'elle est fausse.

Donc, par contradiction P est fausse donc la négation de P est vraie.

Conclusion : $\frac{1}{3}$ n'est pas un nombre décimal.

(b) On souhaite démontrer que : $\sqrt{2}$ est un nombre irrationnel.

Prenons alors la proposition P **contraire** : $\sqrt{2}$ est un nombre rationnel.

On peut donc écrire $\sqrt{2}$ sous la forme d'une fraction irréductible :

Il existe donc un entier relatif p et un entier naturel q non nul tels que $\sqrt{2}$ s'écrive $\frac{p}{2}$.

 $\sqrt{2} = \frac{p}{q}$ donc, en élevant les deux membres de légalité au carré, on obtient $2 = \frac{p^2}{q^2}$.

On a donc $2q^2 = p^2$ donc p^2 est pair.

p est soit pair, soit impair. Or le carré dun nombre pair est pair.

Par définition dun nombre pair, il existe un entier relatif k tel que p = 2k.

Or $2q^2 = p^2$, donc $2q^2 = (2k)^2 = 4k^2$ En divisant par 2 les deux membres de cette égalité, on obtient $q^2 = 2k^2$.

Donc q^2 est pair, ce qui, comme précédemment, implique que q est pair.

On a montré que p est pair et que q est pair, donc on peut simplifier la fraction $\frac{p}{q}$ ce qui est absurde puisquon a supposé que la fraction était irréductible.

Donc, par contradiction P est fausse donc la négation de P est vraie.

Conclusion : $\sqrt{2}$ est un nombre irrationnel.

III. Les intervalles de \mathbb{R}

1. Introduction

(Exercice 3 de la feuille d'exercices d'entraînement)

Exercice 3 Intervalles de \mathbb{R} Compléter le tableau suivant.

Inégalité	Intervalle	Représentation
$-2 \le x \le 3$		
] — 1; 5[
	[4; 8[
		
$x \ge 4$		
<i>x</i> ≤ 9		

2. Définition

Définition

On appelle intervalle de $\mathbb R$, toute partie de $\mathbb R$ définie par une et une seule inégalité ou un et un seul encadrement.

Exemples:

- L'ensemble des réels tels que $x \ge 3$ est un intervalle de \mathbb{R} .
- L'ensemble des réels tels que $-1 < y \le 5$ est un intervalle de \mathbb{R} .
- Contre-exemple : l'ensemble des réels tels que t>2 ou $t\leq -1$ n'est pas un intervalle de \mathbb{R} .

3. Les différents types d'intervalles

On recense 8 types différents d'intervalles. Soit deux nombres réels a et b tels que a < b.

Intervalle	lnégalité	Représentation
[a ;b]		
]a ;b[
[a ;b[
]a ;b]		
[a ;+∞[
]a ;+∞[
]-∞ ;b]		
]-∞ ;b[

Remarques:

 \bullet L'ensemble des nombres réels $\mathbb R$ est un intervalle qui peut se noter] — $\infty;+\infty[.$

- [a; b] est un intervalle fermé : les réels a et b appartiennent à l'intervalle.
-]a;b[est un intervalle ouvert : les réels a et b n'appartiennent pas à l'intervalle.

Cas particuliers:

- Si un ensemble ne contient qu'un élément \mathbf{a} , on le note $\{a\}$.
- L'ensemble vide ne contient aucun élément et se note ∅.

Les ensembles de nombres

IV. Opérations sur les ensembles

1. L'inclusion : le symbole \subset

Définition

Soient A et B deux ensembles, on dit que A est inclus dans B lorsque tous les éléments de A sont des éléments de B. On note $A \subset B$.

Exemples:

 $A = \{a, b, c, d\}, B = \{a, e, i, o, u, y\} \text{ et } C = \{12\text{premières lettres de l'alphabet}\}$

On a alors A. . . . C $\,$; $\,$ B. C $\,$; $\,$ A. . . . B

2. L'intersection : le symbole ∩

Définition

Soient A et B deux ensembles, on appelle intersection de A et B l'ensemble $A \cap B$ formé par les éléments <u>communs</u> à A et à B (c'est-à-dire l'ensemble contenant les éléments qui sont dans A ET dans B). Ces élément ne sont écrits qu'une seule fois.

Représentation: $A \cap B$

Exemples:

- $A = \mathbb{N}^*$ et $B = \{-4, -2, 0, 2, 4\}$ alors $A \cap B = ...$
- $C = \{-1; \sqrt{7}; \sqrt{12}; 7\}$ et D = [0; 3] alors $C \cap D = ...$
- G = [-2; 2] et H = [0; 7] alors $G \cap H = ...$

3. L'union : le symbole \cup

Définition

Soient A et B deux ensembles, on appelle union (ou réunion) de A et B lensemble noté $A \cup B$ formé par tous les éléments de A et tous les éléments de B écrits une seule fois.

Représentation: $A \cup B$

Exemples:

- $A = \mathbb{N}^*$ et $B = \{-4, -2, 0, 2, 4\}$ alors $A \cup B = ...$
- G = [-2; 2] et H = [0; 7] alors $G \cup H = ...$

Cas particuliers:

$$(A \cap B) \subset (A \cup B)$$

$$A \subset (A \cup B)$$

$$B \subset (A \cup B)$$

$$(A \cap B) \subset A$$

$$(A \cap B) \subset B$$

