

实验九 偶极矩的测定 稀溶液法测定正丁醇的偶极矩

王子宸 210001873 周四 19 组 8 号 化学与分子工程学院

实验日期: 2023年10月19日

温度: 23.2℃ 大气压强: 101.20 kPa

关键词: 国家精品课 物理化学实验 磁化率 Gouy 磁天平 磁矩

摘要: 摘要: 本次实验以莫尔盐作为标准样, 通过古埃磁天平法测得 23.2°C 下五水硫酸铜摩尔比的磁化率为 $(1.90\pm0.05)\times 10^{-8}~\mathrm{m}^3\cdot\mathrm{mol}^{-1}$, 分子磁矩为 $(1.89\pm0.03)\mu_B$, 有 $(1.14\pm0.02)\approx 1$ 个单电子。三水合黄血盐的摩尔磁化率为 $-(4\pm2)\times 10^{-9}~\mathrm{m}^3\cdot\mathrm{mol}^{-1}$, 无单电子。均与理论预测相符。未知样品的比磁化率为 $(2.00\pm0.03)\times 10^{-7}~\mathrm{m}^3\cdot\mathrm{kg}^{-1}$ 。

1 引言

1.1 实验目的与原理

年月日 第15页
实验十 磁化率的测定
泉验目的]
CUU - LALIN 14 TA / 15 (4) 5 7
· 集權 Giùy 不平测磁化率、计算 mole磁化率, 估算不成对电子数
实验原理]
· 磁场中 B = B o + B = M o H + M o R H (内部) 外面磁感 附加磁感
- Mo. 真空在就导 4元×10-7 N·A-2
- N. 体积磁化率
(K 70 川南石鎮
This $\gamma = \kappa/\rho$ $\gamma_m = \gamma M = \frac{\kappa/N}{\rho}$ $\kappa < 0$ $\kappa < 0$
单回质量磁化率 mole K与H有关 铁磁
· Xm = XHR + XE (XHR ≈ (102~103) XE)
- Xm ≈ X1/R = NA M2 Mo 3kT
- μ = 3kT χηκ = 7.3972×10-21 χηκ (T) (J.T-1)
= 797.7 × XMB (I) MB
Mo. Wod.
■1 MB = 9.274078 J ×10-24 J. TT
· M = √(n+2)·n MB
$\mu = \int (n+2) \cdot n$ MB
$- n = \sqrt{797.7^2} \frac{\sqrt{10}}{m^3 \cdot m_0} \frac{1}{K} + \frac{1}{K} - 1$
M3.WeX
\int
,

图 1: 预习报告:实验的目的与原理

图 2: 预习报告: 实验的目的与原理

2 实验

2.1 仪器、药品、实验步骤与条件

年 月 日 第 17 页
[仪器/试剂]
· mole 盐 (A.R.), CuSOy·5H2O(A.R.) K4Fe(CN)6·3H2O(A.R.) 未短样· Guoy 天平、研练、试管
1片3聚了
好固体样品研细,在小户口中备用,盖盖防风化,
2、打开Guoy 科前:确定I min. I调钮 左旋 min.
0干净空管挂上,调细锋使两边等距、调线长使底位于中心(或略高)
→ 不可低于中心
② I = 0 A 松重 → I = 3.0A /40A 松重 → 45A 停 5×(mon /s)
I=OA 和 ← I=3.0A (4.0A 和 ← Dill min .
■ 注意 OA 时 示数~时间
3. 使用 mole 盐, 装 5 cm. 重复 2. → 装 6 cm. 重复 2. → 倒出. 用脱脂绵擦净
₩
4. 使用 CuSO4·5H2O / K4Fe(CN)6·3H2O ,重复 3.
4
5. 使用未知样 重复3. xz次(每个高度 x z次,倒出再装)
₩

图 3: 预习报告: 仪器、药品、实验步骤与条件

3 数据处理与结果呈现

3.1 实验数据记录

本实验的原始数据如表 1。

表1: 实验中测定的磁场强度与其对应的质量

励	磁电流	'A	0	3	4	4.5	4	3	0
<i>+</i> ≥ 55:	B_{I}	/mT	4.7	226.4	300.5	/	301.1	227.4	4.7
空管 -/ m		ı/g	8.5340	8.5530	8.5320	/	8.5322	8.5329	8.5338
	£	B/mT	4.4	226.1	300.4	/	301.0	227.0	4.5
古紀卦	5 cm	m/g	11.2174	11.2575	11.2876	/	11.2880	11.2581	11.2174
莫尔盐		B/mT	4.4	226.2	300.6	/	301.1	227.2	4.6
	6 cm	m/g	11.7525	11.7934	11.8243	/	11.8248	11.7937	11.7522
	5 am	B/mT	4.6	226.0	300.2	/	300.9	227.1	4.3
7大 m台 <i>L</i> IT	5 cm	m/g	11.3733	11.3803	11.3855	/	11.3859	11.3905	11.3731
硫酸铜	<i>6</i>	B/mT	4.2	226.1	300.3	/	301.1	227.1	4.3
	6 cm	m/g	11.8690	11.8762	11.8819	/	11.8820	11.8767	11.8690
	5 cm	B/mT	4.3	226.1	300.6	/	301.1	227.4	4.4
去而卦	3 CIII	m/g	10.9767	10.9683	10.9669	/	10.9673	10.9682	10.9694
黄血盐	6 cm	B/mT	4.4	225.8	300.3	/	301.4	227.1	4.5
	0 CIII	m/g	11.5262	11.5251	11.5236	/	11.5241	11.5251	11.5261
	5 cm	B/mT	4.2	226.0	300.3	/	301.2	227.2	4.3
	J CIII	m/g	10.9231	10.9404	10.9529	/	10.9533	10.9406	10.9231
	6 cm	B/mT	4.3	226.2	300.4	/	301.3	227.2	4.3
未知样	o cili	m/g	11.3090	11.3257	11.3382	/	11.3385	11.3257	11.3087
小邓伟	5 cm	B/mT	4.2	226.1	300.7	/	301.3	227.1	4.3
	<i></i>	m/g	10.9690	10.9865	10.9993	/	10.9993	10.9862	10.9689
	6 cm	B/mT	4.2	226.0	300.5	/	301.2	227.2	4.4
	U CIII	m/g	11.3602	11.3772	11.3905	/	11.3905	11.3775	11.3596

3.2 莫尔盐的比磁化率

实验温度 T = 273.15 + 23.2 = 296.4°C,根据公式,计算莫尔盐的比磁化率:

$$\chi_0 = \frac{9500 \times 10^{-9}}{T+1} \times 4\pi = 4.028 \times 10^{-7} \text{ m}^3 \cdot \text{kg}^{-1}$$

3.3 样品摩尔磁化率与比磁化率的计算

以励磁电流为 0 A 时,正向的质量作为基准,考虑空管在不同励磁电流下的质量变化,计算每组实验中样品的质量及其绝对质量变化:

$$m_a = m_{a+e} - m_e$$

$$\Delta m_a = (m_a - m_{0A,a}) - (m_e - m_{0A,e})$$
(1)

根据式(1), 计算得到表2。

样品	距离	m/g	$\Delta m_{3A}/g$	$\Delta m_{4\mathrm{A}}/\mathrm{g}$	$\Delta m'_{4\mathrm{A}}/\mathrm{g}$	$\Delta m'_{3\mathrm{A}}/\mathrm{g}$	$\Delta m'_{0\mathrm{A}}/\mathrm{g}$
空管	等	8.5340	-0.0010	-0.0020	-0.0018	-0.0011	-0.0002
莫尔盐	5 cm	2.6834	0.0411	0.0722	0.0724	0.0418	0.0002
关小血 	6 cm	3.2185	0.0419	0.0738	0.0741	0.0423	-0.0001
黄血盐	5 cm	2.4427	-0.0004	-0.0008	-0.0001	-0.0006	-0.0001
典皿皿	6 cm	2.9922	-0.0001	-0.0006	-0.0003	0.0000	0.0001
硫酸铜	5 cm	2.8393	0.0080	0.0142	0.0144	0.0183	0.0000
少儿自文书吗	6 cm	3.3350	0.0082	0.0149	0.0148	0.0088	0.0002
	5 cm	2.3891	0.0183	0.0318	0.0320	0.0186	0.0002
未知样	6 cm	2.7750	0.0177	0.0312	0.0313	0.0178	-0.0001
不加什	5 cm	2.4350	0.0185	0.0323	0.0321	0.0183	0.0001
	6 cm	2.8262	0.0180	0.0323	0.0321	0.0184	-0.0004

表 2: 不同条件下样品的绝对质量变化

对于已知化学式的样品: 硫酸铜 $CuSO_4 \cdot 5H_2O$ 与黄血盐 $K_4[Fe(CN)_6] \cdot 3H_2O$,使用公式 (2) 计算摩尔磁化率,得到表 3。

$$\chi_{\mathrm{m},a} = \chi_0 M_a \frac{\Delta m_a}{\Delta m_0} \times \frac{m_0}{m_a} \tag{2}$$

对于未知化学式的未知样,使用公式(3)计算其比磁化率,得到表4。

$$\chi_a = \chi_0 \frac{\Delta m_a}{\Delta m_0} \times \frac{m_0}{m_a} \tag{3}$$

表 3: 硫酸铜与黄血盐的摩尔磁化率 (单位: 10⁻⁸ m³·mol⁻¹)

样品	寸 口	<i>X</i> 3A	χ_{4A}	$\chi'_{4\mathrm{A}}$	χ'_{3A}
硫酸铜		1.850	1.869	1.891	1.887
少心肾交节 则	6 cm	1.900	1.960	1.939	2.019
共品 45	5 cm	-0.4319	-0.4917	-0.3678	-0.4247
黄血盐	6 cm	-0.1041	-0.3522	-0.1754	0.000

表 4: 未知样的比磁化率(单位: 10⁻⁷ m³·kg⁻¹)

样品] []	<i>X</i> 3A	χ_{4A}	χ'_{4A}	χ'_{3A}
	5 cm	2.028	2.006	2.014	2.027
未知样	6 cm	1.987	1.989	1.987	1.980
不和件	5 cm	2.012	2.000	1.982	1.957
	6 cm	1.984	2.022	2.001	2.009

由于励磁电流下行时,样品会存在剩磁现象;而且根据表 1 励磁电流相同时,下行时的磁场会比上行时略强。故本次实验中,只取电流上行时的数据计算最终结果。

分别对 2 种样品高度,2 种励磁电流时的 4 组数据取平均,得到硫酸铜与黄血盐的摩尔磁化率(根据表 2,硫酸铜与未知样的 Δm 有三位有效数字,黄血盐的 Δm 只有一位有效数字):

$$ar{\chi}_{m, \text{ 硫酸铜}} = 1.90 \times 10^{-8} \text{ m}^3 \cdot \text{mol}^{-1}$$
 $ar{\chi}_{m, \text{ 黄血盐}} = -4 \times 10^{-9} \text{ m}^3 \cdot \text{mol}^{-1}$

分别对4种样品高度,2种励磁电流时的8组数据取平均,得到未知样的比磁化率:

$$\bar{\chi}_{\pm \pm \pm \neq} = 2.00 \times 10^{-7} \text{ m}^3 \cdot \text{kg}^{-1}$$

3.4 样品分子磁矩的计算

根据公式(4),通过摩尔磁化率,计算各个条件下硫酸铜的分子磁矩,得到表5。

$$\mu = 797.7 \sqrt{\frac{\chi_m}{\text{m}^3 \cdot \text{mol}^{-1}} \left(\frac{T}{K}\right)} \mu_B \tag{4}$$

表 5: 硫酸铜的分子磁矩

— 样品	1	$\mu_{3\mathrm{A}}/\mu_{\mathrm{B}}$	$\mu_{4\mathrm{A}}/\mu_{\mathrm{B}}$	$\mu_{4 ext{A}'}/\mu_{ ext{B}}$	$\mu_{3\mathrm{A'}}/\mu_{\mathrm{B}}$
硫酸铜	5 cm	1.868	1.878	1.888	1.887
饥散物	6 cm	1.893	1.922	1.912	1.952

对励磁电流上行时的数据取平均,得到:

$$\bar{\mu}_{\text{硫酸铜}} = 1.89 \ \mu_{\text{B}}$$

3.5 不成对电子数的计算

不成对电子书可以由公式(5)计算得到:

$$\mu = \sqrt{n(n+2)}\mu_B \tag{5}$$

公式 (5) 也可以写作一元二次方程形式:

$$n^2 + 2n - \mu^2 = 0 ag{6}$$

方程 (6) 的解为:

$$n = \frac{-2 + \sqrt{4 - 4\mu^2}}{2} = \sqrt{1 + \mu^2} - 1 \tag{7}$$

可以求得硫酸铜中单电子数:

$$n_{\text{\^{m}}\text{\'{m}\'{m}\'{m}\'{m}}} = \left(\bar{\mu}_{\text{\^{m}\'{m}\'{m}\'{m}\'{m}}}^2 + 1\right)^{0.5} - 1 = \left((1.89)^2 + 1\right)^{0.5} - 1 = 1.14$$

4 结果与讨论

4.1 误差分析

4.1.1 莫尔盐比磁化率的不确定度

假设温度测定的允差为 0.1°C,由于室温变化导致的误差为 0.2°C,故温度测定的误差可以计算得到(为了方便书写,本报告中所有误差的省略单位,其单位与其对应的物理量的单位保持一致):

$$\sigma_T = \sqrt{\left(\frac{0.1}{\sqrt{3}}\right)^2 + \left(\frac{0.2}{\sqrt{3}}\right)^2} = 0.13$$

莫尔盐比磁化率的误差:

$$\frac{\partial \chi_0}{\partial T} = -\frac{0.00011938}{(T+1)^2} = -\frac{0.00011938}{((296.35)+1)^2} = -1.3 \times 10^{-9}$$

$$\sigma_{\chi_0} = \sqrt{\left(\frac{\partial \chi_0}{\partial T}\sigma_T\right)^2}$$

$$= \sqrt{(-1.3 \times 10^{-9} \times 0.13)^2}$$

$$= \sqrt{(-1.8 \times 10^{-10})^2}$$

$$= 1.8 \times 10^{-10} \text{ m}^3 \cdot \text{mol}^{-1}$$

最终,得到莫尔盐比磁化率及其误差:

$$\chi_0 = (4.015 \pm 0.002) \times 10^{-7} \text{ m}^3 \cdot \text{mol}^{-1}$$

4.1.2 样品摩尔磁化率与比磁化率的不确定度

假设,本实验中使用的万分之一分析天平的允差为 0.1 mg,则考虑其误差:

$$\sigma_m = \frac{0.1 \times 10^{-3}}{\sqrt{3}} = 5.8 \times 10^{-5}$$

根据公式(1),可以得到,质量与质量差的误差:

$$\sigma_{m_a} = \sqrt{2}\sigma_m = 8.2 \times 10^{-5}$$

$$\sigma_{\Delta m_a} = \sqrt{4}\sigma_m = 1.2 \times 10^{-4}$$

根据公式(2)、(3), 不妨记:

$$r = \frac{\Delta m_a}{\Delta m_0} \times \frac{m_0}{m_a}$$

有:

$$\chi_{m,a} = \chi_0 M_a r_a$$

$$\chi_a = \chi_0 r_a$$
(8)

可得以下公式,求得r的误差,得到表6:

$$\sigma_r = |r| \sqrt{\left(\frac{\sigma_{m_0}}{m_0}\right)^2 + \left(\frac{\sigma_{m_a}}{m_a}\right)^2 + \left(\frac{\sigma_{\Delta m_0}}{\Delta m_0}\right)^2 + \left(\frac{\sigma_{\Delta m_a}}{\Delta m_a}\right)^2}$$

表 6: 比例系数 r 及其不确定度

样品	距离	r_{3A}	$r_{ m 4A}$	$r'_{3\mathrm{A}}$	$r'_{4\mathrm{A}}$
黄血盐	5 cm	-0.0088 ± 0.0027	-0.0101 ± 0.0015	-0.0075 ± 0.0015	-0.0087 ± 0.0026
男	6 cm	-0.0022 ± 0.0027	-0.0076 ± 0.0015	-0.0038 ± 0.0015	/
7大平台17日	5 cm	0.2060 ± 0.0031	0.2081 ± 0.0018	0.2105 ± 0.0018	0.2101 ± 0.0031
硫酸铜	6 cm	0.2028 ± 0.0030	0.2092 ± 0.0017	0.2070 ± 0.0017	0.2156 ± 0.0030
	5 cm	0.3964 ± 0.0028	0.3921 ± 0.0016	0.3935 ± 0.0016	0.3962 ± 0.0028
未知样	6 cm	0.3642 ± 0.0027	0.3645 ± 0.0015	0.3642 ± 0.0015	0.3628 ± 0.0027
不和件	5 cm	0.4085 ± 0.0029	0.4060 ± 0.0017	0.4023 ± 0.0016	0.3973 ± 0.0028
	6 cm	0.3772 ± 0.0027	0.3843 ± 0.0016	0.3804 ± 0.0015	0.3820 ± 0.0027

根据公式(8),有:

$$\sigma_{\chi_{\rm m}} = M_0 \sqrt{(r\sigma_{\chi_0})^2 + (\chi_0 \sigma_r)^2}$$

$$\sigma_{\chi} = \sqrt{(r\sigma_{\chi_0})^2 + (\chi_0 \sigma_r)^2}$$
(9)

根据公式(9), 可以求得摩尔磁化率与比磁化率的不确定度, 如表7、8。

表 7: 硫酸铜与黄血盐的摩尔磁化率的不确定度(单位: $10^{-10} \text{ m}^3 \cdot \text{mol}^{-1}$)

样品		$\sigma_{\chi_{3\mathrm{A}}}$	$\sigma_{\chi_{4 ext{A}}}$	$\sigma_{\chi_{4\mathrm{A}}'}$	$\sigma_{\chi'_{3\mathrm{A}}}$
吞酚畑			1.805		
硫酸铜	6 cm	3.043	1.731	1.723	3.021
共品书	5 cm	10.68	6.077	6.060	10.50
黄血盐	6 cm	10.72	6.089	6.064	/

表 8: 未知样的比磁化率的不确定度(单位: $10^{-10} \text{ m}^3 \cdot \text{kg}^{-1}$)

样品	山	$\sigma_{\chi_{3\mathrm{A}}}$	$\sigma_{\chi_{4\mathrm{A}}}$	$\sigma_{\chi'_{4\mathrm{A}}}$	$\sigma_{\chi'_{3\mathrm{A}}}$
	5 cm	11.48	6.547	6.533	11.29
未知样	6 cm	10.82	6.162	6.137	10.71
不知件	5 cm	11.72	6.691	6.663	11.47
	6 cm	11.04	6.312	6.276	10.96

对于平均值,可以使用公式(10)计算不确定度:

$$\sigma_{\bar{\chi_{\mathrm{m}}}} = \frac{1}{N} \sqrt{\sum_{i=i}^{N} \left(\sigma_{\chi_{\mathrm{m},i}}\right)^2 + s^2}$$

$$\sigma_{\bar{\chi}} = \frac{1}{N} \sqrt{\sum_{i=i}^{N} \left(\sigma_{\chi_{i}}\right)^2 + s^2}$$
(10)

根据 10 计算得到:

最终,得到各样品(摩尔)比磁化率及其不确定度:

$$ar{\chi}_{m,\ \mbox{\scriptsize fimils}} = -(4\pm2)\times10^{-9}\ \mbox{m}^3\cdot\mbox{mol}^{-1}$$

$$ar{\chi}_{m,\ \mbox{\scriptsize fimils}} = (1.90\pm0.05)\times10^{-8}\ \mbox{m}^3\cdot\mbox{mol}^{-1}$$

$$ar{\chi}_{\pm 24} = (2.00\pm0.03)\times10^{-7}\ \mbox{m}^3\cdot\mbox{kg}^{-1}$$

4.1.3 样品分子磁矩的不确定度

根据公式 (4):

$$\frac{\partial \bar{\mu}_{\tilde{m}\tilde{m}\tilde{m}\tilde{m}\tilde{m}}}{\partial T} = \frac{398.85 \left(T\bar{\chi}_{m, \tilde{m}\tilde{m}\tilde{m}\tilde{m}\tilde{m}}\right)^{0.5}}{T} = \frac{398.85 \times \left((296.35) \times (1.895 \times 10^{-8})\right)^{0.5}}{(296.35)} = 0.0032$$

$$\frac{\partial \bar{\mu}_{\tilde{m}\tilde{m}\tilde{m}\tilde{m}\tilde{m}}}{\partial \bar{\chi}_{m, \tilde{m}\tilde{m}\tilde{m}\tilde{m}\tilde{m}}} = \frac{398.85 \left(T\bar{\chi}_{m, \tilde{m}\tilde{m}\tilde{m}\tilde{m}\tilde{m}}\right)^{0.5}}{\bar{\chi}_{m, \tilde{m}\tilde{m}\tilde{m}\tilde{m}\tilde{m}}} = \frac{398.85 \times \left((296.35) \times (1.895 \times 10^{-8})\right)^{0.5}}{(1.895 \times 10^{-8})} = 5.0 \times 10^{7}$$

$$\sigma_{\bar{\mu}_{\tilde{m}\tilde{m}\tilde{m}\tilde{m}}\tilde{m}\tilde{m}} = \sqrt{\left(\frac{\partial \bar{\mu}_{\tilde{m}\tilde{m}\tilde{m}\tilde{m}\tilde{m}}\tilde{m}}{\partial T}\sigma_{T}\right)^{2} + \left(\frac{\partial \bar{\mu}_{\tilde{m}\tilde{m}\tilde{m}\tilde{m}}\tilde{m}}{\partial \bar{\chi}_{m, \tilde{m}\tilde{m}\tilde{m}\tilde{m}}\tilde{m}}\sigma_{\bar{\chi}_{m, \tilde{m}\tilde{m}\tilde{m}}\tilde{m}}\right)^{2}}$$

$$= \sqrt{(0.0032 \times 0.13)^{2} + (5.0 \times 10^{7} \times 5.1 \times 10^{-10})^{2}}$$

$$= \sqrt{(0.00041)^{2} + (0.025)^{2}}$$

$$= 0.026 \ \mu_{\rm B}$$

最终,得到硫酸铜的分子磁矩及其不确定度:

$$\bar{\mu}_{\hat{m}\hat{m}\hat{m}} = (1.89 \pm 0.03) \ \mu_{\rm B}$$

4.1.4 单电子数的不确定度

根据公式 (??): ??

$$\frac{\partial n_{\text{硫酸铜}}}{\partial \bar{\mu}_{\text{孫酸铜}}} = \frac{1.0\bar{\mu}_{\text{孫酸铜}}}{\left(\bar{\mu}_{\text{孫酸ឡ}}^2 + 1\right)^{0.5}} = \frac{1.0 \times (1.89)}{\left((1.89)^2 + 1\right)^{0.5}} = 0.88$$

$$\sigma_{n_{\text{孫酸ឡ}}} = \sqrt{\left(\frac{\partial n_{\text{孫totalloop}}}{\partial \bar{\mu}_{\text{孫totalloop}}} \sigma_{\bar{\mu}_{\text{孫totalloop}}}\right)^2}$$

$$= \sqrt{(0.88 \times 0.025)^2}$$

$$= \sqrt{(0.022)^2}$$

$$= 0.022$$

最终,得到:

$$n_{\hat{m}\hat{m}\hat{m}\hat{m}} = (1.14 \pm 0.02) \tag{11}$$

在 CuSO₄ · 5 H₂O 中,Cu(II) 的 d 电子排布为 $(b_{1g})^1 (a_{1g})^2 (b_{2g})^2 (e_g)^4$, n = 1,这与实验 测得的结果基本吻合。

而测得黄血盐为抗磁性,无法通过顺磁性物质的计算公式计算其磁矩与单电子数。低自旋 Fe(II) 的 d 电子排布为 $(t_2g)^6 (e_g)^0$,黄血盐并没有单电子,因此 $\chi_{\text{m}} = 0$,n = 0。

4.2 结论

本次实验以莫尔盐作为标准样, 通过古埃磁天平法测得 23.2°C 下五水硫酸铜摩尔比的磁化率为 $(1.90\pm0.05)\times10^{-8}$ m³·mol⁻¹, 文献值 为 1.835×10^{-8} m³·mol⁻¹, 与文献值的偏差为 3.2%, 可以认为在仪器误差范围内。五水硫酸铜的分子磁矩为 $(1.89\pm0.03)\mu_B$, 有 $(1.14\pm0.02)\approx1$ 个单电子。

结果不错

三水合黄血盐的摩尔磁化率为 $-(4 \pm 2) \times 10^{-9} \text{ m}^3 \cdot \text{mol}^{-1}$,文献值 \square 为 $-2.165 \times 10^{-9} \text{ m}^3 \cdot \text{mol}^{-1}$,与文献值的偏差为 85%,但是,由于测定黄血盐时质量变化微小,实验测定的仪器误差与相当大,文献值仍然在实验误差范围内。

未知样品的比磁化率为 $(2.00 \pm 0.03) \times 10^{-7} \text{ m}^3 \cdot \text{kg}^{-1}$ 。

4.2.1 误差来源

本实验中的的误差主要来源于:

1. **装样的误差**:实验要求在每次装样时都要确保样品的粗细程度和紧密度保持一致。 然而,在实际的操作过程中,这种一致性很难完全达到,从而产生了装样误差。

- 2. **样品管位置的误差**:在实验中,由于悬挂的铜丝并非钢性,可能在装样时受力改变 形状,每次悬挂样品管的高度可能会有所不同,这会导致样品管位置的误差。
- 3. 关于磁场强度的误差:尽管我们在相同的电流条件下进行实验,但磁场强度并不总是完全相同。这意味着即使在相同的电流下,磁场的实际强度仍可能出现微小的变化。
- 4. **磁滞效应导致的误差**: 磁滞效应是指在励磁电流逐渐减小时, 磁场的读数会偏向于偏大的方向。这种效应在实验中也可能引起误差。

4.2.2 测量磁化率的理想条件

- 1. **装样的标准化**: 尽量采用标准化的方法来装样,确保每次的粗细和紧密度都相似。 例如,可以使用特定的工具或模板来帮助进行装样。
- 2. **固定样品管的位置**: 使用固定装置或标记来确保样品管每次都被放在相同的位置, 从而消除位置误差。
- 3. **稳定的磁场**:确保磁场来源稳定,并使用校准工具定期检查磁场强度。在相同的电流下,磁场强度应该是恒定的。任何偏差都应该被记录并在最后的结果中进行校正。
- 4. **磁滞效应的补偿**:由于磁滞效应可能导致读数偏大,我们可以考虑在测量过程中适当地调整励磁电流,或者使用软磁材料来减少磁滞。
- **5. 环境控制**:确保实验室的温度、湿度和其他可能影响磁场或样品的因素都被控制在一定范围内。
- 6. 经验和技能:操作者应该受过充分的培训,熟悉所有的操作步骤和潜在的误差来源。
- 7. **校准和复查**:定期使用已知磁化率的标准样品来校准磁天平,并对结果进行复查, 以确保测量的准确性。

4.3 思考题

思考题1

- 1. 在相同的励磁电流下,测得的结果仍然会有区别:根据表 1,
 - 对于两次平行的实验: 这是因为仪器在相同励磁电流下, 磁场可能会有一定的偏差所致, 或者样品管的位置发生变化所致。
 - 对于装样高度不同的实验:这是因为装样高度的区别导致样品所受磁场不同, 或者样品管的位置发生变化所致。
 - 对于同一组实验:这是因为反向调节励磁电流时,相同电流时磁场强度与正向不同,以及样品的磁滞效应所致。

2. 不同励磁电流下的样品磁化率:

•根据表 1,这并没有显著的区别,根据表 7、8,这在实验误差范围内。

思考题 2

1. 样品的装填高度及其在磁场中的位置有何要求?

样品的装填高度应该是一致的,并且为了得到准确的结果,样品需要被放置在磁场的相同位置。最理想的位置是将样品管的底部放置在极缝的中心,以确保样品均匀地受到磁场影响。

2. 如果样品管的底部不在极缝中心,对测量结果有影响吗?

如果样品管的底部不在极缝中心,样品会处于一个非均匀的磁场中,这会导致测量的磁化率值偏离真实值。方程(12)不成立。

$$F = \int_{H_1}^{H_0} (\kappa - \kappa_0) A H dH = -\frac{1}{2} (\kappa - \kappa_0) A (H_1^2 - H_0^2)$$
 (12)

3. 装填高度不一致对实验有何影响?

装填高度的不一致会导致样品的质量与所受磁场的不一致,会导致测量值平行性的偏差,从而导致磁化率的测量结果偏差增大。

4. 不同装填高度对实验有何影响?

不同的装填高度意味着样品的质量和体积都会有所不同。如果样品装填高度高,相同质量的样品收到的磁场作用增强,会显现出更强的顺/抗磁性,反之亦然。

思考题3

- 1. **装样不平行所引入的误差**: 当装样不是完全平行时,会导致样品的部分区域受到的 磁场强度与其他区域不同,从而引入误差。此误差的大小取决于偏离的程度。越不 平行,所引入的误差就可能越大。
- 2. **影响本实验结果的主要因素**:主要因素包括装样的高度、样品在磁场中的位置、磁场的均匀性,以及样品装填的平行度。这些因素都会影响到样品所受的磁场强度,进而影响到测量结果。
- 3. 如何得到准确的数据: 为了得到准确的数据, 需要确保:
 - 样品装填高度一致;
 - 样品管的底部应放在极缝中心,确保样品处于磁场的均匀区域;
 - 磁场应保持稳定且均匀;
 - 样品装填应尽量平行,避免引入不必要的误差。

4.4 意见与建议

1. 实验仪器的改进:

使用更加现代化的古埃磁天平,例如将电子天平与磁线圈一体化,而非由两个 独立的仪器拼接得到:两个仪器拼接并不紧密,中间会有一小段暴露的区域, 会导致铜线受气流影响而摆动,影响实验测量。

• 将用于悬挂样品的铜丝改为更加粗和坚固的铜线,以避免其发生形变影响实验结果的一致性。

2. 实验方法的改进:

- 使用更加先进的装样方法,保证每次装样的一致性,例如第一次装样后,第二次装样的质量要与第一次的质量保持完全一致,在质量和高度两个维度都要保持一致性。
- 实验的平行性实际取决于磁场强度而非励磁电流的大小,因此,更科学的方法 应当是保持每组实验间的磁场强度一致,而不仅仅是励磁电流一致。

参考文献

红色的字体比较碍眼

- [1] HAYNES W M, LIDE D R, BRUNO T J. Crc handbook of chemistry and physics[M]. CRC Press, 2016.
- [2] 北京大学化学学院物理化学实验教学组. 物理化学实验[M]. 4 版. 北京: 北京大学出版社, 2002: 5.

附录

年	月	日						第
I			0	_3	4_	4_	* 3 6	U.
- k		Во	0=04.7		300.5		227.4	4.7
空		m					8.5329	
	\$5cm	Во				301.0	226.9	4.5
mole	3 CM	m	11.2174	11.2575	11.2876	11,2880	11258	11.2174
	6cm	Bu	4.4				227.0	
	O CWI	m	11.7525	11.793	11.8243	11.8248	11.7937	11.7322
— Ř —	5cm	Во	4,3			301.1		4.4
Cusou	30111	m	10.9697	10968	3 129669	10.9673	10.9682	10.9694
K4Fe(CN)	6cm	Bo	4.4	225.8	3003	301.4	227.4	4.5
	0011	m	11.5262	11.525	11.523	16 11.524)	11.525]	11.526]
	tom	Во	4.6	226.0	3002	300.9	227.1	4.3
CuSO4,	3014	m	11.3733	11:380?	11.385	\$ 11.3859	11.3805	11.3731
K4 FeLON)	, 6cm	Bo	4.2	226.1	300.3	301.1	227.1	4.3
INTEREST	b -	m	11.8690	11.876	211.881	17 11.882	0 11.8767	11-8690
	\$cm	Bo				30/2		4.3
		т	10.9623	10.940	4 10,9529	10.953	109406	10.923
	6ст	Вь	4.3	226.2	3004	301.3	227.2	43
栽样		→ m	11.3090	11.325	11.3382	11.338	5 11.3257	11.3087
1.	5cm	Вь	4,2	22601	300,8	7 301.3	227.1	43
	100	m	10.9690	10.98	5 10.99	93 10.99	93 10.986	2 10968
	6cm	Во	42	226.0	300.5	30/2	27.72	4.4
) M.	11.3602	11.377	2 11.39	05 11.390	5 1/3775	11.3596
Yesti =		mol ⁻¹	. 47/ 7	1,91	2	211		
			0.47617 =	1.87	7 / n	n3.kg7		
Xmole = 4	-015 X10-/				2000			
Mmole = :	39214 g.	molt		T.	100/	- 13 · K	18.	

实验报告: 原始数据记录