Parallelism Module

Concurrency Parallelism & Distributed Systems

Carlos Segarra

December 19, 2019

Contents

1	Understanding Parallelism	2
	1.1 Definition of a Distributed System	2
	1.2 Challenges of Distributed Systems	
2	OpenMP	2
3	MPI: Message Passing Interface	2
4	Programming with CUDA	2
	4.1 GPU Architecture	2
	4.2 CUDA: Devices, Kernel Definitions, and Offloading	3
	4.3 CUDA: Blocks, Threads, and Indexing	
	4.4 CUDA: Accessing (global) Memory	3
	4.5 CUDA: Cooperating Threads and Shared Memory	

1 Understanding Parallelism

- 1.1 Definition of a Distributed System
- 1.2 Challenges of Distributed Systems
- 2 OpenMP
- 3 MPI: Message Passing Interface
- 4 Programming with CUDA

4.1 GPU Architecture

CPU vs GPU Architecture:

- CPUs are designed for general purpose computing.
- \bullet Large Caches to reduce impact of long latency.
- GPUs are specialized for highly-parallel, compute-intensive computation.
- Massive number of threads.

The testbed we use in CPDS is the MinoTauro cluster:

Listing 1: Output of runing nvidia-smi in the cluster.

Thu Dec 19 11:34:34 2019

NVID	NVIDIA-SMI 418.67 D				Version: 418.67	CUDA Version: 10.1	
GPU Fan	Name Temp	Perf	Persiste Pwr: Usaş		1	1	Uncorr. ECC Compute M.
0 N/A	Tesla 43C	K80 P0	59W /	Off 149W	00000000:04:00.0 Off 0MiB / 11441MiB	0%	0 Default
1 N/A	Tesla 37C	K80 P0	73W /	Off 149W	000000000:05:00.0 Off 0MiB / 11441MiB	0%	0 Default
2 N/A	Tesla 35C	K80 P0	64W /	Off 149W	00000000:85:00.0 Off 0MiB / 11441MiB	0%	0 Default
3 N/A	Tesla 44C	K80 P0	76W /	Off 149W	00000000:86:00.0 Off 0MiB / 11441MiB	92%	0 Default
D							CDUM
Processes: GPU PID Type Process name							GPU Memory Usage

Processes: GPU	PID	Type	Process name	GPU Memory Usage			
No running processes found							

- 4.2 CUDA: Devices, Kernel Definitions, and Offloading
- 4.3 CUDA: Blocks, Threads, and Indexing
- 4.4 CUDA: Accessing (global) Memory
- 4.5 CUDA: Cooperating Threads and Shared Memory