Lecture 22 – Examples of Turing Machines COSE215: Theory of Computation

Jihyeok Park

2024 Spring

- A Turing machine (TM) is a deterministic FA with a tape.
 - **1** A **tape** is an infinite sequence of cells containing **tape symbols**. (The **blank symbol** *B* is a special symbol representing an empty cell.)
 - 2 A tape head points to the current cell.
 - A transition performs the following operations depending on the current 1) state and 2) tape symbol pointed by the tape head:
 - Change the current state.
 - Replace the current tape symbol pointed by the tape head.
 - Move the tape head left or right.
- We can use Turing machines as computing machines.

Contents

1. Turing Machines as Word Recognizers

```
Example 1: L = \{a^n b^n c^n \mid n \ge 0\}
Example 2: L = \{ww \mid w \in \{a, b\}^*\}
Example 3: L = \{a^i b^j c^{i \times j} \mid i, j \ge 0\}
```

2. Turing Machines as Computing Machines

Example 4: Flip Bits – $f(w \in \{0,1\}^*) = (flip of w)$

Example 5: Unary Addition $-f(1^n+1^m)=1^{n+m}$

Example 6: Binary Increment $-f(w \in \{0,1\}^*) = w + 1$

Example 7: Data Copy – $f(w \in \{a, b\}^*) = ww$

Contents

1. Turing Machines as Word Recognizers

Example 1: $L = \{\mathbf{a}^n \mathbf{b}^n \mathbf{c}^n \mid n \ge 0\}$ Example 2: $L = \{ww \mid w \in \{\mathbf{a}, \mathbf{b}\}^*\}$ Example 3: $L = \{\mathbf{a}^i \mathbf{b}^j \mathbf{c}^{i \times j} \mid i, j \ge 0\}$

2. Turing Machines as Computing Machines

Example 4: Flip Bits $-f(w \in \{0,1\}^*) = (\text{flip of } w)$

Example 5: Unary Addition $-f(1^n+1^m)=1^{n+m}$

Example 6: Binary Increment $-f(w \in \{0,1\}^*) = w+1$

Example 7: Data Copy $-f(w \in \{a, b\}^*) = ww$

Example 1: $L = \{a^nb^nc^n \mid n \ge 0\}$

$$L(M) = \{a^n b^n c^n \mid n \ge 0\}$$

Example 1:
$$L = \{a^nb^nc^n \mid n \ge 0\}$$

$$L(M) = \{a^n b^n c^n \mid n \ge 0\}$$

Example 1:
$$L = \{a^nb^nc^n \mid n \ge 0\}$$

$$L(M) = \{a^n b^n c^n \mid n \ge 0\}$$

• • •	В	a	a	b	b	С	С	В	
-------	---	---	---	---	---	---	---	---	--

- 1: while there are a's do
- 2: Find and Replace a with X
- 3: Find and Replace b with Y
- 4: Find and Replace c with Z
- 5: Check if only Y's and Z's are left

$$L(M) = \{a^n b^n c^n \mid n \ge 0\}$$

See the example for aabbcc $\in L(M)$.¹

¹https://plrg.korea.ac.kr/courses/cose215/materials/tm-an-bn-cn.pdf

Example 2: $L = \{ ww \mid w \in \{a, b\}^* \}$

$$L(M) = \{ww \mid w \in \{a,b\}^*\}$$

Example 2:
$$L = \{ ww \mid w \in \{a, b\}^* \}$$

$$L(M) = \{ww \mid w \in \{a,b\}^*\}$$

 В	a	b	b	a	b	b	В	

Example 2:
$$L = \{ ww \mid w \in \{a, b\}^* \}$$

$$L(M) = \{ww \mid w \in \{\mathtt{a},\mathtt{b}\}^*\}$$

• • •	В	a	b	b	a	b	b	В	
-------	---	---	---	---	---	---	---	---	--

- 1: Find the middle of the input
- 2: Replace all X's (or Y's) with a's (or b's) in the first half
- 3: while there are input symbols in the first half do
- 4: Replace a (or b) with X (or Y) in the first half
- 5: Find and Replace matched X (or Y) with Z in the second half

Example 2: $L = \{ ww \mid w \in \{a, b\}^* \}$

Construct a **Turing machine** that **accepts** the language:

$$L(M) = \{ww \mid w \in \{a,b\}^*\}$$

See the example for abbabb $\in L(M)$.²

²https://plrg.korea.ac.kr/courses/cose215/materials/tm-w-w.pdf

Example 3: $L = \{a^i b^j c^{i \times j} \mid i, j \ge 0\}$

$$L(M) = \{ \mathbf{a}^i \mathbf{b}^j \mathbf{c}^{i \times j} \mid i, j \ge 0 \}$$

Example 3:
$$L = \{a^i b^j c^{i \times j} \mid i, j \ge 0\}$$

$$L(M) = \{a^i b^j c^{i \times j} \mid i, j \ge 0\}$$

 В	a	a	b	b	b	С	С	С	С	С	С	В	

Example 3: $L = \{a^i b^j c^{i \times j} \mid i, j \ge 0\}$

$$L(M) = \{a^i b^j c^{i \times j} \mid i, j \ge 0\}$$

• • •	В	a	a	b	b	Ъ	С	С	С	С	С	С	В	
-------	---	---	---	---	---	---	---	---	---	---	---	---	---	--

- 1: while there are a's do
- 2: Find and Replace a with X
- 3: while there are b's do
- 4: Find and Replace b with Y
- 5: Find and Replace c with Z
- 6: Roll back all Y's to b's
- 7: Check if only b's and Z's are left

Example 3: $L = \{a^i b^j c^{i \times j} \mid i, j \ge 0\}$

Construct a **Turing machine** that **accepts** the language:

$$L(M) = \{a^i b^j c^{i \times j} \mid i, j \ge 0\}$$

See the example for aabbbccccc $\in L(M)$.

³https://plrg.korea.ac.kr/courses/cose215/materials/tm-ai-bj-cij.pdf

Contents

1. Turing Machines as Word Recognizers

```
Example 1: L = \{ \mathbf{a}^n \mathbf{b}^n \mathbf{c}^n \mid n \ge 0 \}
Example 2: L = \{ ww \mid w \in \{ \mathbf{a}, \mathbf{b} \}^* \}
Example 3: L = \{ \mathbf{a}^i \mathbf{b}^j \mathbf{c}^{i \times j} \mid i, j \ge 0 \}
```

2. Turing Machines as Computing Machines

```
Example 4: Flip Bits – f(w \in \{0,1\}^*) = (flip of w)
```

Example 5: Unary Addition
$$-f(1^n+1^m)=1^{n+m}$$

Example 6: Binary Increment –
$$f(w \in \{0,1\}^*) = w + 1$$

Example 7: Data Copy –
$$f(w \in \{a, b\}^*) = ww$$

Example 4: Flip Bits – $f(w \in \{0,1\}^*) = (\text{flip of } w)$ PLRG

$$f(w \in \{0,1\}^*) = (\text{the flip of each bit in } w)$$

Example 4: Flip Bits $-f(w \in \{0,1\}^*) = (\text{flip of } w) \triangle PLRG$

$$f(w \in \{0,1\}^*) = (\text{the flip of each bit in } w)$$

Example 4: Flip Bits – $f(w \in \{0,1\}^*) = (\text{flip of } w) \triangle PLRG$

$$f(w \in \{0,1\}^*) = (\text{the flip of each bit in } w)$$

- 1: Flip each bit of the input: $1 \rightarrow 0$ and $0 \rightarrow 1$
- 2: Go to the first input symbol

Example 4: Flip Bits – $f(w \in \{0,1\}^*) = (\text{flip of } w) \land PLRG$

Construct a **Turing machine** that **computes** the function:

$$f(w \in \{0,1\}^*) =$$
(the flip of each bit in w)

See the example for $f(1011100) = 0100011.^4$

⁴https://plrg.korea.ac.kr/courses/cose215/materials/tm-flip.pdf

$$f(1^n+1^m)=1^{n+m}$$
 where $n, m \ge 0$

$$f(1^{n}+1^{m}) = 1^{n+m}$$
 where $n, m \ge 0$

$$f(1^n+1^m)=1^{n+m}$$
 where $n, m \ge 0$

- 1: Find + after 1's
- 2: if the last symbol is 1 then
- 3: Find and Remove the last 1
- 4: Find and Replace the + with 1
- 5: **else**
- 6: Remove the +
- 7: Go to the first input symbol

Construct a **Turing machine** that **computes** the function:

$$f(1^n+1^m)=1^{n+m}$$
 where $n, m \ge 0$

See the example for $f(111+11) = 11111.^5$

⁵https://plrg.korea.ac.kr/courses/cose215/materials/tm-unary-add.pdf

Example 6: Binary Increment $-f(w \in \{0,1\}^*) = w$ PLRG

$$f(w \in \{0,1\}^*) = w + 1$$
 where w starts with 1

Example 6: Binary Increment – $f(w \in \{0,1\}^*) = w$ PLRG

$$f(w \in \{0,1\}^*) = w + 1$$
 where w starts with 1

$$w = | \cdots | B | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | B | \cdots$$
 $f(w) = | \cdots | B | 1 | 0 | 1 | 1 | 0 | 0 | 0 | B | \cdots$

Example 6: Binary Increment – $f(w \in \{0,1\}^*) = w$ PLRG

$$f(w \in \{0,1\}^*) = w+1$$
 where w starts with 1

$$w = \frac{\cdots \mid B \mid 1 \mid 0 \mid 1 \mid 0 \mid 1 \mid 1 \mid 1 \mid 1 \mid B \mid \cdots}{f(w) = \frac{\cdots \mid B \mid 1 \mid 0 \mid 1 \mid 1 \mid 1 \mid 0 \mid 0 \mid 0 \mid B \mid \cdots}$$

- 1: Check if the first bit is 1.
- 2: Move to the end of the input.
- 3: Repeatedly replace the rightmost 1 with 0.
- 4: Replace 0 (or *B*) with 1.
- 5: Go to the first input symbol.

Example 6: Binary Increment – $f(w \in \{0,1\}^*) = w$ PLRG

Construct a **Turing machine** that **computes** the function:

$$f(w \in \{0,1\}^*) = w + 1$$
 where w starts with 1

See the example for f(10101111) = 10110000.6

⁶https://plrg.korea.ac.kr/courses/cose215/materials/tm-inc.pdf

Example 7: Data Copy – $f(w \in \{a, b\}^*) = ww$

$$f(w \in \{\mathtt{a},\mathtt{b}\}^*) = ww$$

Example 7: Data Copy – $f(w \in \{a, b\}^*) = ww$

$$f(w \in \{\mathtt{a},\mathtt{b}\}^*) = ww$$

Example 7: Data Copy – $f(w \in \{a, b\}^*) = ww$

$$f(w \in \{a,b\}^*) = ww$$

- 1: while there are input symbols do
- 2: Find and Replace a (or b) with Z
- 3: Find and Fill the first blank with X (or Y) for a (or b)
- 4: Roll back Z to the original a (or b)
- 5: Replace X's and Y's with a's and b's
- 6: Go to the first input symbol

Construct a **Turing machine** that **computes** the function:

$$f(w \in \{a,b\}^*) = ww$$

See the example for f(abb) = abbabb.⁷

COSE215 @ Korea University

https://plrg.korea.ac.kr/courses/cose215/materials/tm-data-copy.pdf

Summary

1. Turing Machines as Word Recognizers

```
Example 1: L = \{a^n b^n c^n \mid n \ge 0\}
Example 2: L = \{ww \mid w \in \{a, b\}^*\}
Example 3: L = \{a^i b^j c^{i \times j} \mid i, j \ge 0\}
```

2. Turing Machines as Computing Machines

Example 4: Flip Bits – $f(w \in \{0,1\}^*) = (flip of w)$

Example 5: Unary Addition $-f(1^n+1^m)=1^{n+m}$

Example 6: Binary Increment – $f(w \in \{0,1\}^*) = w + 1$

Example 7: Data Copy – $f(w \in \{a, b\}^*) = ww$

Next Lecture

• Extensions of Turing Machines

Jihyeok Park
 jihyeok_park@korea.ac.kr
https://plrg.korea.ac.kr