Summary of previous lecture

- Multiple qubits
 - Each qubit has its own Hilbert space
 - Combine multiple Hilbert spaces to create a new Hilbert space so that a single vector can represent the quantum state of multiple qubits
- Tensor product
 - Mathematical tool to represent multiple-qubit state
 - Combined new space: V ⊗ W
 - Vector in the new space: $|v\rangle \otimes |w\rangle$ and their linear combinations
 - Linear operator: $A \otimes B$ and their linear combinations
 - $A \otimes B(|v\rangle \otimes |w\rangle) \equiv A|v\rangle \otimes B|w\rangle$
 - Matrix representation
 - Inner product: $(\sum_i a_i^* \langle v_i | \otimes \langle w_i |) (\sum_j b_j | v_j') \otimes |w_j') \equiv \sum_{i,j} a_i^* b_j \langle v_i | v_j' \rangle \langle w_i | w_j' \rangle$

Quantum circuits

- Section 1.3.4
- Wire is not necessarily a physical wire
 - Can be a passage of time or path for the photon
- Example circuit
 - SWAP in C programming int a, b;

$$b = a + b;$$

 $a = b - a;$
 $b = b - a;$

$$|a,b\rangle \to |a,a \oplus b\rangle$$

$$\to |a \oplus (a \oplus b), a \oplus b\rangle = |b,a \oplus b\rangle$$

$$\to |b,b \oplus (a \oplus b)\rangle = |b,a\rangle$$

Quantum circuits

- Comparison with classical circuits
 - Feedback (or loop) is not allowed in quantum circuit → the circuit is acyclic
 - No FANOUT is allowed → No copy of the information is allowed
 - No FANIN is allowed → Not reversible
- Controlled-U gate

Measurement symbol

Copying qubit?

• We want to copy $|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$. Can CNOT make a copy?

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$$

$$|0\rangle$$

$$\uparrow$$

$$|\psi\rangle \otimes |0\rangle = \alpha|0\rangle \otimes |0\rangle + \beta|1\rangle \otimes |1\rangle$$

- When we say copy, we want $|\psi\rangle \otimes |\psi\rangle = (\alpha|0\rangle + \beta|1\rangle) \otimes (\alpha|0\rangle + \beta|1\rangle)$
- Can CNOT generate this result?

No cloning theorem

Proof

- Assume there exists a cloning machine.
- This machine should follow the quantum mechanics rule and be able to copy any arbitrary input state $|\psi\rangle$.
- $|\psi\rangle \otimes |Init\rangle \xrightarrow{U} |\psi\rangle \otimes |\psi\rangle \Leftrightarrow U(|\psi\rangle \otimes |Init\rangle) = |\psi\rangle \otimes |\psi\rangle$ where $|Init\rangle$ is some initial state
- $U(|0\rangle \otimes |Init\rangle) = |0\rangle \otimes |0\rangle$
- $U(|1\rangle \otimes |Init\rangle) = |1\rangle \otimes |1\rangle$
- Then $U((\alpha|0\rangle + \beta|1\rangle) \otimes |Init\rangle) = U(\alpha|0\rangle \otimes |Init\rangle) + U(\beta|1\rangle \otimes |Init\rangle)$

$$= \alpha(|0\rangle \otimes |0\rangle) + \beta(|1\rangle \otimes |1\rangle)$$

- However, we expect $(\alpha|0\rangle + \beta|1\rangle) \otimes (\alpha|0\rangle + \beta|1\rangle)$.
- Therefore, there cannot exist such kind of machine. → Proof by contradiction!

Measurement in other bases

- Section 1.3.3 Measurement in bases other than the computational basis
- For example, how can we measure in $|+\rangle = (|0\rangle + |1\rangle)/\sqrt{2}$ and $|-\rangle = (|0\rangle |1\rangle)/\sqrt{2}$ basis?
 - An arbitrary state $|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$ can be re-expressed as $|\psi\rangle = \alpha|0\rangle + \beta|1\rangle = \alpha\frac{|+\rangle + |-\rangle}{\sqrt{2}} + \beta\frac{|+\rangle |-\rangle}{\sqrt{2}} = \frac{\alpha + \beta}{\sqrt{2}}|+\rangle + \frac{\alpha \beta}{\sqrt{2}}|-\rangle$
 - Polarization
 - > rotate the polarizing beam splitter
 - Two-level atom
 - → apply the Hadamard gate before the measurement
- Why do we need to measure in other bases?
 - To find out the relative phase
 - Quantum teleportation
 - Etc...

Bell basis

- Section 1.3.6
- Assume that there are two qubits A and B.

$$\begin{cases} |\psi^{+}\rangle_{AB} = [|0\rangle_{A}|1\rangle_{B} + |1\rangle_{A}|0\rangle_{B}]/\sqrt{2} \\ |\psi^{-}\rangle_{AB} = [|0\rangle_{A}|1\rangle_{B} - |1\rangle_{A}|0\rangle_{B}]/\sqrt{2} \\ |\phi^{+}\rangle_{AB} = [|0\rangle_{A}|0\rangle_{B} + |1\rangle_{A}|1\rangle_{B}]/\sqrt{2} \\ |\phi^{-}\rangle_{AB} = [|0\rangle_{A}|0\rangle_{B} - |1\rangle_{A}|1\rangle_{B}]/\sqrt{2} \end{cases}$$

- Are they orthonormal to each other?
- Are they complete basis?
- Called Bell basis, Bell state, EPR state, EPR pair, etc.
- How to create Bell state?
 - Entangling circuit

Input		Output
A>	B <i>\</i>	
0>	0>	$ \phi^+\rangle = (00\rangle + 11\rangle)/\sqrt{2}$
0>	1>	$ \psi^+\rangle = (01\rangle + 10\rangle)/\sqrt{2}$
1>	0>	$ \phi^-\rangle = (00\rangle - 11\rangle)/\sqrt{2}$
1>	1>	$ \psi^{-}\rangle = (01\rangle - 10\rangle)/\sqrt{2}$

Bell basis

- How to measure in Bell basis?
- Recall how we can measure in $|+\rangle = (|0\rangle + |1\rangle)/\sqrt{2}$ and $|-\rangle = (|0\rangle |1\rangle)/\sqrt{2}$ for two-level atom.
- Use un-entangling circuit

Input	Output	
	A <i>></i>	B >
$ \phi^+\rangle = (00\rangle + 11\rangle)/\sqrt{2}$	0>	0>
$ \psi^+\rangle = (01\rangle + 10\rangle)/\sqrt{2}$	0>	1>
$ \phi^-\rangle = (00\rangle - 11\rangle)/\sqrt{2}$	1>	0>
$ \psi^{-}\rangle = (01\rangle - 10\rangle)/\sqrt{2}$	1>	1>