MS Project Presentation

Bias-Variance Tradeoff and Cross-Validation

Funfay Jen

2022-01-03

- Background and Motivation
- Method of Simulating the Bias and Variance Tradeoff
- Method of Cross-Validation
- Simulation Studies
- 📵 Q & A

Section 1

Background and Motivation

What is the Bias-Variance Tradeoff?

- A central problem in supervised learning
- Desires a model that simultaneously:
 - Captures the regularities in its training data
 - Generalizes well to unseen data
- Unfortunately,
 - High-variance learning methods may be able to represent their training set well but are at risk of overfitting to noisy or unrepresentative training data.
 - In contrast, algorithms with high bias typically produce simpler models that may fail to capture important regularities (i.e. underfit) in the data.

Mathematics

- f: fixed but unknown function
- X: can be univariate or multivariate
- Y: univariate
- \bullet ϵ : zero mean, finite variance

Mathematics

$$E_{D,\epsilon}[(Y-\hat{f}(X;D))^2] = (Bias_D[\hat{f}(X;D)])^2 + Var_D[\hat{f}(X;D)]) + \sigma^2 \ \ \textbf{(1)}$$

where

$$Bias_D[\hat{f}(X;D) = E_D[\hat{f}(X;D)]] - f(X) \tag{2} \label{eq:2}$$

and

$$Var_D[\hat{f}(X;D)] = E_D[(E_D[\hat{f}(X;D)] - \hat{f}(X;D))^2]$$
 (3)

Mathematics

Since all three terms are non-negative, the irreducible error forms a lower bound on the expected error on unseen samples.

- σ^2 : lowest achievable predictive MSE
- bias and variance: adds to it to result in a total MSE
- tuning parameter: not visible in Equations (1), (2), (3), but modulates the relative contributions of these terms

Section 2

Method of Simulating the Bias and Variance Tradeoff

At a high level

- Visualized as a plot of the total expected mean squared error (MSE) along with its three components (bias, variance and the irreducible error) against one or more hyperparameters.
 - Compute the expectations in Equations (1), (2), and (3) via Monte Carlo simulation
 - Do this for each set of hyperparameters to trace out a path (or high-dimensional surface)
 - Visualize the resulting bias-variance tradeoff

Procedurally

(Refer to the report for details)

- Generate Training Sets
- Generate Test Sets
- Oeploy the Statistical Method at a given set of hyperparameters
- Compute Bias, Variance and MSE according to Equations (2), (3), and (1)
- Repeat steps 1-4 over a grid of (sets of) hyperparameters and visualize the resulting mean squared error profile and how it is decomposed into its components.

Section 3

Method of Cross-Validation

Setup

- Generate one single set of data containing observations
- ullet Randomly divide the set of observations into K folds of approximately equal size.
- Each fold i, $1 \leq i \leq K$ is treated as a test set and the method is fit on the remaining K-1 folds. The mean squared error, MSE_i , is computed on the observations in the held-out fold.
- The K-fold CV estimate is computed by averaging these values,

$$CV_{(K)} = \frac{1}{K} \sum_{i=1}^{K} MSE_i \tag{4}$$

Relationship between the Bias-Variance Tradeoff and Cross-Validation

Recap of the Main Differences

- With CV, we cannot determine the bias component since in practice we do not know the true underlying function f;
- With CV, we cannot determine the variance component since in practice we often only have one set of data available and the K folds typically do not have the same X values—we cannot properly define variance in this setting;
- With CV, we can still compute an average MSE over the folds.
 However, one issue is that the MSE's on different folds become correlated.

Section 4

Simulation Studies

Exploring Smoothing Splines, Penalized Regression, Boosting, and SVM

- Draw X from a (univariate or multivariate) uniform distribution and the error from a normal distribution (or other distributions) with the same variance.
- Overlay the cross-validated MSE curve obtained from a separate training set.
- Overlay the test MSE curve from an independent test set
 - This is "bogus" since in real scenarios We wouldn't have been able to find the MSE since the response values are typically unknown.
 - We do this to get a sense of how close we would have been to the (bogus, but practical) optimum for that particular test set if we used the hyperparameter from CV.

Smoothing Splines

 f_{1}

Figure 1: Normal Errors (Left) and Double Expenential Errors (Right)

Smoothing Splines

 f_2

Figure 2: Normal Errors (Left) and Double Expenential Errors (Right)

Smoothing Splines

 f_3

Figure 3: Normal Errors (Left) and Double Expenential Errors (Right)

Remarks

Figure 4: Rldge (Left) and Lasso (Right)

Figure 5: Rldge (Left) and Lasso (Right)

Figure 6: Rldge (Left) and Lasso (Right)

Figure 7: Rldge (Left) and Lasso (Right)

Remarks

Boosting f_1 , f_2

Figure 8: Boosting

Boosting f_3 , f_4

Figure 9: Boosting

Remarks

SVM f_1 , f_2

Figure 10: SVM

SVM f_3 , f_4

Figure 11: SVM

Remarks

Figure 12: It's all about tradeoffs!

Section 5

Q & A

Thank You!