Contrôle de géométrie analytique N°1

	Durée : 1 heure 40 minutes	Barème sur 15 points	
NOM:		Groupe	
PRENOM:		Groupe	

- 1. Dans le plan, on considère un parallélogramme OABC et le point H défini par $H=\operatorname{Bar}\left\{\,\left(O,1\right),\,\,\left(A,1\right),\,\,\left(B,1\right),\,\,\left(C,\tfrac{3}{2}\right)\right\}$
 - a) A l'aide de la propriété d'associativité des barycentres, et en définissant, à chaque étape, le barycentre à l'aide d'un rapport de section, construire le point H sur la figure ci-dessous. On exige une construction rigoureuse et soignée.
 - b) Exprimer le vecteur \overrightarrow{OH} en fonction des vecteurs \overrightarrow{OA} et \overrightarrow{OB} .
 - c) Soient M un point de la droite (BC) et G le point défini par $G = \text{Bar} \{ (O, 2), (A, 2), (M, 5) \}.$

Déterminer l'équation vectorielle du lieu de G lorsque le point M décrit la droite (BC).

Montrer que le point H appartient à ce lieu.

5 pts

4.5 pts

2. Dans le plan, on considère un triangle OAB.

Soient un nombre réel k (k > 1) et le point I défini par $(IB, O) = \frac{1}{k}$.

- a) Déterminer, à l'aide du calcul vectoriel uniquement, et en fonction des données (O, A, B et k), le rayon vecteur OC sachant que
 - le quadrilatère OABC (orientation positive) est un trapèze de bases OAet CB,
 - le point I est le point d'intersection des diagonales OB et AC.
- b) Sachant que $\|\overrightarrow{AB}\| = 2 \|\overrightarrow{OA}\|$, déterminer le nombre réel k de sorte que (OC) soit parallèle à la bissectrice intérieure de l'angle en A.
- 3. Dans le plan muni d'un repère orthonormé, on donne l'équation cartésienne d'une droite d, un point A' de la droite d d'abscisse $x_{A'} = 1$, une longueur δ et un vecteur \vec{v} :

$$d: x + 2y - 15 = 0, \qquad A' \in d, \ x_{A'} = 1, \qquad \delta = \frac{9\sqrt{5}}{2}, \qquad \vec{v} = \begin{pmatrix} -1\\ 3 \end{pmatrix}$$

Déterminer les coordonnées des sommets du triangle ABC sachant que

- le point A' est le pied de la hauteur issue du sommet A et le segment AA'est de longueur δ , $(y_A < 0)$,
- les sommets B et C appartiennent à la droite d, $(x_B < 0)$,
- Soit H l'orthocentre du triangle ABC (point de concours des hauteurs). Le point H est défini par (A'A, H) = -2 et la droite (BH) est dirigée par le vecteur \vec{v} . 5,5 pts