Digital image processing and analysis 12. Object properties: shape and texture

Professor Ela Claridge School of Computer Science

Previous lecture:

- How to get coordinates of the object boundaries
- How to count objects in a segmented image
- How to measure objects
- How to measure object locations
- How to measure some object properties

In this lecture we shall find out about:

- Further object properties descriptors and methods
- Shape
 - Outlines
 - Geometric features (e.g. curvature)
 - Fractal dimension
- Texture
 - Grey level statistics
 - Co-occurrence matrices
- From segmented images to segmented object properties

Vectorisation

Objective:

Generate a compressed representation of a curved line.

Method:

Given a set of (x,y) coordinates of every point on a line, fit a number of line segments which approximate the curved line.

Application:

Vectorised maps for SatNav

© Professor Ela Claridge, School of Computer Science, University of Birmingham

Vectorisation

Application: Vectorised camera response curves

 A curve is represented by a list of endpoints of line segments approximating nearly-straight runs of the original curve

Reduction from 600 points to 15 points:

Factor of 40.

Iterative (sequential) process

Algorithm

- Initialise
 - Define the minimum width of the bounding box (the tolerance band)
 - Start from the entire curve being a single segment
- Iterate (repeat) for each segment
 - Find and save the curve endpoints
 - Find the oriented bounding box
 - If the width of the bounding box is smaller of equal than the tolerance band
 - Terminate
 - Otherwise
 - Find the point on the curve at the maximum distance from the base of the bounding box
 - Divide the curve into two segments at this point
 - Continue iterating

Shape Y-s curves

How many cakes of each shape are there?

- 1. Triangular
- 2. Round
- 3. Square

- s-Y curve describes the angle between a fixed line and a tangent to the boundary at each point of the original boundary
- Horizontal lines on s- Ψ curve correspond to straight lines in the original boundary
- Non-horizontal lines correspond to arcs of a circle (Ψ is changing at a constant rate)
- s-Ψ curve can be segmented to yield a description of the boundary in terms of line segments and arcs

- s-Y curve describes the angle between a fixed line and a tangent to the boundary at each point of the original boundary
- Horizontal lines on s-Ψ curve correspond to straight lines in the original boundary
- Non-horizontal lines correspond to arcs of a circle (Ψ is changing at a constant rate)
- s-Ψ curve can be segmented to yield a description of the boundary in terms of line segments and arcs

Algorithm

- Initialise
 - Find a starting point on the contour (any point), s₀
 - Find the line L₀ tangential to the contour at point s₀
- For every point on the contour
 - Move to the next point, s_i
 - Find the line L_i tangential to the contour at point s_i
 - $_{\circ}$ Measure and save the angle Ψ_{i} between L₀ and L_i
 - Terminate when the current point equals the starting point

- s-Ψ curve describes the angle between a fixed line and a tangent to the boundary at each point of the original boundary
- Horizontal lines on s-Ψ curve correspond to straight lines in the original boundary
- Non-horizontal lines correspond to arcs of a circle (Ψ is changing at a constant rate)
- s-Ψ curve can be segmented to yield a description of the boundary in terms of line segments and arcs

Shape Slope density function

- Slope density function is a histogram of Ψ collected over the length of the boundary s.
- Derived from s-Ψ curve.

- A term coined by Mandelbrot
- Traditional view of geometry: curves are one-dimensional, plane figures are two-dimensional
- An insight: there are geometric structures which have dimensions between one and two (and three)
- In two-dimensional space fractal dimension characterises the plane-filling ability of a curve

Natural fractal object

Mathematical fractal object Sierpinski triangle

© Professor Ela Claridge, School of Computer Science, University of Birmingham

https://www.slideshare.net/YogeshjatinGupta/fractal-27497043

- Fractal dimension of a circle: 1
- Fractal dimension of a disk: 2
- Fractal dimension of a "Koch snowflake": 1.26

- Fractal dimension is derived by using different step lengths to measure the perimeter of the figure.
- The estimated perimeter increases as the step length decreases.

Question: How long is a coast of Great Britain?

Answer: It depends on the length of the ruler used for measurements

Unit = 50 km, length = 3400 km

entress/ferowijeipediarorg/wiki/Fractalreidimension

Shape Fractal dimension: measurement

THEORY – for interest only

- The estimated perimeter length L measured with the "ruler" of a given size:
- $L(s) = s \cdot N(s)$
 - s length of the "ruler"
 - N(s) the number of sides of length s of a polygon which approximates the perimeter
- Mandelbrot made an important observation that the number of polygon sides for a given perimeter is a function of the step length (s) and expressed this relationship as:

$$N(s) = \lambda \cdot s^{-D}$$

giving the final expression for the estimated perimeter length:

$$L(s) = \lambda \cdot s^{1-D}$$

Shape Fractal dimension: measurement

THEORY – for interest only

Estimated perimeter length:

$$L(s) = \lambda \cdot s^{1-D}$$

By taking logarithm of both sides a line equation is obtained

• log L(s) = log λ + (1 - D) · log s

- (1 D) is the slope of the line
- log λ is the intercept.
- D is the fractal dimension

Shape Fractal dimension: measurement

For interest only

Fractal dimension =1.26

Shape Fractal dimension: examples

For interest only

FD=1.025

FD=1.167

Shape Endpoints and crossings

Analysis of relationships between linear features

Mathematical morphology: Hit-and-miss operations

Shape Endpoints and crossings

Analysis of relationships between linear features

Mathematical morphology: Hit-and-miss operations

Application: detection of minutia for fingerprint recognition

Texture

Similar colours, different spatial arrangement of pixels

Texture

- Texture is characterised by the spatial inter-relations between pixel values.
- Colour v/s texture
 - Colour (including grey level) properties depend only on pixel values and are independent of their spatial distribution within the area.
 - Texture properties relate to the way the pixels with various grey levels are spatially arranged within the area.
 - They depend both on grey level value and on the spatial distribution of grey levels.

Texture

- Simple (first order) statistics (mean, standard deviation, etc.) are measures of *overall* variation in contrast and therefore tell nothing about spatial distribution.
- Second order statistics consider more complex statistical properties involving sets of pixels in combination.
- The local properties characterise distribution and relationships among the pixels of various grey levels.
- Measures derived from these statistics describe various texture attributes, such as coarseness, homogeneity and contrast.

From "Image enhancement 1" lecture Histogram

Two images with the same **statistical distribution** of pixel values but with different **spatial distribution** of pixel values

Texture Co-occurrence (spatial dependency) matrix

- A co-occurrence matrix is a two-dimensional histogram:
 - axis 1: grey level of a pixel
 - axis 2: grey level of the pixel's neighbour
- The position (i,j) in the histogram stores the number of times that a pixel with value i has as its neighbour a pixel with value j at a given distance and for a given angle.
- For each image a number of co-occurrence matrices can be generated
 - For different distances
 - For different directions
- Texture measures are then derived from these matrices.

Texture Co-occurrence matrix

Co-occurrence matrix Horizontal

Number of times pixel with value i has as its neighbour pixel with value j

0

1

...

N

Texture Co-occurrence matrix

Assume image has 4 grey levels, 0-3

0	3	0	3
3	0	3	0
0	3	0	3
3	0	3	0

Co-occurrence matrix

Co-occurrence matrix

0	5	0	0	0
1	0	0	0	0
2	0	0	0	0
3	0	0	0	4

Image

0	0	3	3
0	0	3	3
0	0	3	3
0	0	3	3

Pixel values

	0	1	2	3
0	4	0	0	4
1	0	0	0	0
2	0	0	0	0
3	0	0	0	4

Co-occurrence matrix Horizontal

 0
 1
 2
 3

 0
 3
 0
 0
 3

 1
 0
 0
 0
 0

 2
 0
 0
 0
 0

 3
 0
 0
 0
 3

Co-occurrence matrix Diagonal 1

© Professor Ela Claridge, School of Computer Science, University of Birmingham

Co-occurrence matrix – probabilistic representation

3

0

0

3

	mat	rix			
·	0	1	2	3	
0	0.4	0	0	0	
1	0	0	0	0	
2	0	0	0	0	
3	0	0	0	0.3	
	0	1	2	3	
0	0.25	1	0	0.25	
0					
	0.25	0	0	0.25	

3

0

0

0.3

Co-occurrence

No. of co-occurrences for the range of pixels from 0 to 3: **6** (see previous slide) Total number of co-occurrences in the image: **12** (4 rows * 3 columns) Probability 6/12 = 0.5

0

0

0

3

Texture Co-occurrence matrix

Value of pixel's neighbour

Probability

Texture Co-occurrence matrix

THEORY – for interest only

HOMOGENEITY
$$= \sum_{i=0}^{G-1} \sum_{j=0}^{G-1} \{P(i,j)\}^2$$

$${\it CONTRAST} \qquad = \sum_{n=0}^{G-1} n^2 \{ \sum_{i=1}^G \sum_{j=1}^G P(i,j) \}, \qquad \mid i-j \mid = n$$

ENTROPY
$$= -\sum_{i=0}^{G-1} \sum_{j=0}^{G-1} P(i,j) \times log(P(i,j))$$

G – total number of grey levels

i,j – pixel greylevel value (i) and greylevel value of its neighbour (j)

P(I,j) – probability that pixel with greylevel value i has as its neighbour pixel with greylevel value j

© Professor Ela Claridge, School of Computer Science, University of Birmingham

	Hom	Con	Ent
Sky	0.019	0.28	4.19
Trees	0.003	33.93	6.02
Grass	0.0007	286.8	6.94
Road	0.002	74.20	6.62

Images can be segmented on the basis of their texture features

In this lecture we have covered:

- Object properties methods and descriptors
- Shape
 - Outlines
 - Geometric features
- Texture
 - Grey level statistics
 - Co-occurrence matrices
- From segmented images to segmented object properties

Next lecture:

- Image registration: what it is and what it is for
- What we try to align
 - Image features
 - Image values
- How we carry out image transformations
 - Rigid and affine
 - Elastic
- How we measure the success of registration
- How we compute the final pixel values

Further reading and experimentation

Book chapters:

- Gonzalez, R.C. & Woods, R.E. Digital Image Processing, Addison-Wesley (various editions), 7.4.2, 8.1 – 8.3.
- Sonka, M. Hlavac, V. Boyle, R. (various editions) Image Processing, Analysis and Machine Vision, Chapman & Hall Computing, 6.2-6.3 (shape), 13 (texture).
- Umbaugh, S.E. Computer vision and image processing: a practical approach using CVIPtools, Prentice Hall International (various editions), 2.6.
- Skeleton: endpoints and crossings
- https://crazybiocomputing.blogspot.co.uk/2013/02/hit-or-miss-in-imagej.html
- Fractal dimension
- https://en.wikipedia.org/wiki/Fractal_dimension
- Texture
- haralick.org/journals/TexturalFeatures.pdf
- www.uio.no/studier/emner/matnat/ifi/INF4300/h08/undervisningsmateriale/glc m.pdf