Causal Inference for Policy Evaluation (Spring Semester 2025) Lab Session 5 - Instrumental Variables (IV)

Key ingredients for an IV design:

- An endogenous treatment.
- A variable that is correlated with this treatment but which does not directly affect the outcome (instrument).

Application

Joshua Angrist and William M. Evans (1998). "Children and Their Parents' Labor Supply: Evidence from Exogenous Variation in Family Size.' American Economic Review

Outline for today

- 1. Introduction to the paper and research question
- 2. Identification strategy and assumptions
- 3. Data and descriptive statistics (balancedness table and first stage)
- 4. Estimation: preliminaries
 - Nonparametric LATE (Wald estimate)
 - Bootstrap
 - Reduced form effect
- 5. Estimation: Two-stage least squares
- 6. Extensions
 - Characterizing the compliers
 - Semi-parametric LATE

1. Introduction

- What is the research question?
- Why is this question of interest?

- How is the treatment defined, and what are the outcome variables of interest?
- Why would comparing the average labour supply outcomes of women with different numbers of children result in a biased estimate of the effect of fertility on labour supply? What is the endogeneity problem?
- Which instrumental variables do the authors use?

Notation

Follows lecture slides rather than paper.

- $Z_i \in \{0,1\}$... binary instrument: having a second child of the same gender as the first child (samesex)
- $D_i \in \{0,1\}$... binary treatment status: having more than 2 children yes/no (morekids)
- $D_{0,i}^* \in \{0,1\}$... potential treatment status when $Z_i = 0$
- $D_{1,i}^* \in \{0,1\}$... potential treatment status when $Z_i = 1$
- Y_{dz}^* ... potential outcome under treatment D=d and instrument Z=z
- Y_i ... observed outcome

What treatment effect do we identify?

Local Average Treatment Effect (LATE), meaning the effect for those who react to the instrument $Z_i = 1$ by having more children (compliers).

• Are there reasons to believe that LATE \neq ATE?

2. Identification strategy and assumptions

Discussion of assumptions

What do these assumptions mean in words?

- What could invalidate them? Think of concrete examples or mechanisms.
- Which arguments or evidence can you provide to support that they hold?

(A1) Stable unit treatment value assumption (SUTVA)

$$Y_i = D_i Z_i Y_{11.i}^* + D_i (1-Z_i) Y_{10.i}^* + (1-D_i) Z_i Y_{01.i}^* + (1-D_i) (1-Z_i) Y_{00.i}^*$$

- No spillovers from treated on non-treated
- Having more than 2 children should not affect the labour supply of women with 2 children.

$$D_i = Z_i D_{1,i}^* + (1 - Z_i) D_{0,i}^*$$

- No spillovers from instrumented on non-instrumented:
- Having two children of the same sex has no effect on the likelihood of having another child for those who have 2 children of mixed sex.

(A2) Exclusion restriction

$$Y_{d0,i}^* = Y_{d1,i}^* \equiv Y_{d,i}^*$$
 for all i and $d \in \{0,1\}$

• No direct effect of the instrument on the potential outcome.

• Is this plausible here?

(A3) Exogeneity

$$Y_{0,i}^*, Y_{1,i}^*, D_{0,i}^*, D_{1,i}^* \perp Z_i | X_i$$

- No counfounders that determine both Z and Y or D.
- The instrument is randomly assigned (possibly conditional on X).
- Is this plausible here?

If we observe the confounders X that determine both Z and Y, we can obtain a valid IV under conditional exogeneity and common support (see lecture slides).

(A4) Monotonicity

 $D_{1,i}^* \geq D_{0,i}^*$ for all i and $D_{1,i}^* > D_{0,i}^*$ for some i

- There exist compliers but no defiers.
- The instrument moves the endogenous variable in one direction, i.e. the instrument is relevant.
- How can we provide supportive evidence for it?

3. Data and descriptive statistics

- Census Public Use Micro Samples (PUMS) 1980
- We use a random sample covering one third of the observations.
- What is the unit of observation? 1 line = 1 household, separate variables for mothers and fathers.
- What is the time dimension? One cross-section.
- Preliminary data prep done by the authors:
 - Children are matched to female household head or the spouse of a male household head.
 - Mothers for whom the number of children did not match the reported number were deleted from the data.
- Here, focus on women with two and more children. The paper also analyses the married sample.

Variable name	Description				
Treatment variables					
morekids	had more than 2 kids				
kidcount	count of kids in household				
Instruments					
samesex	first two kids are of same sex				
multi2nd	second birth twins				
Outcome variables					
weeksm	weeks worked per year, mom				
hourswm	hours worked per week, mom				
weeksd	weeks worked per year, dad				

Variable name	Description		
hourswd	hours worked per week, dad		
workedm	worked for pay, mom		
workedd	worked for pay, dad		
incomem	moms labour income		
incomed	dads labour income		
faminc	family income		
lfaminc	log family income		
nonmomi	income not generated by mom		
lnonmomi	log income not generated by mom		
Characteristics of the children			
ageqk	age in quarters, first born		
ageq2nd	age in qtrs second kid		
ageq3rd	age in qtrs of 3rd kid		
boy1st	first birth boy		
boy2nd	2nd birth boy		
boys2	first two births boys		
girls2	first two births girls		
Characteristics of the mother			
agem	age in years of mom		
agefstm	age of mom when kid first born		
blackm	=1 if mom black		
hispm	=1 if mom hispanic		
othracem	=1 if mom other race (white is ref		
educm	moms education		
Characteristics of the father (married sample)			
msample	married sample		
agefstd	age of dad when kid first born		
aged	age of dad		
blackd	=1 if dad black		
hispd	=1 if dad hispanic		
othraced	=1 if dad other race (white is ref)		

Load Packages

Read in the data

```
# Random sample of 1980 PUMS data (1/3 of observations)
data <-read_dta("AngristEvans1980_sample.dta")</pre>
# Inspect
head(data)
## # A tibble: 6 x 35
##
     morekids kidcount samesex multi2nd ageqk ageq2nd ageq3rd boy1st boy2nd boys2
##
        <dbl>
                  <dbl>
                          <dbl>
                                    <dbl> <dbl>
                                                  <dbl>
                                                           <dbl>
                                                                  <dbl>
                                                                          <dbl> <dbl>
## 1
            1
                      5
                              1
                                        0
                                             57
                                                     51
                                                              47
                                                                      1
                                                                              1
                                                                                    1
## 2
            0
                      1
                              0
                                        1
                                              5
                                                     NA
                                                               0
                                                                      0
                                                                              0
                                                                                    0
## 3
            0
                      2
                                             38
                                                     13
                                                                                    0
## 4
            0
                      2
                              0
                                        0
                                             51
                                                      38
                                                               0
                                                                      0
                                                                              1
                                                                                    0
## 5
            1
                      3
                              1
                                        0
                                             41
                                                      37
                                                               8
                                                                      1
                                                                              1
                                                                                    1
## 6
                              0
                                             18
                                                       6
                                                                                    0
## # i 25 more variables: girls2 <dbl>, agem <dbl>, agefstm <dbl>, agefstd <dbl>,
## #
       aged <dbl>, blackm <dbl>, hispm <dbl>, othracem <dbl>, blackd <dbl>,
## #
       hispd <dbl>, othraced <dbl>, educm <dbl>, faminc <dbl>, weeksm <dbl>,
## #
       hourswm <dbl>, weeksd <dbl>, hourswd <dbl>, workedm <dbl>, workedd <dbl>,
       incomem <dbl>, incomed <dbl>, lfaminc <dbl>, nonmomi <dbl>, lnonmomi <dbl>,
## #
## #
       msample <dbl>
```

Sample selection criteria for the main analysis

```
# Number of observations before sample selection
print("Sample size before sample restrictions:")

## [1] "Sample size before sample restrictions:"

nrow(data)

## [1] 440623
```

```
# only keep women aged 21-35
data <- dplyr::filter(data, agem >= 21 & agem <= 35)

# who were older than 15 at first birth
data <- dplyr::filter(data, agefstm >= 15)

# who have 2 or more children
data <- dplyr::filter(data, kidcount >= 2)

# second child older than 4 quarters (1 year)
data <- dplyr::filter(data, ageq2nd > 4)

# Number of observations after sample selection
print("Sample size after sample restrictions:")

## [1] "Sample size after sample restrictions:"
nrow(data)

## [1] 197071

# save final data set
save(data, file="AngristEvans1980_reduced.RData")
```

- The census does not allow to track children across households.
- What do the sample selection criteria ensure?
- What do they imply for the representativeness of the estimates? I.e., is this a selective sample?

Define key variables

```
# Endogenous Variable
data$d <- data$morekids # has more than 2 kids

# Instrument
data$z <- data$samesex # first two kids are of same sex

# Store each variable in own R object
attach(data)

# Labour market outcomes (mother)
#y_names<- c("workedm", "weeksm", "hourswm", "incomem", "lfaminc")</pre>
```

Descriptive Statistics

We replicate the first column of Table 2 (page 445) for the 1980 data using all women in the sample.

Slightly simplified sample selection criteria, so that exact figures might not match paper.

[1] "Descriptive statistics"

```
print(round(desc, digits=3))
```

##		Mean	Stdev	nobs
##	kidcount	2.552	0.807	197071
##	morekids	0.402	0.490	197071
##	boy1st	0.511	0.500	197071
##	boy2nd	0.510	0.500	197071
##	boys2	0.263	0.440	197071
##	girls2	0.242	0.428	197071
##	samesex	0.505	0.500	197071
##	multi2nd	0.009	0.093	197071
##	agem	30.129	3.507	197071
##	agefstm	20.142	2.953	197071
##	workedm	0.566	0.496	197071
##	weeksm	20.811	22.271	197071
##	hourswm	18.804	18.917	197071
##	incomem	7162.109	10829.388	197071
##	faminc	42368.075	26635.494	197071

Check balancedness of covariates across Z=0 and Z=1

Supporting evidence for the **exogeneity** of the instrument.

Compare the average characteristics of mothers with first two children of the same gender vs. different genders.

See Table 4, page 459, column 1980 PUMS.

```
# Define a vector of covariates
x_diff <- cbind(agem, agefstm, blackm, hispm, othracem, educm)
x_names <- colnames(x_diff)
# Define a function estimating the differences across samesex</pre>
```

```
balance_check.model <- function(x){</pre>
    # Conditional means
    mean_z0 \leftarrow mean(x[z==0])
    mean_z1 \leftarrow mean(x[z==1])
    # Difference in means
    diff_z \leftarrow lm(x \sim z)
    cov <- vcovHC(diff_z, type = "HC")</pre>
    robust.se <- sqrt(diag(cov))</pre>
    list(mean_z0 = mean_z0,
         mean_z1 = mean_z1,
        diff = diff_z$coefficients[2],
        robust.se = robust.se[2],
        pval = 2*pnorm(-abs(diff_z$coefficients[2]/robust.se[2])) )
}
# Run function and bind to number of observations
diff_output <- apply(x_diff, 2, balance_check.model)</pre>
diff_output <- as.data.frame(rbindlist(diff_output))</pre>
obs \leftarrow c(nrow(data[z==0,]),
           nrow(data[z==1,]),
           NA, NA, NA)
diff_output <- rbind(diff_output, obs)</pre>
# Format # Display in desired format
rownames(diff_output) <- c(x_names, "Observations")</pre>
colnames(diff_output) < -c("E(X|Z=0)", "E(X|Z=1)", "Difference", "s.e.", "p-value")
print("Difference in means for demographic variables by same sex")
## [1] "Difference in means for demographic variables by same sex"
print(round(diff_output, digits=3))
                  E(X|Z=0) E(X|Z=1) Difference s.e. p-value
##
## agem
                    30.136
                              30.122
                                          -0.013 0.016
                                                          0.405
## agefstm
                    20.135
                              20.150
                                          0.015 0.013
                                                          0.253
## blackm
                     0.119
                              0.120
                                          0.001 0.001
                                                          0.558
## hispm
                     0.030
                              0.030
                                          0.001 0.001
                                                          0.469
## othracem
                     0.029
                               0.028
                                          -0.001 0.001
                                                          0.167
## educm
                    12.135
                              12.127
                                          -0.008 0.011
                                                          0.449
## Observations 97516.000 99555.000
                                              NA
                                                     NA
                                                             NA
```

• What do we conclude from this?

First-stage effect of Z on D

Check for **instrument relevance**: first stage regression. See upper panel of Table 6, columns (1) and (2), page 462 in the paper.

First, without control variables

```
D_i = \alpha_1 + \pi_1 Z_i + \varepsilon_{1,i}
ols.m.morekids.1 <- lm(d ~ samesex )
summ(ols.m.morekids.1, robust = "HC1")
## MODEL INFO:
## Observations: 197071
## Dependent Variable: d
## Type: OLS linear regression
##
## MODEL FIT:
## F(1,197069) = 677.95, p = 0.00
## R^2 = 0.00
## Adj. R^2 = 0.00
##
## Standard errors: Robust, type = HC1
  _____
##
                     Est. S.E.
  ----- -----
                     0.37
                           0.00
                                  240.97
## (Intercept)
                                          0.00
                     0.06
                           0.00
                                   26.04
## samesex
                                          0.00
```

- How do we interpret this first stage?
- F-statistic should be > 10 for a strong instrument.
- With weak instrument, complier share is very small such that estimate becomes highly sensitive to the denominator.

```
cov <- vcovHC(ols.m.morekids.1, type = "HC")
robust.se.morekids.1 <- sqrt(diag(cov))</pre>
```

Second, controlling for the gender mix of the first two children and mother's demographic characteristics

$$D_i = \alpha_1 + \pi_1 Z_i + \delta_1 Boy1st + \delta_2 Boy2nd + X_i'\beta_1 + \varepsilon_{1,i}$$

- Why do we control for the gender of the first two children?
- Why do we include additional control variables?

```
x <- cbind(boy1st, boy2nd, agem, agefstm, blackm, hispm, othracem)
```

```
##
                              Dependent variable:
##
##
                            More than two children
##
                        (1)
                                                 (2)
## samesex
                     0.057***
                                              0.059***
##
                      (0.002)
                                               (0.002)
##
                                              -0.010***
## xboy1st
                                               (0.002)
##
##
## xboy2nd
                                              -0.009***
##
                                               (0.002)
##
                     197,071
## Observations
                                               197,071
                       0.003
                                               0.084
## F Statistic 677.951*** (df = 1; 197069) 2,254.119*** (df = 8; 197062)
## Note:
                                       *p<0.1; **p<0.05; ***p<0.01
```

4. Estimation: Preliminaries

Nonparametric LATE (Wald estimate)

$$LATE = \frac{E[Y|Z=1] - E[Y|Z=0]}{E[D|Z=1] - E[D|Z=0]}$$

We estimate the LATE for workedm, based on the full sample.

See Table 5 (first 2 columns).

```
# Conditional outcomes (for participation decision)
E_workedm_1 = mean(workedm[z==1])
E_workedm_0 = mean(workedm[z==0])
# Conditional treatment
E d 1 = mean(d[z==1])
E_d_0 = mean(d[z==0])
# Difference in conditional outcomes
diff_workedm = E_workedm_1 - E_workedm_0
# Difference in conditional treatment = FIRST STAGE
diff_d = E_d_1 - E_d_0
# Wald Estimate / LATE #
wald_workedm = diff_workedm/diff_d
# Present results in simple table
tab_wald <- rbind(cbind(E_workedm_1, E_workedm_0, diff_workedm),</pre>
                  cbind(E_d_1, E_d_0, diff_d),
                  cbind(NA, NA, wald_workedm))
colnames(tab_wald) <- c("Z=1", "Z=0", "Difference")</pre>
rownames(tab_wald) <- c("E(Y|Z)", "E(D|Z)", "Wald estimate")</pre>
print(round(tab_wald, digits=3))
```

```
## Z=1 Z=0 Difference

## E(Y|Z) 0.562 0.570 -0.007

## E(D|Z) 0.431 0.373 0.057

## Wald estimate NA NA -0.128
```

- How do we interpret this effect?
- What about inference? Bootstrap.

```
# define a function which we can later use for inference (bootstrap)
est_LATE <-function(y,d,z){

E_y_1 = mean(y[z==1])
E_y_0 = mean(y[z==0])

# conditional treatment
E_d_1 = mean(d[z==1])
E_d_0 = mean(d[z==0])</pre>
```

```
# difference in conditional outcomes
   diff_y = E_y_1 - E_y_0
    # difference in conditional treatment = FIRST STAGE
    diff_d = E_d_1 - E_d_0
    # LATE
    late= diff_y/diff_d
    list(late=late,
         E_y_1 = E_y_1,
         E_y_0 = E_y_0,
        E_d_1 = E_d_1,
         E_d_0 = E_d_0,
         diff_y=diff_y,
         diff_d=diff_d
         )
}
# estimate the LATE on labor force participation
LATE <- est_LATE(y=workedm, d=d, z=z)
print("est_LATE output")
## [1] "est_LATE output"
print(LATE)
## $late
## [1] -0.1283451
## $E_y_1
## [1] 0.5623926
##
## $E_y_0
## [1] 0.5697629
## $E_d_1
## [1] 0.4306564
##
## $E_d_0
## [1] 0.3732311
## $diff_y
## [1] -0.007370263
```

```
##
## $diff_d
## [1] 0.05742536
```

Bootstrap

```
# Define a function for the bootstrap
bootstrap.late<-function(y,d,z,boot){</pre>
  obs<-length(y) # store the number of observations
 mat=c() # empty matrix for storing effect estimates
  temp=c() # empty vector to count bootstrap replications
  # The bootstrap loop starts here:
  while(length(temp) < boot) {</pre>
    # draw a bootstrap sample
    sboot <- sample (x=1:obs, # observations that are drawn from y
                  size=obs, # number of obs as in original data
                  replace=TRUE) # with replacement (one obs allowed to appear more than once)
    # redefine y, d, z from the bootstrap sample (no covariates here)
    yb<-y[sboot]</pre>
    db<-d[sboot]
    zb<-z[sboot]
    # estimate the LATE within the bootstrap sample
    est<-c(est_LATE(y=yb, d=db, z=zb))</pre>
    # add the estimates as an additional row in the effects matrix
    # one column per effect (as in output of estimator function)
    if (sum(is.na(est))==0) mat<-rbind(mat, est)</pre>
    # increase length by 1 (ran 1 more bootstrap repetition)
    temp < -c(temp, 1)
 }
  # store standard deviations of the estimated effect
  list(se_diff_y=sd(as.numeric(mat[,6])), # column 6 stores the numerator difference
       se_diff_d=sd(as.numeric(mat[,7])), # column 7 stores the denominator difference
       se_late=sd(as.numeric(mat[,1]))) #column 1 stores the LATE
 }
```

```
# Set seed for replicability - right before estimation!
  set.seed(12345)
  # Run the bootstrap on the original data
  LATE <- est_LATE(y=workedm, d=d, z=z)
  # estimate SE separately using the bootstrap
  inf.LATE<- bootstrap.late(y=workedm,d=d,z=z,boot=99)</pre>
results <- cbind(tab_wald, inf.LATE)
results
##
                 Z=1
                            Z=0
                                      Difference
                                                    inf.LATE
## E(Y|Z)
                 0.5623926 0.5697629 -0.007370263 0.002140361
## E(D|Z)
                 0.4306564 0.3732311 0.05742536
                                                    0.002003153
## Wald estimate NA
                            NA
                                      -0.1283451
                                                    0.03689578
print("P-value")
## [1] "P-value"
print(round(2*pnorm(-abs(LATE$late/inf.LATE$se_late)), digits=3))
## [1] 0.001
```

Reduced form effect of Z on Y

Reduced-form regression of Y on Z:

$$Y_i = \alpha_{RF} + \pi_{RF} Z_i + X_i' \beta_{RF} + \varepsilon_{RF,i}$$

- Because the IV is (conditionally) random, the reduced form gives an unbiased estimate of the effect of the instrument on the outcomes (that operates via the endogenous treatment only!).
- Numerator of the Wald estimate.
- We still assume the instrument has no direct effect on the outcome.
- More informative when the IV is, e.g. a policy intervention. Then the reduced-form measures the intention to treat effect (ITT), which includes that some instrumented observations do not actually take up the treatment.

```
x <- cbind(boy1st, boy2nd, agem, agefstm, blackm, hispm, othracem)
y_mat = cbind(workedm, weeksm, hourswm, incomem, lfaminc)
y_names = colnames(y_mat)

# Define function for several outcomes
itt.model <- function(y){
    itt.m <- lm(y ~ z + x)</pre>
```

```
cov <- vcovHC(itt.m, type = "HC")
    robust.se <- sqrt(diag(cov))

list(itt.coeff = itt.m$coefficients[2],
    robust.se = robust.se[2],
    pval = 2*pnorm(-abs(itt.m$coefficients[2]/robust.se[2])))
}

itt_output <- apply(y_mat, 2, itt.model)
itt_output <- as.data.frame(rbindlist(itt_output))
obs <- c(nrow(data), NA, NA)
itt_output <- rbind(itt_output, obs)
rownames(itt_output)<- c(y_names, "Observations")
print("Reduced form estimates of labour supply models")</pre>
```

[1] "Reduced form estimates of labour supply models"

```
print(round(itt_output, digits=3))
```

```
##
                 itt.coeff robust.se pval
## workedm
                    -0.007
                                0.002 0.002
## weeksm
                    -0.241
                                0.098 0.014
## hourswm
                    -0.226
                                0.084 0.007
## incomem
                    -91.480
                               47.897 0.056
## lfaminc
                                0.006 0.575
                      0.003
## Observations 197071.000
                                   NA
                                          NA
```

5. Estimation: Two-stage least squares (2SLS)

Reminders

- The 2SLS estimation is the parametric version of the IV estimation.
- With control variables, it imposes a specific functional form on the outcome and treatment equations.
- Controlling for covariates to increase precision (under A3), and/or account for conditional exogeneity of IV (under A3', e.g. gender of first two children).
- Imposes homogeneous treatment effect.

Implementation

2SLS first extracts the exogenous variation from D (first stage from before):

$$D_i = \alpha_1 + \pi_1 Z_i + X_i' \beta_1 + \varepsilon_{1,i}$$

Then, replace endogenous treatment D in the outcome equation by the predicted \hat{D}_i obtained from this first stage:

$$Y_i = \alpha_{IV} + \pi_{IV}\hat{D}_i + X_i'\beta_{IV} + \varepsilon_{IV,i}$$

The command ivreg from the AER package directly integrates these two steps and gives you standard errors corrected for the first stage estimation.

- Note that it does not allow you to show the results of the first stage estimation.
- Shows some model diagnostics, e.g. F-test of the first stage ('weak instruments').

We first estimate the effect on the labor force participation of women to demonstrate the application of the package:

```
iv.m <- ivreg(workedm ~ d + x | z + x)</pre>
summary(iv.m, vcov = sandwich, diagnostics = TRUE)
##
## Call:
## ivreg(formula = workedm ~ d + x | z + x)
##
## Residuals:
##
       Min
                1Q Median
                                3Q
                                       Max
   -0.9272 -0.5178  0.3002  0.4313  0.7288
##
##
## Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.4612828 0.0180108 25.612 < 2e-16 ***
## d
               -0.1150971 0.0370254 -3.109 0.00188 **
## xboy1st
               -0.0001912 0.0022003 -0.087 0.93076
## xboy2nd
               -0.0042123 0.0021967 -1.918 0.05517 .
                           0.0011698 19.000
                                              < 2e-16 ***
## xagem
                0.0222252
## xagefstm
               -0.0262497
                           0.0017176 -15.283 < 2e-16 ***
## xblackm
                0.1041820
                           0.0042507
                                      24.509 < 2e-16 ***
                           0.0086700
                                      -4.511 6.46e-06 ***
## xhispm
               -0.0391096
                                       5.704 1.18e-08 ***
## xothracem
                0.0401819
                           0.0070451
##
## Diagnostic tests:
                       df1
                              df2 statistic p-value
## Weak instruments
                         1 197062
                                    773.301
                                            <2e-16 ***
## Wu-Hausman
                         1 197061
                                      2.471
                                               0.116
## Sargan
                               NA
                                         NA
                                                 NA
## ---
                  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
## Residual standard error: 0.4832 on 197062 degrees of freedom
## Multiple R-Squared: 0.04961, Adjusted R-squared: 0.04957
```

Wald test: 687.1 on 8 and 197062 DF, p-value: < 2.2e-16

```
# Important for coding: Endogenous variables (d)
# can only appear before the vertical line;
# instruments (z) can only appear after the vertical line;
# exogenous regressors that are not instruments (x)
# must appear both before and after the vertical line.
```

Main results

We now replicate Table 7, columns 1-2, page 465, for the outcomes of interest.

This table compares the 2SLS estimates π_{IV} with the 'naive' OLS estimates π_{OLS} from a regression

```
Y_i = \alpha_{OLS} + \pi_{OLS} D_i + X_i' \beta_{OLS} + \varepsilon_{OLS,i}
```

```
# Define OLS function for several outcomes
ols.model <- function(y){
    ols.m <- lm(y ~ d + x)
    cov <- vcovHC(ols.m, type = "HC")
    robust.se <- sqrt(diag(cov))

list(ols.coeff = ols.m$coefficients[2],
        robust.se = robust.se[2],
        pval = 2*pnorm(-abs(ols.m$coefficients[2]/robust.se[2])))
}

ols_output <- apply(y_mat, 2, ols.model)
ols_output<-as.data.frame(rbindlist(ols_output)))
rownames(ols_output)<- y_names</pre>
```

```
# Define 2sls function for several outcomes

tsls.model <- function(y){
    iv.m <- ivreg(y ~ d + x | z + x)
    iv_sum <-summary(iv.m, vcov = sandwich)

list( iv.coeff = iv_sum$coefficients[2,1],
        robust.se = iv_sum$coefficients[2,2],
        pval = 2*pnorm(-abs(iv_sum$coefficients[2,1]/iv_sum$coefficients[2,2])))
}

iv_output <- apply(y_mat, 2, tsls.model)
iv_output<-as.data.frame(rbindlist(iv_output))</pre>
output<-cbind(ols_output,iv_output)
```

```
rownames(output) <- y_names
colnames(output) <- c("OLS", "se", "p", "2SLS", "se", "p")
print(round(output,digits=3))</pre>
```

```
##
                 OLS
                                    2SLS
                          se p
                                              se
                                                      р
## workedm
              -0.173 0.002 0
                                  -0.115
                                           0.037 0.002
## weeksm
              -8.861 0.100 0
                                  -4.101
                                           1.649 0.013
              -6.520 0.087 0
                                           1.405 0.006
## hourswm
                                  -3.847
## incomem -3718.223 48.955 0 -1555.290 807.002 0.054
## lfaminc
              -0.134 0.006 0
                                   0.056
                                           0.100 0.576
```

- What do we learn from comparing OLS to IV estimates?
- Can the LATE answer the research question?
- Why is the effect on family income so small/non-significant?

6. Extensions

Characterizing the compliers

- We cannot individually identify compliers.
- But we can quantify the size of the complier group.
- And we can describe the distribution of complier characteristics.

Estimate the effect of Z on D (first stage) in subsamples defined by characteristics X to assess who is under or over-represented among the compliers:

$$D_i = \alpha_1 + \pi_1 Z i + X_i' \beta_1 + \epsilon_{1,i}$$

Let's try for subsample of mothers who * have years of schooling above the median * are married.

```
# define a variable being one if education is above the median
educm_h <- ifelse(educm > median(educm), 1, 0)

# Estimate first stages (controlling for other characteristics)

# full sample
ols.m.morekids.full <- lm(d ~ samesex + x)
cov <- vcovHC(ols.m.morekids.full, type = "HC")
robust.se.morekids.full <- sqrt(diag(cov))

# highly educated
ols.m.morekids.educh <- lm(d[educm_h == 1] ~ samesex[educm_h == 1] + x[educm_h == 1,])
cov <- vcovHC(ols.m.morekids.educh, type = "HC")
robust.se.morekids.educh <- sqrt(diag(cov))</pre>
```

```
cov <- vcovHC(ols.m.morekids.married, type = "HC")</pre>
robust.se.morekids.married <- sqrt(diag(cov))</pre>
# Output Coefficients
stargazer(ols.m.morekids.full, ols.m.morekids.educh, ols.m.morekids.married,
        se=list(robust.se.morekids.full, robust.se.morekids.educh,robust.se.morekids.married),
        type="text",
        keep=c("samesex"),
        keep.stat = c("n", "rsq", "f"),
        align=TRUE, dep.var.labels = c("More than one child", "More than one child", "More than one child",
        dep.var.labels.include = TRUE)
##
  ______
##
                                                 Dependent variable:
##
                     ______
                                                 More than one child
##
                         More than one child
                                                                          More than one ch
##
                                (1)
                                                        (2)
                                                                                 (3)
                             0.059***
## samesex
##
                              (0.002)
##
  samesex[educm_h == 1]
                                                      0.050***
##
##
                                                      (0.004)
##
                                                                              0.065***
##
  samesex[msample == 1]
##
                                                                               (0.003)
##
```

58,245

0.053

2,254.119*** (df = 8; 197062) 404.020*** (df = 8; 58236) 1,307.318*** (df = 8;

125,725

0.077

*p<0.1; **p<0.05; *

ols.m.morekids.married <- lm(d[msample == 1] ~ samesex[msample == 1] + x[msample == 1,])

married

Observations

F Statistic

R2

Note:

Are highly educated and married women under or overrepresented among the compliers?

197,071

0.084

- In paper: 2SLS estimation in subsample of college-educated women indicates smaller labor supply effects.
- Authors conclude that childbearing has stronger negative effects in groups with low socioeconomic status.

Semi-parametric LATE

Used when

- We observe the confounders X that determine both Z and Y conditional on D (i.e. under the conditional exogeneity assumption A3' and common support A5).
- X is multidimensional (i.e. many cells defined by X), complicates nonparametric estimation.
- Remember: If instrument is (known to be) randomly assigned, do not need any control variables.

Roadmap based on Frölich (2007) using inverse probability weighting as an estimator 1. Estimate the model for $p(X_i) \equiv Pr(Z_i = 1 | X_i = x)$ using probit, and calculate predicted probabilities $\hat{p}(X_i)$.

2. Calculate the LATE by reweighting observations by the inverse of their conditional instrument probabilities.

$$\text{LATE} = \frac{E\left[\frac{Y_{i}Z_{i}}{\hat{p}(X_{i})} - \frac{Y_{i}(1-Z_{i})}{(1-\hat{p}(X_{i}))}\right]}{E\left[\frac{D_{i}Z_{i}}{\hat{p}(X_{i})} - \frac{D_{i}(1-Z_{i})}{(1-\hat{p}(X_{i}))}\right]}$$

3. Bootstrap everything for inference.

1. Manually estimate the p-scores

```
# estimate pscores manually
pscore.model <- glm(z ~ x, family = binomial(link = "probit"))</pre>
summ(pscore.model, , robust = "HC1")
## MODEL INFO:
## Observations: 197071
## Dependent Variable: z
## Type: Generalized linear model
##
     Family: binomial
     Link function: probit
##
##
## MODEL FIT:
   ^{2}(7) = 177.95, p = 0.00
## Pseudo-R2 (Cragg-Uhler) = 0.00
## Pseudo-R^2 (McFadden) = 0.00
## AIC = 273015.37, BIC = 273096.90
##
## Standard errors: Robust, type = HC1
##
                         Est.
                                 S.E.
                                                     p
## (Intercept)
                        -0.04
                                0.03
                                         -1.50
                                                 0.13
                         0.05
## xboy1st
                                0.01
                                          8.86
                                                 0.00
## xboy2nd
                         0.05
                                                 0.00
                                0.01
                                          9.57
```

```
## xagem
                       -0.00
                               0.00
                                                0.16
                                       -1.40
## xagefstm
                        0.00
                               0.00
                                        1.76
                                               0.08
## xblackm
                        0.01
                               0.01
                                        0.84
                                                0.40
## xhispm
                        0.01
                               0.02
                                        0.73
                                                0.46
## xothracem
                       -0.02
                               0.02
                                        -1.38
                                                0.17
```

- Indicates if you should be worried about any confounders.
- Coefficients on gender of first child are significant because slightly higher probability of having boys.

2. Check common support

• Poor common support.

3. Estimate the semiparametric LATE

Can use the lateweight command from the** causalweight package which implements all of the above mentionned steps.

- But as we have seen in Session 2, a bit of a black box, so check common support manually.
- Only works with binary treatment and instrument.
- Can specify trimming.

For more details, see https://cran.r-project.org/web/packages/causalweight/causalweight.pdf

```
print("LATE: ")
## [1] "LATE: "
round(c(late_workedm$effect),3)
## [1] -0.115
print("standard error: ")
## [1] "standard error: "
round(c(late_workedm$se.effect),3)
## [1] 0.015
print("p-value: ")
## [1] "p-value: "
late_workedm$pval.effect
## [1] 8.299563e-14
# For all outcomes
sp.model <- function(y){</pre>
      sp.m <- lateweight(y=y, # outcome</pre>
                          d=d, # binary endogenous treatment
                          z=z, # binary instrument
                          x=x, # observed confounders
                          LATT=FALSE, # for LATE
                          logit=FALSE, # probit p-score model
                          boot=9) # number of bootstrap replications
      list( sp.iv.coeff = sp.m$effect,
            boot.se = sp.m$se.effect,
            pval = sp.m$pval.effect)
}
# Apply to all outcomes of interest
sp.iv_output <- apply(y_mat, 2, sp.model)</pre>
sp.iv_output<-as.matrix(rbindlist(sp.iv_output))</pre>
# Bind OLS and IV results
output_all<-cbind(output, sp.iv_output,c(tab_wald[3,3],NA,NA,NA,NA),c(inf.LATE$se_late,NA,NA,NA,NA)
rownames(output_all)<- y_names</pre>
colnames(output_all)<- c("OLS", "se", "p", "2SLS", "se", "p", "Semi IV", "se", "p", "Wald", "se")</pre>
# Display table
```

```
print("OLS, 2SLS and semiparametric LATE estimates of labour supply models")
```

[1] "OLS, 2SLS and semiparametric LATE estimates of labour supply models"

```
print(round(output_all,digits=3))
```

```
##
                 OLS
                         se p
                                    2SLS
                                                         Semi IV
                                              se
                                                     p
                                                                       se
                                                                              р
              -0.173 0.002 0
## workedm
                                  -0.115
                                           0.037 0.002
                                                          -0.115
                                                                    0.024 0.000
## weeksm
              -8.861 0.100 0
                                  -4.101
                                                                    0.964 0.000
                                           1.649 0.013
                                                          -4.102
## hourswm
              -6.520 0.087 0
                                  -3.847
                                           1.405 0.006
                                                          -3.848
                                                                    1.399 0.006
## incomem -3718.223 48.955 0 -1555.290 807.002 0.054 -1555.335 742.227 0.036
## lfaminc
              -0.134 0.006 0
                                   0.056
                                           0.100 0.576
                                                           0.056
                                                                    0.114 0.623
##
             Wald
                     se
## workedm -0.128 0.037
## weeksm
               NA
                     NA
## hourswm
               NA
                     NA
## incomem
               NA
                     NA
## lfaminc
               NA
                     NA
```

References

Frölich M (2007). Nonparametric IV Estimation of Local Average Treatment Effects with Covariates. $Economics\ Letters,\ 139,\ 35-75.$