

KORSZERŰ VIZSGÁLATI MÓDSZEREK LABORATÓRIUM

Mössbauer-effektus vizsgálata

Katona Dávid

Mérőtársak: Máthé Marcell, Olar Alex

Mérés dátuma: 2018. 03. 08.

Tartalomjegyzék

1.	A m	nérés célja	2
2.	Bev	ezetés	2
	2.1.	A Mössbauer-effektus	2
	2.2.	A spektrumot befolyásoló tényezők	2
		A mérési összeállítás	3
3.	Mér	rési eredmények	4
	3.1.	Görbeillesztés	4
	3.2.	Kalibráció	5
	3.3.	Izoméreltolódásaok	6
	3.4.	Gerjesztett állapot élettartama	7
	3.5.	Térgradiens meghatározása nátrium-nitroprusszidban	8
	3.6.	Mágneses indukcióvektor nagyságának meghatározása lágyvasban	8
	3.7.	Elmozdulás számítása	9
	3.8	Gravitácós vöröseltolódás	10

1. A mérés célja

A mérés célja rozsdamentes acél, nátrium-nitroprusszid és lágyvas tudajdonságainak meghatározása Mössbauer-spektrum mérésével.

2. Bevezetés

2.1. A Mössbauer-effektus

A Mössbauer-effektus lényege visszalökődés nélküli fotonemisszió. Amikor egy atommag E_0 energiaátmenet közben fotont bocsájt ki, az impluzusmegmaradás értelmében visszalökődik, így a kibocsájtott foton energiája kisebb lesz (nemrelativisztikus esetben 1. egyenlet).

$$E_{\gamma} = E_0 - \frac{E_0}{Mc^2} = E_0 - R \tag{1}$$

Emiatt az így kibocsájtott fotont ugyanilyen atommag csak akkor tudja elnyelni, amennyiben a vonalkiszélesedés: $\Gamma > R$. Ez a magspektroszkópia energiatartományában nem áll fenn. A Mössbauer-effektus esetén azonban mégis létrejön a foton reabszorpciója. Ennek klasszikus szemléletes magyarázata, ha a magra nem önmagában, hanem egy rácsban kötött atomként gondolunk, és a fotonkibocsájtás hatására nem az atommag, hanem az egész rács lökődik vissza, melyre M makroszkopikus tömeg az 1. egyenletben. Ez a leírá szemléletes ugyan, de hamis; a jelenség korrekt leírása, hogy ilyenkor fonongerjesztés nélküli fotonemisszió zajlik. Ez a jelenség teszi lehetővé az energia igen nagy pontosságú mérését.

A spektrum felvételéhez a Doppler-effektust használjuk fel. A forrás mozgatásával az emittált foton energiája nemrelativisztikus esetben:

$$E_{\gamma} = E_{\gamma,0} \left(1 + \frac{v}{c} \right) \tag{2}$$

2.2. A spektrumot befolyásoló tényezők

A spektrumot minden olyan tényező befolyásolja, ami a magállapotok energiaszintjében eltolást vagy felhasadást okoz, ezáltal információt nyerhetünk a mag környzetéről, így a Mössbauer-spektroszkópia az egyik legfontosabb anyagvizsgálati eszköz.

Izomér-eltolódás esetében az elektronfelhővel való elektrosztatikus kölcsönhatás eredményeképp eltolódik a mag energiaszintje. Az energiaeltolódás mértékét az s-pálya mag helyén vett értéke adja (3. egyenlet). Izoméreltolódásnak nevezik egyéb hatások (gravitáció, hőmérséklet) miatti eltolódásokat is.

$$\Delta E = Ze^2(|\Psi(0)|_{\text{abszorbens}}^2 - |\Psi(0)|_{\text{forrás}}^2)(\langle r^2 \rangle_{\text{gerjesztett}} - \langle r^2 \rangle_{\text{alapállapot}})$$
(3)

A spektrum felhasadását okozza mágneses tér hatására létrejövő Zeemann-effektus, amely a magspin z komponense szerinti degenerációt szünteti meg (4. egyenlet). Ezt a jelenséget vizsgáljuk lágyvas esetén, amikor az $I=3/2 \rightarrow I=1/2$ átmenet során a magspin z komponensének lehetséges átmenetei az impulzusmomentum-megmaradás

miatt: $\pm \frac{3}{2} \to \pm \frac{1}{2}$, $\pm \frac{1}{2} \to \pm \frac{1}{2}$ és $\pm \frac{1}{2} \to \mp \frac{1}{2}$. A hiperfinom felhasadás következtében a spektrumban 3×2 vonal jelenik meg.

$$\Delta E = g \cdot \frac{e\hbar}{2m_p} \cdot m_I \cdot B = g \cdot \mu_N \cdot m_I \cdot B \tag{4}$$

Amennyiben a mag inhomogén elektromos térbe kerül, kvadrupolfelhasadás következik be, melynek mértékét írja le axiális szimmetria esetén az 5. egyenlet. Ezt a hatást a nitroprusszid-nátrium esetében tanulmányozzuk, amelyben a vas(III)-ion 5 CN⁻ ionnal és egy NO molekulával alkot oktaéderes komplexet, így bár axiálisan szimmetrikus, z irányban aszimmetrikus a komplex.

$$\Delta E = \frac{Qe}{4I(2I-1)}\partial_z^2 U[3m_I^2 - I(I+1)] \tag{5}$$

A spektrumvonalak szélességéből információt kaphatunk a gerjesztett atommag élettartamára vonatkozóan (6. egyenlet). A felhasadt spektrum azonban komplikálja a képet, így az alábbi formulával lehet kiszámolni a természetes vonalszélességet (7. egyenlet), melyben a másodrendű tag esetünkben már elhanyagolható. Itt az ω_i az i. vonal területe, T_A és T_F pedig a minta és forrás dimenziótlan effektív vastagsága, esetünkben $T_F = 1.62$. A $\Gamma(\omega)$ összefüggésre egyenest illesztve megkapható a gerjesztett állapot időtartama.

$$\tau = \frac{\hbar}{\Gamma} \tag{6}$$

$$\Gamma_i^{\text{(mért)}} = 2\Gamma + \Gamma \frac{\omega_i T_A + T_F}{4} - \Gamma \frac{(\omega_i T_A + T_F)^2}{625}$$
 (7)

2.3. A mérési összeállítás

A mérés során forrásként 57 Co izotópot használunk, mely az esetek 91%-ában I=3/2 magspinű 57 Fe-re bomlik. Ez az alapállapotba (I=1/2) való visszatérés során $E_0=14413eV$ energiájú gamma-fotont bocsájt, ki ami a fenti mechanizmussal képes gerjeszteni a mintában található 57 Fe izotópokat. A forrás sebességét háromszögjel szerint periodikusan változtatjuk, ezáltal egy periódus alatt minden energiatartományt kétszer érintünk. A gamma fotonokat a mintán való áthaladás után proporcionális kamrával detektáljuk, a jelet egy sokcsatornás analizátorba vezetve energiaspektrumot veszünk fel. Annak érdekében, hogy csupán a megfelelő fotonokat vegyük a spektrumba, a mérés elején a diszkriminátort beállítottuk a 14.4 keV-nak megfelelő csúcsra. A mérést három mintára végezzük el: rozsdamentes acél, nitroprusszid-nátrium és lágyvas.

3. Mérési eredmények

A mérést helyszínen elvégeztük, azonban a mért adatokat műszaki okok miatt nem sikerült a számítógépből kinyerni, emiatt a mérésvezetőtől kapott korábban készült adatsorokkal dolgozunk.

3.1. Görbeillesztés

A mérési eredmények kiértékelését python numpy, scipy és matplotlib csomagjaival végeztük. A kapott spektrumokat először "kettéhajtottuk", mivel a sebesség-idő háromszögjel alakjából adódóan minden mintában kétszer, szimmetrikusan szerepel ugyanaz az energia. Az így kapott spektrumokra Lorenzt-görbéket illesztettünk (8. egyenlet). Az illesztéseket mutatja az 1. ábra, a paramétereket pedig az 1. táblázat tartalmazza.

$$f_{\text{ac\'el}}(x) = B - \frac{A}{1 + \left(\frac{x - x_0}{\Gamma/2}\right)^2}$$
 (8a)

$$f_{\text{nitroprusszid}}(x) = B - \frac{A}{1 + \left(\frac{x - (x_0 - s/2)}{\Gamma/2}\right)^2} - \frac{A}{1 + \left(\frac{x - (x_0 + s/2)}{\Gamma/2}\right)^2}$$
 (8b)

$$f_{\text{lágyvas}}(x) = B - \sum_{i=1}^{3} \left(\frac{A_i}{1 + \left(\frac{x - (x_{0,i} - s_i/2)}{\Gamma_i/2}\right)^2} - \frac{A_i}{1 + \left(\frac{x - (x_{0,i} + s_i/2)}{\Gamma_i/2}\right)^2} \right)$$
(8c)

1. ábra. Lorentz-görbék illesztése a mért spektrumokra

3.2. Kalibráció

Kihasználva az ismert adatot, hogy a lágyvas mintában a két szélső csúcshoz tartozó sebességek különbsége $\delta_6 - \delta_1 = 10.6162 \text{ mm/s}$, meghatározható a csatornaszám-energia összefüggés (9. egyenlet).

$$\frac{\Delta E}{\Delta ch} = E_0 \frac{\Delta v/c}{s_1} = (1.3922 \pm 0.0005) \cdot 10^{-9} eV$$
 (9)

paraméter	illesztett érték			
Rozsdamentes acél				
alapvonal (B)	1170.6 ± 1.7			
amplitúdó (A)	342.0 ± 13.3			
csúcs helye (x_0)	247.65 ± 0.32			
szélesség (Γ)	16.57 ± 0.96			
Nitroprusszid-nátrium				
alapvonal (B)	2631.9 ± 2.6			
amplitúdó (A)	364.5 ± 18.7			
csúcs helye (felhasadás nélkül) (x_0)	242.55 ± 0.25			
szélesség (Γ)	9.86 ± 0.73			
felhasadás (S)	59.51 ± 0.50			
Lágyvas				
alapvonal (B)	61883 ± 22			
1. amplitúdó (A_1)	8418 ± 83			
1. csúcs helye (felhasadás nélkül) $(x_{0,1})$	252.09 ± 0.07			
1. csúcs szélessége (Γ_1)	13.86 ± 0.2			
1. felhasadás (S_1)	366.6 ± 0.1			
2. amplitúdó (A_2)	7682 ± 86			
2. csúcs helye (felhasadás nélkül) $(x_{0,2})$	251.86 ± 0.07			
2. csúcs szélessége (Γ_2)	12.62 ± 0.2			
2. felhasadás (S_2)	212.8 ± 0.1			
3. amplitúdó (A_3)	4327 ± 89			
3. csúcs helye (felhasadás nélkül) $(x_{0,3})$	252.06 ± 0.12			
3. csúcs szélessége (Γ_3)	11.89 ± 0.4			
3. felhasadás (S_3)	57.92 ± 0.24			

1. táblázat. Illesztett görbék paraméterei

3.3. Izoméreltolódásaok

Az izoméreltolódást az alábbi módon számoljuk (10. egyenlet). Így számolt eltolódásokat tartalmazza a 2. táblázat.

$$\Delta E_i = (x_{0,\text{lágyvas, átlag}} - x_{0,i}) \frac{\Delta E}{\Delta ch}$$
 (10)

minta	csúcs helye (csatorna)	eltolódás [eV]
lágyvas	252 ± 0.16	0
rozsdamentes acél	247.65 ± 0.32	$(6.06 \pm 0.50) \cdot 10^{-9}$
nátrium-nitroprusszid	242.55 ± 0.25	$(1.315 \pm 0.042) \cdot 10^{-8}$

2. táblázat. Izoméreltolódások

3.4. Gerjesztett állapot élettartama

Az élettartamot a 6. egyenletből számoljuk, ahol a Γ értékét a lágyvas mintából határozzuk meg a 7. egyenlet segítségével. Ehhez a relatív intenzitás (amely arányos $\Gamma \cdot A$ -val) függvényében ábrázoltuk a félértékszélességeket, az arra egyenest illesztettünk (2. ábra), melynek paraméterei (11):

$$m = (24 \pm 12) \cdot 10^{-9} eV \tag{11a}$$

$$b = (13.6 \pm 2.3) \cdot 10^{-9} eV \tag{11b}$$

A paraméterekből a gerjesztett állapot élettartama (12):

$$\tau = \frac{\hbar}{\Gamma} = (116 \pm 20)ns \tag{12}$$

2. ábra. A csúcsok szélessége az intenzitásuk függvényében és az illesztett egyenes

Az illesztésból meghatározható a minta effektív vastagsága, $T_{\rm A,\ lágyvas}=17.2\pm11.2$, amely alapján a másodrendű tag elhanyagolása jogos volt (3.4%-os hiba a legnagyobb ω -ra). Az élettartamot az irodalmi értékkel (141.8ns) azonos nagyságrendben, bár épphogy hibán kívül kaptuk meg. Megj.: A vastagság relatív nagy hibája a meredekség bizonytalanságából adódik.

A másik két mintára az alábbiak szerint számolható effektív vastagság (13. egyenlet). Az eredményeket tartalmazza a 3. táblázat. A nitroprusszid minta értéke nyilvánvalóan nem reális, ugyanakkor a vastagságok relaív hibái (amely a gamma és a mért

szélességek hibáiból adódnak) igen nagyok. Ezen mintáknál nem illesztéssel, hanem 1 adatból számolható a vastagság, így azok megbízhatósága jóval kisebb.

$$T_A = \left(4\frac{\Gamma_i}{\Gamma} - T_F - 8\right) \frac{1}{\omega_i} \tag{13}$$

minta	vastagság
acél	4.2 ± 6.7
nátrium-nitroprusszid	-5.3 ± 3.4

3. táblázat. Effektív mintavastagságok

3.5. Térgradiens meghatározása nátrium-nitroprusszidban

Felhasználva az 5. egyenletet, valamint a I=3/2 magspinű ⁵⁷Fe kvadrupól-momentumának értékét (Q=0.21 barn) kiszámolható a térgradiens a mag helyén. Mivel esetünkben $I=3/2, m_i=\pm 1/2, \pm 3/2$, ezért az energiaszint kétfelé hasad, melynek energiakülönbsége: (14. egyenlet).

$$\Delta E = \frac{Qe}{12}\partial_z^2 U \cdot 6 = \frac{Qe}{2}\partial_z^2 U \tag{14}$$

Ez alapján a csúcsok közti felhasadásból a térgradiens (15):

$$\partial_z^2 U = (7.88 \pm 0.07) \cdot 10^{21} V/m^2 \tag{15}$$

A Bohr-modellből is számolható térgradiens, a Coulomb-potenciál második deriváltjaként (16):

$$\partial_z^2 U_{\text{Bohr}} = \partial_r^2 \left(\frac{e}{4\pi\varepsilon_0} \frac{1}{r} \right)_{r=r_{Bohr}} = 1.94 \cdot 10^{22} V/m^2 \tag{16}$$

A mért térgradiens ezzel nagyságrendi egyezést mutat, valamivel kisebb nála.

3.6. Mágneses indukcióvektor nagyságának meghatározása lágyvasban

A lágyvas esetében mágneses térre az I=1/2 állapot kettő részre hasad $\Delta E_{1/2}=g_{1/2}\mu_N B$ energiakülönbséggel, míg az I=3/2 állapot 4 részre $\Delta E_{3/2}=g_{3/2}\mu_N B$ energiakülönbségekkel a szomszédos szintek közt. Ekkor a spektrum 6 felé hasad az alábbi energiakülönbségekkel a degenerált állapothoz (B=0) képest $(4. táblázat^1)$. A felhasadások mértéke ezen energiakülönbségek kétszeresének az abszolutértéke.

 $^{^{1}}$ A számolásoknál feltételeztem, hogy a g értékek pozitívak.

Ámenet	Energia	rel. gyakoriság
$\pm \frac{3}{2} \leftarrow \pm \frac{1}{2}$	$\pm (1.5\Delta E_{3/2} - 0.5\Delta E_{1/2})$	3
$\pm \frac{1}{2} \leftarrow \pm \frac{1}{2}$	$\pm (0.5\Delta E_{3/2} - 0.5\Delta E_{1/2})$	2
$\pm \frac{1}{2} \leftarrow \mp \frac{1}{2}$	$\pm (0.5\Delta E_{3/2} + 0.5\Delta E_{1/2})$	1

4. táblázat. A lehetséges átmenetek energiaviszonyai

Amennyiben definiáljuk a $\Delta E(n,m) = |\Delta E_{3/2} \cdot n + \Delta E_{1/2} \cdot m|$ kétváltozós függvényt, a (3,-1),(1,-1),(1,1) pontoknál a felhasadások $S_i \pm \Delta S_i$ adatsorára illesztve megkapjuk $\Delta E_{1/2}$ és $\Delta E_{3/2}$ értékét (17).

$$\Delta E_{3/2} = (1.0734 \pm 0.0024) \cdot 10^{-7} eV$$
 (17a)

$$\Delta E_{1/2} = (-1.8854 \pm 0.0052) \cdot 10^{-7} eV$$
 (17b)

Felhasználva, hogy $\mu_{1/2}:=-\frac{1}{2}g_{1/2}\mu_N=+0,090604\mu_N$ kiszámolható B (18. egyenlet)

$$B = -\frac{1/2 \cdot \Delta E_{1/2}}{\mu_{1/2}} = (33.01 \pm 0.05)T \tag{18}$$

Az I=3/2 felhasadási energiából meghatározható, hogy $\mu_{3/2}:=-\frac{3}{2}g_{3/2}\mu_N=0$ $-\frac{I\cdot\Delta E_{3/2}}{B}=-(0.15475\pm0.00055)\mu_N$ A mágneses indukcióvektor nagyságát összevethetjük a Bohr-modell által jósolttal

(19. egyenlet), amellyel azonos nagyságrendű eredményt mértünk.

$$B = \frac{\mu_0 I}{2r_{\text{Bohr}}} = \frac{\mu_0}{2r_{\text{Bohr}}} \frac{e\hbar}{2\pi m_e r_{\text{Bohr}}^2} = 12.5T \tag{19}$$

3.7. Elmozdulás számítása

A forrás sebessége időben $T = (41.2 \pm 0.2) ms$, a maximális sebesség pedig a kalibrációból számíthatóan (20):

$$v_{\text{max}} = \frac{c}{E_0} \cdot n_{ch} \cdot \frac{\Delta E}{\Delta ch} = (7.418 \pm 0.002) mm/s$$
 (20)

Ez alapján a minta elmozdulása középső helyzethez viszonyítva (21):

$$s = \int_0^{T/2} v(t)dt = v_{\text{max}} \cdot T/4 = (0.0764 \pm 0.004)mm \tag{21}$$

Ez a minta-forrás távolságnak csupán 0.76%-a. A beütésszám négyzetes távolságfüggése miatt ez a hiba kb. kétszereződik.

3.8. Gravitácós vöröseltolódás

A Mössbauer-effektus igen nagy pontosságú energiamérést tesz lehetővé. Megkísérelhető vele az általános relativitáselmélet által megjósolt gravitációs vöröseltolódás mérése is. Klasszikusan számolva, habár a számolás maga nem megalapozott, az általános relativitáselmélettel azonos eredményre vezet². A helyzeti energiaülönbséget E_{γ}/c^2 "tömeggel" számolva (22):

$$\Delta E = \frac{E_{\gamma}}{c^2} gh \tag{22}$$

A képlet például h=20m magasságra az általunk használt $E_0=14.4keV$ energiára $\Delta E=3.13\cdot 10^{-11}eV$ energiát ad. A magasság növelésével ez lineárisan nől, azonban ekkor a detektált részecskeszám négyzetesen csökken. Mivel a hiba a detektált részecskeszám gyökével arányos, emiatt a kimutatáshoz szükséges időn nem változtat h növelése. Ami méréseinkben a csúcs helyét a rozsdamentes acél csúcsának hibájából számolva $4.5\cdot 10^{-10}eV$ pontossággal határoztuk meg. Ez 1cm magasságkülönbségnél volt, amelyhez $\Delta E_{grav}=1.56\cdot 10^{-14}eV$ energiakülönbség tartozik. Ebből adódóan kb. 30000-szer pontosabb mérés lenne szükséges ennek kimutatásához, amely kb. 30000 évet venne igénybe ezen műszerrel, amennyiben a rozsdamentes minta mérése 20 percig tartott.

 $e^{-2}E = \sqrt{g_{00}}E_0 \simeq \sqrt{1 + 2\Phi/c^2}E_0 \simeq (1 + \Phi/c^2)E_0$, azaz $\Delta E = \frac{\Phi_2 - \Phi_1}{c^2}E_0$