P1 de Álgebra Linear I -2010.2

Data: 3 de Setembro de 2010.

Nome:	Matrícula:
Assinatura:	Turma:

Preencha CORRETA e COMPLETAMENTE todos os campos (nome, matrícula, assinatura e turma).

Provas sem nome não serão corrigidas e terão nota ZERO.

Provas com os campos matrícula, assinatura e turma não preenchidos ou preenchidos de forma errada serão penalizadas com a perda de 1 ponto por campo.

Duração: 1 hora 50 minutos

Q	1.a	1.b	1.c	2.a	2.b	2.c	2.d	3.a	3. b	3.c	soma
\mathbf{V}	1.0	1.0	1.0	1.0	1.0	1.0	0.5	1.5	1.0	1.5	10.0
N											

<u>Instruções – leia atentamente</u>

- Não é permitido usar calculadora. Mantenha o celular desligado.
- É proibido desgrampear a prova. Prova com folhas faltando terá nota zero.
- <u>Verifique</u>, <u>revise</u> e <u>confira</u> cuidadosamente suas respostas.
- Escreva de forma clara, ordenada e legível.
- Justifique de forma <u>ordenada</u>, <u>cuidadosa</u> e <u>completa</u> suas respostas. Respostas sem justificativa não serão consideradas.

Questão 1)

Considere os vetores de \mathbb{R}^3

$$\overrightarrow{v}_1 = (1, 2, 0) \qquad \text{e} \qquad \overrightarrow{v}_2 = (0, 2, 1).$$

a) Determine, se possível, um vetor \overrightarrow{w} tal que

$$\overrightarrow{v}_1 \times \overrightarrow{w} = (2, -1, 1)$$
 e $\overrightarrow{v}_2 \times \overrightarrow{w} = (-1, 1, -2).$

- **b)** Determine, se possível, um vetor \overrightarrow{u} cujo módulo seja 5 e que seja perpendicular a os vetores \overrightarrow{v}_1 e \overrightarrow{v}_2 (isto é, $\overrightarrow{v}_1 \cdot \overrightarrow{u} = 0 = \overrightarrow{v}_2 \cdot \overrightarrow{u}$).
- c) Determine um vetor \overrightarrow{a} paralelo a \overrightarrow{v}_1 tal que o vetor

$$\overrightarrow{b} = \overrightarrow{v}_2 - \overrightarrow{a}$$

seja perpendicular a v_1 .

Observe que o vetor \overrightarrow{a} é a projeção ortogonal de \overrightarrow{v}_2 em \overrightarrow{v}_1 . Aconselhamos fazer uma figura.

Resposta:

Questão 2)

Considere as retas r_1 e r_2 de \mathbb{R}^3 cujas equações paramétricas são

$$r_1: (1+t, 2t, 1-2t), t \in \mathbb{R},$$

$$r_2: (a+2t, 1+t, 10+t), t \in \mathbb{R},$$

a reta r_3 de equação cartesiana

$$r_3$$
:
$$\begin{cases} x + y + z = 3, \\ x - y + 2z = 1 \end{cases}$$

e o plano π de equação cartesiana

$$\pi$$
: $x + y + 2z = 4$.

- a) Determine o valor de a para que as retas r_1 e r_2 se interceptem em um ponto. Determine ponto P de interseção das retas r_1 e r_2 .
- **b)** Determine a equação cartesiana do plano ϱ que contém as retas r_1 e r_2 . (Observe que para resolver este item v. não necessita resover o item anterior).
- c) Determine equações paramétricas da reta r_3 .
- d) Determine o ponto Q de interseção da reta r_1 e o plano π .

Resposta:

Questão 3)

Considere os pontos

$$P = (1, 2, 0)$$
 e $Q = (2, 1, 1),$

a reta r de cujas equações paramétricas são

$$r: (1+t, 2+t, 2t), t \in \mathbb{R}$$

e o plano ρ cuja equação cartesiana é

$$\rho$$
: $x + 2y + 3z = 6$.

- a) Determine todos os pontos M da reta r tal que a área do triângulo Δ de vértices P,Q e M seja 2.
- b) A equação cartesiana do plano η que contém a reta r e o ponto Q.
- c) Considere os pontos A=(1,1,1) e B=(0,0,2) do plano ρ . Determine Um ponto C do plano ρ tal que os pontos A, B e C formam um triângulo retângulo isósceles T cujos catetos são AB e AC.

Determine a área do triângulo T. (Para responder a esta última parte do item v. não necessita resolver a primeira parte ...).

Resposta: