Práctica 2

Algoritmos de Búsqueda Multiarranque: GRASP,GRASP Extendido, ILS y VNS

Modelos bioinspirados y heurísticas de búsqueda

Contenido

GRASP	C
	jError! Marcador no definido
VNS	jError! Marcador no definido
Comparativa	

GRASP							
	st70		ch130		a280		
	Coste	#EV	Coste	#EV	Coste	#EV	
1	1.091	111.090	15.300	209.625	11.882	468.720	
2	1.091	106.260	14.147	209.625	11.531	468.720	
3	998	101.430	14.128	209.625	11.531	468.720	
4	912	113.505	13.936	209.625	11.531	468.720	
5	912	113.505	12.896	209.625	11.531	468.720	
6	912	86.940	12.896	209.625	11.531	468.720	
7	912	96.600	12.896	209.625	11.531	468.720	
8	908	113.505	12.896	209.625	11.531	468.720	
9	908	113.505	12.896	209.625	11.531	468.720	
10	908	113.505	12.896	209.625	11.531	468.720	
Mejor/Total	908	1.069.845	12.896	2.096.250	11.531	4.687.200	

Este método multiarranque itera construyendo una solución Greedy aleatorizada (seleccionando de entre una lista restringida de candidatos *LRC* con probabilidad inversa a la distancia) y a la que hace, posteriormente, una búsqueda local para encontrar el mejor vecino.

Se consiguen resultados bastante buenos, consiguiendo alcanzar el mínimo local en pocas iteraciones.

ILS (Iterative Local Search)

ILS							
	st	70	ch	130	a	280	
	Coste	#EV	Coste	#EV	Coste	#EV	
1	1.099	113.505	15.388	209.625	12.556	468.720	
2	1.011	77.280	14.615	209.625	11.969	468.720	
3	960	36.225	14.169	209.625	11.969	468.720	
4	960	4.830	13.952	209.625	11.969	468.720	
5	956	41.055	13.952	209.625	11.969	468.720	
6	956	26.565	13.952	209.625	11.969	468.720	
7	937	84.525	13.952	209.625	11.969	468.720	
8	937	28.980	13.952	209.625	11.886	468.720	
9	937	74.865	13.952	209.625	11.065	468.720	
10	911	74.865	13.952	209.625	11.065	468.720	
11	911	33.810	13.952	209.625	11.065	468.720	
12	911	45.885	13.952	209.625	11.065	468.720	
13	911	65.205	13.952	209.625	11.065	468.720	
14	911	72.450	13.952	209.625	11.065	468.720	
15	911	74.865	13.952	209.625	11.065	468.720	
16	911	72.450	13.952	209.625	11.065	468.720	
17	911	72.450	13.952	209.625	11.065	468.720	
18	911	94.185	13.952	209.625	11.065	468.720	
19	911	99.015	13.952	209.625	11.065	468.720	
20	911	106.260	13.952	209.625	11.065	468.720	
21	911	103.845	13.952	209.625	11.065	468.720	
22	911	94.185	13.952	209.625	11.065	468.720	
23	911	106.260	13.952	209.625	11.065	468.720	
24	911	91.770	13.952	209.625	11.065	468.720	
25	911	113.505	13.952	209.625	11.065	468.720	
26	911	113.505	13.952	209.625	11.065	468.720	
27	911	113.505	13.952	209.625	11.065	468.720	
28	911	113.505	13.952	209.625	11.065	468.720	
29	911	113.505	13.952	209.625	11.065	468.720	
30	911	113.505	13.952	209.625	11.065	468.720	
31	911	113.505	13.952	209.625	11.065	468.720	
32	911	113.505	13.952	209.625	11.065	468.720	
33	911	113.505	13.952	209.625	11.065	468.720	
34	911	113.505	13.952	209.625	11.065	468.720	
35	911	113.505	13.952	209.625	11.065	468.720	
36	911	113.505	13.952	209.625	11.065	468.720	
37	911	113.505	13.952	209.625	11.065	468.720	
38	911	113.505	13.952	209.625	11.065	468.720	
39	911	113.505	13.952	209.625	11.065	468.720	
40	911	113.505	13.952	209.625	11.065	468.720	
41	911	113.505	13.952	209.625	11.065	468.720	
42	911	113.505	13.952	209.625	11.065	468.720	
43	911	113.505	13.952	209.625	11.065	468.720	
44	911	113.505	13.952	209.625	11.065	468.720	
45	911	113.505	13.952	209.625	11.065	468.720	
46	911	113.505	13.952	209.625	11.065	468.720	
47	911	113.505	13.952	209.625	11.065	468.720	
48	911	113.505	13.952	209.625	11.065	468.720	
49	911	113.505	13.952	209.625	11.065	468.720	
50	911	113.505	13.952	209.625	11.065	468.720	
Mejor/Total	911	4.646.461	13.952	10.481.251	11.065	23.436.000	

Este método parte de una solución inicial aleatoria a la que se le aplicará de forma iterativa un operador de mutación y una búsqueda local del mejor vecino.

Finalmente se decide aceptar la mejor solución mediante un criterio de aceptación, en nuestro caso, que supere a la mejor solución encontrada hasta ahora.

Al partir de una solución aleatoria, requiere más iteraciones para alcanzar el mínimo.

VNS

VNS							
ſ	ct	70		130	9.	280	
	Coste	st70 ch130 Coste #EV Coste #EV		#EV	Coste #EV		
1	1.209	113.505	24.452	209.625	24.919	468.720	
2	1.126	45.885	17.841	209.625	21.106	468.720	
3	1.108	28.980	14.984	209.625	17.961	468.720	
4	1.036	53.130	12.886	209.625	16.560	468.720	
5	1.036	16.905	12.886	209.625	15.683	468.720	
6	1.027	36.225	12.398	209.625	15.043	468.720	
7	1.027	4.830	12.016	209.625	14.402	468.720	
8	1.027	19.320	11.473	209.625	14.341	468.720	
9	1.027	41.055	11.347	209.625	14.263	468.720	
10	1.027	53.130	11.162	209.625	13.473	468.720	
11	1.027	74.865	11.162	209.625	13.473	468.720	
12	1.027	74.865	11.162		13.473	468.720	
13				209.625			
14	935 912	113.505	11.162	209.625	13.473	468.720	
15		21.735 12.075	11.162	209.625	13.473	468.720	
16	912		11.162	209.625	13.473	468.720	
17	912	48.300	11.162	209.625	13.473	468.720	
	912	74.865	11.162	209.625	13.473	468.720	
18	910	82.110	11.162	209.625	13.473	468.720	
19	910	9.660	11.162	209.625	13.473	468.720	
20	910	21.735	11.162	209.625	13.473	468.720	
21	910	45.885	11.162	209.625	13.473	468.720	
22	910	57.960	11.162	209.625	13.473	468.720	
23	910	60.375	11.162	209.625	13.473	468.720	
24	910	72.450	11.162	209.625	13.473	468.720	
25	910	113.505	11.162	209.625	13.473	468.720	
26	910	77.280	11.162	209.625	13.473	468.720	
27	910	103.845	11.162	209.625	13.473	468.720	
28	910	111.090	11.162	209.625	13.473	468.720	
29	910	103.845	11.162	209.625	13.473	468.720	
30	910	113.505	11.162	209.625	13.473	468.720	
31	910	113.505	11.162	209.625	13.473	468.720	
32	910	113.505	11.162	209.625	13.473	468.720	
33	910	113.505	11.162	209.625	13.473	468.720	
34	910	113.505	11.162	209.625	13.473	468.720	
35	910	113.505	11.162	209.625	13.473	468.720	
36	910	113.505	11.162	209.625	13.473	468.720	
37	910	113.505	11.162	209.625	13.473	468.720	
38	910	113.505	11.162	209.625	13.473	468.720	
39	910	113.505	11.162	209.625	13.473	468.720	
40	910	113.505	11.162	209.625	13.473	468.720	
41	910	113.505	11.162	209.625	13.473	468.720	
42	910	113.505	11.162	209.625	13.473	468.720	
43	910	113.505	11.162	209.625	13.473	468.720	
44	910	113.505	11.162	209.625	13.473	468.720	
45	910	113.505	11.162	209.625	13.473	468.720	
46	910	113.505	11.162	209.625	13.473	468.720	
47	910	113.505	11.162	209.625	13.473	468.720	
48	910	113.505	11.162	209.625	13.473	468.720	
49	910	113.505	11.162	209.625	13.473	468.720	
50 Mejor/Total	910	113.505	11.162	209.625	13.473	468.720	
	910	4.076.521	11.162	10.481.251	13.473	23.436.000	

Este método es muy parecido al ILS, pero se basa en variar el entorno de búsqueda para obtener nuevas soluciones. Para ello, el parámetro k que regula el tamaño del entorno a mutar, e irá variando según el éxito o fracaso de la búsqueda local

Comparativa

Métodos MultiArranque							
	st70			ch130	a280		
	Coste	#EV	Coste	#EV	Coste	#EV	
Greedy	830	1	7.579	1	3.157,00	1	
BL Mejor	1.056	113.505	22.094	209.625	26.419	468.720	
GRASP	908	1.069.845	12.896	2.096.250	11.531	4.687.200	
ILS	911	4.646.461	13.952	10.481.251	11.065	23.436.000	
VNS	910	4.076.521	11.162	10.481.251	13.473	23.436.000	

Si comparamos los tres métodos con la aplicación de una Búsqueda local mejor vecino y el algoritmo Greedy, vemos que los tres consiguen superar los mejores resultados de la Búsqueda local (pero empleando muchas más evaluaciones), aunque no así, los resultados del algoritmo Greedy.

Greedy sigue siendo el más eficaz y eficiente, ya que solo realiza una llamada a la función de coste.

Si comparamos los tres métodos multiarranque, sus resultados son similares, aunque cabe destacar que GRASP los consigue empleando muchas menos evaluaciones de la función de coste.

Si representamos la evolución del mejor resultado obtenido hasta el momento por cada iteración (obtenidos de las tablas de la página anterior) vemos que el método GRASP consigue alcanzar el mínimo en muchas menos iteraciones. Esto se debe a que construye una solución Greedy aleatorizada, lo que es una heurística que da mejores resultados desde el principio, en comparación con una solución inicial aleatoria que tienen los otros dos métodos.

Por otro lado, como hemos mencionado anteriormente, el método GRASP es más eficiente ya que realiza menos evaluaciones.