Numărul 1

scor_remiza = 0

13. Fie A_MAX adâncimea maximă setată a arborelui Minimax. Considerăm starea de mai jos. Totalul mutărilor realizate (de ambii jucători laolaltă) este 6. Care dintre următoarele afirmații sunt adevărate:

	0	1	2	3	4	5	6
0	×	×					
1	×	×					
2	×						
3							
4						0	×
5						0	0
6				0	0	0	0

Dacă MAX = O, și starea e frunză în arbore, atunci estimația minimax este negativă

D Putem spune cu certitudine că în starea afișată a fost realizată o captură.

Starea afișată nu poate fi niciodată rădăcină în arborele Minimax deoarece nu este tabla inițială de joc

 d) Pentru A_MAX = 4, M_MAX = 100, starea afișată nu poate fi frunză în arborele Minimax (indiferent de rădăcină), nefiind configurație finală a jocului

Dacă MAX = O, starea afișată nu poate avea niciodată valoarea minimax +∞, indiferent de valoarea lui M_MAX

14. Presupunem că nu cunoaștem simbolurile cu care joacă MAX și MIN. Care dintre următoarele afirmații sunt adevărate:

O stare finală în care a câștigat O va avea estimația mai mică decât o stare finală de remiză

O stare finală în care a câștigat X va avea estimația mai mică decât o stare finală în care a câștigat O

Putem avea drept configurație finală, o tablă de joc în care se găsesc doar locuri libere și simboluri O

O stare finală în care toată tabla e plină (nu există locuri libere) nu poate fi remiză

O stare finală în care MAX = X și O are cu un simbol mai mult decât X, va avea estimaţia -∞

15. Aplicăm algoritmul Alpha-Beta. Nu vom seta adâncime maximă pentru arbore. Considerăm MAX = X, M_MAX > 200 şi starea curentă ca fiind rădăcină în arborele Alpha-Beta. Prin noduri "retezate" ne referim strict la succesorii care nu sunt calculați, nu şi nodurile care ar fi fost în subarborii lor.

	0	1	2	3	4	5	6
0	X	X	0	0	×	X	0
1	×	X	x	0	8		X
2	×	X		X	0	0	X
3	0	0	×	X	0	X	0
4	X			0	X	0	X
5	×	х	0	X	0	0	0
6	0	0	×	0	0	0	0

jucător_curent=X.

Mutari=58 (număr total de mutări însumate de la X și de la O)

Considerăm ordinea de generare a mutărilor, conform pseudocodului:

pentru fiecare indice de coloana c de la 0 la 6: pentru fiecare indice de linie l de la 0 la 6: daca mutare_valida(l,c):

adauga mutare_valida(1,c) in lista mutari

Care dintre următoarele afirmații sunt adevărate:

După aplicarea algoritmului, obținem pentru această stare valoarea (de tip minimax) 0
După aplicarea algoritmului, obținem pentru această stare valoarea (de tip minimax) +∞

c) Variația principală va avea exact 2 noduri.

d) Prin aplicarea algoritmului se vor reteza n noduri cu 0 ≤ n ≤ 3.

După aplicarea algoritmului, obținem pentru această stare valoarea (de tip minimax) -∞