Assignment 4

Python Programming

Assignment Date	25 Oct 2022
Student Name	Krishnapriya K
Student Roll Number	923819104022
Maximum Marks	2 Marks

Question 1:

1. Importing Required Package

Solution:

import pandas as pd import numpy as np import seaborn as sbn import matplotlib.pyplot as plt

Question 2:

1. Loading the Dataset

Solution:

$$\label{eq:db} \begin{split} db &= pd.read_csv('/Mall_Customers.cs\,v') \\ Db \end{split}$$

Output

o the the						
Out[4]:		CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
	0	1	Male	19	15	39
	1	2	Male	21	15	81
	2	3	Female	20	16	6
	3	4	Female	23	16	77
	4	5	Female	31	17	40
		***	1		***	100
	195	196	Female	35	120	79
	196	197	Female	45	126	28
	197	198	Male	32	126	74
	198	199	Male	32	137	18
	199	200	Male	30	137	83

200 rows Ãf— 5 columns

Question 3:

1. Visualizations

1. UniVariate Analysis

1.Solution : plt.hist(db['Annual

Income (k\$)'])

Output:

3.1.2 Solution plt.hist(db['Age'])

3.1.3 Solution:

sbn.countplot(db['Age'])

Output:

3.1.4 Solution:

sbn.countplot(db['Gender'])

Output:

3.1.5 Solution:

plt.hist(db['Spending Score (1-100)'])

1. Bi-Variate Analysis

1. Solution:

plt.scatter(db['Spending Score (1-100)'],db['Annual Income (k\$)'])

Output:

3.2.2 Solution:

 $plt.scatter(db['Gender'],db['Annual\ Income\ (k\$)'])$

3.2.3 Solution:

plt.scatter(db['Age'],db['Spending Score (1-100)'])

Output:

3.2.4 Solution:

 $plt.scatter(db['Age'],db['Annual\ Income\ (k\$)'])$

3.2.5 Solution:

sbn.heatmap(db.corr(), annot = **True**)

Output:

3.2.6 **Solution** :

sbn.barplot(db['Gender'], db['Age'])

1. Multi-Variate Analysis

1. Solution:

sbn.lmplot("Spending Score (1-100)", "Annual Income (k\$)", db, hue="Gender", fit_reg=False);

3.3.2 Solution:

sbn.pairplot(db)

Output:

Question 4:

1. Perform descriptive statistics on the dataset

1.Solution:

db.describe()

	CustomerID	Age	Annual Income (k\$)	Spending Score (1-100)
count	200.000000	200.000000	200.000000	200.000000
mean	100.500000	38.850000	60.560000	50.200000
std	57.879185	13.969007	26.264721	25.823522
min	1.000000	18.000000	15.000000	1.000000
25%	50.750000	28.750000	41.500000	34.750000
50%	100.500000	36.000000	61.500000	50.000000
75%	150.250000	49.000000	78.000000	73.000000
max	200.000000	70.000000	137.000000	99.000000

4.2 Solution:

db.dtypes

Output:

CustomerID	int64
Gender	object
Age	int64
Annual Income (k\$)	int64
Spending Score (1-100)	int64
dtype: object	

4.3 Solution:

db.var()

Output:

100	CustomerID	3350.000000
:	Age	195.133166
	Annual Income (k\$)	689.835578
	Spending Score (1-100)	666.854271
	dtype: float64	

4.4 Solution:

db.skew()

CustomerID 0.000000
Age 0.485569
Annual Income (k\$) 0.321843
Spending Score (1-100) -0.047220
dtype: float64

4.5 Solution:

db.corr()

Output:

	CustomerID	Age	Annual Income (k\$)	Spending Score (1-100)
CustomerID	1.000000	-0.026763	0.977548	0.013835
Age	-0.026763	1.000000	-0.01 <mark>2</mark> 398	-0.327227
Annual Income (k\$)	0.977548	-0.012398	1.000000	0.009903
Spending Score (1-100)	0.013835	-0.327227	0.009903	1.000000

4.6 Solution:

db.std()

Output:

2 . 22	
CustomerID	57.879185
Age	13.969007
Annual Income (k\$)	26.264721
Spending Score (1-100)	25.823522
dtype: float64	

Question 5:

1. Check for Missing values and deal with them

1. Solution:

db.isna().sum()

```
CustomerID 0
Gender 0
Age 0
Annual Income (k$) 0
Spending Score (1-100) 0
dtype: int64

5.2 Solution :
db.isna().sum().sum()
```

Output:

0

5.3 Solution:

db.duplicated().sum()

Output:

0

Question 6:

1. Find the outliers and replace them outliers

```
1.Solution:
ig,ax=plt.subplots(figsize=(25,5))

plt.subplot(1, 5, 2)
sbn.boxplot(x=db['Age'])

plt.subplot(1, 5, 3)
sbn.boxplot(x=db['Annual Income (k$)'])

plt.subplot(1, 5, 4)
sbn.boxplot(x=db['Spending Score (1-100)'])

plt.subplot(1, 5, 1)
sbn.boxplot(x=db['CustomerID'])
```


6.2 Solution:

quantile = db-quantile(q = [0.25, 0.75]) quantile

Output:

	CustomerID	Age	Annual Income (k\$)	Spending Score (1-100)
0.25	50.75	28.75	41.5	34.75
0.75	150.25	49.00	78.0	73.00

6.3 Solution:

quantile.loc[0.75]

Output:

CustomerID	150.25
Age	49.00
Annual Income (k\$)	78.00
Spending Score (1-100)	73.00
Name: 0.75, dtype: float	64

6.4 Solution:

quantile.loc[0.25]

CustomerID	50.75
Age	28.75
Annual Income (k\$)	41.50
Spending Score (1-100)	34.75
Name: 0.25, dtype: float	

6.5 Solution:

$$\begin{split} IQR = quantile.iloc[1] & \textbf{-} quantile.iloc[0] \\ IQR \end{split}$$

Output:

CustomerID	99.50
Age	20.25
Annual Income (k\$)	36.50
Spending Score (1-100)	38.25
dtype: float64	

6.6 Solution:

upper = quantile.iloc[1] + (1.5 *IQR) upper

Output:

CustomerID	299.500
Age	79.375
Annual Income (k\$)	132.750
Spending Score (1-100)	130.375

6.7 Solution:

lower = quantile.iloc[0] - (1.5* IQR) lower

CustomerID	-98.500
Age	-1.625
Annual Income (k\$)	-13.250
Spending Score (1-100)	-22.625

6.8 Solution:

db.mean()

Output:

CustomerID	100.50
Age	38.85
Annual Income (k\$)	60.56
Spending Score (1-100)	50.20
dtyne: float64	

1. Solution:

db['Annual Income (k\$)'].max()

Output:

137

1. Solution:

sbn.boxplot(db['CustomerID'])

Output:

6.11 Solution:

sbn.boxplot(db['Age'])

6.12 Solution:

sbn.boxplot(db['Annual Income (k\$)'])

Output:

6.13 Solution:

sbn.boxplot(db['Spending Score (1-100)'])

Question 7:

1. Check for Categorical columns and perform encoding

1.Solution:

db.select_dtypes(include='object').columns

Output:

```
Index(['Gender'], dtype='object')
```

1. Solution:

db['Gender'].unique()

Output:

```
array(['Male', 'Female'], dtype=object)
```

1. Solution:

 $\label{lem:conder} $$db['Gender'].replace({'Male':1,'Female':0},inplace=$True)$ db$

	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
0	1	1	19	15.00	39
1	2	1	21	15.00	81
2	3	0	20	16.00	6
3	4	0	23	16.00	77
4	5	0	31	17.00	40
	***			***	***
195	196	0	35	120.00	79
196	197	0	45	126.00	28
197	198	1	32	126.00	74
198	199	1	32	60.55	18
199	200	1	30	60.55	83

200 rows Ãf— 5 columns

7.4 Solution:

db.head()

Output:

	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
0	1	1	19	15.0	39
1	2	1	21	15.0	81
2	3	0	20	16.0	6
3	4	0	23	16.0	77
4	5	0	31	17.0	40

Question 8:

1. Scaling the data

1. Solution:

from sklearn.preprocessing import StandardScaler
ss = StandardScaler().fit_transform(db)

Question 9:

1. Perform any of the clustering algorithms

1. Solution:

```
from sklearn.cluster import KMeans TWSS = [] k = list(range(2,9))
```

for i in k:

```
\begin{aligned} &kmeans = KMeans(n\_clusters = i \text{ , init } = 'k-means++') \\ &kmeans.fit(db) \\ &TWSS.append(kmeans.inertia\_) \\ &TWSS \end{aligned}
```

Output:

```
[381507.64738523855,
268062.55433747417,
191557.78099047023,
153327.3825004856,
119166.15727643928,
101296.86197582977,
85792.73210128325]
```

9.2 Solution:

plt.plot(k,TWSS, 'ro--')
plt.xlabel('No of Clusters')
plt.ylabel('TWSS')

Output:

9.3 Solution:

```
model = KMeans(n_clusters = 4)
model.fit(db)
```

```
KMeans(n_clusters=4)
```

9.4 Solution:

mb = pd.Series(model.labels_) db['Cluster'] = mb db

Output:

	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)	Cluster
0	1	1	19	15.00	39	1
1	2	1	21	15.00	81	1
2	3	0	20	16.00	6	1
3	4	0	23	16.00	77	1
4	5	0	31	17.00	40	1
	***	***	***	7		***
195	196	0	35	120.00	79	2
196	197	0	45	126.00	28	0
197	198	1	32	126.00	74	2
198	199	1	32	60.55	18	0
199	200	1	30	60.55	83	2

200 rows Ãf— 6 columns

9.5 Solution:

mb=pd.Series(model.labels_)
db.head(3)

9		CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)	Cluster
	0	1	1	19	15.0	39	1
	1	2	1	21	15.0	81	1
	2	3	0	20	16.0	6	1

Question 10:

1 . Add the cluster data with the primary dataset

1. Solution:

db['Cluster']=kmeans.labels_
db.head()

Output:

	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)	Cluster
0	1	1	19	15.0	39	5
1	2	1	21	15.0	81	2
2	3	0	20	16.0	6	5
3	4	0	23	16.0	77	2
4	5	0	31	17.0	40	5

10.2 Solution:

db.tail()

Output:

	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)	Cluster
195	196	0	35	120.00	79	6
196	197	0	45	126.00	28	1
197	198	1	32	126.00	74	6
198	199	1	32	60.55	18	1
199	200	1	30	60.55	83	6

Question 11:

1 . Split the data into dependent and independent variables

1. Solution:

```
X=db.drop('Cluster',axis=1)
Y=db['Cluster']
y=db['Cluster']
y
```

```
Output:
0
        5
        2
1
2
        5
3
       2
4
        5
195
196
       1
197
198
       1
199
Name: Cluster, Length: 200, dtype: int32
11.2 Solution:
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test=train_test_split(X, Y, test_size=0.2, random_state=42)
print("Number transactions X_train dataset: ", X_train.shape)
print("Number transactions y_train dataset: ", y_train.shape)
print("Number transactions X_test dataset: ", X_test.shape)
print("Number transactions y_test dataset: ", y_test.shape)
Output:
    Number transactions X train dataset: (160, 5)
    Number transactions y_train dataset: (160,)
     Number transactions X_test dataset: (40, 5)
    Number transactions y_test dataset: (40,)
Question 12:
1 . Split the data into training and testing
```

1. Solution:

X_train

	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
79	80	0	49	54.0	42
197	198	1	32	126.0	74
38	39	0	36	37.0	26
24	25	0	54	28.0	14
122	123	0	40	69.0	58

106	107	0	66	63. <mark>0</mark>	50
14	15	1	37	20.0	13
92	93	1	48	60.0	49
179	180	1	35	93.0	90
102	103	1	67	62.0	59

160 rows Ãf— 5 columns

12.2 Solution:

X_test

	CastomeriD	Sender	Age	Annual Income (kd)	Spending Score (1-100)
95	96	1	24	6215	54
15	19	1	22	202	75
30	31	1	60	102	4
'58	199	1	34	79.0	1
28	129	-1	59	212	11
15	110	0	19	653	16
69	70	b	32	460	47
70	171	- 1	40	673	11
74	175	0	52	863	ti
45	46	- 0	24	390	65
00	67	76	43	480	96
182	181	- 1	46	162	15
65	166	. 0	36	850	H H
78	79	0	23	540	52
36	187	0	54	301,0	S 24
:77	178	- 3	22	880	60
58	57	- Sp	35	440	95
32	153		44	JED	20
82	83	- 13	67	543	41
88	60	13	:19	480	55
24	123	- 0	23	70.0	75
16	17	0	:25	21.0	n
48	141	8	34	/63	11
22	94	0	40	600	46
65	66.	1	111	48.0	35
68	65	1	70	463	58
84	85	0	21	543	51
87	68	a	66	483	48
25	126	ü	31	702	W
32	133	0	23	722	34
9	10	b	30	193	n
18	19	- 1	52	210	25
55	58	- 1	47	450	41
75	70	- 4	26	540	54
50	151	- 84	43	78.0	3 97
04	105	- 1	49	620	58
35	198	0	29	130	
:37	138	- 10	32	732	13
64	765	37	50		
76	77	0	:45	54	

12.3 Solution:

y_train

```
79
     4
197 6
38
    5
24
     5
122 0
    . .
106 0
14 5
92
    0
179
     6
102
    0
Name: Cluster, Length: 160, dtype: int32
```

12.14 Solution:

y_test

```
95
15
      2
30
       5
158
       7
128
       7
115
       0
69
      4
       1
170
174
       1
45
       2
66
       4
182
      1
165
       6
78
       0
186
      1
177
       6
      4 7
56
152
82
      4
68
       4
124
       5
16
       7
148
93
       0
       4
65
       4
60
       0
84
67
       4
      3
125
132
      7
9
       2
       5
18
55
       4
75
       4
150
      7
104
       0
135
       3
137
       3
164
76
Name: Cluster, dtype: int32
```

Question 13:

1 . Build the Model

1. Solution:

from sklearn.linear_model import LogisticRegression
model=LogisticRegression()
model.fit(X_train,y_train)
from sklearn.linear_model import LogisticRegression
model=LogisticRegression()
model.fit(X_train,y_train)

```
Output:
  LogisticRegression()
Question 14:
14. Train the Model
Solution:
model.score(X_train, y_train)
Output:
 0.83125
Question 15:
15. Test the Model
Solution:
model.score(X_test,y_test)
Output:
 0.675
Question 16:
1 . Measure the performance using Evaluation Metrics
1.
    Solution:
from sklearn.metrics import confusion_matrix,classification_report
y_pred=model.predict(X_test)
confusion_matrix(y_test,y_pred)
Output:
 array([[5, 0, 0, 0, 0, 0, 1, 0],
         [0, 5, 0, 0, 0, 0, 0, 0],
         [0, 0, 3, 0, 0, 0, 0, 0],
         [0, 0, 0, 3, 0, 0, 0, 0],
        [3, 0, 2, 0, 6, 0, 0, 0],
         [0, 0, 0, 0, 0, 3, 0, 0],
         [0, 0, 0, 1, 0, 0, 1, 0],
```

[0, 6, 0, 0, 0, 0, 0, 1]])

16.2 Solution:

 $print(classification_report(y_test,y_pred))$

	precision	recall	t1-score	support
0	0.62	0.83	0.71	6
1	0.45	1.00	0.62	5
2	0.60	1.00	0.75	3
3	0.75	1.00	0.86	3
4	1.00	0.55	0.71	11
5	1.00	1.00	1.00	3
6	0.50	0.50	0.50	2
7	1.00	0.14	0.25	7
accuracy			0.68	40
macro avg	0.74	0.75	0.68	40
weighted avg	0.80	0.68	0.64	40