R

Yufei Zhong

2021-04-29

Contents

1		•	7
2	data	table	9
	2.1		9
	2.2	j by	1
	2.3		5
	2.4		0
	2.5		6
3	data	pase 33	3
	3.1		3
	3.2	DBI	4
	3.3	odbc	7
	3.4	RODBC	8
	3.5	ROracle	9
	3.6	RMySQL	0
	3.7		1
	3.8	lbplyr	2
	3.9		6
4	stri	${ m gr}$	7
	4.1		7
	4.2		0
	4 3	R Excel 5.	3

4	CONTENTS

5.2 55 5.3 55 5.4 58 5.5 56 5.6 66 5.7 61 5.8 66 6 forcats 67 6.1 63 7 tidyr 68 7.1 64 7.2 63 8 dplyr 78 8.1 78 8.2 77 8.3 80 8.4 86 8.5 88 8.6 87 8.8 90 8.9 dplyr 90 8.9 dplyr 90 9 Loop structure 91 9.1 95	5	lubridate		55
5.3 55 5.4 58 5.5 56 5.6 60 5.7 61 5.8 65 6 forcats 67 6.1 66 7 tidyr 68 7.1 60 7.2 62 8 dplyr 78 8.1 75 8.2 73 8.3 80 8.4 83 8.5 86 8.7 88 8.9 dplyr 90 8.9 dplyr 90 9.1 90 9.2 90		5.1		55
5.4 58 5.5 56 5.6 60 5.7 61 5.8 62 6.1 65 7.1 65 7.2 66 8 dplyr 78 8.1 75 8.2 73 8.3 80 8.4 85 8.5 86 8.7 88 8.8 90 8.9 dplyr 93 9 Loop structure 97 9.1 95 9.2 97		5.2		57
5.5 5.6 66 5.7 61 5.8 66 6 forcats 67 6.1 63 7 tidyr 68 7.1 69 7.2 69 8 dplyr 78 8.1 78 8.2 73 8.3 80 8.4 83 8.5 86 8.6 87 8.8 90 8.9 dplyr 93 9 Loop structure 97 9.1 95 9.2 97		5.3		57
5.6 60 5.7 61 5.8 62 6 forcats 67 6.1 63 7 tidyr 68 7.1 69 7.2 63 8 dplyr 79 8.1 78 8.2 75 8.3 80 8.4 83 8.5 86 8.6 85 8.7 88 8.9 dplyr 93 9 Loop structure 97 9.1 95 9.2 97		5.4		58
5.7 61 5.8 62 6 forcats 67 6.1 67 7 tidyr 68 7.1 69 7.2 69 8 dplyr 78 8.1 78 8.2 76 8.3 80 8.4 82 8.5 86 8.6 87 8.8 90 8.9 dplyr 93 9 Loop structure 97 9.1 95 9.2 97		5.5		59
5.8 66 6 forcats 67 6.1 67 7 tidyr 68 7.1 69 7.2 63 8 dplyr 78 8.1 79 8.2 78 8.3 80 8.4 86 8.5 86 8.6 87 8.8 90 8.9 dplyr 96 9 Loop structure 97 9.1 96 9.2 97		5.6		60
6 forcats 6.1 6.1 6.1 6.2 7 tidyr 7.1 6.6 7.2 6.5 8 dplyr 8.1 7.8 8.2 7.8 8.3 8.4 8.5 8.6 8.5 8.6 8.7 8.8 8.6 8.7 8.8 8.9 8.9 dplyr 9 Loop structure 9.1 9.2 9 2		5.7		61
6.1 67 7 tidyr 68 7.1 66 7.2 68 8 dplyr 78 8.1 79 8.2 79 8.3 80 8.4 83 8.5 83 8.6 83 8.7 88 8.8 90 8.9 dplyr 93 9 Loop structure 91 9.2 97		5.8	•	65
7 tidyr 68 7.1 68 7.2 68 8 dplyr 79 8.1 79 8.2 79 8.3 80 8.4 83 8.5 85 8.6 87 8.7 88 8.8 90 8.9 dplyr 93 9 Loop structure 97 9.1 97 9.2 97	6	forcats		67
7.1 69 7.2 69 8 dplyr 79 8.1 73 8.2 73 8.3 80 8.4 83 8.5 85 8.6 87 8.7 88 8.8 90 8.9 dplyr 93 9 Loop structure 97 9.1 95 9.2 97		6.1		67
7.2 69 8 dplyr 79 8.1 79 8.2 79 8.3 80 8.4 83 8.5 85 8.6 85 8.7 88 8.8 90 8.9 dplyr 95 9 Loop structure 97 9.1 95 9.2 97	7	tidyr		69
8 dplyr 79 8.1 79 8.2 79 8.3 80 8.4 85 8.5 85 8.6 87 8.7 88 8.8 90 8.9 dplyr 93 9 Loop structure 97 9.1 97 9.2 97		7.1		69
8.1 79 8.2 78 8.3 80 8.4 85 8.5 85 8.6 87 8.7 88 8.8 90 8.9 dplyr 95 9 Loop structure 97 9.1 97 9.2 97		7.2		69
8.1 79 8.2 78 8.3 80 8.4 85 8.5 85 8.6 87 8.7 88 8.8 90 8.9 dplyr 95 9 Loop structure 97 9.1 97 9.2 97	Q	dplyr		70
8.2 76 8.3 80 8.4 83 8.5 85 8.6 87 8.7 88 8.8 90 8.9 dplyr 93 9 Loop structure 97 9.1 97 9.2 97	G			
8.3 86 8.4 85 8.5 85 8.6 87 8.7 88 8.8 90 8.9 dplyr 95 1 Loop structure 97 9.1 97 9.2 97			•	
8.4				
8.5				
8.6				
8.7				87
8.8 90 8.9 dplyr 93 9 Loop structure 97 9.1 97 9.2 97				88
8.9 dplyr 95 9 Loop structure 97 9.1 97 9.2 97				90
9.1 .				93
9.1 .	9	Loop structure		97
				97
9.3		9.2		97
		9.3	. 1	100

CONTENTS	F
CONTERNIS	5
CONTENIO	· ·

10	Iteration	103
	10.1	103
	10.2 map	104
	10.3	105
	10.4	106
	10.5	106
	10.6	106
11	define function	109
11	define function 11.1	
11		110
11	11.1	110 111
11	11.1	110 111 111
11	11.1	110 111 111 113

6 CONTENTS

Chapter 1

```
R
             R
                    \mathtt{shiny} \ \mathtt{R} \qquad ,
                                             R
 :598253220@qq.com
sessionInfo()
#> R version 4.0.5 (2021-03-31)
#> Platform: x86_64-w64-mingw32/x64 (64-bit)
#> Running under: Windows 10 x64 (build 19041)
#> Matrix products: default
#>
#> locale:
#> [1] LC_COLLATE=Chinese (Simplified)_China.936
#> [2] LC_CTYPE=Chinese (Simplified)_China.936
#> [3] LC_MONETARY=Chinese (Simplified)_China.936
#> [4] LC_NUMERIC=C
#> [5] LC_TIME=Chinese (Simplified)_China.936
#> attached base packages:
datasets methods
                                                           base
#>
#> loaded via a namespace (and not attached):
\# [1] compiler_4.0.5 magrittr_2.0.1 bookdown_0.21
                                                      htmltools_0.5.1.1
stringi_1.5.3
                                                      digest_0.6.27
                    rlang\_0.4.10
#> [13] xfun_0.22
                                     evaluate_0.14
```

8 CHAPTER 1.

Chapter 2

data.table

```
data.table R python julia

data.table tidyverse " " " " " " " " R

Python ing python

data.table :

https://cran.r-project.org/web/packages/data.table/vignettes/datatable-
```

2.1

intro.html

2.1.1

1.

2014 6 , . . .

```
library(data.table)
flights <- fread("./data/flights.csv")</pre>
flights[year==2014 & month==6,.( distance=sum(distance)),by=.(origin,dest)]
        origin dest
                      distance
#>
     1:
           JFK LAX
                             2663100
#>
     2:
           JFK
                DFW
                              82069
           JFK
#>
     3:
                LAS
                             795792
#>
     4:
           JFK
                 SF0
                             1967946
#>
     5:
           JFK
                 SAN
                             349778
#>
#> 191:
                              13480
           EWR
                 ANC
#> 192:
           EWR
                BZN
                              15056
                 TVC
#> 193:
           LGA
                                7205
#> 194:
           LGA
                BZN
                                3788
                                 980
#> 195:
           JFK HYA
2.
i
    year = 2014 month = 6;
j
     distance=sum(distance) .() list()
    .(origin,dest), .(), Excel
                                       data.table
    .()
```

Python

2.2. I J BY

2.2 i j by

Excel

<==!=>=<=

```
data.table
                 data.table
                              fread
                                           i,j,by
2.2.1
                                               CSV ,
data.table
            fread ,
                            ,csv,Excel .fread
     data.table demo.
library(data.table)
input <- if (file.exists("./data/flights.csv")) {</pre>
  "./data/flights.csv" #
} else {
  "https://raw.githubusercontent.com/Rdatatable/data.table/master/vignettes/flights.csv" #
}
flights <- fread(input) #
                                   encoding, encoding='UTF-8'
head(flights)
#> year month day dep_delay arr_delay carrier origin dest air_time distance
                      14
#> 1: 2014
           1 1
                               13
                                            AA
                                                  JFK LAX
                                                               359
#> 2: 2014
             1 1
                          -3
                                   13
                                            AA
                                                  JFK LAX
                                                               363
                                                                       2475
#> 3: 2014
             1 1
                          2
                                   9
                                           AA
                                                 JFK LAX
                                                                       2475
                                                               351
#> 4: 2014
              1 1
                          -8
                                   -26
                                            AA
                                                  LGA PBI
                                                               157
                                                                       1035
#> 5: 2014
             1 1
                          2
                                   1
                                                  JFK LAX
                                                               350
                                            AA
                                                                       2475
#> 6: 2014
             1 1
                                    0
                                            AA
                                                  EWR LAX
                                                               339
                           4
                                                                       2454
#>
     hour
#> 1:
#> 2:
       11
#> 3:
       19
#> 4:
       7
#> 5:
       13
#> 6: 18
             (http://www.zhongyufei.com/datatable/data/flights.csv)
flights <- fread("http://www.zhongyufei.com/datatable/data/flights.csv")</pre>
    2014 , 3 ( :JFK
                         LGA
                                , EWR
                                           )
   ( )
2.2.2
```

R

& |

```
#
filghts[year == 2014] # year==2014

# &
flights[ year == 2014 & month == 6]

# /
flights[ month == 5 | month == 6]

# %in% sql in
flights[month %in% c(1,3,5,7,9)]

# %between% sql between and
flights[month %between% c(1,7)]
```

2.2.3

sql select .() list() data.table

```
# . .()
flights[,.(year,month,day,dep_delay,carrier,origin)]
      year month day dep_delay carrier origin
      1: 2014 1 1 14
#>
                                        JFK
                                   AA
     2: 2014
#>
               1 1
                           -3
                                   AA
                                        JFK
     2 AA
-8 AA
2 AA
#>
                                        JFK
#>
                                        LGA
#>
                                        JFK
#>
      ---
                           1 UA LGA
-5 UA EWR
-8 MQ LGA
#> 253312: 2014 10 31
#> 253313: 2014 10 31
#> 253314: 2014 10 31
                                MQ LGA
MQ LGA
#> 253315: 2014 10 31
                           -4
              10 31
#> 253316: 2014
                           -5
# flights[,list(year,month,day,dep_delay,carrier,origin)] same above
# not run
# flights[,1:3]
# not run
# flights[,c('year', 'month', 'day')]
```

setcolorder

2.2. I J BY 13

i , j ;data.table j i

```
2.2.4
```

```
dt <- flights[ year == 2014 & month == 6 & day >=15,.(year,month,day,dep_delay,carrier,origin)]
head(dt)
#>
     year month day dep_delay carrier origin
#> 1: 2014
            6 15
                          -4
                                 AA
                                       JFK
#> 2: 2014
            6 15
                          -8
                                 AA
                                       JFK
#> 3: 2014
            6 15
                         -12
                                 AA
                                       JFK
           6 15
#> 4: 2014
                          -4
                                 AA
                                       LGA
#> 5: 2014
           6 15
                                       JFK
                          -3
                                 AA
#> 6: 2014
            6 15
                                       JFK
```

data.table i,j

2.2.5 j

Excel

```
flights[year==2014 & month==6,.( distance=sum(distance), =mean(distance)),by=.(origin,dest)]
        by
              j
                       R
i j
myfun <- function(x){</pre>
   x^2/2
}
flights[year==2014 & month==6,.(myfun(distance)),by=.(origin,dest)]
         origin dest
                         V1
#>
      1:
            JFK LAX 3062813
#>
      2:
            JFK LAX 3062813
      3:
            JFK LAX 3062813
#>
      4:
           JFK LAX 3062813
      5:
            JFK LAX 3062813
#>
#>
#> 26484:
           JFK HYA
                       19208
#> 26485:
            JFK HYA
                       19208
#> 26486:
            JFK HYA
                       19208
#> 26487:
            JFK HYA
                       19208
#> 26488:
            JFK HYA
                       19208
```

2.2.6 by

1.

#> 2: TRUE 116897153

```
flights[,.(sum(distance)),by=.(month)]
               V1
#> month
#> 1: 1 25112563
#> 2: 22840391
#> 3: 3 28716598
       4 27816797
#> 4:
#> 5: 5 28030020
#> 6: 6 29093557
#> 7:
        7 30059175
      8 30322047
#> 8:
#> 9: 9 27615097
#> 10: 10 28900834
2.
dt <- flights[,.(sum(distance)),by=.(carrier,origin)]</pre>
head(dt)
#> carrier origin
                      V1
#> 1: AA JFK 20492213
#> 2:
        AA LGA 12365282
       AA EWR 3550217
#> 3:
     AS EWR 1378748
#> 4:
#> 5:
       B6 JFK 38117662
#> 6:
       B6 EWR 4508574
dt <- flights[,.(sum(distance)),by=.(newcol1 = carrier,newcol2 = origin)]</pre>
head(dt)
#> newcol1 newcol2
                      V1
#> 1: AA JFK 20492213
#> 2:
        AA LGA 12365282
#> 3:
       AA EWR 3550217
     AS EWR 1378748
B6 JFK 38117662
#> 4:
#> 5:
#> 6:
       B6 EWR 4508574
3.
    6
   6
dt <- flights[,.(sum(distance)),by=.(month>6)] #by
head(dt)
#> month
#> 1: FALSE 161609926
```

2.3.

2.3

```
2.3.1
```

```
data.table :=
 : addcol
#data.table() data.table
dt <- data.table(col1=1:10,col2=letters[1:10],col3=LETTERS[1:10],col4=1:10)
dt[,addcol:=rep(' ',10)][] # []
#> col1 col2 col3 col4 addcol
#> 1: 1 a A 1
#> 2:
       2
          b
               B
                  2
#> 3: 3 c
#> 4: 4
         d D
#> 5:
     .
5
              E
          e
#> 6: 6
         f F
#> 7: 7 g
              G 7
#> 8: 8 h
              H
#> 9:
      9
               Ι
#> 10:
      10 j
               \boldsymbol{J}
                 10
#dt[,addcol:=rep(' ',10)] , []
dt[,`:=`(newcol1=rep('newcol1',10),newcol2=rep('newcol2',10))][]
#> col1 col2 col3 col4 addcol newcol1 newcol2
#> 1: 1 a A 1 newcol1 newcol2
#> 2:
     2
         b
              B
                   2
                      newcol1 newcol2
                      newcol1 newcol2
#> 3:
      3
          c C
                 3
#> 4: 4
         d D 4
                      newcol1 newcol2
#> 5: 5 e E 5
                      newcol1 newcol2
     6
          f F
                 6
#> 6:
                      newcol1 newcol2
#> 7:
     7
          g G
                  7
                      newcol1 newcol2
#> 8: 8 h H 8
                      newcol1 newcol2
#> 9:
      9 i I 9
                      newcol1 newcol2
                      newcol1 newcol2
#> 10: 10 j J 10
```

NULL

```
dt[,col1:=NULL][]
#> col2 col3 col4 addcol newcol1 newcol2
#> 1: a A 1 newcol1 newcol2
#> 2: b B 2 newcol1 newcol2
#> 3: c C 3 newcol1 newcol2
\#> 6: f F 6 newcol1 newcol2
     g G 7 newcol1 newcol2 h H 8 newcol1 newcol2
#> 7:
#> 8:
\#>9: i I 9 newcol1 newcol2
\#>10: j J 10 newcol1 newcol2
dt[,c('newcol1','newcol2'):=NULL][]
#> col2 col3 col4 addcol
#> 1: a A 1
#> 2: b B 2
#> 3:
     c C
            3
#> 4: d D 4
#> 5: e E 5
     f F 6
#> 6:
#> 7: g G 7
#> 8: h H 8
#> 9: i I 9
#> 10: j J 10
```

```
dt[,col1:=11:20][]
#> col2 col3 col4 addcol col1
#> 1: a A 1 11
#> 2: b B 2
                12
                13
#> 3: c C 3
    d D
               14
15
#> 4:
           4
#> 5: e E 5
#> 6: f F 6
                16
#> 7: g G 7
                17
#> 8: h H 8
                 18
#> 9: i I 9
                 19
#> 10: j J 10
                 20
```

2.3.

```
# not run
#
dt[,newcol:=col1/col4]
```

2.3.2

2.3.3

data.table

%in% sql in

```
# %in%
flights[ hour %in% seq(1,24,2) ]
```

%chin% %in%

• between

```
#between
#between(x, lower, upper, incbounds=TRUE, NAbounds=TRUE, check=FALSE)
X \leftarrow data.table(a=1:5, b=6:10, c=c(5:1))
X[b \%between\% c(7,9)]
#> a b c
#> 1: 2 7 4
#> 2: 3 8 3
#> 3: 4 9 2
X[between(b, 7, 9)] #
#> a b c
#> 1: 2 7 4
#> 2: 3 8 3
#> 3: 4 9 2
X[c %between% list(a,b)] #
#> a b c
#> 1: 1 6 5
#> 2: 2 7 4
#> 3: 3 8 3
```

 \bullet like

%like% SQL like

```
# %like% SQL like
DT = data.table(Name=c("Mary", "George", "Martha"), Salary=c(2,3,4))
DT[Name %like% "^Mar"]
#> Name Salary
#> 1: Mary 2
#> 2: Martha 4
```

2.3.4

.SD,.BY,.N,.I,.NGRP .GRP,.SDcols , j ,.N i .

2.3.

```
#> 7: c 1 1 7 3
#> 8: c 2 3 8 2
#> 9: c 2 6 9 1
X = data.table(x=c("c","b"), v=8:7, foo=c(4,2))
#> x v foo
#> 1: c 8 4
#> 2: b 7 2
# i
DT[.N] \#DT ,.N
#> x v y a b
#> 1: c 2 6 9 1
DT[,.N] #DT
#> [1] 9
DT[, .N, by=x] #
#> x N
#> 1: b 3
#> 2: a 3
#> 3: c 3
DT[, .SD, .SDcols=x:y] # x y
#> x v y
#> 1: b 1 1
#> 2: b 1 3
#> 3: b 1 6
#> 4: a 2 1
#> 5: a 2 3
#> 6: a 1 6
#> 7: c 1 1
#> 8: c 2 3
#> 9: c 2 6
#DT[, .SD, .SDcols=c("x", "y")]
DT[, .SD[1]] #
\#> x v y a b
#> 1: b 1 1 1 9
DT[, .SD[1], by=x] \# x
#> x v y a b
#> 1: b 1 1 1 9
#> 2: a 2 1 4 6
#> 3: c 1 1 7 3
DT[, c(.N, lapply(.SD, sum)), by=x] # x
\#> x N v y a b
#> 1: b 3 3 10 6 24
#> 2: a 3 5 10 15 15
```

```
#> 3: c 3 5 10 24 6
```

2.4

2.4.1 frank

frank frankv

, :

```
# on vectors
x = c(4, 1, 4, NA, 1, NA, 4)
# NAs are considered identical (unlike base R)
# default is average
frankv(x) # na.last=TRUE
#> [1] 4.0 1.5 4.0 6.5 1.5 6.5 4.0
frankv(x, na.last=FALSE)
#> [1] 6.0 3.5 6.0 1.5 3.5 1.5 6.0
# on data.table
DT = data.table(x, y=c(1, 1, 1, 0, NA, 0, 2))
frankv(DT, cols="x") # same as frankv(x) from before
#> [1] 4.0 1.5 4.0 6.5 1.5 6.5 4.0
frankv(DT, cols="x", na.last="keep")
#> [1] 4.0 1.5 4.0 NA 1.5 NA 4.0
frankv(DT, cols="x", ties.method="dense", na.last=NA)
#> [1] 2 1 2 1 2
frank(DT, x, ties.method="dense", na.last=NA) # equivalent of above using frank
#> [1] 2 1 2 1 2
```

• frankv ,NA , base R

```
x <- c(4, 1, 4, NA, 1, NA, 4)
frankv(x)
#> [1] 4.0 1.5 4.0 6.5 1.5 6.5 4.0
```

2.4.

```
rank(x)
#> [1] 4.0 1.5 4.0 6.0 1.5 7.0 4.0
order 1 -1. 1
frankv(x, order = 1L)
#> [1] 4.0 1.5 4.0 6.5 1.5 6.5 4.0
frankv(x, order = -1L)
#> [1] 2.0 4.5 2.0 6.5 4.5 6.5 2.0
 average, dense,random,first,last,max,min
                                       dense
                                               random
x \leftarrow c(1,1,1,2,3)
frankv(x) #
,
frankv(x,ties.method = 'min') #
frankv(x,ties.method = 'max') #
frankv(x,ties.method = 'first') #
frankv(x,ties.method = 'dense')
frankv(x,ties.method = 'random')

    NA

  NA ,NAs
              base R
                    FALSE,
na.last TRUE
                              NA
                                      "keep", NA.
frankv(c(NA,NA,1,2,3), na.last = TRUE,ties.method = 'first')
#> [1] 4 5 1 2 3
frankv(c(NA,NA,1,2,3), na.last = FALSE,ties.method = 'first')
#> [1] 1 2 3 4 5
frankv(c(NA,NA,1,2,3), na.last = NA,ties.method = 'first')
#> [1] 1 2 3
frankv(c(NA,NA,1,2,3), na.last = 'keep',ties.method = 'first')
#> [1] NA NA 1 2 3
```

2.4.2

• fifelse

```
fifelse() dplyr::if_else() , base::ifelse()
```

```
x <- c(1:4, 3:2, 1:4,5)
fifelse(x > 2L, x, x - 1L)
#> [1] 0 1 3 4 3 1 0 1 3 4 5

fifelse(x > 2L,fifelse(x >= 4L,x + 1L,x),x-1L)
#> [1] 0 1 3 5 3 1 0 1 3 5 6
```

• fcase

sql case when dplyr case_when() fifelse

```
x = 1:10
fcase(
    x < 5L, 1L,
    x > 5L, 3L
)
#> [1] 1 1 1 1 NA 3 3 3 3

# not run
fifelse(x > 5,fifelse(x >8,2,1),0)
#> [1] 0 0 0 0 0 1 1 1 2 2
fcase(
    x > 8,2,
    x > 5,1,
    default = 0
)
#> [1] 0 0 0 0 0 0 1 1 1 2 2
```

2.4.3

base R union(),intersect(),setdiff() setequal() .all , SQL ,data.table

```
fintersect(x, y, all = FALSE)
fsetdiff(x, y, all = FALSE)
funion(x, y, all = FALSE)
fsetequal(x, y, all = TRUE)

x <- data.table(c(1,2,2,2,3,4,4))
x2 <- data.table(c(1,2,3,4)) # same set of rows as x
y <- data.table(c(2,3,4,4,4,5))</pre>
```

2.4.

```
fintersect(x, y)
                             # intersect
fintersect(x, y, all=TRUE) # intersect all
fsetdiff(x, y)
                             # except
fsetdiff(x, y, all=TRUE)
                             # except all
funion(x, y)
                             # union
funion(x, y, all=TRUE)
                             # union all
fsetequal(x, x2, all=FALSE) # setequal
fsetequal(x, x2)
                             # setequal all
2.4.4
            left_join right_join,inner_join .
 ?merge()
            ,data.table base R merge ,
                                           data.table
                                                     data.table::merge().
?merge()
merge(x, y, by = NULL, by.x = NULL, by.y = NULL, all = FALSE,
all.x = all, all.y = all, sort = TRUE, suffixes = c(".x", ".y"), no.dups = TRUE,
allow.cartesian=getOption("datatable.allow.cartesian"), # default FALSE
...)
            , by=c(``,") , , by.x=,by.y=,all,all.x,all.y
                                                                     ,allow.cartesian=
x.y
                                                        ,sort
2.4.5
   dcast melt
                   Excel
  • dcast
  fun.aggregate
                   value.var
                                 formula
                                             x+y\sim z x,y
dcast(data, formula, fun.aggregate = NULL, sep = "_",
    ..., margins = NULL, subset = NULL, fill = NULL,
    drop = TRUE, value.var = guess(data),
```

TUR

verbose = getOption("datatable.verbose"))

```
dcast(dt, ~ ,value.var = " ",fun.aggregate = sum)
#>
#> 1:
          149135
                       0
                              0
                              0 150585
#> 2:
               0
                       0
#> 3:
               0
                       0 149451
                                     0
               0 150649
#> 4:
```

V1.9.6

fun fun.aggregate

```
dt <- data.table(x=sample(5,20,TRUE), y=sample(2,20,TRUE),</pre>
                z=sample(letters[1:2], 20,TRUE), d1 = runif(20), d2=1L)
dcast(dt, x + y ~ z, fun=list(sum,mean), value.var=c("d1","d2"))
     x\ y\ d1\_sum\_a\ d1\_sum\_b\ d2\_sum\_a\ d2\_sum\_b\ d1\_mean\_a\ d1\_mean\_b\ d2\_mean\_a
#> 1: 1 1
                                    0
             0.000
                   0.3141
                                             1
                                                     NaN
                                                             0.3141
                                                                          NaN
#> 2: 1 2
             0.675
                     0.7524
                                    1
                                             1
                                                    0.675
                                                             0.7524
                                                                             1
#> 3: 2 1
             0.722
                    1.9725
                                    1
                                             3
                                                    0.722
                                                             0.6575
                                                                             1
#> 4: 2 2
             1.062
                   0.0657
                                    2
                                             1
                                                    0.531
                                                             0.0657
                                                                             1
#> 5: 3 2
                                    1
                                             0
                                                    0.329
                                                                             1
             0.329
                    0.0000
                                                                NaN
#> 6: 4 1
             1.934
                     0.3536
                                    3
                                             1
                                                    0.645
                                                             0.3536
                                                                             1
#> 7: 4 2
             1.968
                     0.0000
                                    3
                                             0
                                                    0.656
                                                                NaN
                                                                             1
#> 8: 5 2
             0.404
                     0.8995
                                    1
                                             1
                                                    0.404
                                                             0.8995
                                                                             1
#>
      d2 mean b
#> 1:
              1
#> 2:
#> 3:
              1
#> 4:
              1
#> 5:
            NaN
#> 6:
              1
#> 7:
            NaN
#> 8:
              1
dcast(dt, x + y ~ z, fun=list(sum, mean), value.var=list("d1", "d2")) # value.var
      x y d1_sum_a d1_sum_b d2_mean_a d2_mean_b
#> 1: 1 1
             0.000
                   0.3141
                                   NaN
                                               1
#> 2: 1 2
                                     1
             0.675
                     0.7524
                                               1
#> 3: 2 1
                                     1
             0.722
                     1.9725
                                               1
#> 4: 2 2
             1.062
                     0.0657
                                     1
                                               1
#> 5: 3 2
                                     1
             0.329
                     0.0000
                                             NaN
#> 6: 4 1
                     0.3536
                                     1
                                                1
             1.934
#> 7: 4 2
             1.968
                     0.0000
                                     1
                                             NaN
#> 8: 5 2
                     0.8995
             0.404
```

2.4.

```
melt(data, id.vars, measure.vars,
   variable.name = "variable", value.name = "value",
   ..., na.rm = FALSE, variable.factor = TRUE,
   value.factor = FALSE,
  verbose = getOption("datatable.verbose"))
ChickWeight = as.data.table(ChickWeight)
setnames(ChickWeight, tolower(names(ChickWeight)))
DT <- melt(as.data.table(ChickWeight), id=2:4) # calls melt.data.table
DT
#>
     time chick diet variable value
#> 1: 0 1 1
                       weight
                               42
       2
             1
#> 2:
                   1
                      weight
                               51
                               59
#> 3: 4 1 1 weight
#> 4: 6 1 1 weight
                               64
       8 1
#> 5:
                  1 weight
                               76
#> 574: 14 50
                 4 weight 175
                 4 weight 205
#> 575: 16 50
                  4 weight 234
#> 576: 18 50
#> 577: 20 50
                 4 weight 264
#> 578: 21 50
                   4 weight 264
2.4.6
uniqueN length(unique(x)),
x <-sample(1:10,50,replace = TRUE)
uniqueN(x)
#> [1] 10
DT \leftarrow data.table(A = rep(1:3, each=4), B = rep(1:4, each=3),
               C = rep(1:2, 6), key = "A,B")
uniqueN(DT, by = key(DT))
#> [1] 6
uniqueN(DT)
#> [1] 10
```

2.4.7 rleid

```
0011001110111101
                  1\ 1\ 2\ 2\ 3\ 3\ 4\ 4\ 4\ 5\ 6\ 6\ 6\ 6\ 7\ 8
rleid(c(0,0,1,1,0,0,1,1,1,0,1,1,1,1,0,1))
#> [1] 1 1 2 2 3 3 4 4 4 5 6 6 6 6 7 8
rleid(..., prefix=NULL)
rleidv(x, cols=seq_along(x), prefix=NULL)
DT = data.table(grp=rep(c("A", "B", "C", "A", "B"), c(2,2,3,1,2)), value=1:10)
rleid(DT$grp) # get run-length ids
#> [1] 1 1 2 2 3 3 3 4 5 5
rleidv(DT, "grp") # same as above
#> [1] 1 1 2 2 3 3 3 4 5 5
rleid(DT$grp, prefix="grp") # prefix with 'grp'
#> [1] "grp1" "grp1" "grp2" "grp2" "grp3" "grp3" "grp3" "grp4" "grp5" "grp5"
2.4.8 shift
x = 1:5
# lag with n=1 and pad with NA (returns vector)
shift(x, n=1, fill=NA, type="lag")
#> [1] NA 1 2 3 4
 n n type , n=-1 and type='lead' n=1 and type='lag'
data.table
DT = data.table(year=2010:2014, v1=runif(5), v2=1:5, v3=letters[1:5])
cols = c("v1", "v2", "v3")
anscols = paste("lead", cols, sep="_")
DT[, (anscols) := shift(.SD, 1, 0, "lead"), .SDcols=cols]
```

2.5

2.5.1

1.

2.5.

#rollup(x, j, by, .SDcols, id = FALSE, ...)

n = 24L

```
fun <- function(x){</pre>
 x <- x^2+1
DT <- data.table(x=rep(c("b","a","c"),each=3), v=c(1,1,1,2,2,1,1,2,2), y=c(1,3,6), a=1:9, b=9:1)
DT[,.(newcol=fun(y)),by=.(x)]
#> x newcol
#> 1: b
#> 2: b
           10
#> 3: b
          37
#> 4: a
           2
          10
#> 5: a
#> 6: a
          37
#> 7: c
           2
#> 8: c
           10
#> 9: c
            37
#Not run
\#DT[, lapply(.SD, fun), .SDcols=c('y', 'a'), by=.(x)] \#
#Not run
# myfun <- function(x){</pre>
# return(x)
# }
\# dt \leftarrow dt[,colnames(dt):=lapply(.SD[,1:ncol(dt)],myfun)] \#
2.5.2
by .
  1. rollup
   id=TRUE
                   , by
#Usage
```

```
set.seed(25)
DT <- data.table(
   color = sample(c("green", "yellow", "red"), n, TRUE),
   year = as.Date(sample(paste0(2011:2015,"-01-01"), n, TRUE)),
   status = as.factor(sample(c("removed","active","inactive","archived"), n, TRUE)),
   amount = sample(1:5, n, TRUE),
   value = sample(c(3, 3.5, 2.5, 2), n, TRUE)
)
rollup(DT, j = sum(value), by = c("color", "year", "status")) # default id=FALSE
       color
              year status
                                  V1
                        active 3.5
#> 1:
       red 2015-01-01
#> 2: green 2015-01-01 inactive 5.5
#> 3: green 2014-01-01 archived 3.5
#> 4: green 2015-01-01 archived 2.0
#> 5: yellow 2014-01-01 active 4.5
#> 6: red 2013-01-01 inactive 2.0
#> 7: green 2011-01-01 active 6.0
#> 8:
       red 2014-01-01 inactive 2.5
#> 9: green 2011-01-01 archived 2.5
#> 10: yellow 2015-01-01
                        active 2.0
#> 11: red 2012-01-01 archived 2.0
#> 12:
         red 2011-01-01 removed 3.5
#> 13: green 2014-01-01 inactive 8.0
#> 14: green 2011-01-01 removed 2.0
#> 15: yellow 2012-01-01 archived 2.5
#> 16:
       red 2013-01-01 removed 3.5
#> 17: green 2013-01-01
                        active 3.0
#> 18: green 2014-01-01 removed 2.5
#> 19:
        red 2011-01-01 archived 3.0
                          <NA> 3.5
#> 20:
       red 2015-01-01
#> 21: green 2015-01-01
                           <NA> 7.5
#> 22: green 2014-01-01
                           <NA> 14.0
#> 23: yellow 2014-01-01
                           <NA> 4.5
#> 24: red 2013-01-01
                           <NA> 5.5
#> 25: green 2011-01-01
                          <NA> 10.5
                          <NA> 2.5
#> 26:
       red 2014-01-01
#> 27: yellow 2015-01-01
                           <NA> 2.0
#> 28:
       red 2012-01-01
                          <NA> 2.0
#> 29:
         red 2011-01-01
                           <NA> 6.5
#> 30: yellow 2012-01-01
                           <NA> 2.5
#> 31: qreen 2013-01-01
                           <NA> 3.0
#> 32:
         red
                <NA>
                           <NA> 20.0
#> 33: green
                   <NA>
                           <NA> 35.0
#> 34: yellow
                 <NA>
                          <NA> 9.0
#> 35: <NA>
                  <NA>
                           <NA> 64.0
```

2.5.

#> color year status V1

```
\#rollup(DT, j = sum(value), by = c("color", "year", "status"), id=TRUE)
           \operatorname{Excel}
                   , R
      rollup
set.seed(25)
N <- 1000
dt <- data.table(col1=sample(LETTERS[1:5], N, replace = T), col2=sample(letters[1:5], N, replace = T);
rollup(dt,j=c(list(sum(num))),by=c('col1','col2'))
      col1 col2
#> 1:
       E
              a 19926
       D
#> 2:
              a 20966
#> 3:
              d 12927
        \boldsymbol{A}
              b 20862
#> 4:
         \boldsymbol{A}
       A
              c 15331
#> 5:
#> 6: B
              d 15414
#> 7:
       C
              e 20794
#> 8:
       D
              e 16110
#> 9: C
             d 22152
#> 10: A
             a 18378
#> 11:
       C
              c 19474
#> 12:
         E
              d 18831
#> 13:
       B
            b 19941
       C
             a 19652
#> 14:
#> 15:
       E
              c 16734
       E
#> 16:
             e 24137
#> 17:
       E
            b 21988
#> 18:
       D
            b 16607
              c 25720
#> 19:
         B
#> 20:
       B
              a 22109
#> 21:
       \boldsymbol{A}
              e 18724
#> 22:
       C
              b 24323
#> 23:
       D
              d 20508
#> 24:
       D
              c 19668
#> 25:
       B
              e 29224
#> 26:
       E <NA> 101616
#> 27:
         D <NA> 93859
#> 28:
       A <NA> 86222
#> 29:
       B <NA> 112408
#> 30:
        C <NA> 106395
#> 31: <NA> <NA> 500500
```

```
#>
      col1 col2 V1
       total
#rollup(dt, j=c(list(total=sum(num))),by=c('col1', 'col2'))
# id=TRUE , grouping
\#rollup(dt, j=c(list(total=sum(num))), by=c('col1', 'col2'), id=TRUE)
2.groupingsets
        SQL GROUPING SETS . postgresql
res <- groupingsets(DT, j = c(list(count=.N), lapply(.SD, sum)), by = c("color", "year"
            sets = list("color", c("year", "status"), character()), id=TRUE)
head(res)
                         year status count amount value
#> grouping color
#> 1:
         3
               red
                          <NA>
                                  <NA>
                                          7
                                                19 20.0
#> 2:
                                   <NA>
                                                43 35.0
            3 green
                           <NA>
                                           13
#> 3:
            3 yellow
                           <NA>
                                   <NA>
                                                10 9.0
                                          4
            4 <NA> 2015-01-01 active
                                                8 5.5
                                           2
#> 4:
                                                 5 5.5
#> 5:
            4 <NA> 2015-01-01 inactive 2
            4 <NA> 2014-01-01 archived 1
#> 6:
                                                  3 3.5
 groupingsets sets, list()
                                             . by \frac{1}{2}, \frac{1}{2}, sql "()".
                              character(),
     sql.
select color ,year, status,count(*) count,sum(amount) amount,sum(value) value
FROM dbo.DT
GROUP BY
GROUPING SETS(
(color),
(year, status),
() ---- character()
  cube(), ?cube
2.5.3
```

•

tstrsplit()

2.5. 31

```
n <- 10
dt <- data.table(name=LETTERS[1:n],char=rep('--R--'),n)</pre>
res <- dt[,.(newcol=tstrsplit(char,'-')),by=.(name)]</pre>
head(res)
#>
       name newcol
#> 1:
          \boldsymbol{A}
#> 2:
          \boldsymbol{A}
#> 3: A
                 R
#> 4:
          \boldsymbol{A}
#> 5:
          \boldsymbol{A}
#> 6: B
```

•

```
res[,.(char=paste0(newcol,collapse = '-')),by=.(name)]
#> name
#> 1: A --R--
#> 2: B --R--
#> 3: C --R--
#> 4: D --R--
#> 5: E --R--
#> 6: F --R--
#> 7: G --R--
#> 8: H --R--
#> 9: I --R--
#> 10: J --R--
#res[,.(char=stringr::str_c(newcol,collapse = '-')),by=.(name)]
# A - -R - -
# B --R--
# C --R--
# D --R--
\# E - -R - -
# F --R--
# G --R--
# H --R--
# I --R--
# J --R--
```

Chapter 3

database

3.1

Windows R ETL
MS SQL Server

 \bullet Win

MS (Developer Express)

还可以下载免费的专用版本

Figure 3.1:

SSMS MS SQL SERVER

• Linux

```
SQL Server 2019 Ubuntu 20.04 Ubuntu 18.04 16.04
/ubuntu/18.04/ /ubuntu/16.04/ /ubuntu/20.04/

#
wget -q0- https://packages.microsoft.com/keys/microsoft.asc | sudo apt-key add -

# SQL Server 2019 Microsoft SQL Server Ubuntu
sudo add-apt-repository "$(wget -q0- https://packages.microsoft.com/config/ubuntu/20.0-

# sudo add-apt-repository "$(wget -q0- https://packages.microsoft.com/config/ubuntu/18

# SQL Server
sudo apt-get update
sudo apt-get install -y mssql-server

# systemctl status mssql-server --no-pager
```

3.2 DBI

3.2.1

```
install.packages('DBI')
```

3.2.2

• MS SQL SERVER

```
172.16.88.2( IP )
```

```
library(DBI)
con <- dbConnect(
   drv = odbc::odbc(), Driver = "SQL Server", server = "172.16.88.2",database = "spb",
)</pre>
```

3.2. DBI 35

```
windows DBI
                           encoding win sqlserver encoding
"GBK"
library(DBI)
# encoding
con <- dbConnect(</pre>
 drv = odbc::odbc(), Driver = "SQL Server", server = "172.16.88.2",
 database = "spb", uid = "zhongyf", pwd = "Zyf123456", encoding = "GBK"
)
#
             ODBC Driver 17 for SQL Server
Drivers_tbl <- odbc::odbcListDrivers()</pre>
head(Drivers_tbl)
con <- dbConnect(</pre>
 drv = odbc::odbc(), Driver = "ODBC Driver 17 for SQL Server",
 server = "172.16.88.2", database = "spb", uid = "zhongyf", pwd = "Zyf123456"
)
# 936
sql <- "SELECT COLLATIONPROPERTY( 'chinese_prc_ci_as', 'codepage' )"</pre>
dbGetQuery(con,sql)
# same above
# dbExecute(con,sql)
DBI::dbDisconnect(con)
  • mysql
MySQL() RMySQL
                  <MySQLDriver>
                                       MySQL
library(RMySQL)
con <- dbConnect(MySQL(),</pre>
 dbname = "test", user = "test_admin", password = "30HL1234M7# 1D6gxjB",
 host = "prd-public-mypersonal.mysql.test.zhangjiabei.rds.aliyuncs.com"
)
```

```
con <- DBI::dbConnect(odbc::odbc(),</pre>
 Driver = "MySQL ODBC 8.0 Unicode Driver",
 Server = "localhost", UID = "root", PWD = "123456", Database = "mysql",
 Port = 3306
)
         3306.
                  3306
mysql
3.2.3
         sql
dbGetQuery()
              DBI con
                          ,dbExecute()
# dbGetQuery
res_table <- dbGetQuery(con,'select * from table') # sql</pre>
#dbReadTable
dbReadTable(con, 'tbl_name') #
# dbSendQuery
res <- dbSendQuery(conn = con,statement = 'select * FROM tab')</pre>
dbFetch(res)
dbClearResult(res)
# dbExecute
dbExecute(con,'delete from table where num <=1000') #</pre>
# dbWriteTable()
# , , df, overwrite , append
dbWriteTable(conn = con,name = ' ',value = df,overwrite=TURE,append=FALSE)
3.2.4
```

, , . .

```
con <- dbConnect(
  drv = odbc::odbc(),
  Driver = "ODBC Driver 17 for SQL Server", server = "172.16.88.2",
  database = "spb", uid = "zhongyf", pwd = "Zyf123456", encoding = "GBK"
)

#
dbGetInfo(con)</pre>
```

3.3. ODBC 37

```
#
dbListTables(con) #win

#
dbRemoveTable(con, 'tbl_name')

#
dbDisconnect(con)
```

3.3 odbc

```
Connect to ODBC databases (using the DBI interface)
       odbc DBI
odbc
        (SQL Server, Oracle, MySQL,PostgreSQL,SQLite) odbc
                                                                     DBI
                                                           DBI
1.
install.packages('odbc')
2.
 Win
       Sql Server
                             encoding
 linux odbc SqlServer,
                                        charset=zh_CN.GBK gbk
library(odbc)
con <- odbc::dbConnect(odbc(),</pre>
 Driver = "SQL Server", Server = "Vega", Database = "ghzy",
 Trusted_Connection = "True"
) # windows
# con <- dbConnect(odbc::odbc(), .connection_string = "Driver={SQL Server};</pre>
                                    server=Vega; database=ghzy; uid=zhongyf; pwd=Zyf123456; ", timeout
con
## Not run
# Win
con_spb <- dbConnect(odbc(), .connection_string = "driver={ODBC Driver 17 for SQL Server};server=</pre>
                      timeout = 10, timezone = "Asia/Shanghai", encoding = 'gbk')
#Linux
con_dd <- dbConnect(odbc::odbc(), .connection_string = "driver={ODBC Driver 17 for SQL Server};se</pre>
                  database=aojo_dd;uid=wj;pwd=12qw#$ER;charset=zh_CN.GBK", timeout = 10)
```

```
38
                                        CHAPTER 3. DATABASE
3.
dt <- odbc::dbGetQuery(con,'select * from DT')</pre>
head(dt)
4.
odbc::dbWriteTable(con,name = ' ',value = dt,overwrite = T ) #
odbc::dbWriteTable(con,name = ' ',value = dt,append = T ) #
      RODBC
3.4
RODBC R ODBC , ODBC .
1.
```

$2.\mathrm{SQL}$ SERVER

```
library(RODBC)
con <- odbcDriverConnect("driver={SQL Server}; server=192.168.2.62; database=dbname; uid=</pre>
RODBC::sqlQuery(con,'select * from test')
WINDOWS ,
```

install.packages('RODBC')

```
odbc::odbcListDrivers()
```

ODBC for sql server driver

3.

3.5. RORACLE 39

```
#ODBC Driver 17 for SQL Server

cn <- odbcDriverConnect("Driver={ODBC Driver 17 for SQL Server};Server=localhost;Database=name;User sql server

sql server

3.5 ROracle

oracle R Oracle Oracle Instant Client
```

oracle 32 64

2.

1.

```
\label{local_include} $$ OCI_INC='D:\app\zhongyf\product\11.2.0\client_1\oci\include' OCI_LIB64='D:\app\zhongyf\product\11.2.0\client_1\BIN' $$
```

linxu Roracle

3.

Roracle Rtools oracle

ROracle Oracle Instant Client,

install.packages('ROracle')

4.

Roracle DBI

```
library(ROracle)
drv <-dbDriver("Oracle")</pre>
connect.string <- '(DESCRIPTION =</pre>
                     (ADDRESS = (PROTOCOL = TCP)(HOST = 192.16.88.129)(PORT = 1521))
                   (CONNECT_DATA =
                       (SERVER = DEDICATED)
                     (SERVICE_NAME = bidev)
                   ))'#
con <- dbConnect(drv,username = "query", password = "query",dbname = connect.string)</pre>
  5.
  oracle
                      [/opt/R/4.0.2/lib/R/etc/Renviron]
linux
       Renviron
select userenv('language') from dual
Sys.setenv(NLS_LANG="SIMPLIFIED CHINESE_CHINA.AL32UTF8")
```

3.6 RMySQL

RMySQL mysql . RMariaDB

3.6.1

Win

```
#On recent Debian or Ubuntu install libmariadbclient-dev

sudo apt-get install -y libmariadbclient-dev

#On Fedora, CentOS or RHEL we need mariadb-devel:

sudo yum install mariadb-devel

#On OS-X use mariadb-connector-c from Homebrew:

brew install mariadb-connector-c

install.packages('RMySQL')
```

3.7.

3.6.2

```
library(RMySQL)
con <- RMySQL::dbConnect(drv = RMySQL::MySQL(),host='localhost',dbname="mysql",username="root",pa</pre>
RMariaDB RMySQL
install.packages('RMariaDB')
library(RMariaDB)
con <- RMySQL::dbConnect(drv = RMariaDB::MariaDB() ,host='localhost',dbname="dbtest",username="rd"</pre>
3.7
     \mathbf{R}
3.7.1
\mathbf{R}
                                                         win
          • MS SQL SERVER
   encoding win
                                                                       RODBC
                                                                                                                                                                                                                 odbc
                                                                                                                                                                                                                                                                         encoding
# win
con_spb <- dbConnect(odbc(),</pre>
       .connection_string =
              "driver={ SQLServer}; server=172.16.88.2; database=spb; uid=zhongyf; pwd=Zyf123456",
       timeout = 10, timezone = "Asia/Shanghai", encoding = "gbk"
)
# linux
con_spb <- dbConnect(odbc(),</pre>
                                                                               .connection_string =
                                                                                       "driver={ODBC Driver 17 for SQL Server}; server=172.16.88.2; database=spb; unitarity to the server of the server o
                                                                               timeout = 10, timezone = "Asia/Shanghai", encoding = "utf8"
)
```

1.

 \bullet MySQL

dplyr

dbplyr

```
dbSendQuery(con,'SET NAMES gbk')
2.ODBC
  \mathrm{ODBC} \quad , \qquad ,
3.7.2
                             mysql, Navicat, Authentication
  mysql , RMySQL
                                                                plugin
'caching_sha2_password' cannot be loaded
                mysql\_native\_password,\ mysql8\ , \quad caching\_sha2\_password,
   mysql8
--cmd
mysql -u root -p
password:
ALTER USER 'root'@'localhost' IDENTIFIED BY 'password' PASSWORD EXPIRE NEVER;
---ALTER USER 'root'@'%' IDENTIFIED BY 'password' PASSWORD EXPIRE NEVER;
ALTER USER 'root'@'localhost' IDENTIFIED WITH mysql_native_password BY 'password'; #
3.7.3
                                             MS SQL SERVER
                                   IT
                Mysql 3306;
                                Rds , DBA
       dbplyr
3.8
dbplyr dplyr
                SQL
    dbplyr
              SQL,
   • dbplyr
                  dplyr
                    R \; \mathtt{dbplyr}
```

3.8. DBPLYR 43

Figure 3.2: ODBC

3.8.1

```
library(dplyr)
library(dbplyr)

mf <- memdb_frame(x = 1, y = 2)

mf %>%
   mutate(
    a = y * x,
    b = a ^ 2,
   ) %>%
   show_query()
```

```
library(dplyr)
#connect database
con <- DBI::dbConnect(RSQLite::SQLite(), path = ":memory:")</pre>
copy_to(con, nycflights13::flights, "flights",
 temporary = FALSE,
 indexes = list(
   c("year", "month", "day"),
    "carrier",
   "tailnum",
    "dest"
  )
)
#dbListTables(con)
#tbl() flights
flights_db <- tbl(con, "flights")</pre>
flights_db
flights_db %>% select(year:day, dep_delay, arr_delay)
flights_db %>% filter(dep_delay > 240)
flights_db %>%
  group_by(dest) %>%
  summarise(delay = mean(dep_time))
```

sql dplyr .

3.8. DBPLYR 45

```
tailnum_delay_db <- flights_db %>%
  group_by(tailnum) %>%
  summarise(
    delay = mean(arr_delay,na.rm = T),
    n = n()
) %>%
  arrange(desc(delay)) %>%
  filter(n > 100)
tailnum_delay_db
tailnum_delay_db %>% show_query()
tailnum_delay <- tailnum_delay_db %>% collect() # R
```

3.8.2

```
\begin{array}{ccc} {\tt lubridate} & {\tt dbplyr} \\ & {\tt Oracle} \ {\tt to\_date} \\ \\ {\tt group\_by} & , \end{array}
```

• date

```
get_sales_data <- function(con,...,start_date,end_date,brand_name,channel_type = NULL ,area_name</pre>
  store_table <- store(con,brand_name = brand_name,channel_type = channel_type ,area_name = area_
  sku_table <- sku(con, category_name = category_name ) #</pre>
  tbl(con, in_schema("DW", "DW_SALE_SHOP_F")) %>% #DW
    select(BILL_DATE1, SKU_NO, SHOP_NO, BILL_QTY, BILL_MONEY2, PRICE) %>%
   filter(between(
      BILL_DATE1, to_date(start_date, "yyyy-mm-dd"),
      to_date(end_date, "yyyy-mm-dd")
   )) %>%
   mutate( = year(BILL_DATE1), = month(BILL_DATE1)) %>%
    inner_join(store_table) %>%
   inner_join(sku_table) %>%
   group_by(...) %>%
   summarise(
        = sum(BILL MONEY2, na.rm = TRUE),
        = sum(BILL_QTY, na.rm = TRUE),
         = sum(BILL_QTY * PRICE, na.rm = TRUE)) %>%
   collect() %>%
   mutate( := / ) %>%
```

```
arrange(...)

# return(res)
}

• like

mf %>%
  filter(x %LIKE% "%foo%") %>%
  show_query()
```

sql()

```
mf %>%
  transmute(factorial = sql("x!")) %>%
  show_query()
```

3.9

```
DBI https://dbi.r-dbi.org/reference/
dbplyr https://dbplyr.tidyverse.org/
rstudio https://db.rstudio.com/databases
    https://www.connectionstrings.com/
Roracle http://www.zhongyufei.com/2020/07/25/roracle-install/
https://www.r-consortium.org/blog/2017/05/15/improving-dbi-a-retrospect
```

Chapter 4

stringr

4.1.1

R

.

• R

• R sql

4.1.2

```
#install.packages('stringr')
library(stringr)
char <- " \' \'" # ,
char
          , writeLines() cat()
x <- c("\"", "\\")
#> [1] "\"" "\\"
writeLines(x)
cat(char)
#> "
#> \
                  "||"
str_remove(string = 'a||b',pattern = "\\|\\|")
  4.1.3
char <- " R "
str_length(char)
str_length(c("a", "R for data science", NA))
4.1.4
\mathbf{R}
    python , :
#base R
paste0('a','b')
#stringr
str_c("a","b")
str_c("a", "b", sep = ", ") #sep
```

4.1.

```
Python
```

```
'a' + 'b'

,stringr

#base R
paste0(c('a','b','d','e'),collapse = ',')
#stringr
str_c(c('a','b','d','e'),collapse = ',') #collapse
```

•

```
library(data.table)
dt <- data.table(col=rep('a',10),letters=letters[1:10])
dt[,newcol:=str_c(letters,collapse = '|'),by=.(col)][]</pre>
```

•

```
# - - ,
dt <- data.table(col='a',letters=str_c(letters[1:10],collapse = '|'))
my_str_split <- function(x){
   str_split(x,pattern = "\\|") %>% unlist() #str_split
}
dt[,list(newcol=my_str_split(letters)),by=.(col)]
```

4.1.5 R4.0

```
char <- r"(\\a\ab\d\e\f)" #windows ,
char

char <- " \' \'"
cat(char)

char <- r"( 'R ' )"
cat(char)</pre>
```

4.2

4.2.1

```
Excle left,mid,right
str_sub()
string:
start: 1L,
end: -1L,
# end 3 -3
str_sub(string = ' R ',start = 2,end = 3)
str_sub(string = ' R ', start = 2, end = -3)
4.2.2
    ,str\_match() pattern( ) .
?str_match()
?str_match_all()
?str_extract()
?str_extract_all()
str_extract()
             , str\_match()
# <>
                          , , , .')
strings <- c('
str_extract(strings,' ')
str_match(strings,' ')
```

str_extract_all(strings,'[\u4e00-\u9fa5]') # list

4e00-9fa5

[0-9]; :[a-zA-Z]

4.2. 51

```
strings <- c('00123545','LOL league of legends')</pre>
str_extract_all(strings,'[0-9]')
str_extract_all(strings,'[a-zA-Z]')
4.2.3
str_pad()
      ,1,2,3,4,5,6,7,8,9,10,11,12 01,02,03,04,05,06,07,08,09,10,11,12.
str_pad(string = 1:12,width = 2,side = 'left',pad = '0')
4.2.4
excel trim
# side both left right
str_trim(' ab af ',side = 'both')
4.2.5
str_split()
str_split("a,b,d,e",pattern = ',')
str_split('ab||cd','\\|\\|') %>% unlist()
# same above
#str_split('ab//cd','\\\\') %>% purrr::as_vector()
fruits <- c(
  "apples and oranges and pears and bananas",
  "pineapples and mangos and guavas"
str_split(fruits, " and ")
```

4.2.6

• str_dup()

```
str_replace() str_replace_all()
fruits <- c("one apple", "two pears", "three bananas")</pre>
str_replace(fruits, "[aeiou]", "-")
str_replace_all(fruits, "[aeiou]", "-")
4.2.7
str_remove(),str_remove_all()
fruits <- c("one apple", "two pears", "three bananas")</pre>
str remove(fruits, "[aeiou]")
str_remove_all(fruits, "[aeiou]")
str_replace_all(string = ' d a b ',pattern = ' ',replacement = '')
4.2.8
  • str subset() str which()
fruit <- c("apple", "banana", "pear", "pinapple")</pre>
str_subset(fruit, "a")
str_which(fruit, "a") #
#str_which which(str_detect(x,pattern))
#str_which()
\#str\_subset \ x[str\_detect(x,pattern)]
#str_subset()
set.seed(24)
dt <- data.table::data.table(col=sample(c(letters,1:10),100,replace = T))</pre>
head(dt[str_which(col,pattern = '[a-z]')])
```

4.3. R EXCEL 53

```
fruit <- c("apple", "pear", "banana")</pre>
str_dup(fruit, 2)
str_dup(fruit, 1:3)
str_c("ba", str_dup("na", 0:5))
  • str_starts() str_ends()
str\_detect() .
str_starts('abd','a')
str_detect('abd','^a')
str_ends('abd','d')
str_detect('abd','a$')
dog <- "The quick brown dog"</pre>
str_to_upper(dog)
str_to_lower(dog)
str_to_title(dog)
str_to_sentence("the quick brown dog")
4.3 R Excel
      stringr
                                    Rcpp
  • left
r_left <- function(str,num){</pre>
  str_sub(string = str,start = 1,end = num)
r_left(' R ',3)
  • right
r_right <- function(str,num){</pre>
 str_sub(string = str,start = str_length(str) - num + 1)
r_right(' R ',3)
```

• mid

```
r_mid <- function(str,start,num){
  str_sub(string = str,start = start,end = start + num -1)
}
r_mid(' R ',3,3)</pre>
```

Chapter 5

lubridate

, ${\bf R}$ lubridate

lubridate

Excel Power Pivot $\ \mathrm{DAX}$

•

 ${\tt date, datediff, datevalue, edate, eomonth, quarter, TIMEVALUE}$

•

 ${\tt dateadd, DATESBETWEEN, DATESMTD, TOTAL MTD, TOTAL QTD, TOTAL YTD}$

Excel

 DAX R DAX R

R 1970-01-01,Excel 1900-01-01, 25568 R Excel

 $R \ : 2021\text{-}04\text{-}29 \ : 18746, \, \text{Excel} \ \ 2021\text{-}04\text{-}29 \ \ : 44314, \ \ 25568.$

5.1

lubridate

5.1.1

year(now())

month(now())

```
install.packages("tidyverse")
   lubridate
install.packages('lubridate')
devtools::install_github("tidyverse/lubridate")
library(lubridate, warn.conflicts = FALSE)
5.1.2
  • now
now(tzone = 'Asia/Shanghai')
#base R
base::Sys.time()
   CST
Sys.timezone()
# windows
# linux "Asia/Shanghai"
  • today
today(tzone = 'Asia/Shanghai')
#base R
base::Sys.Date()
5.1.3
```

5.2.

```
yday(now())
#
mday(now())
#
wday(now(),label = TRUE,week_start = 1)
#
hour(now())
#
minute(now())
#
second(now())
```

5.2

```
with_tz() force_tz()

time <- ymd_hms("2020-12-13 15:30:30")
time

# Changes printing
with_tz(time, "Asia/Shanghai")
# Changes time
force_tz(time, "Asia/Shanghai")</pre>
```

5.3

BI

```
#
ymd(20200604)
ymd('20200604')
mdy(06042020)
dmy(04062020)

unix .POSIXct() .
unix
```

5.4

make_date make_datetime "UTC"

```
make_date(year = year(today()), month = month(today()), day = day(today()), tz = "asia
make_datetime(
    year = year(today()),
    month = month(today()),
    day = day(today()),
    hour = hour(now()),
    min = minute(now()),
    sec = second(now()),
    tz = "asia/shanghai"
)
```

```
as_datetime('2020-01-09 09:15:40',tz='asia/shanghai')
as_date('2020-01-09') #ymd
# same above
#as_date('2020/01/09')
#as_date('20200109')
```

5.5.

5.5

```
lubridate interveal

arrive <- ymd_hms("2020-12-04 12:00:00", tz = "asia/shanghai")
arrive

leave <- ymd_hms("2020-12-10 14:00:00", tz = "asia/shanghai")
leave

res <- interval(arrive, leave)
# same above
res <- arrive %--% leave

jsm <- interval(ymd(20201020, tz = "asia/shanghai"), ymd(20201231, tz = "asia/shanghai"))
jsm
int_overlaps(jsm, res)

?interveal</pre>
```

```
interval(start = NULL, end = NULL, tzone = tz(start))
start %--% end
is.interval(x)
int_start(int)
int_start(int) <- value
int_end(int)
int_end(int) <- value
int_length(int)
int_flip(int)
int_shift(int, by)
int_overlaps(int1, int2)</pre>
```

```
int_standardize(int)
int_aligns(int1, int2)
int_diff(times)
```

5.6

```
leap_year(2019)
ymd(20190101) + dyears(1)
ymd(20190101) + years(1)

leap_year(2020)
ymd(20200101) + dyears(1) #
ymd(20200101) + years(1)

lubridate

meeting <- ymd_hms("2020-12-01 09:00:00", tz = "asia/shanghai")
meeting <- meeting + weeks(0:5)
meeting %within% jsm</pre>
```

```
res / ddays(1)
res / dminutes(1)

res %/% months(1)
res %% months(1)
```

as.period

5.7.

```
as.period(res %% months(1))
jan31 <- ymd("2020-01-31")</pre>
jan31 + months(0:11)
lubridate
              NA
   %m+% %m-%
jan31 %m+% months(0:11)
jan31 %m-% months(0:11)
5.7
5.7.1
floor_date()
floor_date(today(),unit = 'year')
floor_date(today(),unit = 'month') # rollback
floor_date(today(),unit = 'week')
n <- 1
date <- today()</pre>
# current
current_start_date <- floor_date(date,unit = 'year')</pre>
current_start_date
date
# last year
last_start_date <- floor_date(date,unit = 'year') %m-% years(n)</pre>
last_start_date
last_end_date <- date %m-% years(n)</pre>
last_end_date
```

"month"

•

```
%m+% %m-%

as_date('2020-03-30') %m-% months(1)

today()

today() %m-% months(1)
```

```
bill_date <- as_date((as_date('2019-01-01'):as_date('2020-12-01')))
area <- sample(c(' ',' ',' ',' '), size = length(bill_date), replace = TRUE)
dt <- tibble::tibble(bill_date = bill_date ,money = sample(80:150,size = length(bill_date)
head(dt)
library(dplyr, warn.conflicts = FALSE)
y_{to_y} \leftarrow function(.dt, date, n = 1,...)
  date <- ymd(date)</pre>
  if(is.na(date)){
    stop(' 20200101')
  # current
 current_start_date <- floor_date(date,unit = 'year')</pre>
 last_start_date <- floor_date(date,unit = 'year') %m-% years(n)</pre>
 last_end_date <- date %m-% years(n)</pre>
 .dt %>% mutate( = case_when(between(bill_date,current_start_date,date) ~ " ",
               between(bill_date,last_start_date,last_end_date) ~ " ",
               TRUE ~ " ")) %>%
   filter( != " ") %>%
   group_by(...) %>%
   summarise( = sum(money,na.rm = TRUE)) %>%
   ungroup()
 #%>% pivot_wider(names_from = ' ',values_from = ' ')
```

5.7.

```
y_to_y(dt,date = '20200101',n = 1,area, )
```

5.7.2

```
c('2001/2/13 10:33','1/24/13 11:16') ;
```

```
library(lubridate)
library(tidyverse)

date1 <- c('2001/2/13 10:33','1/24/13 11:16')

myfun <- function(x){

    n_length <- length(x)
    res <- vector(length = n_length)

    for(i in 1:n_length){
        n <- strsplit(x[i],'/') %>% `[[`(1) %>% `[[`(1) if(str_length(n)==4){
        res[i] <- ymd_hm(x[i],tz = 'Asia/Shanghai')
        } else {
        res[i] <- mdy_hm(x[i],tz = 'Asia/Shanghai')
        }
    }
    as_datetime(res,tz = 'Asia/Shanghai')
}

myfun(date1)</pre>
```

5.7.3

```
testfun <- function(x,y){
  result <- data.frame() #
  n <- length(x)
  for( i in 1:n){
    res <- x[i]-y</pre>
```

A	В	C	D	4	Α	В	С	D
客户ID	电话	中奖日期		1	客户ID	积分码	扫的时间	扫码的地理位置
41464121	018****78836	2020/12/26 1:27:40		2	41611665	SH020B03Y723EA8C07E4	2020/12/19 23:03:17	山东省济宁市曲阜市
42054451	013****49940	2020/12/25 22:32:56		3	41610743	SH020B03Y3CFA9DE352C	2020/12/19 22:23:37	山东省泰安市泰山区
42054451	013****49940	2020/12/25 22:31:30		4	41060771	SH020B03Y793F0F1A191	2020/12/19 21:41:38	河南省新乡市凤泉区
42054451	013****49940	2020/12/25 22:29:39		5	41060771	SH020B03Y2BBB8F47D3A	2020/12/19 21:37:11	河南省新乡市凤泉区
15807447	013****38567	2020/12/25 22:20:38		6	41060771	SH020B03Y6E2F2EC4546	2020/12/19 21:34:48	河南省新乡市凤泉区
15807447	013****38567	2020/12/25 22:19:57		7	34480756	SH020B03Y5BD9719D73C	2020/12/19 21:21:37	河南省郑州市中牟县
42050249	013****63873	2020/12/25 20:00:18		8	41603246	SH020B03Y2154B67F070	2020/12/19 21:15:37	河北省石家庄市鹿泉区
42050249	013****63873	2020/12/25 20:00:00		9	1721670	SH020B03Y3198A8BF684	2020/12/19 20:54:18	山东省聊城市东阿县
42050249	013****63873	2020/12/25 19:59:29		10	41600826	SH020B03Y74DFB628459	2020/12/19 20:52:34	河北省邯郸市武安市
42050249	013****63873	2020/12/25 19:59:11		11	41600355	SH020B03Y2BC3AB80F07	2020/12/19 20:37:18	山东省聊城市莘县
42016168	018****89289	2020/12/25 19:57:09		12	41600082	SH020B03YA76A612B834	2020/12/19 20:27:56	河北省石家庄市鹿泉区
42016168	018****89289	2020/12/25 19:56:56		13	41599948	SH020B03Y38DCED7220A	2020/12/19 20:23:13	河北省邢台市柏乡县
42016168	018****89289	2020/12/25 19:56:33		14	29862508	SH020B03YDDDF5453699	2020/12/19 20:21:56	河南省濮阳市范县
42016168	018****89289	2020/12/25 19:56:19		15	41599651	SH020B03Y1816AA135A4	2020/12/19 20:13:42	山东省济南市平阴县
42016168	018****89289	2020/12/25 19:56:05		16	41599125	SH020B03Y07DC809648B	2020/12/19 19:55:05	河南省许昌市禹州市
41464121	018****78836	2020/12/25 19:32:42		17	41599109	SH020B03Y415D114431A	2020/12/19 19:54:34	河南省许昌市禹州市
41464121	018****78836	2020/12/25 19:31:39		18	34795025	SH020B03YC4E611BA2B5	2020/12/19 19:47:59	山东省潍坊市青州市
41464121	018****78836	2020/12/25 19:30:59		19	41598624	SH020B03Y0A2351BEDFA	2020/12/19 19:37:49	河北省邯郸市成安县
41464121	018****78836	2020/12/25 19:30:02		20	34795025	SH020B03YF54D86331B3	2020/12/19 19:30:05	山东省潍坊市青州市
12648036	018****97878	2020/12/25 19:24:06		21	38768669	SH020B03Y33F127FDC4D	2020/12/19 19:19:36	河南省濮阳市范县
7636479	015****02582	2020/12/25 19:08:19		22	41598060	SH020B03Y23A4826721A	2020/12/19 19:18:02	河南省郑州市荥阳市
7636479	015****02582	2020/12/25 19:08:05		23	41598060	SH020B03Y34E9E7ECAE6	2020/12/19 19:17:15	河南省郑州市荥阳市
7636479	015****02582	2020/12/25 19:07:52		24	41597920	SH020B03Y679146309C5	2020/12/19 19:11:45	山东省德州市陵城区
7636479	015****02582	2020/12/25 19:07:26		25	41597222	SH020B03Y26CEB850FBF	2020/12/19 18:54:54	山东省聊城市临清市
7636479	015****02582	2020/12/25 19:07:03		26	4666508	SH020B03YAACA815CA2C	2020/12/19 18:35:50	河南省驻马店市上蔡县
4937070	013****68165	2020/12/25 17:51:56		27	4856693	SH020B03Y79BEB31C3DD	2020/12/19 18:15:16	河南省新乡市卫滨区
41953771	018****02351	2020/12/25 17:45:33		28	4856693	SH020B03Y7B034E26C93	2020/12/19 18:13:37	河南省新乡市卫滨区
7413039	013****05728	2020/12/25 17:12:38		29	41459705	SH020B03Y31BBAC28C19	2020/12/19 17:39:30	北京市北京市大兴区
Chanti	0			-00	******	011000000000000000000000000000000000000		11

Figure 5.1:

```
res <- abs(res) %>% which.min() # res 0
kong <- data.frame( = x[i], = y[res])
result <- rbind(kong,result)

}
return(result)
}
res <- testfun(dt$ ,scan_dt$ )</pre>
```

```
testfun <- function(x,y){
    n <- length(x)
    result <- list()

for( i in 1:n){
    y <- y[x>y]
    res <- x[i]-y
    res <- res %>% which.min()
    kong <- data.frame( = x[i], = y[res])
    result[[i]] <- kong
}
return(result)
}</pre>
```

65

ID

```
testfun <- function(dt){</pre>
  x <- dt$
  y <- dt$
  n \leftarrow length(x)
  result <- list()
  for( i in 1:n){
    y \leftarrow y[x>y]
    res <- x[i]-y
    res <- res %>% which.min()
    kong <- data.frame( = x[i],</pre>
                                         = y[res])
    result[[i]] <- kong</pre>
  }
  result <- dplyr::bind_rows(result)</pre>
  return(result)
dtlist <- split(alldt,' ID')</pre>
purrr::map_dfr(dtlist,testfun)
```

5.8

- ${\rm https://cran.r-project.org/web/packages/lubridate/vignettes/lubridate.} \\ {\rm html}$
- https://www.rdocumentation.org/packages/lubridate/versions/1.7.8
- pdf https://rawgit.com/rstudio/cheatsheets/master/lubridate.pdf

Chapter 6

forcats

6.1

```
library(forcats)
vec1 <- c(' a',' b',' d',' f')
sort(vec1)
vec2 <- as_factor(c(' f',' d',' a',' b'))
sort(vec2)</pre>
```

: , , X .

Chapter 7

tidyr

tidyr tidyverse ,tidyr

•

7.1

```
## tidyverse
install.packages('tidyverse')

## tidyr:
install.packages('tidyr')

## github
## install.packages("devtools")
devtools::install_github("tidyverse/tidyr")

## CTEST CODE
```

7.2

```
library(tidyr)
```

tidyr 5

- pivot_longer() pivot_wider()
- unnest_longer() unnest_wider(),hoist()
- nest()
- separate(),extract() ,
- replace_na()

7.2.1

vignette("pivot"),

7.2.1.1

EXcel tidyr

Excel

col1	col2	col3	col4	col5	col6	col7
			v4 vb4			

" "

```
library(tidyr)
library(dplyr)
library(readr)
```

```
relig_income %>%
  pivot_longer(cols = !religion,names_to = 'income',values_to = "count")
```

- religion
- names_to
- values_to

7.2.

```
7.2.1.2
billboard %>%
 pivot_longer(
   cols = starts_with("wk"),
   names_to = "week",
   values_to = "rank",
   values_drop_na = TRUE
 )
names_prefix
                 names_transform
billboard %>%
 pivot_longer(
   cols = starts_with("wk"),
   names_to = "week",
   names_prefix = "wk",
   names_transform = list(week = as.integer),
   values_to = "rank",
   values_drop_na = TRUE,
   week
library(tidyverse, warn.conflicts = TRUE)
# method 1
billboard %>%
 pivot_longer(
   cols = starts_with("wk"),
   names_to = "week",
   names_transform = list(week = readr::parse_number),
   values_to = "rank",
   values_drop_na = TRUE,
```

```
# method 1
billboard %>%
  pivot_longer(
    cols = starts_with("wk"),
    names_to = "week",
    names_transform = list(week = readr::parse_number),
    values_to = "rank",
    values_drop_na = TRUE,
)

# method 2
billboard %>%
  pivot_longer(
    cols = starts_with("wk"),
    names_to = "week",
    values_to = "rank",
    values_drop_na = TRUE,
) %>%
  mutate(week = str_remove(week, "wk") %>% as.integer())
```

7.2.1.3

```
who %>% pivot_longer(
  cols = new_sp_m014:newrel_f65,
  names_to = c("diagnosis", "gender", "age"),
  names_pattern = "new_?(.*)_(.)(.*)",
  values_to = "count"
)
```

gender age

7.2.1.4

```
family <- tribble(
    ~family, ~dob_child1, ~dob_child2, ~gender_child1, ~gender_child2,
    1L, "1998-11-26", "2000-01-29", 1L, 2L,
    2L, "1996-06-22", NA, 2L, NA,
    3L, "2002-07-11", "2004-04-05", 2L, 2L,
    4L, "2004-10-10", "2009-08-27", 1L, 1L,
    5L, "2000-12-05", "2005-02-28", 2L, 1L,
)
family <- family %>% mutate_at(vars(starts_with("dob")), parse_date)
family
```

7.2.

```
family %>%
  pivot_longer(
   !family,
   names_to = c(".value", "child"),
   names_sep = "_",
    values_drop_na = TRUE
anscombe %>%
  pivot_longer(everything(),
  names_to = c(".value", "set"),
   names_pattern = "(.)(.)"
  ) %>%
  arrange(set)
pnl <- tibble(</pre>
 x = 1:4,
 a = c(1, 1, 0, 0),
 b = c(0, 1, 1, 1),
 y1 = rnorm(4),
 y2 = rnorm(4),
 z1 = rep(3, 4),
 z^2 = rep(-2, 4),
)
pnl %>%
 pivot_longer(
   !c(x, a, b),
   names_to = c(".value", "time"),
```

7.2.1.5

)

```
df <- tibble(id = 1:3, y = 4:6, y = 5:7, y = 7:9, .name_repair = "minimal")
df %>% pivot_longer(!id, names_to = "name", values_to = "value")
```

7.2.2

```
pivot_wider() pivot_longer()
```

names_pattern = "(.)(.)"

7.2.2.1

```
fish_encounters %>% pivot_wider(names_from = station, values_from = seen)

fish_encounters %>% pivot_wider(
  names_from = station,
  values_from = seen,
  values_fill = 0
)
```

7.2.2.2

```
warpbreaks <- warpbreaks %>% as_tibble()
warpbreaks %>% count(wool, tension)
```

values_fn

warpbreaks %>% pivot_wider(names_from = wool, values_from = breaks,values_fn= list(breaks)

7.2.2.3

```
production <- expand_grid(
    product = c("A", "B"),
    country = c("AI", "EI"),
    year = 2000:2014
    ) %>%
    filter((product == "A" & country == "AI") | product == "B") %>%
    mutate(production = rnorm(nrow(.)))
production

production %>% pivot_wider(
    names_from = c(product, country),
    values_from = production
)
```

names_sep names_prefix names_glue

7.2.

```
production %>% pivot_wider(
   names_from = c(product, country),
   values_from = production,
   names_sep = ".",
   names_prefix = "prod."
)

production %>% pivot_wider(
   names_from = c(product, country),
   values_from = production,
   names_glue = "prod_{product}_{country}"
)
```

7.2.2.4

```
us_rent_income %>%
pivot_wider(names_from = variable, values_from = c(estimate, moe))
```

7.2.3 json,html

```
jsonlite
vignette("rectangle")

library(tidyr)
library(dplyr)
library(repurrrsive)

users <- tibble(user = gh_users)
users
users %>% unnest_wider(user)
```

7.2.4

```
library(tidyr)
library(dplyr)
library(purrr)
```

7.2.4.1

```
df1 <- tibble(</pre>
 g = c(1, 2, 3),
 data = list(
   tibble(x = 1, y = 2),
   tibble(x = 4:5, y = 6:7),
    tibble(x = 10)
  )
)
df1
 data.frame()
df2 <- tribble(</pre>
  ~g, ~x, ~y,
  1, 1, 2,
   2, 4, 6,
   2, 5, 7,
   3, 10, NA
df2 \%\% nest(data = c(x, y))
#sample above
#df2 %>% group_by(g) %>% nest()
nest unnest
df1 %>% unnest(data)
```

7.2.5

```
mtcars_nested <- mtcars %>%
  group_by(cyl) %>%
  nest()

mtcars_nested
```

```
mtcars_nested <- mtcars_nested %>%
  mutate(model = map(data, function(df) lm(mpg ~ wt, data = df)))
mtcars_nested
```

7.2.

```
mtcars_nested <- mtcars_nested %>%
 mutate(model = map(model, predict))
mtcars_nested
7.2.6
7.2.6.1
library(tidyr)
df \leftarrow data.frame(x = c(NA, "a.b", "a.d", "b.c"))
df %>% separate(x, c("A", "B"))
     NA
df \leftarrow data.frame(x = c("a", "a b", "a b c", NA))
df %>% separate(x, c("a", "b"))
# The same behaviour as previous, but drops the c without warnings:
df %>% separate(x, c("a", "b"), extra = "drop", fill = "right")
df %>% separate(x, c("a", "b"), extra = "merge", fill = "left")
df %>% separate(x, c("a", "b", "c"))
df %>% separate(x, c("key", "value"), sep = ": ", extra = "merge")
```

Use regular expressions to separate on multiple characters:

df <- data.frame(x = c(NA, "a?b", "a.d", "b:c"))
df %>% separate(x, c("A", "B"), sep = "([.?:])")

7.2.6.2

```
df <- data.frame(x = c(NA, "a-b", "a-d", "b-c", "d-e"))
df %>% extract(x, "A")
df %>% extract(x, c("A", "B"), "([[:alnum:]]+)-([[:alnum:]]+)")
# [:alnum:]
```

7.2.6.3

```
df <- expand_grid(x = c("a", NA), y = c("b", NA))
df
df %>% unite("z", x:y, remove = FALSE)
# expand_grid
```

```
df %>% unite("z", x:y, na.rm = TRUE, remove = FALSE)
```

```
df %>%
  unite("xy", x:y) %>%
  separate(xy, c("x", "y"))
```

7.2.7

```
replace_na()
```

```
df <- tibble(x = c(1, 2, NA), y = c("a", NA, "b"))
df %>% replace_na(list(x = 0, y = "unknown"))
```

```
df %>% dplyr::mutate(x = replace_na(x, 0))
```

Chapter 8

dplyr

```
R Excel sql
sql R

• R
• R
• dbplyr sql

8.1

dplyr tidyverse ,dplyr
• mutate() ,
• select() ,
• filter()
• summarise()
• arrange()
```

```
## tidyverse
install.packages('tidyverse')

## tidyr:
install.packages('dplyr')

## github
## install.packages("devtools")
devtools::install_github("tidyverse/dplyr")

# CTEST CODE
```

8.3

```
library(dplyr)
```

8.3.1 filter

•

```
Excel species == "Droid"

starwars %>%
  filter(species == "Droid")
```

•

```
starwars %>%
  filter(species == "Droid", skin_color == "gold")

# same above
# starwars %>%
# filter(species == "Droid" & skin_color == "white")
```

SQL in Excel ""

8.3.

```
starwars %>%
 filter(species %in% c("Droid",'Clawdite'))
 1,&,!
       , | , & ! ,
library(nycflights13)
filter(flights, !(arr_delay > 120 | dep_delay > 120))
filter(flights, arr_delay <= 120, dep_delay <= 120)</pre>
# same above
filter(flights, arr_delay <= 120 & dep_delay <= 120)</pre>
# %in%
starwars %>%
 filter(!species %in% c("Droid",'Clawdite'))
8.3.2 select
               select()
starwars %>%
 select(name,height,mass,hair_color,skin_color,eye_color)
starwars %>%
 select(name : eye_color)
#same above
starwars %>%
```

select(1:6)
starwars %>%

select(c(1,2,4,5,7))

8.3.3 rename

```
rename()
starwars %>% rename(home_world = homeworld)
starwars %>% rename(home_world = homeworld,skincolor = skin_color)
8.3.4 relocate
    select()
# sex:homeworld height
starwars %>% relocate(sex:homeworld, .before = height)
8.3.5 mutate
starwars %>%
 mutate(bmi = mass / ((height / 100) ^ 2)) %>%
 select(name:mass,bmi)
starwars %>%
 mutate(bmi = mass / ((height / 100) ^ 2), newbmi = bmi *2) %>%
 select(name:mass,bmi,newbmi)
starwars %>% mutate(height = NULL)
8.3.6 arrange
          desc()
```

•

starwars %>%

arrange(desc(mass))

8.4.

```
starwars %>%
arrange(height,desc(mass))
```

8.3.7 group_by

```
group_by()
SQL group by ···
```

8.3.8 summarise

```
starwars %>%
  group_by(species) %>%
  summarise(
    n = n(),
    mass = mean(mass, na.rm = TRUE)
)
```

8.4

```
1. sql left join,inner join Excel Power Piovt
```

2.

3. Excle ,Excle R tidyverse rowwise()

8.4.1

```
left_join(),full_join,inner_join() vignette("two-table")
left_join() Excel VLOOKUP left join " " " " " "
```

•

```
left_join(),right_join(),full_join(),inner_join()
```

```
library("nycflights13")
# Drop unimportant variables so it's easier to understand the join results.
flights2 <- flights %>% select(year:day, hour, origin, dest, tailnum, carrier)
flights2 %>%
 left_join(airlines)
       on a.column = b.column
flights2 %>% left_join(planes, by = "tailnum")
left_join(x,y,by = c("a" = "b", "c" = "d")) xatoyb xctoyd
flights2 %>% left_join(airports, by = c("dest" = "faa"))
#flights2 %>% left_join(airports, c("origin" = "faa"))
          c("dest" = "faa", "cola" = "colb"))
anti_join()
semi_join()
df1 <- tibble(a=letters[1:20],b=1:20)</pre>
df2 <- tibble(a=letters,b=1:26)
df1 %>% semi join(df2)
df2 %>% anti_join(df1)
  1. intersect(x,y) x,y
  2. union(x,y) x,y
  3. setdiff(x,y) x y
(df1 \leftarrow tibble(x = 1:2, y = c(1L, 1L)))
(df2 \leftarrow tibble(x = 1:2, y = 1:2))
intersect(df1, df2)
union(df1, df2)
setdiff(df1, df2)
setdiff(df2, df1)
```

8.5.

8.4.2

```
purrr::reduce(),

dt1 <- data.frame(x = letters)
dt2 <- data.frame(x = letters,cola = 1:26)
dt3 <- data.frame(x = letters,colb = 1:26)
dt4 <- data.frame(x = letters,cold = 1:26)
dt5 <- data.frame(x = letters,cole = 1:26)

dtlist <- list(dt1,dt2,dt3,dt4,dt5)
purrr::reduce(dtlist,left_join,by='x')</pre>
```

8.5

```
df %>%
  group_by(g1, g2) %>%
  summarise(a = mean(a), b = mean(b), c = mean(c), d = mean(d))

across()

df %>%
  group_by(g1, g2) %>%
  summarise(across(a:d, mean))
```

8.5.1

across()

- .cols tidyr select()
- .fns purrr $\sim .x / 2$

```
starwars %>%
  summarise(across(where(is.character), ~ length(unique(.x))))
#
# starwars %>%
# summarise(length(unique(name)))
# starwars %>%
```

```
summarise(length(unique(hair_color)))
starwars %>%
  group_by(species) %>%
  filter(n() > 1) %>%
  summarise(across(c(sex, gender, homeworld), ~ length(unique(.x))))
starwars %>%
  group_by(homeworld) %>%
  filter(n() > 1) %>%
  summarise(across(where(is.numeric), ~ mean(.x, na.rm = TRUE)))
across()
df <- data.frame(g = c(1, 1, 2), x = c(-1, 1, 3), y = c(-1, -4, -9))
df %>%
  group_by(g) %>%
  summarise(across(where(is.numeric), sum))
8.5.2
       lambda
min_max <- list(</pre>
 \min = \min(.x, na.rm = TRUE),
 max = \mbox{-max}(.x, na.rm = TRUE)
starwars %>% summarise(across(where(is.numeric), min_max))
 .names
NB:
starwars %>% summarise(across(where(is.numeric), min_max, .names = "{.fn}.{.col}"))
starwars %>% summarise(across(where(is.numeric), min_max, .names = "{fn}.{col}"))
   .names
```

8.6.

```
starwars %% summarise(across(where(is.numeric), min_max, .names = "{fn}--{col}"))
8.5.3
        " " cur_column()
df \leftarrow tibble(x = 1:3, y = 3:5, z = 5:7)
mult <- list(x = 1, y = 10, z = 100)
df %>% mutate(across(all_of(names(mult)), ~ .x * mult[[cur_column()]]))
8.6
    dplyr
8.6.1
df \leftarrow tibble(x = 1:2, y = 3:4, z = 5:6)
df %>% rowwise()
group_by(),rowwise()
df \%\% mutate(m = mean(c(x, y, z)))
df %>% rowwise() %>% mutate(m = mean(c(x, y, z)))
data.table :
library(data.table)
dt \leftarrow data.table(x = 1:2, y = 3:4, z = 5:6)
dt[,m:=mean(c(x,y,z))][]
dt[,m:=mean(c(x,y,z)),by=.(x)][]
     " "rowwise()
                       summarise()
                                                  group_by()
```

```
df <- tibble(name = c("Mara", "Hadley"), x = 1:2, y = 3:4, z = 5:6)

df %>%
  rowwise() %>%
  summarise(m = mean(c(x, y, z)))

df %>%
  rowwise(name) %>%
  summarise(m = mean(c(x, y, z)))
```

8.6.2

c_across()

```
rf %>% mutate(total = sum(c_across(w:z)))
rf %>% mutate(total = sum(c_across(where(is.numeric))))

rf %>%
  mutate(total = sum(c_across(w:z))) %>%
  ungroup() %>%
  mutate(across(w:z, ~ . / total))
```

8.7

: $\label{lem:https://cloud.r-project.org/web/packages/dplyr/vignettes/grouping.html} $$\operatorname{group_by()}$,$

8.7.1

```
by_species <- starwars %>% group_by(species)
by_sex_gender <- starwars %>% group_by(sex, gender)
```

8.7.

```
mutate() group_by:
```

```
bmi_breaks <- c(0, 18.5, 25, 30, Inf)
starwars %>%
  group_by(bmi_cat = cut(mass/(height/100)^2, breaks=bmi_breaks)) %>%
  tally()
```

8.7.2

ungroup():

```
by_species %>%
  ungroup() %>%
  tally()
```

8.7.3

1.0.0

(.groups = "keep") (.groups = 'drop)

```
a <- by_species %>%
summarise(
   n = n(),
   height = mean(height, na.rm = TRUE),.groups='drop') %>%
group_vars()

b <- by_species %>%
summarise(
   n = n(),
   height = mean(height, na.rm = TRUE),.groups='keep') %>%
group_vars()

object.size(a)
object.size(b)
```

```
8.8
```

8.8.1

8.8.2 case when

```
case_when, sql case when
```

```
Dates <- as.Date(c('2018-10-01', '2018-10-02', '2018-10-03'))
case_when(
  Dates == '2018-10-01' ~ Dates - 1,
  Dates == '2018-10-02' ~ Dates + 1,
  Dates == '2018-10-03' ~ Dates + 2,
  TRUE ~ Dates
)</pre>
```

8.8.3

```
count()
```

```
df %% count(a, b)
# same above
df %>% group_by(a, b) %>% summarise(n = n())
```

```
starwars %>% count(species)
# same above
starwars %>% group_by(species) %>% summarise(n = n())
```

•

8.8.

```
n_distinct() length(unique(x))
x <- sample(1:10, 1e5, rep = TRUE)
length(unique(x))
n_distinct(x)
8.8.4
dplyr
          SQL2003
  • row_number(): rank(ties.method = "first")
  • min_rank(): rank(ties.method = "min")
  • dense rank(): min rank(),
  • percent_rank(): 01 min_rank()
                                       [0,1]
x \leftarrow c(5, 1, 3, 2, 2, NA)
row_number(x)
min_rank(x)
dense_rank(x)
percent_rank(x)
cume_dist(x)
8.8.5
    [[
nth(x, n, order_by = NULL, default = default_missing(x))
first(x, order_by = NULL, default = default_missing(x))
last(x, order_by = NULL, default = default_missing(x))
x <- 1:10
y <- 10:1
first(x)
last(y)
nth(x, 1)
nth(x, 5)
8.8.6 group
group_by(),group_map(), group_nest(), group_split(), group_trim()
  group_by(),group_split() group_by()
                                               group_by()
```

• group_by()

```
#group_by()
by_cyl <- mtcars %>% group_by(cyl)
by_cyl
# It changes how it acts with the other dplyr verbs:
by_cyl %>% summarise(
 disp = mean(disp),
  hp = mean(hp)
)
# group_by
                mutate
mtcars %>% group_by(vsam = vs + am) %>%
  group_vars()
  • group_map()
group map group modify, group walk
                                    purrr
# return a list
mtcars %>%
  group_by(cyl) %>%
 group_map(~ head(.x, 2L))
iris %>%
  group_by(Species) %>%
  group_modify(~ {
    .x %>%
      purrr::map_dfc(fivenum) %>%
      mutate(nms = c("min", "Q1", "median", "Q3", "max"))
 })
# group_walk
dir.create(temp <- tempfile())</pre>
iris %>%
  group_by(Species) %>%
  group_walk(~ write.csv(.x, file = file.path(temp, pasteO(.y$Species, ".csv"))))
list.files(temp, pattern = "csv$")
```

• group_cols()

unlink(temp, recursive = TRUE)

8.9. DPLYR 93

```
gdf <- iris %>% group_by(Species)
gdf %>% select(group_cols())
```

8.8.7

- \bullet between
- cummean cumsum cumall cumany

```
x <- c(1, 3, 5, 2, 2)
cummean(x)
cumsum(x) / seq_along(x)

cumall(x < 5)
cumany(x == 3)</pre>
```

• distinct

```
df <- tibble(
    x = sample(10, 100, rep = TRUE),
    y = sample(10, 100, rep = TRUE)
)

distinct(df, x)
distinct(df, x, .keep_all = TRUE)
distinct(df, diff = abs(x - y))</pre>
```

8.9 dplyr

Programming with dplyr:

 $\rm https://cloud.r-project.org/web/packages/dplyr/vignettes/programming.html$

• When you have the data-variable in a function argument (i.e. an env-variable that holds a promise2), you need to ** embrace ** the argument by surrounding it in doubled braces, like filter(df, {{ var }}).

The following function uses embracing to create a wrapper around summarise() that computes the minimum and maximum values of a variable, as well as the number of observations that were summarised:

```
var_summary <- function(data, var) {
  data %>%
    summarise(n = n(), min = min({{ var }}), max = max({{ var }}))
}
mtcars %>%
  group_by(cyl) %>%
  var_summary(mpg)
```

• When you have an env-variable that is a character vector, you need to index into the .data pronoun with [[, like summarise(df, mean = mean(.data[[var]])).

The following example uses .data to count the number of unique values in each variable of mtcars:

```
for (var in names(mtcars)) {
  mtcars %>% count(.data[[var]]) %>% print()
}
```

Note that .data is not a data frame; it's a special construct, a pronoun, that allows you to access the current variables either directly, with .data\$x or indirectly with .data[[var]]. Don't expect other functions to work with it.

8.9.1

```
my_summarise <- function(data, group_var) {
  data %>%
    group_by({{ group_var }}) %>%
    summarise(mean = mean(mass))
}
```

8.9. DPLYR 95

```
my_summarise2 <- function(data, expr) {
  data %>% summarise(
    mean = mean({{ expr }}),
    sum = sum({{ expr }}),
    n = n()
  )
}
```

```
my_summarise3 <- function(data, mean_var, sd_var) {
  data %>%
    summarise(mean = mean({{ mean_var }}), sd = mean({{ sd_var }}))
}
```

```
my_summarise4 <- function(data, expr) {
    data %>% summarise(
        "mean_{{expr}}" := mean({{ expr }}),
        "sum_{{expr}}" := sum({{ expr }}),
        "n_{{expr}}" := n()
    )
}
my_summarise5 <- function(data, mean_var, sd_var) {
    data %>%
        summarise(
        "mean_{{mean_var}}" := mean({{ mean_var }}),
        "sd_{{sd_var}}" := mean({{ sd_var }})
    )
}
```

```
my_summarise <- function(.data, ...) {
   .data %>%
     group_by(...) %>%
     summarise(mass = mean(mass, na.rm = TRUE), height = mean(height, na.rm = TRUE))
}
starwars %>% my_summarise(homeworld)
starwars %>% my_summarise(sex, gender)
```

Chapter 9

Loop structure

, ,

9.1

1 100

```
total <- 0
for(i in 1:100){
  total <- total+i
}
print(paste0('1 100 :',total))

# loop structure
# for (var in seq) {expr}</pre>
```

9.2

9.2.1

 \mathbf{R}

• Repeat

```
i <- 1
total <- 0
repeat{
   total <- total+i
   i <- i+1
   if(i > 100) {
      print(paste0(' :',total))
      break
   }
}
```

• while

```
i <- 1
total <- 0
while(i <= 1000){
   total <- total+i
    i <- i+1
}
print(paste0('1 1000 :',total))
# not run
# sum(1:1000)</pre>
```

• for

```
library(tidyverse)
df <- tibble(
    a = rnorm(10),
    b = rnorm(10),
    c = rnorm(10),
    d = rnorm(10)
)

output <- vector("double", ncol(df)) # 1. output
for (i in seq_along(df)) { # 2. sequence
    output[[i]] <- median(df[[i]]) # 3. body
}
output</pre>
```

```
R , output , , , vector (' ',' ',' ',' ') vector(length=5),
```

9.2.

```
seq_along ?seq .
hadely :
```

You might not have seen seq_along() before. It's a safe version of the familiar 1:length(l), with an important difference: if you have a zero-length vector, seq_along() does the right thing:

```
#wrong
seq_along(c())
1:length(c())
# generates the integer sequence 1, 2, ..., length(along.with). (along.with is usually abbreviate)
```

9.2.2 next break

next

```
for(i in letters[1:6] ){
  if(i == "d"){
   next
  }
  print(i)
}
```

• break

repeat

9.2.3

```
# not run
v <- vector(length = 100)
for(i in 1:10){
   for(j in 1:10){
     v[i*j] = i * j
   }
}</pre>
```

9.3

9.3.1

means <- c(0, 1, 2)

output <- double()</pre>

for (i in seq_along(means)) {

```
res <- 1:100
for(i in seq_along(res)){
res[i] <- res[i] * i
str(res)
9.3.2
    , for (i in seq_along(xs)), x[[i]]. :
for(i in xs), ,
for (nm in names(xs)), x[[nm]].
results <- vector("list", length(x))</pre>
names(results) <- names(x)</pre>
for (i in seq_along(x)) {
 name <- names(x)[[i]]
 value <- x[[i]]</pre>
9.3.3
```

9.3.

Chapter 10

Iteration

```
#library(purrr)
add1 <- function(x) {
    (x+1)*x
}
result1 <- map_dbl(1:1000,add1) # maP_dbl

#for
result2 <- vector(length = 1000)
for(i in 1:1000){
    result2[i] <- (i+1) * i
}
# test
#not run
#table(result1 == result2)
# all equal
identical(result1, result2)</pre>
```

10.2 map

```
    map_chr
    map_chr(.x, .f) ,map_chr
    map_dbl
    map_dbl(.x, .f) ,map_dbl ()
    map_df
    map_df(.x, .f),map_df , map_dfr(.x,.f),map_dfc(.x,.f)
    map_gl
    map_lgl(.x, .f)
    map_int
    map_df()
```

10.3.

10.3

reduce accumulate()

• reduce

, reduce merge()

```
reduce(1:100, + )
reduce(100:1, - )
```

list

```
n <- 10
dt1 <- data.frame(a=letters[n],b1=rnorm(n))
dt2 <- data.frame(a=letters[n],b2=rnorm(n))
dt3 <- data.frame(a=letters[n],b3=rnorm(n))
dt4 <- data.frame(a=letters[n],b4=rnorm(n))

reduce(list(dt1,dt2,dt3,dt4),merge)
# not run
# reduce(list(dt1,dt2,dt3,dt4),merge,by='a') same above</pre>
```

• accumulate

```
1:5 %>% accumulate(`+`)
accumulate(letters[1:5], paste, sep = ".")
```

10.4

```
possibly() safely(),
1 <- list(1,2,3,4,'5')</pre>
map(l,function(.x) .x+1)
1 <- list(1,2,3,4,'5')</pre>
test_fun <- safely(function(.x) .x+1)</pre>
map(l,test_fun)
safely()
           function ,
10.5
map2\quad pmap
li1 <- list(1,3,5)
1i2 \leftarrow list(2,4,6)
map2(li1,li2, `+`)
   map2\_dbl, map2\_chr, map2\_dfr
li1 <- list(1,3,5)
li2 <- list(2,4,6)
li3 <- list(2,4,6)
li1 \leftarrow c(1,3,5)
1i2 \leftarrow c(2,4,6)
1i3 \leftarrow c(2,3,4)
li <- list(li1,li2,li3)</pre>
pmap(li,sum)
```

10.6

• flatten

 $pmap_int,pmap_dbl,pmap_dfr$

10.6.

```
flatten() purrr package Examples
```

```
x <- rerun(2, sample(4))
x
x %>% flatten()
x %>% flatten_int()
# You can use flatten in conjunction with map
x %>% map(1L) %>% flatten_int()
# But it's more efficient to use the typed map instead.
x %>% map_int(1L)
```

• imap

imap()

 $imap_xxx(x, ...)$, an $indexed\ map$, is short hand for map2(x, names(x), ...) if x has names, or $map2(x, seq_along(x), ...)$ if it does not. This is useful if you need to compute on both the value and the position of an element.

Chapter 11

define function

```
library(tidyverse)
num <- sample(1:1000,1000)</pre>
res1 <- if_else(num <= 50,"1-50",
              if_else(num <= 100,"51-100",</pre>
                     if_else(num <= 150,"101-150",
                            if_else(num \le 200 ,"151-200",
                                   if_else(num >200,"200 ",' ')))))
# same above
# case_when(num <= 50 ~ '1-50',
        num <= 100 ~ '51-100',
         num <= 150 ~ '101-150',
         num <= 200 ~ '151-200',
         num > 100 ~ '200 '
# data.table
# data.table::fifelse()
# data.table::fcase() sql case when
    :
```

```
#library(tidyverse)
cut_function <- function(vecto,x,n){</pre>
  vec <- c(0)
  for(i in 1:n){
    kong <- i*x
    vec <- c(vec,kong)</pre>
  vec <- c(vec,Inf)</pre>
  labels <- c()</pre>
  j <- 1
  while (j \le n)  {
    labels[j] <- str_c(vec[j]+1,"-",vec[j+1])
    j <- j+1
  labels <- c(labels,paste0(vec[j],' '))</pre>
  res <- cut(x = vecto,breaks = vec,labels = labels) %>% as.character()
res2 <- cut_function(num,50,4)</pre>
# identical(res1,res2)
# > TRUE
```

11.1

,

```
add_ten <- function(x){
  res <- x+10
  return(res) #
}
add_ten(1)</pre>
```

, , , .

```
add_ten <- function(x){
  if(is.numeric(x)==TRUE){
    x+10
} else {</pre>
```

11.2.

```
print('Error, ')
}
```

11.2

```
has_name <- function(x) {
  nms <- names(x)
  if (is.null(nms)) {
    rep(FALSE, length(x))
  } else {
   !is.na(nms) & nms != ""
  }
}</pre>
```

11.2.1

```
if (this) {
# do that
} else if (that) {
 # do something else
} else {
  #
  if switch()
function(x, y, op) {
   switch(op,
    plus = x + y,
    minus = x - y,
    times = x * y,
    divide = x / y,
    stop("Unknown op!")
  )
}
```

11.3

, , , . .

```
mean_ci <- function(x, conf = 0.95) {
    se <- sd(x) / sqrt(length(x))
    alpha <- 1 - conf
    mean(x) + se * qnorm(c(alpha / 2, 1 - alpha / 2))
}
x <- runif(100)
mean_ci(x)
mean_ci(x, conf = 0.99)</pre>
```

11.3.1

, , .

- x, y, z: vectors.
- w: a vector of weights.
- df: a data frame.
- i, j: numeric indices (typically rows and columns).
- n: length, or number of rows.
- p: number of columns.

11.3.2

, , , , , ,

```
wt_mean <- function(x, w) {
  if (length(x) != length(w)) {
    stop("`x` and `w` must be the same length", call. = FALSE)
  }
  sum(w * x) / sum(w)
}</pre>
```

11.3.3 ...

 \mathbf{R}

```
sum(1,2,3,4,5,6,7,8,9,10)
stringr::str_c('a','b','d','e','f','g','h')
```

11.4.

```
commas <- function(...) stringr::str_c(..., collapse = ", ")
commas(letters[1:10])
#> [1] "a, b, c, d, e, f, g, h, i, j"

rule <- function(..., pad = "-") {
   title <- paste0(...)
   width <- getOption("width") - nchar(title) - 5
   cat(title, " ", stringr::str_dup(pad, width), "\n", sep = "")
}
rule("Important output")</pre>
```

11.4

11.4.1

```
, return() R for Data Science : 'return() ,
```

• A common reason to do this is because the inputs are empty:

```
complicated_function <- function(x, y, z) {
  if (length(x) == 0 || length(y) == 0) {
    return(0)
  }
  # Complicated code here
}</pre>
```

 Another reason is because you have a if statement with one complex block and one simple block. For example, you might write an if statement like this:

```
f <- function() {
   if (x) {
      # Do
      # something
      # that
      # takes
      # many
      # lines
      # to
      # express
} else {
      # return something short</pre>
```

11.4.2

```
: transformations and side-effects transformations
                                                                                side-
effects,
  R for Data Science
show_missings <- function(df) {</pre>
  n <- sum(is.na(df))</pre>
  cat("Missing values: ", n, "\n", sep = "")
  invisible(df)
  invisible()
                    \mathrm{d}\mathrm{f}
show_missings(mtcars)
              :
x <- show_missings(mtcars)</pre>
class(x)
dim(x)
```

```
mtcars %>%
  show_missings() %>%
  mutate(mpg = ifelse(mpg < 20, NA, mpg)) %>%
  show_missings()
```

11.5

The last component of a function is its environment. This is not something you need to understand deeply when you first start writing functions. However, it's important to know a little bit about environments because they are crucial to how functions work. The environment of a function controls how R finds the value associated with a name. For example, take this function:

11.6.

```
f <- function(x) {</pre>
               y. R ,
                        , R lexical scoping
                                                              y:
y <- 100
f(10)
y <- 1000
f(10)
https://r4ds.had.co.nz/functions.html#environment
http://adv-r.had.co.nz/
11.6
                 , group_by()
  https://dplyr.tidyverse.org/articles/programming.html
#library(tidyverse)
mean_mpg = function(data, group_col) {
  data %>%
    group_by(group_col) %>%
    summarize(mean_mpg = mean(mpg))
mtcars %>% mean_mpg(cyl)
mtcars %>% mean_mpg(gear)
my_summarise3 <- function(data, group_var,mean_var, sd_var) {</pre>
 data %>%
    group_by({{ group_var }}) %>%
    summarise(mean = mean({{ mean_var }}), sd = mean({{ sd_var }}))
}
res1 <- my_summarise3(data = mtcars,group_var = cyl,mean_var = carb,sd_var = gear)
my_summarise3(data = mtcars,group_var = am,mean_var = carb,sd_var = gear)
```

```
#
res2 <- mtcars %>%
    group_by(cyl) %>%
    summarise(mean=mean(carb),sd=mean(gear))
identical(res1,res2)
#res1 res2
```

 $my_summarise3()$