МИНОБРНАУКИ РОССИИ

Государственное образовательное учреждение высшего профессионального образования

Научно-Исследовательский Университет Новосибирский Государственный Университет (НИУ НГУ) физический факультет

Квалификационная работа на соискание степени магистра Кафедра автоматизации физико-технических исследований

Сизов Михаил Михайлович
Разработка системы автоматизации обработки данных для переносного мюонного плотномера

Научный руководитель: канд. техн. наук, с. н. с. Зюбин Владимир Евгеньевич, руководитель тематической группы языковых средств проектирования информационных систем управления

Содержание

Bı	Введение						
1	Предметная область						
	1.1	Методы измерения плотности грунта в геологии					
		1.1.1	Контактные методы	8			
		1.1.2	Бесконтактные методы	8			
	1.2	Физич	неская модель рождения мюонов и их пересноса в веществе	9			
		1.2.1	Первичные Космические лучи	11			
		1.2.2	Адронные распады	11			
		1.2.3	Перенос частиц в веществе	11			
	1.3	Устро	йство и работа мюонного плотномера	11			
		1.3.1	Принцип измерения плотности породы по тарировочной				
			кривой	11			
		1.3.2	Пилотный вариант мюонного скважинного плотномера .	12			
2	Алгоритмы генерации и обработки данных						
	2.1 Подходы к аппроксимации функций		оды к аппроксимации функций	15			
		2.1.1	Постановка линейной задачи меньших квадратов	16			
		2.1.2	Нелинейная задача наименьших квадратов	16			
		2.1.3	Критерий максимизации ошибки	16			
	2.2	Поста	новка задачи аппроксимации тарировочных кривых	16			
	2.3	2.3 Генерация синтетических данных		18			
		2.3.1	Программный пакет MUSIC	18			
		2.3.2	Генерация данных на основе целевой функции	19			
	2.4	Алгор	оитмы экстраполяции тарировочной кривой	19			
		2.4.1	Алгоритм Прони	20			
		2.4.2	Модификация жадного алгоритма	22			

		2.4.3	Алгоритм Левенберга-Марквардта	22	
		2.4.4	Тестирование алгоритмов	25	
		2.4.5	Комбинированный алгоритм	25	
	2.5	Архит	гектура системы автоматизации обработки данных	26	
3	Реализация системы обработки данных				
		3.0.1	Метод определения неоднородностей в почве	29	
3 a	клю	чение		30	

Введение

Один из основных параметров грунта, используемый в инженерной геологии и строительстве, — плотность. Информация о плотности грунта определяет объемы и состав работ при подготовке к строительству зданий, влияет на заключения о безопасности проводимых строительных работ, и качестве их выполнения [?,?].

Плотность грунта измеряется либо контактными методами через замер плотности образцов, либо бесконтактными радиационными методами.

Привлекательность первого способа – присущая непосредственным измерениям точность, недостаток — локальный характер измерения (характерный объем забора – 1 дм³), невозможность оценки объекта в целом, и вытекающий отсюда чрезмерный объем бурильных работ.

Радиационный метод обеспечивает комплексную оценку исследуемого объекта, используется в широком классе задач — спектрометрическом контроле газовых и водных сред, дефектоскопии, рентгено-структурном анализе материалов и пр [?]. В частности, метод подходит для определения объемного веса большинства петрографических типов пород, и практически незаменим для измерения плотности дисперсных грунтов.

Однако использование гамма-плотномеров, реализующих радиационный метод измерения, связано с серьезными требованиями к безопасности [?], вызванными наличием в составе устройства источника радиоактивного излучения, — необходимостью специально оборудованных мест хранения, доставки и множественных согласований с санитарно-эпидемиологическими службами. Эти обстоятельства стимулируют исследователей искать альтернативные подходы к измерению плотности грунта.

Один из недавно предложенных способов, исследуемый в Институте автоматики и электрометрии СО РАН, — мюонный скважинный плотномер [?].

За счет конструктивных решений удалось обеспечить высокую чувствительность датчика плотномера при измерении потока атмосферных мюонов, что позволяет сочетать приемлемое время измерения, безопасность эксплуатации прибора и комплексный характер получаемых оценок для плотности грунта.

На данный момент пользователь мюонного плотномера вынужден строить тарировочные кривые на миллиметровой бумаге и наносить данные на графики вручную. Соответственно, экстраполяция проводится «на глаз», что приводит к высокой погрешности при обработке данных.

Цель работы — разработка системы автоматизации обработки данных для мюонного плотномера. Данная цель достигается посредством решения следующих задач:

- Анализ специфики измерений мюонным плотномером, в том числе механизмов генерации и поглощения средой атмосферных мюонов
- Формулировка требований к системе автоматизации обработки данных
- Определение способов генерации синтетических тарировочных данных
- Определение алгоритмов построения тарировочных кривых и восстановления плотности грунта
- Разработка архитектуры системы автоматизации и интерфейса пользователя
- Реализация системы автоматизации обработки данных для переносного мюонного плотномера

Предложенные в работе комбинированный алгоритм аппроксимации тарировочных данных и алгоритм обработки данных измерений обеспечивают автоматическое построение тарировочных кривых мюонного плотномера и рассчет плотности измеренного грунта.

Работа описана в трех главах. В первой главе анализируется предметная область, описываются механизмы рождения атмосферных мюонов и их переноса в веществе, формулируются требования к системе автоматизации. Во

второй главе приводятся алгоритмы генерации синтетических данных, исследуются алгоритмы построения тарировочных кривых, предлагаются комбинированный алгоритм и архитектура системы автоматизации. Третья глава посвящена вопросам реализации.

Глава 1

Предметная область

Данные о плотности грунта служат основанием для оценки залежей полезных ископаемых и принятия решения о начале геологоразведки перспективных районов. На основании информации о плотности грунта определяются порядок, объемы и состав проектных работ при подготовке к строительству зданий и дорог, делаются заключения о безопасности проводимых строительных работ, качестве их выполнения и возможности ввода в эксплуатацию возведенных сооружений. При подготовке ряда объектов (фундаментов зданий, шоссе, железнодорожных насыпей) проводятся работы по уплотнению грунта, для определения объема которых необходимы измеренные и требуемые значения показателей плотности сухого грунта. Мониторинг плотности грунта позволяет контролировать и упреждать возникновение аварийных ситуаций при эксплуатации уже возведенных объектов, в частности, таких, как высотные здания, мосты, железнодорожные насыпи, линии метро, шахты, аэродромы.

1.1 Методы измерения плотности грунта в геологии

Плотность грунта измеряется либо контактными методами через непосредственный замер плотности образцов, либо бесконтактными, либо радиационными методами. В обоих случаях предполагается бурение исследуемого грунта.

1.1.1 Контактные методы

В ГОСТ-5180-84. "Грунты. Методы лабораторного определения физических характеристик" описаны следующие методы измерения плотности грунта — режущим кольцом, взвешивание в воде парафинированных образцов, и взвешивание мерзлых пород в нейтральных жидкостях. В зависимости от типа грунта, его сыпучести и содержания воды, выбирается тот или иной метод. Масса образца грунта оставляет от пары сотен грамм до нескольких килограмм. При этом, чтобы получить распределение плотности грунта проводится ряд параллельных замеров. Значение характеристик вычисляют как среднее арифметическое из результатов параллельных измерений. Разница между параллельными измерениями не должна превышать значений, указанных в приложении к ГОСТ-5180-84 [?]. Если разница превышает допустимую, количество измерений следует увеличить.

Главный недостаток контактных методов — локальный характер измерения плотности грунта, связанные с этим проблемы с определением неоднородностей (полости, каверны) в грунте. Во время эксплуатации объектов подобные неоднородности могут привести к обрушениям или осадке фундамента. Цена за низкую погрешность итоговых значений плотности — чрезмерный объем бурильных и лабораторных работ.

1.1.2 Бесконтактные методы

Метод радиоизотопного измерения плотности грунтов основан на зависимости между плотностью контролируемого грунта и характеристиками ослабления и рассеяния измеряемого потока энергии гамма-излучения.

Плотность грунта измеряется путем детектирования и регистрации плотности потока рассеянного первичного гамма-излучения (метод альбедо), ослабленного первичного гамма-излучения (метод абсорбции) или рассеянного и ослабленного первичного гамма-излучения (альбедно-абсорбционный метод).

Метод альбедо заключается в регистрации плотности потока гаммаквантов, рассеянных на электронах атомов вещества при взаимодействии потока энергии первичного гамма-излучения источника ионизирующего излучения с материалом грунта. Метод абсорбции — в детектировании плотности потока гамма-квантов, прошедших через слой материала между радиоактивным источником и детектором гамма-излучения. Альбедо-абсорбционный метод заключается в определении плотности потока гамма-квантов, рассеянных в объеме грунта и прошедших через слой между источником ионизирующего излучения и детектором гамма-излучения.

При проведении измерений радиоизотопными плотномерами, должны соблюдаться "Основные санитарные правила работы с радиоактивными веществами и другими источниками ионизирующих излучений", "Нормы радиационной безопасности", "Правила безопасности при транспортировании радиоактивных веществ".

Радиационный метод обеспечивает комплексную оценку исследуемого объекта, однако не лишен недостатков — используются радиоактивные вещества, представляющие опасность для здоровья.

Эти обстоятельства стимулируют исследователей искать альтернативные подходы к измерению плотности грунта. Один из недавно предложенных способов, исследуемый в Институте автоматики и электрометрии СО РАН [?] — использование в качестве источника радиации естественный радиационный фон — атмосферные мюоны. Обладая достоинствами радиационных методов, мюонный плотномер не использует активных источников радиации и, соответственно, безопасен для здоровья.

1.2 Физическая модель рождения мюонов и их пересноса в веществе

Источником атмосферных мюонов является взаимодействие высокоэнергетичных космических частиц (Первичные Космические Лучи) с верхними слоями атмосферы. В модели В. И. Зацепина и Н. В. Сокольской [?,?]. предполагается существование трех классов источников космических лучей — взрывов сверхновых и новых разного типа:

1. І класс — ударные волны от массивных взрывающихся скоплений (ассоциаций) сверхновых спектрального класса О или В;

- 2. II класс ударные волны от неассоциированных сверхновых звезд, взрывающихся в случайную межзвездную среду;
- 3. III класс определяется спектром меньшей жесткости, возможными физическими объектами в этом классе могли бы быть взрывы новых звезд.

Основные рассматриваемые данной моделью группы ядер — протоны (P), гелий (He), группа средних ядер — углерод, азот, кислород (C, N, O), группа тяжелых ядер от неона до серы (Ne–S) и группа очень тяжелых ядер от хлора до никеля (Z > 17).

Данная модель оспользует следующие положения:

- 1. Ядра космических лучей высоких энергий останавливаются в верхних слоях атмосферы за счет ядро-ядерный столкновений
- 2. При взаимодействии ультрарелятивистской частицы с ядром вторичные частицы вылетают в направлении первичной
- 3. Первичные Космические Лучи имеют равномерное пространственное распределение

Таким образом, в данном приближении, в верхних 10-15км атмосферы рождаются потоки вторичных космических частиц, образующих сферические волны, которые приходят на поверхность Земли.

В результате ядро-ядерного взаимодействия происходят превращения частиц

$$\pi \to \mu + \nu_{\mu}
K^{\pm} \to \mu^{\pm} + \nu_{\mu}(\nu_{\mu})
K^{\pm} \to \pi^{0} + \mu^{\pm} + \nu_{\mu}(\nu_{\mu})
K^{0} \to \pi^{\pm} + \mu^{\mp} + \nu_{\mu}(\nu_{\mu})$$
(1.1)

1.2.1 Первичные Космические лучи

1.2.2 Адронные распады

1.2.3 Перенос частиц в веществе

1.3 Устройство и работа мюонного плотномера

Атмосферные мюоны образуются при распаде пионов и каонов, рождающихся в атмосфере Земли под действием потока частиц первичных космических лучей, бомбардирующих атмосферу. В зависимости от энергии эти мюоны могут проникать на глубины до нескольких тысяч метров ниже уровня моря и более. Величина потока мюонов на различных глубинах определяется энергетическим спектром и составом космических лучей, а также физикой взаимодействия мюонов с веществом. Но общая закономерность — ее монотонное падение с глубиной. Второе значимое обстоятельство, позволяющее использовать мюоны в практических целях измерения плотности грунта, — относительное постоянство их интенсивности во времени. Поэтому в геологических задачах, когда точность регистрации интенсивности не более 3–5 процентов, изменениями в интенсивности пренебрегают.

1.3.1 Принцип измерения плотности породы по тарировочной кривой

В мюонных плотномерах используются абсорбционный метод, основанный на замере потока мюонов при прохождении через вещество. Интенсивность потока мюонов определяется средней плотностью горных пород над точкой наблюдения, поэтому в качестве единицы измерения глубины при наблюдениях в шахтах используют метры водного эквивалента, сокращенно — м. 6. э..

При измерении в исследуемом грунте делается скважина, в скважину опускается прибор, включающий сцинтилляционный датчик, и замеряется поток частиц на разных глубинах. Тарировочная зависимость интенсивности потока мюонов от глубины в м. в. э. позволяет найти глубину в м. в. э., соответству-

ющую измеренному потоку мюонов, а затем по фактическим глубинам, на которых делались замеры, определить среднюю плотность вещества между точками измерения:

$$\rho = \frac{H_{m.w.e.}(I_1) - H_{m.w.e.}(I_2)}{H_1 - H_2}$$
(1.2)

 $H_{m.w.e.}(I_1)$ — глубина в м. в. э. для интенсивности потока мюонов I_1 , измеренной на глубине H_1

 $H_{m.w.e.}(I_2)$ — глубина в м. в. э. для интенсивности потока мюонов I_2 , измеренной на глубине H_2 .

Однако известные приборы громоздки и требуют больших затрат времени на измерения, что делает их малопригодными для практического использования в инженерной геологии и строительстве.

Для повышения точности измерений необходимо учитывать и свести к минимуму статистическую погрешность регистрации скорости счета и систематическую погрешность, возникающую при изготовлении скважины в зависимости от свойств грунта и диаметра скважины.

1.3.2 Пилотный вариант мюонного скважинного плотномера

Рисунок 1.1: Датчик мюонного плотномера

В целях снижения временных затрат на измерения с понижением погрешности была предложена конструкция датчика мюонного скважинного плотномера (Рис. 1), включающая сцинтилляционный детектор (1) с оболочкой (2) и

стеклом окна (3), фотоумножитель (Φ ЭУ) (4), усилитель-дискриминатор (5) и пульт управления (6).

Физическая длина сцинтилляционного детектора выбирается из следующих ограничений. Сцинтилляционная вспышка, возникшая на максимальном удалении от фотокатода ФЭУ при взаимодействии с мюоном, должна при достижении фотокатода иметь достаточно высокий уровень, позволяющий отделить это событие от тех сцинтилляционных вспышек, обусловленных естественной радиоактивностью исследуемой породы, которые возникающих в непосредственной близости от ФЭУ. Это условие ограничивают длину сцинтилляционного детектора сверху и зависит от коэффициента ослабления света сцинтилляции, который для различных сцинтилляционных материалов может быть определен расчетом или экспериментально.

В усилителе-дискриминаторе предусмотрен регулируемый по пространственному разрешению плотности порог дискриминации. Это позволяет исключить при измерении вклад естественной радиоактивности в зависимости от радионуклидов, содержащихся в исследуемом грунте, а также регулировать длину рабочего участка сцинтилляционного детектора, тем самым настраивая разрешение под требования задачи.

В датчике могут быть использованы неорганические, органические, пластические и жидкие сцинтилляционные материалы, что позволяет варьировать как габариты датчика, так и его стоимость.

Рисунок 1.2: Фотография мюонного плотномера

Предложенная конструкция мюонного скважинного плотномера была реализована в пилотном варианте (1.2). Плотномер имеет герметичный металлический корпус, рассчитанный под диаметр обсадной трубы 76 мм. В качестве сцинтилляционного материала использован NaJ(Tl). В состав прибора включен фотоэлектронный умножитель ФЭУ-93 и усилитель-дискриминатор, выполненный на триггере Шмидта, выход которого согласован с блоком управления. Блок управления и регистрации представляет собой серийно выпускаемый счетчик импульсов от радиоизотопного плотномера ППГР-1. Питание плотномера осуществляется от портативного приборного аккумулятора 12 В, 3 А*ч. Эксплуатационные характеристики макетного варианта были опробованы при замере зависимости интенсивности потока мюонов от глубины, на воде.

Резюмируя достоинства мюонного плотномера следует отметить:

- Экологическую и биологическую безопасность прибора и связанную с этим простоту эксплуатации при хранении, транспортировке. Отсутствие необходимости в согласованиях его использования с санитарноэпидемиологическими службами.
- Простоту калибровки датчика, не требующей специальных приспособлений. Калибровку проводят в открытых естественных водоемах, на воде жидкости с низким коэффициентом сжатия.
- Существенное снижение (до двух порядков) объема буровых работ за счет интегрального характера обследования, значимое особенно в случае дисперсионных грунтов.
- Практически приемлемую погрешность (порядка 3%) и продолжительность измерений (не более 60 минут для глубин до 20 м. в. э.).
- Компактную конструкцию прибора (длина 0.9 м, масса 7 кг) и простоту его эксплуатации в автономном режиме в течение 8 часов непрерывной работы.

Глава 2

Алгоритмы генерации и обработки данных

В этой главе описываются постановки задач аппроксимации данных, а также исследованные алгоритмы генерации синтетических данных и экстраполяции тарировочных данных.

2.1 Подходы к аппроксимации функций

Метод наименьших квадратов - один из базовых методов для оценки неизвестных параметров моделей по набору данных, при этом исследуется на минимум следующая функция

$$s(\vec{p}) = \frac{1}{2} \sum_{i=1}^{N} \phi_i(x)^2$$
 (2.1)

Где \vec{p} — вектор оцениваемых параметров модели, $\phi_i(x) = f(x_i, \vec{p}) - y_i$ — функция, аппроксимирующая значения y_i в точках x_i .

Во многих случаях существует аналитическое решение для системы M уравнений $m \in [0..M]$

$$\sum_{t=1}^{n} (y_t - f(x_t, \vec{p})) \frac{\partial f(x_t, \vec{p})}{\partial b_m} = 0.$$

2.1.1 Постановка линейной задачи меньших квадратов

Если зависимость модели от параметров \vec{b} имеет вид

$$y_t = \sum_{j=1}^{M} p_j x_j + \epsilon_t = x_t^T b + \epsilon_t,$$

то такая задача называется линейной. Эта задача решается аналитически, её решение можно найти в книгах по статистике, например [].

2.1.2 Нелинейная задача наименьших квадратов

В общем случае, решения системы дифференциальных уравнений нет и применяются численные методы решения оптимизационных задач, основанные на градиентном спуске.

2.1.3 Критерий максимизации ошибки

Известно, что при мягкое излучение поглощается в одном-двух метрах породы [ссылка], мягкое излучение обладает меньшей проникающей способностью, чем мюоны, но оказывает влияние на измерение(статистическая погрешность), поэтому измерения небольших глубинах (до нескольких метров) должно меньше учитываться для тарировки. Напротив, ошибки на больших глубинах должны учитываться сильнее, поскольку значение интенсивности меньше в разы (в е раз на 10 м. в. э.). Такими свойствами обладает критерий Зюбина-Петухова, минимизирующий следующую функцию:

$$s(\vec{p}) = \sum_{t=0}^{N} \left| \frac{f(x_t, \vec{p}) - y_t}{\min(f(x_t, \vec{p}), y_t)} \right|^2 \frac{100\%}{N} \to \min$$

2.2 Постановка задачи аппроксимации тарировочных кривых

Качество обработки результатов измерения существенно влияет на погрешность получаемых результатов, которая в первую очередь определяется

качеством восстановления зависимости интенсивности потока мюонов от глубины в м. в. э.

Тарировочные данные, полученные при получении тарировочной кривой на воде, показывают, что интенсивность потока мюонов падает монотонно с глубиной, а первая производная интенсивности монотонно возрастает от отрицательных значений, к нулю. Этот факт послужил основанием для отказа от сплайновой интерполяции, практикуемой ранее. Используя решение однородного уравнения переноса, имеющего экспоненциальный характер, было решено искать целевую функцию в виде суммы экспонент:

$$f(t) = \sum_{j=0}^{M} a_j \exp(-b_j t), a_j \ge 0, b_j \ge 0$$
 (2.2)

В качестве критерия была выбрана следующая норма (Зюбина-Петухова):

$$s(\vec{a}, \vec{b}) = \sum_{i=0}^{N} \left| \frac{f(a_j, b_j, i) - y_i}{\min(f(a_j, b_j, i), y_i)} \right|^2 \frac{100\%}{N} \to \min$$
 (2.3)

Данный критерий похож на взвешенную задачу наименьших квадратов нелинейных функций, в иностранной литературе можно встретить название Weightened Non-Linear Least Squares Problem. Эта задача отличается от задачи минимизации наименьших квадратов делителем зависящим от номера измерения:

$$w(\vec{a}, \vec{b}) = \sum_{i=0}^{N} \frac{|f(a_j, b_j, i) - y_i|^2}{w_i} \to min$$

Один из способов решения задачи — взвешивание измерений, и дальнейшее использование любого из существующих методов для нахождения наименьших квадратов нелинейных функций.

Однако, поскольку в критерии Зюбина-Петухова в знаменателе находится функция зависящая от минимизируемых параметров, данный подход не работает. Упростим k-е слагаемое выражения (для краткости опустим постоянные множители N, 100%) :

$$\left| \frac{f(a_j, b_j, k) - y_k}{\min(f(a_j, b_j, k), y_k)} \right|^2 = \begin{cases} \left| 1 - \frac{y_k}{f(a_j, b_j, k)} \right|^2, f(a_j, b_j, k) < y_k \\ \left| 1 - \frac{f(a_j, b_j, k)}{y_k} \right|^2, f(a_j, b_j, k) > y_k \end{cases}$$

Таким образом, разбивая 2M-мерное пространство параметров \vec{a}, \vec{b} на две области, мы можем сформулировать критерий в терминах задачи наименьших квадратов нелинейных функций. Рассмотрим кусочно-гладкую функцию $\phi(\vec{a}, \vec{b})$:

$$\phi(\vec{a}, \vec{b}) = \begin{cases} \frac{y_k}{f(a_j, b_j, k)}, f(a_j, b_j, k) < y_k \\ \frac{f(a_j, b_j, k)}{y_k}, f(a_j, b_j, k) > y_k \end{cases}$$

Решая задачу о наименьших квадратах для функции $\phi(\vec{a}, \vec{b})$ на постоянном векторе данных, заполненным единицами получаем решение для минимизации нормы Зюбина-Петухова, используя стандартные методы: $v(\vec{a}, \vec{b}) = \sum_{i=0}^{N} \left| 1 - \phi(\vec{a}, \vec{b}) \right|^2 \to min$

2.3 Генерация синтетических данных

Получение большого набора тестовых измерений (исходных данных для тарировочных кривых) сопряжено с рядом трудностей. Поскольку плотномер находится в активной разработке, большую часть времени прибор недоступен для проведения тестовых измерений. Кроме того, примерное время серии измерений составляет около часа. Соответственно, для получения большего набора данных время пропорционально растёт.

Ввиду перечисленных сложностей, предложено в качестве тестовых данных для алгоритмов использовать синтетические данные. Было рассмотрено два подхода моделирования данных – полная симуляция потока мюонов и генерация зашумленных данных на основе известной целевой функции (суммы монотонно убывающих экспонент).

2.3.1 Программный пакет MUSIC

В рамках работы был исследован ряд статей и монографий описывающих подходы и существующие решения по моделированию мюонов <ссылки>. В результате в качестве ПО для генерации потока мюонов был выбран программный пакет MUSIC (MUon SImulation Code). Он обладает рядом достоинств – результаты его моделирования находятся в соответствии с экспериментальными данными в широкой области энергий от нескольких ГэВ до 1

ТэВ (тогда как ряд моделей <ссылка> обладают недостатком мюонов в определенных областях энергий). Данный программный пакет доступен бесплатно, доступен его исходный код, автор пакета Кудрявцев В. А. <ссылка> дал несколько советов по моделированию потока мюонов в среде.

Программный пакет MUSIC проводит моделирование в 3х измерениях с помощью метода Монте-Карло. Взаимодействие мюонов с материей с высокими потерями энергии рассматриваются как стохастические процессы. При этом учитываются угловое отклонение и смещение мюонов из-за множественного рассеяния на ядрах атомов, потери энергии на тормозное излучение и неупругое рассеяние. В данной работе для каждого тестового измерения проводилась симуляция 5000 мюонов и из статистики определялась вероятность выживания мюонов на заданной глубине. Для тестирования алгоритмов было проведено 34 серии измерений по 10 измерений в серии.

2.3.2 Генерация данных на основе целевой функции

Проверка алгоритмов на основе симуляции потока мюонов обладает одним недостатком – неизвестна зависимость флуктуаций от кривой зависимости интенсивности потока мюонов от глубины. По этой причине была проведена другая серия синтетических измерений. В этой серии из допустимого диапазона параметров случайно определялись параметры экспонент, определялся "поток мюонов"на глубине и затем к этим данным добавлялся шум в пределах 5% относительной погрешности.

2.4 Алгоритмы экстраполяции тарировочной кривой

В ходе работы были рассмотрены следующие алгоритмы:

- Прони-подобные алгоритмы
- Алгоритм Левенберга-Марквардта
- Модификация жадного алгоритма

2.4.1 Алгоритм Прони

Алгоритм Прони был разработан Гаспаром Рише де Прони в 1795 году. Чаще всего этот метод рассматривается в качестве метода анализа сигналов (выделения экспоненциально–затухающих синусоидальных гармоник), но также может применяться и в других областях, например при определении количества вещества в фармакинетике [?]

Подход метода Прони - в преобразовании экспоненциальных выражений к нелинейной алгебраической системе уравнений и дальнейшем преобразовании их в большее количество линейных алгебраических уравнений, которые могут быть решены методом наименьших квадратов. В предположении, что данные аппроксимируются суммой экспонент с 2М неизвестными

$$f(t) = \sum_{j=0}^{M} a_j \exp(-b_j t)$$
 (2.2)

Пусть $\mu_j = exp(-b_j)$, тогда выражение (2.2) можно представить в виде

$$f(t) = a_0 \mu_0^t + a_1 \mu_0^t + \ldots + a_m \mu_M^t$$
 (2.4)

Метод Прони накладывает дополнительные ограничения на измерение данных — данные должны измеряться с равными интервалами и количество точек измерений $N \geq 2M$. В общем случае абсциссы данных перенормируются $t \to k = 0 \dots N-1$, в случае с экспериментальными данными мюонного плотномера перенормировка не требуется, т. к. измерения на воде проводятся каждый метр начиная от уровня поверхности воды (нулевая глубина). После подстановки получаем :

$$f_{0} \approx a_{0}\mu_{0}^{0} + a_{1}\mu_{1}^{0} + \dots + a_{M}\mu_{M-1}^{0}$$

$$f_{1} \approx a_{0}\mu_{0}^{1} + a_{1}\mu_{1}^{1} + \dots + a_{M}\mu_{M-1}^{1}$$

$$f_{2} \approx a_{0}\mu_{0}^{2} + a_{1}\mu_{1}^{2} + \dots + a_{M}\mu_{M-1}^{2}$$

$$\vdots$$

$$f_{N-1} \approx a_{0}\mu_{0}^{N-1} + a_{1}\mu_{1}^{N-1} + \dots + a_{M}\mu_{M-1}^{N-1}$$

$$(2.5)$$

Для разрешения этой нелинейной системы алгебраических уравнений, введем временную переменную μ и составим уравнение

$$(\mu - \mu_0) (\mu - \mu_1) \cdots (\mu - \mu_{M-1}) = 0 \tag{2.6}$$

где $\mu_0,\mu_1,\dots,\mu_{M-1}$ — корни алгебраического уравнения

$$\alpha_0 \mu^M + \alpha_1 \mu^{M-1} + \alpha_2 \mu^{M-2} + \dots + \alpha_{M-1} \mu^1 + \alpha_M \mu^0 = 0$$
 (2.7)

В уравнении (2.7) $\alpha_i = f(\mu_0, \mu_1, ... \mu_{M-1})$ — неизвестные коэффициенты, которые можно получить из системы N-M уравнений

$$f_{M}\alpha_{0} + f_{M-1}\alpha_{1} + f_{M-2}\alpha_{2} + \dots + f_{0}\alpha_{M} \approx 0$$

$$f_{M+1}\alpha_{0} + f_{M}\alpha_{1} + f_{M-1}\alpha_{2} + \dots + f_{1}\alpha_{M} \approx 0$$

$$\vdots$$

$$f_{N-1}\alpha_{0} + f_{N-2}\alpha_{1} + f_{N-3}\alpha_{2} + \dots + f_{N-M-1}\alpha_{M} \approx 0$$

$$(2.8)$$

Значения f_i определены из результатов измерений, и поскольку $N \geq 2M$, данная система является переопределенной линейной системой уравнений.

После определения коэффициентов α_i , коэффициенты μ_i (и соответствующие им коэффициенты b_i) находятся как корни полинома (2.4). После подстановки коэффициентов μ_i в (2.5) получаем еще одну переопределенную линейную систему с неизвестными коэффициентами a_0, a_1, \ldots, a_M , которую также можно разрешить с помощью метода наименьших квадратов.

Данный алгоритм имеет следующие модифакции — Алгоритмы Кунга, Зейгера-МакЕвена, Осборна [?, ?, ?], которые были реализованы на языке остаve и протестированы на экспериментальных и синтетических данных вместе с оригинальным алгоритмом. В результатах при аппроксимации двумя и более экспонентами при решении полинома (2.4) возникают комплексные μ_i , которым соответствуют синусоидальные гармоники, что противоречит физической модели измерения.

По этой причине, в дальнейшем данное семейство алгоритмов не рассматривается.

2.4.2 Модификация жадного алгоритма

Аппроксимация проводится в два этапа. На первом этапе находятся базовые экспоненты интерполяции. Поиск базовых экспонент проводится перебором настроечного δ — параметра, начиная с экспоненты с наименьшим значением b_i . Экспонента строится по двум точкам, так, чтобы она проходила через крайнюю правую тарировочную точку (x_j, y_j) и точку, расположенную ниже следующей тарировочной точки (x_{j-1}, y_{j-1}) на величину, задаваемую настроечным δ -параметром. Если коэффициенты a_i, b_i удовлетворяют условию (2.2), то найденная экспонента вычитается из исходной кривой. Если значения полученной кривой положительны, то для нее запускается новая итерация. В противном случае найденная экспонента бракуется и делается новая попытка построить экспоненту, но уже с использованием следующей точки (x_{j-2}, y_{j-2}) . После завершения процедуры, проверяется условие Зюбина-Петухова (2.3). В случае нахождения нового минимума решение фиксируется. Решение ищется для δ -параметра, лежащего в диапазоне $[\delta_{min}; \delta_{max}]$.

На втором этапе проводится оптимизация степенных коэффициентов, найденных экспонент. Как и на первом этапе оптимизация проводится по критерию Зюбина-Петухова.

Подробнее работа алгоритма изображена на блок-схеме (2.1)

2.4.3 Алгоритм Левенберга-Марквардта

Алгоритм Левенберга-Марквардта используется для оптимизации функций вида

$$F(x) = \frac{1}{2} \sum_{i=1}^{N} \phi_i(x)^2$$
 (2.1)

при этом используется алгоритм градиентного спуска

- 1. Задается начальное приближение $\vec{x_0}$ и точность рассчета ϵ
- 2. Рассчитывается $\vec{x_{i+1}} = \vec{x_i} \gamma \nabla F(\vec{x_i})$
- 3. Проверяются условия $|\vec{x_{i+1}} \vec{x_i}| > \epsilon, |F(\vec{x_{i+1}}) F(\vec{x_i})| > \epsilon$ если условия верны, то i = i+1 и выполняется шаг 2, иначе итоговый вектор $\vec{x} = \vec{x_{i+1}}$.

Рисунок 2.1: Блок-схема жадного алгоритма

Обозначим через $J(x)m \times n$ -матрицу Якоби для f(x) и пусть $G_i(x)$ — матрица Гессе для $f_i(x)$. Тогда выражения для градиента g(x) и матрицы Гессе G(x) функции (2.1) будут выглядеть следующим образом :

$$g(x) = J(x)^{T} f(x);$$

$$G(x) = J(x)^{T} J(x) + \sum_{i=1}^{M} f_{i}(x) G_{i}(x).$$
(2.9)

Обозначим через x_k текущую оценку решения задачи минимизации функции (2.1) тогда ньютоновская система в силу (2.9) примет вид

$$(J_k^T J_k + Q_k) p_k = -J_k^T f_k (2.10)$$

Её решением будет вектор p_N — ньютоновское направление. В случае алгоритма Ньютона-Гаусса оно аппроксимируется решением системы

$$(J_k^T J_k) p_k = -J_k^T f_k (2.11)$$

Данная задача разрешима и включает только первые производные от f

В алгоритме Левенберга-Марквардта направление поиска определяется как решение системы уравнений вида

$$(J_k^T J_k + \lambda_k I) p_k = -J_k^T f_k \tag{2.12}$$

где λ_k - некоторое неотрицательное число. В этом методе шаг вдоль p_k всегда полагается единичным, т.е. очередная точка $x_{k+1} = x_k + p_k$. Монотонное убывание минимизируемой функции достигается за счет подбора «хороших» значений λ_k . При $\lambda_k = 0$, направление будет направлением Гаусса-Ньютона, когда $\lambda_k \to \infty$ норма p_k стремится к нулю, и вектор p_k в пределе становится параллельным антиградиенту. Неравенство $F(x_k + p_k) < F_k$ можно обеспечить выбрав λ_k достаточно большим. Однако при этом теряется информация о кривизне, и проявляются недостатки метода градиентного спуска — в места пологого наклона необходимо делать большие шаги, чем в случае с крутым наклоном. Марквардт ввел модификацию в алгоритм Левенберга, учитывающую кривизну.

$$\left(J_k^T J_k + \lambda_k diag\{J^T(\vec{x_k})J(\vec{x_k})\}\right) p_k = -J_k^T f_k \tag{2.13}$$

Затем с вектором p_N проводится процедура градиентного спуска.

2.4.4 Тестирование алгоритмов

Исследованные алгоритмы были реализованы на языках octave (Левенберг-Марквардт, Прони), Python (Численный перебор параметров), LabVIEW (модификация жадного алгоритма). Алгоритмы были протестированы на 68 сериях измерений по 10 измерений в каждой серии. 34 серии были сгенерированы с помощью метода Монте-Карло, 34 с помощью генерации целевых функций.

Результаты тестирования представлены на графике (2.2)

Рисунок 2.2: Результаты тестирования на алгоритмах

На данном графике по оси абсцисс отображены номера серий измерений (от 0 до 33) по оси ординат - значения ошибок на данных при полученных параметрах экспонент.

На уровне около 2% находится график оригинальных экспонент без шума. В среднем алгоритм Левенберга-Марквардта получает результат лучший, чем оригинальные экспоненты, однако на ряде точек перебор параметров и модификация жадного алгоритма показывают меньшую погрешность. По этой причине был предложен и реализован комбинированный алгоритм.

2.4.5 Комбинированный алгоритм

Предложенный комбинированный алгоритм состоит из двух частей:

В первой части вычисляются начальные оценки a_i, b_i параметров экспонент с помощью численного перебора и модификации жадного алгоритма. Затем вычисленные значения передаются в качестве первичных оценок в алгоритм Левенберга-Марквардта и модифицированный алгоритм Левенберга-Марквардта. Затем из первичных оценок и результатов работы алгоритмов выбираются параметры экспонент, на которых норма (2.3) принимает минимальное значение, эти параметры возвращаются в качестве результата работы алгоритма (2.3).

Рисунок 2.3: Схема комбинированного алгоритма

2.5 Архитектура системы автоматизации обработки данных

Рабочее место оператора состоит из <>. Оператор получает файл с тарировочными кривыми, затем APM оператора считает рисует график проводится измерение

Глава 3

Реализация системы обработки данных

Программная реализация алгоритмов мюонного скважинного плотномера выполнена с использованием программного пакета LabVIEW, библиотеки, написанной на языке С++ и алгоритмах, основанных на градиентном спуске, реализованных на матричном языке octave. На (3.1) представлен интерфейс оператора по вводу и обработке тарировочных данных. Тарировочные данные вводятся таблично. После введения данных проводится контроль их корректности. При запуске начальной аппроксимации (кнопка «Аппроксимировать») отображается аппроксимационная кривая с наименьшей погрешностью, график погрешности в зависимости от текущего параметра и значение погрешности. При запуске оптимизационного алгоритма (кнопка «Подстройка пар») отображается процент выполнения жадного алгоритма, график изменения погрешности, найденные компоненты аппроксимирующей суммы экспонент и числовое значение погрешности. Корректировка настроек алгоритма начальной аппроксимации и оптимизационного алгоритма производится через переключатели «Изменить настройки» и «изменить коэффициенты» соответственно. Переход на экран обработки измерений производится по кнопке «Перейти на другой экран». Действия оператора по изменению данных и их сохранению контролируются. По выходу из программы (кнопка «Конец работы») проверяется, есть ли несохраненные изменения, и в случае наличия таковых, оператору предлагается их сохранить.

Рисунок 3.1: Интерфейс оператора по вводу и обработке тарировочных данных

Интерфейс оператора по обработке измерений (3.2) предоставляет возможность ввода измеренных данных, проверку их корректности, а также, графическое и табличное отображение результатов обработки. Введенные данные измерений и результат обработки можно сохранить в файле, а также, вывести на принтер (кнопка «Распечатать») или скопировать для экспорта в другое приложение (кнопка «Копировать в буфер обмена»).

Рисунок 3.2: Интерфейс оператора по обработке измеренных данных

При анализе структуры созданного ПО выявлена возможность более тесной интеграции с пультом управления. Это позволило бы автоматизировать ввод данных, их оперативный обсчет и управление временем измерений.

3.0.1	Метод определения	неоднородностей в почве
-------	-------------------	-------------------------

Заключение

Научная новизна Практическая ценность Перспективы развития Основные результаты работы заключаются в следующем.

- 1. На основе анализа . . .
- 2. Численные исследования показали, что ...
- 3. Математическое моделирование показало ...
- 4. Для выполнения поставленных задач был создан ...

И какая-нибудь заключающая фраза.