

Introduction to organic chemistry IOC

Topics included:

- (I) Nomenclature
- (2) GOC-I (Electronic displacement effects)
- (3) GOC- II (Stability of intermediates)
- (3) GOC-III (Acidity & Basicity)
- (4) Isomerism

Basicity/Basic Strength \longrightarrow $B \xrightarrow{H^{+}} BH$ $B \xrightarrow{K^{+}} BH$ Base Conjugate acid

Basicity
$$\propto$$
 5+ab. of conjugate acid \propto $K_b \propto \frac{1}{p^{K_b}}$ \propto $p^H \propto \frac{1}{p^{OH}}$

$$- M > -I$$

write basicity order 7 $(1) \qquad CH_3 - CH_2 - \stackrel{\bigcirc{}_{N}}{N}H_3$ Aniline ethanamine Aliphatic > Aromatic amines H2C= CH - NH2 (2) $CH_3 - CH_2 - \ddot{N}H_2$ CH3-C-NH2 a>b>C Amine > enamine > amide (3) $CH_3 - NH_2$ $CH_3 - CH = NH$ Sp^2 CH3-C≡N SP a > b > C Amine > Imine > Cyanide NH2 OH OR R-OH NH3 H20 (4) a>c>b>e>d>f (5) H2 = CH CH2 NH2 $HC \equiv C - CH_2 - NH_2$ H3C-CH=CH = NH2 CH3-C=C-NH2 a > b > c > d

(6) NH₃
$$\ddot{N}H_2 - N\ddot{H}_2$$
 $\ddot{N}H_2 - O\ddot{M}$
 $a>b>c$ $Hydrazine$ $Hydroxylamine$

(7) $\ddot{N}H_2$ $\ddot{N}H_3$ $\ddot{N}H_4$ $\ddot{N}H_5$ \ddot{N}

Solvation
$$\rightarrow$$
 $R - NH_2 \xrightarrow{H^+} R - N_{-H}^{-} - 0 \xrightarrow{H}$
 $R - NH - R \xrightarrow{H^+} R - N_{-H}^{-} - 0 \xrightarrow{H}$
 $R - NH - R \xrightarrow{H^+} R - N_{-H}^{-} - 0 \xrightarrow{H}$
 $R - N - R \xrightarrow{H^+} R - N_{-H}^{-} - 0 \xrightarrow{H}$
 $R - N - R \xrightarrow{H^+} R - N_{-H}^{-} - 0 \xrightarrow{H}$

(10)
$$Ph = NH_2$$
 $Ph = NH = Ph$ $Ph = NP = Ph$
 $Ph = CH_2 = NH_2$ $d > a > b > C$

(11) $R = NH = R$ NH_3 NH_2 $NH_$

Ortho effect - ortho-Substituted aniline is weaker base than aniline irrespective of nature of electronic effect. This is due to the steric inhibition to solvation (SIS). Steric Repulsion (15) a>e>d >c>b

NH2

NHo

NH2

NH2

NHS

(16)

NHO

Order of Basic Strength:

Imp.

Expected
$$\rightarrow a > b > c > d$$

Actual $\rightarrow a > b > c > d (-oH \Rightarrow +m >> sIs)$

Order of Basic Strength:

Expected
$$\rightarrow a > c > b > d$$

Actual $\rightarrow a > b > c > d$

d>c>b>a

(20)

Degree of Unsaturation / Double bond equivalent/ Hydrogen deficiency index -It shows no of multiple bonds or/ and no. of rings in a compound. $D \cdot U \cdot = (c+1) - \left(\frac{M + x - N}{2}\right)$ where c = No. of carbon atoms $H = no \cdot of H - atom$ x = No. of halogen atoms N = No. of nitrogen atoms. $DU = (5+1) - (\frac{5-1}{2}) = 4$ EX C5 H N $DU = (6+1) - (\frac{12}{3}) = 1$ C6 H12 06 $DU = (12+1) - \frac{22}{3} = 2$ C12 H22 011 No double bond * If DU=0 =) No Triple bond NO Ring Open chain comp. (Like alkane) DU=1 => 1 double bond in open chain comp.

or 1 Ring (without double bond)
* If DU = 2 = 2 double bond in open chain comp.
or 1 Triple bond in open chain comp or
2 Ring
or 1 Ring + 1 double bond
Q. If a comp. has 4 double bonds,
3 triple bonds and 3 rings in its
structural formula then find its DU?
SOI^{n} DU = 4+6+3 = 13
Q. Calculate DU in the following -
(i) $DU = 1+3 = 4$
(ii) $DU = 1+5 = 6$
* DU = No. of rings + No. of 11-bonds
(iii) $CN \qquad C \equiv N \qquad DU = 1+5=6$

$$DU = 1 + 3 = 9$$

$$DU = 8$$

COOH

(iv)

(V)

(vii)

DU = 2 + 2 = 9

C 11 0

$$re^{03}$$
 $cooh$
 $cooh$

cooet

N02

(viii)

 (\times)

 $(\times i)$

DU = 1 + 10 = 11

(Prismane)

 $DU = (1+1) - \frac{1}{2} = 1.5$

Two Rings in Comp. * (spiro) fused → Bridge head Carbon Two double bonds * Isolated Conjug ated Cumulated

C = C - C = C

C-c=C-c=C

 $H_2C=C=CH_2$

H₂C-CH=C=CH₂

C=c-c-c=c

Isomerism -> Two or more comp. which have same molecular formula but differ in Physical or/and Chemical properties are Called isomers. Isomerism Structural/constitutional Stereo/space/3-D > Chain > Positional Configurational Conformational > Functional Geometrical -> Ring chain optical > metamerism Tautomerism Structural Iso. -> Same M.F. but different structural formula (diff. str.) Chain Isomers (skeletal or nuclear Isomers) -> Differ in Parent chain / side chain.

	Positional Isomers -> Same Parent Chain and
•	Side chain but differ in Position of functiona
	group/multiple bond/substituting groups.
	Functional Isomers -> Different Functional group
*	Alcohol and Phenol are considered as diff. F.G.
*	1°, 2°, 3° amines — "
*	1°, 2°, 3° amides
*	-cn and -nc - " -
*	-No2 and -ono 11
	Ring Chain Isomers - One isomer is acyclic
	but other is cyclic.
	They may have diff. functional group.
	Metamers -> (i) F.G. Should be same and It
	must be Polyvalent.
	(ii) Different alkyl group on either side of
	Polyvalent F.G.
	Polyvalent F.G o - ether
	-s- thioether
	— NH — 2° amine

(iv)

DU = 2

 $(iii)_{i}(iv) - P \cdot I$

$$(i) \qquad \qquad (ii) \qquad \qquad (iii) \qquad \qquad (iv) \qquad \qquad (iv)$$

$$c = c = c - c \qquad (i)$$

$$C = C = C - C$$
 (i),(ii) - R.C.I.
 $C = C - C = C$ (ii),(iii) - C.I.
 $C - C - C = C$ (iii),(iv) - P.I.

(vi)

(vii)

(viii)

 $(i \times)$

$$c = c - c = c \qquad (ii),$$

$$-c - c = c \qquad (iii)$$

$$=c-c=c \qquad (ii), (iii)-c.I.$$

$$-c-c=c \qquad (iii), (iv)-p.J.$$

$$(iii), (v)-c.J.$$

(iii), (vi) - R.C.I.

(vii), (viii) — $F \cdot I$.

(viii), (ix) - P.I.

Homework

Bio molecules workbook DTS-1-11 Q. 86-95 JEE MAIN Q.57,58,62-64,78,79,81,96,98 JEE ADVANCED Q. 32

IOC WORKBOOK DTS-1-11 Q.16-18,26,27,33,82,87-90,104,106,107,134,135,139