Задача 1.1. Для отображения $\varphi: \mathbb{R}^4 \to \mathbb{R}^3$, задаваемого матрицей

$$\begin{pmatrix} 1 & 2 & 1 \\ 2 & 1 & 1 \\ -1 & 4 & 1 \\ 3 & 0 & 1 \end{pmatrix}$$

найдите базисы, в которых оно имело бы вид

$$\begin{pmatrix} E & 0 \\ 0 & 0 \end{pmatrix}$$

где E — единичная подматрица, а 0 — нулевые блоки того или иного размера (не обязательно квадратные), а также выпишите этот вид.

Задача 1.2. Для отображения $\varphi: \mathbb{R}[x]_2 \to \mathbb{R}[x]_4$, задаваемого формулой

$$\varphi(g)(x) = xg(x) - g(x^2)$$

найдите базисы, в которых оно имело бы вид

$$\begin{pmatrix} E & 0 \\ 0 & 0 \end{pmatrix}$$

где E — единичная подматрица, а 0 — нулевые блоки того или иного размера (не обязательно квадратные), а также выпишите этот вид.

Задача 1.3. Для отображения φ из пространства симметричных матриц 2×2 в себя, задаваемого формулой

$$\varphi(g)(X) = AX + XA^T,$$

где

$$A = \begin{pmatrix} 1 & 2 \\ 0 & -1 \end{pmatrix}$$

найдите базисы, в которых оно имело бы вид

$$\begin{pmatrix} E & 0 \\ 0 & 0 \end{pmatrix}$$

где E — единичная подматрица, а 0 — нулевые блоки того или иного размера (не обязательно квадратные), а также выпишите этот вид.

Напоминание про двойственные базисы. Пусть в пространстве U задан базис e_1, \ldots, e_n . Тогда в пространстве U^* , состоящем из линейных функций на U, можно рассмотреть набор координатных функций ξ_1, \ldots, ξ_n , то есть таких функций, что

Если $(x_1, \dots, x_n)^T$ — координаты вектора v, то есть $v = x_1e_1 + \dots + x_ne_n$, то

$$\xi_i(v) = x_i$$

То есть ξ_i — это такая функция, которая вектор v переводит в его i-ю координату в базисе e_1, \ldots, e_n . Отсюда сразу следует, что

$$\xi_i(e_i) = \delta_{ij}$$

(вспомните, какие координаты в базисе e_1, \ldots, e_n имеет вектор e_j).

Базисы e_1, \ldots, e_n и ξ_1, \ldots, ξ_n называются **двойственными друг к другу**, то есть e_1, \ldots, e_n — двойственный к ξ_1, \ldots, ξ_n , а ξ_1, \ldots, ξ_n двойственный e_1, \ldots, e_n (да, двойственность работает в обе стороны).

Приятное свойство двойственных базисов состоит вот в чём. Пусть f — некоторая линейная функция на U на v и пусть $(x_1,\ldots,x_n)^T$. Тогда

$$f(v) = f(x_1e_1 + \dots + x_ne_n) = x_1f(e_1) + \dots + x_nf(e_n) =$$

$$= f(e_1)x_1 + \dots + f(e_n)x_n = f(e_1)\xi_1(v) + \dots + f(e_n)\xi_n(v) =$$

$$= \left(f(e_1)\xi_1 + \dots + f(e_n)\xi_n\right)(v)$$

Мы видим, что

$$f = f(e_1) \cdot \xi_1 + \ldots + f(e_n) \cdot \xi_n,$$

то есть $(f(e_1), \dots f(e_n))$ — координаты функции f в базисе ξ_1, \dots, ξ_n .

Пример с семинара. Пусть $U = \mathbb{R}[x]_n$ — пространство многочленов степени не выше n. Зафиксируем в нём базис $1, x - 3, (x - 3)^2, \dots, (x - 3)^n$. Поймём, что будем двойственным к нему базисом $\xi_0, \xi_1, \dots, \xi_n$. Как мы обсуждали, двойственный базис состоит из координатных функций. То есть функция ξ_i переводит произвольный многочлен q(x) в i-ю координату этого многочлена в базисе $1, x - 3, (x - 3)^2, \dots, (x - 3)^n$. Что же это за *i*-я координата такая? Ну, это коэффициент c_i при x^i в разложении

$$g(x) = c_0 \cdot 1 + c_1(x-3) + c_2(x-3)^2 + \dots + c_n(x-3)^n$$

Чтобы узнать, чему равны коэффициенты, вспомним разложение Тейлора:

$$g(x) = f(3) \cdot 1 + \frac{g'(3)}{1!}(x-3) + \frac{g''(3)}{2!}(x-3)^2 + \dots + \frac{g^{(n)}(3)}{n!}(x-3)^n$$

Вот и видим, что

$$c_i = \frac{g^{(i)}(3)}{i!}$$

Итого, ξ_i — это функция, которая переводит многочлен g(x) в $\frac{g^{(i)}(3)}{i!}$. Например, если $g(x)=x^2-x+2$, то $\xi_1(g)=\frac{g'(3)}{1!}=5$. Теперь, пусть для примера n=2. Если я захочу найти координаты функции

 ψ , которая переводит многочлен q в q'(1), в базисе ξ_0, ξ_1, ξ_2 , то они равны

$$(\psi(1), \psi(x-3), \psi((x-3)^2) = (1'|_{x=1}, (x-3)'|_{x=1}, ((x-3)^2)'|_{x=1}) =$$

= $(0, 1, -4)$

Это означает, что $\psi = 0\cdot \xi_0 + 1\cdot \xi_1 - 4\xi_2$, то есть, если подставить произвольный многочлен g:

$$g'(1) = 0 \cdot g(3) + 1 \cdot \frac{g'(3)}{1!} - 4 \cdot \frac{f''(3)}{2!}$$

для любого многочлена g.

Пример не с семинара. Пусть снова $U = \mathbb{R}[x]_n$ — пространство многочленов степени не выше n, и пусть U^* — двойственное пространство (состоящее из линейных функций на U). Зафиксируем в U^* базис $\xi_0, \xi_1, \dots, \xi_n$ следующего вида:

$$\xi_i(g) = g(i)$$

для любого многочлена g. Давайте найдём базис g_1,\ldots,g_n в U, двойственный к базису $\xi_0, \xi_1, \ldots, \xi_n$.

По определению двойственные базисы — это такие базисы, что

$$\xi_i(g_j) = \delta_{ij}$$

Таким образом, e_i — это такой многочлен, для которого

$$\xi_0(g_j) = 0, \ \xi_1(g_j) = 0, \ \dots, \ \xi_j(g_j) = 1, \ \dots, \ \xi_n(g_j) = 0$$

Иными словами,

$$g_i(0) = 0, \ g_i(1) = 0, \ \dots, \ g_i(j) = 1, \ \dots, \ g_i(n) = 0$$

С такими многочленами мы уже сталкивались, когда изучали интерполяционный многочлен Лагранжа:

$$g_j(x) = \frac{(x-0)(x-1)\dots\widehat{(x-j)}\dots(x-n)}{(j-0)(j-1)\dots\widehat{(j-j)}\dots(j-n)}$$

где крышка означает пропуск слагаемого.

Проиллюстрируем на этом примере ещё и то, что ξ_i являются $\kappa oopduham-$ ными функциями для двойственного базиса g_0, \ldots, g_n . В самом деле, нетрудно видеть, что для любого многочлена h(x) степени не выше n имеет место равенство

$$h(x) = \sum_{j=0}^{n} h(j) \frac{(x-0)(x-1)\dots(\widehat{x-j})\dots(x-n)}{(j-0)(j-1)\dots(\widehat{j-j})\dots(j-n)} =$$
$$= \sum_{j=0}^{n} h(j)g_{j}(x)$$

То есть коэффициентом при g_j , он же j-я координата в базисе g_0, \ldots, g_n многочлена h(x) является $h(j) = \xi_j(h)$.

Задача 1.4. Найдите базис в пространстве линейных функций на \mathbb{R}^3 , двойственный к базису

$$v_1 = \langle \begin{pmatrix} 2\\3\\5 \end{pmatrix}, \begin{pmatrix} 0\\1\\2 \end{pmatrix}, \begin{pmatrix} 1\\0\\0 \end{pmatrix} \rangle$$

Указание: как вы, надеюсь, прочитали выше, двойственный базис будет состоять из трёх функций f_1,f_2,f_3 , для которых $f_i(v_j)=\delta_{ij}$, где δ_{ij} — символ Кронекера, то есть

$$\delta_{ij} = \begin{cases} (1, \text{ если } i = j, \\ 0, \text{ иначе} \end{cases}$$

Я предлагаю вам убедиться, что эти 9 равенств можно записать в виде одного матричного равенства:

$$\begin{pmatrix} f_1 \\ f_2 \\ f_3 \end{pmatrix} \cdot \begin{pmatrix} v_1 & v_2 & v_3 \end{pmatrix} = E$$

Здесь в первой матрице f_i — это строки, а во второй v_j — это столбцы. В самом деле, элементы произведения в левой части это произведения строк первого сомножителя на столбцы второго.

Что происходит с линейной функцией при замене координат. Напомним, что линейная функция задаётся строкой

$$f = (f_1, \ldots, f_n),$$

смысл которой такой. Для вектора $x=(x_1,\ldots,x_n)^T$ значение функции на этом векторе равно $f\cdot x$ (произведение строки на столбец, то есть число). При этом f_i равно значению функции на базисном векторе e_i (имеется в виду тот самый базис, в котором x имеет координаты (x_1,\ldots,x_n) , конечно же). А что будет со строкой (f_1,\ldots,f_n) , если мы сделаем замену координат с матрицей замены C? Ответ очень прост. Вспомним, что f — это линейное отображение из \mathbb{R}^n в \mathbb{R} . В \mathbb{R} мы замены не производим, только в \mathbb{R}^n . Тогда по известному для линейных отображений правилу

$$f' = fC$$

Задачи 1.5-7. Пусть v_1,v_2,v_3 как в предыдущей задаче, а $\varphi_1,\varphi_2,\varphi_3$ — соответствующий двойственный базис. В этой задаче вам нужно будет найти координаты в базисе $\varphi_1,\varphi_2,\varphi_3$ пространства V функции $g(x)=3x_1+x_2-x_3$ тремя способами:

- (a) Пользуясь найденным в предыдущей задаче двойственным базисом. $\Pi o \partial c \kappa a \beta \kappa a$: как представить строку (3,1,-1) в виде линейной комбинации трёх данных строк?
- (b) С помощью замен координат. $\Pi o \partial c \kappa a s \kappa a$: вспомните, как поменяются координаты функции g при замене исходного базиса пространства \mathbb{R}^3 на базис v_1, v_2, v_3 .
- (с) Совсем просто, не пользуясь ни найденным двойственным базисом, ни матрицей перехода.

Подсказка: на семинаре мы обсуждали, какие координаты имеет функция в двойственном базисе, и выше это тоже написано.

Задача 1.8. Докажите, что функции $\varphi_i(f) = f^{(i)}(2), i = 0, \dots, n$ составляют базис пространства, двойственного к пространству $\mathbb{R}[x]_n$.

 $\mathit{Указаниe}$. Напишите матрицы этих функций как отображений из \mathbb{R}^{n+1} в \mathbb{R} . Теперь проверьте, что эти строки из чисел линейно независимы.

Задача 2.1. Пусть линейные функции $\varphi_1, \ldots, \varphi_n$ составляют базис пространства V^* (двойственного к пространству V). Пусть также u_1, \ldots, u_n — двойственный базис пространства V. Докажите, что координаты вектора v в базисе u_1, \ldots, u_n равны $(\varphi_1(v), \ldots, \varphi_n(v))$.

Задача 2.2. Вы уже знаете, что функции $\varphi_i(f) = f^{(i)}(2), i = 0, \ldots, n$ составляют базис пространства, двойственного к пространству $\mathbb{R}[x]_n$. Найдите базис пространства $\mathbb{R}[x]_n$, двойственный к нему. Найдите координаты многочлена x^n в этом базисе.

Задача 2.3. Пусть f — ненулевая линейная функция на пространстве V (не обязательно конечномерном), $U = \ker f$. Докажите, что

- (а) U максимальное подпространство, то есть оно не содержится ни в каком другом собственном (отличном от всего пространства) подпространстве (докажите, что если $W \supseteq U$ и $W \neq U$, то W это всё V);
- (b) $V = \ker f \oplus \langle a \rangle$ для любого $a \notin \ker f$.

Задача 2.4. Выпишите какой-нибудь базис пространства \mathbb{R}^3 , для которого линейная функция $f(x)=2x_1-x_2+x_3$ была бы первой координатной функцией (то есть в новых координатах имело бы место равенство $f(x')=x_1'$).

Задача 2.5. Придумайте какую-нибудь линейную функцию на \mathbb{R}^3 , ядром которой было подпространство

$$U = \langle \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \rangle$$

Задача 2.6. Придумайте какой-нибудь базис в пространстве матриц $n \times n$ с вещественными коэффициентами, для которого функция следа была бы первой координатной функцией.

Задача 2.7. Докажите, что $\operatorname{rk}(A^TA) = \operatorname{rk}(A)$, если A — вещественная матрица.

Указание. Предлагаю вывести это из двух неравенство: $\mathrm{rk}(A^TA) \leqslant \mathrm{rk}(A)$ и $\mathrm{rk}(A^TA) \leqslant \mathrm{rk}(A)$. Одно из них практически очевидно. Для доказательства другого полезно воспользоваться интерпретацией: если B — матрица $m \times n$, то $\mathrm{rk}B = n - \dim\{x \mid Bx = 0\}$. Кроме того, вам пригодится тот (тривиальный) факт, что для любого вещественного вектора y имеет место $y^Ty = y_1^2 + y_2^2 + \dots$

Вы можете, конечно, попробовать решить эту задачу и исключительно матричными методами, не привлекая интерпретаций из мира отображений, но это принесёт вам много боли, и опыт показывает, что мало у кого выходит такими средствами получить корректное доказательство.

Задача 2.8. Докажите, что равенство $\operatorname{rk}(A^TA) = \operatorname{rk}(A)$ может не выполняться, если, например, A — комплексная матрица (приведите пример!).

Задача 2.9. Докажите, что система $A^TAX = A^TB$ всегда разрешима (если все матрицы, о которых идёт речь, вещественные).

Указание. Проверьте, что утверждение из условия равносильно следующему: "если нечто лежит в образе A^T , то оно лежит и в образе A^TA " и воспользуйтесь задачей 2.7.

Задача 2.10 (двойственное отображение; бонусная). Пусть $\varphi: U \longrightarrow V$ — линейное отображение. Вместе с ним возникает двойственное отображение $\varphi^*: V^* \longrightarrow U^*$, действующее по правилу $(\varphi^*(f))(u) = \varphi(f(u))$. Докажите, что если в некоторых базисах U и V отображение φ имеет матрицу A, то в двойственных к ним базисах φ^* имеет матрицу A^T .

 $He\ yказание,\ no\ npumep.$ Рассмотрим отображение $\varphi=\frac{d}{dx}:\mathbb{R}[x]_3\longrightarrow\mathbb{R}[x]_2.$ В базисах $1,x,x^2,x^3$ пространства $\mathbb{R}[x]_3$ и $1,x,x^2$ пространства $\mathbb{R}[x]_2$ это отображение имеет матрицу

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 3
\end{pmatrix}$$

Теперь возьмём какую-нибудь функцию из $\mathbb{R}[x]_2^*$. Например, f(h) = h(1) (здесь f — это та самая функция, а h — многочлен, и да, я понимаю, что это не лучший выбор обозначений). Тогда что есть $\varphi^*(f)$? Это функция, которая действует на многочленах степени не выше 3. Посчитаем, например, её значение на многочлене x^3 . По определению

$$(\varphi^*(f))(x^3) = f(\varphi(x^3)) = f(3x^2) = 3x^2|_{x=1} = 3$$

Но нам придётся работать с двойственными базисами. Мы уже обсуждали на семинаре, что двойственный базис к $1,x,x^2,x^3$ — это $h\mapsto h(0),\ h\mapsto \frac{h''(0)}{1!},\ h\mapsto \frac{h''(0)}{2!}$ и $h\mapsto \frac{h'''(0)}{3!}$ (двойственный базис состоит из функций, которые

осуществляют вот эти преобразования!). Точно так же, очевидно, двойственный базис к базису $1,x,x^2$ пространства W — это $h \mapsto h(0), \ h \mapsto \frac{h'(0)}{1!}$ и $h \mapsto \frac{h''(0)}{2!}$. Заметим, что $\varphi^*[h \mapsto h(0)] = [h \mapsto h'(0)], \ \varphi^*[h \mapsto \frac{h''(0)}{1!}] = [h \mapsto \frac{h'''(0)}{1!}], \ \varphi^*[h \mapsto \frac{h'''(0)}{2!}] = [h \mapsto \frac{h'''(0)}{2!}]$. Что мы видим? Первая базисная функция пространства W^* перешла во вторую базисную функцию пространства U^* . Вторая базисная функция пространства W^* перешла в третью базисную функцию пространства U^* , умноженную на 2 (в знаменателе 1!, а не 2!). Таким образом φ^* имеет матрицу

$$\begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$

которая действительно является транспонированной к матрице φ .