## K-means Clustering

The k-means clustering algorithm represents each cluster by its corresponding cluster centroid. The algorithm would partition the input data into k disjoint clusters by iteratively applying the following two steps:

- Form *k* clusters by assigning each instance to its nearest centroid.
- Recompute the centroid of each cluster.

Here, we perform k-means clustering on a toy example of movie ratings dataset. Consider the following dataset

|   | user  | Jaws | Star Wars | Exorcist | Omen |
|---|-------|------|-----------|----------|------|
| 0 | john  | 5    | 5         | 2        | 1    |
| 1 | mary  | 4    | 5         | 3        | 2    |
| 2 | bob   | 4    | 4         | 4        | 3    |
| 3 | lisa  | 2    | 2         | 4        | 5    |
| 4 | lee   | 1    | 2         | 3        | 4    |
| 5 | harry | 2    | 1         | 5        | 5    |

In this example dataset, the first 3 users liked action movies (Jaws and Star Wars) while the last 3 users enjoyed horror movies (Exorcist and Omen). Our goal is to apply k-means clustering on the users to identify groups of users with similar movie preferences. (Note that each data has 4 attributes)

1- Assume k=2 and apply K-means algorithm to group the users to 2 clusters (use MATLAB or any other programming language). Determine a cluster ID (0 or 1) for each user and fill in the following table.

|       | Cluster ID |
|-------|------------|
| user  |            |
| john  |            |
| mary  |            |
| bob   |            |
| lisa  |            |
| lee   |            |
| harry |            |

2- Determine the centroids of each cluster.

The cluster centroids can be applied to other users to determine their cluster assignments. Consider the following dataset and complete the table

|   | user | Jaws | Star Wars | Exorcist | Omen | Cluster ID |
|---|------|------|-----------|----------|------|------------|
| 0 | paul | 4    | 5         | 1        | 2    |            |
| 1 | kim  | 3    | 2         | 4        | 4    |            |
| 2 | liz  | 2    | 3         | 4        | 1    |            |
| 3 | tom  | 3    | 2         | 3        | 3    |            |
| 4 | bill | 5    | 4         | 1        | 4    |            |

3- To determine the number of clusters in the data, apply k-means with varying number of clusters (k) from 1 to 6 and compute their corresponding sum-of-squared errors (SSE) and plot the SSE versus k. How many clusters do you think is enough?

