

### Modeling the panel zone using PISA3D

To model the panel zone with the Joint element in PISA3D, the effective initial rotational stiffness ( $K_i$ ) and yield moment ( $M_y$ ) of the Joint element can be obtained from Equations (1) and (2), respectively.

$$K_i = \frac{Gd_b d_c t_j}{1 - \frac{d_b}{h}} , \qquad (1)$$

$$M_{y} = \frac{0.6F_{y}d_{b}d_{c}t_{j}}{1 - \frac{d_{b}/h}}.$$
 (2)



(See manual: G03, Joint Element)



## Modeling the panel zone using PISA3D

To define the required properties of the Joint element, you have to specify the effective initial rotational stiffness  $(K_i)$  obtained from Equation (1). In addition, the nonlinear material model (e.g., bilinear model), that is assigned to the Joint element, is used to defined the yield moment  $(M_y)$ . Specifically, according to the  $M_y$  obtained from Equation (2) and an assumed Young's modulus  $(E_i)$  of its material, the  $F_y$  of its material can be obtained with:

$$F_{y} = \frac{M_{y}}{(K_{i}/E_{i})} \qquad (3)$$

where  $K_i$  is specified in this element, and  $E_i$  is defined in the material. Thus, the yield moment of this joint element calculated in PISA3D is defined as:

$$M_{y} = \frac{K_{i} \times F_{y}}{E_{i}} \quad . \tag{4}$$

In short, to model the panel zone effect using PISA3D, you have to define the proper ratio computed by dividing  $F_y$  by  $E_i$  to make the  $M_y$  of Equation (4) equal to the yield moment calculated from Equation (2).



# **Example for demonstration**

For example, the assumed  $K_i$  and  $M_y$  of the Joint element, that is used to model a certain panel zone are 1800000,000 kN-mm/radian and 5148,000 kN-mm, respectively. To accommodate the assumed  $K_i$  and  $M_y$ , the operation demonstrated in the class on April 9, 2018 can be found as follows:

### 1. Define Joint element properties



 $K_i = 1800000,000 \text{ kN-mm/radian}$ 

#### 2.Define Bilinear model properties



$$F_{\rm v}/E_{\rm i} = 0.572/200 = 0.0286$$

Through the specified  $K_i$ ,  $F_v$  and  $E_i$ , the  $M_v$  of the Joint element can be set to 5148,000 kN-mm.

$$M_v = K_i \times (F_v / E_i) = 1800000,000*0.0286 = 5148,000 \text{ kN-mm}$$