МАТЕМАТИЧЕСКИЕ МОДЕЛИ ДИНАМИКИ ЧИСЛЕННОСТИ ПОПУЛЯЦИЙ

- Е. Я. Фрисман
- Институт комплексного анализа региональных проблем ДВО РАН
- г. Биробиджан

- >Поведение численности популяций во времени
- одна из основных характеристик **био**логического вида.
- ➤ Не существует ни одной популяции, численность которой не испытывала бы изменений. Некоторые из этих изменений носят сезонный характер и связаны с колебаниями климатических условий в течение года, другие же изменения затрагивают периоды времени, включающие годы и десятилетия.

- Колебания численности обладают различной регулярностью и размахом, могут сопровождаться существенными перестройками структуры популяций, приводить к изменениям их экологических параметров, вызывать изменение роли и значимости различных видов в биосистемах
- Вместе с тем до сих пор нет единой точки зрения о том, какие факторы являются ведущими, определяющими возникновения колебаний численности, ее подъемов и спадов.

КЛАССИФИКАЦИЯ ГИПОТЕЗ О ВЕДУЩИХ МЕХАНИЗМАХ ПОПУЛЯЦИОННОЙ ДИНАМИКИ

- Климатическая теория
- Трофо-климатическая теория
- Трофо-ценотическая теория
- Авторегуляция
 - гипотеза стресса
 - гипотеза генетического контроля

- ▶В рамках гипотезы стресса остается непонятен эволюционный механизм, в результате действия которого закрепились закономерные резкие снижения приспособленности в пиках численности
- ➤ Гипотеза генетического контроля не объясняет происхождение колебаний, поскольку наличие плотностно зависимого отбора (дифференциальных приспособленностей, зависимых от уровня численности) является скорее всего следствием колебания численности, а не их причиной, так как такой отбор может появляться только в флюктуирующих популяциях.

Модель Мальтуса с непрерывным временем

- $\Delta x = B D$
- $\blacksquare B = \Phi(x, \Delta t) = \alpha x \Delta t$
- $D(x, \Delta t) = \beta x \Delta t$
- $\epsilon = \alpha \beta$
- α коэффициент рождаемости
- **В коэффициент** смертности

$$\frac{dx}{dt} = \varepsilon x$$

$$x(t) = x_0 e^{\varepsilon(t - t_0)}$$

Рис.1. Интегральные кривые уравнения нормального роста при различных значениях мальтузианского параметра

Свойства Модели Мальтуса

- При ε >0 (при x_0 >0) популяция неограниченно возрастает, при ε <0 убывает до нуля, при ε = 0 численность популяции не изменяется
- Как бесконечно большое значение численности при $\varepsilon > 0$, так и ноль при $\varepsilon < 0$ могут быть достигнуты (при ограниченном $x_0 > 0$) только за бесконечно большое время
- Время (τ) , требуемое популяции для удвоения численности $(\varepsilon>0)$ не зависит от текущего состояния

$$x(t^{n\rho\eta})^{ngu} x_0^{u} e^{\varepsilon(t+\tau-t_0)} = 2x(t) = 2x_0 e^{\varepsilon(t-t_0)} = x_0 e^{\varepsilon(t-t_0) + \ln 2}$$

$$\varepsilon \tau = \ln 2$$

Модель популяционного взрыва

- $B(x, \Delta t) = ax^2 \Delta t$
- $D(x, \Delta t) = bx^2 \Delta t$
- c = a b

$$\frac{dx}{dt} = cx^2; \quad \frac{1}{x} = C - \alpha$$

$$x = \frac{x_0}{1 - cx_0(t - t_0)}$$

Рис.2. Интегральные кривые уравнения популяционного взрыва при различных начальных условиях

$$T(t_0, x_0) = t_0 + \frac{1}{cx_0}$$

Изменение обратной численности населения мира

Автономное дифференциальное

уравнение

$$\frac{dx}{dt} = f(x), x \in \mathbb{R}$$

Если f(a)=0, то x(t)=a стационарное решение (положение равновесия)

Четыре возможных фазовых портрета в случае одной изолированной неподвижной точки : а – аттрактор, б – репеллер, в,г – шунт

Графики функции f(x), фазовые портреты и интегральные кривые уравнения $x'=\varepsilon x$: a) $\varepsilon > 0$ б) $\varepsilon < 0$.

Модель Ферхюльста

$$\alpha(x) = \alpha_1 - \beta_1 x$$
 и $\beta(x) = \alpha_2 + \beta_2 x$

Графики функций $\alpha(x)$ и $\beta(x)$ в модели Ферхюльста

$$\frac{dx}{dt} = rx - sx^2 \qquad \frac{dx}{dt} = rx \left(\frac{K - x}{K}\right)$$

$$r = \alpha_1 - \alpha_2$$
, $s = \beta_1 + \beta_2$ $K = r/s$

Модель Ферхюльста

График функции
$$f(x) = rx\left(\frac{K-x}{K}\right)$$

фазовый портрет и интегральные кривые модели Ферхюльста

Модель Ферхюльста

$$\frac{dx}{dt} = rx \left(\frac{K - x}{K}\right)$$

$$\frac{Kdx}{x(K-x)} = rdt$$
 или $\left(\frac{1}{x} + \frac{1}{K-x}\right)dx = rdt$

$$\ln(x) - \ln(K - x) = rt + \ln C$$

$$\frac{x}{K-x} = Ce^{rt} \qquad \text{пусть } t_0 = 0 \text{ и } x(0) = x_0 < K$$

$$\frac{x}{K - x} = \frac{x_0}{K - x_0} e^{rt} \qquad x(t) = \frac{Kx_0 e^{rt}}{K - x_0 + x_0 e^{rt}}$$

Один из прогнозов динамики численности населения мира

Модель Пелла - Томлинсона

$$\frac{dx}{dt} = rx \left(1 - \left(\frac{x}{K} \right)^p \right)$$

$$f(x) = rx \left(1 - \left(\frac{x}{K}\right)^p\right)$$
 достигает максимума в точке $x_M = K/(1+p)^{1/p}$

Принцип Олли. Модель Базыкина

$$\alpha(x) = \frac{cx}{M+x} - \beta_1 x; \qquad \beta(x) = \alpha_2 + \beta_2 x$$

$$\frac{dx}{dt} = \frac{cx^2}{M+x} - ax - bx^2; \qquad \frac{dx}{dt} = \frac{\mu x(K-x)(x-k)}{M+x}$$

Модель Базыкина

$$\frac{dx}{dt} = \frac{cx^2}{M+x} - ax - bx^2; \quad \frac{dx}{dt} = \frac{\mu x(K-x)(x-k)}{M+x}$$

График функции dx/dt, фазовый портрет и интегральные кривые

МОДЕЛИ С ДИСКРЕТНЫМ ВРЕМЕНЕМ Изменение численности популяции в течении годового цикла

$$S_1(B(X_n))$$

$$X_n$$

$$S_2(X_n)$$

B(X) - рождаемость

 $S_I(B)$ – выживаемость молоди

 $S_2(X)$ — выживаемость репродуктивной возрастной группы

Уравнение воспроизводства

$$X_{n+1} = S_1(B(X_n)) + S_2(X_n) = F(X_n)$$

Неограниченные ресурсы

$$X_{n+1} = (S_1 B + S_2) X_n = A X_n$$

$$X_1 = aX_0$$

$$X_2 = aX_1 = a^2X_0$$

$$X_3 = aX_2 = a^3X_0$$

$$X_n = a^nX_0$$

Модель Мальтуса

Γ рафики решений уравнения $N_{n+1} = qN_n$ при q < 0

Уравнение воспроизводства

$$X_{n+1} = S_1(B(X_n)) + S_2(X_n) = F(X_n)$$

$$F(X) = aX(1-X/M)$$
 Модель Ферхюльста

$$F = aXe^{-bX}$$

Модель Рикера

$$F = \frac{aX}{(1+cX)^b}$$
 Модель Хассела

Общий случай:

$$X_{n+1} = F(X_n) = aX_n \varphi(X_n)$$

 $\varphi'(X) < 0, \varphi(0) = 1$

Неподвижные точки

$$N_{n+1} = F(N_n);$$
 $N_{n+1} = aN_n f(N_n)$
 $\overline{N} = F(\overline{N});$ $\overline{N} = a\overline{N}f(\overline{N})$
1. $\overline{N} = 0;$ 2. $f(\overline{N}) = 1/a$

Характер устойчивости неподвижных точек

$$\xi_n=N_n-\overline{N}$$

$$\xi_{n+1}=N_{n+1}-\overline{N}=F(N_n)-F(\overline{N})=F'(\overline{N})\xi_n+o(\xi_n)$$
 Неподвижная точка \overline{N} устойчива, если

$$|F'(\overline{N})| < 1$$

и неустойчива, если

$$|F'(\overline{N})| > 1$$

$$F'(N) = \{aNf(N)\}' = af(N) + aNf'(N)$$

$$F'(0) = af(0) = a$$

Характер устойчивости нетривиальной неподвижной точки

$$f(\overline{N}) = 1/a$$

$$F(\overline{N}) = af(\overline{N}) + aNf'(\overline{N}) = 1 + aNf'(\overline{N})$$

1) Монотонная динамика

$$-1 < a\overline{N}f'(\overline{N}) < 0$$
 $0 < F'(\overline{N}) < 1$

2) Затухающие колебания

$$-2 < a\overline{N}f'(\overline{N}) < -1 \qquad -1 < F'(\overline{N}) < 0$$

3) Расходящиеся колебания

$$a\overline{N}f'(\overline{N}) < -2$$
 $F'(\overline{N}) < -1$

Аналог модели Ферхюльста

$$N_{n+1} = dN_n (1 - N_n / M)$$

В относительных переменных x = N/M

$$x_{n+1} = \alpha x_n (1 - x_n)$$

Стационарные точки

$$\overline{x}_1 = 0 \qquad \overline{x}_2 = 1 - 1/a$$

Устойчивость нетривиального равновесия

$$F'(\overline{x}_2) = 2 - a$$

- 1) 1 < a < 2 устойчиво; переход к равновесию монотонный
- **2)** 2 < a < 3 устойчиво; затухающие колебания около равновесия
- 3) 3 < a < 4 неустойчиво; расходящиеся колебания около равновесия

Графики решений уравнения $x_{n+1} = ax_n(1-x_n)$ при значениях параметра a < 3

- а) монотонное стремление к равновесию
- б) затухающие колебания

График решения уравнения $x_{n+1} = ax_n(1-x_n)$, иллюстрирующий расходящиеся колебания вблизи равновесия

Циклы

k чисел N_1, N_2, \dots, N_k образуют k-цикл уравнения $N_{n+1} = F(N_n)$, если $N_2 = F(N_1), N_3 = F(N_2), \dots, N_1 = F(N_k)$.

Элементы 2-циклов являются корнями уравнения

$$F(F(N))-N=0$$
, или $F_2(N)-N=0$

Если отбросить стационарные точки, то

$$\frac{F_2(N) - N}{F(N) - N} = 0$$

Элементы k-циклов удовлетворяют уравнению

$$F_k(N)-N=0$$

Циклы длины 2 для модели Ферхюльста

Уравнение для элементов 2- цикла $F_2(x)$ -x=0

$$F(x) = ax(1-x), F_2(x) = F(F(x)) = a^2x(1-x)(1-ax(1-x))$$
$$a^2x(1-x)(1-ax(1-x))-x=0$$

Деля это на F(x)-x, т. е. на ax(1-x))-x, получаем a^2x^2 -a(a+1)+(a+1)=0

Отсюда находим элементы 2-цикла (ξ_1 и ξ_2):

$$\xi_1 = \frac{a+1+\sqrt{a^2-2a-3}}{2a}, \ \xi_2 = \frac{a+1-\sqrt{a^2-2a-3}}{2a}$$

величина a^2 -2a-3 неотрицательна при $a \ge 3$

Устойчивость циклов

Элементы k-циклов уравнения $N_{n+1} = F(N_n)$ являются неподвижными точками уравнения

$$N_{n+1}=F_k(N_n)$$

k-цикл уравнения $N_{n+1}=F(N_n)$

с элементами $N_1, N_2, ..., N_k$ устойчив при

$$|F'(N_1)F'(N_2)...F'(N_k)| < 1$$

и неустойчив при

$$|F'(N_1)F'(N_2)...F'(N_k)| > 1$$

Устойчивость 2-цикла в модели Ферхюльста

$$F(x) = ax(1-x), \quad F'(x) = a(1-2x)$$

$$|F'(\xi_l)F'(\xi_2)| = |a^2(1-2\xi_l)(1-2\xi_2)| = |a^2(1-2(\xi_l+\xi_2)+4\xi_l\xi_2)|$$
 по теореме Виета $\xi_l+\xi_2=(a+1)/a$ и $\xi_l\xi_2=(a+1)/a^2$
$$|F'(\xi_l)F'(\xi_2)| = |a^2-2(a+1)a+4(a+1)| = |4+2a-a^2|$$
 легко получить, что $|4+2a-a^2| < -1$ при $3 < a < 1+\sqrt{6}$ Следовательно 2-цикл устойчив при $3 < a < 1+\sqrt{6}$ и неустойчив при $a > 1+\sqrt{6} \approx 3,449$

Графики решений уравнения $x_{n+1} = ax_n(1-x_n)$, соответствующие предельным циклам

- a) 2-циклу,
- б) 4-циклу

Первая серия бифуркаций в модели $x_{n+1} = ax_n(1-x_n)$

$$a = a_0 = 1$$

 $\overline{x}_1 = 0$ теряет устойчивость; "рождается устойчивая точка \overline{x}_2 $a = a_1 = 3$

 \overline{x}_2 теряет устойчивость; "рождается" устойчивый 2-цикл.

$$a = a_2 = 1 + \sqrt{6} \approx 3,49$$

2-цикл теряет устойчивость; "рождается" устойчивый 4-цикл $a = a_3 \approx 3,543$

4-цикл теряет устойчивость; "рождается" устойчивый 8-цикл $a=a_4 \approx 3,563$

8-цикл теряет устойчивость; "рождается" устойчивый 16-цикл $a=a_5\approx 3,568$

16-цикл теряет устойчивость; "рождается" устойчивый 32-цикл и т.д.

$$a = a^* = \lim_{k \to \infty} (a_k) \approx 3,575$$
 - точка накопления

Универсальность Фейгенбаума

Последовательность значений параметра a { a_k *}, при которых происходит удвоение периода, удовлетворяет следующему закону: отношения смежных интервалов

$$\frac{(a_k * - a_{k-1} *)}{(a_{k+1} * - a_k *)}$$

образуют сходящуюся последовательность, предел которой есть некоторое число δ (δ = 4,6692...). Параметр δ называется числом Фейгенбаума и носит универсальный характер: существует целый класс функций F(N), при которых выполняется закон Фейгенбаума с числом δ .

Графики решений уравнения $x_{n+1} = ax_n(1-x_n)$ соответствующие хаотической динамике

Бифуркационная диаграмма модели

Показатель Ляпунова

Для того чтобы более строго отличить один тип динамического поведения от другого, используется специальный количественный критерий - показатель Ляпунова:

$$\lambda = \lim_{n \to \infty} \frac{1}{n} \sum_{n=0}^{n} \ln |F'(x_n)|.$$

Положительные значения этого показателя соответствуют хаотическому режиму динамики, отрицательные значения указывают на регулярный (периодический) режим

Показатель Ляпунова для модели Ферхюльста

Порядок Шарковского

Теорема Шарковского

Если F(N) непрерывна, то из того, что уравнение $N_{n+1} = F(N_n)$ имеет цикл периода (длины) m, вытекает, что оно имеет и циклы всех периодов, которые следуют за m в nopядке Шарковского

Следствие

Если уравнение $N_{n+1} = F(N_n)$ имеет цикл длины 3, то оно имеет и циклы *любой* длины

Модель Рикера

$$N_{n+1} = dN_n e^{-bN_n}$$

В относительных переменных x = bN

$$x_{n+1} = ax_n e^{-x_n}$$

Стационарные точки

$$\bar{x}_1 = 0$$
 $\bar{x}_2 = \ln a$

Устойчивость нетривиального равновесия

$$F'(\bar{x}_2) = 1 - \ln a$$

- 1) 1 < a < e устойчиво; переход к равновесию монотонный
- **2)** $e < a < e^2$ устойчиво; затухающие колебания около равновесия
- 3) $a > e^2$ неустойчиво; расходящиеся колебания около равновесия

Первая серия бифуркаций в модели Рикера

$$a = a_0 = 1$$

 $\overline{x}_1 = 0$ теряет устойчивость; "рождается устойчивая точка \overline{x}_2 $a = a_I = e^2 \approx 7,39$

 \overline{x}_2 теряет устойчивость; "рождается" устойчивый 2-цикл.

$$a = a_2 \approx 12,49$$

2-цикл теряет устойчивость; "рождается" устойчивый 4-цикл $a=a_3\approx 14{,}24$

4-цикл теряет устойчивость; "рождается" устойчивый 8-цикл $a=a_4 \approx 14{,}68$

8-цикл теряет устойчивость; "рождается" устойчивый 16-цикл $a=a_5\approx 14{,}75$

16-цикл теряет устойчивость; "рождается" устойчивый 32-цикл и т.д.

 $a = a^* = \lim_{k \to \infty} (a_k) \approx \Psi$ - точка накопления

Бифуркационные диаграммы для моделей Рикера и Хассела

Показатель Ляпунова для модели Рикера

Модель Хассела

$$N_{n+1} = \frac{aN_n}{(1+cN_n)^b}$$
 $x_{n+1} = \frac{ax_n}{(1+x_n)^b}$

Стационарные точки

$$\overline{x}_1 = 0 \qquad \overline{x}_2 = a^{\frac{1}{b}} - 1$$

Устойчивость нетривиального равновесия

$$F'(\overline{x}_2) = 1 - b \left(1 - \frac{1}{a^{\frac{1}{b}}} \right)$$

- **1)** $1 < a < \left(\frac{b}{b-1}\right)^b$ устойчиво; переход к равновесию монотонный
 - **2)** $\left(\frac{b}{b-1}\right)^b < a < \left(\frac{b}{b-2}\right)^b$ устойчиво; затухающие колебания
 - **3)** $a > \left(\frac{b}{b-2}\right)^b$ неустойчиво; расходящиеся колебания

Бифиркационная диаграмма модели Хассела при изменении параметра а и при b = 5

Бифиркационная диаграмма модели Хассела при изменении параметра b и при а = 50

Области значений параметров а и b модели Хассела, характеризующиеся различными типами режимов динамики

Изменение характера динамики численности в процессе эволюции лимитированной популяции

$$\begin{cases} x_{n+1} = \overline{W}_n(x_n) x_n \\ q_{n+1} = q_n (W_{AA}(x_n) q_n + W_{AA}(x_n) (1 - q_n)) / \overline{W}_n(x_n), \\ \overline{W}_n = W_{AA}(x) q_n^2 + 2W_{AA}(x) q_n (1 - q_n) + W_{AA}(1 - q_n)^2 \end{cases}$$
 F-отбор
$$W_i(x) = a_i f(x) \quad x_{n+1} = a_n x_n f(x_n)$$
 Теорема Фишера
$$a_{n+1} \ge a_n$$

Области значений параметров а и b модели Хассела, характеризующиеся различными типами режимов динамики

Благодарю за внимание!