Technische Universität Berlin

Fakultät II – Institut für Mathematik Kaibel, Luger, Penn-Karras, Pfetsch SS 2006 24.07.2006

Juli – Klausur (Rechenteil) Analysis II für Ingenieure

Name:		Vorname: Studiengang:						
MatrNr.:								
Die Lösungen sind in Reinschr				_	ben. M	Iit Blei	stift ge-	
schriebene Klausuren können ni	cht ge	wertet	werder	1.				
Dieser Teil der Klausur umfass vollständigen Rechenweg an.		Rechei	naufgal	ben. G	eben S	Sie imr	ner den	
Die Bearbeitungszeit beträgt 60	Minu	iten.						
Die Gesamtklausur ist mit 40 v beiden Teile der Klausur mindes					′			
Korrektur								
	1	2	3	4	5	6	Σ	

1. Aufgabe 9 Punkte

Gegeben sei die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ mit f(x,y) = y(x+1) - 1.

- a) Bestimmen Sie alle kritischen Punkte von f und entscheiden Sie, ob es sich um ein lokales Minimum, ein lokales Maximum oder einen Sattelpunkt handelt.
- b) Hat f auf \mathbb{R}^2 ein globales Maximum?
- c) Ermitteln Sie den kleinsten Funktionswert von f für alle $(x,y) \in D := \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 \leq 1\}.$

2. Aufgabe

5 Punkte

Berechnen Sie das Integral
$$\int_{-1}^{1} \int_{0}^{\sqrt{1-x^2}} \frac{1}{1+x^2+y^2} \, dy dx$$

unter Verwendung von Polarkoordinaten.

Hinweis: Skizzieren Sie zunächst den Integrationsbereich in der xy-Ebene.

3. Aufgabe 8 Punkte

Berechnen Sie das Kurvenintegral $\int_{\vec{c}} \vec{v} \cdot \vec{ds}$ für das Vektorfeld $\vec{v} \colon \mathbb{R}^2 \to \mathbb{R}^2$ mit $\vec{v}(x,y) = \begin{pmatrix} y^2 + \cos x \\ \cos x \end{pmatrix}$ längs der Kurve \vec{c} , wobei \vec{c} der Graph $y = f(x) = \sin x$ mit $x \in [0, 2\pi]$ ist.

4. Aufgabe 8 Punkte

Bestimmen Sie den Flächen
inhalt des Flächenstücks $F:=\{(x,y,z)\in\mathbb{R}^3\,|\,z=2x+2y,\,0\leq x\leq 2,\,\frac{x}{2}\leq y\leq 2x\}$.

5. Aufgabe 5 Punkte

Gegeben sei das Vektorfeld $\vec{v} \colon \mathbb{R}^3 \to \mathbb{R}^3$ mit rot $\vec{v} = \vec{0} :$

$$\vec{v}(x, y, z) = \begin{pmatrix} 2z^2x + y\cos x + e^z \\ \sin x + e^y \\ 2zx^2 + xe^z \end{pmatrix}.$$

Ermitteln Sie ein Potential von \vec{v} .

6. Aufgabe 5 Punkte

Die Abbildung $\vec{f} : \mathbb{R}^2 \to \mathbb{R}^2$ habe die Funktionalmatrix $\vec{f}'(x,y) = \begin{pmatrix} x^2 & 1 \\ 0 & \cos y \end{pmatrix}$. Die Abbildung $\vec{g} : \mathbb{R}^2 \to \mathbb{R}^2$ sei gegeben mit $\vec{g}(x,y) = \begin{pmatrix} y - x \\ xy \end{pmatrix}$. Berechnen Sie $\vec{g}'(x,y)$ und $(\vec{f} \circ \vec{g})'(1,0)$.