Stress evaluation at the ILC positron source

A. Ushakov¹, G. Moortgat-Pick¹, S. Riemann², A. Ignatenko², F. Dietrich², K. Aulenbacher³, V. Tyukin³, P. Heil³

¹University of Hamburg, ²DESY, ³University of Mainz

DPG Spring Meeting of the Matter and Cosmos Section

3 March 2016 University of Hamburg

International Linear Collider. e⁺ Source

International Linear Collider (ILC):

- $E_{CM} = 250 \div 500 \text{ GeV}$ (upgradeable to 1 TeV)
- Luminosity $L = 1.8 \cdot 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$ (4.9 · 10³⁴ cm⁻² s⁻¹ at 1 TeV)

Baseline Positron Source:

- $N_{e^+} = 3 \cdot 10^{10} \text{ e}^+/\text{bunch at DR}$
- 1312 bunches in 0.727 ms pulse, 5 Hz

Scheme of ILC e⁺ source

ILC undulator-based source (30% up to 60% e⁺ polarization)

e[−] Beam Energy: 150 ÷ 250 GeV

231 m SC Helical Undulator: 11.5 mm period, $B_{max} = 0.86 \text{ T}$ ($K_{max} = 0.92$)

Target: solid Ti6Al4V, 1.4 cm thickness $(0.4 X_0)$

Source Parameters at $E_{CM} = 500 \text{ GeV}$

e ⁻ Energy [GeV]	250
Number e ⁻ per Bunch	$2\cdot 10^{10}$
Number of Bunches per Pulse	1312
Bunch Spacing [ns]	554
Pulse Repetition Rate [Hz]	5
Undulator Field [T]	0.42
Average Photon Energy [MeV]	26.8
Required Undulator Length [m]	147
Average Photon Power [kW]	43
Relative Energy Deposition in Target [%]	5.3
Average Deposited Power in Target [kW]	2.3
Photon rms spot size on target [mm]	0.8

Prototype of Target (Cockcroft Institute, UK)

- Target diameter: 1 m
- Tangential speed: 100 m/s at rim (2000 rpm)
- 0.727 ms pulse \Rightarrow 7.27 cm beam path

Temperature Distribution in Rotated (100 m/s) Target

after 1st Pulse and Nominal Source Parameters ($E_{CM}=500$ GeV, $P_{e^+}=30\%$)

Average Deposited Power in Target during 727 μ s Pulse = 627 kW Absorbed Energy = 456 J Peak Power Density = 190 kW/cm³

 $\Delta T_{max} \approx 81$ °C Peak Energy Deposition Density (PEDD) = 42 J/g

Temperature and Stress in Radiative Cooled Target

Equivalent Stress at Pulse End $(T_{max} \approx 320 \, ^{\circ}\text{C})$

$$\sigma_{max}(T_{max}=320^{\circ}C)=116 \text{ MPa}$$

Temperature and Stress for High Luminosity Case

High luminosity operation mode with 250 GeV e⁻ beam:

Beam time structure: 2625 bunches; 366 ns bunch spacing; 961 μ s pulse; Average heat power \approx 4.6 kW

Equivalent Stress at Pulse End

8/12

 $\Delta T_{max} \approx 165 \, ^{\circ}\text{C}; \quad \sigma_{max}(T_{max} = 500 \, ^{\circ}C) = 230 \, \text{MPa}$

Summary on Heat Load of ILC Positron Source Target and Material Tests with MAMI e⁻ Beam

- Temperature rise per \sim 1 ms pulse of ILC e⁺ source: \approx 80 \div 200 °C. This corresponds to a peak energy deposition densities of about \approx 40 \div 100 J/g.
- The average temperature depends on cooling design. For the target cooled by radiation, the expected average target temperature is about \approx 250 \div 350 $^{\circ}\text{C}.$
- Tensile yield strength for Ti6Al4V material is 565 MPa at 370°C. Fatigue strength after 10⁷ cycles is about 50% of yield strength. These limits do not include material degradation under irradiation.
- Material tests at typical for ILC target thermal load conditions are needed.
- Material tests using 3.5 MeV and/or 14 MeV MAMI (Mainzer Mikrotron)
 e⁻ beam are started.

MAMI: Energy Deposition and ΔT per 1 ms Pulse

100 μ A @ 14 MeV e⁻, 0.4 ns bunch spacing, 2.45 \cdot 10⁶ bunches/pulse (1 ms) Beam spot size on target: 200 μ m rms radius

Energy Deposition along Beam Axis

4.7 GeV/(e
$$^-$$
 cm 3) \Rightarrow Δ T_{pulse} = 200 $^{\circ}$ C

Temperature Distribution

$$\Delta T_{max} = 170 \, ^{\circ}\text{C}^*$$

*Thermal conductivity was taken into account

Average (Background) Temperature

Max. Temperature vs Rep. Rate

Temperature Distribution for 100 Hz

 $\Delta T_{\text{max}} \simeq 300~^{\circ}\text{C}$ at 50 Hz rep. rate

Summary

- 100 μ A MAMI e⁻ beam (with 1 ms pulses and \sim 10 \div 60 Hz repetition rates) allows to achieve same **peak** and **average** temperatures as in ILC positron source target.
- Material aging can be investigated too.
- Same area of ILC target is heated again after \sim 7 seconds, that corresponds to 2.5 \cdot 10⁶ thermal cycles per year.
 - This number of cycles can be reached after 2–3 days of irradiation with MAMI beam.