Miderm 1 > 方家镇遠 111061548

1. Ans: public - key, advantages: ii) High security

(ii) Convenience

(iii) Asymmetry

, disadvantages: (i) Low-efficiency

(ii) Reliability

symmetric - key, advantages = (i) High-efficency

(17) Reliability

, disadvantages: (i) key distribution

(ii) Lover security

2. Ans: A Zploy B

* if there is a poly-time algorithm & for solving B, there is another poly-time algorithm H for solving A.

* An instance of A can be transformed into

an instance of B

* the same meaning: (i) Reduce A to B.

(ii) B is reduced to A

3. Ans 1

The adversary knows all details about a cryptosystem except the used private keys.

4. DES-CFB

DES used 64-bits to generate keys, and it self-synchronized after [7] if an entire block is lost.

mi is 16-bits long.

T = 4

so wrong vill be affected $Mq \sim M13$, $M_{16} \sim M_{20}$, $M_{26} \sim M_{30}$, $M_{89} \sim M_{93}$.

#

Ans: Pr[M=b] = Pb, b \ [0,1], Pr[k=0] = 0.42, Pr[k=1] = 0.58

Pr[M=0]

6.

Ans: $\chi = (1 \times 15 \times 17 \times (15 \times 17)^{-1} \mod 7$ $+ 3 \times 7 \times 17 \times (7 \times 17)^{-1} \mod 15$ $+ 7 \times 12 \times 15 \times (7 \times 15)^{-1} \mod 17 \mod 1785$

 $1 \times 15 \times 17 = 1785$ $M_1 = 255$, $M_2 = 119$, $M_3 = 10.5$ $19 \mod 7 = 3$, $3 \times 5 = 15 \mod 7 = 1$ $19 \mod 15 = 14$, $14 \times 14 = 196 \mod 15 = 1$ $105 \mod 17 = 3$, $3 \times 6 = 18 \mod 17 = 1$

7.
$$f(x) = \chi^{-1} \mod \chi^{9} + \chi^{4} + \chi^{3} + \chi + 1$$
,

 $f(0|000|1)$ is $\chi^{6} + \chi^{5} + \chi + 1$ under $GT(z^{9})$

Ans: compare $gcd(\chi^{8} + \chi^{4} + \chi^{3} + \chi + 1)$, $\chi^{6} + \chi^{5} + \chi + 1$)

$$\chi^{8} + \chi^{4} + \chi^{3} + \chi + 1 = (\chi^{6} + \chi^{5} + \chi + 1) \times (\chi^{2} + \chi + 1) + (\chi^{5} + \chi^{4} + \chi) \times \chi + (\chi^{2} + \chi + 1) + (\chi^{5} + \chi^{4} + \chi) \times \chi + (\chi^{2} + \chi + 1) + (\chi^{5} + \chi^{4} + \chi) \times \chi + (\chi^{5} + \chi + 1) + (\chi^{5} + \chi^{4} + \chi) \times \chi + \chi^{5} + \chi^{4} + \chi = (\chi^{5} + \chi^{4} + \chi) \times \chi + \chi^{5} + \chi^{4} + \chi = (\chi^{5} + \chi^{4} + \chi) \times \chi + \chi^{5} + \chi^{4} + + \chi^{5} + \chi^{4}$$

 $= B \left(X^{4} + X^{2} + X + 1 \right) + \left(A - B \left(X^{2} + X + 1 \right) \right) \left(X^{5} + X^{3} + X^{2} \right)$ $= A \left(X^{5} + X^{3} + X^{2} \right) + B \left(X^{4} + X^{2} + X + 1 \right) + \left(X^{2} + X + 1 \right) \left(X^{5} + X^{3} + X^{2} \right)$ $= A \left(X^{5} + X^{3} + X^{2} \right) + B \left(X^{4} + X^{4} + X + 1 + X^{2} + X^{4} + X^{6} + X^{4} + X^{5} + X$

· + (01100011) = 11010011