Investment Data Analysis

Minija Kannath

Contents

- ★ Introduction.
- ★ Methodology.
- ★ Process workflow.
- **★** Results
- **★** Conclusion
- ★ Future opportunities
- **★** Appendix

Introduction

I am a data analyst working for an asset management Company

Representing Organization

Target Audience

The CEO and board of directors of TIAA

Business Objective

TIAA wants to make investments in a few companies. The CEO of TIAA wants to understand the global trends in investments and to build a prediction model to classify the status of the companies so that she can take the investment decisions effectively

Business Constraints

 TIAA wants to invest between 6 to 16 million USD per round of investment.

 TIAA wants to invest only in Englishspeaking countries.

Data Collection

This data is collected from Data world and Kaggle. It is originally from Crunchbase database. Which is a collection of information about startup companies and investments. This data set consists of more than 40,000 records and 16 columns

SLIDESMANIA.COM

Data Collection

funding_t otal_usd

Total funds received

Funding round

The rounds of funding that start-ups go through to raise capital.

Last_fun ded_year

The last year the company received the fund Fundin g Type

The type of funding company received

Found ed_at

The year company was founded

Database schema

Creating Schema in SQL:

SLIDESMANIA.COM

Methodology

Model

Baseline Model: Naive Bayes

Alternative Model: Logistic Regression

Random Forest, Decision tree

Metrics

Classification Report(precision,recall,f1-score)

Confusion Matrix

Tools

Process workflow

- ★ Data Cleaning/Data Analysis
- ★ Data Preparation/Feature Engineering
- ★ Data Transformation
- ★ ML Model Training and Evaluation

Data cleaning

- For the business objectives the column homepage_url and name is not used. These columns are dropped.
- State_code, region and city are highly correlated with country_code.So these columns are dropped.

funding_round_type	last_funding_at	first_funding_at	founded_at	funding_rounds	country_code	status	funding_total_usd	category_list
venture	2014-07-24	2014-07-24	2010-01-01	1	USA	0	NaN	Curated Web
undisclosed	2014-07-01	2014-07-01	None	1	HKG	0	41250.0	Marketplaces
venture	2008-03-19	2008-03-19	2007-01-01	1	CHN	0	2000000.0	Finance Technology
venture	2009-12-21	2009-09-11	1997-01-01	2	CAN	0	762851.0	Clean Technology
seed	2009-12-21	2009-09-11	1997-01-01	2	CAN	0	762851.0	Clean Technology

Data cleaning

summary statistics of funding_total_usd:

count		9.589700e+04	
mean		3.520118e+07	
std		2.827248e+08	
min		1.000000e+00	
25%		8.250000e+05	
50%		5.000000e+06	
75%		2.385000e+07	
max		3.007950e+10	
	_		

Name: funding_total_usd, dtype: float64

Summary of the missing values (columnwise) and fraction of NaNs:

permalink	0.00
name	0.00
category_list	0.00
funding_total_usd	0.00
status	0.00
country_code	4.42
funding_rounds	0.00
founded_at	0.00
first_funding_at	0.06
last_funding_at	0.00
funding_round_type dtype: float64	0.00

SLIDESMANIA.COM

Data cleaning

Column wise analysis of country code column:

Displaying frequencies of each category

```
USA
       62627
GBR
        5073
        2642
CAN
CHN
        2153
IND
        1663
MKD
MNE
QAT
PSE
ZWE
Name: country_code, Length: 134, dtype: int64
```

Removing the rest of the missing values from country_code and first funding

permalink	0
name	0
category_list	0
funding_total_usd	0
status	0
country_code	0
funding_rounds	0
founded_at	0
first_funding_at	0
last_funding_at	0
funding_round_type	0
dtype: int64	

Data Preparation/Feature Engineering

Dimensionality Reduction;

Any funding type having less than 1000 data points are tagged as "others" funding type.

Hot encoding:

After that hot encoding is used to transform categorical feature "funding type into binary form of representation

Label encoding:

Label encoding is used to transform the categorical feature 'country code' into numerical form

of representation

Data Preparation/Outlier removal

Data Analysis

Explore target value distribution

It is an imbalanced data set

To impose the constraint:

investment amount should be between 6 and 16 million USD.

We will choose the funding type such that the average investment amount falls in this range.

funding_round_type		
private_equity	5606314	48.0
venture	1501574	44.5
debt_financing	100285	0.00
others	779578	30.0
convertible_note	125803	32.0
angel	100000	0.00
grant	100000	0.00
seed	8477	08.8
non_equity_assistance	80000	0.00
equity_crowdfunding	19564	49.0
Name: funding_total_usd,	dtype:	float64

SLIDESMANIA.COM

Data Transformation

Split the data into training and testing datasets:

 $test_size = 0.2$

Data Normalization:

Min Max Scaler: Naive Bayes

Robust Scaler: Logistic regression, Decision Tree & Random Forest

Oversampling the train data set using SMOTE:

Machine Learning Model

Baseline Model: Naive Bayes

Alternative Model: Logistic Regression, Decision tree, Random Forest

RFE method for Feature selection:

Since the stability of RFE depends on type of model .I ran RFE with all four models

Machine Learning Model Training & Evaluation

Baseline Model: Naïve Bayes

Hyperparameter. (fit_prior= True, alpha =1)

The accuracy is: 40.9%

Average Precision score: 0.4893249261525952 Average Recall score : 0.4535846189878576 Average F1 score : 0.45755718828812847

Alternative Model: Logistic Regression

Hyperparameter: (solver='lbfgs', max_iter=1000)

The accuracy is: 59.0%

Average Precision score: 0.4775182941289873 Average Recall score : 0.304342462367961 Average F1 score : 0.3117737540667952

Machine Learning Model Training & Evaluation

Alternative Model: Decision Tree

Hyperparameter: (min_samples_split'= 3, min_samples_leaf:=9, max_depth= 5)

The accuracy is: 88.3%

Average Precision score: 0.8944955809884085 Average Recall score : 0.8925268817204302 Average F1 score : 0.8927414709604884

Alternative Model: Random Forest

Hyperparameter: (n_estimators=10, min_samples_split= 5, max_depth=28)

The accuracy is: 90.0%

Average Precision score: 0.9513638553682598 Average Recall score : 0.9499111436337028 Average F1 score : 0.9500340786278793

Finding the best model and Hyperparameter tuning

arams)	best_score	model	
h': 28}	('n_	0.912020	Random_forest	0
h': 15}	l {'min_	0.859221	DecisionTreeClassifier	1
ha': 1}	7	0.788027	Multinomial Naive Bayes	2
		0.788027	Multinomial Naive Bayes	2

	model	best_score	best_params
0	logistic_regression	0.792958	{'C': 10}

Results

Confusion Matrix for the Most accurate model Random Forest

Company Status Prediction

Select funding type

Angel: No V
ConvertibleNote: No V
DebtFinancing: No V
EquityCrowdfunding: No V
Grant: No V
NonEquityAssistance: No V
PrivateEquity: No V
Seed: No V
Venture: No V

Select Sector

Model deployment using Flask

The status is: Operating

Deploying Flask App to Heroku

Link to my app: https://companystatusprediction.herokuapp.com

Predictive analysis

- ★ TIAA business constraints are applied to the test data
- ★ Predictions are obtained from this constraint dataset
- ★ The inputs and Predictions are inserted into SQL database as Predictions table.
- ★ Predictions table is connected to power Bl.
- ★ New columns and measures are created using DAX formula and IF function.
- ★ Different charts are plotted using power BI.

Findings

Potential success rate of investment is high in South Africa (27%) followed by Ireland, Singapore, India, United states and United Kingdom.

Potential success rate of investment is high in Health sector (19%) followed by manufacture, Cleantech semiconductors.

South Africa has only one sector with potential success rate for investment. (Entertainment) Australia and Singapore are the two countries with a high success rate in health sector.

Manufacturing sector investment is more successful in United kingdom followed by Canada.

Cleantech semiconductors sector investment is predicted as more successful in Ireland and Singapore.

The years of operation of the companies have a positive correlation on investment success.

SLIDESMANIA.CO

Conclusion

Sector	South Africa	Ireland	Singapore	India
Best	Entertainment	Automotive sport	Entertainment	Social Finance Analytics Advertising
Second Best		Cleantech Semiconductors	Health	Entertainment
Third Best		Entertainment	Automotive sport	Manufacturing

SLIDESMANIA.COM

Future Opportunities

In future:

I will try to get my data from CrunchBase API so that I can update it if I want to.

I will use Principal Component Analysis (PCA) and try to improve the classification performance to build a more accurate model

Thank you!

https://data.world/fiftin/crunchbase-2015

https://www.kaggle.com/arindam235/startup-investments-crunchbase https://en.wikipedia.org/wiki/List_of_countries_by_English-speaking_population