manojmanu609bv@gmail.com >

NPTEL (https://swayam.gov.in/explorer?ncCode=NPTEL) » Data Science for Engineers (course)

Course outline

About NPTEL ()

How does an NPTEL online course work? ()

Setup Guide ()

Pre Course Material ()

Week 0 ()

Week 1 ()

Week 2 ()

Week 3 ()

Week 4 ()

Optimization for Data Science (unit? unit=55&lesso n=56)

Week 4: Assignment 4

The due date for submitting this assignment has passed.

Due on 2024-08-21, 23:59 IST.

Assignment submitted on 2024-08-20, 12:29 IST

1) Let $f(x) = x^3 + 3x^2 - 24x + 7$. Select the correct options from the following:

0 points

 $-2 + \sqrt{5}$ will give the maximum for f(x).

 $-2 + \sqrt{5}$ will give the minimum for f(x).

The stationary points for f(x) are $-2 + \sqrt{5}$ and $-2 - \sqrt{5}$.

The stationary points for f(x) are -4 and 0.

No, the answer is incorrect.

Score: 0

Accepted Answers:

 $-2 + \sqrt{5}$ will give the minimum for f(x).

The stationary points for f(x) are $-2 + \sqrt{5}$ and $-2 - \sqrt{5}$.

Consider the following optimization problem:

$$\max_{x \in \mathbb{R}} f(x), \text{ where } f(x) = x^4 + 7x^3 + 5x^2 - 17x + 3$$

Let x^* be the maximizer of f(x).

2) What is the second order sufficient condition for x^* to be the maximizer of the function f(x)?

$$4x^3 + 21x^2 + 10x - 17 = 0$$

- Unconstrained
 Multivariate
 Optimization
 (unit?
 unit=55&lesso
 n=57)
- Unconstrained
 Multivariate
 Optimization (
 Continued)
 (unit?
 unit=55&lesso
 n=58)
- Gradient (
 Steepest)
 Descent (OR)
 Learning Rule
 (unit?
 unit=55&lesso
 n=59)
- FAQ (unit? unit=55&lesso n=60)
- Week 4
 Feedback
 Form: Data
 Science for
 Engineers
 (unit?
 unit=55&lesso
 n=156)
- Practice:
 Week 4:
 Assignment 4
 (Non Graded)
 (assessment?
 name=209)
- Quiz: Week 4: Assignment 4(assessment? name=220)

Week 5 ()

Week 6 ()

Week 7 ()

Week 8 ()

$$12x^2 + 42x + 10 = 0$$

$$12x^2 + 42x + 10 > 0$$

$$12x^2 + 42x + 10 < 0$$

Yes, the answer is correct.

Score: 1

Accepted Answers:

$$12x^2 + 42x + 10 < 0$$

- 3) Find the value of x^* .
 - -4.48
 - 0.66
 - **● -1.43**
 - 4.45

Yes, the answer is correct.

Score: 1

Accepted Answers:

-1.43

4) Let $f(x) = 2\sin x$, $0 \le x \le 2\pi$. Select the correct options from the following:

1 point

1 point

 $\frac{\pi}{2}$ is the global maximum of f(x).

√

 π is the global minimum of f(x).

3π

 $\frac{3\pi}{2}$ is the global maximum of f(x).

2-

 $\frac{3\pi}{2}$ is the global minimum of f(x).

No, the answer is incorrect.

Score: 0

Accepted Answers:

- $\frac{\pi}{2}$ is the global maximum of f(x).
- $\frac{3\pi}{2}$ is the global minimum of f(x).

Let
$$f(x_1, x_2) = 2x_1^2 + 3x_1x_2 + 3x_2^2 + x_1 + 3x_2$$
.

5) Find the gradient for f(x).

1 point

$$\nabla f = \begin{bmatrix} 4x_1 + 3x_2 + 1 \\ 3x_1 + 6x_2 + 3 \end{bmatrix}$$

Text
Transcripts
()

Download Videos ()

Books ()

Problem Solving Session -July 2024 ()

$$\nabla f = \begin{bmatrix} 4x_1 + 3x_2 \\ 3x_1 + 6x_2 \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} 4x_2 + 3x_1 + 1 \\ 3x_2 + 6x_1 + 3 \end{bmatrix}$$

Yes, the answer is correct.

Score: 1

Accepted Answers:

$$\nabla f = \begin{bmatrix} 4x_1 + 3x_2 + 1 \\ 3x_1 + 6x_2 + 3 \end{bmatrix}$$

6) Find the stationary point for $f(x_1, x_2)$.

1 point

- 0.6, 0.4
- **○ -**0.6, **-**0.4
- 0.2, -0.6
- 0.2, 0.6

Yes, the answer is correct.

Score: 1

Accepted Answers:

0.2, -0.6

7) Find the Hessian matrix for $f(x_1, x_2)$.

1 point

$$\nabla^2 f = \begin{bmatrix} 2 & 3 \\ 3 & 6 \end{bmatrix}$$

$$\nabla^2 f = \begin{bmatrix} 3 & 3 \\ 3 & 3 \end{bmatrix}$$

$$\nabla^2 f = \begin{bmatrix} 4 & 3 \\ 3 & 6 \end{bmatrix}$$

$$\nabla^2 f = \begin{bmatrix} 6 & 3 \\ 3 & 4 \end{bmatrix}$$

Yes, the answer is correct.

Score: 1

Accepted Answers:

$$\nabla^2 f = \begin{bmatrix} 4 & 3 \\ 3 & 6 \end{bmatrix}$$

8) The stationary point obtained in the previous question is

1 point

- maxima
- minima

◯ saddle point	
Yes, the answer is correct. Score: 1	
Accepted Answers: minima	
9) Let $f(x_1, x_2) = 4x_1^2 - 4x_1x_2 + 2x_2$. Select the correct options from the following:	1 point
(2, 4) is a stationary point of $f(x)$.	
(0, 0) is a stationary point of $f(x)$.	
The Hessian matrix $\nabla^2 f$ is positive definite.	
The Hessian matrix $\nabla^2 f$ is not positive definite.	
No, the answer is incorrect.	
Score: 0 Accepted Answers:	
The Hessian matrix $\nabla^2 f$ is not positive definite.	
10) In optimization problem, the function that we want to optimize is called	1 point
O Decision function	
Constraints function	
Optimal function	
Objective function	
Yes, the answer is correct. Score: 1	
Accepted Answers: Objective function	
11) The optimization problem $min_x f(x)$ can also be written as $max_x f(X)$.	1 point
● True	
○ False	
No, the answer is incorrect. Score: 0	
Accepted Answers:	
False	
12) In the gradient descent algorithm, the step size should always be same for each	1 point
iteration.	•
○ True	
False	
Yes, the answer is correct. Score: 1	
Accepted Answers: False	