Search Algorithm	Missionaries and Cannibals	Towers of Hanoi	Farmer Fox Chicken and Grain
Depth First	Solution Path Length = 9	Solution Path Length = 40	Solution Path Length = 7
Search	States Expanded = 10	States Expanded = 40	States Expanded = 7
	Max Open Length = 2	Max Open Length = 7	Max Open Length = 4
Breadth First	Solution Path Length = 7	Solution Path Length = 18	Solution Path Length = 7
Search	States Expanded = 10	States Expanded = 70	States Expanded = 10
	Max Open Length = 2	Max Open Length = 16	Max Open Length = 3

Paths

- 1. Missionaries: for [x,y], there are x missionaries and y cannibals on the left bank
 - a. **BFS**: $[3,3] \rightarrow [2,2] \rightarrow [3,2] \rightarrow [1,1] \rightarrow [3,1] \rightarrow [0,1] \rightarrow [1,1] \rightarrow [0,0]$
 - b. **DFS**: $[3,3] \rightarrow [2,2] \rightarrow [3,2] \rightarrow [0,2] \rightarrow [2,2] \rightarrow [1,1] \rightarrow [3,1] \rightarrow [0,1] \rightarrow [1,1] \rightarrow [0,0]$
- 2. **Farmer Fox:** F: Farmer, g: Grain, c: Chicken, f: Fox. Letters represent things on left bank.
 - a. **BFS:** Fcfg \rightarrow fg \rightarrow Ffg \rightarrow f \rightarrow Fcf \rightarrow c \rightarrow Fc \rightarrow done!
 - b. **DFS**: Fcfg \rightarrow fg \rightarrow Ffg \rightarrow g \rightarrow Fcg \rightarrow c \rightarrow Fc \rightarrow done!
- 3. Towers Of Hanoi (4): bigger numbers are bigger disks.
 - a. DFS

[[4, 3, 2, 1], [], []]

[[4, 3, 2], [1], []]

[[4, 3],[1],[2]]

[[4, 3, 1], [], [2]]

[[4, 3], [], [2, 1]]

[[4],[3],[2,1]]

[[4, 1], [3], [2]]

[[4],[3, 1],[2]]

[[4, 2], [3, 1], []]

[[4, 2], [3, 1], []]

[[4, 2], [3], [1]]

[[4],[3, 2],[1]]

[[4, 1], [3, 2], []]

[[4],[3,2,1],[]]

[[],[3, 2, 1],[4]]

[[1],[3, 2],[4]] [[],[3, 2],[4, 1]] [[2],[3],[4,1]] [[2, 1],[3],[4]] [[2],[3, 1],[4]] [[],[3, 1],[4, 2]] [[1],[3],[4, 2]] [[],[3],[4, 2, 1]] [[3],[],[4, 2, 1]] [[3, 1],[],[4, 2]] [[3],[1],[4, 2]] [[3, 2],[1],[4]] [[3, 2, 1], [], [4]][[3, 2], [], [4, 1]][[3],[2],[4, 1]] [[3, 1],[2],[4]] [[3],[2, 1],[4]] [[],[2,1],[4,3]][[1],[2],[4, 3]] [[],[2],[4,3,1]][[2],[],[4, 3, 1]] [[2, 1],[],[4, 3]] [[2],[1],[4,3]] [[],[1],[4, 3, 2]] [[1],[],[4, 3, 2]] [[],[],[4, 3, 2, 1]]

b. BFS

- [[4, 3, 2, 1],[],[]]
- [[4, 3, 2], [1], []]
- [[4, 3],[1],[2]]
- [[4, 3],[],[2, 1]]
- [[4],[3],[2,1]]
- [[4, 1], [3], [2]]
- [[4, 1],[3, 2],[]]
- [[4],[3, 2, 1],[]]
- [[],[3, 2, 1],[4]]

[[1],[3, 2],[4]]

[[],[3, 2],[4, 1]] [[2],[3],[4,1]]

[[2, 1],[],[4, 3]]

[[2],[1],[4,3]] [[],[1],[4,3,2]]

[[1],[],[4, 3, 2]]

[[],[],[4,3,2,1]]