Markov Chains II

ISE/OR 560 Fall 2022

Hong Wan

October 3, 2022

North Carolina State University

NC STATE UNIVERSITY

Man de son debine a DT MC

from a given problem?

Markov Chain: First Passenger Time

Let $\{X_n, n \ge 0\}$ be a DTMC on $S = \{0, 1, 2, \dots\}$, with transition probability matrix P, and initial distribution a. Let

$$T = \min \{ n \ge 0 : X_n = 0 \}.$$

The random variable *T* is called the first passage time into state 0 , since *T* is the first time the DTMC "passes into" state 0.

The same techniques can be used to study the first passage time into any set $A \subset S$.

What We Will Study

- (1) Complementary cdf of $T: P(T > n), n \ge 0$,
- (2) Probability of eventually visiting state $0: P(T < \infty)$, eventually you vil so to state 0.

Conditional Quantities

the conditional quantities for $i \in S$: $v_i(n) = P(T > n \mid X_0 = i)$ $v_i(n) = P(T < \infty \mid X_0 = i)$,

Then we can get the following expression:

$$P(T > n) = \sum_{i \in S} a_i v_i(n)$$
$$P(T < \infty) = \sum_{i \in S} a_i u_i$$

CDF of T

The following theorem illustrates how the first-step analysis produces a recursive method of computing the cumulative distribution of *T*. We first introduce the following matrix notation:

$$v(n) = [v_1(n), v_2(n), \cdots]^{\top}, \quad n \ge 0$$

 $B = [p_{i,j} : i, j \ge 1].$

Thus B is a submatrix of P obtained by deleting the row and column corresponding to the state 0 .

Theorem

$$v(n) = B^n e, \quad n \ge 0,$$

where e is column vector of all ones.

Examples: Two-state DTMC

Consider the two state DTMC. The state-space is $\{1, 2\}$. Let T be the first passage time to state 1.

Examples

Consider a DTMC with state-space {1, 2, 3, 4, 5, 6} and transition probability matrix given below:

$$P = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 1/4 & 1/2 & 0 & 1/4 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 1/16 & 1/4 & 1/8 & 1/4 & 1/4 & 1/16 \\ 0 & 0 & 0 & 1/4 & 1/2 & 1/4 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Let

$$T = \min \{ n \ge 0 : X_n = 1 \}$$

Examples: Success Runs

Consider the success runs DTMC of with transition probabilities

$$p_{i,0} = q_i, \quad p_{i,i+1} = p_i, \quad i = 0, 1, 2, \cdots.$$

Let *T* be the first passage time to state 0. Compute the complementary cdf of *T* starting from state 1. (Hint: think about the special structure of this DTMC)

Example

Classification of State

- · Accessible ; is accesible to i then pisso
- · Communicate
- · irreducible

 "the graph is one piece"
- · Recurrent

 Ly It you so back to xo, everything starts again. i.e.

 Transient the whole process can restart.

 That going back
- · absorbing

 "black hde"

 com set out of that such state.

Absorbing Probability