Seria: o spektrach

Zadanie 62

 $\mathbf{a} \implies \mathbf{c}$

Załóżmy, że Spec R jest niespójne, a zatem Spec R = $A \cup B$ dla A, B – rozłącznych domkniętych. Z definicji topologii Zariskiego mamy A = V(I), B = V(J) dla pewnych ideałóce $I, J \subseteq R$. Mamy $V(IJ) = V(I) \cup V(J) = S$ pec R, a zatem IJ jest podzbiorem każdego ideału pierwszego, a zatem $IJ \subseteq \sqrt{0}$. Ponadto $V(I+J) = V(I) \cap V(J) = \emptyset$, a zatem I+J zawiera jakiś element odwracalny, a zatem I+J=R. Stąd istnieją $\alpha \in A, \beta \in B$ takie, że $\alpha + \beta = 1$.

Mamy $\alpha\beta \in \sqrt{0}$ a zatem istnieje n takie, że $(\alpha\beta)^n = 0$. Teraz zauważmy, że $(\alpha+\beta)^{2n} = \sum_{k=0}^{2n} {2n \choose k} \alpha^k \beta^{2n-k}$. Wyraz ${2n \choose n} \alpha^n \beta^n$ jest zerowy, a zatem

$$1 = (\alpha + \beta)^{2n} = \underbrace{\sum_{k=0}^{n-1} \binom{2n}{k} \alpha^k \beta^{2n-k}}_{:=\alpha} + \underbrace{\sum_{k=n+1}^{2n} \binom{2n}{k} \alpha^k \beta^{2n-k}}_{:=b}$$

Mamy teraz a+b=1, zaś w iloczynie ab każdy składnik będzie podzielny przez $\alpha^n \beta^n$ (bo w a są podzielne przez β^n , zaś w b przez α^n). Zatem ab=0.

Jendkaże zauważmy, że $\alpha \in A$, $b \in B$, a zatem $\alpha, b \neq 1$, zatem w myśl $\alpha = 1 - b$ mamy, że $\alpha(1 - \alpha) = 0$, $\alpha \notin \{0, 1\}$.

 $\mathbf{c} \implies \mathbf{b}$

Było na ćwiczeniach.

 $b \implies a$

Niech I = ((1,0)), J = ((0,1)). Wtedy mamy, że $I + J = ((0,1),(1,0)) \ni (1,1) = 1$, zatem I + J = R, czyli $V(I) \cap V(J) = V(I+J) = \varnothing$. Ponadto IJ = 0, więc $V(I) \cup V(J) = V(IJ) = \operatorname{Spec} R$, zatem $\operatorname{Spec} R = V(I) \cup V(J)$ jest rozkładem na sumę rozłącznych zbiorów domkniętych, co dowodzi, że $\operatorname{Spec} R$ jest niespójny.

Zadanie 65

Część a

Przypuśćmy, że $I_x \subseteq J$ dla pewnego ideału J.W tedy istnieje $f \in J \setminus I_x$, a zatem $f(x) \neq 0$. Rozpatrzmy funkcję ciągłą $X \ni y \mapsto \frac{f(y)}{f(x)} \in \mathbb{R}$. Należy ona do J, zaś różnica jej i funkcji stale równej 1 zeruje się w x, a zatem należy do I_x , czyli tym bardziej do J, a zatem ich suma, czyli funkcja stale równa 1 należy do J, skąd J = (1).

Ponadto $I_x \neq (1)$, gdyż $(y \mapsto 1) \not\in I_x$.

Część b

Surjektywność

Rozpatrzmy dowolny ideał I. Chcemy pokazać, że $I\subseteq I_x$ dla pewnego x (w szczególności stosując to dla I będącego ideałem maksymalnym pokażemy, że $I=I_x$ dla pewnego x). Jeśli nie zawiera on się w żadnym I_x , to znaczy, że dla każdego $x\in X$ istnieje funkcja $f_x\in I$, taka, że $f_x(x)\neq 0$. Z ciągłości istnieje U_x – otwarte otoczenie x takie, że $\forall_{u\in U_x}f_x(u)\neq 0$. Zbiór $\{U_x:x\in X\}$ jest pokryciem przestrzeni X, wybierzmy na mocy zwartosci podpokrycie skończone: U_{x_1},\ldots,U_{x_n} . Teraz widzimy, że $f=y\mapsto f_{x_1}(y)^2+f_{x_2}(y)^2+\ldots+f_{x_n}(y)^2$ jest funkcją należącą do I (jako skończona suma elemenów I przemnożonych przez jakieś funkcje ciągłę). Ponadto widzimy, że dla każdego y mamy f(y)>0. Określmy $h(y)=f(y)^{-1}$. Wtedy funkcja $y\mapsto f(y)h(y)=1$ należy do I, a zatem I=(1).

A zatem $I \subseteq I_x$, w szczególności każdy ideał maksymalny jest postaci $\Phi(x)$.

Algebra Termin: 2015-01-15

nr albumu: 347208 str. 2/2 Seria: o spektrach

Injektywność

Przypuśćmy, że $I_x = I_y$ dla pewnych $x,y \in X, \ x \neq y$. Jednakże wiemy, że przestrzeń zwarta Hausdorffa jest normalna, a zatem istnieje funkcja f ciągła taka, że f(x) = 0, f(y) = 1. Mamy wtedy $f \in I_x = I_y \not\ni f$ – sprzeczność.

Ciągłość

Wystarczy pokazać, że przeciwobraz zbioru bazowego jest otwarty, czyli, że przeciwobraz zbioru V(f) jest domknięty dla każdego $f \in C(X)$. Zauważmy jednak, że $\Phi(x) = I_x \in V(f) \iff (f) \subseteq I_x \iff f(x) = 0$. Widzimy teraz, że $\Phi^{-1}(V(f)) = \{x \in X : f(x) = 0\} = f^{-1}(\{0\})$ jest domknięty.

Domkniętość

Niech $F \subseteq X$ będzie zbiorem domkniętym. Dla $U \supseteq F$ – otwartego określmy funkcję $f_U : X \to \mathbb{R}$ taką, że $f_U(X \setminus U) \subseteq \{1\}$, $f_U(F) \subseteq \{0\}$ (na mocy lematu Urysohna, gdyż przestrzeń zwarta Hausdorffa jest normalna). Niech $I = (f_U)_{U \supseteq F}$. Twierdzę, że $V(I) = \Phi(F)$.

Istotnie, jeśli $J \in \Phi(F)$, czyli $J = I_x$ dla pewnego $x \in F$, to mamy, że dla każdego $U \supseteq F$ mamy $f_U(x) = 0$, zatem $(f_U) \subseteq I_x$, zatem i $(f_U)_{U \supseteq F} \subseteq I_x$.

W drugą stronę, jeśli $J \not\in \Phi(F)$, to $J = I_x$ dla pewnego $x \not\in F$. Wtedy na mocy normalności istnieje takie $U \supseteq F$ otwarte, że $x \not\in U$. Wtedy mamy, że $f_U(x) = 1$, a zatem $(f_U) \not\subseteq I_x$, czyli tym bardziej $(f_U)_{U \supseteq F} \not\subseteq I_x$. Zatem $\Phi(F) = V(I)$, co jest zbiorem domkniętym.

Algebra Termin: 2015-01-15