An SDP Optimization Formulation for the Inverse Kinematics Problem

Liangting Wu tomwu@bu.edu
Roberto Tron tron@bu.edu
12/14/2023

Introduction

Inverse Kinematics (IK)

(a) Multi-arm cooperation

(b) Parallel robot

(c) Humanoids

Inverse Kinematics: previous work

- Analytical solutions
 - Finite number of solutions to arms up to 6 DoFs exists. Solver: IKFast¹.
- Numerical solutions
 - Jacobian inverse technique².
 - Heuristic methods. Solvers: CCD³, FABRIK⁴
 - Nonlinear programming⁵⁶

 $^{^{1}\}mathrm{R}.$ Diankov (2010), Automated construction of robotic manipulation programs.

²S. R. Buss, IEEE Journal of Robotics and Automation 17, 16 (2004).

³B. Kenwright, *Journal of Graphics Tools* **16**, 177–217 (2012).

⁴A. Aristidou, J. Lasenby, *Graphical Models* **73**, 243–260 (2011).

 $^{^5\}mathrm{T.}$ Le Naour et al., Computers & Graphics 84, 13–23 (2019).

⁶ P. Beeson, B. Ames, 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids), 928–935 (2015). tomwu@bu.edu

Inverse Kinematics: previous work

- Relaxations
 - Mixed-integer programming (MIP)⁷
 - Riemannian optimization⁸
 - Semidefinite programming (SDP)⁹¹⁰

⁷H. Dai et al., The International Journal of Robotics Research 38, 1420-1441 (2019).

⁸F. Marić et al., IEEE Transactions on Robotics 38, 1703-1722 (2021).

⁹T. Yenamandra et al., presented at the 2019 International Conference on 3D Vision (3DV), pp. 318–327.

Contributions

- Single formulation that can incorporate more general kinematic constraints and arrangements of links
 - E.g., parallel robots, multi-robots, humanoids.
- Novel SDP relaxation
 - Novel low-rank projection based on fixed-trace matrices
 - Infeasibility certificates

Methods

Parameterization

 $G = (\mathcal{V}, \mathcal{E}) :=$ a graph to represent the robot kinematic chain

 $\mathcal{V}:=\mathsf{indices}\;\mathsf{of}\;\mathsf{the}\;\mathsf{links}$

 $\mathcal{E} :=$ connections (joints) among the links.

$$\mathcal{B}_i := (\mathbf{T}_i, \mathbf{R}_i) \quad \mathcal{B}_j := (\mathbf{T}_j, \mathbf{R}_j)$$

 \bigcirc Novelty: we parameterize with absolute poses, i.e., $\mathbf{R}_i = {}^{\mathcal{W}}\mathbf{R}_{\mathcal{B}_i}$ and $\mathbf{T}_i = {}^{\mathcal{W}}\mathbf{T}_{\mathcal{B}_i}$.

Kinematic Constraints on joints

 \bigcirc We can write the above constraints as matrix linear/semidefinite equalities/inequalities on rotations $\{\mathbf{R}_i\}$.

Relaxation of the Feasible Set

By dropping the fact that $\mathbf{R}_i \in \mathbf{SO}(3)$, we can develop constraints linear to the (vectorized) free rotations $\mathbf{u} = \mathrm{stack}(\{\mathrm{vec}(\mathbf{R}_i)\}_{i \in \mathcal{V}})$.

revolute joint common axis revolute joint angle limit
$$\Rightarrow \mathbf{A}_k \mathbf{u} = (\leq) \mathbf{b}_k$$
 (1)

For $(i, j) \in \mathcal{E}$, the following relation holds:

$$\mathbf{T}_j - \mathbf{T}_i = \mathbf{R}_i{}^i \mathbf{T}_j. \tag{2}$$

We can represent $\{\mathbf{T}_i\}$ with $\{\mathbf{R}_i\}$.

Relaxation of SO(3)

We want $\mathbf{R}_i \in \mathbf{SO}(3)$, i.e.,

$$\mathbf{R}_i^\mathsf{T} \mathbf{R}_i = \mathbf{I}_3 \text{ and } \det(\mathbf{R}_i) = +1.$$
 (3)

 \P We propose a **novel** way to relax SO(3) using convex constraints.

$$\begin{cases}
 \|\mathbf{R}_{i}^{(1)}\| = 1 \\
 \|\mathbf{R}_{i}^{(2)}\| = 1 \\
 \mathbf{R}_{i}^{(1)} \cdot \mathbf{R}_{i}^{(2)} = 0 \\
 \mathbf{R}_{i}^{(1)} \times \mathbf{R}_{i}^{(2)} = \mathbf{R}_{i}^{(3)}
\end{cases} = \begin{bmatrix}
 \mathbf{R}_{i}^{(1)} \\
 \mathbf{R}_{i}^{(1)} \\
 \mathbf{R}_{i}^{(2)} \\
 \mathbf{R}_{i}^{(2)$$

[&]quot;*'s" stand for symmetric counterparts
tomwn@bn.edu

Relaxation of SO(3)

 \mathbf{R} :

rotation matrices

 \in

 \mathcal{U} : Kinematic constraints

 $\mathbf{R}_i \in \mathbf{SO}(3)$

Original

 \mathbf{Y} :

decision variables

 \in

Relaxation \Rightarrow

Kinematic constraints

SO(3)

Lifted

Relaxation of $\mathbf{SO}(3)$

Proposition 1

The set $\bar{\mathcal{U}}$ is compact.

Relaxation of SO(3)

Proposition 1

The set $\bar{\mathcal{U}}$ is compact.

Proposition 2

The relaxed set $\bar{\mathcal{U}}$ contains every element of \mathcal{U} , i.e., $\mathcal{U} \subset \bar{\mathcal{U}}$. Moreover, \mathcal{U} is a subset of the boundary of $\bar{\mathcal{U}}$, i.e., $\mathcal{U} \subset \partial \bar{\mathcal{U}}$.

Relaxation of SO(3)

Proposition 1

The set $\bar{\mathcal{U}}$ is compact.

Proposition 2

The relaxed set $\bar{\mathcal{U}}$ contains every element of \mathcal{U} , i.e., $\mathcal{U} \subset \bar{\mathcal{U}}$. Moreover, \mathcal{U} is a subset of the boundary of $\bar{\mathcal{U}}$, i.e., $\mathcal{U} \subset \partial \bar{\mathcal{U}}$.

Proposition 3

The set $\mathcal U$ is the intersection of $\bar{\mathcal U}$ rank-1 matrices.

The inverse kinematics problem aims to find a solution such that the end-effector, ee, reaches a desired location \mathbf{T}_{goal} with an orientation \mathbf{R}_{goal} . This can be encoded as the cost

$$f(\mathbf{u}) = \|\operatorname{vec}(\mathbf{R}_{ee}) - \operatorname{vec}(\mathbf{R}_{goal})\|_{2}^{2} + \|\mathbf{T}_{ee} - \mathbf{T}_{goal}\|_{2}^{2}, \tag{5}$$

, z

R: rotation matrices

$$\min_{\mathbf{u}} \qquad f(\mathbf{u}) \qquad \text{(6a)}$$
 subject to $\mathbf{u} \in \mathcal{U} \qquad \text{(6b)}$

R: rotation matrices

$$\min_{\mathbf{u}} \qquad f(\mathbf{u}) \qquad \text{(6a)}$$
 subject to $\mathbf{u} \in \mathcal{U} \qquad \text{(6b)}$

1

R: rotation matrices

$$\min_{\mathbf{u}} f(\mathbf{u})$$
 (6a)

subject to $\mathbf{u} \in \mathcal{U}$ (6b)

1

1

Y: decision variables

$$\min_{\mathbf{Y}} \qquad f(\mathbf{Y}) \tag{7a}$$

subject to $\mathbf{Y} \in \bar{\mathcal{U}}$ (7b)

$$rank(\mathbf{Y}_i) = 1, \forall i \in \mathcal{V}$$
 (7c)

R: rotation matrices

$$\min \qquad f(\mathbf{u}) \qquad \text{(6a)}$$

subject to
$$\mathbf{u} \in \mathcal{U}$$
 (6b)

 \Downarrow

 \Downarrow

Y: decision variables

$$\min_{\mathbf{Y}} \qquad f(\mathbf{Y}) \tag{7a}$$

subject to
$$\mathbf{Y} \in \bar{\mathcal{U}}$$
 (7b)

$$rank(\mathbf{Y}_i) = 1, \forall i \in \mathcal{V} \quad (7c)$$

Rank-Unconstrained Problem

Problem 2b (Relaxed inverse kinematics)

$$\min_{\mathbf{Y} \in \mathbb{R}^{7 \times 7n_r}} f(\mathbf{Y}) \tag{8a}$$

subject to
$$\mathbf{Y} \in \bar{\mathcal{U}}$$
 (8b)

21

Strategy: solve Problem 2b then find rank-1 solution in $\bar{\mathcal{U}}$.

Remark 1

Pecause The relaxed set $\bar{\mathcal{U}}$ contains every element of \mathcal{U} , i.e., $\mathcal{U} \subset \bar{\mathcal{U}}$, problem 2b can certify infeasibility.

Rank Minimization

Main idea:

- The trace of a matrix is also the sum of all of its eigenvalues,
- which are all non-negative when the matrix is positive semidefinite.
- Maximizing the largest eigenvalue of a matrix with constant trace is the same as minimizing all other eigenvalues.

Rank Minimization: Gradient Approach

Figure 3: Maximizing a convex function over a convex set using gradient ascent

Figure 4: An example posture solved for Baxter, where the two arms are modeled as one closed kinematic chain.

(a) The largest eigenvalues λ_1 of each $\mathbf{Y}_{k,\,i}$ over iteration k, where each line corresponds to one matrix.

(a) The largest eigenvalues λ_1 of each $\mathbf{Y}_{k,i}$ over iteration k, where each line corresponds to one matrix.

(a) The largest eigenvalues λ_1 of each $\mathbf{Y}_{k,i}$ over iteration k, where each line corresponds to one matrix.

(b) The eigenvalues of each \mathbf{Y}_i in the solution, where all eigenvalues except the largest one are below the tolerance ϵ_1 (red dashed line)

- both succeed, 71%
- only SDP succeed, 5.6%
- only BFGS succeed, 6.6%
- both failed, 16.8%

method	success rate	avg. time
SDP	76.6%	1.2629 s
BFGS	77.6%	0.1966 s

Conclusion

- Single formulation that can incorporate more general kinematic constraints and arrangements of links
 - E.g., parallel robots, multi-robots, humanoids.
- Novel SDP relaxation
 - Novel low-rank projection based on fixed-trace matrices
 - Infeasibility certificates

On-going/Future Work

- Incorporate different constraints in robot control and motion planning.
 - e.g., vision-based constraints, forces, etc.
- Investigate ways to further reduce the problem size.
- Develop constraints for prismatic joints.

Thank you!

Questions?

Liangting Wu tomwu@bu.edu
Roberto Tron tron@bu.edu
Website: https://sites.bu.edu/tron

Rank Minimization: Gradient Approach

Problem 3 (Sequential problem)

$$\max_{\mathbf{U}_k \in \mathbb{R}^{7 \times 7n_r}} \qquad \sum_{i \in \mathcal{V}} \operatorname{vec}(\mathbf{U}_{k,i})^{\mathsf{T}} \frac{\partial \lambda_1(\mathbf{Y}_{k-1,i})}{\partial \mathbf{Y}_{k-1,i}} \qquad (9a)$$

subject to
$$\nabla h(\mathbf{U}_k) = \mathbf{0}$$
 (9b)

$$g(\mathbf{Y}_{k-1} + \mathbf{U}_k) \in \bar{\mathcal{U}} \tag{9c}$$

- ullet The variable \mathbf{U}_k is an update of \mathbf{Y}_k , i.e., $\mathbf{Y}_{k,i} = \mathbf{Y}_{k-1,i} + \mathbf{U}_{k,i}$.
- (9a) ensures that each $U_{k,i}$ moves in the direction of the largest possible improvement in terms of increasing the sum of largest eigenvalues of the matrices $Y_{k,i}$.

Algorithm

Algorithm 1

Input \mathbf{T}_{goal} , \mathbf{R}_{goal} , $\mu, \epsilon_1, \epsilon_2, k_{max}$

Output \mathbf{x}^*

- 1: Solve Problem 2b to get an initial solution \mathbf{Y}_0 and set k=1.
- $_{2:}$ while $\exists \lambda_{1,i} \leq 3 \epsilon_1 \ \& \ \|\mathbf{U}_k\|_F \geq \epsilon_2 \ \& \ k \leq k_{max}$ do
- For each $\mathbf{Y}_{k,i}$, compute the largest eigenvalue $\lambda_{1,i}$ and the corresponding normalized eigenvector $\mathbf{V}_{k-1,i}^{(1)}$.
- Solve Problem 3 to get \mathbf{U}_k .
- Update $\mathbf{Y}_{k,i} = \mathbf{Y}_{k-1,i} + \mathbf{U}_{k,i}$ for all $i \in \mathcal{V}$ and set k = k+1.
- 6: end while
- 7: Recover the rotations $\{\mathbf{R}_i\}$ by reshaping $g(\mathbf{Y}_{k-1})$.
- Recover the translations $\{\mathbf{T}_i\}$ using the relation $\mathbf{T}_j \mathbf{T}_i = \mathbf{R}_i{}^i\mathbf{T}_j$.
- 9: return x*

Revolute joint

For each pair of links $(i,j) \in \mathcal{E}_r$ that are connected with a revolute joint, the orientations \mathbf{R}_i and \mathbf{R}_j are limited by the equation

$$\mathbf{R}_j = \mathbf{R}_i \mathbf{R}_e \mathbf{R}_\theta \tag{10}$$

 $\mathbf{R}_{\theta} : \mathbb{R} \mapsto \mathbf{SO}(3)$ is a function of the joint angle θ defined as a rotation about the z-axis.

 \mathbf{R}_e is a parameter defined as the rotation from \mathcal{B}_i to \mathcal{B}_i when $\theta = 0$.

 $\mathbf{R}_{\theta}: \mathbb{R} \mapsto \mathbf{SO}(3)$ is a function of the joint angle θ defined such that

 $\mathbf{R}_{\theta} = \mathbf{I}$ when $\theta = 0$;

 \mathbf{R}_e is a parameter defined as the rotation from \mathcal{B}_j to \mathcal{B}_i when $\theta = 0$.

Figure 6: A visualization of a revolute joint and the associated reference frames.

Revolute Joint Axis Constraints

The frame \mathcal{B}_i' and \mathcal{B}_j share the same z-axis, that is:

$$\mathbf{R}_i \mathbf{R}_e \mathbf{e}_3 - \mathbf{R}_j \mathbf{e}_3 = \mathbf{0} \tag{11}$$

 $[\]mathbf{e}_3 = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^\mathsf{T}$

Revolute Joint Angle Limits

The joint angle limits require that, $\forall (i,j) \in \mathcal{E}_r$,

$$\mathbf{w}_i - \mathbf{w}_j = \mathbf{R}_i \mathbf{R}_e \mathbf{e}_1 - \mathbf{R}_j \mathbf{e}_1 \in \mathcal{S}(\sqrt{2 - 2\cos(\alpha_{ij})}). \tag{12}$$

Figure 7: The joint limit between two links $(i,j) \in \mathcal{E}_r$ can be written as an angle limit between two unit vectors $\mathbf{w}_i = \mathbf{R}_i \mathbf{R}_e \mathbf{e}_1$ and $\mathbf{w}_j = \mathbf{R}_j \mathbf{e}_1$ (purple sector), which can be further bounded by a ball (painted yellow) on $\mathbf{w}_i - \mathbf{w}_j$.