Computational learning theory

PAC model

Jan Otop

October 6, 2023

Motivating example

Learning axis-aligned rectangles.

Can we learn a rectangle given ϵ, δ ? \Rightarrow blackboard

Motivating example

Learning axis-aligned rectangles.

Can we learn a rectangle given ϵ, δ ? \Rightarrow blackboard

Motivating example

Learning axis-aligned rectangles.

Can we learn a rectangle given ϵ, δ ? \Rightarrow blackboard

Terminology

- Instance space: X
- Concept $\mathbf{c}: X \to \{0,1\}$
- Concept and Hypothesis classes $C, \mathcal{H} \subseteq 2^X$.
- Empirical error (risk) (w.r.t. a concept **c** and a sample S):

$$\widehat{\operatorname{err}}_{S}(\mathbf{h}) = \frac{1}{|S|} \sum_{x \in S} \mathbf{1}_{\mathbf{c}(x) \neq \mathbf{h}(x)} = \frac{|\{x \in S \mid \mathbf{c}(x) \neq \mathbf{h}(x)\}|}{|S|}$$

• Generalization error (risk) (w.r.t. a concept c):

$$\mathrm{err}(\mathbf{h}) = \mathbb{E}_{x \sim D}(\mathbf{1}_{\mathbf{c}(x) \neq \mathbf{h}(x)}) = \mathbb{P}_{x \sim D}(\{x \mid \mathbf{c}(x) \neq \mathbf{h}(x)\})$$

October 6, 2023

Leslie Valiant. 1984.

Probabilistically approximately correct (PAC) learning Ver 1

A class C over X is (efficiently) PAC-learnable if there is an algorithm that for every concept $\mathbf{c} \in C$ and distribution D over X:

- Parameter Input: $\epsilon, \delta \in \mathbb{Q}^+$.
- **Draws random samples**: $x_1, ..., x_m$ independently with probability distribution D
- Number of samples: m is polynomially bounded in $\frac{1}{\epsilon}$ and $\frac{1}{\delta}$
- works in polynomial time in *m*
- **Output**: a hypothesis $h \in C$ such that:
 - with probability 1δ (**probabilistically**)
 - ▶ $err(h) \le \epsilon$ (approximately)

$$\mathbb{P}_{S \sim D^m}(\{S \mid \operatorname{err}(\mathbf{h}) \leq \epsilon\}) \geq 1 - \delta$$

LT 2023 October 6, 2023

Leslie Valiant. 1984.

Probabilistically approximately correct (PAC) learning Ver 2

A class C over X is (efficiently) PAC-learnable if there is an algorithm that for every concept $\mathbf{c} \in C$ and distribution D over X:

- Parameter Input: $\epsilon, \delta \in \mathbb{Q}^+$.
- **Draws random samples**: $x_1, ..., x_m$ independently with probability distribution D
- Number of samples: m is polynomially bounded in $\frac{1}{\epsilon}$ and $\frac{1}{\delta}$
- works in polynomial time in m, size(c) and rep(X)
- Output: a hypothesis $h \in C$ such that:
 - with probability 1δ (**probabilistically**)
 - ▶ $err(h) \le \epsilon$ (approximately)

$$\mathbb{P}_{S \sim D^m}(\{S \mid \operatorname{err}(\mathbf{h}) \leq \epsilon\}) \geq 1 - \delta$$

T 2023 October 6, 2023 4/14

Leslie Valiant. 1984.

Probabilistically approximately correct (PAC) learning Ver 3

A class C over X is (efficiently) PAC-learnable using \mathcal{H} if there is an algorithm that for every concept $\mathbf{c} \in C$ and distribution D over X:

- Parameter Input: $\epsilon, \delta \in \mathbb{Q}^+$.
- **Draws random samples**: $x_1, ..., x_m$ independently with probability distribution D
- Number of samples: m is polynomially bounded in $\frac{1}{\epsilon}$ and $\frac{1}{\delta}$
- works in polynomial time in m, size(c) and rep(X)
- Output: a hypothesis $h \in \mathcal{H}$ such that:
 - with probability 1δ (**probabilistically**)
 - ▶ $err(h) \le \epsilon$ (approximately)

$$\mathbb{P}_{S \sim D^m}(\{S \mid \operatorname{err}(\mathbf{h}) \leq \epsilon\}) \geq 1 - \delta$$

OLT 2023 October 6, 2023

Leslie Valiant. 1984.

Probabilistically approximately correct (PAC) learning Ver 1

A class C over X is (efficiently) PAC-learnable if there is an algorithm that for every concept $\mathbf{c} \in C$ and distribution D over X:

- Parameter Input: $\epsilon, \delta \in \mathbb{Q}^+$.
- **Draws random samples**: $x_1, ..., x_m$ independently with probability distribution D
- Number of samples: m is polynomially bounded in $\frac{1}{\epsilon}$ and $\frac{1}{\delta}$
- works in polynomial time in *m*
- Output: a hypothesis $h \in C$ such that:
 - with probability 1δ (**probabilistically**)
 - ► $err(h) \le \epsilon$ (approximately)

$$\mathbb{P}_{S \sim D^m}(\{S \mid \operatorname{err}(\mathbf{h}) \leq \epsilon\}) \geq 1 - \delta$$

T 2023 October 6, 2023 4/14

Today's lecture

• Learning finite concept classes. (Occam's Razor)

• Example: learning conjunctions

C 2023 October 6, 2023 5/14

Learning finite hypothesis classes

Fitting algorithms

A *fitting algorithm* for C, gets a labeled sample S as an input and returns $\mathbf{c} \in C$ consistent with S or return NO.

The derived decision question is called *the consistency problem*.

T 2023 October 6, 2023 6/14

Learning finite hypothesis classes

Fitting algorithms

A *fitting algorithm* for C, gets a labeled sample S as an input and returns $\mathbf{c} \in C$ consistent with S or return NO.

The derived decision question is called the consistency problem.

Learning finite classes — Occam's Razor

Let C be a finite class over X. Assume that C has a polynomial-time fitting algorithm A. Then, for any $\epsilon, \delta \in \mathbb{Q}^+$, if

$$m \ge \frac{1}{\epsilon} \left(\log(|C|) + \log\left(\frac{1}{\delta}\right) \right)$$

then with probability at least $1 - \delta$ the hypothesis **h** returned by A satisfies

$$err(\mathbf{h}) \leq \epsilon$$
.

COLT 2023 October 6, 2023

Learning conjunctions

- $X = \{0,1\}^n$ is the set of *n*-variable Boolean assignments.
- *C* concepts defined by conjunctions of variables $x_1, ..., x_n$. E.g. $x_1 \wedge \neg x_2 \wedge x_4$.
- $|C| \le 3^n + 1$.

Polynomial consistency algorithm

Start with the maximal conjunction

$$X_1 \wedge \neg X_1 \wedge \cdots \wedge X_n \wedge \neg X_n$$

② For every positive example $\sigma \in X$, remove all literals conflicting with σ : If $\sigma(x_i) = 1$, then $\neg x_i$ is in conflict with σ . If $\sigma(x_i) = 0$, then x_i is in conflict with σ .

The resulting conjunction is maximal.