GRUBLEGRUPPE MAT1100 OPPGAVESETT 2

SIMON FOLDVIK
7. SEPTEMBER 2017

I dette settet refererer ordet «følge» til en følge av reelle tall. Ordet «punkt» vil brukes om et reelt tall.

Oppgave 1. Finnes det en følge som konvergerer mot mer enn ett punkt? Hint. Anta at $(u_n)_{n=0}^{\infty}$ er en følge som konvergerer mot både u og v. Vis at da må ulikheten $|u-v| < \epsilon$ holde for alle $\epsilon > 0$.

Oppgave 2. Anta at $(u_n)_{n=0}^{\infty}$ og $(v_n)_{n=0}^{\infty}$ er to konvergente følger som er slik at ulikheten $u_n \leq v_n$ holder for alle naturlige tall n. Vis at da er

$$\lim_{n \to \infty} u_n \le \lim_{n \to \infty} v_n.$$
(1)

Gi et eksempel på slike følger hvor likhet holder i (1), selv om $u_n < v_n$ for alle n.

Hint. Motsigelsesbevis.

Oppgave 3. La A være en ikke-tom, oppad begrenset delmengde av \mathbf{R} . Vis at det for alle $\epsilon > 0$ finnes et punkt $a \in A$ slik at

$$\sup A - \epsilon < a.$$

Oppgave 4. La A være en ikke-tom, oppad begrenset delmengde av \mathbf{R} . Vis at det finnes en konvergent følge $(a_n)_{n=1}^{\infty}$ av punkter i A slik at

$$\lim_{n \to \infty} a_n = \sup A.$$

Vis at det finnes en konvergent følge $(b_n)_{n=1}^{\infty}$ som ikke ligger i A slik at

$$\lim_{n\to\infty}b_n=\sup A.$$

Hint. Bruk Oppgave 3 gjentatte ganger med $\epsilon = 1/n$ for naturlige tall $n \geq 1$.

Oppgave 5. Anta at A er en ikke-tom delmengde av \mathbf{R} . Vis at A ikke er oppad begrenset hvis og bare hvis det finnes en følge $(a_n)_{n=0}^{\infty}$ i A slik at

$$\lim_{n\to\infty}a_n=\infty.$$