EECS 16A Designing Information Devices and Systems I Fall 2020 Discussion 14B

1. Orthonormal Matrices and Projections

An orthonormal matrix, **A**, is a matrix whose columns, \vec{a}_i , are:

- Orthogonal (ie. $\langle \vec{a}_i, \vec{a}_i \rangle = 0$ when $i \neq j$)
- Normalized (ie. vectors with length equal to 1, $\|\vec{a}_i\| = 1$). This implies that $\|\vec{a}_i\|^2 = \langle \vec{a}_i, \vec{a}_i \rangle = 1$.
- (a) Suppose that the matrix $\mathbf{A} \in \mathbb{R}^{N \times M}$ has linearly independent columns. The vector \vec{y} in \mathbb{R}^N is not in the subspace spanned by the columns of \mathbf{A} . What is the projection of \vec{y} onto the subspace spanned by the columns of \mathbf{A} ?

Answer: When finding a projection onto a subspace, we're trying to find the "closest" vector in that subspace. This can be found by first finding \vec{x} that minimizes $||\vec{y} - A\vec{x}||$. From least squares, we know that $\hat{\vec{x}} = (A^T A)^{-1} A^T \vec{y}$. The projection of \vec{y} onto the columns of \vec{A} is then $\hat{\vec{y}} = A\hat{\vec{x}} = A(A^T A)^{-1}A^T \vec{y}$.

(b) Show if $\mathbf{A} \in \mathbb{R}^{N \times N}$ is an orthonormal matrix then the columns, \vec{a}_i , form a basis for \mathbb{R}^N .

Answer:

We want to show that the columns of **A** form a basis for \mathbb{R}^N . To show that the columns form a basis for \mathbb{R}^N we need to show two things:

- The columns must form a set of *N* linearly independent vectors.
- Any vector $\vec{x} \in \mathbb{R}^N$ can be represented as a linear combination of the vectors in the set.

We already know we have N vectors, so first we will show they are linearly independent. We shall do this by showing that $\vec{A}\vec{\beta} = \vec{0}$ implies that $\vec{\beta}$ can be only $\vec{0}$.

$$\mathbf{A}\vec{\boldsymbol{\beta}} = \vec{0} \tag{1}$$

$$\beta_1 \vec{a}_1 + \ldots + \beta_N \vec{a}_N = \vec{0} \tag{2}$$

Then to exploit the properties of orthogonal vectors, we consider taking the inner product of each side of the above equation with \vec{a}_i .

$$\langle \vec{a}_i, \beta_1 \vec{a}_1 + \ldots + \beta_N \vec{a}_N \rangle = \langle \vec{a}_i, \vec{0} \rangle = 0$$
 (3)

Now we apply the distributive property of the inner product and the definition of orthonormal vectors,

$$\langle \vec{a}_i, \beta_1 \vec{a}_1 \rangle + \ldots + \langle \vec{a}_i, \beta_i \vec{a}_i \rangle + \ldots + \langle \vec{a}_i, \beta_N \vec{a}_N \rangle = 0 \tag{4}$$

$$0 + \ldots + \beta_i \langle \vec{a}_i, \vec{a}_i \rangle + \ldots + 0 = 0 \tag{5}$$

$$0 + \ldots + \beta_i \vec{a}_i^T \vec{a}_i + \ldots + 0 = 0$$
 (6)

Because $\vec{a}_i^T \vec{a}_i = 1$, $\beta_i = 0$ for the equation to hold. Then, since this is true for all i from 1 to N, all the elements of the vector beta must be zero $(\vec{\beta} = \vec{0})$. Because $\vec{x} = \vec{0}$ implies $\vec{\beta} = \vec{0}$, the columns of \bf{A} are linearly independent.

Now, we will show that any vector $\vec{x} \in \mathbb{R}^N$ can be represented as a linear combination of the columns of **A**.

$$\vec{x} = \mathbf{A}\vec{\beta} = \beta_1 \vec{a}_1 + \ldots + \beta_N \vec{a}_N \tag{7}$$

Because we know that the N columns of **A** are linearly independent, then there exists A^{-1} . Applying the inverse to the equation above,

$$\mathbf{A}^{-1}\mathbf{A}\vec{\boldsymbol{\beta}} = \mathbf{A}^{-1}\vec{\boldsymbol{x}} \tag{8}$$

$$\vec{\beta} = \mathbf{A}^{-1} \vec{x},\tag{9}$$

we find that there exists a unquie β that allow us to represent any \vec{x} as a linear combination of the columns of A.

(c) When $\mathbf{A} \in \mathbb{R}^{N \times M}$ and $N \geq M$ (i.e. tall matrices), show that if the matrix is orthonormal, then $\mathbf{A}^T \mathbf{A} = \mathbf{I}_{M \times M}$.

Answer: Want to show $\mathbf{A}^T \mathbf{A} = \mathbf{I}_{M \times M}$.

$$\mathbf{A}^{T}\mathbf{A} = \begin{bmatrix} \vec{a}_{1}^{T}\vec{a}_{1} & \vec{a}_{1}^{T}\vec{a}_{2} & \dots & \vec{a}_{1}^{T}\vec{a}_{M} \\ \vec{a}_{2}^{T}\vec{a}_{1} & \vec{a}_{2}^{T}\vec{a}_{2} & \dots & \vec{a}_{2}^{T}\vec{a}_{M} \\ \vdots & \vdots & & \vdots \end{bmatrix} = \mathbf{I}_{M \times M}$$

$$(10)$$

When $\vec{a}_i^T \vec{a}_i = \|\vec{a}_i\|^2 = 1$ and when $i \neq j$, $\vec{a}_i^T \vec{a}_j = 0$ because the column vectors are orthogonal.

(d) Again, suppose $\mathbf{A} \in \mathbb{R}^{N \times M}$ where $N \geq M$ is an orthonormal matrix. Show that the projection of \vec{y} onto the subspace spanned by the columns of \mathbf{A} is now $\mathbf{A}\mathbf{A}^T\vec{y}$.

Answer:

Starting with the result from part (a),

$$\mathbf{A}\hat{\mathbf{x}} = \mathbf{A}(\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{y}, \tag{11}$$

we can apply the result from part (c),

$$\mathbf{A}(\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \vec{\mathbf{y}} = \mathbf{A} \mathbf{I} \mathbf{A}^T \vec{\mathbf{y}}$$
 (12)

$$= \mathbf{A}\mathbf{A}^T \vec{\mathbf{y}} \tag{13}$$

(e) Given $\mathbf{A} \in \mathbb{R}^{N \times M} = \begin{bmatrix} 0 & 0 & \frac{\sqrt{2}}{2} \\ 0 & 0 & \frac{\sqrt{2}}{2} \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$ and the columns of \mathbf{A} are orthonormal, find the least squares solution to $\mathbf{A}\hat{\vec{x}} = \vec{y}$ where $\vec{y} = \begin{bmatrix} 5 & 12 & 7 & 8 \end{bmatrix}^T$.

Answer:

Method 1:

Since the columns of A are orthonormal, from part (d) we know that

$$\hat{\vec{x}} = \mathbf{A}^T \vec{y} = \begin{bmatrix} \langle \vec{a_1}, \vec{y} \rangle \\ \langle \vec{a_2}, \vec{y} \rangle \\ \langle \vec{a_3}, \vec{y} \rangle \end{bmatrix}.$$

Note that this is equivalent to projecting \vec{y} onto each column of A:

$$\hat{x}_1 = \frac{\langle \vec{a}_1, \vec{y} \rangle}{||\vec{a}_1||^2} = \langle \vec{a}_1, \vec{y} \rangle = 8$$

$$\hat{x}_2 = \frac{\langle \vec{a}_2, \vec{y} \rangle}{||\vec{a}_2||^2} = \langle \vec{a}_2, \vec{y} \rangle = 7$$

$$\hat{x_1} = \frac{\langle \vec{a_1}, \vec{y} \rangle}{||\vec{a_1}||^2} = \langle \vec{a_1}, \vec{y} \rangle = 8$$

$$\hat{x_2} = \frac{\langle \vec{a_2}, \vec{y} \rangle}{||\vec{a_2}||^2} = \langle \vec{a_2}, \vec{y} \rangle = 7$$

$$\hat{x_3} = \frac{\langle \vec{a_3}, \vec{y} \rangle}{||\vec{a_3}||^2} = \langle \vec{a_3}, \vec{y} \rangle = \frac{17\sqrt{2}}{2}$$

Method 2 (Alternatively you can use the least squares formula):

$$\hat{\vec{x}} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \vec{y} = \left(\begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & \frac{\sqrt{2}}{2} \\ 0 & 0 & \frac{\sqrt{2}}{2} \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \right)^{-1} \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0 & 0 \end{bmatrix} \begin{bmatrix} 5 \\ 12 \\ 7 \\ 8 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0 & 0 \end{bmatrix} \begin{bmatrix} 5 \\ 12 \\ 7 \\ 8 \end{bmatrix} = \begin{bmatrix} 8 \\ 7 \\ \frac{17\sqrt{2}}{2} \end{bmatrix}$$

4

2. Identifying satelites and their delays

We are given the following two signals, $\vec{s_1}$ and $\vec{s_2}$ respectively, that are signatures for two satellites.

(a) Your cellphone antenna receives the following signal r[n]. You know that there may be some noise present in r[n] in addition to the transmission from the satellite.

Which satellites are transmitting? What is the delay between the satellite and your cellphone? Use cross-correlation to justify your answer. You can use iPython to compute the cross-correlation.

Answer: We calculate both $\operatorname{corr}_r(\vec{s_1})[k]$ and $\operatorname{corr}_r(\vec{s_2})[k]$:

								corr	$\vec{r}(\vec{s}_1)$	[k]									
	\vec{r}	0.2		0.2		1		1		-1.2		1		1		0.2		-0.2	
_	$\vec{s}_1[n+4]$	1		0		0		0		0		0		0		0		0	
_	$\langle \vec{r}, \vec{s}_1[n+4] \rangle$	0.2	+	0	+	0	+	0	+	0	+	0	+	0	+	0	+	0	= 0.2

	\vec{r}	0.2		0.2		1		1		-1.2		1		1		0.2		-0.2	
_	$\vec{s}_1[n+3]$	1		1		0		0		0		0		0		0		0	
	$\langle \vec{r}, \vec{s}_1[n+3] \rangle$	0.2	+	0.2	+	0	+	0	+	0	+	0	+	0	+	0	+	0	= 0.4

\vec{r}	0.2		0.2		1		1		-1.2		1		1		0.2		-0.2	
$\vec{s}_1[n+2]$	-1		1		1		0		0		0		0		0		0	
$\langle \vec{r}, \vec{s}_1[n+2] \rangle$	-0.2	+	0.2	+	1	+	0	+	0	+	0	+	0	+	0	+	0	= 1

\vec{r}	0.2		0.2		1		1		-1.2	2	1		1		0.2		-0.2	
$\vec{s}_1[n+1]$	1		-1		1		1		0		0		0		0		0	
$\frac{\vec{r}}{\vec{s}_1[n+1]}$ $\frac{\vec{s}_1[n+1]}{\langle \vec{r}, \vec{s}_1[n+1]}$.]) 0.2	+	-0.2	2 +	- 1	+	- 1	. H	- 0	+	- 0	+	0	+	0	+	0	= 2
\vec{r}	0.2	0.2	!	1		1			-1.2	1	1	1		0.	.2	_	0.2	
$\vec{S}_1[n]$	1	1	•		1	1			1	()	0		()		0	
$\frac{\vec{r}}{\vec{s}_1[n]} \frac{\vec{s}_1[n]}{\langle \vec{r}, \vec{s}_1[n] \rangle}$	0.2 +	0.2	+	-1	1 +	- 1	_		-1.2 -	+ () +	- 0	+	() +		0 =	= -0.8
() [3/]																		
\overrightarrow{r}	102		0.2		1		1		_1 2)	1		1		0.2		_0.2	
$\frac{\vec{r}}{\vec{s}_1[n-1]} \frac{\vec{s}_1[n-1]}{\langle \vec{r}, \vec{s}_1[n-1]}$	0.2		1		1		_1		1	-	1		0		0.2		0.2	
$\frac{3\Gamma[n-1]}{\vec{r} \cdot \vec{s}_1[n-1]}$	1) 0	+	0.2	+	1	+	<u></u>	-	<u> </u>). 	- 1		$\frac{0}{0}$	+	0		0	= 0
(*,51[** 1	1/		J.2		-		-									'	Ü	
→	100		0.0		1		1		1.0		1		1		0.0		0.0	
$\frac{\vec{r}}{\vec{s}_1[n-2]}$ $\langle \vec{r}, \vec{s}_1[n-2]$	0.2		0.2		1		1 1		$\frac{-1.2}{}$		1 1		1		0.2		$\frac{-0.2}{0}$	
$\frac{s_1[n-2]}{\sqrt{\vec{x}_1}\vec{x}_2}$	0	1	0		1 1	1	1 1	1	-l	1	1 1	1	1	1	0	1	0	<u> </u>
$\langle r, s_1 n-2 \rangle$		+	U	+	1	+	1	+	1.2	+	1	+	1	+	U	+	U	= 5.2
$\frac{\vec{r}}{\vec{s}_1[n-3]}$ $\langle \vec{r}, \vec{s}_1[n-3]$	0.2		0.2		1		1		-1.2		1		1		0.2		-0.2	
$\vec{s}_1[n-3]$	0		0		0		1		1		-1		1		1		0	
$\langle \vec{r}, \vec{s}_1 [n-3] \rangle$	$ 0\rangle$	+	0	+	0	+	1	+	-1.2	+	-1	+	1	+	0.2	+	0	=0
\vec{r}	0.2		0.2		1		1		-1.2		1		1		0.2		-0.2	
$\frac{\vec{r}}{\vec{s}_1[n-4]}$ $\frac{\vec{s}_1[n-4]}{\langle \vec{r}, \vec{s}_1[n-4] \rangle}$	0		0		0		0		1		1		-1		1		1	
$-\frac{1}{\langle \vec{r}, \vec{s}_1 n-4 \rangle}$	$ \rangle = 0$	+	0	+	0	+	0	+	-1.2	+	1	+	-1	+	0.2	+	-0.2	=-1.2
\overrightarrow{r}	0.2		0.2		1		1		_1 2		1		1		0.2		_0.2	
$\frac{\vec{r}}{\vec{s}_1[n-5]}$ $\frac{\vec{s}_1[n-5]}{\langle \vec{r}, \vec{s}_1[n-5] \rangle}$	0.2		0.2		0		0		0		1		1		<u>-1</u>		1	
$\frac{\vec{r} \cdot \vec{s}_1[n-5]}{\vec{r} \cdot \vec{s}_1[n-5]}$	0	+	0	+	0	+	0	+	0	+	1	+	1	+	$\frac{1}{-0.2}$	+	-0.2	= 1.6
(*,51[.*	1/ 0								Ü					'	0.2	'	0.2	1.0
→	100		0.0		1		1		1.0		1		1		0.0		0.0	
$\frac{\vec{r}}{\vec{s}_1[n-6]}$ $\langle \vec{r}, \vec{s}_1[n-6]$	0.2		0.2		1		1		$\frac{-1.2}{0}$		1		1		0.2		$\frac{-0.2}{1}$	
$\frac{s_1[n-0]}{\sqrt{3} \cdot s_1[n-6]}$	1 0	1	0	1	0	1	0	1	0	1	0		1	1	$\frac{1}{0.2}$	1	$\frac{-1}{0.2}$	1 /
$\langle r, s_1 n - c$)]/ 0	+	U	+	U	+	U	+	U	+	U	+	1	+	0.2	+	0.2	= 1.4
\vec{r}	0.2		0.2		1		1		-1.2		1		1		0.2		-0.2	
$\frac{\vec{r}}{\vec{s}_1[n-7]}$ $\langle \vec{r}, \vec{s}_1[n-7]$	0		0		0		0		0		0		0		1		1	
$\langle \vec{r}, \vec{s}_1 [n-7] \rangle$	$\langle 1 \rangle \mid 0$	+	0	+	0	+	0	+	0	+	0	+	0	+	0.2	+	-0.2	=0
$ec{r}$	0.2		0.2		1		1		-1.2		1		1		0.2		-0.2	
$\frac{\vec{r}}{\vec{s}_1[n-8]}$ $\frac{\vec{s}_1[n-8]}{\langle \vec{r}, \vec{s}_1[n-8] \rangle}$	0		0		0		0		0		0		0		0		1	
$\frac{\vec{r}, \vec{s}_1[n-8]}{\langle \vec{r}, \vec{s}_1[n-8] \rangle}$	$ 3\rangle$ 0	+	0	+	0	+	0	+	0	+	0	+	0	+	0	+	-0.2	=-0.2
\ / IL	47	,										-						

				$\operatorname{corr}_{\vec{r}}(\vec{s}_2)[k]$]					
$\frac{\vec{r}}{\vec{s}_2[n+4]} \frac{\vec{s}_2[n+4]}{\langle \vec{r}, \vec{s}_2[n+4] \rangle}$	0.2	0.2	1	1	-1.2	1	1	0.2	-0.2	
$\vec{s}_2[n+4]$	-1	0	0	0	0	0	0	0	0	
$\langle \vec{r}, \vec{s}_2[n+4] \rangle$	-0.2	+ 0 +	- 0 +	0 +	0	+ 0 +	0 +	0 +	0	=-0.2
$ec{r}$	0.2	0.2	1	1	-1.2	1	1	0.2	-0.2	
$\frac{\vec{r}}{\vec{s}_2[n+3]}$ $\frac{\langle \vec{r}, \vec{s}_2[n+3] \rangle}{\langle \vec{r}, \vec{s}_2[n+3] \rangle}$	-1	-1	0	0	0	0	0	0	0	
$\langle \vec{r}, \vec{s}_2[n+3] \rangle$	-0.2	+ -0.2	+ 0	+ 0 +	- 0	+ 0	+ 0	+ 0	+ 0	=-0.4
	1									
₹	102	0.2	1	1	1.2	1	1	0.2	0.2	
$\frac{\vec{r}}{\vec{s}_2[n+2]}$ $\langle \vec{r}, \vec{s}_2[n+2] \rangle$	1	1	1	0	-1.2	<u> </u>	0	0.2	0.2	
$\frac{s_2[n+2]}{\langle \vec{r} \ \vec{s}_2[n+2] \rangle}$	0.2 +	$\frac{-1}{-0.2}$	 1	+ 0 +	- 0		+ 0	- 0	- 0	
$\langle r, s_2[n+2] \rangle$	0.2	0.2	1	1 0 1	O	1 0	1 0	1 0	1 0	_ 1
$\frac{\vec{r}}{\vec{s}_2[n+1]} \frac{\vec{s}_2[n+1]}{\langle \vec{r}, \vec{s}_2[n+1] \rangle}$	0.2	0.2	1	1	-1.2	1	1	0.2	-0.2	
$\vec{s}_2[n+1]$	1	1	-1	-1	0	0	0	0	0	
$\langle \vec{r}, \vec{s}_2[n+1] \rangle$	0.2 +	0.2 +	-1 +	-1 +	- ()	+ 0	+ 0	+ 0	+ 0	=-1.6
$\vec{r} = 0.5$	2 0	.2 1	1	— 1	1.2	1 1	0	.2 –	-0.2	
$\begin{array}{c c} \vec{r} & 0.5 \\ \hline \vec{s}_2[n] & 1 \\ \hline \langle \vec{r}, \vec{s}_2[n] \rangle & 0.5 \end{array}$		1 1	-1		·1	0 0		0	0	
$\langle \vec{r}, \vec{s}_2[n] \rangle = 0.1$	2 + 0	.2 + 1	+ -1	. + 1.	.2 +	0 + 0	+	0 +	0 = 1	.6
$ec{r}$	0.2	0.2	1	1 -	-1.2	1	1	0.2	-0.2	
$\frac{\vec{r}}{\vec{s}_2[n-1]} \frac{\vec{s}_2[n-1]}{\langle \vec{r}, \vec{s}_2[n-1] \rangle}$	0	1	1	1	-1	-1	0	0	0	
$\langle \vec{r}, \vec{s}_2[n-1] \rangle$	0 +	0.2 +	1 +	1 +	1.2 +	-1 +	0 +	0 +	0	= 2.4
→	0.2	0.2	1	1	1.2	1	1	0.2	0.2	
$\frac{\vec{r}}{\vec{s}_2[n-2]} \\ \frac{\vec{s}_2[n-2]}{\langle \vec{r}, \vec{s}_2[n-2] \rangle}$	0.2	0.2	1	1 -	-1.2 1	1 1	1 1	0.2	$\frac{-0.2}{0}$	
$\frac{32[n-2]}{\langle \vec{r} \ \vec{s}_2[n-2] \rangle}$	0 +	0 +	1 +	1 + -	$\frac{1}{-1.2}$ +	-1 1 +	<u>-1</u>	$\frac{0}{+}$ 0	$\frac{0}{+}$	=-1.2
(1,52[11 2])		0 1	- 1	- 1	1.2	- 1	-			1.2
	1									
$\frac{\vec{r}}{\vec{s}_2[n-3]}$ $\frac{\langle \vec{r}, \vec{s}_2[n-3] \rangle}{\langle \vec{r}, \vec{s}_2[n-3] \rangle}$	0.2	0.2	1	1 -	$\frac{-1.2}{1}$	1	1	0.2	$\frac{-0.2}{}$	
$\frac{s_2[n-3]}{\sqrt{3} \neq [n-3]}$	0	0	0	1	1 2	1 1	<u>-1</u>	$\frac{-1}{0.2}$	0	0.4
$\langle r, s_2[n-3] \rangle$	0 +	0 +	0 +	1 + -	-1.2 +	1 +	-1 +	-0.2	+ 0	=-0.4
$\frac{\vec{r}}{\vec{s}_2[n-4]} \frac{\vec{s}_2[n-4]}{\langle \vec{r}, \vec{s}_2[n-4] \rangle}$	0.2	0.2	1	1 -	-1.2	1	1	0.2	-0.2	
$\vec{s}_2[n-4]$	0	0	0	0	1	1	1	-1	-1	
$\langle \vec{r}, \vec{s}_2[n-4] \rangle$	0 +	0 +	0 +	0 +	-1.2 +	1 +	1 +	-0.2 +	0.2	=0.8
$ec{r}$	0.2	0.2	1	1 -	-1.2	1	1	0.2	-0.2	
$\vec{s}_2[n-5]$	0	0	0	0	0	1	1	1	-1	
$\frac{\vec{r}}{\vec{s}_2[n-5]}$ $\frac{\langle \vec{r}, \vec{s}_2[n-5] \rangle}{\langle \vec{r}, \vec{s}_2[n-5] \rangle}$	0 +	0 +	0 +	0 +	0 +	1 +	1 +	0.2 +	0.2 =	2.4

\vec{r}	0.2		0.2		1		1		-1.2		1		1		0.2		-0.2	
$\vec{s}_2[n-6]$	0		0		0		0		0		0		1		1		1	
$\langle \vec{r}, \vec{s}_2[n-6] \rangle$	0	+	0	+	0	+	0	+	0	+	0	+	1	+	0.2	+	-0.2	= 1
	'																	
\vec{r}	0.2		0.2		1		1		-1.2		1		1		0.2		-0.2	
$\frac{\vec{r}}{\vec{s}_2[n-7]}$																		
	0		0		0		0		0		0		0		1		1	= 0
$\vec{s}_2[n-7]$	0		0		0		0		0		0		0		1		1	= 0

\vec{r}	0.2		0.2		1		1		-1.2		1		1		0.2		-0.2	
$\vec{s}_2[n-8]$																	1	
$\langle \vec{r}, \vec{s}_2[n-8] \rangle$	0	+	0	+	0	+	0	+	0	+	0	+	0	+	0	+	-0.2	=-0.2

The maximum correlation value is 5.2 at k = 2 from satellite 1. Therefore, the transmission likely comes from satellite 1.

(b) Now your cellphone receives a new signal r[n] as below. What the satellites that are transmitting and what is the delay between each satellite and your cellphone?

Answer: We want to find shifts k_1 and k_2 such that: $\vec{r}[n] = \vec{s}_1[n-k_1] + \vec{s}_2[n-k_2]$.

We calculate both $\operatorname{corr}_{\vec{r}}(\vec{s_1})[k]$ and $\operatorname{corr}_{\vec{r}}(\vec{s_1})[k]$ for different shifts k. The index where the maximum correlation value is achieved will tell us the shift indices (delays).

							cc	$\operatorname{orr}_{\vec{r}}(\bar{s})$	(1)[k]									
\vec{r}	0		1		1		-1		2		2		1		-1		-1	
$\vec{s}_1[n+4]$	1		0		0		0		0		0		0		0		0	
$\langle \vec{r}, \vec{s}_1[n+4] \rangle$	0	+	0	+	0	+	0	+	0	+	0	+	0	+	0	+	0	=0
→	10		1				4		2		2		1		1			
\vec{r}	0		1		1		-1		2		2		1		-1		-1	
$\vec{s}_1[n+3]$	1		1		0		0		0		0		0		0		0	
$\langle \vec{r}, \vec{s}_1[n+3] \rangle$	0	+	1	+	0	+	0	+	0	+	0	+	0	+	0	+	0	= 1

\vec{r}	0	1	1	-1	2	2	1	-1	-1	
$\frac{\vec{r}}{\vec{s}_1[n+2]}$ $\frac{\langle \vec{r}, \vec{s}_1[n+2] \rangle}{\langle \vec{r}, \vec{s}_1[n+2] \rangle}$	-1	1	1	0	0	0	0	0	0	
$\langle \vec{r}, \vec{s}_1[n+2] \rangle$	0	+ 1	+ 1 -	+ 0	+ 0	+ 0	+ 0 +	- 0	+ 0	= 2
$ec{r}$	0	1	1	-1	2	2	1	-1	-1	
$\vec{s}_1[n+1]$	1	-1	1	1	0	0	0	0	0	
$\frac{\vec{r}}{\vec{s}_1[n+1]} \frac{\vec{s}_1[n+1]}{\langle \vec{r}, \vec{s}_1[n+1] \rangle}$	0 +	1	+ 1 -	+ -1	+ 0	+ 0	+ 0 +	- 0	+ 0	= -1
	I									
₹ 0		1	1	1	2	2	1	1	1	
$ \begin{array}{c cc} \vec{r} & 0 \\ \hline \vec{s}_1[n] & 1 \\ \hline \langle \vec{r}, \vec{s}_1[n] \rangle & 0 \end{array} $		1	_1	1	1	0	0	0	0	
$\frac{3[n]}{\langle \vec{r} \ \vec{s}_1[n] \rangle} = 0$	+	1 +	_1 _1 +	_1 _1 +	2 +	0 +	0 +	0 +	0 =	<u> </u>
(1,51[11])	'	1	1	1	2	0 1	0 1	0 1	· ·	1
→		1	1	1	2	2	1	1	1	
$\frac{\vec{r}}{\vec{s}_1[n-1]} \frac{\vec{s}_1[n-1]}{\langle \vec{r}, \vec{s}_1[n-1] \rangle}$	0	1	1	<u>-1</u>		1	0	-1	$\frac{-1}{0}$	
$\frac{s_1[n-1]}{\vec{r} \cdot \vec{s}_1[n-1]}$	0 4	1 1	<u> </u>	1 ₁	<u> </u>	<u>1</u>	0 +	0 4	- 0	
\r, s_1[n 1]/	0	1	1	1	2	2	0 1	0 1	0	_ ,
	ı									
$\frac{\vec{r}}{\vec{s}_1[n-2]}$ $\frac{\langle \vec{r}, \vec{s}_1[n-2] \rangle}{\langle \vec{r}, \vec{s}_1[n-2] \rangle}$	0	1	1	-1	2	2	1	-1	-1	
$\vec{s}_1[n-2]$	0	0	1	1	$\frac{-1}{2}$	1	1	0	0	
$\langle \dot{r}, \dot{s_1}[n-2] \rangle$	0 +	- 0 +	1 +	-1 +	2	+ 2	+ 1 +	- 0	+ 0	= 1
$ec{r}$	0	1	1	-1	2	2	1	-1	-1	
$\frac{\vec{r}}{\vec{s}_1[n-3]}$ $\frac{\langle \vec{r}, \vec{s}_1[n-3] \rangle}{\langle \vec{r}, \vec{s}_1[n-3] \rangle}$	0	0	0	1	1	-1	1	1	0	
$\langle \vec{r}, \vec{s}_1[n-3] \rangle$	0 +	- 0 +	0 +	-1 +	2 +	-2	+ 1 +	1	+ 0	= -1
$ec{r}$	0	1	1	-1	2	2	1	-1	-1	
$\frac{\vec{r}}{\vec{s}_1[n-4]}$ $\frac{\langle \vec{r}, \vec{s}_1[n-4] \rangle}{\langle \vec{r}, \vec{s}_1[n-4] \rangle}$	0	0	0	0	1	1	-1	1	1	
$\langle \vec{r}, \vec{s}_1[n-4] \rangle$	0 +	- 0 +	0 +	0 +	2 +	2 +	-1 +	1	+ -1	= 1
	'									
$ec{r}$	0	1	1	– 1	2.	2.	1	– 1	– 1	
$\frac{\vec{r}}{\vec{s}_1[n-5]}$ $\frac{\langle \vec{r}, \vec{s}_1[n-5] \rangle}{\langle \vec{r}, \vec{s}_1[n-5] \rangle}$	0	0	0	0	0	1	1	-1	1	
$\frac{\vec{r}, \vec{s}_1[n-5]}{\langle \vec{r}, \vec{s}_1[n-5] \rangle}$	0 +	- 0 +	0 +	0 +	- 0 +	2 +	1 +	1 +	1 :	= 3
(/ 1[]/										
→		1	1	1	2	2	1	1	1	
$r \rightarrow r$	0	1	1	-1	2	2	1	-l	<u>-1</u>	
$\frac{\vec{r}}{\vec{s}_1[n-6]}$ $\frac{\langle \vec{r}, \vec{s}_1[n-6] \rangle}{\langle \vec{r}, \vec{s}_1[n-6] \rangle}$	0	0 1	0	0	0 1	0	1 1	1 1	-1 1	1
$\langle r, s_1[n-0] \rangle$	0 +	- 0 +	0 +	0 +	- 0 +	0 +	1 +	-1 +	- 1	- 1
\vec{r}	0	1	1	-1	2	2	1	-1	-1	
$\frac{\vec{r}}{\vec{s}_1[n-7]} \\ \frac{\vec{s}_1[n-7]}{\langle \vec{r}, \vec{s}_1[n-7] \rangle}$	0	0	0	0	0	0	0	1	1	
$\langle \vec{r}, \vec{s}_1[n-7] \rangle$	0 +	-0 +	0 +	0 +	-0 +	0 +	0 +	-1 $+$	1	$= -2^{-}$

\vec{r}	0		1		1		-1		2		2		1		-1		-1	
$\vec{s}_1[n-8]$	0		0		0		0		0		0		0		0		1	
$\langle \vec{r}, \vec{s}_1[n-8] \rangle$	0	+	0	+	0	+	0	+	0	+	0	+	0	+	0	+	-1	= -1

\vec{r}	0		1		1		-1		2		2		1		-1		-1	
$\vec{s}_2[n-5]$	0		0		0		0		0		1		1		1		-1	
$\langle \vec{r}, \vec{s}_2[n-5] \rangle$																		
\vec{r}	0		1		1		-1		2		2		1		-1		-1	
$\vec{s}_2[n-6]$	0		0		0		0		0		0		1		1		1	
$\langle \vec{r}, \vec{s}_2[n-6] \rangle$	0	+	0	+	0	+	0	+	0	+	0	+	1	+	-1	+	-1	= -1
_	ء ا																	
\vec{r}	0		1		1		-1		2		2		1		-1		-1	
$\vec{s}_2[n-7]$	0		0		0		0		0		0		0		1		1	
$\frac{\vec{r}}{\vec{s}_2[n-7]}$ $\langle \vec{r}, \vec{s}_2[n-7] \rangle$	0		0		0		0		0		0		0		1		1	
$\frac{\vec{s}_2[n-7]}{\langle \vec{r}, \vec{s}_2[n-7] \rangle}$	0	+	0	+	0	+	0	+	0	+	0	+	0	+	1 -1	+	1 -1	
$\frac{\vec{s}_2[n-7]}{\langle \vec{r}, \vec{s}_2[n-7] \rangle}$	0 0	+	0 0	+	0 0	+	0 0 -1	+	0 0 2	+	0 0 2	+	0 0	+	1 -1	+	1 -1	
$\frac{\vec{s}_2[n-7]}{\langle \vec{r}, \vec{s}_2[n-7] \rangle}$	0 0	+	0 0	+	0 0	+	0 0 -1	+	0 0 2	+	0 0 2	+	0 0	+	1 -1 -1	+	1 -1	

The maximum correlation between signals \vec{r} and \vec{s}_1 was achieved at $k_1 = 1$, and the maximum correlation between signals \vec{r} and \vec{s}_2 was achieved at $k_2 = 4$.