Random Sampling

이 상 화

Sampling for Estimation

- Example: Line fitting from 2D points
 - Total N 2D points
 - What is the best line for the given samples?

Sampling for Estimation

☐ Least Squares

- Usually, use all samples in the linear system equations
- The solution is a kind of mean from the samples
 ▶ Pseudo-inverse, minimum eigenvector
- ☐ The solution does not guarantee the best solution.
 - Just has minimum cost in your designed cost functions
 - Local minima problems

Sampling for Estimation

- ☐ Need to select good samples for estimation
 - Noise in the observation measures (samples)
 - Outliers in the observed samples
- ☐ How to know the best samples and solution?
 - We don't know!
- ☐ Iterative random sampling until sufficient solution
 - Greedy approach
 - Proper criterion should be designed for stopping condition

Terms of Random Sampling

- Monte-Carlo simulation
- ☐ Simulated annealing
- □ RANSAC (RANdom Sample Consensus)

RANSAC

- □ RANdom SAmple Consensus
- □ Example: line fitting from N 2D points
 - 1. Randomly select n (< N) samples
 - 2. Use least square to estimate fitted line
 - 3. Calculate the cost (squared error)
 - 4. Compare the cost with the predesigned criterion or previously estimated cost
 - ➤ If the current cost < the precious one or criterion, then save the solution (fitted line and cost)
 - > Else, discard the current solution
 - 5. Repeat 1~4 until sufficient solution is obtained
 - > Number of iterations, low cost criterion

Sampling

☐ Uniformly sampling

- No weighted sampling
- Low convergence

☐ Gibb's sampling

- Conditional sampling based on the assumed distribution model
- Weighted sampling
- Fast convergence
- Dependent on how proper is the assumed distribution of samples

HW#13 (1/2)

- ☐ Line fitting using RANSAC and least square
 - 1. Randomly select 6 samples from 12 points
 - 2. Find the fitted line using 6 samples and least square
 - 3. Calculate the error
 - 4. Compare the current error with previous error
 - If current error is smaller than the previous one, save the current solution and remove the previous one
 - 5. Repeat 1~4 until your criterion
- ☐ Compare the solution of RANSAC with the solution of whole 10 samples

HW#13 (2/2)

☐ How to generate 12 samples

- Line: y = 2x-1
- x: [-5, +6], integer >-5, -4, -3,5, 6
- y=2x-1 + N(0, 2)Adding Gaussian noise for each y = 2x-1

☐ Due

2020. 12. 2

