

Team Kerbals

Problem Statement

Design the **end effector** of a robotic arm, having **3 degrees of freedom**.

- The arm must be capable of:
 - Typing on a keyboard
 - Opening a drawer
 - Lifting a rock with maximum radius of 20 mm and mass of 1 kg
- What are some **design constraints** you would have to consider when designing the end effector?
- What would the characteristics of the optimal end effector be?
- What **materials** would you use to manufacture the different parts of the end effector?

Task Specifications

- 1. Typing on a keyboard
- 2. Opening a drawer
 - In general, 3 structural types [1]:
 - 1. Handle
 - 2. Knob
 - 3. Card file pull
- 3. Lifting a rock with maximum radius of 20 mm and mass of 1 kg

Optimal End Effector Characteristics

1) Functionality

Able to complete all tasks

2) Performance

- Tasks are optimised and completed with high performance according to certain metrics (i.e. weight, complexity of mechanism, time, precision)
- Fulfill design constraints

Design Constraints

1. Financial Constraints

- Items procured must be less than \$5000
- Aim for items to be as low-cost as possible

2. Physical Constraints

- Weight of system → design a light system as higher weight, more energy expended to move
- Size of system → design a system that's as compact as possible

3. System Constraints

- System simplicity → reduce number of new systems introduced (such as pneumatics system)
- Manufacturing simplicity → create a design that's easy to manufacture

Gripper Design Inspirations

Traditional Designs

Parallel Motion Two-Jaw [2]

Three-Jaw Gripper [3]

Wide Stroke Adaptive Gripper [4]

Gripper Design Inspirations

Modern Design

FESTO Tentacle Gripper [5]

FESTO Multichoice Gripper [6]

Beanbag Gripper [7]

Comparison

Functionality / Performance	Typing /5	Drawer /5	Lifting rock /5	Pros	Cons
2-Jaw [2]	5	5	4	Simple mechanism	Needs to compensate grip with adding more force - not suitable for brittle items
3-Jaw [3]	5	3	5	Stable in picking up things	More complex design
Wide-stroke Parallel [4]	5	5	4	Simple mechanism	Very commonly used in rovers
Tentacle Gripper [5]	2	5	4	Very innovative	Still in research stage, not commercialised
Multichoice Gripper [6]	5	4	5	- Good for brittle items - Has high friction grip	More complex design
Beanbag Gripper [7]	1	2	5	Innovative and new	Complex system (uses air compressor)

FESTO Adaptive Gripper

Basic Proof of Concept

Gripper fingers' interface [8, 9]:

- Designed so that both parts can be easily slid together to form a positively-engaged and friction-based adapter while the fingers can flex
- Reliable gripping of different shapes and with different surfaces (i.e. rock shapes, drawer handles/knobs/openings)
- Gripper is made from TPU
 - Easy to manufacture
 - Light
- Relatively simple design

Modified Adaptive Gripper Finger CAD Design

Modified Adaptive Gripper Finger

Basic Proof of Concept + Modifications

To improve **performance**:

- 1. End/tip gap for enclosing
 - Allows better securement of large objects (task 3)
- 2. **Groove** at gripper
 - Allows thin objects to fit better (e.g. thin drawer handles) (task 2)
- 3. **Make the gripper hold a Laser stylus** to help aim designated key on the keyboard(task 1)
 - Allow user or sensors to have better aim
 - Groove at grip ensured laser is secured at the same position every time
 - A smaller finger which eliminates the chance of accidentally pressing a neighbouring key

Modified Parallel Gripper Actuator

	Pneumatic piston system	Gear system	Hydraulic system
Pros	- Easily bought off-the-shelf, no need to manufacture - Has precise positional control	- Lighter - Can withstand greater force VS pneumatic piston with stepper motors with gear reduction - Has precise positional control - Highly customisable depending on need	- More sustainable VS pneumatic piston
Cons	 Complex system → More things added causes higher probability of something failing Not sustainable → requires constant servicing of the pneumatic pistons Requires heavier system to withstand equivalent force VS Gear system 	- Slower VS pneumatic piston - Not off-the-shelf purchase (less convenient)	- Heavier VS pneumatic piston - Introduces a new system

Modified Parallel Gripper Base

Basic Proof of Concept + Modifications

FESTO HGPL-25-20 [10]

- Uses Pneumatics
- Metal-alloy based (heavy)
- Difficult to manufacture
- High cost

Adapted System

- Uses high-torque stepper motor and gears (rack and pinion)
- Onyx based (3D printed)
- Easy to manufacture
- Low cost

Modified Parallel Gripper Base

Basic Proof of Concept + Modifications

Modified Parallel Gripper Base

CAD Design

Technical Feasibility [11]

Retention force (pulling handle, pulling knob, etc.)

Ø 40 mm

----- Ø 50 mm

Lateral force (holding stylus, lifting rock, etc.)

 \emptyset 6 mm

Ø 20 mm

Ø 40 mm

----- Ø 50 mm

Technical Feasibility

Rough Technical Calculations

Max Weight: 1 kg or 9.81 N

Max Diameter: 40mm

From Lateral Force graph, Fg required = 50 N

Since gear diameter = 25mm, Torque of motor required = 1.25 Nm

With safety factor of 4, Torque recommended = 4 Nm

Average Stepper motor torque ~ 0.5 Nm

Gear reduction required for system is 8:1

Bill of Material

- 1 Mounting kit
- DHAS-ME

 2 Mounting bracket
 DHAS-MA
- 3 Adaptive gripper finger
- DHAS
- 4 Parallel gripper HGPL-14

Part	Details	Material / Weight	Procurement
Mounting Bracket DHAS-MA-B6-60 [12]	Mounting of adaptive gripper finger together with the mounting kit and parallel gripper	High-alloy stainless steel / 23g	Off-the-shelf purchase [13]
Mounting Kit DHAS-ME-H9-60 [14]	Mounting of adaptive gripper finger	High alloy steel, non-corrosive / 7g	Off-the-shelf purchase [15]
Modified Adaptive Gripper Finger	Adapted from FESTO DHAS-GF-60-U [16]	Polyurethane (TPU) / 39g	3D printed

Bill of Material

Part	Details	Material / Weight	Procurement
Modified Parallel Gripper Frame	Custom frame	Onyx Material / ~250g [17]	3D printed
Stepper Motor	Motor to drive the jaws	Metal Alloys 160 g	Off-the-shelf purchase [18]
Laser pen	Laser pen to guide Task 1	Plastic ~ 30 g	Off-the-shelf purchase [19]

Future Improvements:

References

[1] "How-to: Choose cabinet hardware," Schoolhouse. [Online]. Available:

https://www.schoolhouse.com/blogs/how-to/how-to-choose-the-perfect-cabinet-hardware.

[2] "8 types of end of ARM Tooling devices - Grippers: Keller Technology," Keller Technology Corporation, 08-Sep-2020. [Online]. Available:

https://www.kellertechnology.com/blog/8-types-of-end-of-arm-tooling-devices-for-automation-projects/.

[3] M. Bélanger-Barrette, "Why use a ROBOT gripper with 3 Fingers?," Workfloor: Robotics News for the Factory. [Online]. Available:

https://blog.robotig.com/why-use-a-robot-gripper-with-3-fingers.

[4] "Robotiq releases a new adaptive robot gripper with wide stroke and advanced control," Automate. [Online]. Available:

https://www.automate.org/news/robotig-releases-a-new-adaptive-robot-gripper-with-wide-stroke-and-advanced-control.

[5] "TentacleGripper," TentacleGripper | Festo Corporate. [Online]. Available: https://www.festo.com/group/en/cms/12745.htm.

[6] F. AG, FESTO MultiChoiceGripper, 2014. [Online]. Available: https://www.festo.com/net/SupportPortal/Files/333986/Festo-MultiChoiceGripper-en.pdf.

[7] J. Flaherty, "A beanbag robot hand that works insanely well," Wired, 23-Jan-2014. [Online]. Available:

https://www.wired.com/2014/01/empire-robotics-jamming-robot/.

[8] F. AG, FESTO DHAS, 2014. [Online]. Available: https://www.festo.com/cat/en-gb_gb/data/doc_ENGB/PDF/EN/DHAS_EN.PDF.

[9] FestoCanada, "Adaptive gripper fingers," YouTube, 31-Oct-2018. [Online]. Available: https://www.youtube.com/watch?v=jOc3e5O5OPM.

[10] F. AG, FESTO Parallel gripper HGPL-B, heavy-duty with long stroke, 2014. [Online]. Available:

https://www.festo.com/media/pim/421/D15000100122421.PDF

[11] F. AG, FESTO Adaptive gripper fingers DHAS, heavy-duty with long stroke, 2014. [Online]. Available:

https://www.festo.com/cat/en-qb_qb/data/doc_ENGB/PDF/EN/DHAS_EN.PDF.

[12] F. AG, FESTO Mounting bracket, 2014. [Online]. Available: https://www.festo.com/us/en/a/download-document/datasheet/3920696.

References

[13] "Catalogue main page," Pneumatic & amp; electric automation technology. [Online]. Available:

https://www.festo.com/cat/en-sg_sg/products_DHAS_MA?CurrentIDCode1=DHAS-MA.

[14] F. AG, FESTO Mounting kit, 2014. [Online]. Available: https://www.festo.com/us/en/a/download-document/datasheet/4464306/.

[15] "Catalogue main page," Pneumatic & Electric automation technology. [Online]. Available:

https://www.festo.com/cat/en-sq_sg/products_DHAS_MA?CurrentIDCode1=DHAS-MA.

[16] F. AG, FESTO Adaptive gripper fingers DHAS, heavy-duty with long stroke, 2014. [Online]. Available:

https://www.festo.com/cat/en-gb/gb/data/doc/ENGB/PDF/EN/DHAS/EN.PDF.

[17] "Onyx - Composite 3d printing material," Markforged. [Online]. Available: https://markforged.com/materials/plastics/onyx.

[18] "Twotrees Nema17 stepper MOTOR Bipolar 42 Motor 4-Lead wire with 1m cable 23mm 42BYGH 1.5A motor for cnc Xyz 3d printer," Amazon.sq: Industrial & amp; Scientific. [Online]. Available:

https://www.amazon.sg/Twotrees-Stepper-17HS4401-Connector-Printer/dp/B07TGJSNJB/ref=asc df B07THK76QQ/?tag=googleshoppin-22&:linkCode=df0 &hvadid=451162153592&hvpos=&hvnetw=q&hvrand=98033490175012426&hvpone=&hvptwo=&hvptw=&hvpt :hvdvcmdl=&hvlocint=&hvlocphv=9062542&hvtarqid=pla-1449578632277&th=1.

[19] Shopee Singapore. [Online]. Available:

https://shopee.sg/%E2%9A%A0%EF%B8%8FLaser-Pointer%E2%9A%A0%EF%B8%8FPen-USB-Rechargeable-AAA-Batteries-Powerful-Green-Red-Purple-Blu e-Light-Beam-Presentation-Clicker-i.3464036.8351048578?ads keyword=wkdaelpmissisiht&adsid=3456469&campaignid=1868713&position=0. [20] "A comparative study of soft computing methods to Solve inverse KINEMATICS PROBLEM," ResearchGate. [Online]. Available:

https://www.researchgate.net/publication/319127421 A comparative study of soft computing methods to solve inverse kinematics problem.