NMOS Structure

• Technology Parameters:

- > Channel Length (L)
- > Channel Width (W)
- \triangleright Oxide Thickness (t_{ox})
- \succ Substrate Doping (N_A)
- L_D: *Lateral overlap* between G and S/D
- *Actual* channel length: $L_{act} = L 2L_D$
- For now, we will assume $L_D = 0$

$$ightharpoonup L_{act} = L$$

Symbols and Current-Voltage Conventions

• Voltage Convention:

- > NMOS: V_{GS} (gate-source voltage), V_{DS} (drain-source voltage), V_{BS} (body-source voltage)
- > PMOS: V_{SG} (source-gate voltage), V_{SD} (source-drain voltage), V_{SB} (source-body voltage)

• Current Convention:

- > NMOS: I_D (drain current) flows into the drain terminal and exits from the source terminal
- \triangleright **PMOS**: I_D flows into the **source terminal** and exits from the **drain terminal**

- Gate is DC isolated by the insulator
 - \triangleright Gate Current $I_G = 0$
 - > Tremendous advantage!
- Same current I_D flows through the device
- Extremely compact device
 - > Saves a lot of area
- Reversible device:
 - D and S terminals are determined by their bias states