



FIG. 1

DATA PACKET  
FRAGMENTATION IN A  
CABLE MODEM SYSTEM



FIG. 2

DATA PACKET  
FRAGMENTATION IN A  
CABLE MODEM SYSTEM



FIG. 3

DATA PACKET  
FRAGMENTATION IN A  
CABLE MODEM SYSTEM



FIG. 4

DATA PACKET  
FRAGMENTATION IN A  
CABLE MODEM SYSTEM



FIG. 5

DATA PACKET  
FRAGMENTATION IN A  
CABLE MODEM SYSTEM



FIG. 6

DATA PACKET  
FRAGMENTATION IN A  
CABLE MODEM SYSTEM



FIG. 7

DATA PACKET  
FRAGMENTATION IN A  
CABLE MODEM SYSTEM



FIG. 8

DATA PACKET  
FRAGMENTATION IN A  
CABLE MODEM SYSTEM



FIG. 9

DATA PACKET  
FRAGMENTATION IN A  
CABLE MODEM SYSTEM



## DATA PACKET FRAGMENTATION IN A CABLE MODEM SYSTEM



FIG. 11



FIG. 12

DATA PACKET  
FRAGMENTATION IN A  
CABLE MODEM SYSTEM



FIG. 13

DATA PACKET  
FRAGMENTATION IN A  
CABLE MODEM SYSTEM



| FIELD    | USAGE                                                                                                                           | SIZE    |
|----------|---------------------------------------------------------------------------------------------------------------------------------|---------|
| FC       | FC_TYPE = 11; MAC-SPECIFIC HEADER<br>FC_PARM [4:0] = 00011; FRAGMENTATION MAC HEADER<br>EHDR_ON = 1; FRAGMENTATION EHDR FOLLOWS | 8 BITS  |
| MAC_PARM | ELEN = 6 BYTES; LENGTH OF FRAGMENTATION EHDR                                                                                    | 8 BITS  |
| LEN      | LEN = $n + 1$ ; TOTAL LENGTH OF THIS FRAGMENT<br>INCLUDING PAYLOAD, EHDR, FCRC                                                  | 16 BITS |

DATA PACKET  
FRAGMENTATION IN A  
CABLE MODEM SYSTEM

FIG. 15

| FIELD         | USAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SIZE                                                                                                                  |         |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|---------|
| EHDR          | EH_TYPE=3; SAME TYPE AS BP_UP<br>EH_LEN=5; LENGTH OF THIS EHDR<br>KEY_SEQ; SAME AS IN BP_UP<br>VER=0001; VERSION NUMBER FOR THIS EHDR<br>ENABLE<br>IF ENABLE=0, BPI DISABLED<br>IF ENABLE=1, BPI ENABLED<br>TOGGLE BIT; SAME AS IN BP_UP<br>SID; SERVICE ID ASSOCIATED WITH THIS FRAGMENT<br>REQ; NUMBER OF MINI-SLOTS FOR A PIGGYBACK REQUEST<br>RESERVED; MUST BE SET TO ZERO<br>FIRST_FRAG; SET TO ONE FOR FIRST FRAGMENT ONLY<br>LAST_FRAG; SET TO ONE FOR LAST FRAGMENT ONLY<br>FRAG_SEQ; FRAGMENT SEQUENCE COUNT, INCREMENTED<br>FOR EACH FRAGMENT, SET TO ZERO FOR FIRST FRAGMENT | 4 BITS<br>4 BITS<br>4 BITS<br>4 BITS<br>1 BIT<br><br>1 BIT<br>14 BITS<br>8 BITS<br>2 BITS<br>1 BIT<br>1 BIT<br>4 BITS | 6 BYTES |
| HCS           | MAC HEADER CHECK SEQUENCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 BYTES                                                                                                               |         |
| FRAGMENT DATA | FRAGMENT PAYLOAD; PORTION OF TOTAL MAC PDU BEING SENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n BYTES                                                                                                               |         |
| FCRC          | CRC ACROSS FRAGMENT PAYLOAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4 BYTES                                                                                                               |         |
|               | LENGTH OF A MAC FRAGMENT FRAME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n + 16 BYTES                                                                                                          |         |

FIG. 16

DATA PACKET  
FRAGMENTATION IN A  
CABLE MODEM SYSTEM

FIG. 17



DATA PACKET  
FRAGMENTATION IN A  
CABLE MODEM SYSTEM



FIG. 18

DATA PACKET  
FRAGMENTATION IN A  
CABLE MODEM SYSTEM



**FIG. 19**

DATA PACKET  
FRAGMENTATION IN A  
CABLE MODEM SYSTEM



FIG. 20

DATA PACKET  
FRAGMENTATION IN A  
CABLE MODEM SYSTEM



FIG. 21

DATA PACKET  
FRAGMENTATION IN A  
CABLE MODEM SYSTEM



DATA PACKET  
FRAGMENTATION IN A  
CABLE MODEM SYSTEM

FIG. 22

FIG. I  
NETWORK DATA  
TRANSMISSION  
AND SYNCHRONIZATION SYSTEM  
AND METHOD



NETWORK DATA  
TRANSMISSION SYSTEM  
AND METHOD

FIG. 2

Headend CMTS



# NETWORK DATA TRANSMISSION SYNCHRONIZATION SYSTEM AND METHOD

FIG. 3



NETWORK DATA  
TRANSMISSION SYSTEM  
SYNCHRONIZATION SYSTEM  
AND METHOD

42



FIG. 4

| Update Rate   | Coarse Coeffs                                   | Fine Coefficients                              |
|---------------|-------------------------------------------------|------------------------------------------------|
| 1kHz (1ms)    | $K_0 = 2^{-11}$<br>$K_1 = 2^{-15}$<br>(BW=50Hz) | $K_0 = 2^{-16}$<br>$K_1 = 2^{-25}$<br>(BW=1Hz) |
| 300Hz (3.3ms) | $K_0 = 2^{-12}$<br>$K_1 = 2^{-15}$<br>(BW=20Hz) | $K_0 = 2^{-16}$<br>$K_1 = 2^{-23}$<br>(BW=1Hz) |
| 100Hz (10ms)  | $K_0 = 2^{-13}$<br>$K_1 = 2^{-16}$<br>(BW=10Hz) | $K_0 = 2^{-16}$<br>$K_1 = 2^{-22}$<br>(BW=1Hz) |
| 50Hz (20ms)   | $K_0 = 2^{-14}$<br>$K_1 = 2^{-17}$<br>(BW=5Hz)  | $K_0 = 2^{-16}$<br>$K_1 = 2^{-21}$<br>(BW=1Hz) |
| 30Hz (33ms)   | $K_0 = 2^{-15}$<br>$K_1 = 2^{-18}$<br>(BW=3Hz)  | $K_0 = 2^{-17}$<br>$K_1 = 2^{-21}$<br>(BW=1Hz) |
| 10Hz (100ms)  | $K_0 = 2^{-17}$<br>$K_1 = 2^{-20}$<br>(BW=1Hz)  | $K_0 = 2^{-17}$<br>$K_1 = 2^{-20}$<br>(BW=1Hz) |
| 5Hz (200ms)   | $K_0 = 2^{-18}$<br>$K_1 = 2^{-20}$<br>(BW=1Hz)  | $K_0 = 2^{-18}$<br>$K_1 = 2^{-20}$<br>(BW=1Hz) |

FIG. 5

**FIG. 6**

NETWORK DATA  
TRANSMISSION  
SYNCHRONIZATION SYSTEM  
AND METHOD




**NETWORK DATA  
TRANSMISSION  
SYNCHRONIZATION SYSTEM  
AND METHOD**



**FIG. 7**

NETWORK DATA  
TRANSMISSION  
SYNCHRONIZATION SYSTEM  
AND METHOD



FIG. 8

FIG. 1



BURST RECEIVER FOR  
CABLE MODEM SYSTEM

**FIG. 2**



BURST RECEIVER FOR  
CABLE MODEM SYSTEM

FIG. 3

HOME



FIG. 4



BURST RECEIVER FOR  
CABLE MODEM SYSTEM

BURST RECEIVER FOR  
CABLE MODEM SYSTEM

*FIG. 5*



*FIG. 6*



FIG. 7



## BURST RECEIVER FOR CABLE MODEM SYSTEM

**FIG.8**

| UPDATE RATE  | COARSE COEFFS                               | FINE COEFFICIENTS                          |
|--------------|---------------------------------------------|--------------------------------------------|
| 1kHz(1ms)    | $K_0=2^{-11}$<br>$K_1=2^{-15}$<br>(BW=50Hz) | $K_0=2^{-16}$<br>$K_1=2^{-25}$<br>(BW=1Hz) |
| 300Hz(3.3ms) | $K_0=2^{-12}$<br>$K_1=2^{-15}$<br>(BW=20Hz) | $K_0=2^{-16}$<br>$K_1=2^{-23}$<br>(BW=1Hz) |
| 100Hz(10ms)  | $K_0=2^{-13}$<br>$K_1=2^{-16}$<br>(BW=10Hz) | $K_0=2^{-16}$<br>$K_1=2^{-22}$<br>(BW=1Hz) |
| 50Hz(20ms)   | $K_0=2^{-14}$<br>$K_1=2^{-17}$<br>(BW=5Hz)  | $K_0=2^{-16}$<br>$K_1=2^{-21}$<br>(BW=1Hz) |
| 30Hz(33ms)   | $K_0=2^{-15}$<br>$K_1=2^{-18}$<br>(BW=3Hz)  | $K_0=2^{-17}$<br>$K_1=2^{-21}$<br>(BW=1Hz) |
| 10Hz(100ms)  | $K_0=2^{-17}$<br>$K_1=2^{-20}$<br>(BW=1Hz)  | $K_0=2^{-17}$<br>$K_1=2^{-20}$<br>(BW=1Hz) |
| 5Hz(200ms)   | $K_0=2^{-18}$<br>$K_1=2^{-20}$<br>(BW=1Hz)  | $K_0=2^{-18}$<br>$K_1=2^{-20}$<br>(BW=1Hz) |

**FIG. 9**



*FIG. 10*



*FIG. 11*





*FIG. 13*



**FIG. 14**

PRIOR ART



**FIG. 15**



**FIG. 16**



**FIG. 17**



BURST RECEIVER FOR  
CABLE MODEM SYSTEM

**FIG. 18**  
PRIOR ART



**FIG. 19**



**FIG. 20**



FIG. 21



## BURST RECEIVER FOR CABLE MODEM SYSTEM

*FIG. 22*



**FIG.23**



**FIG.24**



**FIG.25**



*FIG. 1*  
PRIOR ART



ROBUST TECHNIQUES FOR  
OPTIMAL UPSTREAM  
COMMUNICATION

ROBUST TECHNIQUES FOR  
OPTIMAL UPSTREAM  
COMMUNICATION

CABLE MODEM  
TERMINATION SYSTEM

**FIG.2**



***FIG.3***  
PRIOR ART



# ROBUST TECHNIQUES FOR OPTIMAL UPSTREAM COMMUNICATION

FIG. 4



FIG.5



*FIG. 6*



ROBUST TECHNIQUES FOR  
OPTIMAL UPSTREAM  
COMMUNICATION



*FIG. 7*

FIG. 8



ROBUST TECHNIQUES FOR  
OPTIMAL UPSTREAM  
COMMUNICATION



**FIG. 1**

CABLE MODEM  
TERMINATION SYSTEM  
UPSTREAM MAC/PHY  
INTERFACE



**FIG. 2**

*(Prior Art)*

CABLE MODEM  
TERMINATION SYSTEM  
UPSTREAM MAC/PHY  
INTERFACE

CABLE MODEM  
TERMINATION SYSTEM  
UPSTREAM MAC/PHY  
INTERFACE

**FIG. 3**

CABLE MODEM  
TERMINATION SYSTEM





**FIG. 4**

**(Prior Art)**

CABLE MODEM  
TERMINATION SYSTEM  
UPSTREAM MAC/PHY  
INTERFACE



**FIG. 5**

CABLE MODEM  
TERMINATION SYSTEM  
UPSTREAM MAC/PHY  
INTERFACE



FIG. 6

CABLE MODEM  
TERMINATION SYSTEM  
UPSTREAM MAC/PHY  
INTERFACE



*FIG. 7*

CABLE MODEM  
TERMINATION SYSTEM  
UPSTREAM MAC/PHY  
INTERFACE



**FIG. 7A**

CABLE MODEM  
TERMINATION SYSTEM  
UPSTREAM MAC/PHY  
INTERFACE

**FIG. 8**



CABLE MODEM  
TERMINATION SYSTEM  
UPSTREAM MAC/PHY  
INTERFACE



**FIG. 9**

CABLE MODEM  
TERMINATION SYSTEM  
UPSTREAM MAC/PHY  
INTERFACE



FIG. 10

CABLE MODEM  
TERMINATION SYSTEM  
UPSTREAM MAC/PHY  
INTERFACE

CABLE MODEM  
TERMINATION SYSTEM  
UPSTREAM MAC/PHY  
INTERFACE



FIG. 11



**FIG. 12**

CABLE MODEM  
TERMINATION SYSTEM  
UPSTREAM MAC/PHY  
INTERFACE

**FIG. 13**



CABLE MODEM  
TERMINATION SYSTEM  
UPSTREAM MAC/PHY  
INTERFACE

CABLE MODEM  
TERMINATION SYSTEM  
UPSTREAM MAC/PHY  
INTERFACE



FIG. 14

210



CABLE MODEM  
TERMINATION SYSTEM  
UPSTREAM MAC/PHY  
INTERFACE

FIG. 15



**FIG. 16**

CABLE MODEM  
TERMINATION SYSTEM  
UPSTREAM MAC/PHY  
INTERFACE



- In this example, it is assumed that each request message requires two minislots to transmit

**FIG. 17**

CABLE MODEM  
TERMINATION SYSTEM  
UPSTREAM MAC/PHY  
INTERFACE

| Rng. Offset 7 bytes |                      |                  |                |                 |                  |                 |
|---------------------|----------------------|------------------|----------------|-----------------|------------------|-----------------|
| Status<br>2 bytes   | Timestamp<br>4 bytes | Ch. ID<br>1 byte | SID<br>2 bytes | Pwr.<br>2 bytes | Freq.<br>2 bytes | Time<br>3 bytes |

**FIG. 18**

| Rng. Offset 7 bytes |                      |                  |                |                 |                  |                 |                               |
|---------------------|----------------------|------------------|----------------|-----------------|------------------|-----------------|-------------------------------|
| Status<br>2 bytes   | Timestamp<br>4 bytes | Ch. ID<br>1 byte | SID<br>2 bytes | Pwr.<br>2 bytes | Freq.<br>2 bytes | Time<br>3 bytes | Equalizer Coeffs.<br>32 bytes |

**FIG. 19**

Based on the Status bytes [7:5] bits, the following statistics are kept using counters.

| Slot Definition           | Statistics                                                                                                                                                                                                                                                        | Calculation                                             |
|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| Data                      | 1. Number of slots<br>2. Number of Slots with power but no data<br>3. Number of slots with bad data<br>4. Number of Good data-slots<br>5. Total number of FEC Blocks<br>6. Number of FEC blocks with correctable errors.<br>7. Number of uncorrectable FEC blocks | No UW<br>UW and (Bad FEC or Bad HEC)<br>UW and Good HEC |
| Request (Contention)      | 1. Number of requests received<br>2. Number of collided requests<br>3. Number of corrupted requests                                                                                                                                                               | No UW<br>No UW or Bad FEC or Bad HEC                    |
| Request/Data (Contention) | 1. Number of packets received<br>2. Number of collided packets<br>3. Number of corrupted packets                                                                                                                                                                  | No UW<br>No UW or Bad FEC or Bad HEC                    |
| Ranging                   | 1. Number of ranging messages received<br>2. Number of collided ranging messages received<br>3. Number of corrupted ranging messages                                                                                                                              | No UW<br>No UW or Bad FEC or Bad HEC                    |

**FIG. 20**

CABLE MODEM  
TERMINATION SYSTEM  
UPSTREAM MAC/PHY  
INTERFACE



**FIG. 21**



**FIG. 22**

CABLE MODEM  
TERMINATION SYSTEM  
UPSTREAM MAC/PHY  
INTERFACE



**FIG. 23**



**FIG. 24**

CABLE MODEM  
TERMINATION SYSTEM  
UPSTREAM MAC/PHY  
INTERFACE

- **Sign-On Sequence (plug-&-play based registration)**



\* Default Configuration Msg: Ranging channel frequency, Transmission rate  
Initial pwr level, Contention-based access slot Information, etc.

**FIG. 25**



- MAC framing and PHY framing are decoupled
- Upstream frame synchronization based on time stamp messages

FIG. 26

CABLE MODEM  
TERMINATION SYSTEM  
UPSTREAM MAC/PHY  
INTERFACE



**FIG. 27**



**FIG. 28**

CABLE MODEM  
TERMINATION SYSTEM  
UPSTREAM MAC/PHY  
INTERFACE

| Bit Field  | Definition if Bit[11]=1                                                                                                                                                             | Definition if Bit[11]=0                                                                                                                                                             |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bit[15:12] | MCNS IUC                                                                                                                                                                            | Reserved                                                                                                                                                                            |
| Bit [11]   | 1: Indicates 1 <sup>st</sup> block of transmission                                                                                                                                  | 0: Indicates not 1 <sup>st</sup> block of transmission                                                                                                                              |
| Bit [10]   | 1: Indicates last block of transmission                                                                                                                                             | 1: Indicates last block of transmission                                                                                                                                             |
| Bit [9]    | 1: Indicates Ranging required                                                                                                                                                       | Reserved                                                                                                                                                                            |
| Bit [8]    | Reserved                                                                                                                                                                            | Reserved                                                                                                                                                                            |
| Bit [7:5]  | 000: FEC OK<br>001: Correctable FEC Error<br>010: uncorrectable FEC error<br>011: no Unique word detected<br>100: collided packet<br>101: no energy<br>110: packet length violation | 000: FEC OK<br>001: Correctable FEC Error<br>010: uncorrectable FEC error<br>011: no Unique word detected<br>100: collided packet<br>101: no energy<br>110: packet length violation |
| Bit [4]    | 1: Valid Minislot count prepended                                                                                                                                                   | Reserved                                                                                                                                                                            |
| Bit [3]    | 1: Valid Channel ID prepended                                                                                                                                                       | Reserved                                                                                                                                                                            |
| Bit [2]    | 1: Valid SID prepended                                                                                                                                                              | Reserved                                                                                                                                                                            |
| Bit [1]    | 1: Ranging Info prepended                                                                                                                                                           | Reserved                                                                                                                                                                            |
| Bit [0]    | 1: Equalizer coefficients prepended                                                                                                                                                 | Reserved                                                                                                                                                                            |

**FIG. 29**



FIG. 30

CABLE MODEM  
TERMINATION SYSTEM  
UPSTREAM MAC/PHY  
INTERFACE

**FIG. 31**



CABLE MODEM  
TERMINATION SYSTEM  
UPSTREAM MAC/PHY  
INTERFACE

CABLE MODEM  
TERMINATION SYSTEM  
UPSTREAM MAC/PHY  
INTERFACE

*FIG. 32*



*FIG. 33*



*FIG. 1*



METHOD AND APPARATUS  
FOR REDUCING NOISE IN A  
BIDIRECTIONAL CABLE  
TRANSMISSION SYSTEM

METHOD AND APPARATUS  
FOR REDUCING NOISE IN A  
BIDIRECTIONAL CABLE  
TRANSMISSION SYSTEM

FIG. 2



*FIG.3*



*FIG.4*



METHOD AND APPARATUS  
FOR REDUCING NOISE IN A  
BIDIRECTIONAL CABLE  
TRANSMISSION SYSTEM

*FIG. 5*



METHOD AND APPARATUS  
FOR REDUCING NOISE IN A  
BIDIRECTIONAL CABLE  
TRANSMISSION SYSTEM

METHOD AND APPARATUS  
FOR REDUCING NOISE IN A  
BIDIRECTIONAL CABLE  
TRANSMISSION SYSTEM

FIG. 6



*FIG. 7*



METHOD AND APPARATUS  
FOR REDUCING NOISE IN A  
BIDIRECTIONAL CABLE  
TRANSMISSION SYSTEM

**FIG. 8A**



**FIG. 8B**



**FIG. 8C**



METHOD AND APPARATUS  
FOR REDUCING NOISE IN A  
BIDIRECTIONAL CABLE  
TRANSMISSION SYSTEM

16-QAM Constellation  
BEFORE NOISE REJECTION



Fig. 9A

16-QAM Constellation  
AFTER NOISE REJECTION



Fig. 9B

METHOD AND APPARATUS  
FOR REDUCING NOISE IN A  
BIDIRECTIONAL CABLE  
TRANSMISSION SYSTEM



Fig. 10A



Fig. 10B

METHOD AND APPARATUS  
FOR REDUCING NOISE IN A  
BIDIRECTIONAL CABLE  
TRANSMISSION SYSTEM