${ m MIC0503V}$ - Examen de Statistique - Corrigé

Exercice 1.

- 1. Nous enregistrons d'abord les données au format .csv dans le fichier $h\acute{e}moglobine.csv$ puis sous R dans l'objet hémoglobine.
 - > hémoglobine<-read.csv2("hémoglobine.csv")</pre>
 - > hémoglobine

	Femmes	Hommes
1	105	141
2	110	144
3	112	146
4	112	148
5	118	149
6	119	150
7	120	150
8	120	151
9	125	153
10	126	153
11	127	153
12	128	154
13	130	155
14	132	156
15	133	156
16	134	160
17	135	160
18	138	160
19	138	163
20	138	164
21	138	164
22	142	165
23	145	166
24	148	168
25	148	168
26	150	170
27	151	172
28	154	172
29	154	176
30	158	179

Pour effectuer le regroupement en classes nous utilisons la fonction hist pour chaque groupe femmes et hommes :

```
> Femmes.hist<-hist(hémoglobine$Femmes,breaks=c(104,114,124,134,144,154,164,174,
```

Enfin, pour obtenir les effectifs et les fréquences :

> Hommes.hist<-hist(hémoglobine\$Hommes,breaks=c(104,114,124,134,144,154,164,174,

- > table.Femmes<-round(data.frame(Femmes.hist\$mids,Femmes.hist\$counts,Femmes.hist\$
- > colnames(table.Femmes)<-c("centres","effectifs","fréquences")</pre>
- > table.Femmes

	centres	effectifs	fréquences
1	109	4	0.13
2	119	4	0.13
3	129	8	0.27
4	139	6	0.20
5	149	7	0.23
6	159	1	0.03
7	169	0	0.00
8	179	0	0.00

- > table.Hommes<-round(data.frame(Hommes.hist\$mids,Hommes.hist\$counts,Hommes.hist\$
- > colnames(table.Hommes)<-c("centres","effectifs","fréquences")</pre>
- > table.Hommes

	${\tt centres}$	${\tt effectifs}$	fréquences
1	109	0	0.00
2	119	0	0.00
3	129	0	0.00
4	139	2	0.07
5	149	10	0.33
6	159	9	0.30
7	169	7	0.23
8	179	2	0.07

2. > hist(hémoglobine\$Femmes, breaks=c(104, 114, 124, 134, 144, 154, 164, 174, 184), main="Historian Control of the Control

> hist(hémoglobine\$Hommes,breaks=c(104,114,124,134,144,154,164,174,184),main="His

Histogramme - Hommes

- 3. On utilise la fonction summary pour chaque série :
 - > summary(c(hémoglobine\$Femmes,hémoglobine\$Hommes))

> summary(hémoglobine\$Femmes)

> summary(hémoglobine\$Hommes)

```
Min. 1st Qu. Median Mean 3rd Qu. Max. 141.0 151.5 158.0 158.9 165.8 179.0
```

On obtient ainsi les moyennes pour chaque série :

Ensemble: 145,9 Femmes: 132,9 Hommes: 158,9.

4. On utilise les résultats de la fonction hist pour calculer les moyennes :

Ensemble:

- > ens.hist<-hist(c(hémoglobine\$Femmes,hémoglobine\$Hommes),breaks=c(104,114,124,124,124)
- > ens.hist\$counts

- > moy.ens<-sum(ens.hist\$mids*ens.hist\$counts)/60
- > moy.ens
- [1] 145.3333

Femmes:

- > moy.F<-sum(Femmes.hist\$mids*Femmes.hist\$counts)/30</pre>
- > moy.F
- [1] 132.6667

```
Hommes:
  > moy. H<-sum(Hommes.hist$mids*Hommes.hist$counts)/30
  > moy.H
  [1] 158
5. En utilisant les résultats de la question 3, on obtient les médianes :
  Ensemble: 149,5
  Femmes: 133,5
  Hommes: 158.
6. En utilisant à nouveau les résultats de la question 3, on obtient les intervalles interquar-
  tiles:
  Ensemble: [133,8;158,5]
  Femmes: [121,2;144,2]
  Hommes: [151,5;165,8].
7. Variances et écarts-type :
  ensemble:
  > 59*var(c(hémoglobine$Femmes,hémoglobine$Hommes))/60
  [1] 315.3567
  > sqrt(59*var(c(hémoglobine$Femmes,hémoglobine$Hommes))/60)
  [1] 17.75828
  Femmes:
  > 29*var(hémoglobine$Femmes)/30
  [1] 201.2622
  > sqrt(29*var(hémoglobine$Femmes)/30)
  [1] 14.18669
  Hommes:
  > 29*var(hémoglobine$Hommes)/30
  [1] 93.18222
  > sqrt(29*var(hémoglobine$Hommes)/30)
   [1] 9.653094
8. On utilise la même démarche qu'à la question 4 :
  Ensemble:
  > (sum(ens.hist$mids*ens.hist$mids*ens.hist$counts)/60)-(moy.ens^2)
  [1] 313.2222
  Femmes:
  > (sum(Femmes.hist$mids*Femmes.hist$mids*Femmes.hist$counts)/30)-(moy.F^2)
```

```
[1] 196.5556
      Hommes:
      > (sum(Hommes.hist$mids*Hommes.hist$mids*Hommes.hist$counts)/30)-(moy.H^2)
      [1] 109
Exercice 2.
   1. Création du tableau de données :
      > rhesus<-matrix(c(3570,3825,935,170,630,675,165,30),ncol=4,byrow=T)
      > rownames(rhesus)<-c("Rh+","Rh-")</pre>
      > colnames(rhesus)<-c("0","A","B","AB")</pre>
      > rhesus
             0
                   Α
                       B AB
      Rh+ 3570 3825 935 170
      Rh- 630 675 165 30
      Calcul des effectifs marginaux :
      Lignes:
      > ni.<-margin.table(rhesus,1)</pre>
      > ni.
       Rh+ Rh-
      8500 1500
      Colonnes:
      > n.j<-margin.table(rhesus,2)</pre>
      > n.j
```

- 0 AB Α В
- 4200 4500 1100 200
- 2. Profils lignes:
 - > rhesus/as.vector(ni.)

On constate que les profils lignes sont identiques : il n'y a donc aucun lien entre le groupe sanguin et le facteur Rhésus (on doit trouver un χ^2 égal à 0).

3. Effectifs théoriques :

```
> efftheor<-round(t(n.j%*%t(ni.)/sum(rhesus)),2)</pre>
> efftheor
       0
            Α
                В
                   AB
Rh+ 3570 3825 935 170
Rh- 630 675 165
                  30
```

4. Le tableau des effectifs théoriques étant identique au tableau initial, on a : $\chi^2=0$.

Exercice 3.

- 1. > pression<-read.csv2("pression.csv")</pre>
 - > pression

	âge	pression	
1	56	147	
2	42	125	
3	72	160	
4	36	118	
5	63	149	
6	47	128	
7	55	150	
8	49	145	
9	38	115	
10	42	140	
11	68	152	
12	60	155	

- > plot(pression)
- > abline(lm(pression\$pression^pression\$age)\$coefficients)

- 2. Calcul de $\overline{X},\,\sigma_X^2,\,\overline{Y}$ et σ_Y^2 :
 - > mean(pression\$âge)
 - [1] 52.33333
 - > 11*var(pression\$âge)/12
 - [1] 129.2222
 - > mean(pression\$pression)
 - [1] 140.3333

- > 11*var(pression\$pression)/12
- [1] 208.3889
- 3. Covariance entre X et Y:
 - > 11*cov(pression\$âge,pression\$pression)/12
 - [1] 147.0556
- 4. Coefficient de corrélation linéaire :
 - > cor(pression\$âge,pression\$pression)
 - [1] 0.8961394

Au vu de la valeur du coefficient de corrélation linéaire, proche de 1, et du nuage de points, "étiré", il existe une liaison linéaire forte entre les deux variables.

- 5. Pour calculer les coefficients de la droite de régression, on utilise la fonction lm:
 - > lm(pression\$pression~pression\$âge)\$coefficients

```
(Intercept) pression$age
80.777730 1.138005
```

- 6. Estimation de la pression systolique pour une femme de 50 ans :
 - > 80.777730 +1.138005*50
 - [1] 137.678

Exercice 4.

- 1. Calculer la moyenne et la variance du pourcentage de temps passé couché pour l'ensemble de tous les individus.
 - > traitement<-read.csv2("traitement.csv")</pre>
 - > traitement

```
Traitement.1 Traitement.2 Traitement.3
1
          17.4
                       14.65
                                     18.76
2
          20.0
                       37.22
                                     19.49
3
          26.7
                       37.73
                                     27.19
4
          31.7
                       43.61
                                     45.42
5
          35.8
                       46.07
                                     53.20
          47.8
                       47.40
                                     61.27
```

- > trait.moy<-mean(c(traitement\$Traitement.1,traitement\$Traitement.2,traitement\$Traitement
- > trait.moy
- [1] 35.07833
- > trait.var<-17*var(c(traitement\$Traitement.1,traitement\$Traitement.2,traitement
- > trait.var
- [1] 180.6152

```
2. Traitement 1:
  > moy1<-mean(traitement$Traitement.1)</pre>
  > moy1
  [1] 29.9
  > 5*var(traitement$Traitement.1)/6
  [1] 103.8267
  Traitement 2:
  > moy2<-mean(traitement$Traitement.2)</pre>
  > moy2
  [1] 37.78
  > 5*var(traitement$Traitement.2)/6
  [1] 121.7617
  Traitement 3:
  > moy3<-mean(traitement$Traitement.3)</pre>
  > moy3
  [1] 37.555
  > 5*var(traitement$Traitement.3)/6
  [1] 276.0092
3. Variance inter-classes:
  > varinter<-sum((moy1-trait.moy)^2+(moy2-trait.moy)^2+(moy3-trait.moy)^2)/3</pre>
  > varinter
  [1] 13.41601
  > sqrt(varinter/trait.var)
  [1] 0.2725427
```

Le rapport de corrélation étant relativement "faible", on peut conclure à une liaison faible entre le traitement et le temps passé couché.