	X2 10 digginal broe, absolute like
	Date Page
4-14-14	Gauss Flimination w. Pivoting
0	Partial Pivating
	L. Column ma compare garera
	diagonal element in largest
	diagonal element and largest
	02
	(i) (1
<u></u>	
	compare an 3, largest c element
(No. 1900)	vaako row interchange garera
	R1 banaune
	q an V lai o
	L 012 - 04t
	NOW,
	see and as jun the thui
	XO tesigi
<u></u>	R2 ma lagne
·	[
	Q22 V 101 0
138.	·

re rimilatin. to wake appet P watlix Note: yesma elements compare garda -ye ko -- aprolute value line tora row interchange garda (ign) ma - no change solve the following eristem of equs using partial pivoting technique. 2 X 1 + 2 X 2 + X 3 = 6 4 X 1 + 2 X2 + 3 X3 = 4 X3 - X3 + X3 = 0 Interchange [A:B] = ? Pivot pivot equ ele ment (4)

and, 516, -10,8

Now, by backward substitution

$$\frac{-1}{3}$$
 $\frac{1}{3}$

Then

$$-3 \times 1 + 1 (-10) = -1$$

$$01, (-3/2) X_2 = 3/2$$

$$\therefore X_1 = -1$$

$$4X1 + 2X3 + XV = 8$$

 $3X1 + 2X2 + 2X3 = 7$

partial pivoting method
$$2 \times 1 + \times 2 + \times 3 - 2 \times 4 = -10$$

$$\frac{x_2}{x_2} + \frac{2}{2} \frac{x_3}{x_4} = \frac{7}{4}$$

(n) complete pivoting

motrix A boto largest element 191 diadoual panante....

O largest element vako column lai (1 banaune column interchange

Then, tesiqi qii banaune at Ri

row interchange

CI (2 ED DOXI L variable interchange hunxa!!

to be (noted)

e an vigio

a R1 KO elements out

5 matrix A ma R, 4 Rs to elements compare

6 continue till since & matrix