

Mission Overview

Mark Johnson
Program Manager
NRL
202-404-5328
johnson@ssdd.nrl.navy.mil

Mission Design (1 of 2)

- Hipparcos Style Observing Concept
 - One Passive Observation Mode
 - No Active Attitude Compensation
- Fixed, Non-Deployable Solar Arrays
 - Serve As Thermal Shield for Instrument
 - Harness Solar Pressure for Spin Axis Precession
 - Collect Energy for Batteries Used During Observatory Operations and During Eclipses
- Redundancy in Selected Subsystems
 - Balance Cost Constraints While Maximizing Reliability/Mission Success

Mission Design (2 of 2)

- Observatory Operates at GEO
 - Minimizes Gravitational and Magnetic Torques
 - Provides Continuous Data Downlink, Allows Single Ground Station
- Launch Vehicle Places Flight Vehicle in GTO
 - On-Board Apogee Kick Motor (AKM) Used to Circularize Orbit
 - AKM Jettisoned to Maintain Operational Spin Balance Requirements
- Blossom Point, MD Used As Mission Operations Facility
 - Augmented With DSN Support During GTO Phase

FAME History

- 08/98 FAME Initial Proposal Submitted Under AO-98-OSS-03
- 02/99 FAME Selected to Provide Phase A Concept
- 06/99 Phase A Concept Study Report Submitted
- 10/99 Fame Selected As One of Two MIDEX Missions
 - Program to Start 10/99 With Limited Funds for Long Lead Procurements in FY00
- 10/00 Start of Phase B Activities
- 12/00 FAME System Requirements Review
- 07/01 FAME Rescope/Descope Begins
- 10/01 FAME Preliminary Design Review

Rescope Efforts

- June '01 Development Cost for the CSR Version of FAME Exceeded Original Estimates
- July August '01 Program Wide Descope/Redesign Efforts Undertaken to Reduce Overall Program Costs While Maintaining 50 mas Science
 - Decreased Operational Sun Angle From 45 to 35 Degrees
 - Reduced Size of Instrument by 30%
 - Reduced Number of CCDs from 24 to 13
 - Reduced System Power by 40%
 - Eliminated Deployable Solar Array Sun Shield
- September '01 Overall Program Costs Greatly Reduced but Still Did Not Meet NASA-HQ Cost Cap
 - Further Redesigns Explored to Reduce Costs
 - Redesign S/C Bus for Smaller Delta Launch Vehicle (7425-10)
- October '01 Froze Design Modifications for PDR
 - Allow for Analysis of Designs

S/C Nomenclature

Flight Vehicle (FV)

Operational Configuration

Observatory Block Diagram

Observation Concept

Operations Concept

JPL NOCT Deep **Space Network**

SOH Archive

Launch and Emergenci es Only

FAME Science & Mission **Planning Center USNO**, Washington, DC **Science Data Archive**

- Gzipped Mission Data & Housekeeping Telemetry Recording Files, Pushed via FTP
- Housekeeping Telemetry, Ground Station Statistics, Scheduling Info via Streaming TCP Socket Connection
- State Vector Files, Pushed via FTP
- S/C Bus SOH Reports
- Weekly Plan Files

FAME Operational Orbit

- Drifting Geosynchronous Elliptical Orbit
 - Inclination Set by Launch Site at 28.7°
 - Chose 105° West Longitude to Minimize Longitudinal Variation
 - Eccentric to Avoid Geostationary Belt
 - No N-S Thrusting Planned
 - No E-W Station-Keeping Anticipated, Provided Good Initial Orbit Insertion

Mission Phases

- Initial Launch Capacity (ILC) Is October 31, 2004
- GTO Launch on Delta 7425-10 to a Geosynchronous Transfer Orbit (GTO)
 - Apogee 500 km Below GEO
 - Inclination Set by Launch Site to 28.7 Degrees
- Sub-GEO Apogee Kick Motor Fired After 1½ Days to Place FAME in a Circular Sub-GEO Orbit Drifting to the East
 - AKM Is Jettisoned During This Phase
- GEO FAME Performs a Number of RCS Burns to Place the Observatory in an Elliptical GEO Orbit at 105 Degrees West Longitude
- Disposal At the End of the Mission, FAME Performs RCS Burns to Raise Perigee to 335 km Above GEO

FAME Coverage During Orbit Transfer

