Weekly Report(Up until 8th October, 2015)

Anirudh Tiwari

Work Done

- To establish the importance of length, radius of gyration and interaction energy in classifying single domain proteins from two domain proteins. I plotted graphs(length, radius of gyration and interaction energy) for contiguous and non-contiguous two domain proteins first separately then together, comparing them with single domain proteins.
- I also extracted the class information of every domain in my data set based from SCOP.

Results

The following 6 graphs shows the results. Note:

Red Dots → Single Domain Proteins Blue Dots → Contiguous Two Domain Proteins Green Dots → Non-Contiguous Two Domain Proteins

 $\label{lem:condition} \begin{tabular}{ll} Values of Length, Interaction Energy \& Radius of Gyration for distinguishing single domain proteins from two domain proteins. \end{tabular}$

	Length	Interaction Energy	Radius of Gyration	True Positives	False Positives
Contiguous	>=150	<=0.04	>=18.0	55/69	11/120
Non-Contiguous	>=210	<=0.04	>=16.0	40/59	8/120
Both	>=150	<=0.04	>=16.0	98/128	12/120

It was noted that the role of Radius of gyration was not much in distinguishing single domain from two domain proteins.

Next Steps

- Try to find out if length and interaction energy can help in distinguishing two domain from three domain and so on.
- Now with SCOP data available, repeat the same exercise and find out if the proteins are classified in a better manner.