Problems on statistics and data analysis (MVComp2)

lecturer: Björn Malte Schäfer head tutor: Alessio Spurio Mancini

summer term 2016

Problem sheet 8

To be handed in during the exercise group on 27.June.2016

1. polytropic atmosphere (10 points)

In the lecture we've shown that the density ρ of an ideal gas with the quation of state $p \propto \rho$ in a gravitational potential Φ is given by $\rho \propto \exp(-\Phi)$, which yields the barometric formula $\rho \propto \exp(-h)$ in a homogeneous gravitational field. Please derive a corresponding relation between ρ and Φ for a polytropic equation of state with $p \propto \rho^{\alpha}$ with the polytropic index $\alpha \neq 1$:

$$\rho \propto -\Phi^{\frac{1}{\alpha-1}}.\tag{I}$$

As an intermediate result, please show that

$$\frac{\nabla \rho^{\alpha}}{\rho} = \frac{\alpha}{\alpha - 1} \nabla \rho^{\alpha - 1}.$$
 (II)

2. matrix derivatives (10 points)

A is a nonsingular, matrix-valued function of the variable x.

(a) Please start by showing

$$\partial_x(\operatorname{tr} A) = \operatorname{tr}(\partial_x A),\tag{III}$$

(b) and continue with

$$\partial_x A^{-1} = -A^{-1}(\partial_x A)A^{-1},\tag{IV}$$

(c) and with

$$\partial_x A^n = nA^{n-1}\partial_x A. \tag{V}$$

with positive integer n.

(d) Then, please show that

$$\partial_x \exp(A) = \exp(A)\partial_x A \tag{VI}$$

by using a series expansion of the exponential,

(e) and then show the relation

$$\partial_x \ln(A) = A^{-1} \partial_x A,\tag{VII}$$

by using the inverse of the logarithm.

(f) Finally, please show that

$$\partial_x \ln \det A = \operatorname{tr} \left(A^{-1} \partial_x A \right),$$
 (VIII)

(g) and the relation with fixed y_i ,

$$\partial_x \left(y_i (A^{-1})_{ij} y_j \right) = -\text{tr} \left(A^{-1} \partial_x A A^{-1} Y \right) \tag{IX}$$

with the definition $Y_{ij} = y_i y_j$.

3. lognormal process (10 points)

Please use the central limit theorem for designing a random process where the logarithm of the random variable is Gaussian-distributed.

4. MCMC-sampling from a Gaussian (10 points)

Implement the Metropolis-Hastings-algorithm to sample from a Gaussian: Make the Markov-chain move on the surface of a parabola and show that the distribution of sampling points follows a Gaussian distribution. For bonus points, measure the correlation along the chain.