automobile 23,85(3) 23,97(4) 21,33(1) 25,76(5) 26,00(6) 27,21(7) 23,04(2) fertility 112,60(5) 100,38(1) 117,25(7) 110,46(4) 116,35(6) 106,84(2) 108,23(2) 109,90 16(5) 98,01(7) 74,38(3) 89,06(4) 67,93(2) 97,01(6) 61,32(1) forest 101,94(7) 98,68(1) 101,40(6) 99,82(4) 99,58(3) 99,42(2) 100,65(5) servo 50,35(7) 43,11(2) 37,48(1) 46,21(4) 46,98(5) 44,49(3) 48,55(6) stump 95,58(4) 105,58(7) 103,49(5) 94,28(3) 91,99(2) 104,05(6) 89,64(1) traffic 35,28(4) 32,48(1) 42,40(7) 34,31(2) 34,54(3) 35,98(5) 38,16(6) wine,ewhite 84,91(7) 77,94(3) 65,13(1) 84,67(6) 84,11(5) 80,04(4) 65,74(2) Avg. Rank (5,44) (3,33) (3,56) (4,22) (3,89) (4,44) (3,11) Ridge Best LR LRX SWR SWRX SWRSC SWRSCX automobile 19,51(3) 2,72E+12(7) 9,53E+11(6) 19,57(4) 19,62(5) 18,64(1) 18,77(2) forest 99,01(4) 2,33E+03(7) 766,84(6) 97,88(1) 98,14(2) 98,26(3) 99,99(5) flow 65,66(5) 6,86E+08(7) 2,49E+07(6) 65,25(3) 65,31(4) 64,61(2) 63,24(1) forest 99,01(4) 2,33E+06(7) 5,11E+04(6) 62,68(3) 62,38(2) 36,34(5) 63,05(4) sump 86,55(5) 7,14E+09(7) 2,00E+07(6) 85,69(4) 84,37(2) 85,29(3) 99,69(5) wine,white 72,66(3) 7,49E+05(7) 3,04E+09(6) 39,47(3) 39,65(5) 36,84(2) 36,01(1) traffic 39,51(4) 4,95E+10(7) 3,04E+09(6) 39,47(3) 39,65(5) 36,84(2) 36,01(1) traffic 39,51(4) 4,95E+10(7) 3,04E+09(6) 39,47(3) 39,65(5) 36,84(2) 36,01(1) traffic 39,51(4) 4,95E+10(7) 3,04E+09(6) 39,47(3) 39,65(5) 36,84(2) 36,01(1) traffic 39,51(4) 43,52E+10(7) 3,04E+09(6) 39,47(3) 39,65(5) 36,84(2) 36,01(1) 40,95(5) 40,95(6) 40,9	kNNR	Best	LR	LRX	SWR	SWRX	SWRSC	SWRSCX
Flow 90.16(5) 98.01(7) 74.38(3) 89.06(4) 67.93(2) 97.01(6) 61.32(1) forest 101.49(7) 98.68(1) 101.40(6) 99.82(4) 99.58(3) 99.42(2) 100.65(5) slump 95.58(4) 105.58(7) 103.49(5) 94.28(3) 91.99(2) 104.05(6) 89.64(1) traffic 35.28(4) 32.48(1) 42.40(7) 34.31(2) 34.54(3) 35.98(5) 38.16(6) wine_red 84.81(7) 77.98(4) 62.57(1) 84.57(6) 84.11(5) 80.04(4) 65.74(2) Avg. Rank (5.44) (3.33) (3.56) (4.22) (3.89) (4.44) (3.11) Ridge Best LR LRX SWR SWRX SWRSC SWRSC SWRSC Suttomobile 19.51(3) 2.72E+12(7) 9.53E+11(6) 19.57(4) 19.62(5) 18.64(1) 18.77(2) forest 99.01(4) 2.33E+03(7) 766.84(6) 97.88(1) 98.14(2) 98.26(3) 99.99(5) stump 86.55(5) 7.14E+09(7) 2.00E+07(6) 85.69(4) 84.37(2) 85.59(3) 78.64(1) traffic 39.51(4) 4.95E+10(7) 3.04E+09(6) 39.47(3) 39.65(5) 36.84(2) 36.01(1) traffic 39.51(4) 4.95E+10(7) 3.04E+09(6) 39.47(3) 39.65(5) 36.84(2) 36.01(1) traffic 46.91(3) 1.80E+08(7) 1.27E+04(6) 62.68(4) 84.37(2) 85.59(3) 78.64(1) traffic 46.91(3) 1.80E+08(7) 1.27E+04(6) 62.68(4) 72.65(2) 72.64(1) 72.66(5) Avg. Rank (3.33) (6.89) (6.11) (3.00) (3.00) (2.44) (3.22) (4.95E+08(7) 2.49E+07(6) (4.96(4) 64.90(1) 64.96(4) 64.99(5) (4.96(4) 64.91(5) 64.96(4) 6	automobile	23.85(3)	23.97(4)	21.33 (1)	25.76(5)	26.00(6)	27.21(7)	23.04(2)
Forest 101.94(7) 98.68(1) 101.40(6) 99.82(4) 99.58(3) 99.42(2) 100.65(5) Servo 50.35(7) 43.11(2) 37.48(1) 46.21(4) 46.98(5) 44.49(3) 48.55(6) Slump 95.58(4) 105.58(7) 103.49(5) 94.28(3) 91.99(2) 104.05(6) 89.64(1) Traffic 35.28(4) 32.48(1) 42.40(7) 34.31(2) 34.54(3) 35.98(5) 38.16(6) Wine_red 84.81(7) 79.89(4) 62.57(1) 84.52(6) 79.17(3) 80.84(5) 65.19(2) Wine_white 84.91(7) 77.94(3) 65.13(1) 84.67(6) 84.11(5) 80.04(4) 65.74(2) Avg_Rank (5.44) (3.33) (3.56) (4.22) (3.89) (4.44) (3.11) Ridge Best LR LRX SWR SWRX SWRSC SWRSCX Rutomobile 19.51(3) 2.72E+12(7) 9.53E+11(6) 19.57(4) 19.62(5) 18.64(1) 18.77(2) fertility 102.34(2) 1.91E+03(6) 7.38E+03(7) 102.99(3) 109.90(4) 97.05(1) 100.99(5) forest 99.01(4) 2.33E+03(7) 766.84(6) 97.88(1) 98.14(2) 98.26(3) 99.99(5) servo 62.32(1) 9.30E+06(7) 5.11E+04(6) 62.68(3) 62.38(2) 63.54(5) 63.05(4) slump 86.55(5) 7.14E+09(7) 2.00E+07(6) 85.69(4) 84.37(2) 85.59(3) 78.64(1) wine_red 64.91(3) 1.80E+08(7) 1.27E+04(6) 64.91(2) 64.90(1) 64.96(4) 64.99(5) wine_white 72.66(3) 7.49E+05(7) 3.47E+04(6) 72.66(4) 72.65(2) 72.64(1) 72.66(5) Avg_Rank (3.33) (6.89) (6.11) (3.00) (3.00) (2.44) (3.22) Lasso Best LR LRX SWR SWRX SWRSC SWRSCX automobile 18.45(4) 35.87(7) 24.49(6) 18.31(3) 18.31(2) 18.19(1) 19.45(5) fertility 95.85(1) 206.10(7) 136.56(6) 96.09(2) 99.02(4) 96.66(3) 103.80(5) flow 63.62(6) 51.57(1) 53.28(2) 63.23(3) 63.34(4) 63.77(7) 63.52(5) slump 87.59(4) 91.71(6) 99.15(7) 86.73(3) 88.06(5) 86.05(2) 81.32(1) traffic 36.64(3) 1.09E+07(6) 3.09E+08(7) 39.33(7) 77.18(3) 78.31(5) 73.63(2) Avg_Rank (4.33) (5.56) (5.44) (3.67) (3.33) (2.78) (2.89) SVR Best LR LRX SWR SWRSC SWRSC SWRSC SWRSC SWRS	fertility	112.60(5)	100.38(1)	117.25(7)	110.46(4)	116.35(6)	106.84(2)	108.23(3)
Servo 50.35(7) 43.11(2) 37.48(1) 46.21(4) 46.98(5) 44.49(3) 48.55(6) slump 95.58(4) 105.58(7) 103.49(5) 94.28(3) 91.99(2) 104.05(6) 89.64(1) traffic 35.28(4) 32.48(1) 42.40(7) 34.31(2) 34.54(3) 35.98(5) 38.16(6) wine_white 84.91(7) 77.94(3) 62.57(1) 84.52(6) 79.17(3) 80.84(5) 65.19(2) vine_white 84.91(7) 77.94(3) 65.13(1) 84.67(6) 84.11(5) 80.04(4) 65.74(2) Avg. Rank (5.44) (3.33) (3.56) (4.22) (3.89) (4.44) (3.31) (3.11) Ridge Best LR LRX SWR SWRX SWRSC SWRSCX automobile 19.51(3) 2.72E+12(7) 9.53E+11(6) 19.57(4) 19.62(5) 18.64(1) 18.77(2) fertility 102.34(2) 1.91E+03(6) 7.38E+03(7) 102.95(3) 106.90(4) 97.05(1) 106.99(5) flow 65.66(5) 6.86E+08(7) 2.49E+07(6) 65.25(3) 65.31(4) 64.61(2) 63.24(1) forest 99.01(4) 2.33E+03(7) 76.84(6) 97.88(1) 98.14(2) 98.26(3) 99.69(5) servo 62.32(1) 9.30E+06(7) 5.11E+04(6) 62.68(3) 62.38(2) 63.54(5) 63.05(4) slump 86.55(5) 7.14E+09(7) 2.00E+07(6) 85.69(4) 84.37(2) 85.59(3) 78.64(1) traffic 39.51(4) 4.95E+10(7) 3.04E+09(6) 39.47(3) 39.65(5) 36.84(2) 36.01(1) wine_white 72.66(3) 7.49E+05(7) 3.47E+04(6) 72.66(4) 72.65(2) 72.64(1) 72.66(5) vine_white 72.66(3) 7.49E+05(7) 3.47E+04(6) 72.66(4) 72.65(2) 72.64(1) 72.66(5) 43.84(1) 43.587(7) 24.49(6) 18.31(3) 18.31(2) 18.19(1) 19.45(5) forest 100.09(5) 105.79(6) 112.39(7) 98.79(3) 98.11(1) 98.34(2) 99.47(4) servo 63.62(6) 51.57(1) 53.28(2) 63.23(3) 63.34(4) 63.77(7) 63.52(5) slump 87.59(4) 91.71(6) 99.15(7) 86.73(3) 88.06(5) 86.05(2) 81.32(1) traffic 38.64(3) 1.09E+07(6) 3.09E+08(7) 39.13(5) 38.94(4) 37.39(1) 37.58(2) wine_white 78.33(6) 78.21(4) 73.20(1) 78.33(7) 77.18(3) 73.63(2) 87.58(2) 87.58(4) 63.58(6) 63.64(6) 63.69(6) 63.69(3) 67.77(7) 63.52(5) 80.94(4) 63.59(2) 63.89(6) 63.69(3) 67	flow	90.16(5)	98.01(7)	74.38(3)	89.06(4)	67.93(2)	97.01(6)	61.32 (1)
Slump	forest	101.94(7)	98.68(1)	101.40(6)	99.82(4)	99.58(3)	99.42(2)	100.65(5)
traffic wine_red 84.81(7 79.89(4) 62.57(1) 84.52(6) 79.17(3) 80.84(5) 65.19(2) wine_white 84.91(7) 77.94(3) 65.13(1) 84.67(6) 84.11(5) 80.04(4) 65.74(2) Avg, Rank (5.44) (3.33) (3.56) (4.22) (3.89) (4.44) (3.11) Ridge Best LR LRX SWR SWRX SWRSC SWRSCX automobile 19.51(3) 2.72E+12(7) 9.53E+11(6) 19.57(4) 19.62(5) 18.64(1) 18.77(2) fertility 102.34(2) 1.91E+03(6) 7.38E+03(7) 102.95(3) 106.90(4) 97.05(1) 106.99(5) flow 65.66(5) 6.86E+08(7) 2.49E+07(6) 65.25(3) 65.31(4) 64.61(2) 63.24(1) forest 99.01(4) 2.33E+03(7) 766.84(6) 97.88(1) 98.14(2) 98.26(3) 99.69(5) servo 62.32(1) 9.30E+06(7) 5.11E+04(6) 62.68(3) 62.38(2) 63.54(5) 63.05(4) slump 86.55(5) 7.14E+09(7) 2.00E+07(6) 65.69(4) 84.37(2) 85.59(3) 78.64(1) traffic 39.51(4) 4.95E+10(7) 3.04E+09(6) 39.47(3) 39.65(5) 36.84(2) 36.01(1) wine_red 64.91(3) 1.80E+08(7) 1.27E+04(6) 64.91(2) 64.90(1) 64.96(4) 64.99(5) wine_white 72.66(3) 7.49E+05(7) 3.47E+04(6) 72.66(4) 72.65(2) 72.64(1) 72.66(5) Avg. Rank (3.33) (6.89) (6.11) (3.00) (3.00) (2.44) (3.22) Lasso Best LR LRX SWR SWRX SWRSC SWRSCX automobile 18.45(4) 35.87(7) 24.49(6) 18.31(3) 18.31(2) 18.19(1) 19.45(5) fertility 95.85(1) 206.10(7) 136.56(6) 96.09(2) 99.02(4) 96.66(3) 103.80(5) flow 66.81(5) 74.92(6) 75.57(7) 66.48(3) 66.50(4) 65.59(2) 62.85(1) forest 100.09(5) 105.79(6) 112.39(7) 98.79(3) 98.11(1) 98.34(2) 99.47(4) servo 63.62(6) 51.57(1) 53.28(2) 63.23(3) 63.34(4) 63.77(7) 63.52(5) slump 87.59(4) 91.71(6) 99.15(7) 86.73(3) 88.06(5) 86.05(2) 81.32(1) traffic 38.64(3) 1.09E+07(6) 3.09E+08(7) 39.13(5) 38.94(4) 37.39(1) 37.58(2) wine_white 78.33(6) 78.21(4) 73.20(1) 78.33(7) 77.18(3) 78.31(5) 73.63(2) Avg. Rank (4.33) (5.56) (5.44) (3.67) (3.03) (2.95.76(1) 96.80(3) 105.35(5) flow 72.96(5) 4.38E+09(7) 2.69E+09(6) 68.69(3) 67.77(2) 72.86(4) 63.65(1) forest 100.09(5) 105.79(6) 112.39(7) 98.79(3) 98.11(1) 98.34(2) 99.47(4) wine_white 78.33(6) 78.21(4) 72.29(6) 68.09(3) 65.54(4) 67.74(2) 99.57(6) 19.28(6) 20.94(3) 20.31(1) fertility 97.80(4) 63.89(6) 6.67E+03(7) 96.30(2) 95.76(1) 96.80(3) 105.35(5) flow 72.96(5) 4.38	servo	50.35(7)	43.11(2)	37.48(1)	46.21(4)	46.98(5)	44.49(3)	48.55(6)
wine_red 84.81(7) 79.89(4) 62.57(1) 84.52(6) 79.17(3) 80.84(5) 65.19(2) wine_white 84.91(7) 77.94(3) 65.13(1) 84.67(6) 84.11(5) 80.04(4) 65.74(2) Avg. Rank (5.44) (3.33) (3.56) (4.22) (3.89) (4.44) (3.11) Ridge Best LR LRX SWR SWRX SWRSCS SWRSCX automobile 19.51(3) 2.72E+12(7) 9.53E+11(6) 19.57(4) 19.62(5) 18.64(1) 18.77(2) fertility 102.34(2) 1.91E+03(6) 7.38E+03(7) 102.95(3) 106.90(4) 97.05(1) 106.99(5) flow 65.66(5) 6.86E+08(7) 2.49E+07(6) 65.25(3) 65.34(4) 97.05(1) 106.99(5) servo 62.32(1) 9.30E+06(7) 5.11E+04(6) 65.26(3) 62.38(2) 63.54(5) 30.96(5) servo 62.35(1) 4.95E+10(7) 3.04E+09(6) 39.47(3) 39.65(5) 36.84(2) 36.01(1) traffic <td>slump</td> <td>95.58(4)</td> <td>105.58(7)</td> <td>103.49(5)</td> <td>94.28(3)</td> <td>91.99(2)</td> <td>104.05(6)</td> <td>89.64(1)</td>	slump	95.58(4)	105.58(7)	103.49(5)	94.28(3)	91.99(2)	104.05(6)	89.64(1)
wine_white	traffic	35.28(4)	32.48 (1)	42.40(7)	34.31(2)	34.54(3)	35.98(5)	38.16(6)
Rank	wine_red	84.81(7)	79.89(4)	62.57 (1)	84.52(6)	79.17(3)	80.84(5)	65.19(2)
Ridge	wine_white	84.91(7)	77.94(3)	65.13 (1)	84.67(6)	84.11(5)	80.04(4)	65.74(2)
automobile 19.51(3) 2.72E+12(7) 9.53E+11(6) 19.57(4) 19.62(5) 18.64(1) 18.77(2) fertility 102.34(2) 1.91E+03(6) 7.38E+03(7) 102.95(3) 106.90(4) 97.05(1) 106.99(5) flow 65.66(5) 6.86E+08(7) 2.49E+07(6) 65.25(3) 65.31(4) 97.05(1) 106.99(5) flow 65.66(5) 6.86E+08(7) 2.49E+07(6) 65.25(3) 65.31(4) 97.05(1) 106.99(5) servo 62.32(1) 9.30E+06(7) 5.11E+04(6) 62.68(3) 62.38(2) 63.54(5) 63.05(4) slump 86.55(5) 7.14E+09(7) 2.00E+07(6) 85.69(4) 84.37(2) 85.59(3) 78.64(1) traffic 39.51(4) 4.95E+10(7) 3.04E+09(6) 39.47(3) 39.65(5) 36.84(2) 36.01(1) wine_red 64.91(3) 1.80E+08(7) 1.27E+04(6) 64.91(2) 64.90(1) 64.96(4) 64.99(5) wine_white 72.66(3) 7.49E+05(7) 3.47E+04(6) 72.66(4) 72.65(2) 72.64(1) 72.66(5) Avg. Rank (3.33) (6.89) (6.11) (3.00) (3.00) (2.44) (3.22) Lasso Best LR LRX SWR SWRX SWRSC SWRSCX automobile 18.45(4) 35.87(7) 24.49(6) 18.31(3) 18.31(2) 18.19(1) 19.45(5) flow 66.81(5) 74.92(6) 75.57(7) 66.48(3) 66.50(4) 65.59(2) 62.85(1) forest 100.09(5) 105.79(6) 112.39(7) 98.79(3) 98.11(1) 98.34(2) 99.47(4) servo 63.62(6) 51.57(1) 53.28(2) 63.23(3) 63.34(4) 63.77(7) 63.52(5) slump 87.59(4) 91.71(6) 99.15(7) 86.73(3) 88.06(5) 86.05(2) 81.32(1) traffic 38.64(3) 1.09E+07(6) 3.09E+08(7) 39.13(5) 38.94(4) 37.39(1) 37.58(2) wine_red 69.24(5) 105.45(7) 72.29(6) 69.23(4) 69.00(3) 68.94(2) 65.74(1) wine_white 78.33(6) 78.21(4) 73.20(1) 78.33(7) 77.18(3) 78.31(5) 73.63(2) SVR Best LR LRX SWR SWRX SWRSC SWRSC SVR SVR SVR SWRSC SWRSC SVR SVR SWRSC SWRSC SVR SVR SWRSC SWRSC SVR SVR SWRSC SWRSC SVR SVR SWRSC 56.64(4) 63.69(3) 63.69(6) 63.69(6) 63.69(6) 63.69(6) 63.69(6) 63.69(6) 63.69(6) 63.69(6) 63.69(6) 63.69(6) 63.69(6) 63.69(6) 63.69(6) 63.69(6) 63.69(6) 63.69(Avg. Rank	(5.44)	(3.33)					
$ \begin{array}{c} \text{fertility} \\ \text{flow} \\ \text{flow} \\ \text{65.66(5)} \\ \text{6.86E+08(7)} \\ \text{2.49E+07(6)} \\ \text{65.25(3)} \\ \text{65.25(3)} \\ \text{65.25(3)} \\ \text{65.31(4)} \\ \text{64.61(2)} \\ \text{64.61(2)} \\ \text{63.24(1)} \\ \text{forest} \\ \text{99.01(4)} \\ \text{2.33E+03(7)} \\ \text{766.84(6)} \\ \text{97.68(8)} \\ \text{97.88(1)} \\ \text{98.14(2)} \\ \text{98.14(2)} \\ \text{98.26(3)} \\ \text{99.69(5)} \\ \text{servo} \\ \text{62.32(1)} \\ \text{9.30E+06(7)} \\ \text{5.11E+04(6)} \\ \text{62.68(3)} \\ \text{62.38(2)} \\ \text{62.38(2)} \\ \text{63.35(4)} \\ \text{63.05(4)} \\ \text{slump} \\ \text{86.55(5)} \\ \text{7.14E+09(7)} \\ \text{2.00E+07(6)} \\ \text{85.69(4)} \\ \text{84.37(2)} \\ \text{84.37(2)} \\ \text{85.59(3)} \\ \text{78.64(1)} \\ \text{traffic} \\ \text{39.51(4)} \\ \text{4.95E+10(7)} \\ \text{3.04E+09(6)} \\ \text{39.47(3)} \\ \text{39.65(5)} \\ \text{30.64(2)} \\ \text{36.49(1)} \\ \text{40.99(5)} \\ \text{wine_white} \\ \text{72.66(3)} \\ \text{7.49E+05(7)} \\ \text{3.47E+04(6)} \\ \text{64.91(2)} \\ \text{64.90(1)} \\ \text{64.90(1)} \\ \text{64.90(4)} \\ \text{64.99(5)} \\ \text{wine_white} \\ \text{72.66(3)} \\ \text{7.49E+05(7)} \\ \text{3.47E+04(6)} \\ \text{72.66(4)} \\ \text{72.66(4)} \\ \text{72.66(2)} \\ \text{72.64(4)} \\ \text{72.66(4)} \\ \text{72.66(2)} \\ \text{72.64(4)} \\ \text{72.26(2)} \\ \text{72.64(4)} \\ \text{72.66(2)} \\ \text{72.64(4)} \\ \text{72.66(3)} \\ \text{74.92(6)} \\ \text{75.57(7)} \\ \text{66.48(3)} \\ \text{66.50(4)} \\ \text{85.59(4)} \\ \text{85.59(4)} \\ \text{95.85(1)} \\ \text{20.610(7)} \\ \text{136.56(6)} \\ \text{96.09(2)} \\ \text{99.02(4)} \\ \text{96.66(3)} \\ \text{103.80(5)} \\ \text{96.66(3)} \\ \text{103.80(5)} \\ \text{105.79(6)} \\ \text{112.39(7)} \\ \text{98.79(3)} \\ \text{98.11(1)} \\ \text{98.34(2)} \\ \text{99.47(4)} \\ \text{servo} \\ \text{63.62(6)} \\ \text{51.57(1)} \\ \text{53.28(2)} \\ \text{63.23(3)} \\ \text{63.34(4)} \\ \text{63.77(7)} \\ \text{63.52(5)} \\ \text{80.52(2)} \\ \text{99.47(4)} \\ \text{servo} \\ \text{63.62(6)} \\ \text{51.57(1)} \\ \text{53.28(2)} \\ \text{69.23(4)} \\ \text{69.00(3)} \\ \text{68.81(3)} \\ \text{37.39(1)} \\ \text{37.36(2)} \\ \text{38.04(4)} \\ \text{37.39(1)} \\ 37.36($	Ridge	Best	LR	LRX	SWR	SWRX	SWRSC	SWRSCX
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	automobile	19.51(3)	2.72E+12(7)	9.53E+11(6)	19.57(4)	19.62(5)	18.64 (1)	18.77(2)
forest 99.01(4) 2.33E+03(7) 766.84(6) 97.88(1) 98.14(2) 98.26(3) 99.69(5) servo 62.32(1) 9.30E+06(7) 5.11E+04(6) 62.68(3) 62.38(2) 63.54(5) 63.05(4) slump 86.55(5) 7.14E+09(7) 2.00E+07(6) 85.69(4) 84.37(2) 85.59(3) 78.64(1) traffic 39.51(4) 4.95E+10(7) 3.04E+09(6) 39.47(3) 39.65(5) 36.84(2) 36.01(1) wine.red 64.91(3) 1.80E+08(7) 1.27E+04(6) 64.91(2) 64.90(1) 64.96(4) 72.66(5) Avg. Rank (3.33) (6.89) (6.11) (3.00) (3.00) (2.44) (3.22) Lasso Best LR LRX SWR SWRX SWRSC SWRSCX Lasso Best LR LRX SWR SWR SWRX SWRXC Lasso 66.81(5) 74.92(6) 75.57(7) 66.48(3) 66.50(4) 65.69(2) 62.85(1) forest 100.09(5)	fertility	102.34(2)	1.91E + 03(6)	7.38E+03(7)	102.95(3)	106.90(4)	97.05(1)	106.99(5)
servo 62.32(1) 9.30E+06(7) 5.11E+04(6) 62.68(3) 62.38(2) 63.54(5) 63.05(4) slump 86.55(5) 7.14E+09(7) 2.00E+07(6) 85.69(4) 84.37(2) 85.59(3) 78.64(1) traffic 39.51(4) 4.95E+10(7) 3.04E+09(6) 39.47(3) 39.65(5) 36.84(2) 36.01(1) wine_white 64.91(3) 1.80E+08(7) 1.2TE+04(6) 64.90(1) 64.96(4) 64.99(5) wine_white 72.66(3) 7.49E+05(7) 3.47E+04(6) 72.66(4) 72.65(2) 72.64(1) 72.66(5) Avg. Rank (3.33) (6.89) (6.11) (3.00) (3.00) (2.44) (3.22) Lasso Best LR LRX SWR SWRX SWRSC SWRSCX automobile 18.45(4) 35.87(7) 24.49(6) 18.31(3) 18.31(2) 18.19(1) 19.45(5) fertility 95.85(1) 206.10(7) 136.56(6) 96.09(2) 99.02(4) 96.6(3) 103.80(5) flow 66.81(5)	flow	65.66(5)	6.86E + 08(7)	2.49E+07(6)	65.25(3)	65.31(4)	64.61(2)	63.24(1)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	forest	99.01(4)	2.33E+03(7)	766.84(6)	97.88(1)	98.14(2)	98.26(3)	99.69(5)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	servo	62.32 (1)	9.30E + 06(7)	5.11E+04(6)	62.68(3)	62.38(2)	63.54(5)	63.05(4)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	slump	86.55(5)	7.14E+09(7)	2.00E+07(6)	85.69(4)	84.37(2)	85.59(3)	78.64(1)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	traffic	39.51(4)	4.95E+10(7)	3.04E+09(6)	39.47(3)	39.65(5)	36.84(2)	36.01 (1)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	wine_red	64.91(3)	1.80E + 08(7)	1.27E + 04(6)	64.91(2)	64.90(1)	64.96(4)	64.99(5)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	wine_white	72.66(3)	7.49E + 05(7)	3.47E + 04(6)	72.66(4)	72.65(2)	72.64(1)	72.66(5)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Avg. Rank	(3.33)	(6.89)	(6.11)	(3.00)	(3.00)	(2.44)	(3.22)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Lasso	Best	LR	LRX	SWR	SWRX	SWRSC	SWRSCX
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	automobile	18.45(4)	35.87(7)	24.49(6)	18.31(3)	18.31(2)	18.19(1)	19.45(5)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	fertility	95.85 (1)	206.10(7)	136.56(6)	96.09(2)	99.02(4)	96.66(3)	103.80(5)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	flow	66.81(5)	74.92(6)	75.57(7)	66.48(3)	66.50(4)	65.59(2)	62.85(1)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	forest	100.09(5)	105.79(6)	112.39(7)	98.79(3)	98.11(1)	98.34(2)	99.47(4)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	servo	63.62(6)	51.57 (1)	53.28(2)	63.23(3)	63.34(4)	63.77(7)	63.52(5)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	slump	87.59(4)	91.71(6)	99.15(7)	86.73(3)	88.06(5)	86.05(2)	81.32(1)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	traffic	38.64(3)	1.09E+07(6)	3.09E+08(7)	39.13(5)	38.94(4)	37.39(1)	37.58(2)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	wine_red	69.24(5)	105.45(7)	72.29(6)	69.23(4)	69.00(3)	68.94(2)	65.74(1)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	wine_white	78.33(6)	78.21(4)	73.20 (1)	78.33(7)	77.18(3)	78.31(5)	73.63(2)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Avg. Rank	(4.33)	(5.56)	(5.44)	(3.67)	(3.33)	(2.78)	(2.89)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	SVR	Best	LR	LRX	SWR	SWRX	SWRSC	SWRSCX
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	automobile	20.98(5)	1.54E+11(6)	4.06E+11(7)	20.94(4)	20.86(2)	20.94(3)	20.31(1)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	fertility	97.80(4)	635.89(6)	2.67E + 03(7)	96.30(2)	95.76 (1)	96.80(3)	105.35(5)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	flow	72.96(5)	4.38E+09(7)	2.69E+09(6)	68.69(3)	67.77(2)	72.86(4)	63.65(1)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	forest	100.85(1)	2536.09(6)	5.81E+03(7)	103.60(5)	101.86(4)	101.20(3)	101.00(2)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	servo	22.64(5)	697.48(6)	8.24E+04(7)	19.14(2)	19.57(3)	19.13 (1)	20.16(4)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	slump	71.52(1)	1.14E+12(6)	1.40E+12(7)	83.34(3)	82.85(2)	164.42(5)	89.02(4)
wine_white 72.60(7) 55.12(2) 54.97 (1) 72.28(5) 72.45(6) 57.68(4) 57.42(3)	traffic	36.96(3)	1.65E+07(7)	2.96E + 06(6)	36.01 (1)	36.37(2)	38.02(4)	45.25(5)
	wine_red	65.92(6)	64.41(3)	85.72(7)	65.83(4)	65.85(5)	57.33(2)	57.16 (1)
Avg. Rank (4.11) (5.44) (6.11) (3.22) (3.00) (3.22) (2.89)	wine_white	72.60(7)	55.12(2)	54.97 (1)	72.28(5)	72.45(6)	57.68(4)	57.42(3)
	Avg. Rank	(4.11)	(5.44)	(6.11)	(3.22)	(3.00)	(3.22)	(2.89)

Table 1: The 3-fold cross validation relative mean squared error and Friedman ranks for all datasets when the best hyperparameter configuration trial (Best), linear regression via least squared with the option of adding features (LRX) or not (LR), non-hyperparametric stepwise regression adding features (SWRX) or not (SWR) and non-hyperparametric stepwise regression adaptation with stop criterion adding features (SWRSCX) or not (SWRSC), all taking into account several baseline systems (kNNR, Ridge, Lasso and SVR) and the GS sampling strategy.