Московский Физико-Технический Институт

Кафедра Общей физики Вопрос по выбору

Измерение удельного сопротивления воздуха

Автор: Ушаков Роман 513 группа

Цель работы

Измерение удельного сопротивления воздуха.

Необходимое оборудование

Линейка, карандаш, нить, два шарика для настольного тенниса, секундомер, любой резиновый или пластиковый предмет, который удобно электризовать (в данной работе выбран воздушный шарик «ФАКИ»).

Теоретический материал

Заряд уединенного заряженного шарика, подвешенного на тонкой нити в воздухе, с течением времени уменьшается. Это связано с конечной величиной удельного сопротивления воздуха ρ . Запишем закон Ома в дифференциальной форме:

$$\vec{j} = \lambda \vec{E} \tag{1}$$

Учитывая соотношение $\lambda = \frac{1}{\rho}$, получим в итоге:

$$\vec{j} = \frac{1}{\rho}\vec{E} \tag{2}$$

Теперь найдём величину всего тока I. Он равен:

$$I = \iint_{S} jdS = \frac{1}{\rho} \iint_{S} EdS = \frac{4\pi q}{\rho}$$
 (3)

В последнем равенстве применена теорема Гаусса : $\oiint_S EdS = 4\pi q$. Учитывая, что $I = -\frac{dq}{dt}$, получаем дифференциальное уравнение:

$$\frac{dq}{dt} = -\frac{q}{\rho\varepsilon_0} \tag{4}$$

Уравнение записано в СИ. Решением этого дифференциального уравнения является функция $q(t)=q_0e^{-\frac{t}{\tau}}$, где q_0 — начальный заряд шарика, $\tau=\varepsilon_0\rho$ — время, за которое заряд мячика уменьшается в e раз.

$$\frac{dq}{dt} = -\frac{q}{\rho\varepsilon_0} \tag{5}$$

Тогда ρ выражается:

$$\rho = \frac{T_{1/2}}{\varepsilon_0 \cdot ln2} \tag{6}$$

Заметим, что закон Кулона взаимодействия двух точечных зарядов неприменим в данных условиях из-за перераспределения индуцированных на шариках зарядов.

Экспериментальная установка

Параметры установки:

$$L = 140 \text{ cm}$$

 $d_0 = 40 \text{ mm}$ (7)

Ход работы

Закрасим теннисные шарики карандашом, затем подвесим их так, чтобы расстояние между нитями равнялось диаметру шарика $d_0 = 2R = 40$ мм. Длина нитей L = 140 см. Незаряженные шарики при этом слегка соприкасаются. С помощью линейки будем измерять расстояние между шариками.

Калибровка установки

Заряжаем теннисные мячики с помощью воздушного шарика «ФАКИ». Измеряем расстояние между нитями на высоте 10 см от шариков. Полученное расстояние около $d_1 = 70$ мм. Затем разряжаем один из шариков, касаясь его рукой. После соприкосновения между собой шарики снова расходятся, но на этот раз на расстояние около $d_2 = 40$ мм. Заряды шариков при этом уменьшаются вдвое. Калибровка проведена.

Вновь заряжаем шарики так, что расстояние между нитями, отсчитанное по линейке, было $d_1=75$ мм. С помощью секундомера измеряем время $T_{\frac{1}{2}}$, за которое расстояние между нитями уменьшается до $d_2=45$ мм. Это время соответствует уменьшению заряда вдвое.

Измерения

I серия опытов: $d_1 = 73$ мм, $d_0 = 41$ мм

номер опыта	1	2	3	4	5	6	7	8	9
$T_{\frac{1}{2}}, c$	468	471	474	490	463	453	448	501	451
ρ , O _M · M · 10^{13}	7.6	7.6	7.7	8.0	7.5	7.4	7.3	8.2	7.4

II серия опытов: $d_1 = 78$ мм, $d_0 = 43$ мм

номер опыта	1	2	3	4	5	6	7	8	9
$T_{\frac{1}{2}}, c$	498	546	489	462	473	476	489	457	486
ρ , O _M · M · 10^{13}	8.1	8.9	8.0	7.5	7.7	7.8	8.0	7.5	8.0

III серия опытов: $d_1 = 76$ мм, $d_0 = 42$ мм

номер опыта	1	2	3	4	5	6	7
$T_{\frac{1}{2}}, c$	475	467	474	497	435	449	478
$\rho, \text{ Om} \cdot \text{m} \cdot 10^{13}$	7.8	7.6	7.7	8.1	7.0	7.3	7.8

Полученные в результате опыта значения:

$$\rho = 7.7 \cdot 10^{13} \text{ Om} \cdot \text{m}, \ \sigma_{T_{1/2}} = 23 \text{ c}, \ \sigma_{\rho} = 0.4 \cdot 10^{13} \text{ Om} \cdot \text{m} \rightarrow \rho = (7.7 \pm 0.4) \cdot 10^{13} \text{ Om} \cdot \text{m}$$

Реальное значение удельного сопротивления воздуха зависит от температуры и влажности и колеблется в диапазонах $\rho = 10^{13} - 10^{15}~{\rm Om}\cdot{\rm m}.$

Вывод

В данной работе был продемонстрирован способ измерения удельного сопротивления воздуха. Однако данный способ применим не только к воздуху, но и к любым средам, в которых выполняется закон Ома. Важно заметить, что в построении теории мы не использовали закон Кулона, так как заряженные шарики нельзя считать точечными зарядами: поверхностные заряды перераспределяются и имеют сложную конфигурацию.

Источники

- [1] Общий курс физики. Электричество. Д. В. Сивухин
- [2] International Physics Olympiad 2015