<u>Homework6</u> <u>Due: Nov. 18 (11:59pm)</u>

In this HW assume: VDD=1.5V, Vth_{n,p}=0.3V, $\mu_n C_{ox} = \frac{500\mu A}{V^2}$, $\mu_n = 2\mu_p$, $\lambda_p = 0.2V^{-1}$, $\lambda_n = 0.1V^{-1}$, and $\gamma = 0$ for both NMOS and PMOS devices.

1. For the cascode current-mirror shown below:

- a) Find minimum output voltage (Vp) for the current mirror to work.
- b) Find output resistance of this current mirror (the resistance looking in from point P).
- c) If we need to generate a 1mA output current from a 0.1mA reference current, what should be the W/L ratios for $M_{1,2}$ and $M_{0,3}$? (As in, find $\frac{(W/L)_2}{(W/L)_1}$ and $\frac{(W/L)_3}{(W/L)_0}$)
- d) To have a minimum working output voltage of 0.5V, what should be the W/L values? Assume V_{od} is the same for M_{0-3} .

e) To implement I_{ref} in an easy way we will replace the I_{ref} ideal current source with a resistor. What should be the value of the resistor to provide 0.1mA reference current?

2. For the differential amplifier shown below:

- a) Explain the role of $M_{3,4}$ and $M_{7.}$
- b) If $I_{ref}/I_{ss} = 0.2$, $(W/L)_{7,8} = 50$, choose W/L of M_{3-7} to bias the circuit. (You can pick the current flowing through $M_{6,7}$ as you want). The different W/L ratios do not have to be the same for the different transistors.
- c) For $I_{ref} = 125uA$ and $W/L_{1,2} = 125$, find the peak-to-peak single-ended output swing.
- d) Find the input CM range (the range of the input voltage DC bias).
- e) Determine the output nodes' common-mode voltage.

- **3.** Consider the 5-Transistor OTA shown here and assume the current in the M₅ current tail will be 1mA.
 - a) Find W/L of $M_{1,2}$ to have a differential gain of 20.
 - b) Assuming $V_{od3,4}$ =0.2V, find W/L of $M_{3,4}$.
 - c) Find minimum and maximum output swing levels.
 - d) Find the output DC bias and the maximum output swing.
 - e) Find M₅'s output resistance and the OTA's CMRR.

