Random variables

When we use probability theorem in real life, our sample space can be viewed as the set of all possible scenarios.

Example: Modeling the stock market. Each point ω in the sample space can be viewed as a possible state of the world at some point in the future.

We are typically *not* interested in ω itself, but rather in quantities that depend on ω .

A typical example is the price of a stock S, which depends on the state of the world ω , and hence can be viewed as a function on the sample space Ω .

More generally, we are interested in assigning a numerical quantity to an outcome $\omega \in \Omega$ of the experiment that captures one particular aspect. This leads to the following definition.

Random variables: definition

Definition

Consider a probability space with the sample space Ω . A function

$$X:\Omega\to\mathbb{R}$$

is called a real valued *random variable*. Similarly, a function $X:\Omega\to\mathbb{R}^n$ is called a vector-valued random variable.

Example

Suppose that the flipping of a coin can result in heads with probability p and in tails with probability 1-p, This coin is tossed n times. For each outcome ω consider:

```
X_1(\omega) = \{ \text{first head} \}, X_2(\omega) = \{ \text{first tail} \}, X_3(\omega) = \{ \text{total number of H} \}, X_4(\omega) = \{ \text{total number of T} \}. X_5(\omega) = \{ \text{total number of HH} \}.
```

Discrete random variables

Definition

A random variable X is called **discrete** if it takes a finite or countable number of values. The **probability mass function** of X is the function defined by

$$p(x) = \mathbb{P}\left[X = x\right].$$

Example

Suppose X takes values 1, 2, 4 with probabilities:

$$\mathbb{P}[X=1] = \frac{1}{2}, \quad \mathbb{P}[X=2] = \frac{1}{3}, \quad \mathbb{P}[X=4] = \frac{1}{6}.$$

X	1	2	4
$\mathbb{P}[X=x]$	1/2	1/3	1/6

Bernoulli random variables

The simplest discrete random variables are Bernoulli random variables.

Definition

A random variable X is called the Bernoulli random variable with parameter p if it only takes values 0 and 1, and

$$\mathbb{P}[X = 1] = p, \qquad \mathbb{P}[X = 0] = 1 - p.$$

A Bernoulli random variable X tells us whether something happened or not. The probability of happening $\mathbb{P}[X=1]$ is called the parameter of X.

Example

A die is rolled. Let X be the random variable that tells us whether the outcome is larger than 4 or not. X has parameter p=2/6.

Computations with discrete random variables

Example

Suppose X is a random variable taking values 0, 1, -1 with

$$\mathbb{P}[X=1] = \frac{1}{2}, \quad \mathbb{P}[X=0] = \frac{1}{3}, \quad \mathbb{P}[X=-1] = \frac{1}{6}/$$

- 1. Compute $\mathbb{P}[X \geq 0]$.
- 2. Compute $\mathbb{P}[X \neq 0]$.
- 3. Find the probability mass function for $Y = X^2$.

$$\mathbb{P}[X \ge 0] = \mathbb{P}[X = 0] + \mathbb{P}[X = 1] = \frac{1}{3} + \frac{1}{2} = \frac{5}{6}.$$

$$\mathbb{P}[X \neq 0] = \mathbb{P}[X = -1] + \mathbb{P}[X = 1] = \frac{1}{6} + \frac{1}{2} = \frac{2}{3}.$$

Computations with discrete random variables

У	0	1
P[Y=y]	1/3	2/3

Binomial distribution

Consider a coin that comes up heads with probability p. The coin is thrown n times. Suppose that the outcomes of different rounds are independent.

Suppose n = 2: Then

$$\mathbb{P}[HH] = \mathbb{P}[\text{ first} H] \mathbb{P}[\text{ second} H] = p^2.$$

$$\mathbb{P}[HT] = \mathbb{P}[\text{ first} H] \mathbb{P}[\text{ second} T] = p(1-p).$$

$$\mathbb{P}[TH] = \mathbb{P}[\text{ first} T] \mathbb{P}[\text{ second} H] = (1-p)p.$$

$$\mathbb{P}[TT] = \mathbb{P}[\text{ first} T] \mathbb{P}[\text{ second} T] = (1-p)^2.$$
(1)

$$egin{array}{lll} \mathsf{HH} & \longrightarrow & 2 & p^2 \ \mathsf{HT} \; \mathsf{TH} & \longrightarrow & 1 & 2p(1-p) \ \mathsf{TT} & \longrightarrow & 0 & (1-p)^2 \end{array}$$

Binomial distribution

Suppose n = 3. Then the number of heads could be 0, 1, 2, 3

HHH
$$\longrightarrow$$
 3 p^3
HHT HTH THH \longrightarrow 2 $3p^2(1-p)$
HTT THT TTH \longrightarrow 1 $3p(1-p)^2$
TTT \longrightarrow 0 $(1-p)^3$

Definition

A random variable X has the Binomial distribution with parameters (n, p) if,

$$\mathbb{P}[X = k] = \begin{cases} \binom{n}{k} p^k (1 - p)^{n - k} & \text{if } 0 \le k \le n \\ 0 & \text{otherwise} \end{cases}$$

Binomial distribution bar charts

Suppose n=3 and p=1/2. Then the values X can attain are 0,1,2,3. We have

X	0	1	2	3
$\mathbb{P}[X=x]$	1/8	3/8	3/8	1/8

Binomial distribution bar charts

Suppose n=3 and p=2/3. Then the values X can attain are 0,1,2,3. We have

X	0	1	2	3
$\mathbb{P}[X=x]$	1/27	6/27	12/27	8/27

