

Date	1 Mo	3 Мо	6 Mo	1 Yr	2 Yr	3 Yr	5 Yr	7 Yr	10 Yr	20 Yr	30 Yr
11/01/16	0.24	0.35	0.50	0.65	0.83	0.99	1.30	1.61	1.83	2.24	2.58
11/02/16	0.24	0.37	0.51	0.64	0.81	0.98	1.26	1.57	1.81	2.22	2.56
11/03/16	0.24	0.38	0.52	0.64	0.81	0.98	1.26	1.58	1.82	2.25	2.60
11/04/16	0.25	0.38	0.52	0.62	0.80	0.95	1.24	1.55	1.79	2.22	2.56
11/07/16	0.28	0.41	0.54	0.63	0.82	0.99	1.29	1.60	1.83	2.26	2.60
11/08/16	0.28	0.43	0.56	0.71	0.87	1.04	1.34	1.65	1.88	2.29	2.63
11/09/16	0.30	0.45	0.56	0.72	0.90	1.12	1.49	1.84	2.07	2.52	2.88
11/10/16	0.30	0.48	0.59	0.72	0.92	1.17	1.56	1.92	2.15	2.58	2.94
11/14/16	0.32	0.55	0.65	0.77	1.00	1.27	1.66	2.01	2.23	2.65	2.99
11/15/16	0.30	0.51	0.61	0.78	1.02	1.28	1.68	2.03	2.23	2.64	2.97
11/16/16	0.32	0.47	0.62	0.76	1.00	1.28	1.68	2.03	2.22	2.61	2.92

Wednesday Nov 16, 2016

XOM Stock Dividend Data

Dividend Yield

Basic Materials Average 2.56% Annualized Payout

\$3.00

Paid Quarterly

Payout Ratio

136.4%

EPS \$2.20

Dividend Growth

33 yrs

Since 1983

DARS™ Rating

Get XOM DARS" Rating

▼ 1.07 (1.23%)

After Hours 85.74 ▼ 0.01 (0.01%)

The prices of gap options are:

 $\begin{aligned} & \text{GapCall}(S, K_1, K_2, T) = Se^{-\delta T} N(d_1) - K_1 e^{-rT} N(d_2) \\ & \text{GapPut}(S, K_1, K_2, T) = K_1 e^{-rT} N(-d_2) - Se^{-\delta T} N(-d_1) \end{aligned}$

where:

$$d_1 = \frac{\ln\!\left(\frac{Se^{-\delta T}}{K_2e^{-rT}}\right) \! + \! \frac{\sigma^2}{2}T}{\sigma\sqrt{T}} \qquad \qquad d_2 = d_1 - \sigma\sqrt{T}$$

. . . d.

$$K_1 = \text{Strike price}$$

$$K_2 = \text{Trigger price}$$

XOM=85.75

Group project MF 770

In this group project your task is to analyze the **Gap option** and prepare the report of 6-10 pages. Please submit the report by 12 pm 9 December to yerkin@bu.edu.

Payoff of the gap option: $(S_T - K_1)I(S_T \ge K_2)$ where $K_1 < K_2$. There should be three main parts of the final report:

- 1. Introduction. In this section address the following issues:
 - rationale for buying this option, what benefits does it give to a buyer;
 - who are the consumers (buyers);
 - some interesting features;
 - where this option is traded;
 - provide comprehensive literature review on this option.
- 2. European option. Consider Black-Scholes model and derive the pricing formula for the European gap option:
 - explain hedging strategy in Black-Scholes model;
 - plot the option price function with respect to the underlyings;
 - explore the option price sensitivity with respect to different parameters of the model;
 - run Monte-Carlo simulations for Black-Scholes model and verify that the estimated price converges to the true one;
 - discuss how to hedge this option in reality and what are the main practical concerns;
 - \bullet consider plain vanilla options on **XOM** and plot the implied volatility as the function of K for three different maturities;
 - \bullet recover the implied risk-neutral distribution for some T from market vanilla option prices.
- 3. American option. Consider Black-Scholes model and analyze the American gap option:
 - formulate the pricing problem;
 - describe the optimal exercise region;
 - derive an early exercise premium representation formula for the option price and an integral equation for the exercise boundaries;
 - solve them numerically and plot the option price and boundaries.