重庆理工大学考试试卷

2012~ 2013 学年第二学期

班级										<u> 巻</u> 共 <u>3</u> 〕	Į
••••••	•••••	•••• 密••	•••••			才······ 超过此线		······ 线		•••••	, • • • • • •
		题号	I —		三	四	总分	总分人			
		分数									
得分	评卷人 一	一、判断题(本	大题共	5 小题,每	小题 2 分	,共 10 分	〉。 请在正	确说法后面拮	舌号内画 √,锜	昔误说法后面括号	├内画 ╳)。
1. 极限	$\lim_{x,y)\otimes(2,0)}\frac{\sin(xy)}{y}=2$									()
	由面 $z = 4 - x^2 - y^2$ 上		面平行	于平面 2 <i>x</i>	+2 <i>y</i> + <i>z</i> -	1=0, 0	비点 P 的실	坐标为 (-1,-1	,2)。	()
	$P(2,-1,-1) \cdot Q(0,1)$									()
	$=e^{2xy}-x^2y+xy^3$ 在				2		导数为√2	$\overline{2}(3e^{-4}+2)$.		()
5. 函数 j	$f(x) = x$ 在区间 $[0, \pi]$]上的正弦级	数展开式	式为 <i>x</i> = si	$\ln x + \frac{1}{3}\sin x$	$\ln 3x + \cdots$	$+\frac{1}{n}\sin nx$	$x+\cdots,x\in[0]$	$[0,\pi]$.	()
得分	评卷人 二	二、填空题(本	卜 大题共	8 小题,4	每小题 2 ½	分,共 16	分)。				
1. 函数 z =	$xy + \frac{x}{y}$ 的全微分 dz	=		0							
	•										
2. 设 $z=x^3$	$x^3y^2 - 3xy^3 - xy + 1$,	则 $\frac{\partial^2 z}{\partial x \partial y} = $ _				· · · · · · · · ·					
$3.$ 设 $\overrightarrow{a} = 3\overrightarrow{i}$	$-4\vec{j}-5\vec{k} , \vec{b}=-\vec{i}$	$-2\overrightarrow{j}+\overrightarrow{k}$,则	$\stackrel{ ightarrow}{a}$ 与 $\stackrel{ ightarrow}{b}$ $\stackrel{ ightarrow}{z}$	之间的夹角	自为		0				
4. 设Σ是圆	l柱面 $x^2 + y^2 = a^2$ 介	$\div \pm z = 0, z =$:1之间的	的外侧, 则	$\iint\limits_{\Sigma}(x^2+$	y^2) $dxdy$	=				
5. 交换积分	〉次序 $\int_1^2 dy \int_y^2 f(x,y)$	dx =			o						
6. <i>xoz</i> 面上	的曲线 $x^2 = z - 1$ 绕 a	oz 轴旋转而成	的曲面的	的方程是_	_			°			
7. 幂级数 ∑	$\sum_{n=1}^{\infty} (-1)^n \frac{2^n x^n}{n}$ 的收敛	半径是	<u> </u>								
8. 设 <i>L</i> 为圆	月月: $x^2 + y^2 = a^2$, 月	则 $\iint_L (x^2 + y)$	$(y^2)^3 ds =$		°						

重庆理工大学考试试卷

2012~ 2013 学年第二学期

班级	学号	姓名	考试科目	高等数学[(2)机电]	<u>A 卷</u> 闭卷	共 <u>3</u> 页
•••••	••••• 密	•••••	封 ••••••	······································	•••••	•••••

学生答题不得超过此线

得分	评卷人	三、求解下列各题(本大题共8小题,每小题7分,共	56分)。

1.求通过点 P(-1,2,-2) 且又通过直线 L: $\frac{x+1}{2} = \frac{y}{-1} = \frac{z-2}{3}$ 的平面方程。

2. 设 $z = f(\frac{x}{y}, x^2 y)$,且 f 具有二级连续偏导数,求 $\frac{\partial^2 z}{\partial x \partial y}$ 。

3. 求曲线 $x = t - \frac{\pi}{2} \sin t$, $y = 1 - \cos t$, $z = 4 \sin t$, 在 $t = \frac{\pi}{2}$ 处的切线方程与法平面方程。

4. 计算 $\iiint_{\Omega} z dv$, 其中 Ω 是由直线 $\begin{cases} z = y \\ x = 0 \end{cases}$ 绕 z 轴旋转而成的曲面与 z = 1 围成的区域。

5. 计算 $I = \iint_L x^2 y dx - y^2 x dy$, 其中 L 是曲线 $x^2 + y^2 = 2x$ 的正向。

6. 求 $\iint_{\Sigma} xzdydz - y^2dzdx + yzdxdy$, 其中 Σ 是平面 x = 0, y = 0, z = 0, x = 1, y = 2, z = 3 所围成的长方体的整个表面的外侧。

7. 判断级数 $\sum_{n=1}^{\infty} \frac{(-1)^n}{3^n + 2^n}$ 的敛散性,如果收敛,是条件收敛?还是绝对收敛?

8. 将函数 $\frac{1}{x}$ 展开成 x-2 的幂级数,并给出其收敛域。

重庆理工大学考试试卷

2012~ 2013 学年第 二 学期

班级	学号	姓名	考试科目_	高等数学[(2)机电]	<u>A 卷</u> 闭卷	共 <u>3</u> 页
•••••	•••••••••	···· 密 ·······························	··· 封 ······ 题不得超过此线	····················线········	••••••	•••••
得分) 评卷人 四、	应用题和 证明题 (每小题 6 分	,共18分)			
1. 求函	数 $f(x,y) = xe^x + y^2 - 6$	by 的极值点和极值。				
2 4 7	## **					
2. 38.88	.曲 国 z = xy 极 柱 国 x +	$y^2 = 1$ 截下部分 $(y \ge 0)$ 的面积。				
3. 证明	: 若级数 $\sum_{n=1}^{\infty} a_n^2$ 及 $\sum_{n=1}^{\infty} b_n^2$	收敛,则 $\sum_{n=1}^{\infty} a_n \cdot b_n $ 也收敛。				