

Design the street light control circuit shown in the above figure such that the switching voltage is $V_s=2\ V$ and the hysteresis width is $200\ mV$. Assume

$$V_H = 15 V \& V_L = -8 V.$$

- a) Find the resistances in $k\Omega$. You can assume the value of one resistance.
- b) Find the value of V_{REF} .
- c) Suppose, the current through the resistance R is 250 μA when $v_o=V_H$ and relay switch resistance is 330 Ω . Find the value of R.

Ans: a) 10, 1140

For the OP-AMP comparator circuit below, V_{in} vs time plot is given. Draw the V_{out} vs time plot for the given input.

Practice Problem 1:

Do the same as in **Exercise 2** for the following:

:su∀

For the non-inverting Schmitt Trigger circuit below, V_{in} vs time plot is given. Draw the V_{out} vs time plot.

For the inverting Schmitt Trigger circuit below, V_{in} vs time plot is given. Draw the V_{out} vs time plot for the given input.

Inverting Schmitt Trigger

If $R_1=10~k\Omega$, $R_2=20~k\Omega$, $V_{\rm ref}=3~V$ $V_H=10~V$, $V_L=-10~V$ Draw the VTC of this circuit with proper labeling

Design a comparator circuit with the following VTC:

Ans:
$$R_1 = 5 \text{ kD}$$
, $R_2 = 10 \text{ kD}$, $V_{\text{ref}} = -4 \text{ V}$, $V_H = 11 \text{ V}$, $V_L = -9.5 \text{ V}$ (Non – Invertina)

Exercise 7

Draw the V_{out} vs time plot for the given V_{in} vs time plot to the following circuit:

$$\begin{split} V_{ref} &= -2 \ V \\ R_1 &= 10 \ k\Omega, R_2 = 15 \ k\Omega \\ V_H &= 8 \ V, V_L = -8 \ V \end{split}$$

For the above two circuits,

$$R_1 = 5 k\Omega$$
, $R_2 = 20 k\Omega$, $V_{\text{ref}} = 3 V$, $V_H = 12 V$, $V_L = -10 V$

- a) Find higher & lower threshold voltages.
- b) Find shift voltages & hysteresis widths.
- c) Draw their VTCs.

As $\Lambda_{TL} = \Lambda_{TL} = \Lambda_{TL}$

If $R_1=2~k\Omega$, design a Schmitt Trigger to achieve the given VTC.

$$Ans = A.25 \text{ RW, } V_{ref} = 1.17 \text{ V, } V_H = 10 \text{ V, } V_L = 28.5 \text{ Res}$$