Credit repayment

Implémentation d'un modèle de scoring

Déploiement dans le

Cloud

DATA SCIENCE CREDIT REPAYMENT PREDICTION

Owner: Ph. Deflandre Création: 03/05/2025

Environnement de travail

Environnement Jupyter Lab sur Windows 11 (Edge Version 130.0.2849.56)

Environnement virtuel Imblearn version 0.13.0

Python version 3.11.7 XGBoost version 3.0.0

Numpy version 1.26.4 Mlflow version 2.21.0

Matplotlib version 3.8.0 Requests version 2.31.0

Pandas version 2.1.4 Json version 2.0.9

Seaborn version 0.12.2 LightGBM version 4.6.0

Scikit-learn version 1.5.2 Uvicorn version 0.34.0

Shap version 0.46.0 FastAPI version 0.115.12

Pydantic version 2.11.3 Streamlit version 1.45.0

,

Rappel de la mission

- Comparer des modèles de scoring pour déterminer la probabilité qu'un prêt soit remboursé.
- Comprendre les features qui vont être déterminantes dans la prédiction.
- Mettre en production le modèle de scoring le plus performant à l'aide d'une API. Réaliser une interface de test de l'API.
- Créer une interface utilisateur user friendly.
- Analyser un éventuel Data Drift.

Analyse de la base de données

000

Source: https://www.kaggle.com/c/home-credit-default-risk/data

- application_train.csv
 - 121 features
 - 1 target
 - 307 511 lignes (crédits)

- > type de contrat
- informations personnelles
- > situation familiale
- > informations administratives
- > informations relatives au crédit

- application_test.csv
 - 121 features
 - 48 744 lignes (crédits)

Target

Classification binaire déséquilibrée

0 => le prêt est remboursé

1 => le prêt n'est pas remboursé

Features

Features

Baseline - Logistic Regression classification

Premier modèle de référence

Comment estimer la qualité de prédiction du modèle ?

```
Train Accuracy: 0.919
Test Accuracy: 0.919
Test Balanced Accuracy: 0.504

Confusion Matrix:
[[70609 78]
[ 6132 59]]
```

Métrique business personnalisée

\$ E

Crédits non accordés qui auraient été remboursés

Train Accuracy: 0.919
Test Accuracy: 0.919

Test Balanced Accuracy: 0.504

Confusion Matrix:

[[70609 78] [6132 59]]

10 1

Crédits accordés non remboursés_

Feature engineering

Polynomial Features

$$(EXT_SOURCE_1)^a \times (EXT_SOURCE_2)^b \times (EXT_SOURCE_3)^c \times (DAYS_BIRTH)^d$$

 $(a, b, c, d) \in [0; 3]$

Features "métier"

$$taux \ d'endettement = \frac{montant \ du \ crédit}{revenus}$$

$$taux \ d'effort \ annuel = \frac{annuit\acute{e}}{revenus}$$

$$ratio \ de \ remboursement = \frac{annuit\acute{e}}{montant \ du \ crédit}$$

$$taux \ d'emploi \ relatif = \frac{jours \ travaill\acute{e}s}{\mathring{a}ge}$$

Comparaison des modèles

Logistic Regression with features engineering

- class_weight hyperparamètre
- cross-validation
- > MLFlow
- utilité du Feature Engineering

	Feature	Coefficient	Absolute_Coefficient
7	AMT_ANNUITY	2.494649	2.494649
8	AMT_GOODS_PRICE	-2.436208	2.436208
80	DEF_60_CNT_SOCIAL_CIRCLE	1.737929	1.737929
278	ANNUITY_INCOME_PERCENT	1.648104	1.648104
78	DEF_30_CNT_SOCIAL_CIRCLE	1.533950	1.533950
10	DAYS_BIRTH	1.145663	1.145663
246	EXT_SOURCE_3_y	-0.954602	0.954602
252	EXT_SOURCE_2 EXT_SOURCE_3	-0.846523	0.846523
33	EXT_SOURCE_3_x	-0.820314	0.820314
93	FLAG_DOCUMENT_13	-0.785311	0.785311

Comparaison des modèles

Random Forest

- class_weight hyperparamètre
- problème de surapprentissage

AdaBoost

- class_weight hyperparamètre
- optimisation des hyperparamètres avec GridSearchCV
- > entraînement lent du modèle

GradientBoosting

- optimisation des hyperparamètres avec GridSearchCV
- amélioration de l'AUC
- pas d'hyperparamètre d'équilibrage des classes

Comparaison des modèles

XGBoost

- scale_pos_weight hyperparamètre
- optimisation des hyperparamètres avec GridSearchCV

LightBoosting

- scale_pos_weight hyperparamètre
- > optimisation des hyperparamètres avec GridSearchCV
- > rapide

Downsampling - imblearn

XGBoost

- scale_pos_weight = 1
- optimisation des hyperparamètres avec GridSearchCV

Upsampling - SMOTE

XGBoost

- scale_pos_weight = 1
- > hyperparamètres du downsampling

Interprétabilité globale - XGBoost

Interprétabilité locale - XGBoost

exemple prêt n°3

Tracking d'expérimentation - UI MLFlow

Choix du modèle à déployer en production

- combinaisons de plusieurs métriques
- taille des dependencies nécessaires sur Heroku!

API

- FastAPI
- Tests de l'API pytest
- Déploiement sur Heroku
- Workflow : déploiement automatique sur Heroku depuis GitHub conditionné au succès des tests unitaires

Architecture MLOps **Data scientist** pytest 💙 heroku **GitHub** API sync Streamlit https://phildeficredit.streamlit.app/ mlflow :: Precision

User interface

Data Drift

current reference count 307511.00 48744.00 0.00 (0.00%) 0.00 (0.00%) missing CODE_GENDER cat XNA 4.0 (0%) 0.0 (0%) M 105059.0 (34%) 16066.0 (33%) 202448.0 (66%) 32678.0 (67%)

 Count
 307511.00
 48744.00

 FLAG_OWN_CAR missing
 0.00 (0.00%)
 0.00 (0.00%)

 Y
 104587.0 (34%)
 16433.0 (34%)

 N
 202924.0 (66%)
 32311.0 (66%)

current

reference

application_test.csv

application_train.csv

Conclusion

Elaboration d'un modèle en tenant compte du déséquilibre des classes

Définition d'une métrique métier sur-mesure

Mise en place d'une API déployée dans le Cloud

Mise en place d'une interface utilisateur déployée dans le Cloud

Démonstrateur :

https://phildeficredit.streamlit.app/

Repository GitHub:

https://github.com/PhilDefi/bank_credit_score