Extending propositional separation logic for robustness properties

 $f \cdot R \cdot I \cdot E \cdot N \cdot P \cdot S$ of separation logic

Alessio Mansutti

LSV, CNRS, ENS Paris-Saclay

What we will see

An extension of propositional separation logic that

- can express some interesting properties for program verification,
- is PSpace-complete,
- has very weak extensions that are Tower-hard.

A modal logic on trees that

- is Tower-complete,
- it is very easily captured by logics that were independently found to be Tower-complete.

Memory states

Separation Logic is interpreted over **memory states** (s,h) where:

store, $\mathbf{s}: VAR \rightarrow LOC$

■ heap, $h : LOC \rightarrow_{fin} LOC$

where $VAR = \{x, y, z, ...\}$ set of (program) variables, LOC set of locations. VAR and LOC are countably infinite sets.

- Disjoint heaps: $dom(\mathbf{h}_1) \cap dom(\mathbf{h}_2) = \emptyset$
- Union of disjoint heaps $(\mathbf{h}_1 + \mathbf{h}_2)$: union of partial functions.

Propositional Separation Logic SL(*, -*)

$$\varphi \coloneqq \neg \varphi \ | \ \varphi_1 \wedge \varphi_2 \ | \ \mathsf{emp} \ | \ \mathtt{x} = \mathtt{y} \ | \ \mathtt{x} \hookrightarrow \mathtt{y} \ | \ \varphi_1 \ast \varphi_2 \ | \ \varphi_1 \twoheadrightarrow \varphi_2$$

$$(\mathbf{s},\mathbf{h})\models\varphi*\psi$$

$$(\mathbf{s},\mathbf{h})\models\varphi\twoheadrightarrow\psi$$

 $\textbf{Note} \hbox{: the satisfiability problem SAT}(\mathtt{SL}(*, -\!\!*)) \hbox{ is PSpace-complete}.$

From where it started

Theorem (Demri, Lozes, M. - 2018, Fossacs)

$$SL(*, -*)$$
 enriched with $reach(x, y) = 2$ and $reach(x, y) = 3$ is undecidable.

- reduction from $SL(\forall, -*)$ (Brochenin et al.'12)
- SL(*, -*) + reach(x, y) = 2 is PSpace-complete (Demri et al.'14)

Robustness Properties (Jansen, et al. – ESOP'17)

- $\ \ \varphi$ comply with the $\mbox{acyclicity}$ property iff every model of φ is acyclic.
- φ comply with the **garbage freedom** property iff in every model $(\mathbf{s}, \mathbf{h}) \models \varphi$, for each $\ell \in \mathrm{dom}(\mathbf{h})$ there is $\mathbf{x} \in \mathsf{v}(\varphi)$ s.t. $\mathbf{s}(\mathbf{x})$ reaches ℓ .

Checking for robustness properties is ExpTime-complete for Symbolic Heaps with Inductive Predicates (IP).

Our Goal

Provide a similar result for ${f propositional}$ separation logic.

Robustness Properties (Jansen, et al. – ESOP'17)

Checking for robustness properties is ExpTime-complete for Symbolic Heaps with Inductive Predicates (IP).

Our Goal

Provide a similar result for **propositional** separation logic.

Desiderata

We aim to an extension of propositional separation logic where

- lacktriangle satisfiability/entailment are decidable in PSpace (as SL(*, -*))
- robustness properties reduce to one of these classical problems

Known extensions

Let's start with reachability + 1 quantified variable

- $\blacksquare \ (\textbf{s},\textbf{h}) \models \texttt{reach}^+(\textbf{x},\textbf{y}) \iff \textbf{h}^{\textbf{L}}(\textbf{s}(\textbf{x})) = \textbf{s}(\textbf{y}) \text{ for some } \textbf{L} \geq 1$
- $\blacksquare \ \, (\mathbf{s},\mathbf{h}) \models \exists \mathtt{u} \,\, \varphi \,\, \Longleftrightarrow \,\, \mathsf{there is} \,\, \ell \in \mathsf{LOC} \,\, \mathsf{s.t.} \,\, (\mathbf{s}[\mathtt{u} \leftarrow \ell],\mathbf{h}) \models \varphi$

It is only possible to quantify over the variable name \boldsymbol{u} .

Robustness properties reduce to entailment

- Acyclicity: $\varphi \models \neg \exists \mathtt{u} \; \mathtt{reach}^+(\mathtt{u},\mathtt{u})$
- $\blacksquare \ \, \textbf{Garbage freedom} \colon \, \varphi \models \forall \mathtt{u} \, \, (\mathtt{alloc}(\mathtt{u}) \Rightarrow \bigvee_{\mathtt{x} \in \mathbf{fv}(\varphi)} \mathtt{reach}(\mathtt{x},\mathtt{u}))$

where $u \notin \mathbf{fv}(\varphi)$ and

- \blacksquare alloc(x) $\stackrel{\text{def}}{=}$ (x \hookrightarrow x) \rightarrow \bot
- \blacksquare reach(x,y) $\stackrel{\text{def}}{=}$ x = y \lor reach⁺(x,y)

Undecidability and Restrictions

Theorem (Demri, Lozes, M. – 2018, Fossacs)

SL(*, -*) enriched with reach(x, y) = 2 and reach(x, y) = 3 is undecidable.

$$\implies$$
 SAT(1SL(*, \rightarrow , reach⁺)) is undecidable.

We syntactically restrict the logic so that $reach^+(x, y)$ is s.t.

R1: it does not appear on the right side of its first → ancestor (seeing the formula as a tree)

• $\varphi \twoheadrightarrow (\psi * \operatorname{reach}^+(u, u))$ violates R1

R2: if x = u then y = u (syntactically)

■ reach⁺(u,x) violates R2

Note: robustness properties are still expressible (formulae as before)!

Results

- 1 SAT($1SL_{R1}^{R2}(*, -*, reach^+)$) is PSpace-complete
 - strictly subsumes 1SL(*, -*) and $SL(*, reach^+)$.
- 2 SAT($1SL_{R1}(*, -*, reach^+)$) is Tower-hard.

Proof Techniques

- (1) extend the core formulae technique used for SL(*, -*).
- (2) reduction from "an auxiliary logic on trees".

Core formulae technique

(and a bit of $1SL_{R1}^{R2}(*, -*, reach^+)$)

First order theories: Gaifman Locality Theorem

Theorem (Gaifman – 1982, Herbrand Symposium)

Every FO sentence is logically equivalent to a Boolean combination of **local formulae**.

application of Ehrenfeucht-Fraïssé games

First order theories: Gaifman Locality Theorem

Theorem (Gaifman – 1982, Herbrand Symposium)

Every FO sentence is logically equivalent to a Boolean combination of **local formulae**.

application of Ehrenfeucht-Fraïssé games

"Locality theorem" for SL(*, -*)

Theorem (Lozes, 2004 – Space)

Every formula of SL(*, -*) is logically equivalent to a Boolean combination of **core formulae**.

From this theorem we can get:

- expressive power results
- complexity result (small model property)
- axiomatisation

When considering extensions of the logic, we need to derive new core formulae and reprove the theorem.

 \implies It does not work (at all) for $1SL_{R1}^{R2}(*, -*, reach^+)$.

Core formulae for SL(*, -*)

Fix $\mathbf{X} \subseteq \mathbf{VAR}$ and $\alpha \in \mathbb{N}^+$

$$\mathbf{Core}(\mathtt{X},\alpha) \stackrel{\text{\tiny def}}{=} \left\{ \begin{array}{ccc} \mathtt{x} = \mathtt{y}, & \mathtt{x} \hookrightarrow \mathtt{y}, & \beta \in [\mathtt{0},\alpha], \\ \mathtt{alloc}(\mathtt{x}), & \mathtt{size} \geq \beta & \mathtt{x},\mathtt{y} \in \mathtt{X} \end{array} \right\}$$

where $(\mathbf{s}, \mathbf{h}) \models \mathtt{size} \geq \beta$ iff $\operatorname{card}(\operatorname{dom}(\mathbf{h})) \geq \beta$.

■ indistinguishability Relation

$$(\mathbf{s},\mathbf{h}) \leftrightarrow^{\mathtt{X}}_{\alpha} (\mathbf{s}',\mathbf{h}') \ \text{iff} \ \forall \varphi \in \mathbf{Core}(\mathtt{X},\alpha), \ (\mathbf{s},\mathbf{h}) \models \varphi \ \text{iff} \ (\mathbf{s}',\mathbf{h}') \models \varphi$$

 Both EF-game and winning strategy for Duplicator are hidden inside two (technical) elimination lemmas.

Core formulae: * elimination lemma

Lemma

Suppose
$$(\mathbf{s}, \mathbf{h}) \leftrightarrow_{\alpha}^{\mathbf{X}} (\mathbf{s}', \mathbf{h}')$$
. Then,
for every $\alpha_1 + \alpha_2 = \alpha$ $(\alpha_1, \alpha_2 \in \mathbb{N}^+)$, and every $\mathbf{h}_1 + \mathbf{h}_2 = \mathbf{h}$, (Spoiler)
there are $\mathbf{h}'_1 + \mathbf{h}'_2 = \mathbf{h}'$ such that (Duplicator)
 $(\mathbf{s}, \mathbf{h}_1) \leftrightarrow_{\alpha_1}^{\mathbf{X}} (\mathbf{s}', \mathbf{h}'_1)$ and $(\mathbf{s}, \mathbf{h}_2) \leftrightarrow_{\alpha_2}^{\mathbf{X}} (\mathbf{s}', \mathbf{h}'_2)$.

necessary to obtain a winning strategy for Duplicator

Core formulae: * elimination lemma

Lemma

Suppose
$$(\mathbf{s}, \mathbf{h}) \leftrightarrow_{\alpha}^{\chi} (\mathbf{s}', \mathbf{h}')$$
. Then,
for every $\alpha_1 + \alpha_2 = \alpha$ $(\alpha_1, \alpha_2 \in \mathbb{N}^+)$, and every $\mathbf{h}_1 + \mathbf{h}_2 = \mathbf{h}$, (Spoiler)
there are $\mathbf{h}'_1 + \mathbf{h}'_2 = \mathbf{h}'$ such that (Duplicator)
 $(\mathbf{s}, \mathbf{h}_1) \leftrightarrow_{\alpha_1}^{\chi} (\mathbf{s}', \mathbf{h}'_1)$ and $(\mathbf{s}, \mathbf{h}_2) \leftrightarrow_{\alpha_2}^{\chi} (\mathbf{s}', \mathbf{h}'_2)$.

necessary to obtain a winning strategy for Duplicator

By
$$\overline{\text{Relation}} \leftrightarrows \overline{\text{EF-games}} \leftrightarrows \overline{\text{Semantics}}$$
 it leads to:

For every $\varphi \in \mathbf{Bool}(\mathbf{Core}(\mathtt{X},\alpha_1))$ and $\psi \in \mathbf{Bool}(\mathbf{Core}(\mathtt{X},\alpha_2))$ there is $\chi \in \mathbf{Bool}(\mathbf{Core}(\mathtt{X},\alpha_1+\alpha_2))$ such that

$$\varphi * \psi \iff \chi$$

Note: similar elimination lemma for →*.

Core formulae: after * and → elimination

Theorem

For every φ in SL(*, -*):

- 1 there is en equivalent Boolean combination of core formulae.
- 2 for every $\alpha \geq |\varphi|$, $X \supseteq v(\varphi)$ and $(s, h) \leftrightarrow_{\alpha}^{X} (s', h')$,

$$(\mathbf{s}, \mathbf{h}) \models \varphi \text{ iff } (\mathbf{s}', \mathbf{h}') \models \varphi.$$

[2] allows to derive a small-model property which leads to a proof that SAT(SL(*, -*)) is in PSpace.

$1SL_{R1}^{R2}(*, -*, reach^+)$ is in PSpace: Not so easy...

$$\pi := \mathbf{x} = \mathbf{y} \mid \mathbf{x} \hookrightarrow \mathbf{y} \mid \text{emp} \mid \underline{\mathcal{A}} \twoheadrightarrow \mathcal{C} (\mathbf{R}1)$$

$$\mathcal{C} := \pi \mid \mathcal{C} \land \mathcal{C} \mid \neg \mathcal{C} \mid \exists \mathbf{u} \ \mathcal{C} \mid \mathcal{C} \ast \mathcal{C}$$

$$\mathcal{A} := \pi \mid \underline{\mathbf{reach}}^+(v_1, v_2) \mid \mathcal{A} \land \mathcal{A} \mid \neg \mathcal{A} \mid \exists \mathbf{u} \ \mathcal{A} \mid \mathcal{A} \ast \mathcal{A}$$

- where if $v_1 = u$ then $v_2 = u$ (R2).
 - Asymmetric $\mathcal{A} \twoheadrightarrow \mathcal{C}$: design two sets of core formulae against
 - two * and two ∃ elimination lemmas;
 - ullet one ullet elimination lemma that glues the two set of core formulae.
 - instead of "size $\geq \beta$ s.t. $\beta \in [1, \alpha]$ ", the β s of new core formulae are bounded by functions on α , e.g.

$$\# loop(\beta) \ge \gamma$$
 $\gamma \in [1, \frac{1}{2}\alpha(\alpha+3)-1]$

bounds are found by solving a set of recurrence equations.

Core formulae: Example on a toy logic

$$\varphi \coloneqq \neg \varphi \ | \ \varphi_1 \wedge \varphi_2 \ | \ \varphi_1 * \varphi_2 \ | \ \exists u \ \varphi \ | \ \mathtt{alloc}(u) \ | \ \mathtt{reach}^+(u,u)$$

Some formulae expressible in this logic:

- size $> 0 \stackrel{\text{def}}{=} \top$ size $> \beta + 1 \stackrel{\text{def}}{=} \exists u \text{ (alloc(u)} * \text{size} > \beta)$
- reach⁺(u, u)= β iff there is a loop of size exactly β involving $\mathbf{s}(\mathbf{u})$.

$$\# \mathsf{loops}(\beta) \ge \gamma \stackrel{\mathsf{def}}{=} \overbrace{\exists \mathtt{u}\, \mathsf{reach}^+(\mathtt{u},\mathtt{u}) = \beta * \dots * \exists \mathtt{u}\, \mathsf{reach}^+(\mathtt{u},\mathtt{u}) = \beta}^{\gamma - 1 \, \mathsf{times} \, *}$$

- $Arr rem \ge \beta$ iff there are at least β memory cells not in a loop.

Designing Core Formulae

- Fix $\alpha \in \mathbb{N}^+$
- Let $Core(\alpha)$ be the **finite** set of predicates:

$$\begin{cases} \texttt{rem} \geq \beta, \\ \# \texttt{loops}(\beta) \geq \gamma, \\ \# \texttt{loops}_{> \mathcal{R}(\alpha)} \geq \gamma, \end{cases} \mid \beta \in [1, \mathcal{R}(\alpha)], \\ \gamma \in [1, \mathcal{L}(\alpha)] \end{cases}$$

for some functions $\mathcal L$ and $\mathcal R$ in $[\mathbb N \to \mathbb N]$.

Designing Core Formulae

- Fix $\alpha \in \mathbb{N}^+$
- Let $Core(\alpha)$ be the **finite** set of predicates:

$$\begin{cases} \texttt{rem} \geq \beta, \\ \# \texttt{loops}(\beta) \geq \gamma, \\ \# \texttt{loops}_{> \mathcal{R}(\alpha)} \geq \gamma, \end{cases} \begin{vmatrix} \beta \in [1, \mathcal{R}(\alpha)], \\ \gamma \in [1, \mathcal{L}(\alpha)] \end{cases}$$

for some functions \mathcal{L} and \mathcal{R} in $[\mathbb{N} \to \mathbb{N}]$.

These formulae induce a partition on the heap:

- ightharpoonup rem $\geq \beta$ speaks about memory cells not in a loop
- $lack \#loops(eta) \geq \gamma$ speaks about locations in loops of size $eta \in [1, \mathcal{R}(lpha)]$
- $\#loops_{>\mathcal{R}(\alpha)} \ge \gamma$ speaks about locations in loops of size $> \mathcal{R}(\alpha)$.

$$\# \mathtt{loops}_{>\beta} \geq \gamma \ = \ \exists \mathtt{u}\,\mathtt{reach}^+(\mathtt{u},\mathtt{u}) \geq \beta + 1 * \ldots * \exists \mathtt{u}\,\mathtt{reach}^+(\mathtt{u},\mathtt{u}) \geq \beta + 1$$

Lemma

Suppose $(\mathbf{s},\mathbf{h}) \leftrightarrow_{\alpha}^{\mathbf{X}} (\mathbf{s}',\mathbf{h}')$. Then, for every $\alpha_1 + \alpha_2 = \alpha$ $(\alpha_1,\alpha_2 \in \mathbb{N}^+)$, and every $\mathbf{h}_1 + \mathbf{h}_2 = \mathbf{h}$, (Spoiler) ...

- Test the core formulae against the * elimination lemma.
- standard-ish way of doing things in EF-games.

Lemma

Suppose $(\mathbf{s},\mathbf{h}) \leftrightarrow_{\alpha}^{\mathbf{X}} (\mathbf{s}',\mathbf{h}')$. Then, for every $\alpha_1 + \alpha_2 = \alpha$ $(\alpha_1,\alpha_2 \in \mathbb{N}^+)$, and every $\mathbf{h}_1 + \mathbf{h}_2 = \mathbf{h}$, (Spoiler) ...

- Test the core formulae against the * elimination lemma.
- standard-ish way of doing things in EF-games.

What happens to the locations corresponding to $rem \ge \beta$, when we split a heap?

Lemma

```
Suppose (\mathbf{s}, \mathbf{h}) \leftrightarrow_{\alpha}^{\chi} (\mathbf{s}', \mathbf{h}'). Then, for every \alpha_1 + \alpha_2 = \alpha (\alpha_1, \alpha_2 \in \mathbb{N}^+), and every \mathbf{h}_1 + \mathbf{h}_2 = \mathbf{h}, (Spoiler) ...
```

- Test the core formulae against the * elimination lemma.
- standard-ish way of doing things in EF-games.

What happens to the locations corresponding to $rem \ge \beta$, when we split a heap?

They correspond to $rem \ge \beta$, also in the subheaps.

Lemma

Suppose $(\mathbf{s}, \mathbf{h}) \leftrightarrow_{\alpha}^{\mathbf{X}} (\mathbf{s}', \mathbf{h}')$. Then, for every $\alpha_1 + \alpha_2 = \alpha$ $(\alpha_1, \alpha_2 \in \mathbb{N}^+)$, and every $\mathbf{h}_1 + \mathbf{h}_2 = \mathbf{h}$, (Spoiler) ...

Te st.
$$\mathcal{R} \bigcirc +$$

$$\mathcal{R}(\alpha) \geq \max_{\substack{\alpha_1,\alpha_2 \in \mathbb{N}^+ \\ \alpha_1 + \alpha_2 = \alpha}} \left(\mathcal{R}(\alpha_1) + \mathcal{R}(\alpha_2) \right)$$

They correspond to $\mathtt{rem} \geq \beta$, also in the subheaps.

For $\mathcal{L},$ roughly speaking...

For \mathcal{L} , roughly speaking...

We have the inequalities

$$\begin{split} \mathcal{R}(1) \geq 1 & \quad \mathcal{R}(\alpha) \geq \max_{\substack{\alpha_1, \alpha_2 \in \mathbb{N}^+ \\ \alpha_1 + \alpha_2 = \alpha}} & (\mathcal{R}(\alpha_1) + \mathcal{R}(\alpha_2)) \\ \mathcal{L}(1) \geq 1 & \quad \mathcal{L}(\alpha) \geq \max_{\substack{\alpha_1, \alpha_2 \in \mathbb{N}^+ \\ \alpha_1 + \alpha_2 = \alpha}} & (\mathcal{L}(\alpha_1) + \mathcal{L}(\alpha_2) + \mathcal{R}(\alpha_1) + \mathcal{R}(\alpha_2)) \end{split}$$

Which admit $\mathcal{R}(\alpha) = \alpha$ and $\mathcal{L}(\alpha) = \frac{1}{2}\alpha(\alpha + 1)$ as a solution.

To satisfy the * elimination lemma, build $\leftrightarrow_{\alpha}^{X}$ w.r.t.

$$\begin{cases} \texttt{rem} \geq \beta, \\ \# \texttt{loops}(\beta) \geq \gamma, \\ \# \texttt{loops}_{>\alpha} \geq \gamma, \end{cases} \begin{vmatrix} \beta \in [1, \alpha], \\ \gamma \in [1, \frac{1}{2}\alpha(\alpha+1)] \end{cases}$$

(it is not a solution for the toy logic, we forgot the variable u!)

First recap

- 1SL^{R2}_{R1}(*, -*, reach⁺) strictly generalise other PSpace-complete extensions of propositional separation logic.
- It can be used to check for robustness properties.

ALT: An auxiliary logic on trees (or, what happens if we allow $reach^+(u, x)$)

Auxiliary logic on trees (ALT)

$$\varphi \coloneqq \varphi_1 \wedge \varphi_2 \mid \neg \varphi \mid \langle \mathbf{U} \rangle \varphi \mid \blacklozenge \varphi \mid \blacklozenge^* \varphi \mid \triangle \mid \Diamond$$

- interpreted on *acyclic heaps* (finite forests, encoding parent relation)
- lacksquare one current node $n \in LOC$, one fixed target node $r \in LOC$
- $\bullet \ \, \mathbf{h}, \mathbf{n} \models_{\mathbf{r}} \langle \mathbf{U} \rangle \varphi \text{ iff there is } \mathbf{n}' \in \mathtt{LOC} \text{ s.t. } \mathbf{h}, \mathbf{n}' \models_{\mathbf{r}} \varphi$
- $h, n \models_r \triangle$ iff $n \in dom(h)$ and n reaches r in at least one step
- $h, n \models_r \bigcirc$ iff $n \in dom(h)$ and n does not reach r in at least one step

We prove that SAT(ALT) is a Tower-complete problem.

Auxiliary logic on trees (ALT)

- $\blacksquare \ h, n \models_r \triangle \ \text{iff} \ n \in \mathrm{dom}(h)$ and n reaches r in at least one step
- $h, n \models_r \bigcirc$ iff $n \in \mathrm{dom}(h)$ and n does not reach r in at least one step

We prove that SAT(ALT) is a Tower-complete problem.

What can ALT do?

Given a pointed model (\mathbf{h}, n) and a target node r:

If we consider a portion of \mathbf{h} with domain in $\{n' \in LOC \mid \mathbf{h}, n' \models \emptyset\}$, ALT **can only express** size bounds.

■ Proof done with EF-games for ALT.

$$\begin{split} & \mathtt{size}(\lozenge) \geq 0 & \stackrel{\text{\tiny def}}{=} \ \top \\ & \mathtt{size}(\lozenge) \geq \beta + 1 & \stackrel{\text{\tiny def}}{=} \ \langle \mathbf{U} \rangle \big(\lozenge \land \blacklozenge \big(\neg \mathtt{alloc} \land \mathtt{size}(\lozenge) \geq \beta \big) \big) \end{split}$$

where alloc $\stackrel{\text{def}}{=} \bigcirc \lor \triangle$.

What can ALT do?

■ If \mathbf{h} , $\mathbf{n} \models_{\mathsf{r}} \triangle$, ALT can check bounds on the number of descendants and children of \mathbf{n} :

$$\begin{split} \# \mathrm{desc} & \geq \beta \ \stackrel{\mathrm{def}}{=} \ \blacklozenge^* \big([\mathrm{U}] \neg \otimes \wedge \ \triangle \wedge \blacklozenge \big(\neg \mathtt{alloc} \wedge \mathtt{size} \big(\otimes \big) \geq \beta \big) \big) \\ \# \mathrm{child} & \geq 0 \ \stackrel{\mathrm{def}}{=} \ \top \\ \# \mathrm{child} & \geq \beta + 1 \ \stackrel{\mathrm{def}}{=} \ \# \mathrm{desc} \geq \beta + 1 \wedge \neg \blacklozenge^\beta \big(\triangle \wedge \neg \# \mathrm{desc} \geq 1 \big) \end{split}$$

Easy to encode words as acyclic memory states

PITL (Moszkowski'83)

$$\varphi \coloneqq \operatorname{pt} \mid \mathbf{a} \mid \varphi_1 | \varphi_2 \mid \neg \varphi \mid \varphi_1 \wedge \varphi_2$$

- lacksquare interpreted on finite non-empty words over a finite alphabet Σ
- $lackbox{ } \mathfrak{w}\models\operatorname{pt}\qquad\Longleftrightarrow\;|\mathfrak{w}|=1$
- $\blacksquare \ \mathfrak{w} \models \mathtt{a} \qquad \iff \mathsf{first} \ \mathsf{letter} \ \mathsf{of} \ \mathfrak{w} \ \mathsf{is} \ \mathtt{a} \in \Sigma \quad (\mathsf{locality} \ \mathsf{principle})$
- $$\begin{split} \bullet & \ \mathfrak{w} \models \varphi_1 | \varphi_2 \iff & \ \mathfrak{w}[1:j] \models \varphi_1 \ \text{and} \ \mathfrak{w}[j:|\mathfrak{w}|] \models \varphi_2 \\ & \ \text{for some} \ j \in [1,|\mathfrak{w}|] \end{split}$$

$$\underbrace{ \begin{bmatrix} \mathfrak{w}_1 \dots \mathfrak{w}_{j-1} & \mathfrak{w}_j & \mathfrak{w}_{j+1} \dots \mathfrak{w}_{|\mathfrak{w}|} \\ \varphi_1 & & & & & \\ & & & & & & \\ \end{bmatrix}}_{\varphi_2}$$

Note: SAT(PITL) is Tower-complete.

Reducing PITL to ALT

- Set of models encoding words can be characterised in ALT
- However, difficult to translate $\varphi_1 | \varphi_2!$

After the cut, left side does not reach r anymore.

- \implies nodes on the left side satisfy \bigcirc
- \implies We cannot express the satisfaction of φ_1 .

PITL to ALT: alternative semantics for PITL

$$w_1 \dots w_{j-1} \ w_j \ w_{j+1} \dots w_{|\mathfrak{w}|}$$

 $\varphi \psi$ on standard semantics:

 $\varphi \psi$ on marked semantics

alternative semantics is equivalent to the original one.

ALT, marking an element

lacksquare Given an alphabet $\Sigma = \{a_1, \ldots, a_n\}$, a_i and a_i are encoded as

- \implies marking a character \sim removing a single child.
- SAT(PITL) can be reduced to SAT(ALT), (translated formula is in 2ExpSpace if Σ is coded in binary)
 - $\implies {\rm ALT}$ is Tower-complete (upper-bound from MSO).

Some logics that are Tower-hard

■ It is easy to see that ALT is a fragment of $1SL_{R1}(*, -*, reach^+)$: fix x ∈ VAR to play the role of the target node r.

$$\langle U \rangle \varphi \equiv \exists u \ \varphi \qquad \triangle \equiv {\tt reach}^+(u,x) \qquad \bigcirc \equiv {\tt alloc}(u) \land \neg \triangle$$

- + impose acyclic heaps: $\neg \exists u \ reach^+(u, u)$.
- ALT is a fragment of $MSL(*, \diamondsuit, \langle U \rangle)$
- ALT \preceq_{SAT} MLH(*, \diamondsuit , $\langle \mathsf{U} \rangle$) with modal depth 2. (then *, $\exists \mathsf{u}$, alloc(u), alloc²(u) is Tower-c.)
- ALT ≤_{SAT} QCTL(U) without imbricated until operators U (or QCTL(EF) with 2 imbrication of EF)

Note: in these results * can always be replaced with \blacklozenge and \blacklozenge^* .

Second Recap

- ALT improves the understanding of some Tower-complete logics.
- It seems to be an interesting tool to prove Tower-hardness.