Problem 1.

Ross 18.6 Define $f(x) = \cos x$. Then f is continuous on $I = (0, \frac{\pi}{2})$. Let g(x) = f(x) - x. Then g is continuous on I. Next invoke IVT on g: for $0 < \frac{\pi}{2}$ and any g between g(0) = 1 and $g(\frac{\pi}{2}) = -\frac{\pi}{2}$, there exists some $x_0 \in (0, \frac{\pi}{2})$ such that $g(x_0) = g$. Choose g = 0. Then $g(x_0) = 0$ implies $g(x_0) = f(x_0)$ and hence $g(x_0) = \cos x_0$. Therefore we have proven there exists some $g(x_0) = \cos x_0$.

Ross 18.8 Suppose f is some real-valued continuous function on \mathbb{R} and f(a)f(b) < 0 for some $a, b \in \mathbb{R}$. We want to prove there exists x between a and b such that f(x) = 0. Invoke IVT on f: for a < b and any y between f(a) and f(b), there exists some $x \in (a, b)$ such that f(x) = y. With no loss of generality, assume f(a) < 0 and f(b) > 0 so that f(a)f(b) < 0 holds. Therefore choose y = 0. Then there exists $x \in (a, b)$ such that f(x) = 0.

Problem 2.

Ross 19.2(b) Consider $f(x) = x^2$ on [0,3]. We want to prove that f is uniformly continuous on the [0,3] by directly verifying the $\epsilon - \delta$ property in Definition 19.1. It suffices to show $\forall \epsilon > 0$, $\exists \delta > 0$ such that $x,y \in [0,3]$ and $|x-y| < \delta$ imply $|f(x) - f(y)| < \epsilon$. First note that

$$|f(x) - f(y)| < |x^2 - y^2| = |x - y| \cdot |x + y| \le |x - y| \cdot (|x| + |y|) \le 6|x - y|.$$

Now choose any $\epsilon > 0$ and let $\delta = \frac{\epsilon}{6}$. Then whenever $x, y \in [0, 3]$ and $|x - y| < \frac{\epsilon}{6}$, it follows that $|f(x) - f(y)| \le 6|x - y| < 6 \cdot \frac{\epsilon}{6} = \epsilon$. Therefore we say f is uniformly continuous on [0, 3].

Ross 19.4(a) We want to prove that if f is uniformly continuous on a bounded set S, then f is a bounded function on S. Suppose f is unbounded on S. That is, for any $n \in \mathbb{N}$ there exists $x_n \in S$ such that $|f(x_n)| > n$. Therefore we can construct a sequence (x_n) such that $|f(x_n)| \to +\infty$. Since S is bounded, S is a bounded sequence and therefore has a convergent subsequence S. Since S is uniformly continuous on S and S is a Cauchy sequence, S is also a Cauchy sequence. However, $|f(x_n)| \to +\infty$ implies $|f(x_{n_k})| \to +\infty$ and this is a contradiction. Therefore it must be the case that S is a bounded function on S.

Problem 3. Let f and g be uniformly continuous on \mathbb{R} . Then for any $\epsilon > 0$, $\exists \delta_1 > 0$ such that $x, y \in \mathbb{R}$ and $|x - y| < \delta_1$ implies $|g(x) - g(y)| < \epsilon$. For the given δ_1 , there also exists $\delta > 0$ such that $x, y \in \mathbb{R}$ and $|x - y| < \delta$ implies $|f(x) - f(y)| < \delta_1$. Consequently, $|g(f(x)) - g(f(y))| = |(g \circ f)(x) - (g \circ f)(y)| < \epsilon$. Therefore we say $g \circ f$ is uniformly continuous on \mathbb{R} .