

History of nanoscience:

- The concept of nanotechnology was first coined by Richard Feynman in 1959 in his lecture "There's plenty of room at the bottom"
- The term Nanotechnology was first used in 1974 by Norio Taniguchi to refer to a precise and accurate tolerances required for machining and finishing.
- In 1981 K. E. Drexler (now at the Foresight Nanotech Institute for Molecular Manufacturing), talked about molecular manipulation and molecular engineering.
- In 1986, Drexler published a book "Engines of Creation, which finally popularized the term Nanotechnology.
- In 1985 researchers reported the discovery of the "buckyball", a round molecule consisting of 60 carbon atoms.
- This led in turn to the 1991 discovery of a related molecular shape known as the "carbon nanotube" by Sumio lijima at NEC Fundamental Research Laboratories in Tsukuba, Japan

What is nanomaterial?

• 'nano' is to a Greek prefix meaning dwarf or something very small and depicts one billionth (10⁻⁹) of a unit

NASA defined nanomaterial this way.....

> the creation of functional materials, devices and systems through control of matter on the nanometer length scale (1-100 nm), and exploitation of novel phenomena and properties (physical, chemical, biological) at that length scale.

MoS₂-ZnO **ZnO** MoS₂-ZnO

Size Comparison:

Size Comparison:

O-D All dimensions (x,y,z) at nanoscale $d \leq 100 \text{ nm}$ Nanoparticles

1-D Two dimensions (x,y) at nanoscale, other dimension (L) is not

Nanowires, nanorods, and nanotubes

2-D
One dimension (t) at nanoscale,
other two dimensions- ($^{L_x, L_y}$) are not

Nanocoatings and nanofilms

3-D

No bulk dimension at nanoscale

Nanocrystalline and nanocomposite materials

Quantum dots, Quantum wire and Quantum well

- The extreme case of this process of size reduction in which all dimensions reach the low nanometer range is called a quantum dot (0D).
- If two dimensions are so reduced and one remains large, the resulting structure is referred to as a quantum wire (1D).
- If one dimension is reduced to the Nano range while the other two dimensions remain large, then we obtain a structure known as quantum well (2D).
- Properties like electrical conductivity, color, strength and weight change when the nanoscale level is reached: the same metal can become a semiconductor or an insulator at the nanoscale level.

Different forms of nanoparticles:

Properties of nanoparticle:

Why "nano"

Nanomaterials have superior properties than the bulk substances :

- Mechanical strength
- O Thermal stability
- Catalytic activity
- Electrical conductivity
- Magnetic properties
- O Optical properties
- O

A wide range of applications:

Quantum electronics, nonlinear optics, photonics, sensing, information storage and processing, adsorbents, catalysis, solar cells, superplastic ceramics...

New fields:

Nanofabrication, nanodevices, nanobiology, and nanocatalysis

How to create nanomaterials?

Two Different Approaches to Nanofabrication

> Top ⇒ Down:

 Start with the bulk material and "cut away material" to make the what you want

> Bottom ⇒ Up:

- Building what you want by assembling it from building blocks (such as atoms and molecules).
- Atom-by-atom, molecule-bymolecule, or cluster-by-cluster

How to analyse nanomaterials?

Use of Nanomaterials / Why Study Nanoscience?

