This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problems Mailbox.

6 day rat cerebellum

6 day rat brain

Adult rat cerebellum

G3PDH

OGFr

Figure 1

-150 -60	TGGGCTCAGCACACACACACACACACACACACACACACAC	1
31	-GAGGAGGAGAGGAGGAGGATGGCGAGGATGGCCAGGGGGATGATACGACGGAGACACGGGGGGACGACGATGAGGGCGACGCGGAGGAGAGGAGGAGGAGGAGGAGGAGGA	41
121	CON COCCONN CONTENTED A CTOCA CONTENTANCA COCCANACTACCONNACTACCOCCACANTOCAGACATGCAAAGATACCGGCACAACTACCGG	
	AlaxigProSerLeuPheGlnSerArgHetThrGlyTyrArgAsnTrpArgAlaHetGlnAspHetGlnArgTyrArgHisAsnTyrPro -GATTTGACAGATCAAGACTGCAATGGTGACATGTGCAACCTGAGCTTCTACAAAAATGAGATCTGCTTCCAGCCAAATGGGGGTTCTCATC	•
	AspLeuThrAspGlnAspCysAsnGlyAspMetCysAsnLeuSerPheTyrLysAsnGlulleCysPheGlnProAsnGlyAtabed112	
	-GAGGACATTCTTCAGAACTGGAAAGACAACTATGACCTCCTGGAAGAGAATCACTCCTACATCCAGTGGCTGTTTCCTCTGCGGGGAACCA GluaspileLeuglnasnTrpLysaspasnTyraspLeuLeuglugluasnHisSerTyrIleglnTrpLeuPheProLeuArgGluPro	130
	-GGAGTGAACTGGCACGCCAAGCCCCTCACCCTGAAGGAGGTTGAGGCATTTAAAAGCTCCAAGGAAGTCAGAGAGCGTCTTGTCCGGGCC GlyValAsnTrpHisAlaLysProLeuThrLeuLysGluValGluAlaPheLysSerSerLysGluValArgGluArgLeuValArgAla	160
	-TATGACCTCATCCTGGGCTTCTATGGGTTCCACCTTGAGGACCGGGGCACGGGTGCTGTATGCCGTGCACAGAACTTCCAGCCGCGCTTC TyrGluLeuMetLeuGlyPheTyrGlyPheHisLeuGluAspArgGlyThrGlyAlaValCysArgAlaGlnAsnPheGlnProArgPhe	190
	-CACAATCTGAACAGCCACAGCACAACAACGTGCGTATTACACGCATCCTCAAGTCACTGGGTGAGCTGGGCTTAGAACACTACCAGGCA HisasnLeuAsnSerHisSerHisAsnAsnLeuArgIleThrArgIleLeuLysSerLeuGlyGluLeuGlyLeuGluHisTyrGlnAla	220
661	-CCCCTGGTCCGCTTCTTCCTGCAGGAGACCCTTGTACAGCACAAACTGCCCAGCGTGCGCCAGAGTGCCCTGGACTACTTCCTGTTCGCT ProLeuValArgPhePheLeuGluGluThrLeuValGlnHisLysLeuProSerValArgGlnSerAlaLeuAspTyrPheLeuPheAla	250
فين د	-GTGCGCTGCCGGCACCAGCGCGGGAGCTTGTGTACTTTGCCTGGGAGCACTTCAAGCCTCGCCGAGAGTTTGTCTGGGGGCCCCGTGAC ValArgCysArgHisGlnArgArgGluLeuValTyrPheAlaTrpGluHisPheLysProArgArgGluPheValTrpGlyProArgAsp	280
==	-AAGCTGCGGAGATTCAAGCCCCAGACCATACCCCAGCCACTGACGGGACCAGGGGCAGGCA	310
1	-AAGAGGCTGGCACCCAGGGTCGGACCTGTGGATCTGGAAGGGACCTGAGTGGGGACAGTGGAACAGCTGAGGATCCCTCACTGCTGAAC GlnGluAlaGlyThrGlnGlyArgThrCyaGlySerGlyArgAspLeuSerGlyAspSerGlyThrAlaGluAspProSerLeuLeuAsn	340
÷.	-ACARAGCCCTCAGATGGGGGAACCTTGGATGGGAACCAGAGGGATGAAGCTAAGTCCCTGAGTCCCAAGGAGAGGAGAAGAAAAGGAAATTG ThrLysProSerAspGlyGlyThrLeuAspGlyAsnGlnArgAspGluAlaLysSerLeuSerProLysGluSerLysLysArgLysLeu	370
4	-CAGGGGAACAGGCAGGAGGAGGGAGGGAGGCAGATCCCCAGGGTGTCTCTGAGGTAGAGAAAATTGCCCTTAACCTTGAGGAGTGT GluGlyAsnArgGlnGluGlnValProGlyGluAlaAspProGlnGlyValSerGluValGluLysIleAlaLeuAsnLeuGluGluCys	400
a. Ea	-GCCCTTAGCCCTATCAGCCAGGAGCCCAGGGAGGCTGAACCGCCCTGTCCTGTGGCCAGGGTGGCTAATGAGGTAAGAAAGCGGAACGAAG AlaLeuSerProlleSerGlnGluProArgGluAlaGluProProCysProValAlaArgValAlaAsnGluValArgLysArgArgLys	430
	-GTGCAGCAAGGGGCTGAGGGTGATGGAGTAGTCAGTAACACTCAAATGCAGGCCAGTGCCCTGCCTCCTACCCCTTCAGAGTGTCCTGAG ValGluGluGlyAlaGluGlyAspGlyValValSerAsnThrGlnMetGlnAlaSerAlaLeuProProThrProSerGluCysProGlu	460
381	-GCCCANAAGGATGGGAATGGGCCAGAGGACTCAAACAGCCAGGTTGGGGCAGAGGATTCCAAAAGCCAGGTGGGGCCAGAGCATCCAAACACAAAAGCAAGAATGGGAATGCAAAACAACAAAAAAAA	490
	-AGCCAGGTGGGGCTGGAGGACCCAAACAGCCAGGTCGGGCCAGAGGACCCAAACAGCCAGGTCGGGCCAGAGGACCCAAACAGCCAGGTC SerGlnValGlyLeuGluAspProAsnSerGlnValGlyProGluAspProAsnSerGlnVal	520
561	-GGGCCAGAGGACCCAAACAGCCAGGTCGGGCCAGAGGACCCAAACAGCCAGGTGGTGGGGCCAGAGCAAGCTGCCTCTAAGAGCCCTGTG GlyProGluAspProAsnSerGlnValGlyProGluAspProAsnSerGlnValValGlyProGluGlnAlaAlaSerLysSerProVal	550
651	-GAGGACCCTGACTCTGACACTATGGGAACCTCAGTGGATGAGTCAGAGGAGTTGGCAAGGATTGAGGCCTCTGCTGAACCCCCAAAGCCT GluaspProAspSeraspThrMetGlyThrSerValaspGluSerGluGluLeuAlaArgIleGluAlaSerAlaGluProProLysPro	580
	-TAGAGGTGCATCTCATCTCACTCACCCACTGCGGGGTTTCTGAGTCCAGAGCTCTGCGGTAGGTCTTCTTGGTGCCACACTCC -TGGCCTCTCCCTAGTGGTCACTGAGGTGGCCACAGAGGGCCTGCGCCCTCAGGGAAGGCCAAGGCCTTCAGAAACCCTCCTTAC -CTCACTGTGTCCTCCACTCCACTGCGCTCTGAGGCCCTGCGTTGTGATCAGACCCTAAGGGTCTAGAGGGAGG	

Figure 3

Figure 4

:. :: -2:

in the second

Figure 5

Figure 6

Figure 7

The state of the last

Figure 9

The state of the first

Figure 10

Human and Rat OGFr

	79% Identical/ 87% Similar	39.5% Identical/ 56% Similar		20% Identical/ 43% Similar	
1		297 46	64	69° 69°	7

Amino Acid Number

Figure 12

Figure 13

The state of the last

Figure 14

Figure 15

Figure 16