

planetmath.org

Math for the people, by the people.

König's lemma

Canonical name KonigsLemma

Date of creation 2013-03-22 15:38:26 Last modified on 2013-03-22 15:38:26

Owner mps (409) Last modified by mps (409)

Numerical id 6

Author mps (409)
Entry type Theorem
Classification msc 05C05
Synonym Koenig's lemma

Theorem (König's lemma). Let T be a rooted directed tree. If each vertex has finite degree but there are arbitrarily long rooted paths in T, then T contains an infinite path.

Proof. For each $n \ge 1$, let P_n be a rooted path in T of length n, and let c_n be the child of the root appearing in P_n . By assumption, the set $\{c_n \mid n \ge 1\}$ is finite. Since the set $\{P_n \mid n \ge 1\}$ is infinite, the pigeonhole principle implies that there is a child c of the root such that $c = c_n$ for infinitely many n.

Now let us look at the subtree T_c of T rooted at c. Each vertex has finite degree, and since there are paths P_n of arbitrarily long length in T passing through c, there are arbitrarily long paths in T_c rooted at c. Hence if T satisfies the hypothesis of the lemma, the root has a child c such that T_c also satisfies the hypothesis of the lemma. Hence we may inductively build up a path in T of infinite length, at each stage selecting a child so that the subtree rooted at that vertex still has arbitrarily long paths.

References

[1] Kleene, Stephen., Mathematical Logic, New York: Wiley, 1967.