Real Variables: Problem Set IX

Youngduck Choi

Courant Institute of Mathematical Sciences New York University yc1104@nyu.edu

Abstract

This work contains solutions to the problem set IX of Real Variables 2015 at NYU.

1 Solutions

Question 1. Royden 12-5.

5. Suppose that a topological space X has the property that every continuous, bounded real-valued function on a closed subset has a continuous extension to all of X. Show that if X is Tychonoff, then it is normal.

Solution. Assume that X is Tychonoff, and let A and B be non-empty disjoint closed subsets of X. Let $g:A\cup B\to\mathbb{R}$ such that such that g(A)=a and g(B)=b. Observe that g is a real-valued function, that is continuous, bounded, on a closed subset of X. Therefore, by the given, there exists a continuous extension to all of X, which we denote as $g':X\to\mathbb{R}$. Observe that as $(a-\frac{a+b}{2},\frac{a+b}{2})$ is open in \mathbb{R} , by the continuity of g' we have $g'^{-1}((a-\frac{a+b}{2},\frac{a+b}{2}))$ is open in X, which contains A. Likewise, $g'^{-1}((\frac{a+b}{2},b+\frac{a+b}{2}))$ is open in X, which contains B. Notice that as g' is a function those two open sets are disjoint. Therefore, we have shown that A and B have neighborhoods that are disjoint. Since X is Tychonoff as well, X is normal.

Question 2. Royden 12-6.

6. Let (X, \mathcal{T}) be a normal topological space and \mathcal{F} the collection of continuous real-valued functions on X. Show that \mathcal{T} is the weak topology induced by \mathcal{F} .

Solution. Let $x \in X$. Consider a neighborhood $U_x \in \mathcal{T}$. It follows that $X \setminus U_x$ is closed in \mathcal{T} . As normal topological spaces are Tychnoff, and single points are closed in Tychnoff spaces, we have $\{x\}$ is closed in \mathcal{T} . Then, by the Urysohn's lemma, we have a continuous real-valued function $f: X \to [a,b]$ such that $f(\{x\}) = a$ and $f(X \setminus U_x) = b$. Note that $f \in \mathcal{F}$. Then, for a fixed ϵ such that $b-a>\epsilon>0$, as $(a-\epsilon,a+\epsilon)$ is an open set in \mathbb{R} , we have $f^{-1}((a-\epsilon,a+\epsilon))$ is a basic open set of the weak-topology, as f is continuous and it's a finite intersection of the inverse image of an open set. Observe that as $f(X \setminus U_x) = b$, we have $f^{-1}((a-\epsilon,a+\epsilon)) \cap X \setminus U_x = \emptyset$. Hence $f^{-1}((a-\epsilon,a+\epsilon)) \subseteq U_x$. Therefore, we have found a basic open set of x in the weak topology contained in U_x . Hence, we have that the basis of weak-topology is a collection of open sets in \mathcal{T} , such that for each x and each neighborhood of x, U_x , there is an element of the basis of

weak-topology, that is contained in U_x . Therefore, the basis of weak-topology, induced by \mathscr{F} is a also basis of the strong topology. Hence, in this case, the strong topology \mathscr{T} is the weak-topology induced by \mathscr{F} .

Question 3. Royden 12-27.

27. For $f, g \in C[a, b]$, show that f = g if and only if $\int_a^b x^n f(x) dx = \int_a^b x^n g(x) dx$ for all n.

Solution. Assume that f = g. Fix n. As $f, g \in C[a, b]$, $x^n \in C[a, b]$. and multiplication of continuous function is continuous, we have that $x^n f$ and $x^n g$ are continuous. As continuous functions on compact domain is integrable, by the linearity of integration, we have

$$\int_a^b x^n f(x) dx - \int_a^b x^n g(x) dx = \int_a^b x^n (f - g)(x) dx$$

As f = g, f - g(x) = 0 for all $x \in [a, b]$. It follows that

$$\int_a^b x^n f(x) dx - \int_a^b x^n g(x) dx = 0,$$

from which we obtain

$$\int_a^b x^n f(x) dx = \int_a^b x^n g(x) dx.$$

Since n was arbitrary, we have that the above equality holds for all n. Conversely, assume that $\int_a^b x^n f(x) dx = \int_a^b x^n g(x) dx$ for all n. By appealing to the linearity of integration, we see that

$$\int_{a}^{b} p(f-g)(x)dx = 0,$$

for any polynomial p defined on [a, b]. We claim that

$$\int_{a}^{b} (f-g)^{2}(x)dx = 0,$$

which will imply that f=g almost everywhere immediately. By Weiestrass Approximation theorem, we can choose a sequence of polynomials p_n such that

$$|p_n - (f - g)| < \frac{1}{n}.$$

It follows that $\{p_n(f-g)\}$ converges to $(f-g)^2$ pointwise everywhere on [a,b]. As $|p_n-(f-g)|<1$ for all n on [a,b]. As f-g is a continuous function defined on a compact subset of $\mathbb R$, by the extreme value theorem, there exists M>0 such that |f-g|< M on [a,b]. It follows that g(x)=M(M+1) on [a,b] is integrable and dominates $\{p_n(f-g)\}$. Hence, by the Dominated Convergence theorem, we have

$$\int_{a}^{b} (f-g)^{2}(x)dx = \lim_{n \to \infty} \int_{a}^{b} p_{n}(f-g)(x)dx.$$

Since $\int_a^b p_n(f-g)(x)dx=0$ for all n, it follows that

$$\int_a^b (f-g)^2(x)dx = 0.$$

Hence, we conclude that f=g almost everywhere. As $f,g\in C[0,1]$, and f=g almost everywhere, it follows that f=g everywhere.

Question 4. Royden 12-35.

35. Let \mathcal{A} be an algebra of continuous real-valued functions on a compact Hausdorff space X that separates points. Show that either $\overline{\mathcal{A}} = C(X)$ or there is a point $x_0 \in X$ for which $\overline{\mathcal{A}} = \{f \in C(X) \mid f(x_0) = 0\}$. (Hint: If $1 \in \overline{\mathcal{A}}$, we are done. Moreover, if for each $x \in X$ there is an $f \in \mathcal{A}$ with $f(x) \neq 0$, then there is a $g \in \mathcal{A}$ that is positive on X and this implies that $1 \in \overline{\mathcal{A}}$.)

Solution. Consider

$$\mathscr{S} = \{f^{-1}(O) \mid f \text{ is continuous, and } O \text{ is open in } \mathbb{R}\}.$$

Question 5. Royden 13-8.

8. A nonnegative real-valued function $\|\cdot\|$ defined on a vector space X is called a **pseudonorm** if $\|x+y\| \le \|x\| + \|y\|$ and $\|\alpha x\| = |\alpha| \|x\|$. Define $x \cong y$, provided $\|x-y\| = 0$. Show that this is an equivalence relation. Define $X/_{\cong}$ to be the set of equivalence classes of X under \cong and for $x \in X$ define [x] to be the equivalence class of x. Show that $X/_{\cong}$ is a normed vector space if we define $\alpha[x] + \beta[y]$ to be the equivalence class of $\alpha x + \beta y$ and define $\|[x]\| = \|x\|$. Illustrate this procedure with $X = L^p[a, b]$, $1 \le p < \infty$.

Solution. We show that the pseudo-norm relation is reflexive, symmetric, and transitive.

Let $x \in X$. It follows that

$$||x - x|| = ||\theta||,$$

where θ is the identity element of the linear space X. By definition of linear space, we have $\alpha \cdot \theta = \theta$ for all α . Hence, for some $\alpha > 1$, we have

$$\|\theta\| = \|\alpha \cdot \theta\|$$
$$= |\alpha| \|\theta\|.$$

As |a| > 0, we have $|\theta| = 0$. Consequently, ||x - x|| = 0. It follows that for all $x \in X$, $x \equiv x$. The relation is reflexive.

Let $x, y \in X$ and $x \equiv y$. Observe that

$$||x - y|| = ||-1 \cdot (y - x)||$$

= |-1|||y - x||
= ||y - x||.

As $x \equiv y$, which gives ||x - y|| = 0, it follows that ||y - x|| = 0 and $y \equiv x$. Hence, the relation is symmetric.

Let $x,y,z\in X$ and $x\equiv y$ and $y\equiv z$. By triangle inequality, it follows that

$$||y - z|| = ||(x - y) + (y - z)||$$

 $\leq ||x - y|| + ||y - z|| = 0 + 0 = 0.$

Hence, ||y - z|| = 0, and it follows that $x \equiv z$. Hence, the relation is symmetric. It follows that the pseudo-norm relation is an equivalence relation on the linear space X.

П

We show that X_{\equiv} is a normed vector space. Firstly, we check that the defined norm is well defined. Let $x, y \in X$, such that $x \equiv y$. It follows that ||x - y|| = 0. Hence, ||x|| = ||y||, and it follows that ||x|| = ||y||. The norm is well-defined.

- 33. Let X be a linear subspace of C[0, 1] that is closed as a subset of $L^2[0, 1]$. Verify the following assertions to show that X has finite dimension. The sequence $\{f_n\}$ belongs to X.
 - (i) Show that X is a closed subspace of C[0, 1].
 - (ii) Show that there is a constant $M \ge 0$ such that for all $f \in X$ we have $||f||_2 \le ||f||_{\infty}$ and $||f||_{\infty} \le M \cdot ||f||_2$.
 - (iii) Show that for each $y \in [0, 1]$, there is a function k_y in L^2 such that for each $f \in X$ we have $f(y) = \int_0^1 k_y(x) f(x) dx$.
 - (iv) Show that if $\{f_n\} \to f$ weakly in L^2 , then $\{f_n\} \to f$ pointwise on [0,1].
 - (v) Show {f_n} → f weakly in L², then {f_n} is bounded (in what sense?), and hence {f_n} → f strongly in L² by the Lebesgue Dominated Convergence Theorem.
 - (vi) Conclude that X, when normed by || · ||₂, has a compact closed unit ball and therefore, by Riesz's Theorem, is finite dimensional.

Question 6. Royden 13-33.

Solution. Consider

 $\mathscr{S} = \{f^{-1}(O) \mid f \text{ is continuous, and } O \text{ is open in } \mathbb{R}\}.$