第五章 核酸化学

本章内容

核酸的概念、分类和功能

- ●核酸的组成及分子结构
- DNA的结构 RNA的结构 核酸的理化性质与分离、分析 核酸的应用研究

第一节核酸的概念、分类和功能

研究历史

- * 染色质 chromatin和染色体chromosome
- * 米歇尔 (F. Miescher, 1844~1895)
- * 柯塞尔 (A. Kossel, 1853~1927)
- * A. Levene与A. Jacobs
- * 四核苷酸学说

* 1930~40年代Caspersson及其它人采用了超速离心、 过滤、光吸收等方法测得DNA分子的分子量是50 万到100万,比以前测得的1500大两个数量级;

* 1944年美国微生物学家艾弗里(O.T. Avery)、麦克劳(C. M. Macleod)和麦卡蒂(McCarthy)采用肺炎球菌转化实验证实了遗传物质是DNA,不是

蛋白质。

- * 1953年,沃森和克里克(Watson and Click)提出了DNA的双螺旋结构,1962年获得诺贝尔奖;
- * 现已证明,除了少数病毒以RNA为遗传物质外, 多数生物体的遗传物质是DNA

第二节 核酸的组成及分子结构

元素组成

* C, H, O, N, P

* P元素的含量较多并且恒定,约占9~11%

核酸的结构组成

一、戊糖

* DNA: 脱氧核糖

* RNA: 核糖

二、碱基 (嘌呤和嘧啶)

* 主要碱基: A、G、C、U、T

嘌呤

腺嘌呤

鸟嘌呤

嘧啶

胞嘧啶

尿嘧啶

胸腺嘧啶

稀有碱基

- * 主要碱基的衍生物
- * tRNA中含量较多

三、核苷

- *核苷是核糖或者脱氧核糖和嘌呤碱基或者 嘧啶碱基生成的糖苷
 - *核糖核苷: A、G、C、U

* 脱氧 (核糖) 核苷: dA、dG、dC、dT

核苷的反式构象

*碱基平面与戊糖平面垂直

稀有核苷 (修饰核苷)

- * 次黄嘌呤核苷 (肌苷) I
- * 黄嘌呤核苷X

四、核苷酸

* 核苷的磷酸酯

脱氧核苷-5'-磷酸

* 核糖: 2', 3', 5'

*脱氧核糖: 3', 5'

* 单磷酸酯: AMP、dAMP

核苷酸的表示方法

* pA: 5'-腺苷酸

* A_p: 3'-腺苷酸

* $G_P^{2'}$: 2'-鸟苷酸

多磷酸核苷

- * ATP
- * CTP
- * UTP
- * GTP
- * TTP
- * NAD
- * FAD

环核苷酸

- * 在动植物细胞中还存在少量的环式核苷酸,即核苷酸的5′-磷酸与核糖分子上C-3′的羟基结合成环,如3′,5′-环腺苷酸(cAMP)、3′,5′-环鸟苷酸(cGMP)。
- * 某些激素可以改变细胞内cAMP的合成速率,引起 cAMP浓度的变化,进而影响细胞的通透性和某些 酶的活性,从而使细胞产生特异性的反应。

五、核酸

* 3′,5′-磷酸二酯键

* 主链: 磷酸和戊糖

* 侧链: 碱基

* 一级结构: 核苷酸残

基的排列顺序

1、核酸的书写

- * 从左向右书写和阅读,表示的碱基序列从5'到3'
 - * 通常链的5'末端含有游离的磷酸基团,3'末端含有游离的羟基

pGGTA_{OH}

GGTA

2、核酸的水解

- * 酸水解
 - * 易导致N-糖苷键水解和碱基脱氨
- * 碱水解
- * 酶水解
 - * 外切酶
 - * 内切酶

1) 碱水解

- * RNA用 0. 3mo1/L NaOH在37℃处理16hr可完 全降解,得到2′-核苷酸和3′-核苷酸
- * DNA在此条件下不发生水解

2) 酶水解

- * 核糖核酸酶、脱氧核糖核酸酶
- * 内切酶、外切酶

第三节 DNA的结构

一、DNA的一级结构

* 定义: 脱氧核糖核苷酸在 DNA分子中的排列顺序 (序列)

二、DNA的二级结构

- * 1、DNA双螺旋结构的理论基础
 - * 1944年艾弗里 (0. T. Avery) 的肺炎球菌 转化实验
 - * 1952年,伦敦皇家学院的M. Wilkins和R. Franklin的DNA X射线衍射图像
 - *1951年,恰伽夫 (Chargaff)证明在任何类型的生物中腺嘌呤A和胸腺嘧啶T的比值以及鸟嘌呤G和胞嘧啶C的比值总是接近于1

2、DNA双螺旋结构的要点

*①两条反向平行的脱氧核糖核苷酸链,磷酸核糖骨架在外,碱基在内;

* ②两条链上的碱基互补配对: A-T, G-C

DNA Basepairs

Adenosine-Thymidine (Adenine-Thymine)

* ③碱基平面与双螺旋的中心轴垂直,糖环平面

与中心轴平行;

- * ④双螺旋结构表面形成 两条螺旋形的凹槽,一 条深且宽,称为大沟或 深沟,另一条浅而窄, 称为小沟或浅沟。
- * 大沟和小沟是蛋白质和 DNA相互识别、结合的 部位

- * ⑤ 结构参数
- * B型:右手双螺旋,直径 2nm,螺距3.4nm,10核苷酸 /螺圈

DNA双螺旋的不同类型

* A-DNA: 相对湿度为75%的DNA钠盐

* B-DNA: 相对湿度为92%的DNA钠盐

* Z-DNA: 人工合成的DNA片断

* B型最稳定

表 2-2 双螺旋 DNA 的类型

类 型	旋转方向	螺旋直径 (nm)	螺 距 (zum)	每转碱基 对数目	碱基对向垂直 距离(nm)	碱基对与 水平面倾角
A-DNA	右	2.3	2.8	11	0.255	20°
B-DNA	右	2.0	3.4	10	0.34	000
Z-DNA	左	1.8	4.5	12	0.37	7°

3、稳定DNA 双螺旋结构的作用力

疏水作用力:轴向平行相邻的碱基平面自发地相互靠近,形成疏水作用力(也叫碱基堆积力),是稳定DNA结构的主要作用力;

氢键: G-C间形成3对氢键, A-T间形成 两对氢键;

离子键: 磷酸残基上的负电荷与介质中的正离子(如Na+, K+等)之间形成离子键。

三、DNA的三级结构

- * DNA双螺旋结构的进一步扭曲,压缩 DNA分子体积;
 - * 超螺旋

四、DNA的四级结构

- *核苷由核糖与碱基以____键相连组成,由X 光衍射证明在核苷中碱基平面与糖环平面 相___。
- * 核糖核酸RNA碱水解的产物是:
- * (a)5'-核苷酸
- * (c)核苷

- (b)2'和3'-核苷酸
- (d) 寡聚核苷酸

- * 关于B型DNA双螺旋模型的叙述,错误的是()
- * A、两条链方向相反
- * B、是一种右手螺旋结构,每圈螺旋包括10个碱基对
- * C、两条链间通过碱基间氢键保持稳定
- * D、碱基平面位于螺旋外侧

- * B型DNA双螺旋结构的两条链是__平行,其螺距为__,每个螺旋含有的碱基对数为___。
- * DNA双螺旋结构中链的骨架是由___和
- * ___组成,并处于螺旋的外侧,而碱基平面则处于螺旋的内侧,并与螺旋的轴相___。
- * 从E. coli中分离得到的DNA含有20%的腺嘌呤,那么T=__%,G+C=__%

* λ噬菌体的DNA长17μm, 其变种的DNA15μm, 求 变种DNA失去了多少对碱基?

是到