Geochem Dataset : QAQC for Machine Learning

NIXIS CARRERO | 30TH SEPT 2025

Table of Content

- 1. Purpose statement
- 2. Data & Methodology
- 3. Conclusion
- 4. Appendix

What are we talking

about?

Objective

- -Can we use the same geochemical data and labels to generate a predictive model for future drill holes which can label samples on whether they are in class A or class B?
- -More data has been acquired since the geochemist completed her work - can we predict labels onto these data points (labelled "?").

Data Methodology

The Data

-Data Summary:

Samples: 4,771

Assays (8): As, Au, Pb, Fe, Mo, Cu, S, Zn

Labels: A, B, ?

Metadata: Unique_ID, holeid, from, to

-Issues Detected

- Wrong datatype
- Missing values (notably As ~31%)
- Truncated values at detection limits (e.g., "<0.005")

Class

Rock classification label (target variable) A

• Invalid placeholders (e.g., -999)

(477	71, 13)				Geochem assays								1
	Unique_ID	holeid	from	to	As	Au	Pb	Fe	Мо	Cu	s	Zn	Class
0	A04812	SOLVE003	561	571.0	NaN	0.066	1031.00	61380.0	138.2000	3.600	3586.0000	43.6000	Α
1	A03356	SOLVE003	571	581.0	NaN	0.152	1982.00	50860.0	75.4000	4.800	1822.0000	36.4000	Α
2	A04764	SOLVE003	581	591.0	NaN	0.068	1064.80	57940.0	29.2000	3.000	740.4000	36.6000	Α
3	A04626	SOLVE003	591	601.0	NaN	0.074	891.60	48620.0	63.0000	4.200	820.8000	39.6000	Α
4	A05579	SOLVE003	601	611.0	NaN	0.043125	801.25	51025.0	56.0625	4.875	745.6875	32.3125	Α
Ran Dat # 0 1 2 3 4 5 6 7 8 9 10 11	Zn	1771 entri (total 1: Non-Nu 10 4771 r 4771 r 4771 r 4771 r 476 r 476 r 476 r 476 r 476 r 476 r	ies, 03 coluull Co non-nu) to 4 imns): punt	770 Dtype object object float6 float6 float6 float6 float6 float6 float6	hole from to As Au Pb Fe 4 Mo 64 Cu S 64 Zn 64 Class 64 dtyp	<	Low pp	om values	Hole from to As Au Pb Fe Mo Cu S Zn Clas dty	ss pe: floate	0.00 0.00 0.00 0.00 31.50 0.13 0.31 1.30 0.63 0.52 0.21 0.19 0.00	
12 dty	types: float64(8), int64(1), object(4)									rted in %			
_	Zn	Zinc ass	ay (ppn	1)			43.6	ppm le	vel, consiste	ent rang	es		

Imbalanced distribution (60% A, 24% B, 15% unknown)

Replace with placeholder NaN + flag

Data Cleaning

- -True **missing values** may arise from **unsaved intervals or lab reporting gaps** (e.g., <-999).
- -Some assay results are reported as truncated values (e.g., <0.005), meaning the true concentration is below the detection limit (DL).
- Use imputation methods fill values in a statistically consistent way.
- Use flags keep as much information as possible without losing valuable samples

EDA (Exploratory Data Analysis)

- -Histograms reveal the shape of the data, highlight skewness and outliers.
- Transforming to log space reduced skew and clarified patterns in the geochemical assays, but not all elements behave the same some are stable, while others need extra care.
- -Violin plots reveal the spread and distribution of each element, making patterns and outliers easy to compare across multiple elements in a single view.

EDA (Exploratory Data Analysis)

- -Heatmap: shows correlations between elements (positive and negative), highlighting pairs like Pb-Mo and Cu-Zn that move together.
- -Scatter plots: show relationships by sample and class, useful for confirming patterns and detecting artifacts (e.g., As below detection limit).

EDA (Exploratory Data Analysis)

- -Class distribution: Dataset is imbalanced (~60% Class A), which could bias models → balancing strategies needed.
- -PCA analysis: Partial A vs B separation (PC1+PC2 ≈ 52% variance); overlap suggests enrichment with geological/spatial features for stronger predictive models.

Conclusions

Conclusions

reliable machine learning.

QAQC is not optional. Clean data is the foundation of

Smart preprocessing, like log transforms and structured imputation rules, makes complex g data interpretable and usable without losing traceability.

Predictive labeling is promising, but the dataset by itself is not enough.

To scale, we need richer data and more context.

"Clean data enables insight — but robust predictive models require richer datasets"

