Regression and Classification

Where are we?

Lectures 1-5: Intuition for statistics, visualization of regression, ANOVA

Where are we?

Lectures 1-5: Intuition for statistics, visualization of regression, ANOVA

Today (Lecture 6): Regression and classification

Where are we?

Lectures 1-5: Intuition for statistics, visualization of regression, ANOVA

Today (Lecture 6): Regression and classification

Lecture 7: Classification and Overfitting

Lecture 8: Dimensionality reduction (principal component analysis)

Lecture 9: Dimensionality reduction (PCA and tSNE)

Lecture 10: Clustering (PCA, k-means)

Last two days: Class project

regression vs. classification

example 1: age, amount of coffee, time of day → reaction time

example 1: age, amount of coffee, time of day → reaction time

example 2: image (pixel intensities) → object

example 1: age, amount of coffee, time of day → reaction time

example 2: image (pixel intensities) \rightarrow object

example 3: image (pixel intensities) → response of visual cortical neuron

example 1: age, amount of coffee, time of day → reaction time

example 2: image (pixel intensities) → object

example 3: image (pixel intensities) → response of visual cortical neuron

example 4: responses of visual cortical neuron \rightarrow orientation of sinusoidal grating

Linear regression

$$y = \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_N X_N$$

$$y = \beta^T X$$

$y = \beta^T X$

intuition: linear regression finds an axis in X that predicts y

$y = \beta^T X$

intuition: linear regression finds an axis in X that predicts y

Let's play with linear regression in Python!

- should really be called "logistic classification"

- should really be called "logistic classification"
- instead of outputting a real value, it outputs a probability that X is in some class y=K

- should really be called "logistic classification"
- instead of outputting a real value, it outputs a probability that X is in some class y=K
- intuition is straightforward for 2 classes (i.e., clusters)

- should really be called "logistic classification"
- instead of outputting a real value, it outputs a probability that X is in some class y=K
- intuition is straightforward for 2 classes (i.e., clusters)
- extends nicely to K classes, where K > 2

Logistic regression: How to output 0 or 1?

Logistic regression: How to output 0 or 1?

recall linear regression: $y = \beta^T X$

recall linear regression: $y = \beta^T X$ let's pass the output through a nonlinearity: $y = g(\beta^T X)$, where $0 \le g(\cdot) \le 1$

Logistic regression recall linear regression: $y = \beta^T X$

for logistic regression:

where $0 \le g(\cdot) \le 1$

 $P(y=1|\mathbf{x}) = \frac{1}{1+e^{-\beta^T \mathbf{x}}}$

let's pass the output through a nonlinearity: $y = g(\beta^T X)$,

 $P(y=1|\mathbf{x})$

Let's practice logistic regression in Python!