

Arsenic Sensor

Designing a low cost, sensitive method for detecting arsenic in water using colorimetry and spectrometry.

Arsenic detection in drinking water is critical.

The original method proposed was expensive, complicated, and hazardous.

We attempted an alternative and more promising method.

This method claimed to remove phosphate interference.

Ion	Tolerant limit/ mg l ⁻¹	Molar ratio (foreign ion/As)	As found ^a / μg l ⁻¹	Recovery, % 98	
Na ⁺	450	15000	98		
K^+	936	18000	96	96	
Ca ²⁺	280	5000	101	101	
Mg^{2+}	163	5000	101	101	
Cu^{2+}	100	1200	98	98	
Mn ²⁺	119	1400	98	98	
Zn^{2+}	102	1200	98	98	
Fe^{3+}	87	1200	96	96	
$A1^{3+}$	300	8000	96	96	
Cl-	690	15000	96	96	
NO_3^-	507	5000	98	98	
SO ₄ ²⁻	375	3000	96	96	
SiO ₃ ²⁻	$30^{\rm b}$	700	98	98	
PO_4^{3-}	50°	800	105	105	

a. Average of three replicate analyses; As taken, 100 μ g l⁻¹ (1.3 \times 10⁻⁶ mol l⁻¹).

b. With masking using sodium fluoride.

c. With pretreatment using anion-exchange resin.

It was safer than other proposed methods.

$$H_{3}AsO_{4} + molybdate \xrightarrow{HCl} AsMo_{12}O_{40}^{3-}$$

$$EV^{+} + AsMo_{12}O_{40}^{3-} \xrightarrow{} [(EV)_{3} AsMo_{12}O_{40}] agg.$$

$$\downarrow H^{+}$$

$$HEV^{2+} \xrightarrow{H_{2}O} H_{2}EVOH^{2+}$$

$$\downarrow H^{+}$$

$$H_{2}EV^{3+} \xrightarrow{H_{2}O} H_{3}EVOH^{3+}$$

$$(4)$$

Scheme 1 Reaction scheme.

Inconsistent results arose from AguaClara the order of chemicals added.

UV-Vis spectra highlighted inconsistencies.

UV-Vis spectra highlighted inconsistencies.

Future Tasks

- Look into other proposed methods for UV-Vis detection of arsenic in water that are comparable in cost and safety.
- Consider projects on arsenic removal.

Questions and Recommendations

Kevin Juan B.S. Chemical Engineering kj89@cornell.edu Dylan Vu
B.S. Chemical Engineering
dv236@cornell.edu

Kelly Stefanski
MEng. Civil and Environmental Engineering
kas556@cornell.edu

Appendix Slides

Materials Required for Original Procedure

- 50 ppb Arsenite (As (III))
- Potassium Monobasic Anhydrous500g
- Potassium Iodate Reagent >98%Grade 100g
- 37% HCl Solution ACS Reagent Grade 500mL
- Sodium Metabisulfite >99% 500g
- Sodium Thiosulfate 99% 250g

- Sulfuric Acid ACS Grade
 95.0-98.0% 500mL
- L-Ascorbic Acid Reagent 100g
- Ammonium Molybdate Tetrahydrate
 ACS Reagent 81.0-83.0% 100g
- Potassium Antimony Tartrate
 Hydrate >99% 500g

Cost > \$500

Analysis of Materials for Second Method

Method 2							
Chemical	molecular weig	Cost	Safety Precautions	Stock Concentration		Sample Concentration (M)	Sample Concentration (mg/L)
<u>KIO3</u>	214.001	\$40/100g	Acute Toxicity and oxidizing agent	0.05	100	9.55E-05	20.4
<u>HCI</u>	36.46094	\$30/500mL	Corrosive; dangerous fumes at high concentration	0.1	1000	1.91E-03	69.6
(NH4)6Mo7O24·4H2O	1235.9975	\$40/100g	Acute toxicity; minor irritant	0.0315	150	9.02E-05	111.5
Ethyl Violet	492.15	\$75/100g		0.0013	100	2.48E-06	1.2
Bis-Tris Buffer pH 7.4	?	\$50/100mL		0.1	1000	1.91E-03	?
NaF (Only if Silica is an issue)	41.99	\$50/250g	Acute toxicity; irritant	1	6	1.15E-04	4.8
Amberlite IRA-400 Resin	?	\$60/500g		N/A	N/A		
Total		\$345		total volume (µl)	52356		
Cost Per 50mL (based on the recipe)		?			0.052356		
10mL Polypropylene Column							
*Phosguard Possibility; cheap; mostly for use in fish tanks; aluminum	<u>oxide</u>						
NaCl for pretreating resin		\$40/1kg					
Glass Chromatography column 8mL							