Análisis Matemático II

Tema 10: Teorema Fundamental del Cálculo

- 1 La integral indefinida
- Derivación de integrales
- Section Function Section Se
- 4 Integración de derivadas
- 6 El teorema general

Notación clásica para la integral de Lebesgue en ${\mathbb R}$

Notación

En lo que sigue fijamos un intervalo no trivial $J \subset \mathbb{R}$. Escribimos:

$$\alpha = \inf J$$
 si J está minorado, y $\alpha = -\infty$ en otro caso.

Análogamente, $\,\beta = \sup J\,$ o $\,\beta = +\infty\,$, según que $\,J\,$ esté mayorado o no.

Para $f \in \mathcal{L}^+(J)$, o bien $f \in \mathcal{L}_1(J)$, escribimos

$$\int_{\alpha}^{\beta} f(x) \, dx = \int_{J} f$$

Para $f \in \mathcal{L}_1(J)$ también escribimos

$$\int_{\beta}^{\alpha} f(x) dx = -\int_{\alpha}^{\beta} f(x) dx$$

y finalmente: $\int_{-a}^{a} f(x) dx = 0 \quad \forall a \in J$

Funciones localmente integrables y relación con las integrables

Una función medible $f: J \to \mathbb{R}$ es localmente integrable en J, cuando f es integrable en todo intervalo compacto $K \subset J$, y denotamos por $\mathcal{L}_1^{\text{loc}}(J)$ al conjunto de tales funciones. $\mathcal{L}_1^{\mathsf{loc}}(J)$ es un subespacio vectorial de $\mathcal{L}(J)$ que contiene a $\mathcal{L}_1(J)$. Si K es un intervalo compacto, se tiene obviamente $\mathcal{L}_1^{\mathsf{loc}}(K) = \mathcal{L}_1(K)$

Ejemplos y relación con las integrables

- $f: J \to \mathbb{R}$ medible y acotada \Longrightarrow $f \in \mathcal{L}_1^{\mathsf{loc}}(J)$
- Tomando f(x) = 1 para todo $x \in J$ se tiene $f \in \mathcal{L}_1^{\mathsf{loc}}(J)$, pero $f \in \mathcal{L}_1(J) \iff J$ está acotado
- $f: J \to \mathbb{R}$ continua \Longrightarrow $f \in \mathcal{L}_1^{\mathsf{loc}}(J)$
- Si J =]0,1] y $\varphi(x) = 1/x \ \forall x \in J$, se tiene: $\varphi \in \mathcal{L}_1^{\mathsf{loc}}(J) \setminus \mathcal{L}_1(J)$ No se puede definir $\varphi(0)$ para tener $\varphi \in \mathcal{L}_1^{\mathsf{loc}}(\overline{J})$

La integral indefinida

Dada $f \in \mathcal{L}_1^{loc}(J)$, y fijado un punto $a \in J$,

la integral indefinida de f con origen en a

es la función $F:J \to \mathbb{R}$ dada por: $F(x) = \int^x f(t) \, dt \quad \forall \, x \in J$

Aditividad de la integral indefinida

Si $f \in \mathcal{L}_1^{loc}(J)$, para cualesquiera $a, b, c \in J$ se tiene:

$$\int_a^b f(x) dx = \int_a^c f(x) dx + \int_a^b f(x) dx$$

Por tanto, la diferencia entre dos integrales indefinidas de f es constante

Una propiedad clave de la integral indefinida

Sea $f \in \mathcal{L}_1^{loc}(J)$ y F una integral indefinida de f.

Si f es continua en un punto $x \in J$, entonces

F es derivable en el punto x, con F'(x) = f(x).

Versión elemental del teorema

Versión elemental del Teorema Fundamental del Cálculo

Sea $f:J\to\mathbb{R}$ una función continua y F una integral indefinida de f . Entonces F es una función de clase C^1 en J ,

con F'(x) = f(x) para todo $x \in J$.

Derivación e integración como operaciones inversas

Sea $\,C_a^{\,1}(J)\,$ el espacio vectorial formado por las funciones de J en \mathbb{R} , que son de clase $\,C^{\,1}\,$ en $\,J\,$ y se anulan en un punto fijo $\,a\in J\,$,

y $\,C(J)\,$ el formado por las funciones continuas de $\,J\,$ en $\,\mathbb{R}\,.$

La aplicación $\mathcal{D}:C^1_a(J)\to C(J)$ definida por $\mathcal{D}(F)=F'$ $\forall F\in C^1_a(J)$ es un operador lineal inyectivo

El teorema anterior afirma que $\,\mathcal{D}\,$ es biyectivo,

y su inverso es el operador lineal $\mathcal{I}:C(J)\to C^1_a(J)$ dado por

$$\mathcal{I}(f)(x) = \int_{-\infty}^{x} f(t) dt \quad \forall x \in J, \ \forall f \in C(J)$$

Preparativos para la derivación de integrales

Una observación fácil sobre la integral indefinida

Si $g \in \mathcal{L}_1^{\mathsf{loc}}(J)$ no toma valores negativos, toda integral indefinida de g es una función creciente.

Por tanto, si $f \in \mathcal{L}_1^{\mathrm{loc}}(J)$ y $F: J \to \mathbb{R}$ es una integral indefinida de f, entonces F se expresa como diferencia de dos funciones crecientes, luego F tiene variación acotada en cada intervalo compacto $K \subset J$.

Un teorema de Fubini sobre series de funciones

En lo que sigue fijamos un intervalo compacto $\ K = [a,b] \subset \mathbb{R} \ \ \mbox{con} \ \ a < b \, .$

Para cada $n\in\mathbb{N}$, sea $f_n:K\to\mathbb{R}$ una función creciente, supongamos que la serie $\sum_{n\ge 1}f_n$ converge puntualmente en K,

y denotemos por $f:K\to\mathbb{R}$ a su suma. Se tiene entonces:

$$f'(x) = \sum_{n=1}^{\infty} f'_n(x)$$
 p.c.t. $x \in K$

Derivación de integrales

Forma en que se usa el teorema anterior

Sea $\varphi:K o\mathbb{R}_0^+$ una función integrable

y $\{\varphi_n\}$ una sucesión de funciones medibles positivas, que converja a φ puntualmente en K. Escribimos:

$$\Phi(x) = \int_a^x \varphi(t) \, dt \quad \text{y} \quad \Phi_n(x) = \int_a^x \varphi_n(t) \, dt \quad \forall \, x \in K \,, \quad \forall \, n \in \mathbb{N}$$

Suponiendo que, para cada $n\in\mathbb{N}$, se tiene $\Phi_n'(x)=\varphi_n(x)$ p.c.t. $x\in K$,

entonces también se tiene: $\Phi'(x) = \varphi(x)$ p.c.t. $x \in K$.

Teorema de derivación de integrales

Dado un intervalo no trivial $J \subset \mathbb{R}$,

sea $F:J \to \mathbb{R}$ cualquier integral indefinida de una función $f \in \mathcal{L}^{\mathrm{loc}}_1(J)$.

Entonces ${\cal F}$ es derivable casi por doquier en ${\cal J}$ con

$$F'(x) = f(x)$$
 p.c.t. $x \in J$.

Una consecuencia de la continuidad absoluta de la integral

Motivación

Si $f \in \mathcal{L}_1(K)$, la integral de f es absolutamente continua:

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ : \ E \in \mathcal{M} \, , \ E \subset K \, , \ \lambda(E) < \delta \quad \Longrightarrow \quad \int_{E} |f| < \varepsilon$$

Si $\,F\,$ es cualquier integral indefinida de $\,f\,$,

vemos que F es (uniformemente) continua en K. Pero más aún:

Si $n\in\mathbb{N}$ y $\big\{\,]\,a_k\,,\,,b_k\,[\,:\,k\in\Delta_n\,\big\}$ es una familia de intervalos abiertos

no vacíos, dos a dos disjuntos, contenidos en K y con $\sum_{k=1}^n (b_k - a_k) < \delta$,

entonces se tiene:
$$\sum_{k=1}^{n} \left| F(b_k) - F(a_k) \right| < \varepsilon$$

Funciones absolutamente continuas

Definición

Una función $F:K\to\mathbb{R}$ es absolutamente continua cuando para cada $\varepsilon>0$, existe un $\delta>0$ verificando la siguiente condición:

si $n\in\mathbb{N}$ y $\big\{\,]\,a_k\,,\,,b_k\,[\,:\,k\in\Delta_n\,\big\}$ es una familia de intervalos abiertos no vacíos, dos a dos disjuntos y contenidos en K, se tiene:

$$\sum_{k=1}^{n} (b_k - a_k) < \delta \qquad \Longrightarrow \qquad \sum_{k=1}^{n} \left| F(b_k) - F(a_k) \right| < \varepsilon$$

Aditividad de la variación total

Para toda partición $P = \{a = x_0 < x_1 < \ldots < x_n = b\} \in \Pi(a,b)$

y toda función
$$F:K \to \mathbb{R}$$
 se tiene: $V(F;a,b) = \sum_{k=1} V(F;x_{k-1},x_k)$

Relaciones con otros tipos de funciones

- Toda función absolutamente continua $F:K \to \mathbb{R}$ es de variación acotada
- ullet Toda función lipschitziana $F:K o\mathbb{R}$ es absolutamente continua

Funciones definidos soci nos domicio

nes definidas casi por doquier

 $\Omega \in \mathcal{M}, \quad E \subset \Omega, \quad \lambda(\Omega \setminus E) = 0, \quad Y \quad \text{espacio topológico},$

$$f:E\to Y\,,\quad g:\Omega\to Y\quad \text{extensión de}\quad f\,,\quad A\in\mathcal{M}\cap\mathcal{P}(\Omega).$$

Se dice que $\,f\,$ está definida casi por doquier en $\,\Omega\,$

- ullet f medible \iff g medible
- $\bullet \quad \text{Cuando} \quad Y = [0, \infty] \quad : \quad \int_{A \cap E} f = \int_A g$
- Cuando $Y=\mathbb{R}$: $f\in\mathcal{L}_1(A\cap E)$ \iff $g\in\mathcal{L}_1(A)$

en cuyo caso:
$$\int_{A\cap E} f = \int_A g$$

A efectos de integración, podemos sustituir f por cualquier extensión g, olvidar el conjunto E y trabajar con f como si estuviera definida en Ω

Por ejemplo: $f \in \mathcal{L}_1(\Omega) \stackrel{\mathsf{def}}{\Leftrightarrow} g \in \mathcal{L}_1(\Omega)$ en cuyo caso $\int_{\Omega} f \stackrel{\mathsf{def}}{=} \int_{\Omega} g$

Integración de derivadas

Una observación sencilla

Toda función de variación acotada $F: K \to \mathbb{R}$ es medible

Invariancia por traslaciones de la integral

Fijado
$$c \in \mathbb{R}$$
, sea $H = K + c$ y $f \in \mathcal{L}_1(H)$.

Consideremos la función $q: K \to \mathbb{R}$ dada por $q(x) = f(x+c) \ \forall x \in K$.

Entonces, g es integrable en K y su integral coincide con la de f en H:

$$\int_{a}^{b} f(x+c) dx = \int_{a+c}^{b+c} f(x) dx$$

Teorema de integración de derivadas

Dado un intervalo no trivial $J \subset \mathbb{R}$, supongamos que una función $F: J \to \mathbb{R}$ tiene variación acotada en cada intervalo compacto $K \subset J$.

Entonces F' es localmente integrable en J.

Dos resultados previos y un caso particular

Continuidad creciente de la medida exterior de Lebesgue

Si $\{E_n\}$ es una sucesión de subconjuntos de \mathbb{R}^N , entonces $\{E_n\}\nearrow E \implies \{\lambda^*(E_n)\}\nearrow \lambda^*(E)$

Una propiedad clave de las funciones absolutamente continuas

Dado un intervalo compacto $K\subset\mathbb{R}$, sea $F:K\to\mathbb{R}$ absolutamente continua.

$$A \subset K$$
, $\lambda(A) = 0 \implies \lambda(F(A)) = 0$

Un caso particular del teorema

Dado un intervalo compacto $\ K\subset\mathbb{R}$, sea $\ F:K\to\mathbb{R}$ absolutamente continua.

Si F'(x) = 0 p.c.t. $x \in K$, entonces F es constante

Teorema Fundamental del Cálculo

Dado un intervalo no trivial $J \subset \mathbb{R}$, sea $F: J \to \mathbb{R}$ una función tal que

$$F\big|_K$$
 es absolutamente continua, para todo intervalo compacto $K\subset J$.

Entonces $\,F\,$ es derivable casi por doquier en $\,J\,$,

 F^{\prime} es localmente integrable en J, y se verifica que:

$$\int_{a}^{b} F'(t) dt = F(b) - F(a) \qquad \forall a, b \in J$$

Interpretación análoga a la del teorema elemental

De nuevo: derivación e integración como operaciones inversas

Fijamos un intervalo no trivial $J\subset\mathbb{R}$ y un punto $a\in J$

 $AC_a(J)$ espacio vectorial de las funciones de J en \mathbb{R} , absolutamente continuas en cada intervalo compacto $K \subset J$, y que se anulan en a.

 $\mathcal{N}(J) = \left\{ f: J \to \mathbb{R} \ : f = 0 \ \text{ c.p.d. en } \ J \right\} \text{ subespacio vectorial de } \ \mathcal{L}_1^{\text{loc}}(J)$ $L_1^{\text{loc}}(J) = \mathcal{L}_1^{\text{loc}}(J) \, / \, \mathcal{N}(J) \quad \text{espacio vectorial cociente}$

$$F \in AC_a(J) \implies F' \in \mathcal{L}_1^{\mathsf{loc}}(J) \implies \widetilde{F'} \in \mathcal{L}_1^{\mathsf{loc}}(J)$$

$$\mathcal{D}: AC_a(J) \to L_1^{\mathsf{loc}}(J)\,, \qquad \mathcal{D}(F) = \widetilde{F'} \quad \forall \, F \in AC_a(J) \quad \mathsf{operador \ lineal}$$

$$\mathcal{I}: L_1^{\mathsf{loc}}(J) \to AC_a(J)\,, \qquad \mathcal{I}\!\left(\,\widetilde{f}\,\right)\!(x) = \int_a^x \! f(t)\,dt \quad \forall \, x \in J\,, \ \, \forall \, f \in \mathcal{L}_1^{\mathsf{loc}}(J)$$

 ${\cal I}\,$ está bien definido y es lineal

Cada operador es el inverso del otro: $\mathcal{I}=\mathcal{D}^{-1}$ o bien $\mathcal{D}=\mathcal{I}^{-1}$