MARKING ON BONES MUSCLE NOMENCLATURE AND LEVER SYSTEMS

Anatomy & Physiology I

OBJECTIVES

- Bone Markings Chp. 7 Tortora
- Axial Skeleton Skull, Vertebral Column & Thorax - Chp. 7 Tortora; Moore- parts of Chps. 1, 4, 7 & 8
- Joints Chp. 9 Tortora
- Muscular System Chp. 11 Tortora; Moore- parts of Chps. 1, 4,
 7 & 8

BONE MARKINGS

See Table 7-2, p. 187 - Tortora

I.12. Vasculature and innervation of a long bone.

I.13A. Various types of joint: synovial joint.

Surface Markings

- Surface markings include all structural features visible on the surfaces of bones.
- Bones have a variety of bumps (prominences), depressions, and openings (foramina).

Surface Markings

Markings
• Surface markings appear where tendons, ligaments, and fascia (fibrous membranes) are attached to the bone; where blood vessels and nerves enter and exit the bone; and at the joints between bones.

Depressions & Openings

- Canal or Meatus: a narrow tube, channel, or passageway.
 - -Example: external auditory canal (also called external auditory meatus).
- Foramen (foramen = hole): opening through which blood vessels, nerves, or ligaments pass.
 - -Example: mental foremen of the mandible.

Depressions &

- Fossa (Fossa = basin-like depression): a hollow or depression in a bone.
 - Example: radial and coronoid fossae of the humerus.
- Groove or Sulcus (sulcus = ditch-like groove): a furrow or depression in a bone.
 - Example: intertubercular sulcus of the humerus.

Depressions & Openings

- Notch: an indentation at the edge of a bone.
 - -Example: intercondylar notch of the femur.

Processes that Form Joints

- Condyle (condyle = knuckle): a large, rounded articular prominence.
 - Example: lateral and medial condyles of the femur and tibia.
- Facet (facet = little face): a smooth, flat surface.
 - Example: articular facet of a vertebra.

Processes that Form Joints • Head: a rounded articular projection

- Head: a rounded articular projection supported on the constricted portion of a bone.
 - Examples: heads of the humerus, radius, femur, and fibula.
- Malleolus (malleus = hammer): a hammerhead -like articular projection.
 - Examples: medial and lateral malleoli of the tibia and fibula.

Processes to which Tendons, Ligaments, and other Connective Tissues Attach

Processes

- Crest: a prominent border or ridge.
 - Example: intertrochanteric crest of the femur.
- Epicondyle (epi = upon): a prominence above a condyle.
 - Examples: lateral and medial epicondyles of the humerus and femur.
- Line or Linea: a ridge less prominent than a crest.
 - Example: linea aspera of the femur.

Processes

- Spinous Process or Spine: a sharp, slender process.
 - Example: spinous process of a vertebra.
- Trochanter: a large projection found only on the femur.
 - Examples: greater and lesser trochanters of the femur.

Processes

- Tubercle: a small, rounded process.
 - Examples: greater and lesser tubercles of the humerus.
- Tuberosity: a large, rounded, usually roughened process.
 - -Examples: deltoid, radial, and gluteal tuberosities of the humerus, radius, and femur.

MUSCLE NOMENCLATUR E

FUNCTIONS OF MUSCLE

- Locomotion
- Mechanical digestion
- Propulsion
- Sphincters
- Ventilation
- Communication

Naming Skeletal Muscles

- There are about 700 skeletal muscles.
- They are named on the basis of distinctive criteria: size, shape, location, action, origin and insertion, number of origins (or heads), and direction of muscle fibers.

Naming Skeletal Muscles

- Origin: the end of a muscle that attaches to a bone that remains stationary during muscle contraction.
- Insertion: the end of a muscle that attaches to a bone that moves during muscle contraction.

(a) Origin and insertion of a skeletal muscle

Origin and Insertion

- Example: sternocleidomastoid
 - -(origin: sternum and clavicle;
 - -insertion: mastoid process).
- Example: sternohyoid
 - -(origin: sternum;
 - -insertion: hyoid bone).

Number of Origins • Biceps: two origins.

- - -Examples biceps brachii; biceps femoris.
- Triceps: three origins.
 - -Example triceps brachii.
- Quadriceps: four origins.
 - -Example: quadriceps femoris.

Group Actions

- Most movements require several skeletal muscles acting in groups.
- A group may include some combination of the following categories of muscles:
 - Prime Mover (Agonist): the muscle that produces the desired action.
 - -Antagonist: a muscle that produces an action opposite that of the prime mover.

Group Actions

- -Synergist: a muscle that assists the prime mover by reducing unnecessary movement.
- -Fixator: a muscle that stabilizes the origin of the prime mover to increase efficiency.

Size

- Maximus = largest. Example : gluteus maximus.
- Minimus = smallest. Example: gluteus minimus.
- Longus = longest. Example : adductor longus.
- Brevis = short. Example: peroneus brevis.

Shape

- Deltoid = triangular. Example : deltoid.
- Trapezius = trapezoid. Example : trapezius
- Serratus = saw-toothed.
 Example: serratus anterior.
- Rhomboideus = diamondshaped. Example: rhomboideus major.

Location

- Example: temporalis (near the temporal bone).
- Example: tibialis anterior (near the front of the tibia).
- Example : orbicularis oculi (surrounding the eye).
- Example : orbicularis oris (surrounding the mouth).

- Flexor: decreases the angle at a joint.
 - Example: flexor carpi radialis.
- Extensor: increases the angle at a joint.
 - Example: extensor carpi ulnaris.
- Abductor: moves a bone away from the midline.
 - Example: abductor longus.

- Adductor: moves a bone closer to the midline.
 - Example: adductor longus.
- Levator : produces an upward movement.
 - Example: levator ani.
- Depressor: produces a downward movement.
 - Example: depressor labii inferioris.

- Supinator: turns the palm upward or anteriorly.
 - Example : supinator.
- Pronator: turns the palm downward or posteriorly.
 - Example: pronator teres.
- Sphincter: decreases the size of an opening.
 - Example: external anal sphincter.

- Tensor: makes a body part more rigid.
 - Example: tensor fasciae latae.
- Rotator: moves a bone around its longitudinal axis.
 - Example: obturator externus.

Naming Skeletal Muscles

- Direction of Muscle Fibers
 - -Rectus: fibers run parallel to the midline of the body. Example: rectus abdominis.
 - -Transverse: fibers run perpendicular to the midline. Example: transverse abdominis.
 - -Oblique: fibers run diagonally to the midline. Example: external oblique.

Fascicle

• Relationship to muscle structure:

- -Circular Orbicularis oris
- -Convergent Pectoralis major
- -Parallel Sartorius
- -Unipennate Extensor digitorum longus
- Multipennate Deltoid
- -Fusiform Biceps brachii
- -Bipennate Rectus femoris

ARRANGEMENT OF FASCICULI

Fasciculi: bundles of skeletal muscle fibers.

Skeletal muscle fibers are arranged in a parallel fashion within each bundle, but the arrangement of the fasciculi with respect to the tendons may take several characteristic patterns: parallel, circular, fusiform, and pennate.

muscle fibers

tendon

Parallel

fasciculi are parallel with longitudinal axis of muscle and terminate at either end in flat tendons

Circular

fasciculi are arranged in a circular pattern

Fusiform

fasciculi nearly parallel with longitudinal axis and muscle tapers toward tendons

Unipennate

fasciculi are arranged on only one side of tendon

Bipennate

fasciculi are arranged on both sides of centrally positioned tendon

Multipennate

fasciculi attach obliquely from many directions to several tendons

Copyright © 2001 Benjamin Cummings, an imprint of Addison Wesley Longman, Inc.

• FIGURE 11-1 Different Arrangements of Skeletal Muscle Fibers

Muscle Mechanics

Lever System

Bone-Muscle Relationship

Terminology

- Lever: a rigid rod used to achieve leverage.
- Fulcrum: the fixed point about which a lever moves.
- Resistance: the force that opposes movement.
- Effort: the force exerted to achieve an action.

LEVER SYSTEMS

Lever Mechanisms

Distance & Velocity Amplified : muscle shortens 1 cm hand moves 7 cm

Inefficiency of Lever System: 70 kg of muscle force required to hold a 10 kg weight

Classification

- 1st Class Levers the fulcrum is between the effort and the resistance.
- 2nd Class Levers the fulcrum is at one end; the effort is at the opposite end.
- 3rd Class Levers the fulcrum is at one end; the resistance is at the opposite end.

© BENJAMIN/CUMMINGS

(c) Third-class lever

Copyright © 2001 Benjamin Cummings, an imprint of Addison Wesley Longman, Inc.

Leverage

- Leverage is the mechanical advantage gained by a lever.
- It is largely responsible for a muscle's strength and range of motion.
- Both strength and range of motion depend on the placement of muscle attachments.
- Strength and range vary inversely.

Strength

• Strength -The greater the distance between the insertion of a muscle and a joint (fulcrum), the greater the strength of the movement.

Range of Motion (ROM)

 Range of Motion (ROM) -The shorter the distance between the insertion of a muscle and a joint, the greater the range of motion and speed of movement.

Example Illustrated

Copyright @ 2001 Benjamin Cummings, an imprint of Addison Wesley Longman, Inc.

(a)

(b)

Copyright © 2001 Benjamin Cummings, an imprint of Addison Wesley Longman, Inc.