

FIG. 1A

ATGGCAAAATGGATACTGACACATTCAGCCTTACCTTCCCACCTGCCGGCTGCTGC
TACACCTTACCTTACCTTACCTTAACCGGACTCCGAAAGGGGTGACGGGGACGAGG
M W K N I L T H C A S A F P H I P G C C 60

TGCTGCCTTTTGCTCTTCTTGGTCTTCCGTCCCTGTCACCTGCCAAGCCCTT
ACGACGACAAAACAACCACAGAACAGAACAGAACAGGAGGACAGTGACGGTTCGGAA
S C C E L I F L V S S V P V T C Q A L 120

GGTCAGGACATGGTGTACCAAGGCCACCAACTCTTCTTCCCTCCTCTCCTCCT
CCAGTCCTGTACCATCACAGTGTCTCCGGTGGTTGAGAAGAACAGGAGGAGAGGA
G Q D M V S P E A T N S S S F S S P 180

TCCAGGGGGAAAGGCCATTGGGGAGCTACAAATCACCTTCAAGGAGATGTCGGAGA
AGGTGGCCCTTCCGTACACGCCCTGAGTTAGTGAAGTTCCTCTACAGGGACCTCT
S S A G R H V R S Y N H L Q G D V R W R 240

MATCH WITH FIG. 1B

MATCH WITH FIG. 1A

F I G . 1 B

AAGCTTATTCTTCAACCAAGTACTTTCTCAAGATGACAAGAACCGGAAGGTCAGGGG
241
-----+-----+-----+-----+-----+-----+-----+-----+
TTCCGATAAGAGAAAGCTGGCTTCATGAAAGAGTTCTAACTCTCTCAGTCGGCCC
K L F S F T K Y F L K I E K N G K V S G -

ACCAAGGAGAAACTGCCGTACAGCATCTGGAGATAACATCAGTAGAAATCGGAGTT
301
-----+-----+-----+-----+-----+-----+-----+-----+
TGGTTCTTCTCTGACGGCATGTCGTAGGACCTATTGTAGTCATCTTCTAGCCTCAA
T K K E N C P Y S I L E I T S V E I G V -

GTTGCCGTCAAAGCCATTAAACAGCAACTATTACTTAGCCATGAACAAGAAGGGAAACTC
361
-----+-----+-----+-----+-----+-----+-----+-----+
CAACGGCAGTTTCGGTAATTGTCGTGATAATTGAAATGGTACTTGTTCTTCCCTTGAG
V A V K A I N S N Y Y L A M N K K G K L -

TATGGCTCAAAAGAAATTAAACAAATGACTGACTGTAAGCTGAAGGAGAGGATAGAGGAAATGGA
421
-----+-----+-----+-----+-----+-----+-----+-----+
ATACCGAAGTTCTTAAATTGTTACTGACATTCGACTTCTCCTATCTCCTTTACCT
Y G S K E F N N D C K L K E R I E E N G -

MATCH WITH FIG. 1C

MATCH WITH FIG. 1B FIG. 1C

TACAATACCTATTAACTCATTTAACCTGCGGAGGATAATGGGAGGCCAATGTATGTCGCATTG
 481
 ATGTTATGGATACCTAGTAAATTGACCCGTATTACCCCTCCGTTACATACACCGTAAC
 540
 Y N T Y A S F N W Q H N G R Q M Y V A L -
 AATGGAAAAGGGAGGCTCCAGGAGGGACAGAAACACGAAAGCAAACACCCCTCTGCTCAC
 541
 TTACCTTTTCCCTCGAGGTTCCTCCTGCTTTTGCTCTGCTTCCTTCTGGAGGACTG
 600
 N G K G A P R R G Q K T R R K N T S A H -
 TTCTCTCCAATGGCTGCTACACTCATAG
 601
 AAGAAAGGTTACCACTGAGTATC
 F L P M V V H S *
 627

FIG. 2A

1	MS.GPGTAAV	ALLPAVLLAL	LA.....	PWAGRGGAA	APTAPEGTL
FGF4	MSRGAGRQLQG	TLMWALVFLGT	LV.....	GMVVPSPAG	TR.AMNTL LD
FGF6MSL	SFLLLLFFSH	LILSAWAHGE	KRLAPKGQPG	PAATDRNPTIG
FGF5
FGF1
FGF2
FGF9	MAPLGEVG	NYFGVQDAVP
FGF7	MHKW ILTWILPPLL	YRSCK	HICLIVGTTIS
RGF2	MHKW ILTHCASA AFP	HLPGCCCCF	LLFLFLVSSVP
FGF3
FGF8	MGSPRSALSC	LLIHLILVCL	QAQVRSAAQK	RGPAGNPAD	TLGQGHEDRP

51

AELEERRWESL	VALSLARILPV	AA..QPKEAA	VQSGAGDY	..LLGIKRL
FGF4	S...RGWIGTL	LSRSRAGLAG	EI..AG	VNWESG.Y..
FGF6	SSSRQSSSSA	MSSSASSSSP	AASLGSGQSG	..LVGIKRLQ
FGF5MAEG	ELTTFTALTE	LEQSSFQW..	SPSGRRRT
FGF1MAAG	SITLPAULPE	LPPG ..N..	YK..KP
FGF2MAAG	DGGSGAFPPGH..	FK..DP
FGF9	FGNVBVLPWD	SPVLLSDHLG	QSEAGGLPRG	PAVTDLH..
FGF7	LACNDMTPEQ	M...ATNVC	SSPE	..LKGTILRR
KGF2	VTQCQALGQDM	VSPEATNSSS	RHTRSYDY.	MEGGDIR
FGF3	PGWPAAGPGA	RHVRSSNH..	..LQ.GDVR
FGF8	FGQRSSRAGKN	FTNAPAPNYPE	EGSKEQRDSV	LPKVVTQRHVR
			EQSLVTDQLS	

MATCH WITH FIG. 2B

MATCH WITH FIG. 2A

FIG. 2B

101

FGF4 RRI.....YC NVGIGFHLQA LPDGRIGGAH ADT. RDSSL E LSPVERGV. V
FGF6 RRI.....YC NVGIGFHLQV LPDGRISGTH EEN. PYSSLE ISTVERGV. V
FGF5 GSI.....YC RVGIGFHLQI YPDGKVNGSH EAN. MLSVLE IFAVSSGI. V
FGF1 KLL.....YC SNG.GHFLRI LPDGTVDGTR DRSDQHIIQLQ LSÆFSVGE. V
FGF2 KRL.....YC KNG.GFFLRI HDGGRVDGVR EKSDPHIKLQ LQAERGV. V
FGF9 RQL.....YC R.T.GFHLEI FPNGTIQGTR KDHSRFGTLE FISTAVGL. V
FGF7 VRR.....LF CRT.QWYLRIT DKGKVKGTQ EMKNNNTME IRTVAVGIV. V
KGF2 WRK.....LF SFT.KYFLKI EKVGKVSGTK KENCPYSTLE ITSVETIGV. V
FGF3 RRK.....LY CAT.KYHLQL HPSERVNGSL .ENSAYSTLE ITAVEVGI. V
FGF8 RRLIRTYQLY SRTSGKHVQV LANKRINAMA EDGDPEAKLT VETDTFGSRV

150

RRI.....YC NVGIGFHLQA LPDGRIGGAH ADT. RDSSL E LSPVERGV. V
FGF6 RRI.....YC NVGIGFHLQV LPDGRISGTH EEN. PYSSLE ISTVERGV. V
FGF5 GSI.....YC RVGIGFHLQI YPDGKVNGSH EAN. MLSVLE IFAVSSGI. V
FGF1 KLL.....YC SNG.GHFLRI LPDGTVDGTR DRSDQHIIQLQ LSÆFSVGE. V
FGF2 KRL.....YC KNG.GFFLRI HDGGRVDGVR EKSDPHIKLQ LQAERGV. V
FGF9 RQL.....YC R.T.GFHLEI FPNGTIQGTR KDHSRFGTLE FISTAVGL. V
FGF7 VRR.....LF CRT.QWYLRIT DKGKVKGTQ EMKNNNTME IRTVAVGIV. V
KGF2 WRK.....LF SFT.KYFLKI EKVGKVSGTK KENCPYSTLE ITSVETIGV. V
FGF3 RRK.....LY CAT.KYHLQL HPSERVNGSL .ENSAYSTLE ITAVEVGI. V
FGF8 RRLIRTYQLY SRTSGKHVQV LANKRINAMA EDGDPEAKLT VETDTFGSRV

151

SIFGVASRFF VAMSSRGKLY G. SPFFTDEC TFKETILLPNN YNAYESYKYP
SIFGVRSALF VAMNSRGRLY A. TPSEQEEC KFRETILLPMN YNAYESDLYQ
GIRGVFSNKF LAMSKKGKLH A. SAKFTDDC KFRERFQENS YNTYASAIHR
YIKSTETGQY LAMDTDGLY G. SOTPNEEC LFLERLEBNH YNTYISKKH.
SIRGVVCANRY LAMKEDGRLL A. SKCVTDEC FFFERLESNN YNTYRSRKY.
SIRGVDSGLY LGMNEKGELY G. SEKLTOEC VFREQFEENW YNTYSSNLYK
AIRGVESEFY LAMNKECKLY A. KRECNEDC NFKEILLENH YNTYAS...
KGF2 AVKAINSYV LAMNKKGKLY G. SKEFNNDC KLKERTEENG YNTYAS...
FGF3 AIRGLFSGRY LAMNKGRRLY A. SEHYSAEC EFVERTHELG YNTYASSRLYR
FGF8 RVFGAETGGLY ICANKKGKLT AKSNNGKGKDC VFTTIVLENN YTALQNAKY.

200

MATCH WITH FIG. 2C

MATCH WITH FIG. 2B

201

FGF4	GM.....FI	ALSKNGKTKK	G..NRVSPTM	KV'THEFLPRL.
FGF6	GT.....YI	ALSKYGRVKR	G..SKVSPIM	T'V'THEFLPRI.
FGF5	TEKTGREMYV	ALNKRQGAKR	GCSPRVKPOH	I'STHEFLPRFK
FGF1AEKNWFV	GLKKNGSCKR	G..PRTHYGQ	KAILFLPLPV
FGF2T..SWTV	ALKRTGQYKL	G..SKTGPGQ	KAILFLPMSA
FGF9	HV.	DTGRRYYV	ALNKGDTPRE	G..TRTKRHQ	KFTHEFLPRPV
FGF7	AKW THNGGEM.FV	ALNQKGIPVR	G..KRTKKEQ	KAHFLPMAT
KGF2	FNW QHNGROM.YV	ALANGKGAPEE	G..QKTRRKV	TSAAHFLPMVV
FGF3	TVSSTPGARR	QPSAERLWV	SUNGKGRPRR	G..FKTRRTQ	KSSLFLIPRVL
FGF8	EGWTM AFTRKGGRPRK	G..SKTRQHQ	REVHEMKRLP	

FIG. 2C

250

FGF4	FI	ALSKNGKTKK	G..NRVSPTM	KV'THEFLPRL.
FGF6	GT.....YI	ALSKYGRVKR	G..SKVSPIM	T'V'THEFLPRI.
FGF5	TEKTGREMYV	ALNKRQGAKR	GCSPRVKPOH	I'STHEFLPRFK
FGF1AEKNWFV	GLKKNGSCKR	G..PRTHYGQ	KAILFLPLPV
FGF2T..SWTV	ALKRTGQYKL	G..SKTGPGQ	KAILFLPMSA
FGF9	HV.	DTGRRYYV	ALNKGDTPRE	G..TRTKRHQ	KFTHEFLPRPV
FGF7	AKW THNGGEM.FV	ALNQKGIPVR	G..KRTKKEQ	KAHFLPMAT
KGF2	FNW QHNGROM.YV	ALANGKGAPEE	G..QKTRRKV	TSAAHFLPMVV
FGF3	TVSSTPGARR	QPSAERLWV	SUNGKGRPRR	G..FKTRRTQ	KSSLFLIPRVL
FGF8	EGWTM AFTRKGGRPRK	G..SKTRQHQ	REVHEMKRLP	

251.

FGF4
FGF6	QSEQPELSEFT	VTVPEKKKNPP	SPIRSKIPLS	APRKNTNSVK
FGF5	SSD.	YRIKFRFG.
FGF1	KS.
FGF2	DPDKVPELYK	DILSQS.
FGF9	T.
FGF7	HS.
KGF2
FGF3	DHRDHHEMVRQ	LQSGGLPREG	KGVQPRRRQ	KQSPDNLEPS	HVQASRLGSQ
FGF8	RGHHTTEQSL	RFEFLNYPPF	TRSLLRGQSQT	WAPEPR

MATCH WITH FIG. 2D

FIG. 2D

MATCH WITH FIG. 2C

301

FGF4
FGF6
FGF5
FGF1
FGF2
FGF9
FGF7
KGF2
FGF3	LEASAH
FGF8

Figure 3A

GGAATTCCGG	GAAGAGAGGG	AAGAAAACAA	CGGCGACTGG	GCAGCTGCCT	CCACTTCTGA	60
CAACTCCAAA	GGGATATACT	TGTAGAAGTG	GCTCGCAGGC	TGGGGCTCCG	CAGAGAGAGA	120
CCAGAAGGTG	CCAACCGCAG	AGGGGTGCAG	ATATCTCCCC	CTATTCCCCA	CCCCACCTCC	180
CTTGGGTTTT	GTTCACCGTG	CTGTCATCTG	TTTTTCAGAC	CTTTTGGCA	TCTAACATGG	240
TGAAGAAAGG	AGTAAAGAAG	AGAACAAAGT	AACTCCTGGG	GGAGCGAAGA	GCGCTGGTGA	300
CCAACACCAC	CAACGCCACC	ACCAGCTCCT	GCTGCTGCCG	CCACCCACGT	CCACCATTAA	360
CCGGGAGGCT	CCAGAGGCCT	AGGCAGCGGA	TCCGAGAAAG	GAGCGAGGGG	AGTCAGCCGG	420
CTTTTCCGAG	GAGTTATGGA	TGTTGGTGCA	TTCACCTCTG	GCCAGATCCG	CGCCCAGAGG	480
GAGCTAACCA	GCAGGCCACCA	CCTCGAGCTC	TCTCCTTGCC	TTGCATCGGG	TCTTACCCCTT	540
CCAGTATGTT	CCTTCTGATG	AGACAATTC	CAGTGCCGAG	AGTTTCAGTA	CA ATG	595
					Met	
TGG AAA TGG ATA CTG ACA CAT TGT GCC TCA GCC TTT CCC CAC CTG CCC						643
Trp Lys Trp Ile Leu Thr His Cys Ala Ser Ala Phe Pro His Leu Pro						
GGC TGC TGC TGC TGC TGC TTT TTG TTG CTG TTC TTG GTG TCT TCC GTC						691
Gly Cys Cys Cys Cys Phe Leu Leu Leu Phe Leu Val Ser Ser Val						
CCT GTC ACC TGC CAA GCC CTT GGT CAG GAC ATG GTG TCA CCA GAG GCC						739
Pro Val Thr Cys Gln Ala Leu Gly Gln Asp Met Val Ser Pro Glu Ala						
ACC AAC TCT TCT TCC TCC TCC TTC TCC TCT CCT TCC AGC GCG GGA AGG						787
Thr Asn Ser Ser Ser Phe Ser Ser Pro Ser Ser Ala Gly Arg						
CAT GTG CGG AGC TAC AAT CAC CTT CAA GGA GAT GTC CGC TGG AGA AAG						835
His Val Arg Ser Tyr Asn His Leu Gln Gly Asp Val Arg Trp Arg Lys						
CTA TTC TCT TTC ACC AAG TAC TTT CTC AAG ATT GAG AAG AAC GGG AAG						883
Leu Phe Ser Phe Thr Lys Tyr Phe Leu Lys Ile Glu Lys Asn Gly Lys						
GTC AGC GGG ACC AAG AAG GAG AAC TGC CCG TAC AGC ATC CTG GAG ATA						931
Val Ser Gly Thr Lys Lys Glu Asn Cys Pro Tyr Ser Ile Leu Glu Ile						
ACA TCA GTA GAA ATC GGA GTT GTT GCC GTC AAA GCC ATT AAC AGC AAC						979
Thr Ser Val Glu Ile Gly Val Val Ala Val Lys Ala Ile Asn Ser Asn						
TAT TAC TTA GCC ATG AAC AAG AAG GGG AAA CTC TAT GGC TCA AAA GAA						1027
Tyr Tyr Leu Ala Met Asn Lys Lys Gly Lys Leu Tyr Gly Ser Lys Glu						
TTT AAC AAT GAC TGT AAG CTC AAG GAG AGG ATA GAG GAA AAT GGA TAC						1075
Phe Asn Asn Asp Cys Lys Leu Lys Glu Arg Ile Glu Glu Asn Gly Tyr						

Figure 3B

AAT ACC TAT GCA TCA TTT AAC TGG CAG CAT AAT GGG AGG CAA ATG TAT -	1123
Asn Thr Tyr Ala Ser Phe Asn Trp Gln His Asn Gly Arg Gln Met Tyr	
 GTG GCA TTG AAT GGA AAA GGA GCT CCA AGG AGA GGA CAG AAA ACA CGA Val Ala Leu Asn Gly Lys Gly Ala Pro Arg Arg Gly Gln Lys Thr Arg	1171
 AGG AAA AAC ACC TCT GCT CAC TTT CTT CCA ATG GTG GTA CAC TCA Arg Lys Asn Thr Ser Ala His Phe Leu Pro Met Val Val His Ser	1216
 TAGAGGAAGG CAACGTTGT GGATGCAGTA AAACCAATGG CTCTTTGCC AAGAACATGTG	1276
GATATTCTTC ATGAAGACAG TAGATTGAAA GGCAAGACA CGTTCAGAT GTCTGCTTGC	1336
TTAAAAGAAA GCCAGCCTTT GAAGGTTTTT GTATTCACTG CTGACATATG ATGTTCTTT	1396
AATTAGTTCT GTGTCATGTC TTATAATCAA GATATAGGCA GATCGAATGG GATAGAACIT	1456
ATTCCCAAGT GAAAAACATT GTGGCTGGGT TTTTGTTGT TGTTGTCAAG TTTTGTTTT	1516
TAAACCTCTG AGATAGAAC TAAAGGACAT AGAACAACT GTGAAAGAA CGATCTCGG	1576
GAAAGTTATT TATGGAATAC GAACTCATAT CAAAGACTTC ATTGCTCATT CAAGCCTAAT	1636
GAATCAATGA ACAGTAATAC GTGCAAGCAT TTACTGGAAA GCACCTGGGT CATATCATAT	1696
GCACAACCAA AGGAGTTCTG GATGTGGTCT CATGGAATAA TTGAATAGAA TTTAAAATA	1756
TAAACATGTT AGTGTGAAAC TGTTCTAACAA ATACAAATAG TATGGTATGC TTGTGCATT	1816
TGCCTTCATC CCTTTCTATT TCTTTCTAAG TTATTTATT AATAGGATGT TAAATATCTT	1876
TTGGGGTTTT AAAGAGTATC TCAGCAGCTG TCTTCTGATT TATCTTTCT TTTTATTCAAG	1936
CACACCACAT GCATGTTCAC GACAAAGTGT TTTAAAAC TGGCGAACAC TTCAAAAATA	1996
GGAGTTGGGA TTAGGGAAGC AGTATGAGTG CCCGTGTGCT ATCAGTTGAC TTAATTGCA	2056
CTTCTGCAGT AATAACCATC AACAAATAAT ATGGCAATGC TGTGCCATGG CTTGAGTGAG	2116
AGATGTCTGC TATCATTTGA AAACATATAT TACTCTCGAG GCTTCCTGTC TCAAGAAAATA	2176
GACCAGAAGG CCAAAATTCTT CTCTTCAAT ACATCAGTTT GCCTCCAAGA ATATACTAAA	2236
AAAAGGAAAA TTAATTGCTA AATACATTAA AATAGCCTAG CCTCATTATT TACTCATGAT	2296
TTCTTGCCAA ATGTCATGGC GGTAAAGAGG CTGTCCACAT CTCTAAAAC CCTCTGTAAA	2356
TTCCACATAA TGCATCTTC CCAAAGGAAC TATAAAGAAT TTGGTATGAA GCGCAACTCT	2416

Figure 3C

CCCAGGGGCT TAAACTGAGC AAATCAAATA TATACTGGTA TATGTGTAAC CATATACAAA	2476
AACCTGTTCT AGCTGTATGA TCTAGTCTTT ACAAAACCAA ATAAAACCTTG TTTTCTGTAA	2536
ATTTAAAGAG CTTTACAAGG TTCCATAATG TAACCATATC AAAATTCATT TTGTTAGAGC	2596
ACGTATAGAA AAGAGTACAT AAGAGTTTAC CAATCATCAT CACATIGTAT TCCACTAAAT	2656
AAATACATAA GCCTTATTG CAGTGTCTGT AGTGATTTA AAAATGTAGA AAAATACAT	2716
TTGTTCTAAA TACTTTAAG CAATAACTAT AATAGTATAT TGATGCTGCA GTTTTATCTT	2776
CATATTCTT GTTTGAAAA AGCATTATG TGTTTGGACA CAGTATTTG GTACAAAAAA	2836
AAAGACTCAC TAAATGTGTC TTACTAAAGT TTAACCTTG GAAATGCTGG CGTTCTGTGA	2896
TTCTCCAACA AACTTATTG TGTCAACT TAACCAGCAC TTCCAGTTAA TCTGTTATTT	2956
TTAAAAATTG CTTTATTAAG AAATTTTTG TATAATCCA TAAAAGGTCA TATTTTCCC	3016
ATTCTCAAA AAAACTGTAT TTCAGAAGAA ACACATTGA GGCACGTCT TTTGGCTTAT	3076
AGTTTAAATT GCATTTCATC ATACTTTGCT TCCAACTTGC TTTTGGCAA ATGAGATTAT	3136
AAAAATGTTT AATTTTTG TGTTGAAATCT GGATGTTAAA ATTTAATTGG TAACTCAGTC	3196
TGTGAGCTAT AATGTAATGC ATTCCATATCC AAACTAGGTA TCCTTTTTTC CTTTATGTTG	3256
AAATAATAAT GGCACCTGAC ACATAGACAT AGACCACCCA CAACTAAAT TAAATGTTG	3316
GTAAGACAAA TACACATTGG ATGACCACAG TAACAGCAA CAGGGCACAA ACTGGATTCT	3376
TATTTCACAT AGACATTTAG ATTACTAAAG AGGGCTATGT GTAAACAGTC ATCATTATAG	3436
TACTCAAGAC ACTAAAACAG CTTCTAGCCA AATATATTAA AGCTTGCAGA GGCCAAAAAT	3496
AGAAAACATC TCCCCGTCT CTCCACATT TCCCTCACAG AAAGACAAAA AACCTGCCGT	3556
GTGCAGTAGC TCACACCTGT AATCCCAGCA GTTTGGGAGA CTGTGGGAAG ATGGCTTGAG	3616
TCCAGGAGTT CTAGACAGGC CTGAGAAACC TAGTGAGACA TCCTTCTCTT AAACAAAACA	3676
AAACAAAACA AATGTAGCCA TGCCTGGTGG CATATACCTG TGGTCCCAAC TACTCAGGAG	3736
GCTGAAACGG AAGGATCTCT TGGGCCAG GAGTTTGAGG CTGCAGTGAG CTATAATCTT	3796
GCCATTGCAC TCCAGCCTGG GTGAAAAAGA GCCAGAAAGA AAGGAAAGAG AGAAAAGAGA	3856
AAAGAAAGAG AGAAAAGACA GAAAGACAGG AAGGAAGGAA GGAAGGAAGG AAGGAAGGAA	3916
GGAAGCAAGG AAAGAAGGAA GGAAGGAAAG AAGGGAGGGA AGGAAGGAGA GAGAAAGAAA	3976
GATTGTTGG TAAGGAGTAA TGACATTCTC TTGCATTAA AAGTGGCATA TTTGCTTGAA	4036

Figure 3D

ATGGAAATAG AATTCTGGTC CCTTTTGCAA CTACTGAAGA AAAAAAAAAG CAGTTTCAGC	4096
CCTGAATGTT GTAGATTTGA AAAAAAAA AAAAAAACTC GAGGGGGGCG CCGTACCCAA	4156
TTCGCCCTAT AGTGAGTCGT A	4177

Figure 4A

MWKWI LTHCASA~~F~~PHLPGCCCCFLLLFLVSSVPVTCQALGQDMV

Figure 4B

Figure 4C

Figure 4D

Figure 4E

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10

Figure 11

Figure 12

Figure 13

Figure 14

Figure 15

ATGAGAGGATGCACCATCACCATCAGGATCTGCCAGGCCTGGGGTC
AGGACATGGTTCTCGGAAGCTACCAACTCTTCTCTTCTTCTTCTTCC
CGTCTTCGCTGGTCGTCAOGTTOGTCTACAACCACCTGCAGGGGACGITC
GTGGCGTAAACGTCTCTTCACCAAAATACTCTGAAAATCGAAAAA
AACGGTAAAGTTCTGGGACCAAGAAGGAGAACTGOOOGTACAGCATCTG
GAGATAACATCAGTAGAAATGGAGTGTGGCGTCAAAGCCATTAAACAG
CAACTATTACTTAGCCATGAACAAGAAGGGGAAACCTATGGCTAAAAG
AATTTAACAATGACTGTAAGCTGAAGGAGAGGATAGAGGAAATGGAT
ACAATACCTATGCATTTAACTGGCAGCATAATGGGAGGCAAATGTAT
GTGGCATTGAaTGGAAAAGGAGCTCCAAGGAGAGCACAGAAAACACGAAG
GAAAAAACAOCTGCTCACTTCTTCAATGGTGGTACACTCATAG

MRGSHHHHHHGSCQALGQDMVSPEATNSSSSPSSAGRHVRSYNHLQGD
VRWRKLRSFTKYFLKIEKNGKVSGTKKENCPYSILEITSVEIGVVAVKAJNSN
YYLAMNKKGKLYGSKEFNNDCKLKERIEENGYNTYASFNWQHNGRQMYVA
LNGKGAPRRGQKTRRKNTSAHFLPMVVHS

kgf-2 synthetic cys37 Bam HI
AAAGGATCTGCCAGGCTGGGTCAGGACATG

Figure 16

Figure 17

Figure 18

Figure 19A

Figure 19B

Figure 20

Figure 21A

Figure 21B

Figure 21C

Figure 22A

Figure 22B

Figure 22C

Figure 23

ATGTGGAAATGGATACTGACCCACTGCGCTCTGCTTCCGCACCTGCCGGTTGCTGC 60
Met Trp Lys Trp Ile Leu Thr His Cys Ala Ser Ala Phe Pro His Leu Pro Gly Cys Cys

TGCTGCTGCTTCCTGCTGCTGTTCTGGTTCTCTGTTCCGGTTACCTGCCAGGCTCTG 120
Cys Cys Cys Phe Leu Leu Phe Leu Val Ser Ser Val Pro Val Thr Cys Gln Ala Leu

GGTCAGGACATGGTTCTCCGGAAGCTACCAACTCTTCCCTTCCTCTTCTCTCCCCG 180
Gly Gln Asp Met Val Ser Pro Glu Ala Thr Asn Ser Ser Ser Ser Phe Ser Ser Pro

ACTTCCGCTGGTCGTACGTTGTTCTTACAACCACCTGCAGGGTGACGTTGCGT 240
Thr Ser Ala Gly Arg His Val Arg Ser Tyr Asn His Leu Gln Gly Asp Val Arg Trp Arg

AAACTGTTCTTTCACCAAATACTTCCTGAAAATCGAAAAAAACGGTAAAGTTCTGGG 300
Lys Leu Phe Ser Phe Thr Lys Tyr Phe Leu Lys Ile Glu Lys Asn Gly Lys Val Ser Gly

ACCAAGAAGGAGAACTGCCGTACAGCATCCTGGAGATAACATCAGTAGAAATCGGAGTT 360
Thr Lys Lys Glu Asn Cys Pro Tyr Ser Ile Leu Glu Ile Thr Ser Val Glu Ile Gly Val

GTTGCCGTCAAAGCCATTAACAGCAACTATTACTTAGCCATGAACAAAGAAGGGGAAACTC 420
Val Ala Val Lys Ala Ile Asn Ser Asn Tyr Tyr Leu Ala Met Asn Lys Lys Gly Lys Leu

TATGGCTAAAAGAATTAAACAATGACTGTAAGCTGAAGGAGAGGATAGAGGAAATGGA 480
Tyr Gly Ser Lys Glu Phe Asn Asn Asp Cys Lys Leu Lys Glu Arg Ile Glu Glu Asn Gly

TACAATACCTATGCATCATTAACTGGCAGCATAATGGGAGGCAAATGTATGTGGCATTG 540
Tyr Asn Thr Tyr Ala Ser Phe Asn Trp Gln His Asn Gly Arg Gln Met Tyr Val Ala Leu

AATGGAAAAGGAGCTCCAAGGAGAGGACAGAAAACACGAAGGAAAACACCTCTGCTCAC 600
Asn Gly Lys Gly Ala Pro Arg Arg Gly Gln Lys Thr Arg Arg Lys Asn Thr Ser Ala His

TTTCTCCAATGGTGGTACACTCATAG 627
Phe Leu Pro Met Val Val His Ser →

Figure 24A

ATGACCTGCCAGGCTCTGGGTCAAGGACATGGTTCTCCGGAAGCTACCAACTCTTCCCTCT 60
Met Thr Cys Gln Ala Leu Gly Gln Asp Met Val Ser Pro Glu Ala Thr Asn Ser Ser Ser
TCCTCTTCTCTTCCCCGTCTCCGCTGGCGTCACGTTCTTACAACCACCTGCAG 120
Ser Ser Phe Ser Ser Pro Ser Ala Gly Arg His Val Arg Ser Tyr Asn His Leu Gln
GGTGACGTTCGTTGGCGTAAACTGTTCTTTACCAAATACTTCCTGAAAATCGAAAAAA 180
Gly Asp Val Arg Trp Arg Lys Leu Phe Ser Phe Thr Lys Tyr Phe Leu Lys Ile Glu Lys
AACGGTAAAGTTCTGGGACCAAGAAGGAGAACTGCCGTACAGCATCCTGGAGATAACA 240
Asn Gly Lys Val Ser Gly Thr Lys Lys Glu Asn Cys Pro Tyr Ser Ile Leu Glu Ile Thr
TCAGTAGAAATCGGAGTTGGCTCAAAGCCATTAACAGCAACTATTACTGCCATG 300
Ser Val Glu Ile Gly Val Val Ala Val Lys Ala Ile Asn Ser Asn Tyr Tyr Leu Ala Met
AACAAAGAAGGGAAACTCTATGGCTAAAAGAATTAAACAATGACTGTAAGCTGAAGGAG 360
Asn Lys Lys Gly Lys Leu Tyr Gly Ser Lys Glu Phe Asn Asn Asp Cys Lys Leu Lys Glu
AGGATAGAGGAAAATGGATACAATACCTATGCATCATTAACTGGCAGCATAATGGGAGG 420
Arg Ile Glu Glu Asn Gly Tyr Asn Thr Tyr Ala Ser Phe Asn Trp Gln His Asn Gly Arg
CAAATGTATGTGGCATTGAATGGAAAAGGAGCTCCAAGGAGAGGACAGAAAACACGAAGG 480
Gln Met Tyr Val Ala Leu Asn Gly Lys Gly Ala Pro Arg Arg Gly Gln Lys Thr Arg Arg
AAAAACACCTCTGCTCACTTCTTCAATGGTGGTACACTCATAG 525
Lys Asn Thr Ser Ala His Phe Leu Pro Met Val Val His Ser •

Figure 24B

ATGACTTGCAGGCAGTGGTCAAGACATGGTTCCCCGGAAAGCTACCAACAGCTCCAGCTCTA**G**CTTCAGCTTA
TACTGAACGGTCCGTGACCCAGTTCTGTACCAAAGGGGCCCTCGATGGTTGTCAGGTCGAGATCGAAGT 70

M T C Q A L G Q D M V S P E A T N S S S S S F
CGAGCCCACATCTAGCGCAGGTGTCACGTTCGCTCTAACCAACCACTACAGGGTGATGTTGTCGTTGGCGCAA
CGTCGGGTAGATCGCGTCCAGCAGTGCAAGCGAGAATGTTGGTGAATGTCCTACACAAGCAACCGCGTT 140

S S P S S A G R H Y R S Y N H L Q G D V R W R K
ACTGTTCAAGCTTTACCAAGTACTCCTGAAAATCGAAAAAAACGGTAAAGTTCTGGGACCAAGAAGGAG 210

TGACAAGTCGAAATGGTTCATGAAGGACTTTAGCTTTTGCCATTCAAAAGACCCCTGGTTCTTCCTC

L F S F T K Y F L K I E K N G K V S G T K K E
AACTGCCGTACAGCATCCTGGAGATAACATCAGTAGAAAATCGGAGTTGTTGCCGTCAAAGCCATTAACA
TTGACGGGCATGTCGTAGGACCTCTATTGAGTCATCTTAGCCTCAACAAACGGCAGTTCGGTAAATTGT 280

N C P Y S I L E I T S V E I G V V A V K A . E N
GCAACTATTACTTAGCCATGAACAAAGAAGGGAAACTCTATGGCTCAAAAGAATTAAACAAATGACTGAA
CGTTGATAATGAATCGGTACTTGTCTTCCCTTGAGATAACCGAGTTCTTAAATTGTTACTGACATT 350

S N Y Y L A M N K K G K L Y G S K E F N N D C K
GCTGAAGGAGAGGATAGAGGAAATGGATACAATACCTATGCATCATTAACTGGCAGCATAATGGGAGG 420

CGACTTCCTCTCCTATCTCCTTACCTATGTTATGGATACGTAGTAAATTGACCCTCGTATTACCCCTCC

L K E R I E E N G Y N T Y A S F N W Q H N G R
CAAATGTATGTGGCATTGAATGGAAAAGGAGCTCCAAGGAGAGGACAGAAAACCGAAGGAAAACACCT
GTTTACATACACCGTAACCTACCTTCTCGAGGTTCTCTCTGTCTTGTGCTTCCCTTGTGGA 490

Q M Y V A L N G K G A P R R G Q K T R R K N T
CTGGTCACCTTCTTCAATGGTGGTACACTCATAG
GACGAGTGAAGAAGGTTACCAACCATGTGAGTATC 525

S A H F L P M V V H S . →

Figure 25

ATGACCTGCCAGGCTCTGGTCAGGACATGGTTCTCCGGAAGCTACGAACCTTCC
TCTTCCTCTTCTCTCCCCGTCTCCGCTGGCGTCACGTTCTTACAACCACCT
GCAGGGTGACGTTCTGGCGTAAACTGTTCTCTTCAACCAAATACTTCCCTGAAAAT
CGAAAAAAACGGTAAAGTTCTGGGACCAAGAAGGAGAACTGCCCGTACAGCATCC
TGGAGATAACATCAGTAGAAATCGGAGTTGTCGCGTCAAAGCCATTACAGCAAC
TATTACTTAGCCATGAACAAAGAAGGGAAACTCTATGGCTAAAAGAATTAAACAA
TGACTGTAAGCTGAAGGAGAGGATAGAGGAAAATGGATAACAATACCTATGCATCAT
TTAACTGGCAGCATAATGGGAGGCAAATGTATGTGGCATTGAATGGAAAAGGAGCT
CCAAGGAGAGGACAGAAAACACGAAGGAAAACACCTCTGCTCACTTCTCCAAT
GGTGGTACACTCATAG

MTCQALGQDMVSPEATNSSSSFSSPSSAGRHVRSYNHLQGDVRWRKLFSFTKYFLKIE
KNGKVSGTKKENCPYSILEITSVEIGVVAVKAINSNYLAMNKKGKL YGSKEFNNDCKL
KERIEENGYNTYASFNWQHNGRQMYVALNGKGAPRRGQKTRRKNTSAHFLPMVVHS.

Figure 26

ATGGCTGGTCGTACGTTCTTACAACCACCTGCAGGGTGACGTTGGCGT
AAACTGTTCTCTTACCAAATACTTCCGTAAAATCGAAAAACGGTAAAGTTCT
GGGACCAAGAAGGAGAACTGCCGTACAGCATCCTGGAGATAACATCAGTAGAAAT
CGGAGTTGTTGCCGTAAAGCCATTAAACAGCAACTATTACTTAGCCATGAACAGAA
GGGGAAACTCTATGGCTAAAAGAATTAAACAATGACTGTAAGCTGAAGGAGAGGA
TAGAGGAAAATGGATACAATACCTATGCATCATTAACTGGCAGCATAATGGGAGG
CAAATGTATGTGGCATTGAATGGAAAAGGAGCTCCAAGGAGAGGACAGAAAACAC
GAAGGAAAAACACCTCTGCTCACTTCTCCAATGGTGGTACACTCATAG

MAGRHVRSYNHLQGDVRWRKLFSTKYFLKIEKNGKVSGTKKENCPYSILEITSVEIGV
VAVKAINSNYYLAMNKKGKLYGSKEFNNDCKLKERIEENGYNTYASFNWQHNGRQMY
VALNGKGAPRRGQKTRRKNTSAHFLPMVVHS.

Figure 27

ATGGITCGTGGCGAAACTGTTCTTCAACAAATACCTCCTGAAAATCGAAAAA
AACGGTAAAGTTCTGGGACCAAGAAGGAGAACTGCCGTACAGCATCCTGGAGAT
AACATCAGTAGAAATCGGAGTTGCCGTCAAAGCCATTAACAGCAACTATTACTT
AGCCATGAACAAGAAGGGAAACTCTATGGCTAAAAGAATTAAACAATGACTGTA
AGCTGAAGGAGAGGATAGAGGAAATGGATACAATACCTATGCATCATTAACTGG
CAGCATAATGGGAGGCAAATGTATGTGGCATTGAATGGAAAAGGAGCTCCAAGGAG
AGGACAGAAAACACGAAGGAAAAACACCTCTGCTCACTTCTCCAATGGTGGTAC
ACTCATAG

MVRWRKLFSTKYFLKIEKNGKVSGTKKENCPYSILEITSVEIGVVAVKAINSNNYLAM
NKKGKLGYGSKEFNNDCKLKERIEENGYNTYASFNWQHNGRQMYVALNGKAPRRGQ
KTRRKNTSAHFLPMVVHS.

Figure 28

ATGGAAAAAAACGGTAAAGTTCTGGGACCAAGAAGGAGAACTGCCGTACAGCAT
CCTGGAGATAACATCAGTAGAAATCGGAGTTGCCGTCAAAGCCATTAACAGCA
ACTATTACTTAGCCATGAACAAGAAGGGGAAACTCTATGGCTAAAAGAATTAAAC
AATGACTGTAAGCTGAAGGAGAGGATAGAGGAAATGGATACAATACCTATGCATC
ATTTAACCTGGCAGCATAATGGGAGGCAAATGTATGTGGCATTGAATGGAAAAGGAG
CTCCAAGGAGAGGACAGAAAACACGAAGGAAAAACACCTCTGCTCACTTCTCCA
ATGGTGGTACACTCATAG

MEKNGKVSGTKKENCPYSILEITSVBIGVVAVKA
INSNYLAMNKKGKLYGSKEFNNDC
KLKERIEENGYNTYASFNWQHNGRQMYVALNGKGAPRRGQKTRRKNTSAHFLPMVVH
S.

Figure 29

ATGGAGAACTGCCGTACAGCATCCTGGAGATAACATCAGTAGAAATCGGAGTTGT
TGCCGTCAAAGCCATTAAACAGCAACTATTACTTAGCCATGAACAAGAAGGGGAAAC
TCTATGGCTAAAAGAATTAAACAATGACTGTAAGCTGAAGGAGAGGATAGAGGAA
AATGGATAACAATACTATGCATCATTAACTGGCAGCATAATGGGAGGCAAATGTA
TGTGGCATTGAATGGAAAAGGAGCTCCAAGGAGAGGACAGAAAACACGAAGGAAA
AACACCTCTGCTCACTTCTCCAATGGTGGTACACTCATAG

MENCPYSILEITSVEIGVVAVKAINSNNYLAMNKKGKLYGSKEFNDCKLKERIEENGY
NTYASFNWQHNGRQMYVALNGKGAPRRGQKTRRKNTSAHFLPMVVHS.

Figure 30

ATGGTCAAAGCATTAAACAGCAACTATTACTTAGCCATGAACAAGAAGGGAAA
CTATGGCTAAAAGAATTAAACAATGACTGTAAGCTGAAGGAGAGGATAGAGGAAA
ATGGATAACAATAACCTATGCATCATTAACTGGCAGCATAATGGGAGGCAAATGTATG
TGGCATTGAATGGAAAAGGAGCTCCAAGGAGAGGACAGAAAACACGAAGGAAAAAA
CACCTCTGCTCACTTCTCAATGGTGGTACACTCATAG

MVKAINSYYLAMNKKGKLYGSKEFNNDCKLKERIEENGYNTYASFNWQHNGRQMY
VALNGKGAPRRGQKTRRKNTSAHFLPMVVHS.

Figure 31

ATGGGGAAACTCTATGGCTAAAAGAATTAAACAATGACTGTAAGCTGAAGGAGAG
GATAGAGGAAAATGGATAACAATACCTATGCATCATTAACTGGCAGCATAATGGGA
GGCAAATGTATGTGGCATTGAATGGAAAAGGAGCTCCAAGGAGAGGACAGAAAAC
ACGAAGGAAAAACACCTCTGCTCACTTCTCCAATGGTGGTACACTCATAG

MGKLYGSKEFNNDCKLKERIEENGYNTYASFNWQHNGRQMYVALNGKGAPRRGQKT
RRKNTSAHFLPMVVHS.

Figure 32

ATGACCTGCCAGGCTCTGGGTCAAGGACATGGTTCTCCGAAGCTACCAACTCTTCC
TCTTCCTCTTCTCTCCCCGTCTCCGCTGGTCGTACGTTCGTCTTACAACCACCT
GCAGGGGTGACGTTCGTGGCGTAAACTGTTCTCTTCAACAAATACTTCCTGAAAAT
CGAAAAAAAACGGTAAAGTTCTGGGACCAAGAAGGAGAACTGCCGTACAGCATCC
TGGAGATAACATCAGTAGAAATCGGAGITGTTGCCGTCAAAGCCATTAAACAGCAAC
TATTACTTAGCCATGAACAAAGAAGGGAAACTCTATGGCTAAAAGAATTAAACAA
TGACTGTAAGCTGAAG

MTCQALGQDMVSPEATNSSSSSFSSPSSAGRHVRSYNHLQGDVRWRKLFSFTKYFLKIE
KNGKVSGTKKENCPYSILEITSVEIGVVAVKAINSYYLAMNKKGKLYGSKEFNNDCKL
K
KLSDE

Figure 33

ATGGCTGGTCGTACGTTCTTACAACCACCTGCAGGGTGACGTTGGCGT
AAACTGTTCTCTTCACCAAATACTTCTGAAAATCGAAAAAACGGTAAAGTTCT
GGGACCAAGAAGGAGAACTGCCGTACAGCATCCTGGAGATAACATCAGTAGAAAT
CGGAGTTGTTGCCGTCAAAGCATTAAACAGCAACTATTACTTAGCCATGAACAAGAA
GGGGAAACTCTATGGCTCAAAAGAATTAAACAATGACTGTAAGCTGAAG

MAGRHVRSYNHLQGDVRWRKLFSTKYFLKIEKNGKVSGTKKENCPYSILEITSVEIGV
VAVKAINSNYYLAMNKKGKLHYGSKEFNNDCKLK

Figure 34

C-37 To Ser

ATGACCTCTCAGGCTCTGGGTCAAGGACATGGTTCTCGGAAGCTACCAACTCTTCC
TCTTCCTCTTCTCTTCCCCGCTTCCGCTGGTCGTACGTTCTTACAACCACCT
GCAGGGTGACGTTCGTGGCGTAAACTGTTCTCTTACCAAATACTTCCCTGAAAAT
CGAAAAAAAACGGTAAAGTTCTGGGACCAAGAAGGAGAACTGCCGTACAGCATCC
TGGAGATAACATCAGTAGAAATCGGAGTTGTCGGTCAAAGCCATTACAGCAAC
TATTACTTAGCCATGAACAAAGAAGGGAAACTCTATGGCTCAAAAGAATTAAACAA
TGACTGTAAGCTGAAGGAGAGGATAGAGGAAAATGGATAACAATACCTATGCATCAT
TTAACTGGCAGCATAATGGGAGGGAAATGTATGTGGCATTGAATGGAAAAGGAGCT
CCAAGGAGAGGACAGAAAACACGAAGGAAAACACCTCTGCTCACTTCTCCAAT
GGTGGTACACTCATAG

Figure 35

C-106 To Ser

ATGACCTGCCAGGCTCTGGGTCAAGGACATGGTTCTCCGGAAGCTACCAACTCTTCC
TCTTCCTCTTCTCTCCCCGTCTCCGCTGGCGTAAACTGTTCTCTTCAACCAACCACCT
GCAGGGGTGACGTTCGTGGCGTAAACTGTTCTCTTCAACCAAAACTCTCCTGAAAAT
CGAAAAAAAACGGTAAAGTTCTGGGACCAAGAAGGAGAACTCTCCGTACAGCATCC
TGGAGATAAACATCAGTAGAAATCGGAGTTGTTGCCGTCAAAGCCATTAAACAGCAAC
TATTACTTAGCCATGAACAAGAAGGGGAAACTCTATGGCTCAAAAGAATTAAACAA
TGACTGTAAGCTGAAGGAGAGGATAGAGGAAAATGGATAACAATACCTATGCATCAT
TTAACTGGCAGCATAATGGGAGGCAAATGTATGTGGCATTGAATGAAAAGGAGCT
CCAAGGAGAGGACAGAAAACACGAAGGAAAACACCTCTGCTCACTTCTCCAAT
GGTGGTACACTCATAG

Figure 36

Figure 37

Effect of KGF-2 Δ33 on Normal Wound Healing Rat Model

Treatment Groups	Wound Size (mm)	%Wound Closure	Histological Score	Re-epith. (μm)	BrdU Score
No Treatment	25.9 ± 2.5	58.8 ± 3.7	6.8 ± 0.2	1142 ± 141	3.8 ± 0.4
Buffer	25.1 ± 1.7	60.2 ± 2.6	6.4 ± 0.2	923 ± 61	5.0 ± 0.4
KGF-2/Δ33 (0.1μg)	22.0 ± 0.9	65 ± 1.4	6.8 ± 0.2	1275 ± 148	4.6 ± 0.7
KGF-2/Δ33 (0.4 μg)	21.1 ± 1.4	68.4 ± 2.4	8.0 ± 0.5 p=0.0445*	1310 ± 182	4.2 ± 0.7
KGF-2/Δ33 (1.0μg)	19.9 ± 1.5	66.2 ± 2.1	8.4 ± 0.4 p=0.0159* p=0.0053†	1389 ± 115 p=0.0074†	3.3 ± 0.25 p=0.0217†
KGF-2/Δ33 (4.0μg)	18.1 ± 1.6 p=0.0398* p=0.0200†	71.2 ± 2.6 p=0.0367* p=0.0217†	8.5 ± 0.3 p=0.0047* p=0.0445†	1220 ± 89 p=0.0254†	5.3 ± 0.9

Figure 38

Figure 39

Figure 40

Figure 41

Figure 42

No.1

n = 4

No.2

n = 4

Minutes post injection

Effect of KGF-2 Δ 33 on PAF-induced paw edema in Lewis rats

Figure 43

Effect of KGF-2 Δ 33 on Survival of Whole Body Irradiated Balb/c Mice

Figure 44

Effect of KGF-2 Δ 33 on Body Weight of Irradiated Mice

Figure 45

Figure 46

Figure 47

Figure 48

Figure 49

FIGURE 50

FIGURE 51

Operator 1
-35 AAGCTT AAAAACTGGCAAAATAGTTGACTTGTCACACATTAA

1 AAGCTT AAAAACTGGCAAAATAGTTGACTTGTCACACATTAA

Operator 2
-10 TAAGATGTACCCGTCACACATTAA

50 TAAGATGTACCCGTCACACATTAA

S/D
94 AGAGGAGAAATTAA CATATG

FIGURE 52

FIGURE 53

FIGURE 54

FIGURE 55

FIGURE 56

Proliferation of hepatocytes following systemic administration of KGF-2

FIGURE 57

Proliferation of pancreatic cells following systemic administration of KGF-2

FIGURE 58

Proliferation of renal epithelia after systemic administration of KGF-2

FIGURE 59

FIGURE 60