CIFAR-100 Classification with Convolutional Neural Networks

Mike Nguyen

Contents

In					
\mathbf{M}	Model Architecture				
2.1	CNN Structure				
2.2					
Ну	Typerparameter Tuning				
3.1	Tuning Results				
To	p Three Configurations				
4.1	Configuration 1				
4.2					
4.3					
	Configuration 3				
Re	Configuration 3				
Re	Configuration 3				
Re	Configuration 3				
Re 5.1	Configuration 3 etraining and Evaluation Configuration 1 5.1.1 Benchmarking Results 5.1.2 Training Plots 2 Configuration 2				
Re 5.1	Configuration 3 Configuration 1 Solution 1 Solution 1 Solution 1 Solution 1 Solution 2 Solution 2 Solution 2 Solution 2 Solution 3 Configuration 2 Solution 3 Configuration 2 Solution 3 Configuration 3				
Re 5.1	8 Configuration 3 etraining and Evaluation Configuration 1 5.1.1 Benchmarking Results 5.1.2 Training Plots 2 Configuration 2 5.2.1 Benchmarking Results 5.2.2 Training Plots				
R 6	8 Configuration 3 etraining and Evaluation Configuration 1 5.1.1 Benchmarking Results 5.1.2 Training Plots 2 Configuration 2 5.2.1 Benchmarking Results 5.2.2 Training Plots				

1 Introduction

This report presents the results of training convolutional neural networks (CNNs) on the CIFAR-100 dataset to perform image classification. The primary goal was to explore different activation functions, optimizers, and hyperparameters to identify the best-performing models. By utilizing hyperparameter tuning to optimize model performance and compare results with existing benchmarks.

2 Model Architecture

Employed a consistent CNN architecture for all experiments to ensure a fair comparison among different configurations.

2.1 CNN Structure

- 1. Convolutional Layer 1:
 - Input Channels: 3 (RGB images)
 - Output Channels: 32
 - Kernel Size: 3×3
 - Padding: 1
- 2. Activation Function:
 - Variable (ReLU, Leaky ReLU, or ELU)
- 3. Max Pooling Layer 1:
 - Kernel Size: 2×2
 - Stride: 2
- 4. Convolutional Layer 2:
 - Input Channels: 32
 - Output Channels: 64
 - Kernel Size: 3×3
 - Padding: 1
- 5. Activation Function:
 - Same as above
- 6. Max Pooling Layer 2:
 - Kernel Size: 2×2
 - Stride: 2
- 7. Fully Connected Layer:
 - Input Features: $64 \times 8 \times 8 = 4,096$
 - Output Features: 100 (number of classes)

2.2 Total Number of Parameters

The total number of trainable parameters in the EasyCNN model is calculated as follows:

• Convolutional Layer 1:

$$Parameters = (3 \times 3 \times 3 \times 32) + 32 = 896$$

• Convolutional Layer 2:

Parameters =
$$(3 \times 3 \times 32 \times 64) + 64 = 18,496$$

• Fully Connected Layer:

Parameters =
$$(4,096 \times 100) + 100 = 409,700$$

• Total Parameters:

$$Total = 896 + 18,496 + 409,700 = 429,092$$

Each model has approximately 429,092 trainable parameters.

3 Hyperparameter Tuning

To optimize model performance, conducting hyperparameter tuning using Ray Tune. The following hyperparameters were explored:

• Activation Functions: ReLU, Leaky ReLU, ELU

• Optimizers: SGD, Adam, RMSprop

• Learning Rates (lr): Log-uniform distribution between 1×10^{-4} and 1×10^{-2}

• Batch Sizes: 64, 128, 256

3.1 Tuning Results

After running 10 trials, the results are summarized in Table 1.

4 Top Three Configurations

Based on validation accuracy, the top three configurations identified were:

4.1 Configuration 1

• Activation Function: ELU

• Optimizer: RMSprop

• Learning Rate: 3.19×10^{-4}

• Batch Size: 64

• Validation Accuracy: 37.99%

• Test Accuracy: 35.42%

4.2 Configuration 2

• Activation Function: Leaky ReLU

• Optimizer: RMSprop

• Learning Rate: 1.10×10^{-3}

• Batch Size: 64

• Validation Accuracy: 35.20%

• Test Accuracy: 35.41%

4.3 Configuration 3

• Activation Function: ReLU

• Optimizer: RMSprop

• Learning Rate: 2.35×10^{-3}

• Batch Size: 128

• Validation Accuracy: 32.93%

• Test Accuracy: 28.45%

Activation	Optimizer	Learning Rate	Batch Size	Validation Accuracy
ReLU	SGD	4.04×10^{-4}	128	20.53%
ELU	RMSprop	3.19×10^{-4}	64	37.99%
ELU	RMSprop	2.65×10^{-3}	64	28.40%
Leaky ReLU	SGD	1.04×10^{-3}	128	28.66%
ReLU	RMSprop	2.35×10^{-3}	128	32.93%
Leaky ReLU	Adam	3.36×10^{-3}	64	30.75%
ReLU	RMSprop	2.16×10^{-3}	256	28.60%
ELU	SGD	1.62×10^{-3}	256	28.30%
ReLU	Adam	3.78×10^{-3}	256	32.16%
Leaky ReLU	RMSprop	1.10×10^{-3}	64	35.20%

Table 1: Hyperparameter Tuning Results

5 Retraining and Evaluation

Each of the top three models was retrained on the full training dataset (combining subtraining and validation sets) and evaluated on the test dataset over 50 epochs.

5.1 Configuration 1

• Activation Function: ELU

• Optimizer: RMSprop

• Learning Rate: 3.19×10^{-4}

• Batch Size: 64

• Test Accuracy: 35.42%

5.1.1 Benchmarking Results

• **Epoch 1**: Train Loss = 3.2729, Train Accuracy = 23.48%

• **Epoch 25**: Train Loss = 0.1189, Train Accuracy = 97.25%

• **Epoch 50**: Train Loss = 0.0266, Train Accuracy = 99.40%

5.1.2 Training Plots

Figure 1: Training Loss and Accuracy for Configuration 1

5.2 Configuration 2

• Activation Function: Leaky ReLU

• Optimizer: RMSprop

• Learning Rate: 1.10×10^{-3}

• Batch Size: 64

• Test Accuracy: 35.41%

5.2.1 Benchmarking Results

• Epoch 1: Train Loss = 3.4217, Train Accuracy = 20.56%

• **Epoch 25**: Train Loss = 0.0598, Train Accuracy = 98.12%

• Epoch 50: Train Loss = 0.0448, Train Accuracy = 98.74%

5.2.2 Training Plots

Figure 2: Training Loss and Accuracy for Configuration 2

5.3 Configuration 3

• Activation Function: ReLU

• Optimizer: RMSprop

• Learning Rate: 2.35×10^{-3}

• Batch Size: 128

• **Test Accuracy**: 28.45%

5.3.1 Benchmarking Results

• **Epoch 1**: Train Loss = 3.7492, Train Accuracy = 16.72%

• Epoch 25: Train Loss = 0.6500, Train Accuracy = 80.41%

• Epoch 50: Train Loss = 0.2746, Train Accuracy = 90.86%

5.3.2 Training Plots

Figure 3: Training Loss and Accuracy for Configuration 3

6 Comparison with Other CIFAR-100 Rankings

To contextualize our results, we compared our top model's test accuracy with other models ranked on CIFAR-100:

Rank	Model	Test Accuracy (%)
38	CNN39	42.64
39	CNN36	36.07
40	CNN37	35.05

Table 2: Selected CIFAR-100 Rankings

The best model achieved a test accuracy of 35.42%, which is comparable to the performance of CNN37 (35.05%) at rank 40. However, it falls short of CNN36 (36.07%) and CNN39 (42.64%).