HW4

學號: b04705026 系級: 資管三 姓名: 林彥廷

A. PCA of colored faces

A.1. mean face

A.2. top-4 eigen-faces

第一大	第二大	第三大	第四大
0 100 - 200 - 300 - 400 - 500 - 0 100 200 300 400 500 600	0 100 - 200 - 300 - 400 - 500 - 600 0 100 200 300 400 500 600	100 - 200 - 300 - 400 - 500 - 600 0 100 200 300 400 500 600	0 100 - 200 - 300 - 400 - 500 - 0 100 200 300 400 500 600

A.3. recontructed faces with 4 comp.

A.4. Table for explanied variance

第一大	第二大	第三大	第四大
4.1%	2.9%	2.4%	2.2%

B. Image clustering

B.1.

- Feature Extraction方法
 - PCA(250 compn.)
 vs Autoencoder(64 compn.)
 (256-128-64-128-256)
 - Clustering方法皆是Kmeans (2 compn.)

討論

- Autoencoder可以使用非線性的把特徵抽出,相較於PCA可以考慮一些複雜的關係,使用高壓縮比,找出好的特徵。
- PCA單純找出單範正交的特徵組合,對於非線性的關係無法 掌握。對圖片有空間性質的關係表現並不好。

● 模型表現

Dim. Reduction	Audoencoder	PCA
public score	.99074	.51690
private score	.99082	.51767

B.2.

從我的模型預測label再由TSNE投影到2D空間。 結果有些資料並沒有分的很開(中下)

我使用兩層的autoencoder進行降維到64維,再透過TSNE轉換到2D空間來畫圖。 以這個投影的圖來說,圖中下的地方,我的模型並沒有把兩個資料集分的很開,可能是因為高維空間的feature並沒有抓好,也有可能需要更複雜的關係或轉換。

C. Ensemble learning

C.1. 作業三 Ensemble Learning

● Ensemble模型架構與方法

- 5個小model皆為不同概念的CNN(VGG, ResNet, Inception)為了讓每個模型都有強項,並用"VOTING"的方式決定最終預測結果。
- "Ensemble Model"最後使用 ADD層,把5個模型softmax轉換出的機率相加,挑選最大機率的當成最終結果。
- 子模型分開訓練,因為要用不同的optimizer和其他參數。

■ 子模型架構

- 前3個為相同架構:類似Vgg, 但深度不同。
- 第四個,概念來自residual net,差別在於減少模型深度 ,用了12個residual module。
- 第五個, 概念來自inception v4, 差別在於在減少模型 深度, 網路最後加上Dense的分類層。
- 每個模型每層後都加上Batchnormalization, 已經在模型尾端的分類層加上Dropout(0.5)。
- 第四,五個模型activation func=relu
- 每個模型接使用Data augmentation。

● 模型表現

	ensemble model	single model
public score	0.72137	0.68514
private score	0.70855	0.68180