Geometric Latent Diffusion Models for 3D Molecule Generation

VIDY Reading Group Presentation

Presenter: Jialin Chen

Yale University

Molecule Generation

- Molecule generation task involves creating novel molecules with specific properties or structures, given a large real-world molecule dataset. The generated molecules should meet desired criteria, such as chemical validity, and stability.
- Recently, deep generative models have been widely applied to the problem of molecule generation.

3D Molecule Generation

- More and more molecule design frameworks and generation methods move the generation from 2D Molecular Graph to 3D Molecular Geometry.
- Molecular Geometry information is necessary for diverse downstream tasks like target drug design, protein design, antigen-specific antibody generation, etc.

Molecular Graph	node features (discrete / continuous) edge index
Molecular Geometry	node features (discrete / continuous) 3D coordinates

Task Definition

- Unconditional Generation: given a collection of molecules G, learn parameterized generative models $p_{\theta}(G)$ which can generate diverse and realistic molecules \hat{G} in 3D.
- Conditional Generation: given a collection of molecules G with certain property s, learn conditional generative models $p_{\theta}(G|s)$ which can conditionally generate graph \widehat{G} which meets the property s.
 - Widely applied in drug discovery, antigen-specific antibody generation, etc.

Equivariance Constraint

The results of recent deep generative models (e.g., autoregressive and flow-based models) are still unsatisfactory with **low chemical validity**, due to the insufficient capacity of the underlying generative models.

- Roto-translation Equivariance Constraint
- $g = \mathbf{R} + \mathbf{t}$, for any translation \mathbf{t} and orthogonal matrix \mathbf{R}

$$F \circ S_g(G) = T_g \circ F(G)$$

Note: the node features are intrinsically SE(3)-invariant, while the coordinates will be affected by SE(3) transformation

Previous Method: Diffusion Model

- Diffusion models (DMs) have emerged recently with surprising results on image tasks and beyond.
- Diffusion models define a forward diffusion process to destroy data into noise.
- Learn reverse models to generate realistic instances by denoising

Previous Method: Diffusion Model

Existing diffusion models (DMs) on molecules mainly work on the raw data space, which are

- multi-modal with discrete / integer / continuous variables, making unified diffusion process sub-optimal;
- high dimensional, making the model's training and sampling steps difficult.

Resource: Equivariant Diffusion for Molecule Generation in 3D

Each sampling step constructs an intermediate graph in the original data space

Proposed Method

Geometric Latent Diffusion Model (GEOLDM) involves a variational autoencoder (AE) and a diffusion model (DM).

- The autoencoder (AE) learns a **smoother** and **lower-dimensional** latent space to embed molecular geometry and **unify diverse node features**
- The diffusion model (DM) operates on the latent space to implement efficient training and sampling
- GEOLDM utilizes equivariant networks as the forward functions to ensure 3D rototranslation equivariance ⇒ satisfy chemistry validity

GEOLDM Pipeline

Each molecule is represented as G(x, h); N is the number of nodes in the molecule.

 $x = (x_1, x_2, ..., x_N) \in \mathbb{R}^{N \times 3}$ is the atom 3D coordinate matrix.

 $h = (h_1, h_2, ..., h_N) \in \mathbb{R}^{N \times d}$ is the node feature matrix, such as atomic type.

Latent representation $z_x \in \mathbb{R}^{N \times 3}$ and $z_h \in \mathbb{R}^{N \times k}$ (k < d)

- Conduct denoising diffusion in the latent space instead of the data space
- Lead to better fidelity and controllable generation

Geometric Autoencoding (1)

- Encoder \mathcal{E}_{ϕ} encodes G into latent space: $(z_x, z_h) = \mathcal{E}_{\phi}(x, h) \in \mathbb{R}^{N \times (3+k)}$
 - In implementation: $(\mu_x, \mu_h) = \mathcal{E}_{\phi}(x, h)$; $(\epsilon_x, \epsilon_h) \sim \mathcal{N}(0, I)$
 - $(z_x, z_h) = (\epsilon_x \odot \sigma_0 + \mu_x, \epsilon_h \odot \sigma_0 + \mu_h)$
- Decoder D_{ξ} decodes back to the data space: $\tilde{G} = (\tilde{x}, \tilde{h}) = D_{\xi}(z_{x}, z_{h})$

Theorem: Linear subspaces with the center always being zero can induce translation-invariant distribution.

• The latent z_x and reconstructed representation x are defined in the subspace that $\sum_i z_{x,i} = 0$ and $\sum_i x_i = 0$.

Geometric Autoencoding: EGNN (1)

- Both Encoder and Decoder are parameterized with EGNN architecture
- EGNNs are a class of Graph Neural Network that satisfies the equivariance property.
- In EGNN, molecular geometries are considered as point clouds (i.e., fully connected graphs), without specifying the connecting bonds.
- Each node v_i is embedded with coordinates $x_i \in \mathbb{R}^3$ and atomic features $h_i \in \mathbb{R}^d$.

Geometric Autoencoding: EGNN (2)

• Equivariant Graph Convolution Layer: $(x^{l+1}, h^{l+1}) = \mathrm{EGCL}(x^l, h^l)$

$$m_{ij} = \phi_e(h_i^l, h_j^l, d_{ij}^2, a_{ij}), \qquad h_i^{l+1} = \phi_h\left(h_i^l, \sum_{j \neq i} \tilde{e}_{ij} m_{ij}\right),$$

$$x_i^{l+1} = x_i^l + \sum_{j \neq i} \frac{x_i^l - x_j^l}{\bar{d}_{ij} + 1} \phi_x(h_i^l, h_j^l, d_{ij}^2, a_{ij}).$$

Normalize to improve the model stability

- $d_{ij} = \|x_i x_j\|_2$, which is invariant to rotations. a_{ij} are optional edge features
- $ilde{e}_{ij}$ represents the attention value between node i and node j
- All learnable functions ϕ_e , ϕ_h , ϕ_x are parameterized by MLPs
- Rotation Equivariance Principle: $Rx_i Rx_j = R(x_i x_j)$

Geometric Autoencoding (2)

• Since \mathcal{E}_{ϕ} and D_{ξ} are parameterized with equivariant graph neural networks (EGNNs), therefore

$$(\mathbf{R}z_{x},z_{h})=\mathcal{E}_{\phi}(\mathbf{R}x,h)$$

$$(\mathbf{R}x,h)=D_{\xi}(\mathbf{R}z_{x},z_{h})$$

• Overall, $(\mathbf{R}x + \mathbf{t}, h) = D_{\xi}(\mathcal{E}_{\phi}(\mathbf{R}x + \mathbf{t}, h))$ for all rotations \mathbf{R} and translations \mathbf{t}

Loss Function for AE

Loss function for Autoencoder (AE):

$$L_{AE} = L_{recon} + L_{reg}$$

- Reconstruction loss $L_{recon}=-\mathbb{E}_{q_{\phi}(z_x,z_h|x,h)}p_{\xi}(x,h|z_x,z_h)$ maximizes the likelihood of the data x,h
 - L_2 norm for continuous features and cross-entropy loss for discrete features
- Regularization loss L_{reg} penalizes $q_{\phi}(z_x, z_h|x,h)$ towards standard Gaussian to prevent latent embeddings from arbitrarily high variance

Geometric Latent Diffusion Models (1)

- Instead of conducting diffusion process on the initial graph (x, h), GEOLDM conducts on the latent variable $z = (z_x, z_h)$
- Forward process:

$$q(z_{t}|z_{t-1}) = \mathcal{N}(z_{t}; \sqrt{1 - \beta_{t}} z_{t-1}, \beta_{t} \mathbf{I})$$

$$q(z_{1:T}|z_{0}) = \prod_{t=1}^{T} q(z_{t}|z_{t-1})$$

• The final state z_T approximately converges to standard Gaussian distribution $\mathcal{N}(0, \mathbf{I})$

Geometric Latent Diffusion Models (2)

- Since $z_t = \alpha_t z_0 + \sigma_t \epsilon$ with $\alpha_t = \sqrt{\prod_{s=1}^t (1 \beta_s)}$ and $\sigma_t = \sqrt{1 \alpha_t^2}$, where $\epsilon \sim \mathcal{N}(0, \mathbf{I})$, the target of the denoising model ϵ_θ is to reconstruct ϵ .
- Loss function for the diffusion model:

$$L_{DM} = -\mathbb{E}_{z_0, \epsilon \sim \mathcal{N}(0, I), t}[w(t) \| \epsilon - \epsilon_{\theta}(z_t, t) \|^2]$$

- The reweighting terms $w(t) = \frac{\beta_t^2}{2\rho_t^2(1-\beta_t)(1-\alpha_t^2)}$
- The reverse step:

$$z_{t-1} = \frac{1}{\sqrt{1 - \beta_t}} \left(z_t - \frac{\beta_t}{\sqrt{1 - \alpha_t^2}} \epsilon_{\theta}(z_t, t) \right) + \rho_t \epsilon$$

Geometric Latent Diffusion Models (2)

Theorem: If the initial distribution $p(z_{x,T}, z_{h,T})$ is invariant and the transitions $p_{\theta}(z_{x,t-1}, z_{h,t-1} | z_{x,t}, z_{h,t})$ are equivariant, i.e., $p_{\theta}(z_{x,t-1}, z_{h,t-1} | z_{x,t}, z_{h,t}) = p_{\theta}(\mathbf{R}z_{x,t-1}, z_{h,t-1} | \mathbf{R}z_{x,t}, z_{h,t})$, then $p_{\theta}(z_x, z_h)$ is invariant: $p_{\theta}(z_x, z_h) = p_{\theta}(\mathbf{R}z_x, z_h)$

• To ensure the Roto-translation equivariance, the denoising network ϵ_{θ} is also parameterized by equivariance networks:

$$(\mathbf{R}z_{x,t-1}+\mathbf{t},z_{h,t-1})=\epsilon_{\theta}(\mathbf{R}z_{x,t}+\mathbf{t},z_{h,t},t)$$

Also subtract center of gravity from all the intermediate states $z_{x,t}$ to ensure translation invariance

• In this way, $p_{\theta}(z_{x,t-1}, z_{h,t-1}|z_{x,t}, z_{h,t})$ is equivariant to rotation transformation (see paper for detailed proof)

Pseudo Algorithms

Algorithm 1 Training Algorithm of GEOLDM

- 1: **Input:** geometric data $\mathcal{G} = \langle \mathbf{x}, \mathbf{h} \rangle$
- 2: **Initial:** encoder network \mathcal{E}_{ϕ} , decoder network \mathcal{D}_{ξ} , denoising network ϵ_{θ}
- 3: First Stage: Autoencoder Training
- 4: **while** ϕ , ξ have not converged **do**
- 5: $\mu_{\mathbf{x}}, \mu_{\mathbf{h}} \leftarrow \mathcal{E}_{\phi}(\mathbf{x}, \mathbf{h})$ {Encoding}
- 6: $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 7: Subtract center of gravity from ϵ_x in $\epsilon = [\epsilon_x, \epsilon_h]$
- 8: $\mathbf{z}_{x}, \mathbf{z}_{h} \leftarrow \boldsymbol{\epsilon} \odot \sigma_{0} + \boldsymbol{\mu}$ {Reparameterization}
- 9: $\tilde{\mathbf{x}}, \tilde{\mathbf{h}} \leftarrow \mathcal{D}_{\mathcal{E}}(\mathbf{z}_{\mathbf{x}}, \mathbf{z}_{\mathbf{h}})$ {Decoding}
- 10: $\mathcal{L}_{AE} = \text{reconstruction}([\tilde{\mathbf{x}}, \tilde{\mathbf{h}}], [\mathbf{x}, \mathbf{h}]) + \mathcal{L}_{reg}$
- 11: $\phi, \xi \leftarrow \text{optimizer}(\mathcal{L}_{AE}; \phi, \xi)$
- 12: end while
- 13: Second Stage: Latent Diffusion Models Training
- 14: Fix encoder parameters ϕ
- 15: **while** θ have not converged **do**
- 16: $\mathbf{z}_{x,0}, \mathbf{z}_{h,0} \sim q_{\phi}(\mathbf{z}_{x}, \mathbf{z}_{h}|\mathbf{x}, \mathbf{h})$ {As lines 5-8}
- 17: $t \sim \mathbf{U}(0,T), \epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 18: Subtract center of gravity from ϵ_x in $\epsilon = [\epsilon_x, \epsilon_h]$
- 19: $\mathbf{z}_{x,t}, \mathbf{z}_{h,t} = \alpha_t[\mathbf{z}_{x,0}, \mathbf{z}_{h,0}] + \sigma_t \epsilon$
- 20: $\mathcal{L}_{LDM} = ||\epsilon \epsilon_{\theta}(\mathbf{z}_{x,t}, \mathbf{z}_{h,t}, t)||^2$
- 21: $\theta \leftarrow \text{optimizer}(\mathcal{L}_{LDM}; \theta)$
- 22: end while
- 23: **return** \mathcal{E}_{ϕ} , \mathcal{D}_{ξ} , ϵ_{θ}

First count the distribution p(N) of molecular sizes N on the training set. Then sample $N \sim p(N)$ and generate latent variables and node features in size N

Algorithm 2 Sampling Algorithm of GEOLDM

- 1: **Input:** decoder network \mathcal{D}_{ξ} , denoising network ϵ_{θ}
- 2: $\mathbf{z}_{x,T}, \mathbf{z}_{h,T} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{I})$
- 3: **for** t in T, $T 1, \dots, 1$ **do**
- 4: $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ {Latent Denoising Loop}
- 5: Subtract center of gravity from ϵ_x in $\epsilon = [\epsilon_x, \epsilon_h]$
- 6: $\mathbf{z}_{t-1} = \frac{1}{\sqrt{1-\beta_t}} (\mathbf{z}_t \frac{\beta_t}{\sqrt{1-\alpha_t^2}} \boldsymbol{\epsilon}_{\theta}(\mathbf{z}_t, t)) + \rho_t \boldsymbol{\epsilon}$
- 7: end for
- 8: $\mathbf{x}, \mathbf{h} \sim p_{\xi}(\mathbf{x}, \mathbf{h} | \mathbf{z}_{\mathbf{x},0}, \mathbf{z}_{\mathbf{h},0})$ {Decoding}
- 9: **return** \mathbf{x} , \mathbf{h}

Experiment: Setup (1)

 Task: Molecular Modeling and Generation; Controllable Molecule Generation

- Dataset:
 - QM9 contains 3D structures together with several quantum properties for 130k small molecules, limited to 9 heavy atoms.
 - DRUG dataset consists of much larger organic compounds, with up to 181 atoms in 5 different atom types.

Experiment: Setup (2)

Evaluation:

- Given the generated molecular geometries (x, h), first predict bond types (single, double, triple, or none) by pair-wise atomic distances and atom types.
- Train on the training set and generate 10, 000 samples for evaluation
- Atom stability (%): the proportion of atoms that have the right valency
- Molecule stability (%): the proportion of generated molecules for which all atoms are stable.
- validity and uniqueness: measured by RDKIT.

Experiment: Results

ENF: equivariant generative model with normalization flow **G-Schnet**: equivariant

generative model with autoregressive model

GDM: graph diffusion model without equivariance

EDM: equivariant graph diffusion model on the raw data space

-AUG: train with data augmented by random rotations

GraphLDM: ablation of GEOLDM with only invariant latent variables

Table 1. Results of atom stability, molecule stability, validity, and validity × uniqueness. A higher number indicates a better generation quality. Metrics are calculated with 10000 samples generated from each model. On QM9, we run the evaluation for 3 times and report the derivation. Note that, for DRUG dataset, molecule stability and uniqueness metric are omitted since they are nearly 0% and 100% respectively for all the methods. Compared with previous methods, the latent space with both invariant and equivariant variables enables GEOLDM to achieve up to 7% improvement for the validity of large molecule generation.

	QM9				DRUG	
# Metrics	Atom Sta (%)	Mol Sta (%)	Valid (%)	Valid & Unique (%)	Atom Sta (%)	Valid (%)
Data	99.0	95.2	97.7	97.7	86.5	99.9
ENF	85.0	4.9	40.2	39.4	-	-
G-Schnet	95.7	68.1	85.5	80.3	-	-
GDM	97.0	63.2	-	-	75.0	90.8
GDM-AUG	97.6	71.6	90.4	89.5	77.7	91.8
EDM	98.7	82.0	91.9	90.7	81.3	92.6
EDM-Bridge	98.8	84.6	92.0*	90.7	82.4	92.8*
GRAPHLDM	97.2	70.5	83.6	82.7	76.2	97.2
GRAPHLDM-AUG	97.9	78.7	90.5	89.5	79.6	98.0
GEOLDM	98.9 \pm 0.1	89.4 \pm 0.5	93.8 \pm 0.4	92.7 \pm 0.5	84.4	99.3

Experiment: Results

- Diffusion-based generative models outperform other generative models in the generation task of molecular geometries.
- Data augmentation boosts the quality of the generated samples.
- Equivariance constraints
 play a vital role in improving the performance.
- GEOLDM beats all baselines and achieve SOTA performance on two datasets.

Table 1. Results of atom stability, molecule stability, validity, and validity×uniqueness. A higher number indicates a better generation quality. Metrics are calculated with 10000 samples generated from each model. On QM9, we run the evaluation for 3 times and report the derivation. Note that, for DRUG dataset, molecule stability and uniqueness metric are omitted since they are nearly 0% and 100% respectively for all the methods. Compared with previous methods, the latent space with both invariant and equivariant variables enables GEOLDM to achieve up to 7% improvement for the validity of large molecule generation.

	QM9			DRUG		
# Metrics	Atom Sta (%)	Mol Sta (%)	Valid (%)	Valid & Unique (%)	Atom Sta (%)	Valid (%)
Data	99.0	95.2	97.7	97.7	86.5	99.9
ENF	85.0	4.9	40.2	39.4	-	-
G-Schnet	95.7	68.1	85.5	80.3	-	-
GDM	97.0	63.2	-	-	75.0	90.8
GDM-AUG	97.6	71.6	90.4	89.5	77.7	91.8
EDM	98.7	82.0	91.9	90.7	81.3	92.6
EDM-Bridge	98.8	84.6	92.0*	90.7	82.4	92.8*
GRAPHLDM	97.2	70.5	83.6	82.7	76.2	97.2
GRAPHLDM-AUG	97.9	78.7	90.5	89.5	79.6	98.0
GEOLDM	98.9 \pm 0.1	89.4 \pm 0.5	93.8 \pm 0.4	92.7 \pm 0.5	84.4	99.3

Experiment: Conditional Generation (1)

• Pipeline:

- Split the training set of QM9 dataset into two halves (50K samples each)
- Train a property predictor w on the first half and train a conditional model f on the second half.
- given a property value s, conditionally draw samples from the generative model f and then use w to calculate their property values as \hat{s}
- Metric: MSE error between s and \hat{s} . lower, better.

Experiment: Conditional Generation (2)

- QM9: directly run the property predictor w
 on the second half => indicate the bias of w.
 A smaller gap with QM9 numbers indicates a
 better property-conditioning performance.
- **Random**: randomly shuffle the property labels in the dataset and then evaluate w on it. This operation removes any relation between molecule and property.
- Natoms: predict the molecular properties by only using the number of atoms
- The results of QM9 and Random can be viewed as lower and upper bounds of MAE.

Table 2. Mean Absolute Error for molecular property prediction. A lower number indicates a better controllable generation result. Results are predicted by a pretrained EGNN classifier ω on molecular samples extracted from individual methods.

Property	$ \alpha $	$\Delta arepsilon$	$\varepsilon_{ m HOMO}$	$arepsilon_{ m LUMO}$	μ	C_v
Units	Bohr ³		meV		D	$\frac{\text{cal}}{\text{mol}}K$
QM9*	0.10	64	39	36	0.043	0.040
Random*	9.01	1470	645	1457	1.616	6.857
$N_{ m atoms}$	3.86	866	426	813	1.053	1.971
EDM	2.76	655	356	584	1.111	1.101
GEOLDM	2.37	587	340	522	1.108	1.025

Experiment: Conditional Generation (2)

Different **Polarizability values** α while keeping the reparameterization noise ε fixed. Typically, **less isometrically** molecular geometries lead to larger α values

Conclusion

- GEOLDM: a novel latent diffusion model for molecular geometry generation.
- GEOLDM overcomes the limitations of current molecular generative models by learning diffusion models over a continuous, lower-dimensional latent space with rotation and translation equivariance.
- GEOLDM builds point-structured latent encodings with both invariant scalars and equivariant tensors.
- Experimental results demonstrate its significantly better capacity for modeling chemically realistic molecules and controllable generation of molecular geometries.