

LINFO1111 - Analyse - Examen - 14 août 2024 - 3h - page 1/7

Sans calculatrice – répondre dans les cadres aux 9 questions – pondération indicative

PRÉNOM et NOM :

NOMA

Consignes.

- ♦ Commencez par **écrire vos prénom et nom en MAJUSCULES ainsi que votre NOMA** dans l'espace prévu en haut du recto de chacune des quatre feuilles de l'examen.
- ♦ Écrivez vos réponses à l'intérieur des cadres prévus. Justifiez lorsque c'est demandé.
- ♦ Lorsque c'est demandé, recopiez votre réponse finale dans le cadre séparé prévu à la fin de la question.
- ♦ Écrivez vos réponses proprement au bic bleu ou noir, ou éventuellement au crayon noir bien lisible.
- ♦ En cas d'erreur, si vous ne pouvez vraiment pas effacer ou barrer proprement, demandez aux surveillants une nouvelle page d'énoncé. Dans ce cas, vous rendez la page erronée.

Question 1 – Preuve par récurrence [\sim 3 points].

Soit n un entier supérieur ou égal à un. On souhaite démontrer par récurrence l'identité suivante

$$\sum_{i=1}^{n} (i \ 2^{-i}) = 2 - 2^{-n}(n+2). \tag{1}$$

1a Démontrez le cas de base.

Quand n = 1, l'égalité à démontrer devient

$$\sum_{i=1}^{1} \left(1 \ 2^{-1}\right) \stackrel{?}{=} 2 - 2^{-1}(1+2),$$

qui se simplifie en $\frac{1}{2} = 2 - \frac{3}{2}$, qui est bien vérifié.

1b Écrivez l'égalité qu'il faut à présent prouver dans cette preuve par récurrence.

Pour prouver l'identité (1) par récurrence, on suppose qu'elle est connue pour le cas n et on cherche à la démontrer pour le cas n + 1, c'est-à-dire à prouver que

$$\sum_{i=1}^{n+1} (i \ 2^{-i}) = 2 - 2^{-(n+1)}(n+3).$$

1c Démontrez l'égalité du point précédent pour terminer la preuve par récurrence de l'identité (1).

Nous devons donc démontrer que

$$\sum_{i=1}^{n+1} (i \ 2^{-i}) = 2 - 2^{-(n+1)}(n+3).$$

La somme du membre de gauche comporte n+1 termes, et peut être décomposée comme la somme des n premiers termes (qui vaut $\sum_{i=1}^{n} (i \ 2^{-i})$) auquel on additionne un dernier terme correspondant à i=n+1 (qui s'écrit $(n+1)2^{-(n+1)}$). Or, par l'hypothèse de récurrence, on sait que la somme de ces n premiers termes vaut $2-2^{-n}(n+2)$. L'égalité à prouver peut donc aussi s'écrire

$$2 - 2^{-n}(n+2) + (n+1)2^{-(n+1)} \stackrel{?}{=} 2 - 2^{-(n+1)}(n+3).$$

Simplifions cette égalité : élimine le terme 2 des deux côtés, et on utilise le fait que $2^{-(n+1)} = 2^{-n-1} = 2^{-n}2^{-1} = \frac{1}{2}2^{-n}$, d'où la nouvelle égalité à prouver

$$-2^{-n}(n+2) + (n+1)\frac{1}{2}2^{-n} \stackrel{?}{=} -\frac{1}{2}2^{-n}(n+3).$$

On peut à présent tout diviser par 2^{-n} , d'où

$$-(n+2) + \frac{1}{2}(n+1) \stackrel{?}{=} -\frac{1}{2}(n+3)$$

et on multipliant par 2 on trouve

$$-2(n+2) + (n+1) \stackrel{?}{=} -(n+3)$$

qui est bien correcte, puisque le membre de gauche veut -2n-4+n+1=-n-3. On a démontré l'égalité.

Puisqu'on a vérifié le cas de base n=1 au point ${\bf 1a}$, l'identité est ainsi prouvée par récurrence pour tout $n\geq 1$.

LINFO1111 - Analyse - Examen - 14 août 2024 - 3h - page 2/7

Sans calculatrice – répondre dans les cadres aux 9 questions – pondération indicative

Question 2 [\sim 3.5 points].

On considère la fonction f définie par $f(x) = \sqrt[3]{x^2 + x + 1}$ pour tout $x \in \mathbb{R}$.

2a Déterminez tous les extrema (globaux) de la fonction f, et précisez pour chaque extremum s'il s'agit d'un minimum ou d'un maximum. **Justifiez** soigneusement vos conclusions.

Pour déterminer les extrema de la fonction f, on peut étudier le signe de sa dérivée f'.

On a

$$f'(x) = \frac{1}{3}(x^2 + x + 1)^{-2/3}(2x + 1).$$

Le terme quadratique $x^2 + x + 1$ est strictement positif : on peut calculer son discriminant $1 - 4 \cdot 1 \cdot 1 = -3 < 0$, ou constater que $x^2 + x + 1 = (x + \frac{1}{2})^2 + \frac{3}{4}$. En passant cela prouve que la puissance négative -2/3 est bien définie (son argument étant strictement positif).

Le signe de f'(x) est donc le même que celui de 2x+1, et donc il est strictement négatif pour $x<-\frac{1}{2}$, nul pour $x=-\frac{1}{2}$ et strictement positif pour $x>-\frac{1}{2}$.

Par conséquent on en déduit que la fonction est strictement décroissante pour $x < -\frac{1}{2}$, et strictement croissante pour $x > -\frac{1}{2}$, et on en tire aussi que $x = -\frac{1}{2}$ est un minimum global de la fonction. Il n'y a pas d'autre extrema.

Pour la question suivante 2b, il suffit de tracer une fonction respectant les conditions de croissance et décroissance qu'on vient d'identifier, avec le minimum en $x=-\frac{1}{2}$ (déjà tracé), tout en donnant au graphe une courbure convexe (tournée vers le haut) sur l'intervalle [-2,1], et concave (tournée vers le bas) en dehors. Pour être franc, ces courbures sont assez difficiles à distinguer sur le graphe.

Réponse finale : $\min = -1/2$ $\max = aucun$

2b On vous donne l'indication suivante sur le signe de la dérivée seconde de la fonction f:

$$f''(-2) = f''(1) = 0$$
, $f''(x) > 0$ pour x tel que $-2 < x < 1$, $f''(x) < 0$ pour $x < -2$ et pour $x > 1$.

A l'aide de cette information et du 2a, tracez le graphe de la fonction f ci-dessous (un point est déjà fourni):

2c On définit à présent la fonction g par $g(x) = \sqrt[3]{x^2 + x + 1}$ sur le domaine $\{x \in \mathbb{R} : x \ge -\frac{1}{2}\}$. C'est donc la même fonction que f, mais dont on a réduit le domaine. **Calculez** l'expression de h, la fonction réciproque de g. (effectuez vos calculs au brouillon, on demande uniquement la réponse finale)

Réponse finale : $h(y) = \frac{-1 + \sqrt{-3 + 4y^3}}{2}$

LINFO1111 - Analyse - Examen - 14 août 2024 - 3h - page 3/7

Sans calculatrice – répondre dans les cadres aux 9 questions – pondération indicative

PRÉNOM et NOM : **NOMA**

Question 3 – Somme [~ 1 point].

Soit une liste de n nombres réels a_1, a_2, \ldots, a_n (où n est un entier supérieur ou égal à 3). Calculez et simplifiez au maximum l'expression

$$P = \sum_{i=2}^{n} (a_{i-1}^3 - a_{i+1}^3).$$

(écrivez uniquement votre réponse finale, pas de justification demandée)

Réponse finale :
$$P = a_1^3 + a_2^3 - a_n^3 - a_{n+1}^3$$

Question 4 – Transformation de graphe [\sim 1 point].

Sur la figure de gauche ci-dessous, on a représenté le graphe de la fonction $f(x) = 2^x$, et sur la figure de droite on a représenté le graphe d'une seconde fonction $g(x) = a 2^x + b$ où a et b sont deux paramètres réels.

Question 5 – Continuité [\sim 1.5 point].

Soit la fonction f définie par $f(x) = \begin{cases} x \ln(x^2) & \text{pour } x \neq 0, \\ a & \text{pour } x = 0. \end{cases}$

Déterminez toutes les valeurs du paramètre a telles que la fonction f est continue en x=0. **Justifiez**.

Par définition, la fonction g est continue en x=1 si et seulement si on a $\lim_{x\to 0} f(x)=f(0)$. On voit que f(0)=a, et il reste à calculer la limite

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} x \ln(x^2) = \lim_{x \to 0} \frac{\ln(x^2)}{1/x} = \stackrel{LH \xrightarrow{\infty}}{=} \lim_{x \to 0} \frac{2x/x^2}{-1/x^2} = \lim_{x \to 0} -2x = 0$$

(où on a utilisé l'astuce de convertir le produit en fraction, puis la règle de L'Hospital pour lever une indétermination de type $\frac{\infty}{\infty}$). Pour que la fonction soit continue la seule possibilité est donc que a=0.

A titre informatif voici le graphe de f pour cette valeur de a:

LINFO1111 - Analyse - Examen - 14 août 2024 - 3h - page 4/7

Sans calculatrice – répondre dans les cadres aux 9 questions – pondération indicative

Question 6 [\sim 2 points].

Soit la fonction de deux variables $f(x,y)=ye^{x^2-ay}$ définie pour tout $x\in\mathbb{R}$ et $y\in\mathbb{R}$, où $a\neq 0$ est un paramètre.

Donnez tous les points critiques de f en fonction de a. Justifiez votre réponse.

Les points critiques de f sont les points $(x,y) \in \mathbb{R}^2$ pour lesquels $f_1'(x,y) = f_2'(x,y) = 0$. On calcule que

$$f'_1(x,y) = 2xye^{x^2 - ay}, \qquad f'_2(x,y) = e^{x^2 - ay}(1 - ay).$$

En observant l'expression de f'_2 , on remarque que $f'_2(x,y) = 0$ implique que 1 - ay = 0, d'où l'on déduit que y = 1/a. En injectant cela dans l'expression de f'_1 , on trouve alors que x = 0. En conclusion, f a un seul point critique en (0,1/a).

Réponse finale : les points critiques de f sont (à donner sous la forme de couples (x, y) en fonction de a) :

$$\{(0, 1/a)\}$$

LINFO1111 - Analyse - Examen - 14 août 2024 - 3h - page 5/7

Sans calculatrice – répondre dans les cadres aux 9 questions – pondération indicative

PRÉNOM et NOM :

NOMA

Question 7 [\sim 3 points].

Soit la fonction $f(x) = \ln(1 + e^x)$ (appelée parfois "softplus") définie pour tout $x \in \mathbb{R}$.

7a Calculez l'expression de $p_2(x;0,f)$, c'est-à-dire le polynôme de Taylor d'ordre 2 de f en 0.

On calcule la dérivée première et la dérivée seconde de f:

$$f'(x) = \frac{e^x}{1 + e^x}, \qquad f''(x) = \frac{e^x}{(1 + e^x)^2}.$$

En utilisant la définition, on trouve que

$$p_2(x;0,f) = f(0) + \frac{1}{1!}f'(0)x + \frac{1}{2!}f''(0)x^2 = \ln(2) + \frac{1}{2}x + \frac{1}{2}\frac{1}{4}x^2 = \ln(2) + \frac{x}{2} + \frac{x^2}{8}.$$

Réponse finale :
$$p_2(x; 0, f) = \ln(2) + \frac{x}{2} + \frac{x^2}{8}$$

7b En invoquant la formule de Taylor, et en particulier son reste, déterminez s'il est vrai ou faux que l'inégalité $f(x) - p_2(x; 0, f) \le 0$ est satisfaite pour tout $x \in \mathbb{R}$. Justifiez. Indice: considerez les cas $x \ge 0$ et x < 0 séparément. Aide: Si l'expression de la dérivée troisième de f vous semble trop difficile à manipuler, vous pouvez (au prix d'une légère pénalité [~ 0.5 points]) utiliser l'expression $1 - e^x$ à la place de f'''(x).

On calcule la dérivée troisième de f:

$$f'''(x) = \frac{e^x(1 - e^{2x})}{(1 + e^x)^4} = \frac{e^x(1 - e^x)}{(1 + e^x)^3}.$$

Par la formule du reste de Taylor, on sait que pour tout $x \in \mathbb{R}$, il existe un nombre z entre 0 et x tel que

$$f(x) - p_2(x; 0, f) = \frac{1}{3!}f'''(z)x^3.$$

Considérons séparément les cas $x \ge 0$ et x < 0.

Cas 1 : Si $x \ge 0$, alors $z \ge 0$. En considérant l'expression de f''' ci-dessus, on remarque que cela implique que $f'''(z) \le 0$. De plus, on a que $x^3 \ge 0$. Donc, on trouve que $f(x) - p_2(x; 0, f) \le 0$ lorsque $x \ge 0$.

Cas 2 : Si x < 0, alors $z \le 0$. En considérant l'expression de f''' ci-dessus, on remarque que cela implique que $f'''(z) \ge 0$. De plus, on a que $x^3 < 0$. Donc, on trouve que $f(x) - p_2(x; 0, f) \le 0$ lorsque x < 0.

On obtient que $f(x) - p_2(x; 0, f) \leq 0$ pour tout $x \in \mathbb{R}$. Donc l'affirmation est vraie.

LINFO1111 - Analyse - Examen - 14 août 2024 - 3h - page 6/7

Sans calculatrice – répondre dans les cadres aux 9 questions – pondération indicative

Question 8 [\sim 2 points].

Soit la fonction $f(x) = \frac{x^2}{\sqrt{1-x^3}}$ définie pour tout x < 1.

8a Donnez une primitive de f (définie pour tout x < 1).

On procède par substitution avec $u(x)=x^3$. Cela donne $f(x)=\frac{1}{3}g(u(x))u'(x)$, où $g(y)=\frac{1}{\sqrt{1-y}}$. On utilise la formule $\int g(u(x))u'(x) dx = G(u(x)) + C$ où G est une primitive de g. En choisissant par exemple $G(y) = -2\sqrt{1-y}$ comme primitive de g, cela donne finalement $F(x) = -\frac{2}{3}\sqrt{1-x^3} + C$ comme primitive de f.

Réponse finale:
$$\int f(x) \, \mathrm{d}x = -\frac{2}{3}\sqrt{1-x^2}$$

8b Donnez la valeur de l'intégrale impropre $\int_{-1}^{1} f(x) dx$ si elle converge; sinon, indiquez qu'elle diverge.

Par définition et par la question précédente, on a que $\int_{-1}^{1} f(x) dx = \lim_{b \to 1} \int_{-1}^{b} f(x) dx = \lim_{b \to 1} \left[-\frac{2}{3} \sqrt{1 - x^3} \right]_{x=-1}^{x=b} = 0$ $\lim_{b \to 1} -\frac{2}{3}\sqrt{1-b^3} + \frac{2}{3}\sqrt{2} = \frac{2}{3}\sqrt{2}.$

Réponse finale :
$$\int_{-1}^{1} f(x) \, \mathrm{d}x =$$

$$\frac{2}{3}\sqrt{2}$$

LINFO1111 - Analyse - Examen - 14 août 2024 - 3h - page 7/7

Sans calculatrice – répondre dans les cadres aux 9 questions – pondération indicative

PRÉNOM et NOM : NOMA

Question 9 [\sim 3 points].

Soit un paramètre $a \neq 0$. Considérez l'équation différentielle x'(t) = 1 + ax(t) avec la condition initiale x(0) = 0.

Donnez l'expression de la solution x(t) de l'équation différentielle ci-dessus, en fonction du paramètre a. **Donnez** également toutes les valeurs du paramètre a pour lesquelles x(t) admet une limite finie lorsque t tend vers $+\infty$.

En utilisant la formule du cours pour les EDOs linéaires à coefficients constants, on trouve que x(t) a la forme $x(t) = Ce^{at} - \frac{1}{a}$ pour un certain $C \in \mathbb{R}$. On utilise la condition initiale pour trouver la valeur de C. Cela donne $x(0) = C - \frac{1}{a} = 0$, d'où l'on déduit $C = \frac{1}{a}$. Donc, la solution est donnée par $x(t) = \frac{1}{a}(Ce^{at} - 1)$. On regarde maintenant la valeur limite. On a que $\lim_{t \to \infty} x(t) = -\frac{1}{a}$ lorsque a < 0, et $\lim_{t \to \infty} x(t) = \infty$ lorsque a > 0.

Réponses finales :
$$x(t) = \frac{1}{a}(e^{at} - 1)$$

Les valeurs du paramètre a pour lesquelles x(t) admet une limite finie lorsque t tend vers $+\infty$ sont :

$$]-\infty,0[$$