REDES DE COMPUTADORES EXAMEN DE CONTENIDOS TEÓRICOS

Convocatoria de Enero de 2020

Apellidos: Nombre:	D.N.I.:	Nota:
Grupo de Teoría:		

GRADO EN INGENIERÍA INFORMÁTICA

NORMAS PARA REALIZAR EL EXAMEN DE TEORÍA:

- Duración del examen: 1 hora 20 minutos.
- La nota de este examen se corresponde con el **80**% de la nota de la parte de contenidos teóricos.
- La realización de este examen implica la condición de PRESENTADO a la convocatoria de Enero de 2020.
- La solución escogida para cada pregunta del test se debe especificar con BOLÍGRAFO en la tabla de soluciones. Se evaluará sólo lo contestado en esta tabla.
- En la tabla se debe especificar una sola respuesta por pregunta con letra mayúscula (A, B, C o
 D) de forma clara; de lo contrario será considerada como respuesta en blanco.
- Cada respuesta incorrecta penaliza 1/4 de respuesta correcta.
- La nota del test se obtiene de la fórmula: Nota = (RC RI/4)*10/35, donde RC son el número de respuestas correctas y RI el número de respuestas incorrectas.
- Las preguntas no contestadas no penalizan.

TABLA DE SOLUCIONES

Pregunta	Solución	Pregunta	Solución	Pregunta	Solución	Pregunta	Solución
1	A	11	A	21	C	31	В
2	С	12	C	22	С	32	В
3	A	13	C	23	C	33	В
4	D	14	В	24	A	34	D
5	A	15	C	25	C	35	C
6	C	16	C	26	A		
7	A	17	D	27	D		
8	D	18	В	28	С		
9	A	19	В	29	С		
10	D	20	D	30	C		

1. ¿ En qué tipo de redes de comunicaciones NO es necesario el proceso de encaminamiento en la comunicación entre cualesquiera dos equipos ?

- a) Redes de difusión.
- b) Redes punto a punto.
- c) Redes de conmutación de paquetes con datagramas.
- d) Redes de conmutación de paquetes con circuitos virtuales.

2. Si en una red de datagramas es necesario el envío de UN paquete de información a TODOS los equipos existentes en la red, es cierto que:

- a) Es suficiente con la transmisión del paquete en el medio físico compartido.
- b) Es suficiente con la transmisión del paquete en el medio físico del equipo que lo transmite.
- c) Es necesaria la transmisión del paquete en todos los medios físicos de la red de datagramas.
- d) Es necesario que el equipo emisor transmita el paquete de información tantas veces como equipos existen en la red de datagramas.

3. Si en una red de difusión un equipo en la red deja de funcionar es cierto que:

- a) No afecta a la comunicación entre los demás equipos de la red.
- b) Los equipos más cercanos al que ha dejado de funcionar no pueden intercambiar información.
- c) Los equipos más alejados del que ha dejado de funcionar no pueden intercambiar información.
- d) Ningún equipo de la red podrá transmitir o recibir información.

4. Sobre el funcionamiento de una arquitectura de red es cierto que:

- a) El número de niveles está asociado al número de equipos que existen en la red de comunicaciones.
- b) Las capas de diferentes niveles en la arquitectura establecen comunicaciones a nivel horizontal.
- c) Las capas pares de la arquitectura establecen comunicaciones a nivel vertical.
- d) La comunicación entre las capas pares del nivel 1 siempre es horizontal.

5. Si la capa n de una arquitectura de red recibe dos paquetes de la capa inferior n-1, es cierto que:

- a) En la cabecera del protocolo de nivel n se indica si los paquetes son fragmentos a unir.
- b) En la cabecera del protocolo de nivel n-1 se indica si los paquetes son fragmentos a unir.
- c) Si uno de los paquetes no incorpora la cabecera del protocolo n-1, serán dos fragmentos a unir
- d) Si uno de los paquetes no incorpora la cabecera el protocolo n, serán dos fragmentos a unir.

6. El formato de los paquetes de información que una arquitectura de red transmite en el medio físico se caracteriza por:

- a) Incorporar SIEMPRE las cabeceras de todos los niveles de la arquitectura de red.
- b) Incorporar SIEMPRE la cabecera del nivel más alto de la arquitectura.
- c) Incorporar SIEMPRE la cabecera del nivel más bajo de la arquitectura.
- d) Incorporar SIEMPRE al principio del paquete la cabecera de nivel más alto de la arquitectura.

7. Sobre el funcionamiento de la arquitectura TCP/IP es cierto que:

- a) La capa de aplicación emplea SIEMPRE la capa IP para el intercambio de datos entre equipos.
- b) La capa de aplicación emplea SIEMPRE la capa TCP para el intercambio de datos entre equipos.
- c) La capa de aplicación emplea SIEMPRE la capa ICMP para el intercambio de datos entre equipos.
- d) La capa de aplicación emplea SIEMPRE la capa UDP para el intercambio de datos entre equipos.

8. ¿ Qué protocolo de aplicación de la arquitectura de red TCP/IP NO emplea ni el protocolo TCP ni el UDP ?

- a) HTTP.
- b) DNS.
- c) ICMP.
- d) PING.

9. La interconexión de dos redes Ethernet empleando un repetidor se caracteriza por:

- a) Los paquetes Ethernet de difusión emitidos por un equipo se transmiten en las dos redes Ethernet interconectadas.
- b) Los paquetes Ethernet dirigidos a una dirección MAC SOLO son transmitidos en la red donde se encuentra esa dirección MAC.
- c) Los paquetes Ethernet de difusión emitidos por un equipo SOLO se transmiten en la red donde está el equipo.
- d) Emplear el algoritmo Spanning-Tree para aprender qué direcciones MAC existen en cada red Ethernet.

10. Una señal de pulsos que se transmite adecuadamente por un medio físico puede presentar errores si:

- a) Aumenta el ancho de banda del medio físico.
- b) Se reduce la velocidad de transmisión de la señal.
- c) Aumenta la relación señal-ruido en el medio físico.
- d) Se reduce la relación señal-ruido en el medio físico.

11. ¿ En qué tipo de señalización en BANDA BASE pueden existir más problemas de sincronización emisor – receptor ?

- a) Codificación binaria unipolar sin retorno a cero.
- b) Codificación binaria bipolar con retorno a cero.
- c) Codificación Mánchester.
- d) Codificación PCM.

12. El aumento de la velocidad de transmisión MÁXIMA en un medio físico empleando codificación Manchester es posible:

- a) Aumentando el número de niveles de la señal.
- b) Reduciendo la relación señal-ruido.
- c) Aumentando el ancho de banda del medio físico.
- d) Aumentando el número de armónicos que componen la señal.

13. La transmisión de 2 canales de información con ancho de banda B1 y B2, por un medio físico empleando multiplexión en frecuencia (FDM), precisa:

- a) Un medio físico con un ancho de banda igual al MAYOR de los valores B1 y B2.
- b) Un medio físico con un ancho de banda inferior al valor B1+B2.
- c) Un medio físico con un ancho de banda superior al valor B1+B2.
- d) Un medio físico con un ancho de banda igual al MENOR de los valores B1 y B2.

14. La técnica de modulación QPSK se caracteriza por:

- a) Precisar mayor ancho de banda para la señal modulada que la modulación QAM.
- b) Establecer menos cambios de fase que la modulación QAM.
- c) Establecer más portadoras que la modulación QAM.
- d) Establecer los mismos cambios de amplitud que la modulación QAM.

15. A mayor categoría de un cable eléctrico UTP, es cierto que:

- a) Presenta menor relación señal-ruido.
- b) Presenta un menor ancho de banda.
- c) Presenta una mayor velocidad máxima de transmisión.
- d) Presenta una mayor tensión eléctrica en las señales transmitidas.

16. El cable coaxial de 75 Ohmios de impedancia se emplea para:

- a) Transmisión de señales en banda base.
- b) Multiplexar en el tiempo señales PCM.
- c) Transmisión de canales de datos multiplexados en frecuencia.
- d) Reducir la relación señal-ruido respecto de los cables de 50 Ohmios de impedancia.

17. ¿ Qué factor NO limita la distancia máxima de comunicación que puede conseguirse en una fibra óptica ?

- a) El tipo de fibra óptica empleada.
- b) La velocidad de transmisión empleada.
- c) La potencia del dispositivo emisor de luz.
- d) El número de canales multiplexados por longitud de onda.

18. ¿ Qué tipo de servicio ofrecido por el nivel de enlace reenvía paquetes de datos sin controlar el flujo ?

- a) Servicio sin conexión ni reconocimiento.
- b) Servicio sin conexión y con reconocimiento.
- c) Servicio con conexión y con reconocimiento.
- d) Servicio de ventana deslizante.

19. Indica qué tipos de errores pueden detectar tanto los códigos de detección de paridad como los códigos de redundancia cíclica (CRC),

- a) Errores en un número par de bits.
- b) Errores en ráfaga de 7 bits de longitud.
- c) Errores en ráfaga de longitud menor que el grado del polinomio generador.
- d) No existen tipos de errores que detecten ambos códigos.

20. ¿ En qué protocolo de ventana deslizante pueden recibirse paquetes de datos con secuencias no consecutivas ?

- a) Protocolo de parada y espera.
- b) Protocolo de ventana deslizante de 1 bit.
- c) Protocolo de ventana deslizante con repetición NO selectiva.
- d) Protocolo de ventana deslizante con repetición selectiva.

21. Sobre la transmisión de paquetes Ethernet empleando el mecanismo CSMA/CD, es cierto que:

- a) Un equipo reenvía los paquetes Ethernet que sufren errores CRC.
- b) El destinatario de un paquete Ethernet solicita el reenvío del paquete cuando detecta una colisión.
- c) Existe un número máximo de intentos en el reenvío de un paquete que ha sufrido una colisión
- d) El tiempo de espera aleatorio para el reenvío de un paquete que ha sufrido una colisión es siempre el mismo en cada intento.

22. Indica el sistema de señalización empleado en Ethernet 100BaseFX:

- a) Manchester.
- b) 4D-PAM5.
- c) NRZI.
- d) 8B/10B.

23. En un sistema de codificación 4B/5B, es cierto que:

- a) Los símbolos a enviar son indiferentes mientras no se repitan entre ellos.
- b) Se usa en Fast Ethernet para llegar a los 100 Mbps pero al transmitir un 25% más para introducir la sincronización esto se traduce en una velocidad menor para el usuario.
- c) Define un conjunto de 16 símbolos de 5 bits.
- d) Define un conjunto de 32 símbolos de 5 bits.

24. ¿ Qué tecnología Ethernet NO precisa la introducción de bits de sincronización en los paquetes Ethernet ?

- a) Ethernet 1000BaseT.
- b) Ethernet 100BaseTX.
- c) Ethernet 100BaseFX.
- d) Ethernet 1000BaseLX.

25. Sobre el funcionamiento de un conmutador Ethernet con la tecnología IEEE 802.1Q, es cierto que:

- a) El formato de paquete IEEE 802.1Q es el mismo que Ethernet 802.3.
- b) Sólo soporta el empleo de paquetes con el formato IEEE 802.1Q.
- c) La interconexión entre conmutadores IEEE 802.1Q se gestiona con el protocolo GVRP.
- d) Establece un único dominio de difusión entre todos los puertos de enlace de acceso del conmutador.

26. En cuanto al mecanismo CSMA/CA es cierto que,

- a) Permite evitar colisiones en el envío de datos cuando existen varios dispositivos inalámbricos en el mismo radio de cobertura.
- b) Es una mejora sobre el CSMA/CD y permite un uso más eficiente de redes cableadas.
- c) Es un mecanismo con menos pasos que el CSMA/CD para su uso en redes inalámbricas.
- d) Se fundamenta en escuchar el medio a la vez que se transmite para ver si se está produciendo una colisión.

27. ¿ Cómo se denomina el mecanismo en el que no existen colisiones a la hora de transmitir paquetes en las redes inalámbricas ?

- a) CSMA/CD con RTS/CTS.
- b) CSMA/CA con RTS/CTS.
- c) DCF.
- d) PCF.

28. En cuanto a la seguridad de las redes Wi-Fi, es cierto que:

- a) Todos los protocolos derivados de TKIP intercambian una nueva clave en cada paquete para el cifrado del siguiente paquete.
- b) El mecanismo de cifrado AES fue diseñado para ser irrompible por fuerza bruta.
- c) Todos los mecanismos de cifrado se basan en el intercambio de una clave inicial.
- d) El estándar WPA3 es el más seguro porque no realiza el intercambio de una clave inicial de cifrado.

29. Indica qué afirmación es cierta sobre las normas WPA y WPA2.

- a) Ambas normas emplean el algoritmo de cifrado AES.
- b) WPA2 no soporta el mecanismo de autenticación PSK.
- c) Ambas normas permiten el algoritmo de cifrado RC4.
- d) WPA2 introduce nuevos mecanismos de autenticación más seguros que en WPA.

30. ¿Cuál de las siguientes afirmaciones es cierta para el protocolo RIPv2?

- a) Introduce una mejora con respecto a RIPv1 porque mide el camino de menos coste y no el camino con menos saltos.
- b) Implementa el algoritmo de Dijkstra para asignar la métrica menor y por tanto el camino a seguir.
- c) Es más eficiente que RIPv1 por hacer uso de la multidifusión.
- d) Usa las mismas tablas que RIPv1 pero las actualiza más a menudo.

31. Sobre el empleo de la multidifusión en el protocolo IPv4, es FALSO que:

- a) Se precisa de un protocolo para la gestión del envío de paquetes de multidifusión.
- b) El protocolo OSPF informa sobre direcciones de multidifusión activas.
- c) Los algoritmos de encaminamiento emplean la multidifusión para un procesamiento más eficiente de los paquetes de información.
- d) El protocolo BGP no emplea multidifusión en el envío de información de encaminamiento.

32. ¿Cuál de las siguientes afirmaciones es FALSA para IPv6?

- a) Permite simplificaciones en los algoritmos de encaminamiento
- b) Las máscaras de red de IPv6 tienen la misma longitud que las de IPv4.
- c) Define un sistema de cabeceras más flexible que IPv4.
- d) Soporta monodifusión (anycast).

33. ¿ Qué algoritmo de encaminamiento no tiene en cuenta valores de métrica al gestionar las tablas de encaminamiento ?

- a) OSPF.
- b) BGP.
- c) RIPv1.
- d) RIPv2.

34. Indica qué afirmación es cierta sobre el funcionamiento del protocolo TCP:

- a) La ventana de congestión se incrementa siempre en el doble del valor anterior.
- b) La ventana de congestión se decrementa siempre en el doble del valor del MSS.
- c) La ventana de congestión SIEMPRE es mayor que la ventana de recepción.
- d) La ventana del emisor nunca es mayor que la ventana del receptor.

35. Sobre el funcionamiento del algoritmo de Karn es cierto que:

- a) Reduce el valor del temporizador de espera de los ACK cuando éstos expiran.
- b) Aumenta al doble del RTT el valor del temporizador de espera de los ACK cuando estos expiran.
- c) Adapta el valor del temporizador de espera de los ACK al RTT de los paquetes TCP confirmados.
- d) Determina un valor fijo de temporizador de espera de ACK para una conexión TCP en el establecimiento de la conexión.