# Infinite Computations – WS 2015/2016

## Exercises – Series 8

December 11, 2015

## Exercise 36. (Bachelor + Master)

3 points

Consider the following S1S formula:

$$\varphi(X_1) = X_1(0) \land \forall y (X_1(y) \to \neg X_1(y+1))$$

Transform  $\varphi$  into an equivalent S1S<sub>0</sub> formula  $\varphi'$  as described in the lecture.

### Exercise 37. (Bachelor + Master)

2+2 points

We consider the alphabet  $\mathbb{B} = \{0, 1\}$ .

- (a) Give an S1S formula for the  $\omega$ -language  $(000)^*1\mathbb{B}^{\omega}$ . Briefly explain your formula.
- (b) Give a short colloquial description and an  $\omega$ -regular expression for the  $\omega$ -language defined by the S1S formula

$$\varphi(X_1) = \exists X_2 \Big( \forall z \big( X_2(z) \to X_2(z+1) \big)$$
$$\land \exists x \exists y \big( \neg X_1(x) \land \neg X_2(x) \land X_1(y) \land X_2(y) \big) \Big).$$

### Exercise 38. (Bachelor + Master)

2+2+2 *points* 

Consider the following Büchi automaton A:



- (a) Using the method from the lecture, construct an S1S formula  $\varphi_1(X_1)$  with auxiliary set variables  $Y_1, Y_2, Y_3$  such that  $L(\varphi_1) = L(A)$ .
- (b) Do the same with only two auxiliary set variables  $Y_1, Y_2$ .
- (c) Construct an FO formula  $\varphi_2(X_1)$  such that  $L(\varphi_2) = L(\mathcal{A})$ . (In an FO formula, no set quantifiers occur.)

We call a relation  $R \subseteq \mathbb{N} \times \mathbb{N}$  *S1S-definable* if there exists an S1S-formula  $\varphi(x,y)$  such that  $(m,n) \in R \Leftrightarrow \varphi[x/m,y/n]$  is satisfied (i.e., the formula  $\varphi(x,y)$  evaluates to true when the variables x and y are substituted with the values m and n).

For instance, the successor relation  $Succ \subseteq \mathbb{N} \times \mathbb{N}$  can be defined by the S1S-formula  $\varphi_{Succ}(x,y) := y = x + 1$ .

Show that the relation  $Double = \{(m, n) \mid n = 2 \cdot m\} \subseteq \mathbb{N} \times \mathbb{N} \text{ is not S1S-definable.}$ 

*Hint:* It is useful to consider the  $\omega$ -language  $L = \left\{ \begin{pmatrix} 0 \\ 0 \end{pmatrix}^n \begin{pmatrix} 1 \\ 1 \end{pmatrix}^m \begin{pmatrix} 1 \\ 1 \end{pmatrix}^\omega \mid n \ge 1 \right\}$  and to show that L is not regular.