Are Large-scale Datasets Necessary for Self-Supervised Pre-training?

Vision Transformers: напоминание

Transformers | Davide Coccomini | 2021

DINO: напоминание

Denoising Autoencoders: BEiT

Denoising Autoencoders: SplitMask

Denoising Autoencoders: SplitMask

Основные отличия от ВЕіТ:

- На каждом шаге используются все патчи для каждой из картинок
- 2. Через encoder пропускаются только входные токены (без масок)
- 3. Есть декодер
- 4. Есть дополнительный контрастив лосс на все изображение

Анализ: выбор токенизатора

В ВЕІТ сначала отдельно обучается discrete VAE, хочется полностью отказаться от больших датасетов для претрейнинга. Пусть есть V единичных векторов е і. Для патча х, мы выбираем токен t как:

Авторы предлагают несколько способов выбора e_i: $t = \operatorname{argmax}_{i \in \{1, \dots, V\}} \mathbf{x}^{\top} \mathbf{e}_i$

- 1. (random projection) Сэмплировать случайные векторы
- 2. (random patches) Сэмплировать случайные патчи из изображений
- 3. (k-means) Кластеризовать патчи из изображений и использовать центроиды кластеров

	DALL-E	Rand. Proj.	Rand. Patches	K-Means
iNat19	75.2	75.2	75.3	75.0

Анализ: размер датасета

Method	IMNet 1% epochs: 30k	IMNet 10% epochs: 3k	IMNet Full epochs: 300	COCO epochs: 3k
Supervised	71.6	75.0	75.8	-
DINO [18]	70.1	73.1	78.4	71.9
BEiT [24]	74.1	74.5	75.2	74.4
SplitMask	74.8	75.4	75.4	76.3

Трансфер на iNaturalist-2019

Анализ: размер датасета

Трансфер SplitMask на iNaturalist- 2019

Эксперименты: датасеты

Dataset	#Train	#Test	#Classes	Epochs
ImageNet [7]	1,281,167	50,000	1000	300
iNaturalist 2018 [12]	437,513	24,426	8,142	800
iNaturalist 2019 [13]	265,240	3,003	1,010	1,400
Food 101 [61]	75,750	25,250	101	5,000
Stanford Cars [60] Clipart [62] Painting [62] Sketch [62]	8,144	8,041	196	5,000
	34,019	14,818	345	5,000
	52,867	22,892	345	5,000
	49,115	21,271	345	5,000
ADE20k [64]	20,210	2,000	150	21,000
COCO [63]	118,287	5,000	80	3,000

Эксперименты: COCO object detection and instance segmentation

Method	Backbone	Pre-training			AP^b	AP^b_{50}	AP^b_{75}	$ AP^m$	AP^m_{50}	AP^m_{75}
		Supervised	IMNet	COCO						
Random Initialization		X	X	X	38.3	60.1	41.4	35.6	57.1	37.7
Random Initialization†		X	X	X	42.8	64.5	45.6	39.1	61.5	41.7
DeiT [50]	ViT-S	1	✓	X	44.2	66.6	47.9	40.1	63.2	42.7
BEiT [24]	V11-S	X	✓	X	44.5	66.2	48.8	40.3	63.2	43.1
DINO [18]		X	X	✓	43.7	65.5	47.7	39.6	62.3	42.3
BEiT		X	X	✓	44.7	66.3	48.8	40.2	63.1	43.2
SplitMask		X	X	✓	45.3	66.9	49.4	40.6	63.6	43.5
Random Initialization		Х	Х	Х	40.7	62.7	44.2	37.1	59.1	39.4
Random Initialization†		X	X	X	43.0	64.2	46.9	38.8	61.3	41.6
DeiT [50]	VAT D	1	✓	X	45.5	67.9	49.2	41.0	64.6	43.8
BEiT [24]	ViT-B	X	✓	X	46.3	67.6	50.6	41.6	64.5	44.9
DINO [18]		Х	X	✓	43.1	64.4	46.9	38.9	61.4	41.4
BEiT		X	X	✓	46.7	67.7	51.2	41.8	65.0	44.6
SplitMask		X	X	✓	46.8	67.9	51.5	42.1	65.3	45.1

Эксперименты: ADE20k semantic segmentation

Method	Pr	mIoU		
	Supervised			
Random Init.	X	X	X	25.4
DeiT [50]	✓	X	X	46.1
BEiT [24]	X	1	X	45.6
BEiT	X	X	✓	45.6
SplitMask	X	X	✓	45.7

Эксперименты: classification fine tuning

Method	Backbone	Supervised	Data	Used	iNat-18	iNat-19	Food 101	Cars	Clipart	Painting	Sketch
		pre-training	IMNet	Target	437k	265k	75k	8k	34k	52k	49k
Liu et al. [67] [∓]	CVT-13	X	X	1	_	_	_	_	60.6	55.2	57.6
Liu et al. [07]	ResNet-50	X	X	1	-	-	_	-	63.9	53.5	59.6
Random Init.		X	Х	1	59.6	67.5	84.7	35.3	41.0	38.4	37.2
DeiT [50]		✓	1	✓	69.9	75.8	91.5	92.2	79.6	74.2	72.5
BEiT [24]	ViT-S	X	✓	✓	68.1	75.2	90.5	92.4	75.3	68.7	68.5
BEiT		X	X	1	68.8	<u>76.1</u>	90.7	92.7	_	69.0	
SplitMask		X	X	1	70.1	76.3	91.5	92.8	<u>78.3</u>	<u>69.2</u>	<u>70.7</u>
Random Init.		×	Х	1	59.6	68.1	83.3	36.9	41.9	37.6	34.9
DeiT [50]		1	1	✓	<u>73.2</u>	77.7	91.9	92.1	80.0	73.8	72.6
BEiT [24]	ViT-B	X	1	1	71.6	78.6	91.0	93.9	78.0	71.5	71.4
BEiT		X	Х	1	72.4	<u>79.3</u>	<u>91.7</u>	92.7	-	70.7	-
SplitMask		X	X	1	74.6	80.4	91.2	<u>93.1</u>	<u>79.3</u>	<u>72.0</u>	<u>72.1</u>

Эксперименты: classification ImageNet

Method	Backbone	Epochs	Top-1
MocoV3 [68]		300	81.4
DINO [18]	ViT-S	300	81.5
BEiT [24]	V11-3	300	81.3
SplitMask		300	81.5
MocoV3 [68]		300	83.2
DINO [18]	ViT-B	400	83.6
BEiT [24]	V11-D	300	82.8
BEiT [24]		800	83.2
SplitMask		300	83.6

Рецензия

В данной статье авторы исследовали self-supervised pretraining на примере denoising autoencoders. Авторы пришли к выводу, что denoising autoencoders более устойчивы к типу и размеру данных для предобучения. Авторы предложили свой метод для self-supervised pretraining - SplitMask.

Сильные стороны:

- 1. Статья в целом написана доходчиво, простым языком
- 2. Авторы провели достаточно полный эмпирический анализ self-supervised pretraining. Есть ablation study предложенного авторами метода
- 3. Значимость этой статьи заключается в том, что авторы развенчивают миф, что нужно предобучаться на больших наборах данных

Слабые стороны:

- 1. Нет авторской реализации SplitMask
- 2. Упущены детали в статье для воспроизводимости такой же модели

Оценка: 8 | Уверенность: 3

Авторы

Alaaeldin El-Nouby: PhD Student, Facebook Al Research, INRIA

Работы по Vision Transformer:

- LeViT: a Vision Transformer in ConvNet's Clothing for Faster Inference
- Training vision transformers for image retrieval
- XCiT: Cross-Covariance Image Transformers
- Gautier Izacard: Facebook Al Research, INRIA
- Hugo Touvron: Facebook Al Research, Sorbonne University
- Ivan Laptev: Research director, INRIA
- Hervé Jégou: Facebook Al Research
- Edouard Grave: Facebook Al Research

Контекст

Опорные работы:

- An image is worth 16x16 words: Transformers for image recognition at scale
- BEiT: BERT Pre-Training of Image Transformers
- Emerging Properties in Self-Supervised Vision Transformers (DINO)
- An empirical study of training self-supervised vision transformers (Moco V3)

Статья опубликована 20.12.2021. Цитирований нет.

Контекст

How to train your ViT? Data, Augmentation, and Regularization in Vision Transformers

Google Research, Brain Team

Дальнейшие возможные исследования:

Рассмотреть насколько данное исследование справедливо для моделей, отличных от Vision Transformer, а также на других задачах

Применение и практическое значение:

- Уменьшение необходимых ресурсов для получения предобученных моделей
- Улучшение в качестве, если предобучаться сразу на наборе данных для которого решается задача