Basic identities of matrix/vector ops	We apply Gram-Schmidt to build ONB $(q_1,, q_n) \in \mathbb{R}^m \text{for } U_n \subset \mathbb{R}^m $	Matrix norms Matrix norms are such that: $ A = 0 \iff A = 0$,	$\det(A) = \sum_{i=1}^{n} (-1)^{i+k} A_{ik} \det(A_{ik}'), \text{ i.e. expansion along}$	You can mix-and-match the forward/backward modes i.e. inverse operations in inverse order for one, and	Consider $A \in \mathbb{R}^{n \times n}$, non-zero $\mathbf{x} \in \mathbb{C}^n$ is an eigenvector with eigenvalue $\lambda \in \mathbb{C}[\text{for }A \text{if }A\mathbf{x}=\lambda\mathbf{x}]$	AJis positive-definite iff all its eigenvalues are strictly	Let $\underline{A = [\mathbf{r}_1;; \mathbf{r}_m]}$ be rows $\underline{\mathbf{r}_1,, \mathbf{r}_m \in \mathbb{R}^n}$ => each
$\frac{(A+B)^T = A^T + B^T}{(AB)^T = B^T A^T} \frac{(AB)^T = B^T A^T}{A^T} \frac{(A-B)^T = (A^T)^{-1}}{(AB)^T = B^T A^T}$ For $A \in \mathbb{R}^{m \times n}$ A:: lis the i -th ROW then j -th COLUMN	$j=1$ $\Rightarrow \mathbf{u}_1 = \mathbf{a}_1$ and $\mathbf{q}_1 = \hat{\mathbf{u}}_1$, i.e. start of iteration	$ \lambda A = \lambda A , A+B \le A + B $	k=1 i th row *(for any i)	operations in normal order for the other	If $Ax = \lambda x$ then $A(kx) = \lambda(kx)$ for $k \neq 0$, i.e. kx is also an eigenvector	Ajis positive-definite => all its diagonals are strictly positive	row corresponds to a sample Let $A = [c_1 c_n]$ be columns $c_1,, c_n \in \mathbb{R}^m$ \Longrightarrow each
$(A^{i})_{ij} = A_{ji} (AB)_{ij} = A_{i\star} \cdot B_{\star j} = \sum_{i} A_{ik} B_{kj}$	$ j=2 \Rightarrow \mathbf{u}_2 = \mathbf{a}_2 - (\mathbf{q}_1 \cdot \mathbf{a}_2)\mathbf{q}_1$ and $\mathbf{q}_2 = \hat{\mathbf{u}}_2$ $ \mathbf{etc}$ Linear independence guarantees that $\mathbf{a}_{j+1} \notin U_j$	Matrices [m×n] are a vector space so matrix norms are vector norms, all results apply	$\det(A) = \sum_{i=1}^{n} (-1)^{k+j} A_{kj} \det(A_{kj}')$ i.e. expansion along	e.g. you can do $[I_m \mid A \mid I_n] \rightsquigarrow [R^{-1} \mid A' \mid C]$ to get $AC = R^{-1}A' \implies useful for LU factorization$	Alhas at most n distinct eigenvalues The set of all eigenvectors associated with eigenvalue	AJis positive-definite => max(A _{ii} , A _{jj}) > A _{ij}	column corresponds to one dimension of the data Let X ₁ ,,X _n be random variables where each X _i corresponds to column c _i
$(\Delta x) \cdot = \Delta \cdot \cdot \cdot x = \sum \cdot \Delta \cdot \cdot x \cdot x_1 = \alpha_1 \cdot x = x \cdot \alpha = \sum \cdot x \cdot x \cdot x$	For exams: compute $\mathbf{u}_{j+1} = \mathbf{a}_{j+1} - Q_j \mathbf{c}_j$	Sub-multiplicative matrix norm (assumed by default) is also such that $ AB \le A B $	R=1	Eigen-values/vectors	$\underline{\lambda}$ is called eigenspace $\underline{E_{\lambda}}$ of \underline{A}	i.e. strictly larger coefficient on the diagonals Alis positive-definite => all upper-left submatrices are	corresponds to column c; i.e. each X; corresponds to i th component of data
$ \begin{array}{c} (\Delta x) \cdot = \Delta \cdot \cdot \cdot y = \nabla \cdot \Delta \cdot y \cdot y^T v = v^T v = v \cdot v = \sum_i x_i y_i \\ v^T \Delta x = \nabla \cdot \nabla \cdot \Delta \cdot x \cdot v \cdot v^T v = 0 \\ e_R x^T = [0^T,; x^T,; 0^T] \end{array} $	1) Gather $Q_j = [\mathbf{q}_1 \mid \mid \mathbf{q}_j] \in \mathbb{R}^{m \times j}$	Common matrix norms, for some $\underline{\mathbf{A}} \in \mathbb{R}^{m \times n}$	j th column (for any j) When det(A) = 0 we call A a singular matrix		$E_{\lambda} = \ker(A - \lambda I)$ The geometric multiplicity of λ is	also positive-definite Sylvester's criterion: Alis positive-definite iff all	i.e. random vector $X = [X_1,, X_n]^T$ models the data
Scalar-multiplication + addition distributes over: column-blocks ⇒	2) Compute $\mathbf{c}_j = [\mathbf{q}_1 \cdot \mathbf{a}_{j+1}, \dots, \mathbf{q}_j \cdot \mathbf{a}_{j+1}]^T \in \mathbb{R}^j$	$\ \mathbf{A}\ _1 = \max_j \ \mathbf{A}_{*j}\ _1$ $\ \mathbf{A}\ _2 = \sigma_1(\mathbf{A})$ [i.e. largest singular value of \mathbf{A}]	Common determinants For n = 1, det(A) = A _{1,1}		$\frac{\dim(E_{\lambda}) = \dim(\ker(A - \lambda I))}{\text{The } \mathbf{spectrum} Sp(A) = \{\lambda_1, \dots, \lambda_n\} \text{ of } \underline{A} \text{ is the set of all }$	upper-left submatrices have strictly positive determinant	r ₁ ,,r _m
$\frac{\lambda A + B = \lambda [A_1 \mid \dots \mid A_C] + [B_1 \mid \dots \mid B_C] = [\lambda A_1 + B_1 \mid \dots \mid \lambda A_C + B_C]}{\text{row-blocks}}$	3) Compute $Q_j c_j \in \mathbb{R}^m$ and subtract from a_{j+1}	(square-root of largest eigenvalue of A ^T A or AA ^T	For <u>n = 2</u>], det(A) = A ₁₁ A ₂₂ - A ₁₂ A ₂₁		eigenvalues of A	A Jis positive semi-definite iff $x^T Ax \ge 0$ for all x_J A Is positive semi-definite iff all its eigenvalues are	Co-variance matrix of \underline{X} is $Cov(A) = \frac{1}{m-1} A^T A$ =>
$\lambda A + B = \lambda [A_1;; A_r] + [B_1;; B_r] = [\lambda A_1 + B_1;; \lambda A_r + B_r]$ Matrix-multiplication distributes over:	Properties: dot-product & norm $x^{T}y = y^{T}x = x \cdot y = \sum_{i} x_{i} y_{i} x \cdot y = a b \cos \hat{xy} $	$\ \mathbf{A}\ _{\infty} = \max_{i} \ \mathbf{A}_{i*}\ _{1}$, note that $\ \mathbf{A}\ _{1} = \ \mathbf{A}^{T}\ _{\infty}$	det(I _n) = 1		The characteristic polynomial of \underline{A} is $P(\lambda) = A - \lambda I = \sum_{i=0}^{n} a_i \lambda^i$	non-negative Alis positive semi-definite => all its diagonals are	$A^{T}A)_{ij} = (A^{T}A)_{ji} = Cov(X_{i}, X_{j})$
$ $ column-blocks \Rightarrow $AB = A[B_1 B_D] = [AB_1 AB_D] $	ī	Frobenius norm: $\ \mathbf{A}\ _F = \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} \mathbf{A}_{ij} ^2}$	Multi-linearity in columns/rows: if $A = [a_1 a_j a_n] = [a_1 \lambda x_j * \mu y_j a_n]$ then		$\begin{vmatrix} a_0 = A & a_{n-1} = (-1)^{n-1} \operatorname{tr}(A) & a_n = (-1)^n \end{vmatrix}$	non-negative	v_1, \dots, v_r (columns of V) are principal axes of A] be some unit-vector \Rightarrow let $\alpha_i = r_i \cdot w_i$ be the projection/coordinate of sample r_i postow
row-blocks \Rightarrow $AB = [A_1;; A_p]B = [A_1B;; A_pB]$	$\begin{array}{c} x \cdot u = u \cdot v \cdot y \cdot (u + z) = v \cdot u + x \cdot z \\ x \cdot x = x ^2 = 0 \iff x = 0 \end{array}$	Vi=1 j=1	$\det(A) = \lambda \det([a_1 \dots x_j \dots a_n])$		$\lambda \in C$ is eigenvalue of A iff λ is a root of $P(\lambda)$	A is positive semi-definite => $\max(A_{ij}, A_{jj}) \ge A_{ij} $ i.e. no coefficient larger than on the diagonals	Variance (Bessel's correction) of $\alpha_1,, \alpha_m$ is
$AB = [A_1 A_D][B_1;; B_D] = \sum_{i=1}^{n} A_i B_i$	for $x \neq 0$ "we have $x \cdot y = \dot{x} \cdot z \Longrightarrow x \cdot (y-z) = 0$ $ x \cdot y < \ x\ \ y\ (Cauchy-Schwartz inequality)$ $ u+y ^2 + u-y ^2 = 2 u ^2 + 2 y ^2$ (parallelogram law)	A matrix norm $\ \cdot\ $ on $\mathbb{R}^{m \times n}$ is consistent with the vector norms $\ \cdot\ _a$ on \mathbb{R}^n and $\ \cdot\ _b$ on \mathbb{R}^m if	$+\mu \det ([a_1 y_j a_n])$ And the exact same linearity property for rows		The algebraic multiplicity of λ is the number of times it is repeated as root of $P(\lambda)$	AJis positive semi-definite => all upper-left submatrices are also positive semi-definite	$\operatorname{Var}_{\mathbf{w}} = \frac{1}{m-1} \sum_{j} \alpha_{j}^{2} = \frac{1}{m-1} \mathbf{w}^{T} \left(\sum_{j} \frac{1}{\mathbf{r}_{j}^{T} \mathbf{r}_{j}} \right) \mathbf{w}$
e.g. for $A = [a_1 a_n], B = [b_1;; b_n] \Rightarrow AB = \sum_i a_i b_i$	$\ u + v\ < \ \ddot{u}\ + \ \ddot{v}\ \frac{1}{1} + \ \ddot{v}\ \frac{1}{2} = \ u\ ^2 + \ v\ ^2 \frac{1}{2} (pythagorean)$	for all $A \in \mathbb{R}^{m \times n}$ and $x \in \mathbb{R}^n \Longrightarrow Ax _b \le A x _a$	Immediately leads to: $ A = A^T $, $ \lambda A = \lambda^n A $ and		1]≤ geometric multiplicity of λ	Alis positive semi-definite => it has a Cholesky Decomposition	$= \frac{1}{m-1} \mathbf{w}^T \mathbf{A}^T \mathbf{A} \mathbf{w}$
Projection: definition & properties A projection π: V → V is a endomorphism such that		If $a = b$, $\ \cdot\ $ is compatible with $\ \cdot\ _a$ Frobenius norm is consistent with ℓ_2 norm \Rightarrow	$ AB = BA = A B for any B \in \mathbb{R}^{n \times n} $ Alternating: if any two columns of A are equal (or any		\leq algebraic multiplicity of λ Let $\lambda_1,, \lambda_n \in \mathbb{C}$ be (potentially non-distinct)	For any M = PM×N MMT and MT M are symmetric and	First (principal) axis defined =>
	For linear map $f: \mathbb{R}^n \to \mathbb{R}^m$ ordered bases $(b_1,, b_n) \in \mathbb{R}^n$ and $(c_1,, c_m) \in \mathbb{R}^m$	Av ₂ ≤ A _F v ₂	two rows of A are equal), then $ A = 0$ (its singular) Immediately from this (and multi-linearity) => if		eigenvalues of \underline{A} , with $\underline{x}_1,, \underline{x}_n \in \mathbb{C}^n$ their	positive semi-definite Singular Value Decomposition (SVD) &	$ \mathbf{w}_{(1)} = \arg \max_{\ \mathbf{w}\ =1} \mathbf{w}^{T} A^{T} A \mathbf{w}$ $= \arg \max_{\ \mathbf{w}\ =1} (m-1) \text{Var}_{\mathbf{w}} = \mathbf{v}_{1}$
idempotent) A square matrix P such that $P^2 = P$ is called a	$A = \mathbf{F}_{CB} \in \mathbb{R}^{m \times n}$ is the transformation-matrix of f	For a vector norm $\ \cdot\ $ on \mathbb{R}^{m} , the subordinate matrix norm $\ \cdot\ $ on $\mathbb{R}^{m\times n}$ is	columns (or rows) are linearly-dependent (some are		eigenvectors $ \operatorname{tr}(A) = \sum_{i} \lambda_{i} $ and $\operatorname{det}(A) = \prod_{i} \lambda_{i} $	Singular Value Decomposition of 4-5 R ^{m×n} is any decomposition of the form A = USV where	i.e. w(1) the direction that maximizes variance Varw
projection matrix It is called an orthogonal projection matrix if	w.r.t to bases B and C	$ A = \max\{ Ax : x \in \mathbb{R}^n, x = 1\}$	linear combinations of <u>others</u>) then $ A = 0$ Stated in other terms \Rightarrow rk(A) < $n \Leftrightarrow A = 0$ <=>		Alis diagonalisable iff there exist a basis of \mathbb{R}^n consisting of $\mathbf{x}_1,, \mathbf{x}_n$	Orthogonal $U = [\mathbf{u}_1 \dots \mathbf{u}_m] \in \mathbb{R}^{m \times m}$ and	i.e. maximizes variance of projections on line $\mathbb{R}\mathbf{w}_{(1)}$
$P^2 = P = P^{\dagger}$ (conjugate-transpose)	$\frac{f(\mathbf{b}_{j}) = \sum_{i=1}^{m} A_{ij} \mathbf{c}_{i}}{\text{linear combination of } \sum_{i} a_{i} \mathbf{c}_{i}} \text{ basis gets mapped to a}$	$= \max \left\{ \frac{\ \mathbf{A}\mathbf{x}\ }{\ \mathbf{x}\ } : \mathbf{x} \in \mathbb{R}^n, \mathbf{x} \neq 0 \right\}$	$ RREF(A) \times I_n \iff A = 0 \frac{\text{(reduced row-echelon-form)}}{n}$		A is diagonalisable iff $r_i = g_i$, where	$V = [\mathbf{v}_1 \mid \dots \mid \mathbf{v}_n] \in \mathbb{R}^{n \times n}$	σ ₁ u ₁ ,,σ _c u _r <u>(columns of US)</u> are principal components/scores of A
Because $\underline{\pi}: V \to V$ is a linear map , its image space	If f ⁻¹ exists (i.e. its bijective and m=n) then	$= \max\{\ \mathbf{A}\mathbf{x}\ : \mathbf{x} \in \mathbb{R}^n, \ \mathbf{x}\ \le 1\}$ Vector norms are compatible with their subordinate	\iff $C(A) \neq \mathbb{R}^n \iff A = 0$ (column-space) For more equivalence to the above, see invertible		r_i = geometric multiplicity of λ_i and	$S = \text{diag}_{m \times n} (\sigma_1, \dots, \sigma_p)$ where $p = \min(m, n)$ and	Recall: $A = \sum_{i=1}^{r} \sigma_i \mathbf{u}_i \mathbf{v}_i^T$ with $\sigma_1 \ge \cdots \ge \sigma_r > 0$, so that
	$(\mathbf{F}_{CB})^{-1} = \mathbf{F}^{-1}_{BC}$ (where \mathbf{F}^{-1}_{BC} is the	matrix norms For $p = 1, 2, \infty$ matrix norm $\ \cdot \ _p$ is subordinate to	matrix theorem Interaction with EROs/ECOs:		g_i = geometric multiplicity of λ_i Eigenvalues of \underline{A}^R are $\lambda_1,, \lambda_n$	$\sigma_1 \ge \cdots \ge \sigma_p \ge 0$ $\sigma_1, \dots, \sigma_p = \alpha = 0$ $\sigma_1, \dots, \sigma_p = 0$ $\sigma_1,$	relates principal axes and principal components Data compression: If $\sigma_1 \gg \sigma_2$ then compress AJby
The linear map $\pi^* = I_V - \pi$ is also a projection with	transformation-matrix of f^{-1}	the vector norm $\ \cdot\ _p$ (and thus compatible with)	Swapping rows/columns flips the sign Scaling a row/column by <u>\u03b4 \u03b4 0</u>] will scale the		Let P = [x ₁ x _n] , then	of eigenvalues of $\underline{AA^T}$ or $\underline{A^TA}$	projecting in direction of principal component =>
swapped	The transformation matrix of the identity map is called change-in-basis matrix	Properties of matrices	determinant by $\lambda \underline{\text{(by multi-linearity)}}$ Remember to scale by λ^{-1} to maintain equality, i.e.		$AP = \overline{[\lambda_1 \mathbf{x}_1 \dots \lambda_n \mathbf{x}_n]} = [\mathbf{x}_1 \dots \mathbf{x}_n] \operatorname{diag}(\lambda_1, \dots, \lambda_n) = PD$	i.e. $\sigma_1^2,, \sigma_p^2$ are eigenvalues of $\underline{AA^T}$ or $\underline{A^TA}$	$\begin{bmatrix} A \approx \sigma_1 \mathbf{u}_1 \mathbf{v}_1^T \end{bmatrix}$
	The identity matrix \underline{I}_m represents $\underline{id}_R m$ w.r.t. the standard basis $\underline{E}_m = \langle e_1,, e_m \rangle = \overline{i.e.} \underline{I}_m = \underline{I}_{EE}$	Consider $A \in \mathbb{R}^{m \times n}$ If $Ax = x \mid \text{for all } x \mid \text{then } A = I \mid$ For square $A \mid \text{the trace of } A \mid \text{is the sum if its diagonals,}$	$\det(A) = \lambda^{-1} \det([a_1 \dots \lambda a_i \dots a_n])$		⇒ if P ⁻¹ exists then A=PDP ⁻¹ i.e. A is diagonalisable	$\ A\ _2 = \sigma_1$ (link to matrix norms Let $r = rk(A)$, then number of strictly positive singular	Cholesky Decomposition
π* is the identity operator on Ψ V can be decomposed as V = U⊕W meaning every	If $B = (b_1,, b_m)$ is a basis of \mathbb{R}^m then	i.e. tr(A)	Invariant under addition of rows/columns Link to invertable matrices => A^{-1} = A ^{-1} which		$A = PDP^{-1}$, i.e. A_j is diagonalisable $P = I_{EB}$ is change-in-basis matrix for basis $B = (x_1,, x_n)$ of eigenvectors	values is r_1 i.e. $\sigma_1 \ge \cdots \ge \sigma_r > 0$ and $\sigma_{r+1} = \cdots = \sigma_p = 0$	Consider positive (semi-)definite $A \in \mathbb{R}^{n \times n}$ Cholesky Decomposition is $A = LL^T$ where L is lower-triangular
vector $\underline{x \in V}$ can be uniquely written as $\underline{x = u + w}$	$I_{EB} = [b_1 b_m]$ is the transformation matrix from B	A Jis symmetric iff $A = A^T$ A Jis Hermitian, iff $A = A^{\dagger}$ i.e. its equal to its conjugate-transpose	means A is invertible $\iff A \neq 0$, i.e. singular		If $A = F_{EE}$ is transformation-matrix of linear map f .	$A = \sum_{i=1}^{r} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{T}$	For positive semi-definite => always exists, but non-unique
	to \underline{E} $I_{BE} = (I_{EB})^{-1}$, so $\Rightarrow F_{CB} = I_{CE}F_{EE}I_{EB}$	AAT and ATA are symmetric (and positive semi-definite) For real matrices. Hermitian/symmetric are	matrices are not invertible For block-matrices:		then FEE = IEB FBB IBE	SVD is similar to spectral decomposition, except it always exists	For positive-definite => always <u>uniquely</u> exists s.t. diagonals of <u>L</u>] are positive
An orthogonal projection further satisfies <u>U \(\text{\$\text{\$U\$}} \) \(</u>	Dot-product uniquely determines a vector w.r.t. to	equivalent conditions	$\det\begin{pmatrix} A & B \\ 0 & D \end{pmatrix} = \det(A) \det(B) = \det\begin{pmatrix} A & 0 \\ C & D \end{pmatrix}$		Spectral theorem: if A is Hermitian then P^{-1} exists:	always exists If $\underline{n \le m}$ then work with $\underline{A}^T \underline{A} \in \mathbb{R}^{n \times n}$.	Finding a Cholesky Decomposition:
	If $a_i = x \cdot b_i$; $x = \sum_i a_i b_i$, we call \underline{a}_i the	Every eigenvalue $\lambda_{\underline{j}}$ of Hermitian matrices is real geometric multiplicity of $\lambda_{\underline{j}}$ = geometric multiplicity	$\det \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \det(A) \det(D - CA^{-1}B) \text{ if } \underline{A} \text{ Jor } \underline{D} \text{ Jare}$		$[fx_i, x_j]$ associated to different eigenvalues then $[fx_i] = [fx_i] = [fx_i]$ and $[fx_i] = [fx_i] = [fx_i]$ associated to same eigenvalue $[fx_i] = [fx_i]$.	Obtain eigenvalues $\sigma_1^2 \ge \cdots \ge \sigma_n^2 \ge 0$ of $\underline{A^T A}$	Compute LLT and solve A = LLT by matching terms For square roots always pick positive
infact they are eachother's orthogonal compliments , i.e. $U^{\perp} = W$, $W^{\perp} = U$ (because finite-dimensional	coordinate-vector of x w.r.t. to B Rank-nullity theorem:	of λ_i	= det(D) det(A-BD ⁻¹ C) invertible, <u>respectively</u>		E_{λ} has spanning-set $\{x_{\lambda_1},\}$	Obtain orthonormal eigenvectors $v_1,, v_n \in \mathbb{R}^n$ of A^TA (apply normalization e.g. Gram-Schmidt !!!! to	If there is exact solution then positive-definite If there are free variables at the end, then positive
vectorspaces) so we have $\pi(x) \cdot y = \pi(x) \cdot \pi(y) = x \cdot \pi(y)$	Rank-nullity theorem: dim(im(f)) + dim(ker(f)) = rk(A) + dim(ker(A)) = n $f sinjective/monomorphism iff ker(f) = \{0\} iff A is$	eigenvectors x_1, x_2 associated to distinct eigenvalues λ_1, λ_2 are orthogonal , i.e. $x_1 \perp x_2$	Sylvester's determinant theorem:		v. v. rare linearly independent => apply	eigenspaces E _{Gi}	semi-definite
or equivalently, $\pi(x) \cdot (y - \pi(y)) = (x - \pi(x)) \cdot \pi(y) = 0$	Orthogonality concepts	Alistriangular iff all entries above (lower-triangular)	det (I _m +AB) = det (I _n +BA) Matrix determinant lemma:		Gram-Schmidt $\mathbf{q}_{\lambda_{j}}$, $\cdots \leftarrow \mathbf{x}_{\lambda_{j}}$, \cdots Then $\{\mathbf{q}_{\lambda_{j}}, \cdots\}$ is orthonormal basis (ONB) of $\underline{E}_{\lambda_{j}}$	$V = [v_1 v_n] \in \mathbb{R}^{n \times n}$ is orthogonal so $V^T = V^{-1}$	parameterized on free variables
By Cauchy–Schwarz inequality we have $\ \pi(x)\ \le \ x\ \ $ The orthogonal projection onto the line containing	$\underline{u \perp v} \iff \underline{u \cdot v} = 0$, i.e. \underline{u} jand \underline{v} jare orthogonal \underline{u} jand \underline{v} jare orthonormal iff $\underline{u} \perp v$, $\ \underline{u}\ = 1 = \ \underline{v}\ $	or below <u>(upper-triangular)</u> the main diagonal are zero Determinant \Rightarrow A = $\prod_i a_{ii}$ i.e. the product of	$\frac{\det(\mathbf{A} + \mathbf{u}\mathbf{v}^T) = (1 + \mathbf{v}^T \mathbf{A}^{-1}\mathbf{u}) \det(\mathbf{A})}{\mathbf{u}^T \mathbf{v}^T $		$Q = \langle \mathbf{q}_1, \dots, \mathbf{q}_n \rangle$ is an ONB of $\mathbb{R}^n = Q = [\mathbf{q}_1 \dots \mathbf{q}_n]$ is	$r = rk(A) = no. \text{ of strictly +ve } \sigma_i$	e.g. $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 2 \end{bmatrix} = LL^T$ where $L = \begin{bmatrix} 1 & 0 & 0 \\ 1 & c & \sqrt{1-c^2} \end{bmatrix}$, $c \in [0, 1]$
vector \underline{u}_{1} is $\text{proj}_{\underline{u}} = \hat{u}\hat{u}^{T}$ i.e. $\text{proj}_{\underline{u}}(v) = \frac{\underline{u} \cdot v}{\underline{u} \cdot \underline{u}} u$; $\hat{u} = \frac{\underline{u}}{\ \underline{u}\ }$	$A \in \mathbb{R}^{n \times n}$ is orthogonal iff $A^{-1} = A^{T}$ Columns of $A = [a_1 \mid \mid a_n]$ are orthonormal basis	diagonal elements A_jis diagonal iff A _{jj} = 0, i ≠ j i.e. if all off-diagonal	$\frac{\det(\mathbf{A} + \mathbf{U}\mathbf{V}^T) = \det(\mathbf{I}_m + \mathbf{V}^T \mathbf{A}^{-1} \mathbf{U}) \det(\mathbf{A})}{\det(\mathbf{A} + \mathbf{U}\mathbf{V}^T) = \det(\mathbf{A} + \mathbf{U}\mathbf{V}^T) $		orthogonal matrix i.e. $Q^{-1} = Q^T$	Let $\mathbf{u}_i = \frac{1}{\sigma_i} A \mathbf{v}_i$ then $\mathbf{u}_1, \dots, \mathbf{u}_r \in \mathbb{R}^m$ are orthonormal	If A = LLT you can use forward/backward substitution to solve equations
A special case of $\pi(x) \cdot (y - \pi(y)) = 0$ is $u \cdot (v - \text{proj}_{u} v) = 0$	(ONB) $C = \langle \mathbf{a}_1,, \mathbf{a}_n \rangle \in \mathbb{R}^n$, so $A = \mathbf{I}_{EC}$ is	Written as	$\det(\mathbf{A} + \mathbf{U}\mathbf{W}\mathbf{V}^T) = \det(\mathbf{W}^{-1} + \mathbf{V}^T\mathbf{A}^{-1}\mathbf{U})\det(\mathbf{W})\det(\mathbf{A})$		$q_1,, q_n$ are still eigenvectors of $\underline{A} = \underline{Q} \underline{D} \underline{Q}^T$ (spectral decomposition)	The orthogonal compliment of span{u ₁ ,,u _r } =>	to solve equations $ For Ax = b \Rightarrow let y = L^T x$
since $proj_{u}(u) = u$ If $U \subseteq \mathbb{R}^{n}$ is a k -dimensional subspace with	change-in-basis matrix Orthogonal transformations preserve	$\operatorname{diag}_{m \times n}(\mathbf{a}) = \operatorname{diag}_{m \times n}(a_1, \dots, a_p), p = \min(m, n)$, where	Tricks for computing determinant If block-triangular matrix then apply		A = QDQ ^T can be interpreted as scaling in direction of	$span(u_1,,u_r)^{\perp} = span(u_{r+1},,u_m)$	Solve Ly = b by forward substitution to find y
orthonormal basis (ONB) $\langle \mathbf{u}_1,, \mathbf{u}_k \rangle \in \mathbb{R}^m$	lengths/angles/distances $\Rightarrow Ax _2 = x _2$, $AxAy = xy$	$\mathbf{a} = [a_1,, a_p]^T \in \mathbb{R}^p$ diagonal entries of \underline{A}	$\det \begin{pmatrix} A & B \\ 0 & D \end{pmatrix} = \det(A) \det(B)$		its eigenvectors: 1) Perform a succession of reflections/planar	Solve for unit-vector $\underline{\mathbf{u}_{r+1}}$ s.t. it is orthogonal to $\underline{\mathbf{u}_1, \dots, \mathbf{u}_r}$	Solve $L^{I} x = \begin{bmatrix} l_{11} & 0 & 0 \\ l_{21} & l_{22} & 0 \end{bmatrix}$ For $n = \overline{3} \Rightarrow L = \begin{bmatrix} l_{21} & l_{22} & 0 \\ l_{21} & l_{22} & 0 \end{bmatrix}$
Let $U = [u_1 u_k] \in \mathbb{R}^{m \times k}$ matrix	Therefore can be seen as a succession of reflections and planar rotations	For $\underline{x \in \mathbb{R}^n}$, $Ax = \operatorname{diag}_{m \times n}(a_1,, a_p)[x_1 x_n]^T$ = $[a_1 x_1 a_p x_p \ 0 0]^T \in \mathbb{R}^m$ (if	If close to triangular matrix apply EROs/ECOs to get it		rotations to change coordinate-system -2) Apply scaling by λ_i to each dimension \mathbf{q}_i	Then solve for unit-vector ur+2 s.t. it is orthogonal	For $\underline{n} = \overline{3} = \lambda = \begin{bmatrix} l_{21} & l_{22} & 0 \\ l_{31} & l_{32} & l_{33} \end{bmatrix}$
Orthogonal projection onto UIs $\pi_U = UU^T$	$\det(A) = 1$ or $\det(A) = -1$, and all eigenvalues of A are s.t. $ \lambda = 1$	p = m those tail-zeros don't exist)	there, then its just product of diagonals If Cholesky/LU/QR is possible and cheap then do it,		Undo those reflections/planar rotations	to u ₁ ,, u _{r+1} And so on	$LL^T = \begin{bmatrix} l_{11}^2 & l_{11}l_{21} & l_{11}l_{31} \\ l_{11}l_{21} & l_{21}^2 + l_{22}^2 & l_{21}l_{31}^2 + l_{22}l_{32} \end{bmatrix}$
	$A \in \mathbb{R}^{m \times n}$ is semi-orthogonal iff $A^T A = I$ or $AA^T = I$	$\frac{\operatorname{diag}_{m\times n}(\mathbf{a}) \cdot \operatorname{diag}_{m\times n}(\mathbf{b}) = \operatorname{diag}_{m\times n}(\mathbf{a} \cdot \mathbf{b})}{\operatorname{Granida diag}_{m\times n}(\mathbf{a} \cdot \mathbf{b})}$	then apply AB = A B If all else fails, try to find row/column with MOST zeros Perform minimal EROs/ECOs to get that row/column		Extension to C ⁿ	$U = [\mathbf{u}_1 \dots \mathbf{u}_m] \in \mathbb{R}^{m \times m}$ is orthogonal so $U^T = U^{-1}$ $S = \text{diag}_{m \times n} (\sigma_1, \dots, \sigma_n)$ AND DONE!!!	[l ₁₁ l ₃₁ l ₂₁ l ₃₁ + l ₂₂ l ₃₂ l ₃₁ + l ₃₂ + l ₃₃]
-If $(\mathbf{u}_1, \dots, \mathbf{u}_k)$ is not orthonormal , then "normalizing	If <u>n > m</u> then all <u>m</u> prows are orthonormal vectors If <u>m > n</u> then all <u>n</u> jcolumns are orthonormal vectors	Consider diag _{$n \times k$} ($c_1,, c_q$), $q = min(n, k)$, then diag _{$m \times n$} ($a_1,, a_p$)diag _{$n \times k$} ($c_1,, c_q$)	to be all-but-one zeros		Standard inner product: $(x, y) = x^{\dagger} y = \sum_{i} \overline{x_{i}} y_{i}$	If $m < n$ then let $B = A^T$	Forward/backward substitution
factor" $(\underline{\mathbf{U}^T \mathbf{U}})^{-1}$ is added $\Rightarrow \underline{\mathbf{\pi}_U} = \underline{\mathbf{U}}(\underline{\mathbf{U}^T \mathbf{U}})^{-1}\underline{\mathbf{U}^T}$ [For line subspaces $U = \text{span}\{u\}$] we have	$U \perp V \subset \mathbb{R}^n \iff \underline{\mathbf{u} \cdot \mathbf{v}} = 0$ for all $\underline{\mathbf{u}} \in U, \mathbf{v} \in V$, i.e. they are orthogonal subspaces	= diag _{$m \times k$} ($a_1 c_1,, a_r c_r, 0,, 0$) = diag(s)	Don't forget to keep track of sign-flipping & scaling-factors		Conjugate-symmetric: $\langle x, y \rangle = \langle y, x \rangle$	apply above method to $\underline{B} \Longrightarrow \underline{B} = A^T = USV^T$ $A = B^T = VS^TU^T$	Forward substitution: for lower-triangular
$(\mathbf{U}^T\mathbf{U})^{-1} = (u^Tu)^{-1} = 1/(u \cdot u) = 1/ u $	Orthogonal compliment of $U \subset \mathbb{R}^n$ is the subspace	Where $r = \min(p, q) = \min(m, n, k)$ and $s \in \mathbb{R}^S$, $s = \min(m, k)$	Do Laplace expansion along that row/column => notice all-but-one minor matrix determinants go to		Standard (induced) norm: $ x = \sqrt{\langle x, y \rangle} = \sqrt{x^{\dagger} y}$ We can diagonalise real matrices in C which lets us	Tricks: Computing orthonormal	$\begin{bmatrix} L = \begin{bmatrix} \vdots & \ddots & \\ \ell_{n,1} & \dots & \ell_{n,n} \end{bmatrix} \end{bmatrix}$
lin. ind. vectors	$U^{\perp} = \{x \in \mathbb{R}^{n} \mid \forall y \in \mathbb{R}^{n} : x \perp y \}$ $= \{x \in \mathbb{R}^{n} \mid \forall y \in \mathbb{R}^{n} : x \le x + y \}$	Inverse of square-diagonals =>	Representing EROs/ECOs as transformation matrices		diagonalise more matrices than before Least Square Method	You have orthonormal vectors $\mathbf{n}_* = \mathbf{R}^m \Longrightarrow need$	For Lx = b], just solve the first row
Gram-Schmidt is iterative projection ⇒ we use <u>current</u> j dim subspace, to get <u>next</u> (j + 1) dim	$\mathbb{R}^n = U \oplus U^{\perp}$ and $(U^{\perp})^{\perp} = U$	$\frac{\operatorname{diag}(a_1, \dots, a_n)^{-1} = \operatorname{diag}(a_1^{-1}, \dots, a_n^{-1})}{\operatorname{cannot be zero}(\operatorname{division} \operatorname{by zero} \operatorname{undefined})}$ i.e. diagonals	For $A \in \mathbb{R}^{m \times n}$, suppose a sequence of:		If we are solving Ax = b and b ∉ C(A) i.e. no solution, then Least Square Method is:	to extend to orthonormal vectors $\mathbf{u}_1,, \mathbf{u}_m \in \mathbb{R}^m$ Special case \Rightarrow two 3D vectors \Rightarrow use cross-product \Rightarrow $a \times b \perp a, b$	$\ell_{1,1} x_1 = b_1 \Longrightarrow x_1 = \frac{b_1}{\ell_{1,1}}$ and substitute down
subspace	$U \perp V \iff U^{\perp} = V$ and vice-versa $Y \subseteq X \implies X^{\perp} \subseteq Y^{\perp}$ and $X \cap X^{\perp} = \{0\}$	cannot be zero (division by zero undefined) Determinant of square-diagonals \Rightarrow $ \text{diag}(a_1,,a_n) = \prod_i a_i \text{Isince they are technically}$	EROs transform $\underline{A \rightsquigarrow_{EROs} A'}$ => there is matrix \underline{R} s.t. $\underline{RA = A'}$		Finding x which minimizes Ax-b 2	Extension via standard basis $I_m = [e_1 e_m]$ using $[(tweaked) GS)$:	Then solve the second row $b_2 - \ell_{2,1} \times 1$
Assume orthonormal basis (ONB) $(q_1,, q_j) \in \mathbb{R}^m$ for $j \mid \text{dim subspace } U_j \subset \mathbb{R}^m$	Any $x \in \mathbb{R}^n$ can be uniquely decomposed into	triangular matrices)	ECOs transform $A \rightsquigarrow_{ECOs} A' \implies$ there is matrix $C \mid s.t.$		Recall for $\underline{A} \in \mathbb{R}^{m \times n}$ we have unique decomposition for any $\underline{b} \in \mathbb{R}^m$: $\underline{b} = \underline{b}_i + \underline{b}_k$	Choose candidate vector: just work through e ₁ ,, e _m jsequentially starting from e ₁ >> denote	₹2,1 x1 +₹2,2 x2 = 02 ⇒ x2 =
	$x = x_i + x_k$, where $x_i \in U$ and $x_k \in U^{\perp}$ For matrix $A \in \mathbb{R}^{m \times n}$ and for row-space R(A),	The (column) rank of A is number of linearly independent columns, i.e. rk(A)	$AC = A'$ Both transform $A \rightsquigarrow_{EROS+ECOS} A'$ \Rightarrow there are		where $\mathbf{b}_i \in C(A)$ and $\mathbf{b}_k \in \ker(A^T)$	the current candidate e _k	substitute down and so on until all x _i are solved
$P_j = Q_j Q_j^T$ is orthogonal projection onto U_j	column-space C(A) and null space ker(A)	I.e. its the number of pivots in row-echelon-form I.e. its the dimension of the column-space	matrices R, C s.t. RAC = A'		$\ Ax-b\ _2$ is minimized $\iff \ Ax-b_i\ _2 = 0 \iff Ax=b_i$	Orthogonalize: Starting from <u>j = r</u> going to <u>j = m</u> with each iteration \Rightarrow with current orthonormal vectors	Backward substitution: for upper-triangular ["1,1 "1,n]
$P_{\perp j} = \mathbf{I}_m - Q_j Q_j^T$ is orthogonal projection onto	$R(A)^{\perp} = \ker(A)$ and $C(A)^{\perp} = \ker(A^{T})$	rk(A) = dim(C(A))	FORWARD: to compute these transformation matrices:		A ^T Ax = A ^T b is the normal equation which gives solution to least square problem:	<u>u</u> 1,, <u>u</u> j	$\begin{bmatrix} U = \begin{bmatrix} 1, 1 & \ddots & \vdots \\ 0 & u_{n,n} \end{bmatrix}$
$\left(U_{j}\right)^{\perp}$ (orthogonal compliment)	Any $\underline{\mathbf{b}} \in \mathbb{R}^{m}$ can be uniquely decomposed into $\underline{\mathbf{b}} = \mathbf{b}_{i} + \mathbf{b}_{k}$, where $\underline{\mathbf{b}}_{i} \in C(A)$ and $\underline{\mathbf{b}}_{k} \in \ker(A^{T})$	I.e. its the dimension of the image-space $rk(A) = dim(im(f_A))$ of linear map $f_A(x) = Ax$	Start with [I _m A I _n] i.e. A and identity matrices For every ERO on A do the same to LHS (i.e. I _m)		Solution to least square problem: $\ \mathbf{A}\mathbf{x} - \mathbf{b}\ _2 \text{ is minimized } \iff \mathbf{A}\mathbf{x} = \mathbf{b}_i \iff \mathbf{A}^T \mathbf{A}\mathbf{x} = \mathbf{A}^T \mathbf{b}$ Linear Regression	Compute $\mathbf{w}_{j+1} = \mathbf{e}_k - \sum_{i=1}^{j} (\mathbf{e}_k \cdot \mathbf{u}_i) \mathbf{u}_i = \mathbf{e}_k - \sum_{i=1}^{j} (\mathbf{u}_i)_k \mathbf{u}_i$	For Ux = b just solve the last row
Uniquely decompose next II: #a: a = V: a + II: a	$b = b_i + b_k$, where $b_i \in R(A)$ and $b_k \in ker(A)$	The (row) rank of AJ is number of linearly independent rows The row/column ranks are always the same, hence	For every ECO on AI do the same to RHS (i.e. In)		Let $y = f(t) = \sum_{j=1}^{n} s_j f_j(t)$ be a mathematical model,	$= \mathbf{e}_{R} - U_{j} \mathbf{c}_{j}$	$u_{n,n} \times_n = b_n \implies x_n = \frac{b_n}{u_{n,n}}$ and substitute up
$v_{j+1} = P_j (a_{j+1}) \in U_j$ \Longrightarrow discard it!!	Vector norms (beyond euclidean) vector norms are such that: x = 0 ⇔ x = 0 ,	The row/column ranks are always the same , hence $rk(A) = dim(C(A)) = dim(R(A)) = dim(C(A^T)) = rk(A^T)$	Once done, you should get $[I_m \mid A \mid I_n] \rightsquigarrow [R \mid A' \mid C]$ with $RAC = A'$		where f_j are basis functions and s_j are parameters Let $(t_j, y_j) \mid 1 \le i \le m, m \gg n$ be a set of observations,	Where $U_j = [\mathbf{u}_1 \mid \dots \mid \mathbf{u}_j]$ and $\mathbf{c}_j = [(\mathbf{u}_1)_k, \dots, (\mathbf{u}_j)_k]^T$	Then solve the second-to-last row $u_{n-1,n-1} \times u_{n-1} \times u_{n-1} \times u_{n-1} = u_{n-1}$
$ \mathbf{u}_{i+1} = P_{i,i}(\mathbf{a}_{i+1}) \in (U_i)^{\perp} \Rightarrow \text{we're after this!!}$	$ \lambda x = \lambda x $ $ x+y \le x + y $	A is full-rank iff rk(A) = min(m, n) i.e. its as linearly independent as possible	If the sequences of EROs and ECOs were $R_1,, R_{\lambda}$ and		and $t, y \in \mathbb{R}^{m}$ are vectors representing those	NOTE: $\mathbf{e}_k \cdot \mathbf{u}_i = (\mathbf{u}_i)_k$ i.e. k -th component of \mathbf{u}_i	$\Rightarrow x_{n-1} = \frac{b_{n-1} - u_{n-1, n-1} \times n-1}{u_{n-1, n}}$ and substitute up
Let $\mathbf{q}_{j+1} = \hat{\mathbf{u}}_{j+1}$ \Longrightarrow we have $\underline{\mathbf{next ONB}} \langle \mathbf{q}_1,, \mathbf{q}_{j+1} \rangle$	ℓ_p norms: $\ \mathbf{x}\ _p = (\sum_{i=1}^n \mathbf{x}_i ^p)^{1/p}$	Two invertible $\mathbf{A}, \hat{\mathbf{A}} \in \mathbb{R}^{m \times n}$ are equivalent if there exist	C_1, \dots, C_{μ} respectively $R = R_{\lambda} \cdots R_1 \text{ and } C = C_1 \cdots C_{\mu} \text{ so}$		observations $ f_j(\mathbf{t}) = [f_j(\mathbf{t}_1), \dots, f_j(\mathbf{t}_m)]^T$ is transformed vector	$ \mathbf{f} \mathbf{w}_{j+1} = 0 \mathbf{f} \mathbf{e}_{k} \in \text{span}\{\mathbf{u}_{1},, \mathbf{u}_{j}\} = \text{discard}$ $ \mathbf{w}_{j+1} _{\text{choose next candidate } \mathbf{e}_{k+1} _{\text{f}} \text{ try this step}$	and so on until all x_i are solved
	$\frac{p-1}{\ \mathbf{x}\ _1 = \sum_{i=1}^n \mathbf{x}_i }$	Two matrices $\mathbf{A}, \hat{\mathbf{A}} \in \mathbb{R}^{m \times n}$ are sequivalent if there exist two invertible matrices $\mathbf{P} \in \mathbb{R}^{m \times m}$ and $\mathbf{Q} \in \mathbb{R}^{m \times n}$ and $\mathbf{Q} \in \mathbb{R}^{m \times n}$. Two matrices $\mathbf{A}, \mathbf{R}^{n \times n}$ are similar if there exists an invertible matrix $\mathbf{P} \in \mathbb{R}^{n \times n}$ such that $\mathbf{A} = \mathbf{P} \hat{\mathbf{A}} \mathbf{P}^{-1}$.	$(R_{\lambda} \cdots R_{1})A(C_{1} \cdots \overline{C_{\mu}}) = A'$		$A = [f_1(\mathbf{t})] \dots f_n(\mathbf{t}) \in \mathbb{R}^{m \times n}$ is a matrix of columns	again	Thin OR Decomposition w/ Gram-
$\frac{\mathbf{u}_{j+1} = (\mathbf{I}_m - Q_j Q_j^T) \mathbf{a}_{j+1} = \mathbf{a}_{j+1} - Q_j \mathbf{c}_j}{\mathbf{v}_{j+1}} \text{ where}$		invertible matrix $P \in \mathbb{R}^{n \times n}$ such that $A = PAP^{-1}$ Similar matrices are equivalent, with $Q = P$	$R^{-1} = R_1^{-1} \cdots R_{\lambda}^{-1}$ and $C^{-1} = C_{\mu}^{-1} \cdots C_1^{-1}$, where		$\mathbf{z} = [s_1,, s_n]^T$ is vector of parameters	Normalize: $\mathbf{w}_{j+1} \neq 0$ so compute unit vector $\mathbf{u}_{j+1} = \hat{\mathbf{w}}_{j+1}$	Consider full-rank A = [a_1] la_n le R ^{m×n} (m>n li io
$\frac{\mathbf{c}_{j} = [\mathbf{q}_{1} \cdot \mathbf{a}_{: -1} \dots \mathbf{q}_{: -\mathbf{a}_{: -1}} 1^{T}]}{j}$	$p = \infty \mathbf{r} \ \mathbf{x}\ _{\infty} = \lim_{p \to \infty} \ \mathbf{x}\ _{p} = \max_{1 \le i \le n} \mathbf{x}_{i} $	Atis diagonalisable iff Atis similar to some diagonal	R_i^{-1}, C_j^{-1} are inverse EROs/ECOs respectively		Then we get equation Az = y => minimizing Az - y _2	Repeat: keep repeating the above steps, now with	Consider full-rank $A = [a_1 a_n] \in \mathbb{R}^{m \times n} (m \ge n)$, i.e. $a_1,, a_n \in \mathbb{R}^m$ are linearly independent
Notice: $Q_j c_j = \sum_{i=1}^{n} (\mathbf{q}_i \cdot \mathbf{a}_{j+1}) \mathbf{q}_i = \sum_{i=1}^{n} \operatorname{proj}_{\mathbf{q}_i} (\mathbf{a}_{j+1})$, so	CAISET - 0, 5 - 0 Such that:	Properties of determinants	BACKWARD: once $R_1,, R_k$ and $C_1,, C_l$ for which $RAC = A'$ are known , starting with $[I_m \mid A \mid I_n]$		is the solution to Linear Regression So applying LSM to Az=y is precisely what Linear	new orthonormal vectors u ₁ ,, u _{j+1}	
rewrite as	$\forall \mathbf{x} \in \mathbb{R}^n, r \ \mathbf{x}\ _a \le \ \mathbf{x}\ _b \le s \ \mathbf{x}\ _a$ $\ \mathbf{x}\ _{\infty} \le \ \mathbf{x}\ _2 \le \ \mathbf{x}\ _1$	Consider $\underline{A \in \mathbb{R}^{n \times n}}$, then $\underline{A_{ij}}' \in \mathbb{R}^{(n-1) \times (n-1)}$ the (i,j) minor matrix of $\underline{A_j}$ obtained by deleting i th row	For $\underline{i=1 \rightarrow \lambda}$ perform $\underline{R_i}$ on \underline{A} , perform $\underline{R_{\lambda-i+1}}$ on LHS		Regression is We can use normal equations for this =>	SVD Application: Principal Component Analysis (PCA) Principal Component Misamples of	
$\mathbf{u}_{j+1} = \mathbf{a}_{j+1} - \sum_{i=1}^{J} (\mathbf{q}_i \cdot \mathbf{a}_{j+1}) \mathbf{q}_i = \mathbf{a}_{j+1} - \sum_{i=1}^{J} \operatorname{proj}_{\mathbf{q}_i} (\mathbf{a}_{j+1})$	Equivalence of ℓ_1, ℓ_2 and $\ell_{\infty} => \ \mathbf{x}\ _2 \le \sqrt{n} \ \mathbf{x}\ _{\infty}$	and j th column from A	(i.e. l_m)		$\ Az - y\ _2$ is minimized $\iff A^T Az = A^T y$	Assume $A_{uncentered} \in \mathbb{R}^{m \times n}$ represent \underline{m} samples of \underline{n} dimensional data (with $\underline{m} \ge n$) Data centering: subtract mean of each column from	
Let a GRM (man) he linearly independent	$\ \mathbf{x}\ _1 \le \sqrt{n} \ \mathbf{x}\ _2$	Then we define determinant of \underline{A} , i.e. $\underline{\det(A) = A }$, as	For $j = 1 \rightarrow \mu$ perform C_j on \underline{A} , perform $C_{\mu-j+1}^{-1}$ on		Solution to normal equations unique iff AJis full-rank, i.e. it has linearly-independent columns	that column's elements Let the resulting matrix be $\underline{A \in \mathbb{R}^{m \times n}}$, who's columns	
	Induce metric $\underline{d(x,y)} = y-x $ has additional properties:		RHS (i.e. <u>In</u>)		Positive (semi-)definite matrices	have mean zero PCA is done on contemp data-matrices like At SVD exists i.e. A = USV and r = rk(A)	
	Translation invariance: $d(x+w,y+w)=d(x,y)$ Scaling: $d(\lambda x,\lambda y)= \lambda d(x,y)$		You should get $[I_m \mid A \mid I_n] \rightsquigarrow [R^{-1} \mid A' \mid C^{-1}]$ with		Consider symmetric $A \in \mathbb{R}^{n \times n}$ l.i.e. $A = A^T$ Alis positive-definite $\overline{\mathbf{iff}} x^T Ax > 0$ for all $x \neq 0$	SVD exists i.e. $A = USV'$ and $r = rk(A)$	
	o <u>-6-3-31 1-3-6311</u>		$A = R^{-1}A'C^{-1}$				

Apply $GS q_1,, q_n \leftarrow GS(a_1,, a_n)$ to build ONB	Two points $\mathbf{x}, \mathbf{y} \in \mathbb{E}^n$ are reflections w.r.t hyperplane	When clear write i th component of input as i instead	\tilde{f} is $h(x) = h(x) = h(x)$	For FP matrices , let $ M _{ij} = M_{ij} $, i.e. matrix $ M $ of absolute values of M	Metric spaces & limits	$ \alpha_k \in \{-1, 1\} $ it may <u>alternate</u> if $\lambda_1 < 0$	Nonlinear Systems of Equations
$(\mathbf{q}_1,, \mathbf{q}_n) \in \mathbb{R}^m$ for $\underline{\mathbf{C}(A)}$	$P = (\mathbb{R}\mathbf{n})^{\perp} + \mathbf{c}$ if:	of x_j Level curve w.r.t. to $c \in \mathbb{R}$ is all points s.t. $f(x) = c$	$\frac{\bar{f} \text{ is } \ \bar{x} - \bar{x}\ }{\ \bar{x}\ } = O\left(\varepsilon_{\text{mach}}\right) \frac{\forall x \in X}{\ \bar{x}\ } \underbrace{\exists \bar{x} \in X} \text{ s.t. } \underbrace{\bar{f}(x) = f(\bar{x})}$	$\frac{\text{absolute values of } \underline{M}}{ f (\lambda \mathbf{A}) = \lambda \mathbf{A} + \mathcal{E}; \mathcal{E} _{ij} \le \lambda \mathbf{A} _{ij} \in \text{mach}}$	Metrics obey these axioms $d(x, x) = 0 \mid x \neq y \implies d(x, y) > 0 \mid d(x, y) = d(y, x) \mid$ $d(x, z) \le d(x, y) + d(y, z)$	$\alpha_k = \frac{(\lambda_1)^k c_1}{(\lambda_1)^k (c_1)}$ where $c_1 = x^{\frac{1}{2}} b^{(0)}$ and assuming	Recall that $\nabla f(\mathbf{x})$ is direction of max . rate-of-change
For exams: more efficient to compute as $\mathbf{u}_{j+1} = \mathbf{a}_{j+1} - Q_j \mathbf{c}_j$	1) The translation $xy = y - x$ is parallel to normal n_1 i.e.	Projecting level curves onto R ⁿ gives f s	i.e. <u>exactly</u> the right answer to <u>nearly</u> the right question, a subset of stability	$fl(A+B) = (A+B)+E; E _{ij} \le A+B _{ij} \in mach$	$d(x, z) \le d(x, y) + d(y, z)$ For <u>metric spaces</u> , mix-and-match these <u>infinite/finite</u>		$\frac{ V(\mathbf{x}) }{ V(\mathbf{x}) } = \mathbf{x}^{(k)} - \alpha \nabla f(\mathbf{x}^{(k)})$ for step length $\underline{\alpha}$
1) Gather $Q_j = [\mathbf{q_1} \dots \mathbf{q_j}] \in \mathbb{R}^{m \times j}$ all-at-once	$\frac{x\mathbf{\dot{y}} = \lambda \mathbf{n}}{2}$ Midpoint $m = 1/2(\mathbf{x} + \mathbf{y}) \in P[\underline{lies} \text{ on } P]$, i.e. $m \cdot \mathbf{n} = \mathbf{c} \cdot \mathbf{n}$	contour-map	⊕, ⊝, ⊗, ⊘ , inner-product, back-substitution w/ triangular systems, are <u>backwards stable</u>	$fl(AB) = AB + E; E _{ij} \le n\epsilon_{mach}(A B)_{ij} + O(\epsilon_{mach}^2)$	$\liminf_{1 \le n \le N} \text{definitions:}$ $\lim_{1 \le n \le N} \text{definitions:}$ $\lim_{1 \le n \le N} \text{definitions:}$	$\frac{b^{(k)}; x_1}{(A-\sigma I) has eigenvalues \lambda - \sigma }$	If Δ Lis positive definite solving $\Delta x = b$ and $\min_{x} f(x) = \frac{1}{2} x^T A x - x^T b$ are a granularly (b)
2) Compute $\mathbf{c}_j = [\mathbf{q}_1 \cdot \mathbf{a}_{j+1}, \dots, \mathbf{q}_j \cdot \mathbf{a}_{j+1}]^T \in \mathbb{R}^j$	Suppose $P_{\mathbf{u}} = (\mathbb{R}\mathbf{u})^{\perp}$ goes through the origin with unit	$\overline{n_k \text{th order partial derivative w.r.t} i_k \text{of} , \text{of} \underline{n_1} \text{th}} \\ \text{order partial derivative w.r.t} i_1 \text{of} \underline{f} \text{is}.$	If backwards stable \tilde{f} and f has <u>condition number</u>	$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^{k} + O((x-a)^{n+1}) \text{ as } \underline{x \to a}$		$\Rightarrow \underline{\text{power-iteration}} \text{ on } \underline{(A-\sigma I)} \text{ has } \frac{\lambda_2 - \sigma}{\lambda_1 - \sigma}$	if a list positive definite $r = \text{plin}(R \times B)$ and $\min_{x} f(x) = \frac{1}{2} \frac{x^2}{4x - x^2} \prod_{k=1}^{n} \text{proposition}(R \times B) = \frac{1}{2} \frac{x^2}{4x - x^2} \prod_{k=1}^{n} \text{proposition}(R \times B) = \frac{1}{2} \frac{x^2}{4x - x^2} \prod_{k=1}^{n} \text{proposition}(R \times B) = \frac{1}{2} \frac{x^2}{4x - x^2} \prod_{k=1}^{n} \frac{x^2}{4x - x^2} \prod$
all-at-once 3) Compute $Q_{j} c_{j} \in \mathbb{R}^{m}$, and subtract from a_{j+1}	normal $\underline{u} \in \mathbb{R}^n$	$\begin{vmatrix} \frac{\partial^n k^{+\cdots+n} 1 f}{\partial \mathbf{x}_{i_1}^{n_R} \cdots \partial \mathbf{x}_{i_1}^{n_1}} = \delta_{i_R}^{n_R} \cdots \delta_{i_1}^{n_1} f = f_{i_1 \cdots i_R}^{(n_1, \dots, n_R)} \end{vmatrix}$	$\kappa(x)$ then relative error $\frac{\ \tilde{f}(x)-f(x)\ }{\ f(x)\ } = O(\kappa(x)\epsilon_{mach})$		$\lim_{X\to p} f(x) = L \iff \begin{cases} \forall \varepsilon > 0, \exists \delta > 0, \forall x \in X : \\ 0 < d_X(x,p) < \delta \implies d_Y(f(x),L) < \varepsilon \end{cases}$ Cauchy sequences, i.e.	Eigenvector guess => estimated eigenvalue	Conjugate gradient (CG) method: if $A \in \mathbb{R}^{n \times n}$ symmetric then $(\mathbf{u}, \mathbf{v})_A = \mathbf{u}^T A \mathbf{v}$ is an inner-product
all-at-once	Householder matrix $H_{u} = I_{n} - 2uu^{T}$ is reflection w.r.t. hyperplane P_{u}	¹k ¹1	Accuracy, stability, backwards stability are norm-independent for fin-dim X, Y	Need $\underline{a=0} = f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^k + O(x^{n+1})$ as	$\forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall m, n \ge N : d(a_m, a_n) < \varepsilon$, converge in	Inverse (power-)iteration: perform power iteration on	GC chooses p(k) that are conjugate w.r.t. Al i.e.
Can now rewrite $\mathbf{a}_j = \sum_{i=1}^{j} (\mathbf{q}_i \cdot \mathbf{a}_j) \mathbf{q}_i = \mathbf{Q}_j \mathbf{c}_j$	Recall: let L _u = Ru	Its an <u>N</u> th order partial derivative where $N = \sum_{k} n_{k}$	Rig ₋ O meaning for numerical analysis	$\frac{ x \to 0 }{\sum_{k=0}^{n} {p \choose k} \epsilon^k + O(\epsilon^{n+1})}$	complete spaces You can manipulate matrix limits much like in real	$(A-\sigma I)^{-1}$ to get $\lambda_{1,\sigma}$ closest to σ_{1} $(A-\sigma I)^{-1}$ has eigenvalues $(\lambda-\sigma)^{-1}$ so power iteration	$\langle \mathbf{p}^{(i)}, \mathbf{p}^{(j)} \rangle_A = 0 \text{ for } i \neq j$
Choose $\mathbf{Q} = \mathbf{Q}_n = [\mathbf{q}_1 \dots \mathbf{q}_n] = \mathbb{R}^{m \times n}$, notice its semi-orthogonal since $\mathbf{Q}^T = \mathbf{Q} = \mathbf{I}_n$	proj _{Lu} = uu ^T and proj _{Pu} = I _n -uu ^T =>	$\nabla f = [\partial_1 f,, \partial_n f]^T$ is gradient of $\underline{f} = (\nabla f)_i = \frac{\partial f}{\partial x_i}$	In complexity analysis $f(n) = O(g(n)) as n \to \infty$ But in numerical analysis $f(\varepsilon) = O(g(\varepsilon))$ $\limsup_{\varepsilon \to 0} \ f(\varepsilon)\ / \ g(\varepsilon)\ < \infty$	$e.g.(1+\epsilon)^p = \sum_{k=0}^{n} \frac{p!}{k!(p-k)!} \epsilon^k + O(\epsilon^{n+1})$ as $\epsilon \to 0$	You can manipulate matrix limits much like in real analysis , e.g. $\lim_{n\to\infty} (A^n B + C) = (\lim_{n\to\infty} A^n) B + C$ Turn metric limit $\lim_{n\to\infty} (x_n L) = 0$ Turn real limit $\lim_{n\to\infty} (x_n L) = 0$ To leave real analysis	will yield largest $(\lambda_{1,\sigma} - \sigma)^{-1}$	And chooses $\alpha^{(k)}$ s.t. residuals
Notice => $\mathbf{a}_j = Q_j \mathbf{c}_j = \mathbf{Q}[\mathbf{q}_1 \cdot \mathbf{a}_j,, \mathbf{q}_j \cdot \mathbf{a}_j, 0,, 0]^T = \mathbf{Q}\mathbf{r}_j$	H _u = proj _{Pu} - proj _{Lu}	$\nabla^T f = (\nabla f)^T$ is transpose of ∇f i.e. $\nabla^T f$ is row vector $f(\mathbf{x} + \delta \mathbf{u}) - f(\mathbf{x})$	i.e. ∃C, δ > 0 s.t. ∀ε, we have		$\lim_{n\to\infty} d(x_n, t) = 0$ to leverage real analysis Bounded monotone sequences converge in \mathbb{R}	i.e. will yield smallest $\lambda_{1,\sigma} - \sigma$ i.e. will yield $\lambda_{1,\sigma}$	$\begin{vmatrix} \mathbf{r}^{(k)} = -\nabla f(\mathbf{x}^{(k)}) = \mathbf{b} - A\mathbf{x}^{(k)} \\ k = 0 = -\nabla f(\mathbf{x}^{(0)}) = -\nabla f(\mathbf{x}^{(0)}) = \mathbf{r}^{(0)} \end{vmatrix}$ are orthogonal
Let $R = [r_1 \dots r_n] \in \mathbb{R}^{n \times n} = >$	Visualize as preserving component in Pu then flipping component in Lu	$D_{II}f(\mathbf{x}) = \lim_{\delta \to 0} \frac{f(\mathbf{x} + \delta \mathbf{u}) - f(\mathbf{x})}{\text{directional-derivative of } f}$ is	$0 < \ \epsilon\ < \delta \implies \ f(\epsilon)\ \le C \ g(\epsilon)\ $	Elementary Matrices Identity I _n = [e ₁ e _n] = [e ₁ ;; e _n] has elementary	Sandwich theorem for limits in RJ=> pick easy upper/lower bounds	closest to g	$\frac{k \ge 1}{k \ge 1} \Rightarrow \mathbf{p}^{(k)} = \mathbf{r}^{(k)} - \sum_{i \le k} \frac{\langle \mathbf{p}^{(i)}, \mathbf{r}^{(k)} \rangle_{A}}{\langle i \rangle_{A} \langle i \rangle_{A}} \mathbf{p}^{(i)}$
$\begin{bmatrix} \mathbf{q}_1^T \mathbf{a}_1 & \dots & \mathbf{q}_1^T \mathbf{a}_n \end{bmatrix}$	H _u is involutory, orthogonal and symmetric, i.e.	It is <u>rate-of-change</u> in direction $\underline{\mathbf{u}}_{\downarrow}$ where $\underline{\mathbf{u}} \in \mathbb{R}^{n}$ is unit-vector	$\frac{O(g)}{\{f : \limsup_{\epsilon \to 0} \ f(\epsilon)\ / \ g(\epsilon)\ < \infty\}}$	Identity I _n = [e ₁ e _n] = [e ₁ ; e _n] has elementary vectors e ₁ , e _n for rows/columns Row/columns witching: permutation matrix P _{ij} obtained by switching e _j and e _j in I _n (same for rows/columns)	$\lim_{n\to\infty} r^n = 0 \iff r < 1 \text{ and}$	$\ \mathbf{b}^{(R)} - \alpha_R \mathbf{x}_{1,\sigma}\ = O\left(\left \frac{\lambda_{1,\sigma} - \sigma}{\lambda_{2,\sigma} - \sigma}\right ^R\right) \text{ where } \mathbf{x}_{1,\sigma}$	$\frac{1}{ \mathbf{r} } \Rightarrow \mathbf{p}^{(k)} = \mathbf{r}^{(k)} - \sum_{i < k} \frac{(\mathbf{p}^{(i)}, \mathbf{r}^{(k)})_A}{(\mathbf{p}^{(i)}, \mathbf{p}^{(i)})_A} \mathbf{p}^{(i)}$
$A = QR = Q$ $\begin{bmatrix} & \ddots & \vdots & \vdots$	$H_{\mathbf{u}} = H_{\mathbf{u}}^{-1} = H_{\mathbf{u}}^{T}$	$\frac{\text{unit-vector}}{D_{\mathbf{u}}f(\mathbf{x}) = \nabla f(\mathbf{x}) \cdot \mathbf{u} = \ \nabla f(\mathbf{x})\ \ \mathbf{u}\ \cos(\theta)\ \Rightarrow D_{\mathbf{u}}f(\mathbf{x})\ $ $\text{maximized when } \cos \theta = 1$	Smallness partial order $O(g_1) \leq O(g_2)$ defined by set-inclusion $O(g_1) \subseteq O(g_2)$		$\lim_{n\to\infty} \sum_{i=0}^{n} ar^{i} = \frac{a}{1-r} \iff r < 1$	corresponds to $\lambda_{1,\sigma}$ and $\lambda_{2,\sigma}$ is 2nd-closest to σ	$\alpha^{(k)} = \operatorname{argmin}_{\alpha} f(\mathbf{x}^{(k)} + \alpha^{(k)} \mathbf{p}^{(k)}) = \frac{\mathbf{p}^{(k)} \cdot \mathbf{r}^{(k)}}{\langle \mathbf{p}^{(k)}, \mathbf{p}^{(k)} \rangle_{A}}$
upper-triangular	Modified Gram-Schmidt	i.e. when x , u are parallel \Rightarrow hence $\nabla f(x)$ is direction	set-inclusion $O(g_1) \subseteq O(g_2)$ i.e. as $\epsilon \to 0$, $g_1(\epsilon)$ goes to zero faster than $g_2(\epsilon)$	Applying Pij from left will swap rows, from right will swap columns	Iterative Techniques	Efficiently compute eigenvectors for known	$(\mathbf{p}^{(R)}, \mathbf{p}^{(R)})_A$ Without rounding errors, CG converges in $\leq n$
Full QR Decomposition Consider full-rank $A = [a_1 a_n] \in \mathbb{R}^{m \times n} (m \ge n)$,	Go check <u>Classical GM</u> first, as this is just an alternative computation method	of max. rate-of-change f has local minimum at \mathbf{x}_{loc} if there's radius $r > 0$ s.t.	Roughly same hierarchy as complexity analysis but	$P_{ij} = P_{ij}^T = P_{ij}^{-1}$, i.e. applying twice will undo it	Systems of Equations Let $A, R, G \in \mathbb{R}^{n \times n}$ where G^{-1} exists \Longrightarrow splitting $A = G + R$ thelps iteration	eigenvalues oj Eigenvalue guess => estimated eigenvector	iterations Similar to to Gram-Schmidt (but different
i.e. $\mathbf{a}_1,, \mathbf{a}_n \in \mathbb{R}^m$ are linearly independent	Let $P_{\perp} \mathbf{q}_{i} = \mathbf{I}_{m} - \mathbf{q}_{i} \mathbf{q}_{i}^{T}$ be projector onto <u>hyperplane</u>	$\forall \mathbf{x} \in B[r; \mathbf{x}_{loc}] \text{ we have } f(\mathbf{x}_{loc}) \le f(\mathbf{x}) $	flipped (some don't fit the pattern) e.g, $O(\epsilon^3) < O(\epsilon^2) < O(\epsilon) < O(1)$	Row/column scaling: $D_j(\lambda)$ obtained by scaling e_j by λ in I_n (same for rows/columns)	A=G+R hetps iteration Ax=b rewritten as x=Mx+c where	Algorithm 3 Inverse iteration 1: for $k = 1, 2, 3,$ do	inner-product)
Apply OR decomposition to obtain:	(Rq _j) [⊥] , i.e. <u>orthogonal compliment</u> of line Rq _j	A local minimum satisfies optimality conditions:	Maximum: $O(\max(g_1 , g_2)) = O(g_2) \iff O(g_1) \leq O(g_2)$	Applying P _{ij} from left will scale rows, from right will	$M = -G^{-1}R$; $c = -G^{-1}b$	2: $\hat{x}^{(k)} = (A - \sigma I)^{-1}x^{(k-1)}$	$\frac{\langle \mathbf{p}^{(0)}, \dots, \mathbf{p}^{(n-1)} \rangle}{\mathbb{R}^n}$ and $\frac{\langle \mathbf{r}^{(0)}, \dots, \mathbf{r}^{(n-1)} \rangle}{\mathbb{R}^n}$ are <u>bases</u> for
ONB $(\mathbf{q}_1,, \mathbf{q}_n) \in \mathbb{R}^m$ for $C(A)$ Semi-orthogonal $Q_1 = [\mathbf{q}_1 \mathbf{q}_n] \in \mathbb{R}^{m \times n}$ and	T j (T) j	$\nabla f(\mathbf{x}) = 0$ e.g. for $n = 1$ lits $f'(\mathbf{x}) = 0$	e.g. $O(\max(\epsilon^k, \epsilon)) = O(\epsilon)$	scale columns $D_i(\lambda) = \text{diag}(1,, \lambda,, 1)$ so all diagonal properties	Define $f(\mathbf{x}) = M\mathbf{x} + \mathbf{c}$ and sequence $\mathbf{x}^{(k+1)} = f(\mathbf{x}^{(k)}) = M\mathbf{x}^{(k)} + \mathbf{c}$ with starting point $\mathbf{x}^{(0)}$	3: $x^{(k)} = \hat{x}^{(k)} / \max(\hat{x}^{(k)})$ 4: $\lambda^{(k)} = (x^{(k)})^T A x^{(k)}$	OR A = QUQ† to find Schur decomposi
upper-triangular $R_1 \in \mathbb{R}^{n \times n}$, where $A = Q_1 R_1$	Notice: $P_{\perp j} = I_m - Q_j Q_j^T = \prod_{i=1}^{J} (I_m - q_i q_i^T) = \prod_{i=1}^{J} P_{\perp} q_i$	$\frac{\nabla^2 f(x)}{\nabla^2 f(x)} \text{ is positive-definite, e.g. for } n = 1 \text{ lits } f''(x) > 0$ $\mathbf{H}(f) = \nabla^2 f = \mathbf{J}(\nabla f)^T \text{ is } \mathbf{Hessian} \Rightarrow \mathbf{H}(f)_{ij} = \frac{\partial^2 f}{\partial x_i \partial x_i}$	Using functions $f_1,, f_n$ let $\Phi(f_1,, f_n)$ be formula defining some function	apply, e.g. $D:(\lambda)^{-1} = D:(\lambda^{-1})$	Limit of (x_k) is fixed point of $f = \text{unique fixed point}$	5: end for	Any $A \in \mathbb{C}^{m \times m}$ has Schur decomposition $A = QUQ^{\dagger}$
Compute basis extension to obtain remaining $\mathbf{q}_{n+1},, \mathbf{q}_m \in \mathbb{R}^m$, where $\langle \mathbf{q}_1,, \mathbf{q}_m \rangle$ is ONB for \mathbb{R}^m	Re-state: $\mathbf{u}_{j+1} = (\mathbf{I}_m - Q_j Q_j^T) \mathbf{a}_{j+1} \Longrightarrow$		Then $\Phi(O(g_1),, O(g_n))$ is the class of functions	Row addition: $L_{ij}(\lambda) = \mathbf{I}_n + \lambda \mathbf{e}_j \mathbf{e}_i^T$ performs $R_i \leftarrow R_i + \lambda R_j$ when applying from left	of f is solution to Ax=b	Can reduce matrix inversion $O(m^3)$ to $O(m^2)$ by	Q is unitary, i.e. $Q^{\dagger} = Q^{-1}$ and upper-triangular U
$q_{n+1}, \dots, q_m \in \mathbb{R}^m$, where (q_1, \dots, q_m) is ONB for \mathbb{R}^m Notice (q_{n+1}, \dots, q_m) is ONB for $C(A)^{\perp} = \ker(A^{\top})$	$\mathbf{u}_{j+1} = \left(\prod_{i=1}^{j} P_{\perp \mathbf{q}_{i}}\right) \mathbf{a}_{j+1} = \left(P_{\perp \mathbf{q}_{i}} \dots P_{\perp \mathbf{q}_{1}}\right) \mathbf{a}_{j+1}$	Interpret $F: \mathbb{R}^n \to \mathbb{R}^m$ as m functions $F_i: \mathbb{R}^n \to \mathbb{R}$ (one per output-component)	$\{\Phi(f_1,, f_n) : f_1 \in O(g_1),, f_n \in O(g_n)\}$	$\lambda_i = \lambda_i + \lambda_j$ when applying from tert $\lambda_{e_i} e_i^T \text{ is } \underline{zeros} \text{ except for } \underline{\lambda} \text{ in } (i, j) + \text{th entry}$	If - is consistent norm and M < 1 then (x _k) converges for any x ⁽⁰⁾ (because	pre-factorization	Diagonal of U contains eigenvalues of A
Let $Q_2 = [\mathbf{q}_{n+1} \dots \mathbf{q}_m] \in \mathbb{R}^{m \times (m-n)}$, let	Projectors $P_{\perp q_1}$,, $P_{\perp q_j}$ are iteratively applied to	$\frac{\mathbf{J}(F) = \left[\nabla^T F_1;; \nabla^T F_m\right]}{\mathbf{J}(F)_{ij}} = \frac{\partial F_i}{\partial \mathbf{x}_j}$	e.g. $\epsilon^{O(1)} = \{ \epsilon^{f(\epsilon)} : f \in O(1) \}$	$L_{ij}(\lambda)^{-1} = L_{ij}(-\lambda)$ both triangular matrices	Cauchy-completeness)		Algorithm 1 Basic QR iteration
$Q = [Q_1 Q_2] \in \mathbb{R}^{m \times m}$, let $R = [R_1; 0_{m-n}] \in \mathbb{R}^{m \times n}$	a _{j+1} ; removing its components along q ₁ ; then along	Conditioning	General case: $\Phi_1(O(f_1),,O(f_m)) = \Phi_2(O(g_1),,O(g_n))$ means	LU factorization w/ Gaussian elimina-	We want to find M < 1 and easy to compute M; c Stopping criterion usually the relative residual		1: for $k = 1, 2, 3,$ do
Then full QR decomposition is	q ₂ and so on	A <u>problem</u> is some $\underline{f}: X \to Y$ where \underline{X}, Y are normed vector-spaces	$\frac{\boldsymbol{\Phi}_{1}(O(f_{1}),,O(f_{m})) \subseteq \boldsymbol{\Phi}_{2}(O(g_{1}),,O(g_{n}))}{ \mathbf{e}_{.g.,\epsilon}O(1) = O(k^{\epsilon}) \text{means } \{\epsilon^{f(\epsilon)}: f \in O(1)\} \subseteq O(k^{\epsilon}) }$	Recall: you can represent FROs and FCOs as			2: $A^{(k-1)} = Q^{(k-1)}R^{(k-1)}$ 3: $A^{(k)} = R^{(k-1)}Q^{(k-1)}$
A=QK=[Q1]Q2][0 _{m-n}]=Q1K1	Let $\mathbf{u}_{k}^{(j)} = \left(\prod_{i=1}^{j} P_{\perp} \mathbf{q}_{i}\right) \mathbf{a}_{k}$, i.e. $\underline{\mathbf{a}_{k}}$ without its	A problem instance is f with fixed input $x \in X$], shortened to just "problem" (with $x \in X$ implied)	not necessarily true	transformation matrices R, C respectively LUJfactorization => finds A = LUJ where L, UJ are lower/upper triangular respectively	<u>" b "</u> ≤ €		4: end for
transformation	components along q ₁ ,,q _j	δx is small perturbation of $\delta f = f(x + \delta x) - f(x)$ A problem (instance) is:	Special case: $f = \Phi(O(g_1),, O(g_n))$ means	Naive Gaussian Flimination performs $[I_m \mid A \mid I_n] \approx [R^{-1} \mid U \mid I_n] \text{ to get } AI_n = R^{-1} U \text{ using}$	Assume A[s diagonal is non-zero (w.l.o.g. permute/change basis if isn't) then A = D + L + U \ where D[is diagonal of A] L, U] are strict lower/upper triangular parts of A[For $\underline{A} \in \mathbb{R}^{m \times m}$ leach iteration $A^{(k)} = Q^{(k)} R^{(k)}$ produces
$\frac{\text{proj}_{C(A)} = Q_1 Q_1^T}{\text{proj}_{C(A)} \perp = Q_2 Q_2^T} \text{ are } \underbrace{\text{orthogonal}}$	Notice: $\mathbf{u}_j = \mathbf{u}_j^{(j-1)}$ thus $\mathbf{q}_j = \hat{\mathbf{u}}_j = \mathbf{u}_j^{(j-1)} / r_{jj}$ where	Well-conditioned if <u>all</u> small δx lead to small δf , i.e.	$f \in \Phi(O(g_1), \dots, O(g_n))$ e.g. $(\varepsilon + 1)^2 = \varepsilon^2 + O(\varepsilon)$ means	only row addition	Insohi Mathadi		orthogonal $Q^{(k)^T} = Q^{(k)^{-1}}$
projections onto $C(A)$ $C(A)$ = $ker(A^T)$ respectively	(i-1)	if $\kappa_{\rm J}$ is small (e.g. 1 \pm 10 \pm 10 \pm 10 \pm 11 \pm 11 \pm 12 \pm 12 \pm 13 \pm 13 \pm 14 \pm 15 \pm 16 \pm 17 \pm 17 \pm 18	$\epsilon \mapsto (\epsilon+1)^2 \in \{\epsilon^2 + f(\epsilon) : f \in O(\epsilon)\}$ not necessarily true	$\left \frac{R^{-1}}{l}\right $ i.e. inverse EROs in reversed order, is $\left \frac{R^{-1}}{l}\right $	$G = D; R = L + U \implies M = -D^{-1}(L + U); c = D^{-1}b$		$A^{(k+1)} = R^{(k)}Q^{(k)} = (Q^{(k)}^TQ^{(k)})R^{(k)}Q^{(k)}$
Notice: $QQ^T = I_m = Q_1Q_1^T + Q_2Q_2^T$ Generalizable to $A \in \mathbb{C}^{m \times n}$ by changing transpose to	rjj = u'j	if K is large (e.g. 106 1016)	Let $f_1 = O(g_1)$, $f_2 = O(g_2)$ and let $k \neq 0$ be a constant	Algorithm 1 Gaussian elimination	$\left \mathbf{x}_{i}^{(k+1)} = \frac{1}{A_{ii}} \left(\mathbf{b}_{i} - \sum_{j \neq i} A_{ij} \mathbf{x}_{j}^{(k)} \right) \right \Rightarrow \mathbf{x}_{i}^{(k+1)}$ only needs		$= Q(k)^{T} A(k) Q(k)$ means
conjugate-transpose	$\mathbf{u}_{k}^{(j)} = \left(P_{\perp \mathbf{q}_{j}}\right) \mathbf{u}_{k}^{(j-1)} = \mathbf{u}_{k}^{(j-1)} - \left(\mathbf{q}_{j} \cdot \mathbf{u}_{k}^{(j-1)}\right) \mathbf{q}_{j}$	Absolute condition number $cond(x) = \hat{\kappa}(x) = \hat{\kappa}$ of f at	$ f_1 _{f_2} = O(g_1g_2) _{f \to O(g)} = O(fg) _{f \to f} O(k + g) = O(g)$	1: $U = A, L = I$ 2: for $k = 1$ to $m - 1$ do	$ \mathbf{b}_i; \mathbf{x}^{(k)}; A_{i*} \Rightarrow \text{row-wise parallelization}$		$A^{(k+1)}$ is similar to $A^{(k)}$
Lines and hyperplanes in $\mathbb{E}^{n}(=\mathbb{R}^{n})$ Consider standard Euclidean space $\mathbb{E}^{n}(=\mathbb{R}^{n})$	i.e. each iteration j of MGS computes P _{1 qj} (and	$\hat{\kappa} = \lim_{\delta \to 0} \sup_{\ \delta x\ \le \delta} \frac{\ \delta f\ }{\ \delta x\ }$	$ f_1 * f_2 = O(\max(g_1 , g_2)) => \text{if } g_1 = g = g_2 \text{then } f_1 * f_2 = O(g) $	3: for $j = k + 1$ to m do	Gauss-Seidel (G-S) Method: $G = D + L; R = U => M = -(D + L)^{-1} U; C = (D + L)^{-1} b$		Setting $\underline{A^{(0)}} = \underline{A}$ we get $\underline{A^{(k)}} = (\tilde{Q}^{(k)})^T A \tilde{Q}^{(k)}$ where $\tilde{Q}^{(k)} = Q^{(0)} \dots Q^{(k-1)}$
with standard basis $(e_1,, e_n) \in \mathbb{R}^n$	projections under it) in one go	=> for $\frac{\ \delta f\ }{\ \delta x\ }$ => for $\frac{\ \delta f\ }{\ \delta x\ }$	Floating-point numbers	4: $\ell_{j,k} = u_{j,k}/u_{k,k}$ 5: $u_{j,k;m} = u_{j,k;m} - \ell_{j,k}u_{k,k;m}$	$\frac{1}{ \mathbf{x}_{i}^{(k+1)} } = \frac{1}{A_{ij}} \left(\mathbf{b}_{i} - \sum_{j=1}^{i-1} A_{ij} \mathbf{x}_{j}^{(k+1)} - \sum_{j=i+1}^{n} A_{ij} \mathbf{x}_{j}^{(k)} \right)$		Under certain conditions QR algorithm converges to
with standard origin of R	At <u>start</u> of iteration $j \in 1n$ we have ONB $\mathbf{q}_1,, \mathbf{q}_{j-1} \in \mathbb{R}^m \mid \text{and residual } \mathbf{u}_i^{(j-1)},, \mathbf{u}_n^{(j-1)} \in \mathbb{R}^m$	If <u>Jacobian</u> $J_f(x)$ exists then $\hat{\kappa} = \ J_f(x)\ $ where <u>matrix</u>	Consider base/radix β≥2 (typically 2) and precision t≥1 (24 or 53 for EFE single/double precisions)	6: end for 7: end for			Schur decomposition
A line L = Rn + c is <u>characterized</u> by direction <u>n ∈ Rⁿ</u> (n ≠ 0 and offset from origin c ∈ L		norm - induced by norms on X and Y	$F = \{ (-1)^s (m/\beta^t) \beta^e \mid 1 \le m \le \beta^t, s \in \mathbb{B}, m, e \in \mathbb{Z} \}$	(6.1)	Computing $\mathbf{x}_{\underline{j}}^{(k+1)}$ needs $\mathbf{b}_{\underline{j}}$; $\mathbf{x}^{(k)}$; $\mathbf{A}_{\underline{j}\star}$ and $\mathbf{x}_{\underline{j}}^{(k+1)}$ for		We can anniv chift, (k) at iteration (k) $\Rightarrow A^{(k)}_{-\mu}(k)_{I=Q}(k)_{R}(k)_{;A}(k+1)_{=R}(k)_{Q}(k)_{+\mu}(k)_{I}$ If shifts are good eigenvalue estimates then last
It is customary that: n is a unit vector, i.e. n = n = 1	Compute $r_{jj} = \left\ \mathbf{u}_{j}^{(j-1)} \right\ = \mathbf{q}_{j} = \left\ \mathbf{u}_{j}^{(j-1)} / r_{jj} \right\ $	Relative condition number $\kappa(x) = \kappa$ of f at \underline{x} is	s jis sign-bit, m/β ^t is mantissa, e jis exponent (8 <u>l-bit</u> for single, 11 <u>l-bit for double</u>)	The pivot element is simply <u>diagonal entry</u> $u_{kk}^{(k-1)}$	j < i ⇒ lower storage requirements Successive over-relaxation (SOR):		column of $\tilde{Q}^{(k)}$ converges quickly to an eigenvector
	For each $k \in (j+1)n$, compute $r_{jk} = \mathbf{q}_j \cdot \mathbf{u}_k^{(j-1)} = >$	$\kappa = \lim_{\delta \to 0} \sup_{\ \delta x\ \le \delta} \left(\frac{\ \delta f\ }{\ f(x)\ } / \frac{\ \delta x\ }{\ x\ } \right)$	Equivalently, can restrict to $\beta^{t-1} \le m \le \beta^t - 1$ for unique	fails if $u_{kk}^{(k-1)} \approx 0$	$M = -(\omega^{-1}D + L)^{-1}((1 - \omega^{-1})D + U);$ $\mathbf{c} = -(\omega^{-1}D + L)^{-1}\mathbf{b}$		Estimate µ ^(k) with <u>Rayleigh quotient</u> =>
i.e. 0 ∉ L l, i.e. L doesn't go through the origin	$\mathbf{u}_{k}^{(j)} = \mathbf{u}_{k}^{(j-1)} - r_{jk}\mathbf{q}_{j}$	=> for most problems simplified to	mjand ej F⊂R is idealized (ignores over/underflow), so is	LU=A+6A, ILI-IUI = U(Emach) only backwards	$\frac{\left \frac{\omega}{\mathbf{x}^{(k+1)}} \right \frac{\omega}{A_{ij}} \left(\mathbf{b}_{i} - \sum_{j=1}^{i-1} A_{ij} \mathbf{x}_{j}^{(k+1)} - \sum_{j=i+1}^{n} A_{ij} \mathbf{x}_{j}^{(k)} \right) \right _{\text{for}}}{\mathbf{x}^{(k+1)}}$		$\mu^{(k)} = (A_k)_{mm} = (\tilde{\mathbf{q}}_m^{(k)})^T A \tilde{\mathbf{q}}_m^{(k)}$ where $\tilde{\mathbf{q}}_m^{(k)}$ is \underline{m} th
Lis affine-subspace of \mathbb{R}^n If $\mathbf{c} = \lambda \mathbf{n}$, i.e. $L = \mathbb{R}\mathbf{n}$ $\mathbf{c} = \lambda \mathbf{n}$ $\mathbf{c} = $	Next ONB $(\mathbf{q}_1,, \mathbf{q}_j)$ and next residual $\mathbf{u}_{j+1}^{(j)},, \mathbf{u}_n^{(j)}$	$\kappa = \sup_{\delta x} \left(\frac{\ \delta f\ }{\ f(x)\ } / \frac{\ \delta x\ }{\ x\ } \right)$	countably infinite and self-similar (i.e. F = βF)	stable if L · U ≈ A 	$\mathbf{x}_{i}^{(k+1)} = A_{ii}^{(k)} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix} / \text{for}$		column of $\tilde{Q}^{(k)}$
li - 0 - 11 i - 11 +bb +bi -i -	NOTE: for $j = 1 \Rightarrow q_1,, q_{j-1} = \emptyset$, i.e. none yet	-If <u>Jacobian</u> $J_f(x)$ exists then $\kappa = \frac{\ J_f(x)\ }{\ f(x)\ /\ x\ }$	For all $x \in \mathbb{R}$ there exists $f(x) \in \mathbb{F}$ s.t. $ x-f(x) \le \epsilon_{mach} x $	Work required: $\sim \frac{2}{3} m^3$ flops $\sim O(m^3)$ Solving $Ax = LUx$ is $\sim \frac{2}{3} m^3$ flops (back substitution is	relaxation factor ω > 1		
Let $\underline{\mathbf{u}} \in \underline{\mathbf{U}}$ i.e. $\underline{\mathbf{U}}$ goes through the origin. Li has $\underline{\mathbf{dim}}(\underline{\mathbf{U}}) = 1$ land orthonormal basis (ONR) $\{\hat{\mathbf{n}}\}$ A hyperplane $P = (\mathbf{Rn})^{\perp} + \mathbf{c} = \{x + \mathbf{c} \mid x \in \mathbb{R}^n, x \perp \mathbf{n}\}$ is	By end of iteration $j = n$, we have ONB	More important than k for numerical analysis	Equivalently $f(x) = x(1+\delta)$, $ \delta \le \epsilon_{mach}$	O(m ²)	If A J is strictly row diagonally dominant then		
={x ∈ R · x · n = c · n}	$\langle \mathbf{q}_1, \dots, \mathbf{q}_n \rangle \in \mathbb{R}^m$	\Rightarrow comes up so often that has its own name $A \in \mathbb{C}^{m \times m}$ is well-conditioned if $\kappa(A)$ is small,	Machine epsilon ∈ machine = ∈ mach = ½ β 1-t is maximum relative gap between FPs	NOTE: Householder triangularisation requires $\sim \frac{4}{3} m^3$	Jacobi/Gauss-Seidel methods converge: A is strictly row diagonally dominant if $ A_{ij} > \sum_{i \neq j} A_{ji} $ If A is positive-definite then G-S and SOR ($\omega \in (0, 2)$)		
origin cep It represents an (n-1) -dimensional slice of the	$A = [a_1 a_n] = [q_1 q_n] \begin{bmatrix} r_{11} & & r_{1n} \\ & \ddots & \vdots \\ 0 & r_{nn} \end{bmatrix} = QR$	ill-conditioned if large	Half the gap between 1 and next largest FP 2 ⁻²⁴ ≈ 5.96×10 ⁻⁸ and 2 ⁻⁵³ ≈ 10 ⁻¹⁶ for single/double	Partial pivoting computes, PA = LU where P is a permutation matrix ⇒ PP = 1 i.e. its orthogonal	Eigenvalue Problems		
n_dimensional space	corresponds to thin QR decomposition Where $A \in \mathbb{R}^{m \times n}$ is full-rank, $Q \in \mathbb{R}^{m \times n}$ is	$\frac{\kappa(\mathbf{A}) = \kappa(\mathbf{A}^{-1}) \left[\kappa(\mathbf{A}) = \kappa(\gamma \mathbf{A}) \right] \left\ \cdot \right\ = \left\ \cdot \right\ _{2} \implies \kappa(\mathbf{A}) = \frac{\sigma_{1}}{\sigma_{m}}$	FP arithmetic: let *, @ be real and floating counterparts of arithmetic operation	permutation matrix => PP = 1.e. its orthogonal For each column finds largest entry and row-swaps	If A lis diagonalizable then eigen-decomposition is $A = X \Lambda X^{-1}$		
n is a unit vector, i.e. n = n̂ = 1	semi-orthogonal, and R∈R ^{n×n} is upper-triangular		For x, y ∈ F we have	to make it <u>new pivot</u> => P _j	Dominant λ_1 ; \mathbf{x}_1 are such that $ \lambda_1 $ is <u>strictly largest</u>		
$c \in P$ is closest point to origin, i.e. $c = \lambda n$ With those $\Rightarrow P = \{x \in \mathbb{R}^n \mid x \cdot \mathbf{n} = \lambda\}$	Classical vs. Modified Gram-Schmidt	$K = \ A\ \frac{\ A\ }{\ A\ } = $ If $\frac{A}{\ A\ } = $ If	$x \circledast y = fl(x * y) = (x * y)(1 * \epsilon), \delta \le \epsilon_{mach}$	Then performs <u>normal elimination</u> on that column => L _j	for which $\underline{Ax} = \lambda x$ Rayleigh quotient for <u>Hermitian</u> $\underline{A} = A^{\dagger}$ is		
If $\mathbf{c} \cdot \mathbf{n} \neq 0 \Rightarrow P$ not vector-subspace of \mathbb{R}^n	These algorithms both compute thin thin QR decomposition	4 1 1 41 161	Holds for any arithmetic operation $\circledast = \oplus$, \ominus , \diamondsuit , \oslash Complex floats implemented pairs of real floats, so	Result is $L_{m-1}P_{m-1}\dots L_2P_2L_1P_1A=U$ where	$R_{A}(\mathbf{x}) = \frac{\mathbf{x}^{\dagger} A \mathbf{x}}{\mathbf{x}^{\dagger} \mathbf{x}}$		
i.e. 0 ∉ P , i.e. P doesn't go through the origin P is affine-subspace of R ⁿ	Modified Gram-Schmidt 1: for $j = 1$ to n do	$\begin{array}{l} f_{A-1}(b) = A^{-1}b = x \in \ A^{-1}\ \frac{\ x\ }{\ x\ } \le \operatorname{Cond}(A) \\ \text{For } \mathbf{b} \in \{0\} \text{ the problem } f_{\bullet}(A) = A^{-1}b \\ Ax = b \ _{Tab} x \in \ A\ \ A^{-1}\ = \operatorname{Cond}(A) \\ \text{Stability} \end{array}$	above applies to <u>complex ops</u> as-well <u>Caveat:</u> $\epsilon_{mach} = \frac{1}{2}\beta^{1-t}$ must be <u>scaled</u> by factors <u>on</u>	L _{m-1} P _{m-1} L ₂ P ₂ L ₁ P ₁ = L' _{m-1} L' ₁ P _{m-1} P ₁	Eigenvectors are stationary points of RA		
If <u>c·n=0</u> , i.e. $P = (Rn)^{\perp}$ => P is vector-subspace of	Classical Gram-Schmidt 1: for $j = 1$ to n do 2: $u_j = a_j$ 3: end for	Stability = cond(A)	the order of $2^{3/2}$, $2^{5/2}$ for \otimes , \otimes respectively	Setting $L = (L'_{m-1} \dots L'_1)^{-1}$ $P = P_{m-1} \dots P_1$ gives	$R_A(\mathbf{x})$ is <u>closest</u> to being <u>like eigenvalue</u> of \mathbf{x} , i.e.		
R ⁿ	2: $u_j = a_j$ 4: for $j = 1$ to n do 3: for $i = 1$ to $j - 1$ do 5: $r_{ij} = u_j _2$	Given a problem $\underline{f}: X \to Y$ an algorithm for \underline{f} is	(x ₁ ⊕⊕x _n)	Algorithm 2 Gaussian elimination with partial pivoting	$R_A(\mathbf{x}) = \underset{\alpha}{\operatorname{argmin}} \ A\mathbf{x} - \alpha\mathbf{x}\ _2$		
P]has dim(P) = n - 1	4: $r_{ij} = q_i^* a_j$ 6: $q_j = u_j/r_{ij}$ 5: $u_j = u_j - r_{ij}q_i$ 7: for $k = j + 1$ to n do	Input $\underline{x \in X}$ is first rounded to $fl(x)$, i.e. $\tilde{f}(x) = \tilde{f}(fl(x))$	$\approx (x_1 + \dots + x_n) + \sum_{j=1}^n x_j \left(\sum_{j=i}^n \delta_j \right); \delta_j \le \epsilon_{\text{mach}}$	1: $U = A, L = I, P = I$ 2: for $k = 1$ to $m - 1$ do	$R_A(\mathbf{x}) - R_A(\mathbf{v}) = O(\ \mathbf{x} - \mathbf{v}\ ^2)$ as $\mathbf{x} \to \mathbf{v}$ where \mathbf{v} is eigenvector		
Notice L = Rn Jand P = (Rn) are orthogonal compliments, so:	6: end for 8: $r_{jk} = q_j^* u_k$	Absolute error $\Rightarrow \ \bar{f}(x) - f(x)\ \ $ $\ \bar{f}(x) - f(x)\ \ $	$(x_1 \otimes \cdots \otimes x_n) \approx (x_1 \times \cdots \times x_n)(1 + \varepsilon), \varepsilon \le 1.06(n - 1)\varepsilon_{mach}$	3: $i = \operatorname{argmax} u_{i,k} $	Power iteration: define sequence $b^{(k+1)} = \frac{Ab^{(k)}}{ Ab^{(k)} }$		
proj _L = $\hat{\mathbf{n}}\hat{\mathbf{n}}^T$ is orthogonal projection onto LJ(along P).	7: $r_{jj} = u_j _2$ 9: $u_k = u_k' - r_{jk}q_j$ 8: $q_j = u_j/r_{jj}$ 10: end for	relative error $\Rightarrow \frac{\ \tilde{f}(x)-f(x)\ }{\ f(x)\ }$ $\ \tilde{f}(x)\ \ $	$\frac{f(\sum x_i y_i) = \sum x_i y_i (1 + \epsilon_i)}{1 + \epsilon_i = (1 + \delta_i) \times (1 + \eta_i) \cdots (1 + \eta_n)} \text{ and } \delta_i , \eta_i \le \epsilon_{\text{mach}}$	4: $u_{k,k:m} \leftrightarrow u_{i,k:m}$ 5: $\ell_{k,1:k-1} \leftrightarrow \ell_{i,1:k-1}$			
$\operatorname{proj}_{P} = \operatorname{id}_{\mathbb{R}^{n}} - \operatorname{proj}_{L} = \operatorname{I}_{n} - \widehat{\mathbf{n}}\widehat{\mathbf{n}}^{T}$ is orthogonal	9: end for 11: end for Computes at j th step:	$f[s accurate f \forall x \in X] \frac{ f(x) }{ f(x) } = O(\epsilon_{mach})$ $\frac{ f(x)-f(x) }{ f(x) } = O(\epsilon_{mach})$	$1+\epsilon_i \approx 1+\delta_i + (\eta_i + \dots + \eta_n)$	6: $p_{k,i} \leftrightarrow p_{i,i}$ 7: for $j = k + 1$ to m do	with <u>initial</u> $b^{(0)}$ s.t. $ b^{(0)} = 1$ Assume dominant $\lambda_1; \mathbf{x}_1$ exist for A , and that		
projection onto $P_{\perp}^*(along \underline{L})$ $L = im(proj_L) = ker(proj_P) and$	Classical GS $\Rightarrow j$ th column of Q and the j th column of R	$\ f(\tilde{x})\ $ = 0 (emach) and $\ x\ $ = 0 (emach) i.e. <u>nearly</u> the right answer to <u>nearly</u> the right question	$ fl(x^Ty)-x^Ty \le \sum x_iy_i \varepsilon_i $	8: $\ell_{j,k} = u_{j,k}/u_{k,k}$	proj _{x1} (b ⁽⁰⁾)*0		
$P = \ker(\operatorname{proj}_L) = \operatorname{im}(\operatorname{proj}_P)$	Modified GS $\Rightarrow j$ th column of Q and the j th row of	outer-product is stable	Assuming $n\epsilon_{\text{mach}} \le 0.1$ =>	9: $u_{j,k:m} = u_{j,k:m} - \ell_{j,k} u_{k,k:m}$ 10: end for	Under above assumptions,		
	R] Both have flop (floating-point operation) count of		$\frac{ fl(x^Ty) - x^Ty \le \phi(n)\epsilon_{\text{mach}} x ^T y }{ s \text{ where } x _i = x_i }$ $\frac{ x _i = x_i }{ s \text{ where } x _i = x_i }$	11: end for	$\mu_{k} = R_{A} \left(\mathbf{b}^{(k)} \right) = \frac{\mathbf{b}^{(k)} \stackrel{\uparrow}{+} \mathbf{A} \mathbf{b}^{(k)}}{\mathbf{b}^{(k)} \stackrel{\uparrow}{+} \mathbf{b}^{(k)}} \text{ converges to dominant}$		
decomposed into v=vL+vp Householder Maps: reflections	O(2mn ²)		Summing a series is more stable if terms added in order of increasing magnitude	Work required: $\sim \frac{2}{3} m^3$ flops $\sim O(m^3)$; results in $L_{ij} \le 1$ so $ L = O(1)$	$\frac{1}{ V }$		
	NOTE: Householder method has $2(mn^2 - n^3/3)$ flop count, but better numerical properties		Maria St. Increasing magnitude		$\langle \mathbf{b}_k \rangle$ converges to some dominant \mathbf{x}_1 associated with		
	Recall: $Q^{\dagger}Q = I_n \implies$ check for loss of orthogonality			$\frac{\text{Stability depends on growth-factor } \rho = \frac{\max_{i,j} u_{i,j} }{\max_{i,j} a_{i,j} }$	$\lambda_1 \Rightarrow \ Ab^{(k)}\ $ converges to $ \lambda_1 $		
	with $\ \mathbf{I}_n - \mathbf{Q}^{\dagger}\mathbf{Q}\ = \text{loss}$			⇒ for partial pivoting ρ ≤ 2 ^{m-1}	If $\operatorname{proj}_{X_1}(b^{(0)})=0$ then (b_k) ; (μ_k) converge to second		
	Classical GS $\Rightarrow \ \mathbf{I}_n - Q^{\dagger} Q\ \approx \text{Cond}(A)^2 \epsilon_{\text{mach}}$			$\ U\ = O(\rho \ A\) = \sum_{\tilde{L}\tilde{U}} = \tilde{P}A + \delta A$ $\ \delta A\ = O(\rho \epsilon_{\text{machine}})$	dominant λ ₂ ; x ₂ instead		
	Modified GS $\Rightarrow \ \mathbf{I}_n - Q^{\dagger} Q\ \approx \text{Cond}(A) \epsilon_{\text{mach}}$			=> only backwards stable if $\rho = O(1)$	If no dominant \(\lambda\)\(\left(i.e.\) multiple eigenvalues of \(\maximum.\left[\lambda\right)\right]\) then \(\left(\maximum.\left(\maxi		
	NOTE: Householder method has $\ \mathbf{I}_n - Q^{\dagger}Q\ \approx \epsilon_{\text{mach}}$			Full pivoting is PAQ = LU finds largest entry in bottom-right submatrix	combination of their corresponding eigenvectors Slow convergence if dominant λ ₁ not <u>"very</u>		
	Multivariate Calculus			Makes it pivot with <u>row/column swaps</u> before <u>normal</u>	dominant"		
	Consider $\underline{f}: \mathbb{R}^n \to \mathbb{R}$:			Very expensive $O(m^3)$ search-ops, partial pivoting only needs $O(m^2)$	$\ \mathbf{b}^{(k)} - a_k \mathbf{x}_1\ = O\left(\left \frac{\lambda_2}{\lambda_1}\right ^k\right)$ for phase factor		
				only needs <u>O(m^-)</u>	[[