Algorithmic Human-Robot Interaction

Project Pitches (Part II)

Paper Talks

CSCI 7000

Prof. Brad Hayes

Computer Science Department

University of Colorado Boulder

Ideas

- Intelligent tele-operation for time-delayed environments through macroactions with contingency planning for potential failures
- 2. Social navigation with velocity-based motion models from vision
- 3. Behavior coaching using reward saliency and models of how people consider reward
- 4. Decentralized collaborative control for inspection tasks
- 5. NLP + Recommender system for task preference learning
- 6. Navigation assistant for vision-impaired: path planning, scene analysis, verbal summarization of scene/map
- 7. Conversational planner to augment plan cost function through visualization
- 8. Learning motion planning/grasp preferences from human feedback (e.g., don't move sharp end of scissors next to people)
- 9. Autonomous exploration/belief over terrain cost to inform operator plans
- 10. When should robots trust humans? Human capability assessment
- 11. Sim2Real via AR or Pantomime
- 12. Navigation aid robot with updating map attributes
- 13. VR Teleop for First-person view: Shared autonomy to make this effective

In two minutes or less:

What new capability are you introducing / phenomenon are you exploring?

What's hard about this now?

How will you evaluate whether your approach works or not?

Ideas

	1.	Intelligent tele-operation for time-delayed environments through macro-actions with contingency planning for potential failures
	2.	Social navigation with velocity-based motion models from vision
SS*, KLS	3.	Behavior coaching using reward saliency and models of how people consider reward
	4.	Decentralized collaborative control for inspection tasks
	5.	NLP + Recommender system for task preference learning
SA, DS*, IL	6.	Navigation assistant for vision-impaired: path planning, scene analysis, verbal summarization of scene/map
ML*, SW	7.	Conversational planner to augment plan cost function through visualization
NS*, JK*	8.	Learning motion planning/grasp preferences from human feedback (e.g., don't move sharp end of scissors next to people)
	9.	Autonomous exploration/belief over terrain cost to inform operator plans
	10.	When should robots trust humans? Human capability assessment
RL, KP*, AV, CN*	11.	Sim2Real via AR or Pantomime
	12.	Navigation aid robot with updating map attributes
	13.	VR Teleop for First-person view: Shared autonomy to make this effective

Quiz #2

Today's Papers:

Designing Robot Learners that Ask Good Questions

Maya Cakmak and Andrea Thomaz

PRO presenter: Lakhan Kamireddy

CON presenter: Dhanendra Soni

Anticipating human actions for collaboration in the presence of task and sensor uncertainty

Kelsey Hawkins et al.

PRO presenter: Ian Loegfren

CON presenter: Nishank Sharma

Next Week's Papers (2/14):

Probabilistically Safe Robot Planning with Confidence-Based Human Predictions

Jaime Fisac et al.

PRO presenter:

CON presenter:

An Implemented Theory of Mind to Improve Human-Robot Shared Plans Execution

Sandra Devin and Rachid Alami

PRO presenter:

CON presenter: