O.	1 –	O.	5	carry	one	mark	each.
\mathbf{v} .	_	\mathbf{v} .	$\boldsymbol{\mathcal{I}}$	carry	UIIC	main	cacii.

"When she fell down the , she received many but little help." 0.1

The words that best fill the blanks in the above sentence are

(A) stairs, stares

(B) stairs, stairs

(C) stares, stairs

(D) stares, stares

"In spite of being warned repeatedly, he failed to correct his ______ behaviour." Q.2

The word that best fills the blank in the above sentence is

- (A) rational
- (B) reasonable
- (C) errant
- (D) good

For $0 \le x \le 2\pi$, $\sin x$ and $\cos x$ are both decreasing functions in the interval _____. Q.3

- (A) $\left(0, \frac{\pi}{2}\right)$ (B) $\left(\frac{\pi}{2}, \pi\right)$ (C) $\left(\pi, \frac{3\pi}{2}\right)$ (D) $\left(\frac{3\pi}{2}, 2\pi\right)$

0.4 The area of an equilateral triangle is $\sqrt{3}$. What is the perimeter of the triangle?

- (A) 2
- (B) 4
- (C) 6
- (D) 8

0.5 Arrange the following three-dimensional objects in the descending order of their volumes:

- A cuboid with dimensions 10 cm, 8 cm and 6 cm (i)
- (ii) A cube of side 8 cm
- (iii) A cylinder with base radius 7 cm and height 7 cm
- A sphere of radius 7 cm (iv)
- (A) (i), (ii), (iii), (iv)
- (B) (ii), (i), (iv), (iii)
- (C) (iii), (ii), (i), (iv)
- (D) (iv), (iii), (ii), (i)

Q. 6 - Q. 10 carry two marks each.

Q.6 An automobile travels from city A to city B and returns to city A by the same route. The speed of the vehicle during the onward and return journeys were constant at 60 km/h and 90 km/h, respectively. What is the average speed in km/h for the entire journey?

- (A)72
- (B) 73
- (C)74
- (D)75

- Q.7 A set of 4 parallel lines intersect with another set of 5 parallel lines. How many parallelograms are formed?
 - (A) 20
- (B)48
- (C) 60
- (D) 72
- Q.8 To pass a test, a candidate needs to answer at least 2 out of 3 questions correctly. A total of 6,30,000 candidates appeared for the test. Question A was correctly answered by 3,30,000 candidates. Question B was answered correctly by 2,50,000 candidates. Question C was answered correctly by 2,60,000 candidates. Both questions A and B were answered correctly by 1,00,000 candidates. Both questions B and C were answered correctly by 90,000 candidates. Both questions A and C were answered correctly by 80,000 candidates. If the number of students answering all questions correctly is the same as the number answering none, how many candidates failed to clear the test?
 - (A) 30,000
- (B) 2,70,000
- (C) 3,90,000
- (D) 4,20,000
- Q.9 If $x^2 + x 1 = 0$ what is the value of $x^4 + \frac{1}{x^4}$?
 - (A) 1
- (B) 5
- (C) 7
- (D) 9
- Q.10 In a detailed study of annual crow births in India, it was found that there was relatively no growth during the period 2002 to 2004 and a sudden spike from 2004 to 2005. In another unrelated study, it was found that the revenue from cracker sales in India which remained fairly flat from 2002 to 2004, saw a sudden spike in 2005 before declining again in 2006. The solid line in the graph below refers to annual sale of crackers and the dashed line refers to the annual crow births in India. Choose the most appropriate inference from the above data.

- (A) There is a strong correlation between crow birth and cracker sales.
- (B) Cracker usage increases crow birth rate.
- (C) If cracker sale declines, crow birth will decline.
- (D) Increased birth rate of crows will cause an increase in the sale of crackers.

END OF THE QUESTION PAPER

GA 2/2

Q. 1-Q. 25 carry one mark each.

Q.1	Consider an unfair coin. The probability of getting heads is 0.6. If you toss this coin twice, what is the probability that the first or the second toss is heads?					
	(A) 0.56	(B) 0.64	(C) 0.84	(D) 0.96		
Q.2	If serum is removed then the cells will	from the growth medi	um of human embryor	nic kidney cell line (HEK),		
	(A) proliferate faster(B) proliferate norma(C) undergo cell cycl(D) undergo immedia	ally le arrest				
Q.3	The repeat sequence	of telomere in humans	s is			
	(A) 5'-TATAAT-3'	(B) 5'-TTAGGG-3'	(C) 5'-GGGCCC-3'	(D) 5'-AAAAAA-3'		
Q.4	If a segment of a se sequence after transc		5'-ATGGACCAGA-3	3', then the resulting RNA		
	(A) 5'-AGACCAGG (C) 5'-UACCUGGU		(B) 5'-UCUGGUCC (D) 5'-AUGGACCA			
Q.5	Which one of the fol	lowing is an example	of a neurotoxin?			
	(A) Cholera toxin(B) Streptolysin-O(C) Botulinum toxin(D) Diphtheria toxin					
Q.6	Which of the following	ing components consti	tute a molecular mech	anics force field?		
	P. Bond stretching Q. Bond angle bendi R. Torsional bond ro S. Non-bonded intera	otation				
	(A) P and Q only(B) P, Q and R only(C) P, Q and S only(D) P, Q, R and S					
Q.7		ollowing BLAST sear in a protein sequence		to identify homologs of a		
	(A) blastp	(B) blastn	(C) blastx	(D) tblastn		

BT 1/12

Q.8 A mixture contains three similarly sized peptides P, Q an charged, Q is weakly negative and R is strongly negative. an ion-exchange chromatography column containing an an will be				s mixture is passed through			
	(A) P, Q, R (C) Q, R, P		(B) R, Q, P (D) P, Q and R elute	together			
Q.9	Which one of the following	lowing is INCORREC	C T about protein struc	ctures?			
	(B) All parts of a fol		helices, strands or turr				
Q.10	Which one of the following metabolic processes in mammalian cells does NOT occur in the mitochondria?						
	(A) Citric acid cycle(C) Fatty acid β-oxid	ation	(B) Oxidative phosp (D) Glycolysis	horylation			
Q.11	Which one of the follows: (A) Mucosal epithelia (B) Dendritic cells (C) Complement sys (D) Memory B-cells		cipal component of in	nate immunity?			
Q.12	Which of the follow myoglobin? P. Mass spectrometry Q. Fluorescence spec R. Circular dichroism S. Light microscopy (A) P only	vetroscopy	·	conformational changes in (D) S only			
Q.13	Which one of the fol filter?	llowing bioreactor cor	nfigurations is the bas	is for a trickling biological			
	(A) Stirred tank(C) Air lift		(B) Packed bed (D) Fluidized bed				

BT 2/12

(A) Autocrine	Cell type A secretes molecule X into the culture medium. Cell type B in the same culture responds to the molecule X by expressing protein Y. Which one of the following modes of signaling represents the interaction between A and B?					
(C) Paracrine		(B) Juxtacrine(D) Intracrine				
Which one of the fol	lowing statements is t	rue for actin?				
(B) <i>De novo</i> actin po (C) The pointed end	olymerization is a sing of the actin filaments	le-step process is the fast growing end				
Standard error is						
(B) the error in estim (C) the standard devi	nating a sample standa iation of a variable tha	rd deviation t follows standard nor	mal distribution			
Which one of the fol and spatially?	lowing techniques is u	used to monitor RNA t	ranscripts, both temporally			
(B) <i>In situ</i> hybridizat (C) Southern blotting	ion g					
Identify the characte	r based method(s) use	d for the construction	of a phylogenetic tree.			
P. Maximum parsimony Q. Neighbor joining R. Maximum likelihood S. Bootstrapping						
(A) Q only (C) Q and S only		(B) P and R only (D) S only				
		for $\cos^2 x + 2\cos x$	+ 1 = 0, for values of x			
(A) 45°	(B) 90°	(C) 180°	(D) 270°			
Which one of the fol	lowing plant secondar	ry metabolites is a natu	ral insecticide?			
(A) Digitoxin	(B) Pyrethrin	(C) Salicylic acid	(D) Avenacin A-1			
	(A) Actin filament is (B) <i>De novo</i> actin po (C) The pointed end (D) Actin forms spin Standard error is (A) the probability o (B) the error in estim (C) the standard devi (D) the standard devi (D) the standard devi (E) Southern blottin (E) In situ hybridizat (C) Southern blotting (D) Western blotting (D) Western blotting (D) Western blotting (C) Southern blotting (D) Western blotting (D) Western blotting (D) Western blotting (E) Only (E) Q and S only Which one of the fointhe range of 0° < (E) (A) 45° Which one of the following (E) Which one of the	Which one of the following statements is to (A) Actin filament is structurally polarized (B) <i>De novo</i> actin polymerization is a sing (C) The pointed end of the actin filaments (D) Actin forms spindle fibers during mito. Standard error is (A) the probability of a type I error in a sta (B) the error in estimating a sample standa (C) the standard deviation of a variable tha (D) the standard deviation of distribution of the standard deviation of distribution of the standard deviation of distribution (C) the standard deviation (C) Southern blotting (B) <i>In situ</i> hybridization (C) Southern blotting (D) Western blotting Identify the character based method(s) used P. Maximum parsimony Q. Neighbor joining R. Maximum likelihood S. Bootstrapping (A) Q only (C) Q and S only Which one of the following is the solution in the range of 0° < x < 360°? (A) 45° (B) 90°	Which one of the following statements is true for actin? (A) Actin filament is structurally polarized and the two ends are (B) <i>De novo</i> actin polymerization is a single-step process (C) The pointed end of the actin filaments is the fast growing end (D) Actin forms spindle fibers during mitosis Standard error is (A) the probability of a type I error in a statistical test (B) the error in estimating a sample standard deviation (C) the standard deviation of a variable that follows standard nor (D) the standard deviation of distribution of sample means Which one of the following techniques is used to monitor RNA that and spatially? (A) Northern blotting (B) <i>In situ</i> hybridization (C) Southern blotting (D) Western blotting (D) Western blotting R. Maximum parsimony Q. Neighbor joining R. Maximum likelihood S. Bootstrapping (A) Q only (B) P and R only (C) Q and S only Which one of the following is the solution for $\cos^2 x + 2\cos x$ in the range of $0^{\circ} < x < 360^{\circ}$? (A) 45° (B) 90° (C) 180° Which one of the following plant secondary metabolites is a natural state of the standard and the two ends are included as a standard deviation of the standard deviation of the following plant secondary metabolites is a natural standard deviation of the standard deviation of a standard deviation of the standard deviation of a standard deviation of a standard deviation of the standard deviation of a standard deviation of the st			

BT 3/12

GATE 2018

- Q.21 The determinant of the matrix $\begin{pmatrix} 4 & -6 \\ -3 & 2 \end{pmatrix}$ is _____
- Q.22 The variable z has a standard normal distribution. If $P(0 \le z \le 1) = 0.34$, then $P(z^2 > 1)$ is equal to (up to two decimal places)
- Q.23 The absorbance of a solution of tryptophan measured at 280 nm in a cuvette of 2.0 cm path length is 0.56 at pH 7. The molar extinction coefficient (ε) for tryptophan at 280 nm is 5600 M⁻¹cm⁻¹ at pH 7. The concentration of tryptophan (in μM) in the solution is ______
- Q.24 A single stem cell undergoes 10 asymmetric cell divisions. The number of stem cells at the end is
- Q.25 Genomic DNA isolated from a bacterium was digested with a restriction enzyme that recognizes a 6-base pair (bp) sequence. Assuming random distribution of bases, the average length (in bp) of the fragments generated is ______

BT 4/12

Q. 26 – Q. 55 carry two marks each.

- Q.26 In leguminous plants, both the rhizobium genes and the plant genes influence nodulation and nitrogen fixation. Which one of the following functions is **NOT** encoded by the host plant genes?
 - (A) Production of inducers that modify rhizobial cell wall
 - (B) Production of flavonoid inducers
 - (C) Establishment of contact between bacteria and legume
 - (D) Root hair curling
- Q.27 Which of the following cytokines are endogenous pyrogens?
 - P. Tumor necrosis factor-α
 - Q. Interleukin-1
 - R. Transforming growth factor-β
 - S. Interleukin-10
 - (A) P and Q only
 - (B) P and R only
 - (C) R and S only
 - (D) Q and S only
- Q.28 Match the classes of RNA molecules in Group I with their functions in Group II.

Group I	Group II
P. snoRNA	1. Protects germline from transposable elements
Q. piRNA	2. Blocks translation of selected mRNA
R. miRNA	3. Template for telomere elongation
S. snRNA	4. Modification and processing of rRNA
	5. Splicing of RNA transcripts
(A) P-3, Q-5, R-2, S	-4 (B) P-1, Q-3, R-2, S-5
(C) P-1, Q-4, R-5, S	-2 (D) P-4, Q-1, R-2, S-5

Q.29 Determine the correctness or otherwise of the following Assertion [a] and the Reason [r]

Assertion: *Ab initio* gene finding algorithms that predict protein coding genes in eukaryotic genomes are not completely accurate.

Reason: Eukaryotic splice sites are difficult to predict.

- (A) Both [a] and [r] are false
- (B) [a] is true but [r] is false
- (C) Both [a] and [r] are true and [r] is the correct reason for [a]
- (D) Both [a] and [r] are true but [r] is not the correct reason for [a]

BT 5/12

GATE 2018				Biotechnology				
Q.30	Which one of the f reactive nitrogen sp	_	s catalyzed by activ	rated macrophages to produce				
	(A) Arginine	(B) Asparagine	(C) Cysteine	(D) Histidine				
Q.31	Determine the corre	ectness or otherwise of	the following Asser	tion [a] and the Reason [r]				
	Assertion: The association constant in water for the G-C base pair is three times lower than that for the A-T base pair.							
	Reason: There are t	three hydrogen bonds in	the G-C base pair	and two in the A-T base pair.				
	(B) [a] is false but(C) Both [a] and [r		_	-				
Q.32	Which one of the co	ombinations of the follo	owing statements is	true about antibody structure?				
 P. Limited proteolysis of rabbit IgG with the enzyme pepsiregions (Fab) and an Fc fragment Q. Limited proteolysis of rabbit IgG with the enzyme paparantigen-binding region F(ab')₂ and peptide fragments R. The Fc fragment of IgG can self-associate and crystalliz S. The F(ab')₂ fragment of IgG is composed of both light a 				generates a single bivalent				
	(A) P and Q only (C) R and S only		(B) P and R only (D) Q and S only					
Q.33	Which one of the forprotein antigens?	ollowing statements is t	rue with regard to p	processing and presentation of				
		I MHC pathway, pro	tein antigens in th	ne cytosol are processed by				
	proteasomes (B) In the class I MHC pathway, extracellular protein antigens are endocytosed into vesicles and processed							
	(C) In the class I M required for tran	nslocating processed pe in endoplasmic reticult	ptides generated in	en processing (TAP) protein is the cytosol insport of peptides and loading				
Q.34	Which of the follow	ving are true about bact	erial superoxide dis	smutase?				
	P. Present in obliga Q. Present in facult R. Present in aeroto S. Absent in obliga	ative anaerobes blerant anaerobes						
	(A) P and Q only(C) P and R only		(B) P, Q and R or (D) Q and S only	aly				

BT 6/12

- Q.35 Which of the following are true with regard to anaerobic respiration in bacteria?
 - P. The final electron acceptor is an inorganic substance other than molecular oxygen
 - Q. The number of ATP molecules produced per glucose molecule is more than that produced in aerobic respiration
 - R. The number of ATP molecules produced per glucose molecule is less than that produced in aerobic respiration
 - S. Only substrate level phosphorylation is used to generate ATP
 - (A) P and S only

(B) Q and S only

(C) P and R only

- (D) P, Q and S only
- Q.36 Shear stress versus shear rate behavior of four different types of fluids (I, II, III and IV) are shown in the figure below.

Which one of the following options is correct?

- (A) I-Newtonian, II-Bingham plastic, III-Dilatant, IV-Pseudoplastic
- (B) I-Pseudoplastic, II-Dilatant, III-Newtonian, IV-Bingham plastic
- (C) I-Newtonian, II-Pseudoplastic, III-Bingham plastic, IV-Dilatant
- (D) I-Newtonian, II-Bingham plastic, III-Pseudoplastic, IV-Dilatant

BT 7/12

Q.37 An analysis of DNA-protein interactions was carried out using all DNA-protein complexes in the protein data bank (PDB). The frequency distribution of four amino acid residues, represented as P, Q, R and S, occurring in non-covalent interactions between the protein and DNA backbone is shown below.

Which one of the following is correct?

- (A) P-Lys, Q-Arg, R-Gln, S-Glu
- (B) P-Gln, Q-Glu, R-Lys, S-Arg
- (C) P-Asn, Q-Asp, R-Arg, S-Lys
- (D) P-His, Q-Glu, R-Gln, S-Lys

Q.38 A pedigree of an inheritable disease is shown below.

What type of inheritance does the disease follow?

(A) Autosomal dominant

(B) X-linked dominant

(C) X-linked recessive

(D) Autosomal recessive

BT 8/12

Q.39 Match the industrial products mentioned in Group I with their producer organisms in Group II

Group II Group II

P. Citric acid 1. *Trichoderma viride*

Q. Cellulase 2. Clostridium acetobutylicum

R. Vitamin B_{12} 3. Aspergillus niger

S. Butanol 4. Propionibacterium freudenreichii

- Q.40 5' capping of mRNA transcripts in eukaryotes involves the following events:
 - P. Addition of GMP on the 5' end
 - Q. Removal of γ -phosphate of the triphosphate on first base at the 5' end
 - R. 5'-5' linkage between GMP and the first base at 5' end
 - S. Addition of methyl group to N7 position of guanine

Which one of the following is the correct sequence of events?

Q.41 Calculate the following integral (up to two decimal places)

$$\int_0^1 (x+3)(x+1)dx = _____$$

Q.42 The probability distribution for a discrete random variable X is given below.

X	1	2	3	4
P(X)	0.3	0.4	0.2	0.1

The expectation value of *X* is (up to one decimal place)

Q.43 If
$$1 + r + r^2 + r^3 + \dots = 1.5$$
,
then, $1 + 2r + 3r^2 + 4r^3 + \dots = (up to two decimal places)$ ______

BT

Q.44 Moist heat sterilization of spores at 121 °C follows first order kinetics as per the expression:

$$\frac{dN}{dt} = -k_d N$$

where, N is the number of viable spores, t is the time, k_d is the rate constant and $\frac{dN}{dt}$ is the rate of change of viable spores.

If k_d value is 1.0 min⁻¹, the time (in minutes) required to reduce the number of viable spores from an initial value of 10^{10} to a final value of 1 is (up to two decimal places) _____

Q.45	An aqueous solution containing 6.8 mg/L of an antibiotic is extracted with amyl acetate. If
	the partition coefficient of the antibiotic is 170 and the ratio of water to solvent is 85, then
	the extraction factor is

Q.46	A microbial strain is cultured in a 100 L stirred fermenter for secondary metabolite
	production. If the specific rate of oxygen uptake is 0.4 h ⁻¹ and the oxygen solubility in the
	broth is 8 mg/L, then the volumetric mass transfer coefficient ($K_L a$) (in s ⁻¹) of oxygen
	required to achieve a maximum cell concentration of 12 g/L is (up to two decimal
	places)

Q.47	In a chemostat, the feed flow rate and culture volume are 100 ml/h and 1.0 L, respectively.
	With glucose as substrate, the values of μ_{max} and K_s are 0.2 h ⁻¹ and 1 g/L, respectively. For a
	glucose concentration of 10 g/L in the feed, the effluent substrate concentration (in g/L)
	is

- Q.48 Mammalian cells in active growth phase were seeded at a density of 1×10^5 cells/ml. After 72 hours, 1×10^6 cells/ml were obtained. The population doubling time of the cells in hours is (up to two decimal places) _____
- Q.49 Yeast converts glucose to ethanol and carbon dioxide by glycolysis as per the following reaction:

$$C_6H_{12}O_6 \rightarrow 2C_2H_5OH + 2CO_2$$

Assuming complete conversion, the amount of ethanol produced (in g) from 200 g of glucose is (up to two decimal places) _____

BT 10/12

Q.50 At the end of a batch culture, glucose solution is added at a flow rate of 200 ml/h. If the culture volume after 2 h of glucose addition is 1000 ml, the initial culture volume (in ml) is

Q.51 Consider the following alignment of two DNA sequences:

AGTAAC AA--AC

Assuming an affine gap scoring scheme of an identity matrix for substitution, a gap initiation penalty of 1 and a gap extension penalty of 0.1, the score of the alignment is (up to one decimal place) ______

- Q.52 First order deactivation rate constants for soluble and immobilized amyloglucosidase enzyme are 0.03 min⁻¹ and 0.005 min⁻¹, respectively. The ratio of half-life of the immobilized enzyme to that of the soluble enzyme is (rounded off to the nearest integer) ______
- Q.53 Consider a simple uni-substrate enzyme that follows Michaelis-Menten kinetics. When the enzyme catalyzed reaction was carried out in the presence of 10 nM concentration of an inhibitor, there was no change in the maximal velocity. However, the slope of the Lineweaver-Burk plot increased 3-fold. The dissociation constant for the enzyme-inhibitor complex (in nM) is ______
- Q.54 The product of complete digestion of the plasmid shown below with EcoRI and HaeIII was purified and used as a template in a reaction containing Klenow fragment of DNA polymerase, dNTPs and $[\alpha^{-32}P]$ -dATP in a suitable reaction buffer. The product thus obtained was purified and subjected to gel electrophoresis followed by autoradiography.

The number of bands that will appear on the X-ray film is _____

BT 11/12

Q.55 A rod shaped bacterium has a length of 2 μ m, diameter of 1 μ m and density the same as that of water. If proteins constitute 15% of the cell mass and the average protein has a mass of 50 kDa, the number of proteins in the cell is _____ (1 Da = 1.6×10^{-24} g)

END OF THE QUESTION PAPER

BT 12/12

Q.No.	Туре	Section	Key/Range	Marks
1	MCQ	GA	А	1
2	MCQ	GA	С	1
3	MCQ	GA	В	1
4	MCQ	GA	С	1
5	MCQ	GA	D	1
6	MCQ	GA	А	2
7	MCQ	GA	С	2
8	MCQ	GA	D	2
9	MCQ	GA	С	2
10	MCQ	GA	А	2
1	MCQ	ВТ	С	1
2	MCQ	ВТ	С	1
3	MCQ	ВТ	В	1
4	MCQ	ВТ	D	1
5	MCQ	ВТ	С	1
6	MCQ	ВТ	D	1
7	MCQ	ВТ	С	1
8	MCQ	ВТ	В	1
9	MCQ	ВТ	В	1
10	MCQ	ВТ	D	1
11	MCQ	ВТ	D	1
12	MCQ	ВТ	С	1

Q.No.	Туре	Section	Key/Range	Marks
13	MCQ	ВТ	В	1
14	MCQ	ВТ	С	1
15	MCQ	ВТ	А	1
16	MCQ	ВТ	D	1
17	MCQ	ВТ	В	1
18	MCQ	ВТ	В	1
19	MCQ	ВТ	С	1
20	MCQ	ВТ	В	1
21	NAT	ВТ	-10 to -10	1
22	NAT	ВТ	0.32 to 0.32	1
23	NAT	ВТ	50 to 50	1
24	NAT	ВТ	1 to 1	1
25	NAT	ВТ	4096 to 4096	1
26	MCQ	ВТ	D	2
27	MCQ	ВТ	А	2
28	MCQ	ВТ	D	2
29	MCQ	ВТ	С	2
30	MCQ	ВТ	А	2
31	MCQ	ВТ	В	2
32	MCQ	ВТ	С	2
33	MCQ	ВТ	С	2
34	MCQ	ВТ	В	2

Q.No.	Туре	Section	Key/Range	Marks
35	MCQ	ВТ	С	2
36	MCQ	ВТ	D	2
37	MCQ	ВТ	А	2
38	MCQ	ВТ	С	2
39	MCQ	ВТ	D	2
40	MCQ	ВТ	С	2
41	NAT	ВТ	5.30 to 5.34	2
42	NAT	ВТ	2.1 to 2.1	2
43	NAT	ВТ	2.25 to 2.25	2
44	NAT	ВТ	23.02 to 23.04	2
45	NAT	ВТ	2 to 2	2
46	NAT	ВТ	0.16 to 0.17	2
47	NAT	ВТ	1 to 1	2
48	NAT	ВТ	21.00 to 22.00	2
49	NAT	ВТ	102.00 to 103.00	2
50	NAT	ВТ	600 to 600	2
51	NAT	ВТ	1.8 to 1.9	2
52	NAT	ВТ	6 to 6	2
53	NAT	ВТ	5 to 5	2
54	NAT	ВТ	2 to 2	2
55	NAT	ВТ	2900000 to 3200000	2