In-Clas	ss Test	(#3)
---------	---------	------

Name	
Student Number	

ROBOTICS 4K03

INSTRUCTOR NAME: Fengjun Yan

DURATION OF EXAMINATION: 50 MINS

Nov. 17th, 2016

THIS EXAMINATION PAPER INCLUDES 2 PAGES AND 2 QUESTIONS. YOU ARE RESPONSIBLE FOR ENSURING THAT YOUR COPY OF THE PAPER IS COMPLETE. BRING ANY DISCREPANCY TO THE ATTENTION OF YOUR INVIGILATOR.

Use of Casio FX-991 calculator. This paper must be returned with your answers.

Questions:

1. (45 points) A RRP planar robot is shown in the following figure. Its joint variables are q_1 and q_2 , and d_3 . Its end-effector position and orientation are given by P_x and P_y , and f. Derive the inverse kinematics equations for this robot.

Solutions:

$$\Theta_1 + \Theta_2 - 90^\circ = \phi$$

$$P_x = a_1$$
. $C\Theta_1 + d_3 C\phi$ ----> $C\Theta_1 = \frac{P_x - d_3 C\phi}{a_1}$
 $P_y = a_1$. $S\Theta_1 + d_3 S\phi$ ----> $S\Theta_1 = \frac{P_y - d_3 S\phi}{a_1}$

$$C^{2}\Theta_{1} + S^{2}\Theta_{1} = \left(\frac{P_{x} - d_{3} C \phi}{a_{1}}\right)^{2} + \left(\frac{P_{y} - d_{3} S \phi}{a_{1}}\right)^{2} = 1$$

$$d_3^2 - 2(P_x C\phi + P_v S\phi)] d_3 + P_x^2 + P_v^2 - a_1^2 = 0$$

$$d_3 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Where:

$$a=1$$

$$b = -2(P_x C\emptyset + P_y S\emptyset)$$

$$c = P_x^2 + P_y^2 - a_1^2$$

$$c = P_r^2 + P_v^2 - a_1^2$$

$$d_3 = P_x \mathsf{C} \emptyset + P_y \mathsf{S} \emptyset \pm \frac{\sqrt{[2(P_x \mathsf{C} \emptyset + P_y \mathsf{S} \emptyset)]^2 - 4(P_x^2 + P_y^2 - a_1^2)}}{2}}{2}$$
 Assume $\Delta = \left[2\left(P_x \mathsf{C} \phi + P_y \mathsf{S} \phi\right)\right]^2 - 4\left(P_x^2 + P_y^2 - a_1^2\right)$

If Δ < 0, there will be No solution for d_3 .

If $\Delta = 0$, there will be only ONE solution for d_3 .

If $\Delta > 0$, there will be TWO solutions for d_3 .

$$\Theta_1 = atan2(\frac{P_x - d_3 C \phi}{a_1}, \frac{P_y - d_3 S \phi}{a_1})$$

$$\Theta_2 = 90^\circ + \varphi - \Theta_1$$

2. (55 points) The planar RR robot shown in the following figure operates in the vertical plane (i.e., gravity acts in the -y direction). The masses of the links are concentrated at the end of each link and are m_1 and m_2 , respectively. Derive the dynamics equations for this robot using the Lagrangian method.

Solutions:

Please refer to Example 5.1 in lecture note.