「次世代AI人材育成訓練プログラム」研修講座 ビジネスへの応用(2)

AI活用プロジェクトの考え方・進め方

AI活用プロジェクトの特徴

AI活用プロジェクト立案から運用までの概要フロー

AI活用プロジェクトの進め方

「本開発」前に、「検証」フェーズを 導入することを推奨

なぜなら

- ✓ AIが活用できそうな業務なのか
- ✓ データは足りているか
- ✓ 今後の費用対効果は期待できるか

着手しないとわからない

AI活用プロジェクトの進め方

検証・本開発における開発手法

AI活用では、アジャイル型のように、 PDCAサイクルを回しながらブラッシュアップ

AI活用プロジェクトの進め方|計画

主な作業

- 目的の明確化
 - 人工知能を使う目的を決める
- 業務フロー検討
 - 誰が、どんなタイミングで、どのように使うか
 - 「人工知能が決定して自動実行する」
 - 「人工知能の出力結果をもとに人が決定して実行する」

- 人工知能の必要性
 - 「人工知能でなくてもよかった」システムを作ってしまう
- 使いにくいシステム
 - 使う人のスキル・シーンが十分に考慮されていない

AI活用プロジェクトの進め方|分析・設計

主な作業

- データの検討
 - 目的の達成にはどんなデータが必要か
- 人工知能手法の選択
 - 目的に即した手法(アルゴリズム)を選定

分析・評価

- データ要件の追加
 - 開発フェーズになって、繰り返しデータの種類を増やすことになる
- 低い精度・カバー範囲
 - 「例外」が多い、運用中に分析対象が頻繁に変化する

AI活用プロジェクトの進め方|データ収集

主な作業

- データの収集・加工
 - データを収集し、異常値の処理など前処理を行う

- データ整備が不十分
 - ・データ総数の不足
 - 各判別結果のデータ不足
 - データの偏り
- 個人情報

AI活用プロジェクトの進め方|分析・評価

主な作業

- 開発
 - ・ 試作の場合は、目的・対象を絞る
- 結果の評価
 - ・ 精度、モデルの適切性

起こりうる問題

- 学習コストが過大
 - 想定以上の実行時間、ハードウェア環境が必要になる
- 精度の低下
 - トライアルデータへの過剰フィッティング
- 出力・ふるまいの変化
 - 新商品などデータが大きく変化した場合など

収集

AI活用プロジェクトの進め方|運用・保守

主な作業

- システムの状態監視、対応
 - 精度の劣化、異常な結果がないか
- メンテナンス・改善
 - 最新データを用いて学習させ、モデルを更新

- ・ 状況の変化へ対応できない
 - 災害、増税など大きな環境変化により大幅にデータが変化した場合
- 調整が困難
 - 環境の変化や違和感のある結果が出た場合に、多少の調整では対応できないケースがある

AI活用プロジェクトの体制例

AIが向いているケース

安定的に学習が可能

- 学習データが多い
- 学習データが安定している
 - データの定義・項目が長期間にわたって変わらない
 - データ記法が変わらない(記録する人によって表現が違わない)

・ 価値が出やすい

- 人工知能の出力を使う人が多い
 - 初心者にとっては価値が高い、人数が多いと導入効果が大きくなる
- わずかな改善で大きな効果がある
 - 数%の改善が大きな価値になるケース(資源探索、株の売買など)
 - 1回の問題発見が大きなコストダウンになるケース(原発の異常発見など)

・失敗が許容される

一部悪い結果でもトータルでよければ価値がある(DMの送付など)

AIと人の役割分担 | 業務フローの検討

大

・ AIが自動実行 (AIの自信度が低いときは人が意思決定)

- 全体として成功すれば、個別の成功・失敗が問題ないケース
 - ダイレクトメールの送付自動化
 - 株や為替の自動売買

AIの結果を参考に人が最終意思決定を行う

- AIが予測を行ったり、候補を出力し、人の業務をサポートする
 - インフラや機器のメンテナンス
 - ・小売りの発注

・AIが出力したルールを人が確認

- 失敗した場合の損害が大きい場合、論拠の説明が必要な場合
 - 医療診断
 - 工場における製造条件設定

AIによる 自動化度

データの準備

データが整っているか

- 画像データ:解像度、注目する対象の大きさ、色合いなど
- 数値データ:異常値の割合、分散・平均

- ・ 既存のデータは5W2Hの軸で考えて探す
 - Who, What, When, Where, Why, How many, How much

データの期間・量は十分か

- 季節や特定時期のイベント(クリスマスなど)の影響を受けるなら、数年分必要
- 長い期間のデータは、定義や項目の変更がないか注意

・粒度・時間分解能は十分か

• 集計単位を確認

AI活用プロジェクトの特徴

AI活用プロジェクトが通常のシステム開発と異なる点として、以下が挙げられます。

- す。 ・ 検証(PoC)を行う
 - AIの有効性の確認、手法の選定、システム化する価値があるか確認
- ・トライ&エラー
 - トライアル&エラーとなる場合が多く、「全てうまくいく」線を引くと遅延の恐れがある。余裕のあるスケジュール感で工程を実施
- ・想定外の挙動
 - 分析して初めてわかる内容もあるため、所感等を鑑み、総合評価をする。
- ・運用・保守
 - AIの精度や異常な結果の有無の監視、データの追加・AIモデルの更新