CSci 5105

Introduction to Distributed Systems

Communication: Streaming, Multicast

Data Streaming

- Data stream
 - sequence of data packets
 - Continuous or discrete

- Asynchronous
 - No timing constraints between packets (discrete)

- Synchronous
 - Timing constraints between packets: max delay
 - Timing is fundamental to correct interpretation (audio, video)

Data Streaming

- Isochronous
 - Contraints on min and max delay
 - Jitter

Timing Constraints

- Intra-stream synchronization
- Quality of service (QoS)
 - The required bit rate at which data should be transported
 - The maximum delay until a session has been set up
 - The maximum end-to-end delay
 - The maximum delay variance, or jitter
 - The maximum round-trip delay

Streaming Types

- Live or Stored Data
 - Latter provides more opportunity for optimization

- Simple stream
 - single data stream

- Complex
 - multiple sub-streams

Complex Streams

- Continuous + discrete
 - Slide show + audio or video

- Continuous + continuous
 - Video + audio

Need to synchronize across streams!

Data Stream Architecture

Enforcing QoS

- Buffering
 - Buffer size = 8

- Oops packet 8 is outside the window
- Solution/tradeoff?

More QoS

Interleaving

Complex Stream Synchronization

- Discrete + Continuous
 - Slide show + audio or video

- Continuous + continuous
 - Video + audio
 - More challenging

Syncrhonization Location

- Sender synchronization
 - Pair up associated packets of each stream (audio and video) and send together
 - Downsides? More complex protocol. MPEG4

- Receiver synchronization
 - Send distinct streams to receiver and let receiver pair them up
 - Difficulties?

Receiver-side Architectures

Low-level

High-level

Multicast

- RPC is point-to-point
- Multicast
 - one sender, multiple receivers
 - emulate using a set of point-to-point messages

- Efficient multicast
 - enable suppression of duplicate messages
 - better link utilization
 - examples where multicast would be useful?

Multicast Types

- IP multicast
 - Specific address format
 - Sender can send to an address group
 - Requires special router support

- Application-level multicast
 - over peer-to-peer network
 - perhaps even in a MoM network

Multicast Trees

 Fundamental to all forms of multicast is the construction of a multicast tree

- How tree gets built is complex
 - Given set of nodes, consider all links, routers

 May have to rebuild the tree as nodes come and go - incremental?

Spanning Tree

(a) multicast initiated at A

(b) multicast initiated at D

Epidemic Communication

 Imagine you want to spread information rapidly in a very large distributed system

No central coordination

 All nodes may report local information and information from neighbors

Information Dissemination Models

- Anti-entropy propagation model
 - Node P picks another node Q at random
 - Subsequently exchanges updates with Q
- Approaches to exchanging updates
 - P only pushes its own updates to Q
 - P only pulls in new updates from Q
 - P and Q send updates to each other (push-pull is the best)

Single node infected ... propagates to entire network in log N

Gossiping

- Variation
- P contacts Q to push information I
- If Q reports that it already has I
 - P reduces interests in propagating by 1/k

- Interesting Case
 - Propagating deletes "death certificates"
 - When to garbage collect those?

Applications

 Want to know the average load of a billion node network?

 Nodes i and j exchange load and update their value as (load i + load j)/2

Eventually converges

What about max?