

DEVELOPMENT OF COMPACT VARIABLE-VOLTAGE, BI-DIRECTIONAL 100KW DC-DC CONVERTER

Leonid Fursin¹, Maurice Weiner¹
Jason Lai², Wensong Yu², Junhong Zhang², Hao Qian²
Kuang Sheng³, Jian H. Zhao³,
Terence Burke⁴, and Ghassan Khalil⁴

¹United Silicon Carbide, Inc., New Brunswick Technology Center, Building A, New Brunswick, NJ 08901, USA

²FEEC, ECE Department, Virginia Tech, Blacksburg, VA24060, USA ³SiCLAB, ECE Dept., Rutgers University, 94 Brett Road, Piscataway, NJ 08854, USA 4 U.S. Army TARDEC, Warren, MI 48397-5000, USA

for AECV-2007

including suggestions for reducin	ould be aware that notwithstanding	uarters Services, Directorate for Ir	formation Operations and Rep	orts, 1215 Jefferson Da	avis Highway, Suite 1204, Arlington
1. REPORT DATE 11 JUN 2007		2. REPORT TYPE N/A		3. DATES COVI	ERED
4. TITLE AND SUBTITLE			5a. CONTRACT NUMBER		
Development of Convertor	al 100KW	5b. GRANT NUMBER			
DC-DC Converter				5c. PROGRAM ELEMENT NUMBER	
6. AUTHOR(S) Leonid Fursin; Maurice Weiner; Jason Lai; Wensong Yu; Junhong Zhang; Hao Qian; Kuang Sheng; Jian H. Zhang; Terence Burke; Ghassan Khalil				5d. PROJECT NUMBER	
				5e. TASK NUMBER	
				5f. WORK UNIT NUMBER	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) US Army RDECOM-TARDEC 6501 E 11 Mile Rd Warren, MI 48397-5000				8. PERFORMING ORGANIZATION REPORT NUMBER 17101	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)			10. SPONSOR/MONITOR'S ACRONYM(S) TACOM/TARDEC		
				11. SPONSOR/M NUMBER(S) 17101	IONITOR'S REPORT
12. DISTRIBUTION/AVAI Approved for pub	ILABILITY STATEMENT lic release, distribut	ion unlimited			
13. SUPPLEMENTARY NO Presented at the 7 contains color image.	th AECV Conference	ce, June 11-13, 200'	7, Stockholm, Sw	eden, The or	riginal document
14. ABSTRACT					
15. SUBJECT TERMS					
16. SECURITY CLASSIFIC		17. LIMITATION	18. NUMBER	19a. NAME OF	
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	OF ABSTRACT SAR	OF PAGES 29	RESPONSIBLE PERSON

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and

Report Documentation Page

Form Approved OMB No. 0704-0188

Outline

- Project goals
- Power Stage Design
- DSP controller, interface circuit and gate driver implementation
- Power stage layout and packaging
- Converter testing
- Summary and Conclusions

Project Goals

Bidirectional dc-dc converter targets:

- ◆ Input voltage range: 200 300 VDC (battery pack voltage)
- ◆ Output voltage range: 300 600 VDC
- Bidirectional power flow Continuous Power: 100 kW, Peak: 150kW
- ◆ Power density: 4 to 8 kW/liter
- ◆ Specific power density: 4 to 6 kW/kg
- ◆ Total efficiency: ≥ 95%
- ◆ SVM frequency: ~20kHz
- ◆ Coolant Temperature: ≥ 90°C

Innovations

- ◆ A novel yet simple zero-voltage soft-switching scheme
 - without adding any extra switch
 - making a 25KHz switching frequency possible
- High-end digital signal processor controller
 - allow fast and smooth mode transition
- An interleaving 3-phase design
 - substantially reducing the ripple current and filter capacitor size
- ◆ Nano-inductor design
 - High permeability, high saturation flux density lead to small inductor size
- SiC Schottky diode-Si IGBT power modules
 - Minimized thermal resistance
 - Robust diodes, zero-recovery charge

POWER STAGE DESIGN

Proposed Soft-switching Bi-directional DC/DC Converter with Lossless Snubbers

A special switching scheme that utilizes unused switches to perform soft switching:

The basic idea is to have the unused switch turned on while the active switch is turned off. This will allow current continuously flow in opposite direction, thus avoiding the discontinuous current and parasitic ringing. Now to reduce the turn-off loss, we can put the lossless snubber across the device to slow down the rate of switching.

Overall hardware system structure: power stage, gate driver and DSP controller

Summary of Testing Results of IGBT Loss

$$V_{DC}$$
=700V,
 C_{snub} = 0.14 μ F

×3 loss reduction
Achieved without extra switches/inductors

Inductor Design

A superior core, FINEMET®, is used High permeability, high flux density

Inductor Design Verification

L=14.5 μ H, I_{SAT}=456A, 20% design margin

Each inductor core:

3.35kg, 0.47 liter

Liquid cooled heatsink design

Liquid-cooled θ_{th} <0.01°C/W

Physical Layout Dimensions of IGBTs

DSP controller, interface circuit and gate driver implementation

Auxiliary Gate Drive Power Supply

Pin no	Function		
1	+Vin		
2	–Vin		
5	–Vout		
6	СОМ		
7	+Vout		

The gate driver power supply module provides isolated outputs of +15V and -5V at \geq 90°C.

DSP TMS320F2808 function blocks

Simulation results for the efficiency of boost mode and buck mode

Boost mode efficiency

Buck mode efficiency

Power stage layout and packaging

Converter module

Inductors

Fiber-optical cables

Gate driver board

IGBT modules

DSP controller with interface board

• The DSP controller includes signal conditioning circuit and TMS320F2808 digital signal processor.

The IGBT driver circuit

- Provides electrical isolation by optocouplers, fiber optics, and by transformers
- With overcurrent detection and pulse-by-pulse overcurrent protection function

The Power Stage Layout

- With minimized size of the inductors for 100kW output power
- Zero-voltage switching on and zero-voltage switching off with capacitor
- Compact bus capacitor size with Interleaving ripple cancellation

Converter testing with Coolant at 90°C

Measured Current Waveforms

Inductor current ripple is greatly reduced by interleaving three phases

Detailed Measured Waveforms in 100kW Load

Test condition: Vin=450V, Vout=280V, P=100KW

- Note that Inductor current negated.
- Switch is turned on under ZVS condition.

Start-up Voltage and Current Waveforms at 108-kW Operation in Boost Mode

Transient response of the converter under boost mode operation with a step load change from no load to 80-kW

Experimental efficiencies in Buck Mode (450V input and 280V output)

Maximum efficiency is around 97%

Experimental efficiencies in Boost Mode (240V input and 360V output)

Maximum efficiency is around 98%

Summary

- Si-based soft-switching bidirectional DC-DC converter has been successfully demonstrated
 - Novel soft-switching circuit without extra switch/inductor
 - DSP (TI-TMS320F2808), inductor, gate driver, optical fiber interface designed
- Successfully tested at 90°C temperature for 30-kW continuous and 108-kW.
- Efficiency of 97-98% achieved in both buck and boost modes
- Compact size (less than 25 liters) demonstrated
- SiC/Si hybrid power modules being packaged for DC-DC converter operating at high coolant temperature >90°C
- Six phase interleaved design will reduce stress to inductors for robust long-term reliable DC-DC converter for FCS

