

CLASS

NO.

DATE

Altane	5	THIS MARG
	Mechanism: Free Radical Eulethuters.	
	Step 1: Initiation	
	(l - cl avent cl - + cl.	
	Step 2: Propogator	
	(a) H3C H . (1) - H-(1 + H3C.	
	H3C - H	
	(b) H3CM (l) - CH3(0 + (l.	
	Then (a)(5)(a)(5)	
	step 3: Termination	
	Haco + .ce -> cHa-ce	
	H3 C. + . CH3 - CH3 - CH3	
	$(0. + cg. \rightarrow cl - cl$	
	Altanas	
	Mechanism: Electrophic Addition.	
	Step 1:	
	CH3-CH=CH2 Br-Br slow CH-CH-CH2Br + Br	
	Step 2:	
	CH3 - CH - CH2Br : Br tost > CH3 - CI - C-H	
	Electrophilic Addition:	
	cold come H2504 OSO3H H20, Loat OH	
	BG, (184 BT RY	
	H(1 (1))dir (1) Br (Because H20 nucleophile abundant, bromobydnin major product)	
	Reductor: 12, Nr., hout to reduce alrease onto alhane.	

RAFFLES INSTITUTION

CLASS

NO.

DATE

Bond Breaking - Yorkal double band of ox band due to overlap of p-orbitals of cl and T electron doubt of benzene my. Electophilic attack - Increase decrease electron denoty morelless susceptible to electrophibe attack. Additionally dispuses positive change in contacation, stabilising contacation and reducing actuation energy. Nucleophilic attak (substituent) -> p-orbital of substituent interacts with IT electron cloud of benzene ring and are delocalised, resulting in lone pair of electors being less workede for michaphilic attack. Halogan Mechanism: SNI Nucleophillic Substitution mechanism: SN? Mucloophilic Aubstranton. Pacemisation -> SNI: Reacter process moders tragonal planor geometry about corbocation intermolate. Micloophile attacks from both ados of plane with equal likelihood herice equal amounts of pair of encutorners is formed. Herice recense mixture that is optically inactive is formed. RAFFLES INSTITUTION

Mechanism Classification Rate	t an Br
-1° - 5N2, 3° - 5N1	N (0)
- Exceptors: Bonzylbromido	and the = th th, Br where corbocation can be
formed through SNI read	to mechanism as IT electrons of benzene ring)
alkene band deloculise or	wer positive carbon atom, resorting in resonance
stabluato.	
- SNZ: Nudoophila approaches	halogeroalkine from directly exposite helogen atom
	alkyl substituents, SN2 treation fowered by loss staic
	actor and occurs primarly in opiniony bulgars altranes.
	in department on rate of fermentin of curbocution
	C-X word Rate increuses when stubility of
	to a lower activation energy. Electron adonating
alky l groups stablese co	who cut on by helping to despurse positive charge
hence primarly occurs in	tertay halogene alkones with 3 electra donorthy
alea souls.	
- Strength at C-X band	also affects note of men (check periodic table I)
No.	OH(96) CH3 CH2 OH
(H3 (H2BC Nucleophlic 2)	heart conc. Alta etta etta etta
	Reduct
1-11-01-04-7110	weat CH3 CH2 CN Wi, H2/heat CH3 (H2 LH2 MH2
ethon loiclalcohole toth	my drolvers the log cons), hout the (the 100th
CH2= CH2	NaOHlas, sent CH3 (H2 (100 Net.
Halogenoarenes - Po not undergo	nucleophile substitution (steric implement & benzere may
nd portal double send characte	
Distriguishing	CF(s
Hech RK with NOOHloz) in test tol	e (ROH, X) Only C, CR, F. stude due to stony (-10 and 1-F,
cool morture aprovents formation of	
Audity with dilute HNO3 Removes excess	
24g+ 04 A820() ,	
prevents orde reactor.	(8. +03 -> (20. +02 0. +0. (8. 202)
Add Agulogian Agris prerphote	$ (2. +02 \rightarrow (20. +02) 0_2 +0. (20. +00 \rightarrow (20. +00) 202. $
a - white Br - take I -	yellow Regenerates (2 nedicals and destroys 03.

SUBJECT CLASS NO. DATE

NOTHING IS TO

Hydroxy		THIS MARGIN
	Nucleophilic Substitution	
	ROH -> RCL PILS, SOCLS, PCRS dry HO hoat Distinguishing test:	
	ROH - RBr PBrz dry HBr heat, 30Brz. White funes at HO(s)	
	ROH -> RI I2, dry HI heart. two damp blue internet paper red.	
	Oshydratan	
	ROH arrows conc H2204 (Al203 / A3904) Altera	
	Esteritation Aylet on .	
	R-C-0H HO-R Treat H20 + R-C-0-R	
	R-C-OH HO-R Treat H20 + R-C-O-R'	
	0	
	R-"- (2 HO-R' 17P HC2 + R-C-O-R'.	
	Oxidation	
	10 alcohol Aciditied kerrent aldehyde Aciditied KNAO4/150007 corboxly ic distribution aldehyde heat head	
	Acidified KNAOH IKELALOF	
	heat	
	20 alcohol Acadified KUNOY) K26207 KROOME	
		- cHI2
	Indoform test (oxidation) 3 Iz to substitute anto at can be	- CHI2
	R-CH-CH3 Is, MOH, heat 1 Iz to omidise OH into retense	out thursed)
	R- C-CH3. Yellow ppt. of CHI3 formed	
	R-6-(H3 + 3.12 + 40H CHI3+R-6-0- + 3 I +	3 H20
	200	
	R- CH- CH3 + 4 I3 + 60H -> CHI3 + X-(-0- + 5 I- + 5	H ₂ 0

8 888572 473703

phonds	
Metal Na Base Nooth Co	Aborate Nas CO3
Alcohol V ×	×
phono!	×
Contaryle Acad V	1
phenols less reactive than alreads due to	portal double band character at C-O
bond and can only undergo reactors moduli	
	ourloss with 11-electro cloud of burrens
Phonols do not react with contaxylic ac	
deloculued ento bonzeno riz, less available	as a nucleophile.
Acidity: Corboxylic acid > phenol	> water > alcohol
- Acidity dependent on stability of con	Juste base, more stable conjugate
base will have greater extent of dissort	at an at Ht and more acadic
- mydroxide more stable 1 due to electron-don	arting altyl group that intensities regate change
- Phenoxial a more italle than phenoxide a	s p-orbital at a overlaps with adjacent
Thelectron cloud of benzene ring on	nd a regative charge delocalised into
ring, resulting in resonance stabiliseater	
-> RCOO more stable than phenomie as	
structures with delocalisation of regative	
atoms. Corboxylata anon greaters sta	
Electrophilic substitution (sensers may)	Distinguiling test
Br2, (194 Br-{U}-0H	Fest(az) + 6 (e) OH Newtal Fells
OF OH Bracket AC White PPT	Fest(az) + 6 (Q) OH Neutral Fells Wiolet complex.
diluto HNO3 NO2-{0}-OH	Viller Complex.
conc. HN67 NO2 O OH	
NO2	

CLASS NO. DATE

Corbany (compounds	NOTHING 15 TO BE WRITTEN IN THIS MARGIN
Me chanism: Nucle aphilie Addition.	
Step 1: 08th	
Step 1: CN 5/082	$R - \frac{1}{C} - R'$
Step 2:	
$R - \frac{1}{cN} + \frac{1}{cN} + \frac{1}{cN}$	cn k- c-k, t cu-
Reactors	
How, trace KOH (equilibria)	
KCM in H2SO4 (movides Ht)	
H(N) trace KCN (CD catalyst)	
2, 4 - Sintrophenylhydrasine (Carbonyl tert	(condensation)
	$ \begin{array}{c} R_1 \\ C = N - N - C - NO2 \end{array} $
toller's Reagent (Alderydes) (Oxidation)	d part representation
R - E + 1 (Ag INH3)] + -	30H- mat 2 Ag(s) + NH3 (ag) + R-(-0- + 2H20
Fahling's solution (Aliphate Aldehydas) [Or	Catabi
$R_1 - \frac{9}{c} - H + 2(u^{2+}) +$	OH - Ch20 + 3H20 + R-C-0-
	proun ppt
Reduction Reagents	
Hz, No, heat Aldehyde keters,	ntrole altere
	ntrile, amide, corroxyte acid
Nor BH Aldehyde, ketere	
Reactivity	
- sp2 hydradised carbanyl carbon, portally post	turly charged due to more electroneoptive
O. Electron-rich nucleophiles are attracted	
- Aromatic contanyls less rusceptible to nucleoph	the attack due to interaction of
The electron cloud at sensene ring and carbon close electron defrohent and le	my group, resulting, in casary, contain
8 888572 473703	susceptible to mutteophilic attack.

Dimerise
(orboxyrc and donerose in uppour state and nonpolar solvents, terming 2
0: 111111 H-0; intermolerale hydrogen souls.
R - C O - H WWW : O
0-H 1111111:0
8-8+8-
Marile Hydrolysis
$R-C=N+2H_2O+H^+$ heat $R-COOH+NH_4^+$
$R-C=N+H2O+OH-\frac{roat}{roat}$ $R-COO+roHz \leftarrow Orchagaishing$ JH^{+} test.
R-COOM + NHA
Accordy (substituterts)
Greater number of electron-withdrawny substituent groups, greater extent of regime
charge diagersal on RCOO. Conjugate base more stabilised and more acolic.
Greater number at electron - abouting groups, more internified negative charge
on RCOO- conjugato base destatilised and less acodic.
Inductive affects operate through 6 bonds and are department on distance,
effect of electron-inthology rubstituent decreases as substituent moves
toother from cook group. Closer the electron - wondrawing substituent,
more acidic.
Condensation.
catelyte
R-C-01-1 H-0-R' = R-C-0-R' - H2D
neat
Reversible, shift equilibrium poster to the right by.
-) Removers water
- Excess reactions.
conc. H210+ catalyst to make curbonyl conta more electrophilic.

CLASS

NO.

DATE

NOTHING IS TO BE WRITTEN IN THIS MARGIN Formator of acyl chlorede P(l) 3 ROOCH + P(l) - ROOCE + H3 PO3. PCPS ROOH + PCPS -> ROOLD + POCP3 + HCD SOCI ROOH + SOCI - SO = + RCOCI + HCL Distinguishing tost 2 RCOOK + NO2 CO3 -> 2RCOO NOT + CO2 (g) - white mpt with limewater + H20. Acyl Chloride 'Acyl chlorides are volable low boiling points due to lack at electronegative H otom for internalecular hydrogen bording. Acyl chlorides undergo hydrolyas early Ly Electronic factor: C=0 cubon bonded to 2 highly electron egitive cities, resulting in a hight portal posttre theyo and more succeptable to nacleoglishe attack. 4 stone factor: sp2 hydridued c=0 atom has less storic hirdrence mee nudeophilo attacks trizonal planar geometry (rother than tetrahedral) and can approach what hardrance from other ride of plane. Esterification Alcohol $R = \frac{8}{c} - cl$ + H = 0 - R' $\Rightarrow R' = c \cdot 0 - R' + H \cdot cl$ (non-reversible) phenols - No reaction (a) not string nucleophila, but phenonds reacts. (o) (a) + (o) -> (o) (v) (v) (e) + (l.

Formation of amodes (o' 10, 20 courses)
$R_{1} \stackrel{?}{\sim} C $
Hydrolysts through heating with acid base.
R- (10R) + H20 HIR(az) R- COH + R'OH
R- (10R' + OH - NOOH(NE) R- (10-Not + R'OH.

CLASS

NO.

DATE

Ntrogen compands.	NOTHING IS BE WRITTEN THIS MAR
Amwes	
can be being (1000 pair) on Bronstad Lowry Colotino band with electron deficient	gedes)
Strong h depends an electron density of N atom which affects availability	
at lone pass of electrons to coordinate with lone poin.	
- Reduction of Nitroles (Li AlHa, Hz, Ni, heat)	
- Reduction of amides	
R- 1- NR, R2 + 4[H) (Although R-CH2-NH, + H20	
- Hydrolyeis A amide	
- 12-12- carkall hybrolyas for amine acid hydrolyais for amine	alt)
- Aromatic owner - reduction of nitrobonsone.	
(D)-NO2 + 6[H] -> (D-NH2 12H20	
1. 3n, conc. HCO, heat urder retlux	
2. NaCH (ag) from @_ NHs to @-NHz.	
Animo reactions Acid-base $R-NH_2$ + HCL \longrightarrow $R-NH_3^+(L^-C_3)$	
reaction I Nau H (az)	
RNH2 (ag) + Na()(ag) + H20(2)	
(Purgent RWHz enclosed on heating)	
-> Separation of amines from neutral lacidic compands.	
of hologonoaltone R-NH2 + RIBT -> R-N-H + HBr	
R,	
$R-M-H \rightarrow R_2Br \rightarrow R-N-R_2 + HBr$	
$R-N-R^{2}$ $R=0$	
condensation in contract to NH3 -> R-C-NH2	
R R	
## UP##	

(Mono brow	illuston;					
Ţ	O) CH3COO	(C)	→ 101 WHCG	+ 480	Nobel Par	
Distroushing	test		14.8	1 . 1		
	Amme (550)	Vww6 (3PC)	Prenylamine	Amide	Ammonium sait.	
solubildy	Soluble.	Incoluble	Sparingly volule	Soluble	Selable	
HCQ	MIA	ouzedon un	o homogonous relati	NIA	110	
NaOH	Pungont gas qualited cjust from warming)	N/A (oily layer)	(oily larger)	No gos. on thong heating, amine fermed	Amire formed	
Nooth eg	uators: RNH3	+ 0H -	RNH2 +H21	D		
			C 900 A	22 compor		
	RCONHR'	+ OH-	2 RC00 + F	21NH2		
RCONHR' + OH Front RCOOT + R'NH2						
Arnides Newtral compared with						
Effectively neutral. Lone poir of electrons interacts with it effective at						
adjacent C=0 band and is delocalised. Not available for coordination with						
a proton, neutral. Co Prepared with adjustion in anhydrous conditions						
G Hydrolysis in addlbase - combonyte acid only omine cor autil						
	was t	Condany	.c ado on	Onlyn	مقالا)	

NAME

SUBJECT

CLASS

NO.

DATE

Amira	Acids	BE WRITTEN IN THIS MARGIN
	- Zwitterions in dry solid state. Apply solid, electrically neutral molecule with	
	appositely charged ends. (-coo, NHZ)	
	- Crystalline solids with high meting point as swittering held in place by	
	strong once bardic. Soluble in water due to con-dipole interactors.	
	- car react with both ocids and bosos, throtan 2 equivalence monter.	
	Amino acod Peptode (N lett, C right)	
	$0H_2 - cH - cooH$ $0H_2 - cH - c - NH - cH - c - NH$	
0	A A O R2	
	undergoes condensation with any chloredo and article	
	Proteins	
	- complete hydrolysis obtaons individual amino acids. Oraloged houting under reflex.	
	-> Enzymate hydrolysis: Jelectively hydrolyses specific peptide bends.	
-0-		
	HOMEOUR DE LE	

8 888572 473703