Uczenie nienadzorowane - Raport

Ćwiczenie 1

Poeksperymentuj z innymi typami zbiorów danych (patrz: księżyce i koła poniżej) i spróbuj określić, jaki typ algorytmu klasteryzacji sprawdzi się dla nich najlepiej. Pamiętaj o sprawdzeniu parametrów dla różnych algorytmów, np.:

- k dla KMeans,
- eps dla DBSCAN,
- distance_threshold, affinity lub linkage dla AgglomerativeClustering.

Księżyce

Oryginał

```
X, y = make_moons(n_samples=200, noise=0.05)
show_scatter(X)
```


KMeans

```
kmeans = KMeans(n_clusters=2)
y_pred = kmeans.fit_predict(X)
centers = kmeans.cluster_centers_p
show_scatter(X, y_pred, centers)
```


Ustalamy liczbę klastrów

Bardzo dobrze widoczne "kolanko" przy Cluster = 2.

MeanShift

```
ms = MeanShift(cluster_all=False)
y_pred = ms.fit_predict(X)
centers = ms.cluster_centers_
show_scatter(X, y_pred, centers)
```


MeanShift z bandwidth

```
bandwidth = estimate_bandwidth(X, quantile=.35, n_samples=200)
ms = MeanShift(cluster_all=False, bandwidth=bandwidth)
y_pred = ms.fit_predict(X)
centers = ms.cluster_centers_
show_scatter(X, y_pred, centers)
```

Najlepsze wyniki dla tego algorytmu obrazują następujące wykresy, odpowiednio dla quantile = 0.35

oraz quantile = 0.6

Przy czym wynik drugi wydaje mi się lepszy, ponieważ chociaż jedna grupa jest odpowiednio przyporządkowana, podczas gdy dla pierwszego przypadku obie grupy są wymieszane.

DBSCAN

```
dbscan = DBSCAN(eps=0.3)
y_pred = dbscan.fit_predict(X)
show_scatter(X, y_pred)
```

Zadowalający wynik uzyskałem dla eps = 0.3.

AgglomerativeClustering

Zadowalające wyniki uzyskałem dla następujących parametrów

• distance_threshold = 0.2, affinity = 'euclidean', linkage = 'single'

Wynik

Dendrogram

• distance_threshold = 0.3, affinity = 'l1', linkage = 'single'

Wynik

Dendrogram

distance_threshold = 0.2, affinity = 'l2', linkage = 'single'

Wynik

Dendrogram

• distance_threshold = 0.25, affinity = 'manhattan', linkage = 'single'

Wynik

Dendrogram

Koła

Oryginał

X, y = make_circles(n_samples=200, factor=0.5, noise=0.05)
show_scatter(X)

KMeans

```
kmeans = KMeans(n_clusters=2)
y_pred = kmeans.fit_predict(X)
centers = kmeans.cluster_centers_
show_scatter(X, y_pred, centers)
```


Ustalamy liczbę klastrów

```
plot_data = (pd.concat(km_list, axis=1)
    .T
```


"Kolanko" przy Cluster = 2 niestety nie jest

tak dobrze widoczne jak dla poprzedniego przypadku.

MeanShift

```
ms = MeanShift(cluster_all=False)
y_pred = ms.fit_predict(X)
centers = ms.cluster_centers_
show_scatter(X, y_pred, centers)
```


MeanShift z bandwidth

```
bandwidth = estimate_bandwidth(X, quantile=.315, n_samples=200)
ms = MeanShift(cluster_all=False, bandwidth=bandwidth)
y_pred = ms.fit_predict(X)
centers = ms.cluster_centers_
show_scatter(X, y_pred, centers)
```

Testowałem wyniki dla różnych wartości quantile, najlepsze wyniki przedstawiam poniżej.

quantile = 0.315

Mamy dwa klastry, jednak są one wymieszane.

quantile = 0.32

Na piewszy rzut oka wynik wygląda zadowalająco, jednak jest tylko jeden klaster, który nie spełnia naszych wymagań.

DBSCAN

```
dbscan = DBSCAN(eps=0.25)
y_pred = dbscan.fit_predict(X)
show_scatter(X, y_pred)
```

Zadowalający wynik uzyskałem dla eps = 0.25

AgglomerativeClustering

Zadowalające wyniki uzyskałem dla następujących parametrów:

• distance_threshold = 0.2, affinity = 'euclidean', linkage = 'single'

Wynik

Dendrogram

• distance_threshold = 0.3, affinity = 'I1', linkage = 'single'

Wynik

Dendrogram

• distance_threshold = 0.2, affinity = 'l2', linkage = 'single'

Wynik

Dendrogram

• distance_threshold = 0.25, affinity = 'manhattan', linkage = 'single'

Wynik

Dendrogram

Wnioski

W przykładach, które analizowaliśmy, algorytmy KMeans oraz MeanShift nie sprawdziły się. KMeans nie zadziałał, ponieważ polega na liczeniu odległości od centroidu. W przypadku algorytmu MeanShift zdarzało mu się błędnie oszacować liczbę klastrów. Jednak DBSCAN jak i AgglomerativeClustering bardzo dobrze poradziły sobie z problemem. Wartym zapamiętania jest fakt, że w każdym z poprawnych wyników algorytmu AgglomerativeClustering pojawił się ten sam rodzaj parametru linkage: 'single', który wykorzystuje minimum z odległości.

Ćwiczenie 2

Klasteryzacji możemy użyć do różnych celów. Niezbyt typowym, ale możliwym jest np. kompresja kolorów obrazu. Wybrać obraz, zredukować jego kolory do mniej niż 10 kolorów, ale w taki sposób, aby uzyskany obraz bardzo przypominał oryginalny. Należy podać nazwę obrazu, informację o liczbie kolorów, a także wkleić zarówno oryginalny, jak i skompresowany obraz.

Nazwa obrazu

cat_caviar.jpg źródło

Wczytujemy obraz

```
from skimage import io
cat = io.imread("kot.jpg")
ax = plt.axes(xticks=[], yticks=[])
ax.imshow(cat);
```


Wymiary obrazu

```
cat.shape
```

(418, 615, 3)

Przekształcamy dane i skalujemy kolory

```
data = cat / 255.0 # use 0...1 scale
data = data.reshape(418 * 615, 3)
data.shape
```

(257070, 3)

Wizualizacja pikseli

```
def plot_pixels(data, title, colors=None, N=10000):
    if colors is None:
        colors = data

# choose a random subset
    rng = np.random.RandomState(0)
    i = rng.permutation(data.shape[0])[:N]
    colors = colors[i]
    R, G, B = data[i].T

fig, ax = plt.subplots(1, 2, figsize=(16, 6))
    ax[0].scatter(R, G, color=colors, marker='.')
    ax[0].set(xlabel='Red', ylabel='Green', xlim=(0, 1), ylim=(0, 1))

ax[1].scatter(R, B, color=colors, marker='.')
    ax[1].set(xlabel='Red', ylabel='Blue', xlim=(0, 1), ylim=(0, 1))

fig.suptitle(title, size=20);
```

```
plot_pixels(data, title='Input color space: 16 million possible colors')
```

Input color space: 16 million possible colors

Redukcja liczby kolorów

Według serwisu IMGonline.com mój obraz ma 47160 unikalnych kolorów. Zredukujemy tę liczbę do 8.

Reduced color space: 8 colors

Do redukcji kolorów podszedłem dwukrotnie:

- używając algorytmu MiniBatchKMeans czas: 5.3s
- używając algorytmu KMeans czas: 1.13s

Zdecydowana przewaga MiniBatchKMeans

Finalny obraz

Wnioski

Jestem bardzo zadowolony z finalnego obrazu. Wszystkie najważniejsze kolory zostały zachowane, oprócz paru "prześwietleń" na stole, utraty koloru gotówki oraz wyrazistości kawioru zdjęcie jest bardzo podobne do oryginału.

Ćwiczenie 3

Odpowiedzieć i uzasadnić (na bazie odpowiednich wykresów lub wyników algorytmów zamieszczonych w raporcie), która/e kolumna/e ze zbioru danych mergedcustomers.csv silnie wpływa/ją na podziały na klastry, jak również zamieścić przykład klastrowania, w którym uzyskano w miarę dobre rozróżnienie klientów ze względu na ryzyko Low/High (z uzasadnieniem).

Modyfikując wartości parametrów algorytmu distance_threshold -- odległość i affinity - typ metryki: 'manhattan' lub 'euclidean', ew. linkage, wybierz parametry, które Twoim zdaniem najlepiej odwzorowują rzeczywiste wartości. Wyniki umieść w swoim raporcie.

Biorąc pod uwagę fakt, że uczenie nienadzorowane nie będzie najlepszym predykatorem w takim przypadku oraz stosując metodę prób i błędów, udało mi się uzyskać w miarę zadowalający wynik. Parametry:

- distance_threshold = 11000
- affinity = 'euclidean'
- linkage = 'ward'

Wyniki

Ocena zewnętrzna

Jak widać na wykresie, który dotyczy oceny zewnętrznej, klienci niskiego ryzyka zostali bardzo dobrze dopasowani, podobnie jak klienci z grupy wysokiego ryzyka. Problem pojawia się w środkowym słupku, w którym klienci wysokiego i średniego ryzyka zostali złączeni, jednak nie udało się uzyskać lepszego wyniku. Może być to związane z faktem, o którym wspomniałem na początku - uczenie nienadzorowane nie będzie najlepszym predykatorem dla naszego przypadku.

Dendrogram

Wizualizacja 3D

Która kolumna ze zbioru danych mergedcustomers.csv silnie wpływa na podział na klastry?

Na podział na klastry bardzo silnie wpływa kolumna PROFIT_YTD, co jest widoczne na powyższych wykresach, a w szczególności na poniższym wykresie. Zauważyć można bezpośredni związek między PROFIT_YTD a ryzykiem (kolory kropek zmieniające się wraz ze zmianą PROFIT_YTD)

