SUBHODIP SAHA 5485317 HWY 1 2t = wxt V+=WT2+ So, yt = wrwnt when we are making the low-dimensional projection to d dim, then win # 1 a for. Vt = wTW Xt. (In fact the opposite is southed trone ww = 1). So, the claim is wrong As. WTW # 1 then [vt # nt] We can also prove that in another way,
when we are projecting to lower dimensional
when we are properties some variance,
space we are Vop (Nt) = 1+12+ 10 eigenvalue after eigentalue de composition Var(xt) = 1,+/2+ ... /0 whereas. if the varionce are unequal must be unequal The var (n+) > var (v+)

So. 2+ = Wx+ Vt = WT 2t Vt = wtwxt $\|x^{t}-v^{t}\|^{2}=(x^{t}-v^{t})^{T}(x^{t}-v^{t})$ = (x+T_V+T) (x+-v+) = x+Tx+ -x+Tv+ -v+Tx++v+Tv+ V^{+} $\chi^{+} = (wTw\chi^{+})^{T}\chi^{+} + S_{0}, V^{+}\chi^{+} = \chi^{+}\chi^{+}$ MITY = NITW NT. = ntT (wTw)Tnt = n+TwTwx+ NOW, NtT Nt = (WTWN+)T(WTWN+) Ne know that afters projection, ww = 1 = n+(wTw)T(wTw n+) (wTW + 1) - nt wtin wtin nt - nt to will = れもいていかも = VtTxt = ntTxt

We find, VtTVt = VtTNt = XtTVt (1xt-v+1) = xtx+ 2xtx+ +vtx = ntxt - yttyt = 1/2/12-11/1/2

Fc1

Problem FC1

L(Pi, yit) = (Pit - yit)²

a
$$g(u) = \max_{x \to \infty} (o, u)$$

a $g(u) = \max_{x \to \infty} (o, u)$

a $g(u) = \max_{x \to \infty} (o, u)$

So. $g(u) = u$

L(O)

 $g(u) = u$
 $u \neq 0$
 $u \neq 0$
 $u \neq 0$

So. $g(\frac{1}{2} \vee i, a^{2}a^{4} + \vee i_{0}) = 0$
 $u \neq 0$

So. $g(\frac{1}{2} \vee i, a^{2}a^{4} + \vee i_{0}) = 0$
 $u \neq 0$

2= g(wx+ ws) Ec1' c Let's take, y=9(12+10) So, y= g(vg(wx+wo)+Vo) CDIT we can find a value of & for which it is becomes a linear for there it should be valid for any other case. Now we tray to find on x top which y becomes linears function of x. * it wat wo LO *if wx+ wo >0 Z = WX+Wo 2 = @x (wx+w0) v(wx+w0)+v0/0 (wx+w0)+v0/0 y= x[vx(wx+wo)+v60 it y= x[vx(wx+wo) y= vx(wx+wo)+v60 y= vx(wx+wo)+v60 y= vx(wx+wo)+v60 y= vx(wx+wo)+v60 $y = x \left[v(\omega n + w_0) \right]$ $y = v(\omega n + w_0) + v_0$ $y = v(\omega n + w_0) + v_0$ $y = v(\omega n + w_0) + v_0$ $y = v(\omega n + w_0) + v_0$ if x=1 if x=1

y= v(wnt wo)
y= v(wntwo)
+vo All the your becomes same if X = 1linear on x. then J(n) becomes

Problem 3

1. Error rates for MySVM2 with m=40 for Boston $50\,$

F1	F2	F3	F4	F5	Mean	SD
0.28	0.19	0.17	0.17	0.24	0.217	0.042

2. Error rates for MySVM2 with m=200 for Boston 50

F1	F2	F3	F4	F5	Mean	SD
0.21	0.25	0.21	0.16	0.28	0.229	0.040

3. Error rates for MySVM2 with m=n for Boston 50

F1	F2	F3	F4	F5	Mean	SD
0.21	0.25	0.20	0.19	0.25	0.227	0.025

4. Error rates for LogisticRegression for Boston 50

F1	F2	F3	F4	F5	Mean	SD
0.22	0.23	0.20	0.18	0.12	0.198	0.038

5. Error rates for MySVM2 with m=40 for Boston 75

F1	F2	F3	F4	F5	Mean	SD
0.21	0.33	0.28	0.29	0.16	0.261	0.060

6. Error rates for MySVM2 with m=200 for Boston 75

F1	I	F2	F3	F4	F5	Mean	SD
0.27		0.26	0.31	0.23	0.20	0.261	0.036

7. Error rates for MySVM2 with m=n for Boston 75

F1	F2	F3	F4	F5	Mean	SD
0.24	0.23	0.28	0.21	0.31	0.261	0.035

8. Error rates for Logistic Regression for Boston $75\,$

F1	F2	F3	F4	F5	Mean	SD
0.16	0.06	0.07	0.07	0.11	0.102	0.036