SUMMARY

Business problem:

To study what factors and how they would impact the landing distance of a commercial flight.

The business problem required the study of various variables contributing in the variability of landing distance. The project started with data exploration of 950 records which after data cleaning got reduced to 781 records. Following this the correlation analysis was done to figure out the variables which might affect landing. 'speed_air', 'speed_ground','height', 'pitch' were the major contributing factors out of which 'pitch' affected the landing distance in accordance with aircraft make. Last but not the least, regression analysis was done which generated a linear model with highly significant R-square of 0.88.

To conclude, 'speed_air' impacted the landing distance the most as compared to any other variable (contribution of other variables was negligible as compared to 'speed_air'). 'speed_air' accounted for 88% of the variation in 'distance'

The fitted model is

distance = -5417.6 + 79.2 * speed_air

TABLE OF CONTENTS

Chapter	Topic	Page Number
1	Data understanding and exploration	4
2	Data visualization and descriptive analysis	15
3	Statistical analysis	20
4	Question and Answers	24

Data Source and Tools

Datasets:

Two excel sheets named FAA1.xls and FAA2.xls containing flight information which were provided by the professor.

Tool Used:

SAS University Edition

Data Description

1. FAA1.xlsx

- a. Contains 8 variables and 800 entries
- **b.** Variables are:
 - i. Aircraft: The make of an aircraft (Boeing or Airbus).
 - **ii.** *Duration (in minutes):* Flight duration between taking off and landing. The duration of a normal flight should always be greater than 40min.
 - iii. No_pasg: The number of passengers in a flight.
 - **iv.** Speed_ground (in miles per hour): The ground speed of an aircraft when passing over the threshold of the runway. If its value is less than 30MPH or greater than 140MPH, then the landing would be considered as abnormal.
 - v. Speed_air (in miles per hour): The air speed of an aircraft when passing over the threshold of the runway. If its value is less than 30MPH or greater than 140MPH, then the landing would be considered as abnormal.
 - **vi.** Height (in meters): The height of an aircraft when it is passing over the threshold of the runway. The landing aircraft is required to be at least 6 meters high at the threshold of the runway.
 - **vii.** Pitch (in degrees): Pitch angle of an aircraft when it is passing over the threshold of the runway.
 - **viii.** Distance (in feet): The landing distance of an aircraft. More specifically, it refers to the distance between the threshold of the runway and the point where the aircraft can be fully stopped. The length of the airport runway is typically less than 6000 feet.

2. FAA2.xlsx

- a. Contains 7 variables and 150 entries
- **b.** All variables apart from "duration" in FAA1.xlsx

Data Exploration

Variable Datatypes

Datatypes of the variables are examined to get an idea of the dataset.

SAS code:

proc contents data=FAA_Cleaned_Dataset;

run;

Output Snippet:

	Alphabetic List of Variables and Attributes								
#	Variable	Туре	Len	Format	Informat	Label			
1	aircraft	Char	12	\$12.	\$12.	aircraft			
8	distance	Num	8	BEST12.		distance			
2	duration	Num	8	BEST12.		duration			
6	height	Num	8	BEST12.		height			
3	no_pasg	Num	8	BEST12.		no_pasg			
7	pitch	Num	8	BEST12.		pitch			
5	speed_air	Num	8	BEST12.		speed_air			
4	speed_ground	Num	8	BEST12.		speed_ground			

Aggregating Data

The two excel sheets are imported in SAS University Edition and the two datasets are joined to form a single dataset. Completely empty rows are removed from the dataset. The resultant dataset is of 950 observations and named 'FAA_combined'.

SAS code:

```
proc import datafile="/folders/myfolders/bana 6043/Resources/FAA1.xls"
out=faa1
dbms=xls
replace;
getnames=yes;
run;
proc import datafile="/folders/myfolders/bana 6043/Resources/FAA2.xls"
out=faa2
dbms=xls
replace;
getnames=yes;
run;
options missing = ' ';
DATA FAA_combined;
SET faa1 faa2;
if missing(cats(of _all_)) then delete;
run;
proc print data= FAA_combined;
run;
```

Obs	aircraft	duration	no_pasg	speed_ground	speed_air	height	pitch	dista
1	boeing	98.4790912	53	107.91568005	109.32837648	27.418924252	4.0435145715	3369.8363
2	boeing	125.73329732	69	101.65558863	102.8514051	27.804716181	4.1174316991	2987.8039
3	boeing	112.0170008	61	71.051960883		18.589385734	4.4340431286	1144.922
4	boeing	196.82569105	56	85.813327679		30.744597235	3.8842361245	1664.2181
5	boeing	90.095381357	70	59.888528183		32.397688062	4.0260964152	1050.2644
6	boeing	137.59581722	55	75.014343744		41.21496259	4.203853398	1627.0681
7	boeing	73.023794916	54	54.4298029		24.03532163	3.8376457299	805.30399
8	boeing	52.903187872	57	57.101661737		19.388837508	4.6436717769	573.62178
9	boeing	155.51861605	61	85.443624251		35.375389749	4.2287278648	1698.9927
10	boeing	176.86203205	56	61.796710514		36.748816124	4.1843990127	1137.7457
11	boeing	158.4618984	61	53.778126741		46.355832902	5.5563991716	1075.3717
12	boeing	180.61655753	54	141.21863535	141.72493569	23.575935009	5.2168022511	6533.0476
13	boeing	72.289633216	54	93.391762435	92.869561214	32.223489271	3.8182761471	2128.708
14	boeing	187.59954737	58	94.036412942	96.196460585	33.661226156	4.6361847249	2304.857
15	boeing	154.36870049	63	63.540613553		26.402991875	3.8566584986	1089.9729
16	boeing	165.54194536	69	48.774673273		31.228664837	3.9020460339	943.06840
17	boeing	153.54633587	61	83.556493271		29.897473262	3.519783726	1793.5628
18	boeing	107.11331938	78	86.807962025		25.477015381	4.4142187986	1910.8768
19	boeing	233.80249791	69	104.80843448	103.86845794	43.882731896	3.2450978263	3213.985
20	boeing	163.90650312	55	119.3804635	120.44470797	38.558536007	3.7014493887	4524.2788
21	boeing	97.477623266	63	73.533976336		29.152465311	4.0140064257	1332.0387
22	boeing	118.63054039	55	79.994815042		29.366866101	4.4071812572	1515.9652
23	boeing	126.54028789	70	94.781230282	91.142068839	39.476298784	3.5949361476	2182.2207
24	boeing	179.91591838	66	63.671165314		19.574699606	4.2867337712	873.4408
25	boeing	112.90009528	53	98.180410862	99.135830727	28.152991316	3.9874712191	2586.6650
26	boeing	56.64048966	66	72.953658239		36.154157217	4.3878559157	1205.1280
27	boeing	86.828911312	62	91.714535792	92.874851912	28.773729478	3.3058880775	2313.3356
28	boeing	157.35773231	57	72.327130778		26.223285332	4.2231807894	1105.3658
29	hoeing	128 82141307	40	88 417230484		44 802805788	4 1135438115	1178 0278

Removing Duplicate Records

Variables 'speed_ground' and 'distance' are used as key to uniquely identify each observation and remove duplicate records.

After removal of duplicate records, only 850 records are left. 100 records were removed.

SAS code:

PROC SORT data= FAA_combined NODUPKEY out= FAA_NoDup;
BY speed_ground distance;
RUN;
proc print data= FAA_NoDup;
run;

830	boeing	163.90650312	55	119.3804635	120.44470797	38.558536007	3.7014493887	4524.2788621
831	boeing	277.17600519	52	119.65393667	120.19232219	25.182762649	4.9342407496	4292.1675118
832	boeing	99.193858446	60	119.67749254	123.04933242	27.558024612	3.6405647359	4455.647775
833	airbus	140.45311445	75	120.41894805	118.48470398	31.263445532	2.7967314066	3470.5838289
834	airbus	140.67120141	48	120.45475566	118.67260401	30.351506953	4.3710717196	3891.4718916
835	airbus	220.05712745	61	120.55794402	118.28817977	15.665658061	4.1112652915	3499.7335809
836	boeing	99.681502958	61	121.83713667	120.95340518	33.184596582	3.8674761307	4427.670764
837	boeing	116.98454192	67	122.75656197	123.88257287	30.216568242	3.2137033407	4807.8798069
838	airbus	98.500307809	66	123.31053074	124.39076754	22.327175815	4.2767104875	4295.9006131
839	boeing	232.79385582	56	123.95687145	122.18668469	26.367547127	4.061951127	4483.8596367
840	boeing	209.10634824	58	124.56986234	125.98691462	40.101121967	4.6484282637	5147.4101244
841	airbus	175.51443032	49	125.21230409	125.13854893	22.524778897	4.3657723639	4254.9332637
842	airbus	137.58572784	66	126.24430054	127.93710766	35.175701305	2.7019236952	4795.6357056
843	boeing	197.54635021	68	126.66918215	127.96414283	23.764231426	2.9931514463	5031.3863156
844	boeing	153.8344532	61	126.83927854	126.11864818	20.547833848	4.3345575101	4736.6045811
845	boeing	161.8924678	72	129.26491833	128.41773098	33.948998825	4.1399514138	5381.9588622
846	boeing	154.52460358	67	129.30718407	127.59332059	23.978496799	5.1546989117	5058.4695164
847	airbus	131.73109556	60	131.03518222	131.3379485	28.277965541	3.6601936464	4896.2946083
848	boeing	63.32952055	52	132.78467664	132.9114649	18.177030219	4.1106642414	5343.2009539
849	boeing	119.92455279	64	136.65915832	136.42342138	44.286109179	4.1694037368	6309.9459762
850	boeing	180.61655753	54	141.21863535	141.72493569	23.575935009	5.2168022511	6533.0476506

Checking Missing Values

'duration' has 50 missing values (6% approximately) and 'speed_air' has 642 missing values (75% approximately)

SAS code:

proc means data= FAA_NoDup NMISS; run;

Output Snippet:

Variable	Label	N Miss
duration	duration	50
no_pasg	no_pasg	0
speed_ground	speed_ground	0
speed_air	speed_air	642
height	height	0
pitch	pitch	0
distance	distance	0

Verifying Data Quality

Abnormality within the dataset is detected and represented in tabular format.

Variable	Restrictions	Count of Violating observations	Percentage
duration	>40	55	6.5
speed_ground	30 <s<140< td=""><td>3</td><td>0.3</td></s<140<>	3	0.3
height	>6	10	1.1
distance	<6000	2	0.2

```
proc sql;
select count(*) as Abnormality_Count_Duration from FAA_NoDup
where duration < 40
;
RUN;
proc sql;
select count(*) as Abnormality_Count_Speed_Ground from FAA_NoDup
where speed_ground < 30 or speed_ground > 140
;
RUN;
proc sql;
select count(*) as Abnormality_Count_Height from FAA_NoDup
where height < 6
;
RUN;
proc sql;
select count(*) as Abnormality_Count_Distance from FAA_NoDup
where distance > 6000
;
RUN;
```


Removing abnormal values

Removing abnormalities present in the dataset. Abnormalities are defined in the variable description of the data.

```
data FAA_cleaned;
set FAA_NoDup;
if height<6 then delete;
if distance > 6000 then delete;
if speed_ground < 30 or speed_ground > 140 then delete;
if duration < 40 then delete;
run;
proc print data=FAA_cleaned;
run;</pre>
```

750	boeing	197.1772966	58	113.88913724	113.44548322	33.455375847	4.2330578025	3785.6544181
751	boeing	113.36295687	56	113.96402929	113.74609122	44.735463184	3.9379057702	4017.785457
752	boeing	205.87361329	62	113.99630814	110.65991559	34.443424984	3.873845001	3405.3507059
753	boeing	127.99133129	59	114.29273489	113.86393738	25.46813856	5.13824264	3668.8878406
754	boeing	124.48006198	60	114.48071659	114.69029121	45.077888293	4.3341369227	3873.0956584
755	airbus	214.72721394	65	114.64796613	114.16251635	35.640281516	3.800254855	3541.5777554
756	airbus	147.71752673	67	114.84660812	113.17086267	58.227799736	3.6727589287	3665.8038693
757	boeing	166.10453073	48	116.59249189	118.0114174	13.26323991	3.1339588754	4129.0422604
758	boeing	130.46356358	52	116.71343434	117.65649967	38.195527448	3.8943524297	4240.0941825
759	boeing	109.45172219	66	117.64059121	112.26495489	35.910035823	4.0582181528	3741.0877182
760	airbus	158.53503015	62	118.51897858	117.65423338	25.785069143	3.5238553234	3469.1467667
761	boeing	140.23831155	65	118.74200471	119.40214631	19.856192215	4.6462659602	4217.1294518
762	boeing	272.03905778	59	118.92272448	120.39703516	15.049348509	4.1065723599	4279.587211
763	boeing	163.90650312	55	119.3804635	120.44470797	38.558536007	3.7014493887	4524.2788621
764	boeing	277.17600519	52	119.65393667	120.19232219	25.182762649	4.9342407496	4292.1675118
765	boeing	99.193858446	60	119.67749254	123.04933242	27.558024612	3.6405647359	4455.847775
766	airbus	140.45311445	75	120.41894805	118.48470398	31.263445532	2.7967314066	3470.5838289
767	airbus	140.67120141	48	120.45475588	118.67260401	30.351506953	4.3710717198	3891.4718916
768	airbus	220.05712745	61	120.55794402	118.28817977	15.665658061	4.1112652915	3499.7335809
769	boeing	99.681502958	61	121.83713887	120.95340518	33.184596582	3.8674761307	4427.670764
770	boeing	116.98454192	67	122.75858197	123.88257287	30.216568242	3.2137033407	4807.8798069
771	airbus	98.500307809	66	123.31053074	124.39076754	22.327175815	4.2767104875	4295.9006131
772	boeing	232.79385582	56	123.95687145	122.18668469	26.387547127	4.081951127	4483.8596367
773	boeing	209.10634824	58	124.56986234	125.98691462	40.101121987	4.6484282637	5147.4101244
774	airbus	175.51443032	49	125.21230409	125.13854893	22.524778897	4.3657723639	4254.9332637
775	airbus	137.58572784	66	126.24430054	127.93710766	35.175701305	2.7019236952	4795.6357056
776	boeing	197.54835021	68	126.66918215	127.98414283	23.764231426	2.9931514463	5031.3863156
777	boeing	153.8344532	61	126.83927854	126.11864818	20.547833848	4.3345575101	4736.6045811
778	boeing	161.8924678	72	129.26491833	128.41773098	33.948998825	4.1399514138	5381.9588622
779	boeing	154.52480358	67	129.30718407	127.59332059	23.978496799	5.1546989117	5058.4695164
780	airbus	131.73109558	60	131.03518222	131.3379485	28.277985541	3.6601936464	4896.2946083
781	boeing	63.32952055	52	132.78467664	132.9114649	18.177030219	4.1108842414	5343.2009539

The new count of the number of the observations is 781 which means 69 observations were removed out of 850 as they had abnormal data.

Getting Summary Statistics

Summary Statistics of the different variables are fetched. These include mean, median, mode, lower quartile, upper quartile, standard deviation, variance.

SAS code:

proc means data= FAA_cleaned MEAN MEDIAN mode q1 q3 std var; run;

Output Snippet:

	The MEANS Procedure								
Variable	Label	Mean	Median	Mode	Lower Quartile	Upper Quartile	Std Dev	Variance	
duration no_pasg speed_ground speed_air height pitch distance	duration no_pasg speed_ground speed_air height pitch distance	154.7757191 60.0819462 79.6397499 103.5047686 30.4549525 4.0141289 1541.20	154.2845505 60.0000000 79.7939604 100.8916770 30.2165682 4.0140064 1273.66	61.0000000	119.6314577 55.0000000 66.1925304 96.1269654 23.5944766 3.6532968 919.0474790	189.6629425 65.0000000 92.1314349 109.4581269 36.9879836 4.3822934 1960.43	48.3499237 7.5262579 18.8971690 9.8803757 9.7396415 0.5223688 904.5903306	2337.72 56.6445583 357.1029943 97.6218233 94.8606171 0.2728692 818283.67	

Checking range, minimum and maximum

Large interval ranges are observed in the table with duration leading the list.

SAS code:

proc means data= FAA_cleaned max min range; run:

The MEANS Procedure						
Variable	Label	Maximum	Minimum	Range		
duration	duration	305.6217107	41.9493694	263.6723414		
no_pasg	no_pasg	87.0000000	29.0000000	58.0000000		
speed ground	speed ground	132.7846766	33.5741041	99.2105726		
speed_air	speed_air	132.9114649	90.0028586	42.9086063		
height	height	59.9459639	6.2275178	53.7184462		
pitch	pitch	5.9267842	2.2844801	3.6423041		
distance	distance	5381.96	41.7223127	5340.24		

Variable Distribution

All the variables are taken into account and their distribution is plotted. This will help in finding out whether the data is symmetric or not.

```
PROC UNIVARIATE DATA=FAA_cleaned;
HISTOGRAM speed_ground / NORMAL;
Run;
PROC UNIVARIATE DATA=FAA_cleaned;
HISTOGRAM speed_air / NORMAL;
Run;
PROC UNIVARIATE DATA=FAA_cleaned;
HISTOGRAM height / NORMAL;
Run;
PROC UNIVARIATE DATA=FAA_cleaned;
HISTOGRAM pitch / NORMAL;
Run;
PROC UNIVARIATE DATA=FAA_cleaned;
HISTOGRAM duration / NORMAL;
Run;
PROC UNIVARIATE DATA=FAA_cleaned;
HISTOGRAM distance / NORMAL;
Run;
```


The graphs show that almost all the variables except distance, speed_air follows a normal distribution i.e. values are symmetrically distributed.

Plot XY graphs

The overall business problem is identifying the factors affecting distance, thus we plot distribution of 'distance' against other variables.

```
proc means data=FAA_cleaned noprint; output out= FAA_mean_summary mean(speed_ground speed_air duration height pitch
no_pasg) =
 speed_ground_average speed_air_average duration_average height_average pitch_average no_pasg_average;
run;
proc print data=FAA_mean_summary;
run;
data FAA_summary;
set FAA_mean_summary FAA_cleaned;
run;
proc sgplot data=FAA_summary;
 scatter x=speed_ground y=distance;
 refline speed_ground_average /Axis=x;
run;
proc sgplot data=FAA_summary;
 scatter x=speed_air y=distance;
 refline speed_air_average /Axis=x;
run;
proc sgplot data=FAA_summary;
scatter x=duration y=distance;
 refline duration_average /Axis=x;
proc sgplot data=FAA_summary;
 scatter x=height y=distance;
 refline height_average/Axis=x;
run;
proc sgplot data=FAA_summary;
 scatter x=pitch y=distance;
 refline pitch_average/Axis=x;
run;
proc sgplot data=FAA_summary;
scatter x=no_pasg y=distance;
 refline no_pasg_average/Axis=x;
run;
```


The graph plots show that speed_air forms kind of a linear relation with distance. 'speed_ground' does not exactly form linear relation with distance. Other variables, that are pitch, duration and height does not form any relation with distance and are randomly distributed. Additionally, data provided for speed_air has the minimum as 90 miles/hr.

Correlation Analysis

Part A Analysis:

SAS code:

PROC CORR data = FAA_cleaned;

VAR speed_air speed_ground pitch height duration no_pasg;

WITH distance;

Output Snippet:

- Correlation matrix shows the speed_air, speed_ground both are highly correlated to distance with value of 0.94322 and 0.86771, respectively.
- speed_air is restricted to 195 observations.
- pitch and height shows a fairly low correlation
- duration and no_pasg have a negligible negative correlation
- speed_air has the highest correlation with a value of 0.94322

Let try individual analysis by aircraft to be more sure about the correlation.

Part B Analysis:

SAS code:

```
data airbus;

set FAA_cleaned (where=(aircraft='airbus')); run;

PROC CORR data = airbus;

TITLE "airbus";

VAR speed_air speed_ground pitch height duration no_pasg;

WITH distance;

data boeing (where=(aircraft='boeing'));

set FAA_cleaned; run;

PROC CORR data = boeing;

TITLE "boeing";

VAR speed_air speed_ground pitch height duration no_pasg;
```

Output Snippet:

WITH distance;

Following points can be inferred from the correlation matrices for the aircraft 'airbus' and 'boeing'

- duration and no_pasg still shows negligible negative correlation thus should be not considered in the model
- 'pitch' shows a positive correlation for 'airbus' but shows a negative correlation for 'boeing', thus 'pitch' is directly affected by change of aircraft.
- 'speed_air' and 'speed_ground' still shows a high positive correlation.
- 'height' shows a positive correlation of 0.15858 and 0.06920 but the magnitude is not that significant as compared to 'speed_air'

Correlation Matrix gave various insights about the variables which can be included in the model.

Both 'speed_ground' and 'speed_air' displays high correlation but 'speed_air' will be used in regression model as 'speed_air' has the highest correlation and its distribution follows a linear model to a great extent.

Assuming landing distance can be predicted by a linear function of a speed_air.

$Y = \beta_o + \beta_1 X + \epsilon$, where

 β_0 , β_1 = unknown parameters, more specifically β_0 = intercept , β_1 = slope, Y = landing distance, X = speed_air and ϵ is error term.

SAS code:

proc reg data=FAA_cleaned;

model distance=speed_air;

title Regression analysis of the FAA_cleaned;

run;

Output Snippet:

Part A Analysis:

- The F statistic for the overall model is highly significant (=1556.17, <0.0001), indicating that the model explains a significant portion of the variation in the data. This model estimates two parameters, β_0 and β_1 ; thus, the degrees of freedom are 1. The corrected total is 194.
- The "Parameter Estimates" table contains the estimates of β_0 and β_1 . The table also contains the t statistics and the corresponding p-values for testing whether each parameter is significantly different from zero. The p-values (t=-25.94, p<0.0001 and t=39.45, p<0.0001) indicate that the intercept and speed_air parameter estimates, respectively, are highly significant.

Part B Analysis:

- A trend in the residuals generally indicates non-constant variance in data. Since these residuals have no apparent trend, the analysis can be considered acceptable.
- The R-square and Adj R-square are used in assessing the fit of the model; values close to 1 indicate a better fit. The R-square of 0.8897 indicates that 'speed_air' accounts for 88% of the variation in 'distance'.

The fit plot of distance shows that the relation is linear. From the parameter estimates, the fitted model:

distance = -5417.6 + 79.2 * speed_air

QUESTIONS AND ANSWERS

1) How many observations (flights) do you use to fit your final model? If not all 950 flights, why?

The final model includes 195 observations. Data cleaning removed abnormal values and duplicate records and filtered down to 781 records. All the observations were not used as it would result in incorrect results. Also, the correlation matrix showed that speed_air has the highest correlation with a value of 0.94322. Thus, speed_air with 195 records was included to generate the best fit model.

2) What factors and how they impact the landing distance of a flight?

The landing distance is affected by different factors in different ways:

- speed_air: Affects the landing distance directly. Increase in speed increases the landing distance
- pitch: Affects the landing distance both directly and inversely but with very less magnitude. It varies depending on the aircraft make.
- height: Affects the landing distance directly but with very less magnitude. Increase in height slightly increases the landing distance.
- duration,no_pasg: They do not affect the landing distance significantly. Hence they can be ignored.
- speed_ground: Affects in the same way as speed_air but with less magnitude.

3) Is there any difference between the two makes Boeing and Airbus?

During data analysis, certain variables were changing their direction w.r.t aircraft make. 'Pitch' was one such factor, it showed a positive correlation of 0.04134 for 'airbus' but shows negative correlation of -0.06504 for 'boeing' w.r.t landing distance. Thus difference between the two makes Airbus and Boeing definitely affects certain variables in the way they relate to landing distance.