Several of the RMTable columns are for descriptive strings (for example, the source type or the method used for RM determination). To encourage better uniformity across catalogs, we have made lists of values that have been either used in previous catalogs or are expected to be used in near-future catalogs. We suggest that authors of new RMTable catalogs check if their values for these columns match one of the existing values in the following tables and do their best to match these values (i.e., same spelling and capitalization). This will make it easier for catalog users to search based on these values if desired. Authors should not hesitate to define their own values if none of the existing values are appropriate; new values will be added to these tables as they are used in new catalogs.

Table 1. Standard values for RM determination method

Standard value:	Notes:
Unknown	Default value if not specified.
EVPA-linear fit	Linear regression of polarization angle as function of wavelength-squared.
RM Synthesis	Any variation of the RM-synthesis algorithm
RM Synthesis - Pol. Int	RM synthesis performed using measured Stokes Q and U values.
RM Synthesis - Fractional polarization	RM synthesis performed using Q and U values normalized by Stokes I .
Faraday Synthesis	Joint aperture and RM synthesis, as described in Bell & Enßlin (2012).
QUfit	Any variation of QU-fitting algorithm.
QUfit - Delta function	QU-fitting of a Faraday-simple model.
QUfit - Burn slab	QU-fitting of a slab model from Burn (1966).
QUfit - Gaussian	QU-fitting of a Gaussian model.
QUfit - Gaussian x Burn Slab	QU-fitting of a model which is the product of a Gaussian and Burn slab.
QUfit - Multiple	QU-fitting to a model that is a combination of different models.

Table 2. Standard values for Faraday complexity metric

Standard value:	Notes:
" (empty string)	Default value if not specified.
None	No complexity test performed.
Sigma_add	The $\sigma_{\rm add}$ method implemented in RM-Tools (Purcell et al. 2020).
Second_moment	Analysis of the second moment of RM-clean components.
QU-fitting	QU-fitting of Faraday complex model.
Inspection	Visual inspection of FDF for deviations from Faraday-simple response.
Machine learning - Alger 2021	Machine learning algorithm developed by Alger et al. (2021).
Convolutional neural networks - Brown 2019	Convolutional neural network algorithm developed by Brown et al. (2019).
QU-fit & BIC	Bayesian Information Criterion applied to QU-fitting model (comparing simple vs complex models).

Table 3. Standard values for ionospheric Faraday rotation correction method

Standard value:	Notes:	
Unknown	Default value if not specified.	
None	No ionospheric correction performed.	
RMextract	The RMextract package (Mevius 2018).	
ionFR	The ionospheric Faraday rotation package (Sotomayor-Beltran	
	et al. 2013).	
FARAD	The AIPS task FARAD. a	
ALBUS	The ionosphere correction tool in the Advanced Long Baseline	
	User Software (ALBUS). b	
FRion	The FRion Python package for time-averaged image-domain	
	ionospheric correction. ^c	

 $\begin{array}{c} {\it Note-a. www.aips.nrao.edu/cgi-bin/ZXHLP2.PL?FARAD} \\ {\it b. github.com/twillis449/ALBUS_ionosphere} \\ {\it c. frion.readthedocs.io} \end{array}$

Table 4. Standard values for polarization bias correction method

Standard value:	Notes:	
Unknown	Default value if not specified.	
None	No bias correction performed.	
Not described	The paper reports that a correction was performed, but does not specify which method or equation.	
1974ApJ194249W	Wardle & Kronberg (1974)	
1985A&A142100S	Simmons & Stewart (1985)	
1986ApJ302306K	Killeen et al. (1986)	
2012PASA29214G	George et al. (2012)	

Table 5. Standard values for telescope used

Standard value:	Notes:	
Unknown	Default value if not specified.	
VLA	Karl G. Jansky Very Large Array ^a	
LOFAR	Low Frequency Array	
ATCA	Australia Telescope Compact Array	
DRAO-ST	Dominion Radio Astrophysical Observatory Synthesis Telescope	
MWA	Murchison Widefield Array	
ATA	Allen Telescope Array	
WSRT	Westerbork Synthesis Radio Telescope	
ASKAP	Australian Square Kilometre Array Pathfinder	
Effelsberg	Effelsberg 100-m Radio Telescope	
ARO	Algonquin Radio Observatory 46-m telescope	
MeerKAT		
Arecibo	Arecibo Telescope	
Parkes	Parkes Murriyang (64-m) Radio Telescope	
CHIME	Canadian H Intensity Mapping Experiment	
FAST	Five-hundred-meter Aperture Spherical Telescope	

^a To avoid splitting entries between VLA and JVLA, we suggest only using VLA.

Table 6. Standard values for Stokes extraction method

Standard value:	Notes:	
Unknown	Default value if not specified.	
Peak	Stokes values extracted from single pixel (peak Stokes I or polarized intensity).	
Integrated	Stokes values integrated over some aperture.	
Gaussian fit - Peak	Stokes values from peak of fitted Gaussian.	
Gaussian fit - Integrated	Stokes values from integrated brightness of fitted Gaussian.	
Box	Stokes values determined from integration over fixed box size.	
Visibilities	Stokes values extract from modelling or fitting of interferometric visibilities.	

Table 7. Standard values for source classification

Standard value:	Notes:
" (empty string)	Default value if not specified.
Unknown	
Pulsar	
Galaxy	Radio Galaxy
AGN	Active Galactic Nucleus
SNR	Supernova Remnant
FRB	Fast radio burst

REFERENCES

- Alger, M. J., Livingston, J. D.,
 McClure-Griffiths, N. M., et al. 2021,
 PASA, 38, e022,
 doi: 10.1017/pasa.2021.10
- Bell, M. R., & Enßlin, T. A. 2012, A&A, 540, A80,
 - doi: 10.1051/0004-6361/201118672
- Brown, S., Bergerud, B., Costa, A., et al.2019, MNRAS, 483, 964,doi: 10.1093/mnras/sty2908
- Burn, B. J. 1966, MNRAS, 133, 67, doi: 10.1093/mnras/133.1.67
- George, S. J., Stil, J. M., & Keller, B. W. 2012, PASA, 29, 214, doi: 10.1071/AS11027

- Killeen, N. E. B., Bicknell, G. V., & Ekers, R. D. 1986, ApJ, 302, 306, doi: 10.1086/163992
- Mevius, M. 2018, RMextract: Ionospheric Faraday Rotation calculator. http://ascl.net/1806.024
- Purcell, C. R., Van Eck, C. L., West, J., Sun, X. H., & Gaensler, B. M. 2020, RM-Tools: Rotation measure (RM) synthesis and Stokes QU-fitting. http://ascl.net/2005.003
- Simmons, J. F. L., & Stewart, B. G. 1985, A&A, 142, 100
- Sotomayor-Beltran, C., Sobey, C., Hessels, J. W. T., et al. 2013, A&A, 552, A58,
- doi: 10.1051/0004-6361/201220728
 Wardle, J. F. C., & Kronberg, P. P. 1974, ApJ, 194, 249, doi: 10.1086/153240