Robot Dynamics

Due: Tuesday, 11/10/2020 @11:59 PM

Problem 1: Three-Link Arm Robot – Dynamic Modeling (Point Masses)

For the 3-link RRR elbow manipulator (3-DOF) shown below, let l_1 , l_2 , and l_3 be the length of the three links. Also let m_1 , m_2 , and m_3 be the masses of the three links.

- a) Form the dynamical model of the robot symbolically in the compact form $\tau = M(q)\ddot{q} + C(q,\dot{q})\dot{q} + g(q)$.
- b) Consider: $l_1 = l_2 = l_3 = 0.3 \, m$, $m_1 = m_2 = m_3 = 0.5 \, kg$, g = 9.8. Then, using the model derived in Part a), solve, numerically, for the dynamical model of the robot when the robot is in its home position i.e. $q_i = \theta_i = 0$.

Problem 2: Three-Link Arm Robot – Dynamic Modeling (Lagrange's Method)

For the 3-link RRR elbow manipulator (3-DOF) shown below, let l_{c1} , l_{c2} , and l_{c3} be the distances of the centers of mass of the three links from the respective joint axes and l_1 , l_2 , and l_3 be the length of the three links. Also let m_1 , m_2 , and m_3 be the masses of the three links. Finally, let l_1 , l_2 , and l_3 be the moments of inertia relative to the centers of mass of the three links, respectively. For this problem, Symbolically, derive the total kinetic energy of the robot and form the 3-by-3 Inertia Matrix D(q).

Good Luck!