Minimum Spanning Trees

CS 2860: Algorithms and Complexity

Magnus Wahlström and Gregory Gutin

February 24, 2018

Minimum Spanning Trees

Minimum spanning trees

- ▶ Input: Graph G = (V, E), edge weights/costs w(e)
- ▶ Spanning tree: A tree T = (V, F) with edges from E that connects every vertex of G
- ► Minimum spanning tree: A spanning tree *T* of minimum total cost

$$\sum_{e \in E(T)} w(e)$$

Minimum spanning trees

- ▶ Input: Graph G = (V, E), edge weights/costs w(e)
- ▶ Spanning tree: A tree T = (V, F) with edges from E that connects every vertex of G
- ► Minimum spanning tree: A spanning tree *T* of minimum total cost

$$\sum_{e \in E(T)} w(e)$$

Applications

- ► Historical example: Electrifying Moravia
 - ► Region of present Czech republic
 - ▶ Build power lines to connect villages to electric grid
 - ▶ Different connections have different costs to build (long/short distance, good/bad terrain)
 - Borůvka's algorithm, 1926
- Computer networks, road networks, . . .

Applications

- ► Historical example: Electrifying Moravia
 - ► Region of present Czech republic
 - Build power lines to connect villages to electric grid
 - Different connections have different costs to build (long/short distance, good/bad terrain)
 - ▶ Borůvka's algorithm, 1926
- Computer networks, road networks, . . .

Applications

- ► Historical example: Electrifying Moravia
 - Region of present Czech republic
 - Build power lines to connect villages to electric grid
 - Different connections have different costs to build (long/short distance, good/bad terrain)
 - ▶ Borůvka's algorithm, 1926
- Computer networks, road networks, . . .

Definition

A tree is a connected graph with no cycles

- ▶ A tree is a connected graph with n-1 edges
- ▶ A tree is a graph with n-1 edges and no cycles
- A tree is a graph with a unique path between any two vertices
- ► A tree is a connected graph such that removing any edge leaves a disconnected graph

Definition

A tree is a connected graph with no cycles

- ▶ A tree is a connected graph with n-1 edges
- ▶ A tree is a graph with n-1 edges and no cycles
- ▶ A tree is a graph with a unique path between any two vertices
- ► A tree is a connected graph such that removing any edge leaves a disconnected graph

Definition

A tree is a connected graph with no cycles

- ▶ A tree is a connected graph with n-1 edges
- ▶ A tree is a graph with n-1 edges and no cycles
- ▶ A tree is a graph with a unique path between any two vertices
- ► A tree is a connected graph such that removing any edge leaves a disconnected graph

Definition

A tree is a connected graph with no cycles

- ▶ A tree is a connected graph with n-1 edges
- ▶ A tree is a graph with n-1 edges and no cycles
- ▶ A tree is a graph with a unique path between any two vertices
- ► A tree is a connected graph such that removing any edge leaves a disconnected graph

Definition

A tree is a connected graph with no cycles

- ▶ A tree is a connected graph with n-1 edges
- ▶ A tree is a graph with n-1 edges and no cycles
- ▶ A tree is a graph with a unique path between any two vertices
- A tree is a connected graph such that removing any edge leaves a disconnected graph

Properties of Spanning Trees

Two properties of spanning trees

Let T be a spanning tree in a graph G = (V, E).

- Cycle property:
 - 1. Adding any edge uv to T creates a cycle C
 - 2. Removing any edge u'v' from C creates a new spanning tree
- Cut property:
 - 1. Removing any edge uv from T disconnects T into two parts
 - 2. Adding any edge u'v' between these parts creates a new spanning tree

Proof (both cases): The new tree is a cycle-free graph with n-1 edges

Properties of Spanning Trees

Two properties of spanning trees

Let T be a spanning tree in a graph G = (V, E).

- Cycle property:
 - 1. Adding any edge uv to T creates a cycle C
 - 2. Removing any edge u'v' from C creates a new spanning tree
- Cut property:
 - 1. Removing any edge uv from T disconnects T into two parts
 - 2. Adding any edge u'v' between these parts creates a new spanning tree

Proof (both cases): The new tree is a cycle-free graph with n-1 edges

Properties of Spanning Trees

Two properties of spanning trees

Let T be a spanning tree in a graph G = (V, E).

- Cycle property:
 - 1. Adding any edge uv to T creates a cycle C
 - 2. Removing any edge u'v' from C creates a new spanning tree
- Cut property:
 - 1. Removing any edge uv from T disconnects T into two parts
 - 2. Adding any edge u'v' between these parts creates a new spanning tree

Proof (both cases): The new tree is a cycle-free graph with n-1 edges

Min-cost spanning trees: Cycle rule

Let G = (V, E) be a graph with edge weights, T a spanning tree in G. Then T is min-cost if and only if the following holds:

- ▶ Let $uv \in E$ be any edge not used in T
- ▶ Let C be the cycle created by adding uv to T
- ► Then uv is the most expensive edge of C (or tied for most expensive, if there are ties)

- Suppose not. Let uv be an edge not used in T, that is not the most expensive in its cycle C in T + uv
- ▶ Create a tree T' by adding uv, then deleting the most expensive edge u'v' from C.
- ▶ Then T' is a cheaper spanning tree than T, a contradiction.

Min-cost spanning trees: Cycle rule

Let G = (V, E) be a graph with edge weights, T a spanning tree in G. Then T is min-cost if and only if the following holds:

- ▶ Let $uv \in E$ be any edge not used in T
- ▶ Let C be the cycle created by adding uv to T
- Then uv is the most expensive edge of C (or tied for most expensive, if there are ties)

- ▶ Suppose not. Let uv be an edge not used in T, that is not the most expensive in its cycle C in T + uv
- ▶ Create a tree T' by adding uv, then deleting the most expensive edge u'v' from C.
- ▶ Then T' is a cheaper spanning tree than T, a contradiction.

Min-cost spanning trees: Cycle rule

Let G = (V, E) be a graph with edge weights, T a spanning tree in G. Then T is min-cost if and only if the following holds:

- ▶ Let $uv \in E$ be any edge not used in T
- ▶ Let C be the cycle created by adding uv to T
- Then uv is the most expensive edge of C (or tied for most expensive, if there are ties)

- Suppose not. Let uv be an edge not used in T, that is not the most expensive in its cycle C in T + uv
- ▶ Create a tree T' by adding uv, then deleting the most expensive edge u'v' from C.
- ▶ Then T' is a cheaper spanning tree than T, a contradiction.

Min-cost spanning trees: Cycle rule

Let G = (V, E) be a graph with edge weights, T a spanning tree in G. Then T is min-cost if and only if the following holds:

- ▶ Let $uv \in E$ be any edge not used in T
- ▶ Let C be the cycle created by adding uv to T
- Then uv is the most expensive edge of C (or tied for most expensive, if there are ties)

- Suppose not. Let uv be an edge not used in T, that is not the most expensive in its cycle C in T + uv
- ▶ Create a tree T' by adding uv, then deleting the most expensive edge u'v' from C.
- ▶ Then T' is a cheaper spanning tree than T, a contradiction.

Min-cost spanning trees: Cycle rule

Let G = (V, E) be a graph with edge weights, T a spanning tree in G. Then T is min-cost if and only if the following holds:

- ▶ Let $uv \in E$ be any edge not used in T
- ▶ Let C be the cycle created by adding uv to T
- ► Then uv is the most expensive edge of C (or tied for most expensive, if there are ties)

- ▶ Suppose not. Let uv be an edge not used in T, that is not the most expensive in its cycle C in T + uv
- ▶ Create a tree T' by adding uv, then deleting the most expensive edge u'v' from C.
- ▶ Then T' is a cheaper spanning tree than T, a contradiction.

¹This was necessity. To show sufficiency is a little bit harder.

Min-cost spanning trees: Option II

Min-cost spanning trees: Cut rule

Let G = (V, E) be a graph with edge weights, T a spanning tree in G. Then T is min-cost if and only if the following holds:

For any split of V into two parts V = A ∪ B,
T contains a cheapest edge between A and B.

Proof: Same as cycle rule (if the statement were false, you could create a cheaper tree from T as T - uv + u'v').

Min-cost spanning trees: Option II

Min-cost spanning trees: Cut rule

Let G = (V, E) be a graph with edge weights, T a spanning tree in G. Then T is min-cost if and only if the following holds:

For any split of V into two parts V = A ∪ B,
T contains a cheapest edge between A and B.

Proof: Same as cycle rule (if the statement were false, you could create a cheaper tree from T as T - uv + u'v').

Minimum spanning tree: algorithms

- ▶ Prim's algorithm (the one you know):
 - 1. Begin with tree T of single vertex v, no edges
 - 2. Repeat until T is a spanning tree:
 - 2.1 Extend T by the cheapest edge uv where u in T, v not in T
- Kruskal's algorithm
 - 1. Begin with $T = \emptyset$
 - 2. Sort all edges of $E: w(e_1) \leq w(e_2) \leq \ldots \leq w(e_m)$
 - 3. For every edge e in this order
 - 3.1 If adding e to T does not create a cycle add e to T.

Minimum spanning tree: algorithms

- ▶ Prim's algorithm (the one you know):
 - 1. Begin with tree T of single vertex v, no edges
 - 2. Repeat until T is a spanning tree:
 - 2.1 Extend T by the cheapest edge uv where u in T, v not in T
- Kruskal's algorithm
 - 1. Begin with $T = \emptyset$
 - 2. Sort all edges of $E: w(e_1) \leq w(e_2) \leq \ldots \leq w(e_m)$
 - 3. For every edge *e* in this order:
 - 3.1 If adding e to T does not create a cycle, add e to T.

Minimum spanning tree: algorithms

- Prim's algorithm (the one you know):
 - 1. Begin with tree T of single vertex v, no edges
 - 2. Repeat until T is a spanning tree:
 - 2.1 Extend T by the cheapest edge uv where u in T, v not in T
- Kruskal's algorithm
 - 1. Begin with $T = \emptyset$
 - 2. Sort all edges of $E: w(e_1) \leq w(e_2) \leq \ldots \leq w(e_m)$
 - 3. For every edge *e* in this order:
 - 3.1 If adding e to T does not create a cycle, add e to T.
- Issues:
 - Algorithm workings
 - Correctness
 - Efficient implementation

Using the algorithms

(1) Run Prim's algorithm (start from vertex a) and Kruskal's algorithm on graph G below. (2) Using Kruskal's algorithm, determine how many minimum spanning trees (MSTs) graph F has. (3) How many MSTs are in the graph H' obtained from H by replacing cost 11 with 1 and 12 with 2?

Using the algorithms: Solutions

- 1. Graph *G* has a minimum spanning tree (MST) with the edges of costs 1, 2, 3, 4, 5.
- 2. Since in any MSP of F only 2 edges of the 3 edges of cost 1 can be used and the same for edges of cost 6, F has $3 \times 3 = 9$ MSTs (edges of cost 3 and 4 must be in each MST).
- 3. In *H* each MST must have edges of cost 1, but only one of 3 edges of cost 2. Hence, 3 MSTs.

Using the algorithms: Solutions

- 1. Graph *G* has a minimum spanning tree (MST) with the edges of costs 1, 2, 3, 4, 5.
- 2. Since in any MSP of F only 2 edges of the 3 edges of cost 1 can be used and the same for edges of cost 6, F has $3 \times 3 = 9$ MSTs (edges of cost 3 and 4 must be in each MST).
- 3. In *H* each MST must have edges of cost 1, but only one of 3 edges of cost 2. Hence, 3 MSTs.

Using the algorithms: Solutions

- 1. Graph *G* has a minimum spanning tree (MST) with the edges of costs 1, 2, 3, 4, 5.
- 2. Since in any MSP of F only 2 edges of the 3 edges of cost 1 can be used and the same for edges of cost 6, F has $3 \times 3 = 9$ MSTs (edges of cost 3 and 4 must be in each MST).
- 3. In *H* each MST must have edges of cost 1, but only one of 3 edges of cost 2. Hence, 3 MSTs.

Spanning trees: Prim's algorithm

Prim's algorithm, outline

Input: Graph G = (V, E), edge weights w

- ▶ Start with a tree T of a single vertex v, no edges
- Repeat until complete:
 - ► Extend *T* with the cheapest edge *e* adding a new vertex to *T*
- Discover/Extend central loop (Priority Queue)

Prim's algorithm, outline

Input: Graph G = (V, E), edge weights w

- \triangleright Start with a tree T of a single vertex v, no edges
- Repeat until complete:
 - ► Extend *T* with the cheapest edge *e* adding a new vertex to *T*
- Discover/Extend central loop (Priority Queue)

First implementation

- Data structures:
 - 1. Vertices marked/unmarked, initially all unmarked
 - 2. Priority Queue pq of edges, initially empty
 - 3. The tree T
- ► Use a "visit" subroutine process(v):
 - 1. Mark v as visited
 - 2. For every unmarked neighbour u of v:
 - 2.1 Add edge uv to pq with weight w(uv)
- ► Code, main loop:
 - 1. Select initial vertex *v*, process(v)
 - 2. Until pq is empty:
 - 2.1 e=pq.deleteMin() // pull cheapest edge e from pq
 - 2.2 If e has an unmarked endpoint u: add e to T, process(u)

First implementation

- Data structures:
 - 1. Vertices marked/unmarked, initially all unmarked
 - 2. Priority Queue pq of edges, initially empty
 - 3. The tree T
- ▶ Use a "visit" subroutine process(v):
 - 1. Mark v as visited
 - 2. For every unmarked neighbour u of v:
 - 2.1 Add edge uv to pq with weight w(uv)
- Code, main loop:
 - 1. Select initial vertex *v*, process(v)
 - 2. Until pq is empty:
 - 2.1 e=pq.deleteMin() // pull cheapest edge e from pq
 - 2.2 If e has an unmarked endpoint u: add e to T, process(u)

First implementation

- Data structures:
 - 1. Vertices marked/unmarked, initially all unmarked
 - 2. Priority Queue pq of edges, initially empty
 - 3. The tree T
- ► Use a "visit" subroutine process(v):
 - 1. Mark v as visited
 - 2. For every unmarked neighbour u of v:
 - 2.1 Add edge uv to pq with weight w(uv)
- Code, main loop:
 - 1. Select initial vertex v, process(v)
 - 2. Until pq is empty:
 - 2.1 e=pq.deleteMin() // pull cheapest edge e from pq
 - 2.2 If e has an unmarked endpoint u: add e to T, process(u)

First version, running time

- Our code performs:
 - 1. $\mathcal{O}(|V|)$ executions of "visit all neighbours of a vertex", takes $\mathcal{O}(|E|)$ time in total
 - 2. $\mathcal{O}(|E|)$ insertions into pq at $\mathcal{O}(\log |E|)$ per op
 - 3. $\mathcal{O}(|E|)$ deleteMin() calls to pq at $\mathcal{O}(\log |E|)$ per op
- ▶ Total time² $\mathcal{O}(|E|\log|E|)$
- Correctness proof (skipped):
 - Can show that the tree constructed follows cut rule

 $^{^2 \}mbox{We}$ assume that the graph is connected, otherwise it has no spanning tree – so |V| < |E| - 1

First version, running time

- Our code performs:
 - 1. $\mathcal{O}(|V|)$ executions of "visit all neighbours of a vertex", takes $\mathcal{O}(|E|)$ time in total
 - 2. $\mathcal{O}(|E|)$ insertions into pq at $\mathcal{O}(\log |E|)$ per op
 - 3. $\mathcal{O}(|E|)$ deleteMin() calls to pq at $\mathcal{O}(\log |E|)$ per op
- ▶ Total time² $\mathcal{O}(|E|\log|E|)$
- Correctness proof (skipped):
 - ► Can show that the tree constructed follows cut rule

- so
$$|V|$$
 ≤ $|E|$ - 1

²We assume that the graph is connected, otherwise it has no spanning tree

Advanced implementation

- ► The code adds edges to pq, but the algorithm needs to discover vertices
- ► This leads to a minor inefficiency (in space and time)
- ▶ Using an advanced priority queue (with decreaseKey method) we can write the code using a priority queue of vertices for space $\mathcal{O}(|V|)$, time $\mathcal{O}(|E| + |V| \log |V|)$) (theoretical)
- ▶ Details at the end of slide set (optional, not examined, i.e. marked ★)

Advanced implementation

- ► The code adds edges to pq, but the algorithm needs to discover vertices
- ► This leads to a minor inefficiency (in space and time)
- ▶ Using an advanced priority queue (with decreaseKey method) we can write the code using a priority queue of vertices for space $\mathcal{O}(|V|)$, time $\mathcal{O}(|E| + |V| \log |V|)$ (theoretical)
- ▶ Details at the end of slide set (optional, not examined, i.e. marked ★)

Advanced implementation

- ► The code adds edges to pq, but the algorithm needs to discover vertices
- ► This leads to a minor inefficiency (in space and time)
- ▶ Using an advanced priority queue (with decreaseKey method) we can write the code using a priority queue of vertices for space $\mathcal{O}(|V|)$, time $\mathcal{O}(|E| + |V| \log |V|)$ (theoretical)
- ▶ Details at the end of slide set (optional, not examined, i.e. marked ★)

Kruskal's algorithm

Kruskal's algorithm

The pseudocode looks even simpler than Prim:

- 1. Begin with $T = \emptyset$
- 2. Sort all edges of $E: w(e_1) \leq w(e_2) \leq \ldots \leq w(e_m)$
- 3. For every edge *e* in this order:
 - 3.1 If adding e to T does not create a cycle, add e to T.

Note: During the loop, T has several connected components – it's a forest, not a tree

Kruskal's algorithm

The pseudocode looks even simpler than Prim:

- 1. Begin with $T = \emptyset$
- 2. Sort all edges of $E: w(e_1) \leq w(e_2) \leq \ldots \leq w(e_m)$
- 3. For every edge *e* in this order:
 - 3.1 If adding e to T does not create a cycle, add e to T.

Note: During the loop, T has several connected components – it's a forest, not a tree

Correctness

- ▶ It clearly creates a spanning tree
- ► Min-cost via the cycle rule:
 - ▶ Let *e* be any edge not used in *T*
 - ▶ Since *e* was not added to *T*, at the point where it was considered by the algorithm, it would have created a cycle *C*
 - Since the edges are considered in sorted order, e was a most-expensive edge of C
- ► Every edge e from G not in T satisfies the cycle rule ⇒ T is a minimum spanning tree

Correctness

- It clearly creates a spanning tree
- ► Min-cost via the cycle rule:
 - ▶ Let *e* be any edge not used in *T*
 - ▶ Since *e* was not added to *T*, at the point where it was considered by the algorithm, it would have created a cycle *C*
 - ► Since the edges are considered in sorted order, e was a most-expensive edge of C
- ► Every edge e from G not in T satisfies the cycle rule ⇒ T is a minimum spanning tree

Correctness

- It clearly creates a spanning tree
- Min-cost via the cycle rule:
 - ▶ Let *e* be any edge not used in *T*
 - Since e was not added to T, at the point where it was considered by the algorithm, it would have created a cycle C
 - ► Since the edges are considered in sorted order, e was a most-expensive edge of C
- ► Every edge e from G not in T satisfies the cycle rule ⇒ T is a minimum spanning tree

Correctness

- It clearly creates a spanning tree
- Min-cost via the cycle rule:
 - ▶ Let e be any edge not used in T
 - ► Since *e* was not added to *T*, at the point where it was considered by the algorithm, it would have created a cycle *C*
 - Since the edges are considered in sorted order, e was a most-expensive edge of C
- ► Every edge e from G not in T satisfies the cycle rule ⇒ T is a minimum spanning tree

Correctness

- It clearly creates a spanning tree
- Min-cost via the cycle rule:
 - ▶ Let *e* be any edge not used in *T*
 - Since e was not added to T, at the point where it was considered by the algorithm, it would have created a cycle C
 - Since the edges are considered in sorted order, e was a most-expensive edge of C
- ► Every edge e from G not in T satisfies the cycle rule ⇒ T is a minimum spanning tree

Correctness

- It clearly creates a spanning tree
- Min-cost via the cycle rule:
 - ▶ Let e be any edge not used in T
 - Since e was not added to T, at the point where it was considered by the algorithm, it would have created a cycle C
 - ► Since the edges are considered in sorted order, *e* was a most-expensive edge of *C*
- ► Every edge e from G not in T satisfies the cycle rule ⇒ T is a minimum spanning tree

Implementation

- 1. Sort the edges
 - ▶ No problem
- 2. For every edge uv in sorted order:
 - 2.1 Decide if it completes a cycle
 - 2.2 If it does not, add it to T

Completes a cycle has two implementations:

- ► A slow one:
 - Search through the graph formed by T, starting from u, to see if we find v (e.g., DFS from u in T)
 - ▶ Up to $\mathcal{O}(n)$ time for a single check
- ► A fast one: Using a data structure called Union Find

Implementation

- 1. Sort the edges
 - ▶ No problem
- 2. For every edge uv in sorted order:
 - 2.1 Decide if it completes a cycle
 - 2.2 If it does not, add it to T

Completes a cycle has two implementations:

- ► A slow one:
 - ► Search through the graph formed by T, starting from u, to see if we find v (e.g., DFS from u in T)
 - ▶ Up to $\mathcal{O}(n)$ time for a single check
- ► A fast one: Using a data structure called Union Find

Implementation

- 1. Sort the edges
 - ▶ No problem
- 2. For every edge *uv* in sorted order:
 - 2.1 Decide if it completes a cycle
 - 2.2 If it does not, add it to T

Completes a cycle has two implementations:

- ► A slow one:
 - ► Search through the graph formed by T, starting from u, to see if we find v (e.g., DFS from u in T)
 - ▶ Up to $\mathcal{O}(n)$ time for a single check
- ► A fast one: Using a data structure called Union Find

Fast implementation

We need a data structure for connected components:

- ► Find(v) return a name for the connected component of T that contains v
- ▶ Union(u,v) "merge" the components of u and v into one (by adding uv to T)

Efficient implementation using this:

- 1. Sort the edges E (e.g., merge sort) at $\mathcal{O}(|E| \log |E|)$ time
- 2. Initiate your Union-Find structure to "empty"
- 3. For every edge uv in sorted order:
 - 3.1 If Find(u) == Find(v): ignore edge
 - 3.2 Otherwise call Union(u,v) and add to 7

With a good Union-Find, the time is dominated by $\mathcal{O}(|E|\log|E|)$.

Fast implementation

We need a data structure for connected components:

- ► Find(v) return a name for the connected component of *T* that contains *v*
- ▶ Union(u,v) "merge" the components of u and v into one (by adding uv to T)

Efficient implementation using this:

- 1. Sort the edges E (e.g., merge sort) at $\mathcal{O}(|E|\log|E|)$ time
- Initiate your Union-Find structure to "empty"
- 3. For every edge *uv* in sorted order:
 - 3.1 If Find(u) == Find(v): ignore edge
 - 3.2 Otherwise call Union(u,v) and add to T

With a good Union-Find, the time is dominated by $\mathcal{O}(|E|\log|E|)$

Fast implementation

We need a data structure for connected components:

- ► Find(v) return a name for the connected component of *T* that contains *v*
- ▶ Union(u,v) "merge" the components of u and v into one (by adding uv to T)

Efficient implementation using this:

- 1. Sort the edges E (e.g., merge sort) at $\mathcal{O}(|E| \log |E|)$ time
- 2. Initiate your Union-Find structure to "empty"
- 3. For every edge *uv* in sorted order:
 - 3.1 If Find(u) == Find(v): ignore edge
 - 3.2 Otherwise call Union(u,v) and add to T

With a good Union-Find, the time is dominated by $\mathcal{O}(|E|\log|E|)$.

★ Prim: advanced implementation

- ▶ In addition to the usual min-Priority Queue operations:
 - insert(item, weight): add item with value weight
 - minItem(), deleteMin(): Return min-weight item
- We will need a Priority Queue that also supports the following:
 - 1. contains(item): membership test
 - 2. currentValue(item): return current item priority/weight
 - decreaseValue(item, newWeight): decrease weight of item to newWeight
- ► Implementations:
 - 1. Heap+Hash table with $O(\log n)$ time per decreaseKey
 - 2. Fibonacci heaps: Advanced structure, not yet practica
 - ▶ Impractical: Pointer jumping, complex code
 - ▶ But average time $\mathcal{O}(1)$ for decreaseKey

- ▶ In addition to the usual min-Priority Queue operations:
 - insert(item, weight): add item with value weight
 - minItem(), deleteMin(): Return min-weight item
- We will need a Priority Queue that also supports the following:
 - 1. contains(item): membership test
 - 2. currentValue(item): return current item priority/weight
 - decreaseValue(item, newWeight): decrease weight of item to newWeight
- ► Implementations:
 - 1. Heap+Hash table with $O(\log n)$ time per decreaseKey
 - 2. Fibonacci heaps: Advanced structure, not yet practical
 - ▶ Impractical: Pointer jumping, complex code
 - ▶ But average time $\mathcal{O}(1)$ for decreaseKey

- ▶ In addition to the usual min-Priority Queue operations:
 - ▶ insert(item, weight): add item with value weight
 - minItem(), deleteMin(): Return min-weight item
- We will need a Priority Queue that also supports the following:
 - 1. contains(item): membership test
 - 2. currentValue(item): return current item priority/weight
 - decreaseValue(item, newWeight): decrease weight of item to newWeight
- ► Implementations:
 - 1. Heap+Hash table with $O(\log n)$ time per decreaseKey
 - 2. Fibonacci heaps: Advanced structure, not yet practical
 - Impractical: Pointer jumping, complex code
 - ▶ But average time $\mathcal{O}(1)$ for decreaseKey

- ▶ In addition to the usual min-Priority Queue operations:
 - ▶ insert(item, weight): add item with value weight
 - minItem(), deleteMin(): Return min-weight item
- We will need a Priority Queue that also supports the following:
 - 1. contains(item): membership test
 - 2. currentValue(item): return current item priority/weight
 - decreaseValue(item, newWeight): decrease weight of item to newWeight
- Implementations:
 - 1. Heap+Hash table with $O(\log n)$ time per decreaseKey
 - 2. Fibonacci heaps: Advanced structure, not yet practical
 - Impractical: Pointer jumping, complex code
 - ▶ But average time $\mathcal{O}(1)$ for decreaseKey

- ▶ In addition to the usual min-Priority Queue operations:
 - ▶ insert(item, weight): add item with value weight
 - minltem(), deleteMin(): Return min-weight item
- We will need a Priority Queue that also supports the following:
 - 1. contains(item): membership test
 - 2. currentValue(item): return current item priority/weight
 - decreaseValue(item, newWeight): decrease weight of item to newWeight
- Implementations:
 - 1. Heap+Hash table with $O(\log n)$ time per decreaseKey
 - 2. Fibonacci heaps: Advanced structure, not yet practical
 - Impractical: Pointer jumping, complex code
 - ▶ But average time $\mathcal{O}(1)$ for decreaseKey

Advanced Prim implementation: Outline

Data structures:

- 1. Min-Priority Queue pq containing vertices
- 2. edgeTo[v] array codes edges, will encode tree
- 3. Vertices marked/unmarked as before

Principles:

- pq contains candidate vertex to add to tree
- Priority (weight) of vertex v in pq is cheapest known edge to v from tree
- ► When we pull v from pq ("discover" step), we update neighbours u of v if a cheaper edge to u was found
- If a cheaper edge was found, we call decreaseKey to v instead of a full insert

Advanced Prim implementation: Outline

Data structures:

- 1. Min-Priority Queue pq containing vertices
- 2. edgeTo[v] array codes edges, will encode tree
- 3. Vertices marked/unmarked as before

Principles:

- pq contains candidate vertex to add to tree
- Priority (weight) of vertex v in pq is cheapest known edge to v from tree
- ▶ When we pull v from pq ("discover" step), we update neighbours u of v if a cheaper edge to u was found
- If a cheaper edge was found, we call decreaseKey to v instead of a full insert

Advanced Prim implementation: Outline

Data structures:

- 1. Min-Priority Queue pq containing vertices
- 2. edgeTo[v] array codes edges, will encode tree
- 3. Vertices marked/unmarked as before

Principles:

- pg contains candidate vertex to add to tree
- Priority (weight) of vertex v in pq is cheapest known edge to v from tree
- ► When we pull v from pq ("discover" step), we update neighbours u of v if a cheaper edge to u was found
- If a cheaper edge was found, we call decreaseKey to v instead of a full insert

Full code

- Data structures:
 - 1. Min-Priority Queue pq containing vertices
 - 2. edgeTo[v] array containing edges, will encode tree
- ► Main loop:
 - 1. Select initial vertex v, call pq.insert(v,0)
 - 2. Until pq is empty:
 - 2.1 u=pq.deleteMin(); mark u
 - 2.2 For every neighbour *v* of *u*:

 Call Undate(v, w(uv))
- ► Support code: Update(Vertex v, Edge uv):
 - 1. If v marked: return, do nothing
 - 2. If *v* not in pq:
 - 2.1 edgeTo[v] = uv
 - 2.2 pq.insert(v, w(uv))
 - 3. If w(uv) < pq.currentValue(v):
 - 3.1 edgeTo[v] = uv
 - 3.2 pq.decreaseValue(v, w(uv))

Full code

- Data structures:
 - 1. Min-Priority Queue pq containing vertices
 - 2. edgeTo[v] array containing edges, will encode tree
- ► Main loop:
 - 1. Select initial vertex v, call pq.insert(v,0)
 - 2. Until pq is empty:
 - 2.1 u=pq.deleteMin(); mark u
 - 2.2 For every neighbour *v* of *u*:

 Call Update(v, w(uv))
- ► Support code: Update(Vertex v, Edge uv):
 - 1. If v marked: return, do nothing
 - 2. If v not in pq:
 - 2.1 edgeTo[v] = uv
 - 2.2 pq.insert(v, w(uv))
 - 3. If w(uv) < pq.currentValue(v):
 - 3.1 edgeTo[v] = uv
 - 3.2 pq.decreaseValue(v, w(uv))

Full code

- Data structures:
 - 1. Min-Priority Queue pq containing vertices
 - 2. edgeTo[v] array containing edges, will encode tree
- ► Main loop:
 - 1. Select initial vertex v, call pq.insert(v,0)
 - 2. Until pq is empty:
 - 2.1 u=pq.deleteMin(); mark u
 - 2.2 For every neighbour v of u:

 Call Update(v, w(uv))
- Support code: Update(Vertex v, Edge uv):
 - 1. If v marked: return, do nothing
 - 2. If v not in pq:
 - 2.1 edgeTo[v] = uv
 - 2.2 pq.insert(v, w(uv))
 - 3. If w(uv) < pq.currentValue(v):
 - 3.1 edgeTo[v] = uv
 - 3.2 pq.decreaseValue(v, w(uv))

Advanced version: running time

- Our new implementation performs:
 - 1. $\mathcal{O}(|V|)$ insertions into pq
 - 2. $\mathcal{O}(|E|)$ update, decreaseKey calls
 - 3. $\mathcal{O}(|V|)$ deletions from pq
- ▶ With our familiar implementation:
 - 1. All operations take $\mathcal{O}(\log |V|)$ time
 - 2. Worst-case $\mathcal{O}(|E|\log|V|) = \mathcal{O}(|E|\log|E|)$ as before
 - 3. New best case: Zero decreaseKey calls, $\mathcal{O}(|E| + |V| \log |V|)$ time (maybe even just $\mathcal{O}(|E|)$?
- ▶ With Fibonacci heaps (theoretical result):
 - 1. Insert/delete amounts to $\mathcal{O}(|V| \log |V|)$ time
 - 2. $\mathcal{O}(|E|)$ times decreaseKey takes $\mathcal{O}(|E|)$ total time
 - 3. In total worst-case time $\mathcal{O}(|E| + |V| \log |V|)$

Advanced version: running time

- Our new implementation performs:
 - 1. $\mathcal{O}(|V|)$ insertions into pq
 - 2. $\mathcal{O}(|E|)$ update, decreaseKey calls
 - 3. $\mathcal{O}(|V|)$ deletions from pq
- ▶ With our familiar implementation:
 - 1. All operations take $\mathcal{O}(\log |V|)$ time
 - 2. Worst-case $\mathcal{O}(|E|\log|V|) = \mathcal{O}(|E|\log|E|)$ as before
 - 3. New best case: Zero decreaseKey calls, $\mathcal{O}(|E| + |V| \log |V|)$ time (maybe even just $\mathcal{O}(|E|)$?)
- ▶ With Fibonacci heaps (theoretical result):
 - 1. Insert/delete amounts to $\mathcal{O}(|V|\log|V|)$ time
 - 2. $\mathcal{O}(|E|)$ times decreaseKey takes $\mathcal{O}(|E|)$ total time
 - 3. In total worst-case time $\mathcal{O}(|E| + |V| \log |V|)$

Advanced version: running time

- Our new implementation performs:
 - 1. $\mathcal{O}(|V|)$ insertions into pq
 - 2. $\mathcal{O}(|E|)$ update, decreaseKey calls
 - 3. $\mathcal{O}(|V|)$ deletions from pq
- With our familiar implementation:
 - 1. All operations take $\mathcal{O}(\log |V|)$ time
 - 2. Worst-case $\mathcal{O}(|E| \log |V|) = \mathcal{O}(|E| \log |E|)$ as before
 - 3. New best case: Zero decreaseKey calls, $\mathcal{O}(|E| + |V| \log |V|)$ time (maybe even just $\mathcal{O}(|E|)$?)
- With Fibonacci heaps (theoretical result):
 - 1. Insert/delete amounts to $\mathcal{O}(|V|\log|V|)$ time
 - 2. $\mathcal{O}(|E|)$ times decreaseKey takes $\mathcal{O}(|E|)$ total time
 - 3. In total worst-case time $\mathcal{O}(|E| + |V| \log |V|)$