ΠΡΟΤΑΣΙΑΚΟΙ ΤΥΠΟΙ

ΠΡΟΤΑΣΙΑΚΗ ΛΟΓΙΚΗ www.psounis.gr

Πίνακας Αλήθειας Λογικών Συνδέσμων:

ϕ	Ψ	$\neg \phi$	$\phi \lor \psi$	$\phi \wedge \psi$	$\phi \rightarrow \psi$	$\phi \leftrightarrow \psi$
A	A	Ψ	A	A	A	A
A	Ψ	Ψ	A	Ψ	Ψ	Ψ
Ψ	A	A	A	Ψ	A	Ψ
Ψ	Ψ	A	Ψ	Ψ	A	A

Ταυτολογία: είναι τύπος που είναι Α για όλες τις αποτιμήσεις

Παράδειγμα: Ο τύπος $p \land \neg p \rightarrow q$ είναι ταυτολογία

Λύση:

p	\overline{q}	$(p \land \neg p) \rightarrow q$
A	A	$(A \land \neg A) \to A = \Psi \to A = A$
A	Ψ	$(A \land \neg A) \to \Psi = \Psi \to \Psi = A$
Ψ	A	$(\Psi \land \neg \Psi) \to A = \Psi \to A = A$
Ψ	Ψ	$(\Psi \land \neg \Psi) \rightarrow \Psi = \Psi \rightarrow \Psi = A$

Γνωστες Ταυτολογίες είναι οι μορφές τύπων:

- 1. $\phi \lor \neg \phi$ όπου ϕ οποιοσδήποτε προτασιακός τύπος
- 2. $\varphi \to \psi$ όπου φ=Αντίφαση (Μορφή $\Psi \to \cdots$) ή ψ =Ταυτολογία (Μορφή ... \to **A**)
- **3.** $\phi \to \phi$ όπου φ οποιοσδήποτε προτασιακός τύπος
- 4. $\phi \leftrightarrow \phi$ όπου φ οποιοσδήποτε προτασιακός τύπος
- 5. Όλες οι μορφές τύπων νόμων της προτασιακής λογικής
- 6. Όλες οι μορφές τύπων συντακτικών αντικατάσεων στα αξιωματικά σχήματα του προτασιακού λογισμού

Προτεραιότητα λογικών συνδέσμων:

(1) \neg (2) \lor , \land (3) \rightarrow , \leftrightarrow

Αντίφαση: είναι τύπος που είναι Ψ για όλες τις αποτιμήσεις

Παράδειγμα: Ο τύπος $p \land \neg (q \rightarrow p)$ είναι αντίφαση

Λύση:

p	q	$p \land \neg (q \to p)$
A	A	$A \land \neg (A \to A) = A \land \neg A = \Psi$
A	Ψ	$A \land \neg (\Psi \to A) = A \land \neg A = \Psi$
Ψ	A	$\Psi \land \neg (A \to \Psi) = \Psi \land \neg \Psi = \Psi$
Ψ	Ψ	$\Psi \wedge \neg (\Psi \rightarrow \Psi) = \Psi \wedge \neg A = \Psi$

Γνωστές Αντιφάσεις είναι οι μορφές τύπων

- **φ** Λ ¬**φ** όπου φ οποιοσδήποτε προτασιακός τύπος
- $oldsymbol{arphi} au o \psi$ όπου φ=Ταυτολογία και ψ=Αντίφαση (Μορφή ${f A} o {f \Psi})$
- ¬φ όπου φ=Ταυτολογία
- $\varphi \leftrightarrow \neg \varphi$ όπου φ οποιοσδήποτε προτασιακός τύπος

Ικανοποιήσιμος: είναι τύπος που είναι Α σε τουλάχιστον μία αποτίμηση

Παράδειγμα: Ο τύπος p o (p o q) είναι ικανοποιήσιμος

Λύση:

the state of the s					
p	q	$p \to (p \to q)$			
A	A	$p \to (p \to q) = A \to (A \to A) = A \to A = A$			
A	Ψ	$p \to (p \to q) = A \to (A \to \Psi) = A \to \Psi = \Psi$			
Ψ	A	$p \to (p \to q) = \Psi \to (\Psi \to A) = \Psi \to A = A$			
Ψ	Ψ	$p \to (p \to q) = \Psi \to (\Psi \to \Psi) = \Psi \to A = A$			

KANONIKH ΔΙΑΖΕΥΚΤΙΚΗ ΜΟΡΦΗ

ΠΡΟΤΑΣΙΑΚΗ ΛΟΓΙΚΗ www.psounis.gr

Κανονική Διαζευκτική Μορφή:

Ένας τύπος είναι σε κανονική διαζευκτική μορφή (ΚΔΜ), αν είναι της μορφής:

$$\psi_1 \vee \psi_2 \vee ... \vee \psi_n$$

όπου κάθε ψι είναι της μορφής:

$$X_{i_1} \wedge X_{i_2} \wedge ... \wedge X_{i_s}$$

 $x_{i_1} \wedge x_{i_2} \wedge ... \wedge x_{i_m}$ Και τα x_{i_1} είναι μεταβλητές ή αρνήσεις προτασιακών μεταβλητών

Βήματα κατασκευής κανονικής διαζευκτικής μορφής

- 1. Κατασκευάζουμε τον πίνακα αλήθειας του τύπου.
- Εκφράζουμε σαν σύζευξη (and) κάθε γραμμή που αληθεύει. Στην σύζευξη θέτουμε p αν $\alpha(p) = A$ και $\neg p \alpha \vee \alpha(p) = \Psi$.
- Ο τύπος είναι η διάζευξη (or) όλων των συζεύξεων. 3.

Παράδειγμα: Να βρεθεί η Κ.Δ.Μ. του τύπου: $p \rightarrow \neg (q \rightarrow r)$

Λύση:

Κατασκευάζουμε τον πίνακα αλήθειας του τύπου:

p	q	r	$p \rightarrow \neg (q \rightarrow r)$
A	A	A	$p \rightarrow \neg (q \rightarrow r) = A \rightarrow \neg (A \rightarrow A) = A \rightarrow \Psi = \Psi$
A	A	Ψ	$p \rightarrow \neg (q \rightarrow r) = A \rightarrow \neg (A \rightarrow \Psi) = A \rightarrow A = A$
A	Ψ	A	$p \rightarrow \neg (q \rightarrow r) = A \rightarrow \neg (\Psi \rightarrow A) = A \rightarrow \Psi = \Psi$
A	Ψ	Ψ	$p \rightarrow \neg (q \rightarrow r) = A \rightarrow \neg (\Psi \rightarrow \Psi) = A \rightarrow \Psi = \Psi$
Ψ	A	A	$p \rightarrow \neg (q \rightarrow r) = \Psi \rightarrow \neg (A \rightarrow A) = \Psi \rightarrow \Psi = A$
Ψ	A	Ψ	$p \rightarrow \neg (q \rightarrow r) = \Psi \rightarrow \neg (A \rightarrow \Psi) = \Psi \rightarrow A = A$
Ψ	Ψ	A	$p \rightarrow \neg (q \rightarrow r) = \Psi \rightarrow \neg (\Psi \rightarrow A) = \Psi \rightarrow \Psi = A$
Ψ	Ψ	Ψ	$p \rightarrow \neg (q \rightarrow r) = \Psi \rightarrow \neg (\Psi \rightarrow \Psi) = \Psi \rightarrow \Psi = A$

H 2^η γραμμή: $p \wedge q \wedge \neg r$

- H 5^η γραμμή: $\neg p \land q \land r$
- H 6^η γραμμή: $\neg p \land q \land \neg r$
- H 7^{η} γραμμή: $\neg p \land \neg q \land r$
- H 8^η γραμμή: $\neg p \land \neg q \land \neg r$

Άρα η Κανονική Διαζευκτική Μορφή του τύπου είναι:

$$(p \land q \land \neg r) \lor (\neg p \land q \land r) \lor (\neg p \land q \land \neg r) \lor (\neg p \land \neg q \land r) \lor (\neg p \land \neg q \land \neg r)$$

ΣΥΝΟΛΟ ΠΡΟΤΑΣΙΑΚΟΝ ΤΥΠΟΝ

ΠΡΟΤΑΣΙΑΚΗ ΛΟΓΙΚΗ www.psounis.gr

Ένα σύνολο τύπων Τ θα λέμε ότι είναι ικανοποιήσιμο αν υπάρχει αποτίμηση που κάνει όλους τους τύπους αληθείς ταυτόχρονα

Πιο τυπικά αν υπάρχει αποτίμηση α: $\alpha(\phi)=A \ \forall \phi \in T$

Παράδειγμα: Να μελετηθεί αν το σύνολο τύπων

$$T = \{p \to q, p \lor \neg q\}$$

είναι ικανοποίησιμο:

Λύση: Κατασκευάζουμε τον πίνακα αλήθειας των τύπων του συνόλου τύπων:

p	q	$p \rightarrow q$	$p \vee \neg q$
A	A	A	A
A	Ψ	Ψ	A
Ψ	A	A	Ψ
Ψ	Ψ	A	A

Παρατηρούμε ότι στην αποτίμηση p=A,q=A αληθεύουν όλοι οι τύποι του συνόλου τύπων, άρα είναι ικανοποίησιμο

Το ισοδύναμο στον προτασιακό λογισμό είναι το συνεπές σύνολο τύπων

ΙΚΑΝΟΠΟΙΗΣΙΜΟ = ΣΥΝΕΠΕΣ

(με βάση τα θεωρήματα εγκυρότητας – πληρότητας)

Ένα σύνολο τύπων Τ θα λέμε ότι είναι μη ικανοποιήσιμο αν δεν υπάρχει αποτίμηση που κάνει όλους τους τύπους αληθείς ταυτόχρονα ...δηλαδή δεν είναι ικανοποίησιμο!

Παράδειγμα: Να μελετηθεί αν το σύνολο τύπων

$$T = \{q \to p, p \land \neg q, p \leftrightarrow q\}$$

είναι ικανοποίησιμο:

Λύση: Κατασκευάζουμε τον πίνακα αλήθειας των τύπων του συνόλου τύπων:

p	q	$q \rightarrow p$	$p \land \neg q$	$p \leftrightarrow q$
A	A	A	Ψ	A
A	Ψ	A	A	Ψ
Ψ	A	Ψ	Ψ	Ψ
Ψ	Ψ	A	Ψ	A

Παρατηρούμε ότι δεν υπάρχει αποτίμηση που να κάνει όλους τους τύπους Α ταυτόχρονα, άρα είναι ένα μη ικανοποιήσιμο σύνολο τύπων.

Το ισοδύναμο στον προτασιακό λογισμό είναι το αντιφατικό σύνολο τύπων

ΜΗ ΙΚΑΝΟΠΟΙΗΣΙΜΟ = ΑΝΤΙΦΑΤΙΚΟ

(με βάση τα θεωρήματα εγκυρότητας – πληρότητας)

TAYTOΛΟΓΙΚΗ ΣΥΝΕΠΑΓΩΓΗ $T \models \phi$

ΠΡΟΤΑΣΙΑΚΗ ΛΟΓΙΚΗ www.psounis.gr

Έστω Σύνολο Τύπων Τ και τύπος φ. Θα λέμε ότι :

- το σύνολο τύπων Τ ταυτολογικά συνεπάγεται τον τύπο φ ή
- Ο φ είναι <u>σημασιολογική συνέπεια</u> του Τ
- και συμβολίζουμε με $\mathbf{T} \models \boldsymbol{\varphi}$

αν και μόνο αν

- για κάθε αποτίμηση που ικανοποιούνται οι τύποι του T ικανοποιείται και ο ϕ
- 1. Αν ο φείναι ταυτολογία ισχύει η ταυτολογική συνεπαγωγή
- 2. Αν το Τ είναι αντιφατικό ισχύει η ταυτολογική συνεπαγωγή
- **3. Εξετάζουμε με βάση τον ορισμό**. Βρίσκουμε τις αποτιμήσεις που ικανοποιούνται οι τύποι του Τ (όλοι ταυτόχρονα). Σε αυτές πρέπει να αληθεύει και ο φ για να ισχύει η ταυτ.συνεπαγωγή.

Ο συμβολισμός: $\models \varphi$

- Θα σημαίνει ότι ο τύπος φ αληθεύει ανεξαρτήτως υποθέσεων
- που σημαίνει ότι ο τύπος **φ είναι ταυτολογία**.($\emptyset \vDash \boldsymbol{\varphi}$)

<u>Ο συμβολισμός</u>:φ ≡ ψ

- Θα σημαίνει ότι οι τύποι φ και ψ είναι ταυτολογικά ισοδύναμοι
- Ορίζεται ως: $φ \models ψ$ και $ψ \models φ$

Θα ισχύει ότι $\phi \equiv \psi$ αν οι ϕ , ψ έχουν τον ίδιο πίνακα αλήθειας

Πιο εποπτικά:

- 1. $\dots \models A$.
- 2. Ψ **⊢** ···.
- 3. Εφαρμογή του ορισμού

Παράδειγμα 1: Να μελετηθεί αν ισχύει η ταυτολογική συνεπαγωγή

$$\{p \to \neg q, q \lor p, \neg p \leftrightarrow q\} \vDash \neg p \to q$$

Λύση: Κατασκευάζουμε τον πίνακα αλήθειας των τύπων:

p	q	$p \rightarrow \neg q$	$q \lor p$	$\neg p \leftrightarrow q$		$\neg p \rightarrow q$
A	A	Ψ	A	Ψ		A
A	Ψ	A	A	A	\rightarrow	A
Ψ	A	A	A	A	\rightarrow	A
Ψ	Ψ	A	Ψ	Ψ		Ψ

Στις αποτιμήσεις που ικανοποιείται το σύνολο τύπων, ό τύπος φ είναι αληθής, άρα ισχύει η ταυτολογική συνεπαγωγή.

Παράδειγμα 2: Να μελετηθεί αν ισχύει η ταυτολογική συνεπαγωγή

$$\{p \to \neg q, q \lor p, \neg p \leftrightarrow q\} \vDash p \to q$$

Λύση: Κατασκευάζουμε τον πίνακα αλήθειας των τύπων:

p	q	$p \to \neg q$	$q \lor p$	$\neg p \leftrightarrow q$		$p \rightarrow q$
A	A	Ψ	A	Ψ		A
A	Ψ	A	A	A	\rightarrow	Ψ
Ψ	A	A	A	A	\longrightarrow	A
Ψ	Ψ	A	Ψ	Ψ		A

Στην 2^η αποτίμηση (p=A, q=Ψ) ικανοποιούνται οι τύποι του Τ, αλλά δεν ικανοποιείται ο φ. Άρα δεν ισχύει η ταυτολογική συνεπαγωγή.

ΝΟΜΟΙ ΠΡΟΤΑΣΙΑΚΗΣ ΛΟΓΙΚΗΣ

Οι Νόμοι της Προτασιακής Λογικής:

- Είναι ταυτολογίες.
- Τους χρησιμοποιούμε για να μετατρέψουμε έναν τύπο σε έναν ισοδύναμό του.

	Όνομα Νόμου	Διατύπωση
1	Αντιμεταθετικότητα	$\varphi \lor \psi \leftrightarrow \psi \lor \varphi$ $\varphi \land \psi \leftrightarrow \psi \land \varphi$
2	Προσεταιριστικότητα	$\varphi \wedge (\psi \wedge \chi) \leftrightarrow (\varphi \wedge \psi) \wedge \chi$ $\varphi \vee (\psi \vee \chi) \leftrightarrow (\varphi \vee \psi) \vee \chi$
3	Επιμεριστικότητα	$\varphi \lor (\psi \land \chi) \leftrightarrow (\varphi \lor \psi) \land (\varphi \lor \chi)$ $\varphi \land (\psi \lor \chi) \leftrightarrow (\varphi \land \psi) \lor (\varphi \land \chi)$
4	Διπλή Άρνηση	$\neg\neg\varphi\leftrightarrow\varphi$
5	Άρνηση Συνεπαγωγής	$\neg(\varphi \to \psi) \leftrightarrow \varphi \land \neg \psi$
6	De Morgan	$\neg(\varphi \lor \psi) \leftrightarrow \neg\varphi \land \neg\psi$ $\neg(\varphi \land \psi) \leftrightarrow \neg\varphi \lor \neg\psi$
7	Αντιθετοαναστροφή	$(\varphi \to \psi) \leftrightarrow (\neg \psi \to \neg \varphi)$
8	Εξαγωγή	$(\varphi \to (\psi \to \chi)) \leftrightarrow (\varphi \land \psi \to \chi)$
9	1 ^{ος} νόμος αντικατάστασης	$(\varphi \to \psi) \leftrightarrow (\neg \varphi \lor \psi)$
10	2 ^{ος} νόμος αντικατάστασης	$(\varphi \leftrightarrow \psi) \leftrightarrow ((\varphi \rightarrow \psi) \land (\psi \rightarrow \varphi))$
11	Αποκλεισμός Τρίτου	$\varphi \lor \neg \varphi$

ΠΡΟΤΑΣΙΑΚΗ ΛΟΓΙΚΗ www.psounis.gr

ΠΑΡΑΔΕΙΓΜΑ: Να βρεθεί ταυτολογικά ισοδύναμος τύπος του τύπου:

$$(p_1 \land \neg p_2) \rightarrow \neg (p_1 \lor p_2)$$

που χρησιμοποιεί μόνο τους σύνδεσμους {¬, →}

Λύση: Στον τύπο:

$$(p_1 \land \neg p_2) \rightarrow \neg (p_1 \lor p_2)$$

Εφαρμόζω το νόμο άρνησης συνεπαγωγής:

$$\neg (p_1 \rightarrow p_2) \rightarrow \neg (p_1 \lor p_2)$$

Εφαρμόζω το νόμο διπλής άρνησης:

$$\neg (p_1 \rightarrow p_2) \rightarrow \neg (\neg \neg p_1 \lor p_2)$$

Εφαρμόζω το 1ο νόμο αντικατάστασης:

$$\neg (p_1 \rightarrow p_2) \rightarrow \neg (\neg p_1 \rightarrow p_2)$$

Χρήσιμος για την χρήση των τύπων μπορεί να φανεί ο παρακάτω πίνακας:

Μετατροπή συνδέσμων	Χρήση του νόμου	Νόμος
Από \rightarrow σε \lor και αντίστροφα	1 ^{ος} νόμος αντικατάστασης	$(\varphi \to \psi) \leftrightarrow (\neg \varphi \lor \psi)$
Από → σε Λ και αντίστροφα	Νόμος άρνησης συνεπαγωγής	$\neg(\varphi \rightarrow \psi) \leftrightarrow \varphi \land \neg \psi$
Από V σε Λ και αντίστροφα	Νόμοι De Morgan	$\neg(\varphi \lor \psi) \leftrightarrow \neg\varphi \land \neg\psi$ $\neg(\varphi \land \psi) \leftrightarrow \neg\varphi \lor \neg\psi$
Από ↔ σε Λ, →και αντίστροφα	2 ^{ος} νόμος αντικατάστασης	$(\varphi \leftrightarrow \psi) \leftrightarrow ((\varphi \rightarrow \psi) \land (\psi \rightarrow \varphi))$

ΕΠΑΓΩΓΗ ΣΤΗΝ ΠΟΛΥΠΛΟΚΟΤΗΤΑ ΤΩΝ ΤΥΠΩΝ

ΠΡΟΤΑΣΙΑΚΗ ΛΟΓΙΚΗ www.psounis.gr

ΠΡΟΤΑΣΗ(φ): που θέλουμε να αποδείξουμε ότι ισχύει για κάθε προτασιακό τύπο

- Βάση Επαγωγής: Δείχνουμε ότι ισχύει για μία προτασιακή μεταβλητή p, δηλαδή ότι ισχύει η ΠΡΟΤΑΣΗ(p)
 - Κάνουμε απόδειξη ότι ισχύει η πρόταση για μια προτασιακή μεταβλητή.
- Επαγωγική Υπόθεση: Υποθέτουμε ότι ισχύει για δύο τύπους φ,ψ, δηλαδή ότι ισχύουν ΠΡΟΤΑΣΗ(φ), ΠΡΟΤΑΣΗ(ψ)
- Επαγωγικό Βήμα: Δείχνουμε ότι ισχύει για τους τύπους $(\neg \varphi)$, $(\varphi \lor \psi)$, $(\varphi \land \psi)$, $(\varphi \rightarrow \psi)$, $(\varphi \leftrightarrow \psi)$ δηλαδή ότι ισχύουν:

 Π POTAΣH($\neg \varphi$), Π POTAΣH($\varphi \lor \psi$), ΠΡΟΤΑΣΗ(φ ∧ ψ), ΠΡΟΤΑΣΗ(φ → ψ) $ΠΡΟΤΑΣΗ(φ \leftrightarrow ψ)$

Ορισμός: Ένα σύνολο συνδέσμων θα λέγεται πλήρες σύνολο συνδέσμων (ή επαρκές σύνολο συνδέσμων) ανν κάθε προτασιακός τύπος μπορεί να μετατραπεί σε έναν ισοδύναμό που χρησιμοποιεί μόνο συνδέσμους από το σύνολο.

- Εμπειρικά για να είναι ένα σύνολο συνδέσμων πλήρες, απαιτείται να υπάρχει σε αυτό το - και τουλάχιστον ένας ακόμη διμελής σύνδεσμος.
- Για να δείξω ότι ένα σύνολο συνδέσμων είναι πλήρες κάνω επαγωγή στην πολυπλοκότητα των τύπων:
- Για να δείξω ότι ένα σύνολο συνδέσμων ΔΕΝ είναι πλήρες κατασκευάζω έναν τύπο που δεν μπορεί να εκφραστεί χρησιμοποιώντας τους συνδέσμους του συνόλου.

ΠΑΡΑΔΕΙΓΜΑ: Δείξτε ότι κάθε προτασιακός τύπος έχει ίδιο αριθμο αριστερών και δεξιών παρενθέσεων. Λύση:

Βάση Επαγωγής: Δείχνουμε ότι ισχύει για μία προτασιακή μεταβλητή p, δηλαδή ότι ο τύπος p έχει ίσες αριστερές και δεξιές παρενθέσεις

Απόδειξη: Ο τύπος p έχει 0 αριστερές και 0 δεξιές παρενθέσεις. Συνεπώς ισχύει.

Επαγωγική Υπόθεση: Υποθέτουμε ότι ισχύει για δύο τύπους φ , ψ , δηλαδή ότι ισχύει $L_{\varphi}=R_{\varphi}$ και $L_{\psi}=R_{\psi}$. (Συμβολίζουμε με L_x το πλήθος των αριστερών παρενθέσεων του τύπου x, και με R_x το πλήθος των δεξιών παρενθέσεων του τύπου x)

Επαγωγικό Βήμα: Δείχνουμε ότι ισχύει για τους τύπους $(\neg \varphi)$, $(\varphi \lor \psi)$, $(\varphi \land \psi)$, $(\varphi \rightarrow \psi)$, $(\varphi \leftrightarrow \psi)$ δηλαδή ότι:

- Ο τύπος $(\neg \varphi)$ έχει ίσο αριθμό αριστερών και δεξιών παρενθέσεων. Πράγματι ο τύπος $(\neg \varphi)$ έχει $L_{\varphi}+1$ αριστερές παρενθέσεις και $R_{\varphi}+1$ δεξιές παρενθέσεις. Από επαγωγική υπόθεση έχω $L_{\varphi}=R_{\varphi}$ άρα και $L_{\omega} + 1 = R_{\omega} + 1$
- <u>Ο τύπος $(\phi \lor \psi)$ </u> έχει ίσο αριθμό αριστερών και δεξιών παρενθέσεων. Πράγματι ο τύπος $(\varphi \lor \psi)$ έχει $L_{\varphi} + L_{\psi} + 1$ αριστερές παρενθέσεις και $R_{\varphi} + R_{\psi} + 1$ δεξιές παρενθέσεις. Από επαγωγική υπόθεση έχω $L_{\varphi}=R_{\varphi}$ και $L_{\psi}=R_{\psi}$, άρα και $L_{\varphi}+L_{\psi}+1$ = $R_{\omega} + R_{\psi} + 1$.
- Η απόδειξη για τους τύπους $(\varphi \wedge \psi)$, $(\varphi \rightarrow \psi)$, $(\varphi \leftrightarrow \psi)$ είναι όμοια με την $(\varphi \lor \psi)$.

ΤΟ ΑΞΙΩΜΑΤΙΚΟ ΣΥΣΤΗΜΑ ΤΟΥ Π.Λ.

ΠΡΟΤΑΣΙΑΚΟΣ ΛΟΓΙΣΜΟΣ www.psounis.gr

Ο ΠΛ (προτασιακός λογισμός) είναι το αξιωματικό σύστημα που:

- Έχει ως αξιώματα (αξιωματικά σχήματα) τα: ΑΣ1,
 ΑΣ2, ΑΣ3.
- Και ως αποδεικτικό κανόνα τον Modus Ponens (M.P.)

Σε αυτό το αξιωματικό σύστημα μελετάμε αν ισχύουν:

- Τυπική Συνεπαγωγή Τ ⊢ φ
 όταν ισχύουν οι υποθέσεις του Τ αν εξάγεται με διαδοχικές εφαρμογές του MP ο τύπος φ
 - **Τυπικό Θεώρημα** ⊢ *φ* δηλαδή αν εξάγεται ο τύπος φ με διαδοχικές εφαρμογές MP

Στις τυπικές αποδείξεις επιτρέπεται να χρησιμοποιήσουμε:

1) ΥΠΟΘΕΣΕΙΣ του συνόλου τύπων

2)ΑΞΙΩΜΑΤΙΚΑ ΣΧΗΜΑΤΑ και Συντακτικές αντικ/σεις σε αυτα: ΑΣ1: $\phi \rightarrow (\psi \rightarrow \phi)$

AΣ2:
$$(φ \rightarrow (ψ \rightarrow χ)) \rightarrow ((φ \rightarrow ψ) \rightarrow (φ \rightarrow χ))$$

AΣ3:
$$(\neg \phi \rightarrow \neg \psi) \rightarrow ((\neg \phi \rightarrow \psi) \rightarrow \phi)$$

3) MODUS PONENS

Αν ισχύει Φ Και ισχύει Φ→Ψ

Τότε ισχύει Ψ (από Modus Ponens)

4) ΤΥΠΙΚΑ ΘΕΩΡΗΜΑΤΑ

5) ΤΥΠΙΚΕΣ ΣΥΝΕΠΑΓΩΓΕΣ Εφόσον δίνονται από την εκφώνηση

<u>ΓΕΣ</u>

ΠΡΟΣ ΤΑ ΕΜΠΡΟΣ ΣΥΛΛΟΓΙΣΤΙΚΗ:

Να αποδειχθεί ότι

$$\{ \varphi \rightarrow (\psi \rightarrow \chi), \varphi \rightarrow \psi \} \vdash \varphi \rightarrow \chi$$

ΛΥΣΗ:

Η τυπική απόδειξη είναι:

- 1. $\phi \rightarrow (\psi \rightarrow \chi) \ Y\pi \acute{o}\theta εση$ 2. $(\phi \rightarrow (\psi \rightarrow \chi)) \rightarrow ((\phi \rightarrow \psi) \rightarrow (\phi \rightarrow \chi)) \ AΣ2$
- 3. $(\phi \rightarrow \psi) \rightarrow (\phi \rightarrow \chi)$ MP1,2
- 4. $\phi \rightarrow \psi$ Υπόθεση
- 5. $\phi \rightarrow \chi$ MP4,3

ΠΡΟΣ ΤΑ ΠΙΣΩ ΣΥΛΛΟΓΙΣΤΙΚΗ:

Να αποδειχθεί ότι

$$\neg \phi \vdash (\neg \psi \rightarrow \phi) \rightarrow \psi$$

ΛΥΣΗ:

Η τυπική απόδειξη είναι:

- 1. $\neg \phi \ Yπόθεση$ 2. $\neg \phi \rightarrow (\neg \psi \rightarrow \neg \phi) \ ΣΑ στο ΑΣ1 όπου <math>\phi$: $\neg \phi$, ψ : $\neg \psi$
- 3. $\neg \psi \rightarrow \neg \phi$ MP1.2
- 3. $\neg \psi \rightarrow \neg \phi$ MP1,2
- 4. $(\neg \psi \rightarrow \neg \phi) \rightarrow ((\neg \psi \rightarrow \phi) \rightarrow \psi)$ ΣΑ στο ΑΣ3 όπου φ: ψ , ψ : φ 5. $(\neg \psi \rightarrow \phi) \rightarrow \psi$ MP3.4

ΤΥΠΙΚΟ ΘΕΩΡΗΜΑ:

Να αποδειχθεί ότι

$$\vdash (\phi \rightarrow \chi) \rightarrow (\phi \rightarrow \phi)$$

ΛΥΣΗ:

Η τυπική απόδειξη είναι:

- . $\phi \rightarrow (\chi \rightarrow \phi)$ ΣΑ στο ΑΣ1 όπου ψ: χ
- 2. $(\phi \rightarrow (\chi \rightarrow \phi)) \rightarrow ((\phi \rightarrow \chi) \rightarrow (\phi \rightarrow \phi)) \Sigma A \sigma \tau o A \Sigma 2 \circ \pi o u \psi : \chi$
- 3. $(\phi \rightarrow \chi) \rightarrow (\phi \rightarrow \phi) \text{ MP1,2}$

ΘΕΩΡΗΜΑΤΑ ΤΟΥ ΠΡΟΤΑΣΙΑΚΟΥ ΛΟΓΙΣΜΟΥ

ΠΡΟΤΑΣΙΑΚΟΣ ΛΟΓΙΣΜΟΣ www.psounis.gr

Θεώρημα (Απαγωγής):

Av $T \cup \{\varphi\} \vdash \psi$ tote $T \vdash \varphi \rightarrow \psi$

Ευθεία χρήση:

Aν γνωρίζουμε (π.χ. από την εκφώνηση) ότι: $T \cup \{\phi\}$ $\vdash \psi$ Τότε από το θεώρημα απαγωγής «έπεται» (ή «προκύπτει άμεσα») ότι ισχύει: $T \vdash φ \rightarrow ψ$ Αντίστροφη χρήση:

Για να δείξουμε ότι: $T \vdash φ → ψ$

Από το θεώρημα Απαγωγής αρκεί να δείξουμε ότι: $T \cup \{\varphi\} \vdash \psi$

Θεώρημα (Αντιθετοαναστροφής): $T \cup \{oldsymbol{arphi}\} \vdash eg oldsymbol{\psi}$ αν και μόνο αν $T \cup \{oldsymbol{\psi}\} \vdash eg oldsymbol{arphi}$

Θεώρημα (Εις Άτοπο Απαγωγής):

Aν $T \cup \{ \phi \}$ είναι αντιφατικό τότε $T \vdash \neg \phi$

Ευθεία χρήση: Αν γνωρίζουμε (π.χ. από την εκφώνηση) ότι: $T \cup \{\varphi\}$ είναι αντιφατικό

Τότε από το θεώρημα απαγωγής σε άτοπο «έπεται» (ή «προκύπτει άμεσα») ότι ισχύει: $T \vdash \neg φ$

Αντίστροφη χρήση:

Για να δείξουμε ότι: $T \vdash \neg \varphi$ Από το θεώρημα απαγωγής σε άτοπο αρκεί να δείξουμε ότι: $T ∪ {φ}$ είναι αντιφατικό.

Αντιφατικό Σύνολο Τύπων:

Ένα σύνολο τύπων Τ καλείται αντιφατικό αν υπάρχει ένας τύπος ψ τέτοιος ώστε να ισχύει:

Συνεπές σύνολο τύπων:

Σύνολο τύπων που δεν είναι αντιφατικό

ΑΣΚΗΣΗ: Να αποδείξετε ότι:

 $\vdash ((\psi \rightarrow \neg \psi) \rightarrow \neg \chi) \rightarrow (\chi \rightarrow \neg (\psi \rightarrow \neg \psi))$ Απάντηση:

Από το θεώρημα Απαγωγής αρκεί να δείξω:

 $(\psi \rightarrow \neg \psi) \rightarrow \neg \chi \vdash \chi \rightarrow \neg (\psi \rightarrow \neg \psi)$

Από το θεώρημα Απανωγής αρκεί να δείξω: $\{(\psi \rightarrow \neg \psi) \rightarrow \neg \chi, \chi\} \vdash \neg(\psi \rightarrow \neg \psi)$

Από το θεώρημα Αντιθετοαναστροφής αρκεί να δείξω: $\{(\psi \rightarrow \neg \psi) \rightarrow \neg \chi, \psi \rightarrow \neg \psi\} \vdash \neg \chi$

που έχει τυπική απόδειξη: $\psi \rightarrow \neg \psi \ Υπόθεση$

(Ψ → ¬Ψ) → ¬χ Υπόθεση $\neg \chi$ MP1,2

ΑΣΚΗΣΗ: Να αποδείξετε ότι: $\{\chi \rightarrow \neg \psi, \, \Phi\} \vdash \chi \rightarrow \neg (\Phi \rightarrow \psi)$

Απάντηση:

Από το θεώρημα απαγωγής αρκεί να δείξουμε ότι: $\{\chi \rightarrow \neg \psi, \phi, \chi\} \mid \neg (\phi \rightarrow \psi)$

Από το θ.απαγωγής σε άτοπο αρκεί να δείξουμε ότι το σύνολο τύπων: T={ $\chi \rightarrow \neg \psi$, φ , χ , $\varphi \rightarrow \psi$ } είναι αντιφατικό.

Και ακολουθούν οι τυπικές αποδείξεις: ΤΗ ψ και ΤΗ --ψ

Θεώρημα (Εγκυρότητας): Αν $T \vdash \varphi$ τότε $T \vDash \varphi$

(ευθεία χρήση) Αν γνωρίζουμε (π.χ. από την εκφώνηση) ότι $T \vdash \varphi$. Τότε από το θεώρημα εγκυρότητας «έπεται» ότι ισχύει: $T \vDash \varphi$

(αντίστροφη χρήση) Για να δείξουμε ότι: $T \models \varphi$. Από το θεώρημα

εγκυρότητας αρκεί να δείξουμε ότι: $T \vdash \varphi$ Θεώρημα (Πληρότητας): Αν $T \vDash \varphi$ τότε $T \vdash \varphi$

(ευθεία χρήση) Αν γνωρίζουμε (π.χ. από την εκφώνηση) ότι $T \vDash \varphi$.

Τότε από το θεώρημα πληρότητας «έπεται» ότι ισχύει: $T \vdash \varphi$

(αντίστροφη χρήση) Για να δείξουμε ότι: $T \vdash \varphi$. Από το θεώρημα πληρότητας αρκεί να δείξουμε ότι: $T \models \varphi$

ΑΠΟΔΕΙΞΕΙΣ ΤΥΠΙΚΩΝ ΘΕΩΡΗΜΑΤΩΝ

Απόδειξη 1 (χωρίς Θεωρήματα Προτασιακού Λογισμού)

Η τυπική απόδειξη είναι:

- 1. $\phi \rightarrow ((\phi \rightarrow \phi) \rightarrow \phi)$ ΣΑ στο ΑΣ1 όπου $\phi: \phi, \psi: \phi \rightarrow \phi$
- 2. $(\phi \rightarrow ((\phi \rightarrow \phi) \rightarrow \phi)) \rightarrow ((\phi \rightarrow (\phi \rightarrow \phi)) \rightarrow (\phi \rightarrow \phi))$ ΣA στο AΣ2 όπου $\phi:\phi, \psi:\phi \rightarrow \phi,\chi:\phi$
- 3. $(\phi \rightarrow (\phi \rightarrow \phi)) \rightarrow (\phi \rightarrow \phi)$ MP1,2
- 4. $\phi \rightarrow (\phi \rightarrow \phi)$ ΣΑ στο ΑΣ1 όπου ϕ : ψ , ψ : ϕ
- 5. $\phi \rightarrow \phi$ MP3,4

Απόδειξη 2 (με Θεωρήματα Προτασιακού Λογισμού)

Από το θεώρημα απαγωγής αρκεί να δείξω:

$$\varphi \vdash \varphi$$

που έχει τυπική απόδειξη:

1. φ Υπόθεση

$\vdash \phi \to \neg \neg \phi$

Από το θεώρημα Απαγωγής αρκεί να δείξω:

$$\varphi \vdash \neg \neg \varphi$$

Από το θεώρημα Αντιθετοαναστροφής αρκεί να δείξω:

$$\neg \varphi \vdash \neg \varphi$$

που έχει τυπική απόδειξη:

1. ¬φ Υπόθεση

$\textbf{F} \lnot \lnot \phi \rightarrow \phi$

Από το θεώρημα Απαγωγής αρκεί να δείξω:

$$\neg\neg\phi \vdash \varphi$$

που έχει τυπική απόδειξη:

- 1. ¬¬φ Υπόθεση
- 2. $\neg \neg \phi \rightarrow (\neg \phi \rightarrow \neg \neg \phi)$ ΣΑ στο ΑΣ1 όπου ϕ : $\neg \neg \phi$, ψ : $\neg \phi$
- 3. $\neg \phi \rightarrow \neg \neg \phi$ MP1,2
- 4. $(\neg \phi \rightarrow \neg \neg \phi) \rightarrow ((\neg \phi \rightarrow \neg \phi) \rightarrow \phi)$ ΣA στο AΣ3 όπου ϕ : $\neg \phi$, ψ : ϕ
- 5. $(\neg \phi \rightarrow \neg \phi) \rightarrow \phi$ MP3,4
- 6. $\neg \phi \rightarrow \neg \phi$ ΣΑ στο Τυπικό Θεώρημα $\vdash \phi \rightarrow \phi$ όπου ϕ : $\neg \phi$
- 7. φ MP6,5

Και παραθέτουμε την τυπική απόδειξη του τυπικού θεωρήματος $\vdash \phi \rightarrow \phi$