Classification of First-Episode Psychosis (FEP) Patients with Live Face Processing

Rahul Singh^{1,2}, Dhananjay Bhaskar⁴, Vinod Srihari³, Cenk Tek³, Xian Zhang³, Adam Noah³, Smita Krishnaswamy^{*1,2,4}, and Joy Hirsch^{*1,3,4,5}
¹Wu Tsai Institute, ²Department of Computer Science, ³Department of Psychiatry, ⁴Yale School of Medicine, Yale University, USA

⁵Department of Medical Physics and Biomedical Engineering, University College London, UK

Abstract

- A deep learning method for classifying first-episode psychosis (FEP) patients from neural and behavioral recordings during a novel live face-to-face interaction paradigm
- Recurrent encoder-decoder networks to learn (joint) low-dimensional representations of multimodal brain imaging and behavioral data, e.g. fNIRS, EEG, and facial expressions
- We show that these (joint) learned representations improve FEP classification and also can predict specific GAF role scores (measure of functioning)

Experimental Setup "Live interactive neuroscience" approach [1] smart glass smart glass smart glass (transparent) (transparent) (opaque) Simultaneous fNIRS/EEG recordings subject resting period direct/diverted face gaze movie watching movie watching (4s) subject watches face direct/diverted face gaze (5s) occluded actor's face rest rest rest $12 \mathrm{s}$ $12 \mathrm{s}$ 30 60 50 time (seconds)

- 19 typically developed (TD) individuals and 14 FEP patients
- Functional brain responses are acquired with Shimadzu LABNIRS (134 channels) and EEG (32 channels) along with facial expression recordings
- 24 blocks (each of 30 seconds) of brain activity where the actor is stimulated by different emotionally valenced videos

References

- [1] Hirsch et al. Neural correlates of eye contact and social function in autism spectrum disorder. *Plos one*, 2022.
- [2] Baltrusaitis et al. OpenFace 2.0: facial behavior analysis toolkit. In 2018 13th IEEE International Conference on Automatic Face Gesture Recognition, 2018.
- [3] Busch et al. Multi-view manifold learning of human brain-state trajectories. *Nature computational science*, 2023.
- [4] Zhang et al. SVM prediction of individual ADOS scores based on neural responses during live eye-to-eye contact. *Scientific Reports*, 2024.
- [5] De Miras et al. Schizophrenia classification using machine learning on resting state EEG signal. Biomedical Signal Processing and Control, 2023.

Acknowledgements

Participants provided written informed consent in accordance with guidelines approved by the Yale University Human Investigation Committee (HIC #1501015178). NIH NIMH R01MH111629 (JH); NIH NIMH R01MH107573 (JH); NIH NIMH R01MH119430 (JH); Pfeiffer, Gustavus and Louise Research Foundation. Findings are solely the responsibility of authors and do not represent official views of NIH

- The action units (AU) of facial expressions were computed using OpenFace [2]
- The encoder and decoder framework consists of multiple long short-term memory (LSTM) layers to learn latent representations (128 dimensional) from multiple modalities including fNIRS, EEG, and facial expressions.
- The learned representations are further fed to a multilayer perceptron (MLP) for classification in trials and subjects withheld during training.
- We utilize a nonlinear dimensionality reduction method, tPHATE [3], to visualize the learned embeddings in 3-D

Results

- Incorporating joint representations from fNIRS and EEG (theta band) data **enhances accuracy** to 88%
- The classification accuracy achieved using fNIRS data on withheld subject blocks is 85%, outperforming traditional support vector machine (SVM) accuracy of 71% and stand-alone MLP accuracy of 67%
- The correlation coefficient between predicted scores and true GAF role scores is computed at 0.4789
- Visualizing the learned embeddings in 3-D space using tPHATE enables the identification of task switching times

Samples of EEG to fNIRS translation

To download the poster and more information \rightarrow

