Title of the Document

Author Name

June 22, 2024

Contents

Title of the Document 2

2.6 Exercises

- **2.1** Let (X,d) be a metric space and $S \subset X$. Show that $\overline{S}^0 \subset S^0 = \emptyset$.
- **2.2** Show that for an arbitrary choice of $a, b \in \mathbb{R}$, the closed disk $(x a)^2 + (y b)^2 \le r^2$ is in a bounded set in \mathbb{R}^2 .
- **2.3** Let (X,d) be a metric space and for $x,y \in X$. Show that if $d(x,y) < \epsilon$ for every $\epsilon > 0$, then x = y.
- (i). Assume $\overline{S}^0 \subset S$.

$$\exists x \in \overline{S}^0 \quad \exists \epsilon > 0 : \quad B_{\epsilon}(x) \subseteq S^0.$$

Then by
$$x \in \overline{S}^0 \Rightarrow \forall \epsilon > 0$$
: $B_{\epsilon}(x) \subseteq S$.

However, by $x \notin S^0$, this value of $\epsilon > 0$ implies

$$B_{\epsilon}(x) \cap S^0 = \emptyset \Rightarrow B_{\epsilon}(x) \not\subseteq S^0$$
,

which is a contradiction, implying our assumption that $x \in \overline{S}^0 \cap S^0$ must be false and $\overline{S}^0 \cap S^0 = \emptyset$.

(ii). A set S is bounded iff $\exists M \in \mathbb{R}^+$: $\forall x, y \in S \quad d(x, y) < M$.

Let $a, b, r \in \mathbb{R}$.

$$S = \{(x, y) \in \mathbb{R}^2 \mid (x - a)^2 + (y - b)^2 \le r^2\}$$

$$\Rightarrow x^2 - 2ax + a^2 + y^2 - 2yb + b^2 < r^2$$

$$\Rightarrow x^2 - 2ax + y^2 - 2yb < r^2 - a^2 - b^2$$

$$\Rightarrow x^2 + u^2 \le r^2 - a^2 - b^2 + 2ax + 2ub$$

Need to show x^2 is bounded.

$$(x-a)^2 \le r^2 \Rightarrow |x-a| \le |r| \Rightarrow |x-a| \le |r| + |a|$$

$$\Rightarrow |x| = |x - a + a| \le |x - a| + |a| \le |r| + |a|$$

Sure! Here is the LaTeX code for the given images:

$$\begin{vmatrix} 1 \\ 0 \\ a \end{vmatrix} \Rightarrow |y| \le r + |a|$$

$$\Rightarrow x^2 \le (r + |b|)^2$$

Same for
$$y$$
, $y^2 \le (r + |b|)^2$

$$\forall z = (x, y) \in D_{r+|a|}$$

$$||z|| = \sqrt{x^2 + y^2}$$

Title of the Document 3

$$<\sqrt{(r+|a|)^2+(r+|b|)^2}$$

Thus, if $M = \sqrt{(r+|a|)^2 + (r+|b|)^2}$, the bound holds.

*1S normed bounded set = distance boundedness.

Let
$$x = (x_1, x_2), y = (y_1, y_2) \in D_{r,ab}$$
,

$$z_i \in \{x_i, y_i\}$$

$$(z_i - a)^2 + (z_i - b)^2 = r^2$$

$$\Rightarrow d(z_i, [a, b]) = \sqrt{(z_i - a)^2 + (z_i - b)^2} \le r$$

$$\therefore d(x,y) \le d(x,[a,b]) + d(y,[a,b])$$

$$= \sqrt{(x_1 - a)^2 + (x_2 - b)^2} + \sqrt{(y_1 - a)^2 + (y_2 - b)^2}$$

$$\leq r + r = 2r$$
.

This code should produce a document that mirrors the math from the images provided.

(iii) Suppose that $x \neq y$. Then $d(x,y) \neq 0$. Thus if we choose $\epsilon = d(x,y) \Rightarrow \epsilon > 0$, but $d(x,y) \in \epsilon$ (contradiction).

(contradiction) Suppose x=y, and so d(x,y)=0. Choose $\epsilon>0$ such that $\epsilon=d(x,y)$. Then we must have $d(x,y)<\epsilon=\frac{d(0,0)}{2}$, which is a contradiction, as this implies: $d(x,y)=0 \Rightarrow d(x,y)=0 < \epsilon=\frac{\epsilon}{2} \Rightarrow 0 < \frac{\epsilon}{2} \Rightarrow 2\epsilon < \epsilon$ Thus x=y.

(iv) Let $(V, \| \cdot \|)$ be a normed vector space. Then let r > 0 and $x \in V$. Then $B_r(x) = \{y \in V \mid d(x, y) < r\}$ $B_{\| \cdot \| + r}(0) = \{y \in V \mid d(0, y) < r + \| x \| \}$

Let
$$y \in B_r(x)$$
. $d(0,y) \le d(0,x) + d(x,y) \le ||x|| + r \Rightarrow B_r(x) \subseteq B_{\|\cdot\|+r}(0)$

(v) Suppose S is bounded. Then $\exists M \in \mathbb{R} : \forall x \in S, ||x|| \leq M$. (Equivalent to $\exists M \geq 0 : \forall x \in S, x \in B_M(0)$)