Flashlight Tracking Aircraft

Satvik Saha

Question A flashlight is aimed at an aircraft flying at an altitude h with a constant velocity \vec{v} . Its beam continues to point directly towards the position of the aircraft as it moves. At t = 0, its instantaneous angular velocity is ω_0 . Express the instantaneous angular velocity ω of the rotation of the flashlight's beam as a function of time.

Solution We have

$$\tan \theta = \frac{vt}{h}$$

$$\theta = \tan^{-1} \frac{vt}{h}$$

$$\frac{d\theta}{dt} = \omega(t) = \frac{1}{1 + (\frac{vt}{h})^2} \cdot \frac{v}{h}$$
(1)

Note that $\omega(0) = \omega_0 = \frac{v}{h}$. Thus

$$\omega(t) = \frac{\omega_0}{1 + \omega_0^2 t^2} \tag{2}$$