$$(y) = \alpha + \tau (n-3)$$

$$(5) \qquad \boxed{2 + \binom{n-2}{1-1} + n-1}$$

$$\Theta + \left(n\right) \begin{cases} \alpha e : n = 0 \\ z + (n-1) + \alpha e \end{cases}$$

paro ①
$$2\pi(n-1) + cxe$$

paro ② $2[z\tau(n-2) + cxe] + cxe =$
 $= 4\tau(n-2) + 3 cxe$
 $\pi + \int_{c} t\tau(n-3) + cxe = \int_{c} 3 cxe =$
 $= 8 + \int_{c} (n-3) + f cxe = \int_{c} 3 cxe =$
 $= 8 + \int_{c} (n-3) + f cxe = \int_{c} 3 cxe =$
 $\pi + \int_{c} (n-1) + \int_{c} ($

paso ()
$$16T\left(\frac{n}{2}\right) + N^{4}$$

$$16 + \left[\frac{161}{4}\right] + \left(\frac{N}{2}\right)^{4} + N^{4} =$$

$$= 256 + \left(\frac{N}{4}\right) + 16 + \frac{N^{4}}{16} + N^{4} =$$

$$= 256 + \left(\frac{N}{4}\right) + 2N^{4}$$

$$16^{i}$$
 $T\left(\frac{N}{2^{i}}\right)$ + iN^{4}

$$\frac{N}{2^{i}} = 1$$

$$N = 2^{i}$$

$$= (2^{i})^{H} = 1$$

$$\log_{2}(n) = i$$

(sentros)

$$= H^{H} \cdot (N) \leq gau + \left(\frac{N}{(N + gau_{\underline{c}})} \right) T^{H}$$

(9)

TIETINA	
TIEMPO	wu le si n = 8
,-y-	∆= 1
2	1=2
3	1=4
Ĺ	J = 2i-1
coso base	
	2i-1 > v
	1-1 > was 2(n)
(agz(n)	
4	
1=1	
FOR	
	N=2
1	H= N + N
2	3 = n + n - 1
3	Z = n + n - 2
i	n+n-(i-1)
७०० ४०८८	
	n +n + i +1 (1
	n+n+1 <1+i
	n * n +/// L i
N *N	n + n <i< td=""></i<>
\sum_{i}	

$$T(n) = \sum_{i=1}^{\log_2(n)} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-2} \sum_{i=1}^{n-2} \sum_{j=1}^{n-2} \sum_{j=1}^{n-2} \sum_{i=1}^{n-2} \sum_{j=1}^{n-2} \sum_{i=1}^{n-2} \sum_{j=1}^{n-2} \sum_{i=1}^{n-2} \sum_{j=1}^{n-2} \sum_{i=1}^{n-2} \sum_{j=1}^{n-2} \sum_{j=1}^{n-2} \sum_{i=1}^{n-2} \sum_{j=1}^{n-2} \sum_{i=1}^{n-2} \sum_{j=1}^{n-2} \sum_{j=1}^{n-2} \sum_{i=1}^{n-2} \sum_{j=1}^{n-2} \sum_{i=1}^{n-2} \sum_{j=1}^{n-2} \sum_{j$$