lecture 17

virtual vs. Physical memory memory

virtual memory physical memory

(running program)

- RAM
- disk
- flash
- e + c . ..

Sizes of Memory 210 x 1 KB (kilobyte) ~ 1 MB (megabyte) 2°° ~ | GB (gigabyte) $2^{40} \approx 1$ TB (teracyte) $2^{50} \approx 1$ PB (petabyte) $2^{60} \approx | EB (exabyte)$

Floppy disk (1.4 MB)

magne tic

CD (166), DVD (10 GB)

optical (laser)

Example: I page = 2¹² bytes

How many pages?

Virtual Hemory (2³² bytes)

RAM (e.g. I GB)

i.e. DRAM

HDD (e.g. I TB)

to a physical address?

Virtual address.

31 30

12 11 10

Virtual page number | page offset

How translate a virtual address

virtual address.

31 30

12 11 10

Virtual page number | page offset

fable | Copy

100kup | 12 11

physical page number page offset

physical page number page offset

physical address (main memory - RAM)

The part of Memory holding page tables is not mapped using page tables. Rather, the VAP mapping is fixed.

Note (ASIDE)

Don't need data structure to hold all possible (VPN, phys. Paje). e.g. use hash table instead.

Page fault

· When a program tries to access an address that belongs to a page on HDD, this page must be brought into main memory.

- a page must be moved ont.
- · The page table must be updated. . All this is done by a kernel
 - program called the page fault handler

page swaps later in More on course (and in COMP 310)

