MPEI 2024/25 - PL 5

Classificador Naïve Bayes

Palavras chave: Regra de Bayes, independência, classificador Naïve Bayes, Naïve Bayes binário, classificação de texto, análise de sentimento, *Machine Learning*, *Bag of Words* e filtragem de SPAM.

Recomenda-se a leitura do capítulo "Naïve Bayes and Sentiment Classification" disponível em https://web.stanford.edu/~jurafsky/slp3/4.pdf

Responda às seguintes questões em Matlab:

1. Considere a informação relativa a um exemplo simples de *sentiment analysis* – retirado do capítulo *Naïve Bayes and Sentiment Classification* referido acima – apresentada na Tabela:

	Categoria	"Documentos"
Treino	-	just plain boring
	-	entirely predictable and lacks energy
	-	no surprises and very few laughs
	+	very powerful
	+	the most fun film of the summer
Teste	?	predictable with no fun

- (a) Comece por criar um vetor com a lista de palavras únicas no conjunto de treino. Deve ser criado de forma automática, numa função, tendo por entrada um *cell array* com o conteúdo dos documentos.
- (b) Crie uma matriz com informação sobre o número de ocorrências de cada uma das palavras em cada um dos documentos. As linhas devem representar o documento e as colunas a palavra.
- (c) Crie um vetor com informação da categoria correspondente a cada linha da matriz da alínea anterior. Sugestão: usar '+' e '-' para representar as categorias.
- (d) Com base nas variáveis que criou anteriormente, calcule, considerando Laplace (add 1) smoothing:
 - P(-) e P(+)
 - P("predictable"|+), P("no"|+), P("fun"|+)
 - P("predictable"|-), P("no"|-), P("fun"|-)
 - Com base nos valores obtidos anteriormente, determine qual a categoria mais provável para a frase de teste? Sugestão: não considere a palavra "with".

2. Estamos interessados em avaliar o Classificador Naïve Bayes Binário na **deteção de SPAM**. Como habitual neste problema, consideremos que o sistema se baseia na ocorrência ou não de um conjunto de palavras relevantes. As palavras e a sua ocorrência ou não num conjunto de 20 emails encontram-se na Tabela seguinte (disponível em formato .CSV em http://bit.ly/4eW4Fgy).

Email	Offer	Click	Free	Money	Meeting	Project	Win	Urgent	Prize	Class
1	1	1	0	1	0	0	1	1	1	SPAM
2	0	0	0	0	1	1	0	0	0	OK
3	1	0	1	1	0	0	1	0	0	SPAM
4	0	0	0	0	1	0	0	0	0	OK
5	1	1	0	1	0	0	1	1	1	SPAM
6	0	0	0	0	1	1	0	0	0	OK
7	1	0	1	0	0	0	0	0	0	SPAM
8	0	0	0	0	1	1	0	0	0	OK
9	1	1	1	1	0	0	1	1	1	SPAM
10	0	0	0	0	1	1	0	0	0	OK
11	1	0	0	1	0	0	0	1	0	SPAM
12	0	0	0	0	1	1	0	0	0	OK
13	1	1	1	0	0	0	1	1	1	SPAM
14	0	0	0	0	1	1	0	0	0	OK
15	1	1	0	1	0	0	1	1	1	SPAM
16	0	0	0	0	1	1	0	0	0	OK
17	1	0	1	1	0	0	1	0	1	SPAM
18	0	0	0	0	1	1	0	0	0	OK
19	1	1	0	1	0	0	1	1	0	SPAM
20	0	0	0	0	1	1	0	0	0	OK

(a) Comece por ler a informação do ficheiro .CSV.

Sugestão 1: Experimente usar readcell() e cell2mat().

Sugestão 2: Adote uma matriz e um vetor para guardar a informação, adaptando o exemplo a seguir:

- (b) Divida os dados da tabela em 2 conjuntos de forma aleatória: um de treino, com 70 % das linhas; outro de teste, com as restantes linhas. Sugestão: use randperm().
- (c) Calcule as probabilidades *a priori* das duas classes (SPAM e OK). Apenas pode utilizar os emails do conjunto de treino.
- (d) Obtenha todas as probabilidades necessárias para a definição de um classificador Naïve Bayes binário. Mais uma vez, só pode usar os emails dos conjunto de treino.
- (e) Estime a classe de cada um dos emails do seu conjunto de teste.
- (f) Considerando que a última coluna da tabela contém a verdadeira classe do email, determine a Precisão, Recall e F_1 do seu classificador (no conjunto de teste).
- (g) (TPC) Execute o processo várias vezes (por exemplo 10 vezes), guardando os valores de Precisão e Recall. No final calcule a média dos valores obtidos.
- (h) (TPC) Repita o processo anterior para com o junto de treino sendo apenas 50% das linhas. O que aconteceu ao desempenho.

3. Consideremos agora um exemplo simples para prever o **interesse de um filme** utilizando um classificador Naïve Bayes e características baseadas em atributos do filme e avaliações dos espetadores.

Pode-se criar um classificador simples para prever se os espetadores terão interesse num filme com base no género, duração e algumas avaliações, nomeadamente:

- Se é um filme de Ação (1 para Ação, 0 para outros géneros);
- Se é um filme do género Comédia (1 para Comédia, 0 para outros géneros);
- Duração: Duração do filme (0 para menos de 2 horas; 1 para durações de 2 horas ou mais).
- Número de avaliações positivas de utilizadores (0 para até 5 avaliações positivas; 1 para mais de 5 avaliações positivas).

Considerando os seguintes dados de treino:

Usando Matlab, qual a classe mais provável para:

- (a) Filme representado por [1, 0, 1, 1]?
- (b) Filme representado por [0, 1, 0, 0]?
- (c) Filme de Ação e Comédia, com 100 minutos e 4 comentários positivos?