Imitation Learning for Skill Transfer in Human-Robot Teleoperation

Marco Schouten (5352908) Chenghao Xu (5266068)

► Supervisor:

R Venkatesha Prasad Vineet Gokhale Ashutosh Simha

Project Background

- ☐ Robotic intelligence for specific skills
 - → Imitation Learning

- □ Rapid development of 5G technology
 - → Teleoperation

Fig 1. the Surgery Performed by Da Vinci Robot

Applications:

Service Robot; Biped Robot; Surgery Robot;

Motivation

Main Problem:

Transmission time delay Transmission data size

Control interval: 1 ms = 0.001 s

Number of control input: 6

Reproduce the trajectory in the past 1 s: 6000 float number data

+ force data & torque data

Fig 3. example for 6-axis Industrial Robot

Setup

Project Requirements

Learn the trajectories

Minimal inputs

Normative Ethics

Ethical and societal implications

Design

Design

Demos

Ground Truth

Gaussians Components

Inference

Encoder

Reduced datapoints by 64%

Decoder

Tasks Dictionary

EM Algorithm

Algorithm 2.1 Expectation Maximization for GMM

```
1: function EM_GMM(\mathbf{x}_{1:N}, {\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k, \boldsymbol{\pi}_k}_{k=1}^K)
              while \delta ll > \epsilon_{conv} do
                                                                       Check change of likelihood, δll, between iterations
                    # E-Step:
                    for k \in \{1, \dots, K\} do
                           for n \in \{1, \dots, N\} do
                                 \gamma_{n,k} = \frac{\pi_k \mathcal{N}(x_n | \mu_k, \Sigma_k)}{\sum_{k=1}^{K} \pi_i \mathcal{N}(x_n | \mu_i, \Sigma_i)}
                           N_k = \sum_{n=1}^{N} \gamma_{n,k}
                    # M-Step:
                    for k \in \{1, \dots, K\} do
10:
                           \mu_k \leftarrow \operatorname{arg\,max}_{\mu_k} (L(x_{1:N}, \mu_k, \gamma_{1:N,k}))
11:
                           \Sigma_k \leftarrow \frac{1}{N_k} \sum_{n=1}^{N} \gamma_{n,k} \operatorname{Log}_{\mu}(x_n) \operatorname{Log}_{\mu}(x_n)^{\top}
12:
                           \pi_k \leftarrow \frac{N_k}{N}
13:
14:
                    # Compute log-likelihood:
15:
                    II = \sum_{n=1}^{N} \ln \left( \sum_{k=1}^{K} \pi_k \mathcal{N} \left( \mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k \right) \right)
16:
              return \{\mu_k, \Sigma_k, \pi_k\}_{k=1}^K
17:
```

EM decomposition

Illustration of the decomposition given by (9.70), which holds for any choice of distribution $q(\mathbf{Z})$. Because the Kullback-Leibler divergence satisfies $\mathrm{KL}(q\|p) \geqslant 0$, we see that the quantity $\mathcal{L}(q,\theta)$ is a lower bound on the log likelihood function $\ln p(\mathbf{X}|\theta)$.

E step

Illustration of the E step of the EM algorithm. The q distribution is set equal to the posterior distribution for the current parameter values $\theta^{\rm old}$, causing the lower bound to move up to the same value as the log likelihood function, with the KL divergence vanishing.

M Step

Illustration of the M step of the EM algorithm. The distribution $q(\mathbf{Z})$ is held fixed and the lower bound $\mathcal{L}(q,\theta)$ is maximized with respect to the parameter vector θ to give a revised value θ^{new} . Because the KL divergence is nonnegative, this causes the log likelihood $\ln p(\mathbf{X}|\theta)$ to increase by at least as much as the lower bound does.

r2

Evaluation

Mean Square Error

Mean Absolute Error

Results

	x1	x2
mae	3.69664244e-06	3.86535089e-02
mse	2.37086698e-11	3.72760437e-03
г2	1.	0.98059981]

TABLE

MACHINE LEARNING BLOCK. GROUND TRUTH TRAJECTORY—— INFERRED TRAJECTORY

	x1	x2
mae	0.15835882	0.18605222
mse	0.03214314	0.04579591
r2	0.62513977	0.73572401

TABLE II

ENCODER BLOCK
INFERRED TRAJECTORY —— RECONSTRUCTED TRAJECTORY

	x1	x2
mae	0.15835999	0.2043527
mse	0.03214367	0.05349581
r2	0.62514137	0.72158294]

TABLE III

OVERALL SYSTEM PERFORMANCE
GROUND TRUTH TRAJECTORY—— RECONSTRUCTED TRAJECTORY

- Simple dim reduction algorithm do not work
- Space is highly nonlinear

Variational Auto Encoders

VAE replaces *deterministic* hidden layer (latent) **z** with *stochastic* sampling:

input $x \to \text{latent space } p(z \mid x) \to \text{sampling } z \sim p(z \mid x) \to \text{input reconstr. } \tilde{x} = d(z)$

Learning a vector field around a low-dimensional manifold . . .

Future Work

Variational Auto Encoder (deep generative models)

Bayesian Modelling for Prior for Task trajectory

Non-Euclidean Spaces

Wider Implications

ASSISTED SURGERY

CONSTRUCTIONS IN EXTREME ENVIRONMENTS

Thank you for your attention

