EE 102 Probability and Statistics in Electrical Engineering MIDTERM FALL 2014

Problem 1	25	
Problem 2	25	
Problem 3	25	
Problem 4	25	
Total	100	

Notes:

- Show your work for full/partial credit
- In the exam, P[A] denotes the probability of event A happening.
- Show your work explicitly.

Problem 1. For a discrete random variable X, the probability mass function (PMF) is given as

$$P_X(k) = \begin{cases} \frac{\beta}{3^k k!} & k = 0, 1, 2, 3, \dots \\ 0 & otherwise \end{cases}$$

a) (10 points) Find β so that this is a valid PMF. (Hint: You can use the formula $\sum_{k=0}^{\infty} \frac{x^k}{k!} = e^x$.)

Solution: $\sum_{k=0}^{\infty} P_X(k) = 1 \rightarrow \beta \sum_{k=0}^{\infty} \frac{(1/3)^k}{k!} = \beta e^{1/3} = 1 \rightarrow \beta = e^{-1/3}$

b) (10 points) What kind of random variable is X?

Solution: (10 points) $X \sim Poisson(1/3)$

c) (5 points) Find E[X].

Solution: E[X] = 1/3

Problem 2. A player has two decks of cards: RED and BLUE. The RED deck is missing the King of Spades, the Queen of Spades, the Jack of Spades, and the Ace of Spades ($K \spadesuit$, $Q \spadesuit$, $J \spadesuit$, $A \spadesuit$), and the BLUE deck is missing all the Aces ($A \clubsuit$, $A \heartsuit$, $A \diamondsuit$, $A \diamondsuit$).

Hint: Remember that a standard deck of playing cards is 52-cards. There are 4 suits in a deck: clubs (\clubsuit), hearts (\heartsuit), diamonds (\diamondsuit) and spades (\spadesuit). Each suit has 13 cards (A,2,3,...,10,J,Q,K).

A FAIR die is thrown, and a deck is selected according to the number showing on the die: RED deck is selected if the die shows a number less than 5. BLUE deck is selected otherwise.

From the selected deck, we pick TWO cards.

a) (15 points) Find the probability of picking exactly one King (**K**), and one 2.

Solution:

$$P[RED] = P[Die < 5] = \frac{4}{6} = \frac{2}{3}$$

 $P[BLUE] = P[Die \ge 5] = \frac{2}{6} = \frac{1}{3}$

Using total probability theorem,

 $P[Getting\ a\ King\ and\ a\ 2] = P[\mathbf{K2}] = P[\mathbf{K2}|RED]P[RED] + P[\mathbf{K2}|BLUE]P[BLUE].$

Since RED deck has 48 cards and 3 Kings and 4 twos,

$$P[\mathbf{K2}|RED] = \frac{C_3^1 C_4^1}{C_{48}^2}$$

Since BLUE deck has 48 cards and 4 Kings and 4 twos,

$$P[\mathbf{K2}|BLUE] = \frac{C_4^1 C_4^1}{C_{48}^2}.$$

Hence,

$$P[\mathbf{K2}] = \frac{C_3^1 C_4^1}{C_{48}^2} \frac{2}{3} + \frac{C_4^1 C_4^1}{C_{48}^2} \frac{1}{3}.$$

b) (5 points) If the hand we picked has one King (**K**), and one 2, what is the probability that the BLUE deck was selected?

Solution: Using Bayes Theorem,

$$P[BLUE|\mathbf{K2}] = \frac{P[\mathbf{K2}|BLUE]P[BLUE]}{P[\mathbf{K2}]} = \frac{2}{5}$$

c) (5 points) Discuss what kind of an UNFAIR die (instead of the FAIR die above) you would use if you want to increase your chance of getting exactly one King (**K**), and one 2 in the above random experiment.

Solution: Since P[K2|BLUE] > P[K2|RED], it is better to choose the BLUE deck more often. So using a die that favors 5 & 6 will increase the chance of getting a King and a two.

5

Problem 3. A student is studying for a test which is on next day. He has a set of 40 sample problems. He does not know which problems are more relevant to the exam. So he flips a FAIR coin. If the coin is heads, he attempts to solve the problem. If the coin is tails, he skips to the next problem.

a) (11 points) Is **X** = "the number of problems he attempts to solve" a random variable? If so, what type of random variable is it? Provide the necessary parameters.

Solution:

$$X \sim Binomial(n, p)$$

where n = 40 questions $p = \frac{1}{2}$ which is the probability of getting a head.

b) (11 points) He passes the test if he attempts to solve at least 95% of the problems. What is the probability that he will pass the test?

Solution:

95% of the problems = 95% * 40 = 38 problems.

$$P[Passing \ the \ Test] = P[X \ge 38] = P[X = 38] + P[X = 39] + p[X = 40]$$

$$P[Passing \ the \ Test] = C_{38}^{40} \frac{1}{2^{40}} + C_{39}^{40} \frac{1}{2^{40}} + C_{40}^{40} \frac{1}{2^{40}}$$

c) (3 points) Answer part-a if he had an endless list of sample problems instead of 40 problems.

Solution: If the time is not limited, and there is an endless list of sample problems, then X is no longer a random variable because the student will solve ∞ problems almost surely.

Problem 4. Each question has one correct answer. Each question is 5 points.

- 1. Which of the following is FALSE for a discrete random variable **X**?
 - \sqrt{a}) the sample space of **X** can only contain integers as outcomes.
 - b) the sample space of **X** may contain finite number of outcomes.
 - c) the sample space of **X** may contain infinite number of outcomes.
 - d) the sample space of **X** is countable
- 2. Which of the followings is TRUE definition for the Probability Mass Function (PMF) of a discrete random variable **X**?
 - a) $P_{\mathbf{X}}(x) = P[X \le x]$
 - b) $P_{\mathbf{X}}(x) = P[X > x]$
 - \checkmark c) $P_{\mathbf{X}}(x) = P[X = x]$
 - d) $P_{\mathbf{X}}(x) = P[X < x]$
- 3. Which of the followings is FALSE for the Probability Mass Function (PMF), $P_{\mathbf{X}}(x)$, of a discrete random variable **X**?
 - a) For any x, $P_{\mathbf{X}}(x) \ge 0$.
 - b) $\sum_{x \in S_X} P_X(x) = 1$ where S_X denotes the sample space of **X**.
 - c) For any event B, $P[B] = \sum_{x \in B} P_{\mathbf{X}}(x)$
 - \sqrt{d}) $P_X(x)$ is right-continuous and has jump points at the outcomes in the sample space.
- 4. Which of the followings is FALSE for the Cumulative Distribution Function (CDF), $F_{\mathbf{X}}(x)$, of a discrete random variable **X**?
 - a) For any x, $0 \le F_{\mathbf{X}}(x) \le 1$.
 - b) For any x, $F_{\mathbf{X}}(x) = P[X \le x]$.
 - \checkmark c) For any event B, $P[B] = \sum_{x \in B} F_{\mathbf{X}}(x)$
 - d) $F_{\mathbf{X}}(x)$ is right-continuous and has jump points at the outcomes in the sample space.
- 5. Which of the followings is FALSE for the MEAN of a discrete random variable **X**?
 - a) The mean is equal to $E[X] = \sum_{x_i \in S_X} x_i P[X = x_i]$ where S_X denotes the sample space.
 - √b) The mean of a discrete random variable is always an integer.
 - c) The mean of a discrete random variable can be negative.
 - d) The mean for $\mathbf{X} \sim Bernoulli(p)$ is equal to E[X] = p.