

NLP

Word Embeddings

Msc. Rodrigo Cardenas Szigety rodrigo.cardenas.sz@gmail.com

Programa de la materia

- Clase 1: Introducción a NLP, Vectorización de documentos.
- Clase 2: Preprocesamiento de texto, librerías de NLP y Rule-Based Bots.
- Clase 3: Word Embeddings, CBOW y SkipGRAM, representación de oraciones.
- Clase 4: Redes recurrentes (RNN), problemas de secuencia y estimación de próxima palabra.
- Clase 5: Redes LSTM, análisis de sentimientos.
- Clase 6: Modelos Seq2Seq, traductores y bots conversacionales.
- Clase 7: Celdas con Attention. Transformers, BERT & ELMo, fine tuning.
- Clase 8: Cierre del curso, NLP hoy y futuro, deploy.
- *Unidades con desafíos a presentar al finalizar el curso.
- *Último desafío y cierre del contenido práctico del curso.

Problemas con word2vec/TF-IDF

Palabras u oraciones de significado similar son "ortogonales"

Viajando en colectivo

Voy arriba del bus

La dimensión de los vectores depende de la dimensión del vocabulario

La representación es esparsa

	cat	the	quick	brown	fox	jumped	over	dog	bird	flew	kangaro	o house
time	0	1	0	0	0	0	0	0	0	0	 0	0
	0	0	1	0	0	0	0	0	0	0	 0	0
	0	0	0	1	0	0	0	0	0	0	 0	0
	0	0	0	0	1	0	0	0	0	0	 0	0
	0	0	0	0	0	1	0	0	0	0	 0	0
	0	0	0	0	0	0	1	0	0	0	 0	0
	0	1	0	0	0	0	0	0	0	0	 0	0
	0	0	0	1	0	0	0	0	0	0	 0	0
ţ	0	0	0	0	0	0	0	1	0	0	 0	0
	Dictionary Size									- →		

Embeddings

Un embedding es la representación numérica densa de tamaño fijo de un dato estructurado o no estructurado (mapear imagenes o palabras a números)

Word Embeddings

Las palabras que tienen un significado similar tendrán una representación similar

como embeddings

http://projector.ten
 sorflow.org/

Para qué podemos utilizar word Embeddings

N-GRAM

"Subsecuencia de N elementos de una secuencia dada"

Otra forma de agrupar las palabras distinto a word2vec (N=1, unigram) en donde se busca aumentar el poder de generalización y a su vez poder hacer más variado el vocabulario.

Character-level ur	igrams	
<u>Text</u>	Token Sequence	Token Value
Dogs	1	D
Dogs	2	0
Dogs	3	g
Dogs	4	S
Character-level bi	grams	
<u>Text</u>	Token Sequence	Token Value
Dogs	1	Do
Dogs	2	og
Dogs	3	gs
Character-level tri	grams	
<u>Text</u>	Token Sequence	Token Value
Dogs	1	Dog
Dogs	2	ogs

7

GloVe y fastText

Embeddings pre-entrenados basados en diferentes topologías:

GloVe

Entrenado con textos de Wikipedia, Common Crawl y GigaWord 5

Modelo basado en CBOW y Skip-Gram

Basado en word2vec (primera implementación de CBOW y Skip-Gram)

fastText

Basado en N-GRAM de caracteres en vez de palabras permitiendo entender mejor los sufijos y prefijos

Entrenado con una colección de 8 corpus (portales de noticias, reviews, WIkipedia)

Permite crear mejores embeddings para palabras "raras" (basado CBOW o Skip-Gram)

Puede crear un embedding de una palabra que nunca vió

Operaciones con Embeddings

Si los embeddings son la representación numérica de las palabras, quiere decir que podes realizar operaciones entre ellas para compararlas o obtener nuevos resultados

t-SNE (t-distributed stochastic neighbor embedding)

"Técnica de reducción de dimensionalidad especialmente para graficar en 2D embeddings (vectores de muchas dimensiones)" LINK

Balancea las características locales y globales de los datos (perplexity)

No produce siempre el mismo resultado

Modifica las distancias originales de los datos a fin de priorizar una mejor visualización o interpretación visual

Embeddings Glove y Fasttext

¿Dónde utilizaremos Embeddings?

Serán los pilares de todo lo que construyamos en el resto del curso

¿Cómo podemos crear nuestros word Embeddings?

Aprendiendo (con redes neuronales) vectores para cada palabra que maximicen la relación entre las palabras de contexto y la palabra objetivo,

Continuous Bag of Words Model (CBOW)

Utiliza como entrada el contexto de la palabra objetivo (palabras a izquierda y derecha de ella). El tamaño de la ventana determina cuántas palabras se tomarán para contextualizar el embedding.

CBOW - Entrenamiento

LINK

Para entrenar necesitamos tener el vocabulario del corpus y las sentencias organizadas por el tamaño de la ventana de entrada.

Los embeddings de cada palabra son el embedding promedio de todas las veces que se utilizó en el corpus.


```
cbow = Sequential()
cbow.add(Embedding(input_dim=vocab_size, output_dim=embed_size, input_length=window_size*2))
cbow.add(Lambda(lambda x: K.mean(x, axis=1), output shape=(embed_size,)))
cbow.add(Dense(vocab_size, activation='softmax'))
cbow.compile(loss='categorical_crossentropy', optimizer='rmsprop')
```

CBOW - Entrenamiento

Con tan solo un corpus de 12425 palabras distintas y embedding de 100 dimensiones hay que entrenar **2.5 Millones de parámetros**

Layer (type)	Output	Shape	Param #
embedding_1 (Embedding)	(None,	4, 100)	1242500
lambda_1 (Lambda)	(None,	100)	0
dense_1 (Dense)	(None,	12425)	1254925
Total params: 2,497,425 Trainable params: 2,497,425 Non-trainable params: 0			

Skip-Gram

Al contrario de CBOW, este modelo intenta predecir las palabras que rodean (contexto) a una palabra objetivo. Se divide el output como pares [target, context]

Skip-Gram - Entrenamiento LINK

Por cada par [target, context] el sistema determina si las palabras tiene significado en contexto (1) o no lo tiene (0), buscando así acercar las palabras que tienen significado juntas (que se espera que estén juntas en el texto)

```
word model = Sequential()
word_model.add(Embedding(vocab_size, embed_size,
                         embeddings initializer="glorot uniform",
                         input_length=1))
word model.add(Reshape((embed size, )))
context model = Sequential()
context model.add(Embedding(vocab size, embed size,
                  embeddings_initializer="glorot_uniform",
                  input_length=1))
context_model.add(Reshape((embed_size,)))
model = Sequential()
model.add(Merge([word model, context model], mode="dot"))
model.add(Dense(1, kernel initializer="glorot uniform", activation="sigmoid"
model.compile(loss="mean squared error", optimizer="rmsprop")
```


Skip-Gram - Entrenamiento

Skip-Gram requiere más datos para lograr un buen resultado pero obtiene más información sobre el contexto del corpus en sus embeddings.

Layer (type)	Output	Shape	Param #
merge_2 (Merge)	(None,	1)	0
dense_3 (Dense)	(None,	1)	2
Total params: 2,485,002 Trainable params: 2,485,002 Non-trainable params: 0			

Negative sampling

LINK

En SkipGram/CBOW la cantidad de parámetros a entrenar en la softmax es enorme:

Parametros = vocab_size * embedding_size → millones de parámetros

Negative Sampling

(11X3)				(11X3)				(11X3)		
W_output (old)			Learning R. grad_W_output				W_output (new)			
-0.560	0.340	0.160	- 0.05 X				=	-0.560	0.340	0.160
-0.910	-0.440	1.560	_ ^				_	-0.910	-0.440	1.560
-1.210	-0.130	-1.320		Note	amauta	d I		-1.210	-0.130	-1.320
1.670	-0.150	-1.030		Not computed!				1.670	-0.150	-1.030
1.720	-1.460	0.730						1.720	-1.460	0.730
0.000	1.390	-0.12054	048.github.io			aegis4	048.gith	ub. 0:000	1.390	-0.120
-0.060	1.520	-0.790						0.060	1.520	0.790
0.800	1.850	-1.670	Positive sample, w_o	0.031	0.030	0.041		0.798	1.849	-1.672
-1.370	1.320	-0.480	Negative sample, k=1	-0.090	0.031	-0.065		-1.366	1.318	-0.477
0.670	1.990	-1.850	Negative sample, k=2	0.056	0.098	-0.061		0.667	1.985	-1.847
-1.520	-1.740	-1.860	Negative sample, k=3	0.069	0.084	-0.044		-1.523	-1.744	-1.858
(11X3)				(11X3)				(11X3)		

En cada iteración se observa la palabras [target, contexto] y las "K" palabras más aleatorias del corpus El objetivo es optimizar cómputo. Además funciona como regularización.

Gensim - Doc2Vec paragraph embeddings

LINK

Utilizaremos esta librería que nos facilita generar embeddings tipo Skip-Gram o CBOW de nuestros corpus

- Librería de Python
- Existe desde 2009
- Muy popular y muy simple de utilizar

Generación de embeddings con Gensim

Desafio

Crear sus propios vectores con Gensim basado en lo visto en clase con otro dataset. Probar términos de interés y explicar similitudes en el espacio de embeddings. Graficarlos. Sacar conclusiones

¡Muchas gracias!