

NODE CLASSIFICATION FOR SIGNED SOCIAL NETWORKS USING DIFFUSE INTERFACE METHODS

TECHNISCHE UNIVERSITÄT CHEMNITZ

Pedro Mercado¹, Jessica Bosch², Martin Stoll³

¹University of Tübingen ²University of British Columbia ³TU Chemnitz

INTRODUCTION

GOAL: Extend graph-based semi-supervised learning (**SSL**) to networks that have both positive and negative interactions via diffuse interface methods.

MAIN CONTRIBUTIONS:

- 1. We present the first extension of diffuse interface methods to the task of node classification for signed graphs.
- 2. We present a systematic comparison considering different state of the art of signed graph Laplacians.
- 3. We present extensive numerical experiments showing that better classification performance is obtained by taking negative edges in consideration.

LAPLACIANS AND SPECTRAL CLUSTERING

- 1 Get eigenvectors $\{\mathbf{u}_i\}_{i=1}^k$ corresponding to the k smallest eigenvalues of L.
- 2 Let $U = (\mathbf{u}_1, \dots, \mathbf{u}_k)$.
- ³ Cluster the rows of U with k-means into clusters C_1, \ldots, C_k .

Disassortative Case

$$\mathbf{Q} = \mathbf{D} + \mathbf{W}$$
 $\mathbf{Q}_{\mathrm{sym}} = \mathbf{D}^{-1/2} \mathbf{Q} \mathbf{D}^{-1/2}$

LAPLACIANS OF SIGNED NETWORKS:

A signed graph is the pair $G^{\pm} = (G^+, G^-)$ where G^+ and G^- encode positive and the

Signed Laplacians and its motivating discrete problem:

- $\operatorname{cut}(C, \overline{C})$: number of edges between sets (C, \overline{C}) ,
- assoc(C): number of edges inside set C

$$\mathbf{L_{SR}} = \mathbf{D}^{+} - \mathbf{W}^{+} + \mathbf{D}^{-} + \mathbf{W}^{-}[1]$$

$$\min_{C \subset V} \left(2\mathbf{cut}^{+}(C, \overline{C}) + \mathbf{assoc}^{-}(C) + \mathbf{assoc}^{-}(\overline{C}) \right) \left(\frac{1}{|C|} + \frac{1}{|\overline{C}|} \right)$$

$$\mathbf{L_{BR}} = \mathbf{D}^{+} - \mathbf{W}^{+} + \mathbf{W}^{-}[2]$$

$$\min_{C \subset V} \frac{1}{|C|} \left(\mathbf{cut}^{+}(C, \overline{C}) + \mathbf{assoc}^{-}(C) \right) + \frac{1}{|\overline{C}|} \left(\mathbf{cut}^{+}(C, \overline{C}) + \mathbf{assoc}^{-}(\overline{C}) \right)$$

$$\mathbf{L_{SP}} = (\mathbf{L}^{-} + \mathbf{D}^{+})^{-1} (\mathbf{L}^{+} + \mathbf{D}^{-})[3]$$

$$\min_{C \subset V} \left(\frac{\operatorname{cut}^{+}(C, \overline{C}) + \operatorname{vol}^{-}(C)}{\operatorname{cut}^{-}(C, \overline{C}) + \operatorname{vol}^{+}(C)} \right)$$

$$\mathbf{L_{AM}} = (\mathbf{L_{\mathrm{sym}}^+} + \mathbf{Q_{\mathrm{sym}}^-})[4]$$

Different signed Laplacians identify different clustering structures.

References

- [1] J. Kunegis, S. Schmidt, A. Lommatzsch, J. Lerner, E. Luca, and S. Albayrak. Spectral analysis of signed graphs for clustering, prediction and visualization. In *ICDM*, pages 559–570, 2010.
- [2] K. Chiang, J. Whang, and I. Dhillon. Scalable clustering of signed networks using balance normalized cut. CIKM, pages 615–624, 2012.
- [3] M Cucuringu, P Davies, A Glielmo, and H Tyagi. SPONGE: A generalized eigenproblem for clustering signed networks. *AISTATS*, 2019. [4] Pedro Mercado, Francesco Tudisco, and Matthias Hein. Clustering signed networks with the geometric mean of Laplacians. In *NIPS*. 2016. [5] A. L. Bertozzi and A. Flenner. Diffuse interface models on graphs for classification of high dimensional data. *Multiscale Model. Simul.*,
- [6] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford Large Network Dataset Collection. http://snap.stanford.edu/data, June 2014. [7] Shuhan Yuan, Xintao Wu, and Yang Xiang. SNE: Signed network embedding. In *PAKDD*, 2017.
- [8] Dengyong Zhou, Olivier Bousquet, Thomas Navin Lal, Jason Weston, and Bernhard Schölkopf. Learning with local and global consistency. In *NIPS*, 2003.
- [9] Mikhail Belkin, Irina Matveeva, and Partha Niyogi. Regularization and semi-supervised learning on large graphs. In *COLT*, 2004.

 [10] Xiaojin Zhu, Zoubin Ghahramani, and John Lafferty. Semi-supervised learning using gaussian fields and harmonic functions. In *ICML*,
- [11] Andrew B. Goldberg, Xiaojin Zhu, and Stephen Wright. Dissimilarity in graph-based semi-supervised classification. In AISTATS, 2007.[12] Jiliang Tang, Charu Aggarwal, and Huan Liu. Node classification in signed social networks. In SDM, 2016.

DIFFUSE INTERFACE METHODS

GRAPH GINZBURG-LANDAU FUNCTIONAL FOR SSL

Graph extension of the continuous Ginzburg-Landau (GL) Functional to SSL [5]:

$$E_S(u) = \frac{\varepsilon}{2} \mathbf{u^T} \mathbf{S} \mathbf{u} + \frac{1}{4\varepsilon} \sum_{i=1}^{n} (\mathbf{u_i^2} - \mathbf{1})^2 + \sum_{i=1}^{n} \frac{\omega_i}{2} (\mathbf{f_i} - \mathbf{u_i})^2,$$

- $\mathbf{u^TSu}$ induces clustering information of the signed graph. Different choices of S convey information about different cluster assumptions,
- $\sum_{i=1}^{n} (\mathbf{u_i^2} \mathbf{1})^2$ has minimizers with entries in +1 and -1. It induces a minimizer u with entries corresponding to the class assignment,
- $\sum_{i=1}^{n} \omega_i (\mathbf{f_i} \mathbf{u_i})^2$ is a fitting term to labeled nodes, where $\omega_i = 0$ for unlabeled nodes and $\omega_i = w_0$ for labeled nodes,
- ε > 0: interface parameter controls trade-off between clustering structure and labeled nodes: **large** values of ε give priority to graph information, whereas **small** values of ε give priority to labeled nodes

Modified Graph Allen-Cahn Equation for SSL: is the gradient flow of the functional E_S

$$\frac{\partial u}{\partial t} = -\nabla E_S(u)$$

Solution via convex-splitting scheme, $E_S(u) = E_1(u) - E_2(u)$, with implicit treatment of the convex part $E_1(u)$ and explicit treatment for the concave part $E_2(u)$:

$$\frac{u^{(t+1)} - u^{(t)}}{\tau} = -\nabla E_1(u^{(t+1)}) + \nabla E_2(u^{(t)})$$

Let (λ_l, ϕ_l) be eigenpairs of S. Let $u^{(t+1)} = \sum_{l=1}^n a_l \phi_l$, $u^{(t)} = \sum_{l=1}^n \bar{a}_l \phi_l$. Equivalently,

$$(1 + \varepsilon \tau \lambda_l + c\tau) a_l = -\frac{\tau}{\varepsilon} \bar{b}_l + (1 + c\tau) \bar{a}_l + \tau \bar{d}_l$$
 for $l = 1, \dots, n$

where $\bar{b} = [\phi_1, \dots, \phi_n]^T \nabla \psi \left(\sum_{l=1}^n \bar{a}_l \phi_l\right)$ with $\psi(u) = \sum_{i=1}^n (u_i^2 - 1)^2$, and $\bar{d} = [\phi_1, \dots, \phi_n]^T \nabla \varphi \left(\sum_{l=1}^n \bar{a}_l \phi_l\right)$ with $\varphi(u) = \sum_{i=1}^n \frac{\omega_i}{2} (f_i - u_i)^2$.

EXPERIMENTS

DATASETS: Statistics of largest connected components of G^+ , G^- and G^{\pm} .

	Wikipedia RfA [6]			Wikip	edia Electi	ons [6]	Wikipedia Editor [7]			
	G^+	G^-	G^{\pm}	G^+	G^-	G^{\pm}	G^+	G^-	G^{\pm}	
# nodes	3024	3124	3470	1997	2040	2325	17647	14685	20198	
+ nodes	55.2%	42.8%	48.1%	61.3%	47.1%	52.6%	38.5%	33.5%	36.8%	
# edges	204035	189343	215013	107650	101598	111466	620174	304498	694436	
+ edges	100%	0%	78.2%	100%	0%	77.6%	100%	0%	77.3%	

Parameter Setting: $\omega_0 = 10^3, \varepsilon = 10^{-1}, c = \frac{3}{\varepsilon} + \omega_0$, time step-size $dt = 10^{-1}$, maximum number of iterations 2000, stopping tolerance 10^{-6} .

COMPARISON WITH STATE OF THE ART

- Different amounts of labeled nodes are considered: 1%, 5%, 10%, 15%,
- Presence of negative edges improves accuracy in 2 out of 3 datasets,
- $GL(L_{SN})$ and $GL(L_{AM})$ performs best among signed graph methods.

	Wikipedia				Wikipedia				Wikipedia			
	RfA				Elections				Editor			
Labeled nodes	1%	5%	10%	15%	1%	5%	10%	15%	1%	5%	10%	15%
$LGC(L^+)$ [8]	0.554	0.553	0.553	0.553	0.614	0.614	0.613	0.613	0.786	0.839	0.851	0.857
$TK(L^{+})$ [9]	0.676	0.697	0.681	0.660	0.734	0.763	0.742	0.723	0.732	0.761	0.779	0.791
$HF(L^+)$ [10]	0.557	0.587	0.606	0.619	0.616	0.623	0.637	0.644	0.639	0.848	0.854	0.858
$\mathbf{GL}(L_{\mathrm{sym}}^+)$	0.577	0.564	0.570	0.584	0.608	0.622	0.626	0.614	0.819	0.759	0.696	0.667
DGB [11]	0.614	0.681	0.688	0.650	0.648	0.602	0.644	0.609	0.692	0.714	0.721	0.727
NCSSN [12]	0.763	0.756	0.745	0.734	0.697	0.726	0.735	0.776	0.491	0.533	0.559	0.570
$\mathbf{GL}(Q_{\mathrm{sym}}^{-})$	0.788	0.800	0.804	0.804	0.713	0.765	0.764	0.766	0.739	0.760	0.765	0.770
$\mathbf{GL}(L_{\mathrm{SP}})$	0.753	0.761	0.763	0.765	0.789	0.793	0.797	0.798	0.748	0.774	0.779	0.779
$\mathbf{GL}(L_{\mathrm{SN}})$	0.681	0.752	0.759	0.764	0.806	0.842	0.851	0.852	0.831	0.841	0.846	0.847
$\mathbf{GL}(L_{\mathrm{AM}})$	0.845	0.847	0.848	0.849	0.879	0.885	0.887	0.887	0.787	0.807	0.814	0.817

Our approaches $GL(L_{SN})$ and $GL(L_{AM})$ outperforms signed graph methods.

EFFECT OF THE NUMBER OF LABELED NODES

- Fix the number of eigenvectors to $N_e \in \{20, 40, 60, 80, 100\}$,
- Proportion of labeled nodes: from 1% to 25%,

Larger amount of labeled nodes improve performance.

EFFECT OF THE NUMBER OF EIGENVECTORS

- # of eigenvectors 1, ..., 100 (Wiki-RfA/Elec), and 10, ..., 1000 (Wiki-Editor).
- Proportion of labeled nodes: 5%,

A small amount of eigenvectors of the corresponding Laplacian is required.

JOINT EFFECT: NUMBER OF EIGENVECTORS AND LABELED NODES

- # of eigenvectors 10, ..., 100 (Wiki-RfA/Elec), and 100, ..., 1000 (Wiki-Editor).
- Proportion of labeled nodes: 1, ..., 25%,
- When too many eigenvectors are taken, more labeled nodes are required.
- The best performance is achieved with few eigenvectors are taken together with large amounts of labeled nodes.

A large amount of eigenvectors has a systematic negative effect.

JOINT EFFECT: FIDELITY (ω_0) AND INTERFACE (ε) PARAMETERS

- # of eigenvectors: 20.
- Proportion of labeled nodes: 1%, 5%, 10%, 15%,
- Fidelity parameter $\omega_0 \in \{10^0, 10^1, ..., 10^5\}$
- Interface parameter $\varepsilon \in \{10^{-5}, 10^{-4}, \dots, 10^{4}, 10^{5}\}$

The smaller the amount of labeled nodes, the larger the impact of the interface parameter ε