PhD Studies

Abraham Rojas Vega

June 27, 2024

Contents

I	Topics of Algebra	5
1	Category Theory	7
2	Homological Algebra 2.1 Spectral Sequences	g
3	Group (Cohomology) Theory 3.1 Co-invariants	
4	(General) Module Theory 4.1 Linear Algebra	13 13
II	Topics of Algebraic Topology	15
5	Simplical sets and complexes5.1 (Abstract) simplical complexes5.2 Simplical sets5.3 CW-complexes	18
6	Geometric Group Theory	21
7	Homotopy theory 7.1 Covering spaces	23
II	I Topics of Geometry	2 5
IV	/ K-theory	27
8	K-theory constructions 8.1 Milnor's K-theory	29 31 31
9	Homological stability 9.1 Motivation	33

4 CONTENTS

Part I Topics of Algebra

Category Theory

Homological Algebra

In homological algebra one constructs homological invariants of algebraic objects by the following process, or some variant of it:

Let R be a ring and T a covariant additive functor from R-modules to abelian groups. Thus the map $\operatorname{Hom}_R(M,N) \to \operatorname{Hom}_{\mathbf Z}(TM,TN)$ defined by T is a homomorphism of abelian groups for all R-modules M,N. For any R module M, choose a free (or projective) resolution $\varepsilon: F \to M$ and consider the chain complex TF of abelian groups obtained by applying T to F termwise. Now T, being additive, preserves chain homotopies; so we can apply the uniqueness theorem for resolutions (I.7.5) to deduce that the complex TF is independent, up to canonical homotopy equivalence, of the choice of resolution. Passing to homology, we obtain groups $H_n(TF)$ which depend only on T and M (up to canonical isomorphism).

This construction is of no interest, of course, if T is an exact functor; for then the augmented complex

$$\cdots \rightarrow TF_1 \rightarrow TF_0 \rightarrow TM \rightarrow 0$$

is acyclic, so that $H_n(TF) = 0$ for n > 0 and $H_0(TF) = TM$. Thus we can regard the groups $H_n(TF)$ in the general case as a measure of the failure of T to be exact.

2.1 Spectral Sequences

Group (Cohomology) Theory

Group Ring Let G be a group, written multiplicatively. Let $\mathbb{Z}G$ be the free \mathbb{Z} -module generated by the elements of G. The multiplication in G extends uniquely to a \mathbb{Z} -bilinear product $\mathbb{Z}G \times \mathbb{Z}G \to \mathbb{Z}G$; this makes $\mathbb{Z}G$ a ring, called the **integral group ring** of G.

Note that *G* is a subgroup of the group $(\mathbb{Z}G)^*$ of units of $\mathbb{Z}G$

Theorem 1 (Universal property). Given a ring R and a group homomorphism $f: G \to R^*$, there is a unique extension of f to a ring homomorphism $\mathbb{ZG} \to R$. Thus we have the "adjunction formula"

$$\operatorname{Hom}_{(rings)}(\mathbb{Z}G,R) \approx \operatorname{Hom}_{(groups)}(G,R^*).$$

A (**left**) $\mathbb{Z}G$ -**module**, or G-module, consists of an abelian group A together with a homomorphism from $\mathbb{Z}G$ to the ring of endomorphisms of A. By the universal property, G-module is simply an abelian group A together with an action of G on A. For example, one has for any A the trivial module structure, with ga = a for $g \in G$, $a \in A$.

One way of constructing G-modules is by linearizing permutation representations. More precisely, if X is a G-set (i.e., a set with G-action), then one forms the free abelian group $\mathbb{Z}\mathbb{X}$ (also denoted $\mathbb{Z}[X]$) generated by X and one extends the action of G on X to a \mathbb{Z} -linear action of G on $\mathbb{Z}X$. The resulting G-module is called a permutation module. In particular, one has a permutation module $\mathbb{Z}[G/H]$ for every subgroup H of G, where G/H is the set of cosets gH and G acts on G/H by left translation.

Proposition 1. Let X be a free G-set and let E be a set of representatives for the G-orbits in X. Then $\mathbb{Z}X$ is a free $\mathbb{Z}G$ -module with basis E.

3.1 Co-invariants

If G is a group and M is a G-module, then the group of co-invariants of M, denoted M_G , is defined to be the quotient of M by the additive subgroup generated by the elements of the form $gm-m\left(g\in G, m\in M\right)$. Thus M_G is obtained from M by "dividing out" by the G-action. (The name "co-invariants" comes from the fact that M_G is the largest quotient of M on which G acts trivially, whereas M^G , the group of invariants, is the largest submodule of M on which G acts trivially.) In view of exercise 1a of S1.2, we can also describe S2 and S3 and S4 denotes the set of all finite sums S4 and S5 and S6 and S7 and S8 and S8 and S9 are S9 are S9 and S9 are S9 and S9 are S9 and S9 are S9 are S9 and S9 are S9 and S9 are S9 and S9 are S9 are S9 are S9 and S9 are S9 are S9 and S9 are S9 are S9 are S9 and S9 are S9 are S9 and S9 are S9 are S9 are S9 and S9 are S9 are S9 are S9 and S9 are S9 are S9 are S9 are S9 are S9 are S9 and S9 are S

$$M_G \approx \mathbb{Z} \otimes_{\mathbb{Z} G} M$$
.

Here, in order for the tensor product to make sense, we regard \mathbb{Z} as a right $\mathbb{Z}G$ -module (with trivial G-action). To prove 2.1, note that in $\mathbb{Z} \otimes_{\mathbb{Z}G} M$ we have the identity $1 \otimes gm = 1 \cdot g \otimes m = 1 \otimes m$; hence there is a map $M_G \to \mathbb{Z} \otimes_{\mathbb{Z}G} M$ given by $\bar{m} \mapsto 1 \otimes m$, where \bar{m} denotes the image in M_G of an element $m \in M$. On the other hand, using the universal property of the tensor product, we can define a map $\mathbb{Z} \otimes_{\mathbb{Z}G} M \to M_G$ by $a \otimes m \mapsto a\bar{m}$. These two maps are inverses of one another.

In view of 2.1 and standard properties of the tensor product, we immediately obtain the following two properties of the co-invariants functor:

3.2 An spectral sequence for group cohomology

Suppose that X is a simplicial set and x_i are simplicial subsets such that $X = UX_i$. Then, setting $X_{ij} = X_i \cap X_j$ (etc.) we'll obviously have for the realisations: $|x| = U|x_i|, |x_i| \cap |x_j| = |x_{ij}|, \dots$ Let's suppose that the set of indices is linearly ordered. Consider the following bicomplex:

$$K = \longrightarrow \bigoplus_{i < j < k} C_* (x_{ijk}) \longrightarrow \bigoplus_{i < j} C_* (x_{ij}) \longrightarrow \bigoplus_i C_* (x_i)$$

Here by a bicomplex we understand a bicomplex in the sense of Grothendieck [9] i.e. the differentials d_1 and d_2 commute. (The sign in this approach appears in the definition of the total differentials). The vertical arrows of the bicomplex map $C_*(x_i \cdots_i)$ into $q \ C_*(x_{i_0} \dots \hat{i}_k \dots i_q)$, the mapping into the kth summand differing k = 0 by a sign $(-1)^k$ from the natural embedding.

The first spectral sequence of this bicomplex degenerates and yields an isomorphism $H_{\star}(K) \cong H_{\star}(X)$. (Moreover this isomorphism is induced by the canonical map $K \to C_{\star}(X)$). The second spectral sequence gives us a functorial spectral sequence of the first quadrant, whose limit equals $H_{\star}(X)$, while its differential dr has bidegree (r-1,-r) and its E^1 -term looks as follows:

$$E_{pqq}^{1} = \underset{i_0 < \dots < i_q}{\otimes} H_p\left(x_{i_0} \dots i_q\right)$$

Suppose G is a group. Let X_G denote the simplicial set (and its geometric realisation), whose p-simplices are sequences $(g_0, ..., g_p)$ of elements of G, with the usual faces and degeneracies. This space X_G is contractible by (1.2). The group G acts from the right on X_G and this action is obviously free, hence $BG = X_G/G$ is a classifying space of G. The complex $C_*(BG) = C_*(G)$ coincides with the usual complex associated with G. Moreover $C_*(G) = C_*(X_G) \otimes_G Z$.

If H is a subgroup of G, then X_G/H is a classifying space for H and hence $BH = X_H/H \to X_G/H$ is a homotopy equivalence. In particular $C_*(H) + C_*(X_G) \otimes_H \mathbb{Z} = C_*(X_G) \otimes_G Z|G/H|$ is a homotopy equivalence.

(2.3) The spectral sequence associated with a family of subgroups.

Suppose G is a group and $G_1, ..., G_n$ are subgroups. Then BG_i may be viewed as a simplicial subset of BG and $BG_i \cap BG_j = B(G_i \cap G_j)$. Denote UBG_i by X and consider the spectral sequence of the covering $X = UBG_i$. Along with the bicomplex K introduced in (2.1) we also consider the following bicomplex:

$$K' = \bigoplus_{i < j < k} C_* (X_G) \otimes_G Z \left[G/G_{ijk} \right] \longrightarrow \bigoplus_{i < j} C_* (X_G) \otimes_G Z \left[G/G_{ij} \right] \longrightarrow \bigoplus_{i < j} C_* (X_G) \otimes_G Z \left[G/G_{ij} \right]$$

There is a natural mapping of bicomplexes K+K' and because of (2.2) this mapping induces an isomorphism of second spectral sequences so that $H_{\star}(X) = H_{\star}(K) = H_{\star}(K')$. The first spectral sequence of K' looks as follows: $E^1_{*,q} = C_*(X_G) \otimes_G H_q(L)$, where L is the following complex of left G-modules:

$$\oplus \mathbb{Z}[G/G_i] + \oplus \mathbb{Z}[G/G_{ij}] + \oplus \mathbb{Z}[G/G_{ijk}] + \dots$$

Proposition 2. If $G_1, ..., G_n$ are subgroups of G, there exists a fuctorial spectral sequence of the first quadrart, the E^2 term of which looks like: $E_{pq}^2 = H_p(G, H_q(L))$, where L is the complex defined above. It converges to $H_{\star}(UBG_j)$ and the differential d^r has bidegree (-r, r-1).

(2.5) In the notations of (2.3), let $Z(G, \{G\})$ be the simplicial set whose non-degenerate p-simplices are sequences $(\bar{g}_0, \ldots, \bar{g}_p)$, where $\bar{g}_i \varepsilon G/G_{k_i}$, $k_0 < \ldots < k_p$, and the \bar{g}_i are such that there is $g \in G$ with $\bar{g}_i = g \mod G_{k_i}$ for all i. (If one covers G by the right cosets of the G_i , then $Z(G_g \{G_i\})$ is the nerve of this covering.) It is easy to see that the geometric realization of this simplicial set is an ordered simplicial space and that the complex $L = L(G, \{G_i\})$ equals the (ordered) simplicial complex [7] of this simplicial space, or in other words, the complex L equals the normalised complex of the simplicial set $Z(G, \{G_i\})$. In particular, $H_*(L) = H_*(Z(G, \{G_i\}))$.

(2.6) Remark. It may be shown easily that the space $Z(G, \{G_i\})$, is homotopy equivalent to Volodin's space $V(G, \{G_i\})$, but we will not need this fact.

(General) Module Theory

4.1 Linear Algebra

Part II Topics of Algebraic Topology

Simplical sets and complexes

[2] Simplicial complexes are more intuitive, and are the foundation of algebraic topology. Simplicial complexes were also called *simplicial schemes* and simplicial sets, *semi-simplicial* complexes.

5.1 (Abstract) simplical complexes

A set (of **vertices**) together with a family of finite subsets (**simplexes**) such that every subset of every simplex is a simplex and every subset consisting of a single vertex is a simplex.

- **Example 1.** 1. The **standard n-simplex** Δ^n is the set of all (n+1)-tuples $(t_0, ..., t_n)$ of non-negative real numbers such that $t_0+\cdots+t_n=1$. The standard 0-simplex is a point, the standard 1-simplex is a line segment, the standard 2-simplex is a triangle, and so on.
 - 2. The **boundary** of the standard n-simplex Δ^n is the set of all (n+1)-tuples (t_0, \ldots, t_n) of non-negative real numbers such that $t_0 + \cdots + t_n = 1$ and at least one of the t_i is zero. The boundary of the standard 0-simplex is empty, the boundary of the standard 1-simplex is the set of its two endpoints, the boundary of the standard 2-simplex is the set of its three edges, and so on.
 - 3. (Concrete simplicial complexes) It is subset of \mathbb{R}^n that is a union of standard simplices, that satisfies the previous conditions.
 - 4. If Y is a subset of the vertex set of a simplicial scheme S, then we can introduce on it the induced simplicial scheme structure $Y \cap S$, by defining the simplexes as the subsets of Y that are simplexes of S.
 - 5. Let X be a set and let $\{p(y): y \in Y\}$ be a covering of X. Then we can consider two simplicial complexes.
 - (a) The nerve Nerv(p) of the covering is the simplicial scheme with the vertex set Y, and a subset Z of Y is counted as a simplex if the intersection $\bigcap p(y)$ is non-empty.
 - (b) The simplicial complex V(p) is the simplicial scheme with the vertex set X, and a subset Z of X is counted as a simplex if Z is contained in some p(y).

Geometric realization

The construction goes as follows. First, define |K| as a subset of $[0,1]^S$ consisting of functions $t: S \to [0,1]$ satisfying the two conditions:

$$\{s \in S : t_s > 0\} \in K$$
$$\sum_{s \in S} t_s = 1$$

Now think of the set of elements of $[0,1]^S$ with finite support as the direct limit of $[0,1]^A$ where A ranges over finite subsets of S, and give that direct limit the induced topology. Now give |K| the subspace topology. It is always Hausdorff. We will identify an abstract simplicial complex with its geometric realization.

5.2 Simplical sets

Let Δ be the category of finite ordinal numbers, with order-preserving maps between them. More precisely, the objects for Δ consist of elements \mathbf{n} , $n \ge 0$, where \mathbf{n} is a string of relations

$$0 \rightarrow 1 \rightarrow 2 \rightarrow \cdots \rightarrow n$$

(in other words \mathbf{n} is a totally ordered set with n+1 elements). A morphism $\theta : \mathbf{m} \to \mathbf{n}$ is an order-preserving set function, or alternatively a functor. We usually commit the abuse of saying that Δ is the ordinal number category.

A simplicial set is a contravariant functor $X: \Delta^{op} \to \text{Sets}$, where Sets is the category of sets.

Remark 1. The standard covariant functor: $\mathbf{n} \mapsto |\Delta^n|$ from Δ to **Top**. The singular set S(T) is the simplicial set given by

$$\mathbf{n} \mapsto \text{hom}(|\Delta^n|, T).$$

This is the object that gives the singular homology of the space T.

The standard n-simplex, simplicial Δ^n in the simplicial set category **S** is defined by

$$\Delta^n = \text{hom}_{\Delta}(, \mathbf{n}).$$

In other words, Δ^n is the contravariant functor on Δ which is represented by n.

A map $f: X \to Y$ of simplicial sets (or, more simply, a simplicial map) is a natural transformation of contravariant set-valued functors defined on Δ . We shall use **S** to denote the resulting category of simplicial sets and simplicial maps.

From a simplicial set Y, one may construct a simplicial abelian group $\mathbb{Z}Y$ (ie. a contravariant functor $\Delta^{op} \to \mathbf{Ab}$), with $\mathbb{Z}Y_n$ set equal to the free abelian group on Y_n . The simplicial abelian group $\mathbb{Z}Y$ has associated to it a chain complex, called its Moore complex and also written $\mathbb{Z}Y$, with

$$\mathbb{Z}Y_0 \stackrel{\partial}{\leftarrow} \mathbb{Z}Y_1 \stackrel{\partial}{\leftarrow} \mathbb{Z}Y_2 \leftarrow \dots$$
 and
$$\partial = \sum_{i=0}^n (-1)^i d_i$$

in degree n. Recall that the integral singular homology groups $H_*(X;\mathbb{Z})$ of the space X are defined to be the homology groups of the chain complex $\mathbb{Z}SX$. The homology groups $H_n(Y,A)$ of a simplicial set Y with coefficients in an abelian group A are defined to be the homology groups $H_n(\mathbb{Z}Y\otimes A)$ of the chain complex $\mathbb{Z}Y\otimes A$.

Classifying space

Suppose that \mathscr{C} is a (small) category. The classifying space (or nerve) $\mathscr{B}\mathscr{C}$ of \mathscr{C} is the simplicial set with

$$B\mathscr{C}_n = \operatorname{hom}_{\operatorname{cat}}(\mathbf{n}, \mathscr{C}),$$

n-simplex is a string

$$a_0 \xrightarrow{\alpha_1} a_1 \xrightarrow{\alpha_2} \dots \xrightarrow{\alpha_n} a_n$$

of composeable arrows of length n in \mathscr{C} .

If G is a group, then G can be identified with a category (or groupoid) with one object * and one morphism $g:*\to *$ for each element g of G, and so the classifying space BG of G is defined. Moreover |BG| is an Eilenberg-Mac Lane space of the form K(G,1), as the notation suggests; this is now the standard construction.

Geometric realization

The simplex category: $\Delta \downarrow X$ of a simplicial set X. The objects of $\Delta \downarrow X$ are the maps $\sigma : \Delta^n \to X$, or simplices of X. An arrow of $\Delta \downarrow X$ is a commutative diagram of simplicial maps

Observe that θ is induced by a unique ordinal number map θ : $\mathbf{m} \rightarrow \mathbf{n}$.

5.3. CW-COMPLEXES

Lemma 1. There is an isomorphism

$$X \cong \lim_{\stackrel{\longrightarrow}{\Delta^n \longrightarrow X}} \Delta^n.$$

$$in \Delta \mid X$$

The realization |X| of a simplicial set X is defined by the colimit

$$|X| = \frac{\lim}{\longrightarrow} |\Delta^n|.$$

$$\Delta^n \to X$$

$$\operatorname{in} \Delta \downarrow X$$

in the category of topological spaces. The construction $X \mapsto |X|$ is seen to be functorial in simplicial sets X, by using the fact that any simplicial map $f: X \to Y$ induces a functor $f_*: \Delta \downarrow X \to \Delta \downarrow Y$ by composition with f.

Proposition 3. The realization functor is left adjoint to the singular functor in the sense that there is an isomorphism

$$hom_{Top}(|X|, Y) \cong hom_{\mathbf{S}}(X, SY)$$

which is natural in simplicial sets X and topological spaces Y. In particular, since S has all colimits and the realization functor, $\|$ preserves them.

Proposition 4. |X| is a CW-complex for each simplicial set X. In particular it is a compactly generated Hausdorff space.

5.3 CW-complexes

They can be defined in an inductive way:

- 1. Start with a discrete set X^0 , whose points are regarded as 0 -cells.
- 2. Inductively, form the n-skeleton X^n from X^{n-1} by attaching n-cells e^n_α via maps $\varphi_\alpha: S^{n-1} \to X^{n-1}$. This means that X^n is the quotient space of the disjoint union $X^{n-1}\coprod_\alpha D^n_\alpha$ of X^{n-1} with a collection of n-disks D^n_α under the identifications $x \sim \varphi_\alpha(x)$ for $x \in \partial D^n_\alpha$. Thus as a set, $X^n = X^{n-1}\coprod_\alpha e^n_\alpha$ where each e^n_α is an open n-disk.
- 3. One can either stop this inductive process at a finite stage, setting $X = X^n$ for some $n < \infty$, or one can continue indefinitely, setting $X = \cup_n X^n$. In the latter case X is given the weak topology: A set $A \subset X$ is open (or closed) iff $A \cap X^n$ is open (or closed) in X^n for each n.

Example 2. 1. A 1-dimensional cell complex $X = X^1$ is what is called a graph in algebraic topology. It consists of vertices (the 0-cells) to which edges (the 1-cells) are attached. The two ends of an edge can be attached to the same vertex.

- 2. The sphere S^n has the structure of a cell complex with just two cells, e^0 and e^n , the n-cell being attached by the constant map $S^{n-1} \to e^0$. This is equivalent to regarding S^n as the quotient space $D^n/\partial D^n$.
- 3. Real projective n-space $\mathbb{R}P^n$. It is equivalent to the quotient space of a hemisphere D^n with antipodal points of ∂D^n identified. Since ∂D^n with antipodal points identified is just $\mathbb{R}PP^{n-1}$, we see that $\mathbb{R}P^n$ is obtained from $\mathbb{R}P^{n-1}$ by attaching an n-cell, with the quotient projection $S^{n-1} \to \mathbb{R}P^{n-1}$ as the attaching map. It follows by induction on n that $\mathbb{R}P^n$ has a cell complex structure $e^0 \cup e^1 \cup \cdots \cup e^n$ with one cell e^i in each dimension $i \le n$.

 The infinite union $\mathbb{R}P^\infty = U_n\mathbb{R}P^n$ becomes a cell complex with one cell in each dimension. We can view $\mathbb{R}P^\infty$ as the space of lines through the origin in $\mathbb{R}^\infty = \bigcup_n \mathbb{R}^n$.
- 4. Complex projective space $\mathbb{C}P^n$. It is equivalent to the quotient of the unit sphere $S^{2n+1} \subset \mathbb{C}^{n+1}$ with $v \sim \lambda v$ for $|\lambda| = 1$. It is also possible to obtain $\mathbb{C}P^n$ as a quotient space of the disk D^{2n} under the identifications $v \sim \lambda v$ for $v \in \partial D^{2n}$, in the following way. The vectors in $S^{2n+1} \subset \mathbb{C}^{n+1}$ with last coordinate real and nonnegative are precisely the vectors of the form $\left(w, \sqrt{1-|w|^2}\right) \in \mathbb{C}^n \times \mathbb{C}$ with $|w| \leq 1$. Such vectors form the graph of the function $w \mapsto \sqrt{1-|w|^2}$. This is a disk D^{2n}_+ bounded by the sphere $S^{2n-1} \subset S^{2n+1}$ consisting of vectors $(w,0) \in \mathbb{C}^n \times \mathbb{C}$ with |w| = 1. Each vector in S^{2n+1} is equivalent under the identifications $v \sim \lambda v$ to a vector in D^{2n}_+ , and the latter vector is unique if its last coordinate is nonzero. If the last coordinate is zero, we have just the identifications $v \sim \lambda v$ for $v \in S^{2n-1}$. It follows that \mathbb{P}^n is obtained from $\mathbb{C}P^{n-1}$ by attaching a cell e^{2n} via the quotient map $S^{2n-1} \to \mathbb{C}P^{n-1}$. So by induction on $v \in \mathbb{C}P^n$ is obtained from $\mathbb{C}P^n = e^0 \cup e^2 \cup \cdots \cup e^{2n}$ with cells only in even dimensions. Similarly, $\mathbb{C}P^\infty$ has a cell structure with one cell in each even dimension.

Each cell e_{α}^{n} in a cell complex X has a **characteristic map** $\Phi_{\alpha}:D_{\alpha}^{n}\to X$ which extends the attaching map φ_{α} and is a homeomorphism from the interior of D_{α}^{n} onto e_{α}^{n} . Namely, we can take Φ_{α} to be the composition $D_{\alpha}^{n}\hookrightarrow X^{n-1}\coprod_{\alpha}D_{\alpha}^{n}\to X^{n}\hookrightarrow X$ where the middle map is the quotient map defining X^{n} .

Geometric Group Theory

By a G-complex we will mean a CW-complex X together with an action of G on X which permutes the cells. Thus we have for each $g \in G$ a homeomorphism $x \mapsto gx$ of X such that the image go of any cell σ of X is again a cell. For example, if X is a simplicial complex on which G acts simplicially, then X is a G-complex.

If X is a G-complex then the action of G on X induces an action of G on the cellular chain complex $C_*(X)$, which thereby becomes a chain complex of G-modules. Moreover, the canonical augmentation $\varepsilon: C_0(X) \to \mathbb{Z}$ (defined by $\varepsilon(v) = 1$ for every 0 -cell v of X) is a map of G-modules.

We will say that X is a free G-complex if the action of G freely permutes the cells of X (i.e., $g\sigma \neq \sigma$ for all σ if $g \neq 1$). In this case each chain module $C_n(X)$ has a \mathbb{Z} -basis which is freely permuted by G, hence by $3.1C_n(X)$ is a free $\mathbb{Z}G$ -module with one basis element for every G-orbit of cells. (Note that to obtain a specific basis we must choose a representative cell from each orbit and we must choose an orientation of each such representative.)

Finally, if *X* is contractible, then $H_*(X) \approx H_*$ (pt.); in other words, the sequence

$$\cdots \to C_n(X) \xrightarrow{\partial} C_{n-1}(X) \to \cdots \to C_0(X) \xrightarrow{\varepsilon} \mathbb{Z} \to 0$$

is exact. We have, therefore:

Proposition 5. Let X be a contractible free G-complex. Then the augmented cellular chain complex of X is a free resolution of \mathbb{Z} over $\mathbb{Z}G$.

Homotopy theory

Let I^n be the n-dimensional unit cube, the product of n copies of the interval [0,1]. The boundary ∂I^n of I^n is the subspace consisting of points with at least one coordinate equal to 0 or 1 . For a space X with basepoint $x_0 \in X$, define $\pi_n(X,x_0)$ to be the set of homotopy classes of maps $f:(I^n,\partial I^n)\to (X,x_0)$, where homotopies f_t are required to satisfy $f_t(\partial I^n)=x_0$ for all t. The definition extends to the case n=0 by taking I^0 to be a point and ∂I^0 to be empty, so $\pi_0(X,x_0)$ is just the set of path-components of X.

When $n \ge 2$, a sum operation in $\pi_n(X, x_0)$, generalizing the composition operation in π_1 , is defined by

$$(f+g)(s_1,s_2,\cdots,s_n) = \begin{cases} f(2s_1,s_2,\cdots,s_n), & s_1 \in [0,1/2] \\ g(2s_1-1,s_2,\cdots,s_n), & s_1 \in [1/2,1] \end{cases}$$

It is evident that this sum is well-defined on homotopy classes. Since only the first coordinate is involved in the sum operation, the same arguments as for π_1 show that $\pi_n(X, x_0)$ is a group, with identity element the constant map sending I^n to x_0 and with inverses given by $-f(s_1, s_2, \dots, s_n) = f(1 - s_1, s_2, \dots, s_n)$.

Proposition 6. *If* $n \ge 2$, then $\pi_n(X, x_0)$ is abelian.

7.1 Covering spaces

The reader who has studied covering spaces has, of course, seen many examples of free G-complexes. Indeed, suppose $p:Y\to Y$ is a regular covering map with G as group of deck transformations. (See the appendix to this chapter for a review of regular covers.) If Y is a CW-complex, then it is an elementary fact that Y inherits a CW-structure such that the G-action permutes the cells, cf. Schubert [1968], III.6.9. Explicitly, the open cells of Y lying over an open cell σ of Y are simply the connected components of $p^{-1}\sigma$; these cells are permuted freely and transitively by G, and each is mapped homeomorphically onto σ under p. Thus \tilde{Y} is a free G-complex and $C_*\tilde{Y}$ is a complex of free $\mathbb{Z}G$ -modules with one basis element for each cell of Y.

In view of 4.1, it is natural now to consider CW-complexes Y satisfying the following three conditions:

- 1. *Y* is connected.
- 2. $\pi_1(Y)$ is isomorphic to G.
- 3. The universal covering space *X* of *Y* is contractible.

Part III Topics of Geometry

Part IV

K-theory

K-theory constructions

8.1 Milnor's K-theory

For $n \ge 3$ the **Steinberg group** $St_n(R)$ of a ring R is the group defined by generators $x_{ij}(r)$, with i, j a pair of distinct integers between 1 and n and $r \in R$, subject to the following "Steinberg relations":

$$x_{ij}(r)x_{ij}(s) = x_{ij}(r+s),$$

$$\begin{bmatrix} x_{ij}(r), x_{k\ell}(s) \end{bmatrix} = \begin{cases} 1 & \text{if } j \neq k \text{ and } i \neq \ell, \\ x_{i\ell}(rs) & \text{if } j = k \text{ and } i \neq \ell, \\ x_{kj}(-sr) & \text{if } j \neq k \text{ and } i = \ell. \end{cases}$$

As observed in (1.3.1), the Steinberg relations are also satisfied by the elementary matrices $e_{ij}(r)$ which generate the subgroup $E_n(R)$ of $GL_n(R)$. Hence there is a canonical group surjection $\phi_n : St_n(R) \to E_n(R)$ sending $x_{ij}(r)$ to $e_{ij}(r)$.

The Steinberg relations for n+1 include the Steinberg relations for n, so there is an obvious map $St_n(R) \to St_{n+1}(R)$. We write St(R) for $\lim_{\longrightarrow} St_n(R)$ and observe that by stabilizing, the ϕ_n induce a surjection $\phi: St(R) \to E(R)$.

The group $K_2(R)$ is the kernel of $\phi: St(R) \to E(R)$. Thus there is an exact sequence of groups

$$1 \to K_2(R) \to St(R) \xrightarrow{\phi} GL(R) \to K_1(R) \to 1.$$

It will follow from Theorem 5.2.1 below that $K_2(R)$ is an abelian group. Moreover, it is clear that St and K_2 are both covariant functors from rings to groups, just as GL and K_1 are.

Theorem 2. $K_2(R)$ is an abelian group. In fact it is precisely the center of St(R).

We'll define right actions of the symmetric group S_n on $G_L(R)$ and on $St_n(R)$ by setting

$$(\alpha^s)_{k,\ell} = \alpha_s(k), s(\ell); \quad x_{k\ell}(a)^s = x_s^{-1}(k), s^{-1}(\ell)(a).$$

These actions are compatible with the projections $St_n(R) \to E_n(R)$ and with the homomorphisms $St_n(R) + St_{n+1}(R)$ and $GL_n(R) + GL_{n+1}(R)$. In particular, they induce an action on $\overline{St}_n(R)$.

Lemma 2. For any $s \in S_{n+1}$ the embeddings u_n and u_n^s are homotopic.

8.2 Volodin's K-theory

Let G be a group and $\{G_i\}_{i\in I}$ a family of subgroups. Define $V(G,\{G_i\})$, or just V(G) to be the simplicial complex, whose vertices are the elements of G, where $g_0,\ldots,g_p\left(g_i\neq g_j\right)$ form a p-simplex if for some G_i all the elements $g_jg_k^{-1}$ lie in G_i . If H is another group with a family of subgroups $\{H_j\}$ and $\phi:G\to H$ is a homomorphism sending each G_i into some H_j , then ϕ induces a simplicial map $V(\phi):V(G)\to V(H)$.

In many situations it is more convenient to use simplicial sets instead of simplicial complexes: Denote by $W(G, \{G_i\})$ the geometric realization of the simplicial set whose p-simplices are the sequences $(g_0, ..., g_p)$ of elements of G (not necessarily distinct) such that for some G_i all $g_j g_k^{-1}$ lie in G_i , the r-th face (resp. degeneracy) of this simplex being obtained by omitting g_r (resp., repeating g_r). Associating with any p-simplex $(g_0, ..., g_p)$ the linear singular simplex of the space

V(G) which sends the i-th vertex of the standard simplex to g_j , we obtain a map of simplicial sets from W(G) to the simplicial set of singular simplices of V(G) and hence a cellular map (linear on any simplex) from W(G) to V(G). This map is a homotopy equivalence

Suppose that R is a ring, n a natural number and σ a partial ordering of $\{1,\ldots,n\}$. Define $T_n^\sigma(R)$ to be the subgroup of $GL_n(R)$ consisting of the α with $\alpha_{ij}=1$ and $\alpha_{ij}=0$ if i& j. Subgroups of this form will be called triangular subgroups of $GL_n(R)$. The space $V\left(GL_n(R),\left\{T_n^\sigma(R)\right\}\right)$ will be denoted by $V_n(R)$. Since any partial ordering may be extended to a linear ordering, it suffices to consider linear orderings when defining $V_n(R)$. The natural embedding $GL_n\hookrightarrow GL_{n+1}(R)$ defines an embedding $V_n(R)$ and we'll define $V_\infty(R)$ as $\lim_n V_n(R)$.

Finally for $i \ge 1$, put

$$k_{i,n}(R) = \pi_{i-1}\left(V_n(R)\right)$$

and $k_i(R) = k_{i,\infty}(R) = \lim_{\to} k_{i,n}(R)$ (compare [26], [27]). Evidently $K_{1,n}(R) = GL_n(R)/E_n(R)$ and $K_{i,n}(R)$ is a group if $i \ge 2$, and this group is abelian if $i \ge 3$. Moreover the $K_i(R)$ are abelian groups for all $i \ge 1$ (see [26], [27]). The connected component of $V_n(R)$ passing through T_n equals $V\left(E_n(R),\left\{T_n^{\sigma}(R)\right\}\right)$. It is easy to show that the universal covering space of $V_n\left(E_n(R),\left\{T_n^{\sigma}(R)\right\}\right)$ equals $V\left(St(R),\left\{T_n^{\sigma}(R)\right\}\right)$, where T_n^{σ} is identified with the subgroup of $St_n(R)$ generated by the $x_{ij}(a)$ with a εR , $i < j (n \ge 3)$. Hence

Lemma 3.
$$K_{2,n}(R) = \ker(St_n(R) + E_n(R))$$
, and $K_{i,n}(R) = \pi_{i-1}(V(St_n(R))) = \pi_{i-1}(W(St_n(R)))$ if $i \ge 3$ $(n \ge 3)$.

Let's define $\overline{St}_n(R)$ to be the inverse image of $GL_n(R)$ under the projection $St(R) \to E(R)$. There is a canonical homomorphism $St_n(R) \to \overline{st}_n(R)$ and stability for K_1, k_2 ([10], [20], [22]) shows that this homomorphism is surjective if $n \ge s.r.R + 1$ and bijective if $n \ge s.r.R + 2$. The spaces $W(St_n(R))$ and $W(\overline{St}_n(R))$ will play an essential role in the sequel. We'll denote them by $W_n(R)$, $\overline{W}_n(R)$, resp. (So $W_n(R) = \overline{W}_n(R)$ if $n \ge s.r.R + 2$.)

Lemma 4. Denote the canonical embedding $\bar{W}_n(R) \longleftrightarrow \bar{W}_{n+1}(R)$ by u_n . If $n \ge s \cdot r.R$ and $x \in \overline{St}_{n+1}(R)$, then u_n and $u_n \cdot x$ are homotopic. (Here $(u_n \cdot x)(g) = (u_n(g)) \cdot x \cdot (g)$)

Lemma 5. For any $s \in S_{n+1}$ the embeddings u_n and u_n^s are homotopic.

For any simplicial set X we'll denote by $C_*(X)$ its chain complex, i.e., the complex of abelian groups with $C_p(x)$ equal to the free abelian group generated by the p-simplices of X and each differential equal to an alternating sum of homomorphisms induced by taking faces. It is well known that $C_*(X)$ is homotopy equivalent to the singular complex of the geometric realization of X. In view of (1.5) the maps of complexes $C_*(u_n)$, $C_*(u_n(n,n+1))$: $C_*(\bar{W}_n(R)) + C_*(\bar{W}_{n+1}(R))$ are homotopic. Looking through the proof of (1.5) one sees that the corresponding homotopy operator $\phi_{n+1}^k : C_p(\bar{W}_n(R)) + C_{p+1}(\bar{W}_{n+1}(R))$ may be taken in the following form: (We denote $x_{k,n+1}(1)$ by x_k and

$$x_{n+1,k}(-1) \text{ by } y_k)$$

$$\phi_{n+1}^k (\alpha_0, ..., \alpha_p) = \sum_{i=0}^p (-1)^{i+1} \left[\left(\alpha_0^{x_k y_k}, ..., \alpha_i x_k y_k, \alpha_i^{(k,n+1)}, ..., \alpha_p^{(k,n+1)} \right) - \left(\alpha_0^{x_k y_k}, ..., \alpha_i^{x} y_k, \alpha_i x_k y_k, ..., \alpha_p^{x_k y_k} \right) + \left(\alpha_0^{x_k} \cdot y_k, ..., \alpha_i^{x_k} \cdot y_k, \alpha_i^{x_k y_k}, ..., \alpha_p y_k \right) - \left(\alpha_0 y_k, ..., \alpha_i y_k, \alpha_i, ..., \alpha_p \right) + \left(\alpha_0 y_k, ..., \alpha_i y_k, \alpha_i^{x_k} \cdot y_k, ..., \alpha_p^{x_k} \cdot y_k \right) - \left(\alpha_0 y_k, ..., \alpha_i y_k, \alpha_i y_k, ..., \alpha_p y_k \right) \right]$$

Lemma 6. The homotopy operators ϕ_{n+1}^k have the following properties:

- 1. $(\partial \alpha(k, n+1)) = d\phi_{n+1}^k(\alpha) + \phi_{n+1}^k(d\alpha)$, where $\alpha = (\alpha_0, ..., \alpha_p)$ is a p-simplex of $\bar{W}_n(R)$.
- 2. $\phi_{n+1}^n \mid C_* (\bar{W}_{n-1}(R)) = 0$.
- 3. For any $s \in S_n$ the following formula is valid:

$$\phi_{n+1}^k(\alpha^s) = [\phi_{n+1}^s(k)(\alpha)]^s$$

4.
$$\phi_{n+1}^k \mid C_*(\bar{W}_{n-1}(R)) = (\phi_n^k)(n+1,n)$$

Lemma 7. Suppose $c \in C_p(\bar{W}_{n-q}(R))$, $dc \& C_{p-1}(\bar{W}_{n-q-1}(R))$. Set

$$\begin{split} c_0 &= c, c_1 = \phi_{n-q+1}^{n-q}(c_0) \,\& c_{p+1} \left(\bar{W}_{n-q+1}(R) \right), \ldots, c_k \\ &= \phi_{n-q+k}^{n-q+k-1} \left(c_{k-1} \right) \varepsilon \, c_{p+k} \left(\bar{w}_{n-q+k}(R) \right). \ Then, \ if \ k \geq 1, \ we \ have: \\ dc_k &= c_{k-1} - c_{k-1}^{(n-q+k,n-q+k-1)} + \ldots + (-1)^k c_{k-1}^{(n-q+k,\dots,n-q)}. \end{split}$$

8.2.1 The Aciclicity Theorem

If X is an arbitrary set, we'll denote by $F_m(X)$ the partially ordered set of functions defined on non-empty subsets of $\{1, ..., m\}$ and taking values in X. The partial ordering is defined as follows:

$$f \le g \Leftrightarrow \operatorname{dom} f \subset \operatorname{dom} g, g|_{\operatorname{dom}} f = f.$$

(Here dom f is the subset of $\{1, ..., m\}$ where f is defined). Following van der Kallen [11] we'll say that $F \subset F_m(X)$ satisfies the chain condition if F contains with any function all its restrictions (to non-empty subsets of its domain). It is clear that f and g have a common restriction if and only if there exists i $\varepsilon\{1, ..., m\}$ such that f and g are defined at f and equal at f. In this case there obviously exists a maximal common restriction inf(f, g).

If $F \subset F_m(X)$ satisfies the chain condition, then by F_* we'll denote the geometric realization of the semi-simplicial set, whose non-degenerate p-simplices are the functions $f \in F$ with | dom f | = p+1, and whose faces are defined by the formulas $d_j(f) = f|_{\{i_0,\dots,\hat{i}_j,\dots,i_p\}}$ where $\{i_0,\dots,i_p\} = \text{dom } f, (i_0 < \dots < i_p)$. If $f \in F, |\text{dom } f| = p+1$, then by |f| we'll denote the corresponding p-simplex of F_* . It is clear that $|f| \cap |g|$ is either empty or else equals $|\inf(f,g)|$. In particular, F_* is a simplicial space [7].

Let R be a ring (associative with identity), R^{∞} the free left R-module on the basis e_1, \ldots, e_n, \ldots , and R^n its submodule generated by e_1, \ldots, e_n . If X is any subset of R^{∞} , then by $U_m(X)$ we' 11 denote the subset of $F_m(X)$ consisting of those functions f for which $f(i_0), \ldots, f(i_p)$ is a unimodular frame (i.e., a basis of a free direct summand of R^{∞}), where $\{i_0, \ldots, i_p\} = \text{dom}(f)$.

Theorem 3. Suppose R is a ring, r = s.r.R and m, n are natural numbers. Then $U_m(R^n)$ is $\min(m-2, n-r-1)$ -acyclic.

Corollary 1. $U_n(\mathbb{R}^n)$ is (n-r-1) – acyc 1 ic.

Corollary 2. Consider in $St_{n+1}(\Lambda)$ the following subgroups: $A^i = \{\alpha : e_i \cdot \pi(\alpha) = e_i\}$ (i = 1, ..., n+1) and consider the simplicial set $Z'(St_{n+1}(R), A^i)$ constructed as in (2.5), but using left cosets instead of right cosets. This simplicial set is (n-r)-acyclic.

8.3 Whitehead's K-theory

8.4 Quillen's K-theory

Homological stability

9.1 Motivation

[1]

The symmetric group Σ_n is the group of bijections of the finite set $\underline{n} = \{1, ..., n\}$, under composition. The classifying space BG of a discrete group G, such as Σ_n , is the connected space determined uniquely up to weak homotopy equivalence by the property

$$\pi_*(BG) = \begin{cases} G & \text{if } * = 1, \\ 0 & \text{otherwise} \end{cases}$$

It can be constructed by extracting from G the groupoid *//G given by: - a single object *, - morphisms given by $* \xrightarrow{g} *$ for $g \in G$, and - composition given by multiplication.

We then take its nerve to obtain a simplicial set, and take the geometric realisation to get a topological space |N(*//G)|; this is a model for BG. Exercise 1.3.1 proves it indeed has the desired property.

Proposition 7. $H_*(B\Sigma_n; \mathbb{Z})$ is the same as computing the group homology of Σ_n with coefficients in \mathbb{Z} .

Let us compute these groups and the homology of their classifying spaces for the first few values of n.

Example 3. 1. For n = 0,1, the group Σ_n is trivial so its classifying space is weakly contractible and hence has trivial homology.

2. Example 1.1.4. For $n=2, \Sigma_2$ is isomorphic to the cyclic abelian group $\mathbb{Z}/2$. Then $B\mathbb{Z}/2$, as constructed above, is homotopy equivalent to $\mathbb{R}P^{\infty}$. We conclude that

$$H_*(B\mathbb{Z}/2;\mathbb{Z}) = H_*\left(\mathbb{R}P^{\infty};\mathbb{Z}\right) = \begin{cases} \mathbb{Z} & \text{if } * = 0 \\ \mathbb{Z}/2 & \text{if } * > 0 \text{ is odd,} \\ 0 & \text{if } * > 0 \text{ is even.} \end{cases}$$

3. Example 1.1.5. For n = 3, the group Σ_3 is the dihedral group D_3 with 6 elements (i.e. the symmetries of a triangle). A more complicated computation given in Exercise 1.3.5 yields the homology of D_3 :

$$H_* (BD_3; \mathbb{Z}) = \begin{cases} \mathbb{Z} & if * = 0 \\ \mathbb{Z}/2 & if * > 0 \text{ and } * \equiv 1 \pmod{4} \\ \mathbb{Z}/6 & if * > 0 \text{ and } * \equiv 3 \pmod{4}, \\ 0 & otherwise \end{cases}$$

Conjectures

- 1. Each reduced homology group $\widetilde{H}_d(B\Sigma_n; \mathbb{Z})$ is finite and has small exponent.
- 2. The homology in fixed degree * = d becomes independent of n as $n \to \infty$.
- 3. Before becoming independent of *n*, the homology only increases in size.

4. The *p*-power torsion only changes when $p \mid n$.

If we want to attempt to prove (2)-(4), we need a better way to compare the homology groups for different n than just as abstract abelian groups. This is done by observing that the inclusion $n \hookrightarrow n+1$ of finite sets gives a homomorphism

$$\sigma: \Sigma_n \longrightarrow \Sigma_{n+1}$$
,

by extending a permutation of \underline{n} by the identity on $n+1 \in \underline{n+1}$ to a permutation of n+1. Our construction of BG is natural in groups and homomorphisms, so this homomorphism induces a map

$$\sigma: B\Sigma_n \longrightarrow B\Sigma_{n+1}$$
,

which in turn induces a map $\sigma_*: H_*(B\Sigma_n; \mathbb{Z}) \to H_*(B\Sigma_{n+1}; \mathbb{Z})$ on homology. We can then give sharper formulations of (2)-(4) in terms of these stabilisation maps: (2') The maps σ_* are isomorphisms in a range increasing with n.

- (3') The maps σ_* are injective.
- (4') The maps σ_* are isomorphisms on p-power torsion unless $p \mid n+1$.

Property (1) holds for all finite groups, and the result which proves it also implies (4'):

Proposition 8. For a finite group G, $\widetilde{H}_*(BG; \mathbb{Z}[1/|G|]) = 0$. More generally, for $H \subset G$ the map $\iota_* : H_*(BH; \mathbb{Z}[1/[G:H]]) \to H_*(BG; \mathbb{Z}[1/[G:H]])$ admits a right inverse τ (i.e. $\iota_* \circ \tau = \mathrm{id}$).

To deduce (4') from Proposition 1.1.6, note that $[\Sigma_{n+1}:\Sigma_n]=n+1$ so by the long exact sequence on homology groups so that $H_*(B\Sigma_n;\mathbb{Z}) \to H_*(B\Sigma_{n+1};\mathbb{Z})$ is surjective after inverting n+1. Now set n+1 equal to p and invoke (3'). It is phenomenon indicated by (2') that is the subject of this minicourse:

A sequence $X_0 \xrightarrow{\sigma} X_1 \xrightarrow{\sigma} X_2 \xrightarrow{\sigma} \cdots$ exhibits **homological stability** if the maps $\sigma_* : H_*(X_n; \mathbb{Z}) \to H_*(X_{n+1}; \mathbb{Z})$ are isomorphisms in a range of degrees * increasing with n.

In the next two lectures we will prove the following result, due to Nakaoka [Nak60] (though he proved much more):

Theorem 4. The sequence $B\Sigma_0 \xrightarrow{\sigma} B\Sigma_1 \xrightarrow{\sigma} B\Sigma_2 \xrightarrow{\sigma} \cdots$ exhibits homological stability. More precisely, the induced map

$$\sigma_*: H_*(B\Sigma_n; \mathbb{Z}) \longrightarrow H_*(B\Sigma_{n+1}; \mathbb{Z})$$

is surjective if $* \le \frac{n}{2}$ and an isomorphism if $* \le \frac{n-1}{2}$.

Remark 1.1.9. Of course, if we know property (3') holds then the range in the previous theorem in which σ_* is an isomorphism improves to $* \le \frac{n}{2}$. However, property (3') is rather special—related to the existence of transfer maps-and you should not expect it to hold for general sequences of classifying spaces of groups. We will not comment on it again, but see Exercise 1.3.6.

Remark 1.1.10. The ranges in the previous remark are optimal among those of the form $* \le an + b$ with $a, b \in \mathbb{Q}$.

Bibliography

- [1] Alexander Kupers. homstab.pdf. May 2021. URL: https://www.utsc.utoronto.ca/people/kupers/wp-content/uploads/sites/50/homstab.pdf (visited on 06/14/2024).
- [2] Charles A. Weibel. *An Introduction to Homological Algebra*. en. 1st ed. Cambridge University Press, Apr. 1994. ISBN: 978-0-521-43500-0 978-0-521-55987-4 978-1-139-64413-6. DOI: 10.1017/CB09781139644136. URL: https://www.cambridge.org/core/product/identifier/9781139644136/type/book (visited on 05/02/2024).