

Πανεπιστήμιο Δυτικής Αττικής Σχολή Μηχανικών

Τμήμα Μηχανικών Πληροφορικής και Υπολογιστών

Ασκήσεις εργαστηρίου θεωρίας κυκλωμάτων 2^H ΕΡΓΑΣΤΗΡΙΑΚΉ ΆΣΚΗΣΗ

Λάζαρος Κηρυκόπουλος, 2° εξάμηνο, 21390087, Τμήμα ΘΚ09 Νικόλαος Θωμάς, 2° εξάμηνο, 21390068, Τμήμα ΘΚ09 Χρήστος Βρέκος, 2° εξάμηνο, 21390027, Τμήμα ΘΚ09

Ημερομηνία Διεξαγωγής : 6/5/2022

Ημερομηνία Παράδοσης : 20/5/2022

1. Κυκλώματα RC

Παρακάτω παριστάνονται τα πειράματα που κάναμε στο εργαστήριο:

Εικόνα 1: Αντίσταση 12kΩ, σχηματισμένη με δύο 22kΩ παράλληλα και μια 1kΩ σε σειρά.

Εικόνα 2: Αντίσταση 4k7Ω.

Εικόνα 3: Αντίσταση 1kΩ.

Εικόνα 4: Αντίσταση 22kΩ.

VΠηγής = 12V				Συχνότητα Πηγής 30ΗΖ			
RC				Σταθερά χρόνου = τ			
R (Ω)	τ=RC sec	Vc(1τ) Volt	Vc(2τ) Volt		Vc(3τ) Volt	Vc(4τ) Volt	Vc(5τ) Volt
1k	1	7,2	9,4		10,7	11	11,4
4k7	4,7	7,5	9,8		10,7	11	11,4
12k	12	7,7	9,9		11	11,2	11,4
22k	22	7,3	9,8		10,2	10,8	11,4

Πίνακας με τις τάσεις του πυκνωτή κατά τη φόρτιση του.

Παρατηρούμε ότι ανεξάρτητα από την τιμή της αντίστασης η τάση του πυκνωτή είναι παρόμοια στις τιμές 1τ, 2τ, 3τ, 4τ και 5τ. Αυτό οφείλεται στο γεγονός ότι ο χρόνος όσο είναι πολλαπλάσιο του τ θα απλοποιείται ο εκθέτης του e και θα είναι πάντα ακέραιος.

Vπηγής = 12V					Συχνότητα πηγής 30Hz				
RC					σταθερά χρόνου= τ				
R (Ω)	τ=RC	V _C (1τ)	V _C (2τ)		V _C (3τ)	V _C (4τ)	V _C (5τ)		
	sec	Volt	Volt		Volt	Volt	Volt		
1k	1	3,2	1,4		0,6	0,2	~0,1		
4k7	4,7	3,5	1,2		0,7	0,3	~0,1		
12k	12	3,4	1,5		0,7	0,3	~0,1		
22k	22	3,6	1,2		0,5	0,2	~0,1		

Πίνακας με τις τάσεις του πυκνωτή κατά την αποφόρτιση του.

Ερωτήσεις:

i. Γιατί με το κύκλωμα RC το ρεύμα παραμένει σταθερό σε όλη τη διάρκεια φόρτισης του πυκνωτή ενώ η τάση στα άκρα του αυξάνεται εκθετικά μετά από t = 5RC. Αντιθέτως στο κύκλωμα RL υπάρχει χρονοκαθυστέρηση στην αύξηση της έντασης του ρεύματος και θέλουμε η καθυστέρηση να γίνεται στην τάση κ όχι στην ένταση γιατί η απότομη αύξηση του ρεύματος στα κομμάτια του κυκλώματος μπορεί να προκαλέσει ζημιά στα αυτά.

ii. ----

iii.

Εικόνα 5: Επεξήγηση για την 3^η ερώτηση.