Conic sections

Transformation from general to standard cartesian form

If we have the conic equation in general cartesian form and transform it to standard form and determine which conic it represents.

$$9 x^{2}-4 y^{2}-18 x+32 y-91=0$$

$$9 x^{2}-18 x$$

$$pull out a 9$$

$$9 (x^{2}-2 x)$$

$$-4 (y^{2}-8 y)$$

$$-91=0$$

$$\frac{take}{half}$$

$$9 (x^{2}-2 x+1-1)$$

$$9 (x^{2}-2 x+1-1)$$

$$-4 (y^{2}-8 y+16-16)-91=0$$

$$\frac{take}{half}$$

$$9 ((x-1)^{2}-1)$$

$$-4 ((y-4)^{2}-16)$$

$$-91=0$$

$$9 (x-1)^{2}-9 \cdot 1$$

$$-4 (y-4)^{2}+64$$

$$-91=0$$

$$9 (x-1)^{2}-9-4 (y-4)^{2}+64-91=0+9-64+91$$

$$+9$$

$$-64+91$$

$$9 (x-1)^{2}-4 \cdot (y-4)^{2}=36$$

$$\frac{9 (x-1)^{2}}{36} - \frac{4 \cdot (y-4)^{2}}{36} = \frac{36}{36}$$

$$\frac{9 (x-1)^{2}}{36} - \frac{4 \cdot (y-4)^{2}}{36} = \frac{36}{36}$$

Starting equation

Arrange terms the terms like so.

Make sure the squared terms have a 1 in front.

Take a half of the number in front of the x or y and square it. Add and subtract it.

Take the first three terms and turn them into an (x² +___)² expression.

Distribute any term outside the parentheses(), and simplify.

Move the constants to the other side of the equation.

Divide both sides to make the right side of the equation = 1.

Divide if necessary.

Finally, our equation looks like this.

$$\frac{(x-1)^2}{4} - \frac{(y-4)^2}{9} == 1$$

From this equation, we can see that the curve is a <u>hyperbola</u>.