ANALYSIS 2 - HAUSAUFGABE 12

Tom Nick 342225 Tom Lehmann 340621 Maximilian Bachl 341455

1. Aufgabe

• Es gilt $\sqrt[k]{|a_k|} \le q < 1$ für alle k ab einem gewissen k_0 .

Außerdem gilt trivialerweise $\sqrt[k]{|a_k|} \le q < 1 \Leftrightarrow |a_k| \le q^k < 1$.

Weil $\sum_{k=0}^{\infty} \frac{1}{k^2}$ konvergiert und o.B.d.A $q^k < \frac{1}{k^2}$ ab einem gewissen k_1 folgt, dass auch die Reihe $\sum_{k=0}^{\infty} a_k$ konvergiert.

$$\sqrt[k]{|k^n x^k|} \le \sqrt{|x|} = \sqrt[k]{|k^n|} \ x \le \sqrt{|x|}$$

Ab einem gewissen k_0 ist diese Gleichung erfüllt, da $\lim_{k\to\infty} \sqrt[k]{k^n} = 1$. Da aber |x| < 1 ist diese Gleichung erfüllt. Die $\sqrt{|x|}$ steht hier für das q aus dem vorherigen Beweis. Wir nehmen die Wurzel, da nur so die obige Formel gilt und $\sqrt{|x|}$ noch immer kleiner als 1 ist.

Nach dem Wurzelkriterium konvergiert diese Reihe also. Wenn |x| > 0 ist das Wurzelkriterium nicht mehr erfüllt und der Grenzwert der Folge bleibt größer als 1.

Aufgabe 2

Aufgabe 3