

Sleep Detection with Wrist-worn Accelerometer

Viktor Overko Dmytro Kasiianenko Anastasiia Bobyr

Contents

- Dataset overview
- Existing solutions
- 2 ways to classification
- Statistical features
- Raw data and neural networks
- Deployment to the device
- Plans for improving the model

Dataset overview

- 42 patients with different sleeping disorders
- 45 records at all (1 or 2 records per patient)

distribution of patients by sleep disorders

Dataset overview

Records for one patient

Existing solutions

Estimation of Stationary Sleep-segments (ESS)

Detects long periods of idleness

Steps:

1. Identify the segments in which there are no movement patterns present due to the formula (std threshold = 6)

$$S_{\delta} \qquad \qquad = \qquad \begin{cases} 1, & \text{if } \sqrt{\frac{1}{99} \sum_{i=1}^{100} (z_i - \overline{z})^2} > \delta, \\ 0, & \text{otherwise.} \end{cases}$$

2. Identify entire segments and collect their start, stop times and length in sec (interval threshold = 600)

2 ways to solve the classification problem

Feed raw data to neural network

Takes ages for training

Extracting statistical features

Fast & more accurate

Dealing with time-series

1. Split continuous data of each patient separately into windows of the length of 60 seconds

2. Aggregate data of each window with statistical function (std/mean/max/ptp)

3. Take into consideration 15 previous and 15 next aggregated with statistical function windows

-4 min	-3 min	-2 min	Current minute	+ 1 min	+ 2 min	+ 3 min	+ 4 min
			STD for X, Y, Z				

Feature-vector of shape (9, 3) for classification current window

Machine Learning Classifiers

	Features	Accuracy	F1-score	Training time
Logistic Regression	std	0.7425	0.6857	<1 sec
XGBoost	std	0.7332	0.6652	<1 min
RNN	std	0.7407	0.6866	<10 min
CNN	std	0.7417	0.6467	<10 min

Convolutional NN Architecture

```
cnn = Sequential()
cnn.add(ConvlD(filters=32, kernel_size=2, activation='relu'))
cnn.add(ConvlD(filters=64, kernel_size=2, activation='relu'))
cnn.add(MaxPoolinglD(pool_size=2, strides=2, padding="same"))
cnn.add(Dropout(0.2))
cnn.add(Flatten())
cnn.add(Dense(8, activation='relu', kernel_regularizer=regularizers.12(0.02)))
cnn.add(Dense(1, activation='sigmoid', kernel_regularizer=regularizers.12(0.02)))
```

Recurrent NN Architecture

```
RNN = Sequential()
RNN.add(LSTM(10, dropout=0.2, recurrent_dropout=0.2, input_shape=(31, 3) ))
RNN.add(Dense(1, activation="sigmoid", kernel_initializer="glorot_uniform", kernel_regularizer=12(0.01)))
```

Neural Networks with Raw Data

	Accuracy	Training time
CNN	0.7269	>30 min
CNN+RNN	0.7256	>30 min

Deployment to the device

There are many different accelerometers. So to use our classifier with them you need:

- 1. Scale training dataset to get data similar to your accelerometer data. Standardization, for example.
- 2. Extract statistical features.
- 3. Train the model.
- 4. Evaluate the model on your data (optional).

For example, the model shows such results on MAWI dataset:

Accuracy = 0.904, F1-score = 0.9

STD vs PTP

Model	Axes	Features	Accuracy	F1-score
	All 3 axes	std	0.7425	0.6857
Logistic		ptp	0.7431	0.6830
regression	Only 1 axis	std	0.7413	0.6813
	Only 1 axis	ptp	0.7425	0.6813

- 1. Best models: Logistic regression, RNN.
- 2. To maximize quality use STD for each of 3 axes.
- 3. To optimize calculations use PTP for one axis.

- 1. Try using other RNN with statistical features.
- 2. Add age and gender to each feature-vector.
- 3. Add sleep disorder of the patient to each feature-vector.

References

- Towards Benchmarked Sleep Detection with Wrist-Worn Sensing Units - https://ieeexplore.ieee.org/document/7052479
- Comparison of Sleep-Wake Classification using Electroencephalogram and Wrist-worn Multi-modal Sensor Data - https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4320808/
- Project repository https://github.com/Vitalinsh/Sleep-Analysis-with-accelerometer

