CS6111 Advanced Database Systems Spring 2014

Computer Science Department Columbia University

OLAP and Data Warehousing

* Marked slides courtesy of:

Surajit Chaudhuri Microsoft Research

Umeshwar Dayal Hewlett-Packard Labs.

Additional slides courtesy of:

Julia Stoyanovich Columbia University

What is OLAP?

- ◆ On-Line Analytical Processing
- ◆ Information technology to help the knowledge worker (executive, manager, analyst) make faster and better decisions.
- OLAP is an element of decision support systems (DSS).

© Surajit Chaudhuri, Umeshwar Dayal

3

Running Example: Car Sales

- Cars: carId, make, model, color
- Dealers: <u>dealerId</u>, city, state
- ◆ Time of Sale: tid, year, month, day
- ◆ Sales: <u>carId</u>, <u>dealerId</u>, <u>tid</u>, price

OLTP Queries: Examples

- create a new sales record that indicates that a red VW Golf was sold in Boston, MA
- see how many black and silver VW Passats were sold at dealership #123 on April 11, 2013

OLAP Queries: Examples

- Analyze comparative sales of the different colors of VW Golf by state
- See which months are particularly favorable to the sale of different VW models and colors
- Rank VW dealerships by revenue, displaying a ranked list of dealerships and % differences in sales between each dealership and the one ranked 1 place higher

OLAP vs. OLTP

User		
CSCI	Clerk, IT professional	Knowledge worker
Function	Day to day operations	Decision support
DB design	Application-oriented	Subject-oriented
	(E-R based)	(Star, snowflake)
Data	Current, Isolated	Historical, Consolidated
View	Detailed, Flat relational	Summarized, Multidimensional
Usage	Structured, Repetitive	Ad hoc
Unit of work	Short, simple transaction	Complex query
Access	Read/write	Read mostly
Operations	Index/hash on prim. key	Lots of scans
# Records accessed	Tens	Millions
# Users	Thousands	Hundreds
Db size	100 MB - GB	100 GB - TB
Metric	Trans. throughput	Query throughput, response

© Surajit Chaudhuri, Umeshwar Dayal

Data Warehouse

- ◆ A decision support database that is maintained separately from the organization's operational databases.
- ◆ A data warehouse is a
 - subject-oriented,
 - integrated,
 - time-varying,
 - non-volatile

collection of data that is used primarily in organizational decision making.

-- W.H. Inmon, Building the Data Warehouse, 1992.

© Surajit Chaudhuri, Umeshwar Dayal

Why Separate Data Warehouse

Performance

- » Op dbs designed & tuned for known trans. workloads.
- » Complex OLAP queries would degrade performance for operational transactions.
- » Special data organization, access & implementation methods needed for multidimensional views & queries.

Function

- » Missing data: Decision support requires historical data, which op dbs do not typically maintain.
- » Data consolidation: Decision support requires data consolidation (aggregation, summarization) from many heterogeneous sources: op dbs, external sources.
- » Data quality: Different sources typically use inconsistent data representations, codes, and formats, which have to be reconciled.

© Surajit Chaudhuri, Umeshwar Dayal

OLAP Queries: Challenges

- Many AND, OR in the WHERE clause
- Self-join, nested sub-queries
 - » Last year's sales vs this year's sales for each product
 - » Show reps for whom every sale has been more than \$15000
- Extensive use of aggregation, often on related datasets
- Aggregation over time periods
- Ranking
- Use of statistical functions
- Very large datasets
- Expectation of an interactive response time

11

OLAP Query Tools

- Goal of OLAP is to support ad-hoc querying for the business analyst (Power user)
- Business analysts are familiar with spreadsheets
- Extend spreadsheet analysis model to work with warehouse data
 - » Large data set
 - » Semantically enriched to understand business terms (e.g., time, geography)
 - » Combined with reporting features
- Multidimensional view of data is the foundation of OLAP.

© Surajit Chaudhuri, Umeshwar Dayal

Multidimensional Data Model

- Database is a set of facts (points) in a multidimensional space
- A fact has a measure dimension
 y quantity that is analyzed, e.g., sale amount, budget
- A set of **dimensions** with respect to which data is analyzed
 - » e.g., store, product, date associated with a sale amount
- Dimensions form a sparsely populated coordinate system
- Each dimension has a set of attributes
 » e.g., owner, city and county of store

© Surajit Chaudhuri, Umeshwar Dayal

13

Attribute Hierarchies

- Attributes of a dimension may be related
- An m:1 dependency is most common
- Dependency graph may be:

```
» Hierarchy: e.g.,
```

city -> state -> country

» Lattice:

date -> month -> year date -> week -> year

- Hierarchies are most common
- Dependencies influence choice of operations and data representation

© Surajit Chaudhuri, Umeshwar Dayal

Multidimensional Data

Sales volume as a function of product, time, geography

Operations on Multidimensional Data Model

- Aggregation (*roll-up*) of detailed data to create *summary*data
- Navigation to detailed data (*drill-down*) from summary
- Selection (*slice*) defines a subcube
 - Project the cube on fewer dimensions by specifying coordinates of remaining dimensions
 - e.g., sales where state = NY and month = Jan
- Calculation
 - Within a dimension, e.g., (sales expense) by state
 - Across dimensions
- Ranking
 - top 3% of states by average sales
- Window Queries

© Surajit Chaudhuri, Umeshwar Dayal

Roll-up and Drill-Down

- ◆ Roll-Up: Use of aggregation
 - » dimension reduction:
 - e.g., total sales by state by color
 - e.g., total sales by state
 - » navigating attribute hierarchy:
 - e.g., sales by city -> total sales by state -> total sales by country
 - e.g., total sales by city and year -> total sales by state and year
 -> total sales by country
- Drill-Down: Inverse operation of roll-up
 - » Provides the data set that was aggregated
 - e.g., show "base" data for total sales figure for CA state

© Surajit Chaudhuri, Umeshwar Dayal

17

Slice and Dice

• What colors of Golf are not doing so well?

Select color, sum(price)
From SALES
Where model = 'Golf' slicing
Group By color dicing

Keep slicing if results are uniform

Multiple Aggregations

- Create a 2-dimensional spreadsheet that shows sum of sales by year as well as by state
- Each subtotal requires a separate aggregate query

	STATE	
Y E		Sum by
A R		Year
	Sum By State	

© Surajit Chaudhuri, Umeshwar Dayal

19

Example:

Multiple Aggregations

	WI	CA	Total					
2011	63	81	144					
2012	38	107	145					
2013	75	35	110					
Total	176	223	399					

Generalization: The Data Cube

- Base tuples
- Aggregate tuples:
 - » one aggregation for each subset of dimensions (powerset)
 - » exponential number of subsets, but can optimize the computation
- Example
 - \gg N = 3 dimensions
 - $model = \{Golf, Jetta\}$
 - color = {red, black, white}
 - state = {NY, CA, WI}
 - » How many aggregate tuples in the data cube?
 - face 1D agg; edge 2D agg; corner 3D agg

21

ROLAP and MOLAP

- Relational OLAP (ROLAP)
 - » Relational and Specialized Relational DBMS to store and manage warehouse data
 - » OLAP middleware to support missing pieces
 - Optimize for each DBMS backend
 - Aggregation Navigation Logic
 - Additional tools and services
- Multidimensional OLAP (MOLAP)
 - » Array-based storage structures
 - » Direct access to array data structures

© Surajit Chaudhuri, Umeshwar Dayal

Warehouse Database Schema

- Entity-Relationship design techniques not appropriate
- Design should reflect multidimensional view
- ◆ Typical schemas:
 - » Star Schema
 - » Snowflake Schema
 - » Fact Constellation Schema

© Surajit Chaudhuri, Umeshwar Dayal

23

Example of a Star Schema Product Order <u>ProdNo</u> <u>OrderNo</u> ProdName OrderDate ProdDescr Fact table Category CategoryDescr OrderNo Customer UnitPrice SalespersonID CustomerNo QOH CustomerNo CustomerName Date <u>ProdNo</u> CustomerAddress DateKey <u>DateKey</u> City CityName Date Month Quantity Salesperson TotalPrice Year SalespersonID City SalespersonName CityName City State Quota Country © Surajit Chaudhuri, Umeshwar Dayal 24

Star Schema and Variants

- ◆ A single fact table and a single table for each dimension
- Generated keys are used for performance and maintenance reasons
- Fact constellation: Multiple Fact tables that share common dimension tables
 - » Example: ProjectedExpense and ActualExpense may share dimensional tables
- Snowflake Schema: Represents dimensional hierarchy by normalization

© Surajit Chaudhuri, Umeshwar Dayal

25

Example of a Snowflake Schema Product Order Category ProdNo OrderNo <u>CategoryName</u> ProdName OrderDate CategoryDescr ProdDescr Fact table Category OrderNo Customer UnitPrice SalespersonID QOH CustomerNo CustomerNo CustomerName **DateKey** Year Date Month CustomerAddress CityName City **DateKey** Year Month ProdNo Date Year Quantity Salesperson Month TotalPrice SalespersonID City State SalespesonName CityName City **StateName** State Quota Country © Surajit Chaudhuri, Umeshwar Dayal 26

Performance Considerations

- Normalization for dimension tables
 - » Read-only data, so no update anomalies
 - » Fewer joins better performance
- Pre-computation of summary tables
 - » Re-use can speed up performance
 - » How can we use pre-computed results effectively?
- Data is very large, dimension data often sparse
 - » Crucial to use indexes effectively
 - » Need for new indexing techniques: bitmap indexes, join indexes

27

Bit Map Index

- ◆ An alternative representation of RID-list
- Comparison, join and aggregation operations are reduced to bit arithmetic
- Specially advantageous for low-cardinality domains
 - » Significant reduction in space and I/O (30:1)
 - » Adapted for higher cardinality domains
 - » Compression (e.g., run-length encoding) exploited
 - » Upper Bound of 2R words for any bitmap over R rows [Hasan & Sinha, 1997]

© Surajit Chaudhuri, Umeshwar Dayal

		_	ndex				le				
Base Table			Region Index				Rating Index				
Cust	Region	Rating	RowID	N	S	Е	W	RowID	Н	M	L
C1	N	Н	1	1	0	0	0	1	1	0	0
C2	S	M	2	0	1	0	0	2	0	1	0
C3	W	L	[3]	0	0	0		3	0	0/	(1)
C4	W	Н	4	0	0	0		4	1	0	0
C5	S	L	5	0	1	0	0	5	0	0	
C6	W	L	6	0	0	0		6////	0	0	
C7	N	Н	7	1	0	0	0	7	1	0	0
Customers where Region - W						and	R	ating			
©	Surajit Cha	udhuri, Ume	shwar Dayal								29

Join Index

- Traditional index maps the value in a column to a list of rows with that value
- ◆ Join index maintain relationships between attribute value of a dimension and the matching rows in the fact table
- Join index may span multiple dimensions (composite join index)
 - » Use join index to identify regions of cartesian product that are of interest
 - » Few people in Southern California may buy umbrellas

© Surajit Chaudhuri, Umeshwar Dayal

