Medical Image Processing for Diagnostic Applications

Fan Beam – Truncation Correction

Online Course – Unit 42 Andreas Maier, Joachim Hornegger, Markus Kowarschik, Frank Schebesch Pattern Recognition Lab (CS 5)

Topics

Truncation Correction Algorithms

Defect Pixel Extrapolation
Heuristic Extrapolation
Water Cylinder Assumption
Use of Prior Knowledge
Use of a Semi-transparent Filter
ATRACT Filtering

Summary

Take Home Messages Further Readings

Truncation Correction via Extrapolation

- Solution 1: Defect pixel extrapolation
- Solution 2: Heuristic extrapolation
- Solution 3: Water cylinder assumption
- Solution 4: Use of prior knowledge
- Solution 5: Use of a semi-transparent filter
- Solution 6: ATRACT filtering

Defect Pixel Extrapolation

- Model extrapolation as deconvolution.
- Use a defect pixel interpolation algorithm.

 \rightarrow Unfortunately, the algorithm works not as well as expected.

Heuristic Extrapolation

- Use mirroring for extrapolation.
- In order to enforce a limited size of the object, a cosine-like weighting is added.

Figure 1: Heuristic extrapolation scheme

B. Ohnesorge et al. "Efficient Correction for CT Image Artifacts Caused by Objects Extending Outside the Scan Field of View". In: Medical Physics 27.1 (Oct. 2000), pp. 39–46. DOI: 10.1118/1.598855

Heuristic Extrapolation

Figure 2: Heuristic extrapolation applied on a phantom

Water Cylinder Assumption

- Assume that the imaged object consists of water $(\rho = \rho_{H_2O})$.
- Fit water cylinder model to observed data

$$g(\gamma) = 2\rho_{H_2O}\sqrt{R^2 - D^2\sin^2\gamma}$$
.

Use model to extrapolate.

Figure 3: Assume the object to have a shape very similar to a water cylinder.

Water Cylinder Assumption

Figure 4: Extrapolate by assuming cylindric shape.

Water Cylinder Assumption

This approach ...

- ... will work perfectly if a water cylinder is imaged.
- ... yields good results for most objects (head, abdomen, etc...).
- ... will yield suboptimal results if the water cylinder assumption is violated (e.g., two cylinders).
- Different versions exist:
 - water ellipsoid assumption,
 - combination with cosine-like roll-off.

Use of Prior Knowledge

Prior scan (low dose)

Volume-of-interest scan (higher dose)

Use of Prior Knowledge

- Use data from a first scan to complete the data from a second scan.
- Correction will be perfect if the object did not change.
- One might also use a lower resolution prior scan.
- Movement and deformation of the object have to be compensated.
- This approach is only applicable if a prior scan exists.

Semi-transparent Filter

Figure 5: Scheme of a semi-transparent filter: setup (left) and example of a projection result (right)

Semi-transparent Filter

- Locate filter boundary.
- Amplify filtered signal to original amplitude.
- Reduce noise in the amplified signal.
- \rightarrow This yields perfect truncation correction.

Semi-transparent Filter

Challenges:

- Filter boundary must be located correctly (which may be influenced by the object).
- Correct amplification factor has to be estimated.
- Method has to be applied carefully in order not to introduce artificial high frequencies.
- Requires additional hardware in the scanner.

ATRACT

Idea:

$$|\omega| = 2\pi i\omega \cdot \left(-\frac{1}{2\pi}i\operatorname{sgn}(\omega)\right) = (2\pi i\omega)^2 \cdot \left(-\frac{1}{4\pi^2}i\frac{\operatorname{sgn}(\omega)}{\omega}\right)$$

The first term is the 2nd order derivative (local), and the right is called residual filter (global). At the truncation boundaries the 2nd derivative produces a sparse signal. The resulting peaks are filled with zero and then the global filter is applied.

Remark: Without further considerations this does not preserve the mean value.

Topics

Truncation Correction Algorithms

Defect Pixel Extrapolation
Heuristic Extrapolation
Water Cylinder Assumption
Use of Prior Knowledge
Use of a Semi-transparent Filter
ATRACT Filtering

Summary

Take Home Messages Further Readings

Take Home Messages

- Truncation artifacts can be dealed with by extrapolating the projection data at the truncation boundaries.
- We have learned about six methods, which basically divide into
 - estimation of the truncated part,
 - incorporating prior knowledge from earlier scans, or
 - a special hardware setup.
 - filtering during reconstruction.

Further Readings

Helpful reads for the current unit:

B. Ohnesorge et al. "Efficient Correction for CT Image Artifacts Caused by Objects Extending Outside the Scan Field of View". In: *Medical Physics* 27.1 (Oct. 2000), pp. 39–46. DOI: 10.1118/1.598855

Frank Dennerlein and Andreas Maier. "Approximate Truncation Robust Computed Tomography–ATRACT". In: *Physics in Medicine and Biology* 58.17 (Aug. 2013), pp. 6133–6148. DOI: 10.1088/0031-9155/58/17/6133

Yan Xia et al. "Scaling Calibration in Region of Interest Reconstruction with the 1D and 2D ATRACT Algorithm". In: *International Journal for Computer Assisted Radiology and Surgery* 9.3 (May 2014), pp. 345–356. DOI: 10.1007/s11548-014-0978-z

L. A. Shepp and Logan B. F. "The Fourier Reconstruction of a Head Section". In: *IEEE Transactions on Nuclear Science* 21.3 (June 1974), pp. 21–43. DOI: 10.1109/TNS.1974.6499235

W. P. Segars et al. "Realistic CT Simulation Using the 4D XCAT Phantom". In: *Medical Physics* 35.8 (Aug. 2008), pp. 3800–3808. DOI: 10.1118/1.2955743