Requirements Engineering

4th World Conference for Software Quality

— Software Productivity Research LLC

SOFTWARE QUALITY IN 2008: A SURVEY OF THE STATE OF THE ART

Capers Jones
Founder and Chief Scientist Emeritus

http://www.spr.com cjonesiii@cs.com

September 16, 2008

Copyright @ 2008 by Capers Jones. All Rights Reserved.

SOURCES OF QUALITY DATA

Data collected from 1984 through 2008

- About 650 companies (150 clients in Fortune 500 set)
- About 35 government/military groups
- About 13,000 total projects
- New data = about 50-75 projects per month
- Data collected from 24 countries
- Observations during more than 15 lawsuits

Copyright @ 2008 by SPR. All Rights Reserved.

U.S. AVERAGES FOR SOFTWARE QUALITY

(Data expressed in terms of defects per function point)

Defect Origins	Defect Potential	Removal Efficiency	Delivered <u>Defects</u>
Requirements	1.00	77%	0.23
Design	1.25	85%	0.19
Coding	1.75	95%	0.09
Documents	0.60	80%	0.12
Bad Fixes	<u>0.40</u>	<u>70%</u>	<u>0.12</u>
TOTAL	5.00	85%	0.75

(Function points show all defect sources - not just coding defects)

Copyright @ 2008 by SPR. All Rights Reserved.

BEST IN CLASS SOFTWARE QUALITY

(Data expressed in terms of defects per function point)

Defect Origins	Defect Potential	Removal Efficiency	Delivered <u>Defects</u>
Requirements	0.40	85%	0.08
Design	0.60	97%	0.02
Coding	1.00	99%	0.01
Documents	0.40	98%	0.01
Bad Fixes	<u>0.10</u>	95%	<u>0.01</u>
TOTAL	2.50	96%	0.13

OBSERVATIONS

Most often found in systems software > SEI CMM Level 3

Copyright @ 2008 by SPR. All Rights Reserved.

POOR SOFTWARE QUALITY - MALPRACTICE

(Data expressed in terms of defects per function point)

Defect Origins	Defect Potential	Removal Efficiency	Delivered <u>Defects</u>
Requirements	1.50	50%	0.75
Design	2.20	50%	1.10
Coding	2.50	80%	0.50
Documents	1.00	70%	0.30
Bad Fixes	<u>0.80</u>	<u>50%</u>	<u>0.40</u>
TOTAL	8.00	62%	3.05

OBSERVATIONS

Most often found in large client-server projects (> 5000 FP).

Copyright @ 2008 by SPR. All Rights Reserved.

SOFTWARE DEFECT ORIGINS

1) Requirements: Hardest to prevent and repair

2) Design: Most severe and pervasive

3) Code: Most numerous; easiest to fix

4) Documentation: Can be serious if ignored

5) Bad Fixes: Very difficult to find

6) Bad Test Cases: Common and troublesome

7) Data quality: Common but hard to measure

8) Web content: Unmeasured to date

INDUSTRY-WIDE DEFECT CAUSES

Ranked in order of effort required to fix the defects:

- Requirements problems (omissions; changes, errors)
- Design problems (omissions; changes; errors)
- 3. Interface problems between modules
- 4. Logic, branching, and structural problems
- 5. Memory allocation problems
- Testing omissions and poor coverage
- 7. Test case errors
- 8. Stress/performance problems
- 9. Bad fixes/Regressions
- 10. Documentation errors

Copyright @ 2008 by SPR. All Rights Reserved.

Key Knowledge Areas for Requirements Engineers

Siegfried

Know Your Boundaries!

10

(c) Atlantic Systems Guild 2011

What is said is not necessarily heard, what is heard is not necessarily understood

SQ7

I hear and see what I want to see and what fits my view of the world

Reality

Remedy:
More than one hears
and more than one tells
(Different views, express)

(Different views, expressions,

Background)

12

Personal

Perception,

Personal

Knowledge

what is heard is not necessarily understood what is understood is not necessarily communicated correct

Siegfried Zopf