Foundations of Machine Learning

Module 2: Linear Regression and Decision Tree

Part C: Learning Decision Tree

Sudeshna Sarkar IIT Kharagpur

Top-Down Induction of Decision Trees ID3

1. Which node to proceed with?

- 1. A \leftarrow the "best" decision attribute for next *node*
- 2. Assign A as decision attribute for *node*
- 3. For each value of A create new descendant
- 4. Sort training examples to leaf node according to the attribute value of the branch
- 5. If all training examples are perfectly classified (same value of target attribute) stop, else iterate over new leaf nodes.2. When to stop?

Choices

When to stop

- no more input features
- all examples are classified the same
- too few examples to make an informative split

Which test to split on

- split gives smallest error.
- With multi-valued features
 - split on all values or
 - split values into half.

Which Attribute is "best"?

ICS320 4

Principled Criterion

- Selection of an attribute to test at each node choosing the most useful attribute for classifying examples.
- information gain
 - measures how well a given attribute separates the training examples according to their target classification
 - This measure is used to select among the candidate attributes at each step while growing the tree
 - Gain is measure of how much we can reduce uncertainty (Value lies between 0,1)

Entropy

- A measure for
 - uncertainty
 - purity
 - information content
- Information theory: optimal length code assigns $(-\log_2 p)$ bits to message having probability p
- *S* is a sample of training examples
 - $-p_{+}$ is the proportion of positive examples in S
 - $-p_{-}$ is the proportion of negative examples in S
- Entropy of S: average optimal number of bits to encode information about certainty/uncertainty about S

$$Entropy(S) = p_{+}(-\log_{2}p_{+}) + p_{-}(-\log_{2}p_{-}) = -p_{+}\log_{2}p_{+} - p_{-}\log_{2}p_{-}$$

Entropy

- The entropy is 0 if the outcome is ``certain".
- The entropy is maximum if we have no knowledge of the system (or any outcome is equally possible).
- S is a sample of training examples
- p₊ is the proportion of positive examples
- p_{_} is the proportion of negative examples
- Entropy measures the impurity of S Entropy(S) = $-p_+\log_2 p_+ - p_-\log_2 p_-$

Information Gain

Gain(S,A): expected reduction in entropy due to partitioning S on attribute A

Gain(S,A)=Entropy(S)
$$-\sum_{v \in values(A)} |S_v|/|S|$$
 Entropy(S_v)

Entropy([29+,35-]) = $-29/64 \log_2 29/64 - 35/64 \log_2 35/64$ = 0.99

Information Gain

```
Entropy([21+,5-]) = 0.71

Entropy([8+,30-]) = 0.74

Gain(S,A<sub>1</sub>)=Entropy(S)

-26/64*Entropy([21+,5-])

-38/64*Entropy([8+,30-])

=0.27
```


Training Examples

Day	Outlook	Temp	Humidity	Wind	Tennis?
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Selecting the Next Attribute

Humidity provides greater info. gain than Wind, w.r.t target classification.

Selecting the Next Attribute

Selecting the Next Attribute

The information gain values for the 4 attributes are:

- Gain(S,Outlook) =0.247
- Gain(S, Humidity) = 0.151
- Gain(S,Wind) =0.048
- Gain(S,Temperature) = 0.029

where S denotes the collection of training examples

Note: $0Log_20 = 0$

ID3 Algorithm

 $Gain(S_{sunny}, Humidity)=0.970-(3/5)0.0-2/5(0.0)=0.970$

 $Gain(S_{sunny}, Temp.)=0.970-(2/5)0.0-2/5(1.0)-(1/5)0.0=0.570$

 $Gain(S_{sunny}, Wind)=0.970=-(2/5)1.0-3/5(0.918)=0.019$

ID3 Algorithm

Splitting Rule: GINI Index

- GINI Index
 - Measure of node impurity

$$GINI_{node}(Node) = 1 - \sum_{c \in classes} [p(c)]^{2}$$

$$GINI_{split}(A) = \sum_{v \in Values(A)} \frac{|S_{v}|}{|S|} GINI(N_{v})$$

Splitting Based on Continuous Attributes

(i) Binary split

(ii) Multi-way split

Continuous Attribute – Binary Split

- For continuous attribute
 - Partition the continuous value of attribute A into a discrete set of intervals
 - Create a new boolean attribute $A_{\rm c}$, looking for a threshold c,

$$A_{c} = \begin{cases} true & \text{if } A_{c} < c \\ false & \text{otherwise} \end{cases}$$

How to choose c?

consider all possible splits and finds the best cut

Practical Issues of Classification

Underfitting and Overfitting

Missing Values

Costs of Classification

Hypothesis Space Search in Decision Trees

- Conduct a search of the space of decision trees which can represent all possible discrete functions.
- Goal: to find the best decision tree
- Finding a minimal decision tree consistent with a set of data is NP-hard.
- Perform a greedy heuristic search: hill climbing without backtracking
- Statistics-based decisions using all data

Bias and Occam's Razor

Prefer short hypotheses.

Argument in favor:

- Fewer short hypotheses than long hypotheses
- A short hypothesis that fits the data is unlikely to be a coincidence
- A long hypothesis that fits the data might be a coincidence

ICS320 21