ME 360 Lecture 14

-2.2.2 Back substitution with the LU factorization

Now We have our matrices LU, how do they help us find the Solution X?

Once Land U are known, the problem Ax=b can be written as Lux=b. Define a new "auxiliary" rector c=ux. Then back substitution is a two-step procedure:

(a) Solve Lc=b for C

(b). Solve Ux = C for x

Both steps are straightforward since L and U are triangular matrices.

Example:
$$LU = \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 3 & -4 \end{bmatrix} = A$$

The right-hand $b = \begin{bmatrix} 3 & 2 \\ 1 & 2 \end{bmatrix}$.

$$\begin{bmatrix}
1 & 0 \\
3 & 1
\end{bmatrix}
\begin{bmatrix}
C_1 \\
C_2
\end{bmatrix} = \begin{bmatrix}
3 \\
2
\end{bmatrix} \Rightarrow C_1 = 3$$

$$3C_1 + C_2 = 2$$

$$C_2 = -7$$

Step (b): Solve
$$Ux = C$$

$$\begin{bmatrix} 1 & 1 \\ 0 & 7 \end{bmatrix} \begin{bmatrix} \chi_1 \\ \chi_2 \end{bmatrix} = \begin{bmatrix} 3 \\ -7 \end{bmatrix} \Rightarrow \begin{array}{c} \chi_1 + \chi_2 = 3 \\ -7\chi_2 = -7 \end{array} \Rightarrow \begin{array}{c} \chi_1 = 2 \\ \chi_2 = 1 \end{array}$$

$$LU = \begin{bmatrix} 1 & 0 & 0 & | & 1 & 2 & -1 & | & 1 & 2 & -1 \\ 2 & 1 & 0 & | & 0 & -3 & 0 & | & 2 & | & 1 & -2 \\ -3 & -7/3 & 1 & | & 0 & 0 & -2 & | & -3 & | & 1 \end{bmatrix} = A$$

$$b = [3, 3, -6]$$

Step (a): Solve c for
$$|c| = b$$
 $\begin{bmatrix}
1 & 0 & 0 \\
2 & 1 & 0
\end{bmatrix}
\begin{bmatrix}
C_1 & 3 \\
C_2 & = 3
\end{bmatrix}
= 2C_1 + C_2 = 3$
 $\begin{bmatrix}
-3 - \frac{7}{3} & 1
\end{bmatrix}
\begin{bmatrix}
C_3 & -3 & -3C_2 + C_3 = -b
\end{bmatrix}
= 3C_3 = -4$

In class exercise.

2.2.3 Complexity of the Ly factorization. It stems that the steps to do Ly factorization is the same as haive Gaussian Elimination. Why do we still want to do it?

- Gaussian Elimination

 To solve Ax=b, not only we modify A, we also modify b at the same time, so if we want to solve Ax=b2, we need to start fresh.
- LM Factorization

 We first solve A= LM. In this step, we don't need to know what b is. So if we want to solve Ax for different b's, we only need to do back substitution.

In reality, we often rited to solve a series of equations. $Ax = b_1$ $Ax = b_2$;

Ax = bn

and these can be accelerated by using Ly factorization.

Of course, no method nerks on all problems. Now let's see how Ly factorization fait.

Example, show that $A = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$ does not have an Ly factorization.

Ly factorization must have the form: $\begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} b & c \\ ab & actd \end{bmatrix}$

to make the equality true, we need b=0.4 ab=1, which contradicts each other.

We will introduce new method later on that overcome the above Problem.

- 2.3. Sources of Error

 (a) ill conditioning

 (2) swamping
 - 2.3.1 Error magnification and condition number
 Similar to root finding, there can be great differences between
 forward and backward error in systems of equations as well.
 - Infinity/maximum norm definition

 The infinity norm, or maximum norm, of the vector $X=(X_1,...,X_n)$ is $||X||_{\infty} = \max |X_1|$, i=1,...,n, that is, the maximum of the absolute values of the components of X.

Vesidual, forward/backward error definition. Let χ_a be an approximate solution of the linear system Ax=b. The <u>residual</u> is the <u>vector</u> $y=b-A\chi_a$. The <u>backward error</u> is the norm of the <u>vesidual</u> $11b-A\chi_a11\infty$, and the <u>forward error</u> is $11\chi-\chi_a11\infty$

Example: Find the backward and forward errors for the approximate Solution Xa = E(1, 1) of the System.

 $\begin{bmatrix} 1 & 1 \\ 3 & -4 \end{bmatrix} \begin{bmatrix} \chi_1 \\ \chi_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$

(a) backward error

(b) forward error

* We need to know the convert solution first.

For these two equations, the correct solution X = [2, 1]

$$\| \mathbf{x} - \mathbf{x} \mathbf{a} \|_{\infty} = \| \begin{bmatrix} \mathbf{z} \\ \mathbf{j} \end{bmatrix} - \begin{bmatrix} \mathbf{j} \\ \mathbf{k} \end{bmatrix} \|_{\infty} = \| \begin{bmatrix} \mathbf{j} \\ \mathbf{k} \end{bmatrix} \|_{\infty} = \| \mathbf{j} \|_{\infty}$$

In this example, forward and backward errors are on the same order of magnitude. In other cases, these two errors can be vastly different.

$$\begin{cases} \chi_{1} + \chi_{2} = 2 \\ -0.000 | \chi_{2} = -0.000 | \end{cases} \Rightarrow \begin{cases} \chi_{1} = 1 \\ \chi_{2} = 1 \end{cases}$$

Step 1: bockward error

b-Axa =
$$\begin{bmatrix} 2 \\ 2.0001 \end{bmatrix}$$
 - $\begin{bmatrix} 1 \\ 1.0001 \end{bmatrix}$ $\begin{bmatrix} -1 \\ 3.0001 \end{bmatrix}$

= $\begin{bmatrix} 2 \\ 2.0001 \end{bmatrix}$ - $\begin{bmatrix} 2.0001 \\ 2 \end{bmatrix}$ = $\begin{bmatrix} -0.0001 \\ 0.0001 \end{bmatrix}$

Step 2: forward error

$$\chi - \chi_{q} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} - \begin{bmatrix} -1 \\ 3.0001 \end{bmatrix} = \begin{bmatrix} 2 \\ -2,0001 \end{bmatrix}$$

11x-Xallo = 2.0001

Why such a big difference between forward & backward error?

the plot roughly represent the system of equations mentioned above. We can see that point (-1, 3.0001) nearly misses lying on both lines.