LOGICAL AND THEORETICAL FOUNDATIONS OF COMPUTER SCIENCE

LATFOCS

Pamela Fleischmann

fpa@informatik.uni-kiel.de

Winter Semester 2019

Kiel University Dependable Systems Group

 Proving technique that elements of a *somehow* structured set have a specific property.

- Proving technique that elements of a *somehow* structured set have a specific property.
- What does *somehow structured* mean?

- Proving technique that elements of a *somehow* structured set have a specific property.
- What does somehow structured mean?
 - The set has to have a basis a set of building atoms which are not dividable.

- Proving technique that elements of a *somehow* structured set have a specific property.
- What does *somehow structured* mean?
 - The set has to have a basis a set of building atoms which are not dividable.
 - The set needs to have rules how to build the complete set just with the atoms and some operators.

Somehow Structured Sets

What do we get if we have

- \bigcirc 1 and the function $s : \mathbb{N} \to \mathbb{N}$; $n \mapsto n + 1$?
- \bigcirc 0 and the function $s : \mathbb{N} \to \mathbb{N}$; $n \mapsto n + 2$?
- $\Sigma = \{a, b, c, \dots, z, \bot\}$ and \cdot as concatenation?
- $\bigcirc \mathbb{N} \cup \{(,),+,\cdot\}$ and concatenation?
- *S* a set of variables $V = \{A, B\}$, an alphabet $\Sigma = \{a, b\}$ and $S \to AB|a, A \to B|b$, and $B \to BA|ab$?

Natural Induction

- Proving technique that each natural number has a specific property.
- Based on the Peano Axioms: Let $s : \mathbb{N} \to \mathbb{N}$; $n \mapsto n+1$ be the successor function.
 - 1. $1 \in \mathbb{N}$
 - 2. $\forall n : n \in \mathbb{N} \to s(n) \in \mathbb{N}$
 - 3. $\forall n : n \in \mathbb{N} \to s(n) \neq 1$
 - 4. $\forall m, n : s(m) = s(n) \rightarrow m = n$ (injectivity)
 - 5. induction axiom

$$\forall X: \; (1 \in X \land \forall n \, (n \in \mathbb{N} \to (n \in X \to s(n) \in X)) \to \mathbb{N} \subseteq X) \; \text{and} \; (n \in X \to s(n) \in X) \to \mathbb{N} \subseteq X) \; \text{and} \; (n \in X \to s(n) \in X) \to \mathbb{N} \subseteq X$$

$$\forall X: \, (1 \in X \land \forall n \, (n \in \mathbb{N} \to (n \in X \to s(n) \in X)) \to \mathbb{N} \subseteq X)$$

$$\forall X: (1 \in X \land \forall n (n \in \mathbb{N} \to (n \in X \to s(n) \in X)) \to \mathbb{N} \subseteq X)$$

○ *X* arbitrary set

$$\forall X: (1 \in X \land \forall n (n \in \mathbb{N} \to (n \in X \to s(n) \in X)) \to \mathbb{N} \subseteq X)$$

- *X* arbitrary set
- if we prove that

$$\forall X: (1 \in X \land \forall n \, (n \in \mathbb{N} \to (n \in X \to s(n) \in X)) \to \mathbb{N} \subseteq X)$$

- *X* arbitrary set
- $\, \bigcirc \,$ if we prove that
 - $1 \in X$ and

$$\forall X:\, (1\in X \land \forall n\, (n\in \mathbb{N} \to (n\in X \to s(n)\in X)) \to \mathbb{N}\subseteq X)$$

- *X* arbitrary set
- if we prove that
 - \circ 1 \in X and
 - for all natural numbers being in *X* their successor is also in *X*

LaTFoCS

$$\forall X:\, (1\in X \land \forall n\, (n\in \mathbb{N} \to (n\in X \to s(n)\in X)) \to \mathbb{N}\subseteq X)$$

- *X* arbitrary set
- if we prove that
 - \circ 1 \in *X* and
 - for all natural numbers being in *X* their successor is also in *X*
- then *X* has to contain all natural numbers

If we want to prove that all natural numbers have a property P (being either 1 or strictly greater than 1)

If we want to prove that all natural numbers have a property P (being either 1 or strictly greater than 1)

1. we define the set X by containing all natural numbers fulfilling P (notice $X \subseteq \mathbb{N}$)

If we want to prove that all natural numbers have a property P (being either 1 or strictly greater than 1)

- 1. we define the set X by containing all natural numbers fulfilling P (notice $X \subseteq \mathbb{N}$)
- 2. if we are able to prove that the induction axiom holds for this X, we know $N \subseteq X$ and consequently $\mathbb{N} = X$

If we want to prove that all natural numbers have a property P (being either 1 or strictly greater than 1)

- 1. we define the set X by containing all natural numbers fulfilling P (notice $X \subseteq \mathbb{N}$)
- 2. if we are able to prove that the induction axiom holds for this X, we know $N \subseteq X$ and consequently $\mathbb{N} = X$
- 3. since X has only elements with property P, $\mathbb N$ has only elements with property P

$$\bigcirc$$
 Set $X = \{n \in \mathbb{N} | n = 1 \dot{\vee} n > 1\}.$

- \bigcirc Set $X = \{n \in \mathbb{N} | n = 1 \dot{\vee} n > 1\}.$
- \bigcirc By 1 = 1 we have 1 \in *X*.

- \bigcirc Set $X = \{n \in \mathbb{N} | n = 1 \dot{\vee} n > 1\}.$
- \bigcirc By 1 = 1 we have 1 \in *X*.
- Let be $n \in X$ for an arbitrary but fixed $n \in \mathbb{N}$.

- \bigcirc Set $X = \{n \in \mathbb{N} | n = 1 \dot{\vee} n > 1\}.$
- \bigcirc By 1 = 1 we have 1 \in *X*.
- Let be $n \in X$ for an arbitrary but fixed $n \in \mathbb{N}$.
- \bigcirc We have to show $n + 1 \in X$. Since $n \in X$ we have two cases.

- \bigcirc Set $X = \{n \in \mathbb{N} | n = 1 \dot{\vee} n > 1\}.$
- By 1 = 1 we have $1 \in X$.
- Let be $n \in X$ for an arbitrary but fixed $n \in \mathbb{N}$.
- \bigcirc We have to show $n + 1 \in X$. Since $n \in X$ we have two cases.
- \bigcirc If n = 1 then n + 1 = 2 > 1 and thus $n + 1 \in X$.

- \bigcirc Set $X = \{n \in \mathbb{N} | n = 1 \dot{\vee} n > 1\}.$
- \bigcirc By 1 = 1 we have 1 \in *X*.
- Let be $n \in X$ for an arbitrary but fixed $n \in \mathbb{N}$.
- \bigcirc We have to show $n + 1 \in X$. Since $n \in X$ we have two cases.
- \bigcirc If n = 1 then n + 1 = 2 > 1 and thus $n + 1 \in X$.
- \bigcirc If n > 1 then n + 1 > n > 1 and thus $n + 1 \in X$.

- \bigcirc Set $X = \{n \in \mathbb{N} | n = 1 \dot{\vee} n > 1\}.$
- \bigcirc By 1 = 1 we have 1 \in *X*.
- Let be $n \in X$ for an arbitrary but fixed $n \in \mathbb{N}$.
- \bigcirc We have to show $n + 1 \in X$. Since $n \in X$ we have two cases.
- \bigcirc If n = 1 then n + 1 = 2 > 1 and thus $n + 1 \in X$.
- \bigcirc If n > 1 then n + 1 > n > 1 and thus $n + 1 \in X$.
- \bigcirc By the induction axiom we have $\mathbb{N} \subseteq X$ and thus $X = \mathbb{N}^3$

on atural induction works on every well-ordered set

- on natural induction works on every well-ordered set
- some claims hold only for all $n \in \mathbb{N}_{\geq x}$ and not all $n \in \mathbb{N}$

$$1 + 5n < (1 + 5)^n$$

- on natural induction works on every well-ordered set
- some claims hold only for all $n \in \mathbb{N}_{\geq x}$ and not all $n \in \mathbb{N}$

$$1 + 5n < (1 + 5)^n$$

 \bigcirc each subset of \mathbb{N} of the shape $\mathbb{N}_{\geq x}$ is isomorphic to \mathbb{N}

- on natural induction works on every well-ordered set
- some claims hold only for all $n \in \mathbb{N}_{\geq x}$ and not all $n \in \mathbb{N}$

$$1 + 5n < (1 + 5)^n$$

- \bigcirc each subset of \mathbb{N} of the shape $\mathbb{N}_{\geq x}$ is isomorphic to \mathbb{N}
- natural deduction works on $\mathbb{N}_{\geq x}$

Definition (Induction Principle)

If a property P holds for 1 (base case) and if the fact that P holds for a fixed but arbitrary $n \in \mathbb{N}$ already implies that n + 1 has this property as well (induction step) then P holds for all natural numbers.

Definition (Induction Principle)

If a property P holds for 1 (base case) and if the fact that P holds for a fixed but arbitrary $n \in \mathbb{N}$ already implies that n + 1 has this property as well (induction step) then P holds for all natural numbers.

in detail:

 \bigcirc base case: prove that the property holds for 1

Definition (Induction Principle)

If a property P holds for 1 (base case) and if the fact that P holds for a fixed but arbitrary $n \in \mathbb{N}$ already implies that n + 1 has this property as well (induction step) then P holds for all natural numbers.

in detail:

- base case: prove that the property holds for 1
- induction step: we have to prove an implication

Definition (Induction Principle)

If a property P holds for 1 (base case) and if the fact that P holds for a fixed but arbitrary $n \in \mathbb{N}$ already implies that n + 1 has this property as well (induction step) then P holds for all natural numbers.

in detail:

- base case: prove that the property holds for 1
- \bigcirc induction step: we have to prove an implication
- thus we can assume that the premise is true (induction hypothesis)

Definition (Induction Principle)

If a property P holds for 1 (base case) and if the fact that P holds for a fixed but arbitrary $n \in \mathbb{N}$ already implies that n + 1 has this property as well (induction step) then P holds for all natural numbers.

in detail:

- base case: prove that the property holds for 1
- induction step: we have to prove an implication
- thus we can assume that the premise is true (induction hypothesis)
- \bigcirc we have to prove the conclusion, namely P(n + 1)

Avoiding Popular Mistakes

O Prove the base case decently even if it seems to be easy. $(1 + 5n < (1 + 5)^n)$

Avoiding Popular Mistakes

- O Prove the base case decently even if it seems to be easy. $(1 + 5n < (1 + 5)^n)$
- the induction hypothesis is assumed for **one arbitrary but fixed** $n \in \mathbb{N}$ (not for all!)

Avoiding Popular Mistakes

- O Prove the base case decently even if it seems to be easy. $(1 + 5n < (1 + 5)^n)$
- the induction hypothesis is assumed for **one arbitrary but** fixed $n \in \mathbb{N}$ (not for all!)
- in the induction step you are allowed to use the base case and the hypothesis

Claim: $\forall n \in \mathbb{N} : (n+1)(n-1) = n^2 - 1$

Proof:

Claim:
$$\forall n \in \mathbb{N} : (n+1)(n-1) = n^2 - 1$$
 Proof:

BC For
$$n = 1$$
 we have $(1+1)(1-1) = 2 \cdot 0 = 0 = 1-1 = 1^2-1$.

Claim:
$$\forall n \in \mathbb{N} : (n+1)(n-1) = n^2 - 1$$
 Proof:

BC For
$$n = 1$$
 we have $(1+1)(1-1) = 2 \cdot 0 = 0 = 1-1 = 1^2-1$.

IH Assume that the claim holds for one arbitrary but fixed $n \in \mathbb{N}$

Claim:
$$\forall n \in \mathbb{N} : (n+1)(n-1) = n^2 - 1$$
 Proof:

BC For
$$n = 1$$
 we have $(1+1)(1-1) = 2 \cdot 0 = 0 = 1-1 = 1^2-1$.

IH Assume that the claim holds for one arbitrary but fixed $n \in \mathbb{N}$

IS We have

Claim:
$$\forall n \in \mathbb{N} : (n+1)(n-1) = n^2 - 1$$

Proof:

BC For
$$n = 1$$
 we have $(1+1)(1-1) = 2 \cdot 0 = 0 = 1-1 = 1^2-1$.

IH Assume that the claim holds for one arbitrary but fixed $n \in \mathbb{N}$

IS We have

$$((n+1)+1)((n+1)-1) = ((n+1)+1)((n-1)+1)$$

$$= (n+1)(n-1) + (n+1) + (n-1) + 1$$

$$\stackrel{IH}{=} n^2 - 1 + 2n + 1 = (n^2 + 2n + 1) + 1$$

$$= (n+1)^2 - 1$$

LaTFoCS

 \bigcirc in the induction hypothesis we assume P(n) for an arbitrary but fixed $n \in \mathbb{N}$

- in the induction hypothesis we assume P(n) for an arbitrary but fixed $n \in \mathbb{N}$
- in the induction step we prove P(n + 1) based on P(n) and P(1)

- in the induction hypothesis we assume P(n) for an arbitrary but fixed $n \in \mathbb{N}$
- o in the induction step we prove P(n + 1) based on P(n) and P(1)
- in finitely many steps we can also prove P(2), ..., P(n-1) (each time with the implication)

- in the induction hypothesis we assume P(n) for an arbitrary but fixed $n \in \mathbb{N}$
- o in the induction step we prove P(n + 1) based on P(n) and P(1)
- in finitely many steps we can also prove P(2), ..., P(n-1) (each time with the implication)
- thus we are also allowed to use P(k) for all $k \le n$

- in the induction hypothesis we assume P(n) for an arbitrary but fixed $n \in \mathbb{N}$
- in the induction step we prove P(n + 1) based on P(n) and P(1)
- in finitely many steps we can also prove P(2), ..., P(n-1) (each time with the implication)
- thus we are also allowed to use P(k) for all $k \le n$
- be careful: the induction hypothesis needs to be adjusted!

Prime Number Factorisation with Peano

Claim: All natural number have a prime number factorisation. **Proof:** Define the predicate P(n) that is true if n has a prime number factorisation. Set $X = \{n \in \mathbb{N} | P(n)\}$. Since 1 is a prime number it has a prime number factorisation and we have $1 \in X$. Let be $k \in X$ for all $k \le n$ for an arbitrary but fixed $n \in \mathbb{N}$. We have to prove $n + 1 \in X$. If n + 1 is a prime number, $n + 1 \in X$. If n+1 is not a prime number, then there exists $u,v\in\mathbb{N}_{\leq n}$ with n + 1 = uv. By induction hypothesis u and v each have a prime number factorisation. The multiplication of these prime number products is a product of prime numbers and thus a prime number factorisation of n + 1, i.e. $n + 1 \in X$.

 \odot **structure** of \mathbb{N} : you can get all elements by adding successively 1 starting by 1

- \bigcirc **structure** of \mathbb{N} : you can get all elements by adding successively 1 starting by 1
- structure of all the even numbers: adding successively 2 starting by 2

- \bigcirc **structure** of \mathbb{N} : you can get all elements by adding successively 1 starting by 1
- structure of all the even numbers: adding successively 2 starting by 2
- \bigcirc **structure** of the formulae: adding successively \neg , \land , \lor , \rightarrow starting with the atoms

- \bigcirc **structure** of \mathbb{N} : you can get all elements by adding successively 1 starting by 1
- structure of all the even numbers: adding successively 2 starting by 2
- \bigcirc **structure** of the formulae: adding successively \neg , \land , \lor , \rightarrow starting with the atoms
- o induction uses the structure for covering all cases

- \bigcirc **structure** of \mathbb{N} : you can get all elements by adding successively 1 starting by 1
- structure of all the even numbers: adding successively 2 starting by 2
- \bigcirc **structure** of the formulae: adding successively \neg , \land , \lor , \rightarrow starting with the atoms
- induction uses the structure for covering all cases
- structural induction and natural induction equivalent:
 each formula has a length and a height which are natural numbers

Structural Induction

Let $(\mathcal{M}, \mathcal{A}, \mathcal{S})$ be a structure with a set of atoms $\mathcal{A} \subseteq \mathcal{M}$ and a set of operator \mathcal{S} such that $s(m_1, \ldots, m_k) \in \mathcal{M}$ for all k-ary operator $s \in \mathcal{S}, k \in \mathbb{N}$, and $m_1, \ldots, m_k \in \mathcal{M}$. Let ℓ be the highest arity in S.

Definition (Structural Induction Principle)

If a property P holds for all $a \in \mathcal{A}$ (base case) and if the fact that P holds for fixed but arbitrary $m_1, \ldots, m_\ell \in \mathcal{M}$ already implies that P holds for $s(m_1, \ldots, m_k)$ for all $s \in \mathcal{S}$ (induction step) then P holds for all elements of \mathcal{M} .

Structural Induction

Let $(\mathcal{M}, \mathcal{A}, \mathcal{S})$ be a structure with a set of atoms $\mathcal{A} \subseteq \mathcal{M}$ and a set of operator \mathcal{S} such that $s(m_1, \ldots, m_k) \in \mathcal{M}$ for all k-ary operator $s \in \mathcal{S}, k \in \mathbb{N}$, and $m_1, \ldots, m_k \in \mathcal{M}$. Let ℓ be the highest arity in S.

Definition (Structural Induction Principle)

If a property P holds for all $a \in \mathcal{A}$ (base case) and if the fact that P holds for fixed but arbitrary $m_1, \ldots, m_\ell \in \mathcal{M}$ already implies that P holds for $s(m_1, \ldots, m_k)$ for all $s \in \mathcal{S}$ (induction step) then P holds for all elements of \mathcal{M} .

Examples later.

