Series de Fourier Facultad de Ingeniería

Recorrido-SERIES DE FOURIER

- Producto escalar y familias ortogonales de funciones
 - Producto escalar y ortogonalidad de funciones
 - Familias ortogonales de funciones
- 2 Series trigonométricas de Fourier
 - Introducción
 - Serie de Fourier generada por f
 - Convergencia de series de Fourier
- Series de senos y cosenos de Fourier
 - Funciones pares e impares: propiedades
 - Funciones periódicas
 - Serie de Fourier para una función par
 - Serie de Fourier para una función impar
 - Extensiones de funciones definidas en semiintervalos
 - Serie de cosenos de Fourier
 - Serie de senos de Fourier
 - Serie de Fourier de una función definida en un semiintervalo

Funciones pares e impares

Sean $f: [-p, p] \to \mathbb{R}$ y $g: [-p, p] \to \mathbb{R}$.

- Si f es par, $\int_{-p}^{p} f(x) dx = 2 \int_{0}^{p} f(x) dx$.
- Si f es impar, $\int_{-p}^{p} f(x) dx = 0$.
- Si f y g son ambas pares o ambas impares, f g es par.
- Si f es par y g es impar, f g es impar.

Series de Fourier 3 / 16

Funciones periódicas

Una función f es periódica si f(x+P)=f(x) para todo x. P es una constante positiva. Cualquier número positivo P con esta propiedad se llama periodo o período. El menor de los periodos de una función se llama periodo fundamental de la misma.

Ejemplos:

La función f(x) = sen(x) tiene periodos 2π , 4π , 6π ,... y su periodo fundamental es 2π .

La función g(x) = sen(2x) tiene periodos π , 2π , 3π ,... y su periodo fundamental es π .

Series de Fourier

Funciones periódicas

Una función f es periódica si f(x+P)=f(x) para todo x. P es una constante positiva. Cualquier número positivo P con esta propiedad se llama periodo o período. El menor de los periodos de una función se llama periodo fundamental de la misma.

Ejemplos:

La función f(x) = sen(x) tiene periodos 2π , 4π , 6π ,... y su periodo fundamental es 2π .

La función g(x) = sen(2x) tiene periodos π , 2π , 3π ,... y su periodo fundamental es π .

Cada término de la serie

$$\frac{\pi}{4} + \sum_{n=1}^{\infty} \left(\frac{1 - (-1)^n}{n^2 \pi} \cos(nx) + \frac{1}{n} \sin(nx) \right)$$

tiene periodo 2π . Luego la serie tiene periodo 2π .

Series de Fourier 5 / 16

Serie de Fourier generada por una función par

Sea $f: [-p, p] \to \mathbb{R}$. Buscamos los coeficientes de Fourier de f:

1) Si f es par,

$$a_{0} = \frac{1}{p} \int_{-p}^{p} f(x) dx = \frac{2}{p} \int_{0}^{p} f(x) dx;$$

$$a_{n} = \frac{1}{p} \int_{-p}^{p} f(x) \cos \frac{n\pi x}{p} dx = \frac{2}{p} \int_{0}^{p} f(x) \cos \frac{n\pi x}{p} dx, n = 1, 2, \dots;$$

$$b_{n} = \frac{1}{p} \int_{-p}^{p} f(x) \sin \frac{n\pi x}{p} dx = 0, n = 1, 2, \dots$$

$$f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{p} \right) \leftarrow \text{Serie de cosenos de Fourier de } f.$$

◆ロト ◆部ト ◆注ト ◆注ト 注 りなべ

Series de Fourier 6 / 16

Serie de Fourier generada por una función impar

Sea $f: [-p, p] \to \mathbb{R}$. Buscamos los coeficientes de Fourier de f:

2) Si f es impar,

$$a_0 = \frac{1}{p} \int_{-p}^p f(x) dx = 0;$$

$$a_n = \frac{1}{p} \int_{-p}^p f(x) \cos \frac{n\pi x}{p} dx = 0, n = 1, 2, \cdots;$$

$$b_n = \frac{1}{p} \int_{-p}^p f(x) \sin \frac{n\pi x}{p} dx = \frac{2}{p} \int_0^p f(x) \sin \frac{n\pi x}{p} dx, n = 1, 2, \cdots$$

$$f(x) \sim \sum_{n=1}^{\infty} b_n \operatorname{sen} \frac{n\pi x}{p} \leftarrow \operatorname{Serie} \operatorname{de} \operatorname{senos} \operatorname{de} \operatorname{Fourier} \operatorname{de} f.$$

Series de Fourier 7 / 10

Extensiones par e impar de una función definida en un semiintervalo

Dada $f:[0,L] \to \mathbb{R}$, se puede definir una nueva función, extensión de f al intervalo [-L,L], que sea par o impar (esta última, si f(0)=0):

Extensión par:

$$g: [-L, L] \to \mathbb{R}$$
 tal que $g(x) = \begin{cases} f(-x) \text{ si } -L \le x < 0; \\ f(x) \text{ si } 0 \le x \le L. \end{cases}$

Extensión impar (asumimos f(0) = 0):

$$h: [-L, L] \to \mathbb{R} \text{ tal que } h(x) = \left\{ egin{array}{ll} -f(-x) & ext{si } -L \leq x < 0; \\ 0 & ext{si } x = 0; \\ f(x) & ext{si } 0 < x \leq L. \end{array}
ight.$$

Series de Fourier

Serie de cosenos de Fourier

La serie de cosenos de Fourier de una función definida en un semiintervalo [0, L] es la serie de Fourier generada por la extensión par de f.

Serie de cosenos de Fourier

Para $f:[0,L]\to\mathbb{R}$, la extensión par es:

$$g:[-L,L] \to \mathbb{R}$$
 tal que $g(x) = \left\{ egin{array}{ll} f(-x) & ext{si} & -L \leq x < 0; \\ f(x) & ext{si} & 0 \leq x \leq L. \end{array}
ight.$

Coeficientes para la serie de cosenos de Fourier de f:

$$a_{0} = \frac{1}{p} \int_{-p}^{p} g(x) dx = \frac{2}{p} \int_{0}^{p} f(x) dx;$$

$$a_{n} = \frac{1}{p} \int_{-p}^{p} g(x) \cos \frac{n\pi x}{p} dx = \frac{2}{p} \int_{0}^{p} f(x) \cos \frac{n\pi x}{p} dx, n = 1, 2, \dots;$$

$$b_{n} = \frac{1}{p} \int_{-p}^{p} g(x) \sin \frac{n\pi x}{p} dx = 0, n = 1, 2, \dots;$$

$$f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{p} \right) \leftarrow \text{Serie de cosenos de Fourier de } f.$$

Serie de senos de Fourier

La serie de senos de Fourier de una función definida en un semiintervalo [0, L] es la serie de Fourier generada por la extensión impar de f.

Serie de senos de Fourier

Para $f:[0,L]\to\mathbb{R}$, la extensión impar es:

$$h: [-L, L] \to \mathbb{R} \text{ tal que } h(x) = \left\{ \begin{array}{l} -f(-x) \text{ si } -L \leq x < 0; \\ 0 \text{ si } x = 0; \\ f(x) \text{ si } 0 < x \leq L. \end{array} \right.$$

Coeficientes para la serie de senos de Fourier de f:

$$a_0 = \frac{1}{p} \int_{-p}^{p} h(x) dx = 0;$$

$$a_n = \frac{1}{p} \int_{-p}^{p} h(x) \cos \frac{n\pi x}{p} dx = 0, n = 1, 2, \dots;$$

$$b_n = \frac{1}{p} \int_{-p}^{p} h(x) \sin \frac{n\pi x}{p} dx = \frac{2}{p} \int_{0}^{p} f(x) \sin \frac{n\pi x}{p} dx, n = 1, 2, \dots$$

$$f(x) \sim \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{p} \leftarrow \text{Serie de senos de Fourier de } f.$$

12 / 16

Serie de Fourier de una función definida en un semiintervalo

Si se desarrolla la función $f:[0,L]\to\mathbb{R}$ en serie de Fourier, igualando [0, L] = [0, 2p] y L = 2p, se obtienen los coeficientes de Fourier

$$a_0 = \frac{1}{p} \int_0^{2p} f(x) dx = \frac{2}{L} \int_0^L f(x) dx;$$

$$a_n = \frac{1}{p} \int_0^{2p} f(x) \cos \frac{n\pi x}{p} dx = \frac{2}{L} \int_0^L f(x) \cos \frac{2n\pi x}{L} dx, n = 1, 2, \cdots;$$

$$b_n = \frac{1}{p} \int_0^{2p} f(x) \sin \frac{n\pi x}{p} dx = \frac{2}{L} \int_0^L f(x) \sin \frac{2n\pi x}{L} dx, n = 1, 2, \cdots$$

$$f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{2n\pi x}{L} + b_n \sin \frac{2n\pi x}{L} \right).$$

Ilustraciones de extensiones de funciones

Series de Fourier 14 / 16

llustraciones de tipos de series

Series de Fourier

Ejemplo

Sea $f(x) = x + 1 \text{ con } 0 \le x < 1.$

Los coeficientes de Fourier de f son $a_0 = 3$, $a_n = 0$ y $b_n = -\frac{1}{n\pi}$, n = 1, 2, ...

Halle la serie de Fourier generada por f, F, e indique cuánto valen F(0) y F(-1).

$$F(x) = \frac{3}{2} - \sum_{n=1}^{\infty} \frac{1}{n\pi} \operatorname{sen}(2n\pi x).$$

$$F(0) = 1,5; F(-1) = 1,5.$$

Ejemplo

Sea $f(x) = x + 1 \text{ con } 0 \le x < 1.$

• Plantee fórmulas para calcular los coeficientes de la serie de senos de Fourier de f, F.

$$a_0 = 0$$
, $a_n = 0$ y $b_n = 2 \int_0^1 (x+1) \sin(n\pi x) dx = \frac{2}{n\pi} (1 - 2(-1)^n)$, $n = 1, 2,$

2 Represente gráficamente la función F en [-3,3].

1 Indique cuánto valen F(-2) y $F(\frac{3}{2})$.

Series de Fourier 17 / 16