LaPIS Diagnostic Test Workbook - Mathematics

Name : Agilan V S

Class: 7

Section : A

School : AKV Public School

Login ID : AKV098

Agilan V S's Performance Report

Score: 18/40 Percentage: 45.0%

Agilan V S's Study Planner

Date	Topics Planned	Q. Numbers	Teacher Remark	Teacher Sign	Parent Sign
		Teacher's Fe	edback to Student		
	Class Teacher S	Signature	Princi	pal Signature	

Basic arithmetic

Topics to be Improved		
Types of angles	Identification of types of angles	
LCM	Finding LCM	

......

Hi, here in this video you will learn Types of Angles

Question: 1

Find the angles.

Answer:

The angle ranges from $__$ ° to $__$ °.

The angle perpendicular to 0° is $___{\circ}$.

The straight line measures $___^{\circ}$.

Question: 2

The angle formed between the directions

- (i) West and East is _____ angle.
- (ii) North and East is _____ angle.
- (iii) East and South is _____ angle.

Answer:

The angle formed between West and East is ____° and it is called _____ angle.

The angle formed between North and East is ____° and it is called _____ angle.

The angle formed between East and South is ____° and it is called _____ angle.

Question: 3

The addition of straight angle and right angle is _____ angle.

Answer:

The measurement of straight angle is _____°

The measurement of right angle is _____°.

Straight angle + Right angle = $___$ + $___$ = $___$

It is called as _____ angle.

Hi, here in this video you will learn **LCM**

Question: 4

Fill the hexagon with factors and multiples of 10.

.....

Answer:

A _____ (factor/multiple) of a number is an exact divisor of that number.

The factors of 10 are

10 x 1 =	x = 10
2 x = 10	x = 10

Let's find the multiple of 10

10 x 1 =	10 x 4 =
10 x 2 =	10 x 5 =
10 x 3 =	10 x 6 =

	1 14 1 440
Therefore, factors of 10 are	and multiples of 10 are
$\underline{\textit{Question: 5}} \hspace{1cm} \dots \dots \dots$	
Find the LCM of 50, 100.	
Answer:	
Complete the division using least commo	on multiple.
	50 , 100
	, 100
The LCM of 50, 100 is 2 x 2 x x	·
Question: 6	
Every number is the multiple of	
Answer:	
Let's find the first ten multiple of random	n numbers,
Multip	ple of $1 = \underline{\hspace{1cm}}$
	ple of $2 = \underline{\hspace{1cm}}$
	le of 13 =
Multipl	le of $20 = $
Here, is the common factor of ex	very number.

Data handling

Topics to be Improved		
Arithmetic mean, mode and median	Mean, Median and Mode	
Chance of probability	Basis of probability	
Range	Finding the range	

Hi, here in this video you will learn Mean, Median, Mode

Question: 7	

Find the mode of the following data: 5, 15, 23, 5, 32, 44, 72, 55, 6, 3, 5, 65, 45, 67, 24, 19 and 98.

Answer:

Mode is the number that occurs _____ (frequently / rarely) in a given list of observations.

Arranging the data in ascending order: _____ occurs most number of times. Then, mode of the given data is _____

<u>Question: 8</u>

Which shape contains median of the given data 3, 5, 6, 2, 7, 9, 6, 4 and 1

Answer:

Median is the _____(first/central/last) value of a data when the data is arranged in ascending or descending order.

Arrange the given data in ascending order: _____

Central value of the given data is ______ and it is the _____ of a data.

Question: 9

Marks scored	100	90	80	70
Number of students	$oxed{4}$	5	2	1

$Mean = \underline{\hspace{1cm}} , Median = \underline{\hspace{1cm}} and Mode = \underline{\hspace{1cm}}.$
Answer:
$Mean = \frac{\text{of all observation}}{\text{number of observation}}.$
Here s sum of all observation =, number of observation = Therefore, mean = Arrange the data in ascending order :
Here, median =, mode =
Hi, here in this video you will learn Basics of probability
Question: 10
Identify the sure events and impossible events
(i) The sun rises in the west.
(ii) Water is colourless.
(iii) Clock rotates in clock wise direction.
(iv) Ball is square in shape.
Answer:
Events that always occur are called (sure/ impossible) events. Events that cannot occur are called (sure/ impossible) events. Here, The sun rises in the west is event. Water is colourless is event. Clock rotates in clock wise direction is event. Ball is square in shape is event.
Question: 11
Probability of sure events is (greater / smaller) than probability of impossible events
Answer:
Probability of sure event = $\underline{\hspace{1cm}}$ (0/ 1/ any number). Probability of impossible event = $\underline{\hspace{1cm}}$ (0/ 1/ any number). Therefore, Probability of sure event $\underline{\hspace{1cm}}$ Probability of impossible event.
<i>Question:</i> 12
Raju has pencil, an eraser, a scale, sharpener, colour pencil and protractor in his box. What is the probability of getting a pen from his box.
Answer:
Things Raju have

Does Raju have pen in his box, (Yes/ No). Then probability of getting pen from his box is (0/1)
Hi, here in this video you will learn Range
Question: 13
Range of the data =
Answer:
The difference between highest value and lowest value is Example: Find the range of 10, 5, 30, 23, 54, 39 and 16 Highest value = , Lowest value = Range = =
Question: 14 Circle the correct range for the following data 31, -20, 35, -38, 29, 0, 43, -25, 51, 14, 9 $-20+51 \qquad \frac{-38-51}{2} \qquad 51+38 \qquad \frac{51+20}{2}$
Answer:
Range = Arranging the data in ascending order, In the given data, Highest value = , Lowest value = , Range = =
Question: 15
Find the range of first 10 multiple of 5.
Answer:
First 10 multiple of $5 = $ Therefore, Highest value = , Lowest value = , Range = – =

Geometry

Topics to be Improved		
Right angle triangle and pythagoras property	Basics of Pythagoras property	
Related angles	Complementary angles	
Faces vertex and edges	Idenfication of faces, edges and vertices	
Sum of lengths of two sides of a triangle	Sum of two sides of a triangle	

Hi, here in this video you will learn Pythagoras property

Question: 16

In a right angled triangle, square of the $\underline{\hspace{1cm}}$ = sum of the squares of the legs.

Answer:

Pythagoras theorem is only applicable for ______ triangle.

Longest side of the triangle is _____ (hypotenuse/ legs) and other two sides are called _____ (hypotenuse/ legs).

Pythagoras theorem states that _____ .

Question: 17

Find the hypotenuse of the triangle ABC if base is 12 m and altitude is 5 m.

Answer:

Pythagoras theorem states that square of the _____ = sum of the squares of its

 $Given: Base = \underline{\hspace{1cm}}, Altitude = \underline{\hspace{1cm}}$

Base and altitude are _____ (hypotenuse/ legs) of the triangle.

By Pythagoras theorem,	()^2 :	= ($(-1)^2 + (-1)^2$.)2
	_	_		

Therefore, hypotenuse of the triangle is _____.

Question: 18

Find the length of the rectangle, if breadth is 3 cm and diagonal is 5 cm.

Answer:

Pythagoras theorem states that square on the _____ = sum of the squares on

Is Pythagoras theorem applicable in rectangle? ____ (yes/ no).

Given: breadth = _____, length of diagonal = _____

.....

Therefore, diagonal of the rectangle is _____

Hi, here in this video you will learn Related Angles

Question: 19

- 1. Two angles are complementary if their sum is equal to _____.
- 2. Two angles are supplementary if their sum is equal to _____.

Answer:

- 1. When sum of the two angles is equal to 90°, they are called as _____ angle. Example: 45° and 45°, _____, and ____.
- 2. When sum of the two angles is equal to 180°, they are called as _____ angle. Example: 90° and 90°, _____, and ____.

 $\underline{Question:\ 20} \qquad \dots \dots$

Shade the complementary angles.

					1 [
85°, 95°	45°,	45°	6°, 84°	73°, 107°		36°, 64°	90°, 90°

Answer:

Two angles are said be complementary if the sum of their angles are equal to _____.

 $85^{\circ} + 95^{\circ} =$ and this is ______ (a / not a) complementary angles. $45^{\circ} + 45^{\circ} =$ and this is ______ angles. $6^{\circ} + 84^{\circ} =$ and this is ______ angles. $73^{\circ} + 107^{\circ} =$ and this is ______ angles. $36^{\circ} + 64^{\circ} =$ and this is ______ angles. $90^{\circ} + 90^{\circ} =$ ______ and this is ______ angles.

Question: 21	

Find the complement and supplement of 15° and 90°

Answer:

One angle is _____ (complements / supplements) to other angle, when sum of the two angles is equal to 90°.

One angle is _____ (complements / supplements) to other angle, when sum of the two angles is equal to 180°.

Complement of $15^{\circ} = \underline{\hspace{1cm}}$, Complement of $90^{\circ} = \underline{\hspace{1cm}}$. Supplement of $90^{\circ} = \underline{\hspace{1cm}}$.

Hi, here in this video you will learn Basics of 3D model

$Question: \ 22$	
------------------	--

A point at which two or more lines segments meet is called _____(Vertex/ edges/ faces).

Answer:

has two end point (line/line segment/ray).

A _______is a point where two or more line segments meet(Vertex/ edges/ faces).

Mark the vertices in the diagram,

Mark and find the number of vertices, edges and faces in a cube.

$\underline{Answer:}$

Mark the vertex, edges and faces in a cube.

Count the numb	er of vertex,	edges and faces	in a cube.
Cube have	vertices, _	edges ar	id faces.

Question: 24

How many vertices, edges and faces does dices have?

Answer:					
The shape of dice is					
Dices have ver			faces.		
Hi, here in this vioof the triangle	deo you wil		f the length		
Question: 25					
Find the greatest dista	nce to reach (C from A in the g	given diagram.		
	30m B	70m 60m		C	
Answer:					
The sides of the given The possible way to re			a	and AB then to	
Side AC = Side AB + BC = Therefore, the greatest	distance to re	each C from A in	the given diagra	m is	
	of / Difference	e between) the le			
Answer:					
There are The sum of the two sides The difference of the two Example: In triangle X	les of a triang wo sides of a t	le is			

Question: 27	
--------------	--

The lengths of two sides of a triangle are 7 cm and 10 cm. Between which two numbers can length of the third side fall?

Answer:

- 1. The sum of the two sides of a triangle is ______ than the third side of the triangle. Therefore, the third side should be _____ (less/ greater) than sum of other two sides. Here, sum of the two sides = ____ + ___ = ___ Therefore, the length of the third side is less than _____
- 2. The difference of the two sides of a triangle is ______ than the third side of the triangle.

 Therefore, the third side should be ______ (less/ greater) than sum of other two sides.

 Here, difference of the two sides = _____ ___ = ____

 Therefore, the length of the third side is greater than ______

Therefore, length of the third side is greater than ______ but less than _____.

Number system

Topics to be Improved					
Exponents	Solving exponents				
Fractions	Division of fraction, Multiplication of fractions				
Decimals	Multiplication and division of decimals				
Operations on rational numbers	Division of rational numbers				
Properties of integers	Associative property				
Positive and negative rational numbers	Identification of positive rational numbers				

Hi, here in this video you will learn Exponents and power

$Question:\ 28$	
-----------------	--

Find the exponential form of 1000.

Answer:

_____ (Exponents/Base) tells us how many times a number should be multiplied by itself to get the desired result.

Exponents is also called as _____ (Base / Power).

1000 can be written as = $10 \times$ ____ \times ____ 10 is raised to the power of ____ = (10)

......

Question: 29

Find the value of $(-2)^3$.

Answer:

_____ (Exponents/Base) tells us how many times a number should be multiplied by itself to get the desired result.

In this exponential form $(-2)^3$, base = ____, power = ____. $(-2)^3 = \underline{\qquad} \times \underline{\qquad} \times \underline{\qquad} = \underline{\qquad}$.

Question: 30

- (i) Tenth power of 100 is $((10)^{100})$ or $(100)^{10}$.
- (ii) k is raised to the power of 5 is $((k)^5)$ or $(5)^k$.

Answer:

Exponential form = (Base)—

- (i) Tenth power of 100: Base = ____, Power/Exponents = ____, exponential form = ____.
- (ii) k is raised to the power of 5: Base = ____, Power/Exponent = ____, exponential form = ____.

Hi, here in this video you will learn Division on fractions

Question: 31

Find the shape which contains the improper fraction of $5\frac{2}{7}$.

10	
35	

......

Answer:

 $5\frac{2}{7}$ is a _____ (proper/mixed) fraction. Here, 5 is ____ , 2 is ____ and 7 is ____.

To convert mixed fraction into improper fraction, $\frac{(\text{Whole} \times \underline{\hspace{1cm}}) + \text{Numerator}}{\text{Denominator}})$

$$5 \frac{2}{7} = \frac{(--- \times ---) + ----}{7} = \frac{\square}{\square}$$

......

Question: 32

Solve: $\frac{1}{3} \div \frac{14}{3}$

Answer:

To divide a fraction by another fraction, multiply the dividend by $___$ (same / reciprocal) of the divisor. Here, dividend = $__$ and divisor = $__$.

$$\frac{1}{3} \div \frac{14}{3} = \frac{1}{3} \times \boxed{\square} = \boxed{\square}$$

Question: 33	
Find the half of the fraction $\frac{12}{40}$.	
Answer:	
To find half of a number, divide the number by	
$\frac{12}{40} \div \underline{\hspace{1cm}} = \frac{12}{40} \times \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$	
Then the answer is	
Hi, here in this video you will learn Basics of decimals	
Question: 34	
Shade 0.4 part of the given shape.	
Answer:	
There are boxes. 0.4 can be expressed as in fraction This fraction represents parts out ofequal parts. So, we need to shade boxes out ofboxes. Question: 35	
Solve the following.	
(i) 0.4×1.2 (ii) 0.48×1.2	
$\underline{Answer:}$	
(i) 0.4×1.2 : Multiplication of 0.4×1.2 assuming there is no decimal point is The number of digits after decimal point in 0.4 is and 1.2 is Total digits after decimal point in the product of two numbers is Count that digits from the right towards left and place the decimal point, the result is	

/					
(ii)	Ω	1Ω	~	1	ം.
1111	w.	40	\sim	- 1	. 4.

Multiplication of 0.48×1.2 assuming there is no decimal point is _____. The number of digits after decimal point in 0.48 is _____ and 1.2 is _____. Total digits after decimal point in the product of two numbers is _____. Count that digits from the right towards left and place the decimal point, the result is

Question: 36

One box of chocolate costs Rs.20.10. What is the cost of 15 chocolates, if a box contains 10 chocolates?

Answer:

One box contains _____ chocolates. The cost of one box is _____ Then cost of one chocolate = ____ ÷ ___ = ___

- (i) Total digits after decimal point in decimal number = _____
- (ii) Divide the two numbers assuming there is no decimal point.

$$\frac{2010}{15} = \underline{\hspace{1cm}}$$

(iii) Place the decimal point after _____ digits counting from the right in the quotient after division.

Then the cost of one chocolate is _____.

The cost of 15 chocolates = cost of one chocolate \times ____ = __ x ___ = ___

Hi, here in this video you will learn **Operation on rational numbers**

Question: 37

Fill in the boxes to make the given expression correct.

$$\frac{1}{5} \div \frac{14}{15} = \frac{1}{\square} \times \square$$

......

Answer:

When any fraction is divided by a fraction, we multiply the dividend by the ______ (same/reciprocal) of the divisor.

Here, dividend = and divisor = =

$$\frac{1}{5} \div \frac{14}{15} = \frac{1}{\square} \times \square = \square$$

Question: 38 Solve: $\frac{18}{7} \div 0.6$ Answer: Fraction form of $0.6 = \underline{\hspace{1cm}}$ when any fraction is divided by a fraction, we multiply the dividend by the _____ (same/reciprocal) of the divisor. Here, dividend = _____ and divisor = ____. $\frac{18}{7} \div \square = \frac{18}{7} \times \square = \square$ Question: 39 Find the missing number in the expression $\frac{8}{3} \div \frac{16}{\square} = 2$ Answer: $\frac{8}{3} \div \frac{16}{\square} = 2$ $\frac{8}{3} \times \frac{\square}{16} = 2$ Transposing 8/3 to RHS, $\frac{\square}{16} = 2 \square \frac{8}{3}$ $\frac{\square}{16} = 2 \times \boxed{\square}$ $\frac{\square}{16} = \frac{\square}{\square}$

Transposing 16 to other side, the result is ______.

Hi, here in this video you will learn Multiplication on fractions

Fill the boxes

$$2 + 4 + \frac{6}{2} = \frac{2}{\Box} + \frac{4}{\Box} + \frac{3}{\Box} = \frac{\Box}{\Box} = 9$$

Answer:

The whole number can be expressed in fraction with denominator equal to _____ (zero/one). Therefore, 2 can be written as _____ in fraction.

4 can be written as _____ in fraction.

$$2 + 4 + \frac{6}{2} = \frac{2}{1} + \frac{4}{\square} + \dots = \frac{2}{1} + \frac{4}{\square} + \frac{3}{\square} = \frac{\square}{\square} = 9$$

Question: 41

There are 400 students in a school. Find the number of girls, if three sixteenth of the students are girls.

.....

Answer:

Total number of students = _____

Fraction of students who are girls = _____

Number of girls = \times = = =

Question: 42

Solve: $2\frac{7}{4} \times \frac{2}{3}$

Answer:

 $2\frac{7}{4}$ is a _____ (proper / mixed) fraction. Here, 2 is _____, 7 is ____ and 4 is ____.

To convert mixed fraction into improper fraction, $\frac{\text{(Whole} \times \underline{\hspace{1cm}}) + \text{Numerator}}{\text{Denominator}}$ Improper fraction of $2\frac{7}{4} =$

$$2\frac{7}{4} \times \frac{2}{3} = \boxed{\qquad} \times \frac{2}{3} = \boxed{\qquad}$$

Hi, here in this video you will learn **Properties of integers**

Question: 43

Match the following based on the properties of integers

i	Closure
ii	Associative
iii	Commutative
iv	Identity

a	(5+7)+3=3+(7+5)
b	21 + 0 = 21
c	15 + 17 = 32
d	1 + 99 = 99 + 1

$\underline{Answer:}$

(i)	Closure property:
	The sum of integers is always(integer / not a integer).
	Therefore, $\underline{\hspace{1cm}} + \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$ From the given option $\underline{\hspace{1cm}}$ satisfies the closure property.
(ii)	Associative property : Rearranging the parentheses (brackets) (does not/ does) change the sum. Therefore, $(a + b) + c =$ From the given option satisfies the Associative property.
(iii)	Commutative property : Changing the order of the addends (does not/ does) change the sum. Therefore, $a + b = \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$ From the given option satisfies the Commutative property.
(iv)	Identity property : The sum of and any number always returns same number. Therefore, $a + \underline{\hspace{1cm}} = a$
	From the given option satisfies the Identity property.
	stion: 44 the operations in which commutative property holds true for any two integers. Addition Subtraction Multiplication Division
Ane	wer:
For a The	binding the (order/ brackets) of the operands (does not/ does) change the result. any two integers, commutative property holds true for commutative property for addition is commutative property for multiplication is
Are a	additive identity and multiplicative identity the same? (Yes or No)
Ans	wer:
	tity property holds only for,
	Identity property for addition is and additive identity is

The Identity property for multiplication is	and multiplicative identity is
Therefore, additive identity is (equal / not equal)	to multiplicative identity.

Hi, here in this video you will learn Positive and Negative rational numbers

Question: 46

Segregate positive and negative rational number.

......

Answer:

• If both the numerator and the denominator of a rational number are ____ (positive/negative), then it is positive rational number.

• If either the numerator and the denominator of a rational number are negative, then it is _____ (positive/negative) rational number.

In the given circle, positive rational numbers are _____ and negative rational numbers are

..... Question: 47

 $\frac{-3}{-4}$ is a _____ (positive /negative / neither positive nor negative) rational number.

Answer:

-3 is a _____ number, -4 is a _____ number. Division of $\frac{-3}{-4} = \Box$ and this _____ rational number.

(Positive / Negative / Neither positive nor negative rational number)

Question: 48

The product of a positive rational number and a negative rational number is _____ rational number. (Positive/ Negative/ neither positive nor negative)

Answer: Examples for positive rational numbers: Examples for negative rational numbers: Positive rational number × Negative rational number = rational number	×=	= and this is

Comparing Quantities

Topics to be Improved		
Simple interest	Calculation of simple interest	
Percentage	Basic of percentage	

Hi, here in this video you will learn **Simple Interest**

Question: 49

Match the following.

Column A	
i	Principle(P)
ii	Amount (A)
iii	Rate (R)
iv	Time period (T)

Column B		
a	Interest calculated based on this	
b	Total sum you borrow	
c	Number of years	
d	Total sum with interest	

Answer:
Formula for calculating simple interest $=$
Interest calculated based on
Total sum you borrow is known as
Number of years is Total sum with interest is
Question: 50
Sara deposited Rs.1200 in a bank. After three years, she received Rs.1320. Find the interest she earned.
Answer:
Given:
$Amount = \underline{\hspace{1cm}}, Principle = \underline{\hspace{1cm}}, Time period = \underline{\hspace{1cm}}.$
If Amount and principle is given, then formula for calculating interest is
Interest = =
Question: 51
The simple interest on Rs.5000 for 3 years is Rs.1350. Find the rate of interest.
Answer:
$\label{eq:continuous_period} Interest = \underline{\hspace{1cm}} \; , \; Time \; period = \underline{\hspace{1cm}} \; , \; Principal = \underline{\hspace{1cm}} \; .$

Data of interest	x 100		
Rate of interest =	Principal x		
Substituting values	in the formula,		
Rate of interest =	x 100		
	Principal x		
Rate of interest = . Therefore, the rate	of interest is %		EN PARTE
Hi, here in this	video you will learn Basic	s of percentage	
Question: 52			
2% can be written	as		
$\underline{Answer:}$			
Percentages are nur	merators of fractions with denom $2\% = \frac{\Box}{\Box}$		
Question: 53			
Arun attended the Arun?	LaPIS test for 100 marks and go	t 75% marks. What is	the mark scored by
Answer:			
Arun attended LaP	PIS test for mark	s. He got	marks.
75 % can be writte	n in fraction form	-	
Then the mark sco	red by Arun $=$ Total mark \times	75% = ×	<u> </u>
Question: 54			
There are 25 apples apples.	s in a basket in which 10 of them	are rotten. Find the p	percentage of rotten
Answer:			
There are and Number of rotten a			

Fraction form of rotten apples in a	a basket :	=
Convert it into a percent=	X	% =

Algebra

Topics to be Improved		
Addition and subtraction of algebraic expressions	Like terms and Unlike terms	
Monomials, binomials, trinomials and polynomials	Types of algebraic expression	
subtraction of algebraic expressions	subtraction of algebraic expressions	
Basics of simple equation	Solving of simple equation	

Hi, here in this video you will learn Addition on expression

Question: 55

Shade the like terms.

Answer:

Given terms are ______

Two or more term have _____ (same/ different) variables is called like terms.

Here, like terms are ______

Question: 56

Complete the expression $7r^2 + r \Box - 2 \Box = \underline{} r^2$

Answer:

_____ (Like / Unlike) terms can be added or subtracted.

$$_{7r^2+ r} \square_{-2} \square = (_{7} + \underline{ } - 2)_{r^2} = \underline{ }$$

Question: 57

Sam have 3a chocolates and 9y icecream. Ram have 7a chocolates and 5y icecream.

(i) Total	chocolates	Ram and	Sam have:	
----	---------	------------	---------	-----------	--

(ii) How many icecreams Sam have more than Ram: ______.

Answer:

	Chocolates	Icecream
Sam		
Ram		

(i)	Total	choco.	lates	Ram	and	Sam	have	
-----	-------	--------	-------	-----	-----	-----	------	--

 $Ram's chocolate + Sam's chocolates = ____ + ___ = ___$

(ii) How many icecreams Sam have more than Ram:

_____ icecream - ____ icecream = ____ - __ = ____

......

......

Hi, here in this video you will learn **Types of expression**

Question: 58

There are _____ terms in the expression 7x + 3y + m + 5.

Answer:

In algebraic expression, _____ (variables/ terms) are connected together with operations of addition.

The terms in the expression are ______, _____, and ______.

Therefore, there are ______ terms in the expression.

Question: 59

Classify the following expression into monomial, binomial and polynomial.

- 1. 7m + n + 2
- 2. $8x^2 + 0$
- 3. 7xy + 4m

Answer:

- 1. The terms in expression $8x^2 + 0$ are _____. Here, expression has _____ term and it is a _____
- 2. The terms in expression 7xy + 4m are _____. Here, expression has _____ term and it is a _____.

_	bression $7m + n + 2$ are has term and it is			
$Question: 60 \dots$				
$5m^2 + m + 0$ is a				
Answer:	T T		,	
The terms in expression has			lled a	_ expression.
				国為統領
Hi, here in this vie	deo you will learn	Subtraction	n on expression	
$Question: 61 \dots$				
Find the sum of two ex	expressions $a + b + c \epsilon$	and $b + c + d$		
$\underline{Answer:}$				
The given two expressi The two terms will get The sum of two expres The answer is	added only if they ar	e(Like	e/ Unlike) terms.	
$Question: 62 \dots$				
		School A	School B	
	Number of boys	100b	250b	
	Number of girls	150g	200g	
	Number of teachers	25t	45t	
(i) Total number of	boys in school A and	B is		
(ii) Total number of	students in school B i	s		
(iii) How many more	teachers are there in s	school B than s	chool A?	
$\underline{Answer:}$				
Number of boys	in school A = in school B = boys in school A and	-•	+ =	

(ii) Number of boys in school B= ______, Number of girls in school B= _____. Total number of students in school B is _____ + ____ = ____.

(iii) Number of teachers more in school B than school A = Teachers in school B - Teachers in school A = $__$.

Question: 63

Solve the following:

$$\begin{array}{c}
 13x + \underline{\hspace{1cm}} \\
 (+) \ 12x + 10y \\
 \underline{\hspace{1cm}} + 25y
 \end{array}$$

Answer:

The two terms will get added only if they are _____ (like/unlike) terms.

$$\begin{array}{c|c}
13x + \underline{\hspace{1cm}} \\
(+) & 12x + 10y \\
\underline{\hspace{1cm}} + 25y
\end{array}$$

$$\begin{array}{ccc}
3a - 5b \\
(-) & 5a - 7b \\
\hline
-2a - \underline{\hspace{1cm}}
\end{array}$$

.....

......

......

Hi, here in this video you will learn Solving an equation

Question: 64

If ©=5, then 5 © +5 =

Answer:

The value of the given smiley \odot is _____.

Substituting the value in the expression $= 5(\underline{\hspace{1cm}}) + 5 = \underline{\hspace{1cm}} + \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$.

Question: 65

Which of the following number can be placed in the box to make the equation correct (-2, -1, 0, 1, 2)

 $7^{'} \square + 3 = -4$

Answer:

The given equation is 7—+3 =-4 Substitute the values (-2, -1, 0, 1, 2) in the circle,

$$7 \times \underline{\hspace{1cm}} + 3 = \underline{\hspace{1cm}}$$

$$7 \times \underline{\hspace{1cm}} + 3 = \underline{\hspace{1cm}}$$

Therefore, _____ is the number that can be placed in a box to make the equation correct.

Question: 66

Arrange the terms in the descending order when the value of x is 2. 2x $5x \times 1$ x + 3 2x - 4 $\frac{1}{2}x$

Answer:

The given expression are _____.

The value of x is _____.

substituting value of x

$$2x = 2 \times \underline{\hspace{1cm}} = \underline{\hspace{1cm}} 2x - 4 = 2 \times \underline{\hspace{1cm}} - 4 = \underline{\hspace{1cm}}$$
 $x + 3 = \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$
 $5x \times 1 = 5 \times \underline{\hspace{1cm}} \times 1 = \underline{\hspace{1cm}}$

Arranging in descending order: ____, ____, ____, ____, ____.
Their respective algebraic terms are ____, ____, ____, ____, ____.