Real and Complex Analysis, 3rd Edition, W.Rudin Chapter 5 Examples of Banach Space Techniques

Yung-Hsiang Huang*

2018.06.11

1. Let X consists of two points a and b, put $\mu(\{a\}) = \mu(\{b\}) = \frac{1}{2}$, and let $L^p(\mu)$ be the resulting real L^p space. Identify each real function f on X with the point (f(a), f(b)) in the plane, and sketch the unit balls of $L^p(\mu)$, for $0 . Note that they are convex if and only if <math>1 \le p \le \infty$. For which p is this unit ball a square? A circle? If $\mu(\{a\}) \ne \mu(\{b\})$, how does this situation differ from the preceding one?

Proof. Let $U = \{f : ||f||_p \le 1\}$. In the equal mass case, the figurae is a square if and only if p = 1 or ∞ and is a circle if and only if p = 2. The convexity part is also standard. For non-equal mass case, it is not a square nor a circle for any p (by comparing the side length or examining the candidate for "center of circle"). However, for $p = \infty$, U is a square.

- 2. Triangle inequality.
- 3. If $1 , prove that the unit ball in <math>L^p(\mu)$ is strictly convex. Show that this fails in every $L^1(\mu)$, in every $L^{\infty}(\mu)$, and in every C(X). (Ignore trivialities, such as spaces consisting of only one point.)

Remark 1. Actually, one can prove L^p is uniformly convex by Clarkson's inequality. See [4, Problem 1.6] and [1, Section 4.3]. Moreover, Milman-Pettis Theorem states every uniformly convex space is reflexive. See [1, Section 3.7].

Proof. For $1 . Given <math>f, g \in L^p(\mu)$ with $||f||_p = ||g||_p = 1$, $f \neq g$. Minkowski inequality implies $h = \frac{1}{2}(f+g)$ has L^p norm less than or equal to 1. Moreover, the equality holds if and

^{*}Department of Math., National Taiwan University. Email: d04221001@ntu.edu.tw

only if there is $\lambda \geq 0$ such that $f = \lambda g$, which is equivalent to f = g since both functions has the same L^p norm. So $||h||_p < 1$.

For $L^1(\mu)$ and $L^\infty(\mu)$. Suppose $0 < \mu(A) < \infty$ and $0 < \mu(B) < \infty$, and $A \cap B = \emptyset$. Let $f(x) = 1/\mu(A)$ when $x \in A$ and f(x) = 0 when $x \notin A$. Let $g(x) = 1/\mu(B)$ when $x \in B$ and g(x) = 0 when $x \notin B$. Then f, g are linearly independent, and $\|\frac{f+g}{2}\|_1 = \|f\|_1 = \|g\|_1 = 1$. Similarly, let F(x) = 1 when $x \in A$ and f(x) = 0 when $x \notin A$. Let g(x) = 1 when $x \in A \cup B$ and g(x) = 0 when $x \notin A \cup B$. Then f, g are linearly independent and $\|\frac{f+g}{2}\|_\infty = \|f\|_\infty = \|g\|_\infty = 1$. For C(X), suppose X is a compact metric space with more than one point. (Note that if X is not compact, it's not clear that $\|\cdot\|_\infty$ is a norm on C(X).) Consider f(x) = 1/(1 + d(x, a)), $g(x) = 1/(1 + d(x, a))^2$. Then $\|\frac{f+g}{2}\|_\infty = \|f\|_\infty = \|g\|_\infty = 1$.

4. Let C be the space of all continuous functions on [0,1] with the supreme norm. Let M consists of all $f \in C$ for which

$$\int_0^{\frac{1}{2}} f(t) dt - \int_{\frac{1}{2}}^1 f(t) dt = 1.$$

Prove that M is a closed convex subset of C which contains no elements of minimal norm.

Remark 2. This is related to Theorem 4.10 and Exercise 4.11 and 5.5.

Proof. Convexity of M is trivial. Closedness of M is through theorem on uniform convergence and integration. Next, we try to calculate the infimum. By triangle inequality, we see

$$1 \le \inf\{\|f\|_{\infty} : f \in M\}.$$

On the other hand, for $n \geq 2$, define $f_n : [0,1] \to \mathbb{R}$ by

$$f_n(x) = \begin{cases} 1 & \text{if } x \in [0, \frac{1}{2}], \\ \frac{1+n}{1-n} & \text{if } x \in [\frac{1}{2} + \frac{1}{n}, 1], \\ \text{linear} & \text{if } x \in [\frac{1}{2}, \frac{1}{2} + \frac{1}{n}]. \end{cases}$$

Then $f_n \in M$ and $||f_n||_{\infty} = \frac{n+1}{n-1} \to 1$ as $n \to \infty$. So

$$1 = \inf\{\|f\|_{\infty} : f \in M\}.$$

If there is $f \in C$ such that $||f||_{\infty} = 1 = \int_0^{\frac{1}{2}} f(t) dt - \int_{\frac{1}{2}}^1 f(s) ds$, then f(t) = 1 on [0, 1/2) and f(t) = -1 on (1/2, 1]. But this contradictions to the continuity of f.

5. Let M be the set of all $f \in L^1([0,1])$, relative to Lebesgue measure, such that

$$\int_0^1 f(t) dt = 1.$$

Show that M is a closed convex subset of $L^1([0,1])$ which contains infinitely many elements of minimal norm. (Compare this and Exercise 4 with Theorem 4.10.)

Proof. Convexity of M is trivial. Closedness of M is through triangle inequality. Note that $\inf\{\|f\|_1: f \in M\} \ge 1$ and for each $n \in \mathbb{N}$, $f_n = n\chi_{(0,\frac{1}{n})} \in M$, distinct from other f_m and has norm 1.

6. Proof. Using the continuity of f, we can extend it to \overline{M} and preserve its norm.

Since $H = \overline{M} \bigoplus M^{\perp}$, we extend f to H by define $F(x) = F(x^M + x^{M^{\perp}}) := f(x^M)$. Then it's easy to check all the assertions on F are satisfied. The uniqueness is easy to prove.

7. Construct a bounded linear functional on some subspace of some $L^1(\mu)$ which has two (hence infinitely many) distinct norm-preserving linear extensions to $L^1(\mu)$.

Remark 3. In contrast to Exercise 6, this exercise shows that such unique extension result is not true for every Banach space. Hence, no uniqueness assertion in Hahn-Banach Theorem.

Proof. Consider $L^1 = L^1([-1,1], m)$ and $M := \{f \in L^1 : f \equiv 0 \text{ on } [-1,0]\} \leqslant L^1$. Consider the functional $T(f) = \int_{-1}^1 f \, dx$ on M which is linear, bounded with norm 1. Such T has two distinct norm-preserving extensions, one is $T_1(f) = \int_{-1}^1 f \, dx$, another one is $T_2(f) = \int_{-1}^1 f \chi_{(-\frac{1}{2},1)} \, dx$. \square

- 8. Proof. (a) Standard result. It's true even for the range \mathbb{R} or \mathbb{C} is replaced by a Banach space.
 - (b) It's easy to see the norm $\leq ||x||$. To see it's actually an equality, we use Hahn-Banach Theorem (more precisely, Theorem 5.20).

- (c) By (a)(b) and Banach-Steinhaus Theorem.
- 9. Proof. (a) It's easy to see $\|\Lambda_y\| \leq \|y\|_1$. To get the reverse inequality, we let $x_n = (\xi_i)_{i=1}^n$, where $\xi_i = \frac{\overline{\eta_i}}{|\eta_i|}$ if $\eta_i \neq 0$ and $\xi_i = 0$ if $\eta_i = 0$. Then $x_n \in c_0$, $\|x_n\|_{\infty} \leq 1$ and $\|\Lambda_y\| \geq |\Lambda_y x_n| = \sum_{i=1}^n |\eta_i|$ for every n. Therefore, $\|y\|_1 \leq \|\Lambda_y\|$.

Now we prove the linear map $y \mapsto \Lambda_y$ is surjective. Given $\Lambda \in (c_0)^*$, we let $\eta_i = \Lambda e_i$ for each i. Let $x_n = (\xi_i)_{i=1}^n$, where $\xi_i = \frac{\overline{\eta_i}}{|\eta_i|}$ if $\eta_i \neq 0$ and $\xi_i = 0$ if $\eta_i = 0$. Then $x_n \in c_0$, $||x_n||_{\infty} \leq 1$ and $\|\Lambda\| \ge |\Lambda x_n| = \sum_{i=1}^n |\eta_i|$ for every n. Therefore, $\sum_{i=1}^\infty |\eta_i| \le \|\Lambda\|$, that is, $y = (\eta_i) \in l^1$. Given $x = (\xi_i)_{i=1}^\infty \in c_0$, we see $x_n = (\xi_i)_{i=1}^n \to x$ in l^∞ . By the continuity of Λ ,

$$\Lambda x = \lim_{n \to \infty} \Lambda x_n = \lim_{n \to \infty} \sum_{i=1}^n \xi_i \Lambda e_i = \lim_{n \to \infty} \sum_{i=1}^n \xi_i \eta_i = \Lambda_y x.$$

(b) It's easy to see $\|\Lambda_y\| \leq \|y\|_{\infty}$. To get the reverse inequality, we may assume $\|y\|_{\infty} > 0$, then for each small $\epsilon > 0$, there is some $|\xi_i| > \|y\|_{\infty} - \epsilon$. Take $x = e_i$, then $\|x\|_1 = 1$ and hence $\|\Lambda\| \geq |\Lambda x| = |\xi_i| > \|y\|_{\infty} - \epsilon$. Letting $\epsilon \to 0$, we see $\|\Lambda\| \geq \|y\|_{\infty}$.

Now we prove the linear map $y \mapsto \Lambda_y$ is surjective. Given $\Lambda \in (l^1)^*$, we let $\eta_i = \Lambda e_i$ and hence $|\eta_i| \leq ||\Lambda||$ for each i, that is, $y = (\eta_i) \in l^{\infty}$. Given $x = (\xi_i)_{i=1}^{\infty} \in l^1$, we see $x_n = (\xi_i)_{i=1}^n \to x$ in l^1 . By the continuity of Λ ,

$$\Lambda x = \lim_{n \to \infty} \Lambda x_n = \lim_{n \to \infty} \sum_{i=1}^n \xi_i \Lambda e_i = \lim_{n \to \infty} \sum_{i=1}^n \xi_i \eta_i = \Lambda_y x.$$

- (c) By Hahn-Banach Theorem (Theorem 5.20) and (a).
- (d) Consider the collection S of all elements $(x_i)_{i=1}^{\infty}$, $x_i = 1$ or 0 for each i which is an uncountable subset of l^{∞} and for each $x, y \in S$, $x \neq y$, $||x y||_{\infty} = 1$. So every dense subset of l^{∞} is uncountable.

Let S be the collection of all elements $(x_i)_{i=1}^{\infty}$, $x_i \in \mathbb{Q}$ for each i and $x_i = 0$ for all $i \geq N$ for some N. By understanding the collection S is countable and dense in l^1 and c_0 , we see l^1 and c_0 are separable.

10. If $\sum \alpha_i \xi_i$ converges for every sequence $\{\xi_i\}$ such that $\xi_i \to 0$ as $i \to \infty$, prove that $\sum |\alpha_i| < \infty$.

Remark 4. The assumption is weaker than Exercise 6.4 and Folland [2, Theorem 6.14].

Proof. For each $n \in \mathbb{N}$, define $\Lambda_n : c_0 \subset l^{\infty} \to \mathbb{C}$ by

$$\Lambda_n(\xi) = \sum_{i=1}^n \alpha_i \xi_i.$$

It's easy to check c_0 with sup-norm is a Banach space, each Λ_n is linear, bounded with norm $\|\Lambda_n\| = \sum_{i=1}^n |\alpha_i|$ and $\{\Lambda_n\}$ is pointwisely bounded. By Banach-Steinhaus Theorem, we see there is M > 0 such that $M \ge \|\Lambda_n\| = \sum_{i=1}^n |\alpha_i|$ for all n. Therefore, $\sum_{i=1}^\infty |\alpha_i|$ exists (due to monotonicity and boundedness) and $M \ge \sum_{i=1}^\infty |\alpha_i|$.

11. Let $\beta \in (0,1)$. Prove that $C^{0,\beta}([a,b];\mathbb{C})$ are Banach spaces with norms $||f||_1 = |f(a)| + [f]_{0,\beta}$ and $||f||_2 = ||f||_{\infty} + [f]_{0,\beta}$, where $[f]_{0,\beta} := \sup_{x \neq y} \frac{|f(x) - f(y)|}{|x - y|^{\beta}}$.

Proof. Let U = [a, b]. For simplificity, we only consider the completeness with respect to $\|\cdot\|_2$. Given a Cauchy sequence $\{f_n\} \subset C^{0,\beta}(\overline{U})$, then there is a $f \in C(\overline{U})$ such that $f_n \to f$ uniformly and a constant M > 0 such that for each $n \in \mathbb{N}$ and $s \neq t$,

$$\frac{|f_n(s) - f_n(t)|}{|s - t|^{\beta}} \le M.$$

Then for each $s \neq t$, there is some $N = N(s,t) \in \mathbb{N}$ such that

$$|f(s) - f(t)| \le |f(s) - f_N(s)| + |f_N(s) - f_N(t)| + |f_N(t) - f(t)|$$

$$\le 2|s - t|^{\beta} + M|s - t|^{\beta}.$$

Therefore, $f \in C^{0,\beta}(\overline{U})$. It remains to show $f_n \to f$ in $C^{0,\beta}(\overline{U})$. For each $s, t \in U$ and $\epsilon > 0$, by Cauchy's criteria, we can find a $N = N(\epsilon)$ such that for $k, n \geq N$

$$|f_k(s) - f_n(s) - f_k(t) + f_n(t)| \le \epsilon |s - t|^{\beta}$$

For each $\eta > 0$, we can find a $K = K(\eta, s, t) > N$, such that $|f(x) - f_K(x)| \le \eta$ for x = s, or x = t. Therefore, for every $n \ge N$

$$|f(s) - f_n(s) - f(t) + f_n(t)| \le |f(s) - f_K(s)| + |f_K(s) - f_n(s) - f_K(t) + f_n(t)| + |f(t) - f_K(t)| \le 2\eta + \epsilon |s - t|^{\beta}.$$

Letting
$$\eta \to 0$$
, we obtain that $|f(s) - f_n(s) - f(t) + f_n(t)| \le \epsilon |s - t|^{\beta}$ for all $n \ge N(\epsilon)$.

Remark 5. It is true for the general case $C^{k,\beta}(U)$, U is connected in \mathbb{R}^d , with an almost identical proof as the above case k=0, except we need the standard convergence theorem between $\{f_n\}$ and $\{Df_n\}$.

12.

Remark 6. See Notes and Comments for Section 5.22.

13. Proof. (a) By the pointwise convergence assumption,

$$X = \bigcup_M E_M := \bigcup_M \cap_n \{x : |f_n(x)| \le M\}.$$

Note that $E_M \subset E_{M+1}$ is nonempty for large M, and each E_M is closed since it's intersection of closed sets. Therefore, by Baire Category Theorem, there is some M such that E_M contains an open set $V \neq \emptyset$. (b)'s proof is similar to (a) (see Hint.)

14.
$$Proof.$$

15. Proof.

16.

Remark 7. See Rudin [3, Theorem 2.11, 2.14-15 and Theorem 1.24].

Theorem 8 (Closed Graph Theorem). Let L be a linear map between two F-spaces (complete translation-invariant metric vector spaces), then the graph of L is closed iff L is continuous.

The corresponding open mapping theorem has a setting in F-spaces.

- 17. Proof. (a) It's easy to see $||f||_{\infty}$ dominates the norm of multiplication operator $M_f(\cdot) = f \cdot$ (b)
- 18. Proof. Given $x \in X$, for each $\epsilon > 0$, there exists $y = y(x, \epsilon) \in E$ such that $||y x||_X < \frac{\epsilon}{M}$, then $||\Lambda_n x \Lambda_m x||_Y \le ||\Lambda_n x \Lambda_n y||_Y + ||\Lambda_n y \Lambda_m y||_Y + ||\Lambda_m y \Lambda_m y||_Y \le 2M \frac{\epsilon}{M} + ||\Lambda_n y \Lambda_m y||_Y$ The last term is less than ϵ if n, m > N for some $N = N(y) = N(x, \epsilon)$. So $\{\Lambda_n x\}$ is Cauchy in the Banach space Y.
- 19. Proof. (a) We try to apply Exercise 18 with X = Y = C(T), $\Lambda_n f = \frac{s_n(f)}{\log n}$. Then we see Λ_n converges to 0 pointwisely on the dense set E = P(T), the set of all trigonometric polynomials. It remains to show that Λ_n is uniformly bounded which is due to

$$(\log n)\|\Lambda_n\| = \int_0^\pi \left|\frac{\sin(n+\frac{1}{2})x}{\sin x/2}\right| dx \le \frac{2}{1-\frac{\pi^2}{12}} \int_0^\pi \frac{\left|\sin(n+\frac{1}{2})x\right|}{x} dx \le C \sum_{k=1}^n \frac{1}{k\pi}.$$

(b) Use the Banach-Steinhaus Theorem in exactly the same way as Section 5.11 with the change of the linear functionals to $\Lambda_n f = \frac{1}{\lambda_n} s_n(f;0)$. Note that $\|\Lambda_n\| = \|D_n\|_1/\lambda_n$. Note that

$$\frac{\|D_n\|_1}{\lambda_n} \ge \frac{4}{\pi^2 |\lambda_n|} \sum_{k=1}^n \frac{1}{k} \ge \frac{4}{\pi^2 |\lambda_n|} (\ln(n) + \gamma) = \frac{4}{\pi^2} (\frac{\ln(n)}{|\lambda_n|} + \frac{\gamma}{|\lambda_n|}) \to \infty,$$

since you are given $\frac{\lambda_n}{\ln(n)} \to 0$. Here γ is the Euler Mascheroni constant.

So actually, it's unbounded for all f in some dense G_{δ} set in C(T).

- 20. Proof. (a) No, since \mathbb{Q} is not a G_{δ} set, but the set of points A at which a sequence of positive continuous functions is unbounded is $\cap_m \cup_n \{x : f_n(x) > m\}$ which is a G_{δ} set. (If $\mathbb{Q} = \cap_n V_n$, V_n open, then $\mathbb{R} = \{r_m\} \cup (\cup_n V_n^c)$ which is of first category. A contradiction!)
 - (b)Let $\mathbb{Q} = \{q_k\}$, we consider

$$f_n(x) = \min_{1 \le k \le n} \{k + n|x - q_k|\} \ge 1.$$

Then for each $q_m \in \mathbb{Q}$, we see for $n \geq m$, $f_n(q_m) \leq m + n|q_m - q_m| = m$, so $\{f_n(q_m)\}$ is bounded. On the other hand, if $x \in \mathbb{Q}^c$, then given M > 0, there is some N = N(M) > M such that $n|x - q_i| > M$ for all $1 \leq i \leq M$ provided n > N. Therefore,

$$f_n(x) = \min_{1 \le k \le n} \{k + n|x - q_k|\} > M,$$

that is, $f_n(x) \to \infty$.

(c) Irrational part is answered in (b). The answer is affirmative for rational part:

Let
$$A_n = \bigcup_{i=1}^n (q_i - \epsilon_n, q_i + \epsilon_n)$$
, where $0 < \epsilon_n = \frac{1}{4} \min\{|q_i - q_j| : 1 \le i < j \le n + 1\} \searrow 0$.

Take f_n to be the zig-zag continuous function that eqauls to n at $q_1, \dots q_n$ and 0 outside A_n . Then for every $x \in \mathbb{Q}$, $f_n(x) = n \to \infty$. On the other hand, given $x \in \mathbb{Q}^c$, suppose for some $n_0 \in \mathbb{N}$, $x \in A_n$ for all $n \geq n_0$. Then for some fixed $1 \leq i \leq n_0$, $x \in (q_i - \epsilon_{n_0}, q_i + \epsilon_{n_0})$. Since $x \in A_{n_0+1}$, by construction of ϵ_n , $x \in (q_i - \epsilon_{n_0+1}, q_i + \epsilon_{n_0+1})$. Inductively, we know $x \in (q_i - \epsilon_n, q_i + \epsilon_n)$ for all $n \geq n_0$, and hence $x = q_i$ since $\epsilon_n \to 0$. This contradicts to $x \in \mathbb{Q}^c$.

So for every $M \in \mathbb{N}$, there is some m > M such that $x \notin A_m$, that is, $f_m(x) = 0$, and therefore $f_n(x) \not\to \infty$.

$$22. \ Proof.$$

References

- [1] Haim Brezis. Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer Science & Business Media, 2010.
- [2] Gerald B Folland. Real analysis: Modern Techniques and Their Applications. John Wiley & Sons, 2nd edition, 1999.
- [3] Walter Rudin. Functional analysis. McGraw-Hill, Inc., New York, 2nd edition, 1991.
- [4] Elias M Stein and Rami Shakarchi. Functional analysis: Introduction to Further Topics in Analysis, volume 4. Princeton University Press, 2011.