Math 206A Probability: Chapter 3 Central Limit Theorems written by Rick Durrett

This article is transcribed by Charlie Seager

January 29, 2024

Chapter 3.1 The De Moivre-Laplace Theorem

Lemma 3.1.1 If $c_j \to 0, a_j \to \infty$ and $a_j c_j \to \lambda$ then $(1 + c_j)^{aj} \to e^{\lambda}$.

Theorem 3.1.2 If $2k/\sqrt{2n} \to x$ then $P(S_{2n} = 2k) (\pi n)^{-1/2} e^{-x^2/2}$.

Theorem 3.1.3 The De Moivre-Laplace Theorem If a < b then as $m \to \infty$

$$P(a \le S_m/\sqrt{m} \le b) \to \int_a^b (2\pi)^{-1/2} e^{-x^2/2} dx$$

Chapter 3.2 Weak Convergence

Lemma 3.2.7 V_{n+1} has density function

$$fv_{n+1}(x) = (2n+1)\binom{2n}{n}x^n(1-x)^n$$

Chapter 3.2.2 Theory

Theorem 3.2.8 If $F_n \Rightarrow F_\infty$ then there are random variables $Y_n, 1 \le n \le \infty$ with distribution F_n so that $Y_n \to Y_\infty$ a.s.

Theorem 3.2.9 $X_n \Rightarrow X_\infty$ if and only if for every bounded continous function g we have $Eg(X_n) \to Eg(X_\infty)$

Theorem 3.2.10 Continous mapping theorem Let g be a measurable function and $D_g = \{x : g \text{ is discontinous at } x\}$. If $X_n \Rightarrow X_\infty$ and $P(X_\infty \in D_g) = 0$ then $g(X_n) \Rightarrow g(X)$. If in addition g is bounded then $Eg(X_n) \to Eg(X_\infty)$

Theorem 3.2.11 The following statements are equivalent: (i) $X_n \Rightarrow X_\infty$

- (ii) For all open sets G, $\lim \inf_{n\to\infty} P(X_n \in G) \ge P(X_\infty \in G)$
- (iii) For all closed sets K, $\lim \sup_{n\to\infty} P(X_n \in K) \leq P(X_\infty \in K)$
- (iv) For all Borel sets A with $P(X_{\infty} \in \partial A) = 0$, $\lim_{n \to \infty} P(X_n \in A) = P(X_{\infty} \in A)$.

Theorem 3.2.12 Helly's selection theorem For every sequence F_n of distribution functions, there is a subsequence $F_{n(k)}$ and a right continuous non-decreasing function F so that $\lim_{k\to\infty} F_{n(k)}(y) = F(y)$ at all continuity points y of F.

Theorem 3.2.13 Every subsequential limit is the distribution function of a probability measure if and only if the sequence F_n is tight, i.e. for all $\epsilon > 0$ there is an M, so that

$$\lim \sup_{n\to\infty} 1 - F_n(M_{\epsilon}) + F_n(-M_{\epsilon}) \le \epsilon$$

Theorem 3.2.14 If there is a $\varphi \geq 0$ so that $\varphi(x) \to \infty$ as $|x| \to \infty$ and

$$C = \sup_{n} \int \varphi(x) dF_n(x) < \infty$$

Theorem 3.2.15 If each subsequence of X_n has a further subsequence that converges to X then $X_n \Rightarrow X$.

Chapter 3.3 Characteristic Functions

Chapter 3.3.1 Definition, Inversion Formula

Theorem 3.3.1 All characteristic functions have the following properties:

- (a) $\varphi(0) = 1$
- (b) $\varphi(-t) = \varphi(t)$
- $|\varphi(t)| = |Ee^{itX}| \le E|e^{itX}| = 1$
- (d) $|\varphi(t+h) \varphi(t)| \le E|e^{ihX} 1|$, so $\varphi(t)$ is uniformly continous on $(-\infty, \infty)$ (e) $Ee^{it(aX+b)} = e^{itb}\varphi(at)$

Theorem 3.3.2 If X_1 and X_2 are independent and have ch.f.'s φ_1 and φ_2 then $X_1 + X_2$ has ch.f. $\varphi_1(t)\varphi_2(t)$

Lemma 3.3.9 If $F_1, ..., F_n$ have ch.f. $\varphi_1, ..., \varphi_n$ and $\lambda_i \geq 0$ have $\lambda_1 + \cdots + \lambda_n = 1$ then $\sum_{i=1}^n \lambda_i F_i$ has ch.f. $\sum_{i=1}^n \lambda_i \varphi_i$

Theorem 3.3.11 The inversion formula Let $\varphi(t) = \int e^{itx} \mu(dx)$ where μ is a probability measure. If a < b then

$$lim_{T\to\infty}(2\pi)^{-1}\int_{-T}^T \frac{e^{-ita}-e^{-itb}}{it}\varphi(t)dt = \mu(a,b) + \frac{1}{2}\mu(\{a,b\})$$

Corollary 3.3.12 If φ is real then X and -X have the same distribution.

Corollary 3.3.13 If X_i i =1,2 are independent and have normal distributions with mean 0 and variance σ_i^2 then $X_1 + X_2$ has a normal distribution with mean 0 and variance $\sigma_1^2 + \sigma_2^2$

Theorem 3.3.14 If $\int |\varphi(t)| dt < \infty$ then μ has bounded continuous density

$$f(y) = \frac{1}{2\pi} \int e^{-ity} \varphi(t) dt$$

Chapter 3.3.2 Weak Convergence

Theorem 3.3.17 Continuity theorem Let $\mu_n, 1 \leq n \leq \infty$ be probability measures with ch.f. φ_n .

- (i) If $\mu_n \Rightarrow \mu_\infty$ then $\varphi_n(t) \to \varphi_\infty(t)$ for all t.
- (ii) If $\varphi_n(t)$ converges pointwise to a limit $\varphi(t)$ that is continuous at 0, then the associated sequence of distributions μ_n is tight and converges to the measure μ with characteristic function φ

Chapter 3.3.3 Moments and Derivatives

Theorem 3.3.18 If $\int |x|^n \mu(dx) < \infty$ then its characteristic function φ has a continuous derivative of order n given by $\varphi^{(n)}(t) = \int (ix)^n e^{itx} \mu(dx)$

Lemma 3.3.19

$$|e^{ix} - \sum_{m=0}^{n} \frac{(ix)^m}{m!}| \le \min(\frac{|x|^{n+1}}{(n+1)!'} \frac{2|x|^n}{n!})$$

The first term on the right is the usual order of magnitude we expect in the correction term. The second is better for large |x| and will help us prove the central limit theorem without assuming finite third moments.

Theorem 3.3.20 If $E|X|^2 < \infty$ then

$$\varphi(t) = 1 + itEX - t^2E(X^2)/2 + o(t^2)$$

Theorem 3.3.21 If $\lim \sup_{h \downarrow 0} \{ \varphi(h) - 2\varphi(0) + \varphi(-h) \} / h^2 > -\infty$ then $E[X]^2 < \infty$ ∞

Chapter 3.3.4 Polya's Criterion*

Theorem 3.3.22 Polya's criterion Let $\varphi(t)$ be real nonnegative and have $\varphi(0) = 1, \varphi(t) = \varphi(-t)$ and φ is decreasing and convex on $(0, \infty)$ with

$$\lim_{t\downarrow 0} \varphi(t) = 1, \qquad \lim_{t\uparrow \infty} \varphi(t) = 0$$

Then there is a probability measure v on $(0, \infty)$, so that (*)

$$\varphi(t) = \int_0^\infty (1 - \left| \frac{t}{s} \right|)^+ v(ds)$$

and hence φ is a characteristic function.

Chapter 3.3.5 The Moment Problem*

Theorem 3.3.25 If $\lim \sup_{k\to\infty} \mu_{2k}^{1/2k}/2k = r < \infty$ then there is at most one d.f. F with $\mu_k = \int x^k dF(x)$ for all positive integers k.

Theorem 3.3.26 Suppose $\int x^k dF_n(x)$ has a limit μ_k for each k and

$$\lim \sup_{k\to\infty}\mu_2 k^{1/2k}/2k < \infty$$

then F_n converges weakly to the unique distribution with these moments.

Chapter 3.4 Central Limit Theorems

Chapter 3.4.1 i.i.d. Sequences

Theorem 3.4.1 Let $X_1, X_2, ...$ be i.id. with $EX_i = \mu$, $var(X_i) = \sigma^2 \in$ $(0,\infty)$. If $S_n = X_1 + \cdots + X_n$ then

$$(S_n - n\mu)/\sigma n^{1/2} \Rightarrow \mathcal{X}$$

where \mathcal{X} has the standard normal distribution.

Theorem 3.4.2 If $c_n \to c \in C$ then $(1 + c_n/n)^n \to e^c$

Lemma 3.4.3 Let $z_1,...,z_n$ and $w_1,...,w_n$ be complex numbers of modulus $\leq \theta$. Then

$$\left| \prod_{m=1}^{n} z_m - \prod_{m=1}^{n} w_m \right| \le \theta^{n-1} \sum_{m=1}^{n} \left| z_m - w_m \right|$$

Lemma 3.4.4 If b is a complex number with $|b| \le 1$ then $|e^b - (1+b)| \le |b|^2$.

Chapter 3.4.2 Triangular Arrays

Theorem 3.4.10 The Lindeberg-Feller Theorem For each n, let $X_{n,m}$, $1 \le n$ $m \leq n$, be independent random variables with $EX_{n,m} = 0$. Suppose

(i) $\sum_{m=1}^{n} EX_{n,m}^2 \to \sigma^2 > 0$ (ii) For all $\epsilon > 0$, $\lim_{n \to \infty} \sum_{m=1}^{n} E(|X_{n,m}|^2 : |X_{n,m}| > \epsilon) = 0$ Then $S_n = X_{n,1} + \dots + X_{n,n} \Rightarrow \sigma \mathcal{X}$ as $n \to \infty$

THeorem 3.4.14 Let $X_1, X_2, ...$ be i.i.d. and $S_n = X_1 + ... + X_n$. In order that there exist constants a_n and $b_n > 0$ so that $(S_n - a_n)/b_n \Rightarrow \mathcal{X}$ it is necessary and sufficient that

$$y^2 P(|X_1| > y) / E(|X_1|^2; |X_1| \le y) \to 0$$

Chapter 3.4.3 Prime Divisors (Erdos-Kac)*

Lemma 3.4.15 $h_n(\epsilon) \to 0$ for each fixed $\epsilon > 0$ so we can pick $\epsilon_n \to 0$ so that $h_n(\epsilon_n) \to 0$

Theorem 3.4.16 Erdos-Kac central limit theorem As $n \to \infty$

$$P_n(m \le n : g(m) - loglogn \le x(loglogn)^{1/2}) \to P(\mathcal{X} \le x)$$

Chapter 3.4.4 Rates of Convergence (Berry-Esseen)*

Theorem 3.4.17 Let $X_1, X_2, ...$ be i.i.d. with $EX_i = 0, EX_i^2 = \sigma^2$, and $E|X_i|^3 = p < \infty$. If $F_n(x)$ is the distribution of $(X_1 + \cdots + X_n)/\sigma\sqrt{n}$ and $\mathcal{N}(x)$ is the standard normal distribution, then

$$|F_n(x) - \mathcal{N}(x)| \le 3p/\sigma^3 \sqrt{n}$$

Lemma 3.4.18 Let F and G be distribution functions with $G'(x) \leq \lambda < \infty$. Let $\Delta(x) = F(x) - G(x)$, $\mathfrak{N} = \sup |\Delta(x)|$, $\Delta_L = \Delta * H_L$, and $\mathfrak{N}_L = \sup |\Delta_L(x)|$. Then

$$\mathfrak{N}_L \ge \frac{\mathcal{N}}{2} - \frac{12\lambda}{\pi L}$$
 or $\mathcal{N} \le 2\mathcal{N}_L + \frac{24\lambda}{\pi L}$

Lemma 3.4.19 Let K_1 and K_2 be d.f. with mean 0 whose ch.f. \parallel_i are integrable

$$K_1(x) - K_2(x) = (2\pi)^{-1} \int -e^{itx} \frac{\|1(t) - \|2(t)\|}{it} dt$$

Chapter 3.5 Local Limit Theorems*

Theorem 3.5.2 Let $\varphi(t) = Ee^{itX}$. There are only three possibilities

- (i) $|\varphi(t)| < 1$ for all $t \neq 0$
- (ii) There is a $\lambda > 0$ so that $|\varphi(\lambda)| = 1$ and $|\varphi(t)| < 1$ for $0 < t < \lambda$. In this case, X has a lattice distribution with span $2\pi/\lambda$
- (iii) $|\varphi(t)| = 1$ for all t. In this case, X = b a.s. for some b.

Theorem 3.5.3 Under the hypotheses above, as $n \to \infty$

$$\sup_{x\in\mathcal{L}_n}\left|\frac{n^{1/2}}{h}p_n(x)-n(x)\right|\to 0$$

Theorem 3.5.4 Under the hypotheses above, if $x_n/\sqrt{n} \to x$ and a < b

$$\sqrt{n}P(S_n \in (x_n + a, x_n + b)) \rightarrow (b - a)n(x)$$

Poisson Convergence

Chapter 3.6.1 The Basic Limit Theorem

Theorem 3.6.1 For each n let $X_{n,m}, 1 \leq m \leq n$ be independent random variables with $P(X_{n,m} = 1) = p_{n,m}, P(X_{n,m} = 0) = 1 - p_{n,m}$. Suppose (i) $\sum_{m=1}^{n} p_{n,m} \to \lambda \in (0, \infty)$,

and (ii) $\max_{1 \le m \le n} p_{n,m} \to 0$ If $S_n = X_{n,1} + \dots + X_{n,n}$ then $S_n \Rightarrow Z$ where Z is Poisson(λ).

Lemma 3.6.4 (i) $d(\mu, v) = ||\mu - v||$ defines a metric on probability measures on Z and

(ii) $||\mu_n - \mu|| \to 0$ if and only if $\mu_n(x) \to \mu(x)$ for each $x \in \mathbb{Z}$, which by Excercise 3.2.11 is equivalent to $\mu_n \Rightarrow \mu$

Lemma 3.6.5 If $\mu_1 x \mu_2$ denotes the product measure on Z x Z that has $(\mu_1 x \mu_2)(x, y) = \mu_1(x) \mu_2(y)$ then

$$||\mu_1 x \mu_2 - v_1 x v_2|| \le ||\mu_1 - v_1|| + ||\mu_2 - v_2||$$

Lemma 3.6.6 If $\mu_1 * \mu_2$ denotes the convolution of μ_1 and μ_2 , that is

$$\mu_1 * \mu_2(x) = \sum_{y} \mu_1(x - y) \mu_2(y)$$

Lemma 3.6.7 Let μ be the measure with $\mu(1) = p$ and $\mu(0) = 1 - p$. Let v be a Poisson distribution with mean p. Then $||\mu - v|| \leq p^2$.

Chapter 3.6.2 Two Examples with Dependence

Theorem 3.6.10 If $ne^{-r/n} \to \lambda \in [0,\infty)$ the number of empty boxes approaches a Poisson distribution with mean λ .

Chapter 3.7 Poisson Processes

Theorem 3.7.1 Let $X_{n,m}, 1 \leq m \leq n$ be independent nonnegative integer valued random variables with $P(X_{n,m}=1)=p_{n,m}, P(X_{n,m}\geq 2)=\epsilon_{n,m}$.

- (i) $\sum_{m=1}^{n} p_{n,m} \to \lambda \in (0, \infty),$
- (ii) $\max_{1 \le m \le n} p_{n,m} \to 0$, and (iii) $\sum_{m=1}^{n} \epsilon_{n,m} \to 0$

If $S_n = X_{n,1} + \cdots + X_{n,n}$ then $S_n \Rightarrow Z$ where Z is Poisson(λ).

Theorem 3.7.2 If (i)-(iv) hold then N(0,t) has a Poisson distribution with mean λt .

Chapter 3.7.1 Compound Poisson Proces

Theorem 3.7.3 Let $Y_1, Y_2, ...$ be independent and identically distributed let N be an independent nonnegative integer valued random variable and let $S = Y_1 + \cdots + Y_n$ with S=0 when N=0

- (i) If $E|Y_i|, EN < \infty$, then $ES = EN \cdot EY_i$
- (ii) If EY_i^2 , $EN^2 < \infty$, then $var(S) = ENvar(Y_i) + var(N)(EY_i)^2$
- (iii) If N is Poisson (λ), then var(S) = λEY_i^2 .

Chapter 3.7.2 Thinning

Theorem 3.7.4 $N_i(t)$ are independent rate $\lambda P(Y_i = j)$ Poisson processes.

Theorem 3.7.5 Suppose that a Poisson process with rate λ we keep a point that lands at s with probability p(s). Then the result is a nonhomogeneous Poisson process with rate $\lambda p(s)$.

Chapter 3.7.3 Conditioning

Theorem 3.7.9 Let T_n be the time of the nth arrival in a rate λ Poisson process. Let $U_1, U_2, ..., U_n$ be independent uniform on (0,t) and let V_k^n be the kth smallest number in $\{U_1,...,U_n\}$. If we condition on N(t) = n. Thevectors $V = (V_1^n, \dots, V_n^n)$ and $T = (T_1, \dots, T_n)$ have the same distribution.

Corollary 3.7.10 If 0 < s < t then

$$P(N(s) = m | N(t) = n) = \binom{n}{m} (\frac{s}{t})^m (1 - \frac{s}{t})^{n-m}$$

Theorem 3.7.11 Let T_n be the time of the nth arrival in a rate λ Poisson process. Let $U_1, U_2, ..., U_n$ be independent uniform on (0,1) and let V_k^n

be the kth smallest number in $\{U_1,...,U_n\}$. The vectors $(V_1^n,...,V_n^n)$ and $(T_1/T_{n+1},\ldots,T_n/T_{n+1})$ have the same distribution.

Chapter 3.8 Stable Laws*

Lemma 3.8.1 If $h_n(\epsilon) \to g(\epsilon)$ for each $\epsilon > 0$ and $g(\epsilon) \to g(0)$ as $\epsilon \to 0$ then we can pick $\epsilon_n \to 0$ so that $h_n(\epsilon_n) \to g(0)$

Theorem 3.8.2 Suppose $X_1, X_2, ...$ are i.i.d. with a distribution that satisfies

(i) $\lim_{x\to\infty} P(X_1 > x)/P(|X_1| > x) = \theta \in [0, 1]$

(ii) $P(|X_1| > x) = x^{-\alpha}L(x)$

where $\alpha < 2$ and L is slowly varying. Let $S_n = X_1 + \cdots + X_n$

 $a_n = \inf\{x : P(|X_1| > x) \leq n^{-1}\}$ and $b_n = nE(X_1 1_{(|X_1| \leq a_n)})$ As $n \to \infty$, $(S_n - b_n)/a_n \Rightarrow Y$ where Y has a nondegenerate distribution.

Lemma 3.8.3 For any $\delta > 0$ there is C so that for all $t \geq t_0$ and $y \leq 1$

$$P(|X_1| > yt)/P(|X_1| > t) \le Cy^{-\alpha - \delta}$$

Theorem 3.8.8 Y is a limit of $(X_1 + \cdots + X_k - b_k)/a_k$ for some i.i.d. sequence X_i if and only if Y has a stable law.

Theorem 3.8.9 Convergence of types theorem If $W_n \Rightarrow W$ and there are constants $\alpha_n > 0, \beta_n$ so that $W'_n = \alpha_n W_n + \beta_n \Rightarrow W'$ where W and W' are nondegenerate, then there are constants α and β so that $\alpha_n \to \alpha$ and $\beta_n \to \beta$

Chapter 3.9 Infinitely Divisible Distributions*

Theorem 3.9.1 Z is a limit of sums of type (*) if and only if Z has an infinitely divisible distribution.

Theorem 3.9.6 Levy-Khinchin Theorem Z has an infinitely divisible distribution if and only if its characteristic function has

$$log\varphi(t) = ict - \frac{\sigma^2t^2}{2} + \int (e^{itx} - 1 - \frac{itx}{1+x^2})\mu(dx)$$

where μ is a measure with $\mu(\{0\}) = 0$ and $\int \frac{x^2}{1+x^2} \mu(dx) < \infty$

Theorem 3.9.7 Kolmogorov's Theorem Z has an infinitely divisible distribution with mean 0 and finite variance if and only if its ch.f. has

$$log\varphi(t) = \int (e^{itx} - 1 - itx)x^{-2}v(dx)$$

Here the integrand is $-t^2/2$ at 0, v is called the canonical measure and var(Z) = v(R).

Chapter 3.10 Limit Theorems in \mathbb{R}^d

Theorem 3.10.1 The following statements are equivalent:

- (i) $Ef(X_n) \to Ef(X_\infty)$ for all bounded continuous f.
- (ii) $Ef(X_n) \to Ef(X_\infty)$ for all bounded Lipshitz continuous f.
- (iii) For all closed sets K, $limsup_{n\to\infty}P(X_n\in K)\leq P(X_\infty\in K)$.
- (iv) For all open sets G, $liminf_{n\to\infty}P(X_n\in G)\geq P(X_\infty\in G)$
- (v) For all sets A with $P(X_{\infty} \in \partial A) = 0$, $\lim_{n \to \infty} P(X_n \in A) = P(X_{\infty} \in A)$
- (vi) Let D_f = the set of discontinuities of f. For all bounded functions f with $P(X_{\infty} \in D_f) = 0$ we have $Ef(X_n) \to Ef(X_{\infty})$.

Theorem 3.10.2 On \mathbb{R}^d weak convergence defined in terms of convergence of distribution $F_n \Rightarrow F$ is equivalent to notion of weak convergence defined for a general metric space.

Theorem 3.10.3 If μ_n is tight, then there is a weakly convergent subsequence.

Theorem 3.10.4 Inversion formula if $A = [a_1, b_1]x...x[a_d, b_d]$ with $\mu(\partial A) = 0$ then

$$\mu(A) = \lim_{T \to \infty} (2\pi)^{-d} \int_{[-T,T]^d} \prod_{j=1}^d \psi_j(t_j) \varphi(t) dt$$

where $\psi_j(s) = (exp(-isa_j) - exp(-isb_j))/is$.

Theorem 3.10.5 Convergence theorem Let X_n , $1 \le n \le \infty$ be random vectors with ch.f. φ_n . A necessary and sufficient condition for $X_n \Rightarrow X_\infty$ is that $\varphi_n(t) \to \varphi_\infty(t)$

Theorem 3.10.6 Cramer Wold Device A sufficient condition for $X_n \Rightarrow X_{\infty}$ is that $\theta \cdot X_n \Rightarrow \theta \cdot X_{\infty}$ for all $\theta \in \mathbb{R}^d$

Theorem 3.10.7 The central limit theorem in \mathbb{R}^d let $X_1, X_2, ...$ be i.i.d. random vectors with $EX_n = \mu$ and finite covariances

$$\Gamma_{i,j} = E((X_{n,j} - \mu_i)(X_{n,j} - \mu_j))$$

If $S_n = X_1 + \cdots + X_n$ then $(S_n - n\mu)/n^{1/2} \Rightarrow \mathcal{X}$ where \mathcal{X} has a multivariate normal distribution with mean 0 and covariance Γ , i.e.

$$Eexp(i\theta \cdot \mathcal{X}) = exp(-\sum_{i}\sum_{j}\theta_{i}\theta_{j}\Gamma_{i,j}/2)$$