

N76E003 BSP for IAR Guide

Directory Introduction for Nuvoton 8051 Family

Directory Information

Please extract the "N76E003_BSP_IAR_C51_V1.0.1.zip" file firstly, and confirm the following folder all contain.

This BSP folder contents:

Document	Driver reference manual and reversion history.	
Common	The common usual subroutine include Timer delay and basic UART baud rate setting	
Include	All include header file and define	
Sample_Code	Driver sample code.	

The information described in this document is the exclusive intellectual property of Nuvoton Technology Corporation and shall not be reproduced without permission from Nuvoton.

Nuvoton is providing this document only for reference purposes of NuMicro microcontroller based system design.

Nuvoton assumes no responsibility for errors or omissions.

All data and specifications are subject to change without notice.

For additional information or questions, please contact: Nuvoton Technology Corporation.

www.nuvoton.com

1 .\Document\

Nuvoton_N76E003_BSP_ IAR_Revision_History.pd f This document shows the revision history of N76E003 BSP.

2 \Common

Common.c	UART0 Baud rate setting base on Time 1 or Timer 3, UART1 baud rate setting base on Timer 3	
Delay.c	Timer0_Delay100us, Timer0_Delay1ms, Timer1_Delay10ms, Timer2_Delay500us, Timer3_Delay100ms setting	

3 \Include

Common.h	Header file to extern function for Common.c	
Delay.h	Header file of extern function for Delay.c	
Function_Define.h	Function setting include GPIO initial, External pin interrupt trig mode, Timer value common value define, Timer 2 capture enable, PWM initial, ADC initial	
N76E003_iar.h	N76E003 SFR define header file	
SFR_Macro.h	Extend N76E003 define for no-bit-addressable SFR with bit enable or disable function.	

4 \Sample_Code

ADC_Bandgap	ADC band-gap input demo code
ADC_Bandgap_VDD_noD elay	ADC converts demo code with band-gap value to calculate the VDD value. Add 5 times average value test and judge bandgap mark to find the best value for calculate.
ADC_IO_Trig	ADC trig start polling or interrupt by special I/O
ADC_PWM_Trig	ADC trig start by PWM cycle finish
ADC_Simple	ADC trig start polling or interrupt by SFR start bit
Clock_Out	N76E003 HIRC clock out setting
Fsys_Select	System clock select demo
GPIO	All GPIO quasi / push pull/ input only/ open drain four status initial setting and toggle out
I2C_EEPROM	I ² C module connect with external EEPROM read writer demo
I2C_Master-Slave	Two piece of N76E003 I ² C module connect, the master and slave demo code
IAP_AP-program- AP_Dataflash	IAP run in APROM to program APROM demo code, It's also used as program data flash area.
IAP_AP-program-LD	IAP run in APROM to program LDROM. This function is use to update ISP boot code.
IAP_Dataflash_EEPROM	Program APROM command similar with EEPROM.
IAP_LD-Program-AP	IAP run in LDROM to program APROM. This function is use in ISP function.
IAP_ModifyHIRC	The function to modify HIRC value to 16.6MHz for UART baud rate over 38400 application system.
IAP_program_Config	Use code IAP function to modify CONFIG area.
IAP_Read_Bandgap	Use IAP command to read actually band-gap value for each N76E003.

IAP_Read_UID	Use IAP command to read the UID of each N76E003.	
IAP_Read_UCID	Use IAP command to read the UCID of each N76E003.	
Pin_Interrupt	Each GPIO of N76E003 can use as external interrupt pin. Trig IC wakeup from idle / power down mode.	
PWM_DeadTime	PWM output with dead time insert initial setting	
PWM_INT	PWM output with interrupt subroutine	
PWM_Simple	Simple PWM output setting initial	
SPI_Flash	Read / writer W25Q16 sample code.	
SPI_Master-Slave	SPI connect with two N76E003, Include master and slave sample code, use interrupt and polling.	
Timer01_mode_0	Timer 0 and Timer 1 mode 0 demo code	
Timer01_mode_1	Timer 0 and Timer 1 mode 1 demo code	
Timer01_mode_2	Timer 0 and Timer 1 mode 2 demo code	
Timer01_mode_3	Timer 0 and Timer 1 mode 3 demo code	
Timer2_AutoReload_Capt ure	Timer 2 capture with compare function demo code	
Timer2_AutoReload_Delay	Timer 2 auto reload mode for delay function demo code	
Timer3	Timer 3 delay counter demo code	
UART0	UART0 demo code	
UART0_mode_3	UART0 mode 3 with TB8/RB8 function	
UART1	UART1 demo code	
WakeupTimer_INT	Wakeup timer with interrupt subroutine demo code	
Watchdog_INT	Watch dog without reset, only interrupt function initial	
Watchdog_Reset	Watch dog reset MCU function setting initial	

5 REVISION HISTORY

Date	Revision	Description
2018.2.26	1.00	Initially issued.
2019.3.27	1.01	Added "IAP_Dataflash_EEPROM" project.

Important Notice

Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any malfunction or failure of which may cause loss of human life, bodily injury or severe property damage. Such applications are deemed, "Insecure Usage".

Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic energy control instruments, airplane or spaceship instruments, the control or operation of dynamic, brake or safety systems designed for vehicular use, traffic signal instruments, all types of safety devices, and other applications intended to support or sustain life.

All Insecure Usage shall be made at customer's risk, and in the event that third parties lay claims to Nuvoton as a result of customer's Insecure Usage, customer shall indemnify the damages and liabilities thus incurred by Nuvoton.

Please note that all data and specifications are subject to change without notice.

All the trademarks of products and companies mentioned in this datasheet belong to their respective owners.