

Pairwise Trading: A Quantitative Approach to Exploiting Market Inefficiencies

Colloquium Presentation

By

Kodarapu Kaushik 2021IMG-031

Table Of Contents

01. •Motivation

05. •Results

•Objective

06. •Conclusion

03. ·Literature Review 07.

•Online course 1

•Proposed Methodology

08. Online course 2

Motivation

- Financial markets show high volatility and frequent mispricing.
- Traditional single-stock trading is risky and less predictable.
- Pair trading leverages correlation and mean reversion to reduce exposure.
- Provides market-neutral strategy, minimizing systematic risk.
- Need for robust comparison between cointegration (long-term stability) and distance (short-term deviations).

Objective

- Conduct a comparative study of cointegration vs. distance approaches.
- Apply both methods across five key sectors: IT, Banking, Realty,
 Auto, and Pharma.
- Measure returns, risk-adjusted metrics and portfolio efficiency.
- Identify which method works best in which sector.
- Provide insights for future market-neutral trading strategies.

Literature Review

- Pairs trading is a statistical arbitrage strategy that profits from mispriced securities.
- Cointegration approach identifies stock pairs with long-term stable relationships.
- Distance approach focuses on short-term correlation and price deviations.
- Recent studies also explore the use of machine learning and data-driven methods for spread modeling and risk management.

Proposed Methodology

- Data: Collected stock price data sector-wise.
- Cointegration Method: Test for long-term relationships, model spread, use Z-score signals.
- **Distance Method:** Measure short-term deviations with Euclidean distance, apply entry/exit rules.
- **Evaluation:** Compare performance using returns, risk measures, and portfolio outcomes.

$$Y_t = lpha + eta X_t + arepsilon_t$$

Et (the spread) is stationary, the pair is cointegrated.

$$Z_t = rac{arepsilon_t - \mu}{\sigma}$$

Regression/Correlation → Spread → Z-score → Trade Entry/Exit → PnL Calculation → Performance Comparison

Sample dataset

tcs.head()						
	0pen	High	Low	Close	Adj Close	Volume
Date						
2018-01-01	1341.150024	1347.400024	1317.500000	1322.800049	1152.955811	1351760
2018-01-02	1330.000000	1334.800049	1310.099976	1315.599976	1146.680298	1920290
2018-01-03	1316.000000	1334.500000	1315.599976	1319.324951	1149.926880	1257120
2018-01-04	1325.000000	1331.000000	1320.000000	1328.550049	1157.967651	913082
2018-01-05	1325.000000	1349.750000	1325.000000	1344.599976	1171.956909	1153706

Results

Results

Figure 2: Asset Cointegration

Figure 4: Z-Score

Figure 3: Pair Spread

Figure 5: Portfolio Performance

Online Course 1:Learning

- Decide the right production quantity and schedule.
- Source raw materials from reliable suppliers.
- Manufacture cost-effectively with smooth processes.
- Maintain organized inventory and monitor closely.
- Ensure timely customer delivery.
- Manage product returns with reuse/recycling strategies.

Online Course 2: Learning

- Neural networks identify and interpret patterns.
- Association rule mining reveals hidden connections.
- Big data requires specialized tools and infrastructure.
- Clustering groups similar items into meaningful categories.
- Experimentation & active learning improve data quality.
- Reinforcement learning optimizes decisions through trial-anderror.

