MOCK TEST 15, 2024 HS 2ND YEAR SCIENCE

TIME: 1 HOUR

MARKS: 120(JEE), 200(NEET)

BIOLOGY

. What is young anther m	ade up of?		
a) Meristematic cells	b) Parenchyma	c) Pores	d) Seeds
2. Epidermis, Endotheciun	n, Middle layers, Tapetum ar	re	
a) pollen sac layers	b) wall of anther	c) pollen grain layer	s d) epidermal
3. What constitutes the sto	mium?		a compression of
a) Pollen sacs	b) Hypodermal cells	c) Microsporangia	d) Meristematic cells
4. Flowers with both andro	oecium and gynoecium are o	alled	
a. Bisexual flowers	b. Anther	c. Stamens	d. Unisexual flowers
5. The male reproductive	parts of a flower, the stamen	s, are collectively k	
a. Androecium	b. Filament	c. Anther	d. Gynoecium
6.In human adult females			
			ontractions during parturition
c.is secreted by anterior p	- · ·	ites growth of mam	mary gland
• •	rition is called —after-birth	I. In this stage	
a. excessive bleeding occu			
	and vagina contraction to n		
	ction of uterine wall prevent		
	is released from mammary g		
a. fat and low in proteins		b.proteins and low	
c.proteins, antibodies and	low in fat		s, fat and low in antibodies.
			ne male reproductive system.
a.Rate testis	b. Epididymis	c.Vasa efferentia	a. Istumus
	fluid part of semen, is contri		(in) bulls acceptance along
(i) seminal vesicle	(ii) prostate		(iv) bulbourethral gland
a. (i) and (ii)	b. (i), (ii) and (iv) c.(ii), (i	ii) and (iv)	d.(i) and (iv)
11. Assertion: Asthma is			rus tuitegarad hy alläveene
	used by inflammation and c		ys, triggered by anergens.
,	soning are correct and relate		
	reasoning is correct and uni	related	tion is correct, reasoning is incorrect
c) Both assertion and rea		u) Asser	tion is correct, reasoning is most
12. Assertion: Rabies is		tad through animal	hitas
	sed by Lyssavirus, transmit		oites.
	soning are correct and relat		
	reasoning is correct and un	related	tion is correct, reasoning is incorrect
c) Both assertion and rea	soning are incorrect	,	tion is correct, reasoning is incorrect
13. Assertion: Heart dise	ase is caused by high blood	pressure.	or to cardiovascular damage
Reasoning: High blood p	pressure is a risk factor for i	eart disease, leadin	g to cardiovascular damage.
a) Both assertion and rea	soning are correct and relat	,cu latad	
b) Assertion is incorrect,	reasoning is correct and ur	A) Asse	rtion is correct, reasoning is incorrect
c) Both assertion and rea	soning are incorrect	,	rion is correct, reasoning is incorrect
14. Assertion: Meningiti	s is an inflammation of the	Drain.	mambranes surrounding the brain and
Reasoning: Meningitis is	s an inflammation of the me	eminges, protective	membranes surrounding the brain and
spinal cord.			
a) Both assertion and rea	asoning are correct and rela	ted	assertion and magazine are incorrect
b) Assertion is incorrect	, reasoning is correct and u	nrelated c) Both	assertion and reasoning are incorrect

(a)
$$x + y = \frac{x^2}{2} + c$$
 (b) $x - y = \frac{1}{3}x^3 + c$

$$(e) xy = \frac{1}{4}x^4 + c$$

(d) None of these

- 3) If A.(adjA) = 8I for a 3 x 3 matrix A, then det. A is equal to

(d) None of these

- (d) 4

5. If $\cos^{-1}\frac{x}{a} + \cos^{-1}\frac{y}{b} = \alpha$, then $\frac{x^2}{a^2} - \frac{2xy}{ab}\cos\alpha + \frac{y^2}{b^2} =$ (c) $\tan^2\alpha$

- (d) None of these

6. The solution of the differential equation $x + y \frac{dy}{dx} = 2y$ is

(a)
$$\log\left(\frac{x}{x-y}\right) = c + y - x$$
 (b) $\log(y-x) = c + \frac{x}{y-x}$ (c) $xy^2 = c^2(x+2y)$

(d) None of these

$$7. \int_0^{\frac{\pi}{2}} \frac{3^{\sin x}}{3^{\sin x} + 3^{\cos x}} dx$$

(a) 2

- (d) None of these
- 8. The interval on which the function $f(x) = 2x^3 + 9x^2 + 12x 1$ is decreasing is
- (b) $(-\infty, -2]$
- (c) [-1,1]
- (d) f 2, -1
- 9. If $xdy = ydx + y^2dy$ and y(1) = 1, then y(-3) is equal to : (a) 1 (c) 4
- (a) 1

(d) None of these

- 10. If $A = \begin{bmatrix} x & 2 \\ 2 & x \end{bmatrix}$ and $|A^3| = 27$, then x =
- $(a) \pm 1$
- (b) ± 2

- (c) $\pm \sqrt{5}$

CHEMISTRY

- 1. 3.0 g of oxalic acid [(CO₂H)₂. 2H₂O] is dissolved in a solvent to prepare a 250 mL solution. The density of the solution is 1.9 g/mL. The molality and normality of the solution, respectively, are closest to
- (a) 0.10 and 0.38
- (b) 0.10 and 0.19
- (c) 0.05 and 0.19
- (d) 0.05 and 0.09
- 2. What transition in He⁺ ion shall have the same wave number as the first line in Balmer series of H atom?
- (a) $7 \rightarrow 5$
- $(b) 6 \rightarrow 4$
- (c) $5 \rightarrow 3$
- (d) $4 \rightarrow 2$
- 3. The bond dissociation energy of B F in BF₃ is 646 kJ mol⁻¹ whereas that of C F in CF₄ is 515 kJ mol-1. The correct reason for higher B - F bond dissociation energy as compared to that
- (a) stronger s bond between B and F in BF3 as compared to that between C and F in CF4.
- (b) significant $p\pi p\pi$ interaction between B and F in BF₃ whereas there is no **possibility**. of such interaction between C and F in CF4.
- (c) lower degree of $p\pi$ $p\pi$ interaction between B and F in BF₃than that between C and F in CF₄.
- (d) smaller size of B- atom as compared to that of C- atom
- 4. Standard reduction electrode potentials of three metals A, B & C are respectively + 0.5 V, -3.0 V & The reducing powers of these metals are
- (a) A > B > C
- (b) C > B > A
- (c) A > C > B
- 5. The higher stabilities of tert-butyl cation over iso-propyl cation and trans-2- butene over propene, respectively, are due to orbital interactions involving.
- (a) $\sigma \to \pi$ and $\sigma \to \pi$

(c) $\sigma \rightarrow \sigma *$ and $\sigma \rightarrow \pi$

- (b) $\sigma \rightarrow \text{vacant p and } \sigma \rightarrow \pi$ (d) $\sigma \rightarrow \text{vacant p and } \sigma \rightarrow \pi *$
- 6. A certain non-volatile electrolyte contains 40% carbon, 6.7% hydrogen and 53.3% oxygen. An aqueous solution containing 5% by mass of of the solute boils at 100.15°C. The molecular formula of the compound is $(K_b = 0.51^{\circ}C/m)$
- (a) HCHO
- (b) CH₃OH
- (c) C₂H₅OH

 $(d) C_6 H_{12} O_6$

20

3 .	& .		CITS	Chi CH2	
4 Page				C 1/2 3	
7 IF0 01 M solut	tion of an electrolyte ha	s a registance of 40 oh	ms in a cell having a	cell constant of 0.4 cm ⁻¹ ,	
then its molar cor	nductance in ohm ⁻¹ cm ²	mol ⁻¹ is			
(a) 10^2	(b) 10 ⁴	(c) 10	(d)	1037	
(a) 10	(6) 10	(6) 10		1 -2 1 2	
8. The activation	energy for a reaction is	9.0 kcal/mol. The inci	rease in the rate const	ant when its	
temperature is inc	creased from 298K to 3	08K is	•		
(a) 63%	(b) 50%	(c) 100%	(d) 10%		
***	201			· · · · · · · · · · · · · · · · · · ·	
9. Although hexa	fluoroethane (C ₂ F ₆ , b.p	o. –79°C) and ethane (C	L_2H_6 , b.p. $-89^{\circ}\mathrm{C}$) diff	er very much in	
their molecular w	veights, their boiling po	ints differ only by 10°C	C. This is due to		
(a) low polarizab	ility of F (b) nearly sin	nilar size of F and H (c) both (a) and (b) (d)	Neither of the two	
10. Ethanol wher	n reacted with PCl ₅ give	es A, POCl ₃ and HCl. A	reacts with silver nit	trite to form b	
(major product)	and AgCl A and R reen	ectively are			
(a) C ₂ H ₅ Cl and C	$C_2H_5OC_2H_5$ (b) C_2H_6 and	$dC_2H_5OC_2H_5$ (c) C_2H_5	Cl and $C_2H_5NO_2$ (4)	C_2H_6 and $C_2H_3HC_2$	
		PHYSICS			
				Ly Shalls B and D are given	
Q1.There are for	ır concentric shells A, B	, C and D of radii a, 2a,	3a and 4a respective	ly. Shells B and D are given	
charges +q and -	q respectively. Shell C is	s now earthed. The pol	tential difference va	- VC 15	
1-18-12-	(b) Ka/3a	© Kg/4a	(d) Kq/6a		
Q2. Two capacit	tors having capacitance	s 8 μF and 16 μF have t	oreaking voltages 20v	and 80V. They are	
combined in seri	ies. The maximum char	ge they can store indivi	idually in the combina	ation is	
	11 8200 C	(c) 320 HC	(α) 4ου μυ		
	plate condensers of cap	pacity 20mF and 30mF	are charged to the po	tentials of 300 and 200	
respectively. If li	kely charged plates are	connected together th	ien the common pote	ntial difference will be	
. 7 N		2. Pc 1 371 V	(u) 10 v		
04 The minimu	m number of condense	ers each of capacitance	of 2 μF, in order to o	btain resultant capacitance	
≥ of 5μF will be				•	
	(b) 5	(c) 6	(d) 3	- farmency of the source	
OS A canacitor	and a coil in series are o	connected to a 6 volt ac	source. By varying tr	ne frequency of the source, I of emf 6 volt dc and	
maximum currel	nt of 600 mA is observe	d. If the same con is no	ow connected to a cen	of enil o voit uc and	
internal resistan	ice of 2 ohm, the curren	nt through it will be			
			(d) 2.0 A	-linto of	
(a) U.S A		the fringes are displac	ed by a distance x wh	en a glass plate of	
	a me internal in the	nath of one of the 200			
-ferractive trickne	1.5 is introduced in the ess, the shift of fringes is	(3/2)x. The refractive i	ilden er eret	IS	
of same thicking	(b) 1.40	(c) 1. 25	(d) 1.67		
(a) 1.75	nt monochromatic light	beams of intensities I a	and 41 are superposed	. The maximum and	
Q7. Two conerci	ble intensities in the res	uiting beam are			
			l I (d) 91 and 31		
(a) 51 and		ree times larger than t	he object on a screen	. Object and screen are	
Q8. A convex le	ns forms a real image to e image becomes twice t	the size of the object. If	the shift of the object	ct is 6 cm. The shift of	
-	: Illiage beserve		20, 2000 1 1100		
screen is	(b) 72 cm	(c) 18 cm) (d)	9 cm	
(a) 36 cm	(b) 72 cm se is formed by a convex	lens. Then it is put in o	contact with a concav	e lens and again a real	
Q9. A real imag	e is formed by a conver	for the second			
image is formed	d. This image will	ift away from the lens	system (c) remain in i	ts original position (d) shift	
(a) shift toward	is the lens system (b) sin				
to infinity Q10. A convex lens is in contact with a concave lens. The magnitude of the ratio of their powers is 3/2. Their					
Q10. A convex lens is in contact with a contact vital and contact					
equivalent foca	l length is 30 cm. what ا	10, 15	(c) -75, 25	(d) -15, 10	
(a)-75, 50	الملاب	10/	5		