Chương 3:

Ngôn ngữ đại số quan hệ

Giảng viên: ThS. Thái Bảo Trân Thời lượng: 6 tiết

Khoa HTTT - Đại học CNTT

1

Nội dung

- 1. Giới thiệu
- 2. Đại số quan hệ
- 3. Các phép toán
- 4. Biểu thức đại số quan hệ

1. Giới thiệu

- Xét một số xử lý trên quan hệ NHANVIEN
 - Thêm mới một nhân viên
 - Chuyển nhân viên có tên là "Tùng" sang phòng số 1
 - Cho biết họ tên và ngày sinh các nhân viên có lương thấp hơn 50000

TENNV	HONV	NS	DCHI	GT	LUONG	PHONG
Tung	Nguyen	12/08/1955	638 NVC Q5	Nam	40000	5
Hang	Bui	07/19/1968	332 NTH Q1	Nu	25000	4
Nhu	Le	06/20/1951	291 HVH QPN	Nu	43000	4
Hung	Nguyen	09/15/1962	Ba Ria VT	Nam	38000	5
	Pham	11/10/1937	450 TV HN	Nam		1

3

1. Giới thiệu (2)

- Có 2 loại xử lý
 - Làm thay đổi dữ liệu (cập nhật)
 - Thêm mới, xóa và sửa
 - Không làm thay đổi dữ liệu (rút trích)
 - Truy vấn (query)
- Thực hiện các xử lý
 - Đại số quan hệ (Relational Algebra)
 - Biểu diễn câu truy vấn dưới dạng biểu thức
 - □ Phép tính quan hệ (Relational Calculus)
 - Biểu diễn kết quả
 - SQL (Structured Query Language)

2. Đại số quan hệ (1)

- ĐSQH là một mô hình toán học dựa trên lý thuyết tập hợp
- Đối tượng xử lý là các quan hệ trong cơ sở dữ liệu quan hệ.
- Chức năng:
 - Cho phép mô tả các phép toán rút trích dữ liệu từ các quan hệ trong cơ sở dữ liệu quan hệ.
 - Cho phép tối ưu quá trình rút trích bằng các phép toán có sẵn của lý thuyết tập hợp.
- Gồm có:
 - Các phép toán đại số quan hệ
 - Biểu thức đại số quan hệ

5

Nhắc lại

- Đại số
 - □ Toán tử (operator)
 - □ Toán hạng (operand)
- Trong số học
 - □ Toán tử: +, -, *, /
 - □ Toán hạng biến (variables): x, y, z
 - □ Hằng (constant)
 - Biểu thức
 - (x+7) / (y-3)
 - (x+y)*z and/or (x+7) / (y-3)

2. Đại số quan hệ (2)

- Biến là các quan hệ
 - □ Tập hợp (set)
- Toán tử là các phép toán (operations)
 - Dựa trên lý thuyết tập hợp
 - Hội ∪ (union)
 - Giao ∩ (intersec)
 - Trừ (difference)
 - Rút trích 1 phần của quan hê
 - Chon σ (selection)
 - Chiếu π (projection)
 - Kết hợp các quan hệ
 - Tích Đề-các × (Cartesian product)
 - Nối ⋈ (join)
 - Đổi tên ρ

.

2. Đại số quan hệ (3)

- Hằng số là thể hiện của quan hệ
- Biểu thức
 - Được gọi là câu truy vấn
 - Là chuỗi các phép toán đại số quan hệ
 - Kết quả trả về là một thể hiện của quan hệ

3. Các phép toán (1)

Có năm phép toán cơ bản:

```
□ Chọn (\sigma) hoặc (:)
□ Chiếu (\pi) hoặc ([])
```

□ Tích (×)

□ Hiệu (_)

□ **Hội (** Y **)**

9

3. Các phép toán (2)

Các phép toán khác:

```
\Box Giao ( \cap )
```

- □ Kết (><)</p>
- □ Chia (÷)
- □ Phép bù (¬)
- □ Đổi tên (^P)
- □ Phép gán (←)

Là các phép toán không cơ bản nhưng hữu ích (được suy từ 5 phép toán trên, trừ phép đổi tên).

3. Các phép toán (3)

- Các phép toán tập hợp:
 - Các phép toán thực hiện trên 2 quan hệ: phép hội (R∪S), phép giao (R∩S), phép trừ (R-S), phép tích (R×S).
 - Đối với các phép hội, giao, trừ, các quan hệ R và S phải khả hợp:
 - Số lượng thuộc tính của R và S phải bằng nhau: R(A₁,A₂,...A_n) và S(B₁,B₂,...B_n)
 - Miền giá trị của thuộc tính phải tương thích: dom(A_i)=dom(B_i)
 - Quan hệ kết quả của phép hội, giao, trừ có cùng tên thuộc tính với quan hê đầu tiên.

11

3. Các phép toán (4)

■ Ví dụ:

NHANVIEN	TENNV	NS	PHAI
	Tung	12/08/1955	Nam
	Hang	07/19/1968	Nu
	Nhu	06/20/1951	Nu
	Hung	09/15/1962	Nam

THANNHAN	TENTN	NS_TN	PHAI_TN
	Trinh	04/05/1986	Nu
	Khang	10/25/1983	Nam
	Phuong	05/03/1958	Nu
	Minh	02/28/1942	Nam
	Chau	12/30/1988	Nu

Bậc n=3 DOM(TENNV) = DOM(TENTN) DOM(NS) = DOM(NS_TN) DOM(GT) = DOM(GT_TN)

3.1. Phép chọn (Selection)

- Trích chọn các bộ (dòng) từ quan hệ R. Các bộ được trích chọn phải thỏa mãn điều kiện chọn p.
- Ký hiệu: $\sigma_{n}(R)$
- Định nghĩa: $\sigma_p(R) = \{t/t \in R, p(t)\}$ trong đó p(t): thỏa điều kiện p
- Kết quả trả về là một quan hệ, có cùng danh sách thuộc tính với quan hệ R. Không có kết quả trùng.
- Phép chọn có tính giao hoán

$$\sigma_{p1}^{(\sigma_{p2}(R))=\sigma_{p2}^{(R)}=\sigma_{p1}^{(R))=\sigma_{p2}^{(R)}}$$

13

Ví dụ phép chọn (1)

Câu hỏi 1: Cho biết các nhân viên nam?

■ Biểu diễn cách 1: Cú pháp : O (Quan hệ) (Điều kiện 1 ^ điều kiện 2 ^)

Câu hỏi 1: σ (NhanVien)

Biểu diễn cách 2:

Cú pháp: (Quan hệ: điều kiện chọn)

Câu hỏi 1: (NhanVien: Phai='Nam')

	NHANVIEN				
MANV HOTEN NTNS		PHAI			
NV001	Nguyễn Tấn Đạt	10/12/1970	Nam		
NV002	Trần Đông Anh	01/08/1981	Nữ		
NV003	Lý Phước Mẫn	02/04/1969	Nam		

🛶 Kết quả phép chọn

NHANVIEN				
MANV HOTEN		NTNS	PHAI	
NV001	Nguyễn Tấn Đạt	10/12/1970	Nam	
NV003	NV003 Lý Phước Mẫn		Nam	

Ví dụ phép chọn (2)

Câu hỏi 2: Cho biết các nhân viên nam sinh sau năm 1975?

Biểu diễn cách 1:

Biểu diễn cách 2:

Câu hỏi 2: (NhanVien: Phai='Nam' \(\times \) Year(NTNS)>1975)

	NHANVIEN				Kết quả ph	nép chọn	
MANV	HOTEN	NTNS	PHAI	NHANVIEN			
NV001	Nguyễn Tấn Đat	10/12/1970	Nam				,
	riguyon run but	10/12/10/0	- Italii	MANV	HOTEN	NTNS	PHAI
NV002	Trần Đông Anh	01/08/1981	Nữ				
NV003	Lý Phước Mẫn	02/04/1969	Nam		(không có b	ô nào thổ	ia)
144003	Ly i naoc man	02/04/1303	Italii		(Kilolig oo b	o nao inc	,u)
	-						

15

3.2. Phép chiếu (Project)

- Sử dụng để trích chọn giá trị một vài thuộc tính của quan hệ
- Ký hiệu: $\pi_{A_1,A_2,...,A_k}(R)$

trong đó Ai là tên các thuộc tính được chiếu

- Kết quả:
 - > Trả về một quan hệ có k thuộc tính theo thứ tự như liệt kê.
 - > Các dòng trùng nhau chỉ lấy một.
- Phép chiếu không có tính giao hoán

Ví dụ phép chiếu (1)

Câu hỏi 3: Cho biết họ tên nhân viên và giới tính?

■ Biểu diễn cách 1 : Cú pháp : ∫ (Quan hệ)

Câu hỏi 3 : (NhanVien)

Ngoài ra, có thể biểu diễn cách 2:

Cú pháp: Quan hệ [cột1,cột2,cột3,...]

Câu hỏi 3: NhanVien [HoTen, Phai]

NHANVIEN			
MANV	MANV HOTEN NTNS PHAI		PHAI
NV001	Nguyễn Tấn Đạt	10/12/1970	Nam
NV002	Trần Đông Anh	01/08/1981	Nữ
NV003 Lý Phước Mẫn 02/04/1969 Nam			

Kết quả phép chiếu

NHANVIEN	
HOTEN	PHAI
Nguyễn Tấn Đạt	Nam
Trần Đông Anh	Nữ
Lý Phước Mẫn	Nam

17

Ví dụ phép chiếu (2)

Câu hỏi 4: Cho biết họ tên và ngày tháng năm sinh của các nhân viên nam?

Biểu diễn cách 1:

Bước 1: Q ← (NhanVien)

Kết quả phép chọn (còn gọi là biểu thức ĐSQH) được đổi tên thành quan hệ Q

Bước 2:

Biểu diễn cách 2:

Câu hỏi 4: (NhanVien: Phai='Nam') [HoTen, NTNS]

NHANVIEN		
HOTEN	NTNS	
Nguyễn Tấn Đạt	10/12/1970	
Lý Phước Mẫn	02/04/1969	

3.3. Phép gán (Assignment)

- Dùng để diễn tả câu truy vấn phức tạp.
- Ký hiệu: A ← B
- Ví dụ:

 $R(HO,TEN,LUONG) \leftarrow \pi_{HONV,TENNV,LUONG}(NHANVIEN)$

Kết quả bên phải của phép gán được gán cho biến quan hệ nằm bên trái.

19

3.4. Phép hội (Union)

- Ký hiệu: R∪S
- Định nghĩa: $R \cup S = \{t / t \in R \lor t \in S\}$

trong đó R,S là hai quan hệ khả hợp.

Ví dụ: Sinh viên được khen thưởng đợt 1 hoặc đợt 2

DOT1		
Masv Hoten		
K1103	Le Van Tam	
K1114	Tran Ngoc Han	
K1203	Le Thanh Hau	
K1308	Nguyen Gia	

DOT2		
Masv	Hoten	
K1101	Le Kieu My	
K1114	Tran Ngoc Han	

Masv	Hoten
K1101	Le Kieu My
K1103	Le Van Tam
K1114	Tran Ngoc Han
K1203	Le Thanh Hau
K1308	Nguyen Gia

DOT1∪**DOT2**

3.5. Phép trừ (Set Difference)

Ký hiệu: R-S

■ Dinh nghĩa: $R - S = \{t / t \in R \land t \notin S\}$

Trong đó R,S là hai quan hệ khả hợp.

Ví dụ: Sinh viên được khen thưởng đợt 1 nhưng không được khen thưởng đợt 2

DOT1				
Masv Hoten				
K1103	Le Van Tam			
K1114	Tran Ngoc Han			
K1203	Le Thanh Hau			
K1308	Nguyen Gia			

DOT2				
Masv Hoten				
K1101	Le Kieu My			
K1114	Tran Ngoc Han			

Masv	Hoten					
K1103	Le Van Tam					
K1203	Le Thanh Hau					
K1308	Nguyen Gia					

DOT1-DOT2

3.6. Phép giao (Set-Intersection)

Ký hiệu: R∩Ş

■ Dinh nghĩa: $R \cap S = \{t / t \in R \land t \in S\}$

Trong đó R,S là hai quan hệ khả hợp. Hoặc $R \cap S = R - (R - S)$

Ví dụ: Sinh viên được khen thưởng cả hai đợt 1 và 2

KT_D1				
Masv	Hoten			
K1103	Le Van Tam			
K1114 Tran Ngoc Han				
K1203	Le Thanh Hau			
K1308	Nguyen Gia			

KT_D2				
Masv Hoten				
K1101	Le Kieu My			
K1114	Tran Ngoc Han			

Masv	Hoten
K1114	Tran Ngoc Han
	atgcca

DOT1∩ **DOT2**

Các tính chất

Giao hoán

$$R \cup S = S \cup R$$

$$R \cap S = S \cap R$$

Kết hợp

$$R \cup (S \cup T) = (R \cup S) \cup T$$

$$R \cap (S \cap T) = (R \cap S) \cap T$$

23

Tóm tắt

Phép trừ: $Q = R - S = \{ t/t \in R \land t \notin S \}$

Phép hôi: $Q = R \cup S = \{ t/t \in R \lor t \in S \}$

Phép giao: $Q = R \cap S = R - (R - S) = \{ t/t \in R \land t \in S \}$

R				
HONV	TENNV			
Vuong	Quyen			
Nguyen	Tung			

S				
HONV	TENNV			
Le	Nhan			
Vuong	Quyen			
Bui	Vu			

Kết quả phép trừ $Q = \{Nguyen Tung\}$

Kết quả phép hội Q = {Vuong Quyen, Nguyen Tung, Le Nhan, Bui Vu}

Kết quả phép giao Q = {Vuong Quyen}

Ví dụ: Phép trừ, phép hội, phép giao tập hợp(1)

Nhắc lại:

NHANVIEN (<u>MaNV</u>, HoTen, Phai, Luong,NTNS, Ma_NQL, MaPH)
PHANCONG (<u>MaNV</u>, MaDA, ThoiGian)

Câu hỏi 9: Cho biết nhân viên không làm việc?

<u>Cách 1</u>: $\pi_{MANV}(NHANVIEN) - \pi_{MANV}(PHANCONG)$

Cách 2: (NHANVIEN[MANV]) - (PHANCONG[MANV])

25

Ví dụ: Phép trừ, phép hội, phép giao tập hợp(2)

<u>Câu hỏi 10</u>: Cho biết nhân viên được phân công tham gia đề án có mã số 'TH01' hoặc đề án có mã số 'TH02'?

((PHANCONG: MADA='TH01')[MANV]) ∪ ((PHANCONG: MADA='TH02')[MANV])

<u>Câu hỏi 11</u>: Cho biết nhân viên được phân công tham gia cả 2 đề án `TH01' và đề án `TH02'?

((PHANCONG: MADA='TH01')[MANV]) ∩ ((PHANCONG: MADA='TH02')[MANV])

3.7. Phép tích Descartes

Ký hiệu: R×S

- Định nghĩa: $R \times S = \{t_r t_S / t_r \in R \land t_S \in S\}$ Nếu R có n bộ và S có m bộ thì kết quả là n*m bộ $KQ(A_1,A_2,...A_m,B_1,B_2,...B_n) \leftarrow R(A_1,A_2,...A_m) \times S(B_1,B_2,...B_n)$
- Phép tích thường dùng kết hợp với các phép chọn để kết hợp các bộ có liên quan từ hai quan hệ.

27

Ví dụ: Phép tích Descartes (1)

☐ Từ hai quan hệ SINHVIEN và MONHOC, có tất cả những trường hợp nào "sinh viên đăng ký học môn học", giả sử không có bất kỳ điều kiện nào.

SINHVIEN				
MaSV Hoten				
K1103 Le Van Tam				
K1114	Tran Ngoc Han			
K1203	Le Thanh Hau			

MONHOC
Mamh
CTRR
THDC
CTDL

MaSV	Hoten	Mamh
K1103	Le Van Tam	CTRR
K1114	Tran Ngoc Han	CTRR
K1203	Le Thanh Hau	CTRR
K1103	Le Van Tam	THDC
K1114	Tran Ngoc Han	THDC
K1203	Le Thanh Hau	THDC
K1103	Le Van Tam	CTDL
K1114	Tran Ngoc Han	CTDL
K1203	Le Thanh Hau	CTDL

SINHVIEN×MONHOC

Ví dụ: Phép tích Descartes (2)

Câu hỏi 5: Tính tích Descartes giữa 2 quan hệ nhân viên và phòng ban

Cú pháp: Quan-hệ-1 X Quan-hệ-2 X...Quan-hệ-k

Câu hỏi 5 được viết lại: NHANVIEN X PHONGBAN

NHANVIEN					PHONGBAN			
MANV	HOTEN	NTNS	PHAI	PHONG		MAPH TENPH TE		TRPH
NV001	Nguyễn Tấn Đạt	10/12/1970	Nam	NC	\	NC	Nghiên cứu	NV001
NV002	Trần Đông Anh	01/08/1981	Nữ	DH	*	DH	Điều hành	NV002
NV003	Lý Phước Mẫn	02/04/1969	Nam	NC				

NHANVIEN X PHONGBAN							
MANV	HOTEN	NTNS	PHAI	PHONG	MAPH	TENPH	TRPH
NV001	Nguyễn Tấn Đạt	10/12/1970	Nam	NC	NC	Nghiên cứu	NV001
NV001	Nguyễn Tấn Đạt	10/12/1970	Nam	NC	DH	Điều hành	NV002
NV002	Trần Đông Anh	01/08/1981	Nữ	DH	NC	Nghiên cứu	NV001
NV002	Trần Đông Anh	01/08/1981	Nữ	DH	DH	Điều hành	NV002
NV003	Lý Phước Mẫn	02/04/1969	Nam	NC	NC	Nghiên cứu	NV001
NV003	Lý Phước Mẫn	02/04/1969	Nam	NC	DH	Điều hành	NV002

29

3.8. Phép kết (Theta-Join)

- Theta-join (θ): Tương tự như phép tích kết hợp với phép chọn. Điều kiện chọn gọi là điều kiện kết.
- Các bộ có giá trị NULL tại thuộc tính kết nối không xuất hiện trong kết quả của phép kết.
- Phép kết với điều kiện tổng quát gọi là θ-kết với θ là một trong những phép so sánh (≠,=,>,≥,<,≤)

Ví dụ: Phép kết

S			
B ₁	B ₂	B ₃	
0	2	8	
7	8	7	
8	0	4	
1	0	7	
2	1	5	

$$R^{A_1>B_2} \leq S$$

A ₁	A ₂	B ₁	B ₂	B ₃
1	2	8	0	4
1	2	1	0	7
1	8	8	0	4
1	8	1	0	7
8	4	0	2	8
8	4	8	0	4
8	4	1	0	7
8	4	2	1	5

31

Phép kết bằng, kết tự nhiên

- Nếu θ là phép so sánh bằng (=), phép kết gọi là phép kết bằng (equi-join).
- Ký hiệu: SINHVIEN >< LOP
- Nếu điều kiện của equi-join là các thuộc tính giống nhau thì gọi là phép kết tự nhiên (naturaljoin). Khi đó kết quả của phép kết loại bỏ bớt 1 cột (bỏ 1 trong 2 cột giống nhau)
- Ký hiệu: SINHVIEN >< KETQUATHI

Hoặc: SINHVIEN* KETQUATHI

Phép kết ngoài (outer join)

- Mở rộng phép kết để tránh mất thông tin
- Thực hiện phép kết và sau đó thêm vào kết quả của phép kết các bộ của quan hệ mà không phù hợp với các bộ trong quan hệ kia.
- Có 3 loai:
 - □ Left outer join R ⇒ S
 - □ Right outer join R ► S
 - □ Full outer join R ⇒ S

33

Ví dụ: Phép kết 🔀 (Theta-Join)

<u>Câu hỏi 6</u>: Cho biết mã nhân viên, họ tên và tên phòng mà n/v trực thuộc.

- -Đặt vấn đề: trở lại câu hỏi 5, ta thấy nếu thực hiện phép tích Decartes NHANVIEN X PHONGBAN thì mỗi nhân viên đều thuộc 2 phòng (vì có tổng cộng là 2 phòng ban, nếu có 3, 4,...phòng ban thì số dòng cho một nhân viên trong NHANVIEN X PHONGBAN sẽ là 3, 4,..dòng.
- Thực tế mỗi nhân viên chỉ thuộc duy nhất 1 phòng ban do ràng buộc khóa ngoại (PHONG), do đó để lấy được giá trị MAPH đúng của mỗi nhân viên → phải có điều kiên chon:

NHANVIEN.PHONG = PHONGBAN.MAPH

((NH	ANVIEN X PHO	NGBAN):	NHANV	IEN.PHO	NG=PH	ONGBAN.N	(APH
MANV	HOTEN	NTNS	PHAI	PHONG	MAPH	TENPH	TRPH
NV001	Nguyễn Tấn Đạt	10/12/1970	Nam	/NC	NC	Nghiên cứu	NV001
				1			
1							
NV002	Trần Đông Anh	01/08/1981	Nữ	DH	DH /	Điều hành	NV002
NV003	Lý Phước Mẫn	02/04/1969	Nam	NC	NC /	Nghiên cứu	NV001

Ví dụ: Phép kết 🖂

<u>Câu hỏi 7</u>: Tìm họ tên các trưởng phòng của từng phòng ?

π_{HOTEN} TENPH (PHONGBAN TRPH-MANV NHANVIEN)

Câu hỏi 8: Cho lược đồ CSDL như sau:

TAIXE (MaTX, HoTen, NgaySinh, GioiTinh, DiaChi)

CHUYENDI (SoCD, MaXe, MaTX, NgayDi, NgayVe, ChieuDai, SoNguoi) Cho biết họ tên tài xế, ngày đi, ngày về của những chuyến đi có chiều dài >=300km, chở từ 12 người trở lên trong mỗi chuyến?

__ (CHUYENDI) (ChieuDai>=300 ^ SoNguoi>=12) (CHUYENDI) Cách 1:

Kết quả: π_{HoTen, NgayDi, NgayVe} (Q TAIXE)

<u>Cách 2</u>: ((CHUYENDI : ChieuDai>=300 ∧ SoNguoi>=12) TAIXE) [HoTen, NgayDi, NgayVe]

Phép kết ngoài (outer join)

- Mở rộng phép kết để tránh mất thông tin
- Thực hiện phép kết và sau đó thêm vào kết quả của phép kết các bộ của quan hệ mà không phù hợp với các bộ trong quan hệ kia.
- Có 3 loại:
 - Left outer join $R \gg S$
 - □ Right outer join R ► S
 - $R \supset \subseteq S$ Full outer join
- Ví du: In ra danh sách tất cả tài xế và số chuyển đi, mã xe mà tài xế đó lái (nếu có)

Ví du - left outer join

(lấy hết tất cả bộ của quan hệ bên trái)

■ TAIXE matx CHUYENDI

		.			
	Matx	Hoten	SoCD	Matx	Maxe
	TX01	Huynh Trong Tao	CD01	TX01	8659
	TX01	Huynh Trong Tao	CD03	TX01	8659
	TX02	Nguyen Sang	CD02	TX02	7715
	TX03	Le Phuoc Long	CD04	TX03	4573
•	TX04	Nguyen Anh Tuan	Null	Null	Null

TAIXE			
MaTX	Hoten		
TX01	Huynh Trong Tao		
TX02	Nguyen Sang		
TX03	Le Phuoc Long		
TX04	Nguyen Anh Tuan		

Bộ của quan hệ TAIXE được thêm vào dù không phù hợp với kết quả của quan hệ CHUYENDI

CHUYENDI				
SoCD	MaTX	MaXe		
CD01	TX01	8659		
CD02	TX02	7715		
CD03	TX01	8659		
CD04	TX03	4573		

Tương tự right outer join và full outer join (lấy cả 2)

39

3.9. Phép chia (Division) (1)

- **Định nghĩa:** $Q = R \div S = \{t / \forall s \in S, (t, s) \in R\}$
- R và S là hai quan hệ, R⁺ và S⁺ lần lượt là tập thuộc tính của R và S. Điều kiện S⁺≠Ø là tập con không bằng của R⁺. Q là kết quả phép chia giữa R và S, Q⁺ = R⁺ - S⁺
- Có thể diễn đạt bằng phép toán đại số như sau:

$$T_1 \leftarrow \pi_{R^+ - S^+}(R)$$

$$T_2 \leftarrow \pi_{R^+ - S^+}((S \times T_1) - R)$$

$$T \leftarrow T_1 - T_2$$

3.9. Phép chia (Division) (2)

- Được dùng để lấy ra một số bộ trong quan hệ R sao cho thỏa với <u>tất cả</u> các bộ trong quan hệ S
- Ký hiệu: R ÷ S
 - □ R(Z) và S(X)
 - Z là tập thuộc tính của R, X là tập thuộc tính của S
 - X ⊆ Z
- Kết quả của phép chia là một quan hệ T(Y)
 - Với Y=Z-X
 - □ Có t là một bộ của T nếu <u>với mọi bộ</u> t_S∈S, tồn tại bộ t_R∈R thỏa 2 điều kiện
 - t_R(Y) = t
 - $t_R(X) = t_S(X)$

4

Ví dụ - Phép chia tập hợp (/ hay ÷) (1)

R=PHANCONG

MANV	MADA
001	TH001
001	TH002
002	TH001
002	TH002
002	DT001
003	TH001

S=DEAN

MADA	
TH001	
TH002	
DT001	

Kết quả Q

Q= PHANCONG/DEAN

MANV 002

Cho biết nhân viên làm việc cho tất cả các đề án ? (được phân công tham gia tất cả các đề án)

Hoặc viết Q= PHANCONG → DEAN

Ví dụ - Phép chia tập hợp (/ hay ÷) (2)

- Cho biết mã nhân viên tham gia tất cả các đề án
 - Quan hệ: PHANCONG, DEAN
 - Thuộc tính: MANV

```
B1: DA \leftarrow \pi_{MADA}(DEAN)
```

B2: $NV_DEAN \leftarrow \pi_{MANV, MADA}(PHANCONG)$

B3: MA_NV ← NV_DEAN÷DA

Ví dụ - Phép chia tập hợp (/ hay ÷) (3)

- Cho biết mã nhân viên tham gia tất cả các đề án do phòng số 4 phụ trách
 - Quan hệ: PHANCONG, DEAN
 - Thuộc tính: MANV
 - Diều kiện: PHONG=4
 - B1: P4_DA $\leftarrow \pi_{MADA}(\sigma_{PHONG=4} (DEAN))$
 - B2: $NV_DA \leftarrow \pi_{MANV, MADA}(PHANCONG)$
 - B3: $MA_NV \leftarrow \pi_{MANV}(NV_DA \div P4_DA)$

45

Ví dụ - Phép chia tập hợp (/ hay ÷)(4)

S=MONHOC				
Mamh	Tenmh			
CSDL	Co so du lieu			
CTRR	Cau truc roi rac			
THDC	Tin học dai cuọng			

Q=KETQUA/MONHOC

 $KETQUA \leftarrow KETQUATHI[Masv, Mamh]$ $MONHOC \leftarrow MONHOC[Mamh]$

* Viết cách khác

KETQUATHI[Mahv,Mamh] /MONHOC[Mamh]

Tóm tắt

 Biểu diễn phép chia thông qua tập đầy đủ các phép toán ĐSQH

$$T_{1} \leftarrow \pi_{Y}(R)$$

$$T_{2} \leftarrow T_{1} \times S$$

$$T_{3} \leftarrow \pi_{Y}(T_{2} - R)$$

$$T \leftarrow T_{1} - T_{2}$$

47

3.10. Hàm tính toán và gom nhóm

- Các hàm tính toán gồm 5 hàm: avg(giá-trị), min(giá-trị), max(giá-trị), sum(giá-trị), count(giá-trị).
- Phép toán gom nhóm: (Group by)

$$\mathfrak{F}_{G_1,G_2,...,G_n} \mathfrak{F}_{F_1(A_1),F_2(A_2),...,F_n(A_n)}(E)$$

- □ E là biểu thức đại số quan hệ
- G_i là thuộc tính gom nhóm (nếu không có G_i nào=> không chia nhóm (1 nhóm), ngược lại (nhiều nhóm) => hàm F sẽ tính toán trên từng nhóm nhỏ được chia bởi tập thuộc tính này)
- □ F_i là hàm tính toán
- A; là tên thuộc tính

Ví dụ – Hàm tính toán trên 1 nhóm và tính toán trên nhiều nhóm (gom nhóm – group by)

Điểm thi cao nhất, thấp nhất, trung bình của môn CSDL ?

$$\mathfrak{I}_{\max(\textit{Diem}),\min(\textit{Diem}),\textit{agv}(\textit{Diem})} \sigma_{\mathrm{Mamh}='\mathrm{CSDL'}}(\textit{KETQUATHI})$$

Điểm thi cao nhất, thấp nhất, trung bình của từng môn ?

$$\mathfrak{I}_{\max(Diem),\min(Diem),avg(Diem)}(\textit{KETQUATHI})$$

49

4. Biểu thức đại số quan hệ (2)

- Biểu thức ĐSQH là một biểu thức gồm các phép toán ĐSQH.
- Biểu thức ĐSQH được xem như một quan hệ (không có tên).
- Kết quả thực hiện các phép toán trên cũng là các quan hệ, do đó có thể kết hợp giữa các phép toán này để tạo nên các quan hệ mới.
- Có thể đặt tên cho quan hệ được tạo từ một biểu thức ĐSQH.
- Có thể đổi tên các thuộc tính của quan hệ được tao từ môt biểu thức ĐSQH.

Bài tập		
		51