Bütwork Medettan Kutln 2017080868

1) a) The minimum distance $a_1 a_2 ... a_k$ and $b_1 b_2 ... b_k$ represented by

D(K, e)

where k and l are the last indices of strings a and b.

- b) For D(i,j), i is the 1th index of first string, j is the 1th index of second string, and D(i,j) represents the minimum number of mismatches in the alignment.
- c) For the first scenario, D(i,j) = 1 + D(i,j-1).
- d) For the second scenario,

O(i,j) = 1 + O(i-1,j).

- e) For the third scenario, D(i,j) = diff(i,j) + D(i-1,j-1). diff(i,j) is 0 if a CJ = b[j] and L otherwise.
- f) whole formulation is, $D(i,j) = \min_{i=1}^{n} \{1 + D(i,j-1), 1 + D(i-1,j), diff(i,j) + D(i-1,j-1) \}.$
- 2) a) The optimization objective function is C(c',i) = minimum cost of multiplying A; x A; +1 x ... A;
 - b) i is the starting matrix, and
 i is the final matrix, and

 C(i,i) represents the minimum cost of
 multiplying Ai to Aj.
 - c) for k=1 $C(i,i) = C(i,1) + C(2,i) + m_{i-1} m_1 m_i$ where $i \le 1 \le i$.

d) for
$$k=2$$
,
$$C(i,i) = C(i,2) + C(3,i) + m_{i-1} m_2 m_i,$$
where $i \leq 2 \leq i$