34567

1

2

1 2

2
3

1 2

1 2

3

1

2

1

2

pseudo-random number generator.

CLAIMS

What is claimed is:

1.	An authentication method comprising:
gener	ating an initialization vector at a first electronic device;
deterr	mining at the first electronic device whether the initialization vector falls
within a first	group of initialization vectors, the first group includes a plurality of
initialization	vectors solely used in connection with an authentication sequence; and
encry	pting information using in part the initialization vector for return to a
second electr	onic device if the initialization vector falls within the first group.
2.	The authentication method of claim 1, wherein the first electronic device
is a wireless	unit.
	·
3.	The authentication method of claim 1, wherein the second electronic
device is an a	access point.
4.	The authentication method of claim 1, wherein prior to generating the
initialization	vector, the method comprises receiving the information from the second
electronic de	vice by the first electronic device.
5.	The authentication method of claim 4, wherein the information is a
challenge tex	t.
6.	The authentication method of claim 5, wherein the challenge text is a
-	e of bits and the initialization vector is a second sequence of bits produced
by a number	generator.
7	The authorization method of claim 4 wherein the number concreter is a
7.	The authentication method of claim 4, wherein the number generator is a

8. The authentication method of claim 1 further comprising regenerating an initialization vector if the initialization vector fails to fall within the first group.

transmitted to the wireless unit.

9.	The authentication method of claim 1, wherein the determining whether
the initialization	on vector falls within the first group includes determining whether a
selected series	of bits of the initialization vector has been set.
10.	The authentication method of claim 9, wherein the selected series of bits
is continuous.	
11.	The authentication method of claim 5, wherein prior to receiving the
challenge text	, the method further comprises negotiating a shared secret key between
the first electro	onic device and the second electronic device.
12.	The authentication method of claim 11, wherein the encrypting of the
information in	acludes
	ning the initialization vector with the shared secret key; and
	edly performing bitwise Exclusive-OR (XOR) operations on the challenge
•	ombination of the initialization vector with the shared secret key.
13.	The authentication method of claim 5 further comprising:
transm	itting both the encrypted challenge text and the initialization vector to the
second electro	onic device;
decryp	ting the encrypted challenge text using both the initialization vector and a
prestored copy	y of the shared secret key to recover a challenge text; and
compa	ring the recovered challenge text with the challenge text.
14.	A method for authenticating a wireless unit in communications with an
access point, o	-
_	uitting a challenge text from the access point to the wireless unit;
	ing an encrypted challenge text and an initialization vector from the
wireless unit;	
•	ting the encrypted challenge text using both the initialization vector and a
• -	by of a shared secret key to recover a challenge text; and
•	ring the recovered challenge text with the challenge text previously

1	15.	The method of claim 14, wherein the challenge text is a first sequence of
2	bits.	
1	16.	The method of claim 15, wherein the initialization vector is a second
2	sequence of	bits produced by a number generator.
1	17.	The method of claim 16, wherein the number generator is a pseudo-
2	random nun	nber generator.
1	18.	The method of claim 14, wherein prior to transmitting the challenge text,
2	the method	further comprises negotiating the shared secret key between the access
3	point and th	e wireless unit.
1	19.	The method of claim 14, wherein the decrypting of the encrypted
2	challenge te	xt includes
3	com	bining the initialization vector with the shared secret key; and
4	usin	g a combination of the initialization vector and the shared secret key as a
5	key materia	l loaded to decrypt the encrypted challenge text.
1	20.	A method comprising:
2	selec	cting a bit size (N) of an initialization vector;
3	parti	tioning all 2 ^N initialization vectors into a first group and a second group;
4	usin	g an initialization vector from the first group exclusively for authentication;
5	and	
6	usin	g an initialization vector from the second group exclusively for data
7	communica	tions.
1	21.	The method of claim 20, wherein the authentication is Wired Equivalent
2	Privacy (W	EP) authentication in accordance with Institute of Electrical and Electronics
3	Engineers (EEE) 802.11.
1	22.	The method of claim 20, wherein a first predetermined number of
2	initializatio	n vectors associated with the first group is substantially less than a second

predetermined number of initialization vectors associated with the second group.

23.	The method of claim 20, wherein the data communications include
wired equivale	ent privacy (WEP) encryption and WEP decryption operations.
24.	An electronic device comprising:
a mem	nory to contain a plurality of keys including a shared secret key;
a num	ber generator;
a devi	ce management logic in communication with the memory and the number
generator, the	device management logic including
	logic configured to analyze an initialization vector generated from the
number gener	ator to determine whether the initialization vector is used for either wired
authentication	or data communications; and
a wire	less transceiver to transmit and receive information for configured to
support the au	athentication.
25.	The electronic device of claim 24, wherein the authentication is Wired
Equivalent Pr	ivacy (WEP) authentication.
26.	The electronic device of claim 24 is an access point.
27.	An electronic device comprising:
means	for generating an initialization vector;
means	for determining whether the initialization vector falls within a first group
of initializatio	on vectors, the first group includes a plurality of initialization vectors
solely used in	connection with an authentication sequence; and
means	for encrypting information using the initialization vector for return to a
source for the	information using in part the initialization vector if the initialization
vector falls w	ithin the first group.
28.	A software module implemented for execution by an electronic device,
the software r	nodule comprising:
a first	module to select a bit size (N) of an initialization vector;
a seco	nd module to partition all 2^N initialization vectors into a first group and a
second group	•

7

8

9

a third module to use an initialization vector from the first group exclusively for
authentication; and
C. A A. L. A

-15-

a fourth module to use an initialization vector from the second group exclusively for data communications.