Решающие деревья и случайные леса (Binary decision trees & Random forests)

ЦМФ

Основная идея

Классификация наблюдений на основе последовательного применения критериев (>, <, ∈) к тому или иному признаку

При этом пространство $R \supset X$ рекурсивно разделяется гиперплоскостями, параллельными оси одного из признаков, до тех пор, пока в каждой из получившихся областей не образуется значительное большинство наблюдений одного класса

Классификация бинарными деревьями

Дерево решений

Основные понятия

Пусть условие $x_j \leq v$ разделяет пространство R на 2 части: R_Y и R_N , тогда множество наблюдений $D = \left\{ \vec{x}^{(i)}, i \in \{1; ...; m\} \right\}$ также разделяется на $D_Y = \left\{ \vec{x}^{(i)} \in D \colon x_{i,j} \leq v \right\}$ и $D_N = \left\{ \vec{x}^{(i)} \in D \colon x_{i,j} > v \right\}$

Однородность j-й области:
$$purity(D_j) = \max_k \frac{m_{j,k}}{m_j}$$
, где $m_{j,k} = \sum_{i=1}^m \mathbf{I}(\vec{x}^{(i)} \in D_j, y_i = c_k), m_j = \sum_{i=1}^m \mathbf{I}(\vec{x}^{(i)} \in D_j) = \sum_{k=1}^K m_{j,k}$

Энтропия области: $H(D_j) = -\sum_{k=1}^K P(c_k|D_j) \log_2 P(c_k|D_j)$, где $P(c_k|D_j) = \frac{m_{j,k}}{m_j}$ — вероятность нахождения наблюдения k-го класса в области D_i

Энтропия разделения: $H(D_Y, D_N) = \frac{m_Y}{m} H(D_Y) + \frac{m_N}{m} H(D_N)$

Энтропия

Оценка эффективности разделения

Информативность (сокращение энтропии):

$$gain(D, D_Y, D_N) = H(D) - H(D_Y, D_N)$$

Вместо энтропии можно использовать коэффициент Джини:

$$G(D) = 1 - \sum_{k=1}^{K} P^{2}(c_{k}|D), \ G(D_{Y}, D_{N}) = \frac{m_{Y}}{m}G(D_{Y}) + \frac{m_{N}}{m}G(D_{N})$$

Если величины $x_{i,j}$ непрерывны, то в качестве кандидатов на точки разделения рассматриваются середины интервалов между последовательными уникальными значениями

Если $x_{i,j}$ дискретны, то каждое их уникальное значение рассматривается как возможная точка разделения

Случайный лес

Случайный лес представляет собой совокупность моделей — бинарных деревьев решений, — отличающихся случайным выбором экзогенных параметров

Такими параметрами могут быть: выбор точек разделения областей, выбор набора обучающих наблюдений из тренировочной совокупности и др.

Прогнозным значением в задачах классификации может являться наиболее часто встречающийся номер класса среди прогнозов по деревьям, составляющим лес

Случайный лес в Python

```
import numpy as np
import pandas as pd
from sklearn.ensemble import RandomForestClassifier as RFC
# загрузка исходных данных из файла
X = pd.read csv('train data file.csv', header=0).as matrix()
# обучение модели
rf = RFC(n estimators=15) # количество деревьев = 15
rf.fit(X=X[:, 1:], y=X[:, 0]) # целевая переменная - в первом столбце
# предсказания
X test = pd.read csv('test data file.csv', header=0).as matrix()
test classes = rf.predict(X test) # номера классов
test probs = rf.predict proba(X test) # вероятности принадлежности
```

Домашнее задание

Классифицировать рукописные цифры из папки «digits_test»

Ответы принимаются на https://kaggle.com/join/cmf_digits

Полезные функции

```
# список файлов в каталоге mypath
from os import listdir
from os.path import isfile, join
onlyfiles = [f for f in listdir(mypath) if isfile(join(mypath, f))]

# преобразование изображения в питру-матрицу
import numpy as np
import cv2
img = cv2.imread('file_full_name.png', 0)
```