LINEAR ALGEBRA: EXERCISES: SET 04

1. Numerical exercises

1. Let

$$A = \begin{pmatrix} 1 & 2 & 3 \\ -1 & 0 & 2 \end{pmatrix}$$
 and $B = \begin{pmatrix} 5 & 1 & -1 \\ 2 & 1 & -1 \end{pmatrix}$.

- (1) Write down the row vectors and the column vectors of A and B.
- (2) Find A + B, B, A B, A B, A B, A B, A B, A B.
- (3) Find A^{T} and B^{T} .

2. Let

$$A = \begin{pmatrix} 1 & -1 \\ 2 & 1 \end{pmatrix}$$
 and $B = \begin{pmatrix} -1 & 1 \\ 0 & -3 \end{pmatrix}$.

- (1) Find A^{T} and B^{T} .
- (2) Find $(A + B)^T$ and $A^T + B^T$.
- (3) Find $A + A^{\mathsf{T}}$ and $B + B^{\mathsf{T}}$.
- (4) Find $A A^{T}$ and $B B^{T}$.

2. Problems

- 3. Let A and B be two matrices of the same size. Prove that $(A + B)^T = A^T + B^T$.
- 4. Let c be a number and A be a matrix. Prove that $(cA)^T = cA^T$.
- 5. Let A be a square matrix. Prove that the diagonal components of A and A^{T} are the same.
- 6. Let A be a square matrix. Prove that the matrix $A + A^{T}$ is symmetric.
- 7. Let A be a square matrix. Prove that the matrix $A A^{T}$ is skew-symmetric.
- 8. Let A be a skew-symmetric matrix. What can be said about its diagonal components?