CHAPTER 18: ELECTRICAL PROPERTIES

- Electrical Conduction
- > Mobility
- > Conductor
- Jonic Materials
- Conducting Polymer
- Amorphous Materials
- > Semiconductor
- Dielectrics

ENERGY BAND FOR INSULATORS

CONDUCTIVITY OF INSULATORS

Table 18.3 Typical Room-Temperature Electrical Conductivities for 13 Nonmetallic Materials

Material	Electrical Conductivity $[(\Omega - m)^{-1}]$
Graphite	$3 \times 10^4 - 2 \times 10^5$
Cera	mics
Concrete (dry)	10^{-9}
Soda-lime glass	$10^{-10} - 10^{-11}$
Porcelain	$10^{-10} - 10^{-12}$
Borosilicate glass	$\sim 10^{-13}$
Aluminum oxide	$< 10^{-13}$
Fused silica	$< 10^{-18}$
Poly	mers
Phenol-formaldehyde	$10^{-9} - 10^{-10}$
Polymethyl methacrylate	$<10^{-12}$
Nylon 6,6	$10^{-12} - 10^{-13}$
Polystyrene	$< 10^{-14}$
Polyethylene	$10^{-15} - 10^{-17}$
Polytetrafluoroethylene	$< 10^{-17}$

CONDUCTION IN IONIC MATERIALS

- > charge carrier: cation, anion, electron
- > total conductivity

-
$$\sigma_{ ext{total}} = \sigma_{ ext{ionic}} + \sigma_{ ext{electronic}}$$

Figure 9.8. Schematic representation of a potential barrier, which an ion (\bullet) has to overcome to exchange its site with a vacancy (\Box) . (a) Without an external electric field; (b) with an external electric field. d = distance between two adjacent, equivalent lattice sites; Q = activation energy.

CONDUCTION IN IONIC MATERIALS

-
$$\mu_{ion} = \frac{q}{kT} D_{ion}$$
 (Einstein relationship)

- temperature dependence of ionic conductivity

$$\sigma_{ion}(T) = N_{ion}q_{ion}\mu_{ion} = N_{ion}q_{ion}\frac{q}{kT}D_{ion} = \frac{N_{ion}q_{ion}^2D_o}{kT}\exp(-\frac{Q'}{kT})$$

$$=\sigma_o \exp(-\frac{Q}{kT}) \quad (:: N_{ion} \sim e, \ \mu_{ion} \sim \frac{e}{T})$$

- transference number

$$t_{cat} = \frac{\sigma_{cat}}{\sigma_{total}} = \frac{N_{cat}q_{cat}\mu_{cat}}{\sigma_{total}}$$

IONIC CONDUCTIVITY

FIGURE 4.3 Temperature dependence of conductivity for several oxides with activation energy in Kcal/mol shown in brackets ().

IONIC CONDUCTION VS. DIFFUSION

activation energy

TABLE 10.2-5 A comparison of the activation energies for ionic conduction and the diffusion of Na⁺¹ in a series of silicate glasses.

Composition (Mol %)			Activation energy (kJ/mol)			
Na ₂ O	CaO	Al₂O₃	SiO ₂	GeO ₂	Diffusion (Na+)	Conduction
33.3			66.7		54-59	59-67
25.0				75.0	71-75	67-75
15.7	-	12.1	72.2	er a de la de casa de	68.6	65.3
11.0		16.1	72.9		65.3	63.2
15,9	11.9		72.2		92.0	87.0
14.5	12.3	5.8	67.4		84.5	81.6

Source: L. L. Hench and J. K. West, *Principles of Electronic Ceramics*. Copyright © 1990 by John Wiley & Sons. Reprinted by permission of John Wiley & Sons, Inc.

IONIC MATERIALS

> transference number

Compound	Temperature (°C)	t _{cation}	tanion	telectron/hole
NaCl	400	1.0	0	0
	600	0.95	0.05	0
KCI	435	0.96	0.04	0
	600	0.88	0.12	0
KCl + 0.02% CaCl ₂	430	0.99	0.01	0
	600	0.99	0.01	0
AgCl	20-350	1.0	0	0
AgBr	20-350	1.0	0	0
BaF ₂	500	0	1.0	0
PbF ₂	200	0	1.0	0
CuCl	20	0	0	1.0
	366	1.0	0	0
ZrO ₂ + 7% CaO	> 700	0	1.0	10-4
Na ₂ O · 11Al ₂ O ₃	< 800	1.0 (Na ⁺)	0	< 10 ⁻⁶
FeO	800	10-4	0	1.0
ZrO ₂ + 18% CeO ₂	1500	0	0.52	0.48
ZrO ₂ + 50% CeO ₂	1500	0	0.15	0.85
Na ₂ O · CaO · SiO ₂ glass	mangaro — ses _{mal} o.	1.0 (Na ⁺)	0	0

IONIC CONDUCTOR

FIGURE 4.13 Fast ion conductors. Logarithmic scale of conductivity for ionic vs. electronic materials.

FAST ION CONDUCTOR

Temperature (°C) 800 300 100 25 -25Na log σT(*K/ohm•cm) Ag TI 1.0 2.0 3.0 4.0 $1000/T({}^{\circ}K)$

Conductivity of some highly conducting solid electrolytes.

Electrical conductivity for various β -aluminas. From R. A. Huggins.

FAST ION CONDUCTOR

> ZrO₂- fluorite structure

Y₂O₃ stabilized ZrO₂

$$Y_2O_3 \xrightarrow{ZrO_2} 2Y'_{Zr} + 3O_o^x + V_o^{\Box}$$

$$[Y_{Zr}^{'}]=2[V_o^{\square}]$$

voltage difference produced!

Monoclinic

$$a_m = 0.5156 \text{ nm}$$

 $b_m = 0.5191 \text{ nm}$
 $c_m = 0.5304 \text{ nm}$
 $\beta = 98.9^\circ$

Tetragonal $a_t = 0.5094 \text{ nm}$ $b_t = 0.5177 \text{ nm}$ $c_t = a_t$

FAST ION CONDUCTOR

$> \beta$ -alumina (NaAl₁₁O₁₇)

NON-LINEAR

varistor- surge protection

NON-LINEAR

varistor- ZnO (doped with Bi₂O₃)

$$I=kV^{\alpha}$$

$$\alpha = 25 \sim 50$$

FIGURE 8 Current-voltage characteristics of a metal oxide varistor at 77 K and for a small range of temperatures near 300 K. The exponent α equals the inverse slope of the curve and is a measure of device non-linearity.

ZnO VARISTOR

FIGURE 10 Schematic depiction of the microstructure of a ZnO varistor. Grains of conducting ZnO, average size d, are completely surrounded by a segregation layer enriched in some of the additive cations (few atomic layers thick). Electrodes are attached and current flows as indicated.

FIGURE 12 "Block model" of a ZnO varistor having grain size d ($\simeq 10$ $\mu m)$ and intergranular depletion barrier thickness t ($\simeq 100$ nm). D is the electrode separation. (Not to scale.)

SEMICONDUCTOR

- > Bandgap: less than 2 eV
- > Intrinsic Extrinsic

Table 18.2 Band Gap Energies, Electron and Hole Mobilities, and Intrinsic Electrical Conductivities at Room Temperature for Semiconducting Materials

the filtration of commercial conference of the factors	March - March - Control - Carlo - Carl			
Material	Band Gap (eV)	Electrical Conductivity $[(\Omega-m)^{-1}]$	Electron Mobility (m²/V-s)	Hole Mobility (m²/V-s)
		Elemen	tal	
Si	1.11	4×10^{-4}	0.14	0.05
Ge	0.67	2.2	0.38	0.18
		III-V Com	oounds	
GaP	2.25		0.03	0.015
GaAs	1.42	10^{-6}	0.85	0.04
InSb	0.17	2×10^4	7.7	0.07
		II-VI Com	pounds	
CdS	2.40	V	0.03	
ZnTe	2.26		0.03	0.01

$$\sigma = n|e|\mu_e + p|e|\mu_h = |e|(n\mu_e + p\mu_h)$$

$$n = p = n_i = 2\left(\frac{2\pi kT}{h^2}\right)^{3/2} (m_e^* m_e^*)^{3/4} e^{-E_g/2kT}$$

$$= n_o e^{-E_g/2kT}$$

$$\mu_e \sim T^{-3/2}$$

$$\sigma = n_o |e|(\mu_e + \mu_h)e^{-E_g/2kT} = \sigma_o e^{-E_g/2kT}$$

$$\ln \sigma = \ln \sigma_o - \frac{E_g}{2k} \frac{1}{T}$$

Table 18-6 **■** Properties of commonly encountered semiconductors

Semiconductor	Bandgap eV	Mobility of Electrons (μ_n) $\frac{\mathrm{cm}^2}{\mathrm{V-s}}$	Mobility of Holes (μ_p) $\frac{\mathrm{cm}^2}{\mathrm{V-s}}$	Dielectric Constant (k)	Resistivity Ω · cm	Density gm cm ³	Melting Temperature °C
Silicon (Si)	1.11	1350	480	11.8	2.5×10^{5}	2.33	1415
Amorphous Silicon (a:Si:H)	1.70	1	10^{-2}	~11.8	10 ¹⁰	~2.30	_
Germanium (Ge)	0.67	3900	1900	16.0	43	5.32	936
SiC (α)	2.86	500		10.2	10^{10}	3.21	2830
Gallium Arsenide (GaAs)	1.43	8500	400	13.2	4 × 10 ⁸	5.31	1238
Diamond	~5.50	1800	1500	5.7	$> 10^{18}$	3.52	~4200
α-Sn	0.10	2000	1000	_	10^{-4}	5.80	232

- Intrinsic:
 - # electrons = # holes (n = p)
- Extrinsic:
 - --n ≠ p
- N-type Extrinsic: (n >> p)
 P-type Extrinsic: (p >> n) 60

N-TYPE SEMICONDUCTOR

N-TYPE SEMICONDUCTOR

N-TYPE SEMICONDUCTOR

N-type Extrinsic Semiconductor

N-type Extrinsic Semiconductor

N-type Extrinsic Semiconductor

N-type Extrinsic Semiconductor

P-TYPE SEMICONDUCTOR

P-TYPE SEMICONDUCTOR

P-TYPE SEMICONDUCTOR

Host	Dopant	Energy level
Silicon	Sb	$E_c - E_d = 0.039 \text{ eV}$
	P	$E_c - E_d = 0.044 \text{ eV}$
	As	$E_c - E_d = 0.049 \text{ eV}$
	Bi	$E_c - E_d = 0.069 \text{ eV}$
	В	$E_a = 0.045 \text{ eV}$
	Al	$E_a = 0.057 \text{ eV}$
	Ga	$E_{\mu} = 0.065 \text{ eV}$
	In	$E_a = 0.160 \text{ eV}$
	Ti	$E_a = 0.260 \text{ eV}$
Germanium	P	$E_c - E_d = 0.012 \text{ eV}$
	As	$E_c - E_d = 0.013 \text{ eV}$
	В	$E_a = 0.010 \text{ eV}$
	Al	$E_a = 0.010 \text{ eV}$

TEMPERATURE DEPENDENCE OF MOBILITY

TEMPERATURE DEPENDENCE OF MOBILITY

- carrier density vs. carrier mobility
- Hall effect- apply electric field and magnetic field at right angle
- effect of magnetic field on free electrons

force
$$\vec{F} = q\vec{v} \times \vec{B}$$

magnstic field B_z
circular orbit in the xy plane
$$m_e^* v^2 / r = qvB_z$$

 $w_c = v/r = qB_z/m_e^*$ cyclotron frequency (effective mass)

laser, $w_c \tau \square$ 1, 50kG, 10K

- carrier- drift velocity in the x-direction
- magnetic field- carrier deflected (y-direction)
- no current flow in the y direction- build up electric field
- for charge carrier-electron

$$E = -\vec{v} \times \vec{B} = (1/nq) \vec{j}_e \times \vec{B}$$

$$\vec{j}_e = \vec{j}_x, \ \vec{B} = B_z$$

$$E_H = E_v = -(1/nq) \vec{j}_x B_z$$

- for charge carrier-hole

$$E_H = E_y = (1/nq)j_x B_z$$

 $\bigcirc B_z$

- Hall field E_H polarity
- $-E_y = (\pm 1/nq)j_x B_z$
- Hall coefficient: $R_H = E_y / j_x B_z = \pm 1/nq$ (direct measurement of carrier density)
- Hall mobility: $\mu_{\rm H} = R_H \sigma$
- example

The electrical conductivity and electron mobility for aluminum are 3.8×10^7 $(\Omega\text{-m})^{-1}$ and 0.0012 m²/V-s, respectively. Calculate the Hall voltage for an aluminum specimen that is 15 mm thick for a current of 25 A and a magnetic field of 0.6 tesla (imposed in a direction perpendicular to the current).

Hall Constants (in volt m3/amp weber at Room Temperature)

- Hall coefficient when both electrons and holoes exist simutaneously

$$R = \frac{R_e \sigma_e^2 + R_h \sigma_h^2}{(\sigma_e + \sigma_h)^2}$$

P-N JUNCTION

 E_{cn}

Particle flow	Current
(1)	
(2) ←	←
(3) <	
(4)►	◄
I	

Particle flow	Current
-	-
←	←
←	-
	◄

- (1) Hole diffusion
- (2) Hole drift
- (3) Electron diffusion
- (4) Electron drift

Figure A. A p—n junction in thermal equilibrium with zero-bias voltage applied. Electron and hole concentration are reported with blue and red lines, respectively. Gray regions are charge-neutral. Light-red zone is positively charged. Light-blue zone is negatively charged. The electric field is shown on the bottom, the electrostatic force on electrons and holes and the direction in which the diffusion tends to move electrons and holes. (The log concentration curves should actually be smoother with slope varying with field strength.)

Figure B. A p—n junction in thermal equilibrium with zero-bias voltage applied. Under the junction, plots for the charge density, the electric field, and the voltage are reported. (The log concentration curves should actually be smoother, like the voltage.)

TRANSISTOR

TRANSISTOR

