

Worksheet 10

HoTTEST Summer School 2022

The HoTTEST TAs 10 August 2022

1 (*)

Let A be a type. Show that

- (a) $|||A||| \leftrightarrow ||A||$
- (b) $\exists_{(x:A)} ||B(x)|| \leftrightarrow ||\Sigma_{(x:A)}B(x)||$
- (c) $\neg\neg \|A\| \leftrightarrow \neg\neg A$
- (d) is-decidable(A) \rightarrow ($\|A\| \rightarrow A$)

2 (**)

Consider two maps $f:A\to P$ and $g:B\to Q$ into propositions P and Q.

- (a) Show that if f and g are propositional truncations, then $f\times g:A\times B\to P\times Q$ is also a propositional truncation
- (b) Conclude that $||A \times B|| \simeq ||A|| \times ||B||$

3 (**)

Consider a map $f: A \to B$. Show that the following are equivalent:

- (i) f is an equivalence
- (ii) f is both surjective and an embedding

$4 (\star\star)$

Prove Lawvere's fixed point theorem: For any two types A and B, if there is a surjective map $f: A \to B^A$, then for any $h: B \to B$, there (merely) exists an x: B such that h(x) = x. In other words, show that

$$\left(\exists_{(f:A\to(A\to B))}\mathsf{is-surj}(f)\right)\to\left(\forall_{(h:B\to B)}\exists_{(b:B)}h(b)=b\right)$$

Disclaimer In the following exercises, we will use $\{0, ..., n\}$ to denote the elements of Fin_{n+1} , the finite type of n+1 elements.

5 (*)

- (a) Construct an equivalence $\mathsf{Fin}_{n^m} \simeq (\mathsf{Fin}_m \to \mathsf{Fin}_n)$. Conclude that if A and B are finite, then $(A \to B)$ is finite.
- (b) Construct an equivalence $\mathsf{Fin}_{n!} \simeq (\mathsf{Fin}_n \simeq \mathsf{Fin}_n)$. Conclude that if A is finite, then $A \simeq A$ is finite.

6 (**)

Consider a map $f: X \to Y$, and suppose that X is finite.

- (a) For y:Y, define $\mathsf{inlm}_f(y):=\exists_{x:X}(f(x)=y)$. Show that, if type the Y has decidable equality, then inlm_f is decidable.
- (b) Suppose that f is surjective. Show that the following two statements are equivalent:
 - (i) The type Y has decidable equality
 - (ii) The type Y is finite

Hint for (i) \Longrightarrow (ii): Induct on the size of X. If $f: X \simeq \mathsf{Fin}_{n+1} \to Y$, consider its restriction $f_n: \mathsf{Fin}_n \to Y$. Use (a) to do a case distinction on whether or not $\mathsf{inIm}_{f_n}(f(n))$ holds.