

ទន្យាស្ថាន**ខាតពេលមេ ខេត្ត**ទំនិង ទំនុំទំនុំទំនុំខេត្តទំនិង

ឯកសារនៃការសិក្សាគម្រោខមញ្ជាម់ការសិក្សា

ខុធរដ្ឋខ

ចំណងជើងឯកសារ	បរិញ្ញាបត្របច្ចេកវិទ្យាជំនាន់ទី១៥:	
	ការរចនា និងអនុវត្តប្រព័ន្ធ IoT ថាមពលទាបវាសគុណភាពទឹកដោយផ្អែកលើ LoRa	
	និងបណ្តាញ Cellular ជាមួយ Machine Leaning	
ប្រភេទឯកសារ	PRO: សំណើរនៃការសិក្សាគម្រោង	
	សម្គាល់ឯកសារនេះរក្សាសិទ្ធដោយ មហាវិទ្យាល័យអេឡិចត្រូនិក	
	នៃវិទ្យាស្ថានជាតិពហុបច្ចេកទេសកម្ពុជា	
លេខឯកសារ	PRO-01	
លេខនៃការកែ		
សម្រួល		
ឈ្មោះឯកសារ	B100-Proposal_Plan.docx	
កាលបរិច្ឆេទ	April 30 th , 2024	
ចំនួនទំព័រ	46	(រាប់ទាំងទំព័រមុខ)

អ្នកសិក្សាគម្រោង			
ឈ្មោះ	សារិ ពុទ្ធិពណ្ណរាយ	តួនាទី	ប្រធានក្រុម
	ឈឿន រីណា	តួនាទី	សមាជិក
	ញ៉ៅ ត្រេនឆៃលីន	តួនាទី	សមាជិក
កាលបរិច្ឆេទ	ថ្ងៃទី ៣០ ខែមេសា ឆ្នាំ ២០២៤	ហត្ថលេខា	
		ហត្ថលេខា	
		ហត្ថលេខា	
ផ្នែក	បរិញ្ញបត្របច្ចេកវិទ្យា ជំនាញអេឡិចត្រូនិក ជំនាន់ទី១៦		
អាសយដ្ឋាន	ភូមិព្រៃពពេល សង្កាត់សំរោងក្រោម ខណ្ឌពោធិ៍សែនជ័យ រាជធានីភ្នំពេញ		

អ្នកអនុញ្ញាតអោយសិក្សាគម្រោង			
ឈ្មោះ	នី វីរៈបុរា	តួនាទី	សាស្ត្រាចារ្យដឹកនាំ
មហាវិទ្យាល័យ	អេឡិចត្រូនិក		
អាសយដ្ឋាន	ភូមិព្រៃពពេល សង្កាត់សំរោងក្រោម ខណ្ឌពោធិ៍សែនជ័យ រាជធានីភ្នំពេញ		
លេខទូរស័ព្ទ	096 891 6954	សារអេឡិចត្រូនិក	
កាលបរិច្ឆេទ	ថ្ងៃទី ២៨ ខែ មេសា ឆ្នាំ២០២៣	ហត្ថលេខា	

មាតភា

នំព័ម្ ខ	1
ยลกา	3
មញ្ជីរុមអាព	5
មញ្ជី នារ ាខ	7
ច្រខត្តនៃអារ៉េកសម្រួលឯកសារ	8
១.សេចក្តស្នើម	9
១.១ រចនាសម្ព័ន្ធរបស់ឯកសារ	9
១.២ គោលបំណង	9
១.៣ ឯកសារយោង	10
១.៤ បញ្ជីអក្សរកាត់	12
២.សំលើវេទភារសិក្សាគម្រោច	13
២.១ សេចក្តីផ្តើម	13
២.១.១ ប្រវត្តិនៃគម្រោង	13
២.១.២ គោលដៅ	15
២.១.៤ គុណសម្បត្តិ	15
២.១.៥ ពិពណ៌នាទូទៅ	16
២.២ ទស្សនាទានរបស់គម្រោង	30
២.២.១ ផែនការរបស់គម្រោង	30
២.២.២ ផែនការតាមការវិវត្តិរបស់បច្ចេកវិទ្យា	32
២.២.៣ ដៃគូសហការណ៍	32
២.៣ កិច្ចប្រឹងប្រែងសម្រាប់គម្រោង	33
២.៣.១ កិច្ចប្រឹងប្រែងក្នុងការសិក្សា	33
២.៣.២ កិច្ចប្រឹងប្រែងក្នុងការផលិត	35

	២.៣.៣ តម្លៃប៉ាន់ស្មាន	42
	២.៣.៤ ការវិភាគទីផ្សារ	
	២.៤ សេចក្តីសន្និដ្ឋាន	
	មសម្ពុទូ-គ	
	បញ្ជីគ្រឿងបង្គំ	44
	តម្រូវការកម្មវិធី និងប្រព័ន្ធដំណើរការ	
91	រេសតិខិ-ខ	45
	ធនធានមនុស្ស និងប្រវត្តិរូបសង្ខេប	45

មញ្ជីរូមនាព

រូប 2. 1 Node Device Hardware Block Diagram	16
រូប 2. 2 Gateway Device Hardware Block Diagram	16
រូប 2. 3 pH Sensor	17
រូប 2. 4 TDS Sensor	18
រូប 2. 5 Turbidity Sensor	19
រូប 2. 6 Temperature Sensor	20
រូប 2. 7 SIM800C Module	21
រូប 2. 8 LoRa RFM96	23
រូប 2. 9 ESP32 Dev Kit 1	24
រូប 2. 10 Arduino NANO	25
រូប 2. 11 Real Time Clock Module	26
រូប 2. 12 SD Card Module	27
រូប 2. 13 OLED Display	27
រូប 2. 14 Gateway Block Diagram សៀគ្វីបែកចែកប្រភពតង់ស្យុង	28
រូប 2. 15 Node Block Diagram សៀគ្វីបែកចែកតង់ស្យុង	29
រូប 2. 16 Real Time Database	33
រូប 2. 17 Gateway Schematic	35
រូប 2. 18 PCB Gateway	35
រូប 2. 19 Node Schematic	36
រូប 2. 20 Node PCB	36
រូប 2. 21 Gateway 3D Design	37
រូប 2. 22 Node 3D Design	37
រូប 2. 23 Gateway ជាក់ស្តែង	38
រូប 2. 24 Node ជាក់ស្តែង	38
រូប 2. 25 Web-App Monitoring Dashboard Header	39
រូប 2. 26 Web-App Monitoring Dashboard	39
រូប 2. 27 ក្រាបប្រចាំសប្តាហ៍	40
រូប 2. 28 AI Prediction on Water Condition	40

វិទ្យាស្ថានជាតិពហុបច្ចេកទេសកម្ពុជា	មហាវិទ្យាល័យអេឡិចត្រូនិក
រូប 2. 29 សាស្ត្រាចារ្យពិគ្រោះ និង ដឹកនាំ	41
រូប 2. 30 អំពីពួកយើង	41

បញ្ជីតារាខ

តារាង 2. 1 កាលវិភាគក្នុងការសិក្សាគម្រោង	30
តារាង 2. 2 គុណភាពទឹកស្ថានីយ ទី១	
តារាង 2. 3 គុណភាពទឹកស្ថានីយ ទី២	34
តារាង 2_4 ចំណាម	43

ម្រទត្តនៃការកែសម្រួលឯកសារ

កែសម្រួលលើកទីមួយ, កាលបរិច្ឆេទ, អ្នកកែសម្រួល	ខ្លឹមសារនៃការកែសម្រួល
ព្រៀង	«»
	«»
	«»
	«»
	«»

១.សេចគ្គស្នើម

ឯកសារនេះរួមមានសេចក្ដីសង្ខេបនៃមាតិកាឯកសារ គោលបំណងនៃការសរសេរ ឯកសារយោងដែលបាន ប្រើ និងបញ្ជីអក្សរកាត់ដែលមានប្រើក្នុងការសរសេរ។

១.១ ខេតាសម្ព័ន្ធមេសឯកសារ

ឯកសារនេះមានជំពូកផ្សេងៗជាច្រើនដូចខាងក្រោម៖

ជំពូកសេចក្តីផ្តើម៖

ការពិពណ៌នាសង្ខេបអំពីគោលសំខាន់របស់ឯកសារ គោលបំណងនៃការសរសេរ, ផល ប្រយោជន៍នៃឯកសារ ឯកសារយោង និងបញ្ជីអក្សរកាត់។

ជំពូកសំណើរនៃការសិក្សាគម្រោង៖

ជំពូកនេះមានគំនិតនៃការរចនាគំរោងបឋម, ការធ្វើផែនការបច្ចេកវិទ្យា, ការធ្វើផែនការជាមួយ កិច្ចសហប្រតិបត្តិការ និង គំនិតនៃការច្នៃប្រឌិតផ្សេងៗ ។ ជំពូកនេះគឺឈានចូលទៅក្នុងការធ្វើផែនការ និងកិច្ចសហប្រតិបត្តិការជាមួយភាគីពាក់ព័ន្ធបច្ចេកទេសក៏ដូចជាលទ្ធភាពនៃការអភិវឌ្ឍន៍កម្មវិធីនឹងត្រូវ បានធ្វើឡើង។

ឧបសម្ពន្ធ៖

មានបញ្ជីឧបករណ៍ សម្ភារៈដែលត្រូវប្រើ និងប្រវត្តិរូបសង្ខេបអ្នកធ្វើគំរោង។

១.២ គោលមំណទ

គោលបំណង និងអត្ថប្រយោជន៍នៃឯកសារនេះគឺផ្តល់នូវការពិពណ៌នាសង្ខេបអំពីលក្ខណៈសម្បត្តិទូទៅ របស់ប្រព័ន្ធត្រួតពិនិត្យគុណភាពទឹក ជាមួយការបញ្ជូនទិន្នន័យតាមរយៈ GSM/LoRa និងប្រើប្រាស់ ML ក្នុងកាព្យាករណ៍ទិន្នន័យ បន្ទាប់មកបង្ហាញទិន្នន័យទាំងនោះក្នុង Web-App។

១.៣ ឯកគរមេនខ

- [1] J. M. a. N. K. Reddy, "Water Monitoring System Based on GSM," *International Advanced Research Journal in Science, Engineering and Technology*, vol. 3, no. 7, pp. 1-4, 2016.
- [2] N. R. a. I. A. A. a. N. S. M. Jaafar, "Home Underground Pipeline Leakage Alert System Based on Water Pressure," 2018 IEEE Conference on Wireless Sensors (ICWiSe), pp. 12-16, 2018.
- [3] J. C. a. R. B. Lohani, "IOT Based Data Acquisition System for Real-Time Pressure Measurement of Sea Water," pp. 417-420, 2020.
- [4] S. K. a. V. D. a. B. K. R. a. L. V. a. K. a. V. Jha, "Intelligent Water Level Monitoring System Using IOT," pp. 1-5, 2020.
- [4] M. A. Alam and M. Zeyad, "GSM Based Smart Electric Energy Meter Billing System," IEEE, 2019.
- [5] R. Teymourzadeh, S. A. Ahmed, K. W. Chan and M. V. Hoong, "Smart GSM based Home Automation System," IEEE, 2018.
- [6] S. Maqbool and N. Chandra, "Real Time Wireless Monitoring and Control of Water Systems Using Zigbee," IEEE, 2013.
- [7] S. Kulkarni, V. D. Raikar, B. K. Rahul, L. V. Rakshitha, K. Sharanya and V. Jha, "Intelligent Water Level Monitoring System Using IoT," IEEE, 2020.
- [8] S. Rahman, S. K. Dey, B. K. Bhawmick and N. K. Das, "Design and implementation of real time transformer health monitoring system using GSM technology," IEEE, 2017.
- [9] N. Rosli, I. A. Aziz and N. S. M. Jaafar, "Home Underground Pipeline Leakage Alert System Based on Water Pressure," IEEE, 2018.
- [10] M. H. Tahir, S. Muneeb, M. S. Jan and M. Hassan, "Smart Energy Meter with Advanced Features and Billing System," IEC, 2019.
- [11] W. Ali, H. Farooq, A. Khalid, A. Raza and N. Tanveer, "Single phase GSM based wireless energy metering with user notification system," IEEE, 2017.
- [12] P. K. N. S. a. U. M. N. Sharma, "Digital energy monitor: design, simulations and prototype," RedesrchGet, 2017.
- [13] H. A. Kusuma, R. Anjasmara, T. Suhendra, H. Yunianto and S. Nugraha, "An IoT Based Coastal Weather and Air Quality Monitoring Using," IOP, 2019.
- [14] H. A. Kusuma, R. Purbakawaca, I. R. Pamungkas, L. N. Fikry and S. S. Maulizar, "Design and Implementation of IoT-Based Water Pipe," ResarchGet, 2017.
- [15] S. Siregar and D. Soegiarto, "Solar panel and battery street light monitoring system using GSM wireless communication system," IEEE, 2014.

- [16] A. Rashdi, R. Malik, S. Rashid, A. Ajmal and S. Sadiq, "Remote energy monitoring, profiling and control through GSM network," IEEE, 2012.
- [17] M. A. Alam, Smart Cities and Buildings: GSM Based Smart, p. 4, 2019.

១.៤ មញ្ជីអគ្សអាត់

អក្សរកាត់ អត្តន័យ

ML Machine Learning

DC Direct Current

GSM Global System for Mobile Communication

IoT Internet of Thing

AIoT Artificial Internet of Things

OLED Organic Light-Emitting diode

LED Light-Emitting diode

LoRa Long Range Wide Area

SD Card Secure Digital Card

RTC Real Time Clock

GPRS General Packet Radio Service

Wi-Fi Wireless Fidelity

MPPT Maximum Power Point Tracking

DB Database

Web-App Website Application

TDS Total Dissolved Solids

pH Potential Hydrogen

TEMP Temperature

TUB Turbidity

UX User Experiences

UI User Interfaces

២.សំឈើរនៃភារសិក្សាគម្រេច

២.១ ಕುಣಕ್ಷಣಕ್ಷಣ

ប្រទេសកម្ពុជាជាប្រទេសកំពុងអភិវឌ្ឍទៅលើគ្រប់វិស័យ រាល់វិស័យទាំងនោះក៏ដូចជាការរស់នៅប្រចាំ ថ្ងៃរបស់ប្រជាពលរដ្ឋទឹកសាបគឺជាតម្រូវការមួយដ៏ចាំបាច់។នៅក្នុងស្ថានភាពបច្ចុប្បន្ននេះការបម្រែបម្រួល របស់អាកាសធាតុគឺជាបញ្ហាធំមួយសម្រាប់មនុស្សជាតិ និងសត្វជុំវិញពិភពលោក។ការបម្រែបម្រួលនេះធ្វើ ឲ្យមានការកើនឡើងនូវកម្ដៅបណ្ដាលឲ្យទឹកកកនៅតំបន់ប៉ូលបានរលាយចូលទៅសមុទ្រហើយតំបន់ផ្សេង ទៀតក៏ត្រូវបានកម្ដៅធ្វើឲ្យទឹកទន្លេ, បឹងនិង ទឹកស្ទឹងមានការរីងសូត រហូតដល់មានការបង្ករឲ្យមានមេរោគ និងទឹកចាប់ផ្ដើមមានភាពកក្វក់ក៏ដូចជាកកករផងដែរ។ កត្តាទាំងនេះហើយទើបពួកយើងបានសិក្សា ស្រាវជ្រាវ និង រិះរកវិធីសាស្ត្រក្នុងការត្រួតពិនិត្យគុណភាពទឹក ដែលមានភាពងាយស្រួលនិងអាចត្រួតពិនិត្យ បាននគ្រប់ពេលវេលាផងដែរ។បច្ចេកវិទ្យា AIoTs(Artificial Internet of Things) ត្រូវបានយើងយកមក ប្រើប្រាស់នៅក្នុងគម្រោងមួយនេះ។ ការប្រើប្រាស់ បច្ចេកវិទ្យា Cellular Network GPRS បានផ្តល់អត្ថ ប្រយោជយ៉ាងសំខាន់ក្នុងការភ្ជាប់ទិន្នន័យទាំងនោះទៅកាន់អ្នកប្រើប្រាស់ដើម្បីឲ្យអ្នកប្រើប្រាស់អាចត្រួតពិនិ ត្យមើលនូវគុណភាពទឹករបស់ខ្លួនគ្រប់ពេលវេលានិងគ្រប់ទីកន្លែង។ LoRa ឬ Long Range គឺជាអ្នកដឹកនាំ ទិន្នន័យទាំងមូលមកកាន់ Gateway ដើម្បីធ្វើការផ្សាយចេញ។ ដោយចំងាយពី Gateway ទៅកាន់ LoRa Node អាចមានរយះចំងាយ ពី 1km ទៅ 3km។ មិនតែប៉ុណ្ណោះក្នុងគម្រោងមួយនេះ ពួកយើងក៏មានការ ព្យាករណ៏នូវ ស្ថានភាព ក៏ដូចជាអនាគត អំពី ទន្លេ និង បឹងផងដែរ។ ហើយធ្វើការជូនដំណឹងភ្លាមៗទៅកាន់ អ្នកប្រើប្រាស់តាមរយៈ SMS។ លើសពីនេះទៅទៀតនៅក្នុងការប្រើប្រាស់ LoRa Node Sensor ដោយអ្នក ប្រើប្រាស់មិនចាំបាច់ទៅដល់ទីតាំងដើម្បីសាកថ្មនោះទេ។ គឺគ្រាន់តែត្រួតពិនិត្យពីចម្ងាយបាន ដោយសារតែ ពួកយើងបានប្រើប្រាស់នូវបច្ចេកវិទ្យា Standalone Solar MPPT Charger។

ដោយមើលឃើញពីបញ្ហាដូចដែលបានលើកឡើងពីខាងលើ ស្របពេលជាមួយនឹងការរីកចម្រើននៃប ច្ចេកវិទ្យាទើបក្រុមយើងខ្ញុំសម្រេចចិត្តលើកយកនូវគម្រោងមួយដែលមានឈ្មោះថា "ការរចនានិងអនុវត្ត ប្រព័ន្ធ IoT ថាមពលទាបវាសគុណភាពទឹកដោយផ្អែកលើ LoRa និងបណ្តាញ Cellular ជាមួយ Machine Learning។

២.១.១ ម្រទត្តនៃគម្រេច

ការវាស់គុណភាពទឹកត្រូវបានវិវត្តដ៏សំខាន់មួយនៅទូទាំងពិភពលោក។ ដំបូងវាចាប់ផ្តើមពិនិត្យមើល មូលដ្ឋាននៃ សារធាតុលក្ខណះ ដូចជា ពណ៍, ភាពច្បាស់លាស់ និង ក្លិនរបស់វា។ អរិយធម៍បុរាណ ដូចជា ជនជាតិ មេសូប៉ូតាម៉ា និងជនជាតិ អេស៊ីបបុរាណ ត្រូវបានគេដឹងថា ពួកគេជាអ្នកវាយតម្លៃទៅតាម ប៉ាវ៉ា មែត្រទាំងនេះ។

កំឡុងពេល បដិវត្តន៍ឧស្សាហកម្ម ដោយសារសកម្មភាពមនុស្សកាន់កើនឡើង, ការបំពុលទឹកកាន់តែ រីករាលដាលកាន់តែខ្លាំងឡើងដូចគ្នា, ជាមួយគ្នានេះ តម្រូវការនៃប្រព័ន្ធវាស់គុណភាពទឹកក៏ចាប់ផ្ដើម បង្កើតឡើង។ នៅចុង សតវត្សរ៍ទី១៩ និងដើមសតវត្សរ៍ទី២០ ការធ្វើតេស្តសារធាតុគីមី ក៏ចាប់ផ្ដើមមាន ការអភិវឌ្ឍ សម្រាប់រកនូវលោហៈ និង សារធាតុបំពុល។ នៅក្នុងពាក់កណ្តាលសតវត្សរ៍ទី២០ការបង្កើត នូវស្តង់ដារួមមួយក្នុងការត្រួតពិនិត្យគុណភាពទឹក។ដោយសារមើលឃើញថា គ្រោះថ្នាក់ឧស្សាហកម្ម និង ការព្រួយបារម្ភកើនឡើងអំពីការបំពុលទឹក ។ រដ្ឋាភិបាលបានចាប់ផ្ដើមបង្កើតនូវ ភ្ជាក់ងារគ្រប់គ្រង់ ដែល មានភារកិច្ច ត្រួតពិនិត្យ និងការពារគុណភាពទឹក។ ក្នុង រយៈពេលនេះ ក៏បានឃើញថាពីការអភិវឌ្ឍបច្ចេក វិទ្យា បច្ចេកទេសវិភាគដ៏ស្មុគស្មាញជាងមុន ដូចជាការបំពុលទឹកជាដើម។ ជាមួយគ្នានេះដែរ ការស្វែង យល់អំពីបរិស្ថានកាន់តែច្រើនឡើងៗ ហើយនៅចុងសតវត្សរ៍ទី២០ មានការទទួលស្គាល់កាន់តែច្រើន អំពីសារសំខាន់នៃតម្លៃជីវសាស្ត្រក្នុងការវាយតម្លៃគុណភាពទឹក។

នៅក្នុងប៉ុន្មានទសវត្សន៍ចុងក្រោយការរីកចម្រើនផ្នែកបច្ចេកវិទ្យារួមមានបច្ចេកវិទ្យាបញ្ហារពីចម្ងាយ និងការត្រួតពិនិត្យជាក់ស្ដែង បានធ្វើឲ្យការត្រួតពិនិត្យគុណភាពទឹកកាន់តែមានភាពត្រឹមត្រូវទាន់ពេល វេលា និងល្អជាងមុន។ ដែលអាចសម្របសម្រួលការគ្រប់គ្រង់ និងការការពារ ធនធានទឹកកា់តែប្រសើរ ឡើង និង កាត់បន្ថយបម្រែបម្រួលអាកាសធាតុ និងសារធាតុពុលដែលកំពុងកើតឡើង។

ប្រព័ន្ធត្រួតពិនិត្យគុណភាពទឹកអាចធ្វើការវាស់គុណភាពទឹករកសារធាតុជាតិពុលក្នុងទឹកព្រមទាំង
មានសមត្ថភាពក្នុងការបញ្ជូនទិន្នន័យទៅកាន់អ្នកត្រួតពិនិត្យដើម្បីមានភាពងាយស្រួលក្នុងការគ្រប់គ្រង
សមស្របទៅនឹងតម្រូវការរបស់អ្នកប្រើប្រាស់លើសពីនេះទៅទៀតជួយបញ្ជៀសនៅរាល់បញ្ហាមួយចំនួន
ដែលអាចនឹងកើតឡើងដូចជាអាចបញ្ជូនជាព័ត៌មានទៅកាន់អ្នកត្រួតពិនិត្យតាមរយៈការបញ្ជូនទិន្នន័យ
ឥតខ្សែ LoRa, Wifi, GPRS ។ ជាក់ស្តែង Main Controller system វាអាចប្រើប្រាស់សម្រាប់ការត្រួត
ពិនិត្យពីចម្ងាយនិងគ្រប់គ្រងលើឧបករណ៍បានតាមរយៈកុំព្យូទ័រ និងទូរស័ព្ទ។ លើសពីនេះទៅទៀតក៏
មានរួមបញ្ចូលការប្រើប្រាស់តាមរយៈ IOT Network សម្រាប់ការត្រួតពិនិត្យគុណភាពទឹកដោយប្រើ
ប្រាស់បច្ចេកវិទ្យាឥតខ្សែ LoRa, Wi-Fi, GPRS សម្រាប់ការបញ្ជូន និងចែករំលែកនូវទិន្នន័យព្រមទាំង
ធ្វើការបង្ហាញទៅលើ Cloud Server។ មិនតែប៉ុណ្ណោះប្រព័ន្ធត្រួតពិនិត្យទឹកអាចធ្វើការព្យាករណ៏អំពី
បញ្ហាដែលកើតមានក្នុងរយះពេលណាមួយ។ដូចនេះអ្នកប្រើប្រាស់អាចដឹងមុនចំពោះបញ្ហាដែលកើត
មានឡើងហើយឲងាយស្រួលក្នុងការរកដំណោះស្រាយក្នុងការបញ្ចៀសនូវបញ្ហាទាំងនេះ។

ದ್ವಿಲ್ಲ ಚಾಣ್ಯವು

គោលដៅក្នុងការបង្កើតគម្រោងនេះឡើងរួមមាន៖

- បង្កើតប្រព័ន្ធត្រួតពិនិត្យគុណភាពទឹក ដោយប្រើប្រាស់ LoRa សម្រាប់ការបញ្ជូនទិន្នន័យ
- បង្កើត LoRa ៣ ស្ថានីយ ដែលមានទីតាំងផ្សេងគ្នា
- ទិន្នន័យដែលទទួលបានពីការវាស់ស្ទង់នឹងត្រូវបញ្ជូនពីស្ថានីយមួយទៅកាន់ស្ថានីយមួយ ទៀតតាមរយៈ LoRa
- បង្កើតស្ថានីយគោលដែលអាចបញ្ជូនទិន្នន័យទៅកាន់ទូរស័ព្ទដៃ និងកុំព្យូទ័រ
- ធ្វើការព្យាករណ៍ទិន្នន័យរបស់គុណភាពទឹក

២.១.៤ គុណសម្បត្ត

សារៈសំខាន់ចំពោះសង្គម

ក្រុមយើងខ្ញុំសង្ឃឹមថាគម្រោងមួយនេះនឹងផ្តល់អត្ថប្រយោជន៍ដល់សង្គមដូចជា៖

- ការប្រើប្រាស់ប្រព័ន្ធត្រួតពិនិត្យគុណភាពទឹក ដែលបញ្ជូនទិន្នន័យតាមរយៈ LoRa អាចត្រួត ពិនិត្យទិន្នន័យបានរហ័ស និងងាយស្រួល ព្រមទាំងអាចរក្សាទិន្នន័យបាន
- ចូលរួមចំណែកក្នុងការអភិវឌ្ឍន៍បច្ចេកវិទ្យា
- រួមចំណែកក្នុងការផ្តល់ចំណេះដឹងបន្ថែមដល់អ្នកសិក្សាស្រាវជ្រាវលើផ្នែកប្រព័ន្ធត្រួតពិនិ ត្យទឹក
- រក្សាទុកទិន្នន័យសម្រាប់ឲ្យអ្នកស្រាវជ្រាវជំនាន់ក្រោយៗយកទៅប្រើប្រាស់
- បង្កើតនូវប្រព័ន្ធទទួល និង ផ្តល់ដំណឹង

សារៈសំខាន់ចំពោះអ្នកសិក្សាស្រាវជ្រាវ៖

នៅក្នុងការធ្វើការសិក្សាស្រាវជ្រាវទៅនឹងគម្រោងមួយនេះបានផ្តល់សារៈសំខាន់ដល់ក្រុមយើងខ្ញុំ និងអ្នកសិក្សាស្រាវជ្រាវរួមមាន៖

- អាចធ្វើការសិក្សាស្វែងយល់ និងទទួលបានបទពិសោធន៍អំពីការត្រួតពិនិត្យគុណភាពទឹក
- ធ្វើការស្វែងយល់ក្នុងការប្រើប្រាស់ឧបករណ៍សម្រាប់បញ្ជូនទិន្នន័យ LoRa និង GSM (GPRS) បូករួមជាមួយការប្រើប្រាស់នូវប្រភេទ Sensor
- ទទួលបានបទពិសោធន៍ក្នុងការរចនា, បង្កើត និងដំឡើងផ្នែក Hardware
- ទទួលបានបទពិសោធន៍ក្នុងការបង្កើតនូវ Web-App IoT

២.១.៥ ពិពស៌នាធូនៅ

ក្នុងការបង្កើតនូវប្រព័ន្ធត្រួតពិនិត្យទឹក ជាមួយការបញ្ជូនទិន្នន័យតាមរយៈ LoRa ក្នុងគោលដៅ ជាជំនួយសម្រាប់ការបញ្ជូនទិន្នន័យដោយឥតខ្សែដែលជាស្នូលនៃប្រព័ន្ធត្រួតពិនិត្យគុណភាពទឹកនិង អាចយកទៅប្រើប្រាស់បានជាមួយប្រព័ន្ធធារាសាស្ត្រដែលមានស្រាប់សម្រាប់ជំនួយនិងផ្តល់ភាព ងាយស្រួលក្នុងការពិនិត្យក៏ដូចជាស្រង់នូវទិន្នន័យតាមរយៈទូរស័ព្ទដៃ និង កុំព្យូទ័រ។ មិនតែប៉ុណ្ណោះ ផ្តល់ការវិភាគទិន្នន័យឲ្យកាន់តែមានភាពរហ័ស។

ក. រចនាសម្ពន្ធនៃគ្រឿងបង្គំ

JU 2. 1 Node Device Hardware Block Diagram

§\$\mathbf{y}\$ 2. 2 Gateway Device Hardware Block Diagram

ការពិពណ៌នាអំពី Hardware Block Diagram

• pH Sensor: ជា Sensor ដែលមាននាទីក្នុងការផ្តល់នូវទិន្នន័យរបស់ កំហាបនៃទឹក

JU 2. 3 pH Sensor

Signal Conversion Board (Transmitter)	
Supply Voltage	3.3V~5.5V
Output Voltage	0V~3.0V
Probe Connector	BNC
Signal Connector	PH2.0-3P
Measurement Accuracy	±0.1@25°C
Dimension	42mm*32mm/1.66*1.26in

រូប 2. 4 pH Probe

PH sensor Prode	
Prode Type	Laboratory Gade
Detection Range	0~14
Temperature Range	5~60°C
Zero Point	7±0.5

Response Time	<2min
Internal Resistance	<250MΩ
Probe Life	>0.5 year (depending on frequency of use)
Cable Length	100cm

• TDS Sensor: ជា Sensor ដែលមានតួរនាទីក្នុងចាប់យកសារធាតុរ៉ែ, សារធាតុលោហះ និង អំបិលក្នុងទឹក

រូប 2. 5 TDS Sensor

Signal Transmitter Board	
Input Voltage	3.3 ~ 5.5V
Output Voltage	0 ~ 2.3V
Working Current	3 ~ 6mA
TDS Measurement Range	0 ~ 1000ppm
TDS Measurement Accuracy	± 10% F.S. (25 °C)
Module Size	
Module Interface	PH2.0-3P
Electrode Interface	XH2.54-2P

TDS sensor Waterproof	
Number of Needle 2	
Total Length	83cm
Connection Interface XH2.54-2P	

Color	Black
Other	Waterproof Probe
Connection Interface	XH2.54-2P
Color	Black
Other	Waterproof Probe

• Turbidity Sensor: ជា Sensor ដែលមាននាទីក្នុងការវាស់នូវភាពល្អក់នៃទឹក

JU 2. 6 Turbidity Sensor

Turbidity Sensor Meter	
Low Power	Consumption
Small size	2.0cm ×4.0cm Grove module
Only 3 pins needed	Save I/O resources
Operating Voltage	3.3V/5V DC
Switch	1 A-D toggle switch
Dimensions	20x40 mm
Output Interface	Analog/Digital

• Temperature Sensor: ជា Sensor ដែលមាននាទីក្នុងការវាស់នូវសីតុណ្ហភាពរបស់ទឹក

JU 2. 7 Temperature Sensor

DS18B20 Waterproof Temperature Sensor	
Operating voltage	3.0~5.5V
Usable temperature range	-55to125°C (-67°F to +257 °F)
±0.5 °C Accuracy from	-10°c to +85 °c
Cable diameter	4mm (0.16")
Length	90cm (35.43")

• GSM Module SIM800C: មាននាទីក្នុងការភ្ជាប់សេវានិងផ្តល់ Internet GPRS ទៅកាន់ EPS32។

JU 2. 8 SIM800C Module

Feature	Implementation	
Power Supply	3.4V ~4.4V	
Power saving	Typical power consumption in sleep mode is 0.88mA (BS-PA-MFRMS=9)	
Frequency bands	 Quad-band: GSM 850, EGSM 900, DCS 1800, PCS 1900. SIM800C can search the 4 frequency bands automatically. The frequency bands can also be set by AT command "AT+CBAND". For details, 	
	• Compliant to GSM Phase 2/2+	
Transmitting	 Class 4 (2W) at GSM 850 and EGSM 900 	
power	 Class 1 (1W) at DCS 1800 and PCS 1900 	
GPRS	GPRS multi-slot class 12 (default)	
connectivity	• GPRS multi-slot class 1~12 (option)	
Temperature	• Normal operation: -40°C ~ +85°C	
range	• Storage temperature -45°C ~ +90°C	
Data GPRS	GPRS data downlink transfer: max. 85.6 kbps	
	GPRS data uplink transfer: max. 85.6 kbps	
	• Coding scheme: CS-1, CS-2, CS-3 and CS-4	
	PAP protocol for PPP connect	
	Integrate the TCP/IP protocol.	
	Support Packet Broadcast Control Channel (PBCCH)	

លេខឯកសារ: PRO-01 ការកែសម្រួលលើកទី:01 កាលបរិច្ឆេទ 30/04/2024 ទំព័រ **21** of **46**

HIGGD	TY 10 1 (YIGGD)	
USSD	Unstructured Supplementary Services Data (USSD) support	
SMS	MT, MO, CB, Text and PDU mode	
	SMS storage: SIM card	
SIM interface	Support SIM card: 1.8V, 3V	
External antenna	Antenna pad	
Audio features	Speech codec modes:	
	• Half Rate (ETS 06.20)	
	• Full Rate (ETS 06.10)	
	 Enhanced Full Rate (ETS 06.50 / 06.60 / 06.80) 	
	Adaptive multi rate (AMR)	
	Echo Cancellation	
	Noise Suppression	
Serial port and	Serial port:	
USB port	Default one Full modem serial port	
	Can be used for AT commands or data stream	
	Support RTS/CTS hardware handshake and software ON/OFF flow control	
	Multiplex ability according to GSM 07.10 Multiplexer Protocol	
	Autobauding supports baud rate from 1200 bps to 115200bps	
	upgrading firmware	
	USB port:	
	USB_DN and USB_DP	
	Can be used for debugging and upgrading firmware	
Phonebook management	Support phonebook types: SM, FD, LD, RC, ON, MC	
SIM application toolkit	GSM 11.14 Release 99	
Physical	Size:17.6*15.7*2.3mm	
characteristics	Weight:1.3g	
Firmware upgrade	Full modern serial port or USB port (recommend to use USB port)	

LoRa Module: ប្រើសម្រាប់ការបញ្ជូនទិន្នន័យឥតខ្សែក្នុងរយៈចម្ងាយឆ្ងាយ

រូប 2. 9 LoRa RFM96

LORA 868MHZ SX1276 RF TRANSRECEIVER MODULE RFM96W	
Communication: SPI	
168 dB maximum link budget	
+20 dBm - 100 mW constant RF output vs. V supply	
+14 dBm high efficiency PA	
Programmable bit rate up to 300 kbps	
High sensitivity: down to -148 dBm	
Bullet-proof front end: IIP3 = -12.5 dBm	
Excellent blocking immunity	
Low RX current of 10.3 mA, 200 nA register retention	
Fully integrated synthesizer with a resolution of 61 Hz	
FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation	
Built-in bit synchronizer for clock recovery	
With sheild to eliminate noise	
Preamble detection	
127 dB Dynamic Range RSSI	

Automatic RF Sense and CAD with ultra-fast AFC	
Packet engine up to 256 bytes with CRC	
Modue Size: 16*16mm	

ESP32: មានតួរនាទីជាខួរក្បាល និងជាអ្នកភ្ជាប់បណ្តាញទាំងអស់ចូលទៅកាន់ Server របស់ Gateway

JU 2. 10 ESP32 Dev Kit 1

ESP 32 Devkit v1	
Microcontroller	Ten silica 32-bit Single-/Dual-core
Operating Voltage	3.3V
Input Voltage	7-12V
Digital I/O Pins (DIO)	25 Pin
Analog Input Pins (ADC)	6 Pin
Analog Outputs Pins (DAC)	2 Pin
UARTs	3
SPIs	2
I2Cs	3
Flash Memory	4 MB
SRAM	520 KB
Clock Speed	240 MHz

• Arduino NANO: ជាខួរក្បាលនៃប្រព័ន្ធស្ថានីយ Node ដែលមាននាទីទទួលទិន្នន័យពី Sensors ហើយបញ្ជូនទិន្នន័យទាំងអស់នោះទៅកាន់ឧបករណ៍ទំនាក់ទំនងឥតខ្សែ

JU 2. 11 Arduino NANO

Pinout Configuration	Technical Specifications
Power: Vin (6-12V input), 3.3V (50mA max), 5V, and GND.	Microcontroller: ATmega328P (8-bit AVR family).
Analog Pins (A0 $-$ A7): For measuring 0-5V analog voltage.	Operating Voltage: 5V.
Digital Pins (D0 – D13): Serve as input or output; operate at 0V or 5V.	Recommended Input Voltage for Vin pin: 7-12V.
Serial (Rx, Tx): For TTL serial data transmission and reception.	Analog Input Pins: 6 (A0 – A5).
External Interrupts (2, 3): Trigger interrupts. PWM (3, 5, 6, 9, 11): Provide 8-bit PWM output.	Digital I/O Pins: 14 (6 provide PWM output).
	DC Current on I/O Pins: 40 mA.
SPI (10, 11, 12, 13): For SPI communication.	DC Current on 3.3V Pin: 50 mA.
Inbuilt LED (13): Controls an inbuilt LED.	Flash Memory: 32 KB (2 KB for Bootloader).
IIC (A4, A5): For TWI communication.	SRAM: 2 KB.
AREF: Reference voltage for input voltage.	Frequency (Clock Speed): 16 MHz.
Communication: IIC, SI	PI, USART.

• Real Time Clock Module: ប្រើសម្រាប់កំណត់ពេលវេលាក្នុងការបញ្ជូនទិន្នន័យ

§\$\mathcal{U}\$ 2. 12 Real Time Clock Module

Clock chip: DS3231
Memory chip: AT24C32 (32K)
Operating voltage: 3.3 to 5.5 VDC
Communication: I ² C bus, up to 400 kHz
Operating Temperature Ranges: Commercial (0°C to +70°C) and Industrial (-40°C to +85°C)
Accuracy from 0°C to +40°C: ±2ppm
Accuracy from -40°C to +85°C: ±3.5ppm
Dimensions: 1.5 x 0.87 x 0.55 in (38 x 22 x 14 mm)

• SD-Card Module: ច្រើប្រាស់សម្រាប់រក្សាទុកទិន្នន័យដែលទទួលបានមកពី ស្ថានីយ Node

JU 2. 13 SD Card Module

Micro SD Card					
Supports	Micro SD Card, Micro SDHC (high-speed card)				
Interface level	5V or 3.3V				
Power supply	4.5V ~ 5.5V, 3.3V voltage regulator circuit board				
Communication interface	Standard SPI				
Control Interface	A total of six pins, GND, VCC, MISO, MOSI, SCK, CS				
3.3V regulator circuit	LDO regulator output 3.3V				
Positioning holes	4 x M2 screw holes for easy positioning. Hole diameter is 2.2mm				
Level conversion circuit					

• OLED Display: ប្រើសម្រាប់បញ្ហាញទិន្នន័យដែលទទួលបានមកពីស្ថានីយ Node នីមួយៗ ជាលក្ខណៈ Real - Time

ft 2. 14 OLED Display

Display Technology	OLED (Organic LED)
MCU Interface	I2C / SPI
Screen Size	0.96 Inch Across
Resolution	128×64 pixels
Operating Voltage	3.3V – 5V
Operating Current	20mA max
Viewing Angle	160°
Characters Per Row	21
Number of Character Rows	7

ខ. រចនាសម្ព័ន្ធការបែងចែកថាមពល

រូប 2. 15 Gateway Block Diagram សៀគ្គីបែកចែកប្រភពតង់ស្យង

រូប 2. 16 Node Block Diagram សៀគ្គីបែកចែកតង់ស្សង

ការពិពណ៌នាអំពីសៀគ្វីបែងចែកតង់ស្យងប្រភព

- Power Supply 12V: ជាអ្នកផ្តល់ប្រភពថាមពលដើម្បីផ្គត់ផ្គង់ទៅដល់សៀគ្វីទាំងមូលរបស់ Gateway
- Voltage Regulator: មាននាទីក្នុងការទម្លាក់តុងស្យុង ពី 12V ទៅជា 5V ដើម្បីឲ្យសមស្រប និងអាចប្រើប្រាស់នៅក្នុង សៀគ្លី ESP32 បាន
- ESP32 5V Pin: មាននាទីក្នុងការផ្តល់ថាមពលទៅកាន់ SD Card, RTC, OLED, GSM Module
 - **ESP32 3.3V Pin**: មាននាទីក្នុងការផ្តល់ថាមពលទៅកាន់ LoRa RFM95
 - MPPT Solar Charger: មាននាទីក្នុងការសាកថាមពលទៅកាន់ថ្ម
 - Battery 3.7V: មាននាទីក្នុងការផ្គត់ផ្គង់ទៅដល់សៀគ្វីទាំងមូលរបស់ Node
- Boost Converter: មាននាទីក្នុងការតំឡើងតម្លៃតុងស្យុងដើម្បីយកទៅផ្គត់ផ្គង់ដល់ Arduino NANO
 - Arduino NANO 5V: មាននាទីក្នុងការផ្គត់ផ្គង់ថាមពលទៅកាន់ Sensor ទាំង 4
 - Arduino NANO 3.3V: មាននាទីក្នុងការផ្គត់ផ្គង់ថាមពលទៅកាន់ LoRa RFM96

២.២ នស្សនានាទមេសំគម្រោទ

គម្រោងដែលបានស្នើរឡើងក្នុងការផលិតមានមូលដ្ឋាន ការធ្វើផែនការដូចខាងក្រោម៖

២.២.១ ដែនការមេស់កម្រោច

តារាង 2. 1 កាលវិភាគក្នុងការសិក្សាគម្រោង

Project Plan	Owner	Day	Start	End	January	February	March	April	June	July	Aug	Sep
បង្កើតប្រព័ន្ធប្រព័ន្ធវាស់គុណភាពទឹកនិង វិភាគគុណភាពទឹក	គ្រប់គ្នា	237	1.Jan	25.Aug								
ធ្វើការប្រមូលសំណុំទិន្នន័យ	គ្រប់គ្នា	14	26.Feb	12.Mar								
ការសរសេរឯកសារស្នើសុំ	រីណា, ពណ្ណរាយ	23	12.Mar	20.Apr								
បញ្ជាទិញសម្ភារៈ ឧបករណ៍	រីណា	15	2.Apr	17.Apr								
ការធ្វើតេស្តលើទៅលើឧបករណ៍	គ្រប់គ្នា	2	1 Jan	20.Apr								
ធ្វើតេស្តការវិភាគទិន្នន័យ	ពណ្ណរាយ	59	1 Jan	29 Feb								
Programming	ពណ្ណរាយ	4	21.Apr	25.Apr								
បង្កើត Web-App Server	ពណ្ណរាយ , វីណា	26	1 Apr	25 Apr								
ប្រមូលទិន្នន័យរបស់ ស្ថានីយ Node ទាំង៣	គ្រប់គ្នា	204	10 Mar	30 Sep								
ការឌីស្សាញសៀគ្វី	ពណ្ណរាយ , ឆៃលីន	15	15 Feb	1 Mar								
សរសេរសៀវភៅ	គ្រប់គ្នា	153	30.Apr	30 Sep								
ការតម្លើង និងធ្វើតេស្ត	គ្រប់គ្នា	40	4.Jun	14.Jul								

ឯកសារ និងសម្ភារៈតម្រូវការសំរាប់ការសិក្សា៖

• ឯកសារតម្រូវឲមាននៅក្នុងដំណើរការផលិត របស់ផលិតផល និងការសិក្សាគម្រោងរួមមានឯក សារ៖

លេខឯកសារ: PRO-01 ការកែសម្រួលលើកទី:01 កាលបរិច្ឆេទ 30/04/2024 ទំព័រ **30** of **46**

ការសិក្សាស្រាវជ្រាវពីមុនអំពីប្រព័ន្ធត្រួតពិនិត្យគុណភាពទឹក តាមរយៈបច្ចេកវិទ្យាឥត

ខ្សែ

- ការប្រើប្រាស់ Sensor ក្នុងការត្រួតពិនិត្យគុណភាពទឹក
- ការប្រើប្រាស់ LoRa ស់ម្រាប់បញ្ជូនទិន្នន័យ
- ការប្រើប្រាស់គ្រឿងបង្គំដែលប្រើក្នុងគម្រោង
- ការធ្វើផែនការកែសម្រួលឯកសារ និងប្រព័ន្ធឲមានលក្ខណៈល្អប្រសើរ

• គ្រឿងបង្គំក្នុងគម្រោង

ប្រព័ន្ធវាស់សម្ពាធ និងលំហូរទឹកជាមួយការបញ្ចូនទិន្នន័យតាមរយៈ GSM/LoRa ត្រូវ បានបង្កើតឡើងដោយមានការប្រើប្រាស់ជាមួយគ្រឿងបង្គំរួមមាន៖

- pH Sensor
- Turbidity Sensor
- Temperature Sensor
- Total Dissolved Solids Sensor
- MPPT Solar Charger
- Boost Converter
- LoRa RFM96
- Real Time Clock
- SD Card
- OLED
- GSM Module SIM800C

២.២.២ ផែនការតាមការទទត្តរបស់បច្ចេកទន្យា

ចំពោះការសិក្សាស្រាវជ្រាវលើការត្រួតពិនិត្យគុណភាពទឹក ជាមួយការបញ្ចូនទិន្នន័យតាមរយៈប ច្ចេកវិទ្យាឥតខ្សែត្រូវបានដំណើរការដោយ Sensor ធ្វើការត្រួតពិនិត្យគុណភាពទឹករួចធ្វើការបញ្ចូន ទិន្នន័យរគុណភាពទឹកតាមរយះ ប្រព័ន្ធ IoT ព្រមទាំងធ្វើការបញ្ជូនទិន្នន័តាមរយៈបច្ចេកវិទ្យាឥតខ្សែ LoRa ដែលជាបច្ចេកវិទ្យាមួយមានសមត្ថភាពបញ្ជូនទិន្នន័យបានក្នុងរយៈចម្ងាយឆ្ងាយសមស្របនឹង តម្រូវការនាពេលបច្ចុប្បន្ន។ លើសពីនេះទៅទៀតមានសមត្ថភាពក្នុងការផ្ទុកទិន្នន័យចូលទៅក្នុង SD-CARD។ មិនតែប៉ុណ្ណោះវាអាចបង្ហាញទិន្នន័យទាំងនោះនៅក្នុង ផ្ទាំងបង្ហាញទិន្នន័យភ្លាមៗបានផងដែ

២.២.៣ ដៃគូសមាភារណ៍

តាមរយៈការបង្កើត និងស្វែងរកឯកសារបន្ថែមក្នុងការផលិត រួមជាមួយនឹងការអភិវឌ្ឍន៍នូវ ប្រព័ន្ធវាស់សម្ពាធ និងលំហូរទឹកត្រូវមានការចូលរួម និងកិច្ចសហការដូចជា៖

Research

ការសិក្សាស្រាវជ្រាវអំពីគម្រោង តាមរយៈឯកសារដូចជា Research Paper និងសៀវភៅដែល ទាក់ទងអំពី ការវាស់សម្ពាធ និងលំហូរទឹកព្រមទាំងការបញ្ជូនទិន្នន័យតាមរយៈបច្ចេកវិទ្យាឥតខ្សែ LoRa និង Cellular Network។

• Development

កិច្ចសហការផលិតមានការសិក្សាស្រាវជ្រាវពីអ្នកបច្ចេកទេស ក្នុងការកែសម្រួលប្រព័ន្ធឲ្យ កាន់តែប្រសើរឡើងសមស្របជាមួយតម្រូវការនាពេលបច្ចុប្បន្ន និងជួយដោះស្រាយបញ្ហាដែលប្រឈម នឹងការត្រួតពិនិ្យគុណភាពទឹក រកជាតិពុល។

២.៣ គច្ចម្រឹទម្រែខសម្រាម់គម្រេខ

២.៣.១ គម្ចម្រីខម្រេចភូខភា៖សិក្សា

ចំពោះការសិក្សានូវគម្រោងប្រព័ន្ធត្រួតពិនិត្យគុណភាពទឹកតាមរយៈ GSM/LoRa ក្រុមយើងខ្ញុំ បានធ្វើការសិក្សាទៅលើផ្នែកផ្សេងៗរួមមាន៖

- ការធ្វើតេស្តទៅលើ LoRa
- ការធ្វើតេស្តទៅលើការភ្ជាប់ GPRS ទៅកាន់ ESP32
- កាធ្វើតេស្តទៅលើការប្រមូលទិន្នន័យទាំងអស់តាមទីតាំងស្ថានីយនីមួយៗ
- ការធ្វើតេស្តក្នុងការបញ្ជូលទិន្នន័យទៅកាន់ Database

JU 2. 17 Real Time Database

• ការធ្វើតេស្តក្នុងការព្យាករណ៍ទិន្នន័យដែលប្រមូលបាន

តារាង 2. 2 គុណភាពទឹកស្ថានីយ ទី១

តារាង 2. 3 គុណភាពទឹកស្ថានីយ ទី២

២.៣.២ គច្ចម្រី១ម្រែ១គូ១គារផលិត

តាមរយះការសិក្សារស្រាវជ្រាវ គម្រោងប្រព័ន្ធត្រួតពិនិត្យគុណភាពទឹកជាមួយនិងការបញ្ជូន ទិន្ន័យតាមរយះ LoRa គ្រុមយើងខ្ញុំបានធ្វើការរចនា ដំឡើង និងធ្វើតេស្តទៅលើការវាស់គុណភាពទឹក និងបញ្ចូនទិន្ន័យតាមរយះ LoRa រួមមាន ៖

• ការឌីស្សាញសៀគ្វី

JU 2. 18 Gateway Schematic

JU 2. 19 PCB Gateway

JU 2. 20 Node Schematic

JU 2. 21 Node PCB

• ការរចនា និងការដំឡើង

"It 2. 22 Gateway 3D Design

JU 2. 23 Node 3D Design

រូប 2. 24 Gateway ជាក់ស្ដែង

រូប 2. 25 Node ជាក់ស្តែង

• ការរិចនា Web-App Version 0.0.1

§\$\mathbf{y}\$ 2. 26 Web-App Monitoring Dashboard Header

§\$\mathbb{U}\$ 2. 27 Web-App Monitoring Dashboard

រូប 2. 28 ក្រាបប្រចាំសប្តាហ៍

JU 2. 29 AI Prediction on Water Condition

រូប 2. 30 សាស្ត្រាចារ្យពិគ្រោះ និង ដឹកនាំ

រូប 2. 31 អំពីពួកយើង

២.៣.៣ តម្លៃខ្ញាន់ស្មាន

គម្រោងនេះនឹងត្រូវបានអនុវត្តជាមួយតម្លៃប៉ាន់ស្មានក្នុងការចំណាយដូចខាងក្រោម៖

ល.រ	ឈ្មោះសម្ភារះ	ចំនួន	តម្លៃរាយ	តម្លៃរួម	តម្លៃសរុប
1	CN3791 MPPT SOLAR	3	2.50\$	7.50\$	7.50\$
2	MT3608 2A BOOST	3	0.60\$	1.80\$	1.80\$
3	CAPACITOR	10	0.20\$	2\$	2\$
4	Pcs OF PLAIN COPPER CLAD PCB	3	\$2.50	7.50 \$	7.50 \$
5	Arduino NaNo	3	\$3.00	9.00 \$	9.00 \$
6	ESP32 Dev Board	1	\$5.00	5.00 \$	5.00 \$
7	OLED	1	\$3.00	3.00 \$	3.00 \$
8	GSM SIM800C Module	1	\$5.00	5.00 \$	5.00 \$
9	RTC Module	1	\$1.50	1.50\$	1.50\$
10	Antenna 868MHz	4	\$9.00	36.00 \$	36.00 \$
11	LoRa RFM92	4	\$3.00	12.00 \$	12.00 \$
12	Resistor	10	\$0.01	0.10 \$	0.10\$
13	Fuse 3A	10	\$0.03	0.25 \$	0.25 \$
14	Antenna SMA	5	\$1.00	5.00 \$	0.25 \$
15	DC Jacket	5	\$0.50	2.50 \$	2.50\$
16	Female Pin Connector	10	\$0.25	2.50 \$	2.50 \$
17	JST Pin Connector	10	\$0.50	5.00\$	5.00 \$
18	LM7805	5	\$0.50	2.50\$	2.50\$
19	Lithium Battery 3.7V	5	\$2.50	12.50\$	12.50\$
20	Fuse Holder	10	\$0.20	2.00\$	2.00\$
21	Battery Holder	5	\$0.50	2.50\$	2.50\$

លេខឯកសារ: PRO-01 ការកែសម្រួលលើកទី:01 កាលបរិច្ឆេទ 30/04/2024 ទំព័រ **42** of **46**

22	pH Sensor Module	3	\$39.50	118.50\$	118.50\$
23	Turbidity and Temperature Sensor Module	3	\$24.10	72.30\$	72.30\$
24	TDS Sensor Module	3	\$11.80	35.40\$	35.40\$
25	SD Card Module	1	\$2.50	2.50	2.50
26	SD Card 6GB	1	\$2.50	2.50\$	2.50\$
	Total:				365\$

តារាង 2. 4 ចំណាយ

២.៣.៤ ភារ១ភាគនីផ្សារ

Target Market គោលដៅទីផ្សាសម្រាប់ការទិញផលិតផលនេះគឺអ្នកប្រើប្រាស់ អាចទិញ យក«ប្រព័ន្ធវ៉ាស់គុណភាពទឹក» យកទៅប្រើប្រាស់ក្នុងការដោះស្រាយជាមួយនឹងបញ្ហាទឹកកខ្វក់ក្នុង បឹង, ទន្លេ, ស្ទឹង និង ប្រលាយផងដែរ។

២.៤ សេចក្តុសឆ្ជិដ្ឋាន

ឆ្លងតាមរយៈការសិក្សាស្រាវជ្រាវកន្លងមក យើងនឹងអាចធ្វើការបង្កើតប្រព័ន្ធដែលមានសមត្ថភាពធ្វើការ វាស់គុណភាពទឹកដែលអាចធ្វើការបង្ហាញទិន្នន័យលើផ្ទាំង OLED រួមទាំងធ្វើការបញ្ជូនទិន្នន័យតាមរយៈ LoRa ក្នុងពេលព្រឹក ថ្ងៃ ល្ងាច មកកាន់អ្នកប្រើប្រាស់ (ច្រើន Device) ដែលធ្វើការតេស្តទៅលើ 3 ស្ថានីយ (2 Node, 1 Gateway) និងប្រើប្រាស់ Web Application សម្រាប់ត្រួតពិនិត្យទិន្នន័យ និងរក្សាទុកទិន្នន័យ ក្នុងការយកមកធ្វើការព្យាករណ៍អំពីស្ថានភាពរបស់ទឹកផងដែរ។

ទិន្នន័យពី SMS តាមរយៈ GSMមិនតែប៉ុណ្ណោះអាចទាញយកទិន្នន័យបានភ្លាមៗនៅពេលដែលត្រូវ ការថែមទាំងអាចរក្សាទុកនូវរាល់ទិន្នន័យក្នុង SD Card ។

បញ្ហា និងដំណោះស្រាយ

- Sensor មានភាពមានច្បាស់លាស់ ពួកយើងកំពុងតែរក Algorithm និង Method ថ្មីៗដើម្បីដោះ ស្រាយ
- ករណីធ្វើការបញ្ជូនទិន្នន័យទៅកាន់អ្នកប្រើប្រាស់ច្រើន (ច្រើន Device) គឺនៅមានបញ្ហាក្នុងការ បញ្ជូនមិនទាន់បានល្អប្រសើរ ដែលយើងកំពុងដោះស្រាយ។
- ករណី Web-App កំពុងកែរសម្រួលឡើងវិញទៅលើ UX និង UI
- កែរសម្រួលនូវបញ្ហាររអាក់រអួលក្នុងការបញ្ចូនទិន្នន័យ

ខ្ទមសម្ពន្ធ-គ

មញ្ជីគ្រឿ១មខ្ពុំ

គ្រឿងបង្គំដែលត្រូវការប្រើក្នុងការផលិត ឬសិក្សាគម្រោងមានបញ្ជាក់ដូចខាងក្រោម៖

តម្រុខភារកម្ម៦ឆី សិខម្រព័ស្លសំឈើកោរ

- Arduino IDE
- Platform IO
- Visual Studia
- Anaconda Navigation
- KiCad

ខ្ទមសម្ពត្ត-ខ

ធនធានមនុស្ស និចម្រទគ្គរូមសច្ចេម

NO	NAME	Position
1	សារិ ពុទ្ធិពណ្ណរាយ (Sari Putiponareay)	ប្រធាន
2	ឈឿន រីណា (Chhoeurn Rina)	សមាជិក
3	ញ៉ៅ ត្រេនឆៃលីន(Nhao Trenchhailin)	សមាជិក

1. Sari Putiponareay

PERSONAL DATA	Name	Sari Puthiponareay
	Sex	Male
	Religion	Buddhist
	Place / Date of Birth	31/07/2003
	Address	Phum Odem, Chom Chao 3,
		Pursenchey, Phnom Penh
	Phone/Email	017951607
WORK EXPERIENCES		
EDUCATION	2018-2019	Graduated BacII at Prey Lvea
		High School
	2019-Present	Study at National Polytechnic
		Institute of Cambodia

2. Chhoeurn Rina

PERSONAL DATA	Name	Chhoeurn Rina		
	Sex	Female		
	Religion	Buddhist		
	Place / Date of Birth	April 9st 2002, tabaen, svay		
		chek, bonteaymeanchhey		
	Address	Prek Pnov, Phnom Penh,		
		Cambodia		
	Phone/Email	014 809 551		
WORK EXPERIENCES				
EDUCATION	2018-2019	Graduated Diploma at svay		
		chek High School		
	2019-Present	Study at National Polytechnic		
		Institute of Cambodia		

3. Nhao Trenchhailin

PERSONAL DATA	Name	Chhoeurn Rina
	Sex	Female
	Religion	Buddhist
	Place / Date of Birth	April 9st 2002, tabaen, svay chek,
		bonteaymeanchhey
	Address	Prek Pnov, Phnom Penh,
		Cambodia
	Phone/Email	014 809 551
WORK EXPERIENCES		
EDUCATION	2018-2019	Graduated Diploma at svay chek
		High School
	2019-Present	Study at National Polytechnic
		Institute of Cambodia