CS360 - Homework #2

Entailment and Resolution

- 1) Solve the following problems:
 - (a) Is it possible that propositional sentence P entails propositional sentence Q and that it also entails sentence $\neg Q$? Explain (for example, give an example if possible).
 - Yes. If P is unsatisfiable then there is no interpretation that satisfies P. Therefore all the interpretations that satisfy P also satisfy both Q and $\neg Q$.
 - (b) Is it possible that propositional sentence P entails propositional sentence Q but does not entail sentence $\neg Q$. Explain (for example, give an example if possible).
 - Yes. An example would be $P \Leftrightarrow Q$, where P is satisfiable.
 - (c) Is it possible that propositional sentence P entails propositional sentence Q and sentence $\neg P$ also entails sentence Q? Explain (for example, give an example if possible).
 - Yes. If Q is a tautology then it is entailed by any propositional sentence P.
- 2) How can you use resolution to show that a propositional sentence is unsatisfiable?
 - We can conclude that a propositional sentence is unsatisfiable if we can use resolution to derive the empty clause.
- **3)** Using resolution, show that $(P \Rightarrow Q) \land (\neg P \Rightarrow Q)$ entails Q.
 - We start by adding the negation of Q and converting to CNF, to obtain $(\neg P \lor Q) \land (P \lor Q) \land (\neg Q)$. We then perform resolution on clauses $(\neg P \lor Q)$ and $(P \lor Q)$ to derive the clause (Q). A second resolution on clauses $(\neg Q)$ and (Q) derives the empty clause and proves that $(P \Rightarrow Q) \land (\neg P \Rightarrow Q)$ entails Q.

First Order Logic

4) Translate the following English sentences to first-order logic using the following predicates: Owns(x,y), Dog(x), Cat(x), Cute(x), and Scary(x). For example, Owns(x,y) means that object x owns object y:

- (a) Joe has a cute dog. $\exists X \text{ (Owns(Joe, } X) \land \text{Dog}(X))$
- (b) All of Joe's dogs are cute. $\forall X \ ((\text{Owns}(\text{Joe}, X) \land \text{Dog}(X)) \Rightarrow \text{Cute}(X))$
- (c) Unless Joe owns a dog, he is scary. $\neg(\exists X \ (\text{Owns}(\text{Joe}, X) \land \text{Dog}(X)) \Rightarrow \text{Scary}(\text{Joe})$
- (d) Either Joe has at least one cat and at least one dog or he is scary (but not both at the same time).

 $(\exists X \ (\mathrm{Owns}(\mathrm{Joe}, \ X) \land \mathrm{Dog}(X))) \land (\exists Y \ (\mathrm{Owns}(\mathrm{Joe}, \ Y) \land \mathrm{Cat}(Y))) \Leftrightarrow \neg \ \mathrm{Scary}(\mathrm{Joe}).$

- (e) Not all dogs are both scary and cute. $\exists X \; (\text{Dog}(X) \land \neg \; (\text{Scary}(X) \land \text{Cute}(X)))$
- **5)** Translate the following sentences in first-order logic to English. Apple(x) means that object x is an apple, Red(x) means that object s is red, Loves(x, y) means that person x loves person y:
 - (a) $\forall x \ (Apple(x) \Rightarrow Red(x))$ All apples are red
 - (b) $\forall x \; \exists y \; Loves(x, y)$ Every person has some person he loves
 - (c) $\exists y \ \forall x \ Loves(x, y)$ There is a single person whom everybody loves
- 6) Specify what a grandmother is, using the predicates IsGrandMotherOf, IsMotherOf and IsFatherOf. IsGrandMotherOf(x,y) means that person x is the grandmother of person y, IsMotherOf(x,y) means that person x is the mother of person y, and IsFatherOf(x,y) means that person x is the father of person y. Define additional predicates if needed.

 $\exists z \ (\text{IsMotherOf}(x,z) \land (\text{IsMotherOf}(z,y) \lor \text{IsFatherOf}(z,y))) \iff \text{IsGrandMotherOf}(x,y)$

- 7) For each of the following sentences in first-order logic, specify whether it is valid, satisfiable, and/or unsatisfiable:
 - (a) $P(a) \Rightarrow \forall x P(x)$ Satisfiable.
 - (b) $P(a) \Rightarrow \forall x \neg P(x)$ Satisfiable.
 - (c) $P(a) \Rightarrow \exists x P(x)$ Valid.
 - (d) $P(a) \Rightarrow \exists x \neg P(x)$ Satisfiable.