2022 CCF 非专业级软件能力认证模拟赛 - 入 门组

2022/10/3

(请选手务必仔细阅读本页内容)

题目名称	排列的差	半数	合影	新删数游戏
题目类型	传统型	传统型	传统型	传统型
英文题目名称	perm	half	photo	number
输入文件名	perm.in	half.in	photo.in	number.in
输出文件名	perm.out	half.out	photo.out	number.out
输出文件名	1s	1s	1s	1s
内存上限	512M	512M	512M	512M
测试点数目	10	10	10	10
每个测试点分值	10	10	10	10
附加样例文件	有	有	有	有
结果比较方式	全文比较	全文比较	全文比较	全文比较

注意事项:

- 1. 文件名(程序名和输入输出文件名)必须使用英文小写。
- 2. C/C++ 中函数 main() 的返回类型必须是 int, 程序正常结束时的返回值必须是 0。

1 排列的差

(perm.cpp/c)

【题目描述】

1 - n 的全排列有 n! 种,比如 n = 3 时,我们一共有 3! = 6 种排列,我们按照字典序顺序排序为: $\{1, 2, 3\}, \{1, 3, 2\}, \{2, 1, 3\}, \{2, 3, 1\}, \{3, 1, 2\}, \{3, 2, 1\}$

那么我们说排列 $\{1, 2, 3\}$ 的字典顺序为 1, 排列 $\{2, 3, 1\}$ 的字典顺序为 4。 现在给定一个 n,同时给你两个 1 - n 的排列,问你这两个排列的差是多少?

【输入输出格式】

【输入格式】

输入文件 perm.in

第一行一个正整数 n。

第二行 n 个正整数表示一个排列,每个数组在 1 - n 之间,且互不相同。

第三行 n 个正整数表示一个排列,每个数组在 1-n 之间,且互不相同。

【输出格式】

输入文件 perm.out

输出一行一个非负整数表示两个排列的字典序的差

【样例】

【样例 1 输入】

3

1 3 2

3 1 2

【样例 1 输出】

3

{1, 3, 2} 的字典序是 2, {3, 1, 2} 的字典序是 5, 因此字典序的差是 3.

【样例 2 输入】

8

7 3 5 4 2 1 6 8

3 8 2 5 4 6 7 1

【样例 2 输出】

17517

【数据范围与提示】

对于 20% 的测试数据, $1 \le n \le 3$

对于 40% 的测试数据, $1 \le n \le 6$

对于 100% 的测试数据, $1 \le n \le 10$

2 半数

(half.cpp/c/pas)

【题目描述】

给你两个整数 n 和 m, 接下来给你 n 个整数形成的序列 a, a_1, a_2, \ldots, a_n , 每个数字的大小都在 1 到 m 之间(包括 1 和 m)且都是偶数。

接下来我们定义什么叫做序列的半数:

所谓序列的半数 X, 对于任意一个 k $(1 \le k \le n)$, 我们总是能够找到一个非负整数 p, 满足 $X = a_k \times (p+0.5)$

问你对于我们给出的序列 a, 在区间 [1, m] 中, 你能找出多少个满足要求的半数。

【输入输出格式】

【输入格式】

输入文件 half.in 包含两行,第一行两个整数表示 n 和 m 第二行 n 个整数表示序列 a_1,a_2,\ldots,a_n

【输出格式】

输出文件 half.out 包含单个整数表示区间 [1, m] 中能找到的半数个数。

【样例】

【样例 1 输入】

2 50

6 10

【样例 1 输出】

2

1-50 中符合要求的半数有 2 个, 分别为 15 和 45

 $15 = 6 \times 2.5$

 $15 = 10 \times 1.5$

 $45 = 6 \times 7.5$

 $45 = 10 \times 4.5$

【数据范围与提示】

- 对于 30% 的数据, $1 \le n \le 10, 1 \le m \le 100$
- 对于 50% 的数据, $1 \leq n \leq 1000, 1 \leq m \leq 2 \times 10^9$
- 对于 100% 的数据, $1 \le n \le 10^5, 1 \le m \le 2 \times 10^9$
- $0 \le a_i \le 2 \times 10^9$ 且均为偶数;

3 合影

(photo.cpp/c/pas)

【题目描述】

时间飞快的流失,马上来到了 2022 年 10 月 29 日,这一天 CSP-J/S2022 考试马上就要结束了,陈老师瞄了一下手表,离考试结束还有 30 分钟,一想到有部分同学考完就要 AFO,一股悲伤的情绪涌上心头,一时没忍住,老泪纵横。

陈老师是一个怀旧的人,他决定给所有同学拍个照留个合影,这样到时候出分数了,谁考的不好,就把他从照片上涂掉。

陈老师看了一下手中的名单,今年参加复赛考试的有 N 个学生,

陈老师希望这些同学站成左端对齐的 k 排,每排分别有 $N_1, N_2, ..., N_k$ 个人。 $(N_k \le N_{k-1} \le ... \le N_2 \le N_1)$

第 1 排站在最后边, 第 k 排站在最前边。

由于同学们的身高互不相同,把他们从高到底依次标记为1,2,...,N。

陈老师突然奇想,在合影时要求每一排从左到右身高递减,每一列从后到前身高也递减。因为这样的话,涂掉一个学生的头就非常的清晰了。

陈老师想知道一共有多少种安排合影的方案?

下面的一排三角矩阵给出了当 $N=6, k=3, N_1=3, N_2=2, N_3=1$ 时的全部 16 种合影方案。注意身高最高的是 1 号同学,最低的是 6 号同学。

 123
 124
 124
 125
 125
 126
 126
 134
 134
 135
 135
 136
 136
 145
 146

 45
 46
 35
 36
 34
 35
 25
 26
 24
 26
 24
 25
 26
 25

 6
 5
 6
 5
 6
 4
 5
 4
 6
 5
 6
 4
 5
 4
 3
 3

【输入输出格式】

【输入格式】

从文件 photo.in 中读入数据。

第一行包含一个整数 k 表示总排数。

第二行包含 k 个整数,表示从后向前每排的具体人数。

【输出格式】

输出到文件 photo.out 输出一个答案,表示不同方案的数量

【样例】

【样例 1 输入】

3

3 2 1

【样例 1 输出】

16

【样例 2 输入】

4

5 3 3 1

【样例 2 输出】

4158

【数据范围与提示】

对于 30% 的测试数据,保证 $1 \le k \le 3$,并且保证 k 个数的总和不超过 8 另有 20% 的测试数据,只保证 k=2

对于 100% 的测试数据,保证 $1 \le k \le 5$,并且保证 k 个数的总和不超过 30

4 新删数游戏

(number.cpp/c/pas)

【题目描述】

由于之前放过很多删数游戏的题目,于是陈老师把这题叫做新删数游戏。

现在你在跟陈老师玩一个删数游戏,一共有 $3 \times N$ 个数组,现在请你删除其中的 N 个数 $(\pi-$ 定要连续删除),但是删除以后,留下来的 $2 \times N$ 个数相对顺序不能改变,我们定义 V 为 删除 N 个数后,前 N 个数的和减去后 N 个数的和的值。请问你要如何删除才能使得 V 最大。

陈老师还是非常友善的,不忍心你爆 0,所以提醒你一下,V 有可能为负数,当然你并不用十分感激陈老师。

【输入输出格式】

【输入格式】

从文件 number.in 中读入数据 第一行输入一个正整数 N第二行输 $3 \times N$ 个整数。

【输出格式】

输出到文件 number.out 中输出一个整数表示答案

【样例】

【样例 1 输入】

2

3 1 4 1 5 9

【样例 1 输出】

1

删掉第一个 1 和最后一个 9, V = (3 + 4) - (1 + 5) = 1

【样例 2 输入】

3

8 2 2 7 4 6 5 3 8

【样例 2 输出】

5

【数据范围与提示】

对于 20% 的测试数据,保证 $1 \le n \le 6$ 对于 60% 的测试数据,保证 $1 \le n \le 1000$ 对于 100% 的测试数据,保证 $1 \le n \le 10^5$ 保证所有数据的绝对值包超过 10^9