Template Method - Nested Iterators

Adam Garber

Norwegian University of Science and Technology - A Course in MplusAutomation

June 01, 2021

Preparation -			
Load packages			
library(MplusAutomation library(relimp) library(tidyverse) library(here) library(janitor) library(gt))		

0. Write the Mplus template.txt file

- This is a special type of Mplus input file that includes the [[/init]] section at the top
- This section of code provides the instructions for doing "iterations" or "loops" to generate multiple input files
- Make sure to **UPDATE** the file-path in the template file so that the input files are generated in the correct location.

1. Write Mplus input files

```
createModels(here("23-template-method", "PYDI_enumeration_template1.txt"))

## writing file: C1_PYDI_LCA.inp

## writing file: C2_PYDI_LCA.inp

## writing file: C3_PYDI_LCA.inp

## writing file: C4_PYDI_LCA.inp
```

```
## writing file: C5_PYDI_LCA.inp
## writing file: C6_PYDI_LCA.inp
## writing file: C7_PYDI_LCA.inp
## writing file: C8_PYDI_LCA.inp
```

2. Run models

• recursive = TRUE tells R to run all models within a parent folder. The recursive option is useful because when generating large batches of input files we can use the template file to create a nested set of sub-folder to organize models by type.

```
runModels(here("23-template-method", "mplus_files"), recursive = TRUE)
```

3. Read models

```
output_enum <- readModels(here("23-template-method", "mplus_files"), quiet = TRUE)</pre>
```

4. Extract fit information from output files

- Any information in the ouptut or .gh5 files can be extracted and organized.
- This includes the summary statistics which are necessary to look at for choosing the number of classes.
- The models can be sorted based on a give statistic, such as the BIC.

Title	LL	BIC	aBIC
C1_PYDI_LCA	-3905.892	7863.555	7841.317
$C2_PYDI_LCA$	-3439.483	6989.902	6942.250
C3_PYDI_LCA	-3394.950	6960.001	6886.934
C4_PYDI_LCA	-3379.436	6988.140	6889.658
C5_PYDI_LCA	-3370.534	7029.501	6905.604
C6_PYDI_LCA	-3365.674	7078.948	6929.637
C7_PYDI_LCA	-3361.597	7129.959	6955.234
C8_PYDI_LCA	-3357.463	7180.857	6980.716

5. Mplus Object lists

- Click on the Mplus object in your R environment. This is an object including nested lists.
- This code tells R to look inside the object output_enum and extract the probabilities from the .gh5 file associated with the 3-class model

V1	V2	V3
0.8205463	0.1732870	0.2748898
0.9877123	0.5810680	0.8469923
0.9621444	0.5305504	0.6980789
1.0000000	0.6431175	0.8178859
0.9918640	0.1466496	0.6845955
0.9936640	0.3763532	0.9552785
0.9949189	0.2167879	0.8959467

End

References

Hallquist, M. N., & Wiley, J. F. (2018). MplusAutomation: An R Package for Facilitating Large-Scale Latent Variable Analyses in Mplus. Structural equation modeling: a multidisciplinary journal, 25(4), 621-638.

Muthén, L. K., & Muthén, B. O. (2002). How to use a Monte Carlo study to decide on sample size and determine power. Structural equation modeling, 9(4), 599-620.

R Core Team (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/

Wickham et al., (2019). Welcome to the tidy verse. Journal of Open Source Software, 4(43), 1686, https://doi.org/10.21105/joss.01686