Documentação Algortimos II

Francisco Neves Tinoco Junior January 10, 2022

Contents

1	Dataset	
	1.1 Definição	
	1.2 Funções	
	1.3 Variaveis importantes	;
2	KD	:
	2.1 Definição	•
	2.2 Funções	4
	2.3 Variaveis importantes	ţ
3	$X_{-}nn$	ţ
	3.1 Definição	Ę
	3.2 Funções	
	3.3 Variaveis importantes	
	3.4 Notas	8
4	Resultado do modelo	ę

1 Dataset

1.1 Definição

Uma classe criada para automatizar e padrozinar a formatação do dataset.

1.2 Funções

__init__ :

Resumo: Abre o arquivo .dat, coleta os pontos e aciona a função _create_dataset.

Entrada:

path: string -> Caminho para o arquivo .dat

Pseudo Codigo

- . Abra o arquivo e leia o seu valor
- . Separe as linhas pelo simbolo @, pois ele delimita as carecteristicas do dataset
- . Percora as linhas até achar uma que se inicie com data e save os valores dos pontos
- . Execute a função para criar o dataset (_create_dataset)

_create_dataset:

Resumo: Formata os valor dos pontos, transformar as categorias em numeros inteiros e salva todos em uma numpy.array.

Pseudo Codigo:

- . Percorar toda a listta de pontos salvos anteriormente. Para cada um dos pontos, passe os seus valores para o tipo float.
- . Crie um pandas.Dataframe com os pontos e as suas labels
- . Utilize a função pd.factorize para transformar os valores das labels em numericos
- . Save o valor dos pontos em uma numpy.array

1.3 Variaveis importantes

- . dataset : np.array -> Conjunto de todos os pontos junto com o as suas classes. O ultimo valor de cada ponto é a sua classe
- . indexador : dict -> Indexa os numeros com as classes originais

$2 \quad KD$

2.1 Definição

Classe que implementa um arvore kd

2.2 Funções

__init__ :

Resumo : Utilize a função make_kd para fazer uma kd
tree e salva na variavel kd_tree

Entrada:

data : np.array -> conjunto de pontos criado pela classe Dataset

Pseudo Codigo

. Utilize a função make_kd utilizando data com entrada para fazer uma kd
tree e salva na variavel kd_tree

create_node:

Resumo: Cria o nó de uma arvore.

Pseudo Codigo:

. Retorne um nó

Propriedades do nó:

- . CORTE : int -> O valor que divide a arvore. Caso None, indica que o nó é uma folha da arvore
- . DIM : int -> Indica a diminsão que o valor de corte se refere. É igual a Deep mod Dim, aonde Deep é a profundidade da arvore e dim é a quantidade de dimensões dos pontos
- . POINT : list -> Indica o valor do ponto. Sse len
(POINT) == 0, então o nó não é uma folha
- . MENOR: dict -> Arvore da esquerda com os valores menores que CORTE
- . MAIOR: dict -> Arvore da direita com os valores maiores ou iguais que CORTE

Notas:

- . A propriedade isinstance(tree["CORTE"], type(None)), i.e., caso tree["CORTE"] == None, vai ser usado para conferir se a arvore é uma folha
- . Essa função foi criada para criar um padrão de representação entre os nós da arvore

insert_kd:

Resumo : Insere um nó com o valor de point na arvore.

Entrada:

tree :dict -> Arvore em que point tem que ser inserida

point: np.array -> Ponto a ser inserido

n_dim : int -> O numero de dimensões de point

Pseudo Codigo:

- . Teste se a arvore é uma folha ou não.
- . Caso seja.
 - . Retire o ponto presente em tree ["POINT"] e save ele em p0. Altere o valor de tree ["POINT"] para None.
 - . Crie dois novos nós, l_tree e r_tree, e atualize os seus valores de DIM para ((dim + 1) mod n_dim), sendo dim a dimensão de tree

- . Confere o valor de p0 e point em relação a dim. Caso p0 < point, coloque p0 em l_tree e point em r_tree. Se não, faça o contrario.
- . Use a mediana do valor de p0 e point em dim para definir o valor de Corte de tree
- . Adicione l_tree na arvore MENOR de tree e r_tree na arvore MAIOR de tree
- . Se não for:
 - . Veja se o valor da dimensão do ponto é menor ou não ao corte. Se for, repita insert_kd só que com tree = tree["MENOR"]. Se não, repita insert_kd só que com tree = tree["MAIOR"].

Notas:

. insert_kd foi implementada de maneira recursiva.

make_kd:

Resumo : Cria um arvore k
d com todos os dados presentes em data

Entrada:

data : np.array -> conjunto de pontos criado pela classe Dataset

Pseudo Codigo:

- . Cria um nó kd-tree que contem o primeiro valor de data e DIM = 0.
- . Usando a função *insert_kd*, insira todos os pontos restantes de data em *kd_tree*
- . Retorne kd_tree

2.3 Variaveis importantes

. kd_tree : dict -> Arvore kd criada usando os pontos presentes em data

3 X_nn

3.1 Definição

Classe que representa um modelo de classificação kneighbors

3.2 Funções

fit:

Resumo : Função que separa os conjuntos de treino e teste gerados por Datasete cria a arvore kd a partir da classe KD

Entrada:

path : string -> Diretorio aonde está o dataset

test_size : int, default = 0.3 -> Proporção do conjunto de teste em relação à todos od dados Pseudo Codigo:

- . Utilizando path como entrada em Dataset, formate os dados e save em data
- . Utilizando o valor de test_size, separe os dados em
 - . X_{-train}: numpy.array -> Conjunto de treinamento contedo os pontos
 - . y_train : numpy.array -> Conjunto de treinamento contendo as labels

- . X_train: numpy.array -> Conjunto de teste contedo os pontos
- . y_train : numpy.array -> Conjunto de teste contendo as labels
- . Utilizando X-train como entrada, monte uma arvore kd com a classe KD

knn:

Resumo : Função que encontra os k_size pontos mais proximos de todos os ponto em X_test . Entrada:

k_size : int -> Numero de pontos a serem preditos

cpu: int, default = -1 -> Numero de cpus para serem usadas, Caso -1, usa todas

Pseudo Codigo:

- . Para cada ponto presente X_test , utilize a função $multi_knn$ para calcular os k_size pontos mais proximos. Guarde todas as pevisões em predict.
- . Retorne predicts

multi_knn:

Resumo: Função intermediaria para ser possivel utilizar o multiprocessing.

Entrada:

point : np.array -> Ponto para ser encontra os k_size pontos mais proximos

Pseudo Codigo:

- . Utilizando a função knn_aux , calcule os k_size pontos mais proximos de point. Salve o resultado em kneighbor.
- . Retorne kneighbor

knn_aux:

Resumo : Função que localiza os k_size mais proximos de point

Entrada:

tree : dic -> Arvore em que sera realizada a busca

point : np.array -> Ponto para ser encontra os k_size pontos mais proximos

k_size : int -> Numero de neighbors a serem localidados

kneighbor : list -> Pontos mais proximos

maior_distancia : list-> Maior distancia do ponto mais longe de point em kneighbor e a sua posição

check : list -> Numero de pontos testados pelo algoritmo

dists: list -> Lista com as distancias entre o kneighbor e point

Pseudo Codigo:

- . Teste se tree é uma folha
- . Se for:
 - . Teste se o numero de pontos em kneighbor já atingiu o maximo (k_size) .
 - . Se atingiu:
 - . Teste se a distancia do novo ponto a point dist $\acute{\rm e}$ menor que a maior distancia no momento.

. Se for:

Troque o ponto mais longe com esse novo ponto em kneighbor, assim como a suas distancias em dists.

Calcule o novo ponto mais longe assim como a sua distacia e salve esses dados em $maior_distancia[1]$.

. Se não atingiu:

- . Adicione o ponto a kneighbor.
- . Se a distacia de *point* ao novo ponto *dist* for a maior, defina *maior_distancia*[0] = dist e *maior_distancia*[1] = len(kneighbor) 1, i.e., salve a nova maior distancia e a posição do ponto na lista
- . Adicione dist a dists.

. Se não for:

- . Seja dif a diferença entre o point e corte.
- . Caso ainda não tenha atingido o limite de pontos ou dif
 seja menor que a maior distancia, continue procurando nas arvore
sMENOReMAIOR
- . Se não, confira em qual arvore o ponto entraria pelo CORTE e continue a busca somente nela.

Notas:

. As variaveis $maior_distancia$ e dists são usadas para evitar ter que ficar recalculado as distancias entre point e os pontos em kneighbor

define_class:

Resumo: Função que classifica a classe considerando os kneighbors

Entrada:

kneighbors: list -> Lista contendo k_size neighbors para um ponto

Pseudo Codigo:

- . Para cada ponto n em kneighbors, procure em y_train qual a sua classe.
- . Retorne a classe com mais pontos. Em caso de empate, retorne aleatoriamente uma das classes com mais pontos.

Notas A escrever:

. É necessario compara n
 aos pontos em Xtrain para saber qual é a sua posição e, suce
civamente, a sua classe.

predict:

Resumo : Função que prediz a classe de todos os valores em X_test

Entrada:

k_size: int-> Numero de pontos a serem preditos.

cpu: int, default = -1 -> Numero de cpus para serem usadas, Caso -1, usa todas

Pseudo Codigo A escrever:

- . Utilizando a função knn, predica os k_size vizinhos de cada ponto contido em X_test e guarde em pred
- . Utilizado define_class, predica a classe de cada ponto i com os vizinhos pred[i]. Armazene as classes previstas em $classes_pred$

. Retorne classes_pred

evaluate:

Resumo: Função que calcula as metricas de acerto.

Entrada:

k_size : int -> Numero de pontos a serem preditos.

cpu : int, default = -1 -> Numero de cpus para serem usadas, Caso -1, usa todas

Pseudo Codigo A escrever:

- . Utilizando predict, pege cada classe prevista para cada ponto em X_test.
- . Calcule qual é classe c com mais pontos no conjuto de teste.
- . Usando $evaluate_aux$, os valores de true_positives(tp), true_negatives(tn), false_positives(fp) e false_negatives(fn)
- . Retorne as metricas de acuracia, precição e revocação.

evaluate_aux:

Resumo : Função que calcula as metricas de acerto.

Entrada:

c : int -> Classe tomada como padrão

pred: list -> Classes previstas para os pontos

Pseudo Codigo:

- . Considerando c como a classe referencial, calcule os true_positives(tp), true_negatives(tn), false_positives(fp) e false_negatives(fp) de pred em relação a y_test
- . Retorne tp,tn,fp,fn

3.3 Variaveis importantes

- . X_train : np.array -> Contem os dados de treinamento
- . y_train : np.array -> Contem a label dos dados de treinamento
- . X_test : np.array -> Contem os dados de teste
- . y_test : np.array -> Contem a label dos dados de teste
- . kd_tree : dict -> Uma kd_tree criada a partir dos dados de treinamento

3.4 Notas

. A classe foi criada em cima de calcularas metricas e predições do dataset passado em *path*. Logo, utiliza-la para tentar prever pontos fora do arquivo não é possivel.

4 Resultado do modelo

A fim de testar como o modelo estava se comportando, foram escolhidos doze datasets que continham um conjunto de pontos e a suas labels. Foi-se aplicado o X_nn em cada um dos datasets variando a quantidade de vizinhos a serem considerados na classificação.

O grafico acima demonstra os resultados para cada um dos datasets. É possivel observar que o algoritmo teve um resultado possitivo na classificação da maioria dos datasets, sendo que o aumento do numero de vizinhos influenciava as taxas de acertos, via de regra positivamente. Nos datasets em que o resultado foi misto ou ruim, é possivel ver uma relação inversa, aonde o aumento do numero de vizinhos acabava prejudicando os resultados. Essa oscilação de resultados pode ser resultante de diversos fatores, desde falhas na implementação, até a separação de alguns datasets não se muito linear, necessitando de se aplicar algumas tecnicas, como aplicar um kernel, antes de se utilizar o algoritmo. Todas as metricas acabaram tendo uma flutuação bastante parecida.

Na figura acima, é possivel ver os resultados medios de todos os datasets. O resultando parece ser contraditorio com o apresentado individualmente, aonde o numero de vizinhos parece não afetar o resultado. Isso provalvemente está ocorrendo pelas oscilações negativas estarem cancelando as positivas.

O codigo que gerou essas imagens está disponivel no arquivo images.py