Hooghly Engineering & Technology College

Department of Computer Science & Engineering B. Tech. Final Year Project

A Project on:

A Machine Learning technique in Gene Expression dataset to find influencing genes of Alzheimer's disease(AD)

Under guidance of : Mr. Arup Mallick

Presented By Rishav Das- 17600121016
Pamela Pal- 17600121023
Srija Mazumder- 17600121040
Souvik Maity- 17600121045

INTRODUCTION:-

- Global health issue affecting millions, with a rise expected from 47 million (2015) to significantly more by 2050
- Symptoms progress from memory loss to complete cognitive decline, loss of bodily functions, and death.
- Early diagnosis is crucial for slowing progression.
- MRI and neuropsychological tests detect AD at advanced stages.
- Limited in early detection and non-invasive diagnostics.
- Gene expression data provides molecular-level detection.
- Allows earlier and more precise AD diagnosis, compared to traditional methods.
- Machine learning models (SVM, CNN, Random Forest) outperform clinicians in diagnosing AD.
- ML techniques are effective with MRI and gene expression data.
- Provides a non-invasive, scalable, and more efficient diagnostic solution.

PROBLEM STATEMENT:-

- Alzheimer's Disease (AD) is a neurodegenerative disorder characterized by memory loss and cognitive decline.
- Despite extensive research, the precise genetic factors contributing to the onset and progression of Alzheimer's remain poorly understood.
- Early diagnosis is challenging due to the complex nature of genetic factors associated with Alzheimer's.
- The project aims to utilize machine learning techniques on gene expression datasets (GSE48350, GSE11882 from GEO) to identify genetic markers associated with Alzheimer's.
- Gene expression datasets GSE48350 and GSE11882 from the GEO database are used.
- Techniques like feature selection, dimensionality reduction, and classification algorithms will be applied to the high-dimensional gene expression data.
- The goal is to pinpoint significant genes differentiating healthy individuals from those affected by Alzheimer's.
- Results could provide insights into the genetic mechanisms behind Alzheimer's.
- Findings may contribute to the development of precision medicine approaches for Alzheimer's diagnosis and treatment.
- Link to the datasets used
 - i. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE48350
 - ii. http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE11882

BRIEF BACKGROUND:-

- 1. Normalization (Min-Max Scaling):
 - Rescales gene expression data between 0 and 1.
 - Ensures all features contribute uniformly to machine learning models.
 - Prevents features with larger ranges from skewing results.
- 2. Principal Component Analysis (PCA):
 - Reduces dataset dimensionality while retaining key information.
 - Projects data onto principal components, capturing the most variance.
 - Improves computational efficiency and reduces overfitting risks.
- 3. K-Means Clustering:
 - Unsupervised algorithm that groups genes based on similarities in expression patterns.
 - Iteratively adjusts centroids to minimize variance within clusters.
 - Essential for identifying meaningful gene patterns related to AD

MATERIALS:-

- 1. We have used gene expression datasets (GSE48350, GSE11882) from the Gene Expression Omnibus (GEO) database.
- 2. This data set contains profiles of genes potentially associated with Alzheimer's Disease.
- 3. This dataset contains microarray data from normal controls (aged 20-99 yrs) and Alzheimer's disease cases, from 4 brain regions: hippocampus, entorhinal cortex, superior frontal cortex, and post-central gyrus.
- 4. URLs for the two datasets
 - i) GSE48350 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE48350
 - ii) GSE11882 http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE11882

METHODS INVOLVED:-GEO ACC No. GSE48350 ACC No. GSE11882 **Normalization** Normalization Redundancy Removal Redundancy Removal PCA **PCA** Clustering Clustering **DBSCAN** K-Means Hierarchical K-Means Hierarchical **DBSCAN WCSS WCSS** Best Cluster Result **Best Cluster Result** Gene Network Gene Network Influencing Gene

1. Dataset Selection:

- Utilized gene expression datasets (GSE48350, GSE11882) from the Gene Expression Omnibus (GEO) database.
- Contains profiles of genes potentially associated with Alzheimer's Disease.

2. Data Preprocessing:

- Normalization: Scales gene expression data between 0 and 1 for uniform analysis.
- Redundancy Removal: Removes duplicates and irrelevant features to reduce complexity.

3. Principal Component Analysis (PCA):

- Reduces dataset dimensionality, focusing on features with the highest variance.
- Simplifies complex gene expression data while preserving essential patterns.
- Helps avoid overfitting in high-dimensional datasets.

4. Clustering Techniques:

- K-Means Clustering: Groups genes into predefined clusters based on similarities in expression.
- Hierarchical Clustering: Organizes genes in a tree-like structure, showing relationships between them.
- Combination of both approaches offers robust and interpretable results.

5. Visualization:

- Visualizes gene clusters to provide a clear understanding of patterns.
- Intuitive representation of gene groupings aids in biological analysis.

RESULTS & DISCUSSION:

Elbow method for optimal no of clusters (GSE48350):

Results of K-Means Clustering of dataset Acc no. - GSE48350

ID_REF	Cluster	GSM300166	GSM300167	GSM300168	GSM300169	GSM300170	GSM300171	GSM300172	GSM300173	GSM300174	GSM300175	GSM300176	GSM300177	GSM300178	GSM300179
237935_at	1	1.0068797	0.9547534	0.5441863	0.4958425	0.5374987	0.49091443	0.6282891	0.97054005	0.8862701	0.897264	1.0121838	0.88941664	0.8561238	0.84869474
214218_s_at	2	201.07051	187.70613	99.46571	0.22260945	0.25905278	87.32281	129.65483	0.49931356	0.45528802	0.36309782	0.36972588	0.43651226	0.28056654	0.3360729
224687_at	3	0.9965862	1.0730821	0.86992425	0.83846813	0.7568469	0.848078	0.6282263	0.8978864	0.95266575	0.78014195	0.9806041	0.8438871	1.3741192	0.67811286

ID_REF	Cluster	GSM300166	GSM300167	GSM300168	GSM300169	GSM300170	GSM300171	GSM300172	GSM300173	GSM300174	GSM300175	GSM300176	GSM300177	GSM300178	GSM300179	GSM300180 5
1560679_at	1	0.5934963	0.5936971	0.23959856	0.23200095	0.24109048	0.23657396	0.2632463	0.5642327	0.5259835	0.5405853	0.623138	0.53461605	0.50474054	0.5085336	0.5475861
214218_s_at	2	201.07051	187.70613	99.46571	0.22260945	0.25905278	87.32281	129.65483	0.49931356	0.45528802	0.36309782	0.36972588	0.43651226	0.28056654	0.3360729	0.3417698
224687_at	3	0.9965862	1.0730821	0.86992425	0.83846813	0.7568469	0.848078	0.6282263	0.8978864	0.95266575	0.78014195	0.9806041	0.8438871	1.3741192	0.67811286	1.2537198
1557052_at	4	1.0089437	1.0633166	0.7484397	0.8990089	0.9727178	0.7845246	1.6006079	1.0500226	0.9591978	0.98691887	1.0943227	0.91743636	0.9239464	0.8965624	0.90422505

ID_REF	Cluster	GSM300166	GSM300167	GSM300168	GSM300169	GSM300170	GSM300171	GSM300172	GSM300173	GSM300174	GSM300175	GSM300176	GSM300177	GSM300178	GSM300179	GSM300180
1560679_at	1	0.5934963	0.5936971	0.23959856	0.23200095	0.24109048	0.23657396	0.26324633	0.5642327	0.5259835	0.5405853	0.623138	0.53461605	0.50474054	0.5085336	0.5475861
214218_s_at	2	201.07051	187.70613	99.46571	0.22260945	0.25905278	87.32281	129.65483	0.49931356	0.45528802	0.36309782	0.36972588	0.43651226	0.28056654	0.3360729	0.3417698
224687_at	3	0.9965862	1.0730821	0.86992425	0.83846813	0.7568469	0.848078	0.6282263	0.8978864	0.95266575	0.78014195	0.9806041	0.8438871	1.3741192	0.67811286	1.2537198
212581_x_at	4	0.8869034	0.82476264	0.7420776	0.6803308	0.7661384	0.7127526	0.6825294	1.073333	0.9805575	1.1147358	1.0339497	0.98102427	0.9142932	1.0539972	1.0024221
200915_x_at	5	1.161702	1.3087887	1.0785029	1.3842632	1.2575328	0.9761161	1.2829734	0.9171505	0.9809581	0.89831454	0.96702915	0.9686894	1.3384092	0.9856808	1.1668628

Continued ...

SAMPLE GROUPS USING HIERARCHICAL CLUSTERING (GSE48350):

CONCLUSION:-

- Machine Learning Techniques: Normalization, PCA, and K-Means clustering were applied to analyze gene expression data for Alzheimer's Disease.
- Normalization (Min-Max Scaling): Ensured all features contributed equally, preventing bias from varying scales.
- PCA: Reduced dimensionality, retaining key information while simplifying the dataset and minimizing overfitting.
- K-Means Clustering: Identified inherent patterns and grouped similar genes, aiding in the discovery of potential biomarkers for early AD detection.
- Outcome: These techniques provide a more efficient and insightful analysis, advancing diagnostic and research efforts in Alzheimer's Disease.

REFERENCE:-

- 1. Tanveer, M., Richhariya, B., Khan, R., Rashid, A., Khanna, P., Prasad, M., & Lin, C. (2020). Machine learning techniques for the diagnosis of Alzheimer's disease: A review. *Transactions on Multimedia Computing, Communications, and Applications (TOMM)*, 16, 1-35. https://doi.org/10.1145/3401634
- 2. Bringas, S., Salomón, S., Duque, R., Lage, C., & Montaña, J. L. (2020). Alzheimer's disease stage identification using deep learning models. *Journal of Biomedical Informatics*, 109, 103514. https://doi.org/10.1016/j.jbi.2020.103514
- 3. Wang, S. H., Phillips, P., Sui, Y., Liu, B., Yang, M., & Cheng, H. (2018). Classification of Alzheimer's disease based on eight-layer convolutional neural network with leaky rectified linear unit and max pooling. *Journal of Medical Systems*, 42(5), 85. https://doi.org/10.1007/s10916-018-0926-3
- 4. Chen, H., He, Y., Ji, J., & Shi, Y. (2019). A machine learning method for identifying critical interactions between gene pairs in Alzheimer's disease prediction. *Frontiers in Neurology*, 10, 1162. https://doi.org/10.3389/fneur.2019.01162

- 5. Li, W., Zhao, Y., Chen, X., Xiao, Y., & Qin, Y. (2018). Detecting Alzheimer's disease on small dataset: A knowledge transfer perspective. *IEEE Journal of Biomedical and Health Informatics*, 23(4), 1234-1242. https://doi.org/10.1109/JBHI.2018.2869384
- 6. Bryan, R. N. (2016). Machine learning applied to Alzheimer's disease. *Radiology*, 281(3), 665-668. https://doi.org/10.1148/radiol.2016161491
- 7. Neelaveni, J., & Devasana, M. G. (2020). Alzheimer disease prediction using machine learning algorithms. In *Proceedings of the 6th International Conference on Advanced Computing and Communication Systems (ICACCS)*, Coimbatore, India, 6–7 March 2020.
- 8. Alam, S., & Kwon, G. R. (2017). Alzheimer disease classification using KPCA, LDA, and multi-kernel learning SVM. *International Journal of Imaging Systems and Technology*, 27(2), 133–143. https://doi.org/10.1002/ima.22243

