

According to the convergence theorem of bisection method

$$\tau > \frac{b_k - a_k}{2}$$

$$\tau > \frac{b - a}{2^{k+1}}$$

$$2^{k+1} > \frac{b - a}{\tau}$$

$$(k+1)\log_2 2 > \log_2 \left(\frac{b - a}{\tau}\right)$$

$$k + 1 > \log_2 \left(\frac{b - a}{\tau}\right)$$

$$k > \log_2 \left(\frac{b - a}{\tau}\right) - 1$$

(a) If g is a contraction in the [ln1.1, ln3] range then |g(p) - g(q)| < |p - q| for

$$p, q \in [ln1.1, ln3]$$
 and $p \neq q$

Since $\mid g(ln1.1) - g(ln3) \mid$ is the largest value that can have , to be a contraction this value should be smaller than $\mid ln1.1 - ln3 \mid$

$$|g(ln1.1) - g(ln3)|$$

= $|e^{-ln1.1} - e^{-ln3}|$
= $0.58 < |ln1.1 - ln3| < 1.0$

Therefore g is a contraction in the [ln1.1, ln3] closed interval.

(b) Choose p such that $ln1.1 \le p \le ln3$

$$e^{-p} = q$$

$$-plne = lnq$$

$$-p = \ln(q)$$

$$p = -\ln(q)$$

Since $p \in G$

$$-In(q) \in G$$

Therefore $ln(1.1) \le -ln(q) \le ln(3)$

The greatest value q can have, when p is in G is $e^{-1.1}=0.90909$ and the smallest value q can have is $e^{-3}=0.333$ when p is in G

But ln(1.1) = 0.0953 and ln(3) = 1.0986

Therefore $g: G \rightarrow G$

(c)
$$|x_{k+1} - x_k| \le L^k |x_1 - x_0|$$

$$|g(x_k) - x_k| \le L^k |x_1 - x_0|$$

$$x_{k+1} = g(x_k)$$

$$L \in [0,1)$$

Since the $0 \le L < 1$

When k is large

$$L^k \to 0$$

$$g(x_k)-x_k\to 0$$

Therefore
$$g(x_k) \to x_k$$

Therefore x_k is the fixed point

(a)
$$x_{k+1} = g(x_k)$$
 (1)

$$x_* = g(x_*) - - - - - - (2)$$

$$(1)-(2) \Rightarrow \qquad x_{k+1}-x_*=g(x_{k+1})-g(x_*)$$

$$x_{k+1}-x_*=g'(c_n)(x_{k+1}-x_*) \text{ [Using taylor series for } g(x_{k+1})\text{]}$$

$$c_n \text{ is between } x_* \text{ and } x_k$$

$$|x_{k+1}-x_*| \leq \lambda |x_{k+1}-x_*|$$

$$\frac{x_* - x_{k+1}}{x_* - x_{k}} = g'(c_n)$$

Since $x_k \to x_*$ and c_n is between x_* and x_k we have $g'(c_n) \to g(x_*)$

Therefore we can write

$$x_{k+1} - x_* = g'(x_*)(x_{k+1} - x_*)$$

This tell us that near to the root x_st , the errors will decrease by a constant factor $g'(x_st)$

And also this tell what happens when $|g'(x_*)| > 1$

Then errors will increase as we approach to the root rather than decreasing the size.

In this question
$$x_*=0$$
 and $g'(x_*)=\frac{2}{1+4x^2}$, then $g'(0)=2$

Therefore if we use fixed point iteration, it will diverge instead of converge as the error get increased by a factor of 2.

(b) (i)
$$x = 1.16$$
 (fixed point)

$$x_0 = 2$$

$$k = 0$$

$$x_1 = \tan^{-1}(2x_0) = 1.3258$$

$$e_0 = |1.16 - 1.3258| = 0.1658$$

k = 1

$$x_2 = \tan^{-1}(2x_1) = \tan^{-1} 2.6516 = 1.2102$$

$$e_1 = |1.16 - 1.2102| = 0.0502$$

$$k = 2$$

$$x_3 = \tan^{-1}(2x_2) = \tan^{-1} 2.4204 = 1.1790$$

$$e_2 = |1.16 - 1.1790| = 0.019$$

(ii) At fixed point
$$tan^{-1}(2x) = x$$

Therefore let's take $f(x) = tan^{-1}(2x) - x$

$$k = 0$$

$$x_1 = x_0 - \frac{\tan^{-1}(2x_0) - x_0}{\frac{2}{1 + 4x_0^2} - 1} = 2 - \frac{\tan^{-1}(4) - 2}{\frac{2}{1 + 16} - 1} = 1.2356$$

$$e_0 = |1.16 - 1.2356| = 0.0756$$

$$k = 1$$

$$x_2 = x_1 - \frac{tan^{-1}(2x_1) - x_1}{\frac{2}{1 + 4x_1^2} - 1} = 1.2356 - \frac{tan^{-1}(2.4712) - 1.2356}{\frac{2}{1 + 6.1068} - 1} = 1.1669$$

$$e_1 = |1.16 - 1.1669| = 0.0069$$

$$k = 2$$

$$x_3 = x_2 - \frac{tan^{-1}(2x_2) - x_2}{\frac{2}{1 + 4x_2^2} - 1} = 1.1669 - \frac{tan^{-1}(2.3338) - 1.1669}{\frac{2}{1 + 5.4466} - 1} = 1.1656$$

$$e_2 = |1.16 - 1.1656| = 0.0056$$

```
(a)
      function[zero, res, niter] = newton(f, df, x0, tol, nmax)
      niter = 0;
      x = x0 - f(x0)/df(x0);
      e = abs(x - 0.8284);
      while abs(x - x0) >= tol && niter <= nmax
          ne = e;
          x0 = x;
          x = x0 - f(x0)/df(x0);
          res = abs(x - x0)
          e = abs(x - 0.8284);
          q = e/ne.^2
          niter = niter + 1;
      end
      zero = x
      niter
      if niter > nmax
          fprintf('Newtons method stop without convergence');
      end
```

(b) Yes

The answer is 0.8284

(c)

k	x_k	$e_k = x_k - x_* $	e_k / e_{k-1}^2
1	23.5980	22.7696	0.0098
2	10.9553	10.1269	0.0195
3	4.7864	3.9580	0.0386
4	1.9826	1.1542	0.0737
5	0.9957	0.1673	0.1256
6	0.8331	0.0047	0.1678
7	0.8284	3.0971e-05	1.4047
8	0.8284	2.7125e-05	2.8278e+04

Yes.

From the last column we can see that the increase is getting higher and higher.

(d)

k	x_k	$e_k = x_k - x_* $	e_k / e_{k-1}^2
1	23.5980	22.7696	0.0098
2	10.9553	10.1269	0.0195
3	4.7864	3.9580	0.0386
4	1.9826	1.1542	0.0737
5	0.9957	0.1673	0.1256
6	0.8331	0.0047	0.1678
7	0.8284	3.0971e-05	1.4047
8	0.8284	2.7125e-05	2.8278e+04
9	0.8284	2.7125e-05	3.6867e+04

This shows the quadratic convergence. We can see that near the real solution, the increase of $\frac{e_k}{e_{k-1}^2}$ is very high.

```
f(x) = 0.8*sin(x) - x + 3 df(x) = 0.8*cos(x) - 1 The answer is x = 3.0629 And number of iterations niter = 15
```

Solution

164.1453

```
newton(@f,@df,100,10.^-8,40)
res =
789.6413
res =
351.8600
res =
135.7533
res =
424.8231
res =
211.7088
res =
423.6056
res =
```

res = 83.2772 res = 111.8004 res = 46.7327 res = 17.6963 res = 0.6260 res = 0.0265 res = 1.5076e-05 res = 3.9759e-12 zero = 3.0629

```
 \label{eq:total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total
```

Solution

bisection(@f,-1,2,10.^-12,100)

zero =

0.0427

res =

-6.6125e-05

ans =

0.0427

