Total No. of	Questions	: 9]
--------------	-----------	------

SEAT No. :

P-3926

[Total No. of Pages: 5

[6001]-4001

Æ.E.

ENGINEERING MATHEMATICS - I

(2019 Pattern) (Semester - I) (107001)

Time : 2½ *Hours*]

[Max. Marks: 70

Instructions to the candidates:

- 1) Question No. I is compulsory.
- 2) Solve Q. No. 2 or Q. No. 3, Q. No. 4 or Q. No. 5, Q. No. 6 or Q. No. 7, Q. No. 8 or Q. No. 9.
- 3) Neat diagrams must be drawn wherever necessary.
- 4) Figures to the right indicate full marks.
- 5) Electronic pocket calculator is allowed.
- 6) Assume suitable data, if necessary.
- Q1) Write the correct option for the following multiple choice questions:

a) If
$$u = \frac{1}{x^2} + \frac{1}{y^2} + \frac{1}{x^2 + y^2}$$
 then $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$ is equal to [2]

i) 2u

ii) -2u

iii) 0

- iv) None
- b) If $u = x^y$ then $\frac{\partial u}{\partial y}$ is equal to

[1]

i) 0

ii) yx^{y-1}

iii) $x^y \log x$

iv) x^{y-1}

c) If
$$x = uv$$
, $y = \frac{u}{v}$ then the value of $\frac{\partial(u, v)}{\partial(x, y)}$ is [2]

i) $\frac{-2u}{v}$

ii) uv

iii) $\frac{v}{2u}$

iv) $\frac{-v}{2u}$

P.T.O.

A is orthogonal matrix then A⁻¹ equal to [1] d) i) A

iii) A²

For what value of K the homogeneous system x + 2y - z = 0, e) 3x + 8y - 3z = 0; 2x + 4y + (k-3)z = 0 has infinitely many solution.[2]

Using Cayley Hamilton theorem A⁻¹ for the matrix $A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$ f) [2]

ii) $\frac{1}{5}(A-4I)$ iv) $\frac{1}{5}(4I-A)$

If $u = ln(x^2 + y^2)$, show that [5]

b) If $e^{2u} = y^2 - x^2$, $\cos ec \ v = \frac{y}{r}$ then find the value of [5]

 $\left(x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y}\right) \left(x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y}\right)$

c) If u = f(x - y, y - z, x - x) then find the value of $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z}$. **[5]**

If u = ax + by, v = bx - ay find the value of $\begin{pmatrix} \partial u \\ \partial x \end{pmatrix} \cdot \begin{pmatrix} \partial x \\ \partial u \end{pmatrix}$. **Q3**) a) [5]

b) If $T = \sin\left(\frac{xy}{x^2 + y^2}\right) + \sqrt{x^2 + y^2}$, find the value of $x\frac{\partial T}{\partial x} + y\frac{\partial T}{\partial y}$. [5]

If u = f(r, s) where $r = x^2 + y^2$, $s = x^2 - y^2$ then show that $v \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial x} = 4 \text{ m} \frac{\partial u}{\partial x}$ $y\frac{\partial u}{\partial x} + x\frac{\partial u}{\partial y} = 4xy\frac{\partial u}{\partial r}$. [5]

Q4) a) If
$$x = u + v$$
, $y = v^2 + w^2$, $z = u^3 + w^5$ then find $\frac{\partial u}{\partial x}$. [5]

In calculating resistance R of a circuit by using the formula: b)

$$R = \frac{V}{I}$$

errors of 3% and 1% are made in measuring Voltage V and current I respectively. Find the % error in the calculated resistance. [5]

Discuss the maxima and minima of: c) [5]

$$f(x, y) = x^2 + y^2 + xy + x - 4y + 5$$

(b) Discuss the maxima and minima of :
$$f(x, y) = x^{2} + y^{2} + xy + x - 4y + 5$$
OR
$$Q5) \text{ a)} \quad \text{If } u + v^{2} = x, v + w^{2} = y, w + u^{2} = z \text{ find } \frac{\partial(u, v, w)}{\partial(x, y, z)}$$
[5]

- Examine for functional dependence: b) [5] u = y + z, $v = x + 2z^2$, $w = x - 4yz - 2y^2$
- A space probe in the shape of the ellipsoid $4x^2 + y^2 + 4z^2 = 16$ enters the earth's atmosphere and it's surface begins to heat. After one hour, the temperature at the point (x, y, z) on the surface of the probe is

$$T(x, y, z) = 8x^2 + 4yz - 16z + 600.$$

Find the hottest point on the surface of the probe, by using Lagrange's method.

- Examine for consistency and if consistent then solve it *Q***6**) a) 2x + 3y + 5z = 1; 3x + y - z = 2; x + 4y - 6z = 1
 - Examine whether the vectors b) $X_1 = (1, 1, -1, 1); X_2 = (1, -1, 2, -1); X_3 = (3, 1, 0, 1)$ are linearly independent or dependent. If dependent find relation between them.

c) If
$$A = \begin{bmatrix} 1/3 & 2/3 & a \\ 2/3 & 1/3 & b \\ 2/3 & -2/3 & c \end{bmatrix}$$
 is orthogonal [5]

Find a, b, c.

Investigate for what values of k, the equations **Q7**) a)

[5]

x + y + z = 1; 2x + y + 4z = k; $4x + y + 10z = k^2$ have infinite number of solution? Hence find solution.

Examine whether the vectors. b)

[5]

$$X_1 = (2, 3, 4, -2); X_2 = (-1, -2, -2, 1); X_3 = (1, 1, 2, -1)$$

are linearly independent or dependent. If dependent find relation between them.

Find the current I_1 ; I_2 ; I_3 in the circuit shown in the figure c)

[5]

Find eigen values and eigen vectors of the following matrix **Q8**) a)

[5]

$$A = \begin{bmatrix} 1 & 1 & -2 \\ -1 & 2 & 1 \\ 0 & 1 & -1 \end{bmatrix}$$

Verify Cayley-Hamilton theorem for A = b) find A⁻¹. [5]

Find the modal matrix p which transform the matrix $A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$ to c)

the diagonal form.

[5]

- (29) a) Find eigen values and eigen vectors of the following matrix $\begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$.

 [5]

 b) Verify Cayley-Hamilton theorem for $A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \end{bmatrix}$ and use it to find A^{-1} .

 [5]

 c) Reduce the following quadratic form to the "sum of the squares form".

 [5] Q(x) = $2x^2 + 9y^2 + 6z^2 + 8xy + 8yz + 6xz$

$$Q(x) = 2x^2 + 9y^2 + 6z^2 + 8xy + 8yz + 6xz$$

. I the state of t 9. As. 16. As April 10. As Apri