



# The Lightweight Protocol CLIC: Performance of an MPI implementation on CLIC

Díaz, A. F.; Ortega, J.; Cañas, A.; Fernández, F.J.; Prieto. A Departamento de Arquitectura y Tecnología de Computadores, Universidad de Granada

Email: afdiaz@atc.ugr.es, julio@atc.ugr.es, acanas@atc.ugr.es, jfernand@atc.ugr.es,aprieto@ugr.es

## Introduction

- Usually Cluster Communications in Linux are based on TCP/IP
- Portability is reduced if we try to use NIC & Architecture optimizations
   (NICs can be obsoleted in a short time)
- OS can't offer full network performances:
  - Latency / Bandwith.
  - Problems with multiple NICs. (Channel Bonding)
  - Herogenous Networks.
  - Reliable Broadcast/ Multicast.

## What is CLIC?

- CLIC (Communication on LInux Cluster)
- Reliable Transport System optimized for Cluster Computing
- Developed on Linux (kernel module)
- Using OS resources:
   (scheduler, NIC drivers, kernel functions)

## CLIC Features

- Low overhead SW. Avoid TCP/IP stack.
- Own flow control & errors correcting mechanims: Unicast, Multicast & Broadcast
- More Send types: Broadcast, Asyncronous
- Architecture Independent:
   Autoconfiguration, Channel Bonding.
- Heterogeneous Topologies. Routing
- Multiple Transport Characteristics.
- Multithread & SMP Support. Spinlocks & mutex

# CLIC vs. other Systems

| Features            | CLIC | GAMMA | VIA | Beowulf  | Mad. II     | U-NET |
|---------------------|------|-------|-----|----------|-------------|-------|
| NIC & Arch. Indep.  | YES  | NO    | YES | YES      | YES         | No    |
| Threads, SMP        | YES  | NO    | YES | YES      | YES         | YES   |
| Multiprotocol Supp. | YES  | NO    | YES | Op.Syst. | YES         | NO    |
| Secure System       | YES  | NO    | NO  | NO       | NO          | NO    |
| Uni. Flow-Control   | YES  | YES   | NO  | Op.Syst. | YES         | NO    |
| Broadcast Flow-Ctl. | YES  | NO    | NO  | NO       | NO          | NO    |
| Packet Recovery     | YES  | NO    | NO  | Op.Syst. | YES         | NO    |
| Channel Bonding     | YES  | NO    | NO  | YES      | NO          | NO    |
| Sincr. & Asyncr.    | YES  | NO    | NO  | NO       | YES         | NO    |
| Autoconfiguration   | YES  | NO    | NO  | NO       | ?           | NO    |
| Routing             | YES  | NO    | NO  | Op.Syst. | Het. No enr | NO    |
| Send. same Host     | YES  | NO    | YES | Op.Syst. | YES         | NO    |

## IP Stack



# Avoiding IP Stack ...



П

# $Sk\_buff \leftarrow \rightarrow NIC$

- -Information exchange with NIC.
- -sk\_buff needs memory copy sk\_buff but: architecture independence, pipeline in send process



# Bandwidth & Memory Cost

- -Minimize number of memory copys, better.
- -Using 0-copy is not allways better performances.
- -Bottleneck is in the network, not in the memory.



## How CLIC works ...

#### **SENDER**

- (1) System Call
- (2) Copying to sk\_buf
- (3) Flow Control
- (4) Sending to NIC (*driver*)

#### **RECEIVER**

- (1) Interrupt Routine
- (2) Botton Halves
- (3) CLIC control & proc.
- (4) Send user's memory





# Other Optimizing OS CLIC...

#### • SEND:

- Memory managent (sk\_buffer reuse).
- Open communication ASAP.
- Direct NIC Send.

#### Receive:

Processing packets

#### Both:

- Flow Control optimized for full-speed.
- Selective Lost packet re-transmitions.
- Low overhead.



## LAM-MPI over CLIC

- RPI Functions. C2C Model.
- Multiple process, nodes and users of MPI >> CLIC\_module
- MPI Requests are converted into CLIC messages with MPI characteristics (Buffered, Sincronous, Ready) & (comm,tid, source, dest)
- Request can progres automaticaly informing Upper MPI Layer.





## CLIC Performances

| Message<br>Size | PVM  | MPI-TCP | MPI-CLIC | CLIC |
|-----------------|------|---------|----------|------|
| 10              | 224  | 140     | 62       | 59   |
| 100             | 248  | 153     | 102      | 94   |
| 1000            | 454  | 379     | 204      | 196  |
| 10000           | 1285 | 1279    | 943      | 932  |
| 100000          | 9018 | 8990    | 8690     | 8615 |

Data transfers

(time in  $\mu$ s)

Network: Fast Ethernet & Switch



# CLIC Performances (II)



Latency is also important...



More nodes, better

8 proc. performances if you 6 proc.

use broadcast send

4 proc.

Speedup MPI-CLIC vs. MPI-TCP

П

# CLIC Performances (III)



## Conclusions

- A communication layer (CLIC) is proposed to use OS efficiently.
- Upper layer systems (PVM, MPI,...) can be efficiently used on top of CLIC.
- CLIC improves the performance of the comunications so user-level aplications can take advantage of network features. (Better latency & Bandwith, *Broadcast, Channel Bonding*).
- This System can be upgraded to new networking techonogies. (Future study)