MATH 250A: Groups, Rings, and Fields

Jad Damaj

Fall 2022

Contents

1	Gro	ups		3
	1.1	August	$5~25~\dots$	3
		1.1.1	Groups	3
		1.1.2	Review of homomorphisms, isomorphims	5
		1.1.3	Classify all finite groups up to isomorphim	6

Chapter 1

Groups

1.1 August 25

1.1.1 Groups

Two ways to define groups

• concrete: group = symmetries of an object X. Here a symmetry is a bijection $X \to X$ with inverse that preserves "structure" (topology, order, binary operation, ...)

Example 1.1.1. The rectangle has 4 symmetries.

The icossahedron has 20×3 symmetries since after fixing the first face there are 3 possible rotations. Vector space \mathbb{R}^k : $n \times n$ matrices with det $\neq 0$, denoted $GL_n(K)$

• abstract definition:

```
Definition 1.1.2. A group is a set G with a binary operation G \times G \to G by (a,b) \mapsto ab, a \times, a+b, \ldots with "Inverse": G \to G by a \mapsto a^{-1} and "Identity": 1, 0, e, I, \ldots satisfying the axioms: 1x = x1 = x x(x^{-1}) = (x^{-1})x = 1 (xy)z = x(yz)
```

We can go from the concrete definition to the abstract one: the binary operation is composition, the identity is the trivial symmetry, inverses given y "undoing" a symmetry.

Is an abstract group the symmetries of something?

Theorem 1.1.3 (Cayley's Theorem). Any abstract group is the group of symmetries of some mathematical object.

Recall group actions:

Definition 1.1.4. Given a group G, a set S, a (left) group action is a map $G \times S \to S$ by $(g, s) \mapsto g(s), gs$ satisfying g(h(s)) = gh(s), 1s = s.

To prove Cayley's theorem we need to find :

1. a set S acted on by G

2. structure on S so that G = all symmetries.

What is S? Take S = G.

Need to define the action of GonG. There are 8 natural ways to do this.

First 4, we defin $4 G \times S \to S$ by

- g(s) = s trivial action
- g(s) = gs group product
- Try g(s) = sg Fails since G not necessarily commutative: $g(h(s)) = (sh)g \neq s(gh) = gh(s)$
- $g(s) = sg^{-1}$ works since $g(h(s)) = g(sh^{-1}) = sh^{-1}g^{-1} = s(gh)^{-1} = gh(s)$
- $g(s) = gsg^{-1}$ adjoint action

The above group action is known as a left group action, We define a right group action in a similar way : $S \times G \to S$ by $(s, g) \mapsto (s)g$, s^g satisfying (sg)h = s(gh), $s^g = s(gh)$, $s^g = s(gh)$

We now define right group actions of G on G: $S \times G \to G$ by

- $(s,g) \mapsto s$
- $(s,g) \mapsto sg$
- $\bullet \ (s,g) \mapsto g^{-1}s$
- $(s,g)\mapsto g^{-1}sg$

Now we have S=G, S=set acted on by G using left action g(s)=gs - left translation. So we have shown $G\subseteq$ symmetries of S.

Want : G =symmetries of S + "structure". Let structure on S= right action of G on S. We now have 3 copies of G:

- 1. set S = G
- 2. G acts on left on S (G = symmetries of S)
- 3. G acts o the right on S (Structure of S)

Object S = S + right G action

What are the symmetries of this?

Bijection $f: S \to S$ preserving the right G-action. eg. f(sg) = f(s)g

Need to check:

- 1. Left G-action of G preserves the right G-action
- 2. Anything that preserves the right G-action is given by left multiplication of an element of G

Check (1): For $g \in G$ need (gs)h = g(sh), follows by commutativity

Note: left G-action does not preserve right G-action: $g(hs) \neq h(gs)$ in general

Check (2): Suppose $f: S \to S$ preserves the right G-action, f(sh) = f(s)h for all $h \in G$. Need to find $g \in G$ such that f(s) = gs. Take s = 1, f(1) = g1 = g so g = f(1). If g = f(1), then f(s) = gs since gs = (f(1))s = f(1s) = f(s).

So we have G = symmetries of (Set G + right G action)

Example 1.1.5. G=symmetries of rectange, set S=G

We get the graph:

Cayley graph: Point for each $g \in G$ Draw a line from g to h with gf = h.

Goal of Group theory

- 1. Classify all groups
 - Hard but can do special cases: Groups of order 60, finite subgroups of rotations in \mathbb{R}^3 , all finite simple groups, symmetries of crystals
- 2. Given a group G, classify all ways G can act on something (called a representation of G)
 - ullet Permutation representation : G acts on a set S
 - \bullet Linear representation : G acts on a vector space

Example 1.1.6. Poncaire group = symmetries of space time elementary particle: space of states = vector space acted on by G = linear group of G

1.1.2 Review of homomorphisms, isomorphims

Definition 1.1.7. A homomorphism is a map $f: G \to H$ that preserves structure eg. f(gh) = f(g)f(h), f(1) = 1, $f(g^{-1}) = f(g)^{-1}$

Note: last two properties can be derived from the first.

Example 1.1.8.
$$\exp(x) = e^x : (\mathbb{R}, +) \to (\mathbb{R}, \times)$$

 $\exp(x + y) = \exp(x) \exp(y), \exp(0) = 1, \exp(-x) = \exp(x)^{-1}$

Definition 1.1.9. The kernel of a homomorphism f is the set of elements with image the identity.

Example 1.1.10. $\mathbb{R} \to \text{rotation}$ is the plane by $\theta \mapsto \text{rotation}$ by angle θ .

nontrivial kernel : multiples of 2π .

We get the short exact sequence: $0 \to 2\pi \mathbb{Z} \to \mathbb{R} \to \text{rotations} \to 0$

Definition 1.1.11. A sequence of homomorphisms $A \to B \to C$ is exact if Image $A \to B = \text{Kernel } B \to C$

 $0 \to A \to B$ means $A \to B$ is injective $A \to B \to 0$ means $A \to B$ is surjective

Definition 1.1.12. $f: A \to B$ is an isomorphim if it is a homomorphism with an inverse. We say A, B are isomorphic. "basically the same"

Example 1.1.13. $2\pi\mathbb{Z}$ is isomorphic to \mathbb{Z} .

Example 1.1.14. $\mathbb{Z}/4\mathbb{Z}$, integers mod 4 with addition: $\{0, 1, 2, 3\}$ and $(\mathbb{Z}/5\mathbb{Z})^{\times}$, under multiplication: $\{1, 2, 3, 4\}$ are isomorphic.

We map $0 \to 1 = 2^0$, $1 \to 2 = 2^1$, $2 \to 4 = 2^2$, $3 \to 3 = 2^3$ eg. $x \mapsto 2^x$

1.1.3 Classify all finite groups up to isomorphim

Definition 1.1.15. The order of a group G = number of elements in G

Order 1: $e \times e = e$ 1 group - trivial group

Order 2: 1 group - e, f with $f^2 = e \cong \mathbb{Z}/2\mathbb{Z}$

Order p for p prime: only one group $\mathbb{Z}/p\mathbb{Z}$ (integers modulo p)

Definition 1.1.16. For $g \in G$ the order of g is the smallest $n \ge 1$ with $g^n = 1$

Theorem 1.1.17 (Lagrange's Theorem). If $g \in G$, the roder of g divides the order of G.

Example 1.1.18. Suppose |G| = p, (p prime). Pick $g \in G$ with $g \neq e$. Order of g divides |G| = p so is either 1 or p. Can't be one since $g \neq e$. So elements of G 1, g, ..., g^{p-1} are all distinct since $g^p = 1$, $g^x \neq 1$ for $0 \leq x < p$ and if $g^i = g^j$, $g^{i-j} = 1$. Thus, these must be all elements of G.

Order 4:

- Ex: $\mathbb{Z}/4\mathbb{Z}$, symmetries of rectangle, $(\mathbb{Z}/5\mathbb{Z})^{\times}$, $(\mathbb{Z}/8\mathbb{Z})^{\times}$, symmetries of (Insert Figure)
- only 2 groups of order 4