Block Ciphers Modes of Operation

Outline

2

ECB & CBC

Electronic Code Book mode (ECB)

- How to encode multiple blocks of a long message?
 - We need to break up the data into blocks and then encrypt those
 - The way we do this impacts security
- ECB = Each block is encrypted independently of the others

ECB: advantages/disadvantages

Advantages

- no block synchronization between sender and receiver is required
- bit errors caused by noisy channels only affect the corresponding block but not succeeding blocks
- Encryption/decryption can be parallelized => high-speed

Disadvantages

- ECB encrypts highly deterministically
 - identical PT blocks produce the same CT blocks
 - an attacker recognizes if the same message has been sent twice

Substitution Attack on ECB

- Once a particular plaintext to ciphertext block mapping P_i → C_i is known, a sequence of ciphertext blocks can easily be manipulated
- Suppose an electronic bank transfer

Block #	1	2	3	4	5
	Sending	Sending	Receiving	Receiving	Amount
	Bank A	Account #	Bank B	Account #	\$

- the encryption key between the two banks does not change too frequently
- The attacker sends \$1 transfers from his account at bank A to his account at bank B repeatedly
 - He can check for ciphertext blocks that repeat, and he stores blocks 1,3 and 4 of these transfers
- He now simply replaces block 4 of other transfers with the block 4 that he sored before
 - *all transfers* from some account of bank A to some account of bank B are redirected to go into the attacker's B account!

Cipher Block Chaining mode (CBC)

- There are two main ideas behind the CBC mode:
 - Previous cipher block is chained with current plaintext block
 - ciphertext C_i depends not only on block P_i but on ciphertext block C_{i-1} as well
 - Any change to a block affects all following ciphertext blocks
 - The encryption is randomized by using an Initialization Vector (IV)

$$C_1 = E_K(P_1 \oplus IV)$$

 $C_i = E_K(P_i \oplus C_{i-1})$

 IV should be a non-secret nonce (used only once) value => the CBC mode becomes a probabilistic encryption scheme, i.e., two encryptions of the same plaintext look entirely different

7

Cipher Block Chaining mode (CBC)

- Sequential implementation. Cannot be parallelized.
- If one PT blocks changes => must re-encrypt every following block

Stream Modes of Operation

Stream Modes of Operation

- Use block cipher as some form of pseudo-random number generator
 - The random number bits are then XOR'ed with the plaintext (as in stream cipher)
 - The key stream is computed in a **blockwise** fashion
 - The key stream block has the same size as the plaintext block

There are three modes that make it possible to convert a block cipher into a stream cipher:

Cipher Feedback (CFB) mode

Output Feedback (OFB) mode

Counter (CTR) mode

Output Feedback mode (OFB)

- It is used to build a stream cipher from a block cipher
 - The key stream is generated in a blockwise fashion (instead of bitwise)
- The output of the cipher gives us key stream bits S_i with which we can encrypt plaintext bits using the XOR operation.
 - Output of the cipher is feed back for next stage

Encryption (first block):
$$S_1 = e_k(\mathrm{IV})$$
 and $C_1 = S_1 \oplus P_1$

Encryption (general block):
$$S_i = e_k(S_{i-1})$$
 and $C_i = S_i \bigoplus P_i$, $i \geq 2$

Decryption (first block):
$$S_1 = e_k(IV)$$
 and $P_1 = S_1 \oplus C_1$

Decryption (general block):
$$S_i=e_k(S_{i-1})$$
 and $P_i=S_i \bigoplus C_i$, $i \geq 2$

Cipher Feedback mode (CFB)

- It uses a block cipher as a building block for a stream cipher (similar to the OFB mode), more accurate name: "Ciphertext Feedback Mode"
- The key stream S_i is generated in a blockwise fashion and is also a function of the ciphertext y_{i-1}
- As a result of the use of an IV, the CFB encryption is also nondeterministic

Encryption (first block): $y_1 = e_k(IV) \oplus x_1$

Encryption (general block): $y_i = e_k(y_{i-1}) \oplus x_i$, $i \ge 2$

Decryption (first block): $x_1 = e_k(IV) \oplus y_1$

Decryption (general block): $x_i = e_k(y_{i-1}) \oplus y_i$, $i \ge 2$

It can be used in situations where short plaintext blocks are to be encrypted

Counter mode (CTR)

- It uses a block cipher as a stream cipher (like the OFB and CFB modes)
- Encrypt counter value rather than any feedback value
- The input to the block cipher is a counter value (same size as the plaintext block size) which must be different for each plaintext block that is encrypted

$$S_i = E_K(CTR_i)$$

 $C_i = P_i \oplus S_i$

- The keystream is generated by encrypting a sequence of counter blocks
- Unlike CFB and OFB modes, the CTR mode can be parallelized since the 2nd encryption can begin before the 1st one has finished
 - Desirable for high-speed implementations, e.g., in network routers

Counter mode (CTR)

 A counter block consists of the concatenation of two pieces: a fixed nonce, set at initialization + a variable counter, which gets increased by 1 for any subsequent counter block.

Summary

Mode	Description	
Electronic Codebook (ECB)	Each block of plaintext bits is encoded independently using the same key.	
Cipher Block Chaining (CBC)	The input to the encryption algorithm is the XOR of the next block of plaintext and the preceding block of ciphertext.	
Cipher Feedback (CFB)	Preceding ciphertext is used as input to the encryption algorithm to produce pseudorandom output, which is XORed with plaintext to produce next unit of ciphertext.	
Output Feedback (OFB)	Similar to CFB, except that the input to the encryption algorithm is the preceding encryption output, and full blocks are used.	
Counter (CTR)	Each block of plaintext is XORed with an encrypted counter. The counter is incremented for each subsequent block.	

Summary

- When using block ciphers to encrypt data larger than one block, you need to pick an operating mode
- There are many different ways to encrypt with a block cipher. Each mode of operation has some advantages and disadvantages
- Your choice impacts security, performance, etc.
- The straightforward ECB mode has security weaknesses, independent of the underlying block cipher
- Several modes turn a block cipher into a stream cipher
- The counter mode allows parallelization of encryption and is thus suited for high speed implementations

References

- Wikipedia
 - http://en.wikipedia.org/wiki/Modes of operation