Plan d'étude et représentation graphique de $y = f(x) = \frac{1}{x^2}$

www.cafeplanck.com info@cafeplanck.com

Le domaine de définition de f

$$y = f(x) = \frac{1}{x^2} \Rightarrow D_f = {}^{\circ} - \{0\} = (-\infty, 3) \cup (0, +\infty)$$

Etudier la fonction au bornes de D_f

Etudier la fonction au bornes de I_1

A la borne gauche

$$\lim_{x \to -\infty} y = \lim_{x \to -\infty} \frac{1}{x^2} = 0$$

Alors la droite d'équation Y = 0 est une asymptote horizontale pour la courbe de f.

A la borne droite

$$\lim_{x \to 0^{-}} y = \lim_{x \to 0^{-}} \frac{1}{x^{2}} = \frac{1}{(0 - \varepsilon)^{2}} = \frac{1}{+\varepsilon^{2}} = +\infty$$

Alors la droite d'équation X = 0 est une asymptote verticale pour la courbe de f.

Etudier la fonction au bornes de I_2

A la borne gauche

$$\lim_{x \to 0^+} y = \lim_{x \to 0^+} \frac{1}{x^2} = \frac{1}{(0 + \varepsilon)^2} = \frac{1}{+\varepsilon^2} = +\infty$$

Alors la droite d'équation X = 0 est une asymptote verticale pour la courbe de f.

A la borne droite

$$\lim_{x \to +\infty} y = \lim_{x \to +\infty} \frac{1}{x^2} = 0$$

Alors la droite d'équation $\,Y=0\,$ est une asymptote horizontale pour la courbe de f .

Le sens de variation de f

$$y' = f'(x) = -\frac{2}{x^3}$$

$$x^3 = 0 \Rightarrow x = 0 \notin D_f$$

Convexité de f

$$y'' = f''(x) = \frac{6}{x^4}$$

$$x^4 = 0 \Longrightarrow x = 0 \notin D_f$$

Le tableau de variation

La courbe

