A. Place Your Ad Here

time limit per test: 2 seconds memory limit per test: 256 megabytes

input: standard input output: standard output

Ivan Anatolyevich's agency is starting to become famous in the town.

They have already ordered and made n TV commercial videos. Each video is made in a special way: the colors and the soundtrack are adjusted to the time of the day and the viewers' mood. That's why the i-th video can only be shown within the time range of $[l_i, r_i]$ (it is not necessary to use the whole segment but the broadcast time should be within this segment).

Now it's time to choose a TV channel to broadcast the commercial. Overall, there are m TV channels broadcasting in the city, the j-th one has c_j viewers, and is ready to sell time $[a_i, b_i]$ to broadcast the commercial.

Ivan Anatolyevich is facing a hard choice: he has to choose exactly one video i and exactly one TV channel j to broadcast this video and also a time range to broadcast [x, y]. At that the time range should be chosen so that it is both within range $[l_i, r_i]$ and within range $[a_i, b_i]$.

Let's define the *efficiency* of the broadcast as value $(y - x) \cdot c_j$ — the total sum of time that all the viewers of the TV channel are going to spend watching the commercial. Help Ivan Anatolyevich choose the broadcast with the maximum *e fficiency*!

Input

The first line contains two integers n and m ($1 \le n$, $m \le 2 \cdot 10^5$) — the number of commercial videos and channels, respectively.

Each of the following n lines contains two integers l_i , r_i ($0 \le l_i \le r_i \le 10^9$) — the segment of time when it is possible to show the corresponding video.

Each of the following m lines contains three integers a_j , b_j , c_j ($0 \le a_j \le b_j \le 10^9$, $1 \le c_j \le 10^9$), characterizing the TV channel.

Output

In the first line print an integer — the maximum possible *efficiency* of the broadcast. If there is no correct way to get a strictly positive *efficiency*, print a zero.

If the maximum *efficiency* is **strictly** positive, in the second line also print the number of the video i ($1 \le i \le n$) and the number of the TV channel j ($1 \le j \le m$) in the most effective broadcast.

If there are multiple optimal answers, you can print any of them.

Examples

input

input	
2 3	
7 9	
1 4	
2 8 2	
0 4 1	
8 9 3	
output	
4	
2 1	

0	
output	ıt
1 1 10	
0 0	
1 1	

Note

In the first sample test the most optimal solution is to show the second commercial using the first TV channel at time [2, 4]. The efficiency of such solution is equal to $(4 - 2) \cdot 2 = 4$.

In the second sample test Ivan Anatolievich's wish does not meet the options of the TV channel, the segments do not intersect, so the answer is zero.