Examining Medical Fraud Data

Edward Liu, Bowen Ying, and Maya Narang

Background

- Healthcare fraud: extremely costly to healthcare system
 - Leads to increased insurance premiums, higher costs overall
- Can be committed by providers, physicians, beneficiaries, etc (focused on providers)
- Insights on when it is likely to occur could be useful for healthcare efficiency and cost reduction

Dataset & ER Diagram

Patient claims dataset with 600,000 entries. Includes information on inpatient and outpatient claims, along with beneficiary details.

Integrated data into shown form during pre-processing.

EDA

Inpatient vs. Outpatient Reimbursement

Proportion of Fraudulent Cases among Diagnoses

Quantile Analysis of Fraud by Diagnosis

- Non-linear relationship between fraud & reimbursement/deductible amount per diagnosis by quantile
- Most consistent / significant effects on Reimbursement Amounts (One time & Annual)

Quantile Analysis of Fraud by Provider

 Fraudulent providers generally have higher reimbursement amounts across all reimbursement quantiles

Quantile Analysis of Fraud by Physician

- Steep increase between fraud and non-fraud amounts at higher quantiles for reimbursement amounts (e.g. 0.8-0.9)
- Graphs for deductibles show minimal variation across quantiles, suggesting that deductibles may not be a strong indicator of fraudulent activity

Quantile Analysis of Fraud by Location (State & County)

State

County

Variables & Correlation Matrix

- Not too many strong correlations
- Exceptions:
 - Claim Start Date/End Date
 - Reimbursement/Deductible amounts
- Can be handled with ensemble models like Random Forest

SQL Queries

 Top 10 Beneficiaries with Most Frequent Claim Submission Rate – measured by claims/day

	BeneID	TotalClaims	FirstClaimDate	LastClaimDate	DaysActive	ClaimsPerDay
0	BENE56323	6	2009-08-17	2009-09-15	29.0	0.21
1	BENE57398	7	2009-01-03	2009-02-10	38.0	0.18
2	BENE61703	6	2009-01-11	2009-02-16	36.0	0.17
3	BENE42005	8	2009-02-26	2009-04-13	46.0	0.17
4	BENE41751	6	2009-01-18	2009-02-25	38.0	0.16
5	BENE59251	12	2008-12-23	2009-03-13	80.0	0.15
6	BENE22281	7	2009-01-02	2009-02-17	46.0	0.15
7	BENE128399	7	2009-10-02	2009-11-18	47.0	0.15
8	BENE40570	10	2009-01-07	2009-03-20	72.0	0.14
9	BENE75260	16	2008-12-21	2009-04-16	116.0	0.14

2. Detect Providers with Potential Fraud
– those with a reimbursement amount
50% higher than the global average
reimbursement

	ProviderID	TotalClaims	TotalReimbursement	AvgReimbursement
(PRV57080	1	57000.0	57000.000000
-	PRV51814	1	57000.0	57000.000000
2	PRV57399	1	57000.0	57000.000000
:	PRV52537	1	57000.0	57000.000000
4	PRV53033	2	75000.0	37500.000000
1194	PRV51354	4	10440.0	2610.000000
1195	PRV53281	53	138310.0	2609.622642
1196	PRV54968	49	127820.0	2608.571429
1197	PRV52321	150	390230.0	2601.533333
1198	B PRV56135	22	57230.0	2601.363636

Hypothesis Tests

Observed Difference in Means: 634.2917138299225 P-value: 0.0 95% Confidence Interval: [-20.58611452 20.72371041]

Null Hypothesis (H_0) : The average amount reimbursed is the same for providers with and without fraud flags.

Alternative Hypothesis (H₁): The average amount reimbursed differs significantly between providers with and without fraud flags.

Feature Engineering

Feature Engineering

Added Features:

- Cost/Category variables: How extreme a reimbursement/deductibles is relative to others in some categorical variable (like: State, Physician, Diagnosis)
- Duration/Count Variables: Length of claim, count of diagnosis, count of chronic conditions

Encoding Categorical Variables:

One-hot encoding of race & chronic conditions

Scale Data:

Cost/Category scales costs

Models

Logistic Regression (Baseline)

- Justification: efficient, straightforward, less prone to overfitting
- Limitations: assumes linear relationships between features and target
- Results: overall poor performance
 - Decent precision for negative (0) class
 - Very poor precision for positive (1) class

Gradient Boosting

- Class 0 (Negative Class): High precision (0.82) and recall (0.93), indicating the model performs very well in predicting the negative class.
- Class 1 (Positive Class): Lower recall (0.55) compared to precision (0.78), suggesting the model struggles to identify all positive cases.

Justification: chosen for its ability to handle imbalanced datasets effectively

Limitations: class imbalance, performs better for negative class

Corrections: Hyperparameter tuning for optimal performance on n_estimators, learning_rate, and max_depth

Results:

- Accuracy: 81.36% overall, indicating a strong model performance but room for improvement in fraud detection.
- ROC AUC Score: 0.9029, showing the model distinguishes well between fraud and non-fraud cases.

Random Forest Classifier

 Justification: Captures non-linear relationships, robust to multicollinearity

 Limitations: Not easily explainable, slow to run, overfitting

Corrections:

- Hyperparameter tuning:
 - n_estimators, max_depth
- 5-Fold Cross Validation to reduce overfitting

Results:

 Significant variables: Physician, County, State, Cost/Category

	0	1	accuracy	macro avg	weighted avg
precision	0.976094	0.810942	0.916782	0.893518	0.925465
recall	0.902086	0.950024	0.916782	0.926055	0.916782
f1-score	0.937632	0.874990	0.916782	0.906311	0.918429
support	94236.000000	41660.000000	0.916782	135896.000000	135896.000000

Random Forest Classifier

Correlation matrix and confusion matrix

Discussion

Results

Best Model Overall: Random Forest due to its superior recall and accuracy for detecting fraudulent claims, just slow to run

Gradient Boosting Strengths: Balanced performance but struggles with recall for fraudulent claims.

Logistic Regression Weaknesses: Poor performance across all metrics; unsuitable for imbalanced datasets like fraud detection.

Top Predictors for Fraud:

- Physician, State
- Financial variables: Claim Reimbursement, Annual Reimbursement Amount
- Quantile variables: percentile of reimbursements for a given category

Next Steps

Where to go from here?

Model Optimization:

- Logistic Regression:
 - Consider regularization (L1/L2) and feature engineering to improve predictive power.
- Gradient Boosting:
 - Use techniques like Bayesian optimization to adjust learning rate, tree depth, and boosting iterations.
- Random Forest:
 - Fine-tune hyperparameters like the number of estimators, max depth, and minimum samples for splits to further improve performance.