Lecture 8

Aakash Jog

Thursday 20th November, 2014

Contents

1	Taylor's Formula	2
2	L'Hospital's Rule	4
3	Useful Properties of Derivatives	Ę

Taylor's Formula 1

Theorem 1 (Taylor's Formula). Let f(x) be differentiable (n+1) times, where $n \in \mathbb{N} \cup \{0\}$ on an open interval about a, and x be an arbitrary point in this interval. Then, there exists a point c, which depends on x, between a and x, s.t.

$$f(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n + R_n(x)$$

where

$$R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} (x-a)^{n+1}$$

is called the Lagrange remainder

Proof. Let

$$T_n(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n$$

 $R_n^0(x) = f(x) - T_n(x)$

Therefore, it is ETPT that

$$R_n^0(x) = R_n(x)$$

Let $x \neq a$ be a fixed point.

Let

$$g(t) = f(x) - f(t) - \frac{f'(t)}{1!}(x-t) + \dots + \frac{f^{(n)}(t)}{n!}(x-t)^n - R_n^0(x)\frac{(x-t)^{n+1}}{(x-a)^{n+1}}$$

$$g(x) = 0$$

$$g(a) = f(x) - T_n(x) - R_n^0(x) = 0$$

$$\therefore g(x) = g(a)$$

Also, g(x) is continuous and differentiable on the interval. Hence we can apply Rolle's Theorem.

Therefore, $\exists c$ between a and x, s.t. f'(c) = 0.

$$g'(t) = -f'(t) - \frac{f''(t)}{1!}(x-t) + \frac{f'(t)}{1!} - \frac{f'''(t)}{2!}(x-t)^2 + \frac{f''(t)}{2!}2(x-t) - \dots$$
$$- \frac{f^{(n+1)}(t)}{n!}(x-t)^n + \frac{f^{(n)}(t)}{n!}(x-t)^{n-1} + R_n^0(x)\frac{(n+1)(x-t)^n}{(x-a)^{n+1}}$$
$$\therefore g'(t) = -\frac{f^{(n+1)}(t)}{n!}(x-t)^n + R_n^0(x)\frac{(n+1)(x-t)^n}{(x-a)^{n+1}}$$

$$f'(c) = 0$$

$$\therefore R_n^0(x) = \frac{f^{(n+1)}(c)(x-a)^{n+1}}{(n+1)!}$$
$$\therefore R_n^0(x) = R_n(x)$$

Remark 1. The Lagrange Theorem is a particular case of Taylor's Formula, with n=0, x=b.

Remark 2. If f(x) is infinitely differentiable on an open interval about a, and $\lim_{n\to\infty} R_n(x) = 0$, for any x in the interval, then

$$f(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n + \dots$$

This infinite sum is called the Taylor's series. If a = 0,

$$f(x) = f(0) + \frac{f'(0)}{1!}(x) + \dots + \frac{f^{(n)}(0)}{n!}(x)^n + \dots$$

This infinite sum is called the Maclaurin series.

Example 1. Calculate $e^{-0.05}$ with accuracy 0.0001.

Solution. Substitute x = -0.05 in

$$e^x = 1 + \frac{x}{1!} + \frac{x^n}{n!} + \frac{e^c x^{n+1}}{(n+1)!}$$

where c is between 0 and x. Then, $\exists c \in (-0.05, 0)$, and

$$|R_n(-0.05)| = \left| \frac{e^c(-0.05)^{n+1}}{(n+1)!} \right|$$

$$= \frac{e^c(0.05)^{n+1}}{(n+1)!}$$

$$< \frac{(0.05)^{n+1}}{(n+1)!}$$

If n=2

$$\frac{(0.05)^{n+1}}{(n+1)!} \le 0.0001$$

$$\therefore e^{-0.05} \approx 1 + \frac{(-0.05)}{1!} + \frac{(-0.05)^2}{2!} = 0.95125$$

2 L'Hospital's Rule

Theorem 2 (L'Hospital's Rule). Let f(x) and g(x) be differentiable on an open interval about a, except possibly at a itself. Assume

i.
$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0$$
 or $\lim_{x \to a} f(x) = \pm \infty$, $\lim_{x \to a} g(x) = \pm \infty$

ii. $g(x) \neq 0, \forall x \neq a \text{ from the interval}$

$$iii. \exists \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

Then,

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

Proof. For a particular case where f and g are differentiable at a, and the derivatives are continuous at a, $g'(a) \neq 0$, consider

$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0$$

Using Taylor's Formula with n = 0,

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f(a) + \frac{f'(c_1)}{1!}(x - a)}{g(a) + \frac{g'(c_2)}{1!}(x - a)}$$
$$= \lim_{x \to a} \frac{f'(c_1)}{g'(c_2)}$$

 c_1 and c_2 are constrained to lie between x and a. Therefore, as $x \to a$, $c_1 \to a$ and $c_2 \to a$.

$$= \frac{f'(a)}{g'(a)}$$
$$= \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

Remark 3. L'Hospital's Rule can be applied repeatedly to $\lim_{x\to a} \frac{f(x)}{g(x)}$.

Remark 4. L'Hospital's Rule is also true for one sided limits.

Example 2. Find

$$\lim_{x \to 0^+} x^2 \ln x$$

Solution.

$$\lim_{x \to 0^{+}} x^{2} \ln x = \lim_{x \to 0^{+}} \frac{\ln x}{\frac{1}{x^{2}}}$$

$$= \frac{\frac{1}{x}}{-2x^{-3}}$$

$$= \lim_{x \to 0^{+}} \frac{x^{2}}{-2}$$

$$= 0$$

Example 3. Find

$$\lim_{x \to +\infty} x^{\frac{1}{x}}$$

Solution.

$$\lim_{x \to +\infty} x^{\frac{1}{x}} = \lim_{x \to +\infty} e^{\ln x}^{\frac{1}{x}}$$

$$= e^{\lim_{x \to +\infty} \frac{\ln x}{x}}$$

$$= e^{\lim_{x \to +\infty} \frac{1}{x}}$$

$$= e^{0}$$

$$= 1$$

3 Useful Properties of Derivatives

- 1. f'(x) = 0 on (a, b) iff f(x) is constant on (a, b).
- 2. f'(x) = g'(x) on (a, b) iff f(x) = g(x) + constant on (a, b).
- 3. $\exists f'(x)$ and f(x) is monotonically increasing on (a,b) iff $f'(x) \geq 0$.
- 4. $\exists f'(x)$ and f(x) is monotonically decreasing on (a,b) iff $f'(x) \leq 0$.
- 5. If f'(x) > 0 on (a, b), then f(x) is monotonically strongly increasing on (a, b).
- 6. If f'(x) < 0 on (a, b), then f(x) is monotonically strongly decreasing on (a, b).