10.3HD

Task 1: Integration

1) Explain why the following functions are or are not probability density functions

a)
$$f(x) = \frac{7}{x}$$
 for $x \in [1, e^{0.5}]$

Evidence and conclusion

- Positive division gives a positive > 0 result, so property 1 is supported
- The final result is not = 1, dismissing property 2

As property 1 is supported but 2 is not supported, this function is not a valid probability density function.

Working out

Testing property 1

Since a positive number divided by a positive number (like all those x values found in the domain) equals a positive number, we can safely say that property 1 is supported.

For further evidence, $\frac{7}{1}=7$ and $\frac{7}{e^{0.5}}\approx 4.25.$

Testing property 2

$$\int_{1}^{e^{0.5}} \left(\frac{7}{x}\right) \\
-> 7 \ln(|x|) \\
= [7 \ln(|x|)]_{1}^{e^{0.5}}$$

Upper bound (b)

$$7 \ln(|e^{0.5}|)$$

-> 7×0.5
= $\frac{7}{2}$

Lower bound (a)

$$7 \ln(|1|)$$

-> 7×0
= 0

Final results

$$\frac{\frac{7}{2} - 0}{= \frac{7}{2}}$$

b)
$$f(x)=rac{1}{8}(16-x^4)$$
 for $x\in[0,4]$

Evidence and conclusion

- 0..2 give x-values ≥ 0 but 3..4 are < 0, not supporting property 1
- The final result is not = 1, dismissing property 2

As property 1 and 2 are not supported, this function is not a valid probability density function.

Working out

Testing property 1

Testing bounds

In order from x = 0...x = 4,

Results: $f(x) = 2, \frac{15}{8}, 0, -\frac{65}{8}, -30$

Testing property 2

$$\int_0^4 \frac{1}{8} (16 - x^4) dx$$

$$-> \frac{1}{8} \times \int_0^4 (16 - x^4) dx$$

$$-> \frac{1}{8} \times (\frac{16}{1}x - \frac{1}{5}x^5)$$

$$->\frac{1}{8}\times(16x-\frac{1}{5}x^5)$$

$$=\frac{1}{8} \times [16x - \frac{1}{5}x^5]_0^4$$

Upper bound (b), x=4

$$\frac{1}{8} imes (16(4) - \frac{1}{5}(4)^5)$$

$$-> \frac{1}{8}(64 - \frac{1}{5}1024)$$

$$\begin{array}{l}
8 & 5 & 5 & 1021 \\
-> & \frac{1}{8} \left(\frac{320}{5} - \frac{1024}{5}\right) \\
-> & \frac{1}{8} \left(-\frac{704}{5}\right) \\
-> & -\frac{704}{40} \\
= & -\frac{88}{5}
\end{array}$$

$$-> \frac{1}{8} \left(-\frac{704}{5}\right)$$

$$->-\frac{704}{40}$$

$$=-\frac{88}{5}$$

Lower bound (a), x = 0

$$\frac{1}{8}(\times 16(0) - \frac{1}{5}(0)^5)$$

$$\rightarrow \frac{1}{8} \times 0 \times 0$$

$$=0$$

Final results

$$-\frac{88}{5}-0$$

$$=-\frac{88}{5}$$

c)
$$f(x)=rac{7}{3}{
m sin}(x)$$
 for $x\in[0,5\pi]$

Evidence and conclusion

- There were multiple x values that were negative, so we can not support property 1
- The final result is not = 1, dismissing property 2 as valid

As property 1 and 2 are not supported, this function is not a valid probability density function.

Working out

Testing property 1

 $\frac{7}{3}\sin(x)$

We will test x values $0, \frac{1}{2}, \pi, \frac{3\pi}{2}, \frac{9\pi}{5}5\pi$

Results: $f(x)=0,pprox1.12,0,-rac{7}{3},pprox-1.37,0$

Testing property 2

$$\int_0^{5\pi} \left(\frac{7}{3}\sin(x)\right) dx$$
-> $-\frac{7}{3}\cos(x)$

$$[-\frac{7}{3}\cos(x)]_0^{5\pi}$$

Upper bound (b), $x=5\pi$

$$-\frac{7}{3}\cos(5\pi)$$

$$-> -\frac{7}{3} \times -1$$
$$= \frac{7}{3}$$

$$=\frac{7}{3}$$

Lower bound (a), x=0

$$-\frac{7}{3}\cos(x)$$

$$->-\frac{7}{3}\times$$

$$=-\frac{7}{3}$$

Final results

$$\frac{7}{3} - \frac{7}{3} \\
 = \frac{14}{3}$$

Task 2: \sin and \cos graph

Find the total area between $y=\sin(x)$ and $y=\cos(x)$ given the domain of $x\in[0,2\pi]$

Answers

total area = $4\sqrt{2}$ given $y = \sin(x)$, $y = \cos(x)$, and the domain $x \in [0, 2\pi]$

Graph

Working out

As the functions intersect, the area is not found directly by $[f(x) - g(x)]_0^{2\pi}$. We need to split it up into further intervals.

According to the graph, there is a clear point of intersection at every $\frac{\pi}{4} + n\pi$ point (n starts at 0). We will use these intersection points and graph to distinguish the interval points for the integral.

$$\int_0^{2\pi} (\sin(x) - \cos(x)) dx$$
-> $[-\cos(x) - \sin(x)]_0^{2\pi}$

$$\int_0^{2\pi} (\cos(x) - \sin(x)) dx$$
-> $[\sin(x) + \cos(x)]_0^{2\pi}$

The intervals we will use are therefore going to be:

• 0 to
$$\frac{\pi}{4}$$

• $[\sin(x) + \cos(x)]_{\frac{\pi}{4}}^{0}$
• $\frac{\pi}{4}$ to $\frac{5\pi}{4}$
• $[-\cos(x) - \sin(x)]_{\frac{5\pi}{4}}^{\frac{\pi}{4}}$
• $\frac{5\pi}{4}$ to 2π
• $[\sin(x) + \cos(x)]_{2\pi}^{\frac{5\pi}{4}}$

$$[\sin(x)+\cos(x)]_0^{\frac{\pi}{4}}$$

$$\sin(0) + \cos(0)$$
 $0+1$
 $= 1$

$$\sin\left(\frac{\pi}{4}\right) + \cos\left(\frac{\pi}{4}\right)$$

$$\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}$$

$$\frac{2}{\sqrt{2}}$$

$$= \sqrt{2}$$

$$=\sqrt{2}-1$$

$$\left[-\cos(x)-\sin(x)
ight]_{rac{\pi}{4}}^{rac{5\pi}{4}}$$

$$-\cos\left(\frac{\pi}{4}\right) - \sin\left(\frac{\pi}{4}\right)$$
$$-\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}$$
$$-\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}$$
$$-\frac{\sqrt{2}-\sqrt{2}}{2}$$
$$= -\sqrt{2}$$

$$-\cos\left(\frac{5\pi}{4}\right) - \sin\left(\frac{5\pi}{4}\right)$$

$$\frac{\sqrt{2}}{2} - -\frac{\sqrt{2}}{2}$$

$$\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}$$

$$= \sqrt{2}$$

$$\sqrt{2} - -\sqrt{2}$$
-> $2\sqrt{2}$

$$[\sin(x)+\cos(x)]^{2\pi}_{rac{5\pi}{4}}$$

$$\sin\left(\frac{5\pi}{4}\right) + \cos\left(\frac{5\pi}{4}\right)$$
$$\frac{-\sqrt{2}}{2} + \frac{-\sqrt{2}}{2}$$
$$= -\sqrt{2}$$

$$\sin(2\pi) + \cos(2\pi)$$

$$0+1 = 1$$

$$1 - -\sqrt{2} \ = \sqrt{2} + 1$$

$$(\sqrt{2}-1) + (2\sqrt{2}) + (\sqrt{2}+1)$$

-> $2\sqrt{2} + 2\sqrt{2}$
= $4\sqrt{2}$