02-trans-to-gates-notes

Transistors to Gates

Agenda

- 0. Re-Orienting
- 1. Logic gates
- 2. Building gates from transistors
- 3. Binary (but we likely won't get this far)

0. Re-Orienting

The computation "stack," from mental model down to the physical universe.

On Monday, we talked about the bottom a bit...

Electricity

1 and 0.

The controlled switch... in solid state!

And... inspiration, from "The Life of Ira Remsen"

1. Logic gates

(See Sections 2.1.7 and 4.2.1 in the textbook)

Boolean logic (as we talked about on Monday)

Demo: logic0 and logic1 in <u>democircs.circ (https://ssl.cs.dartmouth.edu/~sws/cs51-s15/02-trans-to-gates/demo/democircs.zip)</u>

NOT. (AKA "inverter"). Inverts the input.

$$A \longrightarrow C = \overline{A}$$

OR. Outputs a 1 if A is one **OR** B is one. (Or both.)

$$C = A \lor B = A + B$$

NOR. NOT OR. An OR, with the output inverted. Outputs a 0 if A is one OR B is one. (Or both.)

$$\begin{array}{c}
A \\
B
\end{array}$$
NOR
$$C = \overline{A \lor B} = \overline{A + B}$$

$$A \longrightarrow C = A \land B = AB$$

NAND. NOT AND. An AND, with the output inverted. Outputs a 0 only when A is one AND B is one.

$$B$$
NAND
 $C = \overline{A \wedge B} = \overline{AB}$

Here's one we didn't get to on Monday: XOR. "Exclusive OR." Outputs a 1 if A is one **OR** B is one (but **not both**)

$$A \rightarrow B$$

Details

Note:

• except for NOT, fan-in can be greater than two. see logic2 in democircs.circ

- little round circles
- (mention idea of truth tables)

2. Building gates from transistors

Recall the building blocks

n-type MOS transistor: closes the "switch" when the gate has a sufficiently positive voltage:

p-type MOS transistor: closes the "switch" when the gate has a sufficiently negaive voltage:

Note again that: this just one of many families and types of transistors

1 and 0

Gates

start with CMOS (Complementary MOS)

• cmos in tran-gates.circ (https://ssl.cs.dartmouth.edu/~sws/cs51-s15/02-trans-to-gates/demo/tran-gates.zip)

• not in tran-gates.circ (https://ssl.cs.dartmouth.edu/~sws/cs51-s14/02-trans-to-gates/demo/tran-gates.zip)

build NOR and discuss intuition

nor in <u>tran-gates.circ (https://ssl.cs.dartmouth.edu/~sws/cs51-s15/02-trans-to-gates/demo/tran-gates.zip)</u>

build NAND and discuss intuition

• nand in tran-gates.circ (https://ssl.cs.dartmouth.edu/~sws/cs51-s15/02-trans-to-gates/demo/tran-gates.zip)

Note that there are many other ways of doing this.

and.... cheap gates with diodes:

• diode-and in tran-gates.circ (https://ssl.cs.dartmouth.edu/~sws/cs51-s15/02-trans-to-gates/demo/tran-gates.zip)

If you've read this far

here's a zipfile with (https://ssl.cs.dartmouth.edu/~sws/cs51-s15/02-trans-to-gates/demo/tran-gates-full.zip)

- tran-gates-full.circ: annotated examples of the NOT, NOT, and NAND gates built out of transistors (and the diode AND too, just for good measure)
- tran-gates-full-buffers.circ: for pedagogical purposes, the above file, but also with LogiSim "buffer gates" and more binary probes inserted, so you can better see the flow of signals through things

Advertisements!

"If you're interested in **security research or security in general**, consider attending **Security Reading Group!** In an informal setting, we discuss recent security research papers and tie them in with recent events over some snacks. Please contact **Vijay.H.Kothari.GR@dartmouth.edu** (mailto:Vijay.H.Kothari.GR@dartmouth.edu) if you're interested and he'll add you to the list. (time is tbd)'

"If you're interested in learning about *hacking* (in the security sense of the word) then attend *Hacker Morning*! We

learn about hacking by doing it. If you want to learn about SQL injection, buffer overflows, return-oriented programming, and other hacking techniques, old and new, in a relaxed environment, we invite you to join the security lab (Sudi 045) on Fridays from 11 AM and onwards. If interested, please contact Stefan.G.Boesen.GR@dartmouth.edu (mailto:Stefan.G.Boesen.GR@dartmouth.edu)."