Обнаружение аномалий

Виктор Китов

v.v.kitov@yandex.ru

Аномалии (выбросы)

- Аномалия (выброс, outlier) объект, нетипичный для общего распределения объектов.
- Применения обнаружения аномалий (anomaly detection)
 - очистка данных (убрать ошибочные наблюдения)
 - обнаружение нетипичных объектов:
 - мошеннические транзакции в финансах
 - взлом компьютерной сети
 - мониторинг исправности устройств (станок, вертолет, ядерный реактор)
 - детектирование сдвига модели (concept drift)

Если есть разметка

- Если выбросы размечены в train, то это imbalanced class classification¹.
- ullet Пусть y=+1 редкий класс: $|n:y_n=+1| \ll |n:y_n=-1|$
- Как решать?

¹Библиотека Python для несбалансированных классов.

Если есть разметка

- Если выбросы размечены в train, то это imbalanced class classification¹.
- ullet Пусть y=+1 редкий класс: $|n:y_n=+1|\ll |n:y_n=-1|$
- Как решать?
 - дублировать выбросы в выборке
 - обобщение: взвешенная ф-ция потерь (w > 1)

$$w\sum_{n:y_{n}=+1}\mathcal{L}\left(f_{\theta}\left(x_{n}\right),y_{n}\right)+\sum_{n:y_{n}=-1}\mathcal{L}\left(f_{\theta}\left(x_{n}\right),y_{n}\right)\rightarrow\min_{\theta}$$

- исключить часть объектов класса -1
 - Алгоритм NearMiss: оставляем объекты -1 класса, ближайшие к объектам +1 класса
- генерация синтетических объектов для выбросов
- аугментация

¹Библиотека Python для несбалансированных классов.

Генерация синтетических объектов²

Метод SMOTE генерирует синтетич. объекты класса +1.

- для каждого объекта x_n с $y_n = +1$
 - **1** найдем K ближ. соседей $KNN(x_n)$
 - **2** P раз выберем случайные объекты из $KNN(x_n)$

$$A(x_n) = \{x_{i_1}, ... x_{i_K}\}$$

3 для каждого $x' \in A(x_n)$ сгенерируем новый объект класса y = +1

3.7

$$x = (1 - \alpha) x_n + \alpha x', \quad \alpha \sim U[0, 1]$$

²Как обобщить на категориальные признаки?

Расширение обучающей выборки

- Расширение обучающей выборки (data augmentation): модификации x, генерирующие реальные объекты того же класса.
- Как можно расширять выборку для
 - изображений

• звуков

• текстов

Расширение обучающей выборки

- Расширение обучающей выборки (data augmentation): модификации x, генерирующие реальные объекты того же класса.
- Как можно расширять выборку для
 - изображений
 - ↑↓яркости, контраста
 - сдвиг / поворот с обрезкой
 - звуков
 - †↓скорости
 - +помехи
 - ↑↓ тембра (частоты)
 - текстов
 - замена слов синонимами
 - перевод на др. язык и обратно
 - суммаризация (прореживание предложений)

Методы обнаружения аномалий

- Обнаружение аномалий (anomaly detection) обучение без учителя
 - нет разметки выбросов в train
 - но может быть в validation (для оценки)
- Несбалансированная классификация: есть примеры аномалий (есть паттерн)
 - выделяем область каждого класса
- Обнаружение аномалий: сложность в новизне (нет паттерна аномалии)
 - напр. детекция мошеннических действий (всё время новые)
 - выделяем область нормальности, остальное выбросы

Методы обнаружения аномалий

• Методы оценивают степень нетипичности:

$$x$$
 - выброс $\iff f(x) > threshold$

- детекция выбросов (outlier detection): обучающая выборка содержит аномалии.
- детекция новизны (novelty detection): обучающая выборка не содержит аномалий.
 - выше пороги, чем в outlier detection
- Подходы:
 - <u>статистический</u>: p(x) < t
 - метрический: выброс далеко от др. точек
 - модельный: моделируем область нормальности

Содержание

- ① Статистические методы
- 2 Метрические методы
- 3 Модельные методы
- 4 Сдвиг модели

- Выбросы точки с p(x) < threshold.
- $m{\bullet}$ Можем оценить p(x) параметрически, например $\mathcal{N}(x|\mu,\Sigma) \propto e^{-rac{1}{2}(x-\mu)^T\Sigma^{-1}(x-\mu)}$
- $oldsymbol{0}$ Оценим $\widehat{\mu},\widehat{\Sigma}$
- **2** outlierness $(x) = 1/p_{\widehat{\mu},\widehat{\Sigma}}(x)$

• В чем потенциальная проблема?

- Выбросы точки с p(x) < threshold.
- $m{\bullet}$ Можем оценить p(x) параметрически, например $\mathcal{N}(x|\mu,\Sigma) \propto e^{-rac{1}{2}(x-\mu)^T\Sigma^{-1}(x-\mu)}$
- $oldsymbol{0}$ Оценим $\widehat{\mu},\widehat{\Sigma}$
- **2** outlierness $(x) = 1/p_{\widehat{u},\widehat{\Sigma}}(x)$

• В чем потенциальная проблема $\widehat{p},\widehat{\Sigma}$ важно оценить устойчивым к выбросам способом.

• Выбросы не обязательно на границе распределений:

• Выбросы не обязательно на границе распределений:

• p(x) можно оценить смесью распределений или KDE:

$$\widehat{p}(x) = \frac{1}{Nh} \sum_{n=1}^{N} K\left(\frac{x - x_n}{h}\right)$$

Содержание

- 1 Статистические методы
- 2 Метрические методы
- 3 Модельные методы
- 4 Сдвиг модели

К-центров

- Если все точки train нормальные, то можем решить задачу К-покрытия:
 - найти z₁, ...z_K такие, что

$$\min_{k} \rho(x_n, z_k) \le R \quad \forall n = 1, 2, ...N.$$

$$\text{outlierness}(x) = \min_{k} \rho(x, z_k) / R$$

- Это метод К-центров (K-centers³).
- Как связаны параметры K, R?

³Support Objects for Domain Approximation.

К-центров

- Если все точки train нормальные, то можем решить задачу К-покрытия:
 - найти z₁, ...z_K такие, что

$$\min_{k} \rho(x_n, z_k) \le R \quad \forall n = 1, 2, ...N.$$

$$\text{outlierness}(x) = \min_{k} \rho(x, z_k) / R$$

- Это метод К-центров (K-centers³).
- Как связаны параметры K, R?

Связь *K* и *R*:

 $_{\bullet}$ Др. применение: опт. расположение K складов в N городах. ³Support Objects for Domain Approximation.

Алгоритм К-центров

Жадный алгоритм К-центров:

```
выбираем z_1 случайным объектом k\!:=\!1 ПОКА k\!\leq\!K выбираем z_{k+1} самым удалённым объектом от \{z_1,...z_k\} k\!:=\!k\!+\!1
```

Перед наращиванием k можно пробовать улучшить расположение центров

• z_k - наилучший объект в R-окрестности с точки зрения глобального R (сложность $O(N^2)$)

Но как быть, если обучающая выборка может содержать выбросы?

Обнаружение аномалий по расстоянию

Простые способы. Объект выброс, если расстояние выше порога

- $\rho(x, NN(x)) > t$ (до ближайшего соседа)
- \bullet min $_k
 ho(x,\mu_k) > t$ (до центра ближайшего кластера)

Но тогда выброс А либо пропущен, либо все точки разреженного кластера - выбросы.

Метод local outlier factor

- ullet Пусть $N_K(x)$ множество K ближайших соседей x
- Определим ($NN_K(x)$ K-й ближайший сосед x)

$$ho_K(x) =
ho\left(x, NN_K(x)
ight)$$
 (K-расстояние) $\mathrm{rd}_K(x,z) = \max\left\{
ho\left(x,z
ight),
ho_K(z)
ight\}$

- k-distance: устойчивее к случайным отдельным точкам.
- max: устойчивость к слишком близким точкам.

$$rd_K(A,B) = rd_K(A,C) < rd_K(A,D)$$
 для K=3

Метод local outlier factor

• $\operatorname{Ird}_K(x)$ (local reachability density)-плотность точек вокруг x:

$$\operatorname{Ird}_{\mathcal{K}}(x) = \frac{1}{\frac{1}{|N_k(x)|} \sum_{z \in N_k(x)} \operatorname{rd}_{\mathcal{K}}(x, z)}$$

 Метод local outlier factor - отношение плотности соседей х к плотности х:

$$LOF_{K}(x) = \frac{\frac{1}{|N_{K}(x)|} \sum_{z \in N_{k}(x)} Ird_{K}(z)}{Ird_{K}(x)}$$

Это loss или score?

Метод local outlier factor

• $Ird_K(x)$ (local reachability density)-плотность точек вокруг x:

$$\operatorname{Ird}_{\mathcal{K}}(x) = \frac{1}{\frac{1}{|N_k(x)|} \sum_{z \in N_k(x)} \operatorname{rd}_{\mathcal{K}}(x, z)}$$

 Метод local outlier factor - отношение плотности соседей х к плотности х:

$$LOF_{K}(x) = \frac{\frac{1}{|N_{K}(x)|} \sum_{z \in N_{k}(x)} Ird_{K}(z)}{Ird_{K}(x)}$$

- Это loss или score?
- $LOF_K(x) \le 1$: типичная точка, $LOF_K(x) > 1$ более удалённая.

Анализ

• LOF корректно выделяет выбросы как в контексте густых, так и в контексте разреженных соседей:

- Выброс, если $LOF_K(x) > t$: нужно подбирать t и K.
- Обобщается на др. $\rho(x,z)$
- Лучше работает с использованием метода случайных подпространств⁴.

⁴Feature bagging for outlier detection.

Учет локального распределения точек

- Др. подход: учитывать локальное распределение точек.
- Подходы, учитывающие локальное распределение:
 - смесь Гауссиан
 - метод локального кластера (local cluster)
 - метод локальной окрестности (local neighborhood)

Метод локального кластера

- Кластеризуем точки на K кластеров, используя расстояние Махаланобиса:
- ② Для каждого кластера находим μ_k и Σ_k .
- Для объекта x:
 - находим ближайший кластер:

$$\hat{c} = \underset{c}{\operatorname{arg min}} \sqrt{(x - \mu_c)^T \Sigma_c^{-1} (x - \mu_c)}$$

отепень нетипичности:

$$\mathsf{outlierness}(x) = \sqrt{(x - \mu_{\widehat{c}})^T \Sigma_{\widehat{c}}^{-1} (x - \mu_{\widehat{c}})}$$

Метод локальной окрестности

- **1** Инициализируем $L_K(x) = \{x\}$
- ② Для k = 1, 2, ... K:
 - $x_k = \arg\min_{z} \rho(z, L_K(x))$
 - $2 L_K(x) := L_K(x) \cup \{x_k\}$
- **3** Исключим x: $L_K(x) := L_K(x) \setminus \{x\}$
- lacktriangle Используя $L_K(x)$ рассчитаем $\mu(x)$ и $\Sigma(x)$
- Отепень нетипичности:

outlierness(x) =
$$\sqrt{(x - \mu(x))^T \Sigma(x)^{-1} (x - \mu(x))}$$

Вычислительно сложнее, зато лучше учитывает распределение вокруг x.

Содержание

- Статистические методы
- 2 Метрические методы
- 3 Модельные методы
 - Одноклассовый метод опорных векторов
 - Изолирующий лес
- 4 Сдвиг модели

Одноклассовый метод опорных векторов

- 3 Модельные методы
 - Одноклассовый метод опорных векторов
 - Изолирующий лес

Одноклассовый метод опорных векторов⁵

- Преобразование пр-ков: $x \to \Phi(x) \in F$.
- Отделим в пространстве $\Phi(x)$ нормальные точки от остальных
 - гиперплоскостью, максимально отдалённой от нуля
 - шаром минимального радиуса

⁵Estimating the Support of a High-Dimensional Distribution.

Отделение гиперплоскостью

$$\begin{cases} \frac{1}{2} \left\| w \right\|^2 + \frac{1}{\nu N} \sum_{n=1}^N \xi_n - \rho \to \min_{w, \xi \in \mathbb{R}^N, \rho \in \mathbb{R}} \\ \left\langle w, \Phi(x_n) \right\rangle \geq \rho - \xi_n; \quad \xi_n \geq 0, \quad n = 1, 2, ... N. \end{cases}$$
 $f(x) = \operatorname{sign} \left(\left\langle w, \Phi(x) \right\rangle - \rho \right)$ —1 для выброса

Максимизируем расстояние от нуля до гиперплоскости $\frac{\rho}{\|w\|}$. Гиперпараметр $\nu \in (0,1)$ - макс. доля выбросов в выборке.

Отделение гиперплоскостью - решение

В терминах ядер $K(x,z) = \langle \Phi(x), \Phi(z) \rangle$:

$$f(x) = \operatorname{sign}\left(\sum_{n} \alpha_{n} K(x_{n}, x) - \rho\right)$$

где $\{\alpha_n\}$ находятся из решения двойственной задачи:

$$\begin{cases} \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j K(x_i, x_j) \to \min_{\alpha} \\ 0 \le \alpha_i \le \frac{1}{\nu N}; \quad \sum_i \alpha_i = 1 \end{cases}$$

- $\alpha_i = 0$: обычные объекты
- ullet $lpha_i \in (0, rac{1}{
 u N})$: на гиперплоскости, по 1 такому x_i находим:

$$ho = \langle w, \Phi(x_i)
angle = \sum_n lpha_n \mathcal{K}(x_n, x_i)$$
• $lpha_i = \frac{1}{\nu N}$: выбросы⁶

 $^{^{6}}$ Как отсюда следует, что ν -макс. доля выбросов в выборке?

Отделение шаром

$$\begin{cases} R^2 + \frac{1}{\nu N} \sum_n \xi_n \to \min_{R \in \mathbb{R}, \xi \in \mathbb{R}^N, c \in F} \\ \|\Phi(x_n) - c\|^2 \le R^2 + \xi_n; \quad \xi_n \ge 0; \quad n = 1, 2, ...N. \end{cases}$$

$$f(x) = \operatorname{sign}\left(R^2 - \|\Phi(x_n) - c\|^2\right) \quad \text{-1 для выброса}$$

Отделение шаром - решение

В терминах ядер $K(x,z) = \langle \Phi(x), \Phi(z) \rangle$:

$$f(x) = \operatorname{sign}\left(R^2 - \sum_{i,j} \alpha_i \alpha_j L(x_i, x_j) + 2\sum_i \alpha_i K(x_i, x) - K(x, x)\right)$$

где $\{\alpha_n\}$ находятся из решения двойственной задачи:

$$\begin{cases} \sum_{i,j} \alpha_i \alpha_j K\left(x_i, x_j\right) - \sum_i \alpha_i K\left(x_i, x_i\right) \to \min_{\alpha} \\ 0 \le \alpha_i \le \frac{1}{\nu N}; \quad \sum_i \alpha_i = 1 \end{cases}$$

- $\alpha_i = 0$: обычные объекты
- ullet $lpha_i \in \left(0, rac{1}{
 u N}\right)$: на гиперплоскости, по 1 такому x_i находим:

$$R^2 = \|\Phi(x_i) - c\|^2 = K(x_i, x_i) - 2\sum_n \alpha_n K(x_n, x_i) + \sum_{i,j} \alpha_i \alpha_j K(x_i, x_j)$$
• $\alpha_i = \frac{1}{\nu N}$: выбросы⁷

 $^{^{7}}$ Как отсюда следует, что u-макс. доля выбросов в выборке?

Ядерное обобщение с RBF ядром

популярные ядра:
$$K(x,z)=e^{-rac{\|x-z\|^2}{2\sigma^2}}, \quad K(x,z)=\left(\langle x,z\rangle+1
ight)^K$$

- Стационарные ядра⁸: K(x,z) = G(x-z)
 - ullet инвариантны к сдвигу $K\left(x,z\right)=K\left(x+\Delta,z+\Delta\right)$
 - переводят $\{x_n\}$ на сферу

$$\|\Phi(x_n)\|^2 = \langle \Phi(x_n), \Phi(x_n) \rangle = K(x_n, x_n) = G(0) = \text{const}$$

• для данных на сфере минимизация сегмента (отделение гиперплоскостью) и минимизация шаром эквивалентны => 2 последних метода дают одинаковый результат.

⁸Будут ли Гауссово и полиномиальное ядра стационарными?

Параметры

Одноклассовый SVM с RBF ядром ($\sigma \uparrow$)

u контролирует размер фигуры (и долю выбросов).

- 3 Модельные методы
 - Одноклассовый метод опорных векторов
 - Изолирующий лес

Изолирующее дерево

Построение изолирующего дерева (isolation tree).

инициализировать корень всеми наблюдениями

ПОКА (существуют узлы с несовпадающими наблюдениями глубины < S): # рекомендуется S=8 выбрать такой узел выбрать случайный неконстантный признак $f \in [f_{min}, f_{max}]$ выбрать случайный порог $t \in (f_{min}, f_{max})$ разбить узел на 2 подузла по правилу $f \leq t$

- Дерево строится без учителя.
- Как по нему оценить x

Изолирующий лес

• Типичность объекта в дереве

$$h(x) = p(x) + c(m)$$

- p(x) глубина пути в дереве
 - *m*=#др. объектов в листе
 - $c(m) = 2(\ln(m-1) + 0.57) 2(m-1)/m$ оценка доп. пути до x, если бы дерево строилось до конца.
- По одному дереву считать нельзя (много случайности).

Изолирующий лес

• Типичность объекта в дереве

$$h(x) = p(x) + c(m)$$

- p(x) глубина пути в дереве
 - *m*=#др. объектов в листе
 - $c(m) = 2(\ln(m-1) + 0.57) 2(m-1)/m$ оценка доп. пути до x, если бы дерево строилось до конца.
- По одному дереву считать нельзя (много случайности).
- Изолирующий лес (isolation forest) ансамбль K независимых изолирующих деревьев (рекоменд. K=100).

outlierness
$$(x)=2^{-\frac{\mathbb{E}\{h(x)\}}{c(N)}},\;N=\#$$
объектов обуч. выборки

- outlierness(x) ≈ 1 : выброс
- outlierness(x) \approx 0.5: обычный объект

Преимущества

- : Работает с вещественными, порядковыми, бинарными признаками.
- : Быстрый, интерпретируемый алгоритм.
- \oplus : Интерпретируемая outlierness $(x) \in (0,1)$
- \oplus : Обучается, даже если в X нет выбросов.
 - в отличие от одноклассового SVM
- ⊕ : Хорошо учится на малой подвыборке типичных объектов.

Обнаружение аномалий - Виктор Китов

Модельные методы

Изолирующий лес

Сравнение методов

Содержание

- 1 Статистические методы
- 2 Метрические методы
- 3 Модельные методы
- 4 Сдвиг модели

Сдвиг модели

Связанно с обнаружением аномалий - сдвиг модели (concept drift): изменяется целевая зависимость y = f(x)

- изменения носят устойчивый характер во времени
 - у клиента изменились вкусы, женился, переехал
 - изменилась внешняя ситуация (пандемия)

 Будем наблюдать <u>устойчивые</u> изменения в ошибках модели.

Сдвиг модели

 Каждый тип сдвига детектируется и обрабатывается по-своему:

- В отличие от аномалий, сдвиги носят устойчивых характер.
- Детекция на основе статистик сравнения распределений ошибок во времени.

Заключение

- Детекция выбросов задача обучения без учителя
 - если с учителем то это классификация несбалансированных классов
 - генерация объектов для редкого класса
 - удаление объектов для частого класса
- Оценка по размеченной валидации, используя ROC, AUC.
- Методы обнаружения аномалий:
 - \bullet статистические: p(x) < t
 - метрические: выброс далеко от др. точек
 - модельные: моделируем область нормальности
 - one-class SVM
 - isolation forest