

Contact/Social

Phone

737-529-1480

abhinavperi16@gmail.com

GitHub Medium LinkedIn

Education

UT Austin Turing Scholars:

Completed Classes:

- CS 439H: Operating Systems Honors
- CS 377P: Programming for Performance
- M427L: Vector Calculus Honors
- CS314H: Data Structures Honors
- CS311H: Discrete Math Honors
- CS178H: Intro to CS Research Honors
- CS429H: Computer Architecture
- M362K: Probability
- M427J: Differential Equations with Linear Algebra
- CS394R (Graduate Course): Reinforcement Learning

Skills

Coding Skills:

LabVIEW, Java, Python, C, Git, Linux/Ubuntu, Verilog

AI/ML/RL Development:

- PyTorch, PyTorch Lightning, PyTorch Geometric
- TensorBoard, Optuna, Gym, Robosuite, Mujoco

Robotics(Rovers and Drones):

 ROS/ROS2, OpenCV, Controls Theory, Practical Robotics Experience, PX4, Gazebo, Nav2, Isaac Sim

Team Management:

• Team Lead of 10 Programmers, DevOps with Git, Task Delegation, Creating Roadmaps

Abhinav Peri

UT-Austin Activities

Activities:

- Participating in UT's RL reading group (January 2024 Present)
- Doing research for UT's MIDI Lab (January 2024 Present)
- o Working on various papers centered around teaching a 6D0F UR5e robot to play air-hockey with Reinforcement Learning
- Worked with the Texas Aerial Robotics Group (August 2023 December 2023)
 - Learned about PX4 and various other tools used for UAV software developent
 - Wrote a controller to make a drone autonomously track AprilTags in ROS2

Class Projects:

- Implemented a physics engine in as extra credit using a Bounding Volume Hierarchy (video1, video2) for CS 314H (Data Structures)
- Implemented an interpreter, compiler in C for a custom language with functions, control flow, and arithmetic in CS 429H (Computer Architecture)
- Implemented an emulator for a subset of the ARM instruction set in CS 429H
- Implemented the **heap**, and **co-routines**, in C for CS 429H
- Implemented a pipeline in Verilog for a custom ISA in CS 429H
 - o Uses stalling, forwarding, and branch prediction to reduce CPI as much as possible
- Implemented DP, Monte Carlo, N-step, Sarsa Lambda, and Reinforce as class assignments for CS 394R (Reinforcement Learning)
- Implemented AlphaZero on Connect 4 as a final project for CS 394R
- Implemented a kernel with preemptive multithreading, reference counting, ext2 file system, virutal memory, mmap, and basic syscalls in CS 439H
- Linked in subset of OpenGL for final project

Work Experience (Interim Secret Clearance)

UAV Swarm Drone Development Intern at CACI: (5/28-8/16 2024)

Leadership:

- Set the roadmap to better define, adapt, and solve highly nonlinear project requirements
- Mentored many full time employees in ROS2, Ubuntu, PX4, and general hardware experience
- Led various meetings to brainstorm project structure, teach new concepts, and coordinate team strategy

Skills Used (Majority of work is classified):

- Self learned ROS2, parts of DDS middleware, the PX4 firmware, Gazebo/ISAAC SIM simulation, navigation software stack architecture, and the bring-up of real flight hardware
- . Integrated 2D LiDAR SLAM based navigation example in Nav2 with a custom Gazebo drone model running PX4 firmware

Intern at NASA JSC: (7/1 - 8/14 2023)

- Managed a project involving a rover to autonomously navigate a rock yard simulating extraterrestrial environments
- Delegated various tasks like telemetry, kinematics, path following, and path generation
- Worked at a high level to unblock teammates and solve major project issues

Implementation:

- Created a multiprocessed/multithreaded setup through SSH on a Raspberry PI
- Implemented sensor fusion for LSM6DSOX + LIS3MDL IMU and GPS sensor using the Madgwick and Kalman Filters
- Experimented with ORBSLAM 3 using a Realsense Depth camera

Associate at KatanaGraph: (May - September 2022)

- Assisting with the AI pipeline development within the HLS department to accelerate Drug Discovery
- Worked on AI Models for predicting drug-target interactions and synthetic lethality
- Recreated and developed AI Models using PyTorch, PyTorch Geometric, PyTorch Lightning, Tensorflow, and Tensorboard
- Working DeepCDR Reimplementation
- AGMI Reimplementation (unable to recreate results)
- Tuned hyperparameters using Optuna, and managed training/logging in a GPU Cluster
- Experimented with frameworks for graph rewiring such as Graph Ricci Curvatures and Neural ODEs

High School Robotics (2019-2023)

2023 FRC Charged Up Robotics Season (code not public)

- Implemented homography based <u>pose estimation</u> from apriltags using ROS
- Improved swerve codebase and turned it into an easy-to-use template
- Developed better models of mechanisms using motor physics and latency simulations
- Wrote PID-based controls/state machine for the cascade/wrist scoring mechanism
- Used motion profiling within a state machine for cascade movement and a state machine for scoring positions
- Managed integration through git and creating various tools and commands for ease of codebase usage and setpoint tuning
- Implemented a Kalman Filter in LabVIEW

2022 FRC Rapid React Robotics Season

- Experimented with coprocessor based vision processing (Used ROS)
- Wrote our FRC team's first swerve codebase, implementing the necessary kinematic models, substitutions, and etc
- Wrote a <u>custom dashboard</u> for getting the robot ready for matches
- LabVIEW Trajectory Optimization implementation from this website

2021 FRC Infinite Recharge Robotics Season

Won various awards for autonomous at home challenges and at the Texas Cup tournament

2020 FTC Skystone Season

- Learned OpenCV to write our Skystone detection pipeline
- Learned basic control methods like PID, Motion Profiling, Path following, and Trajectory Generation

Miscellaneous Personal Projects

- Implementing the DeepNash algorithm to solve the game of Stratego (2024)
- Implemented Computer Vision Algorithms (Homography and Monocular Visual Odometry) for localizing robots (2020
- Wrote a ROS program that controlled an MIT Racecar build to follow walls using its onboard LiDAR sensor (2020 summer)
- Implemented an MLP from scratch using numpy which successfully classified MNIST digits (2021 summer)
- Implemented a ResNet using PyTorch to classify a kaggle dataset of cardiograms from pneumonia patients (2021 summer)
- Used an LSTM model which I used to solve the OpenAI XOR Warmup Problem (2021 summer) Implemented Graph Neural Networks using PyTorch Geometric to classify the PPI Dataset (2021 fall)
- Implemented a Fourier Epicycles demo that draws shapes using spinning arrows (2022 summer)