Machine Learning Linear Separability

Mostafa S. Ibrahim *Teaching, Training and Coaching for more than a decade!*

Artificial Intelligence & Computer Vision Researcher PhD from Simon Fraser University - Canada Bachelor / MSc from Cairo University - Egypt Ex-(Software Engineer / ICPC World Finalist)

© 2023 All rights reserved.

Please do not reproduce or redistribute this work without permission from the author

Classifiers

- There are many algorithm for classification:
 - Logistic regression, neural network, decision tree, random forest, SVM and KNN
 - Notice "Logistic regression is for classification" NOT regression!
- There are 2 popular output styles from algorithms
 - Discrete output (hard): Just output zero or one (e.g KNN)
 - **Probability** output (**soft**): continuous value in range [0 1], (e.g. Logistic regression)
 - The same in clustering: hard (k-means) or soft (Gaussian Mixtures)

Line for Classification (1D input)

- Can you figure out how can we utilize a line that classifies data?
 - Observe, we draw here X only, not (X, Y) for 1D data
 - A point splits points before and after
 - We can find with a simple loop
- Let's move to input that is 2D

Line for Classification (2D input)

Can you figure out how can we utilize a line that classifies data?

Line for Classification

- We simply use the line to **split** the points into 2 regions
 - Not fitting. Just split
- Points above the line are e.g. class #1
- Points under the line are e.g. class #0
- Observe, there are infinite number of lines to do so
 - SVM has an interesting way for finding this line
 - Large margin classifier

Linearly Separable Dataset

- Linear Separability implies the existence of a hyperplane separating the two classes (left example)
- There is no such line for the right image. We find a line that minimizes some cost function

- Assume we want to learn a classifier for AND gate
 - Binary input $(x, y) \Rightarrow$ single binary output
- Is this linearly separable data?

X	γ	AND(X,Y)	OR(X,Y)	XOR(X,Y)
0	0	0	0	0
0	1	0	1	1
1	0	0	1	1
1	1	1	1	0

- Assume we want to learn a classifier for OR gate
 - Binary input $(x, y) \Rightarrow$ single binary output
- Is this linearly separable data?

X	Y	AND(X,Y)	OR(X,Y)	XOR(X,Y)
0	0	0	0	0
0	1	0	1	1
1	0	0	1	1
1	1	1	1	0

- Assume we want to learn a classifier for XOR gate
 - Binary input $(x, y) \Rightarrow$ single binary output
- Is this linearly separable data?

X	Y	AND(X,Y)	OR(X,Y)	XOR(X,Y)
0	0	0	0	0
0	1	0	1	1
1	0	0	1	1
1	1	1	1	0

- We see with even just 4 points from XOR, we can have non-separable data
- Is there a 3-points dataset that is non-separable?

"Acquire knowledge and impart it to the people."

"Seek knowledge from the Cradle to the Grave."