Assignment #3

(Aug 08, 2025)

Electrostatic fields: Sadiku Chaps 4-5, Griffiths Chap 2

- **1.** Describe the differential and integral forms of Gauss's law. Prove that Gauss's law is an alternative statement of Coulomb's law.
- **2.** Use Gauss's law to find the electric field inside and outside a spherical shell of radius R, which carries a uniform surface charge density σ .
- **3.** Find the electric field at a distance r from an infinitely long straight wire, which carries a uniform line charge λ .
- **4.** Find the electric field inside a sphere which carries a charge density proportional to the distance from the origin, $\rho = kr$, for some constant k.
- **5.** A hollow spherical shell carries charge density $\rho = k/r^2$ in the region $a \le r \le b$ (Fig. 1).
 - (a) Find the electric field in the three regions:
 - (i) r < a,
 - (ii) a < r < b,
 - (iii) r > b.
 - (b) Plot $|\mathbf{E}|$ as a function of r, for the case b = 2a.

Fig. 1

- **6.** If $\mathbf{D} = (2y^2 + z) \mathbf{a}_x + 4xy \mathbf{a}_y + x \mathbf{a}_z C/m^2$, find
 - (a) the volume charge density at (-1, 0, 3),
 - (b) the flux through the cube defined by $0 \le x \le 1$, $0 \le y \le 1$, $0 \le z \le 1$,
 - (c) the total charge enclosed by the cube.
- 7. A charge distribution in free space has $\rho_v = 2r$ nC/m³ for $0 \le r \le 10$ m and zero otherwise. Determine **E** at r = 2 m and r = 12 m.
- **8.** In a certain region, the electric field is given by

$$\mathbf{D} = 2\rho(z+1)\cos\phi\,\mathbf{a}_{\rho} - \rho(z+1)\sin\phi\,\mathbf{a}_{\phi} + \rho^2\cos\phi\,\mathbf{a}_{z}\,\mu\mathrm{C/m}^2$$

- (a) Find the charge density.
- (b) Calculate the total charge enclosed by the volume $0 < \rho < 2, 0 < \phi < \pi/2, 0 < z < 4$.
- (c) Confirm Gauss's law by finding the net flux through the surface of the volume defined in (b).
- **9.** $V = x^2y(z+3)$ V. Find
 - (a) **E** at (3, 4, -6).
 - (b) the charge within cube 0 < x, y, z < 1.

10. In free space, an electric field is given by

$$\mathbf{E} = \begin{cases} E_0 \left(\frac{\rho}{a}\right) \mathbf{a}_{\rho}, & 0 < \rho < a \\ 0, & \text{otherwise} \end{cases}$$

Calculate the volume charge density.

11. The electric field in free space is given by

$$\mathbf{E} = 2xyz\,\mathbf{a}_x + x^2z\,\mathbf{a}_y + x^2y\,\mathbf{a}_z\,\mathbf{V/m}.$$

Calculate the amount of work necessary to move a $2 \mu C$ charge from (2, 1, -1) to (5, 1, 2).

- **12.** Let $\mathbf{E} = \frac{10}{r^2} \mathbf{a}_r$ V/m. Find V_{AB} , where A is $(1, \pi/4, \pi/2)$ and B is $(5, \pi, 0)$.
- **13.** Let $V = \rho e^{-z} \sin \phi$. (a) Find **E**. (b) Show that **E** is conservative.
- **14.** In free space, $V = \frac{1}{r^3} \sin \theta \cos \phi$. Find **D** at $(1, 30^\circ, 60^\circ)$.
- **15.** A uniform surface charge with density ρ_s exists on a hemispherical surface with r = a and $\theta \le \pi/2$. Calculate the electric potential at the center.
- **16.** Determine the work done in carrying a $-2 \mu C$ charge from $P_1(2, 1, -1)$ to $P_2(8, 2, -1)$ in the field $\mathbf{E} = y \mathbf{a}_x + x \mathbf{a}_y \mathbf{V}/\mathbf{m}$
 - (a) along the parabola $x = 2y^2$.
 - (b) along the straight line joining P_1 and P_2 .
- 17. Region 1 (z < 0) contains a dielectric for which $\varepsilon_r = 2.5$, while region 2 (z > 0) is characterized by $\varepsilon_r = 4$. Let $\mathbf{E}_1 = -30 \, \mathbf{a}_x + 50 \, \mathbf{a}_y + 70 \, \mathbf{a}_z$ V/m. Find \mathbf{D}_2 and the angle between \mathbf{E}_1 and the normal to the surface.
- **18.** Two homogeneous dielectric regions 1 ($\rho \le 4$ cm) and 2 ($\rho \ge 4$ cm) have dielectric constants 3.5 and 1.5, respectively. If $\mathbf{D}_2 = 12 \, \mathbf{a}_\rho 6 \, \mathbf{a}_\phi + 9 \, \mathbf{a}_z \, \text{nC/m}^2$, calculate.
 - (a) \mathbf{E}_1 and \mathbf{D}_1 ,
 - (b) P_2 and ρ_{pv2}
 - (c) the energy density for each region.