Lead Scoring Case Study

- By Anant Patil and Sakshi Chopkar

Problem Statement

- To assist X Education in choosing the "hot leads"—the most promising leads—that are most likely to become paying clients.
- Design a logistic regression model to give each lead a lead score between 0 and 100, with higher lead scores indicating a better chance of conversion and lower lead scores indicating a lower likelihood of conversion.
- Determine the driver characteristics, which are reliable predictors of lead conversion, and comprehend their importance.
- If there are any outliers in the dataset, identify them and explain why.
- While developing the model, take both the technical and business considerations into account.
- Utilizing evaluation metrics like accuracy, sensitivity, specificity, and precision, to summarise the conversion projections.

Business Objectives

- X education wants to know most promising leads.
- For that they want to build a Model which identifies the hot leads.
- Deployment of the model for the future use.

Approach

- 1. Data Cleaning
- 2. Exploratory Data Analysis
- 3. Assigning Dummy Variables to Categorical variables
- 4. Scaling
- 5. Train-Test Split
- 6. Model Building
- 7. Model Evaluation
- 8. Prediction

Data Manipulation

- Total Number of Rows =37, Total Number of Columns =9240.
- Single value features like "Magazine", "Receive More Updates About Our Courses", "Update me on Supply"
- Chain Content", "Get updates on DM Content", "I agree to pay the amount through cheque" etc. have been dropped.
- Removing the "Prospect ID" and "Lead Number" which is not necessary for the analysis.
- Dropping the columns having more than 35% as missing value such as 'How did you hear about X Education' and 'Lead Profile'.

EDA

Univariate Analysis

- Data distribution and outliers in the "Leads" data were discovered via univariate analysis.
- Outliers were found in the following key columns:
 - Total Visits
 - Page Views Per Visit
 - Asymmetrique Activity Score
 - Asymmetrique Profile Score
- Outliers in the data have been handled using the Inter Quantile Range (IQR) approach.
- Due to the high percentage (9%), the decision has been made to leave all outliers in place.
- To make sure this has no effect on the score, we will analyse the final model.

Categorical Variables

Bivariate Analysis

The target variable has been set to the "Converted" column. Therefore, bivariate analysis of significant variables with regard to the target variable has been carried out.

- Visitors who are interested in the upcoming batch and lateral students have a greater possibility of being converted.
- Lead quality with the "High in Relevance" tag has historically had high conversion rates.
- The likelihood of converting a lead generated by a "Lead Add Form" or "Quick Add Form" is high.
- More leads are converted via the Welingak website, WeLearn, live chat, and NC EDM than by any other source.

Checking Correlation

The columns listed below have a strong positive correlation with one another:

- 1. Digital Advertisement
- 2. Newspaper Article
- 3. Through Recommendations
- 4. X Education
- 5. Search

Additionally, a different set of columns have a strong positive correlation with one another.

- Total Visits
- 2. Total Time Spent on Website
- 3. Page reviews per Visit

Asymmetrique Activity Index and Asymmetrique Profile Index have a significant positive association.

Relating all the categorical Variables to converted

Correlation Between Variables

Model Building

- The first basic step for regression is performing a train-test split, we have chosen 70:30 ratio.
- Use RFE for Feature Selection
- Running RFE with 15 variables as output
- Building Model by removing the variable whose p-value is greater than
 0.05 and vif value is greater than 5
- Predictions on test data set
- Overall accuracy 81%

ROC Curve

Area under curve = 0.87

Optimal Threshold

Graph showing changes in Specificity, Accuracy and Sensitivity with changes in the probability threshold values.

Optimal cutoff = 0.35

Model Summary: P-Values are zero

Generalized Linear Model Regression Results							
Dep. Variable:	Converted	No. Observations:	6351				
Model:	GLM	Df Residuals:	6335				
Model Family:	Binomial	Df Model:	15				
Link Function:	logit	Scale:	1.0000				
Method:	IRLS	Log-Likelihood:	-2741.3				
Date:	Mon, 10 Jun 2019	Deviance:	5482.6				
Time:	17:10:21	Pearson chi2:	6.64e+03				
No. Iterations:	22	Covariance Type:	nonrobust				

	coef	std err	z	P> z	[0.025	0.975]
const	-1.2524	0.081	-15.450	0.000	-1.411	-1.094
TotalVisits	4.5519	1.398	3.256	0.001	1.812	7.292
Total Time Spent on Website	4.5660	0.162	28.101	0.000	4.248	4.884
Lead Origin_lead add form	2.6773	0.225	11.916	0.000	2.237	3.118
Lead Source_direct traffic	-1.4795	0.114	-12.979	0.000	-1.703	-1.256
Lead Source_google	-1.1705	0.109	-10.690	0.000	-1.385	-0.956
Lead Source_organic search	-1.2823	0.134	-9.541	0.000	-1.546	-1.019
Lead Source_welingak website	2.5984	1.033	2.515	0.012	0.573	4.624
Do Not Email_yes	-1.4076	0.168	-8.387	0.000	-1.737	-1.079
Last Activity_olark chat conversation	-1.4678	0.165	-8.874	0.000	-1.792	-1.144
Last Activity_sms sent	1.3213	0.073	18.222	0.000	1.179	1.463
What is your current occupation_housewife	24.4759	3.07e+04	0.001	0.999	-6.01e+04	6.01e+04
What is your current occupation_other	1.4134	0.760	1.859	0.063	-0.077	2.904
What is your current occupation_working professional	2.8071	0.193	14.509	0.000	2.428	3.186
Last Notable Activity_had a phone conversation	24.2053	2.18e+04	0.001	0.999	-4.28e+04	4.28e+04
Last Notable Activity_unreachable	1.7029	0.610	2.790	0.005	0.507	2.899

Evaluation Result

Comparing the values obtained for Train & Test:

Train Data:-

Accuracy: 81.7%, Sensitivity: 71.1 %, Specificity: 88.4 %

Test Data:-

Accuracy: 80.9 %, Sensitivity: 84.4 %, Specificity: 78.9 %

Thus, target lead conversion rate using this model is around 80%.

This Model seems to predict the Conversion Rate as desired and decision shall be made in making good calls to get a higher lead conversion rate of 80% from roughly 38% in the raw data

Inferences

- In decreasing order of impact, the following three factors are those that have the most influence on the likelihood of a lead conversion:
 - Tags_Lost to EINS
 - Tags_Closed by Horizon
 - Tags_Will revert after reading the email
- Each of these three increases the likelihood that a lead will be converted.
- The categorical variable Tags was used to produce these dummy features.
- These findings suggest that the business should pay closer attention to the leads with these three tags.

Recommendations

- Focus on the following by using the data visualisations:
 - Enhancing the categories' conversion rates to produce more leads and
 - Increasing lead generation for industries with high conversion rates.
- Pay close attention to the relative weighting of the model's attributes and how they affect the likelihood of conversion, either favourably or unfavourably.
- Change the probability threshold value for detecting possible leads in accordance with changing company demands.