$^{60}\mathrm{Co}\,\beta^-$ decay (1925.28 d)

		History	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	E. Browne, J. K. Tuli	NDS 114, 1849 (2013)	31-Dec-2012

Parent: 60 Co: E=0.0; $J^{\pi}=5^{+}$; $T_{1/2}=1925.28$ d 14; $Q(\beta^{-})=2822.8$ 2; $\%\beta^{-}$ decay=100.0

Based on an evaluation by R. G. Helmer, January 1998 including some general comments from previous evaluation (1993Ki10). This evaluation was done as part of a collaboration of evaluators from Laboratoire National Henri Becquerel (LNHB) in France; Physikalisch-Technische Bundesanstalt (PTB) in Germany; HMS Sultan and AEA Technology in the United Kingdom; Khlopin Radium Institute (KRI) in Russia; Centro de Investigaciones Energeticas, Medioambientales, y Tecnologicas (CIEMAT) and Universidad Nacional a Distancia (UNED) in Spain; and Brookhaven National Laboratory (BNL), Lawrence Berkeley National Laboratory (LBNL), and Idaho National Engineering and Environmental Laboratory (INEEL) in the United States. See also: 1999BeZQ, 1999BeZS.

⁶⁰Co generally from ⁵⁹Co(n, γ). Measured E γ , I γ with Compton suppression spectrometer, Ge(Li) and NaI detectors (1976Ca18). Measured E β , I β , E γ with magnetic spectrometer, Ge(Li) detector (1968Ha03). Measured $\gamma(\theta)$ from ⁶⁰Co polarized in Fe by low-temperature techniques with Ge(Li) and NaI detectors (1980Kr05). Measured $\gamma\gamma(t)$ with combined plastic-NaI detectors and centroid shift technique (1976Kl04). Measured E β in iron-free spectrometer (1968Wo02). For $\beta(\theta)$ emitted from polarized ⁶⁰Co, see 1980Ch14. For $\gamma\gamma(\theta)$ measurements, see 1969Kh11. Measured I γ by detecting neutrons from the d(γ ,n) reaction caused by the 2505 γ -ray (1978Fu05).

For K-shell ionization in the β^- decay of 60 Co, see 1983Ki04.

Others: 2008Sy01, 2006Pa20, 2004Ge20, 2004Ka07, 2003Lu04, 1983La06, 1982Er10, 1977Lo01, 1976Bo16, 1976Hu09, 1973Fu15, 1972Le14, 1970Wa19, 1970Di01, 1970Ri20, 1969Va20, 1969Ra23, 1961Ca05, 1956Wo09, 1954Ke04.

Decay scheme is internally consistent since the total decay energy computed from this scheme is 2821.0 2 keV compared to the Q value of 2822.8 2.

1998Ku24: measured "Near-Zero Energy" electrons (distribution, peak= 0.2 eV, FWHM=1 eV) intensity=0.14 per β⁻ decay. 2010Wa40: measured β- asymmetry by polarizing a 60 Co source using a low-temperature nuclear orientation method.

⁶⁰Ni Levels

E(level)	$J^{\pi \dagger}$	T _{1/2}	Comments
0.0	0+	stable	The β^- feeding of this level is a unique 4 th forbidden transition. From the systematics (1998Si17), the log/t of this transition will be >23 and the corresponding intensity will be <1.0x10 ⁻¹⁰ %.
1332.508 <i>4</i> 2158.612 <i>21</i>	2 ⁺ 2 ⁺	0.9 ps <i>3</i>	$T_{1/2}$: from $\gamma \gamma(t)$ by 1976Kl04.
2505.748 <i>4</i>	4+	3.3 ps 10	$T_{1/2}$: see Adopted Levels.

[†] From ⁶⁰Ni Adopted Levels.

β^- radiations

E(decay)†	E(level)	$\mathrm{I}\beta^{-\ddagger}$	Log ft	Comments
317.88 <i>10</i>	2505.748	99.88 <i>3</i>	7.512 2	av E β =95.77 15 I β ⁻ : from 100.00 - I $_{\beta}$ -(1332) - I $_{\beta}$ -(2158).
670 [#] 20	2158.612	0.000 2	≥14.0 ^{2u}	I β^- : from the log ft systematics (1998Si17), the lowest log ft values for unique second forbidden decays are 13.86 for 10 Be and 14.36 and 14.61 for higher masses. For a reasonable lower limit of 14.4 for the log ft for this transition, the β intensity would be less than 0.001%. Therefore, the evaluator has assigned the most probable value as 0.000 with an uncertainty of 0.002.
1492 20	1332.508	0.12 3	14.70 ^{2u} 11	av E β =625.87 21 I β ⁻ : average of measured values of 0.15 1 (1954Ke04), 0.010 2 (1956Wo09), 0.12 (1961Ca05), and 0.08 2 (1968Ha03)

$^{60}\mathrm{Co}\,\beta^-$ decay (1925.28 d) (continued)

β^- radiations (continued)

- † From 1968Ha03, except as noted. ‡ Absolute intensity per 100 decays. # Existence of this branch is questionable.

$^{60}\mathrm{Co}\,\beta^-$ decay (1925.28 d) (continued)

γ (60Ni)

A possible γ of 467 keV with I γ <0.0004% (1969Va20) and <0.00023 (1976Ca18) from the known level at 2626 keV to the 2158 level is not included here. At the lower intensity limit, the I_{β} to the 2626 level would be <0.001%.

$\mathrm{E}_{\gamma}^{\ddagger}$	$I_{\gamma}^{\#a}$	$E_i(level)$	J_i^π	\mathbf{E}_f J	\int_{f}^{π} Mult. @	$\delta^{@}$	$lpha^{\dagger}$ &	Comments
347.14 7	0.0075 4	2505.748	4+	2158.612 2	+ [E2]		0.00557 8	α =0.00557 8; α (K)=0.00499 7; α (L)=0.000503 7; α (M)=7.06×10 ⁻⁵ 10; α (N+)=2.90×10 ⁻⁶ 4 α (N)=2.90×10 ⁻⁶ 4 I _{γ} : from consideration of <0.005 (1955Wo44), 0.0078 12 (1969Va20), <0.006 (1970Di01), 0.00758 50 (1976Ca18), and 0.0069 10 (1977Lo01).
826.10 <i>3</i>	0.0076 8	2158.612	2+	1332.508 2	+ M1+E2	+0.9 3	0.000337 18	α =0.000337 18; α (K)=0.000303 17; α (L)=2.97×10 ⁻⁵ 17; α (M)=4.18×10 ⁻⁶ 23; α (N+)=1.80×10 ⁻⁷ 1 α (N)=1.80×10 ⁻⁷ 10 I _y : from 1976Ca18; others: 0.0055 47 (1969Va20) and 0.003 2 (1972Le14).
1173.228 3	99.85 3	2505.748	4+	1332.508 2	+ E2(+M3)	-0.0025 22	0.0001722 25	α =0.0001722 25; α (K)=0.0001500 2 I ; α (L)=1.465×10 ⁻⁵ 2 I ; α (M)=2.06×10 ⁻⁶ 3 α (N)=8.88×10 ⁻⁸ I 3; α (IPF)=5.42×10 ⁻⁶ 8 I γ: from I γ(1173)=(I _β -(2505) - I γ(347)[1.0+ α (347)] - I γ(2505)[1.0+ α (2505)]) / [1.00+ α (1173)+ α _π (1173)]= 99.87 3 / 1.000174 4. δ: from 1980Kr05. α: from 1985HaZA evaluation of measured values; from theory (1976Ba63) α =1.65×10 ⁻⁴ , α _K =1.50×10 ⁻⁴ , and α _L =1.48×10 ⁻⁵ 4. α: α _π =6.2*10 ⁻⁶ 7 interpolated from theoretical values of 1979Sc31; this value is negligible since it is only about 5% of the corresponding α .
1332.492 4	99.9826 6	1332.508	2+	0.0 0	+ E2		0.0001625 23	α=0.0001625 23; α(K)=0.0001137 16; α(L)=1.108×10 ⁻⁵ 16; α(M)=1.560×10 ⁻⁶ 22 α(N)=6.73×10 ⁻⁸ 10; α(IPF)=3.61×10 ⁻⁵ 5 I _γ : from I _γ (1332)=(100.00 – I _γ (2158)[1.0+α(2158)] – I _γ (2505)[1.0+α(2505)]) / [1.00+α(1332)+α _π (1332)]= 99.9988 2 / 1.000162 6. In the evaluation 1991BaZS, this is computed in the same fashion, but is given as 99.983% 6; the origin of the larger uncertainty is not clear. α: α and α _K from 1985HaZA evaluation of measured values; from theory (1976Ba63) α=1.25x10 ⁻⁴ , α _K =1.14x10 ⁻⁴ , and α _L =1.13x10 ⁻⁵ . α: α _π =3.4*10 ⁻⁵ 4 interpolated from theoretical values of 1979Sc31; 3.0 ×10 ⁻⁵ 3 (1994GrZW).

 ω

γ (60Ni) (continued)

E_{γ}^{\ddagger}	I_{γ} # a	$E_i(level)$	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.@	α [†] &	Comments
2158.57 3	0.0012 2	2158.612	2+	0.0 0+	[E2]	0.000439 7	α =0.000439 7; α (K)=4.45×10 ⁻⁵ 7; α (L)=4.32×10 ⁻⁶ 6; α (M)=6.08×10 ⁻⁷ 9; α (N+)=0.000390 6 α (N)=2.64×10 ⁻⁸ 4; α (IPF)=0.000389 6
							I _γ : from consideration of 0.0012 2 (1955Wo44), <0.002 (1969Ra23), 0.0092 16 (1970Di01), 0.0005 2 (1972Le14), 0.0020 13 (1973Fu15), and 0.00111 18 (1976Ca18).
2505.692 5	2.0×10 ⁻⁶ 4	2505.748	4+	0.0 0+	E4	8.63×10 ⁻⁵ 12	$\alpha(M)=1.069\times10^{-6} \ 15; \ \alpha(N+)=4.62\times10^{-8} \ 7$ $\alpha(N)=4.62\times10^{-8} \ 7$
							I_{γ} : from consideration of <4x10 ⁻⁵ (1970Di01), 9x10 ⁻⁶ 7 (1973Fu15), <1x10 ⁻³ (1977HaXC), 2.0x10 ⁻⁶ 4 (1978Fu05), and 5.2x10 ⁻⁶ 20 (1988Se09).

[†] Additional information 1.

 $^{^{\}ddagger}$ From 2000He14 for 1173 and 1332 γ rays. The others were deduced from the level energies from a fit to the γ -ray energies. In addition to the 1173 and 1332 values, the input to this fit included 346.93 7 (1978Ca18 where the authors average their result and that of 1969Va20); 826.06 [from 59 Co(p, γ) 60 Ni (1975Er05)]; 2158.57 10 [from $^{59}\text{Co}(p,\gamma)$ (1975Er05)]. Other measured γ energies include: 346.95 10 (1969Va20)], 826.18 20 (1969Va20), 826.28 9 (1976Ca18, but includes value of 1969Va20), 2158.8 4 (1970Di01), 2158.9 2 (1969Ra07), and 2159.6 8 (1969Ho22).

[#] I(K x ray)=0.0112 computed from decay scheme.

[@] From ⁶⁰Ni Adopted gammas, except as noted.

[&]amp; Interpolated using program BRICC, unless otherwise noted.

^a Absolute intensity per 100 decays.

$^{60}\mathrm{Co}\,\beta^-$ decay (1925.28 d)

Decay Scheme

