INTRODUCTION TO FOURIER ANALYSIS

CARSON JAMES

Contents

1. Fourier Analysis on \mathbb{R}^n	2
1.1. Schwartz Space	2
1.2. The Convolution	3
1.3. The Fourier Transform	6
2. Fourier Analysis on LCA Groups	8
2.1. The Convolution	8
References	9

1. Fourier Analysis on \mathbb{R}^n

1.1. Schwartz Space.

Definition 1.1.1. Let $\alpha \in \mathbb{N}_0^n$ and $x, y \in \mathbb{R}^n$. We define

- (1) $\langle x, y \rangle = \sum_{i} x_{i} y_{j}$
- (2) $|x| = \langle x, x \rangle^{1/2}$

- (3) $|\alpha| = \alpha_1 + \dots + \alpha_n$ (4) $x^{\alpha} = x_1^{\alpha_1} \cdots x_n^{\alpha_n}$ (5) $\partial^{\alpha} = \partial_{x_1}^{\alpha_1} \cdots \partial_{x_n}^{\alpha_n}$

Definition 1.1.2. Let $f \in C^{\infty}(\mathbb{R}^n), \alpha \in \mathbb{N}_0^n$ and $N \in \mathbb{N}_0$. We define

$$||f||_{\alpha,N} = \sup_{x \in \mathbb{R}^n} (1 + |x|^N) |\partial^{\alpha} f(x)|$$

We define Schwartz space, denoted \mathcal{S} , by

$$S = \{ f \in C^{\infty}(\mathbb{R}^n) : \text{ for each } \alpha \in \mathbb{N}_0^n, N \in \mathbb{N}_0, \|f\|_{\alpha,N} < \infty \}$$

Exercise 1.1.3. For each $f \in \mathcal{S}$ and $\alpha \in \mathbb{N}_0^n$, $\partial^{\alpha} f \in L^1(\mathbb{R}^n)$.

Proof. Let $f \in \mathcal{S}$, $\alpha \in \mathbb{N}_0^n$. Then there exists $C \geq 0$ such that for each $x \in \mathbb{R}^n$,

$$|\partial^{\alpha} f(x)| \le C(1+|x|^2)^{-1}$$

Define $g: \mathbb{R}^n \to [0, \infty)$ defined by $g(x) = (1 + |x|^2)^{-1}$. Then $g \in L^1(\mathbb{R}^n)$ which implies that $\partial^{\alpha} f \in L^1(\mathbb{R}^n).$

Definition 1.1.4.

1.2. The Convolution.

Definition 1.2.1. Let $f, g \in L^0(\mathbb{R}^n)$. If for a.e. $x \in \mathbb{R}^n$,

$$\int_{\mathbb{R}^n} |f(x-y)g(y)| dm(y) < \infty$$

we define the **convolution of** f with g, denoted $f * g : \mathbb{R}^n \to \mathbb{C}$, by

$$f * g(x) = \int_{\mathbb{R}^n} f(x - y)g(y)dm(y)$$

Exercise 1.2.2. Let $f, g \in L^1(\mathbb{R}^n)$. Then $f * g \in L^1(\mathbb{R}^n)$ and $||f * g||_1 \le ||f||_1 ||g||_1$.

Proof. Define $h \in L^0(\mathbb{R}^n \times \mathbb{R}^n)$ by h(x,y) = f(x-y)g(y). Tonelli's theorem implies that,

$$\int_{\mathbb{R}^n \times \mathbb{R}^n} |h| dm^2 = \int_{\mathbb{R}^n} \left[\int_{\mathbb{R}^n} |f(x - y)g(y)| dm(y) \right] dm(x)$$

$$= \int_{\mathbb{R}^n} |g(y)| \left[\int_{\mathbb{R}^n} |f(x - y)| dm(y) \right] dm(x)$$

$$= ||f||_1 \int_{\mathbb{R}^n} |g(y)| dm(x)$$

$$= ||f||_1 ||g||_1$$

$$< \infty$$

Then $h \in L^1(\mathbb{R}^n \times \mathbb{R}^n)$. Fubini's theorem implies that $f * g \in L^1(\mathbb{R}^n)$. Clearly

$$||f * g||_1 \le \int_{\mathbb{R}^n \times \mathbb{R}^n} |h| dm^2$$

 $\le ||f||_1 ||g||_1$

Exercise 1.2.3. Let $f, g, h \in L^1(\mathbb{R}^n)$. Then (f * g) * h = f * (g * h).

Hint: use the substitution $z \mapsto z - y$

Proof. Let $x \in \mathbb{R}^n$. Then using the substitution $z \mapsto z - y$ and Fubini's theorem, we obtain

$$(f * g) * h(x) = \int f * g(x - y)h(y)dm(y)$$

$$= \int \left[\int f(x - y - z)g(z)dm(z) \right] h(y)dm(y)$$

$$= \int \left[\int f(x - z)g(z - y)dm(z) \right] h(y)dm(y)$$

$$= \int \left[\int f(x - z)g(z - y)h(y)dm(z) \right] dm(y)$$

$$= \int \left[\int f(x - z)g(z - y)h(y)dm(y) \right] dm(z)$$

$$= \int f(x - z) \left[\int g(z - y)h(y)dm(y) \right] dm(z)$$

$$= \int f(x - z)g * h(z)dm(z)$$

$$= f * (g * h)(z)$$

So (f * g) * h = f * (g * h).

Exercise 1.2.4. Let $f, g \in L^1(\mathbb{R}^n)$. Then f * g = g * f.

Proof. Let $x \in \mathbb{R}^n$. Using the transformation $y \mapsto x - y$, we obtain that

$$f * g(x) = \int f(x - y)g(y)dm(y)$$
$$= \int f(y)g(x - y)dm(y)$$
$$= \int g(x - y)f(y)dm(y)$$
$$= g * f(x)$$

So f * g = g * f.

Note 1.2.5. To summarize, $(L^1(\mathbb{R}^n), *)$ is a commutative Banach algebra.

Exercise 1.2.6. Young's Inequality:

Let $p \in [1, \infty]$, $f \in L^1$ and $g \in L^p$. Then $f * g \in L^p$ and $||f * g||_p \le ||f||_1 ||g||_p$.

Proof. Define $K \in L^0(\mathbb{R}^n \times \mathbb{R}^n)$ by K(x,y) = f(x-y). Since for each $x,y \in \mathbb{R}^n$,

$$\int |K(x,y)|dm(x) = \int |K(x,y)|dm(y)$$
$$= ||f||_{p}$$

an exercise in section 5.1 of [4] implies that $f * g \in L^p$ and $||f * g||_p \le ||f||_1 ||g||_p$.

Exercise 1.2.7. Let $p, q \in [1, \infty]$ be conjugate, $f \in L^p(\mathbb{R}^n)$ and $g \in L^q(\mathbb{R}^n)$. Then

- (1) for each $x \in \mathbb{R}^n$, f * g(x) exists.
- $(2) ||f * g||_u \le ||f||_p ||g||_q$

(3)

Proof. (1) Let $x \in \mathbb{R}^n$. Holder's inequality implies that

$$\int_{\mathbb{R}^n} |f(x-y)g(y)| dm(y) \le ||f||_p ||g||_q$$

Then f * g(x) exists.

(2) Let $x \in \mathbb{R}^n$. Then in part (1) we showed that

$$|f * g(x)| = \left| \int_{\mathbb{R}^n} f(x - y)g(y)dm(y) \right|$$

$$\leq \int_{\mathbb{R}^n} |f(x - y)g(y)|dm(y)$$

$$\leq ||f||_p ||g||_q$$

Since $x \in \mathbb{R}^n$ is arbitrary, $||f * g||_u \le ||f||_p ||g||_q$. (3)

Exercise 1.2.8. Let $f \in L^1(\mathbb{R}^n)$, $k \in \mathbb{N}$ and $g \in C^k(\mathbb{R}^n)$. Suppose that for each $\alpha \in \mathbb{N}_0^n$, $|\alpha| \le k$ implies that $\partial^{\alpha} g \in L^{\infty}$. Then for each $\alpha \in \mathbb{N}_0^n$, $|\alpha| \le k$ implies that $f * g \in C^k$ and

$$\partial^{\alpha}(f * g) = f * \partial^{\alpha}g$$

Proof. Let $\alpha \in \mathbb{N}_0^n$. Suppose that $|\alpha| = 1$. Define $h \in L^0(\mathbb{R}^n \times \mathbb{R}^n)$ by h(x,y) = g(x-y)f(y). Young's inequality implies that for a.e. $x \in \mathbb{R}^n$, $h(x,\cdot) \in L^1(m)$. For each $y \in \mathbb{R}^n$, $\partial^{\alpha}h(\cdot,y) = \partial^{\alpha}g(\cdot -y)f(y)$ and for each $x,y \in \mathbb{R}^n$, $|\partial^{\alpha}h(x,y)| \leq ||\partial^{\alpha}g||_{\infty}|f(y)| \in L^1(\mathbb{R}^n)$. An exercise in section 3.3 of [4] implies that for a.e. $x \in \mathbb{R}^n$, $\partial^{\alpha}(g * f)(x)$ exists and

$$\begin{split} \partial^{\alpha}(f*g)(x) &= \partial^{\alpha}(g*f)(x) \\ &= \partial^{\alpha} \int_{\mathbb{R}^{n}} h(x,y) dm(y) \\ &= \int_{\mathbb{R}^{n}} \partial^{\alpha}g(x-y) f(y) dm(y) \\ &= (\partial^{\alpha}g) * f(x) \\ &= f*(\partial^{\alpha}g)(x) \end{split}$$

Now proceed by induction on $|\alpha|$.

 \Box

6

1.3. The Fourier Transform.

Definition 1.3.1.

Exercise 1.3.2. Let $\phi: \mathbb{R} \to S^1$ be a measurable homomorphism.

(1) Then $\phi \in L^1_{loc}(\mathbb{R})$ and there exists a > 0 such that

$$\int_{(0,a]} \phi dm \neq 0$$

(2) Define

$$c = \left[\int_{(0,a]} \phi dm \right]^{-1}$$

Then For each $x \in \mathbb{R}$,

$$\phi(x) = c \int_{(x,x+a]} \phi dm$$

- (3) $\phi \in C^{\infty}(\mathbb{R})$ and $\phi' = c(\phi(a) 1)\phi$
- (4) Define $b = c(\phi(a) 1)$ and $g \in C^{\infty}(\mathbb{R})$ by $g(x) = e^{-bx}\phi(x)$. Then g is constant and there exists $\xi \in \mathbb{R}$ such that for each $x \in \mathbb{R}$, $\phi(x) = e^{2\pi i \xi x}$.

Proof.

(1) Let $K \subset \mathbb{R}$ be compact. Then

$$\int_{K} |\phi| dm = m(K) < \infty$$

So $\phi \in L^1_{loc}(\mathbb{R})$. For the sake of contradiction, suppose that for each a > 0,

$$\int_{(0,a]} \phi dm = 0$$

Then the FTC implies that $\phi = 0$ a.e. on $[0, \infty)$, which is a contradiction. So there exists a > 0 such that

$$\int_{(0,a]} \phi dm \neq 0$$

(2) For $x \in \mathbb{R}$,

$$\phi(x) = c \int_{(0,a]} \phi(x)\phi(t)dm(t)$$
$$= c \int_{(0,a]} \phi(x+t)dm(t)$$
$$= c \int_{(x,x+a]} \phi dm$$

(3) Part (2) and the FTC imply that ϕ is continuous. Let $d \in \mathbb{R}$. Define $f_d \in C((d, \infty))$ by

$$f_d(x) = \int_{(d,x]} \phi dm$$

Since ϕ is continuous, the FTC implies that f_d is differentiable and for each x > d $f'_d(x) = \phi(x)$. Part (2) implies that for each x > d,

$$\phi(x) = c \int_{(x,x+a]} \phi dm$$
$$= c(f_d(x+a) - f_d(x))$$

So for each x > d, ϕ is differentiable at x and

$$\phi'(x) = c(\phi(x+a) - \phi(x))$$
$$= c(\phi(a) - 1)\phi(x)$$

Since $d \in \mathbb{R}$ is arbitrary, ϕ is differentiable and $\phi' = c(\phi(a) - 1)\phi$. This implies that $\phi \in C^{\infty}(\mathbb{R})$.

(4) Let $x \in \mathbb{R}$. Then

$$g'(x) = e^{-bx}\phi'(x) - be^{-bx}\phi(x)$$
$$= be^{-bx}\phi(x) - be^{-bx}\phi(x)$$
$$= 0$$

So g'=0 and g is constant. Hence there exists $k \in \mathbb{R}$ such that for each $x \in \mathbb{R}$, $\phi(x)=ke^{bx}$. Since $\phi(0)=1,\ k=1$. Since $|\phi|=1$, there exists $\xi \in \mathbb{R}$ such that $b=2\pi i \xi$.

Note 1.3.3. To summarize, for each measurable homomorphism $\phi : \mathbb{R} \to S^1$, there exists $\xi \in \mathbb{R}$ such such that for each $x \in \mathbb{R}$, $\phi(x) = e^{2\pi i \xi x}$.

Exercise 1.3.4. Let $\phi: \mathbb{R}^n \to S^1$ be a measurable homomorphism. Then there $\xi \in \mathbb{R}^n$ such that for each $x \in \mathbb{R}^n$, $\phi(x) = e^{2\pi i \langle \xi, x \rangle}$.

Proof. When done in the category of measurable groups, an exercise in the section on direct products of groups of [3] implies that there exist measurable homomorphism $(\phi_j)_{j=1}^n \subset (S^1)^{\mathbb{R}}$ such that $\phi = \bigotimes_{j=1}^n \phi_j$. The previous exercise implies that there exist $\xi \in \mathbb{R}^n$ such that for each $x \in \mathbb{R}^n$, $\phi_j(x_j) = e^{2\pi i \xi_j x_j}$. Then for each $x \in \mathbb{R}^n$,

$$\phi(x) = \prod_{j=1}^{n} \phi_j(x_j)$$

$$= \prod_{j=1}^{n} e^{2\pi i \xi_j x_j}$$

$$= e^{2\pi i \sum_{j=1}^{n} \xi_j x_j}$$

$$= e^{2\pi i \langle \xi, x \rangle}$$

Definition 1.3.5. Let $f \in L^1(\mathbb{R}^n)$. We define the **Fourier transform of** f, denoted $\hat{f} : \mathbb{R}^n \to \mathbb{C}$ by

$$\hat{f}(\xi) = \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} f(x) e^{-2\pi i \langle \xi, x \rangle} dm(x)$$

2. Fourier Analysis on LCA Groups

2.1. The Convolution.

Note 2.1.1. For the remainder of the section, we fix a locally compact abelian group G and a Haar measure μ on G.

Definition 2.1.2. Let $f, g \in L^1(\mu)$. We define the **convolution of** f **with** g, denoted $f * g : G \to \mathbb{C}$, by

$$f * g(x) = \int_X f(x - y)g(y)d\mu(y)$$

Exercise 2.1.3. Let $f, g \in L^1(\mu)$. Then $f * g \in L^1(\mu)$.

Proof. By Tonelli's theorem.

$$\begin{split} \int_X |f*g| d\mu &\leq \int_X \left[\int_X |f(x-y)g(y)| d\mu(y) \right] d\mu(x) \\ &= \int_X |g(y)| \left[\int_X |f(x-y)| d\mu(y) \right] d\mu(x) \\ &= \|f\|_1 \int_X |g(y)| d\mu(x) \\ &= \|f\|_1 \|g\|_1 \\ &< \infty \end{split}$$

References

- Introduction to Analysis
 Introduction to Fourier Analysis
 Introduction to Group Theory
 Introduction to Measure and Integration