Formula Sheet

Physical Quantity	Value	Physical Quantity	Value
Charge of electron	-1.6x10 ⁻¹⁹ C	Charge of proton	1.6x10 ⁻¹⁹ C
Mass of electron	m _e = 9.11x10 ⁻³¹ kg	Mass of proton	m_p = 1.67x10 ⁻²⁷ kg
Coulomb's constant	$k = 9x10^9 \text{ N.m}^2/\text{C}^2$	Permittivity constant	$\varepsilon_0 = 8.85 \times 10^{-12} \text{C}^2 / (\text{N.m}^2)$
Acc. of gravity	g= 9.8 m/s ²	Permeability constant	$\mu_0 = 4\pi x 10^{-7} \text{ T.m/A}$

$\rho = \frac{E}{I}$, Definition of resistivity	V = R.I, $Ohm's law$		
$p = \frac{1}{J}$, Definition of resistivity			
$P = iV = \frac{V^2}{R}$, Rate of electrical energy transfer	Loop Rule. The algebraic sum of the changes in potential encountered in a complete traversal of any loop of a circuit must be zero.		
Junction Rule. The sum of the currents entering any junction must be equal to the sum of the currents leaving that junction.	$\vec{F}_B = q\vec{V} \times \vec{B}$ Sin(3) Magnetic force		
$ec{F}_B = I \vec{L} imes ec{B} imes_{in(g)}$ Force on current $F_B = rac{\mu_0 I_1 I_2}{2\pi r}$, Magnetic F. between two parallel currents	$\mu = iA$ Magnetic dipole moment		
$\vec{\tau} = \vec{\mu} \times \vec{B} $ Sin(9) Torque on a magnetic dipole $\mathbf{T} = NP$ \mathbf{B} Sin (8)	$U = -\vec{\mu} \cdot \vec{B}$ otential energy of a magnetic dipole Orientalien Cherzy		
$B=rac{\mu_0 I}{2\pi r}$, Magnetic field of a long straight wire	$\oint \vec{B} \cdot d\vec{s} = \mu_0 I_{enc}$, Ampere's law		
$B = \mu_0 nI$, Magnetic field of an ideal solenoid num of +urns	$\vec{B} = \frac{\mu_0 \vec{\mu}}{2\pi z^3}$, Magnetic field of a magnetic dipole		

" if has ided: B = V.NI

