## Теоретические ("малые") домашние задания

Математическая логика, ИТМО, МЗ235-МЗ239, весна 2020 года

## Домашнее задание №1: «знакомство с исчислением высказываний»

- 1. Укажите про каждое из следующих высказываний, общезначимо, выполнимо, опровержимо или невыполнимо ли оно:
  - (a)  $\neg A \lor \neg \neg A$
  - (b)  $(A \to \neg B) \lor (B \to \neg C) \lor (C \to \neg A)$
  - (c)  $A \to B \vee A$
  - (d)  $A \rightarrow B \& B \rightarrow A$
- 2. Будем говорить, что высказывание  $\alpha$  следует из высказываний  $\gamma_1, \gamma_2, \dots, \gamma_n$  (и будем записывать это как  $\gamma_1, \gamma_2, \dots, \gamma_n \models \alpha$ ), если при любой оценке, такой, что при всех i выполнено  $[\![\gamma_i]\!] = \mathbf{H}$ , также выполнено и  $[\![\alpha]\!] = \mathbf{H}$ .

Пусть даны высказывания  $\alpha$  и  $\beta$ , причём  $\alpha \models \beta$ , но  $\beta \not\models \alpha$ . Придумайте «промежуточное» высказывание  $\gamma$ , такое, что  $\alpha \models \gamma, \gamma \models \beta$ , причём  $\gamma \not\models \alpha$  и  $\beta \not\models \gamma$ .

- 3. Простые высказывания. Докажите высказывания, построив полный вывод:
  - (a)  $\alpha, \beta \vdash \alpha \& \beta$
  - (b)  $\alpha, \beta \vdash \alpha \lor \beta$
  - (c)  $\neg \alpha, \beta \vdash \alpha \lor \beta$
  - (d)  $\alpha, \neg \beta \vdash \alpha \lor \beta$
  - (e)  $\gamma \vdash \alpha \rightarrow \gamma$
  - (f)  $\neg \alpha \vdash \neg \alpha$
  - (g)  $\alpha, \beta \vdash \alpha \rightarrow \beta$
- 4. Ассоциативность и коммутативность.
  - (a) Докажите или опровергните:  $\models \alpha \to \beta$  влечёт  $\models \beta \to \alpha$ .
  - (b) Докажите:  $\vdash \alpha \lor \beta \to \beta \lor \alpha$
  - (c) Докажите:  $\vdash \alpha \& \beta \rightarrow \beta \& \alpha$
- 5. Контрапозиция. Докажите, что  $\vdash \alpha \to \beta \to \neg(\beta \to \alpha)$
- 6. Докажите следующие высказывания, построив полный вывод:
  - (a)  $\neg \alpha, \beta \vdash \neg (\alpha \& \beta)$
  - (b)  $\alpha, \neg \beta \vdash \neg (\alpha \& \beta)$
  - (c)  $\neg \alpha, \neg \beta \vdash \neg (\alpha \& \beta)$
  - (d)  $\neg \alpha, \neg \beta \vdash \neg (\alpha \lor \beta)$
  - (e)  $\alpha, \neg \beta \vdash \neg(\alpha \to \beta)$
  - (f)  $\neg \alpha, \beta \vdash \alpha \rightarrow \beta$
  - (g)  $\neg \alpha, \neg \beta \vdash \alpha \rightarrow \beta$
  - (h)  $\alpha \vdash \neg \neg \alpha$