

SPACEX-FALCON-9-ROCKET

- Samarth Varu

OUTLINE

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

EXECUTIVE SUMMARY

- Summary of methodologies
 - Data Collection through API
 - Data Collection with Web Scraping
 - Data Wrangling
 - Exploratory Data Analysis with SQL
 - Exploratory Data Analysis with Data Visualization
 - Interactive Visual Analytics with Folium
 - Machine Learning Prediction
- Summary of all results
 - Exploratory Data Analysis result
 - Interactive analytics in screenshots
 - Predictive Analytics result

INTRODUCTIO N

Project background and context

• Space X advertises Falcon 9 rocket launches on its website with a cost of 62 million dollars; other providers cost upward of 165 million dollars each, much of the savings is because Space X can reuse the first stage. Therefore, if we can determine if the first stage will land, we can determine the cost of a launch. This information can be used if an alternate company wants to bid against space X for a rocket launch. This goal of the project is to create a machine learning pipeline to predict if the first stage will land successfully.

Problems you want to find answers

- What factors determine if the rocket will land successfully?
- The interaction amongst various features that determine the success rate of a successful landing.
- What operating conditions needs to be in place to ensure a successful landing program.

PART I

METHODOLOGY

METHODOLOGY

- Executive Summary
- Data collection methodology:
 - Data was collected using SpaceX API and web scraping from Wikipedia.
- Perform data wrangling
 - One-hot encoding was applied to categorical features
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - How to build, tune, evaluate classification models

DATA COLLECTION

- The data was collected using various methods
 - Data collection was done using get request to the SpaceX
 API.
 - Next, we decoded the response content as a Json using .json() function call and turn it into a pandas dataframe using .json normalize().
 - We then cleaned the data, checked for missing values and fill in missing values where necessary.
 - In addition, we performed web scraping from Wikipedia for Falcon 9 launch records with BeautifulSoup.
 - The objective was to extract the launch records as HTML table, parse the table and convert it to a pandas dataframe for future analysis.

DATA COLLECTION – SPACEX API

- We used the get request to the SpaceX API to collect data, clean the requested data and did some basic data wrangling and formatting.
- The link to the notebook is:
- https://github.com/samarthvaru/IBM_ DataScience/blob/main/Data%20Colle ction%20API.ipynb

```
1. Get request for rocket launch data using API

In [6]: spacex_url="https://api.spacexdata.com/v4/launches/past"

In [7]: response = requests.get(spacex_url)

2. Use json_normalize method to convert json result to dataframe

In [12]: # Use json_normalize method to convert the json result into a dataframe # decode response content as json static_json_df = res.json()

In [13]: # apply json_normalize data = pd.json_normalize(static_json_df)

3. We then performed data cleaning and filling in the missing values

In [30]: rows = data_falcon9['PayloadMass'].values.tolist()[0] df_rows = pd.DataFrame(rows) df_rows = df_rows.replace(np.nan, PayloadMass) data_falcon9['PayloadMass'][0] = df_rows.values data_falcon9
```

Data Collection - Scraping

- We applied web scrapping to webscrap Falcon 9 launch records with BeautifulSoup
- We parsed the table and converted it into a pandas dataframe.
- The link to the notebook is:
- https://github.com/samarthvaru/IB
 M DataScience/blob/main/Data%2
 OCollection%20with%20Web%20
 Scraping.ipynb

```
1. Apply HTTP Get method to request the Falcon 9 rocket launch page
In [6]: static_url = "https://en.wikipedia.org/w/index.php?title=List_of_Falcon_9_and_Falcon_Heavy_launches&oldid=1827686922"
In [5]: # use requests.get() method with the provided static_url
           # assign the response to a object
           html data = requests.get(static_url)
          html_data.status_code
Out[5]: 200
    2. Create a BeautifulSoup object from the HTML response
           # Use BeautifulSoup() to create a BeautifulSoup object from a response text content
           soup = BeautifulSoup(html_data.text, 'html.parser')
          Print the page title to verify if the BeautifulSoup object was created properly
In [7]: # Use soup.title attribute
            soup.title
          <title>List of Falcon 9 and Falcon Heavy launches - Wikipedia</title>
    3. Extract all column names from the HTML table header
In [10]: column_names = []
          # Apply find_all() function with "th" element on first_lounch_table
          # Iterate each th element and apply the provided extract column from header() to get a column name # Append the Non-empty column name ('if name is not None and Len(name) \Rightarrow 0') into a list called column names
          element = soup.find_all('th')
          for row in range(len(element)):
                  name = extract_column_from_header(element[row])
                 if (name is not None and len(name) > 0)
                     column_names.append(name)
    4. Create a dataframe by parsing the launch HTML tables
```

DATA WRANGLING

- We performed exploratory data analysis and determined the training labels.
- We calculated the number of launches at each site, and the number and occurrence of each orbits
- We created landing outcome label from outcome column and exported the results to csv.
- The link to the notebook is:
- https://github.com/samarthvaru/IBM_DataSci ence/blob/main/Data%20Wrangling.ipynb

EDA with Data Visualization

 We explored the data by visualizing the relationship between flight number and launch Site, payload and launch site, success rate of each orbit type, flight number and orbit type, the launch success yearly trend.

- The link to the notebook is:
- https://github.com/samarthvaru/IBM_DataScience/b lob/main/EDA%20with%20Data%20Visualization.ipy nb

EDA WITH SQL

We loaded the SpaceX dataset into a PostgreSQL database without leaving the jupyter notebook.

We applied EDA with SQL to get insight from the data. We wrote queries to find out for instance:

The names of unique launch sites in the space mission.

The total payload mass carried by boosters launched by NASA (CRS)

The average payload mass carried by booster version F9 v1.1

The total number of successful and failure mission outcomes

The failed landing outcomes in drone ship, their booster version and launch site names.

The link to the notebook is https://github.com/samarthvaru/l
BM DataScience/blob/main/EDA%
20with%20SQL.ipynb

BUILD AN INTERACTIVE MAP WITH FOLIUM

We marked all launch sites, and added map objects such as markers, circles, lines to mark the success or failure of launches for each site on the folium map.

We assigned the feature launch outcomes (failure or success) to class 0 and 1.i.e., 0 for failure, and 1 for success.

Using the color-labeled marker clusters, we identified which launch sites have relatively high success rate.

We calculated the distances between a launch site to its proximities. We answered some question for instance:

- Are launch sites near railways, highways and coastlines.
- Do launch sites keep certain distance away from cities.

BUILD A DASHBOARD WITH PLOTLY DASH

We built an interactive dashboard with Plotly dash

We plotted pie charts showing the total launches by a certain sites

We plotted scatter graph showing the relationship with Outcome and Payload Mass (Kg) for the different booster version.

The link to the notebook is:

https://github.com/samarthvaru/IBM_DataScience/blob/main/dashapp.py

PREDICTIVE ANALYSIS (CLASSIFICATI ON)

- We loaded the data using numpy and pandas, transformed the data, split our data into training and testing.
- We built different machine learning models and tune different hyperparameters using GridSearchCV.
- We used accuracy as the metric for our model, improved the model using feature engineering and algorithm tuning.
- We found the best performing classification model.
- The link to the notebook is https://github.com/samarthvaru/IBM_DataScience/blob/main/Machine%20Learning%20Prediction.ipynb

RESULTS

EXPLORATORY DATA ANALYSIS RESULTS

INTERACTIVE ANALYTICS DEMO IN SCREENSHOTS

PREDICTIVE ANALYSIS RESULTS

Flight Number vs. Launch Site

• From the plot, we found that the larger the flight amount at a launch site, the greater the success rate at a launch site.

PAYLOAD VS. LAUNCH SITE

SUCCESS RATEVS. ORBIT TYPE

 From the plot, we can see that ES-LI, GEO, HEO, SSO, VLEO had the most success rate.

FLIGHT NUMBER VS. ORBIT TYPE

The plot below shows the Flight
 Number vs. Orbit type. We observe
 that in the LEO orbit, success is
 related to the number of flights
 whereas in the GTO orbit, there is
 no relationship between flight
 number and the orbit.

Payload vs. Orbit Type

 We can observe that with heavy payloads, the successful landing are more for PO, LEO and ISS orbits.

LAUNCH SUCCESS YEARLY TREND

From the plot, we can
 observe that success rate
 since 2013 kept on increasing
 till 2020.

ALL LAUNCH SITE NAMES

We used the key word **DISTINCT**to show only unique launch sites from
the SpaceX data.

```
Display the names of the unique launch sites in the space mission

In [10]:

task_1 = '''

SELECT DISTINCT LaunchSite
FROM SpaceX

create_pandas_df(task_1, database=conn)

Out[10]:

launchsite

0     KSC LC-39A

1     CCAFS LC-40

2     CCAFS SLC-40

3     VAFB SLC-4E
```

Launch Site Names Begin with 'CCA'

[11]:	Co	FRO WHE LIM	ECT * M SpaceX RE Launc IT 5	hSite LIKE 'CC							
t[11]:		date	time	boosterversion	launchsite	payload	payloadmasskg	orbit	customer	missionoutcome	landingoutcom
	0	2010-04- 06	18:45:00	F9 v1.0 B0003	CCAFS LC- 40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failur (parachute
	1	2010-08- 12	15:43:00	F9 v1.0 B0004	CCAFS LC- 40	Dragon demo flight C1, two CubeSats, barrel of	0	LEO (ISS)	NASA (COTS) NRO	Success	Fail <mark>u</mark> (parachut
	2	2012-05- 22	07:44:00	F9 v1.0 B0005	CCAFS LC- 40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	Success	No attemp
					CCAFS LC-			LEO		7 = 0.750.00	##00000EE00000
	3	2012-08- 10	00:35:00	F9 v1.0 B0006	40	SpaceX CRS-1	500	(ISS)	NASA (CRS)	Success	No attemp

 We used the query above to display 5 records where launch sites begin with `CCA`

TOTAL PAYLOAD MASS

 We calculated the total payload carried by boosters from NASA as 45596 using the query below

```
Display the total payload mass carried by boosters launched by NASA (CRS)

In [12]: 

task_3 = '''

SELECT SUM(PayloadMassKG) AS Total_PayloadMass
FROM SpaceX
WHERE Customer LIKE 'NASA (CRS)'

create_pandas_df(task_3, database=conn)

Out[12]: 
total_payloadmass
0 45596
```

AVERAGE PAYLOAD MASS BY F9 VI.I

 We calculated the average payload mass carried by booster version F9 v1.1 as 2928.4

FIRST SUCCESSFUL GROUND LANDING DATE

 We observed that the dates of the first successful landing outcome on ground pad was 22nd December 2015

SUCCESSFUL DRONE SHIP LANDING WITH PAYLOAD BETWEEN 4000 AND 6000

We used the WHERE
 clause to filter for
 boosters which have
 successfully landed on
 drone ship and applied the
 AND condition to
 determine successful
 landing with payload mass
 greater than 4000 but less
 than 6000

TOTAL NUMBER OF SUCCESSFUL AND FAILURE MISSION OUTCOMES

 We used wildcard like '%' to filter for WHERE MissionOutcome was a success or a failure.

```
List the total number of successful and failure mission outcomes
In [16]:
          task_7a = '''
                  SELECT COUNT(MissionOutcome) AS SuccessOutcome
                  FROM SpaceX
                  WHERE MissionOutcome LIKE 'Success%'
          task_7b = '''
                  SELECT COUNT(MissionOutcome) AS FailureOutcome
                  FROM SpaceX
                  WHERE MissionOutcome LIKE 'Failure%'
          print('The total number of successful mission outcome is:')
          display(create_pandas_df(task_7a, database=conn))
          print()
          print('The total number of failed mission outcome is:')
          create pandas df(task 7b, database=conn)
         The total number of successful mission outcome is:
            successoutcome
                      100
         The total number of failed mission outcome is:
Out[16]:
            failureoutcome
                      1
```

Boosters Carried Maximum Payload

 We determined the booster that have carried the maximum payload using a subquery in the WHERE clause and the MAX() function. List the names of the booster_versions which have carried the maximum payload mass. Use a subquery

```
In [17]:
           task_8 = ""
                   SELECT BoosterVersion, PayloadMassKG
                    FROM SpaceX
                   WHERE PayloadMassKG = (
                                              SELECT MAX(PayloadMassKG)
                                              FROM SpaceX
                    ORDER BY BoosterVersion
           create_pandas_df(task_8, database=conn)
Out[17]:
              boosterversion payloadmasskg
               F9 B5 B1048.4
                                     15600
               F9 B5 B1048.5
                                     15600
               F9 B5 B1049.4
                                     15600
               F9 B5 B1049.5
                                     15600
               F9 B5 B1049.7
                                     15600
               F9 B5 B1051.3
                                     15600
               F9 B5 B1051.4
                                     15600
               F9 B5 B1051.6
                                     15600
               F9 B5 B1056.4
                                     15600
               F9 B5 B1058.3
                                     15600
               F9 B5 B1060.2
                                     15600
              F9 B5 B1060.3
                                     15600
          11
```

We used a combinations of the WHERE clause,
 LIKE, AND, and BETWEEN conditions to filter for failed landing outcomes in drone ship, their booster versions, and launch site names for year 2015

2015 LAUNCH RECORDS

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

Rank the count of landing outcomes (such as Failure (drone ship) or Success (ground pad))

```
In [19]:
           task_10 = '''
                    SELECT LandingOutcome, COUNT(LandingOutcome)
                    FROM SpaceX
                    WHERE DATE BETWEEN '2010-06-04' AND '2017-03-20'
                    GROUP BY LandingOutcome
                    ORDER BY COUNT(LandingOutcome) DESC
           create_pandas_df(task_10, database=conn)
Out[19]:
                 landingoutcome count
          0
                      No attempt
                                     10
               Success (drone ship)
                Failure (drone ship)
              Success (ground pad)
                 Controlled (ocean)
               Uncontrolled (ocean)
          6 Precluded (drone ship)
                 Failure (parachute)
```

- We selected Landing outcomes and the COUNT of landing outcomes from the data and used the WHERE clause to filter for landing outcomes BETWEEN 2010-06-04 to 2010-03-20.
- We applied the GROUP BY clause to group the landing outcomes and the ORDER BY clause to order the grouped landing outcome in descending order.

Part 4

Launch Sites Proximities Analysis

ALL LAUNCH SITES GLOBAL MAP MARKERS

MARKERS SHOWING LAUNCH SITES WITH COLOR LABELS

Launch Site distance to landmarks

Part 5

Build Dashboard with Plotty Dash

PIE CHART SHOWING THE SUCCESS PERCENTAGE ACHIEVED BY EACH LAUNCH SITE

PIE CHART SHOWING THE LAUNCH SITE WITH THE HIGHEST LAUNCH SUCCESS RATIO

Scatter plot of Payload vs Launch Outcome for all sites, with different payload selected in the range slider

We can see the success rates for low weighted payloads is higher than the heavy weighted payloads

Predictive Analysis (Analysis)

Part 6

CLASSIFICATION ACCURACY

 The decision tree classifier is the model with the highest classification accuracy

CONFUSION MATRIX

 The confusion matrix for the decision tree classifier shows that the classifier can distinguish between the different classes. The major problem is the false positives .i.e., unsuccessful landing marked as successful landing by the classifier.

55 We can conclude that:

The larger the flight amount at a launch site, the greater the success rate at a launch site.

Launch success rate started to increase in 2013 till 2020.

Orbits ES-L1, GEO, HEO, SSO, VLEO had the most success rate.

KSC LC-39A had the most successful launches of any sites.

The Decision tree classifier is the best machine learning algorithm for this task.

CONCLUSIONS

