Demonstration

Accuracy compared to SNAP – Coregistration operator

Legend	Relative error					
RED	one pixel zero, second is not					
ORANGE	>10%					
	> 1%					
GREEN	> 0.1%					
CYAN	> 100ppm					
LIGHT BLUE	> 10ppm					
BLUE	< 10ppm					
BLACK	equal					

Dataset: Beirut Average relative error: 2%, however this is mostly on burst edges

Accuracy compared to SNAP – Coregistration operator

Legend	Relative error				
RED	one pixel zero, second is not				
ORANGE	>10%				
	> 1%				
GREEN	> 0.1%				
CYAN	> 100ppm				
LIGHT BLUE	> 10ppm				
BLUE	< 10ppm				
BLACK	equal				

Accuracy compared to SNAP – Coherence operator

Legend	Relative error
RED	one pixel zero, second is not
ORANGE	>10%
	> 1%
GREEN	> 0.1%
CYAN	> 100ppm
LIGHT BLUE	> 10ppm
BLUE	< 10ppm
BLACK	equal

Location: Argentina

Without flat earth subtraction:

Average relative error of pixels that differ: 0.1ppm

Flat earth subtraction:

Average relative error of pixels that differ: 35ppm

Accuracy compared to SNAP – Coherence operator

Flat earth subtraction significantly increases the error and it has a visible pattern.

Accuracy compared to SNAP – Terrain correction operator

Legend	Relative error					
RED	one pixel zero, second is not					
ORANGE	>10%					
	> 1%					
GREEN	> 0.1%					
CYAN	> 100ppm					
LIGHT BLUE	> 10ppm					
BLUE	< 10ppm					
BLACK	equal					

Dataset: \$1A_IW_\$LC__1\$DV_20210627T173600_20

210627T173629_038529_048BF4_EFBE

Location: Equatorial Guinea, Africa

Peak relative error 0.2%

Average error of pixels that differ: less

than 1ppm(parts per million)

Accuracy compared to SNAP – Terrain correction operator

Legend	Relative error				
RED	one pixel zero, second is not				
ORANGE	>10%				
	> 1%				
GREEN	> 0.1%				
CYAN	> 100ppm				
LIGHT BLUE	> 10ppm				
BLUE	< 10ppm				
BLACK	equal				

Relative error image:

A clear pattern occurs, with visible 13x13 pixel squares visible in the image.

Accuracy compared to SNAP – Coherence chain

Legend	Relative error
RED	one pixel zero, second is not
ORANGE	>10%
	> 1%
GREEN	> 0.1%
CYAN	> 100ppm
LIGHT BLUE	> 10ppm
BLUE	< 10ppm
BLACK	equal

Dataset: Beirut Average relative error:

0.12%

Accuracy compared to SNAP – Coherence chain

Legend	Relative error
RED	one pixel zero, second is not
ORANGE	>10%
	> 1%
GREEN	> 0.1%
CYAN	> 100ppm
LIGHT BLUE	> 10ppm
BLUE	< 10ppm
BLACK	equal

Accuracy compared to SNAP - Coherence chain

Histogram coherence_alus

© 2021 CGI Inc.

SNAP min: 5.1855404308299e-06 max: 0.99190670251846 mean: 0.57312980751108 std dev: 0.20131853704524

ALUS min: 5.1853394325008e-06 max: 0.99190676212311 mean: 0.57322074106159 std dev: 0.2013028365413

Accuracy compared to SNAP – Calibration operator

Legend	Relative error					
RED	one pixel zero, second is not					
ORANGE	>10%					
	> 1%					
GREEN	> 0.1%					
CYAN	> 100ppm					
LIGHT BLUE	> 10ppm					
BLUE	< 10ppm					
BLACK	equal					

Clear error pattern due to bug in SNAP code (for sigma and gamma, for beta not present)

90% of pixels differ, average error 10ppm

This error is not present in ALUS code therefore this visible error pattern

Accuracy compared to SNAP – Calibration operator

Legend	Relative error				
RED	one pixel zero, second is not				
ORANGE	>10%				
	> 1%				
GREEN	> 0.1%				
CYAN	> 100ppm				
LIGHT BLUE	> 10ppm				
BLUE	< 10ppm				
BLACK	equal				

Dataset:

Location: North-East

Estonia

Average relative

error: 10ppm

Accuracy compared to SNAP – Calibration chain

Accuracy compared to SNAP – Calibration chain

SNAP pixel> - <ALUS pixel> min: -0.00029657509942981463 max: 0.00018542110917250246 mean: 9.05584435558093e-06 std dev: 8.94700461551597e-06

Performance improvements since June – Calibration chain

Time spent per operator Tesla V100 AWS P3 instance

June (Total = 21.5s)

Performance improvements since June – Calibration chain

Time spent by GPU activity Tesla V100 AWS P3 instance

June (Total = 21.5s)

Performance improvements since June – Calibration chain

Total chain time spent Tesla V100 AWS P3 instance

June 21.5 seconds vs August 9.2 seconds

Performance improvements since June – Coherence chain

Time spent per operator Tesla V100 AWS P3 instance

June (Total= 72s)

August (Total=19.1s)

Performance improvements since June – Coherence chain

Time spent by GPU activity Tesla V100 AWS P3 instance

June (Total = 72s)

August (Total = 19.1s)

Performance improvements since June – Coherence chair

Total chain time spent Tesla V100 AWS P3 instance

June 72 seconds vs August 19.1 seconds

Problem 1 GPU Double precision FLOPS

	Compute Capability								
	3.5, 3.7	5.0, 5.2	5.3	6.0	6.1	6.2	7.x	8.0	8.6
32-bit floating-point add, multiply, multiply-add	192	128		64	128		64		128
64-bit floating-point add, multiply, multiply-add	64 ⁴	4		32	4		32 ⁵	32	2

- Most consumer GPUs have float to double performance ration of 1:32
- Due to this algorithms heavy on double math do not see significant improvement compared to CPU

Problem 1 GPU Double precision FLOPS

Cloud mainframe instance with Nvidia Tesla V100 total 9.2 seconds

Consumer PC with Nvidia MX250 total 20.5 seconds

Problem 2 GPU memory requirements

- Sentinel1 SLC full swath size ~1.25GB, final output similar size
- Small laptop GPUs cannot hold input+output+metadata in GPU memory with only 1-2GB of GPU RAM
- On datacenter GPUs most time is actually spent on reading GeoTIFF files and writing results using GDAL driver
- For example, debursting intuitively does not make sense on the GPU. However, given enough GPU memory, this could be used to avoid relatively expensive intermediate transfers.

Ideas for further improvements/adjustments

n level

- Systematic errors detection and fixes
- SNAP performance results could be better if machines/instances used are on level cost wise to GPU instances
- First and the last algorithm step are bottlenecked by GeoTIFF I/O this could be enhanced by using faster disk instances and better file reading logic. For example, reading raster data during GPU initialization.
- Every other algorithm step is bottlenecked by GDAL I/O driver on V100
- On laptop GPUs double performance is a significant bottleneck
- Overall same performance results could be obtained with older GPUs or GPUs that are cheaper and with less capabilities (that is concerning cloud platform mainframe devices)