Unit 3 Pre-Test Review – Exponential and Logarithmic Functions MHF4U

1) Sketch a graph of each function. Then, sketch a graph of the inverse of each function. Label each graph with its equation. Also, complete the table of information for each function

a)
$$f(x) = 2^x$$

f(x) =	$f^{-1}(x) =$
<i>x</i> -int:	x-int:
y-int:	<i>y</i> -int:
Domain:	Domain:
Range:	Range:
Asymptote:	Asymptote:

b)
$$g(x) = \left(\frac{1}{4}\right)^x$$

g(x) =	$g^{-1}(x) =$
x-int:	x-int:
<i>y</i> -int:	<i>y</i> -int:
Domain:	Domain:
Range:	Range:
Asymptote:	Asymptote:

2) State the domain and range for the function, shown below.

Domain:

Range:

A)

B)

C)

Graph:

x 0 2

Equation:

Letter of Graph of Inverse:

Equation of inverse:

4) Rewrite each equation in logarithmic form.

a)
$$4^3 = 64$$

b)
$$28 = 3^x$$

c)
$$6^3 = y$$

d)
$$512 = 2^9$$

5) Rewrite each equation in exponential form.

a)
$$7 = \log_2 128$$

b)
$$x = \log_b n$$

c)
$$5 = \log_3 243$$

d)
$$19 = \log_b 4$$

- 6) Evaluate without a calculator. Show your work.
- a) $\log_2 16$

b) $\log_3 81$

Use either:

Rule: if $x^a = x^b$, then a = b

Rule: $\log_a(a^b) = b$

c) $\log_4\left(\frac{1}{16}\right)$

d) log 0.000 001

- 7) Evaluate each of the following without a calculator using the power law of logarithms.
- **a)** $\log_2 32^3$
- **b)** $\log 1000^{-2}$
- c) $\log 0.001^{-1}$
- **d)** $\log_{\frac{1}{4}} \left(\frac{1}{16}\right)^4$

8) Solve for x, correct to 3 decimal places.

a)
$$x = \log_3 17$$

a)
$$x = \log_3 17$$
 b) $\log_2 0.35 = x$ **c)** $4^x = 10$

c)
$$4^x = 10$$

d)
$$80 = 100 \left(\frac{1}{2}\right)^x$$

9) Use the change	of base formula to	o evaluate.	Round to one	decimal place.
J) OSC the change	or base formata to	o cvaraate.	Modrid to one	accimiai piacc.

a) log₉ 12

b) $\log_{0.25} 52$

10) Write as a single logarithm. Then evaluate without a calculator.

a) $\frac{\log 16}{\log 4}$

b) $\frac{\log\left(\frac{8}{27}\right)}{\log\left(\frac{2}{3}\right)}$

11) Solve, to two decimal places

a) $\log 4^x = 7$

b) $12 = \log_3 4^m$

- **12)** An investment earns 12% interest, compounded annually. The amount, A, that he investment is worth as a function of time, t, in years, is given by $A = 1500(1.12)^t$. Use the equation to determine...
- a) the value of the investment after 4 years

b) how long it will take for the investment to double in value

13) Write as a single logarithm

a)
$$\log_7 8 + \log_7 4 - \log_7 16$$

b)
$$2 \log a + \log(3b) - \frac{1}{2} \log c$$

14) Write as a sum or difference of logarithms. Simplify if possible.

a)
$$\log(a^2bc)$$

b)
$$\log\left(\frac{k}{\sqrt{m}}\right)$$

- **15)** Evaluate, using the laws of logarithms.
- **a)** $\log_6 8 + \log_6 27$

b) $\log_4 128 - \log_4 8$

c) $2 \log 2 + 2 \log 5$

 $d) \ 2\log 3 + \log\left(\frac{25}{2}\right)$

- 16) Simplify
- a) $\log(2m+6) \log(m^2-9)$

b) $\log(x^2 + 2x - 15) - \log(x^2 - 7x + 12)$

- 17) Write each as a power of 4
- **a)** 64

b) $\frac{1}{16}$

c) $(\sqrt[3]{8})^5$

18) Write 20 as a power of 5.

19) Solve each equation

a)
$$3^{5x} = 27^{x-1}$$

b)
$$8^{2x+1} = 32^{x-1}$$

20) Solve exactly. Then use your calculator to evaluate correct to 3 decimal places.

a)
$$3^{x-2} = 5^x$$

b)
$$2^{k-2} = 3^{k+1}$$

21) Solve the following equations; round to 2 decimal places where appropriate.

a)
$$3^x = 12$$

b)
$$10 = 2 \cdot 4^{x+2}$$

c)
$$3^x = 4^{1-x}$$

22) Solve each equation. Check for extraneous routes.

a)
$$4^{2x} - 4^x - 20 = 0$$

b)
$$2^x + 12(2)^{-x} = 7$$

23) Solve each equation

a)
$$\log_4 x = 1.8$$

b)
$$log_5x - log_5(x-2) = 1$$

c)
$$5^{2x} = 2(5)^x + 1$$

24) Solve

a)
$$\log(2x + 10) = 2$$

b)
$$1 - \log(2x) = 0$$

25) Solve. Check for extraneous roots.

a)
$$\log_2 x + \log_2(x+2) = 3$$

b)
$$\log_3(3x + 7) = 2$$

c)
$$\log_5(2x+1) = 1 - \log_5(x+2)$$

Section 6: 7.4 - Applications

Exponential Formulas

$$A(t) = A_0 (1+i)^t$$

 $A(t) = A_0 \left(\frac{1}{2}\right)^{\frac{t}{H}}$

$$A(t) = A_0(2)^{\frac{t}{D}}$$

general, where *i* is percent growth(+) or decay(-)

half-life, *H* is the half-life period

doubling, *D* is the doubling period

Logarithmic Formulas

$$pH = -\log[H^+]$$

 $\beta_2 - \beta_1 = 10 \log \left(\frac{I_2}{I_1}\right)$

 $M = \log(\frac{I}{I_0})$

Where pH is acidity and [H+] is concentration of hydronium ions mol/L

Where β is loudness in dB and I is intensity of sound in W/m²

Where M is magnitude measure by richters, I is intensity

- **26)** When you drink a cup of coffee or a glass of cola, or when you eat a chocolate bar, the percent, P, of caffeine remaining in your bloodstream is related to the elapsed time, t, in hours by $t = 5\left(\frac{\log P}{\log 0.5}\right)$
- a) How long will it take for the amount of caffeine to drop to 20% of the amount consumed?

b) Suppose you drink a cup of coffee at 9:00 am, what percent of the caffeine will remain in your body at noon?

27) A 50-mg sample of cobalt-60 decays to 40 mg after 1.6 m	ninutes.
a) Determine the half-life of cobalt-60.	
b) How long will it take for the sample to decay to 5% of its i	nitial amount?
28) Determine the pH, correct to one decimal place, of a solu	ution with each hydronium ion concentration.
a) 0.000 316 mol/L	o) 7.9 × 10 ⁻⁹ mol/L
29) Calculate the hydronium ion concentration, correct to two a) 2.2 b	o decimal places, if the pH of a solution is 11.6
30) Use the sound level scale in your notes to answer the fol	llowing:
a) How many times as intense is a normal conversation com	pared to a whisper?
b) How many times as intense is normal city traffic compared	d to a shout?

31) The intensity of sound in a library is estimated to be one thousandth that of normal conversation. What the decibel rating for the library?	S
32) How many times as intense is an earthquake with a magnitude of 7.2 than an earthquake with a magnitude of 5.6?	
33) If an earthquake is 390 times as intense as an earthquake with a magnitude of 4.2 on the Richter scale, what is the magnitude of the more intense earthquake?	
34) The absolute magnitude of star A is –4.5 and that of star B is 0.2. How many times as bright is star A thar star B, to the nearest unit?	l

pressure according to the formula $h=18400log\frac{P_0}{P}$, where h is the height above the ground in metres, P is the air pressure at that height, and P_0 was the air pressure on the ground at takeoff. Air pressure is measure in kilopascals (kPa).
a) Air pressure on the ground was 102 kPa. If the airplane instruments measure a pressure of 32.5 kPa outside the plane, what is the height of the airplane to the nearest metre?
b) What is the outside air pressure for a plane flying at 11 000 metres? Assume a ground pressure 102.5 kPa. Round to one decimal place.
c) How high would a plane have to be flying when it encountered air pressure in the air that was half the air pressure on the ground? Round to the nearest meter.

36) Sketch a graph of each of the following exponential/logarithmic functions by applying transformations to the parent function. Make sure to identify key points such as asymptotes and x-intercepts.

a)
$$f(x) = 2(2)^{-2x-2} + 1$$

b)
$$g(x) = -(e)^{\frac{1}{2}(x+2)} + 4$$

c)
$$h(x) = -2\log(x+4) + 1$$

d)
$$j(x) = 3 \ln(x - 1) + 3$$

37) Solve each equation. Round your answer to 4 decimal places if necessary.

a)
$$e^{3x} = 87$$

b)
$$2e^{3x+1} = 70$$

$$\mathbf{c})\ln(x+1) = \ln(2x-5)$$

d)
$$5 \ln x + 2 \ln x - 3 = 12$$

e)
$$\ln(3x) = 2$$

$$f) 1 - 2e^{2x} = -19$$

Answer Key

See posted solutions for #1-3

4)a)
$$\log_4 64 = 3$$
 b) $\log_3 28 = x$ **c)** $\log_6 y = 3$ **d)** $\log_2 512 = 9$

5)a)
$$2^7 = 128$$
 b) $b^x = n$ **c)** $3^5 = 243$ **d)** $b^{19} = 4$

10)a)
$$\log_4 16 = 2$$
 b) $\log_{\frac{2}{3}} \left(\frac{8}{27} \right) = 3$

13)a)
$$\log_7 2$$
 b) $\log \left(\frac{3a^2b}{\sqrt{c}} \right)$

14)a)
$$2 \log a + \log b + \log c$$
 b) $\log k - \frac{1}{2} \log m$

16)a)
$$\log\left(\frac{2}{m-3}\right)$$
 b) $\log\left(\frac{x+5}{x-4}\right)$

17)a)
$$4^3$$
 b) 4^{-2} c) $4^{\frac{5}{2}}$

18)
$$5^{\frac{\log 20}{\log 5}}$$

19)a)
$$x = -\frac{3}{2}$$
 b) $x = -8$

20)a)
$$x = \frac{2 \log 3}{\log 3 - \log 5} \cong -4.301$$
 b) $k = \frac{2 \log 2 + \log 3}{\log 2 - \log 3} \cong -6.129$

22)a)
$$x = \frac{\log 5}{\log 4} \cong 1.16$$
 b) $x = 2$ or $x = \frac{\log 3}{\log 2} \cong 1.58$

23)a) 12.13 **b)** 2.5 **c)**
$$x = 0.548$$

25)a) 2 **b)**
$$\frac{2}{3}$$
 c) $\frac{1}{3}$

29) a)
$$6.31 \times 10^{-3}$$
 mol/L **b)** 2.51×10^{-12} mol/L