Centro Universitário São Miguel

Bioquímica Clínica

Introdução a Bioquímica Clínica

Prof. M.Sc. Yuri Albuquerque

SUMÁRIO

- O que é a Bioquímica? E para que serve? E a Bioquímica Clínica?
- Unidades de Medida
 - Comprimento e Massa
 - Quantidade Substância e Massa
 - Volume e Gases
 - Números Exponenciais
- Tabela de Exames
- Soluções
- Atividade 01
- Espectrofotometria
- Coleta de Sangue
- Coleta de Urina

O que é a Bioquímica? E para que serve? E a Bioquímica Clínica?

De acordo com a Biochemical Society (2016), a bioquímica pode ser definida como o estudo dos processos químicos que ocorrem dentro de organismos vivos ou que estão relacionados a eles.

E para que serve?

Serve para entender e resolver problemas biológicos usando conhecimentos agregados de química, fisiologia e biologia. Assim, ao pensar em bioquímica você deve lembrar de reações, vias metabólicas, moléculas, etc.

E a bioquímica clínica?

É o uso de métodos químicos e bioquímicos aplicados para o estudo de doenças. São as analises obtidas dos testes utilizados no diagnóstico e no monitoramento das doenças.

Prof.: SILVA, Y. J. de A.

Unidades de Medida

O Sistema Internacional de Unidades (SI) é empregado em laboratórios para expressar as concentrações de soluções e dos componentes analisados, além de outras medidas.

Grandeza	Unidade	Símbolo
Comprimento	metro	m
Massa	quilograma	kg
Tempo	segundo	S
Corrente elétrica	ampere	Α
Temperatura termodinâmica	kelvin	K
Intensidade luminosa	candela	cd
Quantidade de substância	mol	mol

Tabela de unidades de base do SI.

Tabela de prefixos e símbolos representando fatores decimais

Fator pelo qual a unidade é multiplicada		Prefixo	Símbolo
1018	1.000.000.000.000.000	exa	E
1012	1.000.000.000	tera	Т
10 ⁹	1.000.000.000	giga	G
10 ⁶	1.000.000	mega	М
10 ³	1.000	quilo	К
10 ²	100	hecto	Н
10 ¹	10	deca	da
100	1	Unidade base	
10-1	0,1	deci	d
10-2	0,01	centi	С
10-3	0,001	mili	m
10-6	0,000.001	micro	μ
10-9	0,000.000.001	nano	n
10-12	0,000.000.000.001	pico	р
10-15	0,000.000.000.001	femto	f
10-18	0,000.000.000.000.001	atto	а

Prof.: SILVA, Y. J. de A.

Unidades de Medida Comprimento e Massa

Tabela de unidades de comprimento. O *metro* é a unidade básica de comprimento no SI, de onde derivam as demais unidades

Unidades	Símbolo	Definição	Símbolos não recomendados
Metro	m	-	-
Milímetro	mm	1 x 10 ⁻³ m	-
Micrômetro	μm	1 x 10 ⁻⁶ m	μ, μ
Nanômetro	nm	1 x 10 ⁻⁹ m	mμ, um
Picômetro	pm	1 x 10 ⁻¹² m	μμ

Tabela de unidades de massa. A massa de um objeto é a medida de sua quantidade de matéria. A unidade báisca de massa no SI é o *quilograma*, de onde derivam as demais unidade.

Unidades	Símbolo	Definição	Símbolos não recomendados
Quilograma	kg	-	-
Grama	g	1 x 10 ⁻³ kg	gr, gm, gms, GRM
Miligrama	mg	1 x 10 ⁻⁶ kg	mgm, mgms
Micrograma	μg	1 x 10 ⁻⁹ kg	γ
Nanograma	ng	1 x 10 ⁻¹² kg	mμg
Picograma	pg	1 x 10 ⁻¹⁵ kg	μμg, uug

Unidades de Medida Quantidade de Substância e Volume

Tabela de unidades para quantidade (química) de substância no SI é o *mol*. A partir do mol são derivados as demais unidades

Unidades	Símbolo	Definição	Símbolos não recomendados
Mol	mol	-	М
Milimol	mmol	1 x 10 ⁻³ m	mM
Micromol	μmol	1 x 10 ⁻⁶ m	μΜ
Nanomol	Nmol	1 x 10 ⁻⁹ m	nM

Tabela de unidades de *litro*. A padronização é o uso da letra 'L' maiúscula, inclusive para os múltiplos e submúltiplos do litro. O litro é igual a 1 dm³. A partir do litro são derivados as demais unidades.

Unidades	Símbolo	Definição	Símbolos não recomendados
Litro	L	-	-
Decilitro	dL	1 x 10 ⁻³ kg	-
Mililitro	mL	1 x 10 ⁻⁶ kg	Сс
Microlitro	μL	1 x 10 ⁻⁹ kg	-
Nanolitro	nL	1 x 10 ⁻¹² kg	-
Picolitro	pL	1 x 10 ⁻¹⁵ kg	μμL

Unidades de Medida Volume e Gases

A expressão das concentrações de certos constituintes nos líquidos biológicos em percentagem (%) empregando frações do grama (mg, ug, ng) deve ser substituída por decilitro (dL) (por exemplo, 100 mg% de glicose por 100 mg/dL de glicose.

Concentração dos gases - atualmente, os resultados da pressão parcial de um gás são fornecidos em mm de Hg (milímetro de mercúrio). Mas, a unidade recomendada, ainda não plenamente adotada, é o Pa (Pascal), que é igual a um Newton por metro quadrado, cuja relação com o mm de Hg é 1 mm de Hg = 133,3224 Pa.

Unidades de Medida Número Exponenciais

Os *números exponenciais* são usados para expressar de maneira abreviada números muito grandes ou muito pequenos.

$$1 \ x \ 103 = 1 \ x \ 10 \ x \ 10 \ x \ 10 = 1.000$$

 $7,3 \ x \ 103 = 7.300$

$$1 x 10^{-2} = 1 x \frac{1}{10^{2}} = 0.01$$
$$2.34 x 10^{-3} = 0.00234$$

Tabela de Exames

Exames Básicos

- Sódio, potássio e bicarbonato
- Ureia e creatinina
- Cálcio e fosfato
- Proteínas totais e albumina
- Bilirrubina e fosfatase alcalina
- Alanina aminotransferase (ALT) e aspartato aminotransferase (AST)
- Tiroxina livre (FT4) e hormônio estimulante da tireoide (TSH)
- γ-glutamil transferase (γGT)
- Creatina cinase (CK)
- H+ , PCO₂ e PO₂ (gases no sangue)
- Glicose
- Amilase

UNISÃOMIGUEL

Tabela de Exames

Exames Básicos

- Sódio, potássio e bicarbonato
- Ureia e creatinina
- Cálcio e fosfato
- Proteínas totais e albumina
- Bilirrubina e fosfatase alcalina
- Alanina aminotransferase (ALT) e aspartato aminotransferase (AST)
- Tiroxina livre (FT4) e hormônio estimulante da tireoide (TSH)
- γ-glutamil transferase (γGT)
- Creatina cinase (CK)
- H+ , PCO₂ e PO₂ (gases no sangue)
- Glicose
- Amilase

Exames Especializados

- Hormônios
- Proteínas específicas
- Elementos traço
- Vitaminas
- Drogas
- Lipídeos e lipoproteínas
- Metabólitos intermediários
- Análise de DNA

Tabela de Exames Exames Especializados

DEURIA SHEIGAI A SHEI

Figura - Analisando as amostras: (a) o analisador automático, (b) análise por kit e (c) métodos manuais.

Figura - Como os testes bioquímicos são utilizados.

As misturas líquidas podem dividir-se em quatro tipos: soluções, suspensões, coloides e emulsões. Cada mistura apresenta seu conjunto específico de propriedades e aplicações.

Solução: é uma mistura homogênea constituída de duas ou mais substâncias uniformemente distribuídas uma(s) na(s) outra(s). A substância que se dissolve (sólido, líquido ou gasoso) é o soluto, e a que dissolve, o solvente. Os fatores que afetam a solubilidade de um soluto são temperatura, pressão, área superficial, agitação e natureza do solvente.

Emulsão: consiste em um líquido suspenso em meio líquido. Uma emulsão que sedimenta é denominada uma emulsão temporária. Quando um agente emulsificante é adicionado a uma emulsão temporária, ela se torna uma emulsão permanente.

Suspensão: consiste em um sólido insolúvel suspenso em meio líquido. As suspensões *não* são límpidas; elas sedimentam; são heterogêneas; não atravessam um papel de filtro ou uma membrana.

Coloide: consiste em minúsculas partículas suspensas em um líquido. Os coloides não sedimentam; eles atravessam um papel de filtro, mas não atravessam membranas; adsorvem (retêm) partículas em sua superfície; possuem carga elétrica, devido à adsorção de partículas carregadas (íons); apresentam efeito Tyndall e o movimento browniano. A diálise consiste na separação entre um soluto e um coloide mediante o uso de uma membrana semipermeável.

Concentrações das Soluções

A quantidade de soluto que se encontra dissolvido em determinada quantidade de solvente denomina-se concentração.

- Soluções Percentuais: O modo mais comum de expressar a concentração é pelo emprego do peso de soluto em determinado volume de solvente. A IUPAC recomenda o uso de 1.000 mL como unidade básica de volume de solvente. Entretanto o uso de percentuais para caracterizar concentrações de soluções tornou-se comum e aceito.
 - **Peso em Peso (p/p)** Refere-se ao número de gramas de substância ativa. Por exemplo em 100 g da solução final uma solução a 25% [p/p] contém 25 g de soluto e 75 g de solvente;
 - Peso em volume (p/v) − Expressa o número de gramas da substância ativa contida em 100 mL da solução final (p. ex., uma solução a 25% [p/v] contém 25 g de soluto em 100 mL de volume final);
 - Volume em volume (v/v) Expressa o número de mL de substância ativa contida em 100 mL da solução final (p. ex., uma solução a 25% [v/v] contém: 25 mL do soluto em um volume final de 100 mL).
 - Volume em peso (v/p) Expressa o número de mL de substância ativa contida em 100 g da solução final (p. ex., uma solução a 25% contém 25 mL de soluto em 100 g de solução final).

Partes por milhão – Baixas concentrações podem ser expressas em partes por milhão (ppm). Uma parte por milhão é equivalente a 1 mg/L. Desse modo, se uma solução tem concentração de 55 mg/L, sua concentração pode ser expressa também como 55 ppm.

Diluições – No laboratório clínico é bastante frequente o emprego de diluições de reagentes e amostras. Para se fazer uma solução diluída a partir de uma solução concentrada, aplica-se a fórmula:

$$C_i \times V_i = C_f \times V_f$$

Onde:

- C_i = concentração da solução concentrada (a ser diluída);
- C_f =concentração da solução diluída (solução desejada);
- V_i = volume da solução concentrada (a ser diluída);
- V_f = volume necessário de solução diluída (solução desejada).

Exemplo: fazer 500 mL de uma solução de carbonato de sódio a 4% (p/v) a partir de uma solução de carbonato de sódio a 20% (p/v):

Muitas vezes, as diluições são expressas como uma parte da solução original em um determinado número de partes de volume final. Por isso, uma diluição em 1:5 representa uma parte da solução original em um volume final de 5 partes, ou seja, 1 parte da solução concentrada + 4 partes do solvente.

Para o cálculo da concentração de uma solução diluída multiplica-se a diluição pela concentração inicial.

Exemplo: uma solução a 25% foi diluída em 1:5. Determinar a concentração da solução diluída.

Quando uma solução for diluída mais de uma vez (diluições seriadas), a concentração final será calculada multiplicandose as diluições entre si e pela concentração inicial.

Exemplo: uma solução a 20% foi diluída em 1:5 e esta, por sua vez, foi diluída em 3:10. Determinar a concentração final.

TAMPÕES E TAMPONAMENTO

Os tampões são soluções que resistem a alterações bruscas de pH quando são adicionadas pequenas quantidades de H⁺ ou OH⁻. Os tampões simples são formados por um ácido conjugado e uma base conjugada. Os líquidos intracelulares e extracelulares dos organismos são dependentes dos sistemas tampões para a manutenção da vida.

A resistência a mudanças no pH de um tampão depende de dois fatores: a concentração do tampão (a molaridade total do par conjugado) e a relação molar entre a base conjugada e o ácido conjugado.

ÁGUA REAGENTE

De acordo com as especificações publicadas pela ACS – American Chemical Society –, ASTM – American Society for Testing and Materials –, USP – United States Pharmacopeia –, NCCLS – National Committee for Clinical Laboratory Standards – e CAP – College of American Patholo-gists –, existem os seguintes tipos de água reagente

	Tipo I	Tipo II	Tipo III
Bactéria – UFC/mL (a)	10	10.000	N.E.
рН	N.E.	N.E.	5,8/8,0
Resistência específica, megohm/cm a 25°C (b)	=10	>2,0	>0,1
Condutividade, microohm/cm (a)	=0,1	<0,5	<10,0
Máximo de silicatos (Si)O2 – mg/L	0,05	0,1	1,0
Metais pesados – mg/L	0,01	0,01	0,01
Substâncias orgânicas – KMnO ₄ – minutos	60	60	60
CO2 – mg/L	3	3	3

<u>Áqua reagente Tipo I</u> – esta água é a ideal para a utilização geral em laboratórios clínicos;

<u>Água reagente Tipo II</u> – água com tolerância para a presença de bactérias, como nos testes de rotina que não necessitam água reagente do tipo I ou água reagente especial;

<u>Água reagente tipo III</u> – pode ser usada para lavagem e enxágue preliminar de recipientes que necessitem, no final, tratamento com água tipo I ou II.

<u>Água reagente especial</u> – Deve ser preparada e utilizada quando há necessidade de remoção de determinados contaminantes, de acordo com a utilização proposta (p. ex., água para preparar soluções injetáveis, exames microssomais, HPLC etc.).

Prof.: SILVA, Y. J. de A.

Atividade 01

Diante do exposto, as águas são muito importantes nos laboratórios, sejam eles clínicos, metrológicos, de pesquisa, entre outros. Faça uma pesquisa sobre os *Processos de purificação da água*, e que nela contemplem o seguintes processos: destilação, deionização, osmose reversa, adsorção e absorção pelo carvão, filtração e ultrafiltração, nanofiltração, oxidação química, oxidação e esterilização por ultravioleta.

Espectrofotometria

A fotometria estuda a medição das grandezas relativas à emissão, à recepção e à absorção da luz. Muitos métodos utilizados em bioquímica clínica estão baseados na medida quantitativa da absorção da luz pelas soluções.

A concentração na solução da substância absorvente é proporcional à quantidade de luz absorvida. Essas medidas são efetuadas por instrumentos fotocolorímetros ou espectrofotômetros.

Prof.: SILVA, Y. J. de A.

Espectrofotometria

Cores	Intervalos de Comprimento de Onda (nm)
Ultravioleta (não visível)	<380
Violeta	380 a 450
Azul	450 a 500
Verde	500 a 570
Amarela	570 a 590
Alaranjada	590 a 620
Vermelha	620 a 750
Infravermelha curta	750 a 2.000

Transmitância

Absorbância ou absorvância

Lei de Bourguer-Lambert

Lei de Beer-Lambert

Amostra do paciente é parte do material biológico de origem humana utilizada para análises laboratoriais. São líquidos, secreções, excreções, fragmentos de tecido obtidos do corpo humano e que possam ser analisados, sendo o sangue o mais utilizado.

Do ponto de vista da sua constituição, o sangue é considerado um sistema complexo e relativamente constante, constituído de elementos sólidos (células sanguíneas), substância líquida (soro ou plasma) e elementos gasosos (O_2 e CO_2).

O procedimento para sua obtenção é conhecido como punção venosa, venipunção ou flebotomia. Em geral, o sangue é obtido por três processos diferentes: punção venosa, punção arterial e punção de pele.

Sangue Venoso Sangue Arterial (Artéria Braquial) Sangue obtido por punção de pele

As cores usadas em geral são:

Tampa Azul-Clara – Tubos com citrato para obtenção de plasma para provas de coagulação.

Tampa Amarela – Tubos para soro com ativador de coágulo com gel separador.

Tampa Vermelha – Tubos para soro de vidro siliconizados.

Tampa Verde – Tubos com heparina com ou sem gel separador de plasma.

Tampa Roxa – Tubos com EDTA.

Tubo Cinza – Tubos com fluoreto para determinação de glicose.

Coleta do sangue para separação de soro sanguíneo

- O paciente necessita permanecer em jejum durante 8 a 12 horas (dependendo do tipo de análise a ser realizada).
- Material necessário: álcool, algodão, torniquete, agulha, seringa e tubo de ensaio sem anticoagulante.

Processo de coleta

Coletar 5 a 10 mL de sangue (a quantidade dependerá do número de provas a que o soro se destina).

Fatores que afetam os resultados

Interferência de fármacos e outras substâncias é descrita junto a cada determinação.

Coleta do sangue total e plasma

- O paciente precisa permanecer em jejum durante 8 a 12 horas. Pode ingerir água.
- Material necessário: álcool, algodão, torniquete, agulha, seringa e tubo de ensaio com anticoagulante.
 Anticoagulantes são substâncias que inibem a formação de coágulos por meio de vários mecanismos. A escolha do anticoagulante dependerá do tipo de análise a ser realizada.

Processo de coleta

Coletar 5 a 10 mL de sangue (a quantidade dependerá do número de provas a que o soro se destina).

Fatores que afetam os resultados

Interferência de fármacos e outras substâncias é descrita junto a cada determinação.

Coleta do sangue para gasometria arterial

- Obter seringa para a coleta de gases sanguíneos, agulha de calibre 23, swab com iodo-povidona, compressas de algodão embebidas em álcool, luvas estéreis, gaze estéril e recipiente com gelo.
- O paciente deve repousar durante 30 minutos antes da coleta da amostra.

Processo de coleta

- O local da punção arterial pode ser anestesiado com xilocaína a 1-2%.
- Acoplar uma agulha de calibre 23, com comprimento de 2,5 cm, a uma seringa para gasometria, heparinizada, de plástico ou vidro. Rodar a seringa para revestir a superfície interna com heparina (1.000 U/mL) e ejetar a heparina através da agulha na gaze estéril.
- Usando luva estéril, palpar a artéria e puncionar em um ângulo de 30 a 45 graus (para a artéria radial), 45 a 60 graus (para a artéria braquial), ou 45 a 90 graus (para a artéria femoral), com o bisel da agulha voltado para cima.
- Introduzir a agulha até que a artéria seja puncionada e permitir que a seringa se encha com 2 mL de sangue arterial.
- Remover a seringa e a agulha e aplicar pressão à gaze estéril sobre o local, enquanto descarta a agulha, expele o
 ar da seringa e veda a seringa com uma tampa de borracha, e agita delicadamente a amostra.
- Colocar imediatamente a amostra imersa em gelo.

Coleta do sangue para gasometria arterial

Fatores que afetam os resultados

- Rejeitar amostra coagulada.
- Se o paciente está sendo submetido à aspiração endotraqueal ou à terapia respiratória, a amostra deve ser coletada pelo menos 20 minutos após o procedimento.
- A não expulsão do ar da seringa de gasometria resultará em falsa elevação da PaO₂ ou falsa redução da PaCO₂.
- A não imersão da amostra em gelo pode resultar em redução do pH e da PaO₂.
- A não expulsão da heparina da seringa antes da coleta da amostra pode resultar em redução do pH, da PaCO₂ e da PaO₂.
- O armazenamento da amostra à temperatura ambiente acelera a queda do pH.
- A elevação do número de leucócitos causa rápida redução do pH.
- Um período de tempo prolongado entre a coleta e o exame pode resultar em redução do pH.

UNISÃOMIGUEL

Coleta de Urina

Coleta masculina

- Expor a glande e lavá-la com água e sabão (não usar antisséptico).
- Enxugar com toalha de pano limpa ou de papel descartável, ou com uma gaze.
- Com uma das mãos, expor e manter retraído o prepúcio.
- Com a outra mão, segurar o frasco de coleta destampado e identificado.
- Desprezar no vaso sanitário o primeiro jato urinário.
- Sem interromper a micção, urinar diretamente no frasco de coleta até completar 20 a 50 mL.
- Desprezar o restante da urina existente na bexiga no vaso sanitário e fechar o frasco de urina

Coleta feminina

- Lavar a região vaginal, de frente para trás, com água e sabão (não usar antisséptico).
- Enxugar com toalha de pano limpa ou de papel descartável, ou com uma gaze.
- Sentar no vaso sanitário e abrir as pernas.
- Com uma das mãos, afastar os grandes lábios.
- Com a outra mão, segurar o frasco de coleta destampado e identificado.
- Desprezar no vaso sanitário o primeiro jato urinário.
- Sem interromper a micção, urinar diretamente no frasco de coleta até completar 20 a 50 mL.
- Desprezar no vaso sanitário o restante da urina existente na bexiga e fechar o frasco de coleta.
- Excetuando os casos de urgência, a urina deve ser coletada 3
 a 5 dias após o término do sangramento menstrual.

Coleta de Urina

Fatores que afetam os resultados

- Amostras da primeira urina da manhã fornecem o reflexo mais preciso da presença de bactérias e de elementos formados, tais como cilindros e cristais.
- Um retardo no exame após a coleta pode levar a valores falsamente reduzidos de glicose, cetona, bilirrubina e urobilinogênio. O exame tardio com a amostra permanecendo à temperatura ambiente pode causar níveis falsamente elevados de bactérias, em virtude do hipercrescimento bacteriano. Retardos também perturbam a nitidez microscópica, em virtude da dissolução de uratos e fosfatos.

Prof.: SILVA, Y. J. de A.

Coleta de Urina

Coleta de urina em crianças

- Em crianças muito jovens e neonatos, o laboratório clínico pode empregar coletor autoaderente hipoalergênico.
- Fazer a higiene da criança seguindo as instruções descritas anteriormente. Não aplicar pós, óleos ou loções sobre a pele das regiões púbica e perineal.
- Identificar o coletor autoaderente...
- Separar as pernas da criança.
- Certificar-se de que as regiões púbica e perineal estão limpas, secas e isentas de muco.

Meninas: retirar o papel protetor do coletor autoaderente. Esticar o períneo para remover as dobras da pele. Colocar o adesivo na pele em volta dos genitais externos, de modo que a vagina e o reto fiquem isolados e evitando a contaminação. Caso não ocorra emissão de urina até 30 minutos após a colocação do coletor, ele deve ser retirado.

Meninos: retirar o papel protetor do coletor autoaderente. Colocar o coletor autoaderente de maneira que o pênis fique no seu interior. Caso não ocorra emissão de urina até 30 minutos após a colocação do coletor, este deve ser retirado.

REFERÊNCIAS

- DEVLIN, T. M. (Coord.). Manual de bioquímica com correlações clínicas. 4. ed. São Paulo: Edgard Blucher, 2002.
- DEVLIN, T. M. (Coord.). Manual de bioquímica com correlações clínicas. 5. ed. São Paulo: Edgard Blucher, 2003.
- BAYNES, J. Bioquímica médica. São Paulo: Manole, 2000.
- MOTTA, V. T. Bioquímica clínica para o laboratório. Porto Alegre: Médica Miassau, 2003.

ONTEÚDO DA AULA ONTEÚDO DA AUL

