I Courbes paramétrées 1 Définition Une courbe plane paramétrée c'est une application y d'un intervalle [a,b] de R à valeur dans 122 On peut la concevoir comme l'équation horaire d'un mobile dans le plan On pout aussi notes | H(t) = (x(t)) l'image de t pour y (y(t)/ Si (0, 1, 1) est un reperce orthonormé du plan, OH(t) = x(t) + y(t) Surrort L'image de v (ensemble des points 1R2 qui sont images par v d'un point de la, b]) est appelé le supposit de cette courbe paramétrée. On dit aussi (improprement dans ce contexte) que c'est une courbe Parametres équivalents la courbe H1(t) = / x1(t) | t e [a,b] et la courbe H2(T) = /x2(2)] T e [x, B] un(t) sont équivalentes (ou" les paramétrages sont équivalents") s'il existe une bijection P [x, B] > [a, b] telle que pour tout re[x, B], on ait H2(t) = H1(P(T)) Dans ce cas, les supports sont les mêmes (mais cette condition n'est pas suffisance) 2. Symétries $x(t_2) = x(t_1)$ x(b) = - x(b) alors H(12)et H(1) sont y(tz) = y(t+) alors H(t2) or M(t1) sont sym confondus par rapport à l'axe Cy y(t2) = -y(t1) alors H(t) et H(t1) sont sym alors H(tz) et H(ti) sont sym pan napport à l'axe 0x par rapport à l'origine

 $x(t_2) = -y(t_1)$ $x(t_2) = y(t_1)$ si -> erl allows H(12) et H(t1) sont > y(b) = x(ti) alors H(b) et H(h) sont sym par rapport à l'axe y=x Rotation d'angle # alors M(12) et H(t+) sont sym y(b) = -x(t) alors M(t2) et M(t1) sont -> par rapport à l'axe y = -x Rotation d'angle - IT 3. Vecteux vitesse - tangente a/ Vecteur vitesse Soit y [a,b] -> R2 une courbe paramétrée de classe C'et H(t) = (x(t)) l'image \ y(H)/ dH ou dH (t) le vecteur (x(t)) également noté (dx/dt)
dt dt (y(t)) On note On l'appelle le vecteur vitesse (au point t). On écrit aussi dH = dz i + dy j b/ Définition On dit que la droite a est tangente en H(to) à la courbe y si H(to) e A et si la direction de a est la limite des directions des "cordes" (H(to) H(t1)) quand tists c/Propriété Si dH (to) + 0, la courbe y possède une rangente au point H(to), et atte trangentre a le vecteur vitesse de (to) comme vecteur directeur. Si Vt e [a, b] / an (t) # 0, on dit que la courbe est régulière. En hour point, elle a une trangente

	4.	Er	ude		floi	ale	2																				
E	kem	ple					45		1	1	1			(t	e R)											
P	éri	ode			У	Lt	+ 211	1) :	= V	(t)						Y	(t-	+ π + π) - π)	=	- 4	cos	(F)	- 3	cas	(2)	-)	
5	Υm	éhri	es		L	16-1	t) = -) = -) =	Y Si	(t) ymé	hei	e d	e t	1(F))		Y	/ IT 2		t)	= 4		s(t) (t)				-	
		0/	Li	mih	2 0	les	(co	les																			
<u>S</u>		20	(+)	- 2	160		a o													Rbe	a	URI	e h	ing	ente	e di	1
S		y(to	- (ælt	6)		nd	UCR	5 +	00 (ou -	660	q	san	d	>	to	, la	LO	OUR	DQ.	a	ine	he	mge	nhe	
							ta	U																			
Si H(9	cilt)				nihe	•										bo	a	ne	ta	mge	inhe	a	rb	(nio	
Si	41		*				+0											COU	be	a	une	e to	mg	ante			
ver L	ha	ale	9	n I	H(t	c)																				9	

MATHS Courbes plames CIR2

$\Rightarrow \text{ Cencle de centre } (0, \pi) \cdot \rho = 2 \pi \cos \theta$ $\Rightarrow \text{ Cencle de centre } (\pi, 0) \cdot \rho = 2 \pi \sin \theta$ $\Rightarrow \text{ Concle de centre } (\pi \cos \theta_0, \pi \sin \theta_0) \cdot \rho = 2 \pi \cos (\theta - \theta_0)$ RAPPEL $\sin (-\alpha) = -\sin \alpha$ $\cos (\alpha + 2\pi \pi) = \cos \alpha$ $\sin (\alpha + 2\pi \pi) = -\sin \alpha$ $\cos (\alpha + 2\pi \pi) = -\cos \alpha$ $\sin (\pi - \alpha) = \sin \alpha$ $\cos (\pi - \alpha) = -\cos \alpha$ $\sin (\pi - \alpha) = \sin \alpha$ $\cos (\pi - \alpha) = -\cos \alpha$ $\sin (\pi - \alpha) = -\cos \alpha$ $\cos (\pi - \alpha) = -\sin \alpha$ $\cos (\pi - \alpha) = -\sin \alpha$	
$\Rightarrow (\operatorname{cox}(\operatorname{cle} \operatorname{cle} \operatorname{cemtre} (\operatorname{rcos} \Theta_0, \operatorname{rsin} \Theta_0)) \rho = 2 \operatorname{rcos}(\Theta - \Theta_0)$ RAPPEL $\sin((-\alpha)) = -\sin \alpha \qquad \cos((-\alpha)) = \cos \alpha$ $\sin((\alpha + 2\pi\pi)) = \sin \alpha \qquad \cos((\alpha + 2\pi\pi)) = \cos \alpha$ $\sin((\alpha + 2\pi\pi)) = -\sin \alpha \qquad \cos((\alpha + 2\pi\pi)) = -\cos \alpha$ $\sin((\alpha + \pi)) = -\sin \alpha \qquad \cos((\alpha + \pi)) = -\cos \alpha$ $\sin((\alpha + \pi)) = -\cos \alpha$	
RAPPEL $ \sin (-\alpha) = -\sin \alpha $ $ \cos (-\alpha) = \cos \alpha $ $ \sin (\alpha + 2\pi\pi) = \sin \alpha $ $ \cos (\alpha + 2\pi\pi) = \cos \alpha $ $ \sin (\alpha + \pi) = -\sin \alpha $ $ \cos (\alpha + \pi) = -\cos \alpha $ $ \sin (\pi - \alpha) = \sin \alpha $ $ \cos (\pi - \alpha) = -\cos \alpha $ $ \sin (\pi - \alpha) = \sin \alpha $ $ \cos (\pi - \alpha) = -\cos \alpha $ $ \sin (\pi - \alpha) = -\cos \alpha $ $ \sin (\alpha + \pi) = -\cos \alpha $	
$\sin (-\alpha) = -\sin \alpha$ $\cos (-\alpha) = \cos \alpha$ $\sin (\alpha + 2\pi \pi) = \sin \alpha$ $\cos (\alpha + 2\pi \pi) = \cos \alpha$ $\sin (\alpha + \pi) = -\sin \alpha$ $\cos (\alpha + \pi) = -\cos \alpha$ $\sin (\pi - \alpha) = \sin \alpha$ $\cos (\pi - \alpha) = -\cos \alpha$ $\sin (\pi - \alpha) = \sin \alpha$ $\cos (\pi - \alpha) = -\cos \alpha$ $\sin (\alpha + \pi) = -\cos \alpha$ $\cos (\alpha + \pi) = -\cos \alpha$	
$sim(\alpha + 2m\pi) = sim\alpha$ $cos(\alpha + 2m\pi) = cos\alpha$ $sim(\alpha + \pi) = -sim\alpha$ $cos(\alpha + \pi) = -cos\alpha$ $sim(\pi - \alpha) = sim\alpha$ $cos(\pi - \alpha) = -cos\alpha$ $sim(\alpha + \pi) = cos\alpha$ $cos(\pi - \alpha) = -cos\alpha$	
$sin(\alpha + \pi) = -sin\alpha$ $cos(\alpha + \pi) = -cos\alpha$ $sin(\pi - \alpha) = sin\alpha$ $cos(\pi - \alpha) = -cos\alpha$ $sin(\alpha + \pi) = cos\alpha$ $cos(\alpha + \pi) = -sin\alpha$	
$sin(\pi - \alpha) = sin \alpha$ $cos(\pi - \alpha) = -cos \alpha$ $sin(\alpha + \pi) = cos \alpha$ $cos(\alpha + \pi) = -sin \alpha$	
$sin\left(\alpha + \frac{\pi}{2}\right) = cos A$ $cos\left(\alpha + \frac{\pi}{2}\right) = -sin A$	