Database 기초

데이터베이스(DB)

데이터베이스는 체계화된 데이터의 모임이다.

여러 사람이 공유하고 사용할 목적으로 통합 관리되는 정보의 집합이다. 논리적으로 연관된 하나 이상의 자료의 모음으로 그 내용을 고도로 구조 화함으로써 검색과 갱신의 효율화를 꾀한 것이다. 즉 몇 개의 자료 파일 을 조직적으로 통합하여 자료 항목의 중복을 없애고 자료를 구조화하여 기억시켜 놓은 자료의 집합체라고 할 수 있다.

출처: 위키피디아

데이터베이스의 구성 요소

개체 (entity) 와 그들이 가지는 속성 (attribute), 그리고 개체 사이의 관계 (relation)

개체 관계와 속성 관계

RDBMS(관계형데이터베이스 관리 시스템)

관계형 모델을 기반으로하는 데이터베이스 관리시스템이다.

아래는 대표적인 오픈소스 RDBMS(MySQL, SQLite, PostgreSQL)과 ORACLE, MS SQL이다.

RDBMS에서는 데이터를 속성-컬럼(Attribute)과 데이터 값-레코드(Attribute Value)으로 구조화(2차원 테이블형태)다. -> 속성(Attribute)과 데이터 값(Attribute Value) 사이의 관계(Relation)을 찾아내고 이를 테이블 모양의 구조로 도식화한다는 것을 의미

SQLite

SQLite는 서버가 아닌 응용 프로그램에 넣어 사용하는 비교적 가벼운 데이터베이스이다. 구글 안드로이드 운영체제에 기본적으로 탑재된 데이터베이스이며, 임베디드 소프트웨어에도 많이 활용이 되고 있다. 로컬에서 간단한 DB 구성을 할 수 있으며, 오픈소스 프로젝트이기 때문에 자유롭게 사용할 수 있다.

기본용어정리

스키마(scheme)

데이터베이스에서 자료의 구조, 표현방법, 관계등을 정의한 구조.

column	datatype	
id	INT	
age	INT	
phone	TEXT	
email	TEXT	

스키마(scheme)

데이터베이스의 구조와 제약 조건(자료의 구조, 표현 방법, 관계)에 관련한 전반적인 명세를 기술한 것.

	Α	В	С	D	Е
1	id	name	age	phone	email
2	1	hong	42	010-1234-1234	hong@gmail.com
3	2	kim	16	010-1234-5678	kim@naver.com
4	3	kang	29	010-1111-2222	kang@hanmail.net
5	4	choi	8	010-3333-4444	choi@hotmail.com
6					
→	user product +				

테이블(table) ^{열(컬럼/필드)}과 행(레코드/값)의 모델을 사용해 조직된 데이터 요소들의 집합. SQL 데이터베이스에서는 테이블 을 관계 라고도 한다.

열(Column), 컬럼 각열에는 고유한 데이터 형식이 지정된다.

INTEGER TEXT NULL 등

	Α	В	С	D	E
1	id	name	age	phone	email
2	1	hong	42	010-1234-1234	hong@gmail.com
3	2	kim	16	010-1234-5678	kim@naver.com
4	3	kang	29	010-1111-2222	kang@hanmail.net
5	4	choi	8	010-3333-4444	choi@hotmail.com
6					
-	user product +				

테이블(table) 열(컬럼/필드)과 행(레코드/값)의 모델을 사용해 조직된 데이터 요소들의 집합. SQL 데이터베이스에서는 테이블을 관계라고도 한다.

열(Column), 컬럼 각열에는 고유한 데이터 형식이 지정된다. INTEGER TEXT NULL 등

행(row), 레코드

테이블의 데이터는 행에 저장된다. 즉, user 테이블에 4명의 고객정보가 저장되어 있으며, 행은 4개가 존재한다.

	Α	В	С	D	E	
1	id	name	age	phone	email	
2	1	hong	42	010-1234-1234	hong@gmail.co	m
3	2	kim	16	010-1234-5678	kim@naver.cor	n
4	3	kang	29	010-1111-2222	kang@hanmail.r	net
5	4	choi	8	010-3333-4444	choi@hotmail.co	mc
6						
	user product +					

열(컬럼/필드)과 행(레코드/값)의 모델을 사용해 조직된 데이터 요소들의 집합. SQL 데이터베이스에서는 테이블 테이블(table) 을 관계라고도 한다.

PK(기본키)

주요하게 활용된다.

각 행(레코드)의 고유값으로 Primary Key로 불린다.

반드시 설정하여야하며, 데이터베이스 관리 및 관계 설정시

열(Column), 컬럼 각열에는 고유한 데이터 형식이 지정된다. INTEGER TEXT NULL 등

행(row), 레코드

테이블의 데이터는 행에 저장된다. 즉, user 테이블에 4명의 고객정보가 저장되어 있으며, 행은 4개가 존재한다.

	Α	В	С	D	Ε
1	id	name	age	phone	email
2	1	hong	42	010-1234-1234	hong@gmail.com
3	2	kim	16	010-1234-5678	kim@naver.com
4	3	kang	29	010-1111-2222	kang@hanmail.net
5	4	choi	8	010-3333-4444	choi@hotmail.com
6					
4 ▶	user product +				

열(컬럼/필드)과 행(레코드/값)의 모델을 사용해 조직된 데이터 요소들의 집합. SQL 데이터베이스에서는 테이블 테이블(table) 을 관계라고도 한다.

SQL

SQL

SQL(Structured Query Language)는

관계형 데이터베이스 관리시스템(RDBMS)의 데이터를 관리하기 위해 설계된 **특수 목적의 프로그래밍 언어**이다.

관계형 데이터베이스 관리 시스템에서 자료의 검색과 관리 데이터베이스 스키마 생성과 수정, 데이터베이스 객체 접근 조정 관리를 위해 고안되었다.

출처: 위키피디아

.....우리 지금 당장 다 알아야 하나요..?

No!

알고리즘을 마치고 본격적으로!

그럼...?

ORM

CRUD

SQL	CRUD
SELECT	READ
INSERT INTO	CREATE
UPDATE	UPDATE
DELETE	DELETE

Code

파이썬은 모든 것이 객체라던데.. DB의 행, 테이블 같은 것도 객체로 취급해볼까?

ORM

(Object-Relational Mapping)

ORM

(Object-Relational Mapping)

"Object-Relational-Mapping 은 객체 지향 프로그래밍 언어를 사용하여 호환되지 않는 유형의 시스템간에(Django - SQL)데이터를 변환하는 프로그래밍 기술이다. 이것은 프로그래밍 언어에서 사용할 수 있는 '가상 객체 데이터베이스'를 만들어 사용한다."

-출처: 위키피디아-

Database Python Code

정리하면?

SQL 문법을 몰라도 **쿼리(데이터베이스에 정보를 요청)** 조작 가능 객체 지향적인 접근 가능 (인스턴스 / 클래스 변수 etc.) 해당 객체의 재활용 가능

• • • •

• • • •

. . . .

즉, Python의 Class로 DB를 조작할 수 있다!!