Teoria da Computação

Guilherme Henrique de Souza Nakahata

Universidade Estadual do Paraná - Unespar

12 de Junho de 2024

Algoritmos de ordenação

- Bubble Sort;
- Merge Sort;
- Quick Sort;
- Insertion Sort;
- Heap Sort;

 Qual é o limite inferior para ordenação usando a operação de comparação entre os elementos?

- Qual é o limite inferior para ordenação usando a operação de comparação entre os elementos?
- É possível ordenar com tempo inferior a $\Omega(nlgn)$ no pior caso?

Ordenação por tempo linear

- Teorema: Qualquer árvore decisão que ordena n elementos deve ter altura pelo menos $\Omega(nlgn)$;
- Prova?

- Teorema: Qualquer árvore decisão que ordena n elementos deve ter altura pelo menos $\Omega(nlgn)$;
- Considere uma árvore de decisão de altura h que ordena n elementos;
- Qual o número de permutações?

- Teorema: Qualquer árvore decisão que ordena n elementos deve ter altura pelo menos $\Omega(nlgn)$;
- Considere uma árvore de decisão de altura h que ordena n elementos;
- Qual o número de permutações?
- n!;

- Teorema: Qualquer árvore decisão que ordena n elementos deve ter altura pelo menos $\Omega(nlgn)$;
- Considere uma árvore de decisão de altura h que ordena n elementos;
- Qual o número de permutações?
- n!;
- Primeiro elemento pode ter n combinações possíveis;
- O segundo n-1;
- O terceiro n-2;
- ...;

- Teorema: Qualquer árvore decisão que ordena n elementos deve ter altura pelo menos $\Omega(nlgn)$;
- Considere uma árvore de decisão de altura h que ordena n elementos;
- n! permutações;
- Toda árvore binária tem no máximo quantas folhas?

- Teorema: Qualquer árvore decisão que ordena n elementos deve ter altura pelo menos $\Omega(nlgn)$;
- Considere uma árvore de decisão de altura h que ordena n elementos;
- n! permutações;
- Toda árvore binária tem no máximo quantas folhas?
- 2^h ;
- Logo:
- $n! \le 2^h$

Aproximação de Stirling:

$$n! = \sqrt{2\pi n} \left(\frac{n}{e} \right)^n \left(1 + \Theta\left(\frac{1}{n} \right) \right)$$

- Logo:
- $n! > (\frac{n}{e})^n$

- Logo:
- $n! > (\frac{n}{e})^n$
- Assim, $lg(n!) > lg(\frac{n}{e})^n$

- Logo:
- $n! > (\frac{n}{e})^n$
- Assim, $lg(n!) > lg(\frac{n}{e})^n$
- nlg n/e
- nlgn − nlge;
- ?

• $2^h \ge n!$;

- $2^h > n!$:
- Logaritmos em ambos os lados;
- $\log_2(2^h) \ge \log_2(n!)$
- $h \log_2(2) \ge \log_2(n!)$
- $h \cdot 1 \geq \log_2(n!)$
- $h \geq \log_2(n!)$

- $h \ge n \log_2(n) n \log_2(e)$;
- $h = \Omega(nlgn)$.

Algoritmos de ordenação de complexidade linear

- Counting Sort;
- Radix Sort;
- Bucket Sort;

- $\Theta(k)$ { para $i \leftarrow 1$ to k do $C[i] \leftarrow 0$ }
- $\Theta(n)$ { para $j \leftarrow 1$ to comprimento[A] do $C[A[j]] \leftarrow C[A[j]] + 1$ }
- $\Theta(k)$ { para $i \leftarrow 2$ to k do $C[i] \leftarrow C[i] + C[i-1]$ }
- $\Theta(n)$ { para $j \leftarrow comprimento[A]$ downto 1 do $B[C[A[j]]] \leftarrow A[j]$; $C[A[j]] \leftarrow C[A[j]] 1$ }
- $\Theta(n+k)$

- Análise de complexidade:
 - Counting Sort roda em tempo $\Theta(n + k)$. Se tivermos k = O(n), então o algoritmo executa em tempo $\Theta(n)$.

• Esse é algoritmo de ordenação **estável**?

- Esse é algoritmo de ordenação estável?
- O algoritmo counting sort é estável;
- Propriedade fundamental para que o algoritmo seja utilizado com o Radix Sort;

- Aspectos positivos:
 - Ordena vetores em tempo linear para o tamanho do vetor inicial;
 - Não realiza comparações;
 - É um algoritmo de ordenação estável;
- Aspectos Negativos:
 - ?

- Aspectos positivos:
 - Ordena vetores em tempo linear para o tamanho do vetor inicial;
 - Não realiza comparações;
 - É um algoritmo de ordenação estável;
- Aspectos Negativos:
 - Necessita de dois vetores adicionais para sua execução, utilizando, assim, mais espaço na memória.

Radix Sort

- Algoritmo de ordenação não comparativo;
- Ordena inteiros ou strings de comprimento fixo;
- Digit by digit (ou character by character);
- Implementado de duas formas:
 - Least Significant Digit (LSD) do dígito menos significativo ao mais significativo.
 - Most Significant Digit (MSD) do dígito mais significativo ao menos significativo.

Radix Sort

- Divide cada número em seus dígitos componentes;
- Ordena os números começando pelo dígito menos significativo (LSD);
- Usa um algoritmo de ordenação estável (como Counting Sort) para ordenar os dígitos;
- Repete o processo para cada dígito, movendo para o próximo mais significativo;

Radix Sort

329	72 <mark>0</mark>	7 <mark>2</mark> 0	3 29
457	35 <mark>5</mark>	3 <mark>2</mark> 9	<mark>3</mark> 55
657	436	4 <mark>3</mark> 6	4 36
839 =>	457 =>	839 =>	4 57
436	65 <mark>7</mark>	3 <mark>5</mark> 5	<mark>6</mark> 57
720	32 <mark>9</mark>	45 7	<mark>7</mark> 20
355	839	6 <mark>5</mark> 7	<mark>8</mark> 39

Complexidade de Tempo

- A complexidade de tempo do Radix Sort é $O(d \cdot (n + k))$, onde:
 - d é o número de dígitos;
 - n é o número de elementos a serem ordenados;
 - k é o intervalo dos dígitos (por exemplo, 0-9 para números decimais);
- Radix Sort é eficiente quando d é relativamente pequeno (constante);
- Rodando em tempo de O(n).

Vantagens e Desvantagens

- Aspectos positivos:
 - Ordenação linear em muitos casos práticos.
 - Bom para números inteiros ou strings de comprimento fixo.
 - Não comparativo, evitando overhead de comparação.
- Aspectos Negativos:
 - Requer espaço adicional para armazenamento temporário.
 - Não é adequado para todos os tipos de dados (por exemplo, números de ponto flutuante).
 - Menos eficiente se *d* ou *k* forem muito grandes.

Bucket Sort

- Algoritmo:
 - Inicialize um arranjo de "baldes", inicialmente vazios;
 - Vá para o arranjo original, incluindo cada elemento em um balde:
 - Ordene todos os baldes não vazios:
 - Coloque os elementos dos baldes que não estão vazios no arranjo original.
- https://www.youtube.com/watch?v=ibtN8rY7V5k;

Atividade

 Implemente o algoritmo de ordenação counting sort com radix sort.

Bibliografia Básica

- LEWIS, H. R.; PAPADIMITRIOU, C. H. Elementos de Teoria da Computação. 2 ed. Porto Alegre: Bookman, 2000.
- VIEIRA, N. J. Introdução aos Fundamentos da Computação. Editora Pioneira Thomson Learning, 2006.
- DIVERIO, T. A.; MENEZES, P. B. Teoria da Computação: Máquinas Universais e Computabilidade. Série Livros Didáticos Número 5, Instituto de Informática da UFRGS, Editora Sagra Luzzato, 1 ed. 1999.

Obrigado! Dúvidas?

Guilherme Henrique de Souza Nakahata

guilhermenakahata@gmail.com

https://github.com/GuilhermeNakahata/UNESPAR-2024