1 Modbus RTU specifications

The Modbus protocol is simple to use and its specification is open to the public, so this protocol is widely used in industrial applications.

Modbus communication is based on the single-master/multiple-slave method. Only the master can issue a query (command).

Each slave executes the process requested by query and returns a response message.

The driver supports the RTU mode only as the transmission mode. The ASC ${\rm I\hspace{-.1em}I}$ mode is not supported. Under this protocol, messages are sent in one of three methods.

Unicast mode

The master sends a query to only one slave. The slave executes the process and returns a response.

Broadcast mode

If the slave address 0 is specified on the master, the master can send a command to all slaves. Each slave executes the process, but does not return a response.

ID share mode

The master can send a query to multiple slaves at once by sharing a slave address (share ID) with multiple slaves. The slave executes the process and returns a response sequentially. In the ID share mode, synchronization between slaves is better than in the unicast mode since a query can be sent to multiple slaves at the same time. The ID share mode is our unique transmission method.

1-1 Communications specifications

Electrical characteristics	In conformance with EIA-485 Use twisted-pair wires and keep the total extension distance up to 10 m (32.8 ft.). *
Communication mode	Half duplex Asynchronous mode (data: 8 bits, stop bit: 1 bit/2 bits, parity: none/even number/odd number)
Transmission rate	Selectable from 9,600 bps, 19,200 bps, 38,400 bps, 57,600 bps, 115,200 bps, and 230,400 bps.
Protocol	Modbus RTU mode
Type of Connection	Up to 31 drivers can be connected to one host controller.

^{*} If the motor cable or power supply cable generates an undesirable amount of noise depending on the wiring or configuration, shield the cable or install a ferrite core.

■ Connection example

memo

This guidance is explained using **BLVD-KRD** as an example. For **BLVD-KBRD**, it is not necessary to connect a power supply for communication.

■ Termination resistor

Connect a termination resistor for a driver located the farthest away (positioned at the end) from the host controller. There are the following two methods for how to connect a termination resistor.

When a termination resistor inside the driver is used

Using the support software, set the "RS-485 communication termination resistor" parameter to "Enable" or to the terminating slave address.

Name	Setting
RS-485 communication termination resistor	Enable

The termination resistor is turned ON only when the main power is supplied to the driver since it is turned ON or OFF inside the driver.

The termination resistor inside the driver is enabled when the slave address 4 is set (initial value). When the slave address 4 is used, check the connection of a termination resistor.

• When a resistor (120 Ω) is connected between the TR+ and TR- terminals of the CN4 connector

Connecting method

- 1. Connect lead wires to a resistor.
- 2. Connect the lead wires between the TR+ and TR- terminals of CN4.

- Be sure to connect a resistor between the TR+ and TR- terminals. Incorrect connection may cause damage to the resistor.
- When connecting a resistor, set the "RS-485 communication termination resistor" parameter to "Disable."

For a resistor, use a metal film resistor of 120 Ω , 1/2 W or more.

Related parameter

Register address		Parameter name	e Description -		ia l ing
Upper	Lower	raiailletei liaille	Description		Unit
990 (03DEh)	991 (03DFh)	RS-485 communication termination resistor	Selects the setting of the termination resistor for RS-485 communication built in the driver. [Setting Range] —1: Enable 1: Follow communication ID (Enable when the active communication ID is 1) 2: Follow communication ID (Enable when the active communication ID is 2) 3: Follow communication ID (Enable when the active communication ID is 3) 4: Follow communication ID (Enable when the active communication ID is 4) 5: Follow communication ID (Enable when the active communication ID is 5) 6: Follow communication ID (Enable when the active communication ID is 6) 7: Follow communication ID (Enable when the active communication ID is 8) 9: Follow communication ID (Enable when the active communication ID is 8) 9: Follow communication ID (Enable when the active communication ID is 8) 10: Follow communication ID (Enable when the active communication ID is 10) 11: Follow communication ID (Enable when the active communication ID is 11) 12: Follow communication ID (Enable when the active communication ID is 13) 14: Follow communication ID (Enable when the active communication ID is 13) 15: Follow communication ID (Enable when the active communication ID is 13) 16: Follow communication ID (Enable when the active communication ID is 14) 17: Follow communication ID (Enable when the active communication ID is 14) 18: Follow communication ID (Enable when the active communication ID is 14) 19: Follow communication ID (Enable when the active communication ID is 14) 19: Follow communication ID (Enable when the active communication ID is 12) 20: Follow communication ID (Enable when the active communication ID is 12) 21: Follow communication ID (Enable when the active communication ID is 20) 21: Follow communication ID (Enable when the active communication ID is 20) 21: Follow communication ID (Enable when the active communication ID is 21) 22: Follow communication ID (Enable when the active communication ID is 22) 23: Follow communication ID (Enable when the active communication ID is 23) 24: Follow comm	4	

■ Address number setting (communication ID)

Set the address number (communication ID) of RS-485 communication. There are the following two methods for how to set the address number.

• When setting using the support software.

Set the address number with "Starts the simple setting." of the support software.

• When setting using the ID-SEL0 to ID-SEL3 input signals.

Set the address number based on a combination of ON-OFF status of the ID-SEL0 to ID-SEL3 input signals. Refer to p.187 for ID-SEL input signals.

1-2 Communication timing

The communication time monitored by the driver and the communication timing of the master are as follows.

Code	Name	Description
Tb1	Communication timeout (driver)	The driver monitors an interval between received queries. If the driver cannot receive a query after the time set in the "Communication timeout (Modbus)" parameter (Initial value: Disable) has elapsed, an alarm of "Communication timeout" is generated. When normal messages including messages to other slaves were received, an alarm of "Communication timeout" is not generated.
Tb2	Transmission waiting time (driver) This is the amount of time from when the driver receives a query from the until when it starts sending a response. Set using the "Transmission waiting (Modbus)" parameter.	
Tb3	Tb3 Broadcasting interval (master) This is the amount of time until the master sends the next query in broad A time equivalent to or longer than the silent interval (C3.5) plus 5 ms is	
Transmission waiting time (master) when it sends the next query (setting in the master) when it sends the next query (setting in the master) or longer than the time of the silent interval (City) (Modbus)" parameter is set to "0: Automatic," set		This is the amount of time from when the master receives the response until when it sends the next query (setting in the master side). Set so that it is equal to or longer than the time of the silent interval (C3.5). If the "Silent Interval (Modbus)" parameter is set to "0: Automatic," set the master side according to the "Estimate of transmission waiting time (master) (Tb4)" in the table below.
Tb5	Query processing time (driver)	This is the amount of time that the driver processes a received query. The query processing time varies depending on the message structure of the received query.
C3.5	Silent interval	This is the amount of time to determine the end of a query or response message. An interval equal to or longer than the time of the silent interval (C3.5) is required when the message ends. When the "Silent interval (Modbus)" parameter of the driver is set to "0: Automatic," the silent interval (C3.5) varies depending on the transmission rate. For details, refer to the "Silent interval (C3.5)" shown on the table below.

memo

To communicate with the driver periodically, set the "Communication timeout (Modbus)" parameter. Setting the parameter can make an alarm of "RS-485 communication timeout" generate if communication between the master and the driver is disconnected.

■ When the "Silent interval (Modbus)" parameter is set to "Automatic"

Transmission rate (bps) Silent interval (C3.5)		Estimate of transmission waiting time (Master) (Tb4)
9,600	4.0 ms or more	5.0 ms or more
19,200 or more	2.5 ms or more	3.0 ms or more

- If the transmission waiting time (Tb4) of the master is shorter than the silent interval, the slave discards the message and a communication error occurs. When a communication error occurs, check the silent interval of the slave and set the transmission waiting time (Tb4) of the master again.
- The silent interval (C3.5) may vary depending on the product series connected. When connecting multiple product series, set the driver parameters as follows.
 - "Silent interval (Modbus)" parameter: "0: Automatic"
 - "Transmission waiting time (Modbus)" parameter: 1.0 ms or more
- In a system where only products having the "Silent interval (Modbus)" parameter are connected, the communication cycle can be improved if the setting of the "Silent interval (Modbus)" parameter is common to the products connected. Use in a state of setting to "0: Automatic" normally.

2 Message structure

The message format is shown below.

2-1 Query

The query message structure is shown below.

Slave address	Function code	Data	Error check
8 bits	8 bits	Nx8 bits	16 bits

■ Slave address

Specify the slave address. (Unicast mode)

If the slave address is set to "0," the master can send a query to all slaves. (Broadcast mode)

■ Function code

The function codes and message lengths supported by the driver are as follows.

Function code	Function	Number of registers	Broadcast
03h	Reading from holding registers	1 to 125	Not possible
06h	Writing to a holding register	1	Possib l e
08h	Diagnosis	-	Not possible
10h	Writing to multiple holding registers	1 to 123	Possib l e
17h	Read/write of multiple holding registers	Read: 1 to 125 Write: 1 to 121	Not possible

■ Data

Set data related to the function code. The data length varies depending on the function code.

■ Error check

In the Modbus RTU mode, error checks are based on the CRC-16 method. The slave calculates a CRC-16 of each received message and compares the result against the error check value included in the message. If the calculated CRC-16 value matches the error check value, the slave determines that the message is normal.

CRC-16 calculation method

- 1. Calculate an exclusive-OR (XOR) value of the default value of FFFFh and slave address (8 bits).
- 2. Shift the result of step 1 to the right by 1 bit. Repeat this shift until the overflow bit becomes "1."
- 3. Upon obtaining "1" as the overflow bit, calculate an XOR of the result of step 2 and A001h.
- 4. Repeat steps 2 and 3 until a shift is performed eight times.
- Calculate an XOR of the result of step 4 and function code (8 bits).
 Repeat steps 2 to 4 for all bytes.
 The final result gives the result of CRC-16 calculation.

• Calculation example of CRC-16

The table shows a calculation example when setting the slave address of the first byte to 02h and the function code of the second byte to 07h.

The result of actual CRC-16 calculation is calculated including the data on and after the third byte.

Description	Result	Bit shifted out
CRC register initial value FFFFh	1111 1111 1111 1111	_
Lead byte 02h	0000 0000 0000 0010	_
Initial value FFFFh and XOR	1111 1111 1111 1101	_
First time of right shift	0111 1111 1111 1110	1
A001h and XOR	1010 0000 0000 0001 1101 1111 1111 1111	-
Second time of right shift	0110 1111 1111 1111	1
A001h and XOR	1010 0000 0000 0001 1100 1111 1111 1110	-
Third time of right shift	0110 0111 1111 1111	0
Fourth time of right shift	0011 0011 1111 1111	1
A001h and XOR	1010 0000 0000 0001 1001 0011 1111 1110	-
Fifth time of right shift	0100 1001 1111 1111	0
Sixth time of right shift	0010 0100 1111 1111	1
A001h and XOR	1010 0000 0000 0001 1000 0100 1111 1110	-
Seventh time of right shift	0100 0010 0111 1111	0
Eighth time of right shift	0010 0001 0011 1111	1
A001h and XOR	1010 0000 0000 0001 1000 0001 0011 1110	_
Next byte 07h and XOR	0000 0000 0000 0111 1000 0001 0011 1001	-
First time of right shift	0100 0000 1001 1100	1
A001h and XOR	1010 0000 0000 0001 1110 0000 1001 1101	-
Second time of right shift	0111 0000 0100 1110	1
A001h and XOR	1010 0000 0000 0001 1101 0000 0100 1111	-
Third time of right shift	0110 1000 0010 0111	1
A001h and XOR	1010 0000 0000 0001 1100 1000 0010 0110	-
Fourth time of right shift	0110 0100 0001 0011	0
Fifth time of right shift	0011 0010 0000 1001	1
A001h and XOR	1010 0000 0000 0001 1001 0010 0000 1000	_
Sixth time of right shift	0100 1001 0000 0100	0
Seventh time of right shift	0010 0100 1000 0010	0
Eighth time of right shift	0001 0010 0100 0001	0
Result of CRC-16	0001 0010 0100 0001	_

2-2 Response

Slave-returned responses are classified into three types: normal response, no response, and exception response. The response message structure is the same as the query message structure.

Slave address	Function code	Data	Error check
8 bits	8 bits	Nx8 bits	16 bits

■ Normal response

Upon receiving a query from the master, the slave executes the requested process and returns a response corresponding to the function code.

■ No response

The slave may not return a response to a query sent by the master. This condition is referred to as "No response." The causes of no response are explained below.

Transmission error

The slave discards the query if any of the transmission errors in the next table is detected. No response is returned.

Cause of transmission error	Description		
Framing error	Stop bit 0 was detected.		
Parity error	A mismatch with the specified parity was detected.		
Mismatched CRC	The calculated value of CRC-16 was found not matching the error check value		
Invalid message length	The message length exceeded 256 bytes.		

• Other than transmission error

A response may not be returned without any transmission error being detected.

Cause	Description
Broadcast	If the query was broadcast, the slave executes the requested process but does not return a response.
Mismatched slave address	When the slave address in the query is not matched the slave address of the driver.

■ Exception response

An exception response is returned if the slave cannot execute the process requested by the query. Appended to this response is an exception code indicating why the process cannot be executed. The message structure of exception response is as follows.

Slave address	Function code	Exception code	Error check
8 bits	8 bits	8 bits	16 bits

Function code

The function code in the exception response is a sum of the function code in the query and 80h.

Function code of query	Exception response
03h	83h
06h	86h
08h	88h
10h	90h
17h	97h

• Example of exception response

Slave	address	01h	Query	Slave add	ress	01h
Functi	ion code	10h	──	Function code		90h
	Register address (upper)	00h	-	Data	Exception code	04h
	Register address (lower)	5Eh	←	Error ched	:k (l ower)	4Dh
	Number of registers (upper)	00h	Response	Error ched	:k (upper)	C3h
	Number of registers (lower)	02h				
Data	Number of data bytes	04h				
	Value write to register address (upper)	00h				
	Value write to register address (lower)	00h	-			
	Value write to register address +1 (upper)	01h				
	Value write to register address +1 (lower)	F4h				
Error	check (lower)	77h				
Error	heck (upper)	08h	-			

• Exception code

This code indicates why the process cannot be executed.

Exception code	Communication error code	Cause	Description
01h	88h	Invalid function	The process could not be executed because the function code was invalid. • The function code is not supported.
			• The sub-function code for diagnosis (08h) is other than 00h.
02h	88h	Invalid data address	The process could not be executed because the data address was invalid. • The register address and the number of registers
			exceeded FFFFh in total.
			The process could not be executed because the data was invalid.
03h	8Ch	Invalid data	• The number of registers is 0.
			• The number of bytes is other than "the number of register ×2."
			Invalid data length
			The process could not be executed because an error occurred at the slave.
04h	89h 8Ah 8Ch 8Dh	Slave error	Communication with user I/F is in progress (89h). Execute the following with the support software Data writing (under writing to the driver) Initialization Configuration I/O test or remote operation
			NV memory processing in progress (8Ah) Internal processing is in progress (SYS-BSY is ON). An alarm of "EEPROM error" is present.
			Outside the parameter setting range (8Ch) The value write is outside the setting range.
			Command execute disable (8Dh)

About slave error

When the "Slave error response mode (Modbus)" parameter is set to "0: Normal response," even if the slave error occurs, a normal response is returned. Set it when no exception response is required, as in the case of a touch screen.

3 Function code

This chapter explains the function codes supported by the driver. Note that function codes other than those described here cannot be executed even if they are sent.

3-1 Reading from a holding register(s) (03h)

This function code is used to read a register (16 bits). Up to 125 successive registers (125 \times 16 bits) can be read. Read the upper and lower data at the same time. If they are not read at the same time, the value may be invalid. When multiple holding registers are read, they are read in order of register addresses.

■ Example of read

Read "Driver temperature" and "Motor temperature" of the slave address 1.

Description Register address		Value read	Corresponding decimal
Driver temperature (upper)	ver temperature (upper) 248 (00F8h)		202
Driver temperature (lower)	249 (00F9h)	249 (00F9h) 017Fh 383	
Motor temperature (upper)	250 (00FAh)	0000h	426
Motor temperature (lower)	251 (00FBh)	01AAh	420

Query

	Field name	Data	Description
Slave	address	01h	Slave address 1
Functi	on code	03h	Reading from holding registers
	Register address (upper)		Register address to start reading from
Data	Register address (lower)	F8h	negister address to start reading from
Data	Number of registers (upper)	00h	Number of registers to be read from the starting register address
	Number of registers (lower)		(4 registers=0004h)
Error check (lower)		C5h	Calculation result of CRC-16
Error	Error check (upper)		Calculation result of ChC-10

	Fie l d name	Data	Description
Slave	address	01h	Same as query
Functi	on code	03h	Same as query
	Number of data bytes	08h	Twice the number of registers in the query
	Value read from register address (upper)	00h	Value read from register address 00F9h
	Value read from register address (lower)	00h	Value read from register address 00F8h
	Value read from register address +1 (upper)	01h	Value read from register address 00E0h
Data	Value read from register address +1 (lower)	7Fh	Value read from register address 00F9h
	Value read from register address +2 (upper)	00h	Value read from register address OOFAh
	Value read from register address +2 (lower)	00h	Value read from register address 00FAh
	Value read from register address +3 (upper)	01h	Value was different was interested and disease OOFDIA
	Value read from register address +3 (lower)	AAh	Value read from register address 00FBh
Error	Error check (lower)		Calculation result of CRC-16
Error	Error check (upper)		Calculation result of ChC-10

3-2 Writing to a holding register (06h)

This function code is used to write data to a specified register address. However, since the result combining the upper and lower may be outside the data range, write the upper and lower at the same time using the "Writing to multiple holding registers (10h)."

■ Example of write

Write 80 (50h) to the command filter time constant of the slave address 2.

Description	Register address	Va l ue write	Corresponding decimal
Command filter time constant (lower)	597 (255h)	0050h	80

Query

Fie l d name		Data	Description
Slave a	Slave address (Slave address 2
Functi	on code	06h	Writing to a holding register
	Register address (upper)	02h	Register address to be written
Data	Register address (lower)	55h	Register address to be written
Data	Value write (upper)	00h	Value unitten to the vanister address
	Value write (lower)	50h	Value written to the register address
Error check (lower) Error check (upper)		98h	Calculation result of CRC-16
		6Dh	Calculation result of CRC-16

	Field name Data		Description
Slave a	address	02h	Same as query
Functi	on code	06h	Same as query
	Register address (upper)	02h	Carra as guarri
Data	Register address (lower)	55h	Same as query
Dala	Value write (upper)	00h	Carra as guarri
	Value write (lower)	50h	Same as query
Error check (lower) Error check (upper)		98h	Calculation result of CRC-16
		6Dh	Calculation result of CRC-16

3-3 **Diagnosis (08h)**

This function code is used to diagnose the communication between a master and a slave. Arbitrary data is sent and the result of returned data is used to determine whether the communication is normal. 00h (reply to query) is the only sub-function.

■ Example of diagnosis

Send arbitrary data (1234h) to the slave for diagnosis.

Query

Fie l d name		Data	Description
Slave a	Slave address		Slave address 3
Functi	on code	08h	Diagnosis
	Sub-function code (upper)		Return the query data
Data	Sub-function code (lower)	00h	neturn the query data
Dala	Data value (upper)	12h	Arbitrary data (1224b)
	Data value (lower)	34h	Arbitrary data (1234h)
Error check (lower)		ECh	Calculation result of CRC-16
Error	Error check (upper)		Calculation result of CRC-16

Response

Field name		Data	Description
Slave a	Slave address		Same as query
Functi	on code	08h	Same as query
	Sub-function code (upper)	00h	Cama as guarre
Data	Sub-function code (lower)	00h	Same as query
Data	Data value (upper)	12h	Sama as guary
	Data value (lower)	34h	Same as query
Error check (lower)		ECh	Cama as guary
Error check (upper)		9Eh	Same as query

3-4 Writing to multiple holding registers (10h)

This function code is used to write data to multiple successive registers. Up to 123 registers can be written. Write the data to the upper and lower at the same time. If not, an invalid value may be written. Registers are written in order of register addresses. Note that even when an exception response is returned because some data is invalid as being outside the specified range, etc., other data may have been written properly.

■ Example of write

Set the following data to the "Operating velocity," "Acceleration rate," and "Deceleration rate" of direct data operation in the slave address 4.

Description	Register address	Va l ue write	Corresponding decimal
Direct data operation operating velocity (upper)	94 (005Eh)	0000h	1,000
Direct data operation operating velocity (lower)	95 (005Fh)	03E8h	1,000
Direct data operation acceleration rate (upper)	96 (0060h)	0000h	1 000
Direct data operation acceleration rate (lower)	97 (0061h)	03E8h	1,000
Direct data operation deceleration rate (upper)	98 (0062h)	0000h	2,000
Direct data operation deceleration rate (lower)	99 (0063h)	07D0h	2,000

Query

Field name		Data	Description	
Slave address		04h	Slave address 4	
Function code		10h	Writing to multiple holding registers	
	Register address (upper)	00h	Degister address to start uniting from	
	Register address (lower)	5Eh	Register address to start writing from	
	Number of registers (upper)	00h	Number of registers to be written from the starting	
	Number of registers (lower)	06h	register address (6 registers=0006h)	
	Number of data bytes	0Ch	Twice the number of registers in the query	
	Value write to register address (upper)	00h	Value unitton to register address OOFTh	
Data	Value write to register address (lower)	00h	Value written to register address 005Eh	
	Value write to register address +1 (upper)	03h	Value unitton to register address 00FFb	
	Value write to register address +1 (lower)	E8h	Value written to register address 005Fh	
	Value write to register address +2 (upper)	00h	Value written to register address 0060b	
	Value write to register address +2 (lower)	00h	Value written to register address 0060h	
	Value write to register address +3 (upper)	03h	Value unitten to register address 0061h	
	Value write to register address +3 (lower)	E8h	Value written to register address 0061h	
	Value write to register address +4 (upper)	00h	Value unitton to register address 0062h	
	Value write to register address +4 (lower)	00h	Value written to register address 0062h	
	Value write to register address +5 (upper)	07h	Value unitten to register address 0003h	
	Value write to register address +5 (lower)	D0h	Value written to register address 0063h	
Error	Error check (lower)		- Calculation result of CRC-16	
Error check (upper)		C0h		

Field name		Data	Description	
Slave address		04h	Same as query	
Function code		10h	Same as query	
	Register address (upper)	00h	Sama as guary	
Data	Register address (lower)	5Eh	Same as query	
	Number of registers (upper)	00h	Camanana	
	Number of registers (lower)	06h	Same as query	
Error check (lower)		21h	Calculation result of CRC-16	
Error check (upper)		8Ch		

3-5 Read/write of multiple holding registers (17h)

With a single function code, reading data and writing data for multiple successive registers can be performed. Data is written first, and then data is read from the specified registers.

■ Read

Data can be read from successive registers of up to 125.

Read the upper and lower data at the same time. If they are not read at the same time, the value may be invalid. If multiple registers are read, they are read in order of register addresses.

■ Write

Data can be written to successive registers of up to 121.

Write the data to the upper and lower at the same time. If not, an invalid value may be written.

Registers are written in order of register addresses. Note that even when an exception response is returned because some data is invalid as being outside the specified range, etc., other data may have been written properly.

■ Example of read/write

Prepare the read address and write address in a single query.

In this example, after writing the data to the "Operating velocity," "Acceleration rate," and "Deceleration rate" of direct data operation in the slave address 1, read the present temperatures for the driver and the motor.

Description	Register address	Va l ue write	Corresponding decimal	
Direct data operation operating velocity (upper)	94 (005Eh)	0000h	1,000	
Direct data operation operating velocity (lower)	95 (005Fh)	03E8h		
Direct data operation acceleration rate (upper)	96 (0060h)	0000h	1,000	
Direct data operation acceleration rate (lower)	97 (0061h)	03E8h		
Direct data operation deceleration rate (upper)	98 (0062h)	0000h	2,000	
Direct data operation deceleration rate (lower)	99 (0063h)	07D0h	2,000	

Description	Register address	Va l ue read	Corresponding decimal	
Driver temperature (upper)	248 (00F8h)	0000h	383	
Driver temperature (lower)	249 (00F9h)	017Fh	383	
Motor temperature (upper)	250 (00FAh)	0000h	426	
Motor temperature (lower)	251 (00FBh)	01AAh	426	

Query

Field name		Data	Description
Slave address		01h	Slave address 1
Functi	Function code		Read/write of multiple holding registers
	(Read) Register address (upper)	00h	Register address to start reading from
	(Read) Register address (lower)	F8h	negister address to start reading from
	(Read) Number of registers (upper)	00h	Number of registers to be read from the
	(Read) Number of registers (lower)	04h	starting register address (4 registers=0004h)
	(Write) Register address (upper)	00h	Desistant address to start uniting from
	(Write) Register address (lower)	5Eh	Register address to start writing from
	(Write) Number of registers (upper)	00h	Number of registers to be written from the
	(Write) Number of registers (lower)	06h	starting register address (6 registers=0006h)
	(Write) Number of data bytes	0Ch	Twice the number of registers in the query
	(Write) Value write to register address (upper)	00h	Value weither to register address OOFF
Data	(Write) Value write to register address (lower)	00h	Value written to register address 005Eh
	(Write) Value write to register address +1 (upper)	03h	Value written to register address OOFFb
	(Write) Value write to register address +1 (lower)	E8h	Value written to register address 005Fh
	(Write) Value write to register address +2 (upper)	00h	Value written to register address 0060b
	(Write) Value write to register address +2 (lower)	00h	Value written to register address 0060h
	(Write) Value write to register address +3 (upper)	03h	Value witten to register address 0061b
	(Write) Value write to register address +3 (lower)	E8h	Value written to register address 0061h
	(Write) Value write to register address +4 (upper)	00h	Value written to register address 0062b
	(Write) Value write to register address +4 (lower)	00h	Value written to register address 0062h
	(Write) Value write to register address +5 (upper)	07h	Value visittan ta vanistava aldusas 0062b
	(Write) Value write to register address +5 (lower)	D0h	Value written to register address 0063h
Error	Error check (lower)		Calculation result of CRC-16
Error	Error check (upper)		

Fie l d name			Description	
Slave address		01h	Same as query	
Function code		17h	Same as query	
Data	(Read) Number of data bytes	08h	Twice the number of (Read) registers in the query	
	(Read) Value read from register address (upper)	00h	Value read from register address 00F8h	
	(Read) Value read from register address (lower)	00h	value read from register address our on	
	(Read) Value read from register address +1 (upper)	01h	Value was different and divass OOFOh	
	(Read) Value read from register address +1 (lower)	7Fh	Value read from register address 00F9h	
	(Read) Value read from register address +2 (upper)	00h	Value read from register address OOFAh	
	(Read) Value read from register address +2 (lower)	00h	Value read from register address 00FAh	
	(Read) Value read from register address +3 (upper)	01h	Value was different was interested and disease OOFDb	
	(Read) Value read from register address +3 (lower)	AAh	Value read from register address 00FBh	
Error check (lower)		40h	Coloulation year It of CDC 16	
Error check (upper)		63h	Calculation result of CRC-16	