WC05014854 [file:///E:/WC05014854.opc]

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 17 February 2005 (17.02.2005)

PCT

(10) International Publication Number WO 2005/014854 A1

(51) International Patent Classification7: C12O 1/68

(21) International Application Number:

PCT/EP2004/008819

English

(22) International Filing Date: 6 August 2004 (06.08.2004)

- (25) Filing Language: English
- (30) Priority Data:
- 60/494,221 8 August 2003 (08.08.2003) US (71) Applicant (for all designated States except US): LICEN-
- TIA, LTD. [FI/FI]; Erottajankatu 19 B, 6th Floor, FIN-00130 Helsinki (FI).
- (72) Inventors; and

(26) Publication Language:

(75) Inventors/Applicants (for US only): ALITALO,

Kari [FI/FI]; Molecular Cancer Biology Laboratory Biomedicum, Biomedicum, P.O. Box 63 (Haartmaninkatu 8). University of Helsinki, FIN-00014Helsinki (FI). PETROVA, Tatiana [RU/FI]; Molecular/Cancer Biology Laboratory Biomedicum Biomedicum, P.O. Box 63 (Haartmaninkatu 8), University of Helsinki, FIN-00014 (FI). NYKANEN, Anttl [FI/FI]; Molecular/Cancer Biology Laboratory Biomedicum, Biomedicum, P.O. Box 63 (Haartmaninkatu 8), University of Helsinki, FIN-00014 Helsinki (FD).

- (74) Agent: FYLES, Julie, M.; Wynnc-Jones Laine & James, 22, Rodney Road, Cheltenham, Gloucestershire GL50 1JJ
- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,

[Continued on next page]

(54) Title: MATERIALS AND METHODS FOR COLORECTAL CANCER SCREENING, DIAGNOSIS, AND THERAPY

(57) Abstract: The invention provides materials and methods for colorectal cancer screening, diagnosis, and therapy.

WO 2005/014854 A1

MG, MK, MN. MW, MX, MZ, NA, NI, NO, NZ, OM, PG. PII. PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU. ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, TT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BE, BJ, CE, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

10

20

25

30

WO 2005/014854

PCT/EP2004/008819

MATERIALS AND METHODS FOR COLORECTAL CANCER SCREENING, DIAGNOSIS, AND THERAPY

FIELD OF THE INVENTION

The present invention relates generally to methods and materials for altering colorectal cancer progression. The present invention also relates to techniques for screening for colon cancer and/or premalignancies.

BACKGROUND

The transcription factor Prox-1 is expressed in a number of tissues during embryonic development, including lens fiber cells, subpopulation of neurons in brains and neural tube, skeletal muscle, heart, liver, pancreas and lymphatic endothelial cells. Targeted inactivation of Prox-1 results in the defects of eye development because of the failure of lens fiber cells to elongate (Wigle et al., Nat. Genet. 21: 318-22, 1999). Prox-1 is also necessary for the migration of hepatocytes during liver development (Sosa-Pineda et al., Nat. Genet. 25: 254-5, 2000). In addition, Prox-1 deficient embryos lack lymphatic vasculature, while the blood vessel development is not affected (Wigle et al., Cell 98: 769-778, 1999).

Recently, others and we have demonstrated the essential role of Prox-1 in the regulation of the lymphatic endothelial phenotype. Overexpression of Prox-1 in blood vascular endothelial cells, where it is otherwise absent, leads to the increased expression of lymphatic endothelial markers and to the suppression of the genes characteristic for the blood vascular endothelial lineage (Petrova et al., Embo J. 21: 4593-9, 2002; Hong et al., Dev. Dyn. 225: 351-7, 2002).

Notch is a transmembrane protein that acts as a receptor in a cell-cell signaling mechanism, and in combination with other cellular factors, influences differentiation, proliferation and apoptotic events at all stages of development (Artavanis-Tsakonas, Science 284: 770-776, 1999). In animal models, mutations in the Notch receptor have resulted in developmental abnormalities (Joutel et al., Nature 383: 707, 1996; Li. et al., Nature Genet. 16:243, 1997).

10

20

25

30

Page 5 of 970

-2-

Cancer treatments generally promote tumor regression by inhibiting tumor cell proliferation, inhibiting angiogenesis (growth of new blood vessels that is necessary to support tumor growth) and/or prohibiting metastasis by reducing tumor cell motility or invasiveness. Colon cancers are a very common malignancy and colon cancers are typically adenocarcinomas, or sometimes carcinoid tumors. Treatment is primarily surgical resection of the colon, although chemotherapy has been found to be beneficial in some cases. These treatment options for colon cancer are of unpredictable and sometimes limited value, especially if the cancer has not been identified and removed at early stages. There continues to exist a need for novel therapies and diagnostic methods for cancer conditions.

SUMMARY OF THE INVENTION

The present invention addresses one or more ongoing needs by providing materials and methods for screening for and treating cancerous and 15 precancerous conditions, especially colorectal in nature.

As one aspect, the invention provides materials and methods to screen a mammalian subject for a cancerous or precancerous condition based on analysis of Prox-1 expression in cells from the mammalian subject. In particular, materials and methods are provided for screening colon tissue for signs of cancerous or precancerous pathology.

For example, the method includes a method of screening colon tissue for a pathological condition, said method comprising:

measuring Prox-1 expression in a biological sample that comprises colon tissue from a mammalian subject, wherein elevated Prox-1 expression in the colon tissue correlates with a pathological phenotype. The determination of elevated Prox-1 expression is generally made by way of a comparison, e.g., to a measurement of Prox-1 expression in healthy colon tissue (from the same subject or others of the same species, preferably matched for sex, age, race, or other characteristics); or to a measurement of Prox-1 expression in diseased (especially neoplastic) colon tissue. When comparing Prox-1 expression in the colon tissue to Prox-1 expression in healthy colon tissue, an increased (e.g., elevated) Prox-1 expression in the colon tissue

15

20

25

30

WO 2005/014854

from the mammalian subject correlates with a pathological phenotype. When comparing to diseased tissue, comparable levels of expression in the tissue from the subject correlates with a pathological phenotype.

In another, related example, the invention includes a method of

screening colon tissue for a pathological condition, the method comprising steps of:

(a) obtaining a biological sample comprising colon tissue from a mammalian subject;

(b) measuring Prox-1 expression in the colon tissue; and (c) screening for the
presence or absence of a pathological condition from the measurement of Prox-1 in
the sample.

Similarly, the invention includes a method of screening colon tissue for a pathological condition, the method comprising steps of: (a) obtaining a biological sample comprising colon tissue from a mammalian subject; (b) measuring Prox-1 expression in the colon tissue; and (c) comparing Prox-1 expression in the colon tissue to Prox-1 expression in healthy colon tissue, wherein increased Prox-1 expression in the colon tissue correlates with a pathological phenotype.

For this type of method, the term "pathological condition" is intended to include any abnormality or evidence of disease that warrants medical treatment or monitoring due to concern of developing disease. Cancers and precancerous changes in tissue are particularly contemplated. Thus, in preferred embodiments, the method can be characterized as a screen for colon cancer or colorectal cancers, and increased Prox-1 expression in the colon tissue is scored as being indicative of a cancerous or precancerous condition.

The method can be combined with any other molecular, cellular, pathological, or patient symptom criteria to assist a medical practitioner in early diagnosis and therapeutic or prophylactic therapy. For example, in one variation, the method further comprises measuring expression of at least one gene or protein selected from the group consisting of CD44, Encl., and ID2 in the colon tissue, wherein elevated Prox-1 expression and elevated expression of the at least one gene/protein in the colon tissue correlate with a pathological phenotype. In another variation, the method further comprising measuring activation of -catenin/TCF pathway in the colon tissue, wherein activation of the -catenin/TCF pathway and

5

10

15

20

Page 6 of 970

elevated Prox-1 expression in the colon tissue correlate with a pathological phenotype. Activation of the -catenin/TCF pathway can be measured by a variety of indicators, including mutations in an APC gene; mutations in a -catenin gene; and nuclear localization of -catenin.

The biological sample is any tissue or fluid sample obtained in any way from a mammalian subject that includes cells from the large intestine. Biopsies or other surgically removed specimens are preferred. Stool or feces may contain sufficient colon tissue for some embodiments of the assay.

The assay may be performed on any mammalian subject, including laboratory animals used in cancer research, livestock, and domestic pets. Humans are most preferred.

Any available technique can be used for measuring Prox-1 expression, including direct and indirect techniques. For example, in one variation, the measuring comprises measuring Prox-1 protein in the biological sample. Preferred techniques for measuring amounts or concentrations of Prox-1 protein in a sample are immunological techniques that involve use of a polyclonal or monoclonal antibody that specifically binds Prox-1, or use of a Prox-1-binding fragment of such an antibody. For example, the measuring comprises contacting the colon tissue with a Prox-1 antibody or antigen-binding fragment thereof. Quantification of the amount of bound antibody (e.g., using a label or second, labeled antibody) provides a measurement of Prox-1 protein expressed in the sample. Immunoassays such as radioimmunoassay, immunoradiometric assay (labeled antibody), or an enzymelinked immunosorbent assay (FLISA) are contemplated.

In another variation, the measuring comprises measuring Prox-1

25 mRNA in the colon tissue. Elevated levels of Prox-1 mRNA in the sample are scored as elevated Prox-1 expression. Any available assay for measuring specific oligonucleotides is suitable. Preferred materials for such measurements are oligonucleotide probes complementary to all or a portion of the Prox-1 mRNA sequence. Probes of at least 14 and more preferably 18 nucleotides are preferred to assure specificity. One technique for measuring Prox-1 mRNA comprises in situ hybridization to measure Prox-1 mRNA in the colon sample. Other techniques

15

20

25

30

WO 2005/014854

involve steps of isolating mRNA from the colon tissue and measuring Prox-1 mRNA in the isolated mRNA, for example, by Northern hybridization procedures. In still another variation, quantitative reverse transcriptase polymerase chain reaction (PCR), real-time PCR, or other PCR techniques are employed to quantitatively amplify Prox-1 mRNA (relative to control samples) to provide a quantitative measurement of Prox-1 mRNA in the colon tissue.

In yet another embodiment, Prox-1 expression is measured indirectly by measuring a functional property of Prox-1, such as measuring Prox-1 binding to DNA or downstream Prox-1 transcription factor effects.

The screening method further includes a comparing step whereby Prox-1 expression in the colon tissue is compared to Prox-1 expression in healthy colon tissue, wherein increased Prox-1 expression in the colon tissue correlates with a pathological phenotype. As described herein, Prox-1 expression is elevated in a statistically significant manner in pathological specimens studied, compared to healthy colon tissue samples. In one variation, the comparison is performed by taking simultaneous or sequential measurements of a test sample and a sample of colon tissue that is known to be taken from healthy tissue. In another variation, data is accumulated on the quantity of Prox-1 mRNA or protein in healthy tissues, and the amount that is measured in the colon tissue from the biological sample is compared to this predetermined amount. It will be appreciated that comparing Prox-1 measurements from a test sample to measurements from a cancerous or precancerous condition can provide an equivalent indication of the presence or absence of the pathological condition, wherein a test sample with Prox-1 expression comparable to the elevated level observed in a cancer correlates with a pathological phenotype.

For measurement comparisons, a database of Prox-1 measurements from colon tissues can be developed, preferably containing information about healthiness or disease of the tissue; age, sex, race/ethnicity of the donor, and location from which the sample was taken. With a database of samples, comparisons can be analyzed using statistical analysis to determine the statistical significance of a measurement's deviation from a mean, optionally selecting entries from the database by selecting for the patient's age, sex, ethnicity, and other factors to best match the patient (mammalian subject) being tested. Such statistical analysis permits

10

15

20

25

30

establishment of one or more "cutoff" values for the Prox-1 measurement that are correlated with a likelihood of having, or developing, a cancerous condition.

If elevated Prox-1 is detected, then in a preferred embodiment, the method further comprises a step of administering to a human subject identified as having a pathological condition characterized by increased Prox-1 expression in colon tissue a composition comprising a Prox-1 inhibitor.

In a related embodiment, the invention provides a method of inhibiting the growth of colon cancer cells, such as colon carcinoma cells, colon adenoma cells, or colon adenocarcinoma cells in a mammalian subject comprising a step of:

administering to the subject a composition comprising a molecule that suppresses expression of Prox-1, thereby inhibiting the growth of colon carcinoma cells.

For reasons of cost, safety, and efficacy, it is becoming increasingly preferred to attempt to identify patients most likely to benefit from a therapeutic regimen before administering it. This is especially true with cancers where it is known that not all patients respond the same to all therapies. Thus, in a preferred variation of the method, steps are taken to identify patients most likely to benefit from this regimen. For example, the method further comprises a step of identifying a mammalian subject with a colon cancer characterized by increased Prox-1 expression. The composition is administered to such a patient after the identifying step, because cancers characterized by the elevated expression are expected to be the cancers most likely to respond to the inhibitors. Exemplary cancers (neoplasms) in which Prox-1 elevation has been observed include colorectal adenomas and colorectal carcinomas, as described below in greater detail.

The composition to be administered preferably includes, in addition to the Prox-1 inhibitor, a pharmaceutically acceptable diluent, adjuvant, or carrier medium. The composition optionally includes additional antineoplastic agents.

Administration of any Prox-1 inhibitors, alone or in combination, is contemplated for this invention, either alone or in combination with other Prox-1 inhibitors or other antineoplastic agents. Exemplary inhibitor molecules include antisense oligonucleotides that inhibit Prox-1 expression; micro-RNA that inhibits

Parge 9 of 970

20

25

30

Prox-1 expression; small (short) interfering RNA (siRNA) that inhibit Prox-1 expression (e.g., siRNA) that comprise at least one nucleotide sequence set forth in SEQ ID NOS: 4, 5, 6, and 7); zinc finger proteins that inhibit Prox-1 expression; polypeptides that act as dominant negative form of Prox-1 protein, such as Prox-1 forms that have a disrupted DNA binding domain or transactivation of the prox-1 protein of Prox-1 protein, such as Prox-1 prox-1 protein, such as Prox-1 prox-1 protein prox-1 prox-

- forms that have a disrupted DNA binding domain or transactivation domain(s); polynucleotides that encode dominant-negative Prox-1 proteins; Prox-1 antibodies and fragments thereof, polynucleotides that encode Prox-1 antibodies or encode polypeptides that comprise Prox-1 binding domains; small molecules discovered and designed through screening based on the teachings herein, and so on. U.S. Patent Application Publication No. 2003/0224516 discloses exemplary molecules for
- 10 Application Publication No. 2003/0224516 discloses exemplary molecules for inhibiting Prox-1 expression and is incorporated herein by reference.

The inhibitor is preferably administered in an amount and in a regimen that halts or inhibits neoplastic growth of the affected colorectal tissue. As another benchmark, the tissue itself preferably reverts to a non-transformed, more healthy looking phenotype. As described herein, one apparent benchmark of beneficial administration is an increase in Notch-1 signaling. Thus, in one variation, the composition is administered in an amount effective to suppress Prox-1 expression and increase Notch 1 signaling.

Other indications of efficacy relate to modulation of prostaglandin synthesis. Thus, in another variation, the composition is administered in an amount effective to increase 15-PDGH activity or decrease prostaglandin D2 synthase activity.

As described herein and in literature, colorectal cancers also are often characterized by increases in the -catenin/TCF signaling pathway, relative to what is observable in healthy colorectal tissue. Thus, in a preferred variation, in addition to administering a Prox-1 inhibitor composition, the regimen further comprises administering to the subject an inhibitor of the -catenin/TCF signaling pathway. (Optionally, the patient's diseased tissue is first pre-screened for elevated expression/signaling of this pathway.) The categories of inhibitors described above for Prox-1 are specifically contemplated for the -catenin/TCF pathway as well. In one variation, the inhibitor of the -catenin/TCF signaling pathway is dominant

15

20

25

WO 2005/014854

Page 10 of 270

negative form of TCF-4. The inhibitor optionally targets (inhibits) TCF-4, \u03b3-catenin, or c-myc expression or activity.

In yet another variation, administration of the Prox-1 inhibitor is combined with administration of a COX-2 inhibitor, such as any of the increasing class of non-steroidal anti-inflammatory agents.

In still another variation, administration of the Prox-1 inhibitor is combined with administration of a Notch signaling pathway agonist, such as a Notch ligand or expression vector to cause expression of a Notch ligand. Exemplary Notch ligands include Jagged 1, Jagged 2, Delta 1, Delta 3, Delta 4, or Serrate.

Also contemplated is administration of a molecule that comprises an inhibitor of DNA methyltransferases. Such inhibitors are themselves contemplated as efficacious for inhibiting Prox-1 expression, and can be combined with any other Prox-1 inhibitor described herein for combination therapy. An exemplary methyltransferase inhibitor is 5-aza-2'-deoxycytidine.

In still another variation, the Prox-1 inhibitor composition is administered in combination with any known antineoplastic agent that is used in cancer therapy.

In still another variation, the Prox-1 inhibitor and/or Cox-2 inhibitor are combined (in a medicament or as a combination therapy) with an agent that induces differentiation in colorectal cancer cell lines. Exemplary agents include 1,25-dihydroxyvitamin D3 and analogs thereof; butyrate; and retinoids.

With respect to any combination treatment or therapy regimens described herein, the Prox-1 inhibitor composition can be administered simultaneously with the other active agents, which may be in admixture with the Prox-1 inhibitor, or may be in a separate composition. Each composition preferably includes a pharmaceutically acceptable diluent, adjuvant, or carrier. When the agents are separately administered, they may be administered in any order.

In still another embodiment, the invention includes a method of inhibiting Prox-1 function in a mammalian subject having a disease characterized by 30 of Prox-1 over-expression in cells, comprising the step of administering to said

10

15

Page 11 of 270

mammalian subject a composition, said composition comprising a compound effective to inhibit Prox-1 function in cells.

In still another variation, the invention includes the use of a Prox-1 inhibitor in the manufacture of a medicament for the treatment of a disease characterized by Prox-1 over-expression in cells, especially cancerous or precancerous cells of colorectal origin. The medicament optionally includes the additional agents described above, either in admixture with the Prox-1 inhibitor or separated, yet packaged together (preferably with instructions for treating the disease).

In yet another embodiment, the invention provides a method of screening for Prox-1 modulators comprising the steps of: (a) contacting a test molecule with Prox-1 protein, or a nucleic acid comprising a nucleotide sequence that encodes Prox-1 protein, under conditions which permit the interaction of the test molecule with the Prox-1 protein or nucleic acid; and (b) measuring the interaction between the test molecule and Prox-1 protein or the nucleic acid, wherein a test molecule that binds the Prox-1 protein or nucleic acid is identified as a Prox-1 modulator.

"Test molecule" refers to the molecule that is under evaluation for the ability to modulate (i.e., increase or decrease) the activity of Prox-1 protein. Most commonly, a test molecule that is a Prox-1 modulator will interact directly with Prox-1. However, the screens described herein can identify test molecules that modulate 20 Prox-1 protein activity indirectly, such as by affecting Prox-1 gene expression. The screens work with essentially any test molecule, and the invention is not limited in this manner. In preferred embodiments, the test molecule is a protein, a carbohydrate, a lipid, or a nucleic acid. Molecules which regulate Prox-1 expression include nucleic acids which are complementary to nucleic acids encoding a Prox-1 protein, or are 25 complementary to nucleic acid sequences which direct or control the expression of Prox-1 protein, and which act as anti-sense regulators of expression. The test molecule may be a member of a chemical library, such as libraries commonly maintained in large pharmaceutical companies or libraries generated combinatorially. In alternate embodiments, the test molecule interacts with Prox-1 by binding to the 30 Prox-1 DNA binding domain, thereby effecting Prox-1 activity.

20

25

30

With respect to the screening methods described herein, it may be desirable to evaluate two or more test compounds together for their ability to increase or decrease the Prox-1 protein activity or expression. The assays set forth herein can be readily modified by adding such additional test compounds either simultaneous with, or subsequent to, or prior to, the first test compound. In additional embodiments, the measurement of the interaction of test molecules with Prox-1 may is carried out using solution-phase assays or immunoassays. In other embodiments, measurement of the interaction of test molecules with Prox-1 is carried out by evaluating biological activity of Prox-1.

In a related embodiment, the invention provides a method of screening for modulators of binding between a DNA and Prox-1 protein comprising steps of: (a) contacting a DNA with a Prox-1 protein in the presence and in the absence of a putative modulator compound; (b) detecting binding between the DNA and the Prox-1 protein in the presence and absence of the putative modulator compound; and (c) identifying a modulator compound based on a decrease or increase in binding between the DNA and the Prox-1 protein in the presence of the putative modulator compound, as compared to binding in the absence of the putative modulator compound.

In a related variation, molecules that modulate binding between DNA and Prox-1 are formulated into a composition or a growth media for contacting a cell from a colorectal cancer or colorectal cancer cell line, and a modulator that inhibits growth of the cell is selected as a preferred modulator for development as a therapeutic.

In yet another related embodiment, the invention provides a method of screening for modulators of binding between a DNA and Prox-1 protein comprising steps of: (a) contacting a DNA with a Prox-1 protein in the presence and in the absence of a putative modulator compound; (b) detecting binding between the DNA and the Prox-1 protein in the presence and absence of the putative modulator compound; and (c) identifying a modulator compound based on a decrease or increase in differentiation in the presence of the putative modulator compound, as compared to differentiation in the absence of the putative modulator compound.

In vivo screening also is contemplated, either in addition to or in place of in vitro screening. The test compound preferably is formulated into a pharmaceutically

10

15

20

25

30

Page 13 of 270

acceptable diluent, adjuvant, or carrier. In a preferred variation, this formulation is administered to a mammal with pathological (e.g., cancerous) Prox-1 expressing colon tissue, and the efficacy of the formulation at inhibiting disease progression is monitored. For example, a method described above optionally further comprises steps of formulating a composition comprising the selected Prox-1 modulator and a pharmaceutically acceptable carrier; administering the composition to a mammalian subject having a colorectal cancer; and monitoring the mammalian subject for growth, metastasis, shrinkage, or disappearance of the colorectal cancer.

"Putative modulator compounds" are analogous to the "test molecules" described above in that they are alleged to have an effect on Prox-1 protein activity and are being identified as such using the methods described herein. In certain embodiments detecting DNA binding to Prox-1 protein and identifying an increase or decrease of DNA binding to Prox-1 protein employs immuno-based assays or various other assays that measure biological activity. Likewise, embodied by the invention are methods wherein identifying a modulator compound the use of proliferation and/or differentiation assays.

In still another variation of the invention, provided are short interfering RNA (siRNA) molecules that down regulate expression of Prox-1 by RNA interference. The siRNA molecule can be adapted for use to treat colorectal cancer and any other indications that respond to the level of Prox-1. The siRNA molecule comprises a sense region and an antisense region. The antisense region comprises sequence complementary to an RNA sequence encoding Prox-1, or a fragment thereof, and the sense region comprise sequence complementary to the antisense region. In additional embodiments, the siRNA molecule can comprise two nucleic acid fragments, wherein one fragment comprises the sense region and the second fragment comprises the antisense region of said siRNA molecule.

In one embodiment, a siRNA molecule of the invention can comprise any contiguous Prox-1 sequence. Preferably, the siRNA constructs are between 18 and 100 nucleotides in length. More preferably, the siRNA constructs are 21 nucleotides in length. In still another embodiment, the sense region of a siRNA molecule of the invention comprises a 3'-terminal overhang and the antisense region comprises a 3'-terminal overhangs cach are preferably from 1 to 5

5

10

15

20

25

30

Page 14 of 970

nucleotides. More preferably, the 3'-terminal overhangs are 2 nucleotides. In a preferred embodiment, the antisense region of the 3'-terminal nucleotide overhang is complementary to RNA encoding Prox-1.

With respect to the antisense region of the siRNA constructs, the antisense region of Prox-1 siRNA constructs can comprise a sequence complementary to sequence having any of SEQ ID NOs. 4 and 6. Further, the antisense region of Prox-1 siRNA constructs can comprise a having any of SEQ ID NOs. 5 and 7.

In yet an additional embodiment of the invention, compounds, particularly antisense oligonucleotides, which are targeted to a nucleic acid encoding Prox-1, and which modulate the expression of Prox-1 are provided. The antisense oligonucleotides of the invention are preferably complementary to (at least a segment of) the genomic Prox-1 sequence set forth as SEQ ID No:1. mRNA splice sites, i.e., intron-exon junctions, may be preferred target regions. Accordingly, in another embodiment, the antisense oligonucleotides of the invention comprise a region complementary to a promoter or other control region, an exon, an intron, or an exon-intron boundary. Also embodied by the present invention are antisense oligonucleotides that are complementary to a region within 20-200 bases of an exon-intron splice junction. As detailed herein, pharmaceutical compositions comprising antisense oligonucleotides are also provided.

The foregoing paragraphs are not intended to define every aspect of the invention, and additional aspects are described in other sections, such as the Detailed Description. The entire document is intended to be related as a unified disclosure, and it should be understood that all combinations of features described herein are contemplated, even if the combination of features are not found together in the same sentence, or paragraph, or section of this document. Where protein therapy is described, embodiments involving polynucleotide therapy (using polynucleotides that encode the protein) are specifically contemplated, and the reverse also is true.

In addition to the foregoing, the invention includes, as an additional aspect, all embodiments of the invention narrower in scope in any way than the variations defined by specific paragraphs above. For example, certain aspects of the invention that are described as a genus, and it should be understood that every

15

20

WO 2005/014854

Page 15 of 270

member of a genus is, individually, an aspect of the invention. Although the applicant(s) invented the full scope of the invention described herein, the applicants do not intend to claim subject matter described in the prior art work of others.

Therefore, in the event that statutory prior art within the scope of a claim is brought to the attention of the applicants by a Patent Office or other entity or individual, the applicant(s) reserve the right to exercise amendment rights under applicable patent laws to redefine the subject matter of such a claim to specifically exclude such statutory prior art or obvious variations of statutory prior art from the scope of such a claim. Variations of the invention defined by such amended claims also are intended as aspects of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

Figures 1A, 1B, and 1C depict the elevated Prox-1 mRNA levels in colorectal tumors. A cancer RNA profiling array was hybridized to probes for Prox-1 (Fig. 1A) and the lymphatic endothelial marker LYVE-1 (Fig. 1B). Fig. 1C illustrates the quantification of dot blot in Fig. 1A, the asterisk indicating tumor samples in which Prox-1 expression is significantly different from that of the normal tissue (P-0.005).

Figures 2A-2I depict Prox-1 expression patterns in colon cancer and normal colonic epithelium. Frozen sections of colon adenomas (Fig. 2A-C) or adenocarcinomas (Fig. 2D-F) and the corresponding normal tissues (Fig. 2H-I) were stained for Prox-1. Fig. 2C and Fig. 2I show high power magnification of adenoma and normal colon sections.

Figure 3 depicts the efficacy of Prox-1 suppression for inhibiting

SW480R cell growth in soft agar. SW480R cells were transfected with GFP siPRNA,

Prox-1siRNA A16 or Prox-1 siRNA A25 or left untreated, and seeded in soft agar in

triplicate. The number of colonies was scored after two weeks of growth.

Page 16 of 970

DETAILED DESCRIPTION

Demonstrated herein for the first time is the importance of Prox-1 in cancer. The Prox-1 gene and protein is overexpressed in colorectal cancers, as compared to healthy colon tissue and other cancer tissues. Prox-1 was overexpressed in 68% of colorectal carcinomas and in 80% of premalignant lesions that were examined, indicating that Prox-1 is important for tumorigenesis, and therefore a useful marker for screening and a useful target for intervention. In normal colonic epithelium, Prox-1 expression was restricted to two cell types, neuroendocrine cells and non-proliferating cells at the very base of the colonic crypts, a location that corresponds to the stem cell compartment. Contemplated and provided for in the present invention are polynucleotides and polypeptides for screening and diagnosis of colorectal cancer and/or premalignancies.

Intervention to suppress Prox-1 expression in colorectal cells resulted in increased activation of Notch signal transduction. Specifically, ablation of Prox-1 resulted in cell growth arrest and increased expression of epithelial markers. This was 15 accompanied by an upregulation of the cell cycle inhibitor p21cip1, which has been shown to be important for the differentiation of intestinal epithelia (Quaroni et al., Am. J. Physiol. Cell Physiol. 279; C1045-57, 2000; Yang et al., Cancer Res. 61, 565-9, 2001), and by an increased expression of components of the Notch signaling pathway. Unexpectedly, this phenotype persisted for up to two weeks after transient 20 transfection with Prox-1 siRNAs, demonstrating profound changes in the transcriptional program induced in the absence of Prox-1. Without intending to be limited to a particular theory or mechanism, Prox-1 may be involved in the maintenance of an undifferentiated state of colonic intestinal stem cells, and overexpression of Prox-1 in cancer cells and resulting inhibition of the Notch signaling pathway may lead to the de-differentiation frequently observed upon malignant transformation. The suppression of Prox-1 expression also negatively regulates prostaglandin activity in the tumor cell lines studied. It is, therefore, contemplated that suppression of Prox-1 or activation of Notch signaling in tumor cells can provide a differentiation therapy for colon carcinoma. The present 30 invention, more specifically, provides compositions and methods for suppressing Prox-1 expression.

PCT/EP2004/008819

WC05014654 [Rie ///E:/WC06014854.cpc]

5

10

15

20

25

A. Inhibitory Nucleic Acid Constructs for the Suppression of Prox-1 Expression

As discussed herein, Prox-1 is overexpressed in colorectal cancer cells and suppression of Prox-1 expression results in increased Notch signal transduction and modified expression of enzymes of the prostaglandin biosynthetic pathway. This data provides an indication to disrupt the expression or activity of Prox-1 as a method of alleviating the symptoms of and/or inhibiting the growth or metastasis of colon cancer. Such disruption is achieved using any materials or methods available to inhibit Prox-1 mRNA or protein expression, or inhibit Prox-1 binding, and any Prox-1 activity. The present section discusses nucleic acid-based methods of disrupting the expression of Prox-1. Polynucleotide products which are useful in this endeavor include antisense polynucleotides, ribozymes, small interfering RNAs, natural or designed microRNAs, triple helix polynucleotides, and novel transcription factors that modulate the expression of Prox-1 protein.

Techniques for making and delivering antisense polynucleotides and ribozymes are well known to those in the art and have been extensively described in scientific, patent, and trade literature. (PCT Publication No. WO 00/32765; (*J Biol Chem*; 272:626-38. 1997); Kurreck et al., (Nucleic Acids Res.: 30:1911-8. 2002); Crooke and B. Lebleu, eds. Antisense Research and Applications (1993) CRC Press; and Antisense RNA and DNA (1988) D. A. Melton, Ed. Cold Spring Harbor Laboratory Cold Spring Harbor, N.Y.) Anti-sense RNA and DNA molecules act to directly block the translation of mRNA by binding to targeted mRNA and preventing protein translation. An example of an antisense polynucleotide is an oligodeoxyribonucleotide derived from the translation initiation site, e.g., between -10 and +10 regions of the relevant nucleotide sequence. Antisense oligonucleotides of 8-200 nucleotides in length that include at least a portion of this region of the Prox-1 cDNA or genomic sequences set forth as SEQ ID NOs: 1 and 2 (or are complementary to) are preferred Prox-1 inhibitors of the invention.

Antisense polynucleotides are typically generated within the cell by

30 expression from antisense constructs that contain the antisense nucleic acid strand as
the transcribed strand. Antisense methodology takes advantage of the fact that
nucleic acids tend to pair with "complementary" sequences. By complementary, it is

10

15

20

25

30

Page 18 of 270

meant that polynucleotides are those which are capable of base-pairing according to the standard Watson-Crick complementarity rules. That is, the larger purines will base pair with the smaller pyrimidines to form combinations of guanine paired with cytosine (G:C) and adenine paired with either thymine (A:T) in the case of DNA, or adenine paired with uracil (A:U) in the case of RNA. Inclusion of less common bases such as inosine, 5-methylcytosine, 6-methyladenine, hypoxanthine and others in hybridizing sequences does not interfere with pairing.

Targeting double-stranded (ds) DNA with polynucleotides leads to triple-helix formation; targeting RNA will lead to double-helix formation. Antisense polynucleotides, when introduced into a target cell, specifically bind to their target polynucleotide and interfere with transcription, RNA processing, transport, translation and/or stability. Antisense RNA constructs, or DNA encoding such antisense RNA's, may be employed to inhibit gene transcription or translation or both within a host cell, either in vitro or in vivo, such as within a host animal, including a human subject.

Antisense constructs may be designed to bind to the promoter and other control regions, exons, introns or even exon-intron boundaries of a gene. Highly effective antisense constructs include regions complementary to intron/exon splice junctions. Thus, a preferred embodiment includes an antisense construct with complementarity to regions within 50-200 bases of an intron-exon splice junction. It has been observed that some exon sequences can be included in the construct without seriously affecting the target selectivity thereof. The amount of exonic material included will vary depending on the particular exon and intron sequences used. One can readily test whether too much exon DNA is included simply by testing the constructs in vitro to determine whether normal cellular function is affected or whether the expression of related genes having complementary sequences is affected.

For purposes of making antisense oligonucleotides, polynucleotide sequences that are substantially complementary over their entire length and have zero or very few base mismatches are preferred. For example, sequences of fifteen bases in length preferably have complementary nucleotides at thirteen or fourteen or fifteen positions. Naturally, sequences which are completely complementary will be sequences which are entirely complementary throughout their entire length and have no base mismatches. Other sequences with lower degrees of homology also are

5

10

30

Page 19 of 270

contemplated. For example, an antisense construct which has limited regions of high homology, but also contains a non-homologous region (e.g., ribozymes) could be designed. These molecules, though having less than 50% homology, would bind to target sequences under appropriate conditions.

Methods for designing and optimizing antisense nucleotides are described in Lima et al., (J Biol Chem; 272:626-38. 1997) and Kurreck et al., (Nucleic Acids Res.; 30:1911-8. 2002). Additionally, commercial software and online resources are available to optimize antisense sequence selection and also to compare selected sequences to known genomic sequences to help ensure uniqueness/specificity for a chosen gene. (See, e.g., world wide web at sfold.wadsworth.org/index.pl.) Such uniqueness can be further confirmed by hybridization analyses. Antisense nucleic acids are introduced into cells (e.g., by a viral vector or colloidal dispersion system such as a liposome).

The genomic contig of chromosome 1 (where Prox-1 is located), cDNA for Prox-1, and protein sequences for Prox-1 (SEQ ID NOs: 1, 2, and 3, 15 respectively) are published and disclosed as Genbank Accession Numbers NT_021877, NM_002763, and NM_002763, respectively. The Genbank Database is accessible on the world wide web at ncbi.nlm.nih.gov. Related Prox-1 protein and/or nucleic acid sequences from other sources may be identified using probes directed at these sequences. Such additional sequences may be useful in certain aspects of the 20 present invention. Although antisense sequences may be full length genomic or cDNA copies, they also may be shorter fragments or oligonucleotides e.g., polynucleotides of 100 or less bases. Although shorter oligomers (8-20) are easier to make and more easily permeable in vivo, other factors also are involved in determining the specificity of base pairing. For example, the binding affinity and 25 sequence specificity of an oligonucleotide to its complementary target increases with increasing length. It is contemplated that oligonucleotides of 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 45, 50, or more base pairs will be used.

Ribozymes are enzymatic RNA molecules capable of catalyzing the specific cleavage of RNA. The cleavage event renders the mRNA unstable and prevents protein expression. The mechanism of ribozyme action involves sequence specific interaction of the ribozyme molecule to complementary target RNA, followed

15

25

30

by an endomucleolytic cleavage. Within the scope of the invention are engineered hammerhead, for which the substrate sequence requirements are minimal, or other motif ribozyme molecules that specifically and efficiently catalyze endonucleolytic cleavage of RNA sequences encoding protein complex components. Design of the hammerhead ribozyme and the therapeutic uses of ribozymes are disclosed in Usman et al., Current Opin. Struct. Biol. (1996) 6:527-533. Ribozymes can also be prepared and used as described in Long et al., FASEB J. (1993) 7:25; Symons, Ann. Rev. Biochem. (1992) 61:641; Perrotta et al., Biochem. (1992) 31:16-17; Ojwang et al., Proc. Natl. Acad. Sci. (USA) (1992) 89:10802-10806; and U.S. Pat. No. 5,254,678. Methods of cleaving RNA using ribozymes is described in U.S. Pat. No. 5,116,742; and methods for increasing the specificity of ribozymes are described in U.S. Pat. No. 5,225,337 and Koizumi et al., Nucleic Acid Res. (1989) 17:7059-7071. Preparation and use of ribozyme fragments in a hairpin structure are described by Chowrira and Burke, Nucleic Acids Res. (1992) 20:2835. Ribozymes can also be made by rolling transcription (Daubendiek and Kool,) Nat. Biotechnol. (1997) 15(3):273-277).

The full-length gene need not be known in order to design and use specific inhibitory ribozymes. Specific ribozyme cleavage sites within any potential RNA target are initially identified by scanning the target molecule for ribozyme cleavage sites which include the following sequences, GUA, GUU, and GUC. Once identified, short RNA sequences of between 15 and 20 ribonucleotides corresponding to the region of the target gene containing the cleavage site may be evaluated for predicted structural features, such as secondary structure, that may render the oligonucleotide sequence unsuitable. The suitability of candidate targets may also be evaluated by testing their accessibility to hybridization with complementary oligonucleotides, using ribonuclease protection assays (Draper PCT WO 93/23569; and U.S. Pat. No. 5,093,246, incorporated herein by reference). Using the nucleic acid sequences disclosed herein and methods known in the art, ribozymes can be designed to specifically bind and cut the corresponding mRNA species. Ribozymes, therefore, provide a means to inhibit the expression Prox-1.

Alternatively, endogenous gene expression can be reduced by inactivating or "knocking out" the gene or its promoter using targeted homologous recombination. (E.g., see Smithies et al., 1985, Nature 317:230-234; Thomas &

Page 21 of 270

5

20

25

30

Capecchi, 1987, Cell 51:503-512; Thompson et al., 1989 Cell 5:313-321). For example, a mutant, non-functional gene (or a completely unrelated DNA sequence) flanked by DNA homologous to the endogenous gene (either the coding regions or regulatory regions of the gene) can be used to transfect cells that express that gene in vivo. Insertion of the DNA construct, via targeted homologous recombination, results in inactivation of the gene.

Gene expression can also be reduced by targeting deoxyribonucleotide sequences complementary to the regulatory region of the target gene (i.e., the gene promoter and/or enhancers) to form triple helical structures that prevent transcription of the gene in target cells in the body. (See generally, Helene, C. 1991, Anticancer Drug Des., 6(6):569-84; Helene, C., et al., 1992, Ann, N.Y. Acad. Sci., 660:27-36; and Maher, L. J., 1992, Bioassays 14(12):807-15). Nucleic acid molecules used in triple helix formation for the inhibition of transcription are generally single stranded deoxyribonucleotides. The base composition must be designed to promote triple helix formation via Hoogsteen base pairing rules, which generally require sizeable stretches of either purines or pyrimidines to be present on one strand of a duplex. Nucleotide sequences may be pyrimidine-based, which will result in TAT and CGC+ triplets across the three associated strands of the resulting triple helix. The pyrimidine-rich molecules provide base complementarity to a purine-rich region of a single strand of the duplex in a parallel orientation to that strand. In addition, nucleic acid molecules may be chosen that are purine-rich, for example, containing a stretch of G residues. These molecules will form a triple helix with a DNA duplex that is rich in GC pairs, in which the majority of the purine residues are located on a single strand of the targeted duplex, resulting in GGC triplets across the three strands in the triplex.

Alternatively, the potential sequences that can be targeted for triple helix formation may be increased by creating a so called "switchback" nucleic acid molecule. Switchback molecules are synthesized in an alternating 5'-3', 3'-5' manner, such that they base pair with first one strand of a duplex and then the other, eliminating the necessity for a sizeable stretch of either purines or pyrimidines to be present on one strand of a duplex.

Another technique for inhibiting the expression of a gene involves the use of RNA for induction of RNA interference (RNAi), using double stranded

25

30

Page 22 of 970

- 20 -

(dsRNA) (Fire et al., Nature 391: 806-811, 1998) or small interfering RNA (siRNA) sequences (Elbashir et al. Nature 411, 494 - 498 (2001)); Yu et al., Proc Natl Acad Sci U S A. 99:6047-52 (2002). "RNAi" is the process by which dsRNA induces homology-dependent degradation of complimentary mRNA. The presence of dsRNA in cells triggers the RNAi response though a mechanism that has yet to be fully characterized. In one embodiment, a synthetic antisense nucleic acid molecule is hybridized by complementary base pairing with a "sense" ribonucleic acid to form a double stranded RNA. The presence of long dsRNAs in cells stimulates the activity of a ribonuclease III enzyme. The dsRNA antisense and sense nucleic acid molecules 10 are provided that correspond to at least about 20, 25, 50, 100, 250 or 500 nucleotides or an entire Prox-1 coding strand, or to only a portion thereof. In an alternative embodiment, the siRNAs are 30 nucleotides or less in length, and more preferably 21to 23-nucleotides, with characteristic 2- to 3- nucleotide 3'-overhanging ends, which are generated by ribonuclease III cleavage from longer dsRNAs. (See e.g. Tuschl T. Nat Biotechnol, 20:446-48, 2002). At notably higher concentrations single stranded 21 nucleotide RNA molecules have been also shown to function as siRNAs (i.e., enter the RNAi pathway and specifically target mRNA for degradation in mammalian cells (Martinez et al., Cell 110, 563-574, 2002). Cleavage of the target RNA takes place in the middle of the region complementary to the antisense strand of the siRNA duplex (Elbashir et al., 2001, Genes Dev., 15, 188). 20

Intracellular transcription of small RNA molecules can be achieved by cloning the siRNA templates into RNA polymerase III (Pol III) transcription units, which normally encode the small nuclear RNA (snRNA) U6 or the human RNAse P RNA H1. Two approaches can be used to express siRNAs: in one embodiment, sense and antisense strands constituting the siRNA duplex are transcribed using constructs with individual promoters (Lee, et al. Nat. Biotechnol. 20, 500-505. 2002); in an alternative embodiment, siRNAs are expressed as stem-loop hairpin RNA structures that give rise to siRNAs after intracellular processing (Brummelkamp et al. Science 296:550-553. 2002, herein incorporated by reference). Alternatively, a stem loop hairpin can be expressed within an unrelated Pol II transcribed mRNA transcript. A stem-loop hairpin designed to contain the siRNA sequence also contains conserved microRNA sequences within the loop and stem regions, thus resembling a natural

5

15

20

25

30

Page 23 of 270

precursor mRNA structure. Subsequently, the precursor can be processed by the cellular RNAi components to yield mature, functional siRNA/miRNA. (See, generally, Zeng et al., Mol Cell 9, 1327-1333 (2002); Hutvagner et al., Science 297, 2056-2060 (2002); Kawasake et al., Nature 423, 838-842 (2003)).

RNAi has been studied in a variety of systems. Work in Drosophila embryonic lysates (Elbashir et al., 2001, EMBO J, 20, 6877) has revealed certain requirements for siRNA length, structure, chemical composition, and sequence that are essential to mediate efficient RNAi activity. Twenty-one nucleotide siRNA duplexes are most active when containing two nucleotide 3'-overhangs. Replacing the 10 3'-overhanging segments of a 21-mer siRNA duplex having 2 nucleotide 3' overhangs with deoxyribonucleotides has no adverse effect on RNAi activity, while, replacing up to 4 nucleotides on each end of the siRNA with deoxyribonucleotides may be well tolerated. Complete substitution with deoxyribonucleotides results in no RNAi activity (Elbashir et al., 2001, EMBO J., 20, 6877).

Furthermore, complete substitution of one or both siRNA strands with 2'-deoxy (2'-H) or 2'-O-methyl nucleotides results in no RNAi activity, whereas substitution of the 3'-terminal siRNA overhang nucleotides with deoxy nucleotides (2'-H) is tolerated. Single mismatch sequences in the center of the siRNA duplex may abolish RNAi activity. In addition, studies indicate that the position of the cleavage site in the target RNA is defined by the 5'-end of the siRNA guide sequence rather than the 3'-end (Elbashir et al., 2001, EMBO J, 20, 6877). Other studies indicate that a 5'-phosphate on the target-complementary strand of a siRNA duplex is required for siRNA activity and that ATP is utilized to maintain the 5'-phosphate moiety on the siRNA (Nykanen et al., 2001, Cell, 107, 309).

The dsRNA/siRNA is most commonly administered by annealing sense and antisense RNA strands in vitro before delivery to the organism. In an alternate embodiment, RNAi may be carried out by administering sense and antisense nucleic acids of the invention in the same solution without annealing prior to administration, and may even be performed by administering the nucleic acids in separate vehicles within a very close timeframe.

- 22 -

Genetic control can also be achieved through the design of novel transcription factors for modulating expression of the gene of interest in native cells and animals. For example, the Cys2-His2 zinc finger proteins, which bind DNA via their zinc finger domains, have been shown to be amenable to structural changes that lead to the recognition of different target sequences. These artificial zinc finger proteins recognize specific target sites with high affinity and low dissociation constants, and are able to act as gene switches to modulate gene expression. Knowledge of the particular target sequence of the present invention facilitates the engineering of zinc finger proteins specific for the target sequence using known methods such as a combination of structure-based modeling and screening of phage 10 display libraries (Segal et al., (1999) Proc Natl Acad Sci USA 96:2758-2763; Liu et al., (1997) Proc Natl Acad Sci USA 94:5525-30; Greisman and Pabo (1997) Science 275:657-61; Choo et al., (1997) J Mol Biol 273:525-32). Each zinc finger domain usually recognizes three or more base pairs. Since a recognition sequence of 18 base 15 pairs is generally sufficient in length to render it unique in any known genome, a zinc finger protein consisting of 6 tandem repeats of zinc fingers would be expected to ensure specificity for a particular sequence (Segal et al., (1999) Proc Natl Acad Sci USA 96:2758-2763). The artificial zinc finger repeats, designed based on target sequences, are fused to activation or repression domains to promote or suppress gene 20 expression (Liu et al., (1997) Proc Natl Acad Sci USA 94:5525-30). Alternatively, the zinc finger domains can be fused to the TATA box-binding factor (TBP) with varying lengths of linker region between the zinc finger peptide and the TBP to create either transcriptional activators or repressors (Kim et al., (1997) Proc Natl Acad Sci USA 94:3616-3620). Such proteins, and polynucleotides that encode them, have 25 utility for modulating expression in vivo in both native cells, animals and humans. The novel transcription factor can be delivered to the target cells by transfecting constructs that express the transcription factor (gene therapy), or by introducing the protein. Engineered zinc finger proteins can also be designed to bind RNA sequences for use in therapeutics as alternatives to antisense or catalytic RNA methods (McColl et al., (1999) Proc Natl Acad Sci USA 96:9521-6; Wu et al., (1995) Proc Natl Acad 30 Sci USA 92:344-348).

Page 25 of 270

Inactivation of Prox-1 function can also be accomplished using an overexpressed dominant negative form of Prox-1. As used herein a "dominant negative protein" is a mutant form of a protein which has the property of inhibiting the function of the endogenous, wild type form of the protein which corresponds to the mutant protein. Typically, dominant negative proteins have amino acid substitutions or are truncated forms of the wild type protein. The mutation may be in a substrate-binding domain (or DNA binding domain), a catalytic domain, or a cellular localization domain. For instance, a dominant negative form of Prox-1 may include a mutant truncated with respect to the DNA binding domain or transactivation domain. Disruption of the DNA binding domain entails truncation of the protein to exclude amino acids 572-634 of SEQ ID NO. 3, based on homology to Prospero (Drosophila). Disruption of the transactivation domain entails the deletion of amino acids 635-737. Other dominant negatives may include truncated forms of Prox-1 lacking the last 60 amino acids or the first 575 amino acids. Preferably, the mutant polypeptide will be overproduced. Point mutations can be made that have such an effect. In addition, fusion of different polypeptides of various lengths to the terminus of a protein can yield dominant negative mutants. General strategies for making dominant negative mutants are described in Herskowitz, Nature (1987) 329:219-222.

Anti-sense RNA and DNA molecules, ribozymes, RNAi, triple helix

20 polynucleotides, and novel transcription factors can be prepared by any method
known in the art for the synthesis of DNA and RNA molecules. These include
techniques for chemically synthesizing oligodeoxyribonucleotides well known in the
art including, but not limited to, solid phase phosphoramidite chemical synthesis.
Alternatively, RNA molecules may be generated by in vitro and in vivo transcription

25 of DNA sequences encoding the antisense RNA molecule. Such DNA sequences may
be incorporated into a wide variety of vectors which incorporate suitable RNA
polymerase promoters such as the T7 or SP6 polymerase promoters. Alternatively,
antisense cDNA constructs that synthesize antisense RNA constitutively or inducibly,
depending on the promoter used, can be introduced stably or transiently into cells.

30 B. Gene Therapy

As described n detail in the preceding section, a variety of genetic manipulations to achieve modulation of Prox-1 protein expression or activity are WG05014654 [file ///E:/WG05014854.cpc]

contemplated. Additionally, where administration of proteins is contemplated, such as zino finger proteins targeted to Prox-1, administration of a gene therapy vector to cause the protein of interest to be produced in vivo also is contemplated. Where inhibition of proteins is contemplated (e.g., through use of antibodies or small molecule inhibitors), inhibition of protein expression in vivo by genetic techniques, such as knock-out techniques or anti-sense therapy, is contemplated.

It is now widely recognized that DNA may be introduced into a cell using a variety of viral vectors. Exemplary vectors that have been described in the literature include replication-deficient retroviral vectors, including but not limited to lentivirus vectors (Kim et al., J. Virol., 72(1): 811-816 (1998); Kingsman & Johnson, 10 Scrip Magazine, October, 1998, pp. 43-46.); adenoviral (see, for example, U.S. Patent No. 5.824,544; U.S. Patent No. 5,707,618; U.S. Patent No. 5,792,453; U.S. Patent No. 5.693,509; U.S. Patent No. 5.670,488; U.S. Patent No. 5,585,362; Quantin et al., Proc. Natl. Acad. Sci. USA, 89: 2581-2584 (1992); Stratford-Perricadet et al., J. Clin. Invest., 90: 626-630 (1992); and Rosenfeld et al., Cell, 68: 143-155 (1992)), retroviral 15 (see, for example, U.S. Patent No. 5,888,502; U.S. Patent No. 5,830,725; U.S. Patent No. 5,770,414; U.S. Patent No. 5,686,278; U.S. Patent No. 4,861,719), adenoassociated viral (see, for example, U.S. Patent No. 5,474,935; U.S. Patent No. 5,139,941; U.S. Patent No. 5,622,856; U.S. Patent No. 5,658,776; U.S. Patent No. 5,773,289; U.S. Patent No. 5,789,390; U.S. Patent No. 5,834,441; U.S. Patent No. 20 5,863,541; U.S. Patent No. 5,851,521; U.S. Patent No. 5,252,479; Gnatenko et al., J. Investig, Med., 45: 87-98 (1997), an adenoviral-adenoassociated viral hybrid (see, for example, U.S. Patent No. 5,856,152) or a vaccinia viral or a herpesviral (see, for example, U.S. Patent No. 5,879,934; U.S. Patent No. 5,849,571; U.S. Patent No. 5.830,727; U.S. Patent No. 5.661,033; U.S. Patent No. 5,328,688); Lipofectin-25 mediated gene transfer (BRL); liposomal vectors (See, e.g., U.S. Patent No. 5,631,237 (Liposomes comprising Sendai virus proteins)); and combinations thereof. All of the foregoing documents are incorporated herein by reference in the entirety. Replication-deficient adenoviral vectors and adeno-associated viral vectors constitute preferred embodiments. 30

In embodiments employing a viral vector, preferred polynucleotides include a suitable promoter and polyadenylation sequence to promote expression in

1.5

20

the target tissue of interest. For many applications of the present invention, suitable promoters/enhancers for mammalian cell expression include, e.g., cytomegalovirus promoters/enhancer (Lehner et al., J. Clin. Microbiol., 29:2494-2502 (1991); Boshart et al., Cell, 41:521-530 (1985)); Rous sarcoma virus promoter (Davis et al., Hum. Gene Ther., 4:151 (1993)); simian virus 40 promoter, long terminal repeat (LTR) of retroviruses, keratin 14 promoter, and myosin heavy chain promoter.

In other embodiments, non-viral delivery is contemplated. These include calcium phosphate precipitation (Graham and Van Der Eb, Virology, 52:456-467 (1973); Chen and Okayama, Mol. Cell Biol., 7:2745-2752, (1987); Rippe, et al., Mol. Cell Biol., 10:689-695 (1990)), DEAE-dextran (Gopal, Mol. Cell Biol., 5:1188-1190 (1985)), electroporation (Tur-Kaspa, et al., Mol. Cell Biol., 6:716-718, (1986); Potter, et al., Proc. Nat. Acad. Sci. USA, 81:7161-7165, (1984)), direct microinjection (Harland and Weintraub, J. Cell Biol., 101:1094-1099 (1985)), DNA-loaded liposomes (Nicolau and Sene, Biochim. Biophys. Acta, 721:185-190 (1982); Fraley, et al., Proc. Natl. Acad. Sci. USA, 76:3348-3352 (1979); Felgner, Sci. Am., 276(6):102-6 (1997); Felgner, Hum. Gene Ther., 7(15):1791-3, (1996)), cell sonication (Fechheimer, et al., Proc. Natl. Acad. Sci. USA, 84:8463-8467 (1987)), gene bombardment using high velocity microprojectiles (Yang, et al., Proc. Natl. Acad. Sci. USA, 87:9568-9572 (1990)), and receptor-mediated transferion (Wu and Wu, J. Biol. Chem., 262:4429-4432 (1987); Wu and Wu, Biochemistry, 27:887-892 (1988); Wu and Wu. Adv. Drug Delivery Rev., 12:159-167 (1993)).

In a particular embodiment of the invention, the expression construct

(or indeed the peptides discussed above) may be entrapped in a liposome. Liposomes
are vesicular structures characterized by a phospholipid bilayer membrane and an

25 inner aqueous medium. Multilamellar liposomes have multiple lipid layers separated
by aqueous medium. They form spontaneously when phospholipids are suspended in
an excess of aqueous solution. The lipid components undergo self-rearrangement
before the formation of closed structures and entrap water and dissolved solutes
between the lipid bilayers (Ghosh and Bachhawat, "In Liver Diseases, Targeted

30 Diagnosis And Therapy Using Specific Receptors And Ligands," Wu, G., Wu, C., ed.,
New York: Marcel Dekker, pp. 87-104 (1991)). The addition of DNA to cationic
liposomes causes a topological transition from liposomes to optically birefringent

5

15

20

Page 28 of 270

liquid-crystalline condensed globules (Radler, et al., Science, 275(5301):810-4, (1997)). These DNA-lipid complexes are potential non-viral vectors for use in gene therapy and delivery.

Liposome-mediated nucleic acid delivery and expression of foreign DNA in vitro has been very successful. Also contemplated in the present invention are various commercial approaches involving "lipofection" technology. In certain embodiments of the invention, the liposome may be complexed with a hemagglutinating virus (HVJ). This has been shown to facilitate fusion with the cell membrane and promote cell entry of liposome-encapsulated DNA (Kaneda, et al., Science, 243:375-378 (1989)). In other embodiments, the liposome may be complexed or employed in conjunction with nuclear nonhistone chromosomal proteins (HMG-1) (Kato, et al., J. Biol. Chem., 266:3361-3364 (1991)). In yet further embodiments, the liposome may be complexed or employed in conjunction with both HVJ and HMG-1. In that such expression constructs have been successfully employed in transfer and expression of nucleic acid in vitro and in vivo, then they are applicable for the present invention.

Other vector delivery systems that can be employed to deliver a nucleic acid encoding a therapeutic gene into cells include receptor-mediated delivery vehicles. These take advantage of the selective uptake of macromolecules by receptor-mediated endocytosis in almost all eukaryotic cells. Because of the cell type-specific distribution of various receptors, the delivery can be highly specific (Wu and Wu (1993), supra).

Receptor-mediated gene targeting vehicles generally consist of two components: a cell receptor-specific ligand and a DNA-binding agent. Several ligands have been used for receptor-mediated gene transfer. The most extensively characterized ligands are asialoorosomucoid (ASOR) (Wu and Wu (1987), supra) and transferrin (Wagner, et al., Proc. Nat'l. Acad Sci. USA, 87(9):3410-3414 (1990)). Recently, a synthetic neoglycoprotein, which recognizes the same receptor as ASOR, has been used as a gene delivery vehicle (Ferkol, et al., FASEB J., 7:1081-1091 (1993); Perales, et al., Proc. Natl. Acad. Sci., USA 91:4086-4090 (1994)) and epidermal growth factor (EGF) has also been used to deliver genes to squamous carcinoma cells (Myers, EPO 0273085).

5

10

20

25

30

systems with or without liposomes.

Page 29 of 270

In other embodiments, the delivery vehicle may comprise a ligand and a liposome. For example, Nicolau, et al., Methods Enzymol., 149:157-176 (1987) employed lactosyl-ceramide, a galactose-terminal asialganglioside, incorporated into liposomes and observed an increase in the uptake of the insulin gene by hepatocytes. Thus, it is feasible that a nucleic acid encoding a therapeutic gene also may be specifically delivered into a particular cell type by any number of recentor-ligand

In another embodiment of the invention, the expression construct may simply consist of naked recombinant DNA or plasmids. Transfer of the construct may be performed by any of the methods mentioned above that physically or chemically permeabilize the cell membrane. This is applicable particularly for transfer in vitro, however, it may be applied for in vivo use as well. Dubensky, et al., Proc. Nat. Acad. Sci. USA, 81:7529-7533 (1984) successfully injected polyomavirus DNA in the form of CaPO4 precipitates into liver and spleen of adult and newborn mice demonstrating active viral replication and acute infection. Benvenisty and Neshif, Proc. Nat. Acad. Sci. USA, 83:9551-9555 (1986) also demonstrated that direct intraperitoneal injection of CaPO4 precipitated plasmids results in expression of the transfected genes.

Another embodiment of the invention for transferring a naked DNA expression construct into cells may involve particle bombardment. This method depends on the ability to accelerate DNA coated microprojectiles to a high velocity allowing them to pierce cell membranes and enter cells without killing them (Klein, et al., Nature, 327:70-73 (1987)). Several devices for accelerating small particles have been developed. One such device relies on a high voltage discharge to generate an electrical current, which in turn provides the motive force (Yang, et al., Proc. Natl. Acad. Sci USA, 87.9568-9572 (1990)). The microprojectiles used have consisted of biologically inert substances such as tungsten or gold beads.

Well-known techniques exist for gene delivery to *in vivo* and *ex vivo* situations. For viral vectors, one generally will prepare a viral vector stock. Depending on the type of virus and the titer attainable, one will deliver 1×10^6 , 1×10^6 , 1×10^7 , 1×10^8 , 1×10^9 , 1×10^{10} or 1×10^{12} infectious particles to the patient. Similar figures may be extrapolated for liposomal or other non-viral

15

20

25

30

WO 2005/014854

Page 30 of 270

formulations by comparing relative uptake efficiencies. Formulation as a pharmaceutically acceptable composition is discussed below.

Various routes are contemplated for various tumor types. For practically any tumor, systemic delivery is contemplated. This will prove especially important for attacking microscopic or metastatic cancer. Where discrete tumor mass may be identified, a variety of direct, local and regional approaches may be taken. For example, the tumor may be directly injected with the expression vector or protein. A tumor bed may be treated prior to, during or after resection. Following resection, one generally will deliver the vector by a catheter left in place following surgery. One may utilize the tumor vasculature to introduce the vector into the tumor by injecting a supporting vein or artery. A more distal blood supply route also may be utilized.

In an ex vivo embodiment, cells from the patient are removed and maintained outside the body for at least some period of time. During this period, a therapy is delivered, after which the cells are reintroduced into the patient; preferably, any tumor cells in the sample have been killed.

C. Antibodies Immunoreactive with Prox-1 Protein

In another aspect, the present invention contemplates an antibody that is immunoreactive with a Prox-1 protein molecule of the present invention, or any portion thereof. Such antibodies include, but are not limited to, polyclonal, monoclonal, chimeric, single chain, Fab fragments and fragments produced by a Fab expression library, bifunctional/bispecific antibodies, humanized antibodies, CDR grafted antibodies, human antibodies and antibodies which include portions of CDR sequences specific for Prox-1 protein. The antibodies are useful as diagnostic reagents for measuring Prox-1 expression in a biological sample (e.g., a biopsy of colon tissue), and are useful for binding to Prox-1 protein to inhibit Prox-1 activity where the antibodies are delivered into cells.

Neutralizing antibodies, i.e., those which may suppress Prox-1 expression, are especially preferred for therapeutic embodiments. In a preferred embodiment, an antibody is a monoclonal antibody. The invention provides for a pharmaceutical composition comprising a therapeutically effective amount of an antibody directed against Prox-1 protein. The antibody may bind to and neutralize the

5

10

15

20

25

30

- 29 -

apoptotic effects of the Prox-1 protein. The antibody may be formulated with a pharmaceutically acceptable adjuvant. Means for preparing and characterizing antibodies are well known in the art (see, e.g., Harlow and Lane, ANTIBODIES: A LABORATORY MANUAL, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., 1988).

Briefly, a polyclonal antibody is prepared by immunizing an animal with an immunogen comprising a polypeptide of the present invention and collecting antisera from that immunized animal. A wide range of animal species can be used for the production of antisera. Typically an animal used for production of anti-antisera is a non-human animal including rabbits, mice, rats, hamsters, goat, sheep, pigs or horses. Because of the relatively large blood volume of rabbits, a rabbit is a preferred choice for production of polyclonal antibodies.

Depending on the host species, various adjuvants may be used to increase immunological response. Such adjuvants include but are not limited to Freund's, mineral gels such as aluminum hydroxide, and surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, keyhole limpet hemocyanin, and dinitrophenol. BCG (bacilli Calmette-Guerin) and Corvnebacterium parvum are potentially useful human adjuvants.

Antibodies, both polyclonal and monoclonal, specific for isoforms of antigen may be prepared using conventional immunization techniques, as will be generally known to those of skill in the art. As used herein, the term 'specific for' is intended to mean that the variable regions of the antibodies recognize and bind Prox-1 protein and are capable of distinguishing Prox-1 protein from other antigens, for example other secreted proapoptotic factors. A composition containing antigenic epitopes of the compounds of the present invention can be used to immunize one or more experimental animals, such as a rabbit or mouse, which will then proceed to produce specific antibodies against the compounds of the present invention.

Polyclonal antisera may be obtained, after allowing time for antibody generation, simply by bleeding the animal and preparing serum samples from the whole blood.

Monoclonal antibodies to Prox-1 protein may be prepared using any technique which provides for the production of antibody molecules by continuous cell

10

15

20

25

30

Page 32 of 270

lines in culture. These include but are not limited to the hybridoma technique originally described by Koehler and Milstein (Nature 256: 495-497, 1975), the human B-cell hybridoma technique (Kosbor et al., Immunol Today 4:72, 1983; Cote et al., Proc Natl Acad Sci 80: 2026-2030, 1983) and the EBV-hybridoma technique

5 (Cole et al., Monoclonal Antibodies and Cancer Therapy, Alan R Liss Inc, New York N.Y., pp 77-96, (1985).

When the hybridoma technique is employed, myeloma cell lines may be used. Such cell lines suited for use in hybridoma-producing fusion procedures preferably are non-antibody-producing, have high fusion efficiency, and enzyme deficiencies that render them incapable of growing in certain selective media which support the growth of only the desired fused cells (hybridomas). For example, where the immunized animal is a mouse, one may use P3-X63/Ag8, P3-X63-Ag8.653, NS1/1.Ag 4 1, Sp210-Ag14, FO, NSO/U, MPC-11, MPC11-X45-GTG 1.7 and S194/5XX0 Bul; for rats, one may use R210.RCY3, Y3-Ag 1.2.3, IR983F and 4B210; and U-266, GM1500-GRG2, LICR-LON-HMy2 and UC729-6 are all useful in connection with cell fusions. It should be noted that the hybridomas and cell lines produced by such techniques for producing the monoclonal antibodies are contemplated to be novel compositions of the present invention. An exemplary method for producing monoclonal antibodies against Prox-1 is provided in Example 1. Those of skill in the art will appreciate that such a method may be modified using techniques well known to those of skill in the art and still produce antibodies within the scope of the present invention.

In addition to the production of monoclonal antibodies, techniques developed for the production of "chimeric antibodies", the splicing of mouse antibody genes to buman antibody genes to obtain a molecule with appropriate antigen specificity and biological activity can be used (Morrison et al., Proc Natl Acad Sci 81: 6851-6855, 1984; Neuberger et al., Nature 312: 604-608, 1984; Takeda et al., Nature 314: 452-454, 1985). Alternatively, techniques described for the production of single chain antibodies (U.S. Pat. No. 4,946,778) can be adapted to produce Prox-1 protein-specific single chain antibodies.

Antibodies may also be produced by inducing in vivo production in the lymphocyte population or by screening recombinant immunoglobulin libraries or

5

10

15

20

25

30

Page 33 of 270

panels of highly specific binding reagents as disclosed in Orlandi et al (Proc Natl Acad Sci 86: 3833-3837; 1989), and Winter G and Milstein C (Nature 349: 293-299, 1991).

Fully human antibodies relate to antibody molecules in which essentially the entire sequences of both the light chain and the heavy chain, including the CDRs, arise from human genes. Such antibodies are termed "human antibodies," or "fully human antibodies" herein. Human monoclonal antibodies can be prepared by the trioma technique; the human B-cell hybridoma technique (see Kozbor, et al., Immunol Today 4: 72 (1983)) and the EBV hybridoma technique to produce human monoclonal antibodies (see Cole, et al., 1985 In: MONOCLONAL ANTIBODIES AND CANCER THERAPY, Alan R. Liss, Inc., pp. 77-96). Human monoclonal antibodies may be utilized in the practice of the present invention and may be produced by using human hybridomas (see Cote, et al., Proc Natl Acad Sci USA 80: 2026-2030 (1983)) or by transforming human B-cells with Epstein Barr Virus in vitro (see Cole, et al., 1985 In: MONOCLONAL ANTIBODIES AND CANCER THERAPY, Alan R. Liss, Inc., pp. 77-96).

In addition, human antibodies can also be produced using additional techniques, including phage display libraries (Hoogenboom and Winter, J. Mol. Biol. 227:381 (1991); Marks et al., J. Mol. Biol. 222:581 (1991)). Similarly, human antibodies can be made by introducing human immunoglobulin loci into transgenic animals, e.g., mice in which the endogenous immunoglobulin genes have been partially or completely inactivated. Upon challenge, human antibody production is observed, which closely resembles that seen in humans in all respects, including gene rearrangement, assembly, and antibody repertoire. This approach is described, for example, in U.S. Patent Nos. 5,545,807; 5,545,805; 5,569,825; 5,625,126; 5,633,425; 5,661,166, and in Marks et al. (Bio/Technology 10, 779-783 (1992)); Lonberg et al. (Nature 368 856-859 (1994)); Morrison (Nature 368 838.21-21 3 (1994)); Fishwild et al.(Nature Biotechnology 14, 845-51 (1996)); Neuberger (Nature Biotechnology 14:826 (1996)); and Lonberg and Huszar (Intern. Rev. Immunol. 13:65-93 (1995)).

Human antibodies may additionally be produced using transgenic nonhuman animals which are modified so as to produce fully human antibodies rather than the animal's endogenous antibodies in response to challenge by an antigen. (See

25

30

WO 2005/014854

Page 34 of 270

PCT publication WO94/02602). The endogenous genes encoding the heavy and light immunoglobulin chains in the nonhuman host have been incapacitated, and active loci encoding human heavy and light chain immunoglobulins are inserted into the host's genome. The human genes are incorporated, for example, using yeast artificial 5 chromosomes containing the requisite human DNA segments. An animal which provides all the desired modifications is then obtained as progeny by crossbreeding intermediate transgenic animals containing fewer than the full complement of the modifications. The preferred embodiment of such a nonhuman animal is a mouse, and is termed the Xenomouse[™] as disclosed in PCT publications WO 96/33735 and WO 96/34096. This animal produces B cells which secrete fully human 10 immunoglobulins. The antibodies can be obtained directly from the animal after immunization with an immunogen of interest, as, for example, a preparation of a polyclonal antibody, or alternatively from immortalized B cells derived from the animal, such as hybridomas producing monoclonal antibodies. Additionally, the 15 genes encoding the immunoglobulins with human variable regions can be recovered and expressed to obtain the antibodies directly, or can be further modified to obtain analogs of antibodies such as, for example, single chain Fv molecules.

An example of a method of producing a nonhuman host, exemplified as a mouse, lacking expression of an endogenous immunoglobulin heavy chain is disclosed in U.S. Patent No. 5,939,598. It can be obtained by a method including deleting the J segment genes from at least one endogenous heavy chain locus in an embryonic stem cell to prevent rearrangement of the locus and to prevent formation of a transcript of a rearranged immunoglobulin heavy chain locus, the deletion being effected by a targeting vector containing a gene encoding a selectable marker; and producing from the embryonic stem cell a transgenic mouse whose somatic and germ cells contain the gene encoding the selectable marker.

Antibodies as described herein are useful in standard immunochemical procedures, such as ELISA, radioimmuno assays, and Western blot methods and in immunohistochemical procedures such as tissue staining, as well as in other procedures which may utilize antibodies specific to Prox-1 protein -related antigen epitopes. Additionally, it is proposed that monoclonal antibodies specific to the

15

20

25

30

WO 2005/014854

Page 35 of 270

particular Prox-1 protein of different species may be utilized in other useful applications.

In general, both polyclonal and monoclonal antibodies against Prox-1 protein may be used in a variety of embodiments. In certain aspects, the antibodies may be employed for therapeutic purposes in which the inhibition of Prox-1 protein activity is desired (e.g., to reduce apoptosis in neuronal cells). Antibodies may be used to block Prox-1 protein action.

Antibodies of the present invention also may prove useful in diagnostic purposes in order, for example, to detect increases or decreases in Prox-1 protein in tissue samples including samples for sites of inflammation, or fluid samples including blood serum, plasma and exudate samples. Additional aspects will employ the antibodies of the present invention in antibody cloning protocols to obtain cDNAs or genes encoding other Prox-1 protein. They may also be used in inhibition studies to analyze the effects of Prox-1 related peptides in cells or animals. Anti- Prox-1 protein antibodies will also be useful in immunolocalization studies to analyze the distribution of Prox-1 protein during various cellular events, for example, to determine the cellular or tissue-specific distribution of Prox-1 protein polypeptides under different points in the cell cycle. A particularly useful application of such antibodies is in purifying native or recombinant Prox-1 protein, for example, using an antibody affinity column. The operation of all such immunological techniques will be known to those of skill in the art in light of the present disclosure.

D. Assaying for Other Modulators of Prox-1 Activity and/or Expression

In some situations, it may be desirable to identify molecules that are modulators, i.e., agonists or antagonists, of the activity of Prox-1 protein. Natural or synthetic molecules that modulate Prox-1 protein may be identified using one or more screening assays, such as those described herein. Such molecules may be administered either in an ex vivo manner, or in an in vivo manner by injection, or by oral delivery, implantation device or the like.

"Test molecule(s)" refers to the molecule(s) that is/are under evaluation for the ability to modulate (i.e., increase or decrease) the activity of Prox-1 protein. Most commonly, a molecule that modulates Prox-1 activity will interact directly with

15

30

Page 35 of 270

Prox-1. However, it is also contemplated that a molecule may also modulate Prox-1 protein activity indirectly, such as by affecting Prox-1 gene expression, or by binding to a Prox-1 binding partner. In one embodiment, a test molecule will bind to a Prox-1 protein with an affinity constant of at least about 10⁻⁶ M, preferably about 10⁻⁸ M, more preferably about 10⁻⁹ M, and even more preferably about 10⁻¹⁰ M.

Methods for identifying compounds which interact with Prox-1 protein are encompassed by the present invention. In certain embodiments, a Prox-1 protein is incubated with a test molecule under conditions which permit the interaction of the test molecule with a Prox-1 protein, and the extent of the interaction can be measured. The test molecule(s) can be screened in a substantially purified form or in a crude mixture.

In certain embodiments, a Prox-1 protein agonist or antagonist may be a protein, peptide, carbohydrate, lipid or small molecular weight molecule which interacts with Prox-1 to regulate its activity. Molecules which regulate Prox-1 expression include nucleic acids which are complementary to nucleic acids encoding a Prox-1 protein, or are complementary to nucleic acid sequences which direct or control the expression of Prox-1 protein, and which act as anti-sense regulators of expression.

Once a set of test molecules has been identified as interacting with

Prox-1 protein, the molecules may be further evaluated for their ability to increase or
decrease Prox-1 activity. The measurement of the interaction of test molecules with
Prox-1 may be carried out in several formats, including solution-phase assays and
immunoassays. In general, test molecules are incubated with Prox-1 for a specified
period of time, and Prox-1 protein activity is determined by one or more assays for

measuring biological activity.

In the event that Prox-1 displays biological activity through an interaction with a binding partner, a variety of *in vitro* assays may be used to measure the binding of Prox-1 to the corresponding binding partner. These assays may be used to screen test molecules for their ability to increase or decrease the rate and/or the extent of binding of Prox-1 to its binding partner. In one assay, a Prox-1 polypeptide is immobilized in the wells of a microtiter plate. Radiolabeled Prox-1

20

25

30

- 35 -

binding partner and the test molecule(s) can then be added either one at a time (in either order) or simultaneously to the wells. After incubation, the wells can be washed and counted (using a scintillation counter) for radioactivity to determine the extent to which the binding partner bound to Prox-1 polypeptide. Typically, the molecules will be tested over a range of concentrations, and a series of control wells lacking one or more elements of the test assays can be used for accuracy in the evaluation of the results. An alternative to this method involves reversing the "positions" of the proteins, i.e., immobilizing Prox-1 binding partner to the microtiter plate wells, incubating with the test molecule and radiolabeled Prox-1 polypeptide, and determining the extent of Prox-1 polypeptide binding. See, for example, chapter 18, Current Protocols in Molecular Biology, Ausubel et al., eds., John Wiley & Sons, New York, NY (1995).

As an alternative to radiolabeling, Prox-1 protein or its binding partner may be conjugated to biotin and the presence of biotinylated protein can then be detected using streptavidin linked to an enzyme, such as horseradish peroxidase (HRP) or alkaline phosphatase (AP), that can be detected colorometrically or by fluorescent tagging of streptavidin. An antibody directed to Prox-1 or to a Prox-1 binding partner and conjugated to biotin may also be used and can be detected after incubation with enzyme-linked streptavidin linked to AP or HRP.

A Prox-1 protein or Prox-1 binding partner can also be immobilized by attachment to agarose beads, acrylic beads or other types of such inert solid phase substrates. The substrate-protein complex can be placed in a solution containing the complementary protein and the test compound. After incubation the beads can be precipitated by centrifugation, and the amount of binding between Prox-1 protein and its binding partner can be assessed using the methods described herein. Alternatively, the substrate-protein complex can be immobilized in a column, and the test molecule and complementary protein are passed through the column. The formation of a complex between an Prox-1 protein and its binding partner can then be assessed using any of the techniques set forth herein, i.e., radiolabeling, antibody binding or the like.

Another in vitro assay that is useful for identifying a test molecule which increases or decreases the formation of a complex between Prox-1 and a Prox-1 binding partner is a surface plasmon resonance detector system such as the BIAcore

WG05014654 [file ///E:/WG05014854.cpc]

Page 38 of 970

10

15

20

25

30

assay system (Pharmacia, Piscataway, NJ). The BIAcore system may be carried out using the manufacturer's protocol. This assay essentially involves the covalent binding of either Prox-1 or a Prox-1 binding partner to a dextran-coated sensor chip which is located in a detector. The test compound and the other complementary protein can then be injected, either simultaneously or sequentially, into the chamber containing the sensor chip. The amount of complementary protein that binds can be assessed based on the change in molecular mass which is physically associated with the dextran-coated side of the sensor chip; the change in molecular mass can be measured by the detector system.

In some cases, it may be desirable to evaluate two or more test compounds together for their ability to increase or decrease the formation of a complex between Prox-1 polypeptide and a Prox-1 binding partner. In these cases, the assays set forth herein can be readily modified by adding such additional test compound(s) either simultaneous with, or subsequent to, the first test compound. The remainder of the steps in the assay are as set forth herein.

In vitro assays such as those described herein may be used advantageously to screen large numbers of compounds for effects on complex formation by Prox-1 polypeptide and a Prox-1 binding partner. The assays may be automated to screen compounds generated in phage display, synthetic peptide, and chemical synthesis libraries.

Compounds which increase or decrease the formation of a complex between a Prox-1 polypeptide and a Prox-1 binding partner may also be screened in cell culture using cells and cell lines expressing either Prox-1 polypeptide or a Prox-1 binding partner. Cells and cell lines may be obtained from any mammal. The binding of a Prox-1 protein to cells expressing a Prox-1 binding partner at the surface is evaluated in the presence or absence of test molecules, and the extent of binding may be determined by, for example, flow cytometry using a biotinylated antibody to a Prox-1 binding partner. Cell culture assays can be used advantageously to further evaluate compounds that score positive in protein binding assays described herein.

Cell cultures can also be used to screen the impact of a drug candidate.

For example, drug candidates may decrease or increase the expression of the Prox-1

5

10

15

20

25

30

Page 39 of 970

like gene. In certain embodiments, the amount of Prox-1 protein that is produced may be measured after exposure of the cell culture to the drug candidate. In certain embodiments, one may detect the actual impact of the drug candidate on the cell culture. For example, the overexpression of a particular gene may have a particular

culture. For example, the overexpression of a particular gene may have a particular impact on the cell culture. In such cases, one may test a drug candidate's ability to increase or decrease the expression of the gene or its ability to prevent or inhibit a particular impact on the cell culture. In other examples, the production of a particular metabolic product such as a fragment of a polypeptide may result in, or be associated with, a disease or pathological condition. In such cases, one may test a drug candidate's ability to decrease the production of such a metabolic product in a cell culture.

E. Internalizing Proteins

The tat protein sequence (from HIV) can be used to internalize proteins into a cell. See e.g., Falwell et al., Proc. Natl. Acad. Sci. USA, 91:664-668 (1994). For example, an 11 amino acid sequence (YGRKKRRQRRR; SEQ ID NO: 46) of the HIV tat protein (termed the "protein transduction domain", or TAT PDT) has been described as mediating delivery across the cytoplasmic membrane and the nuclear membrane of a cell. See Schwarze et al., Science, 285:1569-1572 (1999); and Nagahara et al., Nature Medicine, 4:1449-1452 (1998). In these procedures, FITC-constructs are prepared which bind to cells as observed by fluorescence-activated cell sorting (FACS) analysis, and these constructs penetrate tissues after i.p. adminstration.- Next, tat-bgal fusion proteins are constructed. Cells treated with this construct demonstrate b-gal activity. Following injection, a number of tissues, including liver, kidney, lung, heart and brain tissue, have been found to demonstrate expression using these procedures. It is believed that these constructions underwent some degree of unfolding in order to enter the cell; as such, refolding may be required after entering the cell.

It will thus be appreciated that the tat protein sequence may be used to internalize a desired protein or polypeptide into a cell. For example, using the *tat* protein sequence, Prox-1 antagonist (such as an anti-Prox-1 binding agent, small molecule, or antisense oligonucleotide) can be administered intracellularly to inhibit

5

10

15

20

2.5

30

Page 40 at 270

the activity of a Prox-1 molecule. See also, Strauss, E., Science, 285:1466-1467 (1999).

F. Rational Drug Design

The goal of rational drug design is to produce structural analogs of biologically active polypeptides or compounds with which they interact (agonists, antagonists, inhibitors, peptidomimetics, binding partners, etc.). By creating such analogs, it is possible to fashion drugs which are more active or stable than the natural molecules, which have different susceptibility to alteration or which may affect the function of various other molecules. In one approach, one generates a three-dimensional structure for Prox-1 protein or a fragment thereof. This is accomplished by x-ray crystallography, computer modeling or by a combination of both approaches. An alternative approach, "alanine scan," involves the random replacement of residues throughout molecule with alanine, and the resulting affect on function determined.

It also is possible to isolate a specific antibody, selected by a functional assay, and then solve its crystal structure. In principle, this approach yields a pharmacore upon which subsequent drug design can be based. It is possible to bypass protein crystallography altogether by generating anti-idiotypic antibodies to a functional, pharmacologically active antibody. As a mirror image of a mirror image, the binding site of anti-idiotype would be expected to be an analog of the original antigen. The anti-idiotype could then be used to identify and isolate peptides from banks of chemically- or biologically-produced peptides. Selected peptides would then serve as the pharmacore. Anti-idiotypes may be generated using the methods described herein for producing antibodies, using an antibody as the antigen.

Thus, one may design drugs which have activity as stimulators, inhibitors, agonists, antagonists of Prox-1 protein or molecules affected by Prox-1 protein function. Such rational drug design may start with lead compounds identified by the present invention. By virtue of the availability of cloned Prox-1 protein sequences, sufficient amounts of the related proteins can be produced to perform crystallographic studies. In addition, knowledge of the polypeptide sequences permits computer employed predictions of structure-function relationships.

10

15

20

25

30

PCT/EP2004/008819

Page 41 of 970

- 39 -

G. Therapeutic Methods

As discussed herein, polynucleotides or modulators of Prox-1 (including inhibitors of Prox-1) are administered to treat cancer. Therapeutic compositions can be administered in therapeutically effective dosages alone or in combination with adjuvant cancer therapy such as surgery, chemotherapy, radiotherapy, thermotherapy, and laser therapy, and may provide a beneficial effect, e.g. reducing tumor size, slowing rate of tumor growth, inhibiting metastasis, or otherwise improving overall clinical condition, without necessarily eradicating the cancer.

The composition can also be administered in therapeutically effective amounts as a portion of an anti-cancer cocktail. An anti-cancer cocktail is a mixture of the polypeptide or modulator of the invention with one or more anti-cancer drugs in addition to a pharmaceutically acceptable carrier for delivery. Any anti-cancer drugs can be used as a treatment in combination with the polypeptide or modulator of the invention, including: Actinomycin D, Aminoglutethimide, Asparaginase, Bleomycin, Busulfan, Carboplatin, Carmustine, Chlorambucil, Cisplatin (cis-DDP), Cyclophosphamide, Cytarabine HCl (Cytosine arabinoside), Dacarbazine, Dactinomycin, Daunorubicin HCl, Doxorubicin HCl, Estramustine phosphate sodium, Etoposide (V16-213), Floxuridine, 5-Fluorouracil (5-Fu), Flutamide, Hydroxyurea (hydroxycarbamide), Ifosfamide, Interferon Alpha-2a, Interferon Alpha-2b, Leuprolide acetate (LHRH-releasing factor analog), Lomustine, Mechlorethamine HCl (nitrogen mustard), Melphalan, Mercaptopurine, Mesna, Methotrexate (MTX), Mitomycin, Mitoxantrone HCl, Octreotide, Plicamycin, Procarbazine HCl, Streptozocin, Tamoxifen citrate, Thioguanine, Thiotepa, Vinblastine sulfate, Vincristine sulfate, Amsacrine, Azacitidine, Hexamethylmelamine, Interleukin-2, Mitoguazone, Pentostatin, Semustine, Teniposide, and Vindesine sulfate.

In addition, therapeutic compositions of the invention may be used for prophylactic treatment of cancer. There are hereditary conditions and/or environmental situations (e.g. exposure to carcinogens) known in the art that predispose an individual to developing cancers. Under these circumstances, it may be beneficial to treat these individuals with therapeutically effective doses of compositions of the invention to reduce the risk of developing cancers.

10

15

20

25

30

- 40 -

In vitro and in vivo models can be used to determine the effective doses of the compositions of the invention for cancer treatment. These in vitro models include proliferation and differentiation assays of cultured tumor cells, growth of cultured tumor cells in soft agar (see Freshney, (1987) Culture of Animal Cells: A Manual of Basic Technique, Wily-Liss, New York, NY Ch 18 and Ch 21), tumor systems in nude mice as described in Giovannella et al., J. Natl. Can. Inst., 52: 921-30 (1974), mobility and invasive potential of tumor cells in Boyden Chamber assays as described in Pilkington et al., Anticancer Res., 17: 4107-9 (1997), and angiogenesis assays such as induction of vascularization of the chick choricallantoic membrane or

induction of vascular endothelial cell migration as described in Ribatta et al., Intl. J.

Dev. Biol., 40: 1189-97 (1999) and Li et al., Clin. Exp. Metastasis, 17:423-9 (1999)
respectively. Suitable tumor cells lines are available, e.g. from American Type Tissue

Culture Collection catalogs, and/or are described below.

H. Pharmaceutical Compositions

Purified nucleic acids, antisense molecules, purified protein, antibodies, antagonists, or inhibitors may all be used as pharmaceutical compositions. Delivery of specific molecules for therapeutic purposes in this invention is further described below.

The active compositions of the present invention include classic pharmaceutical preparations. Administration of these compositions according to the present invention will be via any common route so long as the target tissue is available via that route. The pharmaceutical compositions may be introduced into the subject by any conventional method, e.g., by intravenous, intradermal, intramusclar, intrammany, intraperitoneal, intrathecal, intraocular, retrobulbar, intrapulmonary (e.g., term release); by oral, sublingual, nasal, anal, vaginal, or transdermal delivery, or by surgical implantation at a particular site, e.g., embedded under the splenic capsule, brain, or in the cornea. The treatment may consist of a single dose or a plurality of doses over a period of time.

The active compounds may be prepared for administration as solutions of free base or pharmacologically acceptable salts in water suitably mixed with a surfactant, such as hydroxypropylcellulose. Dispersions also can be prepared in

10

15

20

25

30

Page 43 of 270

glycerol, liquid polyethylene glycols, and mixtures thereof and in oils. Under ordinary conditions of storage and use, these preparations contain a preservative to prevent the growth of microorganisms.

The pharmaceutical forms suitable for injectable use include sterile aqueous solutions or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions. In all cases the form must be sterile and must be fluid to the extent that easy syringability exists. It must be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms, such as bacteria and fungi. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like). suitable mixtures thereof, and vegetable oils. The proper fluidity can be maintained, for example, by the use of a coating, such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. The prevention of the action of microorganisms can be brought about by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thimerosal, and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars or sodium chloride. Prolonged absorption of the injectable compositions can be brought about by the use in the compositions of agents delaying absorption, for example, aluminum monostearate and gelatin.

Sterile injectable solutions are prepared by incorporating the active compounds in the required amount in the appropriate solvent with various of the other ingredients enumerated above, as required, followed by filtered sterilization.

Generally, dispersions are prepared by incorporating the various sterilized active ingredients into a sterile vehicle which contains the basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, the preferred methods of preparation are vacuum-drying and freeze-drying techniques which yield a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.

As used herein, "pharmaceutically acceptable carrier" includes any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic

15

20

25

30

and absorption delaying agents and the like. The use of such media and agents for pharmaceutical active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active ingredient, its use in the therapeutic compositions is contemplated. Supplementary active ingredients also can be incorporated into the compositions.

For oral administration the active compositions may be incorporated with excipients and used in the form of non-ingestible mouthwashes and dentifrices. A mouthwash may be prepared incorporating the active ingredient in the required amount in an appropriate solvent, such as a sodium borate solution (Dobell's Solution). Alternatively, the active ingredient may be incorporated into an antiseptic wash containing sodium borate, glycerin and potassium bicarbonate. The active ingredient may also be dispersed in dentifrices, including: gels, pastes, powders and slurries. The active ingredient may be added in a therapeutically effective amount to a paste dentifrice that may include water, binders, abrasives, flavoring agents, foaming agents, and humectants.

The compositions of the present invention may be formulated in a neutral or salt form. Pharmaceutically-acceptable salts include the acid addition salts (formed with the free amino groups of the protein) and which are formed with inorganic acids such as, for example, hydrochloric or phosphoric acids, or such organic acids as acetic, oxalic, tartaric, mandelic, and the like. Salts formed with the free carboxyl groups also can be derived from inorganic bases such as, for example, sodium, potassium, ammonium, calcium, or ferric hydroxides, and such organic bases as isopropylamine, trimethylamine, histidine, procaine and the like.

The compositions of the present invention may be formulated in a neutral or salt form. Pharmaceutically-acceptable salts include the acid addition salts (formed with the free amino groups of the protein) and which are formed with inorganic acids such as, for example, hydrochloric or phosphoric acids, or such organic acids as acetic, oxalic, tartaric, mandelic, and the like. Salts formed with the free carboxyl groups also can be derived from inorganic bases such as, for example, sodium, potassium, ammonium, calcium, or ferric hydroxides, and such organic bases as isopropylamine, trimethylamine, histidine, procaine and the like.

Upon formulation, solutions will be administered in a manner compatible with the dosage formulation and in such amount as is therapeutically effective. The formulations are easily administered in a variety of dosage forms such as injectable solutions, drug release capsules and the like. For parenteral

administration in an aqueous solution, for example, the solution should be suitably buffered if necessary and the liquid diluent first rendered isotonic with sufficient saline or glucose. These particular aqueous solutions are especially suitable for intravenous, intramuscular, subcutaneous and intraperitoneal administration.

In the clinical setting an "effective amount" is an amount sufficient to 10 effect beneficial or desired clinical results. An effective amount can be administered in one or more doses. In terms of treatment, an "effective amount" of polynucleotide. and/or polypeptide is an amount that results in amelioration of symptoms or a prolongation of survival in a patient. The effective amount is generally determined by the physician on a case-by-case basis and is within the skill of one in the art. Several factors are typically taken into account when determining, an appropriate dosage. These factors include age, sex and weight of the patient, the condition being treated. the severity of the condition and the form of the antibody being administered. For instance, in embodiments in which the antibody compositions of the present invention are being therapeutically administered, it is likely the concentration of a single chain 2.0 antibody need not be as high as that of native antibodies in order to be therapeutically effective. Determination of the effective amounts is well within the capability of those skilled in the art, especially in light of the detailed disclosure provided herein. For any compound used in the method of the invention, the therapeutically effective dose can be estimated initially from cell culture assays. For example, a dose can be 25 formulated in animal models to achieve a circulating concentration range that includes the IC50 as determined in cell culture (i.e., the concentration of the test compound which achieves a half-maximal inhibition of the C-proteinase activity). Such information can be used to more accurately determine useful doses in humans.

Toxicity and therapeutic efficacy of such compounds can be

determined by standard pharmaceutical procedures in cell cultures or experimental
animals, e.g., for determining the LD50 (the dose lethal to 50% of the population) and
the ED50 (the dose therapeutically effective in 50% of the population). The dose ratio

15

30

between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio between LD50 and ED50. Compounds which exhibit high therapeutic indices are preferred. The data obtained from these cell culture assays and animal studies can be used in formulating a range of dosage for use in human. The dosage of such compounds lies preferably within a range of circulating concentrations that include the ED50 with little or no toxicity. The dosage may vary within this range depending upon the dosage form employed and the route of administration utilized. The exact formulation, route of administration and dosage can be chosen by the individual physician in view of the patient's condition. Sec. e.g., Fingl et al., 1975, in "The Pharmacological Basis of Therapeutics," Ch. 1 p.1. Dosage amount and interval may be adjusted individually to provide plasma levels of the active moiety which are sufficient to maintain the C-proteinase inhibiting effects, or minimal effective concentration (MEC). The MEC will vary for each compound but can be estimated from in vitro data; for example, the concentration necessary to achieve 50-90% inhibition of the C-proteinase using the assays described herein. Dosages necessary to achieve the MEC will depend on individual characteristics and route of administration. However, HPLC assays or bioassays can be used to determine plasma concentrations.

Dosage intervals can also be determined using MEC value.

20 Compounds should be administered using a regimen which maintains plasma levels above the MEC for 10-90% of the time, preferably between 30-90% and most preferably between 50-90%. In cases of local administration or selective uptake, the effective local concentration of the drug may not be related to plasma concentration. Refinement of the calculations necessary to determine the appropriate treatment dose is routinely made by those of ordinary skill in the art without undue experimentation, especially in light of the dosage information and assays disclosed herein as well as the pharmacokinetic data observed in animals or human clinical trials. As studies are conducted, further information will emerge regarding appropriate dosage levels and duration of treatment for specific diseases and conditions.

In a preferred embodiment, the present invention is directed at treatment of colon cancer, including colon cancer indicated by the presence of overexpression of Prox-1. A variety of different routes of administration are

Page 47 of 970

10

15

20

contemplated. For example, in the case of a tumor, the discrete tumor mass may be injected. The injections may be single or multiple; where multiple, injections are made at about 1 cm spacings across the accessible surface of the tumor. Alternatively, targeting the tumor vasculature by direct, local or regional intra-arterial injection are contemplated. The lymphatic systems, including regional lymph nodes, present another likely target for delivery. Further, systemic injection may be preferred.

It will be appreciated that the pharmaceutical compositions and treatment methods of the invention may be useful in fields of human medicine and veterinary medicine. Thus the subject to be treated may be a mammal, preferably human or other animal. For veterinary purposes, subjects include for example, farm animals including cows, sheep, pigs, horses and goats, companion animals such as dogs and cats, exotic and/or zoo animals, laboratory animals including mice rats, rabbits, guinea pigs and hamsters; and poultry such as chickens, turkey ducks and geose.

The compositions may, if desired, be presented in a pack or dispenser device which may contain one or more unit dosage forms containing the active ingredient. The pack may, for example, comprise metal or plastic foil, such as a bilister pack. The pack or dispenser device may be accompanied by instructions for administration. Compositions comprising a compound of the invention formulated in a compatible pharmaceutical carrier may also be prepared, placed in an appropriate container, and labeled for treatment of an indicated condition.

H. Transgenic Animals

A transgenic animal can be prepared in a number of ways. A

transgenic organism is one that has an extra or exogenous fragment of DNA
incorporated into its genome, sometimes replacing an endogenous piece of DNA. In
order to achieve stable inheritance of the extra or exogenous DNA, the integration
event must occur in a cell type that can give rise to functional germ cells. The two
animal cell types that are used for generating transgenic animals are fertilized egg

cells and embryonic stem cells. Embryonic stem (ES) cells can be returned from in
witro culture to a "host" embryo where they become incorporated into the developing

20

25

30

animal and can give rise to transgenic cells in all tissues, including germ cells. The ES cells are transfected in culture and then the mutation is transmitted into the germline by injecting the cells into an embryo. The animals carrying mutated germ cells are then bred to produce transgenic offspring. The use of ES cells to make genetic changed in the mouse germline is well recognized. For a reviews of this technology,

those of skill in the art are referred to Bronson & Smithies, J. Biol. Chem., 269(44), 27155-27158, 1994; Torres, Curr. Top. Dev. Biol., 36, 99-114; 1998 and the references contained therein.

Generally, blastocysts are isolated from pregnant mice at a given stage in development, for example, the blastocyst from mice may be isolated at day 4 of development (where day 1 is defined as the day of plug), into an appropriate buffer that will sustain the ES cells in an undifferentiated, pluripotent state. ES cell lines may be isolated by a number of methods well known to those of skill in the art. For example, the blastocysts may be allowed to attach to the culture dish and 15 approximately 7 days later, the outgrowing inner cell mass picked, trypsinized and transferred to another culture dish in the same culture media. ES cell colonies appear 2-3 weeks later with between 5-7 individual colonies arising from each explanted inner cell mass. The ES cell lines can then be expanded for further analysis. Alternatively, ES cell lines can be isolated using the immunosurgery technique (described in Martin, Proc. Natl. Acad. Sci. USA 78:7634-7638, 1981) where the trophectoderm cells are destroyed using anti-mouse antibodies prior to explanting the inner cell mass.

In generating transgenic animals, the ES cell lines that have been manipulated by homologous recombination are reintroduced into the embryonic environment by blastocyst injection (as described in Williams et al., Cell 52:121-131, 1988). Briefly, blastocysts are isolated from a pregnant mouse and expanded. The expanded blastocysts are maintained in oil-drop cultures at 4°C for 10 minutes prior to culture. The ES cells are prepared by picking individual colonies, which are then incubated in phosphate-buffered saline, 0.5 mM EGTA for 5 minutes; a single cell suspension is prepared by incubation in a trypsin-EDTA solution containing 1% (v/v) chick serum for a further 5 minutes at 4°C. Five to twenty ES cells (in Dulbecco's modified Eagle's Medium with 10% (v/v) fetal calf serum and 3,000 units/ml DNAase

10

1.5

20

25

30

incorporated herein by reference.

WC05014654 [Rie ///E:/WC06014854.cpc]

Page 49 of 270

1 buffered in 20 mM HEPES [pH 8]) are injected into each blastocyst. The blastocysts are then transferred into pseudo-pregnant recipients and allowed to develop normally. The transgenic mice are identified by coat markers (Hogan et al., Manipulating the Mouse Embryo, Cold Spring Harbor, N.Y. (1986)). Additional methods of isolating and propagating ES cells may be found in, for example, U.S. Patent No. 5,166,065; U.S. Patent No. 5,449,620; U.S. Patent No. 5,453,357; U.S. Patent No. 5,670,372; U.S. Patent No. 5,753,506; U.S. Patent No. 5,985,659, each

An alternative method involving zygote injection method for making transgenic animals is described in, for example, U.S. Patent No. 4,736,866, incorporated herein by reference. Additional methods for producing transgenic animals are generally described by Wagner and Hoppe (U.S. Patent No. 4,873,191; which is incorporated herein by reference), Brinster et al. Proc. Nat'l Acad. Sci. USA, 82(13) 4438-4442, 1985; which is incorporated herein by reference in its entirety) and in Manipulating the Mouse Embryo; A Laboratory Manual, 2nd edition (eds., Hogan, Beddington, Costantimi and Long, Cold Spring Harbor Laboratory Press, 1994; which is incorporated herein by reference in its entirety).

Briefly, this method involves injecting DNA into a fertilized egg, or zygote, and then allowing the egg to develop in a pseudo-pregnant mother. The zygote can be obtained using male and female animals of the same strain or from male and female animals of different strains. The transgenic animal that is born, the founder, is bred to produce more animals with the same DNA insertion. In this method of making transgenic animals, the new DNA typically randomly integrates into the genome by a non-homologous recombination event. One to many thousands of conies of the DNA may integrate at a site in the genome

Generally, the DNA is injected into one of the pronuclei, usually the larger male pronucleus. The zygotes are then either transferred the same day, or cultured overnight to form 2-cell embryos and then transferred into the oviducts of pseudo-pregnant females. The animals born are screened for the presence of the desired integrated DNA.

EDTA.

20

25

30

Page 50 of 270

- 48 -

DNA clones for microinjection can be prepared by any means known in the art. For example, DNA clones for microinjection can be cleaved with enzymes appropriate for removing the bacterial plasmid sequences, and the DNA fragments electrophoresed on 1% agarose gels in TBE buffer, using standard techniques. The DNA bands are visualized by staining with ethidium bromide, and the band containing the expression sequences is excised. The excised band is then placed in dialysis bags containing 0.3 M sodium acetate, pH 7.0. DNA is electroeluted into the dialysis bags, extracted with a 1:1 phenol; chloroform solution and precipitated by two volumes of ethanol. The DNA is redissolved in 1 ml of low salt buffer (0.2 M NaCl, 20 mM Tris, pH 7.4, and 1 mM EDTA) and purified on an Elutip-D™ column. The column is first primed with 3 ml of high salt buffer (1 M NaCl, 20 mM Tris, pH 7.4, and 1 mM EDTA) followed by washing with 5 ml of low salt buffer. The DNA solutions are passed through the column three times to bind DNA to the column matrix. After one wash with 3 ml of low salt buffer, the DNA is eluted with 0.4 ml high salt buffer and precipitated by two volumes of ethanol. DNA concentrations are measured by absorption at 260 nm in a UV spectrophotometer. For microinjection, DNA concentrations are adjusted to 3 mg/ml in 5 mM Tris, pH 7.4 and 0.1 mM

Additional methods for purification of DNA for microinjection are described in Hogan et al. Manipulating the Mouse Embryo (Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1986), in Palmiter et al. Nature 300:611 (1982); in The Qiagenologist, Application Protocols, 3rd edition, published by Qiagen, Inc., Chatsworth, CA.; and in Sambrook et al. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1989).

In an exemplary microinjection procedure, female mice six weeks of age are induced to superovulate. The superovulating females are placed with males and allowed to mate. After approximately 21 hours, the mated females are sacrificed and embryos are recovered from excised oviducts and placed in an appropriate buffer, e.g., Dulbecco's phosphate buffered saline with 0.5% bovine serum albumin (BSA; Sigma). Surrounding cumulus cells are removed with hyaluronidase (1 mg/ml). Pronuclear embryos are then washed and placed in Earle's balanced salt solution containing 0.5 % BSA in a 37.5°C incubator with a humidified atmosphere at 5%

5

10

20

25

30

Page 51 of 270

.

CO₂, 95% air until the time of injection. Embryos can be implanted at the two-cell stage.

Randomly cycling adult female mice are paired with vasectomized males. C57BL/6 or Swiss mice or other comparable strains can be used for this purpose. Recipient females are mated at the same time as donor females. At the time of embryo transfer, the recipient females are anesthetized with an intraperitoneal injection of 0.015 ml of 2.5 % avertin per gram of body weight. The oviducts are exposed by a single midline dorsal incision. An incision is then made through the body wall directly over the oviduct. The ovarian bursa is then torn with watchmakers forceps. Embryos to be transferred are placed in DPBS (Dulbecco's phosphate buffered saline) and in the tip of a transfer pipette (about 10 to 12 embryos). The pipette tip is inserted into the infundibulum and the embryos transferred. After the transfer, the incision is closed by two sutures. The pregnant animals then give birth to the founder animals which are used to establish the transsenic line.

15 I. Use of Prox-1-based Compositions for Diagnostic Purposes

The demonstration that Prox-1 is overexpressed in precancerous and colon cancer cells also indicates that detection of Prox-1 polymotelotides and polypeptides (including variants thereof) are useful for diagnostic purposes. Therefore, preferred aspects of the present invention are directed to methods of screening and diagnosing colon cancer in an individual.

In one preferred embodiment, diagnostic methods of the invention are practiced through the detection of the Prox-1 protein. In general, methods for detecting a polypeptide of the invention can comprise contacting a biological sample with a compound that binds to and forms a complex with the polypeptide for a period sufficient to form the complex, and detecting the complex, so that if a complex is detected, a polypeptide of the invention is detected. Prox-1 protein detection can be accomplished using antibodies specific for the protein in any of a number of formats commonly used by those of skill in the art for such detection.

For example, elsewhere in the present application, the production and characterization of monoclonal antibodies specific for Prox-1 is described. Such antibodies may be employed in ELISA-based techniques and Western blotting WO 2005/014854 PCT/EP2004/008819

WC05014654 [Rie ///E:/WC06014854.cpc]

5

10

15

20

25

30

- 50 -

techniques to detect the presence of Prox-1 in a biological sample from a subject being tested. Methods for setting up ELISA assays and preparing Western blots of a sample are well known to those of skill in the art. The biological sample can be any tissue or fluid in which colon cells or tissue might be present.

An anti-Prox-1 antibody or fragment thereof also is useful to monitor expression of this protein in individuals suffering from colon cancer. Typically, diagnostic assays entail detecting the formation of a complex resulting from the binding of an antibody or fragment thereof to Prox-1. For diagnostic purposes, the antibodies or antigen-binding fragments can be labeled or unlabeled. The antibodies or fragments can be directly labeled. A variety of labels can be employed, including, but not limited to, radionuclides, fluorescers, enzymes, enzyme substrates, enzyme cofactors, enzyme inhibitors and ligands (e.g., biotin, haptens). Numerous appropriate immunoassays are known to the skilled artisan (see, for example, U.S. Pat. Nos. 3,817,827; 3,850,752; 3,901,654 and 4,098,876). When unlabeled, the antibodies or fragments can be detected using suitable means, as in agglutination assays, for example. Unlabeled antibodies or fragments can also be used in combination with another (i.e., one or more) suitable reagent which can be used to detect antibody, such as a labeled antibody (e.g., a second antibody) reactive with the first antibody (e.g., anti-idiotype antibodies or other antibodies that are specific for the unlabeled immunoglobulin) or other suitable reagent (e.g., labeled protein A).

In one embodiment, the antibodies or fragments of the present invention can be utilized in enzyme immunoassays, wherein the subject antibody or fragment, or second antibodies, are conjugated to an enzyme. When a biological sample comprising a Prox-1 protein is combined with the subject antibodies, binding occurs between the antibodies and the Prox-1 protein. In one embodiment, a biological sample containing cells expressing a mammalian Prox-1 protein, or biological fluid containing secreted Prox-1 is combined with the subject antibodies, and binding occurs between the antibodies and the Prox-1 protein present in the biological sample comprising an epitope recognized by the antibody. These bound protein can be separated from unbound reagents and the presence of the antibodyenzyme conjugate specifically bound to the Prox-1 protein can be determined, for example, by contacting the sample with a substrate of the enzyme which produces a

10

15

20

25

30

Page 53 of 270

color or other detectable change when acted on by the enzyme. In another embodiment, the subject antibodies can be unlabeled, and a second, labeled antibody

can be added which recognizes the subject antibody.

Similarly, the present invention also relates to a method of detecting 5 and/or quantitating expression of a mammalian Prox-1 protein or a portion of the Prox-1 protein by a cell, in which a composition comprising a cell or fraction thereof (e.g., a soluble fraction) is contacted with an antibody or functional fragment thereof which binds to a mammalian Prox-1 protein or a portion of the Prox-1 protein under conditions appropriate for binding of the antibody or fragment thereto, and binding is monitored. Detection of the antibody, indicative of the formation of a complex

The method can be used to detect expression of Prox-1 from the cells of an individual (e.g., in a sample, such as a body fluid, such as blood, saliva or other suitable sample). The level of expression of in a biological sample of that individual can also be determined, for instance, by flow cytometry, and the level of expression

between antibody and or a portion of the protein, indicates the presence of the protein.

(e.g., staining intensity) can be correlated with disease susceptibility, progression or risk.

In certain other diagnostic embodiments, the polynucleotide sequences encoding Prox-1 protein may be used for the diagnosis of conditions or diseases with which the expression of Prox-1 protein is associated. In general, methods for detecting Prox-1 mRNA can comprise contacting a biological sample with a compound that binds to and forms a complex with Prox-1 mRNA for a period sufficient to form the complex, and detecting the complex in a quantitative or semiquantitative way. Such methods can also comprise amplification techniques involving contacting a biological sample with nucleic acid primers that anneal to Prox-1 mRNA or its complement, and amplifying annealed polynucleotides, so that if a polynucleotide is amplified, a polynucleotide of the invention is detected. The biological sample can be any tissue or fluid in which Prox-1-expressing colon cells might be present.

In the amplification procedures, polynucleotide sequences encoding Prox-1 protein may be used in hybridization or PCR assays of fluids or tissues from

15

20

25

30

WO 2005/014854

Page 54 of 270

biopsies to detect Prox-1 protein expression. Such methods may be qualitative or quantitative in nature and may include Southern or northern analysis, dot blot or other membrane-based technologies; PCR technologies; dip stick, pin, chip and ELISA technologies. All of these techniques are well known in the art and are the basis of many commercially available disensitic kits.

One such procedure known in the art is quantitative real-time PCR. Real-time quantitative can be conveniently accomplished using the commercially available ABI PRISM™ 7700 Sequence Detection System, available from PE-Applied Biosystems, Foster City, CA and used according to manufacturer's instructions. PCR reagents can be obtained from PE-Applied Biosystems, Foster City, CA. Gene target quantities obtained by real time RT-PCR may be normalized using either the expression level of GAPDH, a gene whose expression is constant, or by quantifying total RNA using RiboGreen™ (Molecular Probes, Inc. Eugene, OR). GAPDH expression is quantified by real time RT-PCR, by being run simultaneously with the target, multiplexing, or separately. Total RNA is quantified using RiboGreenTM RNA quantification reagent from Molecular Probes. Methods of RNA quantification by RiboGreen TM are taught in Jones, L.J., et al, Analytical Biochemistry, 1998, 265, 368-374. Controls are analyzed in parallel to verify the absence of DNA in the RNA preparation (-RT control) as well as the absence of primer dimers in control samples lacking template RNA. In addition, RT-PCR products may be analyzed by gel electrophoresis.

A reverse transcriptase PCR™ amplification procedure may be performed in order to quantify the amount of mRNA amplified. Methods of reverse transcribing RNA into cDNA are well known and described in Sambrook et al., 1989. Alternative methods for reverse transcription utilize thermostable DNA polymerases. These methods are described in WO 90/07641, filed December 21, 1990.

Conditions for incubating a nucleic acid probe or antibody with a test sample vary. Incubation conditions depend on the format employed in the assay, the detection methods employed, and the type and nature of the nucleic acid probe or antibody used in the assay. One skilled in the art will recognize that any one of the commonly available hybridization, amplification or immunological assay formats can readily be adapted to employ the nucleic acid probes or antibodies of the present

15

20

25

30

WO 2005/014854

Page 55 of 270

invention. Examples of such assays can be found in Chard, T., An Introduction to Radioimmunoassay and Related Techniques, Elsevier Science Publishers, Amsterdam, The Netherlands (1986); Bullock, G.R. et al., Techniques in Immunocytochemistry, Academic Press, Orlando, FL Vol. 1 (1982), Vol. 2 (1983), Vol. 3 (1985); Tijssen, P., Practice and Theory of immunoassays: Laboratory Techniques in Biochemistry and Molecular Biology, Elsevier Science Publishers, Amsterdam, The Netherlands (1985). The tests of the present invention include cells, protein extracts of cells, or biological fluids such as, blood, serum, and plasma. The test sample used in the above-described method will vary based on the assay format, nature of the detection method and the tissues, cells or extracts used as the sample to be assayed. Methods for preparing protein extracts or membrane extracts of cells are well known in the art and can be readily be adapted in order to obtain a sample which is compatible with the system utilized.

In addition, such assays may be useful in evaluating the efficacy of a particular therapeutic treatment regime in animal studies, in clinical trials, or in monitoring the treatment of an individual patient. In order to provide a basis for the diagnosis of disease, a normal or standard measurement of Prox-1 mRNA or protein expression is established. This generally involves Prox-1 measurements from healthy colon tissue taken from one or more subjects, measured using the same or similar reagents used for the test subjects. The healthy subject preferably is matched for sex and age, and optionally, ethnicity. Deviation between standard and subject values correlates with the presence of precancerous or cancerous tissue.

Once disease is established, a therapeutic agent is administered; and a treatment profile is generated. Such assays may be repeated on a regular basis to evaluate whether the values in the profile progress toward or return to the normal or standard pattern. Successive treatment profiles may be used to show the efficacy of treatment over a period of several days or several months.

Methods to quantify the expression of a particular molecule include radiolabeling (Melby et al., J Immunol Methods 159: 235-44, 1993) or biotinylating (Duplaa et al., Anal Biochem 229-36, 1993) nucleotides, coamplification of a control nucleic acid, and standard curves onto which the experimental results are interpolated.

WG05614654 [file ///E:/WG06614854.cpc]

10

15

20

25

In addition to being used as diagnostic methods, screening methods also may be used in a prognostic manner to monitor the efficacy of treatment. The methods may be performed immediately before, during and after treatment to monitor treatment success. The methods also should be performed at intervals, preferably every three to six months, on disease free patients to insure treatment success.

In another embodiment of the present invention, kits are provided which contain the necessary reagents to carry out the assays of the present invention. Specifically, the invention provides a compartment kit to receive, in close confinement, one or more containers which comprises: (a) a first container comprising one of the probes or antibodies of the present invention; and (b) one or more other containers comprising one or more of the following: wash reagents, reagents capable of detecting presence of a bound probe or antibody.

In detail, a compartment kit includes any kit in which reagents are contained in separate containers. Such containers include small glass containers, plastic containers, or strips of plastic or paper. Such containers allow one to efficiently transfer reagents from one compartment to another compartment such that the biological sample and reagents are not cross-contaminated, and the agents or solutions of each container can be added in a quantitative fashion from one compartment to another. Such containers will include a container which will accept the test sample, a container which contains, for example, the antibodies used in the assay, containers which contain wash reagents (such as phosphate buffered saline, Tris-buffers, etc.), and containers which contain the reagents used to detect the bound antibody or probe. Types of detection reagents include labeled nucleic acid probes, labeled secondary antibodies, or in the alternative, if the primary antibody is labeled, the enzymatic, or antibody binding reagents which are capable of reacting with the labeled antibody. One skilled in the art will readily recognize that the disclosed probes and antibodies of the present invention can be readily incorporated into one of the established kit formats which are well known in the art.

In further detail, kits for use in detecting the presence of a mammalian

Prox-1 protein can include an antibody or functional fragment thereof which binds to
a mammalian Prox-1 protein or portion of this protein, as well as one or more
ancillary reagents suitable for detecting the presence of a complex between the

15

20

25

WO 2005/014854

Page 57 of 270

antibody or fragment and Prox-1 or portion thereof. The antibody compositions of the present invention can be provided in lyophilized form, either alone or in combination with additional antibodies specific for other epitopes. The antibodies, which can be labeled or unlabeled, can be included in the kits with adjunct ingredients. For example, the antibodies can be provided as a lyophilized mixture with the adjunct ingredients, or the adjunct ingredients can be separately provided for combination by the user. Generally these adjunct materials will be present in less than about 5% weight based on the amount of active antibody, and usually will be present in a total amount of at least about 0.001% weight based on antibody concentration. Where a second antibody capable of binding to the monoclonal antibody is employed, such

antibody can be provided in the kit, for instance in a separate vial or container. The second antibody, if present, is typically labeled, and can be formulated in an analogous manner with the antibody formulations described above.

J. Examples

The present invention is illustrated in the following examples, which are intended to be illustrative and not limiting. Upon consideration of the present disclosure, one of skill in the art will appreciate that many other embodiments and variations may be made in the scope of the present invention.

 $\label{eq:example 1} \textbf{Example 1 provides methods and materials for the subsequent}$ Examples.

Example 2 provides experimental results of studies designed to assess Prox-1 expression in colorectal cancer cells.

Example 3 details expression of Prox-1 in round but not in adherent subclones of the SW480 colon adenocarcinoma cell line.

Example 4 provides experimental results of Prox-1 silencing in SW480R cells.

Example 5 describes effects of Prox-1 ablation on Notch signaling in SW480R cells.

Example 6 describes the effects of suppression of Prox-1 on the growth 30 of SW480R cells in soft agar. WC05014654 [file ///E:/WC05014854.cpd]

 $\label{prox-lambda} Example \ 7 \ describes \ the \ effect \ Prox-l \ suppression \ on \ prostagland in biosynthesis.$

- Example 8 describes experiments aimed as assessing the effects of altered Notch signaling.
- 5 Example 9 describes experiments aimed at assessing the effects of Prox-1 suppression on the growth of SW480R tumors in nude mice.
 - Example 10 describes analysis of Prox-1 in natural colorectal tumors.
 - Example 11 describes one method for diagnosing or screening for colorectal cancer.
- 10 Example 12 describes experiments designed to compare Prox-1 expression in normal cololnic epithelium.
 - Example 13 describes experiments aimed at assessing Prox-1 expression in Apc^{min/+} mice.
- Example 14 describes studies conducted using SW480R cell line as an 15 in vitro model to investigate the role of Prox-1 in colorectal carcinoma.
 - Example 15 describes experiments to characterize the effects of Prox-1 suppression and overexpression in colorectal cancer.
 - Example 16 describes experiments employing dominant negative mutants of Prox-1.

20

EXAMPLE 1

METHODS AND MATERIALS

Methods and material used or referred to in subsequent examples are set forth directly below.

25 Antibodies

Monoclonal mouse anti-vimentin, 8-catenin (Transduction Laboratories), Ki-67 (Pharmingen) and chromogranin A (Ab-3, NeoMarkers), monoclonal rat anti-BrdU (Harlan Seralab) and polyclonal rabbit anti-Prox-1 were WC08614834 [file ///E:/WC08614854.cpc]

Page 59 of 270

obtained from the indicated commercial sources. The fluorochrome-conjugated secondary antibodies were obtained from Jackson Immunoresearch.

For production of Prox-1 antibodies cDNA encoding Prox-1 homeobox domain and prospero domain (amino acids 578-750 of human Prox-1, SEQ ID NO: 3) was subcloned into pGEX2t vector to produce GST-Prox-1 fusion construct. This construct was expressed in *E. coli* and the GST-Prox-1 fusion protein from *E. coli* was purified using glutathione Sepharose according to the manufacturer's instructions (Amersham, Piscataway, ND. Fusion protein was used to immunize rabbits according to a standard protocol. Prox-1-specific antibodies were isolated from rabbit serum using sequential columns with GST- and GST-Prox-1-coupled to vinylsulfone agarose resin (Sigma). Purified antibody recognized an 85 kD protein in lysates from 293T cells transfected with Prox-1 but not from cells transfected with the empty vector.

Synthetic siRNAs

10

15

20

25

30

siRNA duplexes were prepared from synthetic 21 nucleotide RNAs (Dharmacon Research), siRNA sequences were: 5'CUGCAAGCUGGAUAGUGAAGU-3' (Prox-1 siRNA A16 sense) (SEQ ID NO: 4);
5'-UUCACUAUCCAGCUUGCAGU-3' (Prox-1 siRNA A16 antisense) (SEQ ID NO: 5); 5'-CUAUGAGCCAGUUUGAUAUUU-3' (Prox-1 siRNA A25 sense) (SEQ ID NO: 6); 5'- AUAUCAAACUGGCUCAUAGUU-3' (Prox-1 siRNA A25 antisense) (SEQ ID NO: 7).

EGFP-targeting control siRNA A18 was essentially as described (Lewis et al., 2002) except that instead of thymidine 3' overhangs uracil overhangs were used; GACGUAAACGGCCACAAGUUU (EGFP siRNA A18 sense) (SEQ ID NO: 8); ACUUGUGGCCGUUUACGUCUU (EGFP siRNA A18 antisense) (SEQ ID NO: 9).

siRNAs were 2'-ACE deprotected according to the manufacturer's instructions, dried in vacuum, resuspended in 400µl water, dried again, resuspended in water, and annealed to form duplex siRNAs. For annealing equimolar amounts of siRNA strands (approximately 50-100µM) were incubated in annealing buffer (100mM potassium acetate 30mM Herce-KOH pH 7.4, 2mM magnesium acetate) for

WC05014854 [file #/E:/WC06014854.cpc]

WO 2005/014854

5

10

15

30

5 min at +95°C followed by 30 min at +37°C and 30 min at +25°C. After annealing the siRNA concentration was measured by spectrometry and siRNA aliquoted and stored at -20°C.

Cell culture, transfection, and soft agar assay

SW480 cells were obtained from ATCC (CCL-228) and cultured in RPMI-1640 supplemented with 10% fetal bovine serum, 1 mM glutamine and antibiotics. HepG2 cells were cultured in DMEM, containing 10% fetal bovine serum 1 mM glutamine and antibiotics.

Transfection of siRNAs was carried out using Lipofectamine 2000 (Invitrogen) according to manufacturer's instructions using 0.5% (v/v) lipofectamine 2000 reagent for SW480R and 0.4% (v/v) lipofectamine 2000 for adherent SW480 cells and either 20nM or 100nM (f.c.) of siRNA. Transfections were carried out in antibiotic-free media for 4-6 hours before changing cells back to normal culture media. For long-term experiments siRNA transfections were repeated after 48-72h from previous transfection (at protein level the silencing effect was seen to remain efficient for at least 96h). Normally approximately 90-95% transfection efficiency was achieved. Opti-MEM (Invitrogen) medium was used in preparation of transfection mixtures.

For luciferase assays, cells were transfected with Green Fluorescent

20 Protein small interfering RNA (GFPsi RNA) or Prox-1 siRNAs 72 h prior to the
transfection with the firefly lucefarese reporter constructs CBF1-luc, control pGL2luc (Promega), TOPFlash and FOPFlash (Upstate). To normalize the transfection
efficiency, cells were co-transfected with the Renilly firefly reporter pRL-TK
(Promega), 36 h after the last transfection cells were lysed and lysates were analyzed

25 for the luciferase activity using Dual-Luciferase M kit according to the manufacturer's
instructions (Promega).

For soft agar assay, 2×10^3 and 2×10^4 cells were seeded in triplicate in 1 ml of 0.33% (w/v) agar (Difco) containing D-MEM, 10% fetal bovine serum, 1 mM glutamine and antibiotics in 6-well plates containing 1ml of 0.5% bottom agar layer. Cells were fed twice a week, and number of colonies per plate was scored after two weeks in culture.

10

15

20

25

30

Page 81 of 270

RNA isolation, Northern, and Western blotting

Total RNA was isolated and DNAseI treated in RNeasy columns (Qiagen). For Cancer Array analysis, filters were hybridized in ExpressHyb with 32P-labeled probes for LXVE-1 and Prox-1 according to the manufacturer's instructions (Clontech). For Northern analysis, the blots were hybridized in Ultrahyb solution (Ambion) with 32P-labeled probes produced by RT-PCR using RNA from SW480R or SW480R or SW480A cells. The primers were designed to amplify 300-700 bp of the coding sequence, and all PCR-fragments were sequenced to confirm their identity.

For the Affymetrix® gene expression analysis, sample preparations and hybridizations were carried out as described (Petrova et al. Embo J 21: 4593-9, 2002), using RNA extracted from two clones of SW480R or SW480R cells, or from two independent transfections of two different clones of SW480R cells with GFP siRNA or Prox-1 siRNA A16. To confirm the latter results, another transfection was carried out using Prox siRNA A25. To exclude the non-specific effects due to the transfection itself, non-transfected SW480R cells grown in parallel were also analyzed.

For Western blotting 2x10³ cells were lysed in 500 µl of sample buffer, lysates were separated using 10% PAGE and transferred to the nitrocellulose membranes (Schleisher&Schull) using semi-dry transfer method for 1 h at 300 mA. Membranes were blocked in 5% non-fat dry milk, 0.1% Tween-20 in 50 mM Tris-HCl, pH 7.4, 150 mM NaCl, and incubated overnight with primary antibodies. Bound primary antibodies were detected using HRP-conjugated corresponding secondary antibodies and the ECL detection method (KPL).

Immunofluorescence and immunohistochemistry

The cells were cultured on coverslips, fixed with MetOH and stained with the primary antibodies and fluorochrome-conjugated secondary antibody. Factin was stained using TexasRed-conjugated phalloidin (Molecular Probes). Cells were counterstained with Hoechst 33258 fluorochrome (Sigma) and viewed in Zeiss Axionlan 2 fluorescent microscope.

For tissue staining staining, colon tumors and normal colon samples were embedded in Tissue-Tek® (Sakura), frozen and sectioned. The 4µm sections

10

15

20

25

30

Page 82 of 970

- 60 -

were fixed in cold methanol for 10 min and stained with the primary antibodies followed by peroxidase staining using Vectastain Elite ABC kit (Vector Laboratories) and 3-amino-9-ethyl carbazole (Sigma), or by detection using fluorchrome conjugated secondary antibodies.

EXAMPLE 2

Prox-1 mRNA is Elevated in Colorectal Tumors

Experiments were conducted to assess the expression of Prox-1 mRNA in human cancers using a cancer gene profiling array filter, which contains cDNAs from about 250 human cancers and corresponding normal control tissues. Prox-1 mRNA was significantly increased in 35 out of 53 samples of colorectal cancers. In contrast, only rarely or not at all was any increase seen in samples from breast, uterine, lung, kidney, ovarian, or thyroid tumors (Fig. 1A, B, and C). Probes for Prox-1 (Fig. 1A) and the lymphatic endothelial marker LYVE-1 (Fig. 1B) were used. Fig. 1C demonstrates quantification of dot blot in Fig. 1A, the asterisk indicating tumor samples in which Prox-1 expression is significantly different from that of the normal tissue (P<0.005). Expression of Prox-1 was low or absent in all kidney cancer samples studied. Prox-1 is a marker for lymphatic vessels, which are abundant both in normal colonic submucosa and around colon carcinomas (White et al., Cancer Res. 62: 1669-75 (2002)). Therefore, the filter to the probe for the lymphatic endothelial hyaluronan receptor LYVE-1 was hybridized. Unlike Prox-1, LYVE-1 levels were higher in the normal samples, suggesting that the increased expression cannot be attributed to the lymphatic vessels (Fig. 1B).

Experiments were further conducted to assess the expression of Prox-1 in colon cancers and premalignant colonic lesions using affinity purified antibodies raised against Prox-1 homeobox and prospero domains, which are conserved between the mouse and human proteins. Staining of a panel of mouse tissues and E12.5 and E17.5 embryos revealed specific nuclear staining for Prox-1 in the previously reported sites of expression such as in lymphatic vessels, lens fiber cells and in a subset of neurons in the neural tube. Staining of eleven human colorectal adenomas and nine carcinomas and adjacent normal mucosa revealed increased expression of Prox-1 in nine adenomas and in six carcinomas (Fig. 2A-I). Increased Prox-1 staining was observed in all cells in seven adenomas and in two carcinomas, whereas in the other

15

Page 83 of 270

lesions a heterogeneous expression of Prox-1 occurred. In one tumor sample, no specific staining for Prox-1 was seen, while strong expression was observed in intratumoral lymphatic vessels.

Double immunofluorescent staining for Prox-1 and the neuroendocrine

5 marker chromogranin A or proliferation marker Ki-67 was conducted in normal
colonic epithelial cells. Nuclei were visualized with Hoechst 333421. In the normal
colonic mucosa, Prox-1 was strongly expressed in some epithelial cells, a subset of
which was positive for the pan-neuroendocrine marker chromogranin A. In addition,
a weaker but significant Prox-1 expression was observed in the bottom of the crypts

10 below the cell proliferation zone identified by staining for the Ki-67 antigen. The
location of Prox-1 positive cells at the base of the crypts corresponds to the position
of the intestinal stem cells (Bach et al., Carcinogenesis 21: 469-76 (2000)).

EXAMPLE 3

PROX-1 IS EXPRESSED IN ROUND BUT NOT IN ADHERENT SUBCLONES OF THE SW480 COLON ADENOCARCINOMA CELL LINE.

Additional studies were conducted to compare Prox-1 expression in various cells. No Prox-1 expression was seen in the majority of tumor cell lines studied. However, Prox-1 was mRNA was present in hepatocellular carcinoma cell line HepG2 and the colon carcinoma cell line SW480. BEC, blood endothelial cells, 20 CAEC, coronary artery endothelial cells, and LEC, lymphatic endothelial cells, served as negative and positive controls. Immunofluorescent staining of Prox-1 revealed strong expression in all HepG2 cells, whereas only a subset of SW480 cells were Prox-1 positiveDouble immunofluorescent staining for Prox-1 and for \(\beta \)-catenin or for the F-actin marker phalloidin demonstrated that Prox-1 expression is restricted to weakly adherent round SW480 cells which did not display focal adhesions or actin 25 stress fibers, and that Prox-1 was very weakly expressed the adherent cells. The existence of two subtypes of cells in the SW480 cultures has been reported previously (Palmer, H. G. et al., J Cell Biol. 154: 369-87, 2001; Tomita, N. et al., Cancer Res. 52; 6840-7, 1992). The SW480R (round) cells displayed anchorage independent growth in vitro and highly malignant phenotype in vivo, whereas the SW480A 30 (adherent) cells did not grow well in soft agar and formed small and well differentiated tumors when implanted into nude mice.

10

15

20

25

30

Several SW480R and SW480A clones were isolated, which could be continuously grown for at least 20 passages without conversion of phenotypes. SW480R and SW480A cells differed by the levels of Prox-1, as determined by Northern and Western blotting, with much higher expression in the round cells, and weak, if any, expression in the Adherent ones. The gene expression profiles of SW480R and SW480A cells were compared using oligonucleotide microarrays containing 22,000 annotated human genes, and identified about 1,000 genes whose expression differed by more than fourfold between these two cell types (Table I). SW480 cells were stained for intermediate filament protein vimentin and Prox-1. Northern blotting and hybridization were used for transcripts. Hybridization for GAPDH was used as a control. A striking difference was observed in the expression of cytoskeletal and cell adhesion proteins. In agreement with their decreased adhesion and round cell shape, the SW480R cells lacked many components of the actin, intermediate filament and microtubule networks, such as gelsolin, filamins A and B, ezrin, moesin, vimentin, various integrins, and tubulins (Table I). These cells expressed higher levels of the protoncogene c-met, as well as the receptor tyrosine kinase FGFR-4, which has been associated with malignant transformation in colorectal and other cancer (Bange, J. et al., Cancer Res. 62: 840-7, 2002; Cavallaro, U., Niedermeyer, J., Fuxa, M. & Christofori, G., Nat. Cell Biol. 3: 650-7, 2001; Yamada, S. M. et al., Neurol Res. 24: 244-8, 2002), and low levels of the tumor suppressor p21Cip1. FGFR-4 is a target for therapeutic intervention according to the invention, alone or in combination with Prox-1. Intervention using the same classes of inhibitors as described for Prox-1, as well as antibodies and antibody fragment substances, is specifically contemplated. In addition, all three tissue inhibitors of matrix metalloproteinases were absent from the SW480R cells, which may further account for their increased tumor growth in vivo. In contrast, the SW480A cells expressed higher levels of the chemokine receptor CXCR4, which is expressed in the normal colonic epithelium (Jordan et al., J Clin Invest 104, 1061-9, 1999). In summary, the gene expression profile of the SW480R cells correlates well with a

highly aggressive transformed phenotype, whereas the SW480A cells display more

differentiated features typical of cells in the colonic crypts.

WC08914834 [file ///E:/WC08914854.cpc]

 $Table\ I.\ Examples\ of\ groups\ of\ genes\ differentially\ expressed\ in\ round\ versus\ adherent\ SW480\ clones.\ Two\ round\ and\ two\ adherent\ clones\ were\ analyzed.$

			-	
Gene function and name	UniGene	Gene	Log ₂ ratio,	St.
	cluster	symbol	average	dev
1. Cytoskeleton and adhesion		•		
collagen, type XIII, alpha 1	Hs.211933	COL13A1	-5.6	0.9
fibronectin 1	Hs.287820	FN1	-5.2	0.5
integrin, alpha 7	Hs.74369	ITGA7	-4.3	0.3
vimentin	Hs.297753	VIM	-4.1	0.6
filamin B, beta (actin binding protein 278).	Hs.81008	FLNB	-3.8	0.7
integrin, beta 5	Hs.149846	ITGB5	-3.6	0.5
tubulin, beta polypeptide	Hs.274398	TUBB	-3.3	0.7
PTPL1-associated RhoGAP 1	Hs.70983	PARG1	-3.0	0.5
collagen, type IX, alpha 3	Hs.53563	COL9A3	-2.8	0.8
paralemmin	Hs.78482	PALM	-2.7	0.2
PDZ and LIM domain 1 (elfin)	Hs.75807	PDLIM1	-2.7	0.2
cadherin 11, type 2, OB-cadherin (osteoblast)	Hs.75929	CDH11	-2.6	0.7
myosin IC	Hs.286226	MYO1C	-2.6	0.6
integrin, alpha 3	Hs.265829	ITGA3	-2.6	0.4
discs, large (Drosophila) homolog 1	Hs.154294	DLG1	-2.5	0.1
integrin, alphaV	Hs.295726	ITGAV	-2.5	0.3
CDC42 effector protein (Rho GTPase	Hs.260024			
binding) 3		CDC42EP3	-2.4	0.4
ephrin-B1	Hs.144700	EFNB1	-2.3	0.4
FERM, RhoGEF (ARHGEF) and pleckstrin	Hs.183738			
domain protein 1		FARP1	-2.3	0.4
myosin ID	Hs.39871	MYO1D	-2.1	0.2
PDZ and LIM domain 2 (mystique)	Hs.379109	PDLIM2	-2.1	0.4
tubulin beta-5	Hs.274398	TUBB-5	-1.9	0.3
erythrocyte membrane protein band 4.1-like 1	Hs.26395	EPB41L1	-1.9	0.1
gelsolin (amyloidosis, Finnish type)	Hs.290070	GSN	-1.9	0.3
laminin, gamma 1 (formerly LAMB2)	Hs.432855	LAMC1	-1.8	0.1
ras homolog gene family, member E	Hs.6838	ARHE	-1.7	0.2
IQ motif containing GTPase activating	Hs.1742			
protein 1		IQGAP1	-1.7	0.3
tight junction protein 1 (zona occludens 1)	Hs.74614	TJP1	-1.7	0.4
catenin (cadherin-associated protein), alpha-	Hs.58488			
like 1		CTNNAL1	-1.7	0.6
collagen, type XVIII, alpha 1	Hs.78409	COL18A1	-1.6	0.1
filamin A, alpha (actin binding protein 280)	Hs.195464	FLNA	-1.6	0.2
actin related protein 2/3 complex, subunit 1A	, Hs.90370			
41kDa		ARPC1A	-1.5	0.3
alpha integrin binding protein 63	-	AIBP63	-1.4	0.3
spectrin, alpha, non-erythrocytic 1 (alpha-	Hs.77196			
fodrin)		SPTAN1	-1.4	0.2
villin 2 (ezrin)	Hs.155191	VIL2	-1.4	0.3
actin related protein 2/3 complex, subunit 1B,	Hs.433506			
41kDa		ARPC1B	-1.3	0.1
plakophilin 4	Hs.152151	PKP4	-1.3	0.3
ras homolog gene family, member C	Hs.179735	ARHC	-1.1	0.1
moesin	Hs.170328	MSN	-1.1	0.1

5

10

myristoylated alanine-rich protein kinase C	Hs.75607			
substrate		MARCKS	-1.1	0.2
2. Tumor growth and invasion				
tissue inhibitor of metalloproteinase 2	Hs.6441	TIMP2	-2.3	0.21
tissue inhibitor of metalloproteinase 3	Hs.245188	TIMP3	-1.5	0.14
Cyclin-dependent kinase inhibitor 1A (p21,	Hs.179665			
Cip1)		CDKN1A	-2.5	0
tissue inhibitor of metalloproteinase 1	Hs.5831	TIMP1	-1.5	0.4
met proto-oncogene (hepatocyte growth fact	orHs.316752			
receptor)		MET	2.6	0.46
Fibroblast growth receptor 4	Hs.165950	FGFR4	3.9	0.76
Expressed in normal intestinal epitheli				
CXCR4	Hs.89414	CXCR4	-1.3	0.1
solute carrier family 7 (cationic amino acid	Hs.22891	or on to	1.0	
transporter, y+ system), member 8		SLC7A8	-1.8	
4. Notch pathway	** ***	N. COMOTTO		0.15
Notch homolog 2 (Drosophila)	Hs.8121	NOTCH2	-1.4 -2.1	0.15
hairy homolog (Drosophila), HES1	Hs.250666	HRY	1.6	0.2
jagged 2	Hs.166154	JAG2	1.0	0.01
5. Wnt pathway	TT- 150010			0.12
wingless-type MMTV integration site family member 5A	, Hs.152213	WNT5A	-5.8	0.12
11101111	TT. 4000			1.21
dickkopf homolog 3	Hs.4909	DKK3	-5.6	
wingless-type MMTV integration site family	, Hs.29/64	***	40	0.23
member 6		WNT6	-4.2	0.00
frizzled homolog 7 (Drosophila)	Hs.173859	FZD7	-4.1	0.65
frizzled homolog 2 (Drosophila)	Hs.81217	FZD2	-3.7	0.56
frizzled homolog 10 (Drosophila)	Hs.31664	FZD10	2.97	0.86
dickkopf homolog 4	Hs.159311	DKK4	7.37	0.71

EXAMPLE 4

PROX-1 SILENCING IN SW480R CELLS LEADS TO A DIFFERENTIATED AND QUIESCENT PHENOTYPE.

Experiments were conducted to investigate whether Prox-1 plays role in the generation and maintenance of the highly transformed phenotype. Prox-1 mRNA and protein in the SW480R cells was suppressed using Prox-1 targeting siRNA. Absence of Prox-1 in Prox-1 siRNA but not the control GFP siRNA transfected cells was confirmed by immunofluorescent staining, and nuclei were visualized with Hoechst 33342. Prox-1 siRNA-transfected cells but not the untransfected or GFP siRNA transfected cells underwent a morphological change, which became visible by 72 hours and persisted at least for 10 days after the transient transfection. The Prox-1 siRNA transfected cells become first more elongated and

15

20

25

- 65 -

displayed extensive membrane ruffling. Eventually the Prox-1 siRNA cells started to spread on the plate and a number of increased actin stress fibers could be visualized by phalloidine staining. BrdU incorporation experiments demonstrated that the Prox-1 siRNA transfected cells proliferated at the lower rate than GFPsi or nontransfected cells (22±0.5% of BrdU positive cells in Prox-1 siRNA A16, 18±1% Prox-1 siRNA A25 vs 34+4% GFP siRNA).

Changes in the gene expression profiles of the SW480R and SW480A cells 120 and 240 h posttransfection, when the morphological changes were apparent, were also analyzed. Only 29 down-regulated and 120 upregulated genes in Prox-1 siRNA versus GFP siRNA transfected cells (Table II) were identified. 41% of these genes were differentially expressed between the SW480R and SW480A cells, suggesting that Prox-1 at least partially determines the phenotype of SW480R cells. The ablation of Prox-1 led to upregulation of a number of known epithelial markers, such as annexin A1, CRPB2, S100A3, and EMP1, along with the increase in cell adhesion molecules OB-cadherin and integrins beta7, beta5 and alpha 1. In line with the observed growth arrest, also observed was the decrease in c-myc and a strong increase of CDK inhibitor p21Cip1. Highly similar changes in gene expression profile were observed when another unrelated Prox-1si RNA was used, suggesting that the cellular effects are due to the specific targeting of Prox-1, and they did not result from off-target silencing. In addition, titration experiments demonstrated that the induction of p21 and other target genes occurred even at the low (20 nM) concentration of Prox-1 siRNAs but not of the control GFP siRNA. Also, the mentioned gene changes were not observed in Prox-1 negative SW480A cells transfected with siRNAs at 100 nm concentration. The transfection efficiency was controlled using another siRNA, which successfully suppressed the expression of the target gene in SW480A cells.

Page 88 of 970

WO 2005/014854

- 66 -

Table II. Genes regulated by Prox-1 in SW480R cells. Asterisk indicates genes that were flagged as absent in either Prox-1 siRNA or GFP siRNA treated cells. Genes differentially expressed between SW480R and SW480ADH cells are shown in bold.

Genes down-regulated in the absence of Prox-1	UniGene cluster	Gene symbol	Log ₂ ratio, average	stdev
Nebulette	Hs.5025	NEBL	-2.0	0.4
transforming growth factor, beta-induced,	Hs.118787	TGFBI	-1.9	0.1
68kDa				
trinucleotide repeat containing 9	Hs.110826	TNRC9	-1.9	0.2
insulin-like growth factor binding protein 3	Hs.77326	IGFBP3	-1.6	0.0
calpain 1, (mu/I) large subunit	Hs.2575	CAPN1	-1.5	0.3
inhibitor of DNA binding 1	Hs.75424	ID1	-1.5	0.3
midkine (neurite growth-promoting factor 2)	Hs.82045	MDK	-1.5	0.1
FK506 binding protein 11, 19 kDa	Hs.24048	FKBP11	-1.4	0.1
caspase recruitment domain family, member 10	Hs.57973	CARD10	-1.3	0.1
inhibin, beta B (activin AB beta polypeptide)	Hs.1735	INHBB	-1.3	0.2
L1 cell adhesion molecule	Hs.1757	L1CAM	-1.2	0.1
glutathione peroxidase 2 (gastrointestinal)	Hs.2704	GPX2	-1.2	0.0
eukaryotic translation elongation factor 1 alpha	Hs.2642	EEF1A2	-1.2	0.2
2				
hypothetical protein FLJ11149	Hs.37558	FLJ11149	-1.2	0.2
potassium voltage-gated channel, subfamily H	Hs.188021	KCNH2	-1.1	0.1
(eag-related), member 2				
KIAA0182 protein	Hs.75909	KIAA0182	-1.1	0.0
lectin, galactoside-binding, soluble, 1 (galectin 1)	Hs.382367	LGALS1	-1.1	0.1
Homo sapiens cDNA FLJ41000 fis,	-	-	-1.1	0.3
ephrin-B2	Hs.30942	EFNB2	-1.1	0.1
v-mvc mvelocytomatosis viral oncogene	Hs.79070	MYC	-1.1	0.1
homolog (avian)				
S100 calcium binding protein A14	Hs.288998	S100A14	-1.1	0.2
Alpha one globin [Homo sapiens], mRNA			-1.1	0.1
sequence*				
hypothetical protein FLJ10986*	Hs.273333	FLJ10986	-1.0	0.0
hypothetical protein FLJ11149	Hs.37558	FLJ11149	-1	0.0
myelin transcription factor 1*		MYT1	-1.0	0.0
nucleolar autoantigen (55kD) similar to rat	Hs.446459	SC65	-1.0	0.1
synaptonemal complex protein*				
tumor necrosis factor receptor superfamily,	Hs.455817	TNFRSF6E	3 -1.0	0.1
member 6b, decoy				
jagged 2	Hs.166154	JAG2	-1.0	0.1
mitochondrial ribosomal protein S2	Hs.20776	MRPS2	-1.0	0.1
Total: 29 genes				

Genes up-regulated in the absence of Prox1	UniGene	Gene	Log2 ratio.	Stdev
	cluster	symbol	average	
insulin-like growth factor binding protein 7*	Hs.119206		5.8	0.4
chitinase 3-like 1 (cartilage glycoprotein-39)*	Hs.75184	CHI3L1	5.3	0.8
chemokine (C-X-C motif) receptor 4*	Hs.89414	CXCR4	4.5	1.1
semaphorin 3C*	Hs.171921	SEMA3C	4.5	4.5
cadherin 11, type 2, OB-cadherin (osteoblast)*	Hs.75929	CDH11	3.8	0.3
annexin A1	Hs.78225	ANXA1	3.7	1.1
hypothetical protein MGC10796*	-	MGC1079	3.3	0.4
		6		
CD44 antigen	Hs.169610	CD44	2.6	1.1
Homo sapiens clone 23785 mRNA sequence	-	-	2.9	0.4
epithelial membrane protein 1*	Hs.79368	EMP1	2.9	0.1
inhibitor of DNA binding 2, dominant negative	Hs.180919	ID2	2.8	0.1
helix-loop-helix protein*				
Human HepG2 3' region cDNA, clone hmd1f06,	-	-	2.8	0.3
mRNA sequence	TT 04 F04	ma remove	• •	0.5
tumor necrosis factor receptor superfamily,	Hs.81791	TNFRSF1	2.6	0.7
member *11b (osteoprotegerin)	** 100006	1B	2.6	1.1
likely homolog of mouse glucuronyl C5-epimerase*		GLCE RNASE1	2.6	0.1
ribonuclease, RNase A family, 1 (pancreatic)*	Hs.78224		2.5	0.1
apolipoprotein B mRNA editing enzyme, catalytic	CHS.220307	APOBEC 3B	2.5	0.1
polypeptide-like 3B*	TY. 77240	HPGD	2.5	1.1
hydroxyprostaglandin dehydrogenase 15-(NAD)*	Hs.283675	NPD009	2.5	0.6
NPD009 protein	Hs.1741	ITGB7	2.4	0.0
integrin, beta 7*	Hs.154302	FGF20	2.3	1.0
fibroblast growth factor 20*	Hs.13245	KIAA0455		1.3
KIAA0455 gene product CAMP-specific phosphodiesterase 8B1 [Homo	Hs.78106	PDE8B	2.3	0.4
	115.70100	IDLOD	2.3	0.7
sapiens], mRNA sequence* ectodermal-neural cortex (with BTB-like	Hs.104925	ENC1	2.3	0.2
domain)*	113.104725	ENCI	210	0.2
frizzled homolog 1 (Drosophila)*	Hs.94234	FZD1	2.3	0.8
S100 calcium binding protein A3*	Hs.433168	S100A3	2.2	0.6
zeta-chain (TCR) associated protein kinase 70kDa*		ZAP70	2.2	1.1
platelet derived growth factor C*	Hs.43080	PDGFC	2.1	0.1
cystatin D *	Hs.121489	CST5	2.1	0.3
CCAAT/enhancer binding protein (C/EBP), delta		CEBPD	2.1	0.1
sorbin and SH3 domain containing 1	Hs.108924	SORBS1	2.1	0.5
metallothionein 2A	Hs.118786	MT2A	2.0	0.6
RAS guanyl releasing protein 1 (calcium and DAG-		RASGRP1	2.0	0.4
regulated)	113.102371	IOTOOIG I	2.0	0.1
checkpoint suppressor 1	Hs.211773	CHES1	2.0	0.4
chondroitin beta1,4 N-	Hs.11260	ChGn	2.0	0.4
acetylgalactosaminyltransferase*	110.11200	CHOL		
filamin B, beta (actin binding protein 278)*	Hs.81008	FLNB	2.0	0.4
aldehyde dehydrogenase 1 family, member A2*	Hs.95197	ALDH1A2		0.6
jagged 1 (Alagille syndrome)	Hs.91143	JAG1	2.0	0.1
A kinase (PRKA) anchor protein (gravin) 12*	Hs.788	AKAP12	1.9	0.1
metallothionein 1X*	Hs.380778	MT1X	1.9	0.8
creatine kinase, mitochondrial 2 (sarcomeric)	Hs.80691	CKMT2	1.8	0.6
creatine kinase, intocuolidran 2 (sar conteric)	***************************************		2.0	

- 68 -

serum-inducible kinase	Hs.3838	SNK	1.8	0.1
CGI-130 protein	Hs.32826	CGI-130	1.8	0.1
guanine nucleotide binding protein (G protein),	Hs.203862	GNAI1	1.8	0.4
alpha inhibiting activity polypeptide 1				
related to the N terminus of tre*	Hs.278526	RNTRE	1.7	0.4
solute carrier family 12 (sodium/potassium/chloride	Hs.110736	SLC12A2	1.7	0.3
transporters), member 2				
Human clone 23612 mRNA sequence	-	-	1.7	1.0
ankyrin repeat and SOCS box-containing 4	Hs.248062	ASB4	1.7	0.8
apolipoprotein B mRNA editing enzyme, catalytic	Hs.8583	APOBEC3	1.7	0.1
polypeptide-like 3C		C		
cellular retinoic acid binding protein 2*	Hs.183650	CRABP2	1.7	0.1
KIAA0657 protein*	Hs.6654	KIAA065	1.7	1.1
		7		0.1
phosphodiesterase 4D, cAMP-specific	Hs.172081	PDE4D	1.7	0.1
(phosphodiesterase E3 dunce homolog, Drosophila)	** *****			0.4
autism susceptibility candidate 2	Hs.32168	AUTS2	1.6	0.4
hairy/enhancer-of-split related with YRPW motif 2*	Hs.144287	HEY2	1.6	
immediate early response 5	Hs.15725	IER5	1.6	0.1
E3 ubiquitin ligase SMURF2	Hs.194477	SMURF2	1.6	0.4
ADP-ribosylation factor-like 7*	Hs.111554	ARL7	1.6	1.0
Ras and Rab Interactor 2*	Hs.62349	RIN2	1.6	0.4
GS3955 protein, Tribbles homolog 2	Hs.155418	TRB2	1.6	0.5
	TT- 440257	MT1L	1.5	0.6
metallothionein 1L	Hs.448357	GRM8	1.5	0.2
glutamate receptor, metabotropic 8	Hs.86204	KL	1.5	0.2
klotho	Hs.94592	CALMI.3	1.4	0.1
calmodulin-like 3	Hs.239600	ITGA1	1.4	0.0
integrin, alpha 1	Hs.116774		1.4	0.1
lymphoid enhancer-binding factor 1	Hs.44865	LEF1	1.4	0.4
epithelial V-like antigen 1	Hs.116651	EVA1	1.4	0.1
likely ortholog of mouse limb-bud and heart	Hs.57209	LBH	1.4	0.1
gene*	TT. 7000	ISG2	1.4	0.2
insulin induced protein 2	Hs.7089	PTCH	1.4	0.1
patched homolog (Drosophila)	Hs.159526	CKLFSF6	1.3	0.1
chemokine-like factor super family 6	Hs.380627 Hs.93765	LHFP	1.3	0.4
lipoma HMGIC fusion partner		TGFA	1.3	0.4
transforming growth factor, alpha	Hs.170009	IGPA	1.3	0.4
Homo sapiens mRNA; cDNA DKFZp762M127	-	-	1.5	0.0
(from clone DKFZp762M127), mRNA sequence	II. 30022	CCNI	1.3	0.1
cyclin I	Hs.79933		1.3	0.5
hyaluronan synthase 2	Hs.159226	HAS2	1.3	0.5
IQ motif containing GTPase activating protein 1	Hs.1742	IQGAP1 ZNF216	1.3	0.3
zinc finger protein 216	Hs.406096	ZNF216	1.3	0.2
cDNA DKFZp564O0122		. TTD	1.2	0.2
aryl hydrocarbon receptor	Hs.170087	AHR		0.0
neuroepithelial cell transforming gene 1	Hs.25155	NET1	1.2	
sterol-C4-methyl oxidase-like	Hs.239926	SC4MOL	1.2	0.1
tubulin, alpha 3	Hs.433394		1.2	0.1
BCG-induced gene in monocytes, clone 103		BIGM103	1.2	0.0
cathepsin B	Hs.297939		1.2	0.0
keratin 6A	Hs,367762	KRT6A	1.2	0.4

5

Page 71 of 270

- 69 -

paraoxonase 2	Hs.169857	PON2	1.2	0.4
suppressor of cytokine signaling 5	Hs.169836	SOCS5	1.2	0.4
KIAA0877 protein	Hs.11217	KIAA0877	1.2	0.2
propionyl Coenzyme A carboxylase alpha	Hs.80741	PCCA	1.2	0.2
solute carrier family 2	Hs.7594	SLC2A3	1.2	0.1
solute carrier family 7	Hs.22891	SLC7A8	1.2	
•				0.1
Homo sapiens mRNA; cDNA DKFZp762M127	-	-	1.2	0.1
aryl hydrocarbon receptor nuclear translocator-like	Hs.74515	ARNTL	1.1	0.3
DnaJ (Hsp40) homolog, subfamily B, member 6	Hs.181195	DNAJB6	1.1	0.3
hypothetical protein FLJ21276	-	FLJ21276	1.1	0.1
integrin, beta 5	Hs.149846	ITGB5	1.1	0.1
PTK7 protein tyrosine kinase 7	Hs.90572	PTK7	1.1	0.3
transforming growth factor, beta receptor II	Hs.82028	TGFBR2	1.1	0.1
Homo sapiens cDNA FLJ25134 fis	Hs.301306		1.1	0.0
DKFZP564A2416 protein	Hs.5297	DKFZP56	1.1	0.1
-		4A2416		
dual specificity phosphatase 6	Hs.180383	DUSP6	1.1	0.4
midline 1 (Opitz/BBB syndrome)	Hs.27695	MID1	1.1	0.1
membrane protein, palmitoylated 1, 55kDa	Hs.1861	MPP1	1.1	0.1
LIM domain protein	Hs.424312	RIL	1.1	0.1
SH3-domain binding protein 5 (BTK-associated)	Hs.109150	SH3BP5	1.1	0.1
SIPL protein	Hs.64322	SIPL	1.1	0.1
tumor protein D52-like 1	Hs.16611	TPD52L1	1.1	0.4
3-hydroxy-3-methylglutaryl-Coenzyme A reductase	Hs.11899	HMGCR	1.0	0.1
homeo box B7	Hs.819	HOXB7	1.0	0.1
HIV-1 Tat interactive protein 2, 30kDa	Hs.90753	HTATIP2	1.0	0.1
insulin receptor substrate 2	Hs.143648	IRS2	1.0	0.1
tubulin beta-5	Hs.274398	TUBB-5	1.0	0.0
apoptosis antagonizing transcription factor	Hs.16178	AATF	1.0	0.1
E2F transcription factor 3	Hs.1189	E2F3	1.0	0.1
hypothetical protein FLJ12542	Hs.236940	FLJ12542	1.0	0.1
phafin 2, Pleckstrin homology domain containing,	Hs.29724	PLEKHF2	1.0	0.1
family F member 2				
proline 4-hydroxylase	Hs.3622	P4HA2	1.0	0.1
Homo sapiens G21VN02 mRNA, mRNA	Hs.324787		1.0	0.1
sequence, solute carrier family 5 (inositol		SLC5A3		
transporters), member 3		SLCSAS		
• ''				

EXAMPLE 5

ABLATION OF PROX-1 LEADS TO DIFFERENTIATION THROUGH UP-REGULATION OF NOTCH SIGNALING IN THE SW480R CELLS.

Activation of B-catenin/TCF pathway plays a central role in colon tumorigenesis (Giles, R. H., van Es, J. H. & Clevers, H., Biochim Biophys Acta 1653: 1-24, 2003). Of interest for this study, suppression of \(\mathcal{B} \)-catenin/TCF signaling in

15

20

25

30

- 70 -

colon cancer cells decreases the levels of c-myc, increases p21Cip1 levels and induces cell cycle arrest (van de Wetering et al., Cell 111:, 241-50, 2002). However, suppression of Prox-1 did not affect the activity of β-catenin/TCF-responsive reporter or nuclear localization of B-catenin. Moreover, an increased expression of several B-5 catenin/TCF-4 target genes, such as CD44, ENC1 and Id2 was observed in the absence of Prox-1 (Table II and not shown). These data suggest that Prox-1 may act via an alternative pathway to promote growth of colon cancer cells, and that both ßcatenin/TCF activation and overexpression of Prox-1 are necessary for cell transformation. Accordingly, contemplated herein are methods of alleviating colorectal cancer whereby a Prox-1 suppressor is administered in combination with a B-catenin/TCF signaling inhibitor. B-catenin/TCF signaling inhibitors may include dominant negative forms of TCF-4, siRNAs and microRNAs targeting TCF-4, ßcatenin, and c-myc, as well as small molecules that would interfere with binding of Bcatenin to TCF-4 or TCF-4 to target DNA sequences. Protocols for making these types of inhibitors are detailed above with respect to Prox-1 inhibition.

The DNA and protein sequences for \(\beta\)-catenin (SEO ID NOs: 10 and 11, respectively) are published and disclosed as Genbank Accession Number NM_001904. The DNA and protein sequences for TCF-4 (SEQ ID NOs: 12 and 13, respectively) are published and disclosed as Genbank Accession Number NM_003199. Related to the \(\beta\)-catenin/TCF signaling pathway is the APC gene, the sequence of which is publicly available as Genbank Accession Number NM_000038. The DNA and amino acid sequences for APC are also provided herein as SEQ ID NOs: 42 and 43, respectively. The DNA and protein sequences for C-myc (SEQ ID NOs: 44 and 45, respectively) are published and disclosed as Genbank Accession Number NM 002467.

Notch signaling has been shown to be essential for the generation of cell lineages in the crypts of the mouse small intestine. High levels of Notch are thought to suppress the expression of the basic helix-loop-helix transcription factor Math1 via the induction of the transcriptional repressor Hes1, which will lead to the differentiation of progenitor cells into enterocytes. Conversely, high levels of Math1 result in the differentiation towards the neuroendocrine, Goblet and Paneth cell types in the small intestine (Jensen, J. et al., Nat Genet 24: 36-44, 2000; Yang. O..

10

15

20

25

30

Hey2, and Hes1.

Page 73 of 270

Bermingham, N. A., Finegold, M. J. & Zoghbi, H. Y., Science 294: 2155-8, 2001). Among Notch signaling components, Notch2 and its target transcription factor Hes1 levels are higher in SW480A cells in comparison with the SW480R cells, suggesting that this pathway is functionally active in these cells. Interestingly, SW480R cells express higher levels of Notch ligand Jagged2. Suppression of Prox-1 resulted in upregulation of the Notch ligand Jagged1 and the direct target of the Notch pathway, the transcription factor Hey2, whereas the expression of Jagged2 and prostaglandin D2 synthase, previously shown to be negatively regulated by Notch signaling was suppressed (Fujimori, K. et al., J Biol Chem 278: 6018-26, 2003). SW480R cells were transfected with GFP siRNA or Prox-1 siRNA and GFB1-luc, TOPFlash or control FOP flash reporters. Firefly luciferase activity was normalized to Renilla luciferase activity. Up-regulation of Notch-responsive reporter GBF1-luc was observed in SW480R cells transfected with Prox-1 siRNAs. Accordingly, contemplated herein is a method of alleviating the symptoms of colorectal cancer comprising the administration of a Prox-1 suppressor in combination with a Notch agonist or target transcription factor. Notch agonists include Jagged1, Jagged2,

- 71 -

The DNA and protein sequences for Notch-1 (SEQ ID NOs: 14 and 15, respectively) are published and disclosed as Genbank Accession Numbers NM_017617. Likewise, the DNA and protein sequences for various forms of Notch (including 2-4) are publicly available and included herein as SEQ ID NOs: 16-21. In addition, the DNA and protein sequences for various ligands of Notch (including Jagged1, Jagged2, Jagged2 (transcript variant 2), Delta1, Delta3, Delta4, and Jagged2 (transcript variant 1)) are publicly available and included herein as SEQ ID NOs: 22-35, respectively. DNA and protein sequences for target Notch transcription factors Hey1, Hey2, and Hes1 are also publicly available and are included herein as SEQ ID NOs: 36-41, respectively.

Delta1, Delta3, Delta4, and Serrate. Target Notch transcription factors include Hev1,

EXAMPLE 6

SUPPRESSION OF PROX-1 INHIBITS GROWTH IN SOFT AGAR.

Since anchorage-independent growth is one of the hallmarks of malignant transformation, experiments were conducted to assess the effects of Prox-1

10

15

20

25

30

suppression on the growth of SW480R cells in soft agar. SW480R cells were transfected with GFP siPRNA, Prox-1 siRNA A16 or Prox-1 siRNA A25 repeatedly over an 8-day period, or left untreated, and seeded in soft agar in triplicate. The number of colonies was scored after two weeks of growth. Transfection with both Prox-1 siRNAs but not the control GFP siRNA significantly decreased the number of colonies formed after two weeks of growth in soft agar (Fig. 3A).

EXAMPLE 7

REGULATION OF PROSTAGLANDIN BIOSYNTHESIS BY PROX-1

COX-2 is a key enzyme involved in the conversion of arachidonic acid into the prostaglandin precursors PGG2 and PGH2, which are further transformed into biologically active prostaglandins by the action of corresponding synthases. Prostaglandins acts through binding to the G-protein coupled prostanoid receptors and they are rapidly inactivated by the action of 15-prostaglandin dehydrogenase (15-PGDH). COX-2 is overexpressed in the majority of colorectal cancers and in about half of colonic adenomas, suggesting that the increased PG production is important for tumor growth. In support of this view, treatment with non-steroid antiinflammatory drugs, which acts as inhibitors of COX-2, significantly reduces the risk of developing colon cancer (Gupta, R. A. & Dubois, R. N., Nat Rev Cancer 1: 11-21, 2001). Accordingly, contemplated herein is a method of alleviating colorectal cancer via the administration of a Prox-1 suppressor in combination with a COX-2 inhibitor. Cox-2 inhibitors may include the following non-steroid anti-inflammatory drugs: asprin, rofecoxib, celecoxib ,amidophen, analgin, anapyrin, feloran, indomethacin, paracetoamol, piroxicam, sedalgin, diclofenac sodium, ketoprofan, Acular[®], Ocufen[®], and Voltarol®.

Experiments were conducted which found that suppression of Prox-1 in SW480R cells resulted in the up-regulation of the expression of 15-PGDH and downregulation of prostaglandin D2 synthase, whereas overexpression of Prox-1 in SW480F cells down-regulated 15-PGDH and up-regulated PGD2 synthase (Affymetrix results). These data suggest that Prox-1 may be important for the control of the balance of the total PG production in tumor cells, i.e., in the presence of Prox-1 decreased expression of 15-PGDH will result in higher net amounts of biologically active prostaglandins and enhanced tumor growth.

Page 75 of 270

10

15

20

25

30

Because SW480 cells do not express COX-2, contemplated herein are experiments to assess the effects of Prox-1 on prostanoid biosynthesis in the SW480F cells stably transfected with COX-2 or in the cell line which is known to express this enzyme, such as HCA-7. To generate COX-2 expressing cells, SW480F cells are transfected with a mixture of a COX-2 expressing vector and the plasmid bearing hygromycin resistance gene, such as pCDNA3.1hygro (Invitrogen) using Lipofectamine 2000, as described in Materials and Methods, and the stable clones are selected using 200 µg/ml hygromycin B (Calbiochem) over a period of 2-3 weeks. Individual clones are isolated and the expression of COX-2 protein is tested using Western blotting. Functionality of COX-2 may be further verified in COX-2 expressing clones in comparison to the control cells, using ELISA to monitor PGE2 production according to the manufacturer's instructions (Cayman Chemical). To test the effects of Prox-1 on prostaglandin biosynthesis, COX-2 expressing cells can be infected with AdProx-1 or the control AdGFP virus, as described previously (Petrova et al., Embo J. 21: 4593-9), and the amount of biologically active PGE2, and total amount of metabolized PGE2 in cell conditioned medium, determined by ELISA (Cayman Chemicals). If overexpression of Prox-1 increases levels of the biologically active PGE2 in vitro, contemplated herein are studies to assess the link between Prox-1 overexpression and prostanoid biosynthesis in vivo. SW480R or HCA-7 stably overexpressing 15-PGDH will be produced using the protocol described above, and the tumorigenic potential of these cells in nude mice will be determined. In addition, contemplated are studies regarding the effects of the treatment with 15-PGDH inhibitor on growth of Prox-1 expressing or control xenografts in nude mice.

EXAMPLE 8

EFFECTS OF NOTCH SIGNAL TRANSDUCTION

To investigate the effects of altered Notch signaling in SW480R cells described herein are experiments that overexpress constitutively active Notch1, Notch2, Notch3, and Notch4 intracellular domains, as well as Jagged1, soluble Jagged1, and Jagged2 using recombinant adenoviruses. Replication-deficient adenoviruses for the expression of constitutively active Notch 1-4 intracellular domains, and Notch ligands Jagged1, Jagged2, Delta1, Delta3, Delta4, and Serrate are produced. SW480R cells are infected with adenoviruses. 48-72 h postinfection cells

10

20

25

30

Page 76 of 270

are seeded in soft agar as described previously, and the number of colonies are scored after two weeks in culture. In parallel, total RNA is isolated and analysis of gene expression changes is conducted using Affymetrix® microarray according to the previously described procedures. If overexpression of Notch or its ligand results in

the inhibition of cell growth in soft agar, further studies are conducted to investigate the effects of activation of Notch signaling on growth of tumors in nude mice.

EXAMPLE 9

EFFECTS OF PROX-1 SUPPRESSION ON SW480R IN NUDE MICE

Also contemplated herein are studies to assess the effects of Prox-1 suppression on the growth of SW480R tumors in nude mice. Nuhum mice can be inoculated subcutaneously or intraperitoneally with 1-5 x 10⁶ cells/mice using SW480R cells transfected with GFPsi RNA or Prox-1 siRNA, or transduced with the adenoviruses described in Example 8. Tumors are allowed to grow for 3-5 weeks, and tumor size measured twice a week. Animals are sacrificed by cervical dislocation, tumors excised, and processed for immunohistoshemical staining. The tumor histology, expression of differentiation markers, proliferation index and vascularization monitored using the antibodies against KI67 (proliferation), mucin, galectin-2, p21cip1 (differentiation), PECAM-1 and vWF (blood vessel markers), and the standard immunostaining protocols.

To assess of the effects of Prox-1-dependent genes, such as 15-PGDH, on prostaglandin metabolism and tumor growth in vivo, SW480R or HCA-7 cells recombinantly overexpressing 15-PGDH and control cells, are implanted subcutaneously into the mu/nu mice, and tumor growth and differentiation studied. In order to confirm the specificity of 15-PGDH effects, a subset of the control and 15-PGDH overexpressing tumor-bearing animals are treated with the 15-PGDH inhibitor CAY10397, administered intravenously, or in drinking water.

EXAMPLE 10

ANALYSIS OF PROX-1 IN NATURAL COLORECTAL TUMORS

Experiments to asses the expression of Prox-1 in a mouse model of human familial adenomatous polyposis, Apc min/+ are also contemplated herein. The Apc min/+ mice bear a truncating mutation in one allele of Apc gene, and develop

25

30

WO 2005/014854

Page 77 of 970

multiple intestinal polyps, which further progress to adenocarcinoma. Mice are commercially available from JAX. As another cancer model, SMAD3 deficient mice, which develop invasive colorectal cancer, is available. The DNA and protein sequences for APC (SEQ ID NOs: 42 and 43, respectively) are published and

5 disclosed as Genbank Accession Number NM_000038.

Administration of a Prox-1 inhibitor and a placebo to mice of the above-described models is also contemplated. Prox-1 inhibitors and administration thereof are described herein. Prox-1 inhibitors available for administration include, but are not limited to, antisense oligonucleotides, siRNA constructs, or dominant negative proteins. Monitoring of the mice post-administration is contemplated to evaluate the effects of adenocarcinoma and colorectal cancer development and growth. Among the results are measurements of the speed of tumor growth in mice that received the Prox-1 inhibitor versus mice that received the placebo, thus, providing a beneficial efficacy model for the particular Prox-1 inhibitor. Also contemplated are methods for screening Prox-1 levels in family members with familial adenomatous polyposis. Methods for screening Prox-1 levels are described herein. Administration of a prophylactic to protect from progression, or the onset of cancer, is contemplated where elevated levels of Prox-1 are observed.

EXAMPLE 11

DETECTION OF PROX-1 PROTEIN EXPRESSION IN COLORECTAL CANCER

As described above, measuring Prox-1 protein expression in colon tissues may be a useful tool for diagnosing colon cancer and/or premalignancies.
Prox-1 mRNA can be detected in colorectal cancer tissues as described in Example 2.
The following prospective example may be conducted to determine whether Prox-1 protein correlates with Prox-1 transcript expression in colorectal cancer tissue. The immunohistochemical analysis can be carried out as follows using an anti-human Prox-1 antibody directed against the human Prox-1 peptide, as described in Example 1.

The tissues for screening are snap frozen in liquid nitrogen after dissection, embedded in OCT compound, and sectioned. Sections are fixed on -20°C methanol for 10 min, and processed for staining. WC05914E54 [Ille //E./WC05914854.cpe]

WO 2005/014854

10

15

20

25

PCT/EP2004/008819

- 76 -

To enhance epitope recovery, the tissues may undergo steam induced epitope recovery with a retrieval solution, including several different SHIER solutions with and without enzyme digestion at two different concentrations. The tissues can then be heated in the capillary gap in the upper chamber of a Black and Decker Steamer as described in Ladner et al. (Cancer Research, 60: 3493-3503, 2000).

Automated immunohistochemistry is carried out with the TECHMATE 1000 or TECHMATE 500 (BioTek Solutions, Ventura Medical System). Specifically, the tissues are blocked with 3% and 10 % normal goat serum for 15 and 30 minutes respectively. Subsequently, the tissues are incubated with the primary antibody (anti-Prox-1 antibody) for 60 minutes at 3.0 *g/ml. The tissues are stained with the biotinylated goat-anti-rabbit IgG secondary antibody for 25 minutes. Optimal results are obtained with overnight incubation. To ensure the staining procedure is working appropriately, anti-vimentin is used as a positive control and rabbit IgG is used as a negative control.

The antibody binding is detected by an avidin-biotin based tissue staining system where horse-radish peroixidase is used as a reporter enzyme and DAB (3,3'-Diaminobenzididine Tetrahydrochloride) is used as a chromogen. Specifically, the endogenous peroxides are blocked for 30 minutes, the avidin-biotin complex reagent is added and then the tissues are incubated in DAB for a total of 15 minutes. Finally, the tissues are counterstained with hemotoxylin to assess cell and tissue morphology.

The slides are mounted in Aquamount, and the tissues are examined visually under a light microscope. Tissue that is positive for increased Prox-1 protein expression as compared to healthy colon tissue, or other cancer tissues, indicate colorectal cancer and/or premalignant lesions.

While this prospective example provide one means of detecting colon cancer, other means will be obvious to those with skill in the art. Various options for detecting Prox-1 expression, and, therefore screen for colon cancer, include, among others, ELISA-based techniques and Western blotting techniques.

30

Page 79 of 270

- 77 -

EXAMPLE 12

EXPRESSION PATTERN OF PROX-1 IN NORMAL COLONIC EPITHELIUM

Studies were conducted to compare Prox-1 expression in normal

- cololnic epithelium. In normal colonic mucosa, all Prox-1 expressing cells were positive for the intestinal epithelial transcription factor CDX2. There was no overlap with the expression of MUC2, expressed by the goblet cells; however, a subset of
 Prox-1 positive cells also expressed the pan-neuroendocrine marker chromogranin A.
 Also observed was weaker but significant Prox-1 expression in the bottom of the
- 10 crypts below the cell proliferation zone identified by staining for the Ki67 antigen.

Colonic epithelium is composed of the slowly dividing stem cells located in the bottom of the crypt, the cell proliferation zone with transient amplifying cells, which give rise to the three main colonic epithelial cell types, and terminally differentiated cells, located in the upper part of the crypts. The location of Prox-1 15 positive cells at the base of the crypts, therefore, corresponded to the position of the intestinal stem cells. (Bach. S. P., Renehan, A. G. & Potten, C. S., Carcinogenesis 21, 469-76 (2000); Potten, C. S., Kellett, M., Roberts, S. A., Rew, D. A. & Wilson, G. D., Gut 33, 71-8 (1992)) A similar staining pattern was observed in the murine descending colon, whereas the duodenal epithelium was negative for Prox-1. Expression of p21 CIPL/WAF1 marks the differentiated compartment of colonic crypts 20 independently of the cell type (Doglioni, C. et al., J Pathol 179, 248-53 (1996)). Accordingly, studies were conducted regarding the expression of Prox-1 in relation to p21CPI/WAF1. All Prox-1 positive cells located at the bottom of the crypts were negative for p21CIPI/WAF1; however, most of the rare Prox-1 positive cells present in the upper parts of the crypts were also negative for $p21^{CPI/WAFI}$, demonstrating a 25 mutually exclusive relation between Prox-1 expression and terminal differentiation. p21(CIP1)/(WAF1) (CDKN1) sequences are published and disclosed as Genbank Accession Numbers NM 078467 and NM 000389. These variants (1) and (2) encode the same protein.

Based on the data implicating Prospero/Prox-1 in cell fate determination in other cell types, and on its expression pattern in colonic epithelial cells it is contemplated that Prox-1 may be involved in the regulation of the WG05014654 [file ///E:/WG05014854.cpc]

10

15

20

25

WO 2005/014854 PCT/EP2004/008819

- 78 -

Page 30 of 270

neuroendocrine cell fate as well as the stem cell phenotype. This hypothesis is supported by the fact that PROX-1 is overexpressed in intestinal neoplasms from Ape^{minth} mice and that its expression is regulated by TCF/B-catenin pathway in vitro (see Examples 13 and 14). This hypothesis is also in agreement with previous results showing that targeted inactivation of Tcf7l2 gene encoding TCF-4 leads to the depletion of intestinal stem cell compartment and loss of neurodendocrine lineage (Korinek, V. et al., Nat Genet 19, 379-83 (1998)).

EXAMPLE 13

$\frac{\text{PROX-1 IS OVEREXPRESSED IN INTESTINAL NEOPLASMS FROM}{\text{APC}^{\min / 4} \text{ MICE , BUT NOT FROM Ltbp4}^{\prime\prime} \text{ DEFICIENT MICE}}$

Studies were also conducted to assess Prox-1 expression in Apc^{min'+} mice. A truncating germline mutation in the Apc gene together with somatic inactivation of the remaining wild type allele, lead to abnormal \$B\$-catenin/TCF signaling in intestinal epithelial cells of Apc^{min'+} mice and development of multiple intestinal polyps (Luongo, C., Moser, A. R., Gledhill, S. & Dove, W. F., Cancer Res 54, 5947-52 (1994); Su, L. K. et al., Science 256, 668-70 (1992)). High levels of Prox-1 in intestinal neoplasms of Apc^{min'+} mice were observed. Prox-1 mRNA and protein were present in tumor cells with high cytoplasmic and nuclear \$B\$-catenin levels, but not in the differentiating cells of the neighboring normal glands with membrane localization of \$B\$-catenin.

Mutation in genes regulating TGFB signaling pathway, such as TGFRII and SMAD4 occur in human coloroctal cancer, and targeted inactivation of TGF-81 binding protein LTBP-4 leads to colon cancer in mice (White, R. L., Cell 92, 591-2 (1998); Sterner-Kock, A. et al., Genes Dev. 16, 2264-73 (2002)). Studies were conducted to assess Prox-1 expression in Ltpb4-/- mice. In contrast to the results from Ape min/+, accumulation of Prox-1 in the colonic adenocarinomas from Ltpb4-/- mice, which generally preserve normal distribution of B-catenin, was not observed. These results strongly suggest that Prox-1 is a target of APC/B-catenin/TCF pathway in vivo. Tumors from Ltpb4-/- mice had strongly increased number of lymphatic vessels, positive both for Prox-1 and LYYE-1.

25

30

WO 2005/014854

Page 31 of 270

- 79 -

EXAMPLE 14

PROX-1 EXPRESSION IS REGULATED BY \$\beta\$-CATENIN/TCF PATHWAY AND DNA METHYLATION

Further studies were conducted using SW480R cell line as an in vitro

5 model to investigate the role of Prox-1 in colorectal carcinoma. Suppression of Prox-1
expression using two different siRNAs (SEQ ID NOS: 4, 5, 6, and 7) did not affect
the activity of a β-catenin/TCF-responsive reporter, the nuclear localization of βcatenin, or the cellular content of active, non-phosphorylated β-catenin, confirming
that Prox-1 is not acting upstream of this pathway. In contrast, suppression of βcatenin using two independent siRNAs resulted in almost complete disappearance of
Prox-1 mRNA and protein. In line with this finding, suppression of Prox-1 was also
observed in SW480R cells transfected with dominant negative mutant of TCF4, which
disrupts β-catenin/TCF mediated transcription (Morin PJ, et al., Science 1997 Mar
21;275(5307):1787-90). However, overexpression of p21^{CDF/WAF1}, shown to induce
15 cell differentiation in colorectal carcinoma cells (van de Wetering, M. et al., Cell 111,
241-50 (2002)), did not modify Prox-1 levels. Taken together, these data show that
Prox-1 lies downstream of β-catenin/TCF4 and upstream of β21^{CDF/WAF1}.

Also observed was increased expression of several known β -catenin/TCF-4 target genes, such as CD44, ENC1 and ID2 in the absence of Prox-1 (Table II, (Fujita et al., 2001; Rockman et al., 2001; Wielenga et al., 1999)), while others such as $p21^{\text{CIPI/WAFI}}$, annexin Al, and OB-cadherin were induced upon suppression of either β -catenin or Prox-1. These results underline the complexity of the regulatory cascade initiated by β -catenin/TCF in CRC cells and suggest that concerted regulation by Prox-1 and other β -catenin/TCF targets is necessary for neoplastic growth.

Studies were also conducted to compare the activation of \$\beta\$-catenin/TCF signalting pathway in SW480R and SW480A cells. The SW480R cells had slightly more active \$\beta\$-catenin and displayed a two-fold increase in the activation of the TCF-responsive promoter TopFLASH; however, both cell lines clearly displayed nuclear localization of \$\beta\$-catenin as previously reported (Palmer, H. G. et al., J Cell Biol 154, 369-87 (2001)). These observations, together with the fact that abnormal \$\beta\$-catenin/TCF pathway signaling is a feature of the majority of colorectal

10

25

30

Page 32 of 970

cancer cell lines, suggest that B-catenin/TCF activation is necessary but not sufficient for the induction of Prox-1 expression in colorectal cancer.

DNA methylation is frequently abnormal in colorectal cancer, and it was reported recently that Prox-1 expression is suppressed in human hematological 5 cell lines due to hypermethylation of CpG islands in intron 1 of Prox-1 (Nagai, H. et al., Genes Chromosomes Cancer 38, 13-21 (2003)). Treatment of SW480A cells with the inhibitor of DNA methyltransferases 5-aza-2'-deoxycytidine did not result in the increase of Prox-1 mRNA, while there was increase in the expression of TIMP3. In contrast, 5-aza-2'-deoxycytidine almost completely suppressed Prox-1 expression in SW480R cells, suggesting that, at least in this cell type, the regulation of Prox-1 by DNA methylation is opposite to the one observed in leukemic cells.

Our finding that DNA demethylation decreases Prox-1 mRNA levels suggests the existence of a putative suppressor of Prox-1 transcription, whose expression becomes relieved upon treatment with 5-aza-2'-deoxycytidine. Since 5-15 aza-2'-deoxycytidine is used for the treatment of human cancers, our data also suggest that Prox-1 could be used as marker to identify the colorectal tumors which would respond favorably to this drug. Such screening of patients/tumors is intended as an aspect of the invention. The role of DNA methylation in the growth of intestinal neoplasms was previously demonstrated in mice heterozygous or hypomorphic for 20 DNA methyltransferase 1, a major enzyme involved in the methylation of DNA. These mice do not develop intestinal adenomas when crossed with Apcmin/+ mice. In contrast, they develop lymphomas, demonstrating cell type specific effects of decreased DNA methylation for cancerous growth (Gaudet, F. et al., Science 300, 489-92 (2003), Eads, C. A. et al., Cancer Res 62, 1296-9 (2002)).

EXAMPLE 15

PROX-1 SUPPRESSION AND OVEREXPRESSION IN COLORECTAL CANCER

To characterize the effects of Prox-1 suppression and overexpression in colorectal cancer, stable colorectal cancer cell line clones inducibly expressing Prox-1 or Prox-1 targeting siRNAs are employed. Cells are implanted into laboratory animals, such as nu/nu mice, and tumor growth is studied in control mice and mice treated with doxycycline. As an alternative approach, Prox-1 or Prox-1 siRNA

10

15

PCT/EP2004/008819

Page 33 of 270

expressing lentiviruses are employed to provide long-term expression in colorectal cancer cell lines in vitro and in vivo.

To inducibly suppress and overexpress Prox-1 or Prox-1 siRNAs, Prox-1 cDNA was subcloned in pTetOS vector (Sarao and Dumont, Transgenics Res., 1998), where it is placed under the control of doxycycline regulated promoter. Prox-1 siRNAs were subcloned in pTer vector (van der Wetering et al., Embo Reports, 2003). Colorectal carcinoma cells stably expressing tTA activator may be transfected with Prox-1/TetOS or Prox-1 siRNS/pTer vectors. Clones may be selected in the presence of blasticidine and G480 and further tested for the expression of Prox-1 by immunostaining or Prox-1 siRNA by suppression of co-transfected Prox-1 in the presence of doxycycline. For production of Prox-1 lentiviruses, Prox-1 cDNA was subcloned into FUiresGiPPW (Lois et al., Science, 2002). For production of Prox-1 siRNA lentiviruses, Prox-1 siRNAs 1 and 2 were subcloned into lentiviral vector pLL3.7 (Rubinson et al., Nat Genet, 2003).

Sequences of the DNA oligos used in the cloning of pLL3.7-Prox-1:

sense:

TGGTCATCTGCAAGCTGGATTTCAAGAGAATCCAGCTTGCAG ATGACCTTTTTC (SEO ID NO 47).

antisense:

20 TCGAGAAAAAAGGTCATCTGCAAGCTGGATTCTCTTGAAATCCAGCTTGC AGTGACCA (SEQ ID NO 48).

pLL3.7 PROX1-2: sense:

TGAGCCAGTTTGATATGGATTTCAAGAGAAACCATATCAAACTGGCTCTTT
TTTC (SEO ID NO 49).

25 antisense:

TCGAGAAAAAAGAGCCAGTTTGATATGGATTCTCTTGAAAT
CCATATCAAACTGCTCA (SEQ ID NO 50).

Inducible Prox-1 targeting short hairpin RNA ("shRNA") expression may also be achieved via CRE recombinase activated induction system whereby an

15

inactivating stuffer DNA sequence surrounded by modified loxP sites is removed from an shRNA expression cassette by the CRE recombinase activity, thus activating the shRNA expression. Alternatively a similar system may be used to inactivate shRNA expression upon introduciton of CRE recombinase. Tiscornia et al PNAS 2004, and Coumoul et al NAR 2004) described these systems.

shRNA or "short hairpin RNA" is a short sequence of RNA which makes a tight hairpin turn and can be used to silence gene expression. This small hairpin RNA was first used in a lentiviral vector. (Abbas-Terki T. et al., Hun. Gene Ther. 13(18):2197-201 (2002)). shRNA generates siRNA in cells (An DS et al., Hun. Gene Ther. 14(12):1207-12 (2003)).

To study the effects of Prox-1 overexpression in vivo, transgenic mice overexpressing Prox-1 under the control of intestinal-specific promoter, such as villin, Cyp1A or FABPi are created using standard techniques. The proliferation and differentiation status of intestinal epithelial cells is studied by staining of intestinal tissues for PCNA, Ki67, CDKN1A, mucins, lysozyme, chromogranin A and carboxipeptidases II and IV. The crossing of Prox-1 transgenic animals with Apc^{min/+} mice permits determination of whether Prox-1 overexpression influences the number and size of intestinal polyps in this mouse model of colorectal cancer.

Specifically, for in vivo studies of Prox-1 in intestinal differentiation. 20 Prox-1 cDNA was subcloned in p12.4Vill plasmid, which places it under the control of 12.4 kb mous villin promoter (Madison et al., J.Biol.Chem.2002, genomic contig NT_039170). The construct may be used for the production of villin-Prox-1 transgenic mice, which will overexpress Prox-1 at the sites of villin expression, i.e. intestinal epithelial cells. Also contemplated is subcloning Prox-1 cDNA into the 25 vector z/AP (Lobe et al., Dev. Biol, 1999), to be able conditionally express Prox-1 in any given tissue. In this approach Prox-1 cDNA is placed between the loxP sites, and it is not expressed until Cre recombinase is present in the same cell. Excision of loxP sites places the transgene under the control of chicken B-actin promoter. To achieve intestinal specific overexpression of Prox-1 the transgenic animals containing z/AP-30 Prox-1 expression cassettes in their genomes may be crossed with villin-Cre mice (Madison et al., J.Biol.Chem.2002). The latter approach may be preferable to the villin-PROX1 overexpression because of potentially higher expression levels of the

Page 35 of 270

WO 2005/014854

invention.

10

15

20

- 83 -

transgene. Also contemplated in cloning Prox-1 cDNA under the control of rat Fabpi promoter (Rottman and Gordon, J. Biol. Chem., 1993, genomic contig NW_047627) or Cyp1A promoter (Sansom et al., Genes Dev., 2004, genomic contig NT_039474). The latter promoter has an advantage of being inducible upon administration of B-naphtoflavone. All of these transgenic mice are contemplated as aspects of the

EXAMPLE 16

DOMINANT NEGATIVE MUTANTS OF PROX-1

Further contemplated herein are dominant negative mutants of Prox-1. Specifically, a Prox-1 mutant protein lacking the transactivation domains or DNA binding domains may act in a dominant negative manner. Experiments to investigate this hypothesis may be conducted by producing a truncated form of Prox-1 lacking the last 60 amino acids or the first 575 amino acids. Disruption of the DNA binding domain entails truncation of the protein to exclude amino acids 572-634 of SEQ ID NO. 3, based on homology to Prospero (Drosophila). Disruption of the transactivation domain entails the deletion of amino acids 635-737. These proteins may then be tested for their ability to repress the induction of Prox-1 target genes upon co-transfection with the wt Prox-1. If such an effect is observed, the construct can be used for the generation of transgenic animals with the purpose of suppression of Prox-1 effects in vivo, or for the anti-Prox-1 therapies in colorectal cancer.

The foregoing examples are intended to be illustrative of the invention and not intended to limit the claims which define the invention. All patent, journal, and other literature cited herein is incorporated herein by reference in the entirety.

While the invention is described specifically with respect to Prox-1,

there are other genes described in tables herein that are differentially expressed. All
materials and methods described herein are applicable to the genes described in the
tables.

Page 36 of 970

- 84 -

Claims:

WO 2005/014854

- A method of screening colon tissue for a pathological condition, said method comprising:
- measuring Prox-1 expression in a biological sample that comprises 5 colon tissue from a mammalian subject, wherein elevated Prox-1 expression in the colon tissue correlates with a pathological phenotype.
- 2. A method according to claim 1, comprising comparing Prox-1 expression in the colon tissue to Prox-1 expression in healthy colon tissue, wherein 10 increased Prox-1 expression in the colon tissue from the mammalian subject correlates with a pathological phenotype.
 - 3... A method according to claim 1 or 2, further comprising a step, prior to said measuring step, of obtaining the biological sample comprising colon tissue from a mammalian subject.
 - The method according to any one of claims 1-3, wherein the pathological condition is colon cancer, and wherein increased Prox-1 expression in the colon tissue is indicative of a cancerous or precancerous condition.

20

15

- The method according to any one of claims 1-4, wherein the measuring comprises measuring Prox-1 protein in the biological sample.
- The method of claim 5, wherein the measuring comprises contacting the colon tissue with a Prox-1 antibody or antigen-binding fragment 25 thereof.
 - 7. The method of any one of claims 1-6, wherein the measuring comprises measuring Prox-1 mRNA in the colon tissue.

WO 2005/014854

Page 37 of 970

- The method of claim 7, wherein the measuring comprises in situ hybridization to measure Prox-1 mRNA in the colon sample.
- 5 9. The method of claim 7, wherein the measuring comprises steps of isolating mRNA from the colon tissue and measuring Prox-1 mRNA in the isolated mRNA.
- 10. The method according to any one of claims 1-9, wherein the measuring comprises quantitative polymerase chain reaction (PCR) to quantify Prox-1 mRNA in the colon tissue relative to Prox-1 mRNA in healthy colon tissue.
 - 11. A method according to any one of claims 1-10, further comprising measuring expression of at least one gene selected from the group consisting of CD44, Enc1, and ID2 in the colon tissue, wherein elevated Prox-1 expression and elevated expression of the at least one gene in the colon tissue correlate with a pathological phenotype.
- 12. A method according to any one of claims 1-11, further
 20 comprising measuring activation of -catenin/TCF pathway in the colon tissue, wherein activation of the -catenin/TCF pathway and elevated Prox-1 expression in the colon tissue correlate with a pathological phenotype.
- 13. A method according to claim 12, wherein activation of the -25 catenin/TCF pathway is measured by at least one indicator in the colon tissue selected from the group consisting of: mutations in an APC gene; mutations in a -catenin gene; and nuclear localization of -catenin.

25

- The method according to any one of claims 1-13, wherein the mammalian subject is a human.
- 15. A method according to claim 14, further comprising a step of administering to a human subject identified as having a pathological condition characterized by increased Prox-1 expression in colon tissue a composition comprising a Prox-1 inhibitor.
- Use of a molecule that suppresses expression or activity of
 Prox-1 in the manufacture of a medicament for the treatment of colorectal cancer.
 - 17. A method of inhibiting the growth of colorectal cancer cells in a mammalian subject comprising the step of:

administering to the subject a composition comprising a molecule that

15 suppresses expression or activity of Prox-1, thereby inhibiting the growth of colon
carcinoma cells.

- $18. \hspace{0.5cm} \hbox{A method or use according to claim 16 or 17, wherein the} \\$ molecule suppresses Prox-1 expression.
- 19. A method or use according to any one of claims 16-18, comprising a step of identifying a mammalian subject with a colon cancer characterized by increased Prox-1 expression, wherein the composition is administered after the identifying step.
- A method or use according to any one of claims 16-19, wherein the cancer is selected from a colorectal adenoma and a colorectal carcinoma.

25

Page 39 of 270

- 21. The method or use according to any one of claims 16-20, wherein the composition further comprises a pharmaceutically acceptable diluent, adjuvant, or carrier medium.
- 5 22. The method or use according to any one of claims 16-21, wherein the molecule comprises an antisense oligonucleotide that inhibits Prox-1 expression.
- 23. The method or use according to any one of claims 16-21, 0 wherein the molecule comprises micro-RNA that inhibits Prox-1 expression.
 - 24. The method or use according to any one of claims 16-21, wherein the molecule comprises short interfering RNA (siRNA) that inhibits Prox-1 expression.

25. The method or use of claim 24, wherein the siRNA comprises at least one nucleotide sequence set forth in SEQ ID NOS: 4, 5, 6, and 7.

- The method or use according to any one of claims 16-21,
 wherein the molecule comprises a zinc finger protein that inhibits Prox-1 expression.
 - 27. The method or use according to any one of claims 16-21, wherein the molecule comprises a dominant negative form of Prox-1 protein, or an expression vector containing a nucleotide sequence encoding the dominant negative Prox-1 protein.
 - 28. The method or use of claim 27, wherein the dominant negative form of Prox-1 protein has a disrupted DNA binding domain.

5

10

15

20

Page 90 of 270

- 88 -

- 29. The method or use of claim 27, wherein the dominant negative form of Prox-1 protein has a disrupted transactivation domain.
- 30. The method or use according to any one of claims 16-21, wherein the molecule comprises short hairpin RNA (shRNA) that inhibits Prox-1 expression.
- 31. The method according to any one of claims 17-30, wherein the composition is administered in an amount effective to suppress Prox-1 expression and increase Notch 1 signaling.
- 32. The use according to any one of claims 16-30, wherein the molecule is present in the composition in an amount effective to suppress Prox-1 expression and increase Notch-1 signaling.
 - The method according to any one of claims 17-31, wherein the composition is administered in and amount effective to increase 15-PDGH activity or decrease prostaglandin D2 synthase activity.
- The method according to any one of claims 17-31, further comprising administering to the subject an inhibitor of the -catenin/TCF signaling pathway.
- 25 The use according to any one of claims 16-30, wherein the medicament further includes an inhibitor of the -catenin/TCF signaling pathway.

- 36. The method or use of claim 34 or 35, wherein the inhibitor of the -catenin/TCF signaling pathway is dominant negative form of TCF-4.
- The method or use of claim 34 or 35, wherein the inhibitor of
 the -catenin/TCF signaling pathway targets TCF-4, 8-catenin, or c-myc.
 - 38. The method according to any one of claims 17-31, further comprising administering to the subject a COX-2 inhibitor.
- 10 39. The use according to any one of claims 16-30, wherein the medicament further includes a COX-2 inhibitor.
 - $40. \qquad \text{The method or use of claim 38 or 39, wherein the COX-2} \\$ inhibitor is a non-steroid anti-inflammatory drug.
 - The method according to any one of claims 17-31, further comprising administering to the subject a Notch signaling pathway agonist.
- The use according to any one of claims 16-30, wherein the
 medicament further includes a Notch signaling pathway antagonist.
 - 43. The method or use according to claim 41 or 42, wherein the Notch signaling pathway agonist is a Notch ligand.
- 25 44. The method or use of claim 43, wherein the Notch ligand is Jagged 1, Jagged 2, Delta 1, Delta 3, Delta 4, or Serrate.

- 45. The method or use of claim 41 or 42, wherein the Notch signaling pathway agonists are Notch targets Hey1, Hey2, or Hes1.
- 46. A method of inhibiting Prox-1 function in a mammalian subject 5 having a disease characterized by Prox-1 overexpression in cells, comprising the step of administering to said mammalian subject a composition, said composition comprising a compound effective to inhibit Prox-1 function in cells.
- 47. Use of an inhibitor of Prox-1 function in mammalian cells for 0 the manufacture of a medicament for inhibiting Prox-1 function.
 - 48. A method of screening for a Prox-1 modulator, comprising steps of:
- contacting a test molecule with Prox-1 protein, or a nucleic acid

 comprising a nucleotide sequence that encodes Prox-1 protein, under conditions which permit the interaction of the test molecule with the Prox-1 protein or nucleic acid:
- and measuring interaction between the test molecule and Prox-1

 protein or nucleic acid, wherein a test molecule that binds the Prox-1 protein or

 nucleic acid is identified as a Prox-1 modulator.
 - 49. The method of claim 48, wherein the test molecule comprises a protein, a carbohydrate, a lipid, or a nucleic acid.
- 25 50. The method of claim 48, wherein the test molecule comprises a member of a chemical library.
 - The method of any one of claims 48-50, comprising measuring the binding between the test molecule and the DNA binding domain of Prox-1.

Page 93 of 270

- A method of screening for modulators of binding between a 52. DNA and Prox-1 protein comprising steps of:
- a) contacting a DNA with a Prox-1 protein in the presence and in the 5 absence of a putative modulator compound;
 - b) detecting binding between the DNA and the Prox-1 protein in the presence and absence of the putative modulator compound; and
- c) identifying a modulator compound based on a decrease or increase in binding between the DNA and the Prox-1 protein in the presence of the putative 10 modulator compound, as compared to binding in the absence of the putative modulator compound.
 - A method of screening for modulators of binding between a DNA and Prox-1 protein comprising steps of:
- a) contacting a DNA with a Prox-1 protein in the presence and in the 15 absence of a putative modulator compound;
 - b) detecting binding between the DNA and the Prox-1 protein in the presence and absence of the putative modulator compound; and
- c) identifying a modulator compound based on a decrease or increase in differentiation in the presence of the putative modulator compound, as compared to 20 differentiation in the absence of the putative modulator compound.
 - A method according to any one of claims 48-53, further 54. comprising steps of:
- contacting a cell from a colorectal cancer or colorectal cancer cell line 25 with the Prox-1 modulator; and

selecting a Prox-1 modulator that inhibits growth of the cell.

Page 94 of 270

- 92 -

55. A method according to claim 54, further comprising:

formulating a composition comprising the selected Prox-1 modulator and a pharmaceutically acceptable carrier;

administering the composition to a mammalian subject having a colorectal cancer; and

monitoring the mammalian subject for growth, metastasis, shrinkage, or disappearance of the colorectal cancer.

- 56. A small interfering RNA (siRNA) molecule that comprises a 10 sense region and an antisense region, wherein said antisense region comprises sequence complementary to a nucleotide sequence encoding Prox-1 set forth as SEQ ID NO: 2, or a fragment thereof, and wherein the sense region comprises sequence complementary to the antisense region, or a fragment thereof.
- 15 57. The siRNA molecule of claim 56, wherein said siRNA molecule comprises two nucleic acid fragments, wherein one fragment comprises the sense region and the second fragment comprises the antisense region.
- 58. The siRNA molecule of claim 57, wherein said sense region
 20 comprises a 3'-terminal overhang relative to the antisense region.
 - 59. The siRNA molecule of claim 57 or 58, wherein the antisense region comprises a 3'-terminal overhang relative to the sense region.
- 25 60. The siRNA molecule of claim 59, wherein said 3'-terminal overhangs each comprise 1-5 nucleotides.
 - The siRNA molecule of claim 59, wherein said antisense region
 3'-terminal nucleotide overhang is complementary to RNA encoding Prox-1.

. 10

WO 2005/014854

Page 95 of 270

- 93 -

- 62. The siRNA molecule according to any one of claims 56-61, wherein said complementary sequences are 18-100 nucleotides in length.
- 5 63. The siRNA molecule according to any one of claims 56-61, wherein said complementary sequences are 18-30 nucleotides in length,
 - 64. The siRNA molecule according to any one of claims 56-61, wherein said complementary sequences are 21-23 nucleotides in length.
 - 65. The siRNA molecule according to any one of claims 56-61, wherein said antisense region comprises sequence complementary to sequence having any of SEQ ID NOs. 4 and 6.
- 15 66. The siRNA molecule according to any one of claims 56-61, wherein said antisense region comprises sequence having any of SEQ ID NOs. 5 and 7.
- The use of an siRNA molecule according to any one of claims 67. 20 56-66 in the manufacture of a medicament for the treatment of colorectal cancer.
- 68. The use according to claim 16, wherein the molecule comprises a compound comprising a nucleic acid 8 to 50 nucleotides in length, wherein said compound specifically hybridizes with a polynucleotide encoding Prox-1, or hybridizes to the complement of the polynucleotide, and inhibits the expression of 25 Prox-1 when introduced into a cell that expresses Prox-1.

Page 95 of 270

WO 2005/014854

10

- The use of claim 68, wherein the compound is an antisense oligonucleotide.
- 70. The use of claim 69, wherein the antisense oligonucleotide has
 a sequence complementary to a fragment of SEO ID NO: 1.
 - 71. The use of claim 70, wherein the fragment of SEQ ID NO: 1 comprises a promoter or other control region, an exon, an intron, or an exon-intron boundary.
 - The use of claim 70, wherein the fragment of SEQ ID NO: 1 comprises an exon-intron splice junction.
- 73. The use of claim 70, wherein the fragment of SEQ ID NO: 1
 comprises a region within 50-200 bases of an exon-intron splice junction.
 - 74. The method or use according to any one of claims 16-21, wherein the molecule comprises an inhibitor of DNA methyltransferases, thereby inhibiting Prox-1 expression.
- The method or use according to claim 74, wherein the inhibitor
 of DNA methyltransferases is 5-aza-2'-deoxycytidine.
 - 76. The method according to any one of claims 22-31, further comprising administering to the subject an inhibitor of DNA methyltransferases.
 - 77. The use according to any one of claims 22-30, wherein the medicament further includes an inhibitor of DNA methyltransferases.

- 95 -

 $78. \qquad \text{The method or use of claim 76 or 77, wherein the inhibitor of DNA methyltransferases is 5-aza-2'-deoxycytidine.} \\$

5

Page 98 of 270

Fig. 1

Fig. 2

Fig.3

PCT/EP2004/008819

1260

Page 101 of 970

WO 2005/014854

39467A.txt.txt SEQUENCE LISTING

<110> Alitalo, et al.

<120> MATERIALS AND METHODS FOR COLORECTAL CANCER SCREENING, DIAGNOSIS AND THERAPY

<130> 28113/39467A

<150> US 60/494,221 <151> 2004-08-08

<160> 50

<170> PatentIn version 3.2

<210> 1 <211> 49275

<212> DNA <213> Homo sapiens

<220>

<221> misc_feature <223> Prox-1 Genomic

60 ggaaatgaaa aaagaaaaag aaaaaaaaaa aaaaagacct gcgtcctgga agagctagtg tgagccgggc gccgctcgcg ccgtctcccg ctttgcatag tgcccgcaga tggctcgctc 120 180 cggcccaggc gcggcgatcc agtcgtcccg aagctgtggc agggtggggg tgggggtggg 240 ggccggggat ggaggccggg gagggggagc gcagggcccc tctcccctcc tctcttccca 300 gcccctcacc cccaccctt ttatattttt ttttcctccc aagttctctt gccttgctat 360 cccccttga atccgaaggc gcctcgcgat tgggtgctgg ggccgggtac gtcagataga 420 ctgtgacgtg cagtcttcct gtttccttca gctgtgtctt aaagtaaatc ttgttgtgga gcggagcct cagctgaggg agcgctctga aataatacac cattgcagcc ggggaaagca 480 540 gaggggga aaagagctct cgccgggtcc gcctgctccc tctccgcttc gctcctcttc 600 660 ctctcctcct ctcctgctct ctcctcttcc cttagctcct cttcttttct tctcctcttc 720 ttereteter tegentetec ectactecte tteteteate teccetecce teccacetet ctctccctc tccctctccc actcgccccg ctcgctcgct cgctgtcgca cagactcacc 780 gtcccttgtc caattatcat attcatcacc cgcaagatat caccgtgtgt gcactcgcgt 840 gttttcctct ctctgccggg ggaaaaaaaa gagagagaga gagatagaga gaqaqaqaga 900 gagagagaga gagaggctcg gtcccactgc tccctgcacc gcgtaagtat cttcttcttc 960 ccctcqtgaq tccctcccct tttccagaat cacttgcact gtcttgttct tgaatgagaa 1020 aggaagaaaa gagcctccca ttactcagac ccgtgtaaac attattcccc ccaqqaqaaa 1080 atggtgttat tcaaatgaat cataataaaa tagcctctaa acagtttcta agcgggagcc 1140 tccgtggaac tcagcgctcc gctcctccca gttcctaaga gtaagtgatc ctcttggctt 1200

ttatttcttt ctctttcctg ctggtggctg ggggtggcgg tggcgatggg ggggaggctg

WO 2005/014854 PCT/EP2004/008819 39467A.txt.txt

1320 atgttqctgg acttgtcgct gatcttgtca ccttttgtgt actgtttctg gggtgtgagg aggegttige tecetiteet tetiteteet getetetett eteaggagag aggacegega 1380 gagggaccgg gtcgcttttt tgttcgtgga gatccccgct ttccgccaaa ccccatcctt 1440 1500 ccgatctccc caggctaaaa ctccggggcc ggtccccttg tcctttctct ttgtcttgtt tattatagct gcctttcttc ccggctcttc caatttgctt gtcatttgca tacctttcac 1560 1620 ttctcctttt ttaaccccaq cagaggaccg ggaactggga ggaggagaga gggaggtggg ggggcgctct gttactttcg tctcaaaacg ctgtcgaagc cgaattgtgg aaatccggct 1680 1740 tqqaqqqqaq cggtgatggg tcccgggaaa cgcgcgcggc gcccctcttc cgagctcctg 1800 gacccaggc tgggtcaagt tgagtagggt aaggcggcac cgggaggctc ggggggtcgc gtggcggtgg gattgggaca ccagcacgag gaggaccgga ggatcgcggg ccgggtaaga 1860 1920 qtaqqqqqtt cttgggcagc agaaatggga ggcgatgaat ctcccagcca tcgctggcag 1980 actatggtgt tgggcagctt cggtctggtc tcgtctgggt ggtacctacc gttttgcccc agttaggagg actggggagg gaggacagga gaggtgagag taattgttac tgggaagact 2040 aqtqaqqaqq gcgggaagag ggagggaaga gctgctatct tgcctgagca gatcaggagg 2100 2160 gggacgcagt gggcggggg agacatcacc caaagtccag tttagcaagt tgttgattct tctggtgtgc cagcccgtta ctcccctgc tgaagctgaa ggttggtgga gtgatggagc 2220 gtggggatgg taaaggagga gtaagtaget ttccacagac tcccaggtct ctggcccctt 2280 2340 2400 ggtggtgctt agtcttaaat agctcaagga ggcaggttgg agtgtgaaac tgctgttctt qqcaacccag aaggctactc tgcctggggg aaggctggaa actcacctgc ttqtttttat 2460 ttttccgaga agatctgtgc tgtctccttg agcttataaa aacagaggaa gcacagggtg 2520 gcctcctcgc aaagtcaagg ctagaagact cccttctcct gttctctttt ccactcatgc 2580 2640 2700 ctttcctaac ctaggtaggc agaaatctat tagcagagtg cgcatgggca gggcctgaca 2760 ggtgtgttgt gtcaagaaag acaggtgcaa atttcctctg tgtctgtgtg tgtctgtaca gctctagacc acaatgcttg ctcgagggtt ggagaggttt atgaatttat ggttgtcctg 2820 gttaatagga ttgtctgggc taatgggaat tgggctgttg ttcttttgag ccctgccatg 2880 tgagttcttg gggtgggggg tgggggcaag ttggtatgtg tttgtttatt tttcttaagg 2940 3000 atattggcag tctactgctg aggctgtgtc ccaggcttct gtctgccagt cagcccaaag cacccccact ttaggcagca ggtggaggga gactgacttt tcctttgctt cctaccagtt 3060 tatgcctatc tcccaggtct gtgcttggca gagagagaga gagagagaga gaactgtcgt 3120 3180 ctttggatag caatgagtgg tgtgtaactg ccaagaattc caaagtcagt ttgaaagtgt 3240 tactqttqtt aaagcttatc tttttaagca tgctttctcc ttgcccagaa agaataqqta 3300

tgtacataaa	ctctttcaag	tcatatgtta	39467A.txt aataatctca		tgagcctgtc	3360
attgtcccag	acatgtgcca	aatgtcctag	atatgaattt	gatggagaaa	gaaaatctca	3420
agtacatgag	aaggtaactg	tgcttttcta	ttctgatgca	agatgtgaga	agtcagttct	3480
acagggaatt	tcttgcaaga	acttctgagt	atttccaaaa	tgaaattttt	tgtgtgtgtt	3540
gagggaggaa	aacgagagta	ttcacattaa	cttgtccatg	ggttaaaaca	tggacatgta	3600
tatgtaatag	taaaataggt	gaagctaagg	actgtggctt	gatgtgtgag	gaaagttgtt	3660
gggaattcaa	tgtaagcact	atatctggct	tcttaaaact	tgacctttta	aaattatctt	3720
taaacagact	acttctgtag	actgagttgc	acaggaatag	gttggttggc	aaatggtttt	3780
tgctcattgg	ctttgtgttt	gggtagttat	tgtttccatg	aaaatgagat	cgtatgtgtc	3840
atttattctg	tagacttcaa	cattaacgtc	ccccacctc	ccaaacacac	acacacacac	3900
ccaatacttt	ccttggatgc	ttttgaagtt	ctttggtaat	taaaatgtca	tctatgccta	3960
tgttcatttg	ctttatttt	aataggggtt	atctgtgctt	ggcacttatt	gatattttat	4020
gtgtccatta	tgcagaattc	tatttagttt	aatcaccacc	ttgtgggaaa	aaaaagtcat	4080
gcatacataa	catgcatctt	tgttctcact	ttattcattt	cctagcatca	ttcctctata	4140
agcagcacat	gctatcttaa	aacctaagct	ggcttattct	gtaagttgcc	agacttcctc	4200
tttatttgtt	taaaactcaa	acaggcctct	tttcatgaat	gtcttatatc	attttaggga	4260
ttgtcttgaa	tttgcagtgt	taatataaga	agttttaggt	ttcagattaa	caaaagaaat	4320
tataaaatgt	gactgatgtt	ataatatgaa	aatagattgt	gcatgatgta	tcattatagg	4380
attttaatta	agtacctgtg	taacttggaa	aggaaccata	tacataagga	atttctcaga	4440
cttattgcct	gtgcattctc	aaaggacatt	tagagagttc	aattttctgc	aaaaagaaaa	4500
aagtgtattt	tcttaagatt	atttcacact	ctgtcttatt	tacctatctg	ataagttgtt	4560
actttttaaa	caagtagaaa	ttaatatttt	aggcatgtct	cagaaaatgt	tctgtgttca	4620
ttttgcaggt	gaaaagtgtg	tggaattttt	gatgggatgg	gagaatctta	aatgaaatct	4680
taaatgattt	gagaagtata	ttatgacagg	aaatttaaaa	acctgataac	gcaatcttag	4740
ttaatttagg	tattaactta	tgtcaagtga	gttcttcaaa	ataaatatca	aaggttttct	4800
taacctgata	gggagcagaa	atatctccaa	tatctctgaa	gaaaaagttg	ctaattagca	4860
gaaacaaatt	cttgaatgta	gtgaagggga	caatttaatg	attcaggggc	tacttaaatc	4920
agaccatctg	attttcccc	tttgaatcac	taatttccag	attgatttga	aatattcttt	4980
gttaatgata	tcctatttga	aatttcataa	ccaggttgac	ccaagtagat	tagaggccca	5040
tacaaagatg	attttctaaa	agaagtcaag	tgtaggcttg	cacaatttct	tcaaataatt	5100
ttatcaacaa	agacagatca	tctaaataat	ccaagcagga	aaccatgcca	accttacact	5160
ctccctgcct	cataaaagat	ttgtctgaac	tatctggata	attaccgtaa	tgaaacactt	5220
ctttgtccag	aatctggact	ccagatagat	gcagtaaaag	ttgaatcctc	ctccccgaaa	5280
taacttcttt	attaaagtag	agcacttaac	cactttatac	ttcacgctgc	agtgttcctt	5340

tgaaattctt	tactgaaaat	tctttcctcc	39467A.txt taaccttaag	.txt tcatcagttt	ccttagaatt	5400
ttgcatgtta	aagagaatgt	cagataattc	agatattaaa	ggagactctt	ttggagtagt	5460
taaaacctgt	tttgattata	cctggatgtt	tattcttcta	atatcttttt	ctgggaggaa	5520
tctgctatgt	taagatatgc	attgtataag	aattactaaa	gcatttgtgt	aggttatata	5580
cgaagtgatg	caacaaaata	tttaatgatg	aaaaactcta	tatagacttt	cacattaatt	5640
aaagaggggt	ttacaggaat	agagtaagtg	tatccgatca	ataatacatt	tgggttcaaa	5700
ttctcatcag	tatttttctg	catccttgct	gatttggaca	tccaccagtg	ttgatcaaaa	5760
gcttcatatt	gcctagtgaa	actgaaaatt	aatgttaaaa	tgcaaatatg	atatgcatca	5820
ataataattg	caggtgaaac	atgatagctt	aatacatatc	ttgagaaata	aaggagttta	5880
aaaaatatca	atgataaagt	cattccatgg	cttcctttaa	attctgaact	ggaatatcat	5940
ggaagcactt	gggaaatgtt	tttaagagat	ttaatttata	ttatggtaac	gtaacagtac	6000
attttcttat	gtggtaaata	tattcatata	gatatcttgt	ttatgaaatg	tgatgctaat	6060
aaagtgctgt	gtcaaccggt	tattattatt	taatcatgcc	tatagcttcc	atgggttatg	6120
gttccagtgt	gtgctaccac	tatactttta	tttctaaatt	aaatctaagc	tatatggaga	6180
gatatattta	tttgtgccta	ttaatataat	gccttgtcct	ggattatata	atttatctta	6240
tttttcccat	ttgttttgtc	ttatttgtta	tgttccagct	ggacatttta	caacaagacc	6300
taaaagtatt	taaattcttt	tagcccaaga	cagatacaaa	tcgttattta	atctaaaaat	6360
gttgactgaa	atagaattac	aaaattagtt	tagtttggtg	aatatcaagg	gagttatatc	6420
ttgttcttaa	cagactccac	aagcatttct	ttccacctta	ggaagagcac	agccctcctc	6480
ttggctccag	catggggcag	ggatgcagct	gttgatacct	aggctagatg	agaggaagtg	6540
cagttgacgc	agaggtaaat	ggcagttgga	aaa gg aagga	tgcctgggga	tgaccttgtg	6600
ctcatcagcg	acaccagtct	gtcctttcca	agcctctgtg	gcagagctgc	tcttcccaca	6660
gcaaggatgg	caggaggaaa	gtccagtttg	ggtgttaggg	tgaacaggga	gagaaaaaat	6720
actgcaaaaa	gtttgtttga	cattttgatt	ggagatccat	gtgctttgca	ggtgatagtc	6780
aagagaaaag	gatttgcata	caaatagaaa	agatgtaaaa	tttaaaaata	agggcaataa	6840
gctctatttt	ggggaaggtg	atatacacac	agaaaaaagt	cttccttgta	accgccccc	6900
atgcaagtgt	ttctttgatt	aacagagctt	tgaaatgatt	catccttttt	cttgtctcag	6960
cctctccttg	ttctttctgt	catctgacag	ctaacctgat	ttatcagatc	taatgtgttt	7020
gtgtagtatt	tgtcactgca	tttttgtatt	cctgaaacca	attttattat	tagtgtttga	7080
aagggtctca	atcattctga	attcaatttt	gaacccaatg	ttgtagttct	tgagaactcc	7140
atctccattc	taagttcagg	aaattttatc	ctgaagcatg	caaaaagtat	ttcattctca	7200
agcatgcaaa	tatatatata	tatatatata	tatatatata	tatatatata	tatatatata	7260
taaagaggta	tcattttgct	ttcatgatac	cctaaagcag	gctcttttaa	aatgttttat	7320
ctttctatag	aaaccaggag	caaagatttc	atgaggaaat	cactgtcact	taaaaaaata	7380

W U 20	005/014854				PC I/E	P2004/00881
tacatattgt	tgccatctaa	gcattgagca	39467A.txt ttttcttgat	.txt ttttacaggt	tatttcatgc	7440
tgaaattatg	cctatttgca	tggatagtca	ttctttaaag	ctagccacag	atgcagtcct	7500
agggagcacg	tagatgtttt	tacaggtgaa	ccgaaagaga	tgggagccgt	tccagacact	7560
ctgcatgctg	cctttggcaa	tggaccctgt	tattgtgaag	atgtgctctg	ttaagcaaac	7620
gtgaagttta	atattagata	aacccaacgt	gaaaaaaatt	ttcattttct	tcataaaatg	7680
ttaattataa	acaaaaagat	gtgacatctt	atatgtctac	aaaatttggg	attagcatca	7740
ctagttaata	agttacacaa	tgtcaagtgc	cttttatgaa	attcaaagaa	ggatgttctc	7800
tttttatact	gtgtttccaa	gaaacaatgg	aagttcatat	acaaagaaat	atttcccttt	7860
ctcacacatt	tgatggacat	tattttcttt	cttctttata	tatcttcttt	cagttttttc	7920
tgttttttt	tttcctttaa	tttggcacag	gaaataaggt	tcacaaatcc	tgtatgttaa	7980
agagtttctt	tgggcattgg	acatattatt	ttggcagatt	taaacagaag	gaaactagtc	8040
ctgaagatat	atttatcttt	atctcggtca	ataacttatt	attcctcata	ttgatttcta	8100
aaatgtggta	acatccttgt	tttgcagtga	atccaacttt	gtaataattt	gtcattaaaa	8160
ggacattatg	aaaatgtata	aatattctta	tagttacatt	aagatatatc	aacagatatc	8220
atcttcacct	atgattttac	aagtaaaaaa	tgcatagcta	agctaaataa	gcagacttat	8280
aaaatgacta	ttgtgcattt	atttcaatgc	taaactgacc	atttatgttt	gaaagatgct	8340
gctgctaagg	gtgttctcct	tcccatttta	catatgacaa	aaatattgta	aaattcaaga	8400
ataaaagctc	tctattatat	atttgcattt	attttagagt	ccttttcctt	taatagcgtt	8460
aaaaccacac	taattgtaat	gcagaaatgc	aatttttcat	gtgaatttct	catagtctca	8520
aaatttaacc	ttatttctta	agtatagagc	agtttcatct	tccttataat	atgaatctca	8580
atgcccaaaa	tttaatcaat	tggttgtcag	aggctgtgtt	cttataatct	actgtttctt	8640
ctgaagataa	acagtatcat	tttaggcatt	tgtgagagag	aatcatatta	ctggtgctta	8700
agcagtttt	gcttaatttt	tttttaatct	taatccatct	taaaccagtg	gagcagaaat	8760
atttaaaaat	gtttcatttc	aagcagagtg	cataataaat	tgcaataatt	gtaatgtgcc	8820
ataaatccca	gagcctatgc	attitgcatt	tgattcagga	ttgaggtcag	gaaatttg g a	8880
gaaatttaaa	gaaaatgatt	catcagtcct	tttgttctgt	tggccagggt	cccgggattc	8940
ttgagctgtg	cccagctgac	gagcttttga	agatggcaca	ataaccgtcc	agtgatgcct	9000
gaccatgaca	gcacagccct	cttaagccgg	caaaccaaga	ggagaagagt	tgacattgga	9060
gtgaaaagga	cggtagggac	agcatctgca	ttttttgcta	aggcaagagc	aacgtttttt	9120
agtgccatga	atccccaagg	ttctgagcag	gatgttgagt	attcagtggt	gcagcatgca	9180
gatggggaaa	agtcaaatgt	actccgcaag	ctgctgaaga	gggcgaactc	gtatgaagat	9240
gccatgatgc	cttttccagg	agcaaccata	atttcccagc	tgttgaaaaa	taacatgaac	9300
aaaaatggtg	gcacggagcc	cagtttccaa	gccagcggtc	tctctagtac	aggctccgaa	9360
gtacatcagg	aggatatatg	cagcaactct	tcaagagaca	gccccccaga	gtgtctttcc	9420

ccttttggca	ggcctactat	gagccagttt	39467A.txt gatatggatc	.txt gcttatgtga	tgagcacctg	9480
agagcaaagc	gcgcccgggt	tgagaatata	attcggggta	tgagccattc	ccccagtgtg	9540
gcattaaggg	gcaatgaaaa	tgaaagagag	atggccccgc	agtctgtgag	tccccgagaa	9600
agttacagag	aaaacaaacg	caagcaaaag	cttccccagc	agcagcaaca	gagtttccag	9660
cagctggttt	cagcccgaaa	agaacagaag	cgagaggagc	gccgacagct	gaaacagcag	9720
ctggaggaca	tgcagaaaca	gctgcgccag	ctgcaggaaa	agttctacca	aatctatgac	9780
agcactgatt	cggaaaatga	tgaagatggt	aacctgtctg	aagacagcat	gcgctcggag	9840
atcctggatg	ccagggccca	ggactctgtc	ggaaggtcag	ataatgagat	gtgcgagcta	9900
gacccaggac	agtttattga	ccgagctcga	gccctgatca	gagagcagga	aatggctgaa	9960
aacaagccga	agcgagaagg	caacaacaaa	gaaagagacc	atgggccaaa	ctccttacaa	10020
ccggaaggca	aacatttggc	tgagaccttg	aaacaggaac	tgaacactgc	catgtcgcaa	10080
gttgtggaca	ctgtggtcaa	agtcttttcg	gccaagccct	cccgccaggt	tcctcaggtc	10140
ttcccacctc	tccagatccc	ccaggccaga	tttgcagtca	atggggaaaa	ccacaatttc	10200
cacaccgcca	accagcgcct	gcagtgcttt	ggcgacgtca	tcattccgaa	cccctggac	10260
acctttggca	atgtgcagat	ggccagttcc	actgaccaga	cagaagcact	gcccctggtt	10320
gtccgcaaaa	actcctctga	ccagtctgcc	tccggccctg	ccgctggcgg	ccaccaccag	10380
ccctgcacc	agtcgcctct	ctctgccacc	acgggcttca	ccacgtccac	cttccgccac	10440
cccttccccc	ttcccttgat	ggcctatcca	tttcagagcc	cattaggtgc	tccctccggc	10500
tccttctctg	gaaaagacag	agcctctcct	gaatccttag	acttaactag	ggataccacg	10560
agtctgagga	ccaagatgtc	atctcaccac	ctgagccacc	acccttgttc	accagcacac	10620
ccgcccagca	ccgccgaagg	gctctccttg	tcgctcataa	agtccgagtg	cggcgatctt	10680
caagatatgt	ctgaaatatc	accttattcg	ggaagtgcaa	tatcctttta	ttttcccctc	10740
gaggaaaaaa	caaaccaaaa	aaggtttccc	aaaaggttgg	gtttacacaa	tatctagagt	10800
aatgtagatt	agtatcttct	taagaaggca	acctttccca	ttattcaaag	gaataggctt	10860
ttatcagcat	gcgtgtgcca	ttcctgattg	cagaaaagct	taaaactaag	ccaacatctt	10920
tgcagcttcc	acaagttgtt	cactgccttg	aggagctcct	atttaatatg	tgctttctca	10980
gcagtgtttt	ttttctgctg	ttcttcctgc	attatcttct	tatccctatc	tcttaaaaaa	11040
aataaagaag	tagatttaga	gatgagaaaa	cagtctcatt	gtaaatactg	attgaattct	11100
ctcagatatt	ttttaaagat	ggtaagttta	atagaataag	gagaaaagtc	agttttcaga	11160
tccctaagat	cccataagaa	gaattctcag	tgtaaaccat	ctgcaaggct	tctggtccgt	11220
ttaaagacag	cccgatgaaa	tcttaggaag	agcgctttac	aagtgggagg	ttgaggagga	11280
agaaaaatgg	atgtgggtgg	ggagttagtc	tctctttcat	ctttaagtga	gactttttt	11340
tttaaggaaa	tatacaggta	ctgatttatt	cagacagcat	cggtctctct	cccgttcacc	11400
caaggtctgt	tctttgggtc	tggtgcagct	gcctctatgc	atgattaacc	tctgttcagc	11460

WO 2005/014854 PCT/EP2004/008819 39467A.txt.txt

catacacaga aatcttttg	cccaacatac	acaaagcaaa		aagcgagaga	11520
gcacaattaa atataaaac	cagctgtatt	cgacttaaaa	atggctcttt	ttatgattct	11580
tttaaattct gaaactgac	g tttatgtaga	gataacagtt	atatttttt	attaggccta	11640
tcccgaactc cagctattt	taactgaaga	ttttttttc	tctctgtata	tcggttcttt	11700
ctgtaaattt tttaaaaat	ttgtggtcgt	tggtcttttg	ggagtagtaa	aatagtagca	11760
tttgggggca ggtggaggc	tgtttcttat	ataataaaca	gatggatata	aaatttagca	11820
attaagttgg ctgtgacta	a atttaggatt	ttgagcaatt	gtcttgatga	ctagagattg	11880
acattttcat atctaagcc	actccagagg	ctgccacgta	agtgcaaagt	cccagctatt	11940
ggtggaaata tgttttcct	g gttagtggag	gtcgtacttc	aagccacctc	tcaggataat	12000
agtgtagatt tctgatagg	g tgaactacta	gggccctaat	catgagtcct	gcttgggcag	12060
ttaaacatgg agtctctct	atactgagca	agagaagaac	attgtaacag	aaagggaaga	12120
gaaagatgtg ggagatttc	acatatacgt	agaaatggag	ttttagcttg	gttgttgatt	12180
tcacttggac cttttgaag	a tctaaaattc	aatccaccag	ccatgaatca	aagctgcacc	12240
aagcaccatg ccttacata	tataagcagg	cagtaaatat	tgatcaaatg	attggaatat	12300
cgctgttggt gatgagaaa	g gcaaagtaag	aagacacaat	ggcttgaatg	gtttttgtgc	12360
cctttgcaaa aagagcatc	tcagaggttc	atgtaaggct	aatgtctagg	gctaagaccc	12420
cattgcaccc cagagatct	ttaacttcat	tttgaaccag	gtagttgtga	tagtgggttc	12480
tttctgtctc tctctctct	ttacacacac	acacacacac	acacagacac	acacacacag	12540
agtaaagtga catgcgtgc	aattttggtg	aatatttaaa	gatttaatgc	caggtttcaa	12600
aactcctgta agtccacac	t aagctcttta	gttcaagatg	ccagtttatg	gtttttcttt	12660
aaattagact tttcattat	a accagatcat	tataattatg	gctgtgcttt	ttgtttttag	12720
tcttctagga aaaaaatct	ttagattgct	ttaagtgttg	gctatgttca	ttgtctcaac	12780
ctctccaaat ccccggagg	a attttgagga	tttgaattga	aataagttcc	ttttattttg	12840
atacatatca aaggcttta	a agaaaatata	gttgcttctt	cttcagaggc	atgacttctc	12900
ctttcttcta tcaacataa	tttctgtcga	gcggtgattc	tgttgggaaa	cacccgtgtt	12960
catgtgaaat gttagttgc	t cacactcaga	attgtttctt	tcatatagct	aaataatgtc	13020
ggcctctcgt ggcaattag	t gattacattt	tccacctttt	ggccttctat	gctcctattc	13080
ttttcccccc tctactatt	a atacattgca	cttttaacca	tttatctcat	tggtatatta	13140
tttctcagga agagtaaga	t aggcaaa c aa	ccttttctat	agttcccaca	attctgaaac	13200
cagtgaggat ctgttggtt	t gtagagagat	tgggcccact	tttctcctgt	ctctacctct	13260
gtatggcagt gtgttcttc	c cttgatttaa	ctgttagtgt	gtaggcaaaa	ttctcaagct	13320
tttactttga agaaatatc	t gggaatcaca	gtgagtgatg	tcttacttca	attttaggga	13380
tacggggcca tatatgatc	c ggttgtacag	ttattcctcg	aaaagatcaa	tagaaatggg	13440
cagaaatgta atgaaatgg	t acaactgtga	ttgctattat	tatgttttaa	tttttcgttc	13500

1102	000/014004				101/12	1 2004/000
atggctttcc	aaactgttat	atataattta	39467A.txt atttttcagg	.txt aaaaattatc	tcccactcca	13560
aaaggtacca	tctgttttt	gaacaaagta	gctaagataa	gaactattaa	gaacaccagc	13620
ttatcaggtc	aacccattct	acattcacca	cattaaacat	atatgttctg	taggatagaa	13680
cacactacct	cattatccca	tctagtagaa	gggaaatagt	gaatgtgtat	gcaagttaaa	13740
ctgaatttca	gtgcacctgc	tccaagggct	catgtcttgg	attttaaaaa	tatgttcagt	13800
atctttgcaa	atgaatctgt	ttaatcaaat	attaagtttt	attcaaattc	caaaagaaac	13860
agtcagccaa	ttgcttttct	tcatgatgtt	ccttgtcatt	catcctcttt	gcatctcaag	13920
aaaaa tagcc	tagtttaggc	cccaaacatt	tgcatgcacc	cagttaaagc	acaagaggag	13980
tagtataagc	cgttaagacg	tgcaggtgaa	gaaattgagc	ctgttctctg	aaacagccgg	14040
ctttttctac	tcaactttta	gggagaatgt	tagaaagact	tgaagtttag	aaaggaaaat	14100
ggtttagtaa	tttgaaatta	aaatccaacc	aggaaccata	gattagaaat	gaatttctga	14160
aatttgaaac	catccacaga	aattgatctt	atacattttt	agaagtcttg	tggaggctat	14220
agtacttata	ttagctagag	caaaacatgt	agattaaaga	ctaaaagact	ttgggctcct	14280
acactacccc	cctcccctga	aaaaaattat	aaagtaagta	aattaaaaaa	aaaaaatccc	14340
tacactacac	agccctccga	ttatggtgaa	cttcctagtg	ggagttacga	cttgctctat	14400
cactgtcatt	atgtgagaga	gtttagatct	tttctcccca	ttttagtttc	tagggggaaa	14460
acctcttaga	aacttagcaa	attagggaat	aaggcagaac	taaaattctt	taggtttcaa	14520
atgttttgga	aaatgtaagt	agtctcaacc	catttgctgg	gaactgcagc	acgtacaatc	14580
tctagctaca	atccagagtt	tagctggaaa	aaaagaattt	tcttcctccg	ctttcacagc	14640
ttattattct	cccatttgcc	ttttgctgc	ctccgctgct	cctcccgtgg	ctgctgttta	14700
ggtaaggtta	tattgtactt	ggtaaacaga	caacacttag	gttctcaggt	tgtttgaaca	14760
ctgctttacg	ttcagctgca	gtaccctgct	tctctgatct	tttatattcc	cgagcagatg	14820
tctttcatta	atttatggat	ttatcatctt	ttctttttt	tttcttttt	ctttttttt	14880
ttttttaca	cctggcagct	gtctcaagtt	tcaacagtta	ttgtctattt	tgcattacac	14940
atagaattga	atgtcatctg	tcttcacaaa	gctatggcta	agagaattga	ggcacagcca	15000
catgagctgc	tgggacagat	cttgtttgcg	ttccatcccc	cctcacccca	ctccccttta	15060
cctccttaat	atttatttgt	gctcattttc	tttcctggcc	ttgaatggag	cttagctcgt	15120
gttcagtaca	gctgtatgtt	tactgaatct	attccatcat	gagtcattgt	gcgtgtgtaa	15180
gtatcctgga	aacagctagt	gctttcttgg	aagaacagtt	gcttttcagc	acaagcactt	15240
aaaagggaaa	ttaaccaatt	ggtcagttca	gatttattt	gaggagaaaa	aaaggattat	15300
ctaactgttg	ccttttaaat	gtttcattag	ttattttaa	tagtttatta	gaaacatata	15360
ttttatggga	attttatctt	aattacacaa	taagcaagag	ataaagatta	attctgtgtt	15420
ccatttcaac	tgatcagttc	caagtattac	caacaggaaa	cattttaaag	caaaaatgaa	15480
cttgagaaat	ccaaatcaga	ataattttt	gttagataaa	aagcctctaa	atactgatca	15540

W O 20	003/014034				rc1/L	F 2004/000c
aaataaaatg	gatattttac	tttttttaga	39467A.txt taaaaagaac	.txt aaaaacatct	tagcataaat	15600
tagatgtatt	aaaagcttca	ggaagttttg	gtagctcagt	gcccatctaa	gaaacacaga	15660
aaaacacttt	gtattttgta	tgacaccaaa	ttttaaaaga	tttgtgactt	ccaattaaat	15720
gcatgacgtt	gtcttaatgt	agccatctga	aagaaaagat	tagaacccag	atctgagagt	15780
gtctgtcaaa	gtttggactt	gcctaaaact	cttatcacaa	ggcagtcgca	gacagcttgc	15840
aactattatt	tcacttatcc	atttggacag	atggtcctga	agtgtgctgg	gctcctttag	15900
tcttctgtat	cagtctaatg	gaggttactg	gagggccttt	cagccctctc	cttggcacaa	15960
gaagtatgtc	agtcataaat	tatcgtcttt	gtaatcatta	aggatctcaa	acaaaaacac	16020
aagttcagtt	aagctgcttt	ggcttacaga	tataaaatca	aaatttcttt	ctttagtgtt	16080
tattttcagt	ttaacaaaaa	ataaaaaaat	aaaaaacctg	cactacttaa	cttttctatt	16140
tacagaccaa	ggtgatcttt	ttaaaattgc	atgggatatt	aaagggaatg	ttaattgaac	16200
aaattctcag	cagaatattt	ggttaaacac	cctgttataa	gtagtcaaga	gcttatccat	16260
attaatttga	ttatgcttct	ctagtaactt	tctggtttcc	ctccattctt	aagattagtc	16320
acgctagact	tgatgaaggt	catttggaaa	attttacctt	tcctaaatat	ctgtgtttat	16380
ttgacatttc	tgcctaaggg	gtgaaatttt	tgttgggtag	ttgtgtgagt	gtgtttgtgt	16440
gtgtgtttgc	acacacaagc	acactttctt	ttctttttt	tcttattttt	cttagacact	16500
cttctaaaag	aaaatcctta	gagaagcttc	taggaagggc	ccttaattga	ccttgtgggg	16560
gaccacattg	attttctcca	cgtgcatctt	catttctgat	aaattataaa	gccattaatt	16620
tgctgaggaa	atggcagggc	caggctgcgg	cacagatgtg	accagagcca	tcccagctct	16680
gagtctgctg	aggagtgcca	agaatctggg	ggagaatcag	gaagcctgga	ttgttatggt	16740
tagcctcaca	ttctcttggg	aactgtttta	gttgctgctg	tttacagatc	taaaaggtaa	16800
tgatgtttcc	agataaatag	gccttcttat	tttgggtaag	tggccattta	ttgatctgct	16860
aacccacatg	tattgatttg	ttagccccaa	ctactgcgtc	actctcaaag	gagttaacta	16920
taaatccaag	acaggcaaat	tgtatttggt	tttggaccat	tgctttcaca	aaagcaacag	16980
cccctccct	gtcctctcca	tgccaaaact	actcttccca	agttttagct	attatttaaa	17040
aggaaaaaca	attaaaagga	tataataaga	taaaaagcaa	gtgagtcaag	atgctccatt	17100
agattaacac	taaaaggtaa	aatgtgaaac	ttgcatagca	gtgttcaaaa	taatgcattt	17160
tatattttca	tgtacattag	tagaataatt	tgctttaaac	tgcagagtgt	ggagagaaga	17220
acaaacagaa	ctgtaattgc	aaggaagaaa	aaaaaacctc	ttatgacaag	agttgtgtag	17280
tacatgttgg	gtgcatttgt	ctccttagca	acaagtgaat	gtatagatag	cctaccgacc	17340
taaagcaagg	aaaatatttt	gccatcctca	ccctaaagta	gccaagattc	tgcaactcaa	17400
ttgtgcatcc	tcaccattgc	atgtggcaac	ctctgacagg	cgacggtcac	tgagcaaatg	17460
gcagcaagtt	agcaatggat	gccatagcca	gtgtcatata	ccttccagca	ctcccaccgc	17520
agcttgatgg	acccccagac	tctatggagg	tggggactgg	agggagggag	gtgggagtcc	17580

ttgtgcttac	agaattgctt	ttccttaacc	39467A.txt aattgcatcc		aaggattgtc	17640
acccaatcac	ttgaaaaaag	caaagctcat	gttttttat	acccgttatc	ccagctccaa	17700
tatgctgaag	acctacttct	ccgacgtaaa	ggtagggact	ttttttattc	ttaattttt	17760
cattttctat	gcatgtggca	gtaatttgaa	ctcccggaag	ttaatggaga	tgaatgtgga	17820
attggtttat	tcctacacct	gtgttataat	tgatttaatg	cacttgtctt	tttgtctaaa	17880
ggtgtgttaa	gcaaagatgc	cacttgtgta	ttaagattgg	aagactggtg	ttaataagtt	17940
gcatgggttt	ccaatgtagt	ctgaaaaact	tagcctctgt	ctttatatgt	ttgagtagct	18000
tctttgaaga	aatttcagct	ggtaatggat	gggtgtgctt	tagagaatgt	tttttccctc	18060
ccctcagcaa	cagtaaactg	tttctgtttt	tgtttctgtt	ggtttcccca	tatttgtgct	18120
tatgaaagca	aactctagca	cctcttttc	cccctgtcga	aaaggagcgt	acattgaaat	18180
tctctatgca	gtagctgctt	aaaaacaaaa	gtgatgattg	tctcttattt	acaacttaat	18240
ttgttgttga	tgtagagtac	actgagcata	aggagaatga	ataaagtgac	agattcagga	18300
cacattattc	aaatgaggat	atgaaagctg	tcggcctaca	gctgcagcct	ccctcattct	18360
acagaatatt	gggacctcct	ggttctctct	gtgtgtgtat	gcgtgtgtgt	gtgtgtgtgt	18420
gtatgtgtct	gtgtctgtgt	gtgggtttta	agtaattgtt	tgcatcaact	tgatgttgtg	18480
ttaatcatct	gtaacttttt	aaaacataga	ttgggttttg	atgatgataa	tgacacacat	18540
ggtatcatta	tcccaggaac	ttgataaaca	ctacattagc	tgagattagt	ttattagggg	18600
tgggtgtttt	ttccccactc	ctcccctgcc	cacccccata	tgtacaagtt	cttctttctg	18660
ccatggagaa	ctcacaagct	gccaaaacac	actcgctctt	ccactgctcc	ccgcacgcag	18720
cttgttttgt	gcttgatgcc	caagtggctt	cattggcccc	attttgcagg	ccaactcatt	18780
tcagtttcct	tcactggtgt	tttatttggc	cttataagaa	aagttctgtt	ttccctcctg	18840
tttgcttttg	aattgtgtat	caacttcagc	cttttatctt	tctccttccc	tggctgtgct	18900
ccttaagtgg	aaggcttgtt	ttctccttgt	tcagcaccag	caaactgggc	aagatgggga	18960
ggcagggaaa	gtccatcacg	taaatgtctg	gataagacta	agtgagcaca	aacaaggctg	19020
agtgacacag	aggccaggaa	aagggtttgg	gctttgtaga	ggacaatcta	gaatacacaa	19080
attgaaggca	atttgtcacc	tggttgagga	ctgaccagct	tctagagtct	agtagaacct	19140
ggtaaagttt	gtcttccagg	gaatcctccc	aacattttag	ttctaggagg	ggacatggag	19200
gacagggaga	aaagggttat	tgtgtgcaca	tatgtgtgtg	tgtgtgtctg	tgtgtgcaga	19260
tgtccatgtt	actcattcct	tttagggcaa	tgatcttcag	tgttgtgaaa	taataatgac	19320
aataacttat	attctttgca	tagcaatttt	cacccagaag	taggccaaag	agctttacca	19380
actgcacaca	taggtgtcac	tcacccacca	cggaaacaca	gccacctgga	gggtgggaaa	19440
cagcagccat	tctgagccaa	cactacccaa	cagtagacgt	caatattaga	aacaatcatt	19500
ttttgtgaga	gttcaagcat	gcgtgcatgt	gtgtggtgtg	tggtggcaag	tggggaagat	19560
tattgatctg	tagctttata	aataccatgc	aatacaaacc	aacaagaaac	tgttcccatt	19620

			39467A.txt	txt		
cctctagaat	gcccctagca	attcagcttt			tgtagataac	19680
aatggaat a c	ctgggtgaat	attttatttt	caaaagcact	aatattcaga	ttgttgattc	19740
tatccatacc	ttacccatac	tggaagagaa	ggctgttaaa	gtatatgtga	gtctggttac	19800
taccaattat	ccactgtaat	ggaggggaaa	cagtagaaca	tatcaggcaa	agcagaaaat	19860
cactgaaggt	cacttctctt	ttatttttgg	aaggaattat	acatttttaa	ctttcctaat	19920
tatgttttt	ctttggttag	taataaatga	atttgtattt	cttgagctta	cactgatgag	19980
agtagaa a gc	catgcaaaga	aagggaaagg	tagtccaggc	aatgtggtcc	agagactttc	20040
cagaaaacaa	tggcagagca	ttctgggatt	tcttcaatat	taaggataat	cacagatgtg	20100
aatattgaca	atgtatacac	acacatatgt	gcatgtgcat	gggttcacaa	tacacatata	20160
catatataca	catatctata	gcttgacatt	gacatacaga	tagacaagtg	tgtctattta	20220
tttgcaaggc	tgaaagaaat	agatatttct	ttatatatga	atatacaatc	caaactttta	20280
ttttggccag	gattcaagaa	atcactagag	aaattgggga	agagaactta	gggtcttctc	20340
agaaatgaaa	cctgcatcat	ttatctggaa	caagatatat	gcatgtatct	atggaccatg	20400
taatgcttgt	tataatgaca	tgaggctcta	cttggtcatg	gccacattca	tctaggagaa	20460
aattcctaac	tttagtaaaa	tgtactcttt	caaataataa	agttatttta	ttcaattttt	20520
tttttttgag	acggaatttc	actcttgtca	cccaggctgg	agtgcaatgg	tgcaatctca	20580
gctcactgca	acctccacct	cctgggttca	agagattctc	ctgcctcagc	ctcccaagaa	20640
gctgggatta	caggaatgtg	ccaccacgcc	tggctaattt	ttgtattttt	tttagtagag	20700
acggggtttc	accatgttgg	cgaagcttgt	cttgaactcc	tgacctcaaa	tgatctgcct	20760
gccttggcgt	cccaaagtgc	tgggattaca	ggcatgagcc	accgcgctca	gccctcatat	20820
tttatttagt	gatcataagt	tcattttgca	agcaaaaaca	aaaaacaaac	aacaacaaca	20880
a ca acaaaaa	aaaccaggag	aaaaaaatgt	gagcagaaaa	tatcttgttt	cctgaatatg	20940
gtataacgta	atggtccatc	aaagccacac	ttggaggata	gagctagatg	gggtaaatcc	21000
tctgacttgc	tctagaaggt	gagtcatgcc	aaagtggtgc	ccactccttt	gtatttctcc	21060
ttaggaatgg	acacagtgct	taactctcca	caaatgactt	ccacctgggt	aagaggtaa a	21120
tgcttttcaa	ttaccttgga	acgaaagagg	tagagggaaa	tcatacaatt	cagagatgtt	21180
ggcatggcga	gagttcttct	tctacagggg	tgatgtatat	gaaggatgaa	accagggccg	21240
acctagttta	actcctagag	caagaatcta	aacaaagttc	tatgttctca	cagagagcca	21300
acttaattcc	ctcataatga	catttagcca	aacaaaaagc	tcagctcatc	ggggctacaa	21360
atcctttgag	aaggacaagt	ggacaaatgt	gagagagctg	ccagggatcg	atg g gccgca	21420
ccagctccct	gttcactact	gggtgctgat	tttaatgtac	aaactaataa	ctcttagacc	21480
actaagtaca	gcagattcag	tgtcatttta	gctttgaaga	acagacgctc	acagcttttc	21540
aagccggcag	tgttaaatga	tgtatctcat	tccctccacc	ccttgagtca	actgctgcct	21600
agccagatta	aggtgtcaga	ttgatttgtt	ttatacatct	tttgaccatg	ctcattgaat	21660

attta g gaag	tttcttcagc	ccatattgag	39467A.txt gctgagatgt		gcattaatca	21720
aagtcacaga	gactcgtaca	ctgtggaaac	acagcctctt	tattgtagcg	attagttttt	21780
gcagtaacac	attaacacac	tacagagctt	tcctttatag	aacaattgat	ccttttcttg	21840
taagccacta	cagaatgagg	gaaattaact	ctttaaagtt	taatactttt	tctcccccag	21900
tgt g aatatc	tagaaaagcg	ggggcttgct	tttgctttta	gccggcgact	aaaactgaac	21960
aaattttagt	tcacttctcc	tggagggaaa	ccctgttcct	taggctgttg	ggctggtcat	22020
ttcgcttgcc	tcatgtttgg	ggagtctgtt	gtttttgtcc	attctttctc	tctggtattt	22080
ccattctcca	acaataagct	ttaaatctcc	ctttatgtcc	cattcgtaaa	taatggcaag	22140
tgcacttact	tttttgtcct	ccccattagg	tcattcgtga	ccattctaga	aaaaaaatac	22200
ccttctattt	ttttcctcta	cagtactctt	gtccatatga	gacaatgtct	tgtaacaatg	22260
cagaagccta	atctccatgt	caaagcaatt	ttcattcccc	agtgcacagc	ctgctatcat	22320
tttgtaatgt	tttgtttctt	attctaaaag	aattaaaaag	gaacagtaag	ccgtcacggg	22380
ggcctgtagt	ccttatctca	gtgtctggaa	atttggacag	tgtattttac	tgctgagata	22440
aaatggaaag	aactccaagt	tcagcaaatc	gtaatgggtt	taagttctat	tgaaatcggc	22500
aaccagaaga	tcagataatg	ggggtccttc	agttgtcttt	ttaatcgggt	tccccgcgag	22560
gctgaataga	gacagagcag	acacacagag	tgaaaatata	attcttggat	aggttaagta	22620
catgtttgaa	ctcttgcaag	cagaagcgat	ttgctgatga	cttaatcatt	ttctggtcaa	22680
ttatctgtaa	gggcccttgc	aactccatgg	caattatgat	gcaagttggc	cttttgggag	22740
aaacaccagt	ctctctgctt	ctgtttcctt	gtgacttcca	ttctctgcca	taaattttca	22800
ttcatttatt	atctttgcta	gtatagaaac	aactttctgt	gtagtaatta	gagccccaat	22860
acacacttta	gctgtcatct	tgttggagtc	tggatgttct	catggcctgt	gtttgataag	22920
tgctctttgt	tgatttttga	tgaatgtaca	tctttttctg	ggggcccagg	gaaggggatg	22980
cctgtgàtga	caaaaggcag	ggggttgtct	gtcagcccgc	ctgatataga	gctatggatt	23040
tattggtttt	gacttggcaa	gttgagactc	atctgtcctt	tacgtgagca	gaggactgtc	23100
aataaggatg	gtatcatttg	cagtgcatcc	agaaagacat	cttcatttca	aaggtcatca	23160
ggaaaccttg	gtaaacaaag	ttttaaggcc	taaccatgtt	atagtaactt	ggcatttaaa	23220
aaaatgtaat	aaagctcctg	tctatgccat	ctgtgtactg	tgtcctaacc	atgcctccca	23280
aatggcagag	ataccaaggg	agggggacat	gggtcttatc	caatgctggc	ttcaggaagc	23340
aggtgaacag	gcaccaggag	ctgaccagac	ctcaccagac	atgaatgccg	tgggcaaaca	23400
ttaagtggaa	tcacagttgg	atggacatgg	gaatcactca	ttgccaaaaa	aataagcaaa	23460
tgccaactcc	tcccattttg	tgggaaggcc	atttgtctgc	attgaagggg	gctgtaatgc	23520
ggtgatacaa	atcctcactt	aaaaaaaaa	agtatatcaa	actagtggta	gagtcatgtg	23580
gcacatcacc	tctggtacat	gggagtaaca	acacttccag	gattctatgg	cttcaatgaa	23640
tgtccataag	aagtatataa	atgcaagttg	ttctactgaa	agatgaagaa	caatggttaa	23700

W U 20	05/014854				PC I/E	P2004/0088
aaataaagat	gttcggctta	aggaaagtct	39467A.txt gatttagaat	.txt gtgacttttc	cacttgaaag	23760
gtagagggtt	gtgatatgat	ttccattact	gacaggtttt	tataatttct	tgtaagtata	23820
ttcttcctct	tgcctctctt	gccaccattt	tggtggagtt	aaatacgtat	ctttccaagt	23880
aaagaaggga	cgggaacatt	aaaaatgctt	cagacactta	aaaaaataaa	tgaagaaaat	23940
ggcaatgttc	ttatcctttt	caacatttaa	atttaacagt	tcaacagatg	cattacctct	24000
cagctcatca	agtggtttag	caatttccgt	gagttttact	acattcagat	ggagaagtac	24060
gcacgtcaag	ccatcaacga	tggggtcacc	agtactgaag	agctgtctat	aaccagagac	24120
tgtgagctgt	acagggctct	gaacatgcac	tacaataaag	caaatgactt	tgaggtagga	24180
actaatcttt	attttttggt	catctccctt	ttcctttttt	aaaaaattta	ttttctttag	24240
aaatgtaccc	aaatctgttt	ttgtgttggt	ttcgcataca	agcatccccc	aatagagtaa	24300
caggtagagc	tgtgatgagg	agcttccata	gtccccattg	gaatcatgag	gctctgaccc	24360
actgccattt	tttccccatt	ccctggcttt	tcagcttgtg	tggaagactc	atttggccac	24420
agaaaaggga	actgtagaat	ccaaagaaaa	atggcagcaa	gcagcaaaga	cagagtgatt	24480
cattttccaa	ggaagaggtc	cctactccaa	tagacctttt	tcatatttag	gttctgagag	24540
gtcaatgagc	tgatacatgc	tatgtgcaat	ggtagctacc	aatgttattt	tcttaaaaag	24600
tctagaaacg	ttgatggggg	agtgatcatg	gtttctgact	ttgacattta	gtccctttgt	24660
ggaggaaatg	gtatgataat	ttactaagta	catagcataa	gagatccatt	gacatcttt	24720
tttgggattt	tgtttctgtt	tttgttcttt	ttggaggaga	gactcgtgtg	ttttgcctaa	24780
gtgtaccttc	acaagcatgc	tgctctttgt	acaaacactc	tcatacacac	ttatatatat	24840
ctgtgacgtg	tatattctag	atccacacaa	agcagcatag	agaattccca	gaaagcaata	24900
tccatgcaac	aatgaaagat	gtgtggctat	gagtaaggca	tttctttatg	ggctaatgtg	24960
gtgcctcagc	aaacagtttt	catcacaacg	tgatgactct	ctgtgagaca	acactagcaa	25020
atctcccagt	actcacaaag	gcattttgct	gagccctgct	ggctgaggca	acagtagttg	25080
gaggtgggaa	catggcaaga	attctgcagg	ctgaactccc	tgatgatgag	atcagacagg	25140
ctgtggcttg	acaaagttgg	tccatttctt	gtattatctt	ggctagatgc	tgtgccatct	25200
tgagggtagg	aattttttct	ccaacgtctg	tgtgcacttg	gaccttatgt	taatattctt	25260
gctttcttct	tgtagatagg	tatccaggaa	tacccaggaa	gttccaaatt	tcaaaggaaa	25320
gaggacacct	tggcctcgct	ctgtcaatta	aggggtctga	cccctagtac	tcttcctgct	25380
tgccccctc	ctttttttcg	gctcttgtcc	ctacagttct	tggcaatgca	gaccagttat	25440
agtggcttat	aaagaattga	atatggaagc	tcagcaatgg	ggaagtcata	gtttttcttt	25500
gaaagtttga	gtagttatag	tgtaagctac	ctatttgtct	ttgctctcta	agactaatat	25560
attttttgcc	aaatgtgtga	taaatgaagt	ttgggtggtg	tgtgtgtgtg	tgtgtgtgtg	25620
tgtgtgtttg	ctaaatacat	taaaagtgag	aattcttcgt	gtactgctcc	actattttaa	25680
aatctgtttt	taaagtctca	gttgtaatag	agcactggct	cactataatg	acagagcact	25740

		20467			
agcaggcttc ttctaaagct	gaagaatatg	39467A.txt attatggcta		agaaatctca	25800
ttaagagcat cttttctccc	ctgcctttct	gctaagcctg	ttgccctaaa	ccttaagcta	25860
agagacttct gtgtgctagt	gaattattta	cattacatga	tgacataagt	atctgtttgg	25920
cagcatacat caagcttcat	gaaagaattg	cccaagattc	atgagatgac	ttctgcattt	25980
ttgctatata aaatacccaa	gaggacaagt	ccttaaagtg	cgcacgaggg	ttttcgggtt	26040
gcttaaacct tacctggttg	gaatttaatc	cgctacccac	aggccagggg	ccaaaatgac	26100
acaaacaggg gatggctggc	atcaggaggt	acccgacaag	ctgctccatt	tagcatcatc	26160
taaatcctct ttaatatgat	taacatctaa	tatttctctc	tttgtgaatc	atatccactt	26220
ccagccaggc cacctctcct	ttatctgcag	tgtctatttt	aagactgctt	cactgcaagg	26280
agtatggggc ccgggcagga	attttgtcac	ttctcatgtg	acttcggaca	gttattggac	26340
tattctggat ctgattcctc	cttcagtgaa	aagaagggaa	gaaagcagga	ccatgcagtg	26400
tgtcctgccc cctctactca	cacacttaca	catccatatg	cacacacgcg	taccgaccac	26460
cacacataat cctaatatca	cgaaatcgtt	tttcttttag	cctctcggtc	tggctcattt	26520
actgacaaaa gtttcagata	aggtgagccc	ttcttttccg	tgcctttgtg	catggaggtc	26580
actgcttaag tgagatgctt	aaaaagccac	cgttcttatc	gtggtagctt	tgctagtgtg	26640
ggccgtggct gagagccaaa	agtagatccg	gcaccttcag	ctgaatacct	ccactgatac	26700
tgtgtgcacg gctttacttt	tgtatttaag	tttctcctct	taaggtcaag	taaaatgaac	26760
ctatagttta agtattagca	agtgaagagg	atggcaaaat	ggagaactgt	gctacaaaca	26820
gagctaaacc atggtagagg	gactttgaag	ctacgtctac	acggtgcccc	aagatccagt	26880
cgattccaag gaatcgtgtc	acccagctta	gtaggagctg	gtcaaacaat	aaaatgtctt	26940
attgattgta ttcccagact	tctcaatcaa	ttgttgggaa	caataataaa	atagctaaca	27000
tttattgact gtttactaat	gacctaggca	ctcttctaag	tgttttacca	aaatagggct	27060
tatttaatgt gggtaataat	aatgacagtg	ataccaatat	aataacaaga	aaaacttcag	27120
tttgcccaaa gctttactat	tcttcaagtt	attctaactg	ggcagaggca	gatcgagcca	27180
gggagagaga aggaggtttg	acgtctcttc	actactactt	tattccttct	ttctctcctc	27240
taccccttgt cttctctcag	ccttctactc	ccatctctgc	ctctgtcaga	agcttgctag	27300
tggcaccttt gtcactgctt	agcaccacct	ccgtccagcc	cctgctgctg	atggctctca	27360
aggctggaga ggctgctgac	ccctggccta	caggaaaata	aagcagatgg	ggaaagttta	27420
tcagcagcga agagggagtg	gcttgcctgc	tctcctctcc	tagaccctgc	atttcctggc	27480
ctttatgagt acaggacctt	ctaagtggca	gtagagcttg	ttctgccttt	tgtatcagtt	27540
tacacaattg ccagaattct	tggcacggtg	tgcagactta	gggtggtgag	cgtttgagaa	27600
gacccaaggg atgtggaaga	agacacccaa	ggggaaaaat	acgaaataca	cttttagttt	27660
gtgctaaagg gcagaagctt	ggccatatca	caccgggtgg	ggtgtcttgc	ttctgtgcgt	27720
gagtgtgtga ggcacgcagg	agaggggtgt	gtaattatgt	gctgtatcct	tcatttctgc	27780

Page 115 of 970

tcctcacatt	taatgagatt	ggcaacaata	39467A.txt aatttgtctt		atggtatata	27840
tttctatgct	tcattctcac	ttcactttga	agggcttcca	aaaaaaattt	tatgggcaga	27900
aagagcaagt	ttgggattcc	ttcccagttt	ttaaatcata	ctgatacttg	tgactttagg	27960
ggcgtatgag	ttggatttta	tcgcttttgt	tgttttcctc	acaactgtgg	caggaaaaga	28020
agatgacgat	ctctgtcagt	ttctgaggct	ggtttacctg	ttttgcaaag	agctccaccg	28080
agacaactaa	cttgtgtaac	tcacaaaggt	taattgcaca	acgtaaggag	ccaaaagaca	28140
tagcagctat	atgtgcagct	gcgaaaggca	gaatcatcca	aaggttggag	ggtttgttac	28200
cgcctgagtg	taggttgaga	a aa g a at g tg	ccagattcct	tcatccagtc	acattgagct	28260
ctctttctca	ttccagggta	ccgggaggta	gtgtttccca	cgccatggta	agccacacat	28320
ccctcctggg	cccctcagtg	gctagtcatt	cacctgtagg	cagggtctaa	gtttccagta	28380
agaatgacag	atctccccta	tcctcgctaa	aggcccaggt	ttggggatgg	aaggcttcaa	28440
aataaattga	atagggaact	tgattcactc	attagtggcc	ttatgaatgc	cattttctaa	28500
ggtactaata	cctcactggg	cagatgctcc	atcttagaga	ctgtgggttt	gacatttttc	28560
tgggtgacac	atgacaggga	agaagggtac	ttccgcacac	ctttgaatgt	gttttcttac	28620
tttcctcttg	gaaatagaaa	ataaaaaaca	acaccccacc	ccacccccaa	cacacacaca	28680
cactaataca	tacacacttg	ctgaatatgt	tctctacccc	atacctaccc	ttttcttaac	28740
ctactcccac	tttcaataga	acccacattt	cagaagattt	aatatatttg	gaagactttt	28800
attcgcattg	tcatctcttt	aaagaaaaat	gaggacaggt	ggatttagga	agcgcttccc	28860
tctgctccaa	atagatcctt	aaatatgagt	gatcgtttag	aaaactggca	catgagtgag	28920
agcctttcac	tgctgttgca	gtcttttggc	ctcaaagctg	ctgagccgtt	taaataatcg	28980
cataacacac	tcttggtggg	tggcgaggag	gaaaagaaac	ccttaccatt	tcttcccttg	29040
ccagtcccac	cgttgacaag	ccaaattgat	cttttaagag	atcaaatgaa	tgttctctaa	29100
atatatgtac	acacatggct	gcctggaaac	gtattccttc	cacagaatga	ttgcctgaaa	29160
tttgaaggag	agcgcagtaa	agacaccagg	ttggaagtgg	g gttgaaggg	ctagggggtg	29220
gagtggaggt	agaattctat	gcgtgcatga	ggcttcactt	ttgtacactg	tccttttggg	29280
attcaaggtg	ttcatcagta	taatgaagcg	ggcccattga	tttatcatct	atttggtaat	29340
gtcattgcat	ttttagctcc	ctgtgtcttt	tttgtcattg	ggttacattc	aagcacagta	29400
agatcaactt	taaaacctcc	ttactcaaca	gctttattag	ttatagcatt	ccatgacctt	29460
tctcaacatt	cttaaagaaa	aagatacagt	gtaatgtcgc	tttactttgc	ttattgtcct	29520
ttgttggggt	gaacaaagca	ttttctacag	tggctatatc	acataattat	acagctttca	29580
atagcagtgt	cttggcacat	atcaaagttc	agaggagcct	ttagaaaaaa	aaaaagat g t	29640
tttgtggcag	cctagggagg	gtctcatctt	tccttcagaa	aatagttcaa	ggctcttctg	29700
tcaagcttcc	ctacttagag	ctttttctcc	tcctgcttca	taaagtttaa	aggggattca	29760
gtggagttct	atgatctatt	tcctttgaaa	gattgttcct	cggcacagag	aggccctttg	29820

PCT/EP2004/008819

Page 116 of 270

39467A.txt.txt acttcaagag ttcacagatt catgtcttta ggtatcatat gtctgacctt atcagttact 29880 ccatttaatg taggagaaaa agtctcaact ctttgtgttt gtctgttttg cctctgtgaa 29940 atgatttggt gaaaagacca tcctttttaa cacaccactg agaggccgtt tctgactgta 30000 30060 tggatgagtt cacagtgaga atagaattat acaagggcag gcgcacacac aaaaaaatct 30120 ttgctttcct ccctcacctc ccgcacccc ccacaaatga tctattggct ctctcggcgg 30180 ctgtacccca acaggcgaag ccatttagca aacacagagg tagcggctgt ggtgctggga 30240 cagtggtggg ttttcccttg cttcgaccta cccctaaggc cttcataatt aattgtcctt 30300 cagcgatgag gaaagttcag aaacagtgtg tggagtgatg cctattgtct gatattcagt 30360 teteettgee ttggttettt ttetteatee cacaaagggt tateaatggg agaaagagag 30420 caagttctct tctgagagct gctggtggtg gctgtagctt tcagtgggat gttatcattg 30480 tgttcagccc atcctggatt aaatgtctga agaagttcta acaacctttt gaaagacagc 30540 ctgtttattt cgcctagatg aaacaaattc atttagcaaa ccaaagcttg ttcgaagttg 30600 gccacccctt ttcacatggc agataacatt atagatcaaa tttcttcatt tttccccccg 30660 caggatgtta tttaacttga actgtttggt tctttgtcag tcacagggca gaaattttaa 30720 tgactattca ctcactgctc ttaaatacat caatattaat ttacaataat acagttttg 30780 ctaacatcct ttttgatgaa gcgtagacgt ttaatacttg aaagcagata attagtttaa 30840 aaatattgtt tctccttcaa tgactgcctt cagccaatct tcaattctat cttgtaagat 30900 gatgtgaaac aaacgcattt tgtcttcctg cacccccaa tttttggctg agatacaaaa 30960 taaagatgca gtgtggagag agctatttga gaagggtagg aaaaagagaa ccgtctatta 31020 atgatcatta tactactgtt cctgttaaat agggtgaagc caagaaaaac aaatataatc 31080 gttcttccga ggagagcagt tgaactagta aatcacagag gtttaaaata actacattgt 31140 agtgttcatg acaacttcaa ggctgaaggg aaccatattt aaaggcaatc tctgtgtctc 31200 ttatagcagt ttcttttgga ggaagagacc gacaggatgg ccagaatcaa ttctgccccc 31260 tttgctcttt gaaaacaatt tcacaacaga ccttttggta tttaaagaga acctgtatat 31320 ggaagttgac acaactaata tagtcatacc aaaaaggggg tcataaaaaa ttaaagttct 31380 tettatgaat ettteatgag aageaatgaa aagggacaet agtgtageea agttetttgt 31440 gctacaagct cttcttccgg gctctgagct attgttcttt cagctcctca aacagacttt 31500 cactttcaaa ctgacaaaag tcacttaaaa gccagacagc tgtactaaca cacccacctt 31560 actgagcaag agccactggc aggtgacaag gcctgctgag agaccttgtt gaaaatgagc 31620 aggogtgact ttctcgtgcc ttaacgttgc ttttgcactc actttgagat ggcccattga 31680 ctgctctttt tgcccccca ccccaaaaca ggctccccaa aatatgttgt gcattttctt 31740 tocagtotoc aacattoaca tecotoatea tatttetoce ttacacetot gtogetagge acquattctq qqaaatttqt qcccttctaq caqaaqacaq qqaqtttqac tcacaaaact

Page 117 of 970

WO 2005/014854 PCT/EP2004/008819

39467A.txt.txt cctqctqcct cttttccttt tgcccctcca ttcaqttcaa atctcactta aqqttttcaq 31920 atticigitg cotcactagg gitggataga aaacacccac caaagatggg tgcaaacctc 31980 accttcggat ttaagatcta ggcagagatc gttaggtggg tagtcctgcc tgcatcccga 32040 ccctcagggc agcagccgtc gtgggccatg ggaggcctcc ctgtgtgcgc attacaggcc 32100 tececteece tgteacettg tgtacagtet ggtetgtgae actgatggtg attatgteat 32160 tattttgctc tgggggccct ggcacatctg cagagcccaa gcacatcttc tttgttgcgt 32220 tggcaaatgt cccacgccgc aaatgcttca ttagccctgc tgccggcctc cttgccagac 32280 gectgtgccc agatecegge ttettttgc tecgttett tgtgtagetg atgateatgt 32340 atteatette etggttette eccattttee tegaettetg aacteeagat gteceagttt 32400 tcttgcccaa atcactccga agtctacaat gcgaaatgaa gtgactcttt acccttgaat 32460 ccttccccac tcctgaccac ctttcctact ttttttcccc caaatgaata gtgactttga 32520 atagctcgcc accatgaaga ctaacgtttt caaacttgca atctgaaaag acaccaagtg 32580 attgcttcca gtttatgatg agagacaggg ttagaatgag tttggcatta ttagatattg 32640 cttattatct gtgtgccttc ctcctccgtc cccactctgc ccccctcact atttccttgg 32700 32760 atcetttatt tocacctoto cattoccaca ttttaccaat tttctqaaaq cactttqaaa tgtgagtaca gaaaatactc ttcatgcctc gctgtgcacg ttacagtctt ctgaaggttc 32820 ctttctctaa gtgaatcttc atctccactc taccctctcc caaaaccact gccccctcct 32880 tctgccccag ccctcaacaa tgacctacta ttagatactt acagtgatta acacttggct 32940 gttttggaaa cagctaaaac atttctctct ctaaagtttt attctatata tctaacagag 33000 33060 ccacagettt tgtgaaggtg tactggttte tacattaget geagtaaatt ttagagetta atatcttggg ctgtgatgga tactacataa ttggtatgtt taattttccc ttaaatttga 33120 33180 attaattgat ctgtgttagc atattatgag cagcttttcc aatagagttt aactagtttt taaattctct aactactgca acataaaatg atttaaatgt ctccatcttt gagcaaacca 33240 taagatttta gttttcaggt gtagttaaag gagttaagtg tatattttat ggaaatcatg 33300 gttagatcac tgccatgaat tgtaatttga aattcaagac aaagactctg ttaagggtta 33360 33420 aagaaaactt cctcagagga atgagttgcc acattgtacc gggttgctga gattttcaaa tacctatcaa agagggcac aagaatatgc atgttgcaaa tattaggacc aatgtagcca 33480 acaaggtgag aagagaggtg gtcagatcag gcgggtgggc tccccaaccc attgtcagcc 33540 ctgtgcaggg agcatattgg gagaggctgg tacctgtcat tgaatcattt ttcaaaaggc 33600 tcgagatata tccaaaatat tcctaacctc ccagttgccc accattatgg ttttatcacc 33660 catgagtttt acttaaacct tttttaaact taatctcatt gtcagaatat accactcctt 33720 aagataataa ttctctaagt gtattacctg ctgggaaaat actatcttct ttttacggct 33780 ctaaacgtga ttcccctaga actccacagg gatagccctt gttataatat cctgggattg 33840 tgaagagggt tgtgtccata ttctccattt cctttctgat tttacagact ttgatcatta 33900

ctccctctta	atcttcatct	ctccagatta	39467A.txt aggagctcta	.txt atccttttta	aaagcctaat	33960
ctcatacagt	aagtgggctg	ccctggatca	ttttagctgc	cctgctgtaa	tgcgcttcca	34020
gcctgactgt	gtttttctga	gggacagtta	cagttactaa	ctcacacagc	agaact ccag	34080
gtgtgggcag	tcatgccacg	gtttggtgat	ggtgccttgt	gcacacccaa	tgggactttt	34140
ttgattaccc	caaaagttta	tcctcagaag	ctggaattct	tgagttggat	ctcagtagtg	34200
cttattggtt	aaaatgatcc	tatgagacca	gctgatcaga	ctcttggcaa	atactctggc	34260
aaatatgatt	gtgtctatag	gacataccca	gccaaataga	aaataggcag	atccaccctg	34320
ccctccagat	gttttcagtg	ttcttgtaga	tcaagcactg	g gg tatttga	catcatgagg	34380
agatagcctt	agtcttgaac	ttgagtctat	aataatgaca	gctctg gg gg	aaagctccag	34440
tttctgcttt	atttgatgtt	attctcaggc	aggcaatgaa	atgttcacct	gcaagtagtc	34500
aatattttat	ataaaacatc	cccttgaaat	cttacaaaga	aaatgctttg	gggagtcttt	34560
ccactgtcag	tggtcctgga	tcaataccgt	tgtaggactt	acagcatgga	ctctccagcc	34620
aggccctggg	atcaaatccc	agctctgctg	ctttctagca	gtgaaaccct	ggcaagtgtc	34680
ttaccctgcc	tgtacttcag	tttccttatc	tgtaaaatag	gggatgtaat	agtgactact	34740
tcacagagtg	ttgtgagaat	taaatgaatc	tacacaattg	tattagcaca	aagtaagtgc	34800
tgtataagca	ttcacattta	ttcatttgca	gagccaagta	aatgttacct	tgttgctgtg	34860
acatctgtgg	tccaattatt	gcaccatttc	ctgctgaccc	taaataggaa	agtaaacaaa	34920
cgggcaatga	gggagctctc	atcagaattg	gaacatatat	tcaacgtaaa	actggttttc	34980
acaagagcaa	gtgttcctgc	tctgaatgtg	gctgaaaagg	cgacactagc	ctggaacagc	35040
tccaggactc	tggggtcatc	cgttccagat	gagaaggaca	cgatgagatg	ctgggggtgg	35100
tggaaggagc	actggcctgg	agggtctggc	tctggccata	cctgcctcat	tgtggtctac	35160
tgtgctcacc	ttttggaaag	tgataagatt	aaattcaaga	gtttcattct	agctctgaaa	35220
ttttgtgact	ctagagtaga	ggggcagttt	cattctagct	ctgaaatttt	gtgactctag	35280
aatagagggg	tattctgcat	tctctaaata	aagtctcttt	tgagtcttgg	tcatgttgca	35340
aagctttaag	cagtgagtat	agaggccctg	ggaatccaga	tggcttccat	gtgaggcccc	35400
ttctaccctg	gtgactctgc	tgcagcttaa	ttatctcagt	caaaatctcc	agggtgccca	35460
ttttcgtttt	ctcccaaggc	cctatttgca	gatctgaatc	tcaacagtgc	ccttggagac	35520
atggcaattc	ccttactggg	attatagaga	ctaatttttc	aaattcatac	acaatttatt	35580
gactgaattg	gcactatcat	tagacttgct	gctcacttta	tttgttgcct	tggccagggt	35640
ggccaaacaa	tgaggaaatt	tgtcagtgaa	gccctcatgc	cattgggttt	tctcacacat	35700
tccatgcagg	cctcaacaca	gactatcagc	atttataata	tgcattaact	tctatataat	35760
gtacgtctcc	tctctttcag	agcagaattg	gctatgtttt	tttttttatt	cttttatttt	35820
tttattttt	tgagacacag	agtgttgcac	tgttgcctaa	gctggagtac	agtggcatga	35880
tttcagctca	ccacaacctc	cacctctcgg	gctccagcga	ttctcctgcc	tcagcctccc	35940

aagtagctgg	gattacaggt	gtgcatcact	39467A.txt atgcccagcc		gttttagatg	36000	
atataactac	cttccctact	aagcctactt	ggtagtgttt	gcaaaagcaa	caccaccctt	36060	
ttctttaaat	attccccaaa	tgatagtaat	atagatcatg	aaagtctttt	cccttgagat	36120	
tgttttgtat	gtgtgagagt	ttgtggttgg	gaggtattga	gtcctcatac	aagccatttg	36180	
gatatgtatt	cttcatattt	cttatggcta	ttgcacctaa	gttctgtttt	cttaaggcta	36240	
cattaacatt	ttaaattaga	atatggtgct	aaaagtgact	ttcagtaaaa	ggtaatgtat	36300	
tccctgagaa	caagtaaata	cttgggcagg	gagggatggt	ttgagtagag	gtgaaaacag	36360	
agaaatgatg	ggaagctgac	catatgtaga	agaagctgaa	aggtcatggt	ttcaaggcca	36420	
ctgtgtttcc	tttcatttag	agcatccact	tttaaagatt	tatcattttc	agtgacctga	36480	
aggcgtacaa	gataatctgt	gtagatacct	gaaactgcct	ttcaacaagg	ccagtcctag	36540	
gtattgacag	catcctaggt	tgtcccaccc	taaacattac	ctcaagtccc	attgggtagg	36600	
agtctagtgg	acttccaaaa	gcccccgagt	tcattctgca	atctgcctgt	ctttgcaatc	36660	
tatttacctg	tcttgaaaaa	gggattccaa	agcccttcac	aagctcttaa	gtagcatttg	36720	
aaatacagcc	catccttagt	tttgcaaagg	gtgattgcag	agaaagacaa	atagaattcc	36780	
ctggaaatac	agaatagaat	ttctctgaca	gaacaaagat	cttgcagtca	aaaccaaggg	36840	
atgggattga	ggccaataat	ccccatcctt	tcctaaagca	actcggatat	tatttggggt	36900	
gtcataagct	attgccagca	gagtgccagc	atcccccatg	aacttgtgtt	ctctgaagct	36960	
ctgtctgatt	tcctaccatc	tgtatcacaa	gcgctttctt	tggtgtttac	tatgagcaat	37020	
ccctttctca	tcacaacctg	cctgaacccc	acttcctaac	agcttctccc	taggctcctt	37080	
actcacattg	ctccatcaat	agcaatacag	ggcacacaga	ctagttttaa	tattagccta	37140	
ggcaaagctt	aattatgaag	gtaaagctgt	ggcagaaaac	aatcacgtaa	tacattctcg	37200	
aacgaaacag	gagtaactgt	ggattatctg	tgccccagct	tcccttcatg	caatattgga	37260	
gtgtttgtgc	tatgttgttt	ttggataatg	tcccatccaa	gaatggcacc	aagcttggcc	37320	
ctgcttcttt	taccacctca	cccagtaatt	gtagcaaaag	ttaaacttca	agggctgtca	37380	
gcttgtcttg	aactcagaca	ccaatggcac	caaatttacg	gggctgactt	aaaggggaat	37440	
ttgttaacac	tacaaagtga	ctggtatatg	attgcagggc	ttatttttcc	acctaagtat	37500	
tgagctgatt	tgtcagatgt	gtcatgaagc	agggatacat	tcctctgttt	agcacattta	37560	
aatatgtact	ggcaggaaag	ctcccaatta	aacgttccta	atcagagcag	ggtaagactg	37620	
aagtcttcct	ggtccttgac	caccacgtgt	gtggtttatt	aactctgttc	ccgtagacat	37680	
aggcagcctt	aactccatcg	ggggaatggt	ctggccttac	aggtcgaatt	caagtgaatc	37740	
aatcgaacta	tcctccaaga	tagagcagaa	tgaaagaccc	aggatcagtg	cagaatgaaa	37800	
gaccattagg	cctctagaaa	agctgttagc	cctcaagttt	ggctaaaagc	aggggctggc	37860	
aaagtatggc	ctatgggcag	agctgcccct	caatctgttt	ttatggcttc	aagctaagaa	37920	
tgacttaaat	ttttaaacag	ttgtaaaaaa	taaggagaat	atccaaccta	gaccaaatat	37980	

ggcccacaga	gcctatgtat	ttattacctg	39467A.txt gccctttact	.txt ggcaaatttt	gctgaccacc	38040
ggctgaaggt	tttttctctt	ctgtgggaca	tgaactctct	gagattcctt	ctagttctga	38100
agttccaaaa	ttctgtgatt	cctttttttt	ttttttttg	agatggagtc	tcactctgtc	38160
acccaggctg	gagtgcagtg	gcatgatctc	agctcactgc	aacctccgcc	tcttgggttc	38220
aagcaattct	ctgcctcagc	ctcctgaata	gctgggattg	cgggcgccag	ccaccacgcc	38280
cggctaattt	ttttgtattt	ctagtagaga	cggggtttca	ccatcttggc	caggttggta	38340
ttgaactcct	gacctcatga	ttcacccgcc	tcagcctccc	aaagtgctgg	gattacaggc	38400
gtgagccacc	gcacccggcc	aattccatga	gtctttgatg	gaatagtctt	ggtccagctc	38460
ttacctgaac	agcctaccag	atgagcaatt	tctgcacagt	gcttccagtt	gtttttaaga	38520
tcttaacagt	atctgtgtag	tatctcaggg	ggagagaatg	aggtattagg	ttttagtttt	38580
tgatgctttt	tccttgattt	tgcttgcata	tttgtttgtt	tgtttaaact	tggaatcact	38640
ttttaagacc	tatgcagagt	ttgggagaga	aggaaaattt	gcttcatcgc	gaccaataat	38700
gtgacaatta	tgtttcctaa	cacgtataat	accaagacct	ccatgtgtga	gcaaataaac	38760
tagccactta	aagcacgttc	actgaccaaa	tttcagcccc	acgaaataat	tttgacagtc	38820
tctcatagac	atttgtcatt	ctgctcctag	caagctagta	ctatcttcta	ctggggctat	38880
ggaagagatg	gttttactta	ccttgatctc	tacatgcaga	attgccaatg	gaatacttac	38940
ataatttaaa	atgtatgcac	aatttattaa	acgtagaata	gaagatgtta	agacatcctt	39000
ttctattacc	tgaaagtcac	aattattcga	aatgctcaaa	tctagaacat	tgttgataat	39060
tatataatat	tttaacaaca	catatgttat	caacatcata	atgctgtaga	aattttattg	39120
tgaattttgt	attttctaaa	tactcttaaa	agacaaagac	tcaaattcag	gtagaaaaac	39180
aaagaagata	ctcagggtgt	atctctgccc	ttcattcatt	gctgtggtca	gagaagtctg	39240
tgtgaggggt	ttggccggta	gcagcccccc	agatccgtac	actgcagacc	aaaattcagc	39300
tcctgtgatg	cttttccatg	gagtttccct	gtcaattcaa	ggtagatcct	caacctccct	39360
ccttggcagt	ttgcatgtga	ctgttcattc	tttttattac	atttcctcca	gggggccatt	39420
ttcaccatgt	catatctgtt	tgctatcagc	atttataagg	gctggtgtgg	cattggagga	39480
tgtcaagtgg	tctgacttgg	aagtgtactg	ccacaaactc	catgtaggtg	acaggaggag	39540
agacctgctt	tcccgttgcc	actttttgga	ttatccctgc	aactctttcc	gtctggctga	39600
caaaaacctt	ggggctattg	ggtggctcat	cacttctgct	ccttctctag	cctttccctg	39660
ggtttgcttc	ccccaacccc	cacaccccct	cgcacattaa	catgacattg	cctggtgagc	39720
acagaagaga	gcagcttcca	ccagctgaaa	cctctgatct	caaactcact	agagagtttg	39780
gcttcgggat	tttggcaaga	aggccgattg	cccatcaggt	cagcatgaat	aaagatttct	39840
ttcttccctt	cttttttaaa	gtcaagcatc	aaccgaaact	gctcccaaag	ctctgtctct	39900
caagacaatt	taaccccttt	cacctaagta	cattttctat	tttgaatgca	tggtactttg	39960
ttttattctt	ttcctgtgag	atgaccaaga	aatctactat	atgtaaaatt	tgaaagccaa	40020

PCT/EP2004/008819

Page 121 of 970

39467A.txt.txt gtcaattcta aaccaggctt atcatttta aagtatgttt atccagcttt gtagtaggaa 40080 caagcagact gtttgaaggc cacatacttt tcaaaccctg gttgcaacac gtctgccccg 40140 ttttgaaact gtctttatct agccgagaaa acgaaaatct atttgacaaa gtggcactct 40200 ggccagttta tcttgcaata tggctttagc tcactgagtc tattgatttc cttaaattaa 40260 tgtttacaga atgctactga attttgctca acagaacatt gttctttcga agctttatat 40320 atatatatat ataaaagaga tacagactgt tattgccatg tgttcctttg tttagaccaa 40380 ggaaacatag tttttaggtt ttttttttc ttaagacagc cttgaactat agccacttcc 40440 tacaagcatt tacttttcac atatttaaac agcaaaacat gtaactagaa agtgggccca 40500 aactgcatgg gtattagacg aatctaatcc tcagtgttcc tgaaagctga atgccacctg 40560 gagcatcaga gggagaaagc ctttagtcct aagcccagat gttgctggag aaccttcctc 40620 tgcctcattt ggggtaactc qqcaqqcacc cqaaaqcaac ttcacaqcca qtqctcctqq 40680 atcctgctag tttttccaaa cacaagcatc ctaataaaat tcaaacacca tttagctgtt 40740 tgggaactct aaatataaca tcttgccctt tgaccacggt gctcagtgtt caatacacaa 40800 aacctaatct ctaaagatga ttttaaaact gaccttccca gagaagtaca cgtatccatt 40860 cagctacgaa cagtgcagaa aacaggattt tgactcataa ttatgaaatg gccaaaataa 40920 aacttaggga acacaaagca acttttctca accggttgac tcagccaaca aactcaccca 40980 agcgaacctc ctcagagcac ctctcaaaac gatgctttgc agacatttat taatcacagt 41040 gaatgettee caggaattag ggeteetett taaaatetea aaettgtaaa eeacettata 41100 tttggatgat attttatgct tcccaaagtg cattcatgtt ttcttttcca tttgatcctc 41160 ccctggaatg agagggcact ggaatagaat ctcaggattc actgtgtata gcatcctgca 41220 ccatteette tettetggag ggeetgttag teeceggetg tacacacagg ataaatgcat 41280 gcatgactgc aaagggagac ccttagtaac cacatcttgt gaccatattt tacagctcca 41340 tgattcctct tttcagcctc tggcaggaga gtttagtgtg agtgagacag tgaagaggag 41400 cagcaataac gtatctgttc ttggcttttc atctgataat ctctatgagg agttactaaa 41460 gcatctgagt ttatccattt aagtccactc tgtctgcagt gtaagtcccc agcttgtgcc 41520 actgctgtca ggagatgagt ctctccttga tcgatattta cttaacaaac agcagggatg 41580 qqaqaqtttq tttagaqqaa tcatqtqcac tctaqqqtqa atqaatgctc gggaaagtac 41640 ttcaactatt tgtctccttc cctaagattt ttgtgtacgt gtgtgtgcac acacgtgtgc 41700 agatgcccat tctcttttta acttctccaa agacacttcg aagtcatcta gaaaaatacc 41760 tcgctatgta tgattggtac atcattatac cgttaaggag ctaatgatgc agatgcagtt 41820 tttctaaccc agcaaagttt ggttcttctt ttgtgctctt atatagagca caaaagagac 41880 tcttaggata aactaaatgc acaagcatct acctttgacc cctttcagat gagtggaagg 41940 qaaqaaaata cqqatqqaaa caataaaaqc aqtttqacaa qqcaqctctt cactatgtat 42000 ttttgatggc attacctata tatttttaaa ggcccacagg gacaaaaagt aactttctcc 42060

	aatttttcag	agctgcttca	gcattagata	39467A.txt. tatttaactc	txt tactactgta	tatgaattcc	42120
,	acggtgtgaa	aattgagaga	gcactgttct	ttcgagttcc	ctgaaacaat	tgcttgaagg	42180
	ctcaagtcag	cctcttgaat	gcagttgact	tggaggcatc	tggggctaga	tcgaggggtt	42240
	ttgtttctgg	gtgtggggag	aggctggggg	gtggctgggg	agttatttat	ttatttgatt	42300
	ttgtgaatcg	gagttgtaaa	agccatctga	aatattcatg	cagaatagtc	tgagaagccc	42360
	gtttctgttt	tatttaccgc	acagtagaac	agccacagcg	gattagttct	acaatacccg	42420
	taacaaaagc	ccaacagctg	atgcatgtga	tgttaggagg	tgacaaaaca	gttaaagtat	42480
	gctgctggct	acaggcaagc	agtcagcaga	tgcagacaaa	agggtttgtg	acaagaataa	42540
	ctctctcc	aaggcgagca	gtgaagagta	tccaaaatac	cagtaccctt	ttctccttga	42600
	cattgtcttc	ttacagtcag	cattttattg	cccttttata	gtataaaaaa	aaatggagga	42660
	ggaagaagaa	ggaaaaccca	cacacaaact	aattcaccaa	aatactaggc	aggattgtac	42720
	tttcccattc	gctagccatg	cctgccagta	cacgtgtcct	tttccatttc	tccatcgaag	42780
	caagtttgaa	aaaaaaaatt	agcttaaaag	atcagctata	aagatgattt	cccttgaaaa	42840
	gtttgtaatc	tattgatagg	cttgataggc	cattggagcc	tttggttacg	ggttgggggg	42900
	tgggtggcca	gggaaagaag	tcgatgcctg	gtttgttttc	tgtccatttc	agtgaagatc	42960
	atttcagtga	tgaaatgagg	ccagagggcc	aa ttttt a aa	ggggattgag	gagggaggag	43020
	tgtccatgga	gaactgagca	aggggcaagg	tttaggtccc	ccgcaagagg	ctgatgaatg	43080
	agcttacgga	cggttcagag	gtgtgaaaaa	tgagcttctc	tgtctccaga	aaataggaga	43140
	ggctgtcttc	tttttaacct	ttgtaattcc	ccttctattc	tctgtgacat	tcattcagct	43200
	gccaagagcg	tttggcaagg	tttgggccag	cgagcacact	tccagtgacc	gctaaccttg	43260
	gtatgtcctg	acacttatga	tgagtatctg	caggacacag	aaggcaggca	gcctgctatg	43320
	tcaggctttt	attatgtact	gcagaggcta	gggacagtca	gtttaataaa	acaaatcatc	43380
	cttgaaggta	aagcaactgg	gaagaggagg	aagacaggag	aaaaatgtgt	ctttgccact	43440
	cattccgatg	gaaaaaaaaa	agaacagcaa	aacaaccacc	cacccaacac	accgtgtgtg	43500
	tgtgtgtgtg	tgtgtgtgtg	tgtgtgcgcg	cgcgcgcatt	cgcgcacgca	cacacacgcg	43560
	caacccagct	gtggactggg	cagacttgaa	aacctcctct	cattttctgc	atttcatgga	43620
	agcccagaag	gctcttgttt	gctctgagga	gactcaagtc	tgtgatgaaa	ttggtagaag	43680
	ctgatagcca	accccttca	aatttatgca	tatcttcaag	tacctcatta	ctttatattc	43740
	ttctccaaat	atcaaggcaa	gaccatctgg	ggtgacgttc	ctatattggg	atgccttttt	43800
	atcaaaacaa	agtttccact	ctcctctcct	gaggaacgct	gggcaaagca	gctcccacaa	43860
	tagcctcaga	gttccagcca	aagactttgg	aagccttttg	ttttttccct	gtggcatgtc	43920
	caaaggcagg	gccttctccc	ctcctccgcc	cgccctcccc	agccgcctgc	attgtcttgc	43980
	attccagtga	cttgattgac	tgttaccacc	tgatgctgag	gagatactct	agggttcatt	44040
	ctgcagattg	ttgggttcta	ttaaaagaaa	cctagataag	ggattacttg	tcactaaggg	44100

Page 123 of 970

attttctgca	gatgtttatt	ggtgatggga	39467A.txt aagccattag		gtgcagaaaa	44160
atatggacaa	catcattctg	ataagactgg	tttctaagat	gctcccacaa	aacatcagaa	44220
agtaccccct	attattctgt	taaatggagc	tgggtgtttt	caagcagagg	taaaggtctc	44280
tttttccatg	ggtgatgttt	ctatgtgtgg	atgaaattca	ctggaaccct	ctcagaagat	44340
cagttgctac	ccaaaagtgt	acctctggga	gccaccaaac	acatgagttg	ctccagtagt	44400
tcagtatctc	attacaactt	tcttttgtcc	agtccagtcc	attgcatgag	tatcacctca	44460
aagtaagcac	tatattaact	aatcatttta	tttgttcaca	aagaattcat	ttcttcccaa	44520
atataaacca	ataaccaaag	tctcctccag	ggcatctttt	ataccatttc	catttatttt	44580
gaagttacta	gattctctgt	ggtttttcaa	gattacagag	gcacagcttt	tcaaggtttt	44640
ggtgcctcat	ataaatagta	gaaattgctg	aaaaagcatt	aaaagggagc	cagcatcgtt	44700
taatgcaaag	acaccttacc	tcacagtaat	ctcttcatct	catcatttct	tcatctcata	44760
caatctcatg	ctttcttcat	ctataaagtg	atgatttctg	agatctattc	gaactctttg	44820
aattctacct	tactttacca	ttattttaaa	cttctttttt	tttttttatt	tttgagatgg	44880
ggtctcactg	tcacccaggc	tgtagtgcaa	tggtgcaacc	tcagctcact	gcaacctccg	44940
ccacctgggc	tcaagccatc	ctctcacctc	cacctcccag	tagctgggac	cacaggcatg	45000
tgccaccaca	cccagctaat	ttttttgcat	ttttggtaga	gacggggttt	catcatgttg	45060
ctcaggctga	agcttccctt	tattaagtat	tgttaaagta	ttaagtaact	gccactctag	45120
agcaatatgg	agtaaagcag	aaggcaagat	ctcactatga	gctatttacc	aaataacttt	45180
gcaaaagata	ctctgctgag	gctccttatc	tagagacacc	ttatgatgag	gtaattgaaa	45240
gtacataaaa	gtagataaaa	agttaaacag	catcaagaca	caaatgcaaa	aggtgataaa	45300
ggataaccta	tgattgccac	cacaagaaag	gaatatttaa	aacagattaa	aacccactaa	45360
aaaccattaa	caagcatgac	gaactataaa	aatgatgaag	aggagactgc	atacaacccc	45420
caaagaagtt	gccttgttct	catgcaaatc	ctacaactac	acttccctcc	ctccctgct	45480
gctgatgttc	tagatgtacc	tcttctctct	cctctgacag	tcttgaacaa	tgcctgccct	45540
tcccctgtcc	ctggttcccc	agacctcctg	tgcagttctt	ggtgtgggca	gggcttccgg	45600
ccttctctgg	cttctctggg	gcagctgccc	acaccttcac	ccctcaaagc	tctctgccat	45660
gtcatgctgc	atccctgagt	gctcaaggaa	catagaattt	cactgaggct	gtattgccgt	45720
tggctgatga	aaccaccctt	cttgaaacgt	ttattttaat	aaatgcctat	aattggccag	45780
gtgcagtggc	tcacacctgt	aatctcagca	ctttgggagg	ccaagacggg	cagatcacct	45840
gaggttggga	gttggagacc	agcctggcca	acatggtgaa	accccatctc	tactgaaaat	45900
acaaaagtta	gccaggcgtg	atggcacttg	cctgtaatct	cagctactca	ggaggctaag	45960
gcaggagagt	ctcatgaacc	caggaggcag	aggttgcagt	gagccaggat	catgccactg	46020
cactccagcc	tgggtgacag	agcaaaactc	catctcaaat	aaataaatta	ataaatgcct	46080
atgattatgt	ttctgtagca	tttggctaac	agctcccaat	ccaaggagtg	agagtgggca	46140

gttgctccgc	ttcactgttc	tccagccaca	39467A.txt ttccctccct	txt cagtgatgct	catttgatag	46200
aatgtggagg	attatctttg	ggggtggagg	tgactgtgct	agaaaagatt	gcttcacgaa	46260
ttttatttg	tataatgtga	gtgggagggc	taagctctcc	tccaacaaat	actcatgtat	46320
acaagacatt	tgggaggaaa	tcacccaaag	gcctgtagaa	aatccacatg	aattctcagc	46380
agagaatggc	ccttgaggtg	tatgggtttg	cacattcatg	gcggacaagg	cggcactttg	46440
aaggattttc	caggcaacac	tgggaattat	gtcctaagaa	atgggccagt	gtgaaagtct	46500
ttaggagggt	ctgataaaaa	tgtaagctta	agactgattg	gccccaaaag	gagtcccttt	46560
cattttttc	tgcagagtta	ttacatttct	ttataaacaa	caattaactt	gccataggga	46620
acaatgaact	tctttgtcca	attttaaacg	tgaaaaacag	tgatgtcggg	tgatgattct	46680
ggttttcttt	accagttact	actattgtta	aaaagtacat	tgcacccaag	gtgggaagaa	46740
agagatgaaa	catgttcaac	attacactac	ttccttttta	ctttggtacg	tggcatgtct	46800
gaacttagat	gaaatgtctt	tcatctcttg	tatatgcgta	gataaatatg	gctacatgta	46860
cacctatgat	acgtttatgt	cctcatacgt	ctgcacttaa	tgtaaaaatg	aaactttact	46920
ggtgtataag	taccccacta	aaagaaatct	actaagtgtc	aatgtgtact	tggaaaatca	46980
tgagttcatg	gattattctg	tgattccatt	atgttggtgt	ggggatagat	agaccatgct	47040
gtactataag	taacttccaa	agaacactaa	ataagtacat	cagtagctac	tgctttcctt	47100
agtcaagaga	tcagattaat	aagtaattaa	gagaacacac	acacacacac	aacacacata	47160
catattaatt	gctgtggaag	aaaagcctta	agaaattggg	gttctaaaat	gaatatttgg	47220
ggaatgttta	ttttggatga	taaggacctt	gaggaatttc	cttaccctct	ctgagcctca	47280
gttttctatt	gtgtaactgg	gataataaca	ccccttagag	agattgggag	aactgaatga	47340
cataattcac	attcagtaca	taaaacatag	cctggcaagt	agtaaatact	cgaaaaaagt	47400
tagtttgtat	tattattatt	atcagctgaa	taaatcactc	tcttatggag	caattctaat	47460
ctcaaggtta	agtagtttct	gatgtaatat	tttaggatca	gttttgtgac	ttcatgttaa	47520
tattattatt	ttactccttt	atgtatatag	aatactttat	attgcagatt	aatatacaac	47580
ttagcatctg	agtcaacaat	cctctgagac	aaacagataa	ctgagatttt	agaagatttt	47640
cttcatttaa	agcttgggtt	taatttataa	agaagcccaa	ctatttgtta	ttctattttg	47700
agaacgtatt	ttgttttcat	catggcaatc	aaaaagaaat	aggattcaaa	ttctgaaaaa	47760
ataattggag	actttcttct	ggatagcact	tatttaataa	agtgaggaat	cccaaaagtc	47820
acatcc cata	ttcctatcct	aatatccaca	atgaaatccc	agtttttcaa	taggtctgcg	47880
ttggatcttt	catacactct	tcttaaaaca	aagctgtcaa	ccccacatca	caatgcttct	47940
atatataatg	actttacatt	aaaagaatag	aagccagcta	tttttagaaa	atgcaggtgc	48000
catgtaagcc	cctttctgca	agaatgatct	tagctcagtt	tccttggaat	aactgtagac	48060
ttgaaactga	aaactttatt	aatgccattg	tctccttgta	tcagcaggtt	ccagagagat	48120
tcctggaagt	tgctcagatc	acattacggg	agtttttcaa	tgccattatc	gcaggcaaag	48180

WO 2005/014854 PCT/EP2004/008819 39467A.txt.txt atgttgatcc ttcctggaag aaggccatat acaaggtcat ctgcaagctg gatagtgaag 48240 tccctgagat tttcaaatcc ccgaactgcc tacaagagct gcttcatgag tagaaatttc 48300 aacaactett tttgaatgta tgaagagtag cagteeeett tggatgteea agttatatgt 48360 gtctagattt tgatttcata tatatgtgta tgggaggcat ggatatgtta tgaaatcagc 48420 tggtaattcc tcctcatcac gtttctctca ttttcttttg ttttccattg caaggggatg 48480 gttgttttct ttctgccttt agtttgcttt tgcccaaggc ccttaacatt tggacactta 48540 aaatagggtt aattttcagg gaaaaagaat gttggcgtgt gtaaagtctc tattagcaat 48600 qaaqqqaatt tqttaacqat qcatccactt qattqatqac ttattqcaaa tqqcqqttqq 48660 ctgaggaaaa cccatgacac agcacaactc tacagacagt gatgtgtctc ttgtttctac 48720 tgctaagaag gtctgaaaat ttaatgaaac cacttcatac atttaagtat tttgtttggt 48780 ttgaactcaa tcagtagctt ttccttacat gtttaaaaat aattccaatg acagatgagc 48840 ageteaettt tecaaagtae eecaaaagge caaattaaaa aagaaaaata ateaetetea 48900 agccttgtct aagaaaagag gcaaactctg aaagtcgtac cagtttcttc tggaggcaaa 48960 gcaattttgc acaaaaccag ctctctcaag atgagactag aaattcatac ctggtcttgt 49020 agccacctct ctaaacttga aaataggttc ttcttcataa gtgagcttac atcattcttc 49080 ataaagaaaa atcctataac ttgttatcat ttttgcttca gatactaaaa ggcactaagt 49140 ttccaattta cgctgctcaa ctttgtttat atgcttaaaa ggattctgtt tacttaacaa 49200 ttttttcccc taaaatacta ttttctgaat acttccttcc agtaaggaat aaaggaaagc 49260 49275 ccaacttooc cataa <210> 2 3097 DNA <213> Homo sapiens <220> misc_feature <221> Prox-1 DNA -400\s ggcacgaggc cccttttcca gaatcacttg cactgtcttg ttcttgaatg agaaaggaag 60 aaaagagcct cccattactc agacccgtgt aaacattatt ccccccagga gaaaatggtg 120 ttattcaaat gaatcataat aaaatagcct ctaaacagtt tctaagcggg agcctccgtg 1.80 gaactcagcg ctccgctcct cccagttcct aagaggtccc gggattcttg agctgtgccc 240 agctgacgag cttttgaaga tggcacaata accgtccagt gatgcctgac catgacagca 300 cagccctctt aagccggcaa accaagagga gaagagttga cattggagtg aaaaggacgg 360

tagggacagc atctgcattt tttgctaagg caagagcaac gttttttagt gccatgaatc cccaaggttc tgagcaggat gttgagtatt cagtggtgca gcatgcagat ggggaaaagt

caaatgtact ccgcaagctg ctgaagaggg cgaactcgta tgaagatgcc atgatgcctt

420

480 540

ttccaggagc	aaccataatt	tcccagctgt	39467A.txt tgaaaaataa	.txt catgaacaaa	aatggtggca	600
		agcggtctct				660
		agagacagcc				720
ctactatgag	ccagtttgat	atggatcgct	tatgtgatga	gcacctgaga	gcaaagcgcg	780
cccgggttga	gaatataatt	cggggtatga	gccattcccc	cagtgtggca	ttaaggggca	840
atgaaaatga	aagagagatg	gccccgcagt	ctgtgagtcc	ccgagaaagt	tacagagaaa	900
		ccccagcagc				960
cccgaaaaga	acagaagcga	gaggagcgcc	gacagctgaa	acagcagctg	gaggacatgc	1020
agaaacagct	gcgccagctg	caggaaaagt	tctaccaaat	ctatgacagc	actgattcgg	1080
aaaatgatga	agatggtaac	ctgtctgaag	acagcatgcg	ctcggagatc	ctggatgcca	1140
gggcccagga	ctctgtcgga	aggtcagata	atgagatgtg	cgagctagac	ccaggacagt	1200
ttattgaccg	agctcgagcc	ctgatcagag	agcaggaaat	ggctgaaaac	aagccgaagc	1260
gagaaggcaa	caacaaagaa	agagaccatg	ggccaaactc	cttacaaccg	gaaggcaaac	1320
atttggctga	gaccttgaaa	caggaactga	acactgccat	gtcgcaagtt	gtggacactg	1380
tggtcaaagt	cttttcggcc	aagccctccc	gccaggttcc	tcaggtcttc	ccacctctcc	1440
agatccccca	ggccagattt	gcagtcaatg	gggaaaacca	caatttccac	accgccaacc	1500
agcgcctgca	gtgctttggc	gacgtcatca	ttccgaaccc	cctggacacc	tttggcaatg	1560
tgcagatggc	cagttccact	gaccagacag	aagcactgcc	cctggttgtc	cgcaaaaact	1620
cctctgacca	gtctgcctcc	ggccctgccg	ctggcggcca	ccaccagccc	ctgcaccagt	1680
cgcctctctc	tgccaccacg	ggcttcacca	cgtccacctt	ccgccacccc	ttcccccttc	1740
ccttgatggc	ctatccattt	cagagcccat	taggtgctcc	ctccggctcc	ttctctggaa	1800
aagacagagc	ctctcctgaa	tccttagact	taactaggga	taccacgagt	ctgaggacca	1860
agatgtcatc	tcaccacctg	agccaccacc	cttgttcacc	agcacacccg	cccagcaccg	1920
ccgaagggct	ctccttgtcg	ctcataaagt	ccgagtgcgg	cgatcttcaa	gatatgtctg	1980
aaatatcacc	ttattcggga	agtgcaatgc	aggaaggatt	gtcacccaat	cacttgaaaa	2040
aagcaaagct	catgttttt	tatacccgtt	atcccagctc	caatatgctg	aagacctact	2100
tctccgacgt	aaagttcaac	agat g catta	cctctcagct	catcaagtgg	tttagcaatt	2160
tccgtgagtt	ttactacatt	cagatggaga	agtacgcacg	tcaagccatc	aac g atgg g g	2220
tcaccagtac	tgaagagctg	tctataacca	gagactgtga	gctgtacagg	gctctgaaca	2280
tgcactacaa	taaagcaaat	gactttgagg	ttccagagag	attcctggaa	gttgctcaga	2340
tcacattacg	ggagttttc	aatgccatta	tcgcaggcaa	agatgttgat	ccttcctgga	2400
agaaggccat	atacaaggtc	atctgcaagc	tggatagtga	agtccctgag	attttcaaat	2460
ccccgaactg	cctacaagag	ctgcttcatg	agtagaaatt	tcaacaactc	tttttgaatg	2520
tatgaagagt	agcagtcccc	tttggatgtc	caagttatat	gtgtctagat	tttgatttca	2580

PCT/EP2004/008819

2700

2760

2820

2880

2940

3000

3097

Page 127 of 270

39467A.txt.txt tatatatgtg tatgggaggc atggatatgt tatgaaatca gctggtaatt cctcctcatc acqtttctct cattttcttt tgttttccat tgcaagggga tggttgtttt ctttctgcct ttagtttgct tttgcccaag gcccttaaca tttggacact taaaataggg ttaattttca gggaaaaaga atgttggcgt gtgtaaagtc tctattagca atgaagggaa tttgttaacg atgcatccac ttgattgatg acttattgca aatggcggtt ggctgaggaa aacccatgac acagcacaac tctacagaca gtgatgtgtc tcttgtttct actgctaaga aggtctgaaa atttaatgaa accacttcat acatttaagt attttgtttg gtttgaactc aatcagtagc ttttccttac atgtttaaaa ataattccaa tgacagatga gcagctcact tttccaaagt accccaaaag gccaaattaa aaaaaaaaaa aaaaaaa <210> 3 737 <211> <212> <213> PRT Homo sapiens <220> <221> <223> misc_feature Prox-1 Protein <400> Met Pro Asp His Asp Ser Thr Ala Leu Leu Ser Arg Gln Thr Lys Arg 1 10 15 Arg Arg Val Asp Ile Gly Val Lys Arg Thr Val Gly Thr Ala Ser Ala 20 25 30 Phe Phe Ala Lys Ala Arg Ala Thr Phe Phe Ser Ala Met Asn Pro Gln Gly Ser Glu Gln Asp Val Glu Tyr Ser Val Val Gln His Ala Asp Gly 50 60 Glu Lys Ser Asn Val Leu Arg Lys Leu Leu Lys Arg Ala Asn Ser Tyr 65 75 80 Glu Asp Ala Met Met Pro Phe Pro Gly Ala Thr Ile Ile Ser Gln Leu 85 90 95 Leu Lys Asn Asn Met Asn Lys Asn Gly Gly Thr Glu Pro Ser Phe Gln Ala Ser Gly Leu Ser Ser Thr Gly Ser Glu Val His Gln Glu Asp Ile 115 120 125 Cys Ser Asn Ser Ser Arg Asp Ser Pro Pro Glu Cys Leu Ser Pro Phe 130 140

Gly Arg Pro Thr Met Ser Gln Phe Asp Met Asp Arg Leu Cys Asp Glu

160

Page 128 of 270

39467A.txt.txt 155

150 145

His Leu Arg Ala Lys Arg Ala Arg Val Glu Asn Ile Ile Arg Gly Met 165 170 175 Ser His Ser Pro Ser Val Ala Leu Arg Gly Asn Glu Asn Glu Arg Glu 180 185 190 Met Ala Pro Gln Ser Val Ser Pro Arg Glu Ser Tyr Arg Glu Asn Lys 195 200 205 Arg Lys Gln Lys Leu Pro Gln Gln Gln Gln Gln Ser Phe Gln Gln Leu 210 215 220 val Ser Ala Arg Lys Glu Gln Lys Arg Glu Glu Arg Arg Gln Leu Lys 225 230 240 Gln Gln Leu Glu Asp Met Gln Lys Gln Leu Arg Gln Leu Gln Glu Lys Phe Tyr Gln Ile Tyr Asp Ser Thr Asp Ser Glu Asn Asp Glu Asp Gly Asn Leu Ser Glu Asp Ser Met Arg Ser Glu Ile Leu Asp Ala Arg Ala 275 285 Gln Asp Ser Val Gly Arg Ser Asp Asn Glu Met Cys Glu Leu Asp Pro 290 295 300 Gly Gln Phe Ile Asp Arg Ala Arg Ala Leu Ile Arg Glu Gln Glu Met 305 310 320 Ala Glu Asn Lys Pro Lys Arg Glu Gly Asn Asn Lys Glu Arg Asp His 325 330 335 Gly Pro Asn Ser Leu Gln Pro Glu Gly Lys His Leu Ala Glu Thr Leu $340 \hspace{1cm} 345 \hspace{1cm} 350$ Lys Gln Glu Leu Asn Thr Ala Met Ser Gln Val Val Asp Thr Val Val 355 360 Val 65Lys Val Phe Ser Ala Lys Pro Ser Arg Gln Val Pro Gln Val Phe Pro 370 380 Pro Leu Gln Ile Pro Gln Ala Arg Phe Ala Val Asn Gly Glu Asn His 385 390 395 400 Asn Phe His Thr Ala Asn Gln Arg Leu Gln Cys Phe Gly Asp Val Ile 405 410 415

Ile Pro Asn Pro Leu Asp Thr Phe Gly Asn Val Gln Met Ala Ser Ser

WC05014634 [file]//E./WC06014854.cpc

Page 129 of 270

WO 2005/014854

39467A.txt.txt 430

Thr Asp Gln Thr Glu Ala Leu Pro Leu Val Val Arg Lys Asn Ser Ser Asp Gln Ser Ala Ser Gly Pro Ala Ala Gly Gly His His Gln Pro Leu 450 460 His Gln Ser Pro Leu Ser Ala Thr Thr Gly Phe Thr Thr Ser Thr Phe 465 470 475 480 Arg His Pro Phe Pro Leu Pro Leu Met Ala Tyr Pro Phe Gln Ser Pro 485 490 495 Leu Gly Ala Pro Ser Gly Ser Phe Ser Gly Lys Asp Arg Ala Ser Pro Glu Ser Leu Asp Leu Thr Arg Asp Thr Thr Ser Leu Arg Thr Lys Met Ser Ser His His Leu Ser His His Pro Cys Ser Pro Ala His Pro Pro 530 540 Ser Thr Ala Glu Gly Leu Ser Leu Ser Leu Ile Lys Ser Glu Cys Gly 545 550 555 560 Asp Leu Gln Asp Met Ser Glu Ile Ser Pro Tyr Ser Gly Ser Ala Met Gln Glu Gly Leu Ser Pro Asn His Leu Lys Lys Ala Lys Leu Met Phe 580 590 Phe Tyr Thr Arg Tyr Pro Ser Ser Asn Met Leu Lys Thr Tyr Phe Ser 595 600 605 Asp Val Lys Phe Asn Arg Cys Ile Thr Ser Gln Leu Ile Lys Trp Phe 610 620 Ser Asn Phe Arg Glu Phe Tyr Tyr Ile Gln Met Glu Lys Tyr Ala Arg Gln Ala Ile Asn Asp Gly Val Thr Ser Thr Glu Glu Leu Ser Ile Thr 645 650 655 Arg Asp Cys Glu Leu Tyr Arg Ala Leu Asn Met His Tyr Asn Lys Ala 660 665 670 Asn Asp Phe Glu Val Pro Glu Arg Phe Leu Glu Val Ala Gln Ile Thr 675 680 . 685 Leu Arg Glu Phe Phe Asn Ala Ile Ile Ala Gly Lys Asp Val Asp Pro

PCT/EP2004/008819

WO 2005/014854 39467A.txt.txt 70**0** 695

Ser Trp Lys Lys Ala Ile Tyr Lys Val Ile Cys Lys Leu Asp Ser Glu 705 710 715 720

Val Pro Glu Ile Phe Lys Ser Pro Asn Cys Leu Gln Glu Leu Leu His

Glu

<210> <211> 21 <212> RNA <213> Homo sapiens

<220> <221> misc_feature <223> Prox-1 A16 sense

<400> 4 cugcaagcug gauagugaag u 21

<210> 5 <211> 21 <212> RNA <213> Homo sapiens

<220> <221> misc_feature <223> Prox-1 A16 antisense <400> 5

21 uucacuaucc agcuugcaga u

<210> 6 <211> 21

<212> RNA <213> Homo sapiens

<220> <221> misc_feature <223> Prox-1 A25 sense

<400> 6 21 cuaugagcca guuugauauu u

<210> 7 <211> 21

<212> RNA <213> Homo sapiens

<220>

<221> misc_feature
<223> Prox-1 A25 antisense

<400> 7

WO 2005/014854	PCT/EP2004/008819
auaucaaacu ggcucauagu u 39467A.txt.txt	21
<210> 8 <211> 21 <212> RNA <213> Homo sapiens	
<220> <221> misc_feature <223> EGFP A18 sense	
<400> 8 gacguaaacg gccacaaguu u	21
<210> 9 <211> 21 <212> RNA <213> Homo sapiens	
<220> <221> misc_feature <223> EGFP A18 antisense	
<400> 9 acuuguggcc guuuacgucu u	21
<210> 10 <211> 3362 <122> DNA <213> Homo sapiens	
<220> <221> misc_feature <223> Beta-catenin	
<400> 10 aagceteteg gtetgtggca geagegttgg eeeggeeeeg ggageggaga	ı gcgaggggag 60
gcggagacgg aggaaggtct gaggagcagc ttcagtcccc gccgagccgc	caccgcaggt 120
cgaggacggt cggactcccg cggcgggagg agcctgttcc cctgagggta	tttgaagtat 180
accatacaac tgttttgaaa atccagcgtg gacaatggct actcaagctg	g atttgatgga 240
gttggacatg gccatggaac cagacagaaa agcggctgtt agtcactggc	agcaacagtc 300
ttacctggac tctggaatcc attctggtgc cactaccaca gctccttctc	tgagtggtaa 360
aggcaatcct gaggaagagg atgtggatac ctcccaagtc ctgtatgagt	gggaacaggg 420
attttctcag tccttcactc aagaacaagt agctgatatt gatggacagt	atgcaatgac 480
tcgagctcag agggtacgag ctgctatgtt ccctgagaca ttagatgagg	g gcatgcagat 540
cccatctaca cagtttgatg ctgctcatcc cactaatgtc cagcgtttgg	ctgaaccatc 600
acagatgctg aaacatgcag ttgtaaactt gattaactat caagatgatg	g cagaacttgc 660
cacacgtgca atccctgaac tgacaaaact gctaaatgac gaggaccagg	g tggtggttaa 720
taaggctgca gttatggtcc atcagctttc taaaaaggaa gcttccagac	acgctatcat 780

gcgttctcct	cagatggtgt	ctgctattgt	39467A.txt acgtaccatg	.txt cagaatacaa	atgatgtaga	840
aacagctcgt	tgtaccgctg	ggaccttgca	taacctttcc	catcatcgtg	agggcttact	900
ggccatcttt	aagtctggag	gcattcctgc	cctggtgaaa	atgcttggtt	caccagtgga	960
ttctgtgttg	ttttatgcca	ttacaactct	ccacaacctt	ttattacatc	aagaaggagc	1020
taaaatggca	gtgcgtttag	ctggtgggct	gcagaaaatg	gttgccttgc	tcaacaaaac	1080
aaatgttaaa	ttcttggcta	ttacgacaga	ctgccttcaa	attttagctt	atggcaacca	1140
agaaagcaag	ctcatcatac	tggctagtgg	tggaccccaa	gctttagtaa	atataatgag	1200
gacctatact	tacgaaaaac	tactgtggac	cacaagcaga	gtgctgaagg	tgctatctgt	1260
ctgctctagt	aataagccgg	ctattgtaga	agctggtgga	atgcaagctt	taggacttca	1320
cctgacagat	ccaagtcaac	gtcttgttca	gaactgtctt	tggactctca	ggaatctttc	1380
agatgctgca	actaaacagg	aagggatgga	aggtctcctt	gggactcttg	ttcagcttct	1440
gggttcagat	gatataaatg	tggtcacctg	tgcagctgga	attctttcta	acctcacttg	1500
caataattat	aagaacaaga	tgatggtctg	ccaagtgggt	ggtatagagg	ctcttgtgcg	1560
tactgtcctt	cgggctggtg	acagggaaga	catcactgag	cctgccatct	gtgctcttcg	1620
tcatctgacc	agccgacacc	aagaagcaga	gatggcccag	aatgcagttc	gccttcacta	1680
tggactacca	gttgtggtta	agctcttaca	cccaccatcc	cactggcctc	tgataaaggc	1740
tactgttgga	ttgattcgaa	atcttgccct	ttgtcccgca	aatcatgcac	ctttgcgtga	1800
gcagggtgcc	attccacgac	tagttcagtt	gcttgttcgt	gcacatcagg	atacccagcg	1860
ccgtacgtcc	atgggtg gg a	cacagcagca	atttgt g gag	ggggtccgca	tggaagaaat	1920
agttgaaggt	tgtaccggag	cccttcacat	cctagctcgg	gatgttcaca	accgaattgt	1980
tatcagagga	ctaaatacca	ttccattgtt	tgtgcagctg	ctttattctc	ccattgaaaa	2040
catccaaaga	gtagctgcag	gggtcctctg	tgaacttgct	caggacaagg	aagctgcaga	2100
agctattgaa	gctgagggag	ccacagctcc	tctgacagag	ttacttcact	ctaggaatga	2160
aggtgtggcg	acatatgcag	ctgctgtttt	gttccgaatg	tctgaggaca	agccacaaga	2220
ttacaagaaa	cggctttcag	ttgagctgac	cagctctctc	ttcagaacag	agccaatggc	2280
ttggaatgag	actgctgatc	ttggacttga	tattggtgcc	cagggagaac	cccttggata	2340
tcgccaggat	gatcctagct	atcgttcttt	tcactctggt	ggatatggcc	aggatgcctt	2400
gggtatggac	cccatgatgg	aacatgagat	gggtggccac	caccctggtg	ctgactatcc	2460
agttgatggg	ctgccagatc	tggggcatgc	ccaggacctc	atggatgggc	tgcctccagg	2520
tgacagcaat	cagctggcct	ggtttgatac	tgacctgtaa	atcatccttt	agctgtattg	2580
tctgaacttg	cattgtgatt	ggcctgtaga	gttgctgaga	gggctcgagg	ggtgggctgg	2640
tatctcagaa	agtgcctgac	acactaacca	agctgagttt	cctatgggaa	caattgaagt	2700
aaactttttg	ttctggtcct	ttttggtcga	ggagtaacaa	tacaaatgga	ttttgggagt	2760
gactcaagaa	gtgaagaatg	cacaagaatg	gatcacaaga	tggaatttag	caaaccctag	2820

39467A.txt.txt 2880 ccttgcttgt taaaattttt ttttttttt ttttaagaat atctgtaatg gtactgactt tgcttgcttt gaagtagctc ttttttttt tttttttt tttttttqca qtaactqttt 2940 tttaagtctc tcgtagtgtt aagttatagt gaatactgct acagcaattt ctaattttta 3000 3060 agaattgagt aatggtgtag aacactaatt aattcataat cactctaatt aattgtaatc tgaataaagt gtaacaattg tgtagccttt ttgtataaaa tagacaaata gaaaatggtc 3120 3180 caattagttt cctttttaat atgcttaaaa taagcaggtg gatctatttc atgtttttga tcaaaaacta tttgggatat qtatgggtag qgtaaatcag taagaggtgt tatttggaac 3240 3300 cttgttttgg acagtttacc agttgccttt tatcccaaag ttgttgtaac ctgctgtgat acgatgcttc aagagaaaat gcggttataa aaaatggttc agaattaaac ttttaattca 3360 3362 tt <210> 11 781 Homo sapiens <220> <221> misc_feature <223> Beta-catenin <400> 11 Met Ala Thr Gln Ala Asp Leu Met Glu Leu Asp Met Ala Met Glu Pro 1 10 1.5 Asp Arg Lys Ala Ala Val Ser His Trp Gln Gln Gln Ser Tyr Leu Asp Ser Gly Ile His Ser Gly Ala Thr Thr Thr Ala Pro Ser Leu Ser Gly 35 40 45 Lys Gly Asn Pro Glu Glu Glu Asp Val Asp Thr Ser Gln Val Leu Tyr Glu Trp Glu Gln Gly Phe Ser Gln Ser Phe Thr Gln Glu Gln Val Ala 65 70 75

Ala Met Phe Pro Glu Thr Leu Asp Glu Gly Met Gln Ile Pro Ser Thr Gln Phe Asp Ala Ala His Pro Thr Asn Val Gln Arg Leu Ala Glu Pro 115

Asp Ile Asp Gly Gln Tyr Ala Met Thr Arg Ala Gln Arg Val Arg Ala 85 90 95

Ser Gln Met Leu Lys His Ala Val Val Asn Leu Ile Asn Tyr Gln Asp 130 135 140

Page 134 of 270

39467A.txt.txt

Asp Ala Glu Leu Ala Thr Arg Ala Ile Pro Glu Leu Thr Lys Leu Leu 145 150 160 Asn Asp Glu Asp Gln Val Val Val Asn Lys Ala Ala Val Met Val His Gln Leu Ser Lys Lys Glu Ala Ser Arg His Ala Ile Met Arg Ser Pro 180 185 190 Gln Met Val Ser Ala Ile Val Arg Thr Met Gln Asn Thr Asn Asp Val 195 200 205 Glu Thr Ala Arg Cys Thr Ala Gly Thr Leu His Asn Leu Ser His His Arg Glu Gly Leu Leu Ala Ile Phe Lys Ser Gly Gly Ile Pro Ala Leu 225 230 235 240 Val Lys Met Leu Gly Ser Pro Val Asp Ser Val Leu Phe Tyr Ala Ile 245 250 255 Thr Thr Leu His Asn Leu Leu Leu His Gln Glu Gly Ala Lys Met Ala 260 265 270 Val Arg Leu Ala Gly Gly Leu Gln Lys Met Val Ala Leu Leu Asn Lys 275 280 285 Thr Asn Val Lys Phe Leu Ala Ile Thr Thr Asp Cys Leu Gln Ile Leu 290 295 300 Ala Tyr Gly Asn Gln Glu Ser Lys Leu Ile Ile Leu Ala Ser Gly Gly 305 310 315 320 Pro Gln Ala Leu Val Asn Ile Met Arg Thr Tyr Thr Tyr Glu Lys Leu Leu Trp Thr Thr Ser Arg Val Leu Lys Val Leu Ser Val Cys Ser Ser 340 345 Asn Lys Pro Ala Ile Val Glu Ala Gly Gly Met Gln Ala Leu Gly Leu 355 360 365 His Leu Thr Asp Pro Ser Gln Arg Leu Val Gln Asn Cys Leu Trp Thr 370 375 380 Leu Arg Asn Leu Ser Asp Ala Ala Thr Lys Gln Glu Gly Met Glu Gly 385 390 395 Leu Leu Gly Thr Leu Val Gln Leu Leu Gly Ser Asp Asp Ile Asn Val 405 410 415

Page 135 of 270

WO 2005/014854

39467A.txt.txt

Val Thr Cys Ala Ala Gly Ile Leu Ser Asn Leu Thr Cys Asn Asn Tyr 420 425 430 Lys Asn Lys Met Met Val Cys Gln Val Gly Gly Ile Glu Ala Leu Val Arg Thr Val Leu Arg Ala Gly Asp Arg Glu Asp Ile Thr Glu Pro Ala Ile Cys Ala Leu Arg His Leu Thr Ser Arg His Gln Glu Ala Glu Met
465 470 475 480 Ala Gln Asn Ala Val Arg Leu His Tyr Gly Leu Pro Val Val Lys Leu Leu His Pro Pro Ser His Trp Pro Leu Ile Lys Ala Thr Val Gly $500 \hspace{1.5cm} 505 \hspace{1.5cm} 510$ Leu Ile Arg Asn Leu Ala Leu Cys Pro Ala Asn His Ala Pro Leu Arg Glu Gln Gly Ala Ile Pro Arg Leu Val Gln Leu Leu Val Arg Ala His Gln Asp Thr Gln Arg Arg Thr Ser Met Gly Gly Thr Gln Gln Gln Phe 545 550 555 560 Val Glu Gly Val Arg Met Glu Glu Ile Val Glu Gly Cys Thr Gly Ala 565 570 575 Leu His Ile Leu Ala Arg Asp Val His Asn Arg Ile Val Ile Arg Gly 580 585 590 Leu Asn Thr Ile Pro Leu Phe Val Gln Leu Leu Tyr Ser Pro Ile Glu 595 600 605 ASN Ile Gln Arg Val Ala Ala Gly Val Leu Cys Glu Leu Ala Gln Asp 610 615 620 Lys Glu Ala Ala Glu Ala Ile Glu Ala Glu Gly Ala Thr Ala Pro Leu 625 630 640 Thr Glu Leu Leu His Ser Arg Asn Glu Gly Val Ala Thr Tyr Ala Ala 645 650 655 Ala Val Leu Phe Arg Met Ser Glu Asp Lys Pro Gln Asp Tyr Lys Lys 660 665 670 Arg Leu Ser Val Glu Leu Thr Ser Ser Leu Phe Arg Thr Glu Pro Met 675 680 685

Page 135 of 270

WO 2005/014854

39467A.txt.txt

Ala Trp Asn Glu Thr Ala Asp Leu Gly Leu Asp Ile Gly Ala Gln Gly 690 700 Glu Pro Leu Gly Tyr Arg Gln Asp Asp Pro Ser Tyr Arg Ser Phe His 705 710 715 720 Ser Gly Gly Tyr Gly Gln Asp Ala Leu Gly Met Asp Pro Met Met Glu 725 730 735 His Glu Met Gly Gly His His Pro Gly Ala Asp Tyr Pro Val Asp Gly Leu Pro Asp Leu Gly His Ala Gln Asp Leu Met Asp Gly Leu Pro Pro 765 765 Gly Asp Ser Asn Gln Leu Ala Trp Phe Asp Thr Asp Leu 770 780 12 2500 DNA Homo sapiens <220> <221> <223> misc_feature TCF-4 <400> 12 60 coopgogate ttggctgtgt gtctgcggat ctgtagtggc ggcggcggcg gcggcggcgg ggaggcagca ggcgcgggag cgggcgcagg agcaggcggc ggcggtggcg gcggcggtta 120 gacatgaacg ccgcctcggc gccggcggtg cacggagagc cccttctcgc gcgcgggcgg 180 tttgtgtgat tttgctaaaa tgcatcacca acagcgaatg gctgccttag ggacggacaa 240

agagctgagt gatttactgg atttcagtgc gatgttttca cctcctgtga gcagtgggaa 300 aaatggacca acttctttgg caagtggaca ttttactggc tcaaatgtag aagacagaag 360 420 tagctcaggg tcctggggga atggaggaca tccaagcccg tccaggaact atggagatgg 480 gactccctat gaccacatga ccagcaggga ccttgggtca catgacaatc tctctccacc 540 ttttgtcaat tccagaatac aaagtaaaac agaaaggggc tcatactcat cttatgggag 600 agaatcaaac ttacagggtt gccaccagca gagtctcctt ggaggtgaca tggatatggg caacccagga accctttcgc ccaccaaacc tggttcccag tactatcagt attctagcaa 660 720 taatccccga aggaggcctc ttcacagtag tgccatggag gtacagacaa agaaagttcg aaaagttcct ccaggtttgc catcttcagt ctatgctcca tcagcaagca ctgccgacta 780 840 caatagggac tcgccaggct atcettecte caaaccagca accagcactt tccctagcte cttcttcatg caagatggcc atcacagcag tgacccttgg agctcctcca gtgggatgaa 900 tcagcctggc tatgcaggaa tgttgggcaa ctcttctcat attccacagt ccagcagcta 960

PCT/EP2004/008819

Page 137 of 270

ctgtagcctg	catccacatg	aacgtttgag	39467A.txt ctatccatca	.txt cactcctcag	cagacatcaa	1020
ttccagtctt	cctccgatgt	ccactttcca	tcgtagtggt	acaaaccatt	acagcacctc	1080
ttcctgtacg	cctcctgcca	acgggacaga	cagtataatg	gcaaatagag	gaagcggggc	1140
agccggcagc	tcccagactg	gagatgctct	ggggaaagca	cttgcttcga	tctattctcc	1200
agatcacact	aacaacagct	tttcatcaaa	cccttcaact	cctgttggct	ctcctccatc	1260
tctctcagca	ggcacagctg	tttggtctag	aaatggagga	caggcctcat	cgtctcctaa	1320
ttatgaagga	cccttacact	ctttgcaaag	ccgaattgaa	gatcgtttag	aaagactgga	1380
tgatgctatt	catgttctcc	ggaaccatgc	agtgggccca	tccacagcta	tgcctggtgg	1440
tcatggggac	atgcatggaa	tcattggacc	ttctcataat	ggagccatgg	gtggtctggg	1500
ctcagggtat	ggaaccggcc	ttctttcagc	caacagacat	tcactcatgg	tggggaccca	1560
tcgtgaagat	ggcgtggccc	tgagaggcag	ccattctctt	ctgccaaacc	aggttccggt	1620
tccacagctt	c ctg t cc agt	ctgcgacttc	ccctgacctg	aacccacccc	aggaccctta	1680
cagaggcatg	ccaccaggac	tacaggggca	gagtgtctcc	tctggcagct	ctgagatcaa	1740
atccgatgac	gagg g tgatg	agaacctgca	agacacgaaa	tcttcggagg	acaagaaatt	1800
agatgacgac	aagaaggata	tcaaatcaat	tactagcaat	aatgacgatg	aggacctgac	1860
accagagcag	aaggcagagc	gtgagaagga	gcggaggatg	gccaacaatg	cccgagagcg	1920
tctgcgggtc	cgtgacatca	acgaggcttt	caaagagctc	ggccgcatgg	tgcagctcca	1980
cctcaagagt	gacaagcccc	agaccaagct	cctgatcctc	caccaggcgg	tggccgtcat	2040
cctcagtctg	gagcagcaag	tccgagaaag	gaatctgaat	ccgaaagctg	cgtgtctgaa	2100
aagaagggag	gaagagaagg	tgtcctcgga	gcctcccct	ctctccttgg	ccggcccaca	2160
ccctggaatg	ggagacgcat	cgaatcacat	gggacagatg	taaaagggtc	caagttgcca	2220
cattgcttca	ttaaaacaag	agaccacttc	cttaacagct	gtattatctt	aaacccacat	2280
aaacacttct	ccttaacccc	catttttgta	atataagaca	agtctgagta	gttatgaatc	2340
gcagacgcaa	gaggtttcag	cattcccaat	tatcaaaaaa	cagaaaaaca	aaaaaaagaa	2400
agaaaaaagt	gcaacttgag	ggacgacttt	ctttaacata	tcattcagaa	tgtgcaaagc	2460
agtatgtaca	ggctgagaca	cagcccagag	actgaacggc			2500

```
<210> 13
<211> 667
<212> PRT
<213> Homo sapiens
```

<400> 13

Met His His Gln Gln Arg Met Ala Ala Leu Gly Thr Asp Lys Glu Leu 1 10 15

<220> <221> misc_feature <223> TCF-4

WC05014634 [file:///E:/WC05014854.cpo]

39467A.txt.txt

Ser Asp Leu Leu Asp Phe Ser Ala Met Phe Ser Pro Pro Val Ser Ser 20 25 30 Asn Val Glu Asp Arg Ser Ser Ser Gly Ser Trp Gly Asn Gly Gly His $50~{\rm ``}$ Pro Ser Pro Ser Arg Asn Tyr Gly Asp Gly Thr Pro Tyr Asp His Met 65 70 75 80 Thr Ser Arg Asp Leu Gly Ser His Asp Asn Leu Ser Pro Pro Phe Val Asn Ser Arg Ile Gln Ser Lys Thr Glu Arg Gly Ser Tyr Ser Ser Tyr 100 105 110 Gly Arg Glu Ser Asn Leu Gln Gly Cys His Gln Gln Ser Leu Leu Gly Gly Asp Met Asp Met Gly Asn Pro Gly Thr Leu Ser Pro Thr Lys Pro Gly Ser Gln Tyr Tyr Gln Tyr Ser Ser Asn Asn Pro Arg Arg Arg Pro 145 150 155 160 Leu His Ser Ser Ala Met Glu Val Gln Thr Lys Lys Val Arg Lys Val 165 170 175 Pro Pro Gly Leu Pro Ser Ser Val Tyr Ala Pro Ser Ala Ser Thr Ala Asp Tyr Asn Arg Asp Ser Pro Gly Tyr Pro Ser Ser Lys Pro Ala Thr Ser Thr Phe Pro Ser Ser Phe Phe Met Gln Asp Gly His His Ser Ser 210 215 220 Asp Pro Trp Ser Ser Ser Gly Met Asn Gln Pro Gly Tyr Ala Gly 225 230 235 240 Met Leu Gly Asn Ser Ser His Ile Pro Gln Ser Ser Ser Tyr Cys Ser 245 250 250 Leu His Pro His Glu Arg Leu Ser Tyr Pro Ser His Ser Ser Ala Asp 260 265 270Ile Asn Ser Ser Leu Pro Pro Met Ser Thr Phe His Arg Ser Gly Thr 275 280 285

Page 139 of 270

20457

39467A.txt.txt

Asn His Tyr Ser Thr Ser Ser Cys Thr Pro Pro Ala Asn Gly Thr Asp Ser Ile Met Ala Asn Arg Gly Ser Gly Ala Ala Gly Ser Ser Gln Thr 305 315 320 Gly Asp Ala Leu Gly Lys Ala Leu Ala Ser Ile Tyr Ser Pro Asp His Thr Asn Asn Ser Phe Ser Ser Asn Pro Ser Thr Pro Val Gly Ser Pro Pro Ser Leu ser Ala Gly Thr Ala Val Trp Ser Arg Asn Gly Gly Gln 355 360 365 Ala Ser Ser Ser Pro Asn Tyr Glu Gly Pro Leu His Ser Leu Gln Ser Arg Ile Glu Asp Arg Leu Glu Arg Leu Asp Asp Ala Ile His Val Leu 385 390 395 400 Arg Asn His Ala Val Gly Pro Ser Thr Ala Met Pro Gly Gly His Gly 405 410 415 Asp Met His Gly Ile Ile Gly Pro Ser His Asn Gly Ala Met Gly Gly 420 425 430Leu Gly Ser Gly Tyr Gly Thr Gly Leu Leu Ser Ala Asn Arg His Ser 435 440 445 Leu Met Val Gly Thr His Arg Glu Asp Gly Val Ala Leu Arg Gly Ser 450 455 460 His Ser Leu Leu Pro Asn Gln Val Pro Val Pro Gln Leu Pro Val Gln 465 470 480 Ser Ala Thr Ser Pro Asp Leu Asn Pro Pro Gln Asp Pro Tyr Arg Gly
485 490 495 Met Pro Pro Gly Leu Gln Gly Gln Ser Val Ser Ser Gly Ser Ser Glu 500 505 510 Ile Lys Ser Asp Asp Glu Gly Asp Glu Asn Leu Gln Asp Thr Lys Ser Ser Glu Asp Lys Lys Leu Asp Asp Asp Lys Lys Asp Tle Lys Ser Ile $530 \hspace{1.5cm} 535 \hspace{1.5cm} 540 \hspace{1.5cm}$ Thr ser Asn Asn Asp Asp Glu Asp Leu Thr Pro Glu Gln Lys Ala Glu 545 550 550 560

Page 140 of 270

WO 2005/014854

39467A.txt.txt

Arg Glu Lys Glu Arg Arg Met Ala Asn Asn Ala Arg Glu Arg Leu Arg 565 570 575 Val Arg Asp Ile Asn Glu Ala Phe Lys Glu Leu Gly Arg Met Val Gln 580 585 Leu His Leu Lys Ser Asp Lys Pro Gln Thr Lys Leu Leu Ile Leu His 595 600 605 Gln Ala Val Ala Val Ile Leu Ser Leu Glu Gln Gln Val Arg Glu Arg 610 620 Asn Leu Asn Pro Lys Ala Ala Cys Leu Lys Arg Arg Glu Glu Lys 625 630 635 640 Val Ser Ser Glu Pro Pro Pro Leu Ser Leu Ala Gly Pro His Pro Gly 645 650 655 Met Gly Asp Ala Ser Asn His Met Gly Gln Met 660 665 <210> <211> 14 9312 DNA Homo sapiens <220> misc_feature Notch-1 <221> <223> <400> 14 atgccgccgc tcctggcgcc cctgctctgc ctggcgctgc tgcccgcgct cgccgcacga 60 ggcccgcgat gctcccagcc cggtgagacc tgcctgaatg gcgggaagtg tgaagcggcc 120 180 aatggcacgg aggcctgcgt ctgtggcggg gccttcgtgg gcccgcgatg ccaggacccc 240 aacccgtgcc tcagcacccc ctgcaagaac gccgggacat gccacgtggt ggaccgcaga

300 ggcgtggcag actatgcctg cagctgtgcc ctgggcttct ctgggcccct ctgcctgaca 360 cccctggaca atgcctgcct caccaacccc tgccgcaacg ggggcacctg cgacctgctc acgctgacgg agtacaagtg ccgctgcccg cccggctggt cagggaaatc gtgccagcag 420 gctgacccgt gcgcctccaa cccctgcgcc aacggtggcc agtgcctgcc cttcgaggcc 480 tectacatet gecaetgeec acceagette catggeecca cetgeeggea ggatgteaac 540 gagtqtggcc agaagcccgg gctttgccgc cacggaggca cctgccacaa cgaggtcggc 600 tcctaccgct gcgtctgccg cgccacccac actggcccca actgcgagcg gccctacgtg 660 720 ccctgcagcc cctcgccctg ccagaacggg ggcacctgcc gccccacggg cgacgtcacc cacqaqtqtq cctqcctgcc aggcttcacc ggccagaact gtgaggaaaa tatcgacgat 780 tgtccaggaa acaactgcaa gaacgggggt gcctgtgtgg acggcgtgaa cacctacaac 840

110 20	02/014024				101/2	1 2004/00001
tgccgctgcc	cgccagagtg	gacaggtcag	39467A.txt tactgtaccg	.txt aggatgtgga	cgagtgccag	900
ctgatgccaa	atgcctgcca	gaacggcggg	acctgccaca	acacccacgg	tggctacaac	960
tgcgtgtgtg	tcaacggctg	gactggtgag	gactgcagcg	agaacattga	tgactgtgcc	1020
ag c gc cgcc t	gcttccacgg	cgccacctgc	catgaccgtg	tggcctcctt	ctactgcgag	1080
tgtccccatg	gccgcacagg	tctgctgtgc	cacctcaacg	acgcatgcat	cagcaacccc	1140
t gtaacga gg	gctccaactg	cgacaccaac	cctgtcaatg	gcaaggccat	ctgcacctgc	1200
c cct c gg ggt	acacgggccc	ggcctgcagc	caggacgtgg	atgagtgctc	gctgggtgcc	1260
aacccctgcg	agcatgcggg	caagtgcatc	aacacgctgg	gctccttcga	gtgccagtgt	1320
ctgcagggct	acacgggccc	ccgatgcgag	atcgacgtca	acgagtgcgt	ctcgaacccg	1380
tgccagaacg	acgccacctg	cctggaccag	attggggagt	tccagtgcat	ctgcatgccc	1440
ggctacgagg	gtgtgcactg	cgaggtcaac	acagacgagt	gtgccagcag	cccctgcctg	1500
cacaatggcc	gctgcctgga	caagatcaat	gagttccagt	gcgagtgccc	cacgggcttc	1560
actgggcatc	tgtgccagta	cgatgtggac	gagtgtgcca	gcaccccctg	caagaatggt	1620
gccaagtgcc	tggacggacc	caacacttac	acctgtgtgt	gcacggaagg	gtacacgggg	1680
acgcactgcg	aggtggacat	cgatgagtgc	gaccccgacc	cctgccacta	cggctcctgc	1740
aaggacggcg	tcgccacctt	cacctgcctc	tgccgcccag	gctacacggg	ccaccactgc	1800
gagaccaaca	tcaacgagtg	ctccagccag	ccctgccgcc	acgggggcac	ctgccaggac	1860
cgcgacaacg	cctacctctg	cttctgcctg	aaggggacca	caggacccaa	ctgcgagatc	1920
aacctggatg	actgtgccag	cagcccctgc	gactcgggca	cctgtctgga	caagatcgat	1980
ggctacgagt	gtgcctgtga	gccgggctac	acagggagca	tgtgtaacat	caacatcgat	2040
gagtgtgcgg	gcaacccctg	ccacaacggg	ggcacctgcg	aggacggcat	caatggcttc	2100
acctgccgct	gccccgaggg	ctaccacgac	cccacctgcc	tgtctgaggt	caatgagtgc	2160
aacagcaacc	cctgcgtcca	cggggcctgc	cgggacagcc	tcaacgggta	caagtgcgac	2220
tgtgaccctg	ggtggagtgg	gaccaactgt	gacatcaaca	acaatgagtg	tgaatccaac	2280
ccttgtgtca	acggcggcac	ctgcaaagac	atgaccagtg	gctacgtgtg	cacctgccgg	2340
gagggcttca	gcggtcccaa	ctgccagacc	aacatcaacg	agtgtgcgtc	caacccatgt	2400
ctgaaccagg	gcacgtgtat	tgacgacgtt	gccgggtaca	agtgcaactg	cctgctgccc	2460
tacacaggtg	ccacgtgtga	ggtggtgctg	gccccgtgtg	cccccagccc	ctgcagaaac	2520
ggcggggagt	gcaggcaatc	cgaggactat	gagagcttct	cctgtgtctg	ccccacgggc	2580
tggcaagcag	ggcagacctg	tgaggtcgac	atcaacgagt	gcgttctgag	cccgtgccgg	2640
cacggcgcat	cctgccagaa	cacccacggc	ggctaccgct	gccactgcca	ggccggctac	2700
agtgggcgca	actgcgagac	cgacatcgac	gactgccggc	ccaacccgtg	tcacaacggg	2760
ggctcctgca	cagacggcat	caacacggcc	ttctgcgact	gcctgcccgg	cttccggggc	2820
actttctgtg	aggaggacat	caacgagtgt	gccagtgacc	cctgccgcaa	cggggccaac	2880

tgcacggact	gcgtggacag	ctacacgtgc	39467A.txt acctgccccg		cgggatccac	2940
tgtgagaaca	acacgcctga	ctgcacagag	agctcctgct	tcaacggtgg	cacctgcgtg	3000
gacggcatca	actcgttcac	ctgcctgtgt	ccacccggct	tcacgggcag	ctactgccag	3060
cacgatgtca	atgagtgcga	ctcacagccc	tgcctgcatg	gcggcacctg	tcaggacggc	3120
tgcggctcct	acaggtgcac	ctgcccccag	ggctacactg	gccccaactg	ccagaacctt	3180
gtgcactggt	gtgactcctc	gccctgcaag	aacggcggca	aatgctggca	gacccacacc	3240
cagtaccgct	gcgagtgccc	cagcggctgg	accggccttt	actgcgacgt	gcccagcgtg	3300
tcctgtgagg	tggctgcgca	gcgacaaggt	gttgacgttg	cccgcctgtg	ccagcatgga	3360
gggctctgtg	tggacgcggg	caacacgcac	cactgccgct	gccaggcggg	ctacacaggc	3420
agctactgtg	aggacctggt	ggacgagtgc	tcacccagcc	cctgccagaa	cggggccacc	3480
tgcacggact	acctgggcgg	ctactcctgc	aagtgcgtgg	ccggctacca	cggggtgaac	3540
tgctctgagg	agatcgacga	gtgcctctcc	cacccctgcc	agaacggggg	cacctgcctc	3600
gacctcccca	acacctacaa	gtgctcctgc	ccacggggca	ctcagggtgt	gcactgtgag	3660
atcaacgtgg	acgactgcaa	tcccccgtt	gaccccgtgt	cccggagccc	caagtgcttt	3720
aacaacggca	cctgcgtgga	ccaggtgggc	ggctacagct	gcacctgccc	gccgggcttc	3780
gtgggtga g c	gctgtgaggg	ggatgtcaac	gagtgcctgt	ccaatccctg	cgacgcccgt	3840
ggcacccaga	actgcgtgca	gcgcgtcaat	gacttccact	gcgagtgccg	tgctggtcac	3900
accgggcgcc	gctgcgagtc	cgtcatcaat	ggctgcaaag	gcaagccctg	caagaatggg	3960
ggcacctgcg	ccgtggcctc	caacaccgcc	cgcgggttca	tctgcaagtg	ccctgcgggc	4020
ttcgagggcg	ccacgtgtga	gaatgacgct	cgtacctgcg	gcagcctgcg	ctgcctcaac	4080
ggcggcacat	gcatctccgg	cccgcgcagc	cccacctgcc	tgtgcctggg	ccccttcacg	4140
ggccccgaat	gccagttccc	ggccagcagc	ccctgcctgg	gcggcaaccc	ctgctacaac	4200
caggggacct	gtgagcccac	atccgagagc	cccttctacc	gttgcctgtg	ccccgccaaa	4260
ttcaacgggc	tcttgtgcca	catcctggac	tacagcttcg	ggggtggggc	cgggcgcgac	4320
atcccccgc	cgctgatcga	ggaggcgtgc	gagctgcccg	agtgccagga	ggacgcgggc	4380
aacaaggtct	gcagcctgca	gtgcaacaac	cacgcgtgcg	gctgggacgg	cggtgactgc	4440
tccctcaact	tcaatgaccc	ctggaagaac	tgcacgcagt	ctctgcagtg	ctggaagtac	4500
ttcagtgacg	gccactgtga	cagccagtgc	aactcagccg	gctgcctctt	cgacggcttt	4560
gactgccagc	gtgcggaagg	ccagtgcaac	cccctgtacg	accagtactg	caaggaccac	4620
ttcagcgacg	ggcactgcga	ccagggctgc	aacagcgcgg	agtgcgagtg	ggacgggctg	4680
gactgtgcgg	agcatgtacc	cgagaggctg	gcggccggca	cgctggtggt	ggtggtgctg	4740
atgccgccgg	agcagctgcg	caacagctcc	ttccacttcc	tgcgggagct	cagccgcgtg	4800
ctgcacacca	acgtggtctt	caagcgtgac	gcacacggcc	agcagatgat	cttcccctac	4860
tacggccgcg	aggaggagct	gcgcaagcac	cccatcaagc	gtgccgccga	gggctgggcc	4920

gcacctgacg	ccctgctggg	ccaggtgaag	39467A.txt gcctcgctgc		cagcgagggt	4980
gggcggcggc	ggagggagct	ggaccccatg	gacgtccgcg	gctccatcgt	ctacctggag	5040
attgacaacc	ggcagtgtgt	gcaggcctcc	tcgcagtgct	tccagagtgc	caccgacgtg	5100
gccgcattcc	tgggagcgct	cgcctcgctg	ggcagcctca	acatccccta	caagatcgag	5160
gccgtgcaga	gtgagaccgt	ggagccgccc	ccgccggcgc	agctgcactt	catgtacgtg	5220
gcggcggccg	cctttgtgct	tctgttcttc	gtgggctgcg	gggtgctgct	gtcccgcaag	5280
cgccggcggc	agcatggcca	gctctggttc	cctgagggct	tcaaagtgtc	tgaggccagc	5340
aagaagaagc	ggcgggagcc	cctcggcgag	gactccgtgg	gcctcaagcc	cctgaagaac	5400
gcttcagacg	gtgccctcat	ggacgacaac	cagaatgagt	ggggggacga	ggacctggag	5460
accaagaagt	tccggttcga	ggagcccgtg	gttctgcctg	acctggacga	ccagacagac	552 0
caccggcagt	ggactcagca	gcacctggat	gccgctgacc	tgcgcatgtc	tgccatggcc	5580
cccacaccgc	cccagggtga	ggttgacgcc	gactgcatgg	acgtcaatgt	ccgcgggcct	5640
gatggcttca	ccccgctcat	gatcgcctcc	tgcagcgggg	gcggcctgga	gacgggcaac	5700
ag cg ag g aag	aggaggacgc	gccggccgtc	atctccgact	tcatctacca	gggcgccagc	5760
ctgcacaacc	agacagaccg	cacgggcgag	accgccttgc	acctggccgc	ccgctactca	5820
cgctctgatg	ccgccaagcg	cctgctggag	gccagcgcag	atgccaacat	ccaggacaac	5880
atgggccgca	ccccgctgca	tgcggctgtg	tctgccgacg	cacaaggtgt	cttccagatc	5940
ctgatccgga	accgagccac	agacctggat	gcccgcatgc	atgatggcac	gacgccactg	6000
atcctggctg	cccgcctggc	cgtggagggc	atgctggagg	acctcatcaa	ctcacacgcc	6060
gacgtcaacg	ccgtagatga	cctgggcaag	tccgccctgc	actgggccgc	cgccgtgaac	6120
aatgtggatg	ccgcagttgt	gctcctgaag	aacgggg c ta	acaaagatat	gcagaacaac	6180
agggaggaga	cacccctgtt	tctggccgcc	cgggagggca	gctacgagac	cgccaaggtg	6240
ctgctggacc	actttgccaa	ccgggacatc	acggatcata	tggaccgcct	gccgcgcgac	6300
atcgcacagg	agcgcatgca	tcacgacatc	gtgaggctgc	tggacgagta	caacctggtg	6360
cgcagcccgc	agctgcacgg	agccccgctg	gggggcacgc	ccaccctgtc	gcccccgctc	6420
tgctcgccca	acggctacct	gggcagcctc	aagcccgg c g	tgcagggcaa	gaaggtccgc	6480
aagcccagca	gcaaaggcct	ggcctgtgga	agcaaggagg	ccaaggacct	caaggcacgg	6540
aggaagaagt	cccaggacgg	caagggctgc	ctgctggaca	gctccggcat	gctctcgccc	6600
gtggactccc	tggagtcacc	ccatggctac	ctgtcagacg	tggcctcgcc	gccactgctg	6660
ccctccccgt	tccagcagtc	tccgtccgtg	ccctcaacc	acctgcctgg	gatgcccgac	6720
acccacctgg	gcatcgggca	cctgaacgtg	gcggccaagc	ccgagatggc	ggcgctgggt	6780
gggggcggcc	ggctggcctt	tgagactggc	ccacctcgtc	tctcccacct	gcctgtggcc	6840
tctggcacca	gcaccgtcct	gggctccagc	agcggagggg	ccctgaattt	cactgtgggc	6900
gggtccacca	gtttgaatgg	tcaatgcgag	tggctgtccc	ggctgcagag	cgg c at g gtg	6960

W O 20	03/014034				rc 1/Er	2004/000
ccgaaccaat	acaaccctct	gcgggggagt	39467A.txt gtggcaccag	.txt gccccctgag	cacacaggcc	7020
ccctccctgc	agcatggcat	ggtaggcccg	ctgcacagta	gccttgctgc	cagcgccctg	7080
tcccagatga	tgagctacca	gggcctgccc	agcacccggc	tggccaccca	gcctcacctg	7140
gtgcagaccc	agcaggtgca	gccacaaaac	ttacagatgc	agcagcagaa	cctgcagcca	7200
gcaaacatcc	agcagcagca	aagcctgcag	ccgccaccac	caccaccaca	gccgcacctt	7260
ggcgtgagct	cagcagccag	cggccacctg	ggccggagct	tcctgagtgg	agagccgagc	7320
caggcagacg	tgcagccact	gggccccagc	agcctggcgg	tgcacactat	tctgccccag	7380
gagagccccg	ccctgcccac	gtcgctgcca	tcctcgctgg	tcccacccgt	gaccgcagcc	7440
cagttcctga	cgccccctc	gcagcacagc	tactcctcgc	ctgtggacaa	caccccagc	7500
caccagctac	aggtgcctga	gcaccccttc	ctcaccccgt	cccctgagtc	ccctgaccag	7560
tggtccagct	cgtccccgca	ttccaacgtc	tccgactggt	ccgagggcgt	ctccagccct	7620
cccaccagca	tgcagtccca	gatcgcccgc	attccggagg	ccttcaagta	aacggcgcgc	7680
cccacgagac	cccggcttcc	tttcccaagc	cttcgggcgt	ctgtgtgcgc	tctgtggatg	7740
ccagggccga	ccagaggagc	ctttttaaaa	cacatgttt	tatacaaaat	aagaacgagg	7800
attttaattt	tttttagtat	ttatttatgt	acttttattt	tacacagaaa	cactgccttt	7860
ttatttatat	gtactgtttt	atctggcccc	aggtagaaac	ttttatctat	tctgagaaaa	7920
caagcaagtt	ctgagagcca	gġgttttcct	acgtaggatg	aaaagattct	tctgtgttta	7980
taaaatataa	acaaagattc	atgatttata	aatgccattt	atttattgat	tccttttttc	8040
aaaatccaaa	aagaaatgat	gttggagaag	ggaagttgaa	cgagcatagt	ccaaaaagct	8100
cctggggcgt	ccaggccgcg	ccctttcccc	gacgcccacc	caaccccaag	ccagcccggc	8160
cgctccacca	gcatcacctg	cctgttagga	gaagctgcat	ccagaggcaa	acggaggcaa	8220
agctggctca	ccttccgcac	gcggattaat	ttgcatctga	aataggaaac	aagtgaaagc	8280
atatgggtta	gatgttgcca	tgtgttttag	atggtttctt	gcaagcatgc	ttgtgaaaat	8340
gtgttctcgg	agtgtgtatg	ccaagagtgc	acccatggta	ccaatcatga	atctttgttt	8400
caggttcagt	attatgtagt	tgttcgttgg	ttatacaagt	tcttggtccc	tccagaacca	8460
ccccggcccc	ctgcccgttc	ttgaaatgta	ggcatcatgc	atgtcaaaca	tgagatgtgt	8520
ggactgtggc	acttgcctgg	gtcacacacg	gaggcatcct	acccttttct	ggggaaagac	8580
actgcctggg	ctgaccccgg	tggcggcccc	agcacctcag	cctgcacagt	gtcccccagg	8640
ttccgaagaa	gatgctccag	caacacagcc	tgggccccag	ctcgcgggac	ccgacccccc	8700
gtgggctccc	gtgttttgta	ggagacttgc	cagagccggg	cacattgagc	tgtgcaacgc	8760
cgtgggctgc	gtcctttggt	cctgtccccg	cagccctggc	agggggcatg	cggtcgggca	8820
ggggctggag	ggaggcgggg	gctgcccttg	ggccacccct	cctagtttgg	gaggagcaga	8880
tttttgcaat	accaagtata	gcctatggca	gaaaaaatgt	ctgtaaatat	gtttttaaag	8940
gtggattttg	tttaaaaaat	cttaatgaat	gagtctgttg	tgtgtcatgc	cagtgaggga	9000

Page 145 of 270

WO 2005/014854 PCT/EP2004/008819 39467A.txt.txt cgtcagactt ggctcagctc ggggagcctt agccgcccat gcactgggga cgctccgctg 9060 ccgtgccgcc tgcactcctc agggcagcct cccccggctc tacgggggcc gcgtggtgcc 9120 atccccaggg ggcatgacca gatgcgtccc aagatgttga tttttactgt gttttataaa 9180 9240 atagagtgta gtttacagaa aaagacttta aaagtgatct acatgaggaa ctgtagatga tgtatttttt tcatcttttt tgttaactga tttgcaataa aaatgatact gatggtgaaa 9300 9312 aaaaaaaaa aa <210> 15 2556 Homo sapiens <220> <221> <223> misc_feature Notch-1 <400> 15 Met Pro Pro Leu Leu Ala Pro Leu Leu Cys Leu Ala Leu Leu Pro Ala Leu Ala Ala Arg Gly Pro Arg Cys Ser Gln Pro Gly Glu Thr Cys Leu 20 25 30 Asn Gly Gly Lys Cys Glu Ala Ala Asn Gly Thr Glu Ala Cys Val Cys Gly Gly Ala Phe Val Gly Pro Arg Cys Gln Asp Pro Asn Pro Cys Leu Ser Thr Pro Cys Lys Asn Ala Gly Thr Cys His Val Val Asp Arg Arg 65 70 75 80 Gly Val Ala Asp Tyr Ala Cys Ser Cys Ala Leu Gly Phe Ser Gly Pro 85 90 95 Leu Cys Leu Thr Pro Leu Asp Asn Ala Cys Leu Thr Asn Pro Cys Arg Asn Gly Gly Thr Cys Asp Leu Leu Thr Leu Thr Glu Tyr Lys Cys Arg 115 120 125Cys Pro Pro Gly Trp Ser Gly Lys Ser Cys Gln Gln Ala Asp Pro Cys 130 135 140 Ala Ser Asn Pro Cys Ala Asn Gly Gly Gln Cys Leu Pro Phe Glu Ala 145 150 155 160

Ser Tyr Ile Cys His Cys Pro Pro Ser Phe His Gly Pro Thr Cys Arg

Page 146 of 270

PCT/EP2004/008819

39467A.txt.txt

Gln Asp Val Asn Glu Cys Gly Gln Lys Pro Gly Leu Cys Arg His Gly 180 185 190 Gly Thr Cys His Asn Glu Val Gly Ser Tyr Arg Cys Val Cys Arg Ala 195 200 205 Thr His Thr Gly Pro Asn Cys Glu Arg Pro Tyr Val Pro Cys Ser Pro Ser Pro Cys Gln Asn Gly Gly Thr Cys Arg Pro Thr Gly Asp Val Thr 225 230 235 240 His Glu Cys Ala Cys Leu Pro Gly Phe Thr Gly Gln Asn Cys Glu Glu 245 250 255Asn Ile Asp Asp Cys Pro Gly Asn Asn Cys Lys Asn Gly Gly Ala Cys 260 270 Val Asp Gly Val Asn Thr Tyr Asn Cys Arg Cys Pro Pro Glu Trp Thr Gly Gln Tyr Cys Thr Glu Asp Val Asp Glu Cys Gln Leu Met Pro Asn 290 295 300 Ala Cys Gln Asn Gly Gly Thr Cys His Asn Thr His Gly Gly Tyr Asn 305 310 315 320 Cys Val Cys Val Asn Gly Trp Thr Gly Glu Asp Cys Ser Glu Asn Ile 325 330 335 Asp Asp Cys Ala Ser Ala Ala Cys Phe His Gly Ala Thr Cys His Asp 340 ' 350 Arg Val Ala Ser Phe Tyr Cys Glu Cys Pro His Gly Arg Thr Gly Leu Leu Cys His Leu Asn Asp Ala Cys Ile Ser Asn Pro Cys Asn Glu Gly 370 380 Ser Asn Cys Asp Thr Asn Pro Val Asn Gly Lys Ala Ile Cys Thr Cys 385 390 395 400 Pro Ser Gly Tyr Thr Gly Pro Ala Cys Ser Gln Asp Val Asp Glu Cys Ser Leu Gly Ala Asn Pro Cys Glu His Ala Gly Lys Cys Ile Asn Thr 420 425 430 Leu Gly Ser Phe Glu Cys Gln Cys Leu Gln Gly Tyr Thr Gly Pro Arg

Page 147 of 270

WO 2005/014854 PCT/EP20 39467A.txt.txt

Cys Glu Ile Asp Val Asn Glu Cys Val Ser Asn Pro Cys Gln Asn Asp 450 460 Ala Thr Cys Leu Asp Gln Ile Gly Glu Phe Gln Cys Ile Cys Met Pro Gly Tyr Glu Gly Val His Cys Glu Val Asn Thr Asp Glu Cys Ala Ser Ser Pro Cys Leu His Asn Gly Arg Cys Leu Asp Lys Ile Asn Glu Phe Gln Cys Glu Cys Pro Thr Gly Phe Thr Gly His Leu Cys Gln Tyr Asp 515 520 525 Val Asp Glu Cys Ala Ser Thr Pro Cys Lys Asn Gly Ala Lys Cys Leu 530 535 540 Asp Gly Pro Asn Thr Tyr Thr Cys Val Cys Thr Glu Gly Tyr Thr Gly Thr His Cys Glu Val Asp Ile Asp Glu Cys Asp Pro Asp Pro Cys His 565 Tyr Gly Ser Cys Lys Asp Gly Val Ala Thr Phe Thr Cys Leu Cys Arg 580 585 Pro Gly Tyr Thr Gly His His Cys Glu Thr Asn Ile Asn Glu Cys Ser 595 600 605 Ser Gln Pro Cys Arg His Gly Gly Thr Cys Gln Asp Arg Asp Asn Ala 610 615 620 Tyr Leu Cys Phe Cys Leu Lys Gly Thr Thr Gly Pro Asn Cys Glu Ile 625 - 630 640 Asn Leu Asp Asp Cys Ala Ser Ser Pro Cys Asp Ser Gly Thr Cys Leu 645 650 655 Asp Lys Ile Asp Gly Tyr Glu Cys Ala Cys Glu Pro Gly Tyr Thr Gly Ser Met Cys Asn Ile Asn Ile Asp Glu Cys Ala Gly Asn Pro Cys His 675 680 685 Asn Gly Gly Thr Cys Glu Asp Gly Ile Asn Gly Phe Thr Cys Arg Cys 690 700 Pro Glu Gly Tyr His Asp Pro Thr Cys Leu Ser Glu Val Asn Glu Cys 705 710 716 720

Page 148 of 270

WO 2005/014854

39467A.txt.txt

Asn Ser Asn Pro Cys Val His Gly Ala Cys Arg Asp Ser Leu Asn Gly Tyr Lys Cys Asp Cys Asp Pro Gly Trp Ser Gly Thr Asn Cys Asp Ile 740 745 750 Asn Asn Glu Cys Glu Ser Asn Pro Cys Val Asn Gly Gly Thr Cys Lys Asp Met Thr Ser Gly Tyr Val Cys Thr Cys Arg Glu Gly Phe Ser Gly Pro Asn Cys Gln Thr Asn Ile Asn Glu-Cys Ala Ser Asn Pro Cys 785 790 795 800 Leu Asn Gln Gly Thr Cys Ile Asp Asp Val Ala Gly Tyr Lys Cys Asn 805 810 815 Cys Leu Leu Pro Tyr Thr Gly Ala Thr Cys Glu Val Val Leu Ala Pro 820 830 Cys Ala Pro Ser Pro Cys Arg Asn Gly Glu Cys Arg Gln Ser Glu 835 840 845 Asp Tyr Glu Ser Phe Ser Cys Val Cys Pro Thr Gly Trp Gln Ala Gly Gln Thr Cys Glu Val Asp Ile Asn Glu Cys Val Leu Ser Pro Cys Arg 865 870 875 His Gly Ala Ser Cys Gln Asn Thr His Gly Gly Tyr Arg Cys His Cys Gln Ala Gly Tyr Ser Gly Arg Asn Cys Glu Thr Asp Ile Asp Asp Cys Arg Pro Asn Pro Cys His Asn Gly Gly Ser Cys Thr Asp Gly Ile Asn 915 920 925 Thr Ala Phe Cys Asp Cys Leu Pro Gly Phe Arg Gly Thr Phe Cys Glu 930 935 940 Glu Asp Ile Asn Glu Cys Ala Ser Asp Pro Cys Arg Asn Gly Ala Asn 945 950 955 960 Cys Thr Asp Cys Val Asp Ser Tyr Thr Cys Thr Cys Pro Ala Gly Phe 965 970 975 Ser Gly Ile His Cys Glu Asn Asn Thr Pro Asp Cys Thr Glu Ser Ser 980 985 990

Page 149 of 270

WO 2005/014854

39467A.txt.txt

Cys Phe Asn Gly Gly Thr Cys Val Asp Gly Ile Asn Ser Phe Thr Cys 995 1000 1005 Leu Cys Pro Pro Gly Phe Thr Gly Ser Tyr Cys Gln His Asp val 1010 . 1015 1020 Asn Glu Cys Asp Ser Gln Pro Cys Leu His Gly Gly Thr Cys Gln 1025 1030 1035 Asp Gly Cys Gly Ser Tyr Arg Cys Thr Cys Pro Gln Gly Tyr Thr 1040 1045 1050 Gly Pro Asn Cys Gln Asn Leu Val His Trp Cys Asp Ser Ser Pro 1055 1060 1065 Cys Lys Asn Gly Gly Lys Cys Trp Gln Thr His Thr Gln Tyr Arg Cys Glu Cys Pro Ser Gly Trp Thr Gly Leu Tyr Cys Asp Val Pro 1085 1090 1095 Ser Val Ser Cys Glu Val Ala Ala Gln Arg Gln Gly Val Asp Val 1100 1105 1110 Ala Arg Leu Cys Gln His Gly Gly Leu Cys Val Asp Ala Gly Asn Thr His His Cys Arg Cys Gln Ala Gly Tyr Thr Gly Ser Tyr Cys 1130 1135 1140 Glu Asp Leu Val Asp Glu Cys Ser Pro Ser Pro Cys Gln Asn Gly Ala Thr Cys Thr Asp Tyr Leu Gly Gly Tyr Ser Cys Lys Cys Val $1160 \ \ \, 1160 \ \ \, 1170 \ \ \,$ Ala Gly Tyr His Gly Val Asn Cys Ser Glu Glu Ile Asp Glu Cys Leu Ser His Pro Cys Gln Asn Gly Gly Thr Cys Leu Asp Leu Pro 1190 1195 1200Asn Thr Tyr Lys Cys Ser Cys Pro Arg Gly Thr Gln Gly Val His Cys Glu Ile Asn Val Asp Asp Cys Asn Pro Pro Val Asp Pro Val Ser Arg Ser Pro Lys Cys Phe Asn Asn Gly Thr Cys Val Asp Gln 1235 1240 1245

39467A.txt.txt

val Gly Gly Tyr Ser Cys Thr Cys Pro Pro Gly Phe Val Gly Glu 1250 1260 Arg Cys Glu Gly Asp Val Asn Glu Cys Leu Ser Asn Pro Cys Asp 1265 1270 1275 Ala Arg Gly Thr Gln Asn Cys Val Gln Arg Val Asn Asp Phe His Cys Glu Cys Arg Ala Gly His Thr Gly Arg Arg Cys Glu Ser Val 1295 1300 1305 Ile Asn Gly Cys Lys Gly Lys Pro Cys Lys Asn Gly Gly Thr Cys 1310 1315 1320 Ala Val Ala Ser Asn Thr Ala Arg Gly Phe Ile Cys Lys Cys Pro 1325 1330 1335 Ala Gly Phe Glu Gly Ala Thr Cys Glu Asn Asp Ala Arg Thr Cys 1340 1350 Gly Ser Leu Arg Cys Leu Asn Gly Gly Thr Cys Ile Ser Gly Pro 1355 1360 1365 Arg Ser Pro Thr Cys Leu Cys Leu Gly Pro Phe Thr Gly Pro Glu Cys Gln Phe Pro Ala Ser Ser Pro Cys Leu Gly Gly Asn Pro Cys 1385 1390 1395 Tyr Asn Gln Gly Thr Cys Glu Pro Thr Ser Glu Ser Pro Phe Tyr 1400 1405 1410Arg Cys Leu Cys Pro Ala Lys Phe Asn Gly Leu Leu Cys His Ile 1415 1420 1425 Leu Asp Tyr Ser Phe Gly Gly Gly Ala Gly Arg Asp Ile Pro Pro 1430 1440 Pro Leu Ile Glu Glu Ala Cys Glu Leu Pro Glu Cys Gln Glu Asp 1445 1450 1455 Ala Gly Asn Lys Val Cys Ser Leu Gln Cys Asn Asn His Ala Cys 1460 1470 Gly Trp Asp Gly Gly Asp Cys Ser Leu Asn Phe Asn Asp Pro Trp 1475 1485 Lys Asn Cys Thr Gln Ser Leu Gln Cys Trp Lys Tyr Phe Ser Asp $1490 \ \ \, 1495 \ \ \, 1495 \ \ \, 1500 \ \ \,$

PCT/EP2004/008819

Gly	ніs 1505	Cys	Asp	Ser	Gln	Cys 1510	Asn	Ser	Аlа	GТу	Cys 1515	Leu	Phe	Asp
Gly	Phe 1520	Asp	Cys	Gln	Arg	Ala 1525	Glu	GТу	Gln	Cys	Asn 1530	Pro	Leu	Туг
Asp	G]n 1535	туг	Cys	Lys	Asp	ніs 1540	Phe	Ser	Asp	GТу	ніs 1545	Cys	Asp	Gln
Gly	Cys 1550	Asn	ser	Ala	Glu	Cys 1555	Glu	тгр	Asp	Gly	Leu 1560	Asp	Cys	Аla
Glu	нis 1565	val	Pro	Glu	Arg	Leu 1570	Ala	Ala	Glу	Thr	Leu 1575	val	۷al	val.
Val	Leu 1580	Met	Pro	Pro	Glu	Gln 1585	Leu	Arg	Asn	Ser	Ser 1590	Phe	His	Phe
Leu	Arg 1595	Gļu	Leu	ser	Arg	val 1600	Leu	нis	Thr	Asn	Val 1605	۷a۱	Phe	Lys
Arg	Asp 1610	Ala	нis	Gly	Gln	Gln 1615	Met	Ile	Phe	Pro	Туг 1620	туг	Gly	Arg
G lu	G]u 1625	Glu	Leu	Arg	Lys	Ніs 1630	Pro	Ile	Lys	Arg	Ala 1635	Ala	Glu	GТу
Тгр	аlа 1640	۸٦a	Pro	Asp	Ala	Leu 1645	Leu	Gly	Gln	۷al	Lys 1650	Аlа	ser	Leu
Leu	Pro 1655	G∃y	GТу	Ser	Glu	Gly 1660	Gly	Arg	Arg	Arg	Arg 1665	Glu	Leu	Asp
pro	Met 1670	Asp	۷a٦	Arg	Gly	Ser 1675	Ile	۷a٦	туг	Leu	Glu 1680	Ile	Asp	Asn
Arg	G]n 1685	Cys	۷a٦	Gln	Аlа	Ser 1690	ser	G1n	Cys	Phe	Gln 1695	Ser	Αla	Thr
Asp	Val 1700	Ala	Ala	Phe	Leu	Gly 1705	Ala	Leu	Ala	Ser	Leu 1710	Gly	Ser	Leu
Asn	Ile 1715	Pro	Tyr	Lys	Ile	Glu 1720	Ala	۷a٦	Gln	Ser	Glu 1725	Thr	val	Glu
Pro	Pro 1730	Pro	Pro	Ala	Gln	Leu 1735	His	Phe	Met	туг	val 1740	Ala	Ala	Αla
Ala	Phe 1745	Val	Leu	Leu	Phe	Phe 1750	val	Gly	cys	GТу	val 1755	Leu	Leu	Ser

Arg	Lys 17 6 0	Arg	Arg	Arg	Gln	ніs 1765	G]y	Gln	Leu	Тгр	Phe 1770	Pro	Glu	Gly
Phe	Lys 1775	۷a٦	Ser	Glu	Ala	Ser 1780	Lys	Lys	Lys	Arg	Arg 1785	Glu	Pro	Leu
Gly	Glu 1790	Asp	Ser	Val	Gly	Leu 1795	Lys	Pro	Leu	Lys	Asn 1800	Ala	ser	Asp
Gly	Аlа 1805	Leu	Met	Asp	Asp	Asn 1810	G∏n	Asn	Glu	Тгр	Gly 1815	Asp	Glu	Asp
Leu	Glu 1820	Thr	Lys	Lys	Phe	Arg 1825	Phe	Glu	Glu	Pro	val 1830	val	Leu	Pro
Asp	Leu 1835	Asp	Asp	Gln	Thr	Asp 1840	His	Arg	Gln	Тгр	Thr 1845	Gln	Gln	His
Leu	Asp 1850	Ala	Ala	Asp	Leu	Arg 1855	Met	Ser	Ala	Met	Ala 1860	Pro	Thr	Pro
Pro	Gln 1865	Gly	Glu	val	Asp	Ala 1870	Asp	Cys	мet	Asp	val 1875	Asn	٧a٦	Arg
Gly	Pro 1880	Asp	Gly	Phe	Thr	Pro 1885	Leu	Met	Ile	Ala	Ser 1890	Cys	Ser	GТу
Gly	Gly 1895	Leu	Glu	Thr	Gly	Asn 1900	Ser	Glu	Glu	Glu	Glu 1905	Asp	Аlа	Pro
Ala	∨al 1910	Ile	ser	Asp	Phe	Ile 1915	Tyr	Gln	GТу	Аlа	Ser 1920	Leu	His	Asn
G∏n	Thr 1925	Asp	Arg	Thr	GТу	G]u 1930	Thr	Ala	Leu	Нis	Leu 1935	Ala	Аlа	Arg
Tyr	ser 1940	Arg	ser	Asp	Ala	Ala 1945	Lys	Arg	Leu	Leu	Glu 1950	Ala	ser	Ala
Asp	Ala 1955	Asn	Ile	Gln	Asp	Asn 1960	Met	GТу	Arg	Thr	Pro 1965	Leu	His	Ala
Αla	val 1970	ser	Ala	Asp	Ala	Gln 1975	Gly	Va1	Phe	Gln	Ile 1980	Leu	пle	Arg
Asn	Arg 1985	Αla	Thr	Asp	Leu	Asp 1990	Ala	Arg	Met	нis	Asp 1995	G∃y	Thr	Thr
Pro	Leu 2000	Ile	Leu	Ala	Ala	Arg 2005	Leu	ΑΊa	val	Glu	G]y 2010	Met	Leu	G∏u

PCT/EP2004/008819

Asp	Leu 2015	Ile	Asn	Ser	His	Ala 2020	Asp	٧a٦	Asn	Αla	va1 2025	Asp	Asp	Leu
GТу	Lys 2030	Ser	Ala	Leu	His	Trp 2 035	Ala	Αla	Αla	۷a٦	Asn 2 04 0	Asn -	val	Asp
Αla	д1а 20 4 5	∨al	٧a٦	Leu	Leu	Lys 2050	Asn	GТу	Ala	Asn	Lys 2055	Asp	Met	Gln
Asn	Asn 2060	Arg	Glu	Glu	Thr	Pro 2 06 5	Leu	Phe	Leu	Ala	A1a 2 07 0	Arg	Glu	Gly
ser	Tyr 2075	Glu	Thr	Ala	Lys	Val 2080	Leu	Leu	Asp	нis	Phe 2085	ΑΊα	Asn	Arg
Asp	Ile 2 09 0	Thr	Asp	His	Met	Asp 2095	Arg	Leu	Pro	Arg	Asp 2100	Ile	Аlа	G1n
Glu	Arg 2105	Met	нis	His	Asp	Ile 2110	val	Arg	Leu	Leu	Asp 2115	Glu	Tyr	Asn
Leu	val 2120	Arg	ser	Pro	.G]n	Leu 2125	His	Glу	Аlа	Pro	Leu 2130	Gly	GТу	Thr
Pro	Thr 2135	Leu	Ser	Pro	Pro	Leu 2140	cys	Ser	Pro	Asn	Gly 2145	Tyr	Leu	GТу
ser	Leu 2150	Lys	Pro	GТу	val	Gln 2155	GТу	Lys	Lys	val	Arg 2160	Lys	Pro	ser
ser	Lys 2165	Gly	Leu	ΑΊа	Cys	Gly 2170	Ser	Lys	Glu	Аlа	Lys 2175	Asp	Leu	Lys
Ala	Arg 2180	Arg	Lys	Lys	ser	Gln 2 1 85	Asp	Gly	Lys	Gly	Cys 2 19 0	Leu	Leu	Asp
Ser	ser 2195	Gly	Met	Leu	Ser	Pro 22 00	۷a٦	Asp	Ser	Leu	G1u 2205	Ser	Pro	нis
Gly	Tyr 2210	Leu	Ser	Asp	va1	д]а 22 1 5	Ser	Pro	Pro	Leu	Leu 2220	Pro	Ser	Pro
Phe	G1n 2225	G∏n	Ser	Pro	Ser	Val 2230	Pro	Leu	Asn	His	Leu 2235	Pro	Gly	Met
Pro	Asp 2240	Thr	Нis	Leu	Gly	Ile 2245	Gly	His	Leu	Asn	va1 2250	Ala	Ala	Lys
Pro	G]u 2255	Met	Ala	Ala	Leu	G]y 2260	Gly	Gly	Gly	Arg	Leu 2265	Ala	Phe	Glu

PCT/EP2004/008819

39467A.txt.txt

Thr Gly Pro Pro Arg Leu Ser His Leu Pro Val Ala Ser Gly Thr Ser Thr Val Leu Gly Ser Ser Ser Gly Gly Ala Leu Asn Phe Thr 2285 2290 2295 Val Gly Gly Ser Thr Ser Leu Asn Gly Gln Cys Glu Trp Leu Ser Arg Leu Gln Ser Gly Met Val Pro Asn Gln Tyr Asn Pro Leu Arg 2315 2320 2325 Gly Ser Val Ala Pro Gly Pro Leu Ser Thr Gln Ala Pro Ser Leu 2330 2340 Gln His Gly Met Val Gly Pro Leu His Ser Ser Leu Ala Ala Ser 2345 2350 2355 Ala Leu Ser Gln Met Met Ser Tyr Gln Gly Leu Pro Ser Thr Arg Leu Ala Thr Gln Pro His Leu Val Gln Thr Gln Gln Val Gln Pro 2375 2380 2385 Gln Asn Leu Gln Met Gln Gln Gln Asn Leu Gln Pro Ala Asn Ile 2390 2395 2400 Gln Gln Gln Ser Leu Gln Pro Pro Pro Pro Pro Pro Gln Pro 2405 2410 2415 His Leu Gly Val Ser Ser Ala Ala Ser Gly His Leu Gly Arg Ser 2420 . 2430 Phe Leu Ser Gly Glu Pro Ser Gln Ala Asp Val Gln Pro Leu Gly 2435 2440 2445 Pro Ser Ser Leu Ala Val His Thr Ile Leu Pro Gln Glu Ser Pro 2450 2456 Ala Leu Pro Thr Ser Leu Pro Ser Ser Leu Val Pro Pro Val Thr 2465 2470 2475 Ala Ala Gln Phe Leu Thr Pro Pro Ser Gln His Ser Tyr Ser Ser 2480 2485 2490 Pro Val Asp Asn Thr Pro Ser His Gln Leu Gln Val Pro Glu His 2495 2500 2505 Pro Phe Leu Thr Pro Ser Pro Glu Ser Pro Asp Gln Trp Ser Ser 2510

Page 185 of 270

WO 2005/014854

39467A.txt.txt

Ser Ser Pro His Ser Asn Val Ser Asp Trp Ser Glu Gly Val Ser 2525

Ser Pro Pro Thr Ser Met Gln Ser Gln Ile Ala Arg Ile Pro Glu 2540 2545

Ala Phe Lys 2555

<210> 16 <211> 11433 <212> DNA

213> Homo sapiens

<220> <221> misc_feature <223> Notch-2

<400> 16 aggctgcttc gttgcacacc cgagaaagtt tcagccaaac ttcgggcggc ggctgaggcg 60 gcggccgagg agcggcggac tcggggcgcg gggagtcgag gcatttgcgc ctgggcttcg 120 180 gagcgtagcg ccagggcctg agcctttgaa gcaggaggag gggaggagag agtggggctc ctctatcggg acccctccc catgtggatc tgcccaggcg gcggcggcgg cggcggagga 240 ggaggcgacc gagaagatgc ccgccctgcg ccccgctctg ctgtgggcgc tgctggcgct 300 360 ctggctgtgc tgcgcggccc ccgcgcatgc attgcagtgt cgagatggct atgaaccctg 420 tgtaaatgaa ggaatgtgtg ttacctacca caatggcaca ggatactgca aatgtccaga aggettettg ggggaatatt gteaacateg agaceeetgt gagaagaace getgeeagaa 480 540 tggtgggact tgtgtggccc aggccatgct ggggaaagcc acgtgccgat gtgcctcagg gtttacagga gaggactgcc agtactcaac atctcatcca tgctttgtgt ctcgaccctg 600 cctgaatggc ggcacatgcc atatgctcag ccgggatacc tatgagtgca cctgtcaagt 660 720 cgggtttaca ggtaaggagt gccaatggac ggatgcctgc ctgtctcatc cctgtgcaaa tggaagtacc tgtaccactg tggccaacca gttctcctgc aaatgcctca caggcttcac 780 840 agggcagaaa tgtgagactg atgtcaatga gtgtgacatt ccaggacact gccagcatgg tggcacctgc ctcaacctgc ctggttccta ccagtgccag tgccctcagg gcttcacagg 900 ccagtactgt gacagcctgt atgtgccctg tgcaccctca ccttgtgtca atggaggcac 960 1020 ctgtcggcag actggtgact tcacttttga gtgcaactgc cttccaggtt ttgaagggag 1080 cacctgtgag aggaatattg atgactgccc taaccacagg tgtcagaatg gaggggtttg tgtggatggg gtcaacactt acaactgccg ctgtccccca caatggacag gacagttctg 1140 1200 cacagaggat gtggatgaat gcctgctgca gcccaatgcc tgtcaaaatg ggggcacctg tgccaaccgc aatggaggct atggctgtgt atgtgtcaac ggctggagtg gagatgactg 1260 1320 cagtgagaac attgatgatt gtgccttcgc ctcctgtact ccaggctcca cctgcatcga

Page 156 of 970

WO 200	05/014854				PCT/E	P2004/0088
ccgtgtggcc	tccttctctt	gcatgtgccc	39467A.txt agaggggaag	.txt gcaggtctcc	tgtgtcatct	1380
ggatgatgca	tgcatcagca	atccttgcca	caagggggca	ctgtgtgaca	ccaaccccct	1440
aaatgggcaa	tatatttgca	cctgcccaca	aggctacaaa	ggggctgact	gcacagaaga	1500
tgtggatgaa	tgtʻgccatgg	ccaatagcaa	tccttgtgag	catgcaggaa	aatgtgtgaa	1560
cacggatggc	gccttccact	gtgagtgtct	gaagggttat	gcaggacctc	gttgtgagat	1620
ggacatcaat	gagtgccatt	cagacccctg	ccagaatgat	gctacctgtc	tggataagat	1680
tggaggcttc	acatgtctgt	gcatgccagg	tttcaaaggt	gtgcattgtg	aattagaaat	1740
aaatgaatgt	cagagcaacc	cttgtgtgaa	caatgggcag	tgtgtggata	aagtcaatcg	1800
tttccagtgc	ctgtgtcctc	ctggtttcac	tgggccagtt	tgccagattg	atattgatga	1860
ctgttccagt	actccgtgtc	tgaatggggc	aaagtgtatc	gatcacccga	atggctatga	1920
atgccagtgt	gccacaggtt	tcactggtgt	gttgtgtgag	gagaacattg	acaactgtga	1980
ccccgatcct	tgccaccatg	gtcagtgtca	ggatggtatt	gattcctaca	cctgcatctg	2040
caatcccggg	tacatgggcg	ccatctgcag	tgaccagatt	gatgaatgtt	acagcagccc	2100
ttgcctgaac	gatggtcgct	gcattgacct	ggtcaatggc	taccagtgca	actgccagcc	2160
aggcacgtca	ggggttaatt	gtgaaattaa	ttttgatgac	tgtgcaagta	acccttgtat	2220
ccatggaatc	tgtatggatg	gcattaatcg	ctacagttgt	gtctgctcac	caggattcac	2280
agggcagaga	tgtaacattg	acattgatga	gtgtgcctcc	aatccctgtc	gcaagggtgc	2340
aacatgtatc	aacggtgtga	atggtttccg	ctgtatatgc	cccgagggac	cccatcaccc	2400
cagctgctac	tcacaggtga	acgaatgcct	gagcaatccc	tgcatccatg	gaaactgtac	2460
tggaggtctc	agtggatata	agtgtctctg	tgatgcaggc	tgggttggca	tcaactgtga	2520
agtggacaaa	aatgaatgcc	tttcgaatcc	atgccagaat	ggaggaactt	gtgacaatct	2580
ggtgaatgga	tacaggtgta	cttgcaagaa	gggctttaaa	ggctataact	gccaggtgaa	2640
tattgatgaa	tgtgcctcaa	atccatgcct	gaaccaagga	acctgctttg	atgacataag	2700
tggctacact	tgccactgtg	tgctgccata	cacaggcaag	aattgtcaga	cagtattggc	2760
tccctgttcc	ccaaaccctt	gtgagaatgc	tgctgtttgc	aaagagtcac	caaattttga	2820
gagttatact	tgcttgtgtg	ctcctggctg	gcaaggtcag	cggtgtacca	ttgacattga	2880
cgagtgtatc	tccaagccct	gcatgaacca	tggtctctgc	cataacaccc	agggcagcta	2940
catgtgtgaa	tgtccaccag	gcttcagtgg	tatggactgt	gaggaggaca	ttgatgactg	3000
ccttgccaat	ccttgccaga	atggaggttc	ctgtatggat	ggagtgaata	ctttctcctg	3060
cctctgcctt	ccgggtttca	ctggggataa	gtgccagaca	gacatgaatg	agtgtctgag	3120
tgaaccctgt	aagaatggag	ggacctgctc	tgactacgtc	aacagttaca	cttgcaagtg	3180
ccaggcagga	tttgatggag	tccattgtga	gaacaacatc	aatgagtgca	ctgagagctc	3240
ctgtttcaat	ggtggcacat	gtgttgatgg	gattaactcc	ttctcttgct	tgtgccctgt	3300
gggtttcact	ggatccttct	gcctccatga	gatcaatgaa	tgcagctctc	atccatgcct	3360

gaatgaggga	acgtgtgttg	atggcctggg	39467A.txt tacctaccgc	.txt tgcagctgcc	ccctgggcta	3420
cactgggaaa	aactgtcaga	ccctggtgaa	tctctgcagt	cggtctccat	gtaaaaacaa	3480
aggtacttgc	gttcagaaaa	aagcagagtc	ccagtgccta	tgtccatctg	gatgggctgg	3540
tgcctattgt	gacgtgccca	atgtctcttg	tgacatagca	gcctccagga	gaggtgtgct	3600
tgttgaacac	ttgtgccagc	actcaggtgt	ctgcatcaat	gctggcaaca	cgcattactg	3660
tcagtgcccc	ctgggctata	ctgggagcta	ctgtgaggag	caactcgatg	agtgtgcgtc	3720
caacccctgc	cagcacgggg	caacatgcag	tgacttcatt	ggtggataca	gatgcgagtg	3780
tgtcccaggc	tatcagggtg	tcaactgtga	gtatgaagtg	gatgagtgcc	agaatcagcc	3840
ctgccagaat	ggaggcacct	gtattgacct	tgtgaaccat	ttcaagtgct	cttgcccacc	3900
aggcactcgg	ggcctactct	gtgaagagaa	cattgatgac	tgtgcccggg	gtccccattg	3960
ccttaatggt	ggtcagtgca	tggataggat	tggaggctac	agttgtcgct	gcttgcctgg	4020
ctttgctggg	gagcgttgtg	agggagacat	caacgagtgc	ctctccaacc	cctgcagctc	4080
tgagggcagc	ctggactgta	tacagctcac	caatgactac	ctgtgtgttt	gccgtagtgc	4140
ctttactggc	cggcactgtg	aaaccttcgt	cgatgtgtgt	ccccagatgc	cctgcctgaa	4200
tggagggact	tgtgctgtgg	ccagtaacat	gcctgatggt	ttcatttgcc	gttgtccccc	4260
gggattttcc	ggggcaaggt	gccagagcag	ctgtggacaa	gtgaaatgta	ggaaggggga	4320
gcagtgtgtg	cacaccgcct	ctggaccccg	ctgcttctgc	cccagtcccc	gggactgcga	4380
gtcaggctgt	gccagtagcc	cctgccagca	cgggggcagc	tgccaccctc	agcgccagcc	4440
tccttattac	tcctgccagt	gtgccccacc	attctcgggt	agccgctgtg	aactctacac	4500
ggcacccccc	agcacccctc	ctgccacctg	tctgagccag	tattgtgccg	acaaagctcg	4560
ggatggcgtc	tgtgatgagg	cctgcaacag	ccatgcctgc	cagtgggatg	ggggtgactg	4620
ttctctcacc	atggagaacc	cctgggccaa	ctgctcctcc	ccacttccct	gctgggatta	4680
tatcaacaac	cagtgtgatg	agctgtgcaa	cacggtcgag	tgcctgtttg	acaactttga	4740
atgccagggg	aacagcaaga	catgcaagta	tgacaaatac	tgtgcagacc	acttcaaaga	4800
caaccactgt	gaccaggggt	gcaacagtga	ggagtgtggt	tgggatgggc	tggactgtgc	4860
tgctgaccaa	cctgagaacc	tggcagaagg	taccctggtt	attgtggtat	tgatgccacc	4920
tgaacaactg	ctccaggatg	ctcgcagctt	cttgcgggca	ctgggtaccc	tgctccacac	4980
caacctgcgc	attaagcggg	actcccaggg	ggaactcatg	gtgtacccct	attatggtga	5040
gaagtcagct	gctatgaaga	aacagaggat	gacacgcaga	tcccttcctg	gtgaacaaga	5100
acaggaggtg	gctggctcta	aagtctttct	ggaaattgac	aaccgccagt	gtgttcaaga	5160
ctcagaccac	tgcttcaaga	acacggatgc	agcagcagct	ctcctggcct	ctcacgccat	5220
acaggggacc	ctgtcatacc	ctcttgtgtc	tgtcgtcagt	gaatccctga	ctccagaacg	5280
cactcagctc	ctctatctcc	ttgctgttgc	tgttgtcatc	attctgttta	ttattctgct	5340
gggggtaatc	atggcaaaac	gaaagcgtaa	gcatggctct	ctctggctgc	ctgaaggttt	5400

cactcttcgc	cgagatgcaa	gcaatcacaa	39467A.txt gcgtcgtgag		aggatgctgt	5460
ggggctgaaa	aatctctcag	tgcaagtctc	agaagctaac	ctaattggta	ctggaacaag	5520
tgaacactgg	gtcgatgatg	aagggcccca	gccaaagaaa	gtaaaggctg	aagatgaggc	5580
cttactctca	gaagaagatg	accccattga	tcgacggcca	tggacacagc	agcaccttga	5640
agctgcagac	atccgtagga	caccatcgct	ggctctcacc	cctcctcagg	cagagcagga	5700
ggtggatgtg	ttagatgtga	atgt c cgtgg	cccagatggc	tgcaccccat	tgatgttggc	5760
tt c tctccga	ggaggcag c t	cagatttgag	tgatgaagat	gaagatgcag	aggactcttc	5820
tgctaacatc	atcacagact	tggtctacca	gggtgccagc	ctccaggccc	agacagaccg	5880
gactggtgag	atggccctgc	accttgcagc	ccgctactca	cgggctgatg	ctgccaagcg	5940
tctcctggat	gcaggtgcag	atgccaatgc	ccaggacaac	atgggccgct	gtccactcca	6000
tgctgcagtg	gcagctgatg	cccaaggtgt	cttccagatt	ctgattcgca	accgagtaac	6060
tgatctagat	gccaggatga	atgatggtac	tacacccctg	atcctggctg	cccgcctggc	6120
tgtggaggga	atggtggcag	aactgatcaa	ctgccaagcg	gatgtgaatg	cagtggatga	6180
ccatggaaaa	tctgctcttc	actgggcagc	tgctgtcaat	aatgtggagg	caactctttt	6240
gttgttgaaa	aatggggcca	accgagacat	gcaggacaac	aaggaagaga	cacctctgtt	6300
tcttgctgcc	cgggagggga	gctatgaagc	agccaagatc	ctgttagacc	attttgccaa	6360
tcgagacatc	acagaccata	tggatcgtct	tccccgggat	gtggctcggg	atcgcatgca	6420
ccatgacatt	gtgcgccttc	tggatgaata	caatgtgacc	ccaagccctc	caggcaccgt	6480
gttgacttct	gctctctcac	ctgtcatctg	tgggcccaac	agatctttcc	tcagcctgaa	6540
gcacacccca	atgggcaaga	agtctagacg	gcccagtgcc	aagagtacca	tgcctactag	6600
cctccctaac	cttgccaagg	aggcaaagga	tgccaagggt	agtaggagga	agaagtctct	6660
gagtgagaag	gtccaactgt	ctgagagttc	agtaacttta	tcccctgttg	attccctaga	6720
atctcctcac	acgtatgttt	ccgacaccac	atcctctcca	atgattacat	cccctgggat	6780
cttacaggcc	tcacccaacc	ctatgttggc	cactgccgcc	cctcctgccc	cagtccatgc	6840
ccagcatgca	ctatctttt	ctaaccttca	tgaaatgcag	cctttggcac	atggggccag	6900
cactgtgctt	ccctcagtga	gccagttgct	atcccaccac	cacattgtgt	ctccaggcag	6960
tggcagtgct	ggaagcttga	gtaggctcca	tccagtccca	gtcccagcag	attggatgaa	7020
ccgcatggag	gtgaatgaga	cccagtacaa	tgagatgttt	ggtatggtcc	tggctccagc	7080
tgagggcacc	catcctggca	tagctccc c a	gagcaggcca	cctgaaggga	agcacataac	7140
cacccctcgg	gagcccttgc	cccccattgt	gactttccag	ctcatcccta	aaggcagtat	7200
tgcccaacca	gcgggggctc	cccagcctca	gtccacctgc	cctccagctg	ttgcgggccc	7260
cctgcccacc	atgtaccaga	ttccagaaat	ggcccgtttg	cccagtgtgg	ctttccccac	7320
tgccatgatg	ccccagcagg	acgggcaggt	agctcagacc	attctcccag	cctatcatcc	7380
tttcccagcc	tctgtgggca	agtaccccac	acccccttca	cagcacagtt	atgcttcctc	7440

aaatgctgct	gagcgaacac	ccagtcacag	39467A.txt tggtcacctc	.txt cagggtgagc	atccctacct	7500
gacaccatcc	ccagagtctc	ctgaccagtg	gtcaagttca	tcaccccact	ctgcttctga	7560
ctggtcagat	gtgaccacca	gccctacccc	tgggggtgct	ggaggaggtc	agcggggacc	7620
tgggacacac	atgtctgagc	caccacacaa	caacatgcag	gtttatgcgt	gagagagtcc	7680
acctccagtg	tagagacata	actgactttt	gtaaatgctg	ctgaggaaca	aatgaaggtc	7740
atccgggaga	gaaatgaaga	aatctctgga	gccagcttct	agaggtagga	aagagaagat	7800
gttcttattc	agataatgca	agagaagcaa	ttcgtcagtt	tcactgggta	tctgcaaggc	7860
ttattgatta	ttctaatcta	ataagacaag	tttgtggaaa	tgcaagatga	atacaagcct	7920
tgggtccatg	tttactctct	tctatttgga	gaataagatg	gatgcttatt	gaagcccaga	7980
cattcttgca	gcttggactg	cattttaagc	cctgcaggct	tctgccatat	ccatgagaag	8040
attctacact	agcgtcctgt	tgggaattat	gccctggaat	tctgcctgaa	ttgacctacg	8100
catctcctcc	tccttggaca	ttcttttgtc	ttcatttggt	gcttttggtt	ttgcacctct	8160
ccgtgattgt	agccctacca	gcatgttata	gggcaagacc	tttgtgcttt	tgatcattct	8220
ggcccatgaa	agcaactttg	gtctcctttc	ccctcctgtc	ttcccggtat	cccttggagt	8280
ctcacaaggt	ttactttggt	atggttctca	gcacaaacct	ttcaagtatg	ttgtttcttt	8340
ggaaaatgga	catactgtat	tgtgttctcc	tgcatatatc	attcctggag	agagaagggg	8400
agaagaatac	ttttcttcaa	caaattttgg	gggcaggaga	tcccttcaag	aggctgcacc	8460
ttaatttttc	ttgtctgtgt	gcaggtcttc	atataaactt	taccaggaag	aagggtgtga	8520
gtttgttgtt	tttctgtgta	tgggcctggt	cagtgtaaag	ttttatcctt	gatagtctag	8580
ttactatgac	cctccccact	ttttaaaac	cagaaaaagg	tttggaatgt	tggaatgacc	8640
aagagacaag	ttaactcgtg	caagagccag	ttacccaccc	acaggtcccc	ctacttcctg	8700
ccaagcattc	cattgactgc	ctgtatggaa	cacatttgtc	ccagatctga	gcattctagg	8760
cctgtttcac	tcactcaccc	agcatatgaa	actagtctta	actgttgagc	ctttcctttc	8820
atatccacaig	aagacactgt	ctcaaatgtt	gtacccttgc	catttaggac	tgaactttcc	8880
ttagcccaag	ggacccagtg	acagttgtct	tccgtttgtc	agatgatcag	tctctactga	8940
ttatcttgct	gcttaaaggc	ctgctcacca	atctttcttt	cacaccgtgt	ggtccgtgtt	9000
actggtatac	ccagtatgtt	ctcactgaag	acatggactt	tatatgttca	agtgcaggaa	9060
ttggaaagtt	ggacttgttt	tctatgatcc	aaaacagccc	tataagaagg	ttggaaaagg	9120
aggaactata	tagcagcctt	tgctattttc	tgctaccatt	tcttttcctc	tgaagcggcc	9180
atgacattcc	ctttggcaac	taacgtagaa	actcaacaga	acattttcct	ttcctagagt	9240
caccttttag	atgataatgg	acaactatag	acttgctcat	tgttcagact	gattgcccct	9300
cacctgaatc	cactctctgt	attcatgctc	ttggcaattt	ctttgacttt	cttttaaggg	9360
cagaagcatt	ttagttaatt	gtagataaag	aatagttttc	ttcctcttct	ccttgggcca	9420
gttaataatt	ggtccatggc	tacactgcaa	cttccgtcca	gtgctgtgat	gcccatgaca	9480

PCT/EP2004/008819

Page 180 of 270

cctgcaaaat	aagttctgcc	tgggcatttt	39467A.txt gtagatatta		tcccgactct	9540	
tttggtttga	atgacagttc	tcattccttc	tatggctgca	agtatgcatc	agtgcttccc	9600	
acttacctga	tttgtctgtc	ggtggcccca	tatggaaacc	ctgcgtgtct	gttggcataa	9660	
tagtttacaa	atggtttttt	cagtcctatc	caaatttatt	gaaccaacaa	aaa taatta c	9720	
ttctgccctg	agataagcag	attaagtttg	ttcattctct	gctttattct	ctccatgtgg	9780	
caacattctg	tcagcctctt	tcatagtgtg	caaacatttt	atcattctaa	atggtgactc	9840	
tctgcccttg	gacccattta	ttattcacag	atggggagaa	cctatctgca	tggacctctg	9900	
tggaccacag	cgtacctgcc	cctttctgcc	ctcctgctcc	agccccactt	ctgaaagtat	9960	
cagctactga	tccagccact	ggatatttta	tatcctccct	tttccttaag	cacaatgtca	10020	
gaccaaattg	cttgtttctt	tttcttggac	tactttaatt	tggatccttt	gggtttggag	10080	
aa a gggaatg	tgaaagctgt	cattacagac	aacaggtttc	agtgatgagg	aggacaacac	10140	
tgcctttcaa	actttttact	gatctcttag	attttaagaa	ctcttgaatt	gtgtggtatc	10200	
taataaaagg	gaaggtaaga	tggataatca	ctttctcatt	tgggttctga	attggagact	10260	
cagtttttat	gagacacatc	ttttatgcca	tgtatagatc	ctcccctgct	atttttggtt	10320	
tatttttatt	gttataaatg	ctttctttct	ttgactcctc	ttctgcctgc	ctttggggat	10380	
aggtttttt	gtttgtttat	ttgcttcctc	tgttttgttt	taagcatcat	tttcttatgt	10440	
gaggtgggga	agggaaaggt	atgagggaaa	gagagtctga	gaattaaaat	attttagtat	10500	
aagcaattgg	ctgtgatgct	caaatccatt	gcatcctctt	attgaatttg	ccaatttgta	10560	
atttttgcat	aataaagaac	caaaggtgta	atgttttgtt	gagaggtggt	ttagggattt	10620	
tggccctaac	caatacattg	aatgtatgat	gactatttgg	gaggacacat	ttatgtaccc	10680	
agaggccccc	actaataagt	ggtactatgg	ttacttcctt	gtgtacattt	ctcttaaaag	10740	
tgatattata	tctgtttgta	tgagaaaccc	agtaaccaat	aaaatgaccg	catattcctg	10800	
actaaacgta	gtaaggaaaa	tgcacacttt	gtttttactt	ttccgtttca	ttctaaaggt	10860	
agttaagatg	aaatttatat	gaaagcattt	ttatcacaaa	ataaaaaagg	tttgccaagc	10920	
tcagtggtgt	tgtattttt	attttccaat	actgcatcca	tggcctggca	gtgttacctc	10980	
atgatgtcat	aatttgctga	gagagcaaat	tttcttttct	ttctgaatcc	cacaaagcct	11040	
agcaccaaac	ttctttttt	cttcctttaa	ttagatcata	aataaatgat	cctggggaaa	11100	
aagcatctgt	caaataggaa	acatcacaaa	actgagcact	cttctgtgca	ctagccatag	11160	
ctggtgacaa	acagatggtt	gctcagggac	aaggtgcctt	ccaatggaaa	tgcga agtag	11220	
ttgctatagc	aagaattggg	aactgggata	taagtcataa	tattaattat	gctgttatgt	11280	
aaatgattgg	tttgtaacat	tccttaagtg	aaatttgtgt	agaacttaat	atacaggatt	11340	
ataaaataat	attttgtgta	taaatttgtt	ataagttcac	attcatacat	ttatttataa	11400	
agtcagtgag	atatttgaac	atgaaaaaaa	aaa			11433	

Page 181 of 270

WO 2005/014854 39467A.txt.txt

<211> 2471

<212> PRT <213> Homo sapiens

<220> <221> misc_fe <223> Notch-2 misc_feature

<400> 17

Met Pro Ala Leu Arg Pro Ala Leu Leu Trp Ala Leu Leu Ala Leu Trp

Leu Cys Cys Ala Ala Pro Ala His Ala Leu Gln Cys Arg Asp Gly Tyr

Glu Pro Cys Val Asn Glu Gly Met Cys Val Thr Tyr His Asn Gly Thr Gly Tyr Cys Lys Cys Pro Glu Gly Phe Leu Gly Glu Tyr Cys Gln His $50 \ \ \,$ Arg Asp Pro Cys Glu Lys Asn Arg Cys Gln Asn Gly Gly Thr Cys Val Ala Gln Ala Met Leu Gly Lys Ala Thr Cys Arg Cys Ala Ser Gly Phe 85 90 95 Thr Gly Glu Asp Cys Gln Tyr Ser Thr Ser His Pro Cys Phe Val Ser 100 105 110 Arg Pro Cys Leu Asn Gly Gly Thr Cys His Met Leu Ser Arg Asp Thr Tyr Glu Cys Thr Cys Gln Val Gly Phe Thr Gly Lys Glu Cys Gln Trp 130 135 140 Thr Asp Ala Cys Leu Ser His Pro Cys Ala Asn Gly Ser Thr Cys Thr 145 150 155 160 Thr Val Ala Asn Gln Phe Ser Cys Lys Cys Leu Thr Gly Phe Thr Gly 175 Gln Lys Cys Glu Thr Asp Val Asn Glu Cys Asp Ile Pro Gly His Cys 180 185 190 Gln His Gly Gly Thr Cys Leu Asn Leu Pro Gly Ser Tyr Gln Cys Gln 195 200 205Cys Ala Pro Ser Pro Cys Val Asn Gly Gly Thr Cys Arg Gln Thr Gly WC05014634 [file://E:/WC05014654.cpc]

240

Page 182 of 270

39467A.txt.txt 235

225 230

Asp Phe Thr Phe Glu Cys Asn Cys Leu Pro Gly Phe Glu Gly Ser Thr 245 250

Cys Glu Arg Asn Ile Asp Asp Cys Pro Asn His Arg Cys Gln Asn Gly 260

Gly Val Cys Val Asp Gly Val Asn Thr Tyr Asn Cys Arg Cys Pro Pro

Gln Trp Thr Gly Gln Phe Cys Thr Glu Asp Val Asp Glu Cys Leu Leu 290 295 300

Gln Pro Asn Ala Cys Gln Asn Gly Gly Thr Cys Ala Asn Arg Asn Gly 305 310 315

Gly Tyr Gly Cys Val Cys Val Asn Gly Trp Ser Gly Asp Asp Cys Ser 325

323

Glu Asn Ile Asp Asp Cys Ala Phe Ala Ser Cys Thr Pro Gly Ser Thr 340 350

Cys Ile Asp Arg Val Ala Ser Phe Ser Cys Met Cys Pro Glu Gly Lys 355

Ala Gly Leu Leu Cys His Leu Asp Asp Ala Cys Ile Ser Asn Pro Cys 370 380

His Lys Gly Ala Leu Cys Asp Thr Asn Pro Leu Asn Gly Gln Tyr Ile 385 390 395 400

Cys Thr Cys Pro Gln Gly Tyr Lys Gly Ala Asp Cys Thr Glu Asp Val 405 410 415

Asp Glu Cys Ala Met Ala Asn Ser Asn Pro Cys Glu His Ala Gly Lys

Cys Val Asn Thr Asp Gly Ala Phe His Cys Glu Cys Leu Lys Gly Tyr 445 445

Ala Gly Pro Arg Cys Glu Met Asp Ile Asn Glu Cys His Ser Asp Pro 450 460

Cys Gln Asn Asp Ala Thr Cys Leu Asp Lys Ile Gly Gly Phe Thr Cys 465 475 475 480

Leu Cys Met Pro Gly Phe Lys Gly Val His Cys Glu Leu Glu Ile Asn 485 490 495

Glu Cys Gln Ser Asn Pro Cys Val Asn Asn Gly Gln Cys Val Asp Lys

Page 183 of 270

WO 2005/014854

39467A.txt.txt 505

510

Val Asn Arg Phe Gln Cys Leu Cys Pro Pro Gly Phe Thr Gly Pro Val 515 520 525 $_{\mbox{\scriptsize Cys}}$ Gln Ile Asp Ile Asp Asp Cys Ser Ser Thr Pro Cys Leu Asn Gly $_{\mbox{\scriptsize 530}}^{\mbox{\scriptsize Cys}}$ Ala Lys Cys Ile Asp His Pro Asn Gly Tyr Glu Cys Gln Cys Ala Thr 545 550 555 560 Gly Phe Thr Gly Val Leu Cys Glu Glu Asn Ile Asp Asn Cys Asp Pro 575 Asp Pro Cys His His Gly Gln Cys Gln Asp Gly Ile Asp Ser Tyr Thr 580 585 590Cys Ile Cys Asn Pro Gly Tyr Met Gly Ala Ile Cys Ser Asp Gln Ile 595 600 605 Asp Glu Cys Tyr Ser Ser Pro Cys Leu Asn Asp Gly Arg Cys Ile Asp 610 615 Leu Val Asn Gly Tyr Gln Cys Asn Cys Gln Pro Gly Thr Ser Gly Val 625 630 635 640 Asn Cys Glu Ile Asn Phe Asp Asp Cys Ala Ser Asn Pro Cys Ile His 645 650 Gly Ile Cys Met Asp Gly Ile Asn Arg Tyr Ser Cys Val Cys Ser Pro 660 660 660Gly Phe Thr Gly Gln Arg Cys Asn Ile Asp Ile Asp Glu Cys Ala Ser Arg Cys Ile Cys Pro Glu Gly Pro His His Pro Ser Cys Tyr Ser Gln 705 710 715 720 Val Asn Glu Cys Leu Ser Asn Pro Cys Ile His Gly Asn Cys Thr Gly 735 Gly Leu Ser Gly Tyr Lys Cys Leu Cys Asp Ala Gly Trp Val Gly Ile 740 750 750 Asn Cys Glu Val Asp Lys Asn Glu Cys Leu Ser Asn Pro Cys Gln Asn 755 760 765 Gly Gly Thr Cys Asp Asn Leu Val Asn Gly Tyr Arg Cys Thr Cys Lys

Page 184 of 270

WO 2005/014854

39467A.txt.txt 775 780

Lys Gly Phe Lys Gly Tyr Asn Cys Gln Val Asn Ile Asp Glu Cys Ala 785 790 795 800 Ser Asn Pro Cys Leu Asn Gln Gly Thr Cys Phe Asp Asp Ile Ser Gly 805 810 815 Tyr Thr Cys His Cys Val Leu Pro Tyr Thr Gly Lys Asn Cys Gln Thr 820 830 830 Val Leu Ala Pro Cys Ser Pro Asn Pro Cys Glu Asn Ala Ala Val Cys 835 840 845 Lys Glu Ser Pro Asn Phe Glu Ser Tyr Thr Cys Leu Cys Ala Pro Gly 850 860 Trp Gln Gly Gln Arg Cys Thr Ile Asp Ile Asp Glu Cys Ile Ser Lys 865 870 875 Pro Cys Met Asn His Gly Leu Cys His Asn Thr Gln Gly Ser Tyr Met Cys Glu Cys Pro Pro Gly Phe Ser Gly Met Asp Cys Glu Glu Asp Ile Asp Asp Cys Leu Ala Asn Pro Cys Gln Asn Gly Gly Ser Cys Met Asp Lys Cys Gln Thr Asp Met Asn Glu Cys Leu Ser Glu Pro Cys Lys Asn 945 955 960 Gly Gly Thr Cys Ser Asp Tyr Val Asn Ser Tyr Thr Cys Lys Cys Gln 975 Ala Gly Phe Asp Gly Val His Cys Glu Asn Asn Ile Asn Glu Cys Thr 980 985 990 Glu Ser Ser Cys Phe Asn Gly Gly Thr Cys Val Asp Gly Ile Asn Ser 995 1000 Phe Ser Cys Leu Cys Pro Val Gly Phe Thr Gly Ser Phe Cys Leu 1010 1015 1020 His Glu Ile Asn Glu Cys Ser Ser His Pro Cys Leu Asn Glu Gly 1025 1030 1035 Thr Cys Val Asp Gly Leu Gly Thr Tyr Arg Cys Ser Cys Pro Leu

PCT/EP2004/008819

Page 185 of 270

WO 2005/014854

39467A.txt.txt 1050

1045 Gly Tyr Thr Gly Lys Asn Cys Gln Thr Leu Val Asn Leu Cys Ser Arg Ser Pro Cys Lys Asn Lys Gly Thr Cys Val Gln Lys Lys Ala 1070 1080 Glu Ser Gln Cys Leu Cys Pro Ser Gly Trp Ala Gly Ala Tyr Cys Asp Val Pro Asn Val Ser Cys Asp Ile Ala Ala Ser Arg Arg Gly 1100 1110Val Leu Val Glu His Leu Cys Gln His Ser Gly Val Cys Ile Asn 1115 1120 1125 Ala Gly Asn Thr His Tyr Cys Gln Cys Pro Leu Gly Tyr Thr Gly Ser Tyr Cys Glu Glu Gln Leu Asp Glu Cys Ala Ser Asn Pro Cys 1.145 1150 1155 Gln His Gly Ala Thr Cys Ser Asp Phe Ile Gly Gly Tyr Arg Cys 1160 1165 1170 Glu Cys Val Pro Gly Tyr Gln Gly Val Asn Cys Glu Tyr Glu Val 1175 1180 1185 Asp Glu Cys Gln Asn Gln Pro Cys Gln Asn Gly Gly Thr Cys Ile 1190 1195 1200 Asp Leu Val Asn His Phe Lys Cys Ser Cys Pro Pro Gly Thr Arg 1205 1210 1215 Gly Leu Leu Cys Glu Glu Asn Ile Asp Asp Cys Ala Arg Gly Pro His Cys Leu Asn Gly Gly Gln Cys Met Asp Arg Ile Gly Gly Tyr 1235 1240 1245 Ser Cys Arg Cys Leu Pro Gly Phe Ala Gly Glu Arg Cys Glu Gly 1250 1260 Asp Ile Asn Glu Cys Leu Ser Asn Pro Cys Ser Ser Glu Gly Ser 1265 1270 Leu Asp Cys Ile Gln Leu Thr Asn Asp Tyr Leu Cys Val Cys Arg 1280 1290 Ser Ala Phe Thr Gly Arg His Cys Glu Thr, Phe Val Asp Val Cys 1295

Page 186 of 270

WO 2005/014854

39467A.txt.txt 1300 1305

Pro Gln Met Pro Cys Leu Asn Gly Gly Thr Cys Ala val Ala Ser Asn Met Pro Asp Gly Phe Ile Cys Arg Cys Pro Pro Gly Phe Ser Gly Ala Arg Cys Gln Ser Ser Cys Gly Gln Val Lys Cys Arg Lys 1340 1350 Gly Glu Gln Cys Val His Thr Ala Ser Gly Pro Arg Cys Phe Cys 1355 1360 1365 Pro Ser Pro Arg Asp Cys Glu Ser Gly Cys Ala Ser Ser Pro Cys 1370 1380 Gln His Gly Gly Ser Cys His Pro Gln Arg Gln Pro Pro Tyr Tyr 1385 1390 1395 Ser Cys Gln Cys Ala Pro Pro Phe Ser Gly Ser Arg Cys Glu Leu 1400 1410 Tyr Thr Ala Pro Pro Ser Thr Pro Pro Ala Thr Cys Leu Ser Gln 1415 1420 1425 Tyr Cys Ala Asp Lys Ala Arg Asp Gly Val Cys Asp Glu Ala Cys 1430 1435 1440Asn Ser His Ala Cys Gln Trp Asp Gly Gly Asp Cys Ser Leu Thr 1445 1450 Met Glu Asn Pro Trp Ala Asn Cys Ser Ser Pro Leu Pro Cys Trp 1460 1465 1470 Asp Tyr Ile Asn Asn Gln Cys Asp Glu Leu Cys Asn Thr Val Glu Cys Leu Phe Asp Asn Phe Glu Cys Gln Gly Asn Ser Lys Thr Cys 1490 1495 Lys Tyr Asp Lys Tyr Cys Ala Asp His Phe Lys Asp Asn His Cys 1505 1515 Asp Gln Gly Cys Asn Ser Glu Glu Cys Gly Trp Asp Gly Leu Asp 1520 1530 Cys Ala Ala Asp Gln Pro Glu Asn Leu Ala Glu Gly Thr Leu Val 1535 1540 1545 Ile Val Val Leu Met Pro Pro Glu Gln Leu Leu Gln Asp Ala Arg

PCT/EP2004/008819

Page 187 of 270

WO 2005/014854

39467A.txt.txt 1560

1555 Ser Phe Leu Arg Ala Leu Gly Thr Leu Leu His Thr Asn Leu Arg Ile Lys Arg Asp Ser Gln Gly Glu Leu Met Val Tyr Pro Tyr Tyr 1580 1585 1590 Gly Glu Lys Ser Ala Ala Met Lys Lys Gln Arg Met Thr Arg Arg Ser Leu Pro Gly Glu Gln Glu Gln Glu Val Ala Gly Ser Lys Val 1610 1620 Phe Leu Glu Ile Asp Asn Arg Gln Cys Val Gln Asp Ser Asp His Cys Phe Lys Asn Thr Asp Ala Ala Ala Leu Leu Ala Ser His 1640 1645 1650 Ala Ile Gln Gly Thr Leu Ser Tyr Pro Leu Val Ser Val Val Ser 1655 1660 1665 Glu Ser Leu Thr Pro Glu Arg Thr Gln Leu Leu Tyr Leu Leu Ala 1670 1675 1680 Val Ala Val Ile Ile Leu Phe Ile Ile Leu Leu Gly Val Ile 1685 1690 1695 Met Ala Lys Arg Lys Arg Lys His Gly Ser Leu Trp Leu Pro Glu 1700 1710 Gly Phe Thr Leu Arg Arg Asp Ala Ser Asn His Lys Arg Arg Glu 1715 1720 1725 Pro Val Gly Gln Asp Ala Val Gly Leu Lys Asn Leu Ser Val Gln 1730 1740 Val Ser Glu Ala Asn Leu Ile Gly Thr Gly Thr Ser Glu His Trp Val Asp Asp Glu Gly Pro Gln Pro Lys Lys Val Lys Ala Glu Asp 1760 1765 1770 Glu Ala Leu Leu Ser Glu Glu Asp Asp Pro Ile Asp Arg Arg Pro 1775 1780 1785 Trp Thr Gln Gln His Leu Glu Ala Ala Asp Ile Arg Arg Thr Pro 1790 1795 1800 Ser Leu Ala Leu Thr Pro Pro Gln Ala Glu Gln Glu Val Asp Val

Page 188 of 270

WO 2005/014854

39467A.txt.txt 1810 18

Leu Asp Val Asn Val Arg Gly Pro Asp Gly Cys Thr Pro Leu Met 1820 1830 Leu Ala Ser Leu Arg Gly Gly Ser Ser Asp Leu Ser Asp Glu Asp 1835 1840 1845 Glu Asp Ala Glu Asp Ser Ser Ala Asn Ile Ile Thr Asp Leu Val 1850 1860 Tyr Gln Gly Ala Ser Leu Gln Ala Gln Thr Asp Arg Thr Gly Glu 1865 1870 1875 Met Ala Leu His Leu Ala Ala Arg Tyr Ser Arg Ala Asp Ala Ala 1880 1890 Lys Arg Leu Leu Asp Ala Gly Ala Asp Ala Asn Ala Gln Asp Asn 1895 1900 1905 Met Gly Arg Cys Pro Leu His Ala Ala Val Ala Ala Asp Ala Gln 1910 1915 1920 Gly Val Phe Gln Ile Leu Ile Arg Asn Arg Val Thr Asp Leu Asp 1925 1930 1935 Ala Arg Met Asn Asp Gly Thr Thr Pro Leu Ile Leu Ala Ala Arg 1940 1950 Leu Ala Val Glu Gly Met Val Ala Glu Leu Ile Asn Cys Gln Ala 1955 1960 1965 Asp Val Asn Ala Val Asp Asp His Gly Lys Ser Ala Leu His Trp 1970 1975 1980 Ala Ala Val Asn Asn Val Glu Ala Thr Leu Leu Leu Leu Lys 1985 1990 1995 Asn Gly Ala Asn Arg Asp Met Gln Asp Asn Lys Glu Glu Thr Pro 2000Leu Phe Leu Ala Ala Arg Glu Gly Ser Tyr Glu Ala Ala Lys Ile 2015 2020 2025 Leu Leu Asp His Phe Ala Asn Arg Asp Ile Thr Asp His Met Asp 2030 2035 Arg Leu Pro Arg Asp Val Ala Arg Asp Arg Met His Asp Ile 2045 2055 Val Arg Leu Leu Asp Glu Tyr Asn Val Thr Pro Ser Pro Pro Gly

Page 189 of 270

WO 2005/014854

39467A.txt.txt 2070

2060 2065 Thr Val Leu Thr Ser Ala Leu Ser Pro Val Ile Cys Gly Pro Asn 2075 2080 2085 . Arg Ser Phe Leu Ser Leu Lys His Thr Pro Met Gly Lys Lys Ser 2090 2095 2100 Arg Arg Pro Ser Ala Lys Ser Thr Met Pro Thr Ser Leu Pro Asn 2105 2110 2115 Leu Ala Lys Glu Ala Lys Asp Ala Lys Gly Ser Arg Arg Lys Lys 2120 2130 Ser Leu Ser Glu Lys Val Gln Leu Ser Glu Ser Ser Val Thr Leu 2135 2140 2145 Ser Pro Val Asp Ser Leu Glu Ser Pro His Thr Tyr Val Ser Asp 2150 2160 Thr Thr Ser Ser Pro Met Ile Thr Ser Pro Gly Ile Leu Gln Ala 2165 2170 2175 Ser Pro Asn Pro Met Leu Ala Thr Ala Ala Pro Pro Ala Pro Val 2180 2185 2190 His Ala Gln His Ala Leu Ser Phe Ser Asn Leu His Glu Met Gln Pro Leu Ala His Gly Ala Ser Thr Val Leu Pro Ser Val Ser Gln 2210 2220 Leu Leu Ser His His His Ile Val Ser Pro Gly Ser Gly Ser Ala 2225 2230 2235 Gly Ser Leu Ser Arg Leu His Pro Val Pro Val Pro Ala Asp Trp 2240 2245 2250 Met Asn Arg Met Glu Val Asn Glu Thr Gln Tyr Asn Glu Met Phe 2255 2260 2265 Gly Met Val Leu Ala Pro Ala Glu Gly Thr His Pro Gly Ile Ala 2270 2280 Pro Gln Ser Arg Pro Pro Glu Gly Lys His Ile Thr Thr Pro Arg 2285 2290 2295 Glu Pro Leu Pro Pro Ile Val Thr Phe Gln Leu Ile Pro Lys Gly 2300 2305 Ser Ile Ala Gln Pro Ala Gly Ala Pro Gln Pro Gln Ser Thr Cys

Page 170 of 270

WO 2005/014854

39467A.txt.txt 2320 2325

2315 -Pro Pro Ala Val Ala Gly Pro Leu Pro Thr Met Tyr Gln Ile Pro 2330 2340 Glu Met Ala Arg Leu Pro Ser Val Ala Phe Pro Thr Ala Met Met Pro Gln Gln Asp Gly Gln Val Ala Gln Thr Ile Leu Pro Ala Tyr 2360 2365 2370 His Pro Phe Pro Ala Ser Val Gly Lys Tyr Pro Thr Pro Pro Ser 2375 2380 2385 Gln His Ser Tyr Ala Ser Ser Asn Ala Ala Glu Arg Thr Pro Ser 2390 2395 2400 His Ser Gly His Leu Gln Gly Glu His Pro Tyr Leu Thr Pro Ser 2405 2410 2415 Pro Glu Ser Pro Asp Gln Trp Ser Ser Ser Ser Pro His Ser Ala 2420 2425 2430 Ser Asp Trp Ser Asp Val Thr Thr Ser Pro Thr Pro Gly Gly Ala 2435 2440 2445 Gly Gly Gln Arg Gly Pro Gly Thr His Met Ser Glu Pro Pro 2450 2455 2460 His Asn Asn Met Gln Val Tyr Ala 18 8091 DNA Homo sapiens <220> <221> misc_feature Notch-3 <400> acgeggegeg gaggetggee egggaegege eeggageeca gggaaggagg gaggagggga 60 120 gggtcgcggc cggccgccat ggggccgggg gcccgtggcc gccgccgccg ccgtcgcccg atgtcgccgc caccgccacc gccacccgtg cgggcgctgc ccctgctgct gctgctagcg 180 gggccggggg ctgcagccc cccttgcctg gacggaagcc cgtgtgcaaa tggaggtcgt 240 tgcacccagc tgccctcccg ggaggctgcc tgcctgtgcc cgcctggctg ggtgggtgag 300 cggtgtcagc tggaggaccc ctgtcactca ggcccctgtg ctggccgtgg tgtctgccag 360 agttcagtgg tggctggcac cgcccgattc tcatgccggt gcccccgtgg cttccgaggc 420

Page 171 of 270

WO 2005/014854 PCT/EP2004/008819 39467A.txt.txt

cctgactgct	ccctgccaga	tccctgcctc	agcagccctt		tgcccgctgc	480
tcagtggggc	ccgatggacg	cttcctctgc	tcctgcccac	ctggctacca	gggccgcagc	540
tgccgaagcg	acgtggatga	gtgccgggtg	ggtgagccct	gccgccatgg	tggcacctgc	600
ctcaacacac	ctggctcctt	ccgctgccag	tgtccagctg	gctacacagg	gccactatgt	660
gagaaccccg	cggtgccctg	tgcgccctca	ccatgccgta	acgggggcac	ctgcaggcag	720
agtggcgacc	tcacttacga	ctgtgcctgt	cttcctgggt	ttgagggtca	gaattgtgaa	780
gtgaacgtgg	acgactgtcc	aggacaccga	tgtctcaatg	gggggacatg	cgtggatggc	840
gtcaacacct	ataactgcca	gtgccctcct	gagtggacag	gccagttctg	cacggaggac	900
gtggatgagt	gtcagcţgca	gcccaacgcc	tgccacaatg	ggggtacctg	cttcaacacg	960
ctgggtggcc	acagctgcgt	gtgtgtcaat	ggctggacag	gtgagagctg	cagtcagaat	1020
atcgatgact	gtgccacagc	cgtgtgcttc	catggggcca	cctgccatga	ccgcgtggct	1080
tctttctact	gtgcctgccc	catgggcaag	actggcctcc	tgtgtcacct	ggatgacgcc	1140
tgtgtcagca	acccctgcca	cgaggatgct	atctgtgaca	caaatccggt	gaacggccgg	1200
gccatttgca	cctgtcctcc	cggcttcacg	ggtggggcat	gtgaccagga	tgtggacgag	1260
tgctctatcg	gcgccaaccc	ctgcgagcac	ttgggcaggt	gcgtgaacac	gcagggctcc	1320
ttcctgtgcc	agtgcggtcg	tggctacact	ggacctcgct	gtgagaccga	tgtcaacgag	1380
tgtctgtcgg	ggccctgccg	aaaccaggcc	acgtgcctcg	accgcatagg	ccagttcacc	1440
tgtatctgta	tggcaggctt	cacaggaacc	tattgcgagg	tggacattga	cgagtgtcag	, 1500
agtagcccct	gtgtcaacgg	tggggtctgc	aaggaccgag	tcaatggctt	cagctgcacc	1560
tgcccctcgg	gcttcagcgg	ctccacgtgt	cagctggacg	tggacgaatg	cgccagcacg	1620
ccctgcagga	atggcgccaa	atgcgtggac	cagcccgatg	gctacgagtg	ccgctgtgcc	1680
gagggctttg	agggcacgct	gtgtgatcgc	aacgtggacg	actgctcccc	tgacccatgc	1740
caccatggtc	gctgcgtgga	tggcatcgcc	agcttctcat	gtgcctgtgc	tcctggctac	1800
acgggcacac	gctgcgagag	ccaggtggac	gaatgccgca	gccagccctg	ccgccatggc	1860
ggcaaatgcc	tagacctggt	ggacaagtac	ctctgccgct	gcccttctgg	gaccacaggt	1920
gtgaactgcg	aagtgaacat	tgacgactgt	gccagcaacc	cctgcacctt	tggagtctgc	1980
cgtgatggca	tcaaccgcta	cgactgtgtc	tgccaacctg	gcttcacagg	gcccctttgt	2040
aacgtggaga	tcaatgagtg	tgcttccagc	ccatgcggcg	agggaggttc	ctgtgtggat	2100
ggggaaaatg	gcttccgctg	cctctgcccg	cc tgg ct c ct	tgcccccact	ctgcctcccc	2160
ccgagccatc	cctgtgccca	tgagccctgc	agtcacggca	tctgctatga	tgcacctggc	2220
gggttcc gc t	gtgtgtgtga	gcctggctgg	agtggccccc	gctgcagcca	gagcctggcc	2280
cgagacgcct	gtgagtccca	gccgtgcagg	gccggtggga	catgcagcag	cgatggaatg	2340
ggtttccact	gcacctgccc	gcctggtgtc	cagggacgtc	agtgtgaact	cctctccccc	2400
tgcaccccga	acccctgtga	gcatgggggc	cgctgcgagt	ctgcccctgg	ccagctgcct	2460

();

gtctgctcct	gcccccaggg	ctggcaaggc	39467A.txt ccacgatgcc	.txt agcaggatgt	ggacgagtgt	2520
gctggccccg	caccctgtgg	ccctcatggt	atctgcacca	acctggcagg	gagtttcagc	2580
tgcacct g cc	atggagggta	cactggccct	tcctgtgatc	aggacatcaa	tgactgtgac	2640
cccaacccat	gcctgaacgg	tggctcgtgc	caagacggcg	tgggctcctt	ttcctgctcc	2700
tgcctccctg	gtttcgccgg	cccacgatgc	gcccgcgatg	tggatgagtg	cctgagcaac	2760
ccctgcggcc	cgggcacctg	taccgaccac	gtggcctcct	tcacctgcac	ctgcccgccg	2820
ggctac gga g	gcttccactg	cgaacaggac	ctgcccgact	gcagccccag	ctcctgcttc	2880
aa tggcggg a	cctgtgtgga	cggcgtgaac	tcgttcagct	gcctgtgccg	tcccggctac	2940
aca gg a g ccc	actgccaaca	tgaggcagac	ccctgcctct	cgcggccctg	cctacacggg	3000
ggcgtctg c a	gcgccgccca	ccctggcttc	c gctg c acct	gcctcgagag	c ttcacgggc	3060
cc gcag tgcc	aga cg ct gg t	ggattggtgc	agccgccagc	cttgtcaaaa	cgggggtcgc	3120
tgcgtccaga	ct gg ggccta	ttgcctttgt	cccctggat	ggagcggacg	cctctgtgac	3180
atcc g aa gc t	tgccctgcag	ggaggccgca	gcccagatcg	gggtgcggct	ggagcagctg	3240
tgtcaggcgg	gtgggcagtg	tgtggatgaa	gacagctccc	actactgcgt	gtgcccagag	3300
ggccgtactg	gtagccactg	tgagcaggag	gtggacccct	gcttggccca	gccctgccag	3360
cat gggggg a	cctgccgtgg	ctatatgggg	ggctacatgt	gtgagtgtct	t cctggc tac	3420
aatggtgata	actgtgagga	cgacgtggac	gagtgtgcct	cccagccctg	ccagcacggg	3480
ggttcatgca	ttgacctcgt	ggcccgctat	ctctgctcct	gtcccccagg	aacgctgggg	3540
gtgctctgcg	agattaatga	ggatgactgc	ggcccaggcc	caccgctgga	ctcagggccc	3600
cggtgcctac	acaatggcac	ctgcgtggac	ctggtgggtg	gtttccgctg	cacctgtc cc	3660
cc agg at a ca	ctggtttgcg	ctgcgaggca	gacatcaatg	agtgtcgctc	aggtgcctgc	3720
cacgcggcac	acacccggga	ctgcctgcag	gacccaggcg	gaggtttccg	ttgcctttgt	3780
catgctggct	tctcaggtcc	tcgctgtcag	actgtcctgt	ctccctgcga	gtcccagcca	3840
tgccagcatg	gaggccagtg	ccgtcctagc	ccgggtcctg	ggggtgggct	gaccttcacc	3900
tgtcactgtg	cccagccgtt	ctggggtccg	cgttgcgagc	gggtggcgcg	ctcctgccgg	3960
gagctgcagt	gcccggtggg	cgtcccatgc	cagcagacgc	cccgcgggcc	gcgctgcgcc	4020
tgccccccag	ggttgtcggg	accctcctgc	cgcagcttcc	cggggtcgcc	gccgggggcc	4080
agcaacgcca	gctgcgcggc	cgcccctgt	ctccacgggg	gctcctgccg	ccccgcgccg	4140
ctcgcgccct	tcttccgctg	cgcttgcgcg	cagggctgga	ccgggccgcg	ctgcgaggcg	4200
cccgccgcgg	cacccgaggt	ctcggaggag	ccgcggtgcc	cgcgcgccgc	ctgccaggcc	4260
aagcgcgggg	accagcgctg	cgaccgcgag	tgcaacagcc	caggctgcgg	ctgggacggc	4320
ggcgactgct	cgctgagcgt	gggcgacccc	tggcggcaat	gcgaggcgct	gcagtgctgg	4380
cgcctcttca	acaacagccg	ctgcgacccc	gcctgcagct	cgcccgcctg	cctctacgac	4440
aacttcgact	gccacgccgg	tggccgcgag	cgcacttgca	acccggtgta	cgagaagtac	4500

PCT/EP2004/008819

Page 173 of 270

39467A.txt.txt tgcgccgacc actttgccga cggccgctgc gaccagggct gcaacacgga ggagtgcggc 4560 tgggatgggc tggattgtgc cagcgaggtg ccggccctgc tggcccgcgg cgtgctggtg 4620 ctcacagtgc tgctgccgcc ggaggagcta ctgcgttcca gcgccgactt tctgcagcgg 4680 ctcagcgcca tcctgcgcac ctcgctgcgc ttccgcctgg acgcgcacgg ccaggccatg 4740 gtcttccctt accaccggcc tagtcctggc tccgaacccc gggcccgtcg ggagctggcc 4800 cccgaggtga tcggctcggt agtaatgctg gagattgaca accggctctg cctgcagtcg 4860 cctgagaatg atcactgctt ccccgatgcc cagagcgccg ctgactacct gggagcgtto 4920 tcagcggtgg agcgcctgga cttcccgtac ccactgcggg acgtgcgggg qqagccqctq 4980 gagectecag aacceagegt ecceptiget ceaetigetag tggegggege tgtettgetg 5040 ctggtcattc tcgtcctggg tgtcatggtg gcccggcqca agcqcqaqca caqcaccctc 5100 tggttccctg agggcttctc actgcacaag gacgtggcct ctggtcacaa gggccggcgg 5160 gaacccgtgg gccaggacgc gctgggcatg aagaacatgg ccaagggtga gagcctgatg 5220 ggggaggtgg ccacagactg gatggacaca gagtgcccag aggccaagcg gctaaaggta 5280 gaggagccag gcatgggggc tgaggaggct gtggattgcc gtcagtggac tcaacaccat 5340 ctggttgctg ctgacatccg cgtggcacca gccatggcac tgacaccacc acagggcgac 5400 gcagatgctg atggcatgga tgtcaatgtg cgtggcccag atggcttcac cccgctaatg 5460 ctggcttcct tctgtgggg ggctctggag ccaatgccaa ctgaagagga tgaggcagat 5520 gacacatcag ctagcatcat ctccgacctg atctgccagg gggctcagct tggggcacgg 5580 actgaccgta ctggcgagac tgctttgcac ctggctgccc gttatgcccg tgctgatgca 5640 gccaagcggc tgctggatgc tggggcagac accaatgccc aggaccactc aggccgcact 5700 cccctgcaca cagctgtcac agccgatgcc cagggtgtct tccagattct catccgaaac 5760 5820 cgctctacag acttggatgc ccgcatggca gatggctcaa cggcactgat cctggcggcc 5880 cgcctggcag tagagggcat ggtggaagag ctcatcgcca gccatgctga tgtcaatgct gtggatgagc ttgggaaatc agccttacac tgggctgcgg ctgtgaacaa cgtggaagcc 5940 6000 actttggccc tgctcaaaaa tggagccaat aaggacatgc aggatagcaa ggaggagacc 6060 cccctattcc tggccgcccg cgagggcagc tatgaggctg ccaagctgct gttggaccac tttgccaacc gtgagatcac cgaccacctg gacaggctgc cgcgggacgt agcccaggag 6120 6180 agactgcacc aggacatcgt gcgcttgctg gatcaaccca gtgggccccg cagccccccc 6240 ggtccccacg gcctggggcc tctgctctgt cctccagggg ccttcctccc tggcctcaaa gcggcacagt cggggtccaa gaagagcagg aggccccccg ggaaggcggg gctggggccg 6300 caggggcccc gggggcgggg caagaagctg acgctggcct gcccgggccc cctggctgac 6360 ageteggtea egetgtegee egtggaeteg etggaeteee egeggeettt eggtgggeee 6420 6480 cctgcttccc ctggtggctt cccccttgag gggccctatg cagctgccac tgccactgca gtgtctctgg cacagcttgg tggcccaggc cgggcaggtc tagggcgcca gccccctgga 6540

```
39467A.txt.txt
                                                                6600
ggatgtgtac tcagcctggg cctgctgaac cctgtggctg tgcccctcga ttgggcccgg
ctgcccccac ctgcccctcc aggcccctcg ttcctgctgc cactggcgcc gggaccccag
                                                               6660
                                                                6720
ctgctcaacc cagggacccc cgtctccccg caggagcggc ccccgcctta cctggcagtc
                                                                6780
ccaggacatg gcgaggagta cccggtggct ggggcacaca gcagcccccc aaaggcccgc
ttcctqcqgg ttcccagiga gcacccttac ctgaccccat cccccgaatc ccctgagcac
                                                                6840
                                                                6900
tgggccagcc cctcacctcc ctccctctca gactggtccg aatccacgcc tagcccagcc
actoccacto gogccatogo caccaccact goggcactoc ctgcccagcc acttcccttg
                                                                6960
totgttccca gctcccttgc tcaggcccag acccagctgg ggccccagcc ggaagttacc
                                                                7020
                                                                7080
cccaagaggc aagtgttggc ctgagacgct cgtcagttct tagatcttgg gggcctaaag
agacccccqt cctgcctcct ttctttctct gtctcttcct tccttttagt ctttttcatc
                                                                7140
                                                                7200
7260
tcagcccagg gcttcagtct tcctttattt ataatgggtg ggggctacca cccaccctct
                                                                7320
cagtettgtg aagagtetgg gaceteette tteeceaett etetetteec teatteettt
ctctctctt ctggcctctc atttccttac actctgacat gaatgaatta ttattatttt
                                                                7380
tctttttctt ttttttttta cattttgtat agaaacaaat tcatttaaac aaacttatta
                                                                7440
ttattatttt ttacaaaata tatatatgga gatgctccct ccccctgtga accccccagt
                                                                7500
gccccgtgg ggctgagtct gtgggcccat tcggccaagc tggattctgt gtacctagta
                                                                7560
                                                                7620
cacaggcatg actgggatcc cgtgtaccga gtacacgacc caggtatgta ccaagtaggc
                                                                7680
accettgggc gcacccactg gggccagggg tcgggggagt gttgggagcc tcctccccac
cccacctccc tcacttcact gcattccaga ttggacatgt tccatagcct tgctggggaa
                                                                7740
gggcccactg ccaactccct ctgccccagc cccacccttg gccatctccc tttgggaact
                                                                7800
                                                                7860
agggggctgc tggtgggaaa tgggagccag ggcagatgta tgcattcctt tatgtccctg
taaatgtggg actacaagaa gaggagctgc ctgagtggta ctttctcttc ctggtaatcc
                                                                7920
tctggcccag ccttatggca gaatagaggt atttttaggc tatttttgta atatggcttc
                                                                7980
                                                                8040
tggtcaaaat ccctgtgtag ctgaattccc aagccctgca ttgtacagcc ccccactccc
8091
```

<210> 19 <211> 2321 <212> PRT <213> Homo sapiens

<220> <221> misc_feature <223> Notch-3

<400> 19

Met Gly Pro Gly Ala Arg Gly Arg Arg Arg Arg Arg Pro Met Ser 1

WC05014634 [file:///E:/WC05014854.cpo]

39467A.txt.txt

Pro Pro Pro Pro Pro Pro Val Arg Ala Leu Pro Leu Leu Leu Leu 20 30 Leu Ala Gly Pro Gly Ala Ala Ala Pro Pro Cys Leu Asp Gly Ser Pro Cys Ala Asn Gly Gly Arg Cys Thr Gln Leu Pro Ser Arg Glu Ala Ala Cys Leu Cys Pro Pro Gly Trp Val Gly Glu Arg Cys Gln Leu Glu Asp Pro Cys His Ser Gly Pro Cys Ala Gly Arg Gly Val Cys Gln Ser Ser Val Val Ala Gly Thr Ala Arg Phe Ser Cys Arg Cys Pro Arg Gly Phe Arg Gly Pro Asp Cys Ser Leu Pro Asp Pro Cys Leu Ser Ser Pro Cys 115 120 125Ala His Gly Ala Arg Cys Ser Val Gly Pro Asp Gly Arg Phe Leu Cys Ser Cys Pro Pro Gly Tyr Gln Gly Arg Ser Cys Arg Ser Asp Val Asp 145 150 160 Glu Cys Arg Val Gly Glu Pro Cys Arg His Gly Gly Thr Cys Leu Asn 165 170 175 Thr Pro Gly Ser Phe Arg Cys Gln Cys Pro Ala Gly Tyr Thr Gly Pro $180\,$ Leu Cys Glu Asn Pro Ala Val Pro Cys Ala Pro Ser Pro Cys Arg Asn 195 200 205 Gly Gly Thr Cys Arg Gln Ser Gly Asp Leu Thr Tyr Asp Cys Ala Cys $^{210}_{210}$ Leu Pro Gly Phe Glu Gly Gln Asn Cys Glu Val Asn Val Asp Asp Cys 225 230 235 Pro Gly His Arg Cys Leu Asn Gly Gly Thr Cys Val Asp Gly Val Asn 245 Thr Tyr Asn Cys Gln Cys Pro Pro Glu Trp Thr Gly Gln Phe Cys Thr 260 265 270 Glu Asp Val Asp Glu Cys Gln Leu Gln Pro Asn Ala Cys His Asn Gly 275 280 285

WC06014634 [file:///E:/WC06014854.cpo]

39467A.txt.txt

Gly Thr Cys Phe Asn Thr Leu Gly Gly His Ser Cys Val Cys Val Asn 290 295 300 Gly Trp Thr Gly Glu Ser Cys Ser Gln Asn Ile Asp Asp Cys Ala Thr 305 310 315 320 Ala Val Cys Phe His Gly Ala Thr Cys His Asp Arg Val Ala Ser Phe 325 330 335 Tyr Cys Ala Cys Pro Met Gly Lys Thr Gly Leu Leu Cys His Leu Asp Asp Ala Cys Val Ser Asn Pro Cys His Glu Asp Ala Ile Cys Asp Thr Asn Pro Val Asn Gly Arg Ala Ile Cys Thr Cys Pro Pro Gly Phe Thr Gly Gly Ala Cys Asp Gln Asp Val Asp Glu Cys Ser Ile Gly Ala Asn 385 390 395 400 Pro Cys Glu His Leu Gly Arg Cys Val Asn Thr Gln Gly Ser Phe Leu Cys Gln Cys Gly Arg Gly Tyr Thr Gly Pro Arg Cys Glu Thr Asp Val Asn Glu Cys Leu Ser Gly Pro Cys Arg Asn Gln Ala Thr Cys Leu Asp 435 440 445 Arg Ile Gly Gln Phe Thr Cys Ile Cys Met Ala Gly Phe Thr Gly Thr 450 460Tyr Cys Glu Val Asp Ile Asp Glu Cys Gln Ser Ser Pro Cys Val Asn Gly Gly Val Cys Lys Asp Arg Val Asn Gly Phe Ser Cys Thr Cys Pro Ser Gly Phe Ser Gly Ser Thr Cys Gln Leu Asp Val Asp Glu Cys Ala Ser Thr Pro Cys Arg Asn Gly Ala Lys Cys Val Asp Gln Pro Asp Gly 525 525Tyr Glu Cys Arg Cys Ala Glu Gly Phe Glu Gly Thr Leu Cys Asp Arg 530 540 Asn Val Asp Asp Cys Ser Pro Asp Pro Cys His His Gly Arg Cys Val 545 550 560

WC05014634 [file:///E:/WC05014854.cpo]

39467A.txt.txt

Asp Gly Ile Ala Ser Phe Ser Cys Ala Cys Ala Pro Gly Tyr Thr Gly 565 570 575 Thr Arg Cys Glu Ser Gln Val Asp Glu Cys Arg Ser Gln Pro Cys Arg His Gly Gly Lys Cys Leu Asp Leu Val Asp Lys Tyr Leu Cys Arg Cys $595 \\ $ 605 Pro Ser Gly Thr Thr Gly Val Asn Cys Glu Val Asn Ile Asp Asp Cys 610 620 Ala Ser Asn Pro Cys Thr Phe Gly Val Cys Arg Asp Gly Ile Ash Arg 625 630 640 Tyr Asp Cys Val Cys Gln Pro Gly Phe Thr Gly Pro Leu Cys Asn Val Glu Ile Asn Glu Cys Ala Ser Ser Pro Cys Gly Glu Gly Gly Ser Cys 660Val Asp Gly Glu Asn Gly Phe Arg Cys Leu Cys Pro Pro Gly Ser Leu
685 Pro Pro Leu Cys Leu Pro Pro Ser His Pro Cys Ala His Glu Pro Cys $690 \hspace{0.25cm} 695 \hspace{0.25cm} 700 \hspace{0.25cm}$ Ser His Gly Ile Cys Tyr Asp Ala Pro Gly Gly Phe Arg Cys Val Cys 705 710 715 720 Glu Pro Gly Trp Ser Gly Pro Arg Cys Ser Gln Ser Leu Ala Arg Asp 725 735 Ala Cys Glu Ser Gln Pro Cys Arg Ala Gly Gly Thr Cys Ser Ser Asp $740 \ \ \, 745 \ \ \, 750 \ \ \,$ Gly Met Gly Phe His Cys Thr Cys Pro Pro Gly Val Gln Gly Arg Gln 755 760 765 Cys Glu Leu Leu Ser Pro Cys Thr Pro Asn Pro Cys Glu His Gly Gly 770 775 Arg Cys Glu Ser Ala Pro Gly Gln Leu Pro Val Cys Ser Cys Pro Gln 785 790 795 Gly Trp Gln Gly Pro Arg Cys Gln Gln Asp Val Asp Glu Cys Ala Gly 815 Pro Ala Pro Cys Gly Pro His Gly Ile Cys Thr Asn Leu Ala Gly Ser 820 825 830

Page 178 of 270

WO 2005/014854

39467A.txt.txt

Phe Ser Cys Thr Cys His Gly Gly Tyr Thr Gly Pro Ser Cys Asp Gln 835 840 845 Asp Ile Asn Asp Cys Asp Pro Asn Pro Cys Leu Asn Gly Gly Ser Cys 850 860 Gln Asp Gly Val Gly Ser Phe Ser Cys Ser Cys Leu Pro Gly Phe Ala 865 870 880 Gly Pro Arg Cys Ala Arg Asp Val Asp Glu Cys Leu Ser Asn Pro Cys 885 890 895 Gly Pro Gly Thr Cys Thr Asp His Val Ala Ser Phe Thr Cys Thr Cys 900 905 910 Pro Pro Gly Tyr Gly Gly Phe His Cys Glu Gln Asp Leu Pro Asp Cys 915 920 Ser Pro Ser Ser Cys Phe Asn Gly Gly Thr Cys Val Asp Gly Val Asn 930 935 940 Ser Phe Ser Cys Leu Cys Arg Pro Gly Tyr Thr Gly Ala His Cys Gln His Glu Ala Asp Pro Cys Leu Ser Arg Pro Cys Leu His Gly Gly Val Cys Ser Ala Ala His Pro Gly Phe $\underset{980}{\text{Arg}}$ Cys Thr Cys Leu Glu Ser Phe $\underset{990}{\text{Phe}}$ Thr Gly Pro Gln Cys Gln Thr Leu Val Asp Trp Cys Ser Arg Gln Pro Cys Gln Asn Gly Gly Arg Cys val Gln Thr Gly Ala Tyr Cys Leu 1010 1015 1020 Cys Pro Pro Gly Trp Ser Gly Arg Leu Cys Asp Ile Arg Ser Leu 1025 Pro Cys Arg Glu Ala Ala Ala Gln Ile Gly Val Arg Leu Glu Gln 1040 1050 Leu Cys Gln Ala Gly Gly Gln Cys Val Asp Glu Asp Ser Ser His 1055 1060 1065 Tyr Cys Val Cys Pro Glu Gly Arg Thr Gly Ser His Cys Glu Gln 1070 1075 1080 Glu Val Asp Pro Cys Leu Ala Gln Pro Cys Gln His Gly Gly Thr 1085 1090 1095

Page 179 of 270

39467A.txt.txt Cys Arg Gly Tyr Met Gly Gly Tyr Met Cys Glu Cys Leu Pro Gly Tyr Asn Gly Asp Asn Cys Glu Asp Asp Val Asp Glu Cys Ala Ser 1115 1120 1125 Gln Pro Cys Gln His Gly Gly Ser Cys Ile Asp Leu Val Ala Arg 1130 1135 1140 Tyr Leu Cys Ser Cys Pro Pro Gly Thr Leu Gly Val Leu Cys Glu 1145 1150 1155 Ile Asn Glu Asp Asp Cys Gly Pro Gly Pro Pro Leu Asp Ser Gly 1160 1170Pro Arg Cys Leu His Asn Gly Thr Cys Val Asp Leu Val Gly Gly 1175 1180 1185 Phe Arg Cys Thr Cys Pro Pro Gly Tyr Thr Gly Leu Arg Cys Glu 1190 1195 1200Ala Asp Ile Asn Glu Cys Arg Ser Gly Ala Cys His Ala Ala His 1205 1210 1215 Thr Arg Asp Cys Leu Gln Asp Pro Gly Gly Gly Phe Arg Cys Leu Cys His Ala Gly Phe Ser Gly Pro Arg Cys Gln Thr Val Leu Ser Pro Cys Glu Ser Gln Pro Cys Gln His Gly Gly Gln Cys Arg Pro Ser Pro Gly Pro Gly Gly Gly Leu Thr Phe Thr Cys His Cys Ala 1265 1270 1275 Gln Pro Phe Trp Gly Pro Arg Cys Glu Arg Val Ala Arg Ser Cys 1280 1285 1290 Arg Glu Leu Gln Cys Pro Val Gly Val Pro Cys Gln Gln Thr Pro 1295 1300 1305 Arg Gly Pro Arg Cys Ala Cys Pro Pro Gly Leu Ser Gly Pro Ser 1310 1315 Cys Arg Ser Phe Pro Gly Ser Pro Pro Gly Ala Ser Asn Ala Ser Cys Ala Ala Ala Pro Cys Leu His Gly Gly Ser Cys Arg Pro Ala 1340 1350

Pro	L e u 1355	Ala	Pro	Phe	Phe	Arg 1360	Cys	Ala	Cys	Аlа	Gln 1365	Gly	Trp	Thr
G] Y	Pro 1370	Arg	Cys	Glu	Аlа	Pro 1375	Ala	Ala	Ala	Pro	G]u 1380	val	Ser	Glu
Glu	Pro 1385	Arg	Cys	Pro	Arg	Ala 1390	Ala	Cys	G∏n	Аlа	Lys 1395	Arg	Gly	Asp
G∏n	Arg 1400	Cys	Asp	Arg	Glu	Cys 1405	Asn	Ser	Pro	G∃y	Cys 1410	GТу	Trp	Asp
G∃y	Gly 1415	Asp	Cys	ser	Leu	Ser 1420	val	GТу	Asp	Pro	Trp ⁻ 1425	Arg	G∏n	Cys
Glu	Ala 1430	Leu	Gln	Cys	Trp	Arg 1435	Leu	Phe	Asn	Asn	ser 1440	Arg	cys	Asp
Pro	Ala 1445	cys	ser	ser	Pro	Ala 1450	Cys	Leu	Tyr	Asp	Asn 1455	Phe	Asp	Cys
His	Ala 1460	Gly	Gly	Arg	Glu	Arg 1465	Thr	Cys	Asn	Pro	∨a1 1470	Tyr	Glu	Lys
Tyr	Cys 1475	Ala	Asp	ніѕ	Phe	Ala 1480	Asp	Gly	Arg	Cys	Asp 1485	Gln	Gly	cys
Asn	Thr 1490	Glu	Glu	Cys	Gly	Trp 1495	Asp	GJy	Leu	Asp	Cys 1500	Ala	ser	Glu
٧a٦	Pro 150 5	Alа	Leu	Leu	Аla	Arg 1510	Gly	۷a٦	Leu	۷al	Leu 1515	Thr	۷a٦	Leu
Leu	Pro 1520	Pro	Glu	Glu	Leu	Leu 1525	Arg	ser	ser	Аlа	Asp 1530	Phe	Leu	Gln
Arg	Leu 1535	Ser	Ala	Ile	Leu	Arg 1540	Thr	Ser	Leu	Arg	Phe 1545	Arg	Leu	Asp
Аlа	His 1550	Gly	Gln	Аlа	Met	∨a1 1555	Phe	Pro	Tyr	His	Arg 1560	Pro	Ser	Pro
Gly	ser 1565	Glu	Pro	Arg	Alа	Arg 1570	Arg	Glu	Leu	Αla	Pro 1575	Glu	Val	Ile
Gly	ser 1580	۷a٦	۷a٦	Met	Leu	Glu 1585	Ile	Asp	Asn	Arg	Leu 1590	cys	Leu	Gln
ser	Pro 1595	Glu	Asn	Asp	нis	Cys 1600	Phe	Pro	Asp	Αla	G]n 1605	ser	Αla	Аlа

PCT/EP2004/008819

Page 181 of 270

WO 2005/014854

39467A.txt.txt

Asp	туг 1 61 0	Leu	Gly	Ala	Leu	Ser 161 5	Ala	٧a٦	Glu	Arg	Leu 1620	Asp	Phe	Pro
⊤yr	Pro 1625	Leu	Arg	Asp	٧a٦	Arg 163 0	Gly	Glu	Pro	Leu	Glu 1635	Pro	Pro	Glu
Pro	Ser 1 6 40	٧a٦	Pro	Leu	Leu	Pro 1645	Leu	Leu	٧a٦	Аlа	Gly 1650	Ala	۷a٦	Leu
Leu	Leu 1655	۷a٦	Ile	Leu	val	Leu 1660	Gly	val	Met	val	Ala 1665	Arg	Arg	Lys
Arg	Glu 1670	His	Ser	Thr	Ľeu	Trp 1675	Phe	Pro	G]u	GТу	Phē 1680	Ser	Leu	His
Lys	Asp 1685	٧a٦	Αla	Ser	Gly	ніs 1690	Lys	Glу	Arg	Arg	Glu 1695	Pro	۷a٦	GТу
Gln	Asp 1700	Ala	Leu	Gly	мet	Lys 1705	Asn	Met	Ala	Lys	Gly 1710	Glu	Ser	Leu
Met	Gly 1715	Glu	۷al	Ala	Thr	Asp 1720	Trp	Met	Asp	Thr	Glu 1725	Cys	Pro	G∏u
Ala	Lys 1730	Arg	Leu	Lys	٧a٦	Glu 1735	Glu	Pro	GТу	Met	Gly 1740	Ala	Glu	Glu
Ala	val 1745	Asp	Cys	Arg	Gln	Trp 1750	Thr	Gln	His	His	Leu 1755	val	Ala	ΑΊα
Asp	Ile 1760	Arg	۷al	Ala	Pro	Ala 1765	мet	Ala	Leu	Thr	Pro 1770	Pro	Gln	GТу
Asp	Ala 1775	Asp	Αla	Asp	Glу	меt 1780	Asp	val	Asn	val	Arg 1785	Glу	Pro	Asp
Gly	Phe 1790	Thr	Pro	Leu	Met	Leu 1795	Ala	Ser	Phe	Cys	Gly 1800	GТу	ΑΊа	Leu
Glu	Pro 1805	Met	Pro	Thr	Glu	Glu 1810	Asp	Glu	Аlа	Asp	Asp 1815	Thr	Ser	Ala
Ser	Ile 1820	Ile	Ser	Asp	Leu	Ile 1825	Cys	Gln	GТу	Ala	G]n 1830	Leu	GТу	Ala
Arg	⊤hr 1835	Asp	Arg	Thr	GТу	Glu 1840	Thr	Ala	Leu	Hi s	Leu 1845	Аlа	Ala	Arg
Tyr	Ala 1850	Arg	Alа	Asp	Αla	Ala 1855	Lys	Arg	Leu	Leu	Asp 1860	Αla	GТу	Αla

WO 2005/014854

Page 182 of 270

39467A.txt.txt

Asp Thr Asn Ala Gln Asp His Ser Gly Arg Thr Pro Leu His Thr 1865 1870 1875 Ala Val Thr Ala Asp Ala Gln Gly Val Phe Gln Ile Leu Ile Arg 1880 1890 Asn Arg Ser Thr Asp Leu Asp Ala Arg Met Ala Asp Gly Ser Thr 1895 1900 1905 Ala Leu Ile Leu Ala Ala Arg Leu Ala Val Glu Gly Met Val Glu 1910 1920 Glu Leu Île Ala Ser His Ala Asp Val Asn Ala Val Asp Glu Leu 1925 1930 1935 Gly Lys Ser Ala Leu His Trp Ala Ala Ala Val Asn Asn Val Glu Ala Thr Leu Ala Leu Leu Lys Asn Gly Ala Asn Lys Asp Met Gln Asp Ser Lys Glu Glu Thr Pro Leu Phe Leu Ala Ala Arg Glu Gly 1970 1970 1980 Ser Tyr Glu Ala Ala Lys Leu Leu Leu Asp His Phe Ala Asn Arg 1985 1990 1995 Glu Ile Thr Asp His Leu Asp Arg Leu Pro Arg Asp Val Ala Gln Glu Arg Leu His Gln Asp Ile Val Arg Leu Leu Asp Gln Pro Ser Gly Pro Arg Ser Pro Pro Gly Pro His Gly Leu Gly Pro Leu Leu 2030 2035 Cys Pro Pro Gly Ala Phe Leu Pro Gly Leu Lys Ala Ala Gln Ser 2045 2055 Gly Ser Lys Lys Ser Arg Arg Pro Pro Gly Lys Ala Gly Leu Gly 2060 2065 2070 Pro Gln Gly Pro Arg Gly Arg Gly Lys Lys Leu Thr Leu Ala Cys 2075 2080 2085 Pro Gly Pro Leu Ala Asp Ser Ser Val Thr Leu Ser Pro Val Asp 2090 2095 Ser Leu Asp Ser Pro Arg Pro Phe Gly Gly Pro Pro Ala Ser Pro 2105 2110 2115 WO 2005/014854

PCT/EP2004/008819

39467A.txt.txt

- Gly Gly Phe Pro Leu Glu Gly Pro Tyr Ala Ala Ala Thr Ala Thr 2120 2125 2130
- Ala Val $\,$ Ser Leu Ala Gln Leu Gly Gly Pro Gly Arg $\,$ Ala Gly Leu $\,$ 2135 $\,$
- Gly Arg Gln Pro Pro Gly Gly Cys Val Leu Ser Leu Gly Leu Leu 2150
- Asn Pro Val Ala Val Pro Leu Asp Trp Ala Arg Leu Pro Pro Pro 2170
- Ala Pro Pro Gly Pro Ser Phe Leu Leu Pro Leu Ala Pro Gly Pro 2180 2185 2190
- Gln Leu Leu Asn Pro Gly Thr Pro Val Ser Pro Gln Glu Arg Pro 2195
- Pro Pro Tyr Leu Ala Val Pro Gly His Gly Glu Glu Tyr Pro Val 2210 2215
- Ala Gly Ala His Ser Ser Pro Pro Lys Ala Arg Phe Leu Arg Val 2225
- Pro Ser Glu His Pro Tyr Leu Thr Pro Ser Pro Glu Ser Pro Glu 2240 2245
- His Trp Ala Ser Pro Ser Pro Pro Ser Leu Ser Asp Trp Ser Glu 2255
- Ser Thr Pro Ser Pro Ala Thr Ala Thr Gly Ala Met Ala Thr Thr 2270 2280
- Thr Gly Ala Leu Pro Ala Gln Pro Leu Pro Leu Ser Val Pro Ser 2285 2290 2295
- Ser Leu Ala Gln Ala Gln Thr Gln Leu Gly Pro Gln Pro Glu Val
- Thr Pro Lys Arg Gln Val Leu Ala 2315 2320
- <210> 20
- <211> 6836 <212> DNA <213> Homo sapiens
- <220>
- <221> misc_feature <223> Notch-4
- <400> 20

agacgtgagg	cttgcagcag	gccgaggagg	39467A.txt aagaagaggg		cagaggaggt	60
ggctcctgcc	ccagtgagag	ctctgagggt	ccctgcctga	agagggacag	ggactggggc	120
ttggagaagg	ggctgtggaa	tgcagccccc	ttcactgctg	ctgctgctgc	tgctgctgct	180
gctatgtgtc	tcagtggtca	gacccagagg	gctgctgtgt	gggagtttcc	cagaaccctg	240
tgccaatgga	ggcacctgcc	tgagcctgtc	tctgggacaa	gggacctgcc	agtgtgcccc	300
tggcttcctg	ggtgagacgt	gccagtttcc	tgacccctgc	cagaacgccc	agctctgcca	360
aaatggaggc	agctgccaag	ccctgcttcc	cgctccccta	gggctcccca	gctctccctc	420
tccattgaca	cccagcttct	tgtgcacttg	cctccctggc	ttcactggtg	agagatgcca	480
ggccaagctt	gaagaccctt	gtcctccctc	cttctgttcc	aaaaggggcc	gctgccacat	540
ccaggcctcg	ggccgcccac	agtgctcctg	catgcctgga	tggacaggtg	agcagtgcca	600
gcttcgggac	ttctgttcag	ccaacccatg	tgttaatgga	ggggtgtgtc	tggccacgta	660
cccccagatc	cagtgccact	gcccaccggg	cttcgagggc	catgcctgtg	aacgtgatgt	720
caacgagtgc	ttccaggacc	caggaccctg	ccccaaaggc	acctcctgcc	ataacaccct	780,
gggctccttc	cagtgcctct	gccctgtggg	gcaggagggt	ccacgttgtg	agctgcgggc	840
aggaccctgc	cctcctaggg	gctgttcgaa	tgggggcacc	tgccagctga	tgccagagaa	900
agactcca c c	tttcacctct	gcctctgtcc	cccaggtttc	ataggcccgg	gctgtgaggt	960
gaatccagac	aactgtgtca	gccaccaatg	tcagaatggg	ggcacttgcc	aggatgggct	1020
ggacacctac	acctgcctct	gcccagaaac	ctggacaggc	tgggactgct	ccgaagatgt	1080
ggatgagtgt	gaggcccagg	gtcccctca	ctgcagaaac	gggggcacct	gccagaactc	1140
tgctggtagc	tttcactgcg	tgtgtgtgag	tggctggggg	ggcacaagct	gtgaggagaa	1200
cctggatgac	tgtattgctg	ccacctgtgc	cccgggatcc	acctgcattg	accgggtggg	1260
ctctttctcc	tgcctctgcc	cacctggacg	cacaggactc	ctgtgccact	tggaagacat	1320
gtgtctgagc	cagccgtgcc	atggggatgc	ccaatgcagc	accaaccccc	tcacaggctc	1380
cacactctgc	ctgtgtcagc	ctggctattc	ggggcccacc	tgccaccagg	acctggacga	1440
gtgtctgatg	gcccagcaag	gcccaagtcc	ctgtgaacat	ggcggttcct	gcctcaacac	1500
tcctggctcc	ttcaactgcc	tctgtccacc	tggctacaca	ggctcccgtt	gtgaggctga	1560
tcacaatgag	tgcctctccc	agccctgcca	cccaggaagc	acctgtctgg	acctacttgc	1620
caccttccac	tgcctctgcc	cgccaggctt	agaagggcag	ctctgtgagg	tggagaccaa	1680
cgagtgtgcc	tcagctccct	gcctgaacca	cgcggattgc	catgacctgc	tcaacggctt	1740
ccagtgcatc	tgcctgcctg	gattctccgg	cacccgatgt	gaggaggata	tcgatgagtg	1800
cagaagctct	ccctgtgcca	atggtgggca	gtgccaggac	cagcctggag	ccttccactg	1860
caagtgtctc	ccaggctttg	aagggccacg	ctgtcaaaca	gaggtggatg	agtgcctgag	1920
tgacccatgt	cccgttggag	ccagctgcct	tgatcttcca	ggagccttct	tttgcctctg	1980
cccctctggt	ttcacaggcc	agctctgtga	ggttcccctg	tgtgctccca	acctgtgcca	2040

gcccaagcag	atatgtaagg	accagaaaga	39467A.txt caaggccaac	txt tgcctctgtc	ctgatggaag	2100	
ccctggctgt	gccccacctg	aggacaactg	cacctgccac	cacgggcact	gccagagatc	2160	
ctcatgtgtg	tgtgacgtgg	gttggacggg	gccagagtgt	gaggcagagc	tagggggctg	2220	
catctctgca	ccctgtgccc	atggggggac	ctgctacccc	cagccctctg	gctacaactg	2280	
cacctgccct	acaggctaca	caggacccac	ctgtagtgag	gagatgacag	cttgtcactc	2340	
agggccatgt	ctcaatggcg	gctcctgcaa	ccctagccct	ggaggctact	ac tg cacc tg	2400	
ccctccaagc	cacacagggc	cccagtgcca	aaccagcact	gactactgtg	tgtctgcccc	2460	
gtgcttcaat	gggggtacct	gtgtgaacag	gcctggcacc	ttctcctgcc	tctgtgccat	2520	
gggcttccag	ggcccgcgct	gtgagggaaa	gctccgcccc	agctgtgcag	acagcccctg	2580	
taggaatagg	gcaacctgcc	aggacagccc	tcagggtccc	cgctgcctct	gccccactgg	2640	
ctacaccgga	ggcagctgcc	agactctgat	ggacttatgt	gcccagaagc	cctgcccacg	2700	
caattcccac	tgcctccaga	ctgggccctc	cttccactgc	ttgtgcctcc	agggatggac	2760	
cgggcctctc	tgcaaccttc	cactgtcctc	ctgccagaag	gctgcactga	gccaaggcat	2820	
agacgtctct	tccctttgcc	acaatggagg	cctctgtgtc	gacagcggcc	cctcctattt	2880	
ctgccactgc	cccctggat	tccaaggcag	cctgtgccag	gatcacgtga	acccatgtga	2940	
gtccaggcct	tgccagaacg	gggccacctg	catggcccag	cccagtgggt	atctctgcca	3000	
gtgtgcccca	ggctacgatg	gacagaactg	ctcaaaggaa	ctcgatgctt	gtcagtccca	3060	
accctgtcac	aaccatggaa	cctgtactcc	caaacctgga	ggcttccact	gtgcctgccc	3120	
tccaggcttt	gtggggctac	gctgtgaggg	agacgtggac	gagtgtctgg	accagccctg	3180	
ccaccccaca	ggcactgcag	cctgccactc	tctggccaat	gccttctact	gccagtgtct	3240	
gcctggacac	acaggccagt	ggtgtgaggt	ggagatagac	ccctgccaca	gccaaccctg	3300	
ctttcatgga	gggacctgtg	aggccacagc	aggatcaccc	ctgggtttca	tctgccactg	3360	
ccccaagggt	tttgaaggcc	ccacctgcag	ccacagggcc	ccttcctgcg	gcttccatca	3420	
ctgccaccac	ggaggcctgt	gtctgccctc	ccctaagcca	ggcttcccac	cacgctgtgc	3480	
ctgcctcagt	ggctatgggg	gtcctgactg	cctgacccca	ccagctccta	aaggctgtgg	3540	
ccctccctcc	ccatgcctat	acaatggcag	ctgctcagag	accacgggct	tggggggccc	3600	
aggctttcga	tgctcctgcc	ctcacagctc	tccagggccc	cggtgtcaga	aacccggagc	3660	
caaggggtgt	gagggcagaa	gtggagatgg	ggcctgcgat	gctggctgca	gtggcccggg	3720	
aggaaactgg	gatggagggg	actgctctct	gggagtccca	gacccctgga	agggctgccc	3780	
ctcccactct	cggtgctggc	ttctcttccg	ggacgggcag	tgccacccac	agtgtgactc	3840	
tgaagagtgt	ctgtttgatg	gctacgactg	tgagacccct	ccagcctgca	ctccagccta	3900	
tgaccagtac	tgccatgatc	acttccacaa	cgggcactgt	gagaaaggct	gcaacactgc	3960	
agagtgtggc	tgggatggag	gtgactgcag	gcctgaagat	ggggacccag	agtgggggcc	4020	
ctccctggcc	ctgctggtgg	tactgagccc	cccagcccta	gaccagcagc	tgtttgccct	4080	

ggcccgggtg	ctgtccctga	ctctgagggt	39467A.txt aggactctgg		atcgtgatgg	4140
cagggacatg	gtgtacccct	atcctg g ggc	ccgggctgaa	gaaaagctag	gaggaactcg	4200
ggaccccacc	tatcaggaga	gagcagcccc	tcaaacacag	cccctgggca	aggagaccga	4260
ctccctcagt	gctgggtttg	tggtggtcat	gggtgtggat	ttgtcccgct	gtggccctga	4320
ccacccggca	tcccgctgtc	cctgggaccc	tgggcttcta	ctccgcttcc	ttgctgcgat	4380
ggctgcagtg	ggagccctgg	agcccctgct	gcctggacca	ctgctggctg	tccaccctca	4440
tgcagggacc	gcaccccctg	ccaaccagct	tccctggcct	gtgctgtgct	ccccagtggc	4500
cggggtgatt	ctcctggccc	taggggctct	tctcgtcctc	cagctcatcc	ggcgtcgacg	4560
ccgagagcat	ggagctctct	ggctgccccc	tggtttcact	cgacggcctc	ggactcagtc	4620
agctccccac	cgacgccggc	ccccactagg	cgaggacagc	attggtctca	aggcactgaa	4680
gccaaaggca	gaagttgatg	aggatggagt	tgtgatgtgc	tcaggccctg	aggagggaga	4740
ggaggtgggc	caggctgaag	aaacaggccc	accctccacg	tgccagctct	ggtctctgag	4800
tggtggctgt	ggggcgctcc	ctcaggcagc	catgctaact	cctccccagg	aatctgagat	4860
ggaagcccct	gacctggaca	cccgtggacc	tgatggggtg	acacccctga	tgtcagcagt	4920
ttgctgtggg	gaagtacagt	ccgggacctt	ccaaggggca	tggttgggat	gtcctgagcc	4980
ctgggaacct	ctgctggatg	gaggggcctg	tccccaggct	cacaccgtgg	gcactgggga	5040
gacccccctg	cacctggctg	cccgattctc	ccggccaacc	gctgcccgcc	gcctccttga	5100
ggctggagcc	aaccccaacc	agccagaccg	ggcagggcgc	acaccccttc	atgctgctgt	5160
ggctgctgat	gctcgggagg	tctgccagct	tctgctccgt	agcagacaaa	ctgcagtgga	5220
cgctcgcaca	gaggacggga	ccacaccctt	gatgctggct	gccaggctgg	cggtggaaga	5280
cctggttgaa	gaactgattg	cagcccaagc	agacgtgggg	gccagagata	aatgggggaa	5340
aactgcgctg	cactgggctg	ctgccgtgaa	caacgcccga	gccgcccgct	cgcttctcca	5400
ggccggagcc	gataaagatg	cccaggacaa	cagggagcag	acgccgctat	tcctggcggc	5460
gcgggaagga	gcggtggaag	tagcccagct	actgctgggg	ctgggggcag	cccgagagct	5520
gcgggaccag	gctgggctag	cgccggcgga	cgtcgctcac	caacgtaacc	actgggatct	5580
gctgacgctg	ctggaagggg	ctgggccacc	agaggcccgt	cacaaagcca	cgccgggccg	5640
cgaggctggg	cccttcccgc	gcgcacggac	ggtgtcagta	agcgtgcccc	cgcatggggg	5700
cggggctctg	ccgcgctgcc	ggacgctgtc	agccggagca	ggccctcgtg	ggggcggagc	5760
ttgtctgcag	gctcggactt	ggtccgtaga	cttggctgcg	cgggggggcg	gggcctattc	5820
tcattgccgg	agcctctcgg	gagtaggagc	aggaggaggc	ccgacccctc	gcggccgtag	5880
gttttctgca	ggcatgcgcg	ggcctcggcc	caaccctgcg	ataatgcgag	gaagatacgg	5940
agtggctgcc	gggcgcggag	gcagggtctc	aacggatgac	tggccctgtg	attgggtggc	6000
cctgggagct	tgcggttctg	cctccaacat	tccgatcccg	cctccttgcc	ttactccgtc	6060
cccggagcgg	ggatcacctc	aacttgactg	tggtccccca	gccctccaag	aaatgcccat	6120

aaaccaag g a	ggagagggta	aaaaatagaa	39467A.txt gaatacatgg	.txt tagggaggaa	ttccaaaaat	6180
gattacccat	taaaaggcag	gctggaaggc	cttcctggtt	ttaagatgga	tcccccaaaa	6240
tgaagggttg	tgagtttagt	ttctctccta	aaatgaatgt	atgcccacca	gagcagacat	6300
cttccacgtg	gagaagctgc	agctctggaa	agag gg ttta	agatgctagg	atgaggcagg	6360
cccagtcctc	ctccagaaaa	taagacaggc	cacaggaggg	cagagtggag	tggaaatacc	6420
cctaagttgg	aaccaagaat	tgcaggcata	tgggatgtaa	gatgttcttt	cctatatatg	6480
gtttccaaag	ggtgccccta	tgatccattg	tccccactgc	ccacaaatgg	ctgacaaata	6540
tttattgggc	acctactatg	tgccaggcac	tgtgtaggtg	ctgaaaagtg	gccaagggcc	6600
acccccgctg	atgactcctt	gcattccctc	ccctcacaac	aaagaactcc	actgtgggga	6660
tgaagcgctt	cttctagcca	ctgctatcgc	tatttaagaa	ccctaaatct	gtcacccata	6720
ataaagctga	tttgaagtgt	taaaaaaaaa	aaaaaaaaa	aaaaaaaaaa	aaaaaaaaa	6780
aaaaaaaaa	aaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaa	aaaaaa	6836

<210> 21 <211> 2002 <212> PRT <213> Homo sapiens

<220> <221> misc_feature <223> Notch-4

<400> 21

Val Ser Val Val Arg Pro Arg Gly Leu Leu Cys Gly Ser Phe Pro Glu 25 30

Thr cys Gln Cys Ala Pro Gly Phe Leu Gly Glu Thr Cys Gln Phe Pro 60 60 Fro Cys Gln Asn Ala Gln Leu Cys Gln Asn Gly Gly Ser Cys Gln 65 75 80 80

Ala Leu Leu Pro Ala Pro Leu Gly Leu Pro Ser Ser Pro Ser Pro Leu $90 \ 95$

Thr Pro Ser Phe Leu Cys Thr Cys Leu Pro Gly Phe Thr Gly Glu Arg $100 \ \ \, 100$

Cys Gln Ala Lys Leu Glu Asp Pro Cys Pro Pro Ser Phe Cys Ser Lys 1115 120 125

WO 2005/014854

Page 138 of 270

39467A.txt.txt

Arg Gly Arg Cys His Ile Gln Ala Ser Gly Arg Pro Gln Cys Ser Cys Met Pro Gly Trp Thr Gly Glu Gln Cys Gln Leu Arg Asp Phe Cys Ser 145 150 155 160 Ala Asn Pro Cys Val Asn Gly Gly Val Cys Leu Ala Thr Tyr Pro Gln
165 170 175 Ile Gln Cys His Cys Pro Pro Gly Phe Glu Gly His Ala Cys Glu Arg 180 185 190 Asp Val Asn Glu Cys Phe Gln Asp Pro Gly Pro Cys Pro Lys Gly Thr Ser Cys His Asn Thr Leu Gly Ser Phe Gln Cys Leu Cys Pro Val Gly 210 220 Gln Glu Gly Pro Arg Cys Glu Leu Arg Ala Gly Pro Cys Pro Pro Arg Gly Cys Ser Asn Gly Gly Thr Cys Gln Leu Met Pro Glu Lys Asp Ser Thr Phe His Leu Cys Leu Cys Pro Pro Gly Phe Ile Gly Pro Gly Cys 260 265 270 Glu Val Asn Pro Asp Asn Cys Val Ser His Gln Cys Gln Asn Gly Gly 275 280 285 Thr Cys Gln Asp Gly Leu Asp Thr Tyr Thr Cys Leu Cys Pro Glu Thr Trp Thr Gly Trp Asp Cys Ser Glu Asp Val Asp Glu Cys Glu Ala Gln 305 310 315 320 Gly Pro Pro His Cys Arg Asn Gly Gly Thr Cys Gln Asn Ser Ala Gly 325 330 335 Ser Phe His Cys Val Cys Val Ser Gly Trp Gly Gly Thr Ser Cys Glu Glu Asn Leu Asp Asp Cys Ile Ala Ala Thr Cys Ala Pro Gly Ser Thr 355 360 365 Cys Ile Asp Arg Val Gly Ser Phe Ser Cys Leu Cys Pro Pro Gly Arg Thr Gly Leu Leu Cys His Leu Glu Asp Met Cys Leu Ser Gln Pro Cys 385 390 395 WO 2005/014854

Page 189 of 270

39467A.txt.txt

His Gly Asp Ala Gln Cys Ser Thr Asn Pro Leu Thr Gly Ser Thr Leu 405 410 415Cys Leu Cys Gln Pro Gly Tyr Ser Gly Pro Thr Cys His Gln Asp Leu Asp Glu Cys Leu Met Ala Gln Gln Gly Pro Ser Pro Cys Glu His Gly Gly Ser Cys Leu Asn Thr Pro Gly Ser Phe Asn Cys Leu Cys Pro Pro 450 460 Gly Tyr Thr Gly Ser Arg Cys Glu Ala Asp His Asn Glu Cys Leu Ser His Cys Leu Cys Pro Pro Gly Leu Glu Gly Gln Leu Cys Glu Val Glu 500 505 510 Thr Asn Glu Cys Ala Ser Ala Pro Cys Leu Asn His Ala Asp Cys His 515 520 525 Asp Leu Leu Asn Gly Phe Gln Cys Ile Cys Leu Pro Gly Phe Ser Gly 530 540 Thr Arg Cys Glu Glu Asp Ile Asp Glu Cys Arg Ser Ser Pro Cys Ala 545 550 560 Asn Gly Gly Gln Cys Gln Asp Gln Pro Gly Ala Phe His Cys Lys Cys 570 575 Leu Pro Gly Phe Glu Gly Pro Arg Cys Gln Thr Glu Val $\underset{580}{\text{Asp Glu Cys}}$ Leu Ser Asp Pro Cys Pro Val Gly Ala Ser Cys Leu Asp Leu Pro Gly Val Pro Leu Cys Ala Pro Asn Leu Cys Gln Pro Lys Gln Ile Cys Lys 625 630 635 Asp Gln Lys Asp Lys Ala Asn Cys Leu Cys Pro Asp Gly Ser Pro Gly Cys Ala Pro Pro Glu Asp Asn Cys Thr Cys His His Gly His Cys Gln $660 \hspace{0.25cm} 660 \hspace{0.25cm} 660 \hspace{0.25cm} 670 \hspace{0.25cm}$

Page 190 of 270

WO 2005/014854

39467A.txt.txt

Arg Ser Ser Cys Val Cys Asp Val Gly Trp Thr Gly Pro Glu Cys Glu 675 680 685Ala Glu Leu Gly Gly Cys Ile Ser Ala Pro Cys Ala His Gly Gly Thr Cys Tyr Pro Gln Pro Ser Gly Tyr Asn Cys Thr Cys Pro Thr Gly Tyr 705 710 715 720 Thr Gly Pro Thr Cys Ser Glu Glu Met Thr Ala Cys His Ser Gly Pro Cys Leu Asn Gly Gly Ser Cys Asn Pro Ser Pro Gly Gly Tyr Tyr Cys Thr Cys Pro Pro Ser His Thr Gly Pro Gln Cys Gln Thr Ser Thr Asp Tyr Cys Val Ser Ala Pro Cys Phe Asn Gly Gly Thr Cys Val Asn Arg Pro Gly Thr Phe Ser Cys Leu Cys Ala Met Gly Phe Gln Gly Pro Arg 785 790 795 Cys Glu Gly Lys Leu Arg Pro Ser Cys Ala Asp Ser Pro Cys Arg Asn 815 Arg Ala Thr Cys Gln Asp Ser Pro Gln Gly Pro Arg Cys Leu Cys Pro Thr Gly Tyr Thr Gly Gly Ser Cys Gln Thr Leu Met Asp Leu Cys Ala Gln Lys Pro Cys Pro Arg Asn Ser His Cys Leu Gln Thr Gly Pro Ser 850 860 Phe His Cys Leu Cys Leu Gln Gly Trp Thr Gly Pro Leu Cys Asn Leu 865 870 875 880 Pro Leu Ser Ser Cys Gln Lys Ala Ala Leu Ser Gln Gly Ile Asp Val Ser Ser Leu Cys His Asn Gly Gly Leu Cys Val Asp Ser Gly Pro Ser Tyr Phe Cys His Cys Pro Pro Gly Phe Gln Gly Ser Leu Cys Gln Asp His Val Asn Pro Cys Glu Ser Arg Pro Cys Gln Asn Gly Ala Thr Cys 930 935 940

Page 191 of 270

WO 2005/014854

39467A.txt.txt

Met Ala Gln Pro Ser Gly Tyr Leu Cys Gln Cys Ala Pro Gly Tyr Asp 945 950 960 Gly Gln Asn Cys Ser Lys Glu Leu Asp Ala Cys Gln Ser Gln Pro Cys 965 970 975 His Asn His Gly Thr Cys Thr Pro Lys Pro Gly Gly Phe His Cys Ala Cys Pro Pro Gly Phe Val Gly Leu Arg Cys Glu Gly Asp Val Asp Glu 995 1005 Cys Leu Asp Gln Pro Cys His Pro Thr Gly Thr Ala Ala Cys His Ser Leu Ala Asn Ala Phe Tyr Cys Gln Cys Leu Pro Gly His Thr 1025 1030 1035 Gly Gln Trp Cys Glu Val Glu Ile Asp Pro Cys His Ser Gln Pro 1040 1045 1050 Cys Phe His Gly Gly Thr Cys Glu Ala Thr Ala Gly Ser Pro Leu Gly Phe Ile Cys His Cys Pro Lys Gly Phe Glu Gly Pro Thr Cys $1070 \ \ \, 1075 \ \ \, 1080$ Ser His Arg Ala Pro Ser Cys Gly Phe His His Cys His His Gly 1085 1090 1095 Gly Leu Cys Leu Pro Ser Pro Lys Pro Gly Phe Pro Pro Arg Cys 1100 1105 1110 Ala Cys Leu Ser Gly Tyr Gly Gly Pro Asp Cys Leu Thr Pro Pro Ala Pro Lys Gly Cys Gly Pro Pro Ser Pro Cys Leu Tyr Asn Gly 1130 1135 1140 Ser Cys Ser Glu Thr Thr Gly Leu Gly Gly Pro Gly Phe Arg Cys 1145 1150 1155 Ser Cys Pro His Ser Ser Pro Gly Pro Arg Cys Gln Lys Pro Gly 1160 1165 1170 Ala Lys Gly Cys Glu Gly Arg Ser Gly Asp Gly Ala Cys Asp Ala 1175 1180 1185 Gly Cys Ser Gly Pro Gly Gly Asn Trp Asp Gly Gly Asp Cys Ser

39467A.txt.txt

Leu Gly Val Pro Asp Pro Trp Lys Gly Cys Pro Ser His Ser Arg 1205 1210 1215 Cys Trp Leu Leu Phe Arg Asp Gly Gln Cys His Pro Gln Cys Asp 1220 1230 Ser Glu Glu Cys Leu Phe Asp Gly Tyr Asp Cys Glu Thr Pro Pro Ala Cys Thr Pro Ala Tyr Asp Gln Tyr Cys His Asp His Phe His Asn Gly His Cys Glu Lys Gly Cys Asn Thr Ala Glu Cys Gly Trp 1265 1270 1275 Asp Gly Gly Asp Cys Arg Pro Glu Asp Gly Asp Pro Glu Trp Gly Pro Ser Leu Ala Leu Leu Val Val Leu Ser Pro Pro Ala Leu Asp 1295 1300 1305 Gln Gln Leu Phe Ala Leu Ala Arg Val Leu Ser Leu Thr Leu Arg 1310 1315 1320 Val Gly Leu Trp Val Arg Lys Asp Arg Asp Gly Arg Asp Met Val Tyr Pro Tyr Pro Gly Ala Arg Ala Glu Glu Lys Leu Gly Gly Thr 1340 1345 1350 Arg Asp Pro Thr Tyr Gln Glu Arg Ala Ala Pro Gln Thr Gln Pro
1355 1360 1365 Leu Gly Lys Glu Thr Asp Ser Leu Ser Ala Gly Phe Val Val Val 1370 1380 Met Gly Val Asp Leu Ser Arg Cys Gly Pro Asp His Pro Ala Ser 1385 1390 1395 Arg Cys Pro Trp Asp Pro Gly Leu Leu Leu Arg Phe Leu Ala Ala 1400 1405 1410 Met Ala Ala Val Gly Ala Leu Glu Pro Leu Leu Pro Gly Pro Leu 1415 1420 1425 Leu Ala Val His Pro His Ala Gly Thr Ala Pro Pro Ala Asn Gln 1430 1440 Leu Pro Trp Pro Val Leu Cys Ser Pro Val Ala Gly Val Ile Leu 1445 1450 1455

39467A.txt.txt

Leu Ala Leu Gly Ala Leu Leu Val Leu Gln Leu Ile Arg Arg 1460 1465 1470 Arg Arg Glu His Gly Ala Leu Trp Leu Pro Pro Gly Phe Thr Arg Arg Pro Arg Thr Gln Ser Ala Pro His Arg Arg Arg Pro Pro Leu 1490 1495 1500 Gly Glu Asp Ser Ile Gly Leu Lys Ala Leu Lys Pro Lys Ala Glu 1505 1510 1515 Val Asp Glu Asp Gly Val Val Met Cys Ser Gly Pro Glu Glu Gly Glu Glu Val Gly Gln Ala Glu Glu Thr Gly Pro Pro Ser Thr Cys 1535 1540 1545 Gln Leu Trp Ser Leu Ser Gly Gly Cys Gly Ala Leu Pro Gln Ala 1550 1555 1560Ala Met Leu Thr Pro Pro Gln Glu Ser Glu Met Glu Ala Pro Asp 1565 1570 1575 Leu Asp Thr Arg Gly Pro Asp Gly Val Thr Pro Leu Met Ser Ala 1580 1585 1590 Val Cys Cys Gly Glu Val Gln Ser Gly Thr Phe Gln Gly Ala Trp $1595 \hspace{0.5in} 1600 \hspace{0.5in}$ Leu Gly Cys Pro Glu Pro Trp Glu Pro Leu Leu Asp Gly Gly Ala 1610 1615 1620 Cys Pro Gln Ala His Thr Val Gly Thr Gly Glu Thr Pro Leu His 1625 1630 1635 Leu Ala Ala Arg Phe Ser Arg Pro Thr Ala Ala Arg Arg Leu Leu 1640 1645 1650 Glu Ala Gly Ala Asn Pro Asn Gln Pro Asp Arg Ala Gly Arg Thr $1655 \\ \hspace*{1.5cm} 1660 \\ \hspace*{1.5cm} 1665$ Pro Leu His Ala Ala Val Ala Ala Asp Ala Arg Glu Val Cys Gln 1670 1680 Leu Leu Leu Arg Ser Arg Gln Thr Ala Val Asp Ala Arg Thr Glu 1685Asp Gly Thr Thr Pro Leu Met Leu Ala Ala Arg Leu Ala Val Glu 1700 1705 1710 WO 2005/014854

PCT/EP2004/008819

39467A.txt.txt

Asp	Leu 17 1 5	٧a٦	Glu	Glu	Leu	Ile 1720	Аlа	Аlа	G∏n	Αla	Asp 1725	val	GТу	Аlа
Arg	Asp 1730	Lys	Тгр	Gly	Lys	Thr 1735	Ala	Leu	His	Trp	Ala 1740	Аlа	Αla	۷a٦
Asn	Asn 1745	Ala	Arg	Аlа	Аlа	Arg 1750	Ser	Leu	Leu	Gln	Ala 1755	G∃y	Ala	Asp
	Asp 1760													
۸la	Arg 1775	Glu	Gly	Ala	٧a٦	Glu 1780	val	Αla	Gln	Leu	Leu 1785	Leu	Gly	Leu
Gly	а]а 1790	Ala	Arg	Glu	Leu	Arg 1795	Asp	Gln	Аlа	Gly	Leu 1800	Ala	Pro	Ala
Asp	Val 1805	Ala	His	Gln	Arg	Asn 1810	His	Тгр	Asp	Leu	Leu 1815	Thr	Leu	Leu
Glu	Gly 1820	Ala	Gly	Pro	Pro	Glu 1825	Аlа	Arg	нis	Lys	Ala 1830	Thr	Pro	Gly
Arg	Glu 1835	Аlа	Gly	Pro	Phe	Pro 1840	Arg	Аlа	Arg	Thr	Val 1845	Ser	۷a٦	Ser
۷al	Pro 1850	Pro	His	Gly	Gly	Gly 1855	ΑΊа	Leu	Pro	Arg	Cys 1860	Arg	Thr	Leu
ser	Ala 1865	Gly	Аlа	Gly	Pro	Arg 1870	Gly	Gly	Gly	Аlа	Cys 1875	Leu	G∏n	ΑΊа
Arg	Thr 1880	Тгр	Ser	٧a٦	Asp	Leu 1885	ΑΊа	ΑΊа	Arg	Gly	Gly 1890	Gly	Аlа	туr
Ser	His 1895	Cys	Arg	Ser	Leu	ser 1900	Gly	۷al	Gly	Аlа	Gly 1905	Gly	Gly	Pro
Thr	Pro 1910	Arg	Gly	Arg	Arg	Phe 1915	Ser	Αla	Gly	Met	Arg 1920	GТу	Pro	Arg
Pro	Asn 1925	Pro	Αla	Ile	Met	Arg 1930	Gly	Arg	Tyr	Gly	val 1935	ΑΊа	Αla	Gly
Arg	Gly 1940	Gly	Arg	٧a٦	Ser	Thr 1945	Asp	Asp	Trp	Pro	Cys 1950	Asp	Trp	va1
Ala	Leu 1955	Gly	Αla	Cys	Gly	ser 1960	Ala	Ser	Asn	Ile	Pro 1965	Ile	Pro	Pro

WC05014654 [file ///E:/WC05014854.cpc]

PCT/EP2004/008819

Page 195 of 270

39467A.txt.txt

Pro Cys Leu Thr Pro Ser Pro Glu Arg Gly Ser Pro Gln Leu Asp 1970 1980

Cys Gly Pro Pro Ala Leu Gln Glu Met Pro Ile Asn Gln Gly Gly 1985

Glu Gly Lys Lys 2000

<210> 22 <211> 5896 <212> DNA

<213> Homo sapiens

WO 2005/014854

<220> <221> misc_feature <223> Jagged-1

<400> 22 ctgcggccgg cccgcgagct aggctgggtt ttttttttt tcccctcct ccccctttt 60 120 tccatgcagc tgatctaaaa gggaataaaa ggctgcgcat aatcataata ataaaagaag 180 gggagcgcga gagaaggaaa gaaagccggg aggtggaaga ggagggggag cgtctcaaag 240 aagcgatcag aataataaaa ggaggccggg ctctttgcct tctggaacgg gccgctcttg aaagggcttt tgaaaagtgg tgttgttttc cagtcgtgca tgctccaatc ggcggagtat 300 attagagccg ggacgcggcg gccgcagggg cagcggcgac ggcagcaccg gcggcagcac 360 cagcgcgaac agcagcggcg gcgtcccgag tgcccgcggc gcgcggcgca gcgatgcgtt 420 ccccacqqac qcgcggccgg tccgggcgcc ccctaagcct cctgctcgcc ctgctctgtg 480 ccctgcgagc caaggtgtgt ggggcctcgg gtcagttcga gttggagatc ctgtccatgc 540 600 agaacgtgaa cggggagctg cagaacggga actgctgcgg cggcgcccgg aacccgggag accgcaagtg cacccgcgac gagtgtgaca catacttcaa agtgtgcctc aaggagtatc 660 agtcccgcgt cacggccggg gggccctgca gcttcggctc agggtccacg cctgtcatcg 720 780 ggggcaacac cttcaacctc aaggccagcc gcggcaacga ccgcaaccgc atcgtgctgc 840 ctttcagttt cqcctgqccg aggtcctata cgttgcttgt ggaggcgtgg gattccagta 900 atgacaccgt tcaacctgac agtattattg aaaaggcttc tcactcgggc atgatcaacc 960 ccagccggca gtggcagacg ctgaagcaga acacgggcgt tgcccacttt gagtatcaga 1020 tccqcqtqac ctqtqatqac tactactatg gctttggctg caataagttc tgccgcccca 1080 gagatgactt ctttggacac tatgcctgtg accagaatgg caacaaaact tgcatggaag gctggatggg ccccgaatgt aacagagcta tttgccgaca aggctgcagt cctaagcatg 1140 ggtcttgcaa actcccaggt gactgcaggt gccagtatgg ctggcaaggc ctgtactgtg 1200 ataagtgcat cccacacccg ggatgcgtcc acggcatctg taatgagccc tggcagtgcc 1260 tctgtgagac caactggggc ggccagctct gtgacaaaga tctcaattac tgtgggactc 1320

atcagccgtg	tctcaacggg	ggaacttgta	39467A.txt gcaacacagg	.txt ccctgacaaa	tatcagtgtt	1380
cctgccctga	ggggtattca	ggacccaact	gtgaaattgc	tgagcacgcc	tgcctctctg	1440
atccctgtca	caacagaggc	agctgtaagg	agacctccct	gggctttgag	tgtgagtgtt	1500
ccccaggctg	gaccggcccc	acatgctcta	caaacattga	tgactgttct	cctaataact	1560
gttcccacgg	gggcacctgc	caggacctgg	ttaacggatt	taagtgtgtg	tgccccccac	1620
agtggactgg	gaaaacgtgc	cagttagatg	caaatgaatg	tgaggccaaa	ccttgtgtaa	1680
acgccaaatc	ctgtaagaat	ctcattgcca	gctactactg	cgactgtctt	cccggctgga	1740
tgggtcagaa	ttgtgacata	aatattaatg	actgccttgg	ccagtgtcag	aatgacgcct	1800
cctgtcggga	tttggttaat	ggttatcgct	gtatctgtcc	acctggctat	gcaggcgatc	1860
actgtgagag	agacatcgat	gaatgtgcca	gcaacccctg	tttgaatggg	ggtcactgtc	1920
agaatgaaat	caacagattc	cagtgtctgt	gtcccactgg	tttctctgga	aacctctgtc	1980
agctggacat	cgattattgt	gagcctaatc	cctgccagaa	cggtgcccag	tgctacaacc	2040
gtgccagtga	ctatttctgc	aagtgccccg	aggactatga	gggcaagaac	tgctcacacc	2100
tgaaagacca	ctgccgcacg	acccctgtg	aagtgattga	cagctgcaca	gtggccatgg	2160
cttccaacga	cacacctgaa	ggggtgcggt	atatttcctc	caacgtctgt	ggtcctcacg	2220
ggaagtgcaa	gagtcagtcg	ggaggcaaat	tcacctgtga	ctgtaacaaa	ggcttcacgg	2280
gaacatactg	ccatgaaaat	attaatgact	gtgagagcaa	cccttgtaga	aacggtggca	2340
cttgcatcga	tggtgtcaac	tcctacaagt	gcatctgtag	tgacggctgg	gagggggcct	2400
actgtgaaac	caatattaat	gactgcagcc	agaacccctg	ccacaatggg	ggcacgtgtc	2460
gcgacctggt	caatgacttc	tactgtgact	gtaaaaatgg	gtggaaagga	aagacctgcc	2520
actcacgtga	cagtcagtgt	gatgaggcca	cgtgcaacaa	cggtggcacc	tgctatgatg	2580
agggggatgc	ttttaagtgc	atgtgtcctg	gcggctggga	aggaacaacc	tgtaacatag	2640
cccgaaacag	tagctgcctg	cccaacccct	gccataatgg	gggcacatgt	gtggtcaacg	2700
gcgagtcctt	tacgtgcgtc	tgcaaggaag	gctgggaggg	gcccatctgt	gctcagaata	2760
ccaatgactg	cagccctcat	ccctgttaca	acagcggcac	ctgtgtggat	ggagacaact	2820
ggtaccggtg	cgaatgtgcc	ccgggttttg	ctgggcccga	ctgcagaata	aacatcaatg	2880
aatgccagtc	ttcaccttgt	gcctttggag	cgacctgtgt	ggatgagatc	aatggctacc	2940
ggtgtgtctg	ccctccaggg	cacagtggtg	ccaagtgcca	ggaagtttca	gggagacctt	3000
gcatcaccat	ggggagtgtg	ataccagatg	gggccaaatg	ggatgatgac	tgtaatacct	3060
gccagtgcct	gaatggacgg	atcgcctgct	caaaggtctg	gtgtggccct	cgaccttgcc	3120
tgctccacaa	agggcacagc	gagtgcccca	gcgggcagag	ctgcatcccc	atcctggacg	3180
accagtgctt	cgtccacccc	tgcactggtg	tgggcgagtg	tcggtcttcc	agtctccagc	3240
cggtgaagac	aaagtgcacc	tctgactcct	attaccagga	taactgtgcg	aacatcacat	3300
ttacctttaa	caaggagatg	atgtcaccag	gtcttactac	ggagcacatt	tgcagtgaat	3360

tgaggaattt	gaatattttg	aagaatgttt	39467A.txt ccgctgaata		atcgcttgcg	3420
agccttcccc	ttcagcgaac	aatgaaatac	atgtggccat	ttctgctgaa	gatatacggg	3480
atgatgggaa	cccgatcaag	gaaatcactg	acaaaataat	cgatcttgtt	agtaaacgtg	3540
atggaaacag	ctcgctgatt	gctgccgttg	cagaagtaag	agttcagagg	cggcctctga	3600
agaacagaac	agatttcctt	gttcccttgc	tgagctctgt	cttaactgtg	gcttggatct	3660
gttgcttggt	gacggccttc	tactggtgcc	tgcggaagcg	gcggaagccg	ggcagccaca	3720
cacactcagc	ctctgaggac	aacaccacca	acaacgtgcg	ggagcagctg	aaccagatca	3780
aaaaccccat	tgagaaacat	ggggccaaca	cggtccccat	caaggattac	gagaacaaga	3840
actccaaaat	gtctaaaata	aggacacaca	attctgaagt	agaagaggac	gacatggaca	3900
aacaccagca	gaaagcccgg	tttgccaagc	agccggcgta	tacgctggta	gacagagaag	3960
agaagccccc	caacggcacg	ccgacaaaac	acccaaactg	gacaaacaaa	caggacaaca	4020
gagacttgga	aagtgcccag	agcttaaacc	gaatggagta	catcgtatag	cagaccgcgg	4080
gcactgccgc	cgctaggtag	agtctgaggg	cttgtagttc	tttaaactgt	cgtgtcatac	4140
tcgagtctga	ggccgttgct	gacttagaat	ccctgtgtta	atttaagttt	tgacaagctg	4200
gcttacactg	gcaatggtag	tttctgtggt	tggctgggaa	atcgagtgcc	gcatctcaca	4260
gctatgcaaa	aagctagtca	acagtaccct	ggttgtgtgt	ccccttgcag	ccgacacggt	4320
ctcggatcag	gctcccagga	gcctgcccag	cccctggtc	tttgagctcc	cacttctgcc	4380
agatgtccta	atggtgatgc	agtcttagat	catagtttta	tttatattta	ttgactcttg	4440
agttgtttt	gtatatt gg t	tttatgatga	cgtacaagta	gttctgtatt	tgaaagtgcc	4500
tttgcagctc	agaaccacag	caacgatcac	aaatgacttt	attatttatt	tttttaattg	4560
tatttttgtt	gttgggggag	gggagacttt	gatgtcagca	gttgctggta	aaatgaagaa	4620
tttaaagaaa	aaaatgtcaa	aagtagaact	ttgtatagtt	atgtaaataa	ttctttttta	4680
ttaatcactg	tgtatatttg	atttattaac	ttaataatca	agagccttaa	aacatcattc	4740
ctttttattt	atatgtatgt	gtttagaatt	gaaggttttt	gatagcattg	taagcgtatg	4800
gctttatttt	tttgaactct	tctcattact	tgttgcctat	aagccaaaat	taaggtgttt	4860
gaaaatagtt	tattttaaaa	caataggatg	ggcttctgtg	cccagaatac	tgatggaatt	4920
ttttttgtac	gacgtcagat	gtttaaaaca	ccttctatag	catcacttaa	aacacgtttt	4980
aaggactgac	tgaggcagtt	tgaggattag	tttagaacag	gtttttttgt	ttgtttgttt	5040
tttgttttc	tgctttagac	ttgaaaagag	acaggcaggt	gatctgctgc	agagcagtaa	5100
gggaacaagt	tgagctatga	cttaacatag	ccaaaatgtg	agtggttgaa	tatgattaaa	5160
aatatcaaat	taattgtgtg	aacttggaag	cacaccaatc	tgactttgta	aattctgatt	5220
tcttttcacc	attcgtacat	aatactgaac	cacttgtaga	tttgattttt	ttttaatct	5280
actgcattta	gggagtattc	taataagcta	gttgaatact	tgaaccataa	aatgtccagt	5340
aagatcactg	tttagatttg	ccatagagta	cactgcctgc	cttaagtgag	gaaatcaaag	5400

tgctattacg	aagttcaaga	tcaaaaaggc	39467A.txt ttataaaaca		gttggttcac	5460	
cattgagacc	gtgaagatac	tttgtattgt	cctattagtg	ttatatgaac	atacaaatgc	5520	
atctttgatg	tgttgttctt	ggcaataaat	tttgaaaagt	aatatttatt	aaatttttt	5580	
gtatgaaaac	atggaacagt	gtggctcttc	tgagcttacg	tagttctacc	ggctttgccg	5640	
tgtgcttctg	ccaccctgct	gagtctgttc	tggtaatcgg	ggtataatag	gctctgcctg	5700	
acagagggat	ggaggaagaa	ctgaaaggct	tttcaaccac	aaaactcatc	tggagttctc	5760	
aaagacctgg	ggctgctgtg	aagctggaac	tgcgggagcc	ccatctaggg	gagccttgat	5820	
tcccttgtta	ttcaacagca	agtgtgaata	ctgcttgaat	aaacaccact	ggattaatgg	5880	
aaaaaaaaa	aaaaaa					5896	

<210> 23 <211> 1218 <212> PRT <213> Homo sapiens

<220> <221> misc_feature <223> Jagged-1

<400>

Met Arg Ser Pro Arg Thr Arg Gly Arg Ser Gly Arg Pro Leu Ser Leu

Leu Leu Ala Leu Leu Cys Ala Leu Arg Ala Lys Val Cys Gly Ala Ser $20 \ 30$

Gly Gln Phe Glu Leu Glu Ile Leu Ser Met Gln Asn Val Asn Gly Glu 35 40 45

Leu Gln Asn Gly Asn Cys Cys Gly Gly Ala Arg Asn Pro Gly Asp Arg 50 60

Lys Cys Thr Arg Asp Glu Cys Asp Thr Tyr Phe Lys Val Cys Leu Lys 65 $$ 70 $$ 70 $$ 75 $$ 80

Glu Tyr Gln Ser Arg Val Thr Ala Gly Gly Pro Cys Ser Phe Gly Ser 90 95

Gly Ser Thr Pro Val Ile Gly Gly Asn Thr Phe Asn Leu Lys Ala Ser 100

Arg Gly Asn Asp Arg Asn Arg Ile Val Leu Pro Phe Ser Phe Ala Trp 115 125

Pro Arg Ser Tyr Thr Leu Leu Val Glu Ala Trp Asp Ser Ser Asn Asp 130 140

Thr val Gln Pro Asp Ser Ile Ile Glu Lys Ala Ser His Ser Gly Met

Page 199 of 270

WO 2005/014854

39467A.txt.txt 155

145 **150**

160

Ile Asn Pro Ser Arg Gln Trp Gln Thr Leu Lys Gln Asn Thr Gly Val Ala His Phe Glu Tyr Gln Ile Arg Val Thr Cys Asp Asp Tyr Tyr Tyr 180 185 190 Gly Phe Gly Cys Asn Lys Phe Cys Arg Pro Arg Asp Asp Phe Phe Gly His Tyr Ala Cys Asp Gln Asn Gly Asn Lys Thr Cys Met Glu Gly Trp 210 215 220Met Gly Pro Glu Cys Asn Arg Ala Ile Cys Arg Gln Gly Cys Ser Pro 225 230 235 Lys His Gly Ser Cys Lys Leu Pro Gly Asp Cys Arg Cys Gln Tyr Gly Trp Gln Gly Leu Tyr Cys Asp Lys Cys Ile Pro His Pro Gly Cys Val His Gly Ile Cys Asn Glu Pro Trp Gln Cys Leu Cys Glu Thr Asn Trp Gly Gly Gln Leu Cys Asp Lys Asp Leu Asn Tyr Cys Gly Thr His Gln Gln Cys Ser Cys Pro Glu Gly Tyr Ser Gly Pro Asn Cys Glu Ile Ala 375 330 335 Glu His Ala Cys Leu Ser Asp Pro Cys His Asn Arg Gly Ser Cys Lys 340 345 350 Glu Thr Ser Leu Gly Phe Glu Cys Glu Cys Ser Pro Gly Trp Thr Gly Pro Thr Cys Ser Thr Asn Ile Asp Asp Cys Ser Pro Asn Asn Cys Ser 370 380 His Gly Gly Thr Cys Gln Asp Leu Val Asn Gly Phe Lys Cys Val Cys 385 390 395 400 Pro Pro Gln Trp Thr Gly Lys Thr Cys Gln Leu Asp Ala Asn Glu Cys 405 410 415 Glu Ala Lys Pro Cys Val Asn Ala Lys Ser Cys Lys Asn Leu Ile Ala

Page 200 of 270

WO 2005/014854

39467A.txt.txt 425 430

Ser Tyr Tyr Cys Asp Cys Leu Pro Gly Trp Met Gly Gln Asn Cys Asp 435 440 445 Ile Asn Ile Asn Asp Cys Leu Gly Gln Cys Gln Asn Asp Ala Ser Cys Arg Asp Leu Val Asn Gly Tyr Arg Cys Ile Cys Pro Pro Gly Tyr Ala 465 470 475 480 Gly Asp His Cys Glu Arg Asp Ile Asp Glu Cys Ala Ser Asn Pro Cys 485 490 495 Leu Asn Gly Gly His Cys Gln Asn Glu Ile Asn Arg Phe Gln Cys Leu 500 505 510 Cys Pro Thr Gly Phe Ser Gly Asn Leu Cys Gln Leu Asp Ile Asp Tyr Cys Glu Pro Asn Pro Cys Gln Asn Gly Ala Gln Cys Tyr Asn Arg Ala 530 540 Ser Asp Tyr Phe Cys Lys Cys Pro Glu Asp Tyr Glu Gly Lys Asn Cys Ser His Leu Lys Asp His Cys Arg Thr Thr Pro Cys Glu Val Ile Asp 565 570 575 Ser Cys Thr Val Ala Met Ala Ser Asn Asp Thr Pro Glu Gly Val Arg Tyr Ile Ser Ser Asn Val Cys Gly Pro His Gly Lys Cys Lys Ser Gln Ser Gly Gly Lys Phe Thr Cys Asp Cys Asn Lys Gly Phe Thr Gly Thr 610 620 Tyr Cys His Glu Asn Ile Asn Asp Cys Glu Ser Asn Pro Cys Arg Asn 625 630 640 Gly Gly Thr Cys Ile Asp Gly Val Asn Ser Tyr Lys Cys Ile Cys Ser Asp Gly Trp Glu Gly Ala Tyr Cys Glu Thr Asn Ile Asn Asp Cys Ser 660 665 670 Gln Asn Pro Cys His Asn Gly Gly Thr Cys Arg Asp Leu Val Asn Asp 675 680 685 Phe Tyr Cys Asp Cys Lys Asn Gly Trp Lys Gly Lys Thr Cys His Ser

Page 201 of 270

WO 2005/014854

690

39467A.txt.txt 695 700

Arg Asp Ser Gln Cys Asp Glu Ala Thr Cys Asn Asn Gly Gly Thr Cys Tyr Asp Glu Gly Asp Ala Phe Lys Cys Met Cys Pro Gly Gly Trp Glu 725 730 735 Gly Thr Thr Cys Asn Ile Ala Arg Asn Ser Ser Cys Leu Pro Asn Pro Cys His Asn Gly Gly Thr Cys Val Val Asn Gly Glu Ser Phe Thr Cys
755 760 765 Val Cys Lys Glu Gly Trp Glu Gly Pro Ile Cys Ala Gln Asn Thr Asn 770 775 780 Asp Cys Ser Pro His Pro Cys Tyr Asm Ser Gly Thr Cys Val Asp Gly 785 790 795 800 Asp Asn Trp Tyr Arg Cys Glu Cys Ala Pro Gly Phe Ala Gly Pro Asp 805 810 815 Cys Arg Ile Asn Ile Asn Glu Cys Gln Ser Ser Pro Cys Ala Phe Gly 820 825 830 Ala Thr Cys Val Asp Glu Ile Asn Gly Tyr Arg Cys Val Cys Pro Pro Gly His Ser Gly Ala Lys Cys Gln Glu Val Ser Gly Arg Pro Cys Ile 850 855 860 Thr Met Gly Ser Val Ile Pro Asp Gly Ala Lys Trp Asp Asp Asp Cys 865 870 875 Asn Thr Cys Gln Cys Leu Asn Gly Arg Ile Ala Cys Ser Lys Val Trp 885 890 895 Cys Gly Pro Arg Pro Cys Leu Leu His Lys Gly His Ser Glu Cys Pro 900 905 910 Ser Gly Gln Ser Cys Ile Pro Ile Leu Asp Asp Gln Cys Phe Val His Pro Cys Thr Gly Val Gly Glu Cys Arg Ser Ser Ser Leu Gln Pro Val 930 935 940 Lys Thr Lys Cys Thr Ser Asp Ser Tyr Tyr Gln Asp Asn Cys Ala Asn 945 950 960 Ile Thr Phe Thr Phe Asn Lys Glu Met Met Ser Pro Gly Leu Thr Thr

<210> 24

PCT/EP2004/008819

394<u>67</u>A.txt.txt 970

Glu His Ile Cys Ser Glu Leu Arg Asn Leu Asn Ile Leu Lys Asn Val Ser Ala Glu Tyr Ser Ile Tyr Ile Ala Cys Glu Pro Ser Pro Ser Ala 995 1000 1005 Asn Asn Glu Ile His Val Ala Ile Ser Ala Glu Asp Ile Arg Asp 1010 1015 1020Asp Gly Asn Pro Ile Lys Glu Ile Thr Asp Lys Ile Ile Asp Leu 1025 1030 1035 Val Ser Lys Arg Asp Gly Asn Ser Ser Leu Ile Ala Ala Val Ala 1040 1045 1050Glu Val Arg Val Gln Arg Arg Pro Leu Lys Asn Arg Thr Asp Phe 1055 1060 Leu Val Pro Leu Leu Ser Ser Val Leu Thr Val Ala Trp Ile Cys 1070 1080 Cys Leu Val Thr Ala Phe Tyr Trp Cys Leu Arg Lys Arg Arg Lys 1085 Pro Gly Ser His Thr His Ser Ala Ser Glu Asp Asn Thr Thr Asn 1100 1110 Asn Val Arg Glu Gln Leu Asn Gln Ile Lys Asn Pro Ile Glu Lys His Gly Ala Asn Thr Val Pro Ile Lys Asp Tyr Glu Asn Lys Asn 1130 1140 Ser Lys Met Ser Lys Ile Arg Thr His Asn Ser Glu Val Glu Glu 1145 1150 1155 Asp Asp Met Asp Lys His Gln Gln Lys Ala Arg Phe Ala Lys Gln 1160 1170 Pro Ala Tyr Thr Leu Val Asp Arg Glu Glu Lys Pro Pro Asn Gly 1175 1180 1185 Thr Pro Thr Lys His Pro Asn Trp Thr Asn Lys Gln Asp Asn Arg Asp Leu Glu Ser Ala Gln Ser Leu Asn Arg Met Glu Tyr Ile Val 1205 1210 1215

39467A.txt.txt

<211> 5077 <212> DNA <213> Homo sapiens

<220> <221> misc_feature <223> Jagged-2

60 ctcatgcata tgcaggtgcg cgggtgacga atgggcgagc gagctgtcag tctcgttccg 1.20 aacttgttgg ctgcggtgcc gggagcgcgg gcgcgcagag ccgaggccgg gacccgctgc 180 cttcaccgcc gccgccgtcg ccgccgggtg ggagccgggc cgggcagccg gagcgcggcc gccagcgagc cggagctgcc gccgccctg cacgcccgcc gcccaggccc gcgcgccgcg 240 300 gcgctgcgct cgaccccgcc cgcgccgccg ccgccgccgc ctctgccgct gccgctgcct ctgcggccc tcggaggcc ggcggcct gggaggccgg cgcggct gggagccgg 360 420 cqcqqqcqqc qqcggcqqqq ccgggcqggc gggtcgcggg ggcaatgcgg gcgcagggcc 480 ccatgggcta tttcgagctg cagctgagcg cgctgcggaa cgtgaacggg gagctgctga 540 600 gcggcgcctg ctgtgacggc gacggccgga caacgcgcgc ggggggctgc ggccacgacg 660 agtgcgacac gtacgtgcgc gtgtgcctta aggagtacca ggccaaggtg acgcccacgg ggccctgcag ctacggccac ggcgccacgc ccgtgctggg cggcaactcc ttctacctgc 720 780 cgccggcggg cgctgcgggg gaccgagcgc gggcgcgggc ccgggccggc ggcgaccagg 840 accoggact catcatcatc continues toggact account accordates tggaggcctg ggactgggac aacgatacca ccccgaatga ggagctgctg atcgagcgag 900 960 tgtcgcatgc cggcatgatc aacccggagg accgctggaa gagcctgcac ttcagcggcc acqtqqcqca cctqgaqctq caqatccgcg tgcgctgcga cgagaactac tacagcgcca 1020 cttgcaacaa gttctgccgg ccccgcaacg actttttcgg ccactacacc tgcgaccagt 1080 acqqcaacaa ggcctgcatg gacggctgga tgggcaagga gtgcaaggaa gctgtgtgta 1140 1200 aacaagggtg taatttgctc cacgggggat gcaccgtgcc tggggagtgc aggtgcagct 1260 acggctggca agggaggttc tgcgatgagt gtgtccccta ccccggctgc gtgcatggca gttgtgtgga gccctggcag tgcaactgtg agaccaactg gggcggcctg ctctgtgaca 1320 aagacctgaa ctactgtggc agccaccacc cctgcaccaa cggaggcacg tgcatcaacg 1380 ccgaqcctga ccagtaccgc tgcacctgcc ctgacggcta ctcgggcagg aactgtgaga 1440 aggctgagca cgcctgcacc tccaacccgt gtgccaacgg gggctcttgc catgaggtgc 1500 cgtccggctt cgaatgccac tgcccatcgg gctggagcgg gcccacctgt gcccttgaca 1560 tcgatgagtg tgcttcgaac ccgtgtgcgg ccggtggcac ctgtgtggac caggtggacg 1620 gctttgagtg catctgcccc gagcagtggg tgggggccac ctgccagctg gacgccaatg 1680 1740 agtqtgaagg gaagccatgc cttaacgctt tttcttgcaa aaacctgatt ggcggctatt

Page 204 of 270

110 20	02/014024				101/12	2004/0000
actgtgattg	catcccgggc	tggaagggca	39467A.txt tcaactgcca		aacgactgtc	1800
gcgggcagtg	tcagcatggg	ggcacctgca	aggacctggt	gaacgggtac	cagtgtgtgt	1860
gcccacgggg	cttcggaggc	cggcattgcg	agctggaacg	agacgagtgt	gccagcagcc	1920
cctgccacag	cggcggcctc	tgcgaggacc	tggccgacgg	cttccactgc	cactgccccc	1980
agggcttctc	cgggcctctc	tgtgaggtgg	atgtcgacct	ttgtgagcca	agcccctgcc	2040
ggaacggcgc	tcgctgctat	aacctggagg	gtgactatta	ctgcgcctgc	cctgatgact	2100
ttggtggcaa	gaactgctcc	gtgccccgcg	agccgtgccc	tggcggggcc	tgcagagtga	2160
tcgatggctg	cgggtcagac	gcggggcctg	ggatgcctgg	cacagcagcc	tccggcgtgt	2220
gtggccccca	tggacgctgc	gtcagccagc	cagggggcaa	cttttcctgc	atctgtgaca	2280
gtggctttac	tggcacctac	tgccatgaga	acattgacga	ctgcctgggc	cagccctgcc	2340
gcaatggggg	cacatgcatc	gatgaggtgg	acgccttccg	ctgcttctgc	cccagcggct	2400
gggagggcga	gctctgcgac	accaatccca	acgactgcct	tcccgatccc	tgccacagcc	2460
gcggccgctg	ctacgacctg	gtcaatgact	tctactgtgc	gtgcgacgac	ggctggaagg	2520
gcaagacctg	ccactcacgc	gagttccagt	gcgatgccta	cacctgcagc	aacggtggca	2580
cctgctacga	cagcggcgac	accttccgct	gcgcctgccc	ccccggctgg	aagggcagca	2640
cctgcgccgt	cgccaagaac	agcagctgcc	tgcccaaccc	ctgtgtgaat	ggtggcacct	2700
gcgtgggcag	cggggcctcc	ttctcctgca	tctgccggga	cggctgggag	ggtcgtactt	2760
gcactcacaa	taccaacgac	tgcaaccctc	tgccttgcta	caatggtggc	atctgtgttg	2820
acggcgtcaa	ctggttccgc	tgcgagtgtg	cacctggctt	cgcggggcct	gactgccgca	2880
tcaacatcga	cgagtgccag	tcctcgccct	gtgcctacgg	ggccacgtgt	gtggatgaga	2940
tcaacgggta	tcgctgtagc	tgcccacccg	gccgagccgg	ccccggtgc	caggaagtga	3000
tcgggttcgg	gagatcctgc	tggtcccggg	gcactccgtt	cccacacgga	agctcctggg	3060
tggaagactg	caacagctgc	cgctgcctgg	atggccgccg	tgactgcagc	aaggtgtggt	3120
gcggatggaa	gccttgtctg	ctggccggcc	agcccgaggc	cctgagcgcc	cagtgcccac	3180
tggggcaaag	gtgcctggag	aaggccccag	gccagtgtct	gcgaccaccc	tgtgaggcct	3240
ggggggagtg	cggcgcagaa	gagccaccga	gcaccccctg	cctgccacgc	tccggccacc	3300
tggacaataa	ctgtgcccgc	ctcaccttgc	atttcaaccg	tgaccacgtg	ccccagggca	3360
ccacggtggg	cgccatttgc	tccgggatcc	gctccctgcc	agccacaagg	gctgtggcac	3420
gggaccgcct	gctggtgttg	ctttgcgacc	gggcgtcctc	gggggccagt	gccgtggagg	3480
tggccgtgtc	cttcagccct	gccagggacc	tgcctgacag	cagcctgatc	cagggcgcgg	3540
cccacgccat	cgtggccgcc	atcacccagc	gggggaacag	ctcactgctc	ctggctgtca	3600
ccgaggtcaa	ggtggagacg	gttgttacgg	gcggctcttc	cacaggtctg	ctggtgcctg	3660
tgctgtgtgg	tgccttcagc	gtgctgtggc	tggcgtgcgt	ggtcctgtgc	gtgtggtgga	3720
cacgcaagcg	caggaaagag	cgggagagga	gccggctgcc	gcgggaggag	agcgccaaca	3780

```
39467A.txt.txt
                                                                     3840
accagtgggc cccgctcaac cccatccgca accccatcga gcggccgggg ggccacaagg
                                                                     3900
acqtqctcta ccagtgcaag aacttcacgc cgccgccgcg cagggcggac gaggcgctgc
                                                                    3960
ccgggccggc cggccacgcg gccgtcaggg aggatgagga ggacgaggat ctgggccgcg
                                                                    4020
gtgaggagga ctccctggag gcggagaagt tcctctcaca caaattcacc aaagatcctg
                                                                    4080
gccgctcgcc ggggaggccg gcccactggg cctcaggccc caaagtggac aaccgcgcgg
tcaggagcat caatgaggcc cgctacgccg gcaaggagta ggggcggctg ccagctgggc
                                                                    4140
cgggacccag ggccctcggt gggagccatg ccgtctgccg gacccggagg ccgaggccat
                                                                    4200
                                                                     4260
gtgcatagtt tctttatttt gtgtaaaaaa accaccaaaa acaaaaacca aatgtttatt
ttctacgttt ctttaacctt gtataaatta ttcagtaact gtcaggctga aaacaatgga
                                                                    4320
gtattctcqq ataqttqcta tttttgtaaa gtttccgtgc gtggcactcg ctgtatgaaa
                                                                    4380
                                                                    4440
ggagagaga aagggtgtct gcgtcgtcac caaatcgtag cgtttgttac cagaggttgt
                                                                    4500
gcactgttta cagaatcttc cttttattcc tcactcgggt ttctctgtgg ctccaggcca
                                                                     4560
aagtgccggt gagacccatg gctgtgttgg tgtggcccat ggctgttggt gggacccgtg
                                                                    4620
octoatogto togcctotog ctotcogtog gactcotogc totcaatogo acctotogct
                                                                     4680
gtcggtggga cctacggtgg tcggtgggac cctggttatt gatgtggccc tggctgccgg
cacqqcccqt ggctgttgac gcacctgtgg ttgttagtgg ggcctgaggt catcggcgtg
                                                                     4740
gcccaaggcc ggcaggtcaa cctcgcgctt gctggccagt ccaccctgcc tgccgtctgt
                                                                     4800
gcttcctcct gcccagaacg cccgctccag cgatctctcc actgtgcttt cagaagtgcc
                                                                     4860
                                                                     4920
cttcctgctg cgcagttctc ccatcctggg acggcggcag tattgaagct cgtgacaagt
                                                                     4980
gccttcacac agacccctcg caactgtcca cgcgtgccgt ggcaccaggc gctgcccacc
                                                                     5040
tgccggcccc ggccgcccct cctcgtgaaa gtgcattttt gtaaatgtgt acatattaaa
                                                                     5077
qqaaqcactc tgtatatttg attgaataat gccacca
```

```
<210> 25
<211> 1238
<212> PRT
```

<400> 25

Met Arg Ala Gln Gly Arg Gly Arg Leu Pro Arg Arg Leu Leu Leu 1 10 15

Leu Ala Leu Trp Val Gln Ala Ala Arg Pro Met Gly Tyr Phe Glu Leu 20 30

Gln Leu Ser Ala Leu Arg Asn Val Asn Gly Glu Leu Leu Ser Gly Ala 35 40 45

<213> Homo sapiens

<220> <221> misc_feature <223> Jagged-2

Page 205 of 270

WO 2005/014854

39467A.txt.txt

Cys Cys Asp Gly Asp Gly Arg Thr Thr Arg Ala Gly Gly Cys Gly His Asp Glu Cys Asp Thr Tyr Val Arg Val Cys Leu Lys Glu Tyr Gln Ala Lys Val Thr Pro Thr Gly Pro Cys Ser Tyr Gly His Gly Ala Thr Pro Val Leu Gly Gly Asn Ser Phe Tyr Leu Pro Pro Ala Gly Ala Ala Gly 100 105 110 Asp Arg Ala Arg Ala Arg Ala Gly Gly Asp Gln Asp Pro Gly 115 120 125 Leu Val Val Ile Pro Phe Gln Phe Ala Trp Pro Arg Ser Phe Thr Leu 130 135 140 Ile Val Glu Ala Trp Asp Trp Asp Asn Asp Thr Thr Pro Asn Glu Glu 145 150 155 160 Leu Leu Ile Glu Arg Val Ser His Ala Gly Met Ile Asn Pro Glu Asp 165 170 175 Arg Trp Lys Ser Leu His Phe Ser Gly His Val Ala His Leu Glu Leu Gln Ile Arg Val Arg Cys Asp Glu Asn Tyr Tyr Ser Ala Thr Cys Asn 195 200 205 Lys Phe Cys Arg Pro Arg Asn Asp Phe Phe Gly His Tyr Thr Cys Asp 210 215 220 Gln Tyr Gly Asn Lys Ala Cys Met Asp Gly Trp Met Gly Lys Glu Cys 225 230 235 240 Lys Glu Ala Val Cys Lys Gln Gly Cys Asn Leu Leu His Gly Gly Cys Thr Val Pro Gly Glu Cys Arg Cys Ser Tyr Gly Trp Gln Gly Arg Phe Cys Asp Glu Cys Val Pro Tyr Pro Gly Cys Val His Gly Ser Cys Val Glu Pro Trp Gln Cys Asn Cys Glu Thr Asn Trp Gly Gly Leu Leu Cys $290 \hspace{1cm} 300 \hspace{1cm}$ Asp Lys Asp Leu Asn Tyr Cys Gly Ser His His Pro Cys Thr Asn Gly 305 310 315 320 WC05014634 [file:///E:/WC05014854.cpo]

PCT/EP2004/008819

39467A.txt.txt

Gly Thr Cys Ile Asn Ala Glu Pro Asp Gln Tyr Arg Cys Thr Cys Pro 325 330 335 Asp Gly Tyr Ser Gly Arg Asn Cys Glu Lys Ala Glu His Ala Cys Thr Ser Asn Pro Cys Ala Asn Gly Gly Ser Cys His Glu Val Pro Ser Gly Phe Glu Cys His Cys Pro Ser Gly Trp Ser Gly Pro Thr Cys Ala Leu 370 380 Asp Ile Asp Glu Cys Ala Ser Asn Pro Cys Ala Ala Gly Gly Thr Cys 385 390 395 400 Val Asp Gln Val Asp Gly Phe Glu Cys Ile Cys Pro Glu Gln Trp Val 405 410 415 Gly Ala Thr Cys Gln Leu Asp Ala Asn Glu Cys Glu Gly Lys Pro Cys
420 425 430 Leu Asn Ala Phe Ser Cys Lys Asn Leu Ile Gly Gly Tyr Tyr Cys Asp 445 Cys Ile Pro Gly Trp Lys Gly Ile Asn Cys His Ile Asn Val Asn Asp Cys Arg Gly Gln Cys Gln His Gly Gly Thr Cys Lys Asp Leu Val Asn 465 470 475 Gly Tyr Gln Cys Val Cys Pro Arg Gly Phe Gly Gly Arg His Cys Glu Leu Glu Arg Asp Glu Cys Ala Ser Ser Pro Cys His Ser Gly Gly Leu
500 505 510 Cys Glu Asp Leu Ala Asp Gly Phe His Cys His Cys Pro Gln Gly Phe Ser Gly Pro Leu Cys Glu Val Asp Val Asp Leu Cys Glu Pro Ser Pro 530 540 Cys Arg Asn Gly Ala Arg Cys Tyr Asn Leu Glu Gly Asp Tyr Tyr Cys Ala Cys Pro Asp Asp Phe Gly Gly Lys Asn Cys Ser Val Pro Arg Glu 575 Pro Cys Pro Gly Gly Ala Cys Arg Val Ile Asp Gly Cys Gly Ser Asp

Page 208 of 270

WO 2005/014854

39467A.txt.txt

Ala Gly Pro Gly Met Pro Gly Thr Ala Ala Ser Gly Val Cys Gly Pro 595 600 605 His Gly Arg Cys Val Ser Gln Pro Gly Gly Asn Phe Ser Cys Ile Cys 610 620 Asp Ser Gly Phe Thr Gly Thr Tyr Cys His Glu Asn Ile Asp Asp Cys 625 630 635 640 Leu Gly Gln Pro Cys Arg Asn Gly Gly Thr Cys Ile Asp Glu Val Asp 645 650 655 Ala Phe Arg Cys Phe Cys Pro Ser Gly Trp Glu Gly Glu Leu Cys Asp
660 665 670 Thr Asn Pro Asn Asp Cys Leu Pro Asp Pro Cys His Ser Arg Gly Arg 675 680 685 Cys Tyr Asp Leu Val Asn Asp Phe Tyr Cys Ala Cys Asp Asp Gly Trp 690 700 Lys Gly Lys Thr Cys His Ser Arg Glu Phe Gln Cys Asp Ala Tyr Thr 705 710 715 720 Cys Ser Asn Gly Gly Thr Cys Tyr Asp Ser Gly Asp Thr Phe Arg Cys 735 Ala Cys Pro Pro Gly Trp Lys Gly Ser Thr Cys Ala Val Ala Lys Asn 740 $$ 740 $$ 750 $$ Ser Ser Cys Leu Pro Asn Pro Cys Val Asn Gly Gly Thr Cys Val Gly Ser Gly Ala Ser Phe Ser Cys Ile Cys Arg Asp Gly Trp Glu Gly Arg Thr Cys Thr His Asn Thr Asn Asp Cys Asn Pro Leu Pro Cys Tyr Asn 785 790 795 800 Gly Gly Ile Cys Val Asp Gly Val Asn Trp Phe Arg Cys Glu Cys Ala 805 810 815 Pro Gly Phe Ala Gly Pro Asp Cys Arg Ile Asn Ile Asp Glu Cys Gln Ser Ser Pro Cys Ala Tyr Gly Ala Thr Cys Val Asp Glu Ile Asn Gly 835Tyr Arg Cys Ser Cys Pro Pro Gly Arg Ala Gly Pro Arg Cys Gln Glu 850 855 860

39467A.txt.txt

Val Ile Gly Phe Gly Arg Ser Cys Trp Ser Arg Gly Thr Pro Phe Pro 865 870 875 880 His Gly Ser Ser Trp Val Glu Asp Cys Asn Ser Cys Arg Cys Leu Asp 885 890 895 Gly Arg Arg Asp Cys Ser Lys Val Trp Cys Gly Trp Lys Pro Cys Leu Leu Ala Gly Gln Pro Glu Ala Leu Ser Ala Gln Cys Pro Leu Gly Gln 915 920 925 Arg Cys Leu Glu Lys Ala Pro Gly Gln Cys Leu Arg Pro Pro Cys Glu 930 935 940 Ala Trp Gly Glu Cys Gly Ala Glu Glu Pro Pro Ser Thr Pro Cys Leu 945 950 955 960 Pro Arg Ser Gly His Leu Asp Asn Asn Cys Ala Arg Leu Thr Leu His Phe Asn Arg Asp His Val Pro Gln Gly Thr Thr Val Gly Ala Ile Cys Ser Gly Ile Arg Ser Leu Pro Ala Thr Arg Ala Val Ala Arg Asp Arg 995 1000 1005 Leu Leu Val Leu Leu Cys Asp Arg Ala Ser Ser Gly Ala Ser Ala 1010 1015 Val Glu Val Ala Val Ser Phe Ser Pro Ala Arg Asp Leu Pro Asp 1025 1030 1035Ser Ser Leu Ile Gln Gly Ala Ala His Ala Ile Val Ala Ala Ile 1040 1045 1050 Thr Gln Arg Gly Asn Ser Ser Leu Leu Leu Ala Val Thr Glu Val Lys Val Glu Thr Val Val Thr Gly Gly Ser Ser Thr Gly Leu Leu 1070 1080 Val Pro Val Leu Cys Gly Ala Phe Ser Val Leu Trp Leu Ala Cys 1085 1090 1095Val Val Leu Cys Val Trp Trp Thr Arg Lys Arg Arg Lys Glu Arg 1.100 1.110Glu Arg Ser Arg Leu Pro Arg Glu Glu Ser Ala Asn Asn Gln Trp

WO 2005/014854

Page 210 of 270

39467A.txt.txt

Ala Pro Leu Asn Pro Ile Arg Asn Pro Ile Glu Arg Pro Gly Gly 1130 1135 His Lys Asp Val Leu Tyr Gln Cys Lys Asn Phe Thr Pro Pro Pro Arg Arg Ala Asp Glu Ala Leu Pro Gly Pro Ala Gly His Ala Ala 1160 1165 1170 Val Arg Glu Asp Glu Glu Asp Glu Asp Leu Gly Arg Gly Glu Glu Asp Ser Leu Glu Ala Glu Lys Phe Leu Ser His Lys Phe Thr Lys Asp Pro Gly Arg Ser Pro Gly Arg Pro Ala His Trp Ala Ser Gly 1205 1210 1215 Pro Lys Val Asp Asn Arg Ala Val Arg Ser Ile Asn Glu Ala Arg Tyr Ala Gly Lys Glu 1235 26 4963 Homo sapiens <220> <221> <223> misc_feature Jagged2, transcript variant 2 <400> 26 ctcatgcata tgcaggtgcg cgggtgacga atgggcgagc gagctgtcag tctcgttccg

60 aacttgttgg ctgcggtgcc gggagcgcgg gcgcgcagag ccgaggccgg gacccgctgc 120 180 cttcaccgcc gccgccgtcg ccgccgggtg ggagccgggc cgggcagccg gagcgcggcc gccagcgagc cggagctgcc gccgcccctg cacgcccgcc gcccaggccc gcgcgccgcg 240 300 gcgctgcgct cgaccccgcc cgcgccgccg ccgccgccgc ctctgccgct gccgctgcct 360 ctgcgggcgc tcggagggcg ggcgggcgct gggaggccgg cgcggcggct gggagccggg cgcgggcggc ggcggcgggg ccgggcgggc gggtcgcggg ggcaatgcgg gcgcagggcc 420 480 540 ccatgggcta tttcgagctg cagctgagcg cgctgcggaa cgtgaacggg gagctgctga 600 gcggcgcctg ctgtgacggc gacggccgga caacgcgcgc gggggggctgc ggccacgacg 660 agtocgacac gtacgtgcgc gtgtgcctta aggagtacca ggccaaggtg acgcccacgg 720 ggccctgcag ctacggccac ggcgccacgc ccgtgctggg cggcaactcc ttctacctgc

110 20	02/014024				101/2	1 2004/0000
cgccggcggg	cgctgcgggg	gaccgagcgc	39467A.txt gggcgcgggc	.txt ccgggccggc	ggcgaccagg	780
acccgggcct	cgtcgtcatc	cccttccagt	tcgcctggcc	gcgctccttt	accctcatcg	840
tggaggcctg	ggactgggac	aacgatacca	ccccgaatga	ggagctgctg	atcgagcgag	900
tgtcgcatgc	cggcatgatc	aacccggagg	accgctggaa	gagcctgcac	ttcagcggcc	960
acgtggcgca	cctggagctg	cagatccgcg	tgcgctgcga	cgagaactac	tacagcgcca	1020
cttgcaacaa	gttctgccgg	ccccgcaacg	actttttcgg	ccactacacc	tgcgaccagt	1080
acggcaacaa	ggcctgcatg	gacggctgga	tgggcaagga	gtgcaaggaa	gctgtgtgta	1140
aacaagggtg	taatttgctc	cacgggggat	gcaccgtgcc	t gg ggagtgc	aggtgcagct	1200
acggctggca	agggaggttc	tgcgat g agt	gtgtccccta	ccccggctgc	gtgcatggca	1260
gttgtgtgga	gccctggcag	tgcaactgtg	agaccaactg	gggcggcctg	ctctgtgaca	1320
aagacctgaa	ctactgtggc	agccaccacc	cctgcaccaa	cggaggcacg	tgcatcaacg	1380
ccgagcctga	ccagtaccgc	tgcacctgcc	ctgacggcta	ctcgggcagg	aactgtgaga	1440
aggctgagca	cgcctgcacc	tccaacccgt	gtgccaacgg	gggctcttgc	catgaggtgc	1500
cgtccggctt	cgaatgccac	tgcccatcgg	gctggagcgg	gcccacctgt	gcccttgaca	1560
tcgatgagtg	tgcttcgaac	ccgtgtgcgg	ccggtggcac	ctgtgtggac	caggtggacg	1620
gctttgagtg	catctgcccc	gagcagtggg	tgggggccac	ctgccagctg	gacgtcaacg	1680
actgtcgcgg	gcagtgtcag	catgggggca	cctgcaagga	cctggtgaac	gggtaccagt	1740
gtgtgtgccc	acggggcttc	ggaggccggc	attgcgagct	ggaacgagac	gagtgtgcca	1800
gcagcccctg	ccacagcggc	ggcctctgcg	aggacctggc	cgacggcttc	cactgccact	1860
gcccccaggg	cttctccggg	cctctctgtg	aggtggatgt	cgacctttgt	gagccaagcc	1920
cctgccggaa	cggcgctcgc	tgctataacc	tggagggtga	ctattactgc	gcctgccctg	1980
atgactttgg	tggcaagaac	tgctccgtgc	cccgcgagcc	gtgccctggc	ggggcctgca	2040
gagtgatcga	tggctgcggg	tcagacgcgg	ggcctgggat	gcctggcaca	gcagcctccg	2100
gcgtgtgtgg	ccccatgga	cgctgcgtca	gccagccagg	gggcaacttt	tcctgcatct	2160
gtgacagtgg	ctttactggc	acctactgcc	atgagaacat	tgacgactgc	ctgggccagc	2220
cctgccgcaa	tgggggcaca	tgcatcgatg	a g gtggacgc	cttccgctgc	ttctgcccca	2280
gcggctggga	gggcgagctc	tgcgacacca	atcccaacga	ctgccttccc	gatccctgcc	2340
acagccgcgg	ccgctgctac	gacctggtca	atgacttcta	ctgtgcgtgc	gacgacggct	2400
ggaagggcaa	gacctgccac	tcacgcgagt	tccagtgcga	tgcctacacc	tgcagcaacg	2460
gtggcacctg	ctacgacagc	ggcgacacct	tccgctgcgc	ctgcccccc	ggctggaagg	2520
gcagcacctg	cgccgtcgcc	aagaacagca	gctgcctgcc	caacccctgt	gtgaatggtg	2580
gcacctgcgt	gggcagcggg	gcctccttct	cctgcatctg	ccgggacggc	tgggagggtc	2640
gtacttgcac	tcacaatacc	aacgactgca	accctctgcc	ttgctacaat	ggtggcatct	2700
gtgttgacgg	cgtcaactgg	ttccgctgcg	agtgtgcacc	tggcttcgcg	gggcctgact	2760

Page 212 of 270

WC05014634 [Ille:///E./WC05014834.cpo]

gccgcatcaa	catcgacgag	tgccagtcct	39467A.txt cgccctgtgc		acgtgtgtgg	2820
atgagatcaa	cgggtatcgc	tgtagctgcc	cacccggccg	agccggcccc	cggtgccagg	2880
aagtg a tcg g	gttcg gg aga	tcctgctggt	cccggggcac	tccgttccca	cacggaagct	2940
cctgggtgga	agactgcaac	agctgccgct	gcctggatgg	ccgccgtgac	tgcagcaagg	3000
tgtg gt gcg g	atggaagcct	tgtctgctgg	ccggccagcc	cgaggccctg	agcgcccagt	3060
gcccactggg	gcaaaggtgc	ctggagaagg	ccccaggcca	gtgtctgcga	ccaccctgtg	3120
a g gcctgg gg	ggagtgcggc	gcagaagagc	caccgagcac	cccctgcctg	ccacgctccg	3180
g cc acct gg a	caataactgt	gcccgcctca	ccttgcattt	caaccgtgac	cacgtgcccc	3240
agggcaccac	ggtgggcgcc	atttgctccg	ggatccgctc	cctgccagcc	acaagggctg	3300
tggcacg gg a	ccgcctgctg	gtgttgcttt	gcgaccgggc	gtcctcgggg	gccagtgccg	3360
tggaggtggc	cgtgtccttc	agccctgcca	gggacctgcc	tgacagcagc	ctgatccagg	3420
gcgcggccca	cgccatcgtg	gccgccatca	cccagcgggg	gaacagctca	ctgctcctgg	3480
ctgtcaccga	ggtcaaggtg	gagacggttg	ttacgggcgg	ctcttccaca	ggtctgctgg	3540
tgcctgtgct	gtgtggtgcc	ttcagcgtgc	tgtggctggc	gtgcgtggtc	ctgtgcgtgt	3600
ggtggacacg	caagcgcagg	aaagagcggg	agaggagccg	gctgccgcgg	gaggagagcg	3660
ccaacaacca	gtgggccccg	ctcaacccca	tccgcaaccc	catcgagcgg	ccggggggcc	3720
acaaggacgt	gctctaccag	tgcaagaact	tcacgccgcc	gccgcgcagg	gcggacgagg	3780
cgctgcccgg	gccggccggc	cacgcggccg	tcagggagga	tgaggaggac	gaggatctgg	3840
gccgcggtga	ggaggactcc	ctggaggcgg	agaagttcct	ctcacacaaa	ttcaccaaag	3900
atcctggccg	ctcgccgggg	aggccggccc	actgggcctc	aggccccaaa	gtggacaacc	3960
gcgcggtcag	gagcatcaat	gaggcccgct	acgccggcaa	ggagtagggg	cggctgccag	4020
ctgggccggg	acccagggcc	ctcggtggga	gccatgccgt	ctgccggacc	cggaggccga	4080
ggccatgtgc	atagtttctt	tattttgtgt	aaaaaaacca	ccaaaaacaa	aaaccaaatg	4140
tttattttct	acgtttcttt	aaccttgtat	aaattattca	gtaactgtca	ggctgaaaac	4200
aatggagtat	tctcggatag	ttgctatttt	tgtaaagttt	ccgtgcgtgg	cactcgctgt	4260
atgaa aggag	agagcaaagg	gtgtctgcgt	cgtcaccaaa	tcgtagcgtt	tgttaccaga	4320
ggttgtgcac	tgtttacaga	atcttccttt	tattcctcac	tcgggtttct	ctgtggctcc	4380
aggccaaagt	gccggtgaga	cccatggctg	tgttggtgtg	gcccatggct	gttggtggga	4440
cccgtggctg	atggtgtggc	ctgtggctgt	cggtgggact	cgtggctgtc	aatgggacct	4500
gtggctgtcg	gtgggaccta	cggtggtcgg	tgggaccctg	gttattgatg	tggccctggc	4560
tgccggcacg	gcccgtggct	gttgacgcac	ctgtggttgt	tagtggggcc	tgaggtcatc	4620
ggcgtggccc	aaggccggca	ggtcaacctc	gcgcttgctg	gccagtccac	cctgcctgcc	4680
gtctgtgctt	cctcctgccc	agaacgcccg	ctccagcgat	ctctccactg	tgctttcaga	4740
agtgcccttc	ctgctgcgca	gttctcccat	cctgggacgg	cggcagtatt	gaagctcgtg	4800

acaagtgcct tcacacagac ccctcgcac sgtccacgg tgccgtggac ccaggcgctg 4860 cccacctgcc ggccccggcc gccctcctc ggaaagtgc atttttgtaa atgtgtacat 4920 attaaaggaa gcactctgta tatttgattg aataatgcca cca 4963

<210> 27 <211> 1200 <212> PRT <213> Homo sapiens

<220>
<221> misc_feature
<223> Jagged2, transcript variant 2

<400> 27 Met Arg Ala Gln Gly Arg Gly Arg Leu Pro Arg Arg Leu Leu Leu 1 10 15 Leu Ala Leu Trp Val Gln Ala Ala Arg Pro Met Gly Tyr Phe Glu Leu Gln Leu Ser Ala Leu Arg Asn Val Asn Gly Glu Leu Leu Ser Gly Ala 35 40 45 Cys Cys Asp Gly Asp Gly Arg Thr Thr Arg Ala Gly Gly Cys Gly His 50 60 Asp Glu Cys Asp Thr Tyr Val Arg Val Cys Leu Lys Glu Tyr Gln Ala Lys Val Thr Pro Thr Gly Pro Cys Ser Tyr Gly His Gly Ala Thr Pro Val Leu Gly Gly Asn Ser Phe Tyr Leu Pro Pro Ala Gly Ala Ala Gly Asp Arg Ala Arg Ala Arg Ala Gly Gly Asp Gln Asp Pro Gly 115 120 125 Leu Val Val Ile Pro Phe Gln Phe Ala Trp Pro Arg Ser Phe Thr Leu Ile Val Glu Ala Trp Asp Trp Asp Asn Asp Thr Thr Pro Asn Glu Glu 145 150 155 160 Leu Leu Ile Glu Arg Val Ser His Ala Gly Met Ile Asn Pro Glu Asp 165 170 175

Gln Ile Arg Val Arg Cys Asp Glu Asn Tyr Tyr Ser Ala Thr Cys Asn

Page 214 of 270

39467A.txt.txt

Lys Phe Cys Arg Pro Arg Asn Asp Phe Phe Gly His Tyr Thr Cys Asp .Gln Tyr Gly Asn Lys Ala Cys Met Asp Gly Trp Met Gly Lys Glu Cys 225 230 235 240 Lys Glu Ala Val Cys Lys Gln Gly Cys Asn Leu Leu His Gly Gly Cys Thr Val Pro Gly Glu Cys Arg Cys Ser Tyr Gly Trp Gln Gly Arg Phe 260 265 270 Cys Asp Glu Cys Val Pro Tyr Pro Gly Cys Val His Gly Ser Cys Val Glu Pro Trp Gln Cys Asn Cys Glu Thr Asn Trp Gly Gly Leu Leu Cys 290 295 300 ASP Lys ASP Leu ASP Tyr Cys Gly Ser His His Pro Cys Thr ASP Gly 305 310 315 320 Gly Thr Cys Ile Asn Ala Glu Pro Asp Gln Tyr Arg Cys Thr Cys Pro Asp Gly Tyr Ser Gly Arg Asn Cys Glu Lys Ala Glu His Ala Cys Thr Ser Asn Pro Cys Ala Asn Gly Gly Ser Cys His Glu Val Pro Ser Gly Phe Glu Cys His Cys Pro Ser Gly Trp Ser Gly Pro Thr Cys Ala Leu Asp Ile Asp Glu Cys Ala Ser Asn Pro Cys Ala Ala Gly Gly Thr Cys Val Asp Gln Val Asp Gly Phe Glu Cys Ile Cys Pro Glu Gln Trp Val Gly Ala Thr Cys Gln Leu Asp Val Asn Asp Cys Arg Gly Gln Cys Gln 420 425 430 His Gly Gly Thr Cys Lys Asp Leu Val Asn Gly Tyr Gln Cys Val Cys 435 440 445 Pro Arg Gly Phe Gly Gly Arg His Cys Glu Leu Glu Arg Asp Glu Cys 450 455 460 Ala Ser Ser Pro Cys His Ser Gly Gly Leu Cys Glu Asp Leu Ala Asp WO 2005/014854

Page 215 of 270

39467A.txt.txt 475 465 470

Gly Phe His Cys His Cys Pro Gln Gly Phe Ser Gly Pro Leu Cys Glu 485 490 495 Val Asp Val Asp Leu Cys Glu Pro Ser Pro Cys Arg Asn Gly Ala Arg 500 505 510 Cys Tyr Asn Leu Glu Gly Asp Tyr Tyr Cys Ala Cys Pro Asp Asp Phe Gly Gly Lys Asn Cys Ser Val Pro Arg Glu Pro Cys Pro Gly Gly Ala 530 535 540 Cys Arg Val Ile Asp Gly Cys Gly Ser Asp Ala Gly Pro Gly Met Pro Gly Thr Ala Ala Ser Gly Val Cys Gly Pro His Gly Arg Cys Val Ser 565 570 575 Gln Pro Gly Gly Asn Phe Ser Cys Ile Cys Asp Ser Gly Phe Thr Gly Thr Tyr Cys His Glu Asn Ile Asp Asp Cys Leu Gly Gln Pro Cys Arg Asn Gly Gly Thr Cys Ile Asp Glu Val Asp Ala Phe Arg Cys Phe Cys Pro Ser Gly Trp Glu Gly Glu Leu Cys Asp Thr Asn Pro Asn Asp Cys Leu Pro Asp Pro Cys His Ser Arg Gly Arg Cys Tyr Asp Leu Val Asn 645 650 655 Asp Phe Tyr Cys Ala Cys Asp Asp Gly Trp Lys Gly Lys Thr Cys His
660 670 Ser Arg Glu Phe Gln Cys Asp Ala Tyr Thr Cys Ser Asn Gly Gly Thr 675 680 685 Cys Tyr Asp Ser Gly Asp Thr Phe Arg Cys Ala Cys Pro Pro Gly Trp 690 700 Lys Gly Ser Thr Cys Ala Val Ala Lys Asn Ser Ser Cys Leu Pro Asn 705 710 720 Pro Cys Val Asn Gly Gly Thr Cys Val Gly Ser Gly Ala Ser Phe Ser 735 730 735 Cys Ile Cys Arg Asp Gly Trp Glu Gly Arg Thr Cys Thr His Asn Thr

Page 215 of 270

WO 2005/014854

39467A.txt.txt 745

750 Asn Asp Cys Asn Pro Leu Pro Cys Tyr Asn Gly Gly Ile Cys Val Asp
755 760 765 Gly Val Asn Trp Phe Arg Cys Glu Cys Ala Pro Gly Phe Ala Gly Pro 770 775 780 Asp Cys Arg Ile Asn Ile Asp Glu Cys Gln Ser Ser Pro Cys Ala Tyr 785 790 795 800 Gly Ala Thr Cys Val Asp Glu Ile Asn Gly Tyr Arg Cys Ser Cys Pro 805 810 815Pro Gly Arg Ala Gly Pro Arg Cys Gln Glu Val Ile Gly Phe Gly Arg Ser Cys Trp Ser Arg Gly Thr Pro Phe Pro His Gly Ser Ser Trp Val 835 840 845 Glu Asp Cys Asn Ser Cys Arg Cys Leu Asp Gly Arg Arg Asp Cys Ser 850 855 860 Lys Val Trp Cys Gly Trp Lys Pro Cys Leu Leu Ala Gly Gln Pro Glu 865 870 875 880 Ala Leu Ser Ala Gln Cys Pro Leu Gly Gln Arg Cys Leu Glu Lys Ala 885 890 895 Pro Gly Gln Cys Leu Arg Pro Pro Cys Glu Ala Trp Gly Glu Cys Gly Ala Glu Glu Pro Pro Ser Thr Pro Cys Leu Pro Arg Ser Gly His Leu 915 920 925 Asp Asn Asn Cys Ala Arg Leu Thr Leu His Phe Asn Arg Asp His Val Pro Gln Gly Thr Thr Val Gly Ala Ile Cys Ser Gly Ile Arg Ser Leu 945 950 955 960 Pro Ala Thr Arg Ala Val Ala Arg Asp Arg Leu Leu Val Leu Cys 965 970 975 Asp Arg Ala Ser Ser Gly Ala Ser Ala Val Glu Val Ala Val Ser Phe 980 985 990 Ser Pro Ala Arg Asp Leu Pro Asp Ser Ser Leu Ile Gln Gly Ala Ala 995 1000 1005

His Ala Ile Val Ala Ala Ile Thr Gln Arg Gly Asn Ser Ser Leu

Page 217 of 270

WO 2005/014854

39467A.txt.txt

1015 1010 Leu Leu Ala Val Thr Glu Val Lys Val Glu Thr Val Val Thr Gly 1025 1030 1035 Gly Ser Ser Thr Gly Leu Leu Val Pro Val Leu Cys Gly Ala Phe 1040 1045 1050 Ser Val Leu Trp Leu Ala Cys Val Val Leu Cys Val Trp Trp Thr Glu Ser Ala Asn Asn Gln Trp Ala Pro Leu Asn Pro Ile Arg Asn 1085 1090 1095 Pro Ile Glu Arg Pro Gly Gly His Lys Asp Val Leu Tyr Gln Cys 1100 1110 Lys Asn Phe Thr Pro Pro Pro Arg Arg Ala Asp Glu Ala Leu Pro Gly Pro Ala Gly His Ala Ala Val Arg Glu Asp Glu Glu Asp Glu 1130 1135 1140 Asp Leu Gly Arg Gly Glu Glu Asp Ser Leu Glu Ala Glu Lys Phe 1145 1150 1155 Leu Ser His Lys Phe Thr Lys Asp Pro Gly Arg Ser Pro Gly Arg 1160 1170Pro Ala His Trp Ala Ser Gly Pro Lys Val Asp Asn Arg Ala Val

Arg Ser Ile Asn Glu Ala Arg Tyr Ala Gly Lys Glu 1190 1200

<210> 28 <211> 3158 <212> DNA <213> Homo sapiens

<220> <221> misc_feature <223> Delta like 1 Delta like 1 (Notch ligand)

<400> 28 aaaccqqaac ggggcccaac ttctggggcc tggagaaggg aaacgaagtc cccccggtt tcccgaggtt gcctttcctc gggcatcctt ggtttcggcg ggacttcgca gggcggatat 120 aaagaacggc gcctttggga agaggcggag accggcttta aagaaagaag tcttggtcct 180

gcggcttggg	cgaggcaagg	gcgaggcaag	39467A.txt ggcgctttct		cccgtggccc	240
tacgatcccc	cgcgcgtccg	ccgctgttct	aaggagagaa	gtgggggccc	cccaggctcg	300
cgcgtggagc	gaagcagcat	gggcagtcgg	tgcgcgctgg	ccctggcggt	gctctcggcc	360
ttgctgtgtc	aggtctggag	ctctggggtg	ttcgaactga	agctgcagga	gttcgtcaac	420
aagaaggggc	tgctggggaa	ccgcaactgc	tgccgcgggg	gcgcggggcc	accgccgtgc	480
gcctgccgga	ccttcttccg	cgtgtgcctc	aagcactacc	aggccagcgt	gtcccccgag	540
ccgccctgca	cctacggcag	cgccgtcacc	cccgtgctgg	gcgtcgactc	cttcagtctg	600
cccgacggcg	ggggcgccga	ctccgcgttc	agcaacccca	tccgcttccc	cttcggcttc	660
acctggccgg	gcaccttctc	tctgattatt	gaagctctcc	acacagattc	tcctgatgac	720
ctcgcaacag	aaaacccaga	aagactcatc	agccgcctgg	ccacccagag	gcacctgacg	780
gtgggcgagg	agtggtccca	ggacctgcac	agcagcggcc	gcacggacct	caagtactcc	840
taccgcttcg	tgtgtgacga	acactactac	ggagagggct	gctccgtttt	ctgccgtccc	900
cgggacgatg	ccttcggcca	cttcacctgt	ggggagcgtg	gggagaaagt	gtgcaaccct	960
ggctggaaag	ggccctactg	cacagagccg	atctgcctgc	ctggatgtga	tgagcagcat	1020
ggattttgtg	acaaaccagg	ggaatgcaag	tgcagagtgg	gctggcaggg	ccggtactgt	1080
gacgagtgta	tccgctatcc	aggctgtctc	catggcacct	gccagcagcc	ctggcagtgc	1140
aactgccagg	aaggctgggg	gggccttttc	tgcaaccagg	acctgaacta	ctgcacacac	1200
cataagccct	gcaagaatgg	agccacctgc	accaacacgg	gccaggggag	ctacacttgc	1260
tcttgccggc	ctgggtacac	aggtgccacc	tgcgagctgg	ggattgacga	gtgtgacccc	1320
agcccttgta	agaacggagg	gagctgcacg	gatctcgaga	acagctactc	ctgtacctgc	1380
ccacccggct	tctacggcaa	aatctgtgaa	ttgagtgcca	tgacctgtgc	ggacggccct	1440
tgctttaacg	ggggtcggtg	ctcagacagc	cccgatggag	ggtacagctg	ccgctgcccc	1500
gtgggctact	ccggcttcaa	ctgtgagaag	aaaattgact	actgcagctc	ttcaccctgt	1560
tctaatggtg	ccaagtgtgt	ggacctcggt	gatgcctacc	tgtgccgctg	ccaggccggc	1620
ttctcgggga	ggcactgtga	cgacaacgtg	gacgactgcg	cctcctcccc	gtgcgccaac	1680
gggggcacct	gccgggatgg	cgtgaacgac	ttctcctgca	cctgcccgcc	tggctacacg	1740
ggcaggaact	gcagtgcccc	cgtcagcagg	tgcgagcacg	caccctgcca	caatggggcc	1800
acctgccacc	agaggggcca	cggctatgtg	tgcgaatgtg	cccgaagcta	cgggggtccc	1860
aactgccagt	tcctgctccc	cgagctgccc	ccgggcccag	cggtggtgga	cctcactgag	1920
aagctagagg	gccagggcgg	gccattcccc	tgggtggccg	tgtgcgccgg	ggtcatcctt	1980
gtcctcatgc	tgctgctggg	ctgtgccgct	gtggtggtct	gcgtccggct	gaggctgcag	2040
aagcaccggc	ccccagccga	ccctgccgg	ggggagacgg	agaccatgaa	caacctggcc	2100
aactgccagc	gtgagaagga	catctcagtc	agcatcatcg	gggccacgca	gatcaagaac	2160
. accaa c aaga	aggcggactt	ccacggggac	cacagcgccg	acaagaatgg	cttcaaggcc	2220

WC05014654 [file ///E:/WC05014854.cpc]

39467A.txt.txt cgctacccag cggtggacta taacctcgtg caggacctca agggtgacga caccgccgtc 2280 agggacgcgc acagcaagcg tgacaccaag tgccagcccc agggctcctc aggggaggag 2340 2400 aaggggaccc cgaccacact caggggtgga gaagcatctg aaagaaaaag gccggactcg 2460 ggctgttcaa cttcaaaaga caccaagtac cagtcggtgt acgtcatatc cgaggagaag gatgagtgcg tcatagcaac tgaggtgtaa aatggaagtg agatggcaag actcccgttt 2520 2580 ctcttaaaat aagtaaaatt ccaaggatat atgccccaac gaatgctgct gaagaggagg gaggcctcgt ggactgctgc tgagaaaccg agttcagacc gagcaggttc tcctcctgag 2640 2700 gtcctcgacg cctgccgaca gcctgtcgcg gcccggccgc ctgcggcact gccttccgtg 2760 acgtcgccgt tgcactatgg acagttgctc ttaagagaat atatatttaa atgggtgaac 2820 tgaattacgc ctaagaagca tgcactgcct gagtgtatat tttggattct tatgagccag tettttettg aattagaaac acaaacactg cetttattgt cetttttgat acgaagatgt 2880 2940 gctttttcta gatggaaaag atgtgtgtta ttttttggat ttgtaaaaat atttttcatg 3000 atatctgtaa agcttgagta ttttgtgatg ttcgttttt ataatttaaa ttttggtaaa 3060 tatgtacaaa ggcacttcgg gtctatgtga ctatattttt ttgtatataa atgtatttat 3120 ggaatattgt gccaatgtta tttgagtttt ttactgtttt gttaatgaag aaattccttt 3158 ttaaaatatt tttccaaaat aaattttatg aggaattc

<210> 29 <211> 723 <212> PRT <213> Homo sapiens

<220> <221> misc_feature <223> Delta like 1 (Notch ligand)

Adob 29
Met Gly Ser Arg Çys Ala Leu Ala Leu Ala Val Leu Ser Ala Leu Leu Lys Gln Val Trp Ser Ser Gly Val Phe Glu Leu Lys Leu Gln Glu Phe 25
Val Asn Lys Lys Gly Leu Leu Gly Asn Arg Asn Cys Cys Arg Gly Gly Ala Gly Pro Pro Pro Cys Ala Cys Arg Thr Phe Phe Arg Val Cys Leu Lys His Tyr Gln Ala Ser Val Ser Pro Glu Pro Pro Cys Thr Tyr Gly 70
Ser Ala Val Thr Pro Val Leu Gly Val Asp Ser Phe Ser Leu Pro Asp 95

Page 230 of 270

39467A.txt.txt

Gly Gly Gly Ala Asp Ser Ala Phe Ser Asn Pro Ile Arg Phe Pro Phe Gly Phe Thr Trp Pro Gly Thr Phe Ser Leu Ile Ile Glu Ala Leu His Thr Asp Ser Pro Asp Asp Leu Ala Thr Glu Asn Pro Glu Arg Leu Ile 130 135 140 Ser Arg Leu Ala Thr Gln Arg His Leu Thr Val Gly Glu Glu Trp Ser 145 150 155 160 Gln Asp Leu His Ser Ser Gly Arg Thr Asp Leu Lys Tyr Ser Tyr Arg 165 170 175 Phe Val Cys Asp Glu His Tyr Tyr Gly Glu Gly Cys Ser Val Phe Cys 180 185 190 Arg Pro Arg Asp Asp Ala Phe Gly His Phe Thr Cys Gly Glu Arg Gly
195
200
205 Glu Lys Val Cys Asn Pro Gly Trp Lys Gly Pro Tyr Cys Thr Glu Pro Tile Cys Leu Pro Gly Cys Asp Glu Gln His Gly Phe Cys Asp Lys Pro Gly Glu Cys Lys Cys Arg Val Gly Trp Gln Gly Arg Tyr Cys Asp Glu 245 250 255 Cys Ile Arg Tyr Pro Gly Cys Leu His Gly Thr Cys Gln Gln Pro Trp Gln Cys Asn Cys Gln Glu Gly Trp Gly Gly Leu Phe Cys Asn Gln Asp Leu Asn Tyr Cys Thr His His Lys Pro Cys Lys Asn Gly Ala Thr Cys 290 295 300 Thr Asn Thr Gly Gln Gly Ser Tyr Thr Cys Ser Cys Arg Pro Gly Tyr 305 310 315 320 Thr Gly Ala Thr Cys Glu Leu Gly Ile Asp Glu Cys Asp Pro Ser Pro Cys Lys Asn Gly Gly Ser Cys Thr Asp Leu Glu Asn Ser Tyr Ser Cys Thr Cys Pro Pro Gly Phe Tyr Gly Lys Ile Cys Glu Leu Ser Ala Met 355 360 365

Page 221 of 270

39467A.txt.txt

Thr Cys Ala Asp Gly Pro Cys Phe Asn Gly Gly Arg Cys Ser Asp Ser Pro Asp Gly Gly Tyr Ser Cys Arg Cys Pro Val Gly Tyr Ser Gly Phe Asn Cys Glu Lys Lys Ile Asp Tyr Cys Ser Ser Ser Pro Cys Ser Asn 405 410 415 Gly Ala Lys Cys Val Asp Leu Gly Asp Ala Tyr Leu Cys Arg Cys Gln
420 425 430 Ala Gly Phe Ser Gly Arg His Cys Asp Asp Asn Val Asp Asp Cys Ala 435 440 445 Ser Ser Pro Cys Ala Asn Gly Gly Thr Cys Arg Asp Gly Val Asn Asp 450 460 Phe Ser Cys Thr Cys Pro Pro Gly Tyr Thr Gly Arg Asn Cys Ser Ala 465 470 475 480 Pro Val Ser Arg Cys Glu His Ala Pro Cys His Asn Gly Ala Thr Cys
485
490
495 His Gln Arg Gly His Gly Tyr Val Cys Glu Cys Ala Arg Ser Tyr Gly 500 505 510 Gly Pro Asn Cys Gln Phe Leu Leu Pro Glu Leu Pro Pro Gly Pro Ala 515 520 525 Val Val Asp Leu Thr Glu Lys Leu Glu Gly Gln Gly Gly Pro Phe Pro Trp Val Ala Val Cys Ala Gly Val Ile Leu Val Leu Met Leu Leu Leu 545 550 560 Gly Cys Ala Ala Val Val Cys Val Arg Leu Arg Leu Gln Lys His 565 570 575 Arg Pro Pro Ala Asp Pro Cys Arg Gly Glu Thr Glu Thr Met Asn Asn 580 585 590 Leu Ala Asn Cys Gln Arg Glu Lys Asp Ile Ser Val Ser Ile Ile Gly Ala Thr Gln Ile Lys Asn Thr Asn Lys Lys Ala Asp Phe His Gly Asp 610 615 620 His Ser Ala Asp Lys Asn Gly Phe Lys Ala Arg Tyr Pro Ala Val Asp 625 630 640

WC05014654 [file ///E:/WC05014854.cpc]

PCT/EP2004/008819

120 180

240 300

360 420

480

540 600

660

720

780

900 960 Page 222 of 270

39467A.txt.txt

Tyr Asn Leu Val Gln Asp Leu Lys Gly Asp Asp Thr Ala Val Arg Asp

Ala His Ser Lys Arg Asp Thr Lys Cys Gln Pro Gln Gly Ser Ser Gly 660 670

Glu Glu Lys Gly Thr Pro Thr Thr Leu Arg Gly Glu Ala Ser Glu 675 $\,$ 685 $\,$

Arg Lys Arg Pro Asp Ser Gly Cys Ser Thr Ser Lys Asp Thr Lys Tyr 690 700

Gln Ser Val Tyr Val Ile Ser Glu Glu Lys Asp Glu Cys Val Ile Ala 705 710 720

Thr Glu Val

<210> 30 <211> 1971 <212> DNA

<213> Homo sapiens

<220> <221> <223>

21> misc_feature 23> Delta like 3 (Notch ligand)

<400> 30

qaaqqccatg gtctccccac ggatgtccgg gctcctctcc cagactgtga tcctagcgct cattttcctc ccccagacac ggcccgctgg cgtcttcgag ctgcagatcc actctttcgg gccgggtcca ggccctgggg ccccgcggtc cccctgcagc gcccggctcc cctgccgcct cttcttcaga gtctgcctga agcctgggct ctcagaggag gccgccgagt ccccgtgcgc cctgggcgcg gcgctgagtg cgcgcggacc ggtctacacc gagcagcccg gagcgcccgc caccttctct ttcatcatcg aaacctggag agaggagtta ggagaccaga ttggagggcc cgcctggagc ctgctggcgc gcgtggctgg caggcggcgc ttggcagccg gaggcccgtg ggcccgggac attcagcgcg caggcgcctg ggagctgcgc ttctcgtacc gcgcgcgctg cgagccgcct gccgtcggga ccgcgtgcac gcgcctctgc cgtccgcgca gcgccccctc gcggtgcggt ccgggactgc gcccctgcgc accgctcgag gacgaatgtg aggcgccgct ggtgtgccga gcaggctgca gccctgagca tggcttctgt gaacagcccg gtgaatgccg atgcctagag ggctggactg gacccctctg cacggtccct gtctccacca gcagctgcct cagccccagg ggcccgtcct ctgctaccac cggatgcctt gtccctgggc ctgggccctg tgacgggaac ccgtgtgcca atggaggcag ctgtagtgag acacccaggt cctttgaatg cacctgcccg cgtgggttct acgggctgcg gtgtgaggtg agcggggtga catgtgcaga

```
39467A.txt.txt
tggaccctgc ttcaacggcg gcttgtgtgt cgggggtgca gaccctgact ctgcctacat
                                                                     1020
ctgccactgc ccacctggtt tccaaggctc caactgtgag aagagggtgg accggtgcag
                                                                     1080
cctgcagcca tgccgcaatg gcggactctg cctggacctg ggccacgccc tgcgctgccg
                                                                     1140
ctgccgcgcc ggcttcgcgg gtcctcgctg cgagcacgac ctggacgact gcgcgggccg
                                                                     1200
cgcctgcgct aacggcggca cgtgtgtgga gggcggcggc gcgcaccgct gctcctgcgc
                                                                     1260
gctgggcttc ggcggccgcg actgccgcga gcgcgcggac ccgtgcgccg cgcgccctg
                                                                     1320
tgctcacggc ggccgctgct acgcccactt ctccggcctc gtctgcgctt gcgctcccgg
                                                                     1380
ctacatggga gcgcggtgtg agttcccagt gcaccccgac ggcgcaagcg ccttgcccqc
                                                                     1440
ggccccgccg ggcctcaggc ccggggaccc tcagcgctac cttttgcctc cggctctggg
                                                                     1500
actgctcgtg gccgcgggcg tggccggcgc tgcgctcttg ctggtccacg tgcgccgccg
                                                                     1560
tggccactcc caggatgctg ggtctcgctt gctggctggg accccggagc cgtcagtcca
                                                                     1620
cgcactcccg gatgcactca acaacctaag gacgcaggag ggttccgggg atggtccgag
                                                                     1680
ctcgtccgta gattggaatc gccctgaaga tgtagaccct caagggattt atgtcatatc
                                                                     1740
tgctccttcc atctacgctc gggaggtagc gacgcccctt ttccccccgc tacacactgg
                                                                     1800
gcgcgctggg cagaggcagc acctgctttt tccctaccct tcctcgattc tgtccgtgaa
                                                                     1860
atgaattggg tagagtctct ggaaggtttt aagcccattt tcagttctaa cttactttca
                                                                     1920
tcctattttg catccctctt atcgttttga gctacctgcc atcttctctt t
                                                                     1971
```

<210> 31 <211> 618 <212> PRT <213> Homo sapiens

<220>
<221> misc_feature
<223> Delta like 3 (Notch ligand)

<400> 31

Met Val Ser Pro Arg Met Ser Gly Leu Leu Ser Gln Thr Val Ile Leu $1 \ \ \, 10 \ \ \, 15$

Gln Ile His Ser Phe Gly Pro Gly Pro Gly Pro Gly Ala Pro Arg Ser 35 40 45

Pro Cys Ser Ala Arg Leu Pro Cys Arg Leu Phe Phe Arg Val Cys Leu 50 60

Lys Pro Gly Leu Ser Glu Glu Ala Ala Glu Ser Pro Cys Ala Leu Gly 65 7080

Ala Ala Leu Ser Ala Arg Gly Pro Val Tyr Thr Glu Gln Pro Gly Ala

PCT/EP2004/008819

Page 234 of 270

39467A.txt.txt 90

95

Pro Ala Pro Asp Leu Pro Leu Pro Asp Gly Leu Leu Gln Val Pro Phe Arg Asp Ala Trp Pro Gly Thr Phe Ser Phe Ile Ile Glu Thr Trp Arg Glu Glu Leu Gly Asp Gln Ile Gly Gly Pro Ala Trp Ser Leu Leu Ala Arg Val Ala Gly Arg Arg Arg Leu Ala Ala Gly Gly Pro Trp Ala Arg 145 150 155 Asp Ile Gln Arg Ala Gly Ala Trp Glu Leu Arg Phe Ser Tyr Arg Ala 165 170 175 Arg Cys Glu Pro Pro Ala Val Gly Thr Ala Cys Thr Arg Leu Cys Arg Pro Arg Ser Ala Pro Ser Arg Cys Gly Pro Gly Leu Arg Pro Cys Ala 195 200 205 Pro Leu Glu Asp Glu Cys Glu Ala Pro Leu Val Cys Arg Ala Gly Cys 210 215 220 Ser Pro Glu His Gly Phe Cys Glu Gln Pro Gly Glu Cys Arg Cys Leu 225 230 235 240 Glu Gly Trp Thr Gly Pro Leu Cys Thr Val Pro Val Ser Thr Ser Ser Cys Leu Ser Pro Arg Gly Pro Ser Ser Ala Thr Thr Gly Cys Leu Val 260 265 270 Pro Gly Pro Gly Pro Cys Asp Gly Asn Pro Cys Ala Asn Gly Gly Ser Cys Ser Glu Thr Pro Arg Ser Phe Glu Cys Thr Cys Pro Arg Gly Phe Tyr Gly Leu Arg Cys Glu Val Ser Gly Val Thr Cys Ala Asp Gly Pro Cys Phe Asn Gly Gly Leu Cys Val Gly Gly Ala Asp Pro Asp Ser Ala Tyr Ile Cys His Cys Pro Pro Gly Phe Gln Gly Ser Asn Cys Glu Lys Arg Val Asp Arg Cys Ser Leu Gln Pro Cys Arg Asn Gly Gly Leu Cys

Page 225 of 270

WO 2005/014854

39467A.txt.txt 360 365

Leu Asp Leu Gly His Ala Leu Arg Cys Arg Cys Arg Ala Gly Phe Ala 370 375 380 Gly Pro Arg Cys Glu His Asp Leu Asp Asp Cys Ala Gly Arg Ala Cys 385 390 400 Ala Asn Gly Gly Thr Cys Val Glu Gly Gly Gly Ala His Arg Cys Ser Cys Ala Leu Gly Phe Gly Gly Arg Asp Cys Arg Glu Arg Ala Asp Pro 420 425 430 Cys Ala Ala Arg Pro Cys Ala His Gly Gly Arg Cys Tyr Ala His Phe 435 440 445Ser Gly Leu Val Cys Ala Cys Ala Pro Gly Tyr Met Gly Ala Arg Cys 450 460 Glu Phe Pro Val His Pro Asp Gly Ala Ser Ala Leu Pro Ala Ala Pro 465 470 475 480 Pro Gly Leu Arg Pro Gly Asp Pro Gln Arg Tyr Leu Leu Pro Pro Ala Leu Gly Leu Leu Val Ala Ala Gly Val Ala Gly Ala Ala Leu Leu Leu 500 505 510 Val His Val Arg Arg Gly His Ser Gln Asp Ala Gly Ser Arg Leu 515 520 525 Leu Ala Gly Thr Pro Glu Pro Ser Val His Ala Leu Pro Asp Ala Leu Asn Asn Leu Arg Thr Gln Glu Gly Ser Gly Asp Gly Pro Ser Ser Ser 545 550 555 560 Val Asp Trp Asn Arg Pro Glu Asp Val Asp Pro Gln Gly Ile Tyr Val Ile Ser Ala Pro Ser Ile Tyr Ala Arg Glu Val Ala Thr Pro Leu Phe 580 585 590Pro Pro Leu His Thr Gly Arg Ala Gly Gln Arg Gln His Leu Leu Phe 595 600 605 Pro Tyr Pro Ser Ser Ile Leu Ser Val Lys 610 615 <210> 32

WC05014654 [file ///E:/WC05014854.cpc] Page 205 of 270

PCT/EP2004/008819

1320

1380

1440

1500 1560

1620

1680 1740

39467A.txt.txt

<211> 3383 <212> DNA <213> Homo sapiens <220> <221> misc feature <223> Delta like 4 (Notch ligand) <400> 32 gctgcgcgca ggccgggaac acgaggccaa gagccgcagc cccagccgcc ttqqtqcaqc 60 gtacaccggc actagcccgc ttgcagcccc aggattagac agaagacgcg tcctcggcgc 120 ggtcgccgcc cagccgtagt cacctggatt acctacagcg gcagctgcag cggagccagc 180 gagaaggcca aaggggagca gcgtcccgag aggagcgcct cttttcaggg accccgccgg 240 ctggcggacg cgcgggaaag cggcgtcgcg aacagagcca gattgagggc ccgcqqqtqq 300 agagagcgac gcccgagggg atggcqqcaq cqtcccgqaq cqcctctqqc tqqqcqctac 360 tgctgctggt ggcactttgg cagcagcgcg cggccggctc cggcgtcttc cagctgcagc 420 tgcaggagtt catcaacgag cgcggcgtac tggccagtgg gcggccttgc gagcccggct 480 gccggacttt cttccgcgtc tgccttaagc acttccaggc ggtcgtctcg cccggaccct 540 gcaccttcgg gaccgtctcc acqccggtat tgggcaccaa ctccttcgct gtccgggacg 600 acagtagcgg cggggggcgc aaccetetee aactgeeett caattteace tggccgggta 660 ccttctcgct catcatcgaa gcttggcacg cgccaggaga cgacctgcgg ccagaggcct 720 tgccaccaga tgcactcatc agcaagatcg ccatccaggg ctccctagct gtgggtcaga 780 actggttatt ggatgagcaa accagcaccc tcacaaggct gcgctactct taccgggtca 840 tctgcagtga caactactat ggagacaact gctcccgcct gtgcaagaag cgcaatgacc 900 actteggeca ctatgtgtge cagecagatg geaacttgte etgeetgeec ggttggaetg 960 gggaatattq ccaacagcct atctqtcttt cgggctqtca tgaacagaat ggctactqca 1020 gcaagccagc agagtgcctc tgccgcccag gctggcaggg ccggctgtgt aacgaatgca 1080 teccecacaa tggctgtege caeggeacet geageactee etggcaatgt acttgtgatg 1140 agggctgggg aggcctgttt tgtgaccaag atctcaacta ctgcacccac cactccccat 1200 gcaagaatgg ggcaacgtgc tccaacagtg ggcagcgaag ctacacctgc acctgtcgcc 1260

caggetacae tggtgtggae tgtgagetgg ageteagega gtgtgaeage aacceetgte

gcaatggagg cagctgtaag gaccaggagg atggctacca ctgcctgtgt cctccgggct

actatggcct gcattgtgaa cacagcacct tgagctgcgc cgactccccc tgcttcaatg

gggqctcctg ccgqgagcgc aaccaggggg ccaactatgc ttgtgaatgt cccccaact

tcaccqqctc caactqcqaq aaqaaaqtqq acaqqtqcac caqcaacccc tqtqccaacq ggggacagtg cctgaaccga ggtccaagcc gcatgtgccg ctgccgtcct ggattcacgg

gcacctactg tgaactccac gtcagcgact gtgcccgtaa cccttgcgcc cacggtggca

cttgccatga cctggagaat gggctcatgt gcacctgccc tgccggcttc tctggccgac

```
39467A.txt.txt
gctgtgaggt gcggacatcc atcgatgcct gtgcctcgag tccctgcttc aacagggcca
                                                                     1800
cctgctacac cgacctctcc acagacacct ttgtgtgcaa ctgcccttat ggctttgtgg
                                                                     1860
gcagccgctg cgagttcccc gtgggcttgc cgcccagctt cccctgggtg gccgtctcgc
                                                                    1920
                                                                    1980
taggtataga actagcagta ctactagata tactagacat actagacagta actatacaac
                                                                    2040
agctgcggct tcgacggccg gacgacggca gcagggaagc catgaacaac ttgtcggact
tccagaagga caacctgatt cctgccgccc agcttaaaaa cacaaaccag aagaaggagc
                                                                    2100
tqqaaqtqqa ctqtqqcctq qacaagtcca actqtqqcaa acaqcaaaac cacacattqq
                                                                    2160
actataatct ggccccaggg cccctggggc gggggaccat gccaggaaag tttccccaca
                                                                     2220
gtgacaagag cttaggagag aaggcgccac tgcggttaca cagtgaaaag ccagagtgtc
                                                                    2280
ggatatcagc gatatgctcc cccagggact ccatgtacca gtctgtgtgt ttgatatcag
                                                                     2340
aggagaggaa tgaatgtgtc attgccacgg aggtataagg caggagccta cctggacatc
                                                                    2400
                                                                    2460
cctoctcage eccoggeto gaeetteett etgeattott tacattocat ectogatogg
acgtttttca tatgcaacgt gctgctctca ggaggaggag ggaatggcag gaaccggaca
gactgtgaac ttgccaagag atgcaatacc cttccacacc tttgggtgtc tgtctggcat
                                                                    2580
                                                                    2640
cagattogca gctgcaccaa ccagaggaac agaagagaag agagatgcca ctgggcactg
ccctgccagt agtggccttc agggggctcc ttccggggct ccggcctgtt ttccagagag
                                                                    2700
agtggcagta gccccatggg gcccggagct gctgtggcct ccactggcat ccgtgtttcc
                                                                     2760
                                                                    2820
aaaagtgcct ttggcccagg ctccacggcg acagttgggc ccaaatcaga aaggagagag
                                                                    2880
ggggccaatg agggcagggc ctcctgtggg ctggaaaacc actgggtgcg tctcttgctg
gggtttgccc tggaggtgag gtgagtgctc gagggagggg agtgctttct gccccatgcc
                                                                    2940
tccaactact gtatgcaggc ctggctctct ggtctaggcc ctttgggcaa gaatgtccgt
                                                                    3000
ctaccogget tecaccacce tetggecetg ggettetgta ageagaeagg cagagggeet
                                                                    3060
gcccctccca ccagccaagg gtgccaggcc taactggggc actcagggca gtgtgttgga
                                                                    3120
aattccactg agggggaaat caggtgctgc ggccgcctgg gccctttcct ccctcaagcc
                                                                    3180
catctccaca acctcgagcc tgggctctgg tccactactg ccccagacca ccctcaaagc
                                                                    3240
tggtcttcag aaatcaataa tatgagtttt tattttgttt ttttttttt ttttgtagtt
                                                                    3300
tattttggag tctagtattt caataattta agaatcagaa gcactgacct ttctacattt
                                                                    3360
tataacatta ttttgtatat aat
                                                                    3383
```

<210> 33 <211> 685 <212> PRT

<213> Homo sapiens

<220> <221> misc_feature <223> Delta like 4 (Notch ligand)

<400> 33

Page 228 of 270

39467A.txt.txt

Met Ala Ala Ala Ser Arg Ser Ala Ser Gly Trp Ala Leu Leu Leu Leu 1 10 15 Val Ala Leu Trp Gln Gln Arg Ala Ala Gly Ser Gly Val Phe Gln Leu 20 25 30 Gln Leu Gln Glu Phe Ile Asn Glu Arg Gly Val Leu Ala Ser Gly Arg 35 40 45 Pro Cys Glu Pro Gly Cys Arg Thr Phe Phe Arg Val Cys Leu Lys His 50 60 Phe Gln Ala Val Val Ser Pro Gly Pro Cys Thr Phe Gly Thr Val Ser 65 70 75 80 Thr Pro Val Leu Gly Thr Asn Ser Phe Ala Val Arg Asp Asp Ser Ser 90 95 Gly Gly Gly Arg Asn Pro Leu Gln Leu Pro Phe Asn Phe Thr Trp Pro Gly Thr Phe Ser Leu Ile Ile Glu Ala Trp His Ala Pro Gly Asp Asp Leu Arg Pro Glu Ala Leu Pro Pro Asp Ala Leu Ile Ser Lys Ile Ala 130 140 Ile Gln Gly Ser Leu Ala Val Gly Gln Asn Trp Leu Leu Asp Glu Gln 145 150 150 160 Thr Ser Thr Leu Thr Arg Leu Arg Tyr Ser Tyr Arg Val Ile Cys Ser 165 170 175 Asp Asn Tyr Tyr Gly Asp Asn Cys Ser Arg Leu Cys Lys Lys Arg Asn 180 185 190 Asp His Phe Gly His Tyr Val Cys Gln Pro Asp Gly Asn Leu Ser Cys 195 200 205 Leu Pro Gly Trp Thr Gly Glu Tyr Cys Gln Gln Pro Ile Cys Leu Ser 210 215 220 Gly Cys His Glu Gln Asn Gly Tyr Cys Ser Lys Pro Ala Glu Cys Leu 225 230 235 240 Cys Arg Pro Gly Trp Gln Gly Arg Leu Cys Asn Glu Cys Ile Pro His Asn Gly Cys Arg His Gly Thr Cys Ser Thr Pro Trp Gln Cys Thr Cys 260 265 270

39467A.txt.txt

Asp Glu Gly Trp Gly Gly Leu Phe Cys Asp Gln Asp Leu Asn Tyr Cys 275 280 285 Thr His His Ser Pro Cys Lys Asn Gly Ala Thr Cys Ser Asn Ser Gly Gln Arg Ser Tyr Thr Cys Thr Cys Arg Pro Gly Tyr Thr Gly Val Asp Cys Glu Leu Glu Leu Ser Glu Cys Asp Ser Asn Pro Cys Arg Asn Gly Gly Ser Cys Lys Asp Gln Glu Asp Gly Tyr His Cys Leu Cys Pro Pro Gly Tyr Tyr Gly Leu His Cys Glu His Ser Thr Leu Ser Cys Ala Asp 355 360 365 Ser Pro Cys Phe Asn Gly Gly Ser Cys Arg Glu Arg Asn Gln Gly Ala Asn Tyr Ala Cys Glu Cys Pro Pro Asn Phe Thr Gly Ser Asn Cys Glu 385 390 395 400 Lys Lys Val Asp Arg Cys Thr Ser Asn Pro Cys Ala Asn Gly Gly Gln 405 410 415 Cys Leu Asn Arg Gly Pro Ser Arg Met Cys Arg Cys Arg Pro Gly Phe 420 425 430 Thr Gly Thr Tyr Cys Glu Leu His Val Ser Asp Cys Ala Arg Asn Pro Cys Ala His Gly Gly Thr Cys His Asp Leu Glu Asn Gly Leu Met Cys Thr Cys Pro Ala Gly Phe Ser Gly Arg Arg Cys Glu Val Arg Thr Ser 465 470 475 480 Ile Asp Ala Cys Ala Ser Ser Pro Cys Phe Asn Arg Ala Thr Cys Tyr 485 490 495 Thr Asp Leu Ser Thr Asp Thr Phe Val Cys Asn Cys Pro Tyr Gly Phe Val Gly Ser Arg Cys Glu Phe Pro Val Gly Leu Pro Pro Ser Phe Pro 515 520 525 Trp Val Ala Val Ser Leu Gly Val Gly Leu Ala Val Leu Leu Val Leu 530 535 540

PCT/EP2004/008819

300

360

420

480

540

600

Page 230 of 270

WO 2005/014854

WC05014654 [file ///E:/WC05014854.cpc]

39467A.txt.txt

Leu Gly Met Val Ala Val Ala Val Arg Gln Leu Arg Leu Arg Arg Pro Asp Asp Gly Ser Arg Glu Ala Met Asn Asn Leu Ser Asp Phe Gln Lys 565 570 575 Asp Asn Leu Ile Pro Ala Ala Gln Leu Lys Asn Thr Asn Gln Lys Lys Glu Leu Glu Val Asp Cys Gly Leu Asp Lys Ser Asn Cys Gly Lys Gln 595 600 605 Gln Asn His Thr Leu Asp Tyr Asn Leu Ala Pro Gly Pro Leu Gly Arg 610 615 620 Gly Thr Met Pro Gly Lys Phe Pro His Ser Asp Lys Ser Leu Gly Glu 625 630 640 Lys Ala Pro Leu Arg Leu His Ser Glu Lys Pro Glu Cys Arg Ile Ser 645 650 655 Ala Ile Cys Ser Pro Arg Asp Ser Met Tyr Gln Ser Val Cys Leu Ile 660 665 670 Ser Glu Glu Arg Asn Glu Cys Val Ile Ala Thr Glu Val 675 680 685 <210> 34 5077 DNA Homo sapiens <220> <221> <223> misc_feature Jagged2, transcript variant 1 <400> 34 ctcatgcata tgcaggtgcg cgggtgacga atgggcgagc gagctgtcag tctcgttccg 60 120 aacttgttgg ctgcggtgcc gggagcgcgg gcgcgcagag ccgaggccgg gacccgctgc 180 cttcaccgcc gccgccgtcg ccgccgggtg ggagccgggc cgggcagccg gagcgcggcc 240

adtiting thytightet gygapting gygapting gygapting cygasysis satisfyration of the company of the

11 0 20	03/014034				101/12	1 2004/0000
agtgcgacac	gtacgtgcgc	gtgtgcctta	39467A.txt aggagtacca	.txt ggccaaggtg	acgcccacgg	660
ggccctgcag	ctacggccac	ggcgccacgc	ccgtgctggg	cggcaactcc	ttctacctgc	720
cgccggcggg	cgctgcgggg	gaccgagcgc	gggcgcgggc	ccgggccggc	ggcgaccagg	780
acccgggcct	cgtcgtcatc	cccttccagt	tcgcctggcc	gcgctccttt	accctcatcg	840
t gg aggcctg	ggactgggac	aacgatacca	ccccgaatga	ggagctgctg	atcgagcgag	900
tgtcgcatgc	cggcatgatc	aacccggagg	accgctggaa	gagcctgcac	ttcagcggcc	960
acgtggcgca	cctg g agctg	cagatccgcg	tgcgctgcga	cgagaactac	tacagcgcca	1020
cttgcaacaa	gttctgcc g g	ccccgcaacg	actttttcgg	ccactacacc	tgcgaccagt	1080
acggcaacaa	ggcctgcatg	gacggctgga	tgggcaagga	gtgcaaggaa	gctgtgtgta	1140
aacaa g ggt g	taatttgctc	cacgggggat	gcaccgtgcc	tggggagtgc	aggtgcagct	1200
acggctggca	ag gg aggttc	tgcgatgagt	gtgtccccta	ccccggctgc	gtgcatggca	1260
gttgtgtgga	gccctggcag	tgcaactgtg	agaccaactg	gggcggcctg	ctctgtgaca	1320
aagacctgaa	ctactgtggc	agccaccacc	cctgcaccaa	cggaggcacg	tgcatcaacg	1380
ccgagcctga	ccagtaccgc	tgcacctgcc	ctgacggcta	ctcgggcagg	aactgtgaga	1440
aggctgagca	cgcctgcacc	tccaacccgt	gtgccaacgg	gggctcttgc	catgaggtgc	1500
cgtccggctt	cgaatgccac	tgcccatcgg	gctggagcgg	gcccacctgt	gcccttgaca	1560
tcgatgagtg	tgcttc g aac	ccgtgtgcgg	ccggtggcac	ctgtgtggac	caggtggacg	1620
gctttgagtg	catctgcccc	gagcagtggg	tgggggccac	ctgccagctg	gacgccaatg	1680
agtgtgaagg	gaagccatgc	cttaacgctt	tttcttgcaa	aaacctgatt	ggcggctatt	1740
actgtgattg	catcccgggc	tggaagggca	tcaactgcca	tatcaacgtc	aacgactgtc	1800
gcgggcagtg	tcagcatggg	ggcacctgca	aggacctggt	gaacgggtac	cagtgtgtgt	1860
gcccacgggg	cttcggaggc	cggcattgcg	agctggaacg	agacgagtgt	gccagcagcc	1920
cctgccacag	cggcggcctc	tgcgaggacc	tggccgacgg	cttccactgc	cactgccccc	1980
agggcttctc	cgggcctctc	tgtgaggtgg	atgtcgacct	ttgtgagcca	agcccctgcc	2040
ggaacggcgc	tcgctgctat	aacctggagg	gtgactatta	ctgcgcctgc	cctgatgact	2100
ttggtggcaa	gaactgctcc	gtgccccgcg	agccgtgccc	tggcggggcc	tgcagagtga	2160
tcgatggctg	cgggtcagac	gcggggcctg	ggatgcctgg	cacagcagcc	tccggcgtgt	2220
gtggccccca	tggacgctgc	gtcagccagc	cagggggcaa	cttttcctgc	atctgtgaca	2280
gtggctttac	tggcacctac	tgccatgaga	acattgacga	ctgcctgggc	cagccctgcc	2340
gcaatggggg	cacatgcatc	gatgaggtgg	acgccttccg	ctgcttctgc	cccagcggct	2400
ggga gg gc g a	gctctgcgac	accaatccca	acgactgcct	tcccgatccc	tgccacagcc	2460
gcggccgctg	ctacgacctg	gtcaatgact	tctactgtgc	gtgcgacgac	ggctggaagg	2520
gcaagacctg	ccactcacgc	gagttccagt	gcgatgccta	cacctgcagc	aacggtggca	2580
cctgctacga	cagcggcgac	accttccgct	gcgcctgccc	ccccggctgg	aagggcagca	2640

11 0 20	05/014054				101/11	2004/00001
cctgcgccgt	cgccaagaac	agcagctgcc	39467A.txt tgcccaaccc		ggtggcacct	2700
gcgtgggcag	cggggcctcc	ttctcctgca	tctgccggga	cggctgggag	ggtcgtactt	2760
gcactcacaa	taccaacgac	tgcaaccctc	tgccttgcta	caatggtggc	atctgtgttg	2820
acggcgtcaa	ctggttccgc	tgcgagtgtg	cacctggctt	cgcggggcct	gactgccgca	2880
tcaacatcga	cgagtgccag	tcctcgccct	gtgcctacgg	ggccacgtgt	gtggatgaga	2940
tcaacgggta	tcgctgtagc	tgcccacccg	gccgagccgg	ccccggtgc	caggaagtga	3000
tcgggttcgg	gagatcctgc	tggtcccggg	gcactccgtt	cccacacgga	agctcctggg	3060
tggaagactg	caacagctgc	cgctgcctgg	atggccgccg	tgactgcagc	aaggtgtggt	3120
gcggatggaa	gccttgtctg	ctggccggcc	agcccgaggc	cctgagcgcc	cagtgcccac	3180
tggggcaaag	gtgcctggag	aaggccccag	gccagtgtct	gcgaccaccc	tgtgaggcct	3240
ggggggagtg	cggcgcagaa	gagccaccga	gcaccccctg	cctgccacgc	tccggccacc	3300
tggacaataa	ctgtgcccgc	ctcaccttgc	atttcaaccg	tgaccacgtg	ccccagggca	3360
ccacggtggg	cgccatttgc	tccgggatcc	gctccctgcc	agccacaagg	gctgtggcac	3420
gggaccgcct	gctggtgttg	ctttgcgacc	gggcgtcctc	gggggccagt	gccgtggagg	3480
tggccgtgtc	cttcagccct	gccagggacc	tgcctgacag	cagcctgatc	cagggcgcgg	3540
cccacgccat	cgtggccgcc	atcacccagc	gggggaacag	ctcactgctc	ctggctgtca	3600
ccgaggtcaa	ggtggagacg	gttgttacgg	gcggctcttc	cacaggtctg	ctggtgcctg	3660
tgctgtgtgg	tgccttcagc	gtgctgtggc	tggcgtgcgt	ggtcctgtgc	gtgtggtgga	3720
cacgcaagcg	caggaaagag	cgggagagga	gccggctgcc	gcgggaggag	agcgccaaca	3780
accagtgggc	cccgctcaac	cccatccgca	accccatcga	gcggccgggg	ggccacaagg	3840
acgtgctcta	ccagtgcaag	aacttcacgc	cgccgccgcg	cagggcggac	gaggcgctgc	3900
ccgggccggc	cggccacgcg	gccgtcaggg	aggatgagga	ggacgaggat	ctgggccgcg	3960
gtgaggagga	ctccctggag	gcggagaagt	tcctctcaca	caaattcacc	aaagatcctg	4020
gccgctcgcc	ggggaggccg	gcccactggg	cctcaggccc	caaagtggac	aaccgcgcgg	4080
tcaggagcat	caatgaggcc	cgctacgccg	gcaaggagta	ggggcggctg	ccagctgggc	4140
cgggacccag	ggccctcggt	gggagccatg	ccgtctgccg	gacccggagg	ccgaggccat	4200
gtgcatagtt	tctttatttt	gtgtaaaaaa	accaccaaaa	acaaaaacca	aatgtttatt	4260
ttctacgttt	ctttaacctt	gtataaatta	ttcagtaact	gtcaggctga	aaacaatgga	4320
gtattctcgg	atagttgcta	tttttgtaaa	gtttccgtgc	gtggcactcg	ctgtatgaaa	4380
ggagagagca	aagggtgtct	gcgtcgtcac	caaatcgtag	cgtttgttac	cagaggttgt	4440
gcactgttta	cagaatcttc	cttttattcc	tcactcgggt	ttctctgtgg	ctccaggcca	4500
aagtgccggt	gagacccatg	gctgtgttgg	tgtggcccat	ggctgttggt	gggacccgtg	4560
gctgatggtg	tggcctgtgg	ctgtcggtgg	gactcgtggc	tgtcaatggg	acctgtggct	4620
gtcggtggga	cctacggtgg	tcggtgggac	cctggttatt	gatgtggccc	tggctgccgg	4680

WC05014654 [file ///E:/WC05014854.cpc]

		204671 +			
cacggcccgt ggctgttgac	gcacctgtgg	39467A.txt ttgttagtgg		catcggcgtg	4740
gcccaaggcc ggcaggtcaa	cctcgcgctt	gctggccagt	ccaccctgcc	tgccgtctgt	4800
gcttcctcct gcccagaacg	cccgctccag	cgatctctcc	actgtgcttt	cagaagtgcc	4860
$\verb cttcctgctg cgcagttctc $	ccatcctggg	acggcggcag	tattgaagct	cgtgacaagt	4920
gccttcacac agacccctcg	caactgtcca	cgcgtgccgt	ggcaccaggc	gctgcccacc	4980
tgccggcccc ggccgcccct	cctcgtgaaa	gtgcattttt	gtaaatgtgt	acatattaaa	5040
ggaagcactc tgtatatttg	attgaataat	gccacca			5077

35 1238 <210> <211> <213> Homo sapiens

<220> <221> <223> misc_feature Jagged2, transcript variant 1

Met Arg Ala Gln Gly Arg Gly Arg Leu Pro Arg Arg Leu Leu Leu 1 10 15 Leu Ala Leu Trp Val Gln Ala Ala Arg Pro Met Gly Tyr Phe Glu Leu 20 25 30 Gln Leu Ser Ala Leu Arg Asn Val Asn Gly Glu Leu Leu Ser Gly Ala 35 40 45 Cys Cys Asp Gly Asp Gly Arg Thr Thr Arg Ala Gly Gly Cys Gly His $50 \ \ \,$ Asp Glu Cys Asp Thr Tyr Val Arg Val Cys Leu Lys Glu Tyr Gln Ala 65 70 75 80 Lys val Thr Pro Thr Gly Pro Cys Ser Tyr Gly His Gly Ala Thr Pro Val Leu Gly Gly Asn Ser Phe Tyr Leu Pro Pro Ala Gly Ala Ala Gly 100 105 110 Asp Arg Ala Arg Ala Arg Ala Gly Gly Asp Gln Asp Pro Gly 115 125 Leu Val Val Ile Pro Phe Gln Phe Ala Trp Pro Arg Ser Phe Thr Leu 130 140 Ile Val Glu Ala Trp Asp Trp Asp Asn Asp Thr Thr Pro Asn Glu Glu 145 150 160 Leu Leu Ile Glu Arg Val Ser His Ala Gly Met Ile Asn Pro Glu Asp

PCT/EP2004/008819

Page 234 of 270

39467A.

39467A.txt.txt 170 175

Arg Trp Lys Ser Leu His Phe Ser Gly His Val Ala His Leu Glu Leu Gln Ile Arg Val Arg Cys Asp Glu Asn Tyr Tyr Ser Ala Thr Cys Asn 195 200 205 Lys Phe Cys Arg Pro Arg Asn Asp Phe Phe Gly His Tyr Thr Cys Asp 210 215 220 Gln Tyr Gly Asn Lys Ala Cys Met Asp Gly Trp Met Gly Lys Glu Cys 225 230 235 240 Lys Glu Ala Val Cys Lys Gln Gly Cys Asn Leu Leu His Gly Gly Cys 255 Thr Val Pro Gly Glu Cys Arg Cys Ser Tyr Gly Trp Gln Gly Arg Phe Cys Asp Glu Cys Val Pro Tyr Pro Gly Cys Val His Gly Ser Cys Val Glu Pro Trp Gln Cys Asn Cys Glu Thr Asn Trp Gly Gly Leu Leu Cys 290 295 300 Asp Lys Asp Leu Asn Tyr Cys Gly Ser His His Pro Cys Thr Asn Gly Gly Thr Cys Ile Asn Ala Glu Pro Asp Gln Tyr Arg Cys Thr Cys Pro Asp Gly Tyr Ser Gly Arg Asn Cys Glu Lys Ala Glu His Ala Cys Thr 340 345 350 Ser Asn Pro Cys Ala Asn Gly Gly Ser Cys His Glu Val Pro Ser Gly Phe Glu Cys His Cys Pro Ser Gly Trp Ser Gly Pro Thr Cys Ala Leu 370 380 Asp Ile Asp Glu Cys Ala Ser Asn Pro Cys Ala Ala Gly Gly Thr Cys 385 390 395 400 Val Asp Gln Val Asp Gly Phe Glu Cys Ile Cys Pro Glu Gln Trp Val Gly Ala Thr Cys Gln Leu Asp Ala Asn Glu Cys Glu Gly Lys Pro Cys
420 425 430 Leu Asn Ala Phe Ser Cys Lys Asn Leu Ile Gly Gly Tyr Tyr Cys Asp

Page 235 of 270

WO 2005/014854

39467A.txt.txt

Cys Ile Pro Gly Trp Lys Gly Ile Asn Cys His Ile Asn Val Asn Asp 450 455 460 Cys Arg Gly Gln Cys Gln His Gly Gly Thr Cys Lys Asp Leu Val Asn 465 470 475 480 Gly Tyr Gln Cys Val Cys Pro Arg Gly Phe Gly Gly Arg His Cys Glu 485 490 495 Leu Glu Arg Asp Glu Cys Ala Ser Ser Pro Cys His Ser Gly Gly Leu $500 \hspace{0.5cm} 500 \hspace{0.5cm} 510 \hspace{0.5cm}$ Cys Glu Asp Leu Ala Asp Gly Phe His Cys His Cys Pro Gln Gly Phe Ser Gly Pro Leu Cys Glu Val Asp Val Asp Leu Cys Glu Pro Ser Pro 530 540 Cys Arg Asn Gly Ala Arg Cys Tyr Asn Leu Glu Gly Asp Tyr Tyr Cys Ala Cys Pro Asp Asp Phe Gly Gly Lys Asn Cys Ser Val Pro Arg Glu 565 570 575 Pro Cys Pro Gly Gly Ala Cys Arg Val Ile Asp Gly Cys Gly Ser Asp 580 590 Ala Gly Pro Gly Met Pro Gly Thr Ala Ala Ser Gly Val Cys Gly Pro $595 \ \ \, 600 \ \ \, 605$ His Gly Arg Cys Val Ser Gln Pro Gly Gly Asn Phe Ser Cys Ile Cys 610 615 620Asp Ser Gly Phe Thr Gly Thr Tyr Cys His Glu Asn Ile Asp Asp Cys 625 630 635 640 Leu Gly Gln Pro Cys Arg Asn Gly Gly Thr Cys Ile Asp Glu Val Asp Ala Phe Arg Cys Phe Cys Pro Ser Gly Trp Glu Gly Glu Leu Cys Asp
660 665 670 Thr Asn Pro Asn Asp Cys Leu Pro Asp Pro Cys His Ser Arg Gly Arg 675 680 685 Cys Tyr Asp Leu Val Asn Asp Phe Tyr Cys Ala Cys Asp Asp Gly Trp $690 \hspace{0.5cm} 695 \hspace{0.5cm} 700 \hspace{0.5cm}$ LVS Glv LVS Thr CVS His Ser Arg Glu Phe Gln CVS Asp Ala Tyr Thr

Page 235 of 270

39467A.txt.txt 715 705 710 720

Cys Ser Asn Gly Gly Thr Cys Tyr Asp Ser Gly Asp Thr Phe Arg Cys

Ala Cys Pro Pro Gly Trp Lys Gly Ser Thr Cys Ala Val Ala Lys Asn

Ser Ser Cys Leu Pro Asn Pro Cys Val Asn Gly Gly Thr Cys Val Gly

Ser Gly Ala Ser Phe Ser Cys Ile Cys Arg Asp Gly Trp Glu Gly Arg 770 775 780

Thr Cys Thr His Asn Thr Asn Asp Cys Asn Pro Leu Pro Cys Tyr Asn 785 790 795 800

Gly Gly Ile Cys Val Asp Gly Val Asn Trp Phe Arg Cys Glu Cys Ala 805 810 815

Pro Gly Phe Ala Gly Pro Asp Cys Arg Ile Asn Ile Asp Glu Cys Gln

Ser Ser Pro Cys Ala Tyr Gly Ala Thr Cys Val Asp Glu Ile Asn Gly

Tyr Arg Cys Ser Cys Pro Pro Gly Arg Ala Gly Pro Arg Cys Gln Glu 850 855 860

Val Ile Gly Phe Gly Arg Ser Cys Trp Ser Arg Gly Thr Pro Phe Pro

His Gly Ser Ser Trp Val Glu Asp Cys Asn Ser Cys Arg Cys Leu Asp

Gly Arg Arg Asp Cys Ser Lys Val Trp Cys Gly Trp Lys Pro Cys Leu

Leu Ala Gly Gln Pro Glu Ala Leu Ser Ala Gln Cys Pro Leu Gly Gln

Arg Cys Leu Glu Lys Ala Pro Gly Gln Cys Leu Arg Pro Pro Cys Glu 930 940

Ala Trp Gly Glu Cys Gly Ala Glu Glu Pro Pro Ser Thr Pro Cys Leu 945 950 955 960

Pro Arg Ser Gly His Leu Asp Asn Asn Cys Ala Arg Leu Thr Leu His

Phe Asn Arg Asp His Val Pro Gln Gly Thr Thr Val Gly Ala Ile Cys

080

39467A.txt.txt 985

Ser Gly Ile Arg Ser Leu Pro Ala Thr Arg Ala Val Ala Arg Asp Arg 995 1000 1005 Leu Leu Val Leu Leu Cys Asp Arg Ala Ser Ser Gly Ala Ser Ala 1010 1015 1020 Val Glu Val Ala Val Ser Phe Ser Pro Ala Arg Asp Leu Pro Asp 1025 1030 1035 Ser Ser Leu Ile Gln Gly Ala Ala His Ala Ile Val Ala Ala Ile 1040 1045 1050 Thr Gln Arg Gly Asn Ser Ser Leu Leu Leu Ala Val Thr Glu Val 1055 1060 1065 Lys Val Glu Thr Val Val Thr Gly Gly Ser Ser Thr Gly Leu Leu 1070 1075 1080 Val Pro Val Leu Cys Gly Ala Phe Ser Val Leu Trp Leu Ala Cys 1085 1090 1095 Val Val Leu Cys Val Trp Trp Thr Arg Lys Arg Arg Lys Glu Arg Glu Arg Ser Arg Leu Pro Arg Glu Glu Ser Ala Asn Asn Gln Trp Ala Pro Leu Asn Pro Ile Arg Asn Pro Ile Glu Arg Pro Gly Gly His Lys Asp Val Leu Tyr Gln Cys Lys Asn Phe Thr Pro Pro 1145 1150 1155 Arg Arg Ala Asp Glu Ala Leu $\mbox{Pro Gly Pro Ala Gly His Ala Ala}\ 1160$ 1165 1170Val Arg Glu Asp Glu Glu Asp Glu Asp Leu Gly Arg Gly Glu Glu Asp Ser Leu Glu Ala Glu Lys Phe Leu Ser His Lys Phe Thr Lys Asp Pro Gly Arg Ser Pro Gly Arg Pro Ala His Trp Ala Ser Gly 1205 1210 1215 Pro Lys Val Asp Asn Arg Ala Val Arg Ser Ile Asn Glu Ala Arg 1220 1230 Tyr Ala Gly Lys Glu

60

WO 2005/014854 PCT/EP2004/008819 39467A.txt.txt

1235

<210> <211> DNA

<213> Homo sapiens

<220> <221> misc feature

<400> 36

tcagtgtgtg cggaacgcaa gcagccgaga gcggagaggc gccgctgtag ttaactcctc cctgcccgcc gcgccgaccc tccccaggaa cccccaggga gccagcatga agcgagctca 120 ccccgagtac agctcctcgg acagcgagct ggacgagacc atcgaggtgg agaaggagag 180 240 tgcggacgag aatggaaact tgagttcggc tctaggttcc atgtccccaa ctacatcttc ccagattttg gccagaaaaa gacggagagg aataattgag aagcgccgac gagaccggat 300 360 caataacagt ttgtctgagc tgagaaggct ggtacccagt gcttttgaga agcagggatc 420 tgctaagcta gaaaaagccg agatcctgca gatgaccgtg gatcacctga aaatgctgca tacggcagga gggaaaggtt actttgacgc gcacgccctt gctatggact atcggagttt 480 gggatttcgg gaatgcctgg cagaagttgc gcgttatctg agcatcattg aaggactaga 540 600 tgcctctgac ccgcttcgag ttcgactggt ttcgcatctc aacaactacg cttcccagcg ggaagccgcg agcggcgcc acgcgggct cggacacatt ccctggggga ccgtcttcgg 660 acatcacccg cacatcgcgc acccgctgtt gctgccccag aacggccacg ggaacgcggg 720 780 caccacggcc tcacccacgg aaccgcacca ccagggcagg ctgggctcgg cacatccgga ggcgcctgct ttgcgagcgc cccctagcgg cagcttcgga ccggtgctcc ctgtggtcac 840 900 ctccgcctcc aaactgtcgc tgcctctgct ctcctcagtg gcctccctgt cggccttccc 960 cttctcttc ggctccttcc acttactgtc tcccaatgca ctgagccctt cagcacccac gcaggctgca aaccttggca agccctatag accttggggg acggagatcg gagctttta 1020 1080 aagaactgat gtagaatgag ggaggggaaa gtttaaaatc ccagctgggc tggactgttg 1140 ccaacatcac cttaaagtcg tcagtaaaag taaaaaggaa aaaggtacac tttcagataa ttttttttt aaagactaaa ggtttgttgg tttactttta tctttttaa tgttttttc 1200 1260 atcatgtcat gtattagcag tttttaaaaa ctagttgtta aattttgttc aagacattaa 1320 attgaaatag tgagtataag ccaacacttt gtgataggtt tgtactgtgc ctaatttact ttgtaaacca gaatgattcc gtttttgcct caaaatttgg ggaatcttaa catttaggta 1380 tttttggtct gtttttctcc ttgtatagtt atggtctgtt tttagaatta attttccaaa 1440 ccactatgct taatgttaac atgattctgt ttgttaatat tttgacagat taaggtgttg 1500 tataaataat attcttttgg ggggagggga actatattga attttatatt tctgagcaaa 1560 gcgttgacaa atcagatgat cagctttatc caagaaagaa gactagtaaa ttgtctgcct 1620

cctatagcag	aaaggtgaat	gtacaaactg	39467A.txt ttggtggcct	.txt gaatccatct	gaccagctgc	1680
tggtatctgc	caggactggc	agttctgatt	tagttaggag	gaccgctgat	aggttaggtc	1740
tcatttggag	tgttggtgga	aaggaaactg	aaggtaattg	aatagaatac	gcctgcattt -	1800
accagcccca	gcaacacaaa	gaattttaa	tcacacggat	ctcaaattca	caaatgttaa	1860
catggataag	tgatcatggt	gtgcgagtgg	tcaattgagt	agtacagtgg	aaactgttaa	1920
atgcataacc	taattttcct	gggactgcca	tattttcttt	taactggaaa	tttttatgtg	1980
agttttcctt	ttggtgcatg	gaactgtggt	tgccaaggta	tttaaaaggg	ctttcctgcc	2040
tccttctctt	tgatttattt	aatttgattt	gggctataaa	atatcatttt	tcaggtttat	2100
tcttttagca	ggtgtagtta	aacgacctcc	actgaactgg	gtttgacctc	tgttgtactg	2160
atgtgttgtg	actaaataaa	aaagaaagaa	caaagtaaaa	aaaaaaaaa	aaaaaaaaa	2220
aaa						2223

<210> 37 <211> 304 <212> PRT

<213> Homo sapiens

<220> <221> misc_feature <223> Hey-1

<400> 37

Met Lys Arg Ala His Pro Glu Tyr Ser Ser Ser Asp Ser Glu Leu Asp 10 Glu Thr Ile Glu Val Glu Lys Glu Ser Ala Asp Glu Asn Gly Asn Leu 20 30

Ser Ser Ala Leu Gly Ser Met Ser Pro Thr Thr Ser Ser Gln Ile Leu $35 \hspace{0.25cm} 40 \hspace{0.25cm} 45$

Ala Arg Lys Arg Arg Arg Gly Ile Ile Glu Lys Arg Arg Arg Asp Arg 50 60

Ile Asn Asn Ser Leu Ser Glu Leu Arg Arg Leu Val Pro Ser Ala Phe 65 70 80

Glu Lys Gln Gly Ser Ala Lys Leu Glu Lys Ala Glu Ile Leu Gln Met 85 90

Thr Val Asp His Leu Lys Met Leu His Thr Ala Gly Gly Lys Gly Tyr 100 105 110

Phe Asp Ala His Ala Leu Ala Met Asp Tyr Arg Ser Leu Gly Phe Arg 115 120 125

Glu Cys Leu Ala Glu Val Ala Arg Tyr Leu Ser Ile Ile Glu Gly Leu

130

240 300

360 420 Page 240 of 270

WO 2005/014854

39467A.txt.txt 135 140

Asp Ala Ser Asp Pro Leu Arg Val Arg Leu Val Ser His Leu Asn Asn 145 150 155 Tyr Ala Ser Gln Arg Glu Ala Ala Ser Gly Ala His Ala Gly Leu Gly 165 170 175 His Ile Pro Trp Gly Thr Val Phe Gly His His Pro His Ile Ala His Pro Leu Leu Pro Gln Asn Gly His Gly Asn Ala Gly Thr Thr Ala 195 200 205 Ser Pro Thr Glu Pro His His Gln Gly Arg Leu Gly Ser Ala His Pro 210 225 220 Glu Ala Pro Ala Leu Arg Ala Pro Pro Ser Gly Ser Phe Gly Pro Val 225 230 235 240 Leu Pro Val Val Thr Ser Ala Ser Lys Leu Ser Leu Pro Leu Leu Ser 245 250 255 Leu Leu Ser Pro Asn Ala Leu Ser Pro Ser Ala Pro Thr Gln Ala Ala 275 280 285 Asn Leu Gly Lys Pro Tyr Arg Pro Trp Gly Thr Glu Ile Gly Ala Phe 290 295 <210> 38 2533 <212> <213> DNA Homo sapiens <220> <221> <223> misc_feature Hey-2 <400> 38 tcggcgtccg agcttccggc cgggctgtgc cccgcgcggt cttcgccggg atgaagcgcc 60 cctgcgagga gacgacctcc gagagcgaca tggacgagac catcgacgtg gggagcgaga 120 acaattactc ggggcaaagt actagctctg tgattagatt gaattctcca acaacaacat 180

ctcagattat ggcaagaaag aaaaggagag ggattataga gaaaaggcgt cgggatcgga

taaataacag tttatctgag ttgagaagac ttgtgccaac tgcttttgaa aaacaaggat ctgcaaagtt agaaaaagct gaaatattgc aaatgacagt ggatcatttg aagatgcttc

aggcaacagg gggtaaaggc tactttgacg cacacgctct tgccatggac ttcatgagca

taggattccg	agagtgccta	acagaagttg	39467A.txt cgcggtacct		gaaggcctgg	480
actcctcgga	tccgctgcgg	gtgcggcttg	tgtctcatct	cagcacttgc	gccacccagc	540
gggaggcggc	ggccatgaca	tcctccatgg	cccaccacca	tcatccgctc	cacccgcatc	600
actgggccgc	cgccttccac	cacctgcccg	cagccctgct	ccagcccaac	ggcctccatg	660
cctcagagtc	aaccccttgt	cgcctctcca	caacttcaga	agtgcctcct	gcccacggct	720
ctgctctcct	cacggccacg	tttgcccatg	cggattcagc	cctccgaatg	ccatccacgg	780
gcagcgtcgc	cccctgcgtg	ccacctctct	ccacctctct	cttgtccctc	tctgccaccg	840
tccacgccgc	agccgcagca	gccaccgcgg	ctgcacacag	cttccctctg	tccttcgcgg	900
gggcattccc	catgcttccc	ccaaacgcag	cagcagcagt	ggccgcggcc	acagccatca	960
gcccgccctt	gtcagtatca	gccacgtcca	gtcctcagca	gaccagcagt	ggaacaaaca	1020
ataaacctta	ccgaccctgg	gggacagaag	ttggagcttt	ttaaattttt	cttgaacttc	1080
ttgcaatagt	aactgaatgt	cctccatttc	agagtcagct	taaaacctct	gcaccctgaa	1140
ggtagccata	cagatgccga	cagatccaca	aaggaacaat	aaa g ctattt	gagacacaaa	1200
cctcacgagt	ggaaatgtgg	tattctcttt	tttttctctc	ccttttttgt	ttggttcaag	1260
gcagctcggt	aactgacatc	agcaactttt	gaaaacttca	cacttgttac	catttagaag	1320
tttcctggaa	aatatatgga	ccgtaccatc	cagcagtgca	tcagtatgtc	tgaattgggg	1380
aagtaaaatg	ccctgactga	attctcttga	gactagatgg	gacatacata	tatagagaga	1440
gagtgagaga	gtcgtgtttc	gtaagtgcct	gagcttagga	agttttcttc	tggatatata	1500
acattgcaca	agggaagacg	agtgtggagg	ataggttaag	aaaggaaagg	gacagaagtc	1560
ttgcaatagg	ctgcagacat	tttaatacca	tgccagagaa	gagtattctg	ctgaaaccaa	1620
caggttttac	tggtcaaaat	gactgctgaa	aataattttc	aagttgaaag	atctagtttt	1680
atcttagttt	gccttctttg	tacagacatg	ccaagaggtg	acatttagca	gtgcattggt	1740
ataagcaatt	atttcatcag	ttctcagatt	aacaagcatt	tctgctctgc	ctgcaggccc	1800
ccaggcactt	ttttttttgg	atggctcaaa	atatggtgct	gctttatata	aaccttacat	1860
ttatatagtg	cacctatgag	cagttgccta	ccatgtgtcc	accagaggct	atttaattca	1920
tgccaacttg	aaaactctcc	agtttgtagg	agtttggttt	aatttattca	gtttcattag	1980
gactatttt	atatatttat	cctcttcatt	ttctcctaat	gatgcaacat	ctattcttgt	2040
caccctttgg	gagaagttac	atttctggag	gtgatgaagc	aaggagggag	cactaggaag	2100
agaaaagcta	caattttaa	agctctttgt	caagttagtg	attgcatttg	atcccaaaac	2160
aagatgaatg	tatgcaatgg	gatgtacata	agttatttt	gcccatgcct	aaactagtgc	2220
tatgtaatgg	ggttgtggtt	ttgtttttt	cgatttcgtt	taatgacaaa	ataatctctt	2280
aatatgctga	aatcaagcac	gtgagagttt	ttgtttaaaa	gataagagac	acagcatgta	2340
ttatgcactt	catttctcta	ctgtgtggag	aaagcaataa	acattatgag	aatgttaaac	2400
gttatgcaaa	attatacttt	taaatatttg	ttttgaaatt	actgtaccta	gtcttttttg	2460

PCT/EP2004/008819

2533

Page 242 of 270

39467A.txt.txt cattactttg taaccttttt ctatgcaaga gtctttacat accactaatt aaatgaagtc ctttttqact att 39 337 <210> <213> Homo sapiens <220> <221> misc_feature <223> Hey-2 <400> 39 Met Lys Arg Pro Cys Glu Glu Thr Thr Ser Glu Ser Asp Met Asp Glu Thr Ile Asp Val Gly Ser Glu Asn Asn Tyr Ser Gly Gln Ser Thr Ser Ser Val Ile Arg Leu Asn Ser Pro Thr Thr Thr Ser Gln Ile Met Ala 35 40 45 Arg Lys Lys Arg Arg Gly Ile Ile Glu Lys Arg Arg Arg Asp Arg Ile Asn Asn Ser Leu Ser Glu Leu Arg Arg Leu Val Pro Thr Ala Phe Glu Lys Gln Gly Ser Ala Lys Leu Glu Lys Ala Glu Ile Leu Gln Met Thr 85 90 95 Val Asp His Leu Lys Met Leu Gln Ala Thr Gly Gly Lys Gly Tyr Phe Asp Ala His Ala Leu Ala Met Asp Phe Met Ser Ile Gly Phe Arg Glu 115 120 125 Cys Leu Thr Glu Val Ala Arg Tyr Leu Ser Ser Val Glu Gly Leu Asp 130 135 140 Ser Ser Asp Pro Leu Arg Val Arg Leu Val Ser His Leu Ser Thr Cys Ala Thr Gln Arg Glu Ala Ala Ala Met Thr Ser Ser Met Ala His His 165 170 175 . His His Pro Leu His Pro His His Trp Ala Ala Ala Phe His His Leu 180 185 190 Pro Ala Ala Leu Leu Gln Pro Asn Gly Leu His Ala Ser Glu Ser Thr 195 200 205

Page 243 of 270

WO 2005/014854 PCT/EP2004/008819

39467A.txt.txt

Pro Cys Arg Leu Ser Thr Thr Ser Glu Val Pro Pro Ala His Gly Ser 210 215 220 Ala Leu Leu Thr Ala Thr Phe Ala His Ala Asp Ser Ala Leu Arg Met 225 230 235 240 Pro Ser Thr Gly Ser Val Ala Pro Cys Val Pro Pro Leu Ser Thr Ser 245 250 255 Leu Leu Ser Leu Ser Ala Thr Val His Ala Ala Ala Ala Ala Thr 260 265 270 Ala Ala His Ser Phe Pro Leu Ser Phe Ala Gly Ala Phe Pro Met 275 280 285 Leu Pro Pro Asn Ala Ala Ala Ala Val Ala Ala Ala Thr Ala Ile Ser $290 \hspace{1.5cm} 295 \hspace{1.5cm} 300$ Pro Pro Leu Ser Val Ser Ala Thr Ser Ser Pro Gln Gln Thr Ser Ser 305 310 315 320 Gly Thr Asn Asn Lys Pro Tyr Arg Pro Trp Gly Thr Glu Val Gly Ala 325 330 335 Phe 40 1471 Homo sapiens

<220> <221> <223> misc_feature Hes-1

<400> 40 atcacacagg atccggagct ggtgctgata acagcggaat cccccgtcta cctctctcct 60 tggtcctgga acagcgctac tgatcaccaa gtagccacaa aatataataa accctcagca 120 cttgctcagt agttttgtga aagtctcaag taaaagagac acaaacaaaa aattcttttt 180 240 cagctgatat aatggagaaa aattcctcgt ccccggtggc tgctacccca gccagtgtca acacgacacc ggataaacca aagacagcat ctgagcacag aaagtcatca aagcctatta 360 420 tggagaaaag acgaagagca agaataaatg aaagtctgag ccagctgaaa acactgattt tggatgctct gaagaaagat agctcgcggc attccaagct ggagaaggcg gacattctgg 480 540 aaatgacagt gaagcacctc cggaacctgc agcgggcgca gatgacggct gcgctgagca cagacccaag tgtgctgggg aagtaccgag ccggcttcag cgagtgcatg aacgaggtga 600

39467A.txt.txt	660
cccgcttcct gtccacgtgc gagggcgtta ataccgaggt gcgcactcgg ctgctcggcc	660
acctggccaa ctgcatgacc cagatcaatg ccatgaccta ccccgggcag ccgcaccccg	720
ccttgcaggc gccgccaccg cccccaccgg gacccggcgg cccccagcac gcgccgttcg	780
cgccgccgcc gccactcgtg cccatccccg ggggcgcggc gccccctccc ggcggcgccc	840
cctgcaagct gggcagccag gctggagagg cggctaaggt gtttggaggc ttccaggtgg	900
taccggctcc cgatggccag tttgctttcc tcattcccaa cggggccttc gcgcacagcg	960
gccctgtcat ccccgtctac accagcaaca gcggcacctc cgtgggcccc aacgcagtgt	1020
caccttccag cggcccctcg cttacggcgg actccatgtg gaggccgtgg cggaactgag	1080
ggggctcagg ccacccctcc tcctaaactc cccaacccac ctctcttccc tccggactct	1140
aaacaggaac ttgaatactg ggagagaaga ggactttttt gattaagtgg ttactttgtg	1200
tttttttaat ttctaagaag ttactttttg tagagagagc tgtattaagt gactgaccat	1260
gcactatatt tgtatatatt ttatatgttc atattggatt gcgcctttgt attataaaag	1320
ctcagatgac atttcgtttt ttacacgaga tttctttttt atgtgatgcc aaagatgttt	1380
gaaaatgctc ttaaaatatc ttcctttggg gaagtttatt tgagaaaata taataaaaga	1440
aaaaagtaaa ggcaaaaaaa aaaaaaaaaaa a	1471

<210> 41 <211> 280 <212> PRT <213> Homo sapiens

<220> <221> misc_feature <223> Hes-1

<400> 43

Thr Pro Ala Ser Val Asn Thr Thr Pro Asp Lys Pro Lys Thr Ala Ser 20 25 30

Glu His Arg Lys Ser Ser Lys Pro Ile Met Glu Lys Arg Arg Ala 45

arg Ile Asn Glu Ser Leu Ser Gln Leu Lys Thr Leu Ile Leu Asp Ala $50 \hspace{1.5cm} 60$

Leu Lys Lys Asp Ser Ser Arg His Ser Lys Leu Glu Lys Ala Asp Ile 65 75

Leu Glu Met Thr Val Lys His Leu Arg Asn Leu Gln Arg Ala Gln Met 85 95

Thr Ala Ala Leu Ser Thr Asp Pro Ser Val Leu Gly Lys Tyr Arg Ala

60

180

Page 245 of 270

WO 2005/014854

100

39467A.txt.txt

110

Gly Phe Ser Glu Cys Met Asn Glu Val Thr Arg Phe Leu Ser Thr Cys 115 120 125Glu Gly Val Asn Thr Glu Val Arg Thr Arg Leu Leu Gly His Leu Ala 130 135 140 Asn Cys Met Thr Gln Ile Asn Ala Met Thr Tyr Pro Gly Gln Pro His 145 150 155 160 Pro Ala Leu Gln Ala Pro Pro Pro Pro Pro Pro Gly Pro Gly Pro 165 170 175Gln His Ala Pro Phe Ala Pro Pro Pro Pro Leu Val Pro Ile Pro Gly $180 \hspace{1cm} 185 \hspace{1cm} 190 \hspace{1cm}$ Gly Ala Ala Pro Pro Pro Gly Gly Ala Pro Cys Lys Leu Gly Ser Gln Ala Gly Glu Ala Ala Lys Val Phe Gly Gly Phe Gln Val Val Pro Ala 210 220 Pro Asp Gly Gln Phe Ala Phe Leu Ile Pro Asn Gly Ala Phe Ala His 225 230 235 240 Ser Gly Pro Val Ile Pro Val Tyr Thr Ser Asn Ser Gly Thr Ser Val 245 250 255 Gly Pro Asn Ala Val Ser Pro Ser Ser Gly Pro Ser Leu Thr Ala Asp Ser Met Trp Arg Pro Trp Arg Asn 275 280 <210> 42 10386 <211> Homo sapiens <220> <221> <223> misc_feature <221> misc_feature
<222> (9521)..(9521)
<223> n is a, c, g, or t <400> 42 attgaggact cggaaatgag gtccaagggt agccaaggat ggctgcagct tcatatgatc agttgttaaa gcaagttgag gcactgaaga tggagaactc aaatcttcga caagagctag 120

aagataattc caatcatctt acaaaactgg aaactgaggc atctaatatg aaggaagtac

PCT/EP2004/008819

39467A.txt.txt

240 ttaaacaact acaaggaagt attgaagatg aagctatggc ttcttctgga cagattgatt tattagagcg tettaaagag ettaaettag atagcagtaa ttteeetgga gtaaaaetge 300 ggtcaaaaat gtccctccgt tcttatggaa gccgggaagg atctgtatca agccgttctg 360 420 gagagtgcag tcctgttcct atgggttcat ttccaagaag agggtttgta aatggaagca 480 gagaaagtac togatattta gaagaacttg agaaagagag gtcattgctt cttgctgatc ttgacaaaga agaaaaggaa aaagactggt attacgctca acttcagaat ctcactaaaa 540 gaatagatag tetteettta actgaaaatt ttteettaca aacagatatg accagaagge 600 aattggaata tgaagcaagg caaatcagag ttgcgatgga agaacaacta ggtacctgcc 660 aggatatgga aaaacgagca cagcgaagaa tagccagaat tcagcaaatc gaaaaggaca 720 780 tacttcqtat acqacaqctt ttacagtccc aagcaacaga agcagaqagg tcatctcaga acaagcatga aaccggctca catgatgctg agcggcagaa tgaaggtcaa ggagtgggag 840 aaatcaacat ggcaacttct ggtaatggtc agggttcaac tacacgaatg gaccatgaaa 900 cagccagtgt tttgagttct agtagcacac actctgcacc tcgaaggctg acaagtcatc 960 1020 tgggaaccaa ggtggaaatg gtgtattcat tgttgtcaat gcttggtact catgataagg atgatatgtc gcgaactttg ctagctatgt ctagctccca agacagctgt atatccatgc 1080 gacagtetgg atgtetteet etecteatee agettttaca tggcaatgae aaagaetetg 1140 tattgttggg aaattcccgg ggcagtaaag aggctcgggc cagggccagt gcagcactcc 1200 acaacatcat tcactcacag cctgatgaca agagaggcag gcgtgaaatc cgagtccttc 1260 atcttttgga acagatacgc gcttactgtg aaacctgttg ggagtggcag gaagctcatg 1320 aaccaggcat ggaccaggac aaaaatccaa tgccagctcc tgttgaacat cagatctgtc 1380 1440 ctgctgtgtg tgttctaatg aaactttcat ttgatgaaga gcatagacat gcaatgaatg aactaggggg actacaggcc attgcagaat tattgcaagt ggactgtgaa atgtacgggc 1500 ttactaatga ccactacagt attacactaa gacgatatgc tggaatggct ttgacaaact 1560 1620 tgacttttgg agatgtagcc aacaaggcta cgctatgctc tatgaaaggc tgcatgagag cacttgtggc ccaactaaaa tctgaaagtg aagacttaca gcaggttatt gcaagtgttt 1680 tgaggaattt gtcttggcga gcagatgtaa atagtaaaaa gacgttgcga gaagttggaa 1740 gtgtgaaagc attgatggaa tgtgctttag aagttaaaaa ggaatcaacc ctcaaaagcg 1800 tattgagtgc cttatggaat ttgtcagcac attgcactga gaataaagct gatatatgtg 1860 ctgtagatgg tgcacttgca tttttggttg gcactcttac ttaccggagc cagacaaaca 1920 1980 ctttagccat tattgaaagt ggaggtggga tattacggaa tgtgtccagc ttgatagcta caaatgagga ccacaggcaa atcctaagag agaacaactg tctacaaact ttattacaac 2040 acttaaaatc tcatagtttg acaatagtca gtaatgcatg tggaactttg tggaatctct 2100 cagcaagaaa tootaaagac caggaagcat tatgggacat ggggggcagtt agcatgctca 2160 agaacctcat tcattcaaag cacaaaatga ttgctatggg aagtgctgca gctttaagga 2220

39467A.txt.txt

atctcatggc aaataggcct gcgaagtaca aggatgccaa tattatgtct cctggctcaa 2280 gcttgccatc tcttcatgtt aggaaacaaa aagccctaga agcagaatta gatgctcagc 2340 acttatcaga aacttttgac aatatagaca atttaagtcc caaggcatct catcgtagta 2400 agcagagaca caagcaaagt ctctatggtg attatgttt tgacaccaat cgacatgatg 2460 ataataggtc agacaatttt aatactggca acatgactgt cctttcacca tatttgaata 2520 ctacagtgtt acccagctcc tcttcatcaa gaggaagctt agatagttct cgttctgaaa 2580 aagatagaag tttggagaga gaacgcggaa ttggtctagg caactaccat ccagcaacag 2640 aaaatccagg aacttcttca aagcgaggtt tgcagatctc caccactgca gcccagattg 2700 ccaaagtcat ggaagaagtg tcagccattc atacctctca ggaagacaga agttctgggt 2760 ctaccactga attacattgt gtgacagatg agagaaatgc acttagaaga agctctgctg 2820 cccatacaca ttcaaacact tacaatttca ctaagtcgga aaattcaaat aggacatgtt 2880 ctatgcctta tgccaaatta gaatacaaga gatcttcaaa tgatagttta aatagtgtca 2940 gtagtagtga tggttatggt aaaagaggtc aaatgaaacc ctcgattgaa tcctattctg 3000 aagatgatga aagtaagttt tgcagttatg gtcaataccc agccgaccta gcccataaaa 3060 tacatagtgc aaatcatatg gatgataatg atggagaact agatacacca ataaattata 3120 gtcttaaata ttcagatgag cagttgaact ctggaaggca aagtccttca cagaatgaaa 3180 gatgggcaag acccaaacac ataatagaag atgaaataaa acaaagtgag caaagacaat 3240 caaggaatca aagtacaact tatcctgttt atactgagag cactgatgat aaacacctca 3300 3360 agttccaacc acattttgga cagcaggaat gtgtttctcc atacaggtca cggggagcca atggttcaga aacaaatcga gtgggttcta atcatggaat taatcaaaat gtaagccagt 3420 ctttgtgtca agaagatgac tatgaagatg ataagcctac caattatagt gaacgttact 3480 ctgaagaaga acagcatgaa gaagaagaga gaccaacaaa ttatagcata aaatataatg 3540 aagagaaacg tcatgtggat cagcctattg attatagttt aaaatatgcc acagatattc 3600 cttcatcaca gaaacagtca ttttcattct caaagagttc atctggacaa agcagtaaaa 3660 3720 ccqaacatat qtcttcaaqc aqtqaqaata cqtccacacc ttcatctaat qccaagaggc agaatcagct ccatccaagt tctgcacaga gtagaagtgg tcagcctcaa aaggctgcca 3780 cttgcaaagt ttcttctatt aaccaagaaa caatacagac ttattgtgta gaagatactc 3840 caatatgttt ttcaagatgt agttcattat catctttgtc atcagctgaa gatgaaatag 3900 gatgtaatca gacgacacag gaagcagatt ctgctaatac cctgcaaata gcagaaataa 3960 4020 aagaaaagat tggaactagg tcagctgaag atcctgtgag cgaagttcca gcagtgtcac agcaccctag aaccaaatcc agcagactgc agggttctag tttatcttca gaatcagcca 4080 qqcacaaaqc tqttqaattt tcttcaqqaq cqaaatctcc ctccaaaaqt qqtqctcaqa 4140 4200 cacccaaaaq tccacctgaa cactatgttc aggagacccc actcatgttt agcagatgta cttctgtcag ttcacttgat agttttgaga gtcgttcgat tgccagctcc gttcagagtg 4260

39467A.txt.txt

4320 aaccatgcag tggaatggta agtggcatta taagccccag tgatcttcca gatagccctg gacaaaccat gccaccaagc agaagtaaaa cacctccacc acctcctcaa acagctcaaa 4380 ccaagcgaga agtacctaaa aataaagcac ctactgctga aaagagagag agtggaccta 4440 4500 agcaagctgc agtaaatgct gcagttcaga gggtccaggt tcttccagat gctgatactt 4560 tattacattt tgccacggaa agtactccag atggattttc ttgttcatcc agcctgagtg ctctgagcct cgatgagcca tttatacaga aagatgtgga attaagaata atgcctccag 4620 ttcaggaaaa tgacaatggg aatgaaacag aatcagagca gcctaaagaa tcaaatgaaa 4680 4740 accaagagaa agaggcagaa aaaactattg attctgaaaa ggacctatta gatgattcag 4800 cacqtaaaqc aaaaaaqcca qcccaqactq cttcaaaatt acctccacct gtggcaagga 4860 aaccaagtca gctgcctgtg tacaaacttc taccatcaca aaacaggttg caaccccaaa 4920 4980 agcatgttag ttttacaccg ggggatgata tgccacgggt gtattgtgtt gaagggacac 5040 ctataaactt ttccacagct acatctctaa gtgatctaac aatcgaatcc cctccaaatg agttagctgc tggagaagga gttagaggag gagcacagtc aggtgaattt gaaaaacgag 5100 ataccattcc tacagaaggc agaagtacag atgaggctca aggaggaaaa acctcatctg 5160 taaccatacc tgaattggat gacaataaag cagaggaagg tgatattctt gcagaatgca 5220 ttaattctgc tatgcccaaa gggaaaagtc acaagccttt ccgtgtgaaa aagataatgg 5280 accaggtcca gcaagcatct gcgtcgtctt ctgcacccaa caaaaatcag ttagatggta 5340 agaaaaagaa accaacttca ccagtaaaac ctataccaca aaatactgaa tataggacac 5400 gtgtaagaaa aaatgcagac tcaaaaaata atttaaatgc tgagagagtt ttctcagaca 5460 5520 acaaagattc aaagaaacag aatttgaaaa ataattccaa ggacttcaat gataagctcc caaataatga agatagagtc agaggaagtt ttgcttttga ttcacctcat cattacacgc 5580 ctattgaagg aactccttac tgtttttcac gaaatgattc tttgagttct ctagattttg 5640 5700 atgatgatga tgttgacctt tccagggaaa aggctgaatt aagaaaggca aaagaaaata aggaatcaga ggctaaagtt accagccaca cagaactaac ctccaaccaa caatcagcta 5760 ataagacaca agctattgca aagcagccaa taaatcgagg tcagcctaaa cccatacttc 5820 5880 agaaacaatc cacttttccc cagtcatcca aagacatacc agacagaggg gcagcaactg atgaaaagtt acagaatttt gctattgaaa atactccagt ttgcttttct cataattcct 5940 6000 ctctgagttc tctcagtgac attgaccaag aaaacaacaa taaagaaaat gaacctatca aagagactga gccccctgac tcacagggag aaccaagtaa acctcaagca tcaggctatg 6060 ctcctaaatc atttcatgtt gaagataccc cagtttgttt ctcaagaaac agttctctca 6120 gttctcttag tattgactct gaagatgacc tgttgcagga atgtataagc tccgcaatgc 6180 caaaaaagaa aaagccttca agactcaagg gtgataatga aaaacatagt cccagaaata 6240 tgggtggcat attaggtgaa gatctgacac ttgatttgaa agatatacag agaccagatt 6300

39467A.txt.txt

cagaacatgg tctatcccct gattcagaaa attttgattg gaaagctatt caggaaggtg 6360 caaattccat agtaagtagt ttacatcaag ctgctgctgc tgcatgttta tctagacaag 6420 cttcqtctga ttcagattcc atcctttccc tgaaatcagg aatctctctg ggatcaccat 6480 ttcatcttac acctgatcaa gaagaaaaac cctttacaag taataaaggc ccacgaattc 6540 taaaaccagg ggagaaaagt acattggaaa ctaaaaagat agaatctgaa agtaaaggaa 6600 tcaaaggagg aaaaaaagtt tataaaagtt tgattactgg aaaagttcga tctaattcag 6660 aaatttcagg ccaaatgaaa cagccccttc aagcaaacat gccttcaatc tctcgaggca 6720 qqacaatqat tcatattcca qqaqttcqaa ataqctcctc aaqtacaaqt cctqtttcta 6780 aaaaaggccc accccttaag actccagcct ccaaaagccc tagtgaaggt caaacagcca 6840 ccacttctcc tagaggagcc aagccatctg tgaaatcaga attaagccct gttgccaggc 6900 agacatccca aataggtggg tcaagtaaag caccttctag atcaggatct agagattcga 6960 ccccttcaag acctgcccag caaccattaa gtagacctat acagtctcct ggccgaaact 7020 7080 caatttcccc tggtagaaat ggaataagtc ctcctaacaa attatctcaa cttccaagga catcatcccc tagtactgct tcaactaagt cctcaggttc tggaaaaatg tcatatacat 7140 ctccaggtag acagatgagc caacagaacc ttaccaaaca aacaggttta tccaagaatg 7200 ccagtagtat tccaagaagt gagtctgcct ccaaaggact aaatcagatg aataatggta 7260 atggagccaa taaaaaggta gaactttcta gaatgtcttc aactaaatca agtggaagtg 7320 aatctgatag atcagaaaga cctgtattag tacgccagtc aactttcatc aaagaagctc 7380 caagcccaac cttaagaaga aaattggagg aatctgcttc atttgaatct ctttctccat 7440 catctagacc agettetece actaggtece aggeacaaac tecagttta agteetteec 7500 ttcctgatat gtctctatcc acacattcgt ctgttcaggc tggtggatgg cgaaaactcc 7560 cacctaatct cagtcccact atagagtata atgatggaag accagcaaag cgccatgata 7620 7680 ttgcacggtc tcattctgaa agtccttcta gacttccaat caataggtca ggaacctgga 7740 aacgtgagca cagcaaacat tcatcatccc ttcctcgagt aagcacttgg agaagaactg gaagttcatc ttcaattctt tctgcttcat cagaatccag tgaaaaaagca aaaagtgagg 7800 7860 atgaaaaaca tgtgaactct atttcaggaa ccaaacaaag taaagaaaac caagtatccg 7920 caaaaqqaac atqqaqaaaa ataaaaqaaa atqaattttc tcccacaaat agtacttctc 7980 agaccgtttc ctcaggtgct acaaatggtg ctgaatcaaa gactctaatt tatcaaatgg cacctgctgt ttctaaaaca gaggatgttt gggtgagaat tgaggactgt cccattaaca 8040 atcctagatc tggaagatct cccacaggta atactccccc ggtgattgac agtgtttcag 8100 8160 aaaaqqcaaa tccaaacatt aaagattcaa aagataatca ggcaaaacaa aatgtgggta atogcagtot teccatocot accordoott togaaaateg cetgaactee titatteagg 8220 togatocccc toaccaaaaa ogaactgaga taaaaccagg acaaaataat cctgtccctg 8280 tatcagagac taatgaaagt tctatagtgg aacgtacccc attcagttct agcaqctcaa 8340

39467A.txt.txt

gcaaacacag ttcacctagt gggactgttg ctgccagagt gactcctttt aattacaacc 8400 caageectag gaaaageage geagatagea etteageteg geeateteag ateceaacte 8460 cagtgaataa caacacaaag aagcgagatt ccaaaactga cagcacagaa tccagtggaa 8520 cccaaagtcc taagcgccat tctgggtctt accttgtgac atctgtttaa aagagaggaa 8580 gaatgaaact aagaaaattc tatgttaatt acaactgcta tatagacatt ttotttcaaa 8640 tgaaacttta aaagactgaa aaattttgta aataggtttg attcttgtta gagggttttt 8700 gttctggaag ccatatttga tagtatactt tgtcttcact ggtcttattt tgqgaggcac 8760 tottgatggt taggaaaaaa atagtaaagc caagtatgtt tgtacagtat gttttacatg 8820 tatttaaagt agcatcccat cccaacttcc tttaattatt gcttgtctta aaataatgaa 8880 cactacagat agaaaatatg atatattgct gttatcaatc atttctagat tataaactga 8940 ctaaacttac atcagggaaa aattggtatt tatgcaaaaa aaaatgtttt tgtccttgtg 9000 agtocatota acatoataat taatoatgtg gotgtgaaat toacagtaat atggttocog 9060 atgaacaagc tttacccagc ctgtttgctt tactgcatga atgaaactga tggttcaatt 9120 tcagaagtaa tgattaacag ttatgtggtc acatgatgtg catagagata gctacagtgt 9180 aataatttac actattttgt gctccaaaca aaacaaaaat ctgtgtaact gtaaaacatt 9240 gaatgaaact attttacctg aactagattt tatctgaaag taggtagaat ttttgctatg 9300 ctgtaatttg ttgtatattc tggtatttga ggtgagatgg ctgctctttt attaatgaga 9360 catgaattgt gtctcaacag aaactaaatg aacatttcag aataaattat tgctgtatgt 9420 aaactgttac tgaaattggt atttgtttga agggtcttgt ttcacatttg tattaataat 9480 totttaaaat occtctttta aaagcttata taaatttttt ncttcagctt ctatocatta 9540 agagtaaaat tcctcttact gtaataaaaa caattgaaga agactgttgc cacttaacca 9600 ttccatgcgt tggcacttat ctattcctga aattctttta tgtgattagc tcatcttgat 9660 ttttaacatt tttccactta aactttttt tcttactcca ctggagctca gtaaaagtaa 9720 attcatgtaa tagcaatgca agcagcctag cacagactaa gcattgagca taataggccc 9780 acataatttc ctctttctta atattataga aattctgtac ttgaaattga ttcttagaca 9840 ttgcagtctc ttcgaggctt tacagtgtaa actgtcttgc cccttcatct tcttgttgca 9900 actgggtctg acatgaacac tttttatcac cctgtatgtt agggcaagat ctcagcagtg 9960 aagtataatc agcactttgc catgctcaga aaattcaaat cacatggaac tttagaggta 10020 gatttaatac gattaagata ttcagaagta tattttagaa tccctgcctg ttaaggaaac 10080 tttatttgtg gtaggtacag ttctggggta catgttaagt gtccccttat acagtggagg 10140 qaaqtcttcc ttcctqaaqq aaaataaact qacacttatt aactaaqata atttacttaa 10200 tatatettee etgatttgtt ttaaaagate agagggtgae tgatgataca tgcatacata 10260 tttgttgaat aaatgaaaat ttatttttag tgataagatt catacactct gtatttgggg 10320 agagaaaacc tttttaagca tggtggggca ctcagatagg agtgaataca cctacctgot 10380

PCT/EP2004/008819

39467A.txt.txt

ggtcat

WO05014654 [file ///E:/WO05014854.cpc]

10386

<210> 43 <212> PRT <213> Homo sapiens <220> <221> misc_feature <223> APC Met Ala Ala Ala Ser Tyr Asp Gln Leu Leu Lys Gln Val Glu Ala Leu Lys Met Glu Asn Ser Asn Leu Arg Gln Glu Leu Glu Asp Asn Ser Asn 20 25 30 His Leu Thr Lys Leu Glu Thr Glu Ala Ser Asn Met Lys Glu Val Leu 35 40 45 Lys Gln Leu Gln Gly Ser Ile Glu Asp Glu Ala Met Ala Ser Ser Gly Gln Ile Asp Leu Leu Glu Arg Leu Lys Glu Leu Asn Leu Asp Ser Ser Asn Phe Pro Gly Val Lys Leu Arg Ser Lys Met Ser Leu Arg Ser Tyr Gly Ser Arg Glu Gly Ser Val Ser Ser Arg Ser Gly Glu Cys Ser Pro $100 \qquad 105 \qquad 110$ Val Pro Met Gly Ser Phe Pro Arg Arg Gly Phe Val Asn Gly Ser Arg 115 120 125 Glu Ser Thr Gly Tyr Leu Glu Glu Leu Glu Lys Glu Arg Ser Leu Leu 130 135 140 Leu Ala Asp Leu Asp Lys Glu Glu Lys Glu Lys Asp Trp Tyr Tyr Ala 145 150 155 160 Gln Leu Gln Asn Leu Thr Lys Arg Ile Asp Ser Leu Pro Leu Thr Glu 165 170 175 Asn Phe Ser Leu Gln Thr Asp Met Thr Arg Arg Gln Leu Glu Tyr Glu 180 185 190 Ala Arg Gln Ile Arg Val Ala Met Glu Glu Gln Leu Gly Thr Cys Gln
195 200 205

39467A.txt.txt
Asp Met Glu Lys Arg Ala Gln Arg Arg Ile Ala Arg Ile Gln Gln Ile
210 215 215 Glu Lys Asp Ile Leu Arg Ile Arg Gln Leu Leu Gln Ser Gln Ala Thr Glu Ala Glu Arg Ser Ser Gln Asn Lys His Glu Thr Gly Ser His Asp $245 \hspace{0.5cm} 250 \hspace{0.5cm} 255$ Ala Glu Arg Gln Asn Glu Gly Gln Gly Val Gly Glu Ile Asn Met Ala 260 265 270 Thr Ser Gly Asn Gly Gln Gly Ser Thr Thr Arg Met Asp His Glu Thr Ala Ser Val Leu Ser Ser Ser Ser Thr His Ser Ala Pro Arg Arg Leu 290 295 300 Thr Ser His Leu Gly Thr Lys Val Glu Met Val Tyr Ser Leu Leu Ser 305 310 315 320 Met Leu Gly Thr His Asp Lys Asp Asp Met Ser Arg Thr Leu Leu Ala 325 330 335 Met Ser Ser Gln Asp Ser Cys Ile Ser Met Arg Gln Ser Gly Cys Leu Pro Leu Leu Ile Gln Leu Leu His Gly Asn Asp Lys Asp Ser Val Leu Leu Gly Asn Ser Arg Gly Ser Lys Glu Ala Arg Ala Arg Ala Ser Ala Ala Leu His Asn Ile Ile His Ser Gln Pro Asp Asp Lys Arg Gly $385 \hspace{1.5cm} 390 \hspace{1.5cm} 395 \hspace{1.5cm} 400$ Arg Arg Glu Ile Arg Val Leu His Leu Leu Glu Gln Ile Arg Ala Tyr
410 410 415 Cys Glu Thr Cys Trp Glu Trp Gln Glu Ala His Glu Pro Gly Met Asp Gln Asp Lys Asn Pro Met Pro Ala Pro Val Glu His Gln Ile Cys Pro Ala Val Cys Val Leu Met Lys Leu Ser Phe Asp Glu Glu His Arg His Ala Met Asn Glu Leu Gly Gly Leu Gln Ala Ile Ala Glu Leu Leu Gln 465 470 475 480

Page 253 of 270

WO 2005/014854 PCT/EP2004/008819

39467A.txt.txt

Val Asp Cys Glu Met Tyr Gly Leu Thr Asn Asp His Tyr Ser Ile Thr
485 490 495 Leu Arg Arg Tyr Ala Gly Met Ala Leu Thr Asn Leu Thr Phe Gly Asp 500 510 Val Ala Asn Lys Ala Thr Leu Cys Ser Met Lys Gly Cys Met Arg Ala Leu Val Ala Gln Leu Lys Ser Glu Ser Glu Asp Leu Gln Gln Val Ile 530 540 Ala Ser Val Leu Arg Asn Leu Ser Trp Arg Ala Asp Val Asn Ser Lys Lys Thr Leu Arg Glu Val Gly Ser Val Lys Ala Leu Met Glu Cys Ala 565 570 575 Leu Glu Val Lys Lys Glu Ser Thr Leu Lys Ser Val Leu Ser Ala Leu 580 585 590 Trp Asn Leu Ser Ala His Cys Thr Glu Asn Lys Ala Asp Ile Cys Ala 595 600 605 Val Asp Gly Ala Leu Ala Phe Leu Val Gly Thr Leu Thr Tyr Arg Ser 610 620 Gln Thr Asn Thr Leu Ala Ile Ile Glu Ser Gly Gly Gly Ile Leu Arg 625 630 635 640 Asn Val Ser Ser Leu Ile Ala Thr Asn Glu Asp His Arg Gln Ile Leu 645 650 655 Arg Glu Asn Asn Cys Leu Gln Thr Leu Leu Gln His Leu Lys Ser His 660 665 670 Ser Leu Thr Ile Val Ser Asn Ala Cys Gly Thr Leu Trp Asn Leu Ser 675 680 685 Ala Arg Asn Pro Lys Asp Gln Glu Ala Leu Trp Asp Met Gly Ala Val Ser Met Leu Lys Asn Leu Ile His Ser Lys His Lys Met Ile Ala Met 705 710 715 720 Gly Ser Ala Ala Ala Leu Arg Asn Leu Met Ala Asn Arg Pro Ala Lys 725 730 735 Tyr Lys Asp Ala Asn Ile Met Ser Pro Gly Ser Ser Leu Pro Ser Leu 745 750

39467A.txt.txt His Val Arg Lys Gln Lys Ala Leu Glu Ala Glu Leu Asp Ala Gln His 755 760 765 Leu Ser Glu Thr Phe Asp Asn Ile Asp Asn Leu Ser Pro Lys Ala Ser 770 775 780 His Arg Ser Lys Gln Arg His Lys Gln Ser Leu Tyr Gly Asp Tyr Val 785 790 795 800 Phe Asp Thr Asn Arg His Asp Asp Asn Arg Ser Asp Asn Phe Asn Thr Gly Asn Met Thr Val Leu Ser Pro Tyr Leu Asn Thr Thr Val Leu Pro 820 825 830 Ser Ser Ser Ser Arg Gly Ser Leu Asp Ser Ser Arg Ser Glu Lys 835 840 845 Asp Arg Ser Leu Glu Arg Glu Arg Gly Ile Gly Leu Gly Asn Tyr His 850 860 Pro Ala Thr Glu Asn Pro Gly Thr Ser Ser Lys Arg Gly Leu Gln Ile 865 870 875 880 Ser Thr Thr Ala Ala Gln Ile Ala Lys Val Met Glu Glu Val Ser Ala Ile His Thr Ser Gln Glu Asp Arg Ser Ser Gly Ser Thr Thr Glu Leu 900 905 910 His Cys Val Thr Asp Glu Arg Asn Ala Leu Arg Arg Ser Ser Ala Ala 915 920 925 His Thr His Ser Asn Thr Tyr Asn Phe Thr Lys Ser Glu Asn Ser Asn 930 935 940 Arg Thr Cys Ser Met Pro Tyr Ala Lys Leu Glu Tyr Lys Arg Ser Ser 945 $950 \ \ 955$ Asn Asp Ser Leu Asn Ser Val Ser Ser Ser Asp Gly Tyr Gly Lys Arg Gly Gln Met Lys Pro Ser Ile Glu Ser Tyr Ser Glu Asp Asp Glu Ser Lys Phe Cys Ser Tyr Gly Gln Tyr Pro Ala Asp Leu Ala His Lys Ile 995 1000 1005 His Ser Ala Asn His Met Asp Asp Asn Asp Gly Glu Leu Asp Thr 1010 1020

PCT/EP2004/008819

WO 2005/014854

Pro Ile Asn Tyr Ser Leu Lys Tyr Ser Asp Glu Gln Leu Asn Ser 1025 1030 1035 Gly Arg Gln Ser Pro Ser Gln Asn Glu Arg Trp Ala Arg Pro Lys 1040 1045 1050 His Ile Ile Glu Asp Glu Ile Lys Gln Ser Glu Gln Arg Gln Ser 1055 1060 1065 Arg Asn Gln Ser Thr Thr Tyr Pro Val Tyr Thr Glu Ser Thr Asp 1070 1080 Asp Lys His Leu Lys Phe Gln Pro His Phe Gly Gln Gln Glu Cys 1085 1090 1095 Val Ser Pro Tyr Arg Ser Arg Gly Ala Asn Gly Ser Glu Thr Asn 1100 1105 1110 Arg Val Gly Ser Asn His Gly Ile Asn Gln Asn Val Ser Gln Ser Leu Cys Gln Glu Asp Asp Tyr Glu Asp Asp Lys Pro Thr Asn Tyr 1130 1135 1140Ser Glu Arg Tyr Ser Glu Glu Glu Glu Glu Glu Glu Glu Arg Pro Thr Asn Tyr Ser Ile Lys Tyr Asn Glu Glu Lys Arg His Val Asp Gln Pro Ile Asp Tyr Ser Leu Lys Tyr Ala Thr Asp Ile Pro Ser Ser Gln Lys Gln Ser Phe Ser Phe Ser Lys Ser Ser Ser Gly 1190 1195Gln Ser Ser Lys Thr Glu His Met Ser Ser Ser Ser Glu Asn Thr 1205 1210 1215 Ser Thr Pro Ser Ser Asn Ala Lys Arg Gln Asn Gln Leu His Pro 1220 1230 Ser Ser Ala Gln Ser Arg Ser Gly Gln Pro Gln Lys Ala Ala Thr 1235 1240 1245 Cys Lys Val Ser Ser Ile Asn Gln Glu Thr Ile Gln Thr Tyr Cys 1250 1255 1260Val Glu Asp Thr Pro Ile Cys Phe Ser Arg Cys Ser Ser Leu Ser

PCT/EP2004/008819

WO 2005/014854

39467A.txt.txt Ser Leu Ser Ser Ala Glu Asp Glu Ile Gly Cys Asn Gln Thr Thr 1280 1285 1290 Gln Glu Ala Asp Ser Ala Asn Thr Leu Gln Ile Ala Glu Ile Lys 1295 1300 1305 Glu Lys Ile Gly Thr Arg Ser Ala Glu Asp Pro Val Ser Glu Val 1310 1315 1320 Pro Ala Val Ser Gln His Pro Arg Thr Lys Ser Ser Arg Leu Gln 1325 Gly Ser Ser Leu Ser Ser Glu Ser Ala Arg His Lys Ala Val Glu 1340 1350 Phe Ser Ser Gly Ala Lys Ser Pro Ser Lys Ser Gly Ala Gln Thr Pro Lys Ser Pro Pro Glu His Tyr Val Gln Glu Thr Pro Leu Met 1370 1380 Phe Ser Arg Cys Thr Ser Val Ser Ser Leu Asp Ser Phe Glu Ser 1385 1390 1395 Arg Ser Ile Ala Ser Ser Val Gln Ser Glu Pro Cys Ser Gly Met 1400 1405 1410 Val Ser Gly Ile Ile Ser Pro Ser Asp Leu Pro Asp Ser Pro Gly 1415 1420 1425 Gln Thr Met Pro Pro Ser Arg Ser Lys Thr Pro Pro Pro Pro Pro 1430 1435 1440 Gln Thr Ala Gln Thr Lys Arg Glu Val Pro Lys Asn Lys Ala Pro Thr Ala Glu Lys Arg Glu Ser Gly Pro Lys Gln Ala Ala Val Asn 1460 1465 1470 Ala Ala Val Gln Arg Val Gln Val Leu Pro Asp Ala Asp Thr Leu 1475 1480 1485 Leu His Phe Ala Thr Glu Ser Thr Pro Asp Gly Phe Ser Cys Ser 1490 1495 1500 Ser Ser Leu Ser Ala Leu Ser Leu Asp Glu Pro Phe Ile Gln Lys Asp Val Glu Leu Arg Ile Met Pro Pro Val Gln Glu Asn Asp Asn 1520 1530

		2000	00140	-										10.
Gly	Asn 1535	Glu	Thr	Glu	Ser	Glu 1540	Gln	3946 Pro	7A.t Lys	xt.t Glu	xt Ser 1545	Asn	Glu	Asn
Gln	G]u 1550	Lys	Glu	Ala	Glu	Lys 1555	Thr	Ile	Asp	Ser	G]u 1560	Lys	Asp	Leu
Leu	Asp 1565	Asp	Ser	Asp	Asp	Asp 1570	Asp	Ile	Glu	Ile	Leu 1575	Glu	Glu	Cys
IJe	Ile 1580	Ser	Ala	Met	Pro	Thr 1585	Lys	Ser	Ser	Arg	Lys 1590	Αla	Lys	Lys
Pro	Ala 1595	Gln	Thr	Ala	Ser	Lys 1600	Leu	Pro	Pro	Pro	val 1605	Ala	Arg	Lys
Pro	Ser 1610	Gln	Leu	Pro	۷a٦	Tyr 1615	Lys	Leu	Leu	Pro	Ser 1620	Gln	Asn	Arg
Leu	Gln 1625	Pro	Gln	Lys	His	val 1630	Ser	Phe	Thr	Pro	Gly 1635	Asp	Asp	Met
Pro	Arg 1640	Va1	Tyr	Cys	va1	Glu 1645	Gly	Thr	Pro	Ile	Asn 1650	Phe	Ser	Thr
Ala	Thr 1655	Ser	Leu	Ser	Asp	Leu 1660	Thr	Ile	Glu	Ser	Pro 1665	Pro	Asn	Glu
Leu	Ala 1670	Ala	Gly	GTu	Gly	val 1675	Arg	Gly	GТу	Ala	Gln 1680	Ser	GТу	Glu
Phe	Glu 1685	Lys	Arg	Asp	Thr	Ile 1690	Pro	Thr	G∏u	Gly	Arg 1695	Ser	Thr	Asp
Glu	Ala 1700	G1n	Gly	Gly	Lys	Thr 1705	Ser	Ser	Val	Thr	Ile 1710	Pro	Glu	Leu
Asp	Asp 1715	Asn	Lys	Αla	Glu	Glu 1720	Gly	Asp	Ile	Leu	Ala 1725	Glu	Cys	Ile
Asn	Ser 1730	Ala	Met	Pro	Lys	Gly 1735	Lys	Ser	His	Lys	Pro 1740	Phe	Arg	val
Lys	Lys 1745	Ile	Met	Asp	Gln	va1 1750	Gln	Gln	Ala	Ser	Ala 1755	Ser	Ser	Ser
Ala	Pro 1760	Asn	Lys	Asn	Gln	Leu 1765	Asp	Gly	Lys	Lys	Lys 1770	Lys	Pro	Thr
Ser	Pr o 1775	Val	Lys	Pro	Ile	Pro 1780	Gln	Asn	Thr	Glu	Tyr 1785	Arg	Thr	Arg

	***	200.	3/0140	134										FC 1/EF 2004/000
۷a	Arg 1790	Lys	Asn	Ala	Asp	Ser 1795	Lys	3946 Asn	7A.t Asn	xt.t Leu	xt Asn 1800	Ala	Glu	Arg
۷a٦	Phe 1805	Ser	Asp	Asn	Lys	Asp 1810	Ser	Lys	Lys	G∏n	Asn 1815	Leu	Lys	Asn
Asn	Ser 1820	Lys	Asp	Phe	Asn	Asp 1825	Lys	Leu	Pro	Asn	Asn 1830	Glu	Asp	Arg
	Arg 1835					1840					1845			
	Glu 1850													
	Leu 1865													
	Glu 1880													
	Thr 1895					1900					1905			
	Thr 1910 Pro													
	1925					1930					1935			
	1940					1945					1950			
	Ala 1955 Ser													
	1970					1975 Thr					1980			
Pro	1985 Ser					1990 Ser					1995 Lys			
	2000 G] II					2005 Cys					2010 Ser		Leu	
	2015 Leu					2020 Glu				Leu	2025 Gln			
	2030			•		2035	•	•			2040		•	

Page 259 of 270

WO 2005/014854

Ser Ser Ala Met Pro Lys Lys Lys Pro Ser Arg Leu Lys Gly 2045 Asp Asn Glu Lys His Ser Pro Arg Asn Met Gly Gly Ile Leu Gly 2060Glu Asp Leu Thr Leu Asp Leu Lys Asp Ile Gln Arg Pro Asp Ser 2075 2080 Glu His Gly Leu Ser Pro Asp Ser Glu Asn Phe Asp Trp Lys Ala 2090 2095 2100 Ile Gln Glu Gly Ala Asn Ser Ile Val Ser Ser Leu His Gln Ala 2105 2110 2115 Ala Ala Ala Cys Leu Ser Arg Gln Ala Ser Ser Asp Ser Asp 2120 2130 Ser Ile Leu Ser Leu Lys Ser Gly Ile Ser Leu Gly Ser Pro Phe 2135 2140 2145 His Leu Thr Pro Asp Gln Glu Glu Lys Pro Phe Thr Ser Asn Lys 2150 2155 2160 Gly Pro Arg Ile Leu Lys Pro Gly Glu Lys Ser Thr Leu Glu Thr Lys Lys Ile Glu Ser Glu Ser Lys Gly Ile Lys Gly Gly Lys Lys 2180 2185 Val Tyr Lys Ser Leu Ile Thr Gly Lys Val Arg Ser Asn Ser Glu 2195 2200Ile Ser Gly Gln Met Lys Gln Pro Leu Gln Ala Asn Met Pro Ser 2210 2220 Ile Ser Arg Gly Arg Thr Met Ile His Ile Pro Gly Val Arg Asn 2225 2235 Ser Ser Ser Thr Ser Pro Val Ser Lys Lys Gly Pro Pro Leu 2240 2245 2250 Lys Thr Pro Ala Ser Lys Ser Pro Ser Glu Gly Gln Thr Ala Thr 2255 2260 2265 Thr Ser Pro Arg Gly Ala Lys Pro Ser Val Lys Ser Glu Leu Ser 2270 2275 2280 Pro Val Ala Arg Gln Thr Ser Gln Ile Gly Gly Ser Ser Lys Ala 2285 2290 2295

PCT/EP2004/008819

WO 2005/014854 Pro Ser Arg Ser Gly Ser Arg Asp Ser Thr Pro Ser Arg Pro Ala 2300 2305 2310 Gln Gln Pro Leu Ser Arg Pro Ile Gln Ser Pro Gly Arg Asn Ser Ile Ser Pro Gly Arg Asn Gly Ile Ser Pro Pro Asn Lys Leu Ser 2330 2335 2340 Gln Leu Pro Arg Thr Ser Ser Pro Ser Thr Ala Ser Thr Lys Ser Ser Gly Ser Gly Lys Met Ser Tyr Thr Ser Pro Gly Arg Gln Met 2360 2370 Ser Gln Gln Asn Leu Thr Lys Gln Thr Gly Leu Ser Lys Asn Ala Ser Ser Ile Pro Arg Ser Glu Ser Ala Ser Lys Gly Leu Asn Gln 2390 2400 Met Asn Asn Gly Asn Gly Ala Asn Lys Lys Val Glu Leu Ser Arg 2405 2410 2415 Met Ser Ser Thr Lys Ser Ser Gly Ser Glu Ser Asp Arg Ser Glu 2420 2430 Arg Pro Val Leu Val Arg Gln Ser Thr Phe Ile Lys Glu Ala Pro 2445 Ser Pro Thr Leu Arg Arg Lys Leu Glu Glu Ser Ala Ser Phe Glu 2450 2460 Ser Leu Ser Pro Ser Ser Arg Pro Ala Ser Pro Thr Arg Ser Gln
2465 2470 2475 Ala Gln Thr Pro Val Leu Ser Pro Ser Leu Pro Asp Met Ser Leu 2480 2485 2490 Ser Thr His Ser Ser Val Gln Ala Gly Gly Trp Arg Lys Leu Pro

Pro Asn Leu Ser Pro Thr Ile Glu Tyr Asn Asp Gly Arg Pro Ala 2510

Lys Arg His Asp Ile Ala Arg Ser His Ser Glu Ser Pro Ser Arg 2520

Leu Pro Ile Asn Arg Ser Gly Thr Trp Lys Arg Glu His Ser Lys 7540

s ser 2555	Ser	Ser	Leu	Pro	Arg 2560	۷al	3946 Ser	7A.t Thr	xt.t Trp	xt Arg 2565	Arg	Thr	GТу
ser 2570	Ser	Ser	Ile	Leu	Ser 2575	Αla	Ser	Ser	Glu	ser 2580	Ser	Glu	Lys
Lys 2585	Ser	G∃u	Asp	Glu	Lys 2590	His	۷al	Asn	Ser	Ile 2595	Ser	сlу	Thr
G]n 2600	Ser	Lys	Glu	Asn	G]n 2605	Val	Ser	ΑΊа	Lys	Gly 2610	Thr	Тгр	Arg
Ile 2615	Ļys	G lu	Asn	Glu	Phe 2620	ser	Pro	Thr	Asn	ser 2625	Thr	ser	G∏n
va1 2630	Ser	ser	GТу	Ala	Thr 2635	Asn	GТу	Аlа	Glu	ser 2640	Lys	Thr	Leu
Tyr 2645	Gln	Met	aТа	Pro	Ala 2650	۷a٦	Ser	Lys	Thr	G1u 2655	Asp	va1	Trp
Arg 2660	Ile	Glu	Asp	Cys	Pro 2665	Ile	Asn	Asn	Pro	Arg 2670	Ser	GТу	Arg
Pro 2675	Thr	Gly	Asn	Thr	Pro 2680	Pro	val	Ile	Asp	ser 2685	va1	ser	Glu
Ala 2690	Asn	Pro	Asn	Ile	Lys 2695	Asp	Ser	Lys	Asp	Asn 2700	Gln	Аlа	Lys
Asn 2705	۷a٦	Gly	Asn	Glу	ser 2710	va1	Pro	Met	Arg	Thr 2715	va1	G]y	Leu
Asn 2720	Arg	Leu	Asn	Ser	Phe 2725	Ile	Gln	۷a٦	Asp	Ala 2730	Pro	Asp	Gln
Gly 2735	Thr	G] u	Ile	Lys	Pro 2740	G]y	Gln	Asn	Asn	Pro 2745	۷al	Pro	۷al
Glu 2750	Thr	Asn	Glu	Ser	Ser 2755	īТе	val	Glu	Arg	Thr 2760	Pro	Phe	Ser
Ser 2765	Ser	Ser	Ser	Lys	His 2770	Ser	Ser	Pro	Ser	G]y 2775	Thr	Val	Αla
Arg 2780	۷a٦	Thr	Pro	Phe	Asn 2785	Tyr	Asn	Pro	Ser	Pro 2790	Arg	Lys	Ser
Ala 2795	Asp	Ser	Thr	ser	A1a 2800	Arg	Pro	Ser	Gln	Ile 2805	Pro	Thr	Pro
	2585 2585 2610 2600 2610 2610 2610 2610 2610 2610	2570 Ser 2570 Ser 2575 Ser 257	ser 2570 Ser Ser 2585 Ser Glu 2585 Ser Glu 2585 Ser Glu 25615 Lys Glu 2663 Ser Ser 2663 Ser Ser 2663 Ser Ser 2663 Ser Ser 2660 Thr Glu 2760 Asn Pro 2770 Asn 2770 Thr Glu 2775 Ser Ser Ser Ser Ser Ser 2776 Val Thr Asn 2770 Val Thr Asn 2770 Val Thr Asn 2770 Val Thr Asn 2770 Val Thr 2780 Val Thr 2780 Val Thr	ser 2570 Ser Ser Ile a Lys Ser Glu Asp 2585 Ser Glu Asp 5 Gln Ser Lys Glu 5 Ile Lys Glu Asp 2615 Lys Glu Asp 2620 Ser Ser Gly 2630 Ser Ser Gly 2630 The Glu Asp 2645 Gln Met Ala 2645 Gln Met Ala 2650 Thr Gly Asp 2660 Thr Gly Asp 2660 Asp Pro Asp 2770 Asp 2720 Asp 2735 Thr Glu Ile 2735 Thr Glu Ile 2735 Thr Glu Ile 2736 Ser Ser Ser 2760 Ser Ser Ser 2760 Val Thr Pro 2780 Val Thr Pro	ser Ser Ser Ile Leu a Lys 2585 Ser Glu Asp Glu 2585 Ser Glu Asp Glu 5 Gln 5 Tle 2615 Lys Glu Asn Glu 2626 Ser Ser Gly Ala 2626 Ser Ser Gly Ala 2626 Gln Met Ala Pro 2645 Gln Met Ala Pro 2645 The Gly Asn Thr 2675 The Gly Asn Thr 2676 Asn Pro Asn Ile 2680 Asn Pro Asn Ile 2770 Arg Leu Asn Ser 2720 Arg Leu Asn Ser 2720 Thr Glu Ile Lys 2735 Thr Glu Ile Lys 2735 Thr Glu Ile Lys 2736 Ser Ser Ser Lys 2760 Val Thr Pro Phe 2780 Val Thr Pro Phe	Ser Ser Ile Leu Ser 2575 a Lys Ser Glu Asp Glu Lys 2590 5 Gln Ser Lys Glu Asp Glu Phe 2615 5 Ile Lys Glu Asp Glu Phe 2620 - Val Ser Ser Gly Ala Thr 2635 a Tyr Gln Met Ala Pro Ala 2650 1 Arg Ile Glu Asp Cys Pro 2665 - Pro 2675 Thr Gly Asp Thr Pro Phe Asp 2775 5 Gly Thr Glu Ile Lys Pro 2735 5 Gly Thr Glu Ile Lys Pro 2735 5 Gly Thr Glu Ile Lys Pro 2740 - Clu Thr Asp Glu Ser Ser Pro 2755 5 Ser Ser Ser Ser Lys His 2776 1 Arg Val Thr Pro Phe Asp 2785 - Ala Asp Ser Thr Ser Ala	s ser ser Leu Pro Arg val 2555 Ser Ser Ile Leu Ser Ala 2555 Ser Glu Asp Glu Lys His 2560 Ser Lys Glu Asn Glu Pro Arg 2605 Ser Lys Glu Asn Glu Pro Arg 2605 Ser Ser Gly Ala Thr 2605 Ser Ser Gly Ala Thr 2605 Ser Ser Gly Ala Pro Asn 2605 Ser Ser Ser Gly Ala Pro Asn 2605 Ser Ser Ser Gly Ala Pro Asn 2605 Ser Ser Ser Gly Ala Pro Asn 2705 Ser Ser Ser Ser Ser Lys Pro Gly 2736 Ser Ser Ser Ser Lys His Ser 2776 Ser Ser Ser Ser Lys His Ser 2776 Ser Ser Ser Ser Lys His Ser 2780 Ser Ser Ser Thr Ser Ala Arg 2780 Ser Ser Ser Thr Ser Ala Arg 2781	s ser Ser Leu Pro Arg val Ser 2555 Ser Ser Ile Leu Ser Ala Ser 2560 Ser Ser Ile Leu Ser Ala Ser 2560 Ser Glu Asp Glu Lys His Val 2560 Ser Lys Glu Asn Glu Phe 2600 Ser Ser Gly Ala Thr Asn Gly 2650 Asn Pro Asn Ile Lys Asp Gly Val Ser 2660 Asn Pro Asn Ile Lys Asp Asp Gly Pro 2675 Asn Pro Asn Ile Lys Asp Asp Pro 2680 Asn Pro Asn Ile Lys Asp Asp Ser 2695 Asn Asp Pro Asn Ile Lys Pro 2770 Asn Arg Leu Asn Ser Phe 2770 Gly Gly Thr Gly Ile Lys Pro Gly Gly Gln 2750 Ser Ser Ser Ser Lys His Ser Ser Ser Ser Lys His 2770 Ang Val Thr Pro Phe Asn Tyr Asn 2780 Ala Asp Ser Thr Ser Ala Arg Pro 2780	s ser Ser Leu Pro Arg val Ser Thr 2555 Ser Ser Leu Pro Arg val Ser Thr 2556 Ser Ser Ile Leu Ser Ala Ser Ser 2550 Ser Ser Ile Leu Ser Ala Ser Ala Ser Ala Ser Lys Ala Ser Lys Ala Ser Ser Ala Ala Pro Ala Ser Ser Ala Ala Pro Ala Ser Lys Ala Ser Lys Ala Ser Lys Ala Ala Ala Ala Ala Ala Ala Ala Pro Ala Ala Ser Lys Ala Ala Ala Ala Ala Ala Ala Ala Ala Pro Ala	s ser Ser Ser Leu Pro Arg val Ser Thr Trp Z555 Ser Ser Leu Pro Arg val Ser Thr Trp Z550 Ser Ser Ile Leu Ser Ala Ser Ser Glu Asp Glu Lys His Val Asn Ser Ser Glu Asp Glu Lys His Val Asn Ser Ser Glu Asn Glu Lys Glu Asn Glu Val Ser Ala Lys Glos Ser Lys Glu Asn Glu Phe Ser Pro Thr Asn Z605 Ser Ser Gly Ala Thr Asn Gly Ala Glu Phe Ser Ser Gly Ala Thr Asn Gly Ala Glu Phe Ser Ser Gly Ala Thr Asn Gly Ala Glu Phe Ser Ser Lys Thr Z650 Ser Pro Thr Asn Z650 Ser Pro Thr Asn Z650 Ser Ser Gly Ala Thr Pro Phe Asn Asn Pro X1 Ile Asp Z650 Thr Gly Asn Thr Pro Met Arg Z750 Asp Ser Lys Asp Z660 Asn Pro Asn Ile Lys Pro Wal Ile Asp Z750 Thr Glu Ile Lys Pro Gly Gln Asn Asn Pro Z750 Thr Glu Ile Lys Pro Gly Gln Asn Asn Z750 Thr Glu Ile Lys Pro Gly Gln Asn Asn Z750 Ser Ser Ser Ser Ser Lys His Ser Ser Pro Ser Z760 Val Thr Pro Phe Asn Tyr Asn Pro Ser Z780 Val Thr Pro Phe Asn Tyr Asn Pro Ser Z780 Asp Ser Thr Ser Ala Arg Pro Ser Gln	ser 2570 Ser Ser Ile Leu Ser Ala Ser Ser Glu Ser 2580 Ala Ser Ser Glu Asp Glu Lys His Val Asn Ser Ile 2595 Ser Glu Asp Glu Lys His Val Asn Ser Ile 2595 Ser Glu Asp Glu Lys His Val Asn Ser Ile 2610 Ser Lys Glu Asn Glu Phe Ser Pro Thr Asn Ser 2620 Ser Lys Glu Asn Glu Phe Ser Pro Thr Asn Ser 2620 Ser Ser Gly Ala Thr 2635 Asn Gly Ala Glu Ser 2640 Pro 2645 Gln Met Ala Pro Ala Val Ser Lys Thr Glu 2650 Val Ser Lys Thr Glu 2655 Ile Asn Asn Pro Arg 2666 Pro Thr Gly Asn Thr Pro Pro Val Ile Asp Ser 2670 Pro Val Ile Asp Ser 2680 Asn Pro Asn Ile Lys Asp Asp Ser Lys Asp Asn 2700 Pro Val Gly Asn Gly Ser Val Pro Met Arg Thr 2715 Ile Gln Val Asp Ala 2720 Arg Leu Asn Ser Phe Tro Ser Pro 2735 Thr Glu Ile Lys Pro Gly Gln Asn Asn Pro 2736 Ser Lys Asp Gly 2735 Thr Glu Ile Lys Pro Gly Gln Asn Asn Pro 2736 Pro 2735 Thr Glu Ile Lys Pro Gly Gln Asn Asn Pro 2736 Pro 2736 Val Thr Asn Glu Ser Ser Ile Val Glu Arg Thr 2755 Ser Ser Ser Ser Lys His Ser Ser Pro Ser Gly 2775 Ang Val Thr Pro Phe Asn Tyr Asn Pro Ser Pro 2790 Pro 2780 Pro Ser Ile Val Glu Asp Pro 2790 Pro 2780 Pro 2880 P	s ser Ser Ser Leu Pro Arg 2750 val Ser Thr Trp Arg Arg 2750 arg 2555 arg 2556 val 2556 val 2556 val 2556 val 2556 val 2557 Ala Ser Ser Glu Ser Ser 2570 Ser Ser Ile Leu Ser Ala Ser Ser Glu Ser Ser 2550 Ser 2555 Ser Glu Asp Glu Lys His Val Asn Ser Ile Ser 2595 Ser 2595 Ser Glu Asp Glu Lys His Val Asn Ser Ile Ser 2595 Ser 2600 Ser Lys Glu Asn Glu Phe 2605 Ser Pro Thr Asn Ser Thr 2605 Ser 2605 Ser Ser Ser Glu Asn Glu Phe 2605 Ser Pro Thr Asn Ser Thr 2605 Ser 2606 Ser Ser Ser Gly Ala Thr 2605 Asp 2606 Ser Ser Gly Ala Glu Ser Lys Asp 2606 Ser 2605 Ser	s ser Ser Ser Leu Pro Arg 2550 val Ser Thr Trp Arg 2555 Arg Thr 2550 val Ser Ser Glu Ser Glu Asp Glu Lys 2590 His val Asn Ser Ile Ser Glu Ser Glu Asp Glu Lys Glu Asn Glu Lys Glu Ser Ala Lys Gly Thr Trp 2605 Ser Glu Ser Lys Glu Asn Glu Phe 2605 Ser Pro Thr Asn Ser Thr Ser 2615 Lys Glu Asn Glu Phe 2605 Ser Pro Thr Asn Ser Thr Ser 2615 Ser Gly Ala Thr 2635 Asn Gly Ala Glu Ser Lys Thr 2630 Ser Ser Gly Ala Glu Ser Lys Thr 2630 Ser Ser Gly Ala Thr 2635 Asn Gly Ala Glu Ser Lys Thr 2630 Ser Gly 2645 The Glu Asp Cys Pro 2665 Ile Asn Asn Pro Arg 2670 Ser Gly 2665 Ile Asn Asn Pro Arg 2670 Ser Gly 2660 Thr Gly Asn Thr Pro 2680 Pro Val Ile Asp Ser Val Ser 2695 Asp Ser Lys Asp Asn Gln Ala 2690 Asn Pro Asn Ile Lys 2695 Asp Ser Lys Asp Asn Gln Ala 2700 Thr Glu Ile Lys Pro 2740 Gly Gln Asn Asn Pro Asp 2730 Pro Asp 2730 Thr Glu Ile Lys Pro 2740 Gly Gln Asn Asn Pro 2745 Val Gly 2735 Thr Glu Ile Lys Pro 2740 Gly Gln Asn Asn Pro 2745 Val Pro 2750 Ser Ser Ser Ser Ser Lys His 2775 Ser Ser Ser Ser Lys His 2775 Thr Asn Pro Ser Gly Thr Val 2760 Arg Lys 2780 Val Thr Pro Phe 2780 Tyr Asn Pro Ser Gly Thr Val 2780 Asp Ser Thr Ser Ala Asp Ser Gln Ile Pro Thr

Page 282 of 970

WO 2005/014854 PCT/EP2004/008819

39467A.txt.txt Val Asn Asn Asn Thr Lys Lys Arg Asp Ser Lys Thr 2810 Asp Ser Thr 2820 Glu Ser Ser Gly Thr Gln Ser Pro Lys Arg His Ser Gly Ser Tyr 2825 2830 2835 Leu Val Thr Ser Val <210> 44 2121 <211> <212> DNΔ Homo sapiens <220> <221> misc_feature <400> 44 ctgctcgcgg ccgccaccgc cgggccccgg ccgtccctgg ctcccctcct gcctcgagaa 60 gggcagggct tctcagaggc ttggcgggaa aaaagaacgg agggagggat cgcgctgagt 120 ataaaagccg gttttcgggg ctttatctaa ctcgctgtag taattccagc gagaggcaga 180 gggagcgagc gggcggccgg ctagggtgga agagccgggc gagcagagct gcgctgcggg 240 cgtcctggga agggagatcc ggagcgaata gggggcttcg cctctggccc agccctcccg 300 cttgatcccc caggccagcg gtccgcaacc cttgccgcat ccacgaaact ttgcccatag 360 cagcgggcgg gcactttgca ctggaactta caacacccga gcaaggacgc gactctcccg 420 acgcggggag gctattctgc ccatttgggg acacttcccc gccgctgcca ggacccgctt 480 ctctgaaagg ctctccttgc agctgcttag acgctggatt tttttcgggt agtggaaaac 540 cagcagcctc ccgcgacgat gcccctcaac gttagcttca ccaacaggaa ctatgacctc 600 gactacgact cggtgcagcc gtatttctac tgcgacgagg aggagaactt ctaccagcag 660 cagcagcaga gcgagctgca gcccccggcg cccagcgagg atatctggaa gaaattcgag 720 ctgctgccca ccccgcccct gtcccctagc cgccgctccg ggctctgctc gccctcctac 780 gttgcggtca cacccttctc ccttcgggga gacaacgacg gcggtggcgg gagcttctcc 840 acggccgacc agctggagat ggtgaccgag ctgctgggag gagacatggt gaaccagagt 900 ttcatctgcg acccggacga cgagaccttc atcaaaaaca tcatcatcca ggactgtatg 960 tggagcggct tctcggccgc cgccaagctc qtctcaqaqa aqctqqcctc ctaccaqqct 1020 gcgcgcaaag acagcggcag cccgaacccc gcccgcggcc acagcgtctg ctccacctcc 1080 agcttgtacc tgcaggatct gagcgccgcc gcctcagagt gcatcgaccc ctcggtggtc 1140 ttcccctacc ctctcaacga cagcagctcg cccaagtcct gcgcctcgca agactccagc 1200 gccttctctc cgtcctcgga ttctctgctc tcctcgacgg agtcctcccc gcagggcagc 1260 cccgagcccc tggtgctcca tgaggagaca ccgcccacca ccagcagcga ctctgaggag 1320 gaacaagaag atgaggaaga aatcgatgtt gtttctqtqq aaaagaggca ggctcctggc 1380

Page 283 of 270

WO 2005/014854

39467A.txt.txt

aaaaggtcag	agtctggatc	accttctgct	ggaggccaca	gcaaacctcc	tcacagccca	1440
ctggtcctca	agaggtgcca	cgtctccaca	catcagcaca	actacgcagc	gcctccctcc	1500
actcggaagg	actatcctgc	tgccaagagg	gtcaagttgg	acagtgtcag	agtcctgaga	1560
cagatcagca	acaaccgaaa	atgcaccagc	cccaggtcct	cggacaccga	ggagaatgtc	1620
aagaggcgaa	cacacaacgt	cttggagcgc	cagaggagga	acgagctaaa	acggagcttt	1680
tttgccctgc	gtgaccagat	cccggagttg	gaaaacaatg	aaaaggcccc	caaggtagtt	1740
atccttaaaa	aagccacagc	atacatcctg	tccgtccaag	cagaggagca	aaagctcatt	1800
tctgaagagg	acttgttgcg	gaaacgacga	gaacagttga	aacacaaact	tgaacagcta	1860
cggaactctt	gtgcgtaagg	aaaagtaagg	aäaacgattc	cttctaacag	aaatgtcctg	1920
agcaatcacc	tatgaacttg	tttcaaatgc	atgatcaaat	gcaacctcac	aaccttggct	1980
gagtcttgag	actgaaagat	ttagccataa	tgtaaactgc	ctcaaattgg	actttgggca	2040
taaaagaact	tttttatgct	taccatcttt	tttttttctt	taacagattt	gtatttaaga	2100
attgttttta	aaaaatttta	a				2121

<210> 45 <211> 439 <212> PRT <213> Homo sapiens

<400> 45

Met Pro Leu Asn Val Ser Phe Thr Asn Arg Asn Tyr Asp Leu Asp Tyr 10^{-15}

Asp Ser Val Gln Pro Tyr Phe Tyr Cys Asp Glu Glu Glu Asn Phe Tyr $\frac{20}{20}$

Gln Gln Gln Gln Ser Glu Leu Gln Pro Pro Ala Pro Ser Glu Asp $\frac{1}{40}$

Ile Trp Lys Lys Phe Glu Leu Leu Pro Thr Pro Pro Leu Ser Pro Ser 50 60

Arg Arg Ser Gly Leu Cys Ser Pro Ser Tyr Val Ala Val Thr Pro Phe 65 70 75 80

Ser Leu Arg Gly Asp Asn Asp Gly Gly Gly Gly Ser Phe Ser Thr Ala 85 90 95

Asp Gln Leu Glu Met Val Thr Glu Leu Leu Gly Gly Asp Met Val Asn $100 \hspace{0.25cm} 105 \hspace{0.25cm} 105$

<220> <221> misc_feature <223> C-myc

WO 2005/014854

PCT/EP2004/008819

39467A.txt.txt
Gln Ser Phe Ile Cys Asp Pro Asp Asp Glu Thr Phe Ile Lys Asn Ile
115 120 125 Ile Ile Gln Asp Cys Met Trp Ser Gly Phe Ser Ala Ala Ala Lys Leu 130 140 Val Ser Glu Lys Leu Ala Ser Tyr Gln Ala Ala Arg Lys Asp Ser Gly 145 150 150 155 160Ser Pro Asn Pro Ala Arg Gly His Ser Val Cys Ser Thr Ser Ser Leu 165 170 175Tyr Leu Gln Asp Leu Ser Ala Ala Ala Ser Glu Cys Ile Asp Pro Ser 180 180 180 Val Val Phe Pro Tyr Pro Leu Asn Asp Ser Ser Ser Pro Lys Ser Cys 195 200 205 Ala Ser Gln Asp Ser Ser Ala Phe Ser Pro Ser Ser Asp Ser Leu Leu 210 215 220 Ser Ser Thr Glu Ser Ser Pro Gln Gly Ser Pro Glu Pro Leu Val Leu 225 230 236 His Glu Glu Thr Pro Pro Thr Thr Ser Ser Asp Ser Glu Glu Glu Gln 245 250 255 Glu Asp Glu Glu Glu Ile Asp Val Val Ser Val Glu Lys Arg Gln Ala 260 265 270 Pro Gly Lys Arg Ser Glu Ser Gly Ser Pro Ser Ala Gly Gly His Ser Lys Pro Pro His Ser Pro Leu Val Leu Lys Arg Cys His Val Ser Thr His Gln His Asn Tyr Ala Ala Pro Pro Ser Thr Arg Lys Asp Tyr Pro 305 310 315 320 Ala Ala Lys Arg Val Lys Leu Asp Ser Val Arg Val Leu Arg Gln Ile Ser Asn Asn Arg Lys Cys Thr Ser Pro Arg Ser Ser Asp Thr Glu Glu Asn Val Lys Arg Arg Thr His Asn Val Leu Glu Arg Gln Arg Arg Asn 355 360 365 Glu Leu Lys Arg Ser Phe Phe Ala Leu Arg Asp Gln Ile Pro Glu Leu 370 375 380

```
39467A.txt.txt
Glu Asn Asn Glu Lys Ala Pro Lys Val Val Ile Leu Lys Lys Ala Thr
385 390 400
 Ala Tyr Ile Leu Ser Val Gln Ala Glu Glu Gln Lys Leu Ile Ser Glu
405 410 415
Glu Asp Leu Leu Arg Lys Arg Arg Glu Gln Leu Lys His Lys Leu Glu
420 425 430
Gln Leu Arg Asn Ser Cys Ala
<210>
       46
<211>
<212>
        11
        PRT
        HIV
<220>
<221> misc_feature
<223> TAT protein
<400> 46
Tyr Gly Arg Lys Lys Arg Arg Gln Arg Arg 10
<210>
<211>
        47
54
<212> DNA
<213> Artificial sequence
<220>
<223> Synthetic primer
<220>
<221> misc_feature
<223> prox-1 sense
<400> 47
tggtcatctg caagctggat ttcaagagaa tccagcttgc agatgacctt tttc
                                                                              54
<210>
        48
<211> 58
<211> 58
<212> DNA
<213> Artificial sequence
<220>
<223> Synthetic primer
<220>
<221> misc_feature
<223> Prox-1 anti-sense
<400> 48
tcgagaaaaa aggtcatctg caagctggat tctcttgaaa tccagcttgc agtgacca
<210>
       49
```

39467A.txt.txt

	33 101/11 (AC. CAC	
<220> <223>	Synthetic primer	
<220> <221> <223>	misc_feature Prox-2 sense	
<400> tgagco	49 agit tgatatggat itcaagagaa iccataicaa actggcicii iiiic	55
<210> <211> <212> <213>	DNA	
<220> <223>	Synthetic primer	
<220> <221> <223>	misc_feature Prox-2 anti-sense	
<400> tcgaga	50 aaaa agagccagtt tgatatggat tctcttgaaa tccatatcaa actgctca	58

WC08014854 [file ///E:/WC08014854.cpc] Page 287 of 270

INTERNATIONAL SEARCH REPORT

Interna al Application No PCT/EP2004/008819

Relevant to claim No.

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 C1201/68

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) $IPC\ 7\ C12Q$

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, BIOSIS, EMBASE, WPI Data, PAJ

Category * Citation of document, with indication, where appropriate, of the relevant passages

C. DOCUMENTS CONSIDERED TO BE RELEVANT

X	WO 03/027285 A (BIONOMICS LTD. 3 April 2003 (2003-04-03) page 3, lines 22-37; table 2 page 14, line 1 - page 15, line 2,34-36,41,44,55,77; sequence 1	e 11; claims	46-51, 54-56
х	US 2003/087807 A1 (GREENSPAN R. 8 May 2003 (2003-05-08) claims 15,17,51	J.) -/—	49-51, 54,55
Special ce "A" docum consist "E" earther filling u "L" docum which citatio "O" docum other "P" docum later t Date of the	her documents are listed in the continuation of box C, attegories of offeed documents: - an disclining the poweral state of the air which is not letter to be of pathicular reference of concurrent but published on or after the international state. - an offeed of pathicular reference of concurrent but published on or after the international state. - an other consultation of the concurrent published on or other posicial residence of an other posicial residence (as specified) enter the referring to an orditectorism, use, activition or ent published order to the international filling date but have the privilety date claimed - actual completion of the international search - 7 December 2004 - mailing address of the ISA - European Peace Clinic, P.B. 6318 Patentisan 2 - N.L 230.1 M Fillipselli, N.C. 31 6516 epo nl, - Face (541-7-340-0016)	The later document published after the interpretation of the property date and not in conflict with the property date and the principle or the cannot be considered to principle review. The cannot be considered to trivolve and in document to purpose the cannot be considered to trivolve and in document to conflicted with which was not the cannot be conflicted with other date. The conflicted with the property of the cannot be conflicted with the property of the intermedional sea 29/12/2004 Authorized officer Barz, W	rnational fling date the application but copy underlying the liaired invention be considered to cument is taken alone islamed invention renties step when the re other such docu- so of a present stilled family

WC05014654 [file ///E./WC05014854.cpc]

INTERNATIONAL SEARCH REPORT

Internal Application No PCT/EP2004/008819

Relevant to claim No
1-78
ı
1-78
1-78
1-78
1-78

WC05014854 [Rie //E:/WC06014854.cpc]

INTERNATIONAL SEARCH REPORT

Internation No

		PCT/EP2004/008819
C.(Continu	etion) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category *	Citation of document, with Indication, where appropriate, of the relevant pessages	Relevant to claim No.
A	XIA H. ET AL.: "siRNA-mediated gene silencing in vitro and in vivo" NATURE BIOTECHNOLOGY, NATURE PUBLISHING, vol. 20, no. 10, October 2002 (2002-10), pages 1006-1010, XP002251054 ISSN: 1087-0156 abstract	56–67
Α	BRUMMELKAMP T.R. ET AL.: "A system for stable expression of short interfering RNAs in mammalian cells" SCIENCE, AMERICAM ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE, US, vol. 296, no. 5567, 2002, pages 550-553, XP0022256.0075 abstract; figures 1,2	
P,A	LOHELA M. ET AL.: "Lymphangiogenic growth factors, receptors and theraples." THROMBOSIS AND HAEMOSTASIS, vol. 90, no. 2, August 2003 (2003-08), pages 167-184, XF009040757 ISSN: 0340-6245 abstract page 168, paragraph bridging both columns; page 169, last paragraph of left column.	1-78

INTERNATIONAL SEARCH REPORT

Internation Application No PCT/EP2004/008819

						1017 E1 E00-17 000013				
	atent document in search report		Publication date		Patent family member(s)		Publication date			
WO	03027285	A	03-04-2003	WO CA EP	03027285 2461372 1430126	A1	03-04-2003 03-04-2003 23-06-2004			
US	2003087807	A1	08-05-2003	US AU CA EP WO	6551575 2054301 2392963 1255993 0140519	A A1 A2	22-04-2003 12-06-2001 07-06-2001 13-11-2002 07-06-2001			