

Multiclass Classification

Swati Mishra

Applications of Machine Learning (4AL3)

Fall 2024

ENGINEERING

Review

- Data Model vs Concept Model
- Correlations Compute, Visualize, Decide
- Data Cleaning, Feature Scaling
- Creating Test Sets Random 80-20 Split, Stratified Split

Classification

• Binary Classification – 2 classes

Example Tasks:

- Storm/No storm
- Buy/Sell
- Lend/don't lend

Classification

• Multiclass Classification - More than 2 classes

Example Tasks:

- Dog, Cat, Tiger, Wolf
- Politics, Sports, Entertainment
- Positive, negative, neutral

• Logistic Regression **Model**: Given a set of features (x) of a data instance, compute the probability of the instance belonging to class 1 (or 0).

$$P(Y|x) = \begin{cases} p(x) & \text{if } Y = 1\\ 1 - p(x) & \text{if } Y = 0 \end{cases}$$

• Logistic Regression **Equation** is

$$p(Y = 1|x) = \sigma(b + W.x)$$

• Training objective is to learn parameters W and b to maximize the log probability of correct label $p(Y \mid x)$ using training dataset.

• Logit is called Log ratio of probability
$$log(\frac{p(x)}{1-p(x)})$$

• Logistic Regression Model: Given a set of features (x) of a data instance, compute the probability of the instance belonging to class 1 (or 0).

$$P(Y|X) = \begin{cases} p(X) & \text{, if } Y = 1\\ 1 - p(X) & \text{, if } Y = 0 \end{cases}$$

• Logistic Regression **Equation** is

$$p(Y=1|x) = \sigma(b + W.x)$$

• Training objective is to learn parameters W and b to maximize the log probability of correct label $p(Y \mid x)$ using training dataset.

• Logit is called Log ratio of probability
$$log(\frac{p(x)}{1-p(x)})$$

• Logistic Regression **Model**: Given a set of features (x) of a data instance, compute the probability of the instance belonging to class 1 (or 0).

$$P(Y|X) = \begin{cases} p(X) & \text{, if } Y = 1\\ 1 - p(X) & \text{, if } Y = 0 \end{cases}$$

• Logistic Regression **Equation** is

$$p(Y = 1|x) = \sigma(b + W.x)$$

• Training objective is to learn parameters W and b to maximize the log probability of correct label $p(Y \mid x)$ using training dataset.

Logit is called Log ratio of probability

$$\log\left(\frac{p(x)}{1-p(x)}\right)$$

• Logistic Regression **Model**: Given a set of features (x) of a data instance, compute the probability of the instance belonging to class 1 (or 0).

$$P(Y|x) = \begin{cases} p(x) & \text{, if } Y = 1\\ 1 - p(x) & \text{, if } Y = 0 \end{cases}$$

• Logistic Regression **Equation** is

$$p(Y = 1|x) = \sigma(b + W.x)$$

- Training objective is to learn parameters W and b to maximize the log probability of correct label $p(Y \mid x)$ using training dataset.
- Logit is called Log ratio of probability

$$\log \left(\frac{p(x)}{1 - p(x)} \right)$$

Logistic function is

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

- It is also called sigmoid function
 - If z is large, $\sigma(z) \to 1$
 - If z is small, $\sigma(z) \to 0$

Threshold = 0.5

After applying logistic regression function,

$$P(y = 1) = \frac{1}{1 + e^{-(b+\mathbf{w}.\mathbf{x})}}$$

Picture Source: https://en.wikipedia.org/wiki/Sigmoid_function

)	(_k	0.50	0.75	1.00	1.25	1.50	1.75	1.75	2.00	2.25	2.50	2.75	3.00	3.25	3.50	4.00	4.25	4.50	4.75	5.00	5.50
2	V _k	0	0	0	0	О	0	1	0	1	О	1	0	1	0	1	1	1	1	1	1

Logistic function is

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

- It is also called sigmoid function
 - If z is large, $\sigma(z) \to 1$
 - If z is small, $\sigma(z) \to 0$

 x_k = Hours Studied y_k = Will Pass

Logistic regression does better than

linear regression!

After applying logistic regression function,

$$P(y = 1) = \frac{1}{1 + e^{-(b+\mathbf{w}.\mathbf{x})}}$$

Picture Source: https://en.wikipedia.org/wiki/Logistic_regression

Binary Logistic Regression with multiple features : $p(Y = 1|x) = \sigma(b + W.x)$

$$p(Y = 1|X) = \sigma(b + W.X) = \sigma(b + w_1 x_{i1} + w_2 x_{i2} + w_3 x_{i3} + ... + w_m x_{in})$$

m = number of observations n = number of features

Binary Logistic Regression with multiple features : $p(Y = 1|x) = \sigma(b + W.x)$

$$p(Y = 1|X) = \sigma(b + W.X) = \sigma(b + w_1 x_{i1} + w_2 x_{i2} + w_3 x_{i3} + ... + w_m x_{in})$$

... and with multiple observations:

$$y = \begin{vmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{vmatrix} \qquad X = \begin{vmatrix} x_{11} & x_{12} \dots & x_{1n} \\ x_{21} & x_{22} \dots & x_{2n} \\ \vdots & \vdots & \dots & \vdots \\ x_{m1} & x_{m2} \dots & x_{mn} \end{vmatrix} \qquad W = \begin{vmatrix} w_1 \\ w_2 \\ \vdots \\ w_m \end{vmatrix} \qquad b = \begin{vmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{vmatrix}$$

$$m * 1 \qquad m * 1$$

$$m * 1$$

m = number of observations n = number of features

Binary Logistic Regression with multiple features : $p(Y = 1|x) = \sigma(b + W.x)$

$$p(Y = 1|X) = \sigma(b + W.X) = \sigma(b + w_1 x_{i1} + w_2 x_{i2} + w_3 x_{i3} + ... + w_m x_{in})$$

... and with multiple observations:

$$y = \begin{vmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{vmatrix} \qquad X = \begin{vmatrix} x_{11} & x_{12} \dots & x_{1n} \\ x_{21} & x_{22} \dots & x_{2n} \\ \vdots & \vdots & \dots & \vdots \\ x_{m1} & x_{m2} \dots & x_{mn} \end{vmatrix} \qquad W = \begin{vmatrix} w_1 \\ w_2 \\ \vdots \\ w_m \end{vmatrix} \qquad b = \begin{vmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{vmatrix}$$

$$m * 1 \qquad m * 1$$

$$m * 1$$

m = number of observations n = number of features

$$b_1$$
= b_2 = b_3 =... = b_m
 b is same for all observations

Training logistic regression requires Cross Entropy Loss Function which is defined as below:

$$L_i = -(y_i log(\sigma(\boldsymbol{b} + \boldsymbol{W}.\boldsymbol{X}) + (1 - y_i) log(1 - \sigma(\boldsymbol{b} + \boldsymbol{W}.\boldsymbol{X})))$$

- If the predicted label is wrong the loss is large
- If the predicted label is right the the loss is small.
- Training goal is to minimize the average loss
- Why entropy? CE Loss measures the number of bits we send.

Training logistic regression requires Cross Entropy Loss Function which is defined as below:

$$L_i = -(y_i log(\sigma(\boldsymbol{b} + \boldsymbol{W}.\boldsymbol{X}) + (1 - y_i) log(1 - \sigma(\boldsymbol{b} + \boldsymbol{W}.\boldsymbol{X})))$$

- If the predicted label is wrong the loss is large
- If the predicted label is right the the loss is small.
- Training goal is to minimize the average loss which is given by $\frac{1}{n}\sum_{i=1}^n L_i$
- Why entropy? CE Loss measures the number of bits we send.

Training logistic regression requires Cross Entropy Loss Function which is defined as below:

$$L_i = -(y_i \log(\sigma(\boldsymbol{b} + \boldsymbol{W}.\boldsymbol{X}) + (1 - y_i) \log(1 - \sigma(\boldsymbol{b} + \boldsymbol{W}.\boldsymbol{X})))$$

- If the predicted label is wrong the loss is large
- If the predicted label is right the the loss is small.
- Training goal is to minimize the average loss which is given by $\frac{1}{n}\sum_{i=1}^n L_i$
- Why entropy? CE Loss measures the number of bits we send.

Binary Logistic Regression

What does output of Sigmoid function look like:

Input vector

Data instance 1: "4AL3 is awesome and wonderful"

Feature Vector for 1 instance = [2,0]

Label Vector for 1 instance = [1]

$$w_1 = w_1 = b = 0$$

$$\eta = 0.1$$

$$\nabla L = \begin{vmatrix} (\sigma(b + \boldsymbol{W}.x) - y)x_1 \\ (\sigma(b + \boldsymbol{W}.x) - y)x_2 \\ (\sigma(b + \boldsymbol{W}.x) - y) \end{vmatrix} = \begin{vmatrix} (\sigma(0) - 1)x_1 \\ (\sigma(0) - 1)x_2 \\ (\sigma(0) - 1) \end{vmatrix}$$

 $\beta' = \beta - \eta \nabla L$

- Count of positive words
- Count of negative words

Let us consider labels:

- Positive
- Negative

$$(\sigma(0) - 1)x_1$$

$$(\sigma(0) - 1)x_2$$

$$(\sigma(0) - 1)$$

Training logistic regression requires Cross Entropy Loss Function which is defined as below:

$$L_i = -(y_i \log(\sigma(\boldsymbol{b} + \boldsymbol{W}.\boldsymbol{X}) + (1 - y_i) \log(1 - \sigma(\boldsymbol{b} + \boldsymbol{W}.\boldsymbol{X})))$$

- If the predicted label is wrong the loss is large
- If the predicted label is right the the loss is small.
- Training goal is to minimize the average loss

What happens if there are more than 2 classes?

Approach 1: For each class, we predict the probability that of observation belonging to the class.

Approach 1: For each class, we predict the probability that of observation belonging to the class.

Final class is the one with the highest probability

Approach 1: For each class, we predict the probability that of observation belonging to the class.

Limitations:

- Computation can be intense for large classes
- We might not need all possible computations

Approach 2: Use Softmax Regression to compute the probability that a data point belongs to each class by using below softmax function

$$softmax(e^z) = \frac{exp(z_i)}{\sum_{i=1}^{K} exp(z_i)} \ 1 \le i \le K$$

Approach 2: Use Softmax Regression to compute the probability that a data point belongs to each class by using below softmax function

$$softmax(e^z) = \frac{exp(z_i)}{\sum_{i=1}^{K} exp(z_i)} \ 1 \le i \le K$$

• The softmax function of an input vector $z = [z_1, z_1, ..., z_k]$ is given by:

$$softmax(z) = \frac{exp(z_1)}{\sum_{i=1}^{K} exp(z_i)} + \frac{exp(z_2)}{\sum_{i=1}^{K} exp(z_i)}, ..., \frac{exp(z_K)}{\sum_{i=1}^{K} exp(z_i)}$$

Approach 2: Use Softmax Regression to compute the probability that a data point belongs to each class by using below softmax function

$$softmax(e^z) = \frac{exp(z_i)}{\sum_{i=1}^{K} exp(z_i)} \ 1 \le i \le K$$

• The softmax function of an input vector $z = [z_1, z_1, \dots, z_k]$ is given by:

$$softmax(z) = \frac{exp(z_1)}{\sum_{i=1}^{K} exp(z_i)} + \frac{exp(z_2)}{\sum_{i=1}^{K} exp(z_i)}, ..., \frac{exp(z_K)}{\sum_{i=1}^{K} exp(z_i)}$$

• The denominator $\sum_{i=1}^{K} exp(z_i)$ is used to normalize all the values into probabilities.

Approach 2: Use Softmax Regression to compute the probability that a data point belongs to each class by using below softmax function

$$softmax(e^z) = \frac{exp(z_i)}{\sum_{i=1}^{K} exp(z_i)} \ 1 \le i \le K$$

• The softmax function of an input vector $z = [z_1, z_1, ..., z_k]$ is given by:

$$softmax(z) = \frac{exp(z_1)}{\sum_{i=1}^{K} exp(z_i)} + \frac{exp(z_2)}{\sum_{i=1}^{K} exp(z_i)}, ..., \frac{exp(z_K)}{\sum_{i=1}^{K} exp(z_i)}$$

- The denominator $\sum_{i=1}^{K} exp(z_i)$ is used to normalize all the values into probabilities.
- Like the sigmoid, the softmax has the property of squashing values toward 0 or 1.

Approach 2: Use Softmax Regression to compute the probability that a data point belongs to each class by using below softmax function

$$softmax(e^{z}) = \frac{exp(z_{i})}{\sum_{i=1}^{K} exp(z_{i})} \ 1 \leq i \leq K$$

• The softmax function of an input vector $z = [z_1, z_1, \dots, z_k]$ is given by:

$$softmax(z) = \frac{exp(z_1)}{\sum_{i=1}^{K} exp(z_i)} + \frac{exp(z_2)}{\sum_{i=1}^{K} exp(z_i)}, ..., \frac{exp(z_K)}{\sum_{i=1}^{K} exp(z_i)}$$

z = is the vector of score is called the logit.

- The denominator $\sum_{i=1}^{K} exp(z_i)$ is used to normalize all the values into probabilities.
- Like the sigmoid, the softmax has the property of squashing values toward 0 or 1.

Approach 2: Use Softmax Regression to compute the probability that a data point belongs to each class by using below softmax function

• When applying softmax to logistic regression, the probability of each output corresponding to class k is given by:

$$P(y_k = 1|x) = \frac{exp(w_k. x + b_k)}{\sum_{i=1}^{K} exp(w_i. x + b_i)}$$

Approach 2: Use Softmax Regression to compute the probability that a data point belongs to each class by using below softmax function

- Let's say probability of instance x belonging to class Y=1 for a given β is given by: $P(Y = 1 | x; \beta)$
- Then using Softmax means:

$$P(Y = 1 | x; \beta)$$

$$P(Y = 2 | x; \beta)$$

$$\vdots$$

$$P(Y = K | x; \beta)$$

$$P(Y = K | x; \beta)$$

$$= \frac{1}{\sum_{i=1}^{K} exp(w_i.x + b_i)}$$

$$\vdots$$

$$P(Y = K | x; \beta)$$

$$= \frac{1}{\sum_{i=1}^{K} exp(w_i.x + b_i)}$$

$$\vdots$$

$$exp(w_1.x + b_1)$$

$$exp(w_2.x + b_2)$$

$$\vdots$$

$$\vdots$$

$$exp(w_k.x + b_k)$$

$$exp(w_k.x + b_k)$$

Separate for each class

Approach 2: Use Softmax Regression to compute the probability that a data point belongs to each class by using below softmax function

- Let's say probability of instance x belonging to class Y=1 for a given β is given by: $P(Y = 1 | x; \beta)$
- Then using Softmax means:

$$P(Y = 1 | x; \beta)$$

$$P(Y = 2 | x; \beta)$$

$$\vdots$$

$$P(Y = K | x; \beta)$$

$$| P(Y = K | x; \beta)$$

Predict class with highest probability

What happens for K= 2?

Separate for each class

Binary vs Multinomial Regression

Multinomial Input feature vector $n \times 1$

What does output of Softmax function look like:

Example: 5 classes, 3 data instances	Positive	Negative	Neutral	Too Positive	Too Negative
	0	0	0	0	0

What does output of Softmax function look like:

Example: 5 classes, 3 data instances	Positive	Negative	Neutral	Too Positive	Too Negative
Data instance 1: Professor is awesome	1	0	0	0	0

What does output of Softmax function look like:

Example: 5 classes, 3 data instances	Positive	Negative	Neutral	Too Positive	Too Negative
Data instance 1: Professor is awesome	1	0	0	0	0
Data instance 2: Professor is horrible	0	0	0	0	1

What does output of Softmax function look like:

Example: 5 classes, 3 data instances	Positive	Negative	Neutral	Too Positive	Too Negative
Data instance 1: Professor is awesome	1	0	0	0	0
Data instance 2: Professor is horrible	0	0	0	0	1
Data instance 3: Professor is meh	0	0	1	0	0

Where else Softmax function is used:

- Neural Networks:
 - Softmax is often used as the final layer of NN.
 - Such networks are commonly under log loss (or cross-entropy).
- Reinforcement Learning:
 - Softmax function can convert action value corresponding to expected reward into probabilities.

Evaluating Classifiers

Predicted outcome of classifiers can belong to either of these categories:

Actual Value	Predicted Value					
	Predicted Positive	Predicted Negative				
Positive (P)	True Positive (TP)	False Negative (FN)				
Negative (N)	False Positive (FP)	True Negative (TN)				

Evaluating Classifiers

Predicted outcome of classifiers can belong to either of these categories:

Actual Value	Predicted Value				
	Predicted Positive	Predicted Negative			
Positive (P)	True Positive (TP)	False Negative (FN)			
Negative (N)	False Positive (FP)	True Negative (TN)			

Accuracy = (TP + TN) / (P+N)

Sensitivity = True Positive Rate = TP/P

Precision = TP / TP+FP

Specifity = True Negative Rate = TN/N

Recall = TP / TP+FN

Evaluating Classification Models

Predicted outcome of Binary Classifier:

		Predicted condition					
	Total	Cancer	Non-cancer				
	8 + 4 = 12	7	5				
ndition	Cancer 8	6	2				
Actual condition	Non-cancer 4	1	3				

Picture Source : https://en.wikipedia.org/wiki/Confusion_matrix

Evaluating Classification Models

Predicted outcome of Multiclass Classifier:

	Classes	a	b	с	d	Total
tion	а	6	0	1	2	9
ssifica	b	3	9	1	1	14
ACTUAL classification	с	1	0	10	2	13
ACTI	d	1	2	1	12	16
	Total	11	11	13	17	52

Picture Source : https://ar5iv.labs.arxiv.org/html/2008.05756

Readings

Required Readings:

Introduction to Statistical Learning

- 1. Chapter 4 Section 4.3 Page 138 144
- 2. Chapter 2 Section 2.2.3 Page 34 40

Supplemental Readings (Not required but recommended):

1. Online: Metrics for Multiclass Classification

Thank You

