На правах рукописи

Скурыдина Алия Фиргатовна

Регуляризующие алгоритмы на основе методов ньютоновского типа и нелинейных аналогов α -процессов

01.01.07 – Вычислительная математика

ДИССЕРТАЦИЯ

на соискание ученой степени кандидата физико-математических наук

> Научный руководитель доктор физико-математических наук Акимова Елена Николаевна

Оглавление

Списон	к сокращений и условных обозначений	4
Введен	ие	5
Глава	1. Решение уравнений с монотонным оператором	15
1.1.	Постановка задачи	16
1.2.	Метод Ньютона	19
1.3.	Нелинейные аналоги альфа-процессов	26
1.4.	Оценка погрешности двухэтапного метода	32
1.5.	Численные эксперименты	34
Глава 2	2. Решение уравнений с немонотонным оператором	39
2.1.	Метод Ньютона	40
2.2.	Нелинейные аналоги альфа-процессов	42
2.3.	Модифицированные варианты регуляризованных методов на ос-	
	нове нелинейных налогов альфа-процессов	47
2.4.	Решение модельных задач гравиметрии и магнитометрии	54
Глава	3. Покомпонентные методы и вычислительная оптимиза-	
ция	для решения обратных структурных задач гравиметрии и	
магі	нитометрии	63
3.1.	Покомпонентный метод типа Ньютона и вычислительная опти-	
	мизация метода Ньютона	64
3.2.	Покомпонентный метод типа Левенберга – Марквардта для ре-	
	шения обратной задачи гравиметрии для модели многослойной	
	среды	68
3.3.	Использование параллельных вычислений	73

3.4. Решение модельных задач гравиметрии и магнитометрии на м						
	гопроцессорных системах					
3.5.	Описание комплекса параллельных программ					
Заключ	чение					
Список	х литературы					
Публиі	кации автора					

Список сокращений и условных обозначений

H— гильбертово пространство; Fix(T) — множество неподвижных точек оператора T; S(u,r) — шар с центром в точке u радиуса r; \mathbb{R} — множество вещественных чисел; \mathbb{R}^n — евклидово пространство n-мерных векторов; ||u|| норма в гильбертовом пространстве; $\langle u,v\rangle$ — скалярное произведение в гильбертовом пространстве; $L_{2}[a,b]$ — гильбертово пространство функций, интегрируемых с квадратом на отрезке [a, b]; OpenMP — Open Multi – Processing, технология параллельных вычислений для многоядерных архитектур; CUDA— Compute Unified Device Architecture, технология параллельных вычислений на графических ускорителях;

Введение

Актуальность темы исследования.

Теория некорректно поставленных задач и методы их решения относятся к важнейшим направлениям исследования современной вычислительной математики, что обусловлено потребностями различных областей естествознания, техники и медицины, где эти проблемы возникают в форме обратных задач.

На практике такие задачи нередко имеют большой объем входных данных, что приводит к необходимости решать системы нелинейных уравнений большой размерности. Для уменьшения времени счета используются многопроцессорные вычислители и технологии распараллеливания.

Степень разработанности темы исследования. Ж. Адамар в 1902 г. [4] впервые определил условия корректности задачи математической физики. Задачи, не отвечающие этим условиям, то есть некорректные, Ж. Адамар считал лишенными физического смысла. В течение многих лет обратные задачи решались методами без строгого математического обоснования.

Первой работой по теории некорректных задач является работа академика А.Н. Тихонова 1943 г. [103], в которой он доказал устойчивость некоторых обратных задач при условии принадлежности решения компактному множеству. Также в этой работе он решил одну из актуальных обратных задач разведочной геофизики. В дальнейшем теория некорректных задач оформилась в самостоятельный раздел современной математики. В конце 50-х годов и начале 60-х годов появились работы, посвященные решению некоторых некорректных задач с помощью идей регуляризации, выдающихся отечественных ученых: А.Н. Тихонова, М.М. Лаврентьева, В.К. Иванова. Их исследования в этой области положили начало трем научным школам: московской, сибирской и уральской. Началось исследование устойчивых методов решения некорректно поставленных

задач, представляющих собой одно из наиболее актуальных проблем современной математической науки.

В большом цикле работ, выполненных начиная с 1963 года, А.Н. Тихонов сформулировал принцип устойчивого решения некорректно поставленных задач, ввел понятие регуляризирующего оператора и предложил ряд эффективных методов построения таких операторов, легко реализуемых на ЭВМ [104—107]. Метод регуляризации А.Н. Тихонова, был применен для решения большого количества как фундаментальных математических, так и актуальных прикладных задач. В частности, тихоновским методом регуляризации были решены задача об отыскании решения интегрального и операторного уравнения первого рода, обратные задачи теории потенциала и теплопроводности.

М.М. Лаврентьеву принадлежит идея замены исходного уравнения близким ему в некотором смысле уравнением, для которого задача нахождения решения устойчива к малым изменениям правой части и разрешима для любой правой части [73]. Были доказаны теоремы сходимости регуляризованного решения к точному [71]. Основополагающие результаты для интегральных уравнений Фредгольма первого рода получены в работах [72; 74—76], где для решения линейных интегральных уравнений Фредгольма первого рода построены регуляризирующие операторы по М.М. Лаврентьеву.

В работах В.К. Иванова, выполненных в 1960–1970-е годы, было введено понятие квазирешения [63; 64], были заложены также основы двусторонних оценок регуляризующих алгоритмов [65], установлены связи между вариационными методами регуляризации, развит единый подход к трактовке линейных некорректных задач в топологических пространствах [66].

Однако не все некорректные задачи возможно регуляризовать. Так, российский математик Л.Д. Менихес [81] привел пример интегрального оператора с непрерывным замкнутым ядром, действующего из пространства C[0,1] в

 $L_2[0,1]$, обратная задача для которого нерегуляризуема. Проблемам регуляризуемости также посвящены работы Ю.И. Петунина и А.Н. Пличко [87].

Для построения регуляризующих алгоритмов при решении прикладных задач требуется использовать дополнительную информацию о свойствах искомого решения, заданную в виде равенств и неравенств, характеристик решения, например, свойствами гладкости, вытекающих из физической сущности задачи. В своей монографии [82] В.А. Морозов, А.И. Гребенников обобщили опыт решения многих прикладных некорректных задач с учетом дополнительной информации. Получило развитие построение регуляризующих алгоритмов вариационными методами. А.Б. Бакушинский, Б.Т. Поляк сформулировали общие принципы построения регуляризующих алгоритмов в банаховых пространствах [45]. Метод обобщенной невязки был предложен А.В. Гончарским, А.С. Леоновым, А.Г. Яголой [55]. Монография А.Б. Бакушинского, А.В. Гончарского [44] посвящена итеративной регуляризации вариационных неравенств с монотонными операторами, которые единообразно описывают многие постановки задач с априорной информацией. В работах [42; 43] А.Б. Бакушинский предложил итеративную регуляризацию методов Ньютона – Канторовича и Гаусса – Ньютона и исследовал их сходимость. Различные обобщения результатов А.Б. Бакушинского по методу Гаусса – Ньютона были получены в работах В. Blaschke, А. Neubauer, O. Scherzer, B. Kaltenbacher, A.G.Ramm [1; 11]. Исследования методов наискорейшего спуска и минимальной ошибки решения нелинейных некорректных задач проведены A. Neubauer, O. Scherzer в работах [18; 19; 24],

Регуляризующие алгоритмы, предназначенные для решения плохо обусловленных систем линейных уравнений, интегральных уравнений Фредгольма приводятся в монографии А.Н. Тихонова, А.С. Леонова и А.Г. Яголы [108]. В приложениях А.Г. Ягола рассмотрел различные обратные задачи колебательной спектроскопии, оптики и др. [21], [41], [85], [16].

Методам решения операторных уравнений первого рода посвящены работы В.П. Тананы [98; 100] и монография [99]. Им предложен метод L-регуляризации, представляющий собой разновидность метода Тихонова, расширивший класс регуляризуемых задач [101; 102].

Регуляризующие алгоритмы в пространствах функций ограниченной вариации были впервые предложены М.Г. Дмитриевым, В.С. Полещуком [57], И.Ф. Дорофеевым [58]. Далее в работах А.В. Гончарского и В.В. Степанова [56], А.Л. Агеева [33] была доказана равномерная сходимость приближенных решений. Подход, изложенный в [113], основан на идее двухэтапного алгоритма: построении приближенного решения исходного операторного уравнения из условия минимизации регуляризованной невязки на априорном множестве, где привлекается информация о неотрицательности, монотонности и выпуклости решения. На втором этапе для решения корректно поставленной экстремальной задачи применяются методы градиентного типа, линеаризованные методы, или алгоритмы, специально ориентированные на определенный класс априорных ограничений.

Для решения систем нелинейных уравнений в условиях регулярности предложены методы в работах Л.В. Канторовича [68], Б.Т. Поляка [88], Ј. М. Ortega и W. C. Rheinboldt [22], М.J.D. Powell [23], J.E.Dennis, R.B. Schnabel, P.D. Frank [2], С.Т. Kelley [12], R.B. Schnabel и Р.D. Frank [26] для решения систем уравнений с сингулярной или плохо обусловленной матрицей Якоби, J.С. Gilbert, J. Nocedal, S.J. Wright [3; 20]. Термин «α-процессы», характеризующий класс нелинейных итерационных методов (где оператор шага нелинеен) для решения линейного уравнения с ограниченным самосопряженным положительно полуопределенным оператором, был введен в монографии М.А. Красносельского, Г.М. Вайникко, П.П. Забрейко [69]. Нелинейные модифицированные аналоги α-процессов для некорректных задач, где уравнение с монотонным операто-

ром, были построены и исследованы в работе В.В. Васина [31]. Поскольку обозначение α традиционно используется в качестве параметра регуляризации для нелинейных уравнений, в этих процессах обозначение α заменено на \varkappa .

L. Landweber в статье [15] 1951 г. предложил метод для решения линейных интегральных уравнений Фредгольма I рода. В дальнейшем М. Hanke, А. Neubauer и О. Scherzer [7; 17; 19] применили метод Ландвебера для решения нелинейных нерегулярных уравнений, доказали теоремы о сходимости и исследовали скорость сходимости метода. Градиентные методы с применением метода Ландвебера исследовались М.Ю. Кокуриным в работах [13; 14].

В работах [5; 6] М. Напке предложил новую схему метода Левенберга – Марквардта для решения некорректных задач на примере задачи фильтрации.

В.В. Васиным предложен подход к решению задач с априорной информацией в работах [32; 47; 48; 51], основанный на применении сильно фейеровских отображений при построении итерационных процессов решения некорректных задач и для учета априорных ограничений в форме выпуклых неравенств. Термин «фейеровское отображение» введен И.И. Ереминым в работах [59—61] на основе идей венгерского математика Фейера. Отображения, обладающие свойством фейеровости, позволяют строить итерационные процессы с учетом априорных ограничений. На основе α-процессов были предложены регуляризованные методы решения линейных операторных уравнений Φ редгольма I рода, возникающих, например, при решении линейных обратных задач гравиметрии. Также В.В. Васин в работах [50; 52] доказал сильную сходимость метода Левенберга – Марквардта и его модифицированного варианта для решения регуляризованного по Тихонову нелинейного уравнения. Проведенные численные эксперименты для нелинейной обратной задачи гравиметрии показали, что основной процесс Левенберга – Марквардта существенно превосходит по точности модифицированный вариант этого метода и не требует жестких условий на начальное приближение, но обладает большей вычислительной сложностью, и, следовательно, требует больших затрат машинного времени.

При исследовании методов решения некорректных задач важное место занимает оценка погрешности регуляризованного решения по отношению к точному решению. Для уравнения с монотонным оператором исследовался метод Лаврентьева U. Tautenhahn [27; 28], стратегия выбора параметра регуляризации по Тихонову исследовалась Q. Jin, Zong-Yi Hou [9; 10], O. Scherzer, H. W. Engl и K. Kunisch [25]. В.П. Тананой доказана сходимость решения L-регуляризованной вариационной задачи к решению исходного операторного уравнения I рода и показана на примере двумерной обратной задачи гравиметрии [102].

Обратные задачи гравиметрии и магнитометрии в случае одной контактной поверхности в виде интегральных уравнений были поставлены Б.В. Нумеровым и Н.Р. Малкиным [77; 84]. Вопросами единственности решения обратных задач теории потенциала занимались в разное время авторы П.С. Новиков [83], М.М. Лаврентьев [71], В.К. Иванов [62], А.И. Прилепко [89], А.В. Цирульский в совместных работах с Н. В. Федоровой, В. В. Кормильцевым [111; 112].

Методы решения структурных обратных задач гравиметрии и магнитометрии предложены в работах В.Б. Гласко и др. [54], В.Н. Страхова [93—97]. Метод локальных поправок, использующий свойства изменения гравитационного поля в отдельной точке, предложен И.Л. Пруткиным [90—92]. В ИГФ УрО РАН разработана методика и алгоритмы решения обратных задач на основе метода локальных поправок (И. Л. Пруткин, П. С. Мартышко [79; 80], И. В. Ладовский, А. Г. Цидаев).

В ИММ УрО РАН разработаны параллельные алгоритмы на основе методов Ньютона, Левенберга – Марквардта и процессов градиентного типа (В. В. Васин, Е. Н. Акимова, Л. Ю. Тимерханова, Г. Я. Пересторонина, В. Е. Мисилов).

Ссылки на работы по параллельным вычислениям можно найти, напри-

мер, в монографиях В.В. Воеводина и Вл.В. Воеводина [53], Дж. Ортеги [86], Д.К. Фаддеева, В.Н. Фаддеевой [110]. Параллельные алгоритмы для решения задач гравиметрии и магнитометрии построены и исследованы в работах Е.Н. Акимовой [34—36; 39; 40].

Целью диссертационной работы является построение новых устойчивых и экономичных по времени и памяти алгоритмов на основе методов ньютоновского типа и α-процессов для решения нелинейных операторных уравнений, исследование их сходимости; реализация параллельных алгоритмов в виде комплекса программ на многоядерных и графических процессорах (видеокартах) для вычислений на сетках большого размера.

Методология и методы исследования. В диссертационной работе использовался аппарат функционального анализа, численных методов, теории некорретных задач. Для реализации алгоритмов на многоядерных и графических процессорах использовались технологии параллельного программирования OpenMP и CUDA.

Научная новизна. Результаты, полученные в диссертационной работе, являются новыми и имеют теоретическую и практическую ценность.

- 1. В рамках двухэтапного метода построения регуляризующего алгоритма доказаны теоремы о сходимости и сильной фейеровости метода Ньютона и нелинейных аналогов α-процессов: метода минимальной ошибки (ММО), метода наискорейшего спуска (МНС) и метода минимальных невязок (ММН) при аппроксимации регуляризованного решения. Рассмотрены два случая: оператор уравнения является монотонным, либо оператор действует в конечномерном пространстве, является немонотонным, но его производная имеет неотрицательный спектр.
- 2. Для решения нелинейных интегральных уравнений обратных задач гравиметрии предложены новые экономичные по вычислениям и памяти покомпо-

нентные методы типа Ньютона (ПМН) и типа Левенберга — Марквардта. Предложена вычислительная оптимизация методов ньютоновского типа для задач с матрицей производной оператора, имеющей диагональное преобладание.

3. Разработан комплекс параллельных программ для решения обратных задач гравиметрии и магнитометрии на сетках большой размерности, реализованный на многоядерных процессорах и на графических процессорах (видеокартах) для методов типа Ньютона и Левенберга — Марквардта и покомпонентных методов типа Ньютона и Левенберга — Марквардта.

Теоретическая и практическая значимость. Результаты, изложенные в диссертации, могут быть использованы для решения нелинейных операторных уравнений. Например, для обратных задач теории потенциала, в частности, обратных задач гравиметрии и магнитометрии, для различных обратных задач фильтрации.

Степень достоверности и апробация результатов. Результаты, полученные в работе над диссертацией, полностью подтверждаются численными экспериментами. Основные результаты по материалам диссертационной работы докладывались на всероссийских и международных конференциях и семинарах: XIV и XV Уральской молодежной научной школе по геофизике (Пермь, 2013 г., Екатеринбург 2014 г.); международной конференции «Параллельные вычислительные технологии» (Ростов-на-Дону, 2014 г., Екатеринбург, 2015 г., Казань, 2017 г.); международной конференции «Геоинформатика: теоретические и прикладные аспекты» (Киев 2014, 2015, 2016 г.); международной конференции «Актуальные проблемы вычислительной и прикладной математики» (Новосибирск, 2014 г.); международном научном семинаре по обратным и некорректно поставленным задачам (Москва, 2015 г.)

Публикации. Основные результаты диссертации опубликованы в 13 работах, из них 5 - в журналах, рекомендованных ВАК [117; 120; 121; 123; 125],

3 — проиндексированы Scopus [115; 116; 118], 5 — в сборниках трудов и тезисов конференций [114; 119; 122; 124; 126].

Личный вклад автора. Все результаты, представленные в данной работе, получены автором лично. Содержание диссертации и основные результаты отражают вклад автора в опубликованных работах. В работе [123] автору диссертации принадлежат обоснования регуляризованных методов решения нелинейных уравнений на основе α-процессов и метода Ньютона: сходимость методов к регуляризованному решению, оценка погрешности. В работах [119—121; 126] проведено численное моделирование для методов ньютоновского типа с разработкой параллельных программ. В статьях [124], [125] автор реализовал параллельный алгоритм линеаризованного метода минимальной ошибки. В работе [118] предложена вычислительная оптимизация метода Ньютона и решены модельные задачи, разработаны параллельные программы. В работах [114—116] автором предложены методы покомпонентного типа Ньютона и Левенберга — Марквардта, решены модельные задачи, созданы параллельные программы для задач с большими сетками. В работе [122] автором получены результаты расчетов на ЭВМ.

Структура и объем диссертации. Диссертация состоит из введения, 3 глав, заключения и библиографии. Общий объем диссертации 115 страниц, включая 23 рисунка, 10 таблиц. Библиография включает 128 наименований, в том числе 13 публикаций автора.

Автор глубоко благодарен своему научному руководителю доктору физико-математических наук, ведущему научному сотруднику ИММ УрО РАН Елене Николаевне Акимовой.

Автор выражает искреннюю признательность за постановку ряда проблем, внимание к работе, полезные замечания и обсуждения член-корреспонденту РАН, главному научному сотруднику ИММ УрО РАН Владимиру Васильевичу

Васину.

Автор благодарен своим коллегам из ИММ УрО РАН за помощь и поддержку: зав. Отделом некорректных задач, анализа и приложений д.ф.-м.н. А.Л. Агееву, к.ф.-м.н. В.Е. Мисилову, к.ф.-м.н. П.А. Чистякову, к.ф.-м.н. Г.Г. Скорику.

Отдельные слова благодарности автор выражает своей семье за любовь, постоянную и всестороннюю поддержку.

Глубокую признательность автор выражает своей первой учительнице математики — Майсаре Сафиевне Хафизовой, которая во многом повлияла на выбор профессионального пути.

Глава 1

Решение уравнений с монотонным оператором

В первой главе рассматриваются методы решения некорректных задач с нелинейным монотонным оператором. В работе используется двухэтапный подход, где на первом этапе происходит регуляризация по Лаврентьеву, на втором этапе решения задачи применяются итерационные алгоритмы решения регулярной задачи. Первый параграф главы посвящен вопросам сходимости регуляризованного метода Ньютона. Во втором параграфе построены итерационные процессы градиентного типа — нелинейные α-процессы и доказывается их сходимость к регуляризованному решению. В третьем параграфе приводится оценка погрешности двухэтапного метода. В четвертом параграфе приводится пример решения модельного нелинейного интегрального уравнения рассмотренными в данной главе итерационными методами.

1.1. Постановка задачи

Пусть H — гильбертово пространство, оператор $A: H \to H$ действует в этом пространстве. В данной диссертации используется следующая терминология.

Определение 1.1. Оператор A называется монотонным, если $\forall u, v \in H$

$$\langle A(u) - A(v), u - v \rangle \geqslant 0.$$

Определение 1.2. Оператор A называется неотрицательно определенным, если выполняется неравенство $\langle A(u), u \rangle \geqslant 0 \ \forall u \in H$.

Определение 1.3. Оператор A называется дифференцируемым по Фреше в точке $u \in H$, если в некоторой окрестности этой точки $\forall h \in H$

$$A(u+h) = A(u) + A'(u)h + \omega(u,h),$$

где $\frac{\|\omega(u,h)\|}{\|h\|} \to 0$, $\|h\| \to 0$. Линейный оператор $A'(u): H \to H$ называется производной Фреше оператора A в точке u .

Определение 1.4. α -процессы — класс нелинейных итерационных методов для решения линейного уравнения

$$Ax = y$$
,

с ограниченным, самосопряженным, положительно определенным оператором $A: H \to H$. При некотором фиксированном вещественном $\alpha \in [-1, \infty)$ определяется итерационная последовательность

$$x^{k+1} = x^k - \frac{\langle A^{\alpha} \Delta^k, \Delta^k \rangle}{\langle A^{\alpha+1} \Delta^k, \Delta^k \rangle} \Delta^k, \quad \Delta^k = Ax^k - y.$$

При $\alpha=1$ — метод минимальных невязок (Красносельский и др., 1969), при $\alpha=0$ — метод наискорейшего спуска (Канторович, Акилов, 1959), при $\alpha=-1$ — метод минимальной ошибки.

Определение 1.5. Усиленное свойство Фейера [32] для оператора $T: H \to H$ означает, что для некоторого $\nu > 0$ выполнено соотношение

$$||T(u) - z||^2 \le ||u - z||^2 - \nu ||u - T(u)||^2, \tag{1.1}$$

 $r \partial e \ z = T(z), m.e. \ z \in Fix(T).$

Операторы, для которых выполняется усиленное свойство Фейера, называются сильно фейеровскими.

Определение 1.6. Усиленное свойство Фейера для итерационных точек u^k , порождаемых процессом $u^{k+1} = T(u^k)$ означает выполнение неравенства

$$\|u^{k+1} - z\|^2 \le \|u^k - z\|^2 - \nu \|u^k - u^{k+1}\|^2,$$
 (1.2)

 $r\partial e \ z \in Fix(T).$

Определение 1.7. Пусть $\{x^k\}$ — сходящаяся последовательность приближений итерационного метода с начальным приближением x^0 к z — решению операторного уравнения. Итерационный метод обладает линейной скоростью сходимости, если

$$\exists q \in (0,1), \exists k_0 \in \mathbb{N} : ||x^k - z|| < q^k ||z - x^0|| \quad \forall k \ge k_0.$$

Рассматривается нелинейное уравнение

$$A(u) = f (1.3)$$

в гильбертовом пространстве H с монотонным непрерывно дифференцируемым по Фреше оператором A, для которого обратные операторы $A'(u)^{-1}$, A^{-1} разрывны, что влечет некорректность задачи (1.3). Для построения регуляризующего алгоритма (РА) используется двухэтапный метод, в котором на первом этапе проводится регуляризация по схеме Лаврентьева

$$A(u) + \alpha(u - u^{0}) - f_{\delta} = 0, \tag{1.4}$$

где $||f - f_{\delta}|| \leq \delta$, u^0 — начальное приближение к решению; а на втором этапе для аппроксимации регуляризованного решения u_{α} уравнения (1.4) применяется либо метод Ньютона с параметрами регуляризации $\bar{\alpha}$, α (РМН)

$$u^{k+1} = u^k - \gamma (A'(u^k) + \bar{\alpha}I)^{-1} (A(u^k) + \alpha (u^k - u^0) - f_\delta) \equiv T(u^k), \tag{1.5}$$

либо нелинейные аналоги α -процессов

$$u^{k+1} = u^k - \gamma \frac{\langle (A'(u^k) + \bar{\alpha}I)^{\varkappa} S_{\alpha}(u^k), S_{\alpha}(u^k) \rangle}{\langle (A'(u^k) + \bar{\alpha}I)^{\varkappa + 1} S_{\alpha}(u^k), S_{\alpha}(u^k) \rangle} S_{\alpha}(u^k) \equiv T(u^k), \tag{1.6}$$

где $S_{\alpha}(u^k) = A(u^k) + \alpha(u^k - u^0) - f_{\delta}$. Здесь $\bar{\alpha} \geq \alpha > 0$ — параметры регуляризации, $\gamma > 0$ — параметр регулировки шага. При $\varkappa = -1,0$ получаем методы минимальной ошибки (ММО) и наискорейшего спуска (МНС), а при $\varkappa = 1$ и самосопряженности оператора $A'(u^k)$ — метод минимальных невязок (ММН). В случае, когда оператор $A'(u^k)$ не является самосопряженным, метод минимальных невязок имеет вид:

$$u^{k+1} = u^k - \gamma \frac{\langle [A'(u^k) + \bar{\alpha}I] S_{\alpha}(u^k), S_{\alpha}(u^k) \rangle}{\|[A'(u^k) + \bar{\alpha}I] S_{\alpha}(u^k)\|^2} S_{\alpha}(u^k).$$
 (1.7)

Далее в тексте диссертации обозначения при $\varkappa = 1$ относятся к (1.7).

1.2. Метод Ньютона

Ранее РМН исследовался в работах А. Б. Бакушинского [42; 43] и совместной работе с А. В. Гончарским [44] при значениях параметров $\gamma=1, \alpha=\bar{\alpha}=\alpha_k$ и выполнении условия липшицевости второй производной для апроксимации решения уравнения (1.3) без анализа фейеровости процесса и оценки погрешности.

Так как оператор A — монотонный, то его производная A'(u) — неотрицательно определенный оператор. Следовательно, операторы $(A'(u^k) + \bar{\alpha}I)^{-1}$ существуют и ограничены [42], следовательно, процесс (1.5) определен корректно.

Ранее в рамках двухэтапного подхода в работах В.В. Васина [30; 121] исследовался модифицированный метод Ньютона, когда вместо $A'(u^k)$ в (1.5) используется производная в начальной точке $A'(u^0)$ в ходе всего итерационного процесса, где $A'(u^0)$ — самосопряженный неотрицательно определенный оператор

$$u^{k+1} = u^k - \gamma (A'(u^0) + \bar{\alpha}I)^{-1} (A(u^k) + \alpha (u^k - u^0) - f_\delta) \equiv T(u^k).$$

Перейдем к исследованию процесса (1.5). Пусть имеются следующие условия в шаре $S(u^0,r), \|u^0-u_\alpha\| \leq r$:

$$\forall u, v \in S(u^0, r) \quad ||A(u) - A(v)|| \le N_1 ||u - v||, \tag{1.8}$$

$$\forall u, v \in S(u^0, r) \quad ||A'(u) - A'(v)|| \le N_2 ||u - v||. \tag{1.9}$$

и известна оценка для нормы производной в точке u^0 (начальном приближении), т.е.

$$||A'(u^0)|| \le N_0 \le N_1. \tag{1.10}$$

Шар $S(u^0, r)$ также содержит решение уравнения (1.3).

Замечание 1.1. Начальное приближение в неравенстве (1.10) в общем случае не обязано совпадать с u^0 в схеме (1.4). Однако, для простоты изложения, будем считать, что это один и тот же элемент. Кроме того, для монотонного оператора A оператор $A + \alpha I$ — равномерно монотонный, поэтому при выполнении условия 1.8 согласно ([70], теорема 43.7), регуляризованное уравнение (1.4) имеет единственное решение.

Теорема 1.1. Пусть A — монотонный оператор, для которого выполнены условия (1.8), (1.9), $r \le \alpha/N_2$, $0 < \alpha \le \bar{\alpha}$. Тогда для процесса (1.5) с $\gamma = 1$ имеет место линейная скорость сходимости метода при аппроксимации единственного решения u_{α} регуляризованного уравнения (1.4)

$$||u^k - u_\alpha|| \le q^k r, \quad q = (1 - \frac{\alpha}{2\bar{\alpha}}).$$
 (1.11)

Доказательство. Учитывая, что для монотонного оператора A имеет место оценка $\|(A'(u)+\bar{\alpha}I)^{-1}\|\leq 1/\bar{\alpha},$ а из (1.9) следует справедливость разложения

$$A(u_{\alpha}) = A(u^{k}) + A'(u^{k})(u_{\alpha} - u^{k}) + \xi, \quad \|\xi\| \le \frac{N_{2}}{2} \|u_{\alpha} - u^{k}\|^{2},$$

где оценка для $\|\xi\|$ следует из леммы 2 в [[109], стр. 339], приходим к соотношению

$$u^{k+1} - u_{\alpha} = u^{k} - u_{\alpha} - (A'(u^{k}) + \bar{\alpha}I)^{-1}(A(u^{k}) - A(u_{\alpha}) + \alpha(u^{k} - u_{\alpha})) = u^{k} - u_{\alpha}$$
$$-(A'(u^{k}) + \bar{\alpha}I)^{-1}(A'(u^{k})(u^{k} - u_{\alpha}) + \bar{\alpha}(u^{k} - u_{\alpha}) - \xi + (\alpha - \bar{\alpha})(u^{k} - u_{\alpha})).$$

Из полученного соотношения вытекает оценка

$$||u^{k+1} - u_{\alpha}|| \le \frac{1}{\bar{\alpha}} \left(\frac{N_2 ||u^k - u_{\alpha}||^2}{2} + (\bar{\alpha} - \alpha) ||u^k - u_{\alpha}|| \right)$$

$$\leq \left(1 - \frac{\alpha}{\bar{\alpha}} + \frac{N_2}{2\bar{\alpha}} \|u^k - u_\alpha\|\right) \|u^k - u_\alpha\|.$$

Имея $\|u^0 - u_\alpha\| \le r \le \alpha/N_2$ и предполагая $\|u^k - u_\alpha\| \le q^k r$, по индукции приходим к оценке (1.11).

Важным свойством множества сильно фейеровских операторов является замкнутость относительно операций произведения и взятия выпуклой суммы [49]. Располагая итерационными процессами с сильно фейеровским оператором шага и общим множеством неподвижных точек, можно конструировать разнообразные гибридные методы (то есть оператор шага T представляет собой суперпозицию таких операторов шага, при этом сохраняет свойство сильной фейеровости), а также учитывать в итерационном алгоритме априорные ограничения на решение в виде системы линейных или выпуклых неравенств.

Установим усиленное свойство Фейера для оператора шага T в методе (1.5). Для начала докажем следующую теорему.

Теорема 1.2. Пусть для монотонного оператора A выполнены условия (1.8) – (1.10), $A'(u^0)$ — самосопряженный оператор, для параметров α , $\bar{\alpha}$, r справедливы соотношения

$$0 \le \alpha \le \bar{\alpha}, \quad \bar{\alpha} \ge 4N_1, \quad r \le \alpha/8N_2. \tag{1.12}$$

Тогда для оператора

$$F(u) = (A'(u) + \bar{\alpha}I)^{-1}(A(u) + \alpha(u - u^{0}) - f_{\delta})$$

справедлива оценка снизу

$$\langle F(u), u - u_{\alpha} \rangle \ge \frac{\alpha}{4\bar{\alpha}} \|u - u_{\alpha}\|^2 \quad \forall u \in S_r(u_{\alpha}).$$
 (1.13)

Доказательство. Введем обозначение $B(u) = A'(u) + \bar{\alpha}I$. Принимая во внимание, что u_{α} — решение уравнения (1.4), имеем

$$\langle F(u), u - u_{\alpha} \rangle = \langle F(u) - F(u_{\alpha}), u - u_{\alpha} \rangle = \alpha \langle B^{-1}(u)(u - u_{\alpha}), u - u_{\alpha} \rangle$$
$$+ \langle B^{-1}(u)(A(u) - A(u_{\alpha})), u - u_{\alpha} \rangle. \tag{1.14}$$

Учитывая, что $A'(u^0)$ — самосопряженный и, ввиду монотонности A, неотрицательно определенный оператор, для первого слагаемого в правой части равенства (1.14), получаем

$$\alpha \langle B^{-1}(u)(u - u_{\alpha}), u - u_{\alpha} \rangle = \alpha \langle B^{-1}(u^{0})(u - u_{\alpha}), u - u_{\alpha} \rangle$$

$$+\alpha \langle (B^{-1}(u) - B^{-1}(u^{0}))(u - u_{\alpha}), u - u_{\alpha} \rangle \ge \frac{\alpha}{\bar{\alpha} + N_{0}} \|u - u_{\alpha}\|^{2}$$

$$-\alpha |\langle B^{-1}(u)(B(u^{0}) - B(u))B^{-1}(u^{0})(u - u_{\alpha}), u - u_{\alpha} \rangle|$$

$$\ge \left(\frac{\alpha}{\bar{\alpha} + N_{0}} - \frac{\alpha N_{2} \|u - u^{0}\|}{\bar{\alpha}^{2}}\right) \|u - u_{\alpha}\|^{2}$$

$$\ge \left(\frac{\alpha}{\bar{\alpha} + N_{0}} - \frac{2\alpha N_{2}r}{\bar{\alpha}^{2}}\right) \|u - u_{\alpha}\|^{2}, \tag{1.15}$$

где использовано неравенство $||u-u^0|| \le ||u-u_\alpha|| + ||u_\alpha-u^0|| \le 2r$. Для второго слагаемого в правой части (1.14) запишем

$$\langle B^{-1}(u)(A(u) - A(u_{\alpha})), u - u_{\alpha} \rangle = \langle B^{-1}(u^{0})(A(u) - A(u_{\alpha})), u - u_{\alpha} \rangle$$
$$+ \langle (B^{-1}(u) - B^{-1}(u^{0}))(A(u) - A(u_{\alpha})), u - u_{\alpha} \rangle$$

$$= \langle B^{-1}(u^{0}) \int_{0}^{1} (A'(u_{\alpha} + \theta(u - u_{\alpha})) - A'(u^{0})) d\theta(u - u_{\alpha}), u - u_{\alpha} \rangle$$

$$+ \langle B^{-1}(u^{0})A'(u^{0})(u - u_{\alpha}), u - u_{\alpha} \rangle$$

$$+ \langle (B^{-1}(u) - B^{-1}(u^{0}))(A(u) - A(u_{\alpha})), u - u_{\alpha} \rangle$$

$$\geq -\frac{N_{2}}{\bar{\alpha}} \int_{0}^{1} \|u_{\alpha} + \theta(u - u_{\alpha}) - u^{0}\| d\theta \|u - u_{\alpha}\|^{2}$$

$$-\frac{1}{\bar{\alpha}^{2}} (\|A'(u) - A'(u^{0})\| \|A(u) - A(u_{\alpha})\| \|(u - u_{\alpha})\|)$$

$$\geq -\frac{N_{2}}{2\bar{\alpha}} (\|u_{\alpha} - u^{0}\| + \|u - u^{0}\|) \|u - u_{\alpha}\|^{2} - \frac{N_{1}N_{2}}{\bar{\alpha}^{2}} \|u - u^{0}\| \|u - u_{\alpha}\|^{2}$$

$$\geq -\frac{3N_{2}r}{2\bar{\alpha}} \|u - u_{\alpha}\|^{2} - \frac{2rN_{1}N_{2}}{\bar{\alpha}^{2}} \|u - u_{\alpha}\|^{2}. \tag{1.16}$$

Объединяя (1.15),(1.16), приходим к неравенству

$$\langle F(u), u - u_{\alpha} \rangle \ge \left(\frac{\alpha}{\bar{\alpha} + N_0} - \frac{2N_2 r \alpha}{\bar{\alpha}^2} - \frac{3N_2 r}{2\bar{\alpha}} - \frac{2r N_1 N_2}{\bar{\alpha}^2} \right) \|u - u_{\alpha}\|^2,$$

откуда с учетом условий (1.12) на параметры α , $\bar{\alpha}$, r, а также неравенства $N_1 \geq N_0$, приходим к оценке (1.13).

Теорема 1.3. Пусть выполнены условия теоремы 1.2. Тогда, если

$$\gamma < \frac{\alpha \bar{\alpha}}{2(N_1 + \alpha)^2} \tag{1.17}$$

u

$$\nu = \frac{\alpha \bar{\alpha}}{2\gamma (N_1 + \alpha)^2} - 1,\tag{1.18}$$

то оператор шага T процесса (1.5) удовлетворяет неравенству (1.1), для ите-

раций u^k справедливо соотношение (1.2) и имеет место сходимость

$$\lim_{k \to \infty} \|u^k - u_\alpha\| = 0. \tag{1.19}$$

 $Если параметр \gamma принимает значение$

$$\gamma_{opt} = \frac{\alpha \bar{\alpha}}{4(N_1 + \alpha)^2},\tag{1.20}$$

то справедлива оценка

$$||u^k - u_\alpha|| \le q^k r, \quad q = \sqrt{1 - \frac{\alpha^2}{16(N_1 + \alpha)^2}}.$$
 (1.21)

Доказательство. В условиях теоремы справедливо неравенство

$$||F(u)||^{2} \le ||B^{-1}(u)||^{2} ||A(u) - A(u_{\alpha}) + \alpha(u - u_{\alpha})||^{2} \le \frac{(N_{1} + \alpha)^{2}}{\bar{\alpha}^{2}} ||u - u_{\alpha}||^{2}, (1.22)$$

которое вместе с (1.13) влечет соотношение

$$||F(u)||^2 \le \frac{4(N_1 + \alpha)^2}{\alpha \bar{\alpha}} \langle F(u), u - u_\alpha \rangle. \tag{1.23}$$

Условие (1.1) на оператор шага T эквивалентно

$$||F(u)||^2 \le \frac{2}{\gamma(1+\nu)} \langle F(u), u - u_\alpha \rangle. \tag{1.24}$$

Сравнивая неравенства (1.23) и (1.24), получаем условие (1.17) для γ и выражение (1.18) для ν .

При $u=u^k$ из неравенства (1.1) вытекает (1.2) и соотношение

$$||u^k - T(u^k)|| = \gamma ||F(u^k)|| \to 0, \quad k \to \infty,$$

что вместе с (1.13) влечет сходимость (1.19). Принимая во внимание (1.13), (1.22), получим неравенство

$$\|u^{k+1} - u_{\alpha}\|^{2} = \|u^{k} - u_{\alpha}\|^{2} - 2\gamma \langle F(u^{k}), u^{k} - u_{\alpha} \rangle + \gamma^{2} \|F(u^{k})\|^{2}$$

$$\leq \left(1 - \gamma \frac{\alpha}{2\bar{\alpha}} + \gamma^{2} \frac{(N_{1} + \alpha)^{2}}{\bar{\alpha}^{2}}\right) \|u^{k} - u_{\alpha}\|^{2}$$
(1.25)

При значениях $\gamma = \gamma_{opt}$ из (1.20) выражение в круглых скобках неравенства (1.25) достигает минимума и при $\gamma = \gamma_{opt}$ параметр q вычисляется по формуле, представленной в (1.21).

1.3. Нелинейные аналоги альфа-процессов

В работе [31] для монотонных нелинейных операторных уравнений были предложены регуляризованные модифицированные процессы с самосопряженным оператором $A'(u^0)$ $(-\infty \le \varkappa < \infty)$

$$u^{k+1} = u^k - \gamma \frac{\langle (A'(u^0) + \bar{\alpha}I)^{\varkappa} S_{\alpha}(u^k), S_{\alpha}(u^k) \rangle}{\langle (A'(u^0) + \bar{\alpha}I)^{\varkappa + 1} S_{\alpha}(u^k), S_{\alpha}(u^k) \rangle} S_{\alpha}(u^k),$$

которые можно считать нелинейными аналогами классических α -процессов для линейных уравнений с самосопряженным оператором.

В диссертационной работе для решения уравнения (1.4) с монотонным оператором предлагаются немодифицированные α -процессы (1.6), (1.7).

Сначала опишем экстремальные принципы, которые используются при их построении для нелинейного монотонного оператора A. Используя разложение Тейлора в точке u^k до первого порядка, получим линейное уравнение

$$A(u^k) + A'(u^k)(u - u^k) = f_{\delta}.$$

Зададим итерационный процесс в следующем виде

$$u^{k+1} = u^k - \beta(A(u^k) - f_\delta)$$

и найдем параметр β из условия

$$\min_{\beta} \|u^k - \beta(A(u^k) - f_{\delta}) - z\|^2, \tag{1.26}$$

где z — решение уравнения $A'(u^k)z=F^k$, $F^k=f_\delta+A'(u^k)u^k-A(u^k)$. Заменяя теперь оператор A(u) на $A(u)+\alpha(u-u^0)$, а $A'(u^k)$ на $A'(u^k)+\bar{\alpha}I$, получаем процесс (1.6) при $\varkappa=-1$ и $\gamma=1$, т.е. нелинейный регуляризованный вариант

ММО. Если теперь вместо (1.26) использовать экстремальные принципы

$$\min_{\beta} \{ \langle A'(u^k)u^{k+1}, u^{k+1} \rangle - 2\langle u^{k+1}, F(u^k) \rangle \},$$

либо

$$\min_{\beta} \{ \|A'(u^k)(u^k - \beta(A(u^k) - f_{\delta}) - F(u^k)\|^2 \},$$
 (1.27)

то получаем после тех же замен нелинейный регуляризованный аналог МНС, т.е. (1.6) при $\varkappa=0$ и $\gamma=1$, либо ММН (1.7), $\gamma=1$.

Установим сходимость процессов (1.6), (1.7) при $\varkappa = -1, 0, 1$ к решению уравнения (1.4). Как и прежде, используем следующие обозначения:

$$B(u) = A'(u) + \bar{\alpha}I, \quad S_{\alpha}(u) = A(u) + \alpha(u - u^0) - f_{\delta},$$

а также введем новый оператор

$$F_{\varkappa}(u) = \beta_{\varkappa}(u)S_{\alpha}(u), \quad \beta_{\varkappa}(u) = \frac{\langle B^{\varkappa}(u)S_{\alpha}(u), S_{\alpha}(u)\rangle}{\langle B^{\varkappa+1}(u)S_{\alpha}(u), S_{\alpha}(u)\rangle}$$

где при $\varkappa = 1$ в $\beta_{\varkappa}(u)$ следует заменить знаменатель на $||B(u)S_{\alpha}(u)||^2$.

Теорема 1.4. Пусть для монотонного оператора A выполнены условия (1.8) - (1.10) и $A'(u^0)$ — самосопряженный оператор. Кроме того, для ММО параметры α , $\bar{\alpha}$, r удовлетворяют дополнительным соотношениям:

$$\alpha \le \bar{\alpha}, \quad r \le \alpha/8N_2, \quad \bar{\alpha} \ge N_0.$$
 (1.28)

Тогда справедливы соотношения

$$||F_{\varkappa}(u)||^2 \le \mu_{\varkappa} \langle F_{\varkappa}(u), u - u_{\alpha} \rangle, \quad \varkappa = -1, 0, 1,$$
 (1.29)

 $e \partial e$

$$\mu_{-1} = \frac{4(N_1 + \alpha)^2}{\alpha \bar{\alpha}}, \quad \mu_0 = \frac{(N_1 + \alpha)^2 (N_1 + \bar{\alpha})}{\alpha \bar{\alpha}^2}, \quad \mu_1 = \frac{(N_1 + \alpha)^2 (N_1 + \bar{\alpha})^2}{\alpha \bar{\alpha}^3}, \quad (1.30)$$

соответственно для ММО, МНС, ММН.

Доказательство. Рассмотрим ММО, т.е. (1.6) при $\varkappa = -1$. Принимая во внимание монотонность оператора A, самосопряженность и неотрицательность $A'(u^0)$ и условия на параметры (1.28), получим (ниже $F_{-1}(u)$, $B^{-1}(u)$, означает $F_{\varkappa}(u)$, $B^{\varkappa}(u)$ при $\varkappa = -1$)

$$\langle F_{-1}(u), u - u_{\alpha} \rangle = \beta_{-1}(u) \langle A(u) - A(u_{\alpha}) + \alpha(u - u_{\alpha}), u - u_{\alpha} \rangle \ge \alpha \beta_{-1}(u) \|u - u_{\alpha}\|^{2}$$

$$\ge \alpha \left(\frac{\langle B^{-1}(u^{0}) S_{\alpha}(u), S_{\alpha}(u) \rangle}{\|S_{\alpha}(u)\|^{2}} - \frac{|\langle (B^{-1}(u) - B^{-1}(u^{0})) S_{\alpha}(u), S_{\alpha}(u) \rangle|}{\|S_{\alpha}(u)\|^{2}} \right)$$

$$\times \|u - u_{\alpha}\|^{2} \ge \left(\frac{\alpha}{N_{0} + \bar{\alpha}} - \alpha \|B^{-1}(u)\| \|B^{-1}(u^{0})\| \|A'(u) - A'(u^{0})\| \right) \|u - u_{\alpha}\|^{2}$$

$$\ge \left(\frac{\alpha}{N_{0} + \bar{\alpha}} - \frac{2\alpha N_{2}r}{\bar{\alpha}^{2}} \right) \|u - u_{\alpha}\|^{2} \ge \frac{\alpha}{4\bar{\alpha}} \|u - u_{\alpha}\|^{2}, \tag{1.31}$$

где учтено, что $\|u-u^0\| \leq \|u-u_\alpha\| + \|u_\alpha-u^0\| \leq 2r$. Кроме того, выполнены неравенства

$$||F_{-1}(u)||^{2} = |\beta_{-1}(u)|^{2} ||A(u) - A(u_{\alpha}) + \alpha(u - u_{\alpha})||^{2} \le (N_{1} + \alpha)^{2} ||B^{-1}(u)||^{2} ||u - u_{\alpha}||^{2}$$

$$\le \frac{(N_{1} + \alpha)^{2}}{\bar{\alpha}^{2}} ||u - u_{\alpha}||^{2}. \tag{1.32}$$

Объединяя (1.31) и (1.32), получаем

$$||F_{-1}(u)||^2 \le \frac{4(N_1 + \alpha)^2}{\alpha \bar{\alpha}} \langle F_{-1}(u), u - u_{\alpha} \rangle.$$
 (1.33)

Перейдем к оценке МНС ($\varkappa=0$). Из соотношений

$$\langle F_{0}(u), u - u_{\alpha} \rangle = \beta_{0}(u) \langle A(u) - A(u_{\alpha}) + \alpha(u - u_{\alpha}), u - u_{\alpha} \rangle \ge \alpha \beta_{0}(u) \|u - u_{\alpha}\|^{2}$$

$$= \alpha \frac{\|S_{\alpha}(u)\|^{2}}{\langle A'(u)S_{\alpha}(u), S_{\alpha}(u) \rangle + \bar{\alpha} \|S_{\alpha}(u)\|^{2}} |u - u_{\alpha}\|^{2} \ge \frac{\alpha}{N_{1} + \bar{\alpha}} \|u - u_{\alpha}\|^{2}, \qquad (1.34)$$

$$\|F_{0}(u)\|^{2} = \|\beta_{0}(u)\|^{2} \|S_{\alpha}(u) - S_{\alpha}(u_{\alpha})\|^{2}$$

$$\le \frac{(N_{1} + \alpha)^{2} \|S_{\alpha}(u)\|^{4} \|u - u_{\alpha}\|^{2}}{|\langle A'(u)S_{\alpha}(u), S_{\alpha}(u) \rangle + \bar{\alpha} \|S_{\alpha}(u)\|^{2}} \le \frac{(N_{1} + \alpha)^{2}}{\bar{\alpha}^{2}} \|u - u_{\alpha}\|^{2}, \qquad (1.35)$$

приходим к неравенству

$$||F_0(u)||^2 \le \frac{(N_1 + \alpha)^2 (N_1 + \bar{\alpha})}{\alpha \bar{\alpha}^2} \langle F_0(u), u - u_\alpha \rangle.$$

Обратимся теперь к ММН (1.7). Получим неравенства:

$$\langle F_{1}(u), u - u_{\alpha} \rangle \geq \alpha \beta_{1}(u) \| u - u_{\alpha} \|^{2} = \alpha \frac{\langle (A'(u) + \bar{\alpha}I)S_{\alpha}(u), S_{\alpha}(u) \rangle}{\|B(u)S_{\alpha}(u)\|^{2}} \| u - u_{\alpha} \|^{2}$$

$$\geq \frac{\alpha \bar{\alpha}}{\|B(u)\|^{2}} \| u - u_{\alpha} \|^{2} \geq \frac{\alpha \bar{\alpha}}{(N_{1} + \bar{\alpha})^{2}} \| u - u_{\alpha} \|^{2}, \qquad (1.36)$$

$$\|F_{1}(u)\| \leq \frac{(N_{1} + \alpha)\langle B(u)S_{\alpha}(u), S_{\alpha}(u) \rangle}{\|B(u)S_{\alpha}(u)\|^{2}} \| u - u_{\alpha} \|$$

$$\leq \frac{(N_{1} + \alpha)\langle B(u)S_{\alpha}(u), S_{\alpha}(u) \rangle}{\langle B(u)S_{\alpha}(u), B(u)S_{\alpha}(u) \rangle} \| u - u_{\alpha} \|$$

$$= \frac{(N_{1} + \alpha)\langle B(u)S_{\alpha}(u), S_{\alpha}(u) \rangle}{\|A'(u)S_{\alpha}(u)\|^{2} + \alpha\langle A'(u)S_{\alpha}(u), S_{\alpha}(u) \rangle + \bar{\alpha}\langle B(u)S_{\alpha}(u), S_{\alpha}(u) \rangle}$$

$$\leq \frac{N_{1} + \alpha}{\bar{\alpha}} \| u - u_{\alpha} \|$$

$$(1.37)$$

из которых вытекает оценка

$$||F_1(u)||^2 \le \frac{(N_1 + \alpha)^2 (N_1 + \bar{\alpha})^2}{\alpha \bar{\alpha}^3} \langle F_1(u), u - u_\alpha \rangle.$$

Таким образом, доказана справедливость неравенства (1.29) при значениях μ_{\varkappa} из (1.30).

Теорема 1.5. Пусть выполнены условия теоремы (1.4) и μ_{\varkappa} принимает значения (1.30). Тогда при всех

$$\gamma < \frac{2}{\mu_{\varkappa}} \quad (\varkappa = -1, 0, 1)$$
 (1.38)

для последовательности $\{u^k\}$, порождаемой процессами (1.6), (1.7) при соответствующем \varkappa , имеет место сходимость

$$\lim_{k \to \infty} \|u^k - u_\alpha\| = 0,$$

a npu

$$\gamma_{\varkappa}^{opt} = \frac{1}{\mu_{\varkappa}} \tag{1.39}$$

справедлива оценка

$$||u^{k+1} - u_{\alpha}|| \le q_{\varkappa}^k r,$$

где

$$q_{-1} = \sqrt{1 - \frac{\alpha^2}{16(N_1 + \alpha)^2}}, \quad q_0 = \sqrt{1 - \frac{\alpha^2 \bar{\alpha}^2}{(N_1 + \alpha)^2(N_1 + \bar{\alpha})^2}},$$

$$q_1 = \sqrt{1 - \frac{\alpha^2 \bar{\alpha}^4}{(N_1 + \bar{\alpha})^4}}.$$
(1.40)

Доказательство. Сопоставляя неравенство (1.24) при $F(u) = F_{\varkappa}(u)$ ($\varkappa = -1, 0, 1$) с соотношением (1.29), находим, что при γ_{\varkappa} , удовлетворяющем (1.38), условие фейеровости выполняется для всех трех процессов. Поэтому сходимость итераций при выполнении условия (1.38) устанавливается аналогично теореме (1.3), касающейся метода Ньютона. Подставляя в (1.25) $F_{\varkappa}(u^k)$ и используя оценки (1.32), (1.33) (при $\varkappa = -1$), (1.34), (1.35) (при $\varkappa = 0$), (1.36), (1.37)

(при $\varkappa=1$), вычисляем выражение в круглых скобках в правой части неравенства (1.25) для каждого метода. Минимизируя это выражение по γ , получаем значение γ_{\varkappa}^{opt} , определяемое формулой (1.39) и вычисляем коэффициенты q_{\varkappa} , которые принимают вид из (1.40).

Замечание 1.2. Из теорем (1.4), (1.5) следует, что МНС и ММН не требуют выбора близкого к u_{α} начального приближения u^{0} , то есть в этих случаях имеет место глобальная сходимость итерационных процессов к регуляризованному решению.

1.4. Оценка погрешности двухэтапного метода

Полученные в главе 1 оценки скорости сходимости для итерационных процессов (1.5)–(1.6) и результаты по аппроксимации точного решения уравнения (1.3) семейством регуляризованных решений u_{α} позволяют получить оценку погрешности двухэтапного метода.

Согласно [[27], теоремы 3.1, теоремы 3.2], при условии монотонности оператора и истокообразной представимости решения \hat{u} уравнения (1.3)

$$u^0 - \hat{u} = A'(\hat{u})v, \tag{1.41}$$

справедлива оценка погрешности регуляризованного решения

$$||u_{\alpha}^{\delta} - \hat{u}|| \le ||u_{\alpha}^{\delta} - u_{\alpha}|| + ||u_{\alpha} - \hat{u}|| \le \frac{\delta}{\alpha} + k_0 \alpha, \tag{1.42}$$

где $k_0 = (1 + N_2 ||v||/2) ||v||$, u_α^δ , u_α – решения уравнения (1.4) с возмущенной f_δ и точной f правой частью уравнения (1.3) соответственно. Минимизируя правую часть соотношения (1.42) по α , имеем

$$\alpha(\delta) = \sqrt{\delta/k_0},\tag{1.43}$$

что дает оценку

$$||u_{\alpha(\delta)}^{\delta} - \hat{u}|| \le 2\sqrt{\delta k_0} \tag{1.44}$$

В данной главе для итерационных процессов (1.5)–(1.6) получены оценки вида

$$||u_{\alpha(\delta)}^{\delta,k} - u_{\alpha(\delta)}^{\delta}|| \le q^k(\delta)r \tag{1.45}$$

Заметим, что вместо используемого ранее элемента u_{α} , в этом разделе введены

переобозначения; а именно, через u_{α}^{δ} теперь обозначено решение уравнения (1.4) с возмущенной правой частью f_{δ} , а через u_{α} – решение уравнения (1.4) с точной правой частью. Кроме того, вместо u^k используется $u_{\alpha(\delta)}^{\delta,k}$, чтобы подчеркнуть зависимость от параметров δ , α .

Объединяя (1.44), (1.45), приходим к следующему утверждению.

Теорема 1.6. Пусть для решения \hat{u} уравнения (1.3) с монотонным оператором справедливо условие (1.41) и для метода (1.6) выполнены условия теоремы 1.4. Тогда при выборе числа итераций по правилу

$$k(\delta) = \left\lceil \frac{\ln(2\sqrt{k_0\delta}/r)}{\ln q(\delta)} \right\rceil \tag{1.46}$$

справедлива оптимальная по порядку оценка погрешности двухэтапного метода

$$||u_{\alpha(\delta)}^{\delta,k} - \hat{u}|| \le 4\sqrt{k_0\delta},\tag{1.47}$$

 $rde \ \alpha(\delta) \ onpedenaemcs \ us \ (1.43).$

Доказательство. Объединяя (1.44), (1.45), получаем

$$||u_{\alpha(\delta)}^{\delta,k} - \hat{u}|| \le ||u_{\alpha(\delta)}^{\delta,k} - u_{\alpha(\delta)}^{\delta}|| + ||u_{\alpha(\delta)}^{\delta} - \hat{u}|| \le rq^{k}(\delta) + 2\sqrt{k_{0}\delta}$$
(1.48)

Приравнивая слагаемые в правой части (1.48), получаем выражение для числа итераций (1.46) и оценку (1.47). Оптимальность по порядку оценки (1.47) устанавливается аналогично [29] с использованием методологии оценивания погрешности метода через модуль непрерывности обратного линейного оператора [8; 67].

1.5. Численные эксперименты

Устанавливается, что для интегрального уравнения выполнено условие Липшица для оператора задачи и его производной, которое фигурирует в теоремах сходимости. Кроме того, на основе анализа выполненных численных экспериментов показывается работоспособность исследуемых итерационных процессов. Постановка задачи взята из работы [27].

Рассматривается ДУ с $x(t), y(t), t \in [0,1]$ с заданной константой $c_0 > 0$

$$\frac{dy}{dt} = x(t)y(t), \quad y(0) = c_0,$$
(1.49)

где $x(t),y(t)\in L^2[0,1].$ Интегрируя (1.49), приходим к нелинейному операторному уравнению

$$F(x) = y, (1.50)$$

где

$$[F(x)](t) = c_0 e^{\int_0^t x(\tau)d\tau}$$

действует из $L^2[0,1]$ в $L^2[0,1]$. В случае, когда правая часть задана с шумом $y^\delta(t)=y(t)e^{\frac{\delta}{5}sin(t/\delta^2)},$ при $y^\delta\to y$ в $L^2[0,1],$ величина $\|x-x^\delta\|=\|\frac{1}{5\delta}cos(t/\delta^2)\|\to\infty$ при $\delta\to 0.$ Это показывает, что задача (1.50)

поставлена некорректно. Запишем производную оператора F

$$[F'(x)h](t) = [F(x)](t) \int_{0}^{t} h(\tau)d\tau.$$
 (1.51)

Так как в силу $(1.49), [F(x)](t) \ge 0$ и $\langle \int_0^t h(\tau) d\tau, h \rangle \ge 0$, то производная оператора неотрицательно определена $\langle F'(x)h, h \rangle \ge 0$. Оператор F монотонен. Для проверки условий Липшица для операторов F, F'(x) в шаре $S(u^0, r)$ используем

оценки:

$$\|\int_{0}^{1} h(\tau)d\tau\| \leq \|h\|, \quad |e^{\lambda} - e^{\mu}| \leq |\lambda - \mu| \max\{e^{\lambda}, e^{\mu}\},$$

$$\|F(u) - F(v)\| \leq c_{0} \|e^{\int_{0}^{1} u(\tau)d\tau} - e^{\int_{0}^{1} v(\tau)d\tau}\| \leq c_{0} \max\{e^{\|u\|}, e^{\|v\|}\} \|u - v\|,$$

$$\|(F'(u) - F'(v))h\| \leq \|F(u) - F(v)\| \|h\| \leq c_{0} \max\{e^{\|u\|}, e^{\|v\|}\} \|h\| \|u - v\|.$$

Имеем оценку нормы производной оператора в начальном приближении $||F'(x^0)h|| \le c_0 e^{||x^0||} ||h||$, т.е. $||F'(x^0)|| \le c_0 e^{||x^0||}$.

1.3.1. Эксперимент без использования шума

Точное решение $z(t)=t^2$, по точному решению построили правую часть y(t). Начальное приближение $x^0(t)=t^3$, $\bar{\alpha}=\alpha=10^{-2}$, критерий останова $\frac{\|x^k-z\|}{\|z\|}\leq \varepsilon=10^{-2}$, где x^k — приближение на k-й итерации. Выбор начального приближения, близкого к точному решению, обусловлен условиями теорем 1.1, 1.5 для сходимости к регуляризованному решению немодифицированных вариантов методов (1.5), (1.6), (1.7). На рис. 1.1 изображено восстановленное решение ММН. Точное решение отмечено сплошной линией, начальное приближение отмечено штрихпунктирной линией, решение, полученное методом ММН обозначено пунктирной линией. Ниже в таблице 1.1 показаны результаты расчетов методами (1.5), (1.6), $\Delta = \frac{\|F(x^k) + \alpha(x^k-x^0) - y\|}{\|y\|}$ — относительная норма невязки.

Рис. 1.1. Восстановленное ММН решение.

Таблица 1.1. Результаты для правой части без шума

Метод	Параметр шага, γ	Δ	Число итераций, N
MMO	0.5	0.003	25
ММО модиф.	0.5	0.003	22
MHC	0.001	0.003	283
МНС модиф.	0.02 (с 0-й итер.), 0.005 (с 30-й итер.), 0.002 (с 32-й итер.)	0.003	32
MMH	1	0.003	32
ММН модиф.	1	0.003	27
PMH	1	0.003	26
РМН модиф.	0.75	0.003	6

1.3.2. Эксперимент для задачи без использования шума с начальным приближением, далеким от точного решения.

Точное решение и правая часть такие же, как в эксперименте 1.3.1. Начальное приближение $x^0(t)=0$, $\bar{\alpha}=\alpha=10^{-2}$, критерий останова $\frac{\|x^k-z\|}{\|z\|} \leq \varepsilon=10^{-1}$, где x^k — приближение на k-й итерации. Выбор начального приближения обусловлен фактом, установленным в статье [31], где для модифицированных вариантов методов (1.6) доказывается глобальная сходимость итерационных процессов. Ниже в таблице 1.2 показаны результаты расчетов методами (1.5), (1.6), Δ — относительная норма невязки.

Таблица 1.2. Результаты для правой части без шума, с начальным приближением, равным константе

Метод	Параметр шага, γ	Δ	Число итераций, N	
MMO	1	0.015	25	
ММО модиф.	0.1	0.015	20	
MHC	0.025	0.021	27	
МНС модиф.	0.025	0.024	24	
MMH	1	0.019	12	
ММН модиф.	1	0.016	8	
PMH	1	0.016	19	
РМН модиф.	0.75	0.016	8	

1.3.3. Эксперимент для задачи с возмущенной правой частью с начальным приближением, далеким от точного решения.

Точное решение такое же, как в эксперименте 1.3.1. Правая часть $y^\delta(t)=y(t)e^{\frac{\delta}{5}sin(t/\delta^2)},\ \delta=0.1,\ \|y-y^\delta\|=0.07<\delta.$ Начальное приближение $x^0(t)=0,$ $\gamma,\ \bar{\alpha}=1,\ \alpha=10^{-3},$ критерий останова $\frac{\|x^k-z\|}{\|z\|}\leq \varepsilon=0.25,$ где x^k — приближение на k-й итерации.

Вывод. В эксперименте 1.3.1. относительная погрешность методов ММО, МНС, модифицированных ММО, МНС и РМН в рамках эксперимента была достигнута при выборе $\gamma < 1$ в силу теоремы 1.5, тогда как для метода Ньютона немодифицированного варианта сходимость при $\gamma = 1$ доказана теоремой 1.1. Для достижения необходимой точности решения модифицированным МНС параметр γ потребовалось уменьшать на 30-й итерации $\gamma = 0.005$ и на 32-й итерации $\gamma = 0.002$. В эксперименте 1.3.2., согласно теореме 1.5, при выборе $\gamma < 1$, достигнута относительная погрешность ε итераций (1.5), (1.6), (1.7). В последнем эксперименте достигнута точность ε за 8–9 итераций, $\Delta \approx 0.04$.

Глава 2

Решение уравнений с немонотонным оператором

Монотонность оператора A исходного уравнения — очень сильное требование, которое не выполняется во многих важных прикладных задачах, например, в задачах гравиметрии и магнитометрии. В данной главе показано, что в конечномерном случае есть возможность ослабить условие монотонности и обосновать сходимость итераций методов РМН, ММО, МНС, ММН. В первом параграфе представлены доказательства сходимости метода Ньютона с регуляризацией, во втором параграфе доказаны теоремы сходимости для нелинейных аналогов α -процессов, в третьем параграфе представлены следствия для модифицированных аналогов α -процессов и оценка невязки двухэтапного метода, в четвертом приведены результаты численного моделирования.

2.1. Метод Ньютона

Рассматривается конечномерный случай, когда оператор $A \colon \mathbb{R}^{\ltimes} \to \mathbb{R}^{\ltimes}$, для которого матрица A'(u) в некоторой окрестности решения имеет спектр, состоящий из различных неотрицательных собственных значений. Приведем лемму (В.В. Васин, [123]).

Лемма 2.1. Пусть $n \times n$ матрица A'(u) не имеет кратных собственных значений λ_i и числа λ_i (i=1,2,..n) различны и неотрицательны. Тогда при $\bar{\alpha}>0$ матрица имеет представление $A'(u)+\bar{\alpha}I=S(u)\Lambda S^{-1}(u)$ и справедлива оценка

$$\|(A'(u) + \bar{\alpha}I)^{-1}\| \le \frac{\mu(S(u))}{\bar{\alpha} + \lambda_{min}} \le \frac{\mu(S(u))}{\bar{\alpha}},\tag{2.1}$$

где столбцы матрицы S(u) составлены из собственных векторов матрицы $A'(u) + \bar{\alpha}I$, $\Lambda - \partial u$ агональная матрица, ее элементы — собственные значения матрицы $A'(u) + \bar{\alpha}I$, $\mu(S(u)) = \|S(u)\| \cdot \|S^{-1}(u)\|$. \square

Обратимся к регуляризованному методу Ньютона, для которого была доказана теорема 1.3 о сходимости итераций и оценке погрешности для монотонного оператора. Рассмотрим теперь вариант этой теоремы, когда оператор $A\colon \mathbb{R}^{\ltimes} \to \mathbb{R}^{\ltimes}$, матрица производной A'(u) которого имеет неотрицательный спектр, удовлетворяющий условиям леммы 2.1, причем функция $\mu(S(u))$ при фиксированном α равномерно ограничена по u в шаре $S(u_{\alpha}, r)$, т.е.

$$\sup\{\mu(S(u)) : u \in S(u_{\alpha}, r)\} \le \bar{S} < \infty. \tag{2.2}$$

Теорема 2.1. Пусть выполнены условия (2.2), (1.8)–(1.10), $A'(u^0)$ — симметричная матрица, и для параметров α , $\bar{\alpha}$, r справедливы соотношения: $0 < \alpha \leq \bar{\alpha}$, $\bar{\alpha} \geq 4N_0$, $r \leq \alpha/8N_2\bar{S}$, $||u_{\alpha}-u^0|| \leq r$. Тогда для метода (1.5) справедливо заключение теоремы 1.3, где соотношения (1.17), (1.18) для γ и выражение

для q в (1.21) соответственно принимает вид

$$\gamma < \frac{\alpha \bar{\alpha}}{2(N_1 + \alpha)^2 \bar{S}^2}, \quad \gamma_{opt} = \frac{\alpha \bar{\alpha}}{4(N_1 + \alpha)^2 \bar{S}^2}, \quad q = \sqrt{1 - \frac{\alpha^2}{16(N_1 + \alpha)^2 \bar{S}^2}}$$

Доказательство. С учетом оценки (2.1), доказательство с несущественными поправками проводится по схеме доказательтства теоремы 1.3.

Замечание 2.1. При доказательстве теоремы вместо условия (2.2) достаточно требовать ограниченность величины $\sup\{\mu(S(u^k)): u^k \in S(u_\alpha, r)\}$, где u^k — итерационные точки метода. Причем, при регулярном правиле останова итераций $k(\delta)$, супремум берется по конечному набору номеров $k \leq k(\delta)$, что автоматически влечет ограниченность супремума и выполнение оценки вида (1.21) при этих значениях k.

2.2. Нелинейные аналоги альфа-процессов

При тех же условиях на оператор, что и для метода Ньютона в параграфе 2.1, исследуем процессы (1.6).

Теорема 2.2. Пусть выполнены условия (1.8)–(1.10). Пусть при $u \in S(u^0, r)$ матрица A'(u) имеет спектр, состоящий из неотрицательных различных собственных значений, $A'(u^0)$ — симметричная неотрицательно определенная матрица. Пусть параметры α , $\bar{\alpha}$, r удовлетворяют условиям:

$$MMO: \quad 0 < \alpha \le \bar{\alpha}, \quad r \le \alpha/6\bar{S}N_2, \quad \bar{\alpha} \ge N_0$$
 (2.3)

$$MHC: \quad 0 < \alpha \le \bar{\alpha}, \quad r \le \alpha/3N_2,$$
 (2.4)

$$MMH: \quad 0 < \alpha \le \bar{\alpha}, \quad r \le \alpha/6N_2.$$
 (2.5)

Тогда справедливы соотношения (1.29), где

$$\mu_{-1} = \frac{8\bar{S}^2(N_1 + \alpha)^2}{\alpha\bar{\alpha}}, \quad \mu_0 = \frac{18(N_1 + \alpha)^2(N_1 + \bar{\alpha})}{\alpha\bar{\alpha}^2}, \quad \mu_1 = \frac{18(N_1 + \alpha)^2(N_1 + \bar{\alpha})^4}{\alpha\bar{\alpha}^5}$$
(2.6)

Доказательство. При $\varkappa = -1$ и тех же обозначениях, которые были приняты в разделе 3, получим (нижний индекс (-1) соответствует методу (1.6) при $\varkappa = -1$)

$$\langle F_{-1}(u), u - u_{\alpha} \rangle = \beta_{-1}(u) [\langle A(u) - A(u_{\alpha}), u - u_{\alpha} \rangle + \alpha \|u - u_{\alpha}\|^{2}].$$

Оценим каждое из слагаемых в правой части равенства с учетом условий (2.3), используя формулу Лагранжа

$$\langle A(u) - A(u_{\alpha}), u - u_{\alpha} \rangle + \alpha \|u - u_{\alpha}\|^{2} = \alpha \|u - u_{\alpha}\|^{2}$$

$$+\langle \int_{0}^{1} (A'(u_{\alpha} + \theta(u - u_{\alpha})) - A'(u^{0}))(u - u_{\alpha})d\theta, u - u_{\alpha}\rangle + \langle A'(u^{0})(u - u_{\alpha}), u - u_{\alpha}\rangle$$

$$\geq \alpha \|u - u_{\alpha}\|^{2} - \frac{N_{2}(\|u^{0} - u_{\alpha}\| + \|u - u^{0}\|)^{2}}{2} \|u - u_{\alpha}\|^{2}$$

$$\geq \left(\alpha - \frac{3N_{2}r}{2}\right) \|u - u_{\alpha}\|^{2} \geq \frac{3\alpha}{4} \|u - u_{\alpha}\|^{2}$$

$$\beta_{-1}(u) = \frac{\langle (A'(u) + \bar{\alpha}I)^{-1}S_{\alpha}(u), S_{\alpha}(u)\rangle}{\|S_{\alpha}(u)\|^{2}} = \frac{\langle (A'(u^{0}) + \bar{\alpha}I)^{-1}S_{\alpha}(u), S_{\alpha}(u)\rangle}{\|S_{\alpha}(u)\|^{2}}$$

$$+ \frac{\langle (B^{-1}(u) - B^{-1}(u^{0}))S_{\alpha}(u), S_{\alpha}(u)\rangle}{\|S_{\alpha}(u)\|^{2}} \geq \frac{1}{N_{0} + \bar{\alpha}} - \frac{\bar{S}N_{2}\|u - u^{0}\|}{\bar{\alpha}^{2}}$$

$$\geq \frac{1}{N_{0} + \bar{\alpha}} - \frac{2\bar{S}N_{2}r}{\bar{\alpha}^{2}} \geq \frac{1}{6\bar{\alpha}}, \qquad (2.8)$$

где учтены условия (2.3) и соотношение $\|u-u^0\| \leq \|u-u_\alpha\| + \|u_\alpha-u^0\| \leq 2r$. Кроме того, справедлива оценка

$$||F_{-1}(u)||^{2} \leq (\beta_{-1}(u))^{2} ||A(u) - A(u_{\alpha}) + \alpha(u - u_{\alpha})||^{2}$$

$$\leq ||B^{-1}(u)||^{2} (N_{1} + \alpha)^{2} ||u - u_{\alpha}||^{2} \leq \frac{\bar{S}^{2} (N_{1} + \alpha)^{2}}{\bar{\alpha}^{2}} ||u - u_{\alpha}||^{2}$$
(2.9)

Объединяя (2.7)–(2.9), получаем, что в соотношении (1.29), μ_{-1} выражается величиной из (2.6)

Исследуем теперь МНС, т.е. процесс (1.6) при $\varkappa=0$. Аналогично предыдущему методу устанавливаем, что

$$\langle A(u) - A(u_{\alpha}), u - u_{\alpha} \rangle + \alpha \|u - u_{\alpha}\|^{2} \ge \left(\alpha - \frac{3N_{2}r}{2}\right) \|u - u_{\alpha}\|^{2}$$
 (2.10)

Кроме того,

$$\beta_0(u) = \frac{\|S_{\alpha}(u)\|^2}{\langle B(u)S_{\alpha}(u), S_{\alpha}(u)\rangle} \ge \frac{1}{\|B(u)\|} \ge \frac{1}{\|A'(u) + \bar{\alpha}I\|} \ge \frac{1}{N_1 + \bar{\alpha}}.$$

Объединяя последнее соотношение с (2.10), получаем оценку снизу

$$\langle F_0(u), u - u_\alpha \rangle \ge \frac{1}{N_1 + \bar{\alpha}} \left(\alpha - \frac{3N_2 r}{2} \right) \|u - u_\alpha\|^2. \tag{2.11}$$

Аналог оценки (2.9) для $F_0(u)$ следует из неравенств ниже:

$$||F_0(u)|| \le \beta_0(u)(||A(u) - A(u_\alpha)|| + \alpha||u - u_\alpha||) \le \beta_0(u)(N_1 + \alpha)||u - u_\alpha||, (2.12)$$

$$\beta_{0}(u) = \frac{\|S_{\alpha}(u)\|^{2}}{\bar{\alpha}\|S_{\alpha}(u)\|^{2} + \langle A'(u^{0})S_{\alpha}(u), S_{\alpha}(u)\rangle + \langle (A'(u) - A'(u^{0}))S_{\alpha}(u), S_{\alpha}(u)\rangle}$$

$$\leq \frac{\|S_{\alpha}(u)\|^{2}}{\bar{\alpha}\|S_{\alpha}(u)\|^{2} - |\langle (A'(u) - A'(u^{0}))S_{\alpha}(u), S_{\alpha}(u)\rangle|}$$

$$\leq \frac{1}{\bar{\alpha} - N_{2}\|u - u^{0}\|} \leq \frac{1}{\bar{\alpha} - 2N_{2}r}$$
(2.13)

Из (2.11)-(2.13) при значениях параметров из (2.4) получаем значения μ_0 в (2.6).

Наконец рассмотрим процесс (1.7) при $\varkappa=1$. Как и в предыдущем методе, при оценке снизу величины $\langle F_1(u), u-u_{\alpha} \rangle$, справедливо соотношение (2.10). Для параметра $\beta_1(u)$ получаем

$$\beta_{1}(u) = \frac{\langle B(u)S_{\alpha}(u), S_{\alpha}(u) \rangle}{\|B(u)S_{\alpha}(u)\|^{2}}$$

$$\geq \frac{\langle A'(u^{0})S_{\alpha}(u), S_{\alpha}(u) \rangle + \bar{\alpha}\langle S_{\alpha}(u), S_{\alpha}(u) \rangle - \|A'(u) - A'(u^{0})\| \|S_{\alpha}(u)\|^{2}}{(N_{1} + \bar{\alpha})^{2} \|S_{\alpha}(u)\|^{2}}$$

$$\geq \frac{\bar{\alpha} - N_{2} \|u - u^{0}\|}{(N_{1} + \bar{\alpha})^{2}} \geq \frac{\bar{\alpha} - 2N_{2}r}{(N_{1} + \bar{\alpha})^{2}},$$

что при условиях на параметры (2.5), дает оценку

$$\langle F_1(u), u - u_{\alpha} \rangle \ge \left(\alpha - \frac{3N_2 r}{2}\right) \frac{\bar{\alpha} - 2N_2 r}{(N_1 + \bar{\alpha})^2} \|u - u_{\alpha}\|^2 \ge \frac{\alpha \bar{\alpha}}{2(N_1 + \bar{\alpha})^2} \|u - u_{\alpha}\|^2.$$
(2.14)

Поскольку

$$||F_1(u)|| \le \beta_1(u)(||A(u) - A(u_\alpha)|| + \alpha||u - u_\alpha||) \le \beta_1(u)(N_1 + \alpha)||u - u_\alpha||,$$

$$\|\beta_{1}(u)\| \leq \frac{(N_{1} + \bar{\alpha})\|S_{\alpha}(u)\|^{2}}{\|A'(u)S_{\alpha}(u)\|^{2} + 2\bar{\alpha}\langle A'(u)S_{\alpha}(u), S_{\alpha}(u)\rangle + \bar{\alpha}^{2}\|S_{\alpha}(u)\|^{2}}$$

$$\leq \frac{(N_{1} + \bar{\alpha})\|S_{\alpha}(u)\|^{2}}{2\bar{\alpha}\langle A'(u^{0})S_{\alpha}(u), S_{\alpha}(u)\rangle - 2\bar{\alpha}|\langle (A'(u) - A'(u^{0}))S_{\alpha}(u), S_{\alpha}(u)\rangle| + \bar{\alpha}^{2}\|S_{\alpha}(u)\|^{2}}$$

$$\leq \frac{(N_{1} + \bar{\alpha})}{\bar{\alpha}^{2} - 2\bar{\alpha}N_{2}\|u - u^{0}\|} \leq \frac{N_{1} + \bar{\alpha}}{\bar{\alpha}(\bar{\alpha} - 4N_{2}r)} \leq \frac{3(N_{1} + \bar{\alpha})}{\bar{\alpha}^{2}}.$$

Окончательно получаем для $||F_1(u)||^2$ оценку сверху

$$||F_1(u)||^2 \le \frac{3^2(N_1 + \alpha)^2(N_1 + \bar{\alpha})^2}{\bar{\alpha}^4} ||u - u_\alpha||^2.$$
 (2.15)

Объединяя соотношения (2.14) и (2.15), и условия (2.5), получаем значение μ_1 , представленное в (2.6).

Теорема 2.3. Пусть выполнены условия теоремы 2.1. Тогда при $\gamma < 2/\mu_{\varkappa}$, $\varkappa = -1, 0, 1$, где значения μ_{\varkappa} определяются соотношениями (2.6), последовательности u^k , порождаемые процессами (1.6), (1.7) при $\varkappa = -1, 0, 1$, сходятся $\kappa \ u_{\alpha}$, m.e.

$$\lim_{k \to \infty} ||u^k - u_\alpha|| = 0,$$

а при $\gamma_{\varkappa}^{opt} = \frac{1}{\mu_{\varkappa}}$ справедлива оценка $\|u^{k+1} - u_{\alpha}\| \leq q_{\varkappa}^k r$, где

$$q_{-1} = \sqrt{1 - \frac{\alpha^2}{64\bar{S}^2(N_1 + \alpha)^2}}, \quad q_0 = \sqrt{1 - \frac{\alpha^2\bar{\alpha}^2}{36(N_1 + \alpha)^2(N_1 + \bar{\alpha})^2}},$$

$$q_1 = \sqrt{1 - \frac{\alpha^2 \bar{\alpha}^6}{36(N_1 + \alpha)^2 (N_1 + \bar{\alpha})^6}}.$$
 (2.16)

Доказательство. Подставляя в соотношение (1.25) вместо $F(u^k)$ последова-

тельность $F_{\varkappa}(u^k)$ ($\varkappa=-1,0,1$) и, используя оценки (2.7), (2.8) ($\varkappa=-1$), (2.8), (2.9) ($\varkappa=0$), (2.10), (2.11) ($\varkappa=1$), а также условия на параметры (2.3)–(2.5), получаем, после минимизации по γ , значения для q_{\varkappa} , представленные в (2.16). При выполнении условия $\gamma < 2/\mu_{\varkappa}$, выражение в круглых скобках в правой части неравенства (1.25) принимает значение, которое меньше единицы, что влечет сходимость итераций для всех трех методов.

Замечание 2.2. Предложенный подход к получению оценок скорости сходимости итерационных процессов полностью переносится на случай, когда спектр матрицы $A'(u^k)$, состоящий из различных вещественных значений, содержит набор малых по абсолютной величине отрицательных собственных значений.

Пусть λ_1 — отрицательное собственное значение с наименьшим модулем $|\lambda_1|$ и $\bar{\alpha}-|\lambda_1|=\bar{\alpha}_1<\alpha^*$. Тогда оценка (2.1) трансформируется в неравенство

$$\|(A'(u^k) + \bar{\alpha}I)^{-1}\| \le \frac{\mu(S(u^k))}{\bar{\alpha}^*} \le \frac{\bar{S}}{\bar{\alpha}^*}$$
 (2.17)

Все утверждения, т.е. теоремы (2.1)–(2.3) остаются справедливыми при замене $\bar{\alpha}$ на $\bar{\alpha}^*$ во всех оценках, где используется (2.17).

Замечание 2.3. Если рассматривать модифицированные варианты методов (1.5)–(1.7), когда вместо $A'(u^k)$ в операторе шага используется $A'(u^0)$ в процессе итераций, то при условиях на оператор, принятых в данном разделе, для получения аналогичных результатов о сходимости и оценке погрешности наряду с неотрицательностью спектра достаточно требовать симметричность матрицы $A'(u^0)$ [30; 31; 121]. Заметим, что при исследовании основных методов (1.5)–(1.7) существование симметричной матрицы для некоторого элемента u^0 предполагается.

2.3. Модифицированные варианты регуляризованных методов на основе нелинейных налогов альфа-процессов

Рассматривается случай, когда производная оператора A'(u) вычисляется в начальной точке итерационных процессов u^0 . Тогда формулы итерационных процессов (1.6) принимают вид:

$$u^{k+1} = u^k - \gamma \frac{\langle (A'(u^0) + \bar{\alpha}I)^{\varkappa} S_{\alpha}(u^k), S_{\alpha}(u^k) \rangle}{\langle (A'(u^0) + \bar{\alpha}I)^{\varkappa + 1} S_{\alpha}(u^k), S_{\alpha}(u^k) \rangle} S_{\alpha}(u^k) \equiv T(u^k), \qquad (2.18)$$

где при $\varkappa=-1$ итерационный процесс представляет собой модифицированный ММО, при $\varkappa=0$ — модифицированный МНС и при $\varkappa=1$ — модифицированный ММН.

Справедлива следующая теорема.

Теорема 2.4. Пусть выполнены условия (1.8)–(1.10), $A'(u^0)$ — самосопряженный оператор, спектр которого состоит из неотрицательных различных собственных значений, параметры α , $\bar{\alpha}$, r удовлетворяют условиям

$$0 \le \alpha \le \bar{\alpha}, \quad r = \alpha/6N_2, \quad \bar{\alpha} \ge N_0. \tag{2.19}$$

Тогда для оператора

$$F_{\varkappa}^{0}(u) = \beta_{\varkappa}^{0}(u)S_{\alpha}(u),$$

где

$$\beta_{\varkappa}^{0}(u) = \frac{\langle (A'(u^{0}) + \bar{\alpha}I)^{\varkappa} S_{\alpha}(u), S_{\alpha}(u) \rangle}{\langle (A'(u^{0}) + \bar{\alpha}I)^{\varkappa+1} S_{\alpha}(u), S_{\alpha}(u) \rangle},$$

имеет место неравенство

$$||F_{\varkappa}^{0}(u)||^{2} \leq \frac{8(N_{1}+\alpha)^{2}}{3\alpha\bar{\alpha}} \langle F_{\varkappa}^{0}(u), u-u_{\alpha} \rangle,$$

 ${\it где} \ \varkappa = -1, 0, 1, \ {\it для} \ {\it модифицированных} \ {\it вариантов} \ {\it MMO}, \ {\it MHC} \ {\it u} \ {\it MMH} \ {\it coom-bemcmbehho}.$

Доказательство. Получим оценку снизу скалярного произведения $\langle F_{-1}^0(u), u - u_{\alpha} \rangle$ для модифицированного ММО.

$$\langle F_{-1}^{0}(u), u - u_{\alpha} \rangle = \langle F_{-1}^{0}(u) - F_{-1}^{0}(u_{\alpha}), u - u_{\alpha} \rangle = \beta_{-1}^{0}(u) [\langle A(u) - A(u_{\alpha}), u - u_{\alpha} \rangle + \alpha \|u - u_{\alpha}\|^{2}].$$

Оценим снизу $\langle A(u) - A(u_{\alpha}), u - u_{\alpha} \rangle$, используя формулу Лагранжа:

$$\langle A(u) - A(u_{\alpha}), u - u_{\alpha} \rangle = \langle \int_{0}^{1} [A'(u_{\alpha} + \theta(u - u_{\alpha})) - A'(u^{0})](u - u_{\alpha})d\theta, u - u_{\alpha} \rangle$$

$$+ \langle A'(u^{0})(u - u_{\alpha}), u - u_{\alpha} \rangle \ge -N_{2} \int_{0}^{1} ||u_{\alpha} - u^{0} + \theta(u - u_{\alpha})|| \cdot ||u - u_{\alpha}||^{2} d\theta$$

$$= -N_{2}||u - u_{\alpha}||^{2} \int_{0}^{1} ||u_{\alpha} - u^{0} + \theta u - \theta u_{\alpha} \pm \theta u^{0}||d\theta = -N_{2}||u - u_{\alpha}||^{2}$$

$$\times \int_{0}^{1} ||(1 - \theta)(u_{\alpha} - u^{0}) + \theta(u - u_{\alpha})||d\theta \ge -N_{2}||u - u_{\alpha}||^{2} \left[\int_{0}^{1} (1 - \theta)d\theta \cdot ||u^{0} - u_{\alpha}|| + \int_{0}^{1} \theta d\theta ||u - u_{\alpha}||^{2} \right] = -N_{2}||u - u_{\alpha}||^{2} \left[\frac{||u_{\alpha} - u^{0}||}{2} + \frac{||u_{\alpha} - u^{0} + u^{0} - u||}{2}\right]$$

$$\ge -\frac{3N_{2}r}{2}||u - u_{\alpha}||^{2}, \qquad (2.20)$$

где $r = ||u_{\alpha} - u^{0}||, \quad ||u - u^{0}|| \le 2r.$

Получим оценку снизу для множителя $\beta_{-1}^0(u)$, воспользовавшись спектральным разложением резольвенты самосопряженного оператора $A'(u^0)$:

$$\langle (A'(u^0) + \bar{\alpha}I)S_{\alpha}(u), S_{\alpha}(u) \rangle = \int_{0}^{N_0} \frac{d\langle E_{\lambda}S_{\alpha}(u), S_{\alpha}(u) \rangle}{\lambda + \bar{\alpha}} \ge \frac{\|S_{\alpha}(u)\|^2}{N_0 + \bar{\alpha}},$$

$$\beta_{-1}^{0}(u) = \frac{\langle (A'(u^{0}) + \bar{\alpha}I)S_{\alpha}(u), S_{\alpha}(u) \rangle}{\|S_{\alpha}(u)\|^{2}} \ge \frac{1}{N_{0} + \bar{\alpha}}.$$

Таким образом,

$$\langle F_{-1}^{0}(u), u - u_{\alpha} \rangle \ge \frac{1}{N_{0} + \bar{\alpha}} \left[\alpha - \frac{3N_{2}r}{2} \right] \|u - u_{\alpha}\|^{2}.$$

Применяя условия (2.19) теоремы, получаем оценку

$$\langle F_{-1}^{0}(u), u - u_{\alpha} \rangle \ge \frac{3\alpha}{8\bar{\alpha}} \|u - u_{\alpha}\|^{2}.$$
 (2.21)

Получим оценку нормы оператора F_{-1}^0 :

$$||F_{-1}^{0}(u)|| = |\beta_{-1}^{0}(u)| \cdot ||A(u) + \alpha(u - u^{0}) - f_{\delta}|| = |\beta_{-1}^{0}(u)| \cdot ||A(u) - A(u_{\alpha}) + \alpha(u - u_{\alpha})||.$$

$$||A(u) + \alpha(u - u^0) - f_{\delta}|| \le (N_1 + \alpha)||u - u_{\alpha}||. \tag{2.22}$$

$$\beta_{-1}^{0}(u) = \frac{1}{\|S_{\alpha}(u)\|^{2}} \int_{0}^{N_{0}} \frac{d\langle E_{\lambda}S_{\alpha}(u), S_{\alpha}(u)\rangle}{\lambda + \bar{\alpha}} \leq \frac{1}{\bar{\alpha}},$$

$$||F_{-1}^{0}(u)||^{2} \le \frac{(N_{1} + \alpha)^{2}}{\bar{\alpha}^{2}} ||u - u_{\alpha}||^{2}.$$
(2.23)

Объединим (2.21) и (2.23), получаем

$$||F_{-1}^{0}(u)||^{2} \le \frac{8(N_{1}+\alpha)^{2}}{3\alpha\bar{\alpha}}\langle F_{-1}^{0}(u), u-u_{\alpha}\rangle$$

для модифицированного варианта ММО.

Рассмотрим модифицированный вариант МНС ($\varkappa=0$).

$$\langle F_0^0(u), u - u_\alpha \rangle = \beta_0^0(u) [\langle A(u) - A(u_\alpha), u - u_\alpha \rangle + \alpha ||u - u_\alpha||^2].$$

Учитывая, что $\langle (A'(u^0) + \bar{\alpha}I)S_{\alpha}(u), S_{\alpha}(u) \rangle \leq (N_0 + \bar{\alpha})||S_{\alpha}(u)||^2$, имеем

$$\beta_0^0(u) = \frac{\|S_\alpha(u)\|^2}{\langle (A'(u^0) + \bar{\alpha}I)S_\alpha(u), S_\alpha(u) \rangle} \ge \frac{1}{N_0 + \bar{\alpha}}.$$

Воспользовавшись ранее полученной оценкой (2.20), имеем

$$\langle F_0^0(u), u - u_\alpha \rangle \ge \frac{3\alpha}{8\bar{\alpha}} \|u - u_\alpha\|^2. \tag{2.24}$$

Оценивая сверху $\beta_0^0(u)$ как

$$\beta_0^0(u) \le \frac{1}{\bar{\alpha}},\tag{2.25}$$

при объединении неравенств (2.22), (2.24) и (2.25), приходим к соотношению

$$||F_0^0(u)||^2 \le \frac{8(N_1 + \alpha)^2}{3\alpha\bar{\alpha}} \langle F_0^0(u), u - u_\alpha \rangle$$

для модифицированного варианта МНС.

Для модифицированного ММН ($\varkappa=1$), по аналогии, оценим сверху и снизу параметр $\beta_1^0(u)$. Обозначим $B_0(u)=A'(u^0)+\bar{\alpha}I,$

$$\beta_1^0(u) = \frac{\langle B_0(u)S_\alpha(u), S_\alpha(u) \rangle}{\|B_0(u)S_\alpha(u)\|^2} = \frac{\|B_0^{1/2}(u)S_\alpha(u)\|^2}{\|B_0^{1/2}\|^2 \|B_0^{1/2}S_\alpha(u)\|^2} \ge \frac{1}{\|B_0(u)\|} \ge \frac{1}{N_0 + \bar{\alpha}}.$$

Объединяя эту оценку и оценку (2.20), имеем соотношение

$$\langle F_1^0(u), u - u_\alpha \rangle \ge \frac{3\alpha}{8\bar{\alpha}} \|u - u_\alpha\|^2. \tag{2.26}$$

И наконец,

$$\beta_1^0(u) = \frac{\langle B_0(u)S_\alpha(u), S_\alpha(u) \rangle}{\langle B_0(u)S_\alpha(u), A'(u^0)S_\alpha(u) \rangle + \bar{\alpha}\langle B_0(u)S_\alpha(u), S_\alpha(u) \rangle}$$

$$\leq \frac{\langle B_0(u)S_\alpha(u), S_\alpha(u) \rangle}{\bar{\alpha}\langle B_0(u)S_\alpha(u), S_\alpha(u) \rangle} = \frac{1}{\bar{\alpha}},$$

так как

$$\langle B_0(u)S_\alpha(u), A'(u^0)S_\alpha(u)\rangle = \langle A'(u^0)S_\alpha(u), A'(u^0)S_\alpha(u)\rangle$$
$$+\bar{\alpha}\langle S_\alpha(u), A'(u^0)S_\alpha(u)\rangle \ge 0$$

в силу неотрицательности спектра оператора $A'(u^0)$. Таким образом,

$$||F_1^0(u)||^2 \le \frac{(N_1 + \alpha)^2}{\bar{\alpha}^2} ||u - u_\alpha||^2, \tag{2.27}$$

объединяя (2.26), (2.27), получаем

$$||F_1^0(u)||^2 \le \frac{8(N_1 + \alpha)^2}{3\alpha\bar{\alpha}} \langle F_1^0(u), u - u_\alpha \rangle.$$

Докажем сходимость итераций (2.18) к регуляризованному решению u_{α} .

Теорема 2.5. Пусть выполнены условия теоремы 2.4. Тогда при $\gamma < 2/\mu_{\varkappa}$ последовательность $\{u^k\}_{k=1}^{\infty}$ сходится к регуляризованному решению u_{α} :

$$\lim_{k \to \infty} \|u^k - u_\alpha\| = 0,$$

а при $\gamma_{opt} = 1/\mu_{\varkappa}$ справедлива оценка $\|u^k - u_{\alpha}\| \leq q_{\varkappa}^k r$, где

$$q^{\varkappa} = \sqrt{1 - \frac{9\alpha^2}{64(N_1 + \alpha)^2}}$$

Доказательство. Неравенства (1.1), (1.2) будут выполнены при $\mu_{\varkappa} = \frac{2}{\gamma(1+\nu)}$ (из теоремы 2.4), $\nu = \frac{2}{\gamma\mu_{\varkappa}} - 1$, где $\gamma < 2/\mu_{\varkappa}$. Отсюда следует сходимость итераций к u_{α} .

Величину q получим из условия минимума $\|u^{k+1} - u_{\alpha}\|^2$:

$$||u^{k+1} - u_{\alpha}||^{2} = ||u^{k} - u_{\alpha}||^{2} - 2\gamma \langle F_{\varkappa}(u^{k}), u^{k} - u_{\alpha} \rangle + \gamma^{2} ||F_{\varkappa}(u^{k})||^{2}$$

$$\leq \left(1 - 2\gamma \frac{3\alpha}{8\bar{\alpha}} + \gamma^{2} \frac{(N_{1} + \alpha)^{2}}{\bar{\alpha}^{2}}\right) ||u^{k} - u_{\alpha}||^{2}.$$

$$\gamma_{opt} = argmin\{1 - 2\gamma \frac{3\alpha}{8\bar{\alpha}} + \gamma^{2} \frac{(N_{1} + \alpha)^{2}}{\bar{\alpha}^{2}}\},$$
(2.28)

подставляя полученное γ_{opt} в выражение в круглых скобках (2.28), вычисляем значение для q^{\varkappa} :

$$||u^{k+1} - u_{\alpha}||^2 \le \left(1 - \frac{9\alpha^2}{64(N_1 + \alpha)^2}\right) ||u^k - u_{\alpha}||^2,$$

отсюда получаем q^{\varkappa} .

Для оператора A'(u) с положительным спектром так же, как и для случая монотонного оператора, в главе 2 доказана линейная скорость сходимости, однако, в отличие от монотонного оператора здесь оценок типа (1.42) не удалось получить, поэтому нет общей оценки для двухэтапного метода. Тем не менее, в этой ситуации для двухэтапного алгоритма можно установить оценку для невязки — основной характеристики точности метода при решении задачи с реальными данными.

Предположим, что уравнение (1.4) разрешимо, тогда для его решения $u^{\delta}_{\alpha(\delta)}$ справедливо соотношение

$$||A(u_{\alpha(\delta)}^{\delta}) - f_{\delta}|| = \alpha(\delta)||u_{\alpha(\delta)}^{\delta} - u^{0}||.$$

$$(2.29)$$

Параметр α из (1.4) заменен на $\alpha(\delta)$, чтобы подчеркнуть зависимость параметра регуляризации от δ . Пусть для некоторой зависимости $\alpha(\delta)$ ограничена величина $\|u_{\alpha(\delta)}^{\delta}-u^{0}\|\leq m<\infty$, что влечет оценку

$$||A(u_{\alpha(\delta)}^{\delta}) - f_{\delta}|| \le \alpha(\delta)m \tag{2.30}$$

и сходимость

$$\lim_{\delta \to 0} ||A(u_{\alpha(\delta)}^{\delta}) - f_{\delta}|| = 0,$$

при $\alpha(\delta)\to 0,\ \delta\to 0.$ Пусть $u_{\alpha(\delta)}^{\delta,k}$ – итерационные точки, полученные одним из методов (1.5), (1.6). Имеем

$$||A(u_{\alpha(\delta)}^{\delta,k}) - f_{\delta}|| \le ||A(u_{\alpha(\delta)}^{\delta,k}) - A(u_{\alpha(\delta)}^{\delta})|| + ||A(u_{\alpha(\delta)}^{\delta}) - f(\delta)|| \le N_1 r q^k(\delta) + \alpha(\delta) m.$$
(2.31)

Выбирая, например, $\alpha(\delta) = \delta^p$ и приравнивая слагаемые в правой части (2.31), получаем правило выбора числа итерации

$$k(\delta) = \left[\ln(m\delta^p/N_1) / \ln q(\delta) \right],$$

при котором справедлива оценка для невязки двухэтапного метода (см. статью [123])

$$||A(u_{\alpha(\delta)}^{\delta,k}) - f_{\delta}|| \le 2m\delta^{p}. \tag{2.32}$$

Замечание 2.4. Соотношения (2.29)–(2.32) остаются справедливыми для случая, когда матрицы $A'(u^k)$ содержат набор малых отрицательных собственных значений с тем лишь отличием, что в неравенстве (2.31) параметр q во всех методах теперь вычисляется по формулам главы 2, с заменой параметра $\bar{\alpha}$ зна α^* (см. замечание 2.2).

2.4. Решение модельных задач гравиметрии и

магнитометрии

Целью экспериментов является проверить применимость методов (1.5), (1.6), (1.7) с немонотонным оператором на примере решения модельных задач гравиметрии и магнитометрии. Также ставится задача сравнить по экономичности (затратам машинного времени) методы (1.5), (1.6) с их модифицированными вариантами, когда производная $A'(u^k)$, входящая в оператор шага этих процессов, вычисляется в фиксированной точке u^0 в течение всего процесса итераций, т.е. $A'(u^k)$ в (1.5), (1.6) заменяется на $A'(u^0)$ (см. [30; 31]).

2.4.1. Решение структурной обратной задачи гравиметрии

Рассматривается трехмерная структурная обратная задача гравиметрии о нахождении поверхностей раздела сред по известному скачку плотности и гравитационному полю, измеренному на некоторой площади земной поверхности. Рассмотрим уравнение гравиметрии для модели двуслойной среды в декартовой системе координат с осью z, направленной вниз

$$g\Delta\sigma \frac{1}{4\pi} \left\{ \iint_{D} \frac{1}{[(x-x')^{2} + (y-y')^{2} + H^{2}]^{1/2}} dx'dy' - \iint_{D} \frac{1}{[(x-x')^{2} + (y-y')^{2} + u^{2}(x',y')]^{1/2}} dx'dy' \right\} = \Delta f(x,y),$$
(2.33)

где g — гравитационная постоянная, $\Delta \sigma = \sigma_2 - \sigma_1$ — скачок плотности на поверхности раздела сред, описываемой функцией u(x,y) и подлежащей определению, $\Delta f(x,y)$ — аномальное гравитационное поле, вызванное отклонением поверхности от асимптотической плоскости z=H для искомого решения u(x,y) (рис. 2.1).

Рис. 2.1. Модель двуслойной среды в задаче гравиметрии.

Запишем (2.33) в виде операторного уравнения

$$[A(u)](x,y) = -\iint_{D} \frac{1}{[(x-x')^{2} + (y-y')^{2} + u^{2}(x',y')]^{1/2}} dx'dy' = f(x,y), \quad (2.34)$$

где $f(x,y) = \Delta f(x,y) 4\pi/g\Delta\sigma - A(H)$. Тогда производная оператора A в точке $u^0(x,y)$ определяется формулой

$$[A'(u^0)]h = \iint_D \frac{u^0(x',y')h(x',y')}{[(x-x')^2 + (y-y')^2 + (u^0(x',y'))^2]^{3/2}} dx'dy',$$

Уравнение (2.34) является интегральным уравнением Урысона (так как неизвестная функция u(x,y) входит в ядро оператора нелинейно) І рода, следова-

тельно, относится к классу некорректных задач.

После дискретизации интегрального уравнения (2.34) двумерным аналогом формулы прямоугольников с равномерной сеткой по каждой переменной с шагом Δx , Δy , получаем систему нелинейных уравнений относительно неизвестного вектора $u_{ji} = u(x_j, y_i)$ (j = 1, 2, ..., N, i = 1, 2, ..., M), которая в векторно-матричном виде может быть записана следующим образом

$$A_n(u_n) = f_n, (2.35)$$

где u_n, f_n — векторы размерности $n = N \times M$. Дискретный аналог производной $A'(u^0)$ принимает форму

$$[A'_n(u_n^0)h_n]_{k,l} = \sum_{i=1}^M \sum_{j=1}^N \Delta x \Delta y \frac{u_{ji}^0 h_{ji}}{[(x_k - x'_j)^2 + (y_l - y'_i)^2 + (u_{ji}^0)^2]^{3/2}},$$
 (2.36)

где при $u_n^0 = const$ матрица $A_n'(u_n^0)$ симметрична, элементы которой вычисляются по формуле (2.36).

Рассматривается модель двухслойной среды, в которой поверхность раздела задается функцией u(x,y), по формуле

$$\hat{u}(x,y) = 5 - 3.21e^{-(x/10.13 - 6.62)^6 - (y/9.59 - 2.93)^6} - 2.78e^{-(x/9.89 - 4.12)^6 - (y/8.63 - 7.43)^6}$$

$$+3.13e^{-(x/9.89-4.82)^6-(y/8.72-4.33)^6},$$
 (2.37)

заданной в области $D=\{0\leq x\leq 100, 0\leq y\leq 110\}$. Была выбрана сетка с шагом $\Delta x=\Delta y=1$ (км), что приводит к размерности n=11000 для искомого вектора u_n , а также принято, что $\Delta \sigma=0.21$ (г/см³), H=5 (км) (z=H=5 — асимптотическая плоскость для $\hat{u}(x,y)$).

В результате численного эксперимента по восстановлению модельного ре-

шения (2.37) было установлено, что не только матрица $A'_n(u^0)$ имеет n различных неотрицательных собственных значений, но это свойство имело место и для $A'(u^k_n)$ на каждой k-итерации. Тем самым выполнены условия, при которых получены результаты в данной главе по сходимости и оценке погрешности процессов (1.5), (1.6) для немонотонного оператора A с положительным спектром.

При анализе числа обусловленности $\mu(A'_n(u^k_n))$ было установлено, что эта величина для всех четырех процессов принимала значения $\mu(A'_n(u^k_n)) \approx 4.6*10^8$ для немодифицированного варианта и $\mu(A'_n(u^0_n)) \approx 1.5*10^4$ для модифицированных методов. Выход из процесса итераций каждого из методов осуществлялся по правилу

$$\frac{\|\hat{u}_n - \tilde{u}_n\|_{R^n}}{\|\tilde{u}_n\|_{R^n}} \le \varepsilon = 10^{-2},\tag{2.38}$$

где \hat{u}_n — точное решение системы уравнений (2.35), а \tilde{u}_n — восстановленное каждым из четырех итерационных методов.

В таблице 2.1 представлены результаты расчетов при значениях параметров $\bar{\alpha}=\alpha=10^{-3},\,\gamma=1,$ где

$$\Delta = \frac{\|A_n(\tilde{u}_n) + \alpha(\tilde{u}_n - u^0) - f_n\|_{R^n}}{\|f_n\|_{R^n}},$$
(2.39)

относительная регуляризованная невязка для восстановленного решения, N_{ε} — число итераций в процессе для достижения точности, определяемой неравенством (2.38), T — время реализации метода. В позициях для Δ , N_{ε} , T верхняя строка соответствует основным процессам, а нижняя — их модифицированным вариантам.

Таблица 2.1. Эксперименты для обратной задачи гравиметрии

Методы	MMO	мнс	MMH	РМН
Δ	0.0048	0.0020	0.0024	0.0023
	0.0094	0.0019	0.0019	0.0021
$N_arepsilon$	17	21	20	16
	22	23	23	16
Т (сек)	30	11	14	27
	35	12	15	26

2.4.2. Решение структурной обратной задачи магнитометрии

Уравнение магнитометрии при тех же предположениях, что и в задаче гравиметрии для двухслойной среды, имеет вид

$$\Delta J \left\{ \iint_{D} \frac{H}{[(x-x')^{2} + (y-y')^{2} + H^{2}]^{3/2}} dx' dy' - \iint_{D} \frac{u(x',y')}{[(x-x')^{2} + (y-y')^{2} + u^{2}(x',y')]^{3/2}} dx' dy' \right\} = \Delta G(x,y),$$
(2.40)

где ΔJ — усредненный скачок z-компоненты вектора намагниченности, z=H — асимптотическая плоскость, u(x,y) — функция, описывающая аномальное поле, z=u(x,y) — искомая функция, описывающая поверхность раздела сред с различными свойствами намагниченности (рис. 2.2).

Рис. 2.2. Модель двуслойной среды в задаче магнитометрии.

Уравнение (2.40) можно переписать в форме

$$[D(u)](x,y) = \iint_{D} \frac{u(x',y')}{[(x-x')^2 + (y-y')^2 + u^2(x',y')]^{3/2}} dx'dy' = F(x,y), \quad (2.41)$$

где $F(x,y) = D(H) - \Delta G(x,y)/\Delta J$, тогда производная оператора D в точке $u^0(x,y)$ определится формулой

$$[A'(u^0)]h = \iint_D \frac{(x-x')^2 + (y-y')^2 - 2(u^0(x',y'))^2}{[(x-x')^2 + (y-y')^2 + (u^0(x',y'))^2]^{5/2}} h(x',y') dx' dy'.$$

После дискретной аппроксимации, подобно задаче гравиметрии уравнения

(2.41), приходим к системе нелинейных уравнений

$$D_n(u_n) = F_n (2.42)$$

относительно вектора u_n $(n = N \times M)$ с компонентами u_{ij} (i = 1, 2, ..., N, j = 1, 2, ..., M), при этом компоненты производной оператора D_n в точке u_n^0 вычисляются по формуле

$$[D'_n(u_n^0)h_n]_{k,l} = \sum_{i=1}^N \sum_{j=1}^M \Delta x \Delta y \frac{(x_k - x'_j)^2 + (y_l - y'_i)^2 - 2(u_{ji}^0)^2}{[(x_k - x'_j)^2 + (y_l - y'_i)^2 + (u_{ji}^0)^2]^{5/2}} h_{ji}, \qquad (2.43)$$

причем при $u_n^0=\{u^0(x_j',y_i'),1\leq j\leq M,1\leq i\leq N\}=const,\ D_n'(u_n^0)$ — симметричная матрица.

Модельное решение уравнения (2.42), определяющее поверхность раздела сред, задается формулой [38]

$$\hat{u}(x,y) = 5 - 2e^{-(x/10 - 3.5)^6 - (y/10 - 2.5)^6} - 3^{-(x/10 - 5.5)^6 - (y/10 - 4.5)^6}, \tag{2.44}$$

на области $D=\{0\leq x\leq 100, 0\leq y\leq 100\}$. Сетка строилась с шагом $\Delta x=\Delta y=1$ (км), что влечет размерность n=10000 для искомого вектора u_n .

Для $\Delta J=0.4$ был выполнен численный эксперимент по восстановлению модельного решения задачи (2.41) процессами (1.5), (1.6) при $\bar{\alpha}=0.01$, $\alpha=0.0001$, $\beta=1$, а также их модифицированными аналогами, когда производная $D'(u^k)$ вычисляется в фиксированной точке $u_n^0=H=5$ (км). Число обусловленности $\mu(D'_n(u_n^0))=1.8\cdot 10^7$. После вычисления спектра матрицы $D'_n(u_n^k)$ выяснилось, что она имеет различные неотрицательные собственные значения, что на основании теорем сходимости главы 2, при подходящем выборе параметра β и начальном приближении u_n^0 , гарантирует сходимость итерационных схем и двухэтапного метода. Окончание итерационных процессов выполнялось

по правилу (2.38).

Результаты расчетов для задачи (2.42) по восстановлению модельного решения (2.44) представлены в таблице 2.2. Как и в таблице 2.1, здесь Δ — относительная норма невязки (2.39) для восстановленного решения, N_{ε} — число итераций для достижения точности (2.38), T — машинное время при реализации процесса, верхние строки для каждого параметра соответствуют данным для основных (немодифицированных) процессов (1.5), (1.6), (1.7), нижние строки — для модифицированных методов (2.18).

Таблица 2.2. Эксперименты для обратной задачи магнитометрии

Методы	MMO	MHC	MMH	PMH
Δ	0.0636	0.0699	0.0802	0.0368
	0.0569	0.0575	0.0595	0.0369
$N_arepsilon$	4	4	4	5
	4	4	4	5
Т (сек)	7	6	6	22
	5	3	3	3

Вывод. Анализируя результаты численного эксперимента для задач гравиметрии и магнитометрии, можно отметить, что для достижения одной и той же точности приближенного решения в соответствии с правилом (2.38), число итераций для модифицированных методов, как правило, больше, чем немодифицированных процессов (1.5), (1.6). Однако затраты машинного времени при реализации модифицированных процессов, за исключением ММО, существенно меньше. Поэтому можно сделать вывод, что модифицированные МНС, ММН и РМН более экономичны и, следовательно, более предпочтительны для некоторых классов нелинейных задач большой размерности. Более затратная по времени реализация ММО, по сравнению с МНС и ММН, связана прежде всего

с тем, что в коэффициенте $\beta_{-1}(u^k)$ необходимо вычислять не только скалярные произведения, но и обращать на каждом шаге оператор $B_k = A'(u^k) + \alpha I$. Следует сказать, что для уравнения (1.3) ММО обычно не используется. Его применение целесообразно для эквивалентного уравнения $A'(u)^*(A(u)-f)=0$, для которого ММО преобразуется к виду, где операция обращения отсутствует [[32], с. 57, формула 5.8]. Заметим также, что в методе ММО и РМН вычисление элемента вида $W=(A'(u^k)+\alpha I)^{-1}V$ заменялось приближенным решением системы $(A'(u^k)+\alpha I)W=V$ с помощью метода минимальных невязок, т.е. в этом случае фактически реализуется гибридная схема градиентно–ньютоновского типа.

Как можно видеть из таблицы 2.2, также тенденция по затратам машинного времени для модифицированных процессов (2.18) (включая ММО) также сохраняется и для обратной задачи магнитометрии.

Глава 3

Покомпонентные методы и вычислительная оптимизация для решения обратных структурных задач гравиметрии и магнитометрии

В третьей главе предложены покомпонентные методы типа Ньютона и типа Левенберга – Марквардта для решения обратной задачи гравиметрии, а также вычислительная оптимизация методов типа Ньютона. Покомпонентный метод типа Ньютона предлагается для решения обратных задач в случае модели двухслойной среды, а метод, основанный на методе Левенберга – Марквардта — для модели многослойной среды. Первый параграф посвящен вычислительной оптимизации метода Ньютона и покомпонентному методу типа Ньютона. Во втором параграфе предложен покомпонентный метод типа Левенберга – Марквардта. В третьем параграфе описаны использованные инструменты параллельного программирования. В четвертом параграфе обсуждаются результаты численного моделирования. Для задач, имеющих большой размер данных, приводятся результаты расчетов с использованием параллельных вычислений на многоядерных процессорах и графических ускорителях. В пятом параграфе приводится описание комплекса параллельных программ для выполнения на многоядерных процессорах и графических ускорителях NVIDIA.

3.1. Покомпонентный метод типа Ньютона и

вычислительная оптимизация метода Ньютона

3.1.1. Покомпонентный метод типа Ньютона

Используя особенности обратной задачи гравиметрии, предлагается покомпонентный метод, основанный на идее метода Ньютона.

Запишем исходное операторное уравнение (1.3), $A: H \to H$

$$A(u) = f$$

где $A(u)=g\Delta\sigma\int_a^b\int_c^dK(x,y,x',y',u^k(x,y))dxdy$ — интегральный оператор задачи гравиметрии (2.33).

Итерации в методе Ньютона строятся по схеме

$$A'(u^k)(\Delta u^k) = -(A(u^k) - f),$$

где $\Delta u^k = u^{k+1} - u^k$. То есть, для задачи гравиметрии

$$g\Delta\sigma \int_{a}^{b} \int_{c}^{d} K'_{u}(x, y, x', y', u^{k}(x, y))\Delta u^{k}(x, y)dxdy = -\left[[A(u^{k})](x', y') - f(x', y') \right].$$
(3.1)

Полагая $\Delta u^k(x,y) = \Delta u^k(x',y') = const$ относительно переменных интегрирования, запишем

$$g\Delta\sigma(\Delta u^{k}(x',y')) \int_{a}^{b} \int_{c}^{d} K'_{u}(x,y,x',y',u^{k}(x,y)) dxdy \approx -\left[A(u(x',y')) - f(x',y')\right].$$
(3.2)

Таким образом, величина поправки Δu^k может быть получена как

$$\Delta u^k = \left[[A(u)](x', y') - f(x', y') \right] / g\Delta \sigma \int_a^b \int_c^d K'_u(x, y, x', y', u^k(x, y)) dx dy.$$

Итерации осуществляются по схеме:

$$u^{k+1}(x',y') = u^k(x',y') - \frac{1}{\psi^k(x',y')}([A(u^k)](x',y') - f(x',y')), \qquad (3.3)$$

где

$$\psi^k(x',y') = g\Delta\sigma \int_a^b \int_a^d K'_u(x,y,x',y',u^k(x,y))dxdy.$$

Для решения некорректной обратной задачи гравиметрии, предлагается регуляризованный покомпонентный метод

$$u^{k+1}(x',y') = u^{k}(x',y') - \frac{1}{\psi^{k}(x',y') + \bar{\alpha}}([A(u^{k})](x',y') + \alpha(u^{k} - u^{0}) - f_{\delta}(x',y')),$$
(3.4)

где $\alpha, \bar{\alpha} > 0$ — параметры регуляризации.

В дискретной записи итерационный процесс запишется

$$u_{m,l}^{k+1} = u_{m,l}^k - \frac{1}{\psi_{m,l}^k + \bar{\alpha}}([A_n(u^k)]_{m,l} + \alpha(u^k - u^0) - f_{m,l}), \quad 1 \le m \le M, \quad 1 \le l \le N,$$

где

$$\psi_{m,l}^k = g\Delta\sigma \sum_{i=1}^M \sum_{j=1}^N \Delta x \Delta y \frac{u_{ij}}{[(x_k - x_j')^2 + (y_l - y_i')^2 + (u_{ij})^2]^{3/2}}.$$

Эту сумму $\psi_{m,l}^k$ можно интерпретировать как сумму элементов $(m \times M + l)$ -й строки матрицы производной $A_n'(u_n^k)$.

Покомпонентный метод позволяет восстанавливать значения функции u в каждой точке (x',y') области D, или, в дискретном случае, $\{m,l\}$ -компоненты

вектора u.

Предложенный метод позволяет существенно упростить вычисления по сравнению с методом Ньютона. Вместо вычисления обратной матрицы в методе Ньютона можно вычислить вектор, состоящий из сумм элементов строк матрицы и использовать его компоненты для восстановления соответствующей компоненты вектора решения u_n^k . Это делает метод экономичным по времени вычислений и памяти, так как вместо матрицы производной хранится вектор. Таким образом при больших сетках возможно обходиться небольшим количеством машинных ресурсов. Вычислительная сложность покомпонентного метода типа Ньютона для решения системы n уравнений без учета сложности алгоритма вычисления $A_n(u_n^k)$ — вектора аппрокисимированного интегрального оператора — составляет O(n). В методе Ньютона, сложность алгоритма составляет $O(n^2)$ при обращении матрицы $A_n'(u_n^k)$ + αI итерационными методами, например, методом минимальных невязок для СЛАУ.

3.1.2. Вычислительная оптимизация метода Ньютона

Для задач (2.35), (2.42) можно отметить, что наибольшие значения подынтегральная функция K принимает в точках x, y равных или близких к x' и y'. В конечномерном случае, матрица производной оператора задачи будет с диагональным преобладанием, элементы матриц $A'(u^0)$ (2.36), (2.43) принимают наибольшие значения при малых значениях (x-x') и (y-y'). На рис. 3.1 схематически изображены элементы матрицы $A'(u^0)$, где более насыщенные тона цвета обозначают элементы матрицы большие по модулю, а более светлые тона — элементы, меньшие по модулю. На диагонали расположены элементы с наибольшими значениями, а чем дальше от диагонали, тем элементы с меньшими значениями.

Рис. 3.1. Схема матрицы производной оператора A в задачах грави- магнитометрии в двух-слойной среде

Поэтому в структурных обратных задачах гравиметрии и магнитометрии при небольших относительно размера сетки глубинах H при решении итерационными методами без существенной потери точности можно не учитывать значения элементов, отстоящих от диагонали далее, чем на β -ю часть размерности матрицы производной, то есть те значения a_{ij} , для которых $j \in \{i-h(\beta),...i+h(\beta)\}$, где $h(\beta)$ — полуширина ленты матрицы, i,j — индекс элемента. Значение β определяется из входных данных задачи и зависит от размера гравитационной или магнитной аномалии по отношению к величине сетки. В формуле (1.5) вместо $A'(u^k)$ используется $(2h(\beta)+1)$ -диагональная матрица с элементами из $A'(u^k)$ на соответствующих диагоналях.

Данный подход позволяет существенно уменьшить количество вычислительных операций, перейдя от плотно заполненных матриц к матрицам ленточного вида.

3.2. Покомпонентный метод типа Левенберга — Марквардта для решения обратной задачи гравиметрии для модели многослойной среды

Рассмотрим уравнение гравиметрии для модели многослойной среды.

Предполагается, что нижнее полупространство состоит из нескольких слоев постоянной плотности σ_l , где l=1,..,L, разделенных искомыми поверхностями S_l , где L — число границ раздела (рис. 3.2). Гравитационный эффект от такого полупространства равен сумме гравитационных эффектов от всех Lслоев. Пусть поверхности раздела задаются уравнениями $u_l(x,y)$, скачки плот-

Рис. 3.2. Модель многослойной среды

ности на них равны $\Delta \sigma_l$. поверхности имеют горизонтальные асимптотические плоскости $u_l = H_l$, т.е.

$$\lim_{|x|,|y|\to\infty} |u_l(x,y) - H_l| = 0.$$

Функции $u_l(x,y), u = (u_1(x,y),...,u_L(x,y)),$ описывающие искомые поверхности раздела сред, удовлетворяют операторному уравнению

$$A(u) = \sum_{l=1}^{L} g \Delta \sigma_l \frac{1}{4\pi} \iint_D \left\{ \frac{1}{[(x-x')^2 + (y-y')^2 + u_l^2(x,y)]^{1/2}} - \frac{1}{[(x-x')^2 + (y-y')^2 + H_l^2]^{1/2}} \right\} = f(x',y'),$$
(3.5)

где g — гравитационная постоянная, $\Delta \sigma_l(l=1,..,L)$ скачки плотности, $f(x',y')=\sum_{l=1}^L F_l$ — суммарное аномальное гравитационное поле.

Предварительная обработка гравитационных данных с выделением аномального поля из измеренного выполняется по методике [80]. Задача является недоопределенной, так как мы ищем несколько функций $u_l(x,y)$ по заданной функции f(x',y'). Поэтому необходимо использовать весовые множители, которые могут быть найдены по формулам из [37]:

$$F = [F_1, F_2, ..., F_L] = (f_1, f_2, ..., f_{M \times L}, ..., f_{L \times M \times N})$$

$$\to (w_1, w_2, ..., w_{L \times M \times N}),$$

$$w_i = \frac{|f_i|^{\beta}}{\max_i |f_i|^{\beta}}, \quad \beta > 1,$$
(3.6)

где $F_l(l=1,2,...,L)$ — аномальные гравитационные поля, создаваемые гравитирующими массами, находящимися на соответствующих глубинах H_l и разделенных границами раздела $S_l(l=1,2,...,L)$.

После дискретизации уравнения (3.5) на сетке $n = M \times N$ с заданной правой частью f(x',y') и аппроксимации интегрального оператора A(u) по квадратурным формулам, получаем вектор правой части F_n размера $M \times N$, вектор решения $u_n = [u_1(x,y),...,u_L(x,y)]$ размерности $L \times M \times N$, полученный конкатенацией векторов решений, соответствующих l-й границе раздела, матрицу производной оператора A'(u) размерности $(M \times N) \times (L \times M \times N)$, полученной приписыванием справа к матрице производной $A'(u^l)$ в точке u^l матрицы $A'(u^{l+1})$, где

$$[A'(u_n^l)h_n]_{k,m} = g\Delta\sigma_l \sum_{i=1}^M \sum_{j=1}^N \Delta x \Delta y \frac{u_{ij}^l h_{ij}^l}{[(x_k - x_i')^2 + (y_m - y_j')^2 + (u_{ij}^l)^2]^{3/2}}, \quad (3.7)$$

и систему нелинейных уравнений

$$A_n[u] = F_n. (3.8)$$

Для решения задач (2.33), (3.5) предлагается метод покомпонентного типа, основанный на идее метода Левенберга — Марквардта.

Для аппроксимации решения уравнения (2.34) метод Левенберга — Марквардта (МЛМ) имеет вид:

$$u^{k+1} = u^k - \gamma [A'(u^k)^T A'(u^k) + \alpha I]^{-1} A'(u^k)^T (A(u^k) - f_\delta), \tag{3.9}$$

где $A'(u^k)^T$ — оператор, транспонированный к производной $A'(u), \, \alpha > 0$ — параметр регуляризации, $\|f - f_\delta\| \leq \delta$.

В работах В.В. Васина [50], [52] был исследован метод Левенберга – Марквардта

$$u^{k+1} = u^k - \gamma [A'(u^k)^* A'(u^k) + \alpha I]^{-1} [A'(u^k)^* (A(u^k) - f_\delta)]$$
 (3.10)

и его модифицированный вариант

$$u^{k+1} = u^k - \gamma [A'(u^0)^* A'(u^0) + \alpha I]^{-1} [A'(u^k)^* (A(u^k) - f_\delta)]$$
 (3.11)

для решения регуляризованного уравнения

$$A'(u)^*(A(u) - f_{\delta}) + \alpha(u - u^0) = 0,$$

где γ — демпфирующий множитель, u^0 — некоторое приближение к $u_{\alpha}, \, \alpha > 0.$

По аналогии с выводом покомпонентного метода типа Ньютона (3.3), выполним грубую аппроксимацию, вынеся $\Delta u_l(x',y')$ за знак интегрального оператора, как в (3.2), и запишем итерационную последовательность восстановления каждой из неизвестных границ u_l

$$u_l^{k+1} = u_l^k - \gamma \frac{1}{\varphi_l + \bar{\alpha}} \Lambda [A'(u_l^k)^T (A(u^k) - f_\delta) + \alpha (u_l^k - u_l^0)], \tag{3.12}$$

где l — номер границы раздела, $l=1,..,L,\Lambda$ — диагональный весовой оператора, у матрицы которого весовые множители на главной диагонали,

$$\varphi_{l} = \left[g\Delta\sigma \int_{a}^{b} \int_{c}^{d} K'_{u}(x', y', x, y, u_{l}^{k}(x, y)) dx' dy' \right] \times \left[g\Delta\sigma \int_{a}^{b} \int_{c}^{d} K'_{u}(x, y, x', y', u_{l}^{k}(x, y)) dx dy \right],$$

где $K'_u(x',y',x,y,u^k_l(x,y))$ — функция ядра, транспонированного к ядру $K'_u(x,y,x',y',u^k(x,y))$. Величина φ_l зависит от u^k_l . Итерационный процесс (3.12) перепишем в дискретной форме

$$u_{l,i}^{k+1} = u_{l,i}^k - \gamma \frac{1}{\varphi_{l,i} + \bar{\alpha}} w_{l,i} \left[\{ A'(u_l^k)^T (A(u^k) - f_\delta) \}_i + \alpha (u_{l,i}^k - u_{l,i}^0) \right], \quad (3.13)$$

где $w_{l,i}-i$ -й весовой множитель, зависящий от l-й границы раздела,

$$\varphi_{l,i} = \left[g \Delta \sigma \sum_{k=1}^{N} \sum_{m=1}^{M} K'_{u}(x'_{k}, y'_{m}, \{x, y\}_{i}, u^{k}_{l,i}) \Delta x' \Delta y' \right] \times \left[g \Delta \sigma \sum_{k=1}^{N} \sum_{m=1}^{M} K'_{u}(x_{k}, y_{m}, \{x', y'\}_{i}, u^{k}_{l}(x_{k}, y_{m})) \Delta x \Delta y \right].$$

Преимущества покомпонентного метода типа Левенберга — Марквардта в низкой вычислительной сложности и меньших затратах памяти, по сравнению с классическим методом Левенберга — Марквардта. Здесь не требуется вычисления матрицы $A'(u^k)^TA'(u^k) + \alpha I$ и хранения ее в памяти, что значительно снижает потребление памяти. Это делает каждый шаг метода более экономичным в расчетах по сравнению с (3.10), (3.11), где вычислительная сложность алгоритмов достигает $O(n^3)$ для систем уравнений с числом неизвестных n, в силу умножения матриц $A'(u^k)^TA'(u^k)$ и обращения матрицы $A'(u^k)^TA'(u^k) + \alpha I$. Вычислительная сложность (3.12) составляет $O(n^2)$ потому что самыми затратными по времени операциями являются вычисление элементов матрицы $A'(u^k)^T$ и матрично-векторные умножения. Таким образом, покомпонентный метод типа Левенберга — Марквардта является достаточно экономичным алгоритмом решения обратной задачи гравиметрии в многослойной среде.

3.3. Использование параллельных вычислений

Для исследования параллельных свойств и сравнения работы последовательных и параллельных алгоритмов вводятся некоторые характеристики. Основные — это коэффициенты ускорения и эффективности:

$$S_m = \frac{T_1}{T_m},$$

$$E_m = \frac{S_m}{m},$$

где T_1 — время выполнения последовательного алгоритма на одном процессорном ядре, T_m — время выполнения параллельного алгоритма на $m\ (m>1)$ ядрах процессора.

 T_m представляет собой совокупность чистого времени счета и накладных расходов на создание и синхронизацию потоков исполнения

$$T_m = T_c + T_o.$$

При использовании m процессорных ядер матрицы разбиваются на m равных горизонтальных полос, а вектора — на m равных фрагментов.

В общем случае эффективность распараллеливания E_m меняется в пределах $0 < E_m < 1$. В идеальном случае при равномерной и сбалансированной загрузке процессорных ядер и минимальном времени на накладные расходы E_m близко к единице, но при решении практических задач она уменьшается за счет накладных расходов и дисбаланса нагрузки.

Основной целью при построении параллельных алгоритмов является по-

лучение максимального ускорения и эффективности:

$$S_m \to m$$
,

$$E_m \to 1$$
.

Главными условиями высокой эффективности являются:

- 1) равномерная загрузка процессорных ядер (отсутствие простоев);
- 2) масштабируемость параллельного алгоритма, т.е. возможность ускорения вычислений пропорционально увеличению числа используемых процессорных ядер.

В качестве инструментов для создания параллельных программ автором использовались средства OpenMP в совокупности с компилятором Intel C++ Compiler и CUDA. Эти технологии общедоступны, так как многоядерные процессоры Intel и видеокарты NVIDIA распространены повсеместно и часто составляют аппаратное обеспечение современных ПК.

Основную часть вычисления рассмотренных методов составляют операции линейной алгебры: матрично-векторные операции, матричные умножения и т.д. Распараллеливание вычислений производится путем разбиения матриц и векторов на горизонтальные блоки, количество которых соответствует числу ядер процессора или блоков видеокарты.

3.3.1. При создании кода параллельной программы OpenMP используются директивы #pragma omp — указания компилятору, какой участок программы будет выполняться параллельно (см. рис. 3.3¹). Особенность выполнения параллельной OpenMP программы в блоке действия директивы #pragma omp parallel в создании мастер-потока ([master]), раздающего команды подчиненным ему потокам (slaves). Эти команды заключаются, в основном, в раздаче фрагментов

 $^{^{1}}$ Рисунок взят из интернет-ресурса Intel Developer Zone.

Рис. 3.3. Принцип работы потоков в OpenMP

данных каждому потоку, включая мастер-поток, и в синхронизации результатов.

3.3.2. Технология CUDA для вычисления на видеокартах NVIDIA имеет свои особенности. Видеокарта предствляет собой периферийное устройство, при подключении к хост-машине (ПК) инициализируются тысячи потоков — ядер. Поэтому при написании параллельного CUDA-кода требуется четко разграничивать пространство действия центрального процессора (host) и видеокарты (device). Задачей кода для host требуется инициализация входных данных, запуск подпрограмм для видеокарты на тех участках кода, где требуется распараллеливание. Программный код для device состоит из специальных подпрограмм — ядерных функций, выполняющихся непосредственно на видеокарте. Ядерная функция выполняется каждым ядром графического процессора внут-

Рис. 3.4. Иерархия компонентов вычислительной сетки GPU

ри блока, все блоки составляют вычислительную сетку grid. Каждый из блоков имеет свой уникальный id в пределах grid, каждое ядро имеет свой уникальный id в пределах свого блока (рис. 3.4^2).

3.3.3. Параллельные алгоритмы для решения задачи (3.5) были численно реализованы на многоядерном процессоре Intel Xeon и на графических ускорителях NVIDIA Tesla, являющихся вычислительными компонентами суперкомпьютера «Уран», установленного в Институте математики и механики УрО РАН. Параллельные программы для запуска на процессоре Intel Xeon были разработаны с использованием технологии OpenMP и библиотеки Intel MKL library, программы для запуска на GPU были разработаны с использованием технологии CUDA и библиотеки CUBLAS.

 $^{^{2}}$ Рисунок взят из интернет-журнала Ха
kep.

3.4. Решение модельных задач гравиметрии и магнитометрии на многопроцессорных системах

3.4.1. Решение задач гравиметрии и магнитометрии методами ньютоновского типа

Рассматривается эксперимент по восстановлению границы раздела в двухслойной среде методами ньютоновского типа, наискорейшего спуска и минимальных невязок с распараллеливанием вычислений. Решается модельная задача.

Целью эксперимента является сравнить методы по точности решения и временам выполнения.

Точное решение уравнения гравиметрии, определяющее поверхность раздела сред (рис. 3.5), задается формулой

$$\hat{u}(x,y) = 5 - 3.21e^{-(x/10.13 - 6.62)^6 - (y/9.59 - 2.93)^6} - 2.78e^{-(x/9.89 - 4.12)^6 - (y/8.63 - 7.435)^6}$$

$$+3.19e^{-(x/9.89-4.82)^6-(y/8.72-4.335)^6}$$
. (3.14)

Поверхность задана на области $D=\{0\leq x\leq 512, 0\leq y\leq 512\}$, с асимптотической плоскостью H=5, размерами шагов сетки $\Delta x=\Delta y=0.2$, скачком плотности $\Delta \sigma=0.2$ г/см³. Восстановлена поверхность раздела на рис. 3.6.

Точное решение уравнения магнитометрии на рис. 3.7, определяющее поверхность раздела сред, задается формулой (2.44).

Рис. 3.5. Модельная поверхность «Две горки и впадина»

Рис. 3.7. Модельная поверхность «Две горки»

Поверхность задана на области $D=\{0\leq x\leq 300, 0\leq y\leq 300\},\ H=5,$ $\Delta x=\Delta y=0.3,$ скачком вектора намагниченности $\Delta J=0.4$ А/м. Восстановлена поверхность раздела (рис. 3.8).

Рис. 3.6. Восстановленная поверхность

Рис. 3.8. Приближенное решение задачи магнитометрии

В таблицах 3.1, 3.2 приведены результаты расчетов на многоядерном и графическом процессорах. Критерий останова итераций $\varepsilon = \|u_e - u_a\|/\|u_e\| \le 0.025$, параметры регуляризации $\alpha = \bar{\alpha} = 10^{-3}$, полуширина ленты матрицы

Таблица 3.1. Сравнение методов решения задачи гравиметрии на сетке 512×512

Метод	$N_{arepsilon}$	Δ	T_1	T_8	T_{GPU}	S_8	S_{GPU}
Метод Ньютона	3	0.041	64 мин	8,82 мин	1 мин	7.25	65
Модиф. метод Ньютона	5	0.042	55 мин	7,5 мин.	45 сек	7.33	73
Метод минималь- ных невязок	5	0.041	50 мин	6.8 мин.	_	7.3	
Метод Ньютона с ленточной матри- цей	4	0.041	43 мин	6.8 мин.	30	7.41	86
Покомпонентный метод Ньютона	6	0.041	20 мин	2.82 мин.	11 сек	7.14	100

производной $\beta=1/4$ для задачи гравиметрии и $\beta=1/5$ для задачи магнитометрии. Демпфирующий коэффициент $\gamma=1.2$ для покомпонетного метода Ньютона. Обозначение $\Delta=\|A(u^k)+\alpha(u^k-u^0)-f_\delta\|/\|f_\delta\|$ — относительная норма регуляризованной невязки, N_ε — число итераций, T_1 — время счета последовательной программы, T_8 — время счета программы на многоядерном процессоре Intel Xeon с использованием 8 ядер процессора, S_8 — ускорение на 8 ядрах процессора, S_{GPU} — ускорение, полученное на видеокарте, E_8 — эффективность. Для сетки 512×512 узлов размер матрицы $A_n'(u^k) \approx 2.6 * 10^5 \times 2.6 * 10^5$.

Также были проведены эксперименты в случае с возмущенной правой частью. На f был наложен гауссовский шум с математическим ожиданием $\mu_g = 0.5$ и дисперсией $\sigma_g = 0.7$ в случае гравитационного поля и $\mu_m = 0.002$ и дисперсией $\sigma_m = 0.001$ для магнитного поля. В первом случае шум составляет 16%, во втором — 6%. На рис.3.9, 3.10 изображены возмущенные поля, на рис.3.11 и 3.11 восстановленные модифицированным методом Ньютона поверхности раздела сред для задач с возмущенными данными.

Таблица 3.2. Сравнение методов решения задачи магнитометрии сетка 270 \times 300

Метод	$N_{arepsilon}$	Δ	T_1	T_8	S_8	E_8
Метод Ньютона	5	0.036	15 мин	2 мин 36 сек	6	0.75
Метод наискорей- шего спуска	4	0.07	13 мин	1 мин 50 сек	7.7	0.96
Метод минималь- ных невязок	4	0.08	13 мин	1 мин 50 сек	7.7	0.96
Модифицированный метод Ньютона	5	0.037	5 мин	40 сек	7.75	0.96
Метод Ньютона с ленточной матри- цей	5	0.05	4 мин	35 сек	7.5	0.93

Рис. 3.9. Гравитационное поле с шумом

Рис. 3.10. Магнитное поле с шумом

Рис. 3.11. Приближенное решение ММН задачи гравиметрии с шумом

Рис. 3.12. Приближенное решение ММН задачи магнитометрии с шумом

В таблицах 3.3, 3.4 приведены результаты расчетов, где γ — параметр регулировки шага. Критерий останова — относительная погрешность $\varepsilon < 10^{-1}$.

Таблица 3.3. Результаты для задачи гравитометрии с шумом

Метод	Параметры	$N_{arepsilon}$	Δ
Метод Ньютона	$\gamma = 0.2, \alpha = 0.1, \bar{\alpha} = 1$	5	0.47
Модифицированный	$\gamma = 0.2, \alpha = 0.1, \bar{\alpha} = 1$	5	0.46
метод Ньютона	$\gamma = 0.2, \alpha = 0.1, \alpha = 1$	0	0.40
Метод Ньютона	$\gamma = 0.2, \alpha = 0.1, \bar{\alpha} = 1$	5	0.46
с ленточной матрицей	$\gamma = 0.2, \alpha = 0.1, \alpha = 1$	0	0.40
Покомпонентный	$\gamma = 1.2, \alpha = 0.1, \bar{\alpha} = 1$	7	0.46
метод Ньютона	$j=1.2,\alpha=0.1,\alpha=1$	1	0.40

Таблица 3.4. Результаты для задачи магнитометрии с шумом

Метод	Параметры	$N_{arepsilon}$	Δ
Метод Ньютона	$\gamma = 1, \alpha = 10^{-3}, \bar{\alpha} = 0.1$	5	0.49
Модифицированный метод Ньютона	$\gamma = 1, \ \alpha = 10^{-3}, \ \bar{\alpha} = 0.1$	6	0.49
Метод Ньютона с ленточной матрицей	$\gamma = 1, \ \alpha = 10^{-3}, \ \bar{\alpha} = 0.1$	5	0.49

Вывод. Покомпонентный метод типа Ньютона является самым экономичным по вычислительным затратам: в три раза быстрее РМН, и в два раза быстрее метода Ньютона с ленточной матрицей. Исключение из матрицы производной оператора $A'(u^k)$ элементов, далеко отстоящих от диагонали, почти не влияет на количество итераций для достижения заданной точности метода Ньютона. В задаче гравиметрии для методов понадобилось уменьшать параметр γ для обеспечения сходимости итерационных процессов. Замена матрицы производной на ленточную не оказывает существенного влияния на скорость сходимости за счет почти не измененного параметра N_1 в оценках теоремы 2.1. На улучшение результата по сглаживанию шума оказал влияние подбор регуляризующих параметров $\bar{\alpha}$, α . Проведенные эксперименты наглядно демонстрируют выгоду использования ПМН для решения обратных задач на больших сетках. Все алгоритмы обладают высокой степенью параллелизма, что дает почти m-кратное уменьшение времени счета программ при использовании m ядер процессора. Из таблиц видно, что ускорение S_m и эффективность E_m близки к максимальным показателям.

3.4.2. Решение структурной обратной задачи гравиметрии для модели многослойной среды

Рассматривается эксперимент по восстановлению границ раздела сред в многослойной среде (4 слоя с разной плотностью) в задаче гравиметрии на основе квазиреального аномального поля регуляризованным методом Левенберга – Марквардта (ЛМ) и покомпонентным методом типа Левенберга – Марквардта (ПЛМ).

Целью моделирования является сравнить регуляризованный метод Левенберга — Марквардта и покомпонентный метод типа Левенберга — Марквардта по качеству восстановленных решений, показать экономичность покомпонентного метода при вычислениях на больших сетках.

На рис. 3.13 и 3.14 изображено суммарное гравитационное поле и поле с гауссовским шумом 22%, математическое ожидание $\mu=1$, величина дисперсии $\sigma=1.15$. Модельные поверхности раздела построены по аналогии с границами раздела из работы [78].

Рис. 3.13. Суммарное гравитационное поле без шума (мГал)

Рис. 3.14. Суммарное гравитационное доле с шумом 22% (мГал)

На рис. 3.15 изображены точные решения задачи. Асимптотические плоскости $H_1=8$ км, $H_2=15$ км и $H_3=30$ км. Скачки плотности $\Delta\sigma_1=0.2$ г/см³, $\Delta\sigma_2=0.1$ г/см³, $\Delta\sigma_3=0.1$ г/см³. Шаги сетки $\Delta x=2$ км, $\Delta y=3$ км.

Рис. 3.15. Точные решения $u_0(x,y), \, u_1(x,y), \, u_2(x,y)$

При больших размерах сеток матрицы в методе ЛМ требуют для хранения значительных объемов памяти. Например, при числе границ раздела L=3, размере сетки M=N=1000, матрица $A'(u^k)^*A'(u^k)$ с данными типа двойной точности занимает примерно 67 055.2 Гб. Также необходимо отметить, что перемножение плотных матриц является вычислительно сложной задачей. Чтобы сократить объёмы требуемой памяти, было решено выполнять все матрично—векторные операции «на лету»: необходимый элемент матрицы вычисляется в момент умножения его на элемент вектора. Покажем это.

Предварительно сводим систему нелинейных уравнений (3.8) к СЛАУ:

$$B(u^k)u^{k+1} \equiv [A'(u^k)^*A'(u^k) + \alpha I]u^{k+1} = b, \tag{3.15}$$

где $b \equiv [A'(u^k)^*A'(u^k) + \alpha I]u^k - \Lambda A'(u^k)^*(A(u^k) - f_\delta)$. Здесь получаем $A'(u^k)^*(A(u^k) - f_\delta)$ и $[A'(u^k)^*A'(u^k)]u^k$ «на лету». В соответствии с ассоциативностью умножения матриц, $[A'(u^k)^*A'(u^k)]u^k$ эквивалентно $A'(u^k)^*[A'(u^k)u^k]$, так, прием вычисления результата матрично-векторного умножения «на лету» позволяет избежать перемножения матриц, заменяя эту процедуру на двойное матрично-векторное умножение. Далее СЛАУ (3.15) может быть решена итерационными методами градиентного типа, например, методом минимальных невязок [32], [46].

Для запуска на многоядерном процессоре Intel Xeon были использовались директивы #pragma simd для векторизации в циклах и оптимизации с использованием средств компилятора Intel Xeon.

На рис. 3.16 показаны восстановленные границы раздела методом ЛМ, на рис. 3.17 показаны восстановленные границы раздела методом ПЛМ.

Рис. 3.16. Границы, восстановленные ЛМ $\tilde{u}_0(x,y), \, \tilde{u}_1(x,y), \, \tilde{u}_2(x,y)$

Рис. 3.17. Границы, восстановленные ПЛМ $\hat{u}_0(x,y),\,\hat{u}_1(x,y),\,\hat{u}_2(x,y)$

Рис. 3.18 и рис. 3.19 показывают восстановленные границы раздела методами ЛМ и ПЛМ из гравитационного поля с шумом 22%.

Рис. 3.18. Границы, восстановленные ЛМ для данных с шумом $\tilde{u}_0(x,y),\, \tilde{u}_1(x,y),\, \tilde{u}_2(x,y)$

Рис. 3.19. Границы, восстановленные ПЛМ для данных с шумом $\hat{u}_0(x,y),\,\hat{u}_1(x,y),\,\hat{u}_2(x,y)$

Таблица 3.5. Относительные ошибки и время вычислений задачи без шума

$oldsymbol{ extbf{Metog}} oldsymbol{N}_{arepsilon} oldsymbol{\delta}_1$	ΛŢ	8.	δ_2	δ_3	Сетка $10^2 \times 10^2$			Сетка $10^{3} \times 10^{3}$		
	02	03	T_1	T_8	T_m	T_1	T_8	T_m		
ЛМ	ЛМ 60 0.052	0.026	0.051	4 м.	1 м.	22 c.	11 ч.	1 ч.	35 м.	
	0.002			6 c.	15 c.		40 м.	25 м.		
ПЛМ	ЛМ 20 0.051 0.035	0.060	99 6	16.0	3 0	1 ч.	10 м.	2 M		
		0.055	0.000	55 C.	10 C.	3 6.	12 м.	TO M.	o M.	

В таблице 3.5 представлены времена счета задачи гравиметрии в многослойной среде с тремя границами раздела с шумом и без шума методами ЛМ и ПЛМ на сетках размерности 100×100 и $10^3 \times 10^3$. Весовые множители получены из поля после предварительной обработки по формуле из [37] с параметрами $\alpha=1,\ \beta=1.1$. Для обоих методов использовались параметр регуляризации $\alpha=10^{-3}$ и демпфирующий множитель $\gamma=1$. Критерий останова итераций $\epsilon<0.1$. Относительные погрешности $\delta_i=\|u_a-u_e\|/\|u_e\|$ для равнения точного u_e и численного решения u_a для каждой i -й границы раздела (для данных без шума). В последних колонках: T_1 время счета программы, запущенной на одном ядре Intel Xeon, T_8 время на восьми ядрах процессора Intel Xeon, T_m время счета на ядрах графического ускорителя NVIDIA Tesla GPU для сеток 100×100 и $10^3 \times 10^3$. Как можно видеть, показатели ускорения и эффекктивности близки к максимальным.

Результаты моделирования приведены в таблице 3.6, параметр шага $\gamma=1$, параметры регуляризации $\alpha=0.1,\ \bar{\alpha}=1$, критерий останова $\Delta=\|A(u^k)+\alpha(u^k-u^0)-f_\delta\|/\|f_\delta\|<0.15$.

Таблица 3.6. Относительные ошибки для задачи с шумом

Метод	N_{Δ}	δ_1	δ_2	δ_3
ЛМ	24	0.048	0.035	0.059
ПЛМ	8	0.048	0.040	0.068

Вывод. ПЛМ является более экономичным, по срвнению с классическим методом ЛМ. Программа, реализующая алгоритм ПЛМ, произвела вычисления примерно в десять раз быстрее, чем программа ЛМ. На рис. 3.16, 3.17 можно заметить, что с увеличением глубины поверхности становятся менее рельефными, по сравнению с точными границами. Это связано с особенностями формирования гравитационного поля: искривления поверхностей, расположенных далеко от поверхности Земли, оказывают меньшее влияние на изменения суммарного гравитационного поля. Использование покомпонентного метода типа Левенберга – Марквардта позволяет избежать некоторых трудностей, возникающих при применении классического метода Левенберга – Марквардта: обращение плохо обусловленных матриц, высокая вычислительная сложность и большие затраты памяти. Результаты численного моделирования показывают, что относительная норма невязки $\Pi \Pi M$ сходится к Δ за меньшее число итераций, чем классический регуляризованный метод ЛМ. Это можно связать с тем, что в задаче гравиметрии матрица производной оператора $A'(u^k)$ плохо обусловлена, что влечет значительное увеличение числа обусловленности матрицы $A'(u^k)^T * A'(u^k)$, используемой в методе Левенберга – Марквардта. Оба метода показали высокую устойчивость к гауссовскому шуму. Для сеток большой размерности, когда данные не могут храниться в памяти целиком, целесообразно использование техники вычислений «на лету».

3.5. Описание комплекса параллельных программ

Для решения обратных структурных задач гравиметрии и магнитометрии о восстановлении раздела сред был разработан комплекс программ, позволяющий выполнять расчеты на основе входных данных гравитационного или магнитного поля и результатом работы программ является файл, описывающий границы раздела сред в трехмерном пространстве.

Комплекс представляет собой библиотеку с подпрограммами *MyGeoLib* для специальных вычислений и набор программ для решения обратных задач гравиметрии и магнитометрии. В настоящее время можно решать следущие задачи:

- 1. структурная обратная задача гравиметрии о нахождении поверхности раздела для модели двухслойной среды;
- 2. структурная обратная задача магнитометрии о нахождении поверхности раздела для модели двухслойной среды;
- 3. структурная обратная задача гравиметрии о нахождении поверхности раздела для модели многослойной среды.

Для решения задачи из п.1. можно использовать программы:

- регуляризованный метод Ньютона и модифицированный вариант (многоядерные процессоры, видеокарта);
- метод минимальной ошибки и модифицированный вариант (многоядерные процессоры);
- метод наискорейшего спуска и модифицированный вариант (многоядерные процессоры);
- метод минимальных невязок и модифицированный вариант (многоядерные процессоры);

- метод Ньютона с ленточной матрицей (многоядерные процессоры);
- покомпонентный метод Ньютона (многоядерные процессоры, видеокарта);
- покомпонентный метод Левенберга Марквардта (многоядерные процессоры, видеокарта).

Для решения задачи из п.2. можно использовать программы:

- регуляризованный метод Ньютона и модифицированный вариант (многоядерные процессоры, видеокарта);
- метод минимальной ошибки и модифицированный вариант (многоядерные процессоры);
- метод наискорейшего спуска и модифицированный вариант (многоядерные процессоры);
- метод минимальных невязок и модифицированный вариант (многоядерные процессоры);
- метод Ньютона с ленточной матрицей (многоядерные процессоры).

 Для решения задачи из п.3. можно использовать программу:
- покомпонентный метод Левенберга Марквардта (многоядерные процессоры, видеокарта).

Создана специальная библиотека методов, которая позволила ускорить разработку и сделать ее более гибкой. Библиотека состоит из 3-х частей: общие процедуры (считывание геофизических данных из файла, печать данных в файл, и т.д.), математические процедуры (умножение матриц на вектор, вычисление норм векторов и т.д.), процедуры для задач гравиметрии и магнитометрии (вычисление интегрального оператора, производной оператора и т.д.).

В основе разработки структуры библиотеки лежит процедурный подход. Это связано с тем, что данные представляют собой стандартные конструкции — массивы, это обусловлено удобством написания параллельного кода.

В качестве языка программирования использовался язык С, для написания параллельного кода использовались библиотеки IntelMKL, OpenMP, CUDA и CUBLAS.

Комплекс программ размещен на суперкомпьютере «Уран», запуск задач осуществляется с помощью команд системы SLURM. Каждая программа располагается в отдельной папке (рис. 3.20). В папках библиотеки *MyGeoLib Gravy* и *Magne* содержатся файлы исходного кода с описаниями процедур вычисления оператора задач гравиметрии и магнитометрии, производных оператора, вычисления весовых множителей и т.д. В папке *Math* находятся файлы с описанием математических подпрограмм, в папке *Common* содержатся файлы исходного кода с описаниями процедур общего вида, например, чтение-запись в файл. Все процедуры библиотеки реализованы в двух вариантах: ОреnMP и CUDA.

Для запуска программы следует перейти в папку нужной программы, где папки *отр* и *cuda* содержат версии программ для многоядерого процессора и видеокарты соответственно, и запустить исполняемый файл *prog*. Пример запуска программы, использующей 8 ядер процессора, с выделением памяти 48000 Мб, на узле tesla4, ограничение по времени исполнения 20 минут:

srun –cpus-per-task=8 –mem=48000 -w tesla4 -t 20 prog.

Пример запуска программы на видеокарте:

srun -gres=gpu:1 ./prog

Выходными данными программ являются файлы с расширением .DAT, содержащие XYZ-описание двумерных сеточных функций. Интерпретация результатов может быть осуществлена с помощью картографического пакета Golden Software Surfer.

Рис. 3.20. Структура комплекса

Заключение

Приведем основные результаты диссертационной работы.

- 1. Для нелинейного уравнения с монотонным оператором дано обоснование двухэтапного метода на основе регуляризованного метода Ньютона. Построены регуляризованные градиентные методы для решения нелинейного уравнения с монотонным оператором: метод минимальной ошибки, метод наискорейшего спуска, метод минимальных невязок. Доказаны теоремы сходимости и сильная фейеровость итерационных процессов при аппроксимации регуляризованного решения. Для задачи с немонотонным оператором и неотрицательным спектром его производной обоснована сходимость метода Ньютона и нелинейных α-процессов с модифицированными вариантами к регуляризованному решению.
- 2. Для решения нелинейных интегральных уравнений обратных задач гравиметрии предложены экономичные покомпонентные методы типа Ньютона и типа Левенберга Марквардта. Предложена вычислительная оптимизация метода Ньютона для задач, где матрица производной имеет диагональное преобладание.
- 3. Разработан комплекс параллельных программ для многоядерных и графических процессоров (видеокарт) решения обратных задач гравиметрии и магнитометрии на сетках большой размерности методами ньютоновского типа и покомпонентными методами.

В дальнейшей научной работе автора предполагается исследование на сходимость покомпонентных методов типа Ньютона и Левенберга – Марквардта.

Список литературы

- 1. Blaschke B., Neubauer A., Scherzer O. On convergence rates for the iteratively regularized Gauss-Newton method // IMA Journal of Numerical Analysis. 1997. T. 17, Nº 3. C. 421-436.
- 2. Dennis J., Schnabel R. B. Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Siam, 1996.
- 3. Gilbert J., Nocedal J. Tensor Methods for Nonlinear Equations // SIAM Journal on Numerical Analysis. 1991. T. 2, № 1. C. 21—42.
- 4. Hadamard J. Sur les probl'emes aux derivees partielles et leur signification physique // Bull. Univ. Princeton. 1902. T. 13, № 1. C. 49—52.
- Hanke M. A regularizing Levenberg-Marquardt scheme, with applications to inverse groundwater filtration problems // Inverse problems. — 1997. — T. 13,
 № 1. — C. 79—96.
- Hanke M. The regularizing Levenberg-Marquardt scheme is of optimal order //
 Journal of Integral Equations and Applications. 2010. T. 22, № 2. —
 C. 259—283.
- Hanke M., Neubauer A., Scherzer O. A convergence analysis of the Landweber iteration for nonlinear ill-posed problems // Numerische Mathematik. 1995. T. 72, № 1. C. 21—37.
- 8. Ivanov V. K., Vasin V. V., Tanana V. Theory of Linear Ill-Posed Problems and Its Applications. Utrecht: VSP, 2002.
- 9. Jin Q., Zong-Yi H. On the choice of the regularization parameter for ordinary and iterated Tikhonov regularization of nonlinear illposed problems // Inverse Problems. 1997. T. 13. C. 815—827.

- 10. Jin Q., Zong-Yi H. On an a posteriori parameter choice strategy for Tikhonov regularization of nonlinear ill-posed problems // Numerische Mathematik. 1999.- T. 83.- C. 139-159.
- 11. Kaltenbacher B., Neubauer A., Ramm A. G. Convergence rates of the continuous regularized Gauss—Newton method // Journal of Inverse and Ill-Posed Problems. 1995. T. 10, N = 3. C. 261-280.
- 12. Kelley C. Iterative Methods for Linear and Nonlinear Equations. Philadelphia: Siam, 1995.
- 13. Kokurin M. Convexity of the Tikhonov Functional and Iterativly Regularized Methods of Solution Irregular Operator Equations // Computational Mathematics and Mathematical Physics. — 2010. — T. 50, № 4. — C. 620—632.
- 14. Kokurin M. On Organizing Global Search under Implementation of Tikhonov Scheme // Russian Mathematics (Izvestiya VUZ. Matematika). 2010. T. 54, № 12. C. 17—26.
- 15. Landweber L. An Iteration Formula for Fredholm Integral Equations of the First Kind // American Journal of Mathematics. 1951. T. 73, \mathbb{N}_{2} 3. C. 615—624.
- 16. Lukyanenko D. V., Yagola A. G. Some methods for solving of 3D inverse problem of magnetometry // Eurasian Journal of Mathematical and Computer Applications. -2016. T. 4, \mathbb{N}° 3. C. 4-14.
- Neubauer A. On Landweber iteration for nonlinear ill-posed problems in Hilbert scales // Numerische Mathematik. 2000. T. 85, № 2. C. 309—328.
- 18. Neubauer A., Scherzer O. A convergence rate result for a steepest descent method and a minimal error method for the solution of nonlinear ill-posed

- problems // Zeitschrift fur Analysis und ihre Anwendungen. 1995. T. 14, $\ ^{1}$ 2. C. 369—377.
- Neubauer A., Scherzer O. Convergence criteria of iterative methods based on Landweber iteration for solving nonlinear problems // J. Anal. Appl. — 1995. — T. 194. — C. 911—933.
- 20. Nocedal J., Wright S. Numerical Optimization. Springer Science & Business Media, 2006.
- 21. Numerical solution of an ill-posed Cauchy problem for a quasilinear parabolic equation using a Carleman weight function / M. V. Klibanov, N. A. Koshev, J. Li, A. G. Yagola // Journal of Inverse and Ill-Posed Problems. 2016. T. 24, № 6. C. 761—776. URL: https://doi.org/10.1515/jiip-2016-0039.
- 22. Ortega J., Rheinboldt W. Iterative solution of nonlinear equations in several variables. Siam, 1970.
- 23. Powell M. A hybrid method for nonlinear equations // Numerical methods for nonlinear algebraic equations. 1970. T. 7. C. 87—114.
- 24. Scherzer O. A convergent rate result for steepest descent method and a minimal error method for the solution of nonlinear ill-posed problems // J. Anal. Appl. 1995. T. 14. C. 369—377.
- 25. Scherzer O., Engl H., Kunisch K. Optimal a posteriori parameter choice for Tikhonov regularization for solving nonlinear ill-posed problems // SIAM Journal on Numerical Analysis. 1993. T. 30. C. 1796—1838.
- 26. Schnabel R. B., Frank P. D. Tensor Methods for Nonlinear Equations // SIAM Journal on Numerical Analysis. 1983. T. 21, № 5. C. 815—843.

- 27. Tautenhahn U. On the method of Lavrentiev regularization for nonlinear ill-posed problems // Inverse Problems. 2002. T. 18. C. 191—207.
- 28. Tautenhahn U. Lavrentiev regularization of nonlinear ill-posed problems //
 Vietnam Journal of Mathematics. 2004. T. 32. C. 29—41.
- 29. Vasin V. V. Modified steepest descent method for nonlinear irregular operator equation // Dokl. Math. 2015. T. 91, N_2 3. C. 300—303.
- 30. Vasin V. Modified Newton type processes generating Fejer approximations of regularized solutions to nonlinear equations // Proc. Steklov Inst. Math. 2014. T. 284. C. 145—158.
- 31. Vasin V. Regularized modified alpha-processes for nonlinear equations with monotone operators // Dokl. Math. 2016. T. 469. C. 13-16.
- 32. Vasin V., Eremin I. Operators and Iterative Processes of Fejer Type. Theory and Application. Berlin/New York: Walter de Gruyter, 2009.
- 33. *Агеев А. Л.* Регуляризация нелинейных операторных уравнений на классе функций ограниченной вариации // Журнал вычислительной математики и математичекой физики. 1980. Т. 20, № 4. С. 819—826.
- 34. Акимова~E.~H. Распараллеливание алгоритма матричной прогонки // Математическое моделирование. 1994. Т. 6, № 9. С. 61—67.
- 35. $A \kappa u mo в a E. H.$ Параллельные алгоритмы решения обратных задач гравиметрии и магнитометрии на MBC-1000 // Вестник ННГУ. 2009. N = 4. C. 181—189.
- 36. Акимова Е. Н., Белоусов Д. В. Параллельные алгоритмы решения СЛАУ с блочно-трехдиагональными матрицами на многопроцессорных вычислителях // Вестник УГАТУ. 2011. Т. 15, № 5. С. 87—93.

- 37. Акимова Е. Н., Мартышко П. С., Мисилов В. Е. Методы решения структурной задачи гравиметрии в многослойной среде // Доклады Академии наук. <math>2013. Т. 453. С. 1278—1281.
- 38. *Акимова Е. Н.*, *Мисилов В. Е.*, *Дергачев Е. А.* Алгоритмы решения структурной обратной задачи магнитометрии // Труды 41-й сессии Международного семинара им. Д.Г. Успенского, Екатеринбург, 2014. 1968. С. 4—6.
- 39. Акимова Е. Н., Мисилов В. Е., Косивец Р. А. Оптимизированный алгоритм решения задачи гравиметрии о нахождении плотности в горизонтальном слое <math>// Восьмые научные чтения Ю. П. Булашевича. 2015.
- 40. Акимова Е. Н. Параллельные алгоритмы решения задач грави-магнитометрии и упругости на многопроцессорных системах с распределенной памятью: Дисс. д-ра физ.-мат. наук / Акимова Елена Николаевна. — ИММ УрО РАН, 2009.
- 41. Алгоритмы решения обратных задач оптики слоистых сред на основе сравнения экстремумов спектральных характеристик / Т. Ф. Исаев, Д. В. Лукьяненко, А. В. Тихонравов, А. Ягола // Журнал вычислительной математики и математической физики. 2017. Т. 57, № 5. С. 867—875.
- 42. Бакушинский А. Б. Регуляризующий алгоритм на основе метода Ньютона Канторовича для решения вариационных неравенств // Журнал вычислительной математики и математической физики. 1976. Т. 16, N_0 6. С. 1397—1404.
- 43. Бакушинский А. Б. К проблеме сходимости интеративно-регуляризованного метода Гаусса-Ньютона // Журнал вычислительной математики и математической физики. 1992. Т. 32, № 9. С. 1503—1509.

- 44. *Бакушинский А. Б.*, *Гончарский А. В.* Итеративные методы решения некорректных задач. Москва : Наука, 1989.
- 45. *Бакушинский А. Б.*, *Поляк Б. Т.* О решении вариационных неравенств // Доклады Академии наук СССР. 1974. Т. 219, № 5. С. 1038—1041.
- 46. *Бахвалов Н. С.*, *Жидков Н. П.*, *Кобельков Г. М.* Численные методы. Москва : Наука, 1987.
- 47. *Васин В. В.* Проксимальный алгоритм с проектированием в задачах выпуклого программирования. Уральск. научн. центр, Ин-т матем. и механ., 1982.
- 48. Васин В. В. Итерационные методы решения некорректных задач с априорной информацией в гильбертовых пространствах // Журнал вычислительной математики и математичекой физики. 1988. Т. 28, № 7. С. 971—980.
- 49. *Васин В. В.* Итерационные методы решения некорректных задач с априорной информацией в гильбертовых пространствах // Журнал вычислительной математики и математической физики. 1988. Т. 28, № 7. С. 971—980.
- 50. Bacuh B. B. Метод Левенберга—Марквардта для аппроксимации решений нерегулярных операторных уравнений // Автоматика и телемеханика. 2012. T. 73. C. 28-38.
- 51. *Васин В. В., Агеев А. Л.* Некорректные задачи с априорной информацией. Уральская изд. фирма «Наука», 1993.
- 52. *Васин В. В.*, *Пересторонина Г. Я.* Метод Левенберга—Марквардта и его модифицированные варианты для решения нелинейных уравнений с при-

- ложением к обратной задаче гравиметрии // Труды ИММ Ур
О РАН. 2011. Т. 17. С. 174—182.
- 53. *Воеводин В. В.*, *Воеводин В. В.* Параллельные вычисления. Санкт-Петербург : БХВ-Петербург, 2002.
- 54. Гласко В. Б., Остромогильский А. Х., Филатов В. Г. О восстановлении глубины и формы контактной поверхности на основе регуляризации // Журнал вычислительной математики и математической физики. 1970. Т. 10, № 5. С. 1292—1297.
- 55. Гончарский А. В., Леонов А. С., Ягола А. Г. Обобщенный принцип невязки // Журнал вычислительной математики и математичекой физики. $1973.-\mathrm{T}.\ 13,\ \mathbb{N}^{2}.-\mathrm{C}.\ 294-302.$
- 56. Гончарский А. В., Степанов В. В. О равномерном приближении с ограниченной вариацией некорректно поставленных задач // Доклады Академии наук СССР. 1979. Т. 248, № 1. С. 20—22.
- 57. Дмитриев М. Г., Полещук В. С. Обобщенный принцип невязки // Журнал вычислительной математики и математичекой физики. 1973. Т. 13, № 2. С. 1316—1318.
- 58. Дорофеев И. Ф. О решении интегральных уравнений 1 рода в классе функций с ограниченной вариацией // Доклады Академии наук СССР. 1979. Т. 244, № 6. С. 1303—1311.
- 59. Eремин И. И. Обобщение релаксационного метода Моцкина Агмона // УМН. 1965. Т. 20, № 2. С. 183—187.
- 60. *Еремин И. И.* О системах неравенств с выпуклыми функциями в левых частях // Известия АН СССР. Математика. 1966. Т. 30, № 2. С. 265—278.

- 61. Еремин И. И. Методы фейеровских приближений в выпуклом программировании // Математические заметки. 1968. Т. 3, № 2. С. 217—234.
- 62. Иванов В. К. Интегральные уравнения первого рода и приближенное решение обратной задачи потенциала // Доклады Академии наук СССР. 1962.- Т. 142, № 5.- С. 998-1000.
- 63. Иванов В. К. О линейных некорректных задачах // Доклады Академии наук СССР. 1962. Т. 145, № 2. С. 270—272.
- 64. Иванов В. К. О линейных некорректных задачах // Математический сборник. 1963. Т. 161, № 2. С. 211—223.
- 65. Иванов В. К. О приближенном решении операторных уравнений первого рода // Журнал вычислительной математики и математичекой физики. 1966. Т. 6, № 6. С. 1089—1094.
- 66. *Иванов В. К.* Об интегральных уравнениях Фредгольма 1 рода // Дифференциальные уравнения. 1967. Т. 3, № 3. С. 410—421.
- 67. Иванов В. К. Об оценке устойчивости квазирешений на некомпактных множествах // Известия вузов. Математика. 1974. Т. 144, № 5. С. 97—103.
- 68. Канторович Л. В. О методе наискорейшего спуска // Доклады Академии наук СССР. 1947. Т. 56. С. 233—236.
- 69. *Красносельский М. А.*, *Вайникко Г. М.*, *Забрейко П. П.* Приближенное решение операторных уравнений. Москва : Наука, 1969.
- 70. *Куфнер А.*, *Фучик С.* Нелинейные дифференциальные уравнения. Москва : Наука, 1988.

- 71. *Лаврентьев М. М.* К вопросу об обратной задаче теории потенциала // Доклады Академии наук СССР. 1956. Т. 106, № 3. С. 389—390.
- 72. *Лаврентъев М. М.* Об интегральных уравнениях первого рода // Доклады Академии наук СССР. 1959. Т. 127, № 1. С. 31—33.
- 73. *Лаврентьев М. М.* О некоторых некорректных задачах математической физики. Новосибирск: Изд-во Сибирского отд-ния АН СССР, 1962. С. 92.
- 74. Лаврентьев М. М. Об одном классе нелинейных интегральных уравнений // Сибирский математический журнал. 1963. Т. 4, № 4. С. 837—844.
- 75. Лаврентьев М. М., Васильев В. Г. О постановке некоторых некорректных задач математической физики // Сибирский математический журнал. 1966. Т. 7, № 3. С. 559—576.
- 76. *Лаврентьев М. М.*, *Романов В. Г.*, *Шишатский С. П.* Некорректные задачи математической физики и анализа. Москва : Наука, 1980.
- 77. $\mathit{Малкин}\ H.\ P.\ O$ решении обратной магнитометрической задачи для случая одной контактной поверхности (случай пластообразно залегающих масс) // Доклады Академии наук СССР. 1931. Т. 9. С. 232—235.
- 78. *Мартышко П. С.*, *Акимова Е. Н.*, *Мисилов В. Е.* О решении структурной обратной задачи гравиметрии модифицированными методами градиентного типа // Физика Земли. 2016. N 5. С. 82—86.
- 79. *Мартышко П. С.*, *Пруткин И. Л.* О решении прямой и обратной задач магниторазведки // Геофизический журнал. 1982. Т. 4, № 6. С. 39— 49.

- 80. *Мартышко П. С.*, *Пруткин И. Л.* Технология разделения источников гравитационного поля по глубине // Геофизический журнал. 2003. Т. 25, N = 3. С. 159—168.
- 81. *Менихес Л. Д.* О регуляризуемости отображений, обратных к интегральным операторам // Доклады Академии наук СССР. 1978. Т. 241, N^2 2. С. 625—629.
- 82. *Морозов В. А.*, *Гребенников А. И.* Методы решения некорректно поставленных задач. Алгоритмический аспект. Москва : Изд-во МГУ, 1992.
- 83. Hoвиков П. С. Об единственности решения обратной задачи теории потенциала // Доклады Академии наук СССР. 1938. Т. 18, № 3. С. 165-168.
- 84. Hумеров Б. В. Интерпретация гравитационных наблюдений в случае одной контактной поверхности // Доклады Академии наук СССР. 1930. Т. 21. С. 569—574.
- 85. Обратные задачи колебательной спектроскопии / И. В. Кочиков, Г. М. Курамшина, Ю. А. Пентин, А. Г. Ягола. Москва : Курс, 2017.
- 86. *Ортега Д.* Введение в параллельные и векторные методы решения линейных систем. Москва : Мир, 1991.
- 87. *Петунин Ю. И.*, *Пличко А. Н.* Теория характеристик подпространств и ее приложения. Киев Вища шк., 1980.
- 88. Поляк Б. Т. Метод сопряженных градиентов в задачах на экстремум // Журнал вычислительной математики и математичекой физики. 1969. Т. 9, № 4. С. 807—821.

- 89. Прилепко А. И. Об единственности определения формы тела по значениям внешнего потенциала // Доклады Академии наук СССР. 1965. Т. 160, № 1. С. 40—43.
- 90. Пруткин И. Л. О приближенном решении трехмерных обратных задач гравиметрии и магнитометрии методом локальных поправок // Известия АН СССР. Физика Земли. 1983. Т. 1. С. 53—58.
- 91. Пруткин И. Л. О решении трехмерной обратной задачи гравиметрии в классе контактных поверхностей методом локальных поправок // Известия АН СССР. Физика Земли. 1986. Т. 1. С. 67—77.
- 92. *Пруткин И. Л.* Восстановление геометрии трехмерных объектов произвольной формы по измерениям потенциальных геофизических полей: Дисс. д-ра физ.-мат. наук / Пруткин Илья Леонидович. — ИГФ УрО РАН, 1998.
- 93. Страхов В. Н. О решении некорректных задач магнито- и гравиметрии, представляемых интегральными уравнениями типа свертки // Известия АН СССР. Физика Земли. 1967. № 4. С. 36—54.
- 94. Страхов В. Н. Теория приближенного решения линейных некорректных задач в гильбертовом пространстве и ее использование в разведочной геофизике // Известия АН СССР. Физика Земли. 1969. № 8. С. 64—97.
- 95. Страхов В. Н. К теории обратной задачи логарифмического потенциала для контактной поверхности // Известия АН СССР. Физика Земли. $1974.- \Re 6.- \mathrm{C.}\ 39-60.$
- 96. Страхов В. Н. Об обратной задаче логарифмического потенциала для контактной поверхности // Известия АН СССР. Физика Земли. 1974. N = 2. С. 34—40.

- 97. Страхов В. Н., Лапина М. И. Монтажный метод решения обратной задачи гравиметрии // Доклады АН СССР. 1976. Т. 227, № 2. С. 344— 347.
- 98. $\mathit{Танана}\ B.\ \Pi.$ О решении операторных уравнений первого рода с многозначными операторами и их приложение // Известия вузов. Математика. 1977. Т. 7. С. 87—93.
- 99. $\mathit{Танана}\ B.\ \Pi.$ Методы решения операторных уравнений. Москва : Нау- ка, 1987.
- 100. Tанана B. Π . Об аппроксимации регуляризованного решения нелинейного уравнения // Сибирский математический журнал. 1997. Т. 2. С. 416—423.
- Танана В. П. О приближенном решении нелинейных операторных уравнений // Известия Челябинского научного центра. 2003. Т. 21, № 4. С. 6—8.
- 102. $\mathit{Танана}\ B.\ \Pi.\ \mathrm{O}\ \mathrm{cxoдимости}\ \mathrm{perуляризованных}\ \mathrm{peшений}\ \mathrm{нелинейныx}\ \mathrm{one-}$ раторных уравнений // Сибирский журнал индустриальной математи- ки. 2003. Т. 6, № 3. С. 119—133.
- 103. *Тихонов А. Н.* Об устойчивости обратных задач // Доклады Академии наук СССР. 1943. Т. 39, № 5. С. 195—198.
- 104. *Тихонов А. Н.* О регуляризации некорректно поставленных задач // До- клады Академии наук СССР. 1963. Т. 153, № 1. С. 49—52.
- 105. *Тихонов А. Н.* О решении некорректно поставленных задач // Доклады Академии наук СССР. 1963. Т. 151, № 3. С. 791—794.
- 106. *Тихонов А. Н.*, *Арсенин В. Я.* Приближенное решение операторных уравнений. Москва : Наука, 1986.

- 107. Tuxohob A. H., Гласко <math>B. B. Применение методов регуляризации в нелинейных задачах // Журнал вычислительной математики и математической физики. 1965. Т. 5, № 3. С. 463—473.
- 108. $Tuxoнoв\ A.\ H.,\ Леонoв\ A.\ C.,\ Яголa\ A.\ \Gamma.$ Нелинейные некоppектные задачи. Москва : Курс, 2017.
- 109. Треногин В. А. Функциональный анализ. Москва : Наука, 1993.
- 110. $\Phi a \partial \partial e e a B. H.$, $\Phi a \partial \partial e e a A. K.$ Параллельные вычисления в линейной алгебре // Кибернетика. 1977. № 3. С. 28—40.
- 112. Цирульский А. В., Кормильцев В. В. Функции комплексного переменного в теории и методах потенциальных геофизических полей. Свердловск : Академия наук СССР, Уральское отделение, 1987.
- 113. Численные методы решения некорректных задач / А. Н. Тихонов, А. В. Гончарский, В. В. Степанов, А. Г. Ягола. Москва : Наука, 1990.

Публикации автора

- 114. Akimova E. N., Miniakhmetova A. F., Misilov V. E. Fast stable parallel algorithms for solving gravimetry and magnetometry inverse problems // International conference "Advanced Mathematics, Computations Applications 2014". 2014.
- 115. Akimova E., Skurydina A. A Componentwise Newton Type Method for Solving the Structural Inverse Gravity Problem // XIVth EAGE International Conference
 Geoinformatics: Theoretical and Applied Aspects. Kiev, Ukraine, 2015.
- 116. Akimova E., Skurydina A. On Solving the Three-Dimensional Structural Gravity Problem for the Case of a Multilayered Medium by the Componentwise Levenberg Marquardt Method // XVth EAGE International Conference Geoinformatics: Theoretical and Applied Aspects. Kiev, Ukraine, 2016.
- 117. Skurydina A. F. Regularized Levenberg Marquardt Type Method Applied to the Structural Inverse Gravity Problem in a Multilayer Medium and its Parallel Realization // Bulletin of South Ural State University. Series: Computation Mathematics and Software Engineering. 2017. T. 6, № 3. C. 5—15.
- 118. Акимова Е. Н., Миниахметова А. Ф., Мартышко М. П. Оптимизация и распараллеливание методов типа Ньютона для решения структурныхобратных задач гравиметрии и магнитометрии // XIIIth EAGE International Conference Geoinformatics: Theoretical and Applied Aspects. Kiev, Ukraine, 2014.
- 119. Акимова Е. Н., Мисилов В. Е., Миниахметова А. Ф. Параллельные алгоритмы решения структурной обратной задачи магнитометрии на многопроцессорных вычислительных системах // Труды международной кон-

- ференции «Параллельные вычислительные технологии (ПАВТ'2014)». 2014.
- 120. Акимова Е. Н., Мисилов В. Е., Скурыдина А. Ф. Параллельные алгоритмы решения структурной обратной задачи магнитометрии на многопроцессорных вычислительных системах // Вестник УГАТУ. 2014. Т. 18, № 4. С. 19—29.
- 121. Васин В. В., Акимова Е. Н., Миниахметова А. Ф. Итерационные алгоритмы ньютоновского типа и их приложения к обратной задаче гравиметрии // Вестник Южно-Уральского государственного университета. 2013. Т. 6, № 3. С. 26—37.
- 122. Bacuh B. B., Cкурыдина A. Ф. Регуляризованные модифицированные процессы градиентного типа для нелинейных обратных задач // Тезисы докладов международного научного семинара по обратным и некорректно поставленным задачам. 2015.
- 123. Васин В. В., Скурыдина А. Ф. Двухэтапный метод регуляризации для нелинейных некорректных задач // Труды ИММ УрО РАН. 2017. Т. 23, № 1. С. 57—74.
- 124. Градиентные методы решения структурных обратных задач гравиметрии и магнитометрии на суперкомпьютере «Уран» / Е. Н. Акимова, В. Е. Мисилов, А. Ф. Скурыдина, А. Третьяков // Труды международной конференции «Параллельные вычислительные технологии (ПАВТ'2015)». 2015.
- 125. Градиентные методы решения структурных обратных задач гравиметрии и магнитометрии на суперкомпьютере «Уран» / Е. Н. Акимова, В. Е. Мисилов, А. Ф. Скурыдина, А. И. Третьяков // Вычислительные методы и программирование. 2015. Т. 16, № 1. С. 155—164.

126. *Мисилов В. Е.*, *Миниахметова А. Ф.*, *Дергачев Е. А.* Решение обратной задачи гравиметрии итерационными методами на суперкомпьютере «Уран» // Труды XIV Уральской молодежной научной школы по геофизике. — 2013.