### **Math 395**

## Homework 7

Due: 4/18/2024

Name: Avinash Iyer

Collaborators: Antonio Cabello, Timothy Rainone, Nate Hall, Nora Manukyan, Jamie Perez-Schere

### Problem 1

We say a field K/F is normal if K is the splitting field of a collection of polynomials. Equivalently, every polynomial in F[x] that has a root in K splits into linear factors over K. Let  $\alpha \in \mathbb{R}$  such that  $\alpha^4 = 5$ . We will show that  $\mathbb{Q}(\alpha + i\alpha)$  is normal over  $\mathbb{Q}(i\alpha^2)$ , but  $\mathbb{Q}(\alpha + i\alpha)$  is not normal over  $\mathbb{Q}$ .

Note that  $(\alpha + i\alpha)^2 = 2i\alpha^2$ . Thus,  $\mathbb{Q}(\alpha + i\alpha) = \mathrm{Spl}_{\mathbb{Q}(i\alpha^2)}(x^2 - 2i\alpha^2)$ , so  $\mathbb{Q}(\alpha + i\alpha)$  is normal over  $\mathbb{Q}(i\alpha^2)$ .

Suppose toward contradiction that  $\mathbb{Q}(\alpha + i\alpha)$  is normal over  $\mathbb{Q}$ . Notice that  $(\alpha + i\alpha)^4 = -20$ , as is  $(\alpha - i\alpha)^4$ . Thus,  $\alpha + i\alpha$  and  $\alpha - i\alpha$  are roots of  $x^4 + 20$ . Since  $\alpha, i, i\alpha \in \mathbb{Q}(\alpha + i\alpha)$ , it is the case that  $\mathbb{Q}(\alpha, i) \subseteq \mathbb{Q}(\alpha + i\alpha)$ . However, we have

$$[\mathbb{Q}(\alpha, i) : \mathbb{Q}] = [\mathbb{Q}(\alpha, i) : \mathbb{Q}(\alpha)][\mathbb{Q}(\alpha) : \mathbb{Q}]$$
$$= (2)(4)$$
$$= 8.$$

and  $[\mathbb{Q}(\alpha + i\alpha) : \mathbb{Q}] = 4$ , as  $m_{\alpha + i\alpha, \mathbb{Q}}(x) = x^4 + 20$ .  $\bot$ 

### **Problem 2**

The roots of  $f(x)=(x^5-2)(x^2-2)$  are  $\pm\sqrt{2},\zeta_5^k\sqrt[5]{2}$  for k=0,1,2,3,4. We can see that  $\mathbb{Q}(\zeta_5,\sqrt{2},\sqrt[5]{2})$  contains the roots of  $(x^5-2)(x^2-2)$ , so  $\mathrm{Spl}_{\mathbb{Q}}(f(x))\subseteq \mathbb{Q}(\zeta_5,\sqrt{2},\sqrt[5]{2})$ . Additionally, we see that  $\sqrt[5]{2}\in\mathrm{Spl}_{\mathbb{Q}}(f(x))$ ,  $\zeta_5=\frac{\zeta_5\sqrt[5]{2}}{\sqrt[5]{2}}\in\mathrm{Spl}_{\mathbb{Q}}(f(x))$ , and  $\sqrt{2}\in\mathrm{Spl}_{\mathbb{Q}}(f(x))$ . Thus,  $\mathbb{Q}(\zeta_5,\sqrt[5]{2},\sqrt{2})=\mathrm{Spl}_{\mathbb{Q}}(f(x))$ .

For  $x^6+x^3+1$ , we have that  $x^6+x^3+1=\frac{x^9-1}{x^3-1}$ . Therefore, the roots of  $x^6+x^3+1$  are  $\zeta_9^d$ , where  $\gcd(d,9)=1$  (since  $9=3^2$ , every  $n\neq 0,3,6$  is a root of  $x^6+x^3+1$ ). Therefore, we can see that  $x^6+x^3+1=\Phi_9(x)$ , meaning  $\operatorname{Spl}_{\mathbb{Q}}(x^6+x^3+1)=\mathbb{Q}(\zeta_9)$ .

# **Problem 3**

For any prime p and any nonzero  $a \in \mathbb{F}_p$ , we will prove that  $f(x) = x^p - x + a$  is irreducible and separable over  $\mathbb{F}_p$ .

First, we have that  $D_x(f(x)) = px^{p-1} - 1 = -1$ , meaning that  $gcd(f(x), D_x(f(x))) = 1$ , so f is separable.

Let  $\alpha$  be a root of f. Then, we have that  $\alpha^p - \alpha + a = 0$ . Notice that for  $j \in \mathbb{F}_p$ ,  $(\alpha + j)^p = \alpha^p + j^p = \alpha^p + j$ , meaning that  $(\alpha + j)^p - (\alpha + j) + a = 0$ , so  $\alpha + j$  is a root of f.

Suppose toward contradiction that f is reducible over  $\mathbb{F}_p$ . Then, for some  $\alpha \in \mathbb{F}_p$ , we must have

$$x^{p} - x + a = (x - \alpha)(x - (\alpha + 1))(x - (\alpha + 2)) \cdots (x - (\alpha + p - 1)),$$

However, by definition, this means that there is some  $k \in \mathbb{F}_p$  such that  $\alpha + k = 0$ , meaning  $a = \prod_{i=0}^{p-1} (\alpha + i) = 0$ .  $\bot$ 

# **Problem 6**

To find the subfields of  $\mathbb{Q}(i, \sqrt[4]{3})$ , we see that the basis of  $\mathbb{Q}(i, \sqrt[4]{3})$  over  $\mathbb{Q}$  is  $\{1, \sqrt[4]{3}, \sqrt{3}, \sqrt[4]{27}, i, i\sqrt[4]{3}, i\sqrt{3}, i\sqrt{27}\}$ , meaning  $[\mathbb{Q}(i, \sqrt[4]{3}) : \mathbb{Q}] = 8$ . Finding subspaces of  $\mathbb{Q}(i, \sqrt[4]{3})$ , we arrive at the following diagram.



For any subfield  $\mathbb{Q} \subseteq F \subseteq \mathbb{Q}(i, \sqrt[4]{3})$ , it must be the case that  $[F : \mathbb{Q}] = 2^k$  for some k = 0, 1, 2, 3. Therefore, it must be the case that all subfields are of degree 1, 2, 4, 8.

Suppose there is any subfield  $\mathbb{Q} \subseteq E \subseteq \mathbb{Q}(i)$ . Then, it must be the case that  $[E : \mathbb{Q}] = 1$  or  $[E : \mathbb{Q}] = 2$ , meaning  $E = \mathbb{Q}$  or  $E = \mathbb{Q}(i)$ . The same argument applies for all degree 2 extensions in the above diagram.