第六章

矩陣處理相關函式

謝明興 撰

6-1	進一步談矩陣索引	2
6-2	矩陣連結	4
6-3	reshape改變矩陣維度	5
6-4	特殊矩陣函式 ones(), zeros()	8
6-5	特殊矩陣函式 rand(), randn()	9
6-6	特殊矩陣函式 magic(), diag(), eye()	11
6-7	常用的統計函式min(), max(), mean(), median()	13
6-8	常用的統計函式 length(), size(), numel()	17
6-9	排序函式 sort()	18
6-10	O 其他MATLAB運算函式	19
習題		20

6-2 MATLAB 程式設計基礎

http://wwwt.au.edu.tw/shiehms/

http://wwwt.au.edu.tw/shiehms/matlab.htm

http://wwwt.au.edu.tw/shiehms/m12.zip

12-1 plot 繪製線性圖形

假定 M 為 MATLAB 知陣,則 M 矩陣元素第 r 列第 c 行的元素表示為 M(r, c),其中 r, c 表示為矩陣索引(index)或註標(subscript)。但對矩陣的內部資料表示是以行為主的一維向量,因此對一個 m 列 n 行的矩陣 M · M(r, c)在矩陣內部索引位置為 M(r+(c-1)*m),其中 m 代表矩陣列數。對一個 5x6(五列六行)的矩陣,陣列元素 M(3, 4)在矩陣矩陣內部索引位置為 M(3+(4-1)*5),即 M(18)。

17 ¹	24 ⁶	1 11	8 ¹⁶	15 ²¹	-1 ²⁶
23 ²	5 ⁷	7 12	14 ¹⁷	16 ²²	-2 ²⁷
4 ³	6 ⁸	13 ¹³	20 ¹⁸	22 ²³	-3 ²⁸
10 ⁴	12°	19 ¹⁴	21 ¹⁹	3 ²⁴	88 ²⁹
11 ⁵	18 ¹⁰	25 ¹⁵	2 ²⁰	9 ²⁵	-9 30

```
mat1.m
```

```
%宣告矩陣

%mat1.m

clear all

M=[17 24 1 8 15 -1; 23 5 7 14 16 -2; 4 6 13 20 22 -3; ...

10 12 19 21 3 88; 11 18 25 2 9 -9];

M1=M(2:4, 1:4);

M
```

M1


```
>> mat1
M =
      24 1 8
  17
                   15
                       -1
  23
      5
           7
               14
                   16
                        -2
   4
      6
           13
               20
                   22
                        -3
  10
      12
           19
               21
                  3
                        88
  11
       18
           25 2
                    9
                        -9
M1 =
               14
  23
       5
           7
               20
   4
      6
           13
  10
       12
           19
               21
```

mat2.m M矩陣定義同上例,刪除第六行後顯示**M**矩陣,刪除第四列至最後一列後顯示**M**矩陣

```
%mat2.m
clear all
M=[17 24 1 8 15 -1; 23 5 7 14 16 -2; 4 6 13 20 22 -3; ...
10 12 19 21 3 88; 11 18 25 2 9 -9]; %宣告矩陣
M(:, 6)=[];
M
M(4:end, :)=[];
```

6-4 MATLAB 程式設計基礎

₹ 執行結果

>>	mat2				
М :	=				
	17	24	1	8	15
	23	5	7	14	16
	4	6	13	20	22
	10	12	19	21	3
	11	18	25	2	9
М =	=				
	17	24	1	8	15
	23	5	7	14	16

6-2 矩陣連結

☆ mcon1.m M矩陣定義爲3x3魔方陣(各列、各行、斜線元素加總的値相同的矩陣),定義M1爲3x1矩陣,兩矩陣連結後指定給M2

%mcon1.m

clear all

M=magic(3); % 宣告3x3魔方陣

M % 顯示M魔方陣

M1 = [10; 20; 30]; % M1為3x1矩陣

M2 = [M M1]

🦰 執行結果

```
>> mcon1
M =
          1
                6
    3
          5
                7
    4
          9
                2
M2 =
          1
                     10
    8
                6
    3
          5
                7
                     20
                2
                     30
    4
          9
```

6-3 reshape 改變矩陣維度

reshape(M, r, c)或 reshape(M, [r c])函式能將 M 矩陣元素以行為主的方式轉 換為 r 列 n 行矩陣,其中 M 矩陣元素總數為 rxc。prod(size(M))能計算 M 矩陣 元素總數。注意不是 prod(M)。

🌠 reshape1.m M矩陣定義為6x6魔方陣(各列、各行、斜線元素加總的值相 同的矩陣),變更M為4x9及3x12矩陣

```
%reshape1.m
clear all
M=magic(6);
                         % 宣告6x6魔方陣
                               %顯示M魔方陣
M
M1 = reshape(M, 4, 9) %變更為4x9矩陣
M1 = reshape(M, [3 12]) %變更為3x12矩陣
```

6-6 MATLAB 程式設計基礎

₹ 執行結果

>> resha	ape1											
M =												
35	1	6	6	26	19	24						
3	32	7	7	21	23	25						
31	9	2	2	22	27	20						
8	28	33	3	17	10	15						
30	5	34	4	12	14	16						
4	36	29	9	13	18	11						
M1 =												
35	30	9	9	6	34	22	19	14	20)		
3	4	28	3	7	29	17	23	18	15	5		
31	1	5	5	2	26	12	27	24	16	6		
8	32	36	3	33	21	13	10	25	11	1		
M1 =												
35	8	1	28	6	33	26	17	19	10	24	15	
3	30	32	5	7	34	21	12	23	14	25	16	
31	4	9	36	2	29	22	13	27	18	20	11	

ぐ reshape2.m M矩陣定義爲6x6魔方陣(各列、各行、斜線元素加總的値相同的矩陣),變更M爲4x9矩陣

%reshape2.m

clear all

M=magic(6); % 宣告6x6魔方陣

M2 = reshape(M, 4, prod(size(M))/4)

6-8 MATLAB 程式設計基礎

執行結果

>> res	hape2								
M2 =									
35	30	9	6	34	22	19	14	20	
3	4	28	7	29	17	23	18	15	
31	1	5	2	26	12	27	24	16	
8	32	36	33	21	13	10	25	11	

6-4 特殊矩陣函式 ones(), zeros()

ones(r, c): 產生 r 列 c 行 · 矩陣元素均為 1 的 rxc 矩陣									
產生 1 列 6 行組成元素均為 1	>> M = ones(1, 6)								
的矩陣元素	M = 1	1	1	1	1	1			
	>> M = 01	nes(4)							
產生4列4行組成元素均為1	M = 1	1	1	1					
的矩陣元素	1	1	1	1					
	1	1	1	1					
	1	1	1	1					
產生 2 列 5 行組成元素均為 1	>> M = 01	nes(2,	5)						
<u> </u>	M =								
的矩陣元素	1	1	1	1	1				
ログに「十ノロボ	1	1	1	1	1				

zeros(r, c): 產生 r 列 c 行 · 矩陣元素均為 0 的 rxc 矩陣									
產生 1 列 6 行,組成元素均為 >> M= zeros(1, 6)									
0 的矩陣元素	M = 0 0 0 0 0 0								
	>> M= ze	ros(3)							
產生 3 列 3 行組成元素均為 0	M =								
	0	0	0						
的矩陣元素	0	0	0						
	0	0	0						

產生2列5行組成元素均為0	>> M= ze M =	ros(2,	5)			
的矩陣元素	0	0 0	0 0	0 0	0 0	

6-5 特殊矩陣函式 rand(), randn()

rand(): 產生一個[0, 1]間的亂數
rand(r, c): 產生一個[0, 1]間均勻分佈(uniform distribution)的 rxc 亂
數矩陣

rand(n): 產生一個[0, 1]間均勻分佈的 nxn 亂數矩陣

產生一個[a, b]間均勻分佈亂數的 rxc 矩陣

M = a + (b-a).*rand(r, c)

	>> M= rand(1, 6)						
產生 1 列 6 行 [0,1] 間均勻分佈	M =						
的 1x6 亂數矩陣	0.1493 0.2575 0.8407						
HY TAO BUGXAEPT	0.2543						
	>> M= rand(3)						
產生3列3行[0,1]間均勻分佈	M =						
	0.9293 0.2511 0.3517						
的 3x3 亂數矩陣	0.3500 0.6160 0.8308						
	0.1966 0.4733 0.5853						
	>> M = 11 + (18-11).*rand(3)						
產生一個[11, 18]間均勻分佈	M =						
	11.3777 17.5381 14.2857						
的 3x3 亂數矩陣	14.7156 11.9093 11.0833						
	16.4542 14.9818 13.3599						
	>> r = ceil(100.*rand(4))						
	r =						
產生一個[1,100]間均勻分佈	21 85 23 44						
的 4x4 亂數矩陣	31 20 44 19						
H	48 23 32 91						
	24 18 93 98						

fix, floor, ceil, round

6-10 MATLAB 程式設計基礎

記錄目前 twister 方法的亂數 種子指定給 s 設定 m1 為 3x3 的亂數矩陣 重設以 s 為亂數種子的 1x6 矩 陣並指定給 m2

```
s = rand('twister');

m1= rand(3)

rand('twister',s);

m2= rand(1, 6)

m1 =

0.4889 0.3955 0.0377

0.6241 0.3674 0.8852

0.6791 0.9880 0.9133

m2 =
```

0.6791

0.4889 0.6241

0.3955 0.3674 0.9880

randn(): 產生一個平均值為 0 標準差為 1 的常態分配 normal distribution 的亂數

randn(r, c): 產生一個平均值為 0 標準差為 1 常態分配 normal distribution 的 rxc 亂數矩陣

randn(n): 產生一個平均值為 0 標準差為 1 常態分配 normal distribution 的 nxn 亂數矩陣

產生一個平均值為 a,標準差為 s 的常態分配 normal distribution 的 rxc 亂數矩陣

M = a + b.*rand(r, c)

產生一個平均值為 0 標準差為	>> M= randn(1, 6)
	M =
1 常態分配的 1x6 亂數矩陣	0.8057 0.2316 -0.9898
I THINK OF HURT INC MILENTE	1.3396 0.2895 1.4789
	>> M= randn(3)
產生一個平均值為 0 標準差為	M =
	1.1380 -0.0729 0.4978
1 常態分配的的 3x3 亂數矩陣	-0.6841 -0.3306 1.4885
	-1.2919 -0.8436 -0.5465
	>> M= 2 + 3.* randn(3)
產生一個平均值為 2 標準差為	M =
	-0.5403 -0.5626 1.8041
3 常態分配的的 3x3 亂數矩陣	1.2610 -1.6039 3.4559
	3.9891 1.6404 0.2135

🚺 lot1.m

```
%lot1.m 產生大樂透1~49六個號碼
clear all
r1= 1+ floor((49-1)*rand());
r2= 1+ floor((49-1)*rand());
r3= 1+ floor((49-1)*rand());
r4= 1+ floor((49-1)*rand());
r5= 1+ floor((49-1)*rand());
r6= 1+ floor((49-1)*rand());
r= [r1 r2 r3 r4 r5 r6]
%lot1a.m 產生大樂透1~49六個號碼
clear all
A=zeros(1, 6);
for k=1:1:6
    A(k) = 1 + floor((49-1)*rand());
end
Α
```

🚺 lot1執行結果

```
>> lot1
r =
                 39
                         7
                              21
                                     44
          24
    46
>> lot1
r =
    39
          47
                 32
                         2
                              41
                                     45
```

6-6 特殊矩陣函式 magic(), diag(), eye()

M= magic(n); 產生一個 nxn 的魔方陣

M1= diag(M): 取出矩陣對角線各元素的矩陣並指定給 M1

6-12 MATLAB 程式設計基礎

M1= diag(M, k): 取出第 k 條矩陣對角線各元素的矩陣並指定給 M2 eye(n)產生對角線各元素為 1 其他元素為 0 的單位矩陣

>> M=magic(6)			
F W-magic(~ ,			
M =	,			
35 1	6	26	19	24
多件 66	7	21	23	25
產生 6x6 魔方陣 31 9	2	22	27	20
8 28	33	17	10	15
30 5	34	12	14	16
4 36		13	18	11
>> M2=diag(N	И)			
M2 =				
取出矩陣對角線各元素的矩陣 35				
52				
並指定給 M2 2				
17				
14				
11	A 2\			
>> M2=diag(N	vı, ∠ <i>)</i>			
往右取出第二條矩陣對角線各 182				
元素的矩陣並指定給 M2 27 27				
15				
>> M2=diag(N	/ 1, 3)			
往右取出第三條矩陣對角線各 M2 =	. ,			
26				
一元素的矩陣並指定給 M2 23				
20				
>> M2=diag(N	Л, -2)			
01				
元素的矩陣並指定給 M2 28				
34 13				
13				
>> M2= eye(3	(
產生對角線各元素為 1 其他元 $\mathbf{M2}$ =	,			
素為 0 的 3x3 單位矩陣 1 0	0			
系	0			
0 0	1			

6-7 常用的統計函式 min(), max(), mean(), median()

M1= min(M); 傳回向量 M 的最小元素

M1= min(M); 傳回矩陣 M 各行最小元素

[Y, I]=min(M); 傳回矩陣 M 各行最小元素至 Y 矩陣·傳回矩陣 M 各行最小元素註標至 I 矩陣

當 M 為複數形式矩陣,min(abs(M))傳回 M 矩陣各行最小值

傳回 M 矩陣的最小值可用 min(min(M))或 min(M(:))								
	>> A= [2	69-57	7 6]					
	A =	•	•	_	-	0		
	2 >> A1= n	6 ain(A)	9	-5	7	6		
 設定 A 向量初值	A1 =	IIII(A)						
成化 A 凹重划值 	-5							
傳回 A 向量最小值指定給 A1	>> [A1, I	1]= min	n(A)					
	A1 =							
	-5							
	>> [A1, I	1]= min	n(A)					
 傳回 A 向量最小值指定給	A1 =	.,	•(* •)					
	-5							
A1 · 註標值指定給 I1	I1 =							
	4	: - (4)						
	>> M= m: M =	agic(4)						
÷ // • • • • • •	16	2	3	13				
產生 4x4 魔方陣	5	11	_	8				
	9	7	6	12				
	4	14	15	1				
取出 M 矩陣各行最小值並指定	>> M1= n	nin(M)						
4△ BBA	M1 =	0	•	4				
給 M1	4	2	3	1				
	>> [M1, I M1 =	1J=min	(M)					
取出 M 矩陣各行最小值並指定	WT = 4	2	3	1				
給 M1 · 註標指定給 I1	11 =	_	•	•				
	4	1	1	4				

6-14 MATLAB 程式設計基礎

```
>> F=[3+2i, 2; 5, 1+2i; 6, 4-i]
                             F=
                               3.0000 + 20000i
                                                2.0000
設定複數矩陣 F
                               5.0000
                                                1.0000 + 20000i
                               6.0000
                                                4.0000 - 1.0000i
取出 F 矩陣各行最小值並指定
                             >> [F1, I1]= min(abs(F))
                             F1 =
  給 F1, 註標指定給 I1
                                         2.0000
                                3.6056
                             11 =
```

M1= max(M); 傳回向量 **M** 的最大元素

M1= max(M); 傳回矩陣 M 各行最大元素

[Y, I]=max(M); 傳回矩陣 M 各行最大元素至 Y 矩陣·傳回矩陣 M 各行最大元素註標至 I 矩陣

當 F 為複數形式矩陣·max(abs(M))傳回 F 矩陣各行最大值

傳回 M 矩陣的最大值可用 max(max(M))或 max(M(:))

			• •	•		
設定 A 向量初值	A = 2	6	9	-5	7	6
	>> A1= n	_	_	_	·	_
		ilax(A)				
傳回 A 向量最大值指定給 A1	A1 =					
	9					
	>> M= magic(4)					
	M =					
 產生 4x4 魔方陣	16	2	3	13		
生土 4X4 塊刀	5	11	10	8		
	9	7	6	12		
	_	•				
	4	14	15	1		
取出 M 矩陣各行最大值並指定	>> M1= max(M)					
	M1 =					
給 M1	16	14	15	13		
	>> [M1, I1]= max(M)					
取出 M 矩陣各行最大值並指定	M1 =					
	16	14	15	13		
給 M1, 註標指定給 I1		17	.0	.0		
	l1 =					
	1	4	4	<u> </u>		

M1= mean(M); 傳回向量 M 的均值 M1= mean(M); 傳回矩陣 M 各行元素均值 M1= mean(M, 1); 同 mean(M), 傳回矩陣 M 各行元素均值 M1= mean(M, 2);傳回矩陣 M 各列元素均值 >> A= [2 6 9 -5 7 6] A =設定 A 向量初值 9 6 -5 6 7 >> A1= mean(A) 傳回 A 向量均值指定給 A1 A1 = 4.1667 >> M=[1 52 3 4; 0 17 9 12; 21 0 5 32] M =產生 3x4 矩陣 M 4 3 1 52 17 12 0 9 21 0 5 32 >> mean(**M**) ans = 23.0000 5.6667 7.3333 16.0000 傳回 M 矩陣各行元素的均值 >> mean(M, 1) ans = 7.3333 23.0000 5.6667 16.0000 >> mean(M, 2) ans = 傳回 M 矩陣各列元素的均值 15.0000 9.5000

14.5000

6-16 MATLAB 程式設計基礎

M1= median(M); 傳回向量 M 的中位數 **M1= median(M)**; 傳回矩陣 **M** 各行元素中位數 M1= median(M, 1); 同 median(M), 傳回矩陣 M 各行元素中位數 M1= median(M, 2);傳回矩陣 M 各列元素中位數 >> A= [2 6 9 -5 7 16] A = 6 -5 16 7 >> A1= median(A) A1 =設定 A 向量初值 6.5000 >> A= [2 6 9 -5 7] 傳回 A 向量中位數指定給 A1 **A** = -5 7 >> A1= median(A) A1 =>> M=[1 52 3 4; 0 17 9 12; 21 0 5 32] 產生 3x4 矩陣 M 1 52 3 4 0 17 9 12 21 32 0 5 >> M=[1 52 3 4; 0 17 9 12; 21 0 5 32] M =4 1 52 3 傳回 M 矩陣各行元素的中位數 17 12 0 9 並指定給 M1 21 0 32 >> M1= median(M) M1 =17 12 >> M1= median(M, 2) M1 =傳回 M 矩陣各列元素的中位數 3.5000 並指定給 M1 10.5000

13.0000

6-8 常用的統計函式 numel(), length(), size()

I= numel(M); 傳回陣列 M 的元素總數 I= length(A); 傳回向量 A 的元素個數 I= length(M); 傳回矩陣 M 各行的元素個數 **I= length(M(:))**; 傳回矩陣 **M** 的元素個數 [rc]= size(M); 傳回二維矩陣的列數 r 及行數 c**I= size(M(:))**; 傳回矩陣 **M** 的元素個數 A = 設定 A 向量初值 9 -5 7 6 >> I= length(A) 傳回 A 向量元素個數 >> M=[1 52 3 4; 0 17 9 12; 21 0 5 32] M =設定 M 矩陣為 3x4 矩陣 4 3 52 12 17 9 21 32 使用 numel()顯示 M 矩陣元素 >> **I**= nume**I**(**M**) 總數 12 >> c= length(M) 使用 length()顯示 M 矩陣行數 >> I= length(M(:)) 使用 length()顯示 M 矩陣元素 1 = 總數 12 >> [r c]= size(M) 使用 size()顯示 M 矩陣列數 r c = 及行數 c 使用 size()顯示 M 矩陣元素總 >> I= size(M(:), 1) 數 12

6-18 MATLAB 程式設計基礎

6-9 排序函式 sort()

- [SA SI]= sort(A);對向量 A 遞增排序後的數指定給 SA 向量·SA 向量元素在 A 向量元素的原始註標位置指定給 SI 向量
- [SM SI]= sort(M); 對 M 矩陣各行進行遞增排序,排序後的值指定給 SM 矩陣, M 矩陣原始註標位置指定給 SI 矩陣
- [SM SI]= sort(M, 'descend'); 對 M 矩陣各行進行遞減排序,排序後的 值指定給 SM 矩陣, M 矩陣原始註標位置指定給 SI 矩陣
- [SM SI]= sort(M, 1); 對 M 矩陣各行進行遞增排序,排序後的值指定給 SM 矩陣, M 矩陣原始註標位置指定給 SI 矩陣
- [SM SI]= sort(M, 2); 對 M 矩陣各列進行遞增排序,排序後的值指定給 SM 矩陣, M 矩陣原始註標位置指定給 SI 矩陣
- 當陣列 M 是包含字串的異質陣列(cell array) · 排序時是以 ASCII dictionary order 為排序依據

	>> A= [1	2 -5 2 9	7 6]				
設定 A 向量初值	A =						
料 A 句具排序终的動作中於	12	-5	2	9	7	6	
對 A 向量排序後的數指定給	>> [SA SI]= sort(A)						
SA 向量·SA 向量元素原始	SA =						
	-5	2	6	7	9	12	
註標位置指定給 SI	SI =						
	2	3	6	5	4	1	
	>> M=[1	52 3 4;	0 17 9	12; 21	0 5 32	2]	
	M =						
設定 M 矩陣為 3x4 矩陣	1	52	3	4			
	0	17	9	12			
	21	0	5	32			

>> [SM SI]=sort(M)					
對 M 矩陣各行進行遞增排序,	SM =	0	•	4	
排序後的值指定給 SM 矩陣,	0	0 17	3 5	4 12	
	21	52	9	32	
M 矩陣原始註標位置指定給	SI =	•		4	
SI 矩陣	2	3 2	1 3	1 2	
	3	1	2	3	
	>> [SM S	6]=sort)
對 M 矩陣各行進行遞減排序,	SM =		•		
•	21	52	9	32	
排序後的值指定給 SM 矩陣,	1 0	17 0	5 3	12 4	
M 矩陣原始註標位置指定給	SI =	U	0	-	
	3	1	2	3	
SI 矩陣	1	2	3	2	
	2	3	1	1	11)
	>> [SM S SM =	oij=sort	(IVI, 2,	aescer	ia')
對 M 矩陣各列進行遞減排序,	52	4	3	1	
排序後的值指定給 SM 矩陣,	17	12		0	
•	32	21	5	0	
M 矩陣原始註標位置指定給	SI =	4	2	4	
SI 矩陣	2 2	4 4	3 3	1	
	4	1	3	2	

6-10 其他 MATLAB 運算函式

6-20 MATLAB 程式設計基礎

習題

- 🚺 對一個m列n行的矩陣M·M(r, c)在矩陣內部索引位置為?
- **》** 對一個5x9(5列9行)的矩陣·陣列元素M(3, 7)在矩陣矩陣內部索引位置為M(?)。
- 修改本章中的範例程式,顯示大樂透1~49的六個號碼,號碼不可以重複。
 lot2.m。
- 🚺 撰寫一個程式隨機產生8x8的亂數(1~99)矩陣, 顯示最小值及最大值。
- 🦚 [SM SI]= sort(A); 請僅使用SM及SI矩陣以求得A向量。sortori.m。
- 撰寫一個程式就任意產生的亂數(1~99間) 5x5矩陣,顯示對角線數值的矩
 陣,及對角線數值的和。diagex1.m。
- 撰寫一個函式傳回引數的魔方陣個別元素的平方和,例如輸入
 summagic(3)回傳285,summagic(5)回傳5525。summagic.m。
- 於 撰寫一個程式顯示大樂透1~49的六個號碼,號碼不可以重複,顯示時需由
 小而大排列。lotsort.m。