Soundness of the rule $M = N \implies \lambda x. M = \lambda x. N$ follows from (ξ). The other rules are trivial. \square

5.3.5. DEFINITION. A homomorphism between syntactical λ -algebras is a map $\varphi: \mathfrak{M}_1 \to \mathfrak{M}_2$ such that for all $M \in \Lambda(\mathfrak{M})$ one has

$$\varphi[M]_{\rho}^{1} = [\varphi(M)]_{\varphi \circ \rho}^{2}$$

where in $\varphi(M)$ the c_a are replaced by $c_{\varphi(a)}$.

5.3.6. Theorem. The category of syntactical λ -algebras and homomorphisms and that of λ -algebras and homomorphisms are isomorphic. Moreover syntactical λ -models correspond exactly to λ -models under this isomorphism.

PROOF. Easy. For a syntactical λ -algebra $\mathfrak{M} = \langle X, \cdot, [\![\mathbb{I}]\!] \rangle$ define $F\mathfrak{M} = \langle X, \cdot, [\![K]\!], [\![S]\!] \rangle$; for $\varphi \colon \mathfrak{M}_1 \to \mathfrak{M}_2$ let $F\varphi = \varphi \colon F\mathfrak{M}_1 \to F\mathfrak{M}_2$. Then one has $[\![M]\!]_{\rho}^{F\mathfrak{M}} = [\![M]\!]_{\rho}^{\mathfrak{M}}$ for $M \in \Lambda(\mathfrak{M})$. Conversely for a λ -algebra $\mathfrak{A} = \langle X, \cdot, k, s \rangle$ define $G\mathfrak{A} = \langle X, \cdot, [\![]\!]^{\mathfrak{M}} \rangle$ and $G\varphi = \varphi$ as above. Then F, with inverse G, is the required isomorphism. \square

- 5.3.7. REMARK. In view of theorem 5.3.6 we say that $\mathfrak{M} = (X, \cdot, [\![]\!])$ is a λ -algebra (λ -model) if \mathfrak{M} is a syntactical λ -algebra (λ -model).
- 5.3.8. Convention. When working inside a λ -algebra \mathfrak{M} , we write equations valid in \mathfrak{M} informally, e.g. for $a \in \mathfrak{M}$ one writes

$$(\lambda x.xx)a = aa$$

rather than the formal $[(\lambda x.xx)y]_{\rho(y:=a)} = [yy]_{\rho(y:=a)}$ or $[\lambda x.xx]a = aa$.

5.4. Models in concrete cartesian closed categories

In this section the framework will be explained in which Scott constructed his non-syntactical λ -models. We will use the category of cpo's. But the method works for arbitrary concrete cartesian closed categories.

Recall that if D is a cpo, then $[D \rightarrow D]$ is the set of continuous maps considered as cpo by pointwise ordering.

5.4.1. DEFINITION. A cpo D is called *reflexive* if $[D \rightarrow D]$ is a retract of D, i.e. there are continuous maps

$$F: D \to [D \to D], \quad G: [D \to D] \to D$$

such that $F \circ G = id_{[D \to D]}$.

It will be shown that every reflexive cpo defines in a natural way a λ -model.

- 5.4.2. DEFINITION. Let D be a reflexive cpo via the maps F, G.
 - (i) For $x, y \in D$ define

$$x. y = F(x)(y).$$

(ii) Let ρ be a valuation in D. Define the interpretation $[\![\]\!]_{\rho} : \Lambda \to D$ by induction as follows.

$$\begin{split} \llbracket x \rrbracket_{\rho} &= \rho(x), \qquad \llbracket c_{a} \rrbracket_{\rho} = a, \\ \llbracket MN \rrbracket_{\rho} &= \llbracket M \rrbracket_{\rho} \cdot \llbracket N \rrbracket_{\rho}, \\ \llbracket \lambda x. M \rrbracket_{\rho} &= G \big(\mathbb{N} d. \llbracket M \rrbracket_{\rho(x:=d)} \big). \end{split}$$

5.4.3. Lemma. $\lambda d \cdot [M]_{\rho(x:=d)}$ is continuous; hence $[\lambda x. M]_{\rho}$ is well-defined.

PROOF. By induction on M one shows that $[\![M]\!]_{\rho(x:=d)}$ depends for all ρ continuously on d. The only nontrivial case is $M \equiv \lambda y.P$. Then

$$[\![\lambda y.P]\!]_{\rho(x:=d)} = G(\mathbb{A}e.[\![D]\!]_{\rho(x:=d)(y:=e)})$$

$$= G(\mathbb{A}e.f(d,e)), \quad \text{say}$$

$$= g(d), \quad \text{say}.$$

By the induction hypothesis f is continuous in d and e separately, hence by lemma 1.2.12 continuous. Therefore, by proposition 1.2.14(i) and the continuity of G, the map $g = G \circ \hat{f}$ is continuous. \square

- 5.4.4. THEOREM. Let D be a reflexive cpo via F, G and let $\mathfrak{M} = (D, \cdot, [\![\]\!])$. Then
 - (i) M is a λ-model.
 - (ii) The functions representable are exactly the continuous functions.
- (iii) $\mathfrak M$ is extensional iff $G \circ F = \operatorname{id}_D$, i.e. $G = F^{-1}$ and $D \cong [D \to D]$ via F, G.

PROOF. (i) We verify the conditions in definition 5.3.1. (1), (2) and (3) are trivial. As to (4)

$$\begin{split} \llbracket \lambda x. P \rrbracket_{\rho}. a &= G \big(\mathbb{A} d. \llbracket P \rrbracket_{\rho(x:=d)} \big). a \\ &= F \Big(G \big(\mathbb{A} d. \llbracket P \rrbracket_{\rho(x:=d)} \big) \Big) (a) \\ &= \big(\mathbb{A} d. \llbracket P \rrbracket_{\rho(x:=d)} \big) (a) = \llbracket P \rrbracket_{\rho(x:=a)} \end{split}$$

Condition (5) follows by an easy induction on M.

Therefore \mathfrak{M} is a syntactical applicative structure. Moreover \mathfrak{M} satisfies (ξ) :

$$\begin{split} \forall d \; \llbracket M \rrbracket_{\rho(x:=d)} &= \llbracket N \rrbracket_{\rho(x:=d)} \; \Rightarrow \; \mathbb{A} \, d. \llbracket M \rrbracket_{\rho(x:=d)} &= \mathbb{A} \, d. \llbracket N \rrbracket_{\rho(x:=d)} \\ &\Rightarrow \; G \Big(\mathbb{A} \, d. \llbracket M \rrbracket_{\rho(x:=d)} \Big) = G \Big(\mathbb{A} \, d. \llbracket N \rrbracket_{\rho(x:=d)} \Big) \\ &\Rightarrow \; \llbracket \lambda x. M \rrbracket_{\rho} = \llbracket \lambda x. N \rrbracket_{\rho}. \end{split}$$

It follows that \mathfrak{M} is a λ -model; see remark 5.3.7.

(ii) Application \cdot is continuous, since F is; therefore all representable functions are continuous. Conversely, a continuous $f: D \to D$ is represented by G(f):

$$G(f)a = F(G(f))(a) = f(a).$$

In general, a continuous $f: D^n \to D$ is represented by

$$\lambda^G d_1 \cdots \lambda^G d_n \cdot f(d_1, \ldots, d_n)$$

where

$$\lambda^G d \cdot \cdots = G(\mathbb{X} d \cdot \cdots).$$

(iii) If
$$G \circ F = id_D$$
, then

$$\forall e \ de = d'e \implies \forall e F(d)(e) = F(d')(e)$$

$$\implies F(d) = F(d')$$

$$\implies d = d', \quad \text{by applying } G.$$

Therefore M is extensional.

Conversely, suppose $\mathfrak M$ is extensional. Let $d \in D$ and d' = G(F(d)). Then for all $e \in D$

$$d'e = F(d')(e) = F(G(F(d)))(e) = F(d)(e) = de$$
.

Hence
$$d' = d$$
 i.e. $G \circ F = id_D$. \square

To give an idea of how a reflexive cpo can be defined, we will describe the models D_A introduced by Engeler [1981] as a simplification of the graph model $P\omega$ introduced in § 18.1.

5.4.5. DEFINITION. Let A be a set.

(i) $B \supseteq A$ is the least set such that

$$\beta \subseteq B$$
, β finite and $b \in B \Rightarrow (\beta, b) \in B$.

(Assume that A does not contain such pairs).

(ii) $D_A = P(B)$, the powerset of B partially ordered by inclusion. This is a cpo (even an algebraic lattice).

(iii) For $x, y \in D_A$ and $f \in [D_A \to D_A]$ define

$$x \cdot y = \{ b \in B | \exists \beta \subseteq y(\beta, b) \in x \},$$
$$\lambda^G x. f(x) = \{ (\beta, b) \in B | \beta \text{ finite } \subseteq B \text{ and } b \in f(\beta) \}.$$

5.4.6. THEOREM. D_A becomes a reflexive cpo by defining $F(x) = \lambda y.xy$, $G(f) = \lambda^G x. f(x)$. Therefore D_A defines a λ -model.

PROOF. The continuity of F, G follows easily from propositions 1.2.24 and 1.2.31(i).

$$F \circ G(f) = F(\{(\beta, b) | b \in f(\beta)\})$$

$$= \lambda y. \{b | \exists \beta \subseteq yb \in f(\beta)\}$$

$$= \lambda y. \cup \{f(\beta) | \beta \subseteq y\}$$

$$= \lambda y. f(y), \quad \text{by continuity of } f,$$

$$= f. \quad \Box$$

See exercises 5.7.7, 18.5.29 and 18.4.31 for more information on D_A .

5.5. Models in arbitrary cartesian closed categories

In this section it will be shown that in arbitrary cartesian closed categories reflexive objects give rise to λ -algebras and to all of them. The λ -models are then those λ -algebras that come from categories "with enough points". The method is due to Koymans [1982] and is based on work of Scott. In exercise 5.8.9 a categorial description of combinatory algebras is given.

- 5.5.1. DEFINITION. Let $\mathbb C$ be a category. The identity map on an object $A \in \mathbb C$ is denoted by id_A .
 - (i) C is a cartesian closed category (ccc) iff
- (1) \mathbb{C} has a terminal object T such that for every object $A \in \mathbb{C}$ there exists a unique map $!_A : A \to T$.