

LaTex for Scientific Writing

Day One

Anthony Faustine

Outline

- 1. Introduction
- Latex Command
- Document Structure
- 4. Text Formatting
- Structuring and Cross-referencing Text
- 6. Typesetting Mathematics

- The de facto standard for the communication and publication of scientific documents.
- It is based on the TEX: A typesetting system
 - produce high-quality books using a reasonably minimal amount of effort.
- LaTeX is a user-friendly extension of TeX ⇒ a slightly higher-level language built on top of TEX.

- The de facto standard for the communication and publication of scientific documents.
- It is based on the TEX: A typesetting system
 - TEX was designed and created by Donald Knuth in 1978 ⇒ to produce high-quality books using a reasonably minimal amount of effort.
- LaTeX is a user-friendly extension of TeX ⇒ a slightly higher-level language built on top of TEX.

- The de facto standard for the communication and publication of scientific documents.
- It is based on the TEX: A typesetting system
 - TEX was designed and created by Donald Knuth in 1978 ⇒ to produce high-quality books using a reasonably minimal amount of effort.
- LaTeX is a user-friendly extension of TeX ⇒ a slightly higher-level language built on top of TEX.

- The de facto standard for the communication and publication of scientific documents.
- It is based on the TEX: A typesetting system
 - TEX was designed and created by Donald Knuth in 1978 ⇒ to produce high-quality books using a reasonably minimal amount of effort.
- LaTeX is a user-friendly extension of TeX ⇒ a slightly higher-level language built on top of TEX.
 - TeX and LaTeX ⇒ assembly language and C

- The de facto standard for the communication and publication of scientific documents.
- It is based on the TEX: A typesetting system
 - TEX was designed and created by Donald Knuth in 1978 ⇒ to produce high-quality books using a reasonably minimal amount of effort.
- LaTeX is a user-friendly extension of TeX ⇒ a slightly higher-level language built on top of TEX.
 - TeX and LaTeX ⇒ assembly language and C

- Writing documents, especially those with scientific notation.
- Making presentation slides
- Designing posters

- Writing documents, especially those with scientific notation.
- Making presentation slides.
- Designing posters

- Writing documents, especially those with scientific notation.
- Making presentation slides.
- Designing posters

- Writing documents, especially those with scientific notation.
- Making presentation slides.
- Designing posters.

- You can't learn how to use it by watching someone else use it.
- Google knows everything about it.
- Aim of this training: ⇒ To show you what LATEX can do

- You can't learn how to use it by watching someone else use it.
- Google knows everything about it.
- Aim of this training: ⇒ To show you what LATEX can do

- You can't learn how to use it by watching someone else use it.
- Google knows everything about it.
- Aim of this training: ⇒ To show you what LATEX can do

- You can't learn how to use it by watching someone else use it.
- Google knows everything about it.
- Aim of this training: ⇒ To show you what LATEX can do.

- Less focus on formatting and more on content.
- It makes beautiful documents.
- Superior and flexible equation presentation.
- It was created by scientists, for scientists ⇒ A large and active community
- Fast, stable, extensible, and free (distribution dependent).

- Less focus on formatting and more on content.
- It makes beautiful documents.
- Superior and flexible equation presentation.
- It was created by scientists, for scientists ⇒ A large and active community
- Fast, stable, extensible, and free (distribution dependent).

- Less focus on formatting and more on content.
- It makes beautiful documents.
- Superior and flexible equation presentation.
- It was created by scientists, for scientists ⇒ A large and active community
- Fast, stable, extensible, and free (distribution dependent).

- Less focus on formatting and more on content.
- It makes beautiful documents.
- Superior and flexible equation presentation.
- It was created by scientists, for scientists ⇒ A large and active community
- Fast, stable, extensible, and free (distribution dependent).

- Less focus on formatting and more on content.
- It makes beautiful documents.
- Superior and flexible equation presentation.
- It was created by scientists, for scientists ⇒ A large and active community
- Fast, stable, extensible, and free (distribution dependent)

- Less focus on formatting and more on content.
- It makes beautiful documents.
- Superior and flexible equation presentation.
- It was created by scientists, for scientists ⇒ A large and active community
- Fast, stable, extensible, and free (distribution dependent).

- You write your document in plain text with commands that describe its structure and meaning.
- The latex program processes your text and commands to produce a beautifully formatted document.

- You write your document in plain text with commands that describe its structure and meaning.
- The latex program processes your text and commands to produce a beautifully formatted document.

- You write your document in plain text with commands that describe its structure and meaning.
- The latex program processes your text and commands to produce a beautifully formatted document.

- You write your document in plain text with commands that describe its structure and meaning.
- The latex program processes your text and commands to produce a beautifully formatted document.

- MiKTeX: A a free TeX distribution for Windows systems.
- MacTeX: A a free TeX distribution for Mac.
- TeXLive: A a free TeX distribution for for most flavors of Unix and windows.
- For more Latex info: https://www.latex-project.org/

- MiKTeX: A a free TeX distribution for Windows systems.
- MacTeX: A a free TeX distribution for Mac.
- TexLive: A a free TeX distribution for for most flavors of Unix and windows.
- For more Latex info: https://www.latex-project.org/

- MiKTeX: A a free TeX distribution for Windows systems.
- MacTeX: A a free TeX distribution for Mac.
- TexLive: A a free TeX distribution for for most flavors of Unix and windows.
- For more Latex info: https://www.latex-project.org/

- MiKTeX: A a free TeX distribution for Windows systems.
- MacTeX: A a free TeX distribution for Mac.
- TexLive: A a free TeX distribution for for most flavors of Unix and windows.
- For more Latex info: https://www.latex-project.org/

- Texmaker.
- TexStudio.
- We will use TexStudio with MiKTex
 - Download TexStudio for your distribution
 Install TexStudio when MiKTeX installation is completed.
 TexStudio will automatically configure the settings for you
- The installation of LaTeX is now complete.

- Texmaker.
- TexStudio.
- We will use TexStudio with MiKTex
 - Download TexStudio for your distribution

 Install TexStudio when MiKTeX installation is completed.

 TexStudio will automatically configure the settings for you
- The installation of LaTeX is now complete.

- Texmaker.
- TexStudio.
- We will use TexStudio with MiKTex
 - Download TexStudio for your distribution
 - Install TexStudio when MiKTeX installation is completed.
 - TexStudio will automatically configure the settings for you.
- The installation of LaTeX is now complete.

- Texmaker.
- TexStudio.
- We will use TexStudio with MiKTex
 - Download TexStudio for your distribution
 - Install TexStudio when MiKTeX installation is completed.
 - TexStudio will automatically configure the settings for you.
- The installation of LaTeX is now complete.

- Texmaker.
- TexStudio.
- We will use TexStudio with MiKTex
 - Download TexStudio for your distribution
 - Install TexStudio when MiKTeX installation is completed.
 - TexStudio will automatically configure the settings for you.
- The installation of LaTeX is now complete.

- Texmaker.
- TexStudio.
- We will use TexStudio with MiKTex
 - Download TexStudio for your distribution
 - Install TexStudio when MiKTeX installation is completed.
 - TexStudio will automatically configure the settings for you.
- The installation of LaTeX is now complete

- Texmaker.
- TexStudio.
- We will use TexStudio with MiKTex
 - Download TexStudio for your distribution
 - Install TexStudio when MiKTeX installation is completed.
 - TexStudio will automatically configure the settings for you.
- The installation of LaTeX is now complete.

Online versions

Three popular online versions

- Overleaf [https://www.overleaf.com/].
- Papeeria [https://papeeria.com/].
- Sharelatex [https://www.sharelatex.com/]

Online versions

Three popular online versions

- Overleaf [https://www.overleaf.com/].
- Papeeria [https://papeeria.com/].
- Sharelatex [https://www.sharelatex.com/]

Online versions

Three popular online versions

- Overleaf [https://www.overleaf.com/].
- Papeeria [https://papeeria.com/].
- Sharelatex [https://www.sharelatex.com/].

Outline

- 1. Introduction
- 2. Latex Command
- Document Structure
- 4. Text Formatting
- Structuring and Cross-referencing Text
- 6. Typesetting Mathematics

LaTeX Hello word

- Create a new file in TexStudio with ending .tex.
- Type in the following code:

```
\begin{document}
Hello world ! % This is your content
```

\end{document}

• Run quick build.

Commands

A LATEX document is mainly defined through commands.

Commands are case sensitive, and take one of the following two formats:

- They start with a backslash \ and then a name consisting of letters only.
- Some commands need an argument, which has to be given between curly braces { }.
- Some commands support optional parameters, which are added in square brackets [].

Commands

Arguments and Options

- Many commands require a single argument, and some commands require even multiple arguments.
- Some commands can have several options.

Example:

```
\usepackage{graphicx} % single argument
\usepackage{amsmath, amssymb} % multiple arguments
\documentclass[a4paper,11pt]{article} % several opt:
\usepackage[final]{microtype} % single options
```

Commands

Environment

An environment is be marked by, \begin{environment} ... \end{environment}.

- These initiate and exit an environment.
- The type of environment is applied to everything between the begin and end commands.

Example:

```
\begin{document}
content... % document environment
\end{document}
```

Special Character

There are ten char-

acters which, like the backslash, are used by latex for special purposes.

Character	Purpose	Input for literal output
\	Special symbols and instructions	\$\backslash\$
{	Open group	\$ \{\$
}	Close group	\$\}\$
%	Comments	\%
&	Tabs and table alignments	\&
~	Unbreakable space	\~{}
\$	Starting or ending math text	\\$
^	Math superscripts	\^{}
_	Math subscripts	_{}
#	Defining replacement symbols	\#

Outline

- Introduction
- Latex Command
- 3. Document Structure
- Text Formatting
- Structuring and Cross-referencing Text
- 6. Typesetting Mathematics

Document Structure

```
Every LaTeX document has the following form:
         \documentclass[options]{class name}
         \begin{document}
         \end{document}
```

Document Class

- The command \documentclass[options]{class name}
 specify type of document you wants to create.
 - class name: specifies the type of document to be created.
 - options parameter:customises the behaviour of the document class.

Example:

```
\documentclass[11pt,a4paper]{article}
```

Document Class

Lists of the document classes type.

Class	Description
article	For articles in scientific journals, presentations, short reports, program docu-
	mentation, invitations etc.
report	For longer reports containing several chapters, small books, thesis etc.
book	For real books.
letter	For writing letters.
beamer	For writing presentation
exam	For writing exams.

Document Class: Options

The document classes options.

Options	Description
10pt, 11pt, 12pt	Sets the size of the main font in the document. Default is 10pt.
a4paper,letterpaper	Defines the paper size. The default size is letterpaper. Besides that,
	a5paper, b5paper, executivepaper, and legalpaper can be speci-
	fied.
twocolumn	Instructs LaTeX to typeset the document in two columns instead
	of one.
twoside, oneside	For writing letters.
landscape	Changes the layout of the document to print in landscape mode.
titlepage, notitlepage	Specifies whether a new page should be started after the docu-
	ment title or not. The article class does not start a new page by
	default, while report and book do.

The Preamble

The preamble is where you define the style of your document and load any packages you need to use.

```
\documentclass[options]{class name}
%Preamble
```

\begin{document}

- It normally contains commands, variables or other things needed that affect the entire document.
- Load needed packages along with any options for those packages.

The Preamble

The preamble is also used to load any other options or information that isn't necessarily a part of the document's content such as:

- Setting lengths of spaces before/after paragraphs, line height,
 etc
- Specifying author/title/date, etc. (important if you will be making a title page).

Example:

```
%To set margin
\usepackage[top=2in,bottom=lin,left=lin,right=lin]{geometry
% To specify tittle/author/date
\title{{\LARGE \textbf{Scintific Writing using LaTeX} }}
\author{M.~Chuwa \and S.~Nyondo}
\date{\today}
```

The Preamble: Packages

Packages extend the basic LATEX commands.

• To use packages, include the following command:

```
\usepackage[options]{package}
```

• This command goes into the preamble of the document.

Example:

```
\usepackage[final]{microtype} %improves the spacing betwee
\usepackage{amsmath} %introduces several improvements for
\usepackage{graphicx} % for inserting image in latex documents.
```

The Body of the Document

After the preamble comes the body.

- Starts with \begin {document} and ends with \end {document}
- This is where you fill in the actual content of your document.
- Contains all text, fgures, tables, etc.

The Body of the Document

You can organize your document using the following commands.

Level	Article	Report/Book
Part		
Chapter		
Section		
Subsection		
Subsubsection		
Paragraph		

- Your PDF output will include these sections as bookmarks.
- The above commands have a *-version and using these results in no number and no entry in the table of contents.
- Example: \subsection *{Acknowledgement}

Typesetting Activity 1

Create a new file Activity_1.text to hold this document.

- 1. Use the article document class, with the a4paper and 12pt options.
- 2. Create the title of your article and put two authors.
- 3. Create a section structure like shown below.
 - 1. Introduction
 - 1.1 Background
 - 2. Methods
 - 2.1 Model
 - 2.1.1 Model Assumption.
- 4. Run quick build. What do you see?

Typesetting Activity 1

- 5. Add \maketitle just after \begin {document}
- 6. Run quick build. What do you see?
- 7. What happens if you use the *-version eg \subsection *{Results}
- 8. Why is it not possible to use \chapter \{\}, in this document?.

Outline

- Introduction
- Latex Command
- Document Structure
- 4. Text Formatting
- Structuring and Cross-referencing Text
- 6. Typesetting Mathematics

Font Sizes and Colors

To change the font size in LaTeX

Commands	Output
\tiny	LaTex
\small	LaTex
\normalsize	LaTex
\large	LaTex
\Large	LaTex
\LARGE	LaTex
\huge	LaTex
\Huge	LaTex

Font Sizes and Colors

```
To change text color use \usepackage {color} or \usepackage {xcolor}
```

- command: \textcolor {color}{text}
- Example:
 - \textcolor {red}{Hello} world ⇒ Hello world
 - Hello \textcolor {blue}{world} ⇒ Hello world

Font Types and Style

To change the font itself to different styles

Style	Commands	Output
Bold	\textbf {LaTex}	LaTex
Italic	<pre>\textit {LaTex}</pre>	LaTex
Underline	<pre>\underline {LaTex}</pre>	<u>LaTex</u>
Typewriter	\texttt {LaTex}	LaTex
Sans-Serif	<pre>\textsf {LaTex}</pre>	LaTex
Serif (Roman)	\textrm {LaTex}	LaTex

Spacing

LaTex treats any number of spaces as a single space.

- Single new lines are treated as if there is no new line.
- Multiple blank lines are treated as a single new line.
- You can force horizontal and vertical space using the \hspace {length} and \vspace {length}
 - You have to give each command a length commands:

```
\hspace {0.1cm},
\hspace {1in} or
\hspace {10pt}
```

There are three list environments

- itemize ⇒ for a bullet list.
- enumerate ⇒ for an ordered list and
- description ⇒ for a descriptive list.

All lists follow the following format:

```
\begin{list_type}
\item The first item
\item The second item
\item The third etc
\end{list_type}
```

\begin{itemize}
\item The first item
\item The second item
\item The third item
\end{itemize}

- The first item
- The second item
- The third item

```
\begin{enumerate}
\item The first item
\item The second item
\item The third item
\end{enumerate}
```

- 1. The first item
- 2. The second item
- 3. The third item

```
The description list used to explain notations or terms
\begin{description}
\item[Itemize] used for a bullet list.
\item[Enumerate] used for a ordered list.
\item[Description] used for a descriptive list.
\end{description}
output
    Itemize used for a bullet list.
 Enumerate used for a ordered list.
Description used for a descriptive list.
```

Nested Lists

```
\begin{enumerate}
\item Item one
  \begin{enumerate}
    \item Subitem one
    \item Subitem two
  \end{enumerate}
\item Item two
\end{enumerate}
```

- 1. Item one
 - 1.1 Subitem one
 - 1.2 Subitem two
- 2. Item two

Outline

- Introduction
- Latex Command
- Document Structure
- 4. Text Formatting
- 5. Structuring and Cross-referencing Text
- 6. Typesetting Mathematics

Outline

- 1. Introduction
- Latex Command
- Document Structure
- Text Formatting
- Structuring and Cross-referencing Text
- 6. Typesetting Mathematics

Math mode

The amsmath package is the backbone of using LaTex for typesetting math.

Include in preamble: \usepackage{amsmath, amssymb}

The math environment" comes in two different forms:

Inline mode ⇒ format the math within existing lines of text.

Display mode \Rightarrow sets the math apart and centers it on the page.

Math mode

Inline mode

Several options exist:

- Using \begin{math} $x + y = 2 \ \text{math} \Rightarrow x + y = 2$
- Surround the math with $(x+y = 2) \Rightarrow x + y = 2$
- Surround the math with single dollar signs x + y = 2 \Rightarrow x + y = 2

Subscripts and superscripts in math mode are formed using the

Math mode

Inline mode

Subscripts and superscripts in math mode are formed using the _ and the ^. Example:

$$a_n = n^2 + 1 \implies a_n = n^2 + 1$$

When the subscript or superscript is more than one character, you must wrap it in $\{...\}$ to group it together.

Example:

$$y_{n+1} = e^{n^2-1} + 1 \Rightarrow y_{n+1} = e^{n^2-1} + 1$$

Inline mode

Some common math symbols:

Symbol	Output
\alpha ,\beta ,\lambda ,\gamma ,\theta ,\mu etc \infty ,\exists ,\forall ,\pm ,\leq ,\geq etc. \int _0^{\infinity },\sum _{i=1}^n,\prod _{n=1}^N	$\alpha, \beta, \lambda, \gamma, \theta, \mu$, etc $\infty, \exists, \forall, \pm, \leq, \geq \text{etc}$ $\int_0^\infty, \sum_{i=1}^n, \prod_{n=1}^N \text{etc}$
<pre>\ldots , \cdots ,\vdots ,\colon etc \frac {x}{y}, \sqrt {x},\bar {x},\lim _{x \to \infty }</pre>	,, \vdots , : etc $\frac{x}{y}$, \sqrt{x} , \bar{x} , $\lim_{x\to\infty}$ etc

Display mode

Several options exist:

Using

$$\left(x + y = 2 \right)$$

$$x + y = 2$$

Surround the math with \[x+y = 2\] ⇒

$$x + y = 2$$

• Surround the math with double dollar signs \$\$x + y =2\$\$ ⇒

$$x + y = 2$$

Numbered Equation

The equation environment:

\begin{equation}...\end{equation} creates a displayed formula and automatically generates an equation number.

Example:

$$\begin{equation} \int_{0}^{\pi} x \ dx = 2\end{equation}$$

$$\int_0^\pi \sin x \, dx = 2 \tag{1}$$

Typesetting Activity 3

Open the tex file you created in Activity 2 and type the following under Model assumption subsection:

- 1. In this work we demonstrate that $\alpha^2 + \beta^2 \gg \frac{\pi}{4}$ is only correct if the Euler condition $\nabla x = 0$ is satisfied.
- 2. We propose a new numerical approach to solve the time-dependent Schrödinger equation

$$i\hbar \frac{\partial \Psi(t)}{\partial t} = H(t)\Psi(t) \tag{2}$$

3. Run quick build. What do you see?

Typesetting Activity 3

The relation between the golden ratio and the Fibonacci series is given by

$$\phi = 1 + \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{F_n F_{n+1}}$$
 (3)

given that the golden ratio $\phi = \frac{1}{2}(1 + \sqrt{5})$

- 5. Run quick build. What do you see?
- 6. What happens if you use the *-version of equation environment \begin {equation*} content... \end {equation*}

Multiple Equations

The \begin{align}..\end{align} environment is used group together several formulas or, equations with more than one lines. Example:

```
\begin{align}
\alpha + \beta^2 &= 0 \\
\log_{10}2\alpha &=e^{\beta}-1
\end{align}
```

11

$$\alpha + \beta^2 = 0 \tag{4}$$

$$\log_{10} 2\alpha = e^{\beta} - 1 \tag{5}$$

Multiple Equations

To align several formulas or equations with more than one lines. Example:

$$y = x^{2} + 2x - 1$$
$$= (x + 1)(2x + 1)$$
$$= (x + 1)^{2}$$

Matrices and Array

A basic matrix may be created using the matrix environment.

Plain Matrix

```
\[ \begin{matrix} \ \alpha& \beta^{*} \ \gamma^{*}& \delta \ \end{matrix} \\]
```

Matrices and Array

A basic matrix may be created using the matrix environment.

Bracketed matrix; typically represents the matrix itself

```
\[ \begin{bmatrix} \ \alpha\ \beta^{*} \ \gamma^{*}\ \ \end{bmatrix} \\ \end{bmatrix} \\ \]
```

Matrices

A basic matrix may be created using the matrix environment.

Parenthesized matrix

```
\[ \begin{pmatrix} \ alpha& \beta^{*} \ gamma^{*}& \delta \ end{pmatrix} \]
```

Matrix

Example: let type the following matrix

$$A_{m,n} = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} \end{pmatrix}$$

Matrix

Example: let type the following matrix

```
\[ A_{m,n} =
\begin{pmatrix}
a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\
a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m,1} & a_{m,2} & \cdots & a_{m,n}
\end{pmatrix}
\]
```

The Case Environment

The cases environment allows the writing of piecewise functions. Consider the following:

$$f(x) = \begin{cases} x & \text{if } x \neq 0\\ \frac{\sin x}{x} & \text{otherwise} \end{cases}$$

```
\[
f(x) =
\begin{cases}
x & \text{if } x \neq 0 \\
\frac{\sin x}{x}& \text{otherwing}
\end{cases}
\]
```

Typesetting Activity 4

Open the tex file you created in Activity 2 and type the following under Model subsection:

1. Consider a narrowband point-to-point communication system of M_t transmit and M_r receive antennas. The received signal vector y can be represented by the following discrete time model.

$$\begin{bmatrix} y_1 \\ \vdots \\ y_{M_r} \end{bmatrix} = \begin{bmatrix} h_{11} & \dots & h_{1M_t} \\ \vdots & \ddots & \vdots \\ h_{M_r1} & \dots & h_{M_rM_t} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_{M_t} \end{bmatrix} + \begin{bmatrix} n_1 \\ \vdots \\ n_{M_r} \end{bmatrix}$$

Typesetting Activity 3

2. The set of linear equations: $a_i x_i = b_i$ $\forall i = 1, ..., n$ can be written as a matrix equation:

$$diag(A).x = b$$

where
$$\mathbf{x} = [x_1, ..., x_n]^T$$
, $\mathbf{b} = [b_1, ..., b_n]^T$ and

$$diag(A) = \begin{bmatrix} a_1 & 0 & \cdots & 0 \\ 0 & a_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & a_n \end{bmatrix}$$

3. Run guick build. What do you see?

THANK YOU