Design of a Practical Real-time Mixed-path Interpolator for 3-Axis CNC Machining

学生: 邱满满

导师: 李建刚 副教授

日期: 2010-12-24

Contents

1. Introduction 2. Real-time continuous NURBS curve interpolator 3. Real-time discontinuous NURBS curve interpolator 4. Real-time mixed-path interpolator 5. Experiment results 6. Conclusions

1. Introduction

Conventional approach of machining curves

Discontinuous NURBS curve Parameter curve Mixed-path (NURBS + line) (NURBS Curve) CAM Line/Arc segments Drawbacks: CAD Contradiction between accuracy and size of data

Deteriorate the smooth of the surface

Velocity and acceleration discontinuity

学育院フ紫大学深圳研究生院 Harbin Institute of Technology Shenzhen Graduate School

1. Introduction

- NURBS (Non-Uniform Rational B-Spline) curve is a parameter curve
 - Represent free-form shapes

 P_i : control point W_i : weight U_i : knot vector

$$C(u) = \frac{\sum_{i=0}^{n} W_{i} N_{i,p}(u) P_{i}}{\sum_{i=0}^{n} W_{i} N_{i,p}(u)} \qquad 0 \leq u \leq 1$$

$$N_{i,1}(u) = \begin{cases} 1 \text{ for } u_i \leq u \leq u_{i+1} \\ 0 \text{ otherwise} \end{cases}$$

$$N_{i,p}(u) = \frac{u - u_i}{u_{i+p-1} - u_i} N_{i,p-1}(u) + \frac{u_{i+p} - u}{u_{i+p} - u_{i+1}} N_{i+1,p-1}(u)$$

1. Introduction

Represent standard analytical shapes

Traditional method

$${P_i} = {(1,0), (1,1), (0,1), (-1,1), (-1,0), (-1,-1), (0,-1), (1,-1), (1,0)}$$

$$\{W_i\} = \{1, \frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, 1\}$$

$$U = \{0, 0, 0, \frac{1}{4}, \frac{1}{4}, \frac{1}{2}, \frac{1}{2}, \frac{3}{4}, \frac{3}{4}, 1, 1, 1\}$$

Off-time NURBS curve interpolator

The whole tool-path: a long NURBS curve

Velocity planning of the whole tool-path

Compute the interpolation points on the tool-path

Drawbacks:

- Time-consuming
- Limiting condition can't change when machining
- Inconvenience for next machining when machining stopped for special reasons

The basic idea of real-time curve interpolator

- Four key points
 - NURBS curve <u>splitting</u>
 - How to split
 - Splitting length
 - Velocity planning of a continuous NURBS curve
 - Maximum velocity at <u>intersection point</u> and velocity curve <u>modification</u>
 - Efficient <u>interpolation</u> algorithm

Curve splitting

- Splitting method
 - Determine new control points, weights and knot vectors
 - NURBS curves after splitting have the same shape with original NURBS curve

Minimum splitting length

 S_{\min} : a minimum length for achieving once complete accelerating and decelerating process.

$$S_{\min} = \frac{{V_{\max}}^2}{A_{\max}}$$

 $V_{\rm max}$: the maximum allowed velocity defined according to the machine performance.

 A_{max} : the maximum allowed acceleration.

- Velocity planning of continuous NURBS curve
 - Step 1: By curvature limitation

$$r_i = \frac{1}{K(t_i)}$$

$$V_{Er} = \frac{2 \cdot \sqrt{r_i^2 - (r_i - Er_i)^2}}{T_s}$$

$$V(u_i) = egin{cases} V_{ ext{max}}, & if & V_{Er} > V_{ ext{max}} \ V_{Er}, & if & V_{Er} \leq V_{ ext{max}} \end{cases}$$

Step 2: By acceleration limitation

Step 3: Velocity curve modification

Velocity curve connection

Velocity connection mode

Simple connection mode

Velocity at intersect point

$$V_{i_{\theta}} = \frac{A_{\max} T_{s}}{2 \sin(\theta_{i}/2)}$$

$$\theta_i = \begin{cases} 0 & continuous \\ other & discontinuous \end{cases}$$

$$V_{i_{\text{max}}} = \min(V_{i_{\text{end}}}, V_{i+1_{\text{st}}})$$

Interpolation module

$$S = \int_0^t V dt$$

$$P_0 = function(S, curve)$$

$$V_{2}t_{0} - A_{\text{max}}t_{0} / 2 = S_{0}$$

$$V_{2}t_{0} + A_{\text{max}}t_{0} / 2 = S_{0}$$

$$t_{0} = (-V_{2} + \sqrt{V_{2}^{2} - 2A_{\text{max}}S_{0}}) / (-A_{\text{max}})$$

$$t_{0} = (-V_{2} + \sqrt{V_{2}^{2} + 2A_{\text{max}}S_{0}}) / A_{\text{max}}$$

$$V_2 t_0 + A_{\text{max}} t_0 / 2 = S_0$$

$$t_0 = (-V_2 + \sqrt{V_2^2 + 2A_{\text{max}} S_0}) / A_{\text{max}}$$

$$S_0 = V_2 t_0$$
$$t_0 = S_0 / V_2$$

- Simulation results
 - Interpolator parameters:

$$T_s = 0.002s$$

$$V_{\text{max}} = 200 mm/s$$

$$A_{\rm max} = 300 mm/s^2$$

$$S_{\min} = V_{\max}^2 / A_{\max} = 200^2 / 300 = 133.33(mm)$$

Initial NURBS curve

NURBS curves after splitting

Curvature

Velocity curve

Velocity curve

Velocity curve 1: NURBS curve & off-time

Velocity curve 2: NURBS curve & real-time

Velocity curve 3: line segments & look-ahead

Acceleration curve

Interpolation points

Magnification

Performance analysis

Linear interpolator		Off-time NURBS curve interpolator		Real-time NURBS curve interpolator	
Compute time(s)	Machining time(s)	Compute time(s)	Machining time(s)	Compute time(s)	Machining time(s)
0.5932	13.7408	1.8433	8.1987	1.8641	8.1987

The discontinuous point on NURBS curve

Continuous NURBS curve

$$U = \{0,0,0,0.5,0.5,1,1,1\}$$

$$P = \{(0,0),(10,10),$$

$$(20,10),(30,10),(40,0)\}$$

$$W = \{1,1,1,1,1\}$$

Discontinuous NURBS curve

$$U = \{0,0,0,0.5,0.5,1,1,1\}$$

$$P = \{(0,0),(10,10),$$

$$(20,15),(30,10),(40,0)\}$$

$$W = \{1,1,1,1,1\}$$

The cases of cusp on a NURBS curve

	p=2	p=3
Single Knot u_j	Double control points P_i , P_i	Triply control points P_i, P_i, P_i
Double knots u_j , u_j	Single control point P_i	Double control points P_i , P_i
Triply knots u_j, u_j, u_j	-	Single control point P_i

Curvature computation

$$K(t) = \frac{|\dot{P}(t) \times \ddot{P}(t)|}{|\dot{P}(t)|^{3}}$$

Splitting at cusp

$$V_{i_{\theta}} = \frac{A_{\text{max}}T_{s}}{2\sin(\theta_{i}/2)}$$

$$\theta_i = \begin{cases} 0 & continuous \\ other & discontinuous \end{cases}$$

$$V_{i_{\text{max}}} = \min(V_{i_{\text{end}}}, V_{i+1_{\text{st}}}, V_{i_{\theta}})$$

23

2-D discontinuous NURBS curve

- 4 discontinuous points
- The curve length between point 3 and 4 is short
- This part will be written as small line segments block
- Degree: 2

$$T_s = 0.002s$$
 $V_{\text{max}} = 58mm/s$
 $A_{\text{max}} = 500mm/s^2$
 $N_t = 10$
 $S_{\text{min}} = V_{\text{max}}^2 / A_{\text{max}} = 58^2 / 500mm = 6.728mm$

- Results comparison
 - Velocity curve

Acceleration curve

Three kinds of mix-path

The length between two cusp is short

A Mix-path:NURBS curve + Line segments + NURBS cur

The length of NURBS curve is short

The original curve is mix-path

Splitting case

 S'_{\min} is the splitting length

which is a value great than or equal to the minimum splitting length S_{\min}

Case 1: Write NURBS curve as line segments

Case 2: Not split NURBS curve or split at the first cusp

Case 3: Split NURBS curve by splitting length

Continuous line segments

First insert:

$$U = \{u_0, u_1, \dots u_i, \dots u_N\} = \{u_0, 1d, 2d, 3d, \dots, u_N\}$$

If
$$Er_i > Er_{\text{max}}$$
, insert $\widetilde{u}_{i,i+1} = (u_i + u_{i+1})/2$

If $Er_i > Er_{\text{max}}$, no insert

Velocity limitation condition:

$$\begin{cases} V_{i}^{2} \leq \begin{cases} V_{i-1}^{2} + 2A_{\max}L_{i} \\ V_{i+1}^{2} + 2A_{\max}L_{i+1} \end{cases} \\ 0 \leq V_{i} \leq V_{i_{0}}, V_{i} \leq V_{\max} \end{cases}$$

Start & end velocity limitation condition:

$$V_{i_{st}} = \min(V_{i-1_{end}}, V_{i_{\theta}})$$
 $V_{i_{end}} = \min(V_{i+1_{st}}, V_{i+1_{\theta}})$

30

Program flow chart of velocity planning for mixed-path

The combination forms of the tool-path

2-D mixed-path

- 5 NURBS curves & 1 line segments block
- 4 discontinuous points
- NURBS curve degree: 2

$$T_{s} = 0.002s$$

$$V_{\rm max} = 25 mm/s$$

$$A_{\rm max} = 300 mm/s^2$$

$$N_{t} = 10$$

$$S_{\min} = V_{\max}^2 / A_{\max} = 25^2 / 300mm = 2.083mm$$

Results comparison

Velocity curve

Acceleration curve

3-D mixed-path

- Actual tool-path
- Path length: 33670.62 mm
- Intercepted path length: 315.97 mm
- NURBS curve degree: 3

$$T_{s} = 0.002s$$

$$V_{\rm max} = 58mm/s$$

$$A_{\text{max}} = 500 mm/s^2$$

$$N_{t} = 10$$

$$S_{\min} = V_{\max}^2 / A_{\max} = 58^2 / 500mm = 6.728mm$$

Results comparison

Velocity curve

Acceleration curve

Performance analysis

	Mixed-path	interpolator	Linear interpolator		
	Compute	Machining	Compute	Machining	
	time(s)	time(s)	time(s)	time(s)	
Ex 1	1.3590	3.415	0.5160	4.5740	
Ex 2	2.0780	61.208	0.6090	73.860	
Ex 3	198.7660	800.698	58.4990	1262.455	

Experiment platform

GUC of Googoltech

- •X86 architecture(600MHz) processor
- PCI communication
- •8-axis controller

Terminal Board

- •I/O management
- A/D transformation

Machine tool

Video for machining

Linear interpolator

$$T_s = 0.002s$$

 $V_{\text{max}} = 25 mm/s$

 $A_{\rm max} = 300 mm/s^2$

Machining time 73.860 s

Real-time mix-path interpolator

$$T_s = 0.002s$$

$$V_{\rm max} = 25mm/s$$

 $A_{\rm max} = 300 mm/s^2$

Machining time

61.208 s

Laser Scanning Viberometer

38

vibration waveform

Linear interpolator

Real-time mix-path interpolator

Workpieces after machining

Linear interpolator

Real-time mix-path interpolator

6. Conclusions

Conclusions

- New idea of real-time (two disposing module)
- Can dispose discontinuous NURBS curve, short NURBS curve, mixed-path (NURBS curves & line segments blocks)
- Velocity curves connected smoothly; Both acceleration and deceleration are limited in the capability of machining tool
- Has a higher performance than linear interpolator (machined surface is smoother, velocity fluctuation is smaller and the machining time is shorter)

Thank you!