CSE 211: Discrete Mathematics

(Due: 24/11/20)

Problem Session #5

Instructor: Dr. Zafeirakis Zafeirakopoulos

Assistant: Gizem Süngü

Course Policy: Read all the instructions below carefully before you start working on the assignment, and before you make a submission.

- They are the questions that I am going to solve during the next problem session.
- You should examine these questions before the lecture.
- I will write ONLY answers of the questions on the white board during the lecture.
- Since I have already shared the questions on Moodle, to obtain the questions is your responsibility.
- Please attend the lecture because I will take your attendances.

Problem 1: Functions (0 points)

If f and $f \circ g$ are one-to-one, does it follow that g is one-to-one? Justify your answer. *(Solution)*

- Since we know f and $f \circ g$ are one-to-one, we can define f and g functions as g: $A \Rightarrow B$ and f: $B \Rightarrow C$.
- Assume that b_1 and b_2 are the elements \in B and since we know that f is one-to-one, their images are not equal, $f(b_1) \neq f(b_2)$.
- Assume that a_1 and a_2 are the elements \in A and since we know that $f \circ g$ is one-to-one, we can say that $f(g(a_1)) \neq f(g(a_2))$.
- Using these two equations, we can suppose that $g(a_1) = b_1$ and $g(a_2) = b_2$.
- Since $g(a_1) \neq g(a_2)$, we can see that g is one-to-one.

Problem 2: Inverse of Functions

(0 points)

Let f be the function from \mathbb{R} to \mathbb{R} defined by $f(x) = x^2$. Find (a) f^{-1} ({ $x \mid 0 < x < 1$ }) (Solution) { $x \mid -1 < x < 0 \lor 0 < x < 1$ }

(b)
$$f^{-1}$$
 ({ x | x > 4 })
(Solution) {x | x > 2 \lor x < -2}

- Problem Session #5

Problem 3: Function Properties

(0 points)

Give an example of a function $N \to N$ which is:

- (a) onto but not one-to-one;
- (Solution) The function defined by f(1) = 1 and for n > 1, f(n) = n 1, for example.
- (b) neither one-to-one nor onto;
- (Solution) the constant function f(n) = 107 for all n, for example.
- (c) both one-to-one and onto.
- (Solution) the identify function F(n) = n, for all n, for example.

Problem 4: Functions

(0 points)

Let $S = \{1, 2, 3, 4, 5\}$ and let $f, g, h: S \to S$ be the functions defined by

- $f = \{(1, 2), (2, 1), (3, 4), (4, 5), (5, 3)\}$
- $g = \{(1, 3), (2, 5), (3, 1), (4, 2), (5, 4)\}$
- $h = \{(1, 2), (2, 2), (3, 4), (4, 3), (5, 1)\}$
- (a) Explain why f and g have inverses but h does not. Find f^{-1} and g^{-1} .

(Solution)

$$\hat{f}^{-1} = \{(1, 2), (2, 1), (3, 5), (4, 3), (5, 4)\};$$
 $g^{-1} = \{(1, 3), (2, 4), (3, 1), (4, 5), (5, 2)\}$

Functions f and g have inverses because they are one-to-one and onto while h does not have an inverse because it is not one-to-one(equally because it is not onto).

(b) Show that $(f \circ g)^{-1} = g^{-1} \circ f^{-1} \neq f^{-1} \circ g^{-1}$.

(Solution)

•
$$(f \circ g)^{-1} = f(g(x))^{-1} = \{(1, 4), (2, 3), (3, 2), (4, 1), (5, 5)\}$$

- $x \in \{1, 2, 3, 4, 5\}$ for $f(g(x))^{-1}$
- when $x = 1$:
* $g(1) = 3$ so $f(g(1)) = f(3) = 4$. If $f(g(1)) = 4$, then $f(g(4))^{-1} = 1$.
- when $x = 2$:
* $g(2) = 5$ so $f(g(2)) = f(5) = 3$. If $f(g(2)) = 3$, then $f(g(3))^{-1} = 2$.
- when $x = 3$:

- Problem Session #5

$$* g(3) = 1 \text{ so } f(g(3)) = f(1) = 3. \text{ If } f(g(2)) = 3, \text{ then } f(g(3))^{-1} = 2. \\ - \text{ when } x = 4: \\ * g(4) = 2 \text{ so } f(g(4)) = f(2) = 1. \text{ If } f(g(4)) = 1, \text{ then } f(g(1))^{-1} = 4. \\ - \text{ when } x = 5: \\ * g(5) = 4 \text{ so } f(g(5)) = f(4) = 5. \text{ If } f(g(5)) = 5, \text{ then } f(g(5))^{-1} = 5. \\ \bullet g^{-1} \circ f^{-1} = g^{-1}(f^{-1}(x)) = \{(1,4),(2,3),(3,2),(4,1),(5,5)\} = (f \circ g)^{-1} \\ - x \in \{1,2,3,4,5\} \text{ for } g^{-1}(f^{-1}(x)) \\ - \text{ when } x = 1: \\ * f^{-1}(1) = 2 \text{ so } g^{-1}(f^{-1}(1)) = g^{-1}(2) = 4 = (1,4) \\ - \text{ when } x = 2: \\ * f^{-1}(2) = 1 \text{ so } g^{-1}(f^{-1}(2)) = g^{-1}(1) = 3 = (2,3) \\ - \text{ when } x = 3: \\ * f^{-1}(3) = 5 \text{ so } g^{-1}(f^{-1}(3)) = g^{-1}(5) = 2 = (3,2)$$

• $f^{-1} \circ g^{-1} = \{(1, 5), (2, 3), (3, 2), (4, 4), (5, 1)\} \neq (f \circ g)^{-1}$