```
In [1]: import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import seaborn as sn
    from sklearn.linear_model import LogisticRegression
```

```
In [2]: df=pd.read_csv('test g csv').dropna()
    df2 = pd.read_csv("train g csv")
    df
```

Out[2]:		Passengerld	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin
	12	904	1	Snyder, Mrs. John Pillsbury (Nelle Stevenson)	female	23.0	1	0	21228	82.2667	B45
	14	906	1	Chaffee, Mrs. Herbert Fuller (Carrie Constance	female	47.0	1	0	W.E.P. 5734	61.1750	E31
	24	916	1	Ryerson, Mrs. Arthur Larned (Emily Maria Borie)	female	48.0	1	3	PC 17608	262.3750	B57 B59 B63 B66
	26	918	1	Ostby, Miss. Helene Ragnhild	female	22.0	0	1	113509	61.9792	B36
	28	920	1	Brady, Mr. John Bertram	ma l e	41.0	0	0	113054	30.5000	A21
	404	1296	1	Frauenthal, Mr. Isaac Gerald	male	43.0	1	0	17765	27.7208	D40
	405	1297	2	Nourney, Mr. Alfred (Baron von Drachstedt")"	male	20.0	0	0	SC/PARIS 2166	13.8625	D38
	407	1299	1	Widener, Mr. George Dunton	male	50.0	1	1	113503	211.5000	C80
	411	1303	1	Minahan, Mrs. William Edward (Lillian E Thorpe)	female	37.0	1	0	19928	90.0000	C78
	414	1306	1	Oliva y Ocana, Dona. Fermina	female	39.0	0	0	PC 17758	108.9000	C105

87 rows × 11 columns

In [4]: df2

t[4]:		Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Са
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	(
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	С
	6	7	0	1	McCarthy, Mr. Timothy J	male	54.0	0	0	17463	51.8625	1
	10	11	1	3	Sandstrom, Miss. Marguerite Rut	female	4.0	1	1	PP 9549	16.7000	
	11	12	1	1	Bonnell, Miss. Elizabeth	female	58.0	0	0	113783	26.5500	С
	871	872	1	1	Beckwith, Mrs. Richard Leonard (Sallie Monypeny)	female	47.0	1	1	11751	52.5542	I
	872	873	0	1	Carlsson, Mr. Frans Olof	male	33.0	0	0	695	5.0000	
	879	880	1	1	Potter, Mrs. Thomas Jr (Lily Alexenia Wilson)	female	56.0	0	1	11767	83.1583	(
	887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.0000	I
	889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	30.0000	С
	183 r	ows × 12 colu	ımns									
	4											•

```
In [5]: df.info()
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 87 entries, 12 to 414
         Data columns (total 11 columns):
              Column
                            Non-Null Count
                                            Dtype
          0
              PassengerId 87 non-null
                                            int64
          1
              Pclass
                            87 non-null
                                            int64
          2
              Name
                            87 non-null
                                            object
          3
              Sex
                            87 non-null
                                            object
          4
                            87 non-null
                                            float64
              Age
          5
              SibSp
                            87 non-null
                                            int64
          6
                                            int64
              Parch
                            87 non-null
          7
              Ticket
                            87 non-null
                                            object
          8
                                            float64
              Fare
                            87 non-null
          9
              Cabin
                            87 non-null
                                            object
          10 Embarked
                            87 non-null
                                            object
         dtypes: float64(2), int64(4), object(5)
         memory usage: 8.2+ KB
 In [6]: | feature_matrix = df[['PassengerId', 'Pclass', 'Age', 'SibSp', 'Parch', 'Fare']]
         target vector = df['Embarked']
 In [7]: | feature matrix.shape
 Out[7]: (87, 6)
 In [8]: target vector.shape
 Out[8]: (87,)
 In [9]: from sklearn.preprocessing import StandardScaler
In [10]: | fs = StandardScaler().fit_transform(feature_matrix)
In [11]: logr=LogisticRegression()
         logr.fit(fs,target vector)
Out[11]: LogisticRegression()
In [12]: observation = df2[['PassengerId','Pclass','Age','SibSp','Parch','Fare']]
```

```
prediction = logr.predict(observation)
In [13]:
           prediction
Out[13]: array(['C',
                                                 'Q',
                                                       'Q',
                                                             'C',
                                                                    'Q',
                                                                                            'Q',
                          'C',
                               'C',
                                            'C',
                                      'Q',
                                                                          'Q',
                                                                                'Q',
                                                                                      'Q',
                                                              'Q',
                          'Q',
                                      'Q',
                                            'Q',
                                                  'Q',
                                                                    'Q',
                                                                          'Q',
                                                                                'Q',
                    'Q',
                                'Q',
                                                        'Q',
                                                                                      'Q',
                                                                                            'Q',
                    'Q',
                                'Q',
                                      'Q',
                                            'Q',
                                                        'Q',
                                                              'Q',
                                                                    'Q',
                                                                                'Q',
                          'Q',
                                                  'Q',
                                                                          'Q',
                                                                                      'Q',
                                                                                            'Q',
                                                        'Q',
                                                              'Q',
                                      'Q',
                                            'Q',
                                                  'Q',
                                                                    'Q',
                                                                          'Q',
                                                                                'Q',
                                'Q',
                                                        'Q'
                                                                    'Q'
                          'Q',
                                'Q'
                                      'Q'
                                            'Q'
                                                  'Q'
                                                              'Q',
                                                                          'Q'
                                                                                'Q'
                                                  'Q',
                                                        'Q',
                                                                    'Q',
                    'Q',
                                'Q',
                                      'Q',
                                            'Q',
                                                              'Q',
                                                                          'Q',
                          'Q',
                                                                                'Q',
                                                                                      'Q',
                                                                                            'Q',
                          'Q',
                                      'Q',
                                            'Q',
                                                        'Q',
                                                              'Q',
                                                                    'Q',
                                                                          'Q',
                                                                                'Q',
                    'Q',
                                'Q',
                                                  'Q'
                                                                                      'Q',
                                                                                            'Q',
                                      'Q',
                                                        'Q',
                                                              'Q',
                                                                    'Q',
                                                                          'Q',
                    'Q',
                          'Q',
                                'Q',
                                            'Q',
                                                  'Q',
                                                                                'Q',
                                                                                      'Q',
                                      'Q',
                                            'Q',
                                                        'Q',
                                                              'Q',
                                                                          'Q',
                          'Q',
                                'Q',
                                                  'Q'
                                                                    'Q',
                                                                                'Q',
                                                                                      'Q',
                                                        'Q',
                    'Q',
                          'Q',
                                'Q',
                                            'Q'
                                                              'Q',
                                                                    'Q',
                                                                                'Q'
                                                                                            'Q'
                                      'Q'
                                                  'Q'
                                                                          'Q'
                                                                                      'Q',
                                            'Q',
                                      'Q',
                                                  'Q',
                                                        'Q',
                                                              'Q',
                                                                    'Q',
                                                                          'Q',
                                                                                'Q',
                    'Q',
                          'Q',
                                'Q',
                                                                                      'Q',
                                                  'Q',
                                                        'Q',
                                                             'Q',
                                      'Q',
                                            'Q',
                          'Q',
                                'Q',
                                                                    'Q',
                                                                          'Q'
                                                                                'Q',
                                                                                      'Q',
                                      'Q',
                                            'Q',
                                                  'Q',
                                                        'Q',
                                                              'Q',
                                                                    'Q',
                                                                                'Q',
                          'Q',
                                                                          'Q',
                                'Q',
                                                                                      'Q',
                                      'Q',
                                                        'Q',
                    'Q', 'Q',
                                'Q',
                                            'Q',
                                                  'Q',
                                                              'Q',
                                                                    'Q',
                                                                          'Q',
                    'Q'], dtype=object)
In [14]: logr.classes_
Out[14]: array(['C', 'Q', 'S'], dtype=object)
In [15]: logr.predict proba(observation)[0][0]
Out[15]: 0.999999999955971
In [16]:
           logr.predict_proba(observation)[0][1]
Out[16]: 4.402884174313719e-12
```

Logistic Regression 2

```
In [17]: import re
    from sklearn.datasets import load_digits
    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import seaborn as sns
    from sklearn.linear_model import LogisticRegression
    from sklearn.model_selection import train_test_split
```

```
In [18]: |digits = load_digits()
         digits
Out[18]: {'data': array([[ 0., 0., 5., ..., 0., 0., 0.],
                  [0., 0., 0., ..., 10., 0., 0.],
                         0., 0., ..., 16., 9.,
                  [ 0.,
                         0., 1., ..., 6., 0., 0.],
                  [ 0.,
                  [0., 0., 2., ..., 12., 0., 0.],
                  [0., 0., 10., \ldots, 12., 1., 0.]]),
           'target': array([0, 1, 2, ..., 8, 9, 8]),
           'frame': None,
           'feature_names': ['pixel_0_0',
            'pixel_0_1',
            'pixel_0_2',
            'pixel_0_3',
            'pixel_0_4'
            'pixel_0_5',
            'pixel 0 6',
            'pixel_0_7',
            'pixel_1_0',
            'pixel_1_1',
In [19]: plt.figure(figsize=(20,4))
         for index,(image,label) in enumerate(zip(digits.data[0:5],digits.target[0:5]))
             plt.subplot(1,5,index+1)
             plt.imshow(np.reshape(image,(8,8)),cmap=plt.cm.gray)
             plt.title("Number:%i\n"%label,fontsize=15)
               Number:0
                               Number:1
                                                                Number:3
                                               Number:2
                                                                                Number:4
In [20]: | X_train, X_test, y_train, y_test=train_test_split(digits.data, digits.target, test_
In [21]:
         print(X_train.shape)
         print(X_test.shape)
         print(y_train.shape)
         print(y_test.shape)
         (1257, 64)
         (540, 64)
          (1257,)
          (540,)
In [22]: logre=LogisticRegression(max_iter=10000)
         logre.fit(X_train,y_train)
Out[22]: LogisticRegression(max_iter=10000)
```

Random Forest

```
In [33]: g1={'Embarked':{'C':1, 'S':2, 'Q':3}}
df=df.replace(g1)
df
```

Out[33]:		Passengerld	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin
_	12	904	1	Snyder, Mrs. John Pillsbury (Nelle Stevenson)	female	23.0	1	0	21228	82.2667	B45
	14	906	1	Chaffee, Mrs. Herbert Fuller (Carrie Constance	female	47.0	1	0	W.E.P. 5734	61.1750	E31
	24	916	1	Ryerson, Mrs. Arthur Larned (Emily Maria Borie)	female	48.0	1	3	PC 17608	262.3750	B57 B59 B63 B66
	26	918	1	Ostby, Miss. Helene Ragnhild	female	22.0	0	1	113509	61.9792	B36
	28	920	1	Brady, Mr. John Bertram	ma l e	41.0	0	0	113054	30.5000	A21
	404	1296	1	Frauenthal, Mr. Isaac Gerald	male	43.0	1	0	17765	27.7208	D40
	405	1297	2	Nourney, Mr. Alfred (Baron von Drachstedt")"	male	20.0	0	0	SC/PARIS 2166	13.8625	D38
	407	1299	1	Widener, Mr. George Dunton	male	50.0	1	1	113503	211.5000	C80
	411	1303	1	Minahan, Mrs. William Edward (Lillian E Thorpe)	female	37.0	1	0	19928	90.0000	C78
	414	1306	1	Oliva y Ocana, Dona. Fermina	female	39.0	0	0	PC 17758	108.9000	C105

87 rows × 11 columns

In [34]: from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,train_size=0.70)

```
In [35]: from sklearn.ensemble import RandomForestClassifier
         rfc = RandomForestClassifier()
         rfc.fit(x_train,y_train)
Out[35]: RandomForestClassifier()
In [36]:
         parameters = {'max_depth':[1,2,3,4,5],'min_samples_leaf':[5,10,15,20,25],
                        'n_estimators': [10,20,30,40,50]
In [37]: | from sklearn.model_selection import GridSearchCV
         grid search = GridSearchCV(estimator=rfc,param grid=parameters,cv=2,scoring="a
         grid_search.fit(x_train,y_train)
         C:\ProgramData\Anaconda3\lib\site-packages\sklearn\model selection\ split.py:
         666: UserWarning: The least populated class in y has only 1 members, which is
         less than n splits=2.
           warnings.warn(("The least populated class in y has only %d"
Out[37]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
                      param_grid={'max_depth': [1, 2, 3, 4, 5],
                                   'min_samples_leaf': [5, 10, 15, 20, 25],
                                   'n estimators': [10, 20, 30, 40, 50]},
                      scoring='accuracy')
In [38]: grid_search.best_score_
Out[38]: 0.649999999999999
In [39]: rfc_best = grid_search.best_estimator_
```

In [40]: from sklearn.tree import plot tree

```
plt.figure(figsize = (80,40,))
         ",'plot_tree(rfc_best.estimators_[5],feature_names=x.columns,class_names=['Yes
Out[40]: [Text(2637.818181818182, 1902.6000000000001, 'PassengerId <= 1173.5\ngini =
         0.499\nsamples = 39\nvalue = [29, 31, 0]\nclass = No'),
          Text(1623.27272727273, 1359.0, 'Fare <= 61.577\ngini = 0.482\nsamples = 25
         \nvalue = [22, 15, 0] \setminus (ass = Yes'),
          Text(811.6363636363636, 815.400000000001, 'PassengerId <= 976.5\ngini = 0.3
         2\nsamples = 11\nvalue = [3, 12, 0]\nclass = No'),
          Text(405.8181818181818, 271.799999999995, 'gini = 0.219\nsamples = 6\nvalu
         e = [1, 7, 0] \setminus nclass = No'),
          Text(1217.4545454545455, 271.799999999995, 'gini = 0.408\nsamples = 5\nval
         ue = [2, 5, 0] \setminus nclass = No'),
          Text(2434.9090909091, 815.400000000001, 'SibSp <= 0.5\ngini = 0.236\nsamp
         les = 14\nvalue = [19, 3, 0]\nclass = Yes'),
          Text(2029.0909090909, 271.799999999995, 'gini = 0.0 \times 6 \times 6
         = [10, 0, 0]\nclass = Yes'),
          Text(2840.7272727272725, 271.7999999999995, 'gini = 0.375 \nsamples = 8 \nval
         ue = [9, 3, 0]\nclass = Yes'),
          Text(3652.36363636365, 1359.0, 'Fare <= 34.35\ngini = 0.423\nsamples = 14
         \nvalue = [7, 16, 0] \setminus (ass = No'),
          Text(3246.5454545454545, 815.4000000000001, 'gini = 0.5 \nsamples = 5 \nvalue
         = [4, 4, 0] \setminus (1),
          Text(4058.181818181818, 815.400000000001, 'gini = 0.32\nsamples = 9\nvalue
         = [3, 12, 0]\nclass = No')]
```


In []: