

Characterizing the Risk of Atrial Fibrillation in Cardiac Patients with Exceptional Electrocardiogram Phenotypes

Lieke van den Biggelaar¹, Rianne M. Schouten¹, Ashley de Bie², R. Arthur Bouwman², Wouter Duivesteijn¹

¹ Eindhoven University of Technology, Eindhoven, the Netherlands

² Catharina Hospital, Eindhoven, the Netherlands

Atrial Fibrillation Risk after Cardiac Surgery

Patient undergoes cardiac surgery

Atrial Fibrillation Risk after Cardiac Surgery

Patient undergoes cardiac surgery

Patient recovers at the intensive care unit

Atrial Fibrillation Risk after Cardiac Surgery

Patient undergoes cardiac surgery

Patient recovers at the intensive care unit

20%-50%

Patient develops atrial fibrillation

Current Practice on Atrial Fibrillation Detection

Current Practice on Atrial Fibrillation Detection

Current Practice on Atrial Fibrillation Detection

Automated AF Detection and Prediction

Predictive Methods

Automated AF Detection and Prediction

Predictive Methods

- Global, one-size-fits-all manner
- Difficult to understand for non-technical users
- Complicated deployment in real-world practice

Automated AF Detection and Prediction

Descriptive Methods

Automated AF Detection and Prediction

Descriptive Methods

- Structured search for local patterns
- Transparent frameworks
- A move towards stratified medicine
- Automated discovery of subgroups with exceptional AF risks

Automated AF Detection and Prediction

Descriptive Methods

- Structured search for local patterns
- Transparent frameworks
- A move towards stratified medicine
- Automated discovery of subgroups with exceptional AF risks

Exceptional Model Mining

VERSUS

Subgroup

Exceptional Model Mining

VERSUS

Exceptional Model Mining for Stratified Medicine

{Blood Loss = high}

{Blood Loss = high AND Age > 60}

Exceptional Model Mining for Stratified Medicine

Example quality measure:

% of irregular RR-intervals in ECG morphology

{Blood Loss = high}

40%

{Blood Loss = high AND Age > 60}

80%

Exceptional Model Mining for Stratified Medicine

Patients aged over 60 with high blood loss during surgery have a higher risk of AF development and should get preventive treatment

The EMM Framework for AF Characterization

	descriptors								targets					
		AGE					()	(((i)		hb1	hb2	hb
		56	1	used	uses	never		True	False	False	7.6			• • •
10	8	43	1	never	uses	never	•••	True	True	True	7.4	~~~		• • •
patients		89	1	never	used	never	•••	False	False	True	8.6	• • •	• • •	• • •
		77	1	uses	uses	used	•••	True	True	False	7.2	• • •	• • •	• • •
		56	1	never	never	never		False	True	False	6.7	Mm	M	

Descriptors: Medical Characteristics

	descriptors								targets					
		AGE					()	(((hb1 hb	2	hb
		56	1	used	uses	never		True	False	False	7.6		\	
10	8	43	1	never	uses	never	•••	True	True	True	7.4		_	
patients		89	1	never	used	never		False	False	True	8.6			
		77	1	uses	uses	used		True	True	False	7.2			
		56	+	never	never	never	•••	False	True	False	6.7	July why		

	descriptors									targets				
		AGE										hb1	hb2	hb
		56	1	used	uses	never		True	False	False	7.6			• • •
patients		43	1	never	uses	never		True	True	True	7.4	~~		• • •
		89	1	never	used	never		False	False	True	8.6	• • •	•••	• • •
3		77	1	uses	uses	used		True	True	False	7.2	•••	•••	• • •
		56	1	never	never	never		False	True	False	6.7	phr	Mm	• • •

Quality Measures

Exceptionality factor, including:

- entropy function;
- precision function;
- phenotype function.

$$\varphi(D) = \varphi_{\text{ef}}(D) \cdot \varphi_{\text{pr}}(D) \cdot \varphi_{\text{pheno}}(D)$$

Quality Measures

Phenotype function, as

• the difference between the population's and subgroup's phenotype.

$$\varphi_{\text{pheno}}(D) = \bar{\theta}^{G_D} - \bar{\theta}^{\Omega}$$

Quality Measures

Phenotypes, related to

- irregular heart rates;
- absence of P-waves;
- replacement F-waves;
- combinations thereof.

$$\theta_{\text{SDRR}}(p) = \sqrt{\frac{1}{K-2} \sum_{i=1}^{K-1} (RR_i - \overline{RR})^2}$$

$$\theta_{\text{RMSSD}}(p) = \sqrt{\frac{1}{K-3} \sum_{i=1}^{K-2} (\Delta R R_i)^2}$$

$$\theta_{\text{SDSD}}(p) = \sqrt{\frac{1}{K-3} \sum_{i=1}^{K-2} (\Delta R R_i - \overline{\Delta R R})^2}$$

Quality Measures

Phenotypes, related to

- irregular heart rates;
- absence of P-waves;
- replacement F-waves;
- combinations thereof.

$$\theta_P(D) = \frac{1}{K} \sum_{i=1}^K P_i$$

$$\theta_F(D) = \frac{1}{K} \sum_{i=1}^K F_i$$

Quality Measures

Phenotypes, related to

- irregular heart rates;
- absence of P-waves;
- replacement F-waves;
- combinations thereof.

$$\theta_{\text{SDSQ}}^*(p) = \sqrt{\frac{1}{K-2} \sum_{i=1}^{K-1} \mathbf{1}_*(p,i) \cdot (SQ_i - \overline{SQ})^2}$$

$$\theta_{\text{RMSSD}}^*(p) = \sqrt{\frac{1}{K-3} \sum_{i=1}^{K-2} \mathbf{1}_*(p,i) \cdot (\Delta SQ_i)^2}$$

$$\theta_{\text{SDSD}}^*(p) = \sqrt{\frac{1}{K-3} \sum_{i=1}^{K-2} \mathbf{1}_*(p,i) \cdot (\Delta SQ_i - \overline{\Delta SQ})^2}$$

Beam Search for Subgroups

Beam Search for Subgroups

AGE > 70

40% of irregular RR-intervals in ECG morphology

Beam Search for Subgroups

AGE > 70

40% of irregular RR-intervals in ECG morphology

CHLORIDE > 106

60% of irregular RR-intervals in ECG morphology

Beam Search for Subgroups

Real-Life Data Experiments

Data from Catharina Hospital

Descriptors

Electronic Health Records

247 aggregated patient characteristics

Targets

Electrocardiogram Signals

Atrial Fibrillation features extracted from Lead II

Evaluators

Atrial Fibrillation Complications

Alarm indicators during and <4 weeks after surgery

Real-Life Data Experiments

Patient Population

230 cardiac patients admitted in Catharina Hospital for cardiac surgery

Summary Statistics of the Eleven Experiments

Singular Phenotypes

#	phenotype	Δ exceptionality	% AF*
1	SDSD	+37%	71%
2	RMSSD	+51%	71%
3	SDRR	+39%	73%
4	P-wave absence	+66%	71%
5	F-waves	+248%	70%

^{*} AF percentage of full dataset is 37.8%.

Combined Phenotypes

#	phenotype	Δ exceptionality	% AF*
6	SDSD & P-wave	+167%	60%
7	RMSSD & P-wave	+171%	58%
8	SDSQ & P-wave	+65%	57%
9	SDSD & F-waves	+205%	59%
10	RMSSD & F-waves	+171%	58%
11	SDSQ & F-waves	+54%	58%

Summary Statistics of the Eleven Experiments

Singular Phenotypes

#	phenotype	Δ exceptionality	% AF*
1	SDSD	+37%	71%
2	RMSSD	+51%	71%
3	SDRR	+39%	73%
4	P-wave absence	+66%	71%
5	F-waves	+248%	70%

^{*} AF percentage of full dataset is 37.8%.

Combined Phenotypes

#	phenotype	Δ exceptionality	% AF*
6	SDSD & P-wave	+167%	60%
7	RMSSD & P-wave	+171%	58%
8	SDSQ & P-wave	+65%	57%
9	SDSD & F-waves	+205%	59%
10	RMSSD & F-waves	+171%	58%
11	SDSQ & F-waves	+54%	58%

Summary Statistics of the Eleven Experiments

Singular Phenotypes

#	phenotype	Δ exceptionality	% AF*
1	SDSD	+37%	71%
2	RMSSD	+51%	71%
3	SDRR	+39%	73%
4	P-wave absence	+66%	71%
5	F-waves	+248%	70%

^{*} AF percentage of full dataset is 37.8%.

Combined Phenotypes

#	phenotype	Δ exceptionality	% AF*
6	SDSD & P-wave	+167%	60%
7	RMSSD & P-wave	+171%	58%
8	SDSQ & P-wave	+65%	57%
9	SDSD & F-waves	+205%	59%
10	RMSSD & F-waves	+171%	58%
11	SDSQ & F-waves	+54%	58%

Evaluation of Three Selected Experiments

The height of the bars indicate the percentage of patients in the subgroup that experienced AF.

The darkness of the bars indicate the exceptionality of the phenotype: the darker the greater the exceptionality.

Identified Subgroups

- Patients that are assisted by the heart-lung machine that also have acidic blood;
- Patients with blood clotting problems that need cefazolin admission;
- Patients with high chloride levels;
- Patients with blood clotting problems that need Ringer's lactate to overcome low blood volume/low blood pressure;
- Patients that get Alfentanil administered.

Future Work

Medical direction

- Clinical follow-up studies on the found risk factor combinations.
- Repetition of this study at other hospitals.
- Generalization of this study to other cardiac diseases.

Technical direction

- Combining more leads to catch more subtle AF in the ECGs.
- Scaling the method towards a predictive technique.
- Introducing an evaluation metric scaled towards medical applications.

Collaborators

Contact

Lieke van den Biggelaar

