Отчёт по работе 4.1.1

Изучение центрированных оптических систем Карташов Констанин Б04-005

I Анотация

Цель работы: Изучит методы определения фокусных расстояний линз и сложных оптических систем; определить характеристики оптической систем, составленной из тонких линз, изучить недостатки реальных линз – сферическую и хроматическую аберрации.

Оборудование:

- ⊳ Оптическая скамья с набором рейтеров
- Положительные и отрицательные линзы
- ⊳ Экран
- ⊳ Осветитель с ирисовой диафрагмой
- ⊳ Зрительная труба
- ⊳ Светофильтры
- ⊳ Кольцевые диафрагмы
- ⊳ Линейка

II Теоретическая часть

 Определение фокусного расстояния оптических систем по методу Аббе

Рис. 1: Метод Аббе

Измерение фокусного расстояния по методу Аббе основано на определении поперечного увеличения для нескольких (не менее двух) различных положений предмета, находящегося на оптической оси исследуемой оптической системы. На рис. 1 представлена соответствующая схема эксперимента. Фокусное расстояние системы можно выразить через положения предмета и соответствующие увеличения следующим образом:

$$f = \frac{\Delta x}{\Delta(y/y')} = -\frac{\Delta x'}{\Delta(y'/y)} \tag{1}$$

ii Определение фокусного расстояния оптических систем по методу Бесселя

Рис. 2: Метод Бесселя

Схема метода Бесселя для случая, когда n=n' и f'=-f, представлена на рис. 1. Она основана на том, что при заданном расстоянии L между предметом и экраном выполняется соотношение, представляющее собой квадратное уравнение относительно расстояния s от главной плоскости пространства предметов до предмета (s<0):

$$-\frac{1}{s} + \frac{1}{L - \delta + s} = \frac{1}{f},\tag{2}$$

имеющее при условии $L>4f+\delta$ решения s1 и s2 , показанные на рис. 2, где δ — расстояние между главными плоскостями системы (линзы).

Решив уравнение можно получить соотношение:

$$f = \frac{(L-\delta)^2 - l^2}{4(L-\delta)},\tag{3}$$

которое при условии $|\delta| \ll L$ можно упростить до вида:

$$f = \frac{L^2 - l^2}{4L} \tag{4}$$

ііі Определение фокусного расстояния тонкой рассеивающей линзы

Рис. 3: Определение фокусного расстояния тонкой рассеивающей линзы

Сначала с помощью собирающей линзы получают на экране действительное изображение предмета S (точка S_1 на рис. 3). Затем на пути лучей, выходящих из собирающей линзы, располагают исследуемую рассеивающую линзу и, отодвигая экран, получают чёткое изображение предмета на экране, образованное двумя линзами. Определив расстояния $a = a_0 - l > 0$ и a' > 0, рассчитывают фокусное расстояние рассеивающей линзы по формуле:

$$-\frac{1}{a} + \frac{1}{a'} = \frac{1}{f} \tag{5}$$

III Экспериментальная часть

i Определение фокусных расстояний тонких линз при помощи экрана

і.і Метод Аббе

Измерим фокусное расстояние центрированной линзы №1 методом Аббе. Получим изображение на экране, затем переместим экран и осветитель и получим изображение другого размера. Далее по формуле (1) найдём фокусное расстояние линзы:

$$y=2 \text{ cm}, \quad x_1=13 \text{ cm}, \quad x_1'=53 \text{ cm}, \quad y_1'=8.5 \text{ cm},$$

$$- \qquad x_2=17 \text{ cm}, \quad x_2'=25 \text{ cm}, \quad y_2'=3 \text{ cm},$$

$$f_1=\frac{17-13}{\frac{2}{3}-\frac{2}{25}}\approx 9.27, \quad f_1'=\frac{25-53}{\frac{3}{2}-\frac{8.5}{2}}\approx 10.18.$$

Среднее $f_1 = 9.73$ см.

№ изм.	a_1 , cm	a_1' , cm	a_2 , cm	a_2 ', cm	L, cm	l, cm	f_1 , cm
1	18	23.5	24	17.5	41.5	6	10.16
2	15	30	29	16	45	14	10.16
3	14	36	35	14	49.5	21.5	10.04
4	14	42	41.5	13.5	55.5	28	10.34
5	12	57	57	12.5	69.25	44.75	10.08
6	11.5	78	78	11.5	89.5	66.5	10.02
7	13	45	45	13	58	32	10.09

Таблица 1: Измерения фокусного расстояния по методу Бесселя

Погрешность измерений методом Аббе будет складывается из погрешностей измерения x_1, x_2, x'_1, x'_2 (если считать, что значение y нам дано) это может даль особенно сильную погрешность, если числа в знаменателе малы.

і.іі Метод Бесселя

Измерим фокусное расстояние центрированной линзы №1 методом Бесселя. Проведём несколько измерений и найдём среднее и случайную погрешность. Результаты измерений и вычислений внесём в таблицу 1.

По значения для f_1 из табл. 1 вычислим среднее и случайную погрешность (среднеквадратичное отклонение): $\bar{f}_1 = 10.13, \ \sigma_{f_1} = 0.10.$

i.iii Рассеивающая линза

Измерим фокусное расстояние рассеивающей линзы. Для это сначала получим изображение на экране при помощи собирающей линзы, и измерим расстояние a_0 , а затем отдалим изображение рассеивающей линзой и измерим расстояния l и a' (рис. 5). Затем по формуле (5) определим фокусное расстояние рассеивающей линзы f_- . Получаем:

$$a_0 = 14.5 \text{ cm}, \ a' = 13.5 \text{ cm}, \ l = 8 \text{ cm} \ \Rightarrow \ a = 6.5 \text{ cm}, \ f_- = \frac{aa'}{a - a'} \approx -12.5 \text{ cm}.$$

ii Определение фокусных расстояний тонких линз с помощью зрительной трубы

іі.і Линза №1

Расположим на оптическом столе осветитель, линзу №1 и зрительную трубу, предварительно настроенную на бесконечность. Получим чёткое изображение осветителя в зрительной трубе, и измерим расстояние от линзы до осветителя. Затем перевернём линзу и повторим опыт. В качестве фокусного расстояния возьмём среднее значение. Получили: $f_1^1 = 10.3 \, \mathrm{cm}$, $f_1^2 = 10.5 \, \mathrm{cm}$, $f_1 = 10.4 \, \mathrm{cm}$.

іі.іі Линза №2

Проведём такой же опыт для линзы №2. Получим: $f_2^1=13.1$ см, $f_2^2=13.3$ см, $f_2=13.2$ см.

Линза	f, cm	D, дптр $$$
Nº 1	10.4	9.6
№2	13.2	7.6
pacc.	12.5	-8

Таблица 2: Измеренные фокусные расстояния и оптические силы линз

Погрешность измерения фокусного расстояния линзы при помощи зрительной трубы можно оценить как погрешность двух измерений линейкой ($\sigma_f \approx 1$ мм), однако это не учитывает особенностей глаза наблюдателя и того, что изображение может быть чётким в некотором интервале. Полученные значения занесём в таблицу 2

ііі Определение фокусного расстояния и положения главных и фокальных плоскостей сложной оптической системы

ііі.і Измерение фокусного расстояния по методу Аббе

Соберём сложную систему из линзы №1 и №2, расположенных на расстоянии $l_{12} = 5.5$ см. Далее по методу Аббе найдём фокусное расстояние:

$$y=2 \text{ cm}, \quad x_1=5.8 \text{ cm}, \quad x_1'=39.5 \text{ cm}, \quad y_1'=10 \text{ cm}, \\ -x_2=9.1 \text{ cm}, \quad x_2'=15 \text{ cm}, \quad y_2'=3 \text{ cm}, \\ f_{\Sigma}=\frac{9.1-5.8}{\frac{2}{3}-\frac{2}{10}} \approx 7.07, \quad f_{\Sigma}'=\frac{15-39.5}{\frac{3}{2}-\frac{10}{2}}=7.$$

Среднее $f_{\Sigma} = 7.03$ см.

ііі.іі Нахождение главных фокусов системы

Расположим зрительную трубу за сложной системой, и передвигая осветитель за линзой №1, добьёмся чёткого изображения в зрительной трубе. Измерив расстояние от линзы №1 до осветителя получим положения главного фокуса $F_{\Sigma 1} = 4.6$ см.

Тоже самое повторим для линзы №2. Получим $F_{\Sigma 2} = 4.0$ см.

Для погрешностей измерений фокусного расстояния и главных фокусов справедливы рассуждения для погрешностей измерений методом Аббе и зрительной трубой.

ііі.ііі Построение геометрической модели сложной системы

Построим модель сложной системы на миллиметровой бумаге (прил. 1). Построим падающие на систему слева и справа лучи параллельные оптической оси. По рисунку рассчитаем: $f_{\Sigma}=7.6$ см, $H_{1\Sigma}=3.2$ см, $H_{2\Sigma}=4.0$ см, $F_{1\Sigma}=4.4$ см, $F_{2\Sigma}=3.6$ см.

Также рассчитаем эти значения исходя из формул:

$$H_{1\Sigma} = \frac{f_1 l_{12}}{l_{12} - f_1 - f_2} = 3.16 \text{ cm}, \ H_{2\Sigma} = \frac{f_2 l_{12}}{l_{12} - f_1 - f_2} = 4.01 \text{ cm},$$

$$F_{1\Sigma} = f_1 \left(1 + \frac{f_1}{l_{12} - f_1 - f_2} \right) = 4.42 \text{ cm}, \ F_{2\Sigma} = f_2 \left(1 + \frac{f_2}{l_{12} - f_1 - f_2} \right) = 3.57 \text{ cm},$$

$$f_{\Sigma} = \frac{f_1 f_2}{l_{12} - f_1 - f_2} = 7.58 \text{ cm}.$$

Все значения занесём в таблицу 3:

Способ	f, cm	$F_{1\Sigma}$, cm	$F_{2\Sigma}$, cm	$H_{1\Sigma}$, cm	$H_{2\Sigma}$, cm
Измерение	7.0	4.6	4.0	_	_
Построение	7.6	4.4	3.6	3.2	4.0
Формулы	7.57	4.42	3.57	3.16	4.01

Таблица 3: Значения для параметров сложной системы полученные разными способами

iv Основные аберрации оптических систем

iv.i Сферическая аберрация

Последовательно перекрывая линзу N3 диафрагмами различных диаметров 2h, измерим соответствующие фокусные расстояния s:

h, cm	0.5	1	2
s, cm	7.2	7	6.2

Таблица 4: Наблюдения сферической аберрации

Построим график $s(h^2)$ по точкам из табл. 4 (рис. 4). Точки на графике лежат на одной прямой, экстраполируем эту прямую до точек h=0 и h=r, и рассчитаем продольную сферическую аберрацию линзы $\delta s=s(r)-s(0)=4.867-7.267=-3.6$ см.

iv.ii Хроматическая аберрация

Применяя по очереди синий, жёлтый и красный световые фильтры измерим соответствующие фокусные расстояния: $f_F = 7.4$ см, $f_D = 7$ см, $f_C = 6.5$ см.

Рассчитаем хроматическую аберрацию: $\delta f_{\rm xp} = f_F - f_C = 7.4 - 6.5 = 0.9$ см и число Аббе $\nu \approx -f_D/f_{\rm xp} = -7/0.9 \approx -7.8$. Значение числа Аббе получилось сильно низким, из чего можно сделать вывод, что значение хроматической аберрации завышено.

IV Выводы

- 1. Измерили фокусное расстояние собирающей и рассеивающей линзы несколькими способами, за счёт чего убедились в действенности этих способов.
- 2. Измерили параметры сложной оптической системы, и подтвердили измерения геометрическим построением и теоретическими расчётами.

Рис. 4: Зависимость $s(h^2)$ для сферической аберрации

3. Измерили сферическую и хроматическую аберрации линзы.