Învătare Automată - Laboratorul 4

Metode de programare dinamică pentru rezolvarea proceselor markov de decizie

Tudor Berariu

Facultatea de Automatică și Calculatoare

Scopul laboratorului

 Scopul laboratorului îl reprezintă înțelegerea conceptelor de proces markov de decizie, politică, valoare de stare, precum și implementarea unor metode de programare dinamică pentru rezolvarea problemei de control a unui MDP.

- În cadrul laboratorului veti:
 - 1. implementa algoritmul de iterare a politicilor;
 - 2. implementa algoritmul de iterare a valorilor de stare.

Proces Markov de decizie finit. Politică

- Un proces Markov de decizie finit este un obiect matematic compus din:
 - ullet o multime finită de stări ${\cal S}$
 - submulțimea $S^- \subset S$ reprezintă stările neterminale.
 - ullet o multime finită de acțiuni ${\cal A}$
 - ullet o multime finită de valori, numite recompense ${\cal R}$
 - o funcție $p: \mathcal{S} \times \mathcal{A} \times \mathcal{S} \times \mathcal{R} \rightarrow [0,1]$ ce descrie dinamica mediului:

$$p(s, a, s', r) \stackrel{\text{not.}}{=} p(s', r|s, a) = P(S_{t+1} = s', R_{t+1} = r \mid S_t = s, A_t = a)$$

- un factor de atenuare $\gamma \in [0,1]$.
- O politică deterministă reprezintă o funcție $\pi: \mathcal{S}^- \to \mathcal{A}$ care indică o acțiune pentru fiecare stare neterminală.
- Un proces Markov de decizie finit și o politică induc traiectorii de tipul:

$$S_0, A_0, R_1, S_1, A_1, \dots, S_t, A_t, R_{t+1}, S_{t+1}, \dots, R_T, S_T$$

Valoare de stare

• Câștigul mediu dintr-o stare $s \in S$ indus de o politică π :

$$\begin{aligned} v^{\pi}(s) &= \mathbb{E}_{\pi} \left[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \ldots \middle| S_t = s \right] = \mathbb{E}_{\pi} \left[\sum_{\tau = t+1} \gamma^{\tau - t - 1} R_{\tau} \middle| S_t = s \right] \\ &= \mathbb{E}_{\pi} \left[G_t \middle| S_t = s \right] \end{aligned}$$

• Relațiile dintre valorile de stare induse de o politică deterministă (ecuațiile Bellman):

$$v^{\pi}(s) = \sum_{s' \in \mathcal{S}} \sum_{r \in \mathcal{R}} p(s', r|s, \pi(s)) \left[r + \gamma v^{\pi}(s') \right]$$

• Scopul învățării prin recompensă îl reprezintă găsirea unei politici optime π^* :

$$\pi^* = \operatorname*{argmax}_{\pi} \mathbb{E}_{\pi} \left[G_t
ight] = \operatorname*{argmax}_{\pi} \mathbb{E}_{\pi} \left[v^{\pi}(S_t)
ight]$$

3

Evaluarea unei politici

• Problema evaluării unei politici presupune determinarea funcției valoare $v^{\pi}: \mathcal{S} \to \mathbb{R}$ indusă de acea politică.

$$v^{\pi}(s) = \mathbb{E}_{\pi}\left[G_t \mid S_t = s\right]$$

Algoritmul Policy
 Evaluation construiește o estimare a acestei funcții pentru o politică detrministă.

$$v(s) \approx v^{\pi}(s), \forall s \in \mathcal{S}$$

```
procedure PolicyEvaluation(\langle S, A, R, p, \gamma \rangle, \pi, \epsilon)
     for all s \in S do
          v(s) \leftarrow 0

    ∀alorile initiale sunt zero.

     end for
     repeat
          \delta \leftarrow 0
          for all s \in S^- do
                v_{old} \leftarrow v(s)
                v(s) \leftarrow \sum_{s' \in S} \sum_{r \in \mathcal{P}} p(s', r|s, \pi(s)) [r + \gamma v(s')]
                \delta \leftarrow \max(\delta, |v(s) - v_{old}|)
          end for
     until \delta < \epsilon
     return v
end procedure
```

Iterarea politicilor

Fiind dată o politică deterministă π și funcția valoare v^π indusă de aceasta se poate obține o politică mai bună π' alegând acțiunile în mod lacom în raport cu v^π.

$$\pi'(s) \leftarrow \operatorname*{argmax}_{a \in \mathcal{A}} \sum_{s',r} p(s',r|s,a) \left[r + \gamma v(s')\right]$$

 Algoritmul Policy Iteration găsește o politică optimă alternând pași de evaluare și de îmbunătățire a politicii.

$$\pi_0 \rightarrow v^{\pi_0} \rightarrow \pi_1 \rightarrow v^{\pi_1} \rightarrow \pi_2 \rightarrow \ldots \rightarrow \pi^*$$

```
▷ Se evaluează politica curentă.
repeat
      \delta \leftarrow 0
      for all s \in S^- do
            v_{old} \leftarrow v(s)
            v(s) \leftarrow \sum_{s' \in \mathcal{S}} \sum_{r \in \mathcal{R}} p(s', r|s, \pi(s)) \left[ r + \gamma v(s') \right]
            \delta \leftarrow \max(\delta, |v(s) - v_{old}|)
      end for
until \delta < \epsilon
for all s \in S^- do
                                                       ▷ Se îmbunătăteste politica.
      \pi(s) \leftarrow \operatorname*{argmax} \sum_{s' \in \mathcal{S}} \sum_{r \in \mathcal{R}} p(s', r | s, a) \left[ r + \gamma v(s') \right]
end for
```

Iterarea politicilor

• Fiind dată o politică deterministă π și funcția valoare v^{π} indusă de aceasta se poate obține o politică mai bună π' alegând acțiunile în mod lacom în raport cu v^{π} .

$$\pi'(s) \leftarrow \operatorname*{argmax}_{s \in \mathcal{A}} \sum_{s',r} p(s',r|s,a) \left[r + \gamma v(s')\right]$$

 Algoritmul Policy Iteration găsește o politică optimă alternând pași de evaluare și de îmbunătățire a politicii.

$$\pi_0 \to v^{\pi_0} \to \pi_1 \to v^{\pi_1} \to \pi_2 \to \ldots \to \pi^*$$

```
procedure PolicyIteration(\langle S, A, \mathcal{R}, p, \gamma \rangle, \epsilon)
     for all s \in S do
           \pi(s) \leftarrow random(A)
                                                        ▷ Politica initială este aleatoare.

    ∨ Valorile initiale sunt zero.

           v(s) \leftarrow 0
     end for
     repeat
                                                         Se evaluează politica curentă.
           repeat
                 \delta \leftarrow 0
                 for all s \in S^- do
                       v_{old} \leftarrow v(s)
                       v(s) \leftarrow \sum_{s' \in \mathcal{S}} \sum_{r \in \mathcal{R}} p(s', r|s, \pi(s)) \left[ r + \gamma v(s') \right]
                      \delta \leftarrow \max(\delta, |v(s) - v_{old}|)
                 end for
           until \delta < \epsilon
           done ← True
           for all s \in S^- do
                                                               ▷ Se îmbunătăteste politica.
                 a_{old} \leftarrow \pi(s)
                 \pi(s) \leftarrow \underset{s \in A}{\operatorname{argmax}} \sum_{s' \in \mathcal{S}} \sum_{r \in \mathcal{R}} p(s', r | s, a) \left[ r + \gamma v(s') \right]
                 done \leftarrow done \wedge (a_{old} = \pi(s))
           end for
```

▷ se opreste atunci când politica devine stabilă.

until done

return π, ν end procedure

Iterarea valorilor

- Algoritmul de iterare a politicilor (slide-ul anterior) alocă efort computațional pentru aproximarea cu precizie a funcției de valoare pentru fiecare politică.
- Algoritmul poate fi modificat prin reducerea acestui efort fără a pierde garanția convergenței cobinând într-o singură operație un pas de evaluare a politicii și unul de îmbunătățire a acesteia.

```
end for
         v(s) \leftarrow \max_{a} \sum_{s' \in S} \sum_{r \in \mathcal{P}} p(s', r|s, a) [r + \gamma v(s')]
    end for
for all s \in S^- do \triangleright Se extrage politica optimă
```

Iterarea valorilor

- Algoritmul de iterare a politicilor (slide-ul anterior) alocă efort computațional pentru aproximarea cu precizie a funcției de valoare pentru fiecare politică.
- Algoritmul poate fi modificat prin reducerea acestui efort fără a pierde garanția convergenței cobinând într-o singură operație un pas de evaluare a politicii și unul de îmbunătățire a acesteia.

```
procedure ValueIteration(\langle S, A, R, p, \gamma \rangle, \epsilon)
      for all s \in S do
            v(s) \leftarrow 0
      end for
      repeat
            \delta \leftarrow 0
            for all s \in S^- do
                  V_{old} \leftarrow V(s)
                  v(s) \leftarrow \max_{a} \sum_{s' \in S} \sum_{r \in \mathcal{P}} p(s', r|s, a) [r + \gamma v(s')]
                  \delta \leftarrow \max(\delta, |v(s) - v_{old}|)
            end for
      until \delta < \epsilon
      for all s \in S^- do
                                                           ▷ Se extrage politica optimă
           \pi(s) \leftarrow \mathop{\mathsf{argmax}}_{a \in \mathcal{A}} \textstyle \sum_{s' \in \mathcal{S}} \sum_{r \in \mathcal{R}} p(s', r | s, a) \left[ r + \gamma v(s') \right]
      end for
      return \pi. \nu
end procedure
```

Problema de rezolvat

- Un agent se miscă pe o hartă bidimensională.
- La fiecare moment de timp agentul se află într-o celulă și poate alege o acțiune de deplasare către una din cele patru direcții: nord, est, sud, sau vest.
- Efectele unei acțiuni sunt stocastice.
 - Acțiunea agentului reușește cu probabilitatea .8.
 - Agentul va ajunge deviat cu 90° spre stânga cu probabilitatea .1 și deviat spre dreapta cu 90° cu probabilitatea .1.
 - Dacă agentul se îndrreaptă către un perete, atunci rămâne în celula curentă.
- Se cere găsirea unei politici optime pentru astfel de hărți.

Hărtile de test

Hartă simplă cu două stări finale.

A:-10

B:1 default:0

xxxxxxxx

XXX X

Bx

A x

X X

XXXXXXXX

A:-10

B:-10

C:1

default:0

XXXXXXXXX

BxX

x xxx Cx

A x

X

X X

XXXXXXXX

Hartă care cere să fii precaut. Mai bine mor decât să sufăr.

A:-1

B:1

default:-.5

xxxxxxxx

Bx

XXX X

Α x X

X X

XXXXXXXX

Clasa Maze

```
class Maze:
   def init (self. map name):
   @property
   def actions(self):
   @property
   def states(self):
   def is_final(self, state):
   def effects(self. state. action):
```

Metoda effects primește o stare s și o acțiune a și întoarce o listă de tupluri (s', p, r) cu următoarea semnificatie:

$$p = P(S_{t+1} = s', R_{t+1} = r \mid S_t = s, A_t = a)$$

```
In [2]: m = Maze("simple")
In [3]: m.effects((1, 1), Maze.NORTH)
Out[3]: [((1, 1), 0.9, 0.0), ((1, 2), 0.1, 0.0)]
In [4]: m.effects((1, 2), Maze.SOUTH)
Out[4]: [((1, 3), 0.1, 0.0), ((2, 2), 0.8, 0.0), ((1, 1), 0.1, 0.0)]
In [7]: m.print_policy({s: choice(m.actions) for s in m.states if not m.is_final(s)})
...
```

Cerinte

- Implementați algoritmul Policy Iteration pentru găsirea unei politici optime pentru jocul Maze.
- Implementați algoritmul Value Iteration pentru găsirea unei politici optime pentru jocul Maze.
- Modificați codul din cele două funcții.

```
def policy_iteration(game, args):
   gamma = args.gamma
    max_delta = args.max_delta
    v = {s: 0 for s in game.states}
    policy = {s: choice(game.actions)
              for s in game.states if not game.is_final(s)}
    return policy, v
def value_iteration(game, args):
    gamma = args.gamma
    max_delta = args.max_delta
    v = {s: 0 for s in game.states}
    policv = {s: choice(game.actions)
              for s in game.states if not game.is_final(s)}
   return policy, v
```