Pauta de Corrección

Primer Certamen

Introducción a la Informática Teórica Informática Teórica

19 de mayo de 2015

1. Por turno.

a) Esto podemos describirlo como secuencias de cero o más repeticiones de una palabra básica con dos *a*, como ser $(b \mid c)^* a(b \mid c)^* a(b \mid c)^*$, lo que da:

$$((b | c)^* a(b | c)^* a(b | c)^*)^*$$

b) Si no contiene aa, quiere decir que toda a viene seguida por otro símbolo, o sea siempre aparece como $a(b \mid c)$, salvo que esté al final. Debemos considerar la posibilidad que la palabra comienze con un símbolo que no es a, y que termine en a:

$$(b \mid c \mid \epsilon)(a(b \mid c) \mid b \mid c)^*(a \mid \epsilon)$$

Es mucho más simple construir un DFA que acepte este lenguaje (omitimos estados muertos):

c) Una forma simple de describir este lenguaje es como palabras formadas de *a*, *b*, seguidas por palabras formadas de *a*, *c*. Esto da:

$$(a \mid b)^* (a \mid c)^*$$

Total		15
a)	5	
b)	5	
c)	5	

2. Lo más sencillo es usar clausura. Definamos el alfabeto $\Delta = \{[x,y]: x,y \in \Sigma\}$. Nótese que estamos considerando por ejemplo [a,b] como un único símbolo. Definimos los homomorfismos para todo símbolo en Δ mediante:

$$h: \Delta^* \to \Sigma^*$$
 $[a,b] \mapsto ab$
 $g: \Delta^* \to \Sigma^*$ $[a,b] \mapsto ba$

Dado el lenguaje $L \subseteq \Sigma^*$ obtenemos:

$$SWAP(L) = g(h^{-1}(L))$$

Como los lenguajes regulares son cerrados respecto de homomorfismos y homomorfismos inversos, son cerrados respecto de SWAP.

Total		30
Definir homomorfismos	16	
Argüir que describen SWAP	4	
Conjuntos regulares cerrados respecto homomorfismo y homomorfismo inverso	10	

Una alternativa es usar autómatas. La idea es partir con un DFA $M = (Q, \Sigma, \delta, q_0, F)$ que acepta L, y aplicar las siguientes modificaciones:

- Agregar estados, que anotaremos [q, a] para todos los estados $q \in Q$ y todos los símbolos $a \in \Sigma$, que registren el estado en que estaba M y un símbolo adicional. Esta memoria extra sirve para registrar a y avanzar, y luego simular la movida de M con ba al leer b.
- Ajustar la función de transición.

En detalle, definimos el DFA $M' = (Q', \Sigma, \delta', q_0, F)$, con:

$$Q' = Q \cup Q \times \Sigma$$

Definimos la función δ' según el "tipo" de estado:

$$\delta'(q, a) = [q, a]$$
 almacenamos a $\delta'([q, a], b) = \delta(\delta(q, b), a)$ movida de M con ba

El efecto es que al leer ab cambia al estado de M resultado de leer ba, como solicitado. Como los estados compuestos no son finales, acepta sólo palabras de largo par, como debe ser.

Para L regular construimos un DFA que acepta SWAP(L), los conjuntos regulares son cerrados respecto de esta operación.

Total		30
Partir con un DFA	5	
Diseño (explicación) de la construcción	10	
Construcción formal	10	
Conclusión	5	

3. Por turno.

a) No es regular.

Una manera simple de demostrarlo es mediante clausura. Sea $L_a = \{a^m b^n c^{m+n} : m \ge 0 \land n \ge 0\}$, y supongamos que L_a es regular. Definamos el homomorfismo $h: \Sigma \to \{a,b\}$ mediante:

$$h(a) = a$$

$$h(b) = \epsilon$$

$$h(c) = b$$

Como los lenguajes regulares son cerrados respecto de intersección y homomorfismo, es regular:

$$h(L_a \cap \mathcal{L}(a^*c^*)) = \{a^m b^m \colon m \ge 0\}$$

La intersección elige las palabras con n=0, el homomorfismo simplemente ajusta el alfabeto (el valor de h(b) en realidad es irrelevante). Pero sabemos que este último lenguaje no es regular, llegamos a una contradicción.

- b) Este lenguaje no es regular. Demostraremos que no cumple el lema de bombeo para lenguajes regulares.
 - Sea N la constante del lema, elegimos $\sigma = a^{2N}b^{3N}$ parte del lenguaje, con $|\sigma| = 5N \ge N$. Por el lema de bombeo, puede escribirse $\sigma = \alpha\beta\gamma$, con $|\alpha\beta| \le N$ donde $\beta \ne \epsilon$, tal que para todo $k \in \mathbb{N}_0$ tenemos $\alpha\beta^k\gamma$ pertenece al lenguaje. Como $|\alpha\beta| \le N$, β está formado solo por a. Pero entonces en $\alpha\beta^2\gamma$ se agregan a pero no b, se rompe el equilibrio entre los números de cada símbolo. El resultado no pertenece al lenguaje, contradiciendo el lema de bombeo.
- c) Supongamos lenguajes L_C de contexto libre y L_R regular. Demostramos en clase que podemos suponer que L_C es aceptado por estado final por un PDA $M_C = (Q_C, \Sigma, \Gamma, \delta_C, q_C, Z_C, F_C)$. Asimismo podemos asumir que L_R es aceptado por un DFA $M_R = (Q_R, \Sigma, \delta_R, q_R, F_R)$. Construimos el PDA $M_\Delta = (Q_\Delta, \Sigma, \Gamma, \delta_\Delta, q_\Delta, Z_C, F_\Delta)$ que acepta $L_C \Delta L_R$ por estado final. La idea es usar estados $Q_\Delta = Q_C \times Q_R$, e ir registrando en la parte Q_C del estado y el stack el estado de M_C , mientras la parte Q_R registra el estado de M_R . Anotaremos [p,q] para los estados para claridad. Definimos:

$$F_{\triangle} = \{[c,r] \colon (c \in F_C \land r \not\in F_R) \lor (c \not\in F_C \land r \in F_R)\}$$

de forma que M_{\triangle} acepte cuando exactamente uno de los subautómatas acepta. Resta definir para todo $x \in \Sigma \cup \{\epsilon\}$ y todo $X \in \Gamma$:

$$\delta_{\wedge}([p,q],x,X) = \{([p',\delta_{R}(q,x)],\alpha) : (p',\alpha) \in \delta_{C}(p,x,X)\}$$

donde usamos la extensión de δ_R a palabras (x puede ser vacía). Es claro que M_Δ acepta $L_C \Delta L_R$ por estado final.

Total :			30	
a)	No regular, propiedades de clausura		6	
b)	No regular, lema de bombeo		12	
	Elección de σ	4		
	Condiciones sobre β	4		
	Elección de <i>k</i> , demostrar contradicción	6		
c)	Construir un PDA		12	
	Estados, estados finales	6		
	Construcción de δ △	6		

4. Usamos la construcción top-down esbozada en clase. Hay un único estado q_0 , daremos la función de transición $\delta(q_0,x,X)$ dando el conjunto de los posibles reemplazos del símbolo del tope de stack para x y X.

x, X	Conjunto de posibles α
ϵ, S	$\{a,(L)\}$
ϵ , L	$\{LS, \epsilon\}$
a, a	$\{oldsymbol{\epsilon}\}$
(, ($\{oldsymbol{\epsilon}\}$
),)	$\{oldsymbol{\epsilon}\}$

Puntajes

Total 20 Describir construcción 20

5. No es de contexto libre, cosa que demostramos usando el lema de bombeo. Supongamos que es de contexto libre, y sea N la constante del lema de bombeo. Elegimos:

$$\sigma = a^N b^{N^2}$$

con lo que $|\sigma| = N^2 + N \ge N$. Por el lema de bombeo, podemos escribir:

$$\sigma = uvxyz$$

donde $|vxy| \le N$ con $vy \ne \epsilon$ y para todo $k \ge 0$ la palabra $\sigma_k = xv^kxy^kz$ pertenece al lenguaje. Es claro que v e y pueden estar formados solo por un símbolo, ya que de caso contrario σ_k con k > 1 no tiene la forma de a seguida de b. Si v e y están formados por los mismos símbolos, al repetirlos no se puede mantener el balance que requiere el lenguaje. O sea, v está formado por a e y por b, y ninguno puede ser vacío.

Fijémonos ahora en el número de b, que debe ser siempre un cuadrado perfecto. Sabemos que $|y| < |vxy| \le N$, y tenemos que el número de b en σ_k es:

$$N^2 + (k-1)|y|$$

Si elegimos k = 2 obtenemos:

$$N^2 < N^2 + |y| < N^2 + N < N^2 + 2N + 1 = (N+1)^2$$

O sea, es imposible que $N^2 + |y|$ sea un cuadrado perfecto, y σ_2 no pertenece al lenguaje, que al no cumplir el lema de bombeo no es de contexto libre.

Puntajes

Total25No de contexto libre, aplicar lema de bombeo5Hallar contradicción vía largos20