(FILE 'HOME' ENTERED AT 09:06:25 ON 04 NOV 2004)

FILE 'MEDLINE, EMBASE, BIOSIS, BIOTECHDS, SCISEARCH, HCAPLUS, NTIS, LIFESCI' ENTERED AT 09:08:32 ON 04 NOV 2004 1382 S "DEOXYRIBONUCLEASE II" L1377 S L1 AND (HUMAN OR MURINE) L23858984 S BETA L336 S L2 AND L3 L427 DUP REM L4 (9 DUPLICATES REMOVED) L5 1714908 S DIGEST? L6 L7 348 S L1 AND L6 76 S L7 AND (HUMAN OR MURINE) Г8 41 DUP REM L8 (35 DUPLICATES REMOVED) L9 E EASTMAN A R/AU

L10 21 S E3

E KRIESER R J/AU

L11 79 S E3-E8

L12 99 S L10 OR L11 L13 57 S L1 AND L12

L14 15 DUP REM L13 (42 DUPLICATES REMOVED)

Welcome to STN International! Enter x:x

LOGINID: SSSPTA1652MXM

PASSWORD:

TERMINAL (ENTER 1, 2, 3, OR ?):2

```
Welcome to STN International
                 Web Page URLs for STN Seminar Schedule - N. America
NEWS
                 "Ask CAS" for self-help around the clock
NEWS
                BEILSTEIN enhanced with new display and select options,
NEWS
         JUL 12
                 resulting in a closer connection to BABS
                 IFIPAT/IFIUDB/IFICDB reloaded with new search and display
NEWS
         AUG 02
                 fields
                 CAplus and CA patent records enhanced with European and Japan
NEWS
         AUG 02
                 Patent Office Classifications
                 The Analysis Edition of STN Express with Discover!
NEWS
         AUG 02
                 (Version 7.01 for Windows) now available
                 BIOCOMMERCE: Changes and enhancements to content coverage
     7
         AUG 27
NEWS
                 BIOTECHABS/BIOTECHDS: Two new display fields added for legal
         AUG 27
NEWS 8
                 status data from INPADOC
                 INPADOC: New family current-awareness alert (SDI) available
         SEP 01
NEWS 9
                 New pricing for the Save Answers for SciFinder Wizard within
         SEP 01
NEWS 10
                 STN Express with Discover!
                 New display format, HITSTR, available in WPIDS/WPINDEX/WPIX
         SEP 01
NEWS 11
                 STANDARDS will no longer be available on STN
         SEP 27
NEWS 12
         SEP 27
                 SWETSCAN will no longer be available on STN
NEWS 13
NEWS 14 OCT 28
                 KOREAPAT now available on STN
              OCTOBER 29 CURRENT WINDOWS VERSION IS V7.01A, CURRENT
NEWS EXPRESS
              MACINTOSH VERSION IS V6.0c(ENG) AND V6.0Jc(JP),
              AND CURRENT DISCOVER FILE IS DATED 11 AUGUST 2004
              STN Operating Hours Plus Help Desk Availability
NEWS HOURS
NEWS INTER
              General Internet Information
              Welcome Banner and News Items
NEWS LOGIN
              Direct Dial and Telecommunication Network Access to STN
NEWS PHONE
              CAS World Wide Web Site (general information)
NEWS WWW
```

Enter NEWS followed by the item number or name to see news on that specific topic.

All use of STN is subject to the provisions of the STN Customer agreement. Please note that this agreement limits use to scientific research. Use for software development or design or implementation of commercial gateways or other similar uses is prohibited and may result in loss of user privileges and other penalties.

FILE 'HOME' ENTERED AT 09:06:25 ON 04 NOV 2004

=> file medline embase biosis biotechds scisearch hcaplus ntis lifesci
COST IN U.S. DOLLARS
SINCE FILE TOTAL
ENTRY
SESSION
FULL ESTIMATED COST
0.84
0.84

FILE 'MEDLINE' ENTERED AT 09:08:32 ON 04 NOV 2004

FILE 'EMBASE' ENTERED AT 09:08:32 ON 04 NOV 2004 COPYRIGHT (C) 2004 Elsevier Inc. All rights reserved.

FILE 'BIOSIS' ENTERED AT 09:08:32 ON 04 NOV 2004 Copyright (c) 2004 The Thomson Corporation.

FILE 'BIOTECHDS' ENTERED AT 09:08:32 ON 04 NOV 2004 COPYRIGHT (C) 2004 THE THOMSON CORPORATION

FILE 'SCISEARCH' ENTERED AT 09:08:32 ON 04 NOV 2004 Copyright (c) 2004 The Thomson Corporation.

FILE 'HCAPLUS' ENTERED AT 09:08:32 ON 04 NOV 2004 USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT. PLEASE SEE "HELP USAGETERMS" FOR DETAILS. COPYRIGHT (C) 2004 AMERICAN CHEMICAL SOCIETY (ACS)

FILE 'NTIS' ENTERED AT 09:08:32 ON 04 NOV 2004 Compiled and distributed by the NTIS, U.S. Department of Commerce. It contains copyrighted material. All rights reserved. (2004)

FILE 'LIFESCI' ENTERED AT 09:08:32 ON 04 NOV 2004 COPYRIGHT (C) 2004 Cambridge Scientific Abstracts (CSA)

=> s "deoxyribonuclease II"

L1 1382 "DEOXYRIBONUCLEASE II"

=> s 11 and (human or murine)

4 FILES SEARCHED...

L2 377 L1 AND (HUMAN OR MURINE)

=> s beta

L3 3858984 BETA

=> s 12 and 13

L4 36 L2 AND L3

=> dup rem 14

PROCESSING COMPLETED FOR L4

L5 27 DUP REM L4 (9 DUPLICATES REMOVED)

=> d 1-27 ibib ab

L5 ANSWER 1 OF 27 HCAPLUS COPYRIGHT 2004 ACS on STN

ACCESSION NUMBER:

2004:780908 HCAPLUS

DOCUMENT NUMBER:

141:295286

TITLE:

SOURCE:

Biomarker identification for evaluating caloric

restricted diet program in mammals

INVENTOR(S):

Spindler, Stephen R.; Dhahbi, Joseph M.

PATENT ASSIGNEE(S):

The Regents of the University of California, USA

PCT Int. Appl., 113 pp.

CODEN: PIXXD2

Patent

DOCUMENT TYPE:

English

LANGUAGE:

- Engi

FAMILY ACC. NUM. COUNT: 2

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 2004081537	A2	20040923	WO 2004-US7737	20040312

```
W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH,
              CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD,
              GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
              LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI,
              NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY,
              TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW
         RW: BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI,
              SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN,
              TD, TG
                                   20040916
                                                US 2003-387743
                                                                          20030312
     US 2004180003
                            A1
                                                                    20030312
A 20030312
                                                US 2003-387786
                            A1
                                   20040930
     US 2004191775
                                                US 2003-387743
PRIORITY APPLN. INFO.:
                                                                     A 20030312
                                                US 2003-387786
                                                US 2003-622160 A 20030716
     Methods of identifying biomarkers of calorie restriction and of examining the
AΒ
     dynamics of calorie restriction are presented. In addition, the invention
     provides methods of selecting mimetics of calorie restriction.
     ANSWER 2 OF 27 HCAPLUS COPYRIGHT 2004 ACS on STN
                           2004:718660 HCAPLUS
ACCESSION NUMBER:
                           141:237741
DOCUMENT NUMBER:
                           Production of modified glycoproteins having multiple
TITLE:
                           antennary structures by expression of
                           glucosaminyltransferases in fungal cells
                           Bobrowicz, Piotr; Hamilton, Stephen R.; Gerngross,
INVENTOR(S):
                           Tilman U.; Wildt, Stefan; Choi, Byung-Kwon; Nett,
                            Juergen Hermann; Davidson, Robert C.
PATENT ASSIGNEE(S):
                           PCT Int. Appl., 231 pp.
SOURCE:
                           CODEN: PIXXD2
                           Patent
DOCUMENT TYPE:
                           English
LANGUAGE:
FAMILY ACC. NUM. COUNT:
PATENT INFORMATION:
                                               APPLICATION NO.
     PATENT NO.
                           KIND
                                   DATE
                                                ______
                           ---
                                   _____
     ______
                           A2 20040902 WO 2004-US5191 20040220
     WO 2004074461
         MZ, MZ, NA, NI
         RW: BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG
                          A1
                                                 US 2003-371877
                                                                          20030220
      US 2004018590
                                   20040129
                                                                    A 20030220
                                                 US 2003-371877
PRIORITY APPLN. INFO.:
                                                 US 2003-680963
                                                                      A 20031007
                                                 US 2000-214358P
                                                                      P 20000628
                                                                      P 20000630
                                                 US 2000-215638P
                                                                      P 20010330
                                                 US 2001-279997P
                                                                    A2 20010627
```

The present invention relates to eukaryotic host cells, especially lower AB eukaryotic host cells, having modified oligosaccharides which may be modified further by heterologous expression of a set of glycosyltransferases, sugar and sugar nucleotide transporters to become host-strains for the production of mammalian, e.q., human

US 2001-892591

therapeutic glycoproteins. The process provides an engineered host cell which can be used to express and target any desirable gene(s) involved in glycosylation. Host cells with modified lipid-linked oligosaccharides are created or selected. N-glycans made in the engineered host cells are substrates for GnTIII, GnTIV, GnTV, GnT VI or GnTIX activity, which produce bisected and/or multiantennary N-glycan structures and may be modified further by heterologous expression of one or more enzymes, e.g., glycosyltransferases, sugar, sugar nucleotide transporters, to yield human-like glycoproteins. For the production of therapeutic proteins, this method may be adapted to engineer cell lines in which any desired glycosylation structure may be obtained. The invention is illustrated by production of the kringle 3 domain of human plasminogen and interferon-.beta. in engineered Pichia pastoris or Kluyveromyces lactis strains. N-glycans of secreted kringle 3 glycoproteins from Pichia pastoris strains had masses corresponding to GlcNAc1-3Man3-5GlcNAc2.

ANSWER 3 OF 27 HCAPLUS COPYRIGHT 2004 ACS on STN

ACCESSION NUMBER:

2004:355085 HCAPLUS

DOCUMENT NUMBER:

140:369944

TITLE:

Human tissue-specific housekeeping genes

identified by expression profiling Aburatani, Hiroyuki; Yamamoto, Shogo

INVENTOR(S): NGK Insulators, Ltd., Japan

PATENT ASSIGNEE(S):

SOURCE:

PCT Int. Appl., 372 pp.

CODEN: PIXXD2

DOCUMENT TYPE:

Patent Japanese

LANGUAGE:

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT	NO.			KIN	D 3	DATE		Ž	APPL	ICAT:	ION 1	. OI		\mathbf{D}_{I}	ATE		
					-												
WO 2004	2004035785 A1		:	20040429		WO 2002-JP10753					20021016						
W:	ΑE,	AG,	AL,	AM,	ΑT,	AU,	ΑZ,	BA,	BB,	BG,	BR,	BY,	ΒZ,	CA,	CH,	CN,	
	co,	CR,	CU,	CZ,	DE,	DK,	DM,	DZ,	EC,	EE,	ES,	FI,	GB,	GD,	GΕ,	GH,	
	GM,	HR,	HU,	ID,	IL,	IN,	IS,	KE,	KG,	KP,	KR,	KZ,	LC,	LK,	LR,	LS,	
	LT,	LU,	LV,	MA,	MD,	MG,	MK,	MN,	MW,	MX,	MZ,	NO,	NZ,	OM,	PH,	PL,	
							SI,										
																ТJ,	TM
RW:	GH,																
	CH,	CY,	CZ,	DE,	DK,	EE,	ES,	FI,	FR,	GB,	GR,	ΙE,	IT,	LU,	MC,	NL,	
	PT,	SE,	SK,	TR,	BF,	ВJ,	CF,	CG,	CI,	CM,	GΑ,	GN,	GQ,	G₩,	ML,	MR,	
			TD,														

PRIORITY APPLN. INFO.:

WO 2002-JP10753

20021016

Housekeeping genes commonly expressed in 35 different human

tissues, oligonucleotide probes and DNA microarrays containing them, are disclosed.

REFERENCE COUNT:

THERE ARE 3 CITED REFERENCES AVAILABLE FOR THIS 3 RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

ANSWER 4 OF 27 HCAPLUS COPYRIGHT 2004 ACS on STN

2004:143277 HCAPLUS ACCESSION NUMBER:

DOCUMENT NUMBER:

140:176226

TITLE:

Use of polyionic organic acids to enhance transfection

efficiency and neutralize viruses

INVENTOR(S):

Bennett, Michael J.; Chen, Yen-ju; Niedzinski, Edmund

J.; Tseng, Hsien; Tucker, Sean

PATENT ASSIGNEE(S):

Genteric, Inc., USA

SOURCE:

PCT Int. Appl., 91 pp.

DOCUMENT TYPE:

CODEN: PIXXD2

Patent English

LANGUAGE:

FAMILY ACC. NUM. COUNT: 2

PATENT INFORMATION:

```
DATE
                                          APPLICATION NO.
                               DATE
                       KIND
    PATENT NO.
                                           _____
                        _ _ _ _
                               _____
     ______
                                20040219 WO 2003-US25419
                                                                 20030812
                        A2
    WO 2004015089
                        A3
                                20040715
    WO 2004015089
        W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN,
             CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
             GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR,
             LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM,
             PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN,
             TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW, AM, AZ, BY,
             KG, KZ, MD, RU
        RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW, AT, BE, BG,
             CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC,
             NL, PT, RO, SE, SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
             GW, ML, MR, NE, SN, TD, TG
                                           US 2002-402811P P 20020812
US 2003-453999P P 20030311
US 2003-476145P P 20030604
PRIORITY APPLN. INFO.:
```

The present invention provides a nucleic acid transfection composition comprising a polyionic organic acid and a nucleic acid. Preferably, the polyionic organic acid is a dye. Efficient methods are also provided for administering the compns., increasing the transfection efficiency in a cell (e.g., secretory gland cell), and using the compns. as nucleic acid stabilizers to prevent in vivo and in vitro nucleic acid degradation by nucleases, thus increasing the half-life and shelf life of a nucleic acid. Addnl., polyionic organic acids may be used to neutralize viruses and to enhance effectiveness of DNA vaccines against viruses. Thus, Evans Blue and Congo Red enhanced alkaline phosphatase (SEAP) gene delivery into salivary glands resulting in high levels of secretion of SEAP into the blood. A mixture of aurintricarboxylic acid and ZnCl2 enhanced in vivo salivary gland transfection efficiency.

```
L5 ANSWER 5 OF 27 HCAPLUS COPYRIGHT 2004 ACS on STN
```

ACCESSION NUMBER: 2003:670045 HCAPLUS

DOCUMENT NUMBER: 139:228660

TITLE: Nuclear cataract caused by a lack of DNA degradation

in the mouse eye lens

AUTHOR(S): Nishimoto, Sogo; Kawane, Kohki; Watanabe-Fukunaga,

Rie; Fukuyama, Hidehiro; Ohsawa, Yoshiyuki; Uchiyama, Yasuo; Hashida, Noriyasu; Ohguro, Nobuyuki; Tano, Yasuo; Morimoto, Takeshi; Fukuda, Yutaka; Nagata,

Shigekazu

CORPORATE SOURCE: Department of Genetics, Osaka Univ. Med. Sch., Osaka,

565-0871, Japan

SOURCE: Nature (London, United Kingdom) (2003), 424(6952),

1071-1074

CODEN: NATUAS; ISSN: 0028-0836

PUBLISHER: Nature Publishing Group

DOCUMENT TYPE: Journal LANGUAGE: English

The eye lens is composed of fiber cells, which develop from the epithelial cells on the anterior surface of the lens. Differentiation into a lens fiber cell is accompanied by changes in cell shape, the expression of crystallins and the degradation of cellular organelles. The loss of organelles is believed to ensure the transparency of the lens, but the mol. mechanism behind this process is not known. Here the authors show that DLAD ('DNase II-like acid DNase', also called

DNase II.beta.) is expressed in human

and murine lens cells, and that mice deficient in the DLAD gene are incapable of degrading DNA during lens cell differentiation - the undigested DNA accumulates in the fiber cells. The DLAD-/- mice develop cataracts of the nucleus lentis, and their response to light on electroretinograms is severely reduced. These results indicate that DLAD

is responsible for the degradation of nuclear DNA during lens cell differentiation, and that if DNA is left undigested in the lens, it causes cataracts of the nucleus lentis, blocking the light path.

REFERENCE COUNT:

THERE ARE 29 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

ANSWER 6 OF 27 SCISEARCH COPYRIGHT (c) 2004 The Thomson Corporation. L_5

ACCESSION NUMBER: 2003:400023 SCISEARCH

29

THE GENUINE ARTICLE: 676CB

TITLE:

Structural requirements of human DNase II alpha

for formation of the active enzyme: the role of the signal

peptide, N-glycosylation, and disulphide bridging

AUTHOR:

MacLea K S; Krieser R J; Eastman A (Reprint)

CORPORATE SOURCE:

Dartmouth Coll Sch Med, Dept Pharmacol & Toxicol, 7650 Remson, Hanover, NH 03755 USA (Reprint); Dartmouth Coll Sch Med, Dept Pharmacol & Toxicol, Hanover, NH 03755 USA

COUNTRY OF AUTHOR:

SOURCE:

BIOCHEMICAL JOURNAL, (1 MAY 2003) Vol. 371, Part 3, pp.

867-876.

Publisher: PORTLAND PRESS, 59 PORTLAND PLACE, LONDON W1N

3AJ, ENGLAND. ISSN: 0264-6021. Article; Journal

DOCUMENT TYPE:

English

LANGUAGE:

REFERENCE COUNT:

ABSTRACT IS AVAILABLE IN THE ALL AND IALL FORMATS

DNasc IIalpha (EC 3.1.22.1) is an endonuclease, which is active at low pH, that cleaves double-stranded DNA to short 3-phosphoryl oligonucleotides. Although its biochemistry is well understood, its structure-activity relationship has been largely unexamined. Recently, we demonstrated that active DNase IIalpha consists of one contiguous polypeptide, heavily glycosylated, and containing at least one intrachain disulphide linkage [MacLea, Krieser and Eastman (2002) Biochem. Biophys. Res. Commun. 292, 415-421]. The present paper describes further work to examine the elements of DNase IIalpha protein required for activity. Truncated forms and site-specific mutants were expressed in DNase IIalpha-null mouse cells. Results indicate that the signal-peptide leader sequence is required for correct glycosylation and that N-glycosylation is important for formation of the active enzyme. Despite this, enzymic deglycosylation of wild-type protein with peptide N-glycosidase F reveals that glycosylation is not intrinsically required for DNasc activity. DNase IIalpha contains six evolutionarily conserved cysteine residues and mutations in any one of these cysteines completely ablated enzymic activity, consistent with the importance of disulphide bridging in maintaining correct protein structure. We also demonstrate that a mutant form of DNase IIalpha that lacks the purported active-site His(295) can still bind DNA, indicating that this histidine residue is not simply involved in DNA binding, but may have a direct role in catalysis. These results provide a more complete model of the DNase IIalpha protein structure, which is important for three-dimensional structural analysis and for production of DNase IIalpha as a potential protein therapeutic for cystic fibrosis or other disorders.

ANSWER 7 OF 27 SCISEARCH COPYRIGHT (c) 2004 The Thomson Corporation. L5 STN

ACCESSION NUMBER:

2003:255218 SCISEARCH

THE GENUINE ARTICLE: 654ZD

TITLE:

A family history of deoxyribonuclease -II: surprises from Trichinella spiralis and

Burkholderia pseudomallei

AUTHOR:

MacLea K S; Krieser R J; Eastman A (Reprint)

Dartmouth Coll, Sch Med, Dept Pharmacol & Toxicol, 7650 CORPORATE SOURCE: Remsen, Hanover, NH 03755 USA (Reprint); Dartmouth Coll, Sch Med, Dept Pharmacol & Toxicol, Hanover, NH 03755 USA

COUNTRY OF AUTHOR:

SOURCE:

GENE, (13 FEB 2003) Vol. 305, No. 1, pp. 1-12.

Publisher: ELSEVIER SCIENCE BV, PO BOX 211, 1000 AE

AMSTERDAM, NETHERLANDS.

ISSN: 0378-1119. Article; Journal

DOCUMENT TYPE:

English

LANGUAGE:

REFERENCE COUNT:

32

ABSTRACT IS AVAILABLE IN THE ALL AND IALL FORMATS

Deoxyribonuclease IIalpha (DNase IIalpha) is an acidic endonuclease AB found in lysosomes and nuclei, and it is also secreted. Though its Caenorhabditis elegans homolog, NUC-1, is required for digesting DNA of apoptotic cell corpses and dietary DNA, it is not required for viability. However, DNase IIalpha is required in mice for correct development and viability, because undigested cell corpses lead to lesions throughout the body. Recently, we showed that, in contrast to previous reports, active DNase IIalpha consists of one contiguous polypeptide. To better analyze DNase II protein structure and determine residues important for activity, extensive database searches were conducted to find distantly related family members. We report 29 new partial or complete homologs from 21 species. Four homologs with differences at the purported active site histidine residue were detected in the parasitic nematodes Trichinella spiralis and Trichinella pseudospiralis. When these mutations were reconstructed in human DNase IIalpha, the expressed proteins were inactive. DNase II homologs were also identified in non-metazoan species. In particular, the slime-mold Dictyostelium, the protozoan Trichomonas vaginalis, and the bacterium Burkholderia pseudomallei all contain sequences with significant similarity and identity to previously cloned DNase II family members. We report an analysis of their sequences and implications for DNase II protein structure and evolution. (C) 2003 Elsevier Science B.V. All rights reserved.

ANSWER 8 OF 27 HCAPLUS COPYRIGHT 2004 ACS on STN

ACCESSION NUMBER:

2002:213745 HCAPLUS

DOCUMENT NUMBER:

136:227991

TITLE:

Protein and cDNA sequences of human and

mouse deoxyribonuclease II

isoenzyme sequence homologs

INVENTOR (S):

Eastman, Alan Richard; Krieser, Ronald Joe

Trustees of Dartmouth College, USA PATENT ASSIGNEE(S):

SOURCE:

U.S., 8 pp., Cont.-in-part of U.S. Ser. No. 541,840.

CODEN: USXXAM

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
US 6358723	B1	20020319	US 2000-574942	20000519
WO 2001075082	A1	20011011	WO 2001-US10635	20010402
W: CA, JP				VG NT
RW: AT, BE, CH,	CY, DE	, DK, ES, FI	, FR, GB, GR, IE, IT,	LU, MC, NL,
PT, SE, TR				
US 2002028495	A1	20020307	US 2001-949434	20010907
US 6767997	B2	20040727		
PRIORITY APPLN. INFO.:			US 2000-541840	A2 20000403
			US 2000-574942	A 20000519

The present invention provides protein cDNA sequences of novel AΒ DNase II isoenzyme sequence homologs as well as vectors comprising the cDNA sequences. The invention further discloses that human DNase II isoenzyme gene maps on chromosome 1p22. The invention also relates to antibodies against this protein and antisense agents targeted to a cDNA or corresponding mRNA encoding DNase II isoforms. In addition, methods of identifying and using modulators of DNase II isoform

activity are described.

REFERENCE COUNT: 17 THERE ARE 17 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L5 ANSWER 9 OF 27 HCAPLUS COPYRIGHT 2004 ACS on STN

ACCESSION NUMBER: 2002:219466 HCAPLUS

137:18119

DOCUMENT NUMBER: TITLE:

Gene expression profiling identifies significant differences between the molecular phenotypes of bone

marrow-derived and circulating human CD34+

hematopoietic stem cells

AUTHOR (S):

Steidl, Ulrich; Kronenwett, Ralf; Rohr, Ulrich-Peter;

Fenk, Roland; Kliszewski, Slawomir; Maercker, Christian; Neubert, Peter; Aivado, Manuel; Koch, Judith; Modlich, Olga; Bojar, Hans; Gattermann,

Norbert; Haas, Rainer

CORPORATE SOURCE:

Department of Hematology, Oncology and Clinical Immunology, University of Dusseldorf, Dusseldorf,

D-40225, Germany

SOURCE:

Blood (2002), 99(6), 2037-2044 CODEN: BLOOAW; ISSN: 0006-4971 American Society of Hematology

DOCUMENT TYPE:

PUBLISHER:

Journal English

LANGUAGE: CD34+ hematopoietic stem cells are used clin. to support cytotoxic therapy, and recent studies raised hope that they could even serve as a cellular source for nonhematopoietic tissue engineering. Here, we examined in 18 volunteers the gene expressions of 1185 genes in highly enriched bone marrow CD34+ (BM-CD34+) or granulocyte-colony-stimulating factor-mobilized peripheral blood CD34+ (PB-CD34+) cells by means of cDNA array technol. to identify mol. causes underlying the functional differences between circulating and sedentary hematopoietic stem and progenitor cells. In total, 65 genes were significantly differentially expressed. Greater cell cycle and DNA synthesis activity of BM-CD34+ than PB-CD34+ cells were reflected by the 2- to 5-fold higher expression of 9 genes involved in cell cycle progression, 11 genes regulating DNA synthesis, and cell cycle-initiating transcription factor E2F-1. Conversely, 9 other transcription factors, including the differentiation blocking GATA2 and N-myc, were expressed 2 to 3 times higher in PB-CD34+ cells than in BM-CD34+ cells. Expression of 5 apoptosis driving genes was also 2 to 3 times greater in PB-CD34+ cells, reflecting a higher apoptotic activity. In summary, our study provides a gene expression profile of primary human CD34+ hematopoietic cells of the blood and marrow. Our data molecularly confirm and explain the finding that CD34+ cells residing in the bone marrow cycle more rapidly, whereas circulating CD34+ cells consist of a higher number of quiescent stem and progenitor cells. Moreover, our data provide novel mol. insight into stem cell physiol.

REFERENCE COUNT:

THERE ARE 48 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L5 ANSWER 10 OF 27 SCISEARCH COPYRIGHT (c) 2004 The Thomson Corporation. on STN

ACCESSION NUMBER: 200

2002:307432 SCISEARCH

THE GENUINE ARTICLE: 538BB

TITLE:

Revised structure of the active form of human

deoxyribonuclease II alpha

AUTHOR:

MacLea K S; Krieser R J; Eastman A (Reprint)

CORPORATE SOURCE:

Dartmouth Coll Sch Med, Dept Pharmacol & Toxicol, 7650 Remsen, Hanover, NH 03755 USA (Reprint); Dartmouth Coll Sch Med, Dept Pharmacol & Toxicol, Hanover, NH 03755 USA

COUNTRY OF AUTHOR:

USA

SOURCE:

BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, (29

MAR 2002) Vol. 292, No. 2, pp. 415-421. Publisher: ACADEMIC PRESS INC, 525 B ST, STE 1900, SAN

DIEGO, CA 92101-4495 USA.

ISSN: 0006-291X. Article; Journal

LANGUAGE:

English

DOCUMENT TYPE:

REFERENCE COUNT: 23

ABSTRACT IS AVAILABLE IN THE ALL AND IALL FORMATS

Deoxyribonuclease IIalpha (DNase IIalpha) is an acid endonuclease found AB in lysosomes, nuclei, and various secretions. Murine DNase IIa is required for digesting the DNA of apoptotic cells after phagocytosis and for correct development and viability. DNase IIa purified from porcine spleen was previously shown to contain three peptides, two of which were thiol crosslinked, all derived by processing of a single polypeptide. Commercial bovine protein is consistent with this structure. However, screening of 18 human cell lines failed to demonstrate this processing, rather a 45 kDa protein was consistently observed. Incubation of cells with the N-glycosylation inhibitor tunicamycin resulted in a 37 kDa protein, which is close to the predicted formula weight. The protein also contains at least one thiol crosslink. Similar results were obtained with overexpressed DNase IIa. These results suggest that active DNase IIa consists of one contiguous polypeptide. We suggest the previous structure reflects proteolysis during protein purification. (C) 2002 Eisevier Science (USA).

ANSWER 11 OF 27 BIOTECHDS COPYRIGHT 2004 THE THOMSON CORP. on STN 1.5 DUPLICATE 1

ACCESSION NUMBER: 2002-03382 BIOTECHDS

TITLE:

New cDNA encoding a deoxyribonuclease-II-

beta enzyme useful for degrading DNA present in the mucous plugs in the lungs of cystic fibrosis patients;

recombinant DNA-ase-II-beta production and

isolation useful for cystic fibrosis therapy and drug

screening

Eastman A R; Krieser R J AUTHOR:

PATENT ASSIGNEE: Dartmouth-Coll. Hanover, NH, USA. LOCATION:

WO 2001075082 11 Oct 2001 PATENT INFO: APPLICATION INFO: WO 2001-US10635 2 Apr 2001

PRIORITY INFO: US 2000-574942 19 May 2000; US 2000-541840 3 Apr 2000 DOCUMENT TYPE: Patent

English LANGUAGE:

WPI: 2001-662972 [76] OTHER SOURCE:

A cDNA encoding a DNA-ase-II-beta enzyme, is new. Also claimed are: a vector comprising the claimed cDNA; an isolated and purified DNA-ase-II-beta enzyme; an antibody against the DNA-ase-IIbeta enzyme; determining DNA-ase-II-beta levels in cells, comprising contacting the cells with the above antibody and detecting binding of the antibody; an antisense oligonucleotide targeted to a DNA or mRNA encoding the DNA-ase-II-beta; inhibiting expression of a DNA-ase-II-beta enzyme in cells, comprising administering the above antisense oligonucleotide; and digesting DNA by contacting it with the DNA-ase-II-beta enzyme. The DNA-ase-IIbeta may be useful to digest DNA in the mucous plugs in lungs of cystic fibrosis patients and so reduce their viscosity (disclosed). an example, the cDNA sequence of DNA-ase-alpha was submitted to the GenBank database and a mouse cDNA EST showing high similarity was identified, purchased and sequenced. Additional EST sequences from human tissues were found that had similarity to this EST but contained incomplete sequences. One sequence was found to contain 932bp of the gene referred to here as DNA-ase-II-beta.

on STN

ACCESSION NUMBER:

2001336146 EMBASE

TITLE:

Poly(amidoamine)s as potential nonviral vectors: Ability to

form interpolyelectrolyte complexes and to mediate

transfection in vitro.

AUTHOR:

Richardson S.C.W.; Pattrick N.G.; Stella Man Y.K.; Ferruti

P.; Duncan R.

CORPORATE SOURCE:

R. Duncan, Centre for Polymer Therapeutics, Welsh School of

Pharmacy, Cardiff University, King Edward VII Avenue, Cardiff CF10 3XF, United Kingdom. DUNCANR@cf.ac.uk

SOURCE:

Biomacromolecules, (2001) $2/\overline{3}$ (1023-1028).

Refs: 35

ISSN: 1525-7797 CODEN: BOMAF6

COUNTRY:

United States Journal; Article

DOCUMENT TYPE:

FILE SEGMENT:

029 Clinical Biochemistry 037 Drug Literature Index

039 Pharmacy

LANGUAGE:

English

SUMMARY LANGUAGE: English

Poly(amidoamine)s (PAAs) are water-soluble polymers that display pH-dependent membrane activity. PAAs have the potential to act as a synthetic alternative to fusogenic peptides and thus promote endosomal escape. The purpose of this study was to investigate for the first time whether PAA have the ability to complex DNA, protect it from nuclease degradation and to promote transfection in vitro. PAAs ISA 1 (M(n) 6900) and ISA 23 (M(n) 10 500) and their 2-phenylethylamine containing analogues ISA 4 and ISA 22 (M(n) .apprx.8000) were studied. All PAAs retarded the electrophoretic mobility of λ Hind III DNA demonstrating interpolyelectrolyte complex (IPEC) formation and toroids of 80-150 nm in diameter (10:1 polymer excess) were visible using TEM. DNase II inhibition was observed. At a polymer:DNA ratio of 10:1, this was ISA 1(89.6 ± 6.1%), ISA 4 (92.2 \pm 11.2%), ISA 22 (69.4 \pm 3.7%), and ISA 23 (58.0 \pm 10.0%). PAAs demonstrated the ability to mediate pSV .beta .-galactosidase transfection of HepG2 cells. At a vector: DNA mass ratio of 5:1, ISA 23 showed equivalent transfection ability compared with polyethylenimine and LipofectIN and was more effective than LipofectACE. These properties suggest that PAAs warrant further development as endosomolytic vectors.

ANSWER 13 OF 27 HCAPLUS COPYRIGHT 2004 ACS on STN

ACCESSION NUMBER:

2001:918699 HCAPLUS

DOCUMENT NUMBER:

137:91938

TITLE:

Gene expression profiling of amyloid beta peptide-stimulated human post-mortem brain

microglia

AUTHOR (S):

CORPORATE SOURCE:

Walker, Douglas G.; Lue, Lih-Fen; Beach, Thomas G. Sun Health Research Institute, Sun City, AZ, 85351,

USA

SOURCE:

Neurobiology of Aging (2001), 22(6), 957-966

CODEN: NEAGDO; ISSN: 0197-4580

PUBLISHER:

Elsevier Science Inc.

DOCUMENT TYPE:

Journal

English

Activation of microglia is a central part of the chronic inflammatory processes in Alzheimer's disease (AD). In the brains of AD patients, activated microglia are associated with amyloid beta (A. beta.) peptide plaques. A number of previous studies have shown that aggregated synthetic A.beta. peptide activates cultured microglia to produce a range inflammatory products. The full extent of the inflammatory response still remains to be determined In this study, gene array technol. was employed to investigate in a more extensive manner the consequences of microglial activation by A.beta. peptide. RNA was prepared from pooled samples of cortical human microglia

isolated from post-mortem cases and incubated with a low dose (2.5 $\mu M)$ of A.beta.1-42 (or peptide solvent) for 24 h. This material was used to prepare cDNA probes, which were used to detect the differential pattern of expressed genes on a 1,176 Clontech membrane gene array. Results obtained showed that 104 genes were either upregulated or downregulated by 1.67 fold or greater. The most highly induced genes belonged to the chemokine family with interleukin-8 (IL-8) expression being increased by 11.7 fold. Interestingly, many of the highly induced genes had been identified as being responsive to activation by the transcription factor NF- κ B. A number of genes were downregulated. Thymosin beta, prothymosin alpha and parathymosin, all belonging to the same gene family, were downregulated. To validate these semi-quant. results, the expression of intercellular adhesion mol.-1 (ICAM-1) and rhoB were measured by RT-PCR in samples of cDNA derived from A.beta. and control stimulated human cortical

microglia. These results confirm the usefulness of the gene array approach for studying A.beta.-mediated inflammatory processes.

REFERENCE COUNT: 73 THERE ARE 73 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L5 ANSWER 14 OF 27 EMBASE COPYRIGHT 2004 ELSEVIER INC. ALL RIGHTS RESERVED.

ON STN

DUPLICATE 2

ACCESSION NUMBER:

2001193898 EMBASE

TITLE:

The cloning, genomic structure, localization, and

expression of human deoxyribonuclease

II.beta.

AUTHOR:

Krieser R.J.; MacLea K.S.; Park J.P.; Eastman A.

CORPORATE SOURCE:

A. Eastman, Department of Pharmacology, Dartmouth Medical

School, 7650 Remsen, Hanover, NH, United States.

alan.eastman@dartmouth.edu

SOURCE:

Gene, (16 May 2001) 269/1-2 (205-216).

Refs: 28

ISSN: 0378-1119 CODEN: GENED6

PUBLISHER IDENT .:

S 0378-1119(01)00434-6

COUNTRY:

Netherlands

DOCUMENT TYPE:

Journal; Article 004 Microbiology

FILE SEGMENT:

022 Human Genetics

LANGUAGE:

English

SUMMARY LANGUAGE:

English

Acidic endonuclease activity is present in all cells in the body and much of this can be attributed to the previously cloned and ubiquitously expressed deoxyribonuclease II (DNase II). Database analysis revealed the existence of expressed sequence tags and genomic segments coding for a protein with considerable homology to DNase II. This report describes the cloning of this cDNA, which we term deoxyribonuclease II.beta. (DNase II. beta.) and comparison of its expression to that of the originally cloned DNase II (now termed DNase $II\alpha$). The cDNA encodes a 357 amino acid protein. This protein exhibits extensive homology to DNase IIlphaincluding an amino-terminal signal peptide and a conserved active site, and has many of the regions of identity that are conserved in homologs in other mammals as well as C. elegans and Drosophila. The gene encoding DNase II.beta. has identical splice sites to DNase $II\alpha$. Human DNase II.beta. is highly expressed in the salivary gland, and at low levels in trachea, lung, prostate, lymph node, and testis, whereas DNase $II\alpha$ is ubiquitously expressed in all tissues. The expression pattern of human DNase II.beta. suggests that it may function primarily as a secreted enzyme. Human saliva was found to contain DNase $II\alpha$, but after immunodepletion, considerable acid-active endonuclease remained which we presume is DNase II.beta.. We have localized the gene for human DNase II.beta. to chromosome 1p22.3 adjacent (and in opposing orientation) to the human uricase pseudogene.

Interestingly, murine DNase II.beta. is highly expressed in the liver. Uricase is also highly expressed in mouse but not human liver and this may explain the difference in expression patterns between human and mouse DNase II.beta.. .COPYRGT. 2001 Elsevier Science B.V.

ANSWER 15 OF 27 EMBASE COPYRIGHT 2004 ELSEVIER INC. ALL RIGHTS RESERVED. on STN DUPLICATE 3

ACCESSION NUMBER:

2001386833 EMBASE

TITLE:

 α ,. beta.-poly(asparthylhydrazide)-

glycidyltrimethylammonium chloride copolymers (PAHy-GTA):

Novel polymers with potential for DNA delivery.

AUTHOR:

Pedone E.; Cavallaro G.; Richardson S.C.W.; Duncan R.;

Giammona G.

CORPORATE SOURCE:

G. Giammona, Dipto. Chim./Tecnol. Farmaceutiche,

Universita' degli Studi di Palermo, via Archirafi 32, 90123

Palermo, Italy. gaegiamm@unipa.it

SOURCE:

Journal of Controlled Release, (9 Nov 2001) 77/1-2

(139-153).Refs: 36

ISSN: 0168-3659 CODEN: JCREEC

PUBLISHER IDENT.:

S 0168-3659(01)00459-X

COUNTRY:

Netherlands

DOCUMENT TYPE:

Journal; Article

FILE SEGMENT:

022 Human Genetics

037

Drug Literature Index

039 Pharmacy

LANGUAGE:

English

SUMMARY LANGUAGE:

English

Hydrophilic polycations form complexes when mixed with plasmids. Following functionalisation with glycidyltrimethylammonium chloride (GTA) α ,. beta.-poly(asparthylhydrazide) (PAHy), a water-soluble synthetic macromolecule, becomes polycationic and potentially useful for systemic gene delivery. Initially the biocompatibility of PAHy and PAHy-GTA derivatives with different degrees of positive charge substitution were studied and it was shown that PAHy-GTA was neither haemolytic nor cytotoxicity up to 1 mg/ml. After intravenous injection (125) I-labelled PAHy-GTA derivative containing 46 mol% (PAHy-GTA(b)) of trimethylammonium groups did not accumulate in the liver $(4.1\pm0.9\%)$ of the recovered dose after 1 h) but was subjected to renal excretion (45±21% of the recovered dose was in the kidneys after 1 h). PAHy- $\bar{\text{GTA}}$ formed complexes with DNA (gel retardation) and they protected against degradation by DNase II. Finally the ability of the PAHy-GTA(b) derivative to mediate the transfection of HepG2 cells using the marker gene .beta .-galactosidase was studied. The optimum plasmid/polymer mass ratio was examined in comparison to LipofectACE®, Lipofectin® and polyethylenimine. .COPYRGT. 2001 Elsevier Science B.V. All rights reserved.

ANSWER 16 OF 27 HCAPLUS COPYRIGHT 2004 ACS on STN

ACCESSION NUMBER: 2000:734130 HCAPLUS

DOCUMENT NUMBER:

134:38759

TITLE:

TIMP-3 binds to sulfated glycosaminoglycans of the

extracellular matrix

AUTHOR (S):

Yu, Wei-Hsuan; Yu, Shuan-Su C.; Meng, Qi; Brew, Keith;

Woessner, J. Frederick, Jr.

CORPORATE SOURCE:

Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, Miami, FL,

33101, USA

SOURCE:

Journal of Biological Chemistry (2000), 275(40),

31226-31232

CODEN: JBCHA3; ISSN: 0021-9258

PUBLISHER:

American Society for Biochemistry and Molecular

Biology

DOCUMENT TYPE: Journal LANGUAGE: English

Of the four known tissue inhibitors of metalloproteinases (TIMPs), TIMP-3 is distinguished by its tighter binding to the extracellular matrix. The present results show that glycosaminoglycans such as heparin, heparan sulfate, chondroitin sulfates A, B, and C, and sulfated compds. such as suramin and pentosan efficiently extract TIMP-3 from the postpartum rat uterus. Enzymic treatment by heparinase III or chondroitinase ABC also releases TIMP-3, but neither one alone gives complete release. Confocal microscopy shows co-localization of heparan sulfate and TIMP-3 in the endometrium subjacent to the lumen of the uterus. Immunostaining of TIMP-3 is lost upon digestion of tissue sections with heparinase III and chondroitinase ABC. The N-terminal domain of human TIMP-3 was expressed and found to bind to heparin with affinity similar to that of full-length mouse TIMP-3. The A and B .beta.-strands of the N-terminal domain of TIMP-3 contain two potential heparin-binding sequences rich in lysine and arginine; these strands should form a double track on the outer surface of TIMP-3. Synthetic peptides corresponding to segments of these two strands compete for heparin in the DNase II binding assay. TIMP-3 binding may be important for the cellular regulation of activity of the matrix metalloproteinases.

REFERENCE COUNT: THERE ARE 38 CITED REFERENCES AVAILABLE FOR THIS 38 RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

ANSWER 17 OF 27 HCAPLUS COPYRIGHT 2004 ACS on STN

ACCESSION NUMBER:

2000:801315 HCAPLUS

DOCUMENT NUMBER:

134:98363

TITLE:

Towards a human repertoire of monocytic

lysosomal proteins

AUTHOR(S):

Journet, Agnes; Chapel, Agnes; Kieffer, Sylvie; Louwagie, Mathilde; Luche, Sylvie; Garin, Jerome

CORPORATE SOURCE:

Laboratoire de Chimie des Proteines, CEA-Grenoble,

Grenoble, F-38054, Fr.

SOURCE:

Electrophoresis (2000), 21(16), 3411-3419

CODEN: ELCTDN; ISSN: 0173-0835

PUBLISHER:

Wiley-VCH Verlag GmbH

DOCUMENT TYPE: LANGUAGE:

Journal English

The lysosomal compartment of human monocytic cells has never been investigated by a proteomic approach. By a combination of one-dimensional (1-D) and two-dimensional (2-D) gel electrophoresis, protein identification by N-terminal sequencing, matrix assisted laser desorption/ionization-mass spectrometry (MALDI-MS) peptide mass fingerprinting and tandem mass spectrometry (MS/MS) peptide sequence anal., we initiated an exhaustive study of the human lysosomal proteome, which aims at establishing a 2-D reference map of human soluble lysosomal proteins. Human monocytic U937 cells were induced to secrete lysosomal soluble hydrolases by addition of NH4Cl in the culture medium. Since lysosomal soluble proteins are characterized by the presence of mannose-6-phosphate, they were purified on an affinity support bearing mannose-6-phosphate receptor. Anal. of the purified fraction led to the preliminary identification of fifteen proteins, among which twelve are well-known lysosomal hydrolases, one is assumed to be lysosomal on the basis of sequence homol. to cysteine proteinases of the papain family, and two (leukocystatin and the human cellular repressor of E1A-stimulated genes) are described here for the first time as

mannose-6-phosphate-containing proteins.

REFERENCE COUNT:

THERE ARE 69 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

ANSWER 18 OF 27 SCISEARCH COPYRIGHT (c) 2004 The Thomson Corporation. L5 on STN DUPLICATE 4

ACCESSION NUMBER: 1998:706859 SCISEARCH

69

THE GENUINE ARTICLE: 118MG

TITLE:

Enhanced reporter gene expression in cells transfected in

the presence of DMI-2, an acid nuclease inhibitor

AUTHOR:

Ross G F (Reprint); Bruno M D; Uyeda M; Suzuki K; Nagao K;

Whitsett J A; Korfhagen T R

CORPORATE SOURCE:

CHILDRENS HOSP, MED CTR, DIV PULM BIOL, 3333 BURNET AVE,

CINCINNATI, OH 45229 (Reprint); KUMAMOTO UNIV, DIV

PHARMACEUT SCI, KUMAMOTO, JAPAN

COUNTRY OF AUTHOR:

SOURCE:

USA; JAPAN

GENE THERAPY, (SEP 1998) Vol. 5, No. 9, pp. 1244-1250. Publisher: STOCKTON PRESS, HOUNDMILLS, BASINGSTOKE RG21

6XS, HAMPSHIRE, ENGLAND.

ISSN: 0969-7128. Article; Journal

DOCUMENT TYPE:

FILE SEGMENT: LANGUAGE:

LIFE English

26

REFERENCE COUNT:

ABSTRACT IS AVAILABLE IN THE ALL AND IALL FORMATS

Cellular nuclease activity is a potential barrier to the successful AB delivery of foreign genes to mammalian cells We tested the hypothesis that transfection in the presence of a specific DNase inhibitor can enhance the expression of foreign gene products. We have used DMI-2, a polyketide metabolite of Streptomyces sp. strain 560 to enhance the expression of bacterial chloramphenicol acetyltransferase (CAT) in the human lung adenocarcinoma cell line H441. DMI-2 has been shown previously to inhibit porcine DNase II, an acid pH nuclease contained in the endosomal/lysosomal compartment. Transfection of H441 cells in the presence of 0.1-1 mu g/ml DMI-2 caused: (1) 10-fold enhancement of CAT activity when the bacterial plasmid was complexed with either surfactant protein A-poly-lysine or transferrin-poly-lysine; (2) 1.5- to two-fold enhancement of CAT activity in cells exposed to lipofectin-DNA complexes; (3) no effect on transfection via calcium phosphate co-precipitation. DMI-2 alone showed no inherent transfection activity. In experiments using SP-A-poly-lysine and plasmid containing the beta-galactosidase reporter gene, DMI-2 increased the number of transfected cells. Methanolysis products of DMI-2 did not inhibit DNase II and did not enhance transfection efficiency, Taken together, the data support the hypothesis that nuclease action is a significant barrier to expression of-foreign genes and inhibition of specific nucleases may facilitate transfection.

ANSWER 19 OF 27 SCISEARCH COPYRIGHT (c) 2004 The Thomson Corporation. L5

on STN

ACCESSION NUMBER:

1998:144482 SCISEARCH

THE GENUINE ARTICLE: YW407

TITLE:

Properties of the endonuclease secreted by human

B lymphoblastic IM9 cells

CORPORATE SOURCE:

Kwon H J (Reprint); Kim D S

YONSEI UNIV, COLL SCI, DEPT BIOCHEM, SEOUL 120749, SOUTH KOREA; YONSEI UNIV, BIOPROD RES CTR, SEOUL 120749, SOUTH

KOREA

COUNTRY OF AUTHOR:

SOUTH KOREA

SOURCE:

AUTHOR:

JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY, (31 JAN

1998) Vol. 31, No. 1, pp. 106-110.

Publisher: BIOCHEMICAL SOC REPUBLIC KOREA, KOREA SCI

TECHNOLOGY CENTER, RM 801, 635-4 YEOGSAM-DONG, KANGNAM-GU,

SEOUL 135-753, SOUTH KOREA.

ISSN: 1225-8687. Article; Journal

DOCUMENT TYPE: LANGUAGE:

English

REFERENCE COUNT:

ABSTRACT IS AVAILABLE IN THE ALL AND IALL FORMATS AB We have employed a DNA-native-polyacrylamide gel electrophoresis (DNA-native-PAGE) assay system to characterize the enzyme activity of the endonuclease secreted by human B lymphoblastic IM9 cells.

Experimental results clearly demonstrated that the endonuclease activity of IM9 cell culture medium is distinct from that of DNase I in the DNA-native-PAGE assay system, Immunoprecipitation analysis using anti-DNase I antibody showed that the secreted endonuclease is not recognized by the antibody, The secreted endonuclease was isolated from the cell culture medium by native-PAGE elution technique, and the enzyme activity was estimated using supercoiled plasmid DNA as a substrate. The pH optimum required for the catalytic activity was determined to be in the range of pH 6.6-7.4. No significant difference in the endonuclease secretion was observed by stimulation of the IM9 cells with interferon-gamma or interleukin-1 beta.

ANSWER 20 OF 27 SCISEARCH COPYRIGHT (c) 2004 The Thomson Corporation. L5

on STN

ACCESSION NUMBER: 97:108926 SCISEARCH

THE GENUINE ARTICLE: WE588

TITLE:

Zinc inhibits apoptosis upstream of ICE/CED-9 proteases

rather than at the level of an endonuclease

AUTHOR: Wolf C M; Morana S J; Eastman A (Reprint)

CORPORATE SOURCE: DARTMOUTH COLL, SCH MED, DEPT PHARMACOL & TOXICOL,

HANOVER, NH 03755 (Reprint); DARTMOUTH COLL, SCH MED, DEPT

PHARMACOL & TOXICOL, HANOVER, NH 03755

COUNTRY OF AUTHOR: USA

SOURCE:

CELL DEATH AND DIFFERENTIATION, (FEB 1997) Vol. 4, No. 2,

pp. 125-129.

Publisher: STOCKTON PRESS, HOUNDMILLS, BASINGSTOKE,

HAMPSHIRE, ENGLAND RG21 6XS.

ISSN: 1350-9047.

DOCUMENT TYPE: FILE SEGMENT:

Article; Journal

LANGUAGE:

LIFE English

REFERENCE COUNT: 32

ABSTRACT IS AVAILABLE IN THE ALL AND IALL FORMATS

Apoptosis is commonly associated with DNA digestion, but it remains AB controversial as to which endonuclease is involved. The ability of zinc to inhibit DNA digestion in intact cells, and inhibit a Ca2+/Mg2+-dependent endonuclease in cell lysates, has been used frequently to suggest this is the endonuclease involved. However, zinc has many other effects on cells, and here it is shown that zinc also prevents many upstream events in apoptosis. These studies were performed in human ML-1 cells following incubation with etoposide. During apoptosis, these cells undergo intracellular acidification, increased accumulation of Hoechst 33342, DNA digestion and chromatin condensation. Zinc inhibited all of these events. An upstream event in apoptosis is activation of ICE/CED-3 proteases which is commonly observed as proteolysis of a substrate protein, poly(ADP-ribose) polymerase (PARP). The ICE/CED-3 proteases are themselves activated by proteolysis, and this was detected here by cleavage of one family member CPP32. Zinc prevented cleavage of both CPP32 and PARP. We recently demonstrated that dephosphorylation of the retinoblastoma susceptibility protein Rb was a marker of an event even further upstream in apoptosis; zinc was also found to inhibit Rb dephosphorylation. Therefore, zinc must protect cells at a very early step in the apoptotic pathway, and not as a direct inhibitor of an endonuclease.

ANSWER 21 OF 27 HCAPLUS COPYRIGHT 2004 ACS on STN

ACCESSION NUMBER: 1993:187374 HCAPLUS

DOCUMENT NUMBER: 118:187374

TITLE: Method using two-component additive for stabilization

of biomaterials during lyophilization

INVENTOR(S):

Carpenter, John F. Cryolife, Inc., USA

PATENT ASSIGNEE(S): SOURCE:

PCT Int. Appl., 35 pp. CODEN: PIXXD2

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO. KIND DATE APPLICATION NO. DATE
WO 9300807 A1 19920101 ______ 9300807 A1 19930121 WO 1992-US5643 19920702 W: AT, AU, BB, BG, BR, CA, CH, CS, DE, DK, ES, FI, GB, HU, JP, KP, KR, LK, LU, MG, MN, MW, NL, NO A1 19930211 AU 1992-23096 19920702 PRIORITY APPLN. INFO.: US 1991-725593 19910703 WO 1992-US5643

19920702 A method for stabilizing biomaterials during lyophilization uses a AB two-component additive. The 1st component (PEG, dextran, ficoll, etc.) serves as a cryoprotectant, and the 2nd component (e.g. a sugar polyhydroxy alc., amino acid) protects the biomaterial (e.g. a protein) during drying. In freeze-drying lactate dehydrogenase M isoenzyme with PEG and a second component (trehalose, lactose, glucose, glycine, or mannitol), the results supported synergistic stabilization of the protein during freeze-drying.

ANSWER 22 OF 27 MEDLINE on STN DUPLICATE 5

ACCESSION NUMBER: 83231243 MEDLINE DOCUMENT NUMBER: PubMed ID: 6190491

TITLE:

Cytochemical comparison of immunologically characterized

human leukaemia/lymphoma cell lines representing

different levels of maturation.

AUTHOR: Srivastava B I; Rossowski W; Minowada J

CONTRACT NUMBER: CA-14413 (NCI)

CA-17140 (NCI)

SOURCE: British journal of cancer, (1983 Jun) 47 (6) 771-9.

Journal code: 0370635. ISSN: 0007-0920.

ENGLAND: United Kingdom

PUB. COUNTRY:
DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: English

FILE SEGMENT: Priority Journals

ENTRY MONTH: 198308

ENTRY DATE: Entered STN: 19900319

> Last Updated on STN: 19970203 Entered Medline: 19830811

Forty-seven human leukaemia/lymphoma cell lines belonging to AΒ myelocytic, monocytic, non-T/non-B, T-, and B-lineage and representing different levels of maturation as well as fresh cells from normal and leukaemic subjects were examined for immunological markers and cytochemically for acid phosphatase, alkaline phosphatase, alpha-naphthyl acetate esterase (pH 5.8 and 8.0), alpha-naphthyl butyrate esterase (pH 5.8 and 8.0), non-specific esterase, chloroacetate esterase, chymotrypsin-like protease, deoxyribonuclease II, beta-glucuronidase, sudan black, and periodic acid Schiff's staining. Strong sudan black, nonspecific esterase, and chloroacetate esterase reaction was obtained only for myelocytic and monocytic cell lines with the reaction intensity increasing progressively in more mature cells. Focal acid phosphatase reaction like T-ALL was found in all T-ALL cell lines, whereas myeloid/monocytoid lines had semicircular distribution and B-cell lines cytoplasmic distribution of activity. Acid phosphatase activity appeared to decline with maturation along both myeloid and T-cell lineage. High activity of alpha-naphthyl acetate esterase and alpha-naphthyl butyrate esterase both at pH 5.8 and 8.0 and of beta-glucuronidase was found in myeloid/monocytoid lines although both B- and T-cell lines in contrast to peripheral blood B-cells also had significant esterase activity. alpha-Naphthyl butyrate esterase activity declined with increasing cell maturation along myeloid lineage. Except for weak activity in two B-cell lines alkaline phosphatase was not detected in any cell lines. Monocyte esterase activity was inhibited by

sodium fluoride whereas acid phosphatase, only from hairy cell leukaemia line, was resistant to L-tartarate. Although periodic acid Schiff's staining could not distinguish myeloid, T-, B-, or non-T/non-B cell lines it gave characteristic reaction (large number of coarse granules against a clear background forming a ring around the nucleus) with erythroblastic leukaemia cell line and along myeloid series its intensity increased in more mature cells. Deoxyribonuclease II and chymotrypsin-like protease staining were not discriminatory. The results of this study show that cytochemical staining characteristics of various leukaemia/lymphoma cell lines are comparable to those of corresponding cells from patients and that the intensity and pattern of expression of these activities are related to cell type and degree of cell maturation. These studies give further credence to the use of these cell lines in cell differentiation, differential drug cytotoxicity, and many other studies.

L5 ANSWER 23 OF 27 EMBASE COPYRIGHT 2004 ELSEVIER INC. ALL RIGHTS RESERVED.

on STN

ACCESSION NUMBER: 83178349 EMBASE

DOCUMENT NUMBER:

1983178349

TITLE:

Cytochemical comparison of immunologically characterized

human leukaemia/lymphoma cell lines representing

different levels of maturation.

AUTHOR:

Sahai Srivastava B.I.; Rossowski W.; Minowada J.

CORPORATE SOURCE:

Dep. Exp. Ther., Roswell Park Meml. Inst., Buffalo, NY

14263, United States

SOURCE:

British Journal of Cancer, (1983) 47/6 (771-779).

CODEN: BJCAAI

COUNTRY:

United Kingdom

DOCUMENT TYPE:

Journal

FILE SEGMENT:

016 Cancer

025 Hematology

O26 Immunology, Serology and Transplantation O05 General Pathology and Pathological Anatomy

LANGUAGE: English

Forty-seven human leukaemia/lymphoma cell lines belonging to myelocytic, monocytic, non-T/non-B, T-, and B-lineage and representing different levels of maturation as well as fresh cells from normal and leukaemic subjects were examined for immunological markers and cytochemically for acid phosphatase, alkaline phosphatase, $\alpha\text{-naphthyl}$ acetate esterase (pH 5.8 and 8.0), $\alpha\text{-naphthyl}$ butyrate esterase (pH 5.8 and 8.0), non-specific esterase, chloroacetate esterase, chymotrypsin-like protease, deoxyribonuclease II, .beta.-glucuronidase, sudan black, and periodic acid Schiff's staining. Strong sudan black, nonspecific esterase, and chloroacetate esterase reaction was obtained only for myelocytic and monocytic cell lines with the reaction intensity increasing progressively in more mature cells. Focal acid phosphatase reaction like T-ALL was found in all T-ALL cell lines, whereas myeloid/monocytoid lines had semicircular distribution and B-cell lines cytoplasmic distribution of activity. Acid phosphatase activity appeared to decline with maturation along myeloid and T-cell lineage. High activity of α -naphthyl acetate esterase and $\alpha\text{-naphthyl}$ butyrate esterase both at pH 5.8 and 8.0 and of . beta.-glucuronidase was found in myeloid/monocytoid lines although both B- and T-cell lines in contrast to peripheral blood B-cells also had significant esterase activity. α -Naphthyl butyrate esterase activity declined with increasing cell maturation along myeloid lineage. Except for weak activity in two B-cell lines alkaline phosphatase was not detected in any cell lines. Monocyte esterase activity was inhibited by sodium fluoride whereas acid phosphatase, only from hairy cell leukaemia line, was resistant to L-tartarate. Although periodic acid Schiff's staining could not distinguish myeloid, T-, B-, or non-T/non-B cell lines it gave characteristic reaction (large number of coarse granules against a clear background forming a ring around the nucleus) with erythroblastic leukaemia cell line and along myeloid series its intensity increased in

more mature cells. Deoxyribonuclease II and chymotrypsin-like protease staining were not discriminatory. The results of this study show that cytochemical staining characteristics of various leukaemia/lymphoma cell lines are comparable to those of corresponding cells from patients and that the intensity and pattern of expression of these activities are related to cell type and degree of cell maturation. These studies give further credence to the use of these cell lines in cell differentiation, differential drug cytotoxicity, and many other studies.

ANSWER 24 OF 27 LIFESCI COPYRIGHT 2004 CSA on STN

ACCESSION NUMBER: 83:37947 LIFESCI

TITLE: Cytochemical comparison of immunologically characterized

human leukaemia/lymphoma cell lines representing

different levels of maturation.

AUTHOR: Sahai Srivastava, B.I.; Rossowski, W.; Minowada, J.

CORPORATE SOURCE: Dep. Exp. Ther. and Grace Cancer Drug Cent., 666 Elm St.,

Buffalo, NY 14263, USA

SOURCE: BR. J. CANCER., (1983) vol. 47, no. 6, pp. 771-779.

DOCUMENT TYPE: Journal

FILE SEGMENT:

LANGUAGE: English SUMMARY LANGUAGE: English

Forty-seven human leukaemia/lymphoma cell lines belonging to myelocytic, monocytic, non-T/non-B, T-, and B-lineage and representing different levels of maturation as well as fresh cells from normal and leukaemic subjects were examined for immunological markers and cytochemically for acid phosphatase, alkaline phosphatase, alpha -naphthyl acetate esterase (pH 5.8 and 8.0), alpha -naphthyl butyrate esterase (pH 5.8 and 8.0), non-specific esterase, chloroacetate esterase, chymotrypsin-like protease, deoxyribonuclease II, beta -glucoronidase, sudan black, and periodic acid Schiff's staining. The result of this study show that cytochemical staining characteristics of various leukaemia/lymphoma cell lines are comparable to those of corresponding cells from patients and that the intensity and pattern of expression of these activities are related to cell type and degree of cell maturation. These studies give further credence to the use of these cell lines in cell differentiation, differential drug

ANSWER 25 OF 27 MEDLINE on STN

ACCESSION NUMBER: 83257382 MEDLINE

DOCUMENT NUMBER: PubMed ID: 6307389

TITLE: Implications of a 5'-nucleotidase inhibitor in

human leukemic cells for cellular aging and cancer.

AUTHOR: Sun A S; Holland J F; Lin K; Ohnuma T

SOURCE: Biochimica et biophysica acta, (1983 Jul 14) 762 (4)

577-84.

cytotoxicity, and many other studies.

Journal code: 0217513. ISSN: 0006-3002.

PUB. COUNTRY: Netherlands

DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: English

FILE SEGMENT: Priority Journals

ENTRY MONTH: 198309

ENTRY DATE: Entered STN: 19900319

> Last Updated on STN: 19980206 Entered Medline: 19830909

AB 5'-Nucleotidase activity of normal human embryonic lung fibroblasts (IMR-90) was found to be inhibited by the homogenates of seven different cell lines originated from patients with different kinds of leukemia and of fresh lymphocytes from a patient with Sezary syndrome (circulating T-cell lymphoma). About 97% of the inhibiting activity was found in the soluble fraction of RPMI 8402 cells, a cell line originated from the lymphocytes of a patient with acute lymphocytic leukemia. This inhibiting activity was not destroyed by dialysis, heating at 56 degrees C

for 30 min, nor digestion with RNAase or DNAase. About 85% of the inhibiting activity was destroyed by digestion with papain at 37 degrees C for 1 h and it was destroyed completely by heating at 100 degrees C for 30 min. When the heated (56 degrees C for 30 min) soluble fraction of RPMI 8402 cells was mixed with the homogenate of IMR-90 cells, it had no effect on the activities of alkaline, neutral or acid phosphatases, nor of N-acetyl-beta-D-glucosaminidase or cytochrome c oxidase of IMR-90 cells. Preincubating the mixed samples for 1, 20 and 45 min, respectively, before adding the substrate, the heated soluble fraction of RPMI 8402 cells did not increase the percentage of inhibition for 5'-nucleotidase of the homogenate of IMR-90 cells. No inhibition of other enzyme activities was observed under similar conditions. These data suggest that the inhibiting activity is due to a protein(s) that is not a The inhibiting activity was found in a single peak after the soluble fraction was fractionated by Sephadex G-100 chromatography and sedimentation centrifugation. The molecular weight of the inhibitor was found to be approx. 35,000 by comparing its retention volume and sedimentation rate with those of proteins of known molecular weight. present study suggest that the previously reported undetectability of 5'-nucleotidase in permanent cell lines could be due to the presence of a protein inhibitor for 5'-nucleotidase in these human leukemic cell lines. It also supports the hypothesis that the increased 5'-nucleotidase activity in normal senescent cells in vitro may be a control in cellular aging that is missing from leukemic cells in vitro.

ANSWER 26 OF 27 BIOSIS COPYRIGHT (c) 2004 The Thomson Corporation. on STN DUPLICATE 6

ACCESSION NUMBER:

1978:175412 BIOSIS

DOCUMENT NUMBER:

PREV197865062412; BA65:62412

QUANTITATIVE ESTIMATION OF ENZYMES IN HUMAN

PERIPHERAL BLOOD LYMPHOCYTES PART 1 ENZYME ACTIVITIES IN

LYMPHOCYTES OF HEALTHY INDIVIDUALS.

AUTHOR (S):

BOGAJEWSKI J [Reprint author]; BOGAJEWSKA G; MACKIEWICZ S

CORPORATE SOURCE: SOURCE:

ZAKL IMMUNOL, AKAD MED, SZKOLNA 8/12, POZNAN, POL

Immunologia Polska, (1976) Vol. 1, No. 4, pp. 285-294. CODEN: IMPODM. ISSN: 0324-8534.

DOCUMENT TYPE: Article FILE SEGMENT:

BA

LANGUAGE:

POLISH

Activities of the following enzymes were quantitated in peripheral blood lymphocytes of healthy individuals: lactate, glucose-6-phosphate succinate and reduced NAD dehydrogenases, alanine and aspartate dehydrogenases, carboxyloesterase, cholinesterase, acid phosphatase, deoxyribonuclease II and .beta.-glururonidase.

ANSWER 27 OF 27 HCAPLUS COPYRIGHT 2004 ACS on STN

ACCESSION NUMBER: 1964:4249 HCAPLUS

DOCUMENT NUMBER: 60:4249 ORIGINAL REFERENCE NO.: 60:788a-c

TITLE:

AUTHOR (S):

SOURCE:

Autoradiographic studies of the effects of

antibiotics, amino acid analogs, and nucleases on the synthesis of deoxyribonucleic acid (DNA) in cultured

mammalian cells Shah, Vinod C. Columbia Univ.

CORPORATE SOURCE:

Cancer Research (1963), 23, 1137-47

CODEN: CNREA8; ISSN: 0008-5472

DOCUMENT TYPE: Journal LANGUAGE: Unavailable

Processes suspecred of involvement in the control of DNA replication were investigated. Cultured cells of Chinese hamster and human cancer (HeLa) were used. Puromycin, chloramphenicol, pfluorophenylalanine, and methylated tryptophan analogs inhibited the synthesis of protein. They also affected the synthesis of DNA by changing the number of cells able to incorporate thymidine-3H as well as by reducing the rate of thymidine incorporation in the replicating cells. The relation of histone and DNA synthesis was studied cytochem., and data obtained indicate that histones do not seem to play any direct role in DNA replication. Actinomycin D inhibited intracellular ribonueleic acid (RNA) synthesis but did not affect DNA synthesis. This suggests that there is no necessary coupling of RNA and DNA syntheses. The nucleases (DNase I, DNase II, and RNase), within a short time after contact with the cells in culture medium, caused an increase in the number of cells able to incorporate thymidine. After 3 hrs. of treatment, both DNase II and RNase resulted in decreases in DNA synthesis. Results are discussed with regard to the hypothesis that RNA may act as repressor for DNA synthesis and the repressor activity is regulated by amino acids or proteins.

=> d his

L1.

(FILE 'HOME' ENTERED AT 09:06:25 ON 04 NOV 2004)

```
FILE 'MEDLINE, EMBASE, BIOSIS, BIOTECHDS, SCISEARCH, HCAPLUS, NTIS, LIFESCI' ENTERED AT 09:08:32 ON 04 NOV 2004
1382 S "DEOXYRIBONUCLEASE II"
```

L2 377 S L1 AND (HUMAN OR MURINE) L3 3858984 S BETA L4 36 S L2 AND L3

L4 36 S L2 AND L3 L5 27 DUP REM L4 (9 DUPLICATES REMOVED)

=> s digest? L6 1714908 DIGEST?

=> s l1 and l6 L7 348 L1 AND L6

=> s 17 and (human and murine)
<----User Break---->

SEARCH ENDED BY USER SEARCH ENDED BY USER

=> s 17 and (human or murine) 4 FILES SEARCHED...

L8 76 L7 AND (HUMAN OR MURINE)

=> dup rem 18

PROCESSING COMPLETED FOR L8 L9 41 DUP REM L8 (35 DUPLICATES REMOVED)

=> d 1-41 ibib ab

L9 ANSWER 1 OF 41 HCAPLUS COPYRIGHT 2004 ACS on STN

ACCESSION NUMBER: 2004:681680 HCAPLUS

DOCUMENT NUMBER: 141:200162

TITLE: Mitochondrial malate dehydrogenase DNA fragmentation

activator fragment and related conjugated proteins and

antibodies for cancer therapy

INVENTOR(S): Wright, Susan C.; Larrick, James W.; Nock, Steffen R.;

Wilson, David S.

PATENT ASSIGNEE(S): Palo Alto Institute of Molecular Medicine, USA

SOURCE: PCT Int. Appl., 225 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

```
PATENT INFORMATION:
    WO 2004070012 A2 000
                                            APPLICATION NO.
                                                                     DATE
                        ----
                                            _____
         2004070012 A2 20040819 WO 2004-US2974 20040202
W: AE, AE, AG, AL, AL, AM, AM, AM, AT, AT, AU, AZ, AZ, BA, BB, BG,
             BG, BR, BR, BW, BY, BY, BZ, BZ, CA, CH, CN, CN, CO, CO, CR, CR, CU, CU, CZ, CZ, DE, DE, DK, DK, DM, DZ, EC, EC, EE, EE, EG, ES,
             ES, FI, FI, GB, GD, GE, GE, GH, GM, HR, HR, HU, HU, ID, IL, IN,
             IS, JP, JP, KE, KE, KG, KG, KP, KP, KP, KR, KR, KZ, KZ, KZ, LC,
             LK, LR, LS, LS, LT, LU, LV, MA, MD, MD, MG, MK, MN, MW, MX, MX,
             MZ, MZ, NA, NI
         RW: BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW, AT, BE,
             BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU,
             MC, NL, PT, RO, SE, SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN,
             GQ, GW, ML, MR, NE, SN, TD, TG, BF, BJ, CF, CG, CI, CM, GA, GN,
             GQ, GW, ML, MR, NE, SN, TD, TG
     US 2004191843
                      A1 20040930
                                              US 2004-770668
                                              US 2003-444191P P 20030203
US 2003-460855P P 20030408
PRIORITY APPLN. INFO.:
     The invention provides compns. comprising amino acid sequences that have
AΒ
     cell killing activity, nucleic acid sequences encoding them, antibodies
     that specifically bind with them, and methods of using these compns. for
     increasing and/or reducing cell death, detecting cell death, diagnosing
     an activator of DNA fragmentation (ADF), a C-terminal fragment of
     mitochondrial MDH (malate dehydrogenase), which can induce DNA
     fragmentation by activating nuclease endogenous to normal nuclei. The
```

diseases associated with altered cell death, detecting cell death, diagnosing diseases associated with altered cell death, and methods for identifying test agents that alter cell death. More particularly, the invention provides an activator of DNA fragmentation (ADF), a C-terminal fragment of mitochondrial MDH (malate dehydrogenase), which can induce DNA fragmentation by activating nuclease endogenous to normal nuclei. The invention also provides a conjugate comprising a cell death-inducing mol. (such as ADF) and a cell mol.-recognizing compound, and use of said conjugate in killing cancer cells. Specifically, the invention relates that conjugate can be composed of said ADF and/or other mitochondrial/non-mitochondrial cell death-inducing proteins (such as Htra/Omi, apoptosis inducing factor, Smac/DIABLO, EndoG, Nix, Nip3, CIDE-B, gelsolin, Bcl-2, Bax, Bad, Bid, caspase-activated DNase, DNase I or DNase II), and that cell mol.-recognizing compds. can include antibodies or growth factors. In particular embodiments, recombinant ADF proteins, ADF-Ant (antennapedia) and rADF-bFGF, are shown to be cytotoxic to a variety to tumor cell types, and even drug-resistant cancer cell lines.

```
L9 ANSWER 2 OF 41 HCAPLUS COPYRIGHT 2004 ACS on STN
```

ACCESSION NUMBER: 2004:510285 HCAPLUS

DOCUMENT NUMBER: 141:52348

TITLE: Compounds and methods for detection of carcinomas and

their precursor lesions by analyzing carcinomas marker

molecule DNase expression

INVENTOR(S): Coy, Johannes

PATENT ASSIGNEE(S): MTM Laboratories Ag, Germany

SOURCE: Eur. Pat. Appl., 39 pp.

CODEN: EPXXDW

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

```
LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ,
             OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM,
             TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW, AM, AZ,
             BY, KG, KZ, MD
         RW: BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW, AT, BE,
             BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU,
             MC, NL, PT, RO, SE, SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN,
             GQ, GW, ML, MR, NE, SN, TD, TG
PRIORITY APPLN. INFO.:
                                            EP 2002-102814
                                                                A 20021218
     The present invention relates to compds. and methods for detection and
     treatment of carcinomas and their precursor lesions. The invention
     provides DNase nucleic acids and polypeptides useful for the detection and
     treatment of carcinomas and their precursor lesions. Specifically, this
     includes human (a) DNase 1-like 1 (DNase X) (NM 006730), (2)
     DNase 1-like 3 (also called DNase gamma) (AF047354), (c) DNase I
     (AJ298844), (d) DNase II (AB004574), (e) DNase 1-like
     2 (AK098028), (f) caspase activated DNase (AB013918), (g) DNase KIAAO218
     (D86972), (h) DNase 1-like DNase (AF274571), and (i) DFF-45 (AF087573).
     The invention is more specifically related to a method for detection of
     carcinomas and their precursor lesions comprising the detection of the
     level and/or the subcellular localization of one or more DNase mols. in
     biol. samples. Furthermore the present invention provides methods for
     early diagnosis, prognosis and monitoring of the disease course of
     carcinomas and their precursor lesions as well as for the treatment of
     said lesions.
     ANSWER 3 OF 41
                        MEDLINE on STN
                                                        DUPLICATE 1
ACCESSION NUMBER:
                    2004029194
DOCUMENT NUMBER:
                    PubMed ID: 14727918
TITLE:
                    Formation and mass spectrometric analysis of DNA and
                    nucleoside adducts by S-(1-acetoxymethyl) glutathione and by
                    glutathione S-transferase-mediated activation of
                    dihalomethanes.
AUTHOR:
                    Marsch Glenn A; Botta Sisir; Martin Martha V; McCormick W
                    Andrew; Guengerich F Peter
CORPORATE SOURCE:
                    Department of Biochemistry and Center in Molecular
                    Toxicology, Vanderbilt University School of Medicine,
                    Nashville, Tennessee 37232, USA.
CONTRACT NUMBER:
                    P30 ES00267 (NIEHS)
     R01 ES10546 (NIEHS)
SOURCE:
                    Chemical research in toxicology, (2004 Jan) 17 (1) 45-54.
                    Journal code: 8807448. ISSN: 0893-228X.
PUB. COUNTRY:
                    United States
DOCUMENT TYPE:
                    Journal; Article; (JOURNAL ARTICLE)
LANGUAGE:
                    English
FILE SEGMENT:
                    Priority Journals
ENTRY MONTH:
                    200409
ENTRY DATE:
                    Entered STN: 20040121
                    Last Updated on STN: 20040921
                    Entered Medline: 20040920
AB
     The dihalomethane CH(2)Cl(2) is an industrial solvent of potential concern
     to humans because of its potential genotoxicity and
     carcinogenicity. To characterize DNA damage by dihalomethanes, a rapid
     DNA digestion under acidic conditions was developed to identify
     alkali labile DNA-dihalomethane nucleoside adducts using HPLC-electrospray
     mass spectrometry. DNA digestion worked best using pH 5.0
     sodium acetate buffer, a 30 min incubation with DNase II and
    phosphodiesterase II, and a 2 h acid phosphatase digest. DNA
     was modified with S-(1-acetoxymethyl)glutathione (GSCH(2)OAc), a reagent
     modeling activated dihalomethanes. Adducts to G, A, and T were detected
```

at high ratios of GSCH(2)OAc/DNA following digestion of the DNA

with the procedure used here. The relative efficacy of adduct formation

CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK,

was G > T > A >> C. The four DNA nucleosides were also reacted with the dihalomethanes CH(2)Cl(2) and CH(2)Br(2) in the presence of glutathione (GSH) and GSH S-transferases from bacteria (DM11), rat (GST 5-5), and human (GST T1-1) under conditions that produce mutations in bacteria. All enzymes formed adducts to all four nucleosides, with dGuo being the most readily modified nucleoside. Thus, the pattern paralleled the results obtained with the model compounds GSCH(2)OAc and DNA. CH(2)Cl(2) and CH(2)Br(2) yielded similar amounts of adducts under these conditions. The relative efficiency of adduct formation by GSH transferases was rat 5-5 > human T1-1 > bacterial DM11, showing that human GSH transferase T1-1 can form dihalomethane adducts under the conditions used. Although the lability of DNA adducts has precluded more sophisticated experiments and in vivo studies have not yet been possible, the work collectively demonstrates the ability of several GSH transferases to generate DNA adducts from dihalomethanes, with G being the preferred site of adduction in both this and the GSCH(2)OAc model system.

L9 ANSWER 4 OF 41 MEDLINE on STN DUPLICATE 2

ACCESSION NUMBER: 2003082972 MEDLINE DOCUMENT NUMBER: PubMed ID: 12594037

TITLE: A family history of deoxyribonuclease II

: surprises from Trichinella spiralis and Burkholderia

pseudomallei.

AUTHOR: MacLea Kyle S; Krieser Ronald J; Eastman Alan

CORPORATE SOURCE: Department of Pharmacology and Toxicology, Dartmouth

Medical School, 7650 Remsen, Hanover, NH 03755, USA.

CONTRACT NUMBER: CA 23108 (NCI)

CA 50224 (NCI)

SOURCE: Gene, (2003 Feb 13) 305 (1) 1-12.

Journal code: 7706761. ISSN: 0378-1119.

PUB. COUNTRY: Netherlands

DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: English

FILE SEGMENT: Priority Journals

ENTRY MONTH: 200304

ENTRY DATE: Entered STN: 20030221

Last Updated on STN: 20030426 Entered Medline: 20030425

Deoxyribonuclease IIalpha (DNase IIalpha) is an acidic endonuclease found AΒ in lysosomes and nuclei, and it is also secreted. Though its Caenorhabditis elegans homolog, NUC-1, is required for digesting DNA of apoptotic cell corpses and dietary DNA, it is not required for viability. However, DNase IIalpha is required in mice for correct development and viability, because undigested cell corpses lead to lesions throughout the body. Recently, we showed that, in contrast to previous reports, active DNase IIalpha consists of one contiquous polypeptide. To better analyze DNase II protein structure and determine residues important for activity, extensive database searches were conducted to find distantly related family members. We report 29 new partial or complete homologs from 21 species. Four homologs with differences at the purported active site histidine residue were detected in the parasitic nematodes Trichinella spiralis and Trichinella pseudospiralis. When these mutations were reconstructed in human DNase IIalpha, the expressed proteins were inactive. DNase II homologs were also identified in non-metazoan species. In particular, the slime-mold Dictyostelium, the protozoan Trichomonas vaginalis, and the bacterium Burkholderia pseudomallei all contain sequences with significant similarity and identity to previously cloned DNase II family members. We report an analysis of their sequences and implications for DNase II protein structure and evolution.

L9 ANSWER 5 OF 41 MEDLINE ON STN ACCESSION NUMBER: 2002174344 MEDLINE

DOCUMENT NUMBER: PubMed ID: 11906178

TITLE: Revised structure of the active form of human

deoxyribonuclease IIalpha.

AUTHOR: MacLea Kyle S; Krieser Ronald J; Eastman Alan

CORPORATE SOURCE: Department of Pharmacology and Toxicology, Dartmouth

Medical School, Hanover, New Hampshire 03755, USA.

CONTRACT NUMBER: CA23108 (NCI)

CA50224 (NCI)

SOURCE: Biochemical and biophysical research communications, (2002

Mar 29) 292 (2) 415-21.

Journal code: 0372516. ISSN: 0006-291X.

PUB. COUNTRY: United States

DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: English

FILE SEGMENT: Priority Journals

ENTRY MONTH: 200205

ENTRY DATE: Entered STN: 20020322

Last Updated on STN: 20020507 Entered Medline: 20020506

ABDeoxyribonuclease IIalpha (DNase IIalpha) is an acid endonuclease found in lysosomes, nuclei, and various secretions. Murine DNase IIalpha is required for digesting the DNA of apoptotic cells after phagocytosis and for correct development and viability. DNase IIalpha purified from porcine spleen was previously shown to contain three peptides, two of which were thiol crosslinked, all derived by processing of a single polypeptide. Commercial bovine protein is consistent with this structure. However, screening of 18 human cell lines failed to demonstrate this processing, rather a 45 kDa protein was consistently observed. Incubation of cells with the N-glycosylation inhibitor tunicamycin resulted in a 37 kDa protein, which is close to the predicted formula weight. The protein also contains at least one thiol crosslink. Similar results were obtained with overexpressed DNase IIalpha. These results suggest that active DNase IIalpha consists of one contiguous polypeptide. We suggest the previous structure reflects proteolysis during protein purification. (c) 2002 Elsevier Science (USA).

L9 ANSWER 6 OF 41 BIOSIS COPYRIGHT (c) 2004 The Thomson Corporation. on

 \mathtt{STN}

ACCESSION NUMBER: 2002:379757 BIOSIS DOCUMENT NUMBER: PREV200200379757

TITLE: Production and characterization of murine

monoclonal anti-human DNase II antibodies, and

their use for immunoaffinity purification of DNase II from

human liver and urine.

AUTHOR(S): Nakajima, Tamiko; Yasuda, Toshihiro; Takeshita, Haruo;

Mori, Shinjiro; Mogi, Kouichi; Kaneko, Yasushi; Nakazato,

Emiko; Kishi, Koichiro [Reprint author]

CORPORATE SOURCE: Department of Legal Medicine, Gunma University School of

Medicine, Maebashi, Gunma, 371-8511, Japan

kkoichi@med.gunma-u.ac.jp

SOURCE: Biochimica et Biophysica Acta, (15 April, 2002) Vol. 1570,

No. 3, pp. 160-164. print.

CODEN: BBACAQ. ISSN: 0006-3002.

DOCUMENT TYPE: Article

LANGUAGE: English

ENTRY DATE: Entered STN: 10 Jul 2002

Last Updated on STN: 10 Jul 2002

AB Four murine monoclonal anti-human

deoxyribonuclease II (DNase II) antibodies were obtained from BALB/c mice immunized with human DNase II purified from human liver. Both single radial enzyme diffusion (SRED) and DNA-cast polyacrylamide gel electrophoresis (DNA-cast PAGE) were very useful for obtaining the DNase II-specific antibodies. All of the

antibodies showed specific inhibition of human DNase II enzyme activity and specific immunostaining of the 32-kDa enzyme band, which is one of the three non-identical subunits of human DNase II molecule separated by sodium dodecyl sulfate (SDS)-PAGE followed by blotting on a transfer membrane. A formyl-cellulofine resin conjugated with each antibody specifically adsorbed and efficiently desorbed the active DNase II enzyme. Insertion of the immunoaffinity step in our purification procedure made the purification of human DNase II easier, faster and more effective than the conventional procedure.

L9 ANSWER 7 OF 41 BIOTECHDS COPYRIGHT 2004 THE THOMSON CORP. on STN

ACCESSION NUMBER: 2002-03382 BIOTECHDS

TITLE: New cDNA encoding a deoxyribonuclease-II

-beta enzyme useful for degrading DNA present in the mucous

plugs in the lungs of cystic fibrosis patients;

recombinant DNA-ase-II-beta production and isolation useful for cystic fibrosis therapy and drug screening

AUTHOR: Eastman A R; Krieser R J

PATENT ASSIGNEE: Dartmouth-Coll. LOCATION: Hanover, NH, USA.

PATENT INFO: WO 2001075082 11 Oct 2001 APPLICATION INFO: WO 2001-US10635 2 Apr 2001

PRIORITY INFO: US 2000-574942 19 May 2000; US 2000-541840 3 Apr 2000

DOCUMENT TYPE: Patent LANGUAGE: English

OTHER SOURCE: WPI: 2001-662972 [76]

A cDNA encoding a DNA-ase-II-beta enzyme, is new. Also claimed are: a vector comprising the claimed cDNA; an isolated and purified DNA-ase-II-beta enzyme; an antibody against the DNA-ase-II-beta enzyme; determining DNA-ase-II-beta levels in cells, comprising contacting the cells with the above antibody and detecting binding of the antibody; an antisense oligonucleotide targeted to a DNA or mRNA encoding the DNA-ase-II-beta; inhibiting expression of a DNA-ase-II-beta enzyme in cells, comprising administering the above antisense oligonucleotide; and digesting DNA by contacting it with the DNA-ase-II-beta enzyme. The DNA-ase-II-beta may be useful to digest DNA in the mucous plugs in lungs of cystic fibrosis patients and so reduce their viscosity (disclosed). In an example, the cDNA sequence of DNA-ase-alpha was submitted to the GenBank database and a mouse cDNA EST showing high similarity was identified, purchased and sequenced. Additional EST sequences from human tissues were found that had similarity to this EST but contained incomplete sequences. One sequence was found to contain 932bp of the gene referred to here as DNA-ase-II-beta.

L9 ANSWER 8 OF 41 BIOSIS COPYRIGHT (c) 2004 The Thomson Corporation. on STN

ACCESSION NUMBER: 2001:245207 BIOSIS DOCUMENT NUMBER: PREV200100245207

TITLE: Structure and processing of human

deoxyribonuclease II.

AUTHOR(S): MacLea, Kyle S. [Reprint author]; Krieser, Ronald J.

[Reprint author]; Eastman, Alan [Reprint author]

CORPORATE SOURCE: Pharmacology/Toxicology, Dartmouth Medical School, Hanover,

NH, 03755, USA

SOURCE: FASEB Journal, (March 7, 2001) Vol. 15, No. 4, pp. A202.

print.

Meeting Info.: Annual Meeting of the Federation of American Societies for Experimental Biology on Experimental Biology 2001. Orlando, Florida, USA. March 31-April 04, 2001.

CODEN: FAJOEC. ISSN: 0892-6638.

DOCUMENT TYPE: Conference; (Meeting)

Conference; Abstract; (Meeting Abstract)

LANGUAGE: English

ENTRY DATE: Entered STN: 23 May 2001

Last Updated on STN: 19 Feb 2002

AB Deoxyribonuclease II (DNase II) is an endonuclease active at acidic pH that is found in lysosomes and in various secretions. It has recently been identified as a homolog of the Caenorhabditis elegans NUC-1 protein that is required for digesting the DNA of apoptotic cells and ingested bacteria. The nonhomologous human DNase I protein is used clinically to digest the viscous sputum of cystic fibrosis (CF) patients. However, only marginal improvement in lung function has been observed, probably because DNase I requires exogenous divalent cations and is inhibited by G-actin, abundant in the sputum. In contrast, DNase II is unaffected by divalent cations or actin and may therefore be a superior therapeutic. We are studying the structure and activity of DNase II to evaluate its potential as a CF mucolytic agent. Purified DNase II from porcine spleen and human liver was previously shown to contain two thiol cross-linked peptides derived by posttranslational processing of a single polypeptide with formula weight of 39.6 kDa. Commercial DNase II contains a peptide that begins at amino acid 108, consistent with this structure. However, screening of several cell types and secretions in this laboratory has failed to demonstrate this processing. Rather, these systems show a 51 kDa protein that is reduced in size to 40 kDa upon incubation of cells with the N-glycosylation inhibitor tunicamycin. The protein contains at least one thiol cross-link. Similar results are obtained upon transient transfection of DNase II into several cell lines. Various truncated forms of the protein remain unglycosylated and inactive. These results suggest that the human DNase II protein is formed from one contiguous polypeptide chain, heavily glycosylated, which requires the signal peptide sequence for proper processing. This knowledge is important for production and evaluation of its therapeutic potential for CF.

ANSWER 9 OF 41 HCAPLUS COPYRIGHT 2004 ACS on STN

2000:734130 HCAPLUS ACCESSION NUMBER:

DOCUMENT NUMBER: 134:38759

TIMP-3 binds to sulfated glycosaminoglycans of the TITLE:

extracellular matrix

AUTHOR(S): Yu, Wei-Hsuan; Yu, Shuan-Su C.; Meng, Qi; Brew, Keith;

Woessner, J. Frederick, Jr.

CORPORATE SOURCE: Department of Biochemistry and Molecular Biology,

University of Miami School of Medicine, Miami, FL,

33101, USA

Journal of Biological Chemistry (2000), 275(40), SOURCE:

31226-31232

CODEN: JBCHA3; ISSN: 0021-9258

American Society for Biochemistry and Molecular PUBLISHER:

> Biology Journal

DOCUMENT TYPE: LANGUAGE: English

Of the four known tissue inhibitors of metalloproteinases (TIMPs), TIMP-3 is distinguished by its tighter binding to the extracellular matrix. present results show that glycosaminoglycans such as heparin, heparan sulfate, chondroitin sulfates A, B, and C, and sulfated compds. such as suramin and pentosan efficiently extract TIMP-3 from the postpartum rat uterus. Enzymic treatment by heparinase III or chondroitinase ABC also releases TIMP-3, but neither one alone gives complete release. Confocal microscopy shows co-localization of heparan sulfate and TIMP-3 in the endometrium subjacent to the lumen of the uterus. Immunostaining of TIMP-3 is lost upon digestion of tissue sections with heparinase III and chondroitinase ABC. The N-terminal domain of human TIMP-3 was expressed and found to bind to heparin with affinity similar to that of full-length mouse TIMP-3. The A and B β -strands of the N-terminal domain of TIMP-3 contain two potential heparin-binding sequences rich in lysine and arginine; these strands should form a double track on the outer surface of TIMP-3. Synthetic peptides corresponding to segments of these two strands compete for heparin in the DNase

II binding assay. TIMP-3 binding may be important for the

cellular regulation of activity of the matrix metalloproteinases.

REFERENCE COUNT: 38 THERE ARE 38 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L9 ANSWER 10 OF 41 MEDLINE ON STN
ACCESSION NUMBER: 2000127901 MEDLINE

DOCUMENT NUMBER: PubMed ID: 10660581

TITLE: Heparan sulfate proteoglycans as extracellular docking molecules for matrilysin (matrix metalloproteinase 7).

AUTHOR: Yu W H; Woessner J F Jr

CORPORATE SOURCE: Department of Biochemistry and Molecular Biology,

University of Miami School of Medicine, Miami, Florida

33101, USA.

CONTRACT NUMBER: AR-16940 (NIAMS)

SOURCE: Journal of biological chemistry, (2000 Feb 11) 275 (6)

4183-91.

Journal code: 2985121R. ISSN: 0021-9258.

PUB. COUNTRY: United States

DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: English

FILE SEGMENT: Priority Journals

ENTRY MONTH: 200003

ENTRY DATE: Entered STN: 20000327

Last Updated on STN: 20000327 Entered Medline: 20000316

Many matrix metalloproteinases (MMPs) are tightly bound to tissues; AB matrilysin (MMP-7), although the smallest of the MMPs, is one of the most tightly bound. The most likely docking molecules for MMP-7 are heparan sulfate proteoglycans on or around epithelial cells and in the underlying basement membrane. This is established by extraction experiments and confocal microscopy. The enzyme is extracted from homogenates of postpartum rat uterus by heparin/heparan sulfate and by heparinase III treatment. The enzyme is colocalized with heparan sulfate in the apical region of uterine glandular epithelial cells and can be released by heparinase digestion. Heparan sulfate and MMP-7 are expressed at similar stages of the rat estrous cycle. The strength of heparin binding by recombinant rat proMMP-7 was examined by affinity chromatography, affinity coelectrophoresis, and homogeneous enzyme-based binding assay; the K(D) is 5-10 nM. Zymographic measurement of MMP-7 activity is greatly enhanced by heparin. Two putative heparin-binding peptides have been identified near the C- and N-terminal regions of proMMP-7; however, molecular modeling suggests a more extensive binding track or cradle crossing multiple peptide strands. Evidence is also found for the binding of MMP-2, -9, and -13. Binding of MMP-7 and other MMPs to heparan sulfate in the extracellular space could prevent loss of secreted enzyme, provide a reservoir of latent enzyme, and facilitate cellular sensing and regulation of enzyme levels. Binding to the cell surface could position the enzyme for directed proteolytic attack, for activation of or by other MMPs and for regulation of other cell surface proteins. Dislodging MMPs by treatment with compounds such as heparin might be beneficial in attenuating excessive tissue breakdown such as occurs in cancer metastasis, arthritis, and angiogenesis.

L9 ANSWER 11 OF 41 MEDLINE on STN DUPLICATE 4

ACCESSION NUMBER: 2000457895 MEDLINE DOCUMENT NUMBER: PubMed ID: 10903447

TITLE: Deoxyribonuclease II: structure and

chromosomal localization of the murine gene, and comparison with the genomic structure of the human

and three C. elegans homologs.

AUTHOR: Krieser R J; Eastman A

CORPORATE SOURCE: Department of Pharmacology and Toxicology, Dartmouth

Medical School, 03755, Hanover, NH, USA.

CONTRACT NUMBER: CA23108 (NCI)

CA50224 (NCI)

SOURCE: Gene, (2000 Jul 11) 252 (1-2) 155-62.

Journal code: 7706761. ISSN: 0378-1119.

PUB. COUNTRY: Netherlands

DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: English

FILE SEGMENT: Priority Journals

OTHER SOURCE: GENBANK-AF190459; GENBANK-AF220525; GENBANK-AF220526

ENTRY MONTH: 200009

ENTRY DATE: Entered STN: 20001005

Last Updated on STN: 20001005 Entered Medline: 20000925

Deoxyribonuclease II (DNase II) has been implicated in AB diverse functions including degradation of foreign DNA, genomic instability, and in mediating the DNA digestion associated with apoptosis. The production of a mouse deleted for DNase II would clearly help to discriminate these functions. We have cloned and sequenced the mouse gene encoding DNase II. It was found to have a similar intron/exon structure to the human gene, although introns 3 and 5 are considerably shorter. The gene is located on mouse chromosome 8. The order of genes at this locus is mGCDH, mEKLF, mDNase II, mSAST, which is the same order that these genes are found on human chromosome The GenBank database contains incorrect expressed sequence tags (ESTs) for the 3' end of the mouse mRNA. Furthermore, the gene structure of two of the three homologs in C. elegans is also incorrectly predicted in the database. We have established the correct intron/exon structure for these genes and show the conserved sequence and structure of the C. elegans, murine and human genes.

L9 ANSWER 12 OF 41 MEDLINE on STN DUPLICATE 5

ACCESSION NUMBER: 1999410119 MEDLINE DOCUMENT NUMBER: PubMed ID: 10482393

TITLE: Some properties of alkaline DNases of tentacles of actinia

Radianthus macrodactylus and their hemolytic activity. Gaphurov J M; Bulgakov A A; Galkin V V; Rasskazov V A

AUTHOR: Gaphurov J M; Bulgakov A A; Galkin V V; Rasskazov V A CORPORATE SOURCE: Pacific Institute of Bioorganic Chemistry, Far Eastern Division of Russian Academy of Sciences, Vladivostok.

Toxicon: official journal of the International Society on

Toxinology, (1999 Nov) 37 (11) 1591-604. Journal code: 1307333. ISSN: 0041-0101.

ENGLAND: United Kingdom

DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: English

FILE SEGMENT: Priority Journals

ENTRY MONTH: 199910

SOURCE:

PUB. COUNTRY:

ENTRY DATE: Entered STN: 20000111

Last Updated on STN: 20000111 Entered Medline: 19991025

Two alkaline DNases of tentacles of actinia Radianthus macrodactylus, AB referred to as alk DNase I and alk DNase II, respectively, have been purified up to apparent homogeneity with consecutive column ion exchange chromatography and gel filtration. Both enzymes have a lot of common properties, such as the ability to hydrolyze very effectively p-nitrophenyl-5'-TMP and heat-denatured DNA. They both have no preferential specificity to the sugar component of the nucleic acids and effectively digest ribopolymers. Their ability to hydrolyze supercoiled DNA of the pBR322 plasmid and linear DNA of the lambda phage by "miscellaneous" exo- and endonucleolytic types of attack and to produce nucleosides, nucleotides and short oligonucleotides suggests their similarity with phosphodiesterase I (5'-exonuclease, oligonucleate 5'-nucleotidohydrolase; E.C. 3.1.4.1), isolated from rattle snake Crotalus adamenteus venom. Alk DNase II has been revealed to have some uncommon properties, such as phosphomonoesterase and hemolytic activities.

protein causes a very potent lysis of human and rabbit erythrocytes. The ability of alk DNase II to precipitate some components of normal human and rabbit blood serum as well as the inhibition of this reaction by fucose but not by another monosaccharides suggest the enzyme to have a lectin-like activity. The appearance of only one protein band during electrophoresis of alk DNase II in denaturation conditions suggests that all activities are inherent to the same molecule of protein. The possible role of alkaline DNases in the toxic effect of burning by actinia tentacles is discussed.

L9 ANSWER 13 OF 41 MEDLINE ON STN DUPLICATE 6

ACCESSION NUMBER: 1999310942 MEDLINE DOCUMENT NUMBER: PubMed ID: 10381642

TITLE: Cleavage and nuclear translocation of the caspase 3

substrate Rho GDP-dissociation inhibitor, D4-GDI, during

apoptosis.

AUTHOR: Krieser R J; Eastman A

CORPORATE SOURCE: Department of Pharmacology and Toxicology, Dartmouth

Medical School, Hanover, New Hampshire 03755, USA.

CONTRACT NUMBER: CA09658 (NCI)

CA23108 (NCI) CA50224 (NCI)

SOURCE: Cell death and differentiation, (1999 May) 6 (5) 412-9.

Journal code: 9437445. ISSN: 1350-9047.

PUB. COUNTRY: ENGLAND: United Kingdom

DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: English

FILE SEGMENT: Priority Journals

ENTRY MONTH: 199909

ENTRY DATE: Entered STN: 19990921

Last Updated on STN: 20000303 Entered Medline: 19990909

While investigating endonucleases potentially involved in apoptosis, an AΒ antisera was raised to bovine deoxyribonuclease II, but it recognized a smaller protein of 26 kDa protein in a variety of cell The 26 kDa protein underwent proteolytic cleavage to 22 kDa concomitantly with DNA digestion in cells induced to undergo apoptosis. Sequencing of the 26 kDa protein identified it as the Rho GDP-dissociation inhibitor D4-GDI. Zinc, okadaic acid, calyculin A, cantharidin, and the caspase inhibitor z-VAD-fmk, all prevented the cleavage of D4-GDI, DNA digestion, and apoptosis. The 26 kDa protein resided in the cytoplasm of undamaged cells, whereas following cleavage, the 22 kDa form translocated to the nucleus. Human D4-GDI, and D4-GDI mutated at the caspase 1 or caspase 3 sites, were expressed in Chinese hamster ovary cells which show no detectable endogenous D4-GDI. Mutation at the caspase 3 site prevented D4-GDI cleavage but did not inhibit apoptosis induced by staurosporine. The cleavage of D4-GDI could lead to activation of Jun N-terminal kinase which has been implicated as an upstream regulator of apoptosis in some systems. However, the results show that the cleavage of D4-GDI and translocation to the nucleus do not impact on the demise of the cell.

L9 ANSWER 14 OF 41 BIOTECHDS COPYRIGHT 2004 THE THOMSON CORP. on STN

ACCESSION NUMBER: 1998-06794 BIOTECHDS

TITLE: Human and cattle deoxyribonuclease-

II enzyme and encoding cDNA;

recombinant DNA-ase-II preparation by vector expression in host cell, antisense oligonucleotide and antibody, used for cancer or autoimmune disease diagnosis or therapy,

etc.

AUTHOR: Eastman A; Krieser R

PATENT ASSIGNEE: Dartmouth-Coll. LOCATION: Hanover, NH, USA.

PATENT INFO: WO 9816659 23 Apr 1998

APPLICATION INFO: WO 1997-US18262 9 Oct 1997 PRIORITY INFO: US 1996-28539 15 Oct 1996

DOCUMENT TYPE: Patent LANGUAGE: English

OTHER SOURCE: WPI: 1998-251301 [22]

An isolated DNA-ase-II (EC-3.1.22.1) and cDNA encoding the enzyme are claimed. Also claimed are vectors containing the DNA; an antibody against the enzyme; and antisense oligonucleotides targeted to a DNA or mRNA encoding the enzyme. Human (1,915 bp) and cattle (927 bp) DNA sequences encoding 365 and 276 amino acid protein sequences are specified. The enzyme may be used to digest DNA, e.g. in the human lung sputum of cystic fibrosis patients to reduce sputum viscosity. Antibodies raised against the protein may be used diagnostically to determine apoptotic stages in selected cells by contacting the cells with the antibody, detecting binding with DNA-ase-II and determining DNA-ase-II levels (claimed). Identified inhibitors may be used to prevent diseases related to enhanced chromosomal rearrangement, e.g. cancers and autoimmune disorders. Vectors containing the DNA may be used to induce cell apoptosis, e.g. tumor cells and the antisense oligonucleotide may be administered to cells to inhibit DNA-ase-II expression, e.g. to reduce chromosome instability associated with cancer. (29pp)

L9 ANSWER 15 OF 41 MEDLINE on STN DUPLICATE 7

ACCESSION NUMBER: 1999030349 MEDLINE DOCUMENT NUMBER: PubMed ID: 9812984

TITLE: The cloning and expression of human

deoxyribonuclease II. A possible role in

apoptosis.

AUTHOR: Krieser R J; Eastman A

CORPORATE SOURCE: Department of Pharmacology and Toxicology, Dartmouth

Medical School, Hanover, New Hampshire 03655, USA.

CONTRACT NUMBER: CA09658 (NCI)

CA23108 (NCI) CA50224 (NCI)

SOURCE: Journal of biological chemistry, (1998 Nov 20) 273 (47)

30909-14.

Journal code: 2985121R. ISSN: 0021-9258.

PUB. COUNTRY: United States

DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: English

FILE SEGMENT: Priority Journals

OTHER SOURCE: GENBANK-AF047016; GENBANK-AF047017

ENTRY MONTH: 199812

ENTRY DATE: Entered STN: 19990115

Last Updated on STN: 19990115 Entered Medline: 19981221

AB We have previously implicated deoxyribonuclease II (DNase II) as an endonuclease responsible for DNA digestion during apoptosis. The full-length human cDNA has now been cloned. The cDNA contains an open reading frame of 1078 bases coding for a 40-kDa protein. This protein is 10 kDa larger than commercially supplied enzyme, which has been proteolytically cleaved at an internal aspartate residue. The gene is located at chromosome 19p13.2, and has no significant homology to other human proteins, but has >30% identity to three predicted genes in Caenorhabditis elegans. To determine whether overexpression of DNase II induces apoptosis in Chinese hamster ovary cells, the cDNA was cotransfected with a plasmid encoding green fluorescent protein. Within 24 h, a significant proportion of green fluorescent protein-positive cells contained condensed chromatin, whereas vector-only controls remained viable. Considering that DNase II is normally active only at low pH, it was surprising that transfection induced chromatin condensation. To confirm that transfection was not activating another endonuclease, cells were incubated with the caspase

inhibitor benzyloxycarbonyl-Val-Ala-Asp-(O-methyl)-fluoromethylketone; this failed to inhibit chromatin condensation induced by DNase II. These results demonstrate that DNase II acts downstream of caspase activation and that it may be activated by an as yet unknown mechanism to induce DNA digestion during apoptosis.

L9 ANSWER 16 OF 41 BIOSIS COPYRIGHT (c) 2004 The Thomson Corporation. on

ACCESSION NUMBER:

1999:17326 BIOSIS PREV199900017326

DOCUMENT NUMBER: TITLE:

Identification of the three non-identical subunits

constituting human deoxyribonuclease

II.

AUTHOR(S):

Takeshita, Haruo; Yasuda, Toshihiro; Iida, Reiko; Nakajima,

Tamiko; Hosomi, Osamu; Nakashima, Yoshimitsu; Mori,

Shinjiro; Nomoto, Hiroshi; Kishi, Koichiro [Reprint author]

CORPORATE SOURCE:

Dep. Legal Med., Gunma Univ. Sch. Med., Maebashi 371-8511,

Japan

SOURCE:

FEBS Letters, (Nov. 27, 1998) Vol. 440, No. 1-2, pp.

239-242. print.

CODEN: FEBLAL. ISSN: 0014-5793.

DOCUMENT TYPE:

Article English

LANGUAGE: ENTRY DATE:

Entered STN: 20 Jan 1999

Last Updated on STN: 20 Jan 1999

We purified DNase II from human liver to apparent homogeneity. The N-terminal amino acid sequences of each of three components constituting the purified mature enzyme were then separately determined by automatic Edman degradation. A combination of this chemical information and the previously reported nucleotide sequence of the cDNA encoding human DNase II (Yasuda et al. (1998) J. Biol. Chemical 273, 2610-2626) allowed detailed elucidation of the enzyme's subunit structure: human DNase II was composed of three non-identical subunits, a propeptide, proprotein and mature protein, following a signal peptide. Expression analysis of a series of deletion mutants derived from the cDNA of DNase II in COS-7 cells suggested that although a single large precursor protein may not be necessary for proteolytic maturation, the propeptide region L17-Q46 may play an essential role in generating the active form of the enzyme.

L9 ANSWER 17 OF 41 BIOSIS COPYRIGHT (c) 2004 The Thomson Corporation. on

ACCESSION NUMBER:

1998:30088 BIOSIS

DOCUMENT NUMBER:

PREV199800030088

TITLE:

Intracellular acidification is associated with, but not required for caspase activation, DNA fragmentation or

apoptosis.

AUTHOR(S):

Reynolds, Jason E.; Wolf, Chad M.; Eastman, Alan [Reprint

author]

CORPORATE SOURCE:

Dep. Pharmacol., Dartmouth Med. Sch., Hannover, NH 03755,

TICA

SOURCE:

International Journal of Oncology, (Dec., 1997) Vol. 11,

No. 6, pp. 1241-1246. print.

ISSN: 1019-6439.

DOCUMENT TYPE:

Article

LANGUAGE:

English

ENTRY DATE:

Entered STN: 14 Jan 1998

Last Updated on STN: 14 Jan 1998

AB Apoptosis is characterized by DNA digestion mediated by either a Ca2+/Mg2+-dependent endonuclease or the acid-activated deoxyribonuclease II (DNase II). However, DNA digestion frequently does not correlate with changes in Ca2+ whereas intracellular acidification is a consistent marker of apoptosis. To confirm the role of low pH in regulating DNA digestion, ML-1

cells were damaged with etoposide then incubated at various extracellular pH (pHe). When pHe was 8.1, DNA digestion still occurred, and intracellular pH still decreased but only to 7.2, a pH at which DNase II is inactive. In contrast, low pH, inhibited the DNA digestion and apoptosis induced by etoposide. An upstream event in apoptosis is the activation of proteases known as caspases. The activity of caspases was inhibited at low pHe demonstrating that the pHsensitive step is upstream of caspase action. Similar results have been obtained in other models of apoptosis. Hence, both DNase II and Ca2+/Mg2+-dependent endonuclease appear unlikely to cause DNA digestion in apoptosis, unless their ion dependence is modified by, for example, proteolytic cleavage.

L9 ANSWER 18 OF 41 EMBASE COPYRIGHT 2004 ELSEVIER INC. ALL RIGHTS RESERVED.

on STN

ACCESSION NUMBER: 97109426 EMBASE

DOCUMENT NUMBER: 1997109426

TITLE: Utilization of an in vitro assay to evaluate chromatin

degradation by candidate apoptotic nucleases.

AUTHOR: Hughes F.M. Jr.; Cidlowski J.A.

CORPORATE SOURCE: F.M. Hughes Jr., NIEHS, PO Box 12233, MD E2-02, Research

Triangle Park, NC 27709, United States.

Hughes4@niehs.nih.gov

SOURCE: Cell Death and Differentiation, (1997) 4/3 (200-208).

Refs: 49

ISSN: 1350-9047 CODEN: CDDIEK

COUNTRY: United Kingdom DOCUMENT TYPE: Journal; Article

FILE SEGMENT: 001 Anatomy, Anthropology, Embryology and Histology

021 Developmental Biology and Teratology

029 Clinical Biochemistry

LANGUAGE: English SUMMARY LANGUAGE: English

Apoptosis is commonly associated with the catabolism of the genome in the dying cell. The chromatin degradation occurs in essentially two forms: (1) internucleosomal DNA cleavage to generate oligonucleosomal-length fragments (180-200 bp and multiples thereof), and (2) cleavage of higher order chromatin structures to generate .simeq. 30-50 Kb fragments. To investigate this component of apoptosis and identify the nuclease(s) responsible, we have developed and utilized an in vitro assay that recapitulates the genomic destruction seen during apoptosis in vivo and allows the simultaneous analysis of both forms of $\overline{\text{DNA}}$ degradation from the same sample. Using this assay we evaluated the digestion patterns of several candidate apoptotic nucleases: DNase I, DNase II, and cyclophilin (NUC18) as well as the bacterial enzyme micrococcal nuclease (not thought to be involved in apoptosis). Chromatin degraded by DNase I formed a smear of DNA on conventional static-field agarose gels and .simeq. 30-50 Kb DNA fragments on pulsed field gels. In contrast, DNase II, at a physiologically relevant pH, had no effect on the integrity of HeLa chromatin in either analysis. Similar to DNase I, cyclophilin C produced only .simeq. 30-50 Kb DNA fragments but did not generate internucleosomal fragments. In contrast, micrococcal nuclease generated both oligonucleosomal and .simeq. 30-50 Kb DNA fragments. Nuclear extracts from glucocorticoid-treated apoptotic thymocytes generated oligonucleosomal DNA fragments and the larger .simeq. 30-50 Kb DNA fragments, fully recapitulating both types of apoptotic DNA degradation. Previously, differential sensitivity of nucleases to inhibition by Zn2+ was used to argue that two distinct enzymes mediate .simeq. 30-50 Kb DNA cleavage and internucleosomal DNA degradation. While, the nuclease activity present in thymocyte nuclear extracts was differentially sensitive to inhibition by Zn2+ during short term incubations it was not during prolonged digestions, suggesting that differences in DNA detection are likely to account for previous results, together our studies show that none of the nucleases commonly associated with apoptosis could fully recapitulate the DNA degradation seen in vivo.

ANSWER 19 OF 41 SCISEARCH COPYRIGHT (c) 2004 The Thomson Corporation.

on STN

ACCESSION NUMBER: 97:108926 SCISEARCH

THE GENUINE ARTICLE: WE588

Zinc inhibits apoptosis upstream of ICE/CED-9 proteases

rather than at the level of an endonuclease

Wolf C M; Morana S J; Eastman A (Reprint) AUTHOR:

CORPORATE SOURCE: DARTMOUTH COLL, SCH MED, DEPT PHARMACOL & TOXICOL,

HANOVER, NH 03755 (Reprint); DARTMOUTH COLL, SCH MED, DEPT

PHARMACOL & TOXICOL, HANOVER, NH 03755

COUNTRY OF AUTHOR:

SOURCE:

CELL DEATH AND DIFFERENTIATION, (FEB 1997) Vol. 4, No. 2,

pp. 125-129.

Publisher: STOCKTON PRESS, HOUNDMILLS, BASINGSTOKE,

HAMPSHIRE, ENGLAND RG21 6XS.

ISSN: 1350-9047. Article; Journal

DOCUMENT TYPE: FILE SEGMENT:

LIFE

LANGUAGE:

English

REFERENCE COUNT:

32

ABSTRACT IS AVAILABLE IN THE ALL AND IALL FORMATS

Apoptosis is commonly associated with DNA digestion, but it AΒ remains controversial as to which endonuclease is involved. The ability of zinc to inhibit DNA digestion in intact cells, and inhibit a Ca2+/Mg2+-dependent endonuclease in cell lysates, has been used frequently to suggest this is the endonuclease involved. However, zinc has many other effects on cells, and here it is shown that zinc also prevents many upstream events in apoptosis. These studies were performed in human ML-1 cells following incubation with etoposide. During apoptosis, these cells undergo intracellular acidification, increased accumulation of Hoechst 33342, DNA digestion and chromatin condensation. Zinc inhibited all of these events. An upstream event in apoptosis is activation of ICE/CED-3 proteases which is commonly observed as proteolysis of a substrate protein, poly(ADP-ribose) polymerase (PARP). The ICE/CED-3 proteases are themselves activated by proteolysis, and this was detected here by cleavage of one family member CPP32. Zinc prevented cleavage of both CPP32 and PARP. We recently demonstrated that dephosphorylation of the retinoblastoma susceptibility protein Rb was a marker of an event even further upstream in apoptosis; zinc was also found to inhibit Rb dephosphorylation. Therefore, zinc must protect cells at a very early step in the apoptotic pathway, and not as a direct inhibitor of

ANSWER 20 OF 41 SCISEARCH COPYRIGHT (c) 2004 The Thomson Corporation. 1.9

on STN

ACCESSION NUMBER: 96:707982 SCISEARCH

THE GENUINE ARTICLE: VJ466

an endonuclease.

TITLE: AN APOPTOTIC ENDONUCLEASE ACTIVATED EITHER BY DECREASING

PH OR BY INCREASING CALCIUM

AUTHOR: COLLINS M K L (Reprint); FURLONG I J; MALDE P; ASCASO R;

OLIVER J; RIVAS A L

CORPORATE SOURCE: CRC, CTR CELL & MOL BIOL, CHESTER BEATTY LABS, 237 FULHAM

RD, LONDON SW3 6JB, ENGLAND (Reprint); CSIC, INST

PARASITOL & BIOMED, GRANADA 18001, SPAIN

COUNTRY OF AUTHOR:

ENGLAND; SPAIN

SOURCE:

JOURNAL OF CELL SCIENCE, (SEP 1996) Vol. 109, Part 9, pp.

2393-2399.

ISSN: 0021-9533.

DOCUMENT TYPE: FILE SEGMENT:

Article; Journal

LIFE

LANGUAGE:

ENGLISH 36

REFERENCE COUNT:

ABSTRACT IS AVAILABLE IN THE ALL AND IALL FORMATS

DNA fragmentation in isolated nuclei from the murine
IL3-dependent bone marrow cell line BAF3 could be stimulated either by
decreasing pH below 6.5 or by adding mu M calcium at neutral pH, An
endonuclease which could also be stimulated either by a decrease in pH, to
6.5, or by the presence of mu M calcium at neutral pH, was purified
10(4)-fold from nuclei of BAF3 cells. Digestion of DNA with the
purified enzyme resulted in 5'-terminal hydroxyl and 3'-terminal phosphate
ends, These characteristics are distinct from those described for other
mammalian endonucleases. The possible role of this enzyme in genome
digestion during apoptosis is discussed.

L9 ANSWER 21 OF 41 SCISEARCH COPYRIGHT (c) 2004 The Thomson Corporation.

on STN

ACCESSION NUMBER: 94:510197 SCISEARCH

THE GENUINE ARTICLE: PC065

TITLE: DETECTION OF DEOXYRIBONUCLEASE-I AND

DEOXYRIBONUCLEASE-II (DNASE-I AND

DNASE-II) ACTIVITIES IN REPRODUCTIVE-ORGANS OF MALE

RABBITS

AUTHOR: TAKESHITA H; YASUDA T; NADANO D; TENJO E; SAWAZAKI K; IIDA

R; KISHI K (Reprint)

CORPORATE SOURCE: FUKUI MED SCH, DEPT LEGAL MED, MATSUOKA CHO, FUKUI 91011,

JAPAN (Reprint); FUKUI MED SCH, DEPT LEGAL MED, FUKUI

91011, JAPAN

COUNTRY OF AUTHOR:

JAPAN

SOURCE:

INTERNATIONAL JOURNAL OF BIOCHEMISTRY, (AUG 1994) Vol. 26,

No. 8, pp. 1025-1031.

ISSN: 0020-711X.

DOCUMENT TYPE:

Article; Journal

FILE SEGMENT:

LIFE

LANGUAGE:

ENGLISH

REFERENCE COUNT:

27
ABSTRACT IS AVAILABLE IN THE ALL AND IALL FORMATS

- AB 1. Deoxyribonucleases (DNases) I and II activities in 13 different organs and body fluids from healthy male rabbits were measured using the single radial enzyme diffusion method.
 - 2. We now show that testis, epididymis, ampulla, seminal vesicle, vesicular gland, prostate, and semen have both of the DNases I and II activities, whereas spermatozoa do not.
 - 3. DNase I activities were highest in epididymis and seminal vesicle, whereas DNase II activities were highest in epididymis and prostate among the reproductive organs.
 - 4. The presence of these two enzyme activities outside the digestive system suggests that they have another biological function in addition to their digestive roles.

L9 ANSWER 22 OF 41 EMBASE COPYRIGHT 2004 ELSEVIER INC. ALL RIGHTS RESERVED.

on STN

ACCESSION NUMBER: 94349554 EMBASE

DOCUMENT NUMBER:

1994349554

TITLE:

AUTHOR:

Evidence for direct anti-heparin-sulphate reactivity in

sera of SLE patients.

Pirner K.; Rascu A.; Nurnberg W.; Rubbert A.; Kalden J.R.;

Manger B.

CORPORATE SOURCE:

Inst. Clin. Immunology Rheumatology, Department of Medicine III, Medical School Erlangen, Krankenhausstrasse 12,D-91054

Erlangen, Germany

SOURCE:

Rheumatology International, (1994) 14/4 (169-174).

ISSN: 0172-8172 CODEN: RHINDE

COUNTRY:

Germany

DOCUMENT TYPE:

Journal; Article

FILE SEGMENT:

005 General Pathology and Pathological Anatomy 026 Immunology, Serology and Transplantation

028 Urology and Nephrology

031 Arthritis and Rheumatism

LANGUAGE: English SUMMARY LANGUAGE: English

Recently it has been suggested that anti-dsDNA antibodies (Abs) promote tissue damage in systemic lupus erythematosus (SLE) by cross-reactivity with highly negatively charged tissue components such as heparan sulphate (HS), the major glycosaminoglycan of the glomerular basement membrane (GBM). Other authors, however, support the theory of DNA-anti-dsDNA immune complex deposition in situ. To further elucidate the possible role of HS antibodies, we developed a new ELISA system with heparan sulphate bound to solid phase. SLE patients (n = 40) showed a higher reactivity against HS (mean = 28.4, SD = 34.3) as compared to normal donors (n = 28, mean = 28.4)15.2, SD = 6.3) and patients with rheumatoid arthritis (n = 35, mean = 14.3, SD = 6.4). The addition of native dsDNA or HS to SLE sera was followed by a dose-dependent reduction in anti-HS reactivity. In contrast, in an anti-dsDNA ELISA, no reduction was observed when HS was added to SLE sera. An increase in reactivity was observed when SLE sera with and without a prior incubation with dsDNA were digested with DNAse I or II. After the purification of serum samples by protein A sepharose under dissociative conditions, seven out of eight SLE patients showed an increase in anti-HS reactivity. No correlation of the anti-HS Abs was found with organ involvement or other serological parameters. We concluded, that there is evidence for a direct anti-HS Ab reactivity in SLE sera. A part of these antibodies seems to show low avidity anti-dsDNA cross-reactivity.

L9 ANSWER 23 OF 41 EMBASE COPYRIGHT 2004 ELSEVIER INC. ALL RIGHTS RESERVED.

on STN

ACCESSION NUMBER: 94227570 EMBASE

DOCUMENT NUMBER:

1994227570

TITLE:

The inhibition of etoposide-induced apoptosis by zinc is

associated with modulation of intracellular pH.

AUTHOR:

Morana S.; Li J.; Springer E.W.; Eastman A.

CORPORATE SOURCE:

Department of Pharmacology, 7650 Remsen, Dartmouth Medical

School, Hanover, NH 03755, United States

SOURCE:

International Journal of Oncology, (1994) 5/2 (153-158).

ISSN: 1019-6439 CODEN: IJONES

COUNTRY:

Greece

DOCUMENT TYPE:

Journal; Article 016 Cancer

FILE SEGMENT:

Pharmacology

030

037 Drug Literature Index

LANGUAGE: English SUMMARY LANGUAGE: English

SUMMARY LANGUAGE: English

AB Apoptosis is associated with DNA fragmentation, usually as a result of the activation of an endonuclease that digests chromatin DNA between the nucleosomes. The identity of the endonuclease is important for understanding the regulation of apoptosis. A Ca2+/Mg2+-dependent endonuclease is often cited as the critical endonuclease. One inhibitor that has been used to implicate this endonuclease is zinc, which inhibits the endonuclease in vitro and also inhibits apoptosis.

Deoxyribonuclease II is an alternate endonuclease that

could be involved in apoptosis, yet it is not inhibited by zinc.

Deoxyribonuclease II is activated by intracellular acidification which occurs during apoptosis. The current experiments show that zinc inhibits the intracellular acidification associated with apoptosis which may be an alternate means by which it inhibits DNA digestion. Hence zinc appears to inhibit both endonucleases in

L9 ANSWER 24 OF 41 EMBASE COPYRIGHT 2004 ELSEVIER INC. ALL RIGHTS RESERVED.

on STN DUPLICATE 8

intact cells, so can not be used to specifically implicate either.

ACCESSION NUMBER: 93156838 EMBASE

DOCUMENT NUMBER: 75 1993156838

TITLE: Etoposide-induced apoptosis in human HL-60 cells

is associated with intracellular acidification.

AUTHOR: Barry M.A.; Reynolds J.E.; Eastman A.

CORPORATE SOURCE: Department of Pharmacology, Dartmouth Medical

School, Hanover, NH 03755-3835, United States

SOURCE: Cancer Research, (1993) 53/10 (2349-2357).

ISSN: 0008-5472 CODEN: CNREA8

COUNTRY: United States
DOCUMENT TYPE: Journal; Article
FILE SEGMENT: 016 Cancer

037 Drug Literature Index

LANGUAGE: English SUMMARY LANGUAGE: English

Apoptosis is a pathway of cell death characterized by internucleosomal digestion of genomic DNA. Such DNA digestion can be induced by both physiological stimuli and cytotoxic treatment with many anticancer agents. This digestion has generally been considered to be mediated by a Ca2+/Mg2+-dependent endonuclease that is activated by increases in intracellular Ca2+. However, we suggest that an alternate endonuclease, DNase II, may be a more likely candidate. In these studies, apoptosis was induced in human HL-60 cells by a 30-min incubation with the topoisomerase II inhibitor etoposide. DNA digestion characteristic of apoptosis began within 3 h of removal of etoposide. Morphological indication of apoptosis was observed concurrently. Only about 20% of the cells underwent apoptosis at this time; these appeared to be cells in S phase at the time of etoposide treatment. The remainder of the cells progressed to the G2 phase and arrested there for at least 48 h. Intracellular Ca2+ and pH were measured in individual cells by flow cytometry. No changes in intracellular Ca2+ were observed, but an acidification of up to 1 pH unit occurred in about 15% of the cells and correlated with the time course of appearance of DNA digestion. Cells were sorted on the basis of intracellular pH and only the acidic cells showed the morphology and DNA digestion characteristic of apoptosis. These results demonstrate the involvement of DNase II in apoptotic DNA digestion and suggest mechanisms of pH

L9 ANSWER 25 OF 41 MEDLINE ON STN ACCESSION NUMBER: 93339604 MEDLINE DOCUMENT NUMBER: PubMed ID: 8339953

homeostasis as regulators of apoptosis.

TITLE: DNase activity in murine lenses: implications for

cataractogenesis. Graw J; Liebstein A

CORPORATE SOURCE: GSF-Forschungszentrum fur Umwelt und Gesundheit, Institut

fur Saugetiergenetik, Neuherberg, Germany.

SOURCE: Graefe's archive for clinical and experimental

ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie, (1993 Jun) 231 (6)

354-8.

Journal code: 8205248. ISSN: 0721-832X. GERMANY: Germany, Federal Republic of Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: English

AUTHOR:

PUB. COUNTRY:

DOCUMENT TYPE:

FILE SEGMENT: Priority Journals

ENTRY MONTH: 199308

ENTRY DATE: Entered STN: 19930917

Last Updated on STN: 19930917 Entered Medline: 19930830

AB In murine lens extracts a Mg(2+)-dependent DNase activity was found and characterized with respect to its ionic conditions. The lenticular DNase can be clearly distinguished from DNaseII. Only a moderate DNase activity is detectable in intact nuclei of lens cells from 1-day-old mice, but DNase is obviously present with high activity in lens cell nuclei from 7-day-old mice. During this time, when murine

eyes are not yet open, and the fiber cell nuclei including the nuclear membrane remain to be completely **digested**, only weak activity can be detected in cytosolic lens extracts. In three allelic dominant mice mutants exhibiting hereditary cataracts the DNase activity is inhibited. The decrease of DNase activity follows the same directionality (Cat-2ns > Cat-2no > Cat-2t) as the decrease in the relative content of water soluble lens proteins, which might be used as a rough indicator for the severity of cataractogenesis. Both trends are highly significant (P < 0.0001).

L9 ANSWER 26 OF 41 MEDLINE on STN DUPLICATE 9

ACCESSION NUMBER: 92360026 MEDLINE DOCUMENT NUMBER: PubMed ID: 1323291

TITLE: Endonuclease activation during apoptosis: the role of

cytosolic Ca2+ and pH.

AUTHOR: Barry M A; Eastman A

CORPORATE SOURCE: Department of Pharmacology, Dartmouth Medical School,

Hanover, NH 03755-3835.

CONTRACT NUMBER: CA 23108 (NCI)

CA 50224 (NCI)

SOURCE: Biochemical and biophysical research communications, (1992

Jul 31) 186 (2) 782-9.

Journal code: 0372516. ISSN: 0006-291X.

PUB. COUNTRY: United States

DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: English

FILE SEGMENT: Priority Journals

ENTRY MONTH: 199209

ENTRY DATE: Entered STN: 19920925

Last Updated on STN: 19970203 Entered Medline: 19920904

An axiom of apoptosis is that increases in cytosolic Ca2+ activate a Ca2+/Mg(2+)-dependent endonuclease. However, when HL-60 human promyelocytic leukemia cells were incubated with the Ca2+ ionophore ionomycin in varied extracellular Ca2+, DNA digestion was independent of extracellular Ca2+. Under these conditions, intracellular Ca2+ concentrations did not correlate with the observed DNA digestion. In contrast, intracellular acidification correlated well with DNA digestion. These data indicate that increased intracellular Ca2+ is not the primary signal for endonuclease activation in all forms of apoptosis, but that intracellular acidification may be involved. The observed intracellular acidification is consistent with the

L9 ANSWER 27 OF 41 MEDLINE ON STN ACCESSION NUMBER: 89051786 MEDLINE DOCUMENT NUMBER: PubMed ID: 2461254

TITLE: Nerve growth factor receptors in chromatin of melanoma

involvement of deoxyribonuclease II in apoptosis.

cells, proliferating melanocytes, and colorectal carcinoma

cells in vitro.

AUTHOR: Rakowicz-Szulczynska E M; Herlyn M; Koprowski H

CORPORATE SOURCE: Wistar Institute of Anatomy and Biology, Philadelphia, PA

19104.

CONTRACT NUMBER: CA-10815 (NCI)

CA-25874 (NCI) CA-29200 (NCI)

SOURCE: Cancer research, (1988 Dec 15) 48 (24 Pt 1) 7200-6.

Journal code: 2984705R. ISSN: 0008-5472.

PUB. COUNTRY: United States

DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: English

FILE SEGMENT: Priority Journals

ENTRY MONTH: 198901

ENTRY DATE: Entered STN: 19900308

Last Updated on STN: 19970203 Entered Medline: 19890109

Nuclear localization of nerve growth factor (NGF) in HS 294 melanoma cells AB and SW 707 colorectal carcinoma was determined by indirect immunofluorescence staining and by cell fractionation. NGF receptors were immunoprecipitated from the EcoRI-digested chromatin of HS 294 melanoma cells, of melanocytes proliferating in the presence of 12-O-tetradecanoylphorbol-13-acetate, and of SW 707 colorectal carcinoma cells, using a monoclonal antibody to the Mr 75,000 cell surface NGF receptor. Melanoma cells expressed a receptor species with a molecular weight of 230,000. Proliferating melanocytes expressed a small amount of Mr 230,000 receptor, whereas colorectal carcinoma cells expressed a Mr 35,000 receptor. Scatchard analysis indicated one type of NGF chromatin binding site in HS 294 cells with KD = 241 pM but two types of binding sites in chromatin of SW 707 cells with KD = 333 and 1718 pM, respectively. Both the Mr 230,000 and the 35,000 receptor species were tightly bound to DNase II-sensitive regions, which became DNase II-insensitive after nerve growth factor binding. [1251] NGF was detected in the chromatin in nondegraded form. Chromatin binding of NGF inhibited RNA synthesis and cell proliferation.

ANSWER 28 OF 41 HCAPLUS COPYRIGHT 2004 ACS on STN

ACCESSION NUMBER:

1986:419428 HCAPLUS

DOCUMENT NUMBER:

105:19428

TITLE:

Chromatin binding of epidermal growth factor, nerve growth factor, and platelet-derived growth factor in cells bearing the appropriate surface receptors

AUTHOR(S):

Rakowicz-Szulczynska, Ewa M.; Rodeck, Ulrich; Herlyn,

Meenhard; Koprowski, Hilary

CORPORATE SOURCE:

SOURCE:

Wistar Inst. Anat. Biol., Philadelphia, PA, 19104, USA Proceedings of the National Academy of Sciences of the

United States of America (1986), 83(11), 3728-32

CODEN: PNASA6; ISSN: 0027-8424

DOCUMENT TYPE:

Journal English

LANGUAGE: The uptake and intracellular distribution of 125I-labeled EGF [62229-50-9], nerve growth factor [9061-61-4], and platelet-derived growth factor were analyzed in different cell lines that express or do not express the resp. surface receptors for these factors. After 1 h of incubation, all 3 growth factors were detected in the cytoplasmic fraction and in the nucleus, tightly bound to chromatin. The amount of chromatin-bound growth factors continued to increase during the incubation, and anal. at 48 h revealed each chromatin-bound labeled growth factor in a nondegraded form. After limited digestion of chromatin with DNAse II (10-20% digested sequences), specific release of all 3 growth factors was detected only after 1 h of incubation but not after 24 and 48 h, suggesting that the DNA regions involved in growth factor binding became nuclease resistant. Binding of labeled EGF and nerve growth factor to isolated chromatin was inhibited by monoclonal antibodies specific for the resp. growth factor receptor. Chromatin binding may represent an important step in the

ANSWER 29 OF 41 MEDLINE on STN DUPLICATE 10

ACCESSION NUMBER:

87048742 MEDLINE

DOCUMENT NUMBER:

PubMed ID: 3022715

TITLE:

Identification of NGF receptor in chromatin of melanoma

cells using monoclonal antibody to cell surface NGF

pathway of growth factor action.

AUTHOR:

Rakowicz-Szulczynska E M; Koprowski H

CONTRACT NUMBER: CA-1085 (NCI)

> CA-21124 (NCI) CA-25874 (NCI)

SOURCE: Biochemical and biophysical research communications, (1986

Oct 15) 140 (1) 174-80.

Journal code: 0372516. ISSN: 0006-291X.

PUB. COUNTRY:

United States

DOCUMENT TYPE:

Journal; Article; (JOURNAL ARTICLE)

LANGUAGE:

English

FILE SEGMENT:

Priority Journals

ENTRY MONTH:

198612

ENTRY DATE:

Entered STN: 19900302

Last Updated on STN: 19970203 Entered Medline: 19861204

AB A 230 KDa species of Nerve Growth Factor (NGF) receptor was immunoprecipitated from EcoRI-digested chromatin of melanoma cells using a monoclonal antibody to the 75 KDa cell surface NGF receptor. The chromatin NGF receptor was shown to exist tightly bound to DNase II-sensitive sequences which, upon growth factor binding, became resistant to DNase II digestion.

L9 ANSWER 30 OF 41 HCAPLUS COPYRIGHT 2004 ACS on STN

ACCESSION NUMBER:

1984:203235 HCAPLUS

DOCUMENT NUMBER:

100:203235

TITLE:

Cellular and molecular mechanisms of the bone marrow

sparing effects of the glucose chloroethylnitrosourea

chlorozotocin

AUTHOR(S):

Byrne, P.; Tew, K.; Jemionek, J.; MacVittie, T.;

Erickson, L.; Schein, P.

CORPORATE SOURCE:

Vincent T. Lombardi Cancer Res. Cent., Georgetown

Univ. Hosp., Washington, DC, USA

SOURCE:

Blood (1984), 63(4), 759-67 CODEN: BLOOAW; ISSN: 0006-4971

DOCUMENT TYPE:

Journal English

LANGUAGE: [13010-47-4] and other chloroethylnitrosourea anticancer agents in clin. use produce severe and cumulative bone marrow toxicity. Chlorozotocin [54749-90-5], a glucose analog, has demonstrated reduced hematol. toxicity while retaining full antitumor activity. The biochem.-pharmacol. properties of chlorozotocin and CCNU were compared in human bone marrow. After a 2-h incubation with a 0.1-mM drug concentration, total cellular uptake of chlorozotocin in whole marrow was 2.47 pmol/104 cells and was not much different compared to the uptake of 1.94 pmole/104 cells with CCNU. The quant. alkylation of bone marrow DNA by chlorozotocin, 22.8 pmole/mg DNA, was equivalent to that produced by CCNU, 22.9 pmole/mg DNA. Bone marrow was separated into 14 fractions by centrifugal elutriation. CCNU uptake was greater than that of chlorozotocin in 3 fractions that were primarily composed of lymphocytes, monocytes, and normoblasts. Chlorozotocin uptake was greater than CCNU in 6 fractions that contained primarily mature and immature myeloid cells as well as the highest CFU-GM activity. The 2 drugs produced a comparable degree of DNA strand breakage and DNA-protein crosslinking. DNA interstrand crosslinking was not found with either drug. The most significant finding of this study is the differences in the site of drug alkylation by chlorozotocin and CCNU in bone marrow chromatin. Endonuclease digestions with micrococcal nuclease, DNase I, and DNAse II showed nonrandom alkylation of specific regions of chromatin by the 2 drugs. CCNU demonstrated a preferential binding to the transcriptionally active regions of chloromatin, whereas chlorozotocin predominantly alkylated the transcriptionally inactive regions. Apparently, the lethal damage of nitrosourea alkylation in human bone marrow is principally expressed in transcriptionally active regions

L9 ANSWER 31 OF 41 MEDLINE ON STN ACCESSION NUMBER: 85002710 MEDLINE DOCUMENT NUMBER: PubMed ID: 6478794

of chromatin.

TITLE:

Release of ribonucleoprotein during digestion of

rat testis chromatin with deoxyribonuclease

II (3.1.4.6). Grimes S R Jr

AUTHOR:

CONTRACT NUMBER:

HD11796 (NICHD)

SOURCE:

Comparative biochemistry and physiology. B, Comparative

biochemistry, (1984) 78 (3) 633-41. Journal code: 2984730R. ISSN: 0305-0491.

PUB. COUNTRY:

ENGLAND: United Kingdom

DOCUMENT TYPE:

Journal; Article; (JOURNAL ARTICLE)

LANGUAGE:

English

FILE SEGMENT:

Priority Journals

ENTRY MONTH:

198411

ENTRY DATE:

Entered STN: 19900320

Last Updated on STN: 20021218 Entered Medline: 19841106

ABThe composition of rat testis chromatin proteins in fractions produced by limited DNase II digestion followed by differential precipitation with MgCl2 has been studied. Over 50% of the acid-soluble proteins in the soluble chromatin fraction appeared to be quite similar to proteins which are associated with ribonucleoprotein (RNP) particles in HeLa cells. Although the ratios of the testis RNP protein components differed from those of HeLa RNP particles, the three major polypeptides were most similar to the HeLa components designated A2, B2, and C1. The soluble chromatin fraction was also enriched in the high mobility group proteins HMG1 and HMG2.

ANSWER 32 OF 41 ACCESSION NUMBER: 83257382

MEDLINE on STN MEDLINE PubMed ID: 6307389

DOCUMENT NUMBER: TITLE:

Implications of a 5'-nucleotidase inhibitor in

human leukemic cells for cellular aging and cancer.

AUTHOR:

Sun A S; Holland J F; Lin K; Ohnuma T

SOURCE:

Biochimica et biophysica acta, (1983 Jul 14) 762 (4)

577-84.

Journal code: 0217513. ISSN: 0006-3002.

PUB. COUNTRY:

Netherlands

DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)

LANGUAGE:

English

FILE SEGMENT:

Priority Journals

ENTRY MONTH:

198309

ENTRY DATE:

Entered STN: 19900319

Last Updated on STN: 19980206 Entered Medline: 19830909

AΒ 5'-Nucleotidase activity of normal human embryonic lung fibroblasts (IMR-90) was found to be inhibited by the homogenates of seven different cell lines originated from patients with different kinds of leukemia and of fresh lymphocytes from a patient with Sezary syndrome (circulating T-cell lymphoma). About 97% of the inhibiting activity was found in the soluble fraction of RPMI 8402 cells, a cell line originated from the lymphocytes of a patient with acute lymphocytic leukemia. This inhibiting activity was not destroyed by dialysis, heating at 56 degrees C for 30 min, nor digestion with RNAase or DNAase. About 85% of the inhibiting activity was destroyed by digestion with papain at 37 degrees C for 1 h and it was destroyed completely by heating at 100 degrees C for 30 min. When the heated (56 degrees C for 30 min) soluble fraction of RPMI 8402 cells was mixed with the homogenate of IMR-90 cells, it had no effect on the activities of alkaline, neutral or acid phosphatases, nor of N-acetyl-beta-D-glucosaminidase or cytochrome c oxidase of IMR-90 cells. Preincubating the mixed samples for 1, 20 and 45 min, respectively, before adding the substrate, the heated soluble fraction of RPMI 8402 cells did not increase the percentage of inhibition for 5'-nucleotidase of the homogenate of IMR-90 cells. No inhibition of other enzyme activities was observed under similar conditions. These data

suggest that the inhibiting activity is due to a protein(s) that is not a protease. The inhibiting activity was found in a single peak after the soluble fraction was fractionated by Sephadex G-100 chromatography and sedimentation centrifugation. The molecular weight of the inhibitor was found to be approx. 35,000 by comparing its retention volume and sedimentation rate with those of proteins of known molecular weight. The present study suggest that the previously reported undetectability of 5'-nucleotidase in permanent cell lines could be due to the presence of a protein inhibitor for 5'-nucleotidase in these human leukemic cell lines. It also supports the hypothesis that the increased 5'-nucleotidase activity in normal senescent cells in vitro may be a control in cellular aging that is missing from leukemic cells in vitro.

L9 ANSWER 33 OF 41 MEDLINE on STN ACCESSION NUMBER: 82274241 MEDLINE DOCUMENT NUMBER: PubMed ID: 6287433

TITLE:

Chromosome-bound mitotic factors: release by endonucleases.

AUTHOR: Adlakha R C; Sahasrabuddhe C G; Wright D A; Lindsey W F;

Smith M L; Rao P N

CONTRACT NUMBER:

CA 11520 (NCI)

CA 27544 (NCI)

SOURCE:

Nucleic acids research, (1982 Jul 10) 10 (13) 4107-17.

Journal code: 0411011. ISSN: 0305-1048.

PUB. COUNTRY: ENGLAND: United Kingdom

DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: English

FILE SEGMENT: Priority Journals

ENTRY MONTH: 198210

ENTRY DATE: Entered STN: 19900317

Last Updated on STN: 19970203 Entered Medline: 19821029

Additional evidence is presented to support our recently reported AB conclusion that the mitotic factors of mammalian cells, which induce germinal vesicle breakdown and chromosome condensation when injected into fully grown Xenopus laevis oocytes, are localized on metaphase chromosomes. Chromosomes isolated from mitotic HeLa cells were further purified on sucrose gradients and digested for varying periods with either the micrococcal nuclease or DNase II. At each time point of digestion the amount of mitotic factors released was determined by injecting a supernatant of these fractions, obtained by high-speed centrifugation, into occytes. The amount of DNA rendered acid soluble under the conditions of digestion used was 3% ot 5% of the total chromosomal DNA. The extent of release of mitotic factors with both nucleases was estimated to be about 30% to 40% as evidenced by the reextraction of the undigested chromosomal pellet with 0.2 M NaC1. Similar results were obtained when nuclei from G2 cells were digested under identical conditions. The release of these chromosome-bound mitotic factors by mild digestion with these nucleases though only partial, clearly demonstrates that a significant proportion of these factors are localized on metaphase chromosomes.

ANSWER 34 OF 41 LIFESCI COPYRIGHT 2004 CSA on STN

ACCESSION NUMBER: 82:66778 LIFESCI

TITLE: Micrococcal nuclease and DNase I digestion of DNA

from aging human diploid cells. Dell'Orco, R.T.; Whittle, W.L.

AUTHOR: Dell'Orco, R.T.; Whittle, W.L.

CORPORATE SOURCE: Biomed. Div., Samuel Roberts Noble Found., Inc., Ardmore,

OK 73401, USA

SOURCE: BIOCHEM. BIOPHYS. RES. COMMUN., (1982) vol. 107, no. 1, pp.

DOCUMENT TYPE: Journal FILE SEGMENT: N; G LANGUAGE: English

SUMMARY LANGUAGE: English

AB Nuclei prepared from confluent and mitotically arrested populations of human diploid fibroblast-like cells of different in vitro ages were subjected to digestion by micrococcal nuclease and DNase I. There was no age or culture state variation in the susceptibility of DNA to micrococcal nuclease digestion. There was, however, an age related inhibition of DNA digestion by DNase I in nuclei from older confluent but not older arrested cells. It is suggested that this is the result of an age related masking by nucleosome core histones which limits the accessibility of DNA to enzymatic activities in older confluent cells.

L9 ANSWER 35 OF 41 MEDLINE ON STN DUPLICATE 11

ACCESSION NUMBER: 80227637 MEDLINE DOCUMENT NUMBER: PubMed ID: 6248503

TITLE: Purification and properties of deoxyribonuclease

II from human urine.

AUTHOR: Murai K; Yamanaka M; Akagi K; Anai M

SOURCE: Journal of biochemistry, (1980 Apr) 87 (4) 1097-103.

Journal code: 0376600. ISSN: 0021-924X.

PUB. COUNTRY: Japan

DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: English

FILE SEGMENT: Priority Journals

ENTRY MONTH: 198009

ENTRY DATE: Entered STN: 19900315

Last Updated on STN: 19970203 Entered Medline: 19800923

AΒ The acid deoxyribonucleases [DNase II; EC 3.1.4.6] in human urine were purified approximately 400- to 500-fold by phosphocellulose chromatography, gel filtration on Sephadex G-75 and isoelectric focusing, with a total recovery of 22%. The enzymes were present in a least three forms with different isoelectric points, pHs 6.4, 6.6, and 6.8. However, other properties were essentially similar. The enzymes did not require divalent cations for activity, and the optimal pHs were at 5.1 to 5.3 in 33 mM acetate buffer. They had a molecular weight of around 36,000, as estimated by gel filtration on Sephadex G-75. The enzymes were endonucleases which hydrolyzed native, double-stranded DNA about 5 to 15 times faster than thermally denatured DNA. The products formed from native DNA were 3'-phosphoryl- and 5'-hydroxy-terminated oligonucleotides. The average chain length of the limit digests with these enzymes was approximately 11 to 15, and the major fragments were longer than pentanucleotides. The final preparations were free of nonspecific acid and alkaline phosphatases and phosphodiesterase, but contained contaminating ribonuclease activity.

L9 ANSWER 36 OF 41 HCAPLUS COPYRIGHT 2004 ACS on STN

ACCESSION NUMBER: 1980:547176 HCAPLUS

DOCUMENT NUMBER: 93:147176

TITLE: Distribution of DNA repair and the extent of enzymatic

DNA methylation in alkylated human

lymphocytes carrying their DNA synthesis in the

presence or absence of hydroxyurea

AUTHOR(S): Malec, Janina; Sawecka, Jadwiga; Kornacka, Ludwika CORPORATE SOURCE: Dep. Biochem., Inst. Haematol., Warsaw, 00-957, Pol. Biochemical and Biophysical Research Communications

(1000) of (1) 204 11

(1980), 95(1), 304-11

CODEN: BBRCA9; ISSN: 0006-291X

DOCUMENT TYPE: Journal LANGUAGE: English

AB The distribution of repair label into DNase II

-sensitive and -resistant regions of chromatin in human lymphocytes exposed to nitrogen mustard indicates that in the regions most accessible to this enzyme the number of newly inserted label was .apprx.3.5-fold greater than that in resistant regions with only a slight

preference for the sequences considered to be transcriptionally active. In the course of digestion, this proportion becomes gradually lower. Pyrimidine tract anal. did not reveal significant differences between damaged and undamaged cells. In repair-inserted sequences ≤1/50-60 cytosines was methylated, whereas in undamaged lymphocytes .apprx.1/15 cytosines was modified. The presence or absence of hydroxyurea during the course of repair synthesis did not seem to affect any of the parameters studied.

ANSWER 37 OF 41 HCAPLUS COPYRIGHT 2004 ACS on STN

1980:493180 HCAPLUS ACCESSION NUMBER:

DOCUMENT NUMBER: 93:93180

TITLE: Intragenomic distribution of 5-methylcytosine in

various forms of human and murine

leukemic cells

AUTHOR(S): Sawecka, J.; Kornacka, L.; Malec, J. CORPORATE SOURCE: Inst. Hematol., Warsaw, 00-957, Pol.

SOURCE: Neoplasma (1980), 27(2), 187-91 CODEN: NEOLA4; ISSN: 0028-2685

DOCUMENT TYPE: Journal LANGUAGE: English

In human chronic myelogenic leukemia and acute leukemia leukocytes, phytohemagglutinin (PHA)-stimualted human

lymphocytes, and murine L5178Y lymphoblasts cultured in various

phases of growth, the general pattern of intragenomic 5-methylcytosine distribution was similar, with 2 preferentially methylated regions (the

sequences fast reassocg. and rendered Mg++-soluble after DNase II digestion of nuclei). The most variable fraction, as

regards the level of methylation, seemed to be DNA of the Mg++-soluble

fraction of the DNase II digest, which in

acute leukemia leukocytes, PHA-stimulated lymphocytes, and exponentially growing L5178Y cells contained .apprx. 2-fold higher proportions of methylated cytosines than did leukocytes of chronic myelogenic leukemia

and L5178Y cells maintained at saturation d.

ANSWER 38 OF 41 HCAPLUS COPYRIGHT 2004 ACS on STN

ACCESSION NUMBER: 1979:572464 HCAPLUS DOCUMENT NUMBER: 91:172464

TITLE: Heterogeneity of DNA methylation in murine

L5178Y lymphoblasts

AUTHOR (S): Sawecka, J.; Kornacka, L.; Malec, J.

CORPORATE SOURCE: Dep. Biochem., Inst. Haematol., Warsaw, PL-00-957,

Pol.

SOURCE: Experientia (1979), 35(9), 1166-7

CODEN: EXPEAM; ISSN: 0014-4754

DOCUMENT TYPE: Journal LANGUAGE: English

The highest rate of DNA methylation occurred in the MgCl2-soluble fraction of DNase II-digested L5178 leukemia cell

chromatin and in the nucleolar and fast-reassocg. DNA fractions. relation of the transcriptional activity of these DNA fractions to the rate of DNA methylation is discussed.

ANSWER 39 OF 41 HCAPLUS COPYRIGHT 2004 ACS on STN

ACCESSION NUMBER: 1976:572212 HCAPLUS

DOCUMENT NUMBER: 85:172212

TITLE: Specific herpes simplex virus-induced incorporation of

5-iodo-5'-amino-2',5'-dideoxyuridine into

deoxyribonucleic acid

AUTHOR(S): Chen, Ming S.; Ward, David C.; Prusoff, William H.

CORPORATE SOURCE: Sch. Med., Yale Univ., New Haven, CT, USA

SOURCE: Journal of Biological Chemistry (1976), 251(16),

4833-8

CODEN: JBCHA3; ISSN: 0021-9258

DOCUMENT TYPE: Journal LANGUAGE: English

5-Iodo-5'-amino-2',5'-dideoxyuridine (I) [56045-73-9] is a novel thymidine analog which inhibits herpes simplex virus, type 1 (HS-1 virus) replication in the absence of detectable host toxicity. murine, simian, or human cells in culture were treated with I-125I for ≤24 hr, essentially none of the nucleoside became cell-associated In contrast, upon HS-1 virus infection significant radiolabel was detected in both nucleotide pools and in DNA. The major acid-soluble metabolite was I 5'-triphosphate [60658-58-4]. DNA from HS-1 virus-infected Vero cells labeled with thymidine-14C, 5-iodo-2'deoxyuridine-125I (IdUrd), or I-125I was isolated by buoyant d. centrifugation and subjected to digestion by pancreatic DNase I, spleen DNase II, micrococcal nuclease, and spleen and venom phosphodiesterases. Anal. of the digestion products clearly indicates that I is incorporated internally into the DNA structure. DNA containing I therefore contains phosphoramidate (P-N) bonds, known to be extremely acid labile. The selective HS-1 virus-induced phosphorylation of I and its subsequent incorporation into DNA may account for the unique biol. activity of the I nucleoside.

ANSWER 40 OF 41 HCAPLUS COPYRIGHT 2004 ACS on STN

ACCESSION NUMBER: 1971:495247 HCAPLUS

DOCUMENT NUMBER: 75:95247

TITLE:

Electron microscopic localization of acridine orange

binding to DNA within human leukemic bone

marrow cells

AUTHOR(S):

Frenster, John H.

CORPORATE SOURCE:

Sch. Med., Stanford Univ., Stanford, CA, USA

SOURCE:

Cancer Research (1971), 31(8), 1128-33 CODEN: CNREA8; ISSN: 0008-5472

DOCUMENT TYPE:

Journal

LANGUAGE:

English

The title technique applied to diagnostic samples from untreated patients with chronic myelogenous leukemia gives both resolution and chemical specificity higher than by microspectrofluorimetry. Acridine orange (I) binds to DNA only within the active extended part of the cell nucleus, as predicted from cited data. This reaction of 10-3M I after glutaraldehyde fixation, then digestion with DNase (II), occurs in all types of cells of the bone marrow spicule. The reaction is not seen upon substitution of carbodiimide for I, omission of II, or its substitution by RNase or trypsin.

ANSWER 41 OF 41 HCAPLUS COPYRIGHT 2004 ACS on STN

ACCESSION NUMBER: 1970:98441 HCAPLUS

DOCUMENT NUMBER: 72:98441

TITLE:

Nucleases activity in different segments of the

human digestive tube compared to the

incidence of carcinomas (histochemical study)

AUTHOR(S): Fort, L.; Taper, H. S.; Brucher, J. M.

CORPORATE SOURCE: SOURCE:

Univ. Louvain, Louvain, Belg.

Histochemie (1969), 20(2), 150-8 CODEN: HICHAU; ISSN: 0018-2222

DOCUMENT TYPE: Journal

LANGUAGE: English

Alkaline DNase (I) activity was detected in the basal layer of the squamous epithelium in the esophagus. In the surface epithelium, in the pits and the glands of stomach, I could not be detected. In the duodenum, jejunum, and ileum, I activity was intense. I activity was very weak in the epithelial cells of the colon, sigmoid, rectum, and appendix. The distribution of alkaline RNase was similar to I. Acid DNase (II) activity was shown in the squamous epithelium of the esophagus. In the stomach, II activity was generally weak. In the duodenum, jejunum, and ileum, II activity was generally intense. II

activity was weak in the colon, sigmoid, rectum, and appendix. Acid RNase had practically the same histochem. pattern as II. The high activity of I and II in the mucosal epithelium coincided with low carcinoma incidence and vice versa.

=> d his

```
(FILE 'HOME' ENTERED AT 09:06:25 ON 04 NOV 2004)
```

```
FILE 'MEDLINE, EMBASE, BIOSIS, BIOTECHDS, SCISEARCH, HCAPLUS, NTIS,
     LIFESCI' ENTERED AT 09:08:32 ON 04 NOV 2004
           1382 S "DEOXYRIBONUCLEASE II"
Ll
            377 S L1 AND (HUMAN OR MURINE)
L2
L3
        3858984 S BETA
L4
             36 S L2 AND L3
L5
             27 DUP REM L4 (9 DUPLICATES REMOVED)
Lб
        1714908 S DIGEST?
L7
            348 S L1 AND L6
L8
             76 S L7 AND (HUMAN OR MURINE)
             41 DUP REM L8 (35 DUPLICATES REMOVED)
L9
=> e eastman a r/au
E1
           6 EASTMAN A L/AU
E2
             3
                   EASTMAN A M/AU
E3
            21 --> EASTMAN A R/AU
E4
            2
                 EASTMAN A S/AU
E5
            39
                 EASTMAN A Y/AU
E6
            8
                 EASTMAN ABAYA R/AU
E7
            1
                 EASTMAN ABRAHAM/AU
E8
           177
                 EASTMAN ALAN/AU
E9
           26
                 EASTMAN ALAN D/AU
           4
                 EASTMAN ALAN DAN/AU
EASTMAN ALAN F/AU
E10
            2
E11
                  EASTMAN ALAN R/AU
E12
            1
=> s e3
            21 "EASTMAN A R"/AU
L10
=> e krieser r j/au
E1
       3
                 KRIESER J/AU
E2
            5
                  KRIESER R/AU
E3
            45 --> KRIESER R J/AU
E4
            3 KRIESER R U/AU
E5
                 KRIESER RON/AU
            1
E6
                 KRIESER RONALD/AU
            2
E7
                 KRIESER RONALD J/AU
            24
E8
                  KRIESER RONALD JOE/AU
            4
E9
            1
                  KRIESER T P/AU
E10
                 KRIESER U R/AU
           15
E11
                 KRIESER V R/AU
           1
E12
            1
                  KRIESGMAN J/AU
=> s e3-e8
L11
            79 ("KRIESER R J"/AU OR "KRIESER R U"/AU OR "KRIESER RON"/AU OR
               "KRIESER RONALD"/AU OR "KRIESER RONALD J"/AU OR "KRIESER RONALD
               JOE"/AU)
=> s 110 or 111
           99 L10 OR L11
L12
=> d his
```

(FILE 'HOME' ENTERED AT 09:06:25 ON 04 NOV 2004)

```
FILE 'MEDLINE, EMBASE, BIOSIS, BIOTECHDS, SCISEARCH, HCAPLUS, NTIS,
     LIFESCI' ENTERED AT 09:08:32 ON 04 NOV 2004
L1
           1382 S "DEOXYRIBONUCLEASE II"
L2
            377 S L1 AND (HUMAN OR MURINE)
L3
        3858984 S BETA
L4
             36 S L2 AND L3
             27 DUP REM L4 (9 DUPLICATES REMOVED)
L5
L6
        1714908 S DIGEST?
ь7
            348 S L1 AND L6
1.8
             76 S L7 AND (HUMAN OR MURINE)
             41 DUP REM L8 (35 DUPLICATES REMOVED)
1.9
                E EASTMAN A R/AU
             21 S E3
T.1 0
                E KRIESER R J/AU
             79 S E3-E8
L11
             99 S L10 OR L11
T<sub>1</sub>12
=> s l1 and l12
L13
           57 L1 AND L12
=> dup rem 113
PROCESSING COMPLETED FOR L13
             15 DUP REM L13 (42 DUPLICATES REMOVED)
=> d 1-15 ibib ab
                                                         DUPLICATE 1
L14 ANSWER 1 OF 15
                        MEDLINE on STN
ACCESSION NUMBER: 2003584954 MEDLINE
DOCUMENT NUMBER:
                   PubMed ID: 14664798
TITLE:
                    Deoxyribonuclease II is a lysosomal
                    barrier to transfection.
                    Howell Dasein Pinto-Gonzalez; Krieser Ronald J;
AUTHOR:
                    Eastman Alan; Barry Michael A
CORPORATE SOURCE:
                    Center for Cell and Gene Therapy, Baylor College of
                    Medicine, Houston, Texas 77030, USA.
CONTRACT NUMBER:
                    GM 56929 (NIGMS)
SOURCE:
                    Molecular therapy : journal of the American Society of Gene
                    Therapy, (2003 Dec) 8 (6) 957-63.
                    Journal code: 100890581. ISSN: 1525-0016.
PUB. COUNTRY:
                    United States
DOCUMENT TYPE:
                    Journal; Article; (JOURNAL ARTICLE)
LANGUAGE:
                    English
FILE SEGMENT:
                    Priority Journals
ENTRY MONTH:
                    200408
ENTRY DATE:
                    Entered STN: 20031216
                    Last Updated on STN: 20040819
                    Entered Medline: 20040818
AΒ
     DNA delivered in nonviral vectors or as naked DNA must overcome a number
     of extracellular and intracellular barriers to transfection.
     vectors deliver DNA into cells by the endocytic route, DNA degradation by
     lysosomal nucleases has been proposed as a significant barrier to
     transfection, despite the fact that this has not yet been formally
     demonstrated to occur. To test this hypothesis, we have investigated the
     role of deoxyribonuclease II (DNase II), the primary
     acidic endonuclease active in the lysosome, in transfection. Two genetic
     systems were engineered in which mammalian cells either overexpressed
     DNase II or were knocked out for the enzyme. In both models, higher
     levels of DNase II correlated with decreased transfection efficiency by
     nonviral DNA delivery vectors. These data provide direct evidence
     implicating lysosomal DNase II as a barrier to transfection.
```

MEDLINE on STN

MEDLINE

DUPLICATE 2

L14 ANSWER 2 OF 15

ACCESSION NUMBER: 2003183389

DOCUMENT NUMBER: PubMed ID: 12558498

TITLE: Structural requirements of human DNase II alpha for

formation of the active enzyme: the role of the signal peptide, N-glycosylation, and disulphide bridging.

AUTHOR: MacLea Kyle S; Krieser Ronald J; Eastman Alan

CORPORATE SOURCE: Department of Pharmacology and Toxicology, Dartmouth

Medical School, 7650 Remsen, Hanover, NH 03755, USA.

CONTRACT NUMBER: CA23108 (NCI)

CA50224 (NCI)

SOURCE: Biochemical journal, (2003 May 1) 371 (Pt 3) 867-76.

Journal code: 2984726R. ISSN: 0264-6021.

PUB. COUNTRY: England: United Kingdom

DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: English

FILE SEGMENT: Priority Journals

OTHER SOURCE: GENBANK-AF047016; GENBANK-AF274571

ENTRY MONTH: 200305

ENTRY DATE: Entered STN: 20030419

Last Updated on STN: 20030529 Entered Medline: 20030528

DNase II alpha (EC 3.1.22.1) is an endonuclease, which is active at low AΒ pH, that cleaves double-stranded DNA to short 3'-phosphoryl oligonucleotides. Although its biochemistry is well understood, its structure-activity relationship has been largely unexamined. Recently, we demonstrated that active DNase II alpha consists of one contiguous polypeptide, heavily glycosylated, and containing at least one intrachain disulphide linkage [MacLea, Krieser and Eastman (2002) Biochem. Biophys. Commun. 292, 415-421]. The present paper describes further work to examine the elements of DNase II alpha protein required for activity. Truncated forms and site-specific mutants were expressed in DNase II alpha-null mouse cells. Results indicate that the signal-peptide leader sequence is required for correct glycosylation and that N-glycosylation is important for formation of the active enzyme. Despite this, enzymic deglycosylation of wild-type protein with peptide N-glycosidase F reveals that glycosylation is not intrinsically required for DNase activity. DNase II alpha contains six evolutionarily conserved cysteine residues, and mutations in any one of these cysteines completely ablated enzymic activity, consistent with the importance of disulphide bridging in maintaining correct protein structure. We also demonstrate that a mutant form of DNase II alpha that lacks the purported active-site His(295) can still bind DNA, indicating that this histidine residue is not simply involved in DNA binding, but may have a direct role in catalysis. results provide a more complete model of the DNase II alpha protein structure, which is important for three-dimensional structural analysis and for production of DNase II alpha as a potential protein therapeutic for cystic fibrosis or other disorders.

L14 ANSWER 3 OF 15 MEDLINE on STN DUPLICATE 3

ACCESSION NUMBER: 2003082972 MEDLINE DOCUMENT NUMBER: PubMed ID: 12594037

TITLE: A family history of deoxyribonuclease II

: surprises from Trichinella spiralis and Burkholderia

pseudomallei.

AUTHOR: MacLea Kyle S; Krieser Ronald J; Eastman Alan

CORPORATE SOURCE: Department of Pharmacology and Toxicology, Dartmouth

Medical School, 7650 Remsen, Hanover, NH 03755, USA.

CONTRACT NUMBER: CA 23108 (NCI)

CA 50224 (NCI)

SOURCE: Gene, (2003 Feb 13) 305 (1) 1-12.

Journal code: 7706761. ISSN: 0378-1119.

PUB. COUNTRY: Netherlands

DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: English

FILE SEGMENT: Priority Journals

ENTRY MONTH:

200304

ENTRY DATE:

Entered STN: 20030221

Last Updated on STN: 20030426 Entered Medline: 20030425

AB Deoxyribonuclease IIalpha (DNase IIalpha) is an acidic endonuclease found in lysosomes and nuclei, and it is also secreted. Though its Caenorhabditis elegans homolog, NUC-1, is required for digesting DNA of apoptotic cell corpses and dietary DNA, it is not required for viability. However, DNase IIalpha is required in mice for correct development and viability, because undigested cell corpses lead to lesions throughout the body. Recently, we showed that, in contrast to previous reports, active DNase IIalpha consists of one contiguous polypeptide. To better analyze DNase II protein structure and determine residues important for activity, extensive database searches were conducted to find distantly related family members. We report 29 new partial or complete homologs from 21 species. Four homologs with differences at the purported active site histidine residue were detected in the parasitic nematodes Trichinella spiralis and Trichinella pseudospiralis. When these mutations were reconstructed in human DNase IIalpha, the expressed proteins were inactive. DNase II homologs were also identified in non-metazoan species. In particular, the slime-mold Dictyostelium, the protozoan Trichomonas vaginalis, and the bacterium Burkholderia pseudomallei all contain sequences with significant similarity and identity to previously cloned DNase II family members. We report an analysis of their sequences and implications for DNase II protein structure and evolution.

L14 ANSWER 4 OF 15 HCAPLUS COPYRIGHT 2004 ACS on STN

ACCESSION NUMBER:

2002:213745 HCAPLUS

DOCUMENT NUMBER:

136:227991

TITLE:

Protein and cDNA sequences of human and mouse

deoxyribonuclease II isoenzyme

sequence homologs

INVENTOR(S):

Eastman, Alan Richard; Krieser, Ronald Joe

Trustees of Dartmouth College, USA

SOURCE:

U.S., 8 pp., Cont.-in-part of U.S. Ser. No. 541,840.

CODEN: USXXAM

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT ASSIGNEE(S):

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
US 6358723	B1	20020319	US 2000-574942	20000519
WO 2001075082	A1	20011011	WO 2001-US10635	20010402
W: CA, JP				
RW: AT, BE, CH,	CY, DE	, DK, ES, FI	, FR, GB, GR, IE, IT,	LU, MC, NL,
PT, SE, TR				, -, ,
US 2002028495	A1	20020307	US 2001-949434	20010907
US 6767997	B2	20040727		
PRIORITY APPLN. INFO.:			US 2000-541840	A2 20000403
			US 2000-574942	A 20000519

The present invention provides protein cDNA sequences of novel DNase II isoenzyme sequence homologs as well as vectors comprising the cDNA sequences. The invention further discloses that human DNase II isoenzyme gene maps on chromosome 1p22. The invention also relates to antibodies against this protein and antisense agents targeted to a cDNA or corresponding mRNA encoding DNase II isoforms. In addition, methods of identifying and using modulators of DNase II isoform activity are described.

REFERENCE COUNT:

THERE ARE 17 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

17

ACCESSION NUMBER: 2002424482 MEDLINE DOCUMENT NUMBER: PubMed ID: 12181746

Deoxyribonuclease IIalpha is required during the phagocytic TITLE:

phase of apoptosis and its loss causes perinatal lethality.

AUTHOR: Krieser R J; MacLea K S; Longnecker D S; Fields J

L; Fiering S; Eastman A

CORPORATE SOURCE: Department of Pharmacology and Toxicology, Dartmouth

Medical School, Hanover, NH 03755, USA.

CONTRACT NUMBER: CA23108 (NCI)

CA50224 (NCI)

SOURCE: Cell death and differentiation, (2002 Sep) 9 (9) 956-62.

Journal code: 9437445. ISSN: 1350-9047.

PUB. COUNTRY: England: United Kingdom

DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: English

FILE SEGMENT: Priority Journals

ENTRY MONTH: 200302

ENTRY DATE: Entered STN: 20020816

Last Updated on STN: 20030208 Entered Medline: 20030207

AΒ Deoxyribonuclease IIalpha (DNase IIalpha) is one of many endonucleases implicated in DNA digestion during apoptosis. We produced mice with targeted disruption of DNase IIalpha and defined its role in apoptosis. Mice deleted for DNase IIalpha die at birth with many tissues exhibiting large DNA-containing bodies that result from engulfed but undigested cell corpses. These DNA-containing bodies are pronounced in the liver where fetal definitive erythropoiesis occurs and extruded nuclei are degraded. They are found between the digits, where apoptosis occurs, and in many other regions of the embryo. Defects in the diaphragm appear to cause death of the mice due to asphyxiation. The DNA in these bodies contains 3'-hydroxyl ends and therefore stain positive in the TUNEL assay. addition, numerous unengulfed TUNEL-positive cells are observed throughout the embryo. Apoptotic cells are normally cleared rapidly from a tissue; hence the persistence of the DNA-containing bodies and TUNEL-positive cells identifies sites where apoptosis occurs during development. results demonstrate that DNase IIalpha is not required for the generation of the characteristic DNA fragmentation that occurs during apoptosis but is required for degrading DNA of dying cells and this function is necessary for proper fetal development.

L14 ANSWER 6 OF 15 MEDLINE on STN DUPLICATE 5

ACCESSION NUMBER: 2002174344 MEDLINE DOCUMENT NUMBER: PubMed ID: 11906178

TITLE: Revised structure of the active form of human

deoxyribonuclease IIalpha.

AUTHOR: MacLea Kyle S; Krieser Ronald J; Eastman Alan

CORPORATE SOURCE: Department of Pharmacology and Toxicology, Dartmouth

Medical School, Hanover, New Hampshire 03755, USA.

CA23108 (NCI) CONTRACT NUMBER:

CA50224 (NCI)

SOURCE: Biochemical and biophysical research communications, (2002

Mar 29) 292 (2) 415-21.

Journal code: 0372516. ISSN: 0006-291X.

PUB. COUNTRY: United States

DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: English

FILE SEGMENT: Priority Journals

ENTRY MONTH: 200205

ENTRY DATE: Entered STN: 20020322

Last Updated on STN: 20020507 Entered Medline: 20020506

Deoxyribonuclease IIalpha (DNase IIalpha) is an acid endonuclease found in AB lysosomes, nuclei, and various secretions. Murine DNase IIalpha is required for digesting the DNA of apoptotic cells after phagocytosis and

for correct development and viability. DNase IIalpha purified from porcine spleen was previously shown to contain three peptides, two of which were thiol crosslinked, all derived by processing of a single polypeptide. Commercial bovine protein is consistent with this structure. However, screening of 18 human cell lines failed to demonstrate this processing, rather a 45 kDa protein was consistently observed. Incubation of cells with the N-glycosylation inhibitor tunicamycin resulted in a 37 kDa protein, which is close to the predicted formula weight. The protein also contains at least one thiol crosslink. Similar results were obtained with overexpressed DNase IIalpha. These results suggest that active DNase IIalpha consists of one contiguous polypeptide. We suggest the previous structure reflects proteolysis during protein purification. (c) 2002 Elsevier Science (USA).

L14 ANSWER 7 OF 15 BIOTECHDS COPYRIGHT 2004 THE THOMSON CORP. on STN DUPLICATE 6

ACCESSION NUMBER: 2002-03382 BIOTECHDS

TITLE:

New cDNA encoding a deoxyribonuclease-II

-beta enzyme useful for degrading DNA present in the mucous

plugs in the lungs of cystic fibrosis patients;

recombinant DNA-ase-II-beta production and isolation useful for cystic fibrosis therapy and drug screening

AUTHOR: Eastman A R; Krieser R J

PATENT ASSIGNEE:

Dartmouth-Coll.

LOCATION:

Hanover, NH, USA. WO 2001075082 11 Oct 2001

APPLICATION INFO: WO 2001-US10635 2 Apr 2001

PRIORITY INFO:

US 2000-574942 19 May 2000; US 2000-541840 3 Apr 2000

DOCUMENT TYPE: LANGUAGE:

PATENT INFO:

Patent English

OTHER SOURCE:

WPI: 2001-662972 [76]

AB A cDNA encoding a DNA-ase-II-beta enzyme, is new. Also claimed are: a vector comprising the claimed cDNA; an isolated and purified DNA-ase-II-beta enzyme; an antibody against the DNA-ase-II-beta enzyme; determining DNA-ase-II-beta levels in cells, comprising contacting the cells with the above antibody and detecting binding of the antibody; an antisense oligonucleotide targeted to a DNA or mRNA encoding the DNA-ase-II-beta; inhibiting expression of a DNA-ase-II-beta enzyme in cells, comprising administering the above antisense oligonucleotide; and digesting DNA by contacting it with the DNA-ase-II-beta enzyme. The DNA-ase-II-beta may be useful to digest DNA in the mucous plugs in lungs of cystic fibrosis patients and so reduce their viscosity (disclosed). In an example, the cDNA sequence of DNA-ase-alpha was submitted to the GenBank database and a mouse cDNA EST showing high similarity was identified, purchased and sequenced. Additional EST sequences from human tissues were found that had similarity to this EST but contained incomplete sequences. One sequence was found to contain 932bp of the gene referred to here as DNA-ase-II-beta. (11pp)

L14 ANSWER 8 OF 15 BIOSIS COPYRIGHT (c) 2004 The Thomson Corporation. STN

ACCESSION NUMBER:

2001:354949 BIOSIS

DOCUMENT NUMBER:

PREV200100354949

TITLE:

Deoxyribonuclease II proteins and

cDNAS.

AUTHOR (S):

Eastman, Alan [Inventor, Reprint author]; Krieser,

Ronald [Inventor] Hanover, NH, USA

CORPORATE SOURCE:

ASSIGNEE: Trustees of Dartmouth College

PATENT INFORMATION: US 6184034 February 06, 2001

SOURCE:

Official Gazette of the United States Patent and Trademark Office Patents, (Feb. 6, 2001) Vol. 1243, No. 1. e-file.

CODEN: OGUPE7. ISSN: 0098-1133.

DOCUMENT TYPE:

Patent

LANGUAGE:

English

ENTRY DATE:

Entered STN: 2 Aug 2001

Last Updated on STN: 19 Feb 2002

The present invention provides cDNAs encoding deoxyribonuclease II and isolated, purified deoxyribonuclease II proteins. Antibodies against this protein and antisense agents targeted to a cDNA or corresponding mRNA encoding deoxyribonuclease II are provided. In addition, methods of identifying and using modulators of deoxyribonuclease II activity and apoptosis are described.

L14 ANSWER 9 OF 15

MEDLINE on STN

DUPLICATE 7

ACCESSION NUMBER: DOCUMENT NUMBER:

2001297501 MEDLINE

PubMed ID: 11376952

TITLE:

The cloning, genomic structure, localization, and expression of human deoxyribonuclease IIbeta.

AUTHOR:

CORPORATE SOURCE:

Krieser R J; MacLea K S; Park J P; Eastman A Department of Pharmacology and Toxicology, Dartmouth

Medical School, 7650 Remsen, Hanover, NH 03755, USA. CA23108 (NCI)

CONTRACT NUMBER:

CA50224 (NCI)

SOURCE:

Gene, (2001 May 16) 269 (1-2) 205-16.

Journal code: 7706761. ISSN: 0378-1119.

PUB. COUNTRY:

Netherlands

DOCUMENT TYPE:

Journal; Article; (JOURNAL ARTICLE)

LANGUAGE:

English

FILE SEGMENT: OTHER SOURCE: Priority Journals GENBANK-AF274571

ENTRY MONTH:

200108

ENTRY DATE:

Entered STN: 20010806

Last Updated on STN: 20010806 Entered Medline: 20010802

AΒ Acidic endonuclease activity is present in all cells in the body and much of this can be attributed to the previously cloned and ubiquitously expressed deoxyribonuclease II (DNase II). Database analysis revealed the existence of expressed sequence tags and genomic segments coding for a protein with considerable homology to DNase II. This report describes the cloning of this cDNA, which we term deoxyribonuclease IIbeta (DNase IIbeta) and comparison of its expression to that of the originally cloned DNase II (now termed DNase IIalpha). The cDNA encodes a 357 amino acid protein. This protein exhibits extensive homology to DNase IIalpha including an amino-terminal signal peptide and a conserved active site, and has many of the regions of identity that are conserved in homologs in other mammals as well as C. elegans and Drosophila. The gene encoding DNase IIbeta has identical splice sites to DNase IIalpha. Human DNase IIbeta is highly expressed in the salivary gland, and at low levels in trachea, lung, prostate, lymph node, and testis, whereas DNase IIalpha is ubiquitously expressed in all tissues. The expression pattern of human DNase IIbeta suggests that it may function primarily as a secreted enzyme. Human saliva was found to contain DNase IIalpha, but after immunodepletion, considerable acid-active endonuclease remained which we presume is DNase IIbeta. We have localized the gene for human DNase IIbeta to chromosome 1p22.3 adjacent (and in opposing orientation) to the human uricase pseudogene. Interestingly, murine DNase IIbeta is highly expressed in the liver. Uricase is also highly expressed in mouse but not human liver and this may explain the difference in expression patterns between human and mouse DNase IIbeta.

L14 ANSWER 10 OF 15 BIOSIS COPYRIGHT (c) 2004 The Thomson Corporation. DUPLICATE 8

DOCUMENT NUMBER:

ACCESSION NUMBER: 2001:245207 BIOSIS PREV200100245207

TITLE:

Structure and processing of human deoxyribonuclease

II.

AUTHOR (S): MacLea, Kyle S. [Reprint author]; Krieser, Ronald

J. [Reprint author]; Eastman, Alan [Reprint author]

CORPORATE SOURCE: Pharmacology/Toxicology, Dartmouth Medical School, Hanover,

NH, 03755, USA

SOURCE: FASEB Journal, (March 7, 2001) Vol. 15, No. 4, pp. A202.

print.

Meeting Info.: Annual Meeting of the Federation of American Societies for Experimental Biology on Experimental Biology 2001. Orlando, Florida, USA. March 31-April 04, 2001. CODEN: FAJOEC. ISSN: 0892-6638.

DOCUMENT TYPE: Conference; (Meeting)

Conference; Abstract; (Meeting Abstract)

LANGUAGE: English

ENTRY DATE: Entered STN: 23 May 2001

Last Updated on STN: 19 Feb 2002

Deoxyribonuclease II (DNase II) is an endonuclease active at acidic pH that is found in lysosomes and in various secretions.

It has recently been identified as a homolog of the Caenorhabditis elegans NUC-1 protein that is required for digesting the DNA of apoptotic cells and ingested bacteria. The nonhomologous human DNase I protein is used clinically to digest the viscous sputum of cystic fibrosis (CF) patients. However, only marginal improvement in lung function has been observed, probably because DNase I requires exogenous divalent cations and is inhibited by G-actin, abundant in the sputum. In contrast, DNase II is unaffected by divalent cations or actin and may therefore be a superior therapeutic. We are studying the structure and activity of DNase II to evaluate its potential as a CF mucolytic agent. Purified DNase II from porcine spleen and human liver was previously shown to contain two thiol cross-linked peptides derived by posttranslational processing of a single polypeptide with formula weight of 39.6 kDa. Commercial DNase II contains a peptide that begins at amino acid 108, consistent with this structure. However, screening of several cell types and secretions in this laboratory has failed to demonstrate this processing. Rather, these systems show a 51 kDa protein that is reduced in size to 40 kDa upon incubation of cells with the N-glycosylation inhibitor tunicamycin. The protein contains at least one thiol cross-link. Similar results are obtained upon transient transfection of DNase II into several cell lines. Various truncated forms of the protein remain unglycosylated and inactive. These results suggest that the human DNase II protein is formed from one contiguous polypeptide chain, heavily glycosylated, which requires the signal peptide sequence for proper processing. This knowledge is important for production and

L14 ANSWER 11 OF 15 MEDLINE on STN DUPLICATE 9

ACCESSION NUMBER: 2000457895 DOCUMENT NUMBER:

PubMed ID: 10903447

evaluation of its therapeutic potential for CF.

TITLE:

Deoxyribonuclease II: structure and

MEDLINE

chromosomal localization of the murine gene, and comparison

with the genomic structure of the human and three C.

elegans homologs.

AUTHOR:

Krieser R J; Eastman A

CORPORATE SOURCE: Department of Pharmacology and Toxicology, Dartmouth

Medical School, 03755, Hanover, NH, USA.

CONTRACT NUMBER:

CA50224 (NCI)

SOURCE:

Gene, (2000 Jul 11) 252 (1-2) 155-62.

Journal code: 7706761. ISSN: 0378-1119.

PUB. COUNTRY: Netherlands

DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)

CA23108 (NCI)

LANGUAGE: English

FILE SEGMENT: Priority Journals

OTHER SOURCE: GENBANK-AF190459; GENBANK-AF220525; GENBANK-AF220526

ENTRY MONTH: 200009

ENTRY DATE: Entered STN: 20001005 Last Updated on STN: 20001005 Entered Medline: 20000925

AΒ Deoxyribonuclease II (DNase II) has been implicated in diverse functions including degradation of foreign DNA, genomic instability, and in mediating the DNA digestion associated with apoptosis. The production of a mouse deleted for DNase II would clearly help to discriminate these functions. We have cloned and sequenced the mouse gene encoding DNase II. It was found to have a similar intron/exon structure to the human gene, although introns 3 and 5 are considerably shorter. The gene is located on mouse chromosome 8. The order of genes at this locus is mGCDH, mEKLF, mDNase II, mSAST, which is the same order that these genes are found on human chromosome 19. The GenBank database contains incorrect expressed sequence tags (ESTs) for the 3' end of the mouse mRNA. Furthermore, the gene structure of two of the three homologs in C. elegans is also incorrectly predicted in the database. We have established the correct intron/exon structure for these genes and show the conserved sequence and structure of the C. elegans, murine and human genes.

L14 ANSWER 12 OF 15 MEDLINE on STN

DUPLICATE 10

ACCESSION NUMBER: 1999310942 DOCUMENT NUMBER:

MEDLINE

PubMed ID: 10381642

TITLE:

Cleavage and nuclear translocation of the caspase 3

substrate Rho GDP-dissociation inhibitor, D4-GDI, during

apoptosis.

CA09658 (NCI)

AUTHOR:

Krieser R J; Eastman A

CORPORATE SOURCE:

Department of Pharmacology and Toxicology, Dartmouth

Medical School, Hanover, New Hampshire 03755, USA.

CONTRACT NUMBER:

CA23108 (NCI)

CA50224 (NCI)

SOURCE:

Cell death and differentiation, (1999 May) 6 (5) 412-9.

Journal code: 9437445. ISSN: 1350-9047.

PUB. COUNTRY:

ENGLAND: United Kingdom

DOCUMENT TYPE:

Journal; Article; (JOURNAL ARTICLE)

LANGUAGE:

English

FILE SEGMENT:

Priority Journals

ENTRY MONTH:

199909

ENTRY DATE:

Entered STN: 19990921

Last Updated on STN: 20000303

Entered Medline: 19990909

While investigating endonucleases potentially involved in apoptosis, an AB antisera was raised to bovine deoxyribonuclease II, but it recognized a smaller protein of 26 kDa protein in a variety of cell The 26 kDa protein underwent proteolytic cleavage to 22 kDa concomitantly with DNA digestion in cells induced to undergo apoptosis. Sequencing of the 26 kDa protein identified it as the Rho GDP-dissociation inhibitor D4-GDI. Zinc, okadaic acid, calyculin A, cantharidin, and the caspase inhibitor z-VAD-fmk, all prevented the cleavage of D4-GDI, DNA digestion, and apoptosis. The 26 kDa protein resided in the cytoplasm of undamaged cells, whereas following cleavage, the 22 kDa form translocated to the nucleus. Human D4-GDI, and D4-GDI mutated at the caspase 1 or caspase 3 sites, were expressed in Chinese hamster ovary cells which show no detectable endogenous D4-GDI. Mutation at the caspase 3 site prevented D4-GDI cleavage but did not inhibit apoptosis induced by staurosporine. The cleavage of D4-GDI could lead to activation of Jun N-terminal kinase which has been implicated as an upstream regulator of apoptosis in some systems. However, the results show that the cleavage of D4-GDI and translocation to the nucleus do not impact on the demise of the cell.

L14 ANSWER 13 OF 15 'HCAPLUS COPYRIGHT 2004 ACS on STN

ACCESSION NUMBER:

1998:251285 HCAPLUS

DOCUMENT NUMBER:

128:304813

TITLE:

Sequence, detection, and apoptosis-inducing activity

of human and bovine DNase II

proteins and cDNA

INVENTOR(S):

Eastman, Alan; Krieser, Ronald

PATENT ASSIGNEE(S):

Trustees of Dartmouth College, USA; Eastman, Alan;

Krieser, Ronald

SOURCE:

PCT Int. Appl., 29 pp.

CODEN: PIXXD2

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 9816659	A1	19980423	WO 1997-US18262	19971009

W: CA, JP, US

RW: AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE US 6184034 B1 20010206 US 1999-147915 19990323

PRIORITY APPLN. INFO.:

US 1996-28539P 19961015 WO 1997-US18262 W 19971009

The present invention provides cDNAs encoding DNase II and isolated, purified DNase II proteins. Antibodies against this protein and antisense agents targeted to a cDNA or corresponding mRNA encoding DNase II are provided. In addition, methods of identifying and using modulators of DNase II activity and apoptosis are described.

REFERENCE COUNT: 2

THERE ARE 2 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L14 ANSWER 14 OF 15 MEDLINE on STN

DUPLICATE 11

ACCESSION NUMBER: DOCUMENT NUMBER:

1999030349 MEDLINE PubMed ID: 9812984

TITLE:

The cloning and expression of human

deoxyribonuclease II. A possible role in

apoptosis.

AUTHOR:

Krieser R J; Eastman A

CORPORATE SOURCE:

Department of Pharmacology and Toxicology, Dartmouth

Medical School, Hanover, New Hampshire 03655, USA.

CONTRACT NUMBER: CA09658 (NCI)

CA23108 (NCI) CA50224 (NCI)

SOURCE:

Journal of biological chemistry, (1998 Nov 20) 273 (47)

Journal code: 2985121R. ISSN: 0021-9258.

PUB. COUNTRY:

United States

DOCUMENT TYPE:

Journal; Article; (JOURNAL ARTICLE)

LANGUAGE:

English

FILE SEGMENT:

Priority Journals

OTHER SOURCE:

GENBANK-AF047016; GENBANK-AF047017

ENTRY MONTH:

199812

ENTRY DATE:

Entered STN: 19990115

Last Updated on STN: 19990115 Entered Medline: 19981221

AB We have previously implicated deoxyribonuclease II (DNase II) as an endonuclease responsible for DNA digestion during apoptosis. The full-length human cDNA has now been cloned. The cDNA contains an open reading frame of 1078 bases coding for a 40-kDa protein. This protein is 10 kDa larger than commercially supplied enzyme, which has been proteolytically cleaved at an internal aspartate residue. The gene is located at chromosome 19p13.2, and has no significant homology to other human proteins, but has >30% identity to three predicted genes in Caenorhabditis elegans. To determine whether overexpression of DNase II induces apoptosis in Chinese hamster ovary cells, the cDNA was cotransfected with a plasmid encoding green fluorescent protein. Within 24 h, a significant proportion of green fluorescent protein-positive cells

contained condensed chromatin, whereas vector-only controls remained viable. Considering that DNase II is normally active only at low pH, it was surprising that transfection induced chromatin condensation. To confirm that transfection was not activating another endonuclease, cells were incubated with the caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-(O-methyl)-fluoromethylketone; this failed to inhibit chromatin condensation induced by DNase II. These results demonstrate that DNase II acts downstream of caspase activation and that it may be activated by an as yet unknown mechanism to induce DNA digestion during apoptosis.

L14 ANSWER 15 OF 15 BIOSIS COPYRIGHT (c) 2004 The Thomson Corporation. on

ACCESSION NUMBER:
DOCUMENT NUMBER:

1998:197800 BIOSIS PREV199800197800

TITLE:

Cloning and expression of deoxyribonuclease

II: A possible role in apoptosis.

AUTHOR (S):

Krieser, R. J.; Eastman, A.

CORPORATE SOURCE:

Dep. Pharmacology, Dartmouth Med. Sch., Hanover, NH 03755,

USA

SOURCE:

Proceedings of the American Association for Cancer Research Annual Meeting, (March, 1998) Vol. 39, pp. 578. print.

Meeting Info.: 89th Annual Meeting of the American Association for Cancer Research. New Orleans, Louisiana, USA. March 28-April 1, 1998. American Association for

Cancer Research. ISSN: 0197-016X.

DOCUMENT TYPE:

Conference; (Meeting)

Conference; Abstract; (Meeting Abstract) English

LANGUAGE:

ENTRY DATE:

Entered STN: 4 May 1998

Last Updated on STN: 12 Aug 1998

=> d his

L1

L7

(FILE 'HOME' ENTERED AT 09:06:25 ON 04 NOV 2004)

FILE 'MEDLINE, EMBASE, BIOSIS, BIOTECHDS, SCISEARCH, HCAPLUS, NTIS, LIFESCI' ENTERED AT 09:08:32 ON 04 NOV 2004

1382 S "DEOXYRIBONUCLEASE II"

L2 377 S L1 AND (HUMAN OR MURINE)

L3 3858984 S BETA

L4 36 S L2 AND L3

L5 27 DUP REM L4 (9 DUPLICATES REMOVED)

L6 1714908 S DIGEST?

348 S L1 AND L6

L8 76 S L7 AND (HUMAN OR MURINE)

L9 41 DUP REM L8 (35 DUPLICATES REMOVED)

E EASTMAN A R/AU

L10 21 S E3

E KRIESER R J/AU

L11 79 S E3-E8

L12 99 S L10 OR L11

L13 57 S L1 AND L12

L14 15 DUP REM L13 (42 DUPLICATES REMOVED)