

Customization of Bioinformatics Workflows for (Meta)genomics.

Ricardo Oliveira; Msc Student. Pedro Santos; Supervisor.

O1Background

Background

Importance of identifying and characterizing microorganisms in microbiology.

Shift from traditional physical and biochemical methods to DNA-based approaches.

Advances in high-throughput sequencing technologies and their impact on metagenomics.

Explosion in bioinformatics tools for metabarcoding analysis.

Key software: QIIME, USEARCH, DADA2, DECIPHER, RDP classifier, PHYLOSEQ.

O2 AIMS

Aims

ls:

Evaluate the performance of metabarcoding

Analyzing tools using different sequencing platforms. (Illumina, PacBio, Oxford Nanopore).

Asses each step

Using the following tools: DADA2, USEARCH/VSEARCH.

Develop customizable scripts for each analysis phase.

04

Apply scripts to a real-world case study.

05

Address complexity

In selecting suitable algorithms and ensure robustness through benchmark studies.

03 Project Workflow

04 Results

ASV formation

	ATCC1	ATCC2	ATCC3	Zymo1	Zymo2
ASV1	2582	922	9962	19675	27727
ASV2	0	0	0	17079	30098
ASV3	2640	1444	2388	22623	16044
ASV4	1556	663	4027	8864	23051
ASV5	0	0	0	22941	12222
ASV6	704	387	1341	9923	22553
ASV7	0	0	0	15156	17897
ASV8	0	0	0	16951	8369
ASV9	3633	1629	15847	0	0
ASV10	3260	1436	13705	0	0
ASV11	2908	1142	12588	0	0
ASV12	3132	1545	8396	0	0
ASV13	1851	702	9223	0	0
ASV14	0	0	0	2729	8617
ASV15	2483	1416	4783	0	70
ASV16	1325	545	6799	0	0
ASV17	2102	996	5074	0	0
ASV18	614	279	5460	0	0
ASV19	1485	654	3324	0	0
ASV20	1512	684	2975	0	0
ASV21	1151	503	2147	0	0
ASV22	847	343	2588	0	0
ASV23	573	283	2003	0	0
ASV24	444	170	1003	0	0
ASV25	228	117	1174	0	0
ASV26	333	172	922	0	0
ASV27	142	108	192	0	0
ASV28	135	0	0	0	0
ASV29	0	9	58	0	0
ASV30	50	0	0	0	0
ASV31	0	0	0	0	48
ASV32	0	0	0	0	37
ASV33	0	0	0	34	0

>ASV1

GCAGCGTTAATCGGATTACTGGGCGTAAGCGCACSCAGGCGGTTTGTTAAGTCAGATGT GAAATCCCCGGCCTCAACCTGGGAACTGCATCTGATACTGGCAAGCTTGAGTCTCGTACAGG GGGGTAGAATTCCAGGTGTAGCGGTGAAATGCSTAGGATCTGGAGGAATACCGGTGGCGAA GCCGCCCCCTGGACGAAGACTGACGCTCAGGTCCGAAAGCGTGGGG

>ASV2

GCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCACGCGGGCTCTGTCAAGCTGGAATCT GAAATCCCCGGGCTCAACCTGGGAACTGCATTCGAAACTGGCAGGCTTGAGTCTTGTAGAGG GGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGTCTTGGAGGAATACCGGTGGCGAA GGCGCCCCCTGGACAAAGACTGACGCTCAGGTGCGAAAGCGTGGGG

GCAAGCGTTATOCGGAATTATTGGGCGTAAAGCGCGGTTAGGCGGTTTTTTAAGTCTGATGT GAAAGCCACGGCCCAACCGTGGAGGGTCATTGGAAACTGGAAAACTTGAGTGCAGAGAGG AAAGTGGAATTCCATGTGTAGCGGTGAAATGGGCAGAGTATTGGGGGAACACCAGTGGCGAA GGCGACTTTCTGGTCTGTAACTGACGCTGATGTGCCAAAGCGTGGGG

>ASV4

GCAAGCGTTGTCCGGAATTATTGGGCGTAAAGGGCTCGCAGGCGGTTCCTTAAGTCTGATGT GAAAGCCCCCGGCTCAACCGGGSAGGGTCATTGGAAACTGGGGAACTTGAGTGCAGAGAGG AGAGTGGAATTCCACGTGTAGCGGTGAAATGCGTAGGATGTGGGGGAACACCAGTGGCGAA GGCGACTCTCTGGTCTGTAACTGACGTGAGGAGCGAAAGCGTGGGG

ASV6

GCAAGCGTTGTCCGGATTTATTGGCCGTAAAGCGAGCGCAGGCGGTTTCTTAAGTCTGATGT GAAAGCCCCCGCTCAACCGGGAGGGTCATTGGAAACTGGGAGACTTGAGTGCAGAGAGG AGAGTGGAATTCCATGTGTAGCGGTGAAATGGGTAGATATATGGAGGAACACCAGTGGCGAA GGCGCCTTCTGGTCTGTAACTGACGCTGAGGCTCGAAGCGTGGGG

>ASV7

GCAAGCCTTATCOGGATTTATTGGGCGTAAGGGGCAGCCGGTTTTCTAAGTCTGGATGT GAAGCCTTCGGCTTAACCGGAGAAGTGCATCGGAAACTGGATAACTTGAGTGCAGAAGAG GTAGTGGACTCCATGTGTAGCGTGGATGCGTAGGTATATTGGAAGACACCAGTGGCGAA GGCGCTACCTGGTCTGCAACTGACGCTGAGACTCGAAAGCATGGGT

GCAAGCGTTGTCCGGATTTATTGGGCGTAAAGCCCGCGCGGGCGTCTTTTAAGTCTGATGT GAAAGCCCCCGGTTAACCGGGAGGGTCATTGGAAATGGAAGACTGGAGTCAGAGAGG GAGGTGGATTCCACGTGTAGCGGTGAAATGCGTAGATATGTGGGGAACACCAGTGGCGAA GGCGACTTCTGGTCTGTAACTGACCCGCGAAAGCGTGGG

Phyloseq analysis

Fig 3: Biodiversity analysis

Phyloseq analysis

Fig 4: Genus classification (left: RDP; right: SILVA; blue: ATCC; red: Zymo)

O5 Upcoming Goals

Upcoming Goals

Expansion of the software used, and the sequencing technologies supported.

Allow a personalized analysis

Testing & validation of the develop workflow.

