Пространство элементарных исходов (Ω) — множество всех элементарных исходов. Элементарный исход (ω) — простейший исход опыта.

$$\Omega = \{\omega_1, \omega_2, \dots, \omega_n, \dots\}$$

Случайное событие — любой набор элементарных исходов, то есть произвольное подмножество пространства Ω .

Сигма-алгеброй (σ **-алгеброй)** событий В назовем непустую систему подмножеств пространства элементарных исходов Ω , удовлетворяющую следующим двум условиям.

- 1. Если подмножество А принадлежит В, то дополнение А принадлежит В.
- 2. Если подмножества A1, A2, ..., An, ... принадлежат B, то их объединение A1 UA2 U...UAn U... и их пересечение A1 A2 ... An ... принадлежит B. Поскольку Ω = AUA и \varnothing = Ω , то достоверное событие Ω и невозможное событие \varnothing принадлежат B.

В случае конечного или счетного пространства элементарных исходов Ω в качестве σ -алгебры событий обычно рассматривают множество всех подмножеств Ω

Классической вероятностной схемой (или моделью) назовем всякий случайный эксперимент, удовлетворяющий следующим условиям:

- 1) пространство элементарных событий (множество исходов случайного эксперимента) Ω представляет собой конечное множество $\Omega = \{\omega_1, \omega_2, \dots, \omega_n\}$;
 - 2) случайные события всевозможные подмножества множества Ω .
 - 3) все элементарные события равновероятны, т.е. $P(\omega_i) = \frac{1}{n}, i = 1, \dots, n;$
- 4) вероятность любого события $A = \{\omega_{i_1}, \omega_{i_2}, \dots, \omega_{i_k}\}$, состоящего из произвольных k элементарных событий, по определению равна $\frac{k}{n}$.

Вопрос 2. Выборки с повторениями и без повторений. Мультиномиальные коэффициенты.

Bonpoc 1 Размещениями без повторений называются упорядоченные выборки, $A_n^k = \frac{n!}{(n-k)!}$ содержащие k различных элементов из данных n элементов.

Размещениями с повторениями называются упорядоченные выборки, содержащие k элементов из данных n элементов, причем каждый элемент исходной совокупности может участвовать в размещении несколько раз. $\overline{A}_n^k = n^k$

Перестановками без повторений называются всевозможные упорядоченные выборки, составленные из всех данных п элементов.

$$P_n = n! = n * (n - 1) * (n - 2) * ... * 2 * 1$$

Пусть в исходную совокупность входит n_1 элементов первого типа, n_2 - второго типа, ..., $n_k - k$ -го типа, при этом $n_1 + n_2 + ... + n_k = n$. Всевозможные упорядоченные выборки, составленные из всех данных n элементов, называются перестановками c повторениями. $n_1 + n_2 + ... + n_k = n$.

Сочетаниями без повторений называются неупорядоченные выборки, $C_n^k = \frac{n!}{k! (n-k)!}$

Сочетаниями с повторениями называются неупорядоченные выборки, содержащие k элементов из данных n элементов, причем каждый элемент исходной совокупности $\overline{C}_n^k = C_{n+k-1}^{n-1} = \frac{(n+k-1)!}{k!*(n-1)!}$

Определение 3. Мультиномиальный коэффициент $\binom{n}{n_1,\dots,n_k}$, где $n=n_1+\dots+n_k$ — это число разбиений множества $\{1,\dots,n\}$ на k подмножеств размера n_1,\dots,n_k .

B частности, $\binom{n}{k} = \binom{n}{k, n-k}$.

$$\binom{n}{n_1,\ldots,n_k} = \binom{n_1+\ldots+n_k}{n_1} \binom{n_2+\ldots+n_k}{n_2} \cdot \ldots \cdot \binom{n_{k-1}+n_k}{n_k} \binom{n_k}{n_k} = \frac{n!}{n_1!\ldots n_k!}$$

Вопрос 3. Геометрическое определение вероятности. Статистическое определение вероятности. Аксиоматическое определение вероятности. Аксиома непрерывности.

Вероятностью события A называют число P(A), равное отношению меры множества A к мере множества Ω:

$$P(A) = \mu(A) / \mu(\Omega),$$

где $\mu(A)$ — мера множества A .

Вероятностью события A называют (эмпирический) предел P(A), к которому стремится частота rA события A при неограниченном увеличении числа n опытов.

Аксиоматическая вероятность — числовая функция P, заданная на σ алгебре \mathfrak{B} , которая удовлетворяет аксиомам:

- 1) Аксиома неотрицательности: $P(A) \ge 0$
- 2) Аксиома нормированности: $P(\Omega) = 1$
- 3) Аксиома сложения: Для любых попарно несовместных событий:

$$P(A1 + \cdots + An + \cdots) = P(A1) + \cdots + P(An) + \cdots$$

(аксиома непрерывности): если последовательность событий A1, . . . , An, . . . такова, что An \subset An+1, n \in N, и A1 \cup ... \cup An \cup ... = A, то limn→∞ P(An) = P(A).

Вопрос 4. Свойства вероятности, следующие из аксиом.

Теорема 2.1 Вероятность удовлетворяет следующим свойствам.

- 1. Вероятность противоположного события $P(\overline{A}) = 1 P(A)$.
- 2. Вероятность невозможного события $P(\emptyset) = 0$.
- 3. Если $A \subset B$, то $P(A) \leqslant P(B)$ ("большему" события соответствует большая вероятность).
- 4. Вероятность заключена между 0 и $1: 0 \leq P(A) \leq 1$.
- 5. Вероятность объединения двух событий $P(A \cup B) = P(A) + P(B) P(AB)$.
- 6. Вероятность объединения любого конечного числа событий

$$P(a_1 \cup ... \cup A_n) = P(A_1) + ... + P(A_n) - P(A_1A_2) - P(A_1A_3) - ... - P(A_{n-1}A_n) + P(A_1A_2A_3) + ... + (-1)^{n+1}P(A_1A_2...A_n).$$

Вопрос 5. Условная вероятность и теорема умножения вероятности.

Условная вероятность случайного события A при условии, что случайное событие B произошло определяется:

$$P(A|B) = P(AB) \ P(B) \ , \ P(B) \neq 0$$
 Теорема умножения: Если $A = A1A2 \dots An$ и $P(A) > 0$, то: $P(A) = P(A1) * P(A2 | A1) * \dots * P(An | A1A2 \dots An-1)$

Вопрос 6. Зависимые и независимые события. Критерий независимости случайных событий. Являются ли зависимыми несовместные события?

Событие A называется **независимым** от события B, удовлетворяющего условию P(B) > 0, если выполняется равенство P(A|B) = P(A).

События A и B называются **независимыми**, если P(AB) = P(A)P(B).

В противном случае события А и В называются зависимыми.

Критерий независимости: Два события A и B, P(A) > 0, P(B) > 0, являются независимыми тогда и только тогда, когда: P(AB) = P(A)P(B)

Да, **несовместные события являются зависимыми**, так как если одно из них произойдет, то другое не может произойти.

Вопрос 7. Формула полной вероятности и формула Байеса.

- Если события H_1 , H_2 ,..., H_n образуют полную группу и $P(H_i) \,\square\, 0$, то для любого события А справедлива формула

$$P(A) = P(H_1)P(A/H_1) + \dots + P(H_n)P(A/H_n)$$

$$P(A) = \sum_{i=1}^{n} P(H_i)P(A/H_i)$$

$$P(H_k|A) = \frac{P(A|H_k)P(H_k)}{P(A)},$$

Вопрос 8. Испытания по схеме Бернулли, теорема Пуассона.

Определение 2.4. Схемой Бернулли (или последовательностью независимых одинаковых испытаний, или биномиальной схемой испытаний) называют последовательность испытаний, удовлетворяющую следующим условиям:

- 1) при каждом испытании различают лишь два исхода: появление некоторого события А, называемого "успехом", либо появление его дополнения А, называемого "неудачей";
- 2) испытания являются независимыми, т.е. вероятность успеха в к-м испытании не зависит от исходов всех испытаний до k-го;
 - 3) вероятность успеха во всех испытаниях постоянна и равна P(A) = p.

Теорема 2.8 (Формула Бернулли). Если Y_n — число успехов в п испытаниях Бернулли с вероятностью успеха p, то вероятность $P\{Y_n = k\}$ получить ровно k успехов в n испытаниях

$$P{Y_n = k} = C_n^k p^k q^{n-k}, \quad k = 0, 1, 2, ..., n,$$
 (2.7)

где q = 1 - p.

Распределение Пуассона – совокупность вероятностей: Если $n \to \infty$, $np \to \lambda$, то:

$$F(k,\lambda) = P\{X \le k,\lambda\} = \sum_{i=0}^{k} \frac{\lambda^{i}}{i!} e^{-\lambda} \qquad P_{n}(k) \approx \frac{\lambda^{k}}{k!} e^{-\lambda}, \qquad k = \overline{0,n}$$

Вопрос 9. Функция распределения случайной величины. Ее определение и вид для дискретной случайной величины. Теорема о свойствах функции распределения случайной величины.

Функцией распределения вероятностей случайной величины Х называют

функцию F(x), значение которой в точке x равно вероятности события $\{X < x\}$, т.е. события, состоящего из тех и только тех элементарных исходов ω , для которых $X(\omega) < x$:

$$F(x) = P(\{X < x\})$$

Теорема 3.1. Функция распределения удовлетворяет следующим свойствам.

- 1. $0 \le F(x) \le 1$.
- 2. $F(x_1) \leq F(x_2)$ при $x_1 < x_2$, т.е. F(x) неубывающая функция.
- 3. $F(-\infty) = \lim_{x \to -\infty} F(x) = 0$; $F(+\infty) = \lim_{x \to +\infty} F(x) = 1$.
- 4. $\mathsf{P}\{a\leqslant \xi < b\} = F(b) F(a)$. 5. F(x) = F(x-0), где $F(x-0) = \lim_{y\to x-0} F(y)$, т.е. F(x) непрерывная слева функция.

Вопрос 10. Математическое ожидание и дисперсия для непрерывных и дискретных случайных величин.

Определение 6.1 Математическим ожиданием (средним значением) МХ дискретной случайной величины X называют сумму произведений значений x_i случайной величины и вероят $nocmeй p_i = P\{X = x_i\}, c$ которыми случайная величина принимает эти значения:

$$\mathbf{M}X = \sum_{i} x_i p_i$$
.

Определение 6.2 Математическим ожиданием (средним значением) МХ непрерывной случайной величины называют интеграл

$$\mathbf{M}X=\int\limits^{+\infty}xp(x)\,dx.$$

Определение 6.3 Дисперсией DX случайной величины X называют математическое ожидание квадрата отклонения случайной величины X от ее среднего значения, т. е. $DX = M(X - MX)^2$.

Вопрос 11. Нормальное распределение (определение, числовые характеристики).

Нормальное распределение

$$\varphi_{m,\sigma}(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-m)^2}{2\sigma^2}}$$

$$\Phi_{m,\sigma}(x) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{(u-m)^2}{2\sigma^2}} du$$

Нормальное стандартное распределение

Случай нормального с m=0 и $\sigma=1$

Вопрос 12. Показательное распределение (определение, числовые характеристики).

Случайная величина распределена по экспоненциальному (показательному) закону, если она имеет плотность распределения p(x) и функцию распределения F(x)

$$p(x) = \left\{ \begin{array}{ll} 0, & x < 0; \\ \lambda e^{-\lambda x}, & x \geqslant 0, \end{array} \right., \qquad F(x) = \left\{ \begin{array}{ll} 0, & x < 0; \\ 1 - e^{-\lambda x}, & x \geqslant 0. \end{array} \right.,$$

Вопрос 13. Распределение Пуассона (определение, числовые характеристики).

Дискретная случайная величина X распределена по $\it sakony \, Hyaccona$, если она принимает целые неотрипательные значения с вероятностями

$$P{X = i} = P(i; \lambda) = \frac{\lambda^i}{i!}e^{-\lambda}, \quad i = 0, 1, ...,$$

или, по-другому, с вероятностями, представленными рядом распределения в таблице 7.2, где $\lambda>0$ — параметр распределения Пуассона.

X	0	1	2	 n		
Р	$e^{-\lambda}$	$\lambda e^{-\lambda}$	$\frac{\lambda^2}{2!}e^{-\lambda}$	 $\frac{\lambda^n}{n!}e^{-\lambda}$		

Проверка корректности определения распределения Пуассона дает:

Таблица 7.2

$$\sum_{i=0}^{\infty} P(i;\lambda) = \sum_{i=0}^{\infty} \frac{\lambda^i}{i!} e^{-\lambda} = e^{-\lambda} \sum_{i=0}^{\infty} \frac{\lambda^i}{i!} = e^{-\lambda} e^{\lambda} = 1.$$

Вопрос 14. Вероятность попадания нормальной случайной величины в интервал (a, b).

$$\mathbf{P}\{a < X < b\} = \int\limits_{a}^{b} \varphi_{m,\sigma}(y) \, dy = \int\limits_{a}^{b} \frac{1}{\sigma \sqrt{2\pi}} e^{-(y-m)^2/(2\sigma^2)} \, dy.$$

Проводя замену $x = (y - m)/\sigma$, этот интеграл можно записать в виде

$$\mathbf{P}\{a < X < b\} = \int\limits_{(a-m)/\sigma}^{(b-m)/\sigma} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx = \int\limits_{(a-m)/\sigma}^{(b-m)/\sigma} \varphi(x) \, dx.$$

Таким образом, окончательно получаем

$$\mathbf{P}\{a < X < b\} = \Phi\left(\frac{b-m}{\sigma}\right) - \Phi\left(\frac{a-m}{\sigma}\right).$$

Вопрос 15. Теорема о свойствах функции распределения двумерного случайного вектора.

Свойства функции распределения двумерного СВ

- $\bullet 0 \le F(x_1, x_2) \le 1$
- $F(x_1, x_2)$ неубывающая по каждому аргументу
- $F(-\infty, x_2) = F(x_1, -\infty) = 0$
- $\bullet F(+\infty, +\infty) = 1$
- $P\{a_1 \le X_1 \le b_1, a_2 \le X_2 \le b_2\} = F(b_1, b_2) + F(a_1, a_2) F(b_1, a_2) F(a_2, b_2)$
- $F(x_1, x_2)$ непрывная слева в любой точке $(x_1, x_2) \in \mathbb{R}^2$
- $\bullet F_{X_1,X_2}(x,+\infty) = F_{X_1}(x), F_{X_1,X_2}(+\infty,x) = F_{X_2}(x),$

Вопрос 16. Дискретные многомерные случайные векторы. Закон распределения и его свойства.

Определение 5.3. Двумерный случайный вектор (ξ, η) называют дискретным, если каждая из случайных величин ξ и η является дискретной.

E			7	7		
5	<i>y</i> ₁	<i>y</i> ₂		y_j	 P _ξ	$p_{ij} = P\{\xi = x_i, \eta = y_j\}, P_{ij} = P\{\xi = x_i, \eta = y_j\}$
x_1	<i>p</i> ₁₁	p_{12}		p_{1j}	 $p_{1\bullet}$	$p_{ij} = P\{\xi = x_i, \eta = y_j\}, (b - ba: 1) O \leq F(x_i \times 2) \leq 1$ (2) $F(\tau \circ o_j + \circ o_j) = I_j$
x_2	P ₂₁	P22		p_{2j}	 <i>p</i> _{2•}	$p_{i\bullet} = P\{\xi = x_i\} = \sum_{i=1}^{n} p_{ij}$ 3) $F(-\sigma_i(x_p)) = F(x_i, +\sigma_i) = 0$; 4) $F(x_i, x_n)$
					 	Pro (5 - 21) - 2 - 11 - 2 - 11 - 2 - 11 - 2 - 2 - 2
x_i	p_{i1}	Pi2		p_{ij}	 Pi∙	- veyoabarousa; 5) F(x, ix) - verp creba 8
Ρ.	D-1	D-2		Dei	 	$p_{\bullet j} = P\{\eta = y_j\} = \sum_{i=1}^{n} p_{ij}$
- 1	₽•1	P • 2		P*J		i=1 0 moune,

Вопрос 17. Непрерывные случайные векторы. Свойства совместной плотности распределения.

· Henpeporb cryzair Bernenois (X; Y) najorbais
manyro gbyrepu, CB (X, Y), cobusem.
орго распрод поторой можно
npagemabunio: F(X, X) = II p(y, \$2)dy, dy,
· CB. 6a: 1) P(K, 1/2) =0
2) /1 p(y, y,)dy, dy= 1
· 3) P E X = x, i Y = x; 3 = 0
4) Pxxx = 1 Pxy (xy)dy
5) Py y= J. Pxy (xy) dx

Вопрос 18. Независимые случайные величины, критерий независимости.

Вопрос 19. Вычисление функции распределения и плотности случайной величины Y (X) по известной плотности случайной величине Х.

Задача 14. Дана функция плотности распределения случайной величины X

$$f(x) = \begin{cases} Cx^2, & x \in [0;2] \\ 0, & x \notin [0;2] \end{cases}$$

Найти
$$C$$
, $M(X)$, $P\left(0 \le X < \frac{1}{2}\right)$

Решение: функция плотности распределения вероятности обладает свойством

 $\int f(x)dx = 1$. В данном случае:

$$C\int_{0}^{2} x^{2} dx = 1 \Rightarrow C = \frac{1}{\int_{0}^{2} x^{2} dx}$$

$$\int_{0}^{2} x^{2} dx = \frac{1}{3} (x^{3}) \Big|_{0}^{2} = \frac{1}{3} (8 - 0) = \frac{8}{3}$$

Таким образом:
$$C = \frac{1}{\frac{8}{3}} = \frac{3}{8}$$

Функция плотности распределения вероятностей:
$$f(x) = \begin{cases} \frac{3}{8} x^2, & x \in [0;2] \\ 0, & x \not\in [0;2] \end{cases}$$

Вычислим математическое ожидание:
$$M(X) = \int\limits_{-\infty}^{+\infty} x f'(x) dx = \int\limits_{0}^{2} x \cdot \frac{3}{8} x^2 dx = \frac{3}{8} \int\limits_{0}^{2} x^3 dx = \frac{3}{8} \cdot \frac{1}{4} (x^4) \big|_{0}^{2} = \frac{3}{32} (16 - 0) = \frac{3}{2} = 1\frac{1}{2}$$

наидем:
$$P\bigg(0 \le X < \frac{1}{2}\bigg) = \int\limits_0^{\sqrt{2}} f(x) dx = \frac{3}{8} \int\limits_0^{3} x^2 dx = \frac{3}{8} \cdot \frac{1}{3} \Big(x^3\Big)_0^{\sqrt{2}} = \frac{1}{8} \Big(\frac{1}{8} - 0\Big) = \frac{1}{64} - \text{вероятность того,}$$
 что случайная величина X примет значение из данного интервала.

Other:
$$C = \frac{3}{8}$$
, $M(X) = 1\frac{1}{2} = 1.5$, $P\left(0 \le X < \frac{1}{2}\right) = \frac{1}{64} = 0.015625$

Вопрос 20. Линейная функция от нормальной случайной величины.

Пусть ξ - нормально распределенная случайная величина с параметрами $M(\xi) = a$ и $\sigma(\xi) = \sigma$. Тогда, если $A \cup B$ постоянные, то случайная величина $\eta = A + B\xi$, линейно зависящая от ξ , также нормально распределена, причем *

$$M(\eta) = A + Ba$$
, $D(\eta) = B^2 \sigma^2$

Вопрос 21. Генерация произвольного распределения из равномерного на отрезке [0, 1].

$$f(x) = \begin{cases} 1/(b-a), & a \le x \le b, \\ 0, & x < a, x > b; \end{cases}$$

$$F(x) = \begin{cases} 0, & x < a, \\ (x-a)/(b-a), & a \le x \le b, \\ 1, & x > b. \end{cases}$$

F(X)-ф-я распределения

f(X)-ф-я плотности

Вопрос 22. Формула свёртки.

amour que ne-mu pacop cymusor	1
V = P(y) = P(y-x)P(x)dx	
X u ne / vo d/ ne d / xi	

Вопрос 23. Линейное преобразование п-мерного нормального случайного вектора.

В линетиог превор п-мериого	В-ра:
2 1.8 + 6	19 14 16
у по свертки	10 14 21

Вопрос 24. Определение и свойства математического ожидания.

Вопрос 25. Определение и свойства дисперсии.

· Du chepciei remano dejobarno abaypania
otrouve Moin: Ocarug Cly 2. Ben- aus
om ee cp juur; D. = H(K=Mx)
(B- Ba: 1)DIC) = 0, 2) D(Cx) = C2 D(W);
3)D(X+Y)=D(X)+D(Y); 4) D(X-Y)=D(X).
D(n, s) D(x) = M(x2) - M(x)

Вопрос 26. Примеры вычисления дисперсии и математического ожидания.

×:	×.	10	5	B	X2	: x	6	7					. *		
	Pi	0,2	96		100 2	P	0,1	0,2	163						
DO	=(x	M	(X)	- 14	2(X)) = >	DC	x)=	16	0,	_+.	2	0	2)	1
(1	0.0	2 1	5.0	6)2	= .										

Определение 7.6. Моментом k-го порядка m_k (k-м моментом) случайной величины X называют математическое ожидание k-й степени случайной величины X:

$$m_k = \mathbf{M} X^k = \sum_i x_i^k p_i,$$

Вопрос 28. Условное математическое ожидание и его свойства.

1. $\mathbf{M}(c|Y) \equiv c$.

- 5. $\mathbf{M}X = \mathbf{M}(\mathbf{M}(X|Y)).$
- 2. $\mathbf{M}(aX + b|Y) = a\mathbf{M}(X|Y) + b.$
- 6. Пусть u(X) и v(Y) функции от случайных величин X
- 3. $\mathbf{M}(X_1 + X_2|Y) = \mathbf{M}(X_1|Y) + \mathbf{M}(X_2|Y)$. и Y. Тогда $\mathbf{M}(u(X)v(Y)|Y) = v(Y)\mathbf{M}(u(X)|Y)$.

 $\mathbf{M}(X_1X_2|Y) = \mathbf{M}(X_1|Y)\mathbf{M}(X_2|Y) \quad \mathbf{M}(X|Y) \equiv \mathbf{M}X.$

Вопрос 29. Локальная теорема Муавра-Лапласа.

Вопрос 30. Интегральная теорема Муавра-Лапласа.

Вопрос 31. Неравенства Чебышева.

Вопрос 32. Закон больших чисел в форме Чебышева.

если для любого $\varepsilon > 0$

$$\mathbf{P}\left\{\left|\frac{1}{n}\sum_{i=1}^{n}X_{i}-\frac{1}{n}\sum_{i=1}^{n}m_{i}\right|\geqslant\varepsilon\right\}\underset{n\rightarrow\infty}{\longrightarrow}0.$$

Вопрос 33. Теорема Бернулли

наблюденная частота успехов

$$r_n = \frac{Y_n}{r_n}$$

сходится по вероятности к вероятности p успеха в одном испытании, т.е. для любого $\varepsilon>0$

$$\mathbf{P}\{|r_n-p|\geqslant \varepsilon\}\underset{n\to\infty}{\longrightarrow} 0.$$

Теорема 9.4. Пусть проводится n испытаний по cxeme Eepнулли и Y_n — общее число успехов в n испытаниях. Тогда

Вопрос 34. Характеристические функции и их свойства.

Определение 9.6. Характеристической функцией $f(t) = f_X(t)$ случайной величины X называют математическое ожидание случайной величины e^{itX} , где i — мнимая единица, а t — произвольное (действительное) число.

- 1. f(t) непрерывная функция, причем абсолютное значение f(t) ограничено единицей, т.е. $|f(t)| \le 1$ и f(0) = 1.
 - 2. Если Y = aX + b, то $f_Y(t) = f_X(at)e^{ibt}$.
- 3. Если X_1 и X_2 независимые случайные величины и $Y=X_1+X_2$, то $f_Y(t)=f_{X_1}(t)f_{X_2}(t)$.
- 4. Если случайная величина X имеет момент n-го порядка m_n , то характеристическая функция X дифференцируема n раз, причем для $k \leqslant n$

$$f^{(k)}(0) = i^k m_k.$$

Вопрос 35. Центральная предельная теорема.

Пусть $X_1, X_2, \ldots, X_n, \ldots$ — последовательность независимых одинаково распределенных случайных величин, $\mathbf{M}X_n=m,$ $\mathbf{D}X_n=\sigma^2.$ Тогда

$$\mathbf{P}\left\{\frac{S_n - nm}{\sqrt{n\sigma^2}} < x\right\} \underset{n \to \infty}{\longrightarrow} \Phi(x),$$

где $\Phi(x)$ — функция стандартного нормального распределения.

Вопрос 36. Виды сходимости последовательностей случайных величин.

Тоходимости в по вер-ти (17-т) в

изграния величин.

Тоходимости в по веричин.

Тоходимости в по веричи