Simulado 1

Cálculo em Várias Variáveis

Monitores: Lucas Emanuel e Marcos Antonio

Agosto de 2020

- 1. Calcule os seguintes limites usando a definição. Se o limite não existir, dê um contraexemplo:
 - (a) $\lim_{(x,y)\to(0,0)} xy \sin\left(\frac{1}{xy}\right)$
 - (b) $\lim_{(x,y)\to(0,2)} \frac{\sin(xy)}{x}$
- 2. Seja $z = f(x,y) = 6x^2 xy^3$ e $P_0 = (2,1,22)$ encontre:
 - (a) A equação do plano tangente à z em P_0 .

- (b) O comprimento do vetor normal ao plano em P_0 até o ponto onde intersecta o plano z = 0.
- 3. Mostre que a seguinte função é diferenciável.

$$f(x,y) = \begin{cases} \frac{xy^3}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

- 4. Um cilindro tem raio 50 e altura 50. Use diferenciais para estimar a variação no seu volume quando se varia 0,2 no raio e 0,2 na altura ao mesmo tempo.
- 5. Se z = f(x, y), onde $x = r \cos \theta$ e $y = r \sin \theta$, determine $\frac{\partial z}{\partial r}, \frac{\partial z}{\partial \theta}$ e mostre que

$$\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 = \left(\frac{\partial z}{\partial r}\right)^2 + \frac{1}{r^2} \left(\frac{\partial z}{\partial \theta}\right)^2$$