SIOP MACHINE LEARNING COMPETITION 2023

SENTIENT SENTENCE SENSE-AIs

THE TEAM

Ivan Hernandez
Virginia Tech

Andrew Cutler
Sama Therapeutics

Joe MeyerErudit & UCSC

Weiwen Nie
Hogan Assessments

Project Language: Python (numpy, pandas) via Jupyter Notebooks **Coding Environments:** Google Colab, Virginia Tech Compute Cluster

Machine Learning Packages: Scikit-learn

Deep Learning Packages: Huggingface, Sentence-Transformers, Keras, Keras Tuner

Communication/Coordination: Discord, Zoom

ONE SOLUTION TO THE PROBLEM

MultiEmbedding
LSTM
Ensemble of
Ensembles

me·lee ('mā-,lā ◄)) mā-'lā

variants or less commonly mêlée Synonyms of melee >

: a confused struggle

especially: a hand-to-hand fight among several people

- Multi-Embedding LSTM Ensemble of Ensembles (MELEE)
 - Stage 1: Get Different Perspectives on the Exercise Responses
 - A single embedding model is attuned to specific aspects
 - Embed each response with a single embedding model
 - Use LSTM to figure out how embedding sequence relates to the outcomes
 - Repeat using different embedding models to pick up on some things other models do not
 - Stage 2: Weight Each Perspective Appropriately in Different Ways
 - Ensemble the predictions of the different LSTMs to predict the 7 outcomes even better
 - Vary:
 - The combination/grouping of LSTMs
 - Type of ensembling method (Ridge, Random Forest, etc.)

Stage 3: Aggregate the Ensembles to Optimize Specific Outcomes

Record Dev performance of ensembles from Step 2 for each Outcome
 Average predictions of Best Performing Ensembles for each Outcome

- Multi-Embedding LSTM Ensemble of Ensembles (MELEE)
 - Stage 1: Get Different Perspectives on the Exercise Responses
 - A single embedding model is attuned to specific aspects
 - Embed each response with a single embedding model
 - Use LSTM to figure out how embedding sequence relates to the outcomes
 - Repeat using different embedding models to pick up on some things other models do not
 - Stage 2: Weight Each Perspective Appropriately in Different Ways
 - Ensemble the predictions of the different LSTMs to predict the 7 outcomes even better
 - Vary:
 - The combination/grouping of LSTMs
 - Type of ensembling method (Ridge, Random Forest, etc.)

Stage 3: Aggregate the Ensembles to Optimize Specific Outcomes

Record Dev performance of ensembles from Step 2 for each Outcome Average predictions of Best Performing Ensembles for each Outcome

- Multi-Embedding LSTM Ensemble of Ensembles (MELEE)
 - Stage 1: Get Different Perspectives on the Exercise Responses
 - A single embedding model is attuned to specific aspects
 - Embed each response with a single embedding model
 - Use LSTM to figure out how embedding sequence relates to the outcomes
 - Repeat using different embedding models to pick up on some things other models do not
 - Stage 2: Weight Each Perspective Appropriately in Different Ways
 - Ensemble the predictions of the different LSTMs to predict the 7 outcomes even better
 - Vary:
 - The combination/grouping of LSTMs
 - Type of ensembling method (Ridge, Random Forest, etc.)

Stage 3: Aggregate the Ensembles to Optimize Specific Outcomes

Record Dev performance of ensembles from Step 2 for each Outcome
 Average predictions of Best Performing Ensembles for each Outcome

- Multi-Embedding LSTM Ensemble of Ensembles (MELEE)
 - Stage 1: Get Different Perspectives on the Exercise Responses
 - A single embedding model is attuned to specific aspects
 - Embed each response with a single embedding model
 - Use LSTM to figure out how embedding sequence relates to the outcomes
 - Repeat using different embedding models to pick up on some things other models do not
 - Stage 2: Weight Each Perspective Appropriately in Different Ways
 - Ensemble the predictions of the different LSTMs to predict the 7 outcomes even better
 - Vary:
 - The combination/grouping of LSTMs
 - Type of ensembling method (Ridge, Random Forest, etc.)
 - Stage 3: Aggregate the Ensembles to Optimize Specific Outcomes
 - Record Dev performance of ensembles from Step 2 for each Outcome
 - Average predictions of Best Performing Ensembles for each Outcome

THE MELEE APPROACH OFFERS MANY ADVANTAGES

- Good for multi-text datasets with a single outcome
 - More memory efficient than joining texts together
 - LSTMs can figure out how short sequences combine to make final score
 - Combining embeddings gives optimal attention
- Good for smaller sized datasets
 - Do not need to train entire language model
 - All embeddings used a pre-trained
 - Only need to estimate LSTM regressor parameters
- Good for multi-text problems with missing data
 - LSTMs naturally handle missing elements in a sequence
 - Use masking to indicate missingness

- Have a choice of different ensembles
- Can specialize in different outcome variables

THE MELEE APPROACH OFFERS MANY ADVANTAGES

- Good for multi-text datasets that have an overall score(s)
 - More memory efficient than joining texts together
 - LSTMs can figure out how short sequences combine to make final score
 - Combining embeddings gives optimal attention
- Good for smaller sized datasets
 - Do not need to train entire language model
 - All embeddings used a pre-trained
 - Only need to estimate LSTM regressor parameters
- Good for multi-text problems with missing data
 - LSTMs naturally handle missing elements in a sequence
 - Use masking to indicate missingness

- Have a choice of different ensembles
- Can specialize in different outcome variables

THE MELEE APPROACH OFFERS MANY ADVANTAGES

- Good for multi-text datasets with a single outcome
 - More memory efficient than joining texts together
 - LSTMs can figure out how short sequences combine to make final score
 - Combining embeddings gives optimal attention
- Good for smaller sized datasets
 - Do not need to train entire language model
 - All embeddings used a pre-trained
 - Only need to estimate LSTM regressor parameters
- Good for multi-text problems with missing data
 - LSTMs naturally handle missing elements in a sequence
 - Use masking to indicate missingness

- Have a choice of different ensembles
- Can specialize in different outcome variables

THE MELEE APPROACH OFFERS MANY ADVANTAGES

- Good for multi-text datasets with a single outcome
 - More memory efficient than joining texts together
 - LSTMs can figure out how short sequences combine to make final score
 - Combining embeddings gives optimal attention
- Good for smaller sized datasets
 - Do not need to train entire language model
 - All embeddings used a pre-trained
 - Only need to estimate LSTM regressor parameters
- Good for multi-text problems with missing data
 - LSTMs naturally handle missing elements in a sequence
 - Use masking to indicate missingness

- Have a choice of different ensembles
- Can specialize in different outcome variables

THE MELEE APPROACH OFFERS MANY ADVANTAGES

- Good for multi-text datasets with a single outcome
 - More memory efficient than joining texts together
 - LSTMs can figure out how short sequences combine to make final score
 - Combining embeddings gives optimal attention
- Good for smaller sized datasets
 - Do not need to train entire language model
 - All embeddings used a pre-trained
 - Only need to estimate LSTM regressor parameters
- Good for multi-text problems with missing data
 - LSTMs naturally handle missing elements in a sequence
 - Use masking to indicate missingness
 - Good for multi-outcome problems
 - Have a choice of different ensembles
 - Can specialize in different outcome variables

MELEE IN ACTION

Let's take a closer look at the process

STAGE 0: SPLIT DATA

SPLIT TRAIN DATA INTO TWO SETS

STAGE 0: SPLIT DATA

THERE SHOULD BE FOUR SETS OF DATA

Train Data N=1173

Labeled with outcomes

Holdout Data N=296

Labeled with outcomes

Dev Data N=487

No labels, but can get feedback on performance Test Data N=489

The data to predict

Get Different Perspectives on Problem

 Embed each separate response using a pre-trained embedding model

 Pick a random sentence embedding model (t5, BERT, LaBSE, roBERTa, etc.)

Embed each response using a pre-trained embedding model

Chooses	Commits	 Decision Making	Exercise 4	Exercise 5	Exercise 6	 Exercise 17
2	3	5	Dear Tracy, can you	Hi J.J., I was hoping that	<missing></missing>	Overall, I tried to get

Using a your selected Embedding Model ...

Create Embeddings for Each Exercise Response

- (1)		i
1		I .
	.25	!
	.25	!
-i-	1 2	
1	-1.2	i
1		l .
	27	I .
	.37	!
-1		!
i.		i
1	• • •	i
1		I .
	.88	I .
	.00	

 Embed each response using a pre-trained embedding model

What the data look like (if using a 384 dimension embedding model):

Predictor Data (X) = 3 dimensional matrix with a shape of $1100 \times 17 \times 384$ Each person (N = 1100) has a sequence of 17 embeddings that are each 384 numbers long

Outcome data (y) = 2-dimensional matrix with a shape of 1100×7 Each person (N = 1100) has 7 outcome values Missing values imputed with iterative model-based imputation

TRAIN SIMPLE LSTM TO PREDICT OUTCOMES

Input: A person's sequence of 17 embeddings

Hidden Layers: Determine how to combine sequences to replicate rater scoring

Output: Predicted values for the person's 7 outcomes

<u>Use trained model to make</u> <u>predictions on all other datasets</u>

TRAIN USING TRAIN DATASET

Custom Loss Function to Make LSTM predictions less correlated and more informative across different outcomes

New Goal of Model:

Minimize the MSE

Reproduce the pattern of correlations between outcomes

Commits	-						
Chooses	.52	-					
Gathers	.22	.25	-				
Identifies	.25	.17	.13	-			
Interprets	.39	.25	.15	.31	-		
Involves	.24	.31	.22	.16	.20	-	
Overall	.75	.54	.35	.38	.68	.36	-

Outcome correlations from train dataset

Adjust the weights in the LSTM Model to minimize the:

mean squared error difference between each predicted outcome and the actual outcome

as well as the

average absolute difference between the observed and actual inter-outcome correlation matrix

```
mse = tf.keras.losses.MeanSquaredError()
def customLoss(y_true,y_pred):
    c_true = 0
    for i,j, in itertools.combinations(range(7),2):
        c = correlation_coefficient(y_pred[:,i],y_pred[:,j])
        c_y= y_corr[i,j]
        error = tf.math.abs(tf.subtract(c,c_y))
        c_true += error
    return mse(y_true,y_pred) + tf.math.divide(c_true,21)
```

REPEAT PROCESS USING DIFFERENT EMBEDDING MODELS

- all-MiniLM-L6-v2
- all-mpnet-base-v2
- all_roberta_large
- bart-large-cnn
- bart-large-instructiongen-w-inputs
- contriever-msmarco
- distilbert-base-multilingual-cased-ner-hrl
- e5-large
- electra-base-discriminator
- emotion-english-distilroberta-base

- flan-t5-base
- gtr-t5-xxl
- LaBSE
- mDeBERTa-v3-base-mnli-xnli
- msmarco-bert-co-condenser
- opt-125m-email-generation
- Paraphrase-multilingual-mpnet-base-v2
- Sentence-t5-xxl
- sgpt-27-weightedmean
- sgpt-bloom

- sn-xlm-roberta
- t5-3b-ssm
- t5-one-line-summary
- unsup-simcse-bert-base-uncased
- xlm-roberta-large

REPEAT PROCESS USING DIFFERENT LSTM ARCHITECTURES

- Vary
 - Bidirectionality of LSTM
 - Number of Layer Units
 - Dropout

(66)

Dev Leaderboard performance varies wildly (.30-.47)

No single model is perfect. Each captures a different perspective.

STAGE 2

Weight Each Perspective Appropriately in Different Ways

ID	Chooses	Commits	 Overall
AAA	1.5	3.6	6.2
BBB	2.2	2.5	3.4
CCC	3.2	1.1	4.5

You now have predicted outcomes on the holdout data from multiple different LSTMs

- BERT Shallow LSTM
- LaBSE Bidirectional LSTM
- Sentence-T5 Deep LSTM

ID		Chooses	Commits	 Overall
AA	A	1.2	3.6	6.2
BBI	3	2.9	2.5	3.4
CCC	3	4.1	1.1	4.5

ID	Chooses	Commits	 Overall
AAA	3.5	3.6	6.2
BBB	2.3	2.5	3.4
CCC	4.2	1.1	4.5

Holdout Predictions from LSTM model 1

Holdout Predictions from LSTM model 20

ID	Chooses1	Commits1	 Overall1		Chooses20	Commits20	 Overall20
AAA	1.5	3.6	 6.2		1.5	3.6	 6.2
BBB	2.2	2.5	 3.4		2.2	2.5	 3.4
CCC	3.2	1.1	 4.5	***	3.2	1.1	 4.5

Horizontally Concatenate the Holdout Predictions into a Single Matrix Then do the exact same for the Dev and Test Datastes

USING DIFFERENT HOLDOUT DATASETS WITH LSTM PREDICTIONS

Ridge or Lasso

Train 7 different supervised learning models to predict the outcomes in the holdout dataset

X = The matrix of concatenated LSTM predictions y = one of the outcomes (e.g., chooses, commits)

Use trained model to make predictions on the Dev and Test datasets using the concatenated data...you'll use these predictions in Stage 3

- REPEAT PROCESS VARYING...
 - Number of SELECTED LSTMs: 15, 20, 25
 - Ensembler: Ridge, Lasso, Random Forest
- Keep track of Dev Performance of Each Ensemble

We see an improvement when combining different perspectives

Dev Leaderboard performance varies between .42-.49 (better and more consistent than individual LSTMs), but vary between specific outcomes...

Some ensembles are better for some outcomes than others

STAGE 3

COMBINE THE BEST PERFORMING ENSEMBLES

Ensemble Name	Ensembler	Embed Models	LSTM Architecture	Commits Dev Performance	Chooses Dev Performance	 Overall Dev Performance
Ensemble 1	Random Forest	BERT, T5, XLM	Shallow	.42	.41	 .50
Ensemble 2	Ridge	BERT, T5, XLM	Shallow	.45	.43	 .55
Ensemble 3	Lasso	BERT, T5, XLM	Shallow	.43	.49	 .61
Ensemble 4	Random Forest	LaBSE, T5, BLOOM	Bidirectional	.48	.44	 .49
Ensemble 60	Lasso	FLAN, T5, BART	Deep	.46	.41	 .55

- Using the Dev Performance Scores
 - Pick an outcome (e.g., Commits)
 - Identify the best performing models for that outcome based on their dev score

- Examined
 correlation
 between best
 models'
 predictions
- Favored selecting ensemble models that were nonoverlapping

Best Chooses Models	Best Commits Models	Best Gathers Models
Ensemble 1	Ensemble 4	Ensemble 18
Ensemble 5	Ensemble 2	Ensemble 19
Ensemble 22	Ensemble 29	Ensemble 31
Ensemble 28	Ensemble 37	Ensemble 53
Avg These Predictions	Avg These Predictions	Avg These Predictions

We can incorporate other models that performed well during Dev phase too

Best Gathers Models	Best Identifies Models	Best Involves Models	Best Overall Models
DeBERTa	Ensemble 4	Ensemble 4	Ensemble 17
Ensemble 29	Ensemble 20	Ensemble 20	Ensemble 23
Ensemble 46	Ensemble 29	Ensemble 28	Ensemble 33
Ensemble 33	Ensemble 52	Ensemble 43	Ensemble 47
Avg These Predictions	Avg These Predictions	Avg These Predictions	Avg These Predictions

USING DIFFERENT TEST DATASETS WITH ENSEMBLE PREDICTIONS

We see further improvement when combining ensembles

Dev Leaderboard performance varied between .49-.52 (higher and more consistent than single ensemble models)

Test Leaderboard performance varied between .49-.52

Thanks!

