Описание физической модели для моделирования прохождения света через образцы шлифов

Варламов Антоний Михайлович Легошин Алексей Дмитриевич

12 сентября 2025 г.

Для моделирования образцов используется три класса веществ: оптически прозрачные,полупрозрачные вещества и одноосные кристаллы.

1 Прозрачные вещества

Прозрачные вещества не меняют ни интенсивности, ни поляризации световых лучей.

2 Полупрозрачные вещества

Для полупрозрачных веществ используется закон Бугера-Ламберта-Бэра:

$$I(x) = I_0 \cdot e^{-\mu \cdot x} \tag{1}$$

Вектор поляризации для полупрозрачных веществ не изменяется.

3 Одноосные кристаллы

Для одноосных кристаллов используется формализм Джонса.

Луч света описывается 2-мерным комплекснозначным вектором $\vec{E} = (E_x, E_y)^T$ с компонентами вектора напряжённости электрического поля вдоль координатных осей.

Преобразование вектора напряжённости электрического поля выполняется с помощью матрицы Джонса для одноосного кристалла: комплекснозначной матрицы 2×2 . Поскольку оптическая ось кристалла в исследуемом образце может быть ориентирована произвольным образом (ориентацию оси задаем с помощью 2 углов: (ϕ, θ) , матрица может быть представлена в виде:

$$W(\phi, \theta, x) = R\left(-\phi\right) \cdot W\left(0, \theta, x\right) \cdot R\left(\phi\right) = \begin{pmatrix} \cos\left(-\phi\right) & \sin\left(-\phi\right) \\ -\sin\left(-\phi\right) & \cos\left(-\phi\right) \end{pmatrix} \begin{pmatrix} e^{i\Gamma(x, \theta)} & 0 \\ 0 & e^{i\Gamma(x, \theta)} \end{pmatrix} \cdot \begin{pmatrix} \cos\left(\phi\right) & \sin\left(\phi\right) \\ -\sin\left(\phi\right) & \cos\left(\phi\right) \end{pmatrix} \tag{2}$$

где величина $\Gamma\left(x,\theta\right)$ определяется следующим образом:

$$\Gamma(x,\theta) = \frac{2\pi}{\lambda} \cdot (n_e(\theta) - n_o) \cdot x \tag{3}$$

$$n_e(\theta) = \left[\left(\frac{\cos(\theta)}{n_o} \right)^2 + \left(\frac{\sin(\theta)}{n_e} \right)^2 \right]^{-\frac{1}{2}} \tag{4}$$

Итоговый вектор Джонса для луча, прошедшего через кристалл, получаем как:

$$\left(E_x', E_y'\right)^T = W\left(\phi, \theta, x\right) \cdot \left(E_x, E_y\right)^T \tag{5}$$

4 Симуляция прохождения света

Исходный образец представляет собой тензор $640 \times 640 \times 5$, где 640 – размер квадратной сетки, из которой будут формироваться «пиксели» итогового изображения, а по третьей оси откладываются основные оптические характеристики вещества.

Для каждого «пикселя» создаётся вектор световых лучей с единичной интенсивностью (приближение «плоского» спектра в видимой части спектра) с начальным вектором поляризации вдоль оси х. (Начальный вектор Джонса: $(E_x, E_y)^T = (1, 0)^T$)

Данный вектор лучей представляет собой дискретное представление спектра с шагом по длине волны в 10 нм (41 луч, от 380 нм до 780 нм). Для каждого луча считается вектор Джонса после прохождения кристалла, после чего берётся только у-компонента, считается интенсивность света для данной длины волны.

По итогу, для каждого «пикселя» имеем вектор интенсивностей по длинам волн. Характерный вид спектра на выходе представлен на рис. ниже:

Рис. 1: Характерный вид спектра с фитом функцией $f(\lambda) = a \cdot \sin\left(b + \frac{c}{\lambda}\right) + d$

Затем, данный вектор интенсивностей численно интегрируется с фильтрами для XYZ представления. Ядра фильтров имплементируются с помощью табличного представления:

В итоге, для изображения формируется вектор в цветовом пространстве XYZ, после чего, с помощью линейного преобразования данный вектор переводится в RGB пространство.

После работы программы и отрисовки финального изображения, получаем окончательный результат (рис. 3).

Wavelength (nm)	\bar{x}	\bar{y}	\bar{z}	Wavelength (nm)	\bar{x}	\bar{y}	\bar{z}
380	0.0014	0.0000	0.0065	580	0.9163	0.8700	0.0017
390	0.0042	0.0001	0.0201	590	1.0263	0.7570	0.0011
400	0.0143	0.0004	0.0679	600	1.0622	0.6310	0.0008
410	0.0435	0.0012	0.2074	610	1.0026	0.5030	0.0003
420	0.1344	0.0040	0.6456	620	0.8544	0.3810	0.0002
430	0.2839	0.0116	1.3856	630	0.6424	0.2650	0.0000
440	0.3483	0.0230	1.7471	640	0.4479	0.1750	0.0000
450	0.3362	0.0380	1.7721	650	0.2835	0.1070	0.0000
460	0.2908	0.0600	1.6692	660	0.1649	0.0610	0.0000
470	0.1954	0.0910	1.2876	670	0.0874	0.0320	0.0000
480	0.0956	0.1390	0.8130	680	0.0468	0.0170	0.0000
490	0.0320	0.2080	0.4652	680	0.0468	0.0170	0.0000
500	0.0049	0.3230	0.2720	690	0.0227	0.0082	0.0000
510	0.0093	0.5030	0.1582	700	0.0114	0.0041	0.0000
520	0.0633	0.7100	0.0782	710	0.0058	0.0021	0.0000
530	0.1655	0.8620	0.0422	720	0.0029	0.0010	0.0000
540	0.2904	0.9540	0.0203	730	0.0014	0.0005	0.0000
550	0.4334	0.9950	0.0087	740	0.0007	0.0003	0.0000
560	0.5945	0.9950	0.0039	750	0.0003	0.0001	0.0000
570	0.7621	0.9520	0.0021	760	0.0002	0.0001	0.0000
580	0.9163	0.8700	0.0017	770	0.0001	0.0000	0.0000
590	1.0263	0.7570	0.0011	780	0.0000	0.0000	0.0000

Рис. 2: Ядра фильтров для конвертации спектра в ХҮΖ пространство

Рис. 3: Результат моделирования вещества в скрещенных поляризаторах