FY1005/TFY4165 Termisk fysikk. Institutt for fysikk, NTNU. Våren 2014.

Veiledning: 3. og 6. februar. Innleveringsfrist: Fredag 7. februar kl 16.

Øving 4

Oppgave 1

En viss mengde enatomig ideell gass gjennomløper kretsprosessen vist på figuren. Hva er adiabatkonstanten for en slik gass? Langs hvilke deler av kretsprosessen tilføres og fjernes varme fra gassen? Beregn virkningsgraden η . [Hint: Det kan forenkle litt å beregne temperaturene i punktene a, b og c i forhold til hverandre. Da kan en unngå beregning av arbeid. Alternativt kan arbeidet bestemmes ved integrasjon.] Hva er, for sammenligningens skyld, virkningsgraden η_C for en Carnot-varmekraftmaskin som arbeider mellom to reservoar med temperaturer lik henholdsvis den største og den minste temperatur som opptrer i prosessen i figuren? [Som nevnt i forelesningene, er η_C den maksimale virkningsgraden for en varmekraftmaskin som opererer mellom to gitte temperaturer.]

Oppgave 2

Ei elv skal brukes som lavtemperaturreservoar for et stort varmekraftverk med virkningsgrad $\eta=0.40$. Av økologiske grunner begrenses varmen som dumpes i elva til 1500 MW. Hva er den maksimale elektriske effekten kraftverket kan levere, og hva er tilført varmeenergi som da trengs for å drive kraftverket? Hvor stor vannføring, f.eks i enheten tonn/s, trengs dersom temperaturstigningen i elva skal begrenses til 5 K? (Vannets varmekapasitet er 1 cal/gK.)

Oppgave 3

- a) Bruk Maxwells hastighetskomponentfordeling $g(v_x)$ (se forelesningene) til å beregne $\langle |v_x| \rangle$, $\langle v_x^3 \rangle$ og $\langle v_x^4 \rangle$.
- b) Beregn middelverdien av invers fart, $\langle 1/v \rangle$, og sammenlign med den inverse av $\langle v \rangle$.

Oppgave 4

Minste hastighet V for å unnslippe gravitasjonsfeltet til en planet med masse m og radius r er $V = \sqrt{2Gm/r}$, der G er gravitasjonskonstanten. La oss anta at molekylene i planetens atmosfære bør ha en "rms-hastighet", dvs $v_{\rm rms} = \sqrt{\langle v^2 \rangle}$, som er mindre enn V/6 dersom de på lang sikt (f.eks noen millioner år) ikke skal forsvinne ut i verdensrommet.

- a) Vis at planetens overflatetemperatur da må oppfylle betingelsen T < GMm/54Rr for at molekyler med molar masse M ikke skal forsvinne fra planetens atmosfære. Her er R gasskonstanten.
- b) Bruk ulikheten i sp
ma til å vurdere muligheten for å finne hydrogen i atmosfæren til jorda og jupiter. Er ulikheten konsistent med at jordas atmosfære er rik på nitrogen og oksygen? Hva med fraværet av atmosfære på månen?

[Jordas masse: $6.0 \cdot 10^{24}$ kg. Jordas radius: $6.4 \cdot 10^6$ m. Jupiters masse: $1.9 \cdot 10^{27}$ kg. Jupiters radius: $7.2 \cdot 10^7$ m. Månens masse: $7.4 \cdot 10^{22}$ kg. Månens radius: $1.7 \cdot 10^6$ m. Molare masser for H₂, N₂, O₂: 2 g, 28 g, 32 g. Gasskonstanten: R = 8.314 J/mol K. Gravitasjonskonstanten: $G = 6.67 \cdot 10^{-11}$ Nm²/kg².]

Oppgave 5

Et elektron har kvantisert magnetisk moment

$$\mu = -\frac{e}{m_e} S.$$

Her er -e, m_e og S hhv ladningen, massen og spinnet til elektronet. I et ytre magnetfelt $B = B \hat{z}$ vil elektronspinnets komponent S_z i magnetfeltets retning kun ha to mulige verdier, $\pm \hbar/2$, slik at den potensielle energien $-\mu \cdot B$ (jf grunnleggende magnetostatikk) kun kan ha verdien $E_- = -\mu_B B$ eller $E_+ = \mu_B B$, svarende til at μ peker i hhv samme retning som B eller motsatt retning av B. Her er $\mu_B = e\hbar/2m_e$ en såkalt Bohr-magneton.

I termisk likevekt er sannsynligheten p(s) for at elektronet befinner seg i den ene eller den andre av de to mulige tilstandene (med $s = \pm 1$ svarende til E_+)

$$p(s) = C e^{-sx},$$

dvs proporsjonal med Boltzmannfaktoren. Her er C en normeringskonstant, og $x = \mu_B B/kT$ er en dimensjonsløs størrelse som angir spinnets potensielle energi i magnetfeltet relativt den tilgjengelige termiske energien kT.

- a) Beregn normeringskonstanten C, og bestem dermed partisjonsfunksjonen Z=1/C.
- b) Elektronets midlere magnetiske moment m er gitt ved

$$m = \langle \mu \rangle = \sum_{s=\pm 1} (-s) \,\mu_B \, p(s).$$

[Minustegn foran s fordi s=1 tilsvarer μ i negativ z-retning.] Med N slike elektroner, hva blir systemets magnetisering M (dvs magnetisk moment pr volumenhet)? Vis at dette resultatet er i samsvar med Curies lov, $M \sim 1/T$, for høye temperaturer (evt svakt magnetfelt). Hva blir M dersom $\mu_B B \gg kT$? Enn hvis T=0? Er disse svarene rimelige?

Noen svar og opplysninger:

Oppgave 1: $\eta = 0.23$, $\eta_C = 0.69$. Oppgave 2: 72 tonn/s. Oppgave 4b: Jorda, N₂: T < 3900 K.

Oppgave 5b: $m = \mu_B \tanh x$. $\tanh x = x$ for $x \ll 1$. $\tanh x = 1$ for $x \gg 1$.