Dokumentacja wstępna

Implementacja i testowanie algorytmu ewolucji różnicowej, w którym jako pierwszy z 3 punktów stosowanych podczas mutacji, wybierana jest średnia punktów populacji. Metodę należy porównać z klasyczną wersją ewolucji różnicowej. Testy powinny zostać przeprowadzone na benchmarku CEC 2013

Michał Padzik
padzikm@student.mini.pw.edu.pl
Albert Wolant
wolanta@student.mini.pw.edu.pl

16 maja 2015

1 Opis algorytmów

1.1 Klasyczna ewolucja różnicowa

Poniżej zamieszczamy pseudokod klasycznego algorytmu ewolucji różnicowej, który zostanie zaimplementowany w celu porównania z algorytmem zmodyfikowanym:

Algorithm 1 Klasyczny algorytm ewolucji różnicowej

```
\begin{aligned} & \textbf{procedure} \text{ DIFFERENTIAL EVOLUTION} \\ & P^0 \leftarrow \{P_1^0, P_2^0, ..., P_n^0\} \\ & H \leftarrow P^0 \\ & t \leftarrow 0 \\ & \textbf{while !stop do} \\ & \textbf{for all } i \in \{1:n\} \textbf{ do} \\ & P_j^t \leftarrow select(P^t) \\ & P_k^t, P_l^t \leftarrow sample(P^t) \\ & M_i^t \leftarrow P_j^t + F * (P_k^t - P_j^t) \\ & O_i^t \leftarrow crossover(P_i^t, M_i^t) \\ & H \leftarrow H \cup \{O_i^t\} \\ & P_i^{t+1} \leftarrow tournament(P_i^t, O_i^t) \\ & t \leftarrow t + 1 \end{aligned}
```

Operacja tournament to wybór osobnika do kolejnej populacji, a zbiór H jest zbiorem kandydatów do populacji. Jeśli przyjmiemy, że operacja select jest losowym wyborem pary punktów z jednakowym prawdopodobieństwem, a operacja crossover to krzyżowanie wymieniające, dwumianowe to przedstawiony powyżej algorytm nosi w literaturze oznaczenie DE/rand/1/bin i jest najpopularniejszym wariantem algorytmu ewolucji różnicowej, dlatego zostanie użyty do porównań jako klasyczny przykład ewolucji różnicowej.

1.2 Zmodyfikowana ewolucja różnicowa

Proponowana modyfikacja algorytmu ewolucji różnicowej właściwie obejmuje tylko operację select. Zostanie ona zmieniona na operację wyliczania średniej z aktualnej populacji. Dodatkowo, ponieważ wartość średniej nie zmieni się dla kolejnych osobników w populacji może być obliczona tylko raz dla wszystkich. Poniżej przedstawiamy pseudokod zmodyfikowanego algorytmu:

Algorithm 2 Klasyczny algorytm ewolucji różnicowej

```
\begin{aligned} & \textbf{procedure DIFFERENTIAL EVOLUTION} \\ & P^0 \leftarrow \{P_1^0, P_2^0, ..., P_n^0\} \\ & H \leftarrow P^0 \\ & t \leftarrow 0 \\ & \textbf{while !stop do} \\ & A \leftarrow average(P^t) \\ & \textbf{for all } i \in \{1:n\} \textbf{ do} \\ & P_k^t, P_l^t \leftarrow sample(P^t) \\ & M_i^t \leftarrow A + F * (P_k^t - P_j^t) \\ & O_i^t \leftarrow crossover(P_i^t, M_i^t) \\ & H \leftarrow H \cup \{O_i^t\} \\ & P_i^{t+1} \leftarrow tournament(P_i^t, O_i^t) \\ & t \leftarrow t + 1 \end{aligned}
```

Operacja average wyliczy średnią z populacji.

2 Opis eksperymentu

Eksperymenty będą polegały na porównaniu wyników działania algorytmów klasycznego i zmodyfikowanego, na benchmarku CEC-2013. Dodatkowo, jeśli implementacja będzie wystarczająco wydajna, porównane zostaną różne algorytmy liczenia średniej populacji, na przykład zwykła średnia i średnia ważona z wagami będącymi jakością punktów w populacji.

3 Podsumowanie

Dla oceny algorytmu zmodyfikowanego kluczowe będą wyniki eksperymentów. Przed ich wykonaniem można przewidywać, że zmiana metody mutacji wpłynie na zmniejszenie ruchliwości i rozproszenia populacji. Wniosek ten wnika z faktu, że po zmianie, wszystkie punkty w zbiorze kandydatów będą rozmieszczone koncentrycznie wokoło punktu średniego populacji i oddalone od niego nie bardziej, niż wynosi maksymalna różnica punktów populacji.