

## ENGINEERING GRAPHICS (ME1001)

Dr. Vikash Kumar

Department of Mechanical Engineering
IIITDM Kancheepuram

#### What we are going to learn?

- How to draw lines/curves and various mechanical parts.
- Third and first angle projections.
- Orthographic projection of points, lines, planes and solids.
- Principal and auxiliary views.
- Sectional views
- Intersection of lines planes and solids.
- Development of surfaces.
- Dimensioning
- Computer aided drawing and solid modelling
- Assembly and design practice



Why were drawings made?

They were meant to convey ideas or thoughts.

### Introduction to Engineering Drawing

- •What is the purpose of drawing?
  - To graphically represent physical objects and their relationships.
- •What is the difference between Artistic drawings and Engineering drawings?
  - They are prepared based on certain basic principles, symbolic representations, standard conventions, notations etc.
  - It is the only universal means of communication used by engineers.

### **Engineering Drawing**



Physical representation of an object



A typical Engineering drawing

### Without Engineering Drawing!!

#### Straight Lines Are Hard...







# Role of Engg. Drawings in Product development process

- Drawings are useful in many of the product development stages.
- Product definition, prototyping, design, validation, and manufacturing all stages make use of engg. drawings to some extent.

### Applications of Engineering Drawing



Aerospace



Architecture and civil



Mechanical



Electronics

- Drawing Sheets
- Drawing board
- Drafter and T-square
- Set-squares and protractor
- Compass and dividers
- Pencils and Eraser
- French curves
- Paper clips/pins
- Sharpner

• Drawing sheets





#### SIZE OF DRAWING SHEET AS PER B.I.S

| Designation | Trimmed size<br>(mm) | Untrimmed size (mm) |
|-------------|----------------------|---------------------|
| A0          | 841 x 1189           | 880 x 1230          |
| A1          | 594 x 841            | 625 x 880           |
| A2          | 420 x 594            | 450 x 625           |
| A3          | 297 x 420            | 330 x 450           |
| A4          | 210 x 297            | 240 x 330           |
| A5          | 148 x 210            | 165 x 240           |

Drawing sheets



Drawing Board





| Designation | Dimensions (mm) |       |           |  |  |  |
|-------------|-----------------|-------|-----------|--|--|--|
|             | Length          | Width | Thickness |  |  |  |
| D0          | 0 1500 100      |       | 25        |  |  |  |
| DI          | 1000            | 700   | 25        |  |  |  |
| D2          | 700             | 500   | 15        |  |  |  |
| D3          | 500             | 350   | 15        |  |  |  |

• Drafter





Set squares and protractor





Pencils and lead sticks



| Grade of Pencil | Used to Draw                                                 |
|-----------------|--------------------------------------------------------------|
| 3Н              | Construction lines                                           |
| 2H              | Dimension lines, center lines, sectional lines, hidden lines |
| н               | Object lines, lettering                                      |
| нв              | Dimensioning, boundary lines                                 |



• French curves, paper clips



- Layouts for drawing sheets are provided by various standard organizations.
- A standard is a set of specifications for a parts, materials, or processes intended to achieve uniformity, efficiency and specific quality.
- Organizations that establish these standards are ISO, AISI, SAE, ASTM, ASME, ANSI, BIS.

#### • Borders

- 10 mm or more space is left all around the trimmed edge of the sheet.
- Minimum 20 mm
   is left on the left
   hand side of the
   sheet.



- Reference grid system
- Provided for easy location of drawing within the frame.
- The edges are divided into even number of divisions
- The length of the grids can be between 25 mm and 75 mm.



#### Revision Table

- All modifications to the drawing are documented in this table.
- For drawings with many parts or an assembly drawing a **Bill of Materials** is placed just above the Title Block.



## Letters and Numbers as per BIS:SP46-2003

- Types of lines
- Lettering.
- Dimensioning.

#### Letters and Numbers as per BIS:SP46-2003

• Types of Lines

|   | Line     | Description                                              | General Application              |                                                                                                                                                                                |  |  |  |  |
|---|----------|----------------------------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Α |          | Continuous thick                                         | A1<br>A2                         | Visible outlines.<br>Visible edges.                                                                                                                                            |  |  |  |  |
| В |          | Continuous thin (straight or curved)                     | B1<br>B2<br>B3<br>B4<br>B5<br>B6 | Imaginary lines of intersection. Dimension lines. Projection lines. Leader lines. Hatching lines. Outlines of revolved sections in place. Short centre lines                   |  |  |  |  |
| С | ~~~~     | Continuous thin free hand                                | C1                               | Limits of partial or interrupted views and sections, If the limit is not a chain thin.                                                                                         |  |  |  |  |
| D | <b>√</b> | Continuous thin<br>(straight)<br>with zigzags            | D1                               | Long break line                                                                                                                                                                |  |  |  |  |
| Ε |          | Dashed thick                                             | E1<br>E2                         | Hidden outlines.<br>Hidden edges.                                                                                                                                              |  |  |  |  |
| F |          | Dashed thin                                              | F1<br>F2                         | Hidden outlines.<br>Hidden edges.                                                                                                                                              |  |  |  |  |
| G |          | Chain thin                                               | G1<br>G2<br>G3                   | Center lines.<br>Lines of symmetry.<br>Trajectories                                                                                                                            |  |  |  |  |
| Н |          | Chain thin, thick<br>at ends and changes<br>of direction | Н1                               | Cutting planes.                                                                                                                                                                |  |  |  |  |
| J |          | Chain thick                                              | J1                               | Indication of lines or surfaces<br>to which a special requirement<br>applies                                                                                                   |  |  |  |  |
| к |          | Chain thin double<br>dashed                              | K1<br>K1<br>K3<br>K4<br>K5       | Outlines of adjacent parts. Alternative or extreme position of movable parts. Centroidal lines. Initial outlines prior to forming Parts situated in front of the cutting plane |  |  |  |  |

Letters and Numbers as per

**BIS:SP46-20** 

• Types of Lines



## Letters and Numbers as per BIS:SP46-2003

Lettering



#### Letter styles

- Lettering is the style of writing alphabets and numerals such as A, B, C, D...Z and 1, 2, 3, 4...9.
- Most freehand lettering is done in 'gothic' style with constant line thickness.

To regulate lettering height, commonly 3 mm, guidelines are drawn.

| Characteristic                                         | Parameter | Ratio    | io Dimensions(mm) |      |      |     |     |    |     |
|--------------------------------------------------------|-----------|----------|-------------------|------|------|-----|-----|----|-----|
| Lettering Height<br>(Height of capitals)               | h         | (14/14)h | 2.5               | 3.5  | 5    | 7   | 10  | 14 | 20  |
| Height of lower case letters<br>(without stem or tail) | С         | (10/14)h |                   | 2.5  | 3.5  | 5   | 7   | 10 | 14  |
| Spacing between characters                             | а         | (2/14)h  | 0.35              | 0.5  | 0.7  | 1   | 1.4 | 2  | 2.8 |
| Minimum spacing of base characters                     | b         | (20/14)h | 3.5               | 5    | 7    | 10  | 14  | 20 | 28  |
| Minimum spacing between words                          | е         | (6/14)h  | 1.05              | 1.5  | 2.1  | 3   | 4.2 | 6  | 8.4 |
| Thickness of lines                                     | d         | (1/14)h  | 0.18              | 0.25 | 0.35 | 0.5 | 0.7 | 1  | 1.4 |



### Letter styles

| ITEM                                                                        | SIZE h, mm  |
|-----------------------------------------------------------------------------|-------------|
| Drawing number in Title Block and letters denoting<br>Cutting Plane Section | 10, 12      |
| Title of Drawing                                                            | 6, 8        |
| Sub-titles and Headings                                                     | 3, 4, 5, 6, |
| Notes, such as Legends, Schedules, Material list,<br>Dimensioning           | 3, 4, 5     |
| Alteration, Enteries and Tolerances                                         | 2, 3        |

## Letters and Numbers as per BIS:SP46-2003

- Dimensioning, dimensions are used to represent size and position of the designed/modelled shape.
- It is a numerical value expressed in appropriate units of measurement and used to define the size, location, orientation, form, or other geometric characteristics of a part.
  - Aligned system
  - Unidirectional system

#### Dimensions (Basic terminology)



#### • Aligned dimensioning

In this system, the dimension is placed perpendicular to the dimension line.



#### • Unidirectional dimensioning



#### **Dimensioning methods**



#### General rules on Dimensioning

- (1) Dimensioning should be done so completely that further calculation or assumption of any dimension, or direct measurement from the drawing is not necessary.
- (2) Every dimension must be given, but none should be given more than once.
- (3) A dimension should be placed on the view where its use is shown more clearly.
- (4) Dimensions should be placed outside the views, unless they are clearer and more easily read inside.
- (5) Mutual crossing of dimension lines and dimensioning between hidden lines should be avoided. Dimension lines should not cross any other line of the drawing.
- (6) An outline or a centreline should never be used as a dimension line. A centreline may be extended to serve as an extension line.
- (7) Aligned system of dimensioning is recommended.
- (8) Units for the dimensions should be provided with a note on the drawing.

#### **Examples of Dimensions**





#### **Examples of Dimensions**



## **Examples of Dimensions (detail dimensions)**



## **Examples of Dimensions (correct way of representation)**



• Units of measurement

## Metric system

$$10 \text{ mm} = 1 \text{ cm}$$

$$10 \text{ cm} = 1 \text{ dm}$$

$$10 \text{ dm} = 1 \text{ m}$$

$$10 \text{ m} = 1 \text{ decm}$$

$$10 \text{ decam} = 1 \text{ hm}$$

$$10 \text{ hm} = 1 \text{km}$$

#### **British system**

$$2.54 \text{ cm} = 1 \text{ inch}$$

$$12 \text{ inch} = 1 \text{ foot}$$

$$3 \text{ feet} = 1 \text{ yard}$$

$$220 \text{ yard} = 1 \text{ furlong}$$

- Representative fraction: It is the ratio of the length of the drawing or (length of scale) on the drawing sheet to the actual length of the object.
- Scale is divided into three types on the basis of RF
- 1. Reducing scale eg. 1:4, 1:2, 1:10 etc.
- 2. Enlarging scale eg. 2:1, 3:1, 10:1 etc.
- 3. Equal size scale eg. 1:1.

• Plane scale: It is simply a line which is divided into suitable number of equal parts or units, the first part of which is further divided into smaller parts or sub parts of main unit.



• Diagonal scale: A diagonal scale is used when very minute distance such as 0.1 mm etc. are to be accurately measured or when measurements are required in three units; for example, dm, cm and

mm, or yard, foot and inch.

# Questions on Plane Scale

• Construct a scale of 1: 4 to show centimetres and long enough to measure upto 5 decimetres.

• Construct a scale of 1.5 inches = 1 foot to show inches and long enough to measure upto 4 feet.

# Questions on Diagonal Scale

• Construct a diagonal scale of R.F. = 1:4000 to show meters and long enough to measure upto 500 metres.

•

• Construct a diagonal scale of R.F. = 1:32 showing yards, feet and inches and to measure upto 4 yards.

.

# AutoCAD for Engg. Drawing

- Computer Aided Draughting systems are now replacing the conventional draughting systems.
- But for using the CAD systems, the knowledge of Engg. Drawing is essential.
- The CAD system has some advantages over the conventional techniques:
  - High productivity with reduced lead time.
  - Possibility of quick and easy modifications.
  - Automatic creation of documentations.
  - Excellent drawing quality.
  - Possibility of pre-storing commonly used components in a library.

## AutoCAD Start screen



## AutoCAD Basic Commands



## Line Command



## Line Command



## Circle and Arc Commands





# Thank Inank Inou