Algorithmique des structures arborescentes Algorithmique et programmation fonctionnelle

L2 Info, Math-info, CMI ISI & OPTIM, 2022-23

Marc Zeitoun

9 mars 2023

Plan

Compression de texte sans perte

Codage de Huffmar

Compression sans perte

Objectifs:

• Réduire la taille des fichiers.

Compression sans perte

Objectifs:

- Réduire la taille des fichiers.
- Sans perte : on veut pouvoir reconstruire le fichier original.

Compression sans perte

Objectifs:

- Réduire la taille des fichiers.
- Sans perte : on veut pouvoir reconstruire le fichier original.
- Aujourd'hui : algorithme de Huffman.
 Implémentation utilisant des arbres binaires complets.

Gain d'espace sur disque → moins de disques nécessaires.

Gain d'espace sur disque → moins de disques nécessaires.

Disque IBM de 5Mb en 1956 il en faut \sim 25000 pour faire 128Gb

Gain d'espace sur disque → moins de disques nécessaires.

Disque IBM de 5Mb en 1956 il en faut \sim 25000 pour faire 128Gb

• Gain de temps en transfert (via le réseau).

Gain d'espace sur disque → moins de disques nécessaires.

Disque IBM de 5Mb en 1956 il en faut \sim 25000 pour faire 128Gb

- Gain de temps en transfert (via le réseau).
- Gain d'énergie, diminution de l'empreinte carbone.

• Un fichier sur disque est une suite de caractères.

- Un fichier sur disque est une suite de caractères.
- Un codage associe à chaque caractère une représentation par un ou plusieurs octets.

- Un fichier sur disque est une suite de caractères.
- Un codage associe à chaque caractère une représentation par un ou plusieurs octets.
- Il y a plusieurs codages existants. Par exemple,
 - ASCII : représente 128 caractères chacun sur un octet.

- Un fichier sur disque est une suite de caractères.
- Un codage associe à chaque caractère une représentation par un ou plusieurs octets.
- Il y a plusieurs codages existants. Par exemple,
 - ASCII : représente 128 caractères chacun sur un octet.
 - ISO 8859-1 (latin1) l'étend à 191 caractères sur un octet.

- Un fichier sur disque est une suite de caractères.
- Un codage associe à chaque caractère une représentation par un ou plusieurs octets.
- Il y a plusieurs codages existants. Par exemple,
 - ASCII : représente 128 caractères chacun sur un octet.
 - ISO 8859-1 (latin1) l'étend à 191 caractères sur un octet.
 - UTF-8 pour les caractères du standard Unicode : 1 à 4 octets. ⇒ Plus difficile de décoder un fichier UTF-8.

Plan

Compression de texte sans perte

Codage de Huffman

• Idée : coder les caractères sur un nombre variable de bits, éventuellement moins que 8.

- Idée : coder les caractères sur un nombre variable de bits, éventuellement moins que 8.
- Caractères fréquents représentés par des codes

- Idée : coder les caractères sur un nombre variable de bits, éventuellement moins que 8.
- Caractères fréquents représentés par des codes courts.

- Idée : coder les caractères sur un nombre variable de bits, éventuellement moins que 8.
- Caractères fréquents représentés par des codes courts.
- Caractères peu fréquents représentés par des codes longs.

- Idée : coder les caractères sur un nombre variable de bits, éventuellement moins que 8.
- Caractères fréquents représentés par des codes courts.
- Caractères peu fréquents représentés par des codes longs.
- Difficulté : décodage, i.e., découpage non ambigu.
- Par exemple, si on code le caractère a par 0 et b par 00, on ne pourra pas décoder la suite 000 : elle peut représenter,

- Idée : coder les caractères sur un nombre variable de bits, éventuellement moins que 8.
- Caractères fréquents représentés par des codes courts.
- Caractères peu fréquents représentés par des codes longs.
- Difficulté : décodage, i.e., découpage non ambigu.
- Par exemple, si on code le caractère a par 0 et b par 00, on ne pourra pas décoder la suite 000 : elle peut représenter,
 - ab, ou

- Idée : coder les caractères sur un nombre variable de bits, éventuellement moins que 8.
- Caractères fréquents représentés par des codes courts.
- Caractères peu fréquents représentés par des codes longs.
- Difficulté : décodage, i.e., découpage non ambigu.
- Par exemple, si on code le caractère a par 0 et b par 00, on ne pourra pas décoder la suite 000 : elle peut représenter,
 - ab, ou
 - ba, ou

- Idée : coder les caractères sur un nombre variable de bits, éventuellement moins que 8.
- Caractères fréquents représentés par des codes courts.
- Caractères peu fréquents représentés par des codes longs.
- Difficulté : décodage, i.e., découpage non ambigu.
- Par exemple, si on code le caractère a par 0 et b par 00, on ne pourra pas décoder la suite 000 : elle peut représenter,
 - ab, ou
 - ba, ou
 - aaa.

1. Calcul des fréquences de caractères dans le fichier à compresser.

- 1. Calcul des fréquences de caractères dans le fichier à compresser.
- 2. Calcul du codage de chaque caractère, avec 2 contraintes :
 - caractères les plus fréquents représentés par des codes courts,

- 1. Calcul des fréquences de caractères dans le fichier à compresser.
- 2. Calcul du codage de chaque caractère, avec 2 contraintes :
 - caractères les plus fréquents représentés par des codes courts,
 - possibilité de décoder.

- 1. Calcul des fréquences de caractères dans le fichier à compresser.
- 2. Calcul du codage de chaque caractère, avec 2 contraintes :
 - caractères les plus fréquents représentés par des codes courts,
 - possibilité de décoder.
- 3. Dans le fichier compressé, écrire le codage utilisé.

- 1. Calcul des fréquences de caractères dans le fichier à compresser.
- 2. Calcul du codage de chaque caractère, avec 2 contraintes :
 - caractères les plus fréquents représentés par des codes courts,
 - possibilité de décoder.
- 3. Dans le fichier compressé, écrire le codage utilisé.
- 4. Enfin, relire le fichier original, et pour chacun de ses caractères, écrire son code dans le fichier compressé.

- 1. Calcul des fréquences de caractères dans le fichier à compresser.
- 2. Calcul du codage de chaque caractère, avec 2 contraintes :
 - caractères les plus fréquents représentés par des codes courts,
 - possibilité de décoder.
- 3. Dans le fichier compressé, écrire le codage utilisé.
- 4. Enfin, relire le fichier original, et pour chacun de ses caractères, écrire son code dans le fichier compressé.
- 5. Un remplissage (padding) peut être nécessaire en fin de fichier pour ramener le nombre de bits écrits à un multiple de 8.

Format possible du fichier compressé

• Appelons mot une suite de 0 et de 1. Par exemple 01001.

- Appelons mot une suite de 0 et de 1. Par exemple 01001.
- Un mot x est préfixe d'un mot y si y commence par x.
 Par exemple, 01 est préfixe de 01001.

- Appelons mot une suite de 0 et de 1. Par exemple 01001.
- Un mot x est préfixe d'un mot y si y commence par x. Par exemple, $\mathbf{01}$ est préfixe de $\mathbf{01}001$.
- Un ensemble de mots P est un code préfixe si aucun mot de P n'est préfixe d'un autre mot de P.
- Exemples.
 - $lacksquare P = \{000, \ 010, \ 011, \ 10, \ 11\}$ est un code préfixe.

- Appelons mot une suite de 0 et de 1. Par exemple 01001.
- Un mot x est préfixe d'un mot y si y commence par x. Par exemple, $\mathbf{01}$ est préfixe de $\mathbf{01}001$.
- Un ensemble de mots P est un code préfixe si aucun mot de P n'est préfixe d'un autre mot de P.
- Exemples.
 - $ightharpoonup P = \{000, \ 010, \ 011, \ 10, \ 11\}$ est un code préfixe.
 - $\mathbf{Q} = \{0, 00\}$ n'est **pas** un code préfixe car 0 est préfixe de 00.

Codes préfixes

- Un ensemble de mots P est un code préfixe si aucun mot de P n'est préfixe d'un autre mot de P.
- On peut utiliser un code préfixe pour coder :

$$P = \{000, 010, 011, 10, 11\}$$
A B C D R

- Un ensemble de mots P est un code préfixe si aucun mot de P n'est préfixe d'un autre mot de P.
- On peut utiliser un code préfixe pour coder :

$$P = \{000, 010, 011, 10, 11\}$$
A B C D R

Un mot ne peut pas se décomposer de 2 façons différentes.
 On décode en lisant la suite de 0 et de 1 de gauche à droite.

- Un ensemble de mots P est un code préfixe si aucun mot de P n'est préfixe d'un autre mot de P.
- On peut utiliser un code préfixe pour coder :

$$P = \{000, 010, 011, 10, 11\}$$
A B C D R

- Un mot ne peut pas se décomposer de 2 façons différentes.
 On décode en lisant la suite de 0 et de 1 de gauche à droite.
- Exemple : la suite 000010110000110001000001011000 code le mot

- Un ensemble de mots P est un code préfixe si aucun mot de P n'est préfixe d'un autre mot de P.
- On peut utiliser un code préfixe pour coder :

$$P = \{000, 010, 011, 10, 11\}$$
A B C D R

- Un mot ne peut pas se décomposer de 2 façons différentes.
 On décode en lisant la suite de 0 et de 1 de gauche à droite.
- Exemple : la suite 000010110000110001000001011000 code le mot A

- Un ensemble de mots P est un code préfixe si aucun mot de P n'est préfixe d'un autre mot de P.
- On peut utiliser un code préfixe pour coder :

$$P = \{000, 010, 011, 10, 11\}$$
A B C D R

- Un mot ne peut pas se décomposer de 2 façons différentes.
 On décode en lisant la suite de 0 et de 1 de gauche à droite.
- Exemple : la suite 000010110000110001000001011000 code le mot A B

- Un ensemble de mots P est un code préfixe si aucun mot de P n'est préfixe d'un autre mot de P.
- On peut utiliser un code préfixe pour coder :

$$P = \{000, 010, 011, 10, 11\}$$
A B C D R

- Un mot ne peut pas se décomposer de 2 façons différentes.
 On décode en lisant la suite de 0 et de 1 de gauche à droite.
- Exemple : la suite 000010110000110001000001011000 code le mot A B R

- Un ensemble de mots P est un code préfixe si aucun mot de P n'est préfixe d'un autre mot de P.
- On peut utiliser un code préfixe pour coder :

$$P = \{000, 010, 011, 10, 11\}$$
A B C D R

- Un mot ne peut pas se décomposer de 2 façons différentes.
 On décode en lisant la suite de 0 et de 1 de gauche à droite.
- Exemple : la suite 000010110000110001000001011000 code le mot A B R A

- Un ensemble de mots P est un code préfixe si aucun mot de P n'est préfixe d'un autre mot de P.
- On peut utiliser un code préfixe pour coder :

$$P = \{000, 010, 011, 10, 11\}$$
A B C D R

- Un mot ne peut pas se décomposer de 2 façons différentes.
 On décode en lisant la suite de 0 et de 1 de gauche à droite.
- Exemple : la suite 000010110000110001000001011000 code le mot A B R A C

- Un ensemble de mots P est un code préfixe si aucun mot de P n'est préfixe d'un autre mot de P.
- On peut utiliser un code préfixe pour coder :

$$P = \{000, 010, 011, 10, 11\}$$
A B C D R

- Un mot ne peut pas se décomposer de 2 façons différentes.
 On décode en lisant la suite de 0 et de 1 de gauche à droite.
- Exemple : la suite 000010110000110001000001011000 code le mot A B R A C A

- Un ensemble de mots P est un code préfixe si aucun mot de P n'est préfixe d'un autre mot de P.
- On peut utiliser un code préfixe pour coder :

$$P = \{000, 010, 011, 10, 11\}$$
A B C D R

- Un mot ne peut pas se décomposer de 2 façons différentes.
 On décode en lisant la suite de 0 et de 1 de gauche à droite.
- Exemple : la suite 000010110000110001000001011000
 code le mot A B R A C A D

- Un ensemble de mots P est un code préfixe si aucun mot de P n'est préfixe d'un autre mot de P.
- On peut utiliser un code préfixe pour coder :

$$P = \{000, 010, 011, 10, 11\}$$
A B C D R

- Un mot ne peut pas se décomposer de 2 façons différentes.
 On décode en lisant la suite de 0 et de 1 de gauche à droite.
- Exemple : la suite 000010110000110001000001011000 code le mot A B R A C A D A

- Un ensemble de mots P est un code préfixe si aucun mot de P n'est préfixe d'un autre mot de P.
- On peut utiliser un code préfixe pour coder :

$$P = \{000, 010, 011, 10, 11\}$$
A B C D R

- Un mot ne peut pas se décomposer de 2 façons différentes.
 On décode en lisant la suite de 0 et de 1 de gauche à droite.
- Exemple : la suite 000010110000110001000001011000
 code le mot A B R A C A D A B

- Un ensemble de mots P est un code préfixe si aucun mot de P n'est préfixe d'un autre mot de P.
- On peut utiliser un code préfixe pour coder :

$$P = \{000, 010, 011, 10, 11\}$$
A B C D R

- Un mot ne peut pas se décomposer de 2 façons différentes.
 On décode en lisant la suite de 0 et de 1 de gauche à droite.
- Exemple : la suite 000010110000110001000001011000
 code le mot A B R A C A D A B R

- Un ensemble de mots P est un code préfixe si aucun mot de P n'est préfixe d'un autre mot de P.
- On peut utiliser un code préfixe pour coder :

$$P = \{000, 010, 011, 10, 11\}$$
A B C D R

- Un mot ne peut pas se décomposer de 2 façons différentes.
 On décode en lisant la suite de 0 et de 1 de gauche à droite.
- Exemple : la suite 000010110000110001000001011000
 code le mot A B R A C A D A B R A

- Un ensemble de mots P est un code préfixe si aucun mot de P n'est préfixe d'un autre mot de P.
- On peut utiliser un code préfixe pour coder :

$$P = \{000, 010, 011, 10, 11\}$$
A B C D R

- Un mot ne peut pas se décomposer de 2 façons différentes.
 On décode en lisant la suite de 0 et de 1 de gauche à droite.
- Exemple: la suite 000010110000110001000001011000 code le mot A B R A C A D A B R A
 30 bits au lieu de 11 × 8 = 88 bits. Peut-on faire mieux?

- Un ensemble de mots P est un code préfixe si aucun mot de P n'est préfixe d'un autre mot de P.
- On peut utiliser un code préfixe pour coder :

$$P = \{000, 010, 011, 10, 11\}$$
A B C D R

- Un mot ne peut pas se décomposer de 2 façons différentes.
 On décode en lisant la suite de 0 et de 1 de gauche à droite.
- Exemple: la suite 000010110000110001000001011000
 code le mot A B R A C A D A B R A
 30 bits au lieu de 11 × 8 = 88 bits. Peut-on faire mieux?
 - Oui : 26 bits en échangeant les codes de A et de D.

- Un ensemble de mots P est un code préfixe si aucun mot de P n'est préfixe d'un autre mot de P.
- On peut utiliser un code préfixe pour coder :

$$P = \{000, 010, 011, 10, 11\}$$
A B C D R

- Un mot ne peut pas se décomposer de 2 façons différentes.
 On décode en lisant la suite de 0 et de 1 de gauche à droite.
- Exemple : la suite 000010110000110001000001011000 code le mot A B R A C A D A B R A
 - 30 bits au lieu de $11 \times 8 = 88$ bits. Peut-on faire mieux?
 - Oui : 26 bits en échangeant les codes de A et de D.
 - Encore mieux : 25 bits en codant A par 00 au lieu de 000.

- Un ensemble de mots P est un code préfixe si aucun mot de P n'est préfixe d'un autre mot de P.
- On peut utiliser un code préfixe pour coder :

$$P = \{000, 010, 011, 10, 11\}$$
A B C D R

- Un mot ne peut pas se décomposer de 2 façons différentes.
 On décode en lisant la suite de 0 et de 1 de gauche à droite.
- Exemple: la suite 000010110000110001000001011000
 code le mot A B R A C A D A B R A
 - 30 bits au lieu de $11 \times 8 = 88$ bits. Peut-on faire mieux?
 - Oui : 26 bits en échangeant les codes de A et de D.
 - Encore mieux : 25 bits en codant A par 00 au lieu de 000.
 - Encore mieux : 23 bits, voir plus loin (et 23 est optimal).

- Un code préfixe se représente par un arbre binaire.
 - Chaque feuille correspond à un mot du code : on part de la racine jusqu'à la feuille, en écrivant 0 à chaque fois qu'on descend à gauche et 1 à chaque fois qu'on descend à droite.

- Un code préfixe se représente par un arbre binaire.
 - Chaque feuille correspond à un mot du code : on part de la racine jusqu'à la feuille, en écrivant 0 à chaque fois qu'on descend à gauche et 1 à chaque fois qu'on descend à droite.
 - Chaque feuille correspond à un caractère du fichier à coder.

- Un code préfixe se représente par un arbre binaire.
 - Chaque feuille correspond à un mot du code : on part de la racine jusqu'à la feuille, en écrivant 0 à chaque fois qu'on descend à gauche et 1 à chaque fois qu'on descend à droite.
 - Chaque feuille correspond à un caractère du fichier à coder.
 - Exemple :

$$P = \{000, 010, 011, 10, 11\}$$
A B C D R

- Un code préfixe se représente par un arbre binaire.
 - Chaque feuille correspond à un mot du code : on part de la racine jusqu'à la feuille, en écrivant 0 à chaque fois qu'on descend à gauche et 1 à chaque fois qu'on descend à droite.
 - Chaque feuille correspond à un caractère du fichier à coder.
 - Exemple :

$$P = \{000, \ 010, \ 011, \ 10, \ 11\}$$
A B C D R

Principe

1. Calculer pour chaque caractère du fichier son code binaire.

Principe

- 1. Calculer pour chaque caractère du fichier son code binaire.
- 2. Le fichier compressé est composé :

Principe

- 1. Calculer pour chaque caractère du fichier son code binaire.
- 2. Le fichier compressé est composé :
 - du "dictionnaire" donnant le code de chaque caractère.

Principe

- 1. Calculer pour chaque caractère du fichier son code binaire.
- 2. Le fichier compressé est composé :
 - du "dictionnaire" donnant le code de chaque caractère.
 - du fichier où chaque caractère est remplacé par son code.

Principe

- 1. Calculer pour chaque caractère du fichier son code binaire.
- 2. Le fichier compressé est composé :
 - du "dictionnaire" donnant le code de chaque caractère.
 - du fichier où chaque caractère est remplacé par son code.

Deux difficultés techniques

Séparer ces deux sections dans le fichier compressé.

Principe

- 1. Calculer pour chaque caractère du fichier son code binaire.
- 2. Le fichier compressé est composé :
 - du "dictionnaire" donnant le code de chaque caractère.
 - du fichier où chaque caractère est remplacé par son code.

Deux difficultés techniques

- Séparer ces deux sections dans le fichier compressé.
- Avoir en tout un multiple de 8 bits.

Création du "dictionnaire" pour ABRACADABRA.

1 1 2 2 5

Création du "dictionnaire" pour ABRACADABRA.

1 1 2 2 5

ullet Tri selon fréquences o arbres avec poids : ${f C}$ ${f D}$ ${f B}$ ${f R}$ ${f A}$

Création du "dictionnaire" pour ABRACADABRA.

1 1 2 2 5

Création du "dictionnaire" pour ABRACADABRA.

1 1 2 2 5

Création du "dictionnaire" pour ABRACADABRA.

1 1 2 2 5

ullet Tri selon fréquences o arbres avec poids : ${\Bbb C}$ ${\Bbb D}$ ${\Bbb B}$ ${\Bbb R}$ ${\Bbb A}$

Création du "dictionnaire" pour ABRACADABRA.

ullet Tri selon fréquences o arbres avec poids : ${f C}$ ${f D}$ ${f B}$ ${f R}$

Création du "dictionnaire" pour ABRACADABRA.

Remplacement des 2 arbres les plus légers par un unique arbre. Nouveau poids = somme des anciens poids.

A: 0, R: 10, B: 111, C 1100, D: 1101

Longueur du texte codé :
$$\underbrace{5 \times 1}_{A} + \underbrace{2 \times 2}_{B} + \underbrace{2 \times 1}_{B} + \underbrace{1 \times 4}_{D} + \underbrace{1 \times 4}_{D} = 23.$$

14/21

Dictionnaire pour ABRACADABRA, choix alternatifs.

1 1 2 2 5

Dictionnaire pour ABRACADABRA, choix alternatifs.

1 1 2 2 5

• Tri selon fréquences \rightarrow arbres avec poids : ${\color{red} \mathbb{C} \hspace{0.1cm} \mathbb{D} \hspace{0.1cm} \mathbb{B} \hspace{0.1cm} \mathbb{R} \hspace{0.1cm} \mathbb{A}}$

Dictionnaire pour ABRACADABRA, choix alternatifs.

• Tri selon fréquences \rightarrow arbres avec poids : $\stackrel{1}{\mathbb{C}}$ $\stackrel{1}{\mathbb{D}}$ $\stackrel{2}{\mathbb{R}}$ $\stackrel{2}{\mathbb{A}}$

Dictionnaire pour ABRACADABRA, choix alternatifs.

Dictionnaire pour ABRACADABRA, choix alternatifs.

• Tri selon fréquences \rightarrow arbres avec poids : $\stackrel{1}{\mathbb{C}} \stackrel{1}{\mathbb{D}} \stackrel{2}{\mathbb{B}} \stackrel{5}{\mathbb{R}} \stackrel{A}{\mathbb{A}}$

Dictionnaire pour ABRACADABRA, choix alternatifs.

• Tri selon fréquences \rightarrow arbres avec poids : $\stackrel{\bigcirc}{\mathbb{C}} \stackrel{\bigcirc}{\mathbb{D}} \stackrel{\bigcirc}{\mathbb{B}} \stackrel{\bigcirc}{\mathbb{R}} \stackrel{\bigcirc}{\mathbb{A}}$

A : 0, R : 111, B : 110, C 100, D : 101
Longueur du texte codé :
$$\underbrace{5 \times 1}_{A} + \underbrace{2 \times 3}_{R} + \underbrace{2 \times 3}_{B} + \underbrace{1 \times 3}_{C} + \underbrace{1 \times 3}_{D} = 23.$$

Dictionnaire pour ABRACADABRA, choix alternatifs.

• Tri selon fréquences \rightarrow arbres avec poids : $\stackrel{1}{\bigcirc}$ $\stackrel{1}{\bigcirc}$ $\stackrel{2}{\bigcirc}$ $\stackrel{2}{\bigcirc}$ $\stackrel{3}{\bigcirc}$ $\stackrel{3}{\bigcirc}$

A : 0, R : 111, B : 110, C 100, D : 101
Longueur du texte codé :
$$\underbrace{5 \times 1}_{A} + \underbrace{2 \times 3}_{R} + \underbrace{2 \times 3}_{B} + \underbrace{1 \times 3}_{C} + \underbrace{1 \times 3}_{D} = 23.$$

On obtient la même longueur : 23. C'est en fait optimal!

Codage de Huffman : exercice Coder le texte MISSISSIPPI MAP

Dans la suite, on fixe :

• L'ensemble des lettres distinctes du texte original : $\{s_1, \ldots, s_n\}$.

Dans la suite, on fixe :

- L'ensemble des lettres distinctes du texte original : $\{s_1, \ldots, s_n\}$.
- f_1, f_2, \ldots, f_n : les fréquences correspondantes.

Dans la suite, on fixe :

- L'ensemble des lettres distinctes du texte original : $\{s_1, \ldots, s_n\}$.
- f_1, f_2, \ldots, f_n : les fréquences correspondantes.

Soit T = arbre de code aux feuilles étiquetées sur $\{s_1, \ldots, s_n\}$, avec :

Dans la suite, on fixe :

- L'ensemble des lettres distinctes du texte original : $\{s_1, \ldots, s_n\}$.
- f_1, f_2, \ldots, f_n : les fréquences correspondantes.

Soit T= arbre de code aux feuilles étiquetées sur $\{s_1\ldots,s_n\}$, avec :

• $\ell_1, \ell_2, \dots, \ell_n$: les longueurs des codes de s_1, \dots, s_n .

Dans la suite, on fixe :

- L'ensemble des lettres distinctes du texte original : $\{s_1, \ldots, s_n\}$.
- f_1, f_2, \ldots, f_n : les fréquences correspondantes.

Soit T= arbre de code aux feuilles étiquetées sur $\{s_1\ldots,s_n\}$, avec :

• $\ell_1, \ell_2, \dots, \ell_n$: les longueurs des codes de s_1, \dots, s_n .

Comment la longueur du texte codé selon T s'exprime-t-elle?

Dans la suite, on fixe :

- L'ensemble des lettres distinctes du texte original : $\{s_1, \ldots, s_n\}$.
- f_1, f_2, \ldots, f_n : les fréquences correspondantes.

Soit T= arbre de code aux feuilles étiquetées sur $\{s_1\ldots,s_n\}$, avec :

• $\ell_1, \ell_2, \ldots, \ell_n$: les longueurs des codes de s_1, \ldots, s_n .

Comment la longueur du texte codé selon T s'exprime-t-elle?

$$L_T = f_1 \ell_1 + \cdots + f_n \ell_n.$$

Soit T un arbre donnant un code et s_a , s_b deux lettres telles que :

- $f_a \leqslant f_b$ (s_a est moins fréquent que s_b), et
- $\ell_a \leqslant \ell_b$ (le code de s_a est <u>plus court</u> que celui de s_b).

Soit T un arbre donnant un code et s_a , s_b deux lettres telles que :

- $f_a \leqslant f_b$ (s_a est moins fréquent que s_b), et
- $\ell_a \leqslant \ell_b$ (le code de s_a est plus court que celui de s_b).

Propriété intuitive. Échanger s_a et s_b dans T donne un meilleur code.

Soit T un arbre donnant un code et s_a , s_b deux lettres telles que :

- $f_a \leqslant f_b$ (s_a est moins fréquent que s_b), et
- $\ell_a \leqslant \ell_b$ (le code de s_a est <u>plus court</u> que celui de s_b).

Propriété intuitive. Échanger s_a et s_b dans T donne un meilleur code.

$$L_{T'} - L_T = f_a \ell_b + f_b \ell_a - (f_a \ell_a + f_b \ell_b).$$

Soit T un arbre donnant un code et s_a , s_b deux lettres telles que :

- $f_a \leqslant f_b$ (s_a est moins fréquent que s_b), et
- $\ell_a \leqslant \ell_b$ (le code de s_a est <u>plus court</u> que celui de s_b).

Propriété intuitive. Échanger s_a et s_b dans T donne un meilleur code.

$$L_{T'} - L_T = f_a \ell_b + f_b \ell_a - (f_a \ell_a + f_b \ell_b).$$

= $(f_a - f_b) (\ell_b - \ell_a)$

Soit T un arbre donnant un code et s_a , s_b deux lettres telles que :

- $f_a \leqslant f_b$ (s_a est moins fréquent que s_b), et
- $\ell_a \leqslant \ell_b$ (le code de s_a est <u>plus court</u> que celui de s_b).

Propriété intuitive. Échanger s_a et s_b dans T donne un meilleur code.

$$L_{T'} - L_T = f_a \ell_b + f_b \ell_a - \left(f_a \ell_a + f_b \ell_b \right).$$

$$= \underbrace{(f_a - f_b)}_{\leq 0} \underbrace{(\ell_b - \ell_a)}_{\geq 0}$$

Soit T un arbre donnant un code et s_a , s_b deux lettres telles que :

- $f_a \leqslant f_b$ (s_a est moins fréquent que s_b), et
- $\ell_a \leqslant \ell_b$ (le code de s_a est <u>plus court</u> que celui de s_b).

Propriété intuitive. Échanger s_a et s_b dans T donne un meilleur code.

$$L_{T'} - L_T = f_a \ell_b + f_b \ell_a - (f_a \ell_a + f_b \ell_b).$$

$$= \underbrace{(f_a - f_b)}_{\leqslant 0} \underbrace{(\ell_b - \ell_a)}_{\geqslant 0}$$

$$\leqslant 0.$$

Soit T un arbre donnant un code et s_a , s_b deux lettres telles que :

- $f_a \leqslant f_b$ (s_a est moins fréquent que s_b), et
- $\ell_a \leqslant \ell_b$ (le code de s_a est <u>plus court</u> que celui de s_b).

Propriété intuitive. Échanger s_a et s_b dans T donne un meilleur code.

Preuve. Soit T' obtenu par échange des feuilles s_a et s_b dans T.

$$L_{T'} - L_T = f_a \ell_b + f_b \ell_a - \left(f_a \ell_a + f_b \ell_b \right).$$

$$= \underbrace{(f_a - f_b)}_{\leqslant 0} \underbrace{(\ell_b - \ell_a)}_{\geqslant 0}$$

$$\leqslant 0.$$

Donc $L_{T'} \leqslant L_T : T'$ donne effectivement un meilleur code que T.

On dit que T est optimal pour $(s_1, f_1), \ldots, (s_n, f_n)$ si L_T est de longueur minimale parmi tous les codages obtenus par des arbres.

On dit que T est optimal pour $(s_1, f_1), \ldots, (s_n, f_n)$ si L_T est de longueur minimale parmi tous les codages obtenus par des arbres.

Conséquence de la propriété d'amélioration par échange.

Il existe un arbre optimal dont les 2 premières lettres choisies par l'algorithme de Huffman ont le même père.

On dit que T est optimal pour $(s_1, f_1), \ldots, (s_n, f_n)$ si L_T est de longueur minimale parmi tous les codages obtenus par des arbres.

Conséquence de la propriété d'amélioration par échange. Il existe un arbre optimal dont les 2 premières lettres choisies par l'algorithme de Huffman ont le même père.

En effet:

• Partons d'un arbre *T* optimal (il en existe un, pourquoi?).

On dit que T est optimal pour $(s_1, f_1), \ldots, (s_n, f_n)$ si L_T est de longueur minimale parmi tous les codages obtenus par des arbres.

Conséquence de la propriété d'amélioration par échange. Il existe un arbre optimal dont les 2 premières lettres choisies par l'algorithme de Huffman ont le même père.

En effet:

- Partons d'un arbre T optimal (il en existe un, pourquoi?).
- Construisons T' à partir de T en échangeant les 2 lettres les moins fréquentes avec 2 feuilles « sœurs » les plus profondes.

On dit que T est optimal pour $(s_1, f_1), \ldots, (s_n, f_n)$ si L_T est de longueur minimale parmi tous les codages obtenus par des arbres.

Conséquence de la propriété d'amélioration par échange. Il existe un arbre optimal dont les 2 premières lettres choisies par l'algorithme de Huffman ont le même père.

En effet:

- Partons d'un arbre T optimal (il en existe un, pourquoi?).
- Construisons T' à partir de T en échangeant les 2 lettres les moins fréquentes avec 2 feuilles « sœurs » les plus profondes. D'après la diapo précédente, on a : $L_{T'} \leqslant L_T$.

On dit que T est optimal pour $(s_1, f_1), \ldots, (s_n, f_n)$ si L_T est de longueur minimale parmi tous les codages obtenus par des arbres.

Conséquence de la propriété d'amélioration par échange. Il existe un arbre optimal dont les 2 premières lettres choisies par l'algorithme de Huffman ont le même père.

En effet:

- Partons d'un arbre T optimal (il en existe un, pourquoi?).
- Construisons T' à partir de T en échangeant les 2 lettres les moins fréquentes avec 2 feuilles « sœurs » les plus profondes. D'après la diapo précédente, on a : $L_{T'} \leqslant L_T$.
- Donc T' est optimal lui aussi, et il a la propriété voulue.

Propriété. L'arbre de l'algorithme de Huffman est optimal.

Propriété. L'arbre de l'algorithme de Huffman est optimal.

Soit T un arbre $\operatorname{optimal}$ et H un arbre de Huffman pour un texte. On veut montrer que :

$$L_H \leqslant L_T$$
 (donc en fait, $L_H = L_T$).

Propriété. L'arbre de l'algorithme de Huffman est optimal.

Soit T un arbre $\operatorname{optimal}$ et H un arbre de Huffman pour un texte. On veut montrer que :

$$L_H \leqslant L_T$$
 (donc en fait, $L_H = L_T$).

Preuve. Récurrence sur le nombre de lettres distinctes.

Propriété. L'arbre de l'algorithme de Huffman est optimal.

Soit T un arbre $\operatorname{optimal}$ et H un arbre de Huffman pour un texte. On veut montrer que :

$$L_H \leqslant L_T$$
 (donc en fait, $L_H = L_T$).

Preuve. Récurrence sur le nombre de lettres distinctes.

Cas de base : il y a une seule lettre $s_1=a$ dans le texte. Alors :

Propriété. L'arbre de l'algorithme de Huffman est optimal.

Soit T un arbre $\operatorname{optimal}$ et H un arbre de Huffman pour un texte. On veut montrer que :

$$L_H \leqslant L_T$$
 (donc en fait, $L_H = L_T$).

Preuve. Récurrence sur le nombre de lettres distinctes.

Cas de base : il y a une seule lettre $s_1=a$ dans le texte. Alors :

• T = @ puisque T est optimal.

Propriété. L'arbre de l'algorithme de Huffman est optimal.

Soit T un arbre $\operatorname{optimal}$ et H un arbre de Huffman pour un texte. On veut montrer que :

$$L_H \leqslant L_T$$
 (donc en fait, $L_H = L_T$).

Preuve. Récurrence sur le nombre de lettres distinctes.

Cas de base : il y a une seule lettre $s_1=a$ dans le texte. Alors :

- T = @ puisque T est optimal.
- H = a d'après l'algorithme de Huffman.

Propriété. L'arbre de l'algorithme de Huffman est optimal.

Soit T un arbre $\operatorname{optimal}$ et H un arbre de Huffman pour un texte. On veut montrer que :

$$L_H \leqslant L_T$$
 (donc en fait, $L_H = L_T$).

Preuve. Récurrence sur le nombre de lettres distinctes.

Cas de base : il y a une seule lettre $s_1=a$ dans le texte. Alors :

- T = @ puisque T est optimal.
- H = @ d'après l'algorithme de Huffman.

Donc T = H, et en particulier, $L_T = L_H$.

Propriété. L'arbre de l'algorithme de Huffman est optimal

D 1 / / 15/		
Preuve, hérédité :		

Dropriété l'arbre de l'algorithme de Huffman est aptimal

Propriete. L'arbre de l'algorithme de Huffman est optimal .				
Preuve, hérédité :				
Supposons $\underline{\text{optimal}}$ tout arbre de Huffman sur $\underline{n-1}$ lettres distinctes				

Propriété. L'arbre de l'algorithme de Huffman est optimal.

Preuve, hérédité:

Supposons <u>optimal</u> tout arbre de Huffman sur $\underline{n-1}$ lettres distinctes

Soit n lettres s_1, s_2, \ldots, s_n de fréquences $f_1 \leqslant \cdots \leqslant f_n$, et :

• H un arbre de Huffman pour $(s_1, f_1), \ldots, (s_n, f_n)$.

Propriété. L'arbre de l'algorithme de Huffman est optimal.

Preuve, hérédité:

Supposons optimal tout arbre de Huffman sur n-1 lettres distinctes

Soit n lettres s_1, s_2, \ldots, s_n de fréquences $f_1 \leqslant \cdots \leqslant f_n$, et :

- H un arbre de Huffman pour $(s_1, f_1), \ldots, (s_n, f_n)$.
- T un arbre optimal pour $(s_1, f_1), \ldots, (s_n, f_n)$.

Propriété. L'arbre de l'algorithme de Huffman est optimal.

Preuve, hérédité:

Supposons <u>optimal</u> tout arbre de Huffman sur $\underline{n-1}$ lettres distinctes

Soit n lettres s_1, s_2, \ldots, s_n de fréquences $f_1 \leqslant \cdots \leqslant f_n$, et :

- H un arbre de Huffman pour $(s_1, f_1), \ldots, (s_n, f_n)$.
- T un arbre optimal pour $(s_1, f_1), \ldots, (s_n, f_n)$.

Dans H, s_1 et s_2 ont même père. On peut choisir T où c'est le cas.

Propriété. L'arbre de l'algorithme de Huffman est optimal.

Preuve, hérédité:

Supposons <u>optimal</u> tout arbre de Huffman sur $\underline{n-1}$ lettres distinctes

Soit n lettres s_1, s_2, \ldots, s_n de fréquences $f_1 \leqslant \cdots \leqslant f_n$, et :

- H un arbre de Huffman pour $(s_1, f_1), \ldots, (s_n, f_n)$.
- T un arbre optimal pour $(s_1, f_1), \ldots, (s_n, f_n)$.

Dans H, s_1 et s_2 ont même père. On peut choisir T où c'est le cas.

Dans H et T, on remplace le sous-arbre s_1 s_2 par un unique nœud

 $^{(8)}$, où s_0 est une nouvelle lettre. On obtient ainsi H' et T'.

Propriété. L'arbre de l'algorithme de Huffman est optimal.

Preuve, hérédité:

Supposons optimal tout arbre de Huffman sur n-1 lettres distinctes

Soit n lettres s_1, s_2, \ldots, s_n de fréquences $f_1 \leqslant \cdots \leqslant f_n$, et :

- H un arbre de Huffman pour $(s_1, f_1), \ldots, (s_n, f_n)$.
- T un arbre optimal pour $(s_1, f_1), \ldots, (s_n, f_n)$.

Dans H, s_1 et s_2 ont même père. On peut choisir T où c'est le cas.

Dans H et T, on remplace le sous-arbre s_1 s_2 par un unique nœud

 ${}^{f s_0}$, où s_0 est une nouvelle lettre. On obtient ainsi H' et T'.

H' est un arbre de Huffman sur $(s_0, f_1 + f_2), (s_3, f_3), \ldots, (s_n, f_n)$. Par hypothèse de récurrence, H' est optimal : $L_{H'} \leq L_{T'}$.

Propriété. L'arbre de l'algorithme de Huffman est optimal.

Preuve, hérédité:

Supposons <u>optimal</u> tout arbre de Huffman sur $\underline{n-1}$ lettres distinctes

Soit n lettres s_1, s_2, \ldots, s_n de fréquences $f_1 \leqslant \cdots \leqslant f_n$, et :

- H un arbre de Huffman pour $(s_1, f_1), \ldots, (s_n, f_n)$.
- T un arbre optimal pour $(s_1, f_1), \ldots, (s_n, f_n)$.

Dans H, s_1 et s_2 ont même père. On peut choisir T où c'est le cas.

Dans H et T, on remplace le sous-arbre s_1 s_2 par un unique nœud

 $^{f s_0}$, où s_0 est une nouvelle lettre. On obtient ainsi H' et T'.

H' est un arbre de Huffman sur $(s_0, f_1 + f_2), (s_3, f_3), \ldots, (s_n, f_n)$. Par hypothèse de récurrence, H' est optimal : $L_{H'} \leq L_{T'}$.

On obtient alors : $L_H = L_{H'} + f_1 + f_2 \leqslant L_{T'} + f_1 + f_2 = L_T$. \checkmark