Projektowanie środowiska wirtualnego

Laboratorium 3 - 8

Dynamiczne deformacje (żelek)

Cel projektu:

Symulacja ruchu sprężystego układu 64 mas (*punktów kontrolnych*) połączonego (sprężyście) ze sztywną ramą, którą steruje użytkownik. Ruch *punktów kontrolnych* jest ograniczony prostopadłościanem. Ruch *ramki sterującej* nie jest ograniczony. Położenie mas definiuje deformacje przestrzeni 3D widoczne na cieniowanym krzywoliniowym sześcianie (*kostce Beziera*) oraz na dowolnym wpisanym w niego obiekcie 3D.

Wykonanie:

Krok 1 (3 pkt) Interfejs użytkownika

- 1. Wyświetlanie na życzenie
 - punktów kontrolnych (mas i połączeń między nimi przynajmniej krótszych sprężyn)
 - ramki sterującej i połączeń z kostką Beziera
 - prostopadłościanu ograniczającego (tylko szkielet, ewentualnie cieniowanie tylnych ścian lub dodanie przezroczystości)
 - cieniowanej kostki Beziera (krzywoliniowego sześcianu)
 - cieniowanej, zdeformowanej bryły
- 2. Interakcja ze scena
 - możliwe jest przesuwanie, obracanie i skalowanie całej sceny
 - można przesuwać i obracać ramkę sterującą
 - strukturę układu (kostkę Beziera) można zaburzyć przykładając początkowe (losowe) prędkości do mas składowych (lub ewentualnie wychylając masy z ich początkowych położeń)
- 3. Możliwość zmiany:
 - masy punktów kontrolnych 64m
 - współczynnika sprężystości c_1 połączeń między masami
 - wartości tłumienia k (lepkości ośrodka, w którym zanurzony jest układ)
 - współczynnika sprężystości c₂ pomiędzy kostką Beziera a ramką sterującą
 - początkowego zaburzenia, określającego maksymalną wartość losowanych prędkości lub odchyleń

Krok 2 (4 pkt) Symulacja ruchu

Model jest rozszerzeniem modelu opisanego w Laboratorium 1/2. *Kostka Beziera* jest wyznaczona przez 64 punkty $\mathbf{P}^{ijk=0..3}$, każdy o masie $m \in [0.01, 100]$, ustawione w tablicy 4x4x4. Sąsiednie punkty połączone są ze sobą za pomocą sprężyn o współczynniku sprężystości c_1 jak na rys. 1.

Rys. 1. Połączenie sąsiednich punktów

Siła f wzdłuż każdej ze sprężyn jest opisana równaniem

$$-k\dot{l}-c_1l=f$$

gdzie sprężystość sprężyny $c_1 \in [0.01, 100]$, tarcie lepkie $k \in [0, 100]$, a $I = |\mathbf{P}_1 - \mathbf{P}_2| - I_0$ (\mathbf{P}_1 i \mathbf{P}_2 to wybrane punkty połączone sprężynami, a I_0 – długość spoczynkowa sprężyny, czyli odległość między \mathbf{P}_1 i \mathbf{P}_2 w położeniu równowagi).

<u>Zadanie</u>: Dla t < 0 punkty są w stanie równowagi $\mathbf{P}^{ijk=0...3} = a \cdot (i/3, j/3, k/3)$, gdzie a to długość boku sześcianu. W chwili t = 0 zaburz strukturę układu przykładając początkowe (losowe) prędkości do mas składowych lub wychylając losowo masy z początkowego położenia i przeprowadź symulację dalszego ruchu układu.

Krok 3 (2 pkt) Sterowanie

Połącz 8 narożnych punktów kontrolnych $\mathbf{P}^{ijk=0,3}$ ze sztywną ramkq w kształcie sześcianu o długości boku a za pomocą sprężyn o długości spoczynkowej 0 i współczynniku sprężystości c_2 . Użytkownik może przesuwać i obracać ramkq. Przeprowadź symulację ruchu układu.

Krok 4 (3 pkt) Kolizje

Zdefiniuj na scenie prostopadłościan, który ograniczy ruch *kostki Beziera*. Ruch *ramki sterującej* jest nieograniczony. Odbicia *punktów* $\mathbf{P}^{ijk=0,3}$ od ścian prostopadłościanu mogą być idealnie sprężyste (**1 pkt**) lub niesprężyste (**2 pkt**). Należy zdefiniować współczynnik sprężystości odbicia μ , określający ile razy prędkość po odbiciu jest mniejsza od tej przed zetknięciem się ze ścianą ($\mu=0$ powoduje przyklejenie się do ściany). Rozważ (i wybierz) model zderzenia:

- prędkość przed kolizją z płaszczyzną x = 0 wynosi (v_x, v_y, v_z) , a po $\mu \cdot (-v_x, v_y, v_z)$
- prędkość przed kolizją z płaszczyzną x = 0 wynosi (v_x, v_y, v_z) , a po $(-\mu \cdot v_x, v_y, v_z)$ Pamiętaj o iteracyjnych (rekurencyjnych) odbiciach.

Krok 5 (3 pkt) Deformacja przestrzeni

Odwzorowanie $R^3 \supset [0,1]^3 \ni \mathbf{Q} \to \mathbf{F}(\mathbf{Q}) = \mathbf{P} \in \mathbf{R}^3$, gdzie

$$\mathbf{P} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} := \mathbf{F}(\mathbf{Q}) = \mathbf{F}(u, v, w) = \sum_{ijk=0..3} \mathbf{P}^{ijk} B_i^3(u) B_j^3(v) B_k^3(w)$$

zdefiniowane za pomocą $4\cdot 4\cdot 4=64$ punktów kontrolnych \mathbf{P}^{ijk} , przekształca jednostkową kostkę $C=[0,1]^3$ w krzywoliniową kostkę $E=\mathbf{F}(C)$ (kostkę Beziera). Może być również

używane do deformacji przestrzeni – dowolny obiekt geometryczny (prosta, powierzchnia, bryła) zawarty (lub nie) w C zostanie ciągle zdeformowany w kształt zawarty (lub nie) w E. Zadania:

- 1. Cieniowanie $\dot{z}elka$ (1 **pkt**): Przyjmij punkty \mathbf{P}^{ijk} jako punkty kontrolne trójwymiarowego wielomianu Bernsteina w bazie tensorowej i wyświetl jego brzeg (wyświetl sześć płatków kwadratowych odpowiadających kolejnym ścianom kostki).
- 2. Deformacja obiektu (**2 pkt**): Wpisz w *C* złożony obiekt (siatkę trójkątów) i wykorzystaj punkty *siatki Bernsteina* do deformacji.

Rozważ (i wybierz) obliczanie wektorów normalnych do powierzchni wyświetlanych obiektów w wierzchołkach siatki trójkątów:

- z definicji wielomianu Bernsteina
- jako średniej (być może ważonej z wagami proporcjonalnymi do pól trójkątów) z wektorów normalnych do trójkątów spotykających się w danym wierzchołku
- jako różnicy pomiędzy odpowiadającymi sobie wierzchołkami zdeformowanych siatek – wejściowej i jej przeskalowanej (zmniejszonej) kopii