Linearno Programiranje Simplex metod

Predavanja

- Uvod o Linearnom Programiranju
- Grafička metoda
- Principi Simplex metode
- Simplex metod

LP Istorija

- George Dantzig, 1947
- Prvi računarski kod 1951
- Komercijalna upotreba LP rane 60te
- Mainframe računari

 rane 70s
- Ogroman progres poslednjih 15 godina (PC)

$$y = \sum_{i=1}^{n} c_{i} x_{i}$$

$$\sum_{i=1}^{n} a_{j,i} x_{i} \leq b_{j}; \quad j = 1,2,...I$$

$$\sum_{i=1}^{n} a_{j,i} x_{i} = b_{j}; \quad j = I+1, I+2,...m$$

$$x_{i} \geq 0 \qquad i = 1,2,...n$$

$$y(x_1, x_2, x_3) = ax_1 + bx_2 + cx_3$$
$$\frac{\partial y}{\partial x_1} = a; \quad \frac{\partial y}{\partial x_2} = b; \quad \frac{\partial y}{\partial x_3} = c;$$

a,b,c su konstante pa se rešenje traži na granicama

- Uvod o Linearnom Programiranju
- Grafička metoda
- Principi Simplex metode
- Simplex metod

$$y=2x_1-x_2$$

$$x_1 \ge 0, \ x_2 \ge 0$$

$$-3x_1+2x_2\leq 2$$

$$2x_1-4x_2\leq 3$$

$$x_1 + x_2 \le 6$$

4.5, 1.5

Zemljoradnik poseduje 100 hektara obradive zemlje i planira da zaseje 2 vrste useva.

Seme za usev A košta \$40 po hektaru, seme za usev B košta \$20 po hektaru.

Na seme može da potroši najviše \$3200.

Procenjena zarada od useva A je \$150 po hektaru i \$100 po hektaru od useva B.

Koliko hektara po usevu treba da zaseje da bi maksimizirao zaradu ?

LP Formulacija:

 x_1 hektara pod usevom A.

 x_2 hektara pod usevom B.

P zarada \$.

Zadatak

maksimizirati
$$P = 150x_1 + 100x_2$$

Uz ograničenja

površina (u hektarima):
$$x_1 + x_2 \le 100$$
 (1)

cena semena:
$$40x_1 + 20x_2 \le 3200$$
 (2)

Prirodna ograničenja:
$$x_1, x_2 \ge 0$$
 (3)

Znači rešava se sistem

$$x_1 + x_2 = 100$$
$$40x_1 + 20x_2 = 3200$$

$$x_1 = 60$$
, $x_2 = 40$

Region ograničen sa jedne strane

Minimizova ti $f = 2y_1 + y_2$

- Uvod o Linearnom Programiranju
- Grafička metoda
- Principi Simplex metode
- Simplex metod

Prvi korak

$$-3x_{1} + 2x_{2} \le 2$$

$$2x_{1} - 4x_{2} \le 3$$

$$x_{1} + x_{2} \le 6$$

Drugi korak

Izbor baznog (početnog rešenja)

m ograničenja

N promenjvih

N-m slobodnih (=0)

m zavisnih, ako su >0 onda je ovo rešenje i bazis

$$y = 2x_1 - x_2$$

< \leftrightarrow = $y = 2x_1 - x_2 - 3x_1 + 2x_2 + x_3 = 2$ $2x_1 - 4x_2 + x_4 = 3$

 $X_1 + X_2 + X_5 = 6$

Treći korak

Transformacija

raničenja
$$x_3=2+3x_1-2x_2$$
 omenjvih $x_4=3-2x_1+4x_2$ slobodnih (=0) $x_5=6-x_1-x_2$ visnih, ako su >0 onda je ovo nje i bazis $x_1=x_2=0, \quad x_3=2, x_4=3, x_5=6$

Četvrti korak

Izmena promenjivih

 $y=2x_1-x_2$

$$x_3 = 2 + 3x_1 - 2x_2$$

$$x_4 = 3 - 2x_1 + 4x_2$$

$$x_5 = 6 - x_1 - x_2$$

x_1 nema, $x_3 > 0$ uvek

$$x_1 = 1.5$$

 $x_1 = 6$

$$x_1 = 0$$

Peti korak

Ponavljanje procedure

$$x_1 = 1.5, x_2 = 0,$$

$$x_3 = 6.5, x_4 = 0,$$

$$x_5 = 4.5$$

$$x_1 = 1.5 + 2x_2 - 0.5x_4$$

$$x_3 = 6.5 + 4x_2 - 1.5x_4$$

$$x_5 = 4.5 - 3x_2 + 0.5x_4$$

$$y = 3 + 3x_2 + x_4$$

Peti korak

Ponavljanje procedure

$$x_1 = 4.5, x_2 = 1.5,$$

 $x_3 = 12.5, x_4 = 0,$
 $x_5 = 0$

$$x_1 = 4.5 - 0.167 x_4 - 0.667 x_5$$

 $x_2 = 1.5 + 0.167 x_4 - 0.333 x_5$
 $x_3 = 12.5 - 0.833 x_4 - 1.33 x_5$
 $y = 7.5 - 0.5 x_4 - x_5$

Kraj

- Uvod o Linearnom Programiranju
- Grafička metoda
- Principi Simplex metode
- Simplex metod

$$-3x_{1} + 2x_{2} \le 2$$

$$2x_{1} - 4x_{2} \le 3$$

$$x_{1} + x_{2} \le 6$$

$$y - 2x_{1} + x_{2} = 0$$

Drugi korak

Izbor baznog (početnog rešenja)

m ograničenja

N promenjvih

N-m slobodnih (=0)

m zavisnih, ako su >0 onda je ovo rešenje i bazis

$$x_1 = x_2 = 0$$
, $x_3 = 2$, $x_4 = 3$, $x_5 = 6$

$$-3x_1 + 2x_2 + x_3 = 2$$
$$2x_1 - 4x_2 + x_4 = 3$$
$$x_1 + x_2 + x_5 = 6$$
$$y - 2x_1 + x_2 = 0$$

	X_4	X ₂	x ₁ =	4.5 - 0.	$167 x_4 - 0.667 x_5$
6.5	1.5	– 4	x ₂ =	1.5 + 0.	$167 x_4 - 0.333 x_5$
1.5	0.5	-2	x ₃ =	= 12.5 – ($0.833 x_4 - 1.33 x_5$
4.5	- 0.5	3	<i>y</i> =	7.5 - 0.	$5x_4 - x_5$
3	1	-3			
 X₃ X₁ X₂ Y 	12.5 4.5 1.5 7.5	C	.167	x ₅ 1.333 0.667 0.333	$x_1 = 4.5, x_2 = 1.5,$ $x_3 = 12.5, x_4 = 0,$ $x_5 = 0$
	1.5 4.5 3 <i>X</i> ₃ <i>X</i> ₁	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Kraj

Problem Dijete*

Cilj držati dijetu, sa ograničenim budžetom, odnosno potrošiti što je moguće manje para.

Nutricionistički zahtevi su sledeći:

- 1. 2000 kcal
- 2. 55 g protein
- 3. 800 mg calcium

Nutricionističke vrednosti hrane

Ogrničeni smo na sledeće namernice:

Hrana	Veličina porcije	Energy (kcal)	Protein (g)	Calcium (mg)	Cena po porciji
Ovsena kaša	28 g	110	4	2	\$0.30
Piletina	100 g	205	32	12	\$2.40
Jaja	2 large	160	13	54	\$1.30
Neobrano mleko	237 cc	160	8	285	\$0.90
Pita od višanja	170 g	420	4	22	\$0.20
Svinjetina i pasulj	260 g	260	14	80	\$1.90

Promenjive

Promenljive predstavljaju porcije pojedinih namernica:

 x_1 porcija ovsene kaše

 x_2 porcija piletine

 x_3 porcija jaja

 x_4 porcija mleka

 x_5 porcija pite od višanja

 x_6 porcija svinjetine i pasulja

Promenljive i ograničenja predstavljaju porcije pojedinih namernica:

Hrana	Veličina porcije	Energy (kcal)	Protein (g)	Calcium (mg)	Cena po porciji	37
Ovsena kaša	28 g	110	4	2	\$0.30	X ₁
Piletina	100 g	205	32	12	\$2.40	\mathbf{X}_2
Jaja	2 large	160	13	54	\$1.30	\mathbf{X}_3
Neobrano mleko	237 сс	160	8	285	\$0.90	\mathbf{X}_4
Pita od višanja	170 g	420	4	22	\$0.20	X ₅
Svinjetina i pasulj	260 g	260	14	80	\$1.90	\mathbf{x}_6

KCAL ograničenje:

$$110x_1 + 205x_2 + 160x_3 + 160x_4 + 420x_5 + 260x_6 \ge 2000$$

(110 x_1 = kcal u ovsenoj kaši)

Formulacija LP problema

Minimizovati Kriterijum optimalnosti

$$y=0.3x_1 + 2.40x_2 + 1.30x_3 + 0.90x_4 + 2.0x_5 + 1.9x_6$$

ograničenja:

Nutricionistički zahtevi

$$110x_1 + 205x_2 + 160x_3 + 160x_4 + 420x_5 + 260x_6 \ge 2000$$

$$4x_1 + 32x_2 + 13x_3 + 8x_4 + 4x_5 + 14x_6 \ge 55$$

$$2x_1 + 12x_2 + 54x_3 + 285x_4 + 22x_5 + 80x_6 \ge 800$$

Prirodno Ograničenje

$$x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$$

Rešenje

Kada se reši LP problem (upotrebom MATLAB-a) dobijamo da nas optimalan dijetetski obrok košta \$6.71, pri čemu je jelovnikom obuhvaćeno:

- 14.24 porcija ovsene kaše
 - 0 porcija piletine
 - 0 porcija jaja
 - 2.71 porcija mleka
 - 0 porcija pite sa višnjama

0 porcija svinjetine sa pasuljem ???????

Formulacija LP problema

Minimizovati Kriterijum optimalnosti

$$y=0.3x_1 + 2.40x_2 + 1.30x_3 + 0.90x_4 + 2.0x_5 + 1.9x_6$$

ograničenja:

Nutricionistički zahtevi

$$110x_1 + 205x_2 + 160x_3 + 160x_4 + 420x_5 + 260x_6 \ge 2000$$

 $4x_1 + 32x_2 + 13x_3 + 8x_4 + 4x_5 + 14x_6 \ge 55$
 $2x_1 + 12x_2 + 54x_3 + 285x_4 + 22x_5 + 80x_6 \ge 800$
 $x_6 \ge 1$ barem jedan obrok svinjetine i pasulja

Prirodno Ograničenje

$$x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$$

Rešenje

Kada se reši LP problem (upotrebom MATLAB-a) dobijamo da nas optimalan dijetetski obrok košta \$7.78, pri čemu je jelovnikom obuhvaćeno:

- 12.27 porcija ovsene kaše
 - 0 porcija piletine
 - 0 porcija jaja
 - 2.44 porcija mleka
 - 0 porcija pite sa višnjama

1 porcija svinjetine sa pasuljem

Dijeta i trgovac tabletama

Za dijetu iz prethodnog primera trgovac tabletama nudi energetske, proteinske i kalcijumske pilule. Cene pilula su date na sledeći način:

 y_1 cena (u dolarima) za pilulu sa energetskom vrednošću od 1 kcal

 y_2 cena (u dolarima) za pilulu od 1 g proteina

 y_3 cena (u dolarima) za pilulu od 1mg calcium-a

LP problem

Minimizovati Kriterijum optimalnosti

$$y=0.3x_1 + 2.40x_2 + 1.30x_3 + 0.90x_4 + 2.0x_5 + 1.9x_6$$

ograničenja:

Nutricionistički zahtevi

 $\mathbf{x_1} = \mathbf{porcija}$ ovsenih kaša: Cena nutricionističkih komponenti u jednom obroku ovsene kaše ne sme da pređe cenu same kaše u jednoj porciji $110y_1 + 4y_2 + 2y_3 \le 0.3$ (4 $y_2 =$ cena proteina u ovsenoj kaši)

Trgovački pristup

Trgovački putnik želi da zaradi što je moguće više para, da maksimizira cenu pilula, vodeći računa o nutricionističkim ograničenjima. (2000 kcal, 55g protein i 800 mg calcium-a). Problem se formuliše na sledeći način:

Maksimizirati
$$2000y_1 + 55y_2 + 800y_3$$

$$110y_1 + 4y_2 + 2y_3 \le 0.3$$

$$205y_1 + 32y_2 + 12y_3 \le 2.4$$

$$160y_1 + 13y_2 + 54y_3 \le 1.3$$

$$160y_1 + 8y_2 + 285y_3 \le 0.9$$

$$420y_1 + 4y_2 + 22y_3 \le 2.0$$

$$260y_1 + 14y_2 + 80y_3 \le 1.9$$

$$y_1, y_2, y_3 \ge 0$$

Rešenje

Rešavanjem ovog LP dobijaju se sledeće maksimalne cene pilula:

\$0.27 za 1 kcal eneretsku pilulu

\$0.00 za 1 g proteinske pilule

\$0.16 za 1mg kalcijumske pilule

Ukupno = 0.27 (2000) + 0.16 (800) = \$6.71

ISTO KAO I U PRETHODNOM PRIMERU

