Unit 7 → Rotational Motion

Rotational Motion

- Rotational Motion
 - The motion of objects that spin about an axis
 - Variables are assigned new types of equations using properties of rotation such as the radius
- Arc Length
 - o Distance the object has traveled around its circular path
 - o Formula
 - $\mathbf{s} = \theta r = \Delta x$
 - $s = arc \ length(m)$
 - r = radius(m)
 - $\theta = angular position (rad)$
 - The arc length around one full circle is the circumference
- Sign Convention
 - Counterclockwise is positive (+)
 - Clockwise is negative (-)
- Angular Position
 - Represented by θ and $\Delta\theta$, measured in radians or rad
 - \circ Rotational equivalent to x and Δx , which are measured in meters
- Angular Velocity
 - \circ Rate at which angular position changes, measured in rad/s
 - Uniform circular motion = constant angular velocity
 - \circ Represented by lowercase omega, ω
 - o Formula
 - \circ Rotational equivalent to v_x , which is measured in m/s
 - May also be called angular speed or angular frequency
- Angular Acceleration
 - Rate at which angular velocity changes
 - \circ Represented by lowercase alpha, α
 - o Formula
 - Rotational equivalent to a_x , which is m/s^2

- Converting Equations
 - $\circ \quad \omega = \omega_0 + \alpha t$
 - $\blacksquare \quad \text{Was } v_x = v_{x_0} + at$
 - $\circ \quad \Delta\theta = \omega_0 t + \frac{1}{2} \alpha t^2$
 - $\circ \quad \omega^2 = \omega_0^2 + 2\alpha\Delta\theta$
- Velocities
 - \circ Angular speed (ω)
 - \circ Tangential velocity (v_t)
 - Tangent to the circle
 - $\mathbf{v}_t = \omega r$
- Accelerations
 - \circ Angular acceleration (α)
 - \circ Tangential acceleration (a_t)
 - Tangent to the circle
 - $a_t = \alpha r$
 - \circ Centripetal acceleration (a_c)
 - $a_c = \frac{v_t^2}{r}$

Concepts of Rotational Motion

Rotational Forces

- Moment of Inertia
 - An object rotating wants to stay rotating and an object not rotating wants to stay not rotating unless acted upon by an unbalanced torque
 - The resistance to change in rotation
 - Stubbornness
 - Depends on...
 - Mass
 - Axis of rotation
 - o Greater the radius, greater the moment of inertia
 - Equations
 - NOT IN THE REFERENCE TABLE

 - $I_{collection \ of \ particles} = m_1 r_1^2 + m_2 r_2^2 + m_3 r_3^2 + ...$
 - $I = moment of inertia (kg \cdot m^2)$
- Torque
 - A rotational force
 - o Depends on...
 - Magnitude of force
 - Distance from pivot
 - Angle of force
 - Equations
 - ON the reference table
 - $au au = r_{\perp}F = rFsin\theta$
 - $\tau = torque(N \cdot m)$
 - r = distance from pivot (m)
 - o The Set Up

$$au_{net} = au_{net}$$
 $I\alpha = \Sigma au$
 $I\alpha = au_1 + au_2 + au_3 + \dots$

- Center of gravity
 - \circ $au_{net} = extit{ON}$ when the pivot point is the center of gravity
 - o BALANCED
 - Equations

$$x_{cg} = \frac{x_1 m_1 + x_2 m_2 + x_3 m_3 + \dots}{m_1 + m_2 + m_3 + \dots}$$

$$y_{cg} = \frac{y_1 m_1 + y_2 m_2 + y_3 m_3 + \dots}{m_1 + m_2 + m_3 + \dots}$$

- Constraints due to ropes and pulleys
 - Nonslipping rope
 - $\circ v_{obj} = \omega R$
 - Rim speed
 - $\circ \quad a_{obj} = \alpha R$
 - Rim acceleration

Rotational Momentum

- Angular momentum
 - $\circ \quad L = angular \ momentum \ (kg \cdot m^2/s)$
 - Equations
 - $L = I\omega$
- Conservation of angular momentum
 - Relationships
 - When radius decreases, moment of inertia increases
 - When moment of interia decreases, angular momentum decreases
 - o Zero total momentum
- Transer of angular momentum
 - \circ $L = r_{\perp}p = prsin\theta = mvrsin\theta$
 - Relationship between linear and angular momentum

Rotational Energy

- Rotational kinetic energy
 - \circ $K_{rot} = rotational kinetic energy (J)$
 - Equations
 - $K_{rot} = \frac{1}{2}I\omega^2$
 - $\blacksquare \quad E_T = E_T \to U_g = K + K_{rot}$

