Aula 00 – Autômatos Finitos

Prof. Eduardo Zambon

Departamento de Informática (DI) Centro Tecnológico (CT) Universidade Federal do Espírito Santo (Ufes)

Algoritmos e Fundamentos da Teoria de Computação (ToCE)

Engenharia de Computação

Introdução

- Os autômatos finitos (AFs) formam uma família de mecanismos abstratos de computação.
- Servem como uma abstração de inúmeros dispositivos mecânicos e eletro/eletrônicos.
- Estes *slides*: definição, conceitos e propriedades de AFs.
- Objetivos: revisar/apresentar o fundamental teórico para a comparação com Máquinas de Turing.

Referências

Chapter 5 – Finite Automata

T. Sudkamp

Chapter 1 – Regular Languages

M. Sipser

Chapter 2 – Finite Automata and Regular Languages

A. Maheshwari

Introdução

- Computação de um AF determina se uma string:
 - satisfaz um conjunto de condições; ou
 - corresponde a um padrão definido.
- Entrada de um AF: uma string s.
- Saída de um AF: aceita ou rejeita s.
- Exemplos de materializações de uma AFs: máquina de venda de bebidas, fechadura com teclado numérico, etc.
- Nestes exemplos, espera-se que o comportamento das AF seja determinístico.
- Ao final dos slides: estudo dos efeitos do não-determinismo nas capacidades das AFs.

Uma Máquina de Estados Finita

- Uma definição formal de uma máquina não se importa com hardware: irrelevante.
- Se importa com: descrição das operações internas realizadas para processar a entrada.
- O quê deve ser abstraído e o quê deve ficar na representação de uma máquina (sistema)?

Exemplo: máquina de venda automática

- Suponha um dispositivo de venda automática.
- Esse dispositivo é uma máquina de estados finita.
- Entrada: moedas de 5 centavos (nickel n), 10 centavos (dimes d) e 25 centavos (quarter q).
- Quando 30 centavos são inseridos ⇒ máquina libera o produto.
- Máquina não dá troco. "Rouba" valores que excederem os 30 centavos.
- Máquina tem memória limitada ⇒ "sabe" a quantidade de dinheiro inserida ou faltando.
- Informação registrada no estado interno da máquina.
- Estado é alterado sempre que uma entrada (moeda) é recebida e processada.

Exemplo: máquina de venda automática

- Estados são rotulados com a quantidade de centavos faltando para completar o preço do produto.
- Projeto da máquina pode ser representado pelo seguinte diagrama de estados (um grafo direcionado rotulado).

- Estado 30 é o estado inicial.
- Estado 0 é o estado de aceite.
- Arcos são rotulados com n, d ou q, indicando a moeda de entrada.

Exemplo: máquina de venda automática

- **Entrada** da máquina: strings do conjunto $\{n, d, q\}^*$.
- Execução começa no estado inicial.
- Cada símbolo da entrada gera uma transição pelo arco correspondente.
- Se não há transição compatível com símbolo atual ⇒ erro.
- Repete até processar toda a string.
- Se a computação termina em um estado de aceite ⇒ aceita string.
- Senão rejeita.
- Exemplo: máquina do slide anterior aceita dndn e rejeita nndn.

A descrição independente de implementação do exemplo é chamada de máquina abstrata. A definição abaixo apresenta um tipo dessas máquinas.

Definição 5.2.1 (Sudkamp)

Um autômato finito determinístico – deterministic finite automaton (DFA) é uma tupla $M = (Q, \Sigma, \delta, q_o, F)$ aonde:

- Q é um conjunto finito de estados;
- Σ é um alfabeto;
- $q_0 \in Q$ é o estado inicial;
- F ⊆ Q são os estados finais ou de aceite; e
- δ : $Q \times \Sigma \rightarrow Q$ é a função de transição.

- Um DFA pode ser imaginado como uma máquina física (mecânica), composta por:
 - 1 um único registrador interno: indica o estado atual;
 - 2 um conjunto de valores para o registrador: Q;
 - 3 uma fita contendo a entrada;
 - 4 uma cabeça de leitura para fita; e
 - 5 um conjunto de instruções.
- A fita é dividida em quadrados, cada um guarda um símbolo de Σ.
- Não existe um limite superior para o tamanho da entrada.
- ⇒ Fita tem comprimento arbitrário (unbounded).
- Entrada fica no início da fita.

- Cabeça de leitura lê um único quadrado da fita por vez.
- Corpo da máquina: cabeça de leitura + registrador.
- Exemplo: configuração inicial de uma computação com entrada baba:

- O estado da máquina q_i e o símbolo lido a determina a instrução a ser executada (transição do DFA).
- Execução da instrução altera o estado e move a cabeça de leitura um quadrado para a direita.
- Próximo estado é $\delta(q_i, a)$. Identificado de forma única.

- Objetivo da computação de um DFA: aceitar/rejeitar string.
- Computação termina quando a cabeça lê um quadrado vazio (branco).
- Aceite da string aba.

$$\begin{aligned} \text{M: } Q &= \{q_0, q_1\} & \delta(q_0, a) &= q_1 \\ \Sigma &= \{a, b\} & \delta(q_0, b) &= q_0 \\ \text{F} &= \{q_1\} & \delta(q_1, a) &= q_1 \\ \delta(q_1, b) &= q_0 \end{aligned}$$

Um DFA é um aceitador (reconhecedor) de uma linguagem.

Definição 5.2.2 (Sudkamp)

Seja M = $(Q, \Sigma, \delta, q_o, F)$ um DFA. A linguagem de M, denotada por L(M), é o conjunto das strings em Σ^* aceitas por M.

- Linguagem do exemplo anterior?
- Conjunto de todas as strings sobre {a, b} que terminam em a.

- DFA é uma máquina *read-only*: processa a entrada da esquerda para a direita e nunca mais volta.
- Um símbolo depois de lido não afeta mais a computação.
- ⇒ O resultado da computação depende somente do estado atual e da parte da entrada ainda não processada.
- Isso é chamado de configuração da máquina, representado por [q_i, w].
- $q_i \in Q$ é o estado atual.
- $w \in \Sigma^*$ é a entrada ainda não processada.
- Um ciclo de instrução de um DFA transforma uma configuração em outra.
- Notação: $[q_i, aw] |_{\mathbb{M}} [q_j, w]$.
- Leia como "gera", "computa" ou "produz" ("yields").

Definição 5.2.2 (Sudkamp)

A função $\[\]_{M}$ sobre $\[\] \[\] \times \Sigma^{+}$ é definida como

$$[q_i, aw] \vdash_{M} [\delta(q_i, a), w]$$

para $a \in \Sigma$ e $w \in \Sigma^*$, onde δ é a função de transição do DFA M.

- Omite-se o M do símbolo quando não há possibilidade de ambiguidade.
- $[q_i, u] \vdash [q_j, v]$ indica que a configuração $[q_j, v]$ pode ser obtida de $[q_i, u]$ através de zero ou mais transições.

Exemplo 5.2.1 (Sudkamp)

O DFA M definido abaixo aceita as strings que contém a substring bb, i.e., $L(M) = (\mathbf{a} \cup \mathbf{b})^* \mathbf{bb} (\mathbf{a} \cup \mathbf{b})^*$. Elementos de M:

$$Q = \{q_0, q_1, q_2\} \qquad \Sigma = \{a, b\} \qquad F = \{q_2\}.$$

A função de transição δ é dada como uma tabela de transição.

$$\begin{array}{c|cccc} \delta & a & b \\ \hline q_0 & q_0 & q_1 \\ q_1 & q_0 & q_2 \\ q_2 & q_2 & q_2 \end{array}$$

Traces das computações de M para duas possíveis entradas.

$$[q_0, abba] \vdash [q_0, bba] \vdash [q_1, ba] \vdash [q_2, a] \vdash [q_2, \lambda] \quad \checkmark$$

 $[q_0, abab] \vdash [q_0, bab] \vdash [q_1, ab] \vdash [q_0, b] \vdash [q_1, \lambda] \quad \times$

- Função de transição δ especifica ação da máquina para um dado estado e símbolo do alfabeto.
- Conveniente estender para a função $\hat{\delta}$ cuja entrada é um estado e uma string sobre o alfabeto.

Definição 5.2.4 (Sudkamp)

A função de transição estendida de um DFA é a função $\hat{\delta}: Q \times \Sigma^* \to Q$. Os valores de $\hat{\delta}$ são definidos recursivamente pelo comprimento da string de entrada.

- **1 Base:** $\hat{\delta}(q_i, \lambda) = q_i$ e $\hat{\delta}(q_i, a) = \delta(q_i, a)$ para todo $a \in \Sigma$.
- **Passo recursivo:** $\hat{\delta}(q_i, ua) = \delta(\hat{\delta}(q_i, u), a)$ para qualquer string u onde length(u) > 0.

- A computação de uma máquina no estado q_i com string w para no estado $\hat{\delta}(q_i, w)$.
- Quando w é a string de entrada completa, $\hat{\delta}(q_0, w)$ indica o estado final da computação.
- A função $\hat{\delta}(q_0, w)$ simula as aplicações recursivas de δ para processar w.
- A string w é aceita se $\hat{\delta}(q_0, w) \in F$.
- A linguagem de um DFA M é

$$\mathsf{L}(\mathsf{M}) = \{ w \mid \hat{\delta}(q_0, w) \in \mathsf{F} \}.$$

- Um diagrama de estados de um DFA é um grafo direcionado e rotulado onde:
 - Nós representam os estados da máquina; e
 - Arcos representam as transições de δ .
- Existe uma correspondência inequívoca entre a definição de um DFA e seu diagrama de estados (Def. 5.3.1).
- ⇒ Usa-se o diagrama de estados para (exibir/definir) um DFA por ser mais intuitivo.
- Transição do DFA ⇒ Arco no diagrama de estados.
- Uma sequência de arcos no diagrama define um caminho (path) que "soletra" a string de entrada.

- As computações de um DFA e os caminhos no seu diagrama de estados são equivalentes.
- Seja \mathbf{p}_w um caminho começando em q_0 que soletra w e seja q_w o nó terminal de \mathbf{p}_w . É possível provar que (Teorema 5.3.2):
 - **Existe um único caminho** para cada string $w \in \Sigma^*$.
 - Ao término do processamento de w, o DFA está no estado q_w .
- A equivalência aqui descrita permite que os traces da computação do DFA (operador ⊢) sejam interpretados visualmente como caminhos no diagrama.

Exemplo 5.3.1 (Sudkamp)

O diagrama de estados do DFA do Exemplo 5.2.1 é:

Estados registram o número de *b*'s consecutivos que já foram processados.

Exemplo 5.3.2 (Sudkamp)

Qual é a linguagem do DFA M abaixo?

 $L(M) = (\mathbf{b} \cup \mathbf{ab})^*(\mathbf{a} \cup \lambda)$, o conjunto de strings sobre $\{a, b\}$ que não contém a substring aa.

Exemplo 5.3.3 (Sudkamp)

Strings sobre $\{a, b\}$ que contém a substring bb ou não contém a substring aa são aceitas pelo DFA abaixo:

Esta linguagem é a união das linguagens dos dois exemplos anteriores.

Exemplo 5.3.6 (Sudkamp)

Seja $\Sigma = \{0, 1, 2, 3\}$. Uma string em Σ^* é uma sequência de dígitos de Σ . O DFA M abaixo determina se a soma dos dígitos da string de entrada é divisível por quatro.

- Definição de DFA permite somente duas possíveis saídas: aceitar ou rejeitar a string de entrada.
- Estender a definição de saída associando um valor com cada estado.
- Resultado da computação é o valor associado ao estado onde a computação termina.
- ⇒ Máquina de Moore (E.F. Moore, 1956).
- Outra possibilidade: associar saída com as transições da máquina.
- ⇒ Máquina de Mealy (G.H. Mealy, 1955).
- Máquina do exemplo anterior é um somador módulo 4: associe o valor i ao estado imod4.

Exemplos 5.3.7 e 5.3.8 (Sudkamp)

DFA M aceita a linguagem formada pelas strings sobre $\{a, b\}$ que contém um número par de a's e um número ímpar de b's.

DFA M' aceita a linguagem complementar de M, isto é:

$$\mathsf{L}(\mathsf{M}') = \{a,b\}^* - \mathsf{L}(\mathsf{M}).$$

- Por definição, um DFA precisa processar a entrada toda.
- Desnecessário quando o resultado já foi estabelecido (e.g., DFA em um estado sem transição).
- Solução: determinismo incompleto cada configuração tem no máximo uma ação especificada.
- $\blacksquare \Rightarrow A$ função δ passa a ser parcial.
- Computação agora pode parar se não há uma transição válida para o símbolo lido.
- Computação que termina antes de processar toda a string rejeita a entrada.

Exemplo 5.3.9 (Sudkamp)

O diagrama de estados abaixo define um DFA com especificação incompleta que aceita (**ab**)***c**.

Computação para entrada *abcc* é rejeitada pois não é possível processar o último c no estado q_2 .

- Duas máquinas que aceitam a mesma linguagem são ditas equivalentes.
- DFA com especificação incompleta ⇒ DFA equivalente: adicionar um estado de erro.

Exemplo 5.3.10 (Sudkamp)

O DFA abaixo aceita a mesma linguagem do DFA anterior.

Exemplo 5.3.11 (Sudkamp)

O DFA com especificação incompleta definido pelo diagrama abaixo aceita a linguagem $\{a^ib^i \mid i \leq n\}$, para um natural fixo n.

- Estados *a_k* contam o número de *a*'s.
- Estados b_k garantem o mesmo número de b's.
- É possível fazer o mesmo para aceitar $\{a^ib^i \mid i \geq 0\}$?
- ⇒ Não. Requer um número infinito de estados.

- Modificar definição de máquina para permitir computações não-determinísticas.
- Em um autômato finito não-determinístico nondeterministic finite automaton (NFA), várias instruções podem ser executadas para uma dada configuração.
- Contra-intuitivo para máquinas de computação.
- Mas flexibilidade do não-determinismo facilita a construção do autômato.
- Uma transição em um NFA tem o mesmo efeito que em um DFA: mudar o estado da máquina a partir da configuração atual.

- Função de transição deve indicar todos os possíveis estados alvo.
- \blacksquare \Rightarrow Valor da função δ agora é um conjunto de estados.
- Formalmente, $\delta : \mathbf{Q} \times \mathbf{\Sigma} \to \mathcal{P}(\mathbf{Q})$ (Def. 5.4.1).
- Demais componentes de um NFA são iguais ao do DFA.
- Exemplos de δ não-determinísticas:

- Exemplo para ilustrar as principais diferenças entre DFAs e NFAs.
- Seja o DFA M_1 , com $L(M_1) = (a \cup b)*abba(a \cup b)*$:

- Estados q₀ a q₃ gravam o "progresso" na obtenção da substring abba.
- Computação determinística precisa "retroceder" quando uma substring não possui a forma desejada.

■ Um NFA M_2 com $L(M_2) = L(M_1)$:

- Não-determinismo está na escolha da transição saindo de q₀ quando um a é processado.
- NFA ⇒ múltiplas computações para uma string de entrada!
- Exemplo: computações de M₂ para string aabba.

$$[q_0, aabba] \vdash [q_1, abba]$$

$$[q_0, aabba] \vdash [q_0, abba] \vdash [q_1, bba] \vdash [q_2, ba] \vdash [q_3, a] \vdash [q_4, \lambda]$$

Ainda há outras possibilidades de computações além das acima.

- Qual é o critério de aceite de uma string em um NFA?
- Deve existir ao menos uma computação que:
 - 1 processa toda a string de entrada; e
 - 2 termina em um estado de aceite.
- No exemplo anterior: a string aabba é aceita por M₂.
- A existência de outras computações que não aceitam a string é irrelevante.

Definição 5.4.2 (Sudkamp)

A linguagem de um NFA M, denotada por L(M), é o conjunto de strings aceitas por M. Isto é, $L(M) = \{w \mid \text{ existe uma computação } [q_0, w] \vdash [q_i, \lambda] \text{ com } q_i \in F\}.$

- Máquinas não-determinísticas geralmente são construídas para usar uma estratégia de busca.
- Computação aonde há mais de uma transição possível ⇒ branch: máquina "se multiplica" e cada uma segue por um caminho.
- Isso é razoável?
- DFAs são claramente implementáveis em HW ou SW.
- E os NFAs?
- Podem ser simulados por multiprocessamento.
- "Máquina se multiplica" ⇒ cria novos processos.

Exemplo 5.4.1 (Sudkamp)

O NFA M definido abaixo aceita a linguagem $L(M) = (\mathbf{a} \cup \mathbf{b})^* \mathbf{bb}$. Elementos de M:

Diagrama de estados de M:

Autômatos Finitos Não-Determinísticos

Exemplo 5.4.2 (Sudkamp)

As máquinas M_1 e M_2 abaixo aceitam $(\mathbf{a} \cup \mathbf{b})^*\mathbf{bb}(\mathbf{a} \cup \mathbf{b})^*$:

M₁ é o DFA do Exemplo 5.3.1. M₂ é um NFA equivalente.

Autômatos Finitos Não-Determinísticos

Exemplo 5.4.3 (Sudkamp)

Qual é a linguagem aceita pelo NFA M abaixo?

M aceita strings sobre $\{a, b\}$ contendo a substring aa ou bb. Formalmente:

$$L(M) = (a \cup b)^* (aa \cup bb)(a \cup b)^*.$$

- Transições em DFAs e NFAs requerem a leitura de um símbolo da entrada.
- Relaxamento para NFA: transições que não mexem na entrada ⇒ transições-λ.
- NFA-λ: classe de máquinas não-determinísticas que possuem transições-λ.
- Por que fazer isso?
- Transições-λ facilitam o projeto de máquinas que aceitam linguagens complexas.

- Função de transição de um NFA-λ precisa ser ajustada.
- Formalmente, $\delta : \mathbb{Q} \times (\Sigma \cup \{\lambda\}) \to \mathcal{P}(\mathbb{Q})$ (Def. 5.5.1).
- É possível que as computações em NFA-λ continuem após a entrada ser totalmente processada!
- Critério de aceite é o mesmo de um NFA.
- Exclui caso patológico acima.
- Possibilidade de mudança de estado sem consumir a entrada permite uma construção incremental de máquinas.

Exemplo 5.5.1 (Sudkamp)

Sejam M₁ e M₂ dois NFAs como abaixo.

Temos:

$$L(M_1) = (a \cup b)^*bb(a \cup b)^*$$

$$L(M_2) = (b \cup ab)^*(a \cup \lambda).$$

Podemos combinar a duas máquinas em uma só usando transições- λ .

Exemplo 5.5.1 (cont.)

A linguagem do NFA- λ M abaixo é $L(M_1) \cup L(M_2)$.

Construir um DFA equivalente a M é bem mais complexo (Exemplo 5.3.3).

Exemplo 5.5.2 (Sudkamp)

A linguagem do NFA- λ abaixo é $L(M_1)L(M_2)$.

Ou seja, basta conectar as duas máquinas por uma transição- λ .

Exemplo 5.5.3 (Sudkamp)

Autômato abaixo aceita strings de comprimento dois.

Autômato que aceita qualquer string de comprimento par.

- Classes de máquinas vistas até agora: DFA, NFA, NFA-λ.
- Cada uma é uma generalização da anterior.
- Pergunta chave: Ao permitir não-determinismo nós criamos uma classe mais poderosa de máquinas?
- Isto é, existe uma linguagem aceita por um NFA que não é aceita por nenhum DFA?
- A resposta é não!
- Existe um algoritmo genérico que converte qualquer
 NFA-λ em um DFA equivalente.

- Transições em DFAs e NFAs causam o processamento de um símbolo de entrada.
- Como fazer com os NFA-λ?
- ⇒ Criar uma função de transição da entrada t.
- Valores de t são os estados alcançáveis através de uma transição normal e zero ou mais transições-λ.
- Exemplo. Para o diagrama abaixo:

$$t(q_1, a) = \{q_2, q_3, q_5, q_6\}$$

- Definição da função t(qi, a) pode ser dividida em três partes.
 - Construir o conjunto de estados alcançáveis a partir de *q*_i sem processar um símbolo da entrada.
 - 2 Processar um a para todos os estados do item 1.
 - 3 Seguir $arcos-\lambda$ partindo dos estados do item 2.
- Para realizar as operações acima, é necessário conhecer os caminhos no diagrama que geram a string nula.
- O fecho- λ de um estado q_i é composto por todos os estados alcançáveis a partir de q_i através de apenas transições- λ .
- Notação: λ -closure(q_i). (Definição 5.6.1 implementável como um algoritmo simples).

Definição 5.6.2 (Sudkamp)

Dado um NFA- λ M com função de transição δ , a função de transição da entrada $t: \mathbb{Q} \times \Sigma \to \mathcal{P}(\mathbb{Q})$ é definida como abaixo.

$$t(q_i, a) = \bigcup_{q_j \in \lambda\text{-}closure(q_i)} \lambda\text{-}closure(\delta(q_j, a))$$

- Agora podemos tratar NFA-λ como NFAs normais usando a função t.
- Para qualquer NFA sem transições- λ temos que $t = \delta$.
- Usamos a função *t* para construir um DFA equivalente.

Exemplo 5.6.1 (Sudkamp)

O NFA- λ abaixo aceita a linguagem $\mathbf{a}^+\mathbf{c}^*\mathbf{b}^*$. As funções δ e t são apresentadas nas tabelas.

ა.				
δ	a	b	с	λ
q_0	$\{q_0, q_1, q_2\}$	Ø	Ø	Ø
q_1	Ø	$\{q_1\}$	Ø	Ø
q_2	Ø	Ø	$\{q_2\}$	$\{q_1\}$
t	a	b	c	
q_0	$\{q_0, q_1, q_2\}$	Ø	Ø	
q_1	Ø	$\{q_1\}$	Ø	
q_2	Ø	$\{q_1\}$	$\{q_1,q_2\}$	

- Aceite em um NFA: existe (ao menos) uma computação que processa toda a entrada e para em um estado final.
- Em um NFA-λ: podem haver vários caminhos para o processamento da entrada.
- Em um DFA: há exatamente um caminho para cada entrada.
- Remover não-determinismo requer que o DFA simule as explorações simultâneas de todas as possíveis computações no NFA-λ.
- Isso pode ser feito de forma algorítmica (Algoritmo 5.6.3).

Algorithm 6.6.3 Construction of DM, a DFA Equivalent to NFA- λ M

input: an NFA- λ M = (Q, Σ , δ , q_0 , F) input transition function t of M

- 1. initialize Q' to $\{\lambda closure(q_0)\}$
- 2. repeat
 - 2.1. if there is a node $X \in Q'$ and a symbol $a \in \Sigma$ with no arc leaving X labeled a then

2.1.1. let
$$Y = \bigcup t(q_i, a)$$

2.1.2. if
$$Y \notin Q'$$
 then set $Q' := Q' \cup \{Y\}$

2.1.3. add an arc from X to Y labeled a

else done := true

until done

3. the set of accepting states of DM is $F' = \{X \in Q' \mid X \text{ contains an element } q_i \in F\}$

Prova de correção do algoritmo acima: Teorema 5.6.4 e Corolário 5.6.5.

Removendo não-determinismo do Exemplo 5.6.1.

Exemplo 5.6.2 (Sudkamp)

O NFA M abaixo aceita a linguagem **a**⁺**b**⁺. O DFA DM equivalente é dado a seguir.

Exemplo 5.6.4 (Sudkamp)

As máquinas M_1 e M_2 aceitam $\mathbf{a}(\mathbf{ba})^*$ e \mathbf{a}^* , respectivamente.

Juntar e determinizar:

- Algoritmo 5.6.3 (subset construction) é simples de implementar.
- Sempre termina: cria no máximo $card(\mathcal{P}(Q))$ estados.
- Limite do número de repetições: $card(\mathcal{P}(Q))card(\Sigma)$.
- Explosão combinatória: se NFA tem n estados o DFA pode ter 2ⁿ!
- Pode de fato acontecer na prática: vide Exemplo 5.6.3 no livro do Sudkamp.
- Próximo passo é a minimização do DFA: algoritmo de Hopcroft.
- Fora do escopo dessa disciplina.

Aula 00 – Autômatos Finitos

Prof. Eduardo Zambon

Departamento de Informática (DI) Centro Tecnológico (CT) Universidade Federal do Espírito Santo (Ufes)

Algoritmos e Fundamentos da Teoria de Computação (ToCE)

Engenharia de Computação