LAB - 1 Implement A* Search algorithm

```
def aStarAlgo(start node, stop node):
   open set = set(start node)
   closed set = set()
   g = \{ \}
   parents = {}
   q[start node] = 0
   parents[start_node] = start_node
   while len(open set) > 0:
       n = None
       for v in open set:
           if n == None \text{ or } g[v] + heuristic(v) < g[n] + heuristic(n):
       if n == stop node or Graph nodes[n] == None:
           pass
       else:
           for (m, weight) in get_neighbors(n):
               if m not in open set and m not in closed set:
                   open_set.add(m)
                   parents[m] = n
                   g[m] = g[n] + weight
               else:
                    if g[m] > g[n] + weight:
                        g[m] = g[n] + weight
                        parents[m] = n
                        if m in closed_set:
                            closed set.remove(m)
                            open_set.add(m)
       if n == None:
           print("Path does not exist!")
           return None
       if n == stop node:
           path = []
           while parents[n] != n:
               path.append(n)
               n = parents[n]
           path.append(start_node)
           path.reverse()
           print("Path found: {}".format(path))
           return path
       open set.remove(n)
       closed set.add(n)
   print("Path does not exist!")
   return None
```

```
def get_neighbors(v):
   if v in Graph nodes:
       return Graph_nodes[v]
   else:
       return None
def heuristic(n):
   H dist = {
       "A": 11,
       "B": 6,
       "C": 99,
       "D": 1,
       "E": 7,
       "G": 0,
   }
   return H_dist[n]
Graph_nodes = {
   "A": [("B", 2), ("E", 3)],
   "B": [("C", 1), ("G", 9)],
   "C": None,
   "E": [("D", 6)],
   "D": [("G", 1)],
aStarAlgo("A", "G")
Output
Path found: ['A', 'E', 'D', 'G']
['A', 'E', 'D', 'G']
```

LAB - 3 For a given set of training data examples stored in a .CSV file, implement and demonstrate the Candidate-Elimination algorithm to output a description of the set of all hypotheses consistent with the training examples.

```
import csv

file = open("lab3ds.csv")
data = list(csv.reader(file))[1:]
concepts = []
target = []
```

```
for i in data:
    concepts.append(i[:-1])
    target.append(i[-1])
specific h = ["0"] * len(concepts[0])
general_h = [["?" for i in range(len(specific_h))] for i in
range(len(specific h))]
for i, instance in enumerate (concepts):
    if target[i] == "Yes":
        for x in range(len(specific h)):
            if specific h[x] == "0":
                specific h[x] = instance[x]
            elif instance[x] != specific h[x]:
                specific_h[x] = "?"
                general h[x][x] = "?"
    if target[i] == "No":
        for x in range(len(specific h)):
            if instance[x] != specific h[x]:
                general h[x][x] = specific h[x]
            else:
                general h[x][x] = "?"
indices = [i for i, val in enumerate(general h) if val == ["?", "?", "?",
"?", "?", "?"]]
for i in indices:
    general h.remove(["?", "?", "?", "?", "?"])
print("Final Specific:", specific h, sep="\n")
print("Final General:", general_h, sep="\n")
Output
Final Specific:
['Sunny', 'Warm', '?', 'Strong', '?', '?']
Final General:
[['Sunny', '?', '?', '?', '?'], ['?', 'Warm', '?', '?', '?', '?']]
```

Dataset

Sky	AirTemp	Humidity	Wind	Water	Forecast	EnjoySport
Sunny	Warm	Normal	Strong	Warm	Same	Yes
Sunny	Warm	High	Strong	Warm	Same	Yes
Cloudy	Cold	High	Strong	Warm	Change	No
Sunny	Warm	High	Strong	Cool	Change	Yes

LAB - 4 Write a program to demonstrate the working of the decision tree based ID3 algorithm. Use an appropriate data set for building the decision tree and apply this knowledge to classify a new sample.

```
def find entropy(df):
   Class = df.keys()[-1]
    entropy = 0
    values = df[Class].unique()
    for value in values:
        fraction = df[Class].value counts()[value] / len(df[Class])
        entropy += -fraction * np.log2(fraction)
    return entropy
def find entropy attribute(df, attribute):
    Class = df.keys()[-1]
    target variables = df[Class].unique()
    variables = df[attribute].unique()
    entropy2 = 0
    for variable in variables:
        entropy = 0
        for target variable in target variables:
            num = len(
                df[attribute][df[attribute] == variable][df[Class] ==
target variable]
            den = len(df[attribute][df[attribute] == variable])
            fraction = num / (den + eps)
            entropy += -fraction * log(fraction + eps)
        fraction2 = den / len(df)
        entropy2 += -fraction2 * entropy
    return abs(entropy2)
def find winner(df):
    IG = []
    for key in df.keys()[:-1]:
        IG.append(find entropy(df) - find entropy attribute(df, key))
    return df.keys()[:-1][np.argmax(IG)]
def get subtable(df, node, value):
    return df[df[node] == value].reset index(drop=True)
def buildTree(df, tree=None):
    node = find winner(df)
    attValue = np.unique(df[node])
    if tree is None:
        tree = {}
        tree[node] = {}
    for value in attValue:
        subtable = get subtable(df, node, value)
        clValue, counts = np.unique(subtable["play"], return_counts=True)
```

```
if len(counts) == 1:
           tree[node][value] = clValue[0]
        else:
            tree[node][value] = buildTree(subtable)
    return tree
import pandas as pd
import numpy as np
eps = np.finfo(float).eps
from numpy import log2 as log
df = pd.read csv("tennis.csv")
print("\n Given Play Tennis Data Set:\n\n", df)
tree = buildTree(df)
import pprint
pprint.pprint(tree)
test = {"Outlook": "Sunny", "Temperature": "Hot", "Humidity": "High",
"Wind": "Weak"}
def func(test, tree, default=None):
    attribute = next(iter(tree))
    print(attribute)
    if test[attribute] in tree[attribute].keys():
        print(tree[attribute].keys())
        print(test[attribute])
        result = tree[attribute][test[attribute]]
        if isinstance(result, dict):
            return func(test, result)
        else:
           return result
    else:
        return default
ans = func(test, tree)
print(ans)
```

Dataset

Outlook	Temperature	Humidity	Wind	play
Sunny	Hot	High	Weak	No
Sunny	Hot	High	Strong	No
Overcast	Hot	High	Weak	Yes
Rain	Mild	High	Weak	Yes
Rain	Cool	Normal	Weak	Yes
Rain	Cool	Normal	Strong	No
Overcast	Cool	Normal	Strong	Yes
Sunny	Mild	High	Weak	No
Sunny	Cool	Normal	Weak	Yes
Rain	Mild	Normal	Weak	Yes
Sunny	Mild	Normal	Strong	Yes
Overcast	Mild	High	Strong	Yes
Overcast	Hot	Normal	Weak	Yes
Rain	Mild	High	Strong	No

Given Play Tennis Data Set:

```
Outlook Temperature Humidity
                                 Wind play
0
      Sunny
                  Hot
                          High
                                 Weak No
1
                  Hot
                          High Strong
                                       No
      Sunny
2
  Overcast
                  Hot
                          High
                                 Weak Yes
3
      Rain
                 Mild
                         High
                                 Weak Yes
                  Cool Normal
4
                                Weak Yes
       Rain
5
       Rain
                 Cool Normal Strong No
  Overcast
                 Cool Normal Strong Yes
6
7
      Sunny
                 Mild High
                                Weak
                                       No
                 Cool Normal
8
      Sunny
                                Weak Yes
                 Mild Normal
                                Weak Yes
9
      Rain
10
      Sunny
                 Mild Normal Strong Yes
11 Overcast
                 Mild
                         High Strong Yes
                  Hot Normal
12
   Overcast
                                Weak Yes
13
      Rain
                  Mild High Strong No
{'Outlook': {'Overcast': 'Yes',
            'Rain': {'Wind': {'Strong': 'No', 'Weak': 'Yes'}},
            'Sunny': { 'Humidity': { 'High': 'No', 'Normal': 'Yes'}}}
Outlook
dict keys(['Overcast', 'Rain', 'Sunny'])
Sunny
Humidity
dict keys(['High', 'Normal'])
High
No
```

LAB - 5 Build an Artificial Neural Network by implementing the Backpropagation algorithm and test the same using appropriate data sets.

```
import numpy as np

x = np.array(([2,9],[1,5],[3,6]),dtype=float)

y = np.array(([92],[86],[89]),dtype=float)

x = x/np.amax(x, axis=0)

y = y/100

def sigmoid(x):
    return 1/(1+np.exp(-x))

def derivatives_sigmoid(x):
```

```
return x*(1-x)
epoch = 5
lr = 0.1
inputlayer neurons = 2
hiddenlayer neurons = 3
outputlayer neurons = 1
wh = np.random.uniform(size=(inputlayer neurons, hiddenlayer neurons))
bh = np.random.uniform(size=(1, hiddenlayer neurons))
wout = np.random.uniform(size=(hiddenlayer neurons, outputlayer neurons))
bout = np.random.uniform(size=(1, outputlayer neurons))
for i in range (epoch):
  hinp1 = np.dot(x, wh)
  hinp = hinp1 + bh
  hlayer act = sigmoid(hinp)
   outinp1 = np.dot(hlayer act, wout)
   outinp = outinp1 + bout
   output = sigmoid(outinp)
   EO = y - output
   outgrad = derivatives sigmoid(output)
   d output = EO * outgrad
   EH = d output.dot(wout.T)
   hiddengrad = derivatives sigmoid(hlayer act)
   d hiddenlayer = EH * hiddengrad
   wout += hlayer act.T.dot(d output) * lr
   wh += x.T.dot(d hiddenlayer) * lr
   print("--Epoch-",i+1,"--Starts--")
   print("Input :\n"+str(x))
   print("Actual Output : \n"+str(y))
   print("Predicted Output : \n", output)
   print("--Epoch-", i+1, "--Ends--")
print("Input :\n"+str(x))
print("Actual Output : \n"+str(y))
print("Predicted Output : \n", output)
```

```
--Epoch- 1 --Starts--
Input :
[[0.66666667 1.
 [0.33333333 0.55555556]
[1.
             0.66666667]]
Actual Output :
[[0.92]
[0.86]
 [0.89]]
Predicted Output:
 [[0.81504223]
 [0.8014937]
 [0.81597075]]
--Epoch- 1 --Ends--
--Epoch- 2 --Starts--
Input:
[[0.66666667 1.
[0.33333333 0.55555556]
             0.66666667]]
 [1.
Actual Output :
[[0.92]
 [0.86]
[0.89]]
Predicted Output:
 [[0.81604173]
[0.80245966]
 [0.8169656]]
--Epoch- 2 --Ends--
--Epoch- 3 --Starts--
Input :
[[0.66666667 1.
[0.33333333 0.55555556]
 [1.
            0.66666667]]
Actual Output :
[[0.92]
[0.86]
 [0.89]]
Predicted Output:
```

```
[[0.81702096]
 [0.80340646]
 [0.81794026]]
--Epoch- 3 --Ends--
--Epoch- 4 --Starts--
Input:
[[0.66666667 1.
 [0.33333333 0.55555556]
             0.66666667]]
Actual Output :
[[0.92]
 [0.86]
[0.89]]
Predicted Output :
 [[0.81798054]
 [0.80433467]
 [0.81889534]]
--Epoch- 4 --Ends--
--Epoch- 5 --Starts--
Input :
[[0.66666667 1.
[0.33333333 0.55555556]
 [1.
             0.66666667]]
Actual Output :
[[0.92]
 [0.86]
 [0.89]]
Predicted Output:
 [[0.81892105]
 [0.80524483]
[0.81983142]]
--Epoch- 5 --Ends--
Input:
[[0.66666667 1.
 [0.33333333 0.55555556]
             0.66666667]]
 [1.
Actual Output :
[[0.92]
 [0.86]
 [0.89]]
```

```
Predicted Output:
[[0.81892105]
[0.80524483]
[0.81983142]]
```

LAB - 6 Write a program to implement the naïve Bayesian classifier for a sample training data set stored as a .CSV file. Compute the accuracy of the classifier, considering few test data sets.

```
import pandas as pd
from sklearn.preprocessing import LabelEncoder
from sklearn.model selection import train test split
data = pd.read csv('tennis.csv')
print("The first 5 Values of data is :\n", data.head())
X = data.iloc[:, :-1]
print("\nThe First 5 values of the train attributes is\n", X.head())
Y = data.iloc[:, -1]
print("\nThe First 5 values of target values is\n", Y.head())
obj1= LabelEncoder()
X.Outlook = obj1.fit transform(X.Outlook)
print("\n The Encoded and Transformed Data in Outlook \n", X.Outlook)
obj2 = LabelEncoder()
X.Temperature = obj2.fit transform(X.Temperature)
obj3 = LabelEncoder()
X.Humidity = obj3.fit transform(X.Humidity)
obj4 = LabelEncoder()
X.Wind = obj4.fit transform(X.Wind)
print("\n The Encoded and Transformed Training Examples \n", X.head())
obj5 = LabelEncoder()
```

```
Y = obj5.fit transform(Y)
print("The class Label encoded in numerical form is",Y)
X train, X test, Y train, Y test = train test split(X, Y, test size = 0.20)
from sklearn.naive bayes import GaussianNB
classifier = GaussianNB()
classifier.fit(X_train, Y_train)
from sklearn.metrics import accuracy_score
print("Accuracy is: ", accuracy_score(classifier.predict(X_test), Y_test))
Output
The first 5 Values of data is:
    Outlook Temperature Humidity Wind Play
                  Hot
                          High Weak
0
     Sunny
                                         No
1
                         High Strong No
     Sunny
                  Hot
2
  Overcast
                         High
                                  Weak Yes
                  Hot
                                 Weak Yes
3
      Rain
                 Mild
                         High
                 Cool Normal
4
      Rain
                                 Weak Yes
The First 5 values of the train attributes is
    Outlook Temperature Humidity
                                  Wind
0
     Sunny
                  Hot
                          High
                                  Weak
1
     Sunny
                  Hot
                         High Strong
  Overcast
                  Hot
                         High
                                 Weak
3
      Rain
                Mild
                          High
                                 Weak
      Rain
                Cool Normal Weak
The First 5 values of target values is
0
     No
1
    No
2
    Yes
3
   Yes
    Yes
Name: Play, dtype: object
The Encoded and Transformed Data in Outlook
     2
1
```

```
2
    0
3
    1
4
    1
5
    1
6
    0
7
    2
    2
8
9
    1
    2
10
11 0
12
    0
13 1
```

Name: Outlook, dtype: int64

The Encoded and Transformed Training Examples

	Outlook	Temperature	Humidity	Wind	
0	2	1	0	1	
1	2	1	0	0	
2	0	1	0	1	
3	1	2	0	1	
4	1	0	1	1	

The class Label encoded in numerical form is $[0\ 0\ 1\ 1\ 1\ 0\ 1\ 0\ 1\ 1\ 1\ 1\ 0]$

Accuracy is: 1.0

Dataset

Outlook	Temperature	Humidity	Wind	play
Sunny	Hot	High	Weak	No
Sunny	Hot	High	Strong	No
Overcast	Hot	High	Weak	Yes
Rain	Mild	High	Weak	Yes
Rain	Cool	Nomal	Weak	Yes
Rain	Cool	Nomal	Strong	No
Overcast	Cool	Nomal	Strong	Yes
Sunny	Mild	High	Weak	No
Sunny	Cool	Normal	Weak	Yes
Rain	Mild	Normal	Weak	Yes
Sunny	Mild	Nomal	Strong	Yes
Overcast	Mild	High	Strong	Yes
Overcast	Hot	Nomal	Weak	Yes
Rain	Mild	High	Strong	No

LAB - 7 Apply EM algorithm to cluster a set of data stored in a .CSV file.

Use the same data set for clustering using k-Means algorithm. Compare the results of these two algorithms and comment on the quality of clustering. You can add Java/Python ML library classes/API in the program.

```
from sklearn.cluster import KMeans
from sklearn import preprocessing
from sklearn.mixture import GaussianMixture
from sklearn.datasets import load_iris
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

dataset = load_iris()
print("\n IRIS Dataset:\n", dataset.data)
print("\n IRIS Features:\n", dataset.feature_names)
print("\n IRIS Target:\n", dataset.target)
print("\n IRIS Target:\n", dataset.target_names)
```

```
X = pd.DataFrame(dataset.data)
X.columns=['Sepal Length','Sepal Width','Petal Length','Petal Width']
y=pd.DataFrame(dataset.target)
y.columns=['Targets']
print(y)
plt.figure(figsize=(8,5))
colormap=np.array(['red','lime','blue'])
plt.subplot(1,3,1)
plt.scatter(X.Petal Length, X.Petal Width, c=colormap[y.Targets], s=20)
plt.title('Before Clustering')
plt.subplot(1,3,2)
model = KMeans(n clusters=3)
model.fit(X)
predY = np.choose(model.labels_,[0,1,2]).astype(np.int64)
plt.scatter(X.Petal Length, X.Petal Width, c=colormap[predY], s=20)
plt.title('KMeans')
scaler=preprocessing.StandardScaler()
scaler.fit(X)
xsa=scaler.transform(X)
xs=pd.DataFrame(xsa,columns=X.columns)
gmm=GaussianMixture(n components=3)
qmm.fit(xs)
y cluster gmm=gmm.predict(xs)
plt.subplot(1,3,3)
plt.scatter(X.Petal_Length, X.Petal_Width, c=colormap[y_cluster_gmm], s=20)
plt.title('GMM Clustering')
Output
IRIS Dataset:
 [[5.1 3.5 1.4 0.2]
 [4.9 3. 1.4 0.2]
 [4.7 3.2 1.3 0.2]
 [4.6 3.1 1.5 0.2]
 [5. 3.6 1.4 0.2]
```

- [5.4 3.9 1.7 0.4]
- [4.6 3.4 1.4 0.3]
- [5. 3.4 1.5 0.2]
- [4.4 2.9 1.4 0.2]
- [4.9 3.1 1.5 0.1]
- [5.4 3.7 1.5 0.2]
- [4.8 3.4 1.6 0.2]
- [4.8 3. 1.4 0.1]
- [4.3 3. 1.1 0.1]
- [5.8 4. 1.2 0.2]
- [5.7 4.4 1.5 0.4]
- [5.4 3.9 1.3 0.4]
- [5.1 3.5 1.4 0.3]
- [5.7 3.8 1.7 0.3]
- [5.1 3.8 1.5 0.3]
- [5.4 3.4 1.7 0.2]
- [5.1 3.7 1.5 0.4]
- [4.6 3.6 1. 0.2]
- [5.1 3.3 1.7 0.5]
- [4.8 3.4 1.9 0.2]
- [5. 3. 1.6 0.2]
- [5. 3.4 1.6 0.4]
- [5.2 3.5 1.5 0.2]
- [5.2 3.4 1.4 0.2]
- [3.2 3.4 1.4 0.2]
- [4.7 3.2 1.6 0.2]
- [4.8 3.1 1.6 0.2]
- [5.4 3.4 1.5 0.4]
- [5.2 4.1 1.5 0.1]
- [5.5 4.2 1.4 0.2]
- [4.9 3.1 1.5 0.2]
- [5. 3.2 1.2 0.2]
- [5.5 3.5 1.3 0.2]
- [4.9 3.6 1.4 0.1]
- [4.4 3. 1.3 0.2]
- [5.1 3.4 1.5 0.2]
- [5. 3.5 1.3 0.3]
- [4.5 2.3 1.3 0.3]
- [4.4 3.2 1.3 0.2]
- [5. 3.5 1.6 0.6]
- [5.1 3.8 1.9 0.4]
- [4.8 3. 1.4 0.3]
- [5.1 3.8 1.6 0.2]
- [4.6 3.2 1.4 0.2]
- [5.3 3.7 1.5 0.2]
- [5. 3.3 1.4 0.2]
- [7. 3.2 4.7 1.4] [6.4 3.2 4.5 1.5]
- [6.9 3.1 4.9 1.5]
- [5.5 2.3 4. 1.3]
- [6.5 2.8 4.6 1.5]
- [5.7 2.8 4.5 1.3]
- [6.3 3.3 4.7 1.6]

- [4.9 2.4 3.3 1.]
- [6.6 2.9 4.6 1.3]
- [5.2 2.7 3.9 1.4]
- [5. 2. 3.5 1.]
- [5.9 3. 4.2 1.5]
- [6. 2.2 4. 1.]
- [6.1 2.9 4.7 1.4]
- [5.6 2.9 3.6 1.3] [6.7 3.1 4.4 1.4]
- [5.6 3. 4.5 1.5]
- [5.8 2.7 4.1 1.]
- [6.2 2.2 4.5 1.5]
- [5.6 2.5 3.9 1.1]
- [5.9 3.2 4.8 1.8]
- [6.1 2.8 4. 1.3]
- [6.3 2.5 4.9 1.5]
- [6.1 2.8 4.7 1.2]
- [6.4 2.9 4.3 1.3]
- [6.6 3. 4.4 1.4]
- [6.8 2.8 4.8 1.4]
- [6.7 3. 5. 1.7]
- [6. 2.9 4.5 1.5]
- [5.7 2.6 3.5 1.]
- [5.5 2.4 3.8 1.1]
- [5.5 2.4 3.7 1.]
- [5.8 2.7 3.9 1.2] [6. 2.7 5.1 1.6]
- [5.4 3. 4.5 1.5]
- [6. 3.4 4.5 1.6] [6.7 3.1 4.7 1.5]
- [6.3 2.3 4.4 1.3]
- [5.6 3. 4.1 1.3]
- [5.5 2.5 4. 1.3]
- [5.5 2.6 4.4 1.2]
- [6.1 3. 4.6 1.4]
- [5.8 2.6 4. 1.2]
- [5. 2.3 3.3 1.]
- [5.6 2.7 4.2 1.3]
- [5.7 3. 4.2 1.2]
- [5.7 2.9 4.2 1.3]
- [6.2 2.9 4.3 1.3]
- [5.1 2.5 3. 1.1]
- [5.7 2.8 4.1 1.3]
- [6.3 3.3 6. 2.5]
- [5.8 2.7 5.1 1.9]
- [7.1 3. 5.9 2.1]
- [6.3 2.9 5.6 1.8]
- [6.5 3. 5.8 2.2]
- [7.6 3. 6.6 2.1] [4.9 2.5 4.5 1.7]
- [7.3 2.9 6.3 1.8]
- [6.7 2.5 5.8 1.8]

```
[6.5 3.2 5.1 2.]
[6.4 2.7 5.3 1.9]
[6.8 \ 3. \ 5.5 \ 2.1]
[5.7 2.5 5. 2.]
[5.8 2.8 5.1 2.4]
[6.4 3.2 5.3 2.3]
[6.5 3. 5.5 1.8]
[7.7 3.8 6.7 2.2]
[7.7 2.6 6.9 2.3]
[6. 2.2 5. 1.5]
[6.9 3.2 5.7 2.3]
[5.6 2.8 4.9 2.]
[7.7 2.8 6.7 2.]
[6.3 2.7 4.9 1.8]
[6.7 3.3 5.7 2.1]
[7.2 3.2 6. 1.8]
[6.2 2.8 4.8 1.8]
[6.1 3. 4.9 1.8]
[6.4 2.8 5.6 2.1]
[7.2 3. 5.8 1.6]
[7.4 2.8 6.1 1.9]
[7.9 3.8 6.4 2.]
[6.4 2.8 5.6 2.2]
[6.3 2.8 5.1 1.5]
[6.1 2.6 5.6 1.4]
[7.7 3. 6.1 2.3]
[6.3 3.4 5.6 2.4]
[6.4 3.1 5.5 1.8]
[6. 3. 4.8 1.8]
[6.9 3.1 5.4 2.1]
[6.7 3.1 5.6 2.4]
[6.9 3.1 5.1 2.3]
[5.8 2.7 5.1 1.9]
[6.8 3.2 5.9 2.3]
[6.7 \ 3.3 \ 5.7 \ 2.5]
[6.7 3. 5.2 2.3]
[6.3 2.5 5. 1.9]
[6.5 3. 5.2 2.]
[6.2 3.4 5.4 2.3]
[5.9 3. 5.1 1.8]]
IRIS Features:
['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal
width (cm) ']
IRIS Target:
2 2]
```

[7.2 3.6 6.1 2.5]

```
IRIS Target:
 ['setosa' 'versicolor' 'virginica']
     Targets
0
            0
            0
1
2
            0
3
            0
145
146
            2
147
            2
148
            2
149
            2
```


LAB - 8 Write a program to implement k-Nearest Neighbour algorithm to classify the iris data set. Print both correct and wrong predictions.

Java/Python ML library classes can be used for this problem.

```
import numpy as np
import pandas as pd
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split
```

```
from sklearn import metrics
import matplotlib.pyplot as plt
assigned names = ['sepal-length', 'sepal-width', 'petal-length',
'petal-width', 'Class']
dataset = pd.read csv("iris2.csv", names=assigned names)
X = dataset.iloc[:, :-1]
y = dataset.iloc[:, -1]
print(X.head())
Xtrain, Xtest, ytrain, ytest = train test split(X, y, test size=0.10)
classifier = KNeighborsClassifier(n neighbors=5).fit(Xtrain, ytrain)
ypred = classifier.predict(Xtest)
i = 0
print
("\n-----")
print ('%-25s %-25s' % ('Original Label', 'Predicted Label',
'Correct/Wrong'))
print
("-----")
for label in ytest:
  print ('%-25s %-25s' % (label, ypred[i]), end="")
  if (label == ypred[i]):
     print (' %-25s' % ('Correct'))
  else:
     print (' %-25s' % ('Wrong'))
  i = i + 1
print
("-----")
print("\nConfusion Matrix:\n", metrics.confusion matrix(ytest, ypred))
print
print("\nClassification Report:\n", metrics.classification report(ytest,
ypred))
print
("-----")
```

```
print('Accuracy of the classifer is %0.2f' %
metrics.accuracy_score(ytest,ypred))
print
("-----")
plt.plot(Xtest,ytest,'ro')
plt.plot(Xtest,ytest,'b+')
```

	sepal-length	sepal-width	petal-length	petal-width
0	5.1	3.5	1.4	0.2
1	4.9	3.0	1.4	0.2
2	4.7	3.2	1.3	0.2
3	4.6	3.1	1.5	0.2
4	5.0	3.6	1.4	0.2

Original Label Predicted Label Correct/Wrong

Tris-versicolor Correct

Iris-versicolor	Iris-versicolor	Commont
iris-versicolor	iris-versicolor	Correct
Iris-setosa	Iris-setosa	Correct
Iris-setosa	Iris-setosa	Correct
Iris-setosa	Iris-setosa	Correct
Iris-virginica	Iris-virginica	Correct
Iris-virginica	Iris-virginica	Correct
Iris-setosa	Iris-setosa	Correct
Iris-setosa	Iris-setosa	Correct
Iris-virginica	Iris-virginica	Correct
Iris-virginica	Iris-virginica	Correct
Iris-versicolor	Iris-versicolor	Correct
Iris-virginica	Iris-virginica	Correct
Iris-versicolor	Iris-versicolor	Correct
Iris-versicolor	Iris-versicolor	Correct
Iris-virginica	Iris-virginica	Correct

Confusion Matrix:

[[5 0 0]

[0 4 0]

[0 0 6]]

Classification Report:

	precision	recall	f1-score	support
Iris-setosa	1.00	1.00	1.00	5
Iris-versicolor	1.00	1.00	1.00	4
Tris-virginica	1.00	1.00	1.00	6

accuracy			1.00	15
macro avg	1.00	1.00	1.00	15
weighted avg	1.00	1.00	1.00	15

Accuracy of the classifer is 1.00

LAB 9 - Implement the non-parametric Locally Weighted Regression algorithm in order to fit data points. Select appropriate data set for your experiment and draw graphs

```
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np

def kernel(point, xmat, k):
    m,n = np.shape(xmat)
    weights = np.mat(np.eye((m)))
    for j in range(m):
        diff = point - X[j]
        weights[j,j] = np.exp(diff*diff.T/(-2.0*k**2))
    return weights

def localWeight(point, xmat, ymat, k):
    wei = kernel(point, xmat, k)
    W = (X.T*(wei*X)).I*(X.T*(wei*ymat.T))
    return W

def localWeightRegression(xmat, ymat, k):
```

```
m,n = np.shape(xmat)
    ypred = np.zeros(m)
    for i in range(m):
        ypred[i] = xmat[i]*localWeight(xmat[i], xmat, ymat, k)
    return ypred
# load data points
data = pd.read csv('tips.csv')
bill = np.array(data.total bill)
tip = np.array(data.tip)
mbill = np.mat(bill)
mtip = np.mat(tip)
m= np.shape(mbill)[1]
one = np.mat(np.ones(m))
X = np.hstack((one.T, mbill.T))
#set k here
ypred = localWeightRegression(X,mtip,0.5)
SortIndex = X[:,1].argsort(0)
xsort = X[SortIndex][:,0]
fig = plt.figure()
ax = fig.add subplot(1,1,1)
ax.scatter(bill,tip, color='yellow')
ax.plot(xsort[:,1],ypred[SortIndex], color = 'black', linewidth=2)
plt.xlabel('Total bill')
plt.ylabel('Tip')
plt.show();
```

