

SAR Test Report

Report No.: AGC05041160804FH01

FCC ID : VLJ-MBP481PU

APPLICATION PURPOSE : Original Equipment

PRODUCT DESIGNATION: Video Baby Monitor

BRAND NAME : Motorola

MODEL NAME : MBP481PU

CLIENT: Binatone Electronics International Ltd.

DATE OF ISSUE : Aug. 22,2016

STANDARD(S) : IEEE Std. 1528:2013;FCC 47CFR § 2.1093;IEEE/ANSI C95.1:1992

REPORT VERSION : V1.0

Attestation of Global Compliance (Shenzhen) Co., Ltd.

CAUTION:

This report shall not be reproduced except in full without the written permission of the test laboratory and shall not be quoted out of context.

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at bits://www.agc.rept.com

No.16 E

Attestation of Global Compliance

Tel: +86-755 2908 1955 Fax: +86-755 2600 8484 E-mail: agc@agc-cert.com @ 400 089 2118 Add: 2F., Building 2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China

Page 2 of 41

Report Revise Record

N. Co	Report Version	Revise Time	Issued Date	Valid Version	Notes	
	V1.0		Aug. 22,2016	Valid	Original Report	

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a true; //www.agc.gent.com.

Page 3 of 41

Applicant Name :	Binatone Electronics International Ltd.			
Applicant Address :	Floor 23A, 9 Des Voeux Road West, Sheung Wan, Hong Kong			
Manufacturer Name :	VTech (Dongguan) Telecommunications Limited.			
Manufacturer Address :	VTech Science Park, Xia Ling Bei Management Zone, Liaobu, Dongguan Guangdong, China			
Product Designation :	Video Baby Monitor			
Brand Name :	Motorola			
Model Name :	MBP481PU			
Different Description	N/A			
EUT Voltage :	DC3.6V by battery			
Applicable Standard :	IEEE Std. 1528:2013;FCC 47CFR § 2.1093;IEEE/ANSI C95.1:1992			
Test Date :	Aug. 22,2016			
	Attestation of Global Compliance(Shenzhen) Co., Ltd.			
Performed Location	2 F, Building 2, No.1-No.4, Chaxi Sanwei Technical Industrial Park, Gushu Xixiang Street, Bao'an District, Shenzhen, China			
Report Template	AGCRT-US-2.4G/SAR (2016-01-01)			

	Thea 1-tuang	
Tested By	T. T	· 第一年。
	Thea Huang(Huang Qianqian)	Aug. 22,2016
	Angola li	
Checked By	C. C.	700
	Angela Li(Li Jiao)	Aug. 22,2016
	Solya Hay	
Authorized By	100 50	
	Solger Zhang(Zhang Hongyi)	Aug. 22,2016

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at Attp://www.agc-gert.com.

No.16 E

Page 4 of 41

TABLE OF CONTENTS

1.SUMMARY OF MAXIMUM SAR VALUE	5
2. GENERAL INFORMATION	6
2.1. EUT DESCRIPTION	6
2.2. TEST PROCEDURE	
2.3. TEST ENVIRONMENT	
3. SAR MEASUREMENT SYSTEM	
3.1. SATIMO SYSTEM DESCRIPTION.	
3.2. COMOSAR E-FIELD PROBE	
3.4. VIDEO POSITIONING SYSTEM	10
3.5. DEVICE HOLDER	
3.6. SAM TWIN PHANTOM	11
4. SAR MEASUREMENT PROCEDURE	12
4.1. SPECIFIC ABSORPTION RATE (SAR)	12
4.2. SAR MEASUREMENT PROCEDURE	13 1 <i>.</i>
5. TISSUE SIMULATING LIQUID	
5.1. THE COMPOSITION OF THE TISSUE SIMULATING LIQUID(BY WEIGHT %)	
5.2. TISSUE DIELECTRIC PARAMETERS FOR HEAD AND BODY PHANTOMS	
5.3. TISSUE CALIBRATION RESULT	
6. SAR SYSTEM CHECK&VALIDATION PROCEDURE	
6.1. SAR SYSTEM CHECK PROCEDURES	18
6.2. SAR SYSTEM CHECK	19
7. EUT TEST POSITION	
7.1. BODY PART POSITION	
8. SAR EXPOSURE LIMITS	
9. TEST EQUIPMENT LIST	
10. MEASUREMENT UNCERTAINTY	24
11. CONDUCTED POWER MEASUREMENT	26
12. TEST RESULTS	
12.1. SAR TEST RESULTS SUMMARY	
APPENDIX A. SAR SYSTEM CHECK DATA	29
APPENDIX B. SAR MEASUREMENT DATA	31
APPENDIX C. TEST SETUP PHOTOGRAPHS &EUT PHOTOGRAPHS	41

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.cent.com. AGC 8

Page 5 of 41

1.SUMMARY OF MAXIMUM SAR VALUE

The maximum results of Specific Absorption Rate (SAR) found during testing for EUT are as follows:

Highest Reported SAR:

	Exposure Position	Frequency Band	Highest Reported 1g-SAR(W/Kg)
0	Body	2.4 GHz	0.093

This device is compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6W/Kg) specified in IEEE Std. 1528:2013;FCC 47CFR § 2.1093; IEEE/ANSI C95.1:1992and the following specific FCC Test Procedures:

- KDB 447498 D01 General RF Exposure Guidance v06
- KDB 865664 D01 SAR measurement 100 MHz to 6 GHz v01r04

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XQC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-cert.com.

Page 6 of 41

2. GENERAL INFORMATION

Z. I. LOT Description	
General Information	
Product Designation	Video Baby Monitor
Test Model	MBP481PU
Hardware Version	CN_KB_KB-6160
Software Version	N/A
Device Category	Portable
RF Exposure Environment	Uncontrolled
Antenna Type	Internal
Duty Cycle	0.14(test mode)
2.4 GHz	Carried Co.
Operation Frequency	2407.5~2475MHz
Type of modulation	⊠GFSK □Π/4-DQPSK □8-DPSK
Peak Power	17.38dBm
Antenna Gain	0dBi
Accessories	C.C
Battery	Brand name: GP Model No. : GP80AAAHC3BMXZ Voltage and Capacitance:3.6V 800mAh
Adapter	Model No: N/A Brand name.: N/A Input: AC 100-120V, 60Hz,150mA; DC 6.0V,400mA

Type **Product** Production unit Identical Prototype

The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ASC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc-cert.com. AGC 8

No.16 E

Page 7 of 41

2.2. Test Procedure

9	1	Setup the EUT and Install the test software in PC.	1 位形	拉那	The Harmon
ſ	2	Turn on the power of all equipment.	THE STORY OF	F The Court	等。
	3	Make EUT in continuous emission test through softwar	re control.	3	The state of the s

2.3. Test Environment

Ambient conditions in the laboratory:

Items	Required	Actual
Temperature (°C)	18-25	21± 2
Humidity (%RH)	30-70	55±2

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-gert.com. AGC 8

Page 8 of 41

3. SAR MEASUREMENT SYSTEM

3.1. SATIMO System Description

The COMOSAR system for performing compliance tests consists of the following items:

- · The PC. It controls most of the bench devices and stores measurement data. A computer running WinXP and the Opensar software
- The E-Field probe. The probe is a 3-axis system made of 3 distinct dipoles. Each dipole returns a voltage in function of the ambient electric field.
- The Keithley multimeter measures each probe dipole voltages.
- The SAM phantom simulates a human head. The measurement of the electric field is made inside the phantom.
- The liquids simulate the dielectric properties of the human head tissues
- The network emulator controls the mobile phone under test.
- The validation dipoles are used to measure a reference SAR. They are used to periodically check the bench to make sure that there is no drift of the system characteristics over time.
- he phantom, the device holder and other accessories according to the targeted measurement

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be

Page 9 of 41

3.2. COMOSAR E-Field Probe

The SAR measurement is conducted with the dissymmetric probe manufactured by SATIMO. The probe is specially designed and calibrated for use in liquid with high permittivity. The dissymmetric probe has special calibration in liquid at different frequency. SATIMO conducts the probe calibration in compliance with international and national standards (e.g. IEEE 1528-2013 and relevant KDB files) Under ISO17025. The calibration data are in Appendix D.

Isotropic E-Field Probe Specification

Model	SSE5		
Manufacture	MVG		18 711
Frequency	0.7GHz-3.7GHz Linearity:±0.05dB(700MHz-3.7GHz)	7 % 5 5	A STATE OF THE STA
Dynamic Range	0.01W/Kg-100W/Kg Linearity:±0.05dB	大大	327
Dimensions	Overall length:330mm Length of individual dipoles:4.5mm Maximum external diameter:8mm Probe Tip external diameter:5mm Distance between dipoles/ probe extremity:2.7mm		
Application	High precision dosimetric measurements in any (e.g., very strong gradient fields). Only probe whi compliance testing for frequencies up to 3 GHz v 30%.	ich enables	P.C.C

3.3. Robot

The COMOSAR system uses the KUKA robot from SATIMO SA (France). For the 6-axis controller COMOSAR system, the KUKA robot controller version from SATIMO is used.

The XL robot series have many features that are important for our application:

- ☐ High precision (repeatability 0.02 mm)
- ☐ High reliability (industrial design)
- ☐ Jerk-free straight movements
- □ Low ELF interference (the closed metallic

construction shields against motor control fields)

6-axis controller

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ACC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

No.16 E

Page 10 of 41

3.4. Video Positioning System

The video positioning system is used in OpenSAR to check the probe. Which is composed of a camera, LED, mirror and mechanical parts. The camera is piloted by the main computer with firewire link. During the process, the actual position of the probe tip with respect to the robot arm is measured, as well as the probe length and the horizontal probe offset. The software then corrects all movements, such that the robot coordinates are valid for the probe tip.

The repeatability of this process is better than 0.1 mm. If a position has been taught with an aligned probe, the same position will be reached with another aligned probe within 0.1 mm, even if the other probe has different dimensions. During probe rotations, the probe tip will keep its actual position.

3.5. Device Holder

The COMOSAR device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (EPR).

Thus the device needs no repositioning when changing the angles. The COMOSAR device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity

 $\varepsilon r = 3$ and loss tangent $\delta = 0.02$. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-cert.com.

Page 11 of 41

3.6. SAM Twin Phantom

The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region where shell thickness increases to 6mm). It has three measurement areas:

- Left head
- □ Right head
- ☐ Flat phantom

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attem.

No.16

Page 12 of 41

4. SAR MEASUREMENT PROCEDURE

4.1. Specific Absorption Rate (SAR)

SAR is related to the rate at which energy is absorbed per unit mass in object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and occupational/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element(dv) of given mass density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dV} \right)$$

SAR is expressed in units of Watts per kilogram (W/Kg) SAR can be obtained using either of the following equations:

$$SAR = \frac{\sigma E^2}{\rho}$$

$$SAR = c_h \frac{dT}{dt} \Big|_{t=0}$$

Where

AR is the specific absorption rate in watts per kilogram;
 E is the r.m.s. value of the electric field strength in the tissue in volts per meter;
 σ is the conductivity of the tissue in siemens per metre;
 ρ is the density of the tissue in kilograms per cubic metre;
 c_h is the heat capacity of the tissue in joules per kilogram and Kelvin;

 $\frac{dT}{dt}$ | t = 0 is the initial time derivative of temperature in the tissue in kelvins per second

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

NO. 10 1

Page 13 of 41

@ 400 089 2118

4.2. SAR Measurement Procedure

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurement are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface is 2.7mm This distance cannot be smaller than the distance os sensor calibration points to probe tip as `defined in the probe properties,

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in SATIMO software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in db) is specified in the standards for compliance testing. For example, a 2db range is required in IEEE Standard 1528 and IEC62209 standards, whereby 3db is a requirement when compliance is assessed in accordance with the ARIB standard (Japan) If one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximum are detected, the number of Zoom Scan has to be increased accordingly.

Area Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100MHz to 6GHz

	≤3 GHz	> 3 GHz	
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	5 ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$	
Maximum probe angle from probe axis to phantom surface normal at the measurement location	30° ± 1°	20° ± 1°	
	≤2 GHz: ≤15 mm 2 – 3 GHz: ≤12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm	
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.		

Step 3: Zoom Scan

Zoom Scan are used to assess the peak spatial SAR value within a cubic average volume containing 1g abd 10g of simulated tissue. The Zoom Scan measures points(refer to table below) within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1g and 10g and displays these values next to the job's label.

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ACC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

Add: 2F., Building 2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China

Page 14 of 41

Zoom Scan Parameters extracted from KDB865664 d01 SAR Measurement 100MHz to 6GHz

Maximum zoom scan s	Maximum zoom scan spatial resolution: Δx _{Zoom} , Δy _{Zoom}			3 – 4 GHz: ≤ 5 mm [*] 4 – 6 GHz: ≤ 4 mm [*]	
	uniform grid: Δz _{Zoom} (n)		≤ 5 mm	3 – 4 GHz: ≤ 4 mm 4 – 5 GHz: ≤ 3 mm 5 – 6 GHz: ≤ 2 mm	
Maximum zoom scan spatial resolution, normal to phantom surface	graded	Δz _{Zoom} (1): between 1 st two points closest to phantom surface	≤ 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm	
	grid $\Delta z_{Zoom}(n>1)$: between subsequent points		≤ 1.5·Δz	Zoom(n-1)	
Minimum zoom scan volume	x, y, z		≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm	

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

Step 4: Power Drift Measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the same settings. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be

When zoom scan is required and the reported SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is $\leq 1.4 \text{ W/kg}$, $\leq 8 \text{ mm}$, $\leq 7 \text{ mm}$ and $\leq 5 \text{ mm}$ zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Page 15 of 41

4.3. RF Exposure Conditions

Test Configuration and setting:

The EUT is a model of Baby monitor. For SAR testing, the device was controlled by software.

Antenna Location: (front view)

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gert.com.

Page 16 of 41

5. TISSUE SIMULATING LIQUID

For SAR measurement of the field distribution inside the phantom, the phantom must be filled with homogeneous tissue simulating liquid to a depth of at least 15cm. For head SAR testing the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15cm For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15cm. The nominal dielectric values of the tissue simulating liquids in the phantom and the tolerance of 5% are listed in 5.2

5.1. The composition of the tissue simulating liquid(by weight %)

Ingredient				2450MHz			
(Weight)			E	Body (100%))		
Water	-00	70	100	70%			100
Salt				1%	THE ALL	a	The County
DGBE		711	不吃	9%	The state of the s	A 18	- C
Triton X-100	15 700	不相	The state of Golden	20%	- C	10	10

5.2. Tissue Dielectric Parameters for Head and Body Phantoms

The head tissue dielectric parameters recommended by the IEEE 1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in IEEE 1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in IEEE 1528.

Target Frequency	h	ead	be	ody
(MHz)	εr	σ (S/m)	εr	σ (S/m)
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	1.01	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800–2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00

($\varepsilon r = relative permittivity, \sigma = conductivity and \rho = 1000 kg/m3)$

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gert.com.

No.16 E

Page 17 of 41

5.3. Tissue Calibration Result

The dielectric parameters of the liquids were verified prior to the SAR evaluation using SATIMO Dielectric Probe Kit and R&S Network Analyzer ZVL6.

		Tissue Stimulant M	easurement for 2450MHz		
The state of Close	Fr.	Dielectric Pa	rameters (±5%)	Tissue	
	(MHz)	εr52.7(50.065-55.335)	δ[s/m]1.95(1.8525-2.0475)	Temp [°C]	Test time
Body	2407	54.63	1.87	1	60
Spain Coulder	2441	53.95	1.89	22.0	Aug.
	2450	53.21	1.90	22.0	Aug. 22,2016
	2475	52.59	1.95	CCB ED	

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attr://www.agc-cent.com.

Page 18 of 41

6. SAR SYSTEM CHECK&VALIDATION PROCEDURE

6.1. SAR System Check Procedures

SAR system check is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device. The same SAR probe(s) and tissue-equivalent media combinations used with each specific SAR system for system verification must be used for device testing. When multiple probe calibration points are required to cover substantially large transmission bands, independent system verifications are required for each probe calibration point. A system verification must be performed before each series of SAR measurements using the same probe calibration point and tissue-equivalent medium. Additional system verification should be considered according to the conditions of the tissue-equivalent medium and measured tissue dielectric parameters, typically every three to four days when the liquid parameters are remeasured or sooner when marginal liquid parameters are used at the beginning of a series of measurements.

Each SATIMO system is equipped with one or more system check kits. These units, together with the predefined measurement procedures within the SATIMO software, enable the user to conduct the system check and system validation. System kit includes a dipole, and dipole device holder.

The system check verifies that the system operates within its specifications. It's performed daily or before every SAR measurement. The system check uses normal SAR measurement in the flat section of the phantom with a matched dipole at a specified distance. The system check setup is shown as below.

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-cert.com.

Page 19 of 41

6.2. SAR System Check

6.2.1. Dipoles

The dipoles used is based on the IEEE-1528 standard, and is complied with mechanical and electrical specifications in line with the requirements of IEEE. the table below provides details for the mechanical and electrical Specifications for the dipoles.

Frequency	L (mm)	h (mm)	d (mm)		
2450MHz	51.5	30.4	3.6		

6.2.2. System Check Result

Syster	n Perfo	rmance	Check at 2450N	lHz						
Valida	tion Kit:	SN 46/	11 DIP 2G450-18	39						
Freq. [MHz]		rget (W/Kg)		ce Result 0%)	Value In	d SAR (W/Kg) out =18dBm	1	lized to W 'Kg)	Tissue Temp. [°C]	Test time
	1g	10g	1g	10g	1g	10g	1g	10g	C	
2450 Body	54.19	24.96	48.771-59.609	22.464-27.456	3.301	1.546	52.324	24.500	22.0	Aug. 22,2016

Note:

- (1) We use a CW signal of 18dBm for system check, and then all SAR value are normalized to 1W forward power. The result must be within $\pm 10\%$ of target value.
- (2) Tested normalized SAR (W/kg) = Tested SAR (W/kg) ×[1000/ 10^1.8]

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

No.16 E

Page 20 of 41

6.3. SAR System Validation

The SAR measurement system was validated according to procedures in KDB 865664 D01. SAR probe and tissue dielectric parameters are as shown bellow.

						С	W validation		M	lod. valida	tion
Test Data	Probe S/N	Tested Freq. (MHz)	Tissue Type	Cond.	Perm	Sensitivity	Probe Linearity	Probe Isotropy	Mod. Type	Duty Factor	Peak to average power ratio
07/27/2016	SN 14/16 EP307	2450	head	1.81	40.33	PASS	PASS	PASS	OFDM	N/A	PASS
07/27/2016	SN 14/16 EP307	2450	body	1.91	53.55	PASS	PASS	PASS	OFDM	N/A	PASS
07/29/2016	SN 14/16 EP307	2450	head	1.82	39.65	PASS	PASS	PASS	GFSK	PASS	N/A
07/29/2016	SN 14/16 EP307	2450	body	1.93	52.02	PASS	PASS	PASS	GFSK	PASS	N/A
08/10/2016	SN 14/16 EP307	2450	head	1.78	38.64	PASS	PASS	PASS	FHSS	PASS	N/A
08/10/2016	SN 14/16 EP307	2450	body	1.95	52.35	PASS	PASS	PASS	FHSS	PASS	N/A

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attr://www.agc-cent.com.

No.16

Page 21 of 41

7. EUT TEST POSITION

This EUT was tested in Body back, Body front, Body top, Body bottom, Body right, Body left.

7.1. Body Part Position

- (1) To position the EUT parallel to the phantom surface.
- (2) To adjust the EUT parallel to the flat phantom.
- (3) To adjust the distance between the EUT surface and the flat phantom to 0mm for Body back, Body front, Body top, Body bottom, Body right, Body left.

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XQC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-cert.com.

Page 22 of 41

8. SAR EXPOSURE LIMITS

SAR assessments have been made in line with the requirements of IEEE-1528, and comply with ANSI/IEEE C95.1-1992 "Uncontrolled Environments" limits. These limits apply to a location which is deemed as "Uncontrolled Environment" which can be described as a situation where the general public may be exposed to an RF source with no prior knowledge or control over their exposure.

Limits for General Population/Uncontrolled Exposure (W/kg)

Type Exposure	Uncontrolled Environment Limit (W/kg)
Spatial Peak SAR (1g cube tissue for brain or body)	1.60
Spatial Average SAR (Whole body)	0.08
Spatial Peak SAR (Limbs)	4.0

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XQC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-cert.com.

GC

Page 23 of 41

9. TEST EQUIPMENT LIST

Equipment description	Manufacturer/ Model	Identification No.	Current calibration date	Next calibration date	
SAR Probe	MVG	SN 14/16 EP307	07/05/2016	07/04/2017	
TISSUE Probe	SATIMO	SN 45/11 OCPG45	12/02/2015	12/01/2016	
Phantom	SATIMO	SN_4511_SAM90	Validated. No cal required.	Validated. No cal required.	
Liquid	SATIMO	P.	Validated. No cal required.	Validated. No cal required.	
Dipole	SATIMO SID2450	SN46/11 DIP 2G450-189	11/14/2013	11/13/2016	
Signal Generator	Agilent-E4438C	US41461365	02/29/2016	02/28/2017	
Vector Analyzer	Agilent / E4440A	US40420298	07/02/2016	07/01/2017	
Network Analyzer	Rhode & Schwarz ZVL6	SN100132	03/01/2016	02/28/2017	
Attenuator	Warison /WATT-6SR1211	N/A	N/A	N/A	
Attenuator	Mini-circuits / VAT-10+	N/A	N/A	N/A	
Amplifier	EM30180	SN060552	03/04/2016	03/03/2017	
Directional Couple	Werlatone/ C6026-10	SN99482	07/02/2016	07/01/2017	
Power Sensor	NRP-Z21	1137.6000.02	10/20/2015 10/19/20		
Power Sensor	NRP-Z23	US38261498	03/01/2016	02/28/2017	
Power Viewer	R&S	V2.3.1.0	N/A	N/A	

Note: Per KDB 865664Dipole SAR Validation, AGC Lab has adopted 3 years calibration intervals. On annual basis, every measurement dipole has been evaluated and is in compliance with the following criteria:

- 1. There is no physical damage on the dipole;
- 2. System validation with specific dipole is within 10% of calibrated value;
- 3. Return-loss is within 20% of calibrated measurement;
- 4. Impedance is within 5Ω of calibrated measurement.

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XQC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be

Page 24 of 41

		SATIM							
	nt uncertainty							40 10	1
Uncertainty Component	Sec.	Tol (+- %)	Prob. Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (+-%)	10g Ui (+-%)	Vi
Measurement System	FA COUNTY	1000	(Opin	- (100		7 - 3/			
Probe calibration	E.2.1	5.831	N	1	10	1	5.83	5.83	∞
Axial Isotropy	E.2.2	2.5	R	$\sqrt{3}$	1	1	1.44	1.44	∞
Hemispherical Isotropy	E.2.2	4.0	R	$\sqrt{3}$	1 8	1	2.31	2.31	00
Boundary effect	E.2.3	1.0	R	$\sqrt{3}$	1 1	1	0.58	0.58	00
Linearity	E.2.4	1.2	R	$\sqrt{3}$	71	1	0.69	0.69	00
System detection limits	E.2.5	1.0	R	$\sqrt{3}$	1	1	0.58	0.58	00
Readout Electronics	E.2.6	0.02	N	1	1	1	0.02	0.02	00
Response Time	E.2.7	3.0	R	$\sqrt{3}$	1	1 1	1.73	1.73	00
Integration Time	E.2.8	2.0	R	$\sqrt{3}$	1	Th 1	1.15	1.15	00
RF ambient Conditions	E.6.1	3.0	R	$\sqrt{3}$	16.3	and 1	1.73	1.73	00
Probe positioner		3.0	N.	1000			1.73	1.73	4
Mechanical Tolerance	E.6.2	2.0	R	$\sqrt{3}$	91	1	1.15	1.15	×
Probe positioning with respect to Phantom Shell	E.6.3	0.05	R	$\sqrt{3}$	1 1	1	0.03	0.03	o
Extrapolation, interpolation and integration Algoritms for Max. SAR Evaluation	E.5.2	5.0	R	√3	1	G 1	2.89	2.89	×
Test sample Related						100		451	1
Test sample positioning	E.4.2.1	0.03	N	:1111	1	Jr 31	0.03	0.03	N-
Device Holder Uncertainty	E.4.1.1	5.00	N _c	34	4 %	1	5.00	5.00	00
Output power Variation - SAR drift measurement	6.6.2	0.65	R	$\sqrt{3}$	C 1	10	0.38	0.38	\propto
Phantom and Tissue Parar	neters	60					-14		- 4
Phantom Uncertainty (Shape and thickness tolerances)	E.3.1	0.05	R	$\sqrt{3}$	1	1,5	0.03	0.03	œ
Liquid conductivity deviation from target value	E.3.2	5.00	R	√3	0.64	0.43	1.85	1.24	oc.
Liquid conductivity - measurement uncertainty	E.3.3	5.00	Ζ	1	0.64	0.43	3.20	2.15	œ
Liquid permittivity - deviation from target value	E.3.2	0.03	R	$\sqrt{3}$	0.6	0.49	0.01	0.01	œ
Liquid permittivity - measurement uncertainty	E.3.3	10.00	N	2.D	0.6	0.49	6.00	4.90	M
Combined Standard Uncertainty	1	O	RSS		all	J2 1	10.16	9.57	œ
Expanded Uncertainty (95% Confidence interval)		ATT SA	k	平 环 惊	and the second	F The Committee	20.32	19.14	0

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.cent.com. AGC 8

No.16 E

Page 25 of 41

	M.	TIME .		- F 31	Say Co.	Z The comment	C	Page 1	- C
			IMO U						
System u	ncertainty			GHz ave	eraged over	1 gram / 10	_	10 11	
Uncertainty Component	Sec.	Tol (+- %)	Prob. Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (+-%)	10g Ui (+-%)	V
Measurement System			All the		The state of the s	4 %	otalica	# F 000	
Probe calibration	E.2.1	5.831	N	-10	1	1	5.83	5.83	∞
Axial Isotropy	E.2.2	2.5	R	$\sqrt{3}$	1	1	1.44	1.44	∞
Hemispherical Isotropy	E.2.2	4.0	R	$\sqrt{3}$	1	1	2.31	2.31	∞
Boundary Effects	E.2.3	1.0	R	$\sqrt{3}$	15/	1	0.58	0.58	00
Linearity	E.2.4	1.2	R	$\sqrt{3}$	1	1	0.69	0.69	∞
System detection limits	E.2.5	1.0	R	$\sqrt{3}$	1	1	0.58	0.58	∞
Readout Electronics	E.2.6	0.02	N	1	1	TA 1 12	0.02	0.02	∞
Response Time	E.2.7	3.0	R	$\sqrt{3}$	1- 1	1	1.73	1.73	∞
Integration Time	E.2.8	2.0	R	$\sqrt{3}$	O 1	1	1.15	1.15	∞
RF ambient Conditions	E.6.1	3.0	R	$\sqrt{3}$	1 6	1	1.73	1.73	000
Probe positioner Mechanical Tolerance	E.6.2	2.0	R	$\sqrt{3}$	1	-C1	1.15	1.15	∞
Probe positioning with respect to Phantom Shell	E.6.3	0.05	R	√3	1	1	0.03	0.03	∞
Extrapolation, interpolation and integration Algoritms for Max. SAR Evaluation	E.5.2	5.0	R	$\sqrt{3}$	1	The comment	2.89	2.89	∞
Dipole	- B		- 55 mm		6	70			
Dipole axis to liquid Distance	8,E.4.2	1.00	N	$\sqrt{3}$	1	1	0.58	0.58	N-
Input power and SAR drift measurement	8,6.6.2	0.65	R	$\sqrt{3}$	1	1 4	0.38	0.38	000
Phantom and Tissue Param	neters	# F 10	300	The same of		C	- (4		1
Phantom Uncertainty (Shape and thickness tolerances)	E.3.1	0.05	R	√3	1	1	0.03	0.03	œ
Liquid conductivity - deviation from target value	E.3.2	5.00	R	$\sqrt{3}$	0.64	0.43	1.85	1.24	oc
Liquid conductivity - measurement uncertainty	E.3.3	5.00	N	10	0.64	0.43	3.20	2.15	00
Liquid permittivity - deviation from target value	E.3.2	0.03	R	$\sqrt{3}$	0.6	0.49	0.01	0.01	00
Liquid permittivity - measurement uncertainty	E.3.3	10.00	N	15	0.6	0.49	6.00	4.90	N
Combined Standard Uncertainty		For of Goods	RSS	Attestation	CC		8.87	8.18	
Expanded Uncertainty (95% Confidence interval)	30		k		NR.		17.73	16.36	等

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AQC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-gert.com. AGC 8

No.16 E

Page 26 of 41

11. CONDUCTED POWER MEASUREMENT 2.4GHz

Mode	Channel	Frequency (MHz)	Maximum Peak Power (dBm)
	CH04	2407.5	17.38
GFSK Modulation	CH05	2441.25	17.32
a C	CH06	2475	16.70

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc-gert.com.

Attestation of Global Compliance

Page 27 of 41

12. TEST RESULTS

12.1. SAR Test Results Summary 12.1.1. Test position and configuration

Body SAR was performed with the device 0mm from the phantom.

12.1.2. Operation Mode

- Per KDB 447498 D01 v06 ,for each exposure position, if the highest 1-g SAR is ≤ 0.8 W/kg, testing for low and high channel is optional.
- 2. Per KDB 865664 D01 v01r04,for each frequency band, if the measured SAR is ≥0.8W/Kg, testing for repeated SAR measurement is required, that the highest measured SAR is only to be tested. When the SAR results are near the limit, the following procedures are required for each device to verify these types of SAR measurement related variation concerns by repeating the highest measured SAR configuration in each frequency band.
 - (1) When the original highest measured SAR is ≥ 0.8 W/Kg, repeat that measurement once.
 - (2) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is >1.20 or when the original or repeated measurement is ≥1.45 W/Kg.
 - (3) Perform a third repeated measurement only if the original, first and second repeated measurement is ≥1.5 W/Kg and ratio of largest to smallest SAR for the original, first and second measurement is ≥ 1.20.
- 3. Maximum Scaling SAR in order to calculate the Maximum SAR values to test under the standard Peak Power, Calculation method is as follows:

 Maximum Scaling SAR =tested SAR (Max.) ×[maximum turn-up power (mw)/ maximum measurement output power(mw)]

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attemption.

Page 28 of 41

12.1.3. Test Result

	SAR MEASUREMENT	
30	Depth of Liquid (cm):>15	Relative Humidity (%): 45.2
	Product: Video Baby Monitor	
	Test Model: MBP481PU	

Max. Meas. Power SAR Scaled Fr. Tune -up output Limit **Position** Mode Ch. SAR Drift (1g) Power Power W/kg (MHz) (W/kg) (W/Kg) (<±5%) (dBm) (dBm) **FHSS** 2441.25 **Body Back CH05** 0.19 0.068 18.7 17.32 0.093 1.6 **Body Front FHSS CH05** 2441.25 -0.190.031 18.7 17.32 0.043 1.6 Edge 1(Top) **FHSS CH05** 2441.25 0.88 0.048 18.7 17.32 0.066 1.6 **FHSS** 2441.25 0.023 18.7 17.32 0.032 1.6 Edge 2(Right) CH05 -3.01Edge 4(Left) **FHSS** CH05 2441.25 -2.790.017 18.7 17.32 0.023 1.6

Note

SAR Test Exclusion Consideration for Adjacent Edges

Edge 3(Bottom)

SAR test exclusion threshold

- = (Power allowed at numeric threshold for 50 mm in step 1)+(test separation distance 50 mm) x 10 mW
- = 96 + (107-50) x 10 mW
- = 666 mW

Since the max. tune-up power is 74 mW (or 18.7 dBm) which is lower than the SAR test exclusion threshold for the bottom edges, SAR test for the bottom edges can be excluded.

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-cert.com.

^{(1).} When the 1-g Reported SAR is ≤ 0.8 W/kg, testing for low and high channel is optional. Refer to KDB 447498.

Page 29 of 41

APPENDIX A. SAR SYSTEM CHECK DATA

Test Laboratory: AGC Lab Date: Aug. 22,2016

System Check Body 2450 MHz

DUT: Dipole 2450 MHz Type: SID 2450

Communication System CW; Communication System Band: D2450 (2450.0 MHz); Duty Cycle:1:1; Conv.F=5.19 Frequency: 2450 MHz; Medium parameters used: f = 2450 MHz; $\sigma = 1.90$ mho/m; $\epsilon r = 53.21$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section; Input Power=18dBm

Ambient temperature ($^{\circ}$): 22.3, Liquid temperature ($^{\circ}$): 22.0

SATIMO Configuration

 Probe: SSE5; 07/05/2016; Serial No.: SN 14/16 EP307 Sensor-Surface: 4mm (Mechanical Surface Detection)

· Phantom: SAM twin phantom

Measurement SW: OpenSAR V4 02 35

Configuration/System Check 2450MHz Body/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/System Check 2450MHz Body/Zoom Scan: Measurement grid: dx=5mm,dy=5mm, dz=5mm

Maximum location: X=0.00, Y=0.00 SAR Peak: 5.92 W/kg

SAR 10g (W/Kg)	1.545858
SAR 1g (W/Kg)	3.301411

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XQC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be

Page 30 of 41

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attr://www.agc-cert.com.

Page 31 of 41

APPENDIX B. SAR MEASUREMENT DATA

Test Laboratory: AGC Lab Date: Aug. 22,2016

2.4G Mid-Body-Worn- Back

DUT: Video Baby Monitor; Type: MBP481PU

Communication System: 2.4G; Communication System Band: 2.4G; Duty Cycle:0.14; Conv.F=5.19;

Frequency: 2441.250 MHz; Medium parameters used: f = 2450 MHz; $\sigma = 1.89$ mho/m; $\epsilon r = 53.95$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section

Ambient temperature (°C): 22.3, Liquid temperature (°C): 22.0

SATIMO Configuration:

Probe: SSE5; 07/05/2016; Serial No.: SN 14/16 EP307 Sensor-Surface: 4mm (Mechanical Surface Detection)

Phantom: SAM twin phantom

Measurement SW: OpenSAR V4_02_35

Configuration/2.4G Mid- Body- Back /Area Scan: Measurement grid: dx=8mm, dy=8mm

Configuration/2.4G Mid- Body- Back /Zoom Scan: Measurement grid: dx=5mm,dy=5mm, dz=5mm;

Area Scan	sam_direct_droit2_surf8mm.txt
ZoomScan	7x7x7,dx=5mm dy=5mm dz=5mm
Phantom	Validation plane
Device Position	Body Back
Band	2450MHz
Channels	Middle
Signal	Crest factor: 7.14

Maximum location: X=0.00, Y=40.00 SAR Peak: 0.12 W/kg

SAR 10g (W/Kg)	0.035147
SAR 1g (W/Kg)	0.067735

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

Page 32 of 41

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attr://www.agc-cent.com.

Page 33 of 41

Test Laboratory: AGC Lab Date: Aug. 22,2016

2.4G Mid-Body-Worn- Front

DUT: Video Baby Monitor; Type: MBP481PU

Communication System: 2.4G; Communication System Band: 2.4G; Duty Cycle:0.14; Conv.F=5.19;

Frequency: 2441.250 MHz; Medium parameters used: f = 2450 MHz; $\sigma = 1.89 \text{ mho/m}$; $\epsilon r = 53.95$; $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 22.3, Liquid temperature ($^{\circ}$ C): 22.0

SATIMO Configuration:

Probe: SSE5; 07/05/2016; Serial No.: SN 14/16 EP307 Sensor-Surface: 4mm (Mechanical Surface Detection)

Phantom: SAM twin phantom

Measurement SW: OpenSAR V4 02 35

Configuration/2.4G Mid- Body- Front /Area Scan: Measurement grid: dx=8mm, dy=8mm

Configuration/2.4G Mid- Body- Front /Zoom Scan: Measurement grid: dx=5mm,dy=5mm, dz=5mm;

Area Scan	sam_direct_droit2_surf8mm.txt
ZoomScan	7x7x7,dx=5mm dy=5mm dz=5mm
Phantom	Validation plane
Device Position	Body Front
Band	2450MHz
Channels	Middle
Signal	Crest factor: 7.14

Maximum location: X=23.00, Y=24.00

SAR Peak: 0.05 W/kg

SAR 10g (W/Kg)	0.019242
SAR 1g (W/Kg)	0.031350

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ACC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

Page 34 of 41

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attr://www.agc-cent.com.

Page 35 of 41

Test Laboratory: AGC Lab Date: Aug. 22,2016

2.4G Mid-Eage 1

DUT: Video Baby Monitor; Type: MBP481PU

Communication System: 2.4G; Communication System Band: 2.4G; Duty Cycle:0.14; Conv.F=5.19;

Frequency: 2441.250 MHz; Medium parameters used: f = 2450 MHz; $\sigma = 1.89$ mho/m; $\epsilon r = 53.95$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 22.3, Liquid temperature ($^{\circ}$ C): 22.0

SATIMO Configuration:

Probe: SSE5; 07/05/2016; Serial No.: SN 14/16 EP307 Sensor-Surface: 4mm (Mechanical Surface Detection)

Phantom: SAM twin phantom

Measurement SW: OpenSAR V4_02_35

Configuration/2.4G Mid-Eage 1 /Area Scan: Measurement grid: dx=8mm, dy=8mm

Configuration/2.4G Mid-Eage 1 /Zoom Scan: Measurement grid: dx=5mm,dy=5mm, dz=5mm;

Area Scan	sam_direct_droit2_surf8mm.txt
ZoomScan	7x7x7,dx=5mm dy=5mm dz=5mm
Phantom	Validation plane
Device Position	Eage 1
Band	2450MHz
Channels	Middle
Signal	Crest factor: 7.14

Maximum location: X=14.00, Y=-9.00 SAR Peak: 0.08 W/kg

SAR 10g (W/Kg)	0.026847
SAR 1g (W/Kg)	0.047833

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

Page 36 of 41

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attr://www.agc-cent.com.

Page 37 of 41

@ 400 089 2118

Test Laboratory: AGC Lab Date: Aug. 22,2016

2.4G Mid-Eage 2

DUT: Video Baby Monitor; Type: MBP481PU

Communication System: 2.4G; Communication System Band: 2.4G; Duty Cycle:0.14; Conv.F=5.19;

Frequency: 2441.250 MHz; Medium parameters used: f = 2450 MHz; $\sigma = 1.89$ mho/m; $\epsilon r = 53.95$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 22.3, Liquid temperature ($^{\circ}$ C): 22.0

SATIMO Configuration:

Probe: SSE5; 07/05/2016; Serial No.: SN 14/16 EP307 Sensor-Surface: 4mm (Mechanical Surface Detection)

Phantom: SAM twin phantom

Measurement SW: OpenSAR V4_02_35

Configuration/2.4G Mid-Eage 2 /Area Scan: Measurement grid: dx=8mm, dy=8mm

Configuration/2.4G Mid-Eage 2 /Zoom Scan: Measurement grid: dx=5mm,dy=5mm, dz=5mm;

Area Scan	sam_direct_droit2_surf8mm.txt
ZoomScan	7x7x7,dx=5mm dy=5mm dz=5mm
Phantom	Validation plane
Device Position	Eage 2
Band	2450MHz
Channels	Middle
Signal	Crest factor: 7.14

Maximum location: X=16.00, Y=47.00

SAR Peak: 0.04 W/kg

SAR 10g (W/Kg)	0.015566
SAR 1g (W/Kg)	0.023176

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc-gert.com.

Add: 2F., Building 2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China

Page 38 of 41

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attr://www.agc-cent.com.

Date: Aug. 22,2016

Page 39 of 41

@ 400 089 2118

Test Laboratory: AGC Lab

2.4G Mid-Eage 4

DUT: Video Baby Monitor; Type: MBP481PU

Communication System: 2.4G; Communication System Band: 2.4G; Duty Cycle:0.14; Conv.F=5.19;

Frequency: 2441.250 MHz; Medium parameters used: f = 2450 MHz; $\sigma = 1.89$ mho/m; $\epsilon r = 53.95$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 22.3, Liquid temperature ($^{\circ}$ C): 22.0

SATIMO Configuration:

Probe: SSE5; 07/05/2016; Serial No.: SN 14/16 EP307 Sensor-Surface: 4mm (Mechanical Surface Detection)

Phantom: SAM twin phantom

Measurement SW: OpenSAR V4 02 35

Configuration/2.4G Mid-Eage 4 /Area Scan: Measurement grid: dx=8mm, dy=8mm

Configuration/2.4G Mid-Eage 4 /Zoom Scan: Measurement grid: dx=5mm,dy=5mm, dz=5mm;

Area Scan	sam_direct_droit2_surf8mm.txt
ZoomScan	7x7x7,dx=5mm dy=5mm dz=5mm
Phantom	Validation plane
Device Position	Eage 4
Band	2450MHz
Channels	Middle
Signal	Crest factor: 7.14

Maximum location: X=-1.00, Y=25.00

SAR Peak: 0.03 W/kg

SAR 10g (W/Kg)	0.012235
SAR 1g (W/Kg)	0.016620

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ACC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

Add: 2F., Building 2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China

Page 40 of 41

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attr://www.agc-cent.com.

Page 41 of 41

APPENDIX C. TEST SETUP PHOTOGRAPHS & EUT PHOTOGRAPHS

Refer to Attached files.

APPENDIX D. CALIBRATION DATA

Refer to Attached files.

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-cert.com. GC