NPTEL MOOC, JAN-FEB 2015 Week 4, Module 2

DESIGN AND ANALYSIS OF ALGORITHMS

Dijkstra's algorithm: analysis

MADHAVAN MUKUND, CHENNAI MATHEMATICAL INSTITUTE http://www.cmi.ac.in/~madhavan

Dijkstra's algorithm

- * Maintain two arrays
 - * Visited[], initially False for all i
 - * Distance[], initially ∞ for all i
 - * For ∞, use sum of all edge weights + 1
- * Set Distance[1] = 0
- * Repeat, until all vertices are burnt
 - * Find j with minimum Distance
 - * Set Visited[j] = True
 - * Recompute Distance[k] for each neighbour k of j

Greedy algorithms

- * Algorithm makes a sequence of choices
- * Next choice is based on "current best value"
 - * Never go back and change a choice
- * Dijkstra's algorithm is greedy
 - * Select vertex with minimum expected burn time
- * Need to prove that greedy strategy is optimal
- * Most times, greedy approach fails
 - * Current best choice may not be globally optimal

Correctness

- * Each new shortest path we discover extends an earlier one
- * By induction, assume we have identified shortest paths to all vertices already burnt

- * Next vertex to burn is v, via x
- * Cannot later find a shorter path from y to w to v

Dijkstra's algorithm

```
function ShortestPaths(s){ // assume source is s
 for i = 1 to n
   Visited[i] = False; Distance[i] = infinity
 Distance[s] = 0
 for i = 1 to n
   Choose u such that Visited[u] == False
                    and Distance[u] is minimum
   Visited[u] = True
   for each edge (u,v) with Visited[v] == False
    if Distance[v] > Distance[u] + weight(u,v)
      Distance [v] = Distance [u] + weight (u,v)
```

- * Outer loop runs n times
 - * In each iteration, we burn one vertex
 - * O(n) scan to find minimum burn time vertex
- * Each time we burn a vertex v, we have to scan all its neighbours to update burn times
 - * O(n) scan of adjacency matrix to find all neighbours
- * Overall O(n²)

- * Does adjacency list help?
 - * Scan neighbours to update burn times
 - * O(m) across all iterations
- * However, identifying minimum burn time vertex still takes O(n) in each iteration
- * Still O(n²)

- * Can maintain ExpectedBurnTime in a more sophisticated data structure
 - * Different types of trees (heaps, red-black trees) allow both of the following in O(log n) time
 - * find and delete minimum
 - * insert or update a value

- * With such a tree
 - * Finding minimum burn time vertex takes O(log n)
 - * With adjacency list, updating burn times take O(log n) each, total O(m) edges
- * Overall $O(n \log n + m \log n) = O((n+m) \log n)$

Limitations

- * What if edge weights can be negative?
- * Our correctness argument is no longer valid

- * Next vertex to burn is v, via x
- * Might find a shorter path later with negative weights from y to w to v

Why negative weights?

- * Weights represent money
 - * Taxi driver earns money from airport to city, travels empty to next pick-up point
 - * Some segments earn money, some lose money
- * Chemistry
 - * Nodes are compounds, edges are reactions
 - * Weights are energy absorbed/released by reaction

Handling negative edges

- * Negative cycle: loop with a negative total weight
 - * Problem is not well defined with negative cycles
 - * Repeatedly traversing cycle pushes down cost without a bound
- * With negative edges, but no negative cycles, other algorithms exist (will see later)
 - * Bellman-Ford
 - * Floyd-Warshall all pairs shortest path