Chapter 2 Investment Appraisal: Basic Methods

- > Net Present Value Rule
 - ❖ Accept investments that have positive NPV
 - Choose the one with the largest NPV
- > Internal Rate of Return (IRR)
 - \clubsuit IRR is the discount rate which makes NPV = 0.

$$NPV = C_0 + \frac{C_1}{1 + IRR} + \frac{C_2}{(1 + IRR)^2} + \dots + \frac{C_n}{(1 + IRR)^n} = 0$$

• If $C_0 < 0$, we are doing the investment.

NPV of the project is a smoothly declining function of discounted rate (r). Therefore, we will take the project only if r<IRR.

• If $C_0 > 0$, we are borrowing money from bank.

NPV of the project is an increasing function of discounted rate (r).

Therefore, we will take the project only if r>IRR.

Example (04 midterm)

The cash flow projection of a project is given as follows:

Year 0	Year 1	Year 2	Year 3
4000	-3000	-2000	-1000

a. (8%) Use interpolation or extrapolation to find the (approximate) IRR of your project.

b. (7%) If your cost of capital is 15%, should you undertake the project? Why?

Solution:

a.

b. Method 1

Method 2

> Cycle Problem

❖ For comparing alternatives with different cycle lengths over the same time horizon.

$$PV = PV_{lcycle} + PV(\frac{1}{1+r})^{k}$$

$$PV = \frac{PV_{lcycle}}{1 - (\frac{1}{1+r})^{k}}, \text{ where k is the length of the basic cycle}$$

Example (05 midterm)

You are contemplating the purchase of an air-conditioner and have two choices. Brand A costs HK\$8,000 and the estimated expenses on electricity is \$600 per month. Brand B costs HK\$14,000 and the estimated expenses on electricity is \$450 per month. Brand A should have a useful life of 9 years with regular maintenance which costs \$450 per year, and Brand B a useful life of 11 years with maintenance cost \$500 per year. Which Brand should you buy if the average time of using air-conditioner is three months per year? Will your decision be changed if the average time of using air-conditioner is seven months per year? You may assume that all utility bills are payable by the end of a year and the interest rate is 4% per year.

Solution:

> Sensitivity Analysis

- ❖ Analyse the viability of an investment in relation to each component that is subject to uncertainty
- Small value of sensitivity
 - → More sensitive
 - → Small change in this item is enough to cause the alter of decision

Example 1 (the sensitivity of C_0)

Find the sensitivity of C_0 for r = 10%

Year	C_0	C_1	C_2	C_3
Cash flow	-2000	1000	1000	1000

Solution:

Example 2 (the sensitivity of sales volumes)

Find the sensitivity of sales volumes

Outlay = \$9000 Sales price = \$20 Unit cost = \$10 Discount rate = 10%

Sales volume: 500 units (1st yr), 400 units (2nd yr), 300 units (3rd yr)

Solution:

> Single – Investment Risk Analysis

Consider an n-year project:

- Expected return for year $t = \overline{R}_t = \sum_{i=1}^m p_{ti} R_{ti}$ Expected net present values $= E[R_0 + \frac{R_1}{1+r} + \frac{R_2}{(1+r)^2} + \dots + \frac{R_n}{(1+r)^n}]$ $ENPV = \sum_{t=0}^n E[\frac{R_t}{(1+r)^t}]$ $= \sum_{t=0}^n \overline{R}_t (1+r)^{-t}$
- Variance of return for year $t = \sigma_t^2 = E(R_t \overline{R}_t)^2 = \sum_{i=1}^m p_{ti}(R_{ti} \overline{R}_t)^2$ Variance of the NPV $= \sigma_{NPV}^2 = Var[\sum_{t=0}^n R_t (1+r)^{-t}]$ $= \sum_{t=0}^n \sigma_t^2 (1+r)^{-2t} + \sum_{s=0}^n \sum_{t=0}^n \frac{\text{cov}(R_s, R_t)}{(1+r)^{s+t}}$

If returns are independent, $cov(R_s, R_t) = 0$

$$\sigma_{NPV}^2 = \sum_{t=0}^n \sigma_t^2 (1+r)^{-2t}$$

- ❖ The standard deviation of NPV is used as a measure of total risk for the investment.
- * Risk increases as variance increases.
- If $NPV \sim N(\mu, \sigma^2)$, it is interested to find Pr(NPV < 0) using normal approximation.

Example 3

Initial investment = 2000 r = 10%

Year 1	Return	3000	6000
1 ear 1	Prob	0.6	0.4
Voor 2	Return	5000	7000
Year 2	Prob	0.7	0.3

Find E(NPV) and SD(NPV).

Solution:

Example 4 (04 midterm)

It is estimated that an investment will have an expected return of 5% and a risk of 8%. What is the chance of making a loss for this investment? State your assumption.

Solution:

> Coefficient of variation

$$C = \frac{\sigma_{NPV}}{ENPV}$$

If σ_{NPV} is interpreted as risk, then C represents units of risk per unit of return.

- Smaller value of C is better.
- Assume NPV is approximately normally distributed, then $\frac{\text{NPV} \text{ENVP}}{\sigma_{\text{NPV}}} \sim \text{N}(0,1)$ 95% CI for $NPV = (ENPV \pm 1.96\sigma_{NPV})$

Example 5

The senior management of a company decided to accept only projects that carry no more than 5% chance of making a loss. Interpret this policy in terms of coefficient of variation. State your assumption.

Solution:

> Simulation

- **Steps** are as follows:
 - 1. Generate set of random variables (involved in the cash flow analysis) from their distributions.
 - 2. For each set of random variables, compute NPV.
 - 3. Repeat the process many times; the distribution of NPV can be approximated.