

CSE 4205 Digital Logic Design

Counter

Course Teacher: Md. Hamjajul Ashmafee

AP, CSE, IUT

Email: ashmafee@iut-dhaka.edu

Introduction

- The simplest type of MSI sequential circuit
 - Made of one or more flip flops (building block of sequential circuit)
- Definition: Basically, a counter changes its state in a prescribed sequence when input pulses are received
 - Driven by a clock signal (common input pulse)
- Application: count number of pulses/cycles (Hz), to measure time (T) and frequency (f)
- Basically, we use T flip flop which has the toggling feature (input, T = 1) best suited for counting operation

Types

- Broadly categorized in different ways:
 - 1. Asynchronous and synchronous counter
 - 2. Single and multimode counter
 - 3. Modulus counter

All of them has further classifications

Asynchronous and Synchronous Counter

Asynchronous Counter

- Simple and straightforward in operation and construction
- Each flip flop is triggered by the previous flip flop
- Also known as ripple or serial counter

Synchronous Counter

- Clock pulses are simultaneously applied to all flip flops
- To increase the speed of the counter, more sophisticated hardware is required
- Also known as parallel counter

Single and Multimode Counter

- Modes of counting
 - Count-Up
 - Count-Down
- Single-mode Counter
 - Either count-up mode or count-down mode is in operation
- Multimode Counter
 - Both modes are in operation

Modulus Counter

- It is defined by the number of states it is capable of counting.
 - To define all states, if n bits are required to represent each state, in total 2^n (=N) states are possible (maximum count)
- Types:
 - Mod-N or Mod-2ⁿ
 - Mod "<N"

Asynchronous Counter

- All the flip flops are not driven by same clock pulse
- It has cumulative settling time of all flip flops
- It causes the ripple through the changes of the states of the flip flops successively

3 Bit Asynchronous Up Counter

Logic Diagram

3 Bit Asynchronous Up Counter

Count Sequence

Counter State	Q_2	Q_{I}	Q_o
0	0	0	0
1	0	0	1
2	0	1	0
3	0	1	1
4	1	0	0
5	1	0	1
6	1	1	0
7	1	1	1

Asynchronous Down Counter

• Counts downward starting from a maximum count of (2ⁿ-1) to 0

Counter State	Q_2	Q_{i}	Q_o
7	1	1	1
6	1	1	0
5	1	0	1
4	1	0	0
3	0	1	1
2	0	1	0
1	0	0	1
0	0	0	0

- Application: Count-down timer
- There are three different ways to implement...

Asynchronous Down Counter: Way 1

 With same circuit as previous, only outputs of the counter may be taken from the complement outputs (Q') of the flip-flops

Asynchronous Down Counter: Way 2

• The circuit will be slightly modified so that the clock inputs of successive flip-flops will be driven by the Q' output of preceding stages (flip-flops)

Asynchronous Down Counter: Way 3

 The circuit will be similar to the up-counter circuit replacing the negative edge triggering flip-flops to the positive edge triggering flip-flops

Asynchronous Up-Down Counter

- We combine the up and down modes in a single up-down counter
 - Count both upward as well as downward
 - It is also called the "multimode" counter
- The operation of such counter is controlled by up-down controller
 - To select the mode up or down

Asynchronous Up-Down Counter

Circuit Diagram

Propagation Delay of Asynchronous Counter

Self Study

Synchronous Counter

- All flip-flops are clocked synchronously
- But T inputs of different flip-flops could be varied based on necessity

Synchronous Up Counter with Parallel Carry

For the first FF (LSB), T=1. It changes the output constantly.

Synchronous Up Counter with Ripple Carry

Synchronous Down Counter

Synchronous Up-Down Counter

Other Synchronous Counter

 Same as design procedure of Sequential circuit to design any synchronous counter

• Example:

- Modulus < N (2ⁿ) counter
- BCD Counter
- Gray code counter
- Irregular counter
- Sequence Generator

Synchronous Counter: Design Procedure

- From the problem statement, draw the state diagram that describes the operation of a counter
- Derive the state table and circuit excitation table from the state diagram maintaining the count sequence
- Find the **number** of the flip-flops
- Determine the flip-flop type and its inputs
- Prepare the K-maps to get the simplified expressions for each inputs in term of the outputs and external inputs of flip-flops
- Connect the circuit using the flip-flops and other gates corresponding to the simplified expressions

SC: Design Procedure – Example

Design of a MOD-3 counter

State Diagram:

State Table and Circuit Excitation Table:

Present state	Next state	
00	01	
01	10	
10	00	

Count Sequence		Flip-flop inputs	
$A_{_I}$	A_o	$TA_{_{I}}$	TA_o
0	0	0	1
0	1	1	1
1	0	1	0

SC: Design Procedure – Example...

Design of a MOD-3 counter

K-map for simplification:

Logic Diagram:

Propagation Delay of Synchronous Counter

Self Study

Synchronous-Asynchronous Counter

- Some hybrid counters combines the good feature of these both
 - Simplicity of the asynchronous counter and speed of the synchronous counter
 - Example: BCD synchronous-asynchronous counter
 - Explanation: Self-study

Comparison between Synchronous and Asynchronous Counter

Self Study

Some Other Terms

- Lock out states/conditions:
 - Some unused states may not have the known next state. A counter with such unused states may suffer from lock out problem.
- Presettable/programmable counter:
 - A counter that has the capability to start counting from any desired state maintaining an appropriate logic circuit.

Application of Counter

Frequency Counter

- Measure and display the frequency of a signal
- It will measure the unknown frequency (f_x) against a known SAMPLE pulse

Application of Counter...

Measurement of Period

- \bullet An accurate 1 MHz reference frequency is gated into the counter for any time duration $T_{\!_{x}}$
 - The counter counts and displays the values of Tx in units of micro-seconds
 - Example: for 1.17 milli-second, the gate will allow 1170 pulses into the counter

Application of Counter...

Digital Clock

- Displays time of day in hours, minutes and seconds
- To get accurate clock, a very highly controlled basic clock frequency is required

32 Lecture Demo

Self Study

Hazards in digital circuits

- Due to some undesirable glitches and propagation delay
 - Static hazard
 - Dynamic hazard
 - Essential hazard

Self Study...

• Frequency Division:

• If the clock is not the same for all flip flops, frequency for nth flip-flop (stages) will be $f_{CLK}/2^n$