EECS 489 - Winter 2024

Discussion 8

Midterm Regrades

- Submit regrades via Canvas or Email to staff
 - List the question(s) you want regraded and why you think your answer deserves points back
 - o Please DO NOT post questions on Piazza! We will not answer them
 - Only exam questions can be discussed with the Professor's OH
- Submit regrades by: Tuesday, March 19th @ 11:59 pm EDT

Assignment 3 is out!

- Due Date: Wednesday, March 27th @ 11:59 pm EDT
- Make sure to run your code in the VM
 - Uses the same one as Assignment 2
 - Only need Mininet for this assignment
- Autograder is up, same link as usual
- Considered the easiest of the three group assignments

Today

- Assignment 3
 - Demo Code
 - Hints
 - o Tips
- Routing Protocols
 - Poisoned Reverse Explained

Assignment 3: Demo Code

UDP Example!

Assignment 3: Hints

- WTP-Base
 - Part 1 and Part 2 of the assignment
- The sender and receiver should work in the following conditions:
 - Timeouts/Large amounts of latency (100's of ms)
 - Packet loss
 - Packet Corruption
 - Multiple File Transfers within the runtime/lifespan of a single receiver
 - Large binary/text file transfers (video, movie script, etc.)

Assignment 3: Hints

- WTP-Opt
 - Part 3 of the assignment
- The sender and receiver should work in the following conditions:
 - Same conditions as last slide
 - o ACKs should have precisely the same seg as what was sent
 - o Packets that have been ACK'd should not be retransmitted
- In general: Make sure the expected "optimizations" are observable
- Do not use TCP sockets, the AG knows when you are doing this!

Assignment 3: Main Tips

- The best way for testing is to:
 - Run the code inside the VM (use mininet)
 - Test sending with binary files (usually can cause the most issues)
 rather than just text files
- You will want to ensure you have an efficient implementation, as our tests will fail you if you are taking too much time!
 - Try different levels of throughput/latency
 - Can test with randomly dropped/ignored packets
 - Much more work to implement, but can help!

Routing Protocols

- Link-State (LS) Routing
 - Open Shortest Path First (OSPF)
 - Dijkstra's Algorithm
- Distance-Vector (DS) Routing
 - Routing Information Protocol (RIP)
 - o Bellman-Ford Algorithm

Q1: Routing True or False

• Link-State (LS) routing involves broadcasting its local knowledge of the network to everyone.

Q1: Routing True or False

- Link-State (LS) routing involves broadcasting its local knowledge of the network to everyone.
 - True. Use Dijkstra's for computation. (OSPF)

Q2: Routing True or False

 Conversely, Distance-Vector routing involves telling only neighbors about its global view.

Q2: Routing True or False

- Conversely, Distance-Vector routing involves telling only neighbors about its global view.
 - True. Use Bellman-Ford for computation. (RIP)

Q3: Routing True or False

 Both routing methods involve finding least-cost paths to all other nodes.

Q3: Routing True or False

- Both routing methods involve finding least-cost paths to all other nodes.
 - True. It can use an easy metric to avoid loops.

Q4: Distance-Vector Properties

 For DV routing, will the count-to-infinity problem occur if we decrease a link's cost? (Yes/No + rationale)

Q4: Distance-Vector Properties

- For DV routing, will the count-to-infinity problem occur if we decrease a link's cost? (Yes/No + rationale)
 - No. Loops aren't caused by decreasing link cost

Q5: Distance-Vector Properties

 What about if we connect two previously unconnected nodes? Will count-to-infinity occur? (Yes/No + rationale)

Q5: Distance-Vector Properties

- What about if we connect two previously unconnected nodes? Will count-to-infinity occur? (Yes/No + rationale)
 No. Loops potentially result from a removing a link
- Reminder: Count-to-infinity problem may occur when the cost of a link increases.

Q6: Distance-Vector Situations

- Consider this network fragment:
 - w's least-cost path to u (not shown) of 5.
 - y has a least cost path to u of 6.
 - Complete paths from w and y to u are not shown.
 - All links have strictly positive costs.
- What is x's distance vector for w, y, and u?

$$D_w(u) = 5$$
$$D_y(u) = 6$$

Q6: Distance-Vector Situations

- Consider this network fragment:
 - w's least-cost path to u (not shown) of 5.
 - o y has a least cost path to u of 6.
 - Complete paths from w and y to u are not shown.
 - All links have strictly positive costs.
- What is x's distance vector for w, y, and u?
 - o Dx(w) = 2, Dx(y) = 4 (x -> w -> y), Dx(u) = 7 (x -> w -> ... -> u)
 - o [2, 4, 7] (with order above)

$$D_w(u) = 5$$
$$D_y(u) = 6$$

Q7: Poisoned Reverse

- Consider this network fragment to the right.
- Assume the following events:
 - DV is used with poisoned reverse.
 - o Routing state has stabilized.
 - c(A, B) goes from 1 to 200 very suddenly.
- Will count to infinity occur?

Q7: Poisoned Reverse

- Consider this network fragment to the right.
- Assume the following events:
 - o DV is used with poisoned reverse.
 - o Routing state has stabilized.
 - ∘ c(A, B) goes from 1 to 200 very suddenly.
- Will count to infinity occur?
 - No. In general, if x goes to z through y, then x will tell y the cost from x to z is infinity.

Poisoned Reverse Explained

• Initial Steady-State

	Α	В	С	D
Α	0	1(B)	inf	inf
В	1(A)	0	2(D)	1(D)
С	inf	2(D)	0	1(D)
D	inf	1(B)	1(C)	0
DVs	@ E	3		

DVs @ D

Poisoned Reverse Explained

Some time later...

	А	В	С	D
Α	0	1(B)	inf	inf
В	200(A)	0	2(D)	1(D)
С	inf	2(D)	0	1(D)
D	inf	1(B)	1(C)	0

DVs @ B

DVs @ D

Poisoned Reverse Explained

Finally

	А	В	С	D
А	0	102(C)	100(C)	101(D)
В	102(D)	0	2(D)	1(D)
С	100(A)	2(D)	0	1(D)
D	101(C)	1(B)	1(C)	0

DVs @ B

DVs @ D

Wrap-Up

- Thanks for coming!
- Start Assignment 3 soon!