SESSION 2004

Filière MP (groupes M/MP/MI)

Épreuve commune aux ENS de Lyon et Cachan

Filière MP (groupe I)

Épreuve commune aux ENS de Paris, Lyon et Cachan

Filière PC (groupe I)

Épreuve commune aux ENS de Paris et Lyon

MATHÉMATIQUES

Durée : 4 heures

L'usage de calculatrices électroniques de poche à alimentation autonome, non imprimantes et sans document d'accompagnement, est autorisé. Cependant, une seule calculatrice à la fois est admise sur la table ou le poste de travail, et aucun échange n'est autorisé entre les candidats.

Soit d un entier ≥ 1 . On note $M_d(\mathbf{C})$ l'espace des matrices $d \times d$ à coefficients dans \mathbf{C} . Le produit scalaire hermitien dans \mathbf{C}^d est donné par $\langle x, y \rangle = \sum_{i=1}^d \bar{x}_i y_i$. On munit \mathbf{C}^d de la norme $||x|| = \langle x, x \rangle^{1/2}$ et $M_d(\mathbf{C})$ de la norme $||A|| = \sup_x \frac{||Ax||}{||x||}$.

L'adjointe d'une matrice A est la matrice A^* dont les coefficients sont $(A^*)_{i,j} = \overline{A_{j,i}}$. Une matrice U est unitaire si $U^*U = UU^* = I$, où I est la matrice identité.

Une conjugaison unitaire est une application φ de $M_d(\mathbf{C})$ dans lui-même de la forme $\varphi(A) = U^*AU$ où U est une matrice unitaire. Une telle matrice U est dite associée à φ .

On appelle groupe d'Arveson une famille $(\varphi_t)_{t\in\mathbf{R}}$ de telles conjugaisons unitaires qui est un groupe continu à un paramètre ; c'est-à-dire

- 1) $\varphi_0(A) = A$, pour tout $A \in M_d(\mathbf{C})$,
- 2) $\varphi_t \circ \varphi_s = \varphi_{t+s}$, pour tous $s, t \in \mathbf{R}$,
- 3) ($t \mapsto \varphi_t(A)$) est une application continue de **R** dans $M_d(\mathbf{C})$, pour tout $A \in M_d(\mathbf{C})$.

Si T est un sous-groupe de \mathbf{R} , on appelle groupe unitaire (indexé par T), toute famille $(V_t)_{t\in T}$ de matrices unitaires telle que

- i) $V_0 = I$,
- ii) $V_{s+t} = V_s V_t$, pour tous $s, t \in T$.

On dit que $(V_t)_{t\in T}$ est continu si de plus l'application $(t\in T\mapsto V_t)$ est continue, c'està-dire : pour tous $t\in T,\ \epsilon>0$, il existe $\delta>0$ tel que $s\in T,\ |s-t|<\delta$ impliquent $||V_s-V_t||<\epsilon$.

Le but de ce problème est de démontrer le théorème suivant.

Théorème [Théorème d'Arveson en dimension finie] Pour tout groupe d'Arveson $(\varphi_t)_{t\in\mathbf{R}}$, il existe un groupe unitaire continu $(V_t)_{t\in\mathbf{R}}$ tel que

$$\varphi_t(A) = V_t^* A V_t$$

pour tout $t \in \mathbf{R}$ et tout $A \in M_d(\mathbf{C})$.

On pose $S^1 = \{z \in \mathbf{C}; |z| = 1\}$, le cercle unité de \mathbf{C} .

I. Cocycles

- 1) a) Montrer que deux matrices unitaires U et V sont associées à une même conjugaison φ si et seulement si $U = \lambda V$ pour un $\lambda \in S^1$.
- b) Soit $(\varphi_t)_{t \in \mathbf{R}}$ un groupe d'Arveson. Montrer que φ_t est de la forme $\varphi_t(A) = U_t^* A U_t$ où les matrices unitaires U_t vérifient $U_{t+s} = \alpha(t,s) U_t U_s$ pour une famille $\{\alpha(s,t); s,t \in \mathbf{R}\}$ de points de S^1 telle que

$$\alpha(0,t) = \alpha(t,0) = 1$$

$$\alpha(t,s)\alpha(t+s,u) = \alpha(t,s+u)\alpha(s,u)$$

pour tous $s, t, u \in \mathbf{R}$.

Une famille $\{\alpha(s,t); s,t\in \mathbf{R}\}$ de points de S^1 vérifiant les propriétés ci-dessus sera appelée cocycle.

2) On considère un cocycle quelconque α et on note $\widetilde{\alpha}$ la restriction de α aux indices s,t qui sont dans \mathbf{N} . On dit qu'une suite $(u_n)_{n\in\mathbf{N}}$ dans S^1 détermine $\widetilde{\alpha}$ si

$$\widetilde{\alpha}(m,n) = \frac{u_m u_n}{u_{n+m}}$$

pour tous $n, m \in \mathbb{N}$.

- a) Montrer que si $(u_n)_{n \in \mathbb{N}}$ et $(v_n)_{n \in \mathbb{N}}$ sont deux suites qui déterminent $\widetilde{\alpha}$ alors il existe $a \in S^1$ tel que $u_n = a^n v_n$ pour tout $n \in \mathbb{N}$.
 - b) Montrer que $\widetilde{\alpha}$ est entièrement fixé lorsque l'on connaît les valeurs $\widetilde{\alpha}(1,n), n \in \mathbf{N}$.
 - c) En déduire qu'il existe toujours une suite $(u_n)_{n\in\mathbb{N}}$ qui détermine $\widetilde{\alpha}$.
- 3) a) Montrer que, pour tout $k \in \mathbf{N}$, on peut construire une suite $(u_k^{(n)})_{k \in \mathbf{N}}$ qui détermine la famille $\{\widetilde{\alpha}_n(\ell,k) = \alpha(\ell/2^n;k/2^n); \ell,k \in \mathbf{N}\}$ et telle que

$$u_2^{(n+1)} = u_1^{(n)}$$

pour tout $n \in \mathbf{N}$.

- b) En déduire qu'alors $u_{2k}^{(n+1)} = u_k^{(n)}$ pour tous $k, n \in \mathbf{N}$.
- c) Soit D_+ l'ensemble des nombres dyadiques positifs : $D_+ = \{k/2^n; k, n \in \mathbb{N}\}$ (noter que D_+ est stable par l'addition). Soit α un cocycle, montrer qu'il existe une application $t \mapsto u_t$ de D_+ dans S^1 telle que

$$\alpha(t,s) = \frac{u_t u_s}{u_{t+s}}$$

pour tous $s, t \in D_+$.

4) Montrer que la famille $(V_t = u_t U_t)_{t \in D_+}$, est un semigroupe, c'est-à-dire $V_s V_t = V_{s+t}$ pour tous $s, t \in D_+$.

On a ainsi construit un semigroupe de matrices unitaires $(V_t)_{t\in D_+}$, telles que $\varphi_t(A) = V_t^*AV_t$ pour tout $t\in D_+$ et tout $A\in M_d(\mathbf{C})$.

- 5) Soit $D \subset \mathbf{R}$ le sous-groupe des nombres dyadiques (positifs ou négatifs) : $D = \{k/2^n; k \in \mathbf{Z}, n \in \mathbf{N}\}$. Montrer qu'il existe un groupe unitaire $(V_t)_{t \in D}$ tel que $\varphi_t(A) = V_t^* A V_t$ pour tout $t \in D$ et tout $A \in M_d(\mathbf{C})$.
- 6) Montrer que si le groupe $(V_t)_{t\in D}$, ci-dessus est continu alors le théorème d'Arveson est démontré.

On va s'attacher dans la suite à obtenir cette continuité.

II. Continuité

On se donne maintenant un semigroupe quelconque de matrices unitaires $(V_t)_{t\in D_+}$ telles que $\varphi_t(A) = V_t^* A V_t$ pour tout $t \in D_+$, tout $A \in M_d(\mathbf{C})$.

Dans ce qui suit, les limites portant sur t s'entendent pour $t \in D_+$.

- 1) a) Déduire de la propriété de continuité de φ que pour tout $\Psi \in \mathbf{C}^d$ de norme 1 on a $\lim_{t\to 0} |\langle \Psi, V_t \Psi \rangle|^2 = 1$.
 - b) En déduire que $V_t\Psi$ est de la forme $e^{i\theta_t}\Psi + \varepsilon(t)$ avec $\lim_{t\to 0} \varepsilon(t) = 0$.
- 2) Soit Ψ et Ψ' deux vecteurs de \mathbf{C}^d , de norme 1. On pose, pour tout $t \in D_+$, $a_t = \langle \Psi, V_t \Psi \rangle$ et $b_t = \langle \Psi', V_t \Psi' \rangle$. Montrer que $\lim_{t \to 0} \frac{a_t}{b_t} = 1$.
- 3) En déduire que s'il existe un $\Psi \in \mathbf{C}^d$ non nul tel que $\lim_{t\to 0} V_t \Psi = \Psi$ alors cette propriété sera vraie pour $tout \ \Psi \in \mathbf{C}^n$.

Notre but est maintenant de démontrer qu'on peut changer $(V_t)_{t\in D_+}$, pour qu'il existe un tel Ψ .

III. Familles presque multiplicatives

Une famille $(a_t)_{t\in D_+}$, de nombres complexes est dite multiplicative si $|a_t|=1$ pour tout $t\in D_+$ et $a_ta_s=a_{s+t}$ pour tous $s,t\in D_+$; presque multiplicative si $a_0=1$, $\lim_{t\to 0}|a_t|=1$ et

$$\lim_{s,t\to 0} \frac{a_{s+t}}{a_t a_s} = 1.$$

- 1) Montrer que, pour tout $\Psi \in \mathbf{C}^d$, la famille $(a_t = \langle \Psi, V_t \Psi \rangle)_{t \in D_+}$, est presque multiplicative.
- 2) a) Soit $(a_t)_{t \in D_+}$, une famille presque multiplicative. Montrer que la famille $(\frac{a_t}{|a_t|})$ est encore presque multiplicative.

On suppose donc dans la suite que $|a_t| = 1$ pour tout $t \in D_+$.

b) On pose $b_1 = a_1$ et on construit $b_{\frac{1}{2^{n+1}}}$, par récurrence sur n, comme étant la racine carrée de $b_{\frac{1}{2^n}}$ la plus proche (pour la topologie usuelle de \mathbb{C}) de $a_{\frac{1}{2^{n+1}}}$ (dans le cas où les deux racines sont à la même distance, on choisit n'importe laquelle des deux). Enfin, pour tout $t = k/2^n$ on pose $b_t = (b_{\frac{1}{2^n}})^k$.

Montrer que cette définition ne dépend pas de la manière d'écrire t sous la forme $k/2^n$ et qu'elle définit une famille multiplicative b_t , $t \in D_+$.

c) Montrer que

$$\lim_{n \to +\infty} \frac{a_{\frac{1}{2^n}}}{b_{\frac{1}{2^n}}} = 1.$$

Indication : soit $c_n = \frac{a_{\frac{1}{2^n}}}{b_{\frac{1}{2^n}}}$, montrer que $\operatorname{Re} c_n \geq 0$ et que $\frac{c_n}{c_{n+1}^2} \to 1$.

3) Soit $(a_t)_{t\in D_+}$, une famille presque multiplicative telle que $a_{\frac{1}{2^n}}$ tend vers 1 quand n tend vers $+\infty$. On veut montrer l'inégalité suivante pour n assez grand :

$$\sup_{t \in [0, \frac{1}{2^n}] \cap D_+} d(a_t, 1) \le \frac{1}{2} d(a_{\frac{1}{2^{n-1}}}, 1) + 2 \sup_{s, t \in [0, \frac{1}{2^{n-1}}] \cap D_+} d(a_{s+t}, a_s a_t)$$
(1)

où d est la distance usuelle sur S^1 : $d(z_1, z_2) = |\arg(z_1/z_2)|$, tous les arguments étant pris dans $]-\pi,\pi]$. Dans la suite, on a choisi un $N \in \mathbb{N}$ tel que le membre de droite de (1) soit majoré par $\pi/10$ pour tout $n \geq N$. On suppose, pour simplifier, que N=1.

a) Montrer qu'on peut se ramener au cas $a_1 = 1$ et à montrer seulement :

$$\sup_{t \in [0, \frac{1}{2}] \cap D_{+}} d(a_{t}, 1) \leq 2 \sup_{s, t \in [0, 1] \cap D_{+}} d(a_{s+t}, a_{s}a_{t}).$$

b) Soit $\varepsilon = \sup_{s,t \in [0,1] \cap D_+} d(a_{s+t}, a_s a_t)$. Supposons que $\sup_{t \in [0,\frac{1}{2}] \cap D_+} d(a_t,1) > 2\varepsilon$. Montrer qu'il existe un plus petit $n_0 \in \mathbf{N}$ tel qu'il existe un $k \in \{0,\ldots,2^{n_0-1}\}$ avec $d(a_{\frac{k}{2n_0}},1) > 2\varepsilon$.

Soit k_0 le plus petit tel k. Soit $\theta_t \in]-\pi,\pi]$ l'argument de $a_t,\,t\in D_+$. Supposons que $\theta_{\frac{k_0}{2H0}}>0$ pour fixer les idées.

- c) Montrer que $\theta_{\frac{k_0}{2^{n_0}}} > 2\varepsilon$ et $\left|\theta_{\frac{j}{2^{n_0}}}\right| \leq 2\varepsilon$ si $j \in \{0, \dots, k_0 1\}$.
- d) Montrer que $\theta_{\frac{2k_0}{2^{n_0}}} > 3\varepsilon$.
- e) Montrer que $k_0/2^{n_0} \in]1/4, 1/2]$.
- f) En distinguant les deux cas suivants : $\frac{2k_0}{2^{n_0}} \le 1 < \frac{3k_0}{2^{n_0}}$ et $\frac{3k_0}{2^{n_0}} \le 1 < \frac{4k_0}{2^{n_0}}$, montrer que $\theta_1 > 0$ ou que $\theta_{\frac{3k_0}{2^{n_0}}} > 4\varepsilon$ (respectivement). En déduire une contradiction et que (1) est démontré.
- g) En déduire que pour toute famille presque multiplicative $(a_t)_{t\in D^+}$, il existe une famille multiplicative $(b_t)_{t\in D^+}$, telle que $\lim_{t\to 0} \frac{a_t}{b_t} = 1$.
 - 4) Terminer la démonstration du théorème d'Arveson.