## Problem Set #4

MACS 30000, Dr. Evans Xingyun Wu

## Problem 1: Some income data, lognormal distribution, and SMM.

Part (a). The histogram is shown in Figure 1.

Figure 1: Histogram of Percentages of the MACSS Graduates



Part (b). Testing my function by inputting the given matrix and parameter values:  $\begin{bmatrix} 0.0019079 & 0.00123533 \\ 0.00217547 & 0.0019646 \end{bmatrix}$ 

**Part** (c). Figure 2 shows the PDF of lognormal distribution by one-step SMM estimation against the histogram from part(a).

The estimates are: mu = 11.3306370447, sigma = 0.209229359523

The value of SMM criterion function is: 5.80588645143e-14

The data moments are: mean = 85276.8236063, standard deviation = 17992.542128The model moments are: mean = 85276.8115546, standard deviation = 17992.5386167

Using mu=9.0 and sigma=0.3 as the initial guess, the SMM estimation provide estimated mu and sigma as above. The model moments are very close to the data moments, which means the SMM estimation performs well.

**Part (d).** Figure 3 shows the PDF of lognormal distribution by two-step SMM estimation against the histogram from part(a) and the estimated PDF from part(c). The estimates are: mu = 11.3306371028, sigma = 0.209229396992

The value of the two-step SMM criterion function at the estimated parameter values



Figure 2: Lognormal PDF of one-step estimation

is: 0.000903894673886 (greater than 5.80588645143e-14)

The data moments are: mean = 85276.8236063, standard deviation = 17992.542128The model moments of one-step estimation are: mean = 85276.8115546, standard deviation = 17992.5386167

The model moments of two-step estimation are: mean = 85276.8171949, standard deviation = 17992.5430962

Model moments of both one-step estimation and two-step estimation are very close to the data moments. The model moments of two-step estimation are closer to the data moments. But the value of the two-step SMM criterion function are greater than the value of the one-step SMM criterion function, which means the two-step estimation is actually producing more errors. So with comparison to data moments, the two-step estimation performs better than the one-step estimation, but it does not guarantee less estimation errors.

Please see the next page for Figure 3.



Figure 3: Lognormal PDF of two-step estimation