Claims

What	:-	_1	سندا	~4	:-
wnat	10	C	ıaım	ea	15

1	1. An apparatus, comprising:			
2	a unitary layer of electrically non-conductive material having a first surface			
3	adjacent a heat sink, a second surface adjacent a heat source, and a plurality of			
4	openings communicatively coupled between the first surface and the second			
5 '	surface, wherein a combined area the plurality of openings comprises a selected			
6	percentage of the first surface.			

- The apparatus of claim 1, wherein selected ones of the plurality of openings
 comprise a regular geometric shape.
- The apparatus of claim 2, wherein the regular geometric shape is
 substantially circular.
- 4. The apparatus of claim 2, wherein the regular geometric shape is
 substantially square.
- The apparatus of claim 1, wherein selected ones of the plurality of openings
 comprise an irregular geometric shape.
- 1 6. The apparatus of claim 1, wherein the combined area of the plurality of openings comprises at least about 90% of the first surface.
- 7. The apparatus of claim 1, wherein the combined area of the plurality of openings comprises no more than about 95% of the first surface.

1

- 8. The apparatus of claim 1, wherein the combined area of the plurality of openings comprises a selected percentage of the first surface and the second
- 3 surface, wherein the selected percentage of the second surface is different
- from the selected percentage of the first surface.
- 1 9. The apparatus of claim 1, wherein the unitary layer of electrically non-
- 2 conductive material comprises:
- 3 a polymer.
- 1 10. The apparatus of claim 1, further comprising:
- 2 a thermal interface material located between the unitary layer of electrically
- 3 non-conductive material and the heat sink.
- 1 11. The apparatus of claim 1, wherein the unitary layer of electrically non-
- 2 conductive material comprises:
- 3 a non-woven material.
- 1 12. The apparatus of claim 1, wherein the unitary layer of electrically non-
- 2 conductive material comprises:
- 3 a plurality of glass beads.
- 1 13. The apparatus of claim 1, further comprising:
- a thermally conductive material located in selected ones of the plurality of
- openings, the thermally conductive material selected from at least one of a solid,
- 4 a liquid, and a paste.
- 1 14. An apparatus, comprising:
- 2 a heat source;
- 3 a heat sink; and

4	a unitary layer of electrically non-conductive material having a first surface
5	adjacent the heat sink, a second surface adjacent the heat source, and a plurality
6	of openings communicatively coupled between the first surface and the second
7	surface, wherein a combined area of the plurality of openings comprises a
8	selected percentage of the first surface.
1	15. The apparatus of claim 14, wherein the unitary layer of electrically non-
2	conductive material comprises:
3	a polymer.
1	16. The apparatus of claim 14, wherein the unitary layer of electrically non-
2	conductive material has a substantially uniform thickness of about 0.05 mm
1	17. The apparatus of claim 14, further comprising:
2	a thermal interface material located between the unitary layer of electrically
3	non-conductive material and the heat source.
1	18. The apparatus of claim 14, wherein the heat source comprises an integrated
2	circuit package including a transponder.
1	19. The apparatus of claim 14, wherein the heat source comprises a die.
1	20. The apparatus of claim 14, wherein the heat sink comprises a heat spreader.
1	21. The apparatus of claim 14, wherein the combined area of the plurality of
2	openings comprises no more than about 90% of the first surface.
1	
1	22. The apparatus of claim 14, wherein the combined area of the plurality of
2	openings comprises no more than about 95% of the first surface.

1	23. A system, comprising:
2	a wireless transceiver;
3	a die including a die surface and a circuit electrically coupled to the wireless
4	transceiver;
5	a heat sink; and
6	a unitary layer of electrically non-conductive material having a first surface
7	adjacent the heat sink, a second surface adjacent the die surface, and a plurality
8	of openings communicatively coupled between the first surface and the second
9	surface, wherein a combined area of the plurality of openings comprises a
10	selected percentage of the first surface.
1	24. The system of claim 23, wherein the wireless transceiver comprises:
2	a transponder.
1	25. The system of claim 23, wherein the unitary layer of electrically non-
2	conductive material comprises:
3	a polymer.
1	26. A method, comprising:
2	coupling a heat sink to a first surface of a unitary layer of electrically non-
3	conductive material; and
4	coupling a heat source to a second surface of the unitary layer of electrically
5	non-conductive material, wherein the unitary layer of electrically non-
6	conductive material has a plurality of openings communicatively coupled
7	between the first surface and the second surface, and wherein a combined area
8	of the plurality of openings comprises a selected percentage of the first surface.
1	27. The method of claim 26, further comprising:
2	applying a thermally conductive material selected from at least one of a
3	solid, a liquid, and a paste to selected ones of the plurality of openings.

1	
1	28. The method of claim 26, further comprising:
2	compressing the unitary layer of electrically non-conductive material
3	between the heat sink and the heat source.
1	29. The method of claim 26, wherein the unitary layer of electrically non-
2	conductive material comprises:
3	a polymer.
1	30. The method of claim 26, further comprising:

- coupling a wireless transceiver to a circuit included in the die. 2