Mapping of the Structural Genes of the Three Aspartokinases and of the Two Homoserine Dehydrogenases of *Escherichia coli* K-12

J. THÈZE, D. MARGARITA, G. N. COHEN, F. BORNE, AND J. C. PATTE

Service de Biochimie Cellulaire, Institut Pasteur, 75015 Paris, France and Institut de Microbiologie, Faculté des Sciences, Université Paris XI, 91405 Orsay, France

Received for publication 2 October 1973

Mutants requiring threonine plus methionine (or homoserine), or threonine plus methionine plus diaminopimelate (or homoserine plus diaminopimelate) have been isolated from strains possessing only one of the three isofunctional aspartokinases. They have been classified in several groups according to their enzymatic defects. Their mapping is described. Several regions of the chromosome are concerned: thrA (aspartokinase I-homoserine dehydrogenase I) is mapped in the same region as thrB and thrC (0 min). lysC (aspartokinase III) is mapped at 80 min, far from the other genes coding for diaminopimelate synthesis. metLM (aspartokinase II-homoserine dehydrogenase II) lies at 78 min closely linked to metB, metJ, and metF.

The main features of regulation in the branched biosynthetic pathway of the aspartate family of amino acids in Escherichia coli K-12 (see review 5) are shown in Fig. 1. The first reaction that leads to the synthesis of aspartylphosphate is catalyzed by three isofunctional aspartokinases (EC 2.7.2.4), the inhibition and repression of which respond to different end products: the activity of aspartokinase I (AKI) is inhibited by threonine and its synthesis is repressed by threonine plus isoleucine; aspartokinase II (AKII) is repressed by methionine; aspartokinase III (AKIII) is inhibited and repressed by lysine. The synthesis of homoserine from aspartic semialdehyde is catalyzed by two different homoserine dehydrogenases (EC 1.1.13): homoserine dehydrogenase I (HDHI) activity is inhibited by threonine and its synthesis is repressed by threonine plus isoleucine; homoserine dehydrogenase II (HDHII) is repressed by methionine. AKI and HDHI activities are carried by a single polypeptide chain (9); AKII and HDHII activities are also carried by a multifunctional protein (10).

This investigation describes the positions of the corresponding genes on the chromosome of *E. coli*. The nomenclature used in this investigation is described in Fig. 1 and is commented on in the Discussion.

Figure 2 summarizes the results and gives the position on the genetic map of $E.\ coli$ of the different genes coding for the enzymes of the pathway, as well as the position of the genes used for mapping, as given by Taylor (24).

This investigation has been possible only after construction of strains possessing only one or the other of the three isofunctional enzymes, whose loss leads to a recognizable phenotype.

MATERIALS AND METHODS

Bacterial strains. All strains were derived from Escherichia coli K-12. Phenotypes and genotypes are given in Tables 1, 4, and 8. The allele numbers used were allocated to the Service de Biochimie Cellulaire by the E. coli Genetic Stock Center, Yale University.

Transduction. Transductions with phage P1kc were performed according to the method of Lennox (16). Phage P1 vir was kindly given by M. Yarmolinsky and was used exclusively for mapping thr genes.

Mutagenesis with N-methyl-N'-nitro-N-nitrosoguanidine and penicillin enrichment are described in reference 1.

Media. Selective plates contained minimal medium (8) supplemented with 1 μ g of thiamine hydrochloride per ml, 2% agar, and the carbon source (glucose or fructose, 4 mg/ml). Except when specified, amino acids were used at 3×10^{-4} M of the L-isomer; DL-threonine was used at 2×10^{-3} M. The pgi character (phosphoglucose isomerase) was checked by use of media supplemented with eosine Y (40 mg/100 ml) and methylene blue (6.5 mg/100 ml) on which Pgi⁺ strains give red colonies and Pgi⁻ strains give white colonies.

Enzyme measurements. Aspartokinase, homoserine, dehydrogenase, and aspartate semialdehyde dehydrogenase (EC 1.2.1.11) activities were measured as previously described (14, 20). Homoserine kinase (EC 2.7.1.39) activity was measured by coupling homoserine-dependent adenosine 5'-diphosphate (ADP) pro-

Reaction	Name of the enzyme	Abreviation	Name of the corresponding genes	Regulation of biosynthesis by:	Regulation of activity by:	References
1	Aspartokinase I	AKI	thr A a	thr and ile	thr	(22) (12)
1	Aspartokinase II	AKI	met L ^b	met	0	(18)
1	Aspartokinase III	AK III	lys C	lys	lys	(22)
2	Aspartic semialdehyde dehy- drogenase	ASADH	<u>asd</u>	lys ,thr, met	0	(3)
3	Homoserine dehydrogenase $f I$	ноні	thr A a	thr and ile	thr	(19) (12)
3	Homoserine dehydrogenase II	нон п	met M ^b	met	0	(18)
4	Homoserine kinase	нѕк	thr B	thr and ileu	thr	(26)
5	Threonine synthetase	TS	<u>thr</u> C	thr and ileu	n.d.	

Fig. 1. Biosynthetic pathway for the amino acids deriving from aspartate. Symbols: →, enzymes repressed by lysine; ⇒, enzymes repressed by threonine plus isoleucine; •••••>, enzymes repressed by methionine; ••••>, enzymes repressed by isoleucine, leucine, and valine. The dashed lines point to the reactions subject to feed-back inhibition. The symbols in italics represent the genes corresponding to each reaction when this correspondence is known. The symbols for the genes corresponding to reaction 1 to 5 are detailed below. (a/For thrA see Discussion; b/for metL and MetM see Discussion.)

duction to pyruvate kinase (EC 2.7.1.40) and lactate dehydrogenase (EC 1.1.1.27) (L. Kleidman and J. Thèze, manuscript in preparation).

MAPPING OF THE THR GENES

Isolation and classification of thr mutants (see Table 1). For selecting thrA mutants, it was necessary to construct a strain possessing only AKI-HDHI in order to select mutants devoid of one of the two activities of the enzyme on the basis of their auxotrophy.

Strain Gif 54, lacking AKIII, had already been obtained. Its growth is inhibited by threonine plus methionine (17). Starting from Gif 54 the direct selection of a strain having lost AKII-HDHII and

unable to grow in the presence of threonine proved unsuccessful. Therefore, we had to resort to an indirect method. Using a derivative of Gif 54, Gif 101 (15), which has lost HDHI and retained AKI activity, it was easy to select an auxotroph for homoserine that had lost HDHI. In this strain, Gif 102, AKII activity was simultaneously lost (15).

From Gif 102 we have constructed a strain that has recovered HDHI activity. This strain is able to grow in minimal medium and unable to grow on threonine or threonine plus isoleucine. A strain having recovered HDHII would also be able to grow in minimal medium but methionine would inhibit its growth. Hence the following selection: Gif 102 was transduced by phage P1 vir grown on GC19 and prototrophs were selected

on a medium containing 10² M DL-methionine. One of the transductants was kept (GT1) and it was verified that its growth is inhibited by threonine plus isoleucine or threonine alone. Direct measurements in the crude extracts of GT1 confirm that only AKI-HDHI is present at the exclusion of AKII-HDHII and AKIII. From this strain thrA mutants have been selected after nitrosoguanidine mutagenesis.

One thrA mutant obtained from GT1 is used in this investigation: GT3 (thrA 1016). It has a specific requirement for homoserine and diaminopimelate (Dpm) since it has lost AKI (but retained HDH1 activity and is designated AK⁻—HDH⁺). It is distinguished from asd mutants by enzymatic assay.

Two other thrA mutants have already been described: Gif 106M1 (thrA1101) (3) has the same enzyme activities and nutritional requirements as GT3. Gif 102 has lost HDHI activity and retained AKI activity (AK⁺—HDH⁻). It requires threonine plus methionine, or homoserine, for growth (15).

thrB and thrC mutants have been obtained from Hfr H. Both types require threonine and must lack homoserine kinase or threonine synthetase (EC 4.2.99.2). Mutants lacking homoserine kinase are classified as thrB. Mutants possessing homoserine kinase are assumed to lack threonine synthetase and are classified as thrC. In mapping experiments we have used the thrB1000 and thrC1001 alleles carried respectively by strains YA73 and Gif 41.

When thrB or thrC alleles (that normally lead to an auxotrophy for threonine) are introduced in a strain which possesses only AKI-HDHI the repression and feedback inhibition caused by threonine creates a phenotypic additional requirement for homoserine and Dpm (e.g., GT12 and GT13, see Table 1).

Localization of the thrA gene. Mutations leading to desensitization of AKI-HDHI co-transduce with the

Fig. 2. Location of the structural genes involved in the biosynthesis of threonine, methionine, diaminopimelate, lysine, and isoleucine. Genes used in the present work as genetic markers are also indicated (24).

usual thr marker (20). It was of particular interest to check independently that thrA mutants leading to inactivation of one of the two activities are linked to thrB and thrC. The distance of thr mutants of each type to serB and pyrA, markers on each side of the thr locus, has been estimated. A phage grown on MI 154 (pyrA53) is used to transduce GT15, GT12, and GT13 (serB strains that are, respectively, thrA, thrB, and thrC). Table 2 gives the results of such transductions, selecting for Ser+ or Thr+ characters. The distance of thrA to pyrA and serB is of the same order as that of thrB and thrC to the same markers. The cotransduction frequencies vary from 15 to 20% between thr genes and pyrA53 and 60 to 66% between thr genes and serB22.

Order of the thr genes. The relative order of different thr mutations was determined with respect to the outside serB22 mutation by using the threepoint test method involving reciprocal crosses. A series of strains has been constructed in such a way that each thr allele is present in ser- and ser+ derivatives (see Table 1). The crosses were performed using P1 vir. The recipient in each cross is thr-serand the donor thr-ser+. The Thr+ transductants selected in presence of serine are then scored for the ser+ gene. For ordering two thr sites each thr mutant is employed as donor in one cross and recipient in the other. Figure 3 summarizes the crossovers necessary to recover Thr+ Ser+ transductants according to the respective positions of the thr sites. It is obvious from this scheme that the respective frequencies of Ser+ among Thr+ recombinants in the two crosses allow one to order unambiguously the two threonine mutations involved.

Table 3 gives the list and the results of the crosses carried out. The percentage of Ser⁺ among Thr⁺ transductants in each cross is shown. The frequency of Ser⁺ is consistently different in each reciprocal cross.

The results of the crosses 1 and 2 performed between thrB and thrC give the order: serB22 thrB1000 thrC1001. For thrA mutants, we have used three different mutations of this gene, including two AK-HDH+ and one AK+HDH- mutants. All three give unambiguous results in reciprocal crosses with the thrB1000 allele (see in particular crosses 5, 6, 7, and 8). From these results, we can derive the following order: ...serB...thrA thrB thrC...pyrA....

MAPPING OF LYSC

Isolation of lysC mutants (Table 4). For mapping of lysC, mutants were derived from strain Gif 106 previously described (3). This strain has lost by successive mutations (thrA1101 and metLM1000) AKI, AKII, and HDHII activities; AKIII and HDHI are conserved. Strain Gif 106 may thus grow in minimal medium, but lysine inhibits its growth by inhibition and repression of AKIII, the only enzyme left that can catalyze aspartylphosphate synthesis. By mutagenesis of Gif 106, mutants auxotrophic for homoserine plus Dpm were selected; such a phenotype may correspond to mutations either for AKIII activity or for aspartate semialdehyde dehydrogenase activity. By measuring these two enzymes in crude extracts, strain 106 M1 was verified to lack AKIII activity. As growth of Gif 106 is inhibited by lysine,

Genotype						for the mapping o	, and any general
Genotype	thrA	thrB	thrC	metLM	lysC	Other loci	Origin
Strain no.	"""	11112	"""	, metalia	1,500	ounce foci	Ongm
AT2459	+	+	+	+	+	serB22, thi-1	M. Iaccarino
GC19	+	+	+	+	+	trpR 1000	(6)
MI154	+	+	+	+	+	pyrA53, thi-1	M. Iaccarino
YA73	+	1000	+	+	+		F. Jacob
Gif 41	+	+	1001	+	+		(7)
Gif 54	+	+	+	+	1004		(17)
Gif 102	1015a	+	+	+	1004		(15)
Gif 106M1	1101	+	+	1000	1001	ilvA, arg-1000	(3)
GT1	+	+	+	1005	1004		See text
GT2	+	+	+	1005	1004	pro-1001	Pro- derivative of GT1 obtained after mutagenesis
GT3	1016	+	+	1005	1004		See text
GT5		1017°		1005	1004	pro-1001	Thr derivative of GT2 obtained after mutagenesis
GT6	+	+	+	1005	1004	pro-1001, pyrA53	Thr ⁺ transductant of GT5; P1 vir grown on MI154
GT9		1018°		1005	1004	pro-1001, pyrA53	Thr derivative of GT6 obtained after mutagenesis
GT10	+	+	+	1005	1004	pro-1001, pyrA53, serB22	Thr+ transductant of GT9; P1 vir
GT12	+	1000	+	1005	1004	pro-1001, serB22	PyrA+ transductant of GT10; P1 vir grown on YA73
GT13	+	+	1001	1005	1004	pro-1001, serB22	PyrA+ transductant of GT10; P1 vir grown on Gif 41
GT14	11016	+	+	1005	1004	pro-1001, serB22	PyrA+ transductant of GT10; P1 vir grown on Gif 106M1
GT15	1015ª	+	+	1005	1004	pro-1001, serB22	PyrA+ transductant of GT10; P1 vir grown on Gif 102
GT16	1016	+	+	1005	1004	pro-1001, serB22	PyrA ⁺ transductant of GT10; P1 vir grown on GT3

^a This mutation, AKI⁺-HDHI⁻, leads in this strain to a growth requirement for homoserine.

Table 2. Frequency of cotransduction of thrA, thrB, and thrC mutations with serB22 and pyrA53 alleles, phage grown on MI154 (pyrA 53)

Daniminut	Selected marker	No. of colonies		Unselected markers (%)						
Recipient	Selected marker	examined	Ser+	Thr+	PyrA-	Ser+ PyrA-				
GT15 (serB22 thrA1015)	ser+ thr+	397	0.5	66	6					
GT12 (serB22 thrB1000)	ser+	355 3 9 9	67	60	18 7	9				
GT13 (serB22 thrC1001)	thr+ ser+	400 400	62	60	15 6	10				
G113 (serB22 thrC1001)	thr+	436	64		20	9				

mutants resistant to this inhibition were isolated: in the case of 106 G21, 106 G61, and 106 R46, it was shown that AKIII is less sensitive to feedback inhibition by lysine (3). By mutagenesis of each of these strains, mutants lacking AKIII auxotrophic for homoserine plus Dpm were prepared. They were called G21 M8, G61 M17, and R46 M2.

Localization of lysC. As preliminary matings had shown that lysC gene may be linked to arg-1000, (see legend of Table 4) a transduction was carried out with Hfr H (wild type) as donor and 106 M1 (thrA, metLM, lysC, arg-1000) as recipient. Among Arg⁺ transductants, about 25% could grow in the absence of homoserine and Dpm; but two phenotypes were

Downloaded from http://jb.asm.org/ on September 13, 2017 by EIDGENOESSISCHE TECHNISCHE HOCHSCHULE - BIBLIOTHEK

^b This mutation, AKI--HDHI+, leads in this strain to a growth requirement for homoserine plus Dpm.

For strain GT5 and GT9, the thr mutation is not identified.

observed: 10% of the transductants grew normally in minimal medium but did not grow in 10^{-2} M L-lysine; they had recovered AKIII activity, and only this one; the other 15% gave very small colonies in minimal medium; a better growth was observed in the presence of 10^{-3} M DL-threonine; growth was totally inhibited by 2×10^{-3} M DL-methionine. This phenotype corresponds to the presence of AKII alone (see below); the corresponding gene must also be cotransducible with arg-1000. No clone appeared to have gained both AKIII and AKII activities: the genes lysC and metLM must thus be located each on one side of arg-1000.

Reciprocal transductions were performed between strains OR 11 (metA) and 106 M1 (lysC, arg-1000) (Table 5). The results clearly demonstrate the order arg-1000, metA, lysC (see for instance absence of Met⁺ Arg⁺ recombinants in the first cross). The frequencies of cotransduction observed between arg-1000 and metA are similar to ones found by Fraenkel (11). The frequency between metA and lysC

Fig. 3. Three-point mapping method with reciprocal cross. A, When the order is ser thr1 thr2, two crossovers are required to give Ser+ Thr+ transductants in cross 1 and four crossovers in cross 2. The percentage of Ser+ among Thr+ transductants is higher in cross 1. B, If the order is ser thr2 thr1 the situation is exactly opposite: four crossovers are required to give Ser+ Thr+ transductants in cross 1 and two crossovers in cross 2; the percentage of Ser+ among Thr+ is in the case higher in cross 2. Therefore, the comparison of the percentage of Ser+ among Thr+ transductants in the cross 1 and 2 will permit us to decide if the order is A or B.

is about 30%, a value very close to that reported (26%) for the co-transduction of *metA* and *pgi* (11).

Results of Table 6 demonstrate that *lysC* is highly linked (about 95% co-transduction) with *pgi*. Furthermore, they suggest the order *metA lysC pgi* (for instance Lys Pgi recombinants in the first cross must correspond to four crossing-over events) though differences in the observed frequencies are not highly significant, due to the high linkage between *lysC* and *pgi*. However, as appears from the linkage map (24) no known genes exist near enough *pgi* to confirm this localization.

Other mutations affecting gene lysC were also mapped by using strains G21 M8 (lysC1002, lysC1007), G61 M17 (lysC1005, lysC1008), R46 M2 (lysC1006, lysC1009). Each of these strains carries two mutations in lysC leading, respectively, to desensitization and loss of function in addition to the arg-1000 mutation. They were transduced by phage grown on OR11 (metA). LysC+ transductants were selected; among them we scored metA and arg-1000 markers and the marker leading to desensitization. The results of Table 7 demonstrate that the other lysC mutations are located about the same distance from arg-1000 and metA as was the lysC mutation of 106 M1. In all three cases, the mutations leading to desensitization are very tightly linked (100, 99, 95%) to the mutations corresponding to the absence of enzyme activity.

The seven mutations we have studied that affect LysC wild-type phenotype are thus clustered in the same region of the *E. coli* chromosome.

MAPPING OF METLM AND METM

Isolation of metL and metM mutants. All strains are derived from Gif 88, that carries the mutation thrA1000 leading to absence of AKI-HDHI activities (18). This strain grows slowly in minimal medium; the growth is enhanced by threonine and is completely abolished by methionine, which represses the synthesis of HDHII, the only remaining activity for homoserine synthesis. From this strain, mutant Gif 881-L was selected (18) as resistant to methionine inhibition; in this mutant (mutation met-1001) the synthesis of AKII-HDHII is constitutive. Mutants auxotrophic for homoserine were selected after mutagenesis of either Gif 88, or of strain OR30 derived from Gif 881-L (see

TABLE 3. Three-factor crosses between different pairs of thr mutants

Cross no.ª	Donor	Recipient	No. of Thr+ analyzed	Ser+ (%)
1	YA73 (thrB1000)	GT13 (thrC1001)	318	18
2	Gif 41 (thrC1001)	GT12 (thrB1000)	645	38
3	Gif 102 (thrA1015)	GT12 (thrB1000)	347	25
4	YA73 (thrB1000)	GT15 (thrA1015)	376	38
5	Gif 106M1 (thrA1101)	GT12 (thrB1000)	280	16
6	YA73 (thrB1000)	GT14 (thrA1101)	407	51
7	GT3 (thrA1016)	GT12 (thrB1000)	206	16
8	YA73 (thrB1000)	GT16 (thrA1016)	446	60

^a Selection was carried out for Thr⁺ transductants on petri dishes containing serine and small quantities of complete media varying from 10 to 50 µliters.

Genotype	thrA	metL M	lysC	Other loci	Origin
Strain no.					
DF40	+	+	+	pgi-2	D. Fraenkel
PA505MB Δ 101C	+	+	+	metA, $argH$	M. Schwartz
Gif 106	1101	1000	+	arg- 1000^{b} , i lvA	(3)
106 M 1	1101	1000	1001°	arg-1000, ilvA	(3)
106G21	1101	1000	1002^{d}	arg-1000, ilvA	(3)
106G61	1101	1000	1005^{d}	arg-1000, ilvA	(3)
106R46	1101	1000	1006^{d}	arg-1000, ilvA	(3)
G21M8	1101	1000	1002, 1007	arg-1000, ilvA	lysC derivative of 106G21 ob tained after mutagenesis
G61M17	1101	1000	1005, 1008	arg-1000, $ilvA$	lysC derivative of 106G61 ob tained after mutagenesis
R46M2	1101	1000	1006, 1009	arg-1000, $ilvA$	lysC derivative of 106R46 ob tained after mutagenesis
OR10	+	+	+	metA	Arg ⁺ transductant of PA505MBΔ101C; P1kc grown on HfrH
OR11	1101	1000	+	metA, $ilvA$	Arg ⁺ transductant of Gif 106 P1kc grown on OR10
ORE1	1101	1000	1001°	metA, ilvA	Arg transductant of 106M1 P1kc grown on OR11
OR66	1101	1000	+	pgi-2, ilvA	LysC ⁺ transductant of ORE1 P1kc grown on DF40 ^e
OR713	1101	1000	+	metA, pgi-2, ilvA	LysC ⁺ transductant of ORE1 P1kc grown on DF40 ^e
OR150	1101	1000	1001°	pgi-2, arg-1000, ilvA	Met ⁺ transductant of OR713 P1kc grown on 106M1

^a All strains were constructed to be isogenic for mutations thrA1101 and metLM1000 of Gif 106 in order to avoid recombinations that could allow the appearance of AKI or AKII activities during transduction.

TABLE 5. Ordering of arg-1000, metA, and lysC

Donor	Recipient	Selected pheno- type	No. of transduc- tants scored	Unselected phenotypes				Co-transduction frequencies			
				Met+ Arg+	Met + Arg -	Met Arg+	Met Arg	arg-1000 metA	arg-1000 lysC	metA lysC	
OR11 (arg+-metA- lysC+)	106 M1 (arg- 1000 metA+- lysC-)	LysC+	361	0	244	34	83		9.5	32.3	
				LysC+ Arg+	LysC+	LysC - Arg+	LysC -				
106 M1 (arg- 1000 metA+- lysC-)	OR11 (arg+-metA- lysC+)	MetA+	362	172	92	84	14	29.2		27	

Table 8). Two different phenotypes occured: metM mutants (Gif 96, OR105) had lost HDHII activity alone, whereas AKII activity remained (phenotype MetM⁻); metLM mutants (Gif 99, OR30 M2) had lost both AKII and HDHII activities (phenotype

MetLM⁻) (see Discussion).

Localization of metLM and metM. As described above, the gene(s) coding for AKII-HDHII activities is co-transducible with arg-1000, but on the side away from lysC. Experiments were then performed by

Downloaded from http://jb.asm.org/ on September 13, 2017 by EIDGENOESSISCHE TECHNISCHE HOCHSCHULE - BIBLIOTHEK

b arg-1000 is an arg mutation mapping in the arg ECBH cluster.

^c This mutation leads in this strain to a growth requirement for homoserine plus Dpm.

^a These mutations lead to desensitization of AKIII activity towards lysine. The corresponding phenotype is the growth in the presence of 10^{-2} M L-lysine.

^e In this experiment, transductants growing in the absence of homoserine plus Dpm were selected. Among bacteria transduced for AKI or AKII activities, LysC⁺ strains were recognized by their growth inhibition in the presence of 10⁻² M L-lysine (AKIII activity was also measured in crude extracts).

using as external markers metB, metF, arg-1000, and ppc. Table 9 gives the results of transduction experiments by using three markers: metB (or F), metLM (or M), and arg-1000 (or ppc). It can be seen that metLM and metM are co-transducible at 87% with metB and 97% with metF. Similar results, not given here, were obtained by using strains Gif 96 or OR30 M2. Co-transduction frequencies observed between metB or metF and arg-1000 or ppc are in agreement with the position of these markers on the reference map (24). The three-point test experiments summarized in Table 10 demonstrate the order metB metLM arg-1000 (the MetB+ MetLM+ Arg- recombinants must occur after four crossing-overs). The same type of experiments were performed with strain OR35 (metF). Due to the very high linkage of metLM with

metF, the results do not allow to draw definite localization of metLM clockwise or counterclockwise with respect to metF.

To obtain more precise mapping, transductions were performed with both metB and metF as external markers on different chromosomes, using the fact that MetB⁻ clones may grow on cystathionine or methionine, whereas MetF⁻ clones are absolute methionine auxotrophs. Table 11 gives the results of two types of experiments: either selecting for MetB⁺ MetF⁺ at the same time; or selecting for MetF⁺ (in the presence of cystathionine) and using metB as an unselected marker. We can observe that in the case of experiment 2 no transductant of the phenotype MetF⁺ MetB⁻ MetM⁺ is obtained. This should correspond to four crossing-overs as expected if metM lies between metB

TABLE 6. Ordering of metA, lysC, and pgia

Donor	Recipient	Selected pheno-	No.	τ	Inselected	l phenoty;	oes		Co-transduction fre- quencies (%)			
Donor	recipient	type	scored	LysC+ Pgi+	LysC+ Pgi-	LysC - Pgi+	LysC- Pgi-	metA lysC	metA pgi	lysC pgi		
OR66 (met+-lysC+ pgi-)	OR E1 (metAlysC- pgi+)	Met+	1645	18	325	1295	7	20.8	20.1			
OR150 (metA+-lysC- pgi-)	OR11 (metAlysC+ pgi+)	Met+	384	290	3	5	86	23.7	23.1			
106 M1 (metA+-lysC- pgi+)	OR713 (metAlysC+ pgi-)	Met+	633	9	416	194	14	32.8	32			
				Met+ Pgi+	Met+ Pgi-	Met - Pgi +	Met - Pgi -					
OR66 (metA+-lysC+ pgi-)	OR E1 (metAlysC- pgi+)	LysC+	1131	17	326	45	743	30.3		94.5		
OR11 metAlysC+ pgi+)	OR150 (metA+-lysC- pgi-)	LysC+	630	405	45	173	7	28.5		91.7		

^a In most of the experiments, a few percent of the colonies gave, on glucose indicator plates, a phenotype intermediate between Pgi⁺ and Pgi⁻ parent strains. Therefore, only those Pgi⁺ colonies that retained their phenotype after purification were scored.

TABLE 7. Mapping of mutations leading to desensitization of AKIII activity^a

,			No often	Unsele	Unselected phenotypes (%)			
Donor	Recipient	Selected phenotype	No. of trans- ductants scored	Met-	Arg+	Inhibited by lysine (%)		
OR11 (metA ⁻ -arg ⁺ -lysC ⁺)	G21 M8 (metA+, arg-1000, lysC1002, lysC1007)	LysC+	348	26	2	100		
OR11	R46 M2 (metA+, arg-1000, lysC1005, lysC1008)	LysC+	208	27.5	4.5	95		
OR11	G61 M17 (metA+, arg-1000, lysC1006, lysC1009)	LysC+	387	21	7	99		

^a The phenotypes of the three receptor strains are identical, but the three lysC mutations that lead to auxotrophy for homoserine plus Dpm and the mutations leading to desensitization are independent mutations. The desensitization of AKIII allow the growth of bacteria in the presence of 10^{-2} M L-lysine. Transductants are thus replicated on a plate containing this amino acid to score for the desensitized character.

				III A 1000	mutation	
Genotype Strain no.	thrA	metL M	Derepression of metL and metMa	lysC	Other loci	Origin
B-512-65	+	+		+	metF64	Glansdorff
342-167	+	+		+	ppc-1, $argC$, his ,	Glansdorff
					leu, thr	
R47	+	+		+	metB, $argG$, leu	Babinet
Gif 88	1100	+		+	leu	(18)
Gif 881-L	1100	+	met-1001	+		(18)
Gif 96	1100	M1002 ^b		+	arg-1000, ilvA	MetM derivative of Gif 88 obtained after mutagenesis (18)
Gif 99	1100	LM 1000°		+	arg-1000, ilvA	MetLM - derivative of Gif 88 obtained after mutagenesis (18)
OR30	1100	+	met-1001	+	arg-1000, $ilvA$	MetLM ⁺ transductant of Gif 99, P1kc grown on Gif 881-L ^d
OR30 M2	1100	$\mathbf{LM}1003^{c}$	met-1001	+	arg-1000, ilvA	MetLM derivative of OR30 obtained after mutagenesis
OR32	1100	+	met-1001	+	metB, ilvA	Arg + transductant of OR30, P1kc
OR35	1100	+	met-1001	+	metF64, $ilvA$	Arg + transductant of OR30, P1kc grown on B-512-65
OR75	1100	LM1000		+	ilvA	Arg transductant of Gif 99, P1kc grown on HfrH
OR80	1100	+		+	ppc-1, ilvA	MetLM ⁺ transductant of OR75, P1kc grown on 342-167
OR85	1100	LM1000		+	ppc-1, ilvA	Arg + transductant of Gif 99, P1kc grown on OR80
OR105	1100	M1004 ^b	met-1001	+	arg-1000, ilvA	MetM ⁻ derivative of OR30 obtained after mutagenesis
OR110	1100	M1004 ^b	met-1001	+	metB, ilvA	Arg ⁺ transductant of OR105, P1kc grown on OR32
OR115	1100	+		+	arg-1000, metF64, ilvA	MetM+ transductant of OR105, P1kc grown on OR35

^a The mutation met-1001 leads to the constitutive synthesis of AKII-HDHII enzyme (18). Strains carrying this mutation are resistant to growth inhibition by methionine.

and metF. This was confirmed when selecting at the same time for $MetB^+$ and $metF^+$: the frequency of co-transduction of metM with metF, instead of being 97% as previously, decreases to 74% in experiment 3 and 84.5% in the reciprocal cross (experiment 4) (in experiment 2 also, among the few $MetB^+$ $MetF^+$ transductants, 83% are $MetM^-$). metM and metLM must thus be located between metB and metF (Fig. 4).

DISCUSSION

A branched biosynthetic pathway leads from aspartate to diaminopimelate, lysine, methionine, and threonine. A complete picture of this pathway cannot be attained without the knowledge of the chromosomal location of the corresponding genes and of their possible organization into discrete operons. Almost all the genes of the branches leading to diaminopimelate and

lysine, to methionine and to isoleucine have been previously mapped, as well as the gene coding for aspartate semialdehyde dehydrogenase. Due to the multiplicity of aspartokinases and homoserine dehydrogenases, the mapping of the corresponding genes was greatly delayed. The present work fills this gap. Downloaded from http://jb.asm.org/ on September 13, 2017 by EIDGENOESSISCHE TECHNISCHE HOCHSCHULE - BIBLIOTHEK

The new nomenclature used here for the *thr* genes takes into account the knowledge of the threonine biosynthetic pathway, and is thus different from the one previously used in *Salmonella typhimurium* (13). *thrA* is a single gene corresponding to aspartokinase I-homoserine dehydrogenase I since these two activities are carried by a single polypeptide chain (9). However, the two activities are rather independent since it is possible to obtain AKI-HDHI+ (21; this investigation) and AKI+HDHI- mutants

b metM mutation (AKII+-HDHII-) leads to a growth requirement for homoserine in this strain.

e metLM mutation (AKII-HDHII-) leads to a growth requirement for homoserine plus Dpm in this strain.

^d The result of this transduction indicates that mutation met-1001 is co-transducible with metLM and may be identical to metJ mutations described in S. typhimurium (2) and in E. coli (23) as regulatory mutants for the synthesis of methionine enzymes and mapped in this region of the chromosome.

(15). From mutant Gif 102, a nonsense mutant, it is possible to extract a fragment containing the NH2-terminus of AKI-HDHI, able to carry out the AKI activity, whereas by limited proteolysis of the wild-type protein, a fragment carrying the carboxy terminus and the HDH activity can be obtained (25). It thus appears that thrA codes sequentially for AKI and HDHI activities in this order. thrB corresponds to homoserine kinase and thrC to threonine synthetase. (thrB and thrC correspond to the classical Thr-locus.) In this investigation we have shown that thrA is closely linked to thrB and thrC. The order of these three genes has been established: serB ... thrA thrB thrC ... pyrA. They are in the same order as in Salmonella typhimurium (13). Evidence will be presented in a forthcoming investigation showing that they belong to the same operon transcribed from thrA to thrC (J. Thèze and I. Saint-Girons, manuscript in preparation).

The present results show that lysC is located at 80 min, closely linked to pgi (and not at 66 min as was previously suggested, ref. 17). Three mutations leading to desensitization of the enzyme activity towards lysine also were mapped in this region. Since the AKIII protein appears to be a dimer of two identical subunits, its catalytic and regulatory sites must be carried by the same polypeptide chain (C. Richaud and J. C. Patte, manuscript in preparation); consequently, in agreement with these results, muta-

TABLE 9. Co-transduction frequencies of metLM mutations with metB, metF, arg-1000, and ppc

			No. of trans-	Co-tran	sduction	frequenci	es (%)
Donor	Recipient	Selected phenotype	ductants scored	metB- metLM (or M)	metB- arg	metM- arg	metB- ppc
Gif 99 (metLM ⁻ , metB ⁺ , arg-1000)	OR32 (metLM+, metB-, arg+, met-1001)	MetB+ a	623	87.5	27.6		
OR105 (metM ⁻ metB ⁺ , arg-1000, met-1001)	OR32 (metLM+, metB-, arg+, met-1001)	MetB+ b	208	86.2	28.8	·	
OR32	OR105	Arg+ b	220		34.5	33.1	
OR32	OR105	MetM+ b	149	87.9			
$OR85 (metLM^-, metB^+, ppc^-)$	OR32	MetB+ a	156	90.5			44.2
				metF- metLM (or M)	metF- arg	met M - arg	metF-
Gif 99	OR35 (metLM+, metF-, arg+, met-1001)	MetF+ a	724	96.6	35.6		
OR 105	OR35 (metLM+, metF-, arg+, met-1001)	MetF+ b	311	97.5	31.2		
OR35	OR105	Arg+ b	288		38.8	38.1	
OR35	OR 105	MetB+ b	401	95.8			
OR85	OR35	MetF+ a	156	97.5			46.1

^a In these experiments using Gif 99 or OR85 (not carrying the *met-1001* mutation), most of the transductants do not carry this mutation and grow very slowly in minimal medium; when scoring for *metLM*, examination of the replica plates must thus be made 24 h later than usual.

TABLE 10. Ordering of metLM, metB, and arg-1000

		Selected	No. of	Unselected phenotypes					
Donor	Recipient	pheno- type	transduc- tants scored	Arg+ MetLM+	Arg+ MetLM-	Arg- MetLM+	Arg - MetLM -		
,	OR32 (metLM+, metB-, arg+, met-1001)	MetB+	623	75	374	2	172		
metB ⁺ , arg-1000) OR105 (metM ⁻ , metB ⁺ , arg-1000, met-1001)	, , ,	MetB+	208	28	120	1	59		

^b When donor and recipient strains carry the *met-1001* mutation, the Met⁺ transductants excrete methionine in the medium and allow the satellite growth of Met⁻ colonies around them. Similarly *met-1001* Met⁻ clones excrete a quantity of homoserine large enough to allow a satellite growth of MetLM⁻ or M⁻ colonies. Therefore replica plates were examined early (15 h) after incubation.

No.	Donor	Recipient	Selected pheno-	No. of trans-	U	nselected	l markers		Co-tra tion quenc	
No.	Donor	recipient	type	ductants scored	_		metB- metF	metF- metM		
					MetB-					
1	OR32 (metB ⁻ , metF ⁺ , met-1001)	OR35 (metB+, metF- met-1001)	MetF+	309	270				87.5	
					MetB ⁺ MetM ⁺	MetB+ MetM-	MetB- MetM+	MetB- MetM-		
2	OR110 (metB ⁻ , metM ⁻ metF ⁺ , met-1001)	${ m OR35}(metB^+,\ metM^+metF^-,\ met-1001)$	MetF+	456	10	48	0	398	87.2	97.8
					MetLM-					
3	OR110	OR35	MetB+		247					74.1
4	OR35	OR110	MetB+		160					84.6

^a The first experiment using OR32 and OR35 gives the co-transduction frequency between metB and metF as a control of the other transductions where metLM is inferred.

Fig. 4. Relative map position of metB, metLM, metF, and arg. Some co-transduction frequencies are given (e.g., 30% co-transduction between metB and arg-1000).

tions leading to the lack or the desensitization of AKIII activity are expected to be in the same cistron. The known genes coding for the enzymes of lysine biosynthesis are scattered on the chromosome. Only two genes, dapA and dapE, are linked with one another. However, since the synthesis of dihydrodipicolinate synthetase (coded by dapA) does not appear to be repressed by lysine (J. C. Patte, unpublished results) there is no evidence for the existence of an operon in the lysine regulon.

Campbell et al. (4) suggested that the gene coding for homoserine dehydrogenase II activity maps near metB. We show here that mutations affecting AKII-HDHII activities indeed map between metB and metF, close to metF. Though the results of Falcoz-Kelly (Thèse de doctorat ès sciences naturelles, Paris VII, 1971) favor the hypothesis that the two activities are carried by a single polypeptide chain, we followed the suggestion of Taylor (personal communica-

tion) to call metL the gene for aspartokinase II activity and metM the gene for HDHII activity (the mutants that have lost both activities are classified as metLM). If new results definitely show that a single polypeptide chain carries the two activities, only metL will be used. The fact that metB, metF, and metLM, as metJ (23), are closely linked suggests that an operon for some of these genes may exist in this region. Experiments are in progress to see if this is the case.

Downloaded from http://jb.asm.org/ on September 13, 2017 by EIDGENOESSISCHE TECHNISCHE HOCHSCHULE - BIBLIOTHEK

ACKNOWLEDGMENTS

This investigation has been supported in part by the Délégation à la Recherche Scientifique et Technique, the National Institutes of Health, The Centre National de la Recherche Scientifique (L.A. 136 and E.R. 85), the Commissariat à l'Energie Atomique (Convention no. 12.218-II/B6), and the Fondation pour la Recherche Médicale.

We are deeply indebted to J. Pittard and to Maxime Schwartz for numerous suggestions and discussions.

LITERATURE CITED

- Adelberg, E. A., M. Mandel, and G. C. C. Chen. 1965. Optimal conditions for mutagenesis by N-methyl-N'-nitro-N-nitrosoguanidine in *Escherichia coli K12*. Biochem. Biophys. Res. Commun. 18:788-795.
- Ayling, P. D., and K. F. Chater. 1968. The sequence of four structural and two regulatory methionine genes in Salmonella typhimurium linkage map. Genet. Res. Camb. 12:341-354.
- Boy, E., and J. C. Patte. 1972. Multivalent repression of aspartic semialdehyde dehydrogenase in *Escherichia* coli K-12. J. Bacteriol. 112:84-92.
- Campbell, A., A. del Campillo-Campbell, and R. Chang. 1972. A mutant of Escherichia coli that requires high

- concentrations of biotin. Proc. Nat. Acad. Sci. U.S.A. 69:676-680
- Cohen, G. N. 1969. The aspartokinases and homoserine dehydrogenases of *Escherichia coli*. Current topics in cellular regulation. Academic Press Inc., New York 1:183-231.
- Cohen, G. N., and F. Jacob. 1959. Sur la repression de la synthèse des enzymes intervenant dans la formation du tryptophane chez *E. coli*. C. R. Acad. Sci. 248:3490-3492.
- Cohen, G. N., and J. C. Patte. 1963. Some aspects of the regulation of amino acid biosynthesis in a branched pathway. Cold Spring Harbor Symp. Quant. Biol. 28:513-516.
- 8. Cohen, G. N., and H. V. Rickenberg. 1956. Concentration specifique réversible des amino acides chez *Escherichia coli*. Ann. Inst. Pasteur **91**:693-720.
- Falcoz-Kelly, F., J. Janin, J. C. Saari, M. Véron, P. Truffa-Bachi, and G. N. Cohen. 1972. Revised structure of aspartokinase I-homoserine dehydrogenase I of Escherichia coli K12. Evidence for four identical subunits. Eur. J. Biochem. 28:507-519.
- Falcoz-Kelly, F., R. van Rapenbusch, and G. N. Cohen. 1969. The methionine repressible homoserine dehydrogenase and aspartokinase activities of Escherichia coli K12. Preparation of the homogeneous protein catalyzing the two activities. Molecular weight of the native enzyme and of its subunits. Eur. J. Biochem. 8:146-152.
- Fraenkel, D. G. 1967. Genetic mapping of mutations affecting phosphoglucose isomerase and fructose diphosphatase in *Escherichia coli*. J. Bacteriol. 93: 1582-1587.
- Freundlich, M. 1963. Multivalent repression in the biosynthesis of threonine in Salmonella typhimurium and Escherichia coli. Biochem. Biophys. Res. Commun. 10:277-282
- Glanville, E. V., and M. Demerec. 1960. Threonine, isoleucine and isoleucine-valine mutants of Salmonella typhimurium. Genetics 45:1359-1374.
- Hegeman, G. D., G. N. Cohen, and R. Morgan. 1970.
 Aspartic semialdehyde dehydrogenase, p. 708-713. In
 S. P. Colowick and N. O. Kaplan (ed.) Methods in
 enzymology, vol. 17. Academic Press Inc., New York.
 Janin, J., P. Truffa-Bachi, and G. N. Cohen. 1967.
- Janin, J., P. Truffa-Bachi, and G. N. Cohen. 1967. Subunits of the complex protein carrying the threonine sensitive aspartokinase activity in a mutant of Esche-

- richia coli K12. Biochem. Biophys. Res. Commun. 26:429-433.
- Lennox, E. S. 1955. Transduction of linked genetic characters of the host by bacteriophage P1. Virology 1:190-206.
- Patte, J. C., and G. N. Cohen. 1965. Isolement et propriété d'un mutant d'Escherichia coli dépourvu d'aspartokinase sensible à la lysine. Biochim. Biophys. Acta 99:557-562.
- Patte, J. C., G. Lebras, and G. N. Cohen. 1967. Regulation by methionine of the synthesis of a third aspartokinase and a second homoserine dehydrogenase in *Escherichia coli K12*. Biochim. Biophys. Acta 136:245-257.
- Patte, J. C., G. Le Bras, T. Loviny, and G. N. Cohen. 1963. Rétro-inhibition et répression de l'homosérine déshydrogénase d'*Escherichia coli*. Biochim. Biophys. Acta 67:16-30.
- Patte, J. C., P. Truffa-Bachi, and G. N. Cohen. 1966. The threonine-sensitive homoserine dehydrogenase and aspartokinase activities of Escherichia coli. I. Evidence that the two activities are carried by a single protein. Biochim. Biophys. Acta 128:426-439.
- Richaud, F., and G. N. Cohen. 1968. Selection of Escherichia coli mutants devoid of one or both the activities carried by a multifunctional protein. Biochem. Biophys. Res. Commun. 30:45-49.
- Stadtman, E. R., G. N. Cohen, G. LeBras, and H. De Robichon-Szulmajster. 1961. Feedback inhibition and repression of aspartokinase activity in *Escherichia coli* and *Saccharomyces cerevisiae*. J. Biol. Chem. 236:2033-2038.
- Su, C. H., and R. C. Greene. 1971. Regulation of methionine biosynthesis in *Escherichia coli*. Mapping of the *metJ* locus and properties of a *metJ*⁺/*metJ*⁻ diploid. Proc. Nat. Acad. Sci. U.S.A., 68:367-371.
- Taylor, A. L., and C. D. Trotter. 1972. Linkage map of Escherichia coli strain K-12. Bacteriol. Rev. 36:504– 594
- Véron, M., F. Falcoz-Kelly, and G. N. Cohen. 1972. The threonine-sensitive homoserine dehydrogenase and aspartokinase activities of *Escherichia coli K12*. The two catalytic activities are carried by two independent regions of the polypeptide chain. Eur. J. Biochem. 28:520-527.
- Wormser, E. H., and A. B. Pardee. 1958. Regulation of threonine biosynthesis in E. coli B. Arch. Biochem. Biophys. 78:416-432.