Time Series Anomaly Detection

GAN/Transformer/GRU

Time series types

Univariate

- 단변량 시계열 데이터
- 주식가격, 유가, 전력 수요

Multivariate

- 다변량 시계열 데이터
- 공정 센서 데이터

https://medium.com/geekculture/vector-auto-regression-for-multivariate-time-series-forecasting-9334d29591f3

Multivariate Time series Anomaly Detection

Dataset

■ m개의 변수로 이루어진 t시점 m차원 벡터가 총 시간 T 만큼 존재

Task

■ 길이가 K인 time window $W_t = \{x_{t-k}, ..., x_{t-1}, x_t\}$ 를 입력으로 t시점의 normal/abnormal 여부를 예측

Time series data components

- Trend
- Seasonality
- Noise

Time series tasks

- 1) Classification
- 2) Forecasting
- 3) Anomaly Detection

Time Series Tasks

- 1) Classification
- 2) Forecasting
- 3) Anomaly Detection
 - 과거 data를 기반으로 t시점에서의 abnormal 여부 예측

Time Series Tasks

3) Anomaly Detection

- 과거 data를 기반으로 t시점에서의 abnormal 여부 예측
- 제조 공정 과정에서 불량품이나 기계 고장을 탐지
- System Security 분야에서 보안이 위협받는 상황을 판별

Anomaly

Anomaly Detection

■ 정상 데이터와 본질적으로 다름

Novelty Detection

■ 정상 데이터와 본질적으로 같지만 유형이 다름

Outlier Detection

- outlier: 일반적인 데이터 생성 매커니즘을 위배해서 만들어진 데이터
- noise: 데이터 수집 관점에서 자연적으로 발생하는 변동성 (random error or variance)

Anomaly Detection 적용 사례

Anomaly Detection

■ 정상 데이터와 본질적으로 다름

Types of Anomalies

Point/Global Anomalies

- 대다수의 Data set과 완전히 다른 객체
- ex)Credit card fraud detection

Contextual Anomalies

- 조건부(context) 이상치, 특정 조건이 충족될 때 이상치로 판단됨
- ex)온도 29도는 우리나라에선 정상이지만, 북극에서는 특이한 케이스

Collective Anomalies

- 단일 객체들은 outlier가 아니지만 모아서 보면 편차가 심한 케이스
- ex)DDos공격. 단일 접속 패킷을 정상, 한번에 접속이 너무 많으면 서버 다운

What is Anomaly?

- 데이터 생성 매커니즘
 - 일반적인 데이터와 다른 매커니즘으로 발생한 data
- 데이터 분포
 - Data가 발생할 확률 밀도가 매우 낮은 data

Classification vs Anomaly Detection

Binary classification

Anomaly detection

Generalization vs Specialization

- Generalization: 일반화
 - abnormal data를 normal로 오분류
- Specialization: 구체화, 특수화
 - normal data를 abnormal로 오분류
- Trade off 관계. 조절 필요

Anomaly Detection Unsupervised outlier detection **Probabilistic Time Series** Methods **Analysis** e.g. Robust Covariance e.g. Moving Estimation Average Regression Distance and 0 **Analysis Density methods** e.g. Local Outlier 0 e.g. Polynomial Factor Regression **Decision Trees and Ensemble methods** e.g. Isolation Forest \mathcal{D}_l \mathcal{D}_r Kernel methods e.g. One-Class SVM

reconstructed

decoder

input

encoder

Deep Learning

e.g. Autoencoder

Isolation Forest

- 정상/비정상을 가르는 기준은 해당 데이터를 isolation(고립) 하는데 걸린 평균 분기 횟수로 예측
- 정상 데이터는 밀집 지역에 분포
- 비정상 데이터는 그로부터 떨어진 밀도가 낮은 지역에 분포
- 분기 횟수가 적을 수록 비정상
- 분기 횟수가 높을수록 정상

https://towardsdatascience.com/a-comprehensive-beginners-guide-to-the-diverse-field-of-anomaly-detection-8c818d153995

Classification VS Anomaly Detection

- Normal data가 Abnormal data 보다 많은 상황 전제
- Training: Only normal data만으로 모델 training
- Test: Normal+Abnomal data로 테스트

Classification VS Anomaly Detection

Severe data imbalance

- minority class samples이 조금은 있을 때 (100개 이상)
 - Classification with Oversampling
- minority class samples이 너무 적을 때(5~10개)
 - Anomaly Detection!!

Data setup

Sliding window

- Long sequence to small window sequence
- Sliding window size: 5

Time stamp	1	2	3	4	5	6	7	8	•••
Value	3	5	4	6	6	3	4	8	•••

3	5	4	6	6			
	5	4	6	6	3		
		4	6	6	3	4	
			6	6	3	4	8
				6	3	4	8

Anomaly Detection Phases

- Phase 1) 데이터 분포 학습
 - Seq2Seq

AutoEncoder

Reconstruction Reconstruction error distribution

■ Phase 2) Anomaly score를 구한 후 Threshold 기준으로 판별

Anomaly Detection Phases

- Phase 1) 데이터 분포 학습
- Phase 2) Anomaly score를 구한 후 Threshold 기준으로 판별

Anomaly Detection Phases

- Phase 1) 데이터 분포 학습
- Phase 2) Anomaly score를 구한 후 Threshold 기준으로 판별

Threshold

- The threshold for the anomaly score defines the sensitivity of the system
- Designation of instances as normal/anomalous based on their anomaly score and the predefined threshold value

 P_{normal} Probability distribution of normal data TPR True Positive Rate P_{anomal} Probability distribution of anomalous data FPR False Positive Rate

Challenges

- Normal과 abnormal data 사이의 경계가 모호 (Gray area)
- 연속한 데이터에서 어디를 경계로 설정할지 결정하기 어려움

■ Normal과 abnormal을 명확히 구분하는 설명이 어려움

 시간이 흘러 새로운 정상 패턴이 생겼을 때, 과거 데이터로는 비정상이라고 탐지할 확률이 높음

감사합니다

USAD

Unsupervised Anomaly Detection on Multivariate Time Series

KDD 2020

영상: https://youtu.be/gCleQ9Jxibl

논문: https://dl.acm.org/doi/pdf/10.1145/3394486.3403392

코드: https://github.com/manigalati/usad/blob/master/USAD.ipynb

AE-based Multivariate Time Series AD

LSTM-AE (Unsupervised)

- Training: 정상 데이터의 reconstruction error를 기반으로 LSTM-AE를 학습하여 정상 데이터의 분포를 학습
- Anomaly detection: 학습이 완료된 LSTM-AE를 기반으로 도출한 새로운 입력의 reconstruction error가 threshold를 초과하면 이상치로 탐지함

Anomaly Score =
$$\|W_t - D(E(W_t))\|_2$$

GAN-based Multivariate Time Series AD

MAD-GAN (Unsupervised)

■ Training: 정상 데이터만으로 LSTM 구조의 generator와 discriminator를 학습하여 정상 데이터의 분포를 학습

GAN-based Multivariate Time Series AD

MAD-GAN (Unsupervised)

■ Anomaly detection: 새로운 입력의 optimal latent space를 기반으로 생성한 reconstructed sample과 입력의 reconstruction loss와 입력에 대한 discrimination loss의 가중 합이 특정 threshold를 초과하면 이상치로 탐

29 /41

USAD: Training

- Phase 1: AutoEncoder Training
 - *Encoder*가 입력 *W*_t를 latent space *Z*로 압축
 - Decoder가 latent space Z 를 입력 W_t 와 동일하게 복원

USAD: Training

Phase 2: Adversarial Training

- AE_1 : 입력(W_t)을 잘 복원하면서 AE_2 를 잘 속이도록 적대적 학습
- AE_2 : 입력(W_t)을 잘 복원하면서 AE_1 이 복원한 입력을 잘 구별하도록 학습

$$\min_{AE_1} ||W_t - AE_2(AE_1(W_t))||_2$$

$$\max_{AE_2} \|W_t - AE_2(AE_1(W_t))\|_2$$

USAD: Detection

Anomaly Score

32 /41

USAD: Detection

Actual Positive Negative True Positive Positive False Positive False Negative Negative

Predicted

Anomaly Score

- Anomaly Score의 α, β 는 비례 계수(합이 1)로
- 비중에 따라 TP/FP 간에 trade-off
 - a>b: TP/FP 감소 -> low detection sensitivity scenario
 - a<b: TP/FP 증가 -> high detection sensitivity scenario

$$Anomaly\ Score = \frac{\alpha}{\alpha} \left\| \widehat{W}_t - AE_1(\widehat{W}_t) \right\|_2 + \frac{\beta}{\beta} \left\| \widehat{W}_t - AE_2\left(AE_1(\widehat{W}_t)\right) \right\|_2$$

α	β	FP	TP	F1
0.0	1.0	604	35,616	0.7875
0.1	0.9	580	35,529	0.7853
0.2	0.8	571	35,285	0.7833
0.5	0.5	548	34,590	0.7741
0.7	0.3	506	34,548	0.7738
0.9	0.1	299	34,028	0.7684

USAD: Encoder

A.4.1 Encoder.

- Linear : input size -> input size / 2
- Relu
- Linear: input size /2 -> input size / 4
- Relu
- Linear : input size /4 -> latent space size
- Relu

```
class Encoder(nn.Module):
    def __init__(self, in_size, latent_size):
        super().__init__()
        self.linear1 = nn.Linear(in_size, int(in_size/2))
        self.linear2 = nn.Linear(int(in_size/2), int(in_size/4))
        self.linear3 = nn.Linear(int(in_size/4), latent_size)
        self.relu = nn.ReLU(True)

def forward(self, w):
        out = self.linear1(w)
        out = self.linear2(out)
        out = self.linear3(out)
        out = self.linear3(out)
        z = self.relu(out)
        return z
```

A.4.2 Decoder. Both decoders have the same architecture.class Decoder(nn.Module):

- Linear : latent space size -> input size / 4
- Relu
- Linear : input size /4 -> input size / 2
- Relu
- Linear : input size /4 -> input size
- Sigmoid

```
class Decoder(nn.Module):
    def __init__(self, latent_size, out_size):
        super().__init__()
        self.linear1 = nn.Linear(latent_size, int(out_size/4))
        self.linear2 = nn.Linear(int(out_size/4), int(out_size/2))
        self.linear3 = nn.Linear(int(out_size/2), out_size)
        self.relu = nn.ReLU(True)
        self.sigmoid = nn.Sigmoid()

def forward(self, z):
        out = self.linear1(z)
        out = self.linear2(out)
        out = self.linear2(out)
        out = self.linear3(out)
        w = self.sigmoid(out)
        return w
```

USAD: Training

```
Algorithm 1 USAD training algorithm
Input: Normal windows Dataset W = \{W_1, ..., W_T\}, Number
    epochs N
Output: Trained AE_1, AE_2
    E, D_1, D_2 \leftarrow \text{initialize weights}
    n \leftarrow 1
   repeat
        for t = 1 to T do
            Z_t \leftarrow E(W_t)
            W_t^{1'} \leftarrow D_1(Z_t)
            W_t^{2'} \leftarrow D_2(Z_t)
            W_t^{2''} \leftarrow D_2(E(W_t^{1'}))
           \mathscr{L}_{AE_1} \leftarrow \frac{1}{n} \left\| W_t - W_t^{1'} \right\|_2 + \left( 1 - \frac{1}{n} \right) \left\| W_t - W_t^{2''} \right\|_2
           \mathscr{L}_{AE_2} \leftarrow \frac{1}{n} \left\| W_t - W_t^{2'} \right\|_2 - \left( 1 - \frac{1}{n} \right) \left\| W_t - W_t^{2''} \right\|_2
            E, D_1, D_2 \leftarrow \text{update weights using } \mathcal{L}_{AE_1} \text{ and } \mathcal{L}_{AE_2}
        end for
        n \leftarrow n + 1
    until n = N
```

```
def training_step(self, batch, n):
    z = self.encoder(batch)
    w1 = self.decoder1(z)
    w2 = self.decoder2(z)
    w3 = self.decoder2(self.encoder(w1))
    loss1 = 1/n*torch.mean((batch-w1)**2)+(1-1/n)*torch.mean((batch-w3)**2)
    loss2 = 1/n*torch.mean((batch-w2)**2)-(1-1/n)*torch.mean((batch-w3)**2)
    return loss1,loss2
```

USAD: Detection

Algorithm 2 USAD Detection algorithm

```
Input: Test windows Dataset \widehat{W}:(\widehat{W}_1,...,\widehat{W}_{T^*}), threshold \lambda, parameters \alpha and \beta
Output: Labels \mathbf{y}:\{y_1,...,y_{T^*}\}
for t=1 to T^* do \widehat{W}_t^{1'} \leftarrow D_1(E(\widehat{W}_t))
\widehat{W}_t^{2''} \leftarrow D_2(E(\widehat{W}_t^{1'}))
\mathscr{A} \leftarrow \alpha \left\| \widehat{W}_t - \widehat{W}_t^{1'} \right\|_2 + \beta \left\| \widehat{W}_t - \widehat{W}_t^{2''} \right\|_2
if \mathscr{A} \geq \lambda then y_t \leftarrow 1
else y_t \leftarrow 0
end if end for
```

```
def testing(model, test_loader, alpha=.5, beta=.5):
    results=[]
    for [batch] in test_loader:
        batch=to_device(batch,device)
        w1=model.decoder1(model.encoder(batch))
        w2=model.decoder2(model.encoder(w1))
        results.append(alpha*torch.mean((batch-w1)**2,axis=1)+beta*torch.mean((batch-w2)**2,axis=1))
    return results
```

USAD: w/, wo adversarial training

0.3

SMD

SMAP

MSL

Transformer/GRU-based prediction

Unsupervised Anomaly Detection on Multivariate Time Series KDD 2020

GRU-based code: https://dacon.io/competitions/official/235757/codeshare/3086?page=2&dtype=recent

Transformer-based code:

https://dacon.io/competitions/official/235757/codeshare/3244?page=1&dtype=recent

Data setup

Sliding window

Long sequence to small window sequence

Window size=5

Sliding window size: 5

Time stamp	1	2	3	4	5	6	7	8	•••
Value	3	5	4	6	6	3	4	8	•••

4

8

일반적인 NLP 문제(N to 1)

일반적인 NLP 문제(N to 1)

감사합니다