Annale Simkaal

1)	Dans une instruction, on trouve systématiquement :		
	 ☐ Une référence à l'instruction suivante ☑ Le code opération ☐ Une référence à une opérande source 		
	☐ Une directive		
2)	Quel est un des rôles de la pile en mémoire centrale ?		
	☐ Alimenter en énergie le calculateur☐ Stocker la valeur de SP (pointeur de pile)		
3)	Quelle est la directive de langage assembleur qui perr (accessibles en lecture / écriture) en mémoire centrale		
	 □ tab: CST 10,5,3 □ ORG 10 ☑ tab: VAR 5? □ tab EQU 5 		
4)	Le registre R1 contient la valeur 0x6A. Quelles opérations doit-on effectuer pour obtenir les indicateurs C = 1 et Z = 1 ?		
	 □ LDR R0,0xC9 puis ADD R1,R0R1 □ LDR R0,0xC5 puis AND R1,R1R0 ☑ LDR R0,0x96 puis ADD R1,R0R1 □ Aucune des trois opérations précédentes 	C = 1 => II y a une retenue Z = 1 => Le résultat vaut 0	
5)	A propos des BUS importants dans le calculateur :		
	 Il n'y a qu'un seul bus : le bus d'adresses Il y a 3 bus : adresses, données, contrôle Il n'y a qu'un seul bus : le bus de données Il n'y a pas de bus de contrôle 	Flou dans le cours entre b et d Mais BUS de contrôle dans les tp	

- 6) Dans le mode d'adressage immédiat :
 - ☑ L'opérande de l'instruction est une constante
 - ☐ Il n'y a pas d'opérande
 - ☐ L'opérande de l'instruction est une adresse
 - ☐ L'opérande est un registre
- 7) Quelle est la marche à suivre, à partir du programme source, pour exécuter celui-ci en mémoire centrale ?
 - ☐ Éditer le source, l'assembler, le charger en mémoire centrale, l'exécuter
 - Éditer le source, l'assembler, le charger en mémoire centrale, mettre IP à 0, exécuter
 - ☐ Éditer le source, exécuter le source après RESET
 - ☐ Éditer le source, l'assembler, l'exécuter après un RESET
- 8) Quel est le contenu de la pile dans la phase 3

9) Suite à l'appel du sous-programme suivant :

PUSH FL PUSH R2 LDR R3, R0 PUSH R0 ADD R0, R0R3 POP R0 POP FL RET

Push -> Envoie la valeur en haut de la pile Pop -> Enlève la valeur du haut de la pile

Ici on push 3 valeurs, on en pop que 2, le programme va considérer que l'adresse de retour est la première valeurs qu'on a push, soit FL ici (les flags)

	 □ Le registre R0 sera modifié □ Les registres R0 et FL seront inchangés ☑ L'adresse de retour vers le programme principal sera fausse □ Le Stack Pointer (SP) revient sur le fond de pile
10)	Que contient la table des vecteurs d'IT ?
	 □ L'adresse de la pile □ L'adresse de retour dans le programme principal après exécution du sous-programme ☑ L'adresse des sous-programmes d'interruption □ L'adresse du pointeur d'instruction
11)	Un sous programme « d'interruption » ?
	 ☐ Est lancé par un CALL et terminé par un RET ☐ N'a pas d'adresse dans la mémoire centrale car on ne le lance pas par un CALL ☒ Est accessible via son adresse en table des vecteurs, suite à une interruption ☐ Est lancé par un CALL et terminé par un iRET
12)	Dans le cadre d'une opération de sortie par « test du mot d'état » :
	 □ Le CPU est informé automatiquement par le contrôleur d'E/S de la disponibilité du périphérique □ Le CPU décide de l'état du périphérique en écrivant la valeur qu'il souhaite dans le mot d'état
	☑ Le CPU doit s'informer de la disponibilité du périphérique☐ Le périphérique est plus rapide

3) Quel élément de l'unité centrale peut effectuer des calculs ?					
☐ Le Décodeur ☐ Le Séquenceur					
14) Quelle est la zone me programmeur ? ☐ La table des vecte ☐ La pile	 4) Quelle est la zone mémoire dont l'emplacement ne peut pas être modifié par le programmeur ? ☐ La table des vecteurs d'interruption ☒ La pile ☐ La zone de données 				
15) Conversion binaire, h	15) Conversion binaire, hexadécimale et décimale, compléter le tableau suivant				
Représentation : Décimale	e Hexadécimale	Binaire			
68	44	1000100			
		1000.100			
77	4D	1001101			
Social Court	4D AD				
77 173 16) Quel est l'extrait (just (PIC) et le calculateur □ Le PIC envoie au C □ Le PIC envoie un C □ Le calculateur enve	AD e) du dialogue se déroulant entre le	1001101 10101101 e contrôleur d'interruption t)			
173 173 16) Quel est l'extrait (just (PIC) et le calculateur □ Le PIC envoie au C □ Le PIC envoie un C □ Le calculateur envoie Le calculateur envoie au C	e) du dialogue se déroulant entre le ? Calculateur un EOI (End Of Interrupt CALL pour se dérouter dans le sous pie le niveau d'interruption au PIC	1001101 10101101 e contrôleur d'interruption t) s programme d'interruption			

Assez flou entre a et c, théoriquement c'est possible en changeant l'indice de i (réponse c) mais ça fou le bordel dans le programme à cause des piles etc si un autre programme était en cours

18) Après l'exécution des quatre instructions suivantes :				
LDR R0,0x2D PUSH R0 LDR R0,0x14 LDR R1,R0 LDR R0,0x27 AND R0,R0R1				
Quel sera le contenu de R0 (en hexadécimal) ?				
■ 0x04 □ 0x06 □ 0x17 □ 0x27	ET logique entre R0 qui est 0x27 et R1 qui est 0x14 Donc ça donne 0x04			
19) Le fait de faire un RESI	9) Le fait de faire un RESET sur le simulateur SimKaal :			
 □ Remet à zéro IP (le pointeur d'instruction) □ Remet à zéro IP (le pointeur d'instruction) et SP (pointeur de pile) ☒ Remet à zéro IP (le pointeur d'instruction) et le flags □ Remet à zéro IP (le pointeur d'instruction) et les registres généraux (R0 à R4) 				
20) Pour démasquer le bit suivante :	0) Pour démasquer le bit b2 de ce mot d'état stocké dans R1 il faut faire l'opération suivante :			
b	7 b6 b5 b4 b3 b2 b1 b0			
☐ LDR R0,2 puis ADD☐ LDR R0,4 puis ADD☐ LDR R0,2 puis AND☐ LDR R0,4 puis AND☐ LDR R0,4 puis AND☐ LDR R0,4 puis AND	R0,R1R0 R0,R1R0			
4 en binaire c'est 100 Donc ET logique entre 100 et la chaine B ne va ressortir que b2 Si b2 = 1 => 1 ET 1 = 1 Si b2 = 0 => 1 ET 0 = 0				