

# Machine Learning

Session 12 - T

Tree-Based Models – Part 1

Ciência de Dados Aplicada 2023/2024

### **Feature Space**



• Linearly separable data – the feature space can be well separated by a line or hyperplane;

• **Linearly inseparable** data – the feature space cannot be effectively divided by a single line or hyperplane.



### **Feature Space**



 Although linear models with linear boundaries offer intuitive interpretation, interpreting nonlinear decision boundaries presents challenges.

- Therefore, there is a need to build models that:
  - allow complex decision boundaries;
  - are easy to interpret.

### **Interpretable Models**



 People from diverse backgrounds have historically relied on interpretable models to distinguish between various classes of objects and phenomena.

#### What Type of Data? Continuous Data Discrete Data Normally Distributed Skewed 2 groups > 2 groups > 2 groups Nonpaired 2 groups 2 groups > 2 groups Paired Expected Nonpaired Paired Nonpaired Paired Expected counts ≥ 5 in counts ≥ 5 in ≥ 75% cells < 75% cells Wilcoxon Paired ANOVA Wilcoxon Nonpara-Fisher's McNemar's Rank Sum Signed Rank t-test metric Square Test **Exact Test** Square Test ANOVA Ho: mean Ho: means Ho: Ho: Ho: differences are equal proportions proportions are equal medians median medians proportions proportions are equal are equal differences are equal are equal are equal are equal are equal are equal

### **ENGINEERING FLOWCHART**



Source: Waning B, Montagne M: Pharmacoepidemiology: Principles and Practice: http://www.accesspharmacy.com

Copyright @ The McGraw-Hill Companies, Inc. All rights reserved.

#### **Tree-Based Models**



• Flow charts like in the previous examples can be formulated as mathematical models (graphs) for classification and regression.

- These models are:
  - Interpretable by humans;
  - Have complex decision boundaries;
  - The decision boundaries are a combination of linear boundaries that are mathematically simple to describe.



- Mathematically, a decision tree can be defined as a directed acyclic graph, comprising:
  - Nodes: Represent decision points or conditions.
  - Edges: Connect nodes and represent the outcomes of decisions.
  - Root Node: The initial decision point, representing the entire dataset.
  - Decision Nodes: Decision points where a split is made based on a feature or attribute.
  - Leaf Nodes: Terminal nodes representing final outcomes or predictions.







Root Node

https://www.datacamp.com/tutorial/decision-tree-classification-python

| Age | Weight | Smoker | Prediction |
|-----|--------|--------|------------|
| 35  | 80     | yes    | High Risk  |
| 25  | 80     | yes    | ?          |



 Tree-based based methods work by partitioning the feature space into rectangles;

Predictions are made by either averaging values or based on the

most frequently class in each rectangle.



Beaulac, C., & Rosenthal, J. S. (2019). Predicting University Students' Academic Success and Major Using Random Forests. In Research in Higher Education (Vol. 60, Issue 7, pp. 1048–1064). Springer Science and Business Media LLC. https://doi.org/10.1007/s11162-019-09546-v

We will never get a split like this one!











UNIVERSIDADE CATOLICA PORTUGUESA BRAGA



• Linear models vs Decision Trees



#### **Decision Trees: Decision Nodes**



Binary Feature



Categorical Feature



Numeric Feature



### **Decision Trees: Leaf Types**



Classification

• Regression

Probability Estimate

$$P(y=0) = 0.2$$
  
 $P(y=1) = 0.3$   
 $P(y=2) = 0.5$ 

### **Decision Trees: Algorithm**



Trees are built using a greedy algorithm: Recursive binary partitioning

- This involves the following steps:
  - The definition of a splitting criterion;
  - The definition of a stopping rule;
  - Tree **pruning**.

**Greedy** means that each split is made in order to minimize a loss **without looking ahead** at future splits!

### **Decision Trees: Splitting Criteria**



At each step, a new split is picked by finding the featue x<sub>j</sub> and split point s
that best partitions the data into two half-spaces.

$$\{\mathbf{x}: x_j < s\} \quad \{\mathbf{x}: x_j \ge s\}.$$

• For regression we want the split that minimizes the residual sum os squares (RSS)

$$RSS = \sum_{j=1}^{J} \sum_{i \in R_j} (y_i - \hat{y}_{R_j})^2,$$

where  $\hat{y}_{R_i}$  is the mean values for the training data whithin the j<sup>th</sup> box.

- For **classification**, we can use:
  - Entropy and Information Gain
  - Gini Index



Pure

• "In information theory, the entropy of a random variable is the average level of "information", "uncertainty" or "surprise", inherent in the variable's possible outcomes."

 In the context of Decision Trees, entropy measures the disorder or impurity of a node.

$$E = -\sum_{i=1}^n p_i log_2(p_i)$$
 Very Impure Less Impu

p<sub>i</sub> is the probability of randomly picking an example of the class i.



 $InformationGain = Entropy_{parent} - Entropy_{children}$ 

 $Information Gain = Entropy_{parent} - \underbrace{WeightedAvgEntropy_{children}}$ 

$$\text{Average Entropy} = \frac{n_{subnode_1}}{n_{parent}} E_{-} \text{subnode}_1 + \frac{n_{subnode_2}}{n_{parent}} E_{-} subnode_2 + \ldots + \frac{n_{subnode_n}}{n_{parent}} E_{-} subnode_n$$











$$E(Parent) = -\frac{16}{30}\log_2\left(\frac{16}{30}\right) - \frac{14}{30}\log_2\left(\frac{14}{30}\right) \approx 0.99$$

$$E(Balance < 50K) = -\frac{12}{13}\log_2\left(\frac{12}{13}\right) - \frac{1}{13}\log_2\left(\frac{1}{13}\right) \approx 0.39$$

$$E(Balance > 50K) = -\frac{4}{17}\log_2\left(\frac{4}{17}\right) - \frac{13}{17}\log_2\left(\frac{13}{17}\right) \approx 0.79$$

Weighted Average of entropy for each node:

$$E(Balance) = \frac{13}{30} \times 0.39 + \frac{17}{30} \times 0.79$$
$$= 0.62$$

Information Gain:

$$IG(Parent, Balance) = E(Parent) - E(Balance)$$
  
= 0.99 - 0.62  
= 0.37





$$E(Parent) = -\frac{16}{30}\log_2\left(\frac{16}{30}\right) - \frac{14}{30}\log_2\left(\frac{14}{30}\right) \approx 0.99$$

$$E(Residence = OWN) = -\frac{7}{8}\log_2\left(\frac{7}{8}\right) - \frac{1}{8}\log_2\left(\frac{1}{8}\right) \approx 0.54$$

$$E(Residence = RENT) = -\frac{4}{10}\log_2\left(\frac{4}{10}\right) - \frac{6}{10}\log_2\left(\frac{6}{10}\right) \approx 0.97$$

$$E(Residence = OTHER) = -\frac{5}{12}\log_2\left(\frac{5}{12}\right) - \frac{7}{12}\log_2\left(\frac{7}{12}\right) \approx 0.98$$

Weighted Average of entropies for each node:

$$E(Residence) = \frac{8}{30} \times 0.54 + \frac{10}{30} \times 0.97 + \frac{12}{30} \times 0.98 = 0.86$$

Information Gain:

$$IG(Parent, Residence) = E(Parent) - E(Residence)$$
  
= 0.99 - 0.86  
= 0.13



 The Gini Index measures the probability of misclassifying a randomly chosen element based on label distribution;

 Lower values indicate higher purity and better separation of classes in a decision tree node.

$$Gini = 1 - \sum_{i=1}^{j} P(i)^2$$
 or  $Gini = 1 - \sum_{i=1}^{j} P(i)(1 - P(i))$ 

where j represents the number of classes in the target variable

$$Gini_{split} = Weighted Avg Gini_{nodes}$$
 Weighted Avg Gini =  $\frac{n_{subnode_1}}{n_{parent}} Gini_{subnode_1} + \frac{n_{subnode_2}}{n_{parent}} Gini_{subnode_2} + ... + \frac{n_{subnode_n}}{n_{parent}} Gini_{subnode_n}$ 











$$Gini_{(Balance < 50)} = 1 - (\frac{12}{13})^2 - (\frac{1}{13})^2 = 0.142$$

$$Gini_{(Balance \ge 50)} = 1 - (\frac{4}{17})^2 - (\frac{13}{17})^2 = 0.360$$

$$Gini = \frac{13}{30} * 0.142 + \frac{17}{30} * 0.360 = 0.266$$





$$Gini_{(OWN)} = 1 - (\frac{7}{8})^2 - (\frac{1}{8})^2 = 0.219$$

$$Gini_{(RENT)} = 1 - (\frac{4}{10})^2 - (\frac{6}{10})^2 = 0.48$$

$$Gini_{(OTHER)} = 1 - (\frac{5}{12})^2 - (\frac{7}{12})^2 = 0.486$$

$$Gini = \frac{8}{30} * 0.219 + \frac{10}{30} * 0.48 + \frac{12}{30} * 0.486 = 0.4128$$

### **Decision Trees: Splitting Criteria**



Why not minimize the missclassification error?



### **Decision Trees: Stopping Rules**



- Maximum depth: limits the depth of the tree;
- Minimum samples per leaf: limits the minimum number of samples a leaf node can have;
- Minimum samples per split: limits the minimum number of samples required to perform a split;
- Maximum number of leaf nodes: caps the total number of lead nodes in a tree;
- Impurity threshold: a split is only performed if it reduces impurity by a certain amount;



 The flexibility/complexity of decision trees is mainly decided by the tree depth:

To obtain a small bias we need a deep tree!



However, this results in high variance!



- To improve the performance:
  - Pruning: grow deep trees (small bias, high variance) which then are pruned into smaller ones (reduce variance);
  - Ensemble methods (next session): combine multiple simple trees.
    - Bagging and Random Forests
    - Boosted trees

### **Decision Trees: Tree Pruning**



 Deep trees often overfit the training data resulting in poor test performance;

 We could stop spliting as soon the information gain does not improve at least a pre-specified amount;

 However, "weak" splits early can sometimes lead to a really good split later;

Solution: Grow a deep tree and then prune it back.



Cost complexity pruning aka weakest link pruning:

• Mathematically, the cost complexity measure for a tree T is given by:

$$R_{\alpha}(T) = R(T) + \alpha |T|$$

#### Where:

\* R(T) is the risk of the tree T (overall RSS, Gini/Entropy/etc)

 $^{\star}$  |T| is the number of leaf nodes in the tree T

\* lpha is the penalty/regularization parameter







Cost complexity pruning



#### Pruning rule:

prune all child nodes of t if:

$$\underbrace{(|T_t|-1)\alpha}_{\text{Penalty}} > \underbrace{R(t)-R(T_t)}_{\text{Reward}} \Rightarrow \alpha > \frac{R(t)-R(T_t)}{|T_t|-1}$$



• 
$$R(t) = 0.168 * (54/150) = 0.06048$$

• 
$$R(T_t) = 0.0408 * (58/150) + 0.4444 * (6/150)$$
  
= 0.033552

- |T| = 2
- $\frac{R(t) R(T_t)}{|T_t| 1}$  = (0.06048 0.033552) / (2-1) = 0.026928
- So, if:
  - $\alpha$  = 0.02 we don't prune
  - $\alpha$  = 0.03 we do prune
- Question:
  - How to choose the value of lpha ?





- Question:
  - How to choose the value of  $\alpha$ ?
- Using cross-validation!



### **Decision Trees: Depth vs Error**





• Looks like a small 3-leaf tree has the lowest CV error!

### **Decision Trees: Advantages**



- Interpretability: easy to understand and interpret, making them suitable for explaining the reasoning behind decisions to non-experts.
- No Data Preprocessing: can handle both numerical and categorical data without requiring extensive preprocessing such as normalization or scaling.
- Handles Non-linear Relationships: can capture non-linear relationships between features and the target variable without explicitly modeling them.
- **Handles Missing Values:** can handle missing values by simply excluding them from the splitting process, making them robust to missing data.
- Feature Importance: provide a measure of feature importance, which can help identify the most influential features in the dataset.
- **Efficiency:** have a relatively fast training time, especially for smaller datasets, compared to more complex algorithms.

#### **Decision Trees: Limitations**



- Overfitting: are prone to overfitting, especially when they grow too deep or are not pruned properly, capturing noise or specific patterns in the training data that do not generalize well.
- Instability: small variations in the data can lead to different tree structures, making decision trees unstable and sensitive to changes in the training data.
- Bias Toward Dominant Classes: in classification tasks with imbalanced classes, decision trees may exhibit a bias toward the dominant classes, leading to poor performance on minority classes.
- Greedy Nature: use a greedy, top-down approach to recursively partition the feature space, which may not always lead to the globally optimal tree structure.

#### Resources



Koning, M., & Smith, C. (2017). Decision trees and random forests.
 Independently Published.

https://www.youtube.com/watch?v=\_L39rN6gz7Y

https://www.youtube.com/watch?v=\_L39rN6gz7Y

https://www.youtube.com/watch?v=wpNl-JwwplA

https://www.youtube.com/watch?v=D0efHEJsfHo