Laboratory 8

Transient Responses of First Order RL and RC Circuits

Objectives

- Observe the transient responses of RL and RC circuits.
- Learn to how to measure time constant of first order circuits.

Equipment and components

- A computer
- PSPICE software

Preliminary

- Read the lecture slides of "Inverse Laplace Transform and RC, RL, and RLC Circuits".
- Calculate the time constant when $R=1~k~\Omega$, $C=0.5~\mu F$, $C=1~\mu F$, and $C=2~\mu F$, respectively. Fill in Table 1. Refer to the natural and step responses of RC circuits shown below for finding the time constant.

- Calculate the time constant when $R=1~0~\Omega$, L=10~mH, L=20~mH, and L=40~mH, respectively. Fill in Table 2. Refer to the above two graphs to find the time constant for RL circuits.
- Pulse waveform: A voltage pulse source can be applied using VPULSE element in PSpice.
 VPULSE has 7 parameters that are described and shown below.

As an example, a square waveform can be created by setting TR = TF = 0 and $PER = 2 \ PW$. TD is the delay time.

Procedure

1. Open PSpice and construct a circuit shown below with a resistor of 1 k Ω and a capacitor of 1 μF . V_g is an independent voltage source generating square waveforms. Set TR=TF=TD=0, $V_1=0$, and $V_2=10$ V. Wisely set the period of the waveform so that you can clearly observe the natural and step responses v(t) of the RC Circuit.

- 2. Measure i(t) and v(t). Plot them. What did you find? Why?
- 3. Fill the simulation results in Table 1

Table 1 Time Constant of RC Circuits

Resistance $(k\Omega)$	Capacitance (μF)	Calculated Time Constant	Measured Time Constant
1	0.5		
1	1		
1	2		

What did you find? Why?

4. let R=1 k Ω and TR=TF=TD=0, $V_1=0$, $V_2=10$ V, and PER=2 ms, select the capacitance of the capacitor so that the response v(t) of the circuit is a triangle waveform, as shown below.

What is your minimum value of the capacitance to generate the triangle waveform output?

5. Construct a circuit shown below with a resistor of 10 Ω and an inductor of 10~mH. Set TR = TF = TD = 0, $V_1 = 0$, $V_2 = 10~V$ for the pulse voltage source. Wisely select it pulse width so that you can clearly observed the responses of the RL circuit.

- 6. Measure the current i(t) in the circuit and voltage v(t) across the inductor. Then plot them. What did you find? Why?
- 7. Fill the simulation results in Table 2

Table 2 Time Constant of RL Circuits

Resistance (Ω)	Inductance (mH)	Calculated Time Constant	Measured Time Constant
10	10		
10	20		
10	30		

Explain your results.

Questions and Conclusions

• Summarize your findings and explanations in response to the questions posed in this lab.