

Intro to UARTs

Why use a UART?

- UARTs are everywhere!
- Simple way to send data from one system to another system
- Add additional functionality to an application

Why use a UART from Exar?

- Largest and broadest UART portfolio
- Highest performance UARTs
- UARTs with the most enhanced features
- Excellent technical support
- Exar also has serial transceivers!

What is a UART?

- <u>Universal Asynchronous Receiver/Transmitter</u>
- Traditional Definition: Converts parallel (8-bit) data to serial data and vice versa

What is a UART?

UART Block Diagram

16550 UART Registers

Address A2-A0	Register Name	Read/Write	Register Function	Comment		
0 0 0	DLL – Divisor LSB	Write-Only	Divisor (LSB) for BRG	LCR bit-7 = 1		
0 0 1	DLM – Divisor MSB	Read-Only	Divisor (MSB) for BRG	LCR bit-7 = 1		
0 0 0	THR – Transmit Holding Register	Write-Only	Write-Only Loading data into TX FIFO			
0 0 0	RHR – Receive Holding Register	Read-Only	Unloading data from RX FIFO	LCR bit-7 = 0		
0 0 1	IER – Interrupt Enable Register	Read/Write	Enable interrupts			
0 1 0	FCR – FIFO Control Register	Write-Only	FIFO enable and reset			
0 1 0	ISR – Interrupt Status Register	Read-Only	Status of highest priority interrupt			
0 1 1	LCR – Line Control Register	Read/Write	Word length, stop bits, parity select, send break, select divisor registers			
1 0 0	MCR – Modem Control Register	Read/Write	RTS# and DTR# output control Interrupt output enable Internal Loopback enable			
101	LSR – Line Status Register	Read-Only	RX Errors/Status TX Status			
110	MSR – Modem Status Register	Read-Only	Modem Input Status			
111	SPR – Scratch Pad Register	Read/Write	General Purpose Register	EXAD.		

16550 UART Registers

Address A2-A0	Register Name	R/W	Bit-7	Bit-6	Bit-5	Bit-4	Bit-3	Bit-2	Bit-1	Bit-0
0 0 0	DLL	R/W	Bit-7	Bit-6	Bit-5	Bit-4	Bit-3	Bit-2	Bit-1	Bit-0
0 0 1	DLM	R/W	Bit-7	Bit-6	Bit-5	Bit-4	Bit-3	Bit-2	Bit-1	Bit-0
0 0 0	THR	W	Bit-7	Bit-6	Bit-5	Bit-4	Bit-3	Bit-2	Bit-1	Bit-0
0 0 0	RHR	R	Bit-7	Bit-6	Bit-5	Bit-4	Bit-3	Bit-2	Bit-1	Bit-0
0 0 1	IER	R/W	0	0	0	0	MSR	LSR	TX (THR)	RX (RHR)
010	FCR	W	RX Trig Level	RX Trig Level	0	0	DMA Mode	TX FIFO Reset	RX FIFO Reset	FIFO Enable
010	ISR	R	FIFOs Enabled	FIFOs Enabled	0	0	INT Source	INT Source	INT Source	INT Source
011	LCR	R/W	Divisor Enable	Set TX Break	Set Parity	Even Parity	Parity Enable	Stop Bits	Word Length	Word Length
100	MCR	R/W	0	0	0	Internal Loopback	INT / OP2#	(OP1#)	RTS# Control	DTR# Control
101	LSR	R	RX FIFO Error	THR/TSR Empty	THR Empty	RX Break	RX Framing	RX Parity	RX Overrun	RX Data Ready
110	MSR	R	CD#	RI#	DSR#	CTS#	Delta CD#	Delta RI#	Delta DSR#	Delta CTS#
111	SPR	R/W	Bit-7	Bit-6	Bit-5	Bit-4	Bit-3	Bit-2	Bit 1X	Bit-0

Baud Rate Generator (BRG)

- Used to generate the baud rates for both the transmitter and receiver
- Not required for any other function including reads and writes
- Crystal or External Clock
- 16-bit divisor programmed in DLM/DLL registers

Baud Rate Generator (BRG)

- Standard clock frequencies are multiples of 1.8432 MHz
 - 3.6864 MHz, 7.3728 MHz, 14.7456 MHz, 18.432 MHz, 22.1184 MHz
- Standard baud rates are multiples of 9600 bps
 - 19200 bps, 38400 bps, 57600 bps, 115200 bps, 230400 bps, 460800 bps, 921600 bps
- Sampling rate is 16
- Divisor values are written into the DLM and DLL registers
 - Divisor values are 1 to (2¹⁶ 1) in increments of 1

Baud Rate =
$$\frac{14.7456 \text{ MHz}}{(16) \text{ X} (1)}$$
 = 921600 bps

Transmitter

- Parallel-to-serial conversion
- Non-FIFO Mode
 - Transmit Holding Register (THR) and Transmit Shift Register (TSR)
- FIFO Mode
 - Transmit (TX) FIFO and Transmit Shift Register (TSR)
- 16X timing for bit shifting
- Character Framing
- Parity Insertion
- TX FIFO interrupt and status

Transmitter – Non-FIFO mode

- Write Data to Transmit Holding Register (THR)
- Data in THR is transferred to Transmit Shift Register (TSR) when TSR is empty
- TSR shifts the data out on the TX output pin

Transmitter – FIFO Mode

- Write Data to Transmit Holding Register (THR)
- Transmit data is queued in TX FIFO
- Data in TX FIFO is transferred to Transmit Shift Register (TSR) when TSR is empty
- TSR shifts data out on TX output pin

TX Character Framing

- Start Bit
- Data Bits of 5, 6, 7 or 8
- Parity Bit
- Stop Bit of 1, 1.5 or 2
- Example:
 - Start, 8 data, parity, with 1 stop bit

Receiver

- Serial-to-Parallel Conversion
- Non-FIFO Mode
 - Receive Holding Register (RHR) and Receive Shift Register (RSR)
- FIFO Mode
 - RX FIFO and RSR
- 16X timing clock for mid bit sampling
- Start bit detection and verification
- RX FIFO is 11 bits wide
 - 8 data bits
 - 3 error bits or error tags

Receiver – Non-FIFO Mode

- Incoming data is received in the Receive Shift Register (RSR)
- Received data is transferred to the RHR
- Error tags associated with data in RHR can be read via LSR
- Read RHR to read the data out

Receiver – FIFO Mode

- Incoming data is received in the Receive Shift Register (RSR)
- Received data is queued in the RX FIFO
- Error tags associated with data in RHR can be read via LSR
- Read RHR to read the data out

RX Character Validation

- Start bit detection and validation
 - HIGH to LOW transition indicates a start bit
 - Start bit validated if RX input is still LOW during mid bit sampling
- Data, parity and stop bits are sampled at mid bit
- A valid stop bit is HIGH when the stop bit is sampled

Idle	Т	Р	D7	D6	D5	D4	D3	D2	D1	D0	S	Idle = "Mark" or "1"	RX
------	---	---	----	----	----	----	----	----	----	----	---	----------------------	----

RX Error Reporting

Line Status errors

- Error tags are associated with each byte
 - Framing error if stop bit is not detected
 - Parity error if parity bit is incorrect
 - Break detected if RX input is LOW for duration of one character time and stop bit is not detected
- Overrun error if character is received in RSR when RX FIFO is full
 - Non-FIFO mode
 - RHR has a data byte and data received in RSR
 - RSR data overwrites RHR data
 - FIFO mode
 - RX FIFO is full and data is received in RSR
 - Data in RX FIFO is not overwritten by data in RSR

Modem I/Os

Legacy Modem Signals

Signal Name	Description	Input/Output
RTS#	Request-to-Send	Output
CTS#	Clear-to-Send	Input
DTR#	Data-Terminal-Ready	Output
DSR#	Data-Set-Ready	Input
CD#	Carrier-Detect	Input
RI#	Ring-Indicator	Input

Used for hardware flow control or as general purpose inputs or outputs

Internal Loopback Mode

Interrupts

Priority Level	ISR bit-3	ISR bit-2	ISR bit-1	ISR bit-0	Source of Interrupt
1	0	1	1	0	LSR (RX Data Error)
2	1	1	0	0	RXRDY (RX Data Time-out)
3	0	1	0	0	RXRDY (RX Data Ready)
4	0	0	1	0	TXRDY (TX Empty)
5	0	0	0	0	MSR (Modem Status)
-	0	0	0	1	None

Interrupt Source Register (ISR)

- If there are multiple interrupts, ISR reports only the highest pending interrupt
- Lower priority interrupts will be reported when higher priority interrupts are cleared

E-mail hotline: <u>uarttechsupport@exar.com</u>