

日 本 国 特 許 庁 IAPAN PATENT OFFICE

26, 3, 2004

· 別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

2003年11月14日

出願番号

特願2003-384456

Application Number: [ST. 10/C]:

[JP2003-384456]

出 願 人

関東電化工業株式会社

Applicant(s):

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

REC'D. 2 1 MAY 2004
WIPO PCT

Market - T

2004年 4月30日

特許庁長官 Commissioner, Japan Patent Office 今 井 康

【書類名】 特許願 【整理番号】 032394 【提出日】 平成15年11月14日 【あて先】 特許庁長官殿 【国際特許分類】 G03G 【発明者】 【住所又は居所】 群馬県渋川市金井425番地 関東電化工業株式会社記録材料研 【氏名】 飯沼 秀彦 【発明者】 【住所又は居所】 群馬県渋川市1497番地 関東電化工業株式会社渋川工場内 【氏名】 原 研吉 【発明者】 【住所又は居所】 群馬県渋川市金井425番地 関東電化工業株式会社記録材料研 【氏名】 林 政友 【特許出願人】 【識別番号】 000157119 【氏名又は名称】 関東電化工業株式会社 【代理人】 【識別番号】 100089705 【住所又は居所】 東京都千代田区大手町二丁目2番1号 新大手町ビル206区 ユアサハラ法律特許事務所 【弁理士】 【氏名又は名称】 社本 一夫 【電話番号】 03-3270-6641 【選任した代理人】 【識別番号】 100076691 【弁理士】 【氏名又は名称】 増井 忠弐 【選任した代理人】 【識別番号】 100075270 【弁理十】 【氏名又は名称】 小林 泰 【選任した代理人】 【識別番号】 100080137 【弁理士】 【氏名又は名称】 千葉 昭男 【選任した代理人】 【識別番号】 100096013 【弁理士】 【氏名又は名称】 富田 博行 【選任した代理人】 【識別番号】 100094008 【弁理士】 【氏名又は名称】 沖本 一暁 【先の出願に基づく優先権主張】 【出願番号】 特願2003- 96744 【出願日】 平成15年 3月31日

【予納台帳番号】 051806 【納付金額】 21,000円

【提出物件の目録】

【物件名】 特許請求の範囲 1

 【物件名】
 明細書 1

 【物件名】
 図面 1

 【物件名】
 要約書 1

式(1)

 $Ca_a Mg_b Fe_c O_d$ (1)

(a, b, 及びcは

0.10 ≦ b/(b+c/2) ≦ 0.85及び

 $0 \le R(Ca) \le 0.10$

(ただしR(Ca)は式:

 $R(Ca) = a \times F_{W}(Ca0) / (a \times F_{W}(Ca0) + b \times F_{W}(Mg0) + (c/2) \times F_{W}(Fe_{2}O_{3}))$ で表され; Fw(A)はAの式量を表す)

を充たし、

dはCa、Mg、及びFeの酸化数により定まる数である)

の組成を有し、飽和磁化が30~80emu/gであり、絶縁破壊電圧が1.0~5.0 k VであるMg系フェライト材料。

【請求項2】

b及びcが

 $0.30 \le b/(b+c/2) \le 0.70$

を充たす請求項1のMg系フェライト材料。

【請求項3】

平均粒子径が 0. 01~150 μ mである請求項1又は2記載のM g系フェライト材料。 【請求項4】

請求項1乃至3の何れかに記載のMg系フェライト材料を含む電子写真現像用キャリア。 【請求項5】

樹脂で被覆された請求項1乃至3の何れかに記載のMg系フェライト材料を含む電子写真 現像用キャリア。

【請求項6】

請求項4又は5に記載の電子写真現像用キャリアとトナーとを含む電子写真用現像剤。 【請求項7】

キャリアに対するトナーの重量比が2~40重量%である請求項6記載の電子写真用現像

【請求項8】

i)原料を混合する工程とii)最高到達温度が800~1500℃である粒子成長工程 とiii)最高到達温度が300~1000℃である酸素含有雰囲気でのコンディショニ ング工程とを含む、請求項1乃至3の何れかに記載のMg系フェライトの製造方法。 【請求項9】

工程i i i) の雰囲気の酸素濃度が工程 i i) の雰囲気の酸素濃度より高い、請求項 8 記 載の方法。

【請求項10】

工程 i i i) の雰囲気が酸素濃度 0.05~25.0 v o l.%の不活性ガス雰囲気であ る請求項8又は9に記載の方法。 【請求項11】

工程 i i) の雰囲気が酸素濃度 0.001~10.0 v o l.%の不活性ガス雰囲気であ る請求項8乃至10の何れかに記載の方法。

【請求項12】

原料混合工程i)が、Mg含有化合物及びFe含有化合物を含むスラリーを作成する工程 と該スラリーを造粒乾燥する工程とを含む、請求項8乃至11の何れかに記載の方法。 【請求項13】

Mg含有化合物及びFe含有化合物を含むスラリーがCa含有化合物をさらに含む請求項 12記載の方法。 【請求項14】

M g 含有化合物及びF e 含有化合物を含むスラリーがバインダーをさらに含み、スラリー中の原料の総量に対するバインダーの量が $0.1\sim5$ 重量%である、請求項12 又は13 に記載の方法。

【発明の名称】Mg系フェライト並びに該フェライトを用いた電子写真現像用キャリア及び 現像剤

【技術分野】

[0001]

本発明はMg系フェライト磁性材料に関する。該材料は、電子写真法を利用する複写機 やプリンタといった現像装置において2成分系現像用キャリアに使用することができ、該 キャリアを用いた現像剤にも使用できる。

【背景技術】

[0002]

電子写真法は、光導電性の感光体上に静電潜像を形成し、この像にトナーを付着させて 現像する方法であり、2成分現像法と1成分現像法に大別される。2成分現像法は、キャ リア及びトナーの2成分を含む現像剤を使用する方法であり、キャリアとして磁性キャリ アが使用されることが多い。

[0003]

磁性キャリアを使用する2成分現像法では、まず現像剤を現像器内で撹拌混合し、キャ リア及びトナー間の摩擦により、トナーを所望の程度まで帯電させる。次に、磁性を有す るマグネットロール(以下、ロールと表記する)に現像剤を供給し、磁力線に沿って現像 剤の穂立ちを形成させる。この穂立ちが磁気ブラシと呼ばれる。この様にして形成された 磁気ブラシを感光体表面と接触させることにより、帯電したトナーを感光体表面に付着さ せる。トナーは静電潜像に合わせて付着するため、トナーが所望の像を形成する。

[0004]

トナーが感光体に移されるのに対し、磁性キャリアはロール上に残存して回収され、再 利用される。従って、キャリアは高寿命であることが望ましい。

電子写真法は複写機、プリンタ、FAXなど幅広い分野で用いられているが、さらなる 高画質化、高解像度化、並びに階調性及び細線再現性の改善等が求められている。画質低 下の原因の一つは、キャリアを介した静電潜像電位のリークである。このリーク現象は、 低抵抗のキャリアで起きやすい。しかし、当初は高抵抗のキャリアであっても高電圧を印 加することにより絶縁破壊が起き、その結果、リークが起きることがある。 [0005]

近年、高画質化のため、感光体及びロール間に高いバイアス電位が印加される傾向にあ る。かかる髙バイアス電位では、従来のキャリアでは絶縁破壊が起きることがある。そこ で、絶縁破壊電圧が高く長寿命の電子写真現像用キャリアが求められている。

[0006]

高画質化のためには、絶縁破壊電圧の向上に加え、磁性キャリアの飽和磁化を適切な範 囲に調整する必要もある。なぜなら、飽和磁化が小さすぎるとキャリアの飛散やキャリア 付着により画質が低下し、飽和磁化が大きすぎても、穂が硬くなって画質の低下を招くた めである。

[0007]

従来、絶縁破壊電圧の高いフェライトキャリアとして Cu-Zn系フェライト (例えば特許 文献 1 参照)、Mn-Mg系フェライト(例えば特許文献 2 参照)が用いられてきた。しかし 近年の環境規制により、Cu、Zn、Mn、Co及びNiといった重金属の使用量の削減が望まれて いる。例えば米国カリフォルニア州法Title 22等ではNi, Cu, Zn等が規制対象とされ、また Mn化合物は人の健康や生態系に有害のおそれのある化合物としてPRTR制度で指定されてい

[0008]

環境規制に対応した磁性キャリアとして、従来から用いられているマグネタイト(Fe30 4) が知られているが、マグネタイトには絶縁破壊電圧が低いという問題がある。さらに 、マグネタイトには低抵抗という問題もあり、交流電圧を印加した場合には、各種樹脂で 被覆し絶縁性を改善しても現像時にリーク現象が生じてしまう。マグネタイトを高抵抗化

するため、大気中で焼成して高抵抗の非磁性相(Fe203相)を生成するという試みも為さ れている。確かにFe203相の割合を増加させると絶縁破壊電圧は高くなるが、その一方で 保磁力が増加するため、キャリア粒子間での凝集が生じて流動性が悪化し、フェライトキ ャリア並の画質が得られにくいという新たな問題が生じる。それに加え、マグネタイトは 比較的飽和磁化が大きいため、磁気ブラシの穂が硬くなりすぎるという問題もある。

任意の飽和磁化に調整でき環境規制にも対応できる酸化物キャリアとしては、Mg-Fe-O 系の粉体が報告されている(特許文献3参照)。しかし、この方法ではバインダーを還元 剤として添加し不活性ガス中で焼成が行われるため、Feの原子価が低く保たれる結果、マ グネタイト及びMgO相等の混在した粉体が生成する。従って、マグネタイトに起因する低 い絶縁破壊電圧という問題が依然として残されている。

[0010]

Mg及びFeが単一相を形成したMg系フェライトは、化学量論組成を大気中で焼成すること により得られる。このMg系フェライトは、高い絶縁破壊電圧を有する。しかし、飽和磁化 が20~25 emu/gという低い値であるという問題がある。

[0011]

従って、適切な飽和磁化と高い絶縁破壊電圧の両者を同時に実現するという課題が残さ れている。

【特許文献1】特許第1,688,677号公報

【特許文献2】特許第3,243,376号公報

【特許文献3】特許第2,860,356号公報

【発明の開示】

【発明が解決しようとする課題】

[0012]

本発明は上記のような事情に鑑みなされたものであり、環境規制に対応し高品質の画像 が得られる磁性キャリア、特にMg系フェライト材料を含むキャリア、該Mg系フェライト材 料の製造方法、及び該キャリアを含む電子写真現像剤を提供することを目的とする。

【課題を解決するための手段】

[0013]

本発明者らはこれらの課題を解決すべく鋭意検討を進めた結果、Mg系フェライト材料及 びCa含有Mg系フェライト材料(以下、「Mg系フェライト」とはCaを含有する場合も含む) が、電子写真現像用キャリアに要求される性能(例えば飽和磁化や絶縁破壊電圧)を有す ることを見出し、本発明を完成させた。また、該フェライト材料の特性が、少なくとも 2 つの加熱工程を含む本発明の製造方法により実現できること、特に前段の工程を不活性ガ ス雰囲気下で行い後段の工程を酸素含有雰囲気下で行うことによって実現できることも見

[0014]

即ち上記課題は、 式(1)

 $Ca_a Mg_b Fe_c O_d$ (1)

(a, b, 及びcは

0.10 ≦ b/(b+c/2) ≦ 0.85及び

 $0 \le R(Ca) \le 0.10$

(ただしR(Ca)は式:

 $R(Ca) = a \times F_{W}(CaO) / (a \times F_{W}(CaO) + b \times F_{W}(MgO) + (c/2) \times F_{W}(Fe_{2}O_{3}))$ で表され; Fw(A)はAの式量を表す)

を充たし、

dはCa、Mg、及びFeの酸化数により定まる数である)

の組成を有し、飽和磁化が30~80emu/gであり、絶縁破壊電圧が1.0~5.0 k VであるMg系フェライト材料によって解決する。b及び cは $0.30 \le b/(b+c/2) \le 0.70$

を充足してもよい。平均粒径は 0. 0 1~1 5 0 μ mにすることができる。 [0015]

上記課題は、該Mg系フェライト材料を含む電子写真現像用キャリアによっても解決す る。該材料を樹脂で被覆してもよい。さらに、このキャリアとトナーとを含む電子写真用 現像剤によっても解決する。キャリアに対するトナーの重量比を2~40重量%とするこ

[0016]

該Mg系フェライト材料は、i)原料を混合する工程とii)最高到達温度が800~ 1500℃である粒子成長工程とiii) 最高到達温度が300~1000℃である酸素 含有雰囲気でのコンディショニング工程とを含む製造方法により製造できる。工程 i i) の雰囲気と工程 i i i) の雰囲気とでは後者の方が酸素濃度を高くすることができる。さ らに、工程 i i i) を酸素濃度 0.05~25.0 v o l.%の不活性ガス雰囲気下で行 い、工程 i i)を酸素濃度 0. 0 0 1~1 0. 0 v o 1.%の不活性ガス雰囲気下で行う ことができる。また、Mg含有化合物及びFe含有化合物を含むスラリーを作成し、該ス ラリーを造粒乾燥することにより原料混合工程 i)を行うことができる。スラリーがC a 含有化合物及び/又はバインダーを含んでもよく、スラリーに配合した原料の総和に対す るバインダーの量を0.1~5重量%にできる。

【発明を実施するための最良の形態】

[0017]

本発明のMg系フェライト材料は磁性材料として各種の用途、例えば磁性流体、磁気記録 媒体、電波吸収体、磁心材料等に使用することができ、特に電子写真現像剤で使用するこ

[0018]

本発明のMg系フェライト材料は、飽和磁化が25 emu/g以上、好ましくは30 emu/g以上、 さらに好ましくは40emu/g以上であり、100 emu/g以下、好ましくは90 emu/g以下、さらに 好ましくは80 emu/g以下である。飽和磁化が小さすぎるとキャリア付着がおき、画質が低 下する。飽和磁化が大きすぎても、穂が硬くなって画質の低下を招く。 [0019]

なお、ここで使用する飽和磁化の値は振動型磁力計を用いて14k0eで測定される値であ り、測定方法は実施例記載の通りである。

本発明のMg系フェライト材料の絶縁破壊電圧は、1.0 kV以上、好ましくは2.5 kV以上で ある。絶縁破壊電圧が低すぎると、現像の際に感光体上の静電潜像電位のリークが生じ、 キャリアの寿命低下も起きることがある。絶縁破壊電圧が高い場合には高い画質が長時間 保たれるため、絶縁破壊電圧の上限に制限はないが、他の特性を充足するために10.0 kV 以下、好ましくは7.5 kV以下、さらに好ましくは5.0 kV以下とすることができる。

なお、ここで使用する絶縁破壊電圧の値は交流電圧を印加して漏れ電流値が110 mA以上 となる値であり、測定方法は実施例記載の通りである。

該Mg系フェライト材料の平均粒径は、0.01μm以上、2μm以上、好ましくは5μm以上、 さらに好ましくは 10μ m以上であり、 200μ m以下、好ましくは 150μ m以下である。粒径が 小さすぎると感光体に付着しやすくなり、大きすぎると画像が粗くなり画質が低下する。

本発明のMg系フェライト材料は、 式 (1)

Caa Mgb Fec Od (1)

(a, b, 及びcは

0.10 ≦ b/(b+c/2) ≦ 0.85及び

$0 \le R(Ca) \le 0.10$

(ただしR(Ca)は式:

 $R(Ca) = a \times F_{W}(Ca0) / (a \times F_{W}(Ca0) + b \times F_{W}(Mg0) + (c/2) \times F_{W}(Fe_{2}O_{3}))$ で表され; Fw(A)はAの式量を表す)

を充たし、

dはCa、Mg、及びFeの酸化数により定まる数である)

の組成を有する。b及び cはさらに

 $0.30 \le b/(b+c/2) \le 0.70$

を充足してもよい。

[0022]

Caを添加すると、高い絶縁破壊電圧を維持しつつ飽和磁化を向上させる効果が得られる 。その結果、階調性に優れた高品質の画像を得ることができる。このような効果が得られ る理由は明らかではないが、Mgサイトを置換することにより結晶の構造安定性や導電性に 影響を及ぼしたり、超交換相互作用を介して磁気構造を変化させたり、固溶せずに粒界を 修飾したり、磁区構造が変化することに起因するとも考えられる。 [0023]

該Mg系フェライト材料は、さらにLi、Na、K、Rb、Ba、Sr、B、Al、Si、V、Ti、Zr、Cu 、Ni、Co、Zn、Mn、La、Yからなる一種以上の元素を含んでもよい。これらの元素はCa、M g、及びFeのサイトを置換してもよく、別の相を形成してもよい。ただし、環境規制の対 応という観点からは、含有される重金属のモル数の和がMgとCaのモル数の和を超えないこ

[0024]

ここでフェライト材料とは正スピネル相又は逆スピネル相のフェライトを含む材料を指 すが、Feを含有するその他の相、例えばガーネット相やマグネトプランバイト相を含んで もよく、Feを含有しない相、例えばMgOやCa2Fe2O5を含んでもよい。フェライト材料の組 成とは、フェライト材料中の特定の相の組成ではなく、フェライト材料の平均組成を指す

[0025]

a、b、及びcの値は所望の特性が得られれば特に制限はないが、例えばb/(b+c/2)を0.10 以上0.85以下とすることができる。b/(b+c/2)が小さすぎると、過剰の $Fe_2 O_3$ の生成によっ て絶縁破壊電圧が低下する傾向にあり、b/(b+c/2)が大きすぎると非磁性相(例えばMgO相)が過剰に生成し、飽和磁化が低下しやすい。Caを添加すると高い絶縁破壊電圧を維持し つつ飽和磁化を増加させることができるため、Ca無添加の場合には充分な飽和磁化が得ら れないMgリッチな組成(b/(b+c/2)が大きい組成)であっても、Caの添加により適切な飽 和磁化と高い絶縁破壊電圧とを両立させることができる。Caを添加しない場合には、b/(b +c/2)を0.30以上0.70以下とすることが好ましい。 [0026]

Caを添加する場合、その添加量の下限に特に制限はないが、R(Ca)が0.001以上であれば その効果を確認できる。Caを過剰に添加すると不純物相(例えばCa₂Fe₂O₅)が生成して飽 和磁化が低下するため、R(Ca)は0.10以下、好ましくは0.08以下とされる。

以下、本発明のMg系フェライト材料及びMg系フェライトキャリアの製造方法について述 べる。本発明のMg系フェライト材料は、 i)原料を混合する工程と i i)最高到達温度が 800~1500℃である粒子成長工程と i i i) 最高到達温度が300~1000℃で ある酸素含有雰囲気でのコンディショニング工程とを含む製造方法により製造できる。

混合工程 i) に用いる原料としては、酸化物、炭酸塩、水酸化物、オキシ水酸化物、シ ュウ酸塩、硝酸塩、酢酸塩、乳酸塩、塩化物といった各種の化合物を使用することができ る。例えばMg原料としてはMgO、MgCO3、Mg(OH)2、及びMgCl2などを使用することができ、 Fe原料としてはFeO、Fe₂O₃、Fe₃O₄、及びFe(OH)x (xは2以上3以下の数を表す) などが 使用でき、Ca原料としてはCaO、CaCO3、Ca(OH)2、及びCaC12などが使用可能である。焼成 過程での発生ガス処理を考慮すると、酸化物、炭酸塩、水酸化物、シュウ酸塩、及びオキ シ水酸化物を使用することが好ましい。各々の元素について一つの化合物を使用してもよ く、複数の化合物の混合物を原料としてもよい。また、共沈法などにより予め所定比で混

合した原料を用いてもよい。

[0029]

上記の原料を秤量し、所定の組成になるように配合する。配合方法に特に制限はなく、 各種の湿式混合及び乾式混合を用いることができるが、水による湿式混合を行うこともで きる。例えば、湿式ボールミル、アトライター、ダイノーミルなどで粉砕混合し、スラリ ー化される。スラリーには、バインダーを所定量加えてもよい。バインダーとしては各種 の高分子、例えばポリビニルアルコール、CMC、アクリル系増粘剤を用いることができ る。ポリビニルアルコールを使用する場合には、上記の様にスラリー中に配合した原料の 総和に対して0.1~5重量%であることが好ましい。必要に応じて分散剤、消泡剤等を適量 添加することができる。焼結助剤(例えば、B、Al、Si、Sr、V、Y、Bi、La、Ti、Zr等の 酸化物または塩化物)) をスラリーに添加してもよく、焼成前に固相混合してもよく、焼 成または熱処理に気相で供給してもよい。焼結助剤は後述する熱処理後に残存してもよい

[0030]

このようにして得られたスラリーを、スプレードライヤにて造粒乾燥し、球状ペレット にする。球状ペレットの形状は所望のフェライト材料の形状に応じて調整されるが、例え ば0.01~200 µ m程度の平均粒径にできる。

[0031]

原料全てをスラリー化してもよく、原料の一部、例えばMg含有化合物及びFe含有化合物 をスラリー化して造粒乾燥し、残りの原料を固相で混合してもよい。

本発明の製造方法は、原料混合工程 i) に続き、不活性ガス雰囲気下で焼成して粒子を 成長させる粒子成長工程ii)と、酸素含有雰囲気下で熱処理を行って金属の酸化数、結 晶構造、占有率、磁気構造等を制御するコンディショニング工程 i i i) の少なくとも 2 つの加熱工程が含まれる。そして加熱工程の条件、例えば酸素濃度、焼成温度、焼成時間 、熱処理温度及び熱処理時間を調整することにより、絶縁破壊電圧や飽和磁化といった磁 性キャリアに求められる特性を制御することが可能である。例えば、工程iii)を工程 i i) より高い酸素濃度雰囲気で行い、工程 i i) の最高到達温度を工程 i i i) より高 くすることができる。なお、上記の工程ii)の前に仮焼を行ってもよい。工程ii)と 工程i i i)とは別々の工程としてもよく、連続して行ってもよい。

[0032]

工程 i i) は、酸素濃度が10vol.%以下、好ましくは3 vol.%以下、好ましくは1 vol.% 以下の不活性ガス (例えば、窒素、アルゴン等の希ガス、及びそれらの混合物) 雰囲気 中で行うことができる。この不活性ガス雰囲気中には、還元ガスを更に添加してもよい。 酸素濃度の下限に特に制限はなく、実質的に酸素を含まない状態でもよい。ここで、実質 的に酸素を含まない状態とは、酸素濃度が0.001 vol. %未満である状態をいう。ただし、 酸素濃度が0.001 vol. %以上の雰囲気は安価に作成できるという点で有利である。

[0033]

その後行われる工程 i i i) は酸素含有雰囲気中で行われる。酸素の濃度は0.05 vol. %以上が好ましく、70 vol. %以下、好ましくは50 vol. %以下、さらに好ましくは25 vol. %以下である。酸素濃度が上記範囲を超えると、安全面で問題が生じる。酸素以外の気相 成分は不活性ガスとすることが好ましい。

[0034]

工程 i i) の最高到達温度は、所望の粒子成長が起きるように選択できる。この温度は 原料の粉砕及び混合の程度にも依存するが、平均粒径 $0.01\sim150\,\mu\,\mathrm{m}$ とするには $800\sim1500\,\mu\,\mathrm{m}$ ℃とすることが好ましい。その後の工程 i i i) の温度は所望の物性が得られるよう選択 され、例えば200~1500℃、好ましくは300~1000℃とされる。工程 i i) で、バインダー 量が多くなるとバインダーの還元剤としての作用が無視できなくなるため、バインダーの 種類に応じてその添加量を適宜調整する必要がある。

[0035]

得られたMg系フェライトを解砕機で解砕し、解砕粉を分級して各種用途のフェライト材 出証特2004-3037469

[0036]

このようにして得られた本発明のMg系フェライト材料について、適宜表面処理を行うこ とができる。例えば、Mg系フェライト材料をコア材とし、その表面を樹脂で被覆すること もできる。使用される被覆樹脂としては、被覆フェライト材料が所望の物性を充たせば特 に制限はなく、例えばシリコーン系樹脂(シリコーン樹脂およびその誘導体を含む)、フ ッ素系樹脂、スチレン系樹脂、アクリル系樹脂、メタアクリル系樹脂、ポリエステル系樹 脂、ポリアミド系樹脂、エポキシ系樹脂、ポリエーテル系樹脂、フェノール系樹脂、メラ ミン系樹脂等が挙げられる。これらの樹脂は、単独で又は複合的に使用することができ、 共重合体を使用することも可能である。複合的な使用には、混合コーティング及び重層コ ーティング挙げられる。また、必要に応じて樹脂中に他の成分、例えば帯電制御剤、抵抗 制御剤、密着性向上剤等を添加してもよく、その使用に特に制限はない。 [0037]

上記の樹脂の被覆方法についても特に制限はなく、従来公知の方法は何れも使用するこ とができ、適宜選択すればよい。例えば、流動層によるスプレー法や浸漬法が挙げられる 。通常は、上記の樹脂をメチルエチルケトン、メチルイソブチルケトン、テトラヒドロフ ラン、トルエン、キシレン、クロロホルム、アルコール等の有機溶剤又はこれらの混合溶 剤に希釈または分散させて樹脂溶液を調製し、又はエマルジョンにして使用する。そして 当該樹脂溶液又はエマルジョンに本発明のフェライトコア材を浸漬させるか、または予め このフェライトコア材を流動化させた状態で上記樹脂溶液をスプレーすることにより、樹 脂層を形成する。流動状態でスプレーすることにより、均一な被膜を得ることができる。

被覆樹脂の量は、フェライト材料の0.05~10.0重量%が好ましい。樹脂量が0.05重量%未 満ではフェライト粒子表面が充分に被覆されないことがあり、10.0重量%以上ではフェラ イト粒子間で凝集が生じてしまうことがある。 [0039]

被膜形成後に溶剤除去及び樹脂の焼き付けを行うため、各種の加熱方法を用いることが できる。加熱温度は使用した溶剤及び樹脂に依存するが、該樹脂の融点又はガラス転移点 以上の温度にすることが望ましい。加熱処理した粒子を冷却した後、必要に応じて再度解 砕及び分級が行われる。 [0040]

被覆工程を工程ii)と工程iii)の間に行い、樹脂の焼き付けと熱処理を同時に行 うこともできる。

本発明のMg系フェライトキャリアは、トナーと所定の比率で混合して2成分現像剤とし て用いられる。2成分系現像剤の場合、トナー濃度はキャリアに対し2~40重量%であるこ とが好ましい。トナーとしては各種公知のトナーを使用することができ、その製造方法も 特に制限されるものではなく、粉砕トナーであっても重合トナーでもよい。 [0041]

トナーは結着樹脂中に着色剤、帯電制御剤等を分散させたものである。結着樹脂として 特に制限はなく、ポリスチレン樹脂、スチレンーアクリル系樹脂、スチレンークロロスチ レン系樹脂、ポリエステル系樹脂、エポキシ樹脂、ポリウレタン樹脂等が挙げられる。着 色剤及び荷電制御剤としては、従来公知の剤を適宜選択することができる。 [0042]

また、本発明のMg系フェライトはトナー中の材料としても使用することもできる。例え ば、磁性トナーの磁性材料として使用することができる。

【実施例】

[0043]

以下、実施例により本発明を説明するが、本発明はこれらの実施例に限定されるもので はない。

[実施例1~16]

[Mg系フェライト材料の製造]

MgO、Fe₂O₃、及びCaOを原料として用い、Mg系フェライト材料を製造した。まず、これ らの原料を表1に示す組成となるよう秤量した。秤量した原料をバインダー(ポリビニル アルコール)、分散剤、及び消泡剤とともに水に加え、湿式ボールミルで4時間粉砕混合 し、スラリーを作成した。スラリー濃度は50重量%であった。スラリー中の原料の総量に 対する消泡剤の量は0.1重量%であり、分散剤の量は0.15重量%であった。

[0044]

得られたスラリーをスプレードライヤにて造粒乾燥し、球状ペレットとした。この球状 ペレットを電気炉にて窒素雰囲気中において1200℃で焼成した。窒素雰囲気中の酸素濃度 は1000ppm以下となるように調整した。さらに、この焼成物を酸素濃度20 vol. %の窒素雰 囲気中において500℃で熱処理した。その後、解砕、分級して平均粒径50μmのMg系フェラ イト材料を得た。粒径が75 μ m以上の粒子は粒子全体の15重量%、45 \sim 63 μ mの粒子は50重 量%、40μm以下の粒子が35重量%であった。

[0045]

表 1 では、Mg及びFeの量をMgO:Fe2 O3 のモル比で表記し、Caの量を(MgO+Fe2 O3 +CaO)の 重量の和に対するCaOの重量%で表記した。表2についても同様である。

得られたMg系フェライト材料の飽和磁化、絶縁破壊電圧、及び電気抵抗を表1に、飽和 磁化と絶縁破壊電圧の関係を図1に示す。

[0046]

【表1】

					【表 1]				
試料		組成	CaO	焼成条件	熱処理	飽和	絶縁破			
III-(1-T	MgO	MgO Fc ₂ O ₃ モル比%			20% O ₂	磁化 壊	壞電圧	電気抵抗	画像評価	備考
実施例1			重量%	೮	ზ	cmu/g	kV	Ω	Ind	Ш1-5
実施例2	70	30	_	1200,N ₂	500	30_3	4.2	7.2×10 ⁸	良好	
実施例3	60 50	40		u	H	32.0	4.2	8.5×10 ⁸	<i>p</i>	
実施例4	50	50		<i>II</i>	B	31.8	4.4	3.5×10°	 	
	40	60	_	"	Ŋ	35.9	4.3	3.3×10°	,	
実施例5	35	65	_	IJ	p	39.8	4.5	1.2×10°	<i>"</i>	
实施例 6	30	70		D	p	36.2	4.3	8.5×10°	u u	
実施例7	50	50	2	ø	p.	41.0	4,3	3.5×10°		
実施例8	50	50	4		H	37.9	4.2	2.6×10°	<i>y</i>	
実施例 9	50	50	8	n	p	33.0	4.4	4.3×10°	U	
実施例10	3.5	65	2	u	n	47.3	4.2		Þ	
実施例11	35	65	4	D	P	51.5	4.2	1.8×10 ⁹	"	
実施例12	35	65	8	<i>II</i>	,,	41.5	4.1	1.1×10°	p	
奥施例13	20	80	2	ø	n	64.2	2.0	1.5×10 ⁹	*	
英施例 14	20	80	4	p p	n	62.6	2.2	1.1×10 ¹⁰	n	
実施例 15	20	80	8	n	n	39.0	4.0	2.5×10 ⁹		
基施例 16	10	90	_ 1	D	n	73.8	4.0 1.1	5.2×10 ⁸	*	
比較例 1	75	25		"	n	24.5		2.2×10 ⁹		
比較例 2	25	75	_	#	,,	45.0	4.2	7.0×10 ⁸	trリア付着	組成外れ
比較例 3	50	50	15	Ħ	п	45.0 25.1	0.9	3.8×10 ¹⁰	現像リーク	"
七較例 4	35	65	15	H	n		3.6	1.0×10 ¹⁰	キャリア付若	u u
比較例 5	20	80	15	,,	 N	27.5	3.3	3.4×10 ¹⁰	n	n
比較例 6	5	95	1	,,	n	28.1	4.0	4.5×10 ⁸	n	#
比較例 7	<i>5</i> 0	50	_	n		73.6	0.5	1.1×10°	現像リーク	n
比較例 8	35	65	_	 N	_	44.9	0.4	5.8×10 ⁶	n	熱処理無し
校例10	50	50		1200,Air	_	51.2	0.4	2.8×10^{7}	"	#
较例11	35	65		1200,AIF		21.7	4.2	2.8×10^{10}	キャリア付着	Air 焼成
						17.9	4.8	4.5×10 ⁷	n	,,

[0047]

実施例3及び7~9から、並びに実施例5及び10~12からわかるように、適切な量 のCaを添加すると、高い絶縁破壊電圧を維持しつつ飽和磁化を向上させることができる

[0048]

なお、飽和磁化、絶縁破壊電圧、及び電気抵抗の測定条件は以下の通りである。 <飽和磁化の測定>

飽和磁化測定には振動型磁力計(VSMP-1S,東英工業製)を用い、試料を測定用カプセル (0.0565cc)に充填して磁場14k0eで測定した。

<絶縁破壊電圧の測定>

絶縁破壊電圧測定は、N極およびS極を対向させ磁極間間隔8mmとした測定器でおこなっ た(磁極:表面磁束密度1500G、対向磁極面積10×30mm)。測定器の概要を図2に示す。こ の磁極間に非磁性の平行平板電極(電極面積10×40mm、電極間隔4mm)を配置し、該電極間 に試料を200mg入れ、磁力により電極間に試料を保持した。耐電圧試験器(TOS5051、菊水 電子工業製)を用いて交流電圧を印加し、漏れ電流値が110mA以上となる印加電圧値を絶 縁破壊電圧とした。 <電気抵抗>

電気抵抗測定には上記の絶縁破壊電圧測定と同様の電極に試料を保持し、絶縁抵抗測定 器(TR-8601、武田理研製)を用いて直流電圧100Vを印加して測定した。 [コーティングキャリアの製造]

得られたMg系フェライト材料をコア材としてシリコーン樹脂で被覆し、コーティングキ 出証特2004-3037469

このMg系フェライト材料を実施例1~16と同様な方法でコーティングし、画像評価を 行った(表1)。

[比較例7~9] 比較例7~9では、酸素濃度20vol. %の窒素雰囲気中におけるコンデ イショニング工程を行わなかった点を除き、実施例1~16と同様の方法によりMg系フェ ライト材料を製造した。なお、MgO、Fe2O3、及びCaOは表1及び2中の組成となるよう秤

[0050]

飽和磁化、絶縁破壊電圧、及び電気抵抗の測定結果を表1及び2に示し、飽和磁化と絶縁 破壊電圧の関係を図1に示す。焼成後の粒子の平均粒径50μmであった。この試料を実施例 $1\sim 1$ 6と同様な方法でコーティングし、画像評価を行った(表1)。

[比較例10及び11] 比較例10及び11では、窒素雰囲気中での1200℃焼成及び酸 素濃度20vol. %の窒素雰囲気中での500℃熱処理を行わず、それに代えて電気炉において 大気中1200℃での焼成を行った。この点を除き、実施例1~16と同様の方法によりMg系 フェライト材料を製造した。なお、MgO及びFe2O3は、表1の組成となるよう秤量分取した

[0051]

飽和磁化、絶縁破壊電圧、及び電気抵抗の測定結果を表1に示し、飽和磁化と絶縁破壊 電圧の関係を図1に示す。なお、焼成後に得られた粒子の平均粒径は50μπであった。この 試料を実施例1~16と同様な方法でコーティングし、画像評価を行った(表1)。

[0052]

実施例3及び比較例7,実施例5及び比較例8、実施例11及び比較例9,実施例3及 び比較例10、実施例5及び比較例11をそれぞれ比較することにより、2段階の加熱工 程を含む本発明の製造方法により絶縁破壊電圧が向上することがわかる。

[実施例17~19] 実施例17~19では、酸素濃度20 vol. %の窒素雰囲気中での 熱処理温度を表2に記載の温度に変更した。その他の点では実施例1~16と同様の方法 により、Mg系フェライト材料を製造した。なお、MgO、Fe2O3及びCaOは、表2の組成とな るよう秤量分取した。

[0053]

飽和磁化、絶縁破壊電圧、及び電気抵抗の測定結果を表2に示し、飽和磁化と絶縁破壊 電圧の関係を図1に示す。なお、焼成後に得られた粒子の平均粒径は50μmであった。この 試料を実施例1~16と同様な方法でコーティングし、画像評価を行った(表2)。 [0054]

					【表 2	2]				
試料	組成			焼成条件	熱処理	飽和	絶縁破			
	MgO	Fe ₂ O ₃	CaO	斑戏染件	20% O ₂	磁化	壊電圧	電気抵抗	画像評価	備考
	モル	モル比%		ზზ	ຕັ	emu/g	kV	Ω	had bakta L first	VIII **>
比較例 9	35	65	4	1200, N ₂		56.0	0.3	1.2×10 ⁷	現像リーク	ZA AN YOU Are 1
実施例17	n	n	n	"	400	55.D	1,3			熱処理無し
実施例18	n	11	n	n				2.9×10^{8}	良好	
実施例11	"				450	52.4	3.5	3.8×10 ⁹	п	
	"	n	77	"	<i>5</i> 00	51.5	4.2	1.1×10 ⁹	<i>n</i> .	
実施例19			"	"	800	33.3	5.0	6.2×10°	n	

[0055]

以上の結果が示す通り、本発明のMg系フェライトキャリアは現像リークやキャリア付着を起こさず、良好な画像が得られるという利点を有する。このような利点は、適切な飽和磁化及び高い絶縁破壊電圧の両者を実現したことに起因すると推測される。従来も高い絶縁破壊電圧を示すMg系フェライトは存在したが、飽和磁化が低いという問題があった。本発明のMg系フェライト材料は、高い絶縁破壊電圧を維持しつつ飽和磁化が改善されたという特徴を有する。

[発明の効果]

[0056]

本発明のMg系フェライト材料及びCa含有Mg系フェライト材料では、従来のMg-Fe-O系フェライトの課題であった低い絶縁破壊電圧が改善されており、それに加え適切な飽和磁化の値を示す。本発明の電子写真現像用Mg系フェライトキャリアにより、近年の環境規制に対応できるだけでなく高画質化を図ることができ、現像剤の幅広い設計を可能にする。

【図面の簡単な説明】

[0057]

【図1】図1は、本発明のMg系フェライトキャリアの飽和磁化と絶縁破壊電圧との関係を示す。

【図2】図2は、絶縁破壊電圧測定器の回路図面である。

【符号の説明】

[0058]

- 1:試料
- 2:真鍮
- 3磁極
- 4:テフロン (R) 支持台

【書類名】図面 【図1】

【図2】

【要約】

【課題】 環境規制に対応したクリーンな材料で構成され、鮮明で階調性に富みカブリの ない高画質像が得られるMg系フェライトキャリア、及び該キャリアを含む電子写真現像剤

【解決手段】 飽和磁化が30~80emu/gであり、絶縁破壊電圧が1.0~5.0 kVであり、式 (1) の組成を有するMg系フェライト材料によって、高画質化と環境規制への対応を図るこ とができる。上記の特性は、所定の焼成及び熱処理条件により達成される。 ${\rm Ca_aMg_bFe_c\,O_d}$ (1)(a, b, cが0.10 \leq b/(b+c/2) \leq 0.85及び0 \leq R(Ca) \leq 0.10 (ただしR(Ca) = $a \times F_w(Ca0)$ / $(a \times F_w(Ca0) + b \times F_w(Mg0) + (c/2) \times F_w(Fe_2O_3)$); $F_w(A)$

出願人履歴情報

識別番号

[000157119]

 変更年月日 [変更理由] 1990年 8月16日 新規登録

住 所 氏 名

東京都千代田区丸の内1丁目2番1号

関東電化工業株式会社