<u>1 – Ondes électromagnétiques dans le vide (rappels)</u>

Des équations de Maxwell on déduit $\Delta \vec{E} - \frac{1}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2} = 0$ et une équation analogue sur B

Célérité des ondes : $c = 1/\sqrt{\varepsilon_0 \mu_0}$

Densité d'énergie électromagnétique : $e_{em} = \frac{1}{2} \varepsilon_0 E^2 + \frac{1}{2} \frac{B^2}{B^2}$

Densite d'energie electromagnetique : $G_{em} - \frac{1}{2}G_0 L + \frac{1}{2}H_0$ Puissance transmise par unité de surface (vecteur de Poynting) : $P = \| \vec{E} \wedge \vec{B} \|$

$$P = \left\| \frac{\vec{E} \wedge \vec{B}}{\mu_0} \right\|$$

2 – Propagation le long d'une ligne bifilaire

- 2.1 L'AEQS et ses limites
- 2.2 Equations de la ligne bifilaire (équation des télégraphistes) Lois des nœuds et des mailles permettent d'écrire

$$-\frac{\partial i}{\partial x} = \Gamma \frac{\partial v}{\partial t} + Gv
-\frac{\partial v}{\partial x} = \Lambda \frac{\partial i}{\partial t} + Ri$$

$$\Rightarrow \frac{\partial^2 i}{\partial x^2} = \Lambda \Gamma \frac{\partial^2 i}{\partial t^2} + (R\Gamma + G\Lambda) \frac{\partial i}{\partial t} + RGi$$

+ équation analogue sur v

Ce n'est pas l'équation de d'Alembert car les pertes modélisées par R et G compliquent la résolution du problème => propagation + dispersion/absorption

Lignes bifilaires

Fil parcouru par un courant variable

⇔ auto-inductance + résistance en série
 Deux conducteurs en influence électrostatique
 ⇔ capacité + résistance en parallèle

On modélise donc une ligne de transmission par le circuit ci-dessous valable pour une tranche de longueur δx de ligne. On parle de lignes à **constantes réparties** car les éléments ci-dessous sont répartis de manière continue le long de la ligne.

3 – Vibrations transversales d'une corde (ref. assez complète : Faroux, Renault, ed. Dunod)

3.1 - Modélisation

- Corde de masse linéique μ tendue à l'horizontale (Ox)
- Pesanteur négligée (cf. épreuve A2009 pour effet de la pesanteur)
- **Tension de la corde**: si on coupe la corde en un point, la tension est la force qu'un opérateur doit exercer sur le brin *gauche* pour le maintenir dans sa position.
- Corde sans raideur : pas de résistance à la torsion => tension est tangente à la corde
 - Voir épreuve a2009 pour discussion sur la raideur, modélisée par un couple de torsion supplémentaire
- Mouvements de la corde sont contenus dans un plan (Oxy): chaque point de la corde est déplacé de

$$\vec{\xi}(x,t) = u(x,t)\vec{e}_x + y(x,t)\vec{e}_y$$

3.2 – Equation du mouvement

• Elément de longueur de corde :

$$\delta \ell = \delta \mathbf{x} \sqrt{\left(1 + \frac{\partial u}{\partial \mathbf{x}}\right)^2 + \left(\frac{\partial \mathbf{y}}{\partial \mathbf{x}}\right)^2}$$

• Tension de la corde : $T(x) = T_0$ à l'équilibre,

$$T(x,t) = T_0 + ES \frac{\delta \ell - \delta x}{\delta x} = T_0 + ES \left[\frac{\partial u}{\partial x} + \frac{1}{2} \left(\frac{\partial u}{\partial x} \right)^2 + \frac{1}{2} \left(\frac{\partial y}{\partial x} \right)^2 \right]$$

Vecteur tangent en M: $\vec{t} = \frac{d\overrightarrow{OM}}{d\ell} = \frac{1 + \frac{\partial u}{\partial x}}{\sqrt{\left(1 + \frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial y}{\partial x}\right)^2}} \vec{e}_x + \frac{\frac{\partial y}{\partial x}}{\sqrt{\left(1 + \frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial y}{\partial x}\right)^2}} \vec{e}_y = \cos\alpha \vec{e}_x + \sin\alpha \vec{e}_y$

- Hypothèse simplificatrice : **petits angles** $\alpha << 1$
 - $-\cos\alpha \approx 1 \alpha^2/2 \Rightarrow \partial u/\partial x \propto \alpha^2$
 - sin α ≈ α $\propto \partial y / \partial x$
- On ne tient compte désormais que des termes du **premier ordre en** α
 - Allongement de la corde est négligeable : $\delta \ell \approx \delta x$
 - Norme de la tension demeure constante : $T(x,t) = T_0$
 - On néglige donc les déplacements longitudinaux devant les déplacements transversaux

- 3.3 Interprétation en termes de variables couplées
- 3.4 Aspects énergétiques
- Théorème de la puissance cinétique : $\frac{\partial}{\partial t}(e_c \delta x) = P_{\text{ext}} + P_{\text{int}}$
- Energie cinétique linéique : $e_c = \frac{1}{2} \mu v^2 = \frac{1}{2} \mu \left(\frac{\partial y}{\partial t} \right)^2$
- Puissance des forces extérieures agissant sur le brin MN :

$$P_{ext} = T_y(x + \delta x, t) \ v(x + \delta x, t) + [-T_y(x, t)] \ v(x, t) = T_0 \frac{\partial}{\partial x} \left(\frac{\partial y}{\partial x} \frac{\partial y}{\partial t} \right) \delta x$$

Puissance des forces intérieures :

$$P_{\text{int}} = \frac{\partial \mathbf{e}_c}{\partial t} \, \delta \mathbf{x} - P_{\text{ext}} = -T_0 \, \frac{\partial \mathbf{y}}{\partial \mathbf{x}} \, \frac{\partial}{\partial \mathbf{x}} \left(\frac{\partial \mathbf{y}}{\partial t} \right) \delta \mathbf{x} = -\frac{\partial}{\partial t} \left(\frac{1}{2} \, T_0 \left(\frac{\partial \mathbf{y}}{\partial \mathbf{x}} \right)^2 \, \delta \mathbf{x} \right)$$

- La quantité $e_p = \frac{1}{2}T_0 \left(\frac{\partial y}{\partial x}\right)^2$ s'interprète comme une énergie potentielle linéique des forces intérieures (élastique)
- Analogies entre les vibrations d'une corde et la ligne bifilaire (cf. tableau suivant)

<u>4 – Ondes acoustiques dans les fluides</u>

4.1 – Approximation acoustique

- Son = vibrations élastiques des particules fluides alternativement comprimées et détendues
- Au repos (ordre 0) : milieu homogène de densité ρ_0 et de température T_0 . La pression vaut P_0 et est supposée donnée par une **équation d'état** $f(P_0, \rho_0, T_0) = 0$.
- Cet état de repos est perturbé:

$$\begin{cases} P(\vec{r},t) = P_0 + p(\vec{r},t) \\ \rho(\vec{r},t) = \rho_0 + \mu(\vec{r},t) \end{cases}$$

- Il existe aussi un champ de vitesse $\vec{u}(\vec{r},t)$ dans le fluide.
- L'approximation acoustique consiste à supposer les quantités p/P_0 , μ/ρ_0 et u/c_s comme des infiniment petits du premier ordre
- Ordres de grandeur dans l'air:
 - Surpressions varient de 10^{-5} à 10 Pa $<< P_0 = 10^5$ Pa
 - Variations de densité varie de 10^{-11} à 10^{-7} kg/m³ << ρ_0 = 1,3 kg/m³
 - Vitesse des particules fluides de 10^{-8} à 10^{-2} m/s $<< c_s$ = 340 m/s \sim vitesse thermique
- L'approximation acoustique permet de linéariser les équations de la mécanique des fluides
- On néglige les effets de la viscosité (amortissement des ondes) et de la diffusion thermique...

4.2 – Hypothèse d'adiabaticité

- Nécessité d'une relation thermodynamique entre p et μ pour fermer le système d'équations fluides
- On fait l'hypothèse que les particules fluides évoluent de manière **isentropique**, i.e. adiabatique et réversible au cours de la propagation des vibrations acoustiques.
- Justification (cf. épreuve A2009):
 - Soit une onde sonore de fréquence f et de longueur d'onde $\lambda = c/f$
 - Pendant une période, la chaleur diffuse sur une longueur $L \approx \sqrt{D/f}$
 - La diffusion thermique peut être ignorée si L $<<\lambda$ donc si f<< c 2 /D
 - D = 10^{-5} m.s⁻² et c = 300 m/s, cela impose f << 10^{10} Hz largement supérieur aux fréquences audibles (40 kHz)
- On introduit le coefficient de compressibilité isentropique $\chi_s = \frac{1}{\rho} \left(\frac{\partial \rho}{\partial P} \right)_s$ Pour un gaz parfait , $\frac{P}{\rho^{\gamma}} = cste \quad \Rightarrow \quad \chi_s = \frac{1}{\gamma} \frac{M}{\rho_0 R T_0}$
- La relation p- μ s'écrit donc $\mu = \rho_0 \chi_s p$.

4.3 – Equation de propagation

4.4 – Aspects énergétiques

Equation de conservation de l'énergie acoustique:

- Interprétation thermodynamique du terme d'énergie potentielle:
 - La particule fluide évolue dans un milieu homogène à P₀ et T₀ fixées.
 - On peut attribuer à cette particule le potentiel thermodynamique $G^*(P,T) = U T_0 S + P_0 V$.
 - Pour une évolution isentropique (adiabatique): $dU = -P_0 dV + \delta W_{acoust}$
 - δW_{acoust} est le travail reçu par la particule fluide, dû à la surpression acoustique : δW_{acoust} = dE_p
 - On a (S=cste): $dG^* = \delta W_{acoust} = dE_p$ (d'où le nom de potentiel thermo)
 - Par ailleurs, U est une fonction d'état de V et S et dU = TdS PdV donc on a également $dG^* = (P_0 P)dV = -pdV$
 - D'où (m désigne la masse quelconque de la particule fluide)

$$dEp = -pdV = mp\frac{d\rho}{\rho^2} = m\frac{\chi_s}{\rho_0} pdp$$

En intégrant de l'état de repos (p=0) à l'état perturbé (p) et par unité de volume, on obtient bien

$$Ep = \frac{1}{2} \chi_s p^2$$

	Ligne bifilaire	Corde vibrante	Ondes acoustiques	Ondes électromagnétiques
Grandeur « excitation » : s ₁	u : tension	$F = -T_y$: force	p : surpression	E
Grandeur « réponse » : s ₂	<i>i :</i> intensité	v : vitesse	u : vitesse	Н
Inertie	Λ	μ	ρ_0	μ_0
Elasticité	Γ^{-1}	T_0	χ _S -1	ε_0^{-1}
Célérité	$rac{1}{\sqrt{\Lambda\Gamma}}$	$\sqrt{rac{T_0}{\mu}}$	$\frac{1}{\sqrt{ ho_0\chi_S}}$	$rac{1}{\sqrt{\mu_0arepsilon_0}}$
Impédance caractéristique \mathbf{Z}_{c}	$\sqrt{\frac{\Lambda}{\Gamma}}$	$\sqrt{\mu T_0}$	$\sqrt{rac{ ho_0}{archi_S}}$	$\sqrt{rac{\mu_0}{arepsilon_0}}$
Energie volumique	$\frac{1}{2}\Lambda \dot{t}^2 + \frac{1}{2}\Gamma u^2$	$\frac{1}{2}\mu v^2 + \frac{1}{2}\frac{F^2}{T_0}$	$\frac{1}{2}\rho_0 u^2 + \frac{1}{2}\chi_S p^2$	$\frac{1}{2}\mu_0H^2 + \frac{1}{2}\varepsilon_0E^2$
Flux de puissance	u i	$\int F v$	p u	E x H

Equations couplées : a représente l'élasticité b représente l'inertie

$$\begin{cases} \frac{\partial s_1}{\partial t} = -a \frac{\partial s_2}{\partial x} \\ \frac{\partial s_2}{\partial t} = -\frac{1}{b} \frac{\partial s_1}{\partial x} \end{cases} \Rightarrow \begin{cases} \frac{\partial^2 s_1}{\partial t^2} - c^2 \frac{\partial^2 s_1}{\partial x^2} = 0 \\ \frac{\partial^2 s_2}{\partial t^2} - c^2 \frac{\partial^2 s_2}{\partial x^2} = 0 \end{cases} c = \sqrt{\frac{a}{b}}$$

Equation de conservation de l'énergie (à 1D)

$$\frac{\partial}{\partial t} \left(\frac{1}{2} \frac{s_1^2}{a} + \frac{1}{2} b s_2^2 \right) + \frac{\partial (s_1 s_2)}{\partial x} = 0$$