

JURUSAN TEKNIK KOMPUTER DAN INFORMATIKA POLITEKNIK NEGERI BANDUNG

FORMULIR EVALUASI TENGAH SEMESTER (ETS)

NO. DUKUMEN K8.0803.IK.01.06.FFNU

NAMA MATA KULIAH : MATEMATIKA TERAPAN 2 PROGRAM STUDI : TEKNIK INFORMATIKA

KODE MATA KULIAH : 16TIN3043 JENJANG : D-IV

PERKULIAHAN : TEORI/PRAKTIKUM* BENTUK UJIAN : TEORI/PRAKTIKUM*

TANGGAL UJIAN : 24 NOVEMBER 2020 SIFAT UJIAN : TUTUP BUKU WAKTU : 13.00 – 15.00 TAHUN AKADEMIK : 2020/2021 NAMA DOSEN : SITI DWI SETIARINI SEMESTER : GANJIL KODE DOSEN : KO075N KELAS : 2A/2B

Jawablah pertanyaan berikut dengan tepat, logis, dan terstruktur!

1. (5) Sebutkan masing-masing minimal 2 penerapan dalam bidang informatika dari:

a. Konvergensi barisan tak hingga

b. Persamaan diferensial

2. (20) Buktikan konvergensi dari barisan (a_n) dan deret tak hingga (S_n) berikut! Jelaskan pula alasan pemilihan metode uji konvergensinya!

a.
$$\frac{1}{5} + \frac{1}{5^2} + \frac{1}{5^3} + \frac{1}{5^4} + \cdots$$

b.
$$\sum \frac{1}{n^3}$$

c.
$$\sum \frac{n}{n^2+1}$$

3. (20) Tentukan solusi Persamaan Diferensial berikut! Jelaskan pula alasan pemilihan teknik penyelesaiannya!

a.
$$y' + \frac{\sin x}{\cos y} = 0$$

b.
$$2 xy y' = x^2 - y^2$$

4. (25) Bagaimana teknik solusi PDB terpisah diterapkan pada teknik solusi PDB dengan koefisien fungsi homogen?

Petunjuk: Boleh dideskripsikan atau dengan memberikan contoh, lalu ditandai bagian mana teknik solusi PDB terpisah diterapkan.

- 5. (30) Diketahui terdapat suatu fungsi $f(x) = \frac{1}{1-x}$. Tentukan
 - a. Deret taylor dari f(x) untuk x = 0
 - b. Jika turunan dari suatu deret taylor

$$f'(x) = \sum_{n=0}^{\infty} na_n (x-c)^{n-1}$$

Tentukaan turunan (f'(x)) dari deret taylor f(x)

c. Apakah f'(x) mempunyai selang kekonvergenan? Jika iya, tentukan a_n dan b pada f'(x)

DISAHKAN TANGGAL:

KETUA PROGRAM STUDI D-IV, DOSEN PENGAMPU,

SANTI SUNDARI, S.Si., M.T.

NIP 197109031999032001

SITI DWI SETIARINI, S.Si., M.T.

NIP 199112182019032014

Terbitan	A	Tanggal	5 April 2011
Revisi	1	Halaman	1 dari 1

JURUSAN TEKNIK KOMPUTER DAN INFORMATIKA POLITEKNIK NEGERI BANDUNG

FORMULIR

EVALUASI TENGAH SEMESTER (ETS)

NO. DUKUMEN K8.0803.IK.01.06.FFNU

LEMBAR JAWABAN

NIM:	191524027
Nama:	Muhammad Hargi Muttaqin
Kelas:	2A

NOMOR 1

A. (Tanggal 14/12/2020, Pukul 19:06, selama 3 menit)

Kekonvergenan digunakan pada pembuatan AI seperti penyortiran sampah, dan digunakan juga pada kekonvergenan data.

B. (Tanggal 14/12/2020, Pukul 19: 09, selama 2 menit)

Persamaan Diferensial bisa digunakan pada pembuatan logo contohnya logo polban dan juga pada pembuatan UI game bisa menggunakan persamaan diferensial

NOMOR 2

A. (Tanggal 14/12/2020, Pukul 19: 12, selama 15 menit)

Dik: an = $1/5^{n}$

Dit: kekonvergenan

Jawab:

Menggunakan perbandingan Limit yaitu limit an dan bn yang mana bn adalah deret harmonic.

$$an = \frac{1}{5^n} = \frac{1}{5}, \frac{1}{25}, \frac{1}{125}, \dots$$

$$bn = \frac{1}{n} = \frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \dots$$

Dilihat dari hasil perbandingannya deret an<= bn maka deret tersebut divergen karena deret harmonic adalah deret harmonic.

Namun jika menggunakan hasil bagi deret tersebut konvergen. Karena hasilnya kurang dari 1.

$$a1 = \frac{1}{5^1} = \frac{1}{5}$$

$$a2 = \frac{1}{5^2} = \frac{1}{25}$$

$$=\frac{a2}{a1}=\frac{\frac{1}{25}}{\frac{1}{5}}=\frac{5}{25}=0.2$$

B. (Tanggal 14/12/2020, Pukul 19: 27, selama 10 menit)

Dik: $\sum \frac{1}{n^3}$

Dit: Kekonvergenan

Terbitan	A	Tanggal	5 April 2011
Revisi	1	Halaman	1 dari 1

JURUSAN TEKNIK KOMPUTER DAN INFORMATIKA POLITEKNIK NEGERI BANDUNG

FORMULIR

EVALUASI TENGAH SEMESTER (ETS)

NO. DUKUMEN K8.0803.IK.01.06.FFNU

Jawab:

Menggunakan tes deret – p karena lebih mudah dipahami dan dikerjakan

 $\sum \frac{1}{n^3}$ = Konvergen karena nilai p > 1 yang mana didalam kasusnya jika p>1 maka konvergen

C. (Tanggal 16/12/2020, Pukul 18: 23, selama 10 menit)

Dik :
$$\sum \frac{n}{n^2+1}$$

Dit: Kekonvergenan.

Jawab:

Menggunakan substitusi limit

$$\sum \frac{n}{n^2 + 1} = \lim_{n \to \infty} \frac{n}{n^2 + 1} = \frac{\frac{n}{n}}{\frac{n^2 + 1}{n^2}} = \frac{1}{1 + \frac{1}{n^2}} = \frac{1}{1}$$

Hasil dari substitusi limitnya adalah 1/1 atau 1 yang artinya konvergen ke 1.

NOMOR 3

A. (Tanggal 12/12/2020, Pukul 15: 59, selama 10 menit)

$$Dik: y' = -\frac{\sin x}{\cos x}$$

Dit: Solusi Persamaan Diferensial.

Menggunakan metode pisah variable yang sama

$$y' = -\frac{\sin x}{\cos x}$$

$$\frac{dy}{dx} = -\frac{\sin x}{\cos y}$$

$$\cos y \, dy = -\sin x \, dx$$

$$\int \cos y \, dy = \int -\sin x \, dx$$

$$\sin y + c = \cos x + c$$

$$y = \frac{\cos x + c}{\sin} = \sin^{-1}(\cos x + c)$$

B. (Tanggal 16/12/2020, Pukul 18 : 33, selama ∞ menit)

NOMOR 4

(Tanggal 13/12/2020, Pukul 19: 54, selama 5 menit)

Dik:

Dit: Contoh PDB terpisah, koefisien homogen.

Terbitan	A	Tanggal	5 April 2011
Revisi	1	Halaman	1 dari 1

JURUSAN TEKNIK KOMPUTER DAN INFORMATIKA POLITEKNIK NEGERI BANDUNG

FORMULIR

EVALUASI TENGAH SEMESTER (ETS)

NO. DUKUMEN K8.0803.IK.01.06.FFNU

Jika pada saat menggunakan metode homogen sudah tidak bisa saat sudah dikerjakan maka gunakan metode pisah untuk membantu.

NOMOR 5

A. (Tanggal 16/12/2020, Pukul 18: 36, selama 15 menit)

$$f(x) = \frac{1}{1 - x}$$

$$x = 0$$

$$f'(x) = \frac{1}{(1-x)^2} = 1$$

$$f''(x) = \frac{2}{(1-x)^3} = 2$$

$$f'''(x) = \frac{2*3}{(1-x)^4} = 6$$

Deret taylor

$$= f(x_0) + f'(x_0) \cdot \frac{x^n}{n!} + f''(x_0) \cdot \frac{x^n}{n!} + f'''(x_0) \cdot \frac{x^n}{n!} \dots + f^n \cdot \frac{x^n}{n!}$$

$$= \frac{1}{1-x} + 1 \cdot \frac{x^1}{1!} + 2 \cdot \frac{x^2}{2!} + 6 \cdot \frac{x^3}{3!} + \dots + n! \cdot \frac{x^n}{n!}$$

$$\sum_{n=1}^{\infty} \frac{x^n}{n!} = x^n$$

B. (Tanggal 16/12/2020, Pukul 19:05, selama 10 menit)

$$f(x) = \sum_{n=1}^{\infty} n! \cdot \frac{(x-c)^n}{n!}$$

$$f'(x) = \sum_{n=1}^{\infty} n! \cdot \frac{(x-c)^n}{n!} (x-c)^{n-1}$$

C.

Terbitan	A	Tanggal	5 April 2011
Revisi	1	Halaman	1 dari 1