

Vaccine Surveillance

Dr. Rachel Sippy University of St Andrews

Objectives

- Discuss VPDs
- Describe surveillance related to VPDs

Post Questions in the Chat!

(we will have breaks to answer these during the workshop)

Workshop Schedule

Time	Topics
2:00-2:20 pm	Vaccine Preventable Diseases
2:20-2:45 pm	Surveillance of VPDs
2:45-3:00 pm	Vaccine Safety
3:00-3:10 pm	Break
3:10-4:00 pm	Visualization

Vaccine-Preventable Diseases

Vaccine-Preventable Diseases

- Fortunate to have vaccines available for many diseases
- Target populations and vaccination schedules vary by country and even jurisdiction

Vaccination Schedule – Bangladesh

VPD	Targets	
Diphtheria	General population	Pregnant women /
Haemophilus influenzae	General population	
Hepatitis B	General population	
Measles	General population	
Pertussis	General population	
Pneumococcal disease	General population	
Poliomyelitis	General population	
Rubella	General population	
Tetanus	General population	Pregnant women
Tuberculosis	General population	

Diphtheria

- Corynebacterium diphtheriae cause the infection with some strains producing a toxin (diphtheria toxin)
- Respiratory or cutaneous infection, spread person-toperson
- DTwP-Hib-HepB vaccine for children
- Td for pregnant women and recommended for adults

Haemophilus influenzae type b

- Haemophilus influenzae cause infection with six capsular types (but only one -type b- causing most disease historically)
- Noncapsular types cause most disease in areas with vaccination
- Bacterial meningitis or mucosal infection (milder)
- DTwP-Hib-HepB vaccine for children

Hepatitis B

- Hepatitis B virus (DNA) causes the infection causing acute or chronic disease
- Affects liver, spread by blood and sexual transmission
- DTwP-Hib-HepB vaccine for children

Measles

- Measles virus causes the infection and is extremely contagious
- Lower respiratory infection with rash, spread through saliva, coughing, and sneezing
- MR vaccine for children

Pertussis

- Bordatella pertussis cause the infection and is highly contagious
- Respiratory infection, spread through cough
- DTwP-Hib-HepB vaccine for children

Pneumococcal disease

- Streptococcus pneumoniae cause the infection with more than 90 serotypes
- Respiratory (pneumonia), spread by airborne droplets
- PCV-10 vaccine for children

Poliomyelitis

- Poliovirus causes the infection with 3 serotypes
- Affects nerves, spread by fecaloral routes, respiratory droplets
- OPV or IPCf vaccine for children

Rubella

- Rubivirus causes the infection
- Rash, congenital effects, spread by respiratory droplets and contact
- MR vaccine for children

Tetanus

- Clostridium tetani cause the infection which forms dormant spores and also produces a toxin (tetanospasmin)
- Respiratory or cutaneous infection, spread from contaminated soil to wounds
- Td vaccine for pregnant women and adults (recommended)

Tuberculosis

- Mycobacterium tuberculosis cause the infection, acute or chronic
- Respiratory infection, spread by coughs, sneezing
- BCG vaccine for children

Non-scheduled VPDs

- Additional VPDs may be included in VPD surveillance programs:
 - diseases that are not on the vaccination schedule but still may be in use
 - Influenza
 - diseases with vaccines in clinical trials
 - RCV
 - diseases with vaccines that are used in outbreak response
 - COVID-19
 - Cholera

Surveillance Related to Vaccines

Vaccine-preventable Diseases and Vaccine Tracking

Surveillance Interests

- Surveillance of vaccinepreventable disease
- Tracking of vaccination
- Vaccine safety

Purpose of Vaccine-Related Surveillance

- Rapid identification of outbreaks
- Identify under-immunized/unimmunized populations
- Track progress of disease elimination/eradication goals
- Inform the introduction of new/regional vaccines
- Guide choices and development of vaccines
- Monitor vaccine impacts
- Track possible adverse events
- Guide optimal vaccine use

Pre-vaccine

Vaccine introduction

Programme optimization

Long-term monitoring

- Understand disease epidemiology, including burden, to inform vaccine introduction decision.
- Monitoring changes in disease epidemiology, to quantify vaccine programme impact on disease, health systems, and economic factors.
- Identify communities unreached by vaccines and triangulate surveillance with other data to design and implement targeted delivery strategies.
- Understand changes in disease epidemiology to inform shifts in vaccine or programme strategy.
- Monitor progress and modify programmes to achieve control, elimination and eradication goals.

Across all phases

- Identify outbreaks for immediate action to contain and limit spread, including through reactive vaccination campaigns and other control measures
- Monitor infectious diseases currently without vaccines using components of comprehensive VPD surveillance

VPD Surveillance

- Countries determine their priority VPDs
- The VPDs may be included in national notifiable disease surveillance
- Otherwise, the priority VPDs can be tracked using:
 - sentinel surveillance
 - regionally notifiable system
 - event-based surveillance

VPD Surveillance

- Comprehensive and integrated
 - laboratory confirmation is important for VPDs
 - high quality data is critical
- Budgetary constraints may limit capacity for surveillance but special support sometimes available
 - Global Polio Eradication Initiative

Determining Priority VPDs

- Global surveillance mandate
 - polio, measles, neonatal tetanus
- International Health Regulation targets
 - smallpox, wild-type polio, new subtype influenza, sometimes cholera, yellow fever, Ebola

- Other priorities depend on:
 - epidemic potential
 - prevention, control, and elimination potential
 - disease burden and endemicity
 - severity, case fatality ratio
 - potential for changing pattern of disease
 - social and economic impact
 - public perception of risk
 - logistics

Immunization Analysis and Insights (who.int)	Type of Surveillance				
	National, case- based with laboratory confirmation	National, aggregate with laboratory confirmation of outbreaks	Sentinel, case- based with laboratory confirmation	Other surveillance	
All countries	MeaslesPolioNeonatal tetanus				
Some countries	 Diphtheria Meningococcus Rubella Yellow fever 	 Hepatitis A Hepatitis B Mumps 	 Congenital rubella syndrome Haemophilus influenzae Influenza Japanese encephalitis Pertussis Pneumococcus Rotavirus Typhoid 	 Cholera Human papillomavirus Non-neonatal tetanus Varicella 	

Vaccine Tracking

Coverage & Impact

Vaccine Coverage

- Coverage
- proportion of population with vaccine
- who is unvaccinated
- Used to:
 - adapt vaccine delivery
 - assess effectiveness, impact, and safety

Vaccine Coverage

- Reporting comes from providers of vaccination
 - extraction from health record system
 - child health information systems
 - regular manual reporting
 - vaccine registries
- Information systems
 - automated data extraction
 - identifying vaccine eligibility
 - update individual records

Figure 1. Cumulative weekly vaccine uptake by age

Vaccine Impact

- Effectiveness
 - compare disease rates in vaccinated and unvaccinated
 - estimates level of protection in population
 - epidemiologic studies, modeling and serology
- Status
 - for illness, hospitalization, deaths from VPD

Vaccine Impact

 number of cases, hospitalizations, and deaths that were avoided

Vaccine Safety

Goals of Safety Surveillance

- Rapid detection of AEFIs and AESIs
 - adverse events following immunization
 - adverse events of special interest
- Data generation for new vaccines
- Identify and respond to safety issues
- Support public confidence in vaccines

monufacturer
expected
expected

rare adverse events

Lunccine Conhunced discorde
is this caused by unchine?

AEFIs & AESIs: Passive Surveillance

- voluntary reporting from:
 - healthcare providers, pharmacists, coroners, patients
- required reporting:
 - event in children
 - new vaccines
 - serious events
- information
 - brand and batch
 - nature, timing, severity
 - other factors

AEFIs & AESIs: Active Surveillance

- using protocol
 - visits to facilities
 - discussion with healthcare professionals
 - records review

AEFIs & AESIs: Event Monitoring

- Follow-up of vaccinated
 - phone calls
 - emails
 - home visits

AEFIs & AESIs: Sentinel Surveillance

- Selected reporting units
 - many potential cases
 - good laboratory facilities
 - high quality data collection and reporting

AEFIs & AESIs

- potential safety signals
 - clusters of serious events, immunization errors, etc.
- causality assessments
 - review safety signals
 - stay updated on vaccine safety data
 - identify AEFI needing further investigation

Workshop Schedule

Time	Topics
2:00–2:20 pm	Vaccine Preventable Diseases
2:20–2:45 pm	Surveillance of VPDs
2:45-3:00 pm	Vaccine Safety
3:00-3:10 pm	Break
3:10-4:00 pm	Visualization

tidyverse data manipulation

pipe operator

- take the output from left side and put it into the next command or argument
- easy to set up "layers" of commands

tidyverse data manipulation

- pipe operator
 - %>%
 - take the output from left side and put it into the next command or argument
 - easy to set up "layers" of commands

```
data <- covid19_df %>%

filter(location == "Bangladesh") %>%

spread(data_type, value) %>%

arrange(date) %>%

mutate(deaths = deaths_new)
```

Ymodification in one action

tidyverse data visualization

- ggplot2 package
- "Grammar of Graphics"
- building plots in layers

expluratory analysis

Plot(-...)

- Always start with a -> ggplot(data = mpg) + ggplot() command to create a graph grid/plot
- plotting commands set up in rows with '+' between each

 Tell ggplot what type of plot to make and which variables to use

```
ggplot(data = mpg) +

geom_point(mapping = aes(x=displ,y=hwy)) +
```

 Make adjustments to the scale (optional)

```
ggplot(data = mpg) +
   geom_point(mapping = aes(x=displ,y=hwy)) +
   scale_x_continuous(breaks=c(2,4,6))
```

Add titles and labels (optional) ggplot(data = mpg) +

geom_point(mapping = aes(x=displ,y=hwy)) +

scale_x_continuous(breaks=c(2,4,6)) +

ggtitle("Car Data") +

labs(x="Engine Size", y="Fuel Efficiency")

Use ggthemes to set up ggplot(data = mpg) + and standardize visual geom_point(mapping = aes(x=displ,y=hwy)) + details scale_x_continuous(breaks=c(2,4,6)) + ggtitle("Car Data") + labs(x="Engine Size", y="Fuel Efficiency") + theme() default design