Properties of Regular Languages

For regular languages L_1 and L_2 we will prove that:

Union: $L_1 \cup L_2$

Concatenation: L_1L_2

Star: L_1^*

Reversal: L_1^R

Complement: L_1

Intersection: $L_1 \cap L_2$

are also regular languages

We say Regular languages are closed under

Union:
$$L_1 \cup L_2$$

Concatenation:
$$L_1L_2$$

Star:
$$L_1^*$$

Reversal:
$$L_1^R$$

Complement:
$$\overline{L_1}$$

Intersection:
$$L_1 \cap L_2$$

A useful transformation: Use single accept state

NFA with more than one accept state

Equivalent NFA with a single accept state

Extreme case

NFA without an accept state

Add an accept state without transitions

Take Two Languages

Regular language L_1

Regular language L_2

$$L(M_1) = L_1$$

$$L(M_2) = L_2$$

NFA M_2

Single accept state

Single accept state

$$L_1 = \{a^n b\}$$

$$M_1$$

$$a$$

$$b$$

$$L_2 = \{ba\} \qquad \begin{array}{c} M_2 \\ \\ b \\ \end{array}$$

Union

NFA for $L_1 \cup L_2$

NFA for
$$L_1 \cup L_2 = \{a^n b\} \cup \{ba\}$$

Concatenation

NFA for L_1L_2

NFA for
$$L_1L_2 = \{a^nb\} \{ba\} = \{a^nbba\}$$

$$L_{1} = \{a^{n}b\}$$

$$a$$

$$L_{2} = \{ba\}$$

$$b$$

$$\varepsilon$$

$$b$$

$$a$$

Star Operation

NFA for L^*

$$w \in L^* \quad \Longrightarrow \quad w = w_1 w_2 \cdots w_k : \ w_i \in L$$
 or
$$w = \varepsilon$$

NFA for
$$L_1^* = \{a^n b\}^*$$

Reverse

NFA for L^R

- 1. Reverse all transitions
- 2. Make the initial state accept state and the accept state initial state

$$L_1 = \{a^n b\}$$

$$M_1$$

$$b = b$$

$$L_1^R = \{ba^n\}$$

Complement

- 1. Take the **DFA** that accepts L
- 2. Make accept states regular and vice-versa

DFAs can be used for complement Make accept states regular and vice-versa

It is the complement

NFAs cannot be used for complement

Make accept states regular and vice-versa does not work!

It is not the complement

Intersection

$$L_1$$
 regular $L_1 \cap L_2$ L_2 regular regular

DeMorgan's Law: $L_1 \cap L_2 = \overline{L_1} \cup \overline{L_2}$

$$L_1$$
, L_2 regular, regular $\overline{L_1}$, $\overline{L_2}$ regular, regular $\overline{L_1} \cup \overline{L_2}$ regular $\overline{L_1} \cup \overline{L_2}$ regular $\overline{L_1} \cup \overline{L_2}$ regular regular

$$L_1 = \{a^nb\} \quad \text{regular}$$

$$L_1 \cap L_2 = \{ab\}$$

$$L_2 = \{ab,ba\} \quad \text{regular}$$
 regular

Another Proof for Intersection Closure

Machine M_1 DFA for L_1

Machine M_2

Construct a new DFA $\,M$ that accepts $\,L_{\!1}\cap L_{\!2}\,$

M simulates in parallel $\,M_1\,$ and $\,M_2\,$

States in M

initial state

DFA M

New initial state

DFA M_1

DFA M_2

accept state

accept states

DFA M

$$L_{1} = \{a^{n}b\}$$

$$M_{1}$$

$$a$$

$$a$$

$$b$$

$$a,b$$

$$a_{2}$$

$$a,b$$

$$a,b$$

DFA M for intersection

Construction Procedure for Intersection

- 1. Build initial state
- 2. For each new state and for each symbol add transition to either an existing state or create a new state and point to it.
- 3. Repeat step 2 until no new states are added.
- 4. Designate accept states.

$$L = \{a^n b\} \cap \{ab^m\} = \{ab\}$$

initial state

$$L = \{a^n b\} \cap \{ab^m\} = \{ab\}$$

add transition and new state for symbol a

$$L = \{a^n b\} \cap \{ab^m\} = \{ab\}$$

add transition and new state for symbol b

$$L = \{a^n b\} \cap \{ab^m\} = \{ab\}$$

$$L = \{a^n b\} \cap \{ab^m\} = \{ab\}$$

Intersection DFA M:

Simulates in parallel
$$\,M_1\,$$
 and $M_2\,$

Accepts string w if and only if: $M_1 \ \ \text{accepts string} \ \ w$ and M_2 accepts string w

$$L(M) = L(M_1) \cap L(M_2)$$