ECE 175B: Probabilistic Reasoning and Graphical Models Lecture 3: Basic Graph Theory

Florian Meyer & Ken Kreutz-Delgado

Electrical and Computer Engineering Department University of California San Diego

Nodes and Edges

Definition: A graph $\mathcal{G}=(\mathcal{V},\mathcal{E})$ consists of nodes (vertices) and undirected or directed links (edges) between nodes. The vertex set and the edge set are denoted as \mathcal{V} and \mathcal{E} , respectively

Example: The vertex set $\mathcal{V} \triangleq \{j\}_{j=1}^N$, consists of $N = |\mathcal{V}| = 8$ nodes with indexes j. The edge set $\mathcal{E} = \{\{1,5\},\{2,5\},\{3,5\},\dots\} = \{(i_k,j_k)\}_{k=1}^M$ consists of $M = |\mathcal{E}| = 8$ node pairs.

Directed and Undirected Graphs

(a) undirected, e.g., $\{1,5\} \in \mathcal{E}$

(b) directed, e.g., $(1,5) \in \mathcal{E} \text{, } (5,1) \notin \mathcal{E}$

undirected edge: $\{i, j\} \in \mathcal{E}$

directed edge: $(i, j) \in \mathcal{E}, (j, i) \notin \mathcal{E}$

The Skeleton of a Directed Graph

• Directed graphs (digraphs) and their skeletons

Terminology

- The skeleton of a directed graph is a undirected graph with all arrow heads dropped. An undirected graph is its own skeleton
- A path is a sequence of connected nodes on the skeleton
- A directed path on a directed graph must "follow the arrows"
- A loop is a closed path on the skeleton
- A cycle is a closed directed path on a directed graph
- A directed acyclic graph (DAG) can be either loopy or non-loopy

Connectivity

- In an connected graph there is a path between any two nodes
- In a fully-connected (complete) graph there is an edge between any two nodes
- In a singly-connected graph (tree) there is only one path from any node to any other node

Connected Components

- Connected components are connected subgraphs in a non-connected graph
- In the non-connected graph $\mathcal G$ below, both $\mathcal C_1$ and $\mathcal C_2$ are connected components and $\mathcal G=\mathcal C_1\cup\mathcal C_2$

Cliques

- A clique is a fully-connected subset of nodes
 - In the graph below, the nodes $\{1,2,3,4\}$, $\{1,2,3\}$, $\{1,2\}$, $\{1,3\}$, $\{1,4\}$, $\{2,3\}$, $\{2,4\}$, $\{3,4\}$, $\{1\}$, $\{2\}$, $\{3\}$, $\{4\}$, $\{5\}$ form cliques
- A maximal clique is a clique that is not a subset of a larger clique
 - In the graph below, the nodes $\{1,2,3,4\},\{5\}$ form maximal cliques, and, e.g., the nodes $\{1,2,3\},\{1,2\}$ form non-maximal cliques

 A complete graph is itself a single, "giant" maximal clique; any subsets of nodes also forms a clique

Trees

- A tree is an undirected connected graph with no loops
 - Since a tree is a singly connected graph, there is only one path between any two nodes in a tree

- Leaves are defined as nodes that only yield a single edge
- In a rooted tree, after the root node has been selected, the leaves are the nodes that only have a single edge and are not the root node

Directed Trees

- A directed tree is a directed graph whose skeleton is a tree
 - In any directed tree "parent", "child", "ancestor", and "descendent" nodes are naturally defined
 - In a moral tree every node has at most one parent
 - In a immoral tree or polytree some nodes have more than one parent

moral directed tree

immoral directed tree (polytree)

 A serial chain is a special case of a tree where there is a single child node for every parent node

The Adjacency Matrix of a Graph

- The adjacency matrix $A \triangleq A(\mathcal{G})$ of a graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ is a Boolean $N \times N$ matrix $N = |\mathcal{V}|$
 - if \mathcal{G} is an undirected graph, the elements a_{ij} and a_{ji} of A are equal to 1 if there is an undirected edge between nodes i and j, i.e., $\{i,j\} \in \mathcal{E}$ and 0 otherwise
 - if \mathcal{G} is an directed graph, the element a_{ij} of A is equal to 1 if there is a directed edge from node i to node j, i.e., $(i,j) \in \mathcal{E}$ and 0 otherwise
- Example: Consider the adjacenty matrix of the following undirected graph

$$A = \left[\begin{array}{cccc} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{array} \right]$$

• Note that, for an undirected graph, we have $A = A^{T}$

The Adjacency Matrix of a Graph

- In a directed graph, topological sorting is an enumeration of nodes such that they are in ancestral ordering, i.e., parents always have lower index numbers than children
- Example: Consider the adjacenty matrix of the following topological sorted directed graph

- In a directed graph, $(A^k)_{ij}$ is the number of paths from i to j that require k-edge hops
- Let $\tilde{A} = A + I$. In a directed graph, if $(\tilde{A}^{N-1})_{ij} \neq 0$ then there exists a path from i to j

Graphs and Probability Distributions

- Let $\mathcal{X} = \{x_1, \dots, x_N\}$ be a collection of N random variables with joint distribution $P(\mathcal{X}) = P(x_1, \dots, x_N)$
- ullet We want to create a graph $\mathcal{G}=(\mathcal{V},\mathcal{E})$ that
 - consists of one node $j \in \mathcal{V}, \ |\mathcal{V}| = N$ for each random variable $x_j, \ j = 1, \dots, N$
 - \bullet encodes dependency relationships between the random variables (as given by conditional probability statements) in the edges ${\cal E}$

- Let U, V, and W be disjoint subsets of nodes in \mathcal{V} , i.e., U, V, W $\subset \mathcal{V}$ given as U = $\{i_1, \ldots, i_u\}$, V = $\{j_1, \ldots, j_v\}$, and W = $\{k_1, \ldots, k_w\}$
- Similarly, we introduce the subsets $\mathcal{X}_{U} = \{x_{i_1}, \dots, x_{i_u}\}$, $\mathcal{X}_{V} = \{x_{j_1}, \dots, x_{j_v}\}$, and $\mathcal{X}_{W} = \{x_{k_1}, \dots, x_{k_w}\}$ of \mathcal{X} , i.e., $\mathcal{X}_{U}, \mathcal{X}_{V}, \mathcal{X}_{W} \subset \mathcal{X}$
- ullet For convenience, denote $old X=\mathcal X_U, old Y=\mathcal X_V,$ and $old Z=\mathcal X_W$
- \bullet We now have the correspondences U \leftrightarrow X, V \leftrightarrow Y, and W \leftrightarrow Z

- The connectivity between nodes in the graph should give underlying information about the relationship between the corresponding random variables
- Goal: We want the graph separation statements to correspond to conditional independence statements among the random variables, i.e., we want to "step from node-to-node" along the edges in $\mathcal E$ to enable efficient computation of the conditional probabilities of random variables $\mathbf X = \mathcal X_U, \mathbf Y = \mathcal X_V$, and $\mathbf Z = \mathcal X_W$

We recall that X is independent of Y conditioned on Z, i.e.,
 X ⊥ Y | Z = Y ⊥ X | Z, implies

$$P(\mathbf{X}, \mathbf{Y}|\mathbf{Z}) = P(\mathbf{X}|\mathbf{Z})P(\mathbf{Y}|\mathbf{Z})$$

$$\iff P(\mathbf{X}|\mathbf{Y}, \mathbf{Z}) = P(\mathbf{X}|\mathbf{Z})$$

$$\iff P(\mathbf{Y}|\mathbf{X}, \mathbf{Z}) = P(\mathbf{Y}|\mathbf{Z})$$

• Our goal is to find a purely graph-structural separation statement, denoted by < U \mid W \mid V $>_d$ such that

$$< U \mid W \mid V>_{d} \ \Longrightarrow \ \mathcal{X}_{u} \perp \!\!\! \perp \mathcal{X}_{v} \mid \mathcal{X}_{w} = \textbf{X} \perp \!\!\! \perp \textbf{Y} \mid \textbf{Z}$$

ullet Note that $<\cdot|\,\cdot\,|\,\cdot>_d$ stands for dependency(d)-separation

• Example: Consider an undirected graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ with node set $\mathcal{V} = \{1, 2, 3, 4, 5, 6, 7\}$ and edge set \mathcal{E} as shown below

With U = {1,2,4}, W = {3,5}, and V = {6,7} from the graph we can see that W separates U and V. i.e., < U | W | V $>_d$

- Let $\mathcal{X} = \{x_1, \dots, x_7\}$ be random variables whose joint distribution $P(\mathcal{X}) = P(x_1, \dots, x_7)$ is represented by the graph shown above
- From $< U \mid W \mid V >_d$ it follows that $\mathcal{X}_u \perp \!\!\! \perp \mathcal{X}_v \mid \mathcal{X}_w$