B3 .	This question is in two parts.	Part	1 is	about	kinematics	and	mechanics.	Part	2 is	about
	resolution and the Doppler effective	et.								

Part 1 Kinematics and me	chanic	25

(a)	Define linear momentum.	[1]
(b)	State, in terms of momentum, Newton's second law of motion.	[1]
(c)	Show, using your answer to (b), how the impulse of a force F is related to the change in momentum Δp that it produces.	[1]

(This question continues on the following page)

(Question B3, part 1 continued)

(d) A railway truck on a level, straight track is initially at rest. The truck is given a quick, horizontal push by an engine so that it now rolls along the track.

The engine is in contact with the truck for a time T = 0.54 s and the initial speed of the truck after the push is $4.3 \,\mathrm{m\,s^{-1}}$. The mass of the truck is $2.2 \times 10^3 \,\mathrm{kg}$.

Due to the push, a force of magnitude F is exerted by the engine on the truck. The sketch shows how F varies with contact time t.

(i) Determine the magnitude of the maximum force $F_{\rm max}$ exerted by the engine on the truck.

(This question continues on the following page)

Turn over

[4]

(Question B3, part 1 continued)

(11)	the track. After travelling this distance the speed of the truck is $2.8 \mathrm{ms^{-1}}$. Assuming a uniform acceleration, calculate the time it takes the truck to travel 15 m.	[2]
(iii)	Calculate the average rate at which the kinetic energy of the truck is dissipated as it moves along the track.	[2]
(iv)	When the speed of the truck is $2.8 \mathrm{ms^{-1}}$ it collides with a stationary truck of mass $3.0 \times 10^3 \mathrm{kg}$. The two trucks move off together with a speed V . Show that the speed $V = 1.2 \mathrm{ms^{-1}}$.	[2]

(This question continues on the following page)

(Question B3, part 1 continued)

(v)	Outline the energy transformations that take place during the collision of two trucks.	the [2	?]

(This question continues on the following page)

