Задача о рюкзаке

Задача о рюкзаке имеет следующую интерпретацию. Пусть имеется n неделимых предметов с номерами $i, i = \overline{1,n}$. Вес i-го предмета равен p_i , его ценность c_i . Требуется выбрать совокупность предметов с минимальным общим весом при условии, что общая ценность груза не меньше заданной величины c.

Построим математическую модель задачи. Введем переменные x_i , $i=\overline{1,n}$, которые принимают лишь два значения: $x_i=1$, если данный предмет укладывается в рюкзак, $x_i=0$ — в противном случае. Тогда математическая модель задачи о рюкзаке имеет вид

$$f(x) = \sum_{i=1}^{n} p_i x_i \to \min, \quad \sum_{i=1}^{n} c_i x_i \ge c, \quad x_i = 0 \lor 1, \quad i = \overline{1, n}.$$
 (1)

Применим к решению этой задачи метод ветвей и границ. Опишем алгоритм дробления и связанную с ним систему оценок дробления. Пусть X — множество планов задачи (10.6). Расширим его до "непрерывного" $\overline{X} = \{x: \sum_{i=1}^n c_i x_i \geq c, \ 0 \leq x_i \leq 1, \ i = \overline{1,n}\}$, т. е. будем считать, что все предметы

допускают произвольную делимость без потери *относительной ценности* (т. е. ценности на единицу веса). В качестве оценки множества X рассмотрим следующую величину

$$\xi(X) = \min f(x), \ x \in \overline{X}. \tag{2}$$

Очевидно, $\xi(X) \le \min f(x)$, $x \in X$, т. е. удовлетворяет первому свойству метода ветвей и границ.

Метод решения задачи (2) состоит в следующем. Подсчитаем *относительные веса* предметов, т. е. вес p_i/c_i *i*-го предмета на единицу ценности. Выберем предмет с номером i_1 с наименьшим относительным весом и будем загружать его (точнее, "засыпать" в раздробленном виде) в рюкзак до тех пор, пока не будет достигнута заданная ценность c или же не будет "засыпан" весь предмет. Первый случай имеет место, если $c_{i_1} \ge c$, и тогда $x_{i_1}^* = c/c_{i_1}$, $x_i^* = 0$, $i = \overline{1,n}$, $i \ne i_1$, будет оптимальным планом задачи (2). Второй случай реализуется, если $c_{i_1} < c$. Полагаем $x_{i_1}^* = 1$ и среди оставшихся предметов выбираем предмет i_2 с наименьшим относительным весом. С ним поступаем так же, как и с первым, только сейчас вместо c берем $c-c_{i_1}$. Продолжая этот процесс, либо построим оптимальный план $x^* = (x_1^*, ..., x_n^*)$ задачи (2), либо не достигнем заданной ценности. Последнее реализуется, если

 $\sum_{i=1}^{n} c_{i} < c$, а это означает, что задача не имеет решения из-за несовместности ограничений.

Пусть x^* — оптимальный план задачи (2). Если все его координаты целочисленные, т. е. равны 0 или 1, то этот план будет оптимальным и для исходной задачи (1). В противном случае разбиваем множество X на два множества $X_1 = \{x \in X: x_1 = 0\}, \ X_2 = \{x \in X: x_1 = 1\}$. В качестве оценок этих множеств берем следующие числа

$$\xi(X_1) = \min \sum_{i=2}^{n} p_i x_i, \ \sum_{i=2}^{n} c_i x_i \ge c, \ 0 \le x_i \le 1, \ i = \overline{2, n},$$
 (3)

$$\xi(X_2) = \min\left(p_1 + \sum_{i=2}^n p_i x_i\right), \quad \sum_{i=2}^n c_i x_i \ge c - c_1, \quad 0 \le x_i \le 1, \quad i = \overline{2, n}. \quad (4)$$

Задачи (3), (4) решаются, как и задача (2). Если в задаче (3) $X_1=\varnothing$, тогда полагают $\xi(X_1)=\infty$. Если в задаче (3) $c-c_1\leq 0$, тогда $x_1^*=1,\ x_i^*=0,\ i=\overline{2,n}$, — оптимальный план задачи (3).

Замечание. Если оптимальный план x^* задачи (3) или (4) целочисленный, то соответствующее множество разбивается на два подмножества, одно из которых состоит из элемента x^* , а второе получается удалением x^* из исходного. В дальнейшем эти множества не подвергаются разбиению, а их оценки равны оценке множества, из которого они получены.

Дальнейшее решение задачи проводится в соответствии с выбранной схемой ветвления.

Пример. Решить задачу о рюкзаке с общей ценностью груза c = 50 и данными, представленными в табл. 10.1.

Таблица 10.1

						· ·
i	1	2	3	4	5	6
c_i	12	15	10	16	8	5
p_i	4	6	10	5	4	1

Математическая модель задачи

$$f(x) = 4x_1 + 6x_2 + 10x_3 + 5x_4 + 4x_5 + x_6 \rightarrow \min,$$

$$12x_1 + 15x_2 + 10x_3 + 16x_4 + 8x_5 + 5x_6 \ge 50,$$

$$x_i = 0 \lor 1, \quad i = \overline{1,5}.$$

Оценка множества X

$$\xi(X) = \min(4x_1 + 6x_2 + 10x_3 + 5x_4 + 4x_5 + x_6),$$

$$12x_1 + 15x_2 + 10x_3 + 16x_4 + 8x_5 + 5x_6 \ge 50,$$

$$0 \le x_i \le 1, \quad i = \overline{1,5}.$$

Установим последовательность загрузки предметов, для чего подсчитаем относительные веса. В табл. 10.2 подсчитаны эти величины и в нижней строке указана последовательность загрузки.

Таблица 10.2

i	1	2	3	4	5	6
p_i/c_i	1/3	2/5	1	5/16	1/2	1/5
Последовательность загрузки	III	IV	VI	II	V	I

Согласно полученным данным, первым загружается шестой предмет. Поскольку $c_6 < c$ (5<50), то полагаем $x_6 = 1$. Вторым загружается четвертый предмет. Поскольку $c_4 = 10 < c - c_6 = 45$, то $x_4 = 1$ и т. д. В итоге получим: $x_1 = 1, \ x_2 = 1, \ x_5 = 1/4$. Заданная ценность достигнута. Следовательно, $x_3 = 0$. Оценка множества равна $\xi(X) = 17$. Поскольку в оптимальном плане координата x_4 дробная, то разбиваем множество X на два: $X_1 = \{x \in X: \ x_1 = 0\}, \ X_2 = \{x \in X: \ x_1 = 1\}$ и решаем задачи

$$\xi(X_1) = \min(6x_2 + 10x_3 + 5x_4 + 4x_5 + x_6),$$

$$15x_2 + 10x_3 + 16x_4 + 8x_5 + 5x_6 \ge 50,$$

$$0 \le x_i \le 1, \quad i = \overline{2,5};$$
(5)

$$\xi(X_2) = \min(4 + 6x_2 + 10x_3 + 5x_4 + 4x_5 + x_6),$$

$$15x_2 + 10x_3 + 16x_4 + 8x_5 + 5x_6 \ge 38,$$

$$0 \le x_i \le 1, \quad i = \overline{2,5}.$$
(6)

Решение задачи (5): $\overline{x}^1=(1;\,3/5;\,1;\,1),\;\xi(X_1)=22;$ решение задачи (6): $\overline{x}^2=(1;\,0;\,1;\,1/4;\,1),\;\;\xi(X_2)=17.$ Для дальнейшего разбиения выбираем из списка $S_1=\{X_1,\,X_2\}$ множество X_2 с меньшей оценкой: $X_2=X_3\bigcup X_4,\;X_3=\{x\in X_2:\,x_2=0\},\;X_4=\{x\in X_2:\,x_2=1\}.$ Решаем задачи

$$\xi(X_3) = \min(4 + 10x_3 + 5x_4 + 4x_5 + x_6),$$

$$10x_3 + 16x_4 + 8x_5 + 5x_6 \ge 38,$$

$$0 \le x_i \le 1, \quad i = \overline{3,6};$$
(7)

$$\xi(X_4) = \min(10 + 10x_3 + 5x_4 + 4x_5 + x_6),$$

$$10x_3 + 16x_4 + 8x_5 + 5x_6 \ge 23,$$

$$0 \le x_i \le 1, \quad i = \overline{3,6}.$$
(8)

Решение задачи (7): $\overline{x}^3=(9/10;1;1;1)$, $\xi(X_3)=23$; решение задачи (8): $\overline{x}^4=(0;1;1/4;1)$, $\xi(X_4)=17$. Следуя схеме одностороннего ветвления, для дальнейшего разбиения выбираем множество не из всего списка $S_2=\{X_1,X_3,X_4\}$, а только из вновь полученных $\{X_3,X_4\}$. Таким множеством является X_4 . Разбиваем его на два подмножества $X_5=\{x\in X_4:x_3=0\}$ и $X_6=\{x\in X_4:x_3=1\}$. В итоге получаем задачи

$$\xi(X_5) = \min(10 + 5x_4 + 4x_5 + x_6),$$

$$16x_4 + 8x_5 + 5x_6 \ge 23,$$

$$0 \le x_i \le 1, \quad i = \overline{4,6};$$
(9)

$$\xi(X_6) = \min(20 + 5x_4 + 4x_5 + x_6),$$

$$16x_4 + 8x_5 + 5x_6 \ge 13,$$

$$0 \le x_i \le 1, \quad i = \overline{4,6}.$$
(10)

Решение задачи (9): $\overline{x}^5=(1;\,1/4;\,1),\ \xi(X_5)=17;$ решение задачи (10): $\overline{x}^6=(1/2;\,0;1),\ \xi(X_6)=23\frac{1}{2}.$ Новый список $S_3=\{X_1,\ X_3,\ X_5,\ X_6\}.$ Разбиваем множество X_5 на два: $X_7=\{x\in X_5:x_4=0\}$ и $X_8==\{x\in X_5:x_4=1\}$. Получаем задачи

$$\xi(X_7) = \min(10 + 4x_5 + x_6),$$

$$8x_5 + 5x_6 \ge 23,$$

$$0 \le x_i \le 1, \ i = 5,6;$$

$$\xi(X_8) = \min(15 + 4x_5 + x_6),$$

$$8x_5 + 5x_6 \ge 7,$$

$$0 \le x_i \le 1, \ i = 5,6.$$
(12)

Поскольку в задаче (11) $c_5+c_6<23$, то $X_7=\varnothing$ и тогда $\xi(X_7)=\infty$. Решение задачи (12): $\overline{x}^7=\left(1/4;\,1\right),\ \xi(X_8)=17$. Разбиваем множество X_8 : $X_9=\{x\in X_8:\,x_5=0\},\ X_{10}=\{x\in X_8:\,x_5=1\}$. Получаем задачи

$$\xi(X_9) = \min(15 + x_6), \quad 5x_6 \ge 7, \quad 0 \le x_6 \le 1;$$

 $\xi(X_{10}) = \min(19 + x_6), \quad 5x_6 \ge -1, \quad 0 \le x_6 \le 1.$ (13)

Поскольку $X_9=\varnothing$ (не достигается заданная ценность), то $\xi(X_9)=\infty$. В задаче (13) оптимальной будет точка $x_6=0$, при этом $\xi(X_{10})=19$. План целочисленный: $x^*=(1;1;0;1;1;0)$. Множество X_{10} разбиваем на два: $X_{11}=\{x^*\}$, $X_{12}=X_{10}\backslash X_{11}$, при этом $\xi(X_{11})=\xi(X_{12})=\xi(X_{10})=19$. Следовательно, $r_1=19$. В списке остались множества X_1 , X_3 , X_6 , X_{12} (X_7 и X_9 исключаются как пустые). Оценки оставшихся множеств не ниже числа r_1 . Следовательно, согласно схеме одностороннего ветвления, они исключаются из списка для дальнейшего разбиения. В списке не осталось множеств. Фактически схема одностороннего ветвления совпала со схемой полного ветвления. Получили оптимальный план: оптимальный вес рюкзака равен 19 и в него должны быть загружены предметы с номерами 1, 2, 4, 5 (восстанавливается попятным движением от множества X_{11} к множеству X).

Все вычисления удобно изобразить графически (см. рис. 10.2). На рисунке рядом с множеством указано значение соответствующего x_i .

Puc. 10.2