Color

CS 498VR: Virtual Reality

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Eric Shaffer

Color is Weird

SURE THEY DID, IN FACT, THOSE OLD PHOTOGRAPHS ARE IN COLOR. IT'S JUST THE WORLD WAS BLACK AND WHITE THEN.

Color

- Color is a perceptual phenomenon
- A frequency spectrum of light is a physical phenomenon
- In computer graphics, we need to specify colors
 - We define "color spaces"
 - In a color space, points correspond to colors
 - We can then work with colors mathematically
- Ideally, a color space should allow us to specify any color humans can perceive...

Light and Color

- Color is a perceptual phenomenon
 - Response of the human visual system to light...and other factors
- Light is a physical phenomenon
 - Electromagnetic radiation visible to the human eye
 - Emitted in quanta called photons
 - Has wavelength and amplitude

Cone Response

Tristimulus Theory

- 3 cone types suggest 3 parameters describe all colors
- Two different spectral distributions can appear the same
 - metamers

Different spectra can appear the same color (Hughes, Bell and Doppelt)

More on Metamers

- Imagine you see a yellow laser (580nm)
 - You do not have cone that senses just yellow
 - Your perception is based on an activation of green(M) and red(L) cones
 - Both have sensitivity ranges including 580nm
- You would have the same response to a mix of 2 non-yellow lights
 - Maybe some green at 533nm and some red at 564nm
 - ...and you would see yellow
- This blending is the principle behind RGB displays

RGB Additive Color

- Red, Green, Blue
- Color model used in luminous displays (CRT, plasma, LCD)
- Physically linear
 - Perceptually logarithmic
- Additive
- Designed to stimulate each kind of cone

CMY Color Space: Subtractive Color

- Cyan, Magenta, Yellow
- Color model used in pigments and reflective materials (ink, paint)
- Grade school color rules

Blue + Yellow = Green?

Cyan + Yellow = Green

Also CMYK (black)

C + M + Y = Brown?

C + M + Y = Black (in theory)

C + M + Y = Gray (in practice)

Early Color Photography

The Sergei Mikhailovich Prokudin-Gorskii Collection features color photographic surveys of the vast Russian Empire made between ca. 1905 and 1915.

Prokudin-Gorskii created his negatives by using a camera that exposed one oblong glass plate three times in rapid succession through three different color filters: blue, green, and red. For formal presentations, he printed positive glass slides of these negatives and projected them through a triple lens magic lantern. Prokudin-Gorskii would project the slide through the three lenses, and, with the use of color filters, superimpose the three exposures to form a full color image on a screen.

A photograph of Mohammed Alim Khan (1880–1944), Emir of Bukhara, taken in 1911 by Sergey Prokudin-Gorsky using three exposures with blue, green, and red filters.

HSV Color Space

HSV = Hue, Saturation, Value 1978, Alvy Ray Smith

$$c = (h, s, v) \in [0, 1]^3$$

- three floating-point components in [0,1]
- hue:
- saturation:
- value:

tint of the color (red, green, blue, yellow, cyan, magenta, yellow, ...)

strong color (s=1), grayish color (0 < s < 1) or gray (s=0)

...luminance; white (ν =1), dark (0 < ν <1), or black (ν =0)

- HSV widgets: typically specify h and s in a 2D canvas and ν separately (slider)
- show a 'surface slice' in the RGB cube

Advantages and Disadvantages

More intuitive than RGB

• On the other hand it's still not perceptually defined

RGB to HSV conversion

- Hue [0,360] is angle about color wheel
 0° = red, 60° = yellow, 120° = green,
 180° = cyan, 240° = blue, 300° = magenta
- Saturation [0,1] is distance from gray
 S = (maxRGB minRGB)/maxRGB
- Value [0,1] is distance from black
 V = maxRGB

 $D = \max RGB - \min RGB$ if $\max RGB == R \stackrel{.}{\Rightarrow} H = (G - B)/D$ if $\max RGB == G \stackrel{.}{\Rightarrow} H = 2 + (B - R)/D$ If $\max RGB == B \stackrel{.}{\Rightarrow} H = 4 + (R - G)/D$ $H = (60*H) \mod 360$

HSV to RGB and back....

```
void rgb2hsv(float r, float g, float b,
             float& h, float& s, float& v)
  float M = \max(r, \max(g, b));
  float m = \min(r, \min(g, b));
  float d = M - m;
  v = M:
                           //value = max(r,g,b)
  s = (M>0.00001)? d/M:0; //saturation
  if (s==0) h = 0:
                          //achromatic case, hue=0 by convention
  else
                           //chromatic case
    if (r<u>⇒</u>M)
                   h = (g-b)/d;
    else if (g = M) h = 2 + (b-r)/d;
                   h = 4 + (r-g)/d:
    else
    h /= 6;
    if (h<0) h += 1;
```

Listing 3.2. Mapping colors from RGB to the HSV space.

```
void hsv2rgb(float r, float g, float b,
            float& h, float& s, float& v)
     hueCase = (int)(h*6);
  int
 float frac
               = 6*h-hueCase:
               = v*(1 - s):
  float lx
  float ly
           = v*(1 - s*frac);
               = v*(1 - s*(1 - frac));
  float lz
  switch (hueCase)
    case 0:
    case 6: r=v; g=lz; b=lx; break; // 0<hue<1/6
   case 1: r=ly; g=v; b=lx; break; // 1/6<hue<2/6
    case 2: r=lx; g=v; b=lz; break; // 2/6<hue<3/6
    case 3: r=lx; g=ly; b=v; break; // 3/6<hue/4/6
    case 4: r=lz; g=lx; b=v; break; // 4/6<hue<5/6
    case 5: r=v; g=lx; b=ly; break; // 5/6<hue<1
```

Listing 3.3. Mapping colors from HSV to the RGB space.

HSL Color Space

- Hue, Saturation, and Lightness
- Similar to HSV....but....
- Saturated colors (S=1) occur at L = ½
- Often uses with S and L in [0,100]
 - Saturation at L = 50
- Visualized as a double cone

Fun with the Additive Property of Light

$$R(L_1) + R(L_2) = R(L_1 + L_2)$$

Debevec et al., Acquiring the Reflectance Field of a Human Face, Proc. SIGGRAPH 2000

Light Stage

Point Light Sources

Debevec et al., Acquiring the Reflectance Field of a Human Face, Proc. SIGGRAPH 2000

Environment Lighting

Debevec et al., Acquiring the Reflectance Field of a Human Face, Proc. SIGGRAPH 2000

Color Matching Experiments

Can three single-wavelength colors generate all the colors humans can see? How can we find out?

- Wright and Guild (1920s)
 - Choose lights of 3 different primary colors
 - Show human subject a single-wavelength test light
 - Have subject match test light
 - Use a weighted combination of primaries
 - ¡ Weight is luminance
- CIE standard primaries
 - Red (R): 700nm
 - Green (G): 546.1 nm
 - Blue(B): 435.8 nm

Human Response to Monospectral Light

Points on red curve are wavelengths

Curve position in space shows the response of the L, M, and S cones

Human Response to Monospectral Light

The set of responses to all combinations of monospectral light forms a cone...shaped a little like a horseshoe.

A slice through the cone is shown here.

Color Matching Function for CIE RGB

Amounts of the red, green and blue primaries needed to match any color 1

CIE RGB Color Space

- Experiments by the International Commission on Illumination
 - Commission internationale de l'éclairage
- Defined CIE RGB...you'll notice the negative on the red curve
 - What does this mean happened physically in the experiment?
 - Example: orange = 0.45 R + 0.45 G 0.1B
 - We can empirically discover that by allowing test subject to add a primary to the test color:

orange + 0.1B = 0.45 R + 0.45 G

Color Matching Functions for CIE XYZ

Amounts of the XYZ primaries needed to match any color (\bar{y}) function is precisely CIE-standardized photopic luminous efficiency, 1931)₂

- CIE XYZ is another color space based on the experiments...
 - But adjusted to have non-negative functions
- Think of X, Y, and Z being primary colors ...but not physically realizable

CIE XYZ Color Space

Amounts of the XYZ primaries needed to match any color (\overline{v}) function is precisely CIE-standardized photopic luminous efficiency, 1931)₂

A light with spectral power distribution P can be expressed as $p_xX + p_yY + p_zZ$

where

$$p_{x} = k \int P(\lambda)$$

CIE Color Space

From Information
Visualization by Colin
Ware

Figure 4.6 The *X*, *Y*, and *Z* axes represent the CIE standard virtual primaries. Within the positive space defined by the axes, the gamut of perceivable colors is represented as a gray solid. The colors that can be created by means of the red, green, and blue monitor primaries are defined by the pyramid enclosed by the *R*, *G*, and *B* lines.

xyY: Separates Chromaticity and Luminence

Formed from X,Y,Z expression of a color

$$x = \frac{X}{X + Y + Z}$$

$$y = \frac{Y}{X + Y + Z}$$

Note: Y = Y

Used to specify intensity independent colors using just the x,y coordinates

Generates the CIE Chromaticity diagram

CIE Chromaticity Diagram

- What runs around the edge of the horseshoe?
- What is inside the horseshoe?
- Gamut: Portion of the spectrum reproduced by a given color space

Any guess as to what the triangle represents?

 Quick Quiz: Are the colors shown inside the diagram correct?

Why or why not?

CIE XYZ Gamut

All visible chromaticities mapped to xy plane

Gamma Correction

Human visual response better at distinguishing darker shades

Greyscale bars that increase by a constant amount of luminosity:

Greyscale bars with luminosity increasing according to a power law:

The smoother visual appearance of the second means it is more perceptually uniform

Gamma Correction

- Imagine we can only store 5-bit greyscale colors
 - 32 distinct colors
- We could select 32 shades generated on the straight line (A)
- We could select 32 shades generated on the power curve (B) Suppose we use our 32 shades to render a smooth gradient

Gamma Encoding

- So, to perceptually make the best use of 24-bit RGB color
- We can gamma encode each 8-bit channel using $I_{encoded} = I^{1/\gamma}$
 - Usually $\gamma = 2.2$

- Divide up the y-axis evenly into 256 integers...mapped onto the curve
- We sample the lower luminosities more densely

Gamma Decoding

Modern display devices decode color channels using $I_{decoded} = I_{encoded}^{\gamma}$

Example

OK...a CRT

modern....

sRGB

- RGB is specified as a gamut inside the xyY colorspace
- And with a specific gamma curve to use for encoding/decoding

Chromaticity	Red	Green	Blue	White point
X	0.6400	0.3000	0.1500	0.3127
у	0.3300	0.6000	0.0600	0.3290
Y	0.2126	0.7152	0.0722	1.0000

Blue curve is sRGB gamma value

- x sRGB is the standard RGB color space used almost everywhere
 - ☐ When you use an image library (e.g. libpng) typically defaults to saving in sRGB
 - □ So...you do not need to gamma encode colors yourself
 - □ Supported directly on modern GPUs
- You can generate a matrix to convert from sRGB to XYZ and back using its inverse...