Performance Optimization of Al Models

Enhancing Efficiency, Accuracy, and Scalability in Al Systems

Introduction

Model performance optimization ensures efficient, accurate, and scalable AI models. Optimization covers speed, accuracy, memory usage, and energy efficiency.

Dimensions of Performance

Accuracy: Precision, Recall, F1-score

Efficiency: Resource usage, FLOPs, latency Scalability: Throughput, deployment size

Generalization: Robustness and domain adaptability

Common Performance Bottlenecks

- Over-parameterized architectures
- Inefficient data pipelines
- Suboptimal hyperparameters
- High inference latency

Optimization Goals

- 1. Reduce training time
- 2. Lower inference latency
- 3. Minimize memory footprint
- 4. Maintain or improve accuracy
- 5. Enable deployment on edge or mobile devices

Data-Level Optimization

Improve input quality and relevance using data cleaning, augmentation, and feature selection.

Example (Feature Selection):

from sklearn.feature_selection import SelectKBest, f_classif X_new = SelectKBest(f_classif, k=10).fit_transform(X, y)

Algorithmic Optimization

Choose lighter models (e.g., MobileNet vs ResNet). Apply regularization, batch normalization, and pruning of unnecessary layers.

Hyperparameter Tuning

Tune parameters via Grid Search, Random Search, or Bayesian optimization. Example:

from sklearn.model selection import GridSearchCV

```
param_grid = {'C':[0.1,1,10], 'kernel':['linear','rbf']}
grid = GridSearchCV(SVC(), param_grid, cv=5)
grid.fit(X_train, y_train)
```

Model Compression Techniques

Pruning: Remove redundant neurons.

Quantization: Reduce precision (FP32 → INT8).

Knowledge Distillation: Smaller student model learns from larger teacher.

Example:

torch.quantization.quantize_dynamic(model, {torch.nn.Linear}, dtype=torch.qint8)

Hardware Acceleration

Use GPUs, TPUs, or optimized BLAS libraries.

Apply mixed precision training and distributed frameworks like Horovod or DeepSpeed.

Inference Optimization

Use ONNX Runtime, TensorRT, or OpenVINO.

Batch requests to increase throughput.

Optimize pipelines with FastAPI, TorchServe, or TensorFlow Serving.

Pipeline & MLOps Optimization

Cache data, use asynchronous I/O, and profile pipelines with TensorBoard. Monitor latency, throughput, and GPU utilization.

Case Studies

Google DistilBERT: 40% smaller and 60% faster. Meta LLaMA Quantization: 7B \rightarrow 4-bit deployment. NVIDIA TensorRT: 10x faster inference performance.

Evaluation Metrics

Accuracy: F1, AUC (Scikit-learn)
Speed: Latency, Throughput (Profiler)
Resource: Memory, Power (NVIDIA Nsight)
Deployment: Load time (Grafana, Prometheus)

Optimization Best Practices

- ✔ Profile before optimizing
- ✓ Apply quantization post-training
- ✓ Maintain accuracy—speed balance
- ✓ Deploy optimized model versions
- ✓ Monitor performance continuously

Future Directions

Neural Architecture Search (NAS) AutoML and reinforcement optimization Green AI – energy-efficient training Edge-native models for on-device inference

Summary

Optimization enhances speed, accuracy, and cost-efficiency. Continuously monitor and refine for long-term performance.

Q&A; / Discussion

Prompt: Which optimization method provides the best trade-off between performance and accuracy for your AI model?