Rozwiązywanie równań różniczkowych

Jerzy Baranowski

Metody Numeryczne

14.01.2022

Jak obliczyć rozwiązanie w dowolnym punkcie?

- Kontrola długości kroku pozwala na optymalne znalezienie rozwiązania w punkcie X
- Co jeżeli interesują nas wartości dla wielu chwil z przedziału $[x_0, X]$?
- Wyliczanie z gęstym krokiem redukuje wydajność obliczeń

Gęste wyjście Runge-Kutta + Interpolacja

- $y_1 = y(x_0 + h)$, jest rozwiązaniem z RK
- Szukamy "taniej" aproksymacji: $y(x_0 + \theta h)$, dla $\theta \in (0,1)$
- Generalnie

$$u(\theta) = y_0 + \sum_{i=1}^{s^*} b_i(\theta) k_i$$

gdzie
$$b_i(\theta)$$
 to wielomiany, takie, że $u(\theta) - y(x_0 + \theta h) = O(h^{p^*+1})$

Wyznaczanie wielomianów

- Warunki interpolacji lokalnej nie gwarantują globalnej regularności
- Interpolacja Hermite'a
- Bootstrapping

Zastosowania gęstego wyjścia

Lokalizacja zdarzeń

Nieciągłości

Powierzchnia przełączająca

$$y' = \begin{cases} f_I \operatorname{dla} g(y) < 0 \\ f_{II} \operatorname{dla} g(y) > 0 \end{cases}$$

Jak ogarnąć nieciągłości?

- Zignorować
- Automatyczne wykrywanie osobliwości
- Wykorzystanie powierzchni przełączającej

Metody odwrotne (implicit)

Formalnie rozwiązanie

$$y(x_1) = y(x_0) + \int_{x_0}^{x_1} f(x, y(x)) dx$$

Metoda punktu środkowego

$$k_1 = f(x_0 + h/2, y_0 + h/2 k_1)$$

 $y_1 = y_0 + hk_1$

Wzór trapezów

$$y_1 = y_0 + \frac{h}{2}(f(x_0, y_0) + f(x_1, y_1))$$

Rodzaje metod RK

0					
c_2	a_{21}				
c_3	a_{32}	a_{32}			
:	:	٠.			
c_s	a_{s1}	a_{s2}	• • •	$a_{s,s-1}$	
	b_1	b_2		b_{s-1}	b_s
	\widehat{b}_1	\widehat{b}_2		\widehat{b}_{s-1}	\widehat{b}_s

- Jeżeli $a_{ij} = 0$ dla $i \le j$ metoda otwarta (ERK, *Explicit Runge-Kutta*)
- Jeżeli $a_{ij} = 0$ dla i < j oraz co najmniej jedna $a_{ii} \neq 0$ metoda diagnoanlnie odwrotna (DIRK, *Diagonally Implicit RK*)
- W pozostałych przypadkach metoda odwrotna (IRK, Implicit RK)

Rząd metod odwrotnych jest wyższy dla takich samych s

Rząd 3

$$\begin{array}{c|cccc}
\gamma & \gamma & 0 \\
\hline
1-\gamma & 1-2\gamma & \gamma \\
\hline
& 1/2 & 1/2
\end{array}
\qquad \gamma = \frac{3 \pm \sqrt{3}}{6}$$

Rząd 4

$$\begin{array}{c|cccc}
\frac{1}{2} - \frac{\sqrt{3}}{6} & \frac{1}{4} & \frac{1}{4} - \frac{\sqrt{3}}{6} \\
\frac{1}{2} + \frac{\sqrt{3}}{6} & \frac{1}{4} + \frac{\sqrt{3}}{6} & \frac{1}{4} \\
\hline
& 1/2 & 1/2
\end{array}$$

Problemy z długimi obliczeniami

- Systemy zachowujące energię
- Obliczenia astronomiczne
- Problemy wielu ciał

Systemy Hamiltonowskie

- Dana jest funkcja H(p,q) nazywana
 Hamiltonianem
- Układ równań różniczkowych

$$\dot{p}_i = \frac{\partial H}{\partial q_i}(p,q), \dot{q}_i = \frac{\partial H}{\partial p_i}(p,q)$$

- Własności:
 - Hamiltonian jest stały na rozwiązaniach
 - Strumień fazowy zachowuje objętość

Długie obliczenia zniekształcają

Oscylator liniowy

Istotą jest zachowanie Hamiltonianu

Oscylator nieliniowy

Metody symplektyczne

- Muszą zachowywać pewne formy różniczkowe dla rozwiązań systemów Hamiltonowskich
- Otwarte RK nie są nigdy symplektyczne
- Metody odwrotne oparte o kwadratury
 Gaussa są symplektyczne

Zastosowania metod symplektycznych

- Obliczenia astronomiczne
- Nowoczesne metody Hamiltonian Monte Carlo i pokrewne

Metody wielokrokowe

 Metody bazują na rozwiązaniu w formie całkowej

$$y(x_n) = y(x_{n+1}) + \int_{x_n}^{x_{n+1}} f(t, y(t)) dt$$

 Ideą metody jest zastąpienie nieznanego rozwiązania za pomocą wielomianu interpolacyjnego

Metody Adamsa

Otwarta

Odwrotna

Połączenie obydwu daje metody predyktor-korektor

- Predyktor wylicza rozwiązanie metodą otwartą dla $\hat{y}(x_{n+1})$
- Wylicza się funkcję $\hat{f}(x_{n+1},\hat{y}(x_{n+1}))$
- Wykorzystuje się ją w metodzie odwrotnej uzyskując $y(x_{n+1})$
- Wylicza się $f(x_{n+1}, y(x_{n+1}))$

Metody wielokrokowe współcześnie

- Raczej historia
- Problemy ze zmianą długości kroku
- Wyjątkiem są metody różnic wstecznych

Metody różnic wstecznych

 Zamiast całkowania, wykorzystuje się wielomian interpolacyjny do estymacji pochodnej

Kilka słów o stabilności

- Stabilność w sensie Lapunowa
- Asymptotyczna stabilność
- Rozwiązania równań powinny się zachowywać tak jak równania

Równania sztywne

$$\dot{y} = -50(y - \cos x)$$

Funkcja stabilności

Dane jest równanie różniczkowe

$$\dot{y} = \lambda y$$
, $y_0 = 1$

- Jego rozwiązanie numeryczne ma postać $y_{m+1} = R(h\lambda)y_m$
- Niech $z=h\lambda$, wtedy R(z) nazywamy funkcją stabilności

Obszar stabilności

$$S = \{ z \in \mathbb{C} : |R(z)| < 1 \}$$

Stabilność metod RK

Wykrywanie sztywności

- Specjalny estymator błędu
- Estymacja wartości własnych linearyzacji
- Wykrycie sztywności sugeruje przejście do metod dla równań sztywnych

Stabilność doboru kroku

- Problem pojawia się, gdy kroki są za często odrzucane, gdy znajdują się na brzegu obszaru stabilności
- Dotyczny to zwłaszcza metod DP
- Regulator PI do długości kroku

A-Stabilność

- Odwrotne metody RK mają funkcje stabilności w postaci funkcji wymiernych
- Jeżeli |R(z)| < 1 dla wszystkich $\lambda \in \mathbb{C}^-$ i h>0 metoda jest A stabilna
- Dotyczy to większości odwrotnych metod RK

L-stabilności i $A(\alpha)$ stabilność

- L stabilność jest mocniejsza, bo wymaga, żeby $R(\infty)=0$
- $A(\alpha)$ stabilność jest słabsza, ponieważ wymaga aby sektor stabilności zawierał

$$S_{\alpha} = \{z; \mid \arg(-z) \mid <\alpha, \ z \neq 0\}$$

Implementacja odwrotnych RK

- Wymagana metoda Newtona
- Uproszczony wariant metody Rosenbrocka
- Dobór kroku podobny