Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського» Факультет інформатики та обчислювальної техніки Кафедра обчислювальної техніки

Лабораторна робота №1-а

«РЕАЛІЗАЦІЯ ЗАДАЧІ РОЗКЛАДАННЯ ЧИСЛА НА ПРОСТІ МНОЖНИКИ (ФАКТОРИЗАЦІЯ ЧИСЛА)»

Виконав:

студент II курсу ФІОТ групи IB-93 Гордійчук Юрій

Перевірив:

Регіда П.Г.

Мета роботи: Ознайомитись з основними принципами розкладання числа на прості множники з використанням різних алгоритмів факторизації.

Завдання на лабораторну роботу:

Розробити програма для факторизації заданого числа методом Ферма. Реалізувати користувацький інтерфейс з можливістю вводу даних.

Теоретичні відомості:

Факторизації лежить в основі стійкості деяких криптоалгоритмів, еліптичних кривих, алгебраїчній теорії чисел та кванових обчислень, саме тому дана задача дуже гостро досліджується, й шукаються шляхи її оптимізації.

На вхід задачі подається число $n \in \mathbb{N}$, яке необхідно факторизувати. Перед виконанням алгоритму слід переконатись в тому, що число не просте. Далі алгоритм шукає перший простий дільник, після чого можна запустити алгоритм заново, для повторної факторизації.

В залежності від складності алгоритми факторизації можна розбити на дві групи:

- Експоненціальні алгоритми (складність залежить експоненційно від довжини вхідного параметру);
- Субекспоненціальні алгоритми.

Існування алгоритму з поліноміальною складністю — одна з найважливіших проблем в сучасній теорії чисел. Проте, факторизація з даною складністю можлива на квантовому комп'ютері за допомогою алгоритма Шора.

Метод факторизації Ферма.

Ідея алгоритму заключається в пошуку таких чисел A і B, щоб факторизоване число n мало вигляд: $n = A^2 - B^2$. Даний метод гарний тим, що реалізується без використання операцій ділення, а лише з операціями додавання й віднімання.

Приклад алгоритму:

Початкова установка: $\mathbf{x} = [\sqrt{n}]$ — найменше число, при якому різниця \mathbf{x}^2 -п невід'ємна. Для кожного значення $\mathbf{k} \in \mathbb{N}$, починаючи з $\mathbf{k} = 1$, обчислюємо $(\sqrt[]{n} + k)^2 - n$ і перевіряємо чи не ϵ це число точним квадратом.

- Якщо не ϵ , то k++ і переходимо на наступну ітерацію.
- Якщо є точним квадратом, тобто $x^2 n = (\lceil \sqrt{n} \rceil + k)^2 n = y^2$, то ми отримуємо розкладання: $n = x^2 y^2 = (x + y)(x y) = A * B$, в яких $x = (\lceil \sqrt{n} \rceil + k)$

Якщо воно є тривіальним і єдиним, то n - просте

Роздруківка тексту програми:

Результати роботи програми:

Лабораторна робота №1а

Лабораторна робота №1а

Факторизація числа методом Ферма

Факторизація числа методом Ферма

Введіть число = 66

Введіть число = 13

обчислити

обчислити

Відповідь: n = 2 * 11 * 3

Введене число просте.

Лабораторна робота №1а

Факторизація числа методом Ферма

Введіть число = 0

обчислити

Введене число НЕ натуральне!

Лабораторна робота №1а

Факторизація числа методом Ферма

Введіть число = 33

обчислити

Відповідь: n = 11 * 3

Лабораторна робота №1а

Факторизація числа методом Ферма

Введіть число = 15

ОБЧИСЛИТИ

Відповідь: n = 5 * 3

Висновок: У ході лабораторної роботи я ознайомився з основними принципами розкладання числа на прості множники з використанням різних алгоритмів факторизації. Був розроблений мобільний додаток під Android, що реалізує метод Ферма.