Midterm Review

Danny Edgel Econ 713: Microeconomics I Spring 2021, Quarter 1

February 16, 2021

NTU Matching

- Positive-Assortative Matching (PAM): The derivative of each side's payoff function has the same sign
- Negative-Assortative Matching (NAM): The derivative of each side's payoff function has the opposite sign
- Gale-Shapley Theorem:
 - Male-pessimal outcome is the female-optimal outcome, and vice versa
 - If male-pessimal and male-optimal outcomes are the same, then the stable matching is unique
- The DAA can take no more than $n^2 2n + 2$ rounds, where there are n men and n women
- Solving DAA algorithm in discrete case: Example from first question of 2020 midterm below, showing the DAA matching from women proposing.

$\underline{\text{Round}}$										
	1	2	3	4	5	6	7	8	9	10
A	S	R^*				P*				M^*
В	R*		S*						P*	
С	P*				R*			S*		
D	S*			P*			R*			

Welfare Theorems of Matching

- 1. A competitive equilibrium yields an efficient matching
- 2. An efficient matching is a competitive equilibrium for a suitable set of wages

TU Matching

- PAM: Supermodular
 - If differentiable, cross-derivative is positive
 - If not differentiable, increasing differences
- NAM: Submodular
 - If differentiable, cross-derivative is negative
 - If not differentiable, decreasing differences
- Finding wages (differentiable case)
 - 1. Let $\pi = h(x,y) v(x) w(y)$ be the profit function for matchmakers in this market, where h(x,y) is the output of a match. Find FOC for one side of the market¹
 - 2. If PAM, solve FOC for first derivative of wage function using y = x. If NAM, solve using y = 1 x.
 - 3. Take antiderivative to determine wage function, including some constant, c. Let k be the constant for the other side's wage function
 - 4. Impose free entry/exit condition to let $\pi = 0$ at its maximum; solve $\pi(x, y) = 0$ for the relationship between c and k.
 - 5. Suppose c + k = S. Then, k = S c and the range of market-decentralizing wages is given by the range of c such that the wage of each side is weakly greater than the side's outside option
 - In the typical case where the value of not matching for each side is zero, $c \in [0, S]$
 - Suppose D is the cost of matching for the x side. Then $c \in [-D,S]$
 - If there is a short side of the market, pin wages down uniquely by setting c and k such that the short side captures all surplus. For example, if the mass of type y exceeds that of type x, then $c=0,\ k=S$.

¹if FOCs aren't symmetric, repeat steps 1-3 for other side of market