1

EE24BTECH11006 - Arnay Mahishi

1) Let y_1 and y_2 be two linearly independent solutions of $y'' + (\sin x)y$, $0 \le x \le 1$. Let

c) g' vanishes at only one point of (0, 1)

d) x^2e^x

d) g' vanishes at all points of [0, 1]

c) a>0, b>0 d) a>0, b<0

 $g(x) = W(y_1, y_2)(x)$ be the Wronkskian of y_1 and y_2 . Then

 $ay_1 + by_2$. Every solution $y(x) \to 0$ as $x \to \infty$ if

b) a < 0, b > 0

2) One particular solution of $y''' - y'' - y' + y = -e^x$ is constant multiple of

b) xe^{x} c) $x^{2}e^{-x}$

3) Let $a, b \in \mathbb{R}$. Let $y = (y_1, y_2)'$ be a solution of the system of equations $y_1 = y_2, y_2' = y_1 + y_2 + y_2 + y_3 = y_1 + y_2 + y_3 = y_2 + y_3 = y_3 + y_4 = y_2 + y_3 = y_3 + y_4 = y_3 + y_4 = y_4 + y_4 + y_4 = y_4 + y_4 + y_4 = y_4 + y_4$

a) g'>0 on [0,1]b) g'<0 on [0,1]

a) xe^{-x}

a) a < 0, b > 0

4) Let <i>G</i> be a group of order 45. Let <i>H</i> be a subgroup of <i>G</i> . Then	3-Sylow subgroup of G and K be a 5-Sylow	
a) both H and K are normal in Gb) H is normal in G but K is not normal in G	 c) H is not normal in G but K is normal in G d) both H and K are not normal in G 	
5) The ring $\mathbb{Z}\left[\sqrt{-11}\right]$ is		
a) a Euclidean Domainb) a Principal Ideal Domain, but not a Euclidean Domain	c) a Unique Factorization Domain, butnot a Principal Ideal Domaind) not a Unique Factorization Domain	
6) Let R be a Principal Ideal Domain and a, b any two non-unit elements of R . Then the ideal generated by a and b is also generated by		
a) $a+b$ b) ab	c) $gcd(a,b)$ d) $lcm(a,b)$	
given by $\sigma \cdot (x_1, x_2, x_3, x_4) = p(x_{\sigma(1)}, x_{\sigma(2)}, x_{\sigma(3)}, x_{\sigma(3)})$	etric group of order 4, on $\mathbb{Z}[x_1, x_2, x_3, x_4]$ $(x_2, x_{\sigma(3)}, x_{\sigma(4)})$ for $\sigma \in S_4$. Let $HsubseteqS_4$ (x_1, x_2, x_3) . Then the cardinality of the orbit of $x_1x_3 + x_2x_4$ is	

d) 4

d) $\frac{1}{\sqrt{2}-1}$

9) Consider \mathbb{R}^3 with norm $\ \ _1$, and the linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^3$ defined by the 3×3 matrix $\begin{pmatrix} 1 & 1 & 3 \\ 2 & 2 & 2 \\ 1 & 3 & -3 \end{pmatrix}$. Then the operator norm $\ T\ $ of T is equal to				
a) 6	b) 7	c) 8	d) 42	
 10) Consider R² with norm ∞, and let Y = {(y₁, y₂) ∈ R² : y₁ + y₂ = 0}. If g : Y → R is defined by g (y₁, y₂) = y² for (y₁, y₂) ∈ Y, then a) g has no Hahn-Banach extension to R² b) g has a unique Hahn-Banach extension to R² c) every linear functional f : R² → R satisfying f (-1, 1) = 1 is a Hahn-Banach extension of g to R² d) the functionals f₁, f₂ : R² → R given by f₁ (x₁, x₂) = x₂ and f₂ (x₁, x₂) = -x₁ are both Hahn-Banach extensions of g to R² 				
 11) Let X be a Banach space and Y be a normed linear space. Consider a sequence (F_n) of bounded linear maps from X to Y such that for each fixed x ∈ X, the sequence (F_n(x)) is bounded in Y.Then a) for each fixed x ∈ X, the sequence (F_n(x)) is convergent in Y b) for each fixed n ∈ N, the set {F_n(x) : x ∈ X} is bounded in Y c) the sequence (F_n) is bounded in R d) the sequence (F_n) is uniformly bounded on X 				
 12) Let H = L² ([0,π]) with the usual inner product. For n∈ N, let u_n(t) = √2/√π sin nt, t ∈ [0,π], and E = {u_n : n∈ N}. Then a) E is not a linearly dependent subset of H b) E is a linearly independent subset of H, but is not a orthonormal subset of H. c) E is a orthonormal subset of H, but is not an orthonormal basis for H. d) E is an orthonormal basis for H. 13) Let X = R and let τ = {U ⊆ X : X - U is finite} ∪ {φ, X}. The sequence 1, ½, ⅓, ···, ⅙, ··· in (X, τ) 				
a) converges to 0 a point of <i>X</i>b) does not converge	and not to any other e to 0	c) converges to eacd) is not convergen		
14) Let $E = \{(x, y) \in \mathbb{R}^2 \}$ the range of f is a	$ x \le 1, y \le 1$. De	fine $f: E \to \mathbb{R}$ by f	$(x, y) = \frac{x+y}{1+x^2+y^2}$. Then	

c) 3

c) 2

8) Let $f: l^2 \to \mathbb{R}$ be defined by $f(x_1, x_2, \cdots) = \sum_{n=1}^{\infty} \frac{x_n}{2^{\frac{n}{2}}}$ for $(x_1, x_2, \cdots) \in l^2$. Then ||f||

b) 2

b) 1

a) 1

a) $\frac{1}{2}$

is equal to

a) connected open setb) connected closed setc) bounded open setd) closed and unbounded set	
(X, τ) is said to have the property P	$\{1, \{1, 2\}, \{2, 3\}, \{1, 2, 3\}\}$. The topological space if for any two proper disjoint closed subsets Y sets U, V such that $Y \subseteq U$ and $Z \subseteq V$. Then the
a) is T_1 and satisfies P	c) is not T_1 and satisfies P
b) is T_1 and does not satisfy P	d) is T_1 and does not P

16) Which one of the follwing subsets of $\mathbb R$ (with the usual metric) is NOT complete?

- a) $[1,2] \cup [3,4]$ b) $[0,\infty]$
- c) [0, 1)
- d) $\{0\} \cup \left\{\frac{1}{n} : n \in \mathbb{N}\right\}$

17) Consider the function $f(x) = \begin{cases} k(x - [x]), 0 \le x < 2 \\ 0, \text{ otherwise} \end{cases}$ where $\{x\}$ is the integral part of x. The value of k for which the above function is a probability density function of some random variable is

a) $\frac{1}{4}$

b) $\frac{1}{2}$

c) 1

d) 2