

1 Exercise 9.2

Q1. In the figure given below, ABCD is a parallelogram, $AE \perp DC$ and $CF \perp AD$. If AB=16cm, AE=8cm and CF=10cm, find AD. Construction

Figure 1: Parallelogram ABCD

The input parameters for the above construction are shown in the table below :

Symbol	Value	Description
AB	16cm	$\parallel \mathbf{B} - \mathbf{A} \parallel$
CD	16cm	$\parallel \mathbf{D} - \mathbf{C} \parallel = \parallel \mathbf{B} - \mathbf{A} \parallel$
AE	8cm	$\parallel \mathbf{E} - \mathbf{A} \parallel$
CF	10cm	$\parallel \mathbf{F} - \mathbf{C} \parallel$
$\angle CFD$	90°	$CF \perp AD$
$\angle AED$	90°	$AE \perp CD$

Table 1: Parameters

The co-ordinates of the above parallelogram are given in this table :

Point	Co-ordinates	Description
D	(0,0)	Origin(Assumption)
С	(16,0)	(because $\mathbf{CD} = 16cm$)
E	(10,0)	$(\text{because DE} = \text{AE} * \cot D)$
		$DE = 8 * \cot(38.68) = 10cm$
A	(10,8)	As A lies above E $(A_x = E_x)$
		because $\mathbf{AE} = 8cm \ (A_y = 8)$
В	(26,8)	$(because = \mathbf{AB} = 16cm)$
F	(9.75, 7.806)	Using distance formula
		for CF and DF and solving them.

Table 2: Co-ordinates

Solution

It is given that the length of AB = 16cm.So,

$$\|\mathbf{B} - \mathbf{A}\| = 16cm\tag{1}$$

(2)

As the figure above is a parallelogram,

$$\|\mathbf{B} - \mathbf{A}\| = \|\mathbf{C} - \mathbf{D}\| = 16cm \tag{3}$$

(4)

In order to find $\angle DCF$,

Let
$$\theta_2 = \angle FCD$$
 (5)

$$\mathbf{n_1} = \mathbf{C} - \mathbf{F} = \begin{pmatrix} 6.25 \\ -7.806 \end{pmatrix}, \mathbf{n_2} = \mathbf{C} - \mathbf{D} = \begin{pmatrix} 16 \\ 0 \end{pmatrix}$$
 (6)

$$\theta_2 = \cos^{-1} \frac{\mathbf{n_1}^\top \mathbf{n_2}}{\|\mathbf{n_1}\| \|\mathbf{n_2}\|} \tag{7}$$

$$\implies \theta_2 = \cos^{-1} \frac{\left(6.25 - 7.806\right) \binom{16}{0}}{(10)(16)} = 51.32^{\circ} \tag{8}$$

As the sum of interal angles of a triangle are 180°, from $\triangle DFC$

$$\angle CFD + \angle FCD + \angle D = 180^{\circ} \tag{9}$$

$$\angle D = 180^{\circ} - (\angle CFD + \angle FCD) \tag{10}$$

$$\angle D = 180^{\circ} - 141.32^{\circ} \tag{11}$$

$$\angle D = 38.68^{\circ} \tag{12}$$

(13)

The area of parallelogram is calculated using the below formula

$$Area = (base) * (height)$$
 (14)

(15)

For the above problem this can be written as,

$$Area = \|\mathbf{A} - \mathbf{E}\| \|\mathbf{B} - \mathbf{A}\| \tag{16}$$

$$\implies (8)(16) = 128 \tag{17}$$

(18)

The area of parallelogram can also be found out using cross product of two vectors, for the above problem it can be written as;

$$Area of parallelogram ABCD = \mathbf{DC} \times \mathbf{AD} \tag{19}$$

$$\mathbf{DC} \times \mathbf{AD} = \|\mathbf{D} - \mathbf{C}\| \|\mathbf{D} - \mathbf{A}\| \sin D \tag{20}$$

(21)

From **??** and **??**

$$\|\mathbf{D} - \mathbf{A}\| (16) \sin 38.68 = 128$$
 (22)

$$\|\mathbf{D} - \mathbf{A}\| (16)(\frac{5}{8}) = 128$$

$$\|\mathbf{D} - \mathbf{A}\| = \frac{64}{5}$$

$$\|\mathbf{D} - \mathbf{A}\| = 12.8cm$$
(23)

$$\|\mathbf{D} - \mathbf{A}\| = \frac{64}{5} \tag{24}$$

$$\|\mathbf{D} - \mathbf{A}\| = 12.8cm\tag{25}$$

(26)

Therefore, | $\overrightarrow{\mathbf{AD}}$ | = 12.8 cm