STAT2014/6014 Lecture Week 7 Binary regression with logistic link

Lucy Hu Email: yunxi.hu@anu.edu.au

¹Research School of Finance, Actuarial Studies and Statistics Australian National University

Overview

Week 7: Binary regression with logistic link

- Motivation
- Binary regression with logistic link
 - Mean and variance
 - Canonical link function and inverse canonical link function
 - Odds ratio and interpretation of β_i
 - MLE (Maximum likelihood estimator)
 - Prediction (Example 1)
 - Deviance
 - Hypothesis testing (Example 4)

Motivation for T1 (Binary regression with logistic link)

What if...

- The response variable Y_i is a categorical variable which only takes **two possible** values 0 and 1 (i.e. a binary variable). For example:
 - In a study on the effectiveness of advertising, the response might be whether a given customer is willing to buy the new product.
 - In a study of home ownership, the response variable is whether a given individual owns a home.
- The response variable Y_i is **bernoulli (binary) distributed**.

T1 - Binary regression with logistic link

- $Y_i \sim Bin(M_i = 1, \pi_i) = Bern(\pi_i)$ (Bernoulli/Binary distribution).
- Y_i is discrete (categorical), which has two levels.
- $Y_i = 0$ (a failure under one trial) or 1 (a success under one trial).
- Non-aggregate data: (X_i, Y_i) .

Example 1: Calculus Data (Non-aggregate data)

- Suppose there are **30** students attempting a Calculus quiz question.
- We are interested in studying the relationship between the study time that each student spends in Calculus (in hours) and whether one student can answer the Calculus quiz question correctly.
- Assume there is no partial correct answer for this quiz question. i.e., one student's quiz question answer is either right or wrong.
- The independent variable (X_i) is **Time** (i.e. the study time that each student spends (in hours) in Calculus).
- The **response variable** (Y_i) is an indication of whether one student's quiz question answer is right or wrong.
 - $Y_i = 1$ if one student's quiz question answer is right.
 - $Y_i = 0$ if one student's quiz question answer is wrong.

```
calculus <-read.table("calculus.csv", header = TRUE, sep = ",")
attach(calculus)
# n=30, X=Time, Y = 1/0 = Answer the question correctly/not
length(calculus$Time)</pre>
```

[1] 30

head(calculus, n=14)

```
##
          Time Response
## 1
      1.2500000
## 2 1.2500000
## 3 1.2500000
## 4 1.2500000
## 5 1.2500000
## 6 1.2500000
## 7 1.2500000
## 8 1.0000000
## 9 1.0000000
## 10 1.0000000
## 11 1.0000000
## 12 1.0000000
## 13 0.8333333
## 14 0.8333333
```

Example 1: Calculus Data (Non-aggregate data)

- This is an example of non-aggregate data.
- There are 30 students in the sample, each student = one observation, n = 30.
- Data: $(X_i = Time, Y_i = 0/1)$.
- $Y_i = 0/1$ indicator under one trial.
 - indication of whether one student's quiz question answer is right.
 - $Y_i = 1$ if answer is right or 0 if wrong.
 - Two levels under 1 trial (whether one student's answer is right/wrong).
- Y_i (under 1 trial, given $X_i = x$) $\sim Bin(1, \pi_i) = Bern(\pi_i)$.

Issues

Why can't we use linear regression?

- Issue 1: $Y_i = 0/1$ only, which is not normally distributed.
- Issue 2: For LR, $\mu_{Y_i} = \beta_0 + \beta_1 X_{1_i} + ... + \beta_k X_{k_i} = x_i^T \beta$. + Range for LHS: [0,1]. + Range for RHS: Real number. + Not match!

```
# For Issue 1 => Create plot between Xi and Yi - points
plot(Time,Response,ylim=c(-0.5,1))
# If use LR: mu_Y = B0+B1*Xi - dashed line
fit<-lm(Response~Time); lines(Time,fit$fitted,lty=2)</pre>
```



```
# Issue 2: if use LR: mu Y = BO+B1*Xi to fit the data:
# LHS proxy: sample mean of Y under each Xi level
# Since all Y=0/1 \rightarrow its sample mean belongs to [0,1]
tapply(Response, Time, mean)
##
         0.4 0.625 0.714285714 0.833333333
                                                              1.25
##
    0.0000000
               0.0000000 0.3333333 0.3333333 0.8000000 0.8571429
# RHS proxy: yi hat = bo+b1*Xi => can be >0 or <0
summary(fit)$coefficients
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) -0.5824669 0.2698848 -2.158205 0.0396358463
          1.1951073 0.2953612 4.046257 0.0003711471
## Time
Time1 < -c(0.4, 0.625, 0.714285714, 0.8333333333, 1, 1.25)
summary(fit)$coefficients[1,1]+summary(fit)$coefficients[2,1]*Time1
# Not fit!May need LHS transformation: from mu_Y to g(mu_Y)
```

$E(Y_i), V(Y_i)$ for Binary variable $Y_i \sim Bin(1, \pi_i) = Bern(\pi_i)$

- Assume there are n number of observations in the sample, each observation (X_i, Y_i) is independent.
- There are *n* number of Y_i , where $Y_i \sim Bin(1, \pi_i) = Bern(\pi_i)$ (i.e. by changing rows, the π_i value would change.).
- $\pi_i = \pi_i | X = P(Y_i = 1 | X)$, where $X = (X_{1_i}, ... X_{k_i})$ (k different types of X for i^{th} observation), and i = 1, 2, ..., n.
- For each Y_i (there are n number of Y_i in total), it can be either 0 or 1
 - Scenario 1: $P(Y_i = 1|X) = \pi_i = \pi_i^1 \times (1 \pi_i)^{1-1}$, where $Y_i = 1$.
 - Scenario 2: $P(Y_i = 0|X) = 1 \pi_i = \pi_i^0 \times (1 \pi_i)^{1-0}$, where $Y_i = 0$.
 - Therefore, the PMF (probability mass function) is $P(Y_i = y_i) = f(y_i) = \pi_i^{y_i} \times (1 \pi_i)^{1 y_i}$.
 - $E(Y_i) = 1 \times \pi_i + 0 \times (1 \pi_i) = \pi_i = \pi_i \in [0, 1].$
 - $V(Y_i) = (1 \pi_i)^2 \times \pi_i + (0 \pi_i)^2 \times (1 \pi_i) = \pi_i \times (1 \pi_i)$.

The canonical link function and the inverse link function

If
$$Y_i \sim Bin(1, \pi_i) = Bern(\pi_i)$$

- [1] The canonical link function:
 - $\theta_i = g(\mu_{Y_i}) = \ln(\frac{\mu_{Y_i}}{1 \mu_{Y_i}}) = \ln(\frac{\pi_i}{1 \pi_i}) = \ln(Odds) = logit(\pi_i) = x_i^T \beta.$
 - Previously we know that $E(Y_i) = \mu_{Y_i} = \pi_i$.
 - Range: Real number.
- [2] The inverse canonical link function: $\mu_{Y_i} = \frac{e^{\theta_i}}{1+e^{\theta_i}} = \frac{e^{x_i^T\beta}}{1+e^{x_i^T\beta}}$.
 - Range: [0,1].
- The previous issues in LR (T0) have been solved!

Odds ratio of $(Y_i = 1|X)$

- $\pi_i = \pi_i | X = P(Y_i = 1 | X)$.
- [1] The canonical link function: $\theta_i = \ln(\frac{\pi_i}{1-\pi_i}) = \ln(Odds) = x_i^T \beta$.
- Odds ratio of $(Y_i = 1|X) = \exp([1]) = \exp(x_i^T \beta)$

$$\bullet = \frac{\pi_i}{1-\pi_i}$$

• =
$$\frac{P(Y_i=1|X)}{1-P(Y_i=1|X)}$$
 = $\frac{P(Y_i=1|X)}{P(Y_i=0|X)}$

- Odds that $Y_i = 1$ given X
- Odds ratio of $(Y_i = 1|X) = \frac{P(Y_i = 1|X)}{P(Y_i = 0|X)}$
 - ullet = 1 ightarrow $P(Y_i=1|X)=P(Y_i=0|X)=0.5
 ightarrow$ a 50% chance that $Y_i=1$ will occur.
 - $> 1 \rightarrow P(Y_i = 1|X) > P(Y_i = 0|X) \rightarrow a > 50\%$ chance that $Y_i = 1$ will occur.
 - ullet < 1 o $P(Y_i=1|X)$ < $P(Y_i=0|X)$ = 0.5 o a <50% chance that $Y_i=1$ will occur.
- Hence, odds is another way to describe probability.

Interpretation of β_j

- Odds ratio of $(Y_i = 1|X) = \exp(\theta_i) = \exp(x_i^T \beta) = \exp(\beta_0 + \beta_1 X_{1_i} + ... + \beta_k X_{k_i})$.
- Odds ratio of $(Y_i = 1|X)$ for $(X_{1_i} = x_{1_i}, ..., X_{j_i} = x_{j_i}, ..., X_{k_i} = x_{k_i}) = \exp(\beta_0 + \beta_1 x_{1_i} + ... + \beta_j x_{j_i} + ... + \beta_k x_{k_i}) = A$.
- Odds ratio of $(Y_i = 1|X)$ for $(X_{1_i} = x_{1_i}, ..., X_{j_i} = x_{j_i} + 1, ..., X_{k_i} = x_{k_i}) = \exp(\beta_0 + \beta_1 x_{1_i} + ... + \beta_j (x_{j_i} + 1) + ... + \beta_k x_{k_i}) = B = A \times \exp(\beta_j).$
- Interpretation of β_i : With the other variables held constant, if X_{j_i} increases by 1 unit, the odds that $Y_i = 1$ will change by a multiplicative factor of $\exp(\beta_i)$.

MLE: Obtaining estimated coefficients $\widehat{\beta}_i$ s

Assume there are n number of observations in the sample (non-aggregate data), each observation is independent.

In GLM, we use MLE (Maximum Likelihood Estimator) method to obtain estimated coefficients $\widehat{\beta}_i$ s ($\widehat{\beta}_0,...,\widehat{\beta}_k$).

- $Y_i \sim Bern(\pi_i)$ with the PMF $P(Y_i = y_i) = f(y_i) = \pi_i^{y_i} \times (1 \pi_i)^{1 y_i}$.
- The likelihood function: $L = \prod_{i=1}^n f(y_i) = \prod_{i=1}^n (\pi_i^{y_i} \times (1 \pi_i)^{1-y_i})$ (each observation is independent, and there are n observations in total).(Note that each $f(y_i)$ is a function of π_i , the inverse link function [2]. Hence $f(y_i)$ is a function of β_i s).
- Log-likelihood: $I = \ln(L) = \ln(\prod_{i=1}^{n} f(y_i)) = \sum_{i=1}^{n} \ln(f(y_i)) = \sum_{i=1}^{n} \ln(\pi_i^{y_i} \times (1 \pi_i)^{1 y_i}).$
- To maximize L is equivalent to maximize $I=\ln(L)$. Therefore, $\frac{\partial I}{\partial \widehat{\beta}_0}=0,...,\frac{\partial I}{\partial \widehat{\beta}_k}=0.$
- Solve for $\widehat{\beta}_0,...,\widehat{\beta}_k$.

In R's MLE calculation, it uses IRLS (Iterative Re-Weighted Least Squares) method instead, which is a method that will obtain equivalent estimated coefficients as MLE does. The detail for IRLS is not required in this course.

Substitute $\beta_0, ..., \beta_k$ by $\widehat{\beta_0}, ..., \widehat{\beta_k}$ we have

• [1] The fitted link function:
$$\widehat{[1]} = \widehat{\theta}_i = g(\widehat{\mu_{Y_i}}) = \ln(\frac{\widehat{\mu_{Y_i}}}{1-\widehat{\mu_{Y_i}}}) = \ln(\frac{\widehat{\pi_i}}{1-\widehat{\pi_i}}) = logit(\widehat{\pi_i}) = \ln(\widehat{Odds}) = x_i^T \widehat{\beta} = \widehat{\beta}_0 + \widehat{\beta}_1 X_{1_i} + ... + \widehat{\beta}_k X_{k_i}.$$

• [2] The fitted inverse link function:
$$\widehat{[2]} = \widehat{\mu_{Y_i}} = \frac{e^{\widehat{\theta_i}}}{1+e^{\widehat{\theta_i}}} = \frac{e^{\widehat{\beta_0}+\widehat{\beta_1}X_{1_i}+\ldots+\widehat{\beta_k}X_{k_i}}}{1+e^{\widehat{\beta_0}+\widehat{\beta_1}X_{1_i}+\ldots+\widehat{\beta_k}X_{k_i}}}.$$

Example 1 - Calculus (Non-aggregate data) - Prediction:

```
# n=30, X=Time, Y=1/0=Answer the question correctly/not length(calculus$Time)
```

[1] 30

head(calculus, n=10)

```
# [1] fitted: logit(pi_hat) = ln(pi_hat/(1-pi_hat)) = b0+b1*X1
# [2] fitted: pi_hat = exp([1] fitted)/(1+exp([1] fitted))
calculus.glmt1<-glm(Response ~ Time, family = binomial)
calculus.glmt1$coefficients
## (Intercept)
                      Time
##
     -6.125247 6.811302
calculus.glmt1<-glm(Response ~ Time, family = binomial(link='logit'))</pre>
calculus.glmt1$coefficients
## (Intercept)
                     Time
     -6.125247 6.811302
##
# [2] fitted = exp([1] fitted)/(1+exp([1] fitted))
fitted(calculus.glmt1)[1]
##
## 0.9159755
calculus.glmt1$fitted.values[1]
##
```

0.9159755

```
# Create plot between Xi and Yi
plot(Time,Response,ylim=c(-0.5,1))
# Plot T1 (Binary model) => much better than TO (LR model)
lines(Time,calculus.glmt1$fitted.values,lty=2)
```



```
# Odds
# [1] logit(pi hat) = ln(pi hat/(1-pi hat)) = ln(odds hat) = b0+b1*X1
predict(calculus.glmt1)[1]
##
## 2.388881
-6.125247+6.811302*Time[1]
## [1] 2.388881
\# odds = exp([1])
exp(predict(calculus.glmt1))[1]
##
## 10.90129
# B1 interpretation:
# With the other variables constant, increase X1 by 1 (from x to x+1)
# => odds of Y=1 will change by a multiplicative factor of exp(B1)
\# exp(b1)
exp(summary(calculus.glmt1)$coefficients[2,1])
## [1] 908.0528
```

```
# Prediction
# Let Xi=1.5 hours
\# [2] fitted = exp([1])/(1+exp([1]))
Xnew<-data.frame(Time=1.5)</pre>
Xnew
##
     Time
## 1 1.5
predict(calculus.glmt1, Xnew, type='response')
##
## 0.983564
\exp(-6.125247+6.811302*Xnew)/(1+\exp(-6.125247+6.811302*Xnew))
         Time
##
## 1 0.983564
# mu \ Y \ hat = pi \ hat = 0.98 > 1 => Yi \ hat = 1 =>
# for Xi =1.5 (student who studies 1.5 hours' calculus)
# => will have Yi fitted = 1 (answer the quiz question correctly)
```

Example 4: Calculus Data with Gender (Non-aggregate data)

- Suppose the context for Example 4 is exactly the same as Example 1.
- However, instead of 30 students we now have another sample, which contains 100 students attempting the Calculus quiz question.
- We also record the gender of each student.
 - ullet Gender is a dummy variable which has 2 levels o use (0/1) to fit
 - Let $X_2 = \text{Gender}$.
 - $X_2 = 1$ if this student is a male.
 - X₂ = 0 if this student is a female.
 - Rule: For the X variable which has q levels requires q-1 number of dummy variables (0/1) to parameterize this X variable (assume includes the intercept).
- Moreover, we also want to investigate on the interaction effect between the study time and the gender for each student.
 - ullet $X_3=X_1 imes X_2$, the interaction effect of the gender and the study time

The Question

- We are interested in studying the relationship between three factors and whether one student can answer the Calculus quiz question correctly. Those three factors are:
 - $X_1 = \text{Time} = \text{the study time that each student spends in Calculus (in hours)}$.
 - X_2 = the gender.
 - $X_2 = 1$ if this student is a male, and $X_2 = 0$ if this student is a female.
 - $X_3 = X_1 \times X_2$, the interaction effect of the gender and the study time.
 - $X_3 = X_1 \times X_2 = X_1 \times 1 = X_1$ if this student is a male.
 - $X_3 = X_1 \times X_2 = X_1 \times 0 = 0$ if this student is a female.
- The response variable (Y_i) is still an indication of whether one student's quiz question answer is right or wrong.
 - $Y_i = 1$ if one student's quiz question answer is right.
 - $Y_i = 0$ if one student's quiz question answer is wrong.
- n=100.
- Non-aggregate data: (X_1, X_2, X_3, Y)

```
# n=100, X1=Time, X2=gender(0\sim F, 1\sim M), X3=X1*X2, Y=0/1 (answer correctly)
# non-aggregate data
calculus <-read.table("calculus,gender.csv", header = TRUE, sep = ",")
length(calculus$Time)
## [1] 100
# X2 = Gender (2 levels - M/F \Rightarrow M=1, F=0 (baseline level))
contrasts(factor(calculus$Gender))
## 1
## 0 0
## 1 1
# Convert notations to nonaggregate data form
x1 nonagg<-calculus$Time
x2_nonagg<-calculus$Gender
x3_nonagg<-x1_nonagg * x2_nonagg
y_nonagg<-calculus$Response</pre>
```

```
# Non-aggregate data (X1,X2,X3,Y)
# n=100,X1=Time,X2=gender(0~F,1~M),X3=X1*X2,Y=0/1(answer correctly)
nonagg<-data.frame(x1_nonagg,x2_nonagg,x3_nonagg,y_nonagg)
head(nonagg,n=17)</pre>
```

##		x1_nonagg	x2_nonagg	x3_nonagg	y_nonagg
##	1	1.25	1	1.25	1
##	2	1.25	1	1.25	1
##	3	1.25	1	1.25	1
##	4	1.25	1	1.25	1
##	5	1.25	0	0.00	0
##	6	1.25	1	1.25	0
##	7	1.25	1	1.25	1
##	8	1.25	0	0.00	1
##	9	1.25	1	1.25	1
##	10	1.25	1	1.25	0
##	11	1.25	1	1.25	1
##	12	1.25	0	0.00	0
##	13	1.14	1	1.14	0
##	14	1.14	0	0.00	1
##	15	1.14	1	1.14	1
##	16	1.14	0	0.00	1
##	17	1.14	0	0.00	0

As the response variable Y is a binary variable, we fit the Binary regression with logistic link (T1).

- X_1 = Time, X_2 = the gender (=1 if male), $X_3 = X_1 \times X_2$, Y = whether the quiz question answer is right or wrong.
- k = 3 (slope number), p = k + 1 = 4 (parameter number), n=100.
- We use $\widehat{\beta_0}, \widehat{\beta_1}, \widehat{\beta_2}, \widehat{\beta_3} \to \beta_0, \beta_1, \beta_2, \beta_3$.
- [1] The canonical link function: $\theta_i = g(\mu_{Y_i}) = \ln(\frac{\mu_{Y_i}}{1-\mu_{Y_i}}) = \ln(\frac{\pi_i}{1-\pi_i}) = logit(\pi_i) = \ln(Odds) = x_i^T \beta = \beta_0 + \beta_1 X_{1_i} + \beta_2 X_{2_i} + \beta_3 X_{3_i}.$
- [1] The fitted canonical link function: $\widehat{\theta_i} = g(\widehat{\mu_{Y_i}}) = \ln(\frac{\widehat{\mu_{Y_i}}}{1-\widehat{\mu_{Y_i}}}) = \ln(\frac{\widehat{\pi_i}}{1-\widehat{\pi_i}}) = \log it(\widehat{\pi_i}) = \ln(\widehat{Odds}) = x_i^T \widehat{\beta} = \widehat{\beta_0} + \widehat{\beta_1} X_{1_i} + \widehat{\beta_2} X_{2_i} + \widehat{\beta_3} X_{3_i}.$

```
# [1] logit(pi) = ln(pi/(1-pi)) = B0+B1*X1+B2*X2+B3*X3
\# [2] pi = exp([1])/(1+exp([1]))
calculus.glmt1<-glm(y_nonagg ~ x1_nonagg + x2_nonagg + x3_nonagg,
                    family = binomial)
calculus.glmt1$coefficients
## (Intercept) x1_nonagg x2_nonagg x3_nonagg
## -1.0756181 1.7650778 -0.8174754 0.7326969
# Dispersion (assumed) = 1
summary(calculus.glmt1)$dispersion
## [1] 1
# (Unscaled) Deviance = D
summary(calculus.glmt1)$deviance
```

「1] 126.6875

Deviance

- (Unscaled) Deviance measures the goodness of fit for GLM.
 - How far the model deviates from the data(observation).
 - (Unscaled) Deviance = $D = D(y, \hat{y}) = constant 2 \times I$
 - log-likelihood $= I = ln(L) = ln(\prod_{i=1}^n f(y_i)) = \sum_{i=1}^n ln(f(y_i)) = a$ function of $(\beta_i s)$.
 - a lower deviance: model fits the data better.
 - In R: summary(model)\$deviance
- Scaled deviance = $D^* = D(y, \hat{y})^* = \frac{D(y, \hat{y})}{\phi_{assumed}}$
- φ_{assumed}
 - $\bullet = 1 \text{ for T1 (Binary)/2(Binomial)/3(Poisson)}$
 - = $MSE = \sigma^2$ for T0 (LR)
 - ullet = $cv=1/{
 m shape}$ parameter= $rac{1}{lpha}$ for T5 (Gamma).
 - In R: summary(model)\$dispersion

Hypothesis testing

(Please refer to the extra hand-written paper)

- 4 Types of hypothesis testing
 - ullet Hypothesis 1 Individual hypothesis Wald test (1 single beta) eta_j (j=0,1,2,...,k)
 - Hypothesis 2 Drop in deviance test 1 single beta β_j (j=1,2,...,k)
 - Hypothesis 3 Drop in deviance test All the β_j s (j=1,2,...,k)
 - Hypothesis 4 Drop in deviance test any combination of β_j s (j=1,2,...,k)

Hypothesis 1 - Individual hypothesis - Wald test (1 single beta) β_j (j=0,1,2,...,k)

```
summary(calculus.glmt1)$coefficients
##
                Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.0756181 0.6644921 -1.6187071 0.10551030
## x1_nonagg 1.7650778 0.9142947 1.9305348 0.05354061
## x2_nonagg -0.8174754 1.0117823 -0.8079557 0.41911606
## x3_nonagg 0.7326969 1.3311888 0.5504080 0.58203959
# vs N(0,1)'s critical value
c(qnorm(0.025), qnorm(0.975))
## [1] -1.959964 1.959964
# If p-value < 5% => Reject Ho
# Assume the sample size is relatively large.
```

Ho: Bi=0; H1:Bi != 0

Hypothesis 2 - Drop in deviance test - 1 single beta β_j (j=1,2,...,k)

```
# F:[1] logit(pi) = ln(pi/(1-pi)) = B0+B1*X1+B2*X2+B3*X3
calculus.glmt1<-glm(y_nonagg ~ x1_nonagg + x2_nonagg + x3_nonagg,
                    family = binomial)
# R:[1] logit(pi) = ln(pi/(1-pi)) = B0+B1*X1+B2*X2
calculus.glmt12<-glm(y_nonagg ~ x1_nonagg + x2_nonagg,
                     family = binomial)
# Ho: B3=0 : H1: >=1 B3 !=0
# Shows unscaled change in deviance and scaled change
# in deviance (by dispersion assumed) p-value from Chisquare
anova(calculus.glmt12,calculus.glmt1,test="Chisq")
## Analysis of Deviance Table
##
```

```
## ## Model 1: y_nonagg ~ x1_nonagg + x2_nonagg

## Model 2: y_nonagg ~ x1_nonagg + x2_nonagg + x3_nonagg

## Resid. Df Resid. Dev Df Deviance Pr(>Chi)

## 1 97 126.99

## 2 96 126.69 1 0.3036 0.5816
```

```
# TS = Change in deviance/dispersion(assumed) of full
anova(calculus.glmt12,calculus.glmt1,test="Chisq") $Deviance [2]/
      summary(calculus.glmt1)$dispersion
## [1] 0.3036019
ts2<-(summary(calculus.glmt12)$deviance-summary(calculus.glmt1)$deviance)/
      summary(calculus.glmt1)$dispersion
ts2
## [1] 0.3036019
 Vs Chisq, one side, df=# in Ho = 1
# cv (RHS RR=5%)
qchisq(0.95, 1)
## [1] 3.841459
# p-values = values from ANOVA table (scaled by dispersion assumed)
1 - pchisq(ts2, 1)
```

[1] 0.5816331

Hypothesis 3 - Drop in deviance test - All the β_j s (j=1,2,...,k)

```
##
## Model 1: y_nonagg ~ 1
## Model 2: y_nonagg ~ x1_nonagg + x2_nonagg + x3_nonagg
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1 99 138.63
## 2 96 126.69 3 11.942 0.007585 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Analysis of Deviance Table

```
# TS = Change in deviance/dispersion(assumed) of full
anova(calculus.glmt13,calculus.glmt1,test="Chisq")$Deviance[2]/
      summary(calculus.glmt1)$dispersion
## [1] 11.94198
ts3<-(summary(calculus.glmt13)$deviance-summary(calculus.glmt1)$deviance)/
      summary(calculus.glmt1)$dispersion
t.s3
## [1] 11.94198
 Vs Chisq, one side, df=# in Ho = 3
# cv (RHS RR=5%)
qchisq(0.95, 3)
## [1] 7.814728
# p-values = values from ANOVA table (scaled by dispersion assumed)
1 - pchisq(ts3, 3)
```

[1] 0.00758457

Hypothesis 4 - Drop in deviance test - any combination of β_j s (j=1,2,...,k)

```
## Model 1: y_nonagg ~ x2_nonagg

## Model 2: y_nonagg ~ x1_nonagg + x2_nonagg + x3_nonagg

## Resid. Df Resid. Dev Df Deviance Pr(>Chi)

## 1 98 138.47

## 2 96 126.69 2 11.782 0.002764 **

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

##

Analysis of Deviance Table

```
# TS = Change in deviance/dispersion(assumed) of full
anova(calculus.glmt14,calculus.glmt1,test="Chisq") $Deviance [2]/
      summary(calculus.glmt1)$dispersion
## [1] 11.78194
ts4<-(summary(calculus.glmt14)$deviance-summary(calculus.glmt1)$deviance)/
      summary(calculus.glmt1)$dispersion
t.s4
## [1] 11.78194
 Vs Chisq, one side, df=# in Ho = 2
# cv (RHS RR=5%)
qchisq(0.95, 2)
## [1] 5.991465
# p-values = values from ANOVA table (scaled by dispersion assumed)
1 - pchisq(ts4, 2)
```

[1] 0.002764294