Examen

[Durée deux heures. Aucun document n'est autorisé. Tous les exercices sont independants. Seule les reponses soigneusement justifiées seront prise en compte.]

Exercice 1. Soit $(X_n)_{n>0}$ la chaîne de Markov sur $\mathcal{M} = \{1, 2, 3, 4, 5\}$ de matrice de transition

$$P = \left(\begin{array}{ccccc} 0.3 & 0.7 & 0 & 0 & 0\\ 0.5 & 0.5 & 0 & 0 & 0\\ 0 & 0.2 & 0.4 & 0.4 & 0\\ 0 & 0 & 0 & 1 & 0\\ 0.2 & 0.3 & 0 & 0 & 0.5 \end{array}\right)$$

- a) Déterminer les classes de communication et classifier les états en transients ou récurrents.
- b) La chaîne est-elle irréductible?
- c) Calculer $\mathbb{P}(X_2=1|X_0=5)$ et $\mathbb{P}(X_n=4|X_0=3)$ pour tout $n \ge 1$.
- d) Soit $T_x = \inf\{n > 0 : X_n = x\}$. Calculer $\mathbb{P}(T_2 < T_4 | X_0 = 3)$.
- e) Déterminer les probabilités invariantes de la chaîne.
- f) Soit $u(x) = \mathbb{P}_x(T_1 < +\infty)$ pour tout $x \in \mathcal{M}$. Déterminer l'équation linéaire satisfaite par u.

Exercice 2. Soit $(X_n)_{n\geqslant 0}$ une chaîne de Markov homogène sur l'espace d'états \mathcal{M} et de matrice de transition P. Soit $(\mathcal{F}_n)_{n\geqslant 0}$ la filtration engendrée par les $(X_n)_{n\geqslant 0}$ et

$$T = \inf \{ n \ge 1 : X_n \ne X_0 \}$$
.

- a) Montrer que T est un temps d'arrêt.
- b) Calculer $\mathbb{P}_x(T=k)$ pour tout $k \ge 1$ et montrer que si P(x,x) < 1 alors $\mathbb{P}_x(T=+\infty) = 0$.
- c) En supposant que P(x, x) < 1 calculer $\mathbb{P}_x(X_T = y)$ pour tout $x, y \in \mathcal{M}$.

Exercice 3. Soit $(X_n)_{n\geqslant 0}$ une chaîne de Markov homogène sur l'espace d'états \mathcal{M} avec matrice de transition P. Soit $f:\mathcal{M}\to [0,+\infty]$ une fonction positive telle que

$$f(x) \geqslant \sum_{y \in \mathcal{M}} P(x, y) f(y) = Pf(x)$$

pour tout $x \in \mathcal{M}$. On défini le processus $(M_n)_{n \geqslant 0}$ par $M_n = f(X_n)$.

- a) Montrer que M_n est une sur-martingale par rapport à la filtration engendrée par les $(X_n)_{n\geqslant 0}$.
- b) Montrer que M_n converge p.s.

c) En supposant que la chaîne est irréductible et récurrente, montrer que f est une fonction constante.

Exercice 4. Soit $(U_n)_{n\geqslant 1}$ une suite i.i.d. de loi uniforme sur [0, 1] et X_0 une v.a. uniforme sur [0, 1] et indépendante des $(U_n)_{n\geqslant 1}$. Soit $0<\alpha<1$ et

$$X_{n+1} = \alpha X_n + (1-\alpha) \mathbb{I}_{U_{n+1} \leqslant X_n}$$
 pour $n \geqslant 1$.

- a) Soit $\mathcal{F}_n = \sigma(X_0, ..., X_n)$ pour $n \ge 0$. Calculer $\mathbb{E}[X_{n+1} | \mathcal{F}_n]$ pour tout $n \ge 0$.
- b) Montrer que la suite $(X_n)_{n\geqslant 0}$ converge p.s. vers un limite qu'on appelle X_∞ .
- c) Montrer que $X_{\infty} = \lim_{n} X_n \in \{0, 1\}$ p.s.
- d) Montrer par récurrence que $X_n \leq 1$ p.s.
- e) Montrer que X_n converge vers X_∞ dans L^1 .
- f) En déduire que $\mathbb{P}(X_{\infty}=0) = \mathbb{P}(X_{\infty}=1) = 1/2$.