Алгебра и геометрия, 2 семестр

ИВАЩЕНКО ДМИТРИЙ

Благодарность. Спасибо Дарье Колодзей за вычитку и первую лекцию.

Влагодарность. Спасибо Полине Лукиной, Андрею Саутину, Константину Гудкову, Сергею Попову и Егору Беликову за вычитку и помощь в исправлении ошибок и опечаток.

DISCLAIMER: THESE PAGES COME WITH ABSOLUTELY NO WARRANTY, USE AT YOUR OWN RISK;) Багрепорты, комментарии, предложения и прочее приветствуются посредством vk.com/skird, а также e-mail

Содержание

Лек	ция 1. Алгебры. Многочлены.	4
1.	Понятие кольца.	4
2.	Многочлены над кольцом.	4
3.	Делимость многочленов.	6
лине	ция 2. Свойства многочленов и их корней, формальное дифференцирование, ейные преобразования линейных пространств, собственные числа и горы.	, 8
4.	Многочлены и их корни.	8
5.	Формальная производная и ее свойства.	9
6.	Линейное преобразование линейного пространства. Инвариантные подпространства	10
7.	Собственные значения преобразований и матриц	11
	ция 3. Характеристический многочлен. Теорема Гамильтона-Кэли. улирующие многочлены.	12
8.	Характеристические многочлены и их коэффициенты	12
9.	Диагонализуемые преобразования, алгебраические и геометрические кратности.	13
10	. Критерий диагонализуемости и приведение к верхнетреугольному виду	13
11	. Теорема Гамильтона-Кэли	15
12	. Аннулирующие многочлены	16
	ция 4. Минимальный многочлен и жорданова нормальная форма. Теорема	16
13	в. Свойства минимальных многочленов	16
14	Корневые подпространства	17

15.	Жорданова нормальная форма преобразования	18
Лекц	ия 5. Единственность жордановой нормальной формы и ее применения.	19
16.	Единственность ЖНФ нильпотентного оператора	19
17.	Возведение матрицы в произвольную степень	21
18.	Линейные рекурренты	21
	дия 6. Линейные рекурренты, циклические матрицы и общий случай емы Гамильтона-Кэли.	23
19.	Снова про линейные рекурренты.	23
20.	Общий случай теоремы Гамильтона-Кэли	24
21.	Конструкции полей	26
Лекц	ия 7. Полилинейные отображения и формы.	26
22.	Полилинейные отображения и формы	26
23.	Билинейные формы	28
Лекц	ия 8. Квадратичные формы, скалярное произведение.	29
24.	Квадратичные и симметрические билинейные формы	29
25.	Приведение квадратичной формы к диагональному виду	30
26.	Полуторалинейные отображения и эрмитовы квадратичные формы	31
27.	Диагонализация эрмитовых форм, положительная и отрицательная определенност индексы инерции.	32
	ия 9. Метод Якоби, критерий Сильвестра, канонизация кососимметрическ и. Евклидовы и эрмитовы пространства.	их 33
28.		33
29.	Критерий Сильвестра	34
30.	Канонизация кососимметрических форм	34
31.	Евклидовы и эрмитовы пространства.	35
32.	Длина вектора и матрица Грама	36
33.	Неравенство Коши-Буняковского-Шварца и неравенство треугольника	37
	ия 10. Ортогональные системы, базисы и матрицы. Ортогональные пнения и проекции. Процесс ортогонализации. Объем.	37
34.		37
35.	Изоморфизмы евклидовых и эрмитовых пространств.	38
36.	Ортогональное дополнение и ортогональная проекция	39
37.	Ортогонализация Грама-Шмидта	41
38.	Объем и его свойства	41

	ия 11. Объем и расстояние. Линейные преобразования евклидовых ранств. Самосопряженные и ортогональные преобразования.	42
39.	Выражение для объемов и расстояний. Ориентированный объем.	42
40.	Линейные преобразования евклидового пространства. Сопряженные преобразовани и их свойства.	ия 42
41.	Свойства инвариантных подпространств при сопряжении, теорема Фредгольма.	43
42.	Самосопряженные преобразования	44
43.	Ортогональные преобразования	45
	ия 12. Ортогональные преобразования евклидового пространства. рное разложение. Приведение формы к главным осям.	46
44.	Канонический вид ортогонального преобразования евклидового пространства	46
45.	Нормальные преобразования как обобщение самосопряженных, ортогональных	47
46.	Полярное разложение преобразование	47
47.	Квадратичные и билинейные формы в евклидовом и унитарном пространстве. Присоединенные преобразования.	48
48.	Приведение эрмитовой формы к главным осям	48
	ия 13^\star . Тензоры, тензорное произведение, выражение тензора в цинатах.	49
49.	Понятие тензора и тензорного произведения	49
50.	Задание тензора в координатах	50
51.	Изменение координат при замене базиса	51
Лекц	ия 14 [*] . Другие примеры тензоров, тензорные свертки.	52
52.	Задание алгебры тензором	52
53.	Свертка тензора	52
54.	Симметричные тензоры	53
55.	Симметрические тензоры. Симметризация тензора	54
56.	Кососимметрические тензоры. Альтернирование тензора	54

Лекция 1. Алгебры. Многочлены.

1. Понятие кольца.

Определение. Пусть R — множество с операциями + . Тогда $(R, +, \cdot)$ — коль цо, если

- (R, +) абелева группа
- a(bc) = (ab)c account amus ность
- a(b+c) = ab + ac и (a+b)c = ac + bc дистрибутивность
- $\exists 1 \in R : \forall a \in R$ верно $1 \cdot a = a \cdot 1 = a$ существование единичного элемента (некоторые авторы не требуют его по определению кольца)

Будем называть кольцо *коммутативным*, если $a \cdot b = b \cdot a$.

Ещё несколько связанных определений.

Полугруппа — множество с заданной бинарной ассоциативной операцией.

Monoud — полугруппа с нейтральным элементом.

Группа — моноид, все элементы которого обратимы.

Абелева группа — группа с коммутативной операцией.

 Π оле — коммутативное кольцо с единицей $1 \neq 0$, в котором все элементы, кроме нуля, обратимы по умножению.

Утверждение. Пусть R — кольцо. Тогда $\forall r \in R \to r \cdot 0 = 0 \cdot r = 0$.

Доказательство.
$$a \cdot 0 = a \cdot (0+0) = a \cdot 0 + a \cdot 0 \Longrightarrow a \cdot 0 = 0$$

Определение. Кольцо R называется алгеброй над полем F, если $F \subset R$ и $\forall a \in F, b \in R \to a \cdot b = b \cdot a$.

Пример. Пусть R — это все возможные матрицы $n \times n$, а F — это все возможные результаты умножение единичной матрицы на число. R — кольцо. F — поле, R — алгебра над F. В этом нетрудно убедиться простой проверкой свойств.

Замечание. Множество V называется пространством над полем F, если V — абелева группа по сложению и задан закон умножения элементов пространства V на элементы поля F, такой, что для $\forall x,y\in V,\alpha,\beta\in F$ выполняется дистрибутивность $(\alpha+\beta)x=\alpha x+\beta x,\ \alpha(x+y)=\alpha x+\alpha y$ и ассоциативность $(\alpha\beta)x=\alpha(\beta x)$, а также $1\cdot x=x$, где $1\in F,\ x\in V$.

Заметим, что алгебра над F является одновременно пространством над F.

2. Многочлены над кольцом.

Определение. Пусть R — коммутативное кольцо. *Многочленом* называется бесконечная последовательность элементов $P=(p_0,p_1,\dots),\ p_i\in R$ такая, что существует номер n, начиная с которого все элементы последовательности равны нулю.

Пусть P и Q — многочлены. Определим операции над многочленами.

$$P + Q = (p_0 + q_0, p_1 + q_1, \dots)$$

$$P \cdot Q = R = (r_0, r_1, \dots), \ r_k = \sum_{i=0}^k p_i q_{k-i}$$

 $\it 3ameчanue.$ Заметим, что если P и Q многочлены, то $P\cdot Q$ — тоже многочлен.

Доказательство. Пусть $R = P \cdot Q$, $\forall n \geq N$ верно, что $p_n = 0$ и $\forall m \geq M$ верно, что $q_m = 0$. Тогда $\forall k \geq K = N + M$ будет выполнено $r_k = 0$.

Теорема. Многочлены над коммутативным кольцом R образуют коммутативное кольцо.

 $\begin{subarray}{ll} \begin{subarray}{ll} \begin$

- Абелева группа по сложению: сложение ассоциативно и коммутативно, нейтральный элемент $(0,0,\ldots)$, обратный элемент $(-p_1,-p_2,\ldots)$.
- Ассоциативность умножения: $A \cdot (B \cdot C) = D = (A \cdot B) \cdot C$, где $d_n = \sum_{i+j+k=n} a_i b_j c_k$.
- Коммутативность умножения следует из коммутативности умножения в R.
- Дистрибутивность $A \cdot (B+C) = A \cdot B + A \cdot C$ тривиально показывается расписыванием сумм.
- Нейтральный элемент по умножению: (1,0,0,...).

Определение. В кольце многочленов над R выделим специальные элементы.

- Будем отождествлять $a \in R$ со многочленом $(a, 0, 0, \dots)$
- Обозначим за x элемент $(0,1,0,0,\dots)$, за $x^2-(0,0,1,0,0,\dots)$, за $x^3-(0,0,0,1,0,0,\dots)$ и так далее.

Замечание. Если $P = (p_0, p_1, ...)$, то $a \cdot P = (a \cdot p_0, a \cdot p_1, ...)$.

Замечание. Любой многочлен можно представить в виде $P = p_0 + p_1 x + p_2 x^2 + \dots$

Будем обозначать кольцо многочленов над R как R[x].

Замечание. Если R — алгебра над F, то R[x], тоже алгебра над F.

Определение. Пусть многочлен P из R[x], представим в виде $P=p_0+p_1x+\cdots+p_nx^n$, причем $p_n\neq 0$. Тогда n-c тепень многочлена, p_n-c тарший коэффициент, p_nx^n-c тарший член. Положим $\deg(0)=-\infty$.

Определение. Коммутативное кольцо R называется *целостным*, если $\forall a,b \in R \to ab = 0 \Rightarrow a = 0 \lor b = 0$.

Замечание. В целостном кольце $a \cdot b = a \cdot c, a \neq 0 \Rightarrow b = c$.

Пример. Нецелостное коммутативное кольцо — \mathbb{Z}_6 .

Теорема. Пусть R — целостное кольцо, $P,Q \in R[x]$. Тогда $\deg(P \cdot Q) = \deg(P) + \deg(Q)$

Доказательство. $P = p_0 + \dots + p_n x^n$, очевидно $n = \deg(P)$, а $p_n \neq 0$. $Q = q_0 + \dots + q_m x^m$, аналогично $m = \deg(Q)$ и $q_m \neq 0$. $P \cdot Q = p_0 q_0 + \dots + p_n q_k x^{n+k}$.

Так как кольцо целостное, $p_n q_k \neq 0$, значит $\deg(P \cdot Q) \geq \deg(P) + \deg(Q)$. Выше мы уже отмечали, что степень произведения многочленов не превосходит суммы степеней множителей. Таким образом теорема доказана.

Упражнение. Докажите теорему в обратную сторону.

Замечание. Если мы хотим определить многочлен от двух переменных R[x,y], то можно сделать, например, так. Воспользуемся тем, что R[x] — коммутативное кольцо и определим R[x,y] как многочлен над кольцом R[x].

В дальнейшем изложении мы будем рассматривать многочлены от одной переменной над целостным коммутативным кольцом.

3. ДЕЛИМОСТЬ МНОГОЧЛЕНОВ.

Определение. Пусть $P,Q \in F[x]$. Говорят что P *делится* на Q, если существует $S \in F[x]$ такой, что $P = Q \cdot S$.

Определение. Пусть $P, Q \in F[x]$. $S \in F[x]$ называется $\gcd(P, Q)$, если

- S|P, S|Q, что означает, что S делит P и Q
- любой $S' \in F[x]$, который делит P и Q должен делить S

Теорема. Пусть S_1 и S_2 — два различных $\gcd(P,Q)$. Тогда $\exists \alpha \in F[x]: S_1 = \alpha S_2$.

Доказательство.
$$S_1|S_2 \Longrightarrow \deg(S_1) \leq \deg(S_2), \ S_2|S_1 \Rightarrow \deg(S_2) \leq \deg(S_1) \Rightarrow \deg(S_1) = \deg(S_2) \Rightarrow S_1 = T \cdot S_2, \ \deg(T) = 0 \Rightarrow S_1 = \alpha S_2.$$

Теорема. Пусть $A, B \in F[x]$, пусть также $B \neq 0$. Тогда $\exists Q, R \in F[x]$ такие, что A = BQ + R, при этом $\deg(R) < \deg(B)$.

Доказательство. Индукция по deg(A).

База: $\deg(A) < \deg(B) \Rightarrow Q = 0$ и R = A

Переход: Пусть
$$\deg(A) = n$$
, $\deg(B) = k$, $n \ge k$, $A = \sum\limits_{i=0}^{n} a_i \cdot x^i$, $B = \sum\limits_{i=0}^{k} b_i \cdot x^i$. Тогда $A = \frac{a_n}{b_k} \cdot x^{n-k} \cdot B + A_1$, $\deg A_1 < \deg A$, так как $\frac{a_n}{b_k} x^{n-k} B = a_n x^n + \frac{a_n}{b_k} b_{k-1} x^{n-1} + \dots + \frac{a_n}{b_k} b_0 x^{n-k}$. Применим предположение индукции: $A_1 = Q_1 \cdot B + R_1$, $\deg(R_1) < \deg(B)$. Значит $A = \frac{a_n}{b_k} x^{n-k} B + Q_1 \cdot B + R_1$, тогда $A = B \cdot Q + R$, причем $\deg(R) < \deg(B)$.

Упражнение. Докажите, что Q и R можно выбрать единственным образом.

Теорема. Пусть $A, B \in F[x]$. Тогда $\exists S \in F[x]$ такое, что $\gcd(A, B) = S$, при этом $S = u \cdot A + v \cdot B$, где $u, v \in F[x]$.

Доказательство. Индукция по меньшей степени.

```
База: n = -\infty. Пусть A = 0, тогда \gcd(A, B) = B = 0 \cdot A + 1 \cdot B.
```

Переход: $n \geq 0$. Пусть степень B меньше, то есть $n = \deg(B)$ и $n \leq \deg(A)$. По предыдущей теореме $A = Q \cdot B + R$, где $\deg(R) < \deg(B)$. Применим предположение индукции к R и $B.\gcd(R,B) = u_1 \cdot B + v_1 \cdot R$. Покажем, что $T|A,T|B \Longleftrightarrow T|B,T|R$.

$$T|A,T|B\Longrightarrow R=A-Q\cdot B,\,R$$
 делится на T

$$T|R,T|B\Longrightarrow A=Q\cdot B+R,$$
 A делится на T

Из показанного следует, что $\gcd(A,B) = \gcd(B,R)$. Значит искомое $S = \gcd(A,B)$ представимо в виде $S = u_1 \cdot B + v_1(A - Q \cdot B) = v_1 \cdot A + (u_1 - Q) \cdot B$

Замечание. Мы только что применили алгоритм Евклида к многочленам.

Определение. Многочлен $P \in F[x]$ ненулевой степени называется *неприводимым* над F, если не существует $A, B \in F[x]$, таких, что $P = A \cdot B$, $\deg(A) \ge 1$, $\deg(B) \ge 1$.

Замечание. Любой многочлен первой степени неприводим.

Замечание. Пусть P — неприводимый многочлен, Q|P. Тогда либо Q имеет степень 0, либо $Q=\alpha P$, где $\alpha\in F$.

Утверждение. Пусть $A, B, C \in F[x]$, A делит $B \cdot C$ и $\gcd(A, C) = 1$. Тогда A делит B.

Доказательство. По предыдущей теореме, $\gcd(A,C) = 1 = u \cdot A + v \cdot C$. Домножим обе части равенства на B. Получим $B = u \cdot A \cdot B + v \cdot B \cdot C$. Правая часть равенства кратна A, значит и B делится на A.

Теорема. (о разложении на неприводимые) Пусть $A \in F[x]$, $\deg(A) \geq 1$. Тогда A раскладывается в произведение неприводимых многочленов. При этом, если есть несколько таких представлений, то количество многочленов в них одно и то же. Более того, разложение единственно с точностью до соответствия (Будем называть многочлены P и P' соответствующими, если $P = \alpha P'$, $\alpha \in F$).

Доказательство. Разложим A в произведение наибольшего возможного количества многочленов. Это количество конечно, так как $\deg(A)$ — конечное число. Получим, что $A = P_1 \cdot P_2 \cdot \cdots \cdot P_k$. Многочлены из этого разложения неприводимы, так как в противном случае число множителей было бы не максимальным.

Теперь рассмотрим еще одно разложение A на неприводимые многочлены. $A = P_1 \cdot P_2 \cdot \ldots \cdot P_k = Q_1 \cdot Q_2 \cdot \cdots \cdot Q_l$. Покажем, что эти разложения совпадают с точностью до констант.

Индукция по k (количеству многочленов в разложении A на максимальное количество множителей).

База: $k = 1 \Rightarrow A$ — неприводимый многочлен. **Переход:** k > 2.

Пусть P_1 — первый множитель разложения на максимальное количество многочленов. P_1 делит произведение $Q_1 \cdot Q_2 \cdot \cdots \cdot Q_l$. Если P_1 не делит Q_t , то $\gcd(P,Q_t)=1$, в противном случае многочлены P_1 и Q_t не были бы неприводимыми. Значит, по лемме, доказанной выше, P_1 делит оставшееся произведение $Q_1 \cdot Q_2 \cdot \ldots \cdot Q_{t-1} \cdot Q_{t+1} \cdot \cdots \cdot Q_l$. Применив индукцию, аналогичную той, что применяется в доказательстве основной теоремы арифметики, получим, что P_1 делит какой-то многочлен Q_i , более того, так как P_1 и Q_i — неприводимые многочлены, $Q_i = \gamma P_1$.

$$P_1 \cdot P_2 \cdot \dots \cdot P_k = \gamma P_1 \cdot Q_1 \cdot \dots \cdot Q_{i-1} \cdot Q_{i+1} \cdot \dots \cdot Q_l$$

Сократим на P_1 и воспользуемся предположением индукции. Получим, что разложения действительно совпадают с точностью до констант. Остается только доказать, почему мы имеем право сокращать на P_1 . Вспомним, что мы условились работать со многочленами над целостными кольцами. Докажем, что F — целостное кольцо $\Rightarrow F[x]$ — целостное кольцо.

Мы уже доказывали, что в целостном кольце $\deg(P \cdot Q) = \deg(P) + \deg(Q)$. Если многочлены P и Q отличны от нуля, то степень их произведения будет не меньше нулевой и уж точно больше $-\infty$, которая соответствует нулевому многочлену.

Таким образом мы подтвердили корректность своих рассуждений и завершили доказательство.

Определение. Пусть F — поле, A — алгебра над F. $P \in F[x]$, $a \in A$. Тогда значением P на элементе a, это $P(a) = p_0 + p_1 a + \dots p_k a^k$.

Упражнение. Доказать, что $P = A \cdot B \iff \forall a \ P(a) = A(a) \cdot B(a)$.

Лекция 2. Свойства многочленов и их корней, формальное дифференцирование, линейные преобразования линейных пространств, собственные числа и векторы.

4. Многочлены и их корни.

Определение. Пусть F — коммутативное подкольцо целостного кольца K. Элемент $c \in K$ называется *корнем* (нулем) многочлена $P \in F[x]$, если P(c) = 0.

Теорема. (Безу, частный случай). Пусть $P \in F[x]$, $c \in F$, тогда $P(c) = 0 \Leftrightarrow P : (x - c)$

Доказательство. Делим на (x-c) с остатком. $P(x)=(x-c)\cdot Q(x)+r$. Так как степень r строго меньше степени (x-c), то $r\in F$. Тогда P(c)=r. Значит с — корень тогда и только тогда, когда r=0, то есть когда P(x) делится на (x-c) без остатка.

Определение. Пусть c — корень многочлена P(x). Мы говорим, что c — корень кратности k, если $P(x) = (x-c)^k \cdot Q(x), \ Q(c) \neq 0 \ (P(x)$ не делится на $(x-c)^{k+1}$).

Теорема. Пусть A- целостное кольцо, $f\neq 0-$ многочлен из A[X] и c_1,\ldots,c_r- его корни, кратностей соответственно $k_1\ldots,k_r.$ Тогда

$$f(X) = (X - c_1)^{k_1} \cdot \dots \cdot (X - c_r)^{k_r} \cdot g(X), \ g(X) \in A[x], \ g(c_i) \neq 0, \ i = 1, \dots, r$$

В частности, число корней многочлена $F \in A[X]$, рассматриваемых вместе с их кратностями, не превосходит степени многочлена: $k_1 + k_2 + \cdots + k_r \leq \deg f$.

Доказательство. Так как $\deg f = (k_1 + \dots + k_r) + \deg(g)$, неравенство $k_1 + k_2 + \dots + k_r \leq \deg(f)$ будет следствием делимости f на $(X - c_1)^{k_1} \dots (X - c_r)^{k_r}$, которую мы установим индукцией по r. При r = 1 доказывать нечего. Пусть мы уже знаем, что

$$f(X) = (X - c_1)^{k_1} \cdot \dots \cdot (X - c_{r-1})^{k_{r-1}} \cdot h(X)$$

Так как у нас $i \neq j \Rightarrow c_i \neq c_j$ и A — целостное кольцо, то элемент c_r не является корнем многочлена $(X-c_1)^{k_1} \cdot \dots \cdot (X-c_{r-1})^{k_{r-1}}$. Но c_r-k -кратный корень многочлена f, то есть $f(X)=(X-c_r)^{k_r} \cdot u(X)$. Поэтому $h(c_r)=0$. Соответственно $h(X)=(X-c_r)^s \cdot v(X), \ s \leq k_r$. Имеем

$$(X - c_r)^{k_r} \cdot u(X) = f(X) = (X - c_1)^{k_1} \cdot \dots \cdot (X - c_{r-1})^{k_{r-1}} \cdot (X - c_r)^s \cdot v(X)$$

Используя закон сокращения в целостном кольце A[X], приходим к заключению, что $s=k_r$.

Замечание. Если $P(x), \ Q(x) \in F[x], \ \deg P, \ \deg Q \le n$ и для некоторых различных $c_1, \dots, c_{n+1} \in F$ верно $P(c_i) = Q(c_i)$, то P(x) = Q(x).

Доказательство. c_1, \ldots, c_{n+1} — различные корни многочлена (P-Q) и $\deg(P-Q) \leq n$ Значит P-Q=0, Так как любой другой многочлен степени, не превосходящей n, не может иметь n+1 корней.

Замечание. Для заданных различных $c_1, \ldots, c_{n+1} \in F$ и произвольных $a_1, \ldots, a_{n+1} \in F$ существует единственный $P(x) \in F[x]$, такой что $\deg(P) \leq n$, $P(c_i) = a_i$.

Доказательство. Пусть P_n множество всех многочленов над F степени $\leq n$. Тогда P_n — линейное пространство над F. Столбцы $M_{(n+1)\times 1}$ — тоже линейное пространство над F. Опре-

делим отображение
$$\varphi: P_n \to M_{(n+1)\times 1}$$
 как $\varphi(P) = \begin{pmatrix} P(c_1) \\ \vdots \\ P(c_{n+1}) \end{pmatrix}$, где c_1, \dots, c_{n+1} зафиксиро-

ваны. Докажем, что φ — биекция (из чего будет следовать утверждение теоремы).

Инъективность следует из того, что два многочлена, имеющие степень не выше n, принимающие одинаковые значения на n+1 различных аргументах, равны.

Сюръективность: φ — линейное отображение, в чем нетрудно убедиться, проверив свойства линейности. Из-за того, что φ — иньекция, $\dim \ker \varphi = 0$, то есть только один многочлен переходит в нулевой столбец.

C другой стороны, dim $P_n = \dim M_{n+1,1} = n+1$, dim $\ker \varphi + \dim Im \varphi = \dim P_n = n+1$. $\dim Im \ \varphi = n+1 = \dim M_{n+1,1}$. Значит $Im \ \varphi = M_{n+1,1}$, что означает сюръективность.

Замечание. Если мы хотим найти прообраз какого-то столбца, нам достаточно найти прообразы базисных столбцов. У базисного столбца k прообраз выписывается явно

$$\frac{\prod_{i \neq k} (x - c_i)}{\prod_{i \neq k} (c_k - c_i)}$$

А тогда любой прообраз выразится через линейную комбинацию прообразов базисных столбцов. Это называется интерполяционная формула Лагранжа.

5. Формальная производная и ее свойства.

Определение. Пусть есть $P(x) \in F[x], P(x) = \sum_{i=0}^{n} p_i \cdot x_i$. Тогда формальной производной этого многочлена называется $P'(x) = \sum_{i=1}^{n} i \cdot p_i \cdot x^{(i-1)}$.

Замечание. $\deg P'(x) < (\deg P(x)) - 1$. Свойства формальной производной.

- (1) $\forall \alpha \in F \to (\alpha P)' = \alpha \cdot P'$ (по определению) (2) (P+Q)' = P' + Q' (по определению)
- $(3) (P \cdot Q)' = P' \cdot Q + P \cdot Q$
- (4) $P(Q(x))' = P'(Q(x)) \cdot Q'(x)$

Доказательство. Свойства 1 и 2 проверяются по определению.

Докажем свойство 3. Для начала частный случай: $P(x) = x^n, \ Q(x) = x^m, \ (P \cdot Q)' = (x^{n+m})' = (n+m) \cdot x^{n+m-1}. \ P' \cdot Q + Q' \cdot P = n \cdot x^{n+m-1} + m \cdot x^{n+n-1} = (n+m) \cdot x^{n+m-1}, \$ значит $P' \cdot Q + P \cdot Q' = (P \cdot Q)'.$

В общем случае по линейности

$$(P \cdot Q)' = \left(\sum_{i=0}^{\deg P \deg Q} \sum_{j=0}^{Q} p_i q_j x^{i+j}\right)' = \sum_{i=0}^{\deg P \deg Q} \sum_{j=0}^{Q} p_i \cdot q_j \cdot (x^{i+j})'$$

С другой стороны

$$P' \cdot Q + P \cdot Q' = \sum_{i=0}^{\deg P \deg Q} \sum_{j=0}^{\deg P} p_i q_j (x^i)' \cdot x^j + \sum_{i=0}^{\deg P \deg Q} \sum_{j=0}^{\deg P} p_i q_j x^i \cdot (x^j)'$$

Теперь легко видеть, что в общем случае $P' \cdot Q + P \cdot Q' = (P \cdot Q)'$.

 \mathcal{A} оказательство. Индукцией можно получить формулу дифференцирования $(P_1\cdot\ldots\cdot P_n)'=\sum_{i=1}^n P_1\cdot\ldots\cdot P_{i-1}\cdot P_i'\cdot P_{i+1}\cdot\ldots\cdot P_n$

Теперь докажем свойство 4. По обобщенной формуле для производной произведения $(Q(x)^n)' = n \cdot Q' \cdot Q^{n-1}$. Тогда

$$P(Q(x)) = \left(\sum p_i \cdot Q(x)^i\right)' = \sum i \cdot p_i \cdot Q^{i-1} \cdot Q' = P'(Q(x)) \cdot Q'$$

Замечание. Если А — алгебра над F, отображение $':A\to A$, удовлетворяющее (1)—(3), называется дифференцированием алгебры А. $a\in A\mapsto a'\in A$.

Упражнение. Пусть $S(x) \in F[x]$. Тогда $\exists !$ дифференцирование F[x] такое, что x' = S(x).

Теорема. Пусть $P(x) \in F[x]$, тогда

- (1) $c \in F$ корень P(x) кратности хотя бы $2 \Leftrightarrow c$ корень (P(x), P'(x)).
- (2) Если c корень кратности k, то c корень P'(x) кратности $\geq k-1$

Доказательство. Пусть $P(x) = (x-c)^k \cdot Q(x), \ Q(c) \neq 0, \ k \geq 0$. Посчитаем производную:

$$P' = ((x-c)^k)'Q(x) + (x-c)^k \cdot Q' = k \cdot (x-c)^{k-1} \cdot Q(x) + (x-c)^k \cdot Q'$$

Если k=0, то c — не корень P, значит c — не корень (P, P').

Если k=1, то P'(x)=Q(x)+(x-c)Q'(x), $P'(c)=Q(c)\neq 0$ значит c — не корень P'

Если $k \ge 2$, то P(x) делится (x-c), $P'(x) = (x-c)^{k-1} \cdot (k \cdot Q(x) + (x-c) \cdot Q'(x))$ значит (P, P') делится на (x-c).

Этим мы доказали и (1), и (2).

Замечание. с — корень P' кратности ровно $k-1 \Leftrightarrow c$ — не корень $k \cdot Q(x) + (x-c) \cdot Q'(x) \Leftrightarrow k \cdot Q(c) \neq 0 \Leftrightarrow k \neq 0$ в поле F. В полях с положительными характеристиками это может быть не верно, но если $char\ F = 0$, то это верно для любых P и c.

6. Линейное преобразование линейного пространства. Инвариантные подпространства

Замечание. Пусть V — линейное пространство над $F.\varphi:V\to V$ — линейное преобразование (линейный оператор): $\varphi(\alpha v)=\alpha\cdot\varphi(v),\ \varphi(u+v)=\varphi(u)+\varphi(v).\ \varphi|_U$ — сужение φ на подпространство U.

Если $E=(e_1,\ldots,e_n)$ — базис в V, то матрица φ в E это $A=(\varphi(e_1)_E|\ldots|\varphi(e_n)_E)$. Если E'=ES, то $A'=S^{-1}\cdot A\cdot S$.

Определение. Подпространство $U \subset V$ называется инвариантным относительно φ , если $\varphi(U)$ лежит в U (равносильно $\varphi|_U$ — линейное преобразование пространства U).

Утверждение. Пусть U_1, \ldots, U_k — инвариантные подпространства (относительно φ), то $\sum U_i$ и $\bigcap U_i$ — тоже инвариантные подпространства.

Доказательство.

(1)
$$\varphi(\sum U_i) = \sum \varphi(U_i) \subset \sum U_i$$
.

(2)
$$\varphi(\bigcap U_i) \subset (\bigcap \varphi(U_i))$$
. $u \in (\bigcap U_i) \Rightarrow \forall i \to u \in U_i \Rightarrow \forall i \to \varphi(u) \in \varphi(U_i) \Rightarrow \varphi(u) \in (\bigcap \varphi(U_i))$ А $\bigcap \varphi(U_i)$ в свою очередь лежит в $\bigcap U_i$.

Упражнение. Правда ли, что $\varphi(U_1 \cap U_2) = \varphi(U_1) \cap \varphi(U_2)$?

 $Утверждение. \ \varphi, \psi$ — линейные преобразования пространства V, причем $\varphi \cdot \psi = \psi \cdot \varphi$ (то есть φ и ψ коммутируют). Тогда $Im \ \psi$ и $\ker \psi$ инвариантны относительно φ .

Доказательство.

- (1) Если $v \in \ker \psi \Rightarrow \psi(v) = 0$, тогда $\psi(\varphi(v)) = \varphi(\psi(v)) = \varphi(0) = 0$. Значит $\varphi(v) \in \ker \psi$. Значит $\ker \psi$ инвариантно относительно φ .
- (2) Если $v \in Im \ \psi \Rightarrow \exists u \in V: \ \psi(u) = v \Rightarrow \varphi(v) = \varphi(\psi(u)) = \psi(\varphi(v)) \in Im \ \psi$. Значит $Im \ \psi$ инвариантен относительно φ .

Замечание. Можно в качестве ψ взять φ или $\psi = \varphi - \alpha \cdot \varepsilon$, $\alpha \in F$, ε — тождественное преобразование, или $\psi = Poly(\varphi)$.

Что такое $(\varphi - \alpha)$? Мы умеем складывать преобразования, умножать их на число и брать композицию. Значит линейные преобразования пространства V образуют алгебру над F. Единицей в ней служит $id=1_V$. Эта алгебра обозначается $\mathcal{L}(V)$. Тогда понятно, что такое $\varphi - \alpha = \varphi - \alpha \cdot id$.

Упражнение. Если $Im\ (\varphi - \alpha) \subset U \subset V$, то U — инвариантно относительно φ .

Утверждение. Пусть $\varphi \in \mathcal{L}(V)$ — обратимое. Тогда если U инвариантно относительно φ , то U инвариантно относительно φ^{-1}

Доказательство. $\varphi(U) \subset U$. Так как φ не вырождено, то $\dim \varphi(U) = \dim U$. Значит $\varphi(U) = U$. Далее $\varphi^{-1}(U) \supset U$, причем $\dim \varphi^{-1}(U) = \dim U$. Значит $\varphi^{-1}(U) = U$. Значит U инвариантно относительно φ^{-1} .

Утверждение. Пусть $E=(e_1,\dots,e_n)$ — базис V, причем $U=\langle e_1,\dots,e_k\rangle$ — инвариантно относительно φ . Тогда матрица φ в базисе E имеет вид $\begin{pmatrix} B & C \\ 0 & D \end{pmatrix}$, где $B\in M_{k\times k}$ — матрица ограничения преобразования φ на пространство U.

Доказательство. U инвариантно относительно $arphi \Rightarrow orall i \leq k o arphi(e_i) \in U$, то есть $arphi(e_i)_E =$

$$\left(egin{array}{c} ? \\ ? \\ 0 \\ 0 \end{array} \right)$$
, причем как верхняя часть как раз и будет матрицей ограничения $arphi$ на U . \square

3амечание. Если матрица A преобразования φ имеет такой вид, то $\langle e_1, \dots, e_k \rangle$ — инвариантное подпространство.

Замечание. Если $V = U_1 \oplus U_2$, где U_1 и U_2 — инвариантные подпространства, то в базисе, составленном из объединения базисов U_1 и U_2 матрица φ выглядит как $\begin{pmatrix} B & 0 \\ 0 & D \end{pmatrix}$.

7. Собственные значения преобразований и матриц

Что такое одномерное инвариантное подпространство? $U=\langle \sigma \rangle$. U — инвариантно $\Leftrightarrow \varphi(v) \in U \Leftrightarrow \varphi(v) = \lambda v, \ \lambda \in F$.

Определение. Вектор $0 \neq v \in V$ такой, что $\varphi(v) = \lambda \cdot v$, $\lambda \in F$ называется собственным вектором (CB) φ , соответствующим собственному значению (C3) λ . Скаляр λ называется собственным значением преобразования φ , если для него существует собственный вектор.

Утверждение. $0 \neq v$ — собственный с СЗ $\lambda \Leftrightarrow v \in \ker(\varphi - \lambda)$.

Доказательство.
$$\varphi(v) = \lambda \cdot v \Leftrightarrow \varphi(v) - \lambda v = 0 \Leftrightarrow (\varphi - \lambda)(v) = 0.$$

Определение. Если λ — C3 ϕ , то подпространство $\ker(\varphi - \lambda)$ называется собственным подпространством, соответствующим λ и обозначается V_{λ} .

3амечание. V_{λ} состоит из $\overrightarrow{0}$ и всех векторов с собственным значением λ .

Теорема. Пусть $\lambda_1, \ldots, \lambda_k$ — различные собственные значения преобразования φ . Тогда сумма собственных подпространств, им соответствующих, прямая: $\sum V_{\lambda_i} = \bigoplus V_{\lambda_i}$.

Доказательство. Пусть это не так. Тогда $0 = \sum v_i, \ v_i \in V_{\lambda_i}, \ \exists v_i \neq 0$. Рассмотрим такое, в котором минимальное количество ненулевых слагаемых (положим, их t). Выпишем только их: $0 = \sum_{j=1}^t v_{i_j}, \ 0 \neq v_{i_j} \in V_{\lambda_{i_j}}$. Ясно, что $t \geq 2$.

Тогда $0 = \varphi(0) = \sum \lambda_{i_j} \cdot v_{i_j}$, а значит $0 = 0 - \lambda_{i_t} \cdot 0 = \sum_{j=1}^t \lambda_{i_j} v_{i_j} - \sum_{j=1}^t \lambda_{i_t} \cdot v_{i_j} = \sum_{j=1}^{t-1} (\lambda_{i_j} - \lambda_{i_t}) \cdot v_{i_j}$. (одно слагаемое занулилось, остальные нет, так как все λ_i различны).

Мы получили представление нуля в виде суммы меньшего количества слагаемых, притом хотя бы одного (т.к. $t \ge 2$), противоречие с минимальностью t.

Замечание. Как искать собственные значения? $\lambda - \mathrm{C3} \Leftrightarrow \ker(\varphi - \lambda) \neq 0 \Rightarrow \varphi - \lambda$ — вырожденное преобразование. Если A — матрица φ в $\forall E$, то $\lambda - \mathrm{C3} \Leftrightarrow A - \lambda \cdot E$ — вырожденная матрица. Значит $\det(A - \lambda \cdot E) = 0$.

Определение. Пусть $A \in M_{n \times n}(F)$. Характеристический многочлен матрицы A — это $\chi_A(x) = \det(A - x \cdot E)$.

3амечание. $\deg \chi_A(x) = n$. Обычно будем говорить, что это многочлен от λ .

Лекция 3. Характеристический многочлен. Теорема Гамильтона-Кэли. Аннулирующие многочлены.

8. Характеристические многочлены и их коэффициенты

Теорема. Если A, B — матрицы преобразования φ в разных базисах, то их характеристические многочлены совпадают.

Доказательство. Пусть S — матрица перехода от A к B. Тогда $B=S^{-1}\cdot A\cdot S$. Рассмотрим

$$\chi(B) = \det(B - \lambda E) = \det\left(S^{-1} \cdot A \cdot S - \lambda E\right) = \det\left(S^{-1} \cdot A \cdot S - \lambda S^{-1} \cdot E \cdot S\right) = \det\left(S^{-1} \cdot (A - \lambda E) \cdot S\right) = \frac{1}{\det S} \cdot |A - \lambda E| \cdot \det S = \det(A - \lambda E) = \chi(A)$$

Замечание. Рассмотрим коэффициенты характеристического многочлена некоторой матрицы

$$\chi_A(\lambda) = \det \begin{pmatrix} a_{11} - \lambda & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} - \lambda & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} - \lambda \end{pmatrix}$$
. Коэффициент при λ^n будет равен $(-1)^n$, так

как иначе λ^n получится не может. λ^{n-1} получается из n-1 элемента на диагонали, а значит n-й тоже лежит на ней. Значит этот коэффициент равен $(-1)^{n-1}\sum\limits_{i=1}^n a_{ii}$. Свободный член получится равным det A, так как это $\chi_A(0)$.

Определение. Следом матрицы A называется сумма ее диагональных элементов. $tr\ A = \sum a_{ii}$

Замечание. След и определитель матрицы линейного не зависят от базиса, в котором записывается эта матрицы. Это дает нам право определить понятия следа и определителя линейного преобразования как след и определитель любой его матрицы.

9. Диагонализуемые преобразования, алгебраические и геометрические кратности.

Определение. Преобразование φ называется *диагонализуемым*, если существует базис, в котором матрица φ диагональна $(a_{ij}=0$ при $i\neq j)$

Теорема. Пусть характеристический многочлен преобразования φ имеет n различных корней (n- мерность пространства, в котором оно действует), тогда $\varphi-$ диагонализуемо.

Доказательство. Пусть $\lambda_1,\ldots,\lambda_n$ — корни характеристического многочлена, а $V_{\lambda_1},\ldots,V_{\lambda_n}$ — соответствующие собственные подпространства, $\dim V_{\lambda_i} \geq 1$. С другой стороны, их сумма прямая, $V_{\lambda_1} \oplus \ldots \oplus V_{\lambda_n} \Rightarrow \sum \dim V_{\lambda_i} \leq n$, значит $\dim V_{\lambda_i} = 1$ и $V_{\lambda_1} \oplus \ldots \oplus V_{\lambda_n} = V$. Выберем $0 \neq 1$

$$v_i \in V_{\lambda_i}$$
. Тогда (v_1,\dots,v_n) — базис и в этом базисе матрица φ имеет вид $\begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_n \end{pmatrix}$. \square

Определение. Пусть λ_0 — корень $\chi_{\varphi}(\lambda)$. Его алгебраической кратностью назовем кратность λ_0 в $\chi_{\varphi}(\lambda)$. Его геометрической кратностью называется dim V_{λ_0} .

Теорема. Геометрическая кратность λ_0 не превосходит алгебраической.

Доказательство. Пусть g — геометрическая кратность, λ_0 , то есть в V_{λ_0} есть базис (e_1,\ldots,e_g) . Дополним его до базиса (e_1,\ldots,e_n) всего пространства V. В этом базисе матрица имеет вид

$$A = \begin{pmatrix} \lambda_0 & 0 & 0 & ? & ? \\ 0 & \ddots & \vdots & \vdots & \vdots \\ \vdots & 0 & \lambda_0 & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & ? & ? \end{pmatrix}.$$
 Значит $\chi_{\varphi}(\lambda) = \chi_A(\lambda) = \det A = (\lambda_0 - \lambda)^g \cdot p(\lambda)$ (раскладываем

по первым g столбцам, $p(\lambda) = \det B$), где B — матрица $(n-g) \times (n-g)$ из нижней правой части. Так, алгебраическая кратность λ_0 не меньше g.

Замечание. Приведем пример, когда эти кратности не равны. $A=\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, тогда $\chi_{\varphi}(\lambda)=\det\begin{pmatrix} -\lambda & 1 \\ 0 & -\lambda \end{pmatrix}=\lambda^2$ и корень 0 имеет алгебраическую кратность 2. Его геометрическая кратность равна 1, так как размерность ядра равна 1.

10. Критерий диагонализуемости и приведение к верхнетреугольному виду

Теорема. (критерий диагонализуемости преобразования). Следующие утверждения равносильны:

- (1) Характеристический многочлен φ имеет n корней с учетом кратности и для каждого корня его алгебраическая кратность равна геометрической.
- (2) Преобразование φ диагонализуемо.
- (3) В V существует базис из СВ преобразования φ .
- (4) Если $\lambda_1, \ldots, \lambda_k$ СЗ φ , то $V_{\lambda_1} \oplus \ldots \oplus V_{\lambda_k} = V$.

Доказательство.

$$(2)\Rightarrow (3)$$
. Если в каком-то базисе $E=(e_1,\ldots,e_n)$ матрица φ диагональна: $A=\begin{pmatrix}\lambda_1&\ldots&0\\ \vdots&\ddots&\vdots\\ 0&\ldots&\lambda_n\end{pmatrix}$, то $\wp(e_i)=\lambda_ie_i\Rightarrow e_i$ — CB

To $\varphi(e_i) = \lambda_i e_i \Rightarrow e_i - CB$.

- (3) \Rightarrow (4). Если (e_1,\ldots,e_n) базис из СВ, то $e_1,\ldots,e_n\in (V_{\lambda_1}\oplus\ldots\oplus V_{\lambda_k})$. Это значит, что $V = \langle e_1, \dots, e_n \rangle \subset V_{\lambda_1} \oplus \dots \oplus V_{\lambda_k}.$
- $(4)\Rightarrow (1)$. Пусть S_i алгебраическая кратность λ_i . Тогда $S_i \geq \dim V_{\lambda_i}$, значит $\sum S_i \geq \sum \dim V_{\lambda_i} = 1$ n. С другой стороны $\sum S_i \leq \deg \chi_{\varphi} = \dim V = n$. Итого, $S_i = \dim V_{\lambda_i}$ и $\sum S_i = n$.
- $(1){\Rightarrow}(2)$. Опять же, пусть S_i кратность λ_i . Тогда $\dim V_{\lambda_i}=S_i$. Выберем в V_{λ_i} базис из S_i векторов. Так как сумма V_{λ_i} — прямая, то получившиеся (E_1,\ldots,E_k) — линейно независимая система. В ней $\sum S_i = n$ векторов \Rightarrow она — базис, и в этом базисе матрица φ — диагональна.

Замечание.

- (1) Если $\chi_{\varphi}(\lambda)$ не раскладывается на линейные сомножители, то преобразование φ не диаго-
- (2) Диагональный вид φ единственен с точностью до перестановки диагональных элементов, так как в диагональном виде на главной диагонали должны стоять СЗ, которые не меняются от базиса к базису.
- (3) Далее мы будем считать $\chi_{\varphi}(\lambda)$ раскладывается на линейные множители и постараемся найти наиболее удобный вид для недиагонализуемых преобразований.

Теорема. (Без всяких предположений о $\chi_{\varphi}(\lambda)$). Пусть $\varphi: V \to V$ — линейное преобразование, а $U\subseteq V$ — инвариантное подпространство. Положим $\psi=\varphi|_U$ — линейное преобразование подпространства U. Тогда $\chi_{\varphi}(\lambda)$: $\chi_{\psi}(\lambda)$.

Доказательство. Пусть (e_1,\ldots,e_t) — базис в U, и дополним его до базиса (e_1,\ldots,e_n) в V. В этом базисе матрица φ имеет вид $\begin{pmatrix} B & C \\ 0 & D \end{pmatrix}$, где B — матрица ψ в базисе (e_1, \dots, e_t) . А тогда $\chi_A(\lambda) = \det \begin{pmatrix} B - \lambda E & C \\ 0 & D - \lambda E \end{pmatrix} = \det (B - \lambda E_t) \cdot \det (D - \lambda E_{n-t}) = \chi_B(\lambda) \cdot \chi_D(\lambda)$. Итого $\chi_A(\lambda) : \chi_B(\lambda)$.

Теорема. (приведение к треугольному виду). Пусть φ — линейное преобразование, и $\chi_{\varphi}(\lambda)$ = $(-1)^n(\lambda-\lambda_1)^{S_1}\cdot\ldots\cdot(\lambda-\lambda_k)^{S_k},\ \sum S_k=n.$ Тогда существует базис, в котором матрица φ — верхнетреугольная.

Эквивалентная формулировка: пусть $A-\kappa$ вадратная матрица, для которой $\chi_A(\lambda)=(-1)^n(\lambda-1)^n$ $(\lambda_1)^{S_1} \cdot \ldots \cdot (\lambda - \lambda_k)^{S_k}, \ \sum S_k = n.$ Тогда существует невырожденная S, такая что $S^{-1} \cdot A \cdot S$.

Доказательство. Индукция по $n = \dim V$. База для n = 1 очевидна.

n>1. Пусть φ — наше преобразование. У него есть СЗ λ_0 СВ v_1 . Дополним этот вектор до базиса (v_1,\ldots,v_n) , тогда матрица φ в этом базисе выглядит как $A=\begin{pmatrix}\lambda_0&B\\0&C\end{pmatrix}$. При этом $\chi_A(\lambda) = (\lambda_0 - \lambda)\chi_c(\lambda)$. Значит, χ_C тоже раскладывается на линейные сомножители и к матрице

$$C$$
 можно применить предположение индукции — $\exists T: \ T^{-1} \cdot C \cdot T = \left(egin{array}{ccc} a_{11} & \dots & a_{1n} \\ 0 & \ddots & \vdots \\ 0 & 0 & a_{nn} \end{array}
ight) = D.$ Тогда, положив $S = \left(egin{array}{ccc} 1 & 0 \\ 0 & T \end{array}
ight)$, получим $S^{-1} = \left(egin{array}{ccc} 1 & 0 \\ 0 & T^{-1} \end{array}
ight)$.
$$S^{-1} \cdot A \cdot S = \left(egin{array}{ccc} 1 & 0 \\ 0 & T^{-1} \end{array}
ight) \cdot \left(egin{array}{ccc} \lambda_0 & B \\ 0 & C \end{array}
ight) \cdot \left(egin{array}{ccc} 1 & 0 \\ 0 & T \end{array}
ight) = \left(egin{array}{ccc} \lambda_0 & S \\ 0 & T^{-1} \cdot C \cdot T \end{array}
ight)$$
 $T^{-1} \cdot C \cdot T$ имеет верхнетреугольный вид, значит и вся наша матрица тоже.

Упражнение. Верна ли эта теорема для нижнетреугольного вида?

 $\it Замечание.$ Проанализируем результат. Пусть (e_1,\ldots,e_n) — тот самый базис, в котором $\it arphi$ имеет верхнетреугольный вид. $A=\begin{pmatrix}\lambda_1&\dots&?\\ \vdots&\ddots&\vdots\\ 0&\dots&\lambda_n\end{pmatrix}$. Здесь $\chi_A(\lambda)=\prod(\lambda_i-\lambda)$. Обозначим $V_i=\langle e_1,\dots,e_i\rangle$. Тогда V_i — инвариантно относительно φ (так как есть угол нулей).

11. Теорема Гамильтона-Кэли

Теорема. (Гамильтон-Кэли) Пусть φ — линейное преобразование пространства V. Тогда $\chi_{\varphi}(\varphi) = 0.$

Пример. Пусть φ — диагонализуемо. Тогда в некотором базисе его матрица выглядит как $\left(\begin{array}{ccc} \ddots & \ddots & \vdots \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_n \end{array} \right)$. Тогда $\chi_{\varphi}(\lambda)=\chi_A\left(\lambda\right)=\prod(\lambda_i-\lambda)$. Отсюда $\chi_A(A)=\prod(\lambda_i\cdot E-A)$. Однако

в i-й матрице на позиции (i,i) стоит 0, то и в результате получится диагональная матрица из нулей.

Доказательство. Мы докажем теорему Гамильтона-Кэли лишь в случае, когда характеристический многочлен раскладывается на линейные сомножители $\chi_{\varphi}(\lambda) = \prod (\lambda_i - \lambda)^{S_i}$. Пусть (e_1,\ldots,e_n) — базис, в котором матрица arphi — верхнетреугольная. $V_i=\langle e_1,\ldots,e_i
angle$. Матрица

$$arphi|_{V_i}$$
 в базисе $\langle e_1,\ldots,e_i
angle$ имеет вид $\left(egin{array}{ccc} \lambda_1&\ldots&?\\ draingle&\ddots&draingle\\ 0&\ldots&\lambda_i \end{array}
ight)$. Тогда матрица $(\lambda_i-arphi)|_{V_i}$ выглядит как

$$(e_1,\ldots,e_n)$$
 — базис, в котором матрица φ — верхнетреугольная. $V_i=\langle e_1,\ldots,e_i \rangle$. Матрица $\varphi|_{V_i}$ в базисе $\langle e_1,\ldots,e_i \rangle$ имеет вид $\begin{pmatrix} \lambda_1 & \ldots & ? \\ \vdots & \ddots & \vdots \\ 0 & \ldots & \lambda_i \end{pmatrix}$. Тогда матрица $(\lambda_i-\varphi)|_{V_i}$ выглядит как $\begin{pmatrix} \lambda_1-\lambda_i & ? & \ldots & ? \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \lambda_{i-1}-\lambda_i & ? \\ 0 & \ldots & 0 & 0 \end{pmatrix}$. Значит, $(\lambda_i-\varphi)(V_i)\subset \langle e_1,\ldots,e_{i-1}\rangle=V_{i-1}$. Тогда

$$\chi_{\varphi}(V) = \left(\prod_{i=1}^{n} (\lambda_{i} - \varphi)\right)(V_{n}) \subset \left(\prod_{i=1}^{n-1} (\lambda_{i} - \varphi)\right)(V_{n-1}) \subset \ldots \subset (\lambda_{1} - \varphi)(V_{1}) \subset V_{0} = 0$$

Замечание.

1) Эта теорема верна и в более общем случае. Нам этого пока достаточно (например $F=\mathbb{C}$ разобран полностью), но рассмотрим, к примеру, $F = \mathbb{Q}$. Пусть φ — линейное преобразование пространства V над \mathbb{Q} . Давайте отнесемся к матрице преобразования A как к матрице над \mathbb{C} . Тогда $\chi_A(A) = 0 \in \mathbb{C}$. Но ведь мы считаем один и тот же определитель, значит в \mathbb{Q} это тоже верно.

- 2) В общем, для любого поля $F \exists K \supset F$, такое что любой многочлен над F раскладывается на линейные множители над К. Быть может, мы это еще докажем позже.
- 3) Пусть A матрица. $\chi_A(\lambda) = \det(A \lambda E) \Rightarrow \chi_A(\lambda) = \det(A A \cdot E) = 0$. Почему такое доказательство неверно? Понятно, почему — многочлен от числа и от матрицы считается по разному (нужно сначала вычислять det, а потом подставлять в полученное A, никак иначе не получится), так что из первого второе не следует.

12. Аннулирующие многочлены

Определение. Пусть у нас есть $\varphi \in \mathcal{L}(V)$, dim $V = n, p(x) \in F[x]$. Назовем многочлен p(x)аннулирующим, если $p(\varphi) = 0$.

Определение. Многочлен $\mu(x) \neq 0$ называется *минимальным* многочленом для φ , если он аннулирующий и его степень минимальна среди всех таких ненулевых многочленов. Его часто обозначают $\mu_{\omega}(x)$.

Утверждение. Пусть $\varphi \in \mathcal{L}(V)$, $\mu_{\varphi}(x)$ — его минимальный многочлен, а $p \in F[x]$. Тогда p(x)— аннулирующий $\Leftrightarrow p(x) : \mu(x)$.

Доказательство.

- \Rightarrow Если $p(x) = \mu_{\varphi}(x) \cdot q(x)$, то $p(\varphi) = \mu_{\varphi}(\varphi) \cdot q(\varphi) = 0$.
- \Leftarrow Разделим p(x) на $\mu_{\varphi}(x)$ с остатком. $p(x) = \mu_{\varphi}(x) \cdot q(x) + r(x)$, $\deg r < \deg \mu_{\varphi}$. Если $r(x) \neq 0$, то r(x) не аннулирующий, а тогда $p(\varphi) = \mu_{\varphi}(\varphi) \cdot q(\varphi) + r(\varphi) = r(\varphi) \neq 0$, противоречие.

Замечание. Тогда характеристический многочлен конечно же делится на минимальный.

Лекция 4. Минимальный многочлен и жорданова нормальная форма. Теорема о нильпотентном операторе.

13. Свойства минимальных многочленов

Утверждение. Каждое собственное значение φ является корнем минимального многочлена.

Доказательство. Пусть $\lambda_0 - \mathrm{C3}\ \varphi$; тогда ему соответствует CB v. Тогда $\mu_{\varphi}(\lambda) = \sum p_i \lambda^i$. Тогда $\mu_{\varphi}(\varphi) = \sum p_i \varphi^i(v) = \sum p_i \lambda_0^i \cdot v$. С другой стороны $\mu_{\varphi}(\varphi) = 0$ значит $\mu_{\varphi}(\lambda_0) = 0$, что и требовалось показать.

Теорема. Пусть φ — линейное преобразование пространства V, f(x) — аннулирующий мноrounen φ . $f(x) = f_1(x) \cdot f_2(x)$, npurem $(f_1(x), f_2(x)) = 1$. Torda $V = V_1 \oplus V_2$, rde $V_i = \ker f_i(\varphi)$, причем V_i инвариантно относительно φ .

Доказательство. Сразу заметим, что V_i инвариантно относительно φ , поскольку $f_i(\varphi)$ перестановочно с φ . Поскольку $(f_1, f_2) = 1 \Rightarrow \exists u, v \in F[x]: 1 = u \cdot f_1 + v \cdot f_2$ — равенство многочленов от x. Подставим φ в это равенство.

$$id_{\mathcal{L}(v)} = f_1(\varphi) \cdot u(\varphi) + f_2(\varphi) \cdot v(\varphi)$$
16

Тогда $\forall \overrightarrow{v} \in V \rightarrow \overrightarrow{v} = \overrightarrow{v_1} + \overrightarrow{v_2}$, где

$$\overrightarrow{v_1} = (f_2(\varphi) \cdot v(\varphi)) (\overrightarrow{v}), \ \overrightarrow{v_2} = (f_1(\varphi) \cdot u(\varphi)) (\overrightarrow{v})$$
$$f_2(\varphi)(\overrightarrow{v_2}) = \underbrace{f_1(\varphi)f_2(\varphi)}_{f(\varphi)=0} u(\varphi)(\overrightarrow{v}) = 0$$

Значит $\overrightarrow{v_2} \in V_2$. Аналогично $\overrightarrow{v_1} \in V_1$. Итого $V = V_1 + V_2$. Осталось доказать, что $V_1 \cap V_2 = \varnothing$. Пусть $\overrightarrow{v} \in V_1 \cap V_2$. Тогда $f_1(\varphi)(\overrightarrow{v}) = f_2(\varphi)(\overrightarrow{v}) = 0$. Тогда

$$\overrightarrow{v} = u(\varphi) \cdot \underbrace{\left(f_1(\varphi)(\overrightarrow{v})\right)}_0 + v(\varphi) \cdot \underbrace{\left(f_2(\varphi)(\overrightarrow{v})\right)}_0 = 0$$

3амечание. Следствие. Пусть $\chi_{\varphi}(\lambda) = \prod (\lambda_i - \lambda)^{k_i}$. Тогда $V = \bigoplus V^{\lambda_i}$, где $V^{\lambda_i} = \ker (\lambda_i - \varphi)^{k_i}$.

Доказательство. Индукцией по S можно расширить утверждение теоремы: если f(x) — аннулирующий многочлен для φ . $f(x) = \prod f_i(x)$, и $(f_i, f_j) = 1$, при $i \neq j$, то верно утверждение теоремы. Если S = 2, то это просто утверждение теоремы.

Если S>2, то применим теорему к $f_1\cdot\ldots\cdot f_{s-1}$ и $f_s.$ $V=V_s'\oplus V_s$, где $V_S=\ker f_s(\varphi)$, $V_S'=\ker f_1(\varphi)\cdot\ldots\cdot f_{s-1}(\varphi)$. Тогда положим $\psi=\varphi|_{V_S'}$. Тогда $f_1(x)\cdot\ldots\cdot f_{s-1}(x)$ — аннулирующий многочлен для $\psi.$ $[\forall v\in V_S':\ f_1(\varphi)\cdot\ldots\cdot f_{s-1}(\varphi)v=0]$. Применив предположение индукции к преобразованию ψ пространства V_S' , получаем $V_S'=V_1\oplus\ldots\oplus V_{S-1}$, где $V_i=\ker f_i(\psi)=\ker f_i(\varphi)\cap V_S'=\ker f_i(\varphi)$. Итого, $V_S=V_1\oplus\ldots\oplus V_S$.

14. Корневые подпространства

Определение. Пусть λ_i — СЗ преобразование φ — алгебраической кратности k_i , тогда подпространство $V^{\lambda_i} = \ker (\varphi - \lambda_i)^{k_i}$ называется *корневым* подпространством, соответствующим λ_i .

Замечание. $V_{\lambda_i} \subset V^{\lambda_i}$. Действительно, $v \in V_{\lambda_i} \Rightarrow (\varphi - \lambda_i)(v) = 0 \Rightarrow (\varphi - \lambda_i)^{k_i}(v) = 0 \Rightarrow v \in V^{\lambda_i}$. Также V^{λ_i} инвариантно относительно φ .

Утверждение. Если $\lambda_0 \neq \lambda_i$, то $(\varphi - \lambda_0)|_{V^{\lambda_i}}$ — невырождено.

Доказательство. Если оно вырождено, то

$$\exists 0 \neq v \in V^{\lambda_i}: \ (\varphi - \lambda_0)(v) = 0 \Rightarrow \varphi(v) = \lambda_0 v \Rightarrow 0 = (\varphi - \lambda_i)^{k_i}(v) = (\lambda_0 - \lambda_i)^{k_i} \cdot v \Rightarrow v = 0$$
 Противоречие.

Утверждение.
$$V^{\lambda_i} = \{v \in V | \exists n \in \mathbb{N} : (\varphi - \lambda_i)^n(v) = 0\} = \bigcup_{n=1}^{\infty} \ker (\varphi - \lambda_i)^n$$
.

Доказательство. Обозначим через U правую часть. Ясно, что $V^{\lambda_i} \subset U$. Пусть теперь $u \in U$, разложим его в сумму $u = \sum_{j=1}^s u_j, \ u_j \in V^{\lambda_i}$. Мы знаем, что для какого-то n верно $(\varphi - \lambda_i)^n (u) = 0$. При $i \neq j$ и $u_j \neq 0$ получаем $0 \neq (\varphi - \lambda_i)^n (u_j) \in V^{\lambda_j}$. (Из предыдущего утверждения и того, что V^{λ_j} — инвариантно относительно φ). Тогда $(\varphi - \lambda_i)^n (u) = \sum_{j=1}^s \underbrace{(\varphi - \lambda_i)^n (u_j)}_{\in V^{\lambda_j}}$. Если

при каком-то $j \neq i$ $u_j \neq 0$, то соответствующее слагаемое не ноль, а значит вся сумма не ноль, что невозможно, значит единственное ненулевое слагаемое — это u_i и $u \in V^{\lambda_i}$. Итак $U \subset V^{\lambda_i}$.

15. ЖОРДАНОВА НОРМАЛЬНАЯ ФОРМА ПРЕОБРАЗОВАНИЯ

Определение. Жордановой клеткой порядка k соответствующей СЗ λ_0 называется матрица вида

$$A = \begin{pmatrix} \lambda_0 & 1 & 0 & \dots & 0 \\ 0 & \lambda_0 & \ddots & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \lambda_0 & 1 \\ 0 & \dots & 0 & 0 & \lambda_0 \end{pmatrix}$$

Определение. Жордановой матрицей называется блочная матрица, состоящая из Жордановых блоков, расположенных на диагонали.

Определение. Жордановой нормальной формой (ЖНФ) преобразования φ называется его матрица в базисе E, если она имеет жорданов вид, соответствующий базис называется жордановым базисом.

Теорема. Если φ — преобразование V, $\dim V = n$ и χ_{φ} имеет n корней c учетом кратности, то φ обладает $\mathcal{K}H\Phi$. При это $\mathcal{K}H\Phi$ единственна c точностью до перестановки клеток.

Замечание. Одному собственному значению может соответствовать несколько клеток жордановой матрицы.

Замечание. Частный случай жордановой формы — диагональная форма.

Замечание. Мы уже знаем, что $V = V^{\lambda_1} \oplus \ldots \oplus V^{\lambda_s}$. В таком базисе матрица будет иметь блочно-диагональный вид. Значит, достаточно привести к ЖНФ $\varphi|_{V^{\lambda_i}}$. Далее, $(\varphi - \lambda_i)^{k_i}|_{V^{\lambda_i}} = 0$. Обозначив, $\psi = (\varphi - \lambda_i)|_{V^{\lambda_i}}$, получаем, что необходимо найти жорданову нормальную форму преобразвания ψ .

Определение. Преобразование ψ называется *ниль потентным*, если $\exists n \in \mathbb{N}: \ \psi^n = 0.$

Определение. Пусть $U \subset V$, тогда $v_1, \ldots, v_n \in V - \Pi$ НЗ по модулю U если $\forall \alpha_1, \ldots, \alpha_k \in F \sum \alpha_k v_k \in U \Rightarrow \alpha_1 = \ldots = \alpha_k = 0$.

 $\it Замечание.\ B$ этом смысле обычная линейная независимость рассматривается по модулю подпространства $\it 0.$

Теорема. Пусть ψ — нильпотентное линейное преобразование (без каких-либо предположений о характеристическом многочлене). Тогда ψ имеет ЖНФ, причем все его собственные значения нулевые.

Доказательство. Сначала заметим, что
$$J_k(0) = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & \ddots & \ddots & 0 \\ \vdots & & \ddots & 1 \\ 0 & \dots & 0 & 0 \end{pmatrix}$$
.

 $\psi(e_1)=0,\; \psi(e_2)=e_1,\ldots,\; \psi(e_k)=e_{k-1}.$ Положим $U_i=\ker\psi^i,\; U_n=\ker\psi^k=\ker 0=U.$ Тогда $U_0\subset U_1\subset\ldots\subset U_n.$

Лемма. Если v_1, \ldots, v_k ЛНЗ по модулю U_i , то $\psi(v_1), \ldots, \psi(v_k) - ЛНЗ$ по модулю U_{i-1} .

Доказательство. Пусть
$$\sum \alpha_j \psi(v_j) \in U_{i-1} \Rightarrow \psi(\sum \alpha_j v_j) \in \ker \psi^{i-1} \Rightarrow \psi^{i-1}(\psi(\sum \alpha_j v_j)) = 0 = \psi^i(\sum \alpha_j v_j) \Rightarrow \sum \alpha_j v_j \in U_i = \ker \psi^i \Rightarrow \alpha_1 = \dots = \alpha_k = 0$$

Вернемся к доказательству теоремы.

Пусть $U_n=U_{n-1}\oplus W_n$, пусть $\left(e_1^n,\dots,e_{k_n}^n\right)$ — базис W_n . Тогда $e_1^n,\dots,e_{k_n}^n$ ЛНЗ по модулю U_{n-1} , так как сумма прямая. Значит $\psi(e_1^n),\dots,\psi(e_{k_n}^n)$ ЛНЗ под модулю U_{n-2} . Тогда $e_1^{n-1}=\psi(e_1^n),\dots,e_{k_n}^{n-1}=\psi(e_{k_n}^n)$ — ЛНЗ по модулю n-2 и $\left\langle e_1^{n-1},\dots,e_t^{n-1}\right\rangle\cap U_{n-2}=0$. Тогда \exists прямое разложение $U_{n-1}=U_{n-2}\oplus\left\langle e_1^{n-1},\dots,e_{k_n}^{n-1}\right\rangle\oplus W_{n-1}$.

Действительно, выберем базис в U_{n-2} и его до базиса U_{n-1} сначала векторами $\langle e_1^{n-1}, \dots, e_{k_n}^{n-1} \rangle$,

а потом любыми другими. Получим базис $\underbrace{\left(\underbrace{f_1,\ldots,f_x}_{U_{n-2}}|\underbrace{e_1^{n-1},\ldots e_{k_n}^{n-1}}|\underbrace{e_{k_n+1}^{n-1},\ldots,e_{k_{n-1}}^{n-1}}\right)}_{W}$. Тогда

$$W_{n-1} = \left\langle e_{k_n+1}^{n-1}, \dots, e_{k_{n-1}}^{n-1} \right\rangle.$$

Продолжаем также: $e_i^{n-2}=\psi(e_i^{n-1})\in U_{i-2}$ (помним, что по лемме они получаются ЛНЗ). Аналогично предыдущему шагу дополняем его до базиса векторами $e_{k_{n-1}+1}^{n-2},\dots,e_{k_{n-2}}^{n-2}\in W_{n-2}.$ В конце получим $(e_1^1,\ldots,e_{k_1}^1|\ldots|e_1^n,\ldots,e_{k_n}^n)$ — ЛНЗ по модулю U_0 , то есть просто ЛНЗ. Здесь мы утверждаем, что мы победили. Все выписанные векторы образуют базис V, так как это склеенные базисы его разложение в прямое произведение пространств. С другой стороны, эти векторы разбиты на жордановы цепочки. Теорема о нильпотентном операторе доказана.

Лекция 5. Единственность жордановой нормальной формы и ее применения.

16. Единственность ЖНФ нильпотентного оператора

3амечание. φ — нильпотентно $\Rightarrow \varphi^m = 0 \Rightarrow x^m$ — аннулирующий. Тогда $\mu_{\varphi}(x) = x^d \Rightarrow \text{C3}$ только 0.

Теорема. Пусть φ — нильпотентное линейное преобразование V. Тогда ЖНФ φ единственна с точностью до перестановки клеток.

Доказательство. Поскольку φ нильпотентно, то все его СЗ равны 0. Поэтому любая ЖНФ

имеет вид
$$B = \begin{pmatrix} J_{l_1}(0) & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & J_{l_s}(0) \end{pmatrix}$$
. Пусть $B - \text{ЖН}\Phi \ \varphi$, тогда B^k матрица φ^k в том базисе и $rk \ B^k = \dim \ Im \ \varphi^k$ — не зависит от базиса. Вычислим $rk \ B^k$ по другому. Заме-

базисе и rk $B^k=\dim \ Im \ \varphi^k$ — не зависит от базиса. Вычислим rk B^k по другому. Заме-

тим, что
$$B^k = \begin{pmatrix} J_{l_1}^k(0) & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & J_{l_s}^k(0) \end{pmatrix}$$
. При этом $J_l^k(0) = \begin{pmatrix} 0 & \dots & 1 & \dots & 0 \\ \vdots & \ddots & & \ddots & \vdots \\ \vdots & & \ddots & & 1 \\ \vdots & & & \ddots & \vdots \\ 0 & \dots & \dots & \dots & 0 \end{pmatrix}$, то есть

 $rk\ J_l^k(0) = \max\{l-k,\ 0\}$. Пусть теперь m_1, m_2, \dots, m_n количество жордановых блоков размеров $1, 2, \ldots, \dim V = n$.

Тогда:

$$rk \ B = \sum_{i} rk \ J_{l_{i}}(0) = \sum_{i} (l_{i} - 1) = n - m_{1} - m_{2} - \dots - m_{n}$$

$$rk \ B^{2} = \sum_{i} rk \ J_{j_{i}}^{2}(0) = \sum_{i} \max \{l_{i} - 2, 0\} = n - m_{1} - 2m_{2} - 2m_{3} - \dots - 2m_{n}$$

$$\vdots$$

$$rk \ B^{k} = n - m_{1} - 2m_{2} - \dots - k \cdot m_{k} - k \cdot m_{k+1} - \dots - m_{n}$$

Пусть $a_k = rk\ B^k,\ k \in \mathbb{N}_0,\ a_0 = rk\ B^0 = n.$ Заметим, что $a_i - a_{i+1} = \sum_{j \geq i} m_j$. Значит $(a_{k-1} - a_k) - (a_k - a_{k+1}) = m_k$. Мы выразили размеры блоков из характеристик матрицы, не зависящих от базиса, значит теорема доказана.

Теорема. Для всякого φ — линейного преобразования, имеющего n собственных значений c учетом кратности, существует единственная c точностью до перестановки блоков $\mathcal{K}H\Phi$.

 \mathcal{A} оказательство. Пусть $\lambda_1,\ldots,\lambda_k$ — все СЗ φ . Тогда V есть сумма корневых подпространств $V=V^{\lambda_1}\oplus\ldots\oplus V^{\lambda_k}$. Преобразование $(\varphi-\lambda_i)|_{V^{\lambda_i}}$ — нильпотентное, значит для него $\exists \mathbb{X} H\Phi$ B_i в некотором базисе $(e_1^i,\ldots,e_{k_i}^i)$. Тогда $\varphi|_{V^{\lambda_i}}$ в этом базисе имеет матрицу $B_i+\lambda_i\cdot E$ — это тоже жорданова матрица. Значит в базисе $(e_1^1,\ldots e_{k_1}^1,e_1^2,\ldots,e_{k_2}^2,\ldots)$ матрица выглядит как

$$\left(\begin{array}{cccc} B_1+\lambda_1E & \dots & 0\\ \vdots & \ddots & \vdots\\ 0 & \dots & B_k+\lambda_kE \end{array}\right) -$$
жорданова матрица. Существование доказано.

Покажем единственность. Пусть $B=\left(\begin{array}{ccc} B_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & B_k \end{array}\right)$ — ЖНФ φ , в которой все клетки,

соответствующие одному СЗ, идут подряд. B_i — матрица, содержащая все блоки для СЗ λ_i . Тогда $\chi_B(\lambda) = (\lambda_1 - \lambda)^{b_1} \cdot \ldots \cdot (\lambda_k - \lambda)^{b_k}$, где b_i — размер B_i . Значит, b_i — алгебраическая кратность λ_i . Далее, пусть (e_1, \ldots, e_{b_1}) — фрагмент жорданова базиса, соответствующего B_1 .

Заметим, что
$$B_1 - \lambda_1 E = \begin{pmatrix} 0 & 1 & \dots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & 1 \\ 0 & \dots & \dots & 0 \end{pmatrix} \Rightarrow (B_1 - \lambda_1 E)^{b_1} = 0$$
. Но $B_1 - \lambda_1 E -$ матрица

 $(\varphi-\lambda_1)\left|_{\left\langle e_1,\dots,e_{b_1}\right\rangle}$ (при этом $\left\langle e_1,\dots,e_{b_1}\right\rangle$ — инвариантно). Итак,

 $(\varphi - \lambda_1)^{b_1}(\langle e_1, \dots, e_{b_1} \rangle) = 0$, то есть $\langle e_1, \dots, e_{b_1} \rangle \subset V^{\lambda_1}$. С другой стороны $\dim V^{\lambda_1} = b_1 \Rightarrow \langle e_1, \dots, e_{b_1} \rangle = V^{\lambda_1}$. Аналогично для каждого B_i оно порождает корневое подпространство.

Тогда B_i — матрица $\varphi|_{V^{\lambda_i}}$, то есть его ЖН Φ , а $B_1 - \lambda_1 E$ — матрица $(\varphi - \lambda_i)|_{V^{\lambda_i}}$. Последнее преобразование нильпотентно \Rightarrow его ЖН Φ единственна (с точностью до перестановки клеток). Значит и B_1 — единственно с точностью до перестановки клеток. Аналогично для остальных B_i . Теорема доказана.

Утверждение. Пусть φ — линейное преобразование, обладающее ЖНФ. Пусть $\lambda_1, \dots, \lambda_k$ — его СЗ, а d_1, \dots, d_k — максимальные размеры жордановых клеток в ЖНФ, соответствующие значениям $\lambda_1, \dots, \lambda_k$. Тогда минимальный многочлен φ есть $\mu_{\varphi}(x) = \prod_{i=1}^k (x - \lambda_i)^{d_i}$.

Доказательство. Пусть $B - \text{ЖН}\Phi \varphi$. Тогда

$$P(\varphi) = 0 \Leftrightarrow P(B) = 0 \Leftrightarrow \begin{pmatrix} P(J_{l_1}(\lambda_{i_1})) & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & P(J_{l_s}(\lambda_{i_s})) \end{pmatrix} = 0 \Leftrightarrow \forall j \to P(J_{l_j}(\lambda_{i_j})) = 0$$

. Итак, μ_{φ} — минимальный многочлен, обнуляющий любую клетку B. Пусть $J_l(\lambda_1)$ — одна из клеток. Мы знаем, что $\mu_{\varphi}(x)|\chi_{\varphi}(x)\Rightarrow \mu_{\varphi}(x)=\prod\limits_{i=1}^k (x-\lambda_i)^{s_i}$. Из этого следует, что $\mu_{\varphi}(J_l(\lambda_1))=\prod\limits_{i=1}^k (J_l(\lambda_1)-\lambda_i E)^{s_1}$. Все скобки, кроме первой, невырождены, значит, $(J_l(\lambda_1)-\lambda_1 E)^{s_1}=0\Rightarrow s_1\geq l_1$. С другой стороны если $s_1\geq l_1$, то $(J_l(\lambda_1)-\lambda_1 E)^{s_1}=0$. Итак, минимальный многочлен для $J_l(\lambda_1)$ есть $(x-\lambda_1)^l$. Значит, $s_i\geq d_i$, при этом $\prod\limits_{i=1}^k (x-\lambda_i)^{d_i}$ обнуляет любую клетку, и потому $\mu_{\varphi}(x)=\prod\limits_{i=1}^k (x-\lambda_i)^{d_i}$.

17. Возведение матрицы в произвольную степень

Зададимся задачей возведения матрицы в степень. Если B- ЖНФ матрицы A, то $A=S^{-1}\cdot B\cdot S$, где S- соответствующая матрица перехода. Тогда

$$A^{n} = \underbrace{\left(S^{-1} \cdot B \cdot S\right) \cdot \ldots \cdot \left(S^{-1} \cdot B \cdot S\right)}_{n \text{ pas}} = S^{-1} \cdot B^{n} \cdot S$$

Значит, достаточно уметь вычислять B^n . Для этого вычислим $J_l(\lambda)^n$: заметим, что $J_l(\lambda) = \lambda E + J_l(0)$.

$$J_l^n(\lambda) = (\lambda E + J_l)^n = \sum_{i=0}^n C_n^i \cdot \lambda^{n-i} \cdot J_l^i = \begin{pmatrix} \lambda^n & C_n^1 \lambda^{n-1} & C_n^2 \lambda^{n-2} & \ddots \\ 0 & \ddots & \ddots & C_n^2 \lambda^{n-2} \\ \vdots & \ddots & \ddots & C_n^1 \lambda^{n-1} \\ 0 & \dots & 0 & \lambda^n \end{pmatrix}$$

18. Линейные рекурренты

Определение. Линейная рекуррента (порядка d) — последовательность $x_0, x_1, \ldots, x_i \in F$, такая что $\forall n \in \mathbb{N}_0 \to x_{n+d} = \sum\limits_{i=0}^{d-1} \alpha_i \cdot x_{n+i}, \ \alpha_i$ — фиксированные элементы поля.

Определение. Характеристический многочлен рекурренты есть $\chi(\lambda) = \lambda^d - \alpha_{d-1}\lambda^{d-1} - \ldots - \alpha_0$.

Теорема. (Частный случай, который мы уже доказывали для \mathbb{C}) любая рекуррента с характеристическим многочленом $\chi(\lambda) = \prod_{i=1}^{s} (\lambda - \lambda_i)^{k_i}$ выражается в виде $x_n = \sum_{i=1}^{s} P_i(n) \cdot \lambda_i^n$, deg $P_i \leq k_i - 1$.

 $\it 3ameuanue.$ Теорема в такой формулировке для произвольного поля неверна. Пусть $F=\mathbb{Z}_p.$ Тогда

$$\forall P \in F[x] \to \exists Q \in F[x], \deg Q < p-1: \forall \alpha \in F \to P(\alpha) = Q(\alpha)$$

(так как $\alpha^p = \alpha$). Тогда понятно, что приведенная формула перечисляет не все подходящие многочлены.

Замечание. Последовательность будем обозначать $X = (x_n)$. Наша цель — описать все линейные рекурренты с данным характеристическим многочленом. Пусть V — рекурренты с многочленом $\chi(\lambda)$. Нетрудно видеть, что V — линейное пространство над F и наша задача свелась к нахождению базиса этого пространства.

Утверждение. $\dim V = d$.

Доказательство. Строим биекцию с d-мерным пространством. Пусть

$$\psi: V \to M_{1\times d}(F), \ \psi((x_n)) = (x_0, \dots, x_{d-1})$$

Тогда ψ — биекция (по каждому элементу $M_{1\times d}$ однозначно сопоставляется прообраз), при этом ψ — линейно. Значит преобразование ψ — изоморфизм, и оно сохраняет размерность пространства.

Замечание. Пусть $\varphi: V \to V$ — преобразование, заданное как $\varphi((a_n)) = (b_n)$, $b_n = a_{n+1}$. φ — линейное преобразование. При этом $arphi^k((a_n))=(a_{n+k})$. Значит основное равенство переписывается как $\varphi^d((x_n)) = \sum_{i=0}^{d-1} \alpha_i \varphi^i((x_n))$. Таким образом, $\chi(\varphi) = 0$.

Утверждение. $\chi(\lambda) = \mu_{\varphi}(\lambda) = (-1)^d \cdot \chi_{\varphi}(\lambda)$

 \mathcal{A} оказательство. $\chi(\lambda)$ — аннулирующий для $\varphi,\ \deg\chi=d$. Положим, что $\exists P\in F\left[x
ight],\ \deg P<0$ d: $P(\varphi)=0$. Будем также считать, что $P(\lambda)=\lambda^c+eta_{c-1}\lambda^{c-1}+\ldots+eta_0$. Это означает, что $\forall (x_n) \in V \to x_{n+c} = -\sum_{i=0}^{c-1} \beta_i x_{n+i}$. Но все последовательности, удовлетворяющие этому равенству образуют *с*-мерное пространство, а не *d*-мерное, противоречие. Значит $\chi(\lambda) = \mu_{\varphi}(\lambda)$. $\deg \chi = d = \dim V = \deg \chi_{\varphi}$, и $\mu_{\varphi} | \chi_{\varphi}$, значит из старшего коэффициента: $\chi_{\varphi} = (-1)^d \cdot \mu_{\varphi}$. $\it 3ame vanue.$ При доказательстве $\chi=\mu_{arphi}$ мы не пользовались теоремой Гамильтона-Кэли.

Замечание. С этого момента будем считать, что $\chi(\lambda) = \prod_{i=1}^k (\lambda - \lambda_i)^{s_i}$. Найдем ЖНФ φ . Мы показали, что минимальный многочлен равен с точностью до константы характеристическому, а значит $\forall i$ в ЖНФ есть жорданова клетка размера s_i . Очевидно, что ничего другого там быть не может, так как сумма размеров клеток уже n.

Будем искать жорданов базис (например, для λ_1), обозначим его $(x^{(0)}, \dots, x^{(s_i-1)})$. $x^{(0)}$ — CB с собственным значением λ_1 , то есть $\varphi(x^{(0)}) = \lambda_1 \cdot x^{(0)}$. Можем положить $x^{(0)} = (\lambda_1^n)$.

Пусть теперь $x^{(k)} = (y_n)$, а $x^{(k+1)} = (x_n)$. Тогда

$$\varphi(x^{(k+1)}) = x^{(k)} + \lambda_1 \cdot x^{(k+1)} \Rightarrow x_{n+1} = y_n + \lambda_1 x_n \Rightarrow x_{n+1} - \lambda_1 x_n = y_n$$

Положим $y_n = \lambda_1^n \cdot y_n', \ x_n = \lambda_1^{n-1} \cdot x_n'$. Тогда

$$\lambda_1^n \cdot x_{n+1}' - \lambda_1^n \cdot x_n' = \lambda_1 \cdot \lambda_1^{n-1} \cdot x_n' \Rightarrow \lambda_1^n \cdot x_{n+1}' - \lambda_1^n \cdot x_n' = \lambda_1^n \cdot y_n' \Rightarrow x_{n+1}' - x_n' = y_n'$$

Теперь можем по шагам найти часть базиса из корневого подпространства V^{λ_1} :

- (1) Переход от $x^{(0)}$ к $x^{(1)}$: $y_n = \lambda_1^n$, то есть $y_n' = 1$. $x_{n+1}' x_n' = y_n' = 1$. Можно положить
- $x'_n = n, \text{ то есть } x^{(1)} = (n \cdot \lambda^{n-1}).$ (2) Переход от $x^{(1)}$ к $x^{(2)}$: $y'_n = \lambda_1^{-1} \cdot n, \ x'_{n+1} x'_n = \lambda_1^{-1} \cdot n.$ Значит можно положить $x'_n = \lambda_1^{-1} \cdot \frac{n(n-1)}{2} = \lambda_1^{-1} \cdot C_n^2, \ x^{(2)} = \left(C_n^2 \cdot \lambda_1^{n-2}\right).$ (3) Переход от $x^{(k)}$ к $x^{(k+1)}$: $y'_n = \lambda^{-k} \cdot C_n^k, \ x'_{n+1} x'_n = \lambda_1^{-k} \cdot C_n^k.$ Можно положить $x'_n = \lambda_1^{-k} \cdot C_n^{k+1}, \ x^{(k+1)} = \left(C_n^{k+1} \cdot \lambda_1^{n-k-1}\right).$

Таким образом, мы предъявили базис V.

Замечание. $x^{(k)} \in V$, так как $(\varphi - \lambda_1)^{k+1} (x^{(k)}) = 0$, а значит $\chi(\varphi)(x^{(k)}) = 0$.

Лекция 6. Линейные рекурренты, циклические матрицы и общий случай теоремы Гамильтона-Кэли.

19. Снова про линейные рекурренты.

Замечание. Рассмотрим другой подход. Пусть A — некоторая матрица $n \times n, \ x \in M_{n \times 1}$. Положим $x_0 = x, \ x_{n+1} = A \cdot x_n$. Как выглядит x_n ? $x_n = A^n \cdot x_n = S^{-1} \cdot B^n \cdot S \cdot x$. Элементы A^n выражаются через $C_n^k \cdot \lambda_i^n$, где λ_i — СЗ матрицы A. Тогда элементы x_n есть линейные комбинации вида $C_n^k \cdot \lambda_i^n$ с фиксированными коэффициентами (не зависящими от n). Это не случайно. Пусть V — пространство всех линейных рекуррент с данными характеристическим многочленом $\chi(\lambda)$, и пусть $\varphi \colon V \to V$ — сдвиг вправо. Базис пространства V (оно однозначно задается значением первых k членов):

$$e_1\left(\underbrace{0,\ldots,0}_{k-1},1,\ldots\right),\ e_2\left(\underbrace{0,\ldots,0}_{k-2},1,0,\ldots\right),\ldots,e_n\left(1,\underbrace{0,\ldots,0}_{k-1},\ldots\right)$$

Тогда $x \in V$, $x = (x_n)$ выражается через (e_1, \ldots, e_n) как $x = \sum_{i=1}^k e_i \cdot x_{k+1-i}$. Выпишем матрицу φ в этом базисе.

$$\chi(\lambda) = \lambda^k - \alpha_{k-1} \cdot \lambda^{k-1} - \ldots - \alpha_0 \Rightarrow x_{n+k} = \alpha_{k-1} \cdot x_{n+k-1} + \ldots + \alpha_0 \cdot x_n$$

Тогда

$$\varphi(e_1) = \left(\underbrace{0, \dots 0}_{k-2}, 1, \alpha_{k-1}, \dots\right) = \alpha_{k-1} \cdot e_1 + e_2, \ \varphi(e_2) = \left(\underbrace{0, \dots 0}_{k-3}, 1, 0, \alpha_{k-2}, \dots\right) = \alpha_{k-2} \cdot e_1 + e_3$$

Тогда $\varphi(e_i) = e_{i+1} + \alpha_{k-i} \cdot e_1$. Тогда матрица φ выглядит как

$$A = \begin{pmatrix} \alpha_{k-1} & \dots & \alpha_0 \\ 0 & 1 & \dots & 0 \\ \vdots & \ddots & 1 & \vdots \\ 0 & \dots & 0 & 1 \end{pmatrix}$$

Если $x = (x_n) \in V$, то

$$A \cdot \begin{pmatrix} x_k \\ x_{k-1} \\ \dots \\ x_1 \end{pmatrix} = \begin{pmatrix} x_{k+1} \\ x_k \\ \dots \\ x_2 \end{pmatrix}$$

Полагая $v_n = \begin{pmatrix} x_{n+k} \\ x_{n+k-1} \\ \dots \\ x_{n+1} \end{pmatrix}$, получаем $v_{n+1} = A \cdot v_n$. Значит, зная, как выглядит v_n , мы умеем выражать элементы x_n .

Утверждение. Пусть A — матрица такого вида. Тогда $\chi_A(\lambda) = (-1)^k \cdot \chi(\lambda)$.

Доказательство.

Замечание. Мы уже получали, что $\chi(\varphi)=0$. Это значит, что $\chi(A)=0$, то есть $\chi_A(A)=0$. Итак, для A верна теорема Гамильтона-Кэли.

20. Общий случай теоремы Гамильтона-Кэли

3 a m e v a h u e. Для A^T тоже верна теорема Гамильтона-Кэли.

Доказательство. Выразим $\chi_{A^T}(\lambda) = \det (A^T - \lambda \cdot E) = \det (A - \lambda \cdot E)^T = \det (A - \lambda \cdot E) = \chi_A(\lambda)$. Тогда

$$\chi_{A^T}(A^T) = \chi_A(A^T) = (\chi_A(A))^T = 0$$

 $3амечание. A^T$ имеет вид

$$A^{T} = \begin{pmatrix} \alpha_{k-1} & 1 & 0 & 0 \\ \alpha_{k-2} & 0 & \ddots & 0 \\ \vdots & \vdots & \ddots & 1 \\ \alpha_{0} & 0 & \dots & 0 \end{pmatrix}$$

Определение. Пусть $\psi: V \to V, \ v \in V$. Циклическим подпространством, порожденным v, называется $u(v) = \langle v, \psi(v), \psi^2(v), \ldots \rangle$.

Утверждение. Пусть $\psi^k(v) \in \langle v, \psi(v), \psi^2(v), \dots, \psi^{k-1}(v) \rangle$.

Тогда $u(v) = \langle v, \dots, \psi^{k-1}(v) \rangle$, причем u(v) — инвариантное подпространство.

Доказательство. $\psi(u(v)) = \langle \psi(v), \psi^2(v), \ldots \rangle \subset u(v)$. Таким образом u(v) — инвариантно. Если $\psi^k(v) \in \langle v, \ldots, \psi^{k-1}(v) \rangle = u'$, то $\psi(u') \subset u'$, тогда $\psi^n(u') \subset u'$. Это и значит, что $\psi^n(v) \in u'$, то есть u(v) = u'.

Замечание. Пусть k — минимальное такое, что $\psi^k(v) \in \langle v, \dots, \psi^{k-1}(v) \rangle$. Тогда $v, \dots, \psi^{k-1}(v)$ — ЛНЗ (ни один не выражается через предыдущие). Значит $(\psi^{k-1}(v), \dots, v)$ — базис пространства u(v). Матрица $\psi|_{u(v)}$ в этом базисе выглядит как

$$\begin{pmatrix} \star & 1 & 0 & 0 \\ \star & 0 & \ddots & 0 \\ \star & \vdots & \ddots & 1 \\ \star & 0 & \dots & 0 \end{pmatrix}$$

Такая матрица называется *циклической*. Итак, для циклической матрицы верна теорема Гамильтона-Кэли.

Утверждение. Пусть $\psi:V\to V$ — линейное преобразование. Тогда \exists базис пространства V, в котором матрица ψ имеет вид

$$\left(\begin{array}{cccc}
A_1 & \star & \dots & \star \\
0 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \star \\
0 & \dots & 0 & A_k
\end{array}\right)$$

где A_i — циклические матрицы.

Доказательство. Индукция по $\dim V$. Покажем, что для любой матрицы $B \exists$ невырожденная $S:\ S^{-1} \cdot B \cdot S$ имеет требуемый вид.

База. $\dim V = 1$ — тривиально, любая матрица 1×1 — циклическая.

Переход. Пусть $0 \neq v \in V$ и $U = u(v) = \langle \psi^{k-1}(v), \ldots, v \rangle$. $V = U \oplus W$, а значит в базисе $(\psi^{k-1}(v), \ldots, v, \star, \ldots, \star)$ матрица ψ имеет вид $\begin{pmatrix} A_1 & B \\ 0 & C \end{pmatrix}$, где A_1 — циклическая. Если U = V, то утверждение доказано, иначе применим предположение индукции к матрице C, получив $T: T^{-1} \cdot C \cdot T$. Тогда можно положить $S = \begin{pmatrix} E_k & 0 \\ 0 & T \end{pmatrix}$ и получить, что $S^{-1} \cdot A \cdot S$ имеет требуемый вид.

Теорема. (Гамильтона-Кэли) общий случай.

Доказательство. Пусть ψ — линейное преобразование, а A — его матрица, приведенная к виду из предыдущего утверждения. Тогда $\chi_A(A) = \chi_{A_1}(\lambda) \cdot \ldots \cdot \chi_{A_k}(\lambda)$. Тогда

$$\chi_{A_k}(A) = \begin{pmatrix}
\chi_{A_k}(A_1) & \star & \dots & \star \\
0 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \chi_{A_k}(A_{k-1}) & \star \\
0 & \dots & 0 & \chi_{A_k}(A_k) = 0
\end{pmatrix}$$

. Аналогично, в $\chi_{A_i}(A)$ в i-м блоке стоит 0. Тогда $\chi_A(A) = \chi_{A_1}(A) \cdot \ldots \cdot \chi_{A_k}(A)$. Рассмотрим $\chi_{A_1}(A) \cdot \chi_{A_2}(A)$. Столбцы, соответствующие первым двум блокам обратятся в ноль. Умножая это $\chi_{A_3}(A)$ мы получим матрицу с нулевыми столбцами, соответствующими первым трем блокам. Продолжая, получаем, что $\chi_A(A) = 0$, теорема доказана.

21. Конструкции полей

Теорема. Пусть A — матрица $n \times n$, n > 1, такая, что $\chi_A(A)$ — неприводим. Тогда $K = \{P(A)|P(\lambda) \in F[x]\}$ является полем.

Доказательство. Заметим, что $\mu_A(\lambda)|\chi_A(\lambda)$, $\mu_A(\lambda) \neq const$, а это возможно, только если $\mu_A(\lambda) = \chi_A(\lambda)$ (с точностью до константы). Заметим, что K — как минимум коммутативное кольцо. Осталось показать, что $\forall B \in K, \ B \neq 0 \Rightarrow \exists B^{-1} \in K. \ B \in K \Rightarrow B = P(A), \ P(\lambda) \in$

F [λ]. Если $P(\lambda)$: $\chi_A(\lambda)$, то $P(\lambda) = \chi_A(\lambda) \cdot Q(\lambda)$ и $P(A) = \chi_A(A) \cdot Q(A) = 0$. Значит, $P(\lambda)$: $\chi_A(\lambda)$, а так как $\chi_A(\lambda)$ — неприводим, то $(P;\chi_A) = 1$.Значит $1 = P(\lambda) \cdot C(\lambda) + \chi_A(\lambda) \cdot D(\lambda)$. Тогда $E = P(A) \cdot C(A) + \chi_A(A) \cdot D(A) = P(A) \cdot C(A)$. Значит $C(A) \in K$ — и есть обратный. Значит K — поле.

Замечание. Пусть F — поле, $Q(\lambda) \in F[x]$, $\deg Q \ge 1$ — неприводимый. Тогда $\exists K \supset F$: в K у $Q(\lambda)$ есть корень.

Доказательство. Можно считать, что у $Q(\lambda)$ старший коэффициент равен 1. $Q(\lambda) = \lambda^k - \alpha_{k-1} \cdot \lambda^{k-1} - \ldots - \alpha_0$. Положим, A соответствующая циклическая матрица. Возьмем поле K из предыдущей теоремы. Отождествляя $c \cdot E, \ c \in F$ с $c \in F$, получаем требуемое, ибо A — корень $Q(\lambda)$.

Замечание. Если F — поле, а $Q(\lambda)$ — произвольный многочлен, то $\exists K \supset F$, где $Q(\lambda)$ раскладывается на линейные сомножители.

Доказательство. Доказательство состоит в индуктивном применении предыдущей теоремы.

Лекция 7. Полилинейные отображения и формы.

22. Полилинейные отображения и формы

Определение. Пусть V_1, \ldots, V_k, U — линейные пространства над полем F. Отображение f: $V_1 \times \ldots \times V_k \mapsto U$ называется *полилинейным*, если оно линейно по всем аргументам, то есть для любых аргументов v_i и для любого $1 \le i \le k$ выполняется

$$f(v_1,\ldots,\alpha\cdot v_i+\beta\cdot v_i',\ldots,v_k)=\alpha\cdot f(v_1,\ldots,v_i,\ldots,v_k)+\beta\cdot f(v_1,\ldots,v_i',\ldots,v_k)$$

Определение. Множество всех полилинейных отображений обозначим через $\mathcal{L}(V_1,\ldots,V_k;U)$. Если U=F, то такие полилинейные отображения будем называть *полилинейными формами*.

Пример.

- (1) k = 1 обычное линейное отображение
- (2) В 2-3 мерных пространствах
 - (a) Скалярное произведение $(v_1, v_2): V \times V \mapsto \mathbb{R}$
 - (b) Векторное произведение $[v_1; v_2]: V \times V \mapsto V$
 - (c) Смешанное произведение $(v_1, v_2, v_3): V \times V \times V \mapsto \mathbb{R}$
- (3) Детерминант. $V_1 = \ldots = V_k = M_{k \times 1}(F)$. det : $V_1 \times \ldots \times V_k \mapsto F$.
- (4) $V_1 = V, \ V_2 = V^*, \ f: \ V_1 \times V_2 \mapsto F, \ f(v, \varphi) = \varphi(v).$

Определение. Если $f_1, f_2 \in \mathcal{L}(V_1, \dots, V_k; U)$, то можно определить $(\alpha \cdot f_1)(v_1, \dots, v_k) = \alpha \cdot f_1(v_1, \dots, v_k)$ и $(f_1 + f_2)(v_1, \dots, v_k) = f_1(v_1, \dots, v_k) + f_2(v_1, \dots, v_k)$.

Утверждение. $\mathcal{L}(V_1,\ldots,V_k;U)$ — линейное пространство.

Доказательство. Проверим, что:

1) $\alpha \cdot f$, $f_1 + f_2 \in \mathcal{L}(V_1, \dots, V_k; U)$.

2) Аксиомы линейного пространства.

Утверждение. Пусть $E^i = \left(e_1^i, \dots, e_{d_i}^i\right)$ — базис V_k , причем $E^{k+1} = \left(e_1^{k+1}, \dots, e_{d_{k+1}}^{k+1}\right)$ — базис U. Тогда $f \in \mathcal{L}(V_1, \dots, V_k; U)$ ровно однозначно задается на элементах $\left(e_{i_1}^1, \dots, e_{i_k}^k\right)$.

Доказательство.

$$f\left(\sum_{i_{1}=1}^{d_{1}}\alpha_{i_{1}}^{1}\cdot e_{i_{1}}^{1},\ldots,\sum_{i_{k}=1}^{d_{k}}\alpha_{i_{k}}^{k}\cdot e_{i_{k}}^{k}\right) = \sum_{i_{1}=1}^{d_{1}}\alpha_{i_{1}}^{1}\cdot f\left(e_{i_{1}}^{1},\sum_{i_{2}=1}^{d_{2}}\alpha_{i_{1}}^{2}\cdot e_{i_{1}}^{2},\ldots,\sum_{i_{k}=1}^{d_{k}}\alpha_{i_{k}}^{k}\cdot e_{i_{k}}^{k}\right) = \sum_{i_{1}=1}^{d_{1}}\ldots\sum_{i_{k}=1}^{d_{k}}\alpha_{i_{1}}^{1}\cdot\ldots\cdot\alpha_{i_{k}}^{k}\cdot f\left(e_{i_{1}}^{1},\ldots,e_{i_{k}}^{k}\right)$$

Очевидна не более чем однозначность отображения f. Если нам известны все $f\left(e_{i_1}^1,\ldots,e_{i_k}^k\right)$, то для любых v_1,\ldots,v_k оно выразится по формуле выше.

Существование f с такими значениями следует из той же формулы. Если $\gamma_{i_1,...,i_k} \in U$ заданы, то можно определить f по формуле выше, показав, что f действительно полилинейна (рутинная проверка).

Утверждение. $\dim \mathcal{L}(V_1,\ldots,V_k;U)=\dim V_1\cdot\ldots\cdot\dim V_k\cdot\dim U$.

Доказательство. Каждому $f \in \mathcal{L}(V_1,\ldots,V_k;U)$ сопоставим набор чисел $\left(f\left(e_{i_1}^1,\ldots,e_{i_k}^k\right)\right)_{E^{k+1}}$. Всего будет записано $d_1\cdot\ldots\cdot d_k$ векторов, а значит $d_1\cdot\ldots\cdot d_k\cdot\dim U$ скаляров. Из предыдущего утверждения вытекает изоморфность этих пространств, а значит $\dim \mathcal{L}(V_1,\ldots,V_k;U)=\dim V_1\cdot\ldots\cdot\dim V_k\cdot\dim U$.

Определение. Пусть V_1, \ldots, V_k — линейные пространства над F и $e_i \in V_i^*$. Тензорным произведением этих функций называется $e_1 \otimes \ldots \otimes e_k : V_1 \times \ldots \times V_k \mapsto F$, $(e_1 \otimes \ldots \otimes e_k) (v_1, \ldots, v_k) = e_1(v_1) \cdot \ldots \cdot e_k(v_k)$.

Замечание. $(e_1 \otimes \ldots \otimes e_k) \in \mathcal{L}(V_1, \ldots, V_k, F)$.

Утверждение. Пусть $F^i=\left(arphi_1^i,\ldots,arphi_{d_i}^i\right)$ — базисы пространств $V_1^\star,\ldots,V_k^\star$. Тогда все формы $arphi_{i_1}^1\otimes\ldots\otimesarphi_{i_k}^k$ образуют базис пространства $\mathcal{L}(V_1,\ldots,V_k,F)$.

Доказательство. Для базиса F^t в пространстве V_t^\star существует взаимный базис в V_t такой, что $\varphi_i^t(e_j^t) = \delta\left(i,j\right)$. Теперь, подставляя элементы этих базисов в тензорное произведение линейных функций, получаем $\left(\varphi_{i_1}^1 \otimes \ldots \otimes \varphi_{i_k}^k\right)\left(e_{j_1}^1,\ldots,e_{j_k}^k\right) = \delta(i_1,j_1)\cdot\ldots\cdot\delta(i_k,j_k)$. Значит, $\varphi_{j_1}^1 \otimes \ldots \otimes \varphi_{j_k}^k$ не выражается через остальные полилинейные формы. Поскольку в наборе ровно $\dim V_1 \cdot \ldots \cdot \dim V_k$ элементов, значит этот набор — базис.

Упражнение. Найти координаты произвольной полилинейной формы в предъявленном базисе.

3амечание. Если $V_1=\ldots=V_k$, то будем сокращать $\mathcal{L}(V_1,\ldots,V_k,U)=\mathcal{L}_k(V,U)$.

Определение. $f \in \mathcal{L}_k(V, F)$ симметрическая, если $\forall i \neq j \rightarrow f(v_1, \dots, v_i, \dots, v_j, \dots, v_k) = f(v_1, \dots, v_j, \dots, v_i, \dots, v_k)$.

Определение. $f \in \mathcal{L}_k(V, F)$ кососимметрическая, если $\forall i \neq j \to f(v_1, \dots, v_i, \dots, v_j, \dots, v_k) = -f(v_1, \dots, v_i, \dots, v_i, \dots, v_k)$.

Упражнение. Чтобы проверить симметричность или кососимметричность формы, достаточно проверить определение при $v_1, \ldots, v_k \in E$ — базису V.

Упражнение. Для матрицы $A \in M_{k \times k}(F)$ определим ее *перманент* как

$$perm(A) = \sum_{\sigma \in S_k} a_{1,\sigma(1)} \cdot \ldots \cdot a_{k,\sigma(k)}$$

Тогда perm — симметрическая форма на пространстве столбцов.

23. Билинейные формы

Определение. Пусть V — линейное пространство над F, то линейное отображение $f: V \times V \mapsto F$ — билинейная форма, если

$$f(\alpha \cdot v_1 + \beta \cdot v_1', v_2) = \alpha \cdot f(v_1, v_2) + \beta \cdot f(v_1', v_2)$$

$$f(v_1, \alpha \cdot v_2 + \beta \cdot v_2') = \alpha \cdot f(v_1, v_2) + \beta \cdot f(v_1, v_2')$$

Если $E=(e_1,\ldots,e_n)$ — базис в V, то матрицей формы в этом базисе называется

$$B = \begin{pmatrix} f(e_1, e_1) & \dots & f(e_1, e_n) \\ \vdots & \ddots & \vdots \\ f(e_n, e_1) & \dots & f(e_n, e_n) \end{pmatrix}$$

Пространство $\mathcal{L}_2(V,F)$ мы будем обозначать $\mathcal{B}(V)$

Утверждение. Пространство $\mathcal{B}(V)$ изоморфно $M_{n\times n}(F)$.

Доказательство. Зафиксируем базис E в V. Тогда сопоставление форме f ее матрицы B в этом базисе биективно и линейно.

Утверждение. Пусть E — базис пространства $V, f \in \mathcal{B}(V), B$ — матрица $f, u, v \in V, u = E \cdot x, v = E \cdot y$. Тогда $f(u, v) = x^T \cdot B \cdot y$.

Доказательство. Пусть
$$x=\left(\begin{array}{c}x_1\\ \vdots\\ x_n\end{array}\right),\ y=\left(\begin{array}{c}y_1\\ \vdots\\ y_n\end{array}\right),\ B=(b_{ij}).$$
 Тогда

$$f(u,v) = \sum_{i=1}^{n} \sum_{j=1}^{n} x_i \cdot y_j \cdot f(e_i, e_j) = \sum_{i=1}^{n} \sum_{j=1}^{n} x_i \cdot b_{ij} \cdot y_j = \sum_{i=1}^{n} x_i \cdot \sum_{j=1}^{n} b_{ij} \cdot y_j = (x_1, \dots, x_n) \cdot B \cdot y = x^T \cdot B \cdot y$$

Утверждение. Пусть $f \in \mathcal{B}(V), E, E'$ — базисы V, B, B' — матрицы f в E и в E', причем $E' = E \cdot S$, тогда $B' = S^T \cdot B \cdot S$.

Доказательство. Пусть $E' = (e'_1, \dots, e'_n)$, $S = (S_1 | \dots | S_n)$. Тогда $e'_i = E \cdot S_i$ и тогда $b'_{ij} = f(e'_i, e'_j) = S_i^T \cdot B \cdot S_j$, а значит $B' = S^T \cdot B \cdot S$.

3 a мечание. Ранг матрицы формы f не зависит от базиса.

Доказательство.
$$rk B' = rk (S^T \cdot B \cdot S) = rk B$$
.

Определение. Pангом формы f называют ранг любой ее матрицы.

3амечание. Если $F=\mathbb{R}$, то знак определителя матрицы формы f не зависит от базиса.

Доказательство. $\det B' = \det(S^T \cdot B \cdot S) = \det S^T \cdot \det B \cdot \det S = \det^2 S \cdot \det B \Rightarrow sgn(\det B') = sgn(\det B)$.

Определение. Форма называется *знакопеременной*, если $\forall v \in V \to f(v,v) = 0$.

Утверждение. Пусть $f \in \mathcal{B}(V)$, B — матрица f. Тогда f — симметрическая, если $B = B^T$, и кососимметрическая, если $B^T = -B$.

Доказательство. Докажем для симметрической формы.

f — симметрическая $\Rightarrow f(e_i, e_j) = f(e_j, e_i) \Rightarrow B = B^T$.

$$B = B^T, \ u = E \cdot x, \ v = E \cdot y \Rightarrow f(u,v) = x^T \cdot B \cdot y = \left(x^T \cdot B \cdot y\right)^T = y^T \cdot B^T \cdot x = y^T \cdot B \cdot x = f(v,u).$$

Определение. Пространство всех симметрических форм над V обозначается $\mathcal{B}^+(V)$, кососимметрических — $\mathcal{B}^-(V)$.

Утверждение. Пусть char $F \neq 2$. Тогда $\mathcal{B}(V) = \mathcal{B}^+(V) \oplus \mathcal{B}^-(V)$.

Доказательство. Пусть $f \in \mathcal{B}^+(V) \cap \mathcal{B}^-(V)$. Тогда $f(u,v) = f(v,u) = -f(u,v) \Rightarrow f(v,u) = 0$. Итак, $\mathcal{B}^+ \cap \mathcal{B}^- = 0$.

Пусть $f \in \mathcal{B}(v)$. Положим

$$f^+(u,v) = \frac{f(u,v) + f(v,u)}{2} \in \mathcal{B}^+, \ g^-(u,v) = \frac{f(u,v) - f(v,u)}{2} \in \mathcal{B}^-.$$
 Тогда $f^+ + f^- = f \Rightarrow \mathcal{B}^+ + \mathcal{B}^- = B.$

Утверждение. Пусть $char\ F \neq 2$, тогда форма является кососимметрической тогда и только тогда, когда она знакопеременна.

Доказательство. Если
$$f$$
 — кососимметрическая, то $f(u,u) = -f(u,u) \Rightarrow f(u,u) = 0$. $0 = f(u+v,u+v) = f(u,u) + f(u,v) + f(v,u) + f(v,v) = f(u,v) + f(v,u) \Rightarrow f(u,v) = -f(v,u)$. \square

Лекция 8. Квадратичные формы, скалярное произведение.

24. Квадратичные и симметрические билинейные формы

Замечание. Далее мы будем исследовать лишь случай $char\ F>2$.

Определение. Отображение $q:V\to F$ называется квадратичной формой на V, если \exists такая $f\in\mathcal{B}(V):\ \forall v\in V\to q(v)=f(v,v).$

Множество всех квадратичных форм обозначим $\mathcal{Q}(V)$.

Замечание. Если E — базис, B — матрица формы f в этом базисе то $\forall u, v \in V$ если $u_E = x, \ v_E = y,$ то $f(u, v) = x^T \cdot B \cdot y = \sum_{i=1}^n \sum_{j=1}^n b_{ij} \cdot x_i \cdot y_j$. Тогда $q(u) = \sum_{i=1}^n \sum_{j=1}^n b_{ij} \cdot x_i \cdot x_j$.

Замечание. Несколько билинейный форм могут соответствовать одной и той же квадратичной. Например, $q(x) = x_1 \cdot x_2$, то она задается формами $f_1(x,y) = x_1 \cdot y_2$, $f_2(x,y) = x_2 \cdot y_1$, $f_3(x,y) = \frac{1}{2}(x_1 \cdot y_2 + x_2 \cdot y_1)$.

3амечание. $\mathcal{Q}(V)$ — линейное пространство над F.

Теорема. Для любой $q \in \mathcal{Q}(V)$ $\exists !$ симметрическая $f \in \mathcal{B}(V)$: q(v) = f(v,v). Поэтому $\mathcal{Q}(V) \cong \mathcal{B}^+(V)$.

Доказательство. Пусть $q(v) = f_0(v,v), \ f_0 \in \mathcal{B}(V)$. Положим $f(u,v) = \frac{1}{2} (f_0(u,v) + f_0(v,u))$. Это тоже билинейная форма, так как они образуют линейное пространство. Более того, она симметрическая, в чем нетрудно убедиться. $\hat{f}(v,v)=rac{1}{2}\cdot 2\cdot f_0(v,v)=q(v)$. Таким образом мы показали существование такой формы. Покажем единственность.

$$q(u+v) - q(u) - q(v) = f(u+v, u+v) - f(u, u) - f(v, v) = f(v, u) + f(u, v)$$

Значит, если q задается симметрической билинейной формой f, то $2 \cdot f(u,v) = q(u+v) - q(u)$ q(v), что позволяет нам выразить ее через q. Значит f — единственна.

Также, очевидно, что наша биекция между Q(V) и $\mathcal{B}^+(V)$ линейна и является изоморфизмом.

Определение. Если f — симметрическая билинейная форма и q(v) = f(v, v), то f называется полярной формой к q.

Определение. Матрицей $q \in \mathcal{B}(V)$ в базисе E называется матрица ее полярной формы в этом базисе.

Замечание. Если B — матрица формы q в базисе E, а $v_E = x$, то $q(v) = x^T \cdot B \cdot x$.

25. Приведение квадратичной формы к диагональному виду

Теорема. Для любой симметрической билинейной формы f (и квадратичной формы q) \exists базис. в котором ее матрица диагональна.

Доказательство. Доказывать будем индукцией по $\dim V = n$.

Случай n=1 очевиден. Пусть $n>1, q\in \mathcal{Q}(V)$, а f — соответствующая полярная форма.

Если $\forall v \to q(v) = 0$, то $f \equiv 0$ и утверждение теоремы верно.

Иначе выберем $e_1: q(e_1) \neq 0$. Положим $V_1 = \{v \in V | f(e_1,v) = 0\}$. $V_1 = \ker \varphi$, где $\varphi(v) =$ $f(e_1,v) \in V^*$. Линейная функция имеет либо n-мерное, либо (n-1)-мерное ядро. Наша функция $\varphi \neq 0 \Rightarrow \dim V_1 = n - 1$.

Кроме того $e_1 \notin V_1$, отсюда следует, что $\langle e_1 \rangle \oplus V_1 = V$. По предположению индукции, в V_1 \exists базис (e_2,\ldots,e_n) , в котором матрица B_1 формы $f|_{V_1}$ диагональна.

Тогда матрица
$$f$$
 в $(e_1,e_2\ldots,e_n)$ есть $\begin{pmatrix} f(e_1,e_1) & 0 \\ 0 & B_1 \end{pmatrix}$, то есть диагональна, значит (e_1,\ldots,e_n) — искомый базис.

Замечание. Если $F = \mathbb{R}$, то для любой квадратичной формы \exists базис, в котором ее матрица диагональна и содержит на диагонали только ± 1 и 0.

Доказательство. Пусть
$$(e_1, \dots, e_n)$$
 — базис, в котором наша форма q диагональна. Пусть она имеет вид $\begin{pmatrix} \alpha_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \alpha_n \end{pmatrix}$. Тогда положим $e_i' = \frac{e_i}{\sqrt{|\alpha_i|}}$ при $\alpha_i \neq 0$ и $e_i' = e_i$ иначе. В базисе

Определение. Такой вид квадратичной формы над \mathbb{R} называется каноническим.

Замечание. Одним из главных примеров $f \in \mathcal{B}^+(V)$ является скалярное произведение (над \mathbb{R}). Однако, если над \mathbb{R} «хороший вид» скалярного произведения — это $(x,y)=x_1\cdot y_1+x_2\cdot y_2,$ то над $\mathbb C$ его приходится вводить как $(x,y)=x_1\cdot \overline{y}_2+x_2\cdot \overline{y}_2,$ что билинейной формой не является $((x,y)=\overline{(y,x)},\,(x,\alpha\cdot y)=\overline{\alpha}\cdot(x,y)).$

26. Полуторалинейные отображения и эрмитовы квадратичные формы

Определение. Пусть V — линейное пространство над $\mathbb C$. Отображение $f:V\times V\to\mathbb C$ называется *полуторалинейным*, если

$$f(u_1 + u_2, v) = f(u_1, v) + f(u_2, v), \ f(\alpha \cdot u, v) = \alpha \cdot f(u, v)$$

$$f(u, v_1 + v_2) = f(u, v_1) + f(u, v_2), \ f(u, \alpha \cdot v) = \overline{\alpha} \cdot f(u, v)$$

Замечание. Для полуторалинейных отображений верны многие привычные свойства.

Определение. Если E — базис V, то матрицей f в этом базисе называется $B = (f(e_i, e_j))$.

Утверждение. Если B — матрица $1\frac{1}{2}$ -линейной формы f в базисе E и $u_E=x,\ v_E=y,$ то $f(u,v)=x^T\cdot B\cdot \overline{y}.$

Доказательство.
$$f(u,v) = f(\sum_i x_i \cdot e_i, \sum_j y_j \cdot e_j) = \sum_i \sum_j x_i \cdot \overline{y}_j \cdot f(e_i, e_j) = x^T \cdot B \cdot \overline{y}.$$

Упражнение. Если $E'=E\cdot S$, а B и B' матрицы f в E и E' соответственно, то $B'=S^T\cdot B\cdot \overline{B}$.

Упражнение. Пространство полуторалинейных форм на n-мерном пространстве V изоморфно пространству всех матриц $M_{n\times n}(\mathbb{C})$. Изоморфизм задается сопоставлением форме ее матрицы в фиксированном базисе.

Утверждение. Ранг матрицы $1\frac{1}{2}$ -линейной формы и $\arg(\det B)$ не зависит от базиса.

Доказательство. $rk\ B' = rk\ \left(S^T \cdot B \cdot \overline{S}\right) = rk\ B \cdot \det B' = \det \left(S^T \cdot B \cdot \overline{S}\right) = \det B \cdot \det S^T \cdot \det \overline{S} = \det B \cdot \det S \cdot \overline{\det S} = \det B \cdot \left|\det S\right|^2, \ \left|\det S\right|^2 > 0, \ \text{значит arg} \left(\det B\right) = \arg \left(\det B'\right).$

Определение. $1\frac{1}{2}$ -линейная форма f называется *эрмитовой*, если $f(u,v) = \overline{f(v,u)}$.

Определение. Эрмитовой квадратичной формой называется отображение $h:V\to\mathbb{C},$ заданное как h(v)=f(v,v), где f— эрмитова $1\frac{1}{2}$ -линейная форма.

Пространство эрмитовых квадратичных форм на V обозначается H(V).

Утверждение. Пусть E — базис в V, а $f-1\frac{1}{2}$ -линейная форма на V. Тогда f — эрмитова \Leftrightarrow матрица B формы f в базисе E удовлетворяет $B^T=\overline{B}$.

Утверждение. Если f — эрмитова $1\frac{1}{2}$ -линейная форма, а B — ее матрица в базисе E, то $\det B \in \mathbb{R}$.

Доказательство.
$$B^T = \overline{B} \Rightarrow \det B^T = \det \overline{B} \Rightarrow \det B = \overline{\det B} \Rightarrow \det B \in \mathbb{R}$$
.

Утверждение. Если $h \in H(V)$, то $\forall v \in V, h(v) \in \mathbb{R}$.

Доказательство.
$$h(v) = f(v,v) = \overline{f(v,v)} = \overline{h(v)} \Rightarrow h(v) \in \mathbb{R}.$$

Утверждение. Каждой $h \in H(V)$ соответствует единственная полярная ей эрмитова $1\frac{1}{2}$ -линейная форма.

Доказательство. $h(u+v) - h(u) - h(v) = f(u+v,u+v) - f(u,u) - f(v,v) = f(v,u) + f(u,v) = 2 \cdot Re \ f(u,v)$. Значит мы можем восстановить вещественную часть f(u,v) по значениям h(v). Аналогично $h(u+i\cdot v) - h(u) - h(i\cdot v) = f(u,i\cdot v) + f(i\cdot v,u) = -i\cdot f(u,v) + i\cdot f(v,u) = -i\cdot f(u,v) + i\cdot f(u,v) + i\cdot f(v,u) = -i\cdot f(u,v) + i\cdot f(u,v) + i$

 $-i(f(u,v)-f(v,u))=2\cdot Im\ f(u,v),$ значит мы можем восстановить и мнимую часть f(u,v).

Значит эта форма действительно единственна. Так как биекция линейна, то это также и изоморфизм.

Замечание. $h(\alpha \cdot v) = f(\alpha \cdot v, \alpha \cdot v) = |\alpha|^2 f(v, v)$.

27. Диагонализация эрмитовых форм, положительная и отрицательная ОПРЕДЕЛЕННОСТЬ, ИНДЕКСЫ ИНЕРЦИИ.

Теорема. Для любой эрмитовой $1\frac{1}{2}$ -линейной формы f \exists базис, в котором ее матрица диагональна, причем на диагонали стоят только $\pm 1\ u\ 0$.

Доказательство. Утверждение о существовании диагональной формы абсолютно аналогично ее существованию для билинейных форм. Пусть (e_1,\ldots,e_n) — базис, к котором матрица f

диагональна
$$B = \begin{pmatrix} \alpha_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \alpha_3 \end{pmatrix}$$
, причем, очевидно $\alpha_i \in \mathbb{R}$ так как $\overline{B} = B^T$. Тогда искомая форма получается абсолютно той же заменой базиса.

Определение. Пусть $q \in \mathcal{Q}(V)$ (или $q \in H(V)$, под F подразумеваем \mathbb{R} для квадратичной формы и $\mathbb C$ для эрмитовой). Тогда q называется положительно определенной, если $\forall v \neq 0 \rightarrow$ q(v)>0 и положительно полуопределенной, если $\forall v \to q(v) \geq 0$. Отрицательная определенность и полиопределенность задается аналогично.

Утверждение. Пусть $q \in \mathcal{Q}(V)$ $(q \in H(V))$, а B — ее матрица в каноническом базисе. Тогда

- (1) q положительно определена $\Leftrightarrow B = E$.
- (2) q положительно полуопределена \Leftrightarrow в B нет -1.

Доказательство.

Если
$$v_E=x$$
, то $q(v)=x^T\cdot B\cdot \overline{x}$. Если $B=E$, то $q(v)=\sum\limits_{i=1}^n x_i\cdot \overline{x}_i>0$. Если B не содержит -1 , то $x^T\cdot B\cdot \overline{x}=\sum\limits_{i\in I} x_i\cdot \overline{x}_i\geq 0$.

В обратную сторону.
$$f(e_i,e_i)=h(e_i)>0 \Rightarrow b_{ii}>0 \Rightarrow b_{ii}=1$$
. $f(e_i,e_i)\geq 0 \Rightarrow h(e_i)\geq 0 \Rightarrow b_{ii}\geq 0 \Rightarrow b_{ii}=1$ или $b_{ii}=0$.

Определение. Пусть $q \in \mathcal{Q}(V)$ $(q \in H(V))$. Ее положительный индекс инерции — это наибольшая размерность подпространства U, такого, что сужение $q|_U$ — положительно определе-HO.

Теорема. Количество единиц в канонической форме совпадает с положительным индексом инерции, а количество минус единиц — с отрицательным.

Доказательство. Легко можно предъявить подпространство размерности, равной количеству единиц k_+ (линейная оболочка соответствующих векторов базиса $\langle e_1, \dots, e_k \rangle$). Покажем, почему не существует пространства большей размерности. В самом деле, если U — положительно определено и $\dim U > k$. Тогда $\dim (U \cap \langle e_{k+1}, \ldots, e_n \rangle) \geq 1$. Но тогда для любого вектора пересечения значение формы на нем и положительно и неотрицательно, что приводит нас к противоречию.

Лекция 9. Метод Якоби, критерий Сильвестра, канонизация кососимметрических форм. Евклидовы и эрмитовы пространства.

28. Главные миноры и метод Якоби

Определение. Пусть B — квадратная матрица, $B = (b_{i,j})$. Ее главным минором порядка k называется

$$\Delta_k(B) = \det \begin{pmatrix} b_{1,1} & \dots & b_{1,k} \\ \vdots & \ddots & \vdots \\ b_{k,1} & \dots & b_{k,k} \end{pmatrix}$$

3амечание. Положим $\Delta_0 = 1$.

Теорема. (метод Якоби) Пусть f — билинейная симметричная форма на пространстве V над F, char $F \neq 2$. Пусть B — ее матрица в некотором базисе E, причем $\forall i \to \Delta_i \neq 0$, $\dim V = n$. Тогда \exists базис E', в котором матрица формы имеет вид

$$\begin{pmatrix} \frac{\Delta_1}{\Delta_0} & 0 & \dots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \frac{\Delta_n}{\Delta_{n-1}} \end{pmatrix}$$

База: $n = 1, B = (\Delta_1) = (\frac{\Delta_1}{\Delta_0}).$

Переход: n > 1. Пусть $E = (e_1, \ldots, e_n)$. Рассмотрим $V' = \langle e_1, \ldots, e_{n-1} \rangle$ и $f' = f|_{V'}$. По предположению в V' есть базис (e'_1, \ldots, e'_{n-1}) , в котором матрица f' — требуемого вида, то есть $f'(e'_i, e'_i) = \frac{\Delta_i}{\Delta_{i-1}}$, $f'(e'_i, e'_j) = 0$, при $i \neq j$.

Рассмотрим систему уравнений $f(e'_1, v) = 0, \ldots, f(e'_{n-1}, v) = 0$. Это линейная система с n-1 уравнением, и так как $\dim V = n$, то $\exists v \in V, \ v \neq 0$, который удовлетворяет системе. Положим $e'_n = \alpha \cdot v, \ \alpha \neq 0$ подберем позже.

(1) (e'_1, \dots, e'_n) — базис в V. Если это не так, то $e'_n = \sum_{i < n} \gamma_i \cdot e'_i$, $\exists k : \gamma_k \neq 0$. Но тогда получаем противоречие:

$$0 = f(e'_k, e'_n) = f(e'_k, \sum_{i \le n} \gamma_j \cdot e'_j) = \gamma_k \frac{\Delta_k}{\Delta_{k-1}} \neq 0$$

(2) Подберем α так, чтобы матрица перехода S от E к E' имела $\det S=1$. В полученном базисе имеем

$$B' = \begin{pmatrix} \frac{\Delta_1}{\Delta_0} & 0 & \dots & 0\\ 0 & \ddots & \ddots & \vdots\\ \vdots & \ddots & \frac{\Delta_n}{\Delta_{n-1}} & 0\\ 0 & \dots & 0 & \beta \end{pmatrix}, \ B' = S^T \cdot B \cdot S, \ \det B' = \det B$$

С другой стороны

$$\det B' = \frac{\Delta_1}{\Delta_0} \cdot \ldots \cdot \frac{\Delta_{n-1}}{\Delta_{n-2}} \cdot \beta = \Delta_{n-1} \cdot \beta = \Delta_n \Rightarrow \beta = \frac{\Delta_n}{\Delta_{n-1}}$$

Что и требовалось доказать.

29. Критерий Сильвестра

Теорема. (критерий Сильвестра) Пусть $q-\kappa$ вадратичная форма на вещественном пространстве V (или эрмитова квадратичная форма на комплексном V), B- ее матрица в некотором базисе. Тогда q положительно определена тогда и только тогда, когда

$$\Delta_1(B) > 0, \ldots, \Delta_n(B) > 0$$

Доказательство.

 \Leftarrow Если $\Delta_i>0$, то форма q в базисе E' имеет вид $\begin{pmatrix} \frac{\Delta_1}{\Delta_0} & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \frac{\Delta_n}{\Delta_{n-1}} \end{pmatrix}$. Тогда если $0\neq v$, то

 $v \cdot E = (x_i)$, то

$$q(v) = \frac{\Delta_1}{\Delta_0} x_1 \overline{x}_1 + \ldots + \frac{\Delta_n}{\Delta_{n-1}} x_n \overline{x}_n > 0$$

 \Rightarrow Рассмотрим $V'=\langle e_1,\ldots,e_k\rangle$ тогда $f'=q|_{V'}$ — положительно определена, тогда существует базис V', в котором матрица f' единичная. Тогда $\det E$ и $\det (B_k)$ имеют одинаковые знаки, значит $\Delta_k>0$.

3амечание. q — отрицательно определена $\Leftrightarrow sign \ \Delta_i = (-1)^i$

Упражнение. Если все $\Delta_i \neq 0$, то отрицательный индекс инерции равен количеству перемен знака в последовательности $\Delta_0, \ldots, \Delta_n$.

Упражнение. Буквальный аналог критерия Сильвестра для положительной полуопределенности неверен (можно положить первый столбец и первую строку равными 0), однако верно следующее: q — положительно определена \Leftrightarrow в матрице B любой симметричный относительно главной диагонали минор неотрицателен.

30. Канонизация кососимметрических форм

Теорема. Пусть f — кососимметрическая форма на пространстве V над полем F (char $F \neq 2$). Тогда \exists базис V, в котором матрица f имеет следующий блочный вид:

$$\begin{pmatrix} B & 0 & & \dots & & 0 \\ 0 & \ddots & & & & & \\ & & B & \ddots & & \vdots \\ \vdots & & \ddots & 0 & & & \\ & & & \ddots & 0 & & \\ & & & & \ddots & 0 \\ 0 & & \dots & & 0 & 0 \end{pmatrix}, B = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

 \mathcal{A} оказательство. Индукция по $n = \dim V$.

База: n = 1. B = (0).

Переход: n > 1. Если f = 0, то утверждение теоремы верно. Иначе $\exists u, v: f(u, v) = \alpha \neq 0$.

Положим $e_1=u,\ e_2=\frac{v}{\alpha}.\ e_1$ и $e_2-\Pi H3$, так как $f(e_1,e_2)=1.$ Положим

$$V' = \{ w \in V | f(e_1, w) = f(e_2, w) = 0 \}, \ V' \subset V$$

 $V' = \ker f(e_1, w) \cap \ker V(e_2, w), \ \dim V' > n - 2$

С другой стороны, если $w \in V' \cap \langle e_1, e_2 \rangle$, то

$$w = \beta \cdot e_1 + \gamma \cdot e_2, \ f(e_1, w) = 0, \ f(e_2, w) = 0$$

 $\gamma = f(e_1, w) = 0, \ -\beta = f(e_2, w) = 0$

Получается w=0, значит V' не пересекается с $\langle e_1,e_2\rangle$, значит $V=V'\oplus \langle e_1,e_2\rangle$. Если V'=0, то в базисе $\langle e_1,e_2\rangle$ матрица имеет искомый вид. Если же $\dim V'>0$, то применим к нему предположение индукции, найдя в нем базис (e_3,\ldots,e_n) . Тогда в базисе (e_1,\ldots,e_n) имеет искомый вид, что и требовалось доказать.

3амечание. Ранг кососимметрической формы в случае $char\ F \neq 2$ четен.

Замечание. Доказательство этой теоремы и следствия также работает для знакопеременной формы над полем характеристики 2.

Определение. Полученный вид матрицы кососимметрической формы часто называется *каноническим*. Иногда *каноническим* называется другой вид, а именно следующий:

$$\left(\begin{array}{ccc}
0 & E & 0 \\
-E & 0 & 0 \\
0 & 0 & 0
\end{array}\right)$$

Нетрудно заметить, что эти два вида отличаются лишь перестановкой строк.

Определение. \mathcal{A} дом симметрической или кососимметрической формы F называется $\ker f = \{v | \forall u \to f(u,v) = 0\}.$

Утверждение. Пусть кососимметрическая форма f имеет в базисе E найденный вид с k диагональным блоками. Тогда $\ker f = \langle e_{2k+1}, \dots, e_n \rangle$.

Доказательство. Ясно, что $\langle e_{2k+1},\ldots,e_n\rangle\subset\ker f$, так как $\forall i\to(j\geq 2k+1\to f(e_i,e_j)=0)$.

Наоборот, если
$$v \in \ker f$$
, $v_E = (x_i)$, то $f(e_{2i-1}, v) = f(e_{2i}, v) = 0$ для всех $1 \le i \le k$. То есть $x_{2i} = -x_{2i-1} = 0$, а значит $\ker f \subset \langle e_{2k+1}, \dots, e_n \rangle$.

31. Евклидовы и эрмитовы пространства.

Определение. Евклидовым пространством называется линейной пространство V над полем \mathbb{R} , на котором определена положительно определенная симметрическая билинейная форма. Эта форма обозначается (u, v) и называется скалярным произведением.

Замечание. Равносильные определению аксиомы:

$$(u, v) = (v, u)$$
$$(\alpha \cdot u_1 + \beta \cdot u_2, v) = \alpha (u_1, v) + \beta (u_2, v)$$
$$(u, u) > 0, \ u \neq 0$$

Определение. Эрмитовым пространством называется линейное пространство V над полем \mathbb{C} , на котором определена положительно определенная эрмитова полуторалинейная форма. Эта форма обозначается (u,v) и называется скалярным произведением или эрмитовым произведением. Эрмитовы пространства также иногда называют унитарными.

Замечание. Равносильные определению аксиомы

$$(u,v) = \overline{(v,u)}$$
$$(\alpha \cdot u_1 + \beta \cdot u_2, v) = \alpha \cdot (u_1, v) + \beta \cdot (u_2, v)$$
$$(u, u) > 0, \ u \neq 0$$

Пример.

- 1) $\mathbb{R}^n = M_{n \times 1}(\mathbb{R})$ евклидово, $(x, y) = x^T \cdot y$
- 2) $\mathbb{C}^n = M_{n \times 1}(\mathbb{C})$ эрмитово, $(x, y) = x^T \cdot \overline{y}$
- 3) $V = M_{n \times k}(F), F = \mathbb{C}$ или $F = \mathbb{R}, (A, B) = tr A^T \cdot \overline{B}$
- 4) $V=\mathcal{C}\left[a;b\right]$ непрерывные функции $f:\left[a;b\right]\mapsto F,$ $F=\mathbb{C}$ или $F=\mathbb{R}.$ $(f,g)=\int\limits_{a}^{b}f(x)\cdot g(x)\cdot dx.$

Упражнение. Показать положительную определенность в пункте 4.

Замечание. Любое подпространство евклидова (эрмитова) пространства тоже является евклидовым (эрмитовым).

32. Длина вектора и матрица Грама

Определение. Пусть V — евклидово пространство, $v \in V$. Длиной вектора v называется $|v| = \sqrt{(v,v)}$.

Определение. Если (v_1,\ldots,v_n) — система векторов, то *матрицей Грама* этой системы называется

$$\Gamma = \begin{pmatrix} (v_1, v_1) & \dots & (v_1, v_n) \\ \vdots & \ddots & \vdots \\ (v_n, v_1) & \dots & (v_n, v_n) \end{pmatrix}$$

Утверждение. Если $E=(e_1,\ldots,e_n)$ — базис V, а Γ — матрица Грама этого базиса, то $\forall u,v\in V$ если $u_E=x,\ v_E=y,$ то $(u,v)=x^T\cdot\Gamma\cdot\overline{y}.$

Доказательство. Очевидно, так как Γ — матрица скалярного произведения в базисе E. \square Утверждение. Пусть (v_1, \ldots, v_k) — система векторов в V, а Γ — их матрица Грама. Тогда $\det \Gamma = 0 \Leftrightarrow (v_1, \ldots, v_k) - \Pi 3$.

Доказательство. Если (v_1, \dots, v_k) — ЛНЗ, тогда Γ — матрица скалярного произведения, ограниченного на $U = \langle v_1, \dots, v_k \rangle$. Тогда Γ — положительно определена, значит $\det \Gamma > 0$.

Если
$$(v_1,\ldots,v_k)$$
 — ЛЗ, то $(v_1,\ldots,v_k)\cdot \left(\begin{array}{c} \alpha_1 \\ \vdots \\ \alpha_k \end{array} \right)=0$. Тогда

$$(\alpha_1, \dots, \alpha_k) \cdot \Gamma = \left(\sum_{i=1}^k \alpha_i (v_1, v_i), \dots, \sum_{i=1}^k \alpha_i (v_n, v_i)\right) = \left(\left(\sum_{i=1}^k \alpha_i \cdot v_i, v_1\right), \dots, \left(\sum_{i=1}^k \alpha_i \cdot v_i, v_n\right)\right) = (0, \dots, 0)$$

Значит Γ — вырождена, то есть $\det \Gamma = 0$.

П

 $Утверждение. \ \Gamma(v_1, ..., v_k)$ — положительно полуопределена и она положительно определена тогда и только когда $(v_1, ..., v_k)$ — ЛНЗ.

Доказательство. Проверим, что $x^T \cdot \Gamma \cdot \overline{x} \geq 0$.

$$x^T \cdot \Gamma \cdot \overline{x} = \sum_{i=1}^k \sum_{i=1}^k x_i \cdot \overline{x}_j \cdot (v_i, v_j) = \left(\sum_{i=1}^k x_i v_i, \sum_{j=1}^k x_j \cdot v_j\right) \ge 0$$

Значит наша матрица положительно полуопределена. По предыдущим утверждениям видим, что она положительно определена тогда и только тогда, когда $(v_1, \ldots, v_k) - \Pi H 3$.

33. Неравенство Коши-Буняковского-Шварца и неравенство треугольника

Замечание. (Неравенство Коши-Буняковского-Шварца) $\left|(u,v)^2\right| \leq (u,u) \cdot (v,v)$ или $(u,v) \leq |u| \cdot |v|$.

Доказательство.

$$\Gamma(u,v) = \begin{pmatrix} \frac{(u,u)}{(u,v)} & (u,v)\\ \hline (v,v) & (v,v) \end{pmatrix}, \det \Gamma = (u,u) \cdot (v,v) - \left| (u,v) \right|^2 \ge 0.$$

Определение. Пусть V — евклидово пространство, $0 \neq u, v$. Тогда *угол* между u и v — это $\alpha = \arccos \frac{(u,v)}{|u|\cdot|v|}$.

Теорема. (неравенство треугольника) $|u| + |v| \ge |u + v|$.

Доказательство.

$$|u+v|^{2} = (u+v, u+v) = |(u, u) + (v, v) + (u, v) + (v, u)| \le$$

$$\le |u|^{2} + |v|^{2} + 2 \cdot |(u, v)| \le |u|^{2} + |v|^{2} + 2 \cdot |u| \cdot |v| = (|u| + |v|)^{2}$$

(используя неравенство Коши-Буняковского-Шварца).

Замечание. В неравенстве Коши-Буняковского-Шварца равенство достигается, когда $\det \Gamma = 0$, то есть u и v — коллинеарны.

Замечание. В неравенстве треугольника равенство достигается, если u, v коллинеарны и (u, v) — вещественное неотрицательное число, то есть $v = \alpha \cdot u, \ \alpha \geq 0$.

Упражнение. Пусть A — положительно полуопределенная матрица (симметрическая или эрмитова). Тогда A — матрица Грама некоторой некоторой системы векторов в евклидовом (эрмитовом пространстве).

Лекция 10. Ортогональные системы, базисы и матрицы. Ортогональные дополнения и проекции. Процесс ортогонализации. Объем.

34. Ортогональные системы и подпространства

Определение. Система векторов (v_1, \ldots, v_k) в евклидовом (эрмитовом) пространстве называется *ортогональной*, если $i \neq j \to (v_i, v_j) = 0$. Эта система называется *ортонормированной*, если она ортогональна и $|v_i| = 1, i = 1, \ldots, k$.

Определение. Подпространства $U_1, U_2 \subset V$ называются *ортогональными*, если $\forall u_1 \in U_1, \ u_2 \in U_2 \to (u_1, u_2) = 0$.

Замечание. Это определение лишь в некотором смысле говорит об ортогональности подпространств в привычном значении слова. Например, две двумерные плоскости в трехмерном пространстве никогда не могут быть ортогональны.

Утверждение. Пусть U_1, \ldots, U_k — попарно ортогональные подпространства в V. Тогда $U_1 + \ldots + U_k = U_1 \oplus \ldots \oplus U_k$.

Доказательство. Пусть $u_i \in U_i, \ u_1 + \ldots + u_k = 0$. Домножим это равенство скалярно на u_i . $(u_i, u_i) = 0 \Rightarrow u_i = 0$. Отсюда следует наше утверждение.

Замечание. Любая ортогональная система (v_1, \dots, v_k) из ненулевых векторов — ЛНЗ.

Доказательство. Для доказательства положим $U_i = \langle v_i \rangle$. По предыдущему утверждению сумма $\langle v_1, \ldots, v_k \rangle = U_1 + \ldots + U_k = \langle v_1 \rangle \oplus \ldots \oplus \langle v_k \rangle \Rightarrow \dim \langle v_1, \ldots, v_k \rangle = k$, а это и есть требуемое условие.

Утверждение. Пусть V — евклидово (эрмитово) пространство. Тогда в нем существует ортонормированный базис.

Доказательство. f(u,v)=(u,v) — симметричная билинейная (эрмитова $1\frac{1}{2}$ -линейная) форма. Ее можно привести к каноническому виду в некотором базисе. Ее матрица в этом базисе единична в силу положительной определенности. Полученный базис будем ортонормированным.

Определение. Матрица $S \in M_{n \times n}(\mathbb{R})$ называется *ортогональной*, если $S^T = S^{-1}$.

Определение. Матрица $S \in M_{n \times n}(\mathbb{C})$ называется унитарной, если $S^{-1} = \overline{S^T}$.

Утверждение. Пусть E — базис в евклидовом (эрмитовом) пространстве, F — некоторый другой базис, F = E · S. Тогда F — ортонормирован ⇔ S — ортогональная (унитарная).

Доказательство. F — ортонормирован $\Leftrightarrow \Gamma(F) = E_n$. Но $\Gamma(F) = S^T \cdot \Gamma(E) \cdot \overline{S} = S^T \cdot \overline{S}$. Значит, F — ортонормирован $\Leftrightarrow S^T \cdot \overline{S} = E \Leftrightarrow \overline{S^T} = S^{-1}$.

 $\mathit{Замечаниe}.$ Если S — ортогональная (унитарная) матрица, то $1=\left|S^T\cdot\overline{S}\right|=\left|S|\cdot\left|\overline{S}\right|=\left|\det S\right|^2.$

Утверждение. Пусть E — ортонормированный базис, $u_E=x,\ v_E=y,$ тогда $(u,v)=\sum_i x_i\cdot \overline{y}_i,\ (u,u)=\sum_i |x_i|^2$

35. Изоморфизмы евклидовых и эрмитовых пространств.

Определение. Пусть U,V — евклидовы (эрмитовы) пространства. Отображение φ называется их *изоморфизмом*, если φ — изоморфизм линейных пространств, и φ сохраняет скалярное произведение:

$$\forall u_1, u_2 \to (u_1, u_2) = (\varphi(u_1), \varphi(u_2))$$

Если существует изоморфизм между U и V, то эти пространства изоморфии, $(U \cong V)$.

 $\mathit{Утверждение}.$ Пусть U,V — евклидовы (эрмитовы) пространства. Тогда $U\cong V\Leftrightarrow \dim U=\dim V.$

Доказательство.

 \Rightarrow Если $\exists \varphi$ — изоморфизм линейных пространств, то dim $U = \dim V$.

 \Leftarrow Пусть $E = (e_1, \ldots, e_n)$, $F = (f_1, \ldots, f_2)$ — ортонормированные базисы в U и V. Тогда, положив $\varphi(e_i) = f_i$, получим невырожденное отображение, то есть изоморфизм линейных пространств. Проверим сохранность скалярного произведения.

Пусть
$$u_1, u_2 \in U, \ u_{1E} = x_1, u_{2E} = x_2.$$
 Тогда $\varphi(u_1) = x_1, \ \varphi(u_2) = x_2.$ Значит $(u_1, u_2) = x_1^T \cdot \overline{x}_2, \ (\varphi(u_1), \varphi(u_2)) = x_1^T \cdot \overline{x}_2,$ что и требовалось доказать.

Замечание. $V \to V^* \to V^{**}$. Между V и V^{**} всегда есть канонический изоморфизм. В случае, если V — евклидово пространство можно получить и изоморфизм между V и V^* .

Теорема. Пусть $V - e \varepsilon \kappa n u do so$ пространство. Для $v \in V$ определим $f_v(u) = (u, v)$. Тогда отображение $\psi: V \to V^*, \ \psi(v) = f_v - u s o m o p \phi u s m V u V^*.$

Доказательство.

- 1) f_v линейная функция на V, ибо скалярное произведение линейно по первому аргументу.
- 2) ψ линейное отображение, то есть $\psi(v_1 + v_2) = \psi(v_1) + \psi(v_2)$, $\psi(\alpha \cdot v) = \alpha \cdot \psi(v)$. Это следует из линейности по второму аргументу.
- 3) Если $v \in \ker \psi$, то $f_v = 0$, то есть $\forall u \in V \to (u, v)$. В частности $(v, v) = 0 \Rightarrow v = 0$. Значит $\ker \psi = 0$, и так как $\dim V = \dim V^*$, то ψ изоморфизм.

Определение. Пусть U, V — линейные пространства над $\mathbb{C}.$ $\psi: U \to V$ называется *сопряженным изоморфизмом*, если ψ — сопряженно линейна.

Теорема. Отображение $f_v(u) = (u, v) - conряженный изоморфизм <math>V \ u \ V^*$.

Доказательство. Первые два пункта проводятся аналогично предыдущей теореме.

3) $\ker \psi = 0$. Если $\dim V = n$, то V и $V^\star - 2 \cdot n$ -мерные пространства над $\mathbb R$ и ψ — линейное отображение пространств над $\mathbb R$, поэтому ψ — биекция.

Замечание. Если ψ — сопряженный изоморфизм, $\psi: U \to V$, то $\forall U' \subset U, \ \psi(U')$ — подпространство в V той же размерности, что и U'.

36. Ортогональное дополнение и ортогональная проекция

Определение. Пусть V — евклидово (эрмитово) пространство $U \subset V$. Ортогональным дополнением подпространства U в V называется

$$\{v \in V: \ \forall u \in U | (u, v) = 0\}$$

Замечание. $U^{\perp} \subset V$.

Утверждение. Пусть V — евклидово (эрмитово) пространство, $U \subset V$, $U^0 \subset V^*$ — его аннулятор, ψ — изоморфизм между V и V^* . Тогда $U^\perp = \psi^{-1}(U^0)$.

Доказательство. $v \in U^{\perp} \Leftrightarrow \forall u \in U \to (u,v) = 0 \Leftrightarrow \forall u \in U \to f_v(u) = 0 \Leftrightarrow \underbrace{f_v}_{\psi(v)} \in U^0 \Leftrightarrow v \in U^0$

$$\psi^{-1}(U^0)$$
.

3амечание. $\dim U^{\perp} = \dim V - \dim U$ и $U \oplus U^{\perp} = V$.

Доказательство. $\dim U^\perp=\dim U^0=\dim V-\dim U$. Далее, U и $U^\perp-$ ортогональны $\Rightarrow U+U^\perp=U\oplus U^\perp$. Из размерности, $U\oplus U^\perp$.

Теорема.

1)
$$(U^{\perp})^{\perp} = U$$

2)
$$(U_1 + U_2)^{\perp} = U_1^{\perp} \cap U_2^{\perp}$$

3)
$$(U_1 \cap U_2)^{\perp} = U_1^{\perp} + U_2^{\perp}$$

4)
$$U_1 \subset U_2 \Rightarrow U_1^{\perp} \supset U_2^{\perp}$$

Доказательство. (2), (3) и (4) следуют из соответствующей аннуляторной теоремы.

$$(2):(U_1+U_2)^\perp=\psi^{-1}\left((U_1+U_2)^0
ight)=\psi^{-1}(U_1^0\cap U_2^0)=U_1^\perp\cap U_2^\perp,\ (3)$$
 аналогично.

(1):
$$\dim \left(U^{\perp}\right)^{\perp} = \dim V - \dim U^{\perp} = \dim U$$
. С другой стороны, $u \in U \Rightarrow \forall v \in U^{\perp} \to (u,v) = 0 \Rightarrow u \in \left(U^{\perp}\right)^{\perp}$, то есть $U \subset \left(U^{\perp}\right)^{\perp}$.

Определение. Пусть $U \subset V$, $v \in V$. Ортогональной проекцией v на подпространство U называется такой вектор $u \in U$, что $(v-u) \perp U$. Обозначение $-u = pr_U(v)$.

Замечание. $(v-u) \in U^{\perp}$, то есть v=u+(v-u). Так как $U \oplus U^{\perp}$, то $\exists!pr_U(v)$. Тогда $v-u=pr_{U^{\perp}}(v)$.

Утверждение. Пусть $U \subset V$ и $E = (e_1, \dots, e_k)$ — ортогональный базис в U. Пусть $v \in V$, тогда $pr_U(v) = \sum_{i=1}^k \frac{(v_i, e_i)}{(e_i, e_i)} e_i$.

Доказательство. Пусть
$$pr_U(v) = \sum_{i=1}^k \alpha_i \cdot e_i$$
. Тогда $v = u + w, \ w \in U^{\perp}$. $(v, e_i) = (u, e_i) = \left(\sum_{j=1}^k \alpha_i \left(e_j, e_i\right)\right) = \alpha_i \cdot (e_i, e_i)$. Значит, $\alpha_i = \frac{(v_1, e_i)}{(e_i, e_i)}$.

Замечание. Если E — ортонормирован, то $pr_U(v) = \sum\limits_{i=1}^k \left(v,e_i\right)e_i$.

Утверждение. Пусть $U\subset V,\ v\in V,\ u=pr_Uv,\ u\neq u'\in U.$ Тогда |v-u'|>|v-u| .

Доказательство.
$$v-u'=(v-u)+(u-u')$$
. При этом $(v-u)\perp (u-u')$, значит $2\cdot (v-u,\ u-u')=0$, а тогда $|v-u'|^2=|v-u|^2+|u-u'|^2$, то есть $|v-u'|^2>|v-u|^2$.

Определение. Пусть $v \in V, \ U \subset V.$ Расстоянием от v до U называется $\inf_{u \in U} |v-u|.$

Замечание. $\rho(v,u) = |pr_{U^{\perp}}v|$

Доказательство. $\forall u' \in U \to |pr_{U^{\perp}}(v)| = |v - pr_{U}(v)| \le |v - u'|$. Равенство достигается про $u' = pr_{U}(v)$.

37. Ортогонализация Грама-Шмидта

Теорема. (метод ортогонализации Грама-Шмидта). Пусть $(e_1, \ldots, e_k) - \mathcal{I}H3$, тогда существует $(e'_1, \ldots, e'_k) - o$ ртогональная система, такая, что $\forall k \to \langle e_1, \ldots, e_k \rangle = \langle e'_1, \ldots e'_k \rangle$.

Доказательство. Положим $e'_1 = e_1$.

Если e'_1,\ldots,e'_i — уже построены: $U_i=\langle e'_1,\ldots e'_i\rangle=\langle e_1,\ldots,e_i\rangle$ и положим $e'_{i+1}=e_{i+1}$ — $pr_{U_i}(e_{i+1})=e_{i+1}-\sum\limits_{j=1}^i\frac{\left(e_{i+1},e'_j\right)}{\left(e'_j,e'_j\right)}\cdot e'_j$. Тогда $e'_{i+1}\bot U_i$, то есть $\left(e'_1,\ldots,e'_{i+1}\right)$ — ортогональная система. Далее, $\langle e'_1,\ldots,e'_{i+1}\rangle=\langle e_1,\ldots,e_{i+1}\rangle$. Кроме того, $e'_{i+1}\neq 0$, так как (e_1,\ldots,e_n) — ЛНЗ. \square

3амечание. Пусть $(e'_1,\ldots,e'_n)=(e_1,\ldots,e_n)\cdot S$. Тогда S — верхнетреугольная и $\det S>1$.

Замечание. В и ортонормированная система с теми же свойствами.

3амечание. Любая ортогональная система ненулевых векторов в V дополняется до ортогонального базиса, а ортонормированная — до ортонормированного.

Доказательство. Пусть (e_1, \ldots, e_k) — ортогональная система. Дополним ее до произвольного базиса пространства V и применим процесс Грама-Шмидта, который оставит первые k базисных векторов без изменения, так как они уже образуют ортогональную систему. Точно так же можно дополнить ортонормированную систему.

Замечание. (e'_{k+1},\ldots,e'_n) — базис в $\langle e_1,\ldots,e_k\rangle^{\perp}$.

38. Объем и его свойства

Определение. Пусть (v_1, \ldots, v_k) — система векторов в евклидовом пространстве V. Тогда объем этой системы векторов определяется индуктивно:

$$V(v_1) = |v_1|, \ V(v_1, \dots, v_k) = V(v_1, \dots, v_{k-1}) \cdot |\rho(v_k, \langle v_1, \dots, v_{k-1} \rangle)|$$

Теорема. $V(v_1,\ldots,v_k) = \sqrt{\det\Gamma(v_1,\ldots,v_k)}$.

Доказательство. Применим к нашим векторам процесс ортогонализации, получив вектора (v'_1,\ldots,v'_k) . Тогда рассмотрим изменения объемов. $V(v_1)=V(v'_1)$, так как v_1 не поменялся. Покажем, что никакой объем $V(v_1,\ldots,v_k)$ не изменился.

$$V(v_1, \dots, v_{i+1}) = V(v_1, \dots, v_i) \cdot \rho(v_{i+1}, U_i) = V(v'_1, \dots, v'_i) \cdot \rho(v_{i+1}, U_i) = V(v'_1, \dots, v'_{i+1})$$

Значит, $V(v_1, \ldots, v_k) = V(v_1', \ldots, v_k') = |v_1'| \cdot \ldots \cdot |v_k'|$. С другой стороны

$$\Gamma(v_1', \dots, v_k') = S^T \cdot \Gamma(v_1, \dots, v_k) \cdot S \Rightarrow$$

$$\det \Gamma(v_1, \dots, v_k) = \det \Gamma(v_1', \dots, v_k') = \prod |v_i'|^2 = V(v_1, \dots, v_k)^2$$

$$\det(v_1,\ldots,v_k) = \det(v_1,\ldots,v_k) - \prod |v_i| = v(v_1,\ldots,v_k)$$

Это рассуждение проходит, если $(v_1, \ldots, v_k) - \Pi H 3$, иначе $\det \Gamma = 0$. Но если v_i выражается через v_1, \ldots, v_{i-1} , то $V(v_1, \ldots, v_i) = 0 \Rightarrow V(v_1, \ldots, v_k) = 0$, что и требовалось показать.

Замечание. Этой теоремой мы доказали также, что объем не зависит от порядка векторов.

П

Лекция 11. Объем и расстояние. Линейные преобразования евклидовых пространств. Самосопряженные и ортогональные преобразования.

39. Выражение для объемов и расстояний. Ориентированный объем.

Теорема. (доказанная выше) $V(v_1, \ldots, v_k) = \sqrt{\det \Gamma(v_1, \ldots, v_k)}$.

Замечание. Пусть $\dim V = n, \ E = (e_1, \dots, e_n)$ — базис в V, а $(v_1, \dots, v_n) = E \cdot A$. Тогда $V(v_1, \dots, v_n) = |\det A| \cdot V(E)$.

Доказательство.
$$\Gamma(v_1,\ldots,v_n)=A^T\cdot\Gamma(E)\cdot A\Rightarrow V(v_1,\ldots,v_n)^2=\det\Gamma(v_1,\ldots,v_n)=\det^2 A\cdot\det\Gamma(E)=\det^2 A\cdot V^2(E)=(\det A\cdot V(E))^2.$$

Замечание. Пусть
$$v_0,\ldots,v_k$$
 — ЛНЗ, тогда $\rho(v_0,\langle v_1,\ldots,v_k\rangle)=\sqrt{\frac{\det\Gamma(v_0,\ldots,v_k)}{\det\Gamma(v_1,\ldots,v_k)}}$.

Доказательство. $V(v_0,\ldots,v_k)=\rho(v_0,\langle v_1,\ldots,v_k\rangle)\cdot V(v_1,\ldots,v_k)$, откуда следует наше утверждение.

Определение. Пусть V-n-мерное евклидово пространство. Будем говорить, что в V введена ориентация, если каждому базису в V сопоставлено число ± 1 , причем если $E'=E\cdot S$, то знаки E и E' совпадают $\Leftrightarrow \det S>0$.

Утверждение. Существует 2 способа ввести ориентацию в V.

Доказательство. Пусть E — базис в V. Путь он положительно ориентирован. Тогда $\forall E' = E \cdot S$, если $\det S > 0$, то E' — положительно ориентировано, а если $\det S < 0$, то отрицательно. Если $E' = E \cdot S$, $E'' = E \cdot T$, То $E'' = E \cdot T = E' \cdot S^{-1} \cdot T$ и знаки E' и E'' совпадают \Leftrightarrow знаки $\det S$, $\det T$ совпадают \Leftrightarrow $\det S^{-1} \cdot T > 0$. Итого, существует единственная ориентация, в которой E — положительно.

Аналогично, $\exists!$ ориентация, где E ориентирован отрицательно.

Определение. Пусть V — евклидово пространство с ориентацией, тогда $\forall (v_1, \ldots, v_n)$ можно определить ее *ориентированный объем* $V_{\star}(v_1, \ldots, v_n) = \pm V(v_1, \ldots, v_n)$ в соответствии со знаком ориентации (v_1, \ldots, v_n) .

Утверждение. Если $(v_1,\ldots,v_n)=E\cdot A$, то $V_\star(v_1,\ldots,v_n)=\det A\cdot V_\star(E)$.

Доказательство. Легко убедиться, что модули и знаки совпадают.

40. Линейные преобразования евклидового пространства. Сопряженные преобразования и их свойства.

Определение. Пусть V — евклидово (эрмитово) пространство, $\varphi:V\mapsto V$ — линейное преобразование. Мы говорим, что линейное преобразование $\varphi^*:V\mapsto V$ — сопряжено к φ , если $\forall u,v\in V$ верно, что $(\varphi(u),v)=(u,\varphi^*(v))$.

Утверждение. Пусть $\varphi, \psi: V \mapsto V$ — линейные преобразования, а A и B — их матрицы в ортонормированном базисе E. Тогда $\psi = \varphi^\star \Leftrightarrow B = \overline{A^T}$.

Доказательство. Пусть $u,v\in V,\;u=E\cdot x,\;v=E\cdot y,\;$ тогда

$$\left(\varphi(u),v\right)=\left(A\cdot x\right)^T\cdot\overline{y}=x^T\cdot A^T\cdot\overline{y},\,\left(u,\psi(v)\right)=x^T\cdot\overline{\left(B\cdot y\right)}=x^T\cdot\overline{B}\cdot\overline{y}$$

Если $A^T = \overline{B}$, то, очевидно $\varphi^* = \psi$.

Наоборот, если $\varphi^* = \psi$, то беря в качестве векторов x и y вектора с одной одиночной координатой мы установим равенство матриц $A^T = \overline{B}$.

Упражнение. Пусть $\varphi: V \mapsto V$ — линейное преобразование, а $\varphi^*: V \mapsto V$ — произвольное преобразования, для которого выполняется $\forall u, v \to (\varphi(u), v) = (u, \varphi^*(v))$, тогда φ^* тоже линейно.

Утверждение.

1)
$$\varphi^{\star\star} = \varphi$$

2)
$$(\varphi \cdot \psi)^* = \psi^* \cdot \varphi^*$$

3)
$$(\alpha \cdot \varphi + \beta \cdot \psi)^* = \overline{\alpha} \cdot \varphi^* + \overline{\beta} \cdot \psi^*$$

4)
$$(\chi_{\varphi}(\lambda))^* = \chi_{\varphi^*}(\overline{\lambda})$$

Доказательство. Пусть A — матрица φ в ортонормированном базисе E, тогда A^\star — матрица φ^\star .

(1) Матрица
$$\varphi^{\star\star}$$
 — это $A^{\star\star} = \overline{\overline{(A^T)}^T} = A$.

(2) Пусть
$$B$$
 — матрица ψ в E . Матрица $\varphi \cdot \psi$ — это $A \cdot B$, а матрица $(\varphi \cdot \psi)^* = (A \cdot B)^* = (A \cdot B)^T = \overline{B^T \cdot A^T} = B^* \cdot A^*$.

(3) Матрица
$$(\alpha \cdot \varphi + \beta \cdot \psi)^*$$
 — это $(\alpha \cdot A + \beta \cdot B)^* = \overline{(\alpha \cdot A + \beta \cdot B)^T} = \overline{\alpha} \cdot A^* + \overline{\beta} \cdot B^*$.

(4)
$$\chi_{\varphi^*}(\overline{\lambda}) = \left| \overline{A^T} - \overline{\lambda} \cdot E \right| = \overline{|A^T - \lambda \cdot E|} = \overline{|A - \lambda \cdot E|} = \chi_{\varphi}(\lambda)$$
. Собственные значения φ^* — комплексно сопряжены собственным значениям φ .

Утверждение. $rk \varphi = rk \varphi^*$

Доказательство,
$$rk A^* = rk \overline{A^T} = rk A$$
.

41. Свойства инвариантных подпространств при сопряжении, теорема Фредгольма.

Теорема. Пусть U — подпространство, инвариантное относительно φ . Тогда его ортогональное дополнение инвариантно относительно φ^* .

Доказательство. Пусть $v \in U^{\perp}$. Докажем, что $\varphi^{\star}(v) \in U^{\perp} \Leftrightarrow \forall u \in U \to (u, \varphi^{\star}(v)) = 0$.

$$(u, \varphi^*(v)) = \left(\underbrace{\varphi(u)}_{\in U}, \underbrace{v}_{\in U^{\perp}}\right) = 0.$$

Теорема. (Фредгольм, конечномерный случай) $\ker \varphi^* = (Im \ \varphi)^\perp$

Доказательство.

Докажем включение слева направо. $u \in \ker \varphi^* \Rightarrow \varphi^*(u) = 0 \Rightarrow 0 = (v, \varphi^*(u)) = (\varphi(v), u)$. Значит u ортогонален любому вектору из $Im \varphi \Rightarrow (Im \varphi)^{\perp}$.

Теперь посмотрим на размерности:

$$\dim \ker \varphi^* = \dim V - rk \ \varphi = \dim V - \dim(Im \ \varphi) = \dim V - \dim Im \ \varphi = \dim(Im \ \varphi)^{\perp} \Rightarrow \ker \varphi^* = (Im \ \varphi)^{\perp}.$$

3амечание. $Im\ \varphi^{\star} = (\ker\varphi)^{\perp}$,так как $\ker\varphi = \ker\varphi^{\star\star} \Rightarrow (\ker\varphi)^{\perp} = (Im\ \varphi^{\star})^{\perp\perp} = Im\ \varphi^{\star}$.

42. Самосопряженные преобразования

Определение. Линейное преобразование φ называется самосопряженным, если $\varphi = \varphi^*$.

3амечание. Пусть A — матрица φ в ортонормированном базисе, тогда $\varphi=\varphi^\star\Leftrightarrow A=A^\star=\overline{A^T}.$

Упражнение. Пусть A — матрица φ в базисе E, а $\Gamma = \Gamma(E)$. При каком условии на A преобразование φ самосопряжено.

Теорема. Пусть φ — самосопряженное преобразование пространства V размерности n. Тогда $\chi_{\varphi}(\lambda)$ имеет n вещественных корней.

Доказательство. Пусть A — матрица φ в ортонормированном базисе, тогда $A = \overline{A^T}$. Пусть ψ — преобразование n-мерного эрмитова пространства, матрица которого в ортонормированном базисе тоже A, а ψ тоже самосопряжено. У χ_{ψ} есть n комплексных корней. Пусть λ_0 — СЗ преобразования ψ . Тогда у ψ есть CB v_0 .

$$\lambda_0 \left(v_0, v_0 \right) = \left(\lambda_0 \cdot v_0, v_0 \right) = \left(\psi(v_0), v_0 \right) = \left(v_0, \psi^\star(v_0) \right) = \left(v_0, \psi(v_0) \right) = \left(v_0, \lambda_0 \cdot v_0 \right) = \overline{\lambda_0} \cdot \left(v_0, v_0 \right) \Rightarrow \lambda_0 = \overline{\lambda_0}, \text{ что и требовалось доказать.}$$

Утверждение. Пусть φ — самосопряжено, а u,v - его CB, отвечающие различным СЗ λ_1,λ_2 . Тогда $u\perp v$.

Доказательство. Пусть u и v соответствуют СЗ λ_1, λ_2 .

$$\lambda_1\left(u,v\right) = \left(\lambda_1 \cdot u,v\right) = \left(\varphi(u),v\right) = \left(u,\varphi^{\star}(v)\right) = \left(u,\varphi(v)\right) = \left(u,\lambda_2 \cdot v\right) = \overline{\lambda_2}\left(u,v\right) = \lambda_2\left(u,v\right).$$

$$\lambda_1 \neq \lambda_2 \Rightarrow \left(u,v\right) = 0$$

Теорема. Пусть φ — самосопряженное преобразование. Тогда \exists ортонормированный E из собственных векторов φ .

Доказательство. Индукция по $n = \dim V$.

 $n=1 \Rightarrow$ любой ортонормированный базис годится

n>1. $\exists \lambda_1 - \mathrm{C3} \ \varphi$ и $v_1 - \mathrm{C8}$ длины 1 для λ_1 . Положим $U = \langle v_1 \rangle^\perp$. Тогда U инвариантно относительно $\varphi^\star = \varphi$. Более того, инвариантно и $\psi = \varphi|_U$ (так как $\forall u,v \to (u,\varphi(v)) = (\varphi(u),v)$). Тогда для ψ существует ортонормированный базис (v_2,\ldots,v_n) из собственных векторов, который будучи дополненным вектором v_1 превратится в ортонормированный базис всего пространства.

Замечание. Преобразование φ самосопряжено тогда и только тогда, когда существует ортонормированный базис E, в котором оно диагонально, к котором диагональные элементы вещественны.

Доказательство.

 \Rightarrow Из доказанного ранее

$$\Leftarrow A = \overline{A^T} \Rightarrow \varphi = \varphi^*.$$

3амечание. Геометрический смысл самосопряженного преобразования: композиция n сжатий к ортогональным осям.

43. Ортогональные преобразования

Определение. Линейное преобразование евклидова (эрмитова) пространства v называется ортогональным (унитарным), если это преобразование сохраняет скалярное произведение: $\forall u, v \to (u, v) = (\varphi(u), \varphi(v)).$

Утверждение. Пусть $\varphi: V \mapsto V$ — линейное преобразование евклидова (эрмитова) пространства, тогда равносильны утверждения:

- (1) φ ортогонально (унитарно)
- (2) Для ортонормированного базиса $F = (e_1, \dots, e_n)$ вектора $(\varphi(e_1), \dots, \varphi(e_n))$ тоже образуют базис
- (3) Если A матрица φ в ортонормированном базисе F, то $A^* = A^{-1}$. (Такие матрицы называют ортогональным/унитарными)

Доказательство.

- $(1) \Rightarrow (2)$. Если F ортонормированный базис, то по определению $(e_i, e_i) = (\varphi(e_i), \varphi(e_i)) = 1$, $(e_i, e_j) = (\varphi(e_i), \varphi(e_j)) = 0$, значит $(\varphi(e_1), \dots, \varphi(e_n))$ ортонормированная система, а значит и базис.
- $(2)\Rightarrow (3).$ Пусть F и $\varphi(F)$ ортонормированные базисы, а A матрица φ в базисе F, тогда $\varphi(F)=F\cdot A$ и

$$E = \Gamma(\varphi(F)) = \Gamma(F \cdot A) = A^T \cdot \Gamma(F) \cdot \overline{A} = A^T \cdot \overline{A} \Rightarrow \overline{A^{-1}} = A^T \Rightarrow A^{-1} = \overline{A^T} = A^T \Rightarrow A^T \Rightarrow A^T = \overline{A^T} = A^T \Rightarrow A^T \Rightarrow A^T = \overline{A^T} = A^T \Rightarrow A^T \Rightarrow$$

$$\begin{array}{l} (3) \Rightarrow (1). \ A^{\star} = A^{-1} \Rightarrow \varphi^{\star} = \varphi^{-1} \Rightarrow \varphi^{\star} \varphi = id \Rightarrow (\varphi(u), \varphi(v)) = (u, \varphi^{\star}(\varphi(v))) = (u, v) \overline{A^{-1}} = A^{T} \Rightarrow A^{-1} = \overline{A^{T}} = A^{\star}. \end{array}$$

3амечание. φ — ортогонально $\Leftrightarrow \varphi^* = \varphi^{-1}$

Утверждение. Если φ, ψ — ортогональные (унитарные) преобразования, то $\varphi \circ \psi, \psi^{-1}$ — также ортогональны (унитарны)

Доказательство. Пусть E — ортонормированный базис, тогда $\psi(E)$ — $\overline{A^{-1}}=A^T\Rightarrow A^{-1}=\overline{A^T}=A^T$ — тоже $\Rightarrow \varphi(\psi(E))$ — ортонормирован, значит $\varphi\circ\psi$ — ортогонально (унитарно).

$$\psi^{-1}$$
 переводит $\psi(E)$ в $\psi^{-1}(\psi(E))=E\Rightarrow \psi^{-1}$ — ортогонально (унитарно)

Утверждение. Пусть φ — ортогональное (унитарное) преобразование, U — инвариантное пространство, U^{\perp} — тоже инвариантное.

Доказательство. U — инвариантно относительно $\varphi \Rightarrow U^{\perp}$ инвариантно относительно $\varphi^{\star} = \varphi^{-1} \Rightarrow U^{\perp}$ инвариантно относительно $(\varphi^{-1})^{-1} = \varphi$.

Утверждение. Пусть λ_0 — СЗ ортогонально (унитарного) преобразования φ . Тогда $|\lambda_0| = 1$.

Доказательство. Пусть v_0 — CB, соответствующий λ_0 , тогда

$$(v_0, v_0) = (\varphi(v_0), \varphi(v_0)) = (\lambda_0 \cdot v_0, \lambda_0 \cdot v_0) = |\lambda_0|^2 \cdot (v_0, v_0) \Rightarrow |\lambda_0|^2 = 1 \Rightarrow |\lambda_0| = 1$$

Теорема. Пусть φ — унитарное преобразование эрмитова пространства V, тогда \exists ортонормированный базис из ее CB.

Доказательство. Индукция по n...

Замечание. Эти два факта равносильны.

Лекция 12. Ортогональные преобразования евклидового пространства. Полярное разложение. Приведение формы к главным осям.

44. Канонический вид ортогонального преобразования евклидового пространства

Пример. Поворот двумерной евклидовой плоскости — недиагонализуем. Его матрица в ортонормированном базисе $\begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix}$, собственных векторов у него нет.

Лемма. Пусть $\varphi: V \mapsto V$ — линейное преобразование линейного пространства V над \mathbb{R} . Тогда для $\varphi \exists 1$ - или 2-мерное инвариантное подпространство U.

Доказательство. Пусть $\mu_{\varphi}(\lambda)$ — минимальный многочлен φ . Тогда $\mu_{\varphi}(\lambda) = P_1(\lambda) \cdot \ldots \cdot P_k(\lambda)$, где $P_i(\lambda)$ — степени 1 или 2. Тогда $\mu_{\varphi}(\varphi) = 0$, причем P_1 — вырожденное преобразование. Иначе из $P_1(\varphi) \cdot \ldots \cdot P_k(\varphi) = 0$ следовало бы $P_2(\varphi) \cdot \ldots \cdot P_k(\varphi) = 0$ и μ_{φ} — не был бы минимальным.

Если $\deg P_1 = 1$, то можно считать, что $P_1(\lambda) = \lambda - \lambda_0$ и $\lambda_0 - C3$ преобразования φ , а значит, соответствующий CB порождает 1-мерное инвариантное подпространство.

Иначе det $P_1=2$. Поскольку $P_1(\varphi)$ — вырождено, то ker $P_1(\varphi)\neq 0$, то есть $\exists 0\neq u: P_1(u)=0$. Можно считать, что $P_1(\lambda)=\lambda^2+a\cdot\lambda+b$. Положим $U=\langle u,\varphi(u)\rangle$. dim $U\leq 2$. Покажем, что оно инвариантно. Действительно $\varphi(u)\in U$ и $\varphi(\varphi(u))=\varphi^2(u)=\left(\varphi^2+a\cdot\varphi+b\right)(u)-(a\cdot\varphi+b)(u)=-a\cdot\varphi(u)-b\cdot u\in U$, что и требовалось показать.

Теорема. Пусть $\Theta: V \mapsto V$ — ортогональное преобразование евклидова пространства V. Тогда \exists ортогональный базис пространства V, в котором матрица Θ имеет блочнодиагональный вид:

$$A = \begin{pmatrix} A_1 & 0 & \dots & 0 \\ 0 & A_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & A_k \end{pmatrix}, A_i - \operatorname{nu6o} (\pm 1), \operatorname{nu6o} \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix}$$

Доказательство. Индукция по $n = \dim V$.

Если n=1, то все тривиально.

Если n=2, то Θ — либо осевая симметрия, либо поворот. Во втором случае его матрица — матрица поворота, а в первом, в базисе, согласованном с осями, имеет вид $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.

Пусть n>2. Выберем по лемме инвариантное подпространство U.

Если dim U=1, то $U=\langle e_1\rangle$, e_1 — CB и соответствующее C3 есть ± 1 .

Если $\dim U = 2$, то $U = \langle e_1, e_2 \rangle$ и матрица $\Theta|_U$ имеет требуемый вид.

Так как U — инвариантно, то U^{\perp} — также инвариантно относительно Θ . По предположению индукции, в U^{\perp} существует ортонормированный базис (e_k,\ldots,e_n) , k=2 или 3. Тогда базис (e_1,\ldots,e_n) — ортонормированный и матрица Θ в этом базисе есть $\begin{pmatrix} B & 0 \\ 0 & C \end{pmatrix}$, B — матрица $\Theta|_U$, C — матрица $\Theta|_{U^{\perp}}$. Это и требовалось.

Замечание. Преобразование $\Theta: V \mapsto V$ евклидова пространства V — ортогональное ⇔ его матрица в некотором ортонормированном базисе имеет описанный вид.

45. Нормальные преобразования как обобщение самосопряженных, ортогональных

Определение. Пусть $\varphi: V \mapsto V$ — линейное преобразование евклидова (эрмитова) пространства $V. \varphi$ называется *нормальным*, если $\varphi \cdot \varphi^* = \varphi^* \cdot \varphi$.

 $\it 3$ амечание. Самосопряженное преобразование нормально $(\varphi=\varphi^\star)$

Ортогональное (унитарное) — тоже нормально, ибо $\varphi^{\star}=\varphi^{-1}$

Упражнение. Пусть φ — нормальное преобразование эрмитова пространства. Тогда

- а) Если $v \mathrm{CB} \, \varphi$, то $v \mathrm{CB} \, \varphi^*$

46. Полярное разложение преобразование

Теорема. Пусть $\psi: V \mapsto V$ — произвольное линейное преобразование евклидова (эрмитова) пространства V. Тогда \exists ортогональное (унитарное) Θ и самосопряженное φ , такие что $\Theta \cdot \varphi = \psi$. При этом можно добиться того, что все C3 φ неотрицательны.

Доказательство. Рассмотрим преобразование $\eta = \psi^* \cdot \psi$. Тогда $\eta^* = (\psi^* \cdot \psi)^* = \psi^* \cdot \psi = \eta$. Значит для η существует ортонормированный базис из его собственных векторов (e_1, \ldots, e_n) .

Утверждение. $(\psi(e_1), ..., \psi(e_n))$ — ортогональная система векторов.

Доказательство. Пусть $i \neq j$. Тогда $(\psi(e_i), \psi(e_j)) = (e_i, \psi^* \cdot \psi(e_j)) = (e_i, \eta(e_j)) = (e_i, \lambda_j \cdot e_j) = 0$, так как базис ортонормированный.

Некоторые из $\psi(e_1), \ldots, \psi(e_n)$ — нулевые. Без потери общности, считаем, что $\varphi(e_{k+1}) = \ldots = \varphi(e_n) = 0$.

Положим $f_1 = \frac{\psi(e_1)}{|\psi(e_1)|}, \dots, f_k = \frac{\psi(e_k)}{|\psi(e_k)|}$ и выберем в подпространстве $\langle e_1, \dots, e_k \rangle^{\perp}$ ортонормированный базис (f_{k+1}, \dots, f_n) .

Тогда $\psi(e_i) = |\psi(e_i)| \cdot f_i$, $i = 1, \ldots, n$, значит базис (f_1, \ldots, f_n) — ортонормированный. Зададим требуемые $\Theta(e_i) = f_i$, а $\varphi(e_i) = |\psi(e_i)| \cdot e_i$.

 Θ и φ — однозначно заданы, Θ — ортогонально, так как переводит ортонормированный базис (e_1,\ldots,e_n) в ортонормированный базис (f_1,\ldots,f_n) , φ — самосопряжено, так как имеет диагональную матрицу с вещественными числами на диагонали. Наконец $\Theta(\varphi(e_i)) = \Theta(|\psi(e_i)| \cdot e_i) = |\psi(e_i)| \cdot f_i = \psi(e_i)$. Итак, $\Theta \cdot \varphi$ совпадают на базисе, значит $\Theta \cdot \varphi = \psi$, что и требовалось доказать.

Замечание. Пусть $\psi = \Theta \cdot \varphi$, то $\psi^* = \varphi^* \cdot \Theta^* = \varphi \cdot \Theta^{-1}$. Тогда $\psi^* \cdot \psi = \varphi^2 = \varphi^* \cdot \varphi$. Значит $\eta(e_i) = \lambda_i \cdot e_i = |\psi(e_i)|^2 \cdot e_i$. То есть $|\psi(e_i)| = \sqrt{\lambda_i}$ — корни из СЗ преобразования η . В частности, видим, что λ_i — неотрицательно.

Определение. Базисы e_i и f_i называются сингулярными базисами ψ , а $|\psi(e_i)| = \mu_i$ называются его сингулярными значениями (числами)

Замечание. Теорема верна и для разложения $\psi = \varphi \cdot \Theta$. Например, применяя теорему к $\psi^* = \Theta \cdot \varphi$, тогда $\psi = \varphi \cdot \Theta^{-1}$, что нам и нужно.

Упражнение. Предъявить φ' и Θ' из доказательства теоремы.

47. Квадратичные и билинейные формы в евклидовом и унитарном пространстве. Присоединенные преобразования.

Замечание. Рассмотрим случай эрмитового пространства, евклидов случай аналогичен.

Определение. Пусть V — эрмитово пространство, b — некоторая полуторалинейная форма на V. Линейное преобразование $\varphi: V \mapsto V$ называется npucoedunenhum к b, если $\forall u, v \in V \to b(u, v) = (\varphi(u), v)$.

Утверждение. Такое преобразование существует и единственно для любой $1\frac{1}{2}$ -линейной формы b.

Доказательство. Пусть E — ортонормированный базис, B — матрица формы b в этом базисе, а A — матрица присоединенного преобразования φ . Тогда если $u = E \cdot x, \ v = E \cdot y, \ \text{то} \ x^T \cdot B \cdot \overline{y} = b(u,v) = (\varphi(u),v) = (A \cdot x)^T \cdot \overline{y} = x^T \cdot A^T \cdot \overline{y}$. Выполнение такого равенства для всех x и y влечет существование и единственность такой матрицы $A = B^T$, а значит и линейного преобразования.

 $\mathit{Замечаниe}.$ Форма b — эрмитова \Leftrightarrow присоединенное к ней arphi — самосопряжено.

$$\mathcal{A}$$
оказательство. b — эрмитова $\Leftrightarrow B^T = \overline{B} \Leftrightarrow A = \overline{A^T} \Leftrightarrow \varphi$ — самосопряжено.

Замечание. Пусть A — матрица некоторого линейного преобразование в ортонормированном базисе E, а B — матрица $1\frac{1}{2}$ -линейной формы в этом базисе. Рассмотрим ортогональную замену базиса $F=E\cdot S$, где S — унитарная матрица. Тогда матрицы меняются как $A'=S^{-1}\cdot A\cdot S$, $B'=S^T\cdot B\cdot \overline{S}$. Так как $S^{-1}=\overline{S^T}$, то $A'=\overline{S^T}\cdot A\cdot S$. Если $A=B^T$, то действительно $A'=\left(B'\right)^T$

48. Приведение эрмитовой формы к главным осям

Теорема. (о приведении эрмитовой формы κ главным осям). Пусть b- эрмитова $1\frac{1}{2}$ -линейная форма на эрмитовом пространстве V. Тогда \exists ортонормированный базис, κ котором матрица формы диагональна. При этом диагональные элементы определены однозначно c точностью до перестановки.

Доказательство. Пусть φ — присоединенное к b преобразование. Тогда φ — самосопряжено, и существует ортонормированный базис (e_1, \ldots, e_n) , где A — диагональна, значит и матрица формы b в этом базисе равна A^T и также диагональна.

С другой стороны, если матрица формы диагональна в некотором ортонормированном базисе E, то матрица присоединенного φ также диагональна и на диагонали будут стоять СЗ φ . Значит и в матрице формы на диагонали стоят СЗ φ (с учетом кратностей), а значит, они определены однозначно.

Замечание. Пусть b_1 и b_2 — это две эрмитовых $1\frac{1}{2}$ -линейных формы на линейном пространстве V над \mathbb{C} . Причем одна из этих форм положительно определена. Тогда ∃базис, в котором матрицы обеих форм диагональны.

Доказательство. Пусть b_1 — положительно определена. Тогда введем эрмитово произведение при помощи этой формы: $(u,v)=b_1(u,v)$. Тогда, ортонормированный базис (e_1,\ldots,e_n) , в котором матрица b_2 диагональна — это требуемый базис, так как матрица b_1 в таком базисе единична.

Замечание. Условие положительной определенности b_1 — слишком сильное, его можно заменить на условие положительной определенности формы $\alpha \cdot b_1 + \beta \cdot b_2$. Действительно, если, к примеру, $\alpha \neq 0$, то можно привести к диагональному виду формы b_2 и $\alpha \cdot b_1 + \beta \cdot b_2$, тогда $b_1 = \frac{b - \beta \cdot b_2}{\alpha}$ — тоже диагональна.

3амечание. Не любые две эрмитовы $1\frac{1}{2}$ -линейные формы, приводимы одновременно к диагональному виду.

Пример. Пусть формы b_1 и b_2 имеют в одном и том же базисе матрицы $B_1 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ и $B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. Эти формы эрмитовы. Если бы они были бы одновременно приводимы к виду $B_1' = \begin{pmatrix} \alpha_1 & 0 \\ 0 & \alpha_2 \end{pmatrix}, B_2' = \begin{pmatrix} \beta_1 & 0 \\ 0 & \beta_2 \end{pmatrix}$ — вещественные невырожденные матрицы. Тогда $b_1 - \frac{\alpha_1}{\beta_1} \cdot b_2$ была бы вырожденной. Пусть $t = \frac{\alpha_1}{\beta_1} \in \mathbb{R}$. Матрица формы $b = b_1 - t \cdot b_2$ в исходном базисе была бы $B = \begin{pmatrix} 1 & -t \\ -t & 1 \end{pmatrix}$ и $\det B = -1 - t^2 < 0$. Противоречие.

Лекция 13^{*}. Тензоры, тензорное произведение, выражение тензора в координатах.

49. Понятие тензора и тензорного произведения

Замечание. Вводя определение полилинейного отображения, мы вводили:

Определение. Пусть V_1, \dots, V_k, U — линейные пространства над полем F. Отображение $f: V_1 \times \dots \times V_k \mapsto U$ называется полиминейным, если оно линейно по всем аргументам, то есть для любых аргументов v_i и для любого $1 \le i \le k$ выполняется

$$f(v_1,\ldots,\alpha\cdot v_i+\beta\cdot v_i',\ldots,v_k)=\alpha\cdot f(v_1,\ldots,v_i,\ldots,v_k)+\beta\cdot f(v_1,\ldots,v_i',\ldots,v_k)$$

Самый частый случай использования полилинейных форм — случай, когда в качестве V_i выступает либо какое-то одно V, либо V^*

Определение. Пусть V — линейное пространство над F, V^\star — сопряженное пространство. Обозначим $\underbrace{V \times \ldots \times V}_p \times \underbrace{V^\star \times \ldots \times V^\star}_q = V^p \times (V^\star)^q$

Пример. Тензоры типов

- а) (0,0) константа
- б) $(1;0)-T:\ V\mapsto F\Rightarrow T\in V^{\star}$ линейная функция
- в) $(0;1)-T:\ V^\star\mapsto F\Rightarrow T\in V^{\star\star}\cong V$ вектор
- г) (2,0) билинейная форма на V, (0,2) билинейная форма на V^*
- д) (1,1) $T: V \times V^* \mapsto F. \forall v \in V, f \in V^*$ определено T(v,f).

Зафиксируем $v \in V$, тогда $T(v, \cdot)$ — линейная функция на V^* , то есть некоторый вектор $\varphi(v)$: $T(v, f) = f(\varphi(v)), \varphi: V \mapsto V$.

В силу линейности по первому аргументу:

$$T(\alpha \cdot v_1 + \beta \cdot v_2, f) = \alpha \cdot T(v_1, f) + \beta \cdot T(v_2, f) \Rightarrow$$

$$\forall f \in V^* \to f(\varphi(\alpha \cdot v_1 + \beta \cdot v_2)) = \alpha \cdot f(\varphi(v_1)) + \beta \cdot f(\varphi(v_2))$$

Так как это верно для всех f, то получается, что φ — линейно.

Итак, каждому тензору типа (1,1) мы однозначно сопоставили линейное отображение $\varphi: V \mapsto V$. Наоборот, если $\varphi: V \mapsto V$, то отображение $T(v,f) = f(\varphi(v))$ билинейно, то есть это тензор типа (1,1).

Замечание. Естественным образом тензоры типа (p,q) образует линейное пространство, обозначаемое $T_p^q(V)$.

Определение. Пусть $T \in T^q_p(V), \ S \in T^s_r(V)$ — тензоры, тогда их *тензорное произведение* есть $T \otimes S \in T^{q+s}_{p+r}(V)$, определяемый как $T \otimes S(v_1, \dots, v_{p+r}, f^1, \dots, f^{q+s}) = T(v_1, \dots, v_p, f^1, \dots, f^q) \cdot S(v_{p+1}, \dots, p_{p+r}, f^{q+1}, \dots, f^{q+s}).$

Замечание. Некоторые простые свойства тензорного произведения

- 1) $(T \otimes S) \otimes P = T \otimes (S \otimes P)$
- 2) Вообще говоря, $T\otimes S\neq S\otimes T$. $f^1,f^2\in V^\star,$ то $f^1\otimes f^2(v_1,v_2)=f^1(v_1)\cdot f^2(v_2),$ тогда как $f^2\otimes f^1(v_1,v_2)=f^2(v_1)\times f^1(v_2)$
- 3) $(\alpha \cdot T_1 + \beta \cdot T_2) \otimes S = \alpha \cdot T_1 \otimes S + \beta \cdot T_2 \otimes S$, $S \otimes (\alpha \cdot T_1 + \beta \cdot T_2) = \alpha \cdot S \otimes T_1 + \beta \cdot S \otimes T_2$

50. Задание тензора в координатах

Замечание. Пусть (e_1, \ldots, e_n) — базис в V, тогда разумно выбрать (f^1, \ldots, f^n) — взаимный к нему в V^* .

Определение. Пусть $T \in T_p^q$. Тогда его *координаты* в базисе (e_1, \dots, e_n) есть n^{p+q} координат $T_{i_1, \dots, i_p}^{j_1, \dots, j_q} = T(e_{i_1}, \dots, e_{i_p}, f^{j_1}, \dots f^{j_q})$.

Замечание. По поводу базиса в $T_p^q(V)$. В этом пространстве лежат элементы: $f^{i_1} \otimes \ldots \otimes f^{i_p} \otimes e_{j_1} \otimes \ldots \otimes e_{j_q} \in T_p^q$.

Так как базисы взаимны, то $f^i(e_j)=\delta^i_j=egin{cases} 1, & i=j \\ 0, & i
eq j \end{cases}$. Тогда

$$\begin{split} f^{i_1} \otimes \ldots \otimes f^{i_p} \otimes e_{j_1} \otimes \ldots \otimes e_{j_q}(e_{k_1}, \ldots, e_{k_p}, f^{l_1}, \ldots, f^{l_q}) &= f^{i_1}(e_{k_1}) \cdot \ldots f^{i_p}(e_{k_p}) \cdot e_{j_1}(f^{l_1}) \cdot \ldots \cdot e_{j_q}(f^{l_q}) = \\ &= \delta^{i_1}_{k_1} \cdot \ldots \cdot \delta^{i_p}_{k_p} \cdot \delta^{l_1}_{j_1} \cdot \ldots \cdot \delta^{l_q}_{j_q} &= \begin{cases} 1, & i_1 = k_1, \ldots, j_q = l_q \\ 0, & \text{иначе} \end{cases} \end{split}$$

Таким образом, этот тензор только при одной подстановке базисных векторов и функций дает 1, иначе дает 0.

Утверждение. Пусть $T \in T_p^q(V)$. Тогда $T = \sum_{i_1,\ldots,i_p,j_1,\ldots,j_q} T_{i_1,\ldots,i_p}^{j_1,\ldots,j_q} \cdot f^{i_1} \otimes \ldots \otimes f^{i_p} \otimes e_{j_1} \otimes \ldots \otimes e_{j_q}$. При этом тензоры $f^{i_1} \otimes \ldots \otimes f^{i_p} \otimes e_{j_1} \otimes \ldots \otimes e_{j_q}$ образуют базис $T_1^q(V)$.

Доказательство. Тензор $T \in T_p^q(V)$ однозначно задается его значениями на базисных элементах. В формуле выше слева и справа стоят тензоры типа (p,q). На наборе $(e_{i_1},\ldots,e_{i_p},f^{j_1},\ldots,f^{j_q})$ они дают $T_{i_1,\ldots,i_p}^{j_1,\ldots,j_q}$, то есть совпадают, значит они равны.

Покажем, что любой тензор выражается единственным образом. Если $0 = \sum \alpha_{i_1,\dots,i_p}^{j_1,\dots,j_q} f^{i_1} \otimes \ldots \otimes f^{i_p} \otimes e_{j_1} \otimes \ldots e_{j_q}$, то, подставив тот же набор, убедимся, что $\alpha_{i_1,\dots,i_p}^{j_1,\dots,j_q} = 0$. Значит, эта линейная комбинация тривиальна.

Пример.

1)
$$v = \sum_i v^i \cdot e_i$$
 — тензор типа (0,1). $v(f^i) = f^i(v) = v^i$

2)
$$\varphi: V \mapsto V, \ \varphi \in T^1_1(V). \ T(v,f) = f(\varphi(v)). \ T(e_i,f^j) = f^j(\varphi(e_i)) - j$$
-я координата $\varphi(e_i)$, что соответствует матрице линейного отображения $\varphi - \left(\begin{array}{ccc} T^1_1 & \cdots & T^1_n \\ \vdots & \ddots & \vdots \\ T^n_1 & \cdots & T^n_n \end{array} \right).$

51. Изменение координат при замене базиса

Замечание. В тензорной алгебре принято сокращение: если индекс встречается дважды, то по нему предполагается суммирование (все индексы меняются от 1 до n).

Пусть есть $E=(e_1,\ldots,e_n)$ — базис в $V,\ F=(f^1,\ldots,f^n)$ — сопряженный базис, $E'=(e'_1,\ldots,e'_n)$ — другой базис в $V,\ F'=(f'^1,\ldots,f'^n)$. Пусть формула перехода от E к E': $e'_j=s^l_j\cdot e_l,\ f'^i=r^i_k\cdot f^k$. r и s связаны соотношениями:

$$\delta^i_j = f'^i(e'_j) = r^i_k \cdot f^k(s^l_j \cdot e_l) = r^i_k \cdot s^l_j \cdot f^k(e_l) = r^i_k \cdot s^j_l \cdot \delta^k_l = r^i_k \cdot s^i_j$$

(То есть их матрицы перехода обратны друг другу)

Тогда координаты тензора меняются так:

$$T_{j_1,\ldots,j_p}^{\prime i_1,\ldots,i_q} = T(e_{j_1}^\prime,\ldots,e_{j_p}^\prime,f^{\prime i},\ldots,f^{\prime i_q}) = T(s_{j_1}^{l_1}\cdot e_{l_1},\ldots,s_{j_p}^{l_p}\cdot e_{l_p},r_{k_1}^{i_1}\cdot f^{k_1},\ldots,r_{k_q}^{i_q},f^{k_q}) = \\ = s_{j_1}^{l_1}\cdot\ldots\cdot s_{j_p}^{l_p}\cdot r_{k_1}^{i_1}\cdot\ldots\cdot r_{k_q}^{i_q}\cdot T_{l_1,\ldots,l_p}^{k_1,\ldots,k_q}$$

Замечание. Часто тензор определяется иначе. Пусть для каждого базиса (e_1, \ldots, e_n) в V определен набор скаляров $T_{j_1,\ldots,j_p}^{i_1,\ldots,i_q}$, при этом эти наборы в разных базисах связаны формулой перехода (выше). Тогда мы говорим, что эти наборы скаляров задают тензор типа (p,q).

Пример. δ^i_j — тензор типа (1,1). Проверим это: $\delta'^i_j = s^l_j \cdot r^i_k \cdot \delta^k_l = \delta^i_j$. А также это есть D(v,f) = f(v) и задает тождественное линейное преобразование.

Определение. Пусть U, V — линейные пространства над полем $F, \varphi : U \mapsto V$ — линейное отображение. Тогда *сопряженное* к нему *преобразование* $\varphi^* : V^* \mapsto U^*$ определяется так: если $f \in V^*, u \in U$, то $\varphi^*(f)(u) = f(\varphi(u))$.

Упражнение. Проверить, что это определение согласуется с определением сопряженного преобразования евклидового пространства.

Лекция 14^{*}. Другие примеры тензоров, тензорные свертки.

52. Задание алгебры тензором

Определение. [напоминание] A — алгебра над полем F, если над A определены операции сложения, умножения на элемент алгебры и на скаляр, так что $(A, +, \times)$ — кольцо, а $(A, +, \cdot \alpha)$ — линейное пространство над F, причем $\forall \alpha \in F$, $a, b \in A \to \alpha \cdot (ab) = (\alpha a) \cdot b = a \cdot (\alpha b)$.

Замечание. Если $1 \in A$, то $A \supset \{\alpha \cdot 1 : \alpha \in F\} \cong F$.

Пример. Две стандартных алгебры: F[x] и $M_n(F)$. Еще пример - подалгебра $M_n(F)$: для $A \in M_n(F)$ рассмотрим $\langle E, A, A^2, \ldots \rangle$.

Замечание. Как можно задать алгебру? Пусть A — алгебра, $\dim A = n$ и $E = (e_1, \dots, e_n)$ — базис в A. Для того, чтобы определить алгебру однозначно, нужно задать операцию умножения, а для этого нужно определить $e_i \cdot e_j = \sum_k \gamma_{ij}^k \cdot e_k$.

Определение. Константы $\gamma_{ij}^k - cmpy \kappa mypные константы алгебры <math>A$.

Утверждение. (γ_{ij}^k) определяют тензор типа (2,1).

Доказательство. Пусть $E'=(e'_1,\dots,e'_n)$ — другой базис в $A,\ e'_i=s^j_i\cdot e_j,\$ тогда $e_j=r^i_j\cdot e'_i.$ Значит

$$e_i' \cdot e_j' = \left(s_i^l e_l\right) \cdot \left(s_j^m \cdot e_m\right) = s_i^l s_j^m \cdot \left(e_l \cdot e_m\right) = s_i^l s_j^m \cdot \gamma_{lm}^n \cdot e_n = s_i^l \cdot s_j^m \cdot \gamma_{lm}^n \cdot r_n^k \cdot e_k' = \gamma_{ij}'^k \cdot e_k$$

Итак,
$$\gamma_{ij}^{\prime k}=s_i^l\cdot s_j^m\cdot r_n^k\cdot \gamma_{lm}^n$$
, что и означает, что γ_{ij}^k задают $(2,1)$ -тензор.

53. Свертка тензора

Замечание. Пусть $T \in T^1_1(V)$ (он соответствует линейному преобразованию, а его координаты T^j_i — элементы матрицы этого линейного преобразования). В частности скаляр $T^i_i = \sum_i T^i_i = tr \ T$ не зависит от выбора базиса.

Определение. Пусть $T \in T_p^q(V), \ p,q \ge 1$. Выберем $r \le p, \ s \le q$. Сверткой тензора T по индексам (r,s) назовем тензор

$$Tr_s^t(T) = T_{i_1,\dots,i_{r-1},i,i_{r+1},i_p}^{j_1,\dots,j_{s-1},j,j_{s+1},\dots,j_q}$$

Утверждение. Свертка — это действительно тензор.

 \mathcal{A} оказательство. Положим $P=Tr_r^s(T)$. Рассмотрим, как меняются координаты P при замене базиса.

$$T_{i_1,...,i_p}^{\prime j_1,...,j_q} = s_{i_1}^{k_1} \cdot \ldots \cdot s_{i_p}^{k_p} \cdot r_{l_1}^{j_1} \cdot \ldots \cdot r_{l_q}^{j_q} \cdot T_{k_1,...,k_p}^{l_1,...,l_q}$$

Тогда

$$P_{i_{1},...,i_{r-1},i_{r+1},...,i_{p}}^{\prime j_{1},...,j_{s-1},j_{s+1},...,j_{q}} = T_{i_{1},...,i_{r-1},i_{r+1},...,i_{p}}^{\prime j_{1},...,j_{s-1},j_{s+1},...,j_{q}} = \\ = s_{i_{1}}^{k_{1}} \cdot ... \cdot s_{i_{r-1}}^{k_{r-1}} \cdot s_{i_{r+1}}^{k_{r+1}} \cdot ... \cdot s_{i_{p}}^{k_{p}} \cdot r_{l_{1}}^{j_{1}} \cdot ... \cdot r_{l_{q-1}}^{j_{q-1}} \cdot r_{l_{q+1}}^{j_{q+1}} \cdot ... \cdot r_{l_{q}}^{j_{q}} \cdot \underbrace{s_{i}^{k} \cdot r_{i}^{i}}_{k_{1},...,k_{p}} \cdot T_{k_{1},...,k_{p}}^{l_{1},...,l_{q}} = \\ = \underbrace{s_{i_{1}}^{k_{1}} \cdot ... \cdot s_{i_{r-1}}^{k_{r-1}} \cdot s_{i_{r+1}}^{k_{r+1}} \cdot ... \cdot s_{i_{p}}^{k_{p}}}_{i_{p}} \cdot \underbrace{r_{l_{q-1}}^{j_{1}} \cdot r_{l_{q+1}}^{j_{q+1}} \cdot ... \cdot r_{l_{q}}^{j_{q}}}_{l_{q+1}} \cdot T_{k_{1},...,k_{n},k_{p}}^{l_{1},...,k_{n-1},l_{s+1},...,l_{q}} = P_{k_{1},...,k_{r-1},k_{r+1},...,k_{p}}^{l_{1},...,l_{r-1},k_{r+1},...,l_{p}}$$

Значит это есть (p-1, q-1)-тензор.

Пример.

- 1) Пусть φ линейное преобразование, а v вектор. Что такое $\varphi(v)$? Выберем базис E, в нем получаем φ_i^j координаты φ, v^k координаты v. Тогда $\varphi(v)$ имеет координаты $\varphi(v)^i = \varphi_j^i \cdot v^j$, то есть $\varphi(v) = Tr_1^2 \, (\varphi \otimes v)$.
- 2) Если b билинейная форма, u, v два вектора, то $b(u, v) = b_{ij} \cdot u^i \cdot v^j = Tr_1^2 Tr_2^2 (b \otimes u \otimes v)$.
- 3) Пусть φ, ψ два линейных преобразования. Тогда

$$(\varphi \circ \psi)(v)^l = \varphi(\psi(v))^l = \varphi_i^l \psi_i^j v^i \Longrightarrow (\varphi \circ \psi)_i^l = \varphi_i^l \cdot \psi_i^j \Longrightarrow \varphi \circ \psi = Tr_1^2(\varphi \otimes \psi)$$

54. Симметричные тензоры

Определение. Пусть $T \in T_p^q(V)$ и $n_1 < \ldots < n_k$ — натуральные числа, не превосходящие p. Тензор T называется *симметричным* по индексам n_1, \ldots, n_k , если при перестановке индексов с этими номерами координаты тензора не меняются.

Пример. Например, T^l_{ijk} типа (3,1) симметричен по индексам (1,2) (или по индексам (i,j)), если $T^l_{ijk} = T^l_{jik}$.

Определение. Аналогично определяется тензор, симметричный по набору верхних индексов.

Замечание. Сформулируем эквивалентное определение в инвариантном от координат виде.

Утверждение. (Например, для тензора типа (3,1), симметричного по первым двум индексам). Пусть $T \in T_3^1(V)$, то есть $T: V \times V \times V \times V^* \mapsto F$. Тогда T — симметричен по первым двум индексам $\Leftrightarrow T(u,v,w,f) = T(v,u,w,f)$.

Доказательство. T-симметричен $\Leftrightarrow T(e_i, e_j, e_k f_l) = T(e_j, e_i, e_k, f_l)$, а ввиду того, что это полилинейное отображение, это равносильно тому, что T(u, v, w, f) = T(v, u, w, f), достаточно лишь разложить вектора по базису.

Пример.

- 1) Симметрическая билинейная форма b симметричный тензор, так как $b_{ij} = b_{ji}$ или также b(u,v) = b(v,u).
- 2) Еще один важный пример. Евклидово пространство это линейное пространство, на котором введено скалярное произведение (то есть симметрическая положительно определенная билинейная форма), которое определяет метрический тензор g_{ij} . В этом случае можно определить nodoem и $cnyc\kappa$ индексов.

 $V\cong V^{\star}$: каждому вектору, то есть тензору типа (0,1) с координатами v^{i} сопоставляется тензор типа (1,0) по правилу $(v^{\star})_{j}=g_{ij}\cdot v^{i}$. Это линейная функция. В ортонормированном базисе $g_{ij}=\delta^{i}_{j}$, то есть $(v^{\star})_{j}=v^{j}$.

3) Если φ — линейное преобразование, φ_i^j — его координаты, то можно определить $g_{ik} \cdot \varphi_j^k = b_{ij}$. Получается билинейная форма, присоединенная к φ . Чтобы получить обратную замену требуется метрический тензор g^{ij} , то есть наше скалярное произведение на V^* (их матрицы, конечно, взаимно обратны $g_{ik} \cdot g^{jk} = \delta_i^j$), с помощью которого можно опускать индексы.

55. Симметрические тензоры. Симметризация тензора

Замечание. Определим симметризацию тензора по трем индексам, определение можно будет обобщить на любое их количество.

Определение. Пусть $T \in T_p^q(V), \ p \geq 3$. Симметризация тензора T по первым трем индексам это тензор с координатами

$$Sym_{1,2,3}(T)_{i_1,\dots,i_p}^{j_1,\dots,j_q} = \frac{1}{3!} \cdot \sum_{\sigma \in S_3} T_{i_{\sigma(1)},i_{\sigma(2)},i_{\sigma(3)},i_4,\dots,i_p}^{j_1,\dots,j_q}$$

Можно также дать инвариантное определение:

$$Sym_{1,2,3}(T)(v_1,\ldots,v_p,f^1,\ldots,f^q) = \frac{1}{3!} \cdot \sum_{\sigma \in S_3} T(v_{\sigma(1)},v_{\sigma(2)},v_{\sigma(3)},v_4,\ldots,v_p,f^1,\ldots,f^q)$$

Замечание. $Sym_{1,2,3}(T)$ — тензор, симметричный по первым трем индексам. Если T — уже симметрический по первым трем индексам, то $Sym_{1,2,3}(T)=T$. Обычно симметризацию сокращают как $Sym_{1,2,3}(T)=T^j_{(i_1,i_2,i_3)i_4}$.

56. КОСОСИММЕТРИЧЕСКИЕ ТЕНЗОРЫ. АЛЬТЕРНИРОВАНИЕ ТЕНЗОРА

Определение. Пусть $T \in T_p^q(V)$. T называется *кососимметричным* по первым r нижним индексам, если

$$\forall \sigma \in S_r \rightarrow T^{j_1,\dots,j_q}_{i_{\sigma(1)},\dots,i_{\sigma(r)},i_{r+1},\dots,i_p} = (-1)^{\sigma} \cdot T^{j_1,\dots,j_q}_{i_1,\dots,i_p}$$

Инвариантно относительно базиса это можно записать как

$$T(v_{\sigma(1)}, \dots, v_{\sigma(r)}, v_{r+1}, \dots, v_p, f^1, \dots, f^q) = (-1)^{\sigma} \cdot T(v_1, \dots, v_p, f^1, \dots, f^q)$$

Определение. Альтернирование тензора $T \in T_p^q(v)$ по первым r индексам — это тензор

$$Alt_{1,\dots,r}(T)(v_1,\dots,v_p,f^1,\dots,f^q) = \frac{1}{r!} \sum_{\sigma \in S_r} (-1)^{\sigma} \cdot T(v_{\sigma(1)},\dots,v_{\sigma(r)},v_{r+1},\dots,v_p,f^1,\dots,f^q)$$

 $\it Same vanue.$ Альтернирование дает тензор, кососимметрический по первым $\it r$ нижним индексам. Альтернирование кососимметрического тензора дает его самого.

Упражнение. $Sym_{1,2,3}(Alt_{1,2,3}(T)) = ?$

Упражнение. Пусть $v_1, \ldots, v_n \in V$, dim V = n. $Alt(v_1 \otimes \ldots \otimes v_n) = c \cdot Alt(e_1 \otimes \ldots \otimes e_n)$, причем $c = \det S$