Math 126, Fall 2019 Introduction to Partial Differential Equation

Tim Laux, 3106 Etcheverry, 9-10AM

Contents

1	where PDEs Come From	1
	1.1 What is a partial differential equation?	1

Logistics

Question 0.1

Why study PDE?

Answer 0.2. TL;DR. It's useful.

Note 0.3. Office hour : MWF 9-10AM 895 Evans, GSI Office hour : MW 1-3 PM 1049 Evans

1 where PDEs Come From

1.1 What is a partial differential equation?

Example 1.1

This is an example of ODE:

$$u = u(x),$$
 $\frac{d}{dx}u = u.$

Example 1.2

A PDE consist of the form

$$u = u(x_1, x_2, \dots, x_d), \qquad u_{x_k} = \frac{\partial u}{\partial x_k}$$

Where x_i are scalars.

Example 1.3

The most general form of a PDE of first order in two dimension, say u = u(x, y) and of the form

$$F(x, y, u(x, y), u_x(x, y), u_y(x, y)) = 0$$
, or $F(x, y, u, u_x, u_y) = 0$

Example 1.4

The most general form of a PDE of second order in two dimension, say u = u(x, y) and of the form

$$G(x, y, u, u_x, u_y, u_{xx}, u_{yy}, u_{xy}) = 0$$

Definition 1.5

A vector x is defined as

$$x = \vec{x} = (x_1, x_2, \dots, x_n).$$

Definition 1.6

Let u be a function of vector x of n-dimension. The gradient of u is denoted as

$$\nabla u = (u_{x_1}, u_{x_2}, \dots, u_{x_n})$$

Example 1.7 1. Linear transport equation $u_t + bu_t = 0, b \in \mathbb{R}$

2. Burgher's Equation $u_t + u \cdot u_x = 0$

3. Laplace's Equation $u_{xx} + u_{yy} = 0$

4. Hermite Equation $-(u_{xx} + u_{yy}) = \lambda u, \quad \lambda \in \mathbb{R}$

5. Wave with interaction $u_{tt} - u_{xx} + u^3 = 0$

6. Linear diffusion with source $u_t - u_{xx} - f(x,t) = 0$

7. Schroedinger's equation $u_t - i \cdot u_{xx} = 0$

Example 1.8 (Cauchy-Riemann Equation)

$$\begin{cases} u_x = u_y \\ u_y = -u_x \end{cases}$$

Definition 1.9 (Digression to Linear Algebra)

Let ${\mathscr L}$ be a operator in a function space V. ${\mathscr L}$ is linear if

$$\mathscr{L}(u+v) = \mathscr{L}(u) + \mathscr{L}(v), \quad \mathscr{L}(cu) = c\mathscr{L}(u) \qquad \forall v,u \in V, \quad \forall c \in \mathbb{F}.$$

Definition 1.10

A PDE is called homogeneous linear PDE if it's of the form $\mathcal{L}(u) = 0$. If it's the form $\mathcal{L}(u) = f$, then it's called inhomogeneous PDE.

Remark 1.11

Things that we are interested in

- 1. Find analytical formulas for some specific PDE's
- 2. Well-possessedness
 - Existence (Does there exists a solution?)
 - Uniqueness (Is this the only solution?)
 - Stability (If I change the data slightly, does the solution changes just by a little bit?)
- 3. Predicting qualitative (and sometimes quantitative) behavior of the solution without having a solution formula.
- 4. Devise an analyze numerical algorithms to approximate solutions.

Example 1.12

Consider the equation

$$\cos(xy)u_x + \sin(e^x)u_y = e^{x^2\sin(y)}$$

Let

$$\mathscr{L}(u(x,y)) = \cos(xy)u_x + \sin(e^x)u_{yy}$$

 ${\mathscr L}$ is a linear operator, so the PDE is an inhomogeneous linear PDE.

Theorem 1.13 (Principle of superposition)

Let u_1, u_2, \ldots, u_n be solutions of $\mathcal{L}(u_k) = 0$, and let c_1, c_2, \ldots, c_n be scalars. then

$$u(x) = \sum_{i=1}^{n} c_i u_i(x)$$
 solves $\mathscr{L}(u) = 0$

Example 1.14 (Cool problem)

$$\begin{cases} u_t + u \cdot \nabla u - \mu \triangle u &= -\nabla p \\ \operatorname{div} u &= 0 \end{cases}$$

where u=u(x,y,z,t), $u=\begin{pmatrix}u_1\\u_2\\u_3\end{pmatrix}$ velocity field, where p is pressure and μ is the viscosity of the liquid.