PATENT SPECIFICATION

(11)1 513 550

(21) Application No. 18770/75 (22) Filed 5 May 1975 (23) Complete Specification filed 3 May 1976 (44) Complete Specification published 7 June 1978 (52) Index at acceptance

(51) INT CL2 C11D 10/02 (C11D 10/02, 1/00, 3/04, 3/33)

C5D 6A5C 6A6 6B11C 6B12B1 6B12F2 6B12G1 6B12G2A

6B1 6B2 6C8 (72) Inventor JEFFREY DALE HAMPSON

30

(54) HARD SURFACE CLEANING COMPOSITIONS

We, UNILEVER LIMITED, a company organised under the laws of Great Britain, of Unilever House, Blackfriars, London EC4, England, do hereby declare the invention for which we pray that a patent may be granted to us and the method by which it is to be performed, to be particularly described in and by the 5 following statement:-5 One of the prerequisites of a satisfactory hard surface cleaning composition is that it should have a good foam performance, i.e. the composition should produce a uniform, stable foam. For the purposes of the present invention, a hard surface cleaning composition is a cleaning composition to be used for cleaning of dishes, pots, pans, 10 10 tiles, floors i.e. hard substrates. In the specification the hard surface cleaning composition is typically exemplified by dishwashing compositions, but is not limited thereto. The production of a uniform, stable foam is required for dishwashing compositions for use in manual dishwashing operations, where it is a measure for 15 15 the effectiveness of the dishwashing compositions. Many dishwashing formulations yield an acceptable foam behaviour in either hard or soft water; a formulation for use in hard water is frequently not suitable for use in soft water, and the reverse is also often true. The present invention provides a hard surface cleaning composition which is 20 20 suitable for use in both hard and soft water. Its foam behaviour in both hard and soft water is significantly improved, thus providing a formulation of which the foam behaviour is relatively independent of the water from which the washing-up liquor is produced. Essentially this is achieved by incorporating in a dishwashing composition an 25 25 organic sequestering agent which will be hereinafter defined, and a magnesium salt which will also be defined hereafter, the dishwashing composition further preferably comprising particular types of active detergent materials, as described in more detail hereafter.

The organic sequestering agents to be used in the present invention have a difference in pK values for calcium and magnesium of at least 0.5, and preferably 1 or more. Furthermore, they have a pK value for calcium of at least 3.

Suitable examples of organic sequestering agents to be used in the present

invention are

30

		pK ++ Ca	pK ++ Mg	Δ pK	
	nitrilotriacetic acid (NTA)	6.5	5.5	1.0	
•	dipicolinic acid (DPA)	4.6	2.4	2.2	
5	ethylenediaminetetra acetic acid (EDTA)	10.6	8.7	1,9	5
	hydroxyethyl-ethylenediaminetri- acetic acid (Hydroxy-EDTA)	8.0	5.2	2.8	<
	1,2 diaminecyclohexane-N,N'-tetra- acetic acid (DCHTA)	12.5	10.3	2.2	
10	2-sulfoaniline diacetic acid (SADA)	4.57	2.68	1.89	10
	2-aminobenzoic acid, N,N diacetic acid (ABDA)	5.06	3.91	1.15	
	N-aceto amidoimino diacetic acid (AADA)	3.96	2.47	1.49	
	N-methoxyethylimino diacetic acid (MEDA)	4.53	3.31	1.22	
15	N-hydroxyethylimino diacetic acid (HEDA)	4.63	3.44	1.19	15
	trimethylenediaminetetra acetic acid (TMETA)	7.12	6.02	1.10	
	tetramethylenediaminetetra acetic acid (TeMETA)	5.05	3.44	1.61	
20	1,2-bis[2-[di(carboxymethyl)amino] ethoxy]ethane (DCMA)	11.0	5.2	5.80	20
	N-hydroxyethyl-N,N',N",N"-di ethylene-triaminetetra acetic acid (HEDETA)	8.4	6.9	1.50	
25	Although in the above enumeration the a understood that the alkali metal salts, such as so and substituted ammonium salts of these acids a of the present invention.	xdium salts, re also incl	as well as a uded within	mmonium the scope	25
30	The choice of an organic sequestering invention within the scope of the above definition the dishwashing composition in solution: it is clear values of the organic sequestering agent the correduced, so one would select an organic sequestrobtained in use.	n is further g ir that at pH omplexing r	governed by -values belo nower is co	the pH of ow the pK- nsiderably	30
35	For dishwashing purposes furthermore, wh less, the organic sequestrant should have a pK f preferably below 7.5. For other hard surfat floor cleaning, cleaning of tiles and sinks, the production of the preferred floor dishwashing compositions the preferred floor cleaning of tiles and sinks, the production of the preferred floor cleaning of tiles and sinks, the preferred floor dishwashing compositions the preferred floor cleaning floor cleaning the preferred floor cleaning floor clea	or calcium ce cleaning K for calci	of not great purposes, um can be	ter than 8, such as higher	35
40	dipicolinic acid, and hydroxyethylimino diacetic cleaning purposes hydroxy EDTA, DCHTA, an The amount of the organic sequestering ag agents) is also relatively critical: in general there	acid, and f d EDTA m gent (or mix should be a	or other hat any suitably tures of second at le	rd surface be used. questering	40 7
45	weight of the total compositon: lower amounts, not provide the desired foam behaviour. The n sequestering agent is 60% by weight of the tamount is from 8 to 40%. The magnesium salt invention are inorganic and/or organic magnetic	e.g. in the on aximum are otal composes which are essum salts.	order of 1% mount of the sition. Prefer used in the having a	or less do ne organic erably the ne present	45
50	product of at least 5×10^{-5} . Furthermore, magnesium salt should not buffer at a pH above	for dishwa	shing purp	ooses, the	ر 50

5	Suitable examples of inorganic magne chloride, bromide, iodide and nitrate, and sui salts are magnesium citrate and tartrate, ar The amount of magnesium salts to be from 0.5—30%, and preferably ranges from	table examples of organic magnesium of the magnesium salt(s) of EDTA. used in the present invention varies 2 to 15% by weight.	5
10	The organic sequestrants of the present compositions which comprise calcium-sens latter are more or less readily precipitated finds the water hardness salts in e.g. nature of cleaning systems.	itive active detergent materials. The om solutions by calcium ions present al waters, which results in loss of	10
10	performance in terms of cleaning, wetting a calcium-sensitive active detergent mate sulphonates, C ₁₂ —C ₁₈ sec. alkane sulphon C ₁₆ —C ₁₈ primary alkyl sulphates, sulpho sucalkyl esters, C ₁₂ —C ₁₈ fatty acid soaps, and mi	rials are (C ₁₀ —C ₁₈ alkyl)benzene ates, C ₁₀ —C ₂₉ sec. alkyl sulphates, cinates and their mono and di C ₅ C ₁₂	10
15	include their alkali metal, ammonium and su the sodium salts are used. The calcium-sensi have a solubility product of less than 6×10^{-1} calcium-sensitive active materials may be calcium-sensitive active materials such as	bstituted ammonium salts. Preferably tive active detergent materials should 1 , preferably less than 3×10^{-11} . These used in conjunction with other, less	15
20	1—10 moles of ethylene oxide, nonionic condensation products of ethylene oxide alcohols, C ₁₀ —C ₁₂ fatty acids and fatty furthermore zwitterionic detergent a alkylaminocarboxylic acids; and tertiary ami	detergent-active materials such as with primary or secondary C_{10} — C_{12} amides and C_{2} — C_{13} alkylphenols; ctives such as sulphobetaines; ne oxides. In general, when using the	20
25	calcium-sensitive detergent actives in condetergent actives, the former constitute at letotal amount of active detergent material dishwashing purposes the amount is preferal hard surface cleaning compositions it is preferal to the composition of the compositio	ast 50% by weight of the mixture. The ranges from 1—55% by weight. For bly 15—45% by weight, and for other ferably 2—25% by weight.	25
30	pasty or liquid detergent formulations by balance of the composition, if any, may consuch as inorganic salts such as alkali metal su and silicates, furthermore lather booster	methods well-known in the art. The mprise the usual detergent adjuvants lphates, carbonates, orthophosphates	30
35	dialkylolamides, hydrotropes such as ureas, sulphonates, enzymes, germicides, perfum corrosion inhibitors, anti-tarnishing agents a The inventions will now further be illu In these Examples the foam stability wa	es, colouring materials, opacifiers, nd china-pattern damage inhibitors. strated by the following Examples.	35
40	water with the indicated hardness, to the in which foam was generated by agitation. Incresolution at 45°C with further agitation until expressed as the number of soil increments by weight, unless indicated otherwise. Example 1.	dicated product concentration, after ements of soil were then added to this the foam collapsed. The results were to destroy the foam. Percentages are	
45	invention, but serve to illustrate more clear Examples 4—6. Example A composition comprising 27% of sodiu	arly the invention as exemplified in 1.	45
50	and 3% sodium sulphate was dosed in wat concentration of 0.15%. The following foan	er of varying hardness to a product stability results were obtained:	50
	Water hardness (°FH, calcium)	Numbers of soil increments to destroy foam	
	0	10 30	
55	2	44	55
	4	28	
		•	

These results show that the performance significantly decreases with increasing water hardness.

10

10

40

5	A composition containing 27% so sodium tropoly phosphate, and 58% s	mple 2. dium C_{11-13} alkylbenzene sulphonate, 15% odium sulphate was diluted with water of ration of 0.15%, and the results of the foam	5
	Water hardness (°FH)	Number of soil increments to destroy foam	
	20	42	
	10	30	
10	4 .	8	10
	1	4	
		performance significantly decrease with ventional builder salt such as sodium tripoly	
15	Using the same formulation of Exa	ample 3. Imple 2, in which however 4% of the sodium sium sulphate, the following results were	15
20	Water hardness (°FH)	Number of soil increments to destroy foam	20
	20	40	
	10	42	
	. 4	32	
	. 1	8	٠,
25	These results show that the performance drops off	mance in soft water is improved, but in very significantly.	25
30	Example 4. A composition containing 27% sodium C_{11-13} alkylbenzene sulphonate, 20% trisodium nitrilotriacetate, 10% magnesium sulphate and 43% sodium sulphate was diluted with water of varying hardness to a product concentration of 0.15% (pH = 8.1). The foam stability test yielded the following results:		
	Water hardness (°FH)	Number of soil increments to destroy foam	
	20	40	
35	10	41	35
	4	39	
	. 1	30	
	The following composition: 27% so	odium C alkylhenzene sulphonate 14%	

The following composition: 27% sodium C_{11-13} alkylbenzene sulphonate, 14% sodium salt of dipicolinic acid, 10% magnesium sulphate and 49% sodium sulphate, when used under the same conditions as above, gave the following results:

	Water hardness (°FH)	Number of soil increments to destroy foam	
	5	. 50	
	10	50	
5	24	. 40	5
	These results show that a significant a wide range of water hardness conditions	tly improved performance is obtained over ions, i.e. in both soft and hard water.	
10	Using a liquid formulation contain 27% Sodium C ₁₁ —C ₁₃ alkylbenzene sul 3% Sodium C ₁₂ —C ₁₅ alkylether sulpha 4% Sodium salt of dipicolinic acid 4% Magnesium sulphate	nple 5. ing: phonate te (containing 3 moles of ethylene oxide)	10
15	10% Urea 2% Ethanol 50% Water at a product concentration of 0.15%, t	he following results were obtained:	15
	Water hardness (°FH)	Number of soil increments to destroy foam	
20	5	40	20
	10	39	
	24	41	
	These results show that in both sof obtained.	t and hard water a superior performance is	
25	Example 6. A composition comprising 27% sodium C ₁₁₋₁₃ alkylbenzene sulphonates, 40% dipicolinic acid, 10% magnesium sulphate and 23% sodium sulphate yielded at 0.15% product concentration the following results:		
30	Water hardness (°FH)	Number of soil increments to destroy foam	· 30
	4	36	
,	<u>.</u> . 24	36	
35	The following compositions were foregoing examples. The compositions alkylbenzenesulphonate, 3% sodium s	ample 7. compared, using the same method as in the sitions contained 27% sodium C ₁₁₋₁₃ ulphate and vlenediamine-N,N',N'-triacetate (trisodium	35
40	salt) (Hydroxy-EDTA) b) 0.2% Hydroxy-EDTA +1% ma c) 15% Hydroxy-EDTA +10% ma Composition b) contained Hyd amounts as disclosed in Netherland	gnesiumsulphate	40
45	invention. These products were dosed in	water of varying hardness to a product to the foam stability test as in the previous	45

£.

			Compositio	<u>on</u>	
	Water hardness (°FH, Calcium)	a	ъ	c ·	
		Number to destro	of soil incr	ements	
5	1	25	34	. 46	5
	4	25	27	37	
	10	20	21	31	
	. 20	16	16	25	
10	Example a) shows no improvement improvement in soft water only and exampl levels of water hardness.	in hard wa le c) shows i	iter, exam mproved p	ple b) shows an erformance at all	10
15	WHAT WE CLAIM IS:— 1. A hard surface cleaning composition for use in soft and hard water comprising an active detergent material, from 3—60% by weight of an organic sequestering agent having a pK value for calcium of at least 3, and a difference between the pK value for calcium and magnesium of at least 0.5, and from 0.5—30% by weight of an inorganic and/or organic magnesium salt with a solubility product of at least 5 × 10 ⁻³ .			15	
20	2. A composition according to claim 1 for calcium and magnesium is at least 1.0. 3. A composition according to claim 1 not greater than 8.			_	20
25	4. A composition according to any one sequestering agent is dipicolinic acid or its ammonium salt. 5. A composition according to claim magnesium sulphate.	alkali metal n 1, in whi	, ammoniu ch the ma	m or substituted agnesium salt is	25
30	6. A composition according to any of 8—40% by weight of the organic sequestering the magnesium salt. 7. A composition according to any on detergent material comprises at least 50% by detergent having a solubility product of least 50%.	ng agent and ne of claims y weight of ss than 6 ×	l from 2—1 1—6, in v a calcium- 10 ⁻¹¹	15% by weight of which the active sensitive anionic	30
35	8. A composition according to claim 7, comprises at least 50% by weight of a sodiu or a sodium C ₁₂ —C ₁₈ sec. alkane sulphona	in which thum (Cu—Cu	e active de	tergent material zene sulphonate	35

B. C. ROSCOE, Chartered Patent Agent.

Printed for Her Majesty's Stationery Office by the Courier Press, Leamington Spa, 1978. Published by the Patent Office, 25 Southampton Buildings, London, WC2A 1AY, from which copies may be obtained.