BLOOD GAS ANALYSIS

Bhagya Gunetilleke Consultant Anaesthetist/ Senior Lecturer Faculty of Medicine University of Kelaniya

Learning Outcomes

- Indications for blood gas analysis
- Sampling arterial blood gases
- Information derived from blood gas reports
- Interpretation of blood gas data

Clinical Scenario - 1

 70 year old male, heavy smoker, presented with confusion.

'House officer is to do an arterial blood gas'

Why do a blood gas?

How do I do an arterial blood gas?

How do I interpret the report?

Indications for Blood Gas Analysis

Assessment of

Oxygenation

CO₂ & Ventilation

Acid-base

Additional information

eg.

Electrolytes

A-a gradient

Oxygen supply-demand balance

How Do I Do a Blood Gas?

- Preparation Contraindications, Blood gas analyser calibrated, consent, assistants, heparinized syringe/ ice bath, select site, aseptic technique
- Site Radial, ulnar, femoral, brachial, dorsalis pedis
- Note FiO2, PEEP, respiratory rate, tidal volume
- Sampling technique Syringe free of gas bubbles, air tight
- Apply direct pressure, KUO for bleeding

Arterial Puncture

Interpreting a Blood Gas Report - Normal values (arterial)

PH 7.35-7.45
 PaCO₂ 35-40mmHg
 PaO₂ 90-100mmHg
 SaO₂ 95-100%
 Base excess -2 to +2 mEq/l
 Std HCO₃- 24-28mmol/l

OXYGENATION

Oxygenation

- SpO2 = HbO2/ (Hb+HbO2)
- PaO₂ = Partial pressure of O₂ in arterial blood

Relationship: PaO₂ to SpO₂

Oxyhemoglobin Dissociation Curve

- What is oxygen saturation?
- What is arterial PA02?
- What is the oxyhemoglobin dissociation curve?

Partial pressure of arterial O2 (Pa02)in mmHg

Oxygen Cascade

Alveolar O_2 - (P_AO_2)

- FiO2 = Inspired O2
- P_B = Barometric pressure
- PCO2 = Partial pressure CO2
- R = Respiratory quotient

Pulmonary Capillary PO2

- Partial pressure of alveolar O2 (PAO2)
- Permeability of alveolar-capillary membrane
- Mixed venous O₂ content

Arterial PO₂ - PaO₂

- Capillary PO2
- Shunts

Arterial Hb-O₂ Saturation (SaO₂)

- PaO2 (O2-Hb dissociation curve)
- Factors affecting Hb-O2 affinity
- Competitors for Hb eg Carbon monoxide
- Abnormal Hb (Sickle- HbS)

O₂ Delivery to Tissues

 O2 Flux (DO2) = Volume of O2 delivered to all tissues in a minute

- DO2 = Cardiac output x O2 content
- O2 Content = [(Hb x SaO2 x 1.34)+ (0.003* x PaO2)]

Venous Oxygen - SCVO2

O₂ Supply – Demand Balance

- O2 SupplyDO2 = Cardiac output x O2 content
- O2 Demand
 VO2 = O2 consumption by tissues

O₂ Supply-Demand Gap(O₂ Reserve)

- O₂ Consumed by tissues = X?
 O₂ content in arterial blood = DO₂ = 1000ml
 O₂ content in central venous blood = Hb x
 ScvO₂ x 1.34 = 750ml
- X = 1000ml/min 750ml/min = 250ml/min

O2 Supply-Demand Gap(O2 Reserve)

■ DO2 – X = Venous O2 content

With Normal O2 delivery & consumption
 Central venous O2 content = 750ml
 Central venous O2 saturation (SCVO2) = 70%

If Supply decreases or demand increases SCVO2<70%</p>

O₂ Supply – Demand Balance

CARBON DIOXIDE

PaCO₂ - Arterial PCO₂

Effects on,

- Ventilatory function
- Cardiovascular effects
 Tachycardia, BP, peripheral resistance
- Cerebral circulation
 Cerebral vasodilation/ constriction
 Intracranial pressure

Factors influencing PaCO2

- Normal PaCO2 35-40mHg
- CO2 production (VCO2) metabolism
- CO2 excretion (VA) alveolar minute ventilation

PaCO2 = VCO2 / VA

Hypercapnia

PaCO₂ 50mmHg (35-40mmHg)

Possible causes?

Increased production (eg. Sepsis)

Reduced excretion (eg. hypoventialtion due to narcotic overdose)

Ventilation & PaCO2

pH

pH

- Indicator of H⁺ activity/ concentration
- Affects enzyme activity

Regulated by Ventilation

Acid-Base Homeostasis

Henderson- Hassellbach equation (simplified)

Metabolic acidosis- 1

- Due to H+ excess,
 Keto acidosis
 Impaired excretion eg. Acute renal failure
- H⁺ + HCO₃⁻ ----- → H₂CO₃
- [HCO₃-] → → → pH
 [PaCO₂]
- HCO₃- less than 25mmol/l

Arterial Blood Gases in Metabolic Acidosis

pH < 7.35
Base Excess (BE) — More negative than -2
Bicarbonate - Less than 24mmol/l

Compensation in Metabolic acidosis

- H2CO3 → CO2 + H2O
- CO2 Stimulates respiratory center

Arterial Blood Gases in Compensated Metabolic Acidosis

- pH < 7.35 (but closer to 7.4)</p>
- Base Excess (BE) less negative than before
- Bicarbonate Lesser than before

Metabolic Alkalosis

- PH > 7.45
- Std HCO3- > 28mEq/l

eg. Loss of acid eg. Vomiting & loss of HCl Addition of alkali eg iv NaHCO3

Respiratory Acidosis

PH < 7.35
PaCO₂ > 45mmHg
Std HCO₃- Normal

Eg. Morphine overdose & respiratory depression

Respiratory Alkalosis

- PH > 7.45
- PCO2 < 35mmHg</p>
- Std HCO3- Normal

eg. Hysterical hyperventilation

Acid-Base Disturbance

Primary disturbance eg. Metabolic acidosis DKA

Compensation for Metabolic Acidosis

- Compensation aims to correct PH
- Respiratory compensation by hyperventilation in DKA

- 1. HCO3 PCO2
- 2. pH

Case Scenario-1

ABG report
PH 7.51
PaCO2 25mmHg
PaO2 65mmHg on FiO2 o.6
SpO2 92%
BE -1
SBC 26

What does the ABG indicate?

Case Scenario-1

 Always relate to the clinical picture Age, Medical & drug history, Progression of present illness, Level of conciousness, temperature, Respiratory rate, Tidal volume Heart rate, BP, CRFT

Case Scenario-2

25 year old female, drowsy, febrile ABG PH 7.15 PCO₂ 18mmHg PO2 98mmHq SpO2 99% BE -15 SBC 14 RBS 445mg/dl

What does the ABG indicate?

Summary

- To provide additional information
- Analysis of acid-base, oxygenation, ventilation status
- Correlate clinical findings to blood gas report