k-NN и приближённый поиск ближайших соседей

Анищенко Илья

ниу вшэ

27 сентября 2019

О чем будет идти речь?

Гипотезы компактности и непрерывности

Задачи классификации и регрессии:

$$X -$$
 объекты, $Y -$ ответы; $X^{\ell} = (x_i, y_i)_{i=1}^{\ell} -$ обучающая выборка;

Гипотеза непрерывности (для регрессии):

"Близким" объектам соответствуют близкие ответы

выполнена:

не выполнена:

Гипотеза компактности (для классификации):

"Близкие" объекты гораздо чаще лежат в одном классе, чем в разных

выполнена:

не выполнена:

Гипотезы компактности и непрерывности

Понятие "близости" формально: Для объектов с численными признаками – Евклидова метрика

$$\rho(x, x_i) = \left(\sum_{j=1}^{n} |x^j - x_i^j|^2\right)^{1/2}$$

 $x = (x^1, \dots, x^n)$ — вектор признаков объекта x_i $x_i = (x_i^1, \dots, x_i^n)$ — вектор признаков объекта x_i ,

Для объектов типа "строка" – расстояние Левенштейна

CTGGGCTAAAAGGTCCCTTAGCC..TTTAGAAAAA.GGGCCATTAGGAAAATTGC CTGGGACTAAA....CCTTAGCCTATTTACAAAAATGGGCCATTAGG...TTGC

Для сигналов – энергия сжатий и растяжений

Метрический классификатор в общем виде

Для произвольного $x \in X$ отсортируем объекты из выборки $x_1, ..., x_\ell$ по дальности от него

$$ho(x,x^{(1)})\leqslant
ho(x,x^{(2)})\leqslant \cdots\leqslant
ho(x,x^{(\ell)}),$$
 $x^{(i)}-i$ -й сосед объекта x среди x_1,\ldots,x_ℓ ; $y^{(i)}-$ ответ на i -м соседе объекта x .

Метрический алгоритм классификации: $a(x;X) = \arg\max_{y \in Y} \sum_{i=1}^{\ell} \big[y^{(i)} = y \big] w(i,x)$

Где w(i, x) – вес i-го соседа объекта x. За вес берем неотрицательную и невозрастающую функцию по i

оценка близости объекта х к классу у

Метод ближайшего соседа

Определение класса объекта идет только на основе 1 ближайшего соседа

$$w(i,x)=[i\leqslant 1]$$

Плюсы:

- Интерпретация ответа
- Простота реализации (все обучение запомнить обучающую выборку)

Недостатки:

- Неустойчивость к выбросам в выборке (шуму)
- Нет настраиваемых параметров
- Хранение всей выборки целиком

Метод k-ближайших соседей

Определение класса объекта идет на основе информации от k-ближайших соседей

Ответ – преобладающий класс из k-ближайших соседей

$$w(i,x) = [i \leqslant k]$$

$$w(i,x)=[i\leqslant k]$$
 $\mathsf{LOO}(k,X^\ell)=\sum_{i=1}^\ell \left[a\big(x_i;X^\ell\setminus\{x_i\},k\big)
eq y_i
ight]
ightarrow \min_k.$

Плюсы:

- Гиперпараметр k хорошо поддается оптимизации (leave-one-out)
- Такой подход лучше устойчив к шуму, выбросам

Минусы:

- Неоднозначность результата в некоторых случаях
- Также хранение всей выборки целиком

Важно отметить:

идея брать k = n (вся выборка) тоже не очень хороша. Так как результат будет вырождаться в какой-то доминирующий класс на выборке

Метод k взвешенных ближайших соседей

$$w(i,x)=[i\leqslant k]w_i,$$
 где w_i — вес, зависящий только от номера соседа;

Некоторые варианты эвристик:

$$w_i = rac{k+1-i}{k}$$
 — линейное убывающие веса; $w_i = q^i$ — экспоненциально убывающие веса, $0 < q < 1$;

Проблемы такого подхода:

- По каким критериям брать функции для весов?
- Корректна ли зависимость веса от порядкового номера объекта?

Применение kNN

Классификация:

Поиск по картинке

Регрессия:

Получение информации об объекте от его 6 ближайших соседей

С какими еще проблемами сталкивается kNN?

Наличие в выборке шумов/выбросов/неинформативных объектов:

 Решается поиском эталонных объектов, устранением шумов/выбросов

Проблема больших размерностей (большого кол-ва признаков):

- Решается через понижение размерности пр-ва пространства (проецирование данных)
- о Или отбор главных признаков из множества всех, и дальнейшая работа только с ними

Метод приближенного поиска ближайших соседей

Данная структура работы актуальна для баз с миллиардами данных

Inverted multi-index

Идея:

Заменим K-means кластеризацию исходных d-мерных векторов на две отдельные кластеризации первых и вторых половин: получаем K² регионов

Получаем больше регионов фактически для того же K

Проблема такого подхода:

Некоторые регионы могут оказаться пустыми

Вопрос:

Каким образом выстроить приоритетность обхода регионов?

Проблема приоритетности обхода регионов

	Индекс	Мульти- индекс		
Число регионов	K	K²		
Нахождение расстояний до элементов словарей	O(K)	O(K)		

Проблема приоритетности обхода регионов

11.5 11.7 15 17 19 20

 $u_3 u_4 u_5 u_2 u_1 u_6$

6 |11.5 | 11.7 | 15 | 17 | 19 | 20

 $u_3 u_4 u_5 u_2 u_1 u_6$

11.5 11.7 15 17 19 20

 $u_3 u_4 u_5 u_2 u_1 u_6$

11.5 11.7 15 17 19 20

 $u_3 u_4 u_5 u_2 u_1 u_6$

11.5 11.7 15 17 19 20

 $u_3 u_4 u_5 u_2 u_1 u_6$

|11.5|11.7| 15 | 17 | 19 | 20 | **V**₁

 $u_3 u_4 u_5 u_2 u_1 u_6$

Наглядное сравнение

Сложность нахождения очередного региона

нахождения очередного региона составит O(log m)

После нахождения т ближайших регионов очередь с $[0.5 + \sqrt{2m + 0.25}]$ элементов приоритетами содержит не более чем После нахождения т ближайших регионов сложность

Также дополнительной памяти потребуется: sizeof(int) * K2 bytes. Так как в большом массиве данных регион объектов будет задаваться только точкой старта конкретного. Эти точки старта и хранятся отдельно.

Почему для многомерных векторов идёт разбиение на две части?

При большем разбиении частей возможны следующие проблемы: sizeof(int) * K² bytes sizeof(int) * K⁴ bytes

- Потребуется больше дополнительной памяти
- Рост числа пустых регионов (будет уходить больше времени на накопление нужного числа кандидатов)

Данные, с которыми велись эксперименты в статье

Миллиард 128-мерных векторов Отдельное множество из 10.000 запросов, для которых известны истинные ближайшие соседи

Производилось сравнение индекса и мульти-индекса:

- Устанавливали кол-во кандидатов Т
- Для каждого запроса:
 - Формировали Т кандидатов
 - Проверяли, содержится ли истинный ближайший сосед в списке кандидатов

Для обоих методов сравнивались доли запросов, для которых истинный ближайший сосед содержался в списке из Т кандидатов

Что вышло по результатам

На сколько быстро метод находит ближайших соседей?

Что вышло по результатам

Время нахождения кандидатов

Мульти-индекс с переранжированием

Схема "Multi-ADC" – кодировать исходные векторы некоторым кол-вом бит

Схема "Multi-D-ADC" – кодировать смещения исходных векторов относительно центров регионов, которым они принадлежат

Как получились итоговые оценки:

- Для запроса формировали список из Т кандидатов
- Реконструировали закодированных кандидатов и переранжировали их согласно расстоянию до запроса
- Проверяли, есть ли истинный ближайший сосед в топе размера Т*

Как-то так

System	Number of cells			R@10	R@100	Time(ms)	Memory(Gb)		
BIGANN, 1 billion SIFTs, 8 bytes per vector									
IVFADC [13]	2^{13}	8 million	$0.112_{(0.088)}$	$0.343_{(0.372)}$	$0.728_{(0.733)}$	$155_{(74)}$	12		
IVFADC [13]	2^{16}	600000	0.124	0.414	0.772	25	12		
Multi-D-ADC	$2^{14} \times 2^{14}$	10000	0.153	0.473	0.707	2	13		
Multi-D-ADC	$2^{14} \times 2^{14}$	30000	0.161	0.506	0.813	4	13		
Multi-D-ADC	$2^{14} \times 2^{14}$	100000	0.162	0.515	0.854	11	13		
BIGANN, 1 billion SIFTs, 16 bytes per vector									
IVFADC+R [13]	2^{13}	8 million	(0.262)	(0.701)	(0.962)	(116*)	20		
IVFADC [13]	2^{16}	600000	0.311	0.750	0.923	28	20		
Multi-D-ADC	$2^{14} \times 2^{14}$	10000	0.303	0.672	0.742	2	21		
Multi-D-ADC	$2^{14} \times 2^{14}$	30000	0.325	0.762	0.883	5	21		
Multi-D-ADC	$2^{14} \times 2^{14}$	100000	0.332	0.799	0.959	16	21		

Заключение по методу

- Хорошая структура данных для индексации векторов высокой размерности
- Существенное улучшение в точности и скорости поиска в больших массивах данных
- Метод внедрен в поисковые системы

Общее заключение

- Метрические методы классификации (kNN в частности) реально применять для создания рекомендательных систем или для систем принятия решений
- Уже существует много вариаций этого метода, которые отличаются набором гиперпараметров и весовыми функциями.
- Сам поиск ближайших соседей можно ускорить, используя методы приближенного поиска, такие как inverted multi-index или KD-tree

Вопросы?

- 1) К каким результатам может привести значение гиперпараметра k = 1, m(всей выборке) в алгоритме поиска k ближайших соседей?
- 2)Оптимальный способ подбора гиперпараетра k для kNN.
- 3) в чем заключается метод inverted index? В чем его выигрыш перед kNN.
- 4) В чем выигрыш метода inverted multi index перед inverted index.

Ссылки на источники

- http://www.machinelearning.ru/wiki/ материалы по kNN, гипотезам и методу метрической классификации
- http://sites.skoltech.ru/app/data/uploads/sites/25/2014/12/TPAMI14.pdf статья по inverted multi-index
- https://scikit-learn.org/stable/auto_examples/neighbors/plot_classification.html#sphxglr-download-auto-examples-neighbors-plot-classification-py — графическая реализация kNN