Hyperbolic Graph Convolutional Neural Networks

Ines Chami*[‡] Rex Ying* [†] Christopher Ré[†] Jure Leskovec[†]

†Department of Computer Science, Stanford University

†Institute for Computational and Mathematical Engineering, Stanford University

{chami, rexying, chrismre, jure}@cs.stanford.edu

NIPS 2019

为什么用双曲空间嵌入

•对于具备"层级结构"的数据而言,传统的欧式嵌入会导致隐向量失真:

解决方案:引入曲率

$$k = \frac{1}{\text{mpmax}}$$

双曲空间/双曲面模型

• 双曲空间:一个n维双曲空间就是一个高斯曲率处处为常数的流形。数学家认为这种形状拥有负常曲率(constant negative curvature),而球形拥有正常曲率(constant positive curve)。

双曲面模型

庞加莱圆盘

度规

- 在每一点处对空间距离的定义
- 欧式空间中的度规: $dr^2 = dx^2 + dy^2 \rightarrow \begin{pmatrix} ax \\ dy \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} (dx & dy)$

• 双曲空间中的度规:
$$dr^2 = \frac{2dx^2}{1-x^2-y^2} + \frac{2dy^2}{1-x^2-y^2} \to \begin{pmatrix} dx \\ dy \end{pmatrix} \begin{pmatrix} \frac{2}{1-x^2-y^2} & 0 \\ 0 & \frac{2}{1-x^2-y^2} \end{pmatrix} (dx \ dy)$$

双曲空间及基于双曲空间的嵌入

双曲空间也有维度,其维度表示比欧式空间中同维度空间增加一维,与对应的庞加莱圆盘的维度相同。

正式的: $D^n = \{x \in R^n : ||x|| < 1\}$

双曲空间的距离: $d(u,v) = arcosh(1 + \frac{2||u-v||^2}{(1-||u||^2)(1-||v||^2)})$

• (Hyperbolic Neural Network 2018, NIPS)

Möbius addition. The *Möbius addition* of x and y in \mathbb{D}_c^n is defined as

$$x \oplus_c y := \frac{(1 + 2c\langle x, y \rangle + c\|y\|^2)x + (1 - c\|x\|^2)y}{1 + 2c\langle x, y \rangle + c^2\|x\|^2\|y\|^2}.$$
 (6)

In particular, when c=0, one recovers the Euclidean addition of two vectors in \mathbb{R}^n . Note that without loss of generality, the case c>0 can be reduced to c=1. Unless stated otherwise, we will use \oplus as \oplus_1 to simplify notations. For general c>0, this operation is not commutative nor associative. However, it satisfies $x \oplus_c \mathbf{0} = \mathbf{0} \oplus_c x = \mathbf{0}$. Moreover, for any $x,y \in \mathbb{D}^n_c$, we have $(-x) \oplus_c x = x \oplus_c (-x) = \mathbf{0}$ and $(-x) \oplus_c (x \oplus_c y) = y$ (left-cancellation law). The *Möbius substraction* is then defined by the use of the following notation: $x \ominus_c y := x \oplus_c (-y)$. See [29, section 2.1] for a geometric interpretation of the Möbius addition.

其中,
$$c = \frac{1}{r^2}$$

• (Hyperbolic Neural Network 2018, NIPS)

Möbius scalar multiplication. For c > 0, the *Möbius scalar multiplication* of $x \in \mathbb{D}_c^n \setminus \{\mathbf{0}\}$ by $r \in \mathbb{R}$ is defined as

$$r \otimes_c x := (1/\sqrt{c}) \tanh(r \tanh^{-1}(\sqrt{c}||x||)) \frac{x}{||x||},$$
 (7)

and $r \otimes_c \mathbf{0} := \mathbf{0}$. Note that similarly as for the Möbius addition, one recovers the Euclidean scalar multiplication when c goes to zero: $\lim_{c\to 0} r \otimes_c x = rx$. This operation satisfies desirable properties such as $n \otimes_c x = x \oplus_c \cdots \oplus_c x$ (n additions), $(r+r') \otimes_c x = r \otimes_c x \oplus_c r' \otimes_c x$ (scalar distributivity³), $(rr') \otimes_c x = r \otimes_c (r' \otimes_c x)$ (scalar associativity) and $|r| \otimes_c x/||r \otimes_c x|| = x/||x||$ (scaling property).

其中,
$$c = \frac{1}{r^2}$$

• (Hyperbolic Neural Network 2018, NIPS)

Distance. If one defines the generalized hyperbolic metric tensor g^c as the metric conformal to the Euclidean one, with conformal factor $\lambda_x^c := 2/(1-c\|x\|^2)$, then the induced distance function on (\mathbb{D}_c^n, g^c) is given by⁴

$$d_c(x,y) = (2/\sqrt{c})\tanh^{-1}\left(\sqrt{c}\|-x \oplus_c y\|\right). \tag{8}$$

Again, observe that $\lim_{c\to 0} d_c(x,y) = 2||x-y||$, *i.e.* we recover Euclidean geometry in the limit⁵. Moreover, for c=1 we recover $d_{\mathbb{D}}$ of Eq. (4).

其中,
$$c = \frac{1}{r^2}$$

• (Hyperbolic Neural Network 2018, NIPS)

Parallel transport. Finally, we connect parallel transport (from $T_0\mathbb{D}^n_c$) to gyrovector spaces with the following theorem, which we prove in appendix B.

Theorem 4. In the manifold (\mathbb{D}_c^n, g^c) , the parallel transport w.r.t. the Levi-Civita connection of a vector $v \in T_0\mathbb{D}_c^n$ to another tangent space $T_x\mathbb{D}_c^n$ is given by the following isometry:

$$P_{\boldsymbol{\theta} \to x}^{c}(v) = \log_{x}^{c}(x \oplus_{c} \exp_{\boldsymbol{\theta}}^{c}(v)) = \frac{\lambda_{\boldsymbol{\theta}}^{c}}{\lambda_{x}^{c}}v.$$
 (16)

其中,
$$c = \frac{1}{r^2}$$

双曲空间与欧式空间的转换

• log映射: $H^n \to R^n$

• exp映射: $R^n \rightarrow H^n$

Definition 3.2 (Möbius version). For $f : \mathbb{R}^n \to \mathbb{R}^m$, we define the *Möbius version of* f as the map from \mathbb{D}^n_c to \mathbb{D}^m_c by:

$$f^{\otimes_c}(x) := \exp_{\mathbf{0}}^c(f(\log_{\mathbf{0}}^c(x))), \tag{26}$$

where $\exp_{\mathbf{0}}^c: T_{\mathbf{0}_m} \mathbb{D}_c^m \to \mathbb{D}_c^m$ and $\log_{\mathbf{0}}^c: \mathbb{D}_c^n \to T_{\mathbf{0}_n} \mathbb{D}_c^n$.

HGCN

- •结合图卷积和双曲嵌入,在双曲面模型上做GCN,在结合聚合上做GAT。曲率可训练。
- N维度双曲面 $x^2 y^2 z^2 = 1 \rightarrow x_0^2 (x_1^2 + \dots + x_n^2) = 1$

内积定义 $\langle \mathbf{x}, \mathbf{y} \rangle_{\mathcal{L}} \coloneqq -x_0 y_0 + x_1 y_1 + \ldots + x_d y_d$.

双曲面上的距离 $d_{\mathcal{L}}^{K}(\mathbf{x}, \mathbf{y}) = \sqrt{K}\operatorname{arcosh}(-\langle \mathbf{x}, \mathbf{y} \rangle_{\mathcal{L}}/K).$

双曲面上的映射

$$\exp_{\mathbf{x}}^{K}(\mathbf{v}) = \cosh\left(\frac{||\mathbf{v}||_{\mathcal{L}}}{\sqrt{K}}\right)\mathbf{x} + \sqrt{K}\sinh\left(\frac{||\mathbf{v}||_{\mathcal{L}}}{\sqrt{K}}\right)\frac{\mathbf{v}}{||\mathbf{v}||_{\mathcal{L}}}, \ \log_{\mathbf{x}}^{K}(\mathbf{y}) = d_{\mathcal{L}}^{K}(\mathbf{x}, \mathbf{y})\frac{\mathbf{y} + \frac{1}{K}\langle \mathbf{x}, \mathbf{y} \rangle_{\mathcal{L}}\mathbf{x}}{||\mathbf{y} + \frac{1}{K}\langle \mathbf{x}, \mathbf{y} \rangle_{\mathcal{L}}\mathbf{x}||_{\mathcal{L}}}.$$

算法框架

•输入(欧式空间转化为双曲空间)

$$\mathbf{x}^{0,H} = \exp_{\mathbf{o}}^{K}((0,\mathbf{x}^{0,E})) = \left(\sqrt{K} \operatorname{cosh}\left(\frac{||\mathbf{x}^{0,E}||_{2}}{\sqrt{K}}\right), \sqrt{K} \operatorname{sinh}\left(\frac{||\mathbf{x}^{0,E}||_{2}}{\sqrt{K}}\right) \frac{\mathbf{x}^{0,E}}{||\mathbf{x}^{0,E}||_{2}}\right).$$

• 线性变换

$$W \otimes^K \mathbf{x}^H \coloneqq \exp_{\mathbf{o}}^K (W \log_{\mathbf{o}}^K (\mathbf{x}^H)),$$

 $\mathbf{x}^H \oplus^K \mathbf{b} \coloneqq \exp_{\mathbf{x}^H}^K (P_{\mathbf{o} \to \mathbf{x}^H}^K (\mathbf{b})).$

算法框架

• 节点聚合

$$w_{ij} = \text{SOFTMAX}_{j \in \mathcal{N}(i)}(\text{MLP}(\log_{\mathbf{o}}^{K}(\mathbf{x}_{i}^{H})||\log_{\mathbf{o}}^{K}(\mathbf{x}_{j}^{H})))$$
$$\text{AGG}^{K}(\mathbf{x}^{H})_{i} = \exp_{\mathbf{x}_{i}^{H}}^{K} \left(\sum_{j \in \mathcal{N}(i)} w_{ij} \log_{\mathbf{x}_{i}^{H}}^{K}(\mathbf{x}_{j}^{H})\right).$$

• 非线性激活

$$\sigma^{\otimes^{K_{\ell-1},K_{\ell}}}(\mathbf{x}^H) = \exp_{\mathbf{o}}^{K_{\ell}}(\sigma(\log_{\mathbf{o}}^{K_{\ell-1}}(\mathbf{x}^H))).$$

• 解和 $p((i,j) \in \mathcal{E}|\mathbf{x}_i^{L,H}, \mathbf{x}_j^{L,H}) = \left[e^{(d_{\mathcal{L}}^{K_L}(\mathbf{x}_i^{L,H}, \mathbf{x}_j^{L,H})^2 - r)/t} + 1\right]^{-1},$

	$\begin{array}{c} \textbf{Dataset} \\ \textbf{Hyperbolicity } \delta \end{array}$	DISEASE $\delta = 0$		DISEASE-M $\delta = 0$		Human PPI $\delta=1$		$\begin{array}{c} AIRPORT \\ \delta = 1 \end{array}$		PubMed $\delta = 3.5$		CORA $\delta=11$	
	Method	LP	NC	LP	NC	LP	NC	LP	NC	LP	NC	LP	NC
Shallow	Euc	59.8 ± 2.0	32.5 ± 1.1	2	=22	121	(*	92.0 ± 0.0	60.9 ± 3.4	83.3 ± 0.1	48.2 ± 0.7	82.5 ± 0.3	23.8 ± 0.7
	HYP [29]	63.5 ± 0.6	45.5 ± 3.3	-		-): - -	94.5 ± 0.0	70.2 ± 0.1	87.5 ± 0.1	68.5 ± 0.3	87.6 ± 0.2	22.0 ± 1.5
	EUC-MIXED	49.6 ± 1.1	35.2 ± 3.4	-	-	-	: :	91.5 ± 0.1	68.3 ± 2.3	86.0 ± 1.3	63.0 ± 0.3	84.4 ± 0.2	46.1 ± 0.4
	HYP-MIXED	55.1 ± 1.3	56.9 ± 1.5	=	=)	-	=	93.3 ± 0.0	69.6 ± 0.1	83.8 ± 0.3	73.9 ± 0.2	85.6 ± 0.5	45.9 ± 0.3
Z	MLP	72.6 ± 0.6	28.8 ± 2.5	55.3 ± 0.5	55.9 ± 0.3	67.8 ± 0.2	55.3±0.4	89.8 ± 0.5	68.6 ± 0.6	84.1 ± 0.9	72.4 ± 0.2	83.1 ± 0.5	51.5 ± 1.0
	HNN[10]	75.1 ± 0.3	41.0 ± 1.8	60.9 ± 0.4	56.2 ± 0.3	72.9 ± 0.3	59.3 ± 0.4	90.8 ± 0.2	80.5 ± 0.5	94.9 ± 0.1	69.8 ± 0.4	89.0 ± 0.1	54.6 ± 0.4
RND	GCN[21]	64.7 ± 0.5	69.7 ± 0.4	66.0 ± 0.8	59.4 ± 3.4	77.0 ± 0.5	69.7 ± 0.3	89.3 ± 0.4	81.4 ± 0.6	91.1 ± 0.5	78.1 ± 0.2	90.4 ± 0.2	81.3 ± 0.3
	GAT [41]	69.8 ± 0.3	70.4 ± 0.4	69.5 ± 0.4	62.5 ± 0.7	76.8 ± 0.4	70.5 ± 0.4	90.5 ± 0.3	81.5 ± 0.3	91.2 ± 0.1	79.0 ± 0.3	$\textbf{93.7} \pm 0.1$	83.0 \pm 0.7
	SAGE [15]	65.9 ± 0.3	69.1 ± 0.6	67.4 ± 0.5	61.3 ± 0.4	78.1 ± 0.6	69.1 ± 0.3	90.4 ± 0.5	82.1 ± 0.5	86.2 ± 1.0	77.4 ± 2.2	85.5 ± 0.6	77.9 ± 2.4
	SGC [44]	65.1 ± 0.2	69.5 ± 0.2	66.2 ± 0.2	60.5 ± 0.3	76.1 ± 0.2	71.3 ± 0.1	89.8 ± 0.3	80.6 ± 0.1	94.1 ± 0.0	78.9 ± 0.0	91.5 ± 0.1	$\textbf{81.0} \pm 0.1$
Ours	HGCN	90.8 ± 0.3	74.5 \pm 0.9	$\textbf{78.1} \pm 0.4$	72.2 \pm 0.5	84.5 \pm 0.4	74.6 \pm 0.3	96.4 \pm 0.1	90.6 \pm 0.2	96.3 \pm 0.0	80.3 \pm 0.3	92.9 ± 0.1	79.9 ± 0.2
	(%) Err Red	-63.1%	-13.8%	-28.2%	-25.9%	-29.2%	-11.5%	-60.9%	-47.5%	-27.5%	-6.2%	+12.7%	+18.2%