

* (onsider a cube of sides 5 unit each resting on the origin.

The sides of a cube are along the real axis. Find the perspective projection of a cube. Assume XY plane as view plane and content of projection is (0,0,-5).

CONVERT 17
•
(5,5,0)
8)
G ()
B (51010)
/ 2
(510,5)

COP ⇒	(XP1YP	(95,	= (0)	0, -	5)	
×Y	plane	is	vie	W J	plane	2 [:	$Z_{=6}^{[}$

<i>∠</i> (0,015)										
	Points P(ziylz)	U= ==	カニメールス	y'=y-44	250					
	A (01010)	0)	0	0	0					
	B(5,0,0)	0	5	0	6					
	C (5150)	0	5	5	0					
	D(0.50)	0)	0	5	0					
	Elaipis)	1/2)	0	٥	0					
_	F(5,05)	1/2 9	2.5	0	0					
	415,5,0	1/2	2.5	2.5	0					
	H (01515)	1/2	0	2.5	0					

$$\frac{2l-1}{2lp-1} = \frac{2l-2}{2lp-2} = \frac{2l-2}{2p-2} = \mathcal{U}$$

$$\mathcal{U} = \frac{-2}{2p-2} = \frac{-2}{-5-2} = \frac{2}{5+2}$$

$$\frac{\chi^{1}-\chi}{2p-\chi}=\mathcal{U}\Rightarrow \chi^{1}=\chi+\mathcal{U}(\chi_{p-\chi})$$

$$\chi^{1}=\chi-\mathcal{U}\chi$$

$$\frac{\chi^{1}-\chi}{\gamma_{p-y}}=\mathcal{U}\Rightarrow \chi^{1}=\gamma-\mathcal{U}\chi$$

1) Bezier Curre >

1) For any set of control points an approximate curve is formed by adding a sequence of polymomial turnhon

from the coordinates of control point is called as Berier (whe @ The parametric egn of Besier curve is defined as, $P(Y) = \underset{\leftarrow}{\not=} P_K \cdot B_{k,n}(Y) \quad 0 \le Y \le 1$ where BKin (4) is called as Blending function $B_{k,n}(u) = n(k (1-u)^{n-k}$ where $n(k = \frac{n!}{k! (n-k)!}$ n+13 no. of control points (3) The deg of Berier curve is one less than the no-of control points. Say no of control pts => n+1 | no of control pts => n deg => n-1 If the deg of Bezier cure is 3 => (ubic Bezier curve 1 Control pt = n+1 = 3 No of control pts = n+1=4 deg=n=2 deg = n = 3 Cubic bevier Apply of Berier curve > @ painting / Drawing packages like capitalm, engg drawing, architectural drawing (b) Game Merry to design vanous games. B Properties of Berier cure - a Berier cure always passes through $P(0) = P_0$ and $P(1) = P_0$ Besier cure is indep of coordinate the polygon boundary tormed by the control points. (Berier curve do not provide Control north will the changing any

- control points will change the entire
 - @ Bezier curve is a smooth curve to draw ugainst the given set of corded points
- 6 Drawbacks of Besier wave > 1 since it is indep of wordmake geometry, it always gives approx curve tormed by control points
 - Derier come du not provide localized control
 - 3 At joint, complex mathematical cal are involved.

 . Besier curve is less smooth at joints

* Give the malhomatical egg and properties of Berier curve. Given the vertices of Berier polygon as (1,1), (2,3), (4,3) and (3,1), (4,3) and (4,1), (4,3) and

P(0) = (111)

At u= /4 in egn 1

* B-Spline curve > Local control.

A general expression/mathematical egn of B-spline curve iJ- $P(4) = \sum_{k=0}^{n} P_k \cdot B_{k,0}(4)$ Blending Im $2 \le d \le n+1$

