CORRECTION PARTIEL 2022-2023

Exercice 1.

(a) Ça se devine : on sait que $10 \cdot 3 = 30 \equiv -1[31]$, donc $10 \cdot (-3) \equiv -(-1) \equiv 1[31]$. Sinon, on utilise l'algorithme d'Euclide :

$$31 = 10 \cdot 3 + 1$$
$$10 = 1 \cdot 10 + 0$$

Qui donne le même résultat.

(b) Par définition de c_0 et de D, l'entier N s'écrit $10D + c_0$, on a donc

$$N = 10D + c_0 \equiv 10D + 1 \cdot c_0[31]$$
$$= 10D + 10 \cdot (-3) \cdot c_0[31]$$
$$= 10(D - 3c_0)[31]$$

Soit le résultat annoncé.

(c) Par la question précédente, N est congru à $10(D-3c_0)$ modulo 31. Donc N est divisible par 31 si et seulement si $10(D-3c_0)$ est divisible par 31. De plus, comme 10 est premier avec 31, on a que $10(D-3c_0)$ est divisible par 31 si et seulement si $D-3c_0$ est divisible par 31. D'où le critère suivant :

"Un entier est divisible par 31 si et seulement si son nombre de dizaines moins trois fois son chiffre des unités est divisible par 31.

(d) On pose $N_0 = 69750$, $D_0 = 6975$ son nombre de dizaines et $c_0 = 0$ son chiffre des unités. Par la question précédente, N est divisible par 31 si et seulement si $N_1 := D_0 - 3c_0 = 6975$ l'est.

On applique à nouveau le critère précédent à $N_1 = 6975$, on a $D_1 = 697$ et $c_1 = 5$. Donc N_1 est divisible par 31 si et seulement si $N_2 = 697 - 3 \cdot 5 = 682$ l'est.

On applique à nouveau le critère précédent à $N_2=682$, on a $D_2=68$ et $c_2=2$. Donc N_2 est divisible par 31 si et seulement si $N_3=68-3\cdot 2=62$ l'est.

Or on a $62 = 31 \cdot 2$, donc N_3, N_2, N_1 et N_0 sont divisibles par 31.

(e) On peut généraliser cette méthode en remplaçant 31 par tout entier n premier avec 10 : Si n est un tel entier, il existe un entier ℓ avec $10\ell \equiv 1[n]$. Dans ce cas, pour tout $N \in \mathbb{N}$, on a $N \equiv 10(D + \ell c_0)[n]$ avec le même raisonnement qu'à la question (b). On trouve alors que N est divisible par n si et seulement si $D + \ell c_0$ l'est.

Exercice 2.

On note 0 le jour présent, de sorte que l'indice de demain est 1 et celui d'hier est -1. Les jours a où Alice va au cinéma sont régis par l'équation $a \equiv 0[25]$ car elle est allée au cinéma aujourd'hui et elle y va tous les 25 jours. De même, les jours b où Bob va au cinéma sont régis par l'équation $b \equiv -3[31]$.

Les jours où Alice et Bob vont au cinéma sont donc les solutions d du système de congruence

$$\begin{cases} d \equiv 0[25] \\ d \equiv -3[31] \end{cases}$$

Comme 25 et 31 sont premiers entre eux, les solutions de ce système sont égales modulo $25 \vee 31 = 775$. On cherche une solution particulière à notre système, il suffit pour cela de trouver une solution d' du système

$$\begin{cases} d' \equiv 0[25] \\ d' \equiv 1[31] \end{cases}$$

et de poser d = -3d'. On a

$$d' = 1 + 31p = 25q \Leftrightarrow 1 = 25q - 31p$$

On trouve une solution de cette équation de Bézout en utilisant l'algorithme d'Euclide :

$$31 = 25 \cdot 1 + 6$$
$$25 = 6 \cdot 4 + 1$$

Qui donne $1 = 25 - 6 \cdot 4 = 25 \cdot 5 - 31 \cdot 4$. On obtient donc une solution d' = 125 du deuxième système. Les solutions du premier système sont exactement les entiers congrus à -375 modulo [775]. Le plus petit entier positif respectant cette dernière équation est -375 + 775 = 400. On obtient donc que Alice et Bob iront au cinéma le même jour dans 400 jours, et ensuite tous les 775 jours.

Exercice 3.

(a) On cherche les racine du polynôme $X^2 - 1$ dans $\mathbb{Z}/n\mathbb{Z}$. On a $X^2 - 1 = (X - 1)(X + 1)$, donc

$$x^2 \equiv [n] \Leftrightarrow (x-1)(x+1) \equiv 0[n]$$

Comme n est premier, $Z/n\mathbb{Z}$ est intègre, donc ceci équivaut à $x-1\equiv 0[n]$ ou $x+1\equiv 0[n]$. On a donc deux solutions de $x^2\equiv 1[n]$: x=1 et x=-1. Notons que si n n'est pas premier, on peut avoir d'avantage de solutions : $4^2=1[15]$ alors que $4\not\equiv 1,-1[15]$.

(b) Comme n est premier, tous les entiers de $\{1, \ldots, n-1\}$ admettent un unique inverse modulo $\mathbb{Z}/n\mathbb{Z}$. On sait d'ailleurs que 1 et n-1 sont leurs propres inverses modulo n (car $1^2 \equiv 1[n]$ et $(n-1)^2 \equiv (-1)^2 \equiv 1[n]$). Un entier $k \in \{2, \ldots, n-2\}$ admet donc un unique inverse modulo n dans $\{2, \ldots, n-2\}$, en effet, l'inverse de k ne peut être 1 où n-1 car k n'est pas égal ni à 1, ni à n-1.

En réordonnant le produit $2 \dots n-2$, on peut donc l'écrire comme des produits d'éléments de $\{2,\dots,k\}$ et de leurs inverses. Le produit est alors égal à 1 modulo n. On a alors $(n-1)! \equiv 1 \cdot (n-1)[n] \equiv -1[n]$

- (c) Supposons que n est non premier, et soit p le plus petit diviseur de n non égal à 1. On pose n = pq.
- Si p < q, alors les entiers p et q apparaissent dans le produit (n-1)!, donc n divise (n-1)! et (n-1)! = 0.
- Si p = q, alors $n = p^2$. Si p = 2, alors n = 4, et il est clair que $3! = 6 \equiv 2[4]$. Si p > 2 alors $p^2 = n > 2p$. Donc p et 2p sont deux entiers plus petit que n 1, qui apparaissent donc dans le produit (n 1)!. Donc $2p^2 = 2n$ divise (n 1)! et $(n 1)! \equiv 0[n]$.
- (d) On a montré à la question (b) que si n est premier, alors $(n-1)! \equiv -1[n]$. Et on a montré à la question (c) que si n n'est pas premier, alors $(n-1)! \not\equiv -1[n]$.

Exercice 4.

(a) On utilise l'algorithme d'Euclide :

$$22 = 19 \cdot 1 + 3$$
$$19 = 3 \cdot 6 + 1$$
$$3 = 1 \cdot 3 + 0$$

Cet algorithme nous donne:

$$\frac{22}{19} = 1 + \frac{3}{19}, \quad \frac{19}{3} = 6 + \frac{1}{3}$$

On a donc

$$22/9 = \left\lceil 1 + \frac{3}{19} \right\rceil = \left\lceil 1, \frac{19}{3} \right\rceil = \left\lceil 1, 6 + \frac{1}{3} \right\rceil = [1, 6, 3]$$

(b) On a $n < \sqrt{n^2 + 1} < n + 1$, en effet en passant le tout au carré, il est clair que

$$n^2 < n^2 + 1 < n^2 + 2n + 1$$

On calcule donc

$$\sqrt{n^2 + 1} = n + (\sqrt{n^2 + 1} - n) = \left[n, \frac{1}{\sqrt{n^2 + 1} - n} \right]$$

En utilisant la quantité conjugué, on a

$$\frac{1}{\sqrt{n^2+1}-n} = \frac{\sqrt{n^2+1}+n}{(\sqrt{n^2+1}-n)(\sqrt{n^2+1}+n)} = \frac{\sqrt{n^2+1}+n}{n^2+1-n^2} = \sqrt{n^2+1}+n$$

La partie entière de $\sqrt{n^2+1}+n$ est bien-sur 2n, on a alors

$$\sqrt{n^2 + 1} = \left[n, 2n, \frac{1}{\sqrt{n^2 + 1} - n} \right]$$

En réappliquant le même raisonnement sur $\frac{1}{\sqrt{n^2+1}-n}$, on trouve par récurrence immédiate

$$\sqrt{n^2+1}=[n,\overline{2n}]$$

(c) On pose $x = [\overline{1,4}]$, on a

$$x = \overline{[1,4]} = [1,4,x]$$

$$= \left[1,4+\frac{1}{x}\right]$$

$$= \left[1,\frac{4x+1}{x}\right]$$

$$= 1+\frac{x}{4x+1}$$

$$= \frac{5x+1}{4x+1}$$

Donc x respecte l'équation x(4x+1)=5x+1, qui équivaut à $4x^2-4x-1=0$. Les solutions de cette équation sont

$$\frac{4\pm\sqrt{32}}{8} = \frac{1\pm\sqrt{2}}{2}$$

Comme $\sqrt{2} > 1$, une seule de ces solutions est positive, c'est celle là qui est égale à x (le premier terme de la réduction en fraction continue de x est positif, donc x est positif).

D'après le paragraphe précédent, on a

$$[1, \overline{1, 4}] = \left[1, \frac{1 + \sqrt{2}}{2}\right] = 1 + \frac{2}{1 + \sqrt{2}} = \frac{1 + \sqrt{2} + 2}{1 + \sqrt{2}}$$