Series temporales univariadas

Walter Sosa Escudero wsosa@udesa.edu.ar Banco Central del Uruguay, 2020

Conceptos basicos

Tipologia

Series temporales

- Proceso estocastico: coleccion de variables aleatorias ordenadas.
- Serie de tiempo: el orden es el tiempo.

$$Y_t$$
; $t = 1, 2, ..., T$

Punto central: los Y_t no son necesariamente independientes.

•
$$\mu_t \equiv E(Y_t)$$

- $\gamma_{0t} \equiv V(Y_t)$
- $\gamma_{t,j-t} \equiv Cov(Y_t,Y_{t-j}) = \text{j-esima}$ autocovarianza

Estacionariedad

Y_t estacionario:

1.
$$E(Y_t) = \mu \ \forall t$$

2.
$$Cov(Y_t, Y_{t-j}) = \gamma_j < \forall t, \forall j$$

Si Y_t estacionario:

- $V(Y_t) = Cov(Y_t, Y_t) = \gamma_0$, constante.
- $Cor(Y_t, Y_{t-j}) \equiv \rho_j = \frac{Cov(Y_t, Y_{t-j})}{\sqrt{V(Y_t)V(Y_{t-j})}} = \frac{\gamma_j}{\gamma_0}$

Discusion:

- Estructura de momentos primeros y segundos constante (estable).
- Covarianzas dependen solo de la separacion.

P: puede un proceso ser no estacionario y tener esperanza constante?

Ruido blanco

 Y_t , t = 1, 2, ..., T es ruido blanco si:

- 1. $E(Y_t) = 0, \forall t.$
- 2. $V(Y_t) = E(Y_t^2) = \sigma^2$, $\forall t$
- 3. $Cov(Y_i, Y_j) = 0, \forall i \neq j$.
- Por construccion estacionario. Coleccion de variables aleatorias con media cero y no correlacionadas entre ellas.
- Proceso mas simple de todos. Notacion: $Y_t \sim RB(0, \sigma^2)$.
- Ejemplo: El termino de error de un modelo de regresion clasico es ruido blanco.

Predecible?

Media movil infinita $(MA(\infty))$

$$Y_t = \mu + \sum_{j=0}^{\infty} \psi_j \varepsilon_{t-j}, \qquad RB(0, \sigma^2), \ \psi_0 = 1$$

 $MA(\infty)$ estacionario si:

- $\sum_{j=0}^{\infty} \psi_i^2 < \infty$
- $\sum_{j=0}^{\infty} |\psi_i| < \infty$ (sumabilidad absoluta)
- 2) \Rightarrow 1), pero no al reves.

Teorema de representación de Wold

Todo proceso estacionario Y_t puede escribirse como:

$$Y_t = \sum_{j=0}^{\infty} \psi_j \varepsilon_{t-j} + k_t$$

en donde $\varepsilon_t \sim RB(0, \sigma^2)$, k_t es una funcion deterministica y $\sum_{i=0}^{\infty} \psi_i^2 < \infty$.

- ullet Todo proceso estacionario es esencialmente un MA (∞) estacionario.
- En la practica implica estimar infinitos parametros.
- Solo el pasado importa.

Prueba: Brockwell y Davis (1987).

Parsimonia

- ullet Wold: todo proceso estacionario es un $\mathit{MA}(\infty)$
- Infinito, pero solo involucra al pasado.
- *Idea:* buscar una representación parsimoniosa de $MA(\infty)$.

ARMA

Media movil finita (MA(q))

$$Y_t = \mu + \sum_{j=0}^q \psi_j \varepsilon_{t-j}, \qquad RB(0, \sigma^2), \ \psi_0 = 1$$

- $E(Y_t) = \mu$
- $V(Y_t) = \sigma^2(1 + \theta_1^2 + \theta_2^2 + \ldots + \theta_q^2)$

•

$$\gamma_j = \begin{cases} \left[\theta_j + \theta_{j+1}\theta_1 + \theta_{j+2}\theta_2 + \dots + \theta_q\theta_{q-j} \right] \sigma^2 & j \leq q \\ 0 & j > q \end{cases}$$

MA(q) es estacionario para cualquier $q < \infty$. La dependencia con el pasado se rompe luego del q-esimo periodo.

Procesos autorregresivos

AR(1):

$$Y_t = c + \phi Y_{t-1} + \varepsilon_t, \qquad \varepsilon_t \sim RB(0, \sigma^2)$$

- AR(1) es un proceso derivado de un RB a traves de una recursion.
- Resultado: AR(1) es estacionario si $|\phi| < 1$

Notar que $Y_{t-1} = c + \phi Y_{t-2} + \varepsilon_{t-1}$. Reemplazando:

$$Y_t = c + \phi \left(c + \phi Y_{t-2} + \varepsilon_{t-1} \right) + \varepsilon_t$$

$$= c + c\phi + \phi^2 Y_{t-2} + \phi \varepsilon_{t-1} + \varepsilon_t$$

Reemplazando $Y_{t-2} = c + \phi Y_{t-3} + \varepsilon_{t-2}$

$$Y_t = c + c\phi + c\phi^2 + \phi^3 Y_{t-3} + \phi^2 \varepsilon_{t-2} + \phi \varepsilon_{t-1} + \varepsilon_t$$

Continuando con este proceso:

$$Y_{t} = c(1 + \phi + \phi^{2} + \cdots) + (\varepsilon_{t} + \phi\varepsilon_{t-1} + \phi^{2}\varepsilon_{t-2} + \phi^{3}\varepsilon_{t-3} + \cdots) + \lim_{s \to \infty} \phi^{s}Y_{t-s}$$

Si $|\phi| < 1$:

$$Y_t = \frac{c}{1 - \phi} + \sum_{i=1}^{\infty} \phi^i \varepsilon_{t-i},$$

un $MA(\infty)$ con $\psi_i \equiv \phi^i$. Notar que:

$$\sum_{j=1}^{\infty} \psi_j^2 = \sum_{j=1}^{\infty} \phi^{2i} = \frac{1}{1-\phi^2} < \infty \quad \Longrightarrow \quad \mathsf{AR(1)} \text{ es estacionario si } |\phi| < 1$$

Representacion $MA(\infty)$ de AR(1)

Recordar
$$MA(\infty)$$
: $Y_t = \mu + \sum_{i=0}^{\infty} \psi_i \varepsilon_{t-i}$, $RB(0, \sigma^2)$, $\psi_0 = 1$

Consideremos el AR(1) estacionario ($|\phi| < 1$):

$$Y_t = c + \phi Y_{t-1} + \varepsilon_t, \qquad \varepsilon_t \sim RB(0, \sigma^2)$$

Resultado:
$$Y_t = \frac{c}{1-\phi} + \sum_{i=1}^{\infty} \phi^i \varepsilon_{t-i}$$

- AR(1) estacionario es un $MA(\infty)$ con $\mu \equiv c/(1-\phi)$ y $\psi_j = \phi^j$
- AR(1) como simplificacion del $MA(\infty)$

•
$$E(Y_t) \equiv \mu = \frac{c}{1-\phi}$$

•
$$V(Y_t) \equiv \gamma_0 = \frac{\sigma^2}{1-\phi^2}$$

•
$$Cov(Y_t, Y_{t-j}) \equiv \gamma_j = \phi^j \frac{\sigma^2}{1-\phi^2}$$

•
$$Cor(Y_t, Y_{-1}) = \rho_j = \frac{\gamma_j}{\gamma_0} = \phi^j$$

Predecibilidad del AR(1)

Caso particular $Y_t = \phi Y_{t-1} + \varepsilon_t, \ \phi > 0 \ (\mu = 0).$

- Y_t depende de dos componentes. Uno que lo ata al pasado (ϕY_{t-1}) y otro que lo mueve en forma aleatoria (ε_t) .
- ullet El proceso es mas erratico cuando ϕ es mas pequeno y mas suave cuando $\phi \to 1$

Estacionariedad de AR(1) en terminos de raices

Definamos $L^j Y_t \equiv Y_{t-j}$ (operador de rezago). Entonces:

$$Y_t = c + \phi Y_{t-1} + \varepsilon_t$$

$$= c + \phi L Y_t + \varepsilon_t$$

$$(1 - \phi L) = Y_t = c + \varepsilon_t$$

Estacionariedad: $|\phi|<1$. Consideremos el polinomio: $(1-\phi z)$, con raiz $r=1/\phi$. Notar que $|r|>1 \Longleftrightarrow |\phi|<1$.

Entonces, AR(1) es estacionario si y solo si |r| > 1.

AR(p)

$$Y_t = c + \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \dots + \phi_p Y_{t-p} + \varepsilon_t, \quad \varepsilon_t \sim RB(0.\sigma^2)$$

Alternativamente:

$$(1 - \phi_1 L - \phi_2 L^2 + \dots + \phi_p L^p) Y_t = c + \varepsilon_t$$

Resultado: AR(p) es estacionario sii todas las raices de:

$$1 - \phi_1 z - \phi_2 z^2 + \dots + \phi_z L^p$$

son mayores que 1 en valor absoluto.

Representacion $MA(\infty)$ de AR(p)

$$(1 - \phi_1 L - \phi_2 L^2 + \dots + \phi_p L^p) Y_t = c + \varepsilon_t$$

$$\Phi(L) = (1 - \phi_1 L - \phi_2 L^2 + \dots + \phi_p L^p) = (1 - r_1 L)(1 - r_2 L) \dots (1 - r_p L)$$

en donde r_1, \ldots, r_p son las raices de $\Phi(L)$.

Si $|r_i| < 1, i = 1, \ldots, p$, (estacionariedad)

$$Y_t = \frac{1}{\Phi(L)}(c + \varepsilon_t) = \frac{1}{\prod_{i=1}^{p} (1 - r_i L)}(c + \varepsilon_t) = \mu + \sum_{s=0}^{\infty} \psi_s \varepsilon_{t-s}$$

 \Rightarrow representacion $MA(\infty)$ del AR(p).

Ventaja: depende solo de p parametros distintos. Los AR son representaciones parsimoniosas de la descomposicion de Wold.

ARMA(p,q)

$$Y_{t} = c + \underbrace{\phi_{1}Y_{t-1} + \phi_{2}Y_{t-2} + \dots + \phi_{p}Y_{t-p}}_{\mathsf{AR}(\mathsf{p})} + \underbrace{\varepsilon_{t} + \theta_{1}\varepsilon_{t-1} + \theta_{2}\varepsilon_{t-2} + \dots + \theta_{q}\varepsilon_{t-q}}_{\mathsf{MA}(\mathsf{q})}$$

ARMA(p,q) es estacionario si la parte AR lo es.

Por el teorema de Wald, si ARMA(p,q) es estacionario, es tambien un $MA(\infty)$ pero con solo p+q parametros!

The Prediction Performance of the FRB-MIT-PENN Model of the U.S. Economy

By Charles R. Nelson*

This paper presents an evaluation of the prediction performance of the FRB-MIT-PENN (FMP) econometric model of the U.S. economy using predictions provided by simple time-series models to es-

ahead predictions of fourteen endogenous variables of general interest; namely nominal *GNP*, its endogenous components, the unemployment rate, two price indices, and three interest rates. Predictions are

Box-Jenkins

- Buscar un ARMA parsimonioso
- Como elegir p y q? Correlogramas (total y parcial)
- Residuos ruido blanco (Ljung-Box)
- Seleccion de modelos (Akaike, Schwarz, etc,)

Es posible automatizar esta tarea?

Journal of Statistical Software

 $MMMMMM\ YYYY,\ Volume\ VV,\ Issue\ II.$

http://www.jstatsoft.org/

Automatic time series forecasting: the forecast package for ${\sf R}$

Rob J Hyndman and Yeasmin Khandakar Monash University

Procesos no-estacionarios

Procesos no-estacionarios

 Y_t es *estacionario* si y solo si:

- 1. $E(Y_t) = \mu, \forall t$
- 2. $Cov(Y_t, Y_{t-j}) = \gamma_j, \ \forall t, \forall j$

 Y_t es *no-estacionario* si por lo menos alguna de las dos condiciones anteriores no se cumple

Tendencia deterministica

$$Y_t = a + dt + u_t$$

a,d parametros, u_t es cualquier proceso estacionario con $E(u_t)=0$ y $V(u_t)=\sigma^2<\infty$.

- $E(Y_t) = a + dt$
- $V(Y_t) = V(u_t) = \sigma^2$

La fuente de no estacionariedad es la media. Fluctuacion estacionaria alrededor de una tendencia deterministica.

Random walk

$$\begin{aligned} Y_t &= Y_{t-1} + \varepsilon_t, & \varepsilon_t \sim RB(0, \sigma^2) \\ & \stackrel{Y_0}{\underset{Y_1}{=}} &= 0 \\ & \stackrel{Y_1}{\underset{Y_2}{=}} &= Y_0 + \varepsilon_1 = \varepsilon_1 \\ & \stackrel{Y_2}{\underset{Y_1}{=}} &= Y_1 + \varepsilon_2 = \varepsilon_1 + \varepsilon_2 \\ & & & & & \\ & & & & & \\ Y_t &= & Y_{t-1} + \varepsilon_t = \sum_{i=1}^t \varepsilon_i \end{aligned}$$

- $E(Y_t) = 0$
- $V(Y_t) = t\sigma^2$

La fuente de no-estacionariedad es la varianza. RW es una suma no-ponderada de elementos de un RB

Random walk with drift

$$Y_{t} = m + Y_{t-1} + \varepsilon_{t} \qquad \varepsilon_{t} \sim RB(0, \sigma^{2})$$

$$Y_{0} = 0$$

$$Y_{1} = m + Y_{0} + \varepsilon_{1} = m + \varepsilon_{1}$$

$$Y_{2} = m + Y_{1} + \varepsilon_{2} = 2m + \varepsilon_{1} + \varepsilon_{2}$$

$$Y_{t} = m + Y_{t-1} + \varepsilon_{t} = tm + \sum_{i=1}^{t} \varepsilon_{i}$$

- $E(Y_t) = tm$
- $V(Y_t) = t\sigma^2$

La fuente de no estacionariedad es la media y la varianza.RWD es una TD mas un RW.

- Muy dificil distintinguir entre RWD y TD, y entre RW y AR(1).
- Procesos completamente diferentes.

Diferencias AR y RW

- AR es estacionario, RW, no
- La no estacionariedad tiene que ver con la varianza
- AR: varianza constante. Intervalo de confianza fijo.
- RW: varianza no acotada. Intervalo o creciente o no acotado. Esencialmente impredecible.

Diferencias TD y RWD

- TD: no estacionario en media
- RWD: no estacionario en media y varianza
- ullet RWD = TD + RW: esencialmente impredecible.

Procesos ARIMA

ARIMA(p, d, q): proceso que diferenciado d veces es un ARMA(p, q)

Ej: ARMA(1,1,1). Si Y_t es no estacionaria porque tiene una raiz unitaria, $Z_t = \Delta Y_t = Y_t - Y_{t-1}$ es estacionaria

$$Z_t = \phi Z_{t-1} + +\varepsilon_t + \theta \varepsilon_{t-1}$$

es un ARMA(1,1) en base a una serie que tuvo que ser diferenciada una vez.

Test de raiz unitaria

Un test de raiz unitaria es un test de:

$$extit{H}_0: \phi = 1 \qquad \qquad ext{vs.} \qquad \qquad extit{H}_{ extit{A}}: |\phi| < 1$$

en el siguiente modelo:

$$Y_t = m + \phi Y_{t-1} + dt + \varepsilon_t, \qquad \varepsilon_t \sim RB(0, \sigma^2)$$

Casos particulares (algunos a simple vista, otros, hay que demostrarlos)

$$Y_t = m + \phi Y_{t-1} + dt + \varepsilon_t$$

Caso	Proceso	Parametros	Hipotesis sobre ϕ
1	AR(1)	$ \phi < 1, d = 0$	Alternativa
2	TD	$ \phi < 1, d eq 0$	Alternativa
3	RW	$\phi=1, d=m=0$	Nula
4	RWD	$\phi = 1$	Nula

Los casos 3 y 4 (H_0) son procesos con *raiz unitaria*. Implican una forma muy particular de no-estacionariedad.

Prueba del caso 2: Si $|\phi| < 1$

$$Y_t(1 - \phi L) = m + d t + \varepsilon_t$$

$$Y_t = \frac{m}{1 - \phi} + \frac{d t}{1 - \phi L} + \frac{\varepsilon_t}{1 - \phi L}$$

Notar que

$$t/(1-\phi L) = \sum_{i=0}^{\infty} \phi^{i}(t-i) = \frac{t}{1-\phi} - \frac{\phi}{(1-\phi)^{2}}$$

reemplazando:

$$Y_t = \mu^* + \frac{d\ t}{1 - \phi} + \frac{\varepsilon_t}{1 - \phi L}$$

 $\text{con } \mu^* \equiv [\textit{m}(1-\phi)-\textit{d}\phi]/(1-\phi)^2. \text{ Bajo } |\phi| < 1, \ \varepsilon_t/(1-\phi L) \text{ es un } \textit{MA}(\infty) \text{ estacionario, entonces } \textit{Y}_t \text{ es una tendencia deterministica}.$

Ejercicio: verificar el caso (4).

Por que testear por raices unitarias?

- Evaluar estacionariedad.
- Fuente de estacionariedad
- Regresion espuria

Tests

- 1. Dickey-Fuller
- 2. Dickey-Fuller Aumentado
- 3. Philips-Perron
- 4. KPSS