ESSENTIAL QUESTION

How can you graph a rational function?

EXAMPLE 1 Rewrite a Rational Function to Identify Asymptotes

How is the quotient $g(x) = \frac{4x}{x-3}$ related to the reciprocal function, $f(x) = \frac{1}{x}$? Sketch the graph.

Use long division to write the rational expression in the form $\frac{a}{x-h} + k$.

$$\begin{array}{r}
 4 \\
 x - 3)\overline{4x} \\
 -(4x - 12) \\
 \hline
 12
 \end{array}$$

Therefore, $g(x) = 4 + \frac{12}{x - 3}$.

In terms of f(x), $g(x) = 12 \cdot f(x - 3) + 4$. So, the graph of g will be the graph of f translated and stretched vertically.

EXAMPLE 1 Rewrite a Rational Function to Identify Asymptotes

Try It!

- **1.** Use long division to rewrite each rational function. Find the asymptotes of *f* and sketch the graph.
 - **a.** $f(x) = \frac{6x}{2x+1}$

EXAMPLE 1 Rewrite a Rational Function to Identify Asymptotes

Try It!

1. Use long division to rewrite each rational function. Find the asymptotes of *f* and sketch the graph.

b.
$$f(x) = \frac{x}{x - 6}$$

CONCEPT Rational Functions

Just as a rational number is a number that can be expressed as the ratio of two integers, a **rational expression** is an expression that can be expressed as the ratio of two polynomials, such as $\frac{P(x)}{Q(x)}$.

A **rational function** is any function defined by a rational expression, such as $R(x) = \frac{P(X)}{Q(X)}$. The domain of R(x) is all values of x for which $Q(x) \neq 0$.

The function $g(x) = \frac{4x}{x-3}$ is a rational function.

EXAMPLE 2 Find Multiple Vertical Asymptotes of a Rational Function

What are the vertical asymptotes for the graph of $f(x) = \frac{3x-2}{x^2+7x+12}$?

Vertical asymptotes can occur at the *x*-values where the function is undefined.

Determine where the denominator of the rational function is equal to 0.

$$x^{2} + 7x + 12 = 0$$

 $(x + 3)(x + 4) = 0$
 $x + 3 = 0 \text{ or } x + 4 = 0$
 $x = -3 \text{ or } x = -4$

EXAMPLE 2 Find Multiple Vertical Asymptotes of a Rational Function

Try It!

2. Find the vertical asymptotes for each function. Graph the function to check your work.

a.
$$g(x) = \frac{5x}{x^2 - x - 6}$$

EXAMPLE 2 Find Multiple Vertical Asymptotes of a Rational Function

Try It!

2. Find the vertical asymptotes for each function. Graph the function to check your work.

b.
$$h(x) = \frac{7-x}{(x-5)(x+1)(x+3)}$$

EXAMPLE 3 Find Types of Horizontal Asymptotes

There are 3 cases to consider, below is case #1

Consider
$$g(x) = \frac{x+4}{x^2+1}$$
.

As $|x| \to \infty$ the value of the denominator gets very large in relation to the numerator. The value of the function gets closer and closer to 0.

EXAMPLE 3 Find Types of Horizontal Asymptotes

What are the horizontal asymptotes for the graph

Case 2: When the degree of the numerator is greater than the degree of the denominator, there is no horizontal asymptote.

Consider
$$h(x) = \frac{x^2 + 1}{x + 2}$$
.

As $|x| \to \infty$, the value of the numerator gets very large in relation to the denominator, so $y \to \pm \infty$.

EXAMPLE 3 Find Types of Horizontal Asymptotes

Case 3; When the degree of the numerator is equal to the degree of the denominator, the horizontal asymptote is at $y = \frac{p}{q}$ where $\frac{p}{q}$ is the ratio of the leading coefficients.

Consider
$$k(x) = \frac{2x^2 + x + 1}{x^2 - 1}$$
.

Using long division, you can rewrite this as

$$k(x) = 2 + \frac{x+3}{x^2-1}$$
.

As $|x| \to \infty$, the value of the rational expression approaches 0, so the value of the function approaches 2.

k(x) has a horizontal asymptote at $y = \frac{2}{1}$.

EXAMPLE 3 Find Types of Horizontal Asymptotes

What are the horizontal asymptotes for the graph $f(x) = \frac{3x-2}{x^2+7x+12}$?

For the function $k(x) = \frac{3x-2}{x^2+7x+12}$, the degree of the numerator is less than the degree of the denominator.

It has a horizontal asymptote at y = 0.

EXAMPLE 3 Find Types of Horizontal Asymptotes

Try It!

3. What are the horizontal asymptotes of the graph of each function?

a.
$$g(x) = \frac{2x^2 + x - 9}{2x - 8}$$

EXAMPLE 3 Find Types of Horizontal Asymptotes

Try It!

3. What are the horizontal asymptotes of the graph of each function?

b.
$$h(x) = \frac{x^2 + 5x + 4}{3x^2 - 12}$$

EXAMPLE 3 Find Types of Horizontal Asymptotes

Try It!

3. What are the horizontal asymptotes of the graph of each function?

c.
$$k(x) = \frac{x}{(2x-1)(x+6)}$$

EXAMPLE 4 Graph a Function of the Form $\frac{ax + b}{cx + d}$

What is the graph of the function $f(x) = \frac{2x+1}{3x-4}$?

Step 1 Determine if there is a vertical asymptote.

$$3x - 4 = 0$$

$$3x = 4$$

$$x = \frac{4}{3}$$

By setting the denominator equal to zero, you can find the values of *x* for which the function is undefined.

At $x = \frac{4}{3}$, the value of the denominator is 0.

There is a vertical asymptote at $x = \frac{4}{3}$.

Step 2 Determine if there is a horizontal asymptote.

$$y = \frac{2}{3}$$

Since the degrees of the numerator and denominator are the same, use the ratio of the leading coefficients to find the horizontal asymptote.

As
$$x \to \pm \infty$$
, $y \to \frac{2}{3}$.

There is a horizontal asymptote at $y = \frac{2}{3}$.

EXAMPLE 4 Graph a Function of the Form $\frac{ax + b}{cx + d}$

What is the graph of the function $f(x) = \frac{2x+1}{3x-4}$?

Step 3 Graph the function.

- Indicate the asymptotes.
- Choose x-values on either side of the vertical asymptote, and evaluate the function for those x-values to create coordinate points to determine the shape near the asymptotes. For example, f(2) = 2.5, f(4) = 1.125, f(0) = -0.25, f(-0.5) = 0, and f(-2) = 0.3.
- Plot the points and sketch the graph through the points.

EXAMPLE 4 Graph a Function of the Form $\frac{ax + b}{cx + d}$

Try It!

4. Graph each function.

a.
$$f(x) = \frac{4x-3}{x+8}$$

b.
$$g(x) = \frac{3x+2}{x-1}$$

APPLICATION

EXAMPLE 5 Use a Rational Function Model

Formulate

The adult dosage is 125 mcg, so the dosage for a child a years old is $D(a) = \frac{125a}{a+12}$. A child can receive the medication if $D(a) \ge 60$.

Compute

Graph the function using technology. Then graph the line y = 60. You can solve the inequality $D(a) \ge 60$ by finding the intersection point of the two graphs.

The solution to the inequality $D(a) \ge 60$ is approximately $a \ge 11.1$.

Interpret

A child 11.1 years old or older will be able to receive the medication.

APPLICATION

EXAMPLE 5 Use a Rational Function Model

A pediatric doctor may need to administer medication without knowing a child's weight. Young's Rule can be used to calculate a child's dosage D(a) given their age a and the adult dosage.

A doctor has 60 mcg of a medication. What is the youngest a child can be to receive this dose of medication if the adult dosage is 125 mcg?

EXAMPLE 5 Use a Rational Function Model

Try It!

5. Use Young's Rule to calculate the minimum age a child can be if a doctor has 85 mcg of a medication, and the adult dosage is 200 mcg.

What is the graph of
$$f(x) = \frac{4x^2 - 9}{x^2 + 2x - 15}$$
?

Step 1 Determine if there are any vertical asymptotes.

$$x^{2} + 2x - 15 = 0$$

 $(x + 5)(x - 3) = 0$
 $x + 5 = 0 \text{ or } x - 3 = 0$
 $x = -5 \text{ or } x = 3$

Neither of these values makes the numerator equal to 0, but they each make the denominator equal to 0.

There are vertical asymptotes at x = -5 and x = 3.

Step 2 Determine if there is a horizontal asymptote.

The degree of the numerator equals the degree of the denominator. Using long division you can write f(x) as $f(x) = 4 - \frac{8x + 51}{x^2 + 2x - 15}$. As $x \to \infty$ or $x \to -\infty$, the rational expression goes to 0, and $f(x) \to 4$.

There is a horizontal asymptote at y = 4.

COMMUNICATE PRECISELY

When graphing, it is important to include both horizontal and vertical asymptotes to clearly identify the graph's behavior near them.

Step 3 Sketch the graph by first graphing the asymptotes.

Unlike a vertical asymptote, which indicates a domain restriction, horizontal asymptotes may be crossed. The graph crosses the asymptote at (6.375, 4).

When x > 6.375, the graph drops below the horizontal asymptote y = 4, and then, as $x \to \infty$, approaches y = 4 from below. As $x \to -\infty$, the graph approaches y = 4, from above.

Try It!

6. Identify the asymptotes and sketch the graph of

$$g(x) = \frac{x^2 - 5x + 6}{2x^2 - 10}.$$

CONCEPT SUMMARY

Graphing Rational Functions

RATIONAL
FUNCTION

A function that is expressible as a fraction with polynomials in the numerator and the denominator

ASYMPTOTES

Vertical

Vertical asymptotes are guides for the behavior of a graph as it approaches a vertical line.

- The line x = a is a vertical asymptote of $\frac{P(x)}{Q(x)}$, if Q(a) = 0 and $P(a) \neq 0$.
- The up or down behavior of the function as it approaches the asymptote can be determined by substituting values close to a on either side of the asymptote.

Horizontal

Horizontal asymptotes are guides for the end behavior of a graph as it approaches a horizontal line.

If the degree of the numerator is

- less than the degree of the denominator, the horizontal asymptote is at y = 0.
- greater than the denominator, there is no horizontal asymptote.
- equal to the degree of the denominator, set y equal to the ratio of the leading coefficients.
 The graph of this line is the horizontal asymptote.

CONCEPT SUMMARY

Graphing Rational Functions

ALGEBRA

$$f(x) = \frac{8x - 3}{4x + 1}$$

Vertical Asymptote: Let 4x + 1 = 0 and solve.

$$x = -\frac{1}{4}$$

Horizontal Asymptote: Find the ratio of the leading coefficients $\left(\frac{8}{4}\right)$.

$$y = 2$$

GRAPH

