35.C15336

PATENT APPLICATION

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of:)	
		:	Examiner: NYA
YUKIHIKO SAKASHITA)	
		:	Group Art Unit: 2875
Application No.: 09/845,282)	
		:	
Filed:	May 1, 2001)	
		:	
For:	DISPLAY APPARATUS)	
	AND IMAGE SIGNAL	:	
	PROCESSING APPARATUS)	August 7, 2001
Commissioner for Patents			
Washington, D.C. 20231			

CLAIM TO PRIORITY

Sir:

Applicant hereby claims priority under the International Convention and all rights to which he is entitled under 35 U.S.C. § 119 based upon the following Japanese Priority Applications:

2000-134440 filed May 8, 2000

2001-129125 filed April 26, 2001

Certified copies of the priority document are enclosed.

Applicant's undersigned attorney may be reached in our New York office by

telephone at (212) 218-2100. All correspondence should continue to be directed to our address given below.

Respectfully submitted,

torney for Applicant

Registration No. 25,823

FITZPATRICK, CELLA, HARPER & SCINTO 30 Rockefeller Plaza
New York, New York 10112-3801
Facsimile: (212) 218-2200

NY_MAIN 190386 v 1

本 国 特 許 庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office

出願年月日 Date of Application:

2000年 5月 8日

出 願 番 号 Application Number:

特願2000-134440

出 顏 人 Applicant(s):

キヤノン株式会社

CERTIFIED COPY OF PRIORITY DOCUMENT

2001年 5月30日

特許庁長官 Commissioner, Japan Patent Office

特2000-134440

【書類名】 特許願

【整理番号】 4162310

【提出日】 平成12年 5月 8日

【あて先】 特許庁長官殿

【国際特許分類】 G02F 1/00

【発明の名称】 表示装置および映像信号処理装置

【請求項の数】 18

【発明者】

【住所又は居所】 東京都大田区下丸子3丁目30番2号キヤノン株式会社

内

【氏名】 坂下 幸彦

【特許出願人】

【識別番号】 000001007

【氏名又は名称】 キヤノン株式会社

【代理人】

【識別番号】 100086287

【弁理士】

【氏名又は名称】 伊東 哲也

【選任した代理人】

【識別番号】 100103931

【弁理士】

【氏名又は名称】 関口 鶴彦

【手数料の表示】

【予納台帳番号】 002048

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 表示装置および映像信号処理装置

【特許請求の範囲】

【請求項1】 光変調素子に光源より発生する光を照射し、該光変調素子より透過または反射した光により表示画面を構成する表示装置において、

入力映像信号または入力画像データにより所定の演算を行う入力画像演算手段 と、

前記入力画像演算手段からの信号に応じて前記光変調素子に照射される光量を 制御する光量制御手段と

を備えることを特徴とする表示装置。

【請求項2】 前記入力画像演算手段からの信号に応じて前記入力映像信号または入力画像データを前記光変調素子への書込み信号に変換する変換特性を制御する光変調子書込信号変換手段を備えることを特徴とする請求項1に記載の表示装置。

【請求項3】 光変調素子に光源より発生する光を照射し、該光変調素子より透過または反射した光により表示画面を構成する表示装置において、

入力映像信号または入力画像データにより所定の演算を行う入力画像演算手段 と、

前記光変調素子に照射される光量を検出するセンサと、

前記入力画像演算手段からの信号および前記センサの出力信号に応じて前記光 変調素子に照射される光量を制御する光量制御手段と

を備えることを特徴とする表示装置。

【請求項4】 前記入力画像演算手段からの信号および前記センサの出力信号に応じて前記入力映像信号または入力画像データを前記光変調素子への書込み信号に変換する変換特性を制御する光変調子書込信号変換手段を備えることを特徴とする請求項3に記載の表示装置。

【請求項5】 前記光変調子書込信号変換手段の出力する映像信号制御信号を遅延させる映像信号制御信号遅延手段を備えることを特徴とする請求項2または4に記載の表示装置。

【請求項6】 前記入力画像演算手段は、前記表示画面に表示すべき画像の 輝度分布を演算する輝度分布演算手段を備え、求めた輝度分布をもとに前記照射 光量を算出することを特徴とする請求項1~5のいずれかに記載の表示装置。

【請求項7】 前記輝度分布演算手段は、輝度分布抽出手段と照射光量変化 方向検出手段とを備え、照射光量の変化方向により、輝度分布を抽出するための しきい値を異ならせることを特徴とする請求項7に記載の表示装置。

【請求項8】 前記輝度分布を抽出するためのしきい値は、前記照射光量を増加させる場合のしきい値を、減少させる場合より、高輝度側に設定することを特徴とする請求項7に記載の表示装置。

【請求項9】 前記照射光量の変化量または変化率を設定する照射光量変化量設定手段を備えることを特徴とする請求項1~8のいずれかに記載の表示装置

【請求項10】 前記変化量または変化率は、照射光量を減少させる方向より増加させる方向の方が大きいことを特徴とする請求項9に記載の表示装置。

【請求項11】 前記入力映像信号を遅延させる映像信号遅延手段を備えることを特徴とする請求項1~10のいずれかに記載の表示装置。

【請求項12】 前記光量制御手段は、前記光源と前記光変調素子の間に配置されて前記光源から前記光変調素子に照射される光量を制御する手段であることを特徴とする請求項1~11のいずれかに記載の表示装置。

【請求項13】 前記光量制御手段は、前記光源に供給する電圧または電流を制御する手段であることを特徴とする請求項1~11のいずれかに記載の表示装置。

【請求項14】 光変調素子に光源より発生する光を照射し、該光変調素子より透過または反射した光により表示画面を構成する表示装置の映像信号処理装置であって、

入力映像信号または入力画像データの輝度分布を演算する輝度分布演算手段と

前記輝度分布演算手段からの信号に応じて前記光変調素子に照射される光量を 演算する光量演算手段と を備えることを特徴とする映像信号処理装置。

【請求項15】 前記輝度分布演算手段からの信号に応じて前記入力映像信号または入力画像データを前記光変調素子への書込み信号に変換する変換特性を制御する光変調子書込信号を出力する光変調子書込信号演算手段を備えることを特徴とする請求項14に記載の映像信号処理装置。

【請求項16】 光変調素子に光源より発生する光を照射し、該光変調素子より透過または反射した光により表示画面を構成する表示装置の映像信号処理装置であって、

入力映像信号または入力画像データの輝度分布を演算する輝度分布演算手段と

前記輝度分布演算手段からの信号および前記光変調素子に照射される光量を検 出するセンサの出力信号に応じて前記光変調素子に照射される光量を演算する光 量演算手段と

を備えることを特徴とする映像信号処理装置。

【請求項17】 前記輝度分布演算手段からの信号および前記センサの出力信号に応じて前記入力映像信号または入力画像データを前記光変調素子への書込み信号に変換する変換特性を制御する光変調子書込信号を出力する光変調子書込信号演算手段を備えることを特徴とする請求項16に記載の映像信号処理装置。

【請求項18】 前記入力映像信号または入力画像データを前記光変調素子に照射される光量に略反比例する増幅率で増幅する増幅手段を備えることを特徴とする請求項14~17のいずれかに記載の映像信号処理装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、表示装置および表示装置用の信号処理装置に関するものであり、液晶ディスプレイ、プロジェクタ等の大画面/高精細表示装置に適用して好適なものである。

[0002]

【従来技術】

マルチメディア時代の到来により、あらゆる場面で表示装置が用いられているが、特に投射型表示装置は、大画面化が他の方式に比べて効率的なため、プレゼンテーション等にフロントプロジェクタが、家庭用シアターとしてリアプロジェクタが普及している。

[0003]

近年、CRT投射に代わり、液晶パネル方式や、ミラーの角度を変えることにより光量を変調するDMD(ディジタル・ミラー・デバイス、例えば特開平10 -78550号参照)方式のプロジェクタが高輝度、高精細化に適しているため に広がりを見せている。

[0004]

しかしながら、これらの投射型表示装置は、一般に使用されているCRT直視管の画質に達せず、高画質表示(質感が求められている表示)の場合、ユーザーは、画面サイズが小型であっても、CRT直視管を用いる場合が多い。ここで言う高画質(質感)とは、高ダイナミックレンジ(高コントラスト、高階調表示可能)ということである。

[0005]

CRTは、輝度を電子ビーム強度等で変調可能なため、ダイナミックレンジは、特定領域(一部領域)のみ白を表示する場合等は、1000:1程度まで実現できる。したがって、白はより白く、黒はより黒くできるポテンシャルがあり、すぐれた画質を実現している。しかしながら、CRT方式の場合、チューブ等の限界により大きさがせいぜい40インチ程度でそれ以上のサイズは技術的に難易度が高いという問題点を有している。

[0006]

一方、投射型表示装置では、CRT方式は、そのエンジンサイズ、明るさ、高精細化等にそれぞれトレードオフがあり、上述したように、高輝度化および高精細化に適した液晶方式やDMD方式が近年主流となっている。これらの場合、液晶またはDMDが光を変調する光変調器の役割をもち、ランプから上記液晶デバイスまたはDMDへ照明し、投射光学系により拡大投影する。従って、上記ダイナミックレンジは、主に液晶デバイスまたはDMDのもつダイナミックレンジに

より決定される。

[0007]

上記デバイスの実用的ダイナミックレンジは、液晶の場合、約300~400 : 1程度、DMDの場合500~600:1程度である。したがって、上述のCRT方式に、なかなか高画質(高ダイナミックレンジ)の1点で勝てないという問題を有していた。

また、直視型LCDの場合も同様に、CRTに比べて、ダイナミックレンジが 低いことが問題となっていた。

[0008]

【発明が解決しようとする課題】

本発明の目的は、投射型表示装置のもつ、大画面、高精細の特徴に、高ダイナミックレンジという高画質を達成する方式を提供することである。

さらに、上記方式は、液晶デバイス、DMDといった現行のデバイスのレベルであっても、そのデバイスとの組合せにより上記目的を達成するものであり、低コスト、実用的方式である。

また、バックライトを備えた直視型の液晶表示装置においても、高解像度の特徴に、高ダイナミックレンジという高画質を達成する方式を提供することである

[0009]

【課題を解決するための手段】

上記の目的を達成するために、本発明の表示装置は、光変調器を照明する光量 の調整手段(照明光量変調手段)を設けたことを特徴とする。

[0010]

【発明の実施の形態】

本発明の好ましい実施の形態に係る表示装置は、光変調器(液晶デバイス、DMD)を照明する光量の調整手段と、上記照明光量に基づいた光変調器への信号処理回路およびその信号書き込み手段を設けたことを特徴とする。

本発明の好ましい実施の形態に係る投射型表示装置は、光源と光変調器(液晶 デバイス、DMD)との間に上記光変調器を照明する光量の調整手段(照明光量 変調手段)と、上記照明光量に基づいた光変調器への信号処理回路およびその信 号書き込み手段を設けたことを特徴とする。

上記の信号処理回路は、前記光量または光量制御信号に反比例する増幅率で入 力映像信号を増幅する増幅手段を備えてもよい。

[0011]

【作用】

本発明によれば、光変調器に照射される光量を調整する照明光量変調手段を設けたため、暗い画面は低光量で、明るい画面は高光量で照明することができ、結果として光変調器を一定光量で照明した場合よりも高いダイナミックレンジを実現することができる。

[0012]

また、上記信号処理回路および信号書き込み手段により光量と信号増幅率を略 反比例の関係で制御することにより、中間調における表示輝度を一定に保ちなが ら、高ダイナミックレンジを実現することができる。

[0013]

上記の照明光量変調手段は、光変調器に照射される光を発生する光源を直接制御するものや、光源と光変調器との間に設けられて照明光量の透過率を変調するものでもよい。前者としては、光源に供給する電圧または電流を制御する手段を、後者としては、光源からの光束を偏光光束に変換する手段と、回転可能に配置した偏光板または位相板とを組み合わせたものを例示することができる。

[0014]

【実施例】

以下、図面を用いて本発明の実施例を説明する。

「実施例1]

図1は本発明の一実施例に係る信号処理装置のブロック図を示す。

図1において、18、17、16は、R、G、B各色表示対応の液晶パネル、54は各液晶パネルに印加する信号と電源を供給するドライバ回路、55はDAコンバータ、56はメモリである。メモリ56は、現状の表示データと次のフレームで表示するデータ等を保持する。57はDSP部で、ガンマ調整、インター

レース信号のノンインターレース信号への変換、使用している液晶パネルの画素 数と入力信号の画素数とが対応しない場合の解像度変換、および色調整等の処理 だけでなく、照明光量変調にともなう各色の信号レベルを算出する演算等を実行 する。58はタイミング発生回路、59は電源ON-OFFおよび各種設定を行 うリモコンである。60はリモコンからの信号を受け、かつ、各種入力信号切換 等を行うための制御パネル、61は照明光量を変調するための超音波モータ用の ドライバ、62は超音波モータである。63はマイコンで、バスを介して、メモ リ56、DSP部57、タイミング発生回路58、制御パネル60、USMドラ イバ61、電源66、ランプ用バラスト64等の各ブロックが接続され、それら 各ブロックの制御を行っている。バラスト64には、ランプ65が接続されてい る。67はA/Dコンバータ、68はスイッチである。69は信号処理回路であ り、NTSC信号のデコード、ノイズ低減処理、帯域制限フィルタリングおよび 信号レベル調節等の信号処理を行う。71はPC(パソコン)入力端子、72は NTSC入力端子で、本ブロック図には、アナログ入力信号のみ記載されている が、それに限らず、LVDS、TMDS等の入力端子や、デジタルTV用D3端 子等を設けても有効であることは言うまでもない。75は音声入力端子、76は 音声切換スイッチ、70は音声処理回路、73はスピーカ、74はACインレッ トである。

[0015]

図1の電気ブロック図を用いて、本実施例の照明光量変調方式の駆動の基本動作(映像信号により決まる最大輝度レベルに応じた液晶パネルへの信号書込み方式の動作)について説明する。

[0016]

入力端子71、72から入力した信号は、ADコンバータ67を介して、デジタル信号に変換され、一旦メモリ56へ格納される。その時、そのフレームでの最大輝度レベルを算出し、その最大輝度レベルに対応した照明光量が得られる偏光板もしくは位相板の回転角度またはバラスト64を介して光源に供給される電流もしくは電圧を算出するとともに、その光量の照明光がパネルに照射した時、各画素で所望の輝度が実現する信号を演算し書込む。上記最大輝度レベルの算出

方法については、後述する。

[0017]

図2により各表示画像における光量変調と信号ゲインの関係を説明する。

図2(a)は、時刻t1の時の画像であり、山に太陽が沈み始め山陰や空が暗くなり始めているシーンを示している。図中の数値は、その画像の輝度レベルを示している。図2の(b)は、(a)よりも時間が経過した後の画像であり、更に太陽が沈み暗くなっている。その時のピークは、前回(a)に比較して、80%レベルになっている。更に時間が経過し、夜になり、空には月が出て、最大輝度レベルが30%となった場合を(c)に示す。

[0018]

ここで、各画像データに対して、(a)に対しては液晶パネルに100%レベルの光を照明し、(b)に対しては80%レベル、(c)に対しては30%レベルの光を照明する。各場合の表示画像は、(a')、(b')、(c')となる。ここで、照明光の減少分を信号を増幅することにより補う。(a')は光量低下が無いため、増幅率は1とし、(b')は増幅率を1.25倍にし、(c')は増幅率を3.3倍とする。その結果は、(a")、(b")、(c")となり、表示輝度は保たれる。

[0019]

以上のように、光量変調と信号の増幅を組み合せることにより、黒浮きを抑えることによるダイナミックレンジの改善を、表示輝度を維持しながら行うことが可能となる。

[0020]

液晶パネルのダイナミックレンジが200:1レベルのものであれば、100 %光量を照射すると、黒レベルは、0.5という輝度レベル以下は、表示できないが、本実施例によると、画面全体が暗くなるにつれて、黒レベルの表示可能領域が拡大するため、より締まった黒表示が実現できる。画面全体が明るい場合や、外光からの反射光の影響がある場合、人間の目には、黒レベルの細かな差異の認識レベルが低下することもあり、黒の再現性は、それ程目立たない。しかし、暗いシーンになればなるほど、その再現性が重要となるが、それが上記技術とマ ッチングしており、上記例の場合は、実質的に660:1程度にダイナミックレンジが向上する。

[0021]

映画など暗い映像シーンが多いソースの場合、本効果は絶大であり、黒の再現 性の良い、ダイナミックレンジの改善された画像を得ることができた。

[0022]

本実施例では、照明光量の減少分を信号ゲインの増幅を補うことにより、表示 輝度を保ちながらダイナミックレンジを改善する方法について説明したが、LC Dのダイナミックレンジを有効に使うために、信号のゲインを照明光量の減少分 より大きくする方法も有効である。

[0023]

次に、より具体的な画像信号からどのようにして、最大輝度を算出し、更に、 その算出された最大輝度データから所望の照明光量レベルを算出するか、そして 、照明光量レベルから、映像信号の増幅率をどのように決定するかについて詳細 に説明する。

[0024]

1フレームまたは1フィールド内の入力画像データを順に比較することにより、最大輝度を算出する。この場合、1画素毎の比較を行うと、ノイズなどの影響により、誤った最大輝度を算出する場合があるので、着目画素の近隣の数画素を平均化(または重み付け平均化)した値を各画素値として比較をし、最大輝度を算出することも有効である。

[0025]

図3は、DSP内の処理を説明するためのブロック図であり、図4はフローチャートである。

入力端301より入力した入力信号301に基づいて輝度分布算出部302は、上記の様に最大輝度を算出し(S402)、その結果をもとに照明光量算出部303により照明光量が決定される(S403)。そして、光量制御量算出部304により、光量制御量が決定される(S404)。次に、投射される表示輝度が保たれるように増幅率算出部305により増幅率が決定され(S405)、書

込信号変換手段である映像信号増幅部306により、入力信号301が増幅され 出力信号307として出力される。

[0026]

なお、書込信号変換のための回路には、乗算器を用いてもよいし、より変換特性が詳細に設定できるLUT(Look Up Table)を用いてもよい。また、映像信号処理回路(例えば図1の信号処理回路69、図5の映像信号処理部508)の中に既に存在するダイナミックレンジ調整回路を用いてもよい。

[0027]

[実施例2]

図5は本発明の第2の実施例に係る光量制御演算および信号ゲイン設定部のブロック図である。

図5において、信号入力端子501より入力した映像信号は、アナログ増幅部502により、増幅率算定部507により演算された増幅率により増幅される。次にA/D変換器503によりデジタル信号に変換された後、輝度検出部504により最大輝度が決定される。最大輝度に応じて照明光量演算部505により照明光量が算出され、次の光量制御量演算部506により光量制御量が決定される。前記増幅率算定部507で増幅率を求め、その結果により前述のアナログ増幅器の増幅率が決定される。信号処理部508では、照明光量制御以外の各種の信号処理が行われる。信号処理部508より出力された信号はDMDドライバ回路509を介してDMDパネル510へ書込まれる。

[0028]

図5は、実施例1における信号ゲイン設定部をアナログ回路で実現したものであり、増幅器の増幅率を可変にしたり、A/D変換器の基準電圧を可変に設定できるようにすればよい。

[0029]

更に基準電圧の与え方を工夫することにより、非線型な増幅も可能となり、その結果、階調再現性を改善することが可能となる。

[0030]

本実施例の様に、A/D変換器で変換される前のアナログ信号の段階で、光量

制御に基づいた映像信号の増幅を行うことにより、実施例1に比較して、量子化による誤差を抑えることが可能となり、ダイナミックレンジを改善した画像においても、階調性の劣化の少ない良好な画質を得ることが可能となる。

[0031]

DMDに対して、本発明を適用することにより、ダイナミックレンジの改善に加えて、信号レベルの伸長により、DMD特有の低輝度側での誤差拡散等の2値化処理による粒状の画質劣化も改善することが可能となる。

[0032]

本実施例では、DMDパネルの場合について説明したが、液晶パネルの場合で も同様に行うことができる。

[0033]

[実施例3]

図6は本発明の第3の実施例に係る光量制御部および信号ゲイン設定部のブロック図である。本実施例において、光量制御は、光変調素子に照射される光量を演算部にフィードバックして行う。

[0034]

図6においては、入力端601より入力された映像信号に基づいて、輝度検出部602により輝度分布を算出し、照明光量演算部603により照明光量を算出する。次に光量制御量演算部604により光量制御量を算出し、照明制御装置608により照明609を駆動する。

[0035]

照明光量検出センサ610では、照明609からの照明光の輝度を検出し、光量制御量算出部604およびゲイン算出部605へ与える。ゲイン算出部605では、設定する照明光量または検出した照明光量に応じて、パネルへの書込みゲインを決定する。ゲイン部606では入力信号601を入力しゲイン算出部605で決定された係数に応じて、入出力特性を変化させる。信号処理部607では、各種の信号処理を行い、パネル駆動回路(例えば図1のパネルドライバ54)へ映像信号を送信する。

[0036]

次に図7のフローチャートを用いて、処理/制御方法について説明する。

まず映像信号から決まる所望の照明光量(S 7 0 1)と、照明光量検出センサから得られる現在の照明光量(S 7 0 2)とを比較する。ここで、所望の照明光量が現在の照明光量より、大きいか否かにより、照明光量変化方向が決定される(S 7 0 3)。次に時定数算出手段により変化量が算出される。次に、各々の変化方向に対応した照明光量変化量を算出し(S 7 0 5)、その変化量に応じた制御をモータに対して行う(S 7 0 6)。次に、光量検出器で、再度、制御後の照明光量を検出し(S 7 0 7)、S 7 0 1 に戻る。

[0037]

S708では、制御後の照明光量から、現状の照明光量に適した信号レベルを 算出し、信号に対する増幅率を決定し、光変調器へ書込むための信号に変換する (S709)。ここで、S703は破線で示すように、S706で決定された照 明光量をもとにして行ってもよい。

[0038]

照明光を検出するためのセンサは、後述の実施例に示されるように、光変調器 へ入射される光に比例した光を検知するために、光路内または漏れ光が検出でき る位置に設定される。

[0039]

ここで、本例のようなフィードバック系を用いない場合は、S702で用いられる現在の照明光量を、S707にて前回設定した値とすれば、この制御フローを用いることができる。

[0040]

ここで、時定数は、モータの動作速度や、モータに制御信号を与えてから制御 信号に応じた動作を終了するまでの時間等から決められる。

[0041]

本実施例によれば、照明光量を検出するセンサを用いて、フィードバック制御を行うことにより、照明の設定と信号増幅率の設定を精度良く行うことが可能となるため、表示画像の輝度を安定して制御できるという効果がある。

[0042]

また、動作速度の遅いモータを使用した場合や、モータの制御に時定数などを 用いて速度制御を行う場合には特に効果が得られる。

[0043]

[実施例4]

図8は、本発明による信号処理装置を含む表示装置のブロック構成図である。 本実施例では、LCD等の表示デバイスに照射される照明光量が表示デバイス 上で一様に変調される場合について説明する。

[0044]

図8において、101は映像入力端子、102はゲイン(ダイナミックレンジ)コントロール部、103は信号処理部、104はガンマ変換部、105はD/A変換器、106はLCDなどの表示デバイスであり、107は照明変調係数演算部、108は照明変調デバイスドライバ、109は照明変調デバイスである。また、110は映像信号遅延部、111は制御信号遅延部である。

[0045]

映像入力端子101より入力された映像信号は、照明変調係数演算部107に入力され、ここで、照明変調デバイスドライバ108へ出力される光量制御量、および、ゲインコントロール部またはガンマ部へ出力されるゲイン制御量を算出する。

[0046]

図9を用いて、図8の照明変調係数演算部107内の動作ステップについて、 説明する。図8の映像入力端子101より入力された映像信号は、照明変調係数 演算部107に入力され、輝度分布算出部107-1により、輝度分布が演算さ れる。ここで、輝度分布としては、1画面または複数画画の映像信号データの最 大値、最小値、平均値、ヒストグラム等が算出される。

[0047]

次に、照明光量算出部107-2において、輝度分布算出結果より、目標となる光量値を算出する。算出方法の詳細は、後述する。後述の「処理フロー1」および「処理フロー2」では、輝度の最大値を用いたフローについて説明し、「処理フロー3」では、輝度のヒストグラムを用いた方法について説明する。

[0048]

次に、光量制御量算出部107-3において、目標光量値から、光量制御量を 算出する。ここで、現在の光量値より目的となる光量値が大きければ、後述の時 定数算出部により、予め決めた値だけ光量が大となるように、光量制御信号を決 定し、逆に、現在の光量値より目的となる光量値が小さければ予め決めた値だけ 光量が小さくなるように光量制御量を決定する。

[0049]

次に信号ゲイン演算部107-4では、前記光量制御信号により決まる光量に合わせて、映像信号のゲインおよびオフセットを決定する。ここで、照明光量×信号ゲインが常に一定となるように制御を行い、表示される映像の明るさが保たれる。

[0050]

前述の時定数設定部107-5により、光量の変化量が設定される。ここで、 光量の変化量は一定でもよいし、目的値と現在地の差により変化させてもよい。

また、立ち下がり方向(照明光が暗くなる方向)では、光量の減少により、映像信号を増幅すれば、制御のスピードに関わらず、表示される輝度を再現することはできるが、立ち下がり方向(照明光を明るくする方向)では、照明光を明るくする速度が遅いと映像信号を変化させても、表示輝度を再現できない。そのため、立ち下がりの時定数よりも立上りの時定数を速くすることにより、急な白表示を再現できる。

[0051]

立上り/立ち下がり方向は輝度変化方向検出手段により検出される。時定数を持たせるのは、あまり急激な照明輝度の変化を行うと、フリッカのように見えたり、照明の制御スピードがあまり速くなくても、不自然に見えないという効果がある。

[0052]

また、照明の明/暗の方向が安定しないとフリッカのように見えるという問題が発生するため、輝度情報から照明光量を算出するためのしきい値にヒステリシスを持たせ、立上り方向のしきい値と立ち下がり方向のしきい値を変える(立上

りの方を大きくする)ことにより安定した制御を行う。

[0053]

また、検出された映像フレームが表示される時と、実際に光量が変わるまでに は、時間的なずれが生じる。前述の時定数により、ある程度の緩和はできるが、 より改善するためには、光量の変化と表示映像を合わせる必要がある。

[0054]

そのため、映像信号遅延部110では、光量が変化するタイミングに同期させて、演算に用いた画像を表示するために、映像信号を遅延させる。

映像信号遅延部110は、フレームメモリ等を用いて実現することができる。

[0055]

また、映像信号を遅延する代わりに、制御信号遅延部1111により、制御信号を遅延させてもよい。この場合、算出した映像と実際に制御する映像に遅延が生じるが、フレームメモリなどを用いなくとも数個のフリップフロップなどの遅延素子で実現できるため、低コストで、光量の変化と表示映像の変化を合せることは可能である。

[0056]

以下に、本実施例による処理フロー例を示す。

映像信号を8ビットとした場合、その入力信号は0~255の256階調となる。ここで、0を黒、255を白表示とする。

[0057]

「処理フロー1]

①RGB各色の1フレームまたは1フィールド内の最大値RMAX、GMAX、BMAXを算出する。

[0058]

②RMAX, BMAX, GMAXの中で最も大きな値を最大輝度RGBmaxとすると、目標照明光量Ltg [%] は、

Ltg=RGBmax/255*100 となる。

[0059]

ここで、実際の設定値は下記の様に目標照明光量は10段階とし、しきい値に ヒステリシスを持たせる。

※立上り(照明光量を明るくする)の場合

RGBmax Ltg $230 \sim 255$ \rightarrow 100% $204 \sim 229$ \rightarrow 90%

 $179 \sim 203 \rightarrow 80\%$

以下同様

※立下り(照明光量を暗くする)の場合

RGBmax Ltg
220~255 → 100%
194~219 → 90%
169~193 → 80%
以下同様

[0060]

③立上り(暗→明)時定数をDup、立下り(明→晴)時定数をDdnとすると

[0061]

【数1】

if(目標照明光量Ltg)>(前回の設定光量Lw(n-1))then
if((Ltg-Lw(n-1))>Dup)then
設定照明光量Lw(n)=Lw(n-1)+Dup
else
Lw(n)=Ltg
end if
else
if((Lw(n-1)-Ltg)>Ddn)then
設定照明光量Lw(n)=Lw(n-1)+Ddn
else
Lw(n)=Ltg
end if
end if

[0062]

- ④設定照明光量に対応したパルスモータの設定および信号ゲインの設定を垂直同期信号 V D に同期して行う。
- ⑤上記①②③④を△T時間毎に繰り返す。

[0063]

ここで、△Tは、モータの動作速度より決まるが、フレームまたはフィールド 間隔であることが望ましい。

[0064]

[処理フロー2]

また、モータの動作速度がフレームレートに比べて遅い場合は、次のフローを 用いることにより、動作速度の速いモータを使用した場合と同等の効果を得るこ とができた。

- ①前述の処理フロー1と同じ。
- ②前述の処理フロー1と同じ。
- ③設定光量Lw(n)=Ltg
- ④設定光量に対応したパルスモータの設定を行う。

[0065]

ここで、信号ゲインの設定は、パルスモータが設定値に到達するまでの期間中、照明光量の変化に合せて、VDに同期して目標値までリニアに設定を繰り返す

⑤パルスモータが設定値に到達した後に、上記①②③④を繰り返す。

以上により、モータの動作速度が遅い場合も、表示輝度を一定に保つことが可能となる。

[0066]

[処理フロー3]

輝度分布のヒストグラムを用いた処理方法について説明する。

①入力信号は比較器のしきい値A O からA (n-1) によりn 分割され、各々の範囲内の信号の数をカウントすることにより輝度分布が作成される。n 分割したカウント数を各々C O C n とする。ここで、A (n-1) A (n-2) A O である。

②次に輝度の大きい範囲から順に予め決めた個数より多いか否かを判断し、目的となる光量値を算出する。

[0067]

ここで、実際の設定値は下記の様に目標照明光量は10段階とし、しきい値に ヒステリシスを持たせる。

※立上り(照明光量を明るくする)の場合

[0068]

【数2】

if $(Cn > (100 + \triangle H))$ then

目標照明光量Ltg <= 100 %

elsif ((C (n) + C (n - 1)) > $(100 + \triangle H)$) then

目標照明光量Ltg <= 90 %

elsif ((C (n) + C (n - 1) + C (n - 2)) > $(100 + \triangle H)$) then

目標照明光量Ltg < = 80 %

以下同様

※立下り(照明光量を明るくする)の場合

[0069]

【数3】

if (Cn > 100) then

目標照明光量Ltg <= 100%

elsif ((C (n) + C (n - 1)) > 100) then

目標照明光量Ltg < = 90 %

elsif ((C (n) + C (n - 1) + C (n - 2)) > 100) then

目標照明光量Ltg < = 80 %

以下同様

[0070]

ここで、比較値およびヒステリシス量△Hは、比較を行うカウント値ごとに変えてもよい。

- ③前述の処理フロー1または2と同じ
- ④前述の処理フロー1または2と同じ
- ⑤前述の処理フロー1または2と同じ

以上、本実施例によれば、目標照明光量をn分割し、照明光量の制御方向により、照明光量を決定するための判定値であるしきい値にヒステリシスを持たせることによって、しきい値近辺で、照明光量の変化が頻繁に起きる現象を無くし、安定した画像を得ることが可能になり、画質が更に改善される。

また、時定数設定部のように、時間軸変化量制御する方法を設けることにより、ランプに対する光量変化速度を制限することができるため、動作速度の遅い照明制御手段を用いることができ、コスト的に有利である。

また、人間の目の特性による残像や急激な変化により目を痛めたり、気分が悪 くなるという問題にも効果的に対応できる。

[0071]

このように、入力された画像信号のレベル(分布、特性)に従い、照明光量を可変し、照明光量に合わせて映像信号のゲイン或いは電圧 - 輝度特性を変換する手段を持つことにより、表示される輝度を保ちながら、ダイナミックレンジを改善することが可能となった。

[0072]

[実施例5]

次に、本発明の第5の実施例について説明する。

図10は、本発明の5実施例に係る液晶プロジェクタの光学系の構成を示す図で、1はランプ用リフレクタ、2は発光管(ランプ)、3ははえの目インテグレータ、4はPS変換光学素子、5は照明光量変調器である。照明光量変調器5は、位相板もしくは偏光板が超音波モータに取り付けられている。6、24はリレーレンズ、7、9、11、12はミラー、8、10はダイクロミラー、13、14、15はフィールドレンズ、16、17、18は液晶パネル、19、20、21は偏光板、22はクロスプリズム、23は投射レンズである。

[0073]

図10により、液晶パネル16、17、18への照明光量が変調される原理を 説明する。ランプ2より出射した光束25は、リフレクタ1に反射して、平行光 束26となる。本実施例では、リフレクタ1の形状が放物型で平行光束へ変換さ れるが、リフレクタ形状を楕円型とし、集光光束へ変換しても良いことは言うま でもない。上記光東26は、はえの目インテグレータ3へ入射し、入射側はえの目のレンズ3aの各々は、液晶パネルと共役な関係となっている。このインテグレータ3により、ランプ2から出射した光東の分布は均一化され、また、ランプ2の発光領域ごとの色分布も同時に均一化される。

[0074]

インテグレータ3を出射した光束は、無偏光光束であり、PS変換素子4により直線偏光光束へ変換される。これらのPS変換素子としては、例えば、偏光ビームスプリッタと1/2波長板から構成されるものを用いることができる。この方式の場合、P光とS光との比率は20:1以上が十分得られた。

[0075]

この直線偏光光束が、偏光板もしくは位相板を連続的に回転するように構成された光学素子5を通過すると、液晶パネルへの照明光量が連続的に変わる。

[0076]

光学素子5に偏光板を用いた場合、上記PS変換素子4通過後の直線偏光方向 と偏光板の偏光子方向が平行配置のとき、偏光板での吸収表面反射成分約15% を除く光量(約85%)が透過する。

[0077]

上記直線偏光光束の偏光方向に対して、偏光板を回転すると、偏光板の偏光子方向への射影成分のみが透過するために、連続的に光量を落とすことができる。 上記光学素子5に入射する直線偏光光束のPS比率が、20:1の場合、パネルへの照明光量を1/20まで変化させることができた。

[0078]

上述の如く、PS変換素子4通過後、光束は直線偏光光へ変換され(部分直線変換もあり得る)、その後に直線偏光光が通過する偏光板を回転することにより、パネルへの照明光量を変更することができる。この偏光板の位置は、PS変換後であれば、基本的にどこでも良いが、光源に近い位置に配置すると光量が強く、偏光板自身が変質するので、離して配置することが望ましい。また、光源から離して配置することが難しい場合、サファイア性の偏光板を用いて耐光耐熱特性を高めることができる。

[0079]

上記偏光板は超音波モータにより回転する。超音波モータ (USM) は、高速かつ回転角の制御性が良く、本目的の光量調整には好適である。

超音波モータの回転速度は、負荷トルクにも依存するものの1000~5000rpmは、十分達成可能で、回転角90°(白黒変換に相当)に換算すると、3~15msで照明光量は変更できる。映像信号が白から黒に急激に変化する場合はほとんどなく、光量変化が10%とした場合、必要な回転角は26°でその場合の照明光量変更速度は1~5msと液晶の応答速度10~20msより速い。回転精度に関しては、モータに取りつけられたエンコーダにより回転角を制御でき、±0.1°以下の精度が十分得られた。

[0080]

モータとしては、超音波モータ以外にステッピングモータでも同等の速度と精 度が実現可能である。

上記例は、後述する所望の照明光量を映像信号から算出し、その決められた照明光量を実現するための偏光板の回転角を計算し、その回転角になるように、モータを動かす方式である。

[0081]

次に、照明光量自身をモニタし、サーボをかけ、所望の光量に制御する方式について、図11を用いて説明する。図11の光学系は、図10のものに対し、ミラー7をハーフミラー1101に置き換え、ハーフミラー1101を透過した光を集光する集光レンズ1102と、その光量を検出する光量検出器1103を付加したものである。ハーフミラー1101は反射成分が99%、透過成分が1%とほぼ反射する構成で良い。したがって、パネルへの照明光量は、このハーフミラーでわずかに低下するが問題になるレベルではない。ハーフミラー1101からの透過光束は、集光レンズ1102を経て光量検出器1103に入る。

[0082]

図11の光学系におけるパネルへの照明光量の制御方法を図12のフローチャートで示す。映像信号から算出された照明光量と現状の照明光量から次の照明光量をどのレベルに設定するかを決める。現状の照明光量をも勘案するのは、シー

ンの変化等により、輝度レベルが白から黒へ急速に変化した場合でも、それに急速に追従せず、数~数10フィールドでゆるやかに変化させた方が、液晶パネル等の駆動等も容易であり、かつ、人間の目には異和感がなく見えるので、そのような場合に適応するためである。

[0083]

上記照明光量のレベルが決まった後、その照明レベルになるように、モータを回転し、制御後の実際の光量を光量検出器 1 1 0 3 で測定する。集光レンズ 1 1 0 2 によりしぼられた光ゆえ、検出器自身は小型のpin型のもので足り、高速アンプと組み合わすことにより数 1 0 μ s で光量検出ができる。この光量が所望のレベルになるように、モータを制御すれば、仮に、ランプ自身の光量変化が生じた時も、一定光量の照明が実現し、安定した画面が実現する。特にアーク長が1~1.3 mmと短く、プロジェクタエンジンの小型化に有効な超高圧水銀ランプやメタルハライドランプを用いる場合、ランプ 2 の発光領域の移動にともない、インテグレータ 3 に入射する光量が変化し、パネルへの実質照明光量が変動して表示性能を落とすことがあり、その解決が求められていたが、その有効な対策にもなり、表示性能を高める利点がある。

[0084]

また、実際の検出した光量に対応した信号が計算され、液晶パネル等に書き込まれるために、照明光量を映像が白から黒へ変化する時はゆっくり、黒から白へ変化する時は速く切り替わるような駆動も可能になる。これにより、黒から白へ変化した時の白のピーク輝度の確保ができ、表示性能が向上するばかりでなく、モータの負荷も減り、消費電力のセーブも可能となり、また、モータの寿命も長くなる利点を有する。

[0085]

ここでは、偏光板の回転に超音波モータを用いており、高速でバックラッシュ のない、静音性に優れた照明光量制御を行なっている。しかし、超音波モータ以 外の他のモータでも利用可能であることは言うまでもない。

[0086]

前述の構成では、偏光板の回転により、照明光量の制御を行なったが、この偏

光板の代わりに位相板を用いると光量ロスがほとんどなく、さらに高輝度プロジェクタとして適している。位相板として $\lambda/2$ 板を用いると、 P S 変換素子 4 から出射される直線偏光光束に対して、 $\lambda/2$ 板の回転角 θ とともに、 $\lambda/2$ 板通過後の直線偏光光束の位相は 2 θ 回転する。したがって、偏光板に対し $\lambda/2$ 板の回転角は半分でよく、より高速な光量変調が可能となる。回転した偏光光束の光量は、位相板でのロスは 2-3 %しかなく、高輝度化にも優れている。液晶パネル手前の偏光板により、その傾影成分のみが液晶パネルに照明されるために、照明光量が変調可能である。

[0087]

図10および11の光学系において、照明光量変調用光学素子(照明光量変調器)5を透過した光束はリレーレンズ6および24を介して、各色の液晶パネルへ照明される。ダイクロミラー8は青色を透過し、それ以外を反射する。ダイクロミラー10は赤色を透過し、緑色を反射する。この場合、16は青色用液晶パネル、17は緑色用液晶パネル、18は赤色用液晶パネルで、例えばTFTを用いて駆動するTN液晶パネルである。さらに、各画素にマイクロレンズを設けたものは、開口部での光のケラレが減少し、高輝度化が図れた。

[0088]

照明光量変調にともない、上記液晶パネルの駆動も新しい方式を用いる。この 駆動方式に対しては、後述する。各色の液晶パネルで変調を受けた各色の光東は クロスプリズム22で合成され、投射レンズ23を介して写し出される。

[0089]

[実施例6]

図13は本発明の第6実施例を示す概略図である。図13において、メタルハライドランプやキセノランプなどの光源1301から発せられた光は放物面リフレクタ1302により略平行光とされ、ミラー1303で反射後、集光レンズ1304を介してインテグレータ1305の前側端面(第1の端面)1305-1位置に光源像を形成する。この光源像の近くに、1310で示す絞りが設けられている。絞り1310を絞るとインテグレータ1305への入射光量を減少させることができる。インテグレータ1305に入射した光束は、一部はインテグレ

ータを透過し、残りの一部は内部の反射面で1回から数回反射して後側端面(第2の端面)1305-2から出射する。

[0090]

放物面リフレクタ1302と集光レンズ1304には、放物面リフレクタ1302の焦点距離をF3、集光レンズ1304の焦点距離をF4とする時、4 \leq F4 \neq F3 \leq 10 (但し、F3は前記放物面リフレクタの底面から前記焦点までの距離)を満たすものを用いるのが良い。なぜならば、インテグレータ1305の前側端面位置1305-1に小さな光源像を形成することが出来るからである。インテグレータ1305からの光束は凸レンズ1306に入射し、RGBもしくはRGBW光のみ透過するダイクロフィルタ1311を透過し、反射鏡1307の近傍に光源1301の像を形成する。上記ダイクロフィルタは透過型の例を示したが、反射型を用いても有効であることは言うまでもない。反射鏡1307は投影レンズ1314の開口絞り1313の位置に配置されている。

[0091]

図13において、インテグレータ1305からの光束は、反射鏡1307で反射されて平凸レンズ1308に入射し、平凸レンズ1308により略平行光とされて、光変調器であるDMDパネル1309を照明する。DMDパネル1309は、映像信号に応じて画素毎に入射光を散乱したり散乱しなかったりといった光変調を行なうことにより画像情報を形成する。前述した第5実施例の液晶表示パネルも同様の構成、機能を有するが、必要に応じて、別のタイプの液晶表示パネルを使用することも可能である。

[0092]

本実施例の光学系で重要なことは、インテグレータ1305の後側端面1305-2が凸レンズ1306と平凸レンズ1308とにより、DMDパネル1309上に結像されることである。インテグレータ1305の後側端面1305-2においては、インテグレータ1305内部を反射せずに透過した光束と1回から数回反射された光束が重なり合うために、光源の色ムラや輝度ムラが無くなってほぼ一様な光強度分布になっている。したがって、この後側端面1305-2を凸レンズ1306と平凸レンズ1308とによりDMDパネル1309の表示面

と共役関係とすれば、DMDパネルの表示面で色ムラや輝度ムラが軽減され、その結果スクリーン1315上に表示される画像の色ムラや輝度ムラが軽減される。また、インテグレータ1305の後側端面1305-2の形状をDMDパネル1309の表示面とほぼ相似な矩形としてインテグレータ1305の後側端面1305-2を適当な倍率でDMDパネル1309上に結像することにより、パネルを効率良く照明している。

[0093]

なお、図13では、レンズ1304とレンズ1306とレンズ1308がそれ ぞれ一枚のレンズであるが、これらのレンズ系をそれぞれ複数枚のレンズにより 構成しても構わない。前述した実施例の各レンズも同様である。したがって、本 願で「凸レンズ」と述べているのは正の屈折力を有するレンズ系のことである。

[0094]

DMDパネル1309で、画像信号に応じて変調された各色の反射光は、平凸レンズ1308により集光され、少なくとも一部の光束が開口絞り1313の開口部を通過し、投影レンズ1314を介してスクリーン1315上に投影される。この時絞り1313の開口部には、DMDパネル1309で正反射した光により光源像と相似形な光源像が形成される。これは、光源1301とインテグレータ1305の前側端面1305-1と反射鏡1307と開口絞り1313が互いに共役な位置にあるからである。投影レンズ1314と集光レンズ1308より成る光学系はDMDパネル側がテレセントリックな系である。

[0095]

本実施例は、図13に示すダイクロフィルタ1311の回転により、時分割で RGBを表示する方式であり、一回転に同期して光量調整用の絞り1310を変 調すれば、第5実施例と同様の輝度変調を行なうことができる。また、RGB時 分割の各色のレベルに同期して、絞り1310を調整し、照明光量を変調するこ ともできる。

[0096]

本構成もほとんどコストをかけずに、照明光量変調し、高ダイナミックレンジのDMDをさらに高ダイナミックレンジ高画質化できる利点を有する。

2 5

[0097]

上記実施例では、DMDパネルを例に説明したが、これは液晶パネルでも有効であることは言うまでもない。

[0098]

[実施例7]

図14は、本発明の第7の実施例に係る電気系のブロック図を示す。図14において、1400はDMD、1401はDMDドライバユニットである。ドライバユニット1401内部には、時分割等の信号変換処理部1402、メモリ1403、制御ユニット1404およびリセットドライバ1405を備えている。

[0099]

信号処理に連動して、カラーフィルタシステム1406(図13の1311に対応)があり、回転の同期やサーボコントロール1407およびカラーフィルタ 1408自身から構成されている。

[0100]

絞り1409、電源ユニット1410、およびDMDドライバユニット140 1はマイコン1462に接続されており、全体的に制御されている。

[0101]

電源ユニット1410は、バラスト1411、電源1412、ランプ1413、ランプ用ファン1414、電源・電装基板冷却用ファン1415からなる。また、リモコンやボタンからなるユーザインターフェイスユニット1416は、リモコン1417、リモコンから発光するLED1418、ボタンやキー1419、およびスイッチ1420から構成されている。

[0102]

音響系1421は、LVDSやTMDSといったデジタル信号I/Fの出力信号をDA変換するDAユニット1422、音量(VOL)調整回路1423、アンプ1424およびスピーカ1425からなる。

[0103]

モニタ機能1461としては、S端子1426、コンポーネントビデオ端子1427、コンポジットビデオ端子1428、デジタル放送の端子(D3)142

9等が設けられている。

[0104]

一方、PCからのアナログ信号は、Dsub15ピン1430から入力され、 位相調整1431およびPLL1432ならびにプリアンプ1433を介してA Dコンバータ1434でディジタル信号に変換され、マルチプレクサ1435を 介して、スキャンコンバータ1436に入る。

[0105]

また、DTV用信号は、チューナ部1437、MPEGデコーダ1438を介して、スキャンコンバータ1436へ入る。通常のNTSCは、ADコンバータ1451でAD変換後、スキャンコンバータ1436を介し入力される。また、DTV用信号およびNTSC信号から分離されたオーディオ信号はマルチプレクサ1452を介してLVDSインターフェースの送信部1455へ入る。スキャンコンバータ1436からのビデオ信号およびマルチプレクサ1452からのオーディオ信号はLVDSインターフェースの送信部1455および受信部1453を介して、フロントエンド1454および音響系1421に入る。フロントエンド1454の出力信号はDMDドライバユニット1401に入る。

[0106]

本構成により、オフィス用のフロントプロジェクタ、リアプロジェクタをして 高画質が得られるだけでなく、コンシューマ用の大画面のリア、フロントのTV やホームシアター、ミニシアター等へも適用できる。

[0107]

図14において、DTVチューナ部1463は、チューナ1464、SAWフィルタ1439、ADコンバータ1440、VSB復調器1441およびデミクサ1442を備えている。MPEGデコーダ1438は、ビデオデコーダ1443およびオーディオデコーダ144を備えている。NTSCチューナ1445は、チューナ1446、SAWフィルタ1447、NTSC復調器1448、オーディオデコーダ1449およびADコンバータ1450を備えている。

[0108]

【発明の効果】

以上のように、本発明によれば、光変調器に照射される光量を調整する照明光量変調手段を設けたため、暗い画面は低光量で、明るい画面は高光量で照明することができ、結果として光変調器を一定光量で照明した場合よりも高いコントラストを実現することができる。

[0109]

本発明によれば、光源と光変調器との間に照明光量変調手段を設けたため、暗い画面は低光量で、明るい画面は高光量で照明することができ、結果として光変調器を一定光量で照明した場合よりも高いコントラストを実現することができる

[0110]

本発明によれば、光変調器に照射される光を発生する光源を直接制御する照明 光量変調手段を設けたため、暗い画面は低光量で、明るい画面は高光量で照明す ることができ、結果として光変調器を一定光量で照明した場合よりも高いコント ラストを実現することができる。

[0111]

本発明によれば、光量と信号増幅率を略反比例の関係で制御することにより、 中間調における表示輝度を一定に保ちながら、高コントラストを実現することが できる。

【図面の簡単な説明】

- 【図1】 本発明の第1の実施例に係る電気系ブロック図である。
- 【図2】 本発明による表示例の説明図である。
- 【図3】 本発明の第1の実施例に係る処理フローブロック図である。
- 【図4】 本発明の第1の実施例に係るフローチャートである。
- 【図5】 第2の実施例のブロック図である。
- 【図6】 第3の実施例のブロック図である。
- 【図7】 第3の実施例の処理方法のフローチャートである。
- 【図8】 第4の実施例のブロック図である。
- 【図9】 第4の実施例の照明変調係数演算部の処理フロー説明図である。
- 【図10】 本発明の第5の実施例に係る液晶プロジェクタの光学系の構成

を示す図である。

【図11】 図10の光変調器部分の変形を示す図である。

【図12】 図11の光変調器の動作を示すフロー図である。

【図13】 本発明の第6の実施例に係るDMDプロジェクタの光学系の構成図である。

【図14】 本発明の第7の実施例に係るDMDプロジェクタの電気系の構成を示すブロック図である。

【符号の説明】 69:信号処理、68:スイッチ、67:AD変換器、56:メモリ、57:DSP、58:TG、55:DA変換器、54:パネルドライバ、16,17,18:液晶パネル、59:リモコン、60:制御パネル、63:マイコン、61:USMドライバ、62:USM、64:バラスト、66:電源、70:音声回路、73:スピーカ。

【図2】

【図3】

【図4】

【図5】

【図6】

【図7】

【図8】

【図9】

【図10】

【図11】

【図12】

【図13】

【図14】

【書類名】 要約書

【要約】

【課題】 光変調素子に光源より発生する光を照射し、該光変調素子より透過または反射した光により表示画面を構成する表示装置において、高解像度、高ダイナミックレンジという高画質を達成する。

【解決手段】 液晶デバイスやDMDのような光変調器を照明する光量の調整手段(照明光量変調手段)を設ける。また、照明光量に応じて光変調器への書き込み信号の増幅率などを調整する信号処理回路を設ける。

【選択図】 図1

出願人履歴情報

識別番号

[000001007]

1. 変更年月日 1990年 8月30日

[変更理由] 新規登録

住 所 東京都大田区下丸子3丁目30番2号

氏 名 キヤノン株式会社