- You are also responsible for understanding all homework, quizzes, collabs and lectures.
- The following problems will NOT be graded. Do NOT turn in these problems.
- 1. f(x) = 2x + 4 and $g(x) = 2x^2 + 3$. Find $(f \circ g)(2)$ and $(g \circ f)(2)$.

2.

For $f(x) = \frac{x-3}{x+4}$ and $g(x) = \frac{x+5}{x-6}$, find the following composite functions and state the domain of each.

- **a.** f o g
- b.gof

3.

The surface area S (in square inches) of a cylindrical pipe with length 12 inches is given by $S(r) = 2\pi r^2 + 24\pi r$, where r is the radius of the piston (in inches). If the radius is increasing with time t (in minutes) according to the formula $r(t) = \frac{1}{6}t^2$, $t \ge 0$, find the surface area S of the pipe as a function of the time t.

4. For each function, determine whether it is one-to-one.

a.

b.

5.

The function $f(x) = x^2 - 3$, $x \ge 0$ is one-to-one.

- (a) Find the inverse of f and check the answer.
- (b) Find the domain and the range of f and f^{-1} .
- (c) Graph f, f^{-1} , and y = x on the same coordinate axes.

6.

The function $f(x) = \frac{2x+7}{x+2}$ is one-to-one.

(a) Find its inverse and check your answer. (b) Find the domain and the range of f and f^{-1} .

The ideal body weight W for men (in kilograms) as a function of height h (in inches) is given by the following function.

$$W(h) = 50 + 2.2(h - 60)$$

- (a) What is the ideal weight of a 6-foot male?
- (b) Express the height h as a function of weight W.
- (c) What is the height of a male who is at his ideal weight of 80 kilograms?

8.

Determine whether the function given by the table is linear, exponential, or neither. If the function is linear, find a linear function that models the data; if it is exponential, find an exponential function that models the data.

X	f(x)
-1	$\frac{8}{7}$
0	8
1	56
2	392
3	2744

9.

Determine whether the function given by the table is linear, exponential, or neither. If the function is linear, find a linear function that models the data; if it is exponential, find an exponential function that models the data.

x	f(x)
- 1	6
0	8
1	10
2	12
3	14

10.

Use transformations to graph the function. Then determine its domain, range, and horizontal asymptote.

$$g(x) = 2 + 5^{x+1}$$

11.

Solve the equation.

$$16^{-x+18} = 32^{x}$$

Determine the exponential function whose graph is given.

13.

The percentage of patients P who have survived t years after initial diagnosis of a certain disease is modeled by the function $P(t) = 100(0.6)^{t}$.

- (a) According to the model, what percent of patients survive 1 year after initial diagnosis?
- (b) What percent of patients survive 4 years after initial diagnosis?
- (c) Explain the meaning of the base 0.6 in the context of this problem.
- 14. Graph the functions $f(x) = 2^x$ and $f(x) = \log_2 x$ on the same set of axes. For each graph, you should find and plot at least 5 key points. Symmetry should be clearly shown.
- 15. Find the exact solution of $5e^{0.2x} = 12$
- 16. Find the exact solution of $4 \bullet 10^{7-x} = 5$

17.

The atmospheric pressure p on a balloon or an aircraft decreases with increasing height. This pressure, measured in millimeters of mercury, is related to the height h (in kilometers) above sea level by the formula $p = 760 e^{-0.145h}$.

Find the height of an aircraft if the atmospheric pressure is 298 millimeters of mercury.

18. Expand the following.

(a)
$$\ln \frac{x+7}{e^{2x}}$$

(b)

In
$$\frac{6x\sqrt{1+5x}}{(x-4)^{11}}$$
, x > 4

Write the expression as a single logarithm. Express powers as factors.

$$\ln\left(\frac{x}{x-7}\right) + \ln\left(\frac{x+7}{x}\right) - \ln\left(x^2 - 49\right)$$

20.

Use common logarithms or natural logarithms and a calculator to evaluate the expression.

21.

Solve the following logarithmic equation.

$$\log (4x + 9) = 1 + \log (x - 6)$$

22.

Solve the following exponential equation. Express irrational solutions in exact form and as a decimal rounded to three decimal places.

$$8(5^{5x}) = 3$$

23.

Solve the following exponential equation. Express irrational solutions in exact form and as a decimal rounded to three decimal places.

$$4^{1-7x} = 3^{x}$$

24.

The population of a certain country in 1997 was 288 million people. In addition, the population of the country was growing at a rate of 1.0% per year. Assuming that this growth rate continues, the model $P(t) = 288(1.010)^{t-1997}$ represents the population $P(t) = 288(1.010)^{t-1997}$ represents the population of the country reach

- (a) 304 million people?
- (b) 385 million people?

25.

Solve the system of equations. If the system has no solution, say that it is inconsistent. Graph the lines of the system.

$$\begin{cases} 3x - y = 7 \\ 5x + 3y = 21 \end{cases}$$

26.

Solve the given system of equations.

$$\begin{cases} x - 3y + 4z = 22 \\ 2x + y + z = 9 \\ -2x + 3y - 3z = -21 \end{cases}$$

Reminder: The following are just answers. ON TESTS, YOU ARE REQUIRED TO SHOW WORK.

1. 26, 131

2.

a.
$$(f \circ g)(x) = \frac{-2x + 23}{5x - 19}$$

The domain is $\left\{ x \mid x \neq 6, x \neq \frac{19}{5} \right\}$

b.
$$(g \circ f)(x) = \frac{6x + 17}{-5x - 27}$$

The domain is $\left\{ x \mid x \neq -4, x \neq -\frac{27}{5} \right\}$

3.

$$S(t) = \frac{1}{18}\pi t^4 + 4\pi t^2$$

4. a. not one-to-one b. one-to-one

5.

a)
$$f'(x) = \sqrt{x+3}$$

b) for $f(x)$, $D = [0, \infty)$ for $f'(x)$, $D = [-3, \infty)$
 $R = [0, \infty)$

6.

a)
$$f'(x) = \frac{-zx+7}{x-2}$$
 b) For $f(x)$, $D = \{x \mid x \neq -z \}$
 $R = \{y \mid y \neq z \}$
For $f'(x)$, $D = \{x \mid x \neq z \}$
 $R = \{y \mid y \neq z \}$

7. (a) 76.4 kg (b)
$$h(W) = \frac{W - 50}{2.2} + 60$$
 (c) 74 inch.

8.

The function is exponential. An exponential function that models the data is $f(x) = 8 \cdot 7^{x}$.

9.

The function is linear. A linear function that models the data is f(x) = 2x + 8.

10.

11. 8

12.
$$-8^x$$

13. (a) 60% (b) 12.96% (c) 60% of the previous year's survivors survived.

14. For this problem, please try to show all work and answer on your own.

15.
$$\frac{\ln 2.4}{0.2}$$

16.
$$7 - \log \frac{5}{4}$$

17. 6.46 km

18 (a)
$$\ln(x+7)-2x$$

(b)

In 6 + In
$$x + \frac{1}{2}$$
 In $(1 + 5x) - 11$ In $(x - 4)$

19.
$$-2\ln(x-7)$$

20. 0.9176

21. 23/2

$$22. \frac{\ln\left(\frac{3}{8}\right)}{5\ln 5} \approx -0.122$$

23.
$$\frac{\ln 4}{7 \ln 4 + \ln 3} \approx 0.128$$

24. 2026

25. (3, 2)

26. (3, - 1, 4)