Programming Assignment: Multiple feature regression and Multiclass classification

Problem-1: House Price Prediction (Multiple Feature Regression)

Objective: Implement a multiple feature regression model to predict house prices based on various features. This problem will guide you through data loading, preprocessing, model training, and evaluation for a real-world regression task.

1. Data Loading and Initial Exploration:

- Load a house price dataset (e.g., California Housing dataset from sklearn.datasets.fetch_california_housing or a similar publicly available dataset like Boston Housing).
- Display the first 5 rows of the dataset, its shape, and a summary of its statistical properties using Pandas.
- Identify the target variable (house price) and the feature variables.

2. Data Preprocessing:

- Check for any missing values in the dataset and decide on an appropriate strategy to handle them (e.g., imputation or removal). Justify your choice.
- Perform feature scaling on the numerical features using StandardScaler or MinMaxScaler from sklearn.preprocessing. Explain why feature scaling is important for some regression algorithms.
- If applicable, handle categorical features using one-hot encoding or other appropriate techniques.

3. Model Implementation - Multiple Linear Regression:

- Split the preprocessed dataset into training and testing sets (e.g., 80% training, 20% testing).
- Implement Multiple Linear Regression from scratch using NumPy (i.e., using the normal equation or gradient descent).
- Alternatively, use sklearn.linear_model.LinearRegression to train a model on the training data.
- Make predictions on the test set.

4. Model Evaluation:

- Calculate and report the Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and R-squared score on the test set.
- Discuss what these metrics indicate about the model's performance.

5. Feature Importance and Visualization (Optional/Bonus):

- If using sklearn.linear_model.LinearRegression, extract the coefficients of the model.
- Visualize the relationship between the predicted prices and actual prices using a scatter plot.
- (Bonus) Create a bar chart showing the importance of each feature (based on absolute coefficient values) in predicting house prices.

This problem aims to solidify your understanding of the end-to-end process of building and evaluating a regression model for a practical machine learning task.

Problem-2: Multiclass Classification with IRIS Dataset

Objective: Implement and evaluate multiclass classification algorithms on the Iris dataset. This problem will help you understand how models learn to classify multiple distinct categories based on input features.

1. Data Loading and Initial Exploration:

- Load the Iris dataset using sklearn.datasets.load_iris().
- Display the first 5 rows of the feature data (data) and the target variable (target).
- Print the names of the features (feature_names) and the target classes (target_names).
- Describe the shape of the dataset and check for any missing values.

2. Data Preprocessing and Splitting:

- Split the dataset into training and testing sets (e.g., 70% training, 30% testing)
 using sklearn.model_selection.train_test_split. Ensure stratify
 is used for the target variable to maintain class proportions.
- Explain why stratification is important for multiclass classification problems.
- Perform feature scaling on the numerical features using StandardScaler from sklearn.preprocessing. Apply the scaler to both training and testing sets separately (fit on training, transform both).

3. Model Implementation - Logistic Regression (Multinomial):

- Implement a Logistic Regression model for multiclass classification using sklearn.linear_model.LogisticRegression.
- Train the model on the scaled training data.
- Make predictions on the scaled test set.

4. Model Implementation - Support Vector Machine (SVM):

- Implement a Support Vector Machine classifier with a linear kernel using sklearn.svm.SVC(kernel='linear').
- Train the model on the scaled training data.
- Make predictions on the scaled test set.

5. Model Evaluation and Comparison:

- For both Logistic Regression and SVM models:
 - Calculate and report the accuracy score on the test set.
 - Display the classification report (precision, recall, f1-score) for each class.
 - Generate and display the confusion matrix.
- Compare the performance of Logistic Regression and SVM on this dataset.
 Discuss which model performed better and why, considering the characteristics of the Iris dataset.

6. Visualization of Decision Boundaries (Bonus):

 (Bonus) For one of the models, select two features and visualize the decision boundaries learned by the model. This will require training a new model using only two features for easier visualization. Clearly label the regions corresponding to each class.

Evaluation Criteria

Your assignment will be evaluated based on the following:

- Correctness: Proper implementation of Regression and Classification algorithms.
- Functionality: The code runs without errors and produces expected outputs.
- **Visualization Quality:** Clarity and effectiveness of generated plots (regression line, decision boundary).
- Code Quality: Readability, comments, and adherence to Python best practices.
- **Understanding:** Demonstrated understanding of the underlying concepts of both algorithms.

Due Date

Please submit your completed Google Colab notebook by Oct 9, 2025 5:00 PM GMT+5:30 .

[Link to Google Colab Notebook to begin with Assignment-2]

PostMidSem Assignment-2.ipynb