List of Posters

Title	Authors	Affiliation
A soft computing approach for estimating the specific heat	Ahmed Abdelhalim ¹ ,	¹ Cairo University.
capacity ofmolten salt-based nanofluids	Debjyoti Banerjee ²	² Texas A&M University
A framework for reduced-order modeling of turbulent reacting flows	Opeoluwa Owoyele ¹ ,	¹ Argonne National Laboratory,
	Tarek Echekki ² , Pinaki Pal ²	² North Carolina State University
	Zeinab Shadram ¹ ,	
Neural Network Flame Closure for a Turbulent Combustor with	Tuan Nguyen ² ,	¹ University of California Irvine
Unsteady Pressure	Athanasios Sideris ¹ ,	² Sandia National Laboratories
	William A. Sirignano ¹	
Subgrid-scale parametrization of unresolved scales in forced	Jeric Alcala,	University of Houston
Burgers equation using generative adversarial networks (GAN)	Ilya Timofeyev	Offiversity of Floustoff
	Darkhan Akhmed-Zaki	al-Farabi Kazakh National University
Oil production analysis by machine learning methods	Timur Imankulov,	
	Yedil Nurakhov,	
	Yerzhan Kenzhebek	
Multi-fidelity learning with heterogeneous domains	Soumalya Sarkar,	
	Michael Joly,	University of Pennsylvania
	Paris Perdikaris	
	Romit Maulik ¹ ,	¹ Argonne Leadership Computing Facility Argonne National Laboratory ² Computational Physics Division Argonne National Laboratory
In-situ coupled OpenFOAM and TensorFlow: Generic data science for CFD	Himanshu Sharma ¹ ,	
	Saumil Patel ² ,	
	Bethany Lusch ¹ ,	
	Elise Jennings ¹	
	Suraj Pawar ¹ ,	10klahama Stata University
Data-driven modeling for fluid dynamics: Turbulence closure model order reduction and superresolution		•
	•	_ · · · · · · · · · · · · · · · · · ·
	•	,
	-	recimology
PDE discovery using convolutional LSTM		Carnegie Mellon University
model order reduction and superresolution	Shady Ahmed ¹ , Harsha Vaddireddy ¹ , Romit Maulik ² , Omer San ¹ , Adil Rasheed ³ Kazem Meidani Amir Barati	¹ Oklahoma State University ² Argonne National Laboratory ³ Norwegian University of Science and Technology Carnegie Mellon University

List of Posters

Title	Authors	Affiliation
Machine learning potential for phonon transport in perfect Si and Si with vacancies	Ruiqiang Guo, Hasan Babaei, Amirreza Hashemi, Sangyeop Lee	University of Pittsburgh
Machine learning enabled study of phonon transport from first principles	Sangyeop Lee, Ruiqiang Guo	University of Pittsburgh
Predicting time dependent solutions to the viscous Burger's equation using Gaussian process regression	Francis Ogoke ¹ , Michael Glinsky ² , Amir Barati ¹	¹ Carnegie Mellon University ² Sandia National Laboratories
Data-driven prediction of a multi-scale Lorenz 96 chaotic system using deep learning methods: Reservoir computing ANN and RNN-LSTM	Pedram Hassanzadeh Ashesh Chattopadhyay Devika Subramanian	Rice University
Learn a low-rank arbitrary Lagrangian Eulerian frame to reduce the dimensionality of convection dominated nonlinear flows	Rambod Mojgani Maciej Balajewicz	University of Illinois at Urbana-Champaign
KiNet: A deep neural network representation of chemical kinetics	Weiqi Ji, Sili Deng	Massachusetts Institute of Technology
Physics embedded neural networks for spatio-temporal turbulence	Arvind Mohan ¹ , Nicholas Lubbers ¹ , Daniel Livescu ¹ , Misha Chertkov ²	¹ Los Alamos National Laboratory ² University of Arizona
Machine learning for turbulence in supernovae	Platon Karpov Chengkun Huang Ghanshyam Pilania Stan Woosley Chris Fryer	Los Alamos National Laboratory
Deep learning for transport in heterogeneous media: forward and inverse problems	Haiyi Wu, Wen-Zhen Fang, Hongwei Zhang, Qinjun Kang, Guoqing Hu, Wen-Quan Tao, Rui Qiao	Virginia Polytechnic Institute and State University

List of Posters

Title	Authors	Affiliation
Neural network potential for lattice dynamics calculations and thermal conductivity prediction	Jie Gong,	
	Hyun-Young Kim,	Carnegie Mellon University
	Alan McGaughey	
Prospect of data-driven red blood cell micro mechanical models	Amir Saadat	Stanford University
for computational simulations	Eric Shaqfeh	
Real-time reduced order modeling for chemical kinetics	Arash Nouri,	
	Hessam Babaee,	University of Pittsburgh
	Peyman Givi	
Predicting droplet traffic in microfluidic networks using machine learning	Masoud Norouzi,	
	Siva Vanapalli,	Texas Tech University
	Mark Vaughn	·
Time-dependent POD (tPOD): Real-time reduced order modeling	Michael Donello,	University of Pittsburgh
	Hessam Babaee	
Data-driven classification and modeling of combustion regimes in a detonation wave	Supraj Prakash ¹ ,	
	Shivam Barwey ¹ ,	¹ University of Michigan
	Malik Hassanaly ² ,	² National Renewable Energy Laboratory
	Venkat Raman ¹	