## BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI CHÍNH THỰC

## KỲ THI TRUNG HỌC PHỔ THÔNG QUỐC GIA NĂM 2021 – LẦN 2 Bài thi: TOÁN

(Đề thi có 05 trang)

Thời gian làm bài: 90 phút, không kể thời gian phát đề

Mã đề thi: 101

**Câu 1:** Tiệm cận ngang của đồ thị hàm số  $y = \frac{4x-1}{x+1}$  là đường thẳng có phương trình :

**A.** 
$$y = -4$$

**B.** 
$$y = 1$$

**C.** 
$$v = 4$$

**D.** 
$$y = -1$$

**Câu 2:** Cho hàm số  $y = ax^4 + bx^2 + c(a, b, c \in \mathbb{R})$  có đồ thị là đường cong trong hình bên . Điểm cực đại của hàm số đã cho là



**B.** 
$$x = -1$$

$$C. x = -2$$

**D.** 
$$x = 0$$



**Câu 3:** Với mọi số thực dương a,  $\log_4(4a)$  bằng

$$\mathbf{A.1} + \log_4 a$$

$$\mathbf{B.1} - \log_4 a$$

$$\mathbf{C} \cdot \log_{4} a$$

$$\mathbf{D.4}\log_{4}a$$

**Câu 4:** Cho hình nón có bán kính đáy r và độ dài đường sinh l . Diện tích xung quanh  $S_{xq}$  của hình nón đã cho được tính theo công thức nào dưới đây?

$$\mathbf{A.}S_{xa} = \pi rl$$

$$\mathbf{B.}\,S_{ra}=2\pi rl$$

$$\mathbf{B.}\,S_{xq} = 2\pi rl \qquad \qquad \mathbf{C.}\,S_{xq} = 4\pi rl$$

$$\mathbf{D.}\,S_{xq} = \frac{4}{3}\pi rl$$

**Câu 5:** Đạo hàm của hàm số  $y = 3^x$  là

**A.** 
$$y' = \frac{3^x}{\ln 3}$$

**B.** 
$$y' = 3^x$$

**C.** 
$$y' = x.3^{x-1}$$

**B.** 
$$y' = 3^x$$
 **C.**  $y' = x \cdot 3^{x-1}$  **D.**  $y' = 3^x \ln 3$ 

**Câu 6:** Cho khối chóp có diện tích đáy B và chiều cao h. Thể tích V của khối chóp đã cho được tính theo công thức nào dưới đây?

$$\mathbf{A.}V = \frac{1}{3}Bh$$

$$\mathbf{B.}V = \frac{4}{3}Bh$$

$$\mathbf{C.}V = 3Bh$$

$$\mathbf{D.}V = Bh$$

**Câu 7:** Tập xác định của hàm số  $y = \log_3(x-3)$  là

$$\mathbf{A.}(-\infty;3]$$

$$\mathbf{B.}(3;+\infty)$$

$$\mathbf{C}.[3;+\infty)$$

$$\mathbf{D.}(-\infty;3)$$

**Câu 8:** Điểm nào trong hình bên là điểm biểu diễn của số phức z = -2 + i?

 $\mathbf{A}$ . $\mathbf{D}$ iểm P

**B.**Điểm Q

 $\mathbf{C}$ . Điểm M

**D.**Điểm N



**Câu 9:** Thể tích của khối cầu bán kính 4a bằng

$$\mathbf{A} \cdot \frac{4}{3} \pi a^3$$

**B.** 
$$\frac{256}{3}\pi a^3$$

**C.** 
$$256\pi a^3$$

**D.** 
$$\frac{64}{3}\pi a^3$$

**Câu 10:** Phần ảo của số phức z = 2 - 3i bằng

$$A.-2$$

$$B. -3$$

Câu 11: Hàm số nào dưới đây có đồ thị như đường cong trong hình bên?

**A.** 
$$y = \frac{3x+1}{x+2}$$

**B.** 
$$y = x^2 + 2x$$

**C.** 
$$y = 2x^3 - x^2$$
 **D.**  $y = x^4 - 2x^2$ 

**D.** 
$$y = x^4 - 2x$$



**Câu 12:** Trong không gian Oxyz, cho hai vecto  $\vec{u} = (1; -2; 3)$  và  $\vec{v} = (-1; 2; 0)$ . Tọa độ của vecto  $\vec{u} + \vec{v}$  là

$$A.(0;0;-3)$$

$$C.(-2;4;-3)$$

$$\mathbf{D}.(2;-4;3)$$

**Câu 13:** Nếu  $\int_{0}^{1} f(x) dx = 2$  và  $\int_{1}^{3} f(x) dx = 5$  thì  $\int_{0}^{3} f(x) dx$  bằng

**Câu 14:** Cho khối lăng trụ có diện tích đáy  $B = 3a^2$  và chiều cao h = a. Thể tích của khối lăng trụ đã cho bằng

$$\mathbf{A} \cdot \frac{1}{2} a^3$$

**B.** 
$$3a^{3}$$

$$C.\frac{3}{2}a^3$$

$$\mathbf{D}.a^3$$

**Câu 15:** Cho hàm số  $f(x) = 4x^3 - 3$ . Khẳng định nào sau đây **đúng**?

$$\mathbf{A.} \int f(x) dx = x^4 - 3x + C$$

$$\mathbf{B.} \int f(x) dx = x^4 + C$$

**C.** 
$$\int f(x) dx = 4x^3 - 3x + C$$

$$\mathbf{D.} \int f(x) dx = 12x^2 + C$$

**Câu 16:** Cho hai số phức z = 3 + 4i và w = 1 - i. Số phức z - w là

$$\mathbf{A.7} + i$$

**B.** 
$$-2 - 5i$$

$$C.4 + 3i$$

**D.** 
$$2 + 5i$$

**Câu 17:** Với n là số nguyên dương bất kỳ,  $n \ge 5$ , công thức nào dưới đây **đúng**?

**A.** 
$$C_n^5 = \frac{n!}{(n-5)!}$$

**A.** 
$$C_n^5 = \frac{n!}{(n-5)!}$$
 **B.**  $C_n^5 = \frac{n!}{5!(n-5)!}$  **C.**  $C_n^5 = \frac{5! \cdot n!}{(n-5)!}$  **D.**  $C_n^5 = \frac{(n-5)!}{n!}$ 

$$\mathbf{C.} C_n^5 = \frac{5! \cdot n!}{(n-5)!}$$

$$\mathbf{D.} C_n^5 = \frac{\left(n-5\right)}{n!}$$

**Câu 18:** Cho hàm số  $f(x) = 4 + \cos x$ . Khẳng định nào dưới đây **đúng**?

$$\mathbf{A.} \int f(x) dx = -\sin x + C$$

$$\mathbf{B.} \int f(x) dx = 4x + \sin x + C$$

$$\mathbf{C.} \int f(x) dx = 4x - \sin x + C$$

$$\mathbf{D.} \int f(x) dx = 4x + \cos x + C$$

**Câu 19:** Cho hàm số y = f(x) có bảng biến thiên như hình bên. Số điểm cực tri của hàm số đã cho là

 $\mathbf{A.0}$ 

**B.**1

**C.**2

**D**.3



**Câu 20:** Cho hàm số y = f(x) có bảng xét dấu đạo hàm như hình bên. Hàm số đã cho nghịch biến trên khoảng nào dưới đây?



- $\mathbf{A}.(0;+\infty)$
- B.(-2;2)
- C.(-2;0)
- $\mathbf{D}.(-\infty;-2)$

**Câu 21:** Trong không gian Oxyz, đường thẳng đi qua điểm M(-2;1;3) và nhận vecto  $\vec{u}=(1;-3;5)$ làm vecto chỉ phương có phương trình là

**A.** 
$$\frac{x-1}{z} = \frac{y+3}{z} = \frac{z-5}{z}$$
 **B.**

**B.** 
$$\frac{x-2}{1} = \frac{y+1}{-3} = \frac{z+3}{5}$$

**A.** 
$$\frac{x-1}{-2} = \frac{y+3}{1} = \frac{z-5}{3}$$
 **B.**  $\frac{x-2}{1} = \frac{y+1}{-3} = \frac{z+3}{5}$  **C.**  $\frac{x+2}{1} = \frac{y-1}{3} = \frac{z-3}{5}$  **D.**  $\frac{x+2}{1} = \frac{y-1}{-3} = \frac{z-3}{5}$ 

**D.** 
$$\frac{x+2}{1} = \frac{y-1}{-3} = \frac{z-3}{5}$$

**Câu 22:** Nghiệm của phương trình  $5^x = 3$  là

- **A.**  $x = \sqrt[3]{5}$
- **B.**  $x = \frac{3}{5}$  **C.**  $x = \log_3 5$
- $\mathbf{D.} x = \log_5 3$

**Câu 23:** Cho f(x) là hàm số liên tục trên [1,2]. Biết F(x) là một nguyên hàm của hàm số f(x)

trên [1;2] thỏa mãn F(1) = -2 và F(2) = 4. Khi đó  $\int f(x) dx$  bằng

**A.**6

- **D.**-2

**Câu 24:** Cho cấp số cộng  $(u_n)$  với  $u_1 = 2$ ,  $u_2 = 7$ . Công sai của cấp số cộng đã cho bằng

**A.**5

- **B.**  $\frac{2}{7}$
- C.-5

**Câu 25**: Trong không gian Oxyz, cho mặt cầu  $(S):(x+1)^2+(y-3)^2+z^2=9$ . Tâm của mặt cầu (S)có tọa độ là

- A.(1;-3;0)
- **B.**(-1;3;0)
- C.(1;3;0)
- **D.**(-1;-3;0)

**Câu 26:** Điểm nào dưới đây thuộc đồ thị hàm số  $y = x^3 - x + 2$ ?

- A.M(1;1)
- **B.** P(1;2)
- $\mathbf{C}.O(1;3)$

**Câu 27:** Trong không gian Oxyz, mặt phẳng đi qua O và nhận vector  $\vec{n} = (1, -2, 5)$  làm vector pháp tuyến có phương trình là

- $\mathbf{A.} x + 2y 5z = 0$

- **B.** x + 2y 5z + 1 = 0 **C.** x 2y + 5z = 0 **D.** x 2y + 5z + 1 = 0

**Câu 28:** Tập nghiệm của bất phương trình  $\log_2(3x) > 5$  là

- $\mathbf{A} \cdot \left(0; \frac{32}{3}\right)$
- $\mathbf{B.}\left(\frac{32}{3};+\infty\right) \qquad \qquad \mathbf{C.}\left(0;\frac{25}{3}\right)$
- $\mathbf{D} \cdot \left(\frac{25}{3}; +\infty\right)$

Câu 29: Chọn ngẫu nhiên đồng thời 2 số từ tập hợp gồm 19 số nguyên dương đầu tiên. Xác suất để chọn được 2 số chẵn bằng

Câu 30: Cho hình chóp S.ABCD có tất cả các cạnh bằng nhau (tham khảo hình bên). Góc giữa hai đường thẳng SC và AB bằng

- **A.**90°
- **B.** 60°
- **C.**30°
- **D.** 45°



**Câu 31:** Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng 2a (tham khảo hình bên). Khoảng cách từ C đến mặt phẳng (BDD'B') bằng

- $\mathbf{A.}2\sqrt{2}a$
- **B.**  $2\sqrt{3}a$
- $\mathbf{C} \cdot \sqrt{2}a$
- $\mathbf{D} \cdot \sqrt{3}a$



**Câu 32:** Cho số phức z = 4 - i, mô đun của số phức  $(1+i)^{-}$  bằng

- **A.**34

**Câu 33:** Nếu  $\int_{0}^{x} f(x) dx = 2$  thì  $\int_{0}^{x} \left[ 4x - f(x) \right] dx$  bằng

- **A.**12
- **B.**10

**C.** 4

**Câu 34:** Hàm số nào dưới đây đồng biến trên  $\mathbb{R}$ ?

**A.** 
$$y = \frac{3x-1}{x+1}$$

$$\mathbf{B.}\ y = x^3 - x$$

**B.** 
$$y = x^3 - x$$
 **C.**  $y = x^4 - 4x^2$  **D.**  $y = x^3 + x$ 

$$\mathbf{D.} \ y = x^3 + x$$

**Câu 35:** Trên đoạn  $\begin{bmatrix} -4;-1 \end{bmatrix}$ , hàm số  $y = x^4 - 8x^2 + 13$  đạt giá trị nhỏ nhất tại điểm

**A.** 
$$x = -2$$

**B.** 
$$x = -1$$

**C.** 
$$x = -4$$

**D.** 
$$x = -3$$

**Câu 36:** Trong không gian Oxyz, cho hai điểm M(1;2;1) và N(3;1;-2). Đường thẳng MN có phương trình là

**A.** 
$$\frac{x+1}{4} = \frac{y+2}{3} = \frac{z+1}{-1}$$
 **B.**  $\frac{x-1}{2} = \frac{y-2}{-1} = \frac{z-1}{-3}$  **C.**  $\frac{x-1}{4} = \frac{y-2}{3} = \frac{z-1}{-1}$  **D.**  $\frac{x+1}{2} = \frac{y+2}{-1} = \frac{z+1}{-3}$ 

**Câu 37:** Với a > 0, đặt  $\log_2(2a) = b$ , khi đó  $\log_2(8a^4)$  bằng

**A.** 
$$4b + 7$$

**B.** 
$$4b + 3$$

**D.** 
$$4b-1$$

**Câu 38:** Trong không gian Oxyz, cho điểm A(1;-1;2) và mặt phẳng (P): 2x-y+3z+1=0.

Mặt phẳng đi qua A và song song với (P) có phương trình là

**A.** 
$$2x + y + 3z + 7 = 0$$
 **B.**  $2x + y + 3z - 7 = 0$  **C.**  $2x - y + 3z + 9 = 0$  **D.**  $2x - y + 3z - 9 = 0$ 

**B.** 
$$2x + y + 3z - 7 = 0$$

**C.** 
$$2x - y + 3z + 9 = 0$$

**D.** 
$$2x - y + 3z - 9 = 0$$

**Câu 39:** Có bao nhiều số nguyên x thỏa mãn  $\left[\log_2\left(x^2+1\right)-\log_2\left(x+31\right)\right]\left(32-2^{x-1}\right) \ge 0$ ?

**D.** 28

**Câu 40:** Cho hàm số  $f(x) = ax^4 + bx^3 + cx^2$ ,  $(a,b,c \in \mathbb{R})$ .

Hàm số f'(x) có đồ thị như trong hình bên . Số nghiệm thực phân biệt của phương trình 3f(x)+4=0 là



**B.** 2

**D.**1



**Câu 41:** Cho hàm số y = f(x) liên tục trên [-1; 6] và có đồ thị là đường gấp khúc ABC như hình dưới. Biết F(x) là một nguyên hàm của hàm số f(x) thỏa mãn F(-1) = -1. Giá trị của F(4) + F(6) bằng



**A.**10

**B**. 5

**C**.6

**D.** 7

**Câu 42:** Cho khối lăng trụ tam giác đều ABC.A'B'C' có cạnh bên bằng 2a, góc giữa hai mặt phẳng (A'BC) và (ABC) bằng  $30^{\circ}$ . Thể tích của khối lăng trụ đã cho bằng

**A.** 
$$\frac{8\sqrt{3}}{9}a^3$$

**B.** 
$$\frac{8\sqrt{3}}{3}a^3$$

$$\mathbf{C} \cdot \frac{8\sqrt{3}}{27} a^3$$

**D.**  $8\sqrt{3}a^3$ 

**Câu 43:** Trong không gian Oxyz, cho điểm A(1;1;3) và đường thẳng  $d:\frac{x-1}{1}=\frac{y}{2}=\frac{z+1}{1}$ 

Đường thẳng đi qua A, cắt trục Oy và vuông góc với d có phương trình là

**A.** 
$$\begin{cases} x = 1 + t \\ y = 1 + 2t \end{cases}$$
 **B.**  $\begin{cases} x = -3 + 3t \\ y = 4 - 2t \end{cases}$  **C.**  $\begin{cases} x = 1 + t \\ y = 1 - t \end{cases}$  **D.**  $\begin{cases} x = -1 + t \\ y = 5 - 2t \end{cases}$ 

**B.** 
$$\begin{cases} x = -3 + 3t \\ y = 4 - 2t \end{cases}$$

C. 
$$\begin{cases} x = 1 + t \\ y = 1 - t \\ z = 3 + t \end{cases}$$

$$\mathbf{D.} \begin{cases} x = -1 + t \\ y = 5 - 2t \\ z = -3 + 3. \end{cases}$$

## Tài Liệu Ôn Thi Group

**Câu 44:** Cắt hình trụ (T) bởi mặt phẳng song song với trục và cách trục một khoảng bằng 2a, ta được thiết diện là một hình vuông có diện tích bằng  $36a^2$  . Diện tích xung quanh của  $\left(T\right)$  bằng

**A.**  $4\sqrt{13}\pi a^2$ 

**B.**  $12\sqrt{13}\pi a^2$ 

**C.**  $6\sqrt{13}\pi a^2$ 

**Câu 45:** Trên tập số phức, xét phương trình  $z^2 - 4az + b^2 + 2 = 0$  ( a,b là các tham số thực).

Có bao nhiều cặp số thực (a;b) sao cho phương trình đó có hai nghiệm  $z_1, z_2$  thỏa mãn  $z_1 + 2iz_2 = 3 + 3i$ ?

**Câu 46:** Cho hàm số  $f(x) = ax^4 + bx^3 + cx^2 + 2x$  và  $g(x) = mx^3 + nx^2 - x$ , với  $a, b, c, m, n \in \mathbb{R}$ .

Biết hàm số y = f(x) - g(x) có 3 điểm cực trị là -1; 2; 3. Diện tích hình phẳng giới hạn bởi hai đường y = f'(x) và y = g'(x) bằng

**B.**  $\frac{32}{3}$  **C.**  $\frac{16}{3}$ 

**D.**  $\frac{71}{12}$ 

**Câu 47:** Cho hàm số  $f(x) = x^4 - 12x^3 + 30x^2 + (4-m)x$  với m là tham số thực . Có bao nhiều giá trị nguyên của m để hàm số g(x) = f(|x|) có 7 điểm cực trị ?

**A.** 27

**B.**31

**Câu 48:** Xét các số phức z và w thay đổi thỏa mãn |z| = |w| = 3 và  $|z - w| = 3\sqrt{2}$ . Giá trị nhỏ nhất của P = |z - 1 - i| + |w + 2 - 5i| bằng

**A.**  $5-3\sqrt{2}$ 

**B.**  $\sqrt{29} - \sqrt{2}$ 

**C.**  $\sqrt{17}$ 

**Câu 49:** Trong không gian Oxyz, cho mặt cầu  $(S):(x-3)^2+(y-2)^2+(z-1)^2=1$ . Có bao nhiều điểm Mthuộc (S) sao cho tiếp diện của (S) tại M cắt các trục Ox, Oy lần lượt tại các điểm A(a;0;0) và B(0;b;0)mà a,b là các số nguyên dương và  $\widehat{AMB} = 90^{\circ}$ ?

**A.**2

**C**.3

**D.** 4

**Câu 50:** Có bao nhiều số nguyên dương y sao cho tồn tại số thực  $x \in (1,6)$  thỏa mãn

 $4(x-1)e^{x} = y(e^{x} + xy - 2x^{2} - 3) ?$ 

**A.**18

**C.**16

**D.**17

----- HÉT -----

## BẢNG ĐÁP ÁN

| 1.C  | 2.D  | 3.A  | 4.A  | 5.D  | 6.A  | 7.B  | 8.A  | 9.B  | 10.B |
|------|------|------|------|------|------|------|------|------|------|
| 11.D | 12.B | 13.C | 14.B | 15.A | 16.D | 17.B | 18.B | 19.C | 20.C |
| 21.D | 22.D | 23.A | 24.A | 25.B | 26.B | 27.C | 28.B | 29.C | 30.B |
| 31.C | 32.C | 33.D | 34.D | 35.A | 36.B | 37.D | 38.D | 39.A | 40.B |
| 41.B | 42.D | 43.D | 44.B | 45.A | 46.D | 47.A | 48.C | 49.A | 50.C |