6.5.1 试画出图题 6.5.1 所示电路的输出(Q₃~Q₀)波形,并分析该电路的逻辑功能。

解:当启动信号端输入一低电平时,使 S_1 = 1,这时有 S_0 = S_1 = 1,移位寄存器执行并行输入功能, $Q_3Q_2Q_1Q_0$ = $D_3D_2D_1D_0$ = 1110。启动信号撤销后,由于 Q_0 = 0,经两级与非门后,使 S_1 = 0,这时有 S_1S_0 = 01,移位寄存器开始执行右移操作。在移位过程中,因为 Q_3 、 Q_2 、 Q_1 、 Q_0 中总有一个为 0,因而能够维持 S_1S_0 = 01 状态,使右移操作持续进行下去。其移位情况如图 题解 6.5.1 所示。由图可知,该电路能按固定的时序输出低电平脉冲,是一个四相时序脉冲产生电路。

6.5.4 在某计数器的输出端观察到如图题 6.5.4 所示的波形,试确定该计数器的模。

解:由图题 6.5.4 所示波形可知,该计数器计数过程中,在连续出现 010、000、001、100、011、101 六个不同状态后,又按原来顺序重复了前四个状态,故计数器的模为 6。

业然,コ处八刀从外心 * ※ *** /4,71 从证据少日认**止。

6.5.12 试分析图题 6.5.12 所示计数器,画出它的状态转换图,并确定它的模。

图题 6.5.12

解:图题 6.5.12 所示电路是由 74LVC161 用"反馈清零法"构成的计数器。设电路的初始状态为 0000,在第 10 个脉冲作用后, $Q_3Q_2Q_1Q_0=1010$ 。这时, Q_3 、 Q_1 信号经与非门使 74LVC 161 的异步清零输入端 CR 由 1 变为 0,整个计数器将回到 0000 状态,完成一个计数 周期。此后 CR 恢复为 1,计数器又进入正常计数状态。其中,1010 仅在极短的时间内出现,电路的基本状态只有 $0000\sim1001$ 十个状态,状态图如图题解 6.5.12 所示。该电路经 10 个时钟脉冲完成一次循环,因此为模 10 计数器。

图题解 6.5.12

6.5.13 试分析图题 6.5.13 所示计数器,画出它的状态转换图,并确定它的模。(74×163 是具有同步清零功能的 4 位同步二进制递增计数器,其他功能与 74×161 相同)

解:图题 6.5.13 是用"反馈清零法"构成的计数器。设电路初态为 0000,在第 10 个计数脉冲作用后, $Q_3Q_2Q_1Q_0=1010$,在与非门的作用下,同步清零输入端由 1 变成 0。与题 6.5.13 不同, 74×163 是同步清零计数器,当同步清零输入端为 0 时不能立即清零,必须等到下一个时钟脉冲作用时,它才完成同步清零操作。因此,该计数器只有在第 11 个计数脉冲作用后, $Q_3Q_2Q_1Q_0$ 才能变成 0000。由于电路状态完成一次循环需要 11 个时钟脉冲,所以该计数的模为 M=11。图题解 6.5.13 是它的状态图。

6.5.14 试分析图题 6.5.14 所示计数器,画出它的状态转换图,并确定它的模。

解:图题 6.5.14 所示电路是由 74×161 用"反馈置数法"构成的计数器。设电路初态为 0000,在第 10 个计数脉冲作用后, $Q_3Q_2Q_1Q_0=1010$,使并行置数使能端由 1 变化为 0 而有效,由于 74×161 是同步预置计数器,因此只有在第 11 个计数脉冲作用后,数据输入端 $D_3D_2D_1D_0=0000$ 的状态才被置入计数器,使 $Q_3Q_2Q_1Q_0=0000$ 。电路的状态图与图解题 6.5.13 相同,是一个模 11 计数器。

6.5.15 试分析图题 6.5.15 所示计数器,画出它的状态转换图,并确定它的模。

解:图题 6.5.15 是用"反馈置数法"构成的计数器。设电路的初态为并行置入的数据 $D_3D_2D_1D_0$ = **0101**,在第 10 个计数脉冲作用后, $Q_3Q_2Q_1Q_0$ 变成 **1111**,使进位信号 TC = **1**,并行置数使能端由 **1** 变化为 **0**,因此在第 11 个计数脉冲作用后,数据输入端 $D_3D_2D_1D_0$ = **0101** 的状态被置入计数器,使 $Q_3Q_2Q_1Q_0$ = **0101**,为新的计数周期做好准备。电路的状态图如图题解 6.5.15 所示,它有 11 个状态,是一个模 11 计数器。

6.5.16 试用 74HC161 设计一个计数器,其计数序列以自然二进制数 **1001~1111** 顺序循环。

解:由设计要求可知,74HC161 在计数过程中要跳过 $0000 \sim 1000$ 九个状态而保留 $1001 \sim 1111$ 七个状态。因此,可用"反馈置数法"实现:令 74HC161 的数据输入端 $D_3D_2D_1D_0=1001$,并将进位信号 TC 经反相器反相后输入到并行置数使能端。所设计的电路如图题解 6.5.16 所示。

6.5.17 试分析图题 6.5.17 所示计数器,确定它的模。

图题 6.5.17

解:由图题 6.5.17 所示计数器可知,它是用"反馈清零法"构成的。当输出端状态为 **1010 1110** 时,与非门输出清零信号,使 2 片 74×161 同时清零,计数器又从 **0000 0000** 状态 开始计数。由于(1010 1110)₂=(174)₁₀,因此该计数器的模 M=174。

6.5.18 试分析图题 6.5.18 所示计数器,确定它的模。

解:两片 74×161 级连连接后,最多可能有 $16^2 = 256$ 个不同的状态。而在用"反馈置数法"构成的图题 6.5.18 所示电路中,数据输入端所输入的数据为 0101 0010,它所对应的十进制数是 82,说明该电路在置数以后从 0101 0010 状态开始计数,跳过了 82 个状态。因此,该计数器的模 M = 256 - 82 = 174。