1. Исходные данные

Исходные данные приведены в таблице 1.

Таблица 1 - Исходные данные

Наименование параметра	Значение
Подача Q,	650
Напор Н, м	92
Давление на входе в насос Р, МПа	0,03
Температура натрия на входе в насос T , 0 С	450
Плотность натрия при данной температуре 450 °С ρ , кг/м ³	844
Давление насыщенных паров натрия P_{HR} , Па	164,4

2. Определим располагаемый кавитационный запас:

Располагаемый кавитационный запас определяется по формуле

$$\Delta hpac = \frac{P_c}{\rho \cdot q} + \frac{v^2}{2 \cdot q} - \frac{P_{HR}}{\rho \cdot q}$$

где: $P_c = P + P_a$ – абсолютное статическое давление на входе в насос, Па

Р нп – давление насыщенных паров, Па

V – скорость среды на входе в насос, м/с

$$\frac{P_c}{\rho \cdot g} + \frac{v^2}{2 \cdot g}$$
 - полная удельная энергия потока ($E_{\text{вх}}$) на входе в насос.

Т.к. на начальном этапе значение скоростей неизвестно, то опустим это слагаемое, в конечном итоге это допущение только лишь увеличит располагаемый кавитационный запас. Таким образом:

$$\Delta h_{pac} = \frac{P_c - P \, Hn}{\rho \cdot q} = \frac{0.13 \cdot 10^6 - 164.4}{844 \cdot 9.81} = 15.7 \, M$$

Тогда Δh_{pac} =15,7 м. Расчет уточненного значения располагаемого кавитационного запаса будет проведен после расчета геометрии рабочего колеса насоса.

3. Выбор частоты вращения ротора

Расчет выполняется следующим образом.

3.1 Задаемся частотой вращения ротора.

$$n = n_{\sin} \cdot \left(1 - \frac{S}{100}\right) = 3000 \cdot \left(1 - \frac{3,33}{100}\right) = 2900 \frac{o \delta}{\text{мин}}$$
, где $s = 3,33\%$ — скольжение.

3.2 Определяем коэффициент быстроходности.

Прошу обратить Ваше внимание на следующее: 0,181 это величина подачи Q переведенная из ${\rm m}^3/{\rm q}$ в ${\rm m}^3/{\rm c}$, что требуется для расчета. Деление на 2 в следствии того, что я использую духпоточное рабочее колесо для уменьшения габаритов рабочего колеса и уменьшения n_s .

$$n_s = \frac{3,65 \cdot n \cdot \sqrt{Q}}{H^{0.75}} = \frac{3,65 \cdot 2900 \cdot \sqrt{\frac{0,181}{2}}}{92^{0.75}} = 107$$

Тип рабочего колеса - центробежное нормальное.

3.3 Определяем кавитационный коэффициент быстроходности.

Кавитационный коэффициент быстроходности определяем по рис. 3.1 [1, стр.35].

$$C_{\kappa p} = 771$$

3.4 Определяем критический кавитационный запас.

$$\Delta h_{\kappa p} = 10 \cdot \left[\frac{n \cdot \sqrt{Q}}{C \kappa p} \right]^{\frac{4}{3}} = 10 \cdot \left[\frac{3000 \cdot \sqrt{\frac{0,181}{2}}}{772} \right]^{\frac{4}{3}} = 11,77 \text{ M}$$

3.5 Определяем критический кавитационный запас.

$$\Delta h_{\partial on} = 1,2 \cdot h\kappa p = 14,1 \text{ M}$$

Результаты расчетов приведены в таблице 2.

Таблица 2 - Результаты расчетов

Наименование параметра	Значение		
Частота вращения ротора синхронная n_{\sin} , об/мин	3000	1500	1000
Частота вращения ротора n, об/мин	2900	1450	970
Коэффициент быстроходности n_s	107	54	36
Кавитационный коэффициент быстроходности Скр	772	686	657
Располагаемый кавитационный запасΔ <i>hpac</i> , м	15,7	15,7	15,7
Критический кавитационный запас $\Delta h \kappa p$, м	11,8	5,5	3,4
Допускаемый кавитационный запас $\Delta h \partial o n = 1,2 \Delta h_{\kappa p}$, м	14,2	6,6	4,0

Кавитация отсутствует при условии Δ hpac > Δ hдоп. Это условие выполняется при частоте вращения ротора 3000, 1500, 1000 об/мин. Для дальнейших расчетов принимаем частоту вращения n_s = **3000 об/мин.**

Данный вариант удовлетворяет большинству рекомендаций, соблюдаемых при проектировании насосов: n_s =107 гарантирует, что насос будет компактный, что видно по значению размеров колеса на входе и выходе (D2 и D0) (см. снимок экрана из программы Mathcad); высокий КПД насоса - η ≈ 81%; хорошие кавитационные свойства. Так же лопатки колеса имеют простую форму и не имеют пространственную кривизну, что удобно отобразить на 2D чертеже.

4. Определение размеров рабочего колеса с помощью диаграмм

Для выбранного варианта определяются размеры рабочего колеса насоса с помощью диаграмм на рис. 3.3 [1, стр.37]. По диаграмме выбираем коэффициенты в зависимости от

коэффициента быстроходности. Согласно данным диаграммы все определяемые параметры являются функцией быстроходности насоса и могут быть рассчитаны по формуле:

$$X = K_X \cdot \frac{\sqrt{H}}{n}$$

где: X – определяемый параметр;

 K_{X} – соответствующий параметру коэффициент на диаграмме;

Н – напор насоса;

n – частота вращения ротора насоса.

Тогда

$$\begin{split} &D_0\!=\!K_{D_0}\!\cdot\!\frac{\sqrt{H}}{n}\!=\!44,\!6\cdot\!\frac{\sqrt{92}}{3000}\!=\!147,\!4\,\text{mm}\,;\\ &b_1\!=\!K_{b_1}\!\cdot\!\frac{\sqrt{H}}{n}\!=\!13,\!8\cdot\!\frac{\sqrt{92}}{3000}\!=\!45,\!5\,\text{mm}\,;\\ &D_2\!=\!K_{D_2}\!\cdot\!\frac{\sqrt{H}}{n}\!=\!87,\!6\cdot\!\frac{\sqrt{92}}{3000}\!=\!289,\!7\,\text{mm}\,;\\ &b_2\!=\!K_{b_1}\!\cdot\!\frac{\sqrt{H}}{n}\!=\!6,\!1\cdot\!\frac{\sqrt{92}}{3000}\!=\!20,\!1\,\text{mm}\,; \end{split}$$

Полученные результаты приведены в таблице 3

Таблица 3 - Результаты расчетов по диаграммам

Значение	$KD_0 = 44,6$	$Kb_1 = 13.8$	$KD_2 = 87,6$	$Kb_2 = 6,1$
коэффициента				
Размер колеса, мм	$D_0 = 147,4$	$b_1 = 45,5$	$D_2 = 289,7$	$b_2 = 20,1$

5. Расчет мощности приточной части насоса

Мощность проточной части насоса определяется по формуле:

$$N = \frac{\rho \cdot Q \cdot H}{102 \cdot \eta} = \frac{844 \cdot 0,181 \cdot 92}{102 \cdot 0,85} = 162,1 \, \kappa Bm$$

где $\eta \approx 0.85$ — КПД одноступенчатого насоса при n_s =107 и подаче Q = 181 л/с, значение определено по графику на рис. 3.2 [1, стр.36].

Прошу обратить Ваше внимание на следующее, что дальнейшее уменьшение b2, через изменение Kvo, Kvm1, Kvm2 приводит к уменьшению b1. Но при данных значения были получены значения b1 и b2 близкие к значениям по диаграмме.

В случае со значением D_{vt} . Получил данное значение по формуле: $D_{vt} = 1,25 \cdot D_v$, где D_v – диаметр вала.

Снимок экрана из программы Mathcad – расчет габаритов колеса

Исходные данные:

Количество потоков

Синхронная частота, об/мин

Скольжение, %

Результаты расчета

Подача , м3/ч	Q = 650	Частот
Напор, м	H≡ 92	Коэффі
Расп. кав. запас, м	ΔH_ras ≡ 15.7	одной с
Плотность, кг/м3	ρ≣ 844	КПД пр
<u>Принимаем</u> :		Мощно
Количество ступеней	Zst≡ 1	Кавита

Zpot ≡ 2

S ≡ 3.33

Частота вращения, об/мин	n = 2900.1
Коэффициент быстроходности одной ступени и одного потока	ns = 107
КПД проточной части	η = 0.806
Мощность проточной части, кВт	N = 170.5
Кавитационный коэффициет Скр	Ckr = 771
Критический кав. запас, м	ΔH_kr = 11.77
Допускаемый кав. запас, м	ΔH_dop = 14.1
Отношение	$\frac{\Delta \text{H_ras}}{\Delta \text{H_kr}} = 1.3$

n_sin = 3000 Коэфф. Скр (= 0, при расчете f(ns)) Ckr = 0

Варьируемые параметры Результаты расчета ΔH_kr_ = 10.73 H = 92 ΔH_ras = 1.46 Рекомендуемый диапазон, либо значение Принимае Zst Ht = 103.37 η_g = 0.89 η_g_ ≡ 0.89 ΔH_kr_ η_ob = 0.971 η_ = 0.806 η_ob_ ≡ 0.971 C_kr_ - 826 N_ = 170.5 Do = 160.1 η_dt = 0.933 η_dt_ ≡ 0.933 /Kvo=0.06 - 0.08/ Kvo = 0.065 D1 - 128.1 Nmax_ = 204.6 /Kvm1=0.5 - 1.1/ Kvm1 = 0.85 D1_pr = 128.1 P = 0.262 /Kvm2=0.5 - 1 /

/D1prom_otn=D1_pr/D1/ dval_1st = 61.2 dval_Zst = 61.2 /консольное РК dvt = 0/ _dvt_Zst = 76.5 _S1 = 3.93

_S2 = 3.03 _Z2 - 8

/D1osn_otn=D1/Do=0.8 -1/

/ W1D1/W2 < 1.4; для ns<80 до 2.5 / /<u>β</u>1= <u>20-25</u>. δ1=3 - 8 гр; для пs<60 до 15 -18 /

/ Оптим. по опасн. возникн. кавитации β1p~18гр mo=1-1.2;no=0.3-0.4 рек.принять mo=1.2 no=0.4 /*

Kvm2 = 1 D1osn_otn ≡ 0.8 D1prom_otn ≡ 1 dvt = 76.5 S1 ≡ 3.95 S2 ≡ 3.95 Z1 ≡ 8 Z2 = 8 Z2otn ≡ 1 β2 ≡ 23 β1 ≡ 23 mo ≡ 1.2 no ≡ 0.4 *

b1 = 45.4 K1 = 1.252 Vo = 5.99 Vm1p = 5.09 Vm1 = 6.37 W1D1 = 16.31 W1oD1 = 20.46 u1D1 - 19.44 u1Do = 24.31 $\delta 1 = 4.86$ $\beta 10 = 18.1$ $\beta1p = 14.7$

D2 - 283 b2 = 20.5 K2 = 1.1Vu2 - 23.59 Vm2p - 5.09 Vm2 - 5.6 W2 - 14.33 u2 - 42.97 $\alpha 2 = 12.18$ $\frac{\text{W1D1}}{\text{W2}} = 1.14$

D2 - 289.7

Диаграмма Айзенштейн (ns = 30 - 250) D0ekv = 136.8 D1 = 0 D1oc = 86.3 D0 - 147.7

> dvt = 55.6 b1 = 45.5 b2 - 20.1