Homework Assignments

MATH231

Spring 2022

1	Homework 0	2
2	Homework 1	4
3	Homework 2	5
4	Homework 3	6
5	Homework 4	7

Due: Friday, Jan 21 (no need to turn in)

1. Calculating Limits

$$\bullet \lim_{x \to 2} \frac{x^2 + x - 6}{x - 2}$$

$$\bullet \lim_{h \to 0} \frac{(x+h)^2 - x^2}{h}$$

$$\bullet \lim_{x \to 0} \left(\frac{1}{x} - \frac{1}{x^2 + x} \right)$$

2. The Chain Rule

•
$$\frac{\mathrm{d}}{\mathrm{d}x}\ln(x+\sin x)$$

$$\bullet \ \frac{\mathrm{d}}{\mathrm{d}x}\cos(x^2e^x)$$

3. Implicit Differentiation: Solve for $\frac{dy}{dx}$ for the following implicit function.

•
$$x^2 + y^2 = r^2$$
, where r is a constant

$$\bullet \ \frac{x+y}{x-y} = x$$

4. Linear Approximations and Differentials: Find the Taylor polynomials of degree two approximating the given function centered at the given point.

•
$$f(x) = \sin(2x)$$
 at $a = \frac{\pi}{2}$

•
$$f(x) = e^x$$
 at $a = 1$

5. Mean Value Theorem: Determine if the Mean Value Theorem can be applied to the following function on the the given closed interval.

•
$$f(x) = 3 + \sqrt{x}, x \in [0, 4]$$

•
$$f(x) = \frac{x}{1+x}, x \in [1,3]$$

6. L'Hospital's Rule

$$\bullet \lim_{x \to 2} \frac{x^3 - 7x^2 + 10x}{x^2 + x - 6}$$

$$\bullet \lim_{x \to \infty} (e^x + x)^{\frac{1}{x}}$$

•
$$\lim_{x \to \infty} x \ln\left(1 + \frac{3}{x}\right)$$

7. The Fundamental Theorem of Calculus: Find the derivative of the following

$$\bullet \int_1^x \frac{1}{t^3 + 1} \, \mathrm{d}t$$

•
$$\int_{1}^{\sqrt{x}} \sin t \, dt$$

$$\bullet \int_{x}^{2x} t^3 dt$$

8. Substitution Rule

$$\bullet \int_{\frac{1}{2}}^{0} \frac{x}{\sqrt{1 - 4x^2}} \, \mathrm{d}x$$

$$\bullet \int_{\frac{1}{4}}^{\frac{1}{2}} \frac{\cos(\pi x)}{\sin^2(\pi x)} \, \mathrm{d}x$$

$$\bullet \int_0^1 x e^{4x^2 + 3} \, \mathrm{d}x$$

Due: Friday, Feb 4, by the end of the class

Instructions

- Write down the function u and v which you are using for substitution rule or integration by parts clearly in each problem.
- Note that for indefinite integrals, you need add constants to your final answers.
- 1. Integration by parts (You may also need to use substitution rule.)

$$\bullet \int \frac{\ln x}{x^2} \, \mathrm{d}x$$

•
$$\int x^2 \sin x \, dx$$

•
$$\int (\ln x)^2 dx$$

•
$$\int \arccos x \, dx$$

•
$$\int e^{\sqrt{x}} dx$$

2. Trigonometric integration: Evaluate the following integral of the form $\int \sin^n x \cos^m x \, dx$.

4

•
$$\int \cos^4 x \, dx$$

3. Trigonometric substitution

$$\bullet \int \frac{x^2}{\sqrt{9-x^2}} \, \mathrm{d}x$$

$$\bullet \int \frac{1}{\sqrt{25 + x^2}} \, \mathrm{d}x$$

$$\bullet \int \frac{1}{\sqrt{x^2 + 2x}} \, \mathrm{d}x$$

•
$$\int (x-2)^3 \sqrt{5+4x-x^2} \, dx$$

Due: Friday, Feb 11, by the end of the class

Note that for indefinite integrals, you need add constants to your final answers.

1. Partial Fractions

$$\bullet \int \frac{2x+5}{x^2+4x+8} \, \mathrm{d}x$$

•
$$\int \frac{2x^2 - x + 4}{(x^2 + 4)(x - 1)} \, \mathrm{d}x$$

$$\bullet \int \frac{x}{x^4 + 2x^2 + 2} \, \mathrm{d}x$$

$$\bullet \int \ln(x^2 + 1) \, \mathrm{d}x$$

•
$$\int \frac{1}{\sqrt{x} + x\sqrt{x}} \, \mathrm{d}x$$

$$\bullet \int \frac{1}{x + \sqrt[3]{x}} \, \mathrm{d}x$$

- 2. Approximate Integration
 - Use the Midpoint Rule with n = 5 to approximate $\int_0^{10} x^2 dx$.
 - Use the Trapezoidal Rule with n=6 to approximate $\int_0^\pi \sin^2 x \, dx$.
- 3. Improper Integrals: compute the following integrals or show that it diverges.

$$\bullet \int_1^\infty \frac{1}{\sqrt{x}} \, \mathrm{d}x$$

$$\bullet \int_1^\infty \frac{1}{1+x^2} \, \mathrm{d}x$$

$$\bullet \int_{\pi}^{\infty} \sin x \, dx$$

$$\bullet \int_{e}^{\infty} \frac{1}{x \ln x} \, \mathrm{d}x$$

$$\bullet \int_{-\infty}^{\infty} x e^{-x^2} \, \mathrm{d}x$$

Due: Friday, Feb 25, by the end of the class

Instructions

- Step 1. Write down what ds is before setting up an integral
- Step 2. Substitute ds and simplify the integral as much as you can
- Step 3. Compute the integral (substitution rule, integration by parts, etc.)
- 1. Arclength: for the following curves write down (do not evaluate) an integral w.r.t. x representing the length. Then write down an integral w.r.t. y.
 - $y = x^3$ for $x \in [1, 2]$.
 - $y = e^x$ for $x \in [0, 2]$.
- 2. Arclength: compute determine the arclength of the following curves
 - $y = \frac{x^3}{6} + \frac{1}{2x} =$ for $x \in [1, 3]$.
 - $y = \cosh x$ for $x \in [0, \ln 2]$.

The hyperbolic cosine function $\cosh x$ is given by $\cosh x = \frac{e^x + e^{-x}}{2}$.

- $y = \ln(\cos x)$ for $x \in \left[0, \frac{\pi}{3}\right]$.
- 3. Area of a Surface of Revolution: determine the area of the surface obtained by rotating the curve
 - $y = \sqrt{9 x^2}$ for $x \in [-2, 2]$, rotating about the x-axis.
 - $y = x^2$ for $x \in [1, 2]$, rotating about the y-axis.
 - $y = \frac{(x^2+2)^{3/2}}{3}$ for $x \in [1,2]$, rotating about the y-axis.

Hint: For this question, it'd be easier if you treat ds as $\sqrt{1+(y')^2}$ dx.

Due: Friday, Mar 4, by the end of the class

1. Determine whether the sequence converges or diverges. If it converges, find the limit.

You might want to review Chapter 2 in the book for computing limits.

$$\bullet \ a_n = \frac{3 + 5n^2}{n + n^2}$$

•
$$a_n = \frac{2n^4 - 11n + 5}{4n - 1}$$

$$\bullet \ a_n = \frac{n^2 - 2n - 1}{n^3 + 3}$$

$$\bullet \ a_n = \left(1 + \frac{2}{n}\right)^n$$

2. Computing Series

$$\bullet \sum_{n=0}^{\infty} 9^{-\frac{n}{2}} 2^{1+n}$$

•
$$\sum_{n=5}^{\infty} \frac{3}{n^2 - 7n + 12}$$

•
$$\sum_{n=5}^{\infty} \frac{3}{n^2 - 7n + 12}$$
 Hint: recall
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$$
.

3. The Divergence Test: prove the following series diverges.

•
$$\sum_{n=2}^{\infty} \cos\left(\frac{n\pi}{2}\right)$$

$$\bullet \sum_{n=1}^{\infty} \frac{1}{4 + e^{-n}}$$

$$\bullet \sum_{n=0}^{\infty} \frac{e^n}{n^3 + n}$$

4. The Integral Test: determine if the following series converges or diverges.

$$\bullet \sum_{n=1}^{\infty} \frac{n^4}{e^n}$$

$$\bullet \sum_{n=1}^{\infty} \frac{n}{n^3 + 1}$$

•
$$\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^p}$$
 for $p > 1$ and for $p \le 1$ respectively.