Obliczenia Naukowe lista 1

Mateusz Tofil 6 listopada 2021 1 ZADANIE 1 1

1 Zadanie 1

1.1 Opis zadania

Jest to powtórka zadania z listy poprzedniej - listy 1 zadania 5. Jedyna różnica jaka występuje, to usunięcie z x_4 ostatniej cyfry tj. 9. i z x_5 usunąc ostatnią 7.

1.2 Metoda rozwiązania

Metoda niczym się nie różni od wcześniejszego zdaniaz wcześniejszej liczby. Dane wejśćiowe są tylko inne - a dokładniej tylko x_4 i x_5 . Rozwiązanie znajduję się w pliku ${\tt zad1.j1}$ i jest dokłądną duplikacją kodu z zadania 5 z poprzedniej listy ze zmienionymi danymi wejściowymi.

1.3 Otrzymane wyniki

Tabele poniżej przedstawiając sumy obliczone tak jak w zadaniu 5 z listy 1, natomiast lekko zmienionymi wartościami na wejśćiu. Wyniki przedstawione dla arytmetyki Float64 i Float32.

podpunkt	sumy z listy 2	sumy z listy 1
a	-0.004296342739891585	1.0251881368296672e-10
b	-0.004296342998713953	-1.5643308870494366e-10
c	-0.004296342842280865	0.0
d	-0.004296342842280865	0.0

Tablica 1: Porównanie sum z poprzedniej listy i obecnej dla Float64

podpunkt	suma z listy 2	suma z listy 1
a	-0.3472038161889941	-0.3472038161853561
b	-0.3472038162872195	-0.3472038162872195
c	-0.5	-0.5
d	-0.5	-0.5

Tablica 2: Wyniki dla Float32

1.4 Wnioski

Zmiana wartości liczby, rzędu nawet 2^{-10} wpływa znacząco na wyniki ostateczny. Niewielkie zmiany spowodowały duże względne odkształcenia wyników, zatem możemy stwierdzić, że zadanie jest źle uwarunkowane.

2 ZADANIE 2 2

2 Zadanie 2

2.1 Opis zadania

Należało narysować funckję $f(x)=e^xln(1+e^{-x})$ w conajmniej dwóch rożnych program do rysowania wykresu, zbadać faktyczną granicę funkcji i porównać z otrzymanymi wykresami.

2.2 Metoda rozwiązania

Funkcje f(x) wpisać do programu umożliwiającego rysowanie wykresów. Programy, które wybrałem do narysowania funkcji f(x) to: WolframAplha, Grapher oraz postanowiłem napisać programy przedstawiający wykresy w języku programowania Python z wykorzystaniem biblioteki matplotlib in numpy

2.3 Otrzymane wyniki

W programie Grapher należało wpisać funkcję w wyznaczone miejsce. Następnie przeskalować oś x, wykonując następujące czynności: Viev > Frame Limit ... i zmienić skalowanie.Na stronie WolframAplha należało wpisać plot <funkcja> from -5 to 40. Program napisany w pythonie znajduję się w pliku o ścieżce ./zad2/plotpython.py

Rysunek 1: Wykres funkcji f(x) w programie Grapher

2 ZADANIE 2 3

Rysunek 2: Wykres funkcji $f(\boldsymbol{x})$ w programie Wolfram
Aplha

2 ZADANIE 2 4

Rysunek 3: Wykres funkcji f(x) w języku Python z wykorzystamiem biblioteki matplotlib

Obliczmy teraz granicę funkcji:

$$\lim_{x \to \infty} e^x \ln(e^{-x} + 1) = \lim_{x \to \infty} \frac{e^x \ln(e^{-x} + 1)e^{-x}}{e^{-x}} = \lim_{x \to \infty} \frac{\ln(e^{-x} + 1)}{e^{-x}} \stackrel{H}{=} \lim_{x \to \infty} \frac{\frac{d}{dx} \ln(e^{-x} + 1)}{\frac{d}{dx} e^{-x}} = \lim_{x \to \infty} \frac{-\frac{e^{-x}}{e^{-x} + 1}}{-e^{-x}} = \lim_{x \to \infty} \frac{1}{e^{-x} + 1} = 1 \quad (1)$$

Jak łatwo zauważyć, granica funkcji, którą obliczyliśmy powyżej nie pokrywa się z granicą funkcji odczytując ją z wykresu. Na wykresie granica funkcji dąży do 0 natomiast z matematycznego punktu widzenia dąży do 1. Powyżej argumnetów powyżej 30 obserwujemy, że wykresy zaczynają pokazywać nieprawidłowe wyniki.

2.4 Wnioski

Wartości e^{-x} dla każdego następnego argumentu zbliżając się do epsilona maszynowego, po przekroczeniu epsilona, funkcja spada do zera. Przed przekroczeniem epsilona maszynowego, funkcja dąży do jedynki, tak jak powinna.

3 ZADANIE 3 5

wykładnik	exp(wykladnik)	exp(wykladnik) - epsilon
30	9.357622968840175e-14	9.335418508347672e-14
31	3.442477108469977e-14	3.4202726479774736e-14
32	1.2664165549094176e-14	1.2442120944169144e-14
33	4.658886145103398e-15	4.4368415401783664e-15
34	1.713908431542013e-15	1.4918638266169817e-15
35	6.305116760146989e-16	4.084670710896676e-16
36	2.319522830243569e-16	9.907678099325606e-18
37	8.533047625744066e-17	-1.3671412866759066e-16
38	3.1391327920480296e-17	-1.90653277004551e-16
39	1.1548224173015786e-17	-2.104963807520155e-16
40	4.248354255291589e-18	-2.1779625066973972e-16

Tablica 3: Wartości exp() dla kolejnych argumentów porównanie z epsilonem maszynowym

3 Zadanie 3

3.1 Opis zadania

Porównanie rozwiązań równań macierzowych dwoma metodami: macierzy odwrotnej i eliminacja Gausa dla dwóch rodzajów maccierzy: Macierzy Hilberta oraz macierzy losowej.

3.2 Metoda rozwiązania

Rozwiązanie znajduję się w pliku zad3. j1, zawiera one funkcję napisane przez prowadzącego do generowania odpowiednich macierzy. Przez wbudowane funkcje w język Julia, bez trudności jest zaimplementowanie powyższego problemu.

3.3 Otrzymane wyniki

Rozwiązania przedstawie w dwóch tabelakch z podziałem na macierze, gdzie w pierwszej tabeli rozpatrujemy macierz Hilberta, natomiast w kolejnej macierz losową stopnia n ze wskaźnikiem uwarunkowania.

size	rank()	cond()	met. el. Gaussa	met. m. odwrotną
1	1	1.0	0.0	0.0
2	2	19.3	5.66e-16	1.4e-15
3	3	524.0	8.02e-15	0.0
4	4	15500.0	4.14e-14	0.0
5	5	477000.0	1.68e-12	3.35e-12
6	6	1.5e7	2.62e-10	2.02e-10
7	7	4.75e8	1.26e-8	4.71e-9
8	8	1.53e10	6.12e-8	3.08e-7
9	9	4.93e11	3.88e-6	4.54e-6
10	10	1.6e13	8.67e-5	0.00025
11	10	5.22e14	0.000158	0.00762
12	11	1.75e16	0.134	0.259
13	11	3.34e18	0.11	5.33
14	11	6.2e17	1.46	8.71
15	12	3.67e17	4.7	7.34
16	12	7.87e17	54.2	29.8
17	12	1.26e18	13.7	10.5
18	12	2.24e18	9.13	7.58
19	13	6.47e18	9.72	12.2
20	13	1.36e18	7.55	22.1

Tablica 4: Wyniki dla macierzy Hilberta użwyając metody macierzy odwrotenj i eliminacji Gaussa

Macierz Hilberta, jest bardzo dobrym przykładem maceirzy źle uwarunkonej, wraz ze wzrostem rozmiaru macierzy, wzrasta $\operatorname{cond}(x)$ i wyniki są coraz bardziej rozstrzelane.

size	rank()	cond()	met. el. Gaussa	met. m. odwrotną
5	5	1.0	9.93e-17	9.93e-17
5	5	10.0	1.11e-16	2.81e-16
5	5	1000.0	2.31e-14	2.6e-14
5	5	1.0e7	1.18e-10	9.39e-11
5	5	1.0e12	5.46e-6	3.81e-6
5	4	1.46e16	0.33	0.161
10	10	1.0	2.72e-16	1.79e-16
10	10	10.0	2.19e-16	3.39e-16
10	10	1000.0	3.22e-14	2.69e-14
10	10	1.0e7	1.18e-10	1.38e-10
10	10	1.0e12	1.53e-5	1.26e-5
10	9	9.52e15	0.121	0.148
20	20	1.0	3.84e-16	2.66e-16
20	20	10.0	5.17e-16	7.69e-16
20	20	1000.0	9.71e-15	8.34e-15
20	20	1.0e7	2.04e-10	1.84e-10
20	20	1.0e12	3.54e-7	4.35e-6
20	19	1.2e16	0.156	0.125

Tablica 5: Wyniki dla macierzy generowanej losowo z użwyając metody macierzy odwrotenj i eliminacji Gaussa

Warto zauważyć, że dla rozmiaru macierzy 20x20 i wskaźniku uwarunkowania błedy są mniejsze niż dla macierzy rozmiaru 5x5 i wskaźniku uwarunkowania 1.46e16

3.4 Wnioski

Uwarunkowanie macierzy ma wpływ na otrzymane wyniki. Im większy $\operatorname{cond}(x)$ otrzymujemy coraz większe błedy przy dowolnej metodzie. Dla macierzy Hilberta, wraz ze wzrostem rozmiaru macierzy, zwiększa się $\operatorname{cond}(x)$ i z każdą iteracją otrzymujemy to coraz mniej dokładne wyniki. Dla macierzy losowej wyniki dla dużych rozmiarów ale z małym wskaźnikiem uwarunkowania dają lepsze wyniki niż dla małych macierzy z dużym wskaźnikiem.