4. Supposons que la variétè \varOmega possède un système canonique $|\varTheta|.$ Les systèmes

$$|\Phi_0'| = |\Phi_0 + \Theta|, \ |\Phi_1'| = |\Phi_1 - \Theta|$$

adjoints aux systèmes $|\Phi_0|$, $|\Phi_1|$ ont pour correspondants sur V des systèmes $|F_0'|$, $|F_1'|$ qui appartiennent au système adjoint |F'| à |F|. Ce système adjoint |F'| est évidemment transformé en lui-même par H et contient deux systèmes appartenant à l'involution I.

Les systèmes $|F_0'|$, $|F_1'|$ découpent sur les variétés F_0 , F_1 des variétés canoniques. Pour connaître le comportement des variétés Θ aux points de diramation, il faut déterminer le comportement des variétés F_0' , F_1' aux points unis de I.

Dans le cas n=2, où la variété V est une surface et les variétés F des courbes, nous avons rèsolu la question dans notre ouvrage cité plus haut. Rappelons les résultats.

Les courbes canoniques Θ de la surface Ω ne passent pas par les points de diramation. Le système $|F_0'|$ n'a pas pour points-base les points unis de l'involution, mais les courbes F_1' passent par ces points.

Le système $|F_0' - F_1| = |F_1' - F_0|$ a pour homologue sur la surface Ω un système $|\Theta_1|$ dont les courbes passent par les points de diramation et que l'on pourrait appeler système paracanonique.

5. Supposons n = 3. Les variétés F sont alors des surfaces.

Sur une surface F_0 , les surfaces F_0' , F_1' dècoupent des courbes canoniques formant des systèmes linéaires sans points-base. Sur une surface F_1 , les surfaces F_0' , F_1' découpent des courbes canoniques formant deux systèmes linéaires dont l'un a pour points-base les points unis de I. Ce ne peut être $|F_1'|$ car à ce système correspond sur Ω un système découpant sur une variété Φ_1 le système canonique, dépourvu de points-base. C'est donc le système $|F_0'|$ qui a pour points-base les points unis de l'involution. Le système $|F_0'-F_0|$ a les mêmes points-base et par conséquent, le système canonique $|\Theta|$ de Ω a pour points-base les points de diramation.

Observons que le plan tangent à une surface F_0' en un point uni A de I coupe le plan α' suivant une droite à laquelle correspond un cône du second ordre de sommet A'. Les surfaces canoniques de Ω ont donc des points doubles coniques aux points de diramation.

Le système canonique $|\Theta|$ de Ω correspond aussi au système $|F_1' - F_1|$ qui a aussi pour points-base les points unis de I. Quant au système paracanonique qui correspond aux systèmes $|F_0' - F_1|$, $|F_1' - F_0|$, il est dépourvu de points-base.

Dans le cas n=3, les surfaces canoniques de la variété Ω ont des points doubles coniques aux points de diramation.

6. Supposons maintenant n=4. Les variétés F_0' , F_1' découpent sur une variètè F_1 des variétés canoniques. Les variétés canoniques de la variété à trois dimensions Φ_1 ont des points doubles coniques aux points de diramation, donc les variétés F_1' passent par les points unis de I. Il en résulte que le système $|F_0'|$ est dépourvu de points-base et qu'il en est de même du système $|F_0'| - F_0|$. Donc le système canonique $|\Theta|$ de Ω est dépourvu de points-base.

Ceci fait présager que suivant que n est pair ou impair, les variétés canoniques de Ω ne passent pas ou passent par les points de diramation.

Nous allons démontrer qu'il en est bien ainsi.

Supposons n'impair. Les variétés F_0' , F_1' découpent sur une variété F_1 des variétés canoniques. Aux variétés $F_1' - F_1$ correspondent des variétés canoniques d'une variété à un nombre pair de dimensions Φ_1 . Ce système est dépourvu de points-base donc les variétés F_0' passent par les points unis de l'involution I. Il en est de même des variétés $F_0' - F_0$. Les variétés canoniques Θ de Ω passent donc par les points de diramation.

Si n est pair, les variétés canoniques de Ω qui correspondent aux variétés F_1' — F_1 passent par les points de diramation. Il en résulte que

les variétés F_0 ne passent pas par les points de diramation.

Observons maintenant que si n est impair, l'espace linéaire à n-1 dimensions tangent à une variété F_0 en un point uni A, coupe l'espace α' suivant un espace à n-2 dimensions. A celui-ci correspond une cône d'ordre 2^{n-2} de sommet A'. Les variétés Θ ont donc des points multiples d'ordre 2^{n-2} aux points de diramation.

Si n est pair, les variétés canoniques de Ω ne passent pas par les points de diramation, mais si n et impair, elles ont des points multiples d'ordre 2^{n-2} en ces points.

Les variétés paracanoniques ne passent pas par les points de diramation si n est impair, mais elles passent par ces points si n est pair.

7. Nous allons construire un exemple de la variété Ω dans le cas n=3. Considérons dans un espace linéaire S_5 à cinq dimensions deux plans (y), (z) ne se rencontrant pas. Nous désignerons par y_0 , y_1 , y_2 les coordonnées d'un point du plan (y) et par z_0 , z_1 , z_2 celles d'un point du plan (z), de manière que les coordonnées d'un point de S_5 soient y_0 , y_1 , y_2 , z_0 , z_1 , z_2 . De plus, nous indiquerons par φ_m une forme algébrique de degré m en y, par y_m une forme de degrè m en z, enfin par $\varphi_m y_m$ une forme de degré m en y dont les coefficients sont des formes de degré m en z.

Les équations

$$\varphi_4 + \varphi_2 \psi_2 + \psi_4 = 0, \qquad \varphi'_4 + \varphi'_2 \psi'_2 + \psi'_4 = 0$$

représentent une variété V à trois dimensions, d'ordre 16, transformée en elle-même par l'homographie biaxiale harmonique H dont les axes

sont les plans (y), (z). Cette homographie détermine sur V une involution du second ordre ayant 16 points unis dans le plan (y) et 16 points unis dans le plan (z).

Les surfaces canoniques G de V sont découpées par les hyperquadriques

$$\varphi_{2}'' + \varphi_{1}'' \varphi_{1}'' + \psi_{2}' = 0$$

Ces surfaces G ne passent pas par les points unis de l'involution I et elles forment un système de dimension $P_a - 1 = 20$ et de degré $\omega_0 = 128$.

L'intersection de deux surfaces G est une courbe d'ordre 64 sur laquelle la série canonique est découpée par les hypersurfaces d'ordre 6. Cette série a donc l'ordre 384 et son genre est $\omega_1 = 193$.

Les courbes canoniques d'une surface G sont découpées par les hypersurfaces du quatrième ordre dont il faut défalquer celles qui contiennent G. Le genre arithmétique de G est donc $\omega_2 = 126 - 2 - 21 = 103$.

D'après une formule de Severi(2), on doit avoir

$$2P_a = \omega_0 - \omega_1 + \omega_2 + 4$$

ce qui est une identité.

Dans le système |G|, il y a deux systèmes appartenant à l'involution I. L'un, $|G_1|$ qui contient les surfaces $\varphi_2'' + \psi_2'' = 0$, a la dimension 11, l'autre, donné par une forme bilinéaire $\varphi_1''\psi_1'' = 0$, a la dimension 8. Nous le désignerons par $|G_2|$. Le système canonique $|\Theta|$ de la variété Ω correspond à l'un de ces systèmes.

Supposons que les surfaces Θ correspondent aux surfaces G_1 , qui ne passent pas par les points unis de I. Le degré de $|\Theta|$ est $\omega_0' = 64$. Le genre de la courbe intersection de deux surfaces G_1 est, d'après la formule de Zeuthen, $\omega_1' = 97$. Entre le genre arithmétique $p_a = \omega_2$ de G_1 et celui $p_a' = \omega_2'$ de la surface Θ homologue, on a la relation

$$p_a + 1 = 2(p'_a + 1)$$

d'où $\omega_2' = 51$. Le genre P_a' de Ω est donné par

$$2P_{2}^{\prime}=\omega_{0}^{\prime}-\omega_{1}^{\prime}+\omega_{2}^{\prime}+4=22$$
,

d'où $P_a'=11$; alors que P_a' doit être égal à 12 ou à 9. Donc Θ ne correspond pas à G_1 mais à G_2 .

Une surface G_2 passe simplement par les points unis de I et par un calcul analogue au précédent mais en tenant compte de ce fait, on a pour $|\Theta|$, $\omega'_0 = 48$, $\omega'_1 = 89$, $\omega'_a = 55$, car actuellement on a

$$12(p_a+1)=24(p'_a+1)-3.32.$$