

Instituto Federal de Educação, Ciência e Tecnologia do Ceará Campus Maracanaú Coordenadoria de Computação

Curso de Bacharelado em Ciência da Computação Disciplina: Processamento Digital de Imagens

Professor: Igor Rafael Silva Valente

ATIVIDADE

Assunto:

Transformações de intensidade – parte 3.

Orientações:

A atividade deve ser executada individualmente e entregue através do ambiente Google Classroom.

Nome completo:

Raul Aquino de Araújo

- 1. O que é especificação de histograma? Qual a diferença para a equalização de histograma? Método utilizado para gerar uma imagem processada que tenha um histograma específico chamado de casamento de histograma ou especificação de histograma. E a maior diferença entre as duas é que a PDF (função densidade de probabilidade) no caso da especificação é definida pelo o usuário.
- 2. Demonstre, através de um exemplo, a aplicação da especificação de um histograma em uma imagem de 4 bits. No processo, crie um gráfico demonstrando o histograma inicial, o histograma especificado desejado, a função de transformação obtida a partir do histograma especificado e o resultado da especificação do histograma. Dica: utilize o exemplo 3.8 (pág. 87 do Gonzalez) como inspiração (lembre-se que neste exercício a imagem possui 4 bits).

Vamos pensar em uma imagem hipotética igual a do exemplo 3.8, uma imagem 64x64, ou seja, com 4096

$$s_k = T(r_k) = (L-1)\sum_{j=0}^k p_r(r_j) = \frac{(L-1)}{MN}\sum_{j=0}^k n_j$$

 $k = 0, 1, 2, ..., L-1$

fiz um código simples para gerar a PDF do meu exemplo hipotético.

```
39pdfPdi.js X
javascript-web-course > 01fundamentos > 15 39pdfPdi.js > ...
       function randomInt(min, max) {
           return min + Math.floor((max - min) * Math.random());
       function gerarValores(bits){
           const valores = [];
           for(let i = 0; i < Math.pow(2, bits); i++){
               valor = randomInt(100,500);
               valores.push(valor);
           console.log(valores);
           return valores;
       function qtdPixels(pixels,bits){
           while(soma \neq pixels){
               var vetor = gerarValores(bits);
               var soma = vetor.reduce((ac, va) \Rightarrow ac + va);
               console.log(soma)
           return soma;
 27 qtdPixels(4096, 4);
```

```
[ 205,
  448,
  243,
  280,
  262,
  156,
  113,
  163,
  216,
  468,
  402,
  120,
  156,
  317,
  139,
  408
4096
```

rk	nk	pr(rk) = nk/MN	Especificado	Gzq
0	205	0,050048828 (0,05 - 5%)	0,00	0
0	448	0,109375 (0,10 - 10%)	0,00	0

2	243	0,059326172 (0,05 - 5%)	0,00	0
3	280	0,068359375 (0,06 - 6%)	0,00	0
4	262	0,063964844 (0,06 - 6%)	0,125	1,875 (2)
5	156	0,038085937 (0,03 - 3%)	0,125	1,875 (2)
6	113	0,027587891 (0,02 - 2%)	0,25	3,75 (4)
7	163	0,039794922 (0,03 - 3%)	0,25	3,75 (4)
8	216	0,052734375 (0,05 - 5%)	0,0625	0,9375 (1)
9	468	0,114257813 (0,11 - 11%)	0,0625	0,9375 (1)
10	402	0,098144531 (0,09 - 9%)	0,0625	0,9375 (1)
11	120	0,029296875 (0,02 - 2%)	0,0625	0,9375 (1)
12	156	0,038085937 (0,03 - 3%)	0,00	0
13	317	0,077392578 (0,07 - 7%)	0,00	0
14	139	0,033935547 (0,03 - 3%)	0,00	0
15	408	0,099609375 (0,09 - 9%)	0,00	0

S0 = 15*0,05 = 0,75, S1 = 15*0,1 = 1,5, S2 = 15*0,05 = 0,75, S3 = 15*0,06 = 0,9, S4 = 15*0,06 = 0,9, S5 = 15*0,03 = 0,45, S6 = 15*0,02 = 0,3, S7 = 15*0,03 = 0,45, S8 = 15*0,05 = 0,75, S9 = 15*0,11 = 1,65, S10 = 15*0,09 = 1,35, S11 = 15*0,02 = 0,3, S12 = 15*0,03 = 0,45, S13 = 15*0,07 = 1,05, S14 = 15*0,03 = 0,45, S15 = 15*0,09 = 1,35.

Boa sorte!

Prof. Igor.