A short note on quantile treatment effect model

Tong Zhou*

October 5, 2020

This note is mainly based on the following two papers:

- 1. Koenker2017 Quantile Regression: 40 Years On (2017), *Annual Review of Economics*, by Roger Koenker
- 2. CH2013 Quantile Models with Endogeneity (2016), *Annual Review of Economics*, by V. Chernozhukov and C. Hansen.

1 Framework

We use the framework owing to the work of Heckman and Robb. Let D denote the random variable that a treatment may take. The response or outcome variable under a treatment $d \in D$ is denoted as $Y_{D=d}$. Throughout this note, capital letters are used to represent random variables, while small letters mean realizations. Hence, sometimes Y_D is also called *potential* or *latent* outcomes.

The interest of our study is causal or structural analysis of the potential outcome Y_D . Let $q(d, x, \tau)$ denote the τ -th quantile of potential outcomes under the treatment $d \in D$, conditional on the observed characteristics X = x. The function $\tau \mapsto q(d, x, \tau)$ is referred to as the quantile treatment response function (QTR). It follows that one quantity that interests us is the quantile treatment effect (QTE), defined as

$$q(d_1,x,\tau)-q(d_0,x,\tau)$$

Endogeneity in this context means that the realized procedure of D is in relation to the potential outcomes, rendering inappropriate using the following restriction

$$\mathbf{P}(Y \le \theta(D, X, \tau) | X = x, D = d) = \tau$$
 a.s.

to conclude $q(d, x, \tau) = \theta(d, x, \tau)$ as a solution. One of the solution is through the use of an instrument variable Z which is correlated with D but is independent of the potential outcome Y.

^{*}Johns Hopkins University, tzhou11@jhu.edu

The workhorse we shall use a lot is the relation between the latent outcome Y_d for each $d \in D$ and its quantile function $q(d, x, \tau)$, conditional on X = x, by

$$Y_d = q(d, x, U_d)$$
, where $U_d \sim \text{Unif}(0,1)$

is the structural error term.

This relation is due to the famous Skorohod Representation.

Skorohod Representation: given a collection of variables $\{\zeta_d\}$, each variable ζ_d can be represented as $\zeta_d = q(d, U_d)$, for some $U_d \sim \mathsf{Unif}(0, 1)$, where $q(d, \tau)$ denotes the τ -quantile of variable ζ_d .

The role of U_d is critical: it captures the heterogeneity of potential outcomes among individuals with the *same* observed characteristics x.

2 The IVQTE Model

The IVQTE model consists of five assumptions. Fix a common probability space $(\Omega, \mathcal{F}, \mathbf{P})$ and the set of potential outcome variables $\{Y_d\}_{d\in D}$, the covariate variable X and the IV Z. Then the following conditions hold jointly with probability 1:

- 1. **Potential outcomes:** Conditional on X and for each $d \in D$, $Y_d = q(d, X, U_d)$, where $\tau \mapsto q(d, X, \tau)$ is nondecreasing on [0, 1] and left-continuous and $U_d \sim \mathsf{Unif}(0, 1)$.
- 2. **Independence:** Conditional on *X* and for each $d \in D$, U_d is independent of IV *Z*.
- 3. **Selection:** $D := \delta(Z, X, V)$ for some unknown function δ and random vector V.
- 4. **Rank similarity:** Conditional on (X, Z, V), $\{U_d\}$ are identically distributed.
- 5. **(Observables)**: The observed random vector consists of $Y := Y_D$, D, X, and Z.