What is homology?

Topological Space ----- Chain Complexes ---- Momology

E Chain complexes:

A chain complex C_* of R-vector spaces is a collection of vector spaces $\{C_i\}_{i\in Z}$ along with maps $\partial_i: C_i \longrightarrow C_{i-1}$ dis are called boundary maps satisfying $\partial_{i-1} \circ \partial_i = 0$.

Examples of chain complexes:

··· ← o ← R ← R ← o ← o ··· A an nxm mateix

 $\cdots \leftarrow 0 \leftarrow \mathbb{R}^{n_1} \leftarrow \mathbb{R}^{n_2} \leftarrow \mathbb{R}^{n_2} \leftarrow 0 \cdots$ B an n. x n3 mation A an nixn, matin

--- R-OR-OR-OR-OR-AB = 0

Non-enamples:

1) $-\cdots \leftarrow 0 \leftarrow \mathbb{R}^n$; $\stackrel{n_2}{\leftarrow} \mathbb{R} \stackrel{n_2}{\leftarrow} \mathbb{R} \stackrel{n_2}{\leftarrow} 0$...

B an n_xn3 matin on nixn, matin

--- 0 - R - R - R - 0 - ... AB = 0

Borause di_, di = 0 we have in di = kerdi_1.

We define \cdot $H_{i}(C_{*}) = \text{ker d}_{i} / \text{im d}_{i+1}$

· These are called the flomology groups (with R coefficients) ly rank nully dim $H_i(C_*) = \dim \ker d_i - \dim \ker d_{i+1}$

eg:
$$-\mathbb{R} \stackrel{\circ}{\leftarrow} \mathbb{R} \stackrel{\circ}{\leftarrow$$

. If
$$H_i(C_*) = 0$$
 then we say that C_* is exact.

liven a topological space X we can define a chain complex cusociated to it.
Will use the discrete version of a topological space called a cell complex to create a cell complex.

§ Simplices

on n-simplex is the set
$$\triangle^n = \{(\pi_1, \dots, \pi_n) \in \mathbb{R}^n : \pi_1 + \dots + \pi_n \leq 1, \pi_i \geq 0\}$$

A <u>Cell complex</u> is a topological space obtained by gluing cells together cells. The simplices of a cell complexes are called <u>rells</u>.

2-xells

· To keep things simple use but the following restrictions: We only glue simplices rea isomorphisms

We can create a chain complex out of a cell complex as follows.

Cellular Chain complex:

$$C_{i}(x) = \begin{cases} 1 & \text{if } x \in X \\ 1 & \text{if } x \in X \end{cases}$$

Elements in $C_{\hat{i}}(X)$ are called i chains in X.

$$C_{o}(S') = R \langle a,b \rangle$$

 $C_{o}(S') = R \langle c,d \rangle$

$$C_{v}(D^{2}) = \mathbb{R}\langle a,b,c\rangle$$

 $C_{i}(\mathbb{D}^{2}) = \mathbb{R}\langle d,e,f\rangle$
 $C_{i}(\mathbb{D}^{2}) = \mathbb{R}\langle d,e,f\rangle$

$$C_o(T) = R\langle a \rangle$$

 $C_1(T) = R\langle b, c, d \rangle$
 $C_2(T) = R\langle e, f \rangle$

all the other vector spaces are 0.

Defining the boundary map goes as follows:

vet [012...n] be a n-chain corresponding to an n-simplex in X

We think of $[012 \cdot N]$ as an oriented simplen as follows:

$$[0|2 \cdot n] = -[102 \cdot n]$$

= $[120 \cdot n]$

= $(-1)^{sign(6)}$ [6(i) 6(2) ... 6(n)]

where 6 is a permutation of $\{0.1, 2..., n\}$

= [012... n] - [012... n] +... $= \sum_{i} (-i)^{i} [0 \cdots \hat{i} \cdots n]$

ly [01...i...n] we mean an n-1 simplex obtained by removing the vertex i

Claim: 2, 1. 2, [01... n]

 $\mathcal{D}_{n-1} \partial_n \left[o_1 \dots n \right] = \partial_{n-1} \left[\sum_{i=0}^{n} (-i)^i \left[o_1 \dots i \dots n \right] \right]$ $= \sum_{i=0}^{n} (-i)^{i} \partial_{n-i} \left[0 \cdot 1 \cdot \dots \cdot \hat{i} \cdot \dots \cdot n_{n-1} \right]$

When we empand out the right hand side we get terms like $[0 \mid \hat{i} \cdot \cdot \hat{j} \cdot \cdot \cdot n]$ This term occurs twice once in $\partial_{n-1}[0 \cdot \cdot \cdot \hat{j} \cdot \cdot \cdot n]$ and once in $\partial_{n-1}[0 \cdot \cdot \cdot \hat{j} \cdot \cdot \cdot n]$ but these occur with different signs a honce they cancel.

ey:
$$\partial_1 \partial_2 [0 \ 12] = \partial_1 [12] - \partial_1 [02] + \partial_1 [01]$$

= $[2] - [1] - ([2] - [0]) + [1] - [0] = 0$

$$\partial_1 d = \partial_1 [ac] = a - c$$

$$3! f = 3! [ap] = p - a$$

$$3! 6 = 3! [pc] = c - p$$

$$\partial_2 g = \partial_2 [abc]$$

$$= [bc] - [ac] + [ab]$$

$$= e - d + f$$

/ ·-- · `

[12] - [02] + [01]