DOSSIER PHYSIQUE-CHIMIE

PREMIÈRE S * TERMINALE S

ATTENTION

L'intégralité du programme de Première S doit être maîtrisée pour la Terminale S. Ce document ne revient que sur quelques points du programme de Première.

Conseil : consacrer les deux dernières semaines du mois d'août à la préparation de la rentrée (reprendre cours, exercices, devoirs, corrections de devoirs...)

PROGRAMME DE TERMINALE S

OBSERVER

Ondes et matière

Les ondes et les particules sont supports d'informations. Comment les détecte-t-on ? Quelles sont les caractéristiques et les propriétés des ondes ? Comment réaliser et exploiter des spectres pour identifier des atomes et des molécules ?

A. ONDES ET PARTICULES

Rayonnements dans l'Univers

Absorption de rayonnements par l'atmosphère terrestre.

Les ondes dans la matière

Houle, ondes sismigues, ondes sonores.

Magnitude d'un séisme sur l'échelle de Richter.

Niveau d'intensité sonore.

Détecteurs d'ondes (mécaniques et électromagnétiques) **et de particules** (photons, particules élémentaires ou non).

B. CARACTÉRISTIQUES ET PROPRIÉTÉS DES ONDES

Caractéristiques des ondes

Ondes progressives. Grandeurs physiques associées. Retard.

Ondes progressives périodiques, ondes sinusoïdales.

Ondes sonores et ultrasonores.

Analyse spectrale. Hauteur et timbre.

Propriétés des ondes

Diffraction.

Influence relative de la taille de l'ouverture ou de l'obstacle et de la longueur d'onde sur le phénomène de diffraction.

Cas des ondes lumineuses monochromatiques, cas de la lumière blanche.

Interférences.

Cas des ondes lumineuses monochromatiques, cas de la lumière blanche. Couleurs interférentielles.

Effet Doppler.

C. ANALYSE SPECTRALE

Spectres UV-visible

Lien entre couleur perçue et longueur d'onde au maximum d'absorption de substances organiques ou inorganiques.

Spectres IR

Identification de liaisons à l'aide du nombre d'onde correspondant ; détermination de groupes caractéristiques. Mise en évidence de la liaison hydrogène.

Spectres RMN du proton

Identification de molécules organiques à l'aide :

- du déplacement chimique :
- de l'intégration ;
- de la multiplicité du signal : règle des (n+1)-uplets.

COMPRENDRE

Lois et modèles

Comment exploite-t-on des phénomènes périodiques pour accéder à la mesure du temps ? En quoi le concept de temps joue-t-il un rôle essentiel dans la relativité ? Quels paramètres influencent l'évolution chimique ? Comment la structure des molécules permet-elle d'interpréter leurs propriétés ? Comment les réactions en chimie organique et celles par échange de proton participent-elles de la transformation de la matière ? Comment s'effectuent les transferts d'énergie à différentes échelles ? Comment se manifeste la réalité quantique, notamment pour la lumière ?

A. TEMPS. MOUVEMENT ET ÉVOLUTION

Temps, cinématique et dynamique newtoniennes

Description du mouvement d'un point au cours du temps : vecteurs position, vitesse et accélération.

Référentiel galiléen.

Lois de Newton : principe d'inertie, et principe des actions réciproques.

Conservation de la quantité de mouvement d'un système isolé.

Mouvement d'un satellite.

Révolution de la Terre autour du Soleil.

Lois de Kepler.

Mesure du temps et oscillateur, amortissement

Travail d'une force.

Force conservative; énergie potentielle.

Forces non conservatives : exemple des frottements.

Énergie mécanique.

Étude énergétique des oscillations libres d'un système mécanique.

Dissipation d'énergie.

Définition du temps atomique.

Temps et relativité restreinte

Invariance de la vitesse de la lumière et caractère relatif du temps.

Postulat d'Einstein. Tests expérimentaux de l'invariance de la vitesse de la lumière.

Notion d'événement. Temps propre.

Dilatation des durées.

Preuves expérimentales.

Temps et évolution chimique : cinétique et catalyse

Réactions lentes, rapides ; durée d'une réaction chimique.

Facteurs cinétiques. Évolution d'une quantité de matière au cours du temps.

Temps de demi-réaction.

Catalyse homogène, hétérogène et enzymatique.

B. STRUCTURE ET TRANSFORMATION DE LA MATIÈRE

Représentation spatiale des molécules

Chiralité: définition, approche historique.

Représentation de Cram.

Carbone asymétrique.

Chiralité des acides α-aminés.

Énantiomérie, mélange racémique, diastéréoisomérie (Z/E, deux atomes de carbone asymétriques).

Conformation: rotation autour d'une liaison simple; conformation la plus stable.

Formule topologique des molécules organiques.

Propriétés biologiques et stéréoisomérie.

Transformation en chimie organique

Aspect macroscopique:

- Modification de chaîne, modification de groupe caractéristique.
- Grandes catégories de réactions en chimie organique : substitution, addition, élimination.

Aspect microscopique:

- Liaison polarisée, site donneur et site accepteur de doublet d'électrons.
- Interaction entre des sites donneurs et accepteurs de doublet d'électrons ; représentation du mouvement d'un doublet d'électrons à l'aide d'une flèche courbe lors d'une étape d'un mécanisme réactionnel.

Réaction chimique par échange de proton

Le pH: définition, mesure.

Théorie de Brönsted : acides faibles, bases faibles ; notion d'équilibre ; couple acide-base ; constante d'acidité Ka. Échelle des pKa dans l'eau, produit ionique de l'eau ; domaines de prédominance (cas des acides carboxyliques, des amines, des acides α-aminés).

Réactions quasi-totales en faveur des produits :

- acide fort, base forte dans l'eau ;
- mélange d'un acide fort et d'une base forte dans l'eau.

Réaction entre un acide fort et une base forte : aspect thermique de la réaction. Sécurité.

Contrôle du pH : solution tampon ; rôle en milieu biologique.

C. ÉNERGIE, MATIÈRE ET RAYONNEMENT

Du macroscopique au microscopique

Constante d'Avogadro.

Transferts d'énergie entre systèmes macroscopiques

Notions de système et d'énergie interne. Interprétation microscopique.

Capacité thermique.

Transferts thermiques: conduction, convection, rayonnement.

Flux thermique. Résistance thermique.

Notion d'irréversibilité.

Bilans d'énergie.

Transferts quantiques d'énergie

Émission et absorption quantiques.

Émission stimulée et amplification d'une onde lumineuse.

Oscillateur optique : principe du laser.

Transitions d'énergie : électroniques, vibratoires.

Dualité onde-particule

Photon et onde lumineuse.

Particule matérielle et onde de matière ; relation de de Broglie.

Interférences photon par photon, particule de matière par particule de matière.

AGIR

Défis du XXIème siècle

En quoi la science permet-elle de répondre aux défis rencontrés par l'Homme dans sa volonté de développement tout en préservant la planète ?

A. ÉCONOMISER LES RESSOURCES ET RESPECTER L'ENVIRONNEMENT

Enjeux énergétiques

Nouvelles chaînes énergétiques.

Économies d'énergie.

Apport de la chimie au respect de l'environnement

Chimie durable:

- économie d'atomes ;
- limitation des déchets ;
- agro ressources;
- chimie douce :
- choix des solvants ;
- recyclage.

Valorisation du dioxyde de carbone.

Contrôle de la qualité par dosage

Dosages par étalonnage :

- spectrophotométrie : loi de Beer-Lambert ;
- conductimétrie ; explication qualitative de la loi de Kohlrausch, par analogie avec la loi de Beer-Lambert.

Dosages par titrage direct.

Réaction support de titrage : caractère quantitatif.

Équivalence dans un titrage ; repérage de l'équivalence pour un titrage pH-métrique, conductimétrique et par utilisation d'un indicateur de fin de réaction.

B. SYNTHÉTISER DES MOLÉCULES, FABRIQUER DE NOUVEAUX MATÉRIAUX

Stratégie de la synthèse organique

Protocole de synthèse organique :

- identification des réactifs, du solvant, du catalyseur, des produits ;
- détermination des quantités des espèces mises en jeu, du réactif limitant ;
- choix des paramètres expérimentaux : température, solvant, durée de la réaction, pH ;
- choix du montage, de la technique de purification, de l'analyse du produit ;
- calcul d'un rendement :
- aspects liés à la sécurité :
- coûts.

Sélectivité en chimie organique

Composé polyfonctionnel : réactif chimiosélectif, protection de fonctions.

C. TRANSMETTRE ET STOCKER DE L'INFORMATION

Chaîne de transmission d'informations

Images numériques

Caractéristiques d'une image numérique : pixellisation, codage RVB et niveaux de gris.

Signal analogique et signal numérique

Conversion d'un signal analogique en signal numérique.

Échantillonnage ; quantification ; numérisation.

Procédés physiques de transmission

Propagation libre et propagation guidée.

Transmission:

- par câble ;
- par fibre optique : notion de mode ;
- transmission hertzienne.

Débit binaire.

Atténuations.

Stockage optique

Écriture et lecture des données sur un disque optique. Capacités de stockage.

D. CRÉER ET INNOVER

Culture scientifique et technique ; relation science-société.

Métiers de l'activité scientifique (partenariat avec une institution de recherche, une entreprise, etc.).

ENSEIGNEMENT DE SPÉCIALITÉ

Thème 1 : l'eau
Eau et environnement
Eau et ressources
Eau et énergie

Thème 2 : son et musique Instruments de musique Émetteurs et récepteurs sonores Son et architecture Thème 3 : matériaux Cycle de vie Structure et propriétés Nouveaux matériaux

LES 7 UNITÉS DE BASE DU SYSTÈME INTERNATIONAL D'UNITÉS (SI)

Les sept grandeurs de base correspondant aux sept unités de base sont la longueur, la masse, le temps, le courant électrique, la température thermodynamique, la quantité de matière et l'intensité lumineuse. Toutes les autres grandeurs sont des grandeurs dérivées et sont exprimées au moyen d'unités dérivées, définies comme étant des produits de puissances des unités de base.

- ◆ Longueur (mètre, m)
 - Le mètre est la longueur du trajet parcouru dans le vide par la lumière pendant une durée de 1/299 792 458 de seconde. Il en résulte que la vitesse de la lumière dans le vide est égale à 299 792 458 m.s⁻¹ exactement.
- Masse (kilogramme, kg)
 Le kilogramme est l'unité de masse; il est égal à la masse du prototype international du kilogramme.
- ◆ Temps (seconde, s) La seconde est la durée de 9 192 631 770 périodes de la radiation correspondant à la transition entre les deux niveaux hyperfins de l'état fondamental de l'atome de césium 133.
- ◆ Courant électrique (ampère, A)

L'ampère est l'intensité d'un courant constant qui, maintenu dans deux conducteurs parallèles, rectilignes, de longueur infinie, de section circulaire négligeable et placés à une distance de 1 mètre l'un de l'autre dans le vide, produirait entre ces conducteurs une force égale à 2.10⁻⁷ newton par mètre de longueur.

- ◆ Température thermodynamique (kelvin, K) Le kelvin, unité de température thermodynamique, est la fraction 1/273,16 de la température thermodynamique du point triple de l'eau.
- Quantité de matière (mole, mol)
 - 1. La mole est la quantité de matière d'un système contenant autant d'entités élémentaires qu'il y a d'atomes dans 0,012 kilogramme de carbone 12.
 - 2. Lorsqu'on emploie la mole, les entités élémentaires doivent être spécifiées et peuvent être des atomes, des molécules, des ions, des électrons, d'autres particules ou des groupements spécifiés de telles particules.
- Intensité lumineuse (candela, cd)
 La candela est l'intensité lumineuse, dans
 une direction donnée, d'une source qui émet
 un rayonnement

IONS, MOLÉCULES ET COMPOSÉS IONIQUES

CATIONS	IONS ANIONS		MOLECULES		
ion oxonium	H₃O⁺	ion hydroxyde HO		dioxygène	$O_{2\ (g)}$
ion cuivreux ou cuivre I	Cu⁺	ion nitrate	NO ₃ -	dihydrogène	$H_{2\ (g)}$
ion cuivrique ou cuivre II	Cu ²⁺	ion fluorure	F-	diazote	$N_{2\ (g)}$
ion sodium	Na⁺	ion iodure	l ⁻	dichlore	$\text{Cl}_{2 (g)}$
ion calcium	Ca ²⁺	ion bromure	Br⁻	dibrome	$Br_{2 (I)}$
ion ferreux ou fer II	Fe ²⁺	ion chlorure	Cl-	diiode	I _{2 (s)}
ion ferrique ou fer III	Fe³+	ion sulfate	SO ₄ ² -	méthane	CH _{4 (g)}
ion lithium	Li⁺	ion dichromate	Cr ₂ O ₇ ²⁻	dioxyde de carbone (gaz carbonique)	$CO_{2(g)}$
ion argent	Ag⁺	ion carbonate	CO ₃ ² -	monoxyde de carbone	CO (g)
ion magnésium	Mg ²⁺	ion phosphate	PO ₄ 3-	dioxyde d'azote	$NO_{2(g)}$
ion potassium	K⁺	ion permanganate	MnO₄⁻	ammoniaque	$NH_{3(\text{aq})}$
ion plomb	Pb ²⁺	ion sulfure	S ²⁻	eau	$H_2O_{(I)}$
ion ammonium	$\mathrm{NH_4}^+$	ion thiosulfate	$S_2O_3^{2-}$	glucose	$C_{6}H_{12}O_{6(s)}$
ion zinc	Zn ²⁺	ion bromate	BrO₃⁻	saccharose (sucre)	$C_{12}H_{22}O_{11\;(s)}$
ion baryum	Ba ²⁺	ion chromate	CrO ₄ ² -	peroxyde d'hydrogène (eau oxygénée)	H ₂ O _{2 (I)}

COMPOSES IONIQUES					
hydroxyde de sodium (soude)	NaOH				
chlorure de sodium (sel)	NaCl				
sulfate de cuivre	CuSO ₄				
nitrate d'argent	$AgNO_3$				
chlorure d'argent	AgCl				
hydroxyde de potassium (potasse)	КОН				
permanganate de potassium	KMnO ₄				
dichromate de potassium	K ₂ Cr ₂ O ₇				

TESTS CHIMIQUES

Espèce à identifier (couleur en solution aqueuse)	Formule de l'ion	Réactif utilisé	lon réagissant dans le réactif	Résultat du test	Nom et formule du produit formé
lon chlorure (incolore)	CI-	Solution de nitrate d'argent (Ag ⁺ + NO ₃ ⁻)	lon argent Ag⁺	Précipité blanc qui noircit à la lumière	Chlorure d'argent : AgCl _(s) Ag* + Cl* = AgCl
lon magnésium (incolore)	Mg ²⁺	Solution d'hydroxyde de sodium (Na+ + HO-)	lon hydroxyde HO ⁻	Précipité blanc	Hydroxyde de magnésium : Mg(OH) _{2 (s)} Mg ²⁺ + 2HO ⁻ = Mg(OH) ₂
lon calcium (incolore)	Ca ²⁺	Solution d'oxalate d'ammonium (2 NH ₄ ⁺ + C ₂ O ₄ ²⁻)	lon oxalate $C_2O_4^{2-}$	Précipité blanc	Oxalate de calcium : $CaC_2O_{4 (s)}$ $Ca^{2+} + C_2O_4^{2-} = CaC_2O_4$
lon sodium (incolore)	Na⁺	Test de flamme		Flamme jaune orangé	
Ion potassium (incolore)	K⁺	Test de flamme		Flamme violette	
lon phosphate (incolore)	PO ₄ ³⁻	Solution de nitrate d'argent (Ag ⁺ + NO ₃ ⁻)	lon argent Ag⁺	Précipité jaunâtre	Phosphate d'argent $Ag_3PO_{4(s)}$ $PO_4^{3-} + 3Ag^+ = Ag_3PO_4$
lon sulfate (incolore)	SO ₄ ²⁻	Solution chlorure de baryum (Ba ²⁺ + 2Cl ⁻)	lon baryum Ba ²⁺	Précipité blanc	Sulfate de baryum BaSO _{4 (s)} SO ₄ ²⁻ + Ba ²⁺ = BaSO ₄
lon nitrate (incolore)	NO ₃ -	Cuivre métallique en solution acide		Dégagement de vapeurs rousses (NO ₂) Bleuissement de la solution (Cu ²⁺)	Cu + 2NO ₃ ⁻ + 4H ⁺ = Cu ²⁺ + 2NO ₂ +2H ₂ O
lon cuivre II (bleu)	Cu ²⁺	Solution d'hydroxyde de sodium (Na+ + HO-)	Ion hydroxyde HO ⁻	Précipité bleu	Hydroxyde de cuivre II : Cu(OH) _{2 (s)} Cu ²⁺ + 2HO ⁻ = Cu(OH) ₂
lon fer II (vert pâle)	Fe ²⁺	Solution d'hydroxyde de sodium (Na+ + HO-)	lon hydroxyde HO-	Précipité vert	Hydroxyde de fer II : $Fe(OH)_{2 (s)}$ $Fe^{2+} + 2HO^{-} = Fe(OH)_{2}$
lon fer III (rouge pâle)	Fe ³⁺	Solution d'hydroxyde de sodium (Na+ + HO-)	Ion hydroxyde HO ⁻	Précipité rouille	Hydroxyde de fer III : Fe(OH) _{3 (s)} Fe ³⁺ + 3HO ⁻ = Fe(OH) ₃
lon zinc (incolore)	Zn ²⁺	Solution d'hydroxyde de sodium (Na+ + HO-)	lon hydroxyde HO ⁻	Précipité blanc (soluble dans un excès de soude)	Hydroxyde de zinc : $Zn(OH)_{2 (s)}$ $Zn^{2+} + 2HO^{-} = Zn(OH)_{2}$

Espèce Chimique Présente	Test Chimique	Action
L'eau	Sulfate de cuivre anhydre	Cette poudre blanche devient bleue en présence d'eau
Dioxyde de carbone	L'eau de Chaux	L'eau de Chaux qui est initialement un liquide transparent se trouble en présence de CO ₂
Espèce Chimique acide, neutre ou basique	Le papier pH	Cet indicateur coloré est de couleur jaune en milieu acide, vert en milieu neutre et bleu en milieu basique.
Glucose	Liqueur de Fehling	Ce liquide bleu donne un précipité rouge par chauffage
Amidon	L'eau iodée	Ce liquide brin devient bleu foncé au contact de l'amidon

LES LIAISONS CARBONE

Un atome de carbone possède quatre électrons sur sa couche externe et doit donc former quatre liaisons covalentes pour obéir à la règle de l'octet. Pour cela il y a quatre possibilités:

- ◆ 4 liaisons simples avec 4 autres atomes
- ◆ 2 liaisons simples et une liaison double avec 3 autres atomes
- ◆ 1 liaison simple et 1 liaison triple avec 2 autres atomes
- ◆ 2 liaisons doubles avec deux autres atomes

L'atome de carbone est **digonal** (deux cotés) s'il est lié à deux autres atomes (la structure est alors linéaire), **trigonal** (trois cotés) s'il est lié à trois autres atomes (la structure est alors plane), **tétragonal** (quatre cotés) s'il est lié à quatre autres atomes (la structure est alors tétraédrique).

La répartition de ces liaisons a donc une influence directe sur la géométrie des molécules.

Exemples:

Molécules	CH₄ Méthane	COCI₂ Dichlorure de méthanoyle (phosgène)	CO₂ Dioxyde de carbone	HCN Cyanure d'hydrogène
Caractéristiques	Structure tétraédrique Carbone tetragonal	Structure plane Carbone trigonal	Structure linéaire Carbone digonal	Structure linéaire Carbone digonal
Modèle			•••	· •
Modèle avec liaisons				□
Représentations de Lewis	H - C - H H	(c) (c) (c)	(0=C=0)	H−C≡NI
Structures	Structure tétraédrique Angle H-C-H: 109°	Structure plane Angle CI-C-CI: 112°	Structure linéaire	Structure linéaire

GÉOMÉTRIE DES MOLÉCULES

La géométrie des molécules est due à la répulsion entre les doublets liants et non liants.

Les doublets se repoussent au maximum dans l'espace afin d'être les plus éloignés possibles les uns des autres.

Exemples:

Molécules	NH ₃ Ammoniac	H₂O Eau	O ₂ Dioxygène
Modèle		· Control of the cont	•••
Représentations de Lewis	H – N – H I H	HH	(0=0)
Structures	Structure pyramidale à base triangulaire Angles H-N-H: 108°	Structure plane coudée Angle H-O-H: 105°	Structure linéaire

RÉACTIONS D'OXYDORÉDUCTION

Réaction entre le zinc et une solution de sulfate de cuivre

Expérience	Observations	Caractérisation des produits formés	Interprétation
On plonge une lame de zinc dans une solution de sulfate de cuivre II (couleur bleue).	Après 12 heures, la partie immergée de la plaque est recouverte d'un dépôt de couleur rouge brique et la solution devient transparente.	En présence de soude dans la solution à l'état final, il se forme un précipité blanc qui caractérise des ions Zn²+. Les ions Cu²+ ont donc disparu, d'où le passage du bleu au transparent. Le dépôt rouge brique sur la lame de zinc rappelle la couleur du cuivre métal.	$\begin{tabular}{ll} Réactifs: $Cu^{2^+}_{(aq)}$ et $Zn_{(s)}$ \\ Produits: $Cu_{(s)}$ et $Zn^{2^+}_{(aq)}$ \\ Pour passer d'ions à des atomes ou inversement il faut qu'il y ait transfert d'électrons. \\ $Zn_{(s)} = Zn^{2^+}_{(aq)} + 2e^- \\ $Cu^{2^+}_{(aq)} + 2e^- = Cu_{(s)}$ \\ \end{tabular}$

Les atomes de zinc ont cédé deux électrons et les ions cuivre II en ont accepté deux. On peut donc écrire l'équation de la réaction: $Cu^{2+}_{(aq)} + Zn_{(s)} = Cu_{(s)} + Zn^{2+}_{(aq)}$

Réaction entre le cuivre métal et une solution de nitrate d'argent

Expérience	Observations	Caractérisation des produits formés	Interprétation
Dans un erlenmeyer, on verse du nitrate d'argent et on ajoute un fil de cuivre.		caractérise la production d'ions cuivre II et	Réactifs : $Cu_{(s)}$ et $Ag^+_{(aq)}$ Produits : $Cu^{2+}_{(aq)}$ et $Ag_{(s)}$ Pour passer d'ions à des atomes ou inversement il faut qu'il y ait transfert d'électrons. $Ag^+_{(aq)} + e^- = Ag_{(s)}$ $Cu_{(s)} = Cu^{2+}_{(aq)} + 2e^-$

Les atomes de cuivre ont cédé deux électrons et les ions argent I en ont accepté un. On peut donc écrire l'équation de la réaction à partir des deux demi-équations en prenant soin d'équilibrer les charges:

demi-équation 1: demi-équation 2:	Ag ⁺ _(aq) +	$e^{-} = Cu_{(s)} =$	$Ag_{(s)}$ $Cu^{2+}_{(aq)}$ +	2e ⁻	x 2 x 1
équation:	2Ag ⁺ _(aq) +	Cu _(s) =	2Ag _(s) +	Cu ²⁺ (aq)	

Définitions

Réducteur: un réducteur est une espèce chimique **susceptible de céder un ou plusieurs électrons**. Exemples de réducteurs: le métal zinc $Zn_{(s)} = Zn^{2+}_{(aq)} + 2e^{-}$, le métal cuivre $Cu_{(s)} = Cu^{2+}_{(aq)} + 2e^{-}$

Oxydant: un oxydant est une espèce chimique **susceptible de capter un ou plusieurs électrons**. Exemple d'oxydants :les ions cuivre II $Cu^{2+}_{(aq)} + 2e^{-} = Cu_{(s)}$, les ions argent $Ag^{+}_{(aq)} + e^{-} = Ag_{(s)}$

Couple oxydant/réducteur: un couple oxydant/réducteur est l'ensemble d'un oxydant et d'un réducteur qui sont liés par une demi-équation électronique : **oxydant + ne**⁻ = **réducteur**

Exemple: le cuivre est un réducteur et l'ion cuivre II capable de capter deux électrons est un oxydant. On dit que l'ion cuivre II est l'oxydant conjugué du cuivre ou que le cuivre est le réducteur conjugué de l'ion cuivre II.

Réaction d'oxydoréduction: une réaction d'oxydoréduction consiste en un transfert d'électrons entre un oxydant d'un couple et un réducteur d'un autre couple. Elle est le résultat de la combinaison de deux demi-équations.

Remarque : les électrons n'existent pas à l'état libre en solution aqueuse.

Les couples à connaître et leurs demi-équations associées

Couple	Nom de l'oxydant	Nom du réducteur	Demi-équation
$H^+_{(aq)}/H_{2(g)}$	Ion H⁺ (aqueux)	Dihydrogène	$2H^{+}_{(aq)} + 2e^{-} = H_{2(g)}$
Mn ⁺ (aq)/M(s)	Cation métallique	Métal	$Mn^{+}_{(aq)} + ne^{-} = M_{(s)}$
Fe ³⁺ _(aq) /Fe ²⁺ _(aq)	Ion fer III	Ion fer II	$Fe^{3+}_{(aq} + e^{-} = Fe^{2+}_{(aq)}$
$MnO_4^-(aq)/Mn^{2+}(aq)$	Ion permanganate (violet)	Ion manganèse II (incolore)	$MnO_{4^{-}(aq)} + 8H^{+} + 5e^{-} = Mn^{2+}_{(aq)} + 4H_{2}O$
I _{2(aq)} /I ⁻ _(aq)	Diiode	Ion iodure	$I_{2(aq)} + 2e^{-} = 2I_{(aq)}^{-}$
$S_4O_6^{2-}(aq)/S_2O_3^{2-}(aq)$	Ion tétrathionate	Ion thiosulfate	$S_4O_6^{2-}(aq) + 2e^- = 2S_2O_3^{2-}(aq)$

ALCANES ET GROUPES CARACTÉRISTIQUES

I. Les alcanes

1. Définitions

Les alcanes sont des hydrocarbures **saturés** acycliques, formés de chaînes ouvertes linéaires ou ramifiées, de formule brute C_nH_{2n+2} .

Les alcanes cycliques ou cycloalcanes sont des hydrocarbures saturés cycliques de formule brute C_nH_{2n}.

2 Nomenclature

Pour déterminer le nom de l'alcane, on cherche la chaîne carbonée la plus longue: c'est la chaîne principale qui identifie l'alcane.

3. Nom des 6 premiers alcanes:

Nom de l'alcane	Méthane	Éthane	Propane	Butane	Pentane	Hexane
Préfixe	méth	éth	prop	but	pent	hex
Nombre d'atome de carbone	1	2	3	4	5	6

4. Alcanes ramifiés

On identifie ensuite les ramifications: ce sont les groupes alkyles. On écrit leur nom en remplaçant la terminaison -ane de l'alcane par la terminaison -yle.

Si plusieurs groupes sont identiques, on utilise les préfixes di, tri, tétra....

On numérote ensuite la chaîne carbonée principale afin que le nombre obtenu par l'ensemble des indices soit le plus bas.

Les groupes substituants sont classés par ordre alphabétique sans tenir compte des préfixes multiplicatifs. L'alcane ramifié se nomme en faisant précéder le nom de l'alcane, correspondant à la chaîne la plus longue, du nom du groupe alkyle (avec élision du e final). On place devant ce nom, en le séparant par un tiret, le nombre indiquant sa position sur la chaîne principale.

S'il y a plusieurs groupes alkyles identiques, on utilise des préfixes multiplicateurs et on sépare les indices par une virgule.

S'il y a plusieurs groupes alkyles différents, on les nomme dans l'ordre alphabétique en mettant un tiret entre le nom du groupe précédent et l'indice du groupe suivant.

Fiche Méthode

LES GRAPHIQUES

Un graphique se fait sur du papier millimétré au format A4.

Pour le tracer correctement, suivez les étapes suivantes:

- 1. Repérez ce qui doit être placé en ordonnée (verticalement) et ce qui doit être placé en abscisse (horizontalement). «Tracer b en fonction de a» signifie «b en ordonnée et a en abscisse».
- 2. A partir des données, définir une échelle afin que le graphique soit le plus grand possible (l'échelle peut être différente pour l'axe des abscisses et des ordonnées)
- 3. Tracez les axes du graphique. Ils doivent être orientés (flèche en bout d'axe)
- 4. Indiquez en bout d'axes la légende, en n'oubliant pas les unités s'il y en a.
- 5. Graduez régulièrement chaque axe.
- 6. Placez de façon régulière des valeurs sur les axes mais ne pas y écrire les données.
- 7. Placez vos points sous forme de croix (+) (pas × ni •).
- 8. Donnez un titre à votre graphique.

Allure de la courbe

- ◆ Si les points semblent alignés, tracez à la règle (et au crayon à papier) la droite dite «moyenne» (c'est-àdire une droite qui passe au plus près de tous les points).
- ◆ Si vous trouvez que vos points n'ont pas l'air d'être alignés, tracez à main levée la courbe «moyenne» (<u>ne surtout pas relier les points par des segments</u>!!!)

LA LUMIÈRE

La lumière qui rentre dans l'œil est détectée grâce à deux types de photorécepteurs qui tapissent la rétine: les cônes et les bâtonnets. Les bâtonnets ne détectent pas les couleurs, ils captent seulement la luminosité (noir, blanc et nuances de gris). La détection de la couleur est assurée par les cônes. Il en existe trois sous-types en fonction de leur sensibilité spectrale (bleu, vert et rouge).

La faculté qu'a l'œil de reproduire toutes les couleurs à partir des trois couleurs détectées par les cônes s'appelle la **trichromie**.

I. Lumières colorées

1. Décomposition de la lumière par un prisme

Deux phénomènes permettent d'expliquer la décomposition de la lumière par un prisme:

- ◆ la réfraction (le faisceau incident est dévié à la surface de séparation des milieux - lois de Descartes)
- la dispersion (l'indice de réfraction du milieu dépend de la longueur d'onde qui le traverse)

Remarque: la lumière peut aussi être décomposée par un réseau.

2. Spectre de la lumière blanche

Le spectre de la lumière blanche est un spectre continu constitué des radiations colorées (longueurs d'ondes) allant du violet (400 nm) au rouge (800 nm).

3. Lumières polychromatiques et monochromatiques

- ◆ Une lumière **monochromatique** correspond à une seule couleur, une seule radiation (exemple: la lumière du laser). Elle ne peut pas être décomposée par un prisme.
- ◆ Une lumière **polychromatique** est un mélange de plusieurs radiations. Elle peut être décomposée par un prisme.

4. Comment obtenir des lumières colorées?

- Filtres colorés : si on interpose un filtre coloré devant un faisceau de lumière blanche, la lumière a alors la couleur du filtre observé par transparence.
- ◆ Sources de lumières monochromatiques : par exemple un laser Hélium-Néon pour obtenir du rouge.
- Sources de lumières polychromatiques (synthèse additive).

II. Couleur des objets

1. Couleur d'un objet éclairé

a. Comment se comporte un objet éclairé ?

Trois phénomènes peuvent avoir lieu à la surface d'un objet éclairé:

- la diffusion: une, plusieurs ou toutes les radiations sont renvoyées dans toutes les directions
- l'absorption: une, plusieurs ou toutes les radiations ne sont pas renvoyées (elles sont absorbées par l'objet)
- la transmission: une, plusieurs ou toutes les radiations traversent l'objet

b. Qu'est-ce qu'un objet blanc?

Un objet blanc diffuse toutes les radiations de la lumière qu'il reçoit.

c. Qu'est-ce qu'un objet bleu?

Un objet bleu ne diffuse que les radiations bleues de la lumière.

d. Qu'est-ce qu'un objet noir?

Un objet noir absorbe pratiquement toutes les radiations de la lumière qu'il reçoit.

e. Couleur des objets

Un objet n'a pas de couleur propre. La couleur perçue de l'objet dépend de la nature de la lumière qui l'éclaire, des propriétés optiques de l'objet lui-même (lumière diffusée) et de l'observateur (ex.: daltonien).

III. Restitution des couleurs

1. Synthèse soustractive (système CMJ)

On la réalise en superposant des **filtres colorés** de différentes couleurs. Par exemple, le filtre jaune ne laisse passer que les lumières rouge et verte; il absorbe la lumière bleue.

Les couleurs de primaires sont le cyan, le jaune et le magenta.

Filtre n°1	Filtre n°2	Filtre n°3	Couleur observée
Magenta	Jaune		Rouge
Magenta		Cyan	Bleu
	Jaune	Cyan	Vert
Magenta	Jaune	Cyan	Noir

Lorsque l'on superpose les trois filtres, on obtient du noir. En peinture ou en imprimerie, ce sont les pigments qui jouent le rôle de filtres. Ces techniques reposent donc sur la synthèse soustractive.

2. Synthèse additive (système RVB)

On la réalise en superposant des **faisceaux lumineux** de différentes couleurs. Les trois couleurs primaires sont le **rouge**, le **vert** et le **bleu**.

Faisceau n°1	Faisceau n°2	Faisceau n°3	Couleur observée
Rouge		Bleu	Magenta
	Vert	Bleu	Cyan
Rouge	Vert		Jaune
Rouge	Vert	Bleu	Blanc

Si les trois faisceaux ont la même intensité lumineuse: magenta, cyan et jaune sont des couleurs **secondaires** car elles sont obtenues par superposition de **deux** couleurs primaires. Lorsque l'on superpose les trois faisceaux, on obtient de la lumière **blanche**.

En modifiant l'intensité de chacune des lumières primaires, on peut obtenir l'ensemble des couleurs. C'est ainsi que fonctionne les écrans de téléviseurs, de téléphones ou d'ordinateurs.

3. Couleurs complémentaires

Deux couleurs sont complémentaires l'une de l'autre si, par synthèse additive, elles forment du blanc (exemple : la superposition des lumières de couleurs primaires verte et rouge donnent une lumière de couleur secondaire jaune, complémentaire du bleu). En synthèse soustractive, la superposition de couleurs complémentaires produit le noir.

LES SPECTRES

1. Évolution du spectre avec la température

Lorsque l'intensité du courant électrique augmente alors la température du filament de la lampe augmente (effet Joule). Lorsque la température du filament est faible nous observons plutôt du vert et du rouge. Lorsque la température augmente le spectre s'enrichit en bleu violet et nous observons un spectre complet. Plus la température du filament augmente, plus le spectre de la lumière qu'il émet est complet, c'est à dire riche en bleu.

Un corps chaud (solide, liquide ou gaz à haute pression) émet une lumière dont le spectre continu s'enrichit en radiations de courtes longueurs d'onde (violet) quand la température augmente.

La couleur de la lumière émise par un corps chaud et le spectre d'émission de cette lumière nous donne donc des renseignements sur la température de ce corps.

Les spectres continus sont d'origine thermique.

2. Spectres d'émission d'un gaz

Les spectres d'émission ne sont pas continus car nous avons des raies espacées de bandes noires. Ces spectres sont appelés des **spectres de raies** puisque nous observons de fins traits nets colorés (raies) sur un fond noir. A chaque raie correspond une radiation monochromatique.

Un gaz à basse pression, excité par des décharges électriques ou porté à haute température, émet une lumière dont le spectre est constitué de raies. Ce spectre de raies est la signature de l'entité chimique (atome ou ion) présente dans le gaz.

3. Spectres d'absorption

a. Spectre de bandes d'absorption (la lumière traverse une solution)

Le spectre d'absorption du permanganate de potassium a perdu deux bandes colorées verte et jaune par rapport au spectre d'émission de la lumière blanche. On parle de **spectre de bandes d'absorption** puisque des bandes colorées ont disparu et sont devenues noires. Une solution absorbe la couleur complémentaire de sa couleur apparente. Ici, la couleur violette du permanganate de potassium est donc liée au rouge et au bleu foncé de son spectre d'absorption.

La lumière transmise par une solution éclairée par une source de lumière blanche donne un spectre de bandes d'absorption. Ce spectre d'absorption, constitué de bandes noires sur le fond coloré du spectre de la lumière blanche, caractérise les molécules ou les ions contenus dans la solution.

b. Spectre de raies d'absorption (la lumière traverse un gaz)

La lumière transmise par un gaz éclairé par une source de lumière blanche donne un spectre constitué de raies noires sur le fond coloré du spectre de la lumière blanche: c'est un spectre de raies d'absorption. Les raies noires correspondent aux radiations absorbées par les entité chimiques (atome ou ions) présentes dans le gaz. Elles caractérisent ces entités.

En effet, un atome ou un ion en phase gazeuse ne peut absorber que les radiations qu'il est capable d'émettre.

Les raies d'absorption, comme celles d'émission, permettent donc d'identifier les entités chimiques présentes dans un gaz.

4. La lumière des étoiles

L'analyse de la lumière permet d'obtenir des informations sur la matière dont elle est issue (température) et sur les milieux qu'elle traverse (composition).

Les étoiles émettent de la lumière qui se propage dans l'espace. Cette lumière traverse l'atmosphère des étoiles et le vide interstellaire. Grâce à l'étude de cette lumière, il est donc possible de connaître la température d'une étoile et la composition de son atmosphère.

FICHES ECE

VERRERIE DE LABORATOIRE

Au cours d'une manipulation, de nombreux volumes sont mesurés, chacun avec une précision différente. Il convient donc d'utiliser à bon escient la verrerie en fonction de son degré de précision.

Tube à essai Pour faire des petits tests

Burette Pour mesurer des volumes précis au ½ mL lors de

Bécher Contient une solution avant prélèvement, utilisé pour les dosages

Erlenmeyer Contient une solution avant prélèvement, utilisé pour les dosages

Pipette jaugée Pour mesurer des volumes précis au 10^{ème} de mL

Éprouvette Pour mesurer des volumes précis au mL

Fiole jaugée Utilisée pour faire des solutions précis au 10^{ème} de mL

RÉALISER UNE SOLUTION PAR DISSOLUTION

La masse m en g de solide à peser est telle que m = C.V.M avec C est la concentration en mol.L⁻¹, V le volume de solution en L, et M la masse molaire en g.mol⁻¹.

PRÉPARER UNE SOLUTION DE CONCENTRATION DONNÉE PAR DILUTION

Au cours d'une dilution la quantité de matière ne change pas: Cm.Vm = Cf.Vf avec Cm la concentration de la solution mère de volume Vm et Cf la concentration de la solution fille de volume Vf.

homogénéiser la

solution.

pipette simple. Le bas du

ménisque du liquide doit

6. Boucher et agiter pour bien homogénéiser la

être sur le trait.

solution.

100m

RÉALISER UN TITRAGE COLORIMÉTRIQUE (TS)

La concentration de la solution inconnue (solution à titrer) est déterminée en repérant l'équivalence par un changement de sa couleur.

Équation de la réad	ction	aA +	· bB -	→ cC +	- dD
État initial	0	$n_A = C_A \cdot V_A$	$n_B = C_B \cdot V_B$	0	0
En cours	х	C _A .V _A - ax	C _B .V _B - bx	СХ	dx
A l'équivalence	XE	0	0	CXE	dx _E

A l'équivalence, les deux réactifs ont disparu:

$$C_A.V_A$$
 - $ax_E = 0$
 $C_B.V_B$ - $bx_E = 0$

donc

$$\boxed{\frac{C_a.V_a}{a} = \frac{C_b.V_b}{b}}$$

soit $\frac{n_a}{a} = \frac{n_b}{b}$

RÉALISER UN TITRAGE CONDUCTIMÉTRIQUE (TS)

Il s'agit souvent de déterminer la concentration d'une solution à titrer en repérant l'équivalence par une brusque variation de la courbe représentant la grandeur mesurée (conductance ou conductivité) en fonction du volume de titrant versé.

7. Représenter graphiquement l'évolution $\sigma=f(V)$ (ou G=f(V)). La représentation graphique est constituée de deux segments de droite. Leur intersection permet de déterminer l'équivalence E et de déduire graphiquement le volume équivalent V_E (abscisse du point d'intersection des deux segments).

6. Verser, millilitre par millilitre, le réactif titrant dans le bécher. A chaque ajout et après stabilisation de la mesure, relever dans un tableau le volume V de solution titrante versée et la conductivité σ (ou la conductance G selon le conductimètre utilisé). Verser quelques millilitres supplémentaires après le changement de variation de la conductivité (ou de la conductance).

