Single Sample t tests in SPSS

Dataset: pisa_us

1. Open/Import/Read Dataset: File -> Open -> Data. Select **All Files** from Files of type to show the file you're looking for. Select the correct file and click **Open**.

2. Conduct a one-sample t-test to show whether the sample of student scome from a population in which the average reading score (wleread3) is equal to the population mean of 490.

State the null and alternative hypotheses

H₀: The average reading score (wleread3) is equal to 490.

H₁: The average reading score (wleread3) is not equal to 490.

3. One-sample t-test: Analyze -> Compare Means -> One Sample T Test -> Find and move **wleread3** into Test Variable(s) -> In the Test Value box at the bottom of the window, enter the hypothesized value for the population mean -> Paste.

Take a screenshot of your syntax and paste it here:

T-TEST

/TESTVAL=490 /MISSING=ANALYSIS /VARIABLES=wleread3 /CRITERIA=CI(.95).

Run the test (highlight the syntax and click the green triangle button). Take a screenshot of the output and paste it below:

One-Sample Statistics

	N	Mean	Std. Deviation	Std. Error Mean
Warm estimate in reading - reflecting	1701	507.2942	116.18540	2.81700

One-Sample Test

	Test Value = 490							
				Mean	95% Confidence Interval of the Difference			
	t	df	Sig. (2-tailed)	Difference	Lower	Upper		
Warm estimate in reading - reflecting	6.139	1700	.000	17.29424	11.7691	22.8194		

4. Interpreting your results.

To formally write up your results, use the following format:

The mean reading score of the sample (M = 507.29, SD = 116.19, n = 1701) was significantly different from the hypothesized population mean of 490 (t(1700) = 6.14, p < .001, 95% CI = [11.77, 22.82]).

Note: the confidence interval is referencing the mean difference.

5. Repeat the process – do an One Sample T-Test using the variable wlemath and a hypothesized population mean of 491. State your null and alternative hypotheses and then provide a formal write up for your results.

H₀: The average mathematics score (wlemath) is equal to 491

 H_1 : The average mathematics score (wlemath) is not equal to 491

Results: The mean mathematics score of the sample (M = 494.33, SD = 96.52, n = 1692) was not significantly different from the hypothesized population mean of 491 (t(1691) = 1.419, p >.05, 95% CI = [-1.27, 7.93]).