WHAT IS CLAIMED IS:

1		1.	A method for the temporary anti-corrosive treatment of a		
2	metal surface	that co	onsist predominantly of aluminum and/or zinc, said process		
3	comprising:		•		
4		a)	placing the surface of the metal in contact with an anti-		
5	corrosive con	npositio	on comprising 2.0 - 400 g/L phosphate ions, 0.5 - 400 g/L		
6	fluorometallate ions, and having a pH of between 1.0 - 4.0, for a time period of				
7	between 0.1 -	200 se	conds;		
8		b)	drying the anti-corrosive treatment composition on the metal		
9	surface to for	m a pri	mary passivating coating on the metal surface;		
0		c)	removing the primary passivating coating from the metal		
1	surface; and				
2		d)	conversion coating the metal surface.		
1		2.	The method of claim 1 wherein the ratio of fluorometallate		
2	anions and ph	osphate	e ions is 0.10:1.0 to 5.0:1.0.		
1		3.	The method of claim 1 wherein the phosphate ions are		
2	provided in a	75% by	y weight phosphate solution, based on the total weight of the		
3	phosphate sol	ution, a	and the fluorometallate ions are provided in a 50% by weight		
4	fluorometalla	te soluti	ion, based on the total weight of the fluorometallate solution.		
1		4.	The method of claim 3 wherein the phosphate solution is		
2	present in the	compo	sition in an amount of 25 - 65 wt. % and the fluorometallate		
3	solution is pro	esent in	the composition in an amount of 35 - 75 wt. $\%$, based on the		
4	total weight o	f the co	emposition.		

1	5. The method of claim 4 further comprising water present in an					
2	amount of 2 to 50 wt. %, based on the total weight of the composition.					
1	6. The method of claim 3 wherein the phosphate solution					
2	comprises phosphoric acid and the fluorometallate solution comprises					
3	hexafluorotitanic acid.					
1	7. The method of claim 6 wherein the phosphoric acid is present					
2	in the composition in an amount of 1.0-15.0 wt. %, based on the total weight of the					
3	composition, and the hexafluorotitanic acid is present in an amount of 1.0-20.0 wt.					
4	%, based on the total weight of the composition, and the composition further					
5	comprising water present in an amount of 45-98 wt. %, based on the total weight					
6	of the composition.					
1	8. The method of claim 1 wherein the metal surface comprises					
2	steel treated with a galvanic coating comprising aluminum, zinc and silicon.					
1	9. The method of claim 1 wherein the metal surface comprises					
2	steel treated with a galvanic coating comprising 55% aluminum, 43.5% zinc and					
3	1.5% silicon.					
1	10. The method of claim 1 wherein the temperature of the					
2	composition during step a) is 15-66°C.					
1	11. The method of claim 1 wherein the primary passivating					
2	coating method surface is stored after step b) and prior to step c).					

1	12. The method of claim 1 wherein the removal of step c) takes				
2	place by exposing the primary passivating coating to an alkaline solution.				
1	13. A chromium-free, anti-corrosive composition for temporarily				
2	passivating metal surfaces consisting predominantly of aluminum and/or zinc, said				
3	composition comprising:				
4	2.0 - 400 g/L phosphate ions; and				
5	0.5 - 400 g/L fluorometallate anions;				
6	the composition having a pH of 1.0-4.0.				
1	14. The composition of claim 13 wherein the ratio of				
2	fluorometallate anions and phosphate ions is 0.10:1.0 to 5.0:1.0.				
1	15. The composition of claim 13 wherein the phosphate ions are				
2	provided in a 75% by weight phosphate solution, based on the total weight of the				
3	phosphate solution, and the fluorometallate ions are provided in a 50% by weight				
4	fluorometallate solution, based on the total weight of the fluorometallate solution.				
1	16. The composition of claim 15 wherein the phosphate solution				
2	is present in the composition in an amount of 25 - 65 wt. % and the fluorometallate				
3	solution is present in the composition in an amount of 35 - 75 wt. %, based on the				
4	total weight of the composition.				
1	17. The composition of claim 16 further comprising water present				
2	in an amount of 2 to 50 wt. %, based on the total weight of the composition.				

1	18. The composition of claim 15 wherein the phosphate solution							
2	comprises phosphoric acid and the fluorometallate solution comprises							
3	hexafluorotitanic acid.							
1	19. The composition of claim 18 wherein the phosphoric acid is							
2	present in the composition in an amount of 1.0-15.0 wt. %, based on the total							
3	weight of the composition, and the hexafluorotitanic acid is present in an amount of							
4	1.0-20.0 wt. %, based on the total weight of the composition, and the composition							
5	further comprising water present in an amount of 45-98 wt. %, based on the total							
6	weight of the composition.							
1	20. The composition of claim 19 further comprising a polymer							
2	solution comprising a polymer comprising the Mannich adduct of							
3	polyhydroxystyrene with N-methylglucamine.							
1	21. The composition of claim 20 wherein the polymer solution							
2	resident to the polymer solution							
	further comprises an acid selected from the group consisting of fluorotitanic acid							
3	and fluorozirconic acid.							