Chapter 7

메모리(주기억장치) 관리

Main memory management

메모리(기억장치)의 종류

메모리(기억장치) 계층구조

Block

- 보조기억장치와 주기억장치 사이의 데이터 전송 단위
- Size: 1 ~ 4KB

Word

- 주기억장치와 레지스터 사이의 데이터 전송 단위
- Size: 16 ~ 64 bits

• 프로그램의 논리 주소를 실제 메모리의 물리 주소로 매핑(mapping)하는 작업

- Binding 시점에 따른 구분
 - Compile time binding
 - Load time binding
 - Run time binding

User Program Processing Steps

Compile time binding

- 프로세스가 메모리에 적재될 위치를 컴파일러가 알 수 있는 경우
 - 위치기 변하지 않음
- 프로그램 전체가 메모리에 올라가야 함

Load time binding

- 메모리 적재 위치를 컴파일 시점에서 모르면, 대체 가능한 상대 주소를 생성
- 적재 시점(load time)에 시작 주소를 반영하여 사용자 코드 상의 주소를 재설정
- 프로그램 전체가 메모리에 올라가야 함

Load time binding

(Allocation address = 400)

Run-time binding

- Address binding 을 수행시간까지 연기
 - 프로세스가 수행 도중 다른 메모리 위치로 이동할 수 있음
- HW의 도움이 필요
 - MMU: Memory Management Unit
- 대부분의 os가 사용

Dynamic Loading

- 모든 루틴을 교체 가능한 형태로 디스크에 저장
- 실제 호출 전까지는 루틴을 적재하지 않음
 - 메인 프로그램만 메모리에 적재하여 수행
 - 루틴의 호출 시점에 address binding 수행

• 장점

• 메모리 공간의 효율적 사용

Swapping

- 프로세서 할당이 끝나고 수행 완료 된 프로세스 는 swap-device로 보내고 (Swap-out)
- 새롭게 시작하는 프로세스는 메모리에 적재 (Swap-in)

Memory Allocation

- Continuous Memory Allocation (연속할당)
 - Uni-programming
 - Multi-programming
 - Fixed partition (FPM)
 - Variable partition (VPM)

- Non-continuous Memory Allocation (비연속할당)
 - Next chapter!

Continuous Memory Allocation

- 프로세스 (context)를 하나의 연속된 메모리 공간에 할당하는 정책
 - 프로그램, 데이터, 스택 등

- 메모리 구성 정책
 - 메모리에 동시에 올라갈 수 있는 프로세스 수
 - Multiprogramming degree
 - 각 프로세스에게 할당되는 메모리 공간 크기
 - 메모리 분할 방법

Continuous Memory Allocation

- Uni-programming
 - Multiprogramming degree = 1

- Multi-programming
 - Fixed(static) partition multi-programming (FPM)
 - 고정 분할
 - Variable(dynamic) partition multi-programming (VPM)
 - 가변 분할

- 하나의 프로세스만 메모리 상에 존재
- 가장 간단한 메모리 관리 기법

• 문제점

• 프로그램의 크기 > 메모리 크기

• 해결법

• Overlay structure

• 메모리에 현재 필요한 영역만 적재

 사용자가 프로그램의 흐름 및 자료구조를 모두 알고 있어야 함

• 패스 1:70KB

• 패스 2:80KB

· 심벌 테이블: 20KB

• 공통 루틴: 30KB

• 중첩 구동기(오버레이 드라이버): 10KB

(a) 2단계 어셈블러 예

• 중첩 A : 심벌 테이블, 공통 루틴, 패스 1

• 중첩 B: 심벌 테이블, 공통 루틴, 패스 2

(b) 2단계 어셈블러 중첩

• 문제점

• 커널(Kernel) 보호

• 해결방법

• 경계 레지스터 (boundary register) 사용

Base images from Prof. Seo's slides

• 문제점

- Low system resource utilization
- Low system performance

• 해결법

Multi-programming

- •메모리 공간을 고정된 크기로 분할
 - 미리 분할되어 있음
- 각 프로세스는 하나의 partition(분할)에 적재
 - Process : Partition = 1 : 1
- Partition의 수 = K
 - Multiprogramming degree = K

0	Kernel
a1	partition-A (10MB)
a2	partition-B (10MB)
a3	partition-C (20MB)
a4	partition-D (30MB)
a5	partition-E (50MB)

Base images from Prof. Seo's slides

• 자료구조의 예

0	Kernel
a1	partition-A (10MB)
a2	partition-B (10MB)
a3	partition-C (20MB)
a4	partition-D (30MB)
a5	partition-E (50MB)

partition	start address	size	current process ID	other fields
А	a1	10 MB	-	
В	a2	10 MB	-	
С	a3	20 MB	-	
D	a4	30 MB	-	
E	a5	50 MB	-	

<Partition table or State table>

• 커널 및 사용자 영역 보호

Base images from Prof. Seo's slides

Fragmentation (단편화)

Internal fragmentation

- 내부 단편화
- Partition 크기 > Process 크기
 - 메모리가 낭비 됨

External fragmentation

- 외부 단편화
- (남은 메모리 크기 > Process 크기) 지만, 연속된 공간이 아님
 - 메모리가 낭비 됨

Process 4

• 요약

- 고정된 크기로 메모리 미리 분할
- 메모리 관리가 간편함
 - Low overhead
- 시스템 자원이 낭비 될 수 있음
- Internal/external fragmentation

- 초기에는 전체가 하나의 영역
- 프로세스를 처리하는 과정에서 메모리 공간이 동적으로 분할
- No internal fragmentation

VPM Example

- Memory space: 120 MB
- 1. 초기 상태
- 2. 프로세스 A(20MB) 가 적재 된 후
- 3. 프로세스 B(10MB) 가 적재 된 후
- 4. 프로세스 C(25MB) 가 적재 된 후
- 5. 프로세스 D(20MB) 가 적재 된 후
- 6. 프로세스 B가 주기억장치를 반납한 후
- 7. 프로세스 E(15MB) 가 적재 된 후
- 8. 프로세스 D가 주기억장치를 반납한 후

VPM Example

<State table>

partition	start address	size	current process ID	other field
1	u	120	none	
		(a)		

partition	start address	size	current process ID	other field
1	u	20	Α	
2	u+20	100	none	

(b)

VPM Example

partition	start address	size	current process ID	other field
1	u	20	Α	
2	u+20	100	none	
		(b)		

partition	start address	size	current process ID	other field
1	u	20	Α	
2	u+20	10	В	• • •
3	u+30	90	none	

(c)

VPM Example

partition	start address	size	current process ID	other field
1	u	20	Α	
2	u+20	10	В	
3	u+30	90	none	
		(c)		

partition	start address	size	current process ID	other field
1	u	20	Α	
2	u+20	10	В	• • •
3	u+30	25	С	
4	u+55	65	none	• • •

(d)

Base images from Prof. Seo's slides

VPM Example

partition	start address	size	current process ID	other field
1	u	20	Α	• • •
2	u+20	10	В	• • •
3	u+30	25	С	• • •
4	u+55	65	none	
		(d)		

partition	start address	size	current process ID	other field
1	u	20	Α	• • •
2	u+20	10	В	
3	u+30	25	С	
4	u+55	20	D	
5	u+75	45	none	

(e)

Base images from Prof. Seo's slides

VPM Example

partition	start address	size	current process ID	other field
1	u	20	Α	• • •
2	u+20	10	В	
3	u+30	25	С	
4	u+55	20	D	
5	u+75	45	none	

partition	start address	size	current process ID	other field
1	u	20	Α	• • •
2	u+20	10	none	
3	u+30	25	С	• • •
4	u+55	20	D	• • •
5	u+75	45	none	• • •

(f)

(e)

Base images from Prof. Seo's slide

VPM Example

partition	start address	size	current process ID	other field	
1	u	20	Α		
2	u+20	10	none		
3	u+30	25	С		
4	u+55	20	D		
5	u+75	45	none		
(f)					

partition	start address	size	current process ID	other field
1	u	20	Α	
2	u+20	10	none	• • •
3	u+30	25	С	• • •
4	u+55	20	D	• • •
5	u+75	15	Е	• • •
6	u+90	30	none	• • •

(g)

Base images from Prof. Seo's slides

VPM Example

partition	start address	size	current process ID	other field
1	u	20	Α	• • •
2	u+20	10	none	• • •
3	u+30	25	С	• • •
4	u+55	20	D	• • •
5	u+75	15	Е	• • •
6	u+90	30	none	• • •

partition	start address	size	current process ID	other field
1	u	20	Α	
2	u+20	10	none	• • •
3	u+30	25	С	• • •
4	u+55	20	none	• • •
5	u+75	15	E	
6	u+90	30	none	• • •

(h)

(g)

Base images from Prof Seo's slide

• 어디에 배치 할 것인가?

- First-fit (최초 적합)
 - 충분한 크기를 가진 첫 번째 partition을 선택
 - Simple and low overhead
 - 공간 활용률이 떨어질 수 있음

- Best-fit (최적 적합)
 - Process가 들어갈 수 있는 partition 중 가장 작은 곳 선택
 - 탐색시간이 오래 걸림
 - 모든 partition을 살펴봐야 함
 - 크기가 큰 partition을 유지 할 수 있음
 - 작은 크기의 partition이 많이 발생
 - 활용하기 너무 작은

- Worst-fit (최악 적합)
 - Process가 들어갈 수 있는 partition 중 가장 큰 곳 선택
 - 탐색시간이 오래 걸림
 - 모든 partition을 살펴봐야 함
 - 작은 크기의 partition 발생을 줄일 수 있음
 - 큰 크기의 partition 확보가 어려움
 - 큰 프로세스에게 필요한

- Next-fit (순차 최초 적합)
 - 최초 적합 전략과 유사
 - State table에서 마지막으로 탐색한 위치부터 탐색
 - 메모리 영역의 사용 빈도 균등화
 - Low overhead

• 어디에 배치 할 것인가?

External fragmentation issue

Coalescing holes (공간 통합)

- 인접한 빈 영역을 하나의 partition으로 통합
 - Process가 memory를 release하고 나가면 수행
 - Low overhead

Coalescing holes (공간 통합)

Example 2

partition	start address	size	current process ID
1	u	20	А
2	u+20	10	none
3	u+30	25	С
4	u+55	20	none
5	u+75	15	E
6	u+90	30	none

partition	start address	size	current process ID
1	u	20	Α
2	u+20	10	none
3	u+30	25	none
4	u+55	20	none
5	u+75	15	E
6	u+90	30	none

partition	start address	size	current process ID
1	u	20	Α
2	u+20	55	none
3	u+75	15	Е
4	u+90	30	none

Base images from Prof. Seo's slide

Storage Compaction (메모리 압축)

- 모든 빈 공간을 하나로 통합
- 프로세스 처리에 필요한 적재 공간 확보가 필요 할 때 수행

- High overhead
 - 모든 Process 재배치 (Process 중지)
 - 많은 시스템 자원을 소비

Storage Compaction (메모리 압축)

Example

partition	start address	size	current process ID
1	u	20	А
2	u+20	10	none
3	u+30	25	С
4	u+55	20	none
5	u+75	15	E
6	u+90	30	none

partition	start address	size	current process ID
1	u	20	Α
2	u+20	25	С
3	u+45	15	E
4	u+60	60	none

Base images from Prof. Seo's slides

요약: Continuous Memory Allocation

- Uni-programming
 - Simple
 - Fragmentation problem

- Fixed partition multi-programming (FPM)
- Variable partition multi-programming (VPM)
 - Placement strategies
 - First-fit, Best-fit, Worst-fit, Next-fit
 - External fragmentation issue
 - Coalescing holes
 - Storage compaction

