TRUSTED AI SE

SERC/AIRC Phase II

S. Cornejo, Z. Alizadeh, A. Yousseef, C.J. Buss, J. Gregory
A. Jalilzadeh, A. Salado, P. Satam

Department of Systems and Industrial Engineering

PHASE II - GOAL

Design of the decision system; Human-machine teaming; Resilience

ASSUMPTIONS

UGV is a scarce resource UAV is a fast, multi-spectral video collection system Al performance data corresponds to UAV Human SME reviews video from UAV Human SME gets feedback from UGV

APPROACH

Mission Engineering in a DE environment Multidisciplinary team

MISSION NEEDS & REQUIREMENTS

MN-1 A battalion needs to safely traverse between two points as quickly as possible.

ID	Mission Requirement	Justification		
MR-1	Time to clear a path	Identified by the sponsor in		
	The mission needs to declare a path as clear for a battalion to move	the documentation provided		
	from point A to point B in less than TBD h.	to the team.		
	Note 1: Less time is preferred to more time.			
	Note 2: Points A and point B are inputs to the mission.			
MR-2	Effectiveness of path clearance	Not explicitly identified by the		
	The mission needs to clear a path for a battalion to move from point	sponsor but derives from the		
	A to point B with likelihood over TBD%.	need to safely traverse the		
	Note 1: Likelihood refers to a mine being left uncleared on the path.	path. Clearly, declaring a path		
	Note 2: More confidence is preferred to less confidence.	as cleared without being so		
	Note 3: Points A and point B are inputs to the mission.	would be inadequate.		
MR-3	Soldier trustworthiness*	Not explicitly identified by the		
	The mission needs to yield trustworthiness above TBD to the soldiers	sponsor but implicit in the		
	that are to traverse the path.	documentation. From a		
	Note: Higher trustworthiness is preferred to lower trustworthiness.	mission perspective, success		
		in the soldiers traversing the		
		path will depend on the		
		extent to which they trust the		
		path has been cleared.		

TERRAIN

Type
Al confidence
Human confidence
Mine/No mine

Confidence mean Confidence variance

MOEs

- 0: Time to traverse path
- 1: Time to clear path
- 2: Clearance effectiveness
- 3: Soldier trust

MISSION THREADS

Grassy, wooded, swampy, rocky...

Snowy!

MT1. Only nodes with high performance by the human.

MT2. Only nodes with high performance by the AI.

MT3. First half good performance human, second halg good performance AI.

MT4. Only nodes with high performance by both.

MT5. Nodes with poor performance by both.

MT6. Nodes with no characterized performance of any of them.

MT7. Random location of nodes (per performance of AI and human, mixed performance).

Security/compromised actors

CONOPS

MISSION MODEL

$$MOE1 = t_{h}^{B}$$

$$MOE0 = t_{h}^{B}$$

$$s.t.: t_{j}^{UGV} = t_{ij}^{UGV} x_{ij}^{UGV,(1)} + t_{cl} x_{ij}^{UGV,(2)} + \max(tp_{j}^{UAV}, tp_{j}^{human}, t_{i}^{UGV}), \forall (i, j) \in \overline{E}$$

$$s.t.: t_{j}^{UGV} = t_{ij}^{UGV} x_{ij}^{UGV,(1)} + t_{cl} x_{ij}^{UGV,(2)} + \max(tp_{j}^{UAV}, tp_{j}^{human}, t_{i}^{UGV}), \forall (i, j) \in \overline{E}$$

$$t_{j}^{UGV} = t_{ij}^{UGV} x_{ij}^{UGV,(1)} + \max(tp_{j}^{UAV}, tp_{j}^{human}, t_{i}^{UGV}), \forall (i, j) \in \Gamma$$

$$t_{j}^{UGV} = t_{ij}^{UGV} x_{ij}^{UGV,(1)} + \max(tp_{j}^{UAV}, tp_{j}^{human}, t_{i}^{UGV}), \forall (i, j) \in \Gamma$$

$$t_{j}^{UGV} = t_{ij}^{UGV} x_{ij}^{UGV,(1)} + \max(tp_{j}^{UAV}, tp_{j}^{human}, t_{i}^{UGV}), \forall (i, j) \in \Gamma$$

$$t_{j}^{UGV} = t_{ij}^{UGV} x_{ij}^{UGV,(1)} + \max(tp_{j}^{UAV}, tp_{j}^{human}, t_{i}^{UGV}), \forall (i, j) \in \Gamma$$

$$t_{j}^{UGV} = t_{ij}^{UGV} x_{ij}^{UGV,(1)} + \max(tp_{j}^{UAV}, tp_{j}^{human}, t_{i}^{UGV}), \forall (i, j) \in \Gamma$$

$$t_{j}^{UGV} = t_{ij}^{UGV} x_{ij}^{UGV,(1)} + \max(tp_{j}^{UAV}, tp_{j}^{human}, t_{i}^{UGV}), \forall (i, j) \in \Gamma$$

$$t_{j}^{UGV} = t_{ij}^{UGV} x_{ij}^{UGV,(1)} + \max(tp_{j}^{UAV}, tp_{j}^{human}, t_{i}^{UGV}), \forall (i, j) \in \Gamma$$

$$t_{j}^{UGV} = t_{ij}^{UGV} x_{ij}^{UGV,(1)} + \max(tp_{j}^{UGV,(1)}, tp_{j}^{human}, t_{i}^{UGV}), \forall (i, j) \in \Gamma$$

$$t_{j}^{UGV} = t_{ij}^{UGV} x_{ij}^{UGV,(1)} + \max(tp_{j}^{UGV,(1)}, tp_{j}^{human}, t_{i}^{UGV}), \forall (i, j) \in \Gamma$$

$$t_{j}^{UGV} = t_{ij}^{UGV} x_{ij}^{UGV,(1)} + \max(tp_{j}^{UGV,(1)}, tp_{j}^{human}, t_{i}^{UGV}), \forall (i, j) \in \Gamma$$

$$t_{j}^{UGV} = t_{ij}^{UGV} x_{ij}^{UGV,(1)} + \max(tp_{j}^{UGV,(1)}, tp_{j}^{human}, t_{i}^{UGV}), \forall (i, j) \in \Gamma$$

$$t_{j}^{UGV} = t_{ij}^{UGV} x_{ij}^{UGV,(1)} + \max(tp_{j}^{UGV,(1)}, tp_{j}^{UGV,(1)}, tp_{j}^{UGV,($$

ARCHITECTURE ALTERNATIVES

Allocation of prediction tasks Full AI, Full Human, Dynamic

Task sequencing and parallelization Serial, Parallel

Centralization of task coordination Centralized, Decentralized

Prioritization of prediction tasks From A to B, Unconstrained

SIMULATION & ANALYSIS


```
Mine_Mission_Analysis 🗆
                            def __init__(self, config_filename: str):
A
                  81
                  82
                               Constructor for the Mission object
                  83
0
                  84
                  85
                                  data - The JSON mission object
                  86
Apps
                ► RUN CELL
      IN [3]
                       scenario = base scenario
                    flag_human_only = bool(Violet["flag_human_only"])
                        flag_uav_only = bool(Violet["flag_uav_only"])
                        flag both = bool(Violet["flag both"])
                        flag_greedy = bool(Violet["flag_greedy"])
                        write_json(scenario, "temp.json")
                        mission manager = MissionManager('temp.json',flag human only,flag uav only, flag both ,flag greedy)
                        MOE1_temp , MOE3_temp, total_length_temp = mission_manager.simulate()
      IN [4]
                    1 print(MOE1_temp)
                       print(MOE3 temp)
```


SIMULATION & ANALYSIS

Scenarios = Mission threads X Architectures

Monte Carlo – 100 runs for each scenario

min(MOE0), min(MOE1), max(MOE2), max(MOE3)

	Architectures						
	Full AI Not Greedy	Full Human Not Greedy	Intermediate Not Greedy	Full AI Greedy	Full Human Greedy	Intermediate Greedy	
Mission Thread 1 Optimal: 282	MOE0: TBD MOE1: 487.6 MOE2: TBD MOE3: 5.1	MOE0: TBD MOE1: 399.6 MOE2: TBD MOE3: 0.48	MOE0: TBD MOE1: 449.6 MOE2: TBD MOE3: 2.33	MOE0: TBD MOE1: 459.6 MOE2: TBD MOE3: 5.01	MOE0: TBD MOE1: 441.8 MOE2: TBD MOE3: 4.63	MOE0: TBD MOE1: 451.2 MOE2: TBD MOE3: 4.15	
Mission Thread 2 Optimal: 284.8	MOE0: TBD MOE1: 389 MOE2: TBD MOE3: 0.57	MOE0: TBD MOE1: 468.6 MOE2: TBD MOE3: 4.89	MOE0: TBD MOE1: 389 MOE2: TBD MOE3: 0.57	MOE0: TBD MOE1: 414.8 MOE2: TBD MOE3: 3.02	MOE0: TBD MOE1: 453.4 MOE2: TBD MOE3: 5.13	MOE0: TBD MOE1: 414.8 MOE2: TBD MOE3: 3.02	
Mission Thread3 Optimal: 279.8	MOE0: TBD MOE1: 419.2 MOE2: TBD MOE3: 2.53	MOE0: TBD MOE1: 424.4 MOE2: TBD MOE3: 2.66	MOE0: TBD MOE1: 402.4 MOE2: TBD MOE3: 1.28	MOE0: TBD MOE1: 432 MOE2: TBD MOE3: 4.33	MOE0: TBD MOE1: 434 MOE2: TBD MOE3: 4.67	MOE0: TBD MOE1: 420.6 MOE2: TBD MOE3: 3.77	
Mission Thread 4 Optimal: 280.4	MOE1: 402.8 MOE2: TBD MOE3: 0.46	MOE0: TBD MOE1: 407.8 MOE2: TBD MOE3: 0.86	MOE0: TBD MOE1: 402.8 MOE2: TBD MOE3: 0.46	MOE0: TBD MOE1: 436.0 MOE2: TBD MOE3: 3.79	MOE0: TBD MOE1: 444.2 MOE2: TBD MOE3: 4.93	MOE0: TBD MOE1: 436 MOE2: TBD MOE3: 3.79	
Mission Thread 5 Optimal: 288.4	MOE0: TBD MOE1: 481.6 MOE2: TBD MOE3: 4.85	MOE0: TBD MOE1: 491 MOE2: TBD MOE3: 5.6	MOE0: TBD MOE1: 514.8 MOE2: TBD MOE3: 5.26	MOE0: TBD MOE1: 473 MOE2: TBD MOE3: 5.34	MOE0: TBD MOE1: 468.8 MOE2: TBD MOE3: 5.47	MOE0: TBD MOE1: 482.6 MOE2: TBD MOE3: 5.3	
Mission Thread 6 Optimal: 288.6	MOE0: TBD MOE1: 423.6 MOE2: TBD MOE3: 2.65	MOE0: TBD MOE1: 414.4 MOE2: TBD MOE3: 2.62	MOE0: TBD MOE1: 414.2 MOE2: TBD MOE3: 1.52	MOE0: TBD MOE1: 440.4 MOE2: TBD MOE3: 3.89	MOE0: TBD MOE1: 451.6 MOE2: TBD MOE3: 4.86	MOE0: TBD MOE1: 439 MOE2: TBD MOE3: 3.56	
Mission Thread 7 Optimal: 285	MOE0: TBD MOE1: 439 MOE2: TBD MOE3: 2.31	MOE0: TBD MOE1: 430 MOE2: TBD MOE3: 2.51	MOE0: TBD MOE1: 406.4 MOE2: TBD MOE3: 0.97	MOE0: TBD MOE1: 429 MOE2: TBD MOE3: 3.6	MOE0: TBD MOE1: 442 MOE2: TBD MOE3: 4.82	MOE0: TBD MOE1: 427.2 MOE2: TBD MOE3: 3.38	

EXAMPLE OF SOLUTION STRATEGIES & ASSESSMENT

NEXT

Complete analysis and assessment
Increase focus on compromised scenarios
Study engineering teaming

THANK YOU

