西南交通大学 2017-2018 学年第(2) 学期半期测试题

课程代码 1272005 课程名称 《高等数学》BII 考试时间 90 分钟

一、选择题(每小题5分,共6个小题,共30分)

1. 曲面
$$\frac{x^2}{4} - y^2 - z^2 = 3$$
是【

- (A) xoy 面上的双曲线绕 x 轴旋转一周所得;
- (B) xoz 面上的双曲线绕z 轴旋转一周所得;
- (C) yoz 面上的双曲线绕 y 轴旋转一周所得;
- (D) xoz 面上的双曲线绕z 轴旋转一周所得.

2. 设有直线
$$l_1: x-1=\frac{y-5}{-2}=z+8$$
 与 $l_2: \begin{cases} x-y=6\\ 2y+z=3 \end{cases}$,则 l_1 与 l_2 的夹角为【 】

- (A) $\frac{\pi}{6}$; (B) $\frac{\pi}{4}$; (C) $\frac{\pi}{3}$; (D) $\frac{\pi}{2}$.

(A)
$$\frac{\pi}{6}$$
; (B) $\frac{\pi}{4}$; (C) $\frac{\pi}{3}$; (D) $\frac{\pi}{2}$.

\\
\Tilde{\mathbb{3}}\]
3. 二元函数 $f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$
在点 $(0,0)$ 处【
\\
\text{A}\)
\(\text{A}\) 可微分: (B) 不连续,偏导数存在:

- (B) 不连续, 偏导数存在:
- (C) 连续, 偏导数不存在; (D) 不连续, 偏导数不存在.

4. 设
$$z = xyf\left(\frac{y}{x}\right)$$
, 其中函数 f 可微,则 $x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = \mathbf{I}$

(A)
$$-2z-y^2f'\left(\frac{y}{x}\right)$$
; (B) $2z$; (C) $-y^2f'\left(\frac{y}{x}\right)$; (D) $y^2f'\left(\frac{y}{x}\right)$.

(C)
$$-y^2f'\left(\frac{y}{x}\right)$$
;

(D)
$$y^2 f'\left(\frac{y}{x}\right)$$

- 5. 设函数z = f(x, y)的全微分为dz = xdx + ydy,则点(0, 0)【
- (A) 不是 f(x,y) 的连续点; (B) 不是 f(x,y) 的极值点;
- (C) 是 f(x,y) 的极小值点; (D) 是 f(x,y) 的极大值点.

$$6.$$
 二次积分 $\int_0^{rac{\pi}{2}} \mathrm{d} heta \int_0^{\cos heta} fig(
ho\cos heta\,,
ho\sin hetaig)
ho\mathrm{d}
ho$ 可以写为【 】

(A)
$$\int_0^1 dy \int_0^{\sqrt{y-y^2}} f(x, y) dx$$
; (B) $\int_0^1 dy \int_0^{\sqrt{1-y^2}} f(x, y) dx$;

(B)
$$\int_0^1 dy \int_0^{\sqrt{1-y^2}} f(x, y) dx$$

(C) $\int_0^1 dx \int_0^1 f(x, y) dy$; (D) $\int_0^1 dx \int_0^{\sqrt{x-x^2}} f(x, y) dy$.

(D)
$$\int_0^1 dx \int_0^{\sqrt{x-x^2}} f(x, y) dy$$
.

二、填空题 (每小题 6 分, 共 5 个小题, 共 30 分)

8. 若函数z = f(x, y)由方程 $e^z - xyz = e$ 确定,则 $dz|_{(1,0)} =$ ______

9. 曲面 $x^2 + y^2 + z = 4$ 在点 P(1,1,2) 处的法线方程是______.

11. 设平面区域 $D = \{(x,y) | x^2 + y^2 \le 1, x \ge 0\}$,则二重积分 $\iint_{\Omega} \frac{xy}{1 + x^2 + y^2} dxdy = \underline{\qquad}$.

三、解答题(每小题 10 分, 共 4 个小题, 共 40 分, 要求有必要的解 题步骤)

12. 求曲线 $\begin{cases} x^2 + y^2 + z^2 = 6 \\ x + y + z = 0 \end{cases}$ 在点(1, -2, 1)处的切线方程和法平面方程.

13. 已知直角三角形的斜边长为1,则其周长不可能超过多少?

14. 计算二重积分 $\iint_{\Omega} \frac{\sin y}{y} dxdy$, 其中 D 是由直线 y = x 及抛物线 $x = y^2$ 所围成的区域.

15. 设区域 $\Omega = \{(x,y,z) | x^2 + y^2 + z^2 \le 1\}$, 计算三重积分 $I = \iiint z^2 dx dy dz$.