

LABORATORIO 4. Control de posición de una masa – sistema husillo de avance

Guías de Prácticas de Laboratorio Control Lineal Titulo de la Práctica de Laboratorio: LABORATORIO 4. Control de posición de una masa

Elaborado por:	Revisado por:	Aprobado por:
Ing. Lagranda Calarus Dh.D.	lan Olao Barras	la a William Cámas Bh D
Ing. Leonardo Solaque, Ph.D. Docente	Ing. Olga Ramos	Ing. William Gómez. Ph.D
IM. Adriana Riveros, MSc. Docente	Jefe área Automatización y Control	Director de Programa
Ing. Andrés Castro, MSc. Docente	Programa de Ingeniería en Mecatrónica	Ingeniería en Mecatrónica
Ing. Vladimir Prada, Ph.D. Docente		
Programa de Ingeniería en Mecatrónica		

LABORATORIO 4. Control de posición de una masa – sistema husillo de avance

Control de Cambios

Descripción del Cambio	Justificación del Cambio	Fecha de Elaboración / Actualización
Se cambian las guías al nuevo formato	Nuevo formato para implementar	07/08/2018
Se cambian los sistemas a trabajar	Se requiere renovación semestral de guías	21/01/2019
Se cambian los sistemas a trabajar	Se requiere renovación semestral de guías	29/07/2019
Se cambian los sistemas a trabajar	Se requiere renovación semestral de guías	20/01/2020
Se cambian los sistemas a trabajar	Se requiere renovación semestral de guías	23/01/2021

LABORATORIO 4. Control de posición de una masa – sistema husillo de avance

1. FACULTAD O UNIDAD ACADÉMICA: INGENIERÍA

2. PROGRAMA: INGENIERÍA EN MECATRÓNICA

3. ASIGNATURA: CONTROL LINEAL Y LABORATORIO

4. SEMESTRE: SÉPTIMO

5. OBJETIVOS:

General: Diseñar e implementar un control para la posición para una masa con elemento actuante un motor DC.

> Específicos:

- Hallar y simular el modelo matemático para el sistema electromecánico.
- Implementar la planta a controlar teniendo en cuenta las restricciones de diseño (prototipo pequeño).
- Encontrar las constantes del regulador que permita controlar la posición de la masa a un valor deseado, validar en simulación.
- Asociar saturaciones reales que se puedan presentar en el sistema físico e integrarlas a la simulación para su respectivo análisis.
- Implementar el controlador obtenido, validando su desempeño y los cambios que se presenten al variar los parámetros del control (variando los valores de las resistencias del PID).

6. MATERIALES, REACTIVOS, INSTRUMENTOS, SOFTWARE, HARDWARE O EQUIPOS DEL LABORATORIO:

DESCRIPCIÓN (Material, reactivo, instrumento, software, hardware, equipo)	CANTIDAD	UNIDAD DE MEDIDA
Computador con Matlab	1	Equipo por grupo de trabajo
Fuente de voltaje	1	Equipo por grupo de trabajo
Osciloscopio	1	Equipo por grupo de trabajo

LABORATORIO 4. Control de posición de una masa – sistema husillo de avance

Generador de señales	1	Equipo por grupo de trabajo
Multímetro	1	Equipo por grupo de trabajo

7. MATERIALES, REACTIVOS, INSTRUMENTOS, SOFTWARE, HARDWARE O EQUIPOS DEL ESTUDIANTE:

DESCRIPCIÓN (Material, reactivo, instrumento, software, hardware, equipo)	CANTIDAD	UNIDAD DE MEDIDA
Motor en DC + masa	1	Equipo por grupo de trabajo
Conjunto de amplificadores operacionales	1	Equipo por grupo de trabajo
Conjunto de resistores y capacitores	1	Equipo por grupo de trabajo

8. PRECAUCIONES CON LOS MATERIALES, REACTIVOS, INSTRUMENTOS Y EQUIPOS A UTILIZAR:

- Para el ingreso al laboratorio será necesaria la bata blanca.
- Se recomienda hacer un uso adecuado de los computadores.
- Es recomendable apagar los elementos si se va a realizar cualquier cambio en el circuito electrónico o en la parte mecánica del sistema.
- No exceder los valores máximos permitidos de voltajes y corrientes indicados para los dispositivos utilizados.
- Consultar en los manuales y datasheet correspondientes.
- No sobrepasar el máximo de potencia disipada por las resistencias.

9. PROCEDIMIENTO, MÉTODO O ACTIVIDADES:

Encontrar el modelo matemático que corresponde al sistema de la figura 1, donde se tiene como salida la posición de la masa y como entrada el voltaje del motor (Figura 1).

LABORATORIO 4. Control de posición de una masa – sistema husillo de avance

Figura 1: Sistema husillo de avance + motor DC

- Diseñar un control PID usando asignación de polos, para la posición de la masa, tal que cumpla los siguientes parámetros: ess = 0, ζ = 0.95 y ts = 95% del tiempo de establecimiento en lazo abierto. Lo anterior para seguir escalón, rampa y parábola-en simulación.
- Verificar el funcionamiento de al menos dos controles diseñados vs los implementados.

10. RESULTADOS ESPERADOS:

- Controladores PID para seguimiento de escalón, rampa y/o parábola.
- Respuesta en simulación (Matlab) de la planta controlada, observando la señal de control, el error y la salida.
- Planta de masa acompañada del husillo + motor
- ➤ Informe en formato IEEE

11. CRITERIO DE EVALUACIÓN A LA PRESENTE PRÁCTICA:

Por medio de esta práctica se desarrollarán las siguientes competencias:

- Habilidad para identificar, formular y resolver problemas complejos de Ingeniería aplicando principios de Ingeniería, ciencias y matemáticas.
- Habilidad para comunicarse efectivamente ante un rango de audiencias.
- Capacidad de funcionar de manera efectiva en un equipo cuyos miembros juntos proporcionan liderazgo, crean un entorno colaborativo e inclusivo, establecen metas, planifican tareas y cumplen objetivos.

LABORATORIO 4. Control de posición de una masa – sistema husillo de avance

Capacidad de desarrollar y llevar a cabo la experimentación adecuada, analizar e interpretar datos, y usar el juicio de Ingeniería para sacar conclusiones.

Las competencias descritas anteriormente se evaluarán mediante los siguientes indicadores:

- Identifica las variables que intervienen en un problema de ingeniería.
- Propone y/o formula modelos que representan las relaciones de las variables de un problema.
- Identifica y aplica leyes, teoremas, principios para la solución de problemas de ingeniería.
- Establece los requerimientos de ingeniería que permiten la adecuada operación de un sistema, a fin de cumplir normativas y necesidades del usuario final.
- Maneja las herramientas tecnológicas y computacionales para la solución de problemas complejos de ingeniería.
- Presenta sus ideas en forma clara y concisa, utilizando un lenguaje apropiado al contexto.
- Utiliza diferentes formas de comunicación con el fin de transmitir sus ideas, dependiendo del tipo de audiencia.
- Redacta apropiadamente informes utilizando formatos estandarizados, referenciando, y utilizando reglas gramaticales y ortográficas.
- Se comunica adecuadamente con los integrantes del equipo, con el fin de desarrollar las tareas dentro de un entorno colaborativo, para cumplir los objetivos del proyecto.
- Identifica los parámetros asociados a la problemática, sus variables de entrada y los resultados esperados.
- Formula y ejecuta el protocolo experimental.
- Analiza e interpreta los resultados obtenidos tras la experimentación (en laboratorios y/o mediante el uso de herramientas computacionales).
- Concluye sobre resultados obtenidos, aplicando juicios de ingeniería.