ĐẠI HỌC QUỐC GIA TP. HCM TRƯỜNG ĐẠI HỌC BÁCH KHOA

MÔN HỌC: THIẾT KẾ VI MẠCH

BÁO CÁO LAB 1 MOS TRANSISTOR CHARACTERIZATION

Giảng viên hướng dẫn: Nguyễn Phan Thiên Phúc

Danh sách thành viên:

STT	Họ và tên	MSSV	Đánh giá
1	Đoàn Thị Phương Thảo	2112312	33.33%
2	Trần Thanh Huy	2011295	33.33%
3	Phạm Lê Gia Bảo	2112881	33.33%

TP. HÒ CHÍ MINH, NĂM 2021

LABORATORY 1

MOS TRANSISTOR CHARACTERIZATION

OBJECTIVES

No.	Objective	Requirement
1	I-V characteristics of MOS	• Simulating curves I_D vs V_{GS} , and I_D vs V_{DS} of
	transistors.	NMOS_VTL and PMOS_VTL transistors.
2	The effects on I-V characteristics	• Simulating curves I_D vs V_{GS} , and I_D vs V_{DS} of
	when varying:	NMOS_VTL transistor, then observing the curves drawn.
	$\triangleright V_{GS}$.	
	Device's size.	
3	Create layouts for MOS	 Create layouts for a 120n/60n NMOS_VTL and a
	transistors.	50n/50n PMOS_VTL.
		 Show DRC confirmation and corresponding
		schematic with proof of LVS.

PREPARATION FOR LAB 1

> Students **must finish** lab 0 at home.

EXPERIMENT 1

Objective: Known MOS transistor operations and I-V curves.

<u>Requirements:</u> Procedure $I_D vs V_{GS}$, and $I_D vs V_D$ plots of NMOS_VTL and PMOS_VTL in FreePDK45.

<u>Instructions:</u> Assemble the circuit as shown in **Figure 1**, setting parameters for power supplies (using **vdc** source).

Check: Your report must show these results for both NMOS_VTL transistors.

Figure 1 Test setup for the NMOS_VTL transistor.

 \triangleright Simulate **curves** $I_D vs V_{DS} @ V_{GS} = 1V$, and sweeping variable $V_{DS} = [0,1.5]V$ step 10mV.

 \triangleright Simulate **curves** $I_D vs V_{GS} @ V_{ds} = 1.5V$, and sweeping variable $V_{gs} = [0,1.5]V$ step 10mV.

<u>Check:</u> Your report must show these results for both PMOS_VTL transistors.

Figure 2 Test setup for PMOS_VTL transistor.

 \triangleright Simulate **curves** $I_D vs V_{DS} @ V_{GS} = 1V$, and sweeping variable $V_{DS} = [0, 1.5]V$ step 10mV.

 \triangleright Simulate **curves** I_D vs V_{GS} @ $V_{ds} = 1.5V$, and sweeping variable $V_{gs} = [0,1.5]V$ step 10mV.

EXPERIMENT 2

<u>Objective:</u> The effects on IV characteristics when varying V_{GS} , and the device's size. <u>Requirements:</u> Simulate curves I_D vs V_{DS} and I_D vs V_{DS} when varying V_{GS} , and device's size. <u>Instructions:</u>

 \triangleright Replace the default size of the NMOS transistor with variables W, and L, respectively. It means your testbench has five parameters W, L, V_{GS} , V_{DS} , and V_{SB} shown in the figure below.

Figure 3 Testbench for experiment 2.

➤ In ADE-L, students open Parametric Analysis to sweep multiple variables:

Tool > Parametric Analysis > Run mode > Sweeps & Ranges

 \triangleright **Parametric analysis** is used when two or more independent variables are present in a single function. Students can have the standard X-Y plot of I_D versus V_{DS} with a constant V_{GS} . But students need to plot the same X-Y plot multiple times for each of the discrete V_{GS} values. Students can refer to the settings and results in the figures below:

Figure 4 Setting parameters for characterizing I_D vs V_{DS} @ $V_{GS} = \{0, 0.25, 0.5, 0.75, 1.0\}$ V

Figure 5 $I_D vs V_{DS} @ V_{gs} = [0,1] V \text{ step } 0.25 V.$

Check: Your result must show these results.

> Simulate curves $I_D vs V_{GS} @ V_{gs} = [0,1] V$ step 0.25V.

Simulate curves $I_D vs V_{DS} @ W = [30,210] nm$ step 30nm.

> Simulate curves $I_D vs V_{DS} @ L = [30,240] nm$ step 30nm.

EXPERIMENT 3

Objective: Create layouts for MOS devices.

Requirements:

- Create layout of a 120n/60n NMOS_VTL and a 50n/40n PMOS_VTL.
- Show DRC confirmation and corresponding schematic with proof of LVS.

Instructions:

➤ In this experiment, students will consider how the transistors are built. Designers need to understand the physical implementation of circuits because it has a major impact on performance, power, and cost. Easiest to understand by viewing both top and cross-section of a wafer in a simplified manufacturing process, where:

One is the top view, obtained by looking down on a wafer.

The other is the cross-section, obtained by slicing the wafer through the middle of a transistor and looking at it edge-wise.

Figure 6 Cross section of an NMOS transistor.

- > Students begin by looking at the cross-section of a complete NMOS transistor, then look at the top view of the same NMOS transistor and define a set of masks used to manufacture the different parts of the NMOS transistor.
 - According to layout instructions in lab 0, this lab only mentions layout steps to perform.
 - 1. Add **n-active** (n-islands).

- **2.** Add Poly (**PO**) for the gate.
- 3. Make drain, source, and bulk connections (contacts).
- 4. Create pwell.
- **5.** Overlap the two active regions with the correct types of **implants**.
- **6.** Create contacts for four terminals (**metal1**).

Figure 7 NMOS schematic.

Check:

➤ Layout of a 120n/60n NMOS_VTL with DRC confirmation and corresponding schematic with proof of LVS.

➤ Layout of a 50n/50n PMOS_VTL with DRC confirmation and corresponding schematic with proof of LVS.

