

Research & Development the Protocol in 4G/5G

tuandn3@viettel.com.vn

Agenda

- 1. Software development process
 - Waterfall model
 - eNodeB Viettel 0
- 2. Project 1 - WikiPTIT
 - Introduction
 - 0 Practices
- Project 2 4G LTE Paging simulation

 o Introduction 3.

 - Practices 0
- Project 3 5G NR Paging simulation

 o Introduction 4.
 - 0
 - **Practices**
- 5. Socket programming with TCP
 - Socket API 0
 - Example with socket API
- 6. Homework
 - Introduction 0
 - Project 2

1. Software Development Process

Software Development Process

Definition

O Software Development Process or Software development life cycle SDLC. It is a process that describes how to develop, design and maintain the software project ensuring that all the functional & user requirement, goals and objective are met. This methodology improves the quality of the software project and over all process of software development.

Models

- Waterfall
- Iterative
- Spiral
- Agile

Waterfall

- Input
 - o 3GPP, ITU
 - o pre-study document
- Output
 - o Specification
 - System Requirement Specification

Requirement - Specs

❖ Purpose: to transform the defined stakeholder requirements into a set of desired system technical requirements that will guide the design of the system

ID	eNodeB	Version 1	Description
I	Common specs		
1	Compliance standards	3GPP R10	
2	Duplexing mode	FDD support	
3	Bandwidth (Mhz)	20	
П	Mechanical specs		
1	BU weight (kg)	15	
2	RU weight (kg)	25	
3	BU H*W*D (cm)	450*350*60	
Ш	Tính năng trên gNodeB (NSA)	•	
1	Paging	x	
2	RRC Connection Establishment	х	
3	RRC Connection Release	х	

ID	gNodeB	Version 1	Description		
I	Common specs				
1	Compliance standards	3GPP R15			
2	Duplexing mode	TDD support			
3	Bandwidth (Mhz)	100			
II	Mechanical specs				
1	BU weight (kg)	10			
2	RU weight (kg)	20			
3	BU H*W*D (cm)	400*300*50			
III	System Feature on NSA mode				
1	Paging	x			
2	SgNB Addition Procedure	x			
3	SgNB Release procedure	x			

Requirement - SRS

Table of Contents

- 1. Introduction
 - 1.1 Purpose
 - 1.2 Scope
 - 1.3 Definitions, acronyms, and abbreviations
 - 1.4 References
 - 1.5 Overview
- 2. Overall description
 - 2.1 Product perspective
 - 2.2 Product functions
 - 2.3 User characteristics
 - 2.4 Constraints
 - 2.5 Assumptions and dependencies
- Specific requirements (See 5.3.1 through 5.3.8 specific requirements. See also Annex A for se this section of the SRS.)

Appendixes

1200	ecific requi		27 (55 P. O. C.) 45 (30 P. O. C.)
3.1			e requirements
	3.1.1		erfaces
	3.1.2	Hardwa	re interfaces
	3.1.3	Softwar	e interfaces
	3.1.4	Commu	nications interfaces
3.2	System	features	
	3.2.1	System	Feature 1
		3.2.1.1	Introduction/Purpose of feature
			Stimulus/Response sequence
			Associated functional requirements
			3.2.1.3.1 Functional requirement 1
			*
			*
			•
			3.2.1.3.n Functional requirement n
	3.2.2	System	feature 2
	•		
	3.2.m	System	feature m
	1.00		
	33.0		
	(100)		
3.3	Perform	nance requ	uirements
3.4	Design	constrain	ts
3.5	Softwa	re system	attributes
3.6		equiremen	

- 1.2 Phạm vi
- 1.3 Tổng quan
- 2 mô tả chung hệ thống
 - ▷ 2.1 Mô hình tổng quan
- 3 yêu cầu chức năng
 - 3.1 System Feature 1

3.1.1 Mục đích

3.1.2 Luồng xử lý

- ▲ 3.1.3 Chức năng liên quan
- 3.1.3.1 Yêu cầu chức năng 1

3.1.3.1.1 Mô tả

3.1.3.1.2 Đầu vào

3.1.3.1.3 Quy trình

3.1.3.1.4 Đầu ra

3.1.3.2 Yêu cầu chức năng N

- ▲ 4 YÊU CĂU GIAO TIẾP HỆ THỐNG NGOÀI
 - 4.1 Yêu cầu giao diện
 - 4.2 Giao tiếp phần cứng
 - 4.3 Giao tiếp phần mềm
 - 4.4 Truyền tải thông tin
- 5 yêu cầu phi chức năng
 - 5.1 Hiệu suất hệ thống
 - 5.2 An toàn hệ thống
 - ▷ 5.3 Bảo mật hệ thống
 - б yêu cầu khác
- 7 PHU LUC
 - 7.1 Tài liêu tham khảo

Design

Input

- System Specification
- O System Requirement Specification

Output

- o System Architecture Design
- o System Detailed Design

Design

- ❖ Architecture Design: The process of defining a collection of hardware and software components and their interfaces to establish the framework for the development of a computer system.
- ❖ Detailed Design: The process of refining and expanding the Architecture Design of a system or component to the extent that the design is sufficiently complete to be implemented

Design – Architecture Design

■ 1 GIỚI THIỀU 1.1 Muc đích 1.2 Pham vi 1.3 Tổng quan 2 MÔ HÌNH TỔNG QUAN ■ 3 MUC TIÊU thiết kế & RÀNG BUÔC 3.1 Muc tiêu 3.2 Ràng buộc ■ 4 KiÉN TRÚC PLATFORM 4.1 Tổng quan kiến trúc Platform 4.2 Kiến trúc phần cứng 4.3 Kiến trúc phần mềm ■ 5 KIẾN TRÚC HÊ THỐNG 5.1 Layer 1 5.2 Layer N 6 MÔ HÌNH THÀNH PHẦN 7 CÁC THÀNH PHẦN CHÍNH HỆ THỐNG ■ 8 THÀNH PHẦN HỔ TRƠ YÊU CẦU PHI CHÚC NĂNG 8.1 Hiệu năng 8.2 Bảo mật 8.3 Đóng gói 9 MÔ HÌNH TRIỂN KHAI 10 GIẢ THIẾT VÀ RÀNG BUỐC ■ 11 PHU LUC 11.1 Tài liệu tham khảo

Design – Detailed Design

- 1. GIỚI THIỀU
 - 1.1 Muc đích
 - 1.2 Phạm vi
 - 1.3 Thuật ngữ
 - 1.4 Tài liệu tham khảo
- 2. TỔNG QUAN HÊ THỐNG
 - 2.1 Tổng quan kiến trúc phần mềm
 - 2.2 Tổng quan kiến trúc phần cứng (Tùy chọn)
- 3. THIẾT KẾ MODULE PHẦN MỀM
 - 3.1 SDD001_RRC_PAGING
 - 3.1.1 Tổng quan thủ tục
 - 4 3.1.2 Luồng xử lý thành công chi tiết
 - 3.1.2.1 Tổng quan luồng xử lý thành công
 - 3.1.2.2 CSC nhận được bản tin S1AP_PAGING_IND
 - 3.1.2.3 CSC thục hiện thủ tục SFN_TIMER expired
 - 3.1.2.4 SFN cập nhật do MAC báo lên khi xảy ra mất đồng bộ
 - 3.1.2.5 SFN đồng bộ theo chu kỳ
 - 3.1.3 Luồng xử lý thất bại chi tiết.
 - 3.1.4 Module
 - 3.1.4.1 Global Context
- 4. THIẾT KẾ DATA
 - 4.1 Dữ liệu tĩnh
 - 4.2 Kiểu dữ liêu
 - 4.3 Dữ liệu động (Dynamic Data)

Implementation

Input

- System Architecture Design
- o System Detailed Design
- Coding convention

Output

- O Source code, configuration
- o Runtime package

Verification

- Input
 - o Runtime package
 - Test case
- Output
 - Test report
 - o Bug list

eNodeB Viettel

- * Baseband Block
 - o CU: Control Unit
 - O BU: Baseband unit
- * Radio Block
 - o RU: Radio Unit
 - o Ant: Anten
- ❖ 4G Core
 - o MME: Mobility Management Entity
 - o SGW/ PGW: Serving Gateway/ Packet Data Gateway

eNodeB Viettel - specification

Technical Specifications

ltem	vBBU - 366b	vRRU - 1842b/2642b	vRRU - 1844b/2644b	SMC - 1812b/2612b			
Compliance standards	3GPP Release 10						
Duplexing mode		FDD					
Supported Bandwidth (MHz)		1.4, 3, 5,	10, 15, 20 Mhz				
Bands		1800/2600Mhz	1800/2600Mhz	1800/2600Mhz			
Maximum of Cell Carriers per BBU	6						
Maximum of Cell Carriers per RRU		1	2	1			
Transmit and Receive Channels		2T2R	4T4R	2T2R			
Maximum Output Power		2x40W	4x40W	2x10W			
IBW (Instantaneous BandWidth)		20	40	20			
Receiver Sensitivity (two ways)		-109dBm	-109dBm	-109dBm			
Maximum RRC-connected users per Cell	1200						
Maximum RRC-connected users per BBU	3600						
Maximum DL/UL Throughput per Cell (Mbps)	300/75						
Maximum DL/UL Throughput per BBU (Mbps)	900/225						
Call Attempts per Second	70 CAPS						

Mechanical specifications

Item	vBBU-366b	vRRU - 1842b/2642b	vRRU - 1844b/2644b	SMC - 1812b/2612b
HxWxD	446x344x59m m;	320x400x135 mm	500x350x147 mm	455x290x164 mm
Weight	9Kg	16 Kg	25 Kg	15 Kg
Mount	Pole	Pole	Pole	Pole, Wall, Ceiling

Environment specifications

Item	vBBU-366b	vRRU - 1842b/2642b	vRRU - 1844b/2644b	SMC - 1812b/2612b
Operating temperature	-10°C to +55°C	-10°C to +55°C	-10°C to +55°C	-10°C to +55°C
Relative Humidity	5% to 95%	5% to 95%	5% to 95%	5% to 95%
Absolute Humidity	1 to 30 g/m3	1 to 30 g/m3	1 to 30 g/m3	1 to 30 g/m3
Ingress Protection Type	IP20	IP67	IP67	IP65

eNodeB – SRS Paging Feature

eNodeB - Verification

❖ Tools

- o EPC emulator: Polaris
- O UE emulator: Aeroflex
- O UE 4G:
- UE analyst tool
 - o QXDM/QCAT by Qualcom
 - o Nemo by Keysight
 - o Tems by infovista

Time	Type	Description	Subtitle	recti	4
2018 Ja	0xB112	Reserved			L
2018 Ja	0xB067	LTE Mac UL Tx Statistics			
2018 Ja	0xB16B	LTE PDCCH-PHICH Indication			
2018 Ja	0xB172	LTE Uplink PKT Build Indication			
2018 Ja	0xB0A4	LTE PDCP DL Statistics Pkt			
2018 Ja	0xB114	LTE LL1 Serving Cell Frame Tim			
2018 Ja	0xB16B	LTE PDCCH-PHICH Indication			
2018 Ja	0xB14D	LTE LL1 PUCCH CSF			
2018 Ja	0xB193	LTE ML1 Serving Cell Meas Res			
2018 Ja	0xB16B	LTE PDCCH-PHICH Indication			
2018 Ja	0xB0C0	LTE RRC OTA Packet	PCCH / Paging	BS	
2018 Ja	0xB193	LTE ML1 Serving Cell Meas Res			
2018 Ja	0xB132	LTE LL1 PDSCH Decoding Results			
2018 Ja	0xB16F	LTE PUCCH Power Control			
2018 Ja	0xB14D	LTE LL1 PUCCH CSF			
2018 Ja	0xB16B	LTE PDCCH-PHICH Indication			
2018 Ja	0xB112	Reserved			
2018 Ja	0xB112	Reserved			
2018 Ja	0xB172	LTE Uplink PKT Build Indication			
2018 Ja	0xB112	Reserved			
2018 Ja	0xB112	Reserved			

2. Project 1 – WikiPTIT

WikiSET

- Mission: Build the online WikiPTIT which student, lecturer can search thesis, paper, course.
- Practices:
 - Task 1: gather requirements
 - Task 2: build the specs
 - Task 3: make the System Feature x
 - Task 4: make the Architecture Design
 - Task 5: make the Detailed Design
 - Task 6: Implementation & Verification

Task 1: gather requirement

❖ Purpose: to transform the defined stakeholder requirements into a set of desired system technical requirements that will guide the design of the system

Task 2: build the specs

- Common specs
- Performance specs
- System Feature specs

ID	eNodeB	Version 1	Version 2	Description	
I	Common specs				
1	Linux server CentOS 8		x		
2	Database MySQL 8.0		x		
3					
II	Performance specs				
1	Max connections		1000		
2	Max active connection		100		
3	Response time (ms)		100		
Ш	System Feature Specs				
1	account management		x		
2	student login management		x		
3	lecture login management		x		
4	guest login management		x		
5	course search		x		
6	thesis search		x		

Task 3: make the System Requirement Feature X

- Student login management
 - o Purpose
 - o Flow
 - o Functions
 - o Login success
 - o Login failure
 - o History, log
 - o View status
 - o Support BachKhoa account

Task 4: make the Architecture Design

- Database
- Server
- Modules
 - Database Management
 - Connection Management
 - o Search Management
 - o Operation Management

Task 5: make the Detailed Design

- Student login management
 - Success flow
 - o Unsuccessful Flow
 - o Global data
 - o API
 - o State machine

Task 6. Implementation & Verification

- Implementation
 - Tools
 - WikiPTIT
 - Client simulation
- Verification
 - Unitest
 - Integration
 - System

3. Project 2 – 4G LTE Paging simulation

4G LTE Paging simulation

- * Mission: Simulate the 4G LTE Paging system
- Practices:
 - o Task 1: gather requirement
 - o Task 2: build the specs
 - O Task 3: make the System Paging x
 - o Task 4: make the Architecture Design
 - o Task 5: make the Detailed Design
 - O Task 6: Implementation & Verification

3GPP reference

- https://www.3gpp.org/ftp/Specs/archive/36_series (release 10)
- 3GPP TS 36.331: "Evolved Universal Terrestrial Radio Access (E-UTRAN); Radio Resource Control (RRC) Protocol Specification".
- 3GPP TS 36.304: "Evolved Universal Terrestrial Radio Access (E-UTRA), User Equipment (UE) procedures in idle mode".
- 3GPP TS 36.413: "Evolved Universal Terrestrial Radio Access (E-UTRAN); S1 Application Protocol (S1AP)".

Pre-study

- Process
 - o EPC
 - o eNB
 - o UE
- ❖ IPC
 - TCP socket
- 3GPP Paging procedure
 - UE Paging procedure
 - o RRC Paging procedure
 - o S1AP paging procedure

4. Project 3 - 5G NR Paging simulation

5G NR Paging simulation

- Mission: Simulate the 5G NR Paging system
- Practices:
 - Task 1: gather requirement
 - Task 2: build the specs
 - Task 3: make the System Paging x
 - Task 4: make the Architecture Design
 - Task 5: make the Detailed Design
 - Task 6: Implementation & Verification

3GPP reference

- https://www.3gpp.org/ftp/Specs/archive/38_series (release 15)
- 3GPP TS 36.413: "Evolved Universal Terrestrial Radio Access Network (E-UTRAN); S1 Application Protocol (S1AP)".
- 3GPP TS 38.304: "NR; User Equipment (UE) procedures in idle mode and in RRC inactive state".
- 3GPP TS 38.331: "NG-RAN; Radio Resource Control (RRC) Protocol Specification".
- 3GPP TS 38.401: "NG-RAN; Architecture description".
- 3GPP TS 38.410: "NG-RAN; NG general aspects and principles".

5. Socket programming with TCP

Socket

Introduction

- Socket = IP address + Port
- Socket API or Berkeley socket was mostly written by University of California, Berkeley
- Socket API has used in many OS
- Application call this socket API to do the inter-process communication (same host or different node)
- Socket API provide some types of protocol sockets as TCP socket, UDP socket, SCTP socket

eNodeB Viettel & Socket

gNodeB Viettel & Socket

- 3GPP release 15
- Protocol stack

TCP Client - Server

Client-Server communication

Server

- passively waits for and responds to clients
- passive socket

Client

- initiates the communication
- must know the address and the port of the server
- active socket

Flow Diagram for BSD Sockets Communication using TCP

socket

```
#include <sys/socket.h>
int socket (int family, int type, int protocol);
/* Returns: non-negative descriptor if OK, -1 on error */
```

- * Family or Domain
 - o AF_UNIX (same host)
 - o AF_INET (via IPv4)
 - o AF_INET6 (via IPv6)
- Family or Domain
 - o SOCK_STREAM : reliable, bidirectional, byte-stream
 - O SOCK_DGRAM: unreliable, connectionless,

socket(): system call creates a new socket

- protocol
 - o TCP use with SOCK_STREAM
 - o UDP use with SOCK_DGRAM
 - o SCTP

connect

```
#include <sys/socket.h>
int connect(int sockfd, const struct sockaddr *servaddr, socklen_t addrlen);
/* Returns: 0 if OK, -1 on error */
```

socket(): system call establishes a connection with another socket

Bind

- O The sockfd! file descriptor obtain from a previous call to socket()
- O The *myaddr*: a pointer to a structure specifying the address
- O The addrlen: specifies the size of the address structure.

bind

```
#include <sys/socket.h>
int bind (int sockfd, const struct sockaddr *myaddr, socklen_t addrlen);
/* Returns: 0 if OK,-1 on error */
```

* Bind(): system call binds a socket to an address.

- Bind
 - O The sockfd: file descriptor obtain from a previous call to socket()
 - O The *myaddr*: a pointer to a structure specifying the address
 - O The addrlen: specifies the size of the address structure.

listen

```
#include <sys/types.h> /* See NOTES */
#include <sys/socket.h>

int listen(int sockfd, int backlog);
```

❖ *listen()*: system call allow a stream socket to accept incoming connections from other sockets.

listen

- o Return 0 on success, or -1 on error
- O The sockfd: file descriptor obtain from a previous call to socket()
- The backlog: argument allow us to limit the number of such pending connection

accept

```
#include <sys/socket.h>
int accept (int sockfd, struct sockaddr *cliaddr, socklen_t *addrlen);
/* Returns: non-negative descriptor if OK, -1 on error */
```

* accept(): system call accepts a connection from a peer application on a listening stream socket, and optionally returns the address of the peer socket.

Bind

- O The sockfd: file descriptor obtain from a previous call to socket()
- O The cliaddr: a pointer to a structure specifying the client address
- O The addrlen: specifies the size of the address structure.

write or send

```
#include <unistd.h>
ssize_t write(int fd, const void *buf, size_t count);
```

- sockfd
- sockaddr
- addrlen

read or recv

```
#include <unistd.h>
ssize_t read(int fd, void *buf, size_t count);
```

- fd
- buf
- count

6. Project 3 – 5G NR Paging simulation

4G LTE Paging simulation

- Project 2
- Report: pdf, 3-5 pages
- Team: 3 people

