EC3204: Programming Languages and Compilers

Lecture 8 — Syntax Analysis (4): LR Parsing with Ambiguous Grammars

> Sunbeom So Fall 2024

LR Parsing with Ambiguous Grammars

- LR parsing techniques are popular because they are more powerful than LL methods.
- (Challenge) To apply LR techniques, ambiguity must be resolved. Ambiguous expression grammar:

$$E \rightarrow E + E \mid E * E \mid (E) \mid \mathrm{id}$$

Unambiguous grammar:

$$\begin{array}{ccc} E & \rightarrow & E+T \mid T \\ T & \rightarrow & T*F \mid F \\ F & \rightarrow & (E) \mid \mathrm{id} \end{array}$$

 Designing an equivalent unambiguous grammar is hard and sometimes impossible.

LR techniques can be extended to ambiguous grammars with **disambiguating rules**.

Conflicts due to the Ambiguity

The sets of LR(0) items for the ambiguous expression grammar:

$$I_0:egin{array}{c} E'
ightarrow .E \ E
ightarrow .E+E \ E
ightarrow$$

 $I_6:egin{bmatrix} E
ightarrow(E.) \ E
ightarrow E.+E \ E
ightarrow E.*E \end{bmatrix} I_7:egin{bmatrix} E
ightarrow E+E. \ E
ightarrow E.+E \ E
ightarrow E.*E \end{bmatrix} I_8:egin{bmatrix} E
ightarrow E*E. \ E
ightarrow E.+E \ E
ightarrow E.*E \end{bmatrix} I_9:egin{bmatrix} E
ightarrow (E). \ E
ightarrow E. \end{array}$

Conflicts due to the Ambiguity

The SLR parsing table for the ambiguous grammar:

CTATE					_	Φ.	-
STATE	id	+	*	()	\$	$\mid E \mid$
0	s3			s2			g1
1		s4	s5			acc	
2	s3			s2			g6
3		r4	r4		r4	r4	
4	s3			s2			g7
5	s3			s2			g8
6		s4	s5		s9		
7		s4,r1	s5, r1		r1	r1	
8		s4, r2	s5, r2		r2	r2	
9		r3	r3		r3	r3	

- Since $+, * \in FOLLOW(E)$, we have r1 at (7, +), (7, *).
- Since $+, * \in FOLLOW(E)$, we have r2 at (8, +), (8, *).
- Q. How to resolve the conflicts without modifying the grammar?
- A. The conflicts can be resolved by assuming the two rules:
 - * takes precedence over +, and
 - 4 and * are left-associative.

The shift/reduce conflict will occur for the input id + id * id:

Stack	Symbols	Input	Action
0		id + id * id\$	shift to 3
0 3	id	+id*id\$	reduce by 4
0 1	$oldsymbol{E}$	+id*id\$	shift to 4
0 1 4	E+	id * id	shift to 3
0 1 4 3	$E + \mathrm{id}$	*id\$	reduce by 4
0 1 4 7	E + E	*id\$	shift to 5, reduce by 1

Which one is the correct action?

What happens if we choose the shift (or reduce)?

If we choose the shift action, * will have the precedence.

Stack	Symbols	Input	Action
0		id + id * id \$	shift to 3
0 3	id	$+\mathrm{id}*\mathrm{id}$ \$	reduce by 4
0 1	$oldsymbol{E}$	$+\mathrm{id}*\mathrm{id}$ \$	shift to 4
0 1 4	$oldsymbol{E}+$	$\mathbf{id} * \mathbf{id} \$$	shift to 3
0 1 4 3	$E+\mathrm{id}$	*id\$	reduce by 4
0 1 4 7	$oldsymbol{E} + oldsymbol{E}$	*id\$	shift to 5, reduce by 1
01475	$ar{E} + ar{E} *$	$\mathbf{id}\$$	shift to 3
014753	$E+E*\mathrm{id}$	\$	reduce by 4
014758	E + E * E	\$	reduce by 2
0 1 4 7	$oldsymbol{E} + oldsymbol{E}$	\$	reduce by 1
0 1	$oldsymbol{E}$	\$	accept

If we choose the reduce action, + will have the precedence.

Stack	Symbols	Input	Action
0		$\mathrm{id}+\mathrm{id}*\mathrm{id}$ \$	shift to 3
0 3	id	$+\mathrm{id}*\mathrm{id}$ \$	reduce by 4
0 1	$oldsymbol{E}$	$+\mathrm{id}*\mathrm{id}$ \$	shift to 4
0 1 4	E+	id * id \$	shift to 3
0 1 4 3	$E + \mathrm{id}$	*id\$	reduce by 4
0147	E + E	*id\$	shift to 5, reduce by 1
01	$ar{m{E}}$	*id\$	shift to 5
0 1 5	E*	id\$	shift to 3
0153	$E*\mathrm{id}$	\$	reduce by 4
0158	E * E	\$	reduce by 2
0 1	$oldsymbol{E}$	\$	accept

In conclusion, the parsing action at the entry (7,*) must be s5, in order to give precedence * over +.

STATE	id	+	*	()	\$	$oldsymbol{E}$
0	s3			s2			g1
1		s4	s5			acc	
2	s3			s2			g6
3		r4	r4		r4	r4	
4	s3			s2			g7
5	s3			s2			g8
6		s4	s5		s9		
7		s4,r1	s5, r1		r1	r1	
8		s4, r2	s5, r2		r2	r2	
9		r3	r3		r3	r3	

The parsing goes into a shift/reduce conflict for the input id + id + id:

Stack	Symbols	Input	Action
0		id + id + id\$	shift to 3
0 3	${f id}$	$+\mathrm{id}+\mathrm{id}\$$	reduce by 4
0 1	$oldsymbol{E}$	$+\mathrm{id}+\mathrm{id}\$$	shift to 4
0 1 4	$oldsymbol{E}+$	$\mathrm{id}+\mathrm{id}\$$	shift to 3
0143	$E+\mathrm{id}$	$+\mathrm{id}\$$	reduce by 4
0147	$oldsymbol{E} + oldsymbol{E}$	$+\mathrm{id}\$$	shift to 4, reduce by 1

Which one is the correct action?

What happens if we choose the shift (or reduce)?

If we choose the shift action, + will be right-associative.

Stack	Symbols	Input	Action
0		id + id + id\$	shift to 3
0 3	id	$+\mathrm{id}+\mathrm{id}\$$	reduce by 4
0 1	$oldsymbol{E}$	$+\mathrm{id}+\mathrm{id}\$$	shift to 4
0 1 4	E+	id + id\$	shift to 3
0 1 4 3	$E+\mathrm{id}$	$+\mathrm{id}\$$	reduce by 4
0 1 4 7	$oldsymbol{E} + oldsymbol{E}$	$+\mathrm{id}\$$	shift to 4, reduce by 1
01474	$ar{E}+ar{E}+$	- $ -$	shift to 3
014743	$E+E+\mathrm{id}$	\$	reduce by 4
014747	E + E + E	\$	reduce by 1
0 1 4 7	$oldsymbol{E} + oldsymbol{E}$	\$	reduce by 1
0 1	$oldsymbol{E}$	\$	accept

If we choose the reduce action, + will be left-associative.

Stack	Symbols	Input	Action
0		id + id + id\$	shift to 3
0 3	id	$+\mathrm{id}+\mathrm{id}\$$	reduce by 4
0 1	$oldsymbol{E}$	$+\mathrm{id}+\mathrm{id}\$$	shift to 4
0 1 4	E+	$\mathrm{id}+\mathrm{id}\$$	shift to 3
0 1 4 3	$E + \mathrm{id}$	$+\mathrm{id}\$$	reduce by 4
0 1 4 7	E + E	+id\$	shift to 4, reduce by 1
01	$ar{m{E}}$	+id\$	shift to 4
0 1 4	E+	id\$	shift to 3
0 1 4 3	$E + \mathrm{id}$	\$	reduce by 4
0 1 4 7	E + E	\$	reduce by 1
0 1	$oldsymbol{E}$	\$	accept

In conclusion, the parsing action at the entry (7, +) must be r1, in order to make + left-associative.

STATE	id	+	*	()	\$	$oldsymbol{E}$
0	s3			s2			g1
1		s4	s5			acc	
2	s3			s2			g6
3		r4	r4		r4	r4	
4	s3			s2			g7
5	s3			s2			g8
6		s4	s5		s9		
7		s4, r1	s5, r1		r1	r1	
8		s4, r2	s5, r2		r2	r2	
9		r3	r3		r3	r3	

Consider the grammar for specifying statements:

$$stmt \rightarrow if \ expr \ then \ stmt$$
| $if \ expr \ then \ stmt \ else \ stmt$
| other

where other stands for any other statements (e.g., assignments).

Q. Is this grammar ambiguous?

Consider the grammar for specifying statements:

```
stmt \rightarrow if \ expr \ then \ stmt
| if \ expr \ then \ stmt \ else \ stmt
| other
```

where other stands for any other statements (e.g., assignments).

- Q. Is this grammar ambiguous?
- A. Ambiguous. Consider if E_1 then if E_2 then S_1 else S_2 .
 - ▶ 1st interpretation: if E_1 then (if E_2 then S_1 else S_2)
 - 2nd interpretation: if E_1 then (if E_2 then S_1) else S_2
- The first interpretation (parse tree) is more widely acceptable.
 - ► General rule: "Match each **else** with the closest unmatched **then**"
- The problem, where else clause becomes ambiguous in nested conditional statements, is called the dangling-else ambiguity.

• We can resolve the "dangling-else" ambiguity by designing the equivalent unambiguous grammar.

```
stmt \rightarrow matched\_stmt
      | open\_stmt
```

 $matched_stmt \rightarrow if \; expr \; then \; matched_stmt \; else \; matched_stmt$ other

 $open_stmt \rightarrow if expr then stmt$

 \vdash if expr then $matched_stmt$ else $open_stmt$

Idea: the interior statemeths between then and else must not end with an "open" (unmatched) then branch.

• We can resolve the "dangling-else" ambiguity by designing the equivalent unambiguous grammar.

$$\begin{array}{ccc} stmt & \rightarrow & matched_stmt \\ & & | & open_stmt \end{array}$$

 $matched_stmt \rightarrow \text{if } expr \text{ then } matched_stmt \text{ else } matched_stmt \\ | \text{ other}$

 $open_stmt \rightarrow if \ expr \ then \ stmt$

 \bot if expr then $matched_stmt$ else $open_stmt$

Idea: the interior statemeths between then and else must not end with an "open" (unmatched) then branch.

 Simpler solution: specify additional disambiguating rules! To explain this point, consider the simplified grammar:

$$egin{array}{lll} S' &
ightarrow & S \ S &
ightarrow & i \ S \ e \ S \ | \ i \ S \ | \ a \end{array}$$

where i stands for if expr then, S for stmt, e for else, and a for **other**, respectively.

LR(0) states for the simplified dangling-else grammar:

$$I_0:egin{bmatrix} S' o .S \ S o .iSeS \ S o .iS \ S o .iS \ S o .a \end{bmatrix} \qquad I_1:egin{bmatrix} S' o S. \end{bmatrix} \qquad I_2:egin{bmatrix} S o i.SeS \ S o i.S \ S o .iSeS \ S o .iS \ S o .a \end{bmatrix}$$

$$I_3: egin{bmatrix} S
ightarrow a. \ & I_4: egin{bmatrix} S
ightarrow iS.eS \ S
ightarrow iS.eS \ S
ightarrow iS.eS \ S
ightarrow iS \ S
ightarrow .iS \ S
ightarrow .a \ \end{bmatrix} \hspace{0.5cm} I_6: egin{bmatrix} S
ightarrow iSeS. \ S
ightarrow iSeS. \ S
ightarrow .a \ \end{bmatrix}$$

Q. Which states have shift/reduce conflicts in SLR parsing?

SLR parsing table for the simplified dangling-else grammar:

i	\boldsymbol{e}	\boldsymbol{a}	\$	S
s 2		s3		g1
			acc	
s2		s3		g4
	r3		r3	
	s5, r2		r2	
s 2		s2		g6
	r1		r1	
	s2 s2	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{array}{cccccccccccccccccccccccccccccccccccc$

- At position (4,e), we have r2 since $FOLLOW(S) = \{e,\$\}$. As a result, there exist shift/reduce conflicts at (4,e).
- Q. Which one is the correct action? How to resolve the conflict without modifying the grammar?
- A. Shift. We typically prefer shift over reduce unless imposed by other rules - see p.26 at https://www-labs.iro.umontreal.ca/ ~monnier/6232/ocamlyacc-tutorial.pdf

16 / 17

Summary

- LR parsing techniques are useful, but dealing with ambiguous grammar is hard.
- We can extend LR techniques using disambiguating rules (e.g., precedence and associativity rules, preferring shift).