Application of Information & Communication Technologies

Lecture-3

Recap of Lecture 2

- Parts of Computer System
 - Hardware
 - Software
 - User
- Information Technology
 - Data
 - Characteristics of IT
 - Functions of IT

Overview of Lecture 3

- System Unit
 - Digital Data & Program Representation
 - -Bits & Bytes
 - Numbering Systems
 - Decimal & Binary
 - Coding System

Why Representation?

Computers cannot understand English, Urdu, or Chinese.

Computers understand only 0 and 1.

We need to translate our language into binary (0s & 1s).

Digital Computers

- Digital computers = use binary (two states).
- 0 = OFF (no electricity, open circuit).
- 1 = ON (electricity flows, closed circuit).
- All data → text, numbers, images, videos → must be in binary.

FIGURE 2-1
Ways of representing
0 and 1. Binary
computers recognize
only two states—off
and on—usually
represented by 0 and 1.

Digital Data Representation

- Bit = Smallest unit of data (0 or 1).
- Byte = 8 bits together.
- Examples:
 - Letter "A" → 01000001
 - Number "5" → 00000101

Bits & Bytes

- 1 Byte = 8 Bits
- Storage sizes:
 - KB (Kilobyte) = 1,000 bytes
 - MB (Megabyte) = 1 million bytes
 - GB (Gigabyte) = 1 billion bytes
 - TB (Terabyte) = 1 trillion bytes
- Example:
 - A song file = 5 MB

```
- A movie = 1 GB
```

	Bit 0 0 1 1 0 0 0 0 Byte Approximate	
	Abbreviation	Size
	KB	1 thousand bytes
En.	MB	1 million bytes
үлідін 🗇 2015 Сепдәре Сөвтінд	GB	1 billion bytes
	ТВ	1 trillion bytes
	PB	1,000 terabytes
015	EB	1,000 petabtyes
02	ZB	1,000 exabytes
Sopyright	YB	1,000 zettabytes

FIGURE 2-2

Bits and bytes. Document size, storage capacity, and memory capacity are all measured in bytes.

Human vs Computer Language

- Humans speak: English, Urdu, Chinese...
- Computers speak: Binary (0s & 1s).
- Example:
 - Word "HI" = 01001000 01001001 in binary.
- How does a computer understand human language?

Class Activity

- Write down the following:
 - How many bits in 1 byte?
 - Convert: 8 bits = ? Bytes
 - Your mobile storage = ? GB (how many MB is that?)

Numbering Systems

- □ Decimal system → Base 10 (digits 0-9)
- Binary system → Base 2 (digits 0 and 1)
- Decimal is human language, Binary is computer language

Decimal Number Example

- □ Decimal number: 7,216
- \square Place values: 10^3 , 10^2 , 10^1 , 10^0
 - $-7 \times 1000 = 7000$
 - $-2 \times 100 = 200$
 - $-1 \times 10 = 10$
 - $-6 \times 1 = 6$

SYSTEM

Each place value in

a decimal number

Binary Number Example

- ☐ Binary number: 1001
 - Place values: 2³, 2², 2¹, 2⁰
 - $-1 \times 8 = 8$
 - $-0 \times 4 = 0$
 - $-0 \times 2 = 0$
 - $-1 \times 1 = 1$

BINARY NUMBERING SYSTEM

Each place value in a binary number represents 2 raised to the appropriate power.

equivalen

Key Point

□ Decimal: every position = power of 10

■ Binary: every position = power of 2

□ Same method, different base

Class Activity

- Convert the following:
 - Decimal 25 → Binary
 - Binary 1110 → Decimal
 - Decimal 45 → Binary
 - Write down the following:

Coding Systems (Text Data)

- Numbers use Binary.
- Text uses special coding systems:
 - ASCII → Old standard for personal computers.
 - EBCDIC → IBM mainframes.
 - Unicode → Modern, supports all world languages + symbols.

Coding Systems (Text Data)

ASCII & EBCDIC = 1 Byte per character (256 symbols).

Unicode = up to 4 Bytes → more than 1 million

characters.

CHARACTER	ASCII	EBCDIC	
0 1 2 3 4 5	00110011	11110001 11110010 11110011 11110100	
A B C D E F	01000001 01000010 01000011 01000100 01000101 01000110	11000010 11000011 11000100 11000101	
+ ! #	00101011 00100001 00100011	01011010	
FIGURE 2-4 Examples from the ASCII and EBCDIC codes. These common fixed-length binary codes represent all characters as unique strings of 8 bits.			

Why Unicode?

- □ ASCII → Only English letters, digits, symbols.
- □ Unicode → All languages (English, Arabic, Chinese, Russian, Greek, etc.).

- Supports emojis and technical symbols.
- Used by Google, Windows, Mac, Java, Python.

Coding Systems (Other Data)

- Graphics (Images):
 - Stored as pixels (dots).
 - Each pixel = binary color value.

More bits per pixel → more colors. (1 bit = 2
 colors 24 bits = 16 million colors).

One sample pixel:
1110

16-COLOR IMAGE
The color of each pixel is represented using one-half byte (4 bits).

Coding Systems (Other Data)

- Audio (Sound):
 - Sound → converted into samples per second.
 - Example: Audio CD = 44,100 samples/sec.
 - Compressed \rightarrow MP3 (smaller size).

Coding Systems (Other Data)

- Video:
 - Frames of images + sound.
 - 24-60 frames per second.
 - Compressed to save space (DVD, YouTube).

Machine Language

- □ Programs also stored in 0s and 1s.
- Machine Language = CPU's native language.
- Example:
 - 01011000011100000000000100000010
- □ Early computers → programmed in machine code.
- □ Today → We use high-level languages (C, Java, Python), then translated into machine language.

Summary

- System Unit
 - Digital Data & Program Representation
 - -Bits & Bytes
 - Numbering Systems
 - Decimal & Binary
 - Coding System

Suggested Reading

Section 01, Ch-02, The System Unit:
Processing and Memory,
"Understanding Computers: Today
and Tomorrow, Comprehensive", 15th
Edition by Deborah Morley & Charles
S. Parker