2020级 19组 朱云沁 PB20061372 赵明宇 PB19061383 日期 2021-12-24

实验名称:

编码器和译码器

实验目的:

掌握用逻辑门实现编码器的方法;掌握中规模集成电路编码器和译码器的工作原理以及逻辑功能;掌握74LS138用作数据分配器的方法;熟悉编码器和译码器的级联方法;能够利用译码器进行组合逻辑电路设计。

实验原理: 1. 编码器 (Encoder)

- a) 编码:把二进制码按一定的规律编排,使每组代码具有一特定的含义(代表某个数或控制信号)。
- b) 编码器:具有编码功能的逻辑电路。逻辑功能是将输入的每一个高、低电平信号编成一个对应的二进制代码。
- c) 8 线-3 线优先编码器 74LS148: 符号、功能表、级联方式如图 1 所示。其中,S'为选通输入端,S'=0,编码器才能正常工作; Y'_S 为选通输出端, $Y'_S=0$,表示电路工作,无编码输入; Y'_{EX} 为扩展端, $Y'_{EX}=0$,表示电路工作,有编码输入。

(a) 逻辑符号; (b) 逻辑功能表; (c) 级联扩展为 16 线-4 线优先编码器

2. 译码器 (Decoder)

- a) 译码:编码的逆过程。将每个二进制代码赋予的特定含义"翻译"过来,转换成相应的信息符号(输出信号)。
- b) 译码器:具有译码功能的逻辑电路。逻辑功能是将每个输入的二进制代码译成对应的输出高、低电平信号或另一个代码。
- c) 3线-8线译码器 74LS138: 符号、功能表、级联方式如图 2 所示。其中, S_1 、 S_2' 和 S_3' 是三个片选输入端,当 S_1 = 1, S_2' + S_3' = 0时,译码器工作。一个 3 线-8 线译码器能产生三个变量的全部最小项,所以也将这种译码器称为最小项译码器,可用于实现任意逻辑函数。

图 2 译码器 74LS138

(a) 逻辑符号; (b) 逻辑功能表; (c) 级联扩展为 4 线-16 线译码器

2020级 19组 朱云沁 PB20061372 赵明宇 PB19061383 日期 2021-12-24

d) 显示译码器: 能直接驱动数字显示器或能同显示器配合使用的译码器。常用的显示译码器如 CD4511 能驱动七段字符显示器。CD4511 的符号(含共阴极数码管)和功能表如图 3 所示。

		输	j	λ							输	出		
LE	ΒĪ	ΙΤ	D	С	В	Α	a	ъ	с	d	8	f	g	显示字形
×	×	0	×	×	×	×	1	1	1	1	1	1	1	8
×	0	1	×	×	×	×	0	0	0	0	0	0	0	消隐
0	1	1	0	0	0	0	1	1	1	1	1	1	0	0
0	1	1	0	0	0	1	0	1	1	0	0	0	0	- 1
0	1	1	0	0	1	0	1	1	0	1	1	0	1	5
0	1	1	0	0	1	1	1	1	1	1	0	0	1	3
0	1	1	0	1	0	0	0	1	1	0	0	1	1	Ч
0	1	1	0	1	0	1	1	0	1	1	0	1	1	S
0	1	1	0	1	1	0	0	0	1	1	1	1	1	Ь
0	1	1	0	1	1	1	1	1	1	0	0	0	0	7
0	1	1	1	0	0	0	1	1	1	1	1	1	1	8
0	1	1	1	0	0	1	1	1	1	0	0	1	1	٩
0	1	1	1	0	1	0	0	0	0	0	0	0	0	消隐
0	1	1	1	0	1	1	0	0	0	0	0	0	0	消隐
0	1	1	1	1	0	0	0	0	0	0	0	0	0	消隐
0	1	1	1	1	0	1	0	0	0	0	0	0	0	消隐
0	1	1	1	1	1	0	0	0	0	0	0	0	0	消隐
0	1	1	1	1	1	1	0	0	0	0	0	0	0	消隐
1	1	1	×	×	× × × 锁 存								锁存	

图 3 显示译码器 CD4511 (a) 逻辑符号; (b) 逻辑功能表

实验内容:

1. 试用逻辑门设计一个 4 线-2 线的优先编码器。

• 实验任务

用小规模逻辑门芯片设计一个 4 线-2 线的优先编码器,要求输入端高电平有效。将输入端接拨位开关,输出端 $Y_0 \sim Y_1$ 分别接 2 个发光二极管,拨动拨位开关,根据发光二极管显示的变化,逐项验证 4 线-2 线编码器的功能。自拟表格记录实验数据。要求使用与非门、反相器。

• 设计思路

约定优先编码器的输入变量为 $I_0 \sim I_3$,输出变量由高位到低位分别为 $Y_1 \sim Y_0$ 。另设输出端 Y_5 代表工作状态,当且仅当有编码输入时, $Y_5 = 1$ 。由优先编码器的逻辑功能可知, $Y_1 \times Y_0 \times Y_5$ 逻辑函数式分别为

$$Y_1 = I_2 I_3' + I_3 = I_2 + I_3$$

$$Y_0 = I_1 I_2' I_3' + I_3 = I_1 I_2' + I_3$$

$$Y_S = I_0 + I_1 + I_2 + I_3$$

为了使用与非门和反相器实现该电路,利用摩根定理,将以上逻辑函数均变换为由与非运算组成的形式,即

$$Y_1 = (I'_2 I'_3)'$$

$$Y_0 = ((I_1 I'_2)' I'_3)'$$

$$Y_S = (I'_0 I'_1 I'_2 I'_3)'$$

逻辑电路图如图 4 所示。其中,反相器使用 74LS04, 2 输入与非门使用 74LS00, 4 输入与非门使用 74LS20。

2020级

10 妇

朱云沁 PB20061372

赵明宇 PB19061383

日期 2021-12-24

• 实验数据

依据图 4 搭建实验电路,测得真值表如表 1 所示。

	输	入			输出	
I_0	I_1	I_2	I_3	<i>Y</i> ₁	Y_0	Y_{S}
0	0	0	0	0	0	0
1	0	0	0	0	0	1
X	1	0	0	0	1	1
X	X	1	0	1	0	1
X	X	X	1	1	1	1

表1 真值表(图4电路)

• 数据分析

根据表 1 数据可知,图 4 电路的真值表与 4 线-2 线优先编码器的逻辑功能一致,符合实验要求。当所有输入端均为 0 时,编码器不工作, $Y_S=0$;当 $I_0=1$ 而其余输入端为 0 时,输出 BCD 码为 00;当 $I_1=1$ 而 I_2 、 I_3 为 0 时,输出 BCD 码为 01;当 $I_2=1$ 而 I_3 为 0 时,输出 BCD 码为 10;当 $I_3=1$ 时,输出 BCD 码为 11。

2. 试将 74LS138 用作数据分配器。

• 实验任务

电路如图 5 所示。将1Hz连续脉冲信号加到电路的控制输入端,输出接发光二极管,改变输入地址码 A_2 、 A_1 、 A_0 的值,观察实验现象,记录实验结果。

图 5 74LS138 实现的数据分配器

• 实验数据

依据图 5 搭建实验电路,测得真值表如表 2 所示。其中,□□□□、□□□□代表脉冲波形,高电平为 1,发光二极管亮;低电平为 0,发光二极管灭。

输入	$(S_1 = \Box \Box$	几)	输出									
A_2	A_1	A_0	Y_0'	Y_1'	Y_2'	Y_3'	Y_4'	Y_5'	Y_6'	Y_7'		
0	0	0		1	1	1	1	1	1	1		
0	0	1	1		1	1	1	1	1	1		
0	1	0	1	1		1	1	1	1	1		
0	1	1	1	1	1		1	1	1	1		
1	0	0	1	1	1	1		1	1	1		
1	0	1	1	1	1	1	1		1	1		
1	1	0	1	1	1	1	1	1		1		
1	1	1	1	1	1	1	1	1	1			

表 2 真值表 (图 5 电路)

• 数据分析

根据表 2 数据可知,图 5 电路的真值表与数据分配器的逻辑功能一致,符合实验要求。当 $S_1 = 1$ 时,译码器工作,对应输出端输出低电平;当 $S_1 = 0$ 时,译码器不工作,所有输出端输出高电平,因而,该电路将输入数据 S_1 以反码的形式分配到 8 个通道上。

分配器的输出信号与输入脉冲信号反相,是由于 74LS138 输出端低电平有效。若要求分配器的输出信号与输

2020级 19组 朱云沁 PB20061372 赵明宇 PB19061383 日期 2021-12-24

入脉冲信号同相,应选用低电平有效的选通输入端 S_2' 或 S_3' 作为数据输入端。如果仍选用 S_1 作为数据输入端,应在 S_1 端接反相器,或者在 $Y_0'\sim Y_1'$ 输出端均接反相器。

3. 验证编码器 74LS148 和译码器 74LS138 的逻辑功能。

实验任务

电路如图 6 所示,其中反相器使用 74LS04。根据 74LS148 和 74LS138 的输出状态,填表,并分析结果。

图 6 验证 74LS148 和 74LS138 功能的实验电路

• 实验数据

依据图 6 搭建实验电路,测得真值表如表 3 所示。

	74LS148								74LS138							CD4511						
I_0'	I_1'	I_2'	I_3'	I_4'	I_5'	I_6'	I_7'	Y_2'	Y_1'	Y_0'	A_2	A_1	A_0	Y_0'	Y_1'	Y_2'	Y_3'	Y_4'	Y_5'	Y_6'	<i>Y</i> ′ ₇	显示字形
1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	1	1	1	1	1	1	1	0
0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	1	1	1	1	1	1	1	0
X	0	1	1	1	1	1	1	1	1	0	0	0	1	1	0	1	1	1	1	1	1	1
X	X	0	1	1	1	1	1	1	0	1	0	1	0	1	1	0	1	1	1	1	1	2
X	X	X	0	1	1	1	1	1	0	0	0	1	1	1	1	1	0	1	1	1	1	3
X	X	X	X	0	1	1	1	0	1	1	1	0	0	1	1	1	1	0	1	1	1	4
X	X	X	X	X	0	1	1	0	1	0	1	0	1	1	1	1	1	1	0	1	1	5
X	X	X	X	X	X	0	1	0	0	1	1	1	0	1	1	1	1	1	1	0	1	6
X	X	X	X	X	X	X	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	7

表3 真值表(图6电路)

• 数据分析

根据表 3 数据可知,图 6 电路的真值表与 74LS148、74LS138 的逻辑功能一致。74LS148 起到 8 线-3 线优先编码器的功能,将输入变量 $I_0\sim I_7$ 依优先级编码为 BCD 码 $Y_2Y_1Y_0$,输入、输出均低电平有效;74LS138 起到 3 线-8 线译码器的功能,将输入 BCD 码 $A_2A_1A_0$ 解码为输出端 $Y_0\sim Y_7$ 中对应端子的低电平信号;CD4511 正确显示了 BCD 码对应的十进制数字形。

4. 设计一个具有 3 路报警信号的报警装置。

• 实验任务

当第一路有报警信号时,数码管显示"1";当第二路有报警信号时,数码管显示"2";当第三路有报警信号时,数码管显示"3";当有两路或两路以上有报警信号时,数码管显示"8";当无报警信号时,数码管显示"0"。要求使用74LS138、CD4511和逻辑门等器件。

• 设计思路

约定第一路报警信号为 X_1 (报警时 $X_1=1$,下同),第二路报警信号为 X_2 ,第三路报警信号为 X_3 。由题意,CD4511 输入 BCD 码与 $X_1\sim X_3$ 应有如下关系。

2020级 19组 朱云沁 PB20061372 赵明宇 PB19061383 日期 2021-12-24

$$\begin{cases} (0000)_2, & X_1'X_2'X_3' = 1 \\ (0001)_2, & X_1X_2'X_3' = 1 \\ (0010)_2, & X_1'X_2X_3' = 1 \\ (0011)_2, & X_1'X_2'X_3 = 1 \\ (1000)_2, & 其他情况 \end{cases}$$

观察得出,CD4511输入端A、B、C、D的逻辑函数式可用最小项表示为

$$\begin{cases} A = X_1 X_2' X_3' + X_1' X_2' X_3 \\ B = X_1' X_2 X_3' + X_1' X_2' X_3 \\ C = 0 \\ D = X_1 X_2 X_3' + X_1 X_2' X_3 + X_1' X_2 X_3 + X_1 X_2 X_3 \end{cases}$$

考虑用 74LS138 译码器实现上述逻辑函数。将 74LS138 输入端 $A_2\sim A_0$ 由高位到低位分别接 $X_1\sim X_3$,则上述逻辑函数可用 74LS138 输出端 $Y_0'\sim Y_1'$ 表示为

$$\begin{cases} A = Y_1 + Y_4 = (Y_1'Y_4')' \\ B = Y_1 + Y_2 = (Y_1'Y_2')' \\ C = 0 \\ D = Y_3 + Y_5 + Y_6 + Y_7 = (Y_3'Y_5'Y_6'Y_7')' \end{cases}$$

逻辑电路图如图 7 所示。其中, 2 输入与非门使用 74LS00, 4 输入与非门使用 74LS20。

图 7 3路报警装置电路图

• 实验数据

依据图 7 搭建实验电路,测得真值表如表 4 所示。

X_1	X_2	X_3	显示字形
0	0	0	0
0	0	1	3
0	1	0	2
0	1	1	8
1	0	0	1
1	0	1	8
1	1	0	8
1	1	1	8

表 4 真值表 (图 7 电路)

• 数据分析

根据表 4 数据可知,图 7 电路的真值表与所要求的 3 路报警器的逻辑功能一致,符合实验要求。当 $X_1 = 1$ 而其余输入为 0 时,CD4511 显示字形"1";当 $X_2 = 1$ 而其余输入为 0 时,CD4511 显示字形"2";当 $X_3 = 1$ 而其余输入为 0 时,CD4511 显示字形"3";当有两路或两路以上输入为 1 时,CD4511 显示字形"8";当所有输入为 0 时,CD4511 显示字形"0"。

朱云沁 PB20061372 赵明宇 PB19061383

日期 2021-12-24

5. 用两片 74LS138 和 74LS20 双与非门设计多输出函数。

• 实验任务

实现以下多输出函数, 画出逻辑电路图。

$$\begin{cases} Y_1 = A'BC'D' + A'B'C'D + AB'C'D' + ABCD' \\ Y_2 = BC \end{cases}$$

• 设计思路

将Y₁、Y₂的逻辑函数式写作最小项的形式,

$$\begin{cases} Y_1 = m_1 + m_4 + m_8 + m_{14} \\ Y_2 = m_6 + m_7 + m_{14} + m_{15} \end{cases}$$

将两片 74LS138 级联,构成 4 线-16 线译码器,从而得到最小项。记扩展得到的译码器输出端为 $Z_0'\sim Z_{15}'$,则

$$\begin{cases} Y_1 = Z_1 + Z_4 + Z_8 + Z_{14} = (Z_1' Z_4' Z_8' Z_{14}')' \\ Y_2 = Z_6 + Z_7 + Z_{14} + Z_{15} = (Z_6' Z_7' Z_{14}' Z_{15}')' \end{cases}$$

逻辑电路图如图 8 所示。

图 8 两片 74LS138 和 74LS20 实现多输出函数

• 实验数据

依据图 8 搭建实验电路,测得真值表如表 5 所示。

	输	输出				
A	В	С	D	<i>Y</i> ₁	Y ₂	
0	0	0	0	0	0	
0	0	0	1	1	0	
0	0	1	0	0	0	
0	0	1	1	0	0	
0	1	0	0	1	0	
0	1	0	1	0	0	
0	1	1	0	0	1	
0	1	1	1	0	1	
1	0	0	0	1	0	
1	0	0	1	0	0	
1	0	1	0	0	0	
1	0	1	1	0	0	
1	1	0	0	0	0	
1	1	0	1	0	0	
1	1	1	0	1	1	
1	1	1	1	0	1	

朱云沁 PB20061372 赵明宇 PB19061383

日期 2021-12-24

• 数据分析

根据表 5数据可知,图 8 电路的真值表与所要实现的多输出函数一致,符合实验要求。输出变量 $Y_1 = 1$,当且 仅当A'BC'D' + A'B'C'D + AB'C'D' + ABCD' = 1;输出变量 $Y_2 = 1$,当且仅当BC = 1。

思考题:

1. 如何判断一个数码管的好坏?

- ① 首先,将数字万用表切换至二极管档。
- ② 然后,检验发光二极管是否正常导通,并确定数码管的公共端和极性。

将数字万用表红表笔接到数码管其中一管脚上,将黑表笔逐一置于其余各管脚。如果当黑表笔置于不同管脚 时,总是有且仅有一个字段点亮,并且每次点亮的字段各不相同,说明该数码管可能为共阳极数码管,红表笔所 在管脚为其公共阳极; 否则,将红表笔接到另一管脚上,重复上述过程。

如果将红表笔置于任一管脚时,均未出现上述现象,那么将红表笔与黑表笔对换,重复上述过程。即,将黑 表笔接到数码管其中一管脚上,将红表笔逐一置于其余各管脚。如果当红表笔置于不同管脚时,总是有且仅有一 个字段点亮,并且每次点亮的字段各不相同,说明该数码管可能为共阴极数码管,黑表笔所在管脚为其公共阴极。 如果将黑表笔置于任一管脚时,仍均未出现上述现象,说明数码管损坏。

③ 最后, 检验发光二极管是否正常截止。

对于共阳极数码管,将黑表笔置于公共阳极,红表笔逐一置于其余各管脚,均没有字段点亮,说明数码管完 好;对于共阴极数码管,将红表笔置于公共阴极,黑表笔逐一置于其余各管脚,均没有字段点亮,说明数码管完 好。

2. 共阴极和共阳极数字显示器有什么区别?能否用 CD4511 直接驱动共阳极数字显示器?

共阳极数字显示器,其所有发光二极管的阳极连接在一起。工作时,公共阳极接合适的高电平,其它管脚接 驱动电路对应输出端。当驱动电路某一输出端为低电平时,对应字段的发光二极管导通并点亮。

共阴极数字显示器,其所有发光二极管的阴极连接在一起。工作时,公共阴极接合适的低电平,其它管脚接 驱动电路对应输出端。当驱动电路某一输出端为高电平时,对应字段的发光二极管导通并点亮。

不能用 CD4511 直接驱动共阳极数字显示器。

CD4511 的输出端高电平有效,而共阳极数字显示器的输入管脚低电平有效,如果直接将 CD4511 的各个输出 端接到共阳极数字显示器的对应输入管脚,将不能实现正确的逻辑功能。

要使 CD4511 能够驱动共阳极数字显示器,应当在 CD4511 各个输出端后接反相器,再接到共阳极数字显示器 的对应输入管脚。此外,还需根据外接电源及各字段的额定导通电流来确定相应的限流电阻。

3. 为什么用二进制译码器可以设计任意的组合逻辑电路?

二进制译码器可以得到输入变量全部最小项的译码输出。以74LS138为例, $Y_0'\sim Y_7'$ 分别对应 A_2 、 A_1 、 A_0 最小项 取反的结果 $m_0' \sim m_2'$ 。又因为任意逻辑函数可以化作最小项之和的标准形式,所以,只需用二进制译码器得到输入 变量的各个最小项,并用逻辑门(或门、与非门等)得到相应最小项之和,即可实现任意逻辑函数。

4. 总结用集成电路进行功能扩展的方法。

- ① 对所要求的功能进行逻辑抽象,利用因果关系、代数公式、真值表、卡诺图等,写出化简后的逻辑函数式。
- ② 依据化简后的逻辑函数式、电路设计的具体要求、所提供的集成电路的情况,选定器件类型。
- ③ 依据选定的器件类型,将逻辑函数式化为易于处理的形式。
- ④ 依据逻辑变量所对应的集成电路输入、输出端,画出逻辑电路图。
- ⑤ 依据逻辑电路图,正确连接电路,通过实验验证所设计的逻辑电路是否满足所需功能。
- ⑥ 进行工艺设计、组装和调试,将电路封装为具体的装置。