BO2 - Mobile Networks

- Wireless: communication over wireless link (hops, user devices, BS)
- Mobility: handling the mobile user who canges point of attachment to network, mobile phone operators provide connection service allowing you to move, identity, authentication (if id user € their registry), of course billing

Cellular Network Architecture Components:

- MSC other features:
 - · can hadle multiple cell
 - hidden frame
 - manage the handoff
 - some as gateway to public telefone network
 - identity, auth, trace devices, billing, trace time user connection

Evolution of mobile network technologies

• 1G:

- 1st gen
- communication over analog signals
- frequency
- multiplexing:
 - method by which multiple (analog or digital) signals are combined into one signal over a shared medium
- no digital signal

• 2G:

- GSM
- voice communication
- · digital signals
- text messaging (SMS success wasn't expected)

• 3G:

- 1st revolution
- · data communication and anternet connection
- high data rate

• 4G:

· extension of 3G architecture

• 5G:

- 5G have (also in 4G really) software engineering principles (microservices, virtualisation, impact of data centers)
- low latency

Cellular netwoks: the first hop

two techniques for sharing mobile to BS radio spectrum

- 1. combined FDMA/TDMA:
 - divide spectrum in frequency channels, divide each channel into time slots
 - informal:
 - each frequency band is divided in time slots
 - assign each intersection to a device

- 1. CDMA: Code Division Multiple Access:
 - division by codes: sequences of bits
 - partitioning the code space
 - code is negotiated before by BS according to decision provided by functions of the architecture (multiple codes)
 - specific code for each node transmitting

- Sendig station send d1 and d0, so Z= di * Cm is the output of the station
- Receiving station decode signal and reconstruct appling di
- simple situation, real scenario has multiple trnsmitters and 1 receiver
- since receiver knows code used from transmitting, is amble to reconstruct original signal
 - even if the sum of many singals send

2G(voice) network architecture

2G (voice) network architecture

- X : circut switching implementation
- Gateway MSC (Mobile Switching Center):
- MSC (Mobile Switching Cenrer):
 - · infos of authenticated user, subscribe
- BSC (Base Station Controller):
 - decides on how resources of phisical medium are used/managed
 - control/manage different BS
 - · infos about medium devices
- BSS (Base Station System):
 - set of BS
 - awared on wich code is used
 - infos about medium device

3G (voice + data) Network architecture

- data network operates in parallel
 - Packet switching
- Not only voice, also implement connection to core network
- infrastucture extension, change anything
- GGSN (Gateway GPRS Support Node) and SGSN (Serving GPRS Support Node)
 are two core network nodes in 2G GSM and 3G UMTS networks that enable
 packet-switched mobile internet. GGSN and SGSN were added to GSM networks
 as part of the GPRS enhancement, and they are used by both GSM and 3G UMTS
 networks.**
- Radio Network Controller:
 - this shit is introduced:
 - circuit switching to handle datagram and voice
- Gateway SGSN:
 - router, cuz deling with packets
- Gateway GGSN:
 - gateway, last router near public internet
- Gateway MSC:
 - parallel branches