Shoufa Chen, Peize Sun, Enze Xie, Chongjian Ge, Jiannan Wu and et al.

2023.01.21 논문 리뷰 배성훈

• Research Background:

- 기존의 Video Action Detection은 Actor localization과 Action Classification을 나눠서 Two-stage로 진행하거나, One-stage에 2개의 다른 모델을 적용해 학습하는 방법 제시
- 기존 방법의 문제
 - Actor localization이 Video clip의 key frame에서 actor bounding boxes를 예측하기 위해 2D detection model에 의존
 - ➤ Clip의 이웃하는 frame까지 고려하면 localization noise, 상당한 계산량, Memory cost 발생
 - Action classification은 video sequence에서 embedded temporal knowledge를 추출하기 위해 3D video model에 의존
 - ➤ Single key frame은 Action classification에 대해 temporal motion representation이 좋지 못함
- Keyframe은 Actor localization에 positive, Action classification에는 negative
- Multiple frame는 Actor localization에 negative, Action classification에는 positive

• Research Background:

- 해결을 위한 2가지 방법
 - 1. Off-the-shelf person detector 사용
 - Action classification 모델과 같이 공동으로 학습 X
 - Actor proposals를 만듬
 - 독립적인 video model이 action class 예측을 위한 입력으로 actor proposal와 raw frame 사용
 - Actor localization을 위한 모델은 ImageNet이나 COCO로 사전학습된 person detector
 - Target action detection dataset에 따라 Fine-tuned
 - ▶ 이러한 방법은 복잡하고 무거운 pipeline 생성 (Two backbone, Two stages)
 - ➤ 각 backbone을 optimization 하는 것은 sub-optimal 문제 야기
 - 2. One stage: Actor detection, Action classification 공동 학습
 - 학습 pipeline이 단순화
 - ➤ 전체 framework가 Heavy computation, Memory cost 문제 가짐

• Research Background:

- 저자는 기존의 방법에 대한 문제로부터 End-to-End 모델로 actor localization과 action classification을 모두 처리할 수 있는 방법을 제안
- Single Unified framework인 WOO를 제안, 하나의 End-to-End 모델로 Actor localization, Action Classification
- Video clip에서 Action classification의 확률, Actor bounding boxes의 좌표 예측
- Single backbone network가 2D image detection, 3D video classification 모두 처리

- Method:
 - WOO (Watch Only Once)
 - 3 key component
 - Unified backbone
 - Light weight
 - Backbone network 초기 단계의 모든 frame의 feature에서 key frame feature 분리
 - 모델이 깊어질수록 key frame feature가 이웃하는 frame과의 상호작용이 많아짐
 - ➤ Clip의 이웃하는 frame까지 고려하면 localization noise, 상당한 계산량, Memory cost 발생
 - P. <u>7</u>
 - Spatial-temporal action embedding
 - Action classificaiton에서 Spatial, Temporal features 간의 뚜렷한 차이를 위해 설계된 방법론
 - P. <u>13</u>
 - Spatial-temporal knowledge fusion mechanism
 - P. <u>15</u>

Method:

- Post processing (NMS) 없이, 주어진 video clip에서 Actor bounding box와 Action classes 출력
- Input Spatial-temporal feature maps: $X \in \mathbb{R}^{CxTxHxW}$, $C:number\ of\ channels$; $T:Time;\ H,W:Spatial\ height\ width$
- Video clip의 중간에 Key frame 배치: $X_t = [T/2] \in \mathbb{R}^{C \times H \times W}$

Method:

Union Backbone

- 기존의 방법 (Two-stage)은 Key frame feature가 3D convolution (Temporal pooling, Temporal kernel size > 1)에 의해 인접한 Frame feature와 상호작용이 발생해 원치 않는 문제 야기
- 이를 해결하기 위해, Temporal interaction이 발생하기 전에 네트워크의 초기 단계에서 Key frame feature 분리
- 기존 Backbone인 SlowFast의 res5의 dilation을 제거하고 FPN을 Key frame feature 추출에 사용

Method:

Union Backbone

- 설계 이점
 - 1. Actor localization head가 Hierarchical feature representation을 source feature로 사용해 object detection 이점
 - 2. Key frame feature는 FPN을 통해 backbone 초기 단계부터 video frame의 feature로부터 분리 -> 모델이 깊어질수록 발생하는 인접한 frame간의 상호작용을 줄임
 - 3. Image feature를 입력으로 task를 수행하는 경량 FPN 모듈만 Backbone에 추가해 Parameter와 FLOPs 감소 Video Backbone Architecture와 독립적이기 때문에 다른 Video Backbone 사용 가능

Method:

Actor Localization Head

- End-to-End Actor localization 설계
- FPN 모듈에 의해 생성되는 Hierarchical features를 입력으로 받음
- Detection head는 Bounding box 좌표와 box가 actor를 포함하는 모델의 신뢰도를 나타내는 Score 예측

Person Detector

- Training: Prediction과 Ground truth 간의 optimal bipartite matching을 위한 prediction loss 활용
- **Evaluation**: Post processing (NMS) 사용 X

Method:

Actor Classification Head

- RolAlign의 입력: Res5 Output + Actor Localization Head Person Detector의 N Actor Proposal Boxes
- 각 Box에 대해 아래의 과정을 거쳐 Final class prediction 출력
 - 1. Spatial Action Features
 - 2. Temporal Action Features
 - 3. Embedding Interaction
 - 4. Spatial-temporal knowledge fusion mechanism

Method:

- Actor Classification Head
 - 1. Spatial Action Features
 - RolAlign을 거친 feature $\mathbb{R}^{\textit{CxTxSxS}}$ 와 N actor proposal boxes에 Global Average Pooling 수행
 - Spatial Feature map $f_1^s, f_2^s, ..., f_N^s \in \mathbb{R}^{\mathcal{C}x1x\mathcal{S}x\mathcal{S}}$ 생성

Method:

- Actor Classification Head
 - 2. Temporal Action Features
 - RolAlign을 거친 feature $\mathbb{R}^{CxTxSxS}$ 와 N actor proposal boxes에 Global Average Pooling 수행
 - Temporal Feature map $f_1^t, f_2^t, ..., f_N^t \in \mathbb{R}^{\mathcal{C}xTx1x1}$ 생성

- Method:
 - Actor Classification Head
 - 3. Embedding Interaction
 - Spatial, Temporal 간의 더 뚜렷한 차이를 보이는 feature 추출
 - 풍부한 Instance 특징 추출
 - **Spatial embedding**: Spatial 속성 (Shape, Pose) 압축 : $\pmb{E^s} \in \mathbb{R}^{Nxd}$
 - **Temporal embedding**: Temporal 속성 (Dynamic motions, Action의 Temporal scale) 압축 $E^t \in \mathbb{R}^{Nxd}$
 - N 개의 features의 각각의 feature에 **배타적** Spatial, Temporal embedding 진행

- Method:
 - Actor Classification Head
 - 3. Embedding Interaction
 - 또한, Actor 간의 Interaction 포착을 위해, 모든 Rol feature에 Attention module 생성
 - 각 Actor Rol가 고유의 Spatial, Temporal embedding을 가지고, Embedding이 Feature map보다 가볍기 때문에 효율성을 위해 Feature map 대신 Embedding에 Attention mechanism 채택

Method:

Actor Classification Head

- 4. Spatial-temporal knowledge fusion mechanism
- 1x1 convolution의 Spatial, Temporal output을 Fusion 함수를 사용해 합침
- 다양한 방법 실험: Summation, Concatenation, Cross-attention
- Cross-Attention을 사용했을 때 다른 방법보다 좋은 성능 달성
- 마지막으로, FC layer를 사용해 Final class prediction logits 얻음

Spatial-Temporal Fusion

Fusion	AP	AP ₅₀	AP ₇₅	GFLOPs
sum	14.8	20.5	16.9	68.0
concat	14.7	20.5	17.0	68.1
$\mathbf{C}\mathbf{A}$	15.4	21.3	17.7	68.0

Method:

Objective Function

• End-to-End Localization, Classification

$$\mathcal{L} = \lambda_{cls} \cdot \mathcal{L}_{cls} + \lambda_{L1} \cdot \mathcal{L}_{L1} + \lambda_{giou} \cdot \mathcal{L}_{giou} + \lambda_{act} \cdot \mathcal{L}_{act}$$

(2)

① Set prediction loss

- Prediction과 Ground truth 간의 Optimal bipartite matching 생성
- \mathcal{L}_{cls} : 2개의 class 간의 Cross-entropy loss 나타냄 (Actor 포함 vs Actor 미포함)
- \mathcal{L}_{L1} , \mathcal{L}_{giou} : Box loss
- $\lambda_{cls}, \lambda_{L1}, \lambda_{giou}$: Loss 항 (\mathcal{L}) 의 기여를 균형 있게 조정하는 **상수 스칼라**

② Action

- £act: Action classification을 위해 사용되는 Binary cross entropy
- λ_{act}: 가중치

• Experiments:

Implementation details

Training detail

• Optimizer: AdamW (Weight decay: 0.0001)

• Mini batch: 16 video clip

• 8 GPUs: 1개의 GPU에 2개의 Clip 할당

Training schedule:

• Number of training iterations: 300

• Learning rate schedule: Initial LR 2.5x10⁻⁵, 12 epochs (첫 번째 1000 iteration에서 **linear warm-up (10**⁻³**)**을 사용) Epoch 6, 10일 때 Decay factor 0.1

• Batch size: 16

• Backbone: Kinetics로 사전학습한 가중치 초기화, 새롭게 추가되는 layer는 Xavier로 사전학습된 가중치 초기화

• Video Frame input 각각에 random scaling 적용, 가장 짧은 면의 범위를 256~320 pixels, 가장 긴 면 < 1333 pixels

• Person Detector Head | Loss weight: $\lambda_{cls} = 2$, $\lambda_{L1} = 5$, $\lambda_{giou} = 2$

• Action Classification Loss weight: $\lambda_{act} = 4$

• Default proposal boxes: 100

• Experiments:

- Implementation details
 - Inference detail
 - 제안된 모델이 주어진 Input video clip에서 Actor detection, Action classification scores와 연관된 100개의 bounding boxes 예측
 - Actor Detection Scores: Box가 Actor 포함하는 확률
 - Action Classification Scores: Box에 상응하는 모든 Action class 확률
 - Confidence Score > 0.7 에 해당하는 Detected boxes만 Final output

• Experiments:

- SOTA와 비교
 - AVA v2.1, v2.2 (mAP [IoU threshold = 0.5]) 대한 SOTA와 제안된 방법 비교
 - Testing에서 Single model과 Single cropping 을 사용한 방법만 고려
 - Model complexity를 현저히 줄이며, 기존 two-stage, two-backbone 을 뛰어넘는 성능
 - AVA v2.1
 - <mark>기존의 SOTA</mark>보다 <mark>제안한 방법</mark>이
 - 0.5mAP \uparrow (27.3 \rightarrow 28.0), GFLOPs 56.5 % \downarrow (302.3 \rightarrow 245.8)
 - AVA v2.2
 - <mark>기존의 SOTA</mark>보다 <mark>제안한 방법</mark>이
 - 0.9mAP \uparrow (27.4 \rightarrow 28.3), GFLOPs 50.6% \downarrow (302.3 \rightarrow 251.7)

model	AVA	E2E	$T \times \tau$	pre	val mAP	GFLOPs
AVA baseline [12]			64×1	K400	15.6	
Relation Graph [41]			36×1	K400	22.2	
VAT [10]			64×1	K400	25.0	
ACRN [30]		×	-	K400	17.4	
ATR [16]			-	K400	21.7	
Context-Aware [38]			32×2	K400	28.0	
LFB [37]	v2.1		32×2	K400	27.6	
X3D-XL [7],			16×5	K400	26.1	
I3D [9]			64×1	K600	21.9	
SlowFast, R50 [8]			8×8	K400	24.7	223.3
SlowFast, R101 [8]			8×8	K600	27.3	302.3
WOO, SFR50	1		8×8	K400	25.2	141.6
WOO, SFR101		'	8×8	K600	28.0	245.8
SlowOnly, R50 [8]			4×16	K400	20.3	136.8
SlowFast, R50 [8]			8×8	K400	24.7	223.3
SlowFast, R101 [8]		×	8×8	K600	27.4	302.3
WOO, SR50	v2.2	~	4×16	K400	21.3	68.0
WOO, SFR50	V2.2		8×8	K400	25.4	147.5
WOO, SFR101			8×8	K600	28.3	251.7
·						

- Experiments:
 - Model complexity and Accuracy
 - 기존의 Two stage 접근법보다 WOO가 더 높은 mAP를 보이며 GFLOPs 감소

• Experiments:

- FPN 사용에 따른 결과
 - Actor localization을 위해 거의 cost-free로 feature 추출
 - Lightweight FPN을 채택했을 때, 그렇지 않은 접근법보다 좋은 성능을 달성하면서 더 낮은 GFLOPs 달성
 - 결과적으로, 제안한 방법으로 성능 향상 및 계산량 감소

Model	FPN	Per	son Det	ector	AVA			GFLOPs
Model	LIN	AP	AP_{50}	AP_{75}	AP	AP_{50}	AP_{75}	GILOIS
WOO	X	74.4	95.3	85.4	14.8	20.8	16.8	90.3
WOO	key	75.6	95.6	87.1	15.3	21.3	17.5	68.0
SlowFast	X				14.7	20.3	16.6	136.9
SlowFast	TP	-	95.5	-	13.8	19.2	15.6	120.4
SlowFast	key				13.7	19.1	15.6	120.4

• Experiments:

- Spatial-Temporal Fusion
 - Action classification에서 Spatial-Temporal feature를 합치는 방법에 대한 연구 진행
 - Cross-Attention 방식이 가장 높은 성능과 낮은 GFLOPs 달성

Fusion	AP	AP_{50}	AP_{75}	GFLOPs
sum	14.8	20.5	16.9	68.0
concat	14.7	20.5	17.0	68.1
CA	15.4	21.3	17.7	68.0

Conclusion:

- Video Action Detection을 위한 간단한 End-to-End 방법인 WOO 제안
- 단일 통합 백본(Single Unified Backbone)을 포함
 - → Actor Localization, Action Classification을 위한 Task별 Feature 제공
- Video clip 주어지면, 모델이 Bounding box와 Action class를 직접 예측
- 2개의 Video Action Detection Benchmark에 제안된 방법을 검증하고 Higher mAP, Lower GFLOPs 달성
 - → SOTA 달성
- 독립적인 Person Detector Model과 Post-processing을 적용하지 않는다는 점에서 상당히 흥미로운 방법론