

CS224N_Lecture 9&10

Lecture 9

Self-Attention and Transformers

1. Self-Attention

Review RNN

• NLP task에서 RNN의 사용방법에 대해 알아봤다

• Use Attention - allow flexible access to memory

attention method

• 순차적으로 진행하는 RNN!

Problems with RNN

- Linear Interaction distance
 - Encoding linear locality → 단어가 순서대로 들어가니깐 가까이 있는 것들끼리
 영향 ↑ (one of thing about distributional hypothesis)
 - Problem : 멀리 떨어져 있는 것들끼리의 interaction을 알기 위해선 떨어진 길이 O(sequence length) 만큼의 step이 필요 ⇒ Hard to learn long-distance dependencies

- Lack of parallelizability
 - 들어오는 순서대로 학습이 되기 때문에 병렬적으로 수행 불가능
 예시) I kicked the ball.

• the 이전에 kicked가 계산되어 hidden state로 kicked에 대한 값이 넘어가 야지만 the 에 대한 계산 가능

Alternatives

1. word windows

- 모든 단어를 독립적으로 embed 한다.
- word window classifier layer = stacking.
- get O(1) dependence in time

- long-distance dependency ⇒ stacking wider word window layers , 멀리 떨어진 단어의 interaction 고려
- Maximum interaction distance = sequence length / window size
- 하지만 h_1 은 h_k 를 encoding하는데 고려되지 않는 문제점 (여전히) 발생

2. attention

Attention solves two problems of RNN.

- word's representation을 쿼리 취급한다.
- 문장 한번에 들어가 연산하므로 문장이 길이가 연산에 상관 X

self-attention

 Query, Key, Values : d dimension을 가지는 vector, drawn from same source(sentence)

$$v_i = k_i = q_i = x_i$$

x i : one vec per word

- 。 각 vector들의 역할
 - query : 주어진 벡터들 중에 어떤 벡터를 선별적으로 가져올지에 대한 기준이되는 vector
 - key: query 벡터와 내적을 통해 유사도를 구하는 재료 vector
 - value : 내적으로 구해진 유사도, 가중치를 결합하여 encoding을 만들 재료 vector
- operation

• 한계점

- No inherent order
 - solution : representing sequence order
 - p_i : position vectors

 $p_i \in \mathbb{R}^d$, for $i \in \{1, 2, ..., T\}$ are position vectors

$$v_i = \tilde{v}_i + p_i$$

$$q_i = \tilde{q}_i + p_i$$

$$k_i = \tilde{k}_i + p_i$$

add position vector and embedding vector

Do this at first layer

Construct p_i , How to positional embedding?

- 방법 1 : 데이터에 0~1 사이의 label을 붙인다. 0이 첫번째, 1이 마지막 단어예시) I (0) / love (0.5) / you (1)
 - → Input의 총 크기를 알 수 없다.
- → delta (=단어의 label 간의 차이) 값이 일정한 의미를 갖고 있지 않음
- ы btd 2: 각 time-step마다 선형적으로 숫자를 할당

예시) I (1) / love (2) / you (3)

- → 총 크기에 따라 가변적, delta 일정해짐
- → 숫자가 매우 커진다.
- \rightarrow 훈련 시 학습할 때 보다 큰 값이 들어오면 모델의 일반화가 어려워짐 (특정 범위를 갖고 있지 않다)

■ 필요한 기준

- 1. 각 time-step마다 하나의 유일한 encoding 값을 출력 (문장에서 단어의 위치)
- 2. 서로 다른 길이의 문장에 있어서 두 time-step간 거리는 일정
- 3. 모델에 대한 일반화가 가능 → 더 긴 길이의 문장에 적용 가능, 특정 범위 내에 있어야 함
- 4. 하나의 key 값 처럼 결정

Sinusoidal position representation

- 위 기준을 모두 충족시킨 embedding 방법
- d-dimensional vector 로 문장 내 특정 위치 표현
- 모델 자체 내에서 사용 되지 않음 → 단어의 순서 정보를 표현하기 위해 input을 늘렸다.

6

$$\overrightarrow{p_t}^{(i)} = f(t)^{(i)} := egin{cases} \sin(\omega_k.\,t), & ext{if } i = 2k \ \cos(\omega_k.\,t), & ext{if } i = 2k+1 \end{cases}$$

$$\omega_k = rac{1}{10000^{2k/d}}$$

- 모델의 별다른 노력없이 상대적 position을 갖게 됨
- · not learnable parameter

cf)

- ▼ Learned absolute postition representations
 - 데이터에 맞는 각각의 위치 정보를 구할 수 있다.
 - 범위 밖의 indices 를 추론하기 힘들다. (범위(1, ..., T)를 정해놓고 학습을 시켰기 때문에)

- 그 외의 position representation에 대한 연구 : Relative linear position attention , Dependency syntax-based postion
- No nonlinearity
 - non-linearity + abstract features ⇒ great deep learning
 - solution : add feed-forward network

$$m_i = MLP(\text{output}_i)$$

= $W_2 * \text{ReLU}(W_1 \times \text{output}_i + b_1) + b_2$

Apply FF layer

Need to ensure "We don't look at the future."

- To use self-attention in decoders, need to ensure we can't see the future.
- solution : masking the future ⇒ setting attention scores to negative infinity

$$e_{ij} = \begin{cases} q_i^{\mathsf{T}} k_j, j < i \\ -\infty, j \ge i \end{cases}$$

2. Transformers

Encoder

• Key-Query-Value Attention

 $x_1,...,x_T$: input vectors to encoder (d - dim)

o keys, quries and values

 $k_i=Kx_i\,$, $q_i=Qx_i\,$, $v_i=Vx_i$ (K,Q,V are different through linear transformation)

⇒ allow different aspects

 \circ Matrix From : $ouput = softmax(XQ(KV)^T)XV$

- Multi-headed attention
 - o Why multi-head attention 필요?
 - \rightarrow 동일한 sequence가 주어졌을 때, 서로 다른 기준으로 여러 측면에서의 정보를 뽑아낼 필요
 - 예시) I went to the school. / I studied hard. / I took the rest.
 - ⇒ 어떤 문장에서는 I 에 대한 행동을 중심으로 하는 정보
 - ⇒ 어떤 문장에서는 I에 대한 장소의 정보
 - → 예시처럼 서로 다른 정보를 병렬적으로 뽑고 마지막에 합치는 형태로 구성

$$Q_{\ell}, K_{\ell}, V_{\ell} \in \mathbb{R}^{d \times \frac{d}{h}}$$

h is the number of attention heads.

 $\operatorname{output}_{\ell} = \operatorname{softmax}(XQ_{\ell}K_{\ell}^{\mathsf{T}}X^{\mathsf{T}}) * XV_{\ell}, \text{ where } \operatorname{output}_{\ell} \in \mathbb{R}^{d/h}$

 $\operatorname{output} = Y[\operatorname{output}_1; ...; \operatorname{output}_h], \text{ where } Y \in \mathbb{R}^{d \times d}$

Y 는 출력 차원을 맞춰주는 역할

10

same amount of computation as single-head self attention and having different distributions for each of the different heads

· Training Tricks

Residual connections
 Instead of

$$X^{(i-1)}$$
 — Layer $X^{(i)}$

Using this method

■ 이런 connection을 통해 gradient vanishing 문제에 빠지는걸 방지한다.

no residuals : local minimum 에 빠지기 쉽다. / Residuals : much smoother → better training

- Layer normalization
 - To help models train faster

어떤 논문에서는 gain & bias 가 별 도움이 안된다고 가끔씩 사용한다고 함

- layer norm 을 안하면 학습이 잘 안되는 것 만큼 transformer에서 중요한 것이됨!
- Scaled Dot Product
 - Query, Key 내적값의 분산이 커짐 → 유사도(가중치)의 분포가 커짐 → 특정값에 몰림 → gradient vanishing ⇒ 스케일링 해주면 해결!

output_{$$\ell$$} = softmax $\left(\frac{XQ_{\ell}K_{\ell}^{\mathsf{T}}X^{\mathsf{T}}}{\sqrt{d/h}}\right) * XV_{\ell}$

▼ Transformer encoder-decoder block

Decoder

- Cross-Attention
 - $\circ h_1,...,h_T$: output vectors from **encoder**

- $\circ z_1,...,z_T$: input vectors from **decoder**
- keys and values are drawn from the encoder

$$k_i = Kh_i$$
, $v_i = Vh_i$.

• queries are drawn from the decoder

$$q_i = Qz_i$$
.

 $H = [h_1; ...; h_T] \in \mathbb{R}^{T \times d}$ be the concatenation of encoder vectors. $Z = [z_1; ...; z_T] \in \mathbb{R}^{T \times d}$ be the concatenation of decoder vectors.

$$output = softmax(ZQ(HK)^T)HV$$

Great Results

• Machine Translation

Model	BLEU		Training Cost (FLOPs)	
	EN-DE	EN-FR	EN-DE	EN-FR
ByteNet [18]	23.75			
Deep-Att + PosUnk [39]		39.2		$1.0 \cdot 10^{20}$
GNMT + RL [38]	24.6	39.92	$2.3 \cdot 10^{19}$	$1.4 \cdot 10^{20}$
ConvS2S [9]	25.16	40.46	$9.6 \cdot 10^{18}$	$1.5 \cdot 10^{20}$
MoE [32]	26.03	40.56	$2.0 \cdot 10^{19}$	$1.2 \cdot 10^{20}$
Deep-Att + PosUnk Ensemble [39]		40.4		$8.0 \cdot 10^{20}$
GNMT + RL Ensemble [38]	26.30	41.16	$1.8 \cdot 10^{20}$	$1.1\cdot 10^{21}$
ConvS2S Ensemble [9]	26.36	41.29	$7.7\cdot10^{19}$	$1.2 \cdot 10^{21}$

• Document generation (summary)

Model	Test perplexity	ROUGE-L	
seg2seg-attention, $L = 500$	5.04952	12.7	
Transformer-ED, $L = 500$	2.46645	34.2	
Transformer-D, $L = 4000$	2.22216	33.6	
Transformer-DMCA, no MoE-layer, $L = 11000$	2.05159	36.2	
Transformer-DMCA, MoE-128, $L = 11000$	1.92871	37.9	
Transformer-DMCA, MoE-256, $L = 7500$	1.90325	38.8	

Drawbacks

- 1. Quadratic compute in self-attention
 - a. 모든 쌍의 interaction을 구한다는 의미는 sequence length가 길어질 수록 연산량이 급격히 많아짐 (recurrent model은 grow linearly)
 - b. self-attention is 병렬적으로 계산하지만 $O(T^2d)$ 만큼 계산량

T: the sequence length, d: dimensionality

 \rightarrow In practice , we set T = 512.

solution

1. Linformer : key 와 value의 차원을 낮게 projection

2. Bigbird : all- pairs interaction을 다른 attention interaction의 집단으로 대체

- ⇒ 그래도 normal transformer 가 가장 많이 쓰임!
- 2. Position representations

solution

- 1. Relative linear position attention
- 2. Dependency syntax-based position

Lecture 10

• 다음주에 꼭 해올게요 8n8