Q3: Let $\varepsilon > 0$. There exists some $\delta > 0$ such that $|x-y| < \delta$ implies $|f_n(x) - f_n(y)| < \varepsilon$. We write that $|f(x) - f(y)| = |f_n(\frac{x}{n}) - f_n(\frac{y}{n})| < \varepsilon$ Therefore, by continuity of f_n , $|\frac{x}{n} - \frac{y}{n}| = \frac{1}{n}|x-y| < \delta$. Therefore, $|f(x) - f(y)| < \varepsilon$ for all $\varepsilon > 0$ and sufficiently large n. Therefore, f(x) = f(y), and we conclude that f is a constant function.