

Hans Verbeeck, Elizabeth Kearsley, Félicien Meunier, Marc Peaucelle

 $2020 \hbox{-} 05 \hbox{-} 27$

Contents

1	Introduction					
	1.1 Soil-Plant-Atmosphere continuum: the central role of vegetation $\dots \dots \dots$	ţ				
	1.2 Why do we need modelling?	ţ				
	1.3 Components of a model \dots	Ę				
	1.4 The history of vegetation models	Ę				
	1.5 Model types					
	1.6 Structure of the course	ţ				
Ι	Biophysical and physiological models	7				
2	Modelling plant basic processes	g				
	2.1 Photosynthesis and stomatal models	Ç				
	2.2 Respiration models					
	2.3 Transpiration					
	2.4 Upscaling from leaf to canopy					
3	Modelling light penetration, vegetation canopy representation, energy balance	11				
	3.1 Representing canopy structure in models	1				
	3.2 Direct and diffuse light	1				
	3.3 Ecosystem energy balance	1				
4	Temporal and seasonal dynamics	13				
	4.1 Leaf phenology	13				
	4.2 Drivers of seasonality and phenology	13				
II	Modelling vegetation dynamics	15				
5	Modelling growth, timber production and Carbon allocation	17				
	5.1 Empirical growth modelling: growth curves					
	5.2 Process-based growth modelling: C-allocation models	17				
6	Modelling vegetation dynamics and demography	19				
	6.1 Seed dispersal and recruitment					
	6.2 Mortality					
	6.3 Gap models, individual and cohort based models	19				
7	Modelling biogeochemical cycles in vegetation					
	7.1 Carbon cycle models: stocks and fluxes $\ \ldots \ \ldots \ \ldots \ \ldots \ \ldots \ \ldots$					
	7.2 Nutrient cycle models: soil biogeochemical models					
	7.3 Water balance	2				

4 CONTENTS

Η	I Upscaling and applications	23
8	Representing biodiversity in vegetation models 8.1 Functional diversity	 . 25
9	Spatial heterogeneity, landscape scale, metapopulations 9.1 Patch dynamics	 . 27
10	Upscaling from leaf/tree to globe 10.1 Land surface models	
11	Model projections and scenario analysis11.1 Climate scenarios11.2 Land-use scenarios11.3 Management scenarios	 . 31
I	Practicals	33
Sι	pporting material	35
Pı	actical A	37
Pı	actical B	39
Pı	actical C	41
Pı	actical D	43
Pı	actical E	45
Pı	actical F	47

Introduction

- 1.1 Soil-Plant-Atmosphere continuum: the central role of vegetation
- 1.2 Why do we need modelling?
- 1.3 Components of a model
- 1.4 The history of vegetation models
- 1.4.1 Early history of vegetation modelling
- 1.4.2 The first DVGMs centered around carbon fluxes
- 1.4.3 A new generation of DGVMs centered around vegetation functioning
- 1.5 Model types
- 1.6 Structure of the course

Figure 1.1: Here is the structure of the course!

Part I

Biophysical and physiological models

Modelling plant basic processes

- 2.1 Photosynthesis and stomatal models
- 2.2 Respiration models
- 2.3 Transpiration
- 2.4 Upscaling from leaf to canopy

Modelling light penetration, vegetation canopy representation, energy balance

- 3.1 Representing canopy structure in models
- 3.2 Direct and diffuse light
- 3.3 Ecosystem energy balance

12 CHAPTER 3. LIGHT

Temporal and seasonal dynamics

- 4.1 Leaf phenology
- 4.2 Drivers of seasonality and phenology

Part II Modelling vegetation dynamics

Modelling growth, timber production and Carbon allocation

- 5.1 Empirical growth modelling: growth curves
- 5.2 Process-based growth modelling: C-allocation models

Modelling vegetation dynamics and demography

- 6.1 Seed dispersal and recruitment
- 6.2 Mortality
- 6.3 Gap models, individual and cohort based models

Modelling biogeochemical cycles in vegetation

- 7.1 Carbon cycle models: stocks and fluxes
- 7.2 Nutrient cycle models: soil biogeochemical models
- 7.3 Water balance

Part III Upscaling and applications

Representing biodiversity in vegetation models

- 8.1 Functional diversity
- 8.2 Competition models
- 8.3 Communities

Spatial heterogeneity, landscape scale, metapopulations

- 9.1 Patch dynamics
- 9.2 Land-use changes
- 9.3 Fire and disturbance

Upscaling from leaf/tree to globe

- 10.1 Land surface models
- 10.2 DVGMs as a part of Earth system models

Model projections and scenario analysis

- 11.1 Climate scenarios
- 11.2 Land-use scenarios
- 11.3 Management scenarios

Part IV Practicals

Supporting material

Crash course, basic programming (R), theory about model evaluation etc.

Practical A

PC-room, supervised exercise

Simple model on diurnal variation in solar angle, radiation extinction and photosynthesis in vegetation types with different and canopy structure and LAI: grassland, broadleaved forest, coniferous forest

Scale: aggregated stand level (big leaf model)

 $\label{eq:methodological focus: model formulation: translating a few equations into code} \\$

Methodological focus: compiling code, running model, reading input-output

Practical B

Group work, report, PC room

Modelling diurnal cycle of carbon and water fluxes for flux tower sites (Savanna's Sahel)

Scale: aggregated stand level

Methodological focus: model-data comparison (goodness-of-fit), simple parameter optimisation

Practical C

PC-room, supervised exercise

Modelling the size structure of a temperate forest (stand diameter distribution)

Scale: forest stand

 ${\bf Methodological\ focus:\ initial\ conditions}$

Practical D

Group work, report, PC room

Modelling carbon stocks (above and belowground) and fluxes

Scale: ecosystem

 $\label{lem:methodological} \mbox{ Methodological focus: Spinup and sensitivity analysis (testing which climate variables have strongest impact on stocks)$

Practical E

PC-room, supervised exercise

Simulating forest succession, meta-analysis of trait dataset to prescribe vegetation functional composition (using PEcAn-framework)

Scale: landscape

Methodological focus: parameter meta-analysis (PFT construction), data assimilation

Practical F

PC-room, group work, microteaching

Climate/land use/management scenario analysis

Scale: site/globe? (Pecan framework) each group choses a question and a model

Methodological focus: sensitivity and uncertainty analysis