

KURS RÓWNANIA RÓŻNICZKOWE

Lekcja 7 Transformata Laplace'a

ZADANIE DOMOWE

Część 1: TEST

Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa).

Pytanie 1

Transformacja Laplace'a jest to:

- a) metoda obliczania całek wymiernych
- b) metoda obliczania równań
- c) przemiana jednej funkcji w drugą według określonego wzoru

Pytanie 2

Całka Laplace'a ma postać:

a)
$$F(s) = \int f(x)e^{-\pi}dx$$

b)
$$F(s) = \int_{0}^{\infty} f(x)e^{sx}dx$$

c)
$$F(x) = \int_{0}^{\infty} f(x)e^{-sx} dx$$

$$d) F(s) = \int_{0}^{\infty} f(x)e^{-sx} dx$$

Pytanie 3

Zmienna s we wzorze $F(s) = \int_{0}^{\infty} f(x)e^{-sx}dx$ jest:

- a) niewiadomą
- b) zmienną zespoloną
- c) liczbą stałą
- d) liczbą Laplace'a

Pytanie 4

Wskaż fałszywą własność transformacji Laplace'a:

a)
$$L[af(x)] = a \cdot L[f(x)]$$

b)
$$L^{-1} \lceil af(x) \rceil = a \cdot L^{-1} \lceil f(x) \rceil$$

c)
$$L \lceil f(x) + g(x) \rceil = L \lceil f(x) \rceil + L \lceil g(x) \rceil$$

d)
$$L[f(x)g(x)] = L[f(x)] \cdot L[g(x)]$$

Pytanie 5

Która równość jest prawdziwa?

a)
$$L\lceil f'(x) \rceil = sL\lceil f(x) \rceil + f(0^+)$$

b)
$$L \lceil f'(x) \rceil = L \lceil f(x) \rceil - f(0^+)$$

c)
$$L \lceil f'(x) \rceil = sL \lceil f(x) \rceil - f(0^+)$$

d)
$$L\lceil f'(x) \rceil = sL\lceil f(x) \rceil \cdot f(0^+)$$

Pytanie 6

Transformatą Laplace'a można rozwiązywać równania różniczkowe wyższych rzędów, gdy:

- a) mamy podane odpowiednie warunki początkowe
- b) zawsze kiedy tylko chcemy
- c) mamy podane jakiekolwiek warunki początkowe
- d) mamy równanie różniczkowe liniowe

Pytanie 7

Całkę Laplace'a nazywamy również:

- a) przeciwobrazem
- b) obrazem
- c) stałą
- d) zmienną

Pytanie 8

Korzystając z odpowiedniej tabelki podaj transformatę funkcji $f\left(t\right) = e^{2t}$:

- a) $F(s) = \frac{1}{s+2}$
- b) $F(s) = \frac{1}{s-2}$
- c) $F(s) = \frac{s}{s-2}$
- d) $F(s) = \frac{s}{s-1}$

Pytanie 9

Korzystając z odpowiedniej tabelki podaj transformatę funkcji $f(t) = \sin 6t$:

- a) $F(s) = \frac{1}{s-6}$
- b) $F(s) = \frac{s}{s^2 + 36}$
- c) $F(s) = \frac{6}{s^2 + 36}$
- $d) F(s) = \frac{s}{s 36}$

Pytanie 10

Korzystając z odpowiedniej tabelki podaj transformatę funkcji $f\left(t\right) = te^{t}$:

a)
$$F(s) = \frac{1}{(s-1)^2}$$

b)
$$F(s) = \frac{1}{s^2}$$

c)
$$F(s) = \frac{1}{(s+1)^2}$$

$$d) F(s) = \frac{s}{(s-1)^2}$$

Część 2: ZADANIA

Zadanie 1

Oblicz transformatę Laplace'a z funkcji:

- a) $f(x) = \sin 5x$
- b) $f(x) = -\sin 2x$

Zadanie 2

Rozwiąż równanie różniczkowe przy podanych warunkach początkowych :

- a) $y'-y=xe^{4x}$, y(0)=0
- b) $y'-2y = xe^x$, y(0) = 0
- c) $y'+3y=xe^{3x}$, y(0)=0

Zadanie 3

Rozwiąż równanie różniczkowe przy podanych warunkach początkowych :

a)
$$y'' - y' = (x^2 - x - 4)e^x$$
, $y(0) = 0$, $y'(0) = 2$

b)
$$y''-3y' = (x^2-2x-3)e^x$$
, $y(0) = 0$, $y'(0) = 1$

c)
$$y'' + 2y' = (x^2 + x - 2)e^{2x}, y(0) = 0, y'(0) = 1$$

d)
$$y'' + y' = (x^2 + x - 5)e^{3x}, y(0) = 0, y'(0) = 3$$

Zadanie 4

Rozwiąż równanie różniczkowe przy podanych warunkach początkowych :

a)
$$y'''-3y'+2y=6xe^{-x}$$
, $y(0)=0$, $y'(0)=0$, $y''(0)=1$

b)
$$y'''-3y'+2y=5xe^x$$
, $y(0)=0$, $y'(0)=0$, $y''(0)=1$

c)
$$y''' + y' + 2y = 4xe^x$$
, $y(0) = 0$, $y'(0) = 0$, $y''(0) = 1$

d)
$$y''' + y' + 2y = xe^x$$
, $y(0) = 0$, $y'(0) = 0$, $y''(0) = 1$

Zadanie 5

Rozwiąż równanie różniczkowe przy podanych warunkach początkowych :

a)
$$y^{(IV)} + y''' = \cos 2t$$
, $y(0) = 1$, $y'(0) = -1$, $y''(0) = 0$, $y'''(0) = 0$

b)
$$y^{(IV)} + y''' = \sin t, y(0) = 1, y'(0) = -1, y''(0) = 0, y'''(0) = 0$$

c)
$$y^{(IV)} + y''' = -2\sin t$$
, $y(0) = 1$, $y'(0) = -1$, $y''(0) = 0$, $y'''(0) = 0$

d)
$$y^{(IV)} + 2y''' = \cos t$$
, $y(0) = 1$, $y'(0) = -1$, $y''(0) = 0$, $y'''(0) = 0$

KONIEC