Math 444 – Data Mining

Spring 2017

Assignment 4

In this exercise, the goal is to test different classification algorithms, and in particular, their success rate. You need a *training set* and an independent test set. Load the already familiar data HandwrittenDigits.mat, which is your training set \mathscr{T} . Then load the file HandwrittenDigitsTestset.mat, constituting your test set \mathscr{S} .

- 1. Write a PCA classifier using the training set. The performance of the classifier depends on the number m of principal components that you include in the reduced model. To test the performance, run your classifier with several values of m, e.g., $m = 5, 10, \ldots, 80$, and plot the success frequencies $S_f(\mathcal{T})$ and $S_f(\mathcal{T})$ as functions of m.
- 2. Implement the k-nearest neighbor algorithm for the same data. Notice that for this method, the success rate with the training set is always $S_f(\mathcal{T}) = 1$ (why?). Test and plot the success rate $S_f(\mathcal{S})$ as a function of k, letting k vary from k = 1 to k = 30.
- 3. The file ForestSpectra.mat contains helicopter-borne scatterometer data of forest spectra. The data comes supposedly from four types of forest: Birch, Fir, Pine or Shrub.
 - (a) Download the annotated data, and find the first few LDA directions. Investigate how well clustered the data is by plotting the LDA projections.
 - (b) Download ForestSpectraTest.mat, and using an LDA classifier, investigate the performance.