

Distribuciones para priors

Priors

- Reflejan nuestra expectativa (e incertidumbre) sobre los valores de parámetros (sin conocimiento sobre los datos)
 - Observaciones previas
 - Opinion personal
 - Uso de un modelo biológico

Distribución Dirichlet

Parámeters

- Uniforme
- Normal
- Exponencial
- Lognormal
- Gama
- Beta
- Dirichlet

• α_1 , α_2 , ... = parámetros de forma

 $\alpha_1 = \alpha_2 = \alpha_3 = \alpha_4 = 1$

 $\alpha_1=\alpha_2=\alpha_3=\alpha_4=300$

Imagen modifcada de las clases de Paul Lewis

Distribuciones discretas

- · Distribución Bernoulli
- Binomial
- Multinomial
- Poisson

10

Default priors

	BEAST2	MrBayes
Parámetros de la matriz de tasas	Gama(0.05,10)	Dirichlet(1,1,1,1,1,1)
Frecuencias de las bases	Uniforme(0,1)	Dirichlet(1,1,1,1)
Parámetro para la forma (α)	Exponencial(1)	Exponencial(2)
Proporción de sitios invariables	Uniforme(0,1)	Uniforme(0,1)

Priors no informativos

- · Prior plano o uniforme
- · Prior de Jeffrey
 - · No varia al reparametrizar
 - Solo funciona bien para modelos de un solo parámetro
- · Priors de referencia
 - Maximisa la distancia esperada entre el prior y el posterior
 - · Maximisa el efecto de los datos al posterior

Prior del árbol

Prior del árbol

- 1. Podemos usar un prior plano (MrBayes)
 - · Todos los árboles tiene una probabilidad igual
 - También necesita un prior para las longitudes de las ramas o las edades de los nodos
- 2. Usa un modelo biológico (BEAST y MrBayes)
 - Entre varias especies: modelo de especiación
 - En una especie: modelo coalescente

Priors para árboles enraizados

14

Modelo de especiación

- La forma del árbol esta descrita por un proceso estocástico
- Proceso Yule
 - La raíz se divide en dos
 - Los linajes se dividen a una tasa constante
 - · Simula al proceso de especiación
- · Proceso Birth-death
 - Permite que los linajes se extingan

Modelo de especiación brown bear · La forma del árbol esta descrita por cave bear un proceso estocástico black bear Proceso Yule giant panda · La raíz se divide en dos brown bear cave bear • Los linajes se dividen a una tasa constante black bear · Simula al proceso de especiación giant panda brown bear · Proceso Birth-death cave bear · Permite que los linajes se extingan black bear giant panda

¿Cómo elegir un prior para el árbol?

- Se puede probar si los resultados son robustos a la elección
- Datos mixtos: multiples secuencias de cada especie
 - El prior Birth-death generalmente funciona bien
- Se pueden comparar los priors del árbol usando selección de modelos Bayesiana

18

Selección de modelos Bayesiana

Bayesian model selection

 La selección de modelos Bayesiana se basa en la probabilidad marginál de los datos condicionados en el modelo:

Pr(D|M)

• Esto es un promedio de la verosimilitud, pesada por el prior

La verosimilitud marginal del modelo Marginal likelihood

Probabilidad	Modelo 1
Árbol 1	0.1
Árbol 2	0.7
Árbol 3	0.15
Árbol 4	0.05
Suma	1

Bayesian model selection

 La selección de modelos Bayesiana se basa en la probabilidad marginál de los datos condicionados en el modelo:

 $\frac{\Pr(\theta) \quad \Pr(D \mid \theta)}{\Pr(D)}$

Pr(D|M)

 Esto es un promedio de la verosimilitud, pesada por el prior

> La verosimilitud marginal del modelo Marginal likelihood

Probabilidad	Modelo 1
Árbol 1	0.1
Árbol 2	0.7
Árbol 3	0.15
Árbol 4	0.05
Suma	1

21

Selección de modelos Bayesiana

- Comparamos la verosimilitud marginal de modelos candidatos
- La proporción de verosimilitudes marginales es el Factor de Bayes

$$BF = \frac{Pr(D|M_1)}{Pr(D|M_2)}$$

$$logBF = logPr(D|M_1) - logPr(D|M_2)$$

- Los modelos no tienen que estar anidados
- No es necesario corregir por el número de parámetros

22

Bayesian model selection

• Interpretando el Factor de Bayes (Bayes Factor)

BF	logBF	Evidencia contra M ₂
1-3	0-1	No merece mención
3 – 20	1-3	Positiva
20 – 150	3 – 5	Contundente
> 150	> 5	Muy contundente

Kass & Raftery (1995) J Am Stat Assoc 24

Ventajas y problemas

Ventajas

- Puede impementar modelos áltamente parametrizados
- · Estimar la incertidumbre en el estimativo de árbol es fácil
 - Mientras en máxima verosimilitud solo se puede hacer indirectamente (usando el boostrap)
- Las probabilidades a posterior tienen una interpretación intuitiva
- Puede incorporar información independiente (en el prior)

26

El posterior es sensible al prior Este problema ocurre cuando los datos son poco informativos, o el prior es muy informativo, o ambas

BEAST 1

- Bayesian Evolutionary Analysis by Sampling Trees
- Analiza datos a nivel poblacional o de multiples especies
- Estima simultáneamente el árbol y las fechas de los nodos
- Implementa un amplio rango de relojes moleculares
- Implementa un amplio rango de modelos demográficos y de especiación

30

- Una renovación de BEAST para hacerlo más modular
- Los usuarios pueden extender *BEAST* adicionando paquetes
- Tiene algunos priors que no estan en BEAST 1
- Se puede usar para hacer simulación de datos

Para una comparación entre BEAST 1 and 2: www.beast2.org/beast-features

MrBayes

- Diseñado para análisis de datos de múltiples especies
- Estima simultáneamente el árbol y las fechas de los nodos
- Implementa un amplio rango de relojes moleculares
- Implementa un amplio rango de modelos demográficos y de especiación
- Multiples cadenas y diagnósticos de MCMC

RevBayes

- Usa su propio lenguaje de codificación, Rev
- · Permite construir modelos graficos interactivamente
- Flexible para uso en estudios de simulaciones e inferencia
- Tiene Desarrollo continuo

- Para análisis de cantidades grandes de datos en computadores de alto rendimiento
- Tiene priors disponibles parecidos a aquellos en las primeras versiones de *MrBayes*
- Opciones limitadas, sin estimación de tasas moleculares
- Una adaptación de verosimilitud de RAxML

34

Referencias útiles

 The impact of the tree prior on molecular dating of data sets containing a mixture of interand intraspecies sampling Ritchie, Lo, & Ho (2017) Syst Biol, 66: 413–425.

