Discretionary Access Control in Practice

UNIX File Access Control

- Unique user identification number (user ID)
- Member of a primary group identified by a group ID
- Three permission octets associated with each file and directory
 - Specify read, write, and execute permission for the owner of the file, members of the group and all other users
- The owner ID, group ID, and protection bits are part of the file's inode

Traditional Unix File Protection

UNIX File Access Control

- 3 additional bits
 - "Set user ID"(SetUID)
 - "Set group ID"(SetGID)
 - "Sticky Bit"
- "Set user ID"(SetUID), "Set group ID"(SetGID)
 - System temporarily uses rights of the file owner/group in addition to the real user's rights when making access control decisions
 - Enables privileged programs to access files/resources not generally accessible
- Sticky bit
 - When applied to a directory it specifies that only the owner of any file in the directory can rename, move, or delete that file

UNIX File Access Control

- Superuser
 - Is exempt from usual access control restrictions
 - Has system-wide access

ACLS in UNIX

Modern UNIX systems support ACLs

• FreeBSD, OpenBSD, Linux, Solaris

FreeBSD

- Setfacl command assigns a list of UNIX user IDs and groups
- Any number of users and groups can be associated with a file
- Read, write, execute protection bits
- A file does not need to have an ACL
- Includes an additional protection bit that indicates whether the file has an extended ACL

When a process requests access to a file system object two steps are performed:

- Step 1 selects the most appropriate ACL
- Step 2 checks if the matching entry contains sufficient permissions

Extended Unix ACL

Extended Unix ACL

Windows ACL (1 of 2)

Windows ACL (2 of 2)

- Actually two ACL's per file
 - System ACL (SACL) controls auditing and now integrity controls
 - Discretionary ACL (DACL) controls object access

- Windows ACLs apply to all named objects
 - Files
 - Pipes
 - Events

Both Unix and Windows primarily use DAC, specifically ACLs

Mandatory Access Controls have slowly found their way into mainstream OSes for integrity protection

e.g., SACL in Windows