ANN

CH8 Keras卷積神經網路 (CNN)辨識手寫數字

#2 ANN

本章我們將介紹使用Keras建立卷積神經網路CNN (convolutional neural network)、然後訓練模型、評估模型準確率接近為99%、最後使用訓練完成的模型,辨識MNIST 手寫數字。

#3 ANN

8.1CNN卷積神經網路簡介

Step1.MLP多層感知器 vs. CNN卷積神經網路

主要的差異是提取特徵值的步驟(網路層):

CNN增加了卷積層1、池化層1、卷積層2、池化層2來提取特徵

CNN卷積神經網路 MLP多層感知器 輸入層 卷積層 1 池化層 1 卷積層 池化層 2 reshape 輸入層 (x) 平坦層 隱藏層 (h1) 隱藏層 輸出層 (y) 輸出層

卷積層與池化層 (提取影像特徵) 由多個卷積層與 池化層所組成,

池化層所組成, 能提取影像中很 多的如數字影像7 能提取:橫線、 幹線、轉折..等 特徵。

全連接層(分類)

由平坦層、隱藏層、輸出層所組成,其功能是分類。

#5 ANN

Step2. CNN 卷積神經網路介紹

CNN 可分為2大部分

1. 影像的特徵提取

透過卷積層1、池化層1、卷積層2、池化層2,提取影像的特徵

2. 完全連結神經網路

包含平坦層、隱藏層、輸出層所組成的類神經網路

卷積層與池化層:提取特徵(橫線)

影像(x)

卷積層

1	2	1
0	0	0
-1	-2	-1

提取橫線 特徵的濾鏡

1.影像:有 各種橫線、 直線、斜線 等特徵

2.卷積層:影像與 濾鏡進行卷積運算 此濾鏡能提取**橫線** 特徵 Feature map 特徵圖

#6

池化層

3.產生特徵圖: 具有橫線特徵 **4.池化層:** 進行池化 運算

Feature map特徵圖

卷積層與池化層:提取特徵(斜線)

卷積層

1 0 -1 0 0 0 -1 0 1

提取斜線 特徵的濾鏡

2.卷積層:影像與 濾鏡進行卷積運算 此濾鏡能有效提取 斜線特徵 Feature map 特徵圖

Feature map特徵圖

池

化

5.產生特徵 圖:產生的

特徵圖縮小,

並且使斜線

特徵更明顯

3.產生特徵圖: 具有斜線特徵 (4.池化層: 進行池化 運算

1.影像: 有各種橫線、直線 斜線等特徵

卷積層與池化層:提取特徵(直線)

種橫線、直

線、斜線等

特徵

2.卷積層:影像與 濾鏡進行卷積運 算,此濾鏡能有 效提取直線特徵 Feature map 特徵圖

3.產生特徵圖: 具有直線特徵 **4.池化層:** 進行池化 運算

Feature map特徵圖

池

5.產生特徵 圖:產生的 特徵圖縮小, 並且使直線 特徵更明顯 輪入層 input 28X28影像共1層

> 卷積層1 28X28影像 共16層

池化層1 14X14影像 共16層

卷積層2 14X14影像 共66層

池化層2 7X7影像 共36層

第1次卷積

第1次縮減取樣

第2次卷積

第2次縮減取樣

輸入的數字影像28×28大小,例如:數字7的影像。

第1次卷積運算:輸入的數字影像 28×28大小,會産生16個影像,卷積 運算並不會改變影像大小,所以仍然 是28×28大小。

第1次縮減取樣:將16個28X28影像, 縮小為16個14X14的影像。

第2次卷積運算:將原本16個的影像,轉換為36個影像,卷積運算不會改變影像大小,所以仍然是大小14X14

第2次縮減取樣:將36個14X14影像,縮小為36個7×7的影像

以上你可以看到這些影像擷取了「**7**」的影像的特徵,卷積運算的效果很類似濾鏡效果, 擷取了不同的特徵。

卷積運算介紹

卷積層的意義是將原本一個影像,經過卷積運算(濾鏡),產生多個影像, 就好像將相片卷積起來

執行矩陣與濾鏡的對應元素相乘,並計算總合(也稱做積和運算)

1	2	3	0					1		
0	1	2	3		2	0	1		15	16
	'			(*)	0	1	2		15	16
3	0	1	2			-			6	15
2	3	0	1		1	0	2			
~	_ J	_ U	'					а		

輸入資料

濾鏡

1	2	3	0
0	1	2	3
3	0	1	2
2	3	0	1

2	0	1
0	1	2
1	0	2

15	

1	2	3	0
0	1	2	3
3	0	1	2
2	3	0	1

2	0	1
0	1	2
1	0	2

15	16

1	2	3	0
0	1	2	3
3	0	1	2
2	3	0	1

2	0	1
0	1	2
1	0	2

15	16
6	

1	2	3	0
0	1	2	3
3	0	1	2
2	3	0	1

2	0	1
0	1	2
1	0	2

15	16
6	15

如果有偏權值,處理流程如下

1	2	3	0
0	1	2	3
3	0	1	2
2	3	0	1

(*)

2	0	1
0	1	2
1	0	2

15 16 6 15

3

18 19 9 18

輸入資料

濾鏡(權重)

偏權值

輸出資料

0	0	1	0	0
0	0	1	0	0
1	1	1	1	1
0	0	1	0	0
0	0	1	0	0

1 2 1 0 0 0 -1 -2 -1

濾鏡 3x3 Filter weight(W)

1.影像:5x5的張量

2.濾鏡:3x3的張量

-3	-2	-3
0	0	0
3	2	3

特徵圖 3x3 feature map

3.特徵圖:卷積運算

產生3x3的特徵圖

3.運算:「滑動視窗選取的張量」 與「濾鏡張量」相對應的位置數 值相乘,再將乘積加總結果-3

	0	0	1	0	0	
	0	0	1	0	0	
٠.	1	1	1	1	1	
•	0	0	1	0	0	
	0	0	1	0	0	

濾鏡 3x3 Filter weight(W) -3

4.運算結果:數字-3 放在左上角的位置

特徵圖 3x3 feature map

1.滑動視窗(Sliding window):

在影像中選取最左上角的3x3的張量

影像(x) 5x5

2.濾鏡:3x3的張量

3.運算:「滑動視窗選取的張量」 與「濾鏡張量」相對應的位置數 值相乘,再將乘積加總結果-3

	0	0	1	0	0
	0	0	1	0	0
	1	1	1	1	1
	0 .	.0.7	1	0	0
.•	.0	0	1	0	0

濾鏡 **3x3** Filter weight(W) -3 -2 -3

4.運算結果:數字-3 放在相對的位置

影像(x) 5x5

1.滑動視窗:向右跨一步,

在影像中選取3x3的張量

特徵圖 3x3 feature map

2.濾鏡:3x3的張量

卷積運算處理後,縮小特徵圖的問題

影像(x) 5x5					x5
5x5的	0	0	1	0	0
原本	0	0	1	0	0
	1	1	1	1	1
	0	0	1	0	0
	0	0	1	0	0

1	2	1
0	0	0
-1	-2	-1

濾鏡 **3x3** Filter weight(W)

-3	-2	-3			
0	0	0			
3	2	3	2.	卷積	乡
特徵 feat				縮小為 3x3	制

我們進行卷積運算,主要是希望提取特徵,而不是縮小。 上一節介紹卷積運算後,產生的特徵圖會縮小,這會有什麼問題呢? 主要以下二點:

- ●無法加上很多卷積層
- ●原始影像角點與邊界丟失資訊

卷積運算縮小特徵圖:無法加上很多卷積層

0	0	1	0	0
0	0	1	0	0
1	1	1	1	1
0	0	1	0	0
0	0	1	0	0

▼第1次卷積運算

-3	-2	- 3
0	0	0
3	2	3

第2次卷積運算

-20

卷積運算縮小特徵圖:影像角點與邊界丟失資訊

卷積運算 - 填補(padding)

對於 4×4 的矩陣進行寬度 1 的填補(周圍增加一像素的 0 補滿)

(*)

2	0	1
0	1	2
1	0	2

7	12	10	2
4	15	16	10
10	6	15	6
8	10	4	3

(4, 4)

輸入資料 (padding:1)

(3, 3)

濾鏡

(4, 4)

輸出資料

#22 ANN

> 卷積運算:

- 1. 先以隨機的方式產生 filter weight ,大小是 3×3
- 2. 要轉換的影像由左而右、由上而下,依序選取 3×3 的矩陣

3. 影像選取的矩陣 (3×3) 與 filter weight(3×3), 計算產生第1列、第

1行的數字

再以相同的方式,計算第1列、第2行的數字。

#23

ANN

依照上列相同的方式,依序完成所有的運算,就完成影像的處理。

#24 ANN

Step4. 使用單一filter weight卷積運算產生影像

如下圖,將數字影像7是28X28大小,使用隨機產生5X5的filter weight(W)濾鏡, 進行卷積運算。

卷積運算並不會改變影像大小,所以處理後的影像,仍然是28X28大小。卷積運算後的效果,很類似濾鏡效果。這可以幫助提取輸入的不同特徵,例如:邊緣、線條和角等。

原圖

1/3	I					
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	0	0	1	0	0	0
0	1	1	1	1	1	0
0	0	0	1	0	0	0
0	0	0	1	0	0	0
0	0	0	0	0	0	0

卷積後的特徵圖

0	-1	-2	-1	0
-3	-3	-2	ဒု	-3
0	0	0	0	0
3	3	2	3	3
0	1	2	1	0
	7			

卷積

運算

加入bias後的結果

	-1	-2	-3	-2	-1
	-4	-4	ဒု	-4	-4
	0	0	0	0	0
>	2	2	1	2	2
	-1	0	1	0	-1

ReLU轉換後的特徵圖 能提取橫線特徵

	0	0	0	0	0
•	0	0	0	0	0
	0	0	0	0	0
	2	2	1_	2	2 }
	0	0	1	0	0

濾鏡	1	2	1
(可訓練	0	0	0
參數)	-1	-2	-1

卷積層

+ -1 bias (可訓練參數)

ReLU(激活函數)

轉換

1.卷積運算:

原圖片與**濾鏡(filter** weight)進行卷積運算 2. +bias 偏差:卷積後的特徵圖, 每一個數值加入bias偏差,調整影 像(例如bias=-1,所有數值都減1)

3.ReLU激活函數轉換:

轉換後負數會變成0,正數不變,可以進一步提取特徵

1.卷積運算提取橫線的特徵: 提取橫線特徵,不過不太明顯 2. +bias 偏差調整影像:

每一個數值加入bias偏

差,調整影像

3.ReLU激活函數轉換:

轉換後負數會變成0,正數不變。讓橫線的特

徵更明顯

原圖

↓卷積後的特徵圖

↓加入bias後的結果 ReLU轉換後的特徵圖

<i>[</i> 濾鏡	1	2	1
(可訓練	0	0	0
參數)	-1	-2	-1

卷積 運算 + -1 bias (可訓練參數)

ReLU 轉換

Step5. 使用多個filter weight卷積運算產生多個影像

接下來,我們將隨機產生16個(filter weight),也就是16個濾鏡。

卷積運算使用16個濾鏡(filter wight),產生16個影像,每個影像提取不同的特徵。

卷積運算:使用多個濾鏡,產生多個影像,提取多個特徵

卷積運算:使用多個濾鏡,產生多個影像,提取多個特徵(橫線)

輸入圖片: 具有直線與 橫線特徵 1.卷積運算後:

第4行全部都是正數 第5行有3個正數, 其餘都是負數或0 **2.加上bias後**:因為 bias=-1全部數值減1。 第4行全部是正數,

第5行正數只剩下1個

3.ReLU激活函數:

轉換後負數會變成0 正數不變。最後第4 行提取了橫線的特徵

<u>原</u>	圖		. :			~	_
0	0	0	•	0	0	0	
0	0	0	1	0	0	0	
0	0	0	1	0	0	0	
0	1	1	1	1	1	0	
0	0	0	1	0	0	0	
0	0	0	1	0	0	0	_
0	0	0	0	0	0	0	

卷積後的特徵圖

	0	-1	-2	-1	0
	-3	-3	-2	-3	-3
,	0	0	0	0	0
	3	3	2	3	3
	0	1	2	1	0

加入bias後的結果

					,,,,,
	-1	-2	-3	-2	-1
ReL		-4	-3	-4	-4
轉換	, o ⁱ	0	0	0	0
	2	2	1	2	2
	-1	0	1	0	-1

輸出特徵圖

	0	0	0	0	0
U	0	0	0	0	0
A	0	0	0	0	0
	2	2	1	2	2
•	0	0	1	0	0

/ 濾鏡w0	1	2	1
(可訓練		0	0
參數)	-1	-2	-1

卷積運算 ■取構線

能提取橫線 特徵的濾鏡 卷積層

偏差:**b0** + □-1 bias (可訓練參數) __(激活函數)

ReLU ` 轉換

卷積運算:使用多個濾鏡,產生多個影像,提取多個特徵(直線)

輸入圖片: 具有直線與 橫線特徵 .

1.卷積運算後:

第4列全部都是正數 第5列有3個正數,其餘 都是負數或0 **2.加上bias後:**因為 bias=-1全部數值減1。 第4列仍然全部是正數, 第5列正數只剩下1個 *』* 3.ReLU激活函數: 轉換後負數會變成0。 第4列全部是正數, 提取了直線的特徵

原圖

1/31	1						
0	0	0	0	0	0	0	
0	0	0	1	0	0	0	
0	0	0	1	0	0	0	
0	1	1	1	1	1	0	
0	0	0	1	0	0	0	
0	0	0	1	0	0	0 [_
0	0	0	0	0	0	0	

卷積後的特徵圖

0	-3	0	3	0				
-1	-3	U	3	1				
-2	-2	U	2	2				
-1	-3	0	3	1				
0	-3	0	3	0				
. 2	7		*****	•				

加入bias後的特徵圖

IJ		<u>via:</u>	シレタル	Y ₹₹	13X 🖺	4
	-1	-4	-1	2	-1	
	-2	-4	-1	2	0	ReL
	-3	-3	-1	1	1	轉拸
\	-2	-4	-1	2	0	
/	-1	-4	-1	2	-1	

輸出特徵圖₹

0	0	0	2	0
0	0	0	2	0
0	0	0	1	1
0	0	0	2	0
0	0	0	2	0
	0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 2 0 0 0 1 0 0 0 2

濾鏡w1− (可訓練∠ 參數)

1 0 1 2 0 2

卷積運算

能提取直線 特徵的濾鏡 卷積層

偏差:**b1** + <mark>-1</mark> bias

[可訓練參數)

(激活函數) ReLU 轉換

卷積運算:使用多個濾鏡,產生多個影像,提取多個特徵(斜線)

參數)

特徵的濾鏡

#32 ANN

Step6. Pooling 運算 池化層功能介紹

#33 ANN

Step6. Pooling 運算

Pooling運算"不"訓練參數,只是單純的運算 但是具有以下功能

- 縮小特徵圖:讓特徵圖更小,更容易快速處理
- 減少訓練參數:特徵圖縮小,減少網路所需訓練參數,加快訓練速度
- 減少 Overfitting:減少訓練參數,可能能夠降低 Overfitting
- Max-Pooling 在 pool size 取最大值:能保留重要特徵,讓特徵更明顯,且讓神經網路對輸入圖像中的小變換、扭曲和平移,對判斷上減少造成影響

#34

ANN

Max-pool 運算說明

Max-pool運算可以將影像縮減取樣(downsampling)

如下圖: 原本影像是 4×4 ,經過 Max-pool 運算轉換後,影像大小 變為 2×2

影像(X)大小4X4

Max-pool 詳細運算說明

• **左上角4個數字:** 5、2、4、1最大的是5,所以計算結果是5。

• **右上角4個數字:** 3、1、1、6最大的是6,所以計算結果是6。

5	2	3	1		5>	6
4	1	1	6	Max-Pool	8	9
7	8	2	9			
1	1	1	1			

Max-pool 詳細運算說明

• 左下角4個數字:7、8、1、1最大的是8,所以計算結果是8。

5	2	3	1		5	6
4	1	1	6	Max-Pool	8	9
7	8	2	9			
1	1	1	1			

• 右下角4個數字:2、9、1、1最大的是9,所以計算結果是9。

5	2	3	1		2	9
4	1	1	6	Max-Pool	1	1
7	8	2	9			
1	1	1	1			

37 ANN

Step7. 使用Max-Pool將手寫數字影像轉換

使用Max-Pool進行縮減取樣(downsampling),執行手寫數字影像轉換,將16個28X28影像,縮小爲16個14X14的影像。但是不會改變影像數量仍然是(16)。

縮減取樣 (downsampling)

卷積層1 C1_Conv 28X28影像共16層

原本16個28X28影像

池化層1 C1_Pool 14X14影像共16層

縮小為16個14X14的影像

#38 ANN

使用 Max-pool 縮減取樣會縮小影像,有下列好處:

- 減少需處理的資料點: 減少後續運算所需的時間
- 2. **讓影像位置差異變小:**例如手寫數字7,位置上下左右可能不同,但是位置的不同可能會影響辨識。減小影像大小,讓數字的位置差異變小
- 3. **參數的數量和計算量下降:** 在一定程度上控制過度擬合(overfitting) 現象

#39 ANN

Step8.建立卷積神經網路辨識Mnist資料集

- 1. 資料預處理:資料預處理後,會產生Features(數字 影像特徵值)與Label(數字的真實的值)
- 2. 建立模型:我們將建立卷積神經網路CNN (convolutional neural network)。
- 3. 訓練模型:輸入訓練資料Features(數字影像特徵值) 與Label(數字的真實的值),執行10次訓練週期
- 4. 評估模型準確率:使用測試資料,評估模型準確率

5. 進行預測:使用已經訓練完成的模型,輸入測試資料進行預測

#40 ANN

8.2進行資料預處理(Preprocess)

CNN)與多元感知器(MLP),進行資料預處理的方式不同:

	reshape	參數說明
MLP	image.reshape(60000,784)	多元感知器因為直接送進神經元處理,所以 reshape轉換原始60,000筆資料時,每一筆有 784個數字,作為784個神經元的輸入
CNN	image.reshape(60000,28,28,1)	CNN因為必須先進行卷積與池化運算,必須保持影像的維度,所以reshape轉換60,000筆資料時,每一筆有28×28×1的影像,分別是28(寬)×28(高)×1(單色)

#41 ANN

Step1.匯入所需模組

```
from keras.datasets import mnist
from keras.utils import np_utils
import numpy as np
np.random.seed(10)
Using TensorFlow backend.
```

Step2.讀取mnist資料

```
(x_Train, y_Train), (x_Test, y_Test) = mnist.load_data()
```

Step3.將features(數字影像特徵值)轉換為4維矩陣

將features(數字影像特徵值)以reshape轉換為60000×28×28×1的4維矩陣

```
x_Train4D=x_Train.reshape(x_Train.shape[0],28,28,1).astype('float32')
x_Test4D=x_Test.reshape(x_Test.shape[0],28,28,1).astype('float32')
```

#42 ANN

Step4. 將 features (數字影像特徵值)標準化

將features(數字影像特徵值)標準化,可以提高模型預測的準確度,並且更快收斂

```
x_Train4D_normalize = x_Train4D / 255
x_Test4D_normalize = x_Test4D / 255
```

Step5. 將 label (數字的真實的值)以Onehot encoding轉換

使用np_utils.to_categorical,將訓練資料與測試資料的label,進行Onehot encoding轉換

```
y_TrainOneHot = np_utils.to_categorical(y_Train)
y_TestOneHot = np_utils.to_categorical(y_Test)
```

8.3建立模型

卷積層1 (28X28影像共16層)

池化層1 (14X14影像共16層)

```
(MaxPooling2D(pool_size=(2, 2)))
```

8.3建立模型

卷積層2 (14X14影像共36層)

池化層2 (7X7影像共36層)

```
(MaxPooling2D(pool_size=(2, 2)))
```

(Dropout (0.25))

8.3建立模型


```
平坦層 (1764神經元)
(Flatten())
```

```
隱藏層 (128神經元)
(Dense(128, activation='relu'))
(Dropout(0.25))
輸出層 (10神經元)
(Dense(10,activation='softmax'))
```

#46 ANN

Step1.匯入所需模組

```
from keras.models import Sequential
from keras.layers import Dense,Dropout,Flatten,Conv2D,MaxPooling2D
```

程式碼	說明			
from keras.models import Sequential	匯入線性堆疊模型			
from keras.layers import Dense,Dropout,Flatten,Conv2D,MaxPooli ng2D	從 keras 的 layers 模組,匯入後續 CNN 卷積網路要使用的卷積層、池化層、平坦層等			

#47 ANN

Step2.建立keras的Sequential模型

model = Sequential() #建立一個線性堆疊模型

建立 Sequential 模型,後續只需要使用model.add()方法,將各神經網路層加入模型即可

Step3.建立卷積層1與池化層1

一次完整的卷積運算,包含一個卷積層與一個池化層

>建立卷積層1

輸入的數字影像是28×28,執行第一次卷積運算,使用濾鏡產生16個影像

卷積運算並不會改變影像大小,所以16個影像仍然是28×28大小

#48 ANN

>建立卷積層1

使用下列程式碼建立卷積層1,產生16個28×28大小的影像

以上程式碼加入Conv2D層至模型,輸入下列參數:

程式碼	說明
filters=16,	建立16個濾鏡filter weight
kernel_size=(5,5),	每一個濾鏡5×5大小
padding='same',	此設定讓卷積運算,產生的卷積影像大小不變
input_shape=(28,28,1),	第1,2維度:代表輸入的影像形狀28×28大小,第3個維度:因為 是單色灰階影像,所以最後維度是1
activation='relu'	設定ReLU激活函數

#49 ANN

> 建立池化層1

使用以下程式碼建立池化層1

輸入參數 pool_size=(2,2),執行第1次縮減取樣 將16個28×28影像,縮小為14×14的影像

#50 ANN

Step4.建立卷積層2與池化層2

▶ 建立卷積層2

使用下列程式碼建立卷積層2,執行第2次卷積運算:

```
model.add(Conv2D(filters=36,
kernel_size=(5,5),
padding='same',
activation='relu'))
```

將原本16個的影像,轉換為36個影像,影像大小仍然是14×14以上程式碼加入Conv2D層至模型,輸入下列參數:

程式碼	說明
filters=36,	建立36個濾鏡filter weight
$kernel_size=(5,5),$	每一個濾鏡filter weight 5×5大小
padding='same',	此設定讓卷積運算並不會改變影像大小
activation='relu'	設定ReLU激活函數

#51

▶ 建立池化層2,並且加入Dropout避免overfitting

以下程式碼建立池化層2,輸入參數pool_size=(2,2),執行第2次縮減取樣,將36個14×14影像,縮小為36個7×7的影像。

以下程式碼加入Dropout(0.25)層至模型中。 每次訓練迭代時,隨機地在神經網路中放棄25%的神經元,以避免 Overfitting。

model.add(Dropout(0.25))

#52 ANN

Step5.建立神經網路(平坦層、隱藏層、輸出層)

▶ 建立平坦層 以下程式碼建立平坦層

model.add(Flatten())

將根據池化層2的步驟,建立的36個7×7影像,轉換為1維的向量 長度是36×7×7=1764 也就是1764個float數字,正好對應到1764神經元

#53 ANN

> 建立隱藏層

以下程式碼建立隱藏層,共有128個神經元。

```
model.add(Dense(128, activation='relu'))
```

並且加入Dropout層至模型中。每次訓練迭代時隨機放棄已訓練好的50%神經元,以避免overfitting。

> 建立輸出層

共有10個神經元,對應到0~9共10個數字

使用softmax激活函數進行轉換, softmax可以將神經元的輸出,轉換 為預測每一個數字的機率。

model.add(Dense(10,activation='softmax'))

Step6.查看模型的摘要

使用下列指令,查看模型的摘要。

In [17]: print(model.summary())

Layer (type)	Output	Shape	Param #
conv2d_1 (Conv2D)	(None,	28, 28, 16)	416
max_pooling2d_1 (MaxPooling2	(None,	14, 14, 16)	0
conv2d_2 (Conv2D)	(None,	14, 14, 36)	14436
max_pooling2d_2 (MaxPooling2	(None,	7, 7, 36)	0
dropout_1 (Dropout)	(None,	7, 7, 36)	0
flatten_1 (Flatten)	(None,	1764)	0
dense_1 (Dense)	(None,	128)	225920
dropout_2 (Dropout)	(None,	128)	0
dense_2 (Dense)	(None,	10)	1290

Total params: 242,062 Trainable params: 242,062 Non-trainable params: 0

None

卷積層1與池化層1

卷積層2與池化層2

神經網路(平坦層、 隱藏層、輸出層)

#55 ANN

8.4進行訓練

使用Back Propagation反向傳播算法進行訓練(參考第二章) Step1.定義訓練方式

在訓練模型之前,必須使用compile方法,對訓練模型進行設定:

輸入下列參數:

- Loss: 損失函數(Loss Function),使用cross_entropy交叉熵
- Optimizer: 訓練最優化方法,使用adam最優化方法
- Metrics: 設定評估模型訓練效果的方式,使用accuracy準確率

#56 ANN

Step2.開始訓練

執行訓練的程式碼如下:

使用model.fit進行訓練,訓練過程儲存在train_history變數:

1. 輸入訓練資料參數

```
x=x_Train4D_normalize #(features數字影像真實的值)
y=y_Train_OneHot #(label數字影像真實的值)
```

- 2. 設定訓練與驗證資料比例
 - 設定參數validation_split=0.2
 訓練前Keras自動將資料分成:80%作為訓練,20%作為驗證 全部60,000筆,分成48,000訓練,12,000驗證

#57 ANN

- 3. 設定epoch(訓練週期)次數與每一批次筆數
 - Epochs=10: 執行10次訓練週期。
 - Batch_size=300: 每一批次300筆資料。
- 4. 設定訓練過程
 - Verbose=2: 顯示訓練過程。 共執行10次epoch(訓練週期),每一次訓練週期,執行下列功能:
 - 使用48,000筆訓練資料進行訓練,分為每一批次300筆,所以大約分為160批次(48000/300=160)進行訓練。
 - epoch(訓練週期)訓練完成後,會計算此次訓練週期的 accuracy(準確率)與loss(誤差),並且記錄在新增一筆資料記錄在 train_history中。

```
80%作為訓練資料,
Train on 48000 samples, validate on 12000 samples
                                                                  20%作為驗證資料
Epoch 1/10
105s - loss: 0.5142 - acc: 0.8335 - val loss: 0.1100 - val acc: 0.9668
Epoch 2/10
98s - loss: 0.1529 - acc: 0.9547 - val loss: 0.0703 - val acc: 0.9783
Epoch 3/10
99s - loss: 0.1132 - acc: 0.9656 - val loss: 0.0623 - val acc: 0.9798
Epoch 4/10
98s - loss: 0.0898 - acc: 0.9732 - val loss: 0.0531 - val acc: 0.9843
Epoch 5/10
110s - loss: 0.0802 - acc: 0.9756 - val loss: 0.0433 - val acc: 0.9875
Epoch 6/10
107s - loss: 0.0689 - acc: 0.9797 - val loss: 0.0415 - val acc: 0.9875
Epoch 7/10
98s - loss: 0.0600 - acc: 0.9822 - val loss: 0.0409 - val acc: 0.9882
Epoch 8/10
123s - loss: 0.0579 - acc: 0.9826 - val loss: 0.0368 - val acc: 0.9904
Epoch 9/10
101s - loss: 0.0505 - acc: 0.9841 - val loss: 0.0346 - val acc: 0.9901
Epoch 10/10
103s - loss: 0.0489 - acc: 0.9849 - val loss: 0.0368 - val acc: 0.9900
   使用訓練資料,計算accuracy與loss
                                         使用驗證資料,計算accuracy與loss
```

以上執行畫面,你可以看到共執行10個Epoch訓練執行時期,你可以發現loss(誤差)越來越小,accuracy(準確率)越來越高。

#59 ANN

Step3. 畫出accuracy執行結果

之前訓練步驟,會將每一個訓練週期的accuracy(準確率)與loss(誤差) ,紀錄在train_history 變數。

我們可以使用下列程式碼,讀取train_history,畫出accuracy準確率執行結果。show_train_history請參考第7章的說明:

Step4. 畫出loss誤差執行結果

以上執行畫面,「loss訓練的誤差」是藍色,「val_loss驗證的誤差」是黄色,總共執行 10個Epoch訓練週期,你可以發現,不論訓練與驗證,驗證的誤差越來越低。

#61 ANN

8.5評估模型準確率

以下列程式碼,評估模型準確率

```
scores = model.evaluate(x_Test4D_normalize , y_TestOneHot)
scores[1]

10000/10000 [=======] - 3s
0.993500000000000005
```

以上執行結果準確率是0.993。程式碼說明如下:

程式碼	說明				
scores=model.evaluate()	使用model.evaluate進行評估模型準確率,評估後的 準確率存在scores				
x_Test4D_normalize ,	測試資料的features(已標準化測試資料的數字影像)				
y_TestOneHot	測試資料的label(數字影像真實的值)				

#62 ANN

8.6進行預測

Step1.執行預測

使用model.predict_classes,輸入參數x_Test4D_normalize(已標準化測試資料的數字影像)進行預測。

Step2. 預測結果

你可以下列指令查看預測結果的前10筆資料:

```
In [25]: prediction[:10]
Out[25]: array([7, 2, 1, 0, 4, 1, 4, 9, 5, 9])
```

#63 ANN

Step3. 顯示前10筆預測結果

使用第6章建立的show_images_labels_prediction函數,顯示前10筆預測結果,傳入測試資料影像、label(真實值)及predict(預測結果)。

#64 ANN

8.7顯示混淆矩陣(confusion matrix)

Step1.使用pandas crosstab建立混淆矩陣(confusion matrix)

程式碼	參數說明				
import pandas as pd	匯入pandas模組,後續以pd使用				
pd.crosstab(使用pd.crosstab建立混淆矩陣,輸入下列參數:				
y_Test,	測試資料數字影像的真實值				
prediction,	測試資料數字影像的預測結果				
rownames=['label'],	設定行的名稱是label				
colnames=['predict'])	設定列的名稱是predict				

predict	0	1	2	3	4	5	6	7	8	9
label	_									
0 <	978	Ø	0	0	0	0	1	1	0	0
1	0	1132	7	0	0	1	0	1	0	0
2	3	1	1020	9	0	0	0	7	1	0
3	0	0	2	1004	0/	2	0	2	0	0
4	0	1	0	0/	975	Q	1	0	1	4
5	1	0	0	6	/	881	9¢	1	0	1
6	5	3	0	1	1	2	946	8	0	0
7	0	1	1	1	0	0	6	1022	1	2
8	7_	2	3	3	1	2	0	3	947	6
9	4	4	0	2	4	2	0	6	0/	987

對角線是預測正確的數字

真實值是8,但是預測是3

#66 ANN

結論

本章使用卷積神經網路CNN(Convolutional Neural Networks),辨識Mnist資料集中的手寫數字,分類精度接近為99%不過這只是單色手寫數字辨識,相對來說比較簡單

下一章將介紹更具挑戰性的任務 使用卷積神經網路,辨識CIFAR-10彩色影像資料集 影像共10個分類:飛機、汽車、鳥、貓、鹿、狗、青蛙、船、卡車