清华大学 | 讲义分享 语言识别技术研讨会

2019.3.25 olr.cslt.org

March 24th 2019

https://scholars.duke.edu/person/MingLi

Duke undergraduate experience distinct in the world of elite higher education.

Now she makes one step forward..

DUKE KUNSHAN UNIVERSITY provides a historic opportunity to create something truly innovative and world leading for 21st century – even better than the Duke curriculum, and Duke faculty took on this challenge.

- Sino-US Joint Venture University with independent legal status
- Duke-standard education and research
- Comprehensive and small

Security & custom care

speaker, language, gender, age, emotion, channel, voicing, psychological states, etc.

paralinguistic speech attribute recognition

Speech signal not only contains lexicon information, but also deliver various kinds of paralinguistic speech attribute information, such as speaker, language, gender, age, emotion, channel, voicing, psychological states, etc.

http://compare.openaudio.eu/

The core technique question behind it is utterance level supervised learning based on text independent speech signal with flexible duration

General framework

General framework

- time varying property
- -> short time frame level features
- generative model for data description -> features (supervectors) in model parameters' space for classification

Generative model, adaptation, supervectors

- Gaussian Mixture Model (GMM) serves as the generative model
 - model adaptation from universal background model (UBM)
 - MAP adaptation, large dimensional GMM mean supervector
 - Maximum Likelihood Linear Regression (MLLR) adaptation
 - The statistics vector for a set of features on UBM
 - Oth order statistics vector N,centered 1st order statistics vector F

Mapping from a set of feature vectors to a fixed dimensional supervector

Factor analysis based dimension reduction

- Factor analysis on the concatenated 1st order statistics vector
 - Total variability i-vector, $\widetilde{F} \to Tx$ (Dehak et.al, IEEE TASLP, 2011) **T**: factor loading matrix; **x**: i-vector
 - Joint factor analysis (JFA), $\widetilde{F} \to Vx+Uy$ (Kenny et.al, IEEE TASLP, 2007) V: Eigenvoices, U: Eigenchannels, x: speaker factor, y: channel factor

Variability compensation, modeling

- Variability compensation
 - Linear discriminant analysis (LDA)
 - Within-class covariance normalization (WCCN) (Hatch et.al, Interspeech, 2006)
 - Whitening and length normalization (Garcia-Romero, Interspeech, 2011)
- Verification modeling
 - Probabilistic linear discriminant analysis (PLDA) (Prince et.al, ICCV, 2007)
 - x_{ij} =m+ $\Phi \beta_i + \epsilon_{ij}$
 - ϵ follows N(0, Σ), β follows N(0,1) (Garcia-Romero, Interspeech, 2011)
 - ϵ follows N(0, Σ/T_i), (Ming Li, Interspeech 2015)
 - Hypothesis testing based scoring

$$Score = \log N \left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}; \begin{bmatrix} m \\ m \end{bmatrix}, \begin{bmatrix} \Sigma + \Phi \Phi^t & \Phi \Phi^t \\ \Phi \Phi^t & \Sigma + \Phi \Phi^t \end{bmatrix} \right) - \log N \left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}; \begin{bmatrix} m \\ m \end{bmatrix}, \begin{bmatrix} \Sigma + \Phi \Phi^t & \mathbf{0} \\ \mathbf{0} & \Sigma + \Phi \Phi^t \end{bmatrix} \right)$$

General framework

	Commonly Used Methods								
Feature	MFCC, PNCC, GFCC, CQCC, SDC, LLD, Tandem, Bottleneck,								
extraction	Acoustic-to-articulatory inversion, subglottal, etc.								
Representation	MM-MAP,GMM-supervector,GMM-lvector,HMM-								
	vector, Auto-encoder, DBN, Statistic Measurement, etc.								
Variability	WCCN, JFA, LDA, NAP, NDA, LSDA, LFDA, etc.								
Compensation									
Backend	SVM, PLDA, NN, ELM, Random Forest, Cosine Similarity, Joint								
classification	Bayesian, Sparse Representation, etc.								

Paralingistic speech attribute

Fully Connected layer

Encoding layer

OR

RNN layer End-to-end framework

backend classifier

representation

feature extraction

End-to-end framework

Utterance-level posteriors for identification task

backend classifier

representation

feature extraction

Encoding layer

(a) TAP Layer

VecDim: Dout Recurrent Layer (OutDlm= Dout) FeatDim: Din * L

LDE Layer (Compoents = C)

...

FeatDim: D*L

VecDim: D * C

(b) Recurrent encoding layer

(c) LDE Layer

Results on NIST LRE 07 language identification

PERFORMANCE ON THE 2007 NIST LRE CLOSED-SET TASK (LOWER IS BETTER). NR: NOT REPORTED

·	ID	System	C_{avg}	(%)/EER((%)	•
	ш	System	3s Task	10s Task	30s Task	-
·	1	ResNet-TAP	9.98/11.28	3.24/5.76	1.73/3.96	•
	2	ResNet-SAP	8.59/9.89	2.49/4.27	1.09/2.38	
	3	ResNet-LDE	8.25/7.75	2.61/2.31	1.13/0.96	
•	4	GMM i-vector [12]	20.46/8.29	3.02/17.71	3.02/2.27	<u>-</u>
	5	DNN i-vector [12]	14.64/12.04	6.20/3.74	2.60/1.29	
	6	DNN PPP feature [12]	8.00/6.90	2.20/1.43	0.61/0.32	
	7	DNN Tandem Feature [12]	9.85/7.96	3.16/1.95	0.97/0.51	
	8	DNN Phonotactic [43]	18.59/12.79	6.28/4.21	1.34/0.79	
	9	RNN D&C [43]	22.67/15.57	9.45/6.81	3.28/3.25	
	10	LSTM-Attention [44]	NR/14.72	NR	NR	
	11	ResNet-GRU [12]	11.31/10.74	5.49/6.40	NR	
	12	ResNet-LSTM [12]	10.17/9.80	4.66/4.26	NR	之大学
1						VSHAN

Results on NIST LRE 07 language identification

Encoding layer

Attention based CNN-BLSTM

Weicheng Cai, Shen Huang and Ming Li (*), "utterance-level end-to-end language identification using attention-based cnn-blstm", ICASSP 2019

ISCSLP 2018.

Results on NIST LRE 07 language identification

Table 1. Performance on the 2007 NIST LRE closed-set task

System	System Description	Description Front-end module		$C_{avg}(\%)$			EER(%)		
ID	System Description	Front-end inodule	Encoding layer	3s	10s	30s	3s	10s	30s
1	CNN-TAP [10]	CNN	GAP	9.98	3.24	1.73	11.28	5.76	3.96
2	CNN-SAP [12]	CNN	SAP	8.59	2.49	1.09	9,89	4.27	2.38
3	CNN-LSTM [10]	CNN	LSTM	10.17	4.66	N/R	9.80	4.26	N/R
4	CNN-GRU [10]	CNN	GRU	11.31	5.49	N/R	10.74	6.40	N/R
5	LSTM-Attention [24]	LSTM	Attention	14.72	N/R	N/R	N/R	N/R	N/R
66	tandem CNN-BLSTM TAP	CNN-BLSTM	TAP	9.83	3.31	2.03	11.22	5.26	3.67
7	tandem CNN-BLSTM SAP	CNN-BLSTM	SAP	9.22	2.54	0.97	9.50	3.48	1.77
8	Fusion ID2 + ID7			7.98	2.30	0.89	8.03	3.05	1.56

Weicheng Cai, Shen Huang and Ming Li (*), "utterance-level end-to-end language identification 以起来的 attention-based cnn-blstm", ICASSP 2019

Jinkun Chen, Weicheng Cai and Ming Li(*), "End-to-end Language Identification using NetFV and NetVLAD",

Loss design

Table 2: Results for verification on VoxCeleb (lower is better)

System ID	System Description	Encoding Procedure	Loss Function	Similarity Metric	$C_{det}(\%)$	EER(%)
1	i-vector + cosine	Supervector	GNLL	cosine	0.829	20.63
2	i-vector + PLDA	Supervector	GNLL + GNLL	PLDA	0.639	7.95
3	TAP-Softmax	TAP	softmax	cosine	0.553	5.48
4	TAP-Softmax	TAP	softmax + GNLL	PLDA	0.545	5.21
5	TAP-CenterLoss	TAP	center loss	cosine	0.519	4.99
6	TAP-CenterLoss	TAP	center loss+ GNLL	PLDA	0.608	4.82
7	TAP-ASoftmax	TAP	A-Softmax	cosine	0.439	5.27
8	TAP-ASoftmax	TAP	A-Softmax + GNLL	PLDA	0.577	4.46
9	SAP-Softmax	SAP	softmax	cosine	0.522	5.51
10	SAP-Softmax	SAP	softmax + GNLL	PLDA	0.545	5.08
11	SAP-CenterLoss	SAP	center loss	cosine	0.509	5.15
12	SAP-CenterLoss	SAP	center loss+ GNLL	PLDA	0.581	4.58
13	SAP-ASoftmax	SAP	A-Softmax	cosine	0.509	4.90
14	SAP-ASoftmax	SAP	A-Softmax + GNLL	PLDA	0.622	4.40
15	LDE-Softmax	LDE	softmax	cosine	0.516	5.21
16	LDE-Softmax	LDE	softmax + GNLL	PLDA	0.519	5.07
17	LDE-CenterLoss	LDE	center loss	cosine	0.496	4.98
18	LDE-CenterLoss	LDE	center loss + GNLL	PLDA	0.632	4.87
19	LDE-ASoftmax	LDE	A-Softmax	cosine	0.441	4.57
20	LDE-ASoftmax	LDE	A-Softmax + GNLL	PLDA	0.576	4.48

Angular loss, center loss, softmax loss

Liu, Weiyang, Yandong Wen, Zhiding Yu, **Ming Li**, Bhiksha Raj, and Le Song. "Sphereface: Deeplit文大学 hypersphere embedding for face recognition." CVPR, vol. 1. 2017.
Weicheng Cai, Jinkun Chen, **Ming Li(*)**. "Exploring the Encoding Layer and Loss function in End-to-End

Speaker and Language Recognition System", Odyssey, 2018.

Length normalization layer

Conventional pipeline

The proposed framework with length normalization layer

How to tune Alpha

Table 3: Verification performance on VoxCeleb1 for various scale parameter α (lower is better)

System Description	$DCF10^{-2}$	$DCF10^{-3}$	EER(%)
Deep embedding baseline	0.553	0.713	5.48
fixed $\alpha = 1$	0.922	0.967	10.18
fixed $\alpha = 4$	0.601	0.828	6.36
fixed $\alpha = 8$	0.515	0.687	5.49
fixed $\alpha = 12$	0.475	0.586	5.01
fixed $\alpha = 16$	0.499	0.696	5.32
fixed $\alpha = 20$	0.503	0.637	5.46
fixed $\alpha = 24$	0.502	0.638	5.54
fixed $\alpha = 28$	0.497	0.640	5.52
trained $\alpha = 26.1$	0.486	0.599	5.60

$$\alpha_{low} = \log \frac{p(C-2)}{1-p}$$

For voxceleb1, C=1211, p=0.9, then Alpha_low=9

Length normalization layer

Table 2: Voxceleb1 open-set verification task performance, in comparing the effect of our introduced deep length normalization strategy and traditional extra length normalization step (lower is better)

System Description	Deep L_2 -norm	Traditional L_2 -norm	Similarity Metric	$DCF10^{-2}$	DCF10 ⁻³	EER(%)
i-vector + inner-product	N/A	Х	inner-product	0.736	0.800	13.80
i-vector + cosine	N/A	✓	inner-product	0.681	0.771	13.80
i-vector + PLDA	N/A	X	PLDA	0.488	0.639	5.48
i-vector + L_2 -norm + PLDA	N/A	✓	PLDA	0.484	0.627	5.41
Deep embedding + inner-product	Х	Х	inner-product	0.758	0.888	7.42
Deep embedding+ cosine	X	✓	inner-product	0.553	0.713	5.48
Deep embedding+ PLDA	X	X	PLDA	0.524	0.739	5.90
Deep embedding + L_2 -norm + PLDA	X	✓	PLDA	0.545	0.733	5.21
L_2 -normalized deep embedding + inner-product	✓	Х	inner-product	0.475	0.586	5.01
L_2 -normalized deep embedding + PLDA	✓	X	PLDA	0.525	0.694	4.74

Results on Voxceleb1 data

PERFORMANCE RESULTS ON VOXCELEB1 (LOWER IS BETTER). DA: DATA AUGMENTATION

ID	System	DA	Training Set	Loss + Scoring	C_{det}	EER(%)
1	ResNet-TAP	X	Voxceleb1	Softmax + Cosine	0.553	5.48
2	ResNet-SAP	X	Voxceleb1	Softmax + Cosine	0.522	5.51
3	ResNet-LDE	X	Voxceleb1	Softmax + Cosine	0.516	5.21
4	ResNet-TAP	X	Voxceleb1+Voxceleb2	Softmax + Cosine	0.331	3.28
5	ResNet-SAP	X	Voxceleb1+Voxceleb2	Softmax + Cosine	0.307	3.11
6	ResNet-LDE	X	Voxceleb1+Voxceleb2	Softmax + Cosine	0.291	2.89
7	i-vector	Х	Voxceleb1	PLDA	0.484	5.41
8	i-vector	X	Voxceleb1+Voxceleb2	LDA+PLDA	0.493	5.32
9	i-vector [16]	✓	Voxceleb1+PRISM	PLDA	0.479	5.39
10	x-vector	X	Voxceleb1	Softmax + Cosine	0.726	11.42
11	x-vector	✓	Voxceleb1 + MUSAN	Softmax + Cosine	0.727	10.11
12	x-vector	X	Voxceleb1	Softmax + PLDA	0.570	7.74
13	x-vector	✓	Voxceleb1 + MUSAN	Softmax + PLDA	0.485	6.20
14	x-vector	✓	Voxceleb1 + MUSAN	Softmax + LDA+PLDA	0.480	5.64
15	x-vector [16]	✓	Voxceleb1 + PRISM	Softmax + PLDA	0.413	4.19
16	x-vector	✓	Voxceleb1+Voxceleb2+MUSAN	Softmax + LDA+PLDA	0.325	3.12
17	Chung et al. [11]	X	Voxceleb1	Softmax + Cosine	0.75	10.2
18	Chung et al. [11]	X	Voxceleb1	Contrastive + Cosine	0.71	7.8
19	Cai et al. [17]	X	Voxceleb1	A-Softmax + Cosine	0.441	4.56
20	Hajibabaei et al. [45]	X	Voxceleb1	AM-Softmax + Cosine	0.413	4.30
21	Chung et al. [40]	X	Voxceleb2	Contrastive + Cosine	0.429	3.95

Results on SITW data

PERFORMANCE RESULTS ON SITW (LOWER IS BETTER). DA: DATA AUGMENTATION. N/A: NOT APPLICABLE

ID	ID System		Training Set	Loss + Scoring	SITW Dev		SITW Eval	
	b j btom	DA	Training Det	2000 i beering				
					C_{det}	EER(%)	C_{det}	EER(%)
1	ResNet-TAP	X	Voxcele1+Voxceleb2	Softmax + Cosine	0.376	4.96	0.454	5.66
2	ResNet-SAP	X	Voxceleb1+Voxceleb2	Softmax + Cosine	0.334	4.34	0.405	5.17
3	ResNet-LDE	X	Voxceleb1+Voxceleb2	Softmax + Cosine	0.298	3.95	0.349	4.52
4	i-vector	/	Voxceleb1+Voxceleb2+MUSAN	LDA+PLDA	0.425	4.81	0.463	5.65
5	x-vector	X	Voxceleb1+Voxceleb2	Softmax + Cosine	0.827	16.55	0.887	17.19
6	x-vector	✓	Voxceleb1+Voxceleb2+MUSAN	Softmax + Cosine	0.777	15.05	0.818	15.30
7	x-vector	X	Voxceleb1+Voxceleb2	Softmax + LDA+PLDA	0.377	3.77	0.410	4.31
8	x-vector	✓	Voxceleb1+Voxxceleb2+MUSAN	Softmax + LDA+PLDA	0.313	3.08	0.348	3.41
9	x-vector [29]	✓	SITW Dev+NIST SREs+Voxxceleb1+MUSAN	Softmax + LDA + PLDA	N/A	N/A	0.393	4.16

Results on NIST SRE 2018

Table 1: NIST SRE 2018 CMN2 results for fixed condition (EER[%] / minC / actC)

	LDA + inW + PLDA	-	07.77 / 0.587 / 0.605	08.89 / 0.587 / 0.596
x-vector	LDA + CORAL + inW + PLDA	-	07.09 / 0.469 / 0.559	07.43 / 0.518 / 0.584
	LDA + PLDA	AS-Norm2	07.17 / 0.479 / 0.779	07.68 / 0.492 / 0.770
	LDA + CORAL + PLDA	AS-Norm2	07.32 / 0.419 / 0.715	07.50 / 0.504 / 0.730

Encoding	_	CMN2					
Layer	Loss	Development	Evaluation				
GAP	softmax	7.85 / 0.501 / 0.790	7.43 / 0.557 / 0.794				
GAP	A-softmax	6.03 / 0.420 / 0.636	6.61 / 0.474 / 0.654				
GSP	softmax	7.03 / 0.481 / 0.550	7.12 / 0.489 / 0.541				
GSP	A-softmax	5.94 / 0.418 / 0.704	6.14 / 0.463 / 0.700				
LDE	softmax	7.50 / 0.408 / 0.716	7.17 / 0.503 / 0.731				
LDE	A-softmax	6.03 / 0.354 / 0.425	6.20 / 0.430 / 0.448				

Results on Voices 2019 fixed condition

Table 1: Development subset results for the speaker recognition task of the VOiCES from a distance challenge (SN represents Score Normalization, devW represents whitening using development sub-set)

	Development sub-set			sub-set		Evaluatio	n		
Front-end	Back-end	WPE	SN	minC	actC	EER[%]	minC	actC	EER[%]
MFCC i-vector	PLDA CORAL + devW + PLDA	- √	√ √	0.4935 0.4527	0.6747 0.4703	6.33 6.12	0.8037 0.6870	0.8294 0.6891	12.92 11.89
PNCC i-vector	PLDA CORAL + devW + PLDA	- √	√ -	0.5073 0.4594	0.6745 0.4697	6.12 5.29	0.6791 0.6498	0.7803 0.7152	10.18 10.09
x-vector	CORAL + PLDA CORAL + PLDA	- √	√ -	0.4018 0.3617	0.4151 0.3688	4.96 4.52	0.6377 0.5417	0.6492 0.5544	09.13 07.54
Mfbank-8k ResNet + Softmax	CORAL + devW + PLDA CORAL + devW + PLDA		-	0.4557 0.3934	0.5246 0.4611	5.41 4.59	0.6608 0.5929	0.7128 0.6424	10.92 09.75
Mfbank-16k ResNet + Softmax	cosine similarity cosine similarity	- √	-	0.3608 0.3245	1 1	3.81 3.02	0.6262 0.5507	1 1	08.75 07.91
Mfbank-16k ResNet + A-Softmax	cosine similarity cosine similarity	- √	-	0.2735 0.2485	1 1	2.73 2.41	0.4156 0.3668	1 1	05.84 05.58
Gfbank ResNet + A-Softmax	cosine similarity cosine similarity	- √	-	0.3065 0.2680	1 1	3.52 3.14	0.4411 0.4056	1 1	06.78 06.49

Results on Voices 2019 fixed condition

	I	Developm	ent sub	-set	Evaluation			
Fusion strategy	minC	actC 1	EER[%] Cllr	minC	actC I	EER[%] Cllr
Best single system	0.2485	1	2.41	0.8060	0.3668	1	5.58	0.8284
Each embedding with top 1 back-end	0.1831	0.1857	1.93	0.0808	0.3205	0.3214	4.60	0.2335
Each embedding with top 2 back-end	0.1644	0.1659	1.48	0.0710	0.3555	0.3578	4.79	0.2684
Each embedding with top 3 back-end (submission)	0.1473	0.1484	1.21	0.0577	0.3532	0.3609	4.96	0.2683

Results on OLR 2018 dev dataset

Table 1. AP18-OLR development set performance

Foot	uro	Modeling	$C_{avg} \times 100$	
Feature		Wiodeinig	Full-length	1 second
MF	CC	i-vector + LR	3.58	14.23
PP	P	i-vector + LR	2.23	14.54
Tand	lem	i-vector + LR	2.77	13.21
BN	F	i-vector + LR	3.17	20.74
MF	CC	x-vector + LR	3.45	11.85
PP	P	x-vector + LR	1.78	11.47
BN	F	x-vector + LR	1.97	15.48
Fba	nk	CNN-GAP	4.63	8.98
PP	P	CNN-GAP	1.49	11.02
Tand	lem	CNN-GAP	2.08	9.62
	Fusion		0.85	5.76

Challenges & opportunities for the end-to-end speaker and language recognition task

Network structure

Data augmentation

Loss function design

Transfer learning

Joint learning & multitask learning

• • •

Thank you very much!

ming.li369@duke.edu

https://scholars.duke.edu/person/MingLi

2019年声纹识别研究与应用学术研讨会 4月20日 昆山杜克大学

主办方:中国计算机学会;昆山杜克大学 **协办方**:昆山杜克大学大数据研究中心 清华大学媒体大数据认知计算研究中心 中国计算机学会语音对话与听觉专业工作组

参会专家(按姓氏首字母排列)

杜俊 中国科学技术大学

郭武 中国科学技术大学

洪青阳 厦门大学

何亮 清华大学

黄申 腾讯

胡伟湘 华为

李明 昆山杜克大学

欧智坚 清华大学

钱彦旻 上海交通大学

宋彦 中国科学技术大学

王东 清华大学

谢磊 西北工业大学

杨琳 联想

张鹏远 中国科学院声学研究所

张卫强 清华大学

张翔 腾讯

张晓雷 西北工业大学

周瑜 阿里巴巴

This research was funded in part by the National Natural Science Foundation of China (61773413), Natural Science Foundation of Guangzhou City (201707010363) and Six talent peaks project in Jiangsu Province (JY-074).