

《认知科学大作业》

BP神经网络编程实现

任课教师:

刘嘉

____专业: 班号:

学院:

学号:

智能科学与技术 9191069501

919106840208

计算机科学与工程学院

学生信息:

姓名: 山杜哈西•土鲁四拜克

目录

_,	问题描述	1
	1. 问题简述	1
	2. 数据集描述	1
_,	方法分析	1
	1. 网络结构	1
	2. 目标函数	2
	3. 正向传播	2
	4. 计算各层误差	2
	5. 计算梯度	3
	6. 更新梯度	
三、	实验过程	3
	1. 流程图	4
	2. 关键函数	
四、	实验结果与分析	5
	1. 不同节点数(隐藏层层数为 1, 学习率为 0.01, 迭代数为 1000)	6
	2. 不同学习率(隐藏层层数为 1, 节点数为 6, 迭代数为 1000)	
	3. 不同隐藏层数(学习率为 0.01, 节点数为 5, 迭代数为 1000)	7
五、	实验拓展——尝试运用 libsvm 工具处理分类问题对比实验结果	7
	1.libsvm 简介	
	2.实验过程	

一、问题描述

1. 问题简述

利用 BP 神经网络对 iris 鸢尾花数据集进行分类。

2. 数据集描述

iris 鸢尾花数据集是很常用的一个数据集。鸢尾花有三个亚属,分别是山鸢尾(Iris-setosa)、变色鸢尾(Iris-versicolor)和维吉尼亚鸢尾(Iris-virginica)。

该数据集维度为 150×5, 包含 4 个特征变量, 1 个类别变量。共有 150 个样本, iris 是鸢尾植物, 这里存储了其萼片和花瓣的长宽, 共 4 个属性, 鸢尾植物分三类。

\$	SepalLengthCm \$	SepalWidthCm \$	PetalLengthCm \$	PetalWidthCm \$	Species \$
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa

图 1iris 数据集部分数据

二、方法分析

1. 网络结构

图 2 网络结构设计

图 3 程序结构

2. 目标函数

$$E = \frac{1}{2} \sum (y - a[-1])^2$$

3. 正向传播

表 1 正向传播过程

$$z[0] = x \cdot w[0]$$
 $a[0] = \delta(z[0])$
 $z[1] = a[0] \cdot w[1]$ $a[1] = \delta(z[1])$
.....
 $z[-1] = a[-2] \cdot w[-1]$ $a[-1] = \delta(z[-1])$

4. 计算各层误差

表 2 各层误差计算
$$errors[0] = (y - a[-1]) \cdot a[-1] \cdot (1 - a[-1])$$

$$errors[1] = errors[0] \cdot w[-1]^T \cdot a[-2] \cdot (1 - a[-2])$$
......
$$errors[-1] = errors[-2] \cdot w[1]^T \cdot a[0] \cdot (1 - a[0])$$

5. 计算梯度

表 3 对各边的的权重求梯度

$$\frac{\partial E}{\partial w[-1]} = \frac{\partial E}{\partial a[-1]} \cdot \frac{\partial a[-1]}{\partial z[-1]} \cdot \frac{\partial z[-1]}{\partial w[-1]} = (y - a[-1]) \cdot a[-1] \cdot (1 - a[-1]) \cdot a[-2] = errors[0] \cdot a[-2]$$

$$\frac{\partial E}{\partial w[-2]} = \frac{\partial E}{\partial a[-1]} \cdot \frac{\partial a[-1]}{\partial z[-1]} \cdot \frac{\partial z[-1]}{\partial a[-2]} \cdot \frac{\partial a[-2]}{\partial z[-2]} \cdot \frac{\partial z[-2]}{\partial w[-2]} = errors[1] \cdot a[-3]$$

$$\dots$$

$$\frac{\partial E}{\partial w[1]} = \frac{\partial E}{\partial a[-1]} \cdot \frac{\partial a[-1]}{\partial z[-1]} \cdot \frac{\partial z[-1]}{\partial a[-2]} \cdot \frac{\partial a[-2]}{\partial z[-2]} \cdot \frac{\partial z[-2]}{\partial w[-2]} \cdot \dots \cdot \frac{\partial z[1]}{\partial w[1]} = errors[-2] \cdot a[0]$$

$$\frac{\partial E}{\partial w[0]} = \frac{\partial E}{\partial a[-1]} \cdot \frac{\partial a[-1]}{\partial z[-1]} \cdot \frac{\partial z[-1]}{\partial a[-2]} \cdot \frac{\partial a[-2]}{\partial z[-2]} \cdot \frac{\partial z[-2]}{\partial w[-2]} \cdot \dots \cdot \frac{\partial z[0]}{\partial w[0]} = errors[-1] \cdot x$$

6. 更新梯度

表 4 用梯度下降法更新各边权重

$$w[0] - = \eta \cdot \frac{\partial E}{\partial w[0]}$$

$$w[1] - = \eta \cdot \frac{\partial E}{\partial w[1]}$$

$$\dots$$

$$w[-1] - = \eta \cdot \frac{\partial E}{\partial w[-1]}$$

三、实验过程

1. 流程图

图 4程序流程图

2. 关键函数

train_predict ()

```
def train_predict(self):
  for k in range(self.epochs):
    z = [np.dot(self.x\_train, self.weight[o])]
    a = [sigmoid(z[o])]
    for j in range(self.layer_num):
       z.append(np.dot(a[j], self.weight[j + 1]))
       a.append(sigmoid(z[j+1]))
    self.y_predict_train = a[-1]
    self.loss_list.append(self.loss())
    for j in range(self.layer_num):
       errors.append(np.dot(errors[j], self.weight[-j-1].T) * a[-j-2] * (1 - a[-j-2]))
    for j in range(self.layer_num):
       self.weight[self.layer_num - j] -= self.lr * np.dot(a[self.layer_num - j - 1].T, -errors[j])
     self.weight[o] -= self.lr * np.dot(self.x_train.T, -errors[-1])
    z = [np.dot(self.x_test, self.weight[o])]
    a = [sigmoid(z[o])]
    for j in range(self.layer_num):
      z.append(np.dot(a[j], self.weight[j + i]))
      a.append(sigmoid(z[j+1]))
    self.y_predict_test = encoder.inverse_transform(a[-1])
 self.acc_list.append(self.accuracy())
print("第", k+1, "次训练集损失值: ", self.loss(), 对测试集预测准确率: ", self.accuracy())
print("迭代", self.epochs, "次后对测试集预测准确率达到: ", self.accuracy())
```

图 5 关键函数截图

四、实验结果与分析

0. 简单交互展示

1. 不同节点数(隐藏层层数为1,学习率为0.01,迭代数为1000)

编号	节点数	准确率
1	2	0.8421052631578947
2	4	0. 6842105263157895
3	6	0.8947368421052632
4	8	0.8157894736842105

分析: 当其他条件相同、节点数不同时,模型预测准确率区分并不大。另外由于各边权重初值为随机赋值,故本次探究并不能说明问题。

2. 不同学习率(隐藏层层数为 1, 节点数为 6, 迭代数为 1000)

编号	学习率	准确率
1	0.001	0. 39473684210526316
2	0.01	0. 8421052631578947
3	0. 025	0. 8421052631578947
4	0. 1	0. 7894736842105263

分析: 当学习率比较小时,梯度收敛的速度过慢,导致预测准确率不高。

3. 不同隐藏层数(学习率为 0.01,节点数为 5,迭代数为 1000)

编号	隐藏层层数	准确率
1	1	1.0
2	2	0. 9736842105263158
3	3	0. 6578947368421053
4	4	0. 2631578947368421

分析: 当层数为 3 层或者以上时,准确率较低,猜测可能是由于 iris 数据集样本数较小,更适合使用层数较少的模型。

五、实验拓展——尝试运用 libsvm 工具处理分类问题对比实验结果

1.libsvm 简介

LIBSVM 是台湾大学林智仁(Lin Chih-Jen)教授等开发设计的一个简单、易于使用和快速有效的 SVM 模式识别与回归的软件包,他不但提供了编译好的可在Windows 系列系统的执行文件,还提供了源代码,方便改进、修改以及在其它操作系统上应用;该软件对 SVM 所涉及的参数调节相对比较少,提供了很多的默认参数,利用这些默认参数可以解决很多问题;并提供了交互检验(Cross Validation)的功能。该软件可以解决 C-SVM、ν-SVM、ε-SVR 和ν-SVR等问题,包括基于一对一算法的多类模式识别问题。

2.实验过程

①导入 libsvm 包

```
from libsvm.svmutil import *
```

图 6 导入 libsvm 包

②将数据带入函数中

```
| value | val
```

图 7运用 libsvm 工具解决分类问题

③输出结果

图 8运用 libsvm 工具运行结果