Packing and Covering with Geometric Objects

Aniket Basu Roy

advísed by

Sathish Govindarajan

Geometric Optimization Problems that are Computationally Hard

Geometric Optimization
Problems that are
NP-Hard

Packing and Covering Problems that are NP-Hard

Packing and Covering Problems that are

NP-Hard

Set Cover

Set Packing

Packing and Covering Problems that are NP-Hard

Shallow Packing

Point Packing

Runaway Rectangle Escape problem

Unique Coverage

Multi-Covering problem

Prize Collecting Set Cover

Art Gallery problems

Shallow Packing

Point Packing

Runaway Rectangle Escape problem

Unique Coverage

Multi-Covering problem

Prize Collecting Set Cover

Art Gallery problems

Local Search Algorithms that run in Polynomial Time Local Search Algorithms that run in

Polynomial Time

$$(1+\epsilon)$$
—approximation $\epsilon = c/\sqrt{k}$

$$(1+\epsilon)$$
—approximation $\epsilon = c/\sqrt{k}$

Optimum Solution

$$(1+\epsilon)$$
—approximation $\epsilon = c/\sqrt{k}$

Optimum Solution

Bipartite Graphs with Small and Balanced Separators viz., **Planar Graphs**

$$(1+\epsilon)$$
—approximation $\epsilon = c/\sqrt{k}$

Optimum Solution

Bipartite Graphs with Small and Balanced Separators viz., **Planar Graphs**

$$(1+\epsilon)$$
—approximation $\epsilon = c/\sqrt{k}$

Optimum Solution

Bipartite Graphs with Small and Balanced Separators viz., **Planar Graphs**

$$(1+\epsilon)$$
—approximation $\epsilon = c/\sqrt{k}$

Bipartite Graphs with Small and Balanced Separators viz., **Planar Graphs**

Small Set Expansion

Shallow Packing

Point Packing

Runaway Rectangle Escape problem

Unique Coverage

Multi-Covering problem

Prize Collecting Set Cover

Art Gallery problems

Existence of Bipartite Graphs with

- 1. Small and Balanced Separators
- 2. Small Set Expansion property

Intersection Graphs of shallow arrangements

NOT Planar

Intersection Graphs of shallow arrangements

have Small and Balanced Separators using some appropriate planar graphs Shallow Packing^{2,3}

Point Packing²

Runaway Rectangle Escape problem¹

Unique Coverage³

Multi-Covering problem³

Prize Collecting Set Cover⁴

Art Gallery problems⁴

- The Runaway Rectangle Escape Problem (with Govindarajan, Maheshwari, Misra, Nandy, Shetty) CCCG '14, arXiv 1603.04210
- 2. Packing and Covering with Non-Piercing Regions (with Govindarajan, Raman, Ray) FSA '16
- Local Search strikes again: PTAS for variants of Geometric Covering and Packing (with Ashok, Govindarajan) under review
- 4. Effectiveness of Local Search for Art Gallery and Prize Collecting Problems (with Bandyapadhyay) under review

Thank You