Complexity of Subregular Stringsets

Jeffrey Heinz

March 2, 2021

 $SUNY \mid 2022/03/02$ J. Heinz | 1

COMPUTATIONAL COMPLEXITY

SUNY | 2022/03/02 J. Heinz | 2

My own interests in subregular complexity...

- ... began with these observations:
 - 1 Many phonotactic patterns are regular.
 - 2 Many regular patterns are *not* possible phonotactic patterns.

So $\it which$ regular languages constitute possible phonotactic patterns?

Along the way I learned:

- 1 There is a rich field of study in computer science on *subregular* complexity.
- 2 There is a rich field of study in computer science on *machine learning* of regular languages and transductions.
- 3 There are many applications in linguistics, artificial intelligence, robotic planning and control, model checking,

. . .

MEASURING COMPLEXITY

One idea is that a regular language L_1 is more complex than L_2 if

- 1 The smallest DFA recognizing L_1 is larger than the smallest DFA recognizing L_2 .
- 2 The smallest regular expression recognizing L_1 is larger than the smallest regular expression recognizing L_2 .

In contrast to these *intensional* measures

1 The subregular classes we study today will provide complexity measures *independent* of the size of such representations.

 $SUNY \mid 2022/03/02$ J. Heinz | 4

Intuitions?

Consider the four sets of strings below. Any intutions about which set of strings is more or less complex than any others?

- Strings must end with b.
- Strings have odd many bs.
- Strings have at least one b.
- Strings have exactly one b.

SUNY | 2022/03/02 J. Heinz | 5

COMPARING "FINAL-B" WITH "ODD-B"

Strings must end with b.

Strings have odd many bs.

SUNY | 2022/03/02 J. Heinz | 6

COMPARING "AT LEAST ONE B" WITH "EXACTLY ONE B"

Strings have at least one b.

Strings have exactly one b.

Subregular Complexity

Subregular Complexity

FACTORS

The notion of *substring*, also called *factor*, is key to understanding the "local" subregular classes.

k-Factors

- A string u is a k-factor (substring of length k) of a string v if there exist strings x, y such that v = xuy and |u| = k. We write $u \sqsubseteq_k v$.
- $factor_k(w)$ equals the set $\{u \mid u \sqsubseteq_k w\}$ if |w| > k and equals $\{w\}$ if $|w| \le k$.
- factor_k(S) equals the set $\bigcup_{w \in S}$ factor_k(w).

SUNY | 2022/03/02 J. Heinz | 9

EXERCISE

Identify the following sets.

- 1 $factor_2(abcd)$
- 2 factor₃(abcd)
- $3 \text{ factor}_6(abcd)$
- 4 factor₂(aaaa)
- $5 \text{ factor}_2(aaaa, bbbb, caabc)$

STRICTLY LOCAL LANGUAGES

Let \bowtie and \bowtie denote left and right word boundaries. A language L is Strictly k-Local if there is a finite set of strings $S \subseteq \mathtt{factor}_k(\{\bowtie\} \cdot \Sigma^* \cdot \{\bowtie\})$ such that

$$L = \{ w \in \Sigma^* \mid \mathtt{factor}_k(\rtimes w \ltimes) \subseteq S \}$$

A language L is Strictly Local if there is some k for which it is Strictly k-Local. We sometimes write [S] to denote the extension of S.

STRICTLY LOCAL LANGUAGES

Notes

- \bullet Elements in S are called **permissible factors**.
- Elements in $factor_k(\{\times\} \cdot \Sigma^* \cdot \{\ltimes\})$ not in S are called forbidden factors.

Exercises

- 1 Let $S = \{ \rtimes a, ab, ba, a \ltimes \}$. What is [S]?
- 2 For what k is [S] Strictly k-Local?
- 3 Which factors are forbidden?

STRICTLY LOCAL LANGUAGES: SCANNERS

Intuitively, if L is Strictly k-Local, then deciding whether a string w belongs to L simply requires scanning w for forbidden substrings. If any is found w is rejected. If every substring in w is permissible then w is accepted.

(McNaughton and Papert 1971, Rogers and Pullum 2011)

STRICTLY LOCAL LANGUAGES: SCANNERS

Intuitively, if L is Strictly k-Local, then deciding whether a string w belongs to L simply requires scanning w for forbidden substrings. If any is found w is rejected. If every substring in w is permissible then w is accepted.

(McNaughton and Papert 1971, Rogers and Pullum 2011)

STRICTLY LOCAL LANGUAGES: SCANNERS

Intuitively, if L is Strictly k-Local, then deciding whether a string w belongs to L simply requires scanning w for forbidden substrings. If any is found w is rejected. If every substring in w is permissible then w is accepted.

(McNaughton and Papert 1971, Rogers and Pullum 2011)

More exercises

Consider the languages below.

- (1) Strings end with a b.
- (2) The second to last symbol in all strings is b.
- (3) The third to last symbol in all strings is b.

For each, one explain why it is Strictly Local. Assume $\Sigma = \{a,b\}.$

THEOREMS

- 2 FIN \subseteq SL
- 3 For each k, FIN $\not\subseteq \operatorname{SL}_k$
- 4 For each k, SL_k is closed under intersection, but neither complement nor union.

Grammar-independent Characterization of SL

Suffix Substitution Closure

A language L is Strictly Local iff there is a k such that for all strings $u_1, v_1, u_2, v_2 \in \Sigma^*$ and for all strings x of length k-1 whenever $u_1xv_1, u_2xv_2 \in L$ then $u_1xv_2 \in L$.

Proving some languages are not SL

The SSC helps us prove languages are not Strictly k-Local and even not Strictly Local for any k.

• To show L is not SL_k , find u_1, v_1, u_2, v_2 and x of length k-1 such that

• To show L is not SL, find u_1, v_1, u_2, v_2 and x for each k!

EXERCISES

Prove the following languages are not SL for any k.

- (4) Strings contain at least one b.
- (5) Strings contain at most one b.
- (10) Strings contain an a between every pair of bs.

Subregular Complexity

Subregular Complexity

Subsequences

The notion of *subsequence* is key to understanding the "piecewise" subregular classes.

k-Subsequences

• A string u is a subsequence of a string $v = \sigma_1 \sigma_2 \dots \sigma_n$ if

$$v \in \Sigma^* \sigma_1 \Sigma^* \sigma_2 \Sigma^* \dots \Sigma^* \sigma_n \Sigma^*$$
.

We write $u \prec v$.

- $subseq_k(w)$ equals the set $\{u \mid u \leq_k w, |u| \leq k\}$.
- subseq_k(S) equals the set $\bigcup_{w \in S} \leq_k (w)$.

EXERCISE

Identify the following sets.

- 1 $subseq_2(abcd)$
- $\mathbf{2} \ \mathtt{subseq}_3(abcd)$
- $3 \text{ subseq}_2(aaaa,bbbb,caabc)$

STRICTLY PIECEWISE LANGUAGES

A language L is Strictly k-Piecewise if there is a finite set of strings $S \subseteq \mathtt{subseq}_k(\Sigma^*)$ such that

$$L = \{w \in \Sigma^* \mid \mathtt{subseq}_k(w) \subseteq S\}$$

A language L is Strictly Piecewise if there is some k for which it is Strictly k-Piecewise. We use [S] to denote the extension of S.

STRICTLY PIECEWISE LANGUAGES

Notes

- \bullet Elements in S are called **permissible subsequences**.
- Elements in $\operatorname{subseq}_k(\Sigma^*)$ not in S are called forbidden subsequences.

Exercises

- 1 Let $S = \{\varepsilon, a, b, ab, ba\}$. What is [S]?
- 2 For what k is [S] Strictly k-Piecewise?
- 3 Which subsequences are forbidden?

More exercises

- 1 Recall this language mentioned earlier.
 - (5) Strings contain at most one b.

Explain why it is Strictly 2-Piecewise. Assume $\Sigma = \{a, b\}$.

2 Recall Samala.

possible Samala words	impossible Samala words
∫tojonowonowa∫	stojonowonowa∫
stojonowonowas	∫tojonowonowas
pi <mark>s</mark> tonoskiwat	pisotono∫ikiwat
sanisotonoskiwas	∫anipisotono∫ikiwas

Assuming $\Sigma = \{s, S, t, o\}$, what are the forbidden subsequences?

SUNY | 2022/03/02 J. Heinz | 24

STRICTLY PIECEWISE LANGUAGES

Intuitively, if L is Strictly k-Piecewise, then deciding whether a string w belongs to L simply requires checking its k-subsequences for forbidden ones. If any is found w is rejected. If every subsequence in w is permissible then w is accepted.

(Rogers et al. 2010)

Infinite Hierarchy of SP classes

Theorems

- $\mathbb{P} \operatorname{SP}_1 \subseteq \operatorname{SP}_2 \dots \operatorname{SP}_k \subseteq \operatorname{SP}_{k+1} \dots \subseteq \operatorname{SP}_k$
- 2 FIN ⊈ SP
- 3 For each k, SP_k is closed under intersection, but neither complement nor union.

(Rogers et al. 2010)

CHARACTERIZING STRICTLY PIECEWISE LANGUAGES

Subsequence Closure

A language L is Strictly Piecewise iff whenever $w \in L$ every subsequence of w also belongs to L.

Subsequence Closure helps us prove languages are not Strictly Piecewise.

(Rogers et al. 2010)

EXERCISES

Prove the following languages are not SP.

- (4) Strings contain at least one b.
- (10) Strings contain an a between every pair of bs.
- (11) Strings contain an odd number of bs.

SUNY | 2022/03/02

Subregular Complexity

