Recitation 3

Wednesday 12th November, 2014

Contents

1	Ma	Matrix Determinant		
	1.1	Properties		3
		1.1.1	If B is formed by multiplying one row (or column) of A	
			by a scalar c , then, $det(B) = c \cdot det(A) \cdot \dots \cdot \dots \cdot \dots$	3
		1.1.2	If B is formed by replacing two rows (or columns) of A	
			by each other, then, $det(B) = -det(A)$	3
		1.1.3	If B is formed by adding one row (or column), multiplied	
			by a scalar, to another row (or column), then, $det(B) =$	
			$\det(A)$	3
		1.1.4	If A has at least one row or column having all elements	
			equal to zero, then, $det(A) = 0$	3
		1.1.5	The determinant of an upper-triangular or lower-triangular	
			matrix is equal to the product of the elements on the prin-	
			cipal diagonal	3
		1.1.6	$\det(A^T) = \det(A) \dots \dots \dots \dots \dots$	3
		1.1.7	$\det(A \cdot B) = \det(A) \cdot \det(B) \cdot \dots \cdot $	3
		1.1.8	Matrix A is invertible iff $det(A) \neq 0$. If so, $det(A^{-1}) =$	
			1	3
			$\det(A)$	
	1.2	Exam		3
		1.2.1	Let A, B, P be invertible matrices, satisfying $B = P^{-1}AP$.	
			Show that $ A^{-1}B = 1$	3
	1.3	Crame	er's Rule	3
2 Adjoint Matrix				4
4	Aujonic Matrix			

Matrix Determinant 1

The determinant function maps each square matrix $A \in M_n(\mathbb{F})$ to a scalar $|A| = \det(A) \in \mathbb{F}.$

For n = 1, we define det((a)) = a.

Let A be a square matrix of dimensions $n \times n$.

The (i,j) minor of A, M_{ij} , is the determinant of the $(n-1)\times(n-1)$ matrix obtained by removing the i^{th} row and j^{th} column of A. The determinant can be developed using the i^{th} row as

$$\det(A) = \sum_{k=1}^{n} (-1)^{i+k} a_{ik} M_{ik}$$

The determinant can also be developed using the j^{th} column as

$$\det(A) = \sum_{k=1}^{n} (-1)^{k+j} a_{kj} M_{kj}$$

1.1 Properties

- 1.1.1 If B is formed by multiplying one row (or column) of A by a scalar c, then, $det(B) = c \cdot det(A)$
- 1.1.2 If B is formed by replacing two rows (or columns) of A by each other, then, det(B) = -det(A)
- 1.1.3 If B is formed by adding one row (or column), multiplied by a scalar, to another row (or column), then, det(B) = det(A)
- 1.1.4 If A has at least one row or column having all elements equal to zero, then, det(A) = 0.
- 1.1.5 The determinant of an upper-triangular or lower-triangular matrix is equal to the product of the elements on the principal diagonal.
- **1.1.6** $\det(A^T) = \det(A)$
- **1.1.7** $\det(A \cdot B) = \det(A) \cdot \det(B)$
- 1.1.8 Matrix A is invertible iff $det(A) \neq 0$. If so, $det(A^{-1}) = \frac{1}{det(A)}$

1.2 Examples

1.2.1 Let A,B,P be invertible matrices, satisfying $B=P^{-1}AP$. Show that $|A^{-1}B|=1$.

Multiplying the given equation by A^{-1} from the left,

$$A^{-1}B = A^{-1}P^{-1}AP$$

$$\therefore |A^{-1}B| = |A^{-1}P^{-1}AP|$$

$$= |A^{-1}||P^{-1}||A||P|$$

$$= \frac{|A||P|}{|A||P|}$$

$$= 1$$

1.3 Cramer's Rule

Let $A \in M_n(\mathbb{F})$ and $b \in \mathbb{F}^n$. If $|A| \neq 0$, the system Ax = b has a unique solution, whose individual values are given by

$$x_j = \frac{|A_j|}{|A|}$$

where A_j is the matrix formed by replacing the j^{th} column of A by the vector b.

2 Adjoint Matrix

A square matrix of dimensions $n \times n$ is said to be adjoint to $A \in M_n(\mathbb{F})$ if $(\operatorname{adj}(A))_{ij} = (-1)^{i+j} M_{ji}$.

$$A \cdot \operatorname{adj}(A) = |A| \cdot I$$

If $|A| \neq 0$

$$A^{-1} = \frac{\operatorname{adj}(A)}{|A|}$$