Teoría de Control. Prácticos

TP Nº 7. Controladores

Fecha de entrega: 13/6/2014

Todos los ejercicios del Trabajo deberán ser resueltos con Matlab a través de Simulink y ventana de comandos.

- 1) Dados los controladores:
 - a) Proporcional
 - b) Proporcional Integral
 - c) Proporcional Derivativo
 - d) Proporcional Integral Derivativo

Se pide:

- i) Ecuaciones de los controladores
- ii) Grafica de los controladores
- iii) Función de Transferencia de los controladores
- 2) A partir del siguiente Diagrama de Bloques

Donde:

G₁(s): función de Transferencia del Controlador

G₂(s): función de Transferencia de la Planta

H(s) = 1

Y suponiendo un sistema modelado por la siguiente ecuación:

Teoría de Control. Prácticos

$$\frac{\partial^2 x}{\partial t^2} + 10 \frac{\partial x}{\partial t} + 20 x(t) = F(t)$$

Se pide:

- a) Graficar la salida del sistema para cada uno de los controladores que aparecen en la tabla ante una entrada escalón, suponiendo un problema Servo.
- b) Analizar los resultados obtenidos
- c) Superponer las gráficas y sacar conclusiones
- d) Tabla comparativa de los controladores teniendo en cuenta:
 - i) Tiempo de subida
 - ii) Sobre impulso
 - iii) Tiempo de establecimiento
 - iv) Error permanente
- e) Graficar nuevamente suponiendo retardo de transporte.

Controlador	Función de transferencia	k p	k_p / τ_i	$k_p \tau_d$
Р	k _p	300	-	-
PI	$k_p(1+\frac{1}{\tau_i S})$	30	70	-
PD	$k_p(1+\tau_d s)$	300	-	10
PID	$k_p(1+\frac{1}{\tau_i S}+\tau_d S)$	350	300	50