EduElevators with Standard Bank

Advertise with Us!

Your Brand, Front and Center –

Right Here on Page 1!

.Contact us today to secure

your spotlight!"

Need an amazing tutor?

www.teachme2.com/matric

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE/ NASIONALE SENIOR SERTIFIKAAT

GRADE 12/GRAAD 12

MATHEMATICS P1/WISKUNDE V1

NOVEMBER 2021

MARKING GUIDELINES/NASIENRIGLYNE

MARKS/PUNTE: 150

These marking guidelines consist of 16 pages. *Hierdie nasienriglyne bestaan uit 16 bladsye.*

NSC/NSS – Marking Guidelines/Nasienriglyne

NOTE:

- If a candidate answers a question TWICE, only mark the FIRST attempt.
- Consistent accuracy applies in all aspects of the marking guidelines.

LET WEL:

- Indien 'n kandidaat 'n vraag TWEE keer beantwoord, sien slegs die EERSTE poging na.
- Volgehoue akkuraatheid is op ALLE aspekte van die nasienriglyne van toepassing.

1.1.1	$\begin{cases} x^2 - 2x - 24 = 0\\ (x - 6)(x + 4) = 0 \end{cases}$	√factors
	x = 6 or x = -4	$\checkmark x = 6$ $\checkmark x = -4$
		(3)
1.1.2		
	$x = \frac{3 \pm \sqrt{(-3)^2 - 4(2)(-3)}}{2(2)}$	✓ substitution into the correct formula
	$x = \frac{3 \pm \sqrt{33}}{4}$	
	x = 2,19 or $x = -0,69$	$\checkmark x = 2,19 \checkmark x = -0,69$ (3)
1.1.3		✓ standard form
	$x^2 + 5x + 4 \le 0$	v standard form
	$(x+4)(x+1) \le 0$	✓ critical values
	Critical values: $x = -4$ or $x = -1$	
	_	
	+ -41 +	
	$-4 \le x \le -1$ OR / OF $x \in [-4; -1]$	√√answer
		(4)
1.1.4	$\sqrt{x+20-2}$	
	$\left(\sqrt{x+28}\right)^2 = (2-x)^2$	✓ squaring both sides
	$x + 28 = 4 - 4x + x^2$	
	$x^2 - 5x - 24 = 0$	✓ standard form
	(x-8)(x+3) = 0 $x \neq 8$ or $x = -3$	✓ factors ✓ answers with selection
	$x \neq 0$ Of $x = -3$	answers with selection (4)

1.2	2y = 3 + x			
	x = 2y - 3 (1)		✓equation 1	
	$2xy + 7 = x^2 + 4y^2 \dots (2)$			
	$2y(2y-3)+7=(2y-3)^2+4y^2$		✓substitution	
	$\begin{vmatrix} 4y^2 - 6y + 7 = 4y^2 - 12y + 9 + 4y^2 \end{vmatrix}$		✓ simplification	
	$\begin{vmatrix} 4y^2 - 6y + 2 = 0 \end{vmatrix}$			
	$\begin{vmatrix} 2y^2 - 3y + 1 = 0 \end{vmatrix}$		✓ standard form	
	(2y-1)(y-1)=0		V Standard Torin	
	$y = \frac{1}{2}$ or $y = 1$			
			$\checkmark y$ – values $\checkmark x$ – values	
	x = -2 or x = -1		$\checkmark x$ – values	(6)
				(6)
	OR/OF		OR/OF	
	2y = 3 + x			
	$y = \frac{3}{2} + \frac{x}{2}$ (1)		✓equation 1	
	$2xy + 7 = x^2 + 4y^2 \dots (2)$			
	$(3 \ x) \ 7 \ 2 \ (3 \ x)^2$			
	$2x\left(\frac{3}{2} + \frac{x}{2}\right) + 7 = x^2 + 4\left(\frac{3}{2} + \frac{x}{2}\right)^2$		✓substitution	
	2 2 7 2 0 6 2			
	$3x + x^{2} + 7 = x^{2} + 9 + 6x + x^{2}$ $x^{2} + 3x + 2 = 0$		✓simplification	
	(x+3x+2-0) (x+2)(x+1)=0		✓ standard form	
	x = -2 or $x = -1$		$\checkmark x$ – values	
	$y = \frac{1}{2} \text{ or } y = 1$		✓y – values	
	$y - \frac{1}{2}$ or $y - 1$		·	(6)
1.3	$\frac{n}{n} = \frac{p}{n}$		$\checkmark \frac{n}{-} = \frac{p}{-}$	
	$\begin{array}{c c} m & n \\ \end{array}$		$\sqrt[4]{\frac{n}{m}} = \frac{p}{n}$ $\sqrt[4]{n^2} = mp$	
	$n^2 = mp$		$\bigvee n^2 = mp$	
	$\Delta = b^2 - 4ac$ $\Delta = n^2 - 4mp \text{ , but } n^2 = mp$			
	$\Delta = n^2 - 4mp$, but $n = mp$ $\Delta = n^2 - 4n^2$ OR/OF	$\Delta = mp - 4mp$	- 2	
	$\Delta = n^2 - 4n$ $\Delta = -3n^2$	$\Delta = mp - 4mp$ $\Delta = -3mp$	$\checkmark \Delta = -3n^2 \text{ or } -3mp$	
	$\begin{vmatrix} \Delta3n \\ n^2 > 0 \end{vmatrix}$	$\Delta = -3mp$ $mp > 0$		
	$\begin{array}{c} n > 0 \\ \therefore -3n^2 < 0 \end{array}$	$\therefore -3mp < 0$		
	Jii 🔍	<i>эн</i> ү < 0		
	$\therefore \Delta < 0 \Rightarrow x \text{ is a non-real number}$		✓ Δ < 0	
				(4)
				[24]
				[24]

NSC/NSS – Marking Guidelines/Nasienriglyne

DBE/November 2021

2.1	$\frac{90}{x} = \frac{81}{90}$ $81x = 8100$ $x = 100$	$\checkmark \frac{90}{x} = \frac{81}{90}$ $\checkmark \text{ answer} \tag{2}$
	OR/OF	OR/OF
	$x = 90 \times \frac{10}{9}$	$\checkmark \frac{10}{9}$
	x = 100	✓ answer (2)
2.2	$S_n = \frac{a(1-r^n)}{r}$	
	$S_{n} = \frac{a(1-r^{n})}{1-r}$ $S_{n} = \frac{100(1-(0.9)^{n})}{1-0.9}$ $S_{n} = \frac{100(1-(0.9)^{n})}{0.1}$	$\checkmark r = 0.9$ ✓ substitution into correct formula
	$S_n = \frac{100(1 - (0.9)^n)}{0.1}$ $\therefore S_n = 1 000(1 - (0.9)^n)$	(2)
2.3	$S_{\infty} = \frac{a}{1 - r}$	
	$S_{\infty} = \frac{100}{1 - \frac{9}{10}}$	✓ substitution
	$S_{\infty} = 1000$	✓ answer (2)
	OR/OF	OR/OF
	$S_{\infty} = \lim_{n \to \infty} \left[1 \ 000 \left(1 - \left(0, 9 \right)^n \right) \right]$ $S_{\infty} = 1000$	$\checkmark S_{\infty} = \lim_{n \to \infty} \left[1 000 \left(1 - \left(0, 9 \right)^n \right) \right]$ $\checkmark \text{ answer} $ (2)
		[6]

NSC/NSS – Marking Guidelines/Nasienriglyne

DBE/November 2021

QUESTION 3

	HUN 3	1
3.1	-82	✓ answer (1)
3.2	-145; -122; -101;	
	23 21	
	-2 -2	
	2a = -2 : $a = -1$	$\checkmark 2a = -2$
	3a + b = 23 : $3(-1) + b = 23$: $b = 26$	$\checkmark 3(-1) + b = 23$
	a+b+c=-145 : $-1+26+c=-145$: $c=-170$	$\checkmark -1 + 26 + c = -145$
	$\therefore T_n = -n^2 + 26n - 170$	(3)
	OR/OF	OR/OF
		$\checkmark 2a = -2$
	2a = -2 : $a = -1$	$\checkmark 2a = -2$ $\checkmark c = -145 + (-2) - 23$
	c = -145 + (-2) - 23 = -170	c = -143 + (-2) - 23
	$\therefore T_n = -n^2 + bn - 170$	
	-145 = -1 + b - 170	$\checkmark -145 = -1 + b - 170$
	b = 26	(3)
	$\therefore T_n = -n^2 + 26n - 170$	
3.3	$T_n = a + (n-1)d$	
3.3	T = bn + c	$\checkmark T_n = -2n + 25$
	or $= 23 + (n-1)(-2)$ $T_n = -2n + 25$	n 211 23
	=25-2n	$\checkmark T_n = -121$
	-2n+25=-121	$I_n - 121$
	-2n = -146	$\sqrt{n} = 73$
	n = 73	\checkmark answer
	Between T_{73} and T_{74}	(4)
	ODIOE	, ,
	OR/OF	OR/OF
	$T_{n+1} - T_n = -(n+1)^2 + 26(n+1) - 170 - (-n^2 + 26n - 170)$	/T. 2 25
		$\checkmark T_n = -2n + 25$
	-121 = -2n + 25	$\checkmark T_n = -121$
	n = 73	$\checkmark n = 73$
	Between T_{73} and T_{74}	✓ answer (4)
3.4	$n = \frac{-b}{2a} = \frac{-26}{2(1)} = 13$	√ 13
	a = 2a = 2(1)	
	$T_{13} = -1$	$\checkmark T_{13} = -1$
	∴ add 2	\checkmark add 2 (3)
	OR/OF	OR/OF
	T/ 2 · 26 · 0	
	$T'_n = -2n + 26 = 0$	√ 13
	n = 13	/
	$T_{13} = -(13)^2 + 26(13) - 170 = -1$	$ \checkmark T_{13} = -1 $
	∴ add 2	✓ add 2 (3)
		[11]

NSC/NSS – Marking Guidelines/Nasienriglyne

DBE/November 2021

4.1 $a = 5$ and/ en $d = 2$ $T_{51} = 5 + (51 - 1)(2)$ = 105	✓ a and d ✓ substitution into correct formula ✓ answer (3)
4.2 $S_{n} = \frac{n}{2} [2a + (n-1)d]$ $S_{51} = \frac{51}{2} [2(5) + (51-1)2] \qquad \text{or/of} \qquad S_{51} = \frac{51}{2} [5+105]$ $= 2805 \qquad = 2805$	✓ substitution into correct formula ✓ answer (2)
4.3 $\sum_{n=1}^{5000} (2n+3) = 5+7+9++10003$	✓ expansion (1)
4.4 $T_1 = -3$ $T_{4,999} = -2(4,999) - 1 = -9,999$ $\therefore \sum_{n=0}^{5000} (2n+3) + \sum_{n=0}^{4999} (-2n-1)$	$✓ T_1 = -3$ $✓ T_{4999} = -9999$
= (5+7+9++9999+10001+10003)+ (-3-5-7-99999)	✓ both expansions
$= 10\ 001 + 10\ 003 - 3$ $= 20\ 001$	✓ answer (A) (4)
OR/OF	OR/OF
$S_{4999} = \frac{4999}{2} [2(-3) + (4999 - 1)(-2)] = -24999999$	$\checkmark T_1 = -3$ $\checkmark S_{4999} = -249999999$
$S_{5000} = \frac{5000}{2} ((2)(5) + (5000 - 1)(2)) = 25020000$	$\checkmark S_{5000} = 25020000$
$\sum_{n=1}^{5000} (2n+3) + \sum_{n=1}^{4999} (-2n-1) = 25\ 020\ 000 - 24\ 999\ 999$	
= 20 001	✓ answer (A) (4)
	[10]

NSC/NSS – Marking Guidelines/Nasienriglyne

DBE/November 2021

5.1	x = 3	$\checkmark x = 3$
	y = 2	$\checkmark y = 2$
5.2	$x \in R, x \neq 3$	(2) ✓ answer (1)
	OR/OF	OR/OF
	$x \in (-\infty; 3) \cup (3; \infty)$	✓answer (1)
	OR/OF	OR/OF
	x < 3 or $x > 3$	✓answer (1)
5.3	$0 = \frac{-1}{x-3} + 2$	✓ y = 0
	-2x+6=-1	
	$x = \frac{7}{2}$	✓ answer
	x-int: $\left(\frac{7}{2};0\right)$	
5.4		$\checkmark x = 0 $ (2)
3.4	y-int: $\left(0; \frac{7}{3}\right)$	$\begin{array}{c} \mathbf{v} & x = 0 \\ 7 & \end{array}$
		$\checkmark \frac{7}{3}$
5.5		(2)
3.5		
	2,33	
	2,33	✓ asymptotes ✓ intercepts with the
	2	axes
		✓ shape
	0 3 /3,5	
		(3)
		[10]

NSC/NSS – Marking Guidelines/Nasienriglyne

DBE/November 2021

6.1	$f(x) = \log_4 x$ $2 = \log_4 k$ $4^2 = k$	✓ substitution of $(k; 2)$
	$4 = k$ $\therefore k = 16$	✓ answer (2)
6.2	$-1 = \log_4 x \therefore x = \frac{1}{4}$	$\checkmark x = \frac{1}{4}$
	$-1 = \log_4 x \therefore x = \frac{1}{4}$ $\frac{1}{4} \le x \le 16 \text{or/of} x \in \left[\frac{1}{4} ; 16\right]$	✓ answer (2)
6.3	$f(x) = \log_4 x$	
	$y = \log_4 x$	
	$x = \log_4 y$	\checkmark swopping x and y
	$y = 4^x$	✓answer
		(2)
6.4	x < 0	✓✓answer
	OR/OF	OR/ <i>OF</i> (2)
	$x \in (-\infty; 0)$	√√answer
	` ' '	(2)
		[8]

QUESTION 7

7.1	B(-4;0)	$\bigvee B(-4;0)$
7.2	D(6; 0)	$\checkmark D(6;0)$ (2)
1.2	$f(x) = x^{2} - 2x - 24$ $x_{tp} = \frac{-b}{2a}$ OR/OF $2x - 2 = 0$ OR/OF $x = \frac{-4 + 6}{2}$ $x = \frac{-(-2)}{2(1)}$	
	$x_{tp} = 1$ $y_{tp} = f(1)$ $= 1^{2} - 2(1) - 24$	$\checkmark x_{tp} = 1$
	=-25 C(1; -25)	$\checkmark y_{tp} = -25 \tag{2}$
7.3	$y \ge -25$	✓ answer (1)
	OR/OF	OR/OF
	$y \in [-25 ; \infty)$	✓ answer (1)
7.4.1	1	✓ answer
	$m_{AE} = \tan 14,04^{\circ} = 0,25 = \frac{1}{4}$	(1)
7.4.2	$m_{\rm tang} = -4$	$\sim m_{\rm tang} = -4$
	f'(x) = 2x - 2 2x - 2 = -4 $x_T = -1$	$\checkmark f'(x) = 2x - 2$
	2x - 2 = -4	✓ equating
	$x_T = -1$	$\checkmark x_T = -1$
	$y_T = -21$	$\checkmark y_T = -21 \tag{5}$
7.5	$y_T = -21$ $m_{line} = \frac{1}{4}$	$\checkmark m_{line} = \frac{1}{4}$
	$y + 9 = \frac{1}{4}(x+3)$ OR/OF $-9 = \frac{1}{4}(-3) + c$ $y + 9 = \frac{1}{4}x + \frac{3}{4}$ $c = -\frac{33}{4} = -8,25$	✓ substitution m and $K(-3; -9)$
	$y = \frac{1}{4}x - \frac{33}{4}$ OR/OF $y = 0,25x - 8,25$	$\checkmark y = \frac{1}{4}x - \frac{33}{4}$
	$x^2 - 2x - 24 = \frac{1}{4}x - \frac{33}{4}$	✓ equating
	$4x^2 - 8x - 96 = x - 33$ $4x^2 - 9x - 63 = 0$	✓ standard form
	(4x - 21)(x + 3) = 0	
	$\therefore x = \frac{21}{4} = 5,25$ or $x \neq -3$	✓ answer with selection (6)
		[17]
L		[1,7]

0.1	()n	/ same at famoula	
8.1	$A = P(1-i)^n$	✓ correct formula	
	$A = 980 \ 000(1 - 0.092)^{7}$	✓ substitution	
	A = R498 685,82	✓ answer (A)	(3)
8.2	$A = P(1+i)^n$		
	$116\ 253,50 = 75000 \left(1 + \frac{0,068}{4}\right)^{4n}$ $1,550\ 046\ 667 = \left(1,017\right)^{4n}$	✓ 0,068/4 ✓ substitution in correct formula	
	$\log(1,550\ 046\ 667) = 4n\log(1,017)$ $4n = \frac{\log(1,550\ 046\ 667)}{\log(1,017)} \text{ or } 4n = \log_{1,017}(1,550\ 046\ 667)$ $4n = 25,99 \dots$	✓ correct use of logs	
0.2.1	n = 6,50 years	✓ answer	(4)
8.3.1	$F = \frac{x[(1+i)^n - 1]}{i}$ $450\ 000 = \frac{x[(1+\frac{0.0835}{12})^{60} - 1]}{0.0835}$	$ √i = \frac{0.0835}{12} $ ✓ substitution into correct formula	
	$x = R6 \ 068,69$	✓answer	(3)
8.3.2(a)	$P = \frac{x \left[1 - (1+i)^{-n}\right]}{i}$ $P = \frac{11\ 058,85 \left[1 - \left(1 + \frac{0,12}{12}\right)^{-4\times12}\right]}{\frac{0,12}{12}}$ $P = R419\ 948,32$	✓ n = 48 in P-formul ✓ substitution into correct formula ✓ answer (A)	`
	OR/OF	OR/OF	
	Balance = A - F = $P(1+i)^n - \frac{x[(1+i)^n - 1]}{i}$		
	$=1 \ 050 \ 000 \left(1 + \frac{0,12}{12}\right)^{12 \times 21} - \frac{11 \ 058,85 \left[\left(1 + \frac{0,12}{12}\right)^{12 \times 21} - 1\right]}{\underline{0,12}}$	$\checkmark n = 252$ in both formulae	
	12	✓ subst into correct formulae	
	=R12 887 702,20 - R12 467 749,81 =R419 952,39	✓answer (A)	(3)

11 NSC/*NSS* – Marking Guidelines/*Nasienriglyne*

DBE/November 2021

8.3.2(b) Total paid = 11	$058,85 \times 21 \times 12 = 2786830,20$	✓ 11 058,85×21×12
Loan Paid = 1	$050\ 000 - 419\ 948, 32 = 630\ 051, 68$	✓ 1 050 000 – Balance
Interest paid =	2 786 830,20 - 630 051,68	Outstanding
1	R2 156 778,52	✓ answer
	,	(3)
OR/OF		OR/OF
Total paid =11	$058,85 \times 21 \times 12 = 2786830,20$	✓ 11 058,85×21×12
	$050,09 \times 21 \times 12 = 2700,030,20$ 050,000 - 419,952,39 = 630,047,61	(1050000 B1
	· · · · · · · · · · · · · · · · · · ·	Outstanding
1	2 786 830,20 – 630 047,61 R2 156 782,59	✓ answer
_	R2 130 762,39	(3)
OR/OF		OR/OF
		ONOF
Interest paid	21 × 12 (1.050.000 410.048.22)	✓ 11 058,85×21×12
$= 17.038,83 \times $ = 2.786.830,20	$21 \times 12 - (1\ 050\ 000 - 419\ 948,32)$	✓ 1 050 000 – Balance
= 2780830,20 = R2156778,	•	Outstanding
- K2 130 776,	52	✓ answer (3)
		[16]

DBE/November 2021

		<u> </u>	
9.1	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$		
	$f'(x) = \lim_{h \to 0} \frac{2(x+h)^2 - 3(x+h) - (2x^2 - 3x)}{h}$	✓substitution	
	$f'(x) = \lim_{h \to 0} \frac{2x^2 + 4xh + 2h^2 - 3x - 3h - 2x^2 + 3x}{h}$	$\checkmark 2x^2 + 4xh + 2h^2 - 3x - 3h$	
	$=\lim_{h\to 0}\frac{4xh+2h^2-3h}{h}$	$\checkmark 4xh + 2h^2 - 3h$	
	$=\lim_{h\to 0}\frac{h(4x+2h-3)}{h}$	✓ factorisation	
	$=\lim_{h\to 0} (4x+2h-3)$		
	$\therefore f'(x) = 4x - 3$	✓answer	(5)
	OR/OF	OR/OF	
	$f(x) = 2x^2 - 3x$		
	$f(x+h) = 2(x+h)^2 - 3(x+h)$	✓substitution	
	$f(x+h) = 2x^2 + 4xh + 2h^2 - 3x - 3h$	$\checkmark 2x^2 + 4xh + 2h^2 - 3x - 3h$	
	$f(x+h) - f(x) = 4xh + 2h^2 - 3h$		
	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$		
	$= \lim_{h \to 0} \frac{4xh + 2h^2 - 3h}{h}$	$\checkmark 4xh + 2h^2 - 3h$	
	$=\lim_{h\to 0}\frac{h(4x+2h-3)}{h}$	✓ factorisation	
	$= \lim_{h \to 0} \left(4x + 2h - 3 \right)$		
	$\therefore f'(x) = 4x - 3$	✓answer	(5)
9.2.1	$y = 4x^5 - 6x^4 + 3x$		
	dv	$\checkmark 20x^4$	
	$\frac{dy}{dx} = 20x^4 - 24x^3 + 3$	$\sqrt{-24x^3}$	
		√3	(3)

13 NSC/NSS – Marking Guidelines/Nasienriglyne

DBE/November 2021

9.2.2	$D_{x}\left[\frac{-\sqrt[3]{x}}{2} + \left(\frac{1}{3x}\right)^{2}\right]$	
	$D_{x} \left[\frac{-x^{\frac{1}{3}}}{2} + \frac{x^{-2}}{9} \right]$	$\checkmark \frac{-x^{\frac{1}{3}}}{2} \checkmark \frac{x^{-2}}{9}$
	$D_{x} \left[-\frac{1}{2} x^{\frac{1}{3}} + \frac{1}{9} x^{-2} \right]$	
	$= -\frac{1}{6}x^{-\frac{2}{3}} - \frac{2x^{-3}}{9}$	$\checkmark -\frac{1}{6}x^{-\frac{2}{3}} \checkmark -\frac{2x^{-3}}{9}$
	$= -\frac{1}{6x^{\frac{2}{3}}} - \frac{2}{9x^{3}}$	(4)
		[12]

DBE/November 2021

10.1	$h(x) = ax^3 + bx^2$			
10.1		$\checkmark h'(x)$		
	$h'(x) = 3ax^2 + 2bx$			
	h'(4) = 0	$\checkmark h'(4) = 0$		
	48a + 8b = 0	$\checkmark 48a + 8b = 0 \text{ or } 6a + b = 0$		
	$6a + b = 0 \qquad \dots (1)$	100 100 0 01 00 10		
	h(4) = 32	$\checkmark h(4) = 32$		
	64a + 16b = 32	$\sqrt{64a+16b} = 32$ or $4a+b=2$		
	$4a + b = 2 \qquad \dots (2)$			
	(1)-(2): 6a+b=0			
	4a+b=2			
	2a = -2			
	a = -1			
	4(-1) + b = 2 $b = 6$	(5)		
10.2	$h(x) = -x^3 + 6x^2$			
	$-x^3 + 6x^2 = 0$	$\checkmark - x^3 + 6x^2 = 0$		
	$x^2(-x+6) = 0$	✓ factors		
	x = 0 or $x = 6$			
	$\therefore A(6;0)$	(1/(0)		
	(0,0)	$\checkmark A(6;0) $ (3)		
10.3.1	$0 < x < 4$ or $0 \le x \le 4$	✓ critical values		
10.5.1		✓notation (2)		
	OR/OF	OR/OF		
	$x \in (0; 4)$ or $x \in [0; 4]$	✓ critical values		
		✓ notation (2)		
10.3.2	<i>x</i> > 2	✓ 2		
		✓ notation (2)		
	OR/OF	OR/OF		
	$x \in (2; \infty)$	✓ 2		
		✓ notation (2)		
10.4	$f(x) = h(x-1) = -(x-1)^3 + 6(x-1)^2$	✓ <i>k</i> < 32		
	f(0) = 7	✓ new <i>y</i> -intercept = 7		
	$7 < k < 32$ or $k \in (7; 32)$	✓ 7 < k < 32		
		(3)		
		[15]		

QUESTION/VRAAG 11

11	$Time = \frac{20}{}$	$\checkmark \frac{20}{}$
	x	x
	$Cost = (water cost per hour \times time) + (kms \times R/km)$	(20)
	$C(x) = 1.6 \times \left(\frac{20}{x}\right) + 20\left(1.2 + \frac{x}{4000}\right)$	$\checkmark 1.6 \times \left(\frac{20}{x}\right)$
		$\checkmark 20 \left(1,2 + \frac{x}{4000}\right)$
	$C(x) = \frac{32}{x} + 24 + \frac{x}{200}$	$\checkmark C(x) = \frac{32}{x} + 24 + \frac{x}{200}$ $\checkmark C'(x) = -\frac{32}{x^2} + \frac{1}{200}$ $\checkmark C'(x) = 0$
	$C'(x) = -\frac{32}{x^2} + \frac{1}{200} = 0$	$\checkmark C'(x) = -\frac{32}{x^2} + \frac{1}{200}$
	χ 200	$\checkmark C'(x) = 0$
	$x^2 = 6400$	
	x = 80 km/h	✓ answer (A)
		(7)
		[7]

12.1.1	No, because $P(A \text{ and } B) \neq 0$	✓ answer and reason (1)
12.1.2(a)	P(A and B) = 0,3 P(only B) = 0,2 P(A and B) = P(A) × P(B) 0,3 = P(A) × 0,5 P(A) = 0,6 P(only A) = 0,3	✓ $P(A \text{ and } B) = P(A) \times P(B)$ ✓ 0.5 ✓ $P(A) = 0.6$ ✓ answer (4)
12.1.2(b)	$ \begin{array}{ c c c c c } \hline A & & & & & & & & & & & \\ \hline A & & & & & & & & & & & \\ \hline 0,3 & & & & & & & & & & \\ \hline 0,2 & & & & & & & & \\ \hline 0,2 & & & & & & & & \\ \hline \end{array} $	
	P(not A or not B) = $0,2+0,2+0,3=0,7$	✓ method ✓ answer (2)
	OR/OF	OR/OF
	P(not A or not B) = 1 - P(A and B) = 1 - 0.3 = 0.7	✓ method ✓ answer
	OR/OF	OR/OF
	P(A' or B') = P(A') + P(B') - P(A' and B') = 0,4 + 0,5 - 0,2 = 0,7	✓ method ✓ answer (2)

Need an amazing tutor? www.teachme2.com/matric

Mathematics P1/Wiskunde V1

NSC/NSS – Marking Guidelines/Nasienriglyne

DBE/November 2021

12.2.1	$P(novel) = \frac{3}{12} = \frac{1}{4}$				✓answer	(1)
12.2.2	12! = 479 001 600				✓✓ answer	(2)
						(2)
12.2.3	5	3!	8!	4	✓ 5 × 4	
	(Poetry)	(Novels	(Arrangements	(Drama)	✓ 3!= 6	
		all	of rest of the	, , ,	√ 8!	
		together)	books			
		together)	including the			
			_			
			novels)			
	novels toge		5219141			
	$=\frac{5\times3!\times8}{12!}$	5! × 4	$\checkmark \frac{5 \times 3! \times 8! \times 4}{12!} = \frac{1}{99} $ (A)			
	12!		12:	(4)		
	$=\frac{1}{}$			(4)		
	99					
						[14]

TOTAL/TOTAAL: 150