# Board Game Recommender

Sia Zach Tjunchern 03/03/2023





#### **Table of contents**

01

**Introduction** 

Problem Statement Background

02

**EDA Part 1** 

Insights into dataset

03

**EDA Part 2** 

Subsetting dataset

04

**Modelling** 

Models used

05

Conclusion

Conclusion

Recommendation

Future work







# Board game recommender

Who are BoardGameGeek.com?











# Problem Statement

Our project aims to generate game recommendations based on user reviews from BoardGameGeeks.com, focusing on modern games published from 2017 to 2021 to attract new market share and add value to existing users.







## Homepage







Browse - Forums - GeekLists - Shopping - Community - Help -







zach\_sia 🔻



**Explore** 

Dashboard





#### Akropolis Wins 2023 As D'Or

by W Eric Martin - BoardGameGeek News



#### Vote for the Best Microbadge of the Month

by mightyoak - BGG General



February Store Update - One-of-a-kind accessories, both to wear and to play!

by LindyBurger - News



Twilight Struggle: Red Sea w/ Jason Matthews - Cardboard Creations

by candidrum









# Homepage

#### **CREATOR SPOTLIGHT**



#### **Dr Gareth Moore**

YouTube Channel

Dr Gareth Moore is the author of a wide range of puzzle, brain-training and activity books for both adults and kids



Dr Gareth and Laura

Mar 1 - YouTube ☑



Solved! Exit the Game: The Secret Lab - Solved! Unlock: Ticket to Ride / Game Adventures - Dr Gareth and Laura Feb 17

Solved! Exit the Game: The Sinister

Mansion - Dr Gareth and Laura Feb 10





#### Forum



| Board Game<br>Rank - |            | Title                                                                                                            | Your<br>Rating | Geek Rating | Avg Rating | Num Voters | Status | Your<br>Plays | Shop                                       |
|----------------------|------------|------------------------------------------------------------------------------------------------------------------|----------------|-------------|------------|------------|--------|---------------|--------------------------------------------|
| 1                    | BRASS      | Brass: Birmingham (2018) Build networks, grow industries, and navigate the world of the Industrial Revolution.   | N/A            | 8.429       | 8.63       | 36307      |        |               | Amazon: \$188.80                           |
| 2                    | LEGACY     | Pandemic Legacy: Season 1 (2015) Mutating diseases are spreading around the world - can your team save humanity? | N/A            | 8.400       | 8.55       | 49667      |        |               | Geek Game Shop: \$79.99<br>Amazon: \$68.53 |
| 3                    | d Comparis | Gloomhaven (2017) Vanquish monsters with strategic cardplay. Fulfill your quest to leave your legacy!            | N/A            | 8.397       | 8.63       | 56765      |        |               | List: \$165.00<br>Amazon: \$105.98         |

# Recap: Who are **BoardGameGeeks?**





- **Community focused** 
  - Forum discussions
  - Request trades
- Market place
  - Buy
  - Sell



#### **Focus on optimising** user engagement

- Multimedia engagement
  - **Podcasts**
  - Video reviews
  - **Blog posts**
  - Weekly highlights







# Recommender system natural next step?









# Diving into the data







# Our new best friend polars









# Games

# Description and shape of data



dataframe games.csv, shape (21925, 48)

dataframe games.csv, describe

|       | BGGId         | YearPublished | GameWeight   | AvgRating    | BayesAvgRating | StdDev       | MinPlayers   | MaxPlayers   | ComAgeRec    | LanguageEase | <br>Rank:partygames | Rank:chi |
|-------|---------------|---------------|--------------|--------------|----------------|--------------|--------------|--------------|--------------|--------------|---------------------|----------|
| count | 21925.000000  | 21925.000000  | 21925.000000 | 21925.000000 | 21925.000000   | 21925.000000 | 21925.000000 | 21925.000000 | 16395.000000 | 16034.000000 | <br>21925.000000    |          |
| mean  | 117652.663216 | 1985,494914   | 1.982131     | 6.424922     | 5,685673       | 1.516374     | 2.007343     | 5.707868     | 10.004391    | 216.461819   | <br>21295.352201    |          |
| std   | 104628.721777 | 212.486214    | 0.848983     | 0.932477     | 0,365311       | 0.285578     | 0.693093     | 15.014643    | 3.269157     | 236.595136   | <br>3637.139987     |          |
| min   | 1.000000      | -3500.000000  | 0.000000     | 1.041330     | 3.574810       | 0.196023     | 0.000000     | 0.000000     | 2.000000     | 1.000000     | <br>1.000000        |          |
| 25%   | 12346.000000  | 2001.000000   | 1.333300     | 5.836960     | 5,510300       | 1.320720     | 2.000000     | 4.000000     | 8.000000     | 24.027778    | <br>21926.000000    |          |
| 50%   | 105305.000000 | 2011.000000   | 1.968800     | 6.453950     | 5,546540       | 1.476880     | 2.000000     | 4.000000     | 10.000000    | 138.000000   | <br>21926.000000    |          |
| 75%   | 206169.000000 | 2017,000000   | 2.525200     | 7.052450     | 5.679890       | 1.665470     | 2.000000     | 6.000000     | 12.000000    | 351.000000   | <br>21926.000000    |          |
| max   | 349161.000000 | 2021.000000   | 5,000000     | 9.914290     | 8.514880       | 4.277280     | 10.000000    | 999.000000   | 21.000000    | 1757.000000  | <br>21926.000000    |          |
|       |               |               |              |              |                |              |              |              |              |              |                     |          |



# Publish Year and missing data

| count | 21925.000000 |  |
|-------|--------------|--|
| mean  | 1985.494914  |  |
| std   | 212.486214   |  |
| min   | -3500.000000 |  |
| 25%   | 2001.000000  |  |
| 50%   | 2011.000000  |  |
| 75%   | 2017.000000  |  |
| max   | 2021.000000  |  |
|       |              |  |

Name: YearPublished, dtype: float64

| games.csv          |       |
|--------------------|-------|
| BGGId              | 0     |
| Name               | 0     |
| Description        | 1     |
| YearPublished      | 0     |
| GameWeight         | 0     |
| AvgRating          | 0     |
| BayesAvgRating     | 0     |
| StdDev             | 0     |
| MinPlayers         | 0     |
| MaxPlayers         | 0     |
| ComAgeRec          | 5530  |
| LanguageEase       | 5891  |
| BestPlayers        | 0     |
| GoodPlayers        | 0     |
| NumOwned           | 0     |
| NumWant            | 0     |
| NumWish            | 0     |
| NumWeightVotes     | 0     |
| MfgPlaytime        | 0     |
| ComMinPlaytime     | 0     |
| ComMaxPlaytime     | 0     |
| MfgAgeRec          | 0     |
| NumUserRatings     | 0     |
| NumComments        | 0     |
| NumAlternates      | 0     |
| NumExpansions      | 0     |
| NumImplementations | 0     |
| IsReimplementation | 0     |
| Family             | 15262 |
| Kickstarted        | 0     |
| ImagePath          | 17    |
| Rank:boardgame     | 0     |
| Rank:strategygames | 0     |
| Rank:abstracts     | 0     |
| Dankifamilvoamer   | a     |
|                    |       |









# User ratings



# User ratings

18,942,215

Rows of data across 411,374 unique users 21,925 unique games

# Missing data, mean ratings and rating counts

R

user\_ratings.csv
BGGId 0
Rating 0
Username 63
dtype: int64



|       | Rating        |
|-------|---------------|
| count | 21925.000000  |
| mean  | 863.955074    |
| std   | 3627.083866   |
| min   | 7.000000      |
| 25%   | 57.000000     |
| 50%   | 125.000000    |
| 75%   | 398.000000    |
| max   | 107760.000000 |

### **Distribution of Ratings**







#### IQR of the count of reviews









# Filtering our data to our problem statement

Images reveal large amounts of data, so remember: use an image instead of a long text.

Your audience will appreciate it



## Stratifying our dataset

```
strata = games_csv2.groupby('YearPublished')
# Sample 10% of the data from each stratum
sampled_data = pl.concat([stratum.sample(frac=0.1, seed=42) for _, stratum in strata])
filter_list = sampled_data['BGGId'].to_list()

df_filter_2 = user_ratings.filter(pl.col('BGGId').is_in(filter_list))

df_filter_2
```



#### Distribution of new dataset







# Filtering to after 2017 onwards

|  | shape: | (3720985, 4) |  |
|--|--------|--------------|--|
|--|--------|--------------|--|

| Username        | Rating | BGGId  |          |  |
|-----------------|--------|--------|----------|--|
| str             | f32    | i32    | i64      |  |
| "Narfbuster"    | 5.0    | 193500 | 75       |  |
| "Methrin"       | 5.0    | 193500 | 76       |  |
| "Evabelle"      | 5.0    | 193500 | 77       |  |
| "ngcx6611"      | 5.0    | 193500 | 78       |  |
| "bmillerbwm"    | 5.0    | 193500 | 79       |  |
| "CadizEstocolmo | 5.0    | 193500 | 80       |  |
| "kelvbrown"     | 5.0    | 193500 | 81       |  |
| "jenf"          | 5.0    | 193500 | 82       |  |
| "thatthing1999" | 5.0    | 193500 | 83       |  |
| "alanB"         | 5.0    | 193500 | 84       |  |
| "RyanThibault"  | 5.0    | 193500 | 85       |  |
| "psychomansam"  | 5.0    | 193500 | 86       |  |
|                 |        |        |          |  |
| "rdunlap1125"   | 5.0    | 193422 | 18941829 |  |
| "ryansmum2008"  | 5.0    | 193422 | 18941830 |  |
| "theericbooth"  | 5.0    | 193422 | 18941831 |  |
| "mljeko"        | 5.0    | 193422 | 18941832 |  |
| III LAITI D     |        | 100400 | 10041022 |  |







# Limiting to reviews and users to 100





dtype: int64





#### Methodology





**K Nearest** 

#### **Neighbours**

KNNBasic, KNNBaseline, KNNZScore, KNNwithMeans.

#### **Baseline Models**

Normal\_predictor,Baseline.

#### **Matrix Factorization**

Slope One,

Co-clustering, NonNegative Matrix Factorization

https://surprise.readthedocs.io/en/st able/prediction\_algorithms\_packag e.html



### **Key discussion points**







We will be using **RMSE** as our **loss function** 





#### Precision@k

Precision@k as main performance metric that measures the proportion of relevant items among the top k recommended items to a user.



#### Recall@k

Recall@k as secondary performance metric, proportion of relevant items among all the items that should have been recommended to a user, up to the top k items.

#### **RMSE**



- RMSE is a widely recognized and accepted evaluation metric and is commonly used in machine learning and recommender systems to measure the difference between predicted and actual ratings.
  - Punishes larger discrepancies between predictions and true values.



#### **RMSE**

We will be using **RMSE** 





#### Precision@k





#### Precision@k

Precision@k as main performance metric that measures the proportion of relevant items among the top k recommended items to a user.

```
\begin{aligned} & \text{Precision@k} = \frac{|\{\text{Recommended items that are relevant}\}|}{|\{\text{Recommended items}\}|} \\ & \text{Recall@k} = \frac{|\{\text{Recommended items that are relevant}\}|}{|\{\text{Relevant items}\}|} \end{aligned}
```

We must decide a k value aka the number of recommendations as our top k value and our threshold for relevant items



#### Deciding threshold and k values

Our dataset to begin with is already skewed more toward the higher end with a 50th percentile of 7.0.

To have more confidence that our model is generalisable via looking at our precision and recall@k, we we set it to 7.5 a slightly higher threshold.

```
np.percentile(data_for_model['Rating'],50)

1: 7.0

np.percentile(data_for_model['Rating'],60)

1: 7.5
```

#### Recall@k







#### Recall@k

Recall@k as secondary performance metric, proportion of relevant items among all the items that should have been recommended to a user, up to the top k items.



We must decide a k value aka the number of recommendations as our top k value and our threshold for relevant items



#### Final results

|                                  | precision_at_k | recall_at_k | average_rmse |
|----------------------------------|----------------|-------------|--------------|
| KNNBasic                         | 0.698465       | 0.428652    | 1.071927     |
| SVD                              | 0.698177       | 0.390089    | 1.020469     |
| KNNBaseline                      | 0.688521       | 0.356677    | 1.016195     |
| Baseline                         | 0.686130       | 0.367994    | 1.020571     |
| KNNWithZScore                    | 0.683345       | 0.367066    | 1.032019     |
| Slope One                        | 0.679875       | 0.360517    | 1.017509     |
| Co-clustering                    | 0.665922       | 0.333746    | 1.045657     |
| KNNWithMeans                     | 0.661810       | 0.334689    | 1.032379     |
| Normal_predictor                 | 0.465807       | 0.314209    | 1.853386     |
| NonNegative Matrix Factorization | 0.087494       | 0.009557    | 1.784536     |





#### Our best model

|                                  | precision_at_k | recall_at_k | average_rmse |
|----------------------------------|----------------|-------------|--------------|
| KNNBasic                         | 0.698465       | 0.428652    | 1.071927     |
| SVD                              | 0.698177       | 0.390089    | 1.020469     |
| KNNBaseline                      | 0.688521       | 0.356677    | 1.016195     |
| Baseline                         | 0.686130       | 0.367994    | 1.020571     |
| KNNWithZScore                    | 0.683345       | 0.367066    | 1.032019     |
| Slope One                        | 0.679875       | 0.360517    | 1.017509     |
| Co-clustering                    | 0.665922       | 0.333746    | 1.045657     |
| KNNWithMeans                     | 0.661810       | 0.334689    | 1.032379     |
| Normal_predictor                 | 0.465807       | 0.314209    | 1.853386     |
| NonNegative Matrix Factorization | 0.087494       | 0.009557    | 1.784536     |







#### **Analysis & development**





#### **Analysis & development**



#### Take a look

https://siazachtj-capstone-codestreamlit-5es7vw.streamlit.app/









#### Conclusions

Our collaborative filtering model is aligned with the company's goals of being community drive, give the vast amount of clearly active users, our model's ability to provide insightful and relevant recommendations will only increase.



# Limitations and further work

Our model only scratched the surface of the potential of this dataset with its vast number of reviews and games. There are other tools and packages more in the realm of deep learning that might benefit model performance as a long term strategy.







## Thanks for listening!





https://github.com/siazachtj

https://www.linkedin.com/in/zach-sia

