iMath Phần mềm Tao đề ngẫu nhiên

ĐỀ ÔN TẬP Môn thi: Toán Thời gian: phút Mã đề: 010

Ho tên HS:Số báo danh

PHÂN I. Câu trắc nghiệm nhiều phương án lưa chon.

Câu 1. Đổi số đo của góc 735° sang radian ta được kết quả bằng

A.
$$\frac{49\pi}{12}$$

B.
$$\frac{17\pi}{4}$$

C.
$$\frac{143\pi}{36}$$

D.
$$\frac{149\pi}{36}$$
.

Áp dụng công thức chuyển đổi: $735^\circ = \frac{735.\pi}{180} = \frac{49\pi}{12}$. Chọn đáp án A Chọn đáp án A.

Câu 2. Tính sin $\frac{103\pi}{3}$.

A.
$$\frac{1}{2}$$
.

B.
$$\sqrt{3}$$
.

C.
$$\frac{\sqrt{3}}{3}$$
. Lời giải.

D.
$$\frac{\sqrt{3}}{2}$$
.

Chọn đáp án D.

Câu 3. Cho b là góc lượng giác. Tìm khẳng định đúng trong các khẳng định sau.

A.
$$\cot(\pi + b) = -\cot b$$
.

$$\mathbf{B.} \ \cos(\pi - b) = -\cos b \ .$$

$$\mathbf{C.} \ \sin\left(\frac{\pi}{2} - b\right) = \sin b \ .$$

$$\mathbf{D.} \, \cos\left(\frac{\pi}{2} - b\right) = -\cos b \; .$$

Lời giải.

 $cos(\pi - b) = -cos b$ là khẳng định đúng.

Chọn đáp án B.

Câu 4. Cho α là góc lượng giác. Tìm khẳng định đúng trong các khẳng định sau. **A.** $\tan 2\alpha = \frac{\tan \alpha}{1 - 2\tan^2 \alpha}$. **B.** $\cos 2\alpha = 2\sin \alpha\cos \alpha$.

A.
$$\tan 2\alpha = \frac{\tan \alpha}{1 - 2\tan^2 \alpha}$$
.

B.
$$\cos 2\alpha = 2\sin \alpha \cos \alpha$$

C.
$$\cos 2\alpha = 2\cos^2 \alpha - 1$$

D.
$$\sin 2\alpha = \sin \alpha + \cos \alpha$$
.

Lời giải.

 $\cos 2\alpha = 2\cos^2 \alpha - 1$ là khẳng định đúng.

Chon đáp án C.

Câu 5. Cho x, y là các góc lượng giác. Tìm khẳng định đúng trong các khẳng định sau.

A.
$$\cos x \cos y = \frac{1}{2} [\cos(x+y) - \cos(x-y)]$$
.
B. $\sin x \cos y = \frac{1}{2} [\sin(x+y) - \sin(x-y)]$.
C. $\sin x \sin y = \frac{1}{2} [\cos(x-y) - \cos(x+y)]$.
D. $\sin x \sin y = \frac{1}{2} [\cos(x+y) - \cos(x-y)]$.

B.
$$\sin x \cos y = \frac{1}{2} [\sin(x+y) - \sin(x-y)]$$
.

C.
$$\sin x \sin y = \frac{1}{2} [\cos(x - y) - \cos(x + y)]$$

D.
$$\sin x \sin y = \frac{1}{2} [\cos(x+y) - \cos(x-y)]$$

 $\sin x \sin y = \frac{1}{2} [\cos(x - y) - \cos(x + y)]$ là khẳng định đúng. Chon đáp án C.

Câu 6. Cho $\sin \beta = \frac{4}{7} \text{ với } \beta \in \left(-\frac{3\pi}{2}; -\pi\right)$. Tính $\sin \left(\beta + \frac{3\pi}{4}\right)$.

A.
$$\frac{2\sqrt{2}}{7} + \frac{\sqrt{66}}{14}$$

A.
$$\frac{2\sqrt{2}}{7} + \frac{\sqrt{66}}{14}$$
. **B.** $-\frac{\sqrt{66}}{14} - \frac{2\sqrt{2}}{7}$. **C.** $-\frac{2\sqrt{2}}{7} + \frac{\sqrt{66}}{14}$. **D.** $\frac{4}{7} - \frac{\sqrt{33}}{7}$.

C.
$$-\frac{2\sqrt{2}}{7} + \frac{\sqrt{66}}{14}$$

D.
$$\frac{4}{7} - \frac{\sqrt{33}}{7}$$
.

Vì $\beta \in \left(-\frac{3\pi}{2}; -\pi\right)$ nên $\cos \beta < 0$.

$$\cos\beta = -\sqrt{1 - \frac{16}{49}} = -\frac{\sqrt{33}}{7}.$$

$$\sin\left(\beta + \frac{3\pi}{4}\right) = \sin\beta\cos(\frac{3\pi}{4}) + \cos\beta\sin(\frac{3\pi}{4}) = \frac{4}{7}.(-\frac{\sqrt{2}}{2}) + (-\frac{\sqrt{33}}{7}).(\frac{\sqrt{2}}{2}) = -\frac{\sqrt{66}}{14} - \frac{2\sqrt{2}}{7}.$$
Chon đáp án B.

Câu 7. Tìm tập xác định của hàm số $y = \tan(10x + 5\pi)$.

A.
$$D = \mathbb{R} \setminus \{-\frac{1}{5}\pi + k\frac{1}{10}\pi\}$$
.
B. $D = \mathbb{R} \setminus \{-\frac{9}{20}\pi + k\frac{1}{10}\pi\}$.
C. $D = \mathbb{R} \setminus \{-\frac{9}{10}\pi + k\frac{1}{10}\pi\}$.
D. $D = \mathbb{R} \setminus \{-\frac{2}{5}\pi + k\frac{1}{10}\pi\}$.
Lòi giải.

Chọn đáp án B.

Câu 8. Nghiệm của phương trình
$$\cos\left(3x + \frac{\pi}{4}\right) = \sin\left(-2x + \frac{5\pi}{4}\right)$$
 là

A. $x = -\pi + k2\pi, x = \frac{\pi}{10} + k\frac{2\pi}{5}(k \in \mathbb{Z})$.

B. $x = -\frac{\pi}{20} + k2\pi, x = \pi + k2\pi(k \in \mathbb{Z})$.

C. $x = -\frac{\pi}{20} + k2\pi, x = \pi + k\frac{2\pi}{5}(k \in \mathbb{Z})$.

D. $x = -\pi + k\frac{\pi}{5}, x = \frac{\pi}{10} + k\pi(k \in \mathbb{Z})$.

Lời giải.

$$\cos\left(3x + \frac{\pi}{4}\right) = \sin\left(-2x + \frac{5\pi}{4}\right) \Leftrightarrow \cos\left(3x + \frac{\pi}{4}\right) = \cos\left(2x - \frac{3\pi}{4}\right)$$

$$\Leftrightarrow \begin{bmatrix} 3x + \frac{\pi}{4} = 2x - \frac{3\pi}{4} + k2\pi \\ 3x + \frac{\pi}{4} = -2x + \frac{3\pi}{4} + k2\pi \end{bmatrix}$$

$$\Leftrightarrow \begin{bmatrix} x = -\pi + k2\pi \\ 5x = \frac{\pi}{2} + k2\pi \end{bmatrix}$$

$$\Leftrightarrow \begin{bmatrix} x = -\pi + k2\pi \\ x = \frac{\pi}{10} + k\frac{2\pi}{5} \end{bmatrix}, k \in \mathbb{Z}$$

Chọn đáp án A.

PHẨN II. Câu trắc nghiệm đúng sai.

Câu 1. Cho $\sin x = \frac{7}{8}$, $x \in \left(\frac{5\pi}{2}; 3\pi\right)$. Xét tính đúng-sai của các khẳng định sau.

Phát biểu	Ð	S
a) $\cos x = -\frac{\sqrt{15}}{8}$.	X	
b) $\sin 2\alpha = -\frac{7\sqrt{15}}{32}$.	X	
$\mathbf{c)} \cos 2\alpha = \frac{17}{32} .$		X
$\mathbf{d)} \sin\left(\alpha + \frac{\pi}{3}\right) = \frac{7}{8} - \frac{\sqrt{15}}{8} .$		X

Lời giải.

a) Khẳng định đã cho là khẳng định đúng.

Vì
$$x \in \left(\frac{5\pi}{2}; 3\pi\right)$$
 nên $\cos x < 0$.
 $\cos x = -\sqrt{1 - \frac{49}{64}} = -\frac{\sqrt{15}}{8}$.

b) Khẳng đinh đã cho là khẳng đinh đúng.

$$\sin 2\alpha = 2 \sin \alpha \cos \alpha = 2 \cdot \frac{7}{8} \cdot (-\frac{\sqrt{15}}{8}) = -\frac{7\sqrt{15}}{32}.$$

c) Khẳng định đã cho là khẳng định sai.

$$\cos 2\alpha = 1 - 2\sin^2 \alpha = 1 - 2.\frac{49}{64} = -\frac{17}{32}$$

d) Khẳng định đã cho là khẳng định sai

$$\sin\left(\alpha + \frac{\pi}{3}\right) = \sin\alpha\cos(\frac{\pi}{3}) + \cos\alpha\sin(\frac{\pi}{3}) = \frac{7}{8}\cdot(\frac{1}{2}) + (-\frac{\sqrt{15}}{8})\cdot(\frac{\sqrt{3}}{2}) = \frac{7}{16} - \frac{3\sqrt{5}}{16}.$$

Chọn đáp án a đúng | b đúng | c sai | d sai.

Câu 2. Cho hàm số $y = 4 \sin(6x) - 6$. Xét tính đúng-sai của các khẳng đinh sau.

Phát biểu	Ð	S
a) Tập xác định của hàm số là $D = [-4; 4]$.		X
b) Hàm số đã cho là hàm số không chẵn, không lẻ.	X	
c) Tập giá trị của hàm số đã cho là $T = [-10; -2]$.	X	
d) Đồ thị cắt trục tung tại điểm có tung độ bằng −5.		X

Lời giải.

a) Khẳng định đã cho là khẳng định sai.

Tập xác đinh của hàm số là $D = \mathbb{R}$.

b) Khẳng định đã cho là khẳng định đúng.

Ta có: Với moi $x \in \mathbb{R}$ thì $-x \in \mathbb{R}$.

$$f(-x) = -4\sin(6x) - 6 \neq f(x), f(-x) \neq -f(x).$$

Vậy hàm số $y = 4 \sin(6x) - 6$ là hàm số không chẵn, không lẻ.

c) Khẳng định đã cho là khẳng định đúng.

Ta có: $-10 \le 4 \sin(6x) - 6 \le -2$ nên tập giá trị là [-10; -2]

d) Khẳng định đã cho là khẳng định sai.

Cho $x = 0 \Rightarrow y = -6$. Suy ra đồ thị cắt trực tung tại điểm có tung độ bằng -6.

Chọn đáp án a sai | b đúng | c đúng | d sai.

PHẨN III. Câu trắc nghiêm trả lời ngắn.

Câu 1. Một bánh xe của một loại xe có bán kính 57 cm và quay được 8 vòng trong 5 giây. Tính độ dài quãng đường (theo đơn vị mét) xe đi được trong 9 giây (kết quả làm tròn đến hàng phần mười).

Lời giải

Một giây bánh xe quay được số vòng là: $\frac{8}{5}$.

Một vòng quay ứng với quãng đường là $2\pi.0, 6 = 1, 2\pi$.

Sau 9 giây quãng đường đi được là: $\frac{8}{5}$.9.1, $2\pi = 54$, 3:

Câu 2. Số nghiệm thuộc khoảng $(-5\pi; 5\pi)$ của phương trình $\tan\left(x - \frac{\pi}{5}\right) = \frac{\sqrt{3}}{3}$ là

$$\tan\left(x - \frac{\pi}{5}\right) = \frac{\sqrt{3}}{3} \Leftrightarrow x - \frac{\pi}{5} = \frac{\pi}{6} + k\pi \Leftrightarrow x = \frac{11\pi}{30} + k\pi, k \in \mathbb{Z}.$$

Do
$$x \in (-5\pi; 5\pi)$$
 nên $-5\pi < \frac{11\pi}{30} + k\pi < 5\pi \Rightarrow -\frac{161}{30} < k < \frac{139}{30}$.

Có 10 số k thỏa mãn nên phương trình có 10 nghiệm.