Одноранговая аппроксимация положительных матриц с использованием методов тропической математики¹

Кривулин Н. К., профессор кафедры статистического моделирования СПбГУ, nkk@math.spbu.ru;

Романова Е. Ю., студент кафедры статистического моделирования СПбГУ, romanova.ej@gmail.com

Аннотация

В статье рассматриваются проблемы аппроксимации матриц матрицами единичного ранга. Задача аппроксимации формулируется как задача минимизации log-чебышевского расстояния, которая затем сводится к задаче оптимизации, имеющей компактное представление в терминах тропической математики. Приводятся необходимые определения и результаты из области тропической математики, на основе которых дается решение исходной задачи аппроксимации.

Введение

К задаче аппроксимации матриц сводится значительное число прикладных задач из разных областей. Многие вычислительные задачи требуют решения системы линейных алгебраических уравнений. Например, задачи вычислительной гидродинамики, теории электрических цепей, уравнения балансов и сохранения в механике. Методы решения систем линейных уравнений принято разделять на итерационные и прямые. Прямые методы обычно основываются на LU-разложении и требуют больших затрат памяти и временных ресурсов. Применение техники малоранговой аппроксимации к множителям LU-разложения, изложенное в работе [1], значительно повышает эффективность этих методов. Схожий подход может быть применен и к решению задачи итерационными методами. Например, в [2] описано использование приближения LDL^T -разложения, полученного на основе малоранговой аппроксимации, в качестве предобуславливателя. Потребность в аппроксимации возникает и при обработке массивов

¹Работа выполнена при финансовой поддержке РГНФ, проект №16-02-00059.

данных. Матрицы, заполненные результатами какого-либо физического эксперимента, биологическими наблюдениями или оценками пользователей, могут иметь пропуски или значения, с которыми сложно работать. Аппроксимация матрицами из выбранного множества матриц дает возможность работать с данными в удобной и корректной с математической точки зрения форме.

Понижение ранга матрицы при помощи аппроксимации существенно упрощает ее структуру и позволяет сократить объем памяти, требующийся для её хранения. Логично выделять аппроксимацию матрицами единичного ранга, так как они устроены наиболее просто. Некоторые методы одноранговой аппроксимации описаны, например, в работах [3], [4].

Задача аппроксимации матрицы $A \in \mathbb{R}^{n \times n}$ матрицами $X \in S \subset \mathbb{R}^{n \times n}$ формулируется как задача оптимизации

$$\min_{\boldsymbol{X} \in S} d(\boldsymbol{A}, \boldsymbol{X}),$$

где d — функция расстояния на множестве матриц, измеряющая величину ошибки аппроксимации.

Подходы к решению задачи аппроксимации могут варьироваться в зависимости от нюансов исходной задачи и особенностей матрицы. Различия между подходами во многом определяются выбором функции расстояния.

Распространенным решением проблемы является применение к аппроксимации матриц разновидностей метода наименьших квадратов, в основе которого лежит минимизация евклидова расстояния. Вариант применения описан, например, в работе [5]. Метод надежен, но требует больших затрат вычислительных ресурсов, что делает его малопригодным для решения задач больших размерностей или задач, в которых проблема экономии ресурсов является первостепенной. В [6] освещается использование расстояния Минковского (l_p) и расстояния Чебышева, которое рассматривается как предел расстояния Минковского при $p \to \infty$. В частности, в этой работе доказывается существование приближения Чебышева с рангом r для любой матрицы \boldsymbol{A} с большим рангом. Но использование функции расстояния Минковского при p > 2 еще более трудоемко, чем евклидовой функции расстояния.

В работе [7] проблема чебышевской аппроксимации сформулирована в виде задачи линейного программирования, к решению которой могут применяться соответствующие методы, например, симплекс-метод. Для аппроксимации положительных матриц иногда целесообразнее перейти к оценке погрешности в логарифмической шкале. Задача минимизации log-чебшевского расстояния может быть сведена к задаче конического программирования второго порядка, как в работе [8], и решена, например, барьерным методом [7].

Далее в статье предлагается метод аппроксимации положительных матриц матрицами единичного ранга путем минимизации log-чебышевского расстояния между матрицами. Будет показано, что задача минимизации log-чебышевского расстояния может быть приведена к задаче, записанной в компактной форме в терминах идемпотентного полуполя $\mathbb{R}_{\max,\times}$, которое часто называют тах-алгеброй. Затем для нахождения решения будут использованы результаты из области тропической математики.

Log-чебышевская одноранговая аппроксимация

Чебышевская аппроксимация положительной матрицы $\boldsymbol{A}=(a_{ij})$ при помощи положительной матрицы $\boldsymbol{X}=(x_{ij})$ в логарифмической шкале использует функцию расстояния

$$d(\boldsymbol{A}, \boldsymbol{X}) = \max_{i,j} |\log a_{ij} - \log x_{ij}|,$$

где логарифм берется по основанию больше единицы.

Справедливо следующее утверждение

Утверждение 1. Пусть A, X — положительные матрицы. Минимизация по X величины $\mathrm{d}(A, X)$ эквивалентна минимизации

$$d'(\mathbf{A}, \mathbf{X}) = \max_{i,j} \max(a_{ij} x_{ij}^{-1}, x_{ij} a_{ij}^{-1}).$$

Следовательно, задача log-чебышевской аппроксимации может быть сведена к задаче

$$\min_{\boldsymbol{X}} \mathbf{d}'(\boldsymbol{A}, \boldsymbol{X}). \tag{1}$$

В силу того, что любая матрица X ранга 1 имеет представление $X = st^T$, где векторы $s = (s_i)$ и $t = (t_j)$ не содержат нулевых элементов, целевую функцию задачи (1) можно записать в виде

$$d'(\boldsymbol{A}, \boldsymbol{X}) = d'(\boldsymbol{A}, \boldsymbol{st}^T) = \max_{i,j} \max(s_i^{-1} a_{ij} t_j^{-1}, s_i a_{ij}^{-1} t_j).$$

Таким образом, задача одноранговой аппроксимации сводится к задаче

$$\min_{s,t} \max_{i,j} \max(s_i^{-1} a_{ij} t_j^{-1}, s_i a_{ij}^{-1} t_j). \tag{2}$$

Элементы тропической математики

Приведем основные определения, обозначения и предварительные результаты тропической математики [9], на которые будем опираться в дальнейшем.

Идемпотентное полуполе

Идемпотентным полуполем называется алгебраическая система $(\mathbb{X},\oplus,\otimes,\mathbb{O},\mathbb{1})$, где \mathbb{X} — непустое множество, которое замкнуто относительно операций сложения \oplus и умножения \otimes и включает их нейтральные элементы \mathbb{O} и $\mathbb{1}$. Сложение является идемпотентным, то есть удовлетворяет условию $x\oplus x=x$ для всех $x\in\mathbb{X}$. Выполняется свойство дистрибутивности умножения относительно сложения и для каждого $x\neq \mathbb{O}$ существует обратный по умножению элемент x^{-1} такой, что $x^{-1}\otimes x=\mathbb{1}$.

Например, в вещественном полуполе $\mathbb{R}_{\max,\times} = (\mathbb{R}_+, \max, \times, 0, 1)$, где \mathbb{R}_+ — множество неотрицательных вещественных чисел, операция сложения определена как взятие максимума двух чисел и имеет нейтральный элемент 0, а умножение \otimes определено как арифметическое умножение c нейтральным элементом 1. Понятия обратного элемента и степени имеют обычный смысл.

Mampuuы и векторы

Множество всех матриц, которые имеют m строк и n столбцов с элементами из \mathbb{X} , обозначается через $\mathbb{X}^{m\times n}$. Матрица, все элементы которой равны \mathbb{O} , называется нулевой и обозначается \mathbf{O} . Квадратная матрица, диагональные элементы которой равны числу \mathbb{I} , а недиагональные — числу \mathbb{O} , называется единичной и обозначается \mathbf{I} . Матрица называется неразложимой, если перестановкой строк вместе с такой же перестановкой столбцов ее нельзя привести к блочно-треугольному виду. Сложение и умножение двух матриц подходящего размера и умножение матрицы на число выполняются по стандартным правилам с заменой обычных арифметических операций на операции \oplus и \otimes .

Для любой ненулевой матрицы $\boldsymbol{A}=(a_{ij})\in\mathbb{X}^{m\times n}$ определена мультипликативно сопряженная матрица $\boldsymbol{A}^-=(a_{ij}^-)\in\mathbb{X}^{n\times m}$ с элементами $a_{ij}^-=a_{ji}^{-1},$ если $a_{ji}\neq \mathbb{0},$ и $a_{ij}^-=\mathbb{0}$ — в противном случае.

След матрицы $\boldsymbol{A}=(a_{ij})\in\mathbb{X}^{n\times n}$ вычисляется по формуле

$$\operatorname{tr} \mathbf{A} = a_{11} \oplus \cdots \oplus a_{nn}.$$

Для любой матрицы $\pmb{A} \in \mathbb{X}^{n \times n}$ введем в рассмотрение матрицу $\pmb{A}^* = \pmb{I} \oplus \pmb{A} \oplus \cdots \oplus \pmb{A}^{n-1}.$

Множество всех векторов-столбцов размера n с элементами из \mathbb{X} обозначается \mathbb{X}^n . Вектор, все элементы которого равны $\mathbb{0}$, называется нулевым. Вектор называется регулярным, если он не имеет нулевых компонент. Для любого ненулевого вектора $\boldsymbol{x}=(x_i)\in\mathbb{X}^n$ определен вектор-строка $\boldsymbol{x}^-=(x_i^-)$, где $x_i^-=x_i^{-1}$, если $x_i\neq \mathbb{0}$, и $x_i^-=\mathbb{0}$ — иначе.

Собственное число и вектор матрицы

Число $\lambda \in \mathbb{X}$ и ненулевой вектор $x \in \mathbb{X}^n$ называются собственным значением и собственным вектором матрицы $A \in \mathbb{X}^{n \times n}$, если они удовлетворяют равенству

$$Ax = \lambda x$$
.

Любая матрица \boldsymbol{A} порядка n имеет собственное число, которое вычисляется по формуле

$$\lambda = \bigoplus_{m=1}^{n} \operatorname{tr}^{1/m}(\boldsymbol{A}^{m}).$$

Если у матрицы ${m A}$ есть другие собственные числа, то они по величине не превосходят числа ${m \lambda}$, которое называется спектральным радиусом матрицы.

Задача тропической оптимизации и ее решение

Предположим, что задана матрица $\pmb{A} \in \mathbb{X}^{n \times n}$ и требуется решить задачу минимизации

$$\min_{\boldsymbol{x},\boldsymbol{y}} \quad \boldsymbol{x}^{-} \boldsymbol{A} \boldsymbol{y} \oplus \boldsymbol{y}^{-} \boldsymbol{A}^{-} \boldsymbol{x}, \tag{3}$$

где минимум берется по всем регулярным векторам $x, y \in \mathbb{X}^n$.

В работе [9] получен следующий результат

Пемма 1. Пусть $A \in \mathbb{X}^{n \times n}$ — неразложимая матрица, μ — спектральный радиус матрицы AA^- . Тогда минимум в задаче (3) равен $\mu^{1/2}$ и достигается тогда, когда x и $y = \mu^{-1/2}A^-x$ — собственные векторы матриц AA^- и A^-A , соответствующие μ .

Следующая теорема дает полное решение задачи (3).

Теорема 1. Пусть $A \in \mathbb{X}^{n \times n}$, μ — спектральный радиус матрицы AA^- . Тогда минимум в задаче (3) равен $\mu^{1/2}$ и достигается тогда и только тогда, когда

$$x = (\mu^{-1}AA^{-})^*v \oplus \mu^{-1/2}A(\mu^{-1}A^{-}A)^*w,$$

 $y = \mu^{-1/2}A^{-}(\mu^{-1}AA^{-})^*v \oplus (\mu^{-1}A^{-}A)^*w,$

где $oldsymbol{v},\,oldsymbol{w}$ — произвольные регулярные векторы размера n.

В частности, минимум достигается, когда x и $y = \mu^{-1/2} A^- x$ — собственные векторы матриц AA^- и A^-A , соответствующие μ .

Решение задачи аппроксимации

Рассмотрим задачу одноранговой аппроксимации (2). При замене арифметических операций на тропические, получим задачу

$$\min_{i,j} \bigoplus_{i,j} (s_i^{-1} a_{ij} t_j^{-1} \oplus s_i a_{ij}^{-1} t_j). \tag{4}$$

Целевую функцию задачи (4) можно записать в виде

$$\bigoplus_{i,j} (s_i^{-1} a_{ij} t_j^{-1} \oplus s_i a_{ij}^{-1} t_j) = \boldsymbol{s}^- \boldsymbol{A} (\boldsymbol{t}^-)^T \oplus \boldsymbol{t}^T \boldsymbol{A}^- \boldsymbol{s}.$$

Таким образом, задача (4) принимает вид

$$\min_{s,t} s^{-} A(t^{-})^{T} \oplus t^{T} A^{-} s. \tag{5}$$

Положив в задаче (5) $s = x, t = (y^-)^T$, получим задачу тропической оптимизации в форме (3). Применение к ней теоремы 1 дает решение в виде следующего утверждения

Утверждение 2. Пусть $A \in \mathbb{X}^{n \times n}$, μ — спектральный радиус матрицы AA^- . Тогда минимальная погрешность аппроксимации матрицы A матрицами единичного ранга равна $\mu^{1/2}$ и достигается на матрицах вида st^T , где

$$s = (\mu^{-1}AA^{-})^{*}v \oplus \mu^{-1/2}A(\mu^{-1}A^{-}A)^{*}w,$$

 $t^{T} = (\mu^{-1/2}A^{-}(\mu^{-1}AA^{-})^{*}v \oplus (\mu^{-1}A^{-}A)^{*}w)^{-},$

 $u\ v,\ w$ — произвольные регулярные векторы размера n.

B частности, минимальная погрешность достигается, когда $m{s}$ — собственный вектор матрицы $m{A}m{A}^-$, соответствующий μ , а $m{t}^T=\mu^{1/2}(m{A}^-m{s})^-$.

Литература

- [1] Соловьев С. Решение разреженных систем линейных уравнений методом Гаусса с использованием техники аппроксимации матрицами малого ранга // Выч. мет. программирование. 2014. Т. 15, № 3. С. 441–460.
- [2] Воронин К., Соловьев С. Решение уравнения Гельмгольца с использованием метода малоранговой аппроксимации в качестве предобуславливателя // Выч.мет. программирование. 2015. Т. 16. С. 268—280.
- [3] Luss R., Teboulle M. Conditional gradient algorithms for rank-one matrix approximations with a sparsity constraint // SIAM Review. 2013. Vol. 55, no. 1. P. 65–98.
- [4] Ispany M., Michaletzky G., Reiczigel J. Approximation of non-negative integer-valued matrices with application to Hungarian mortality data // MTNS 2010 Conference. Budapest: 2010. July.
- [5] Саати Т. Принятие решений. Метод анализа иерархий. Москва: Радио и связь, 1993. С. 217–219.
- [6] Zietak K. The Chebyshev approximation of a rectangular matrix by matrices of smaller rank as the limit of l_p -approximation // J. Comput. Appl. Math. 1984. Vol. 11. P. 297–305.
- [7] Boyd S., Vandenberghe L. Convex optimization. Cambridge University Press, 2004.
- [8] Lobo M., Vandenberghe L., Boyd S. Applications of second-order cone programming // Linear Algebra Appl. 1998. Vol. 284. P. 193–228.
- [9] Кривулин Н. Методы идемпотентной алгебры в задачах моделирования и анализа сложных систем. СПб: С.-Петерб. ун-т, 2009. С. 107–108.