

(https://www.bigdatauniversity.com)

Classification with Python

In this notebook we try to practice all the classification algorithms that we learned in this course.

We load a dataset using Pandas library, and apply the following algorithms, and find the best one for this specific dataset by accuracy evaluation methods.

Lets first load required libraries:

```
In [1]: import itertools
   import numpy as np
   import matplotlib.pyplot as plt
   from matplotlib.ticker import NullFormatter
   import pandas as pd
   import numpy as np
   import matplotlib.ticker as ticker
   from sklearn import preprocessing
   %matplotlib inline
```

About dataset

This dataset is about past loans. The **Loan_train.csv** data set includes details of 346 customers whose loan are already paid off or defaulted. It includes following fields:

Description	Field
Whether a loan is paid off on in collection	Loan_status
Basic principal loan amount at the	Principal
Origination terms which can be weekly (7 days), biweekly, and monthly payoff schedule	Terms
When the loan got originated and took effects	Effective_date
Since it's one-time payoff schedule, each loan has one single due date	Due_date
Age of applicant	Age
Education of applicant	Education
The gender of applicant	Gender

Lets download the dataset

Load Data From CSV File

```
In [3]: df = pd.read_csv('loan_train.csv')
    df.head()
```

Out[3]:

	Unnamed: 0	Unnamed: 0.1	loan_status	Principal	terms	effective_date	due_date	age	education	Gender
0	0	0	PAIDOFF	1000	30	9/8/2016	10/7/2016	45	High School or Below	male
1	2	2	PAIDOFF	1000	30	9/8/2016	10/7/2016	33	Bechalor	female
2	3	3	PAIDOFF	1000	15	9/8/2016	9/22/2016	27	college	male
3	4	4	PAIDOFF	1000	30	9/9/2016	10/8/2016	28	college	female
4	6	6	PAIDOFF	1000	30	9/9/2016	10/8/2016	29	college	male

```
In [4]: df.shape
Out[4]: (346, 10)
```

Convert to date time object

```
In [5]: df['due_date'] = pd.to_datetime(df['due_date'])
    df['effective_date'] = pd.to_datetime(df['effective_date'])
    df.head()
```

Out[5]:

	Unnamed: 0	Unnamed: 0.1	loan_status	Principal	terms	effective_date	due_date	age	education	Gender
0	0	0	PAIDOFF	1000	30	2016-09-08	2016-10-07	45	High School or Below	male
1	2	2	PAIDOFF	1000	30	2016-09-08	2016-10-07	33	Bechalor	female
2	3	3	PAIDOFF	1000	15	2016-09-08	2016-09-22	27	college	male
3	4	4	PAIDOFF	1000	30	2016-09-09	2016-10-08	28	college	female
4	6	6	PAIDOFF	1000	30	2016-09-09	2016-10-08	29	college	male

Data visualization and pre-processing

Let's see how many of each class is in our data set

260 people have paid off the loan on time while 86 have gone into collection

Lets plot some columns to underestand data better:

The following packages will be downloaded:

```
        package
        build

        openssl-1.1.1g
        h7b6447c_0
        3.8 MB anaconda

        seaborn-0.10.1
        py_0
        160 KB anaconda

        certifi-2020.4.5.1
        py36_0
        159 KB anaconda

        ca-certificates-2020.1.1
        0
        132 KB anaconda

        Total:
        4.2 MB
```

The following packages will be UPDATED:

Verifying transaction: done Executing transaction: done

```
In [8]: import seaborn as sns

bins = np.linspace(df.Principal.min(), df.Principal.max(), 10)

g = sns.FacetGrid(df, col="Gender", hue="loan_status", palette="Set1", col_wrap=2)

g.map(plt.hist, 'Principal', bins=bins, ec="k")

g.axes[-1].legend()
plt.show()

Gender = male

Gender = female
```



```
In [9]: bins = np.linspace(df.age.min(), df.age.max(), 10)
    g = sns.FacetGrid(df, col="Gender", hue="loan_status", palette="Set1", col_wrap=2)
    g.map(plt.hist, 'age', bins=bins, ec="k")

g.axes[-1].legend()
    plt.show()
```


Pre-processing: Feature selection/extraction

Lets look at the day of the week people get the loan

```
In [10]: df['dayofweek'] = df['effective_date'].dt.dayofweek
  bins = np.linspace(df.dayofweek.min(), df.dayofweek.max(), 10)
  g = sns.FacetGrid(df, col="Gender", hue="loan_status", palette="Set1", col_wrap=2)
  g.map(plt.hist, 'dayofweek', bins=bins, ec="k")
  g.axes[-1].legend()
  plt.show()
```


We see that people who get the loan at the end of the week dont pay it off, so lets use Feature binarization to set a threshold values less then day 4

```
In [11]: df['weekend'] = df['dayofweek'].apply(lambda x: 1 if (x>3) else 0)
    df.head()
```

0	_ 1	г -	1 1	- 1	
Ou	L	L.	ΙД	.]	•

	Unnamed: 0	Unnamed: 0.1	loan_status	Principal	terms	effective_date	due_date	age	education	Gender	da
0	0	0	PAIDOFF	1000	30	2016-09-08	2016-10-07	45	High School or Below	male	
1	2	2	PAIDOFF	1000	30	2016-09-08	2016-10-07	33	Bechalor	female	
2	3	3	PAIDOFF	1000	15	2016-09-08	2016-09-22	27	college	male	
3	4	4	PAIDOFF	1000	30	2016-09-09	2016-10-08	28	college	female	
4	6	6	PAIDOFF	1000	30	2016-09-09	2016-10-08	29	college	male	

Convert Categorical features to numerical values

Lets look at gender:

86 % of female pay there loans while only 73 % of males pay there loan

Lets convert male to 0 and female to 1:

```
In [13]: df['Gender'].replace(to_replace=['male','female'], value=[0,1],inplace=True)
```

Out[13]:

	Unnamed: 0	Unnamed: 0.1	loan_status	Principal	terms	effective_date	due_date	age	education	Gender	da
0	0	0	PAIDOFF	1000	30	2016-09-08	2016-10-07	45	High School or Below	0	
1	2	2	PAIDOFF	1000	30	2016-09-08	2016-10-07	33	Bechalor	1	
2	3	3	PAIDOFF	1000	15	2016-09-08	2016-09-22	27	college	0	
3	4	4	PAIDOFF	1000	30	2016-09-09	2016-10-08	28	college	1	
4	6	6	PAIDOFF	1000	30	2016-09-09	2016-10-08	29	college	0	

One Hot Encoding

How about education?

```
In [14]: df.groupby(['education'])['loan_status'].value_counts(normalize=True)
Out[14]: education
                             loan_status
        Bechalor
                             PAIDOFF
                                           0.750000
                                          0.250000
                             COLLECTION
                                           0.741722
        High School or Below PAIDOFF
                             COLLECTION
                                           0.258278
                             COLLECTION
        Master or Above
                                           0.500000
                             PAIDOFF
                                           0.500000
        college
                             PAIDOFF
                                           0.765101
                                            0.234899
                             COLLECTION
        Name: loan_status, dtype: float64
```

Feature befor One Hot Encoding

```
In [15]: df[['Principal','terms','age','Gender','education']].head()
```

Out[15]:

	Principal	terms	age	Gender	education
0	1000	30	45	0	High School or Below
1	1000	30	33	1	Bechalor
2	1000	15	27	0	college
3	1000	30	28	1	college
4	1000	30	29	0	college

Use one hot encoding technique to conver categorical variables to binary variables and append them to the feature **Data Frame**

```
In [16]: Feature = df[['Principal','terms','age','Gender','weekend']]
    Feature = pd.concat([Feature,pd.get_dummies(df['education'])], axis=1)
    Feature.drop(['Master or Above'], axis = 1,inplace=True)
    Feature.head()
```

Out[16]:

	Principal	terms	age	Gender	weekend	Bechalor	High School or Below	college
(1000	30	45	0	0	0	1	0
1	1000	30	33	1	0	1	0	0
2	1000	15	27	0	0	0	0	1
3	1000	30	28	1	1	0	0	1
4	1000	30	29	0	1	0	0	1

Feature selection

Lets defind feature sets, X:

```
In [88]: X = Feature
x[0:5]
```

Out[88]:

	Principal	terms	age	Gender	weekend	Bechalor	High School or Below	college
0	1000	30	45	0	0	0	1	0
1	1000	30	33	1	0	1	0	0
2	1000	15	27	0	0	0	0	1
3	1000	30	28	1	1	0	0	1
4	1000	30	29	0	1	0	0	1

What are our lables?

7 of 17

Out[125]:

	Unnamed: 0	Unnamed: 0.1	loan_status	Principal	terms	effective_date	due_date	age	education	Gender	da
0	0	0	PAIDOFF	1000	30	2016-09-08	2016-10-07	45	High School or Below	0	
1	2	2	PAIDOFF	1000	30	2016-09-08	2016-10-07	33	Bechalor	1	
2	3	3	PAIDOFF	1000	15	2016-09-08	2016-09-22	27	college	0	
3	4	4	PAIDOFF	1000	30	2016-09-09	2016-10-08	28	college	1	
4	6	6	PAIDOFF	1000	30	2016-09-09	2016-10-08	29	college	0	

```
In [128]: y2=df['loan_status_cat']
```

Normalize Data

Data Standardization give data zero mean and unit variance (technically should be done after train test split)

```
In [19]: X= preprocessing.StandardScaler().fit(X).transform(X)
         X[0:5]
         /opt/conda/envs/Python36/lib/python3.6/site-packages/sklearn/preprocessing/data.
         py:645: DataConversionWarning: Data with input dtype uint8, int64 were all conve
         rted to float64 by StandardScaler.
           return self.partial_fit(X, y)
         /opt/conda/envs/Python36/lib/python3.6/site-packages/ipykernel/__main__.py:1: Da
         taConversionWarning: Data with input dtype uint8, int64 were all converted to fl
         oat64 by StandardScaler.
           if __name__ == '__main__':
Out[19]: array([[ 0.51578458, 0.92071769, 2.33152555, -0.42056004, -1.20577805,
                 -0.38170062, 1.13639374, -0.86968108],
                [\ 0.51578458,\ 0.92071769,\ 0.34170148,\ 2.37778177,\ -1.20577805,
                  2.61985426, -0.87997669, -0.86968108],
                [0.51578458, -0.95911111, -0.65321055, -0.42056004, -1.20577805,
                 -0.38170062, -0.87997669, 1.14984679],
                [ 0.51578458, 0.92071769, -0.48739188, 2.37778177, 0.82934003,
                 -0.38170062, -0.87997669, 1.14984679],
                [ \ 0.51578458 \, , \ \ 0.92071769 \, , \ -0.3215732 \, , \ -0.42056004 \, , \ \ 0.82934003 \, ,
                 -0.38170062, -0.87997669, 1.14984679]
```

Classification

Now, it is your turn, use the training set to build an accurate model. Then use the test set to report the accuracy of the model You should use the following algorithm:

- K Nearest Neighbor(KNN)
- Decision Tree
- Support Vector Machine
- Logistic Regression

Notice:

- You can go above and change the pre-processing, feature selection, feature-extraction, and so on, to make a better model.
- You should use either scikit-learn, Scipy or Numpy libraries for developing the classification algorithms.
- You should include the code of the algorithm in the following cells.

K Nearest Neighbor(KNN)

Notice: You should find the best k to build the model with the best accuracy.

warning: You should not use the loan_test.csv for finding the best k, however, you can split your train_loan.csv into train and test to find the best k.

```
In [20]: from sklearn.model selection import train test split
         X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.2, random_st
         print ('Train set:', X_train.shape, y_train.shape)
         print ('Test set:', X_test.shape, y_test.shape)
         Train set: (276, 8) (276,)
         Test set: (70, 8) (70,)
In [28]: from sklearn.neighbors import KNeighborsClassifier
         from sklearn import metrics
         Ks = 10
         mean_acc = np.zeros((Ks-1))
         std_acc = np.zeros((Ks-1))
         ConfustionMx = [];
         for n in range(1,Ks):
             neigh = KNeighborsClassifier(n_neighbors = n).fit(X_train,y_train)
             yhat=neigh.predict(X_test)
             mean_acc[n-1] = metrics.accuracy_score(y_test, yhat)
             std_acc[n-1]=np.std(yhat==y_test)/np.sqrt(yhat.shape[0])
         mean_acc
Out[28]: array([0.67142857, 0.65714286, 0.71428571, 0.68571429, 0.75714286,
```

9 of 17

0.71428571, 0.78571429, 0.75714286, 0.75714286])

Decision Tree

```
In [158]: | yhat_tree=Tree.predict(X_test)
         yhat_tree
Out[158]: array(['COLLECTION', 'COLLECTION', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF',
                'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'COLLECTION',
                'PAIDOFF', 'COLLECTION', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF',
                'PAIDOFF', 'COLLECTION', 'PAIDOFF', 'COLLECTION', 'PAIDOFF',
                 'PAIDOFF', 'COLLECTION', 'COLLECTION', 'COLLECTION', 'PAIDOFF',
                 'COLLECTION', 'COLLECTION', 'PAIDOFF', 'COLLECTION', 'PAIDOFF',
                 'COLLECTION', 'COLLECTION', 'COLLECTION', 'PAIDOFF', 'PAIDOFF',
                 'PAIDOFF', 'COLLECTION', 'PAIDOFF', 'COLLECTION', 'PAIDOFF',
                 'COLLECTION', 'PAIDOFF', 'COLLECTION', 'PAIDOFF',
                 'COLLECTION', 'COLLECTION', 'PAIDOFF', 'PAIDOFF',
                'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF',
                'PAIDOFF', 'PAIDOFF', 'COLLECTION', 'PAIDOFF', 'PAIDOFF',
                 'PAIDOFF', 'PAIDOFF', 'COLLECTION', 'PAIDOFF', 'COLLECTION',
                 'PAIDOFF', 'COLLECTION', 'PAIDOFF', 'PAIDOFF'], dtype=object)
In [71]: y_test[0:5]
Out[71]: array(['PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF'],
               dtype=object)
In [91]: | print("DecisionTrees's Accuracy: ", metrics.accuracy_score(y_testtree, predTree))
```

DecisionTrees's Accuracy: 0.7403846153846154

```
In [179]: |!pip install graphviz
          !pip install pydotplus
          import graphviz
          import pydotplus
          dot_data = StringIO()
          filename = "tree.png"
          featureNames = Feature.columns
          out=tree.export_graphviz(Tree,feature_names=featureNames, out_file=dot_data, class
          _names= np.unique(y_train), filled=True, special_characters=True,rotate=False)
          graph = pydotplus.graph_from_dot_data(dot_data.getvalue())
          graph = pydotplus.graph_from_dot_data(dot_data.getvalue())
          graph.write_png(filename)
          img = mpimg.imread(filename)
          plt.figure(figsize=(100, 200))
          plt.imshow(img,interpolation='nearest')
          Requirement already satisfied: graphviz in /opt/conda/envs/Python36/lib/python3.
          6/site-packages (0.14)
         Requirement already satisfied: pydotplus in /opt/conda/envs/Python36/lib/python
          3.6/site-packages (2.0.2)
          Requirement already satisfied: pyparsing>=2.0.1 in /opt/conda/envs/Python36/lib/
```

Out[179]: <matplotlib.image.AxesImage at 0x7f7193754470>

python3.6/site-packages (from pydotplus) (2.3.1)

Support Vector Machine

```
In [159]: from sklearn import svm
```

```
In [161]: | model_svm = svm.SVC(kernel='rbf')
         model_svm.fit(X_train, y_train)
         yhatsvm = model_svm.predict(X_test)
         vhatsvm
         /opt/conda/envs/Python36/lib/python3.6/site-packages/sklearn/svm/base.py:196: Fu
         tureWarning: The default value of gamma will change from 'auto' to 'scale' in ve
         rsion 0.22 to account better for unscaled features. Set gamma explicitly to 'aut
         o' or 'scale' to avoid this warning.
           "avoid this warning.", FutureWarning)
Out[161]: array(['COLLECTION', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF',
                'PAIDOFF', 'COLLECTION', 'COLLECTION', 'PAIDOFF', 'PAIDOFF',
                'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF',
                'COLLECTION', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF',
                'PAIDOFF', 'COLLECTION', 'COLLECTION', 'PAIDOFF', 'COLLECTION',
                'COLLECTION', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF',
                'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF',
                'PAIDOFF', 'COLLECTION', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF',
                'PAIDOFF', 'COLLECTION', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF',
                'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF',
                'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF',
                'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'COLLECTION',
                'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF'],
               dtype=object)
```

Logistic Regression

```
In [162]: from sklearn.linear_model import LogisticRegression
         LR = LogisticRegression(C=0.01, solver='sag').fit(X_train,y_train)
Out[162]: LogisticRegression(C=0.01, class_weight=None, dual=False, fit_intercept=True,
                  intercept_scaling=1, max_iter=100, multi_class='warn',
                  n_jobs=None, penalty='12', random_state=None, solver='sag',
                  tol=0.0001, verbose=0, warm_start=False)
In [164]: | yhat_lr = LR.predict(X_test)
         yhat_lr
Out[164]: array(['PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF',
                'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF'], dtype=object)
```

Model Evaluation using Test set

```
In [165]: from sklearn.metrics import jaccard_similarity_score
    from sklearn.metrics import f1_score
    from sklearn.metrics import log_loss
```

First, download and load the test set:

Load Test set for evaluation

```
In [167]: test_df = pd.read_csv('loan_test.csv')
test_df.head()
```

Out[167]:

	Unnamed: 0	Unnamed: 0.1	loan_status	Principal	terms	effective_date	due_date	age	education	Gender
0	1	1	PAIDOFF	1000	30	9/8/2016	10/7/2016	50	Bechalor	female
1	5	5	PAIDOFF	300	7	9/9/2016	9/15/2016	35	Master or Above	male
2	21	21	PAIDOFF	1000	30	9/10/2016	10/9/2016	43	High School or Below	female
3	24	24	PAIDOFF	1000	30	9/10/2016	10/9/2016	26	college	male
4	35	35	PAIDOFF	800	15	9/11/2016	9/25/2016	29	Bechalor	male

```
In [168]: | test_df['due_date'] = pd.to_datetime(test_df['due_date'])
          test_df['effective_date'] = pd.to_datetime(test_df['effective_date'])
           test_df['dayofweek'] = test_df['effective_date'].dt.dayofweek
           test_df['weekend'] = test_df['dayofweek'].apply(lambda x: 1 if (x>3) else 0)
           test_df['Gender'].replace(to_replace=['male','female'], value=[0,1],inplace=True)
           test_Feature = test_df[['Principal','terms','age','Gender','weekend']]
           test_Feature = pd.concat([test_Feature,pd.get_dummies(test_df['education'])], axis
           test_Feature.drop(['Master or Above'], axis = 1,inplace=True)
           test_X = preprocessing.StandardScaler().fit(test_Feature).transform(test_Feature)
           test_X[0:5]
          /opt/conda/envs/Python36/lib/python3.6/site-packages/sklearn/preprocessing/data.
          py:645: DataConversionWarning: Data with input dtype uint8, int64 were all conve
          rted to float64 by StandardScaler.
            return self.partial_fit(X, y)
          /opt/conda/envs/Python36/lib/python3.6/site-packages/ipykernel/__main__.py:9: Da
          taConversionWarning: Data with input dtype uint8, int64 were all converted to fl
          oat64 by StandardScaler.
Out[168]: array([[ 0.49362588,  0.92844966,  3.05981865,  1.97714211, -1.30384048,
                    2.39791576, -0.79772404, -0.86135677],
                   [ \, -3.56269116 \, , \, \, -1.70427745 \, , \quad 0.53336288 \, , \, \, -0.50578054 \, , \quad 0.76696499 \, , \\
                   -0.41702883, -0.79772404, -0.86135677],
                   [ \ 0.49362588 \, , \ \ 0.92844966 \, , \ \ 1.88080596 \, , \ \ 1.97714211 \, , \ \ 0.76696499 \, , \\
                  -0.41702883, 1.25356634, -0.86135677],
                  [0.49362588, 0.92844966, -0.98251057, -0.50578054, 0.76696499,
                   -0.41702883, -0.79772404, 1.16095912],
                  [-0.66532184, -0.78854628, -0.47721942, -0.50578054, 0.76696499,
                    2.39791576, -0.79772404, -0.86135677]])
In [169]: | test_y = test_df['loan_status'].values
           test_y[0:5]
Out[169]: array(['PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF'],
                 dtype=object)
In [170]: knn_yhat=neigh.predict(test_X)
          print("Avg F1-score of KNN: %.4f" % f1_score(test_y, knn_yhat, average='weighted
           '))
          print("Jaccard score of KNN: %.4f" % jaccard_similarity_score(test_y, knn_yhat))
          Avg F1-score of KNN: 0.6328
          Jaccard score of KNN: 0.6667
In [172]: tree_yhat=Tree.predict(test_X)
          print("Avg F1-score of Decision Tree: %.4f" % f1_score(test_y, tree_yhat, average=
           'weighted'))
          print("Jaccard score of Decision Tree: %.4f" % jaccard_similarity_score(test_y, tr
          ee_yhat))
          Avg F1-score of Decision Tree: 0.7367
          Jaccard score of Decision Tree: 0.7222
In [174]: svm_yhat=model_svm.predict(test_X)
          print("Avg F1-score of SVM: %.4f" % f1_score(test_y, svm_yhat, average='weighted
           '))
          print("Jaccard score of SVM: %.4f" % jaccard_similarity_score(test_y, svm_yhat))
          Avg F1-score of SVM: 0.7584
          Jaccard score of SVM: 0.7963
```

```
In [177]: LR_yhat=model_svm.predict(test_X)
          LR_yhat_prob = LR.predict_proba(test_X)
          print("Avg F1-score of LR: %.4f" % f1_score(test_y, LR_yhat, average='weighted'))
          print("Jaccard score of LR: %.4f" % jaccard_similarity_score(test_y, LR_yhat))
          print("LogLoss score of LR: %.2f" % log_loss(test_y, LR_yhat_prob))
         Avg F1-score of LR: 0.7584
         Jaccard score of LR: 0.7963
         LogLoss score of LR: 0.52
In [180]: | jc1=jaccard_similarity_score(test_y, knn_yhat)
          fs1=f1_score(test_y, knn_yhat, average='weighted')
          jc2=jaccard_similarity_score(test_y, tree_yhat)
          fs2=f1_score(test_y, tree_yhat, average='weighted')
          jc3=jaccard_similarity_score(test_y, svm_yhat)
          fs3=f1_score(test_y, svm_yhat, average='weighted')
          jc4=jaccard_similarity_score(test_y, LR_yhat)
          fs4=f1_score(test_y, LR_yhat, average='weighted')
          114=log_loss(test_y, LR_yhat_prob)
          list_jc = [jc1, jc2, jc3, jc4]
          list_fs = [fs1, fs2, fs3, fs4]
          list_ll = ['NA', 'NA', 'NA', 114]
          import pandas as pd
          # fomulate the report format
          df = pd.DataFrame(list_jc, index=['KNN','Decision Tree','SVM','Logistic Regression
          '])
          df.columns = ['Jaccard']
          df.insert(loc=1, column='F1-score', value=list_fs)
          df.insert(loc=2, column='LogLoss', value=list_ll)
          df.columns.name = 'Algorithm'
```

Out[180]:

Algorithm	Jaccard	F1-score	LogLoss
KNN	0.666667	0.632840	NA
Decision Tree	0.722222	0.736682	NA
SVM	0.796296	0.758350	NA
Logistic Regression	0.796296	0.758350	0.516366

Report

You should be able to report the accuracy of the built model using different evaluation metrics:

Algorithm	Jaccard	F1-score	LogLoss
KNN	0.6667	0.6328	NA
Decision Tree	0.7222	0.7367	NA
SVM	0.7963	0.7584	NA
LogisticRegression	0.7963	0.7584	0.52

Want to learn more?

IBM SPSS Modeler is a comprehensive analytics platform that has many machine learning algorithms. It has been designed to bring predictive intelligence to decisions made by individuals, by groups, by systems – by your enterprise as a whole. A free trial is available through this course, available here: SPSS Modeler (https://cocl.us/ML0101EN-SPSSModeler)

Also, you can use Watson Studio to run these notebooks faster with bigger datasets. Watson Studio is IBM's leading cloud solution for data scientists, built by data scientists. With Jupyter notebooks, RStudio, Apache Spark and popular libraries prepackaged in the cloud, Watson Studio enables data scientists to collaborate on their projects without having to install anything. Join the fast-growing community of Watson Studio users today with a free account at Watson Studio (https://cocl.us /ML0101EN_DSX)

Thanks for completing this lesson!

Author: Saeed Aghabozorgi (https://ca.linkedin.com/in/saeedaghabozorgi)

<u>Saeed Aghabozorgi (https://ca.linkedin.com/in/saeedaghabozorgi)</u>, PhD is a Data Scientist in IBM with a track record of developing enterprise level applications that substantially increases clients' ability to turn data into actionable knowledge. He is a researcher in data mining field and expert in developing advanced analytic methods like machine learning and statistical modelling on large datasets.

Copyright © 2018 Cognitive Class (https://cocl.us/DX0108EN_CC). This notebook and its source code are released under the terms of the MIT License (https://bigdatauniversity.com/mit-license/).