Summary Of House Price EDA

Detailed Analysis of the Notebook

1. Importing Libraries

- Libraries Used:
 - numpy and pandas for data manipulation and analysis.
 - matplotlib.pyplot and seaborn for data visualization.
 - warnings to suppress warning messages during execution.

2. Loading the Dataset

- Loading Data:
 - The dataset is read into a pandas DataFrame named df.
 - Initial inspection includes displaying the first few rows and checking the DataFrame's shape.

3. Initial Data Exploration

- Basic Checks:
 - The notebook checks for missing values and confirms that the dataset is complete.
 - Basic statistics like minimum and maximum house prices are calculated.

4. Basic Insights

- Price Range:
 - House prices range from \$75,000 to \$7,700,000, indicating a wide variance in the dataset.

5. Exploratory Data Analysis (EDA)

- Univariate Analysis:
 - Histograms are plotted for individual features to understand their distributions.
 - Key findings:
 - Most houses have 2 to 4 bedrooms.
 - The majority of houses have 1 or 2 floors.
 - Few houses have a waterfront view.
 - Most houses were built between 2002 and 2005.

Bivariate Analysis:

- Relationships between features and house prices are explored using line plots.
- Observations:
 - There are discernible patterns between features like sqft_living, grade, and house prices.
 - Features such as waterfront, view, and condition show clear correlations with house prices.

6. Feature Selection

• Selected Features:

• A subset of features is chosen for modeling, including bedrooms, bathrooms, sqft_living, floors, waterfront, view, condition, grade, yr_built, yr_renovated, and zipcode.

7. Data Visualization

• Visualizing Relationships:

- Various plots illustrate the relationship between selected features and house prices.
- Histograms and line plots help identify trends and correlations.

8. Model Training and Evaluation

• Data Preprocessing:

- Features and target variable (price) are separated.
- Data is split into training (80%) and testing (20%) sets.

• Linear Regression Model:

- Trained on the dataset.
- Performance evaluated using:
 - Mean Squared Error (MSE): Measures average squared difference between actual and predicted values.
 - Mean Absolute Error (MAE): Measures average absolute difference between actual and predicted values.
 - R² Score: Indicates the proportion of variance in the dependent variable predictable from the independent variables.

• Decision Tree Regressor:

- Trained and evaluated similarly.
- Cross-validation is used to ensure robustness and prevent overfitting.

Key Insights

1. Data Characteristics:

- The dataset is clean with no missing values.
- House prices vary widely, reflecting a diverse real estate market.

2. Feature Distributions:

- **Bedrooms:** Most houses have between 2 to 4 bedrooms.
- Floors: Most houses have 1 or 2 floors.
- Waterfront: Few houses have a waterfront view, suggesting it's a premium feature.
- **Year Built:** Majority of the houses were built in the early 2000s, indicating a recent housing boom.

3. Relationships Between Features and Price:

- **Waterfront Presence:** Houses with waterfront views are significantly more expensive.
- **Condition and Grade:** Higher graded and well-maintained houses tend to have higher prices.
- **Living Area (sqft):** Larger houses (in terms of square footage) are generally more expensive.

4. Model Performance:

• Linear Regression:

- Provides a good baseline for understanding relationships.
- Metrics: MSE, MAE, and R² scores indicate how well the model fits the data.

• Decision Tree Regressor:

- Captures non-linear relationships better.
- Cross-validation ensures the model generalizes well to new data.