MIT 18.06 Final Exam, Spring 2023 Gilbert Strang and Andrew Horning

Your name:			
(printed)			
Student ID:			
Recitation:			

Problem 1 (4+4+4+2=14 points):

Record your final answer in the allotted spaces. You may use the remaining space for your calculations.

Consider the rank-one matrix $A = u_1 u_2^T$ where u_1 and u_2 form an orthonormal basis for \mathbb{R}^2 .

1(a) Write down a unit vector w (||w|| = 1) that makes the length ||Aw|| as large as possible. What is the maximum length of Aw?

1(b) Write down a unit vector w (||w|| = 1) that makes the length ||Aw|| as small as possible. What is the minimum length of Aw?

1(c) What are the eigenvalues and eigenvectors of A?

1(d) Is A diagonalizable? Why or why not?

Problem 2 (4+4+4=12 points):

Record your final answer in the allotted spaces. You may use the remaining space for your calculations.

This problem is about the 3×2 matrix $A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \\ 1 & 0 \end{pmatrix}$.

2(a) Use Gram-Schmidt orthogonalization to compute an orthonormal basis, q_1 and q_2 , for the column-space of A.

2(b) Find a third orthonormal vector, q_3 , that spans the nullspace of A^T .

2(c) Find a 3×2 upper triangular matrix R that satisfies A = QR, where the columns of Q are q_1, q_2 , and q_3 from parts (a) and (b).

Problem 3 (4+4+4+2=14 points):

Record your final answer in the allotted spaces. You may use the remaining space for your calculations.

This problem is about the paraboloid $z = a + bx^2 + cy^2$ that best fits these four data points in format (x, y, z): (1, 1, 3), (0, 1, 1), (1, 0, 1), (0, 0, 0).

3(a) Write down four linear equations that the unknowns a, b, and c must satisfy if all four measurements lie on the paraboloid.

3(b) Write down the normal equations for the least-squares solution $\hat{x} = (\hat{a}, \hat{b}, \hat{c})^T$ to the overdetermined system of equations in part (a).

3(c) Solve the normal equations in part (b) to find the least-squares solution $\hat{x} = (\hat{a}, \hat{b}, \hat{c})^T$.

3(d) Does the data lie exactly on the surface of a paraboloid? Explain.

Problem 4 (4+4+4=12 points):

Record your final answer in the allotted spaces. You may use the remaining space for your calculations.

Suppose that Ax = b has the general solution $x = \begin{pmatrix} 0 & 1 & 0 \end{pmatrix}^T + c \begin{pmatrix} 2 & 1 & 0 \end{pmatrix}^T$ when the right-hand side is $\begin{pmatrix} 2 & 4 & 6 \end{pmatrix}^T$, where c can be any real number.

4(a) What are the dimensions of the four fundamental subspaces of A? Explain.

4(b) Write down the reduced row echelon form of A (this is the R factor in A = CR except with extra zero rows so R and A have the same dimensions).

4(c) Find the first two columns of A. Can you determine the third? Explain.

Problem 5 (4+4+4=12 points):

Record your final answer in the allotted spaces. You may use the remaining space for your calculations.

Suppose the vectors q_1, q_2, q_3 form an orthonormal basis for \mathbb{R}^3 and the matrix A satisfies $Aq_1 = \begin{pmatrix} 1 & 0 & 0 \end{pmatrix}^T$, $Aq_2 = \begin{pmatrix} 0 & 1 & 0 \end{pmatrix}^T$, and $Aq_3 = \begin{pmatrix} 0 & 0 & 1 \end{pmatrix}^T$.

5(a) Write the matrix A explicitly in terms of the vectors q_1, q_2, q_3 .

5(b) Write down all possibilities for det A.

- 5(c) Put an X next to each correct completion. The eigenvalues of A must
 - _____(i) be real numbers.
 - ____ (ii) be positive real numbers.
 - ____ (iii) be imaginary numbers.
 - _____ (iv) have absolute value $|\lambda| = 1$.

Problem 6 (4+4+4=12 points):

Record your final answer in the allotted spaces. You may use the remaining space for your calculations.

Consider the coupled system of linear difference equations: $x_{k+1} = 2x_k - y_k$ and $y_{k+1} = 2y_k - x_k$, subject to initial condition $u_1 = \begin{pmatrix} x_1 & y_1 \end{pmatrix}^T$.

6(a) Identify two linearly independent initial conditions with unit length for which the solution $u_k = \begin{pmatrix} x_k & y_k \end{pmatrix}^T$ never changes direction in \mathbb{R}^2 at any step $k \geq 1$.

6(b) After many iterations (in the limit $k \to \infty$), what direction does the solution starting from $u_1 = \begin{pmatrix} 1 & 0 \end{pmatrix}^T$ tend toward? Give your answer as a unit vector that points in the correct direction.

- **6(c)** Put an X next to the correct answer. For the initial condition in part (b), the solution u_k
 - ____ (i) becomes exponentially large as $k \to \infty$.
 - _____ (ii) becomes exponentially small as $k \to \infty$.
 - ____ (iii) oscillates with a fixed amplitude as $k \to \infty$.

Problem 7 (4+4+4=12 points):

Record your final answer in the allotted spaces. You may use the remaining space for your calculations.

This problem is about the 3×3 matrix $A = \begin{pmatrix} 1 & 2 & 1 \\ 1 & 2 & 2 \\ 0 & 1 & 2 \end{pmatrix}$.

7(a) Use elementary row transformations to make A into an upper triangular matrix U.

7(b) Use your results from part (a) to compute $\det A$ (don't compute cofactors).

7(c) If the column vector $\begin{pmatrix} 1 & 1 & 1 \end{pmatrix}^T$ is added to the last column, $\begin{pmatrix} 1 & 2 & 2 \end{pmatrix}^T$, of A, what is the new determinant? Explain your reasoning.

Problem 8 (4+4+4=12 points):

Record your final answer in the allotted spaces. You may use the remaining space for your calculations.

This problem is about the 3×2 matrix $A = \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix}$.

8(a) Compute the postive-definite matrix $M = A^T A$.

8(b) Compute the singular values and singular vectors (unit vectors u_1, u_2 and v_1, v_2) of A.

8(c) Select an orthonormal basis for the column space of A from among the singular vectors computed in part (b).