

Patent Number:

JP63163716

Publication date:

1988-07-07

Inventor(s):

WADA KATSUO

Applicant(s):

HITACHI LTD

Requested Patent:

.....

Application

☐ <u>JP63163716</u> JP19860308479

Priority Number(s):

IPC Classification:

F23R3/40; F23C11/00

EC Classification:

Equivalents:

Abstract

PURPOSE:To make it possible to achieve combustion with a low Nx and prevent thermal shock to a catalyst by regulating and dividing the amount of a primary combustion gas into the gas which goes through the catalyst and the gas through a bypass for the catalyst.

CONSTITUTION:A bypass valve 7 is fully open because the amount of air is small during starting and ignition, and the combustion gas advances straight. A hole in a combustion gas distributing chamber 2 is always open, but the primary combustion gas does not flow because there is a catalyst in the downstream as a large passage obstacle. When the load increases up to about 20%, the bypass valve 7 partially closes suddenly so that the combustion gas flows into the combustion gas distribution chamber. At the same time, F1 fuel decreases and F2 fuel is thrown in by a secondary combustion swirler 3 and both are mixed and go into a catalyst. With an increase in the load the bypass valve is gradually actuated for complete closing, and the F1 fuel is held substantially constant but the F2 fuel increases. Accordingly the ratio of fuel and air at the catalyst is kept constant, and it is possible to hold an ideal state of combustion.

Data supplied from the esp@cenet database - I2

⑩ 日本国特許庁(JP)

① 特許出願公開

⑩ 公 開 特 許 公 報 (A)

昭63 - 163716

@Int_Cl.4

Ĩ

٠ 🎍

識別記号

庁内整理番号

❸公開 昭和63年(1988)7月7日

F 23 R 3/40 F 23 C 11/00

106

7616-3G C-2124-3K

審査請求 未請求 発明の数 1 (全4頁)

砂発明の名称 触媒燃焼器

②特 願 昭61-308479

図出 願 昭61(1986)12月26日

⑫発 明 者 和 田

克 夫 茨坎

茨城県日立市幸町3丁目1番1号 株式会社日立製作所日

立工場内

⑪出 願 人 株式会社日立製作所

東京都千代田区神田駿河台4丁目6番地

90代 理 人 弁理士 小川 勝男 外2名

明 細 發

1. 発明の名称

触媒燃烧器

- 2. 特許節求の範囲
 - 1. 一次燃料によって空気を予熱し、二次燃料に よって協媒燃焼する燃焼器において、
 - 一次燃焼ガス量を触媒通過用と、触媒バイパス用とに調節して分割することを特徴とする触媒燃焼器。
- 3. 発明の詳細な説明

〔産薬上の利用分野〕

本発明はガスタービンの燃焼器において低NOx 一燃焼を達成する触媒燃焼器に関する。

(従来の発明)

ガスタービンを対象とした強媒怒焼器は、例えば、特開昭60-42290号 公報に示されるように、第一次怒焼ガスに第二次総料を投入し、この混合ガス全てを触媒に流通させるものがある。

また、ASME Paper 82-GT-58には この総焼器に空気の流量調弦を追加したものが紹 介されており、第5図に概略を示す。図において、 起助時には一次燃焼ライナ1に一次燃料 F I が投 入され、所定の負荷で F I を被じて、二次燃料 F I を を投入し、 F I は一次燃焼ガスと予混合して触媒 2 に遠して燃焼する。 触媒での安定燃焼を違成する には、空気量に対して所定量以上の燃料が必要で あるため、 F I 投入は高負荷とする。 低負荷での 投入が必要な場合には、 低負荷ではバイパス弁 5 を開き、触媒を洗過する空気量を少くする。

(発明が解決しようとする問題点)

総焼油媒の機能は燃料と空気の混合気が希薄、低温状態でも燃焼可能にするもので火炎の温度が低く、Noxの発生を大巾に低減できる。しかし、

- とのためには下記の制約に注意する必要がある。
- (1) 強媒は耐熱部材に付ける必要があり。耐熱部材としてセラミツクスを用いている。セラミツクスは脆性のため急激な温度変化に対して信頼性が低い。
- (2) セラミツクスの耐熱性は約1300℃程度であり 混合気の総空比が高いと触媒出口温度が上記を

オーバする(限界燃空比 約0.034)

- (3) 触媒入口温度が低すぎると着火しない、現有 触媒では400℃以上が必要、一方、入口温度 が高すぎると、フランシュバックする。流速に もよるが530℃以下が必要である。
- (4) 触媒で高効率燃焼させるには燃空比は高いほどよい、流速にもよるがガスタービン燃焼器と しては燃空比約 0.022以上は必要。

以上の観点から前記の従来技術を検討する。

第4図にガスタービンの選転データの一例を示す。由線AIJが圧縮機出口空気温度であり、これに燃料が由線AQRS投入されて、燃焼路出口温度ABCDEを生じる。

- ① 従来技術で触媒安定燃空比 0 . 0 2 2 とし、空気流量 1 5 7 kg/s とすれば燃料必要量は 3 . 4 kg/s となり、F z 燃料投入負荷は 5 5 ~ 6 0 % を要する。ガスタービンの週用は、通常、 2 5 %以上が要求されているので大巾な週用制限となる問題点がある。
- ② F:投入负荷を下げるため空気量をバイパス

すると、触媒入口温度が上昇し(約1000℃)、F2 投入時の入口温度を450℃とすると念盤な温 度逸を生じる。

② また、超助者火時には約600℃の温度衝撃 (第4図のAB)を受け触媒の信頼性を扱う。 本発明は前述の触媒選用上の制約を守り、ベストな燃焼条件をたどることを目的とする。

(発明が解決しようとする問題点)

上記問題点は、空気量をバイパス制御するのではなく、一次燃焼ガスをバイパス制約すること、 および起動、低負荷においては触媒をバイパスす ることによつて解決される。

このバイパス通路は燃焼器を削心状の二層となし中心部に設ける。

(作用)

ガスタービン起動および低負荷ではバイパス通路を全閉とし、通常の触媒なし燃焼器と同様の選用を行う。 触媒通路は触媒の抵抗が大きいため燃焼ガスは流れない。 二次燃料投入時にはバイパス通路を部分的に急閉し、負荷上昇と共に徐々にバ

イパス通路を全閉に向けて開盤する。

(製施例)

第1図において燃焼器は一次燃焼ライナ1,燃焼ガス分配室2,二次燃焼スワラー3,予混合室4,触媒5,二次燃焼室6,パイパス非7より構成される。

バイパス非は燃焼器の中心にあり、第2図に示すようにダイヤフラム型をなし、二次燃焼スワラー3を貫通する駆動頼9により駆動される。

第3図は二次燃料スワラーを第1図のⅡ-Ⅲ所 面より見たものでスワラーは多数のスワラーベー ン10より構成され、スワラーベーンの中心には ド2燃料通路の孔があり、ド2燃料はベーン設面 よりスワラー内に噴射される。

以上の機構の作動を第4図の状態図を用いて説明する。起動着火時は空気量は少いため、Fi 燃料投入(Q点)により燃烧温度はB点まで達する。

この時はバイバス非は第2回に示すように全関 しており、燃焼ガスは直進する。燃焼ガス分配室 の孔は、常に、開口しているが、後流に触媒があ り通路抵抗人なるため一次燃焼ガスは流れない。 負荷上昇して約20%負荷でバイパス弁は部分的 に急閉し燃焼ガス分配室へP点の流量が流れる。 同時に、 Fェ 燃料はT点からS U点まで減少し、 Fa 燃料がT点-U点相当分投入される。これに よつて、 ₹1燃焼室温度は下点から口点(約450℃) に低下する。第1回の燃焼ガス分配室には、この 燃焼ガスが流入し、二次燃焼スワラーで Fa 燃料 が投入され、両者が混合して触媒に入る。この時 の燃空比は約0.022 (温度上昇 約870℃) であり、触媒出口温度は約1320℃となる。燃焼器 出口では一次燃焼室から直進したガスと混合して 約700℃となる。負荷上昇と共にバイパス非は 徐々に全閉に向けて作動し、Fi 燃料はほぼ一定 に保持される(第4回の線分UV)がPュ 燃料は 増加する (線分TS-UV) 従つて触媒での燃空 比はほぼ一定に保たれ、斑想的な燃焼状態を保持 できる.

尚、燃焼ガスの中にバイパス弁を設置すること は、一般的には信頼性が心配されるが、第4 図で 説明したように、一次燃焼ガスは起動時、低負荷で的700℃以下、高負荷で的450℃に保持されるので、ハステロイX等の耐熱網が傾領性を保持して使用できる温度範囲にある。

(発明の効果)

i

本発明によれば、低負荷(約20%)より萬負荷まで触媒燃焼はほぼ一定の理想的燃空比で行えるので低 Nox燃焼を逮成できる。また、温度変化が急激な起動時や燃料切替時(F: 燃料→F: 燃料)に触媒への熱衝弾を避けることができるので、触媒の信頼性を保持できる。さらには、触媒の人口温度および出口温度を所定の安定温度領域にできるので触媒燃焼の信頼性を保持できる。

4. 図面の簡単な説明

第1回は本発明の一次施例の所面図、第2回は 燃焼ガスのパイパス弁の所面図、第3回は第1図 のIII - III 矢視図、第4回は本発明燃焼器の作効説 明図、第5回は従来技術の構造説明図である。 7…パイパス弁。

代班人 弁理士 小川野男

特開昭63-163716(4)

A-E... 燃烧器出口温度 AI-J... 压缩模出口温度 K-N... 室低流量 PMN... 贮煤空气流量 Q-S... 燃料流量 Q-S... 燃料流量 T-V

第 5 図

1 …1次処域ライナ 2 … 配媒 3 …1次燃料/ズル

4 … 2 次 匹 科) ズレ 5 … バイペス 弁 6 … 外 衛