Routing 2: Route-based Construction Procedures

- Two simple construction procedures, mincostinsert and savings, along with twoopt improvement, can be used for most routing applications
 - Can handle interleaved multi-stop routing, where each shipment has a different origin and destination

Multi-Stop Routing

 Each shipment might have a different origin and/or destination ⇒ node/location sequence not adequate

$$L = (y_1, ..., y_n) = (1, 2, 3)$$
 n-element shipment sequence

$$R = (z_1, ..., z_{2n}) = (3,1,2,2,1,3)$$
 2*n*-element route sequence

$$X = (x_1, ..., x_{2n}) = (5,1,3,4,2,6)$$
 2*n*-element location (node) sequence

 $c_{ij} = \text{cost between locations } i \text{ and } j$

$$c(R) = \sum_{i=1}^{2n-1} c_{x_i, x_{i+1}} = 60 + 30 + 250 + 30 + 60 = 430$$
, total cost of route R

5-Shipment Example

Route sequence: R = (3, 2, 5, 5, 1, 4, 3, 1, 2, 4)

Location sequence: X = (4, 3, 7, 1, 1, 6, 5, 2, 2, 2)

Route Sequencing Procedures

- Online procedure: add a shipment to an existing route as it becomes available
 - Insert and Improve: for each shipment,
 insert where it has the least increase in cost for route and
 then improve (mincostinsert → twoopt)
- Offline procedure: consider all shipments to decide order in which each added to route
 - Savings and Improve: using all shipments,
 determine insert ordering based on "savings," then
 improve final route (savings → twoopt)

Min Cost Insert

			1			1							
1			•			•	2	2	×	n	(n-	+3)	evaluations
2	2		•			•	2		c_2		2		Evaluations
3			•	2	2	•			c_3^*				
4			•		2	•	2		c_4				
5	2		•	2		•			c_5				
		1			2		2			1			
1	3	•	3		•		•			•			
2	3	•			•	3	•			•			
3	3	•			•		•	3		•			
4	3	•			•		•			•	3		
5		•	3	3	•		•			•			
6		•		3	•	3	•						
7		•		3	•		•	3					
•		•			•		•			:			

Pairwise Savings

 s_{ij} = pairwise savings between shipments i and j= $c_i + c_j - c_{ij} > 0$ $s_{1,2} = 300 + 250 - 310$ = 240