# The First Place Solution for CVPR 2023 AVA Challenge - Keypoint Track

Chenglong Yi, Fuxing Leng Huazhong University of Science and Technology, ByteDance

#### **Abstract**

This paper presents the first place solution for CVPR2023 AVA Accessibility Vision and Autonomy Challenge - Keypoint Track. We designed our solution based on Top-down method, which applied CBNetV2 [5] as detector and followed by single-object pose estimator. During the first stage, we applied Swin-Large [6] as CBNetV2 backbone, and some data augmentation policies were also used, including Auto Augmentation [7], Mixup [3], Copy Paste, Horizontal flip and Multi-scale training; during the second stage, we applied VIT-Huge [4] as a strong encoder. As a result, we got 90.96 AP on the test set.

#### 1. Method

Our method overview as shown in Figure 1



Figure 1. Our method overview

## 1.1. First Stage

We applied Swin Transformer-Large as backbone, and the pipeline was based on CBNetV2, the pipeline as shown in Figure 2.



Figure 2. Detector is HTC [2] based on the CBNetV2 [5]

## 1.2. Second Stage

Top-down methods divide the task into two stages: object detection, followed by single-object pose estimation given object bounding boxes. Instead of estimating keypoint coordinates directly, the pose estimator will produce heatmaps which represent the likelihood of being a keypoint, following the paradigm introduced in Simple Baselines for Human Pose Estimation and Tracking [1]. As shown in Figure 3.



Figure 3. Method of Simple Baselines for Human Pose Estimation and Tracking

# 2. Experiments

#### 2.1. Experiments Setting

**First stage.** The detector was trained in 12 epochs. The initial learning rate was  $5e^{-5}$ , which decayed 0.1 during 8 epochs and 11 epochs. We adopted multi-scale with horizontal flip augmentation during training. Specifically, we randomly resized the shorter edge of the image within 800  $\sim 1400$  pixels and keep the longer edge smaller than 1600 pixels without changing the aspect ratio. In inference, we adopted multi-scale testing and score threshold of  $1e^{-3}$  with SoftNMS.

**Second stage.** Got the bounding boxes from the first stage and cropped person image from original image. The

| Rank | Method   | AP    | AP50  | AP75  |
|------|----------|-------|-------|-------|
| 1    | ours     | 90.96 | 95.39 | 92.37 |
| 2    | -        | 83.70 | 90.82 | 85.78 |
| 3    | -        | 76.64 | 82.25 | 78.79 |
| 4    | -        | 76.19 | 82.96 | 62.73 |
| 5    | baseline | 61.67 | 81.02 | 61.97 |

Table 1. Results of the challenge

cropped image would be resized to  $192\times256$  resolution, and trained pose estimator with 100 epochs. The initial learning rate was  $1e^{-4}$ , which decayed 0.1 during 60 epochs and 80 epochs.

## 2.2. Experiments results

As shown in Table 1, based on our top-down method, we achieved competitive results on the test set.

#### References

- [1] Yichen Wei Bin Xiao, Haiping Wu. Simple baselines for human pose estimation and tracking. In *Proceedings of the European Conference on Computer Vision*, pages 466–481. Springer, 2018. 1
- [2] Kai Chen, Jiangmiao Pang, Jiaqi Wang, Yu Xiong, Xiaoxiao Li, Shuyang Sun, Wansen Feng, Ziwei Liu, Jianping Shi, Wanli Ouyang, et al. Hybrid task cascade for instance segmentation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 4974–4983, 2019.
- [3] Yann N. Dauphin David Lopez-Paz Hongyi Zhang, Moustapha Cisse. mixup: Beyond empirical risk minimization. arXiv preprint arXiv:1710.09412, 2018.
- [4] Tao Wang Weihao Yu Yujun Shi Zi-Hang Jiang Francis E.H. Tay Jiashi Feng Shuicheng Yan Li Yuan, Yunpeng Chen. Tokens-to-token vit: Training vision transformers from scratch on imagenet. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 558–567. IEEE Xplore, 2021.
- [5] Tingting Liang, Xiaojie Chu, Yudong Liu, Yongtao Wang, Zhi Tang, Wei Chu, Jingdong Chen, and Haibin Ling. Cbnetv2: A composite backbone network architecture for object detection. arXiv preprint arXiv:2107.00420, 2021. 1
- [6] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo. Swin transformer: Hierarchical vision transformer using shifted windows. In *Pro*ceedings of the IEEE/CVF International Conference on Computer Vision, pages 10012–10022, 2021. 1
- [7] Barret Zoph, Ekin D Cubuk, Golnaz Ghiasi, Tsung-Yi Lin, Jonathon Shlens, and Quoc V Le. Learning data augmentation strategies for object detection. In *European Conference on Computer Vision*, pages 566–583. Springer, 2020. 1