数项级数 1

早在古希腊时期,级数的观念就已为人所知. 亚里士多德认识到几何级数能够求和,阿基米德更是通过几何级数计算了抛物弓形的面积. 一般而言,无限项的求和式就称为级数. 如果每一项均为常数,则称为常数项级数; 如果每一项是向量,则称为向量值级数; 如果每一项是函数,则称为函数项级数. 本章主要介绍常数项级数,最后简单介绍向量值级数,函数项级数留给下一章.

1.1	数项	级数	数的	概	念						1
1.2	数项	级数	数的	基	本	审	鱼	纹	去		4
1.3	比较	判	別法								7
1.4	分部	水	和法								12
1.5	交扬	律	与分	配征	#						15
1.6	向量	值组	吸数								18

1.1 数项级数的概念

级数的观念其实早已深入人心,因为实数的十进制小数表示就是一种标准的级数语言. 比如圆周率 π 的小数表示 3.1415926 ··· 本质上是

$$\frac{3}{10^0} + \frac{1}{10^1} + \frac{4}{10^2} + \frac{1}{10^3} + \frac{5}{10^4} + \frac{9}{10^5} + \frac{2}{10^6} + \frac{6}{10^7} + \cdots$$

像这样无限个数的和式就称为(常)数项级数.

数项级数

给定数列 $a_1,a_2,\cdots,a_n,\cdots,$ 无限和式 $a_1+a_2+\cdots+a_n+\cdots$ 称为**数项级数**,通常记作 $\sum_{n=1}^{\infty}a_n,$ 即

$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + \dots + a_n + \dots.$$

和式中的第n 项 a_n 叫做级数的**通项**(一般项).¹

注意,级数指的是"和式",并不是这个"和式的值(和)". 为了理解级数的和,我们再来看一下圆周率 π 的小数表示. 从小数的出发点来说, π 是下面数列的极限

 $3,\ 3.1,\ 3.14,\ 3.141,\ 3.1415,\ 3.14159,\ 3.141592,\ 3.1415926,\ \cdots.$

也就是说, π 是级数前 N 项之和构成的数列的极限. 一般地, 数项级数 $\sum_{n=1}^{\infty} a_n$ 的**前** N **项和**记作

$$s_N = \sum_{n=1}^N a_n = a_1 + a_2 + \dots + a_N,$$

称之为级数的**部分和**. 数列 (s_N) 称为级数的**部分和数列**.

级数的和 (柯西和)

1: 级数的起始项未必标为 n=1,比如 $\sum_{n=0}^{\infty} a_n$ 也是常见的. 一般地,任给整数 k,和式 $\sum_{n=k}^{\infty} a_n$ 也是普遍的级数形式.

级数的和就是它的部分和数列的极限, 记作

$$\sum_{n=1}^{\infty} a_n = \lim_{N \to \infty} s_N = \lim_{N \to \infty} \sum_{n=1}^{N} a_n.$$

- ▶ 如果部分和数列 $\{s_N\}$ 收敛于 s,则称**级数** $\sum_{n=1}^{\infty} a_n$ **的和**为 s,记作 $\sum_{n=1}^{\infty} a_n = s$. 此时称 $\sum_{n=1}^{\infty} a_n$ **收敛**. ▶ 如果部分和数列 (s_N) 发散,则称级数 $\sum_{n=1}^{\infty} a_n$ **发散**. 此时级数
- 的和不存在.

根据上述定义,研究级数就是研究数列的极限.事实上,反之亦然.比 如为了讨论数列 (u_n) 的极限,可以令

$$a_1 = u_1, a_2 = u_2 - u_1, \dots, a_{n+1} = u_{n+1} - u_n, \dots$$

从而,级数 $\sum_{n=1}^{\infty} a_n$ 的部分和数列 (s_N) 就是 (u_N) . 也就是说,数列 (u_n) 的敛散性就是级数 $\sum_{n=1}^{\infty} a_n$ 的敛散性. 并且,在收敛的情况下,数列 (u_n) 的极限就是级数 $\sum_{n=1}^{\infty} a_n$ 的和. 可以说,无穷级数与数列极限是相伴而 生的,它们是同一本质的不同表象.

例 1.1.1 形如 $\sum_{n=0}^{\infty} aq^n$ 的级数叫做**几何级数** (等比级数), 其中 $a \neq 0$. 试讨论几何级数的敛散性以及它的和.

解. 此处首项 n=0. 即便如此,我们仍然记部分和 $s_N=\sum_{n=0}^N aq^n$.

- (1) $q \neq 1$. 此时 $s_N = \frac{a(1-q^{N+1})}{1-q}$. $\stackrel{.}{=} |q| < 1$ 时, $s_N \to \frac{a}{1-q}$; $\stackrel{.}{=} |q| > 1$ 时, $s_N \to \infty$; 当 q = -1 时, $s_N = \frac{1 - (-1)^{N+1}}{2} a$ 振荡发散. (2) q = 1. 此时 $s_N = (N+1)a \to \infty$, 级数发散.

综上, 当 |q| < 1 时级数收敛于 a/(1-q), 其他情形均发散.

例 1.1.2 讨论 $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ 的敛散性.

解. 通项可以裂项为

$$a_n = \frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}.$$

因此部分和

$$s_N = a_1 + a_2 + \dots + a_N = 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \dots + \frac{1}{N} - \frac{1}{N+1} = 1 - \frac{1}{N+1}.$$

显然
$$s_N \to 1$$
. 所以,原级数收敛且 $\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1$.

前两个例子中, 我们先求出部分和数列, 然后分析其极限的存在性, 进 而判断级数的敛散性. 这种方法可以称为直接法. 直接法的缺点是需要 得到部分和的解析表达式,对于大部分级数而言这是难以实现的.所 以,为了避免直接计算部分和,我们也会用级数的性质来判断敛散性, 下面陈述几条简单的性质.

通项的极限

若级数 $\sum_{n=1}^{\infty} a_n$ 收敛, 则 $a_n \to 0$. 等价地, 如果通项不是无穷小量, 那么级数必然发散.

证明. 设 $\lim_{n\to\infty} s_n = s$. 那么

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} (s_n - s_{n-1}) = \lim_{n \to \infty} s_n - \lim_{n \to \infty} s_{n-1} = s - s = 0.$$

例 1.1.3 判断级数 $\sum_{n=1}^{\infty} (1 + \frac{1}{n})^{-n}$ 的敛散性.

解. 因为通项 $(1+\frac{1}{n})^{-n} \rightarrow 1/e$,不趋向于零,所以级数发散.

级数的线性性

若级数 $\sum_{n=1}^{\infty} a_n$ 和 $\sum_{n=1}^{\infty} b_n$ 均收敛,则

- ▶ $\sum_{n=1}^{\infty} \lambda a_n$ 收敛且 $\sum_{n=1}^{\infty} \lambda a_n = \lambda \sum_{n=1}^{\infty} a_n$, 这里 λ 是常数. ▶ $\sum_{n=1}^{\infty} (a_n \pm b_n)$ 收敛且 $\sum_{n=1}^{\infty} (a_n + b_n) = \sum_{n=1}^{\infty} a_n \pm \sum_{n=1}^{\infty} b_n$.

证明. 设 $\sum_{n=1}^{\infty} a_n$ 的部分和为 A_N , $\sum_{n=1}^{\infty} b_n$ 的部分和为 B_N . 再设 $A_N \to A$, $B_N \to B$. 根据数列极限的线性性,对任意常数 λ 和 μ , 有 $\lambda A_N + \mu B_N \to A$ $\lambda A + \mu B$. 于是

- (1) $\sum_{n=1}^{\infty} \lambda a_n$ 的部分和就是 λA_N ,进而极限为 λA .
- (2) $\sum_{n=1}^{\infty} (a_n \pm b_n)$ 的部分和为 $A_N \pm B_N$,极限为 $A \pm B$.

可以推得,级数 $\sum_{n=1}^{\infty}(a_n+b_n)$, $\sum_{n=1}^{\infty}a_n$ 和 $\sum_{n=1}^{\infty}b_n$ 中只要有两个收敛,那 么第三个也收敛.

级数敛散的尾部性

给定整数 k, 级数 $\sum_{n=k+1}^{\infty} a_n$ 称为级数 $\sum_{n=1}^{\infty} a_n$ 的**尾部**. 级数收敛等 价于它的一个尾部收敛, 也等价于它的每个尾部均收敛. 特别地, 在级数中去掉、加上或者改变有限项,不会改变级数的收敛性.

证明. 考虑部分和, 可知

$$\sum_{n=1}^{N} a_n = \sum_{n=1}^{k} a_n + \sum_{n=k+1}^{N} a_n.$$

因为 $\sum_{n=1}^k a_n$ 与 N 无关,是常数,所以 $N \to \infty$ 时 $\sum_{n=1}^N a_n$ 与 $\sum_{n=k+1}^N a_n$ 同敛散,即 $\sum_{n=1}^\infty a_n$ 收敛等价于 $\sum_{n=k+1}^\infty a_n$ 收敛.

所以,考虑级数敛散性时,不必考虑前面的有限项.进而,去掉、加上 或者改变有限项,不会改变级数的收敛性.

余项

若级数 $\sum_{n=1}^{\infty} a_n$ 收敛,则把尾部 $\sum_{n=N+1}^{\infty} a_n$ 的和称为原级数的**余项**,记作 r_N . 那么, $r_N \to 0$.

证明. 根据上一条性质,余项级数收敛. 进而,由 $r_N = s - s_N$ 可得 $\lim_{N \to \infty} r_N = s - \lim_{N \to \infty} s_N = 0$.

级数的结合律

若级数 $\sum_{n=1}^{\infty} a_n$ 收敛,则对此级数的项任意加括号后所成的新级数

$$(a_1 + \dots + a_{n_1}) + (a_{n_1+1} + \dots + a_{n_2}) + \dots + (a_{n_{k-1}+1} + \dots + a_{n_k}) + \dots$$

仍然收敛,并且和不变.

证明. 原级数 $\sum_{n=1}^{\infty} a_n$ 的部分和数列记作 (s_N) . 那么,加括号之后的级数的部分和数列为 $s_{n_1}, s_{n_2}, \cdots, s_{n_k}, \cdots$,它是原级数部分和数列 (s_N) 的子列. 根据子列的性质可知 (s_{n_k}) 与 (s_N) 收敛到同一个极限.

例 1.1.4 设数列 $\{a_n\}$ 的第一项是 1,接着两项都是 1/2,再后续三项都是 1/3,依此类推. 试问 $\sum_{n=1}^{\infty} a_n$ 是否收敛.

解. 显然,部分和 $s_1 = 1, s_3 = 2, s_6 = 3, \dots, s_{n(n+1)/2} = n$. 也就是说,把相等的通项结合在一起,得到的新级数发散,故原级数发散.

但是, 加括号之后的级数收敛并不意味着原级数收敛. 比如级数

$$(1-1)+(1-1)+(1-1)+\cdots+(1-1)+\cdots$$

显然收敛, 但是级数

$$1-1+1-1+1-1+\cdots+1-1+\cdots$$

的通项不趋于零, 它发散.

1.2 数项级数的基本审敛法

大部分级数无法通过计算部分和的方式判断敛散性,我们需要通过其它手段来处理.注意到级数和数列本质上相同,所以数列极限的审敛法可以自然地表述成级数.

Cauchy 收敛原理

级数 $\sum_{n=1}^{\infty} a_n$ 收敛的充要条件是: 对于任意给定的正数 $\epsilon > 0$,存在正整数 N,当 $n \geq N$ 时,对任意的正整数 p 成立

$$|a_{n+1} + a_{n+2} + \dots + a_{n+p}| < \epsilon.$$

证明. 级数 $\sum_{n=1}^{\infty} a_n$ 收敛等价于它的部分和数列 $\{s_n\}$ 收敛. 根据数列收敛的 Cauchyt 原理可知, $\{s_n\}$ 收敛的充要条件是: 对于任意给定的正数 $\epsilon > 0$,存在正整数 N,当 $n \geq N$ 时,对任意的正整数 p 成立 $|s_n - s_{n+p}| < \epsilon$,即 $|a_{n+1} + a_{n+2} + \cdots + a_{n+p}| < \epsilon$.

例 1.2.1 已知 $a_n \le b_n \le c_n (n \ge 1)$,并且级数 $\sum_{n=1}^{\infty} a_n$ 和 $\sum_{n=1}^{\infty} c_n$ 都收敛,证明: $\sum_{n=1}^{\infty} b_n$ 也收敛.

解. 任意给定正数 $\epsilon > 0$. 因为级数 $\sum_{n=1}^{\infty} a_n$ 收敛,所以存在 N_1 ,当 $n \geq N_1$ 时,对任意的 p 成立

$$-\epsilon < a_{n+1} + \dots + a_{n+p} < \epsilon.$$

同样地, 由 $\sum_{n=1}^{\infty} c_n$ 收敛可知, 存在 N_2 , 当 $n \ge N_2$ 时, 对任意的 p 成立

$$-\epsilon < c_{n+1} + \dots + c_{n+p} < \epsilon$$
.

从而, 当 $n \ge \max\{N_1, N_2\}$ 时, 对任意的 p 成立

$$-\epsilon < a_{n+1} + \dots + a_{n+p} \le b_{n+1} + \dots + b_{n+p} \le c_{n+1} + \dots + c_{n+p} < \epsilon.$$

也就是说,级数 $\sum_{n=1}^{\infty} b_n$ 也满足柯西条件,因此它收敛.

单调有界收敛原理也是判断数列收敛的常用方法. 为了将其引入级数理论,我们需要假设所讨论的级数的通项保号,即恒有 $a_n \ge 0$ 或恒有 $a_n \le 0$,此时我们称 $\sum_{n=1}^{\infty} a_n$ 为**保号级数**.

单调有界收敛原理

保号级数 $\sum_{n=1}^{\infty} a_n$ 收敛的充要条件是它的部分和数列 (s_n) 有界.

值得指出,乘以-1 不改变级数敛散性,所以总可以假设保号级数是**非负项级数**,即恒有 $a_n \ge 0$;同样,剔除0 项也不改变级数的敛散性,所以总可以假定所讨论的保号级数是**正项级数**,即恒有 $a_n > 0$. 因此,通常所说的单调有界收敛原理可能指的是正项级数.

例 1.2.2 判定级数 $\sum_{n=1}^{\infty} \frac{1}{n^2}$ 的敛散性.

解. 这是正项级数. 由于

$$\sum_{n=1}^{N} \frac{1}{n^2} = 1 + \sum_{n=2}^{N} \frac{1}{n^2} \le 1 + \sum_{n=2}^{N} \frac{1}{n(n-1)} \le 2,$$

故级数收敛.

若级数并不保号,则称其为一**般项级数**. 在单调收敛原理的加持下,对于一般项级数,除了 Cauchy 原理之外,经常采用的一个判别法是绝对收敛法.

绝对收敛法

若 $\sum_{n=1}^{\infty} a_n$ 的绝对值级数 $\sum_{n=1}^{\infty} |a_n|$ 收敛,那么 $\sum_{n=1}^{\infty} a_n$ 也收敛. 此时称 $\sum_{n=1}^{\infty} a_n$ **绝对收敛**.

证明. 注意到

$$\left|\sum_{k=1}^p a_{n+k}\right| \le \sum_{k=1}^p |a_{n+k}|.$$

应用 Cauchy 原理可得.

例 1.2.3 判定级数 $\sum_{n=1}^{\infty} \frac{\sin n}{n^2}$ 的敛散性.

解. 因为通项满足 $|a_n| \le \frac{1}{n^2}$,根据前例可知 $\sum_{n=1}^N |a_n| \le 2$,故 $\sum |a_n|$ 收敛,所以原级数绝对收敛.

条件收敛

若 $\sum_{n=1}^{\infty} a_n$ 收敛,但 $\sum_{n=1}^{\infty} |a_n|$ 发散,则称 $\sum_{n=1}^{\infty} a_n$ 条件收敛.

例 1.2.4 设 $\sum_{n=1}^{\infty} a_n$ 条件收敛. 记 $a_n^+ = \max\{a_n, 0\}, a_n^- = \min\{a_n, 0\},$ 证明: $\sum_{n=1}^{\infty} a_n^+ = +\infty, \sum_{n=1}^{\infty} a_n^- = -\infty.$

解. 我们用反证法. 如果 $\sum_{n=1}^{\infty} a_n^+$ 收敛,由于 $a_n = a_n^+ + a_n^-$ 且 $\sum_{n=1}^{\infty} a_n$ 收敛,则 $\sum_{n=1}^{\infty} a_n^-$ 也收敛. 再根据 $|a_n| = a_n^+ - a_n^-$,可知 $\sum_{n=1}^{\infty} |a_n|$ 收敛,与题设矛盾. 因此 $\sum_{n=1}^{\infty} a_n^+$ 发散,又因为这是正项级数,它必然发散到正无穷. 类似可证 $\sum_{n=1}^{\infty} a_n^- = -\infty$.

级数与反常积分密切相关,下述积分判别法是一种重要的观点.

积分判别法

设 f(x) 是定义在 $[1,+\infty)$ 上的单调递减的非负函数,那么级数 $\sum_{n=1}^{\infty}f(n)$ 收敛的充要条件是反常积分 $\int_{1}^{+\infty}f(x)dx$ 收敛.

证明. 注意函数单调,所以局部可积. 如果 $\int_1^{+\infty} f(x)dx$ 收敛,那么

$$\sum_{n=1}^{N} f(n) \le f(1) + \sum_{n=2}^{N} \int_{n-1}^{n} f(x) dx$$
$$= f(1) + \int_{1}^{N} f(x) dx \le f(1) + \int_{1}^{+\infty} f(x) dx.$$

因此正项级数 $\sum_{n=1}^{\infty} f(n)$ 的部分和有界,所以收敛.

图 1.1. 级数和积分的互相控制.

反之, 若 $\sum_{n=1}^{\infty} f(n)$ 收敛, 则对任意 $A \ge 1$ 有

$$\int_{1}^{A} f(x)dx \le \int_{1}^{[A]+1} f(x)dx$$

$$\le f(1) + f(2) + \dots + f([A]) \le \sum_{n=1}^{\infty} f(n).$$

所以反常积分 $\int_{1}^{+\infty} f(x)dx$ 收敛.

例 1.2.5 给定常数 p, 级数 $\sum_{n=1}^{\infty} \frac{1}{n^p}$ 叫做 p 级数. 特别地, 级数 $\sum_{n=1}^{\infty} \frac{1}{n}$ 叫做**调和级数**. 证明: p 级数收敛的充要条件是 p > 1.

证明. 令 $f(x) = x^{-p}$,则 f(x) 是 $[1,+\infty)$ 上的单调递减的连续正函数. 根据积分判别法, p 级数收敛等价于是 $\int_{1}^{+\infty} x^{-p} dx$ 收敛, 而这又等价于 p > 1.

例 1.2.6 判定级数
$$\sum_{n=2}^{\infty} \frac{1}{n \ln n}$$
 和 $\sum_{n=2}^{\infty} \frac{1}{n (\ln n)^2}$ 的敛散性.

证明. 由于 $\int_2^{+\infty} \frac{1}{x \ln x} dx$ 发散, $\int_2^{+\infty} \frac{1}{x (\ln x)^2} dx$ 收敛,根据积分判别法可知 $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$ 发散和 $\sum_{n=2}^{\infty} \frac{1}{n (\ln n)^2}$ 收敛.

最后,注意到级数敛散的尾部性,很多判别法的前提条件只要从某一 项开始成立即可. 比如保号级数的单调有界原理, 其实只要从某一项开 始保号即可;再比如,积分判别法中的函数也只需要在无穷远的某个 邻域上单调递减且非负. 这一观点同样适用于之后出现的各种审敛法, 届时不再赘述.

1.3 比较判别法

判断非负项级数敛散(或绝对收敛性)的核心是其估计部分和的大小. 最容易想到的方法是控制级数的通项进而控制级数的部分和,这就是 所谓的比较判别法.

比较判别法

设 $\sum_{n=1}^{\infty} a_n$ 和 $\sum_{n=1}^{\infty} b_n$ 都是非负项级数,并且 $a_n \leq b_n (n \geq 1)$. 那么

- ▶ 若 $\sum_{n=1}^{\infty} b_n$ 收敛,则 $\sum_{n=1}^{\infty} a_n$ 收敛; ▶ 若 $\sum_{n=1}^{\infty} a_n$ 发散,则 $\sum_{n=1}^{\infty} b_n$ 发散.

证明. 因为第二条是第一条的逆否命题, 我们只需证明第一条. 分别记 $\sum_{n=1}^{\infty} a_n$ 和 $\sum_{n=1}^{\infty} b_n$ 的部分和为 A_n 和 B_n . 由 $a_n \leq b_n$,易知 $A_n \leq B_n$. 而 $\sum_{n=1}^{\infty} b_n$ 收敛,所以 $\{B_n\}$ 有界,进而 $\{A_n\}$ 有界.

比较判别法是处理非负项级数最常用的审敛法. 为此, 我们需要选取适 当的**基准级数**用来做比较. 通常选取的基准级数是等比级数 $\sum q^n$ 和 p级数 $\sum 1/n^p$.

例 1.3.1 判定级数 $\sum_{n=1}^{\infty} \frac{2+(-1)^n}{2^n}$ 和 $\sum_{n=1}^{\infty} \ln\left(1+\frac{1}{\sqrt{n}}\right)$ 的敛散性.

证明. 两者都是正项级数, 我们用比较判别法来对其进行放缩. 注意到

$$0 \le \frac{2 + (-1)^n}{2^n} \le \frac{3}{2^n},$$

而 $\sum \frac{3}{2^n}$ 收敛, 故第一个级数收敛.

对于第二个级数, 注意到存在 N, 当 $n \ge N$ 时, 成立

$$\ln\!\left(1+\frac{1}{\sqrt{n}}\right) \ge \frac{1}{2\sqrt{n}},$$

而 $\sum \frac{1}{\sqrt{n}}$ 发散,所以第二个级数的尾部 $\sum_{n=N}^{\infty} \ln \left(1 + \frac{1}{\sqrt{n}}\right)$ 发散,故第二 个级数发散.

把级数敛散的尾部特性推演到极致,就可以得到比较判别法的极限形

比较判别法的极限形式

设 $\sum_{n=1}^{\infty} a_n$ 和 $\sum_{n=1}^{\infty} b_n$ 都是正项级数,且存在广义极限

$$\lim_{n\to\infty}\frac{a_n}{b_n}=l\in[0,+\infty].$$

- ▶ 若 $0 < l < +\infty$, 则 $\sum_{n=1}^{\infty} a_n$ 与 $\sum_{n=1}^{\infty} b_n$ 敛散性相同; ▶ 若 l = 0, 则 $\sum_{n=1}^{\infty} b_n$ 收敛蕴涵 $\sum_{n=1}^{\infty} a_n$ 收敛; ▶ 若 $l = +\infty$, 则 $\sum_{n=1}^{\infty} b_n$ 发散蕴涵 $\sum_{n=1}^{\infty} a_n$ 发散.

证明. 我们用保号性把极限转化为尾部级数的逐项比较.

▶ 当 $0 < l < +\infty$ 时,存在 N,当 $n \ge N$ 时,成立 $\frac{1}{2}l \le \frac{a_n}{b_n} \le 2l$,即

$$\frac{1}{2}l \cdot b_n \le a_n \le 2l \cdot b_n.$$

那么,从 $\sum_{n=1}^{\infty} b_n$ 的收敛性可得 $\sum_{n=1}^{\infty} 2lb_n$ 的收敛性,进而可得 $\sum_{n=1}^{\infty} a_n$ 的收敛性. 反之,若 $\sum_{n=1}^{\infty} a_n$ 收敛,则 $\sum_{n=1}^{\infty} \frac{1}{2} lb_n$ 收敛,即

- $\sum_{n=1}^{\infty} b_n$ 收敛.

 ▶ 当 l = 0 时,存在 N,当 $n \ge N$ 时,成立 $\frac{a_n}{b_n} \le 1$,即 $a_n \le b_n$. 那么,
- 时, 若 $\sum_{n=1}^{\infty} b_n$ 发散则 $\sum_{n=1}^{\infty} a_n$ 发散.

本质上, 这是比较两个级数的通项作为无穷小量的阶. 如果它们是同阶 无穷小, 那么级数的敛散性一致.

比较判别法的极限形式常常用 p-级数来做基准级数, 其核心是估计通 项作为无穷小的量阶,因此之前介绍的等价无穷小和泰勒公式在此有 很大的作用.

例 1.3.2 判定级数 $\sum_{n=1}^{\infty} \sin \frac{1}{n}$ 和 $\sum_{n=1}^{\infty} (\sin \frac{1}{n} - \frac{1}{n})$ 的敛散性.

证明. 第一个级数是正项级数, 且 $\sin \frac{1}{n} \sim \frac{1}{n}$. 由于调和级数 $\sum \frac{1}{n}$ 发散, 所以此级数发散.

第二个级数是负项级数, 但乘以 -1 不改变级数的敛散性, 故可当作正 项级数处理. 根据泰勒公式 $\sin x = x - \frac{1}{6}x^3 + o(x^3)$, 易知

$$\lim_{n \to \infty} \frac{\sin \frac{1}{n} - \frac{1}{n}}{\frac{1}{n^3}} = -\frac{1}{6}.$$

而 $\sum \frac{1}{n^3}$ 收敛, 故此级数收敛.

例 1.3.3 判定级数 $\sum_{n=1}^{\infty} (\sqrt[n]{n} - 1)$ 的敛散性.

证明. 通项 $a_n = \sqrt[n]{n-1} \ge 0$. 我们来分析它的量阶. 利用 $e^x = 1 + x + o(x)$

$$a_n = e^{\frac{1}{n}\ln n} - 1 = 1 + \frac{\ln n}{n} + o\left(\frac{\ln n}{n}\right) - 1 = \frac{\ln n}{n} + o\left(\frac{\ln n}{n}\right).$$

因此 $a_n \sim \frac{\ln n}{n}$,从而 $\sum a_n$ 与 $\sum \frac{\ln n}{n}$ 的敛散性一致. 但是当 $n \geq 3$ 时 $\frac{\ln n}{n} \geq \frac{1}{n}$,所以 $\sum \frac{\ln n}{n}$ 发散,进而 $\sum a_n$ 发散.

上述示例中 Taylor 公式扮演了重要作用. 然而,不少情况下直接估计 通项的量阶并不容易,此时常采用比值法和根值法.比如,我们猜测级 数 $\sum a_n$ 比较接近一个等比级数,但很难得到公比的大小. 那就可以假 设 $a_n \approx q^n$, 然后通过 $q \approx a_{n+1}/a_n$ 或 $q \approx \sqrt[n]{a_n}$ 来估计公比.

d' Alembert 比值法

假设正项级数 $\sum_{n=1}^{\infty} a_n$ 通项的比值存在广义极限

$$\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=l\in[0,+\infty].$$

- ▶ 若 l < 1, 则 $\sum_{n=1}^{\infty} a_n$ 收敛; ▶ 若 l > 1, 则 $\sum_{n=1}^{\infty} a_n$ 发散;
- ▶ 若 *l* = 1, 则比值法失效.

Cauchy 根值法

假设正项级数 $\sum_{n=1}^{\infty} a_n$ 通项的根值存在广义极限

$$\lim_{n\to\infty} \sqrt[n]{a_n} = l \in [0, +\infty].$$

- ▶ 若 l < 1, 则 $\sum_{n=1}^{\infty} a_n$ 收敛; ▶ 若 l > 1, 则 $\sum_{n=1}^{\infty} a_n$ 发散;
- ▶ 若 l = 1, 则根值法失效.

证明. 两种判别法的证明是类似的. 我们以比值法的收敛情形以及根值 法的发散情形为例做出证明.

比值法的收敛情形 此时 l < 1. 根据极限的保号性,不妨假设当 $n \ge N$ 时成立 $a_{n+1}/a_n \le q$, 其中 q = (l+1)/2 < 1. 于是

$$a_{N+1} \le a_N q, \ a_{N+2} \le a_{N+1} q \le a_N q^2, \cdots, a_{N+k} \le a_N q^k, \cdots.$$

因为几何级数 $\sum_{k=1}^{\infty} a_N q^k$ 收敛, 根据比较判别法可知 $\sum_{k=1}^{\infty} a_{N+k}$

因为几何级致 $\sum_{k=1}^{\infty} a_n$ 收敛, 进而 $\sum_{n=1}^{\infty} a_n$ 收敛, 进而 $\sum_{n=1}^{\infty} a_n$ 收敛. **根值法的发散情形** 此时, 不妨假设当 $n \geq N$ 时成立 $\sqrt[n]{a_n} \geq r$,这里 r = (l+1)/2 > 1.于是, $a_n \geq r^n$. 而几何级数 $\sum_{n=N}^{\infty} r^n$ 发散,根据比较判别法可知 $\sum_{n=N}^{\infty} a_n$ 发散,从而 $\sum_{n=1}^{\infty} a_n$ 发散.

下面说明 l=1 时两种方法均失效. 设 $a_n=1/n^p$,那么

$$\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = \lim_{n\to\infty} \frac{n^p}{(n+1)^p} = \lim_{n\to\infty} \frac{1}{\left(1+1/n\right)^p} = 1,$$

$$\lim_{n\to\infty} \sqrt[n]{a_n} = \lim_{n\to\infty} \left(\sqrt[n]{n}\right)^p = \lim_{n\to\infty} e^{p\ln n/n} = 1.$$

也就是说,无论 p 取何值,p 级数通项的比值和根值的极限都是 1. 然 而,既有收敛的 p 级数也有发散的 p 级数,因此 l=1 时比值法和根值 法均失效.

例 1.3.4 判定级数
$$\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!}$$
 的敛散性.

解. 对于含阶乘的通项, 比值法相对合适.

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{(n+1)^2}{(2n+2)(2n+1)} = \frac{1}{4}.$$

极限小于 1, 根据比值判别法, 级数收敛.

例 1.3.5 判定级数
$$\sum_{n=1}^{\infty} \frac{n}{(2+\frac{1}{n})^n}$$
 的敛散性.

 \mathbf{M} . 通项含n次方, 我们用根值法.

$$\lim_{n\to\infty} \sqrt[n]{a_n} = \lim_{n\to\infty} \frac{\sqrt[n]{n}}{2+\frac{1}{n}} = \frac{1}{2}.$$

极限小于 1、根据根值判别法、级数收敛. 本题也可以用比值法、留作 练习.

例 1.3.6 根据正数
$$x$$
 的取值,讨论级数 $\sum_{n=1}^{\infty} \frac{x^n n!}{n^n}$ 的敛散性.

解. 本题既有阶乘也有次方, 相对而言用比值法较为方便.

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{x(n+1)}{(n+1)(1+\frac{1}{n})^n} = \lim_{n \to \infty} \frac{x}{(1+\frac{1}{n})^n} = \frac{x}{e}.$$

因此, 当 x > e 时级数发散, 当 x < e 时级数收敛. 当 x = e 时, 我们不 能用比值法. 但是,因为 $(1+1/n)^n < e$,所以当 x = e 时成立

$$\frac{a_{n+1}}{a_n} = \frac{x}{(1+\frac{1}{n})^n} = \frac{e}{(1+\frac{1}{n})^n} > 1.$$

所以, 此时通项严格递增, 必然不收敛于零, 进而级数发散.

有意思的是,虽然 d'Alembert 比值法对于 p 级数无效,但它仍然蕴含 了通项的衰减信息. 假如 $a_n \approx 1/n^p$, 可得

$$\frac{a_{n+1}}{a_n} \approx \frac{n^p}{(n+1)^p} = (1 - \frac{1}{n+1})^p = 1 - \frac{p}{n+1} + o(\frac{1}{n}).$$

这意味着

$$p \approx n \left(1 - \frac{a_{n+1}}{a_n} \right).$$

因此,只要对比值作出更精细的分析,我们仍可以将比值法推广至基 准为 p 级数的情形.

Raabe 比值判别法

假设正项级数 $\sum_{n=1}^{\infty} a_n$ 的通项成立

$$\lim_{n\to\infty} n\left(1-\frac{a_{n+1}}{a_n}\right)=r\in \left[0,+\infty\right].$$

- ▶ 若 r > 1, 则 $\sum_{n=1}^{\infty} a_n$ 收敛; ▶ 若 r < 1, 则 $\sum_{n=1}^{\infty} a_n$ 发散;
- ▶ 若 r = 1, 则 Raabe 比值法失效.

证明. 对于 r > 1 的情形. 取 $p \in (1,r)$, 根据极限保序性,则存在 N,当 $n \ge N$ 时成立

$$n\left(1-\frac{a_{n+1}}{a_n}\right) \ge p > 1,$$

即

$$\frac{a_{n+1}}{a_n} \le 1 - \frac{p}{n}.$$

从而, 当 $n \ge N$ 时, 有

$$\begin{split} a_{n+1} &= \frac{a_{n+1}}{a_n} \cdot \frac{a_n}{a_{n-1}} \cdots \frac{a_{N+1}}{a_N} \cdot a_N \\ &\leq \left(1 - \frac{p}{n}\right) \left(1 - \frac{p}{n-1}\right) \cdots \left(1 - \frac{p}{N}\right) a_N \\ &= e^{\ln\left(1 - \frac{p}{N}\right) + \ln\left(1 - \frac{p}{N+1}\right) + \cdots + \ln\left(1 - \frac{p}{n}\right)} a_N \\ &\leq e^{-\frac{p}{N} - \frac{p}{N+1} - \cdots - \frac{p}{n}} a_N \leq e^{-p(\ln(n+1) - \ln N)} a_N = \frac{N^p a_N}{(n+1)^p} \\ \end{split}$$

注意到 p > 1,所以 $\sum 1/n^p$ 收敛,进而 $\sum a_n$ 收敛.

当r < 1时,做法类似,不再赘述.² 对于r = 1的情形,只要考虑 $\sum 1/[n(\ln n)^p]$ 即可.

2: 可以利用不等式

$$\ln(1-x) \ge -x - x^2(0 < x < 1/2).$$

例 1.3.7 判断 $\sum \frac{n^n}{e^n n!}$ 的敛散性.

解. 注意到

$$\frac{a_{n+1}}{a_n} = \frac{(1 + \frac{1}{n})^n}{e} \to 1,$$

d'Alembert 比值法失效. 进一步分析,可得

Week1/ Lecture 2

$$\left(1 + \frac{1}{n}\right)^n = e - \frac{e}{2n} + o\left(\frac{1}{n}\right).$$

故而

$$n\left(1-\frac{a_{n+1}}{a_n}\right) = \frac{n[e-(1+\frac{1}{n})^n]}{e} = \frac{1}{2} + o(1),$$

根据 Raabe 比值法可知原级数发散.3

□ 3: 本例似乎表明

$$\frac{n^n}{e^n n!} \approx \frac{1}{\sqrt{n}}.$$

事实上, Stirling 公式表明

$$\frac{n^n}{e^n n!} \sim \frac{1}{\sqrt{2\pi n}}$$

1.4 分部求和法

现在我们来处理乘积型级数 $\sum a_n b_n$ 的敛散性. 根据 Cauchy 原理,需要估计

$$a_N b_N + \cdots + a_M b_M$$
.

记
$$B_{N,k}=b_N+\cdots+b_k$$
, 令 $B_{N,N-1}=0$, 则

$$\sum_{k=N}^{M} a_k b_k = \sum_{k=N}^{M} a_k (B_{N,k} - B_{N,k-1}) = \sum_{k=N}^{M} a_k B_{N,k} - \sum_{k=N-1}^{M-1} a_{k+1} B_{N,k}$$
$$= a_M B_{N,M} - \sum_{k=N}^{M-1} (a_{k+1} - a_k) B_{N,k}$$

若记 $\Delta a_k = a_k - a_{k-1}$, $\Delta B_{N,k} = B_{N,k} - B_{N,k-1}$, 则上述公式可写为

Abel 求和公式

$$\sum_{k=N}^{M} a_k \Delta B_{N,k} = a_k B_{N,k}|_{k=N-1}^{M} - \sum_{k=N}^{M-1} B_{N,k} \Delta a_{k+1}.$$

此公式非常类似定积分中的分部积分公式,事实上它就是**离散的分布积分公式**.

Abel-Dirichlet 判别法

若级数 $\sum a_n b_n$ 满足下列条件之一, 则其收敛.

- ▶ Abel 判別法. 数列 (a_n) 单调有界, 级数 $\sum b_n$ 收敛.
- ▶ Dirichlet 判別法. 数列 (a_n) 单调趋于 0, 级数 $\sum b_n$ 的部分和 有界.

证明. 不妨假设 (an) 单调递增,则

$$\begin{split} \left| \sum_{k=N}^{M} a_k b_k \right| &\leq |a_M B_{N,M}| + \sum_{k=N}^{M-1} |B_{N,k}| (a_{k+1} - a_k) \\ &\leq |a_M B_{N,M}| + \max_{k=N}^{M-1} |B_{N,k}| \sum_{k=N}^{M-1} (a_{k+1} - a_k) \\ &= |a_M B_{N,M}| + (a_M - a_N) \max_{k=N}^{M-1} |B_{N,k}|. \end{split}$$

在定理条件下,当M > N 充分大时,上式能充分小.

例 1.4.1 考察 $\sum \frac{1}{n^p} \sin nx$ 和 $\sum \frac{1}{n^p} \cos nx$ 的收敛性, 其中 $p > 0, 0 < x < 2\pi$.

解. 注意到

$$\sum_{n=0}^{N} \cos nx + i \sum_{n=0}^{N} \sin nx = \sum_{n=0}^{N} e^{inx} = \frac{1 - e^{i(N+1)x}}{1 - e^{ix}}.$$

因此 $\sum \cos nx$ 和 $\sum \sin nx$ 的部分和数列 (关于 n) 均有界,而 $1/n^p$ 显然 单调趋于零,故根据 Dirichlet 判别法,两者均收敛.

进一步,根据 $\frac{1}{n^p} |\sin nx| \ge \frac{1}{2n^p} - \frac{\cos 2nx}{2n^p}$,还可以判断绝对收敛或条件收敛,留给读者.

例 1.4.2 设
$$\sum_{n=1}^{\infty} na_n$$
 收敛,证明: $\sum_{k=n}^{\infty} a_k = o(\frac{1}{n})$.

证明. 记 $b_n=na_n$, 则 $a_n=b_n/n$, 根据 AD 判别法知 $\sum a_n$ 收敛. 记 $r_n=\sum_{k=n}^\infty b_k$, 有

$$\sum_{k=n}^{m} a_n = \sum_{k=n}^{m} \frac{b_k}{k} = \sum_{k=n}^{m} \frac{r_k - r_{k+1}}{k} = \sum_{k=n-1}^{m-1} \frac{r_{k+1}}{k+1} - \sum_{k=n}^{m} \frac{r_{k+1}}{k}$$
$$= \sum_{k=n}^{m-1} \left(\frac{1}{k+1} - \frac{1}{k}\right) r_{k+1} + \frac{r_n}{n} - \frac{r_{m+1}}{m}.$$

注意到 $r_n \to 0$, 有

$$\sum_{k=n}^{\infty} a_n = -\sum_{k=n}^{\infty} \frac{r_{k+1}}{k(k+1)} + \frac{r_n}{n} = o(\frac{1}{n}).$$

现在我们用 Abel-Dirichlet 判别法来证明交错级数判别法. 所谓**交错级数**是指通项正负交错的级数. 从而,根据首项的正负,它有下面两种形式:

$$+ a_1 - a_2 + a_3 - a_4 + \dots + (-1)^{n-1}a_n + \dots$$

 $- a_1 + a_2 - a_3 + a_4 - \dots + (-1)^n a_n + \dots$

其中 $a_n > 0 (n \ge 1)$. 这两种形式本质相同,下文以第一种为例展开讨论。

Leibniz 判别法

若交错级数 $\sum_{n=1}^{\infty} (-1)^{n-1} a_n$ 满足

- (a) $a_{n+1} \le a_n$, $n = 1, 2, 3, \dots$;
- (b) $\lim_{n\to\infty} a_n = 0$,

则级数 $\sum_{n=1}^{\infty} (-1)^{n-1} a_n$ 收敛. 并且它的和 s 满足 $0 \le s \le a_1$,它的余项 r_n 满足 $|r_n| \le |a_{n+1}|$.

证明. 显然 $\sum (-1)^{n-1}$ 的部分和数列有界,而 (a_n) 单调递减趋于零,故根据 Dirichlet 判别法知此交错级数收敛.

注意到

$$\sum_{k=1}^{\infty} (-1)^{k-1} a_{n+k} = (a_{n+1} - a_{n+2}) + (a_{n+3} - a_{n+4}) + \dots \ge 0,$$

$$\sum_{k=1}^{\infty} (-1)^{k-1} a_{n+k} = a_{n+1} - (a_{n+2} - a_{n+3}) - (a_{n+4} - a_{n+5}) + \dots \le a_{n+1},$$

易得余项估计.

其实,上述证明属于杀鸡用了牛刀,我们可以用区间套定理给出更为直观的证明.记部分和数列为(s_n),根据条件易知

$$0 \le s_2 \le s_4 \le \dots \le s_{2n+2} \le \dots \le s_{2n+1} \le \dots \le s_3 \le s_1.$$

根据区间套定理可知, $s_n \rightarrow s \in [0, a_1]$.

例 1.4.3 讨论**交错 p 级数 \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^p} 敛散性及其余项的大小,其中 p > 0.**

解. 满足莱布尼茨判别法条件,级数收敛. 并且,余项 $|r_n| \leq \frac{1}{(n+1)^p}$. \square

例 1.4.4 讨论
$$\sum_{n=2}^{\infty} \ln\left(1 + \frac{(-1)^n}{\sqrt{n}}\right)$$
 的敛散性.

解. 虽然 $\ln\left(1+\frac{(-1)^n}{\sqrt{n}}\right)\sim\frac{(-1)^n}{\sqrt{n}}$ 并且 $\sum_{n=1}^{\infty}\frac{(-1)^n}{\sqrt{n}}$ 收敛,但是这并非正项级数,不能应用比较判别法. 虽然如此,上面的估计仍然暗示了两者很接近,为了衡量他们的接近程度,我们考虑它们的差

$$c_n = \ln\left(1 + \frac{(-1)^n}{\sqrt{n}}\right) - \frac{(-1)^n}{\sqrt{n}}.$$

因为 $c_n \le 0$ 并且 $c_n \sim -\frac{1}{n}$,故而 $\sum_{n=1}^{\infty} c_n$ 发散. 结合 $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$ 收敛,可知原级数发散.

例 1.4.5 已知 $a_n \sim \frac{1}{n}$,判断 $\sum_{n=1}^{\infty} (-1)^n (a_n + a_{n+1})$ 的敛散性(若收敛,须指明绝对收敛或条件收敛).

解. 显然, $|(-1)^n(a_n+a_{n+1})|\sim \frac{2}{n}$,而 $\sum_{n=1}^{\infty}\frac{2}{n}$ 发散,故原级数不绝对收敛. 再者,其部分和为

$$s_n = -a_1 - a_2 + a_2 + a_3 - \dots + (-1)^n a_n + (-1)^n a_{n+1} = -a_1 + (-1)^n a_{n+1}.$$

因为 $a_n \to 0$,所以 $s_n \to -a_1$. 所以原级数条件收敛.

1.5 交换律与分配律

级数作为一种"加法",我们显然希望它有交换律.如果只交换有限项,这当然没有问题;但如果不限制交换的项数,将会有奇迹发生.

级数重排定理

交换律 若 $\sum a_n$ 绝对收敛,则对任意 $\sigma \in \operatorname{Sym}(\mathbb{N})$,重排级数 $\sum a_{\sigma(n)}$ 也绝对收敛,且 $\sum a_{\sigma(n)} = \sum a_n$.

Riemann 重排定理 若 $\sum a_n$ 条件收敛, 则对任意 $\alpha \in \mathbb{R}$, 存在 $\sigma \in \text{Sym}(\mathbb{N})$, 满足 $\sum a_{\sigma(n)} = \alpha$.

证明. (1) 设 $\sum a_n$ 绝对收敛. 由于

$$\sum_{k=1}^{n} |a_{\sigma(k)}| \le \sum_{k=1}^{\infty} |a_k|,$$

故而 $\sum a_{\sigma(n)}$ 也绝对收敛. 为了考虑其和,记 $\sum_{k=1}^{\infty} a_k - \sum_{k=1}^{n} a_{\sigma(k)}$. 注意到

$$L_n := \min \left\{ \mathbb{Z}_+ - \left\{ \sigma(1), \sigma(2), \cdots, \sigma(n) \right\} \right\} \to +\infty, (n \to \infty)$$

因此

$$\left| \sum_{k=1}^{\infty} a_k - \sum_{k=1}^n a_{\sigma(k)} \right| \le \sum_{k=1}^{\infty} |a_k| \to 0.$$

故而 $\sum a_{\sigma(n)} = \sum a_n$.

(2) 记 $a^+ := \max\{a, 0\}, a^- := \min\{a, 0\},$ 则有 $a = a^+ + a^-, |a| = a^+ - a^-.$ 于是 $\sum a_n = \sum (a_n^+ + a_n^-), \sum |a_n| = \sum (a_n^+ - a_n^-).$

因此,若 $\sum a_n$ 条件收敛,则 $\sum a_n^+ = +\infty$, $\sum a_n^- = -\infty$. 方便起见,把 $\{a_n\}$ 中的非负项依次记为 $\{a_{n_i}\}$,剩下的负项依次记为 $\{a_{m_i}\}$,则

$$\sum_{i} a_{n_i} = +\infty, \quad \sum_{j} a_{m_j} = -\infty.$$

不妨假设 $\alpha \geq 0$. 按以下方式逐项取遍 $\{a_n\}$:

先取非负项,直到第 I_1 项使得此时的部分和首次大于 α ,即

$$S_1 = \sum_{i=1}^{I_1} a_{n_i} > \alpha.$$

然后取负项,直到第 J1 项使得首次实现

$$S_2 = \sum_{i=1}^{I_1} a_{n_i} + \sum_{j=1}^{J_1} a_{m_j} < \alpha.$$

继而再次取非负项, 直至首次实现

$$S_3 = \sum_{i=1}^{I_1} a_{n_i} + \sum_{i=1}^{J_1} a_{m_j} + \sum_{i=I_1+1}^{I_2} a_{n_i} > \alpha.$$

依此类推,可得原级数的一个重排

$$\sum_{i=1}^{I_1} a_{n_i} + \sum_{j=1}^{J_1} a_{m_j} + \cdots + \sum_{i=I_k+1}^{I_{k+1}} a_{n_i} + \sum_{j=J_k+1}^{J_{k+1}} a_{m_j} + \cdots.$$

根据取法, 易知

$$a_{m_{J_k}} \leq S_{2k} - \alpha \leq 0 \leq S_{2k-1} - \alpha \leq a_{n_{I_k}}.$$

注意到 $a_{n_i} \rightarrow 0, a_{m_i} \rightarrow 0$, 因此 $S_n \rightarrow \alpha$.

由于 $\{S_n\}$ 是所得重排级数的保号加括号级数的部分和,其敛散性与重排级数的敛散性一致,故所给重排级数即为所求.

例 1.5.1 将级数
$$1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots$$
 重排为
$$L=(p\ \overline{\Im} \mathbb{L})+(q\ \overline{\Im} \mathbb{L})+(p\ \overline{\Im} \mathbb{L})+(q\ \overline{\Im} \mathbb{L})+$$

证明: $L = \ln 2 + \frac{1}{2} \ln \frac{p}{a}$.

证明. 注意到通项趋于零, 只要考虑部分和子列 $S_{m(p+q)}$ 即可.

$$\begin{split} S_{m(p+q)} &= \sum_{k=1}^{mp} \frac{1}{2k-1} - \sum_{k=1}^{mq} \frac{1}{2k} = \sum_{n=1}^{2mp} \frac{1}{n} - \sum_{k=1}^{mp} \frac{1}{2k} - \sum_{k=1}^{mq} \frac{1}{2k} \\ &= \ln(2mp) + \gamma_{2mp} - \frac{1}{2} \ln mp - \frac{1}{2} \gamma_{mp} - \frac{1}{2} \ln mq - \frac{1}{2} \gamma_{mq} \\ &\to \ln 2 + \frac{1}{2} \ln \frac{p}{q}. \end{split}$$

下面我们来讨论分配律. 对于有限个数的和式, 我们有

$$\sum_{n=0}^{N} a_n \cdot \sum_{m=0}^{N} b_m = \sum_{n,m=0}^{N} a_n b_m.$$

当 $N = \infty$ 时,主要的困难是如何定义上式右端. 注意此时右端仍然只有可列项,所以可以看作一个级数,问题在于如何排序. 根据重排定理,如果右端按照某个排序绝对收敛,那么就可以按照任意排序求和.

分配律

设级数 $\sum_{n=0}^{\infty} a_n$ 和 $\sum_{n=0}^{\infty} b_n$ 都绝对收敛,则

$$\sum_{n=0}^{\infty} a_n \cdot \sum_{m=0}^{\infty} b_m = \sum_{n,m=0}^{\infty} a_n b_m,$$

其中右端可以按照任意排序求和.

证明. 因为

$$\sum_{n,m=0}^{N} |a_n b_m| \leq \sum_{n=0}^{N} |a_n| \cdot \sum_{m=0}^{N} |b_m| \leq \sum_{n=0}^{\infty} |a_n| \cdot \sum_{m=0}^{\infty} |b_m| < +\infty.$$

所以 $\sum_{n m} |a_n b_m|$ 绝对收敛.

常用的求和顺序有正方形序、对角线序. 正方形序是指

$$S = \sum_{n=0}^{\infty} s_n$$
, $s_n = a_n \sum_{k=0}^{n} b_k + b_n \sum_{k=0}^{n-1} a_k$.

对角线序是指

$$T = \sum_{n=0}^{\infty} c_n, \quad c_n = \sum_{k=0}^{n} a_k b_{n-k}.$$

对角线序的和式称为两个级数的 Cauchy 乘积.

Cauchy 乘积定理

设 $\sum_{n=0}^{\infty} a_n$ 和 $\sum_{n=0}^{\infty} b_n$ 均绝对收敛. 令

$$c_n = a_0 b_n + a_1 b_{n-1} + \dots + a_n b_0,$$

则 $\sum_{n=0}^{\infty} c_n$ 绝对收敛,且

$$\sum_{n=0}^{\infty} c_n = \sum_{n=0}^{\infty} a_n \cdot \sum_{n=0}^{\infty} b_n.$$

例 1.5.2 求级数
$$1 + 2x + 3x^2 + \dots + (n+1)x^n + \dots$$
 的和, 其中 $|x| < 1$.

解. 和式很像 $\frac{d}{dx}(1+x+x^2+x^3+\cdots)$,因此猜测和式为 $\frac{d}{dx}\frac{1}{1-x}=\frac{1}{(1-x)^2}$. 注意到 $\frac{1}{1-x}=\sum_{n=0}^{\infty}x^n$,进而由 Cauchy 乘积定理可得.

1.6 向量值级数

前面我们讨论的级数 $\sum a_n$ 都是在 \mathbb{R} 上的,其实我们可以在更一般的空间中讨论问题. 方便起见,我们先讨论 d 维欧氏空间 \mathbb{R}^d . 它包含很多常见的空间,比如复平面 $\mathbb{C} = \mathbb{R}^2$,复空间 $\mathbb{C}^d = \mathbb{R}^{2d}$. 再比如复数域上的 $m \times n$ 矩阵空间 $\mathcal{M}_{m,n}(\mathbb{C}) = \mathbb{R}^{2mn}$.

设 $\alpha_n\in\mathbb{R}^d$,则自然可以考虑有限和 $\sum_{n=1}^N\alpha_n$. 为了进一步讨论极限,我们需要引入**范数/模**. 设 $\alpha=(a^1,\cdots,a^d)\in\mathbb{R}^d$,它的**欧氏范数**定义为

$$\|\alpha\| := (|a^1|^2 + |a^2|^2 + \dots + |a^d|^2)^{1/2}.$$

进而可以定义 \mathbb{R}^d 中的极限.

欧氏空间中的极限

设 (α_n) 为 \mathbb{R}^d 中的点列, 若存在 $\alpha \in \mathbb{R}^d$, 使得

$$\lim_{n\to\infty}\|\alpha_n-\alpha\|=0,$$

则称 (α_n) 收敛于 α ,记作 $\alpha_n \to \alpha$ 或 $\lim_{n \to \infty} \alpha_n = \alpha$.

通常我们使用坐标来判断敛散性.

坐标审敛法

设
$$\alpha_n=(a_n^1,\cdots,a_n^d), \alpha=(a^1,\cdots,a^d)\in\mathbb{R}^d$$
,则
$$\alpha_n\to\alpha\Longleftrightarrow \forall j=1,\cdots,d\,:\,a_n^j\to a^j.$$

证明. 只要使用下述不等式

$$|a_n^j-a^j|\leq \|\alpha_n-\alpha\|\leq \sum_{i=1}^d |a_n^j-a^j|.$$

特别地,如果 $c_n = a_n + ib_n$ 是一个复数列,则 $c_n \rightarrow a + ib$ 的充要条件是 $a_n \rightarrow a$ 且 $b_n \rightarrow b$.

根据坐标审敛法,容易得到 Cauchy 原理.

Cauchy 原理

设 $\alpha_n \in \mathbb{R}^d$, 则 (α_n) 收敛的充要条件是它满足 Cauchy 条件:

$$\forall \epsilon > 0, \exists N, \forall n, m \ge N : \|\alpha_n - \alpha_m\| < \epsilon.$$

依据上述极限概念,我们可以定义 \mathbb{R}^d 上级数的敛散性.

向量值级数

设 $\alpha_n \in \mathbb{R}^d$, 称 $\sum_{n=1}^{\infty} \alpha_n$ 为 \mathbb{R}^d 上的级数. 若存在 $\alpha \in \mathbb{R}^d$ 使得

$$\lim_{N\to\infty}\sum_{n=1}^N\alpha_n=\alpha,$$

则称 $\sum_{n=1}^{\infty} \alpha_n$ 收敛于 α ,记作 $\sum_{n=1}^{\infty} \alpha_n = \alpha$.

根据 Cauchy 原理, 容易得到下述两个级数审敛法.

向量值级数的 Cauchy 原理

设 $\alpha_n \in \mathbb{R}^d$. 级数 $\sum_{n=1}^\infty \alpha_n$ 收敛的充要条件是: 对于任意 $\epsilon > 0$,存在 N,使得当 $n \geq N$ 时,对于任意正整数 p 成立

$$\|\alpha_{n+1}+\cdots+\alpha_{n+p}\|<\epsilon.$$

向量值级数的绝对收敛性

设 $\alpha_n \in \mathbb{R}^d$. 若级数 $\sum_{n=1}^{\infty} \|\alpha_n\|$ 收敛,则称级数 $\sum_{n=1}^{\infty} \alpha_n$ 绝对收敛. 若 $\sum_{n=1}^{\infty} \alpha_n$ 绝对收敛,则其收敛.

例 1.6.1 设 $z \in \mathbb{C}$,证明 $\sum_{n=0}^{\infty} \frac{z^n}{n!}$ 绝对收敛.

证明. 由于 $\left\|\frac{z^n}{n!}\right\| = \frac{|z|^n}{n!}$,且 $\sum \frac{|z|^n}{n!}$ 收敛.

例 1.6.2 设 $A \in \mathcal{M}_{n,n}(\mathbb{C})$,证明 $\sum_{n=0}^{\infty} \frac{A^n}{n!}$ 绝对收敛

证明. 注意到 ||AB|| ≤ ||A|| ⋅ ||B||, 事实上

$$||AB||^{2} = \sum_{i,k} \left| \sum_{j} (A)_{ij} (B)_{jk} \right|^{2} \le \sum_{i,k} \left(\sum_{j} |(A)_{ij}|^{2} \cdot \sum_{j} |(B)_{jk}|^{2} \right)$$
$$= \sum_{i,j} |(A)_{ij}|^{2} \cdot \sum_{j,k} |(B)_{jk}|^{2} = ||A||^{2} ||B||^{2}.$$

故而 $\left\|\frac{A^n}{n!}\right\| \leq \frac{\|A\|^n}{n!}$,所以级数绝对收敛.

易知, 绝对收敛的向量值级数成立交换律. 如果 $\mathbb{R}^d=\mathbb{C}$ 或 $\mathcal{M}_{n,n}(\mathbb{C})$, 那么还成立 Cauchy 乘积定理. 证明留给读者.

方阵级数的乘积定理

设 $A_j, B_j \in \mathcal{M}_{n,n}(\mathbb{C})$,其中 $n \geq 1$. 若级数 $\sum_{j=1}^{\infty} A_j$ 和 $\sum_{j=1}^{\infty} B_j$ 均绝对收敛,则 $\sum_{j,k=0}^{\infty} A_j B_k$ 也绝对收敛,且 $\sum A_j \sum B_k = \sum A_j B_k$. 特别地,

此时成立

$$\sum_{j=0}^{\infty} A_j \sum_{k=0}^{\infty} B_k = \sum_{l=0}^{\infty} C_l, \ C_l = \sum_{j+k=l} A_j B_k.$$

根据上述定理,对于任意的 $z,w\in\mathbb{C}$,成立

$$\sum_{n=0}^{\infty} \frac{z^n}{n!} \cdot \sum_{n=0}^{\infty} \frac{w^n}{n!} = \sum_{n=0}^{\infty} \frac{(z+w)^n}{n!}.$$

最后我们指出,如果 V 是一个一般的线性空间,只要 V 上有一个范数,那么就可以讨论 V 上的级数.

线性赋范空间

设 V 是一个线性空间. 如果一个函数 $\|\cdot\|:V\to[0,+\infty)$ 满足:

- $||v|| = 0 \Leftrightarrow v = 0$
- $\blacktriangleright \ \|\lambda v\| = |\lambda| \|v\|, \forall \lambda \in \mathbb{C}, v \in V$
- $||v + u|| \le ||v|| + ||u||$

则称 $\|\cdot\|$ 是 V 上的一个**范数**, 称 $(V,\|\cdot\|)$ 是一个**赋范线性空间**.

给定一个赋范线性空间 $(V, \|\cdot\|)$, 对于 $v_n \in V$, 可以如下定义级数的和

$$\sum_{n=1}^{\infty} v_n = v \Longleftrightarrow \lim_{N \to \infty} \left\| v - \sum_{n=1}^{N} v_n \right\| = 0.$$

级数的上述收敛性也被称为依范数收敛.