Monitoring Defects in Laser Powder Bed Fusion Using Thermal and Laser Scan Data

- Laser Powder Bed Fusion (LPBF) involves millions of thermal cycles. High geometry sensitivity led to the risk of residual stress and thermal-induced defects.
- The goal is to leverage simulation-based thermal and scan path data to detect defects in-situ.

Overview Pipeline

Aligning simulated thermal data with laser scan path data.
 Loading Data

Mapping thermal data to spatial laser points.
 Aligning Thermal & Laser Points (XY Shift)

Comparing with reference dataset to identify anomalies.
 Mapping Thermal T to Laser Points (KDTree)

Developing an initial defect segmentation approach.
 4. Comparing to Reference Dataset

• Evaluating pipeline scalability and improvement strategies.

5. Segmenting Defective Regions

6. Visualizing and Reporting Defects

Alignment Strategy

Detecting XY misalignment using nearest neighbor offset (KDTree), and estimating average XY shift vector and translating thermal coordinates.

Mean Absolute Error: 6.94 °C

Max Error: 129.81 °C

Defective Points: 362911

