1

GATE Assignment 4

Savarana Datta - AI20BTECH11008

Download all python codes from

https://github.com/SavaranaDatta/EE3900/tree/main/GATE Assignment4/codes

and latex codes from

https://github.com/SavaranaDatta/EE3900/tree/main/GATE Assignment4/main.tex

1 Problem(GATE 2005(EC) 2.25)

A linear system is equivalently represented by two sets of state equations $\dot{X} = AX + BU$ and $\dot{W} = CW + DU$. The eigen values of the representations are also computed as $[\lambda]$ and $[\mu]$. Which of the following statements are true?

- 1) $[\lambda] = [\mu]$ and X = W
- 2) $[\lambda] = [\mu]$ and $X \neq W$
- 3) $[\lambda] \neq [\mu]$ and X = W
- 4) $[\lambda] \neq [\mu]$ and $X \neq W$

2 Solution

Definition 1 (State Space representation). It is a mathematical model of a physical system, as a set of input, output and state variables related by first order difference or differential equations. The most general state representation of a linear system with p inputs, q outputs, and n state variables can be written as

$$\dot{\mathbf{X}} = \mathbf{A}\mathbf{X} + \mathbf{B}\mathbf{U} \tag{2.0.1}$$

$$\mathbf{Y} = \mathbf{CX} + \mathbf{DU} \tag{2.0.2}$$

where, $\mathbf{X} \in R^n$ is the state vector, $\mathbf{Y} \in R^q$ is the output vector, $\mathbf{U} \in R^p$ is input vector, $\mathbf{A} \in R^{n \times n}$ is the state matrix, $\mathbf{B} \in R^{n \times p}$ is input matrix, $\mathbf{C} \in R^{q \times n}$ is output matrix, $\mathbf{D} \in R^{q \times p}$ is feedthrough matrix.

Definition 2 (Eigen values of State Space representation). These are the solutions of the charecteristic equation

$$\Delta(\lambda) = \det(\lambda \mathbf{I} - \mathbf{A}) = 0 \tag{2.0.3}$$

Theorem 2.1. Consider the n-dimensional continuous time linear system

$$\dot{\mathbf{X}} = \mathbf{AX} + \mathbf{BU}, \mathbf{Y} = \mathbf{CX} + \mathbf{DU} \tag{2.0.4}$$

Let **T** be an $n \times n$ real non-singular matrix and let $\bar{\mathbf{X}} = \mathbf{TX}$. Then the state equation

$$\dot{\bar{\mathbf{X}}} = \bar{\mathbf{A}}\bar{\mathbf{X}} + \bar{\mathbf{B}}\mathbf{U}, \mathbf{Y} = \bar{\mathbf{C}}\bar{\mathbf{X}} + \bar{\mathbf{D}}\mathbf{U} \tag{2.0.5}$$

where $\bar{\mathbf{A}} = \mathbf{T}\mathbf{A}\mathbf{T}^{-1}, \bar{\mathbf{B}} = \mathbf{T}\mathbf{B}, \bar{\mathbf{C}} = \mathbf{C}\mathbf{T}^{-1}, \bar{\mathbf{D}} = \mathbf{D}$ is said to be equivalent to (2.0.4).

Proof. Given, $\dot{\mathbf{X}} = \mathbf{AX} + \mathbf{BU}$ and $\mathbf{Y} = \mathbf{CX} + \mathbf{DU}$, T is a non-singular matrix such that $\bar{\mathbf{X}} = \mathbf{TX}$. The same system can be defined using $\bar{\mathbf{X}}$ as the state,

$$\dot{\bar{\mathbf{X}}} = \mathbf{T}\dot{\mathbf{X}} = \mathbf{T}\mathbf{A}\mathbf{X} + \mathbf{T}\mathbf{B}\mathbf{U} \tag{2.0.6}$$

$$= \mathbf{TAT}^{-1}\bar{\mathbf{X}} + \mathbf{TBU} \tag{2.0.7}$$

$$\mathbf{Y} = \mathbf{CX} + \mathbf{DU} = \mathbf{CT}^{-1}\mathbf{\bar{X}} + \mathbf{DU}$$
 (2.0.8)

Theorem 2.2. Equivalent state space representations have same set of eigen values

Proof. For the representation in (2.0.4), the eigen values $[\lambda]$ are such that

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{x} \tag{2.0.9}$$

$$\Rightarrow (\mathbf{A} - \lambda \mathbf{I})\mathbf{x} = 0 \tag{2.0.10}$$

$$\Rightarrow det(\mathbf{A} - \lambda \mathbf{I} = 0 \tag{2.0.11}$$

For the representation in (2.0.5), the eigen values $[\mu]$, are such that

$$\bar{\mathbf{A}}\mathbf{x} = \mu\mathbf{x} \tag{2.0.12}$$

$$\Rightarrow (\bar{\mathbf{A}} - \mu \mathbf{I})\mathbf{x} = 0 \tag{2.0.13}$$

$$\Rightarrow (\mathbf{TAT}^{-1} - \mu \mathbf{TT}^{-1})\mathbf{x} = 0 \tag{2.0.14}$$

$$\Rightarrow det(\mathbf{T}(\mathbf{A} - \mu \mathbf{I})\mathbf{T}^{-1}) = 0 \tag{2.0.15}$$

$$\Rightarrow det(\mathbf{A} - \mu \mathbf{I}) = 0 \tag{2.0.16}$$

Hence, equivalent state space representations have same set of eigen values.

where A is the state matrix.

Here,

$$\dot{\mathbf{X}} = \mathbf{AX} + \mathbf{BU} \tag{2.0.17}$$

$$\dot{\mathbf{W}} = \mathbf{CW} + \mathbf{DU} \tag{2.0.18}$$

both the equations represent the same system. Hence, using 2.1 and 2.2, we can conclude that

$$[\lambda] = [\mu]$$
 and (2.0.19)

$$\mathbf{W} = \mathbf{TX} \tag{2.0.20}$$

where **T** can be any matrix(need not be an identity matrix). Hence, option 2 is the correct answer.