Regresión logística

Regresión logística

- No todas las etiquetas son continuas, a veces es necesario predecir categorías, esto se conoce como clasificación.
- La regresión logística es una de las formas básicas para realizar la clasificación (no se confunda por la palabra "regresión")

Lectura sugerida

Secciones 4-4.3 de
Introduction to Statistical Learning
Por Gareth James

Regresión logística

 Si desea comprender completamente algunos de los conceptos detrás de los métodos de evaluación y las métricas detrás de la clasificación, ¡la lectura es muy recomendable!

Importante

- Queremos aprender sobre Regresión logística como un método para la clasificación.
- Algunos ejemplos de problemas de clasificación:
 - Spam versus correos electrónicos legítimos
 - Préstamo Predeterminado (sí / no)
 - O Diagnóstico de la enfermedad
- Todos los anteriores fueron ejemplos de clasificación binaria

Importante

- Hasta ahora solo hemos visto problemas de regresión en los que intentamos predecir un valor continuo.
- Aunque el nombre puede ser confuso al principio, la regresión logística nos permite resolver problemas de clasificación, donde estamos tratando de predecir categorías discretas.

Importante

- La convención para la clasificación binaria es tener dos clases 0 y 1.
- Vayamos a través de la idea básica para la regresión logística.
- También explicaremos por qué tiene el término regresión, jaunque se utilice para la clasificación!

 Imagina que trazamos algunos datos categóricos contra una característica.

 El eje X representa un valor de característica y el eje Y representa la probabilidad de pertenecer a la clase 1.

 No podemos usar un modelo de regresión lineal normal en grupos binarios. No conducirá a un buen ajuste:

 Necesitamos una función que se ajuste a los datos categóricos binarios!

 Sería genial si pudiéramos encontrar una función con este tipo de comportamiento:

 La función sigmoide (también conocida como logística) toma cualquier valor y genera una salida entre 0 y 1.

 Esto significa que podemos tomar nuestra Solución de Regresión Lineal y colocarla en la Función Sigmoide.

 Esto significa que podemos tomar nuestra Solución de Regresión Lineal y colocarla en la Función Sigmoide.

• Esto da como resultado una probabilidad de 0 a 1 de pertenencia a la clase 1.

 Podemos establecer un punto de corte en 0.5, cualquier cosa debajo de esto resulta en la clase 0, cualquier cosa arriba es la clase 1.

Repaso

Usamos la función logística para generar un valor que va de 0 a 1.
 En función de esta probabilidad, asignamos una clase.

- Después de entrenar un modelo de regresión logística con algunos datos de entrenamiento, evaluará el rendimiento de su modelo con algunos datos de prueba.
- Puedes usar una matriz de confusión para evaluar los modelos de clasificación.

		predicted condition (condición predicha)	
	total population	prediction positive (predicción positiva)	prediction negative (predicción negativa)
true	condition positive	Verdadero Positivo True Positive (TP)	Falso Negativo False Negative (FN) (type II error) (Error Tipo II)
condition (condición verdadera)	condition	Falso Positivo False Positive (FP) (Type I error) (Error Tipo I)	Verdadero Negativo True Negative (TN)

		predicted condition		
	total population	prediction positive	prediction negative	$= \frac{\Sigma \text{ condition positive}}{\Sigma \text{ total population}}$
true	condition positive	True Positive (TP)	False Negative (FN) (type II error)	True Positive Rate (TPR), Sensitivity, Recall, Probability of Detection $= \frac{\Sigma \text{ TP}}{\Sigma \text{ condition positive}}$
condition	condition negative	False Positive (FP) (Type I error)	True Negative (TN)	False Positive Rate (FPR), Fall-out, Probability of False Alarm $= \frac{\Sigma \text{ FP}}{\Sigma \text{ condition negative}}$
	Accuracy $\Sigma TP + \Sigma TN$	Positive Predictive Value (PPV), $= \frac{\Sigma \text{ TP}}{\Sigma \text{ prediction positive}}$	False Omission Rate (FOR) $= \frac{\Sigma \text{ FN}}{\Sigma \text{ prediction negative}}$	Positive Likelihood Ratio (LR+) $= \frac{TPR}{FPR}$
	$=$ Σ total population	False Discovery Rate (FDR) $= \frac{\Sigma FP}{\Sigma \text{ prediction positive}}$	Negative Predictive Value (NPV) $= \frac{\Sigma \text{ TN}}{\Sigma \text{ prediction negative}}$	Negative Likelihood Ratio (LR–) $= \frac{FNR}{TNR}$

- El punto principal a recordar con la matriz de confusión y las diversas métricas calculadas es que todas son fundamentalmente formas de comparar los valores predichos con los valores reales.
- ¡Lo que constituye una métrica "buena" dependerá realmente de la situación específica!

- Podemos utilizar una matriz de confusión para evaluar nuestro modelo.
- Por ejemplo, imagine pruebas para detectar enfermedades.

	Predicted:	Predicted:
n=165	NO	YES
Actual:		
NO	50	10
Actual:		
YES	5	100

Ejemplo: prueba de presencia de enfermedad NO = prueba negativa = falso = 0 SÍ = prueba positiva = Verdadero = 1

n=165	Predicted:	Predicted:	
n=165	NO	YES	
Actual:			
NO	TN = 50	FP = 10	60
Actual:			
YES	FN = 5	TP = 100	105
	55	110	

Terminología básica:

- Verdaderos positivos (TP)
- Negativos Verdaderos (TN)
- Falsos positivos (FP)
- Falsos negativos (FN)

	Predicted:	Predicted:	
n=165	NO	YES	
Actual:			
NO	TN = 50	FP = 10	60
Actual:			
YES	FN = 5	TP = 100	105
	55	110	

Exactitud:

- En general, ¿con qué frecuencia es correcto?
- (TP + TN) / total = 150/165 = 0.91

n-165	Predicted:	Predicted:	
n=165	NO	YES	
Actual:			
NO	TN = 50	FP = 10	60
Actual:			
YES	FN = 5	TP = 100	105
	55	110	

Tasa de clasificación errónea (Tasa de error):

- En general, ¿con qué frecuencia está mal?
- (FP + FN) / total = 15/165 = 0.09

- ¿Todavía confundido con la matriz de confusión?
- ¡No hay problema! Echa un vistazo a la página de Wikipedia para ver si tiene un diagrama realmente bueno con todas las fórmulas para todas las métricas.
- A lo largo del curso, por lo general solo imprimimos métricas (por ejemplo, precisión).

- La clasificación binaria tiene algunas de sus propias métricas de clasificación especial.
- Estos incluyen visualizaciones de métricas de la matriz de confusión.
- La curva de la curva del operador receptor (ROC) se desarrolló durante la Segunda Guerra Mundial para ayudar a analizar los datos del radar.

• La curva ROC:

- Una discusión completa de la curva ROC está más allá del alcance de este curso, pero la lectura sugerida entra en mucho más detalle.
- Por ahora, solo necesita saber que el área debajo de la curva es una métrica de qué tan bien un modelo se ajusta a los datos.