Nome: Matrícula:	1.	
1 <u>a</u> Prova - MTM1018 - T 12	2.	
08 de Outubro de 2015	3.	
,	4.	
Coloque o nome em todas as folhas. É proibido usar calculadora ou similares. Respostas sem justificativas ou que não incluam os cálculos necessários não	5.	

Questão 1. (1.5pts) Encontre todas as soluções do sistema

serão consideradas. A^t denota a matriz transposta.

$$\begin{cases} x_1 + 3x_2 + 2x_3 + 3x_4 - 7x_5 &= 14 \\ 2x_1 + 6x_2 + x_3 - 2x_4 + 5x_5 &= -2 \\ x_1 + 3x_2 - x_3 + 2x_5 &= -1 \end{cases}$$

Questão 2. (1.5pts) Considere a matriz
$$A = \begin{bmatrix} 0 & 0 & 0 \\ -1 & 0 & -1 \\ 0 & -1 & -2 \end{bmatrix}$$

- (a) Calcule, usando escalonamento, o determinante de $A+A^t$. Com base nisto, $A+A^t$ é invertível? Caso seja, encontre a inversa de $A+A^t$;
- (b) Determine os valores reais λ , tais que existe $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \neq \bar{0}$ que satisfaz $AX = \lambda X$;
- (c) Para cada um dos valores de λ encontrados no item anterior, determinar todos X tais que $AX = \lambda X$.

Questão 3. (3pts) Responda VERDADEIRO ou FALSO, com uma breve justificativa:

- i-() Se det A = 1, então $A^{-1} = A$.
- ii-() Pode-se mostrar que "se A e B são matrizes invertíveis, então AB é invertível" sem usar determinantes;
- iii-() Se A é uma matriz triangular superior e invertível, então A^{-1} é matriz triangular superior;
- iv-() Se A é uma matriz 3×3 e $B = A \cdot ((3A)^t \cdot A^{-1})$, então $\det(B) = 9 \det(A)$;
- v-() O sistema $AX=\bar{0}$ possui única solução, quando A é uma matriz 2×3 .

Questão 4. (2pts) Sejam

$$W_1 = \{(x, y, z, t) \in \mathbb{R}^4; x + y = 0 \text{ e } z - t = 0\}, \quad e \quad W_2 = \{(x, y, z, t) \in \mathbb{R}^4; x - y - z + t = 0\}$$
 subespaços de \mathbb{R}^4

- (a) Determine um conjunto gerador e uma base para $W_1 \cap W_2$;
- (b) Determine uma base para $W_1 + W_2$;
- (c) $W_1 + W_2$ é soma direta? Justifique;
- (d) $W_1 + W_2 = \mathbb{R}^4$?

Questão 5. (2pts) Considere o conjunto $B = \{w_1 = (1, -1, 1), w_2 = (1, 1, 0), w_3 = (-1, 1, 2)\} \subseteq \mathbb{R}^3$.

- (a) Mostre que o conjunto B é ortogonal em relação ao produto interno usual do \mathbb{R}^3 . B é uma base? Por que?;
- (b) Escreva o vetor v = (2, 1, 0) como combinação linear de w_1, w_2 e w_3 .