Bayesian data analysis: Theory & practice

Part 1: Bayesian basics & simple linear regression

Michael Franke

Content

First session

1. "think Bayesian"

- a. data-generating processes
- b. Bayesian model (prior + likelihood)
- c. updated models

2. Big Bayesian Four

- a. prior / posterior parameter distribution
- b. prior / posterior predictives

3. (simple) linear regression

- a. parameters & priors
- b. likelihood
- c. predictive functions

Bayesian modeling

Three-card problem

problem statement

- Sample a card (uniformly at random).
- Choose a side of that card to reveal (uniformly at random).
- What's the probability that the side you do not see is BLUE, given that the side you see is BLUE?

Three-card problem

data-generating process

Conditional probability and Bayes rule

for the three-card problem

conditional probability

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

Bayes rule

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$

Applied to three-card problem:

$$P(\text{card 1} | \text{blue}) = \frac{P(\text{blue} | \text{card 1}) P(\text{card 1})}{P(\text{blue})}$$
$$= \frac{1 \times \frac{1}{3}}{\frac{1}{2}} = \frac{2}{3}$$

"reasoning from observed effect to latent cause via a model of the data-generating process"

Bayes rule for parameter inference

which parameter values are likely to have generated the data?

$$P(\theta \mid D) = \frac{P(D \mid \theta) P(\theta)}{\int P(D \mid \theta) P(\theta) d\theta}$$

read more <u>here</u>

Bayesian data analysis

in a nutshell

- ► BDA is about what we should believe given:
 - some observable data, and
 - our model of how this data was generated (a.k.a. the data-generating process)
- our best friend will be Bayes rule
 - e.g., for parameter inference:

$$P(\theta \mid D) \propto P(\theta) \times P(D \mid \theta)$$
 posterior prior likelihood

• or, for model comparison:

$$\frac{P(M_1 \mid D)}{P(M_2 \mid D)} = \frac{P(D \mid M_1)}{P(D \mid M_2)} \frac{P(M_1)}{P(M_2)}$$
posterior odds

Bayes factor prior odds

$$s_i^{+/-} \sim \text{Beta}(1,1)$$

 $\frac{1}{\pi} \sim \text{Gamma}(0.5, 0.5)$

$$F_c^{+/-} = F(c; \vec{s}^{+/-}, \pi)$$

$$\sigma \sim \text{Uniform}(0, 0.4)$$

$$\delta_{d \in \{1,\dots,6\}} \sim \text{Normal}(d/7, 14)$$

 $\delta_0 = -\infty; \ \delta_7 = \infty$

$$\theta \sim \text{Normal}(0.5, 0.2)$$

$$\frac{1}{\gamma} \sim \text{Gamma}(1,1)$$

$$p_{cd}^{A/B} = \int_{\delta_{cd}-1}^{\delta_{cd}} \text{Normal}(x, F_c^{+/-}, \sigma) \, dx$$

$$p_c^{C/D} = (1 + \exp(-\gamma (F_c^{+/-} - \theta)))^{-1}$$

$$k_{cd}^{A/B} \sim \text{Multinomial}(p_{cd}^{A/B}, n_c^{A/B})$$

$$k_c^{C/D} \sim \text{Binomial}(p_c^{C/D}, n_c^{C/D})$$

Statistical models

likelihoods from a data-generating process

- A statistical model is a condensed formal representation, following common conventional practices of formalization, of the assumptions we make about what the data is and how it might have been generated by some (usually: stochastic) process.
- "All models are wrong, but some are useful." (Box 1979)

Bayesian statistical models

parameterized likelihood + priors

- a Bayesian statistical model $\mathcal{M} = \langle \Theta, P_{\mathcal{D}}, P_{\Theta} \rangle$ of a stochastic process generating data D from a set of possible data \mathcal{D} consists of:
 - a space of parameter vectors Θ
 - a (conditional) likelihood function: $P_{\mathscr{D}} \colon \Theta \to \Delta(\mathscr{D})$
 - a (prior) distribution: $P_{\Theta} \in \Delta(\Theta)$

Example: The Binomial Model

the 'coin-flip' model

- ▶ data: pair of numbers $D = \{k, N\}$
 - *N* is the number of tosses
 - *k* is the number of heads (successes)
- variable:
 - θ is the number of heads (successes)
- uninformed prior:

$$\theta \sim \text{Beta}(1,1)$$

likelihood function:

$$k \sim \text{Binomial}(\theta, N)$$

- conventions for model graphs:
 - circles / squares: continuous / discrete variables
 - white / gray nodes: latent / observed variables

Updating Bayesian models

training on / learning from observations / data

- ▶ let $D_{obs} \in \mathcal{D}$ be observed (training) data
- let $\mathcal{M}_1 = \langle \Theta, P_{\mathcal{D}}, P_{\Theta} \rangle$ be the initial / prior model
- the updated / posterior model is $\mathcal{M}_2 = \langle \Theta, P_{\mathcal{D}}, P_{\Theta}^{|D} \rangle$ where the new distribution over parameters $P_{\Theta}^{|D_{obs}}$ is **obtained by Bayesian parameter estimation** in the initial / prior model:

$$P_{\Theta}^{|D_{obs}}(\theta) = P_{\Theta}(\theta \mid D_{obs}) = \frac{P_{\theta}(\theta) P_{\mathcal{D}}(D_{obs} \mid \theta)}{C}$$

Example: The Binomial Model

the 'coin-flip' model

- data: pair of numbers $D = \{k, N\}$
 - *N* is the number of tosses
 - *k* is the number of heads (successes)
- variable:
 - θ is the number of heads (successes)
- uninformed prior:

$$\theta \sim \text{Beta}(1,1)$$

likelihood function:

$$k \sim \text{Binomial}(\theta, N)$$

- conventions for model graphs:
 - circles / squares: continuous / discrete variables
 - white / gray nodes: latent / observed variables

General picture

Bayesian probabilistic ML

non-Bayesian probabilistic ML

$$(\boldsymbol{\Theta}, P_{\mathcal{D}}, \theta_1) \xrightarrow{D_{obs}} (\boldsymbol{\Theta}, P_{\mathcal{D}}, \theta_2)$$

frequentist statistical model

$$\begin{array}{c} D_{obs} \\ \hline \Theta, P_{\mathscr{D}}, \hat{\theta} \end{array}$$

Predictions of a model

the "data-predictive distribution"

- ▶ let $D_{obs} \in \mathcal{D}$ be observed (training) data
- ▶ let $\mathcal{M} = \langle \Theta, P_{\mathcal{D}}, P_{\Theta} \rangle$ be a Bayesian model
- ► the **predictive of** *M* is the marginal likelihood:

$$P_{\mathcal{D}}(D) = \int P_{\Theta}(\theta) \ P_{\mathcal{D}}(D \mid \theta) \ \mathrm{d}\theta$$

- if \mathcal{M}_1 is a prior model and \mathcal{M}_2 is the posterior model after updating with some data:
 - the predictive of \mathcal{M}_1 is called the **prior predictive**
 - the predictive of \mathcal{M}_2 is called the **posterior predictive**

The Big Bayesian 4

prior distribution

uncertainty about model parameters before seeing the data

posterior distribution

• uncertainty about model parameters after seeing the data

prior predictive distribution

distribution over likely future data points before seeing the data

posterior predictive distribution

distribution over likely future data points before seeing the data

the multiple roles of Priors in BDA

Priors in Bayesian data analysis

more on this as we go along

- subjective beliefs
 - e.g., as justified by prior research
- regularization
 - harness predictive influence of parameters
- priors in multi-level models
 - partial pooling across groups
 - reduce model complexity (*see "regularization")

- computational considerations
 - enable efficient computation
 - avoid overfitting to sparse data
- objective priors
 - enable long-term error control (type 1 & type 2 errors)
- conjugate priors
 - allow exact calculation of Bayesian posterior

Creative fun with datagenerating processes

model of the data-generating process buried inside a two-sample t-test

Simple linear regression likelihood & Bayesian posterior

Murder data

annual murder rate, average income, unemployment rates and population

	##	# /	A tibble: 20	x 4		
	##		murder_rate	low_income	unemployment	population
	##		<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
	##	1	11.2	16.5	6.2	587000
	##	2	13.4	20.5	6.4	643000
	##	3	40.7	26.3	9.3	635000
	##	4	5.3	16.5	5.3	692000
	##	5	24.8	19.2	7.3	1248000
	##	6	12.7	16.5	5.9	643000
	##	7	20.9	20.2	6.4	1964000
	##	8	35.7	21.3	7.6	1531000
	##	9	8.7	17.2	4.9	713000
	##	10	9.6	14.3	6.4	749000
	##	11	14.5	18.1	6	7895000
	##	12	26.9	23.1	7.4	762000
	##	13	15.7	19.1	5.8	2793000
	##	14	36.2	24.7	8.6	741000
	##	15	18.1	18.6	6.5	625000
	##	16	28.9	24.9	8.3	854000
	##	17	14.9	17.9	6.7	716000
	##	18	25.8	22.4	8.6	921000
	##	19	21.7	20.2	8.4	595000
7	##	20	25.7	16.9	6.7	3353000

annual murders per million inhabitants

percentage inhabitants with low income

percentage inhabitants who are unemployed

total population

no information at all

## murder_rate low_income unemployment population ##	##	# A	tibble: 20	x 4		
## 1 11.2 16.5 6.2 587000 ## 2 13.4 20.5 6.4 643000 ## 3 40.7 26.3 9.3 635000 ## 4 5.3 16.5 5.3 692000 ## 5 24.8 19.2 7.3 1248000 ## 6 12.7 16.5 5.9 643000 ## 7 20.9 20.2 6.4 1964000 ## 8 35.7 21.3 7.6 1531000 ## 9 8.7 17.2 4.9 713000 ## 10 9.6 14.3 6.4 749000 ## 11 14.5 18.1 6 7895000	##		murder_rate	low_income	unemployment	population
## 2 13.4 20.5 6.4 643000 ## 3 40.7 26.3 9.3 635000 ## 4 5.3 16.5 5.3 692000 ## 5 24.8 19.2 7.3 1248000 ## 6 12.7 16.5 5.9 643000 ## 7 20.9 20.2 6.4 1964000 ## 8 35.7 21.3 7.6 1531000 ## 9 8.7 17.2 4.9 713000 ## 10 9.6 14.3 6.4 749000 ## 11 14.5 18.1 6 7895000	##		<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
## 3	##	1	11.2	16.5	6.2	587000
## 4 5.3 16.5 5.3 692000 ## 5 24.8 19.2 7.3 1248000 ## 6 12.7 16.5 5.9 643000 ## 7 20.9 20.2 6.4 1964000 ## 8 35.7 21.3 7.6 1531000 ## 9 8.7 17.2 4.9 713000 ## 10 9.6 14.3 6.4 749000 ## 11 14.5 18.1 6 7895000	##	2	13.4	20.5	6.4	643000
## 5 24.8 19.2 7.3 1248000 ## 6 12.7 16.5 5.9 643000 ## 7 20.9 20.2 6.4 1964000 ## 8 35.7 21.3 7.6 1531000 ## 9 8.7 17.2 4.9 713000 ## 10 9.6 14.3 6.4 749000 ## 11 14.5 18.1 6 7895000	##	3	40.7	26.3	9.3	635000
## 6 12.7 16.5 5.9 643000 ## 7 20.9 20.2 6.4 1964000 ## 8 35.7 21.3 7.6 1531000 ## 9 8.7 17.2 4.9 713000 ## 10 9.6 14.3 6.4 749000 ## 11 14.5 18.1 6 7895000	##	4	5.3	16.5	5.3	692000
## 7 20.9 20.2 6.4 1964000 ## 8 35.7 21.3 7.6 1531000 ## 9 8.7 17.2 4.9 713000 ## 10 9.6 14.3 6.4 749000 ## 11 14.5 18.1 6 7895000	##	5	24.8	19.2	7.3	1248000
## 8 35.7 21.3 7.6 1531000 ## 9 8.7 17.2 4.9 713000 ## 10 9.6 14.3 6.4 749000 ## 11 14.5 18.1 6 7895000	##	6	12.7	16.5	5.9	643000
## 9 8.7 17.2 4.9 713000 ## 10 9.6 14.3 6.4 749000 ## 11 14.5 18.1 6 7895000	##	7	20.9	20.2	6.4	1964000
## 10 9.6 14.3 6.4 749000 ## 11 14.5 18.1 6 7895000	##	8	35.7	21.3	7.6	1531000
## 11 14.5 18.1 6 7895000	##	9	8.7	17.2	4.9	713000
	##	10	9.6	14.3	6.4	749000
## 12 26.9 23.1 7.4 762000	##	11	14.5	18.1	6	7895000
	##	12	26.9	23.1	7.4	762000
## 13 15.7 19.1 5.8 2793000	##	13	15.7	19.1	5.8	2793000
## 14 36.2 24.7 8.6 741000	##	14	36.2	24.7	8.6	741000
## 15 18.1 18.6 6.5 625000	##	15	18.1	18.6	6.5	625000
## 16 28.9 24.9 8.3 854000	##	16	28.9	24.9	8.3	854000
## 17 14. 9 17. 9 6.7 716000	##	17	14. 9	17.9	6.7	716000
## 18 25.8 22.4 8.6 921000	##	18	25.8	22.4	8.6	921000
## 19 21.7 20.2 8.4 595000	##	19	21.7	20.2	8.4	595000
## 20 25.7 16.9 6.7 3353000	##	20	25.7	16.9	6.7	3353000

by empirical mean

by grand mean

by grand mean

$$TSS = \sum_{i=1}^{n} (y_i - \bar{y})^2$$

[total sum of squares]

```
y <- murder_data %>% pull(murder_rate)
n <- length(y)
tss_simple <- sum((y - mean(y))^2)
tss_simple</pre>
```

```
## [1] 1855.202
```

Predicting murder rate based on unemployment rate

some wild linear guessing

We are to predict the murder rate y_i of a randomly drawn city i. We know that city's unemployment rate, x_i , but nothing more.

Let's just assume the following linear relationship to make a prediction b/c why not?!?

$$\hat{y}_i = 4 + 2x_i$$

How good is this prediction?

How good is any given prediction?

quantifying distance or likelihood

Distance-based approach

Residual Sum-of-Squares:

$$RSS = \sum_{i=1}^{n} (\hat{y}_i - y_i)^2$$

 no predictions about spread around linear predictor

Likelihood-based approach:

Normal likelihood:

LH =
$$\prod_{i=1}^{n} \mathcal{N}(y_i \mid \mu = \hat{y}_i, \sigma)$$

fully predictive

Likelihood-based simple linear regression

likelihood:

$$y_i \sim \text{Normal}(\mu_i, \sigma)$$

 $\mu_i = \beta_0 + x_1 \cdot \beta_1$

- differential likelihood:
 - parameter triples $\langle \beta_0, \beta_1, \sigma \rangle$ can be better or worse
 - higher vs. lower likelihood $P(D \mid \beta_0, \beta_1, \sigma)$
- maximum-likelihood solution:

$$\underset{\beta_0,\beta_1,\sigma}{\operatorname{arg\ max}} \ P(D \mid \beta_0,\beta_1,\sigma)$$

- standard (frequentist) solution
- MLE corresponds to MAP for "flat" priors
- Bayesian approach: full posterior distribution

$$P(\beta_0, \beta_1, \sigma \mid D) \propto P(D \mid \beta_0, \beta_1, \sigma) P(\beta_0, \beta_1, \sigma)$$

Simple linear regression model

for a single predictor variable

- ► data: *n* pairs of numbers $D = \{\langle x_1, y_1 \rangle, ... \langle x_n, y_n \rangle\}$
 - x_i is the i-th observation of the independent / predictor variable
 - y_i is the i-th observation of the dependent / response variable
- parameters:
 - β_0 is the **intercept** parameter
 - β_1 is the **slope** parameter
 - \bullet σ is the standard deviation of a normal distribution
- derived variable: [shown in node w/ double lines]
 - μ_i is the linear predictor for observation i
- priors (uninformed):

$$\beta_0, \beta_1 \sim \text{Uniform}(-\infty, \infty)$$
 $\log(\sigma^2) \sim \text{Uniform}(-\infty, \infty)$

likelihood:

$$y_i \sim \text{Normal}(\mu_i, \sigma)$$
 $\mu_i = \beta_0 + x_1 \cdot \beta_1$

Mouse-tracking data on typicality in category decisions

Mouse-tracking

Hand-movement during decision making

- general idea: motor-execution provides information about the ongoing decision process
 - uncertainty
 - gradual evidence accumulation
 - change-of-mind
 - time-point of decision
 - •
- many subtle design decisions
 - click vs touch
 - move horizontally or vertically
 - •

Mouse-tracking

common measures of mouse-trajectories

dCoM2

- raw data are lists of triples
 - (time, x-position, y-position)
- commonly used measures
 - area-under the curve (AUC)
 - area between the mouse trajectory and a straight line from start to selected option
 - maximal deviation (MAD)
 - maximum distance between trajectory and straight line from start to selected option
 - correctness
 - whether choice of option was correct or not
 - reaction time (RT)
 - how long did the movement last in total
 - type of trajectory
 - result of clustering analysis based on shape of the trajectories (usually some 3-5 categories)
 - x-flips
 - number of times the trajectory crossed the vertical middle line (at x = 0)

Running example

category recognition for typical vs atypical exemplars

- materials & procedure
 - participants read an animal name (e.g. 'dolphin')
 - they choose the true category the animal belongs to (e.g., 'fish' or 'mammal')
 - some trigger words are typical others atypical representatives of the true category
- methodological investigation:
 - two groups: click vs touch to select category
- hypothesis: typical exemplars are easier to categorize than atypical ones
 - fewer mistakes
 - smaller RTs, AUC, MAD
 - less x-flips
 - less "change-of-mind" curve types
- research question (methods): any differences between click & touch selection?

variables used in the data set

trial_id = unique id for individual trials
MAD = maximal deviation into competitor space
AUC = area under the curve
xpos_flips = the amount of horizontal direction changes
RT = reaction time in ms
prototype_label = different categories of prototypical movement strategies
subject_id = unique id for individual participants

group = groups differ in the response design (click vs. touch)

condition = category membership (Typical vs. Atypical)

exemplar = the concrete animal

category_left = the category displayed on the left

category_right = the category displayed on the right

category_correct = the category that is correct

response = the selected category

correct = whether or not the response matches category_correct

Outlook

Three pillars of BDA

1. parameter estimation / inference [which parameter values are credible given data and model?]

$$P(\theta \mid D) \propto P(\theta) \times P(D \mid \theta)$$
 posterior prior likelihood

- 2. predictions [which future data observations are likely given my model?]
 - a. prior

$$P(D_{\text{pred}}) = P(\theta) P(D_{\text{pred}} \mid \theta) d\theta$$

b. posterior

$$P(D_{\text{pred}}) = \int P(\theta) \ P(D_{\text{pred}} \mid \theta) \ d\theta$$

$$P(D_{\text{pred}} \mid D_{\text{obs}}) = \int P(\theta \mid D_{\text{obs}}) \ P(D_{\text{pred}} \mid \theta) \ d\theta$$

3. model comparison [which model of two models is more likely to have generated the data?]

$$\frac{P(M_1 \mid D)}{P(M_2 \mid D)} = \frac{P(D \mid M_1)}{P(D \mid M_2)} \frac{P(M_1)}{P(M_2)}$$
posterior odds
$$\underbrace{P(M_1 \mid D)}_{P(M_2)} = \underbrace{P(D \mid M_1)}_{P(M_2)} \underbrace{P(M_2)}_{P(M_2)}$$

Roadmap "beyond vanilla"

common extensions of linear regression modeling

recap & preparation

Recap & preparation

- check out web-book for this course
 - https://michael-franke.github.io/Bayesian-Regression/
- recap:
 - material from 1st session
 - "Thinking Bayesian"
 - basic wrangling & plotting in the tidyverse
 - Wrangling & Plotting
- prepare for next session:
 - Big Bayesian 4 for simple regression in BRMs
 - Regression in BRMs & prior & posterior predictives
 - BRMS cheat sheet
 - cheat sheet
 - MCMC methods
 - slides