

Comparison Sheet

Between W5100 and W5300 Version 1.1

© 2008 WIZnet Co., Ltd. All Rights Reserved.

For more information, visit our website at http://www.wiznet.co.kr

Document History Information

Version	Date	Descriptions
V0.9	Mar. 11, 2008	Beta released
V1.0	May. 15, 2008	 W5300 image 교체 Register >> Expansion 수정, P.4 참조 Note 1 설명 수정 Register >> Sn_DPORTR 설명 추가, P.4 참조 Note 2 설명 추가
V1.1	Mar. 8, 2010	Interrupt assert time register 관련 설명 삭제

W5100 vs W5300

W5300은 W5100 TCP/IP core를 기반으로 개발되었으며, W5100의 기본적인 기능을 그대로 따른다. 8bit Data bus 기반의 W5100에 비해 W5300은 8bit 뿐만 아니라, 16bit Data bus를 지원한다. 16bit Data bus 확장으로 인하여 대부분의 W5300 Register들은 모두 16bit로 확장되었다.

■ Host Interface

	W5100	W5300
Address Bus	15 PINs, ADDR[14:0]	10PINs, ADDR[9:0]
Data Bus	Only 8 Bit, DATA[7:0]	16/8 Bit, DATA[15:8]/DATA[7:0]
Interface Mode	Direct/Indirect, SPI	Direct/Indirect
Interface Timing	No configuration	Partially Configurable ¹
Buffer Ready PIN	None	Monitoring the buffer Depth of
(BRDY[3:0])		selected SOCKET.

<Note> 1. W5300은 MR를 통해 부분적으로 Host-Write-Data의 Fetch Timing이나 Host-Read-Data의 Hold Timing을 조절할 수 있다.

Network Interface

	W5100	W5300
Link LED(LINKLED)	Blink	No Blink (Hold Low)
External MII No MII_TXEN, MII_TXD[3:0], MII_TXC, MII_CRS,		MII_TXEN, MII_TXD[3:0], MII_TXC, MII_CRS,
		MII_COL, MII_RXDV, MII_RXD[3:0] ¹

<Note> 1. MII_TXEN과 MII_TXD[3:0]은 Network Indicator LED signal로 사용되는 Alternate Function PIN들이다. 이 PIN들은 TEST_MODE[3:0] PIN Configuration에 따라 MII Signal로 사용된다. W5300은 MII Signals을 지원하여 embedded PHY 대신 3rd Party PHY와 Interface가 가능하다.

■ Register

W5300의 Register 용도는 W5100과 거의 동일하다. W5100에 비하여 W5300에서 확장, 추가, 제거된 Register는 다음과 같다.

Expansion

	W5100	W5300
MR	1 Byte	2 Bytes
		Host I/F Timing, FIFO swap등 기능 추가
TMSR	1 Byte (2bit per SOCKET)	2 Bytes X 4 (1 Byte per SOCKET)
RMSR	1 Byte (2 bit per SOCKET)	2 Bytes X 4 (1 Byte per SOCKET)
Sn_MR	1 Byte	2 Bytes
		TCP Alignment Bit 추가
Sn_TX_FSR	2 Bytes	4 Bytes
Sn_RX_RSR	2 Bytes	4 Bytes
PSIDR ¹	SO_DPORTR ² 사용	SO_DPORTR ² & PSIDR
PDHAR ¹	SO_DHAR 사용	SO_DHAR & PHAR

<Note> 1. Session ID와 PPPoE server hardware address는 PPPoE mode에서 사용된다. W5100의 경우, Session ID and PPPoE server hardware address는 Host-Read/Host-Write 가능한 SO_DPORTR와 SO_DHAR를 통해 각각 설정하거나 구할 수 있다. 그러나, W5300의 경우 Session ID와 PPPoE server hardware address는 PSIDR와 PDHAR만을 통해 구할 수 있고, 이것들은 W5100처럼 SO_DPORTR와 Sn_DHAR를 통해 설정될 수 있다.

Sn_DPORTR은 W5100의 경우 Host-Read/Write 모두 지원하나, W5300의 경우 Host-Write만을 지원한다.

Addition

MTYPER	Internal memory block Type(TX/RX) 설정	
FMTUR	ICMP(Fragment MTU) Packet 처리	
Pn_BRDYR	BRDYn PIN 설정	
Pn_DPTHR	SOCKET n Buffer Depth Monitoring	
IDR	W5300 Identification	
Sn_IMR	SOCKET n Interrupt MASK	
Sn_KPALVTR	TCP Keep-Alive Timer	
Sn_TX_WRSR	Write Size of TX memory	
Sn_FRAGR	Configure the fragment field in IP Header	
Sn_TX_FIFOR	The only access to TX memory	
Sn_RX_FIFOR	The only access to RX memory	

Removal

Sn_TX_RD

Memory for data communication

	W5100	W5300
Access	Directly addressing	Only through Sn_TX_FIFOR/Sn_RX_FIFOR
Size	Fixed Size. Total 16KBytes	Configurable ¹ . Total 128KBytes
	TX: 8KBytes, RX: 8Kbytes	TX: 0~128KBytes, RX: 0~128KBytes
Manipulation	Calculate the Pointer Registers	No Calculation
	(Sn_TX_RD,Sn_TX_WR,Sn_RX_RD)	No exist the pointer Register.

<Note> 1. W5300의 Internal Memory는 TSMR, RMSR, MTYPER을 통해 128KBytes 범위 내에서 TX와 RX Memory로 설정 가능하다. 설정한 TX/RX memory Size는 각각 8의 배수 여야 하며, 각 Size에 따라 MTYPER의 각 bit도 설정한다.

■ SOCKET

	W5100	W5300
Count	4	8
TX memory	Allocable 1/2/4/8 KBytes	Allocable from 0 to 64Kbytes ¹
RX memory	Allocable 1/2/4/8 KBytes	Allocable from 0 to 64Kbytes ¹

<Note> 1. 각 SOCKET의 TX/RX Memory는 TMSRn과 RMSRn을 통해 각각 0Kbytes에서 최대 64KBytes까지 설정 가능하다.

■ Data Transmit Size

	W5100	W5300
Transmit Size	No need	Need to set transmit size to Sn_TX_WRSR

W5100은 Host가 직접 Memory 관련 Pointer Registers(Sn_TX_RD, Sn_TX_WR)를 계산하고 이들을 Update하며 Byte 단위로 Memory에 접근할 수 있다. 따라서 W5100은 Sn_TX_RD와 Sn_TX_WR을 이용하여 내부적으로 실제 전송 Size를 알 수 있다.

반면 W5300은 이런 Pointer Register들이 없고 Word(2 Bytes)단위로 Memory에 접근할 수 있기 때문에 실제 전송 Size를 Sn_TX_WRSR에 설정해야 한다.

■ Check Data Reception

	W5100	W5300
Check RX	Interrupt(Sn_IR(RECV))	Interrupt(Sn_IR(RECV))
	Received Size(Sn_RX_RSR)	Received Size(Sn_RX_RSR)
		BRDYn PINs ¹

<Note> 1. W5300은 기존 W5100과 같은 방법을 가지고 있다. 또한 SOCKET n의 Buffer Depth를 관찰할 수 있는 4개의 BRDYn PIN을 지원한다. 이 BRDYn은 Pn_BRDYR의 설정으로 원하는 SOCKET Num, Signal Polarity, Memory Type(TX/RX)을 선택할 수 있고, SOCKET n의 Buffer Depth가 Pn_BDPTHR의 설정보다 같거나 클 경우 Assert된다. Host는 BRDYn PIN을 I/O Port나 Interrupt PIN에 연결하여 이를 Monitoring할 수 있다.

■ TCP

	W5100	W5300
PACKET-INFO	No Header	PACKET-INFO addition when Sn_MR(ALIGN) = '0' 1
(Header)		
Keep-Alive	Manually	Manually, Automatically ²
	1 Byte Keep-alive data	0 byte Keep-alive data

- <Note> 1. W5100은 Memory Operation을 Byte 단위로 처리하여 TCP의 Received Data에 추가 정보가 필요하지 않다. 반면, W5300은 Memory Operation을 Word(2 Bytes) 단위로 처리하여 홀수 크기의 TCP Data와 짝수 크기의 TCP Data의 구분이 불가능하다. 따라서, 이를 PACKET-INFO로 실제 Data 크기를 알려준다. Host는 TCP Data를 수신할 때 PACKET-INFO을 분석하여, 실제 수신크기만큼 Data를 처리해야 한다. 만약수신 Data의 크기가 모두 짝수라면, Sn_MR의 ALIGN bit를 '1' 설정하여 이 PAKCET-INFO를 추가하지 않을 수 있다.
 - 2. W5300은 Sn_KPALVTR을 설정 값에 따라 Manually(Sn_KPALVTR=0x00 and SEND_KEEP command)나 Automatically(Sn_KPALVTR > 0 and without command) 0 Byte Data 크기의 Keep Alive Packet을 전송할 수 있다.

MACRAW

	W5100	W5300
PACKET-INFO	Header의 Size 정보는 Data 크기뿐	PACKET-INFO의 Size 정보는 Data
(Header)	만 아니라 Header 크기 2Bytes도	크기만 포함한다.
	포함한다.	
Received Data	Header(2Bytes) + Data	PAKCET-INFO(2Bytes) + DATA packet
Format		+ CRC(4bytes) 1
PAUSE FRAME ²	No support	Switch나 Router 장비로부터 PAUSE
		FRAME을 수신할 경우 W5300의 모
		든 Data 전송은 Pause-Time 동안
		Pause된다.

- <Note> 1. W5300은 MACRAW Data를 수신할 때 마다 CRC(4bytes)가 Data 마지막에 추가된다. 수신된 CRC는 Ethernet Frame의 CRC값으로 실제 사용되지 않는다. Host는 이 CRC 를 읽은 후 무시해야 한다.
 - 2. PAUSE FRAME은 Ethernet network 장비 간의 일시적인 Data 전송 중지(flow control)를 위한 mechanism이다. Ethernet Flow control 상황은 송신자의 전송속 도가 수신자의 수신 속도보다 더 빠를 경우 발생할 수 있다. 이 상황에서 수신자는 PAUSE FRAME을 전송하여 특정 시간 동안 송신자의 Data 전송 중지를 요구할수 있다.

■ Package

	W5100	W5300
Package	80 LQFP	100 LQFP