Luminex Xponent: Plate-level Quality Control

Sahal Thahir & Jeff Bailey

2024-06-04

Contents

A :																										-
Aim									 	 																J

Aim

This code aims to perform plate-level quality control analysis for Luminex studies through bead counts, Background MFI, and Standard curve analysis.

Instructions

- 1. Modify YAML Parameters:
 - Open this document in RStudio.
 - Edit the YAML parameters at the top of the document:
 - input_file: Path to your input CSV file.
 - min_beadcount: Set the minimum bead count threshold.
 - min_Rsquared: Set the minimum R-squared value for standard curve QC.
 - file_path: Specify the output directory for plots and PDFs.

2. Run the Analysis:

• After modifying the YAML parameters, click the *knit* button at the top of the page to generate the report.

Code Explanation

Dependencies

- R version 4.3.1 (2023-06-16)
 - tidyverse (v. 2.0.0)
 - here (v. 1.0.1)
 - gridExtra (v. 2.3)

This code chunk will ensure these packages are installed and loaded.

Import and Data Extraction

1. Raw data import: Import raw data CSV file into R.

```
# No input required
#YAML extraction

# Read parameters from YAML header
input_file <- params$input_file
min_beadcount <- params$min_beadcount
min_Rsquared <- params$min_Rsquared
file_path <- params$file_path</pre>
```

```
background_col <- params$background

# Raw data import
    lines <- readLines(input_file)</pre>
```

```
## Warning in readLines(input_file): incomplete final line found on
## 'data/raw/luminex/RTSS_Ahero_IgG3_3.21.24_Lowbeadtest.csv'
```

- 2. Extract dataframes: find median MFI and bead count data. This includes a check to ensure the median MFI and beadcount dataframes align.
- ## [1] "Column names are consistent between the median MFI and bead count data frames."
 - 3. **Identify low bead count wells:** this searches the beadcount data frame for well-antigen data with low bead count, as set in the YAML. This will export a csv file of the samples which will need to be rerun.
- ## The bead QC list has been exported to data/qc/RTSS_Ahero_IgG3_3.21.24_Lowbeadtest_beadqc_low_df.csv

Visualization of bead count data

##

<chr>

1 21(1,E3) RAM-002

<chr>

2 22(1,F3) RAC-002-T01 pp28

<chr>

AMA1

This code generates a well schematic identifying wells identified as having low bead counts. as well as a heatmap of antigen/well locations and the quantity of beads, to assist in determining the cause of low bead counts (low antigen concentration in mastermix, vortexing between wells, etc.)

RTSS_Ahero_IgG3_3.21.24_Lowbeadtest

RTSS_Ahero_IgG3_3.21.24_Lowbeadtest

```
3 23(1,G3) RAC-002-T07 Schisto RTSS_Ahero_IgG3_3.21.24_Lowbeadtest
                                   RTSS_Ahero_IgG3_3.21.24_Lowbeadtest
##
   4 24(1,H3) RAC-002-T08 pp65
                                   RTSS_Ahero_IgG3_3.21.24_Lowbeadtest
   5 25(1,A4) RAM-005
   6 26(1,B4) RAC-005-T01 MSP1
                                   RTSS_Ahero_IgG3_3.21.24_Lowbeadtest
##
##
   7 27(1,C4) RAC-005-T08 HRPII
                                   RTSS_Ahero_IgG3_3.21.24_Lowbeadtest
                                   RTSS_Ahero_IgG3_3.21.24_Lowbeadtest
##
   8 28(1,D4) RAM-007
                           CelTos
                                   RTSS_Ahero_IgG3_3.21.24_Lowbeadtest
   9 29(1,E4) RAC-007-T01 CSP
## 10 30(1,F4) RAC-007-T07 PfGarp
                                   RTSS_Ahero_IgG3_3.21.24_Lowbeadtest
## 11 31(1,G4) RAC-007-T08 CSP
                                   RTSS_Ahero_IgG3_3.21.24_Lowbeadtest
## 12 32(1,H4) RAM-008
                           CelTos
                                   RTSS_Ahero_IgG3_3.21.24_Lowbeadtest
## 13 33(1,A5) RAC-008-T01 HRPII
                                   RTSS_Ahero_IgG3_3.21.24_Lowbeadtest
                                   RTSS_Ahero_IgG3_3.21.24_Lowbeadtest
## 14 34(1,B5) RAC-008-T07 MSP1
## 15 35(1,C5) RAC-008-T08 BSA
                                   RTSS_Ahero_IgG3_3.21.24_Lowbeadtest
## 16 36(1,D5) RAM-009
                                   RTSS_Ahero_IgG3_3.21.24_Lowbeadtest
## 17 37(1,E5) RAC-009-T01 Schisto RTSS_Ahero_IgG3_3.21.24_Lowbeadtest
## 18 38(1,F5) RAC-009-T07 pp28
                                   RTSS_Ahero_IgG3_3.21.24_Lowbeadtest
## 19 39(1,G5) RAC-009-T08 AMA1
                                   RTSS_Ahero_IgG3_3.21.24_Lowbeadtest
```

 $\hbox{\tt \#\# The bead QC list has been exported to data/qc/RTSS_Ahero_IgG3_3.21.24_Lowbeadtest_beadqc_low_df.csv} \\$

 $\hbox{\tt \#\# The bead QC report has been exported to } {\tt data/qc/RTSS_Ahero_IgG3_3.21.24_Lowbeadtest_beadqc.png } \\$

- 4. **Modify Median MFI data:** All plate locations with a low beadcount with be switched to a NA value for standard curve evaluation
- ## Median MFI data has been modified for low bead count wells.
 - 5. **Evaluate standard curves:** Make sure the background and standard analytes are defined in the YAML params

This first chunk conducts background MFI subtraction, based on the analyte defined in the YAML.

Background MFI subtraction completed.

This code chunk

```
## 'geom_smooth()' using formula = 'y ~ x'
## 'geom_smooth()' using formula = 'y ~ x'
## 'geom_smooth()' using formula = 'y ~ x'
```



```
## TableGrob (2 x 2) "arrange": 3 grobs
##
           cells
    z
                    name
                                   grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
## 3 3 (2-2,1-1) arrange gtable[layout]
##
     Analyte R_squared
## 1
       AMA1 0.9756595
## 2 CelTos 0.2923485
## 3
      HRPII 0.9840924
     Analyte R_squared min_Rsq
## 1
       AMA1 0.9756595
                          TRUE
## 2 CelTos 0.2923485
                         FALSE
      HRPII 0.9840924
                          TRUE
## 3
```

- ## [1] "This plate has passed plate-level quality control for standard curve linearity."
- ## [1] "At least one analyte meets the criteria for the preset minimum R-squared (see min_Rsquared in Y
- ## [1] "Median MFI from this plate will be included in the compiled study dataframe."

Create quality controlled Median MFI data

```
## Analyte R_squared min_Rsq
## 1 AMA1 0.9756595 TRUE
## 2 CelTos 0.2923485 FALSE
## 3 HRPII 0.9840924 TRUE
```

- ## [1] "This plate has passed plate-level quality control for standard curve linearity."
- ## [1] "At least one analyte meets the criteria for the preset minimum R-squared (see min_Rsquared in Y
- ## [1] "Median MFI from this plate will be included in the compiled study dataframe."
- ## Plate passed QC. All NA values have been replaced with 'Failed QC (bead)'.
- $\verb|## The cleaned median MFI data has been exported to data/clean/luminex/RTSS_Ahero_IgG3_3.21.24_Lowbeadt in the cleaned median MFI data has been exported to data/clean/luminex/RTSS_Ahero_IgG3_3.21.24_Lowbeadt in the cleaned median MFI data has been exported to data/clean/luminex/RTSS_Ahero_IgG3_3.21.24_Lowbeadt in the cleaned median MFI data has been exported to data/clean/luminex/RTSS_Ahero_IgG3_3.21.24_Lowbeadt in the cleaned median MFI data has been exported to data/clean/luminex/RTSS_Ahero_IgG3_3.21.24_Lowbeadt in the cleaned median MFI data has been exported to data/clean/luminex/RTSS_Ahero_IgG3_3.21.24_Lowbeadt in the cleaned median med$

Developer notes

->