DSA 8020 R Session 5: Multiple Linear Regression IV

Whitney

January 31, 2021

Contents

Regression with Both Quantitative and Qualitative Predictors	1
Salaries for Professors Data Set	1
Load the data	1
Summazrize the data	2
Model fitting	9
Model 1: A MLR with yrs.since.phd (numerical predictor), discipline, rank, and sex	
(categorical predictors)	9
Plot the model 1 fit	10
Model 2: Another MLR where we include the interaction between sex and yrs.since.phd	15
Model 3: One more MLR where we include the interaction between discipline and	
yrs.since.phd	17
Polynomial regression	18
Housing Values in Suburbs of Boston	18
Load and plot the data	18
Plot the poylnomial regression fits	20
Model selection	22
Nonlinear Regression	24
U.S. Population Example	24
Logistic growth curve	25
Fit a logistic growth curve to the U.S. population data set	25
Alternative model: fit quadratic/cubic polynomial regression	27
Comparing the fits	28

Regression with Both Quantitative and Qualitative Predictors

Salaries for Professors Data Set

The 2008-09 nine-month academic salary for Assistant Professors, Associate Professors and Professors in a college in the U.S. The data were collected as part of the on-going effort of the college's administration to monitor salary differences between male and female faculty members.

Load the data

```
library(carData)
data(Salaries)
head(Salaries)
```

```
rank discipline yrs.since.phd yrs.service sex salary
## 1
         Prof
                      В
                                   19
                                              18 Male 139750
                                   20
## 2
         Prof
                      В
                                              16 Male 173200
## 3 AsstProf
                      В
                                   4
                                               3 Male 79750
## 4
                                               39 Male 115000
         Prof
                      В
                                   45
## 5
         Prof
                      В
                                   40
                                              41 Male 141500
## 6 AssocProf
                      В
                                   6
                                               6 Male 97000
```

Summazrize the data

Max.

```
summary(Salaries)
##
                  discipline yrs.since.phd
          rank
                                           yrs.service
                                                               sex
## AsstProf : 67
                  A:181
                             Min. : 1.00
                                            Min. : 0.00
                                                           Female: 39
                  B:216
## AssocProf: 64
                             1st Qu.:12.00
                                            1st Qu.: 7.00
                                                           Male :358
## Prof
          :266
                             Median :21.00
                                            Median :16.00
##
                             Mean :22.31
                                            Mean :17.61
##
                             3rd Qu.:32.00
                                            3rd Qu.:27.00
##
                             Max. :56.00
                                            Max. :60.00
##
       salary
## Min. : 57800
## 1st Qu.: 91000
## Median :107300
## Mean :113706
## 3rd Qu.:134185
```

boxplot(salary ~ sex, data = Salaries, las = 1)

:231545

$geom_smooth()$ using formula 'y ~ x'

Model fitting

 $Model \ 1: \ A \ MLR \ with \ {\tt yrs.since.phd} \ (numerical \ predictor), \ discipline, \ rank, \ and \ sex \ (categorical \ predictors)$

```
m1 <- lm(salary ~ discipline + rank + sex + yrs.since.phd, data = Salaries)
X <- model.matrix(m1)
head(X)</pre>
```

##		(Intercept)	${\tt disciplineB}$	${\tt rankAssocProf}$	${\tt rankProf}$	sexMale	<pre>yrs.since.phd</pre>
##	1	1	1	0	1	1	19
##	2	1	1	0	1	1	20
##	3	1	1	0	0	1	4
##	4	1	1	0	1	1	45
##	5	1	1	0	1	1	40
##	6	1	1	1	0	1	6

```
summary(m1)
##
## Call:
## lm(formula = salary ~ discipline + rank + sex + yrs.since.phd,
      data = Salaries)
##
## Residuals:
             1Q Median
     Min
                           3Q
                                Max
## -67451 -13860 -1549 10716 97023
##
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                67884.32
                         4536.89 14.963 < 2e-16 ***
                                     5.940 6.32e-09 ***
                13937.47
                            2346.53
## disciplineB
## rankAssocProf 13104.15
                            4167.31
                                      3.145 0.00179 **
## rankProf
                46032.55
                            4240.12 10.856 < 2e-16 ***
## sexMale
                 4349.37
                            3875.39
                                     1.122 0.26242
## yrs.since.phd
                            127.01
                                    0.480 0.63124
                   61.01
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 22660 on 391 degrees of freedom
## Multiple R-squared: 0.4472, Adjusted R-squared: 0.4401
## F-statistic: 63.27 on 5 and 391 DF, p-value: < 2.2e-16
```

Plot the model 1 fit

```
attach(Salaries)
yr.range <- tapply(yrs.since.phd, list(discipline, sex, rank), range)</pre>
sex.col <- ifelse(sex == "Male", "blue", "red")</pre>
dis.col <- ifelse(discipline == "A", 16, 1)
beta0 <- m1$coefficients[1]</pre>
betaDisp <- m1$coefficients[2]</pre>
betaAssoc <- m1$coefficients[3]</pre>
betaProf <- m1$coefficients[4]</pre>
betaMale <- m1$coefficients[5]</pre>
beta1 <- m1$coefficients[6]
library(scales)
# Plot the model fits by rank
## Assist prof
assistant <- which(rank == "AsstProf")</pre>
plot(yrs.since.phd[assistant], salary[assistant], pch = dis.col[assistant], cex = 0.8,
     col = alpha(sex.col[assistant], 0.5), yaxt = "n", xlab = "Years since PhD",
     main = "9-month salary", ylab = "")
axis(2, at = seq(63000, 99000, len = 6), labels = paste(seq(63000, 99000, len = 6)/ 1000, "k"),
     las = 1)
segments(yr.range[[1]][1], beta0 + yr.range[[1]][1] * beta1,
         yr.range[[1]][2], beta0 + yr.range[[1]][2] * beta1, col = "red", lwd = 1.8)
segments(yr.range[[2]][1], beta0 + betaDisp + yr.range[[2]][1] * beta1,
```



```
col = alpha(sex.col[prof], 0.5),
     yaxt = "n", xlab = "Years since PhD",
     main = "9-month salary", ylab = "")
axis(2, at = seq(57000, 232000, len = 6),
    labels = paste(seq(57000, 232000, len = 6)/ 1000, "k"),
segments(yr.range[[9]][1], beta0 + betaProf + yr.range[[9]][1] * beta1,
        yr.range[[9]][2], beta0 + betaProf + yr.range[[9]][2] * beta1,
         col = "red", lwd = 1.8)
segments(yr.range[[10]][1], beta0 + betaDisp + betaProf + yr.range[[10]][1] * beta1,
         yr.range[[10]][2], beta0 + betaDisp + betaProf + yr.range[[10]][2] * beta1,
         col = "red", lty = 2, lwd = 1.8)
segments(yr.range[[11]][1], beta0 + betaProf + betaMale + yr.range[[11]][1] * beta1,
         yr.range[[11]][2], beta0 + betaProf + betaMale + yr.range[[11]][2] * beta1,
         col = "blue", lwd = 1.8)
segments(yr.range[[12]][1], beta0 + betaDisp + betaProf + betaMale + yr.range[[12]][1] * beta1,
        yr.range[[12]][2], beta0 + betaDisp + betaProf + betaMale + yr.range[[12]][2] * beta1,
         col = "blue", lty = 2, lwd = 1.8)
```



```
## Using ggplot
plot <- ggplot(aes(x = yrs.since.phd, y = salary), data = Salaries)
plot <- plot + geom_point()
plot <- plot + facet_grid(~ sex + rank)
(plot <- plot + geom_smooth(method = "lm"))</pre>
```

`geom_smooth()` using formula 'y ~ x'

Model 2: Another MLR where we include the interaction between sex and yrs.since.phd

```
m2 <- lm(salary ~ sex * yrs.since.phd)</pre>
summary(m2)
##
## Call:
## lm(formula = salary ~ sex * yrs.since.phd)
##
## Residuals:
##
      Min
              1Q Median
                             3Q
                                   Max
  -83012 -19442 -2988
                        15059 102652
##
## Coefficients:
##
                         Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                          73840.8
                                       8696.7
                                                8.491 4.27e-16 ***
## sexMale
                           20209.6
                                       9179.2
                                                2.202 0.028269 *
```

```
## yrs.since.phd
                                      454.6 3.618 0.000335 ***
                          1644.9
## sexMale:yrs.since.phd -728.0
                                      468.0 -1.555 0.120665
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 27420 on 393 degrees of freedom
## Multiple R-squared: 0.1867, Adjusted R-squared: 0.1805
## F-statistic: 30.07 on 3 and 393 DF, p-value: < 2.2e-16
coeff <- m2$coefficients</pre>
plot(yrs.since.phd, salary, las = 1, pch = 16, cex = 0.5, col = alpha(sex.col, 0.5),
     xlab = "Years since PhD", main = "9-month salary", ylab = "")
grid()
abline(coeff[1], coeff[3], col = "red")
abline(coeff[1] + coeff[2], coeff[3] + coeff[4], col = "blue")
legend("toplef", legend = c("Female", "Male"),
      pch = 16, col = c("red", "blue"), bty = "n")
```


Model 3: One more MLR where we include the interaction between discipline and yrs.since.phd

```
m3 <- lm(salary ~ discipline * yrs.since.phd)</pre>
summary(m3)
##
## Call:
## lm(formula = salary ~ discipline * yrs.since.phd)
## Residuals:
##
     Min
              1Q Median
                            3Q
                                  Max
## -84580 -16974 -3620 15733 92072
##
## Coefficients:
##
                             Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                              84845.4
                                          4283.9 19.806 < 2e-16 ***
## disciplineB
                               7530.0
                                          5492.2
                                                   1.371
                                                           0.1711
## yrs.since.phd
                                933.9
                                           150.0
                                                   6.225 1.24e-09 ***
                                365.3
## disciplineB:yrs.since.phd
                                           211.0
                                                   1.731
                                                           0.0842 .
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 26400 on 393 degrees of freedom
## Multiple R-squared: 0.2458, Adjusted R-squared: 0.2401
## F-statistic: 42.7 on 3 and 393 DF, p-value: < 2.2e-16
coeff <- m3$coefficients</pre>
plot(yrs.since.phd, salary, las = 1, pch = dis.col, cex = 0.5, col = alpha(sex.col, 0.5),
     xlab = "Years since PhD", main = "9-month salary", ylab = "")
grid()
abline(coeff[1], coeff[3])
abline(coeff[1] + coeff[2], coeff[3] + coeff[4], lty = 2)
legend("toplef", legend = c("Female", "Male"),
      pch = 16, col = c("red", "blue"), bty = "n")
```


Polynomial regression

Housing Values in Suburbs of Boston

- Dependent variable: medv, the median value of owner-occupied homes (in thousands of dollars).
- Independent variable: *lstat* (percent of lower status of the population).

Load and plot the data

```
library(MASS)
data(Boston)
plot(Boston$lstat, Boston$medv, col = "gray", pch = 16,
    cex = 0.6, las = 1, xlab = "lower status of the population (percent)", ylab = "median value of own
```



```
lower status of the population (percent)
```

```
## ggplot
plot <- ggplot(aes(x = lstat, y = medv), data = Boston)
(plot <- plot + geom_point(colour = "gray"))</pre>
```


Plot the poylnomial regression fits

lower status of the population (percent)

```
## Using ggplot
plot <- plot + geom_smooth(method = "lm", colour = "black", se = F)
plot <- plot + geom_smooth(method = "lm", formula = y ~ x + I(x^2), colour = "red", se = F)
plot <- plot + geom_smooth(method = "lm", formula = y ~ x + I(x^2) + I(x^3), colour = "blue", se = F)
plot</pre>
```

`geom_smooth()` using formula 'y ~ x'

Model selection

```
anova(m2, m3)

## Analysis of Variance Table

##

## Model 1: medv ~ lstat + I(lstat^2)

## Model 2: medv ~ lstat + I(lstat^2) + I(lstat^3)

## Res.Df RSS Df Sum of Sq F Pr(>F)

## 1 503 15347

## 2 502 14616 1 731.76 25.134 7.428e-07 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

## Use Orthogonal Polynomials

m2new <- lm(medv ~ poly(lstat, 2), data = Boston)</pre>
```

```
m3new <- lm(medv ~ poly(lstat, 3), data = Boston)
summary(m3new); summary(m3)
##
## lm(formula = medv ~ poly(lstat, 3), data = Boston)
## Residuals:
##
                 1Q Median
       Min
                                   3Q
                                           Max
## -14.5441 -3.7122 -0.5145
                               2.4846 26.4153
## Coefficients:
                   Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                    22.5328
                                0.2399 93.937 < 2e-16 ***
## poly(lstat, 3)1 -152.4595
                                5.3958 -28.255 < 2e-16 ***
## poly(lstat, 3)2 64.2272
                                5.3958 11.903 < 2e-16 ***
## poly(lstat, 3)3 -27.0511
                                5.3958 -5.013 7.43e-07 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 5.396 on 502 degrees of freedom
## Multiple R-squared: 0.6578, Adjusted R-squared: 0.6558
## F-statistic: 321.7 on 3 and 502 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = medv ~ lstat + I(lstat^2) + I(lstat^3), data = Boston)
## Residuals:
       Min
                 1Q
                      Median
                                   3Q
                                           Max
## -14.5441 -3.7122 -0.5145
                               2.4846
                                      26.4153
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 48.6496253 1.4347240 33.909 < 2e-16 ***
              -3.8655928  0.3287861  -11.757  < 2e-16 ***
## I(lstat^2)
               0.1487385
                          0.0212987
                                      6.983 9.18e-12 ***
## I(lstat^3) -0.0020039 0.0003997 -5.013 7.43e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 5.396 on 502 degrees of freedom
## Multiple R-squared: 0.6578, Adjusted R-squared: 0.6558
## F-statistic: 321.7 on 3 and 502 DF, p-value: < 2.2e-16
anova(m2new, m3new)
## Analysis of Variance Table
##
## Model 1: medv ~ poly(lstat, 2)
## Model 2: medv ~ poly(lstat, 3)
    Res.Df
             RSS Df Sum of Sq
                                        Pr(>F)
## 1
       503 15347
## 2
       502 14616 1
                       731.76 25.134 7.428e-07 ***
## ---
```

```
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Nonlinear Regression

U.S. Population Example

```
library(car)
plot(population ~ year, data = USPop, main = "U.S. population",
      ylim = c(0, 300),pch = "*", xlab = "Census year",
      ylab = "Population in millions", cex = 1.25, las = 1, col = "blue")
grid()
```

U.S. population

Logistic growth curve

A logistic function is a symmetric S shape curve with equation:

$$f(x) = \frac{\phi_1}{1 + \exp(-(x - \phi_2)/\phi_3)}$$

where ϕ_1 is the curve's maximum value; ϕ_2 is the curve's midpoint in x; and ϕ_3 is the "range" (or the inverse growth rate) of the curve.

One typical application of the logistic equation is to model population growth.

Logistic growth curve

Fit a logistic growth curve to the U.S. population data set

```
pop.ss <- nls(population ~ SSlogis(year, phi1, phi2, phi3), data = USPop)
summary(pop.ss)</pre>
```

```
##
## Formula: population ~ SSlogis(year, phi1, phi2, phi3)
## Parameters:
       Estimate Std. Error t value Pr(>|t|)
## phi1 440.833 35.000 12.60 1.14e-10 ***
## phi2 1976.634
                   7.556 261.61 < 2e-16 ***
## phi3
         46.284
                    2.157 21.45 8.87e-15 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 4.909 on 19 degrees of freedom
## Number of iterations to convergence: 0
## Achieved convergence tolerance: 6.818e-07
library(scales)
plot(population ~ year, USPop, xlim = c(1790, 2150),
    ylim = c(0, 500), las = 1, pch = "*",
    xlab = "Census year", ylab = "Population (millions)", cex = 1.6)
with (USPop, lines (seq(1790, 2150, by = 10),
                 predict(pop.ss, data.frame(year = seq(1790, 2150, by = 10))),
                 lwd = 1, col = alpha("blue", 0.75)))
abline(h = coef(pop.ss)[1], col = alpha("black", 0.7))
mtext(expression(hat(phi)[1]), side = 2, at = coef(pop.ss)[1], las = 1, col = "blue")
grid()
abline(v = coef(pop.ss)[2], col = alpha("black", 0.7), lwd = 0.5)
mtext(expression(hat(phi)[2]), side = 1, at = coef(pop.ss)[2], las = 1, col = "blue")
segments(coef(pop.ss)[2], 200, coef(pop.ss)[2] + 3 * coef(pop.ss)[3])
text(coef(pop.ss)[2], 200, "[", col = "blue")
text(coef(pop.ss)[2] + 3 * coef(pop.ss)[3], 200, "]", col = "blue")
text(coef(pop.ss)[2] + 1.5 * coef(pop.ss)[3], 180, expression(3*hat(phi)[3]), col = "blue")
```



```
# Compute AIC
AIC(pop.ss)
```

[1] 137.2121

${\bf Alternative\ model:\ fit\ quadratic/cubic\ polynomial\ regression}$

```
pop.qm <- lm(population ~ year + I(year^2), USPop)
pop.cm <- lm(population ~ poly(year, 3), USPop)
summary(pop.cm)

##
## Call:
## lm(formula = population ~ poly(year, 3), data = USPop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.2647 -1.1481 0.4461 1.7754 4.1953
##
## Coefficients:</pre>
```

```
Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                  94.6753
                              0.6023 157.20
                                              <2e-16 ***
## poly(year, 3)1 383.5304
                              2.8249 135.77
                                               <2e-16 ***
## poly(year, 3)2 112.4650
                              2.8249
                                      39.81
                                               <2e-16 ***
## poly(year, 3)3 5.1987
                              2.8249
                                        1.84
                                              0.0823 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 2.825 on 18 degrees of freedom
## Multiple R-squared: 0.9991, Adjusted R-squared: 0.999
## F-statistic: 6674 on 3 and 18 DF, p-value: < 2.2e-16
## Model selection
AIC(pop.cm); AIC(pop.qm)
## [1] 113.711
## [1] 115.5039
anova(pop.qm, pop.cm)
## Analysis of Variance Table
## Model 1: population ~ year + I(year^2)
## Model 2: population ~ poly(year, 3)
   Res.Df
              RSS Df Sum of Sq
                                  F Pr(>F)
## 1
        19 170.66
        18 143.64 1
                        27.027 3.3868 0.08227 .
## 2
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Comparing the fits

