АНАЛИЗ УСТОЙЧИВОСТИ СУЩЕСТВЕННО НЕЛИНЕЙНЫХ РЕГРЕССИОННЫХ МОДЕЛЕЙ К ПОГРЕШНОСТЯМ В ИЗМЕРЯЕМЫХ ДАННЫХ

Г.И. Рудой*

* Московский физико-технический институт (государственный университет) 141700, Московская обл., г. Долгопрудный, Институтский пер., 9

Аннотация

Для восстановления нелинейной зависимости показателя преломления среды от длины волны рассматривается набор индуктивно порожденных моделей с целью выбора оптимальной. Применяется алгоритм индуктивного порождения допустимых существенно нелинейных моделей. Предлагается критерий определения погрешности коэффициентов порожденных суперпозиций, называемый устойчивостью, а также метод оценки устойчивости полученного решения. Приводятся результаты численного моделирования на данных, полученных в ходе эксперимента по определению состава смеси по суммарной дисперсии.

Ключевые слова: символьная регрессия, нелинейные модели, индуктивное порождение, устойчивость решений, дисперсия прозрачной среды.

ВВЕДЕНИЕ

Для анализа результатов физического эксперимента, как правило, требуется восстановить функциональную зависимость, описывающую соотношение измеряемых величин. При этом необходимо, чтобы эксперт имел возможность интерпретировать полученную зависимость, исходя из соответствующих теоретических моделей. Во многих случаях вид функциональной зависимости заранее известен, либо необходимо сделать выбор между несколькими (также заранее известными) вариантами моделей.

Одним из методов, порождающих интерпретируемые и, в том числе, структурно сложные нелинейные модели, является символьная регрессия [1]-[5]. Различные модели сравниваются согласно ошибке на измеряемых данных, при этом оптимизация их параметров проводится, например, с помощью алгоритма Левенберга-Марквардта [6], [7].

Однако при анализе физического эксперимента важны не только значения самих параметров искомой функциональной зависимости, но и погрешности их определения, обу-

словленные погрешностями измеряемых в эксперименте величин. Для задачи линейной регрессии соответствующая задача решена в частном случае, когда погрешность определения регрессора пренебрежимо мала, а погрешность определения зависимой переменной во всех экспериментальных точках одинакова [8]. Для более сложного случая нелинейной регрессии и ситуации, когда необходимо учитывать погрешности как регрессора, так и зависимой переменной (которые при этом могут быть разными в различных экспериментальных точках), подобная задача, насколько нам известно, не ставилась.

В настоящей работе метод нелинейной регрессии применяется для восстановления зависимости показателя преломления n от длины волны λ в полосе прозрачности полимера, включающей видимую и ближнюю инфракрасную области спектра. Цель экспериментаторов состояла в том, чтобы по известной дисперсии для каждого полимера с учетом того, что показатель преломления смеси химически инертных полимеров равен взвешенной сумме (с соответствующими весами) показателей преломления компонентов, определить состав смеси по экспериментально определенной зависимости $n(\lambda)$. Другими словами, для случая двух полимеров, заранее измерив и вычислив зависимости $n(\lambda)$ и $n_2(\lambda)$, необходимо экспериментально определить суммарную зависимость $n(\lambda) = \alpha n_1(\lambda) + (1-\alpha)n_2(\lambda)$ и по ней вычислить коэффициент α , имеющий смысл концентрации первого полимера в смеси.

Поскольку показатели преломления для прозрачных полимеров близкого химического состава различаются незначительно, учет погрешности определения коэффициентов функциональной зависимости $n(\lambda)$ и их связи с погрешностями экспериментального определения длины волны λ и показателя преломления n имеет принципиальное значение. Указанная связь важна еще и потому, что именно она определяет требования к точности и чувствительности измерительной аппаратуры и, следовательно, влияет на стоимость и продолжительность эксперимента.

Обычно в рефрактометрах используются источники широкополосного (непрерывного) спектра, а погрешность выделения конкретной длины волны определяется аппаратной функцией используемого монохроматора (прибора, выделяющего узкий спектральный диапазон) и подробно рассматривается, например, в [9], [10]. В большинстве случаев

погрешность λ может быть рассчитана, а также определена экспериментально с использованием узкополосных источников света (лазеров, известных атомных переходов вроде триплета ртути или дублета натрия, и т. д.). Характерная относительная погрешность определения длины волны в рассматриваемой задаче обычно составляет $0.03 \div 0.5\%$, а абсолютная погрешность определения длины волны, как правило, меняется с изменением самой длины волны. Экспериментальная погрешность показателя преломления n зависит от выбранного способа его измерения и, например, при определении n по углу полного внутреннего отражения обусловлена непараллельностью используемых световых пучков, погрешностями в измерении углов и т. д, и составляет от $(1 \div 2) \cdot 10^{-5}$ для приборов высокого класса точности до $(1 \div 10) \cdot 10^{-4}$. Для рассматриваемых в настоящей работе задач существенно то, что величины погрешностей могут считаться известными и, возможно, различными для каждой экспериментальной точки.

В настоящей работе предложен критерий устойчивости регрессионной зависимости к погрешностям измерений общего вида вкупе с методом его оценки, и изучена зависимость этого критерия от структуры модели для случая определения дисперсионной зависимости показателя преломления от длины волны. В качестве метода построения регрессионных моделей используется предложенный в [5] алгоритм индуктивного порождения существенно нелинейных суперпозиций элементарных функций.

Предложенный критерий устойчивости применим к любым алгоритмам порождения моделей, включающих числовые параметры (такие, как, например, SVM и нейронные сети), и поэтому выбор конкретного алгоритма носит достаточно произвольный характер. В настоящей работе используется предложенный в [5] алгоритм, основанный на поиске модели в виде суперпозиции некоторых элементарных порождающих функций, минимизирующей функционал, учитывающий как среднеквадратичное отклонение на обучающей выборке, так и сложность рассматриваемой регрессионной модели и предпочитающий при прочих равных условиях более простые модели.

Предложенные ранее методы исследования устойчивости моделей рассматривали изменение значения (или, иными словами, ответа) рассматриваемой регрессионной модели либо классификатора при различных вариациях обучающей выборки и параметров обучения, при этом в большинстве работ из теоретических соображений выводились различного рода верхние оценки обобщающей способности, например, на основе размерности Вапника-Червоненкиса [11]. Кроме того, начиная с работ [12], [13], получило распространение использование различных неравенств из теории вероятности и теории меры для вывода оценок обобщающей способности алгоритмов машинного обучения.

В основополагающей работе [14] вводится несколько различных определений устойчивости модели как некоторой зависимости математического ожидания ошибки на объекте из рассматриваемого распределения от удаления одного объекта из имеющейся обучающей выборки либо замены одного объекта на другой.

Почти все последующие работы в том или ином виде используют одно или несколько предложенных в [14] определений устойчивости. Так, например, в [15] рассматривается устойчивость решения задачи трансдуктивной регрессии с точки зрения разбиения множества объектов на обучающую и тестовую выборки, а в работе [16] исследуется влияние вариации (и, в частности, упрощения) ядерной матрицы на устойчивость решения задачи регрессии и классификации.

Ключевым отличием предложенного в данной работе метода является исследование поведения численных параметров самой модели вместо рассмотрения ее ответов на каких-либо объектах. Насколько нам известно, подобная задача ранее не ставилась.

Исследование свойств самой модели позволяет, помимо использования критерия устойчивости как критерия отбора, также разделять репрезентативные и нерепрезентативные параметры модели. Так, например, если некоторые параметры существенно нелинейной регрессионной модели демонстрируют устойчивость к шуму, то представляется разумным с физической точки зрения использовать именно их как характеристику исследуемого явления.

Кроме того, предложенный метод может быть применен и к регрессионным моделям прочих видов. Например, в случае нейронных сетей представляется возможным исследовать устойчивость каждой из рассматриваемых связей, с одной стороны, давая основания для прореживания сети, и, с другой, предлагая еще один критерий сравнения сетей с различной архитектурой.

В первой части настоящей работы поставлена задача восстановления дисперсии полимера и предложено понятие устойчивости суперпозиции, позволяющее учитывать и анализировать зависимость погрешностей различных коэффициентов порожденной суперпозиции от погрешности измеряемых данных. Во второй части вкратце описывается алгоритм [5], используемый для порождения аналитической функции-суперпозиции, аппроксимирующей данные. В третьей части предложен численный метод нахождения устойчивости суперпозиции. В четвертой части приводятся результаты вычислительного эксперимента на реальных данных. Рассматривается два полимера в области прозрачности, для каждого из которых имеется 17 экспериментальных точек, соответствующих величине коэффициента преломления при различных значениях длины волны.

1 ПОСТАНОВКА ЗАДАЧИ

Задача регрессии. Дана выборка D из ℓ результатов измерений коэффициента преломления для некоторого полимера: $D = \{\lambda_i, n_i \mid i \in \{1, \dots, \ell\}\}$, где λ_i — длина волны, а n_i — измеренный коэффициент преломления в i-ом измерении.

Требуется найти функцию $\hat{f} = \hat{f}(\lambda)$, минимизирующую стандартный функционал потерь в предположении о нормальности случайной ошибки эксперимента:

$$S(f, D) = \sum_{i=1}^{\ell} (f(\lambda_i) - n_i)^2 \to \min_{f \in \mathcal{F}},$$
(1)

где $D = \{\lambda_i, n_i\}$, а \mathcal{F} — некоторое множество суперпозиций, из которого выбирается оптимальная.

Иными словами,

$$\hat{f}(\lambda) = \hat{f}_D(\lambda) = \underset{f \in \mathcal{F}}{\operatorname{arg \, min}} S(f, D). \tag{2}$$

Задача оценки устойчивости. Введем в общем виде понятие устойчивости суперпозиции f, характеризующей поведение коэффициентов суперпозиции \hat{f} при небольшом
случайном изменении исходной обучающей выборки $D = \{\mathbf{x}_i, y_i\}$, где \mathbf{x}_i — исходное (полученное в ходе эксперимента) признаковое описание i-го объекта, а y_i — соответствую-

щее экспериментально измеренное значение функции, которую требуется восстановить.

Функционал потерь (1) в этом случае выглядит следующим образом:

$$S(f, D) = \sum_{i=1}^{\ell} (f(\mathbf{x}_i) - y_i)^2 \to \min_{f \in \mathcal{F}}.$$
 (3)

Условимся также обозначать матрицу плана $X = ||x_{ij}||$, строками которой являются признаковые описания объектов выборки D. Иными словами, x_{ij} обозначает j-ую компоненту признакового описания i-го объекта.

Рассмотрим вектор параметров $\omega_f = \{\omega_i^f \mid i \in \{1, \dots, l_f\}\}$ некоторой суперпозиции f: $f(\mathbf{x}) = f(\mathbf{x}, \omega_f)$. Пусть для некоторой выборки $D = \{\mathbf{x}_i, y_i\}$ и функции f вектор параметров $\hat{\omega}_f(D)$ минимизирует функционал (3) с суперпозицией f, имеющей фиксированную структуру:

$$\hat{\boldsymbol{\omega}}_f(D) = \operatorname*{arg\,min}_{\boldsymbol{\omega}_f} S(f, D).$$

Пусть также дана матрица стандартных отклонений независимых переменных $\Sigma^{\mathbf{x}} = \|\sigma_{ij}^{\mathbf{x}}\|$, где $\sigma_{ij}^{\mathbf{x}}$ характеризует стандартное отклонение j-ой компоненты признакового описания \mathbf{x}_i i-го объекта обучающей выборки, и вектор стандартных отклонений σ^y , где σ_i^y характеризует стандартное отклонение зависимой переменной, соответствующей i-му объекту. Рассмотрим выборку \hat{D} , полученную из исходной выборки D добавлением к каждой компоненте реализаций нормально распределенных случайных величин с нулевым матожиданием и соответствующей $\Sigma^{\mathbf{x}}$ и σ^y дисперсией:

$$\dot{D}(\Sigma^{\mathbf{x}}, \boldsymbol{\sigma}^{y}) = \{\mathbf{x}_{i} + \boldsymbol{\xi}_{i}^{\mathbf{x}}, y_{i} + \boldsymbol{\xi}_{i}^{y} \mid i \in 1, \dots, \ell; \boldsymbol{\xi}_{i}^{\mathbf{x}} \sim \mathcal{N}(0; \boldsymbol{\sigma}_{i}^{\mathbf{x}}); \boldsymbol{\xi}_{i}^{y} \sim \mathcal{N}(0; \boldsymbol{\sigma}_{i}^{y})\}.$$
(4)

Для этой выборки \acute{D} найдем оптимальный вектор $\hat{\omega}_f(\acute{D}(\Sigma^{\mathbf{x}}, \pmb{\sigma}_y))$ параметров суперпозиции f, минимизирующий функционал (1):

$$\hat{\boldsymbol{\omega}}_f(\hat{D}(\Sigma^{\mathbf{x}}, \boldsymbol{\sigma}_y)) = \operatorname*{arg\,min}_{\boldsymbol{\omega}_{f_D}} S(f_D(\cdot, \boldsymbol{\omega}_{f_D}), \hat{D}(\Sigma^{\mathbf{x}}, \boldsymbol{\sigma}_y)). \tag{5}$$

Понятно, что $\hat{\omega}_f(\acute{D}(\Sigma^{\mathbf{x}}, \pmb{\sigma}_y))$ — векторная случайная величина, и, следовательно,

$$\Delta \hat{\boldsymbol{\omega}}_f (\hat{D}(\Sigma^{\mathbf{x}}, \boldsymbol{\sigma}_y)) = \hat{\boldsymbol{\omega}}_f (D) - \hat{\boldsymbol{\omega}}_f (\hat{D}(\Sigma^{\mathbf{x}}, \boldsymbol{\sigma}_y))$$

также векторная случайная величина.

Пусть дано множество $\acute{\mathcal{D}}_N$ из N таких выборок, где каждая выборка соответствует отдельным реализациям случайных величин из (4):

$$\acute{\mathcal{D}}_N(\Sigma^{\mathbf{x}}, \boldsymbol{\sigma}_y) = \{ \acute{D}_1(\Sigma^{\mathbf{x}}, \boldsymbol{\sigma}_y), \dots, \acute{D}_N(\Sigma^{\mathbf{x}}, \boldsymbol{\sigma}_y) \},$$

и пусть $\overline{\sigma}_i$ — эмпирическое стандартное отклонение i-ой компоненты векторной случайной величины $\Delta \hat{\omega}_f(\acute{D}(\Sigma^{\mathbf{x}}, \sigma_y))$ на множестве $\acute{D}_N(\Sigma^{\mathbf{x}}, \sigma_y)$.

Определение 1. Относительной устойчивостью (или просто устойчивостью) параметра ω_i относительно j-ой компоненты векторного описания при исходной обучающей выборке D и параметрах $\mathcal{D}_N(\Sigma^{\mathbf{x}}, \sigma_y)$ будем называть следующую величину:

$$T_{ij}(f) = \begin{cases} \frac{\frac{\overline{\sigma}_i}{\hat{\omega}_i}}{r\left(\left\{\frac{\sigma_{kj}^{\mathbf{x}}}{x_{kj}}\right\}_{k \in \{1,\dots,\ell\}}\right)} & j \leq |\mathbf{x}|\\ \frac{\overline{\sigma}_i}{\hat{\omega}_i} & j = |\mathbf{x}| + 1 \end{cases}$$

$$(6)$$

где r — некоторая функция, переводящая вектор, составленный из соответствующих дробей, в единственный скаляр.

Функция r позволяет сопоставить, вообще говоря, различным отношениям стандартного отклонения зависимой переменной y_i i-го объекта обучающей выборки и самого значения y_i единственное число (аналогично и для x_i -й независимой переменной и ее стандартного отклонения). Примерами такой функции могут являться среднее арифметическое всех отношений или максимальное значение отношения, а конкретная функция выбирается экспертом в зависимости от физического смысла задачи. В настоящей ра-

боте предлагается выбирать значения стандартных отклонений так, чтобы все значения соответствующих переменных были равны, поэтому функция r может выбирать любой из своих аргументов.

Величина $T_{ij}(f)$ показывает, как относится стандартное отклонение параметра $\hat{\omega}_i$, нормированное на значение этого параметра, к характерному стандартному отклонению j-го элемента признакового описания, нормированного на значение этого элемента. Например, если это отношение больше единицы, то погрешности определения коэффициента $\hat{\omega}_i$ растут быстрее погрешностей измерения параметра.

В частности, в искомой задаче восстановления дисперсионной зависимости с учетом неизменной относительной ошибки эксперимента:

$$T_{i0}(f) = \frac{\overline{\sigma}_i/\hat{\omega}_i}{\sigma_n/n},$$

$$T_{i1}(f) = \frac{\overline{\sigma}_i/\hat{\omega}_i}{\sigma_{\lambda}/\lambda}.$$

Требуется исследовать зависимость устойчивости $\mathbb{T}_{\hat{f}}$ относительно σ_n и σ_λ .

Отметим, что для простых случаев одномерной регрессии (каковым является исследование дисперсионной зависимости полимеров), возможно, более наглядным является исследование абсолютной устойчивости — зависимости величины $\frac{\overline{\sigma}_i}{\hat{\omega}_i}$ от нормализованных вариаций в обучающей выборке, $\frac{\sigma_n}{n}$ и $\frac{\sigma_{\lambda}}{\lambda}$ соответственно. В этом случае возможно проиллюстрировать искомую зависимость интерпретируемым графиком.

2 АЛГОРИТМ ИНДУКТИВНОГО ПОРОЖДЕНИЯ СУПЕРПОЗИЦИЙ

Опишем предложенный в [5] алгоритм.

Пусть задано некоторое конечное множество $G = \{g\}$ элементарных функций. Итеративно строится множество $\mathcal{F} = \{f | f = f(x, \omega_f)\}$ допустимых суперпозиций функций g, зависящих как и от свободных переменных x_i , соответствующих компонентам вектораописания объектов, так и от некоторых параметров ω_f . Допустимость суперпозиции определяется как ее корректность с точки зрения арности (то есть, количество аргументов

каждой элементарной функции совпадает с ожидаемым) и типов (аргументами функции являются переменные и другие функции тех типов, которые ожидает функция).

На первой итерации набор суперпозиций $\mathcal F$ инициализируется случайными, но допустимыми суперпозициями функций $g\in G$. Затем на каждой итерации над суперпозициями выполняется набор модифицирующих операций с целью достижения максимального качества Q_f суперпозиций:

- Замена одной функции или параметра на другую функцию или параметр с сохранением корректности суперпозиции, то есть, при такой замене тип и арность нового элемента суперпозиции соответствует таковым заменяемого элемента.
- Обмен подэлементами двух суперпозиций соответствующих типов.

Суперпозиции, а также их элементы, подлежащие модифицирующим операциям, выбираются случайным образом с некоторым трендом, зависящим от качества модифицируемых суперпозиций Q_f . В частности, для обмена могут выбираться скорее более качественные суперпозиции. Параметры ω_f получающихся суперпозиций оптимизируются алгоритмом Левенберга-Марквардта согласно функционалу (1).

Таким образом, модифицирующие операции изменяют структуру суперпозиций из рассматриваемого множества, в то время как набор параметров ω_f для каждой суперпозиции f отвечает за ее подстройку к конкретной обучающей выборке.

Качество Q_f суперпозиции f вычисляется по совокупности точности приближения экспериментальных данных и структурной сложности суперпозиции:

$$Q_f = \frac{1}{1 + S(f)} \left(\alpha + \frac{1 - \alpha}{1 + \exp(C_f - \tau)} \right),\tag{7}$$

где:

S(f) — значение функционала потерь (1) на данной выборке D;

 C_f — сложность суперпозиции, соответствующая количеству элементарных функций, свободных переменных и констант;

 $\alpha-0<\alpha<1$, характеризует влияние штрафа за сложность на качество суперпозиции (большие значения α отдают предпочтение более точным моделям, а меньшие — более простым), при этом характерное значение α выбирается ближе к единице;

au — коэффициент, характеризующий желаемую сложность модели.

Второй множитель в (7) выполняет роль штрафа за слишком большую сложность суперпозиции, что подавляет эффект переобучения и позволяет получать более простые суперпозиции ценой большей ошибки на обучающих данных при большей обобщающей способности.

Отметим, что параметры α и τ выбираются экспертом.

Таким образом, исходная задача минимизации функционала (1) заменяется на задачу минимизации функционала (7):

$$Q_f = \frac{1}{1 + S(f)} \left(\alpha + \frac{1 - \alpha}{1 + \exp(C_f - \tau)} \right) \to \min_{f \in \mathcal{F}}.$$
 (8)

В качестве условия останова могут применяться стандартные критерии количества итераций либо желаемого качества суперпозиций.

3 МЕТОД ИССЛЕДОВАНИЯ УСТОЙЧИВОСТИ РЕШЕНИЯ

Для оценки устойчивости $\mathbb{T}_{\hat{f}}$ решения \hat{f} задачи (7), как предложено выше, фиксируется структурный вид суперпозиции \hat{f} и исследуется зависимость стандартного отклонения ее коэффициентов как функция стандартного отклонения нормально распределенной случайной добавки в исходных данных.

Иными словами, выбираются значения σ_{λ} и σ_{n} , затем для этих значений генерируется выборка $\acute{D}(\sigma_{n},\sigma_{\lambda})$ согласно (4). Для этой выборки вычисляются значения коэффициентов суперпозиции \hat{f} , минимизирующие функционал (1) согласно (5), методом Левенберга-Марквардта.

Данная процедура для фиксированной пары σ_{λ} и σ_{n} повторяется до достижения некоторого критерия останова (например, по количеству итераций), после которого и рассчитывается $\mathbb{T}_{\hat{f}}$.

Повторяя описанные выше шаги для различных σ_{λ} и σ_{n} , можно оценить зависимость стандартного отклонения коэффициентов суперпозиции от стандартного отклонения шума.

Из физических соображений ясно, что гладкая зависимость означает устойчивое в физическом смысле решение, тогда как отклонения от гладкости могут являться свидетельством переобучения: чем меньше коэффициенты зависят от случайных шумов в данных, тем больше обобщающая способность.

Кроме того, сравнение различных суперпозиций может также производиться по критерию устойчивости в дополнение к сравнению по сложности и по значению функционала (1). В ряде практических приложений критерий устойчивости может иметь приоритетное значение.

4 ВЫЧИСЛИТЕЛЬНЫЙ ЭКСПЕРИМЕНТ

В вычислительном эксперименте используются данные, полученные в ходе изучения возможности определения состава смеси прозрачных полимеров по суммарной дисперсионной зависимости, если известна экспериментальная зависимость дисперсии для каждого конкретного полимера. Рассматривается два полимера, для каждого из которых имеется 17 экспериментальных точек, соответствующих коэффициенту преломления при разных значениях длины волны. Значения приведены в таблице 1.

Предполагается, что дисперсионные свойства полимеров описываются одной и той же функциональной зависимостью, так как подчиняются одним и тем же физическим закономерностям. Поэтому сначала получена суперпозиция \hat{f} , минимизирующая (7) для первого полимера, а затем для каждого из полимеров находятся соответствующие векторы параметров $\hat{\omega}_{\hat{f}}$ и оценивается устойчивость полученного решения.

Разделение на обучающую и контрольную выборку не производилось, однако переобучения удается избежать и без такого разделения, опираясь целиком на штраф за сложность.

Из физических соображений следует [17], что зависимость коэффициента преломления n от длины волны λ должна выражаться суммой четных степеней длины волны,

Таблица 1: Экспериментальные значения коэффициентов преломления.

λ , hm	Полимер 1	Полимер 2
435.8	1.36852	1.35715
447.1	1.36745	1.35625
471.3	1.36543	1.35449
486.1	1.36446	1.35349
501.6	1.36347	1.35275
546.1	1.36126	1.35083
577.0	1.3599	1.34968
587.6	1.3597	1.34946
589.3	1.35952	1.34938
656.3	1.35767	1.34768
667.8	1.35743	1.34740
706.5	1.35652	1.34664
750	1.35587	1.34607
800	1.35504	1.34544
850	1.3544	1.34487
900	1.35403	1.34437
950	1.35364	1.34407

поэтому множество элементарных функций состоит из стандартных операций сложения и умножения:

$$g_1(x_1, x_2) = x_1 + x_2,$$

$$g_2(x_1, x_2) = x_1 x_2,$$

а также из функции

$$g_3(\lambda, p) = \frac{1}{\lambda^{2p}}.$$

В ходе вычислительного эксперимента константы, меньшие 10^{-7} , заменялись на 0.

В результате применения описанного выше алгоритма со значениями $\alpha = 0.05$, $\tau = 10$ получена следующая суперпозиция (константы округлены до пятой значащей цифры):

$$f(\lambda) = 1.3495 + \frac{3.5465 \cdot 10^3}{\lambda^2} + \frac{2.023 \cdot 10^3}{\lambda^4},\tag{9}$$

со сложностью 13, среднеквадратичной ошибкой $2.4\cdot 10^{-8}$ и значением $Q_f\approx 0.095$. Длины волн выражаются в нанометрах.

Отметим, что обычно в приложениях учитывают только квадратичный член, а более высокими степенями пренебрегают. Величина поправки, вносимой в результирующее значение суперпозиции последним слагаемым, указывает на полное согласие полученных результатов с принятой практикой.

Влияние штрафа за сложность. Исследуем, как влияет добавление нечетных степеней на результат решения задачи (8), заменив функцию g_3 в порождающем наборе на

$$g_3(\lambda, p) = \frac{1}{\lambda^p}.$$

Следует отметить, что при тех же $\alpha=0.05$ и $\tau=10$ результирующей функцией остается (9).

Увеличим τ до 30. Получим следующую формулу (константы округлены до третьей значащей цифры):

$$n(\lambda) = 1.34 + \frac{11.6}{\lambda} + \frac{17.37}{\lambda^2} + \frac{0.0866}{\lambda^3} + \frac{2.95 \cdot 10^{-4}}{\lambda^4} + \frac{8.54 \cdot 10^{-7}}{\lambda^5},\tag{10}$$

сложность которой составляет 31, и для которой среднеквадратичная ошибка на выборке составляет $\approx 3.9 \cdot 10^{-9}$, а значение $Q_f \approx 0.31$.

Иными словами, при большей желаемой сложности, регулируемой параметром τ , выигрывает более сложная (а в данном случае и физически некорректная) модель, которая лучше описывает экспериментальные данные.

Как и следовало ожидать, чрезмерное увеличение au ведет к переобучению.

SVM. В качестве базового алгоритма используется SVM-регрессия с RBF-ядром [18]. Параметр γ ядра подбирался по методу скользящего контроля, наилучшим результатом является комбинация из 15 опорных векторов с $\gamma \approx 2 \cdot 10^{-6}$, при этом среднеквадратичная ошибка при кросс-валидации с тестовой выборкой, содержащей по 2 объекта, составляет $8.96 \cdot 10^{-8}$. Однако, проинтерпретировать полученную решающую функцию не представляется возможным.

Исследование устойчивости решения. Для оценки устойчивости решения фиксировалась структура формулы (9):

$$f(\lambda) = \omega_1 + \frac{\omega_2}{\lambda^2} + \frac{\omega_3}{\lambda^4},$$

и исследовалась зависимость стандартного отклонения ее коэффициентов ω_1 , ω_2 и ω_3 от стандартного отклонения нормально распределенного случайного шума в исходных данных описанным выше методом. Критерием останова являлось достижение 10000 итераций для каждой пары $(\sigma_{\lambda}, \sigma_n)$.

В таблице 2 представлены поверхности уровня дисперсии для первого, второго и третьего коэффициентов каждого из полимеров соответственно.

Таблица 2: Поверхности дисперсии для формулы (9).

Таблица 3: Значения коэффициентов для формулы (9) и их относительная разность.

	ω_1	ω_2	ω_3	MSE
Полимер 1	1.34946	3558.95	1924.33	$2.2 \cdot 10^{-8}$
Полимер 2	1.34047	3118.84	1578.59	$1.4 \cdot 10^{-8}$
Разность	$6.71 \cdot 10^{-3}$	$1.41 \cdot 10^{-1}$	$2.2 \cdot 10^{-1}$	

Из графиков видно, что от шума, накладываемого на значения длины волны, дисперсия значений первого и второго коэффициентов практически не зависит в достаточно широком диапазоне точности определения длины волны, представляющем практический интерес. В то же время дисперсия значений первого коэффициента зависит от дисперсии

Таблица 4: Значения стандартного отклонения для коэффициентов формулы (9) для первого полимера в зависимости от относительных дисперсий.

шума коэффициента преломления практически линейно, тогда как для второго коэффициента после некоторого характерного значения зависимость становится слабой.

Физическая интерпретация этих результатов — при построении прибора для измерения дисперсии такого типа полимеров в их полосе прозрачности значительное внимание следует уделять точности измерения коэффициента преломления, тогда как измерения длины волны могут быть неточны вплоть до нескольких нанометров. Кроме того, предложенный метод прямо указывает, на каких интервалах шума каким будет выигрыш в точности определения параметров регрессионной модели в зависимости от увеличения точности измерений.

Принципиально важно, что значения стандартного отклонения параметров регрессионной модели существенно меньше разности между самими значениями этих параметров по порядку величины (см. таблицы 3 и 4), что означает, в частности, что полимеры могут быть различены даже не очень точным рефрактометром.

Устойчивость некорректного решения. Аналогично исследуем устойчивость решения (10). Приведем только графики зависимости первых трех коэффициентов, см. таблицу 5.

Из графиков видно, что в случае формулы (10) дисперсия соответствующих параметров существенно превышает таковую для (9). В частности, второй, третий и четвертый коэффициенты имеют дисперсию, на порядки превышающую характерные значения самих коэффициентов.

Данные результаты свидетельствуют о переобучении, и что полученная модель не может быть использована для надежного приближения экспериментальных данных ввиду большой чувствительности к шумам.

Таблица 5: Поверхности дисперсии для формулы (10).

5 СХОДИМОСТЬ К КЛАССИЧЕСКОМУ СЛУЧАЮ

Рассмотрим случай, когда зависимость линейна:

$$y = ax + b$$
,

и с учетом ошибок измерений представима в виде

$$y_i = ax_i + b + \xi_i \mid i \in \{1, \dots, n\},\$$

где ошибки ξ_i независимы, $E(\xi_i)=0; D(\xi_i)=\sigma^2$ [8]. То есть, рассматривается случай независимости ошибки измерения от точки измерения, при этом независимая переменная измеряется точно.

Перейдем к представлению

$$y_i = a(x_i - \overline{x}) + b + \xi_i \mid i \in \{1, \dots, n\},\$$

для которого, согласно [8], случайные величины a и b независимы и нормально распре-

делены, и, кроме того, их дисперсии выражаются известными соотношениями:

$$D(a) = \frac{\sigma^2}{\sum_{i=1}^n (x_i - \overline{x})^2}.$$
(11)

$$D(b) = \frac{\sigma^2}{n}. (12)$$

Рассмотрим, насколько результаты предложенного метода отличаются от значений, полученных согласно (11) и (12). Для этого исследуем зависимость относительной разности между этими значениями и эмпирическими значениями устойчивости от числа итераций N:

$$\delta_1 = \frac{|\overline{\sigma}_a^2 - D(a)|}{D(a)},$$

$$\delta_2 = \frac{|\overline{\sigma}_b^2 - D(b)|}{D(b)}.$$

Соответствующие графики для функции $y=2x+1+\xi_i$ на интервале $x\in[0;10]$ при n=10 порождённых точках и $D(\xi_i)=10$ приведены на фиг. 1. В частности, на фиг. 1а представлена начальная часть графика при количестве итераций N, меньшем $5\cdot 10^5$, на фиг. 16 — средняя часть (при N от $5\cdot 10^5$ до 10^7), а на фиг. 18 — характер сходимости при больших N (от 10^7 до 10^8).

Аналогичные графики приведены для n=10 и $D(\xi_i)=1$ и n=50 и $D(\xi_i)=1$ соответственно на фиг. 2 и 3.

Из графиков видно, что значения разности стабилизируются в районе $(1.5 \div 3) \cdot 10^6$ итераций и не демонстрируют явной зависимости от числа точек или дисперсии погрешности.

Фиг. 1: Зависимость δ от числа итераций N при $D(\xi) = 10$ и n = 10.

Фиг. 3: Зависимость δ от числа итераций N при $D(\xi)=1$ и n=50.

6 ЗАКЛЮЧЕНИЕ

Предложенный в настоящей работе критерий устойчивости регрессионных моделей характеризует зависимость параметров модели от случайных шумов в обучающих данных. В частности, в прикладных областях он может служить критерием отбора моделей, позволяя выбрать наименее чувствительную к шуму модель и выявить чувствительность ее отдельных параметров к вариации в исходных данных.

Ключевым отличием предложенного критерия от рассматривавшихся ранее методов исследования устойчивости моделей является анализ поведения численных параметров рассматриваемой модели, в то время как предложенные ранее методы фокусировались на зависимости ответов модели при различных вариациях обучающей выборки.

На примере задачи восстановления зависимости коэффициента преломления среды от длины волны показано, что предложенный в [5] алгоритм позволяет получить корректную и устойчивую аналитическую формулу, описывающую эту зависимость. Введенный штраф за сложность позволяет избежать переобучения и выбрать физически корректную модель. Кроме того, оказывается, что более простые модели оказываются и более устойчивыми, что подтверждает гипотезу о связи устойчивости моделей с их обобщаю-

щей способностью.

СПИСОК ЛИТЕРАТУРЫ

- [1] Davidson, J. W., Savic, D. A., and Walters, G. A.: Symbolic and numerical regression: experiments and applications. In John, Robert and Birkenhead, Ralph (editors): Developments in Soft Computing, pages 175–182, De Montfort University, Leicester, UK, 29-30 62000. 2001. Physica Verlag, ISBN 3-7908-1361-3.
- [2] Sammut, C. and Webb, G. I.: Symbolic regression. In Sammut, Claude and Webb, Geoffrey I. (editors): Encyclopedia of Machine Learning, page 954. Springer, 2010, ISBN 978-0-387-30768-8. http://dx.doi.org/10.1007/978-0-387-30164-8.
- [3] Strijov, V. and Weber, G. W.: Nonlinear regression model generation using hyperparameter optimization. Computers & Mathematics with Applications, 60(4):981–988, 2010. http://dx.doi.org/10.1016/j.camwa.2010.03.021.
- [4] Стрижов, В. В.: *Методы индуктивного порождения регрессионных моделей*. Препринт ВЦ РАН им. А. А. Дородницына. М., 2008.
- [5] Рудой, Г. И. и Стрижов, В. В.: Алгоритмы индуктивного порождения суперпозиций для аппроксимации измеряемых данных. Информатика и ее применения, 7(1):44–53, 2013.
- [6] Marquardt, D. W.: An algorithm for least-squares estimation of non-linear parameters.

 Journal of the Society of Industrial and Applied Mathematics, 11(2):431–441, 1963.
- [7] More, J. J.: The Levenberg-Marquardt algorithm: Implementation and theory. In G.A. Watson, Lecture Notes in Mathematics 630, pages 105–116. Springer-Verlag, Berlin, 1978. Cited in Åke Björck's bibliography on least squares, which is available by anonymous ftp from math.liu.se in pub/references.
- [8] Ватутин, В. А., Ивченко, Г. И., Медведев, Ю. И., и Чистяков, В. П.: *Теория вероят*ностей и математическая статистика в задачах. Дрофа, 3 редакция, 2005.

- [9] Малышев, В. И.: Введение в экспериментальную спектроскопию. Наука, 1979.
- [10] Зайдель, И. Н.: Техника и практика спектроскопии. Наука, 1972.
- [11] Hastie, Trevor, Tibshirani, Robert, and Friedman, Jerome: *The Elements of Statistical Learning: Data Mining, Inference, and Prediction.* Springer-Verlag, 2nd edition, 2009.
- [12] McDiarmid, Colin: On the method of bounded differences. Surveys in combinatorics, 141(1):148–188, 1989.
- [13] Devroye, Luc: Exponential inequalities in nonparametric estimation. In Nonparametric functional estimation and related topics, pages 31–44. Springer, 1991.
- [14] Bousquet, Olivier and Elisseeff, André: Stability and generalization. The Journal of Machine Learning Research, 2:499–526, 2002.
- [15] Cortes, Corinna, Mohri, Mehryar, Pechyony, Dmitry, and Rastogi, Ashish: Stability of transductive regression algorithms. In Proceedings of the 25th international conference on Machine learning, pages 176–183. ACM, 2008.
- [16] Cortes, Corinna, Mohri, Mehryar, and Talwalkar, Ameet: On the impact of kernel approximation on learning accuracy. In International Conference on Artificial Intelligence and Statistics, pages 113–120, 2010.
- [17] Серова, Н. В.: *Полимерные оптические материалы*. Научные основы и технологии, 2011.
- [18] Вапник, В. Н.: Восстановление зависимостей по эмпирическим данным. М.: Наука, 1979.

Georg Rudoy received his MSc degree in Applied Mathematics in 2014 from the Moscow Institute of Physics and Technology in Russia. Currently he is working on his PhD at the Department of Control and Applied Mathematics at the Moscow Institute of Physics and Technology on the subject of generating and analyzing regression models as superpositions of elementary functions. His interests include non-linear regression models, learning theory and natural language processing as well

as other fields like category theory, type theory and their applications to programming.