Assignment

Eric Tao Math 240: Homework #10

December 1, 2022

Problem 10.1. Let C be a projective, non-singular curve, D a divisor on C with degree d > 0 such that $\mathcal{L}(D)$ is base point-free, of dimension r. Let $\phi : C \to \mathbb{P}^r$ be the morphism associated to D.

- (a) Projecting from a point $P \notin C$ induces a morphism $\phi_P : C \to \mathbb{P}^{r-1}$. Show that this morphism is associated to subseries of $\mathcal{L}(D)$.
- (b) Projecting from a point $P \in C$ induces a rational map $\phi_P : C \setminus \{P\} \to \mathbb{P}^{r-1}$. Show that it extends to a morphism $\overline{\phi}_P : C \to \mathbb{P}^{r-1}$. Identify a linear series that this morphism is associated to.

Solution. (a)

Viewing this as projecting from a point in the image space, we pick a linear transformation such that P = (1, 0, ...0) is not on the curve, and the morphism is realized by $(f_1, ..., f_r)$ as a basis in $\mathcal{L}(D)$. We may do this since we can always take a change of variables so that we miss this point, and linear changes of variables merely permute the non-degenerate morphisms generated by $\mathcal{L}(D)$.

Now, if we view this as projecting onto the hyperplane $X_0 = 0$ in these coordinates, we notice that this leads to a projection onto $(0, f_2, ..., f_r)$. In particular, since these are members of $\mathcal{L}(D)$, that they cannot simultaneously vanish on the curve. Then, this cuts out a regular map onto a \mathbb{P}^{r-1} subspace of \mathbb{P}^r of the form where we lose, arbitrarily, one of the basis vectors, which makes this a subseries of $\mathcal{L}(D)$.

(b)

If we believe in part (a), we can do the same procedure, which is only ill-defined at the point $P \in C$. Then, this is a rational map from $C \setminus \{P\} \to \mathbb{P}^{r-1}$. However, in class, we proved that projective varieties cannot admit holes in the map. Then, this must extend to a regular map from all of $C \to \mathbb{P}^{r-1}$.

Looking at the action of the map, if we take a linear transformation to let P = (1, 0...0) as before, then we see the same action as happening, where the subspace resembles us losing a basis polynomial.

Problem 10.2. (a) Show that any two effective divisors of degree d in \mathbb{P}^1 are linearly equivalent.

- (b) Let C be a projective non-singular curve, D a divisor on C of degree d > 0, and such that $l(D) = \dim \mathcal{L}(D) = d + 1$. Show that $C = \mathbb{P}^1$.
- (c) Show that if C is a projective non-singular curve that is not isomorphic to \mathbb{P}^1 , then for any d > 1, there are effective divisors of degree d that are not linearly equivalent.

Solution. (a)

Fix a d>0. Let $D=\Sigma_i^n c_i[P_i]$, $D'=\Sigma_j^m d_j[Q_j]$ be effective divisors of \mathbb{P}^1 . Consider $f=\Pi_k^m(x-Q_k)^{d_k}, g=\Pi_l^n(x-P_l)^{c_l}$, where, for my sanity, we take $(\mathbf{x}-\mathbf{y})$ to mean X_0 if $y_0=0$, and otherwise, $y_1/y_0X_1-X_0$ where X_0,X_1 are the formal variables for the 0th and 1st coordinates and y_0,y_1 are the coordinates of the point y. We notice that since D,D' have the same degree d, then f,g are homogenous polynomials of degree d. Then, we may look at g/f as a rational function. Since f has finitely many zeros, exactly $\{Q_1,...,Q_m\}$, we can look at this quotient on the open set $\mathbb{P}^1\setminus\{Q_1,...,Q_m\}$, open because individual points are closed. Then, we notice that:

$$D(g/f) = \sum_{l=1}^{n} c_l[P_l] + \sum_{k=1}^{m} -d_m[Q_k] = D - D'$$

Thus, D, D' are linearly equivalent.

(b)

First, suppose d=1. Then, we have a morphism $\phi: C \to \mathbb{P}^1$. Since we know morphisms of projective varieties are closed maps, this must land in a closed set in \mathbb{P}^1 . In particular, we notice from the fact that we have dimension 2 in l(D) that we have two linearly independent regular maps as our function into \mathbb{P}^1 . Since they are linearly independent, this cannot be a finite set of points, and thus must be the whole thing.

Now, let d > 1. We apply 10.1(b) multiple times to reduce down by projecting from points in $C \to \mathbb{P}^d \to \mathbb{P}^{d-1} \to \dots \to \mathbb{P}^1$ and we use the fact that we lose only one basis function at each step to conclude that we still have 2 basis vectors at the end, and thus still must be the whole thing.

(c)

Suppose $C \not\cong \mathbb{P}^1$. Then, by part (b), we know that for any degree d > 0, we have that $\dim \mathcal{L}(D) \neq d+1$. Then, since we know that $\dim \mathcal{L}(D) \leq d+1$ in generality, this implies that $\dim \mathcal{L}(D) < d+1$. I'm not sure where to go from here, it seems like I should show that there are trivially dimension 1 and 2 divisors of degree d > 1, but I dont' see how the sections arise.

Problem 10.3. Let C be the twisted cubic parametrized by (s^3, s^2t, st^2, t^3) .

- (a) Show that the projection of the curve from the point (1,0,0,0) to the plane $X_0=0$ is a conic.
- (b) Show that the projection from the point (0,1,0,0) onto the plane $X_1=0$ is a cuspidal cubic.

Solution. (a)

We consider first the image in the plane $X_0 = 0$. Let $A = (s^3, s^2t, st^2, t^3)$, B = (1, 0, 0, 0). In a projective space, a line is exactly xA + yB for $x, y \in k$, our base field. Then, to be in our plane $X_0 = 0$, we solve for x, y. In particular, we look at the first coordinate, and extract the condition:

$$xs^3 + y = 0$$

If x=0, then we have y=0, so our point is identically 0, which is not allowed. Then, suppose y=0. Then, this is only reasonable if s=0, so that we are coming from the point $(0,0,0,t^3)=(0,0,0,1)$, which we notice is already in our plane, which is fine. Then, assume $x,y\neq 0$. Then, we look at $y=-xs^3$. Substituting into the equation of our line, we find the point in the plane as being:

$$x(s^3, s^2t, st^2, t^3) + (-xs^3)(1, 0, 0, 0) = (0, xs^2t, xst^2, xt^3) = (0, s^2t, st^2, t^3)$$

Since we know that from our original curve that s,t cannot be both 0, as that would not be a valid point in \mathbb{P}^3 , we are guaranteed that the last 3 coordinates never become identically 0. Then, we can project down into a \mathbb{P}^2 copy and retrieve the coordinates (s^2t, st^2, t^3) . Looking at the parametrization, we notice that we can realize this as the zero locus of the polynomial: $V(Y_1^2 - Y_0Y_2)$, where we name the coordinates Y_0, Y_1, Y_2 , which we identify as a conic, as it is a the zero locus of a degree 2 homogeneous polynomial.

(b)

In the same vein, we do the same procedure, and look at the condition from the second coordinate: $xs^2t + y = 0$. First, we see if s = 0, we're looking at the point $(0,0,0,t^3) = (0,0,0,1)$ which is already in the hyperplane. Similarly, if t = 0, we're looking at $(s^3,0,0,0) = (1,0,0,0)$, also in the hyperplane. And, we see that if x = 0, then y = 0, and vice versa, so we may not allow either of those, if we assume $s, t \neq 0$. Then, in that case, we take $y = -xs^2t$. Substituting, we find:

$$x(s^3, s^2t, st^2, t^3) + (-xs^2t)(0, 1, 0, 0) = (xs^3, 0, xst^2, xt^3) = (s^3, 0, st^2, t^3)$$

Again, since we know s, t cannot be identically 0, we may look at this as a point in a \mathbb{P}^2 , (s^3, st^2, t^3) , and, by the shape of the parametrization, we notice that we may realize this as the zero locus of the polynomial $Y_1^3 - Y_0Y_2^2$. Analyzing this polynomial for singular points, we compute the Jacobian as:

$$\mathcal{J} = [-Y_2^2, 3Y_1^2, -2Y_0Y_2]$$

Looking for actual points, we notice by the first two entries that that forces $Y_2 = 0, Y_1 = 0$, but Y_0 remains free, so we expect (1,0,0) to be a singular point.

Now, analyzing the singular point, we look at the tangent cone here. In particular, we look at the affine version where we delete $Y_0 = 0$. Then, we can take $Y_0 = 1$, since we can always scale to achieve this, and then this implies in this affine plane, we are looking at the polynomial $Y_1^3 - Y_2^2$. Looking at the tangent cone, this has form $-Y_2^2$, which has multiplicity 2, which is a cusp. Thus, this is a cuspidal cubic.