5

What is claimed is:

- 1. A $12\text{CaO} \cdot 7\text{Al}_2\text{O}_3$ compound comprising an O_2^- ion radical and/or an O^- ion radical serving as active oxygen species, said ion radical being clathrated in said compound in a concentration of 10^{20} cm⁻³ or more.
- 2. A method for producing a 12CaO 7Al₂O₃ compound comprising the steps of:

 preparing a raw material including calcium (Ca) and aluminum (Al) mixed with each

 other in an atomic equivalent ratio of 12 : 14; and

- 3. A method as defined in claim 2, wherein said raw material includes a calcium component selected from the group consisting of calcium carbonate, calcium hydroxide and calcium oxide, and an aluminum component selected from the group consisting of aluminum oxide and aluminum hydroxide.
- 4. A method for releasing an active oxygen species clathrated in the 12CaO ⋅ 7Al₂O₃ compound as defined in claim 1, characterized by subjecting said 12CaO ⋅ 7Al₂O₃ compound to a heat treatment at a temperature of 1200°C or more under an atmosphere

5

with an oxygen partial pressure of less than 10^4 Pa or a water-vapor partial pressure of 10^2 Pa or more.

- 5. A method for quantitatively analyzing the O_2^- ion radical clathrated in the 12CaO $7Al_2O_3$ compound as defined in claim 1, characterized in that said O_2^- ion radical is analyzed based on a scattering intensity arising from said O_2^- ion radical around a Raman shift of 1128 cm⁻¹.
- 6. A method for quantitatively analyzing the O_2^- ion radical and O_1^- ion radical each clathrated in the $12CaO \cdot 7Al_2O_3$ compound as defined in claim 1, characterized in that said O_2^- ion radical and said O_1^- ion radical are analyzed based on a first electron spin resonance absorption intensity defined by gx = 2.00, gy = 2.01 and gz = 2.04, and a second electron spin resonance absorption intensity defined by gx = gy = 2.05 and gz = 2.00, respectively.
- 7. An oxidization catalyst comprising a $12\text{CaO} \cdot 7\text{Al}_2\text{O}_3$ compound including an O_2^- ion radical and/or an O^- ion radical serving as active oxygen species, said ion radical being clathrated in said compound in a concentration of $10^{20}\,\text{cm}^{-3}$ or more.
- 8. An antibacterial agent comprising a $12\text{CaO} \cdot 7\text{Al}_2\text{O}_3$ compound including an O_2^- ion radical and/or an O^- ion radical serving as active oxygen species, said ion radical being clathrated in said compound in a concentration of 10^{20} cm⁻³ or more.

- 9. An ion conductor comprising a $12\text{CaO} \cdot 7\text{Al}_2\text{O}_3$ compound including an O_2^- ion radical and/or an O^- ion radical serving as active oxygen species, said ion radical being clathrated in said compound in a concentration of $10^{20}\,\text{cm}^{-3}$ or more.
- 5 10. An electrode material for solid-oxide fuel cells, comprising a $12\text{CaO} \cdot 7\text{Al}_2\text{O}_3$ compound including an O_2^- ion radical and/or an O_2^- ion radical serving as active oxygen species, said ion radical being clathrated in said compound in a concentration of 10^{20} cm⁻³ or more.