CS3000: Algorithms & Data Drew van der Poel

Lecture 16

- Topological Orderings
- Strongly Connected Components

June 8, 2021

Outline

Last class: Graphs: DFS, Bipartiteness, Topological Orderings

Next class: Graphs: Dijkstra's

- DAG: A directed graph with no directed cycles
- Can be much more complex than a forest

- DAG: A directed graph with no directed cycles
- DAGs represent precedence relationships

- A topological ordering of a directed graph is a labeling of the nodes from $v_1, ..., v_n$ so that all edges go "forwards", that is $(v_i, v_i) \in E \Rightarrow j > i$
 - G has a topological ordering $\Rightarrow G$ is a DAG
- **G cannot be top. ordered if it has a directed cycle

- DAG: A directed graph with no directed cycles
- DAGs represent precedence relationships

- Problems: counting students, stable matching, sorting, ndigit mulitiplication, array searching, selection, weighted interval scheduling, segmented least squares, knapsack, prefix-free encoding, graph exploration, bipartiteness, topological sorting
- Alg. techniques: divide & conquer, dynamic programming, greedy

• Analysis: asymptotic analysis, recursion trees, Master Thm., Graph Terminology/representations

 Proof techniques: (strong) induction, contradiction, greedy stays ahead, exchange argument

- **Problem 1:** given a digraph *G*, is it a DAG?
- **Problem 2:** given a digraph G, can it be topologically ordered?

- For given G, the answers to P1 and P2 are:
 - Always the same
 - Sometimes different

- **Problem 1:** given a digraph *G*, is it a DAG?
- **Problem 2:** given a digraph G, can it be topologically ordered?

- Thm: G has a topological ordering \iff G is a DAG
 - We will design one algorithm that either outputs a topological ordering or finds a directed cycle

What can we say about the first node in the top.
 ordering?

• Observation: the first node must have no in-edges

• **Observation:** In any DAG, there is always a node with no incoming edges " Proof by extremality"

- Fact: In any DAG, there is a node with no incoming edges
- Thm: Every DAG has a topological ordering
- Proof (Induction):

- Fact: In any DAG, there is a node with no incoming edges
- Thm: Every DAG has a topological ordering
- Proof (Induction): In2. $H(H-1) \longrightarrow H(H)$

Implementing Topological Ordering

```
SimpleTopOrder(G):
    Set i ← 1
    Until (G has no unlabeled nodes):
      Find a node u with no incoming edges
      Label u as node i, increment i ← i+1
      Remove u's edges from G
```


Implementing Topological Ordering

```
SimpleTopOrder(G):
()() Set i \leftarrow 1
    Until (G has no unlabeled nodes):
      Find a node u with no incoming edges O(n)
      Label u as node i, increment i \leftarrow i+1 \bigcircC\downarrow
      Remove u's edges from G
  Runtime: (adj. 1:69)
                                             in-deg[v] < M
 N(h+1+m)
    = O(V_y + VW)
```

Fast Topological Ordering

```
DeleteNode (v): (n) times in TUYAL
            Label v as node i in the top. order O(1) each
            i = i+1
           For every w in OUT-NEIGH[v]: \( \) each: Out-deg(v) \\

Decrease w's mark by 1 \\

For every w in OUT-NEIGH[v]: \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \(
                       If w's mark is 0:
                                  DeleteNode(w)
 FastTopOrder(G):
           Mark all nodes with their # of in-edges ( ) (m)
            Let i = 1 // i is a global variable
            Put all nodes w/ mark 0 in queue Q \leftarrow O(n)
            while Q is not empty:
                                                                                                                                                                                                                         Tutal: N+3M
                       u <- Q.dequeue()</pre>
                       DeleteNode(u)
```

Fast Topological Ordering Example

Topological Ordering Summary

- DAG: A directed graph with no directed cycles
- Any DAG can be topologically ordered
 - There is an algorithm that either outputs a topological ordering or finds a directed cycle in time O(n+m)

(Strongly) Connected Components

Connected Components

Squertes Subsilectes

• (strongly) connected component: a maximal subset of vertices which are all (strongly) connected in G

- **Problem:** Given an undirected graph G, split it into connected components
- Input: Undirected graph G = (V, E)
- Output: A labeling of the vertices by their connected component

Algorithm:

- Pick a node v
- Use DFS to find all nodes reachable from v
- Labels those as one connected component
- Repeat until all nodes are in some component


```
J V, E
CC (G):
  // Initialize an empty array and a counter
  let comp[1:n] = \bot, c = 1
  // Iterate through nodes
  for (u = 1,...,n):
  // Ignore this node if it already has a comp.
    // Otherwise, explore it using DFS
    if (comp[u] \pm = \bot):
      run DFS(G,u)
      let comp[v] = c for every v found by DFS <</pre>
      let c = c + 1
                                                Could modify

DFS to include
  output comp[1:n]
```

Running Time

TOTAL: O(n+m)

```
CC (G):
                     let comp[1:n] = \perp, c \leftarrow 1 \leftarrow O(n)
                 for (u = 1,...,n): (OCn) O(n; +h;)

if (comp[u] \( \frac{1}{2} = \): each: \( \frac{1}{2} \) of holes

run DFS(G,u) (OC) (reachable from a treachable From a
                                                              let c = c + 1
                    output comp[1:n]
                                                                                                                                                                                                                                                                                                        When he run DFS:
                                                                                                                                                                                                                                                                                                          n + m + n, + m + ... = n+m
                                                                                                                                                                                                 each CC DESEZ exactly once
```

- **Problem:** Given an undirected graph G, split it into connected components
- Algorithm: Can split a graph into connected components in time $\Theta(n+m)$ using DFS
- Punchline: Usually assume graphs are connected
 - Implicitly assume that we have already broken the graph into CCs in $\Theta(n+m)$ time

Strongly Connected Components

- **Problem:** Given a directed graph G, split it into strongly connected components
- Input: Directed graph G = (V, E)
- Output: A labeling of the vertices by their strongly connected component
 \(\alpha \alpha \righta \righta \alpha \righta \ri

1 1 1 2 3

Ask the Audience

Find all the strongly connected components (SCCs) of this directed graph

Ask the Audience

Find all the strongly connected components (SCCs) of this directed graph

Strongly Connected Components

- Observation: SCC(s) is all nodes $v \in V$ such that v is reachable from s and vice versa
 - Can find all nodes reachable from s using DFS
 - How do we find all nodes that can reach s?
 - DFS(s) in reverse of the graph!

SCCs by DFS: Take I

```
SCC-Slow():
 GR = G with all edges "reversed"
 // Initialize an array and counter
 comp[1:n] = \bot, c = 1
 for (u = 1, ..., n):
   // If u has not been explored
   if (comp[u] != \bot):
     S = set of nodes found by DFS(G,u)
     T = set of nodes found by DFS(G^R, u)
     // S N T contains SCC(u)
     label S ∩ T with c
     c = c + 1
 return comp
```

DFS: SCCs Form a DAG!

"Before I begin, one of the acronyms I'm going to use is completely made up. See if you can figure out which one."

Clever use of DFS for SCC

Observation: DFS from any node in a sink component finds that component

SCC Algorithm Template

- Repeat until all nodes marked:
 - Find a node in a sink component of G
 - Run DFS(u) to find SCC of u
 - Mark the nodes in SCC of u so not visited again
- How to find a node in a sink component?

Vertex	a	b	C	d	е	f	g	h
Finish f[]	16	15	12	11	14	8	9	10

SCC Algorithm Template

- Repeat until all nodes marked:
 - Find a node in a sink component of G
 - Run DFS(u) to find SCC of u
 - Mark the nodes in SCC of u so not visited again
- How to find a node in a sink component?

Vertex	а	b	C	d	е	f	g	h
Finish f[]	16	15	12	11	14	8	9	10

Fact: Node with largest finish time is in a *source* component

SCC Algorithm Template

- Repeat until all nodes marked:
 - Find a node in a sink component of G
 - Run DFS(u) to find SCC of u
 - Mark the nodes in SCC of u so not visited again
- How to find a node in a sink component?
 - Node with largest finish time in reverse of G!

Fact: Node with largest finish time is in a *source* component

Linear-time algorithm for SCC

```
SCC(G):
   GR = G with all edges "reversed"
   DFS of GR to compute finish times fR
   comp[1:n] = \( \triangle \), c = 1
   for (u in reverse order of fR)
     if (comp[u] != \( \triangle \)):
        S = set of nodes found by DFS(u) of G
        for v in S: comp[v] = c
        c = c + 1
   return comp
```



```
SCC(G):
    GR = G with all edges "reversed"

DFS of GR to compute finish times fR
comp[1:n] = \( \triangle \), c = 1

for (u in reverse order of fR)
    if (comp[u] != \( \triangle \):
        S = set of nodes found by DFS(u) of G
        for v in S: comp[v] = c
        c = c + 1

return comp
```



```
SCC(G):
    GR = G with all edges "reversed"
    DFS of GR to compute finish times fR
    comp[1:n] = \( \triangle \), c = 1
    for (u in reverse order of fR)
        if (comp[u] != \( \triangle \)):
            S = set of nodes found by DFS(u) of G
            for v in S: comp[v] = c
            c = c + 1
    return comp
```



```
SCC(G):
    GR = G with all edges "reversed"
    DFS of GR to compute finish times fR
    comp[1:n] = \( \triangle \), c = 1
    for (u in reverse order of fR)
        if (comp[u] != \( \triangle \)):
            S = set of nodes found by DFS(u) of G
            for v in S: comp[v] = c
            c = c + 1
    return comp
```



```
SCC(G):
   GR = G with all edges "reversed"

DFS of GR to compute finish times fR
comp[1:n] = \( \triangle \triangle c = 1 \)
for (u in reverse order of fR)
   if (comp[u] != \( \triangle ):
      S = set of nodes found by DFS(u) of G
      for v in S: comp[v] = c
      c = c + 1
   return comp
```



```
SCC(G):
   GR = G with all edges "reversed"
DFS of GR to compute finish times fR
comp[1:n] = \(\perp \), c = 1
for (u in reverse order of fR)
   if (comp[u] != \(\perp \)):
      S = set of nodes found by DFS(u) of G
      for v in S: comp[v] = c
      c = c + 1
return comp
```



```
SCC(G):
   GR = G with all edges "reversed"
DFS of GR to compute finish times fR
comp[1:n] = \(\perp \), c = 1
for (u in reverse order of fR)
   if (comp[u] != \(\perp \)):
      S = set of nodes found by DFS(u) of G
      for v in S: comp[v] = c
      c = c + 1
return comp
```



```
SCC(G):
   GR = G with all edges "reversed"
DFS of GR to compute finish times fR
comp[1:n] = \(\perp \), c = 1
for (u in reverse order of fR)
   if (comp[u] != \(\perp \)):
      S = set of nodes found by DFS(u) of G
      for v in S: comp[v] = c
      c = c + 1
return comp
```



```
SCC(G):
   GR = G with all edges "reversed"
   DFS of GR to compute finish times fR
   comp[1:n] = \( \to \), c = 1
   for (u in reverse order of fR)
     if (comp[u] != \( \to \)):
      S = set of nodes found by DFS(u) of G
     for v in S: comp[v] = c
      c = c + 1
   return comp
```


Strongly Connected Components Recap

- **Problem:** Given a directed graph G, split it into strongly connected components
- Input: Directed graph G = (V, E)
- Output: A labeling of the vertices by their strongly connected component
- Punchline: O(n+m) time algorithm for SCCs
 - Clever use of DFS on G and reverse of G
 - Can also compute the meta-graph DAG of SCCs
- Can be directly invoked in other algorithms