Конспект по дискретной математике II семестр

Коченюк Анатолий

20 февраля 2021 г.

Глава 1

Дискретная теория вероятностей

1.1 Введение

Определение 1 (Вероятностное пространство).

 Ω – элементарные исходы, неделимые дальше.

р – дискретная плотность вероятности.

$$p:\Omega\to[0,1]\quad \textstyle\sum_{q\in\Omega}p(\omega)=1$$

Замечание. В случае дискретного вероятностного пространства $|\Omega|$ – не более, чем счётное.

Пример (Честная монета). $\Omega = \{0,1\}$ $p(0) = p(1) = \frac{1}{2}$

Пример (Нечестная монета). $\Omega = \{0,1\}$ p(1) = p, p(0) = q — различные числа. p+q=1

Ещё одно название – распределение Бернулли

Пример (Честная игральная кость). $\Omega = \{1, 2, 3, 4, 5, 6\}$ $p(\omega) = \frac{1}{6}$

Определение 2. Событие, случайное событие – $A\subseteq \Omega$

Замечание. Неправильное определение – то, что может произойти, а может не произойти.

 $\emptyset \subseteq \Omega$ — $\Omega \subseteq \Omega$ — примеры, когда никогда не происходит и всегда происходит

Замечание. Для недискретного случая неверно, что <u>любое</u> подмножество Ω это событие

Определение 3. Вероятность события $P(A) = \sum_{\omega \in A} p(\omega)$

p берёт элементарные исходы. P, \mathbb{P} – вероятность события

Пример. Событие
$$E=\{2,4,6\}$$
 $P(E)=p(2)+p(4)+p(6)=\frac{3}{6}=\frac{1}{2}$ $O=\{1,3,5\}$

Замечание. Не существует вероятностного пространства с бесконечным числом равновероятных исходов

$$p(\omega) = 0$$
 $\sum = 0$

$$p(\omega) = a > 0$$
 $\sum = a \cdot (+\infty) = +\infty$

Пример. Событие $B(IG) = \{4, 5, 6\}$ $P(B) = \frac{1}{2}$

Определение 4 (Независимое событие). События A,B независимы, если $P(A\cap B)=P(A)\cdot P(B)$

Пример. $E \cap O = \emptyset$ $B \cap E = \{4,6\}$

$$P(E \cap O) = \emptyset \quad P(O) \cdot P(B) = \frac{1}{4} \neq 0$$

$$P(B)\cdot P(E) = \tfrac{1}{4} \neq \tfrac{1}{3} = P(B\cap E)$$

$$P(A \cap B) = P(A) \cdot P(B)$$

$$\frac{P(A \cap B)}{P(B)} = \frac{P(A)}{P(\Omega)}$$

4 ГЛАВА 1. ДИСКРЕТНАЯ ТЕОРИЯ ВЕРОЯТНОСТЕЙ

Определение 5 (Условная вероятность). $P(A|B) = \frac{P(A \cap B)}{P(B)}$

Замечание. Альтернативное определение независимости, не поддерживающее 0: P(A|B) = P(A)

$$V = \{5, 6\}$$

$$P(V \cap E) = \frac{1}{6}$$

$$P(V) = \frac{1}{3}$$
 $P(E) = \frac{1}{2}$ $P(V) \cdot P(E) = \frac{1}{3} \cdot \frac{1}{2} = \frac{1}{6} = P(V \cap E)$

Определение 6 (Произведение вероятностных пространств).

$$\Omega_1, p_1 \qquad \Omega_2, p_2$$

$$\Omega = \Omega_1 \times \Omega_2$$

$$p(\langle \omega_1, \omega_2 \rangle) = p_1(\omega_1) \cdot p_2(\omega_2)$$

Теорема 1. $\forall A_1 \subseteq \Omega_1$ и $\forall A_2 \subseteq \Omega_2$

$$A_1 imes \Omega_2$$
 и $\Omega_1 imes A_2$ – независимы

Доказательство. $P\left(A_1 \times \Omega_2 \cap \Omega_1 \times A_2\right) = P\left(A_1 \times A_2\right) = \sum_{\substack{a \in A_1 \\ b \in A_2}} p\left(\langle a, b \rangle\right) =$

$$= \sum_{a \in A_1} \sum_{b \in A_2} p_1(a) \cdot p_2(b) = \sum_{a \in A_1} p_1(a) \left(\sum_{b \in A_2} p_2(b) \right) = P_1(A_1) \cdot P_2(A_2)$$

Определение 7. $A_1, A_2, ..., A_n$

- 1. Попарно независимые A_i и A_j независимы
- 2. Независимы в совокупности $\forall I \subseteq \{1,2,\ldots,n\}$ $P\left(\bigcap_{i \in I} A_i\right) = \prod_{i \in I} P(A_i)$ $P(A_1 \cap A_2 \cap A_3) = P(A_1) \cdot P(A_2) \cdot P(A_3)$

Пример. Кидаем две монеты $\Omega = \{00, 01, 10, 11\}$

 $A_1 = \{10,11\}$ $A_2 = \{01,11\}$ $A_3 = \{01,10\}$ – независимы попарно, но не в совокупности

Определение 8 (Формула полной вероятности).

$$\Omega = A_1 \cup A_2 \cup \ldots \cup A_n \quad i \neq j \implies A_i \cap A_j = \emptyset$$

Совокупность таких А-шек называется полной системой событий.

Дано: вероятности $P(A_i)$ $P(B|A_i)$ Найти: P(B)

$$P(B) = \sum_{i=1}^{n} P(B \cap A_i) = \sum_{i=1}^{n} P(B|A_i) \cdot P(A_i)$$

- формула полной вероятности

Найти: $P(A_i|B)$

 A_1 – болен, A_2 – здоров, B – положительный результат теста $P(A_2 | B)$

$$P(A_{j}|B) = \frac{P(A_{j} \cap B)}{P(B)} = \frac{P(B|A_{j}) \cdot P(A_{j})}{\sum_{i=1}^{n} P(B|A_{i}) \cdot P(A_{i})}$$

– формула Байеса

Рис. 1.1: В

1.2 Случайные величины

Замечание. Неправильное (наивное) определение – величина, принемающая слуйное значение.

6 ГЛАВА 1. ДИСКРЕТНАЯ ТЕОРИЯ ВЕРОЯТНОСТЕЙ

Она может быть константой. Что такое величина?

Определение 9 (Случайная величина). $\xi:\Omega\to\mathbb{R}$ – \mathbb{R} – значная функция

 Ω, p – вероятностное пространство.

Пример. Если взять случайные текст длинной 1Кб. Вариантов текста очень много и бессмысленно их рассматривать отдельно, интересует какоето свойство, величина.

Графы, $2^{\binom{n}{2}}$ штук. Но нас интересует какая-то (численная) характеристика элементарного исхода.

Пример.
$$D(ice) = \{1, 2, 3, 4, 5, 6\}$$

$$\Omega = D^2$$
 $p(\langle i, j \rangle) = \frac{1}{36}$

$$\xi: \Omega \to \mathbb{R}$$
 $\xi(\langle i, j \rangle) = i + j$

Пример (Случайные графы). $G(4,\frac{1}{2})$ – случайный граф, 4 вершины, каждое ребро существует с вероятностью $\frac{1}{2}$

$$\Omega = \mathbb{B}^6 \quad p(G) = \frac{1}{64}$$

 $\xi(G)=$ количество компонент связности

Пример.
$$\Omega = \{1, 2, 3, 4, 5, 6\} \ \xi(w) = w$$

Пример.
$$\Omega = \{1, 2, 3, 4, 5, 6\}$$
 $E = \{2, 4, 6\}$

$$\chi_E(\omega) = egin{cases} 1, & \omega \in E \\ 0, & \omega
otin E \end{cases}$$
 – индикаторная случайная величина

Определение 10. $\Omega, p = \xi$

$$[\xi = i] = \{\omega | \xi(\omega) = i\} \subseteq \Omega$$

$$P([\xi = i]) = P(\xi = i) = f_{\xi}(i) \quad f : \mathbb{R} \to \mathbb{R}$$

 $f_{\xi}(i) = P\left(\xi = i\right)$ – дискретная плотность вероятности случайной величины ξ

$$F_{\xi}(i): \mathbb{R} \to \mathbb{R} = P\left(\xi \leqslant i\right)$$
 – функция распределения

Замечание. Непрерывная vs Дискретная вероятность

Пример.

Рис. 1.2: непрерывная и дискретная вероятность

Замечание.
$$\delta(x) = \begin{cases} 0, & x \neq 0 \\ +\infty, & x = 0 \end{cases}$$

$$\int_{-\infty}^{+\infty} \delta(x) dx = 1$$

$$f_{\xi}(i) = P(\xi = i)$$
 $f_{\xi} = \int_{-\infty}^{+\infty} f_{xi}(x) = F_{\xi}(i)$

$$f_{\xi}(x) = \sum_{i} P(\xi = i) f(x - i)$$

Пример. $\Omega = \mathbb{B}^{1000}$ $p(\omega) = \frac{1}{2^{1000}}$

$$\xi(w)=$$
 число 1 в ω

|множество значений
$$\xi$$
| = 1001 $p\left(\xi=i\right) = \frac{\binom{1000}{i}}{2^{1000}}$

Замечание. Случайные числа обозначаются строчными греческими или заглавными латинскими из конца алфавита (X, Z)

Замечание (Что можно делать со случайными величинами). ξ, η – функции

 $\xi^2-2\xi-\xi+\eta-\xi\cdot\eta-\xi^\eta-\sin\xi-e^\eta-rac{1+\xi}{\eta}$ (всё то же, что мы можем делать с функциями.

Пример. $\Omega = D^2 \quad \xi_1 \left(\langle i, j \rangle \right) = i \qquad \xi_2 \left(\langle i, j \rangle \right) = j$ – одинаково распределённые случайные величины

Рис. 1.3: Два-кубика (функция распределения)

Пример. $\Omega = F \quad id(\omega) = \omega$

 $1,2,\dots,6$ – каждый с вероятностью $\frac{1}{6}$. Другое вероятностное пространство относительно предыдущего примера, но всё равно одинаковое распределение.

 $\xi=(i+j)=\xi_1+\xi_2$ $\xi=(i+j)\%6+1$ – у второй то же распределение, что у верхних, но она уже совсем другая.

Определение 11. Математическое ожидание

$$E_{\xi} = \sum_{\omega} p(\omega) \, \xi(\omega).$$

Утверждение 1. $E_{\xi} = \sum_{i} i p(\xi = i)$

Доказательство.

$$\begin{split} E_{\xi} &= \sum_{\omega} p\left(\omega\right) \xi\left(\omega\right) \\ &= \sum_{i} \sum_{w: \xi(\omega) = i} p\left(\omega\right) \cdot \xi\left(\omega\right) \\ &= \sum_{i} \sum_{\omega: \xi(\omega) = i} p\left(\omega\right) \cdot i \\ &= \sum_{i} \sum_{w: \xi(\omega) = i} p\left(\omega\right) \\ &= \sum_{i} i P\left(\xi = i\right) \end{split}$$

Пример. $\Omega = D$ $\xi = id$

$$E_{\xi} = \frac{1}{6} \cdot 1 + \frac{1}{6} \cdot 2 + \frac{1}{6} \cdot 3 + \frac{1}{6} \cdot 4 + \frac{1}{6} \cdot 5 + \frac{1}{6} \cdot 6 = \frac{21}{6} = \frac{7}{2} = 3,5$$

Пример. $\Omega = D^2$ $\xi(\langle i,j \rangle) = i+j$

 $E_{\xi} = \frac{1}{36} \cdot (2 \cdot 1 + 3 \cdot 2 + 4 \cdot 3 + 5 \cdot 4 + 6 \cdot 5 + 7 \cdot 6 + 8 \cdot 5 + 9 \cdot 4 + 10 \cdot 3 + 11 \cdot 2 + 12 \cdot 1)$ – здесь среднее значение оказалось наиболее частым, но так оно не всегда (пример с 3,5)

Теорема 2.
$$E_{\lambda\xi} = \lambda E_{\xi}$$

$$E\left(\xi + \eta\right) = E_{\xi} + E_{\eta}$$

Доказательство. $E_{\lambda\xi} = \sum_{\omega} p(\omega) \lambda \xi(\omega) = \lambda E_{\xi}$

$$E(\xi + \eta) = \sum_{\omega} p(\omega) (\xi(\omega) + \eta(\omega)) = E_{\xi} + E_{\eta}$$

Утверждение 2. Если ξ и η одинаково распределены, то $E_{\xi}=E_{\eta}$

Пример. Бросим кубик один раз, ξ_1 – что выпало сверху, ξ_2 – что выпало снизу

 $E\left(\xi_{1}+\xi_{2}\right)=7.$ – не играет роли как числа друг относительно друга расположены.

10 ГЛАВА 1. ДИСКРЕТНАЯ ТЕОРИЯ ВЕРОЯТНОСТЕЙ

МАТОЖИДАНИЕ ЛИНЕЙНО ВСЕГДА

Пример.
$$\Omega = S_n$$
 $p(\omega) = \frac{1}{n!}$ $\xi\left(\pi\right) = |\{i|\pi[i] = i\}|$ $0\dots n$, кроме $n-1$ $E_{\xi} = \sum\limits_{j=1}^{n} \xi_i = 1$ $\xi_i\left(\pi\right) = \begin{cases} 1, & \pi[i] = i \\ 0, & \text{иначе} \end{cases}$ $E_{\xi_i} = \frac{1}{n}$ $\xi = \sum\limits_{i=1}^{n} \xi_i$

1.3 Независимые случайные величины

Определение 12 (удобное). Случайные величины ξ и η независимы, если события $[\xi = \alpha]$ и $[\eta = \beta]$ – независимы $\forall \alpha, \beta$

Определение 13 (нормальное). $[\xi\leqslant\alpha]$ и $[\eta\leqslant\beta]$ – независимы для $\forall\alpha,]beta$

Пример. $\Omega = \Omega_1 \times \Omega_2$

$$\xi_1(\langle \omega_1, \omega_2 \rangle) = f(\omega_1)$$

$$\xi_2\left(\langle\omega_1,\omega_2\rangle\right) = g\left(\omega_2\right)$$

A и B независимы, χ_A, χ_B – независимы

Теорема 3. ξ,η – независимы $\implies E\left(\xi\cdot\eta\right)=E_{\xi}\cdot E_{\eta}$

Доказательство.
$$E\xi\cdot\eta=\sum\limits_{\alpha}\alpha\cdot P\left(\xi\cdot\eta=\alpha\right)=\sum\limits_{i,j}\alpha P\left(\left[\xi=i\right]\cap\left[\eta=j\right]\right)=\sum\limits_{i}\sum\limits_{j}ijP\left(\xi=i\right)P\left(\eta=j\right)=E_{\xi}E_{\eta}$$

$$i \cdot j = \alpha \quad i \in R_{\xi} \quad j \in R_{\eta}$$

Пример.
$$\Omega = \{0,1\}$$
 $p = \frac{1}{2}$ $\xi(i) = 2i$ $E_{\xi} = 1$

$$\Omega = S_n \quad p = rac{1}{n!} \quad \xi =$$
 число неподвижных точек $\quad E_\xi = 1$

Матожидание одно, но ведут себя совершенно по разному.

Определение 14 (Дисперсия).
$$D_{\xi} = Var(\xi)$$

$$D_{xi} = E(\xi - E_{\xi})^2 = E\left(\xi^2 - 2\xi E_{\xi} + (E_{\xi})^2\right) = E_{xi}^2 - 2E_{\xi}E_{\xi} + (E_{\xi})^2 = E_{\xi^2} - (E_{\xi})^2$$

Теорема 4.
$$D_{c\xi} = c^2 D_{\xi}$$

Если ξ и η независимы, то $D_{\xi+\eta}=D_\xi+D_\eta$

Доказательство. Упражнение