CS622A ADVANCED COMPUTER ARCHITECTURE ASSIGNMENT 2

Memory Reuse and Sharing Profile Analysis

GROUP 16

Aditya Rohan 160053

 $\begin{array}{c} Aniket\ Pandey \\ 160113 \end{array}$

Instructor: Dr. Mainak Chaudhury

September 24, 2019

1 Introduction

In this assignment, we use PIN tool to instrument a set of parallel programs and collect thread-wise memory access trace and break it down to x86 machine accesses. Then with the resulting trace, we analyze the sharing profile and memory reuse for the given parallel programs.

2 Analysis Results

PART 1: Collection of machine-access traces

The results were varying across individual runs. Hence, we have collected 5 results for a particular program and picked *addrtrace.out* corresponding to the middle value (highlighted).

Programs	Run 1	Run 2	Run 3	Run 4	Run 5
prog1.c	128988038	128988149	128987956	128988046	128987901
prog2.c	2528955	2513452	2521172	2524574	2532314
prog3.c	9508261	9510696	9501049	9497081	9521463
prog4.c	1061544	1061507	1061492	1061525	1061515

Table 1: Machine accesses count across 5 runs

PART 4: Sharing profile analysis

The sharing profile for each of the 4 target programs is given below. The trace corresponding to the highlighted values in part1 were selected for the result analysis.

	prog1.c	prog2.c	prog3.c	prog4.c
Private	388	384	386	8573
2-Shared	63	8255	56	57403
3-Shared	1872	16384	0	6
4-Shared	32456	40958	1	0
5-Shared	143251	5	1	0
6-Shared	244970	0	0	0
7-Shared	173831	0	0	1
8-Shared	124527	9	65545	10

Table 2: Sharing profile analysis for 8 threads

PART 2 and 3: Access distance analysis

- (a) Part2: Cumulative distance function for prog1.c
- (b) Part3: Cumulative distance function for misses of prog1.c

Figure 1: A comparison between the complete machine access trace and missed machine access trace for prog1.c

- prog2.c
- misses of prog2.c

Figure 2: A comparison between the complete machine access trace and missed machine access trace for prog2.c

Figure 3: A comparison between the complete machine access trace and missed machine access trace for prog3.c

Figure 4: A comparison between the complete machine access trace and missed machine access trace for prog4.c

PART 3: Hits and Misses

The cumulative distribution function for misses in counted specifically against the misses after modelling the single-level cache to the traces.

	prog1.c	prog2.c	prog3.c	prog4.c
Hits	122297455	2295505	8862896	930888
Misses	6690582	229068	645364	130626

Table 3: Result of modelling a 2MB 16-Way cache on the traces