不同矩阵模型的OCaml程序抽取及测试

1. 测试方法

- 测试的内容
 - 矩阵乘法的正确性, 执行效率
 - o 其他内容待补充
- 测试的步骤
 - o 随机生成 float list list 数据;
 - o 调用 I2m 转换为内部的矩阵模型
 - o 调用 mmul 作矩阵乘法:
 - o 再调用 m2l 转换为 float list list
 - o打印
- 测试程序用法
 - \$./matrix --help

Usage: ./test [option] where options are:

- -mm Set matrix model (DL/DP/DR/NF/FF)
- -size Set matrix dimension
- -print Show matrix content
- -benchmark Benchmark mode, automatic test
- -help Display this list of options
- --help Display this list of options

这里提供了几个可选参数,

- o mm 指定矩阵模型,可使用 DL/DP/DR/NF/FF 这五种模型
- o size 指定矩阵维度,为简单起见,作矩阵乘法的两个矩阵的三个维度都用同一个值。即: $A(r \times c) \times B(c \times s) = C(r \times s)$,其中的 r = c = s = size。
- o print 是否打印矩阵,只会打印少量的头部信息,不会全部打印。
- o benchmark 是否执行基准测试,自动选择模型,自动增加矩阵规模,从而无限循环的测试性能。

2. 测试结果

- 版本 (Nov 04, 2022)
 - o 结论: 所有矩阵模型均能够进行代码抽取和矩阵运算, 但效率差异较大
 - o 正确性: NF模型是错误的, 其余四个正确
 - 使用相同的输入(固定了随机数的种子,生成的输入矩阵相同),前四个模型下,矩阵 乘法结果相同。
 - NF模型,由于 choiceType 的构造尚未实现,因此尚未取出内容,所以结果错误。
 - o 效率差异比较

以不同的矩阵维度做乘法,统计执行时间(单位:秒)。

FF模型结果错误,而且太慢,不参与比较。简要的结果是:

size=10, 0.14s

size=20, 3.50s

size =25, 12s

size=30, 40s

其余四种模型的比较

size\model	DL	DP	DR	NF	FF
20	0.00	0.00	0.00	0.00	3.50
50	0.26	0.02	0.01	0.37	
60	0.52	0.04	0.02	0.76	
72	1.04	0.06	0.02	1.58	
86	2.06	0.10	0.04	3.22	
103	4.18	0.18	0.07	6.52	
123	8.42	0.30	0.12	13.11	
147	17.26	0.51	0.19	26.63	
176	34.46	0.86	0.33	54.43	
211	72.90	1.48	0.55	111.90	
253					

结果分析

- 由于这个测试方案是以list为中间结果,因此与实现模型相关。
- 所有函数未经过优化,包括尾递归分析等都没有做。