Review of Calculus A

Basic Propertie	s of 1	Derivat	ives				
Addition: dx [f(x)+g((A)]= [f(x)+g(x)-]' = f'(x)	t g'(x)	$= \frac{d}{dx} f(x) + \frac{d}{dx}$	<u>k</u> 9
Subtraction: dx	[fw-	g(x)]=[f(x)-g(x)]'= f'(x	x) - 9't	$x) = \frac{d}{dx} f(x)$	- dx g
Coefficient: dx	[c.f(x))]=[c·{	(x)]'= ($c \cdot f'(x) = c$	d dx f((x)	
Product: dx [f(x)·g(x)]	= [f(x)·6)(x)] ₁ = t	'(x)-g(x)+	g'(x)·f	$(x) = \frac{d}{dx} f(x).$	$g(x) + \frac{d}{dx}g(x) \cdot f(x)$
Quotient: dx [&	$ = \begin{bmatrix} (x) \\ (x) \end{bmatrix} $	$\left[\frac{f(x)}{g(x)}\right]'=$			(x) =		
			- C	g(x)) ²			(g(x)) ²
Chain: dx flglx))]	(g(x))]'	= f'lg(x))·g'(x) =	dx flo	(x))·dxg(0
Basic Propertie	s of I	Integra	als:				
Addition: SEf(x)+glx][dx = Sf(x	() dx + S	gixidx			
Subtraction: S[f(x)-g(x)]dx = S	f(x)dx-	Sglxidx			
Coefficient: Sc	· f(x) dx	= c.s	f(x) dx				
Substitution: S	f(g(x)).	g'(x) dx	= Sf(u)	du, u=0)(x)		
Common Deriv	vatives	3			Basic	Integral	<u>s</u>
Constant: dx (1	c) = 0	K is a	consta	nt	Consta	int: Skdx:	= Kx +c
Power: dx (xn):	= n x ⁿ⁻¹	n is o	consta	ant	Power	r: S xndx=	1 x n+1 + c
Trig.: dx (sin(x)					Trig:	Ssin(x) dx	(=-cos(x)+c
d (cos(x))							= sin(x)+c
d dx (tan(x)							x = tan(x) + c
d (sec(x)							f(x) dx = sec(x) + c
dx (csc(x)) = -csc	(x) cot (x)			1 csc(x)co	f(x) dx = -csc(x) + c

Examples:	
<u>CAMITIPES:</u>	
1. Find the following derivatives:	
	rewrite as
a. $\frac{d}{dx}(x^3 + an(x)) = (3x^2)(tan(x)) + sec^2(x)$	$(x^3) \qquad b. \ \frac{d}{dx} (32x^2 - 5x + 3) = \frac{d}{dx} (2x^2 - 5x + 3)^{1/3})$
product rule = 3x2+tan(x)+ x3sec2	
$ fg ^2 = f'g+g'f = x^3 \sec^2(x) + 3x^2 \tan(x)$	
2. Find the equation of the tanger	nt line to the curve $x\cos(1+2y)=2y^2-8$ at $(0,2)$.
Equation of the tangent line:	Find x, y, and m.
line: $y-y=m(x-x)$	(x, y, 1 = (0,2)) is given
slope = derivative: m = dx x = y'(x1)	4 must be found using implicit differentation
	Lattach ax
versions of this question.	xcos(1+2y)=2y²-8 original curve
given $y = f(x)$ and (x_1, y_1)	product rule power rule
given implicit fxn f(x, y,)	$(1)(\cos(1+2y)) + (\sin(1+2y)\cdot 2\cdot y')(x) = 4y\cdot y' \cdot 0$
given parametric fxns f t=a	cos(1+24) + 2xy'sin(1+24) = 444
	cos(1+24) = 444'-2xy'sin(1+24) move y' to one side
Implicit Differentation	cos(1+2y) = y'(4y-2xsin(1+2y)) factor out y'
(if finding dx of curve):	
·treat x as normal	$ \begin{array}{c c} V = \frac{\cos(1+2y)}{4y-2x\sin(1+2y)} & \text{solve for } y' \end{array} $
·take derivative of y as	
expect then attach ax (or y')	$m = \frac{\cos(1+2(2))}{4(2)-2(0)\sin(1+2(2))} = \frac{\cos(5)}{8-0} = \frac{1}{8}\cos(5)$ plug in (0,2)
(note this is just chain rule)	
	$y-2=\frac{1}{8}\cos(5)\cdot(x-0)$
3. Find the formula for the functi	on f(x) if its slope is given by xsin(x²+1) and
the graph of fix) passes thro	ough the point (1,2).
Intial value problem:	$f(x) = \int x \sin(x^2 + 1) dx$
given slope/derivative	u-substitution: function its derivative
and an (initial) point	u=x2+1 u is normally an "inner" function
· take integral of f'(x)	du=2x dx
· plug in initial point	½du=xdx you need to recognize this quickly
·solve for unknown c	$f(u) = \int \sin(u) \cdot \frac{1}{2} du$
· plug back into flx)	= \frac{1}{2} \int \text{Sin(u) du}
concept: f(x)= Sf'(x) dx	$=-\frac{1}{2}\cos(u)+c$
	$f(x) = -\frac{1}{2} \sin(x^2 + 1) + C$

f(1) is f	ound by plugging	$f(1) = -\frac{1}{2} \sin^2 \theta$)((13+1)+0		
	to fix) and was	$2 = -\frac{1}{2} \sin 12$	2) +C		
	us (1,2) => f(1)=2	2+ 12 sin(2):	= C		
rememb	per to plug into c	$f(x) = -\frac{1}{2} \sin x$	(x ² +1) + 2+	±sin(2)	
4. Evalu	ate $\int_0^1 \frac{x^2+2}{\sqrt{x^3+6x+5}} dx$				
u-Subst	itution for S. f(u) u'		+6x+5	du=(3x²+6)dx	a'= (0)3+6(0)+5=
	er" function			$du=3(x^2+2)dx$	b'= (1)3+6(1)+5=1
	ı' => du= u'dx			3du= (x2+2)dx	
new bou		C12 1	_		
	(lower)	J ₅ Ju	7.3 du		
n(p)= p,	(upper)	= 3 /5	u du	you are expected	
		= 3 · 2	- 13 du - 1/2 du - 1/2 1/2 1/2 - 1/2 1/2 1/2 - 1/2 1/2 - 1/2 1/2	using the new	bounds
		= 3 (1)	2) - (5)	4	
		= 3L2	13' - 15']		