数学分析笔记

管思桐

目录

1	多元	函数的微分学	2
	1.1	隐函数定理	2
	1.2	逆映射定理	4
	1.3	偏导数在几何中的应用	7
		1.3.1 空间曲线的切向量和法平面	7
		1.3.2 曲面的切平面与法线	9
		1.3.3 计算夹角	2
	1.4	条件极值——(最)优化问题 2	2

1.1 隐函数定理

定义 若 $D \subset \mathbb{R}^2$ 是一个区域,F(x,y) 是 D 上的一个二元函数,而且 $F(x_0,y_0) = 0, (x_0,y_0) \in D$,如果在 (x_0,y_0) 附近,由方程

$$F(x,y) = 0$$

可以唯一确定一个函数 y = f(x) 使得 $f(x_0) = y_0$, $F(x, f(x)) = 0, x \in (x_0 - \delta, x_0 + \delta)$,则称 f(x) 是由 F(x, y) = 0 确定的**隐函数**。

例
$$y^5 + 7y - x^3 = 0$$

例 Kepler 方程:

$$y - \varepsilon \sin y - x = 0$$

例
$$F(x,y) = x^2 + y^2 - 1$$

定理 设 F(x,y) 满足以下条件:

- (1) $F(x_0, y_0) = 0$;
- (2) $\not\equiv D = \{(x,y) : |x-x_0| \le a, |y-y_0| \le b\} \perp, F \in C(D) \perp \partial_x F, \partial_y F \in C(D);$
- $(3) \ \partial_y F(x_0, y_0) \neq 0,$

则 $\exists \rho > 0, \eta > 0$ 使得

- (1) $x \in (x_0 \rho, x_0 + \rho)$, 方程 F(x, y) = 0 在 $(y_0 \eta, y_0 + \eta)$ 中有唯一解 y = f(x);
- (2) $f(x_0) = y_0$;
- (3) $f(x) \in C((x_0 \rho, x_0 + \rho));$
- (4) f(x) 在 $(x_0 \rho, x_0 + \rho)$ 上连续可导,而且

$$f'(x) = -\frac{\partial_x F(x, f(x))}{\partial_u F(x, f(x))}, x \in (x_0 - \rho, x_0 + \rho).$$

证明. 利用

- 1. 导数 > 0 ⇒ 函数严格单调增加;
- 2. 连续函数的介值定理

Step 1 存在性: 不妨设 $\partial_y F(x_0, y_0) > 0$,则由于 $\partial_y F \in C(D)$,故 $\exists 0 < \alpha \le a, 0 < \beta \le b$ 使得 $\partial_y F(x_0, y_0)$ 在 $D^* = \{(x, y) : |x - x_0| \le \alpha, |y - y_0| \le \beta\}$ 上 > 0。由于 $\partial_y F(x_0, y) > 0, |y - y_0| \le \beta$, 故 $F(x_0, y)$ 在 $[y_0 - \beta, y_0 + \beta]$ 上严格单调增加,又 $F(x_0, y_0) = 0$,故 $F(x_0, y_0 - \beta) < 0$, $F(x_0, y_0 + \beta) > 0$. 又 $F(x, y_0 - \beta)$, $F(x, y_0 + \beta)$ 在 $[x_0 - \alpha, x_0 + \alpha]$ 上连续,故 $\exists \rho \in (0, \alpha)$ 使得

$$F(x, y_0 + \beta) > 0, F(x, y_0 - \beta) < 0, x \in [x_0 - \rho, x_0 + \rho]$$

又 $\forall \bar{x} \in (x_0 - \rho, x_0 + \rho), \partial_y F(\bar{x}, y) > 0, y \in [y_0 - \beta, y_0 + \beta], F(\bar{x}, y)$ 关于 y 在 $[y_0 - \beta, y_0 + \beta]$ 上严格单调增加,故 $\exists ! \bar{y} \in (y_0 - \beta, y_0 + \beta)$ 试得 $F(\bar{x}, \bar{y}) = 0$. 记 $\bar{y} = f(\bar{x})$

Step 2 f(x) 在 $(x_0 - \rho, x_0 + \rho)$ 上连续: 任取 $\bar{x} \in (x_0 - \rho, x_0 + \rho)$,我们根据定义证明 f(x) 在 \bar{x} 处连续,即 $\forall \varepsilon > 0, \exists \delta > 0$,只要 $|x - \bar{x}| < \delta$ 且 $x \in (x_0 - \rho, x_0 + \rho)$,就有 $|f(x) - f(\bar{x})| < \varepsilon$. 由于 $F(\bar{x}, f(\bar{x})) = 0$,而且 $F(\bar{x}, y)$ 关于 y 严格单调增加,所以

$$F(\bar{x}, f(\bar{x}) + \varepsilon) > 0, F(\bar{x}, f(\bar{x}) - \varepsilon) < 0$$

又 $F(x, f(\bar{x}) + \varepsilon), F(x, f(\bar{x}) - \varepsilon)$ 在 $(x_0 - \rho, x_0 + \rho)$ 上连续,故 $\exists \delta = \delta(\varepsilon) > 0, s.t.$

$$F(x, f(\bar{x}) + \varepsilon) > 0, F(x, f(\bar{x}) - \varepsilon) < 0, |x - \bar{x}| < \delta, x \in (x_0 - \rho, x_0 + \rho)$$

由 F(x,y) 关于 y 严格单调增加, 故

$$f(\bar{x}) - \varepsilon < f(x) < f(\bar{x}) + \varepsilon \Rightarrow |f(x) - f(\bar{x})| < \varepsilon$$

(Note: f 连续性不需要 F(x,y) 关于 x 可偏导这一条件)

连续性的另一个证明 任取 $\bar{x} \in (x_0 - \rho, x_0 + \rho)$,取 Δx 足 $0 < |\Delta x| << 1, s.t.\bar{x} + \Delta x \in (x_0 - \rho, x_0 + \rho)$. 由于

$$F(\bar{x}, f(\bar{x})) = 0, F(\bar{x} + \Delta x, f(\bar{x} + \Delta x)) = 0,$$

故

$$0 = F(\bar{x} + \Delta x, f(\bar{x} + \Delta x)) - F(\bar{x}, f(\bar{x}))$$

$$= F(\bar{x} + \Delta x, f(\bar{x} + \Delta x)) - F(\bar{x} + \Delta x, f(\bar{x})) + F(\bar{x} + \Delta x, f(\bar{x})) - F(\bar{x}, f(\bar{x}))$$

$$= \partial_y F(\bar{x} + \Delta x, \theta f(\bar{x} + \Delta x) + (1 - \theta) f(\bar{x})) [f(\bar{x} + \Delta x) - f(\bar{x})] + F(\bar{x} + \Delta x, f(\bar{x})) - F(\bar{x}, f(\bar{x}))$$

4

由于 $F(\bar{x} + \Delta x, f(\bar{x})) - F(\bar{x}, f(\bar{x})) \in D^*$, 故 $\neq 0$, 从而

$$f(\bar{x} + \Delta x) - f(\bar{x}) = -\frac{F(\bar{x} + \Delta x, f(\bar{x})) - F(\bar{x}, f(\bar{x}))}{\partial_y F(\bar{x} + \Delta x, \theta f(\bar{x} + \Delta x) + (1 - \theta) f(\bar{x}))}$$

故

$$|f(\bar{x} + \Delta x) - f(\bar{x})| \le \frac{|F(\bar{x} + \Delta x, f(\bar{x})) - F(\bar{x}, f(\bar{x}))|}{m}$$

其中 $m = \inf_{x \in D^*} \partial_y F > 0$. 所以 $\lim_{\Delta x \to 0} f(\bar{x} + \Delta x) - f(\bar{x}) = 0$.

Step 3 f 在 $(x_0 - \rho, x_0 + \rho)$ 上可偏导: 任取 $\bar{x} \in (x_0 - \rho, x_0 + \rho)$, 取 Δx 满足 $0 < |\Delta x| << 1, s.t. \bar{x} + \Delta x \in (x_0 - \rho, x_0 + \rho)$. 由于

$$F(\bar{x}, f(\bar{x})) = 0, F(\bar{x} + \Delta x, f(\bar{x} + \Delta x)) = 0,$$

同理有

$$\begin{split} 0 = & F(\bar{x} + \Delta x, f(\bar{x} + \Delta x)) - F(\bar{x}, f(\bar{x})) \\ = & \partial_x F(\bar{x} + \theta \Delta x, \theta f(\bar{x} + \Delta x) + (1 - \theta) f(\bar{x})) \Delta x \\ & + \partial_y F(\bar{x} + \theta \Delta x, \theta f(\bar{x} + \Delta x) + (1 - \theta) f(\bar{x})) [f(\bar{x} + \Delta x) - f(\bar{x})] \end{split}$$

从而

$$\frac{f(\bar{x} + \Delta x) - f(\bar{x})}{\Delta x} = -\frac{\partial_x F(\bar{x} + \theta \Delta x, \theta f(\bar{x} + \Delta x) + (1 - \theta) f(\bar{x}))}{\partial_y F(\bar{x} + \theta \Delta x, \theta f(\bar{x} + \Delta x) + (1 - \theta) f(\bar{x}))}$$

即

$$f'(\bar{x}) = -\frac{\partial_x F(\bar{x}, f(\bar{x}))}{\partial_y F(\bar{x}, f(\bar{x}))}.$$

Note:

- (1) 隐函数定理是一个局部性定理,即只在 (x_0,y_0) 的一个邻域内成立;
- (2) $\partial_y F(x_0, y_0) \neq 0$ 只是充分条件。例: $F(x, y) = y^3 x = 0$ 在 (0,0) 附近唯一确定隐函数,但 $\partial_y F(0, 0) = 0$;
- (3) 定理中的 x 与 y 的地位是平等的,即如果 $\partial_y F(x_0, y_0) \neq 0$, 则在 (x_0, y_0) 的一个邻域中,F(x, y) = 0 可以唯一确定一个隐函数 x = g(y)(F(g(y), y) = 0);
- (4) 只是存在唯一性,可微性,但一般情况下很难写出 f(x) 的显示表达式;

(5) 推论 高阶可微性 (C^k) :

若
$$F \in C^k(D)$$
, 则 $f(x) \in C^k((x_0 - \rho, x_0 + \rho)), k = 1, 2, \cdots$. 若 $F \in C^\omega(D)$, 1 则 $f(x) \in C^\omega(D)$

证明. 利用归纳法证明 $f(x) \in C^k((x_0 - \rho, x_0 + \rho))$:

当
$$F \in C^1(D)$$
 时, $f'(x) = -\frac{\partial_x F(x,f(x))}{\partial_y F(x,f(x))}, x \in (x_0 - \rho, x_0 + \rho)$,此时 $f \in C^1((x_0 - \rho, x_0 + \rho))$.
 当 $F \in C^2(D)$ 时, $\partial_x F, \partial_y F \in C^1(D)$,由复合函数的可微性知 $f'(x) \in C^1((x_0 - \rho, x_0 + \rho))$
也即 $f(x) \in C^2((x_0 - \rho, x_0 + \rho))$.

假设 $F \in C^k(D) \Rightarrow f(x) \in C^k((x_0 - \rho, x_0 + \rho))$ 。那么 $F \in C^{k+1}(D)$ 时,有 $\partial_x F, \partial_y F \in C^k(D)$,故 $\frac{\partial_x F(x, f(x))}{\partial_y F(x, f(x))} \in C^k(x_0 - \rho, x_0 + \rho)$,即 $f'(x) \in C^k(x_0 - \rho, x_0 + \rho)$,于是 $f(x) \in C^{k+1}((x_0 - \rho, x_0 + \rho))$.

$$f(x) \in C^{\omega}(D)$$
 的证明比较困难,这里从略。

(6) 若将 $\partial_y F(x_0, y_0) \neq 0$ 换成: $\forall \bar{x} \in [x_0 - \alpha, x_0 + \alpha], F(\bar{x}, y)$ 关于 y 是严格单调增加的,则也 \exists ! 连续隐函数(也即只假设 $F \in C(D), F(x_0, y_0) = 0$)。

多元隐函数定理 设 n+1 元函数 F(x,y) ($x=(x_1,x_2,\cdots,x_n)$) 满足:

- (1) $F(\mathbf{x}_0, y_0) = 0$;
- (2) $\exists Z D = \{(x, y) : |x_i x_i^0| \le a, |y y_0| \le b, i = 1, 2, \dots, n\}, F \in C^1(D);$
- (3) $\partial_y F(\boldsymbol{x}_0, y_0) \neq 0$

则 $\exists \rho > 0, \eta > 0$,使得

- (i) $\forall x_0 \in O(\bar{x}_0, \rho)$, 方程 $F(x_0, y_0) = 0$ 在 $(y_0 \eta, y_0 + \eta)$ 中存在唯一解 f(x);
- (ii) $f(x_0) = y_0$;
- (iii) $f \in C(O(\boldsymbol{x}_0, \rho));$
- (iv) $f \in C^1(O(x_0, \rho))$ \coprod

$$\frac{\partial f}{\partial x_i} = -\frac{\partial_{x_i} F(\boldsymbol{x}, f(\boldsymbol{x}))}{\partial_{y} F(\boldsymbol{x}, f(\boldsymbol{x}))}.$$

 $^{^{1}}f\in C^{\omega}(D)$: f 为解析函数

(iv) 的证明: 由 F(x, f(x)) = 0 知:

$$\partial_{x_i} F(\boldsymbol{x}, f(\boldsymbol{x})) + \frac{\partial F}{\partial y}(\boldsymbol{x}, f(\boldsymbol{x})) \frac{\partial f}{\partial x_i}(\boldsymbol{x}) = 0$$

$$\Rightarrow \frac{\partial f}{\partial x_i} = -\frac{\partial_{x_i} F(\boldsymbol{x}, f(\boldsymbol{x}))}{\partial_y F(\boldsymbol{x}, f(\boldsymbol{x}))}.$$

求导方法 $F(x, f(x)) = 0, x \in (x_0 - \rho, x_0 + \rho), f(x_0) = y_0$,关于 x 求导得:

$$\frac{\partial F}{\partial x}(x, f(x)) + \frac{\partial F}{\partial y}(x, f(x)) \frac{\partial f}{\partial x}(x) = 0 \tag{1}$$

$$0 \Rightarrow f'(x) = -\frac{\partial_x F(x, f(x))}{\partial_y F(x, f(x))} \tag{2}$$

从而可得 $f'(x_0)$ 的值。

二阶导可以直接由式(2)f'(x) 出发求导;或可根据式(1):

$$0 = \frac{\partial^2 F}{\partial x^2}(x, f(x)) + 2\frac{\partial^2 F}{\partial x \partial y}(x, f(x))f'(x) + \frac{\partial^2 F}{\partial y^2}(x, f(x))(f'(x))^2 + \frac{\partial F}{\partial y}(x, f(x))f''(x)$$

从而得到 f''(x) 以及 $f''(x_0)$.

多元隐函数的求导方法

$$F(x_1, x_2, \dots, x_n, f(x_1, x_2, \dots, x_n)) = 0, x \in O(\mathbf{x}_0, \rho)$$
(3)

对(3)关于 x_i 求偏导得:

$$\partial_{x_i} F(\mathbf{x}, f(\mathbf{x})) + \frac{\partial F}{\partial y}(\mathbf{x}, f(\mathbf{x})) \frac{\partial f}{\partial x_i}(\mathbf{x}) = 0$$
 (4)

从而

$$\frac{\partial f}{\partial x_i} = -\frac{\partial_{x_i} F(\mathbf{x}, f(\mathbf{x}))}{\partial_y F(\mathbf{x}, f(\mathbf{x}))}, i = 1, 2, \cdots, n$$
(5)

若 $F \in C^2$,则 $f \in C^2(O(\boldsymbol{x}_0, \rho))$,对(4)关于 x_i 求偏导,有:

$$\frac{\partial^2 F}{\partial x_i \partial x_j}(\boldsymbol{x}, f(\boldsymbol{x})) + \frac{\partial^2 F}{\partial x_i \partial y}(\boldsymbol{x}, f(\boldsymbol{x})) \frac{\partial f}{\partial x_j}(\boldsymbol{x}) + \frac{\partial^2 F}{\partial x_j \partial y}(\boldsymbol{x}, f(\boldsymbol{x})) \frac{\partial f}{\partial x_i}(\boldsymbol{x})$$
(6)

$$+\frac{\partial^2 F}{\partial y^2}(\boldsymbol{x}, f(\boldsymbol{x}))\frac{\partial f}{\partial x_j}(\boldsymbol{x})\frac{\partial f}{\partial x_i}(\boldsymbol{x}) + \frac{\partial F}{\partial y}(\boldsymbol{x}, f(\boldsymbol{x}))\frac{\partial^2 f}{\partial x_i \partial x_j}(\boldsymbol{x}) = 0$$
 (7)

图 1: 函数图像

例 $\sin x + (1-x) \ln y - xy^3 = 0$ (函数图像参见1)

解: $F(x,y) = \sin x + (1-x)\ln y - xy^3 = 0, F(0,1) = 0, \partial_y F(0,1) = \left(\frac{1-x}{y} - 3xy^2\right)\Big|_{(0,1)} = 1, F(1,(\sin 1)^{1/5}) = 0, \partial_y F(1,(\sin 1)^{1/5}) = \left(\frac{1-x}{y} - 3xy^2\right)\Big|_{1,(\sin 1)^{1/5}} = -3(\sin 1)^{2/5}.$ 可以利用隐函 数求导求出函数图像的部分点.

例 $x^2 + y^2 + z^2 = 4z$,确定 z 为 x, y 的函数,求 $\frac{\partial^2 z}{\partial x^2}$, $\frac{\partial^2 z}{\partial x \partial y}$ (课本例题) 解: 关于 x,y 分别求偏导数,得:

$$2x + 2z\frac{\partial z}{\partial x} = 4\frac{\partial z}{\partial x} \tag{8a}$$

$$2y + 2z \frac{\partial z}{\partial y} = 4 \frac{\partial z}{\partial y} \tag{8b}$$

从上式中可解出 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$. 下面可以对(8a)和(8b)对 x 求偏导得到 $\frac{\partial^2 z}{\partial x^2}$, $\frac{\partial^2 z}{\partial x \partial y}$ 的值。

几点补充

1. 唯一性的另一个证明(归一法):

证明. 假设 $f_1(x), f_2(x)$ 是由 F(x,y) = 0 在 (x_0, y_0) 的一个邻域中确定的两个隐函数,即 $F(x,f_1(x)) = F(x,f_2(x)) = 0; f_1(x_0) = f_2(x_0) = y_0, |f_1(x) - y_0| < \eta, |f_2(x) - y_0| < \eta, x \in \mathbb{R}$ $O(x_0, \rho)$ (下面利用中值定理证明:)

$$\Rightarrow 0 = F(x, f_1(x)) - F(x, f_2(x)) = \partial_y F(x, \theta f_1(x) + (1 - \theta) f_2(x)) [f_1(x) - f_2(x)],$$

$$\theta \in (0,1)$$
。由于 $\partial_y F(x, \theta f_1(x) + (1-\theta)f_2(x)) \neq 0, x \in O(x_0, \rho)$,故 $f_1(x) = f_2(x), x \in O(x_0, \rho)$

2. 存在性的另一个证明 (Picard 迭代):

Step 1 构造 Picard 序列;

Step 2 $\{y_n(x)\}$ 在 $O(x_0, \rho)$ 上一致收敛。

<mark>一元向量值函数的隐函数定理</mark> 设 $F(x,y_1,y_2),G(x,y_1,y_2)$ 满足以下条件:

- (1) $F(x_0, y_1^0, y_2^0) = G(x_0, y_1^0, y_2^0) = 0;$
- (2) $D = \{(x, y_1, y_2) : |x x_0| < a, |y_1 y_1^0| < b_1, |y_2 y_2^0| < b_2\}; F, G$ 在 D 上连续,而且有连续偏导数;
- (3) Jacobi 行列式不为零:

$$\frac{\partial(F,G)}{\partial(y_1,y_2)}(x_0,y_1^0,y_2^0) = \begin{vmatrix} \frac{\partial F}{\partial y_1} & \frac{\partial F}{\partial y_2} \\ \frac{\partial G}{\partial y_1} & \frac{\partial G}{\partial y_2} \end{vmatrix} (x_0,y_1^0,y_2^0) \neq 0$$

则 $\exists \rho > 0, \eta > 0, s.t.$

(i) $\forall x \in (x_0 - \rho, x_0 + \rho)$, 方程

$$\begin{cases} F(x, y_1, y_2) = 0 \\ G(x, y_1, y_2) = 0 \end{cases}$$

在 $O(\mathbf{y}_0, \eta)$ 中有唯一解 (其中 $\mathbf{y}_0 = (y_1^0, y_2^0)$), 记为 $\mathbf{y}(x) = (y_1(x), y_2(x))$;

- (ii) $y(x_0) = y_0$;
- (iii) $y(x) \in C^1(O(x_0, \rho))$ (连续可微; $y(x) \in C^1$ 意为 $y_1(x), y_2(x) \in C^1$);
- (iv) 而且

$$\begin{pmatrix} y_1'(x) \\ y_2'(x) \end{pmatrix} = - \begin{pmatrix} \frac{\partial F}{\partial y_1} & \frac{\partial F}{\partial y_2} \\ \frac{\partial G}{\partial y_1} & \frac{\partial G}{\partial y_2} \end{pmatrix}^{-1} (x, \boldsymbol{y}(x)) \begin{pmatrix} \frac{\partial F}{\partial x} \\ \frac{\partial G}{\partial x} \end{pmatrix} (x, \boldsymbol{y}(x)).$$

证明.(思想:消元法)由于

$$\begin{vmatrix} \frac{\partial F}{\partial y_1} & \frac{\partial F}{\partial y_2} \\ \frac{\partial G}{\partial y_1} & \frac{\partial G}{\partial y_2} \end{vmatrix} (x_0, y_1^0, y_2^0) \neq 0,$$

故 $\left(\frac{\partial G}{\partial y_1}, \frac{\partial G}{\partial y_2}\right) \neq (0,0)$; 不妨设 $\frac{\partial G}{\partial y_2} \neq 0$. 又 $G(x_0, y_1, y_2)$ 在 (x, y_1^0, y_2^0) 的一个邻域,于是满足隐函数定理条件,即:

- (1) $G(x_0, y_1^0, y_2^0) = 0;$
- (2) G 在 D 上连续可微;
- (3) $\frac{\partial G}{\partial y_2}(x_0, y_1^0, y_2^0) \neq 0$

由隐函数定理知 $\exists \tilde{\rho} > 0, \tilde{\eta} > 0$ 以及隐函数 $h(x, y_1)$ 满足:

- (i) $h(x_0, y_1^0) = y_2^0$;
- (ii) $G(x, y_1, h(x, y_1)) = 0, (x, y_1) \in O((x_0, y_1^0), \tilde{\rho});$
- (iii) $h(x, y_1) \in C^1(O((x_0, y_1^0), \tilde{\rho}));$

(iv)
$$\frac{\partial h}{\partial y_1}(x, y_1) = -\frac{\frac{\partial G}{\partial y_1}(x, y, h(x, y_1))}{\frac{\partial G}{\partial y_2}(x, y, h(x, y_1))}, |h(x, y_1) - y_2^0| < \tilde{\eta}, \forall (x, y_1) \in O((x_0, y_1^0), \tilde{\rho})$$

- (i) $H(x_0, y_1^0) = F(x_0, y_1^0, h(x_0, y_1^0)) = F(x_0, y_1^0, y_2^0) = 0;$
- (ii) 令 $D = \{(x, y_1) : |x x_0| \le \frac{\tilde{\varrho}}{2}, |y y_0| \le \frac{\tilde{\varrho}}{2}\}, 则 H(x, y_1)$ 在 D 上连续可微 (利用复合函数);

(iii)

$$\frac{\partial H}{\partial y_1}(x_0, y_1^0) = \frac{\partial F}{\partial y_1}(x_0, y_1^0, y_2^0) + \frac{\partial F}{\partial y_2}(x_0, y_1^0, y_2^0) \frac{\partial h}{\partial y_1}(x_0, y_1^0) = \frac{\frac{\partial (F, G)}{\partial (y_1, y_2)}(x_0, y_1^0, y_2^0)}{\frac{\partial G}{\partial y_1}(x_0, y_1^0, y_2^0)} \neq 0$$

对 $H(x,y_1)$ 用隐函数定理, 得: $\exists \rho > 0, \eta > 0$ 以及隐函数 $y_1(x) \in C^1(O(x_0,\rho))$, 满足:

- (i) $y_1(x_0) = y_1^0, H(x, y_1(x)) = 0, |y_1(x) y_1^0| < \eta, \forall x \in O(x_0, \rho);$
- (ii) 连续可微;
- (iii) 可偏导(且有公式,不写了)。

令 $y_2(x) = h(x, y_1(x)), x \in O(x_0, \rho)$, 则 $y_2(x_0) = h(x_0, y_1(x_0)) = h(x_0, y_1^0) = y_2^0$, 而且 $y_2(x) \in C^1(O(x_0, \rho))$.

又因为 $F(x, y_1(x), y_2(x)) = F(x, y_1(x), h(x, y_1(x))) = 0, \forall x \in O(x_0, \rho)$,同理 $G(x, y_1(x), y_2(x)) = G(x, y_1(x), h(x, y_1(x))) = 0, \forall x \in O(x_0, \rho)$;从而我们证明了定理中的存在性以及 (ii)(iii).

唯一性的证明: 若 $z_1(x), z_2(x)$ 是²由

$$\begin{cases} F(x, \mathbf{y}) = 0 \\ G(x, \mathbf{y}) = 0 \end{cases}$$

在 (x_0, y_0) 的一个邻域中有确定的两个隐函数,则

$$\begin{cases} F(x, \mathbf{z}_1(x)) = F(x, \mathbf{z}_2(x)) = 0 \\ G(x, \mathbf{z}_1(x)) = G(x, \mathbf{z}_2(x)) = 0 \end{cases}$$

若直接用类似二元函数 f(x,y) 的证明的中值定理 (见"几点补充"):

$$0 = F(x, z_1(x)) - F(x, z_2(x)) = \nabla_y F(x, \theta z_1(x) + (1 - \theta) z_2(x)) (z_1(x) - z_2(x))$$
(9a)

$$0 = G(x, z_1(x)) - G(x, z_2(x)) = \nabla_{y} G(x, \tilde{\theta} z_1(x) + (1 - \tilde{\theta}) z_2(x)) (z_1(x) - z_2(x))$$
(9b)

由于 θ 和 $\tilde{\theta}$ 不一定相等,故不能用这种方法证明(我们想要利用"Jacobi 矩阵行列式不为零"这一条件证明)。

所以我们用 Taylor 公式:

$$0 = F(x, \mathbf{z}_1(x)) - F(x, \mathbf{z}_2(x)) \tag{10}$$

$$=\nabla_{y}F(x, z_{2}(x))(z_{1}(x) - z_{2}(x)) + o(||z_{1}(x) - z_{2}(x)||) \quad (x \to x_{0})$$
(11)

$$0 = G(x, \boldsymbol{z}_1(x)) - G(x, \boldsymbol{z}_2(x)) \tag{12}$$

$$=\nabla_{\boldsymbol{y}}G(x, \boldsymbol{z}_2(x))(\boldsymbol{z}_1(x) - \boldsymbol{z}_2(x)) + o(||\boldsymbol{z}_1(x) - \boldsymbol{z}_2(x)||) \quad (x \to x_0)$$
(13)

从而

$$\boldsymbol{z}_1(x) - \boldsymbol{z}_2(x) = - \begin{pmatrix} \frac{\partial F}{\partial y_1} & \frac{\partial F}{\partial y_2} \\ \frac{\partial G}{\partial y_1} & \frac{\partial G}{\partial y_2} \end{pmatrix}^{-1} \begin{pmatrix} o_1(||\boldsymbol{z}_1(x) - \boldsymbol{z}_2(x)||) \\ o_2(||\boldsymbol{z}_1(x) - \boldsymbol{z}_2(x)||) \end{pmatrix}, x \to x_0,$$

两边取模,因

$$\begin{vmatrix} \frac{\partial F}{\partial y_1} & \frac{\partial F}{\partial y_2} \\ \frac{\partial G}{\partial y_1} & \frac{\partial G}{\partial y_2} \end{vmatrix}^{-1}$$

为有界量,而

$$\begin{vmatrix} o_1(||\boldsymbol{z}_1(x) - \boldsymbol{z}_2(x)||) \\ o_2(||\boldsymbol{z}_1(x) - \boldsymbol{z}_2(x)||) \end{vmatrix}$$

 $^{^2}$ 发现这里 z 和 z 差别不大。。但注意以下均为粗体的 z; 另外下面行向量和列向量可能有点乱,可以稍微注意一下哈哈

是关于 $||z_1(x) - z_2(x)||$ 的高阶无穷小; 故当 $x \to x_0$ 时有

$$\begin{vmatrix} \frac{\partial F}{\partial y_1} & \frac{\partial F}{\partial y_2} \\ \frac{\partial G}{\partial y_1} & \frac{\partial G}{\partial y_2} \end{vmatrix}^{-1} \begin{vmatrix} o_1(||\boldsymbol{z}_1(x) - \boldsymbol{z}_2(x)||) \\ o_2(||\boldsymbol{z}_1(x) - \boldsymbol{z}_2(x)||) \end{vmatrix} \leq \frac{1}{2} ||\boldsymbol{z}_1(x) - \boldsymbol{z}_2(x)||,$$

从而 $x \to x_0$ 时,有:

$$||\boldsymbol{z}_1(x) - \boldsymbol{z}_2(x)|| \le \frac{1}{2} ||\boldsymbol{z}_1(x) - \boldsymbol{z}_2(x)||,$$

从而只能有 $||z_1(x) - z_2(x)|| = 0$,即 $z_1(x) = z_2(x)$.

求导方法: 设 $y_1(x), y_2(x)$ 是由方程组

$$\begin{cases} F(x, y_1, y_2) = 0 \\ G(x, y_1, y_2) = 0 \end{cases}$$

在 (x_0, y_1^0, y_2^0) 的一个邻域内确定的隐函数,则有

$$\begin{cases} F(x, y_1, y_2) = 0 \\ G(x, y_1, y_2) = 0 \end{cases}, \forall x \in O(x_0, \rho),$$

对上式关于 x 求导得:

$$\begin{cases} \frac{\partial F}{\partial x}(x, \boldsymbol{y}(x)) + \frac{\partial F}{\partial y_1}(x, \boldsymbol{y}(x))y_1'(x) + \frac{\partial F}{\partial y_2}(x, \boldsymbol{y}(x))y_2'(x) = 0\\ \frac{\partial G}{\partial x}(x, \boldsymbol{y}(x)) + \frac{\partial G}{\partial y_1}(x, \boldsymbol{y}(x))y_1'(x) + \frac{\partial G}{\partial y_2}(x, \boldsymbol{y}(x))y_2'(x) = 0 \end{cases}$$

从而

$$\begin{pmatrix} y_1'(x) \\ y_2'(x) \end{pmatrix} = \begin{pmatrix} \frac{\partial F}{\partial y_1} & \frac{\partial F}{\partial y_2} \\ \frac{\partial G}{\partial y_1} & \frac{\partial G}{\partial y_2} \end{pmatrix}^{-1} \begin{pmatrix} \frac{\partial F}{\partial x} \\ \frac{\partial G}{\partial x} \end{pmatrix} (x, \boldsymbol{y}(x)), x \in O(x_0, \rho)$$

Note 求导可以达到线性化的目的。

例 课本例题 12.4.4。设 $\begin{cases} y=y(x) \\ z=z(x) \end{cases}$ 是由方程组 $\begin{cases} z=xf(x+y) \\ F(x,y,z)=0 \end{cases}$ 所确定的向量值隐函数,

其中 f 和 F 分别具有连续的导数和偏导数,求 $\frac{\mathrm{d}z}{\mathrm{d}x}$. 解: 两边关于 x 求偏导。

12

 $\frac{n}{n}$ 元 $\frac{m}{m}$ 维向量值隐函数定理 考虑如下方程组:

$$\begin{cases} F_1(x_1, \dots, x_n, y_1, \dots, y_m) = 0 \\ F_2(x_1, \dots, x_n, y_1, \dots, y_m) = 0 \\ \dots \\ F_m(x_1, \dots, x_n, y_1, \dots, y_m) = 0 \end{cases}$$

记

$$\frac{\partial(F_1, \cdots, F_m)}{\partial(y_1, \cdots, y_m)} = \begin{vmatrix} \frac{\partial F_1}{\partial y_1} & \frac{\partial F_1}{\partial y_2} & \cdots & \frac{\partial F_1}{\partial y_m} \\ \vdots & \vdots & & \vdots \\ \frac{\partial F_m}{\partial y_1} & \frac{\partial F_m}{\partial y_2} & \cdots & \frac{\partial F_m}{\partial y_m} \end{vmatrix}$$

称为 F_1,\cdots,F_m 关于 y_1,\cdots,y_m 的 Jacobi 行列式。引入记号 ${m x}=(x_1,\cdots,x_n), {m y}=(y_1,\cdots,y_m), {m F}({m x},{m y})=(y_1,\cdots,y_m)$ $\left(egin{array}{c} F_1(oldsymbol{x},oldsymbol{y}) \ dots \ \end{array}
ight)$ 。于是如果 $oldsymbol{F}$ 满足:

- (1) $F(x_0, y_0) = 0$;
- (2) 在 $D = \{(\boldsymbol{x}, \boldsymbol{y}) : |x_i x_i^0| \le a_i, |y_j y_j^0| \le b_j, i = 1, \dots, n, j = 1, \dots, m\}$ 连续,而且有连续 偏导数;
- (3) $\frac{\partial(F_1,\cdots,F_m)}{\partial(y_1,\cdots,y_m)}(\boldsymbol{x}_0,\boldsymbol{y}_0)\neq 0,$

则 $\exists \rho > 0, \eta > 0$ 使得:

- (i) $\forall x \in O(x_0, \rho)$, 方程 F(x, y) = 0 在 $O(y_0, \eta)$ 中有唯一解, 记为 y(x);
- (ii) $y(x_0) = y_0$;
- (iii) $y(x) \in C^1(O(x_0, \rho))$,而且 $y'(x) = -(\nabla_y F)^{-1} \nabla_x F(x, y(x))$,其中

$$\nabla_{\boldsymbol{x}}\boldsymbol{F} = \begin{pmatrix} \nabla_{\boldsymbol{x}}F_1 \\ \vdots \\ \nabla_{\boldsymbol{x}}F_m \end{pmatrix} = \begin{pmatrix} \frac{\partial F_1}{\partial x_1} & \cdots & \frac{\partial F_1}{\partial x_n} \\ \frac{\partial F_2}{\partial x_1} & \cdots & \frac{\partial F_2}{\partial x_n} \\ \vdots & & \vdots \\ \frac{\partial F_m}{\partial x_1} & \cdots & \frac{\partial F_m}{\partial x_n} \end{pmatrix}$$

证明. 参见史济怀/徐森林。

下面我们用线性方程组的角度大致理解条件 "Jacobi 矩阵行列式不为零": 在 $(\boldsymbol{x}_0, \boldsymbol{y}_0)$ 附近 对 $\boldsymbol{F}(\boldsymbol{x}, \boldsymbol{y})$ 做 Taylor 展开:

$$F_1(\mathbf{x}, \mathbf{y}) = F_1(\mathbf{x}_0, \mathbf{y}_0) + (\mathbf{x} - \mathbf{x}_0) \nabla_{\mathbf{x}} F_1(\mathbf{x}_0, \mathbf{y}_0) + (\mathbf{y} - \mathbf{y}_0) \nabla_{\mathbf{y}} F_1(\mathbf{x}_0, \mathbf{y}_0) + h_1(\mathbf{x}, \mathbf{y})$$
:

$$F_m(\boldsymbol{x},\boldsymbol{y}) = F_m(\boldsymbol{x}_0,\boldsymbol{y}_0) + (\boldsymbol{x}-\boldsymbol{x}_0)\nabla_{\boldsymbol{x}}F_m(\boldsymbol{x}_0,\boldsymbol{y}_0) + (\boldsymbol{y}-\boldsymbol{y}_0)\nabla_{\boldsymbol{y}}F_m(\boldsymbol{x}_0,\boldsymbol{y}_0) + h_m(\boldsymbol{x},\boldsymbol{y})$$
 从而(因 $F_i(\boldsymbol{x}_0,\boldsymbol{y}_0) = 0, i = 1,\cdots,m$)

$$0 = F(x, y) = \nabla_x F(x_0, y_0)(x - x_0) + \nabla_y F(x_0, y_0)(y - y_0) + h(x, y),$$

于是隐函数存在就等价于

$$0 = \nabla_{x} F(x_0, y_0)(x - x_0) + \nabla_{y} F(x_0, y_0)(y - y_0) + h(x, y),$$
(14)

其中

$$h(x, y) = F(x, y) - \nabla_x F(x_0, y_0)(x - x_0) - \nabla_y F(x_0, y_0)(y - y_0),$$

方程(14)的线性近似方程为:

$$\nabla_{x} F(x_{0}, y_{0})(x - x_{0}) + \nabla_{y} F(x_{0}, y_{0})(y - y_{0}) = 0$$
(15)

方程(15)对 $\forall x \in \mathbb{R}^n$ 可解 $\Leftrightarrow \nabla_y F(x_0, y_0)$ 可逆。

这里用到了以下(描述不太严谨的)定理: "线性方程可解" + "非线性扰动 h(x,y) 满足 $||h(x,y_1)-h(x,y_2)|| \le \varepsilon ||y_1-y_2||, (x,y_1), (x,y_2)$ 在 (x_0,y_0) 附近" \Longrightarrow 非线性方程可解。

Note

- 1. 局部性;
- 2. $\frac{\partial(F_1,\cdots,F_m)}{\partial(y_1,\cdots,y_m)}(\boldsymbol{x}_0,\boldsymbol{y}_0)\neq 0$ 只是充分条件;
- 3. C^k 可微性: 若 $\mathbf{F} \in C^k(D)$, 则 $\mathbf{y}(x) \in C^k(O(\mathbf{x}_0, \rho)), k = 1, \dots, k$; 若 $\mathbf{F} \in C^{\omega}(D)$, 则 $\mathbf{y}(x) \in C^{\omega}(O(\mathbf{x}_0, \rho))$ (实解析函数);
- 4. 地位对称性,即 $x_1, \dots, x_n, y_1, \dots, y_m$ 是平等的。例: 如果 $\frac{\partial (F_1, \dots, F_m)}{\partial (x_1, \dots, x_m)}(\boldsymbol{x}_0, \boldsymbol{y}_0) \neq 0$,则 x_1, \dots, x_m 可表示为 $x_{m+1}, \dots, x_n, y_1, \dots, y_m$ 的函数。

1.2 逆映射定理

回顾: 若 $f \in C^1((a,b))$ 且 $f'(x_0) \neq 0$,则 $\exists x_0$ 的一个邻域 $O(x_0,\rho)$ 和 $y_0 = f(x_0)$ 的一个邻域 $O(y_0,\eta)$ 使得

- (i) f 在 $O(x_0, \rho)$ 上单射,而且 $f(O(x_0, \rho)) = O(y_0, \eta)$ (存在);
- (ii) 记 g 是 f 在 $O(y_0, \eta)$ 上的反函数, $g \in C^1(O(y_0, \eta))$ (连续可微);
- (iii) $g'(y) = \frac{1}{f'(g(y))}, \forall y \in O(y_0, \eta).$

下面考虑多元: 若

$$\begin{cases} f_1(x_1, \dots, x_n) = y_1 \\ \vdots \\ f_n(x_1, \dots, x_n) = y_n \end{cases}$$

而且 $f(x_0) = y_0$, Q:在什么条件下, x_1, \dots, x_n 可写成 y_1, \dots, y_n 的函数?

局部逆映射定理 设 $D \subset \mathbb{R}^n$ 是一个区域, $x_0 \in D, f: D \to \mathbb{R}^n$ 满足以下条件:

- (1) $\mathbf{f} \in C^1(D)(\mathbf{f} = (f_1, \dots, f_n));$
- (2) $\frac{\partial (f_1,\cdots,f_n)}{\partial (x_1,\cdots,x_n)}(\boldsymbol{x}_0)\neq 0;$

记 $y_0 = f(x_0)$,则存在 x_0 的一个邻域 U 以及 y_0 的一个邻域 V,使得:

- (i) f 在 U 上是单射,而且 f(U) = V(此时反函数存在唯一);
- (ii) 记 g 是 f 在 U 上的逆映射,则 $g \in C^1(V)$ (连续可微性);
- (iii) $g'(y) = (f'(g(y)))^{-1}, \forall y \in V$ (此时 $f \circ g(y) = y, \forall y \in V; g \circ f(x) = x, \forall x \in U$)(Jacobi 矩阵的逆矩阵)

证明. 考虑 $F(x,y) = f(x) - y(F_i(x,y)) = f_i(x) - y_i, i = 1, \dots, n)(D \times \mathbb{R}^n \to \mathbb{R}^n), \, \text{则 } f \in C^1(D \times \mathbb{R}^n), \, \text{而且 } F(x_0,y_0) = f(x_0) - y_0 = 0, \frac{\partial (f_1,\dots,f_n)}{\partial (x_1,\dots,x_n)}(x_0) \neq 0, \, \text{由隐函数定理知:} \exists \rho > 0, \eta > 0, \, \text{以及唯一的隐函数 } g \in C^1(O(y_0,\rho)), \text{s.t.:}$

(i) $g(y_0) = x_0, F(g(y), y) = f(g(y)) - y = 0, \forall y \in O(y_0, \rho), ||g(y) - x_0|| < \eta. \Leftrightarrow V = O(y_0, \rho), U = g(V), \text{ } y \in C^1(V);$

(ii) 而且 f(U) = V, f 在 U 上是单射(In fact, if $f(x_1) = f(x_2)$, $x_1, x_2 \in U$,则 $\exists y_1, y_2 \in V$, s.t. $g(y_1) = x_1, g(y_2) = x_2$,则有 $y_1 = f \circ g(y_1) = f \circ g(y_2) = y_2 \Rightarrow x_1 = x_2$.

- (iii) 下面证明: U 是开集。Claim: $U = O(x_0, \eta) \cap (f)^{-1}(V)$,其中 $(f)^{-1}(V)$ 是 V 的原像,即 $(f)^{-1}(V) = \{x \in D : f(x) \in V\}$. 首先显然有 $U \subset O(x_0, \eta) \cup (f)^{-1}(V)$; 反之, $\forall \tilde{x} \in O(x_0, \eta) \cup (f)^{-1}(V)$,有 $||\tilde{x} x_0|| < \eta$ 且 $f(\tilde{x}) \in V$ (因为第一条,有唯一性),故 $g \circ f(\tilde{x}) \in U$ (由唯一性,只能有 $g \circ f(\tilde{x}) = \tilde{x}$),所以 $O(x_0, \eta) \cup (f)^{-1}(V) \subset U$. 又因为 $O(x_0, \eta)$ 与 $(f)^{-1}(V)$ (连续映射把开集映为开集)都是开集,所以 U 是开集。
- (iv) 求导方法: 由 $f(g(y)) = y, \forall y \in V$, 两边关于 y 求导得:

$$f'(g(y))g'(y) = I($$
单位矩阵 $) \Rightarrow g'(y) = (f'(g(y)))^{-1}, \forall y \in V.$

- (v) C^k 可微性: 若 $f \in C^k(D)$, $f'(x_0)$ 可逆,则 $g \in C^k(V)$, $k = 1, 2, \cdots$ (这一点容易得到); 若 $f \in C^{\omega}(D)$, $f'(x_0)$ 可逆,则 $g \in C^{\omega}(V)$ (这一点不容易证明);
- (vi) 关于单射的理解: 当 x, y 在 x_0 附近时, 有

$$\boldsymbol{f}(\boldsymbol{x}) = \boldsymbol{f}(\boldsymbol{x}_0) + \boldsymbol{f}'(\boldsymbol{x}_0)(\boldsymbol{x} - \boldsymbol{x}_0) + \boldsymbol{h}(\boldsymbol{x}), \boldsymbol{h}(\boldsymbol{x}) = \boldsymbol{f}(\boldsymbol{x}) - \boldsymbol{f}(\boldsymbol{x}_0) - \boldsymbol{f}'(\boldsymbol{x}_0)(\boldsymbol{x} - \boldsymbol{x}_0),$$

$$f(y) = f(y_0) + f'(y_0)(y - y_0) + h(y), h(y) = f(y) - f(y_0) - f'(y_0)(y - y_0),$$

两式相减,若 f(x) = f(y),则

$$f'(x_0)(x - y) = h(y) - h(x),$$

从而

$$egin{aligned} m{x} - m{y} &= (m{f}'(m{x}_0))^{-1} [m{h}(m{y}) - m{h}(m{x})] \ &\Rightarrow ||m{x} - m{y}|| \leq ||(m{f}'(m{x}_0))^{-1}|| \cdot ||m{h}(m{y}) - m{h}(m{x})||, \end{aligned}$$

类似1.1的理由知此时只能有 x = y.

回顾: 若 $f \in C^1(a,b)$ 且 $f'(x) \neq 0, \forall x \in (a,b), 则 <math>f^{-1}$ 在 (f(a),f(b))(or (f(b),f(a))) 上存在。Q: 若 $\mathbf{f} \in C^1(D)$ 且 $\frac{\partial (f_1,\cdots,f_n)}{\partial (x_1,\cdots,x_n)}(\mathbf{x}_0) \neq 0, \forall \mathbf{x} \in D$,那么 \mathbf{f} 是否在 D 上是单射? A: 当 $n \geq 2$ 时一般不对。**例**:

$$\boldsymbol{f}:\mathbb{R}^2 o \mathbb{R}^2$$

16

$$(x,y) \mapsto (e^x \cos y, e^x \sin y)$$

不是单射, 而且

$$\frac{\partial(f_1, f_2)}{\partial(x, y)} = \begin{vmatrix} e^x \cos y & -e^x \sin y \\ e^x \sin y & e^x \cos y \end{vmatrix} = e^{2x} \neq 0, \forall (x, y) \in \mathbb{R}^2.$$

遗留问题

- a (延拓问题:) 隐函数存在区间有多大?
- b The behavior of Implicit function?

总结

- 1. 一元隐函数定理 $(\partial_y F(x_0, y_0) \neq 0)$;
- 2. 多元隐函数定理 $(\partial_y F(x_0, y_0) \neq 0)$;
- 3. 一元二维向量值隐函数定理 $(\frac{\partial(F,G)}{\partial(y_1,y_2)}(x_0,y_0)\neq 0);$
- 4. n 元 m 维向量值隐函数定理 $(\frac{\partial(F_1,\cdots,F_m)}{\partial(y_1,\cdots,y_m)}(\boldsymbol{x}_0,\boldsymbol{y}_0)\neq 0);$
- 5. 逆映射定理 $(\frac{\partial (f_1, \dots, f_n)}{\partial (x_1, \dots, x_n)}(\boldsymbol{x}_0) \neq 0)$.

要求

- 1. 会计算隐函数的导数(隐式微分法);
- 2. 掌握定理的条件及结论(注意一下偏导不为零的条件),了解证明。

偏导数(方向导数)与全微分的概念,求导方法(+、-、×、÷,复合)

理论

中值定理及 Taylor 公式

隐函数定理及逆映射定理

应用 在几何中的应用──微分几何

极值

1.3 偏导数在几何中的应用

- 1. 空间曲线的切线方程与法平面方程: 关键是求出切向量;
- 2. 曲面的法线方程与法平面方程: 关键是求出法向量;
- 3. 曲线在交点处的夹角, 曲面在交线一点处的夹角。

1.3.1 空间曲线的切向量和法平面

1. 参数表示

切向量与切线方程: 设 $(x(t),y(t),z(t)),t\in [a,b]$ 是 \mathbb{R}^3 中的一条曲线,记为 Γ ; 而且 $x(t),y(t),z(t)\in C^1([a,b]),(x'(t))^2+(y'(t))^2+(z'(t))^2\neq 0, \forall t\in [a,b]$ 。取一点 $P_0(x(t_0),y(t_0),z(t_0))\in \Gamma$,计算 P_0 处的切线方程(切线定义为割线的极限)。设 P(x(t),y(t),z(t)) 是曲线上异于 P_0 的一点,则割线 $\overline{PP_0}$ 的方程为:

$$\frac{x - x_0}{x(t) - x(t_0)} = \frac{y - y_0}{y(t) - y(t_0)} = \frac{z - z_0}{z(t) - z(t_0)},$$

同时除以 $t-t_0$,有:

$$\frac{x-x_0}{\frac{x(t)-x(t_0)}{t-t_0}} = \frac{y-y_0}{\frac{y(t)-y(t_0)}{t-t_0}} = \frac{z-z_0}{\frac{z(t)-z(t_0)}{t-t_0}},$$

$$\frac{x - x_0}{x'(t)} = \frac{y - y_0}{y'(t)} = \frac{z - z_0}{z'(t)},\tag{16}$$

即为切线方程。说明:若 $x'(t_0)=0$,则方程(16)变为 $\begin{cases} x=x_0\\ \frac{y-y_0}{y'(t)}=\frac{z-z_0}{z'(t)} \end{cases}$;若 $x'(t_0)=y'(t_0)=0$,

则(16)变为
$$\begin{cases} x = x_0 \\ y = y_0 \end{cases}$$
.

也可这样推导: Γ 在 P_0 点处的切向量为 (x'(t), y'(t), z'(t)), 则 Γ 过 P_0 点的切线方程为(切线方程与切向量平行):

$$\frac{x - x_0}{x'(t)} = \frac{y - y_0}{y'(t)} = \frac{z - z_0}{z'(t)},\tag{17}$$

法平面方程: Γ 在 P_0 点处的法平面方程为 (直接利用点积为零):

$$(x - x_0)x'(t_0) + (y - y_0)y'(t_0) + (z - z_0)z'(t_0) = 0.$$
(18)

2. 显示方程

设曲线 Γ 由 $\begin{cases} y = y(x) \\ z = z(x) \end{cases}$, $x \in (a,b)$ 给出,取 $P_0(x_0,y(x_0),z(x_0)) \in \Gamma$,则 Γ 在 P_0 点的

$$x - x_0 = \frac{y - y_0}{y'(x_0)} = \frac{z - z_0}{z'(x_0)},$$

 Γ 在 P_0 点的法平面方程为

$$x - x_0 + (y - y_0)y'(x_0) + (z - z_0)z'(x_0) = 0.$$

3. 隐式表示

设曲线 Γ 由两张曲面相交而成, 方程为

$$\begin{cases} F(x, y, z) = 0 \\ G(x, y, z) = 0 \end{cases}, (x, y, z) \in D, \exists F \in C^{1}(D), G \in C^{1}(D).$$

此时设 $D_0 = (x_0, y_0, z_0) \in \Gamma$, 而且 $\begin{pmatrix} \frac{\partial F}{\partial x}(D_0) & \frac{\partial F}{\partial y}(D_0) & \frac{\partial F}{\partial z}(D_0) \\ \frac{\partial G}{\partial x}(D_0) & \frac{\partial G}{\partial y}(D_0) & \frac{\partial G}{\partial z}(D_0) \end{pmatrix}$ 满秩,计算 Γ 在 P_0 点处的切向量。

此时不妨设 $\frac{\partial(F,G)}{\partial(y,z)}(P_0) \neq 0$,则由<mark>隐函数定理</mark>知 $\exists \rho > 0$ 以及 $y(x) \in C^1(O(x_0,\rho)), z(x) \in C^1(O(x_0,\rho))$ 使得

$$\begin{cases} y(x_0) = y_0 \\ z(x_0) = z_0 \end{cases} \quad \mathbb{E} \begin{cases} F(x, y(x), z(x)) = 0 \\ G(x, y(x), z(x)) = 0 \end{cases}, x \in o(x_0, \rho)$$

因此 Γ 在 P_0 点的一个邻域中, Γ 的方程可由 (x,y(x),z(x)) 给出, $x \in O(x_0,\rho)$,从而 Γ 在 P_0 点的切向量为 $(1,y'(x_0),z'(x_0))$,且

$$\begin{pmatrix} y'(x_0) \\ z'(x_0) \end{pmatrix} = -\begin{pmatrix} \frac{\partial F}{\partial y} & \frac{\partial F}{\partial z} \\ \frac{\partial G}{\partial y} & \frac{\partial G}{\partial z} \end{pmatrix}^{-1} (P_0) \begin{pmatrix} \frac{\partial F}{\partial x} \\ \frac{\partial G}{\partial x} \end{pmatrix} (P_0) = -\frac{\begin{pmatrix} \frac{\partial G}{\partial z} & -\frac{\partial F}{\partial z} \\ -\frac{\partial G}{\partial y} & \frac{\partial F}{\partial y} \end{pmatrix} \begin{pmatrix} \frac{\partial F}{\partial x} \\ \frac{\partial G}{\partial x} \end{pmatrix} (P_0) }{\frac{\partial (F,G)}{\partial (y,z)} (P_0)}$$

$$= \begin{pmatrix} \frac{\partial (F,G)}{\partial (y,z)} & \frac{\partial (F,G)}{\partial (y,z)} \\ \frac{\partial (F,G)}{\partial (y,z)} (P_0) \end{pmatrix}^{T}$$

从而 Γ 在 P_0 点的切向量为

$$\left(\frac{\partial(F,G)}{\partial(y,z)}(P_0),\frac{\partial(F,G)}{\partial(z,x)}(P_0),\frac{\partial(F,G)}{\partial(x,y)}(P_0)\right).$$

另一种方法: 设 Γ 的参数方程为 (x(t),y(t),z(t)), 而且 $P_0(x_0,y_0,z_0)=(x(t_0),y(t_0),z(t_0))$, 又因为

$$\begin{cases} F(x(t), y(t), z(t)) = 0 \\ G(x(t), y(t), z(t)) = 0 \end{cases}$$

关于 t 求偏导后再将 $t=t_0$ 带入,有:

$$\begin{cases} F_x(P_0)x'(t_0) + F_y(P_0)y'(t_0) + F_z(P_0)z'(t_0) = 0\\ G_x(P_0)x'(t_0) + G_y(P_0)y'(t_0) + G_z(P_0)z'(t_0) = 0 \end{cases}$$

 $\Rightarrow (x'(t_0), y'(t_0), z'(t_0)) \perp (F_x(P_0), F_y(P_0), F_z(P_0)), (x'(t_0), y'(t_0), z'(t_0)) \perp (G_x(P_0), G_y(P_0), G_z(P_0))$ 所以

$$(x'(t_0), y'(t_0), z'(t_0)) / / (F_x(P_0), F_y(P_0), F_z(P_0)) \times (G_x(P_0), G_y(P_0), G_z(P_0))$$

$$= \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{z} \\ F_x(P_0) & F_y(P_0) & F_z(P_0) \\ G_x(P_0) & G_y(P_0) & G_z(P_0) \end{vmatrix} = \left(\frac{\partial (F,G)}{\partial (y,z)} (P_0), \frac{\partial (F,G)}{\partial (z,x)} (P_0), \frac{\partial (F,G)}{\partial (x,y)} (P_0) \right)$$

1.3.2 曲面的切平面与法线

关键是计算法向量

(1) 隐式方程: 设曲面 S 的方程为

$$F(x, y, z) = 0, (x, y, z) \in D \subset \mathbb{R}^2,$$

而且 $F \in C^1(D)$, $F_x^2 + F_y^2 + F_z^2 \neq 0$, $\forall (x,y,z) \in D$. 取 $P_0(x_0,y_0,z_0) \in S$, 欲计算 S 在 P_0 处的切平面方程与法线方程。任取 S 上过点 P_0 的一条曲线 (x(t),y(t),z(t)), 设 $P_0(x(t_0),y(t_0),z(t_0))$. 显然有

$$F(x(t), y(t), z(t)) = 0, t \in O(t_0, \rho)$$

与3同理有

$$(F_x(P_0), F_y(P_0), F_z(P_0)) \perp (x'(t_0), y'(t_0), z'(t_0)),$$

因此 S 上过 P_0 的所有曲线在 P_0 处的切线落在一个平面 π 上,称 π 为 S 在 P_0 点的切平面, $n = (F_x(P_0), F_y(P_0), F_z(P_0))$ 称为 S 在 P_0 点的法向量。所以 S 在 P_0 处的切平面方程为:

$$F_x(P_0)(x-x_0) + F_y(P_0)(y-y_0) + F_z(P_0)(z-z_0) = 0; (19)$$

S 在 P_0 处的法线方程为:

$$\frac{x - x_0}{F_x(P_0)} = \frac{y - y_0}{F_y(P_0)} = \frac{z - z_0}{F_z(P_0)}. (20)$$

(2) 显示表示: 设曲面 S 的方程为 $z = f(x,y), (x,y) \in D \subset \mathbb{R}^2$, 令 F(x,y,z) = f(x,y) - z, 则 S 的方程为 F(x,y,z) = 0。从而在 $P_0(x_0,y_0,z_0)$ 处的法向量 $\mathbf{n} = (F_x(P_0),F_y(P_0),F_z(P_0)) =$ $(f_x(P_0), f_y(P_0), -1)$

或: 设 (x(t), y(t), z(t)) 在 S 上,则 $z(t) = f(x(t), y(t)) \Rightarrow z'(t) = f_x(P_0)x'(t_0) + f_y(P_0)y'(t_0)$; 从而 $(x'(t_0), y'(t_0), z'(t_0)) \perp (f_x(P_0), f_y(P_0), -1)$,从而 $(f_x(P_0), f_y(P_0), -1)$ 是法向量。 从而 S 在 P_0 处的切平面方程为:

$$f_x(P_0)(x - x_0) + f_y(P_0)(y - y_0) - (z - z_0) = 0$$
(21)

或可写作

$$z = z_0 + f_x(P_0)(x - x_0) + f_y(P_0)(y - y_0)$$

= $f(x_0, y_0) + f_x(P_0)(x - x_0) + f_y(P_0)(y - y_0)$

回忆 Taylor 展开:

$$f(x,y) = f(x_0, y_0) + f_x(P_0)(x - x_0) + f_y(P_0)(y - y_0) + o(\sqrt{(x - x_0)^2 + (y - y_0)^2})$$
(22)

从而可微也即可用切平面逼近。S 在 P_0 处的法线方程为:

$$\frac{x - x_0}{f_x(P_0)} = \frac{y - y_0}{f_y(P_0)} = \frac{z - z_0}{-1}.$$
 (23)

(3) 参数方程: 设曲面
$$S$$
 的参数方程为
$$\begin{cases} x = x(u,v) \\ y = y(u,v) \\ z = z(u,v) \end{cases}$$
 , $(u,v) \in D \subset \mathbb{R}^2$, 而且
$$\begin{pmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} \end{pmatrix}$$
 (u,v) 在 D 上满秩,取 U — 曲线
$$\begin{cases} x = x(u,v_0) \\ y = y(u,v_0) \\ z = z(u,v_0) \end{cases}$$
 ,则在 P_0 处的切向量为
$$z = z(u,v_0)$$

在
$$D$$
 上满秩,取 U — 曲线
$$\begin{cases} x = x(u, v_0) \\ y = y(u, v_0) \end{cases}$$
,则在 P_0 处的切向量为
$$z = z(u, v_0)$$

$$\left(\frac{\partial x}{\partial u}(u_0, v_0), \frac{\partial y}{\partial u}(u_0, v_0), \frac{\partial z}{\partial u}(u_0, v_0) \right);$$

取
$$V-$$
 曲线
$$\begin{cases} x = x(u_0, v) \\ y = y(u_0, v) \end{cases}$$
,则在 P_0 处的切向量为
$$z = z(u_0, v)$$

$$\left(\frac{\partial x}{\partial v}(u_0, v_0), \frac{\partial y}{\partial v}(u_0, v_0), \frac{\partial z}{\partial v}(u_0, v_0)\right),\,$$

从而 S 在 $P_0(x_0, y_0, z_0)$ 处的法向量为

$$\begin{pmatrix} \frac{\partial x}{\partial u}, \frac{\partial y}{\partial u}, \frac{\partial z}{\partial u} \end{pmatrix} (u_0, v_0) \times \begin{pmatrix} \frac{\partial x}{\partial v}, \frac{\partial y}{\partial v}, \frac{\partial z}{\partial v} \end{pmatrix} (u_0, v_0)$$

$$= \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{z} \\ \frac{\partial x}{\partial u} & \frac{\partial y}{\partial u} & \frac{\partial z}{\partial u} \\ \frac{\partial x}{\partial v} & \frac{\partial y}{\partial v} & \frac{\partial z}{\partial v} \end{vmatrix} (u_0, v_0) = \begin{pmatrix} \frac{\partial (y, z)}{\partial (u, v)}, \frac{\partial (z, x)}{\partial (u, v)}, \frac{\partial (x, y)}{\partial (u, v)} \end{pmatrix}.$$

或利用反函数定理推导: 设曲面
$$S$$
 的参数方程为
$$\begin{cases} x = x(u,v) \\ y = y(u,v) \\ z = z(u,v) \end{cases}$$
 (u,v) $\in D \subset \mathbb{R}^2$, 而且
$$z = z(u,v)$$

$$\begin{pmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} \end{pmatrix}$$
 (u,v) 在 D 上满秩。设 $P_0(x_0,y_0,z_0) \in S$, 对应于 (u_0,v_0) (即
$$\begin{cases} x = x(u_0,v_0) \\ y = y(u_0,v_0) \\ z = z(u_0,v_0) \end{cases}$$
 不妨设 $\begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix}$ (u_0,v_0) $\neq 0$, 于是由逆映射定理知: $\exists \rho > 0$ 以及 $\tilde{f}, \tilde{g} \in C^1(O((x_0,y_0),\rho))$,s.t.

$$\begin{cases} \tilde{f}(x_0, y_0) = u_0 \\ \tilde{g}(x_0, y_0) = v_0 \end{cases} \quad \text{i.i.} \begin{cases} x = f(\tilde{f}(x, y), \tilde{g}(x, y)) \\ y = g(\tilde{f}(x, y), \tilde{g}(x, y)) \end{cases}, (x, y) \in O((x_0, y_0), \rho)$$

这样, 曲面 S 在 $O((x_0,y_0),\rho)$ 上有显示表达式 $z=h(\tilde{f}(x,y),\tilde{g}(x,y)):=k(x,y)$ 。从而在 P_0 点的法向量为 $\left(\frac{\partial k}{\partial x}(x_0, y_0), \frac{\partial k}{\partial y}(x_0, y_0), -1\right)$ 。又因为

$$\frac{\partial k}{\partial x}(x_0,y_0) = \frac{\partial h}{\partial u}(u_0,v_0)\frac{\partial \tilde{f}}{\partial x}(x_0,y_0) + \frac{\partial h}{\partial v}(u_0,v_0)\frac{\partial \tilde{g}}{\partial x}(x_0,y_0)$$

$$\frac{\partial k}{\partial y}(x_0, y_0) = \frac{\partial h}{\partial u}(u_0, v_0) \frac{\partial \tilde{f}}{\partial y}(x_0, y_0) + \frac{\partial h}{\partial v}(u_0, v_0) \frac{\partial \tilde{g}}{\partial y}(x_0, y_0)$$

从而

$$\begin{split} \left(\frac{\partial k}{\partial x}(x_0, y_0), \frac{\partial k}{\partial y}(x_0, y_0)\right) &= \left(\frac{\partial h}{\partial u}(u_0, v_0), \frac{\partial h}{\partial v}(u_0, v_0)\right) \begin{pmatrix} \frac{\partial \tilde{f}}{\partial x}(x_0, y_0) & \frac{\partial \tilde{f}}{\partial y}(x_0, y_0) \\ \frac{\partial \tilde{g}}{\partial x}(x_0, y_0) & \frac{\partial \tilde{g}}{\partial y}(x_0, y_0) \end{pmatrix} \\ &= \left(\frac{\partial h}{\partial u}(u_0, v_0), \frac{\partial h}{\partial v}(u_0, v_0)\right) \begin{pmatrix} \frac{\partial \tilde{f}}{\partial u}(u_0, v_0) & \frac{\partial \tilde{f}}{\partial v}(u_0, v_0) \\ \frac{\partial \tilde{g}}{\partial u}(u_0, v_0) & \frac{\partial \tilde{g}}{\partial v}(u_0, v_0) \end{pmatrix}^{-1} \\ &= \left(\frac{\partial h}{\partial u}(u_0, v_0), \frac{\partial h}{\partial v}(u_0, v_0)\right) \frac{\left(\frac{\partial \tilde{g}}{\partial v}(u_0, v_0) & \frac{\partial \tilde{f}}{\partial v}(u_0, v_0) \\ -\frac{\partial \tilde{g}}{\partial u}(u_0, v_0) & \frac{\partial \tilde{f}}{\partial u}(u_0, v_0)\right)}{\frac{\partial (f, g)}{\partial (u, v)}(u_0, v_0)} \end{split}$$

所以在 P_0 处的法向量为 $\left(\frac{\partial(g,h)}{\partial(u,v)}(u_0,v_0), \frac{\partial(h,f)}{\partial(u,v)}(u_0,v_0), \frac{\partial(f,g)}{\partial(u,v)}(u_0,v_0)\right)$.

1.3.3 计算夹角

- (1) 两条曲线在交点处的夹角是指两条曲线在交点处切向量的夹角。 设两条曲线 Γ_1, Γ_2 在 P_0 处相交,而且在 P_0 点的切向量分别为 τ_1, τ_2 ,则夹角 α 满足 $\cos \alpha = \frac{\tau_1 \cdot \tau_2}{||\tau_1|| \cdot ||\tau_2||}$.
- (2) 两张曲面在角线处上一点处的夹角是指它们在这点处的法向量的夹角。

例 圆柱面 $x^2 + y^2 = a^2$ 与马鞍面 bz = xy 的夹角 (图像参考2)。

解: 设 (x_0, y_0, z_0) 是交线上的一点,则圆柱面在 P_0 处的法向量为 $(2x_0, 2y_0, 0)$,马鞍面在 P_0 处的法向量为 $(y_0, x_0, -b)$ 。所以在 P_0 处的夹角 α 满足 $\cos \alpha = \frac{4x_0y_0}{\sqrt{4(x_0^2+y_0^2)}\sqrt{x_0^2+y_0^2+b^2}} = \frac{4x_0y_0}{a\sqrt{a^2+b^2}}$

1.4 条件极值——(最)优化问题

定义 设 $\Omega \in \mathbb{R}^n$ 是一个区域, $x_0 \in \Omega$, f(x) 是 Ω 上的一个函数。如果 $\exists r > 0$ s.t. $O(x_0, r) \subset \Omega$, 而且 $f(x) \geq f(x_0)$, $\forall x \in O(x_0, r)$, 则称 x_0 是 f 在 Ω 上的极小值点, $f(x_0)$ 称为相应的极小值;如果 " $f(x) \geq f(x_0)$, $\forall x \in O(x_0, r)$ "换成" $f(x) > f(x_0)$, $\forall x \in O(x_0, r) \setminus \{x_0\}$ ",则称 x_0 为 f 在 Ω 上的一个严格极小(大)值点,相应的 $f(x_0)$ 称为严格极小(大)值。"严格极小(大)值点,信""严格极小(大)值。"

图 2: 交线

Q: 如何来求极值与极值点? 先来看必要条件:

回顾一元函数:

- 1. 若 $f \in C^1(a,b), x_0 \in (a,b)$ 是极值点,则 $f'(x_0) = 0$;
- 2. 若 $f \in C^2(a,b), x_0 \in (a,b)$ 是极小值点,则 $f''(x_0) \ge 0$; 若 x_0 是极大值点,则 $f''(x_0) \le 0$;

定理 (n 元函数取值的必要条件)若 $\Omega \subset \mathbb{R}^n$ 是一个区域, $x_0 \in \Omega, f \in C^1(\Omega)$

- (1) 如果 x_0 是 f 在 Ω 上的一个极值点,则 $\nabla f(x_0) = 0$ (即 $\frac{\partial f}{\partial x_i}(x_0) = 0, i = 1, 2, \dots, n$);
- (2) 若 $f \in C^2(\Omega)$, x_0 是 f 在 Ω 上的一个极大值点,则 Hesse 矩阵 $Hf(x_0) = \left(\frac{\partial^2 f}{\partial x_i \partial x_j}(x_0)\right) \leq 0$,即 $Hf(x_0)$ 是半负定矩阵;反之若为极小值点,则 $Hf(x_0) \geq 0$,即 $Hf(x_0)$ 是半正定矩阵。

证明. 方法 1: 令 $g(t) = f(x_0 + th)$,其中 $|t| < \rho, h \in S^{n-1}$ (单位球面),则 $g(t) \in C^1(-\rho, \rho)$,而且 $g(t) \ge g(0), \forall t \in (-\rho, \rho)$,所以 $g'(0) = 0 \Rightarrow h\nabla f(x_0) = 0, \forall h \in S^{n-1}$,从而 $\nabla f(x_0) = 0$.

若 $f\in C^2(\Omega)$, 则 $g\in C^2(-\rho,\rho)$; 又当 x_0 是 f 在 Ω 上的极大值点时,0 是 g 在 $(-\rho,\rho)$ 上的极大值点,所以 $g''(0)\leq 0$ 。而

$$g'(t) = \mathbf{h}
abla f(\mathbf{x}_0 + t\mathbf{h}) = \sum_{i=1}^n h_i \frac{\partial f}{\partial x_0}(\mathbf{x}_0 + t\mathbf{h})$$

$$g''(t) = \sum_{i=1}^{n} h_i \left(\sum_{j=1}^{n} h_j \frac{\partial^2 f}{\partial x_i \partial x_j} (\boldsymbol{x}_0 + t\boldsymbol{h}) \right) = \sum_{i,j=1}^{n} h_i h_j \frac{\partial^2 f}{\partial x_i \partial x_j} (\boldsymbol{x}_0 + t\boldsymbol{h})$$

所以

$$g''(0) = \sum_{i,j=1}^{n} h_i h_j \frac{\partial^2 f}{\partial x_i \partial x_j}(\boldsymbol{x}_0) = \boldsymbol{h} \cdot H f(\boldsymbol{x}_0) \boldsymbol{h}^T \le 0, \forall \boldsymbol{h} \in S^{n-1}$$

所以 $Hf(\boldsymbol{x}_0) \leq 0$.

方法 2: 若 x_0 是 f 在 Ω 上的一个极小值点,则 $f(x_0+\varepsilon h)\geq f(x_0), \forall |\varepsilon|<\rho, h\in S^{n-1}$ 。又因为

$$f(\boldsymbol{x}_0 + \varepsilon \boldsymbol{h}) = f(\boldsymbol{x}_0) + \nabla f(\boldsymbol{x}_0) \cdot \varepsilon \boldsymbol{h} + \frac{1}{2} (\varepsilon \boldsymbol{h}) H f(\boldsymbol{x}_0) (\varepsilon \boldsymbol{h})^T + o(\varepsilon^2) = f(\boldsymbol{x}_0) + \frac{\varepsilon^2}{2} \boldsymbol{h} H f(\boldsymbol{x}_0) \boldsymbol{h}^T + o(\varepsilon^2)$$

我们有

$$\frac{\varepsilon^2}{2} \boldsymbol{h} H f(\boldsymbol{x}_0) \boldsymbol{h}^T + o(\varepsilon^2) \ge 0, \forall |\varepsilon| < \rho, boldsymbolh \in S^{n-1}$$

$$Pickters on \frac{1}{2} \boldsymbol{h} H f(\boldsymbol{x}_0) \boldsymbol{h}^T + o(\varepsilon^2) > 0, \forall \boldsymbol{h} \in S^{n-1}$$

$$Rightarrow \frac{1}{2} \boldsymbol{h} H f(\boldsymbol{x}_0) \boldsymbol{h}^T + \frac{o(\varepsilon^2)}{\varepsilon^2} \ge 0, \forall \boldsymbol{h} \in S^{n-1}$$

 $<math> \varepsilon \to 0$,得 $\mathbf{h} H f(\mathbf{x}_0) \mathbf{h}^T \ge 0, \forall \mathbf{h} \in S^{n-1},$ 所以 $H f(\mathbf{x}_0) \ge 0.$

例 若
$$\begin{cases} \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} - f = 0, x^2 + y^2 < 1, \\ f|_{x^2 + y^2 = 1} = 0 \end{cases}$$
 , 则 $f \equiv 0$.

证明. $\diamondsuit \Omega = \{(x,y): x^2 + y^2 < 1\}$. 若 $\exists (x_0,y_0) \in \Omega, s.t. f(x_0,y_0) = \max_{\Omega} |f| > 0$,则

$$\begin{pmatrix} \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial x \partial y} \\ \frac{\partial^2 f}{\partial x \partial y} & \frac{\partial^2 f}{\partial y^2} \end{pmatrix} (x_0, y_0) \le 0 \Rightarrow \left(\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} \right) (x_0, y_0) \le 0$$

从而
$$\left(\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}\right)(x_0, y_0) - f(x_0, y_0) < 0$$
,矛盾。

Note

1. 只是必要条件。例: f(x,y) = xy (图像见3),则 $\nabla f(0,0) = (0,0)$,但是 (0,0) 不是 f 的极值点。又例: $f(x,y) = x^3 + y^3$ (图像见4),则 $\nabla f(0,0) = (0,0)$, $Hf(0,0) = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$,但 (0,0) 不是极值点。例: $f(x,y) = 4xy^2 + x^2 + y^4$ (图像见5),此时有 $\nabla f(0,0) = (0,0)$, $Hf(0,0) = \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix} \geq 0$,但是 (0,0) 不是极值点。

图 3: f(x,y) = xy

图 4: $f(x,y) = x^3 + y^3$

图 5: $f(x,y) = 4xy^2 + x^2 + y^4$

图 6: f(x,y) = |x| + |y|

2. 偏导数不存在的点又可能是极值点。例: f(x,y) = |x| + |y| (图像参考6),(0,0) 为其极小值,但 f 在 (0,0) 处偏导数不存在。