Technische Universität München Institut für Informatik Prof. Dr. Angelika Steger Martin Marciniszyn Alexander Offtermatt-Souza

Diskrete Strukturen II

Aufgabe 1. Was trifft zu? (5 Punkte)

Entscheiden Sie, welche der folgenden Aussagen zutreffen und begründen Sie Ihre Antwort.

(a) Für unabhängige $X_1 \sim \text{Exp}(\lambda_1)$ und $X_2 \sim \text{Exp}(\lambda_2)$ gilt

$$\min\{X_1, X_2\} \sim \operatorname{Exp}(\lambda_1 + \lambda_2).$$

(b) Für unabhängige $X_1 \sim \operatorname{Exp}\left(\lambda_1\right)$ und $X_2 \sim \operatorname{Exp}\left(\lambda_2\right)$ gilt

$$\max\{X_1, X_2\} \sim \operatorname{Exp}(\lambda_1 + \lambda_2).$$

(c) Für unabhängige $X_i \sim \text{Norm}(\mu_i, \sigma_i^2)$ mit $i \in \{1, 2, \dots, n\}$ gilt

$$X_1 - X_2 - \dots - X_n \sim \text{Norm} \left(\mu_1 - \mu_2 - \dots - \mu_n, \sigma_1^2 + \sigma_2^2 + \dots + \sigma_n^2 \right).$$

Aufgabe 2. Odyssee (5 Punkte)

Odysseus ist in einem Labyrinth auf einer Kreuzung mit 3 Wegen. Der erste Weg führt nach 2 Stunden zum Ausgang. Der zweite und dritte Weg bilden eine Schleife, die nach 3 Stunden wieder zur Kreuzung führt. Odysseus entscheidet sich immer unabhängig und gleichwahrscheinlich für einen der 3 Wege. Was ist die erwartete Zeit, bis er den Ausgang erreicht?

Aufgabe 3. Fertigstellungszeiten (5 Punkte)

Seien $P_i \sim \operatorname{Exp}(\lambda_i)$ für $i \in \{1, 2, \dots, n\}$ die unabhängigen Laufzeiten von n Jobs, die von einem Prozessor in der Reihenfolge $(1, 2, \dots, n)$ bearbeitet werden. $C_i = \sum_{j=1}^i P_j$ bezeichne die Fertigstellungszeit von Job i und $S = \sum_{i=1}^n C_i$ die Summe der Fertigstellungszeiten. Berechnen Sie

- (a) den Erwartungswert $\mathbb{E}[S]$ und
- (b) die Varianz Var[S].

Bitte wenden!

Aufgabe 4. Pólya's Urne (5 Punkte)

Eine Urne enthalte $s \in \mathbb{N}$ schwarze und $r \in \mathbb{N}$ rote Bälle. Nachdem ein Ball zufällig aus der Urne gezogen wurde, wird er und $c \in \mathbb{N}$ weitere Bälle der gleichen Farbe wieder zurück gelegt. Jetzt wird noch ein Ball gezogen. Zeigen Sie, dass gilt:

$$\Pr[\text{",der erste Ball ist schwarz"} \mid \text{",der zweite Ball ist rot"}] = \frac{s}{s+r+c}$$

Aufgabe 5. Dispatcher (7 Punkte)

In nebenstehendem Rechensystem werden ankommende Jobs unabhängig mit den dort angegebenen Wahrscheinlichkeiten den Prozessoren P_1, P_2 bzw. P_3 zugewiesen. Für $i \in \{1, 2, 3\}$ bezeichne die Zufallsvariable T_i die Bearbeitungszeit eines Jobs, der auf Prozessor P_i bearbeitet wird. Angenommen $T_1 \sim \text{Exp}(1)$, P_2 ist doppelt so schnell wie P_1 und P_3 ist vier mal so schnell wie P_1 .

- (a) Wie lauten die Verteilungen von T_2 bzw. T_3 ?
- (b) Bestimmen Sie die Verteilung der Bearbeitungszeit T des ersten ankommenden Jobs.

Aufgabe 6. Hypo-Exponentialverteilung (7 Punkte)

Gegeben seien die unabhängigen Zufallsvariablen $X_1 \sim \operatorname{Exp}(\lambda_1)$ und $X_2 \sim \operatorname{Exp}(\lambda_2)$ mit $\lambda_1 \neq \lambda_2$ und $X := X_1 + X_2$. Berechnen Sie Dichte und Verteilung von X.

Aufgabe 7. k mal Kopf (6 Punkte)

Eine Laplacemünze¹ wird n mal unabhängig geworfen $(n \in \mathbb{N})$ und zwar genau k mal von Alice $(0 \le k \le n, k \in \mathbb{N}_0)$ und n - k mal von Bob. Zeigen Sie, dass die Wahrscheinlichkeit, dass Alice und Bob gleich oft Kopf werfen gleich der Wahrscheinlichkeit ist, dass insgesamt k mal Kopf kommt.

Viel Erfolg!

 $^{^{1}}$ d.h. mit Wahrscheinlichkeit $\frac{1}{2}$ für Kopf