Computational Finance

AMSTERDAM

BUSINESS SCHOOL BUSINESS

Week 2: Dealing with Data

Copyright

Last week: Introduction to Python

- **Python** is a popular free open-source programming language, that is beginner-friendly.
- Each Python objects is a **data type**. Each type has specific atributes and methods. We discussed the following
 - Numeric types: integer, float
 - Boolean
 - Sequence types: string, list ([]), tuple (())
- if-else statements, while loops and for loops allow code to be non-linear by controlling under what conditions and how often lines of code are executed.
- Python functionality is organized in **modules** from which functions can be imported.
- User-specified **functions** can be created too.
- Be careful with the structure when defining a function or loop: use indentation, and don't forget the colon (:)!

This week: Dealing with Data

- Numpy
 - Array
 - Vectorization
- Pandas
 - Series
 - DataFrames
- Working with Time Series
- Fetching Data
- Regression Analysis

• Assignment 1 available

Dealing with Data

More Datatypes

NumPy Arrays

- The most fundamental data type in scientific Python is ndarray, provided by the NumPy package (user guide).
- An array is similar to a list, except that
 - it can have more than one dimension;
 - its elements are homogeneous (they all have the same type).
- NumPy provides a large number of functions (*ufuncs*) that operate elementwise on arrays. This allows *vectorized* code, avoiding loops (which are slow in Python).

Constructing Arrays

• Arrays can be constructed using the array function which takes sequences (e.g, lists, tuples, etc.) and converts them into arrays. The data type is inferred automatically or can be specified.

```
In [3]: import numpy as np
    a = np.array([1, 2, 3, 4])
    a.dtype

Out[3]: dtype('int32')

In [4]:    a = np.array([1, 2, 3, 4], dtype='float64') #or a = np.array([1., 2., 3., 4.])
    a.dtype

Out[4]: dtype('float64')
```

• NumPy uses C++ data types which differ from Python's (though float64 is equivalent to Python's float).

• Nested lists result in multidimensional arrays. We won't need anything beyond twodimensional (i.e., a matrix or table). If not otherwise stated, each nested list translates into another row.

```
In [5]: a = np.array([[1., 2.], [3., 4.]]); a
Out[5]: array([[1., 2.], [3., 4.]])
In [6]: a.ndim #Number of dimensions.
Out[6]: 2
In [7]: a.shape #Number of rows and columns.
Out[7]: (2, 2)
```

• Other functions for creating arrays include:

```
In [8]:
           np.eye(3) #Identity matrix. float64 is the default dtype and can be omitted
           array([[1., 0., 0.],
 Out[8]:
                   [0., 1., 0.],
                   [0., 0., 1.]])
 In [9]:
           np.ones([2, 3]) #There's also np.zeros, and np.empty (which results in an uninitialized array).
           array([[1., 1., 1.],
 Out[9]:
                   [1., 1., 1.]
In [10]:
           np.arange(0, 10, 2) #Like range, but creates an array instead of a list (i.e., array-range).
           array([0, 2, 4, 6, 8])
Out[10]:
In [11]:
           np.linspace(0, 10, 5) #5 equally spaced points between 0 and 10
           array([ 0. , 2.5, 5. , 7.5, 10. ])
Out[11]:
```

Indexing

• Indexing and slicing operations are similar to lists:

```
In [12]:
            a = np.array([[1., 2.], [3., 4.]])
            a[0,0] #Element [row, column]. Equivalent to a[0][0].
            1.0
Out[12]:
In [13]:
            b = a[:, 0]; b #All rows of first column. Yields a 1-dimensional array (vector), not a matrix wi
            array([1., 3.])
Out[13]:
              • Slicing returns views into the original array (unlike slicing lists):
In [14]:
            b[0] = 42; b
            array([42., 3.])
Out[14]:
In [15]:
            c=a.copy(); print(c)
            [[42. 2.]
             [ 3. 4.]]
```

• Apart from indexing by row and column, arrays also support *Boolean* indexing:

Concatenation and Reshaping

• To combine two arrays in NumPy, use concatenate or stack:

```
In [19]:
           a = np.array([1, 2, 3]); b = np.array([4, 5, 6]); a,b
            (array([1, 2, 3]), array([4, 5, 6]))
Out[19]:
In [20]:
           c = np.concatenate([a, b]); c #Concatenate along an existing axis.
           array([1, 2, 3, 4, 5, 6])
Out[20]:
In [21]:
           d = np.stack([a, b]); d #Concatenate along a new axis (e.g., vectors to matrix).
            array([[1, 2, 3],
Out[21]:
                   [4, 5, 6]]
                reshape(n, m) changes the shape of an array into (n,m), taking the elements
                row-wise. A dimension given as -1 (i.e., unspecified) will be inferred automatically.
```

```
In [22]: d.shape
Out[22]: (2, 3)
In [23]: d = d.reshape(3,-1); d #3 rows, number of columns determined automatically -1 here inferred to b
Out[23]: array([[1, 2],
```

[3, 4], [5, 6]])

Arithmetic and ufuncs

• NumPy ufuncs are functions that operate elementwise:

```
In [24]:
           a = np.arange(1, 5); np.sqrt(a)
                                                                  1)
           array([1.
                       , 1.41421356, 1.73205081, 2.
Out[24]:
             • Other useful ufuncs are exp(), log(), abs(), and sqrt().
             • Basic arithmetic on arrays works elementwise:
In [25]:
           a = np.arange(1, 5); b = np.arange(5, 9); a, b, a + b, a - b, a / b #Note: a/b.astype(float) for
           (array([1, 2, 3, 4]),
Out[25]:
            array([5, 6, 7, 8]),
            array([ 6, 8, 10, 12]),
            array([-4, -4, -4, -4]),
            array([0.2 , 0.33333333, 0.42857143, 0.5
                                                                   1))
```

Broadcasting

• Operations between scalars and arrays are also supported:

```
In [26]: np.array([1, 2, 3, 4]) + 2 # same result: np.array([1, 2, 3, 4]) + np.array([2, 2, 2, 2])
Out[26]: array([3, 4, 5, 6])
```

- This is a special case of a more general concept known as *broadcasting*, which allows operations between arrays of different shapes.
- NumPy compares the shapes of two arrays dimension-wise. It starts with the trailing dimensions, and then works its way forward. Two dimensions are compatible if
 - they are equal, or
 - one of them is 1 (or not present).
- In the latter case, the singleton dimension is "stretched" to match the larger array.

• Example:

• The idea of broadcasting in a picture (these are all 2-dimensional arrays):

• NumPy's newaxis feature is sometimes useful to enable broadcasting. It introduces a new dimension of length 1; e.g, it can turn a vector (1d array) into a matrix with a single row or column (2d array). Example:

```
In [30]:
    u = np.array([1, 2, 3]); #u has shape (3,).
    v = np.array([4, 5, 6, 7]); #v has shape (4,).
    w = u[:, np.newaxis]; #w has shape (3, 1); a matrix with 3 rows and one column.
    w*v #(3, 1) x (4,); starting from the back, 4 and 1 are compatible, and 3 and 'missing' are too

Out[30]:
    array([[ 4,  5,  6,  7],
        [ 8,  10,  12,  14],
        [12,  15,  18,  21]])
```

• In this particular case, the same result could have been obtained by taking the outer product of u and v (in mathematical notation, uv' or uv^{\top}):

Array Reductions

- Array reductions are operations on arrays that return scalars or lower-dimensional arrays, such as the mean function used above.
- They can be used to summarize information about an array, e.g., compute the standard deviation:

```
In [33]:
    a = np.random.rand(300, 3) #create a 300x3 matrix of standard normal variates.
    a.std(axis=0) #or np.std(a, axis=0) - again standard deviation are calculated across rows
```

Out[33]: array([0.27401563, 0.28868048, 0.27392285])

- By default, reductions operate on the *flattened* array (i.e., on all the elements). For row- or columnwise operation, the axis argument has to be given.
- Other useful reductions are sum, median, min, max, argmin, argmax, any, and all (see help).

Saving Arrays to Disk

• There are several ways to save an array to disk:

```
In [34]:
           np.save('myfile.npy', a) #save `a` as a binary .npy file.
In [35]:
           import os
           print(os.listdir('.'))
           ['.ipynb_checkpoints', 'archive', 'clips', 'data', 'data.zip', 'img', 'img.zip',
            'myfile.npy', 'notes', 'pdf', 'README.md', 'week1.ipynb', 'week1.slides.html', 'w
           eek2.ipynb', 'week2.slides.html', 'week3.ipynb', 'week3.slides.html', 'week4-Copy
           1.ipynb', 'week4.ipynb', 'week4.slides.html', 'week5.ipynb', 'week5.slides.html',
           'week6.ipynb', 'week6.slides.html', 'week6bonus.ipynb']
In [36]:
           b = np.load('myfile.npy') #load the data into variable b.
           os.remove('myfile.npy') #clean up.
In [37]:
           np.savetxt('myfile.csv', a, delimiter=',') #save `a` as a CSV file (comma seperated values, can
In [38]:
           b = np.loadtxt('myfile.csv', delimiter=',') #Load data into `b`.
           os.remove('myfile.csv')
```

Pandas Dataframes

Introduction to Pandas

- $\hbox{ pandas (from $panel data) is another fundamental package in the SciPy stack } \\ \hbox{ (user quide $\& 'cookbook' (short examples of common operations))}.$
- It provides a number of datastructures (*series* and *dataframes*) designed for storing observational data, and powerful methods for manipulating (*munging*, or *wrangling*) these data.
- It is usually imported as pd:

```
In [39]: import pandas as pd
```

Series

• A pandas Series is essentially a NumPy array with an associated index:

```
In [40]:
            pop = pd.Series([5.7, 82.7, 17.0], name='Population'); pop #the descriptive name is optional.
                  5.7
Out[40]:
                 82.7
                 17.0
            Name: Population, dtype: float64
              • The difference is that the index can be anything, not just a list of integers:
In [41]:
            pop.index=['DK', 'DE', 'NL'];
            pop
                    5.7
            DK
Out[41]:
            DE
                  82.7
            NL
                   17.0
            Name: Population, dtype: float64
              • The index can be used for indexing (duh...):
In [42]:
            pop['NL']
            17.0
Out[42]:
```

• NumPy's ufunc s preserve the index when operating on a Series:

```
In [43]:
           gdp = pd.Series([3494.898, 769.930], name='Nominal GDP in Billion USD', index=['DE', 'NL']); gdp
           DE
                  3494.898
Out[43]:
                   769.930
           NL
            Name: Nominal GDP in Billion USD, dtype: float64
In [44]:
           gdp / pop
           DE
                  42.259952
Out[44]:
                         NaN
           DK
           NI
                  45,290000
           dtype: float64
```

One advantage of a Series compared to NumPy arrays is that they can handle missing data, represented as NaN (not a number).

Dataframes

• A DataFrame is a collection of Series with a common index (which labels the rows).

• Columns are indexed by column name:

```
In [46]: data.columns
Out[46]: Index(['Nominal GDP in Billion USD', 'Population'], dtype='object')
In [47]: data['Population'] #data.Population works too
Out[47]: DE 82.7
```

Out[47]: DE 82.7 NL 17.0 DK 5.7

Name: Population, dtype: float64

• Rows are indexed with the loc method:

In [48]: data.loc['NL']

Out[48]: Nominal GDP in Billion USD 769.93 Population 17.00

Name: NL, dtype: float64

- Unlike arrays, dataframes can have columns with different datatypes.
- There are different ways to add columns. One is to just assign to a new column:

In [49]:
 data['Language'] = ['German', 'Danish', 'Dutch']; data #Add a new column from a list.

 DE
 3494.898
 82.7
 German

 NL
 769.930
 17.0
 Danish

 DK
 NaN
 5.7
 Dutch

• Another is to use the join method:

In [50]:
s = pd.Series(['EUR', 'DKK', 'EUR', 'GBP'], index=['NL', 'DK', 'DE', 'UK'], name='Currency')
data.join(s)#Add a new column from a series or dataframe.

Nominal GDP in Billion USD Population Language Currency Out[50]: DE 3494.898 82.7 German EUR 769.930 Danish NL 17.0 EUR DK NaN 5.7 Dutch DKK

Notes:

- The entry for 'UK' has disappeared. Pandas takes the *intersection* of indexes ('inner join') by default.
- The returned series is a temporary object. If we want to modify data, we need to assign to it.
- To take the union of indexes ('outer join'), pass the keyword argument how='outer':

```
In [51]:
              data = data.join(s, how='outer'); data #Assignment to store the modified frame.
                  Nominal GDP in Billion USD Population Language Currency
Out[51]:
              DE
                                 3494.898
                                               82.7
                                                                  EUR
                                                      German
              DK
                                                5.7
                                                       Dutch
                                                                  DKK
                                     NaN
                                  769.930
              NL
                                               17.0
                                                       Danish
                                                                  EUR
              UK
                                     NaN
                                               NaN
                                                        NaN
                                                                  GBP
```

• The join method is in fact a convenience method that calls pd.merge under the hood, which is capable of more powerful SQL style operations.

• To add rows, use loc or append:

```
In [52]:
```

data.loc['AT'] = [386.4, 8.7, 'German', 'EUR'] #Add a row with index 'AT'.
s = pd.DataFrame([[511.0, 9.9, 'Swedish', 'SEK']], index=['SE'], columns=data.columns)
data = data.append(s) #Add a row by appending another dataframe. May create duplicates.
data

Out[52]:

	Nominal GDP in Billion USD	Population	Language	Currency
DE	3494.898	82.7	German	EUR
DK	NaN	5.7	Dutch	DKK
NL	769.930	17.0	Danish	EUR
UK	NaN	NaN	NaN	GBP
AT	386.400	8.7	German	EUR
SE	511.000	9.9	Swedish	SEK

• The dropna method can be used to delete rows with missing values:

In [53]: data = data.dropna(); data

Out[53]:

	Nominal GDP in Billion USD	Population	Language	Currency
DE	3494.898	82.7	German	EUR
NL	769.930	17.0	Danish	EUR
AT	386.400	8.7	German	EUR
SE	511.000	9.9	Swedish	SEK

• Useful methods for obtaining summary information about a dataframe are mean, std, info, describe, head, and tail.

In [54]:

data.describe()

Out[54]:

	Nominal GDP in Billion USD	Population
count	4.000000	4.000000
mean	1290.557000	29.575000
std	1478.217475	35.605559
min	386.400000	8.700000
25%	479.850000	9.600000
50%	640.465000	13.450000
75%	1451.172000	33.425000
max	3494.898000	82.700000

In [55]:

data.head() #Show the first few rows. data.tail shows the last few.

Out[55]:

	Nominal GDP in Billion USD	Population	Language	Currency
DE	3494.898	82.7	German	EUR
NL	769.930	17.0	Danish	EUR
AT	386.400	8.7	German	EUR
SE	511.000	9.9	Swedish	SEK

• To save a dataframe to disk as a csv file, use

```
In [56]: data.to_csv('myfile.csv') #to_excel exists as well
In [57]: with open('myfile.csv', 'r') as file: #any files opened in the `with`statement will be closed au print(file.read()) info = os.stat('myfile.csv') print(info.st_size) #reported in bytes

,Nominal GDP in Billion USD,Population,Language,Currency DE,3494.898,82.7,German,EUR NL,769.93,17.0,Danish,EUR AT,386.4,8.7,German,EUR SE,511.0,9.9,Swedish,SEK
165
```

• To load data into a dataframe, use pd.read_csv:

```
In [58]:
               pd.read_csv('myfile.csv', index_col=0)
                  Nominal GDP in Billion USD Population Language Currency
Out[58]:
              DE
                                                 82.7
                                  3494.898
                                                        German
                                                                    EUR
              NL
                                   769.930
                                                 17.0
                                                                    EUR
                                                         Danish
              ΑT
                                   386.400
                                                  8.7
                                                        German
                                                                    EUR
               SE
                                   511.000
                                                  9.9
                                                       Swedish
                                                                    SEK
```

```
In [59]: os.remove('myfile.csv') #clean up
```

• Other, possibly more efficient, methods exist; see Chapter 5 of Hilpisch (2019).

Working with Time Series

Data Types

- Different data types for representing times and dates exist in Python.
- The most basic one is datetime from the eponymous package, and also accesible from Pandas:

```
In [60]: pd.datetime.today()
Out[60]: datetime.datetime(2021, 10, 28, 14, 55, 46, 594384)
```

• datetime objects can be created from strings using strptime and a format specifier:

```
In [61]: pd.datetime.strptime('2021-10-31', '%Y-%m-%d')
Out[61]: datetime.datetime(2021, 10, 31, 0, 0)
```

• Pandas uses Timestamps instead of datetime objects. Unlike datetime, they store frequency and time zone information. The two can mostly be used interchangeably. See Hilpisch (2019) Appendix A for details.

```
In [62]: pd.Timestamp('2021-10-31')
Out[62]: Timestamp('2021-10-31 00:00:00')
```

- A time series is a Series with a special index, called a DatetimeIndex; essentially an array of Timestamp s.
- It can be created using the date_range function; see Tables 5.2 and 5.3 in Hilpisch (2019).
- Note that freq='B' is a particular choice of a so-called *Offset Alias* and stands for business day frequency.

```
In [63]:
           myindex = pd.date range(end=pd.Timestamp.today(), normalize=True, periods=100, freq='B')
           P = 20 + np.random.randn(100).cumsum() #simulate share prices
            aapl = pd.Series(P, name="AAPL", index=myindex)
            aapl.tail()
            2021-10-22
                           18,418944
Out[63]:
            2021-10-25
                           18.407497
            2021-10-26
                           18.879239
            2021-10-27 21.630680
            2021-10-28
                          21.659399
            Freq: B, Name: AAPL, dtype: float64
```

• As a convenience, Pandas allows indexing timeseries with date strings:

```
In [64]:
           aapl['2021-08-19'] #similarly, aapl.loc['2021-08-19'] is possible
           26.437155896142514
Out[64]:
In [65]:
           aapl['2021-08-21':'2021-08-30']
           2021-08-23
                         22.390427
Out[65]:
           2021-08-24
                        21.845474
           2021-08-25
                        21.069111
           2021-08-26 22.498693
           2021-08-27 20.559248
           2021-08-30
                         20.168249
           Freq: B, Name: AAPL, dtype: float64
```

Financial Returns

- We mostly work with returns rather than prices, because their statistical properties are more desirable (e.g., stationarity and ergodicity).
- There exist two types of returns: simple returns $R_t \equiv (P_t P_{t-1})/P_{t-1}$, and $\log returns \ r_t \equiv \log(P_t/P_{t-1}) = \log P_t \log P_{t-1}$.
- Log returns are usually preferred, though the difference is typically small.
- Log returns are *time-additive* (but should not be aggregated across assets).
- To convert from prices to returns, use the shift(k) method, which lags by k periods (or leads if k < 0).

- Note: for some applications (e.g., CAPM regressions), excess returns $r_t r_{f,t}$ are required, where $r_{f,t}$ is the return on a "risk-free" investment.
- These are conveniently constructed as follows: suppose you have a data frame containing raw returns for a bunch of assets:

```
In [67]:
    P = 20 + np.random.randn(100).cumsum() #simulate share prices
    rf = 1 + np.random.randn(100) / 100 #simulate a yield
    msft = pd.Series(P, name="MSFT", index=myindex)
    msft = np.log(msft) - np.log(msft).shift(1)
    returns = pd.concat([aapl, msft], axis=1) #concatenate pandas objects along the column axis
    returns.tail()
```

Out[67]: AAPL MSFT 2021-10-22 0.015653 -0.009168 2021-10-25 -0.000622 -0.025175 2021-10-26 0.025305 -0.011567 2021-10-27 0.136050 0.062138 2021-10-28 0.001327 -0.046720

Then the desired operation can be expressed as

```
In [68]: excess_returns = returns.sub(rf, axis='index') #subtract series rf from all columns
```

Fetching Data

- pandas_datareader allows one to fetch data from the web (user guide).
- It is a separate package (not part of pandas), so we need to install it.

```
In [69]: #uncomment the next line to install
#!conda install -y pandas-datareader
import pandas_datareader.data as web #Not 'import pandas.io.data as web' as in the book

In [70]: start = pd.datetime(2011, 1, 1)
end = pd.datetime.today()
p = web.DataReader('SP500', 'fred', start, end) #S&P500 from St. Louis Fed (pulls Adj. Close)
p.tail()

Out[70]: SP500
DATE
2021-10-21 4549.78
```

Out[70]:

DATE

2021-10-21 4549.78

2021-10-22 4544.90

2021-10-25 4566.48

2021-10-26 4574.79

2021-10-27 4551.68

Stock market data sources

- For US stock market data, several options are available:
 - FRED: Stock market indexes, no individual stocks.
 - Yahoo: Yahoo Finance is an important data source, since it has wide and long coverage. Recently supported again still development phase though
 - WIKI Prices from Nasdaq Data Link (was Quandl): data up to 04/2018.
 - Tiingo: Personal use only.
 - Alpha Vantage: 20 years of data.
- Check the user guide for currently available sources.
- May need API (application programming interface) key to access data.
 - Can be requested for free.

- Example using an API key to read Pfizer (PFE) stock market data from WIKI Prices.
- Note that 'quand1' call still works even though QUANDL has become Nasdaq Data Link.

In [71]:

QUANDL_API_KEY = "P3v6YJ-K1DhibzGF1EgX" # This is my personal API key; request your own at data p2 = web.DataReader('WIKI/PFE', 'quandl', start, end, access_key=QUANDL_API_KEY) p2.head()

Out[71]:

	Open	High	Low	Close	Volume	ExDividend	SplitRatio	AdjOpen	AdjHigh	AdjLow	AdjClose	AdjVolume
Date												
2018-03-27	35.18	35.5600	34.78	35.01	25418639.0	0.0	1.0	35.18	35.5600	34.78	35.01	25418639.0
2018-03-26	34.93	35.1500	34.32	35.04	23464967.0	0.0	1.0	34.93	35.1500	34.32	35.04	23464967.0
2018-03-23	35.49	35.5000	34.44	34.49	27489780.0	0.0	1.0	35.49	35.5000	34.44	34.49	27489780.0
2018-03-22	36.03	36.1433	35.47	35.60	20288017.0	0.0	1.0	36.03	36.1433	35.47	35.60	20288017.0
2018-03-21	36.49	36.7300	36.20	36.27	16405382.0	0.0	1.0	36.49	36.7300	36.20	36.27	16405382.0

Regression Analysis

- Like in Hilpisch (2019), we analyze the *leverage effect*: negative stock returns decrease the value of the equity and hence increase debt-to-equity, so the cashflow to shareholders as residual claimants becomes more risky. Consequently, asset volatility should increase.
- We use the VIX, which measures the volatility of the S&P500 based on implied volatilities from the option market.
- We already have data on the S&P500. We'll convert them to returns and do the same for the VIX. We'll store everything in a dataframe df.

```
In [72]:

df = pd.DataFrame() # when in doubt, start with an empty DataFrame

df['SP500'] = np.log(p['SP500']) - np.log(p['SP500']).shift(1)

p = web.DataReader('VIXCLS', 'fred', start, end) #VIX volatility index

df['VIX'] = np.log(p['VIXCLS']) - np.log(p['VIXCLS']).shift(1)

df = df.dropna(axis=0, how='any')

df.head()
```

Out[72]:

	SP500	VIX
DATE		
2011-10-31	-0.025049	0.199966
2011-11-01	-0.028340	0.148892
2011-11-02	0.015976	-0.060157
2011-11-03	0.018608	-0.070871
2011-11-04	-0.006300	-0.011210

- Next, we run an OLS regression of the VIX returns on those of the S&P.
- The regression functionality is stored in the statsmodels package (user guide).
- We will use a different interface (API) which allows us to specify regressions using R-style formulas (user guide).
- Loading this package may yield a warning. A warning is *not* an error, the code will continue. Also, this warning is probably a bug, see e.g. here.
- We will use heteroskedasticity and autocorrelation consistent (HAC) standard errors.

import statsmodels.formula.api as smf # Use import statsmodels.api as sm if you don't want R-sty
model = smf.ols('VIX ~ + SP500', data=df)
result = model.fit(cov_type = 'HAC', cov_kwds = {'maxlags':5})
print(result.summary2())

Results: Ordinary least squares

Model: OLS Adj. R-squared: 0.549 -7330.6816 Dependent Variable: VIX AIC: 2021-10-28 14:55 BIC: Date: -7319.0969 No. Observations: 2422 Log-Likelihood: 3667.3 Df Model: 1 F-statistic: 86.37 Df Residuals: 2420 Prob (F-statistic): 3.23e-20 R-squared: 0.549 Scale: 0.0028359 Coef. Std.Err. z P > |z| [0.025 0.975] Intercept 0.0016 0.0010 1.5873 0.1124 -0.0004 0.0036 SP500 -5.5881 0.6013 -9.2933 0.0000 -6.7666 -4.4095 Omnibus: 757.018 Durbin-Watson: 2.233 Jarque-Bera (JB): 16354.977 Prob(Omnibus): 0.000 Skew: 0.950 Prob(JB): 0.000 Condition No.: Kurtosis: 15.588

We can run the above within one line: result = smf.ols('VIX ~ SP500', data=df).fit(cov_type="HAC", cov_kwds={'maxlags':5})

```
In [74]:
           result tvalues
           Intercept
                         1.587347
Out[74]:
           SP500
                        -9.293342
           dtype: float64
```

- Conclusion: We indeed find a significant negative effect of the index returns (t=-9.29), confirming the existence of the leverage effect.
- Note: for a regression without an intercept, we would use model = smf.ols('VIX $\sim -1 + SP500', data=df)$.
- The result object has other useful methods and variables (for the entire list check here):

```
In [75]:
           print(result.f test('SP500=0, Intercept=0')) #joint test that regressors are equal to zero
            <F test: F=array([[48.05627339]]), p=3.413627617271817e-21, df denom=2.42e+03, df</pre>
            _num=2>
In [76]:
           result.params
            Intercept
                          0.001624
```

Out[76]:

SP500

dtype: float64

-5.588073

Summary

- Numpy 's ndarray s are a sequence type with mutable homogenous elements.
 - ufuncs and broadcasting allow us to vectorize code, such that the code is more efficient.
- The pandas package introduces Series and DataFrames.
 - Useful for analyzing panel data, and in particular time series.
 - Effective methods to manipulate the data.
- Directly communicate with online databases to load (financial) data using pandas_datareader.
- Functionality for regression analysis is stored in the statsmodels package.

Copyright Statement

- Course slides were created by Simon Broda for Python 2.7 Andreas Rapp adapted the 3.6. Maintained and updated by Bart Keijsers.
- Week 4 slides were created by Bart Keijsers. The hierarchical indexing example is from the Data Science Methods by Cees Diks and Bram Wouters.
- All figures have been produced for this course using Python. Empirical results are based data available from FRED, Quandl/WIKI, Kenneth French's website and Yahoo Finance.
- This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 Internationa
- More information on Simon Broda's Github.