Assignment vering Chain Rule:

Given,
$$f(z) = e^{-\frac{z}{2}}$$

Where, $z = g(y)$, $g(y) = y^T s^T y$
 $y = h(x)$
 $h(x) = x - u$

According to chain Rule:

 $\frac{d}{dx} \left(f(z) \right) = \frac{d(f(z))}{dz} \times \frac{dz}{dy} \times \frac{dy}{dx}$
 $= \frac{d}{dz} \left(e^{-\frac{z}{2}} \right) \cdot \frac{d}{dy} \left(y^T s^{-1} y \right) \cdot \frac{d}{dx} \left(x - u \right)$
 $= \left(-\frac{1}{2} e^{-\frac{z}{2}} \right) \cdot \left(s^T \frac{d}{dy} \left(y^T y \right) \right)$
 $= \left(-\frac{e^{-\frac{z}{2}}}{2} \right) \cdot 2y s^{-1} \left[\frac{d}{dx} \left(x^T \cdot x \right) = 2x \right]$

= -e. (n-u)5-1 (Solved)

#Assignment using chain Rule:

Given
$$f(z) = \ln(1+z)$$

By chain rule,
$$\frac{d}{dx} (f(z)) = \frac{d}{dz} (f(x)) \frac{dz}{dx}$$

$$= \frac{d}{dz} (\ln(1+z) \cdot \frac{d}{dx} (x^{2}x))$$

$$= \frac{1}{1+z} \cdot \frac{dz}{dz} \cdot 2\pi \quad [: \frac{d}{dx} (x^{2}x) = 2x]$$

$$= \frac{2\pi}{1+x^{2}x} \quad (\text{Solved})$$