ALGEBRA III NOTES NICHOLAS HAYEK

Lectures by Prof. Henri Darmon

CONTENTS

I Groups	1
Axioms and First Properties	1
Sylow Theorems	9
Burnside's Lemma	12
II Rings & Fields	14

I Groups

8/28/24

In Algebra 3, we will study abstract algebraic structures. Chiefly among them, we have *groups*, which are useful in representing symmetries, *rings* & *fields*, which help us think about number systems, and *vector spaces* & *modules*, which encode physical space.

AXIOMS AND FIRST PROPERTIES

A *group* is a set G endowed with a binary composition $G \times G \to G$ such that the DEF 1.1 following axioms hold:

1. $\exists e \in G$, an identity element, such that $e * a = a * e = a \forall a \in G$.

2. $\forall a \in G, \exists a' \in G \text{ such that } a * a' = a' * a = e.$

3. $a * (b * c) = (a * b) * c \forall a, b, c \in G$.

If $a * b = b * a \forall a, b \in G$, we call G commutative.

DEF 1.2

Why do we care about groups? If X is an object, we call a *symmetry* of X a function $X \to X$ which preserves the structure of the object.

e.g. a polygon, graphs, tilings, "crystal," "molecules," rings, vector spaces, metric spaces, manifolds

The collection of symmetries, $\operatorname{Aut}(X) = \{f : X \to X\}$, we can structure as a group: let $* = \circ$, $e = \operatorname{Id}$, and $f \in \operatorname{Aut}(X)$ (note that, by axiom 2, these must be bijective).

A note on notation: for non-commutative groups, we write a * b = ab, e = 1 or 1, $a' = a^{-1}$, and $a^n = \underbrace{a \cdot ... \cdot a}_{n \text{ times}}$. This is called *multiplicative notation*. For commutative

rings, we write a * b = a + b, e = 0 or \mathbb{O} , a' = -a, and $na = \underbrace{a + ... + a}_{n \text{ times}}$.

- **♦** Examples **♣** — E.G. 1.1

- 1. If X is a set with no operations, $\operatorname{Aut}(X)$ is the set of all bijections $f: X \to X$. One calls this the *permutation group*, or, if $|X| = n < \infty$, the *symmetric group*, and we write $\operatorname{Aut}(X) = S_n$.
- 2. If V is a vector space over \mathbb{F} , $\operatorname{Aut}(V) = \{T : V \to V\}$, the set of vector space isomorphism. If $\dim(V) = n$, recall that we assocate V with \mathbb{F}^n , whose set of isomorphism is given by $GL_n(\mathbb{F})$, the collection of $n \times n$ invertible matrices. This is called the *linear group*.
- 3. If R is a ring, then (R, +, 0) is a commutative group. Furthermore, $(R^{\times}, \times, 1)$ is a non-commutative group, where $R^{\times} := R \setminus \{\text{non-invertible elements of } R\}$.

4. If *V* is Euclidean space endowed with a dot product, where $\mathbb{F} = \mathbb{R}$, with $\dim(V) < \infty$, $\operatorname{Aut}(V) = O(V)$ is called the *orthogonal group of V*. In particular, $O(V) = \{T : V \to V : T(u) \cdot T(v) = u \cdot v\}$.

5. If *X* is a geometric figure (e.g. a polygon), we write $Aut(X) = D_n$, where |Aut(X)| = n, and call this the *dihedral group*.

A homomorphism from groups $G_1 \to G_2$ is a function $\varphi: G_1 \to G_2$ satisfying $\varphi(ab) = \varphi(a)\varphi(b)$, where $a, b \in G_1$.

 $\varphi(\mathbb{1}_{G_1}) = \mathbb{1}_{G_2} \text{ and } \varphi(a^{-1}) = \varphi(a)^{-1} \ \forall a \in G_1.$

$$\varphi(\mathbb{1}_{G_1}) = \varphi(\mathbb{1}_{G_1}^2) = \varphi(\mathbb{1}_{G_1})^2 \implies \varphi(\mathbb{1}_{G_1}) = \varphi(\mathbb{1}_{G_1}^{-1})\varphi(\mathbb{1}_{G_1}) = \mathbb{1}_{G_2}.$$

$$\varphi(a^{-1})\varphi(a) = \varphi(a^{-1}a) = \varphi(\mathbb{1}_{G_1}) = \mathbb{1}_{G_2} \implies \varphi(a_{-1}) = \varphi(a)^{-1}.$$

A homomorphism which is bijective is called an *isomorphism*. If there exists an isomorphism between two groups G_1 and G_2 , we call them *isomorphic*, and write $G_1 \cong G_2$. One can thus call Aut(G) the set of isomorphisms from $G \to G$.

As an example, take $G = \mathbb{Z}/n\mathbb{Z} = \{0, 1, ..., n-1\}$. Note that $\varphi : G \to G$ is determined entirely by $\varphi(1)$, since $\varphi(i) = \varphi(\underbrace{1 + ... + 1}) = \underbrace{\varphi(1) + ... + \varphi(1)}$. How can we find

an element of Aut(*G*)? Clearly, not all mappings $\varphi(1)$ are bijective: take *n* to be even and $\varphi(1) = 2$. Then $\varphi(2) = 4$, $\varphi(3) = 6$, ..., $\varphi(n/2) = 0$, so φ is not surjective. We know then that $\varphi(G) = \varphi(1)\mathbb{Z} \mod n$, and would like $\varphi(G) = G$. If $\varphi(1)$ and *n* are co-prime, then we can write $k\varphi(1) + ln = k\varphi = 1$, so every element can be reached.

We can construct a group isomorphism $\eta: \operatorname{Aut}(\mathbb{Z}/n\mathbb{Z}) \to (\mathbb{Z}/n\mathbb{Z})^{\times}$ which sends $\varphi \to \varphi(1)$. Clearly $\eta(\varphi_{t_1} \circ \varphi_{t_2}) = \varphi_{t_1} \circ \varphi_{t_2}(1) = \varphi_{t_1}(t_2) = t_1t_2 = \eta(\varphi_{t_1})\eta(\varphi_{t_2})$, so η is a homomorphism. It is also bijective: given $\varphi(1)$, we can deduce a mapping for each element.

For a group G and an object X, define an *action* to be a function from $G \times X \to X$ such that

- 1. $1 \times x = x$
- 2. $(g_1g_2)x = g_1(g_2x)$

for $x \in X$, $g_1, g_2 \in G$. One can create from this the automorphism $m_g : x \to gx$ of X: if $gx_1 = gx_2$, one can take the group inverse to conclude $x_1 = x_2$. Similarly, given $x \in X$, we know $m_g(g^{-1}x) = x$.

DEF 1.3

PROP 1.1

PROOF.

DEF 1.4

DEF 1.5

Given an action of G on X, the assignment $g \to m_g$ is a homomorphism between PROP 1.2 $G \to \operatorname{Aut}(X)$.

$$m_{g_1g_2}(x) = g_1g_2x = g_1(g_2x) = g_1m_{g_2}(x) = m_{g_1}(m_{g_2}(x)) = m_{g_1} \circ m_{g_2}(x)$$

PROOF.

9/4/24

In fact, given a homomorphism of this form, one can extract the group action.

A *G-set* is a set *X* endowed with a group action of *G*. If $\forall x, y \in X, \exists g \in G : gx = y$, we say that this *G*-set is *transitive*. Finally, a transitive *G*-set of a subset of *X* ("*G*-subset of *X*") is called an *orbit* of *G* on *X*.

PROP 1.3

Every *G*-set is a disjoint union of orbits.

We define a relation on X as follows: $x \sim y$ if $\exists g : gx = y$. This is an equivelance relation:

- 1. Take g = 1. Then 1x = x, so $x \sim x$.
- 2. If gx = y, then $g^{-1}y = x$, so $x \sim y \implies y \sim x$.
- 3. If gx = y and hy = z, then hgx = z, so $x \sim y \wedge y \sim z \implies x \sim z$.

From prior theory, we know that equivalence classes of an equivalence relation on X form a partition of X. However, by definition, the equivalence classes of the above relation are exactly the orbits of the G-set on X.

We denote the set of equivalence classes defined in the proof above X/G.

E.G. 1.2 € E.G. 1.2

- 1. Let $X = \{\$\}$, G be a group, and g\$ = \$. This is a group action. The homomorphism $m: G \to \operatorname{Aut}(X) = S_1$ sends g to the identity.
- 2. Let X = G, G be a group, and gx = gx (group action on the LHS, left-multiplication on the RHS). We have the homomorphism $m: G \to \operatorname{Aut}(G)$ such that m(g)(x) = gx = gx. This is an injective function, since we can always take the group inverse, i.e. $m(h)(x) = m(g)(x) \implies g = h$. Thus, $G \cong m(G) \subseteq \operatorname{Aut}(G)$.
- 3. Let X = G as before, but let $gx = xg^{-1}$. We can check that this is a group action: (1) $1 * x = x1^{-1} = x1 = x$ and (2) $g * (h * x) = (h * x)g^{-1} = xh^{-1}g^{-1}$, where $(gh) * x = x(gh)^{-1} = xh^{-1}g^{-1} \implies g * (h * x) = (gh) * x$.
- 4. Letting $X = G \times G$, we can form a group action from both left- and right-multiplication: $(g, h) * x = gxh^{-1}$. One can check its validity.

1.1 Cayley

Every group G is isomorphic of a group of permutations (i.e. a subgroup of a symmetric group). If G is finite, then G is isomorphic to S_n , where n = |G|.

If X_1 and X_2 are G-sets, then an *isomorphism* from X_1 to X_2 is a bijection $\varphi: X_1 \to X_2$ such that $\varphi(gx) = g\varphi(x) \ \forall x \in X_1, g \in G$.

Let H < G. Define G/H to be the set of orbits for right action on G, i.e $\{aH : a \in G\}$, where $aH = \{ah : h \in H\}$. We call these *left cosets*. We also have *right cosets*, $\{Ha : a \in G\}$.

For example, take $G = S_3$ and $H = \{1, (12)\}$. Then $G/H = \{\{1, (12)\}, \{(13), (123)\}\} = \{H, (13)H\}$ and $H \setminus G = \{\{1, (12)\}, \{(13), (132)\}, \{(23), (123)\}\}$.

1.2 Size of Cosets

Let H < G. If H is finite, then $|H| = |aH| \ \forall a \in G$.

As proof of this fact, one may take the bijection $\varphi: H \to aH : \varphi(h) = ah$.

1.3 Lagrange

Let *G* be finite. The cardinality of any subgroup H < G divides the cardinality of *G*. In particular, $|G| = |H| \cdot |G/H|$.

Define the *stabilizer* of an element of a *G*-set $x_0 \in X$ to be $\{g \in G : g \circledast x_0 = x_0\}$.

If *X* is a transitive *G*-set, then $\exists H < G$ such that $X \cong G/H$ as a *G*-set.

Choose $x_0 \in X$. Define $H = \operatorname{stab}(x_0) := \{g \in G : g \circledast x_0 = x_0\}$. One may show that H is indeed a subgroup. We then define $\varphi : G/H \to X$ such that $gH \to gx_0$. Checking some properties:

- 1. φ is well defined. If gH = g'H, then $\exists h : gh = g'$. Then $\varphi(gH) = gx_0$ and $\varphi(g'H) = g'x_0 = ghx_0$. But $h \in \operatorname{stab}(x_0)$, so this is just gx_0 .
- 2. φ is surjective. This follows from the fact that X is transitive: for $x, x_0 \in X, \exists g \in G$ with $gx_0 = x$. Then $\varphi(gH) = gx_0 = x$.
- 3. φ is injective. Take $g_1x_0=g_2x_0$. Then $g_2^{-1}g_1x_0=x_0$, so $g_2^{-1}g_1\in H$, i.e. $g_2H=g_1H$
- 4. φ is a G-set isomorphism. $\varphi(g \otimes aH) = \varphi(gaH) = gax_0 = g\varphi(aH)$. \square

DEF 1.7

9/6/24 DEF 1.8

DEF 1.9

PROP 1.4

1.4 Orbit-Stabilizer

If X is a transitive G-set, $x_0 \in X$, and $|G| < \infty$, then $X \cong G/\operatorname{stab}_G(x_0)$. In particular, $|G| = |X| \cdot |\operatorname{stab}_G(x_0)|$

Given H < G, we say $h_1, h_2 \in H$ are *conjugate* if $\exists g : g^{-1}h_1g = h_2$, or, equivalently, $gh_1g^{-1} = h_2$. Given $H_1, H_2 < G$, we say H_1 and H_2 are conjugate equivalent if every element in H_1 is conjugate to some element in H_2 .

DEF 1.10

Stabilizers of elements in a transitive *G*-set *X* are conjugate equivalent.

PROP 1.5

Let $x_1, x_2 \in X$ and consider stab (x_1) , stab (x_2) . Since X is transitive, $\exists g : gx_1 = x_2 \in X$ x_2 . Thus, if $h \in \text{stab}(x_2)$, i.e. $hx_2 = x_2$, then $hgx_1 = gx_1 \implies g^{-1}hgx_1 = gx_2$ $x_1 \implies g^{-1}hg \in \operatorname{stab}(x_1)$. Thus, there exists a conjugation of every element in $stab(x_2)$ which is an element in $stab(x_1)$. One shows the converse similarly to conclude that $stab(x_1)$ and $stab(x_2)$ are conjugate equivalent.

PROOF.

We can show a natural bijection between the "pointed G-sets" (X, x_0) with subgroups of G: send $(X, x_0) \to \operatorname{stab}(x_0)$ and $H \to (G/H, H)$. This establishes the intuition that the number of transitive G-sets up to isomorphism is exactly the number of subgroups of *G* up to conjugation.

PROP 1.6

Consider an isomorphism class P of pointed G-sets, i.e. $\forall (X, x_0), (Y, y_0) \in P$, $X \cong Y$. Consider the mapping $\Phi: (X, x_0) \in P \to \operatorname{stab}(x_0)$. The image of this mapping is a conjugation class: since $X \cong Y$, we know that there exists a unique mapping $\varphi(y_0) = x_k$. Since X is transitive, $\exists g : gx_k = x_0$. Then $h \in \operatorname{stab}(x_0) \implies hx_0 = x_0 \implies hgx_k = gx_k \implies hg\varphi(y_0) = g\varphi(y_0) \implies$ $\varphi(hgy_0) = \varphi(gy_0) \implies hgy_0 = gy_0 \implies g^{-1}hg \in \operatorname{stab}(y_0).$

PROOF.

[8pt]Conversely, one can show that the image of the mapping $\Xi: H \to$ (G/H, H) over a conjugation class $I: \forall F, H \in I, \exists g \in G: g^{-1}Fg = H$ is an isomorphism class over *G*-sets.

[8pt]Thus, the set of *G*-sets up to isomorphism is in bijection with the set of H < G up to conjugation.

> – 📤 Examples 📤 -E.G. 1.3

- 1. Let H = G. Then $G/H = \{H\}$. $X = \{*\} \cong G/H$. Similarly, if $H = \mathbb{1}$, then $G/H \cong G = X$.
- 2. Let $G = S_n$. Let $X = \{1, 2, ..., n\}$. For $n \in X$, $X \cong G/\text{stab}(n) = G/S_{n-1}$.
- 3. Let *X* be a regular tetrahedron. Let G = Aut(X) (the set of rigid motions). Notate $X = \{1, 2, 3, 4\}$ (for each vertex). Then G acts transitively on X. In particular, stab(1) = $\mathbb{Z}3 \implies |G| = 4 \cdot 3 = 12$.

4. Let $G = \operatorname{Aut}(X)$ on a tetrahedron, this time *including* reflections. Then $G = S_4$, since one can always send $a \to b$ by reflecting through a plane intersecting c, d.

5. Let X be a cube, $G = \operatorname{Aut}(X)$, the rigid motions on X. Note that there are 6 faces, 12 edges, and 8 vertices. If x_0 is a face, then $\operatorname{stab}(x_0)$ are exactly the rotations about the axis intersecting the face, i.e. $|\operatorname{stab}(x_0)| = 4$, so $|G| = 6 \cdot 4 = 24$. As 4! = 24, it is tempting to consider that $G \cong S_4$. This turns out to be true: let G act on the cube's diagonals.

PROP 1.7

PROOF.

DEF 1.11

PROP 1.8

PROOF.

PROOF.

E.G. 1.4

If $\varphi:G\to H$ is a homomorphism, then φ is injective $\iff \varphi(g)=\mathbb{1} \implies g=\mathbb{1} \forall g\in G.$

Let
$$\varphi(g) = 1$$
 and φ be injective. Then $\varphi(g^2) = \varphi(g) \implies g^2 = g \implies g = 1$.
[8pt]Let $\varphi(g) = 1 \implies g = 1$. Then $\varphi(a) = \varphi(b) \implies \varphi(b^{-1}a) = 1 \implies$

Define $\ker(\varphi) := \{g \in G : \varphi(g) = 1\}$. This is a subgroup.

 $b^{-1}a = 1 \implies a = b$, so φ is injective.

Observe that, for $g \in G$, $h \in \ker(\varphi)$, we have $g^{-1}hg \in \ker(\varphi)$. Subgroups which obey this property are called *normal subgroups*.

If *N* is normal, then G/N = N/G, i.e. $gN = Ng \ \forall g$. One can view G/N as a group with $g_1N \cdot g_2N = g_1g_2N$, and $\mathbb{1}_{G/N} = N$.

$$gN = \{gn : n \in N\} = \{gg^{-1}ng : n \in N\} = \{ng : n \in N\} = Ng$$
. The group operations follow immediately.

1.5 Isomorphism Theorem for Groups

If $\varphi: G \to H$ is a homomorphism, $N = \ker(\varphi)$, then φ induces an injective homomorphism $\overline{\varphi}: G/N \hookrightarrow H: \overline{\varphi}(aN) = \varphi(a)$.

 $\overline{\varphi}$ being a homomorphism follows from the fact that φ is a homomorphism. For injectivity, see that $\overline{\varphi}(aN) = \mathbb{1} \implies \varphi(a) = \mathbb{1} \implies a = \mathbb{1}$.

– 📤 Examples 🕭

Let X be a cube, and $G = \operatorname{Aut}(X)$ be the set of rigid motions. Consider the homomorphism $\varphi: G \to S_4$ (permutations of the diagonals). Then $\ker(\varphi) = \{\sigma \in \operatorname{Aut}(X): \sigma(\{ii'\}) = \{ii'\}\} = \bigcap_{j=1}^4 \operatorname{stab}(\{jj'\})$. Observe that $\operatorname{stab}(\{ii'\})$ are exactly the 3 rotations about the axis ii' (red), the 2 perpendicular rotations (blue), as well as the identity. Observe that these rotations are disjoint, so $\bigcap_{j=1}^4 \operatorname{stab}(\{jj'\}) = \{1\} \implies \ker(\varphi) = 1$.

Then, we have $\overline{\varphi}: G/\ker(\varphi) \hookrightarrow S_4 = G/\{1\} \hookrightarrow S_4 = G \hookrightarrow S_4$ is injective. Since $|G| = |S_4|$, we have that $G \cong S_4$.

Consider now $\widetilde{G} = \widetilde{\operatorname{Aut}}(X)$, consisting of rigid motions *and* reflections. We have $\widetilde{G}/G = \{1, \tau\}$, where τ is some orientation-reversing reflection. One can conclude then that $\#\widetilde{G} = 4! \cdot 2 = 48$. One could write $\tau = -I_3$, the orientation-reversing identity. Thus $g\tau = \tau g \ \forall g \in \widetilde{G}$.

It's tempting to say $\widetilde{G} \cong S_4 \times \mathbb{Z}2$, given the construction above, and that $\widetilde{G} = G \sqcup \tau G$. This is correct: take $S_4 \times \mathbb{Z}2 \to \widetilde{G}$: $(g, i) \mapsto g\tau^i$. We verify this is a homomorphism: $g_1 \tau^{i_1} g_2 \tau^{i_2} = g_1 g_2 \tau^{i_1 + i_2}$.

The *center* of G, notated Z(G), is $\{z \in G : zg = gz \forall g \in G\}$. Elements in the center DEF 1.12 are their own conjugations.

Let $\sigma \in S_n$ be decomposed into disjoint cycles $\tau_1, ..., \tau_k$. The unordered set $\{|\tau_1|, ..., |\tau_k|\}$ is called the *cycle shape* of σ . Alternatively, the cycle shape is the partition of n

$$|\tau_1| + \dots + |\tau_k| = n$$

where we include all identity cycles (i), with size 1.

E.G. 1.5 ← Examples ♣ ← E.G. 1.5

- 1. Let $\sigma \in S_n$ fix all elements. Then the cycle shape of σ is dictated by 1+...+1=n.
- 2. Let $\sigma = (1 \ 2 \dots n) \in S_n$. The cycle shape of σ is dictated by n.
- 3. Consider all permutations in S_4 , decomposed into disjoint cycles. We have

the following cycle shapes:

partition	$\sigma \in S_4$	#
1 + 1 + 1 + 1	{1}	1
2 + 1 + 1	{(12), (13), (14), (23), (24), (34)}	$\binom{4}{2} = 6$
3 + 1	{(123), (124), (132), (134), (142), (143), (243), (342)}	$4 \cdot 2 = 8$
2 + 2	{(12)(34), (13)(24), (14)(23)}	3
4	{(1234), (1243), (1324), (1342), (1423), (1432)}	3! = 6

1.6 Relation Between Cycle Shape and Conjugation

Two permutations in S_n are conjugate \iff they have the same cycle shape.

(\Longrightarrow) Let $g \sim g'$, i.e. $g' = hgh^{-1}$ for some $h \in G$. Let g(i) = j. Then $g'(h(i)) = hgh^{-1}h(i) = hg(i) = hj$. Thus, for a disjoint cycle τ of g, say (a, b, ..., z), we have that $\tau' = (h(a), h(b), ..., h(z))$ is a disjoint cycle of g', i.e. they have the same cycle shape.

Let $g, g' \in S_n$ have the same cycle shape. Then consider $h \in S_n$ which permutes the elements of cycles in g to the elements of cycles in g'. Then $hgh^{-1} = g'$.

For example, g = (123)(45)(6) and g' = (615)(24)(3). h is then (163524).

----- ♦ Examples ♣ ---

We'll revisit example (3) from above:

conjugacy class	#
1	1
(12)	$\binom{4}{2} = 6$
(123)	$4 \cdot 2 = 8$
(13)(24)	3
(1234)	3! = 6

Recall that $S_4 \cong \text{Aut}(\text{cube})$. Thus, we may associate each of these conjugacy

PROOF.

E.G. 1.6

classes with conjugacy classes of cube automorphisms:

conjugacy class	#	Aut(cube)
1	1	Id
(12)	$\binom{4}{2} = 6$	rotations about edge diagonals by π
(123)	$4 \cdot 2 = 8$	rot'n about face centers by π
(13)(24)	3	rot'n about principal diagonals by $\frac{\pi}{3}$
(1234)	3! = 6	rot'n about face centers by $\frac{\pi}{2}$

Recall Lagrange's Theorem, which states that, for all H < G, $|H| \mid |G|$. Is the converse true? Not necessarily (try considering subgroup of order 15 of S_5).

SYLOW THEOREMS

1.7 Sylow 1

Let p be prime. If $\#G = p^t m$, $p \nmid m$, then G has a subgroup of cardinality p^t .

If $H \subseteq G$ is as in Thm 1.7, then H is called a *Sylow p-subgroup* of G.

DEF 1.14

----- 🌲 Examples 弗 –

E.G. 1.7

- 1. $\#S_5 = 120 = 2^3 \cdot 3 \cdot 5$. We can thus find Sylow subgroups of cardinality 8, 3, and 5.
- 2. $\#S_6 = 720 = 2^4 \cdot 3^2 \cdot 5$. We can find Sylow subgroups of cardinality 16, 9, and 5. The subgroup with 9 elements can be constructed by taking $\langle (123), (456) \rangle$, the generator of two order 3 elements. This is isomorphic to $\mathbb{Z}3 \times \mathbb{Z}3$. What about the subgroup of 16 elements? Take $H = D_8 \times S_2$, where D_8 acts on vertices 1, 2, 3, 4, and S_2 swaps the remaining 5, 6 independently.
- 3. $\#S_8 = 2^7 \cdot 3^2 \cdot 5 \cdot 7$. How can we find a subgroup with $2^7 = 128$ elements? An idea would be taking $D_8 \times D_8$, and then swapping these squares via S_2 , i.e. $H = D_8 \times D_8 \times S_2$.

Take this with a grain of salt, I'm not sure that it works
-Prof. Darmon

Given a prime p and a group G, the following are equivalent:

PROP 1.9

- 1. \exists a *G*-set of cardinality prime to *p*, i.e. not a multiple of *p*, with no orbit of size 1.
- 2. \exists a transitive *G*-set of cardinality ≥ 2 and prime to *p*.
- 3. *G* has a proper subgroup of index prime to *p*.

 $(1 \implies 2)$ Write $X = X_1 \sqcup X_2 \sqcup ... \sqcup X_k$ for orbits X_i . This orbits are especially transitive. Then $\exists j$ such that $|X_j|$ is prime to p. Suppose otherwise. Then $|X| = |X_1| + ... + |X_k| = mp$, so |X| is not prime to p.

 $(2 \Longrightarrow 3)$. Let X be a transitive G set with $|X| \ge 2$ and |X| prime to p. Then $X \cong G/\operatorname{stab}(x_0)$ for some $x_0 \in X$. If $\operatorname{stab}(x_0) = G \forall x_0 \in X$, then $X = \{\star\}$, i.e. does not have cardinality ≥ 2 . Thus, $\operatorname{stab}(x_0) < G$ is a proper subgroup.

(3 \Longrightarrow 1). Take H < G, a proper subgroup of index prime to p, and consider the G-set X = G/H. If X had an orbit of size 1, say of x_0 , then $H \sim \operatorname{stab}(x_0) = G$, i.e. is not a proper subset.

PROP 1.10

For a finite group G, with $\#G = p^t m$ for some prime p and $m \ne 1$, then (G, p) satisfies Prop 1.9.

PROOF.

Let $X = \{\text{set of } H \subseteq G : \#H = p^t\}$. Then if $A \subseteq X$, $gA \in X$, since $ga = gb \implies a = b$, i.e. g acts faithfully. Furthermore, unless $g = \mathbb{1}$, $A \neq gA$. Thus, X has no fixed points, and thus no orbits of size 1. X therefore (almost) satisfies (1) of Prop 1.9. It remains to show that |X| is prime to p.

$$\begin{split} \#X &= \binom{p^t m}{p^t} = \frac{(p^m)(p^m - 1) \cdot \dots \cdot (p_t m - p^t + 1)}{p^t \cdot (p^t - 1) \cdot \dots \cdot 1} \\ &= \prod_{j=0}^{p^t - 1} \frac{p^t m - j}{p^t - j} \end{split}$$

From here, one can show that the maximal power of p dividing the numerator is the same maximal power of p which divides the denominator. Thus, p cannot divide any of the product terms. By Euler's Lemma, then, p cannot divide \prod .

PROOF OF SYLOW 1

Fix a prime p. Let G be a finite group of minimal cardinality for which Sylow 1 fails (such a group exists: we have found such groups in Example 1.7). By Prop 1.10, (G, p) satisfies (3) of Prop 1.9. Thus, $\exists H < G$ such that $p \nmid [G:H]$. But also, #H | #G, so $\#H = p^t m_0$ for $m_0 < m$.

By strong induction, $\exists N < H$ of cardinality p^t . N is thus also a p-Sylow subgroup of G, violating minimality $\frac{1}{2}$.

PROP 1.11

If $\#G = p^t m$, with $p \nmid m$, then G has a proper subgroup H of cardinality $p^t m_0 : m_0 < m$.

This is mentioned in the previous proof. By (3) of Prop 1.9, we have a proper subgroup H < G with $p \nmid \frac{p^t m}{\# H}$ and $\# H | p^t m$.

Thus, # $H = p^{t_0} m_0$ with $t_0 \le t$, $m_0 \le m$. If $t_0 < t$, then

$$p \nmid \frac{p^t m}{p^{t_0} m_0} = p^{t-t_0} \frac{m}{m_0} \notin$$

 $\implies t_0 = t$. Then, if $m_0 = m$, H = G, but H is proper.

$$\implies$$
 # $H = p^t m_0 : m_0 < m$.

If *G* is abelian and finite, with p|#G for a prime *p*, then *G* has an element of order prop 1.12 *p*. Thus *G* has a subgroup of order *p*.

PROOF.

PROOF.

Let #G = pm. It is sufficient to find $g \in G$ with $p|\operatorname{ord}(g)$, since then $\operatorname{ord}(g^{\frac{\operatorname{ord}(g)}{p}}) = p$. Let $g_1, ..., g_t \in G$ be the set of generators for G. Let $n_i = \operatorname{ord}(g_i)$. Then consider the homomorphism

$$\varphi: n_1 \mathbb{Z} \times ... \times n_t \mathbb{Z} \to G: (a_1, ..., a_t) \to g_1^{a_1} \cdot ... \cdot g_t^{a_t}$$

This is surjective, since we can always write $g \in G$ in terms of powers of generators. Recall that, for a homomorphism $\varphi: A \to B$, $A/\ker(\varphi) \cong \operatorname{Im}(\varphi)$. Thus, $\#G|n_1 \cdot ... \cdot n_t$. But $p|\#G \Longrightarrow p|n_1 \cdot ... \cdot n_t \Longrightarrow p|n_j$ for some j. Then $p|\operatorname{ord}(g_j)$.

1.8 Sylow 2

If H_1 , H_2 are Sylow-p subgroups of G, then $\exists g \in G$ with $gH_1g^{-1} = H_2$.

Let $\#G = p^t m : p \nmid m$. Let H_1, H_2 have cardinality p^t . Consider G/H_1 as a G-set. In fact, think of G/H_1 as an H_2 -set. Then we may decompose into orbits:

$$G/H_1 = X_1 \sqcup X_2 \sqcup ... \sqcup X_N$$

Then $\#X_i\#H_2$ by Orbit-Stabilizer, so $\#X_i=p^a:a\leq t\ \forall i.$ Then \exists an orbit of size 1, otherwise $p|G/H_1\implies p|m\ \xi$.

Let $X_j := \{gH_1\}$. Thus, $\forall h \in H_2, hgH_1 = gH_2 \implies g^{-1}hg \in H_1$, i.e. $\exists g : g^{-1}H_2g = H_1$. Rewriting, this means $gH_1g^{-1} = H_2$.

Given a group G and H < G, we call $\{g \in G : gHg^{-1} = H\}$ the *normalizer* of H.

DEF 1.15

H is a subgroup of its normalizer.

1.9 Sylow 3

Let N_p be the number of distinct Sylow-p subgroups of G. Then

- 1. $N_p|m$, where $\#G = p^t m : p \nmid m$
- 2. $N_p \equiv 1 \mod p$

PROOF.

(1st Claim) Let X be the set of Sylow-p subgroups, and consider X as a G-set under conjugation. By Sylow 2, X is transitive. Thus, $X \cong G/\operatorname{stab}(H) \ \forall H \in X$. Fix some H. Notice that $\operatorname{stab}(H)$ is the normalizer of H. Thus, $\#H | \#\operatorname{stab}(H) \implies \#G/\#\operatorname{stab}(H) | \#G/\#H = \frac{p^t m}{p^t} = m$. We conclude that #X | m.

(2nd Claim) Let H be a Sylow-p subgroup. Let X be the set of all Sylow-p subgroups, viewed as an H-set by conjugation. We decompose X into orbits:

$$X = X_1 \sqcup X_2 \sqcup ... \sqcup X_a$$

 X_i are all transitive, so $\#X_i | \#H = p^t \implies \#X_i = 1 \lor p \lor ... \lor p^t$. We claim that there is exactly one orbit of size 1. Let $X_j = \{H'\}$ be an orbit of size 1. Then $aH'a^{-1} = H' \lor h \implies H$ is a subset of the normalizer of H'. Let $H \subseteq R = \{a \in G : aH'a^{-1} = H'\}$. Then H' is a normal subgroup of R. Thus, we may consider R/H' as a group. Then $\frac{\#R}{\#H'} = \frac{\#R}{p^t} = \frac{p^t m_0}{p^t} = m_0 < m \implies p \nmid \frac{\#R}{\#H'}$.

Consider the natural map $\varphi: R \to R/H'$. Then $\#\varphi(H)|p^t$ (by First Iso. Thm.) and also $\#\varphi(H)|_{\#H'}^{\#R}$ (by Lagrange). But $p \nmid \frac{\#R}{\#H'}$, so $\#\varphi(H) = 1$. Then $H \subseteq \ker(\varphi) = H'$, but #H = #H', so H = H'. We could always have chosen H as an orbit of size 1, and find now that all other orbits of size 1 are exactly H. Thus, $|X| = N_p \equiv 1 \mod p$.

PROP 1.14

If p, q are primes with p < q and $p \nmid q - 1$, then all groups of cardinality pq are cyclic.

BURNSIDE'S LEMMA

DEF 1.16

Let *G* be a group, and let *X* be a *G*-set. Given $g \in G$, we consider $X^g := \{x \in X : gx = x\}$. Denote by $FP_X(g) = \#X^g$.

For instance, if $G = S_4$ with $X = \{1, 2, 3, 4\}$, then $X^{(12)} = \{3, 4\}$. Thus, $FP_X((12)) = 2$. Consider also $FP_X((12)(34)) = 0$.

 $FP_X(hgh^{-1}) = FP_X(g) \ \forall h \in G.$

PROP 1.15

Take the bijection
$$\varphi: X^g \to X^{hgh^{-1}}$$
 by $\varphi(x) = hx$.

1.10 Burnside's Lemma

$$\frac{1}{\#G}\sum_{g\in G}\operatorname{FP}_X(g)=\#(X/G)=\#\text{orbits of }X$$

Let $\Sigma \subseteq G \times X$ be $\Sigma = \{(g, x) : gx = x\}$. We'll count Σ in two ways:

PROOF.

- 1. $\Sigma = \sum_{g \in G} FP_X(g)$ by definition
- 2. $\Sigma = \sum_{x \in X} \# \operatorname{stab}(x) = \sum_{O \in X/G} \sum_{x \in O} \# \operatorname{stab}(x)$. By Orbit-Stabilizer, $\# \operatorname{stab}(x) \# O = \# G$, where $x \in O$. Thus, we have

$$\Sigma = \sum_{O \in X/G} \sum_{x \in O} \frac{\#G}{\#O} = \sum_{O \in X/G} \#G = \#(X/G)\#G$$

Thus, $\sum_{g \in G} \operatorname{FP}_X(g) = \#(X/G) \# G$ as desired.

PROP 1.16

If *X* is transitive, then, by Burnside, $\sum_{g \in G} \operatorname{FP}_X(g) = \#G$. But $\operatorname{FP}_X(\mathbb{1}) = \#X > 1$.

If *X* is a transitive *G*-set, with |X| > 1, then $\exists g \in G$ such that $FP_X(g) = 0$.

PROOF.

Thus, $\sum_{g \in G \setminus \mathbb{I}} \operatorname{FP}_X(g) \le \#G - 2$. The result follows by pigeonhole principle.

Let $C = \{1, ..., t\}$. A coloring of X by C is a function $X \to C$. The set of such DEF 1.17 functions we denote by C^X . Note that $|C^X| = |C|^{|X|}$.

II Rings & Fields

People developed rings by counting: 0, 1, 2, 3, ... are natural. We generalize:

A *ring* is a set R endowed with two binary operations, denoted + and ×, such that +,×: $R \times R \rightarrow R$. The following axioms govern rings:

- 1. The neutral element 0 is such that $a + 0 = a \ \forall a \in R$.
- 2. The inverse of a, denoted (-a), is such that $a + (-a) = \mathbb{O}$.
- 3. The neutral element $\mathbb{1}$ is such that $a \times \mathbb{1} = a \ \forall a \in R$.
- 4. *R* is associative over (strictly) addition and multiplication
- 5. We have the following two distributive laws:

(a)
$$a \times (b + c) = a \times b + a \times c$$
.

(b)
$$(b + c) \times a = b \times a + c \times a$$
.

Notes on rings:

- 1. We denote by (R, \cdot) the ring R endowed only with only the operation \cdot . Then, (R, +) is an abelian group. We call (R, \times) a *monoid*.
- 2. Sometimes, we do not require 1 (take the ring of even numbers, which has no units). However, in this class we will always have 1.
- 3. $1 \neq 0$ (i.e. we do not consider the zero ring).
- 4. \mathbb{O} is never invertible, and $\mathbb{O}a = \mathbb{O} \ \forall a$.
- 5. $(-a) \times (-b) = ab$

E.G. 2.1

PROP 2.1

DEF 2.1

Recall completion in the analysis sense: X is not complete if it has a Cauchy sequence which does not converge in it; then the completion of X is $X \cup \{\text{limits of Cauchy seq's}\}$

- 1. \mathbb{Z} is a ring.
- 2. $\mathbb{Q} = \{\frac{a}{b} : b \neq 0\}$, with +, ×, is a ring. We may complete \mathbb{Q} by taking {Cauchy sequences}/{null sequences} = \mathbb{R}
- 3. Given a prime p, $|x-y|_p = p^{-\operatorname{ord}_p(x-y)}$. $x-y = \prod q^{e_q} : e_q \in \mathbb{Z}$. Then $\operatorname{ord}_p(x-y) = e_p$. Note that $|ab|_p = |a|_p |b|_p$, and $|a+b|_p \leq |a|_p + |b|_p$. The completion by this metric is denoted \mathbb{Q}_p (the field of p-atic numbers).

4.
$$\mathbb{C} = \mathbb{R}[i] = \{a + bi : a, b \in \mathbb{R}\}.$$

5.
$$R[x] = \{a_0 + a_1x + ... + a_nx^n : a_i \in \mathbb{R}\}.$$

15 RINGS & FIELDS

6. $R \leftrightarrow \#$ line and $\mathbb{C} \leftrightarrow$ plane geometry. For the latter, we note the properties

$$a + bi = r_1 e^{i\theta_1}$$
 $c_1 \cdot c_2 = r_1 r_2 e^{i(\theta_1 + \theta_2)}$

Q: is there a ring which may be well adopted to \mathbb{R}^3 geometry? **A:** No, not quite. It is possible to do so with \mathbb{R}^4 . From this arises the Hamilton quaternions:

$$\mathbb{H} = \{a + bi + cj + dk : a, b, c, d \in \mathbb{R}\}$$
 $i^2 = j^2 = k^2 = -1$

with
$$ij = -ji = k$$
, $jk = -kj = i$, $ik = -ki = j$.

7. Let R be some commutative ring. Then $M_n(R) = n \times n$ matrices with entries on R. $M_n(R)$ is a ring, where $\mathbb O$ is the matrix with all $\mathbb O$ entries, and $\mathbb O$ is the matrix with all $\mathbb O$ entries except on the diagonal (where they are 1).

Showing (AB)C = A(BC) is tough via brute-force, but easy when taking an isomorphism from $M_n(R)$ to linear transformations on $R \to R$, with $M_1M_2 \to f_1 \circ f_2$.

8. We may take a ring $R \rightsquigarrow (R, +, \mathbb{O})$, an additive, commutative group. Similarly, $R \rightsquigarrow (R^{\times}, \times, \mathbb{I})$, which is an associative multiplicative group. We denote by R^{\times} the set of units in R, i.e. $\{a \in R : \exists a' : aa' = a'a = \mathbb{I}\}$.

A ring *R* such that $r_1r_2 = r_2r_1 \forall r_1, r_2 \in R$ is called *commutative*.

DEF 2.2

A *homomorphism* of rings, $\varphi : R_1 \to R_2$ is such that

$$\varphi(a+b) = \varphi(a) + \varphi(b)$$
 $\varphi(ab) = \varphi(a)\varphi(b)$ $\forall a, b \in R_1$

From this arises the property $\varphi(\mathbb{1}_{R_1}) = \mathbb{1}_{R_2}$. Alternatively, φ is a ring homomorphism if it is an additive group homomorphism and obeys $\varphi(ab) = \varphi(a)\varphi(b)$.

The *kernel* of φ , denoted $\ker(\varphi)$, is the set

$${a \in R_1 : \varphi(a) = 0}$$

Recall that, in groups, $\ker(\varphi)$ is normal, and every normal subgroup may be conceptualized as the kernel of some group homomorphism. We have a similar notion in rings:

 $I \subseteq R$ is called an *ideal* if

- 1. I is an additive subgroup of R
- 2. $\forall r \in R, ri \in I, ir \in I$

If φ is a ring homomorphism, then $\ker(\varphi)$ is an ideal.

DEF 2.4

It is tempting to consider elements sent to 1, as in group kernels; however, *this* kernel will not be closed under multiplication, and is hence less interesting to study.

DEF 2.5

Note, if *R* is commutative, we only need to check one of these inclusions.

PROP 2.2

Condition (1) follows from the fact that φ is an additive group homomorphism. Condition (2) follows from $\varphi(ri) = \varphi(r)\varphi(i) = \varphi(r)\cdot 0 = 0$, and similarly for $\varphi(ir) = 0$.

PROP 2.3

If $I \subseteq R_1$ is an ideal, then \exists a ring R_2 and a homomorphism $\varphi : R_1 \to R_2$ such that $\ker(\varphi) = I$.

PROOF.

Consider $R_2 := R_1/I = \{a+I : a \in R_1\}$. Since I is commutative as an additive ring, it is normal, and thus R_1/I is a group under addition. For multiplication, we define (a+I)(b+I) = (ab+I). Then let $\varphi : R_1 \to R_1/I$ be such that $a \mapsto a+I$. $\ker(\varphi) = \{a \in R_1 : a+I=I\} = \{a \in R_1 : a \in I\} = I$.

Note that $\mathbb{O}_{R/I} = 0 + I$ and $\mathbb{I}_{R/I} = 1 + I$.

2.1 First Isomorphism Theorem

Let R be a ring (or a group), and let φ be a surjective ring (or group) homomorphism. Then $\text{Im}(\varphi) \cong R/\ker(\varphi)$.

PROOF.

We may take $\operatorname{Im}(\varphi) \to R/\ker(\varphi) : a \mapsto \varphi^{-1}(a)$ and $R/\ker(\varphi) \to \operatorname{Im}(\varphi) : a + \ker(\varphi) \mapsto \varphi(a)$. One can show without too much trouble that these are homomorphisms and inverses of eachother, and thus bijective.

DEF 2.6

An *ideal* $I \subseteq R$ is called *maximal* if it is not properly contained in any proper ideal of R, i.e. $I \subseteq I' \implies I' = R$ for any ideal I'.

DEF 2.7

An ideal $I \subseteq R$ is called *prime* if $ab \in I \implies a \in I$ or $b \in I$.

PROP 2.4

Let $R = \mathbb{Z}$, $I = n\mathbb{Z} = (n) = \{na : a \in \mathbb{Z}\}$. Then (n) is prime $\iff n$ is prime.

PROOF.

(\iff) If $ab \in (n)$, then n|ab. By Gauss' Lemma, n|a or n|b. Thus, $a \in (n)$ or $b \in (n)$.

 (\Longrightarrow) By contrapositive: let n=ab. Then $ab \in (n)$. But a,b < n, so $a,b \notin (n)$.

2.2 Integers are Principal

If $I \subseteq Z$ is an ideal, then $\exists n \in \mathbb{Z}$ such that I = (n).

17 RINGS & FIELDS

Proof 1. Consider the quotient \mathbb{Z}/I . As an abelian group, it is cyclic, generated by 1 + I. Let $n := \#(\mathbb{Z}/I) = \operatorname{ord}(1 + I)$. If $n = \infty$, then $\mathbb{Z} \to \mathbb{Z}/I$ is injective, so I = (0). Otherwise, I = (n).

Proof 2. Assume that $I \neq (0)$. Let $n = \min\{a \in I : a > 0\}$. Let $a \in I$. Then a = qn + r, where $0 \le r \le n$. Then $a \in I$, $n \in I$, $qn \in I$ (by sucking in), so $a - qn \in I$. Thus, $r \in I \implies r = 0$ by minimality.

Let *R* be a commutative ring. An ideal of the form $aR = (a) = \{ar : r \in R\}$ is called a *principal ideal*.

A ring in which every idea is principal is called a *principal ideal ring*.

2.3 Polynomials are Ideal

Consider $R = \mathbb{F}[x]$, where \mathbb{F} is a field. If I is an ideal of $\mathbb{F}[x]$, then I is principal

Let f(x) be a polynomial in I of minimal degree (with $I \neq (0)$). Then let $\deg f(x) = d$, where $d \leq \deg g(x) \ \forall g \in \mathbb{F}[x]$.

For $g(x) \in I$, we may write g(x) = f(x)q(x) + r(x), where deg r(x) < d. Then $r(x) \in I$ by the same arguments presented in Thm 2.2. Thus, deg r(x) = 0, so I = (f).

By convention, we say $deg(0) = -\infty$ in order to satisfy deg f(x)g(x) = deg f(x) + deg g(x). Note that deg(c) = 0 where $c \neq 0$.

PROOF.

DEF 2.8

DEF 2.9

♠ Examples **♣**

E.G. 2.2

- 1. Let $\varphi : \mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$, and let $I = \{a + n\mathbb{Z}\}$ be some ideal of $\mathbb{Z}/n\mathbb{Z}$. Then $\varphi^{-1}(I)$ is an ideal of \mathbb{Z} . Hence, $\varphi^{-1}(I) = (a)$ for some $a \in \mathbb{Z}$.
- 2. Let $R = \mathbb{Z}[x]$. Then $I = \{f(x) : f(0) \text{ is even}\} \subsetneq \mathbb{Z}[x]$. We claim that I is an ideal. We know that I is an additive subgroup of $\mathbb{Z}[x]$. If $f(x) \in \mathbb{Z}[x]$, $g(x) \in I$, then $f(x)g(x) \in I$, since f(0)g(0) is always even.
- 3. If *I* were of the form $a\mathbb{Z}[x]$, then a|2 and a|x, so $a = \pm 1$. But $I \subsetneq \mathbb{Z}[x]$, so this can't be the case. From this example we consider $I = (2, x) = 2\mathbb{Z}[x] + x\mathbb{Z}[x]$.
- 4. Let $R = \mathbb{F}[x, y]$ (a polynomial ring of two variables). Consider (x, y) = Rx + Ry. Note that all elements in this ideal are non-constant. We may write $Rx + Ry = \{f(x, y) : f(0, 0) = 0\}$.