優先福麗明書補充

ľ	医生地		鉄	- E	の []名	1	B	ДО)出氧	i B	at.	帕	吞	5)
1	東元		+ 1	2/	7	툉				5 B/			4 _	21	غ د
ļ	主 第	1	4	PK	A	- 5	111	123	<u>华了</u> 年	月/	ᄺ	78.3.C	Z .	ہور	Z 2

(¥ 2, 000)

特 許

特許庁長官 殿

1. 発明の名称

| 対象性 | お裏性リン・パナジウム混合酸化物組成物

2. 発 明 者

□ アメリカ合衆国カリフォルニア州ペークレー、 インデイアン ロック アペニユ 882

氏 名 ロナルド、アラン、シヤイダー (ほか 名)

3. 特許出願人

住 所 アメリカ合衆国カリフオルニア州サンフランシスコ ・ アンシュストリート 200昔

タ & シエプロン、リサーチ、コンパニー

(代表者)

ジェームズ、アリソン、プカナン、ジユーニア

羽 将 アメリカ合衆国

4. 代 理 人

於 所 〒100 東京都千代田区大手町二丁目 2番 1 号

新大手町ビルチング331 電 括 (211) 3651 (代 24 編

氏 名 (6669)弁理:t 浅 村

皓四 (ほか3名)

48 F

19 日本国特許庁

公開特許公報

①特開昭 50-35088

43公開日 昭50.(1975)

4.

②特願昭 48-67688

②出願日 昭夕(1973) 6 /5

審查請求 未請求

(全10頁)

庁内整理番号

6514 4A

65 29 43

620日本分類

/3(9)G1/2 /6 B632,1 51 Int. C12.

BOIT 23/20 BOIT 27/16

co10207/34

明細 書

1 発明の名称

. 結晶性リン・ペナジウム混合酸化物組成物

2. 特許 謝水の範囲

5 価のリン・ペナジウム及び酸素を含む結晶性リン・ペナジウム混合酸化物組成物において、前配のペナジウムが約+5.9 ないし+4.6 の範囲内の平均原子価を有するとと、前記の酸化物が1に対し約0.9 -1.8 の範囲内のペナジウムに対するリンの原子比及び 8 当り約7 ないし5 0 平方メートルの範囲内の固有表面積を有することを特徴とする前配の組成物。

4. 発明の詳細な説明

本発明は飽和炭化水素フィードと共の使用に特に適した改良された炭化水素酸化敏媒に係る。更に特に、本発明は改良された酸化ペナジウム・酸化リン複合体に係る。なか更に特に、本発明は前記の触媒を使用して蒸気相プロセスでローブタンから無水マレイン酸の製造に係る。

n - プタンは無水マレイン酸の製造のためにフ

n - ナタンから無水マレイン酸の製造に関する 当技術の代表的記載は米国特許 No 5,2 9 5,2 6 8を 含む。

無水マレイン酸へのn・プタンの酸化において 優れた活性と改良された選択性を有する触媒が現 在発見された。

指 μu 昭50-35 088 (2)

これは酸化パナジウムと酸化リンの結晶性複合 体又は錯体であり、これは次のものを有する:

- 1) 多当り約7ないし50平方メートルの範囲 内の混合酸化物自体の固有の表面療;
- 2) 各々、1 に対し D.9 1.8 の範囲内のパナ ジウムに対するリンの原子比;
- 3) + 5.9 ないし 4.6 の範囲内のパナジウムに対する平均原子価を有する酸化パナジウム成分; 及び
- 4) 約+5のリンに対する平均原子価を有する 酸化リン成分。

本発明で使用されるように、混合酸化物の固有 表面機により支持体又は担体の不存在で、材料それ自体の表面機を意味する。

この新規な結晶性組成物は本質的に有機の溶媒からペナド・ホスフェート(Vanado-Phosphato)混合酸化物錯体の沈酸によつて製造される。少量の水が媒体中に存在でき、かつ実際に沈酸物に結合された水又は水生成成分は満足すべき選択性と活性とを有する触媒を得るために必要であると思わ

スラリに無水塩化水素ガスの流れを通すことによって五酸化パナジウムがイソナタノールに溶解される。生成する溶液は赤褐色であり、かつ塩化水素ガスで殆ど飽和される。イソナタノール中でオルトリン酸(H₅PO₄)の溶液と混合するために準備される。

前記のように製造された酸化パナジウムの溶液とリン酸溶液に適合するのに十分に大きなガラス表現り容器でイソプタノールに結晶性100%があたりとはなってオルトリン酸を添加することによつてオルトリン酸を添加の容量のイソプタノールが使用されることをおいる。では、1・2のパナジウムに対するリンの原子比を生ずるように十分なオルトリン酸が溶洗水褐色溶液の導入及び水蒸気の排出のために備付けられている。

第二の容器においてリン酸溶液に赤褐色溶液の 導入後、生成する溶液の温度が透流温度、即ち約 本発明の結晶性パナド - ホスフェート混合酸化物の製造に対する好適法において、粉砕された五酸化パナジウム(V2 O5)とイン ナタノールが、かきまぜ、温度関節、インナタノールへのガスの導入及び水蒸気の排出のために備付けられたガラス級張り容器に装入された。五酸化パナジウムの多の各組成重量に対して約10のインナタノール茶が使用される。次に生成するスラリがかきまぜられ、かつ30ないし40℃の温度に保ちながら

1 1 0 でへ上げられ、かつ約 1.5 時間の間保たれる。落液は色彩で、通常級がかつた褐色に変わることで反応の医拠が顕著である。その後、遺流冷却器が外されかつイソプタノールが反応混合物から蒸留される。遠流における前記の加熱と続く蒸留中、塩化水素ガスが溶液から発生しかつ排気される。

乾燥された沈殿物は活性化後約23m²/8r、の

19

表面積 (BET-方法)を有する均一な、非常に暗い 緑灰色固体である。固定床の用途のためにこれは 粉砕されかつ 2 0 - 2 8 メンシュ(タイラーふる い)寸法までふるいにかけられる。

活性化のため下記のスケジュールが実施される; 1 1.5 容量/容量/分で流れる空気流で 5 8 0 C まで前駆体を加熱する、熱入力は分当り 3 Cの 區度増加の割合を生ずる。

- 2 380℃の温度と2時間同一空気流割合を保
- - 4. 前配のように空気 プタン流速を続けながら 約16時間480℃に前駆体を保つ。
 - 5. 協能を 4 8 0 ℃から 4 2 0 ℃へ下げかつ次に 空気 - プタン洗滅を 1 0 0 0 時⁻¹ (1 7 客量/ 容量/分)の VEBV に増大する。

活性度の指標として、前配の条件下90%変換 に要した温度 「領華活性度」と定義される。収量 は供給された炭化水素100ポンド当り製造され た無水マレイン酸のポンドとして、かつ選択度は 変換されたフィード100ポンド当り製造された 無水マレイン酸のポンドとして定義される。

麥 面 積

使用された有機溶媒系の変異及びある程度活性化工程に応じて、表面積(BBT法・エッチ・プルナール、ピー・エッチ・エメット、及びイー・テラー(H.Brunaur、P.H.Bmmett and E.Teller)、JACS、60巻、309頁(1938)参照)は 9当り7ないし50平方メートル及びそれ以上の範囲に及ぶ。好適な混合酸化物触媒は10ないし50m²/gr及びそれ以上の範囲内の表面積を有する。一般に、固有表面積が大きくなる程、触媒はより活性になりかつ飽和炭化水業フィードの酸化に使用のために触媒が満足すべきである温度がより低くなる。

₽/▼原子比

6 最後にプタン変換が90%になるまで必要に 応じて温度を上下に調整する。

通常敏媒性能は 6 ないし3 6 時間の短いランの後安定する。活性化敏媒は一般に 4 0 0 で以下、通常 5 6 5 - 3 9 0 での範囲内である標準活性度(下記の論機を参照せよ)と 8 当り約 2 3 平方メートルの表面積(BET)を有する。この触媒は反応器に供給された n - プタン 1 0 0 姆当り無水マレイン酸 1 0 5 姆又は変換された n - プタン 1 0 0 姆当り無水マレイン酸 1 1 7 姆を生ずる。

標準 触媒試験

との酸化触媒の信頼し得る比較を得るために、 標準試験が必要でありかつ開発された。 20/28 メッシュ混合酸化物 10 mが半インチステンレス 網反応器へ装入された。活性化後、空気中に 1.5 容量ののn - プタンのフィードを使用して、 1000時⁻¹の空間速度(0℃かつ1気圧/容量/ 時での容量)で性能が測定された。その性能が 24時間にわたつて殆ど変らなくなるまで無禁は 流れに残された。

この沈殿混合酸化物は一般に1に対し0.9 - 1.8 好ましくは各々1に対し1.0 - 1.5 の範囲内にある、パナジウムに対するリンの原子比を有すべき である。

パナジウム成分の平均原子価

本発明の活性化された混合酸化物中のパナジクムの平均原子価は一般に 5.9 ないし 4.6 の範囲内にある。この平均原子価が 4.1 ないし 4.4 の範囲内にある時良好な結果が得られると思われる。

B - 相含量 .

との酸化酸媒の選択性は特定の結晶構造である 複合体の比率の直接関連することが判明した。参 服のためにかつこの複合体構造の言及又は認識は 当技術においてないようであるので、これは B・ 相と称される。 B・相構造を有する触媒は下記の 第1表に列挙するように、特性粉末 X 線回折パタ ーン(Cuk α) を示す。

第 】 表

d (************************************	線位置20、度	強度、I
6.3	14,2	10
4,8	18.5	7
3.9	23.0	100
3.13	28.5	58
2,98	30.0	29
2.65	33.8	7

完全な粉末 X 線回折データから得られるように、B - 相のためのユニットセルの寸法は a = b = 方1 9.2 Å、及び C = 7.8 Å である。結晶相は六文 構造である。

少くとも25 男のB - 相含量と10 m² /8r、以上の範囲の固有表面積とを有するリン・パナシウム混合酸化物は飽和炭化水素フィードの蒸気相部分酸化において良好な活性と選択性を示す。結果に、これらの複合体が好適である。50 男以上のB・相含量を有するものは、一般に、優れた活性

酸化物の製造のために種々の代表的な有機溶媒の使用を示す。実施例 1 5 - 1 9 は触媒表面積及び /又は活性度に対する水の効果を示す。実施例 2 0 と 2 1 は溶媒の不存在で製造された触媒の例 である。

	第 1 表	
	反応体	名称
1.	VOCE3 + 1.2 H3PO4 + XH2O	A
ż.	1/2 V205+ 1.2 POC & 5 + XH20	В
5.	½ ∇ ₂ 0 ₅ + 1.2 H ₅ PO ₄ + XHO + HCℓ (過剰) ^a	С
4.	NH4 VO3 + 1.2 POC 65 + XH2 0	D
5.	1/2 V 20 5 + 0.5 PC & + 0.7H 5 PO 4	E
	+ xH ₂ O + HCℓ (遇剩) ^a `	
6	1/4 V 20 5 + 1/4 V 20 5 + 1.2 H 3 PO 4	P
	+ XH ₂ O + Hcℓ (過剰) ^a	
7.	V ₂ O ₅ + H ₃ PO ₄ (-8 5 %)	G

(a) ∇₂0₅ の溶解 まで反応体 中へ起泡したガス 状 BCℓo

下記の実施例は更に本発明を説明する。

ことで実質上有機の媒体を使用して種々の試剤 により混合酸化物組成物を製造できる。下記の 第1表はパナジウム・リン混合酸化物の製造のた め多数の代表的な反応体組合せを含む。第1表で、 実施例1-14は大きな固有表面積を有する混合

下記の第星要では前記に列挙されかつ名付けられた反応体の若干の組合せのために使用された製法が列挙される。二つの名称、反応体に対する大文字と方法に対する数字は下記の第Ⅳ表中の混合酸化物を固定するため使用される。

								_	第	H	表	_					٠		
			製		法													名	称
1.		溶	液	ŧ	ſΈ	る	ح	չ		次	K	裕	旗	ŧ					(1)
	沸	腾	除	去	し	τ	固	体	塊	þ	を	殅	す	ح	ዾ			•	,
2.		쯈	液	を	作	る	ح	٤		溶	媒	Ø	_	癌	ŧ				
	沸	腾	除	去	ナ	る	ح	٤	及	v	生	成	す	る	犹			((2)
	澱	物	を	0	収	す	る	ح	٤	0									
5 .		容	媒	力	L	K	反	氐	体	を	갩	合	す	る	ح	Ł٥		((3)
4.		溶	媒	*	L	K	反	疕	体	を	湛	合	士	る	ح	Ł			(4)
	及	v	2	時	H	9	0 0	τ	て	融	解	す	る	ح	٤				(-)
											-								

分 Ⅵ 表

篠 準

				放 禁 性 能 ⁽⁹⁾			活 性	化胺	禁
実施 例 Æ	反応体 と方法		· 癣	変換	但 度 C	灰体 ⁽²⁾ 重量 5	表面模 (BBT、= ² /y)	パナジウムの 酸化状態	B - 枏 ⁽⁽⁽⁾⁾
1	A - 1	1,2	TH F(3)	9 0	430	184	19	4.5	8.8
2	. в-1	3.6	T H F (3)	90	408	98	18	4.2	8 3
5	A - 1	0	T H F (3)	90	420	96	2 2	4.1	90
4	c - 1	0	イソナタノール	90	574	105	2 5	4.2	7 5
5	B - 1	3,4	1,2-ジメトキシー エタン	9 0	452	97	12 .	4.4	42
. 4	B - 1	3.4	# (4)	90	422	89	15	-	-
7	B ~ 1	3.6	∉ (5)	90	404	93	21	4.1	-
8	0 - 1	0	メタノール	90	468	90	8	4 _ 5	.81
, 9	0 - 1	C	新 都 (6)	9 D	465	76	10	-	-
10	D - 1	. 5.6	1 , 2 -ジメトキシ -エタン	90	472	73	11	• .	27
11.	o - 1	O	dir de (8)	90	446	7 3	15	-	
1 2	F - 1	0	OloH ₂ のH ₂ ol : メタノ〜ル : 2:1	9 ₀	446	76	10	-	-

オート 表(統ま)

			•	推	媒 性	BE (9)	· 活性	化 放	旗
実施例 <i>低</i>	反応体 と方法	添加され た水 Moa	海 旗 (1)	変 換	編 度 C	収帯 ⁽²⁾ 重量 5	袋面被 (BET = ² /8)	パナジウムの 酸化状態	18 - 相 ⁽¹⁰⁾ 96
13	ъ в - 1	5.6	ブセトン	90	553	25	15	4.6	-
14	F - 1	0	酢酸エチル: エタノー ル:酢酸 10:6:1	85	510	54	-	4.1	-
			水の効果						
15	ř - 1	0	無水作像	14	510	-	5	4.6	-
1 6	R - 1	0	酢 酸+AC ₂ O ⁽⁷⁾	38	510 .p	2 3	16	5.9	-
17	· E - 2	2.0	作 缺	90	399	9 2	15	. 4.2	-
18	g - t	5.0	作数: H ₂ 0 = 16:3 ⁽⁸⁾	90	424	85	11	-	-
1 🕈	F - 1	2 0	プロピオン版: H ₂ 0 = 2 : 3	49	510	42	5	-	Ŧ
20	G - 3	-	. + v .	90	5 3 2	4 9	5	4.1	. 40
21	0 - 4	-	+ v	48	536	17	-	4.5	

- (1) リンの 8 当 9 使用された啓棋 5 0 0 ml、 客媒比は容量による
- (2) 供給されたプタンに基く。
- (3) テトラヒドロフラン
- (5) 私加された $\nabla_2 O_5$ 化基づいて、 6 6 重量 9 ピスー (2-1)
- (6) V₂O₅ モル当りパラホルムアルデヒド2モル
- (7) ₹205 モル当り無水酢酸 4 モル
- (8) V₂O₅ モル当り添加されたペンズアルデヒド1 モル
- (9) 1,000時⁻¹ (STP)の空間速度でかつ1,5容量多の空気中のn-プタンを使用して側定した触媒性能。
- 00 ▼線回折によつて測定した通り。

実施例1 - 「1 3 は、比較的高い例をは 8 当り 7 平方メートル以上の範囲内にある固有表面積と 2 5 %以上の B - 相合量とを有する、酸化パナジ

- (1) X 線回折分析による
- (2) 標準活性度温度で供給されたプタンに基づいた。

これらの実施例は触媒複合体の収率と活性度との 両方は B - 相含量に直接関連することを示す。

具体例に記載した方法で製造した触媒、1000時¹の空間速度、及び 1.5 容量 多の空気中の炭化水素のフィードを使用して、他の炭化水素フィードを酸化した。このフィードと得られた結果を第 ¶ 表に列挙する。

第VI表

実施例 No.	フィード 化合物	進度	变换 第	収率 wt %
29	п -ペンタン	368	- 90	64
30	インペンタン	380	80	56
- 51	メチルシクロー			
	ペンタン	380	91	63
3 2	2 - プテン	375	99	85
3 3	ナクジエン	3 3 5	100	86
5.4	ペンセン	417	92	5 5
35	0 - オキシレン	358	90	~ (1)

ウムと酸化リンとの混合酸化物複合体が無水マレイン酸へのn-プタンの部分酸化のための触媒として優れた活性と選択性を有することを示す。 突施例22-28

好適具体例に記載された方法で、一連の混合酸化物複合体を製造し、活性化しかつ試験した、ただし複合体のパナジウムに対するリンの原子比(ア/∇)を次の通り変えた:

0.9、1.0、1.1、1.2、1.3、1.5 及び 1.8。活性 化 触媒のための結果の比較データは第 V 表に下記 に列挙される。

実施 例	原子比。	標準活性度	表面積	(j B - 相) (2) 収率
No.	P/V	tc	m2/8r	96	wt 96
· 22	0.9	540		0	15
2.5	1.0	419	· _	48	8 3
24	1.1	392	27	76	94
25	1.2	373	16	5 8	99
26	1.3	403	20	42	87
27	1,5	475	12	. 28	65
28 .	1.8	5 1 1	-	0	39

(I) 5 1 %フタル酸+8 %無水マレイン酸

ことで高表面ホスフェートーペナド混合酸化物 複合体は、一般に、長い触媒寿命と選択性の優れ た保有を有す。活性化触媒の初期中断の後、長期 間の連続使用が示される。かくしてストリーム上 で1200時間の期間にわたつて、認め得る不活 性化の証拠又は活性化の損失をして代表的な触媒 が使用された。とれらの触媒に対して推定された 有効寿命は8月を越え、かつ多分16月又はそれ 以上である。

世化水素フィードの部分酸化のために通常使用される固定床又は流動床プロセス条件は、一般に、下配のような本発明の高表面混合酸化物を用いた使用に満足すべきものである:

範囲 条件 300-500、好ましくは 325-490 御 度 C 0.5 -10 好ましくは 1-5 圧力、気圧 触媒時間、秒 0.05~ 5 、好せしくは 0.1~2; 及びフィード混合物、空気プラス炭化水素又は爆 発性範囲外である、酸素含有ガスプラス炭化水素。 本発明の高表面混合酸化物の例外的な活性度の 故に、これらはn-ナタンの部分酸化のための触 媒として使用に特に有効である。との場合に敗化 条件は350~490℃、好きしくは375~ 475℃の範囲内の温度及び前配のような他の糸。 件を含むことが望ましい。空気 1 0 0 容量当 90.5 ないし 1.8 容量の範囲内でn~ナタンの量を含む n - プタン - 空気フィード混合物は固定床反応器

れるように眺せられるべきではない。

本発明の実施の態様を列挙すれば次の通りである。

で使用されるための好道フィード混合物である。

- (1) (a) パナジウムの平均原子価が約 4.1 ないし 4.4 の範囲内にある:
 - (b) パナソウムに対するリンの原子比が1に対し1.0 1.5 の範囲内にあり: そして
 - (c) 固有表面積が 8 当り 1 C ないし 5 C 平方メ - トルの範囲内にある。

特許請求の範囲の組成物。

- (2) 前記の混合酸化物が約25分以上のB-相含 量を有する特許請求の範囲の組成物。
- (3) 前記の混合酸化物が 5 0 ないし 1 0 0 st の範囲内のB 相含量を有する上記(1)の組成物。
- (4) 不活性支持体上に配置された特許請求の範囲の組成物。
- (5) 本質的に5面のリン、パナジウム及び酸素からなる結晶性リン・パナジウム混合酸化物組成物にかいて、このパナジウムが約+4.1 ないし4.4 の範囲内に平均原子価を有すること;前配

発動床反応器の場合には、更に最高されたフィードストリームが満足すべきでありかつ空気に対する 炭化水素の容量比の範囲は 0.5 - 1 0 ないし 100 の程度でよい。

本発明の混合酸化物は通常の方法、粉砕するとと、ふるい分けるとと等で所望の過り整粒されかつ使用される。とれらはまた細分されかの通りが出当されな体体体にスラリ化されかの所望の通りが出出され、又はペレット化され、又はたして、通当な液体体にスラリ化され、かつ所望の通り、例えば球状に成形され、又はアルミナナタニア、シリコーンは成形され、又はアルミナナタニア、シリコーンカーバイド、シリカケイ襲土、軽石の強力を対して、本質的に有機の無体中で酸化物の機能を記して、本質的に有機の無体体を変異なる。

明らかに、従来のようにかつ例示された本発明 の変更と変型が本発明の意識から逸脱することな くなされ得る。従つてこの限定はクレームに示さ

の混合酸化物が約1.2のパナジウムに対するリンの原子比、 8 当り約25平方メートルの固有 要面積及び25 5以上のB・相含量を有することを特徴とする前配の組成物。

(6) 無水マレイン酸及び無水フタル酸からたる群 から選択された酸無水物の製造のための方法に おいて、炭化水素フィードと空気との混合物叉 はこのフィードと分子状酸素含有ガスとの混合 物を、本質的にリン、パナジウム及び要素から なる結晶性リン・パナジウムに混合酸化物組成 物と接触することにより約300ないし500℃ の範囲内の温度で炭化水素フィードを部分的に 散化すること、しかも前配のパナジウムは約 + 5.9ないし 4.4 の範囲内の平均原子質を有し、 前記の酸化物は1に対し約 0.9 - 1.8 の範囲内 のパナジウムに対するリンの原子比、及び8当 り約1ないし50平方メートルの姫囲内の固有 妥 面 務 を 有 し 、 か つ 前 能 の 単 化 水 素 フ イ ー ド は Q - キシレン及び4 たいし1 D の範囲内の炭素 原子含量と少くとも4の炭素原子の直鎖を有す

₩ **周50—35088** (8)

る、飽和又はモノ又はジオレフィン系非環状又は環状炭化水素からなる群から選択されること を特徴とする前記の方法。

- (8) 前記のフィードがローナタンでありかつ前配 の鑑度は375でないし475での範囲内にあ る前配(6)の方法。
- (9) 前記の混合酸化物が 8 当り約 1 0 ないし 5 0 平方メートルの範囲内の固有装面積及び 2 5 % 以上の B - 相含量を有する前記(6)の方法。
- (0) 無水マレイン酸の製造のための方法において、 ロ・プタンフイードと空気とを、本質的にリン、 パナジウム及び酸素からなる結晶性リン・パナ ジウム混合酸化物組成物と混合して、接触する ことによつて約375ないし475℃の範囲内 の温度でロ・プタンフィードを部分酸化するこ と、しかも前配のパナジウムが約+4.1 ないし 4.4 の範囲内の平均原子値を有し、前配の混合
- 四 前配の部合酸化物が約25%以上のB-相合量を有する前配のの組成物。
- G4 煎配の混合酸化物が50 たいし100 %の範囲内にある3 相合量を有する前配級の組成物。
- 66 不活性支持体の上に配置された前記03の組成物。
- 16 本質的に 5 個のリン、パナジウム及び物をあからなる結晶性リン・パナジウムが約十 5 : 9 なの酸 組成 しった 2 の で 2 の で 3 の
- 奶 前記の強度の比が約1.6以上である前配600の

限化物は約1.2のペナジウムに対するリンの原子比、 8当り約25平方メートルの固有表面積及び約50%以上のB-相含量を有することを特徴とする前記の方法。

- 四 本質的に5個のリン、パナシウム及び酸素からなり結晶性リン・パナシウム混合酸化物組成物にかいて、前配のパナシウムが約十3.9ないし、前配のアウムが有し、前配酸化物が1に対し約0.9・1.8の範囲内のパナシウムに対するリンの原子比、8当り約7ないし、及び前配の結晶が寸法。ニュニットセルを有することを特徴とする前配の組成物。
- (12 s) パプジウムの平均原子価が約4。1 ないし 4.4 の範囲内にある:
 - b) パナジウムに対するリンの原子比が1に 対し1.0 - 1.5 の範囲内にある; 及び
 - c) 固有表面機が8当り10ないし50平方メートルの範囲内にある、前記00の組成物。

組成物。

- 脚 前記の比が約 1.6 以上であり、前記の固有表面積が 9 当り約 2 3 平方メートルであり、かつパナジウムに対するリンの原子比が約 1.2 である前記60 の組成物。
- (9) 前記のパナジウムに対するリンの原子比が 1 に対して 1.0 - 1.5 の範囲内にあり、かつ前記 のパナジウムの平均原子価が約 4.1 ないし 4.4 の範囲内にある前記録の組成物。

ナジウムに対するリンの原子比、及び8当り約7ないし50平方メートルの範囲内の固有疾面積を有し、かつ前配の炭化水業フィードは10以下の炭素原子を含む芳香族炭化水果及び4ないし10の範囲内の炭素原子含量と少くとも4の炭素原子の直鎖とを有する飽和炭化水業からなる群から全を軽微とする前配の方法。

動 前記のフィードがペンゼンである前配のの方 法。

> 代理人 後 村 皓 外 5 名

手続補正書(目光)

昭和48年 8 月28日

特許庁長官殿

1. 事件の表示

昭和分を 年特許顯常 67688 号

- 3. 補正をする者 · 事件との関係 特許出願人

住 所 氏 名 (名 称) シェプロン、リサーチ、コンパニー

-4. 代 理 人

蹇

所 〒100 東京都千代田区大手町二丁目2番1号 新 大 手 町 ビ ル デ ン グ 3 3 1 億 話 (211) 3 6 5 1 (代 表)

氏名 (6689) 浅

5. 楠正命令の日付 昭和 年 月 B

- 6. 補正により増加する発明の数 /
- 7 補正の対象 明細質の充明の名称の雑 アイカー 特許調系の範囲の傾

8. 補正の内容 別紙のとおり

5. 添付書類の目録

6. 前記以外の発明者、特許出願人 まませ 代理人

出版大

(3) 代理人

〒100 東京都千代田区大手町二丁日2番1号 16 新大手町ビルチング331 電 路 (211) 3651 (代 姿) (7204) #理士 浅 村 肇 65 同 Ħŕ Œ 老 (6926) 弁理士 寺 氏 名 Ē 所 D) (6772) 弁理士 西 寸. II:

- (1) 発明の名称を下記のとかりに訂正する。
 - 『 結晶性リン・ペナジウム混合酸化物液鉄組成物かよびそれの製造方法』
- (2) 脊許請求の範囲を別紙のとおりに訂正する。

(存許請求の範囲第2項を追加する) 2等許請求の範囲

- (1) 5 個のリン、パナジウム及び酸素を含む結晶性リン・パナジウム混合酸化物<u>酸</u>離組成物にかいて、前配のパナジウムが約 + 3.9 ないし4.6 の範囲内の平均原子個を有すること、簡配の酸化物が約0.9 1.8:1 の配置内のリン:パナジウムの原子比及び5 当り約9 ないし5 0 平方メートルの範囲内の関河設面積を有することを特徴とする前配の液碟組成物。
- (2) パナシウム酸化物まではその前躯体とリン酸化物またはその前躯体とを有機必要甲において反応させてリン・パナシウム混合酸化物を得、前配協合酸化物を有機溶験から単離しそして、符られる協合酸化物を加熱処理により活性化して必要とする皮膜離成物を得ることを特象とする、特許請求の範囲減!項に配収の放應組成物の速進方法。