ESERCIZI DI PREPARAZIONE ALLO SCRITTO PRIMA PARTE

Per ciascuna delle seguenti affermazioni, indicare se è vera o falsa:

1. Se A, B sono insiemi e $(A \times B) \subseteq (B \times A)$ allora A = B

2. Se A, B sono insiemi allora vale sempre $(A \setminus B) \cup B = A$.

3. Se $A = \{(-1, 1)\}$ allora $A \subseteq P(\mathbb{Z} \times \mathbb{N})$.

4. La funzione $f: \mathbb{N} \to \mathbb{Z} \times \mathbb{Z}$ definita da f(n) = (-n, n) è suriettiva.

5. La funzione $f: \mathbb{N} \to \mathbb{Z} \times \mathbb{Z}$ definita da f(n) = (-n, n) è iniettiva.

6. La funzione $f: \mathbb{N} \to \mathbb{Z}$ definita da f(n) = n - 5 è suriettiva.

7. La funzione $f: \mathbb{N} \to P(\mathbb{N})$ definita da

 $f(n) = \{n\}$

è iniettiva.

8. Se una funzione ha un'inversa, allora è iniettiva.

9. Se $f: \mathbb{N} \to \mathbb{Z}$ è definita da $f(n) = -n^2$ e $Y = \{0, -1, -2\}$ allora $1 \in f^{-1}(Y)$.

10. Siano $f: \mathbb{N} \to \mathbb{Z}, g: \mathbb{Z} \to \mathbb{Z}$ definite da: $f(x) = -x^2, \qquad g(x) = -x + 1.$ Se $h = g \circ f$ allora h(2) = -1.

11. La funzione $f: \mathbb{Z} \to \mathbb{Z}$ definita da $f(z) = z^2$ è invertibile.

12. La relazione binaria R definita sugli interi da

 $xRy \Leftrightarrow x+y=1$

è transitiva.

13. La relazione binaria R definita sui sottoinsiemi dei numeri naturali da

$$(X,Y) \in R \quad \Leftrightarrow \quad X \subseteq Y$$

è simmetrica.

15. $-11 \equiv_8 -3$

14. Il resto della divisione di -7 per $-12 \ earrow -5$.

16. 4 è l'opposto di 5 modulo 9.

17. 4 è l'inverso moltiplicativo di 6 modulo 25.
18. $(14)^{75} + 39 \times 30^{1724} - 37 \equiv_{13} 8$

19. Sia \sim una relazione d'equivalenza su un insieme non vuoto A, a, b, c elementi di $A \in [a]$ la classe di equivalenza dell'elemento a. Quali delle seguenti affermazioni sono vere, qualsiasi sia A e \sim ?

(a) se $a \sim b$ e $c \sim a$ allora $b \sim c$;

(b) se $b \notin [a]$ allora $b \nsim a$;

(c) se $b \in [a]$ allora a = b;

(d) so a = b allows $b \in [a]$

ESERCIZI DI PREPARAZIONE ALLO SCRITTO

SECONDA PARTE

Funzioni 1

- 1. Sia \mathbb{N}^* l'insieme di numeri naturali non nulli e $f: \mathbb{N}^* \times \mathbb{N}^* \to \mathbb{N}^*$ definita da $f(n,m) = n^m$. Determinare se la funzione f è iniettiva, suriettiva o biunivoca.
- 2. Sia \mathbb{N}^* l'insieme dei numeri naturali non nulli e $f: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ la funzione definita da f(n) = (0, n). Determinare se la funzione f è iniettiva, suriettiva o biunivoca.
- 3. Sia $f: \mathbb{Z} \to \mathbb{N}$ la funzione definita da $f(x) = x^2 + 1$.

 - (a) Determinare f(5), $f^{-1}(5)$ e $f^{-1}(\{1,5\})$. (b) Determinare se f è iniettiva o suriettiva.
 - NO

$\mathbf{2}$ Relazioni

4. Sia $A = \{0, 1, \dots, 9\}$ ed R la relazione definita su $A \times A$ da

$$aRb \implies a+b \le 0$$

Na

- (a) Stalilire se R è riflessiva.
- (b) Stalilire se R è simmetrica \mathbf{S}
- (c) Stalilire se R è transitiva.
- 5. Sia $A = \{0, 1, \dots, 9\}$ ed E la relazione d'equivalenza definita su $A \times A$ da

$$(a,b)E(a',b')$$
 \Leftrightarrow $a+b=a'+b'$

- (a) I due elementi (1,0) e (0,1) sono in relazione? (b) La coppia (1, 1) appartiene alla classe d'equivalenza della coppia (2, 2)?
- (c) Descrivi gli elementi che appartengono alla classe d'equivalenza di (0,0) e quelli che appartengono alla classe d'equivalenza di (1,2), tutti i numeri che hanno come somma 3, (d) Quante sono le classi d'equivalenza di E su $A \times A(0,3)\{1,2\},\{2,1\},\{3,0\}$

3 Induzione

- Ipotesi induttiva: P(n+1)=(n+1)(n+1+1)(n+2+1)/3=(n+1)(n+2)/3 ??? 6. Dimostrare per induzione che per ogni $n \ge 1$ vale
- $1 \cdot 2 + 2 \cdot 3 + \ldots + n(n+1) = \frac{n(n+1)(n+2)}{(n+1)(n+2) + (n+1)(n+2) + 3(n+1)(n+2)}.$ $P(n+1): 1*2 + 2*3 + \ldots + n(n+1) + (n+1)(n+2) = P(n) + (n+3)(n+2) = n(n+1)(n+2)/3 + (n+1)(n+2) = [n(n+1)(n+2) + 3(n+1)(n+2)]/3 = [(n+1)(n+2) * (n+3)]/3 = (n+1)(n+2)(n+3)/3 = P(n+1) \text{ verificata 7. Dimostrare per induzione che per ogni } n \ge 1 \text{ vale Ipotesi induttiva: } P(n+1) ==? (n+1+1)! -1 = (n+2)! -1$
 - $7^n - 1 = mod(6) 0$ $7^n = mod(6) 1$
 - 9. Dimostrare per induzione che per ogni $n \ge 1$ il numero $4^{2n+1} + 3^{n+2}$ è divisibile per 13.%6=1 $1^{2n+1} \mod(6)$

 $7^{(n+1)} - 1 = 7^{*}7^{n} - 1 = mod(6)$ 7*7^n =mod(6) 1 7%6=1 1*1^n= $7*7^n - 1 = k*6$ $7*7^n = k*6 - 1$ $(7*7^{\circ}) = k*6 - 1$

 $4*4^2(n) + 9*3^n = mod(13)0$ $4*(4^2)^n + 9*3^n = mod(13)0$ $4*16^n + 9*3^n = mod(13)0$ 16%13=3 9%13=-4 $4*3^n - 4*3^n = 0$ $P(n+1) 4*4^2(n+1) + 27*3^n = mod(13)0$ $4*16^{(n+1)} + 27*3^{n} = mod(13)0$ $4*3^{n+1} + 27*3^{n} = mod(13)0$ $4*3*3^n + 27*3^n = mod(13)0$ $12*3^n + 27*3^n = mod(13)0$ $3^n*(12+27) = mod(13)0$ $3^n*39=mod(13)0$ 39%13=0 0*3^n=0

Combinatoria

- 10. Sia A un insieme finito con 10 elementi.
 - (a) Quanti sono gli elementi del prodotto cartesiano $A \times A$?
 - (b) Quanti sono i sottoinsiemi di A?

siccome conta l'ordine (1,2,3) != (1,3,2) e

- (c) Quanti sono gli elementi (a,b,c) di $A \times A \times A$ con $a \neq b, b \neq c, c \neq a$?
- 11. Sia A un insieme finito con 15 elementi e $a, b \in A$, con a sicome non conta l'ordine, $\{a,b,c\} = \{a,c,b\}$ e
 - non sono ammesse ripetizioni (a) Quanti sono i sottoinsiemi di A di cardinalità 3? 15! / 3! * 12! = 15*14*13/6
 - (b) Quanti sono i sottoinsiemi di A di cardinalità 3 che contengono di prima, ma bisogna trovare i sottoinsimi da 2, perchè il 3 è gia fissato --> 14*13/2 >
 - (c) Quanti sono i sottoinsiemi di A di cardinalità 3 che contengono a ma non contengono b? 13*12/2
 - (d) Quanti sono i sottoinsiemi di A di cardinalità 3 che contengono sia a che b? 13
 - (e) Quanti sono i sottoinsiemi di A di cardinalità 3 che contengono a oppure b? 19*19*18
- 12. Le targhe automobilistiche di uno stato sono composte da 11 caratteri, dove un carattere è una delle 26 lettere dell'alfabeto inglese. conta l'ordine e sono ammesse ripetizioni,
 - (a) Quante macchine possono essere immatricolate?26^11
 - 32! / 7!*10! (b) Quante sono le targhe che contengono esattamente quattro a?
 - (c) Quante sono le targhe che contengono esattamente quattro a consecutive? 26^7

5 Congruenze

- 13. Considerare la relazione d'equivalenza modulo 25.
 - (a) Determinare l'opposto additivo di 3 modulo 25.

MCD(25,3) = 25 = 8*3 + 11 = 25 - 8*31=25 -8*3 mod(25)

- 3+x=0 x=22 $1=-8*3 \mod(25) = 3*(-8)$ (b) Determinare se 3 e 5 hanno un inverso moltiplicativo modulo 25 e in caso affermativo MCD(25,5)=1? NOdeterminare l'inverso.
- (c) Trovare l'inverso moltiplicativo di 4 modulo 25. 25 = 4*6 + 11 = 25 - 4*6
- 14. Determinare un numero n tale che $0 \le n \le 11$ e tale che $n \equiv_{11} 13^2 10^4 + 22^{100}$
- 15. Stabilire l'ultima cifra decimale del numero 27^{13} .

 $7^1 = 7$ $7^5=7 = 7^4x+1$ $7^2 = 9$ $7^6=9 = 7^4x+2$ 7^3=3 $7^7=3 = 7^4x+3$ $7^4=1$ $7^8=1 = 7^4x$

10%11=10=-1 $2^2 - (-1)^4 + 0 = 4 - 1 = 3$

inverso di 3

46/53