Disciplina: CIC 116394 – Organização e Arquitetura de Computadores – Turma A Prof. Marcus Vinicius Lamar

2018/1

d0 d1 / d2 d3 d4 d5 d6 d7 d8

|       | (1200       |
|-------|-------------|
| Nome: | 15H19H10110 |

Matrícula: 13/0123436

## Prova 2

- 1) (2.0) Dado o processador RISC-V Pipeline na figura em anexo e sua tabela verdade do controle.
  - a) (1.0) Complete o caminho de dados do processador acrescentando e definindo todos os sinais e blocos faltantes. Identifique e enumere ①②③④... as modificações feitas
  - b) (1.0) Complete adequadamente a tabela verdade do bloco de controle do processador acrescentando e definindo os sinais faltantes. Considere que o beq é **não** previsto.
- 2) (6.0) Mantendo a compatibilidade binária com a ISA RISC-V RV32I implemente as instruções abaixo nos processadores Uniciclo e Multiciclo vistos em aula, indicando nas folhas em anexo as modificações necessárias nos caminhos de dados e nos blocos de controle.
  - a) (2.0) addi rd, rs1, IMM
  - b) (2.0) auipc rd, IMM
  - c) (2.0) andi rd, rs1, IMM
- 3) (3.0) Considerando os seguintes tempos dos elementos dos caminhos de dados em anexo (sem as modificações da questão 2, mas com as modificações da questão 1):

Qualquer operação com a ULA: 200ps

- Somadores de 32 bits: 100ps
- Leitura/escrita nas memórias de dados e instruções: 500ps
- Todos os registradores: tempo de setup 50ps e tempo clock-output 50ps
- Tempo de propagação de todos os multiplexadores/decodificadores 40ps
- Qualquer porta lógica (qualquer número de entradas): 10ps
- Circuitos combinacionais são sempre realizados por soma de produtos (PLA).
- Fios sem atraso

Para a ISA reduzida desenvolvida em aula calcule as máximas frequências de clock:

- a) (1.0) Processador Uniciclo
- b) (1.0) Processador Multiciclo
- c) (1.0) Processador Pipeline (sem qualquer hazard e com o banco de registradores escrito na borda de descida do clock).



ALUOP ENTRADA DO CONTROL C/TODA instruçãos
00-7+ MIDESTIFICAR MOVAS
01-7- INSTRUÇÃOS
10-> FUNET

11 -1 Ard Unitable Geragona de Interiato atualizada pripartifican poupos irsinvões (avife)

9) FATRONDA CONTROL 0,5

b) MUX ALUSREA 05 c) NO ALUCTRL 25 JOU MONTER O ALUCTRL 111 AND

| Instrução | ALUSrc/3 | Mem2<br>Reg | Reg<br>Write | Mem<br>Read | Mem<br>Write | Branch | ALUOp | ALUSICA |        | Prairie. |         |
|-----------|----------|-------------|--------------|-------------|--------------|--------|-------|---------|--------|----------|---------|
| Tipo-R    | 0        | 0           | 1            | 0           | 0            | 0      | 10    | 0       |        |          | - 17 7  |
| lw        | 1        | 1           | 1            | 1           | 0            | 0      | 00    | 0       |        | Testina. | 0.711-7 |
| sw        | 1        | Х           | 0            | 0           | 1            | 0      | 00    | 0       |        |          |         |
| beq       | 0        | Х           | 0            | 0           | 0            | 1      | 01    | 0       |        |          |         |
| addi      | 1        | 0           | 1            | 0           | 0            | 0      | 00    | 0       |        |          | 6.2     |
| AUIPC     | 1        | 0           | 1            | 0           | 0            | 0      | 00    | 7       |        |          |         |
| ANgi      | 1        | 0           | 1            | 0           | 0            | 0      | 11    | 0       | 200000 |          | 7 44 5  |
|           |          |             |              | na.         |              |        |       | 24 - 24 |        |          |         |







MUX ALUSAL 0,2

2 CTALAIN + INSTAUÇÃO + AWAP 0,2

3 MUX MEMFLOSIV 2, 2 G) Siral menerog 0,2 B) Been read I white 2,2

1 cada Vitoral

| Estágio | IF       |       |     |        |        | ID       |        |         | EX       |  |        |   |  |
|---------|----------|-------|-----|--------|--------|----------|--------|---------|----------|--|--------|---|--|
| Lotagio | IF.Flush | PCSrc |     |        |        | ID.Flush | EX.Flu | sh ALUS | rc ALUOp |  | 121324 |   |  |
| Tipo R  | 0        | 00    |     |        |        | P        | 0      | 0       | 10       |  |        |   |  |
| lw      | Ð        | 00    |     |        |        | 0        | 0      | 1       | 00       |  |        |   |  |
| sw      | 0        | 00    |     |        |        | 0        | 0      | 1       | 00       |  |        |   |  |
| beq ≤   | M        | 10    |     |        |        | ۵        | ٥      | 4       | XX       |  |        |   |  |
| pcg #   | 17)      | 00    |     |        | . 34   | 0        | 0      | X       | XX       |  | Tage . |   |  |
|         |          |       |     |        | . 17   |          |        |         |          |  |        |   |  |
|         | (5 h     | 229 1 | Kin | Previs | かり     |          |        |         |          |  |        | 7 |  |
|         |          | -     |     |        | alan a |          |        |         |          |  |        |   |  |

| Estágio |           |         | MEM      |          | WB      |       |  |   |  |  |
|---------|-----------|---------|----------|----------|---------|-------|--|---|--|--|
| Latagio | MEM.Flush | MemRead | MemWrite | RegWrite | Mem2Reg |       |  |   |  |  |
| Tipo R  | 0         | 0       | 0        | 1        | 0       |       |  |   |  |  |
| lw      | O         | 1       | 0        | 1        | 1       |       |  | 7 |  |  |
| sw      | 3         | 0       | 1        | 0        | X       | -1918 |  |   |  |  |
| beq 🗀   | D         | 0       | ۸        | 0        | X       |       |  |   |  |  |
| 168 ×   | 0         | 0       | 0        | 0        | X       |       |  |   |  |  |
|         |           | *       |          | 9        |         |       |  |   |  |  |
|         | W         |         |          |          |         |       |  |   |  |  |