Lösungen zu Übungsblatt 1

Abgabe: 15.10.2021

Codierungstheorie

Aufgabe 1. Berechnen Sie die Fouriertransformierte $\widehat{x}(\omega)$ des Signals $x: \mathbb{R} \longrightarrow \mathbb{R}$, gegeben durch

$$x(t) = \begin{cases} 2+t & \text{für } -2 \le t < -1 \\ -t & \text{für } -1 \le t < 0 \\ t & \text{für } 0 \le t < 1 \\ 2-t & \text{für } 1 \le t < 2 \\ 0 & \text{sonst} \end{cases}$$

also des Signals

Lösung:

Das Signal x ist gerade, daher ist nur der cos
–Anteil zu berechnen,

$$\widehat{x}(\omega) = \frac{2}{\sqrt{2\pi}} \cdot \int_{0}^{\infty} x(t) \cdot \cos(\omega t) dt.$$

Dazu ist zu beachten, dass

$$\int t \cdot \cos(\omega \cdot t) dt = \frac{\cos(\omega \cdot t)}{\omega^2} + \frac{t \cdot \sin(\omega \cdot t)}{\omega}$$
$$\int \cos(\omega \cdot t) dt = \frac{\sin(\omega \cdot t)}{\omega}$$

Genauer gilt

$$\begin{split} \widehat{x}(\omega) &= \frac{2}{\sqrt{2\pi}} \cdot \int\limits_{0}^{\infty} x(t) \cdot \cos(\omega t) \, dt \\ &= \frac{2}{\sqrt{2\pi}} \cdot \int\limits_{0}^{1} t \cdot \cos(\omega t) \, dt + \frac{2}{\sqrt{2\pi}} \cdot \int\limits_{1}^{2} (2-t) \cdot \cos(\omega t) \, dt \\ &= \frac{2}{\sqrt{2\pi}} \cdot \left[\frac{\cos(\omega \cdot t)}{\omega^2} + \frac{t \cdot \sin(\omega \cdot t)}{\omega} \right]_{0}^{1} + \frac{4}{\sqrt{2\pi}} \cdot \left[\frac{\sin(\omega \cdot t)}{\omega} \right]_{1}^{2} \\ &- \frac{2}{\sqrt{2\pi}} \cdot \left[\frac{\cos(\omega \cdot t)}{\omega^2} + \frac{t \cdot \sin(\omega \cdot t)}{\omega} \right]_{1}^{2} \\ &= \frac{2}{\sqrt{2\pi}} \cdot \left(\frac{\cos(\omega)}{\omega^2} + \frac{\sin(\omega)}{\omega} - \frac{1}{\omega^2} \right) + \frac{4}{\sqrt{2\pi}} \cdot \left(\frac{\sin(2\omega)}{\omega} - \frac{\sin(\omega)}{\omega} \right) \\ &- \frac{2}{\sqrt{2\pi}} \cdot \left(\frac{\cos(2\omega)}{\omega^2} + \frac{2\sin(2\omega)}{\omega} - \frac{\cos(\omega)}{\omega^2} - \frac{\sin(\omega)}{\omega} \right) \\ &= \frac{2}{\sqrt{2\pi}} \cdot \left(-\frac{\cos(2\omega)}{\omega^2} + \frac{2\cos(\omega)}{\omega^2} - \frac{1}{\omega^2} \right) \end{split}$$

Die Fouriertransformierte von x existiert also (für alle ω) und ist gegeben durch

$$\widehat{x}(\omega) = \frac{2}{\sqrt{2\pi}} \cdot \left(-\frac{\cos(2\omega)}{\omega^2} + \frac{2\cos(\omega)}{\omega^2} - \frac{1}{\omega^2} \right) = \frac{4}{\omega^2 \cdot \sqrt{2\pi}} \cdot \left(\cos(\omega) - \cos^2(\omega) \right)$$

also graphisch

Aufgabe 2. Wir betrachten folgende Modulation $x : \mathbb{R} \longrightarrow \mathbb{R}$ der Schwingung mit Kreisfrequenz ω_0 durch eine Rechtecksfunktion auf [-T, T] für ein T > 0, gegeben durch

$$x(t) = \begin{cases} 2 \cdot \cos(\omega_0 \cdot t) + \frac{1}{2} \cdot \sin(\omega_0 \cdot t) & \text{für } t \in [-T, T] \\ 0 & \text{sonst} \end{cases}$$

Berechnen Sie die Fouriertransformierte $\widehat{x}(\omega)$ von f(t).

Lösung:

Wie im Hinweis vorgeschlagen, zerlegen wir f in ein gerades und ein ungerades Signal. Das ist hier recht offensichtlich, denn

$$g(t) = \frac{1}{2} \cdot \sin(\omega_0 t)$$

ist der ungerade und

$$h(t) = 2 \cdot \cos(\omega_0 t)$$

ist der ungerade Anteil von x(t).

Außerdem benutzen wir die folgenden trigonometrischen Produktformeln:

$$\sin(x) \cdot \sin(y) = \frac{1}{2} \cdot (\cos(x-y) - \cos(x+y))$$
$$\cos(x) \cdot \cos(y) = \frac{1}{2} \cdot (\cos(x-y) + \cos(x+y))$$

Da g(t)) ungerade ist, ist nur der sin-Anteil der Fouriertransformation zu bestimmen. Damit gilt (mit den Produktformeln)

$$\widehat{g}(\omega) = -\frac{2i}{\sqrt{2\pi}} \cdot \int_{0}^{\infty} g(t) \sin(\omega t) dt$$

$$= -\frac{2i}{\sqrt{2\pi}} \cdot \int_{0}^{T} \frac{1}{2} \cdot \sin(\omega_{0}t) \cdot \sin(\omega t) dt$$

$$= -\frac{i}{\sqrt{2\pi}} \int_{0}^{T} \sin(\omega_{0}t) \cdot \sin(\omega t) dt$$

$$= -\frac{i}{2 \cdot \sqrt{2\pi}} \cdot \int_{0}^{T} (\cos((\omega_{0} - \omega) \cdot t) - \cos((\omega_{0} + \omega) \cdot t)) dt$$

$$= -\frac{i}{2 \cdot \sqrt{2\pi}} \cdot \left[\frac{\sin((\omega_{0} - \omega) \cdot t)}{\omega_{0} - \omega} - \frac{\sin((\omega_{0} + \omega) \cdot t)}{\omega_{0} + \omega} \right]_{0}^{T}$$

$$= -\frac{i}{2 \cdot \sqrt{2\pi}} \cdot \left(\frac{\sin((\omega_{0} - \omega) \cdot T)}{\omega_{0} - \omega} - \frac{\sin((\omega_{0} + \omega) \cdot T)}{\omega_{0} + \omega} \right)$$

$$= -\frac{i}{2 \cdot \sqrt{2\pi}} \cdot (\sin((\omega_{0} - \omega) \cdot T) - \sin((\omega_{0} + \omega) \cdot T))$$

Da h(t) gerade ist, ist nur der cos-Anteil der Fouriertransformation zu bestimmen. Damit gilt

$$\widehat{h}(\omega) = \frac{2}{\sqrt{2\pi}} \cdot \int_{0}^{\infty} h(t) \cos(\omega t) dt
= \frac{2}{\sqrt{2\pi}} \cdot \int_{0}^{T} 2 \cdot \cos(\omega_{0}t) \cdot \cos(\omega t) dt
= \frac{4}{\sqrt{2 \cdot \pi}} \cdot \int_{0}^{T} \cos(\omega_{0}t) \cdot \cos(\omega t) dt
= \frac{4}{2 \cdot \sqrt{2 \cdot \pi}} \cdot \int_{0}^{T} (\cos((\omega_{0} - \omega) \cdot t) + \cos((\omega_{0} + \omega) \cdot t)) dt
= \frac{4}{2 \cdot \sqrt{2 \cdot \pi}} \cdot \left[\frac{\sin((\omega_{0} - \omega) \cdot t)}{\omega_{0} - \omega} + \frac{\sin((\omega_{0} + \omega) \cdot t)}{\omega_{0} + \omega} \right]_{0}^{T}
= \frac{4}{2 \cdot \sqrt{2 \cdot \pi}} \cdot \left(\frac{\sin((\omega_{0} - \omega) \cdot T)}{\omega_{0} - \omega} + \frac{\sin((\omega_{0} + \omega) \cdot T)}{\omega_{0} + \omega} \right)
= \frac{4 \cdot T}{2 \cdot \sqrt{2 \cdot \pi}} \cdot (\sin((\omega_{0} - \omega) \cdot T) + \sin((\omega_{0} + \omega) \cdot T))$$

Damit erhalten wir aus der Linearität der Fouriertranformation

$$\widehat{f}(\omega) = \widehat{g}(\omega) + \widehat{h}(\omega)
= -\frac{\mathbf{i} \cdot T}{2 \cdot \sqrt{2\pi}} \cdot (\operatorname{si}((\omega_0 - \omega) \cdot T) - \operatorname{si}((\omega_0 + \omega) \cdot T))
+ \frac{4 \cdot T}{2 \cdot \sqrt{2 \cdot \pi}} \cdot (\operatorname{si}((\omega_0 - \omega) \cdot T) + \operatorname{si}((\omega_0 + \omega) \cdot T))
= \frac{4 \cdot T - \mathbf{i} \cdot T}{2 \cdot \sqrt{2\pi}} \cdot \operatorname{si}((\omega_0 - \omega) \cdot T) + \frac{4 \cdot T + \mathbf{i} \cdot T}{2 \cdot \sqrt{2\pi}} \cdot \operatorname{si}((\omega_0 + \omega) \cdot T)$$

Aufgabe 3. Berechnen Sie die Fourier-Reihe der 2π -periodischen Funktion $f: \mathbb{R} \longrightarrow \mathbb{R}$ die auf dem Intervall $[-\pi, \pi]$ gegeben ist durch

$$f(t) = \pi^2 - t^2$$

also der 2π -periodischen Funktion, deren Graph die folgende Gestalt hat

Lösung:

Beachten Sie, dass f durch die Angaben bereits vollständig auf ganz \mathbb{R} bestimmt ist. Da f nach Voraussetzung 2π -periodisch ist, ist f durch die Angabe auf einem Intervall der Länge 2π bereits auf ganz \mathbb{R} festgelegt.

Ist etwa $t \in [\pi, 3\pi[$, so ist aufgrund der 2π -Periodizität

$$f(t) = f(t - 2\pi) = \pi^2 - (t - \pi)^2$$

Wir benutzen diesmal die Integralformeln

$$\int t^2 \cdot \cos(n \cdot t) dt = \frac{t^2 \cdot \sin(n \cdot t)}{n} + \frac{2t \cdot \cos(n \cdot t)}{n^2} - \frac{2\sin(n \cdot t)}{n^3}$$
$$\int \cos(n \cdot t) dt = \frac{\sin(n \cdot t)}{n}$$

Da f achsensymmetrisch ist, ist $b_n = 0$ für alle n.

Da wir das Intervall der Länge 2π , mit dessen Hilfe wir die Fourierkoeffizienten berechnen, beliebig wählen können, nehmen wir hierfür in diesem Fall das Intervall $[-\pi, \pi]$. Damit gilt

$$a_{0} = \frac{1}{\pi} \cdot \int_{-\pi}^{\pi} f(t) dt$$

$$= d\frac{1}{\pi} \cdot \int_{-\pi}^{\pi} \pi^{2} - t^{2} dt$$

$$= \frac{1}{\pi^{2}} \cdot \left[\pi^{2} \cdot t - \frac{t^{3}}{3}\right]_{-\pi}^{\pi}$$

$$= 2\pi^{2} - \frac{2}{3} \cdot \pi^{2}$$

$$= \frac{4}{3} \cdot \pi^{2}$$

und für $n \ge 1$:

$$a_{n} = \frac{1}{\pi} \cdot \int_{-\pi}^{\pi} f(t) \cos(nt) dt$$

$$= \frac{1}{\pi} \cdot \int_{-\pi}^{\pi} (\pi^{2} - t^{2}) \cdot \cos(nt) dt$$

$$= \frac{1}{\pi} \cdot \int_{-\pi}^{\pi} \pi^{2} \cdot \cos(nt) dt - \frac{1}{\pi} \cdot \int_{-\pi}^{\pi} t^{2} \cdot \cos(nt) dt$$

$$= \frac{1}{\pi} \cdot \left[\pi^{2} \cdot \frac{\sin(nt)}{n} \right]_{-\pi}^{\pi} - \frac{1}{\pi} \cdot \left[\frac{t^{2} \cdot \sin(n \cdot t)}{n} + \frac{2t \cdot \cos(n \cdot t)}{n^{2}} - \frac{2\sin(n \cdot t)}{n^{3}} \right]_{-\pi}^{\pi}$$

$$= \frac{1}{\pi} \cdot (-1)^{n+1} \cdot \frac{4\pi}{n^{2}}$$

$$= (-1)^{n+1} \cdot \frac{4}{n^{2}}$$

Beachten Sie dabei, dass für alle $n \ge 1$ gilt:

$$\sin(n \cdot \pi) = \sin(n \cdot (-\pi)) = 0$$

sodass alle Sinusterme wegfallen.

Damit erhalten wir

$$\mathscr{F}(f)(t) = \frac{2}{3} \cdot \pi^2 + 4 \cdot \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2} \cos(n \cdot t)$$

Die Funktion f hat die folgende Gestalt

Die Approximation von f durch das dritte Fourierpolynom $\mathscr{F}_3(f)(t)$ sieht aus wie folgt

und die Approximation durch das siebte Fourierpolynom $\mathscr{F}_7(f)(t)$ ist gegeben durch

also auch hier schon eine recht gute Approximation, speziell im differenzierbaren Bereich. Lediglich an den Ecken gibt es noch sichtbare Abweichungen.

Aufgabe 4. Berechnen Sie die Fourier–Reihe der Funktion $f: \mathbb{R} \longrightarrow \mathbb{R} \,$ der Periode 4, die auf dem Intervall [0, 4] gegeben ist durch

$$f(t) = \begin{cases} t & \text{für } 0 \le t \le 1\\ 1 & \text{für } 1 < t \le 3\\ 4 - t & \text{für } 3 < t \le 4 \end{cases}$$

also der Funktion der Periode 4, die gegeben ist durch

Lösung:

Es gilt

$$a_0 = \frac{2}{4} \int_0^4 f(t) dt$$

$$= \frac{1}{2} \cdot \int_0^1 t dt + \frac{1}{2} \cdot \int_1^3 1 dt + \frac{1}{2} \cdot \int_3^4 4 - t dt$$

$$= \frac{3}{2}$$

und für $n \ge 1$:

$$a_{n} = \frac{2}{4} \cdot \int_{0}^{4} f(t) \cdot \cos(\frac{2\pi n}{3} \cdot t) dt$$

$$= \frac{1}{2} \cdot \int_{0}^{1} t \cdot \cos(\frac{\pi \cdot n}{2} \cdot t) dt + \frac{1}{2} \cdot \int_{1}^{3} 1 \cdot \cos(\frac{\pi \cdot n}{2} \cdot t) dt + \frac{1}{2} \cdot \int_{3}^{4} (4 - t) \cdot \cos(\frac{\pi \cdot n}{2} \cdot t) dt$$

$$= \frac{1}{2} \cdot \left[\frac{4}{n^{2} \cdot \pi^{2}} \cdot \cos(\frac{\pi \cdot n}{2} \cdot t) + \frac{2t}{\pi \cdot n} \cdot \sin(\frac{\pi \cdot n}{2} \cdot t) \right]_{0}^{1}$$

$$+ \frac{1}{2} \cdot \left[\frac{2}{n \cdot \pi} \cdot \sin(\frac{\pi \cdot n}{2} \cdot t) - \frac{4}{n^{2} \cdot \pi^{2}} \cdot \cos(\frac{\pi \cdot n}{2} \cdot t) - \frac{2t}{\pi \cdot n} \cdot \sin(\frac{\pi \cdot n}{2} \cdot t) \right]_{3}^{4}$$

$$= \frac{2}{n^{2} \cdot \pi^{2}} \cdot \left(\cos(\frac{\pi \cdot n}{2}) + \cos(\frac{3 \cdot \pi \cdot n}{2}) - 2 \right)$$

$$= \begin{cases} 0 & \text{falls } n \text{ durch } 4 \text{ teilbar} \\ -\frac{4}{n^{2} \cdot \pi^{2}} & \text{falls } n \text{ ungerade} \\ -\frac{8}{n^{2} \cdot \pi^{2}} & \text{falls } n - 2 \text{ durch } 4 \text{ teilbar} \end{cases}$$

Da f achsensymmetrisch ist, gilt

$$b_n = 0$$
 für alle $n \ge 1$

Damit erhalten wir

$$\mathscr{F}(f)(t) = \frac{3}{4} - \sum_{n=0}^{\infty} \frac{4}{(2n+1)^2 \cdot \pi^2} \cdot \cos\left(\frac{\pi \cdot (2n+1)}{2} \cdot t\right) - \sum_{n=0}^{\infty} \frac{8}{(4n+2)^2 \cdot \pi^2} \cdot \cos\left(\frac{\pi \cdot (4n+2)}{2} \cdot t\right)$$

Die Funktion f hat die folgende Gestalt

die Apprixomation durch das zweite Fourierpolynom $\mathscr{F}_2(f)(t)$ sieht aus wie folgt

liefert also bereits eine erkennbare Näherung von f, und die Approximation durch das siebte Fourierpolynom $\mathscr{F}_7(f)(t)$ ist gegeben durch

und das ist ganz offensichtlich schon eine recht gute Approximation.