Отчёт по лабораторной работе №8

Основы информационной безопасности

Паращенко А.Д.

14 октября 2024

Российский университет дружбы народов, Москва, Россия

Цель работы

Цель работы

Освоить на практике применение режима однократного гаммирования на примере кодирования различных исходных текстов одним ключом.

Выполнение лабораторной работы

Функция для генерации ключа.

```
def generate_key(text):
    key = ''
    for i in range(len(text)):
        key += random.choice(string.ascii_letters + string.digits)
    return key
```

Рис. 1: Генерация ключа

Функция для (де)шифрования.

```
def crypt(text, key):
    new_text = ''
    for i in range(len(text)):
        new_text += chr(ord(text[i]) ^ ord(key[i % len(key)]))
    return new_text
```

Рис. 2: Шифрование

Код для вывода результатов и результаты.

```
tt = 'C Homaw Годом, друзья!'
key = generate_key(t1)
encrypt1 = crypt(t1, key)
decrypt1 = crypt(encrypt1, key)

t2 = 'Я meóna wiңop, безопа!'
encrypt2 = crypt(t2, key)
decrypt2 = crypt(encrypt2, key)
print('Открытый текст:', t1, "\пКлюч:", key, "\пШифротекст:", епсгурt1, "\пИсходный текст
print('\n')
print('открытый текст:', t2, "\пКлюч:", key, "\пШифротекст:", епсгурt2, "\пИсходный текст
print('\n')
```

Рис. 3: Подбор ключа

Открытый текст: С Новым Годом, друзья! Ключ: fR6qkp7o1M1yBg3AKjjj9A Шифротекст: чгЫяљлЋОТөЅчѾК‼ѵЋЩЍЦѶ` Исходный текст: С Новым Годом, друзья!

Открытый текст: Я люблю инфор, безопа! Ключ: fR6qkp7o1M1yBg3AKjjj9A Шифротекст: щrйпнымуОлФvчъК !! ФФйезь`

Код для расшифровки фразы с помощью второй фразы и результаты.

```
recrypt = crypt(encrypt2, encrypt1)
print('Расшифровка второго текста при помощи первого: ', crypt(t1, recrypt))
print('Расшифровка первого текста при помощи второго: ', crypt(t2, recrypt))
```

Рис. 5: Код расшифровки

```
Расшифровка второго текста при помощи первого: Я люблю инфор, безопа!
Расшифровка первого текста при помощи второго: С Новым Годом, друзья!
```

Рис. 6: Результаты расшифровки

Листинг программы.

```
import random
import string
def generate key(text):
    key - 11
    for i in range(len(text)):
        key += random.choice(string.ascii_letters + string.digits)
    return key
def crypt(text, key):
    new text = "1
    for i in range(len(text)):
        new text += chr(ord(text[i]) ^ ord(key[i % len(key)]))
    return new_text
t1 = 'C Новым Годом, друзья!'
key = generate key(t1)
encrypt1 = crypt(t1, key)
decrypt1 = crypt(encrypt1, key)
t2 = 'Я люблю инфор, безопа!'
encrypt2 = crypt(t2, key)
decrypt2 = crypt(encrypt2, key)
print('Открытый текст:', t1, "\nКлюч:", key, "\nШифротекст:", encrypt1, "\nИсходный текст:", decrypt1)
print("Открытый текст:", t2, "\nКлюч:", key, "\nШифротекст:", encrypt2, "\nИсходный текст:", decrypt2)
print('\n')
recrypt = crypt(encrypt2, encrypt1)
print('Расшифровка второго текста при помощи первого: '. crypt(t1, recrypt))
print('Расшифоряка первого текста при помощи второго: '. crypt(t2, recrypt))
```

Рис. 7: Листинг программы

Вывод

В результате выполнения работы мы научились на практике применять режим однократного гаммирования на примере кодирования различных исходных текстов одним ключом.

Список литературы

Список литературы

1) https://esystem.rudn.ru/pluginfile.php/2357159/mod_resource/content/2/008-lab_crypto-key.pdf