Problem Set 10

Due: 5/29

Part One: Hand-Written Exercise

1. Sketch the tree corresponding to the partition of the predictor space illustrated in the following figure. The numbers inside the boxes indicate the mean of Y within each region. For each node, the predictors X_j and the cutpoint s split the predictor space into the regions $\{X|X_j \leq s\}$ and $\{X|X_j > s\}$, j = 1, 2.

2. Consider a 3-class classification problem for a sample of 900 observations, with 300 in each class. A node j with a, b, and c observations belonging to, respectively, calss I, II and III is denoted as $R_j(a, b, c)$. Suppose a tree T_1 contains three terminal nodes $R_1(200, 50, 50)$, $R_2(50, 200, 50)$ and $R_3(50, 50, 200)$. While another tree T_2 yields three alternative terminal nodes $R_1(100, 0, 0)$, $R_2(50, 250, 100)$ and $R_3(150, 50, 200)$.

(a) If these two trees were our only options, which one would be chosen if we utilize classification error rate to guide the tree growing process?

- (b) Continue with part (a), which tree would be chosen if we utilize Gini index to guide the tree growing process?
- (c) Suppose we have a testing set with five observations as below. What's the probability that a random observation from this testing set is *correctly* classified with the tree you choose in part (a)?

	x_1	x_2	class
obs.1	1	20	III
obs.2	0	5	II
obs.3	1	4	I
obs.4	1	59	I
obs.5	0	0	III

- 3. A data set with five observations is shown below. Let y be the variable of interest and x_1 and x_2 be predictors (Note that y of obs.5 is unknown). A student wants to use boosting on this data set with the following settings:
 - The number of trees, B, is equal to 2.
 - The shrinkage parameter, λ , is equal to 0.6.
 - The number of splits in each tree, d, is equal to 1.
 - The boosting makes a prediction via averaging at each nodes.

Suppose we've known that the splits are $x_1 \leq 4.8$ and $x_2 = 1$, respectively, for the two trees. Please calculate the prediction of the boosting for obs.3. (Hint: Your answer should include a.)

	x_1	x_2	y
obs.1	2	10	6
obs.2	3	1	9
obs.3	4	1	12
obs.4	10	1	4
obs.5	10	10	a

Part Two: Computer Exercise

- 1. Load the Boston data set in R and answer the following questions with set.seed(1). Let medv be our variable of interest and all the other 13 variables in the data set be our predictors.
 - (a) Please fit a regression tree that has the optimal number of terminal nodes, chosen by 100-fold CV, and plot the tree.
 - (b) Suppose we are trying to fit this data set using a boosting model. For $\lambda = 0.1$, and d (interaction depth) = 1, 2, 3, 4, please choose the best number of trees for each model, using 10-fold CV, ranging from 1 to 1000.
 - (c) Among the four models from (b) ($\lambda = 0.1$, d = 1, ..., 4 with corresponding optimal number of trees), which one yields the smallest 10-fold CV error?
- 2. Please load the heart data set from the package kmed.

 Let class be our variable of interest and set it to 0 if it's 0 and 1 otherwise (that is, class only has 2 values, 0 and 1), and all the other 13 variables in the data set be our predictors. Some data processing has been done in your answer sheet.
 - (a) Grow a classification tree with the gini index as the splitting criterion and then determine the optimal node for this tree using 10-fold CV with set.seed(1).
 - (b) Plot the OOB errors of random forest with m being 2, 4, 8 and 13, respectively, based on the heart data with set.seed(1).