Matemática Numérica Avançada

Pedro H A Konzen

15 de fevereiro de 2022

Licença

Este trabalho está licenciado sob a Licença Atribuição-Compartilha Igual 4.0 Internacional Creative Commons. Para visualizar uma cópia desta licença, visite http://creativecommons.org/licenses/by-sa/4.0/deed.pt_BR ou mande uma carta para Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Prefácio

Nestas notas de aula são abordados métodos numéricos aplicados a problemas de grande porte. Como ferramenta computacional de apoio, exemplos de aplicação de códigos Python, são apresentados, mais especificamente, códigos com suporte das bibliotecas NumPy e SciPy.

Agradeço a todos e todas que de modo assíduo ou esporádico contribuem com correções, sugestões e críticas. :)

Pedro H A Konzen

Sumário

Ü	apa			1	
Licença				ii	
Prefácio				iii	
Sumário					
1	Sist	emas l	Lineares	1	
	1.1	Matriz	zes Esparsas	1	
		1.1.1	Sistemas Tridiagonais	3	
		1.1.2	Matrizes Banda		
		1.1.3	Esquemas de Armazenamento	11	
	1.2	Métod	los Iterativos	16	
		1.2.1	Método de Subespaço de Krylov	16	
		1.2.2	GMRES		
R	Referências Bibliográficas				

Capítulo 1

Sistemas Lineares

[Vídeo] | [Áudio] | [Contatar]

Neste capítulo, apresentam-se métodos numéricos para a resolução de sistemas lineares de grande porte. Salvo explicitado ao contrário, assume-se que os sistemas são quadrados e têm solução única.

1.1 Matrizes Esparsas

[Vídeo] | [Áudio] | [Contatar]

Uma matriz é dita ser **esparsa** quando ela tem apenas poucos elementos não nulos. A ideia é que os elementos não nulos não precisam ser guardados na memória do computador, gerando um grande benefício na redução da demanda de armazenamento de dados. O desafio está no desenvolvimento de estruturas de dados para a alocação eficiente de tais matrizes, i.e. que sejam suficientemente adequadas para os métodos numéricos conhecidos.

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

Figura 1.1: Esquerda: exemplo de uma matriz esparsa estruturada. Direita: exemplo de uma matriz esparsa não-estruturada.

Matrizes esparsas podem ser classificadas como **estruturadas** ou **não-estruturadas**. Uma matriz estruturada é aquela em que as entradas não-nulas formam um padrão regular. Por exemplo, estão dispostas em poucas diagonais ou formam blocos (submatrizes densas) ao longo de sua diagonal principal. No caso de não haver um padrão regular das entradas não-nulas, a matriz esparsa é dita ser não-estruturada. Consulte a Figura 1.1 para exemplos.

A **esparsidade** de uma matriz é a porcentagem de elementos nulos que ela tem, i.e. para uma matriz quadrada $n \times n$ tem-se que a esparsidade é

$$\frac{n_{\text{nulos}}}{n^2} \times 100\% \tag{1.1}$$

Por exemplo, a matriz identidade de tamanho n = 100 tem esparsidade

$$\frac{100^2 - 100}{100^2} \times 100\% = 99\% \tag{1.2}$$

Notas de Aula - Pedro Konzen $^*/^*$ Licença CC-BY-SA 4.0

1.1.1 Sistemas Tridiagonais

Um sistema tridiagonal tem a seguinte forma matricial

$$\begin{bmatrix} b_1 & c_1 & & & 0 \\ a_2 & b_2 & c_2 & & \\ & a_3 & b_3 & \ddots & \\ & & \ddots & \ddots & c_{n-1} \\ 0 & & & a_n & b_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} d_1 \\ d_2 \\ d_3 \\ \vdots \\ d_n \end{bmatrix}$$
(1.3)

com, $a_1 = 0$ e $c_n = 0$. Ou seja, é um sistema cuja a matriz dos coeficientes é tridiagonal.

Uma matriz tridiagonal é uma matriz esparsa estruturada. Mais especificamente, é chamada de matriz banda, em que os elementos não nulos estão apenas em algumas de suas diagonais. Para armazenarmos tal matriz precisamos alocar apenas os seguintes três vetores

$$a = (0, a_2, \dots, a_n) \tag{1.4}$$

$$b = (b_1, b_2, \dots, b_n) \tag{1.5}$$

$$c = (c_1, c_2, \dots, c_{n-1}, 0) \tag{1.6}$$

Ou seja, precisamos armazenar 3n pontos flutuantes em vez de n^2 , como seria o caso se a matriz dos coeficientes fosse densa.

Algoritmo de Thomas

O Algoritmo de Thomas¹ é uma forma otimizada do Método de Eliminação Gaussiana aplicada à sistemas tridiagonais. Enquanto este requer $O(n^3)$ operações, esse demanda apenas O(n).

Eliminando os termos abaixo da diagonal em (1.3), obtemos o sistema equivalente

$$\begin{bmatrix} \tilde{b}_1 & c_1 & & & 0 \\ & \tilde{b}_2 & c_2 & & \\ & & \tilde{b}_3 & \ddots & \\ & & \ddots & \ddots & c_{n-1} \\ 0 & & & \tilde{b}_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} \tilde{d}_1 \\ \tilde{d}_2 \\ \tilde{d}_3 \\ \vdots \\ \tilde{d}_n \end{bmatrix}$$
(1.7)

 $^{^1 {\}rm Llewellyn}$ Hilleth Thomas, 1903 - 1992, físico e matemático aplicado britânico. Fonte: Wikipedia.

Este é obtido pela seguinte iteração

$$w := \frac{a_i}{b_{i-1}} \tag{1.8}$$

$$b_i := b_i - wc_{i-1} \tag{1.9}$$

$$d_i := d_i - w d_{i-1} \tag{1.10}$$

onde, o $\tilde{}$ foi esquecido de propósito, indicando a reutilização dos vetores b e d. A solução do sistema é, então, obtida de baixo para cima, i.e.

$$x_n = \frac{d_n}{b_n} \tag{1.11}$$

$$x_i = \frac{d_i - c_i x_{i+1}}{b_i},\tag{1.12}$$

com $i = n - 1, n - 2, \dots, 1$.

Listing 1.1: Algoritmo de Thomas

```
1
   import numpy as np
2
3
   def TDMA(a,b,c,d):
4
       n = b.size
5
       for i in np.arange(1,n):
6
          w = a[i]/b[i-1]
7
         b[i] = b[i] - w*c[i-1]
         d[i] = d[i] - w*d[i-1]
8
9
       x = np.empty(n)
       x[n-1] = d[n-1]/b[n-1]
10
       for i in np.arange(n-2,-1,-1):
11
12
          x[i] = (d[i] - c[i]*x[i+1])/b[i]
13
       return x
```

Exercício 1.1.1. Considere o seguinte sistema linear

$$2x_1 - x_2 = 0 (1.13)$$

$$x_{i-1} - 3x_i + 4x_{i+1} = \operatorname{sen}\left(i\frac{\pi}{2(n-1)}\right)$$
 (1.14)

$$x_{n-1} + x_n = 1 (1.15)$$

a) Compute sua solução usando o Algoritmo de Thomas para n=3.

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

- b) Compare a solução obtida no item anterior com a gerada pela função scipy.linalg.solve.
- c) Compare a solução com a obtida no item anterior com a gerada pela função scipy.linalg.solve_banded.
- d) Use o módulo Python timeit para comprar a demanda de tempo computacional de cada um dos métodos acima. Compute para n=10,100,1000,10000.

Exercício 1.1.2. Considere que o problema de valor de contorno (PVC)

$$-u'' = \sin \pi x, \quad 0 < x < 1, \tag{1.16}$$

$$u(0) = 0, (1.17)$$

$$u(1) = 0 (1.18)$$

seja simulado com o Método das Diferenças Finitas². Vamos assumir uma discretização espacial uniforme com n nodos e tamanho de malha

$$h = \frac{1}{n-1}. (1.19)$$

Com isso, temos os nodos $x_i = (i-1)h$, i = 1,2,...,n. Nos nodos internos, aplicamos a fórmula de diferenças central

$$u''(x_i) \approx \frac{u_{i-1} - 2u_i + u_{i+1}}{h^2},$$
 (1.20)

onde, $u_i \approx u(x_i)$. Com isso, a discretização da EDO fornece

$$-\frac{1}{h^2}u_{i-1} + \frac{2}{h^2}u_i - \frac{1}{h^2}u_{i+1} = \operatorname{sen}\pi x_i$$
 (1.21)

para $i=2,3,\ldots,n-1$. Das condições de contorno temos $u_1=u_n=0$. Logo, o problema discreto lê-se: encontrar $u=(u_1,u_2,\ldots,u_n)\in\mathbb{R}^n$ tal que

$$u_1 = 0 \tag{1.22}$$

$$-\frac{1}{h^2}u_{i-1} + \frac{2}{h^2}u_i - \frac{1}{h^2}u_{i+1} = \operatorname{sen} \pi x_i$$
 (1.23)

$$u_n = 0 \tag{1.24}$$

²Consulte mais em Notas de Aula: Matemática Numérica.

- a) Calcule a solução analítica do PVC.
- b) Use a função scipy.linalg.solve_banded para computar a solução do problema discreto associado para diferentes tamanhos de malha $h=10^{-1},10^{-2},10^{-3},10^{-4}$. Compute o erro da solução discreta em relação à solução analítica.
- c) Compare a demanda de tempo computacional se a função scipy.linalg.solve for empregada na computação da solução discreta.

1.1.2 Matrizes Banda

Uma matriz banda é aquela em que os elementos não nulos estão dispostos em apenas algumas de suas diagonais. Consulte a Figura 1.2.

Figura 1.2: Exemplo de uma matriz banda.

Exemplo 1.1.1. Consideremos o seguinte problema de Poisson³

$$-\Delta u = f(x,y), (x,y) \in (0,\pi) \times (0,\pi), \tag{1.25}$$

$$u(0,y) = 0, y \in [0,\pi], \tag{1.26}$$

$$u(\pi, y) = 0, y \in [0, \pi], \tag{1.27}$$

$$u(x,0) = 0, x \in [0,\pi], \tag{1.28}$$

$$u(x,\pi) = 0, x \in [0,\pi]. \tag{1.29}$$

Para fixarmos as ideias, vamos assumir

$$f(x,y) = \operatorname{sen}(x)\operatorname{sen}(y) \tag{1.30}$$

Vamos empregar o Método de Diferenças Finitas⁴ para computar uma aproximação para a sua solução. Começamos assumindo uma malha uniforme de n^2 nodos

$$x_i = (i-1)h \tag{1.31}$$

$$y_j = (j-1)h (1.32)$$

com tamanho de malha $h=\pi/(n-1), i=1,2,\ldots,n$ e $j=1,2,\ldots,n$. Empregando a Fórmula de Diferenças Central⁵ encontramos o seguinte problema discreto associado

$$u_{i,1} = u_{1,j} = 0 (1.33)$$

$$-\frac{1}{h^2}u_{i-1,j} - \frac{1}{h^2}u_{i,j-1} + \frac{4}{h^2}u_{i,j}$$

$$-\frac{1}{h^2}u_{i+1,j} - \frac{1}{h^2}u_{i,j+1} = f(x_i, y_j)$$
(1.34)

$$u_{i,n} = u_{n,i} = 0 (1.35)$$

Este é um sistema linear $n^2 \times n^2$. Tomando em conta as condições de contorno, ele pode ser reduzido a um sistema $(n-2)^2 \times (n-2)^2$

$$Aw = b \tag{1.36}$$

 $^{^3{\}rm Baron}$ Siméon Denis Poisson, 1781 - 1840, matemático, engenheiro e físico francês. Fonte: Wikipedia.

⁴Observamos que $\Delta u = u_{xx} + u_{yy}$.

⁵Consulte mais em Notas de Aula: Matemática Numérica.

usando a enumeração das incógnitas $(i,j) \rightarrow k = i-1+(j-2)(n-2)$, i.e.

$$u_{i,j} = w_{k=i-1+(j-2)(n-2)}, \quad i,j = 2, \dots, n-2$$
 (1.37)

Consulte a Figura 1.3 para uma representação da enumeração em relação a malha.

Figura 1.3: Representação da enumeração das incógnitas referente ao problema discutido no Exercício 1.1.1.

Afim de obtermos uma matriz diagonal dominante, vamos ordenar as equações do sistema discreto como segue

•
$$j = 2, i = 2$$
:

$$4w_k - w_{k+1} - w_{k+n-2} = h^2 f_{i,j}$$
(1.38)

•
$$j = 2, i = 3, ..., n - 2$$
:

$$-w_{k-1} + 4w_k - w_{k+1} - w_{k+n-2} = h^2 f_{i,j}$$
(1.39)

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

• j = 2, i = n - 1:

$$-w_{k-1} + 4w_k - w_{k+n-2} = h^2 f_{i,j} (1.40)$$

• $j = 3, \dots, n-2, i = 2$:

$$-w_{k-(n-2)} + 4w_k - w_{k+1} - w_{k+n-2} = h^2 f_{i,j}$$
 (1.41)

• j = 3, ..., n-2, i = 3, ..., n-2:

$$-w_{k-1} - w_{k-(n-2)} + 4w_k - w_{k+1} - w_{k+n-2} = h^2 f_{i,j}$$
 (1.42)

• $j = 3, \dots, n-2, i = n-1$:

$$-w_{k-1} - w_{k-(n-2)} + 4w_k - w_{k+n-2} = h^2 f_{i,j}$$
 (1.43)

• j = n - 1, i = 2:

$$-w_{k-(n-2)} + 4w_k - w_{k+1} = h^2 f_{i,j}$$
 (1.44)

• $j = n - 1, i = 3, \dots, n - 2$:

$$-w_{k-1} - w_{k-(n-2)} + 4w_k - w_{k+1} = h^2 f_{i,j}$$
 (1.45)

• j = n - 1, i = n - 1:

$$-w_{k-1} - w_{k-(n-2)} + 4w_k = h^2 f_{i,j}$$
 (1.46)

Com isso, obtemos uma matriz com 5 bandas, consulte a Figura 1.4.

Notas de Aula - Pedro Konzen $^*/^*$ Licença CC-BY-SA 4.0

Figura 1.4: Representação da matriz do sistema discreto construído no Exemplo 1.1.1.

Exercício 1.1.3. Consideremos o problema trabalho no Exemplo 1.1.1.

a) Use a função scipy.linalg.solve para computar a solução do problema discreto associado para diferentes tamanhos de malha $h=10^{-1}, 10^{-2}, 10^{-3}, 10^{-4}$. Compute o erro da solução discreta em relação à solução analítica. Compare as aproximações com a solução analítica

$$u(x,y) = \frac{1}{2}\operatorname{sen}(x)\operatorname{sen}(y). \tag{1.47}$$

- b) Compare a demanda de tempo e memória computacional se a função scipy.linalg.solve_banded for empregada na computação da solução discreta.
- c) Baseado no Algoritmo de Thomas, implemente o Método de Eliminação

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA $4.0\,$

Gaussiana otimizado para a matriz banda deste problema. Compare com as abordagens dos itens a) e b).

1.1.3 Esquemas de Armazenamento

A ideia é armazenar apenas os elementos não-nulos de uma matriz esparsa, de forma a economizar a demanda de armazenamento computacional. Cuidados devem ser tomados para que a estrutura de armazenamento utilizada seja adequada para a computação das operações matriciais mais comuns.

Formato COO

O formato COO (*COOrdinate format*) é o esquema de armazenamento mais simples. As estrutura de dados consiste em três arranjos: (1) um arranjo contendo as entradas não-nulas da matriz; (2) um arranjo contendo seus índices de linha; (3) um arranjo contendo seus índices de coluna.

Exemplo 1.1.2. Consideremos a seguinte matriz

$$A = \begin{bmatrix} 2. & 0. & 1. & 0. \\ 0. & 3. & 2. & -1. \\ 0 & -1 & -2. & 0. \\ 0 & 0 & 0 & 1. \end{bmatrix}$$
 (1.48)

O formato COO está disponível na biblioteca SciPy com o método scipy.sparse.coo_matrix⁶. Neste caso, temos

```
1
       import numpy as np
       import scipy as sp
2
3
       from scipy.sparse import coo_matrix
4
       data = np.array([2.,1.,3.,2.,-1.,-1.,-2.,1.])
5
6
       row = np.array([0,0,1,1,1,2,2,3])
7
       col = np.array([0,2,1,2,3,1,2,3])
       coo = coo_matrix((data, (row, col)), shape=(4,4))
8
       print("coo = \n", coo)
9
10
       print("A = \n", coo.toarray())
```

 $^{^6 \}rm Versões$ recentes do Sci Py estão migrando para a nomenclatura do Num
Py. Consulte mais em Sci Py Sparse.

- Vantagens do formato COO são:
 - permite a entrada de dados duplicados (simplicidade);
 - possível conversão rápida entre os formatos CSR e CSC⁷.
- Desavantagens do formato COO são:
 - complexidade em operações aritméticas;
 - complexidade na extração de submatrizes.

Observação 1.1.1. O SciPy conta com vários métodos para o tratamento e operação com matrizes esparsas armazenadas no formato COO. Consulte mais em scipy.sparse.coo_matrix.

Formato CSR

O formato $Compressed\ Sparse\ Row\ (CSR)$ é uma variação do COO que busca diminuir a alocação de dados repetidos. Assim como o COO, o formato conta com três arranjos $d,\ c,\ p$:

- d é o arranjo contendo os elementos não-nulos da matriz, ordenados por linhas (i.e., da esquerda para direita, de cima para baixo);
- c é o arranjo contendo o índice das colunas das entradas não-nulas da matriz (como no formato COO);
- p é um arranjo cujos elementos são a posição no arranjo c em que cada linha da matriz começa a ser representada. O número de elementos de i-ésima linha da matriz dado por $p_{i+1} p_i$.

Exemplo 1.1.3. No Exemplo 1.1.2, alocamos a matriz

$$A = \begin{bmatrix} 2. & 0. & 1. & 0. \\ 0. & 3. & 2. & -1. \\ 0 & -1 & -2. & 0. \\ 0 & 0 & 0 & 1. \end{bmatrix}$$
 (1.49)

no formato COO. Aqui, vamos converter a alocação para o formato CSR e, então, verificar seus atributos.

 $^{^7\}mathrm{Estes}$ formatos são mais eficientes para a computação matricial e são apresentados na sequência.

```
1
       from scipy.sparse import csr_matrix
2
       csr = coo.tocsr()
3
       d = csr.data
4
       c = csr.indices
5
       p = csr.indptr
6
       print(d)
       print(c)
7
8
       print(p)
```

Para fixarmos as ideias, temos

$$d = (2., 1., 3., 2., -1., -1., -2., 1.)$$

$$(1.50)$$

$$c = (0, 2, 1, 2, 3, 1, 2, 3) \tag{1.51}$$

$$p = (0, 2, 5, 7, 8) \tag{1.52}$$

Assim sendo, o elemento p[i=2] = 5 aponta para o c[k=5] = 1, o que fornece que $A[i=2,j=1]=d_{k}=-1$. Verifique!

- Vantagens do formato CSR:
 - operações aritméticas eficientes;
 - fatiamento por linhas eficiente;
 - multiplicação matriz vetor eficiente.
- Desvantagens do formato CSR:
 - fatiamento por colunas não eficiente;
 - custo elevado de realocamento com alteração da esparsidade da matriz.

Observação 1.1.2. O SciPy conta com vários métodos para o tratamento e operação com matrizes esparsas armazenadas no formato CSR. Consulte mais em scipy.sparse.csr_matrix.

Formato CSC

O formato Compressed Sparse Column (CSC) é uma variação análoga do CSR, mas para armazenamento por columas. O formato conta com três arranjos d, l, p:

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA $4.0\,$

- d é o arranjo contendo os elementos não-nulos da matriz, ordenados por colunas (i.e., de cima para baixo, da esquerda para direita);
- l é o arranjo contendo o índice das linhas das entradas não-nulas da matriz;
- p é um arranjo cujos elementos são a posição no arranjo l em que cada coluna da matriz começa a ser representada. O número de elementos de j-ésima coluna da matriz dado por $p_{j+1} p_j$.

Exemplo 1.1.4. No Exemplo 1.1.2, alocamos a matriz

$$A = \begin{bmatrix} 2. & 0. & 1. & 0. \\ 0. & 3. & 2. & -1. \\ 0 & -1 & -2. & 0. \\ 0 & 0 & 0 & 1. \end{bmatrix}$$
 (1.53)

no formato COO. Aqui, vamos converter a alocação para o formato CSC e, então, verificar seus atributos.

```
from scipy.sparse import csc_matrix
csc = coo.tocsc()
d = csc.data
l = csc.indices
p = csc.indptr
print(d)
print(l)
print(p)
```

Para fixarmos as ideias, temos

$$d = (2., 3., -1., 1., 2., -2., -1., 1.)$$

$$(1.54)$$

$$l = (0, 1, 2, 0, 1, 2, 1, 3) \tag{1.55}$$

$$p = (01368) \tag{1.56}$$

Assim sendo, o elemento p[j=2] = 3 aponta para o 1[k=3] = 0, o que informa que $A[i=0, j=2]=d_{k}=1$. Verifique!

- Vantagens do formato CSC:
 - fatiamento por colunas eficiente;
 - operações aritméticas eficientes;

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

- multiplicação matriz vetor eficiente⁸.
- Desvantagens do formato CSC:
 - fatiamento por linhas n\u00e3o eficiente;
 - custo elevado de realocamento com alteração da esparsidade da matriz.

Observação 1.1.3. O SciPy conta com vários métodos para o tratamento e operação com matrizes esparsas armazenadas no formato CSC. Consulte mais em scipy.sparse.csc_matrix.

Observação 1.1.4. Além dos formatos COO, CSR e CSC, exitem ainda vários outros que podem empregados e que são mais eficientes em determinadas aplicações. Recomendamos a leitura de [3, Seção 3.4] e da documentação do scipy.sparse.

Exercício 1.1.4. Considere o problema de Poisson dado no Exemplo 1.1.1.

- a) Armazene a matriz do problema discreto associado usando o formato COO.
- b) Converta a matriz armazenada para o formato CSR⁹. Então, compute a solução do problema discreto com o método spsolve¹⁰.
- c) Converta a matriz armazenada para o formato CSC¹¹. Então, compute a solução do problema discreto com o método spsolve.
- d) Compare a eficiência da computação entre os itens b) e c) para tamanhos de malha $h=10^{-1},10^{-2},10^{-3},10^{-4}$.

⁸CSR é mais eficiente em muitos casos.

⁹Use o método coo matrix.tocsr().

 $^{^{10} \}mathtt{scipy.sparse.linalg.spsolve}$ é uma implementação do Método LU otimizado para matrizes esparsas.

¹¹Use o método coo matrix.tocsc().

1.2 Métodos Iterativos

1.2.1 Método de Subespaço de Krylov

A ideia básica é resolver o sistema linear

$$Ax = b (1.57)$$

por um **método de projeção**. Mais especificamente, busca-se uma solução aproximada $x_m \in \mathbb{R}^{\ltimes}$ no subespaço afim $x_0 + \mathcal{K}_m$ de dimensão m, impondo-se a **condição de Petrov**¹²-Galerkin¹³

$$b - Ax_m \perp \mathcal{L}_m, \tag{1.58}$$

onde \mathcal{L}_m também é um subespaço de dimensão m. Quando \mathcal{K}_m é um subespaço de Krylov¹⁴, i.e.

$$\mathcal{K}_m(A, r_0) = \{r_0, Ar_0, A^2r_0, \dots, A^{m-1}r_0\},\tag{1.59}$$

temos o Método de Subespaço de Krylov. Aqui, temos o resíduo

$$r_0 = b - Ax_0, (1.60)$$

sendo x_0 uma aproximação inicial para a solução do sistema. Notemos que com isso, temos que a aproximação calculada é tal que

$$A^{-1}b \approx x_m = x_0 + q_{m-1}(A)r_0, \tag{1.61}$$

onde q_{m-1} é um dado polinômio de grau m-1. No caso particular de $x_0=0$, temos

$$A^{-1}b \approx q_{m-1}(A)x_0. (1.62)$$

Diferentes versões deste método são obtidas pelas escolhas do subespaço \mathcal{L}_m e formas de precondicionamento do sistema.

¹²Georgi Iwanowitsch Petrov, 1912 - 1987, engenheiro soviético. Fonte: Wikipedia.

¹³Boris Galerkin, 1871 - 1945, engenheiro e matemático soviético. Fonte: Wikipédia.

¹⁴Alexei Nikolajewitsch Krylov, 1863 - 1945, engenheiro e matemático russo. Fonte: Wikipédia.

1.2.2 **GMRES**

O GMRES (do inglês, Generalized Minimum Residual Method¹⁵) é um Método de Subespaço de Krylov assumindo $\mathcal{L}_m = A\mathcal{K}_m$, com

$$\mathcal{K}_m = \mathcal{K}_m(A, v_1) = \{v_1, Av_1, \dots, A^{m-1}v_1\},\tag{1.63}$$

onde $v_1 = r_0/||r_0||$ é o vetor unitário do resíduo $r_0 = b - Ax_0$ para uma dada aproximação inicial x_0 da solução do sistema Ax = b.

Vamos derivar o método observando que qualquer vetor x em $x_0 + \mathcal{K}_m$ pode ser escrito como segue

$$x = x_0 + V_m y \tag{1.64}$$

onde, $V_m = [v_1, \ldots, v_m]$ é a matriz $n \times m$ cujas colunas formam uma base ortogonal $\{v_1, \ldots, v_m\}$ de \mathcal{K}_m e $y \in \mathcal{R}^m$. Aqui, V_m é computada usandose o seguinte **Método de Arnoldi**¹⁶- **Gram**¹⁷-**Schmidt**¹⁸ **Modificado** [3, Subseção 6.3]:

- 1. Dado v_1 de norma 1
- 2. Para j = 1, ..., m:
- $3. w_i := Av_i$
- 4. Para i = 1, ..., j:
- 5. $h_{i,j} := (w_i, v_i)$
- $6. w_j := w_j h_{i,j} v_i$
- 7. $h_{j+1,j} := ||w_j||$
- 8. Se $h_{j+1,j} = 0$, então pare.
- 9. $v_{i+1} = w_i/h_{i+1,i}$

¹⁵Desenvolvido por Yousef Saad e H. Schultz, 1986. Fonte: Wikipedia.

¹⁶Walter Edwin Arnoldi, 1917 - 1995, engenheiro americano estadunidense. Fonte: Wi-kipédia.

¹⁷Jørgen Pedersen Gram, 1850 - 1916, matemático dinamarquês. Fonte: Wikipédia.

¹⁸Erhard Schmidt, 1876 - 1959, matemático alemão. Fonte: Wikipédia.

Seja, então, $\bar{H}_m=[h_{i,j}]_{i,j=1}^{m+1,m}$ a matriz de Hessenberg¹⁹ cujas entradas não nulas são computadas pelo algoritmo acima (Passos 5. e 6.). Pode-se mostrar²⁰ que

$$J(y) = ||b - Ax|| \tag{1.65}$$

$$= ||b - A(x_0 + V_m y)|| \tag{1.66}$$

$$= \|\beta e_1 - \bar{H}_m y\| \tag{1.67}$$

onde, $\beta = ||r_0||$.

A aproximação GMRES x_m é então computada como

$$x_m = x_0 + V_m y_m, (1.68)$$

$$y_m = \min_{y} \|\beta e_1 - \bar{H}_m y\| \tag{1.69}$$

Observamos que este último é um pequeno problema de minimização, sendo que requer a solução de um sistema $(m+1) \times m$ de mínimos quadrados, sendo m normalmente pequeno.

Em resumo, a solução GMRES x_m é computada seguindo os seguintes passos:

- 1. Escolhemos uma aproximação inicial x_0 para a solução de Ax = b.
- 2. Calculamos o resíduo $r_0 = b Ax_0$.
- 3. Calculamos o vetor unitário $v_1 = r_0/||r_0||$.
- 4. Usamos o Método de Arnoldi-Gram-Schmidt Modificado para calculamos uma base ortogonal V_m de \mathcal{K}_m e a matriz de Hessenberg \bar{H}_m associada.
- 5. Calculamos $y_m = \min_y \|\beta e_1 \hat{H}_m y\|$.
- 6. Calculamos $x_m = x_0 + V_m y$.

Observação 1.2.1 (Convergência). Pode-se mostrar que o GMRES converge em ao menos n passos.

¹⁹Karl Adolf Hessenberg, 1904 - 1959, engenheiro e matemático alemão. Fonte: Wikipédia.

²⁰Consulte [3, Proposição 6.5].

Observação 1.2.2 (GMRES com a ortogonalização de Householder). No algoritmo acima, o Método Modificado de Gram-Schmidt é utilizado no processo de Arnoldi. Uma versão numericamente mais eficiente é obtida quando a Transformação de Householder²¹ é utilizada. Consulte mais em [3, Subsetion 6.5.2].

Observação 1.2.3 (GMRES com Reinicialização). O Restarted GMRES é uma variação do método para sistemas que requerem uma aproximação GMRES x_m com m grande. Nestes casos, o método original pode demandar um custo muito alto de memória computacional. A ideia consiste em assumir m pequeno e, caso não suficiente, recalcular a aproximação GMRES com $x_0 = x_m$. Este algoritmo pode ser descrito como segue.

- 1. Computamos $r_0 = b Ax_0$, $\beta = ||r_0||$ e $v_1 = r_0/\beta$
- 2. Computamos V_m e \hat{H}_m pelo método de Arnoldi
- 3. Computamos

$$y_m = \min_{y} \|\beta e_1 - \hat{H}_m y\| \tag{1.70}$$

$$x_m = x_0 + V_m y_m \tag{1.71}$$

4. Se $||b - Ax_m||$ é satisfatória, paramos. Caso contrário, setamos $x_0 := x_m$ e voltamos ao passo 1.

A convergência do *Restarted GMRES* não é garantida para matrizes que não sejam positiva-definidas.

Exercício 1.2.1. Considere o problema discreto do Exercício 1.1.2.

a) Compute a solução com a implementação Restarted GMRES

- b) Por padrão, o intervalo de iterações entre as inicializações é restart=20. Compare o desempenho para diferentes intervalos de reinicialização.
- c) Compare o desempenho entre as abordagens dos ítens a) e b) frente a implementação do Método de Eliminação Gaussiana disponível em

²¹Alston Scott Householder, 1904 - 1993, matemático americano estadunidense. Fonte: Wikipédia.

scypi.sparse.linalg.spsolve.

Exercício 1.2.2. Considere o problema discreto trabalhado no Exemplo 1.1.1.

- a) Compute a solução com a implementação Restarted GMRES scipy.sparse.linalg.gmres.
- b) Por padrão, o intervalo de iterações entre as inicializações é restart=20. Compare o desempenho para diferentes intervalos de reinicialização.
- c) Compare o desempenho entre as abordagens dos ítens a) e b) frente a implementação do Método de Eliminação Gaussiana disponível em

scypi.sparse.linalg.spsolve.

Referências Bibliográficas

- [1] J.P. Davis and P. Rabinowitz. *Methods of Numerical Integration*. Academic Press, Inc., San Diego, 2. edition, 1984.
- [2] C.T. Kelley. *Iterative Methods for Optimization*. Society for Industrial and Applied Mathematics, Philadelphia, 1999.
- [3] Y. Saad. *Iterative Methods for Sparse Linear Systems*. Society for Industrial and Applied Mathematics, Philadelphia, 2003.
- [4] J. Stoer. Approximate Calculation of Multiple Integrals. Prentice-Hall, Inc., 1971.
- [5] D. Watkins. Fundamentals of Matrix Computations. John Wiley, New York, 2002.