#### МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

Федеральное государственное автономное образовательное учреждение высшего образования «Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики»

#### ФАКУЛЬТЕТ ПРОГРАММНОЙ ИНЖЕНЕРИИ И КОМПЬЮТЕРНОЙ ТЕХНИКИ

## ЛАБОРАТОРНАЯ РАБОТА № 5

по дисциплине 'Вычислительная математика' "Интерполяция функции" Вариант №9

> Выполнил: Студент группы Р3208 Камянецький Никита Владимирович Преподаватель: Машина Е. А.



Санкт-Петербург, 2024

# Оглавление

| Цель работы:                           | . 3 |
|----------------------------------------|-----|
| Задание лабораторной работы:           | . 3 |
| Примеры и результаты работы программы: | . 7 |
| Rupon:                                 | 7   |

# Цель работы:

Цель лабораторной работы: решить задачу интерполяции, найти значения функции при заданных значениях аргумента, отличных от узловых точек.

## Задание лабораторной работы:

- 1. № варианта определяется как номер в списке группы согласно ИСУ.
- 2. Лабораторная работа состоит из двух частей: вычислительной и программной.

### 1 Вычислительная реализация задачи:

## 1. Дано:

|             | x    | y      | №<br>варианта | $\mathbf{X}_1$ | $X_2$ |
|-------------|------|--------|---------------|----------------|-------|
|             | 1,05 | 0,1213 | 4             | 1,051          | 1,277 |
| 4           | 1,15 | 1,1316 | 9             | 1,562          | 1,362 |
| Таблица 1.4 | 1,25 | 2,1459 | 14            | 1,112          | 1,319 |
| ĬИ          | 1,35 | 3,1565 | 19            | 1,573          | 1,375 |
| абл         | 1,45 | 4,1571 | 24            | 1,146          | 1,289 |
| $\Box$      | 1,55 | 5,1819 | 29            | 1,614          | 1,414 |
|             | 1,65 | 6,1969 | 34            | 1,154          | 1,328 |

2. Таблица конечных разностей

| x_i   y_i                          |        |       |         |        |        |         |
|------------------------------------|--------|-------|---------|--------|--------|---------|
| 1.05   0.1213                      | 1.0103 | 0.004 | -0.0077 | 0.0014 | 0.0391 | -0.1478 |
| 1.15   1.1316  <br>  1.25   2.1459 |        |       |         |        |        |         |
| 1.35   3.1565<br>  1.45   4.1571   |        |       |         |        | <br>   |         |
| 1.55   5.1819<br>  1.65   6.1969   |        |       |         |        | <br>   | 1       |
| +                                  | +      | +     | +       | +      | +      | +       |





2 Программная реализация задачи:

Обязательное задание (до 80 баллов)

Вычислительная реализация задачи:

- 1. Выбрать из табл. 1 заданную по варианту таблицу y = f(x) (таблица 1.1 таблица 1.5);
- 2. Построить таблицу конечных разностей для заданной таблицы. Таблицу отразить в отчете;
- 3. Вычислить значения функции для аргумента  $X_1$  (см. табл.1), используя первую или вторую интерполяционную формулу Ньютона. Обратить внимание какой конкретно формулой необходимо воспользоваться;
- 4. Вычислить значения функции для аргумента  $X_2$  (см. табл. 1), используя первую или вторую интерполяционную формулу Гаусса. Обратить внимание какой конкретно формулой необходимо воспользоваться;
- 5. Подробные вычисления привести в отчете.

#### Программная реализация задачи:

- 1. Исходные данные задаются тремя способами:
  - а. в виде набора данных (таблицы x,y), пользователь вводит значения с клавиатуры;
  - b. в виде сформированных в файле данных (подготовить не менее трех тестовых вариантов);
  - с. на основе выбранной функции, из тех, которые предлагает программа, например, sin х. Пользователь выбирает уравнение, исследуемый интервал и количество точек на интервале (не менее двух функций).
  - 2. Сформировать и вывести таблицу конечных разностей;
  - 3. Вычислить приближенное значение функции для заданного значения аргумента, введенного с клавиатуры, указанными методами (см. табл. 5.2). Сравнить полученные значения;
- 4. Построить графики заданной функции с отмеченными узлами интерполяции и интерполяционного многочлена Ньютона/Гаусса (разными цветами);
- 5. Программа должна быть протестирована на различных наборах данных, в том числе и некорректных.
- 6. Проанализировать результаты работы программы.

## Необязательное задание (до 20 баллов)

- 1. Реализовать в программе вычисление значения функции для заданного значения аргумента, введенного с клавиатуры, используя схемы Стирлинга;
- 2. Реализовать в программе вычисление значения функции для заданного значения аргумента, введенного с клавиатуры, используя схемы Бесселя.

## Примеры и результаты работы программы:

```
Input 1:
7
1.05 0.1213
1.15 1.1316
1.25 2.1459
1.35 3.1565
1.45 4.1571
1.55 5.1819
1.65 6.1969
```

#### Output 1:



## Вывод:

в ходе данной лабораторной работы я научился применять и использовать для интерполяции многочлен Лагранжа и многочлен Ньютона, а также

Гаусса. Также я научился находить приближенное значение функции в заданной точке