

### **Digital Futures**

# F1 DRIVER RETENTION PREDICTION

**JAMES MURPHY** 

## **AGENDA**



- PROJECT BACKGROUND
- IMPORTANCE OF DRIVER PREDICTION
- DATA CLEANING AND MANIPULATION
- MODELTUNING
- MODEL OUTCOMES
- CONCLUSIONS

#### PROJECT BACKGROUND

- Formula 1 is the highest class of open wheel racing
- F1 World Championship contested for over 70 years
- Billions exchanged in television rights and team sponsorship
- Viewership at a joint all time high
- 2.3 million UK viewers for 2021 championship decider





# IMPORTANCE OF DRIVER PREDICTION

- Nearly impossible to predict a race due to extenuating factors
- Making driver predictions is also important
  - Driver underperforming
  - Useful for teams to get best value
  - Betting markets driver transfer





# CHALLENGES OF DRIVER PREDICTION

- Driver kept and released based on more than merit
- Internal and external politics often at play
- Data not shared in public domain





## DATA CLEANING AND MANIPULATION



#### **DATA TARGET**

- Input data: drivers, races, results, standings, constructors
- Data for each season compiled
- Data that showed season results with multiple associated attributes
- DriverID and Year 'composite key'

| Year | DriverID | Attributes | driver_move |
|------|----------|------------|-------------|
| 2002 | 1        | •••        | Ş           |
| 2002 | 2        | •••        | Ş           |
| 2003 | 1        |            | Ş           |
| 2003 | 3        | •••        | Ş           |





#### **DATA OBSERVATIONS**

- Earlier seasons of F1 have less uniform entry restrictions
- One race drivers and manufacturers
- > 100 drivers in 10 races, now 21 in 22 races in 2021
- Take last 20 years of data





# GENERATING "driver\_move" COLUMN

- No given value, can be calculated
- Modal constructor for each year
- Matching driver and constructor for consecutive seasons
- Leaves = 1; Remains = 0
- Final year data accounted for manually
- 481 data entries

| Leave? | No. of Drivers | %    |  |
|--------|----------------|------|--|
| 0      | 256            | 53.2 |  |
| 1      | 225            | 46.8 |  |



# **MODEL TUNING**



#### **MODEL COMPARISON**

#### **LOGISTIC REGRESSION**



- Divides into discrete binary targets
- Interpret results as probabilities of the outcome
- Single decisions boundary
- Data manipulation needed for continuous data

- Decision trees partition features using boundaries
- Node splits the data into branches
- Leaf represents a decision
- Random forest use decisions from multiple decision trees for output
- Data overfitting common



**DECISION TREE AND RANDOM FOREST** 



#### **CORRELATION HEATMAP**





- 0.8

- 0.6

- 0.4

- 0.2

- 0.0

- -0.2

#### **DISCRETE BINARY VARIABLES**





#### **CONTINUOUS VARIABLES**





## MODEL OUTCOMES



#### **MODEL SCORES**

| Model           | Train Accuracy | Test Accuracy | Test Precision | Test Recall | Test F1 Score |
|-----------------|----------------|---------------|----------------|-------------|---------------|
| Starting LogReg | 69.2           | 65.1          | 63.7           | 52.8        | 57.7          |
| LogReg w/ FE    | 68.3           | 71.1          | 64.8           | 68.6        | 66.7          |
| Decision Trees  | 71.9           | 69.4          | 65.2           | 58.8        | 61.9          |
| Random Forest   | 78.3           | 72.7          | 67.3           | 68.6        | 68.0          |
| IMPROVEMENTS    | + 9.1          | + 7.6         |                |             |               |



#### MATRIX AND FEATURE IMPORTANCE





# **CONCLUSIONS**



#### **MODEL SUCCESSES**

- 72.7% accuracy, aiming for around
  75%
- Generate positive predictions despite limited data
- Solution to new data and problem
- Data not overly fit





#### **MODEL LIMITATIONS**

- Makes predictions based on a whole season's results
- Limited data to model on
  - 481 total, 360 for train set
  - Reliability and schedule consistency too low pre 2000
- Points system changes, affects a reliable driver success metric
- New team branding recorded as driver leaving





#### **PROJECT IMPROVEMENTS**

- Identify a team name change
- Further metrics to measure driver
- Have a clustering or multiple outcome result
  - Retirement, promotion, relegation





#### **ACKNOWLEDGEMENTS**

- Project training and assistance
  - Lisa Carpenter Data Science Training Lead
  - Blair Young Data Science Instructor and Engagement Manager
- Data Origin
  - kaggle.com/rohanrao/formula-1-world-championship-1950-2020?select=results.csv
  - Compiled from ergast.com/mrd
- Photo credits
  - o Title Slide: Clive Mason/Getty Images; media.bleacherreport.com
  - Slide 1: Bryn Lennon/Getty Images
  - Slide 2: clickandraces.com
  - Slide 3, 4: vanityfair.it
  - o Slide 5, 6: wonderfulengineering.com
  - Slide 7: 2.bp.blogspot.com
  - Slide 9: wired.co.uk
  - Slide 14: Alex Treinitz/Motorsport Images
  - Slide 17: Motorsport Images
  - Slide 19: Peter Kohalmi/Reuters
  - Slide 20: Rainer Schlegelmilch/Motorsport Images
  - Slide 22: David Phipps/Motorsport Images







#### **Digital Futures**

# **THANKYOU**

jemurphyuk@gmail.com

