Magnet Design Considerations for Compact NMR

Molinaroli College of Engineering and Computing

Why Develop a Modular, Sensor-Rich Battery System?

- Supports Next-Generation Energy Storage
 - Enables research on distributed energy systems and high-performance battery management
 - Facilitates scalability for a wide range of power applications
- Enhances Digital Twin Development
 - Real-time, high-fidelity data streams enable dynamic model validation and predictive analytics
 - Integrated sensors allow continuous updates to electrochemical, thermal, and mechanical models
- Enables Flexible and Configurable Testing
 - Modular 42V (10S1P) design allows for series/parallel stacking to replicate different battery pack architectures
 - Supports multiple cell sizes and chemistries (e.g., 18650, 21700, NMC, LFP) for diverse application studiesImproves
- Advanced Battery Control and Monitoring
 - High-resolution BMS with CompactDAQ integration enables real-time state estimation and anomaly detection
 - Adaptive energy management through advanced control strategies

Magnet Simulations

Magnet Type A

Magnet Type B

• ...

• ...

Thank You for Your Time

