Name	Centre/ Index No
Signature	Expected score
P525/1	
CHEMISTRY	
Paper 1	
1 ST NOV 2023	
2 ³ / ₄ Hrs	

UGANDA ADVANCED CERTIFICATE OF EDUCATION CHEMISTRY

Paper 1

2 hours 45 minutes

INSTRUCTIONS TO CANDIDATES

- Answer all questions in Section A and six questions in Section B.
- All questions must be answered in the spaces provided.
- The periodic table, with relative atomic masses is attached at the end of the paper.
 - Molar gas constant, R= 8.31JK⁻¹ mol⁻¹
 - Molar volume of gas at s.t.p is 22.4 litres.

	For Examiners Use Only																
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	TOTAL

SECTION A: (46 marks)

Answer all questions from this section.

1.	The standard electrode potentials for some half - cells are shown below.							
		$Fe_{(aq)}^{3+}, Fe_{(aq)}^{2+}/Pt(s)$ +0.7	7V					
		$Sn_{(aq)}^{4+}, Sn_{(aq)}^{2+}/Pt(s)$ +0.15V						
	a)	Write the convention for the combinedcell.						
	b)	Write equation for the:						
		i) reaction at the cathode		(01 mark)				
		ii) reaction at the anode		(01 mark)				
		iii) overall cell reaction		(1½ marks)				
	c)	Calculate the e.m.f of the ce		(01 mark)				
	d)	State one application of elec	trode potentials.	(01 mark)				

2. a) Draw the structure and name the shape of the following oxides. In each case state the oxidation state of the Sulphur atom. (02 marks)

Oxide	Structure	Shape	Oxidation state of sulphur
SO_2			
SO_3			

b) i)) Name the reagent that can be used to distinguish between the c	xides in (a).
		(01 mark)
ii	i) State what would be observed, if a solution of each oxide is treate	d separately
	with the reagent you have named in b(i).	(01 mark)
ii	ii) Write equation(s) for the reaction(s) that would take place when	solutions of
	each oxides are treated separately with the reagent you have no	amed in b(i).
		$(1\frac{1}{2} \text{ marks})$

3.	a)	Define the term solubility product.	(01 mark)
	b)	Calculate the solubility product of a solution containing 8.35×10^{-3} g hydroxide in one litre of solution at 25° C.	of magnesium (03marks)
	c)	State one application of solubility product.	(01 mark)
4.	a)	Write equation for the reaction between water and i) iron (III) chloride	(1½ marks)
		ii) tin (II) chloride	(1½ marks)
	b)	A piece of clean magnesium ribbon was added to the solution in a(i). was observed and write equation for the reaction that took place.	State what (2½ marks)

b)		? moles of methyl ammonium chloride was added to one litre thylamine.	e of 0.2 <i>N</i>
		Calculate the PH of the resultant solution. [The ionization of methylamine is 4.4×10^{-4} mol l ⁻¹ , Kw is 1.0×10^{-14} mol ² l ⁻² at $25^{\circ}C$].	
	ii)	State the assumption(s) you have made in b(i).	(½ mark)
		equations to show how the following compounds can be synthesized.	
a)	,	from benzene	(2½ marks)

5. Methylamine ionises in water according to the following equation.

	b)	CH_3	$_{3}^{OH}$ from ethanol	(2½ marks)
7.	То	an	aqueous solution of $CoCl_2.6H_2O$ was added concentrated hyd	rochloric acid
	dr	opwi	vise until in excess.	
	a)	Nar	me:	
		i) 1	the cobalt species present in the solution before hydrochloric ac	id was added. (01 mark)
		ii) 1	the cobalt species present in the solution containing excess hydr	rochloric acid.
				(01 mark)
	b)		e solution containing excess hydrochloric acid was diluted with wa	
		i) \$	State the colour change that took place.	(01 mark)
		ii) \	Write an equation for the reaction that took place.	(1½ mark)
		•		•••••

	when propere rec	icts with brom	line in presen	ce of sodium chloric	ae solution, a
	mixture of a dib	romo and bro	mochloro com	ipounds are formed.	. Outline a
	mechanism for the	reaction leadin	ig to the form	ation of the two comp	oounds.
				'	(03 marks)
					(oo marks)
b) Name the type of r	nechanism for	the reaction in	ı (a).	
9. T	he data below was ob	otained for the	reaction.		
9. T	he data below was obactor $A+B \longrightarrow P$	•	reaction.		
9. Т		roducts	reaction.		
9. Т		roducts Initial con	·	Initial rate	
9. T	A + B → P	roducts Initial con	centrations	Initial rate mol d m ⁻³ S ⁻¹	
9. T	A + B → P	roducts Initial con (mol	centrations dm ⁻³)		
9. T	$A + B \longrightarrow P$ Experiment	Initial con (mol	centrations dm ⁻³)	mol d m ⁻³ S ⁻¹	
9. T	$A + B \longrightarrow P$ Experiment	Initial con (mol	centrations dm ⁻³) B 2.0	mol d m ⁻³ S ⁻¹ 3.2×10^{-5}	

a)	Write the rate equation.	(01 mark)

-	the value of ×	(01 mark)
ii)	the rate constant for the reaction and state its units.	(02 marks)
	<u>SECTION B (54 Marks)</u> Answer six questions from this section	ı.
0.Comp case.	lete the following equations and write a mechanism f	or the reaction in each
a) CH	C = O +	(04 marks)

b) 	$+ CH_3COCI \xrightarrow{NaOH_{(aq)}}$	(3½ marks)
 c) <i>C</i> 	H ₃ CH ₂ Cl → dry ether	(1½ marks)
 11. a) 5 i) 	tate the common oxidation states of manganese.	(1½ marks)
ii)	the most stable oxidation state of Manganese.	(½ mark)
iii)	the reason for your answer in a(ii).	(½ mark)
	/rite a half equation for the reduction of permanganate ion in acid medium	(01 mark)
ii) alkaline medium	(01 mark)

c)		An acidified solution of potassium iodide was added to a solution of potassium manganate(vii).					
	i)	State what was observed.	(01 mark)				
	ii)	Write the ionic equation for the reaction that took place.	(1½ marks)				
d)		tate two advantages of using potassium permanganate as a reagent in analysis.	volumetric (01 mark)				
	ii)	two reasons why potassium permanganate is not a primary standard.	(01 marks)				
12.a)	De	efine the term 'Partition coefficient"	(01 mark)				

b) Copper (II) ions forms a complex $Cu(NH3)_n^{2+}$ with ammonia. The table below shows the results of partition of ammonia between ${\bf 0.1M}$ copper(II) ions and trichloromethane.

$[NH_3] (0.1M Cu_{(aq)}^{2+})$	0.88	1.08	1.34	1.56	1.80
[NH ₃ (CHCl ₃).	0.02	0.03	0.04	0.05	0.06

	i)	Plot a graph of $[NH_3]$ $(0.1M Cu_{(aq)}^{2+})$ against $[NH_3(CHCl_3)]$.	(03	mark	s)
	ii)	Determine the value of n in the complex.	(2½	mark	s)
					••••
c)	i)	Determine the partition coefficient, K_D of ammonia between aque	eous	copp	er
	·	(II) ions and trichloromethane.		mark:	
					••••
			• • • • • • • • • • • • • • • • • • • •		·
	,		1		1
	11)	State what the value of K_D you have determined indicates distribution of ammonia.		ut ti mark)	
					,
					· • • • • • • • • • • • • • • • • • • •

13. The following	g reagents can be used to distinguish bet	tween members of classes or
organic comp	ounds.	
Nitrous ac	cid, anhydrous zinc chloride/concentrated	hydrochloric acid and neutral
iron(III)	chloride solution.	
For each rea	gent state, the class of compounds and br	riefly describe what would be
observed whe	en the reagent is reacted with each membe	er of the class.
a) nitrous ac	id	
i) Class o	f compounds	(03 marks)
ii) Observ	ations	
b) anhydrous	zinc chloride/concentrated hydrochloric a	acid (03 marks)
i) Class o	f compounds	
ii) Observ	ations	
c) neutral iro	on (III) chloride	(03 marks)
i) Class o	f compounds	
ii) Observ	ations	

14. <i>C</i> a	rbor	n, silicon, germanium, tin and lead are in group IV of the periodic t	table.
a)	Sto	ate	
		the common oxidation states exhibited by the elements in compounds.	their ions or (01 mark)
		how the stability of the oxidation states of the elements in a(i) group.	vary down the (01 marks)
b)	Giv	ve a reason for your answer in (a) (ii).	(01 mark)
c)		mpare the thermal stabilities of carbon tetrachloride and lead clude equations of reactions if any)	tetrachloride (2½ marks)
d)		scribe the reaction if any between each of carbon tetrachlori oride with water.	de and tin(iv)
i) (Carbon tetrachloride	(01 marks)
ii)	Tin(iv) chloride	(2½ marks)
	•		

15. State what would be observed and write equation for the reaction t	hat would take
place when	
a) Solid sodium chloride is heated with concentrated sulphuric acid.	$(2\frac{1}{2} \text{ marks})$
b) A mixture of benzoic soid and inch (TTT) ablanide solution is bester	(02 manka)
b) A mixture of benzoic acid and iron (III) chloride solution is heated	. (Uz marks)
c) Sodium nitrite solution was added to acidified potassium dichrom	ate(vi) solution
·	$(2\frac{1}{2} \text{ marks})$
d) A mixture of ethanal and aqueous silver nitrate in ammonia solution	. (02 marks)

16. The conductimetric curve for the titration of ethanoic acid and ammonia solution is given below. Conductivity В Volume of ammonia solution Explain the shape of the graph. (04 marks) b) The molar conductivity of nitric acid, sodium bromoethanoate and sodium nitrate acid are 421, 89.3 and 121.3 Ω^{-1} cm² mol⁻¹ respectively at inifinite dilution at 25°C. Calculate the: i) molar conductivity of bromoethanoic acid at infinite dilution. $(1\frac{1}{2} \text{ marks})$

	ii) dissociation constant, Ka, of a 0.1M bromoethanole electrolytic conductivity of bromoethanoic acid is 4.38		e
		(3½ marks)
17 a)	(i)Differentiate between soap and soapless detergents.	(02 marks)	
			•
b)	ii) Define a vegetable oil	(01 mark)	•
	Write equations to show how a soapless detergent dodecan-1-ol $CH_3(CH_2)_{10}CH_2OH$.	can be prepared from	n

c)) Explain the cleansing action of soap.	(03 marks)
٩)) State the advantage and disadvantage of using a so	anless detergent instead of
u)	soap in washing.	apiess de lei gent instead of
	i) Advantage	(0½ mark)
	::> N:	(01
	ii) Disadvantage	(0½ mark)

END.