The Dual Space

The Dual Space

Hopefully the reader has seen the idea of the *dual space* before, otherwise this section will probably be a little confusing.

Let V be a finite dimensional vector space over the real numbers \mathbb{R} The dual space of V, denoted V^* , is the set of all linear functionals on V. That is,

$$V^* = \{ f : V \to \mathbb{R} \mid f \text{ is linear} \}.$$

A linear functional is a function $f: V \to \mathbb{R}$ such that for all vectors $\mathbf{u}, \mathbf{v} \in V$ and scalars $\alpha, \beta \in \mathbb{R}$,

$$f(\alpha \mathbf{u} + \beta \mathbf{v}) = \alpha f(\mathbf{u}) + \beta f(\mathbf{v}).$$

The dual space V^* is itself a vector space over \mathbb{R} , with vector addition and scalar multiplication defined *pointwise*:

$$(f+g)(\mathbf{v}) = f(\mathbf{v}) + g(\mathbf{v}),$$

 $(\alpha f)(\mathbf{v}) = \alpha f(\mathbf{v}),$

for all $f, g \in V^*$, $\alpha \in \mathbb{R}$, and $\mathbf{v} \in V$.

Suppose that $\{\mathbf{e}_1, \dots, \mathbf{e}_n\}$ is a basis for V, then there is a uniquely associated **dual basis** $\{\mathbf{e}^1, \dots, \mathbf{e}^n\} \subseteq V^*$ defined by

$$\mathbf{e}^{i}(\mathbf{e}_{j}) = \delta_{j}^{i} = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{if } i \neq j. \end{cases}$$

Every linear functional $f \in V^*$ can be uniquely expressed as

$$f = \sum_{i=1}^{n} f(\mathbf{e}_i) \, \mathbf{e}^i.$$

In \mathbb{R}^m , the standard dot product allows us to associate every vector $\mathbf{v} \in \mathbb{R}^m$ with a linear functional $f_{\mathbf{v}} \in (\mathbb{R}^m)^*$ via the rule

$$f_{\mathbf{v}}(\mathbf{y}) = \mathbf{v} \cdot \mathbf{y} = \mathbf{v}^{\top} \mathbf{y}, \text{ for all } \mathbf{y} \in \mathbb{R}^{m}.$$

This map $\mathbf{v} \mapsto f_{\mathbf{v}}$ is:

- Linear: $f_{\alpha \mathbf{v} + \beta \mathbf{w}} = \alpha f_{\mathbf{v}} + \beta f_{\mathbf{w}}$,
- Injective: if $f_{\mathbf{v}} = 0$, then $\mathbf{v}^{\top}\mathbf{y} = 0$ for all \mathbf{y} , so in particular $\mathbf{v}^{\top}\mathbf{v} = \|\mathbf{v}\|^2 = 0$, hence $\mathbf{v} = \mathbf{0}$,
- Surjective: given any linear functional $f \in (\mathbb{R}^m)^*$, define $v_i = f(\mathbf{e}_i)$ where $\{\mathbf{e}_i\}$ is the standard basis; then $f(\mathbf{y}) = \sum_i v_i y_i = \mathbf{v}^\top \mathbf{y}$.

Thus, this correspondence is a vector space isomorphism:

$$\mathbb{R}^m \xrightarrow{\sim} (\mathbb{R}^m)^*, \quad \mathbf{v} \longmapsto f_{\mathbf{v}}.$$

Some intuition

It can sometimes help to think of vectors in V as column vectors and vectors in V^* as row vectors. The dot product is now the application of a linear functional to a vector. The transpose is the isomorphism between V and V^* .

Lemma 1. dim $V^* = \dim V$ for finite-dimensional V

Proof. Let V be a finite-dimensional vector space over a field \mathbb{R} , and let $\dim V = n$. Choose a basis $\{e_1, e_2, \ldots, e_n\}$ for V.

Define linear functionals $e^1, e^2, \dots, e^n \in V^* = \text{Hom}(V, \mathbb{R})$ by

$$e^{i}(e_{j}) = \delta^{i}_{j} = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{if } i \neq j, \end{cases}$$
 for all $1 \leq i, j \leq n$.

We claim that $\{e^1, \ldots, e^n\}$ is a basis for V^* .

Linear independence: Suppose $\sum_{i=1}^{n} a_i e^i = 0$ in V^* , where $a_i \in \mathbb{R}$. Applying both sides to e_j gives

$$0 = \left(\sum_{i=1}^{n} a_i e^i\right)(e_j) = \sum_{i=1}^{n} a_i e^i(e_j) = \sum_{i=1}^{n} a_i \delta_j^i = a_j.$$

Thus $a_j = 0$ for all j, so the set $\{e^1, \ldots, e^n\}$ is linearly independent.

Spanning: Let $f \in V^*$ be arbitrary. Define scalars $c_i = f(e_i) \in \mathbb{R}$ for i = 1, ..., n, and consider the functional

$$g = \sum_{i=1}^{n} c_i e^i \in V^*.$$

For any basis vector e_i , we have

$$g(e_j) = \sum_{i=1}^n c_i e^i(e_j) = \sum_{i=1}^n c_i \delta_j^i = c_j = f(e_j).$$

Since f and g agree on a basis of V, they agree on all of V; hence f = g. Therefore, every $f \in V^*$ is a linear combination of $\{e^1, \ldots, e^n\}$, so this set spans V^* .

Since $\{e^1, \ldots, e^n\}$ is a basis for V^* , we conclude that

$$\dim V^* = n = \dim V.$$

The Adjoint

The reason why we have gone to all the trouble of introducing the dual space is that the transpose of a matrix is the natural matrix representation of the **adjoint** of a linear map.

The Adjoint of a Linear Map

Let $T: V \to W$ be a linear map between finite-dimensional real vector spaces. The **dual map** $T^*: W^* \to V^*$ is defined by

$$(T^*f)(\mathbf{v}) = f(T\mathbf{v})$$
 for all $f \in W^*$, $\mathbf{v} \in V$.

In words: to evaluate T^*f at a vector \mathbf{v} , first apply T to \mathbf{v} , then apply the functional f to the result.

Theorem 1. The matrix of the dual map T^* is the transpose of the matrix of T.

Proof. Choose bases:

- $\mathcal{B} = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ for V,
- $C = \{\mathbf{w}_1, \dots, \mathbf{w}_m\}$ for W,
- $\mathcal{B}^* = \{\mathbf{v}^1, \dots, \mathbf{v}^n\}$ and $\mathcal{C}^* = \{\mathbf{w}^1, \dots, \mathbf{w}^m\}$ for the dual bases.

Suppose the matrix of T with respect to \mathcal{B}, \mathcal{C} is $A = (a_{ij})$, so Then:

$$T(\mathbf{v}_1) = \sum_{i=1}^m A_{i1} \, \mathbf{w}_i$$

More generally:

$$T(\mathbf{v}_j) = \sum_{i=1}^m a_{ij} \mathbf{w}_i.$$

We compute the matrix of T^* with respect to C^* , \mathcal{B}^* . For any $k \in \{1, \ldots, m\}$ and $j \in \{1, \ldots, n\}$,

$$(T^*\mathbf{w}^k)(\mathbf{v}_j) = \mathbf{w}^k(T\mathbf{v}_j) = \mathbf{w}^k\left(\sum_{i=1}^m a_{ij}\mathbf{w}_i\right) = a_{kj}.$$

On the other hand, if the matrix of T^* is $B = (b_{\ell k})$, then

$$T^*(\mathbf{w}^1) = \sum_{\ell=1}^n b_{\ell 1} \, \mathbf{v}^\ell$$

More generally:

$$T^*(\mathbf{w}^k) = \sum_{\ell=1}^n b_{\ell k} \mathbf{v}^\ell,$$

SO

$$(T^*\mathbf{w}^k)(\mathbf{v}_j) = b_{jk}.$$

Comparing both expressions gives $b_{jk} = a_{kj}$, so $B = A^{\top}$.

That is the matrix of the dual map T^* is the transpose of the matrix of T. \square

Recall from Chapter 1 that take key orthogonal decompositions are:

$$\mathbb{R}^n = \text{Row}(A) \oplus \text{Nul}(A), \quad \mathbb{R}^m = \text{Col}(A) \oplus \text{Nul}(A^\top),$$

or equivalently:

$$\operatorname{Nul}(A) = \operatorname{Row}(A)^{\perp}, \quad \operatorname{Nul}(A^{\top}) = \operatorname{Col}(A)^{\perp}.$$

2. What Is the Annihilator?

Let V be a finite-dimensional vector space, and let $W \subseteq V$ be a subspace. The **annihilator** of W is:

$$W^{\circ} = \{ f \in V^* : f(\mathbf{w}) = 0 \text{ for all } \mathbf{w} \in W \},$$

where V^* is the **dual space** (the space of linear functionals on V).

Lemma 2.

$$\dim(W^{\circ}) = \dim(V) - \dim(W).$$

Proof. Step 1: W° is a subspace of V^{*} . Clearly $0 \in W^{\circ}$. If $f, g \in W^{\circ}$ and $\alpha, \beta \in \mathbb{R}$, then for any $\mathbf{w} \in W$,

$$(\alpha f + \beta g)(\mathbf{w}) = \alpha f(\mathbf{w}) + \beta g(\mathbf{w}) = 0,$$

so $\alpha f + \beta g \in W^{\circ}$. Hence $W^{\circ} \leq V^{*}$.

Step 2: Choose a basis adapted to W. Let $\dim V = n$ and $\dim W = k$. Choose a basis

$$\{\mathbf{w}_1,\ldots,\mathbf{w}_k\}$$

for W, and extend it to a basis of V:

$$\mathcal{B} = \{\mathbf{w}_1, \dots, \mathbf{w}_k, \mathbf{v}_{k+1}, \dots, \mathbf{v}_n\}.$$

Let $\mathcal{B}^* = \{\mathbf{w}^1, \dots, \mathbf{w}^k, \mathbf{v}^{k+1}, \dots, \mathbf{v}^n\}$ be the dual basis of V^* , so that

$$\mathbf{w}^{i}(\mathbf{w}_{j}) = \delta_{j}^{i}, \quad \mathbf{v}^{i}(\mathbf{v}_{j}) = \delta_{j}^{i}, \quad \mathbf{w}^{i}(\mathbf{v}_{j}) = 0, \quad \mathbf{v}^{i}(\mathbf{w}_{j}) = 0$$

for all valid indices.

Step 3: Characterize W° using the dual basis. Let $f \in V^{*}$. Write f in the dual basis:

$$f = \sum_{i=1}^{k} a_i \mathbf{w}^i + \sum_{j=k+1}^{n} b_j \mathbf{v}^j.$$

For any $\mathbf{w} \in W$, we have $\mathbf{w} = \sum_{i=1}^{k} c_i \mathbf{w}_i$, so

$$f(\mathbf{w}) = \sum_{i=1}^{k} a_i c_i.$$

Thus $f(\mathbf{w}) = 0$ for all $\mathbf{w} \in W$ if and only if $a_1 = \cdots = a_k = 0$.

Therefore,

$$W^{\circ} = \operatorname{span}\{\mathbf{v}^{k+1}, \dots, \mathbf{v}^n\}.$$

Step 4: Compute the dimension. The set $\{\mathbf{v}^{k+1}, \dots, \mathbf{v}^n\}$ is linearly independent and spans W° , so it is a basis. Hence

$$\dim(W^{\circ}) = n - k = \dim(V) - \dim(W).$$

3. Connecting Annihilators to the Four Subspaces

Theorem 2.

$$\operatorname{Nul}(A^{\top}) \cong (\operatorname{Col}(A))^{\circ}, \qquad \operatorname{Nul}(A) \cong (\operatorname{Row}(A))^{\circ},$$

where the annihilator is taken inside the appropriate dual space, and the isomorphism is the one induced by the dot product.

Proof. Connection Between Null Space and Annihilator via the Dot Product

Let A be an $m \times n$ real matrix. We will prove that, under the natural identification of vectors in \mathbb{R}^m with linear functionals on \mathbb{R}^m provided by the standard dot product, the null space of A^{\top} corresponds exactly to the annihilator of the column space of A. That is,

$$\operatorname{Nul}(A^{\top}) \cong (\operatorname{Col}(A))^{\circ}.$$

We proceed step by step, explaining the meaning of each concept and how they relate.

Step 1: The dot product gives a canonical isomorphism $\mathbb{R}^m \cong (\mathbb{R}^m)^*$

Step 2: What is the annihilator $(Col(A))^{\circ}$?

The **column space** of A is the subspace of \mathbb{R}^m defined by

$$Col(A) = \{A\mathbf{x} \mid \mathbf{x} \in \mathbb{R}^n\} \subseteq \mathbb{R}^m.$$

Its **annihilator** is the set of all linear functionals on \mathbb{R}^m that vanish on every vector in $\operatorname{Col}(A)$:

$$(\operatorname{Col}(A))^{\circ} = \{ f \in (\mathbb{R}^m)^* \mid f(\mathbf{y}) = 0 \text{ for all } \mathbf{y} \in \operatorname{Col}(A) \}.$$

Because every $\mathbf{y} \in \text{Col}(A)$ can be written as $\mathbf{y} = A\mathbf{x}$ for some $\mathbf{x} \in \mathbb{R}^n$, we can rephrase this condition as:

$$f \in (\operatorname{Col}(A))^{\circ} \iff f(A\mathbf{x}) = 0 \text{ for all } \mathbf{x} \in \mathbb{R}^n.$$

Step 3: Translate the annihilator condition using the dot product identification

Now consider a vector $\mathbf{v} \in \mathbb{R}^m$, and let $f_{\mathbf{v}}$ be the corresponding functional: $f_{\mathbf{v}}(\mathbf{y}) = \mathbf{v}^{\top}\mathbf{y}$. We ask: When does $f_{\mathbf{v}}$ belong to $(\operatorname{Col}(A))^{\circ}$?

By the characterization above, this happens precisely when

$$f_{\mathbf{v}}(A\mathbf{x}) = 0$$
 for all $\mathbf{x} \in \mathbb{R}^n$.

Substituting the definition of $f_{\mathbf{v}}$, this becomes:

$$\mathbf{v}^{\top}(A\mathbf{x}) = 0 \quad \text{for all } \mathbf{x} \in \mathbb{R}^n.$$
 (1)

Step 4: Rewrite the condition using properties of the transpose

The expression $\mathbf{v}^{\top}A\mathbf{x}$ is a scalar (a 1×1 matrix). Using the associative law for matrix multiplication and the identity $(XY)^{\top} = Y^{\top}X^{\top}$, we observe:

$$\mathbf{v}^{\top} A \mathbf{x} = (\mathbf{v}^{\top} A) \mathbf{x} = (A^{\top} \mathbf{v})^{\top} \mathbf{x}.$$

Thus, condition (1) is equivalent to:

$$(A^{\mathsf{T}}\mathbf{v})^{\mathsf{T}}\mathbf{x} = 0 \text{ for all } \mathbf{x} \in \mathbb{R}^n.$$

Step 5: A linear functional is zero everywhere iff its representing vector is zero

The map $\mathbf{x} \mapsto (A^{\top}\mathbf{v})^{\top}\mathbf{x}$ is a linear functional on \mathbb{R}^n . The only linear functional that vanishes on *every* vector in \mathbb{R}^n is the zero functional. But under the same dot product identification in \mathbb{R}^n , the zero functional corresponds to the zero vector. Therefore, if this is true for all x then we must have:

$$(A^{\mathsf{T}}\mathbf{v})^{\mathsf{T}}\mathbf{x} = 0 \text{ for all } \mathbf{x} \in \mathbb{R}^n \iff A^{\mathsf{T}}\mathbf{v} = \mathbf{0}.$$

In other words, \mathbf{v} must lie in the null space of A^{\top} .

Step 6: Conclude the correspondence

We have shown the following chain of equivalences:

$$\mathbf{v} \in \operatorname{Nul}(A^{\top}) \iff A^{\top}\mathbf{v} = \mathbf{0}$$

$$\iff (A^{\top}\mathbf{v})^{\top}\mathbf{x} = 0 \text{ for all } \mathbf{x} \in \mathbb{R}^{n}$$

$$\iff \mathbf{v}^{\top}A\mathbf{x} = 0 \text{ for all } \mathbf{x} \in \mathbb{R}^{n}$$

$$\iff f_{\mathbf{v}}(A\mathbf{x}) = 0 \text{ for all } \mathbf{x} \in \mathbb{R}^{n}$$

$$\iff f_{\mathbf{v}} \in (\operatorname{Col}(A))^{\circ}.$$

Therefore, under the isomorphism $\mathbf{v} \leftrightarrow f_{\mathbf{v}}$, the subspace $\operatorname{Nul}(A^{\top}) \subseteq \mathbb{R}^m$ corresponds exactly to the subspace $(\operatorname{Col}(A))^{\circ} \subseteq (\mathbb{R}^m)^*$.

Geometric Interpretation

This result has a clean geometric meaning: a vector $\mathbf{v} \in \mathbb{R}^m$ is orthogonal (with respect to the dot product) to every vector in the column space of A if and only if $A^{\top}\mathbf{v} = \mathbf{0}$. But "orthogonal to the column space" is precisely what it means for the functional $f_{\mathbf{v}}(\mathbf{y}) = \mathbf{v} \cdot \mathbf{y}$ to vanish on $\operatorname{Col}(A)$ — i.e., to be in the annihilator. Thus, in \mathbb{R}^m , the annihilator $(\operatorname{Col}(A))^{\circ}$ is naturally identified with the orthogonal complement $\operatorname{Col}(A)^{\perp}$, and we recover the familiar fundamental theorem of linear algebra:

$$\operatorname{Nul}(A^{\top}) = \operatorname{Col}(A)^{\perp}.$$

Theorem 3. $Nul(A) \cong (Row(A))^{\circ}$

Proof. This follows immediately by symmetry.

Conclusion. Via the standard dot product identification $\mathbb{R}^k \cong (\mathbb{R}^k)^*$, we have natural isomorphisms:

$$\operatorname{Nul}(A^{\top}) \cong (\operatorname{Col}(A))^{\circ}, \qquad \operatorname{Nul}(A) \cong (\operatorname{Row}(A))^{\circ}.$$

The Annihilator reveals that the four subspaces reflect a fundamental duality. The matrix $A: \mathbb{R}^n \to \mathbb{R}^m$ induces a **dual map** $A^*: (\mathbb{R}^m)^* \to (\mathbb{R}^n)^*$, and we have:

$$\ker(A^*) = (\operatorname{Im} A)^{\circ}, \qquad \operatorname{Im}(A^*) = (\ker A)^{\circ}.$$

When we identify $(\mathbb{R}^k)^* \cong \mathbb{R}^k$ via the dot product, these become:

$$\operatorname{Nul}(A^{\top}) = \operatorname{Col}(A)^{\perp}, \qquad \operatorname{Row}(A) = \operatorname{Nul}(A)^{\perp}.$$