MAT02035 - Modelos para dados correlacionados

Visão geral de modelos lineares para dados longitudinais

Rodrigo Citton P. dos Reis citton.padilha@ufrgs.br

Universidade Federal do Rio Grande do Sul Instituto de Matemática e Estatística Departamento de Estatística

Porto Alegre, 2019

Breve introdução ao R

O que é o R?

- ▶ O R é uma linguagem de programação desenvolvida para:
 - Manipulação de dados;
 - Análise estatística;
 - Visualização de dados.
- ▶ O que diferencia o R de outras ferramentas de análise de dados?
 - Desenvolvido por estatísticos;
 - É um software livre;
 - É extensível através de pacotes.

Breve histórico

- ▶ R é a versão livre, de código aberto, e gratuita do S.
 - ► Nos anos 1980 o S foi desenvolvido nos Laboratórios Bell, por John Chambers, para análise de dados e geração de gráficos.

Breve histórico

- O R foi inicialmente escrito no começo dos anos 1990.
 - Robert Gentleman e Ross Ihaka no Dep. de Estatística da Universidade de Auckland.
- O nome R se dá em parte por reconhecer a influência do S e por ser a inicial dos nomes Robert e Ross.

- Desde 1997 possui um grupo de 20 desenvolvedores.
 - ▶ A cada 6 meses uma nova versão é disponibilizada contendo

Interface do R

Como trabalhar com o R?

- ► Por ser uma linguagem de programação, o R realiza suas tarefas através de funções e operadores.
 - ► A criação de scripts (rotinas) é a melhor prática para se trabalhar com o {R}.
 - OBSERVAÇÃO: sempre salve seus scripts (em um pen drive, dropbox ou e-mail); você pode querer utilizá-los novamente no futuro.
 - ▶ Utilização de editores de texto: bloco de notas, Notepad ++, Tinn-R, etc.
 - ▶ Interfaces de {R} para usuários: RStudio.

Editores de texto

Hello-exemplo - Bloco de notas

Arquivo Editar Formatar Exibir Ajuda

```
h <- "Hello"
yourname <- readline("what is your name?")
print(paste(h, yourname))</pre>
```

Editores de texto

Interface do RStudio

Analisando dados

Fases de análise

- 1. Manipulação inicial dos dados.
 - Limpeza dos dados.
 - Criação, transformação e recodificação de variáveis.
- 2. Análise preliminar.
 - Conhecimento dos dados, identificação de outliers, investigação preliminar.
- 3. Análise definitiva.
 - Disponibiliza a base para as conclusões.
- Apresentação das conclusões de forma precisa, concisa e lúcida.

Você pode usar o R para

- Importação e exportação de dados
- Manipulação de dados: Transformação e recodificação de variáveis;
 Aplicação de filtros
- Visualização de dados: Diversos gráficos; Mapas; Gráficos e mapas interativos
- Análise de dados: Análise descritiva; Ajuste de modelos; Técnicas multivariadas; Análise de amostras complexas
- Geração de relatórios: Relatórios nos formatos pdf, HTML, Word, Power Point

Resumindo: você pode usar o R em todas as etapas de uma análise de dados!

Gráficos do R

Comunicação de resultados através do R: R Markdown

- Produz documentos dinâmicos em R.
- Documentos R Markdown são completamente reproduzíveis.
- R Markdown suporta dezenas de formatos de saída, incluindo HTML, PDF, MS Word, Beamer, dashboards, aplicações shiny, artigos científicos e muito mais.

Comunicação de resultados através do R: CompareGroups

Características dos grupos do estudo

	Total N=6324	Control N=2042	MDN N=2100	MDV N=2182	p-valor
Age	67.0 (6.17)	67.3 (6.28)	66.7 (6.02)	67.0 (6.21)	0.003
Sex: Female	3645 (57.6%)	1230 (60.2%)	1132 (53.9%)	1283 (58.8%)	<0.001
Smoking:					0.444
Never	3892 (61.5%)	1282 (62.8%)	1259 (60.0%)	1351 (61.9%)	
Current	858 (13.6%)	270 (13.2%)	296 (14.1%)	292 (13.4%)	
Former	1574 (24.9%)	490 (24.0%)	545 (26.0%)	539 (24.7%)	
Waist circumference	100 [93.0;107]	101 [94.0;108]	100 [93.0;107]	100 [93.0;107]	0.085
Hormone-replacement therapy	97 (2.80%)	31 (2.64%)	30 (2.81%)	36 (2.95%)	0.898

Comunicação de resultados através do R: stargazer

Estimativas dos efeitos fixos dos modelos simples.

			Variável resposta					
	Média de cinza							
	(1)	(2)	(3)	(4)	(5)			
time1	4.190**	4.183**	4.190**	4.199**	4.191**			
	(0.364, 8.016)	(0.355, 8.011)	(0.363, 8.017)	(0.372, 8.026)	(0.364, 8.019)			
time2	9.155***	9.138***	9.161***	9.081***	9.178***			
	(4.789, 13.521)	(4.768, 13.508)	(4.791, 13.532)	(4.712, 13.450)	(4.808, 13.549)			
forca.de.mordida	a 0.096***							
	(0.041, 0.150)							
idade		-1.241**						
		(-2.376, -0.105)						
sexoFeminino			-6.492					
			(-27.707, 14.722)					
provisorioSim				16.420°				
			(-0.556, 33.396)					
archMandíbula					9.322			
					(-6.396, 25.040)			
Constant	51.023***	172.271***	100.214***	90.139***	90.109***			
	(24.326, 77.721)	(101.403, 243.139)(81.940, 118.489)	(79.631, 100.646))(76.930, 103.287)			
Observations	319	319	319	319	319			
Note:				p<0.	.1; p<0.05; p<0.01			

Comunicação de resultados através do R

Comunicação de resultados através do R

Comunicação de resultados através do R: Shiny

- Shiny é um pacote do R que torna mais fácil a construção de aplicações web interativas (apps) diretamente do R.
 - ▶ Permite a criação e compartilhamento de aplicativos.
 - Espera nenhum conhecimento de tecnologias web como HTML, CSS ou JavaScript (mas você pode aproveitá-las, caso as conheça)
 - Um aplicativo Shiny consiste em duas partes: uma interface de usuário (UI) e um servidor.

Shiny

Baixando e instalando o R

Para instalação do R acesse o site https://www.r-project.org/:

- 1. Em Download clique em CRAN.
 - ▶ O CRAN (*The Comprehensive R Archive Network*) é uma rede de servidores ftp e web em todo o mundo que armazena versões de código e documentação idênticas e atualizadas para o R.
- 2. Escolha um repositório de sua preferência, por exemplo, Universidade Federal do Paraná (http://cran-r.c3sl.ufpr.br/).
- Em Download and Install R clique no link adequado para o seu sistema operacional (no caso de Windows, clique no link Download R for Windows).
- 4. Clique no link base (no caso do sistema operacional ser Windows).
- Finalmente clique no link para baixar o arquivo executável (a versão mais atual Download R 3.5.1 for Windows).

Após baixar o arquivo executável, abra-o e siga as etapas de instalação conforme as configurações padrões.

Baixando e instalando o RStudio

Para instalação do RStudio acesse o site https://www.rstudio.com/products/rstudio/download/.

► Em Installers for Supported Platforms baixe a versão mais recente do instalador do RStudio de acordo com o seu sistema operacional (no caso de Windows clique no link RStudio 1.1.456 - Windows Vista/7/8/10).

Pacotes

- ► Assim como a maioria dos softwares estatísticos, o R possui os seus "módulos", mais conhecidos como **pacotes** do R.
- ▶ Pacote: é uma coleção de funções do R; os pacotes também são gratuitos e disponibilizados no CRAN.
- Um pacote inclui: funções do R, conjuntos de dados (utilizados em exemplos das funções), arquivo com ajuda (help), e uma descrição do pacote.
- Atualmente, o repositório oficial do R possui mais de 12.000 pacotes disponíveis.
- ► As funcionalidades do R, podem ser ampliadas carregando estes pacotes, tornando-o um software muito poderoso, capaz de realizar inúmeras tarefas.

Pacotes

- Alguns exemplos destas tarefas e alguns destes pacotes são listados abaixo:
 - Importação e exportação de dados
 - ▶ foreign, readr, haven
 - Manipulação de dados
 - ► Transformação e recodificação de variáveis: reshape2, stringr
 - Visualização de dados
 - Diversos gráficos: graphics, ggplot2, ggthemes
 - ► Mapas: ggmap
 - Gráficos e mapas interativos: plotly
 - Análise de dados
 - Análise descritiva: compareGroups
 - ► Ajuste de modelos: stats, survival
 - Análise de amostras complexas: survey
 - Geração de relatórios
 - Relatórios nos formatos pdf, HTML, Word, Power Point: knitr, rmarkdow, officer

Instalando pacotes

▶ Para instalação de um pacote, basta um simples comando.

install.packages("survey")

Além da opção de comando, também podemos instalar pacotes utilizando o menu Tools do RStudio, opção Install packages ... e preenchendo com o(s) nome(s) do(s) pacote(s):

Instalando pacotes

- Outra opção é instalar o pacote a partir de seu arquivos fonte (.zip ou .tar.gz):
 - Para isso, obtenha o arquivo fonte do pacote (geralmente através do CRAN) e no menu Tools do RStudio, opção Install packages ... em Install from escolha a seguinte opção:

Instalando pacotes

Após a instalação do pacote, temos que **carregar o pacote** para nossa área de trabalho para podermos usufruir de suas funções.

```
library("survey")
require("survey")
```

Obtendo ajuda no R

Para conhecer quais as funções disponíveis no pacote, faça:

```
help(package = "survey")
```

Para pedir ajuda de uma determinada função:

```
?glm
help("glm")
```

Obtendo ajuda na internet:

```
help.search("t.test")
```

Obtendo ajuda no R

Procurando por alguma função, mas esqueci o nome:

```
apropos("lm")
```

- Para todas as outras dúvidas existe o Google!
- Ver também http://www.r-bloggers.com/ e https://rstudio.cloud/
- ▶ Para algumas demonstrações da capacidade gráfica do R:

```
demo(graphics)
demo(persp)
demo(Hershey)
demo(plotmath)
```

Exercícios

Exercícios

- ► Com o auxílio do computador, faça os exercícios do Capítulo 2 do livro "Applied Longitudinal Analysis" (páginas 44 e 45).
- ► Enviar soluções pelo Moodle através do fórum.

Avisos

- Para casa: ler o Capítulo 3 do livro "Applied Longitudinal Analysis". Caso ainda não tenha lido, leia também os Caps. 1 e 2.
 Ver https://datathon-ufrgs.github.io/Pintando_e_Bordando_no_R/
- ▶ **Próxima aula:** Métodos de análise descritiva para dados longitudinais.

Bons estudos!

