1 Zustandsgrößen und totale Differentiale

1.1 Extensive und Intensive Zustandsgrößen

Extensive Zustandsgrößen hängen von der Größe des Systems ab. Intensive Zustandsgrößen sind demgegenüber unabhängig von der Systemgröße.

Tabelle 1: Beispiele für Zustandsgrößen und Einteilung in intensive und extensive

Intensive Zustandsgrößen	Extensive Zustandsgrößen
Molvolumen	Entropie
Temperatur	Stoffmenge
Druck	Volumen
Partialdruck	innere Energie
molare Masse	Enthalpie
Konzentration	Masse
Dichte	
spezifisches Volumen	

1.2 Das Volumen eines Zylinders ein totales Differential?

Das Volumen eines Zylinders kann mit

$$V(r,h) = r^2 \pi h \tag{1}$$

berechnet werden. Das totale Differential berechnet sich zu

$$dV = \left(\frac{\partial V}{\partial r}\right)_h dr + \left(\frac{\partial V}{\partial h}\right)_r dh = 2r\pi h dr + r^2 \pi dh.$$
 (2)

Um zu überprüfen, ob V(r,h) eine Zustandsfunktion ist, muss untersucht werden, ob die gemischten zweiten partiellen Ableitungen gleich sind. Auf einem sternförmigen Gebiet gelten dann die Integrabilitätsbedingungen sowie der Satz von Schwarz. Es gilt

$$\begin{aligned}
\partial_r \partial_h V &= 2r\pi \\
\partial_h \partial_r V &= 2r\pi.
\end{aligned} \tag{3}$$

Daraus folgt, dass $\partial_r \partial_h V = \partial_h \partial_r V$ und damit ist V(r,h) eine Zustandsfunktion. \square

Florian Kluibenschedl Seite 1

1.3 Totales Differential einer exemplarischen Funktion

Wir betrachten die Funktion

$$f(x,y) = x^4 + xy \tag{4}$$

und bilden $J = (\partial_x f(x, y) \quad \partial_y f(x, y)) = (4x^3 + y \quad x)$ sowie die Hesse-Matrix

$$H_f = \begin{pmatrix} \partial_{xx} f(x, y) & \partial_{yx} f(x, y) \\ \partial_{xy} f(x, y) & \partial_{yy} f(x, y) \end{pmatrix} = \begin{pmatrix} 12x^2 & 1 \\ 1 & 0 \end{pmatrix}.$$
 (5)

Aufgrund der Symmetrie von H_f ist auf einem sternförmigen Gebiet der Satz von Schwarz erfüllt und damit f(x, y) eine Zustandsfunktion. Das totale Differential lässt sich schreiben als

$$df(x,y) = (\partial_x f(x,y))_y dx + (\partial_y f(x,y))_x dy = (4x^3 + y) dx + (x) dx,$$
(6)

wobei die Einträge der oben angegebenen Jakobi-Matrix eingesetzt wurden.

1.4 Das molare Volumen ein totales Differential?

Wir betrachten das totale Differential

$$dV_m = \left(\frac{R}{p}\right)_p dT - \left(\frac{RT}{p^2}\right)_T dp. \tag{7}$$

Die gemischten zweiten partiellen Ableitungen lauten

$$\partial_p \partial_T V_m = -\frac{R}{p^2}$$

$$\partial_T \partial_p V_m = -\frac{R}{p^2}$$
(8)

und damit ist V_m eine Zustandsfunktion, was wiederum impliziert, dass $\mathrm{d}V_m$ wirklich ein totales Differential ist.

1.5 Zusammensetzung eines Gasgemisches

Folgende Daten eines Gasgemisches der drei Komponenten A, B, C sind gegeben: $p_{Ges.}=1.00$ bar, $V_{Ges.}=1$ m³, T=298 K, $x_A=0.3$ und $p_B=0.25$ bar. Wir rechnen wie folgt:

$$p_{A} = x_{A} \cdot p_{Ges.}$$

$$\Rightarrow p_{C} = p_{Ges.} - p_{B} - p_{A}$$

$$\Rightarrow n_{C} = \frac{p_{C} \cdot V_{Ges.}}{RT}$$

$$\Rightarrow m_{C} = n_{C} \cdot M_{N_{2}} = 508.6 \text{ g}$$

$$(9)$$

Das Gasgemisch enthält demnach $508.6\,\mathrm{g}$ an N_2 .

Florian Kluibenschedl Seite 2