Zu Abschnitt 5.1

- **5.1.1** Welche der folgenden Teilmengen von Abb $([0,1],\mathbb{R})$ ist ein Unterraum?
 - a) $\{f \mid f \text{ ist stetig bei 0 oder bei 1}\}.$
 - b) $\{f \mid f \text{ ist stetig bei } 0 \text{ und bei } 1\}.$
 - c) $\{f \mid f \text{ ist eine Lipschitzabbildung}\}.$

in [0,1] mit $x_n \to x$. Dann gilt

- d) $\{f \mid f \text{ ist unstetig bei } 1/2\}.$
- a) Beh: $U_1 := \{f \mid f \text{ ist stetig bei 0 oder bei 1}\}$ ist kein Unterraum von Abb ([0,1], \mathbb{R}). Betrachte $\chi_{\{0\}}$, $^{1)}$ es ist $\chi_{\{0\}} \in U_1$, da $\chi_{\{0\}}(x) \to 0 = \chi_{\{0\}}(1)$ für $x \to 1$, und es ist analog $\chi_{\{1\}} \in U_1$ wegen der Stetigkeit bei 0.

Aber $\chi_{\{0\}} + \chi_{\{1\}} = \chi_{\{0,1\}} \not\in U_1$, denn es ist

$$\chi_{\{0,1\}}\left(\frac{1}{n}\right) = 0 \not\to 1 = \chi_{\{0,1\}}(0), \ n \to \infty$$

und

$$\chi_{\{0,1\}}\left(1-\frac{1}{n}\right) = 0 \not\to 1 = \chi_{\{0,1\}}(1), \ n \to \infty,$$

das heißt aber gerade $\chi_{\{0,1\}} \notin U_1$, was heißt, dass U_1 kein Unterraum ist.

b) Beh.: $U_2 := \{f \mid f \text{ ist stetig bei } 0 \text{ und bei } 1\}$ ist ein Unterraum. Zunächst ist $U_2 \neq \emptyset$, da z.B. $0 \in U_2$, da konstante Funktionen stets stetig sind. Seien nun $f,g \in U_2$ und $\lambda \in \mathbb{R}$ sowie $x \in \{0,1\}$ und $(x_n)_{n \in \mathbb{N}}$ eine Folge

$$(f + \lambda g)(x_n) = f(x_n) + \lambda g(x_n)$$

$$\stackrel{\text{Stetigkeit von } f, g \text{ bei } x}{=} f(x) + \lambda g(x)$$

$$= (f + \lambda g)(x).$$

Also ist $f + \lambda g \in U_2$ und U_2 ist ein Unterraum.

c) Beh.: $U_3:=\{f\mid f \text{ ist eine Lipschitzabbildung}\}$ ist ein Unterraum. Wegen $0\in U_3$ ist $U_3\neq\emptyset$, seien also $f,g\in U_3,\ \lambda\in\mathbb{R}$. Dann gilt, wenn L_f resp. L_g Lipschitzkonstanten für f resp. g bzeichnen, für $x,y\in[0,1]$:

$$\begin{aligned} \left| (f + \lambda g)(x) - (f + \lambda g)(y) \right| &\leq |f(x) - f(y)| + |\lambda| |g(x) - g(y)| \\ &\leq L_f |x - y| + |\lambda| L_g |x - y| \\ &= (L_f + |\lambda| L_g) |x - y| \end{aligned}$$

was $f + \lambda g \in U_3$ zeigt.

- d) Beh.: $U_4:=\{f\mid f \text{ ist unstetig bei }1/2\}$ ist kein Unterraum. Betrachte $f:[0,1]\to\mathbb{R}$ mit f(1/2):=1 und f(x):=0 für $x\neq 1/2$. Dann sind f und -f unstetig bei 1/2 (p.e. ist $f\left(1/2-1/(2n)\right)\to 0\neq f(1/2)=1$ für $n\to\infty$), also $f,-f\in U_4$, aber 0=f+(-f) ist stetig bei 1/2, also $0\notin U_4$, d.h. U_4 ist kein Unterraum.
- **5.1.2** Sei V ein Vektorraum von reellwertigen Funktionen auf einer Menge M. Dann ist die punktweise definierte Relation \leq eine Ordnungsrelation auf V.

 $^{^{1)}}$ die charakteristische Funktion der Menge $\{0\}$ für eine Menge M und eine Teilmenge $A\subset M$ ist $\chi_A:M\to\mathbb{R}\;$ durch $\chi_A(m)=1$ falls $m\in A$ und $\chi_A(m)=0$ für $m\in M\setminus A.$

a) Sei V der Raum der stetigen Funktionen auf \mathbb{R} . Zeigen Sie, dass die konstante Einsfunktion 1 Supremum der Menge $\Delta = \{f_n \mid n \in \mathbb{N}\}$ ist. Dabei sei f_n die Funktion $x \mapsto \sin(nx)$.

(Zu zeigen ist also, dass erstens $1 \ge f_n$ für alle n gilt und dass $h \ge 1$ sein muss, wenn h eine stetige Funktion ist, für die $h \ge f_n$ für alle n gilt.)

- b) In dem vorstehend definierten Raum hat jede endliche Menge ein Supremum.
- c) Diesmal sei V der Raum C^1 [0,1]. Zeigen Sie, dass zweielementige Teilmengen manchmal ein Supremum besitzen, manchmal aber auch nicht.
- a) Zunächst ist sicher $f_n \leq \mathbf{1}$ für $n \in \mathbb{N}$, denn für $x \in [0,1]$ ist

$$f_n(x) = \sin(nx) \le 1 = \mathbf{1}(x).$$

Sei nun also $h:[0,1]\to\mathbb{R}$ stetig und gelte $f_n\leq h$ für alle $n\in\mathbb{N}$. Zu zeigen ist $\mathbf{1}\leq h$.

Dazu zeigt man, dass

$$A := \{x \mid f_n(x) = 1 \text{ für ein } n \in \mathbb{N} \}$$

dicht in [0,1] liegt (das reicht, denn aus der Voraussetzung an h folgt $\mathbf{1}_A \leq h|_A$, also wegen der Stetigkeit von $\mathbf{1}$ und h auch $\mathbf{1} \leq h$, q.e.d.).

Sei also $x \in [0,1]$ und $\varepsilon > 0$, wähle eine rationale Zahl q = 2k/n mit $\left|2k/n - x\pi^{-1}\right| < \varepsilon/(2\pi)$, und wähle n dabei so, dass $\pi/(2n) < \varepsilon/2$ (das ist durch Erweitern stets möglich), setze nun

$$a := \frac{2}{k}n\pi + \frac{1}{n} \cdot \frac{\pi}{2}$$

dann gilt einerseits:

$$|x - a| \leq \left| x - \frac{2k}{n} \pi \right| + \frac{\pi}{2n}$$

$$= \pi \left| \frac{x}{\pi} - q \right| + \frac{\pi}{2n}$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

$$= \varepsilon.$$

und andererseits:

$$f_n(a) = \sin\left(2k\pi + \frac{\pi}{2}\right) = 1,$$

also $a \in A$.

- b) Sei also $M \subset C[0,1]$ endlich, $M = \{f_1, \ldots, f_n\}$ es ist $f := \max_{1 \le i \le n} f_i$ eine stetige Funktion²), wir zeigen, dass $f = \sup M$ gilt:
 - $M \le f$ ist klar nach Definition von f,
 - sei also $g \in C[0,1]$ mit $M \leq g$ und $x \in [0,1]$, wähle $1 \leq i \leq n$ mit $f(x) = f_i(x)$, es folgt, dass

$$f(x) = f_i(x) \le g(x)$$

da x beliebig war also $f \leq g$

 $[\]overline{a}^{(2)}$ Für n=2 folgt das aus $\max\{a,b\}=1/2\cdot (a+b+|a-b|)$, für $n\geq 3$ durch Induktion.

c) Betrachte zunächst $0, \mathbf{1} \in V$. Die Menge $M := \{0, \mathbf{1}\}$ hat sicher das Supremum $\mathbf{1}$ in V, denn:

Es ist $0 \le \mathbf{1}$, also gilt $M \le \mathbf{1}$, für ein $g \in V$ mit $M \le g$ folgt wegen $\mathbf{1} \in M$ sofort, dass $\mathbf{1} \le g$, was $\mathbf{1} = \sup M$ zeigt.

Betrachte andererseits $M := \{1/2 - \mathrm{id}, \mathrm{id} - 1/2\}$, offenbar gilt für $x \in [0, 1]$, dass

$$\sup\{1/2 - x, x - 1/2\} = |x - 1/2|$$

wir zeigen, dass M kein Supremum in V hat:

Sei dazu $M \leq h$ für ein $h \in V$, wir zeigen, dass ein $g \in V$ mit $M \leq g \leq h$, $h \neq g$ existiert:

Betrachte die Stelle 1/2, angenommen, es wäre h(1/2)=0, für $\eta>0$ folgte, dass

$$\frac{h(1/2+\eta)}{\eta} \ge \frac{\eta}{\eta} = 1$$

also $h'(1/2) \ge 1$, andererseits wäre für $\eta < 0$:

$$\frac{h(1/2+\eta)}{\eta} \le \frac{-\eta}{\eta} = -1$$

also sicher $h'(1/2) \leq -1$, d.h. h(1/2) = 0 ist unmöglich, es ist also h(1/2) > 0. Da nun aber h und $|\cdot -1/2|$ stetige Funktionen sind, existiert $\varepsilon > 0$ mit h(x) - |x - 1/2| > h(1/2)/2 für $|x - 1/2| < \varepsilon$. Wähle nun $\varphi \in C_0^{\infty}([0,1])$ mit $\varphi \leq h(1/2)/2$, $\varphi(1/2) = h(1/2)/2$, $\varphi \geq 0$ und supp $\varphi \subset [1/2 - \varepsilon, 1/2 + \varepsilon]$, dann ist $g := h - \varphi \in V$, $g \leq h$ und $M \leq g$ sowie $g \neq h$, das war aber zu zeigen.

Zu Abschnitt 5.2

- **5.2.1** (f_n) sei eine Folge von Funktionen von \mathbb{R} nach \mathbb{R} , die punktweise gegen eine Funktion f konvergiert. Für welche der folgenden Eigenschaften E gilt "Falls alle f_n die Eigenschaft E haben, so auch f"?
 - a) E: "Die Funktion ist bei 5 größer als bei 4.9".
 - b) E: "Die Funktion ist nichtnegativ bei allen ganzen Zahlen".
 - c) E: "Die Funktion ist stetig bei 0".
 - d) E: "Die Funktion ist konvex".
 - a) Nein.

Betrachte $f_n(x) := x/n$, dann gilt $f_n \to 0$ punktweise und $f_n(5) = 5/n > 4.9/n = f_n(4.9)$ für alle n, aber es ist $f(5) = 0 \not> 0 = f(4.9)$.

b) Ja.

Sei $z \in \mathbb{Z}$, dann gilt $f_n(z) \geq 0$ für alle $n \in \mathbb{N}$ also auch

$$f(z) = \lim_{n \to \infty} f_n(z) \ge 0.$$

c) Nein.

Betrachte $f_n(x) := \max\{|1-x|^n, 1\}$, dann gilt $f_n(x) \to 1$ für $x \notin (0,2)$ und $f_n(x) \to 0$ für $x \in (0,2)$.

Die f_n sind stetig in 0 als Komposition stetiger Funktionen, f ist es aber wegen f(1/n) = 0, f(-1/n) = 1 für alle $n \in \mathbb{N}$ nicht.

d) Ja.

Seien $x, y \in \mathbb{R}$, $\lambda \in [0, 1]$ dann ist

$$f(\lambda x + (1 - \lambda)y) = \lim_{n \to \infty} f_n(\lambda x + (1 - \lambda)y)$$

$$\leq \lim_{n \to \infty} (\lambda f_n(x) + (1 - \lambda)f_n(y))$$

$$= \lambda f(x) + (1 - \lambda)f(y).$$

5.2.2 Sei $k \in \mathbb{N}$ und (P_n) eine Folge von Polynomen, für die der Grad $\leq k$ ist. Die P_n sollen punktweise auf \mathbb{R} gegen eine Funktion $f: \mathbb{R} \to \mathbb{R}$ konvergieren. Zeigen Sie, dass auch f ein Polynom mit Grad $\leq k$ sein muss.

Anleitung: Es sei $P_n(x) = \sum_{j=0}^k a_{jn} x^j$ für $n \in \mathbb{N}$. Man zeige durch Induktion nach k, dass die Folgen $(a_{jn})_{n \in \mathbb{N}}$ der Koeffizienten konvergent sind. Dazu ist es sinnvoll, sich um die (nach Voraussetzung konvergenten) Folgen $(P_n(x+1) - P_n(x))$ zu kümmern.

Man zeigt also zunächst durch vollständige Induktion nach k, daß die Koeffizienten der Polynome P_n notwendig konvergent sind:

• Induktionsverankerung: k = 0

Im Fall k=0 gilt $\forall n\in\mathbb{N}: P_n(x)=a_{0n}\in\mathbb{R}$ (die Polynome P_n sind ja vom Grad 0), nach Voraussetzung gilt aber, da (P_n) Punktweise gegen f konvergiert:

$$f(0) = \lim_{n \to \infty} P_n(0) = \lim_{n \to \infty} a_{0n}$$

also konvergiert auch die Koeffizienten Folge $(a_{0n})_n \in \mathbb{N}$.

• Induktionsvoraussetzung:

Für beliebiges, aber festes $k \in \mathbb{N}_0$ gelte, daß für jede Folge (P_n) mit $P_n(x) = \sum_{j=0}^k a_{jn} x^j$ von Polynomen mit Grad $\leq k$, die Punktweise gegen eine Funktion $f: \mathbb{R} \to \mathbb{R}$ konvergiert mit für $0 \leq j \leq k$ auch die Folge der Koeffizienten (a_{jn}) konvergiert.

• Induktionsschluß:

Es sei (P_n) mit $P_n(x) = \sum_{j=0}^{k+1}$ eine Folge von Polynomen vom Grad $\leq k+1$, die punktweise gegen eine Fukntion $f: \mathbb{R} \to \mathbb{R}$ konvergieren.

z.Z.: Für alle $0 \leq j \leq k+1$ konvergiert auch die Folge $(a_{jn})_n \in \mathbb{N}$ der Koeffizienten.

Definiere für beliebiges $n \in \mathbb{N}$ die Funktion $Q_n : \mathbb{R} \to \mathbb{R}$ durch $Q_n(x) := P_n(x+1) - P_n(x)$, weiterhin sei $g : \mathbb{R} \to \mathbb{R}$ definiert durch g(x) := f(x+1) - f(x), dann gilt für beliebiges $x \in \mathbb{R}$:

$$\lim_{n \to \infty} Q_n(x) \stackrel{\text{GWS}}{=} \lim_{n \to \infty} P_n(x+1) - \lim_{n \to \infty} P_n(x) = f(x+1) - f(x) = g(x)$$

mithin ist die Folge $(Q_n)_n \in \mathbb{N}$ punktweise konvergent gegen g.

Man betrachtet nun für $n \in \mathbb{N}$ die Funktion Q_n :

$$\begin{split} Q_{n}(x) &= P_{n}(x+1) - P_{n}(x) \\ &= \sum_{j=0}^{k+1} a_{jn}(x+1)^{j} - \sum_{j=0}^{k+1} a_{jn}x^{j} \\ &= \sum_{j=0}^{k+1} \left(a_{jn} \sum_{\nu=0}^{j} {j \choose \nu} x^{\nu} \right) - \sum_{j=0}^{k+1} a_{jn}x^{j} \\ &= \sum_{j=0}^{k+1} \sum_{\nu=0}^{j} a_{jn} {j \choose \nu} x^{\nu} - \sum_{j=0}^{k+1} a_{jn}x^{j} \\ &= \sum_{\nu=0}^{k+1} \sum_{j=\nu}^{k+1} {a_{jn} \binom{j}{\nu}} x^{\nu} - \sum_{j=0}^{k+1} a_{jn}x^{j} \\ &= \sum_{j=0}^{k+1} \left(\sum_{\nu=j}^{k+1} a_{\nu n} {j \choose \nu} \right) x^{j} - \sum_{j=0}^{k+1} a_{jn}x^{j} \\ &= \sum_{j=0}^{k} \left[\left(\sum_{\nu=j}^{k+1} a_{\nu n} {j \choose j} \right) - a_{jn} \right] x^{j} \\ &= \sum_{j=0}^{k} \left[\left(\sum_{\nu=j}^{k+1} a_{\nu n} {j \choose j} \right) - a_{jn} \right] x^{j} \\ &= \sum_{j=0}^{k} \left[\left(\sum_{\nu=j+1}^{k+1} a_{\nu n} {j \choose j} \right) - a_{jn} \right] x^{j} \\ &= \sum_{j=0}^{k} \left[\left(\sum_{\nu=j+1}^{k+1} a_{\nu n} {j \choose j} \right) + a_{jn} - a_{jn} \right] x^{j} \\ &= \sum_{j=0}^{k} \left(\sum_{\nu=j+1}^{k+1} a_{\nu n} {j \choose j} \right) x^{j} \end{split}$$

Mithin ist die Folge (Q_n) eine Folge von Polynomen vom Grad $\leq k$, die punktweise gegen eine Funktion g konvergiert, nach Induktionsvoraussetzung sind somit die Koeffizientenfolgen (b_{jn}) gegeben durch

$$\forall 0 \le j \le k \ \forall n \in \mathbb{N} : b_{jn} := \sum_{\nu=j+1}^{k+1} a_{\nu n} \binom{\nu}{j}$$

konvergent.

Man zeigt nun durch Induktion nach j, daß daraus für $1 \leq j \leq k+1$ die Konvergenz der Koeffizientenfolge $(a_{jn})_n \in \mathbb{N}$ folgt:

– Indukstionsanfang j = k + 1: Man betrachte die Koeffizientenfolge b_{kn} , diese ist, wie bereits gezeigt konvergent, für $n \in \mathbb{N}$ gilt aber

$$b_{kn} = \sum_{\nu=k+1}^{k+1} {\nu \choose k} a_{\nu n}$$
$$= {k+1 \choose k} a_{n,k+1}$$
$$= (k+1) \cdot a_{n,k+1}$$

Da aber (b_{kn}) konvergent ist und k eine Konstante, ist nach den GWS auch $(a_{k+1,n})$ konvergent.

- Induktionsvoraussetzung:

Es gelte für $1 \leq j \leq k+1$ beliebig, aber fest, daß für alle κ mit $j+1 \leq \kappa \leq k+1$ die Folge der Koeffizienten $a_{\kappa n}$ konvergiert.

- Induktionsschluß:

z.Z.: Die Folge a_{jn} konvergiert.

Man betrachte die Folge $(b_{j-1,n})$ diese ist wegen $j \geq 1$ konvergent, es gilt aber:

$$b_{j-1,n} = \sum_{\nu=j}^{k+1} a_{\nu n} \binom{\nu}{j-1}$$

$$= \binom{j}{j-1} a_{jn} + \sum_{\nu=j+1}^{k+1} a_{\nu n} \binom{\nu}{j-1}$$

$$\iff a_{jn} = \frac{b_{j-1,n} - \sum_{\nu=j+1}^{k+1} a_{\nu n} \binom{\nu}{j-1}}{j} =: c_n$$

Die Folge (c_n) ist nach Induktionsvoraussetzung eine Summe von konvergenten Folgen und somit nach den Grenzwertsätzen konvergent, damit ist auch (a_{jn}) konvergent dies war aber zu zeigen.

Es bleibt noch zu zeigen, daß die Folge a_{0n} der absoluten Glieder von P_n konvergiert:

N.V. konvergiert $P_n(0)$ gegen f(0), da aber $\forall n \in \mathbb{N} : P_n(0) = a_{0n}$ konvergiert auch (a_{0n}) .

Also sind alle Koeffizientenfolgen (a_{jn}) konvergent, dies wollte man aber zeigen.

Sei nun (P_n) eine beliebige Folge von Polynomen des Grades $\leq k$ die pnuktweise gegen $f: \mathbb{R} \to \mathbb{R}$ konvergiert. Wie bisher gezeigt, sind dann mit

$$\forall n \in \mathbb{N} : P_n(x) = \sum_{i=0}^k a_{jn} x^j$$

auch die Koeffizientenfolgen (a_{nj}) konvergent, es sei

$$\forall 0 \le j \le k : a_j := \lim_{n \to \infty} a_{nj}$$

betrachte die Funktion

$$P: \mathbb{R} \longrightarrow \mathbb{R}$$
$$x \mapsto \sum_{j=0}^{k} a_j x^j$$

diese ist offenbar ein Polynom vom Grad kleiner gleich k, man zeigt nun, daß (P_n) punktweise gegen P konvergiert: z.Z:

$$\forall x \in \mathbb{R} : \lim_{n \to \infty} P_n(x) = P(x)$$

Es sei $x \in \mathbb{R}$ beliebig, dann gilt

$$\lim_{n \to \infty} P_n(x) = \lim_{n \to \infty} \sum_{j=0}^k a_{jn} x^j$$

$$\stackrel{\text{GWS}}{=} \sum_{j=0}^k \left(\lim_{n \to \infty} a_{jn} \right) x^j$$

$$= \sum_{j=0}^k a_j x^j$$

$$= P(x)$$

Da (P_n) punktweise gegen P und f konvergiert, der punktweise Limes einer Funktionenfolge aber eindeutig bestimmt ist, folgt f = P, mithin ist f (also P) ein Polynom vom Grad $\leq k$.

Dies war aber zu zeigen.

- **5.2.3** Sei M eine Menge. M ist genau dann endlich, wenn jede punktweise konvergente Folge reellwertiger Funktionen auf M bereits gleichmäßig konvergent ist.
 - \Rightarrow Sei $A \subset \mathbb{R}$ endlich, gelte etwa $A = \{x_1, \dots, x_k\}$ mit $k \in \mathbb{N}$ und seien $f, f_n : A \to \mathbb{R}$ so, daß $(f_n)_n \in \mathbb{N}$ auf A punktweise gegen f konvergiert, d.h.

$$\forall x \in A \ \forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ \forall n \ge n_0 : |f_n(x) - f(x)| \le \varepsilon$$

zu zeigen ist, daß $(f_n)_n \in \mathbb{N}$ sogar gleichmäßig konvergiert, i.e.

$$\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ \forall n \ge n_0 \ \forall x \in A : |f_n(x) - f(x)| \le \varepsilon$$

Sei $\varepsilon > 0$ beliebig, wähle nach Vorraussetzung zu jedem $1 \le i \le k$ ein $n_i \in \mathbb{N}$, so daß

$$|f_n(x_i) - f(x_i)| \le \varepsilon$$
 f.a. $n \ge n_i$

Setze nun $n_0:=\max_{1\le i\le k}n_i$, sei $n\ge n_0$ und $x\in A$ beliebig, da A endlich ist, existiert ein $1\le i\le k$ mit $x=x_i$, es ist

$$|f_n(x) - f(x)| = |f_n(x_i) - f(x_i)| \stackrel{n \ge n_0 \ge n_i}{\le} \varepsilon$$

Also konvergiert $(f_n)_n \in \mathbb{N}$ sogar gleichmäßig gegen f.

 \Leftarrow Sei zunächst $A \subset \mathbb{R}$ unbeschränkt, daß heißt

$$\forall R>0\;\exists a\in A:|a|>R$$

betrachte nun für $n \in \mathbb{N}$ die Funktionen $f_n : A \to \mathbb{R}$ definiert durch

$$\forall n \in \mathbb{N} \ \forall x \in A : f_n(x) := \frac{x}{n}$$

Als Komposition stetiger Funktionen sind die f_n offenbar stetig auf A.

Beh.: $(f_n)_n \in \mathbb{N}$ konvergiert auf A punktweise, aber nicht gleichmäßig gegen die Nullfunktion.

Bew.:

– Man zeigt zunächst, daß $(f_n)_n \in \mathbb{N}$ punktweise gegen 0 konvergiert, zu zeigen ist

$$\forall x \in A \ \forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ \forall n \ge n_0 : |f_n(x)| \le \varepsilon$$

Seien also $x \in A, \varepsilon > 0$ beliebig, wähle nach dem Archimedesaxiom $n_0 \in \mathbb{N}$ so daß

$$\frac{1}{n} \le \frac{\varepsilon}{|x| + 1}$$

für alle $n \ge n_0$. Dann gilt für diese n:

$$|f_n(x)| = \left|\frac{x}{n}\right| = \frac{1}{n} \cdot |x| \le \frac{\varepsilon |x|}{|x|+1} < \varepsilon$$

Das war aber zu zeigen.

Also konvergiert (f_n) auf A punktweise gegen Null.

– Nun zeigt man, daß (f_n) nicht gleichmäßig konvergiert. Da pnuktweise Konvergenz für gleichmäßige notwendig ist, reicht es zu zeigen, daß $(f_n)_n \in \mathbb{N}$ nicht gleichmäßig gegen Null konvergiert. Zu zeigen ist also

$$\exists \varepsilon_0 > 0 \ \forall n_0 \in \mathbb{N} \ \exists x_0 \in A \ \exists n \geq n_0 : |f_n(x)| > \varepsilon_0$$

Wähle nun $\varepsilon_0 := 1$, sei $n_0 \in \mathbb{N}$ beliebig, wähle, da A unbeschränkt ist, ein $x_0 \in A$ mit $|x_0| > n_0$, setze $n := n_0$, dann gilt

$$|f_n(x_0)| = \frac{|x_0|}{|n_0|} > \frac{|n_0|}{|n_0|} = 1 = \varepsilon_0$$

Das war aber zu zeigen.

Also konvergiert $(f_n)_n \in \mathbb{N}$ auf A nicht gleichmäßig gegen Null.

Auf A existiert also eine Folge stetiger Funktionen, die punktweise, aber nicht gleichmäßig konvergiert.

Sei nun $A \subset \mathbb{R}$ nicht endlich und beschränkt.

Als nicht endliche, beschränkte Teilmenge von $\mathbb R$ besitzt A nach dem Satz von Balzano-Weierstraß einen Häufungspunkt $\xi \in \mathbb R$. Man betrachte für $n \in \mathbb N$ die Funktionen

$$f_n: A \to \mathbb{R}$$

$$0; \quad \text{für } x \le \xi - \frac{2}{n}$$

$$n^2(x - \xi) + 2n; \quad \text{für } \xi - \frac{2}{n} < x \le \xi - \frac{1}{n}$$

$$-n^2(x - \xi); \quad \text{für } \xi - \frac{1}{n} < x < \xi$$

$$0; \quad \text{für } x = \xi$$

$$n^2(x - \xi); \quad \text{für } \xi < x \le \xi + \frac{1}{n}$$

$$-n^2(x - \xi) + 2n; \quad \text{für } \xi + \frac{1}{n} < x < \xi + \frac{2}{n}$$

$$0; \quad \text{für } x \ge \xi + \frac{2}{n}$$

Die Funktion f_n ist offenbar stetig auf $A\cap (-\infty,\xi-\frac{2}{n}),\ A\cap (\xi-\frac{2}{n},\xi-\frac{1}{n}),\ A\cap (\xi-\frac{1}{n},\xi),\ A\cap (\xi,\xi+\frac{1}{n}),\ A\cap (\xi+\frac{1}{n},\xi+\frac{2}{n})$ sowie $A\cap (\xi+\frac{2}{n},\infty)$. Es bleibt zu zeigen, daß f_n an den Stellen $\xi-\frac{2}{n},\xi-\frac{1}{n},\xi,\xi+\frac{1}{n},\xi+\frac{1}{n}$, falls diese in A liegen, stetig ist.

Man betrachte zunächst $\xi - \frac{2}{n}$ und $\xi + \frac{2}{n}$, f_n hat dort offensichtlich den linksund rechtsseitigen Grenzwert 0, dieser stimmt mit dem Funktionswert überein. Also ist f_n in diesen Punkten stetig.

Auch in den Punkten $\xi + \frac{1}{n}, \xi - \frac{1}{n}$ stimmen rechts- und linksseitiger Grenzwert offenbar mit dem Funktionswert n überein.

Im Punkte ξ gilt

$$\lim_{\substack{x \to \xi \\ x < \xi}} f_n(x) = \lim_{\substack{x \to \xi \\ x < \xi}} -n^2(x - \xi) = 0$$

und

$$\lim_{\substack{x \to \xi \\ x > \xi}} f_n(x) = \lim_{\substack{x \to \xi \\ x > \xi}} n^2(x - \xi) = 0$$

also ist f_n auch im Punkt ξ stetig (falls er zu A gehört).

Die Funktionen $f_n: A \to \mathbb{R}$ sind also auf ganz A stetig.

Beh.: Die Folge $(f_n)_n \in \mathbb{N}$ konvergiert punktweise, aber nicht gleichmäßig gegen die Nullfunktion.

Bew.:

– Man zeigt zunächst, daß $(f_n)_n \in \mathbb{N}$ auf A punktweise gegen Null konvergiert, zu zeigen ist

$$\forall x \in A \ \forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ \forall n \geq n_0 : |f_n(x)| \leq \varepsilon$$

Seien $x \in A, \varepsilon > 0$ beliebig, man unterscheidet drei Fälle:

a) $x < \xi$

Wähle ein $n_0 \in \mathbb{N}$ mit $x < \xi - \frac{2}{n}$ für alle $n \ge n_0$, dies ist wegen des Archimedesaxioms stets möglich. Dann gilt für alle $n \ge n_0$:

$$|f_n(x)| \stackrel{\text{Def von } f_n}{=} 0 \le \varepsilon$$

b) $x = \xi$

Wähle $n_0 := 1$, für alle $n \ge n_0$ gilt

$$|f_n(x)| = 0 \le \varepsilon$$

c) $x > \xi$

Wähle nach dem Archimedesaxiom $n_0 \in \mathbb{N}$ so, daß für $n \geq n_0$ $\xi + \frac{2}{n} < x$ gilt, dann ist für diese n:

$$|f_n(x)| = 0 \le \varepsilon$$

Damit ist alles gezeigt, $(f_n)_n \in \mathbb{N}$ konvergiert also auf ganz A punktweise gegen 0.

– Man zeigt nun noch, daß $(f_n)_n \in \mathbb{N}$ nicht gleichmäßig gegen Null konvergiert, zu zeigen ist

$$\exists \varepsilon_0 > 0 \ \forall n_0 \in \mathbb{N} \ \exists x_0 \in A \ \exists n \geq n_0 : |f_n(x)| > \varepsilon_0$$

Man wähle $\varepsilon_0 := 1$, sei $n_0 \in \mathbb{N}$ beliebig. Da ξ ein Häufungspunkt von A ist, existiert ein $x_0 \in A$ mit $x \neq \xi$ und $|x - \xi| \leq \frac{1}{n_0 + 1}$. Wähle nun $n \geq n_0$ mit

$$\frac{1}{n^2} < |x - \xi| \le \frac{1}{n}$$

Dies ist stets möglich, wähle $n := \max\{n \in \mathbb{N} \mid |x - \xi| \le \frac{1}{n}\}$ dann ist wegen $|x - \xi| \le \frac{1}{2}$ (da $n_0 \ge 1$!) und $n^2 > n$ für $n \ge 2$ obige Bedingung erfüllt. Nun ist aber für dieses n:

a) Im Fall $x < \xi$ ist

$$|f_n(x_0)| \stackrel{|x_0 - \xi| \le \frac{1}{n}}{=} |-n^2(x_0 - \xi)|$$

$$= |n^2||x_0 - \xi|$$

$$\stackrel{\text{Wahl von } n}{>} n^2 \cdot \frac{1}{n^2}$$

$$= 1 = \varepsilon_0$$

b) Im Fall $x > \xi$ ist

$$|f_n(x_0)| \stackrel{|x_0 - \xi| \le \frac{1}{n}}{=} |n^2(x_0 - \xi)|$$

$$= |n^2||x_0 - \xi|$$

$$\stackrel{\text{Wahl von } n}{>} n^2 \cdot \frac{1}{n^2}$$

$$= 1 = \varepsilon_0$$

Stets ist also $f_n(x_0) > \varepsilon_0$, das war aber zu zeigen, d.h. $(f_n)_n \in \mathbb{N}$ konvergiert auf A nicht gleichmäßig gegen die Nullfunktion.

Also existiert in A eine Folge stetiger Funktionen, die punktweise, aber nicht gleichmäßig konvergiert.

5.2.4 Es seien $f_n : \mathbb{R} \to \mathbb{R}$ Funktionen, die alle Lipschitzabbildungen mit Lipschitzkonstante $\leq L_n$ sind. Wenn die f_n punktweise gegen eine Funktion f konvergieren und die Zahlen L_n beschränkt sind, so ist auch f eine Lipschitzabbildung. Gilt das auch ohne die Voraussetzung der Beschränktheit der L_n ?

Da die L_n beschränkt sind, existiert $L \in \mathbb{R}$ mit $L_n \leq L$ für alle $n \in \mathbb{N}$, weiter gilt für $x, y \in \mathbb{R}$:

$$|f_n(x) - f_n(y)| \le L_n|x - y| \le L|x - y|$$

also mit $n \to \infty$ wg. der Punktweisen Konvergenz auch

$$|f(x) - f(y)| < L|x - y|$$

d.h. f ist Lipschitzabbildung.

Ohne die Beschränktheit der L_n ist das falsch. Betrachte etwa $f_n:\mathbb{R}\to\mathbb{R}$ gegeben durch

$$f_n(x) := \begin{cases} -1 & x < -1/n \\ nx & -1/n \le x \le 1/n \\ 1 & x > 1/n \end{cases}$$

Diese Folge konvergiert punktweise gegen $f: \mathbb{R} \to \mathbb{R}$ mit

$$f(x) = \begin{cases} -1 & x < 0 \\ 0 & x = 0 \\ 1 & x > 0 \end{cases}$$

f ist noch nicht einmal stetig, also erst recht nicht Lipschitz, für jedes $n \in \mathbb{N}$ ist aber f_n eine Lipschitzabbildung zu n, denn für $x < y \in \mathbb{R}$ ist:

• Im Falle $x, y \le -1/n$ ist $f_n(x) = f_n(y)$

• Im Falle $x \le -1/n < y < 1/n$ ist:

$$|f_n(x) - f_n(y)| = |-1 - ny| \le |nx - ny| = n|x - y|$$

• Im Falle $x \le -1/n < 1/n \le y$ ist:

$$|f_n(x) - f_n(y)| = |-1 - 1| = 2 \le \frac{2}{n} \cdot n \le n|x - y|$$

• Im Falle -1/n < x < y < 1/n ist:

$$|f_n(x) - f_n(y)| = |nx - ny| = n|x - y|$$

• Im Falle $-1/n < x < 1/n \le y$ ist:

$$|f_n(x) - f_n(y)| = |nx - 1| \le |nx - ny| = n|x - y|$$

- und schließlich ist für $1/n \le x < y$ wieder $f_n(x) = f_n(y)$.
- **5.2.5** Geben Sie ein Beispiel für eine Folge stetiger Funktionen an, die punktweise, aber nicht gleichmäßig gegen eine stetige Funktion konvergiert.

Betrachte $f_n : \mathbb{R} \to \mathbb{R}$, gegeben durch $f_n(x) := x/n$. Dann gilt $f_n \to 0$ punktweise, denn für $x \in \mathbb{R}$ ist $(x/n) \in c_0$ nach Archimedes.

Andererseits ist aber nicht $f_n \to 0$ gleichmäßig, denn für kein $\varepsilon > 0$ gibt es $N \in \mathbb{N}$, so dass $|f_n(x)| < \varepsilon$ für alle $n \ge N$ und $x \in \mathbb{R}$ gilt: Sei nämlich $\varepsilon > 0$, $N \in \mathbb{N}$, mit n := N, $x := n\varepsilon$ ist

$$f_n(x) = f_n(n\varepsilon) = \frac{n\varepsilon}{n} = \varepsilon.$$

Also gilt $f_n \to 0$ nicht gleichmäßig.

5.2.6 Muss der gleichmäßige Limes von Lipschitzabbildungen Lipschitzabbildung sein?

Nein. Betrachte etwa $f:[0,1]\to\mathbb{R},\ x\mapsto\sqrt{x}.\ f$ ist keine Lipschitzabbildung (da die Ableitung von f unbeschränkt ist).

Für jedes $n \in \mathbb{N}$ ist aber $f|_{[1/n,1]}$ eine Lipschitzabbildung zur Lipschitzkonstante $\sqrt{n}/2$ nach dem Mittelwertsatz:

$$\left|\sqrt{x} - \sqrt{y}\right| = \frac{1}{2\sqrt{\xi}}|x - y| \le \frac{\sqrt{n}}{2}|x - y|$$

Definiere nun $f_n:[0,1]\to\mathbb{R}$ durch:

$$f_n(x) := \begin{cases} \sqrt{x} & x \ge 1/n \\ \sqrt{n}x & x \le 1/n \end{cases}$$

Dann ist f_n eine Lipschitzabbildung, denn für $x,y \ge 1/n$ stimmt f_n mit f überein und dort ist f Lipschitz, für $x,y \le 1/n$ ist f_n linear, also Lipschitz, also ist f_n Lipschitz. Weiterhin gilt:

$$||f_n - f|| \le \sup_{x \le 1/n} |f_n(x) - f(x)| + \sup_{x \ge 1/n} |f_n(x) - f(x)|$$

$$\le \sup_{x \le 1/n} |f_n(x)| + \sup_{x \le 1/n} |f(x)|$$

$$= \sqrt{n} \cdot 1/n + \sqrt{1/n}$$

$$= \frac{2}{\sqrt{n}} \to 0.$$

Also gilt $f_n \to f$ gleichmäßig und damit ist alles gezeigt.

5.2.7 (f_n) sei eine aufsteigende Folge stetiger Funktionen auf \mathbb{R} , die punktweise gegen eine stetige Funktion f konvergiert. Dann ist f das Supremum der Menge $\{f_n \mid n \in \mathbb{N}\}$ im geordneten Raum $C\mathbb{R}$.

Sicher ist $f_n \leq f$ für $n \in \mathbb{N}$, da (f_n) aufsteigend ist, also

$$f_n(x) \le f_{n+m}(x) \to f(x), \quad m \to \infty.$$

Sei also $g \in C\mathbb{R}$ mit $f_n \leq g$ für $n \in \mathbb{N}$, angenommen, es gäbe $x \in \mathbb{R}$ mit g(x) < f(x), es sei $\eta := (f-g)(x) > 0$, wegen $f_n(x) \to f(x)$ existierte $n \in \mathbb{N}$ mit $f(x) - f_n(x) < \eta$, d.h.

$$f_n(x) > f(x) - \eta = f(x) - f(x) + g(x) = g(x),$$

im Widerspruch zu $f_n \leq g$.

Also gilt $f \leq g$ und die Behauptung ist gezeigt.

- **5.2.8** Es sei $f: \mathbb{R} \to \mathbb{R}$ eine Funktion, wir setzen $f_n := f/n$.
 - Gilt $f_n \to 0$ punktweise?
 - Für welche f geht (f_n) gleichmäßig gegen die Nullfunktion?
 - Ja.

Es sei $x \in \mathbb{R}$, dann ist wegen $1/n \to 0$ auch

$$f_n(x) = \frac{1}{n} \cdot f(x) \to 0 \cdot f(x) = 0.$$

- Genau für beschränkte f:
 - \Rightarrow Es gelte also $f_n \to 0$ gleichmäßig. Wähle also ein $n \in \mathbb{N}$, so dass

$$\frac{|f(x)|}{n} = |f_n(x)| \le 1$$

für alle $x \in \mathbb{R}$ gilt. Es folgt

$$|f(x)| \le n$$
 für alle $x \in \mathbb{R}$,

also die beschränktheit von f.

 \Leftarrow Es sei f durch M beschränkt und $\varepsilon > 0$, wähle $n_0 \in \mathbb{N}$, so dass $M/n \le \varepsilon$ für $n \ge n_0$, dann gilt für diese n und alle $x \in \mathbb{R}$:

$$|f_n(x)| = \frac{|f(x)|}{n} \le \frac{M}{n} \le \varepsilon$$

also $f_n \to 0$ gleichmäßig.

5.2.9 Definiere $f_n: \mathbb{R}^2 \to \mathbb{R}$ durch $f_n(x,y) := (x^2 + y^2)^n$. Auf welchen Teilmengen A von \mathbb{R}^2 konvergiert (f_n)

- punktweise gegen 0,
- gleichmäßig gegen 0?

Es bezeichne im Folgenden $D:=\{x\in\mathbb{R}^2\mid \|x\|_2<1\}$ die euklidische offene Einheitskugel im \mathbb{R}^2 :

• Beh.: $f_n|_A \to 0$ punktweise $\iff A \subset D$.

 \Rightarrow Angenommen es wäre $A\not\subset D,$ dann existiert $x\in A$ mit $\left\|x\right\|_{2}\geq 1,$ dann wäre aber

$$f_n(x) = ||x||_2^{2n} \ge 1$$

für alle $n \in \mathbb{N}$, also keine Nullfolge im Widerspruch zur Voraussetzung. Also ist $A \subset D$.

 $\Leftarrow \;$ Es sei $x \in A,$ dann ist $\left\|x\right\|_2 < 1$ nach Voraussetzung, also gilt

$$f_n(x) = ||x||_2^{2n} \to 0, \quad n \to \infty$$

d.h. $f_n|_A \to 0$ punktweise.

- Beh.: $f_n|_A \to 0$ gleichmäßig $\iff A^- \subset D$.
 - \Rightarrow Sicher ist $A \subset D$, da gleichmäßige Konvergenz punktweise impliziert, also $A^- \subset D^-$, angenommen es wäre $A^- \not\subset D$, d.h. es gäbe $x_n \in A \subset D$, $x_n \to x$ mit $\|x\|_2 = 1$ (also gilt insbesondere $\|x_n\|_2 \to 1$).

Wir zeigen nun, dass $f_n \to 0$ gleichmäßig falsch sein muss: Es sei $\varepsilon = 1/2$ und $n_0 \in \mathbb{N}$ beliebig, wähle ein $n \geq n_0$ mit $\|x_n\|_2 > \sqrt[2n]{\varepsilon}$ (möglich wegen $\|x_n\|_2 \to 1$), dann ist

$$|f_{n_0}(x_n)| = ||x_n||_2^{2n_0} > \varepsilon = \frac{1}{2}$$

da $n_0 \in \mathbb{N}$ beliebig war, steht das im Widerspruch zur gleichmäßigen Konvergenz.

Also gilt $A^- \subset D$.

 \Leftarrow Auf der kompakten Menge A^- nimm
t ${\|\cdot\|}_2$ sein Maximum an, es sei

$$\eta := \max_{x \in A^-} \left\| x \right\|_2$$

dann ist $\eta < 1$, da $A^- \subset D$. Für alle $n \in \mathbb{N}$ gilt nun

$$||f_n|_A||_{\infty} = \sup_{x \in A} abs f_n(x) = \sup_{x \in A} ||x||_2^{2n} \le \eta^{2n} \to 0$$

also $f_n \to 0$ gleichmäßig.

Zu Abschnitt 5.3

5.3.1 Es seien $h, g \in C[0,1]$ mit $h \leq g$. Zeigen Sie, dass im Fall $h \neq g$ die Menge

$$\Phi:=\{f\in C\,[\,0,1\,]\mid h\leq f\leq g\}$$

nicht gleichgradig stetig ist.

Wähle $x_0 \in]0,1[$ mit $h(x_0) < g(x_0)$, und wegen der Stetigkeit von h,g ein $\varepsilon_0 > 0$ so dass mit $\eta := (g-h)(x_0)$ gilt:

$$(g-h)(x) \ge \frac{\eta}{2}$$
 für alle $x \in [x_0 - \varepsilon_0, x_0 + \varepsilon_0, .]$

Man zeigt nun, dass Φ in x_0 nicht gleichgradig stetig ist, d.h. zu zeigen ist

Setze $\varepsilon := \varepsilon_0$, es sei $\delta > 0$, sei $\beta < \min\{\varepsilon, \delta\}$ und definiere $f : [0, 1] \to \mathbb{R}$ durch

$$f(x) := \begin{cases} h(x) & x < x_0 - \varepsilon \\ h(x) + \frac{\eta}{2\beta}(x - x_0) & x_0 - \beta \le x \le x_0 + \beta \\ g(x) & x_0 + \varepsilon < x \end{cases}$$

und setze f dazwischen so fort, dass $f \in C[0,1]$ und $g \le f \le h$. Für $x_0 - \beta < x < x_0 + \beta$ ist nun

$$|f(x) - f(x_0)| = \left| \frac{\eta}{2\beta} (x - x_0) \right|$$

man kann also x wie gefordert wählen, falls nur $2\varepsilon/\eta \cdot \beta < \delta$, wähle dazu nur β hinreichend klein.

Damit ist alles gezeigt.

- **5.3.2** f_1, f_2, \ldots seien stetige Funktionen auf [0, 1], die punktweise gegen eine Funktion f konvergieren. Dann sind äquivalent:
 - a) (f_n) konvergiert gleichmäßig gegen die Funktion f. (Insbesondere ist dann f stetig.)
 - b) Für alle konvergenten Folgen (x_n) mit $\lim_{n\to\infty} x_n = x_0$, gilt

$$\lim_{n \to \infty} f_n(x_n) = f(x_0).$$

 $a) \Rightarrow b$

Sei also (f_n) gleichmäßig konvergent gegen eine Funktion f. Da die (f_n) nach Voraussetzung stetig sind, ist auch f stetig. Sei $(x_n)_n \in \mathbb{N}$ eine beliebige konvergente Folge in [0,1] und $x_0 \in [0,1]$ ihr Grenzwert. zu zeigen ist:

$$\lim_{n\to\infty} f_n(x_n) = f(x_0)$$

$$\downarrow \\ \forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ \forall n \ge n_0 : |f_n(x_n) - f(x_0)| \le \varepsilon$$

Aufgrund der Stetigkeit von f gilt mit $x_n \to x_0$ auch $f(x_n) \to f(x_0)$ für $n \to \infty$, wähle ein $n_1 \in \mathbb{N}$ mit $|f(x_n) - f(x_0)| \le \frac{\varepsilon}{2}$ für alle $n \ge n_1$, wähle weiterhin $n_2 \in \mathbb{N}$, so daß $|f_n(x) - f(x)| \le \frac{\varepsilon}{2}$ für alle $n \ge n_2$ und alle $x \in [0, 1]$. Dann gilt für alle $n \ge n_0 := \max\{n_1, n_2\}$:

$$|f_n(x_n) - f(x_0)| = |f_n(x_n) - f(x_n) + f(x_n) - f(x_0)|$$

$$\leq |f_n(x_n) - f(x_n)| + |f(x_n) - f(x_0)|$$

$$\leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

$$= \varepsilon$$

Das war aber zu zeigen.

 $b) \Rightarrow a$

Sei also (f_n) eine Folge in C[0,1], und f eine Funktion auf [0,1], so daß für jede konvergente Folge (x_n) in [0,1] mit $\lim_{n\to\infty} x_n = x_0$ gilt:

$$\lim_{n \to \infty} f_n(x_n) = f(x_0)$$

Dann hat auch jede Teilfolge (f_{n_k}) offenbar diese Eigenschaft.

zu zeigen ist, daß f_n gleichmäßig gegen f konvergiert, zunächst zeigt man, daß f_n punktweise gegen f konvergiert, d.h.

$$\forall x_0 \in [0,1] : \lim_{n \to \infty} f_n(x_0) = f(x_0)$$

dies folgt aber sofort aus der Voraussetzung, da für jedes x_0 die konstante Folge $(x_0)_n \in \mathbb{N}$ eine gegen x_0 konvergente Folge ist.

Man zeigt nun, daß $\Phi := \{f_n n \in \mathbb{N}\}$ beschränkt und gleichgradig stetig ist:

\bullet Φ ist beschränkt:

Angenommen, Φ wäre nicht beschränkt, d.h. die Menge $\{\|f_n\|n \in \mathbb{N}\}$ ist unbeschränkt, wähle zu jedem $n \in \mathbb{N}$ nach dem Satz vom Maximum und Minimum ein $x_n \in [0,1]$ mit $|f_n(x_n)| = \|f_n\|$. Als Folge in [0,1] besitzt (x_n) eine konvergente Teilfolge x_{n_k} , gelte etwa $\lim_{n\to\infty} [k] x_{n_k} =: x_0$. Betrachte nun die Folge $(|f_{n_k}(x_{n_k}|), \text{ n.V. gilt})$

$$\lim_{n \to \infty} [k]|f_{n_k}(x_{n_k})| = f(x_0)$$

anderersteits ist aufgrund der Wahl der x_n und der Unbeschränktheit von Φ :

$$\overline{\lim}_{k \to \infty} |f_{n_k}(x_{n_k})| = \overline{\lim}_{k \to \infty} ||f_{n_k}|| = +\infty$$

Dies ist ein Widerspruch.

Also ist Φ beschränkt.

• Φ ist gleichgradig stetig:

Angenommen Φ wäre nicht gleichgradig stetig, d.h. mit $\delta = \frac{1}{n}$

$$\exists x_0 \in [0,1] \ \exists \varepsilon > 0 \ \forall n \in \mathbb{N} \ \exists x_n \in [0,1] : |x_n - x_0| \le \frac{1}{n} \land |f_n(x_n) - f_n(x_0)| \ge \varepsilon$$

Seien nun $x_0 \in [0,1]$ und (x_n) so gewählt, daß obiges gilt, dann ist offenbar $\lim_{n\to\infty} x_n = x_0$ und wegen der pktweisen Konvergenz der f_n gilt auch $\lim_{n\to\infty} f_n(x_0) = f(x_0)$ und nach Voraussetzung ist $\lim_{n\to\infty} f_n(x_n) = f(x_0)$.

Wähle nun $n_0 \in \mathbb{N}$ mit $|f_n(x_n) - f(x_0)| \leq \frac{\varepsilon}{3}$ und $|f_n(x_0) - f(x_0)| \leq \frac{\varepsilon}{3}$ f.a. $n \geq n_0$, für diese n gilt dann

$$\varepsilon \leq |f_n(x_n) - f_n(x_0)|$$

$$= |f_n(x_n) - f(x_0) + f(x_0) - f_n(x_0)|$$

$$\leq |f_n(x_n) - f(x_0)| + |f(x_0) - f_n(x_0)|$$

$$\leq \frac{\varepsilon}{3} + \frac{\varepsilon}{3}$$

$$= \frac{2}{3}\varepsilon$$

Dies ist ein Widerspruch zu $\varepsilon > 0$.

Also ist Φ gleichgradig stetig.

Man zeigt nun, daß f notwendig stetig sein muß:

Als beschränkte und gleichgradig stetige Folge in C[0,1] besitzt (f_n) eine gleichmäßig konvergente Teilfolge (folgt aus 1(ii) und dem Satz von ARZELA-ASCOLI), sei (f_{n_k}) eine solche Teilfolge.

Sei (x_n) eine konvergente Folge in [0,1], $x_0:=\lim_{n\to\infty}x_n$, zu zeigen ist die Stetigkeit von f, d.h. $\lim_{n\to\infty}[k]f(x_k)=f(x_0)$, also

$$\forall \varepsilon > 0 \ \exists k_0 \in \mathbb{N} \ \forall k \geq k_0 : |f(x_k) - f(x_0)| \leq \varepsilon$$

Sei $\varepsilon>0$, da (f_{n_k}) gleichmäßig gegen f konvergiert, existiert ein $k_1\in\mathbb{N}$ mit $|f_{n_k}(x)-f(x)|\leq \frac{\varepsilon}{2}$ f.a. $k\geq k_1$ und f.a. $x\in[0,1]$, weiterhin existiert ein $k_2\in\mathbb{N}$ mit $|f_{n_k}(x_k)-f(x_0)|\leq \frac{\varepsilon}{2}$ für alle $k\geq k_2$. Wähle nun $k_0:=\max\{k_1,k_2\}$, dann gilt für $k\geq k_0$:

$$|f(x_k) - f(x_0)| = |f(x_k) - f_{n_k}(x_k) + f_{n_k}(x_k) - f(x_0)|$$

$$\leq |f(x_k) - f_{n_k}(x_k)| + |f_{n_k}(x_k) - f(x_0)|$$

$$\leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

$$= \varepsilon$$

Also ist f stetig in x_0 , da x_0 beliebig war, in f also stetig auf [0,1]. Es bleibt zu zeigen, daß (f_n) auf [0,1] gleichmäßig gegen f konvergiert. Angenommen, dies gelte nicht, d.h.

$$\exists \varepsilon > 0 \ \forall n_0 \in \mathbb{N} \ \exists n \geq n_0 \exists x \in [0,1] : |f_n(x) - f(x)| > \varepsilon$$

Definiere wähle nun zu $n_0=1$ ein $n_1\geq n_0$ und ein $x_1\in [0,1]$ mit $|f_{n_1}(x_1)-f(x)|>\varepsilon$ und nun induktiv zu jedem $k\in \mathbb{N}$ ein $n_k\geq n_{k-1}+1$ und ein $x_k\in [0,1]$ mit $|f_{n_k}(x_k)-f(x)|>\varepsilon$.

Betrachte nun die Folge (f_{n_k}) , sie hat (s.o.) eine gleichmäßig konvergente Teilfolge $(f_{n_{k_l}})$, da [0,1] kompakt ist, besitzt auch die Folge (x_{k_l}) eine konvergente Teilfolge (x_{k_l}) , sei x_0 ihr Grenzwert, nun gilt einerseits n.V.

$$\lim_{n \to \infty} [j] f_{n_{k_{l_j}}}(x_{k_{l_j}}) = f(x_0)$$

und wegen der Stetigkeit von f gilt

$$\lim_{n \to \infty} [j] f(x_{k_{l_j}}) = f(x_0)$$

durch Anwendung der Grenzwertsätze erhält man hieraus

$$\lim_{n \to \infty} [j] \left(f(x_{k_{l_j}}) - f_{n_{k_{l_j}}}(x_{k_{l_j}}) \right) = 0$$

im Widserspruch zu $\forall k : |f(x_k) - f_{n_k}(x_k)| > \varepsilon$.

Also konvergiert f_n auf [0,1] gleichmäßig gegen die Funktion f.

Quod erat demonstrandum.

- **5.3.3** Man untersuche auf gleichgradige Stetigkeit:
 - (a) $\{t \mapsto \sin(2^n t) \mid n \in \mathbb{N}\}$ auf \mathbb{R} ,
 - (b) $\{t \mapsto t^n \mid n \in \mathbb{N}\}\ \text{auf } [0, a], \text{ wobei } a > 0.$

Bem.: Die Definition der gleichgradigen Stetigkeit für Funktionenfamilien auf nichtkompakten metrischen Räumen ist wörtlich diesselbe wie im Fall kompakter Räume.

a) Beh.: Die gegebene Funktionenmenge ist nicht gleichgradig stetig.

Bew.:

Es sei die Abbildung $t \mapsto \sin(2^n t)$ mit $f_n : \mathbb{R} \to \mathbb{R}$ bezeichnet, zu zeigen ist

$$\exists t_0 \in \mathbb{R} \ \exists \varepsilon > 0 \ \forall \delta > 0 \ \exists t \in \mathbb{R} \ \exists n \in \mathbb{N} : |t - t_0| \le \delta \land |f_n(t) - f_n(t_0)| > \varepsilon$$

Wähle $t_0:=0,\varepsilon:=\frac{1}{2}$ sei $\delta>0$ beliebig, wähle $n\in\mathbb{N}$ mit $\frac{\pi}{2^{n+1}}\leq\delta$ und $t:=\frac{\pi}{2^{n+1}}$, dann gilt

$$|t - t_0| = \left| \frac{\pi}{2^{n+1}} \right| \le \delta$$

aber

$$|f_n(t) - f_n(t_0)| = \left| \sin \left(2^n \cdot \frac{\pi}{2^{n+1}} \right) - \sin 0 \right| = \sin \frac{\pi}{2} = 1 > \frac{1}{2} = \varepsilon$$

Also ist $\{t \mapsto \sin(2^n t) n \in \mathbb{N}\}\$ auf \mathbb{R} nicht gleichgradig stetig.

b) Man unterscheidet für die Funktionen $g_n:[0,a]\to\mathbb{R}$, $t\mapsto t^n$ zwei Fälle

• 0 < a < 1

Beh.: In diesem Fall ist $\{g_n n \in \mathbb{N}\}$ gleichgradig stetig.

Bew.:

Wie auf dem letzten Übungszettel gezeigt, konvergiert in diesem Fall die Folge $(g_n)_n \in \mathbb{N}$ gleichmäßig gegen die Nullfunktion, somit ist, wie in der Vorlesung bewiesen die Menge $\{g_n n \in \mathbb{N}\}$ gleichgradig stetig, da eine Menge, die als Elemente nur die Glieder einer gleichmäßig konvergenten Folge stetiger Funktionen hat, stets gleichgradig stetig ist.

a ≤ 1

Beh.: In diesem Fall ist die gegebene Menge nicht gleichgradig stetig. Bew.:

Zu zeigen ist, daß

$$\exists t_0 \in [0, a] \ \exists \varepsilon > 0 \ \forall \delta > 0 \ \exists t \in [0, a] \ \exists n \in \mathbb{N} : |t - t_0| \le \delta \land |g_n(t) - g_n(t_0)| > \varepsilon$$

wähle $t_0 := 1, \varepsilon := \frac{1}{2}$, sei $\delta > 0$, wähle $t := \max\{0, 1 - \delta\}$. Da $0 \le t < 1$ gilt, ist (t^n) Nullfolge, wähle demnach $n \in \mathbb{N}$ mit $t^n < \frac{1}{2}$, dann ist

$$|t - t_0| = |t - 1| < \delta$$

andererseits aber

$$|f_n(t) - f_n(t_0)| = |t^n - 1^n| > \frac{1}{2} = \varepsilon$$

Also ist $\{g_n n \in \mathbb{N}\}$ nicht gleichgradig stetig auf [0, a] im Fall $a \geq 1$.

Die Menge $\{g_n n \in \mathbb{N}\}$ ist also nur für 0 < a < 1 gleichgradig stetig auf [0, a].

5.3.4 Sei $f:[a,b]\times [c,d]\to \mathbb{R}$ eine Funktion. Genau dann ist f stetig, wenn die Menge $\{f(\cdot,t)\mid t\in [c,d]\}$ in C[a,b] und $\{f(s,\cdot)\mid s\in [a,b]\}$ in C[c,d] liegen und gleichgradig stetig sind.

(Hier ist $f(s,\cdot)$ die Funktion $t\mapsto f(s,t)$, analog für $f(\cdot,t)$.)

• ===

Sei also $f:[a,b]\times[c,d]\to\mathbb{R}$ stetig, da $[a,b]\times[c,d]$ als beschränkte und abgeschlossene Teilmenge des \mathbb{R}^2 kompakt ist, ist f dann sogar gleichmäßig stetig, d.h. es gilt

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x, y \in [a, b] \times [c, d] : ||x - y||_2 \le \delta \Rightarrow |f(x) - f(y)| \le \varepsilon$$

Zunächst wird gezeigt, daß $M_s \subset C[a,b]$ gleichgradig stetig ist, zu zeigen ist also, daß für alle $s_0 \in [a,b]$ gilt:

$$\forall \varepsilon > 0 \; \exists \delta > 0 \; \forall t \in [c, d] \; \forall s \in [a, b] : \\ |s - s_0| \le \delta \Rightarrow |f(s, t) - f(s_0, t)| \le \varepsilon$$

Sei also $s_0 \in [a, b], \varepsilon > 0$ beliebig, wähle nach Voraussetzung ein $\delta > 0$, so daß

$$|f(s_0,t) - f(s,t)| \le \varepsilon$$

für alle $(s,t) \in [a,b] \times [c,d]$ mit $||(s_0,t) - (s,t)||_2 \le \delta$ gilt.

Sei nun $t \in [c, d]$ beliebig, $s \in [a, b]$ mit $|s - s_0| \le \delta$, dann gilt

$$||(s,t) - (s_0,t)||_2 = ||(s-s_0,0)||_2 = |s-s_0| \le \delta$$

und damit aufgrund der Wahl von Delta auch

$$|f(s,t) - f(s_0,t)| \le \varepsilon$$

Also ist $M_s \subset C[a,b]$ gleichgradig stetig.

Es bleibt zu zeigen, daß $M_t \subset C[c,d]$ gleichgradig stetig ist, also, daß für alle $t_0 \in [c,d]$ gilt

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall s \in [a, b] \ \forall t \in [c, d] : |t - t_0| \le \delta \Rightarrow |f(s, t) - f(s, t_0)| \le \varepsilon$$

Seien $t_0 \in [c, d], \varepsilon > 0$ beliebig, wähle nach Voraussetzung ein $\delta > 0$, so daß

$$|f(s,t) - f(s,t_0)| \le \varepsilon$$

für alle $(s,t) \in [a,b] \times [c,d]$ mit $||(s,t) - (s,t_0)||_2 \le \delta$ gilt.

Sei nun $s \in [a, b]$ beliebig, $t \in [c, d]$ mit $|t - t_0| \le \delta$, dann gilt

$$||(s,t) - (s,t_0)||_2 = ||(0,t-t_0)||_2 = |t-t_0| \le \delta$$

und damit aufgrund der Wahl von Delta auch

$$|f(s,t) - f(s,t_0)| \le \varepsilon$$

Also ist $M_t \subset C[c,d]$ gleichgradig stetig.

• <

Seien also M_s und M_t gleichgradig stetig, zu zeigen ist, daß f stetig ist, d.h.

$$\forall (s_0, t_0) \in [a, b] \times [c, d] \ \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall (s, t) \in [a, b] \times [c, d] : \\ \|(s_0, t_0) - (s, t)\|_2 \le \delta \Rightarrow |f(s_0, t_0) - f(s, t)| \le \varepsilon$$

Sei $(s_0,t_0)\in[a,b]\times[c,d],\varepsilon>0$ beliebig, wähle aufgrund der gleichgradigen Stetigkeit von M_s ein $\delta_1>0$ so, daß

$$\forall s \in [a, b] \forall t \in [c, d] : |s - s_0| \le \delta_1 \Rightarrow |f(s_0, t) - f(s, t)| \le \frac{\varepsilon}{2}$$

und aufgrund der gleichgradigen Stetigkeit von M_t ein $\delta_2 > 0$, so daß

$$\forall t \in [c, d] \forall s \in [a, b] : |t - t_0| \le \delta_2 \Rightarrow |f(s, t_0) - f(s, t)| \le \frac{\varepsilon}{2}$$

setzte nun $\delta := \min\{\delta_1, \delta_2\} > 0$, dann gilt für beliebiges $(s, t) \in [a, b] \times [c, d]$ mit

$$\|(s_0, t_0) - (s, t)\|_2 \le \delta \Rightarrow |s - s_0|, |t - t_0| \le \delta$$

folgendes:

$$|f(s,t) - f(s_0,t_0)| = |f(s,t) - f(s_0,t) + f(s_0,t) - f(s_0,t_0)|$$

$$\leq |f(s,t) - f(s_0,t)| + |f(s_0,t) - f(s_0,t_0)|$$

$$\leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

$$= \varepsilon$$

Somit ist f stetig.

f ist also genau dann stetig, wenn M_s und M_t gleichgradig stetig sind.

5.3.5 Sei (f_n) eine Folge stetig differenzierbarer Funktionen auf [0,1] mit

$$|f_n(0)| \le 1$$
 und $||f_n'|| \le 1$

für alle $n \in \mathbb{N}$. Dann besitzt (f_n) eine gleichmäßig konvergente Teilfolge.

5.3.6 Untersuchen Sie die folgende Teilmengen von C[0,1] auf Kompaktheit:

- a) $M_1 = \{ f_n \mid n \in \mathbb{N} \}, f_n(x) = (x/2)^n$
- b) $M_2 = M_1 \cup \{0\}$
- c) $M_3 = \{ f \in C[0,1] \mid f \text{ ist Lipschitzstetig} \}$
- d) $M_4 = \{ f \in C[0,1] \mid f \text{ ist Lipschitzstetig mit}$ Lipschitzkonstante $\leq 1 \}$
- e) $M_5 = \{ f \in C[0,1] \mid f \text{ ist Lipschitzstetig mit}$ Lipschitzkonstante $\leq 1, |f| \leq 2 \}$

Untersuchen Sie auf gleichgradige Stetigkeit:

- f) $M_6 = \{f_n \mid n \in \mathbb{N} \}$, wobei $f_n : \mathbb{R} \to \mathbb{R}$, $f_n(x) = x^2/n$
- a) M_1 ist nicht kompakt, da M_1 in ${\cal C}[0,1]$ nicht abgeschlossen ist: Es gilt nämlich

$$||f_n||_{\infty} = \sup_{x \in [0,1]} \frac{x^n}{2^n} = \frac{1}{2^n} \to 0$$

also $f_n \to 0$ in C[0,1], aber $0 \notin M_1$.

- b) M_2 ist kompakt: Sei $(O_i)_{i\in I}$ offene Überdeckung von M_2 , dann existiert $i_0\in I$ mit $0\in O_{i_0}$, in a) wurde $f_n\to 0$ gezeigt, also existiert $n_0\in \mathbb{N}$ mit $f_n\in O_{i_0}$ für $n\geq n_0$, zu jedem $j< n_0$ existiert nun aber ein $i_j\in I$ mit $f_j\in O_{i_j}$, d.h. $(O_{i_j})_{0\leq j< n_0}$ ist eine endliche Teilüberdeckung und die Kompaktheit von M_2 ist bewiesen
- c) M_3 ist nicht kompakt, da M_3 nicht beschränkt ist, z.B. ist $n\mathbf{1} \in M_3$ für jedes $n \in \mathbb{N}$, da konstante Funktionen Lipschitzstetig sind, aber es ist $||n\mathbf{1}||_{\infty} = n$.
- d) M_4 ist nicht kompakt, da wie in c) $n\mathbf{1} \in M_4$ für $n \in \mathbb{N}$ gilt.
- e) M_5 ist kompakt: Wir zeigen, dass M_5 beschränkt, abgeschlossen und gleichgradig stetig ist:
 - Nach Definition von M_5 ist M_5 durch 2 beschränkt.
 - Es sei $(f_n) \in M_5^{\mathbb{N}}$ eine Folge mit $f_n \to f \in C[0,1]$. Nach Aufgabe 5.2.4 und deren Beweis ist dann f ebenfalls Lipschitz zu 1, da Konvergenz in C[0,1] punktweise Konvergenz impliziert, weiterhin ist $|f| \leq 2$, da $|f_n(x)| \leq 2$ für alle $n \in \mathbb{N}$ und $0 \leq x \leq 1$ gilt. Also ist $f \in M_5$.
 - Es sei $x_0 \in [0,1]$ und $\varepsilon > 0$. Wähle $\delta := \varepsilon$, dann ist für $x \in [0,1]$ mit $|x-x_0| < \delta$ und $f \in M_5$:

$$|f(x_0) - f(x)| < |x - x_0| < \delta = \varepsilon$$

also ist M_5 gleichgradig stetig.

f) M_6 ist gleichgradig stetig: Es sei $x_0 \in \mathbb{R}$ beliebig und $\varepsilon > 0$. Wähle $\delta := \varepsilon/(2|x_0|+2\varepsilon)$, es sei $x \in \mathbb{R}$ mit $|x-x_0| < \delta$ und $n \in \mathbb{N}$, dann gilt nach dem MWS:

$$|f_n(x) - f_n(x_0)| = \frac{1}{n} |x^2 - x_0^2|$$

$$= \frac{1}{n} |2\xi| |x - x_0|$$

$$\leq |2\xi| \delta$$

$$\leq 2(|x_0| + \varepsilon) \delta$$

$$= \varepsilon.$$

Das war aber zu zeigen.

5.3.7 Zu $\gamma \in [0,1]$ definieren wir eine Funktion $f_{\gamma} \in C[0,1]$ durch

$$f_{\gamma}(x) = \exp(\gamma x).$$

Sei nun $M:=\{f_{\gamma}\mid \gamma\in [0,1]\}$ die Menge dieser Funktionen.

- a) Man zeige, dass M gleichgradig stetig ist.
- b) Ist M sogar kompakt in C[0,1]?
- a) Betrachte $f:[0,1]\to C[0,1],\ \gamma\mapsto f_\gamma,$ wir zeigen dass f Lipschitzabbildung zu e ist: Es seien $\gamma,\delta\in[0,1],$ und $x\in[0,1]$ beliebig, nach dem Mittelwertsatz exisitiert $\xi(x)$ zwischen γx und δx (also insbesondere $\xi(x)\in[0,1]$ mit

$$\begin{aligned} \left| \mathbf{e}^{\gamma x} - \mathbf{e}^{\delta x} \right| &= \mathbf{e}^{\xi(x)} |\gamma x - \delta x| \\ &= x \mathbf{e}^{\xi(x)} |\gamma - \delta| \\ &\leq 1 \mathbf{e}^{1} |\gamma - \delta| \\ &= \mathbf{e} \cdot |\gamma - \delta| \end{aligned}$$

es folgt

$$||f_{\gamma} - f_{\delta}||_{\infty} = \sup_{0 \le x \le 1} |f_{\gamma}(x) - f_{\delta}(x)|$$
$$\le \sup_{0 \le x \le 1} e \cdot |\gamma - \delta|$$
$$= e|\gamma - \delta|.$$

Also ist f Lipschitzstetig, insbesondere stetig, was zeigt, dass M = f([0,1]) als stetiges Bild eines Kompaktums kompakt und damit gleichgradig stetig ist.

b) Das wurde unter a) mitgezeigt.

Zu Abschnitt 5.4

- **5.4.1** Zeigen Sie, dass die Aussage des Banachschen Fixpunktsatzes ohne die Voraussetzung der Vollständigkeit nicht stimmen muss. Genauer: Geben Sie für $M=\]0,1\ [$ und $M=\ \mathbb Q$ jeweils eine Kontraktion $f:M\to M$ an, die keinen Fixpunkt besitzt.
 - Auf] 0,1 [betrachte f(x) := x/2, dann ist f :]0,1 [$\to]0,1$ [stetig und Lipschitz zu 1/2 (also eine Kontraktion), hat aber keinen Fixpunkt, da x/2 = x genau für x = 0 gilt, aber $0 \notin]0,1$ [.

5.4.2 Auch im Brouwerschen Fixpunktsatz sind alle Voraussetzungen wesentlich. Geben Sie ein f ohne Fixpunkte in den folgenden Fällen an (K soll dabei stets nicht leer sein):

- a) f ist stetig, K ist konvex aber nicht kompakt.
- b) K ist kompakt und konvex, f ist aber unstetig.
- c) f ist stetig, K ist kompakt aber nicht konvex.
- a) $K=\mathbb{R}$ ist sicher konvex, $f:\mathbb{R}\to\mathbb{R}$, $x\mapsto x+1$ ist stetig, hat aber wegen $1\neq 0$ keinen Fixpunkt.
- b) Auf der kompakten konvexen Menge K = [0,1] hat $f:[0,1] \to [0,1]$ mit f(x) = 0 für $x \neq 0$ und f(0) = 1 keinen Fixpunkt.
- c) Auf der kompakten Menge $K = [0,1] \cup [3,4]$ hat die stetige Funktion f(x) := 2x 2 keinen Fixpunkt, denn

$$2x - 2 = x \iff x - 2 = 0 \iff x = 2 \notin [0, 1] \cup [3, 4].$$

5.4.3 Gilt der Cantorsche Durchschnittssatz auch dann, wenn man ihn mit offenen Kugeln formuliert?

Nein. [0,2] ist ein vollständiger Metrischer Raum, aber mit $K_n := U_{1/n}(1/n) = [0,2/n]$ gilt

$$\bigcap_{n\in\mathbb{N}}\,]\,0,2/n\,[\,=\emptyset$$

da $2/n \to 0$.

5.4.4 Sind die folgenden Aussagen richtig oder falsch?

- a) Das Komplement einer Teilmenge von zweiter Kategorie ist von erster Kategorie.
- b) Sind A_1, A_2, \ldots von zweiter Kategorie in M und gilt $A_1 \supset A_2 \supset \cdots$, so ist der Durchschnitt der A_n ebenfalls von zweiter Kategorie.
- a) Falsch. Betrachte \mathbb{R} , und $A=(-\infty,0)$, dann ist A von zweiter Kategorie, denn: Angenommen es gäbe nirgends dicht $A_n\subset\mathbb{R}$ mit $\bigcup_{n\in\mathbb{N}}A_n=A$, dann wäre

$$\bigcup_{n \in \mathbb{N}} (-1 - A_n) = (-1 - A) = (-1, \infty)$$

und mit $B_{2n}:=A_n,\,B_{2n+1}=-1-A_n$ für $n\in\mathbb{N}\,,$ wären B_n nirgends dicht und

$$\mathbb{R} = \bigcup_{n \in \mathbb{N}} B_n$$

von erster Kategorie in sich.

Also ist A von zweiter Kategorie, genauso zeigt man, dass auch $A^c = [0, \infty)$ von zweiter Kategorie ist.

b) Falsch. Es sei $M = \mathbb{R}$, dann sind $A_n := [0, 1/n]$ von zweiter Kategorie in \mathbb{R} (das zeigt man wie in a)), aber es ist

$$\bigcap_{n\in\mathbb{N}} A_n = \{0\}$$

sogar nirgends dicht in \mathbb{R} .

5.4.5 Gibt es einen metrischen Raum, in dem die leere Menge von zweiter Kategorie ist?

Nein. Die leere Menge ist stets nirgens dicht, da sie offen-abgeschlossen ist, d.h. es ist $(\emptyset^-)^\circ = \emptyset$ in jedem metrischen Raum.

5.4.6 Es gibt nicht-vollständige metrische Räume, die von zweiter Kategorie in sich sind. (Die Vollständigkeit ist im Satz von Baire also nur eine hinreichende Bedingung.)

Betrachte $M:=(0,\infty)$ mit der euklidischen Metrik. Angenommen es wäre $M=\bigcup_{n\in\mathbb{N}}A_n$ mit in M nirgends dichten A_n , o.E. sei A_n abgeschlossen in M für alle $n\in\mathbb{N}$. Es folgte, dass

$$[1,\infty) = \bigcup_{n \in \mathbb{N}} (A_n \cap [1,\infty))$$

wäre. Nun ist aber mit $B_n := A_n \cap [1, \infty)$ abgeschlossen in $[1, \infty)$ und das innere von B_n in $[1, \infty)$ ist eine Teilmenge des inneren von B_n in $(0, \infty)$, also leer, d.h. $[1, \infty)$ wäre von erster Kategorie in sich. Widerspruch. Also ist M von zweiter Kategorie in sich.