姜晓千 2023 年强化班笔记

数学笔记

Weary Bird

2025年7月24日

相见欢·林花谢了春红

林花谢了春红,太匆匆。无奈朝来寒雨晚来风。胭脂泪,相留醉,几时重。自是人生长恨水长东。

2025年7月24日

目录

第一章	无穷级数	1
1.1	数项级数敛散性的判定	1
1.2	交错级数	Ç
1.3	任意项级数	4
1.4	幂级数求收敛半径与收敛域	6
1.5	幂级数求和	8
1.6	幂级数展开	11
1.7	无穷级数证明题	13
1.8	傅里叶级数	15

第一章 无穷级数

1.1 数项级数敛散性的判定

1.
$$(2015, 数三)$$
 下列级数中发散的是
$$(A) \sum_{n=1}^{\infty} \frac{n}{3^n} \qquad (B) \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \ln \left(1 + \frac{1}{n} \right)$$

$$(C) \sum_{n=2}^{\infty} \frac{(-1)^n + 1}{\ln n} \qquad (D) \sum_{n=1}^{\infty} \frac{n!}{n^n}$$

2.
$$(2017, 数三) 若级数 \sum_{n=2}^{\infty} \left[\sin \frac{1}{n} - k \ln \left(1 - \frac{1}{n} \right) \right]$$
 收敛, 则 $k = (A) \ 1 \quad (B) \ 2 \quad (C) \ -1 \quad (D) \ -2$

1.2 交错级数

3. 判定下列级数的敛散性:

(1)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n - \ln n}$$
 (2) $\sum_{n=2}^{\infty} \frac{(-1)^n}{\sqrt{n} + (-1)^n}$.

任意项级数 1.3

4. (2002, 数-) 设 $u_n \neq 0 (n=1,2,3,\cdots)$, 且 $\lim_{n\to\infty} \frac{n}{u_n} = 1$ 则级数 $\sum_{n=1}^{\infty} (-1)^{n+1} \left(\frac{1}{u_n} + \frac{1}{u_{n+1}}\right)$ (A) 发散 (B) 绝对收敛 (C) 条件收敛 (D) 敛散性根据所给条件不能判定

5. (2019, 数三) 若级数 $\sum_{n=1}^{\infty} nu_n$ 绝对收敛, $\sum_{n=1}^{\infty} \frac{v_n}{n}$ 条件收敛, 则

$$(A)$$
 $\sum_{n=1}^{\infty} u_n v_n$ 条件收敛 (B) $\sum_{n=1}^{\infty} u_n v_n$ 绝对收敛 (C) $\sum_{n=1}^{\infty} (u_n + v_n)$ 收敛 (D) $\sum_{n=1}^{\infty} (u_n + v_n)$ 发散

$$(C)$$
 $\sum_{n=1}^{\infty} (u_n + v_n)$ 收敛 (D) $\sum_{n=1}^{\infty} (u_n + v_n)$ 发散

1.4 幂级数求收敛半径与收敛域

6. (2015, 数一) 若级数 $\sum_{n=1}^{\infty} a_n$ 条件收敛则 $x = \sqrt{3}$ 与 x = 3 依次为幂级数

$$\sum_{n=1}^{\infty} na_n(x-1)^n \text{ in}$$

- (A) 收敛点, 收敛点 (B) 收敛点, 发散点
- (C) 发散点, 收敛点 (D) 发散点, 发散点

7. 求幂级数 $\sum_{n=1}^{\infty} (-1)^n \frac{x^{2n+1}}{3^n (2n+1)}$ 的收敛域.

Solution.

1.5 幂级数求和

8. (2005, 数一) 求幂级数 $\sum_{n=1}^{\infty} (-1)^{n-1} \left[1 + \frac{1}{n(2n-1)} \right] x^{2n}$ 的收敛区间与和函数 f(x).

9. (2012, 数一) 求幂级数 $\sum_{n=0}^{\infty} \frac{4n^2 + 4n + 3}{2n + 1} x^{2n}$ 的收敛域及和函数.

10. (2004, 数三) 设级数 $\frac{x^4}{2\cdot 4} + \frac{x^6}{2\cdot 4\cdot 6} + \frac{x^8}{2\cdot 4\cdot 6\cdot 8} + \cdots$ $(-\infty < x < +\infty)$ 的和函数为 S(x)。求:

- (1) S(x) 所满足的一阶微分方程;
- (2) S(x) 的表达式.

1.6 幂级数展开

11. 例 11 (2007, 数三) 将函数 $f(x) = \frac{1}{x^2 - 3x - 4}$ 展开成 x - 1 的幂级数, 并指出其收敛区间. **Solution**.

12. 将函数 $f(x) = \ln \frac{x}{x+1}$ 在 x = 1 处展开成幂级数.

1.7 无穷级数证明题

- 13. (2016, 数一) 已知函数 f(x) 可导,且 $f(0) = 1,0 < f'(x) < \frac{1}{2}$ 。设数列 $\{x_n\}$ 满足 $x_{n+1} = f(x_n)(n = 1, 2, \cdots)$ 。证明:
 - (i) 级数 $\sum_{n=1}^{\infty} (x_{n+1} x_n)$ 绝对收敛;
 - (ii) $\lim_{n\to\infty} x_n$ 存在,且 $0 < \lim_{n\to\infty} x_n < 2$.

- 14. (2014, 数一) 设数列 $\{a_n\},\{b_n\}$ 满足 $0 < a_n < \frac{\pi}{2}, 0 < b_n < \frac{\pi}{2}, \cos a_n a_n = \cos b_n$, 且级数 $\sum_{n=1}^{\infty} b_n$ 收敛。
 - (1) 证明 $\lim_{n\to\infty} a_n = 0$;
 - (2) 证明级数 $\sum_{n=1}^{\infty} \frac{a_n}{b_n}$ 收敛.

1.8 傅里叶级数

15. 设函数

$$f(x) = \begin{cases} e^x, & -\pi \le x < 0 \\ 1, & 0 \le x < \pi \end{cases}$$

则其以 2π 为周期的傅里叶级数在 $x = \pi$ 收敛于?, 在 $x = 2\pi$ 收敛于?.

Solution. 由狄利克雷收敛定理知,f(x) 以 2π 为周期的傅里叶级数在 $x = \pi$ 收敛于

$$S(\pi) = \frac{f(\pi - 0) + f(-\pi + 0)}{2} = \frac{1 + e^{-\pi}}{2}$$

在 $x = 2\pi$ 收敛于

$$S(2\pi) = S(0) = \frac{f(0-0) + f(0+0)}{2} = \frac{1+1}{2} = 1$$

16. 将 $f(x) = 1 - x^2, 0 \le x \le \pi$, 展开成余弦级数, 并求级数 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2}$ 的和.

Solution. 对 $f(x) = 1 - x^2$ 进行偶延拓, 由 $f(x) = 1 - x^2$ 为偶函数, 知 $b_n = 0$ 。

$$a_0 = \frac{2}{\pi} \int_0^{\pi} (1 - x^2) dx = 2\left(1 - \frac{\pi^2}{3}\right)$$

$$a_n = \frac{2}{\pi} \int_0^{\pi} (1 - x^2) \cos nx dx = \frac{4(-1)^{n+1}}{n^2} \quad (n = 1, 2, \dots)$$

$$f(x) = 1 - x^2 = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx = 1 - \frac{\pi^2}{3} + \sum_{n=1}^{\infty} \frac{4(-1)^{n+1}}{n^2} \cos nx$$

$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2} = \frac{\pi^2}{12}$$