

	Curso:			
Disciplina: Eletrônica Digital I	Turma: CC2M	Data: 04/04/2023	Nota: 1) 1 ₁ 0	Rubrica do Coordenador
Avaliação: 1º Bimestre	Semestre: 2023/1	Valor: 10 (dez) ¹	3/2/0	IL
Professor: Gilberto Costa Drumond So	277			
Aluno(a): Ducas Casoijo X	94	/WM		
Leia as instruções abaixo antes de iniciar o teste.			(W	wito Bom!

- ⇒ Leia atentamente as questões antes de respondê-las;
- ⇒ Todas as questões deverão ser respondidas com CANETA azul ou preta nestas folhas;
- ⇒ Prova a lápis não tem direito à revisão;
- ⇒ As questões objetivas rasuradas serão consideradas nulas;
- ⇒ Desligue e guarde o celular, não consulte material, colegas ou fontes de qualquer outra natureza. Evite que sua prova seja recolhida pelo professor por atitudes indevidas.
- ⇒ PROVA SEM CONSULTA E INDIVIDUAL.

Boa Prova!

1ª Questão estilo ENADE. (1 ponto)

Analise as afirmativas seguintes sobre a operação dos circuitos lógicos, e depois marque a alternativa correta.

- I O teorema de DeMorgan garante que $\overline{(x+y)} = x.y.x$
- II O nível lógico da saída de uma porta OR será sempre 1, se em suas duas entradas for aplicada uma variável A e seu complemento \overline{A} . \checkmark
- III Na representação convencional das portas lógicas, (não) há bolinha (Negação) presente nas entradas, enquanto na representação alternativa, todas possuem bolinhas em suas entradas.
- IV A saída de uma porta NAND de três entradas só será) se todas suas três entradas forem 1. X

2º Questão) (2 pontos)

Um avião a jato emprega um sistema de monitoração dos valores de rpm, pressão e temperatura dos seus motores usando sensores que operam, conforme descrito a seguir:

saida do sensor RPM = 0 apenas quando a velocidade for < 4.800 rpm

saida do sensor P = 0 apenas quando a pressão for < 1,33 N/m2

saida do sensor T = 0 apenas quando a temperatura for < 93,3°C

A Figura abaixo mostra o circuito lógico que controla uma lâmpada de advertência dentro da cabine para certas combinações de condições da máquina. Admita que um nível ALTO na saída W ative a luz de advertência.

- (a) Determine quais condições do motor, representadas pelos níveis lógicos das variáveis de entrada t, P e R, indicam sinal de advertência ao piloto.
- (b) Troque esse circuito por outro que contenha apenas portas NAND em sua implementação. Simplifique-o tanto quanto possível.

M.

3ª Questão) (2 pontos). 🕹

- a) Cite o nome da porta abaixo.
- b) Desenhe no espaço indicado a forma de onda de saída X. Use uma régua em seu desenho, e esteja atento às transições nas variáveis de entrada.

A 0 0 0 1 1 1	B 0 0 1 1 0 0 1 1	C 0 1 0 1 0 1 0 1	A+B+C O 1 1 1 1 1	1 0 0 0 0
1 1	1	1	1	ŏ

b) (no decenho)

M.

- a) Escreva a expressão booleana para a salda x na Figura abaixo.
- b) Determine o valor de x para todas as condições possíveis de entrada e relacione os resultados em uma tabela-verdade.
- c) Usando a técnica de sua escolha, simplifique a expressão booleana e desenhe um circuito de menor custo que faça a mesma função lógica do circuito original.

a) (A	+D) •D •	C					·	*,
b) A 0 0 0 1 1 1	B C O O O O O O O O O O O O O O O O O O	Ā Ā + B 1	(Ā+B) 0 0 0 0 1 1 0	B 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0	B· - C	(A+B) · B	·c → ABC	

8192+2048+176+13=10429

5ª Questão) (2 pontos)

- a) Converta o número hexadecimal 28BD₁₆ em seu equivalente decimal;
- b) Se X=A₁₆ e Y=C₁₆, calcule P = X*Y em binário.
- c) Dado A=010111002 e B=2810, obtenha a soma S=A+B em binário.

b)
$$A_{16} = 10_{10} = 10_{10}_{2}$$
 10_{10}_{2} $\rho_{2} = 1000_{2}$ 10_{10}_{2} $\rho_{3} = 1000_{2}$

C)
$$28_{10} \rightarrow ?_{2} = 11100_{2}$$

$$A = 1011100_{2}$$

$$B = \begin{vmatrix} 11100_{2} \\ 11100_{2} \end{vmatrix}$$

$$5 = 01111000$$

$$0 7 2$$

$$1 3 2$$

$$1 3 1$$

$$S = 1111000$$

lil