

KINGSWAY CHRISTIAN COLLEGE

MATHS DEPARTMENT

Course:	Math Methods unit 3				
Assessment Task:	Test 2				
Student Name:					
Date:	23 rd & 24 th March 2017				
Assessment Score:	/ 50				
Year Score:					
Comments:					
Taashan signatura					
Teacher signature:					
.					
Parent/ Guardian sign	nature:				
Comments:					

Math Methods Unit 3 Test 2 2017 Differentiation

Resource Free Time: 30 minutes Marks: /27

Only a formula sheet is allowed for this section. No calculator or notes allowed.

Question 1 (6 marks)

(a) For what values of c does the polynomial $P(x) = x^3 + c x^2 + 2x$ have an inflection point where x = 3? (3 marks)

(b) Sketch the graph of a function that such that:

(3 marks)

- f'(x) > 0 for all $x, x \neq 1 \land x \neq 3$
- vertical asymptote at x = 1
- f(x) > 0 if $x < 1 \lor x > 3$
- f(x) < 0 if 1 < x < 3
- f''(3)=0 and f'(3)=0

Question 2 (6 marks)

Determine the maximum and minimum value for f(x) and the value of x at which they occur, for the function $f(x) = 3x^4 - 16x^3 + 18x^2$ over the domain $-1 \le x \le 2$.

Question 3 (7 marks)

Determine the coordinates of all intercepts, stationary points and points of inflection of the function $y = x e^{3x}$.

Justify the nature of the stationary points found using a standard test.

Determine the equation of the normal to the curve $y=x(3-x)^2$ at (2,2).

Question 5 (5 marks)

Find the equation of the tangent to the curve $y=2x+\cos 2x$ at the point $(\frac{\pi}{3}; \frac{2\pi}{3} - \frac{1}{2}i)$

Math Methods Unit 3 Test 2 2017	Differentiation		
Name	_		
Resource Assumed Time:	25 minutes	Marks:	/ 23
CAS calculator and a formula sheet are a	llowed for this section		
Question 6		(5 m	arks)
A cylindrical can is to be made to hold 1 000	cm ³ of oil. Find the dimension	ns that will	

A cylindrical can is to be made to hold 1 000 cm³ of oil. Find the dimensions that will minimise the amount of the metal to make the can. Assume the can is made with a lid.

Question 7 (9 marks)							
The	e cost in dollars of producing x items is given by: $C(x) = (3000 + 5x)$.						
The	The revenue per item sold is given by $(40-0.02x)$.						
(a)	State the revenue function $R(x)$ for x number of items sold.	(1 mark)					
(b)	Give an expression for the profit function $P(x)$.	(1 mark)					
(c)	Determine how many items are needed to make a maximum profit and stat maximum profit.	e the (3 marks)					
(d)	Explain clearly if a loss occurred and when it occurred.	(2 marks)					
(e)	Determine the marginal profit of the 250 th item sold.	(2 marks)					

Question 8 (4 marks)

Use derivatives to find the approximate change in the radius of a spherical balloon corresponding to a change in its volume from 200 cm³ to 195 cm³. Answer to 4 decimal places.

Question 9

A water tank has the shape of an inverted circular cone with base radius 2 m and height 4 m.

(a) Proof that the volume of the tank is given by the following formula:

$$V(h) = \frac{1}{12}\pi h^3 \tag{1 mark}$$

(b) If water is being pumped into the tank at a rate of 2 m³/min, find the rate at which the water level is rising when the water is 3 m deep.Answer to the nearest cm/min. (4 marks)