

WL-TR-93-4088 ADA 273666

STRUCTURE OF CHOLESTERYL-4-VINYLBENZOATE

E. P. Socci B. L. Farmer Dept. of Materials Science and Engineering University of Virginia Charlottesville, VA 22903-2442

M. L. Chabinyc A. V. Fratini Dept. of Chemistry University of Dayton Dayton, OH 45469-0001

T. J. Bunning W. W. Adams Material Directorate Wright Laboratory, AFMC Wright-Patterson AFB, OH 45433-7702

August 1993

Final Report for the Period June 1993-August 1993

Approved for public release; distribution is unlimited.

Materials Directorate
Wright Laboratory
Air Force Materiel Command
Wright-Patterson Air Force Base, Ohio 45433-7734

20040219178

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely Government-related procurement, the United States Government incurs no responsibility or any obligation whatsoever. The fact that the government may have formulated or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication, or otherwise in any manner construed, as licensing the holder, or any other person or corporation; or as conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This report is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

WADE ADAMS, Engineer Optical Materials Survivability Hardened Materials Branch

Warle Allerun

SUSAN D. KIRCHOFF, Acting Chief Hardened Materials Branch Electromagnetic Materials and Survivability Division

Susan & Kirch

WILLIAM R. WOODY, Chief Electromagnetic Materials and

William RWoody

Survivability Division

If your address has changed, if you wish to be removed from our mailing list, or if the addressee is no longer employed by your organization please notify $\frac{\text{WL/MLPJ}}{\text{MLPJ}}$, WPAFB, OH 45433-7702 to help us maintain a current mailing list.

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

REPORT DOCUMENTATION PAGE	FORM APPROVED
Public reporting burden for this collection of information is estimated to average hour per resignathering and maintaining the data needed, the complete and review the collection of information collection of information, including suggestions and reducing this burden to Washington Headquan	n. Send comments regarding this burden estimate or any or ters Services, Directorate for Information Operations as
	EPORT TYPE AND DATES COVERED ITERIM 06/01/9308/01/93
4. TITLE AND SUBTITLE	5. FUNDING NUMBERS
STRUCTURE OF CHOLESTERYL-4-VINYLBENZOATE	PE 62102F
6. AUTHOR(S) *E.P. SOCCI, *B.L. FARMER,**M.L. CHABINYC, **A.V. FRATINI, T.J. BUNNING, W.W. ADAMS	PR 2422 TA 04 WU 01
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)	8. PERFORMING ORGANIZATION REPORT NUMBER
MATERIALS DIRECTORATE WRIGHT LABORATORY AIR FORCE MATERIEL COMMAND WRIGHT PATTERSON AFB, OH 45433-7734	WL-TR-93-4088
9. SPONSORING MONITORING AGENCY NAME(S) AND ADDRESS(ES)	10. SPONSORING/MONITORING
MATERIALS DIRECTORATE WRIGHT LABORATORY AIR FORCE MATERIEL COMMAND WRIGHT PATTERSON AFB OH 45433-7734	AGENCY REP NUMBER WL-TR-93-4088
11. SUPPLEMENTARY NOTES *UNIVERSITY OF VIRGINIA **UNIVERSITY OF DAYTON	
12a. DISTRIBUTION/AVAILABILITY STATEMENT APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.	12b. DISTRIBUTION CODE
13. ABSTRACT	
The structure of cholesteryl-4-vinylbenzoate was determined molecule is elongated, with the benzoate group oriented out of tetracyclic core. Molecules pack antiparallel, with overlap bet or tetracyclic cores. These two types of interactions (overlap packing modes that coexist in the liquid crystalline phase.	of the plane of the tween either aliphatic tails
14. SUBJECT TERMS	15. NUMBER OF PAGES 50
CRYSTAL STRUCTURE, X-RAY DIFFRACTION, LIQUID CRYSTAL, CHOLESTEROL ESTER	16. PRICE CODE
17. SECURITY CLASSIFICATION 18. SECURITY CLASS 19. SECURITY OF REPORT OF THIS PAGE. OF ABS	TRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIF NSN 7540-01-280-5500	Standard Form 298 (Rev 2-89)

Standard Form 298 (Rev 2-89) Prescribed by ANSI Std Z39-18 298-102

TABLE OF CONTENTS

SECTION		PAGE	≟
2. EX 3. DI	TRODUCTION PERIMENTAL METHODS SCUSSION FERENCES	1 4 11 26	L
Appendix:	Calculated and Observed Amplitudes for Choleste		7

LIST OF FIGURES

Figure	1:	Molecular structure of the title compound along with the atom numbering scheme. H atoms are omitted. Thermal ellipsoids (ORTEPII; Johnson, 1976) are drawn at the 50% probability level.	13
Figure	2:	Illustrations showing: (a) the benzoate moiety out-of-plane with the tetracyclic core and (b) boat-chair ring conformations of the tetracyclic core.	14
Figure	3:	An ORTEPII plot of the unit cell. The c axis is perpendicular to the plane of the paper; the a and b axes are horizontal and vertical, respectively.	15
Figure	4:	Projection of the crystal structure down the a axis.	16
Figure	5:	Projection of the crystal structure down the b axis.	17
Figure	6:	Projection of the crystal structure down the c axis.	18
Figure	7:	Projection of the cholesteryl-4-vinylbenzoate crystal structure down the c axis. Molecular interaction types are staggered along the a axis. A-B and C-D separation distances are given in the text.	19

LIST OF TABLES

Table 1:	Experimental Details	6
Table 2:	Fractional Coordinates and Equivalent Anisotropic Thermal Parameter for Cholesteryl-4-vinylbenzoate	7
Table 3:	Anisotropic Thermal Parameters for Cholesteryl-4-vinylbenzoate	10
Table 4:	Bond Lengths (Å) for Cholesteryl-4-vinylbenzoate	20
Table 5:	Bond Angles (°) for Cholesteryl-4-vinylbenzoate	22
Table 6:	Torsion Angles (°) for Cholesteryl-4-vinylbenzoate	24

FOREWORD

The following report was prepared under the AFOSR Summer Research Program under Contract F49620-90-C-0076. The work was initiated under Project No. 2422, "Laser Hardened Materials," Task No. 0401, Work Unit Directive (WUD) 26. It was administered under the direction of the Materials Directorate, Wright Laboratory, Air Force Systems Command, Wright-Patterson Air Force Base, Ohio, with Dr. R.L. Crane as the Materials Directorate Project Scientist (WUD Leader). Coauthors were E. P. Socci and Dr. B. L. Farmer, Dept. of Materials Science and Engineering, University of Virginia, M. L. Chabinyc and Dr. A. V. Fratini, Dept. of Chemistry, University of Dayton, and Drs. T. J. Bunning and W. W. Adams, WL/MLPJ, Wright-Patterson AFB. This report covers the research performed at the Wright Laboratory, Materials Directorate on single crystal X-ray diffraction experiments conducted on in-house synthesized compounds.

INTRODUCTION

The Laser Hardened Materials Branch of the Materials Directorate, Wright Laboratory is interested in organic materials with highly ordered molecular structure for nonlinear optical purposes. One class of materials under investigation are thermotropic liquid crystalline compounds, especially those based upon cyclic siloxane backbones.

The first compound exhibiting liquid crystallinity was an ester of cholesterol discovered by Reinitzer in 1888 (Reinitzer, 1888). Since then the liquid crystalline properties of a number of steroidal-based esters (Shibaev & Freidzon, 1989) have been examined. The crystal structures of cholesterol-based materials, most notably those with pendant n-alkanoate ester groups, have also been studied in an attempt to obtain information relating the conformation and packing in the crystalline state to packing in the liquid crystalline phase.

Craven and coworkers (Craven & Guerina, 1979; Guerina & Craven, 1979; Pattabhi & Craven, 1979; Sawzik & Craven, 1979; Sawzik & Craven, 1980a; Sawzik & Craven, 1980b) have observed three distinct packing modes which are dependent upon the length of the pendant n-alkanoate spacer group. Compounds with short spacer lengths (6-8 carbons) exhibit a monolayer structure in which the molecules pack antiparallel. The methyl side groups pendant on the tetracyclic core interlock, leading to efficient packing. Structures of compounds with medium length spacers (9-12)

carbons) are comprised of two nonsymmetry related molecules in the unit cell that differ mainly in the conformations of the nalkanoate groups. The tetracyclic cores in these antiparallel molecules are approximately orthogonal. Compounds with longer spacer groups (13-18 carbons) pack in a bilayer structure in which the molecules are oriented antiparallel. The tetracyclic cores between adjacent molecules do not overlap. Differences in these three packing types have been compared with the variations in packing behavior observed in the liquid crystalline phases (Sawzik & Craven, 1979). Others (Sato & Yano, 1987) have correlated conformations in the crystalline state with the ability of a compound to exhibit liquid crystallinity.

As part of our program aimed toward the development of ordered optically clear thin films, a series of cholestery1-4-alkenebenzoate materials were synthesized (Bunning, 1992; Gresham, McHugh, Bunning, Klei, Samulski, & Crane, 1993). These compounds were attached to cyclic siloxane backbones. X-ray diffraction measurements of the liquid crystalline phase of these macromolecules indicate the coexistence of two molecular packing schemes (Bunning, Klei, Samulski, Crane, & Linville, 1991; Bunning, Klei, Samulski, Adams, & Crane, 1993) Type I packing consists of nearly fully interdigitated cholesteryl molecules packed antiparallel with a molecular repeat distance (as measured from X-ray diffraction) corresponding to the calculated length of an extended conformation of the molecule. Type II packing consists of antiparallel mesogens packed with overlap only among the aliphatic tails. The relative amounts of type I and II

packing can be controlled by altering several variables including the terminal spacer length. This paper examines the structure of vinylbenzoate substituted cholesterol compounds. Materials with other alkene benzoate spacers are also being studied. Trends in the crystalline packing as a function of alkene-benzoate spacer length may offer insight into the packing behavior in the liquid crystalline phase.

EXPERIMENTAL METHODS

The title compound (C36H52O2, F.W.=516.78) was synthesized using a mild esterification reaction of vinylbenzoic acid and cholesterol. Experimental details are available elsewhere (Bunning, 1992). Colorless parallelepiped crystals were obtained by recrystallization from ethyl acetate. A crystal of approximate dimensions 0.37 by 0.30 by 0.27 mm was mounted on a glass fiber with its long axis approximately parallel to the φ axis of the goniometer. Preliminary examinations of the crystal and subsequent data collection were performed on an Enraf-Nonius CAD-4 diffractometer equipped with graphite monochromated Mo K α radiation (λ =0.71073 Å). A rotation (about φ) Polaroid was taken and indicated the crystal was of diffraction quality.

Unit cell dimensions were obtained from a least square fit of 25 reflections with $18.02^{\circ} \le 20 \le 23.48^{\circ}$. The orthorhombic cell parameters and calculated volume are: a=13.755(2) Å, b=24.817(3)Å, c=9.101(2)Å, and V=3101.6 Å³. There are four molecules per unit cell (Z=4).

Intensities were measured at 294 K in a $\omega/2\theta$ scan mode. A total of 5035 reflections in the range of $2^{\circ} \le 2\theta \le 60^{\circ}$ and $0 \le h \le 19$, $0 \le k \le 34$, $0 \le l \le 12$ were measured. Three intensity monitoring reflections (measured every 120 reflections) showed a decay of 1.79% over approximately 72 hours of data collection. Absorption and decay corrections were applied (μ =0.061). Examination of

reflections for systematic absences led to the choice of space group $P2_{1}2_{1}2_{1}$ (No. 19).

The phase problem was successfully solved using the direct method program SIR88 (Spagna, R & Viterbo, D., 1989). Structure factors were calculated with scattering factors from the International Tables of X-ray Crystallography (International Tables for Crystallography, 1974). Full matrix least-squares refinement where the minimized function was $\Sigma w(|Fo|-|Fc|)$ was performed. Nonhydrogen atoms were first refined isotropically and then anisotropically. The 1470 reflections with $F>2\sigma(F)$ were used in the refinement. Hydrogen atoms were added at calculated positions to the structure model and set as fixed riding atoms. The final cycle of refinement included 243 variable parameters. The final R factor was 0.071 and the weighted R factor was 0.064. The largest shift/error for a parameter was equal to 0.02. calculations were performed on a Micro-VAX II computer using Enraf-Nonius' MolEN software. The SYBYL computer modeling program (Tripos Associates, 1991) was used to visualize the molecular packing. A summary of experimental details is given in Table 1. The fractional coordinates and isotropic equivalent temperature factors of the nonhydrogen atoms are listed in Table 2, and anisotropic thermal parameters are listed in Table 3.

Table 1. Experimental Details

Formula Formula Weight F(000) Crystal Dimensions Radiation	C36H52O2 516.78 1136 0.37 x 0.30 x 0.27 mm
Temperature Crystal Form Space Group Cell Constants	Mo Kα 294 K Orthorhombic P212121 a=13.755(2) Å
Volume	b=24.817(3) Å c=9.101(2) Å 3101.6 Å ³
Z Density (calc.)	4 1.10 g/cm ³
Absorption Coeff. Scan type	0.061 ω/2θ
Max 2Q Reflections Measured	59.94° 5066 total 5035 unique
Corrections	Lorentz-polarization Numerical absorption (0.9768- 0.9906)
Observations	1470 with $F > 2\sigma(F)$
Parameters R wR Goodness of fit Max shift/error	243 0.071 0.064 1.912 0.02

Table 2. Fractional Coordinates and Equivalent Anisotropic Thermal Parameter for Cholesteryl-4-vinylbenzoate

Atom	x	Y	<u>Z</u>	<u>U</u> eq
O3 O28 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C23 C24 C25 C26 C27 C28 C29 C30 C31 C32 C33 C34	0.3961(3) 0.2672(3) 0.4243(5) 0.4511(5) 0.3609(5) 0.2907(5) 0.1774(5) 0.1485(4) 0.3219(4) 0.3219(4) 0.3552(4) 0.3552(4) 0.3712(5) 0.2875(4) 0.2055(4) 0.1180(4) 0.1332(4) 0.1332(4) 0.2346(4) 0.1332(4) 0.2346(4) 0.1332(4) 0.2346(5) 0.4039(5) 0.4039(5) 0.2809(4) 0.3822(5) 0.2436(5) 0.2436(5) 0.1694(5) 0.1694(6) 0.1694(6) 0.1041(7) 0.3425(5) 0.4756(5) 0.4756(5) 0.3966(5) 0.3513(5)	0.1037(2) 0.1459(2) -0.0405(3) 0.0178(3) 0.0523(3) 0.0285(3) -0.0305(2) -0.0480(3) -0.1050(3) -0.1445(2) -0.1225(2) -0.1639(2) -0.2187(2) -0.2187(2) -0.2415(2) -0.2288(2) -0.2879(3) -0.2527(3) -0.2527(3) -0.2527(3) -0.3478(3) -0.3514(3) -0.3514(3) -0.4888(3) -0.4888(3) -0.5461(3) -0.5805(3) 0.1475(3) 0.1981(3) 0.2945(3) 0.2945(3) 0.2945(3) 0.29469(3)	0.4407(5) 0.3399(6) 0.3309(9) 0.371(1) 0.3872(9) 0.4934(8) 0.4595(7) 0.4510(8) 0.4282(9) 0.4498(7) 0.3722(8) 0.4498(7) 0.3628(8)	5.4(1) 5.4(2) 5.2(2) 5.2(2) 5.2(2) 5.2(2) 5.2(2) 5.2(2) 5.2(2) 5.2(2) 5.3(2) 5.4(2) 5.4(2) 5.5(2) 6.6(2)
- - -	•	• •		

Table 2 (con't)

Atom	X	Y	<u>z</u>	<u>Ueq</u>
C35 C36 H1A H1B H2A H2B H3 H4A H4B H6 H7B H7A H8 H9 H11A H11B H12B H12A H14 H15A H118 H12B H12A H14 H15A H18B H16B H16B H16A H17 H18A H18B H18C H19C H19B H19A	0.5325(6) 0.5071(6) 0.3927 0.4813 0.4824 0.4933 0.3273 0.2324 0.3202 0.1280 0.0978 0.1247 0.2448 0.3040 0.4253 0.4551 0.3467 0.4241 0.1907 0.0592 0.1183 0.1320 0.0835 0.2345 0.3654 0.2650 0.3567 0.4275 0.3567 0.4562	0.3444(3) 0.3936(3) -0.0392 -0.0618 0.0168 0.0523 0.0490 0.0305 -0.0218 -0.1132 -0.1082 -0.1492 -0.1142 -0.1688 -0.1512 -0.2137 -0.2432 -0.1911 -0.2144 -0.2251 -0.3108 -0.2984 -0.2882 -0.2882 -0.2609 -0.2210 -0.0414 -0.0885 -0.1000	0.5643(9) 0.534(1) 0.2380 0.3236 0.4644 0.3010 0.2959 0.4931 0.5875 0.4655 0.4955 0.3305 0.5513 0.2738 0.4608 0.3035 0.2110 0.3054 0.2919 0.4179 0.5600 0.4933 0.3432 0.2341 0.5622 0.6150 0.5951 0.6208 0.6541 0.5803	67777766666664466655466666555557777 100
H20 H21A H21B H21C H22A	0.4362 0.2868 0.3780 0.4164 0.4158 0.2094	-0.3532 -0.3570 -0.3805 -0.3187 -0.3827	0.3803 0.4565 0.1873 0.3341 0.3093 0.1841	7.1° 6.9* 9.5* 9.5* 9.5* 7.1*
H22B H23A	0.1527 0.2597	-0.3870 -0.4547	0.3310 0.4083	7.1* 9.3*

Table 2 (con't)

Atom	×	Y	<u>z</u>	<u>U</u> eq
H23B	0.2993	-0.4534	0.2488	9.3*
H24B	0.1116	-0.4801	0.3109	9.7*
H24A	0.1590	-0.4839	0.1566	9.7*
H25	0.1862	-0.5489	0.3788	12.4*
H26A	0.3012	-0.5498	0.2165	18.8*
H26B	0.2675	-0.6048	0.2794	18.8*
H26C	0.2913	-0.5630	0.3914	18.8*
H27A	0.1046	-0.6149	0.2722	13.7*
H27B	0.1085	-0.5847	0.1230	13.7*
H27C	0.0454	-0.5623	0.2504	13.7*
н30	0.5025	0.1646	0.5650	6.8*
н31	0.5778	0.2445	0.6267	6.6*
н33	0.3698	0.3277	0.4170	7.4*
H34	0.2911	0.2489	0.3576	7.9*
H35	0.5911	0.3410	0.6188	8.5*
H36A	0.545	0.423	0.559	9.9*
H36B	0.448	0.399	0.477	9.9*

Starred atoms were refined isotropically. Anisotropically refined atoms are given in the form of the isotropic equivalent displacement parameter defined as: $(4/3) * [a^2*B(1,1) + b^2*B(2,2) + c^2*B(3,3) + ab(\cos \gamma*B(1,2) + ac(\cos \beta)*B(1,3) + bc(\cos \alpha)*B(2,3)]$

<u>Table 3: Anisotropic Thermal Parameters for Cholesteryl-4-vinylbenzoate</u>

DISCUSSION

Bond lengths, bond angles, and torsion angles are compiled in Tables 4, 5 and 6, respectively. A thermal-ellipsoid plot of the molecule (without hydrogen atoms) along with the numbering scheme employed is shown in Figure 1. Bond lengths and angles in the phenyl ring of the benzoate ester compare well with conventional aromatic bond lengths and angles. The benzoate moiety lies out of the plane of the tetracyclic core (illustrated in Figure 2) as indicated by the C2 C3 O3 C28 torsion angle of 152.2(6)°. C35-C36 bond length (1.30(1)Å) is consistent with accepted values for carbon-carbon double bonds, indicating that dimerization did not occur during X-ray exposure. The C28-O28 (1.199(8)Å) carbonyl and C28-O3 (1.352(8)Å) ester bonds are in agreement with accepted values. Boat and chair conformations (illustrated in Figure 2) are both present in the tetracycles consistent with results from the n-alkanoate cholesterol series. Large thermal vibrations are observed in the two terminal methyl groups of the aliphatic tail (C26 and C27). In general, the molecule adopts an extended conformation along the b axis.

The antiparallel molecules pack pairwise in the unit cell as shown in Figure 3. Views of the structure along the a, b, and c axes are illustrated in Figures 4-6, respectively. There is a staggered repeat along the a axis of molecules packed with either overlapping aliphatic tails or overlapping tetracyclic cores (Figure 7). The overlapping cores are tilted with respect to each

other. The phenyl ring of the benzoate group lies approximately parallel to the tetracyclic core of the neighboring molecule. The methyl groups of adjacent molecules do not interlock.

The types of interactions exhibited in the solid state have features reminiscent of those observed in the liquid crystalline state (described in the introduction) of cholesterol-4vinylbenzoate substituted siloxanes. Type I liquid crystalline packing approximates that of antiparallel molecules in the solid state where tetracyclic cores overlap. An end-to-end spacing (along the b-axis) between atoms A and B (shown in Figure 7) of 27.5 Å qualitatively agrees with a 26 Å d-spacing observed for type I packing in the liquid crystalline state. An end-to-end spacing (along the b-axis) between atoms C and D shown in Figure 7 of 45.1 Å qualitatively agrees with an observed (in the liquid crystalline state) type II d-spacing of 47 Å. In the liquid crystalline phase, the amount of type II packing is presumably dictated by steric interactions among aliphatic tails of neighboring molecules. As conditions increase the mobility of the cholesterol molecules (e.g., modification of spacer group length), the amount of type II packing decreases relative to type I packing. We are currently studying the progression of these two packing modes in the crystal structures of cholesterol molecules substituted with longer spacer groups.

Figure 1: Molecular structure of the title compound along with the atom numbering scheme. H atoms are omitted. Thermal ellipsoids (ORTEPII; Johnson, 1976) are drawn at the 50% probability level.

Figure 2: Illustrations showing: (a) the benzoate moiety out-of-plane with the tetracyclic core and (b) boat-chair ring conformations of the tetracyclic core.

Figure 3: An ORTEPII plot of the unit cell. The c axis is perpendicular to the plane of the paper; the a and b axes are horizontal and vertical, respectively.

Figure 4: Projection of the crystal structure down the a axis.

Figure 5: Projection of the crystal structure down the b axis.

Figure 6: Projection of the crystal structure down the c axis.

Figure 7: Projection of the cholesteryl-4-vinylbenzoate crystal structure down the c axis. Molecular interaction types are staggered along the a axis. A-B and C-D separation distances are given in the text.

Table 4: Bond Lengths (Å) for Cholesteryl-4-vinylbenzoate

Atom 1	Atom 2	<u>Distance</u>	Atom 1	Atom 2	Distance
O3 O3 O28 C1 C1 C1 C2 C2 C3 C4 C4 C5 C6 C7 C7 C16 C17 C18 C19 C20 C21 C22 C23 C23 C23 C23	C3 C28 C28 C10 H13 H2B C14 H2B C17 H2B C17 H2B H118 H118 H119 H119 H121 H121 H121 H121 H121 H121	1.449(8) 1.352(8) 1.199(8) 1.537(9) 1.53(1) 0.950(8) 0.950(7) 1.515(9) 0.950(8) 1.49(1) 0.950(8) 1.49(1) 0.950(7) 0.950(7) 1.528(9) 0.950(7) 1.520(9) 1.484(9) 0.950(7) 1.516(8) 0.950(7) 0.950(7) 0.950(7) 0.950(7) 0.950(7) 0.950(7) 0.950(7) 0.950(7) 0.950(7) 0.950(7) 0.950(7) 0.950(7) 0.950(7) 0.950(7) 1.51(1) 1.528(9) 0.950(7) 1.51(1) 1.528(9) 0.950(7) 1.51(1) 1.528(9) 0.950(7) 1.51(1) 1.528(9) 0.950(7) 1.51(1) 1.528(9) 0.950(7) 1.51(1) 1.528(9) 0.950(7)	C8 C8 C9 C9 C11 C11 C12 C13 C14 C15 C15 C16 C24 C25 C26 C27 C27 C28 C30 C31 C32 C33	C9 C14 H8 C10 C11 H9 C12 H118 C13 H12A C14 C17 C18 C15 H125 H24A C25 H26C H27C H26C H27C H27C H26C H27C H27C H27C H27C H27C H27C H27C H27	1.534(8) 1.512(8) 0.950(7) 1.574(9) 1.522(8) 0.950(7) 1.513(9) 0.950(7) 0.950(7) 0.950(7) 1.534(8) 1.537(9) 1.532(8) 0.950(7) 1.542(9) 1.542(9) 1.542(9) 1.542(9) 1.542(1) 0.950(8) 1.542(1) 0.950(8) 1.542(1) 0.950(8) 1.50(1) 0.950(1)

Table 4 (con't)

Atom 1	Atom 2	Distance	Atom 1	Atom 2	Distance
C33	н33	0.950(7)	C35	H35	0.950(8)
C34	н34	0.968(7)	C36	H36A	0.935(8)
C35	c36	1.30(1)	C36	H36B	0.966(9)

Numbers in parentheses are estimated standard deviations in the least significant digits.

Table 5: Bond Angles for Cholesteryl-4-vinylbenzoate

Atom 1	Atom 2	Atom 3	Angle	Atom 1	Atom 2	Atom 3	Angle
C3 C2 C2 C2 C10 C10 H1A C1 C1	O3 C1 C1 C1 C1 C1 C1 C2 C2	C28 C10 H1A H1B H1A H1B H1B H1B	Angle 116.5(5) 113.6(6) 107.0(6) 110.1(6) 108.0(6) 108.6(6) 109.5(7) 110.9(6) 107.5(6)	C5 C5 H4A C4 C4 C6 C5 C5	C4 C4 C4 C5 C5 C5 C6 C6	H4A H4B H4B C6 C10 C10 C7 H6 H6	109.8(6) 108.9(6) 109.5(7) 121.7(6) 115.6(5) 122.8(6) 125.2(6) 116.0(6) 118.7(6)
C1 C3 C3 H2A O3 O3 C2 C2	C2 C2 C2 C3 C3 C3 C3 C3	H2B H2A H2B H2B C2 C4 H3 C4 H3	112.0(7) 107.6(7) 109.3(6) 109.5(7) 104.7(5) 110.4(6) 117.1(6) 111.6(6) 108.4(7)	C6 C6 C8 C8 H7B C7 C7	C7 C7 C7 C7 C7 C7 C8 C8	C8 H7B H7A H7B H7A C9 C14 H8	113.3(5) 108.2(6) 107.6(6) 109.2(6) 109.0(6) 109.5(6) 108.7(5) 111.3(5) 110.8(6)
C4 C3 C3 C8 C8 C10 C10 C11	C3 C4 C4 C9 C9 C9 C9 C9	H3 C5 H4A H4B C11 H9 C11 H9 H9	104.7(6) 112.6(6) 109.4(6) 106.7(6) 112.4(5) 107.4(5) 113.5(5) 104.9(5) 106.4(6) 108.1(5)	C9 C9 C14 C8 H12B C12 C12 C12 C14 C14	C8 C8 C9 C12 C13 C13 C13 C13	C14 H8 H8 C10 H12A C14 C17 C18 C17	110.6(5) 109.4(5) 106.1(5) 111.5(5) 109.5(6) 106.0(5) 117.1(5) 110.7(5) 100.4(5) 112.8(5)
C1 C5 C5 C9 C9 C9 C9	C10 C10 C10 C10 C10 C11 C11 C11	C9 C19 C9 C19 C19 C12 H11A H11B	107.7(5) 111.0(5) 109.7(5) 109.2(5) 111.1(5) 114.4(5) 105.6(6) 111.1(6) 106.8(6)	C17 C8 C8 C8 C13 C13 C15 C14	C13 C14 C14 C14 C14 C14 C15 C15	C18 C13 C15 H14 C15 H14 H14 C16	109.4(5) 115.0(5) 118.5(5) 100.5(5) 104.0(5) 110.8(5) 107.9(5) 103.7(5) 110.7(6)
C12 H11A C11 C11 C13 C13 C17 C17 C17	C11 C12 C12 C12 C12 C12 C16 C16 C16	H11B H11B C13 H12B H12A H12B H16B H16A H16A	109.2(6) 109.5(6) 111.7(5) 107.1(5) 111.1(6) 106.6(5) 110.6(5) 108.5(5) 111.3(7) 109.5(6) 102.9(5)	C14 C16 C16 H15A C15 C15 C17 C17 C21 C21	C15 C15 C15 C16 C16 C16 C20 C20 C20	H15B H15A H15B H15B C17 H16B H16A C22 H20 C22	109.8(6) 111.9(6) 111.2(6) 109.5(6) 107.2(5) 110.5(7) 109.8(6) 110.2(5) 104.8(6) 110.8(6) 106.7(6)

Table 5 (con't)

Atom 1	Atom 2	Atom 3	Angle	Atom 1	Atom 2	Atom 3	Angle
C13 C13 C16 C16 C20 C13 C13	C17 C17 C17 C17 C17 C18 C18 C18	C20 H17 C20 H17 H17 H18A H18B	120.1(5) 106.6(5) 113.0(5) 114.6(6) 100.0(6) 111.8(6) 108.2(6) 108.4(6)	C22 C20 C20 C20 H21A H21A H21B C20	C20 C21 C21 C21 C21 C21 C21 C21 C22	H20 H21A H21B H21C H21B H21C H21C C23	110.4(6) 109.2(7) 110.0(7) 109.2(7) 109.5(8) 109.5(8) 109.5(8) 116.8(6)
H18A H18B C10 C10 C10 H19C H19C H19B C17	C18 C18 C19 C19 C19 C19 C19 C19 C20	H18B H18C H19C H19B H19A H19A H19A C21	109.5(7) 109.5(6) 109.5(6) 108.7(6) 108.3(6) 111.4(6) 109.5(7) 109.5(7) 109.5(7) 113.7(5)	C20 C20 C23 C23 H22A C22 C22 C22 C24 C24	C22 C22 C22 C22 C22 C23 C23 C23 C23 C23	H22A H22B H22A H22B H22B C24 H23A H23B H23A	107.2(6) 107.2(6) 110.5(6) 105.5(6) 109.5(7) 114.8(6) 111.2(7) 105.6(6) 109.1(7) 106.4(7)
H23A C23 C23 C23 C25 C25 H24B C24 C24	C23 C24 C24 C24 C24 C24 C25 C25	H23B C25 H24B H24A H24B H24A C26 C27	109.5(7) 120.8(7) 105.4(7) 108.1(7) 108.4(7) 104.4(8) 109.5(7) 125.7(8) 113.6(7)	H27A H27A H27B O3 O3 O28 C28 C28	C27 C27 C27 C28 C28 C28 C29 C29	H27B H27C H27C O28 C29 C29 C30 C34	109.5(9) 109(1) 109(1) 124.2(6) 111.7(6) 124.0(6) 122.0(6) 119.5(6) 118.5(6)
C24 C26 C27 C25 C25 C25 H26A H26A	C25 C25 C25 C26 C26 C26 C26	H25 C27 H25 H25 H26A H26B H26C H26B	99.8(8) 119.0(8) 81.(1) 103.6(8) 98.(1) 114.(1) 114.(1) 109.(1) 118.(1)	C29 C29 C31 C30 C30 C32 C31 C31 C33 C32	C30 C30 C31 C31 C31 C32 C32 C32 C32 C33	C31 H30 H30 C32 H31 H31 C33 C35 C35	120.2(6) 119.3(7) 120.5(7) 121.5(6) 118.5(7) 120.0(7) 118.1(6) 120.0(6) 121.9(6) 120.9(6)
H26B C25 C25 C25 C29 C33 C32	C26 C27 C27 C27 C34 C34 C35 C35	H26C H27A H27B H27C H34 H34 C36	103.(1) 112.4(9) 107.8(9) 108.2(8) 121.4(7) 117.8(7) 128.3(8) 116.9(6)	C32 C34 C29 C36 C35 C35	C33 C33 C34 C35 C36 C36	H33 H33 C33 H35 H36A H36B	119.2(7) 119.8(7) 120.8(6) 114.9(7) 122.8(9) 117.2(8) 119.9(8)

Table 6: Torsion Angles (°) of Cholesteryl-4-vinylbenzoate

Atom 1	Atom 2	Atom 3	Atom 4	Angle
C28 C3 C3 C10 C2 C21 C10 C2 C11 C11 C11 C11 C11 C11 C11 C11 C11	03 03 03 03 03 03 03 03 03 01 11 12 12 13 13 13 13 13 13 14 15 15 15 15 15 15 15 16 16 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	C3 C28 C20 C10 C10 C3 C4 C5 C6 C10 C10 C10 C10 C10 C10 C11 C10 C11 C11	C2 C4 C29 C3 C5 C61 C5 C61 C7 C7 C12 C13 C13 C13 C13 C13 C14 C17 C18 C11 C13 C17 C18 C11 C11 C13 C17 C18 C11 C11 C11 C11 C11 C11 C11 C11 C11	152.27(0.60) -87.47(0.70) 3.18(0.99) -173.91(0.55) -56.64(0.83) 52.94(0.73) 171.44(0.53) -66.76(0.71) 173.89(0.59) 54.45(0.85) -167.87(0.52) -51.83(0.78) -129.74(0.72) 51.60(0.79) -175.81(0.68) 2.75(1.16) -50.39(0.75) -167.59(0.55) 70.46(0.70) 130.97(0.71) 13.77(0.91) -108.18(0.75) 13.27(1.10) -44.40(0.81) -166.44(0.60) 62.06(0.68) -169.10(0.57) -175.47(0.50) -46.63(0.72) 176.28(0.55) -59.85(0.77) 55.35(0.71) 179.22(0.53) -163.42(0.51) -45.98(0.69) 74.83(0.64) 68.35(0.69) -174.21(0.56) -53.40(0.73) 48.19(0.80) 175.99(0.56) -55.02(0.76) 57.57(0.65) 168.53(0.53) -65.08(0.66) -59.96(0.67) 168.80(0.51)

Table 6 (con't)

Atom 1	Atom 2	Atom 3	Atom 4	<u>Angle</u>
C17 C18 C18 C12 C14 C18 C18 C13 C15 C13 C15 C13 C16 C17 C20 C22 C23 C30 C30 C31 C32 C32 C32	C13	C14 C14 C14 C17 C17 C17 C17 C15 C16 C17 C120 C20 C22 C22 C22 C22 C22 C22 C23 C31 C31 C32 C33 C33 C34 C34 C34 C34 C34 C34 C34 C34	C8 C15 C20 C16 C216 C216 C216 C216 C217 C212 C221 C221 C221 C223 C224 C226 C230 C331 C331 C332 C335 C336 C329	177.73(0.53) 46.50(0.60) 61.37(0.70) -69.86(0.64) -154.98(0.53) 78.42(0.75) -40.82(0.59) -167.41(0.58) 78.00(0.59) -48.59(0.75) -162.43(0.55) -33.32(0.65) 7.13(0.72) 21.21(0.68) 152.19(0.58) -55.41(0.88) 179.54(0.57) -177.16(0.63) 57.79(0.78) -172.65(0.62) 60.66(0.86) 171.75(0.67) -179.72(0.83) -18.06(1.85) 177.21(0.86) -5.77(0.92) 173.37(0.61) 177.13(0.69) -3.73(1.07) 178.26(0.65) -0.88(1.03) -17.25(0.65) -0.88(1.03) -17.25(0.65) -0.88(1.03) -17.25(0.65) -1.91(1.04) -1.32(1.09) 2.45(1.07) -178.48(0.70) -178.48(0.70) -178.84(0.84) 1.28(1.31) -0.77(1.10)

REFERENCES

BUNNING, T.J., KLEI, H.E., SAMULSKI, E.T., CRANE, R.L., and LINVILLE, R.J. (1991). Liq. Cryst., 10(4), 445-456.

BUNNING, T.J. (1992). Ph.D. Dissertation, University of Connecticut.

BUNNING, T.J., KLEI, H.E., SAMULSKI, E.T., ADAMS, W.W., & CRANE, R.L. (1993). Mol. Cryst. Liq. Cryst., 231, 163-174.

BURLA, M.C., CAMALLI, M., CASCARANO, G., GIACOVAZZO, C., POLIDORI, G., SPAGNA, R. &VITERBO, D. (1989). SIR. J. Appl. Cryst. 22, 389-393.

CRAVEN, B.M. & GUERINA, N.G. (1979). Chem. Phys. Lipids, 24, 157-166.

FAIR, C.K. (1990). *MolEN*, An Interactive Intelligent System for Crystal Structure Analysis, User Manual, Enraf - Nonius, Delft, The Netherlands.

GRESHAM, K.D., MCHUGH, C.M., BUNNING, T.J., KLEI, H.E., SAMULSKI, E.T., & CRANE, R.L. (1993). Am. Chem. Soc., Polym. Prep., 34(1), 594-595.

GUERINA, N.G. & CRAVEN, B.M. (1979). J. Chem. Soc. Perkin Trans. II., 1414-1419.

International Tables for X-Ray Crystallography, $Vol.\ IV$, The Kynoch Press, Birmingham, England, 1974

JOHNSON, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

PATTABHI, V. & CRAVEN, B.M. (1979). J. Lipid Res., 20, 753-759.

REINITZER, F. (1888). Monatsh. Chem., 9, 421-441.

SATO, T. & YANO, S. (1987). Mol. Cryst. Lig. Cryst., 144, 179-184.

SAWZIK, P. & CRAVEN, B.M. (1979) in Liquid Crystals, S. CHANDRASEKHAR, Ed., Bangalore, India. 171-178.

SAWZIK, P. & CRAVEN, B. M. (1979). Acta. Cryst., B35, 895-901.

SAWZIK, P. & CRAVEN, B. M. (1980). Acta. Cryst., B36, 3027-3033.

SAWZIK, P. & CRAVEN, B. M. (1980). Acta. Cryst., B36, 215-218.

SHIBAEV, V.P. & FREIDZON, YA. S. (1989) in Side Chain Liquid Crystal Polymers, C. B. MCARDLE, Ed., Blackie; Glasgow, pp 260-286.

SYBYL program and manual, release 5.4, Tripos Associates, 1991.

Appendix

Calculated and Observed Structure Factor Amplitudes for Cholesteryl-4-vinylbenzoate

H - 0 0 0	K - 4 6 10 12		L - 0 0 0	0 389 0 655 0 607	0 389 381 0 655 636 0 607 605	0 389 381 4 0 655 636 4 0 607 605 5	0 389 381 4 0 655 636 4 0 607 605 5	0 389 381 4 3 0 655 636 4 3	0 389 381 4 3 3 0 655 636 4 3 4	0 389 381 4 3 3 0 0 655 636 4 3 4 0	0 389 381 4 3 3 0 125 0 655 636 4 3 4 0 161	0 389 381 4 3 3 0 125 125 0 655 636 4 3 4 0 161 150
0 0 0 0 0 0	10 12 16 18 20 22 28	(0 607 0 586 0 274 0 71 0 515 0 340 0 90	0 607 605 0 586 557 0 274 257 0 71 87 0 515 509 0 340 337 0 90 80	0 607 605 5 0 586 557 6 0 274 257 4 0 71 87 10 0 515 509 7 0 340 337 5 0 90 80 11	0 607 605 5 0 586 557 6 0 274 257 4 0 71 87 10 0 515 509 7 0 340 337 5 0 90 80 11	0 607 605 5 3 0 586 557 6 3 0 274 257 4 3 0 71 87 10 3 0 515 509 7 3 0 340 337 5 3 0 90 80 11 3	0 607 605 5 3 5 0 586 557 6 3 6 0 274 257 4 3 7 0 71 87 10 3 8 0 515 509 7 3 9 0 340 337 5 3 10 0 90 80 11 3 11	0 607 605 5 3 5 0 0 586 557 6 3 6 0 0 274 257 4 3 7 0 0 71 87 10 3 8 0 0 515 509 7 3 9 0 0 340 337 5 3 10 0 0 90 80 11 3 11 0	0 607 605 5 3 5 0 245 0 586 557 6 3 6 0 298 0 274 257 4 3 7 0 656 0 71 87 10 3 8 0 455 0 515 509 7 3 9 0 48 0 340 337 5 3 10 0 78 0 90 80 11 3 11 0 73	0 607 605 5 3 5 0 245 232 0 586 557 6 3 6 0 298 289 0 274 257 4 3 7 0 656 652 0 71 87 10 3 8 0 455 458 0 515 509 7 3 9 0 48 49 0 340 337 5 3 10 0 78 73 0 90 80 11 3 11 0 73 87
16 18 20 22 28 34	6 8 0 2 8 4	0 0 0 0 0 0		274 71 515 340 90 74 452	274 257 71 87 515 509 340 337 90 80 74 12 452 446	274 257 4 71 87 10 515 509 7 340 337 5 90 80 11 74 12 16 452 446 3	274 257 4 71 87 10 515 509 7 340 337 5 90 80 11 74 12 16 452 446 3	340 337 5 3 90 80 11 3 74 12 16 3 452 446 3 3	340 337 5 3 10 90 80 11 3 11 74 12 16 3 12 452 446 3 3 15	340 337 5 3 10 0 90 80 11 3 11 0 74 12 16 3 12 0 452 446 3 3 15 0	340 337 5 3 10 0 78 90 80 11 3 11 0 73 74 12 16 3 12 0 226 452 446 3 3 15 0 195	340 337 5 3 10 0 78 73 90 80 11 3 11 0 73 87 74 12 16 3 12 0 226 211 452 446 3 3 15 0 195 201
22 (28 (34 (4 (6 (6 (6 (6 (6 (6 (6 (6 (6 (6 (6 (6 (6	(0 0 0 0 0	340 90 74 452 222 128		337 80 12 446 222 125	337 5 80 11 12 16 446 3 222 3 125 4	337 5 80 11 12 16 446 3 222 3 125 4	337 5 3 80 11 3 12 16 3 446 3 3 222 3 3 125 4 3	337 5 3 10 80 11 3 11 12 16 3 12 446 3 3 15 222 3 3 16 125 4 3 17	337 5 3 10 0 80 11 3 11 0 12 16 3 12 0 446 3 3 15 0 222 3 3 16 0 125 4 3 17 0	337 5 3 10 0 78 80 11 3 11 0 73 12 16 3 12 0 226 446 3 3 15 0 195 222 3 3 16 0 167 125 4 3 17 0 291	337 5 3 10 0 78 73 80 11 3 11 0 73 87 12 16 3 12 0 226 211 446 3 3 15 0 195 201 222 3 3 16 0 167 167 125 4 3 17 0 291 290
34 0 3 0 4 4 0 2 6 0 1 7 0 3 8 0 1	0 0 4 0 2 0 1 0 3 0 1	4 2 1 3 1	74 52 22 28 28 51	12 446 222 125 326 155		16 3 3 4 4	16 3 3 4 4 4	16 3 3 3 3 3 4 3 4 3 4 3	16 3 12 3 3 15 3 3 16 4 3 17 4 3 18 4 3 19	16 3 12 0 3 3 15 0 3 3 16 0 4 3 17 0 4 3 18 0 4 3 19 0	16 3 12 0 226 3 3 15 0 195 3 3 16 0 167 4 3 17 0 291 4 3 18 0 407 4 3 19 0 273	16 3 12 0 226 211 3 3 15 0 195 201 3 3 16 0 167 167 4 3 17 0 291 290 4 3 18 0 407 415 4 3 19 0 273 262
7 0 8 0 10 0 11 0	0 0 0 0		328 151 174 414	32 15 17 38	6 5 5 8	6 4 5 4 5 4 8 6	6 4 5 4 5 4 8 6	6 4 3 5 4 3 5 4 3 8 6 3	6 4 3 18 5 4 3 19 5 4 3 20 8 6 3 22	6 4 3 18 0 5 4 3 19 0 5 4 3 20 0 8 6 3 22 0	6 4 3 18 0 407 5 4 3 19 0 273 5 4 3 20 0 184 8 6 3 22 0 194	6 4 3 18 0 407 415 5 4 3 19 0 273 262 5 4 3 20 0 184 184 8 6 3 22 0 194 199
12 15 17		0 0 0	133 249 91 201	118 251 99 198	8 1 9	8 5 1 4 9 8 8 6	8 5 1 4 9 8 8 6	8 5 4 1 4 4 9 8 4 8 6 4	8 5 4 0 1 4 4 1 9 8 4 2 8 6 4 3	8 5 4 0 0 1 4 4 1 0 9 8 4 2 0 8 6 4 3 0	8 5 4 0 0 426 1 4 4 1 0 347 9 8 4 2 0 158 8 6 4 3 0 650	8 5 4 0 0 426 436 1 4 4 1 0 347 349 9 8 4 2 0 158 160 8 6 4 3 0 650 664
2 2 2	1 2	0 0 0	188 89 238	19° 79 254	7 9 4	7 6 9 11 4 6	7 6 9 11 4 6	7 6 4 9 11 4 4 6 4	7 6 4 5 9 11 4 6 4 6 4 7	$egin{array}{cccccccccccccccccccccccccccccccccccc$	7 6 4 5 0 93 9 11 4 6 0 573 4 6 4 7 0 365	7 6 4 5 0 93 99 9 11 4 6 0 573 573 4 6 4 7 0 365 381
23 0 1	;) -	0 0 0	75 1564 451	11: 157: 43:	3 8 4	3 15 8 3 4 3	3 15 8 3 4 3	3 15 4 8 3 4 4 3 4	3 15 4 8 8 3 4 9 4 3 4 10	3 15 4 8 0 8 3 4 9 0 4 3 4 10 0	3 15 4 8 0 131 8 3 4 9 0 139 4 3 4 10 0 320	3 15 4 8 0 131 146 8 3 4 9 0 139 138 4 3 4 10 0 320 313
	2 3 5	0 0 0	491 452 159	47 46 15	8 0 3	8 4 0 4 3 3	8 4 0 4 3 3	8 4 4 0 4 4 3 3 4	8 4 4 11 0 4 4 12 3 3 4 15	8 4 4 11 0 0 4 4 12 0 3 3 4 15 0	8 4 4 11 0 276 0 4 4 12 0 114 3 3 4 15 0 85	8 4 4 11 0 276 260 0 4 4 12 0 114 102 3 3 4 15 0 85 77
	7 8 9	0 0 0	96 224 272	8 22 26	9 2 0	9 5 2 3 0 4	9 5 2 3 0 4	9 5 4 2 3 4 0 4 4	9 5 4 17 2 3 4 18 0 4 4 20	9 5 4 17 0 2 3 4 18 0 0 4 4 20 0	9 5 4 17 0 104 2 3 4 18 0 211 0 4 4 20 0 116	9 5 4 17 0 104 109 2 3 4 18 0 211 215 0 4 4 20 0 116 104
	10 11 12	0 0 0	806 1108 385	810 1028 344	0 8 4	0 6 8 6 4 6	0 6 8 6 4 6	0 6 4 8 6 5 4 6 5	0 6 4 25 8 6 5 2 4 6 5 3	0 6 4 25 0 8 6 5 2 0 4 6 5 3 0	0 6 4 25 0 69 8 6 5 2 0 94 4 6 5 3 0 116	0 6 4 25 0 69 32 8 6 5 2 0 94 103 4 6 5 3 0 116 119
	14 19 20	0 0 0	107 119 120	93 115 109))	6 8 9	6 5 8	6 5 5 8 5	6 5 4 8 5 5 9 5 6	6 5 4 0 8 5 5 0 9 5 6 0	6 5 4 0 302 8 5 5 0 472 9 5 6 0 679	6 5 4 0 302 285 8 5 5 0 472 459 9 5 6 0 679 691
2	21 23 31	0 0	264 176 80	272 169 48		6 14	6 14	5 5 6 5 14 5	5 5 7 6 5 8 14 5 9	5 5 7 0 6 5 8 0 14 5 9 0	5 5 7 0 808 6 5 8 0 735 14 5 9 0 76	5 5 7 0 808 786 6 5 8 0 735 698 14 5 9 0 76 79
3 3	1 2	0	948 852	932 843		4 4			4 5 10 4 5 11			

Appendix

Calculated and Observed Structure Factor Amplitudes for Cholesteryl-4-vinylbenzoate

H -	K -	L -	Fobs	Fcalc	SigF	H -	K -	L -	Fobs	Fcalc	SigF
5	12	0	270	275	4	8	12	0	78	51	11
5 5	13 16	0	73 183	76 186	9 6	8 8	13 14	0 0	140 243	150 251	7 5
5	17	0	280	284	5	8	16	0	180	186	7
5	18	Ö	139	144	8	8	20	Õ	79	51	11
5	19	0	156	165	7	8	24	Ö	85	78	12
5	20	0	95	81	10	9	1	0	93	81	8
5	30	0	69	17	15	9	2	0	142	154	6
6	0	0	74	80	7	9	4	0	144	130	6
6	1	0	224	217	3	9	5	0	152	138	6
6 6	2 3	0	47	50	9	9 9	6 7	0	256	246 131	4 7
6	3 4	0	292 315	275 314	5 5	9	8	0 0	113 141	131	6
6	5	0	236	234	4	9	13	Ö	160	143	7
6	6	Ŏ	281	280	$\overline{4}$	9	16	Ö	110	114	9
6	7	0	393	394	6	9	20	0	66	76	15
6	8	0	277	283	4	9	22	0	73	49	13
6	9	0	319	299	5	9	28	0	102	63	12
6	11	0	174	172	5	10	0	0	140	129	6
6 6	13 14	0	193 130	184 137	5 7	10 10	1 2	0 0	261 136	250 139	4 7
6	15	0	319	316	4	10	6	0	76	44	11
6	16	0	272	272	5	10	9	0	104	112	9
6	17	Ŏ	153	141	7	10	10	Ö	135	141	8
6	18	0	78	77	11	10	11	Ö	209	207	6
6	19	0	64	62	13	10	13	0	136	142	7
7	3	0	95	91	6	10	14	0	88	103	11
7	4	0	266	252	4	10	26	0	83	59	14
7	9	0	84	81	8	11	2	0	119	119	8
7 7	13 15	0	115	117	7 5	11	4	0	63	61	14
7	16	0	198 316	188 310	5	11 11	5 6	0	183 231	186 238	6 5
7	20	0	64	81	14	11	7	Ö	128	119	8
7		Ö	75	69	13	11	8	Ő	178	186	6
8	0	0	519	502	7	11	9	0	106	106	10
8	2	0	397	411	6	11	11	0	78	70	12
8	4	0	112	108	6	12	0	0	100	97	9 9
8	5 6	0	161	170	5	12	1	0	114	109	9
8	6	0	89	103	8	12	2	0	163	168	7
8 8	7 8	0	207	214	5 8 5 8 6	12 12	4 5	0	78 103	83	12
8	9	0	88 147	93 141	8	12	5 7	0	103 137	111 148	10 7
8		0	102	117	8	12	9	Ö	164	175	7
8		Ö	181	185	5	12	10	ŏ	73	71	12

Appendix

Calculated and Observed Structure Factor Amplitudes for Cholesteryl-4-vinylbenzoate

H -	K -	L -	Fobs	Fcalc	SigF	H -	K -	L -	Fobs	Fcalc	SigF
0 0 0 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		120 1390 1221 1221 1231 1231 1231 1331 1445 1451 1451 1451 1511 1512 1513 1513 1513 1513 1513 15	135 137 1397 1397 13667 467 467 467 467 467 467 467 467 467	97296802331452444354364549669663643244453 1111111111111111111111111111111111	2 2 2 2 2	$\begin{smallmatrix} 8 & 9 & 0 & 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 9 & 0 & 1 & 2 & 2 & 2 & 2 & 2 & 1 & 1 & 1 & 2 & 2$	111111111111111111111111111111111111111	247 247 280 147 280 156 156 140 140 140 140 140 140 140 140	257 227667135740765645242652121323288168930370956335122633512263355	4356480666733444433334364977560673444555334644

Appendix

Calculated and Observed Structure Factor Amplitudes for Cholesteryl-4-vinylbenzoate

H -	К -	L -	Fobs	Fcalc	SigF	H -	К	L -	Fobs	Fcalc	SigF
3 3 3 3 3 3 3 3 3	13 14 15 17 20 21 22 24 33	1 1 1 1 1 1 1 1	87 163 90 102 70 146 119 61 76	95 154 82 86 66 164 122 44 70	7 5 8 8 12 7 8 13 16	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	12 13 14 15 16 17 18 19 20	1 1 1 1 1 1 1	207 80 152 226 75 121 131 266 189	205 71 151 226 80 119 113 267 199	4 9 5 5 10 7 8 5 6
4 4 4 4 4	0 1 2 3 4 5	1 1 1 1 1	103 402 449 141 211 275	91 438 456 140 204 272	5 5 4 3 4	5 6 6 6 6	32 1 2 3 4 5	1 1 1 1 1	74 283 260 166 382 153	40 270 245 159 343 155	15 4 4 4 6 4
4 4 4 4	6 7 8 9	1 1 1 1	151 203 689 290 654	155 194 651 293 625	4 3 6 4 6	6 6 6 6	6 7 8 9 11	1 1 1 1	123 349 343 248 159	109 324 315 227 163	5 5 4 5
4 4 4 4 4	11 12 14 15 16 17	1 1 1 1 1	132 288 96 119 95 93	134 279 98 124 102 88	5 4 7 7 8 9	6 6 6 6 6	14 15 16 18 20 22	1 1 1 1 1	179 147 98 93 123 72	191 145 101 95 129 35	5 6 9 10 8 12
4 4 4 4 4	18 19 20 22 28 32	1 1 1 1 1	133 191 123 94 75 97	133 204 134 85 44 75	7 6 8 10 13	7 7 7 7 7	1 2 3 4 5 6	1 1 1 1 1	176 112 305 111 128 135	175 97 298 110 129 139	4 6 4 6 5 5
5 5	0 1	1 1 1 1 1	477 230 267 361 251 286	464 230 249 363 240 287	5 4	7 7 7 7 7	7 8 9 10 11 12	1 1 1 1 1	179 278 280 76 138 149	192 258 277 73 129 153	4 4 9 6
555555555	6 7 8 9 10	1 1 1 1 1	212 188 115 169 149 195	202 185 112 157 136 195	4 5 4 3 4 5 4 5 4	7 7 7 7 7 7	13 14 15 16 17	1 1 1 1 1	123 249 256 105 134 80	130 256 268 123 143 100	7 5 5 9 7 11

Appendix

Calculated and Observed Structure Factor Amplitudes for Cholesteryl-4-vinylbenzoate

H K	K -	L -	Fobs	Fcalc	SigF	H K	L -	Fobs	Fcalc	SigF
1 2 4 5 6 7 8 2 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	601245678234568911234567890123456123678912	111111111111111111111111111111111111111	66 719 129 129 129 129 129 129 129 131 131 131 131 131 131 131 131 131 13	22 552 108 108 108 108 108 108 108 109 109 109 109 109 109 109 109 109 109	12 13 4 5 4 7 6 9 8 6 0 9 5 5 6 6 9 8 1 9 7 7 7 5 6 5 7 9 6 8 1 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 2 3 4 5 6 7 8 0 1 1 2 5 1 2 3 4 6 7 8 0 1 1 2 5 6 9 4 1 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	111111111111111111111111112222222222222	80 90 1179 184 181 163 145 145 145 145 146 178 166 178 166 178 178 178 178 178 178 178 178 178 178	73 108 179 179 179 179 179 179 179 179 179 179	11 10 96660727175288928061211420514044555745735

Appendix

Calculated and Observed Structure Factor Amplitudes for Cholesteryl-4-vinylbenzoate

H -	K -	L	Fobs	Fcalc	SigF	H -	K	L -	Fobs	Fcalc	SigF
00000001111111111111111122222222222222	1115801233001234567890123603012345678901211111111111111111111111111111111111	222222222222222222222222222222222222222	49 212 2256 1309 1090 1090 1090 1090 1090 1090 1090	46 212 227 2220 121 163 179 163 179 163 179 163 179 163 163 163 163 163 163 163 163 163 163	114458971114455454484656666844545533444666646715	222233333333333333333334444444444444444	2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	222222222222222222222222222222222222222	179 169 169 169 169 169 169 169 169 169 16	177 261 182 233 131 964 471 258 476 152 118 325 121 247 1231 1434 328 123 218 430 452 2133 215 816 142 217 218 430 218 430 218 430 218 430 218 430 218 218 218 218 218 218 218 218 218 218	65764555457435654449677697654436564454708665

Appendix

Calculated and Observed Structure Factor Amplitudes for Cholesteryl-4-vinylbenzoate

K -	L -	Fobs	Fcalc	SigF 	H K	L -		Fcalc	SigF
19001234567890126780123456780112145670012345678	222222222222222222222222222222222222222	135 135 135 135 135 135 135 135 135 135	138 138 138 138 138 138 138 138 138 138	81547344555647659856454446650006598495465678	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	222222222222222222222222222222222222222	256 157 158 127 1180 1281 1291 1291 1211 1211 1211 1211 1211	257 1507 122 1062 107 120 121 120 121 120 121 121 121 121 121	4 126970878446765086980831657977895863785757978 13157977895863785757978

Appendix

Calculated and Observed Structure Factor Amplitudes for Cholesteryl-4-vinylbenzoate

Appendix

Calculated and Observed Structure Factor Amplitudes for Cholesteryl-4-vinylbenzoate

H -	K -	L -	Fobs	Fcalc	SigF	H -	K -	L -	Fobs	Fcalc	SigF
- 3333333333333333444444444444444444444	- 345789011267890123456789011345690101	_	163 217 121 272 171 200 142 2153 103 1149 2153 104 2153 105 115 115 115 115 115 115 115 115 115	157 228 89 133 267 163 152 205 120 138 225 120 138 225 127 317 152 362 228 148 191 183 184 1180 134 1181 180 134 127 151	435544545776799145444544466565388944	- 5555555555556666666666666666666777777	- 9014567890230123456789012357892023457	1	176 205 87 114 102 139 155 103 104 138 131 118 179 142 2213 103 103	180 215 74 77 122 116 112 82 172 107 213 131 394 265 180 277 172 172 175 177 179 179 149 141 1183 115 183 141 219 199 199 199	4499889277245465547545575077865544797
555555555	2 3 4 5 6 7 8	3 3 3 3 3 3 3 3	292 388 255 401 71 113 232	286 371 248 387 92 121 218	4 6 4 6 8 6 4	7 7 7 7 7 7	8 9 10 11 12 13 14	3 3 3 3 3 3	184 288 186 194 125 211 145	188 296 196 199 127 208 147	5 4 5 7 5 7

Appendix

Calculated and Observed Structure Factor Amplitudes for Cholesteryl-4-vinylbenzoate

H -	K -	L -	Fobs	Fcalc	SigF	H -	к -	L -	Fobs	Fcalc	SigF
- 77888888888888889999999999999999999999	- 156123456890112345112367890113456123457	_	128 148 159 122 121 63 133 153 153 122 122 120 142 813 131 140 131 140 140 155 87 184 130 140 140 155 160 160 170 170 170 170 170 170 170 170 170 17	140 156 167 135 124 148 166 184 122 124 166 184 122 124 166 181 127 120 1217 1217 1217 1218 1221 1231 127	879567197667708727777876870794676597	- 11 11 11 11 11 11 11 11 11 11 11 11 11	- 346024683459002346074560681600123458	- 3333333333333333333333333334444444	163 129 136 123 80 77 85 102 67 78 80 102 67 77 84 96 97 91 93 117 63 73 85 29 26 43 38 120 40 140 140	164 132 133 135 78 84 72 42 108 39 76 99 61 78 79 102 96 63 100 57 29 73 77 27 42 41 88 29 65 73 82 140 121 208 140	7 8 7 8 11 12 11 12 11 12 11 11 12 11 13 9 14 14 14 14 11 11 11 11 11 11 11 11 11
10 10 10 10 10 10 10	8 10 12 14 15 22 24	3 3 3 3 3 3 3 3 3 3 3 3	161 170 184 102 73 71 73 91	156 189 194 100 61 43 58 117	7 7 6 9 12 14 15	0 0 0 0 0 0	9 10 11 12 13 14 15	4 4 4 4 4 4 4	64 315 96 154 109 80 139	58 331 90 150 88 83 138 139	5 9 5 7 5 7 9 6 7

Appendix

Calculated and Observed Structure Factor Amplitudes for Cholesteryl-4-vinylbenzoate

Appendix

Calculated and Observed Structure Factor Amplitudes for Cholesteryl-4-vinylbenzoate

H -	K -	L -	Fobs	Fcalc	SigF	H -	K	L -	Fobs	Fcalc	SigF
5566666666666667777777777777777777	22701234567890146012345679012368012389012057	444444444444444444444444444444444444444	103 70 74 153 179 109 91 109 118 91 109 118 91 119 119 119 119 119 119 119 119	111 439 136 1805 1799 1117 882 1379 1391 1405 1406 1439 1407 1409 1439 1409 1439 1409 1439 1439 1439 1439 1439 1439 1439 143	92145578767086208110696677055222911557188772789	99999999999999999999999999999999999999	89024590123892872345781485969020123468912673 1122 1 1 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 1 2 1 1 1 2 1 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 2 1	444444444444444444444444444444444444444	129 147 137 149 147 149 149 149 149 149 149 149 149 149 149	126 148 141 100 136 135 773 91 119 32 1193 108 109 1193 109 1193 109 1193 109 109 109 109 109 109 109 109 109 109	77797801121007823148891210911314213146600454659110

Appendix

Calculated and Observed Structure Factor Amplitudes for Cholesteryl-4-vinylbenzoate

					-						
H	K	L	Fobs	Fcalc	SigF	H	K	L	Fobs	Fcalc	SigF
-	_	-				_	-	-			
1	0	5	406	386	6	4	0	5	178	171	5
1	1	5	210	202	4	4	1	5	177	175	5
1	2	5	169	166	4	4	2	5	202	209	4
1	3	5	242	248	4	4	3	5	137	134	5
1	4	5	104	97	6	. 4	4	5	194	194	4
1	5	5	110	106	6	4	5	5	179	181	5
1 1	7	5	99	110	7	4	6	5	112	119	7
1	8 9	5 5	123 164	123 165	6 5	4 4	8 9	5 5 5	213 97	215 108	4 8
1	10	5	141	138	6	4	10	5	177	180	. 5
1	12	5	77	91	10	4	14	5	71	63	12
1	13	5	106	86	8	$\overline{4}$	15	5 5	75	47	11
1	18	5	67	71	13	4	16	5	109	125	9
1	23	5	108	115	10	4	18	5 5	62	85	13
2	0	5	160	159	4	4	20	5	88	70	10
2	2	5	386	377	6	5	0	5	349	342	. 5
2 2 2 2 2 2 2 2	3 5	5 5	126 100	132	5 6	5 5	1 2	5 5 5	200 164	187 152	5 5
2	6	5 5	115	105 123	6	5 5	3	5	99	90	7
2	8	5	192	193	5	- 5	4	5	142	158	6
2	9	5	182	184	5	5	5	5	145	143	6
2	10	5	163	165	6	5	6	5	132	143	6
2	11	5	162	172	6	5	7	5	54	29	12
2	12	5	187	204	5	5	8	5	97	100	8
2	13	5	80	94	10	5	9	,5	125	131	7
2	14 16	5 5	67 124	75 129	13 8	5 5	10 11	5 5	85 76	94 92	9 11
2	18	5	171	172	7	5	12	5	122	135	8
3	0	5	93	101	7	5	17	5	128	120	8
3	1	5	190	200	4	5	20	5	176	165	6
3	2	5	162	165	5	6	1	5	125	115	6
3 3 3	3	5	189	197	4	6	2	5	77	75	9
	5	5	154	151	5	6	3	5	108	98	7
3	6	5	147	150	5 5	- 6	4	5	173	175	5
3	8 9	5 5	183	184	5	6 6	5 6	ב	78	75 112	10
3	10	5 5	144 248	146 245	4	6	8	5	114 147	112 153	7 6
3	11	5	104	117	8	6	10	5	173	184	6
3	13	5	109	113	8	6	11	5	198	192	6
3	14	5	64	51	12	6	15	5	198 92	113	11
3	16	5	70	56	12	6	16	5	139	140	. 7
3 3 3 3 3 3 3 3 3	19	5	99	101	9	7	1	5	152	145	6
3	22	5	100	108	10	7	4	5555555555	139	143	7
3	25	5	74	50	12	7	6	5	96	90	8

Appendix

Calculated and Observed Structure Factor Amplitudes for Cholesteryl-4-vinylbenzoate

					SigF 	_	K -	L -	Fobs	Fcalc	SigF
7777777888888888889999999999999991111	7 8 9 0 1 1 2 4 1 7 1 2 3 5 6 9 0 3 1 5 8 2 0 1 2 3 4 6 7 0 2 3 4 1 6 2 0 1 2 3 4 6 7 0 2	555555555555555555555555555555555555555	149 107 289 203 1130 1014 89 920 1148 9920 1157 1457 149 168 177 1757 1757 1757 1757 1757 1757 1757	154 103 292 205 205 110 64 86 121 47 916 110 94 138 80 29 143 89 143 89 143 119 70 143 119 77 113 113 122 153	79566811398291121791131276972107012214997	- 12 12 12 12 13 15 16 16 00 00 00 00 00 00 11 11 11 11 11	- 12359760204601246782360201235780236		61 71 68 71 104 80 70 72 70 69 81 264 130 110 185 116 82 110 116 116 116 116 116 116 116 116 116	48 54 46 66 69 20 53 27 93 267 113 124 127 145 156 137 137 137 140 150 137 137 137 137 137 137 137 137	13 12 13 14 15 15 14 15 15 14 47 59 47 76 39 12 12 18 18
10 10 11 11 11 11 11	3 6 14 1 2 3 4 5 6	5 5 5 5 5 5 5 5 5	85 65 82 67 88 115 96 67 72	74 67 58 69 72 112 81 69 56	11 13 12 13 9 8 9 13 12	1 2 2 2 2 2 2 2 2 2	18 23 1 3 4 5 6 7 9	666666666	88 77 151 103 102 124 131 65 101	74 62 146 106 104 118 136 71 116	10 13 5 7 7 6 6 11 8

Appendix

Calculated and Observed Structure Factor Amplitudes for Cholesteryl-4-vinylbenzoate

Appendix

Calculated and Observed Structure Factor Amplitudes for Cholesteryl-4-vinylbenzoate

H -	K -	L -	Fobs	Fcalc	SigF	H -	K -	L -	Fobs	Fcalc	SigF
2222223333333333444444445555555555666667777	78913802456890142456801202460156040459170459	777777777777777777777777777777777777777	82 81 105 94 75 61 119 77 80 157 22 68 81 138 103 77 105 107 105 107 107 107 107 107 107 107 107 107 107	80 79 98 108 55 118 906 44 227 826 128 138 139 158 101 101 101 101 101 101 101 101 101 10	11 10 9 11 14 12 8 11 11 13 6 12 10 8 7 9 7 12 9 12 7 7 10 8 13 11 11 11 11 11 11 11 11 11 11 11 11	778888999999011112314115000001111222223333344445	7 6 9 13 23 5 7 9	777777777777777777778888888888888888888	72 78 103 105 76 105 80 110 663 97 67 99 117 88 80 83 187 99 118 85 107 108 119 119 119 119 119 119 119 119 119 11	82 47 102 64 109 104 267 130 222 41 163 244 217 1769 853 1164 1162 1163 1164 1164 1164 1164 1164 1164 1164	14 10 13 11 12 13 11 11 11 11 11 11 11 11 11 11 11 11

Appendix Calculated and Observed Structure Factor Amplitudes for Cholesteryl-4-vinylbenzoate

	_	-	-	-	Fobs	Fcalc	SigF
5 7 8 81 74 12 5 10 8 78 67 12 5 11 8 122 112 8 5 14 8 68 40 14 6 1 8 66 58 13 6 1 8 66 53 13 6 6 8 96 83 10 6 7 8 66 53 13 6 8 8 71 66 13 6 10 8 72 55 13 6 12 8 44 96 12 6 12 8 44 96 12 6 12 8 44 96 12 7 9 8 9 7 83 10 7 9 8 9 7 83 10 8 1 8 10 8 12		034468990012557890	13 14 11 18 6 4 0 14 4 5 13 13 11 11 4	10 10 10 10 10 10 11 11 11 11 11 11 12	73 71 81 70 70 75 76 71 83 78 77 67	33 31 31 10 43 22 50 15 51 30 34 36 17 16 5 13 15 12	14 14 13 14 15 16 13 13 14 15 15 15 15 15