Estimating Number of Distinct Elements

Fahad Panolan

Department of Computer Science and Engineering Indian Institute of Technology Hyderabad, India

Streaming Model

- The input consists of m objects/items/tokens e_1, e_2, \ldots, e_m that are seen one by one by the algorithm.
- The algorithm has "limited" memory say for B tokens where B < m (often B << m) and hence cannot store all the input
- Want to compute interesting functions over input

Distinct Elements

How many distinct items in the stream of integers? Here we know that each token is a postive integer from $[n] = \{1, 2, ..., n\}$.

- Input stream: e_1, \ldots, e_m .
- We associate a frequence vector $f = (f_1, \dots, f_n)$.
- f_i is the frequency of the element i in the input stream.
- We want to estimate $|\{f_i>0: i\in [n]\}|$. $\sqrt{2}$? $\sqrt{2}$? $\sqrt{3}$? $\sqrt{4}$? $\sqrt{$

15°X 11 51/ = \frac{5}{15} |fill = \frac{5}{100} \left \frac{100}{100} \frac{100}{1 11 + 11 = 5; = # dustine !! $\|f_{\bullet}\|_{2} = \left(\sum_{i=1}^{2} f_{i}^{2}\right)^{2}$ 1. 5 (= max 1f)

Distinct Elements

How many distinct items in the stream of integers? Here we know that each token is a postive integer from $[n] = \{1, 2, ..., n\}$.

- Input stream: e_1, \ldots, e_m .
- We associate a frequence vector $f = (f_1, \dots, f_n)$.
- f_i is the frequency of the element i in the input stream.
- We want to estimate $|\{f_i > 0 : i \in [n]\}|$

Obvious: counter for each $i \in \{1, \ldots, n\}$. Space complexity $O(n \log m)$. — Sits . $\bigcirc \Big(\log n + \log n \Big)$

• We will discuss a $(O(1), \delta)$ -estimate.

Distinct Elements: Our objective

- We will discuss a $(O(1), \delta)$ -estimate.
- Let d be the no. of distinct elements.
- ullet Then the algorithm will output \widehat{d} with the following guarantee.

$$\Pr[\frac{d}{\delta} \le \widehat{d} \le \delta d] \ge 1 - \delta.$$

[Flajolet and Martin' 85], [Alon, Matias and Szegedy' 99]

Distinct Elements: Our objective

- We will discuss a $(O(1), \delta)$ -estimate.
- Let d be the no. of distinct elements.
- Then the algorithm will output \widehat{d} with the following guarantee.

$$\Pr[\frac{d}{3} \le \widehat{d} \le 3d] \ge 1 - \delta.$$

[Flajolet and Martin' 85], [Alon, Matias and Szegedy' 99]

- In this algorithm, we use
 - Pairwise Independent Hash family
 - Median Trick and Chernoff bound

Probabilistic Inequalities and Pairwise Independent Hash Family

Markov's Inequality

Let X be a **non-negative** random variable over a probability space (Ω, \Pr) . For any a > 0,

$$\Pr[X \ge a] \le \frac{\mathbf{E}[X]}{a}.$$

In other words, for any t > 0,

$$\Pr[X \ge t\mathbf{E}[X]] \le \frac{1}{t}.$$

4

Chebyshev's Inequality: Variance

Variance

Given a random variable X over probability space (Ω, \Pr) , variance of X is the measure of how much does it deviate from its mean value. Formally,

$$Var(X) = \mathbf{E}[(X - \mathbf{E}[X])^2] = \mathbf{E}[X^2] - \mathbf{E}[X]^2.$$

Chebyshev's Inequality: Variance

Variance

Given a random variable X over probability space (Ω, \Pr) , variance of X is the measure of how much does it deviate from its mean value. Formally,

$$Var(X) = \mathbf{E}[(X - \mathbf{E}[X])^2] = \mathbf{E}[X^2] - \mathbf{E}[X]^2.$$

Independence

Random variables X and Y are called mutually independent if

$$\forall x, y \in \mathbb{R}, \ \Pr[X = x \land Y = y] = \Pr[X = x] \Pr[Y = y]$$

Chebyshev's Inequality: Variance

Variance

Given a random variable X over probability space (Ω, \Pr) , variance of X is the measure of how much does it deviate from its mean value. Formally,

$$Var(X) = \mathbf{E}[(X - \mathbf{E}[X])^2] = \mathbf{E}[X^2] - \mathbf{E}[X]^2.$$

Independence

Random variables X and Y are called mutually independent if

$$\forall x, y \in \mathbb{R}, \ \Pr[X = x \land Y = y] = \Pr[X = x] \Pr[Y = y]$$

Lemma

If X and Y are independent random variables then Var(X + Y) = Var(X) + Var(Y).

Chebyshev's Inequality

If
$$Var(X) < \infty$$
, then for any $a \ge 0$,

$$\Pr[|X - \mathbf{E}[X]| \ge a] \le \frac{Var(X)}{a^2}.$$

Recap: Chernoff bound

Let X_1, \ldots, X_k be k independent random variables such that, for each $i \in \{1, \ldots, k\}$, X_i equals 1 with probability p_i , and 0 with probability $(1-p_i)$. Let $X = \sum_{i=1}^k X_i$ and $\mu = \mathbf{E}[X] = \sum_i p_i$. For any $0 < \varepsilon < 1$, it holds that:

•
$$\Pr[X \ge (1+\varepsilon)\mu] \le e^{\frac{-\varepsilon^2\mu}{3}}$$

• $\Pr[X \le (1 - \varepsilon)\mu] \le e^{\frac{-\varepsilon^2\mu}{2}}$

For $0<\varepsilon<1$ and $\mu_{min}<\mu<\mu_{max}$,

•
$$\Pr[X \ge (1+\varepsilon)\mu_{max}] \le e^{\frac{-\varepsilon^2\mu_{max}}{3}}$$

•
$$\Pr[X \le (1 - \varepsilon)\mu_{min}] \le e^{\frac{-\varepsilon^2\mu_{min}}{2}}$$

• Hash functions are used in various fields in the CS.

3

- Hash functions are used in various fields in the CS.
- Want the hash function to behave like a "random function" and has a compact representation.

Let Z_1, Z_2, Z_n are n random somables

ored (S_2, P_1), De zamy

Not Z_1, Z_2, \ldots, Z_n printwise religionshit it

for any two linkness i and

for any two values

god is and any two values Z_1, Z_2, \ldots, Z_n Z_1, Z_1, \ldots, Z_n Z_1, \ldots, Z_n $Z_1, Z_1, \ldots,$

- Hash functions are used in various fields in the CS.
- Want the hash function to behave like a "random function" and has a compact representation.
- A family of hash functions $\mathcal{H} \subseteq \{f : X \to Y\}$, is a Pairwise Independent Hash Family if the following two conditions hold.

$$\begin{array}{c}
\Omega = 22. \\
\lambda = 121. \\
\Delta = 121.
\end{array}$$

- Hash functions are used in various fields in the CS.
- Want the hash function to behave like a "random function" and has a compact representation.
- A family of hash functions $\mathcal{H} \subseteq \{\mathcal{G}: X \to Y\}$, is a Pairwise Independent Hash Family if the following two conditions hold.
 - Uniformly distributed: for $/\!\!\!/$ any $x \in X$ and $y \in Y$,

- Hash functions are used in various fields in the CS.
- Want the hash function to behave like a "random function" and has a compact representation.
- A family of hash function $\{f: X \to Y\}$, is a Pairwise Independent Hash Family if the following two conditions hold.

$$=\frac{1}{|Y|^2}.$$

Example: Pairwise Independent Hash Family

Let
$$X = \{0, 1\}^N$$
 and $Y = \{0, 1\}^K$ where $K \leq N$.

111

• For a matrix $A \in \{0,1\}^{K \times N}$ and vector $b \in \{0,1\}^{K}$, define $h_{A,b} \colon X \to Y$ as follows:

$$h_{A,b}(x) = (Ax + b) \mod 2.$$

$$000$$

$$000$$

$$000$$

$$010$$

$$100$$

$$100$$

9

Example: Pairwise Independent Hash Family

Let $X = \{0, 1\}^N$ and $Y = \{0, 1\}^K$ where $K \leq N$.

• For a matrix $A \in \{0,1\}^{K \times N}$ and vector $b \in \{0,1\}^K$, define $h_{A,b} \colon X \to Y$ as follows:

• $\mathcal{H} = \{h_{A,b} \colon A \in \{0,1\}^{K \times N}, b \in \{0,1\}^{K}\}$ is a pairwise independent hash family.

A (52, 76) = 127 M = 127, 18 (ha,b) = 127

Tidemark Algorithm

Notation

For an integer p>0, zeros(p) is the number of zeros that the binary representation of p ends with. That is,

$$zeros(p) = \max\{i : 2^i \text{ divides } p\}. \ \mathcal{V}$$

$$9:5$$
, $101.2ems(5) = 0:$
 $7=6$ $100.2ems(6) = 1$
 $1=8$ $1000 2ems(8) = 3$

 $20.13^{1} \rightarrow 50.13^{1} \quad m = 2^{1}$

Algorithm 1: Tidemark Algorithm

 \mathcal{H} is a pairwise independent hash family from [n] to [n]; choose h at random from \mathcal{H} ; $z \leftarrow 0$; while a new token e_i arrives do if $\overline{zeros(h(e_j))} > 0$ then

if $zeros(h(e_j))$ then $z \leftarrow zeros(h(e_j))$ end

end

end return $2^{z+\frac{1}{2}}$

h(6)

Intuition 220,200

Space complexity Algorithm 2: Tide

MALL

Af {o,}

Algorithm 2: Tidemark Algorit	hm	1-10gM.
\mathcal{H} is a pairwise independent has	sh family from $[n]$] to $[n]$;
choose h at random from \mathcal{H} ;	1 0	
$z \leftarrow 0$;	N =	
while a new token e_i arrives do	(127)	- Lighxlagn
if $\underline{zeros(h(e_j)) > 0}$ then	DING 11	
$z \leftarrow zeros(h(e_j))$		
end		
end	2	(), 3 ()
return $2^{z+\frac{1}{2}}$		
# disknets dement	in di	
a, 7/1	1000	000000
		lag d
· · · · · · · · · · · · · · · · · · ·	0.21	36 2

Analysis:
$$(O(1), \frac{1}{\sqrt{2}})$$
-Estimate

• For each integer $t \in [n]$ and each integer $r \geq 0$, $X_{r,t}$ be the indicator random variable s.t.

$$X_{r,t} = \begin{cases} 1 & \text{if } zeros(h(t)) \ge r \\ 0 & \text{Otherwise} \end{cases}$$

Analysis:
$$(O(1), \frac{1}{\sqrt{2}})$$
-Estimate

• For each integer $t \in [n]$ and each integer $r \geq 0$, $X_{r,t}$ be the indicator random variable s.t.

$$X_{r,t} = \begin{cases} 1 & \text{if } zeros(h(t)) \ge r \\ 0 & \text{Otherwise} \end{cases}$$

$$\bullet Y_r = \sum_{t: f_t > 0} X_{r,t}.$$

1,5,8,9

Analysis:
$$(O(1), \frac{1}{\sqrt{2}})$$
-Estimate

• For each integer $t \in [n]$ and each integer $r \geq 0$, $X_{r,t}$ be the indicator random variable s.t.

$$X_{r,t} = \begin{cases} 1 & \text{if } zeros(h(t)) \ge r \\ 0 & \text{Otherwise} \end{cases}$$

•
$$Y_r = \sum_{t: f_t > 0} X_{r,t}$$
.

• Let T be the value of z at the end of the algorithm.

Analysis: $(O(1), \frac{1}{\sqrt{2}})$ -Estimate

• For each integer $t \in [n]$ and each integer $r \geq 0$, $X_{r,t}$ be the indicator random variable s.t.

$$X_{r,t} = \begin{cases} 1 & \text{if } zeros(h(t)) \ge r \\ 0 & \text{Otherwise} \end{cases}$$

$$Y_r = \sum_{t:f_t>0} X_{r,t}$$

$$X_{r,t} = \begin{cases} 1 & \text{if } zeros(h(t)) \ge r \\ 0 & \text{Otherwise} \end{cases}$$

- Let T be the value of z at the end of the algorithm.
- Then, $Y_r \geq 0$ iff $T \geq r$. Show. 1-, 8, 2, 1, 2

Suppose $Y_{V} = 0$ Then all the numbers of seems

In the Assum in maybred till

numbers that was large than or

sound by W - 1 + 0f zeroes

Du will be at most

Expectation and Variance of Y_r

• $\mathbf{E}[X_{r,t}] = \Pr[zeros(h(t)) \ge r] = \Pr[2^r \text{ divides } h(t)] = \frac{1}{2^r}$

Expectation and Variance of Y_r

•
$$\mathbf{E}[X_{r,t}] = \Pr[zeros(h(t)) \ge r] = \Pr[2^r \text{ divides } h(t)] = \frac{1}{2^r}$$

• $\mathbf{E}[Y_r] = \sum_{t:f_t>0} \mathbf{E}[X_{r,t}] = \frac{d}{2^r}$ (Here d is the no. of distinct elements).

Expectation and Variance of Y_r

•
$$\mathbf{E}[X_{r,t}] = \Pr[zeros(h(t)) \ge r] = \Pr[2^r \text{ divides } h(t)] = \frac{1}{2^r}$$

• $\mathbf{E}[Y_r] = \sum_{t:f_t>0} \mathbf{E}[X_{r,t}] \neq \frac{d}{2^r}$ (Here d is the no. of distinct elements)

Applying Markov's and Chebyshevs inequalities

By Markov's inequality,

$$\Pr[Y_r > 0] = \Pr[Y_r \ge 1] \le \frac{\mathbf{E}[Y_r]}{1} = \frac{d}{2^r}.$$

Applying Markov's and Chebyshevs inequalities

By Markov's inequality,

By Chebyshevs inequality,

•
$$\widehat{d} = 2^{T + \frac{1}{2}}$$
.

•
$$\hat{d} = 2^{T + \frac{1}{2}}$$
.

• Let a be the smallest integer such that $2^{a+\frac{1}{2}} \ge 4d$.

- $\hat{d} = 2^{T + \frac{1}{2}}$.
- Let \underline{a} be the smallest integer such that $2^{a+\frac{1}{2}} \ge 4d$.
- Then, $\Pr[\widehat{d} \geq d] \leq \Pr[T \geq a] = \Pr[Y_a > 0] \leq \frac{d}{2^a} \leq \frac{\sqrt{2}}{4}$.

- $\hat{d} = 2^{T + \frac{1}{2}}$.
- Let a be the smallest integer such that $2^{a+\frac{1}{2}} \ge 4d$.
- Then, $\Pr[\widehat{d} \ge d] \le \Pr[T \ge a] = \Pr[Y_a > 0] \le \frac{d}{2^a} \le \frac{\sqrt{2}}{4}$.
- Let b be the largest integer such that $2^{b+\frac{1}{2}} \le d/4$.

- $\hat{d} = 2^{T + \frac{1}{2}}$.
- Let a be the smallest integer such that $2^{a+\frac{1}{2}} \ge 4d$.
- Then, $\Pr[\widehat{d} \ge \mathcal{A}d] \le \Pr[T \ge a] = \Pr[Y_a > 0] \le \frac{d}{2^a} \le \frac{\sqrt{2}}{4}$.
- Let b be the largest integer such that $2^{b+\frac{1}{2}} \le d/4$.

• Then,
$$\Pr[\widehat{d} \le d/4] \le \Pr[T \le b] = \Pr[Y_{b+1} = 0] \le \frac{2^{b+1}}{d} \le \frac{\sqrt{2}}{4}$$

•
$$\hat{d} = 2^{T + \frac{1}{2}}$$
.

- Let a be the smallest integer such that $2^{a+\frac{1}{2}} \ge 4d$.
- Then, $\Pr[\widehat{d} \ge 3d] \le \Pr[T \ge a] = \Pr[Y_a > 0] \le \frac{d}{2^a} \le \frac{\sqrt{2}}{4}$.
- Let b be the largest integer such that $2^{b+\frac{1}{2}} \le d/4$.

• Then,
$$\Pr[\widehat{d} \le d/4] \le \Pr[T \le b] = \Pr[Y_{b+1} = 0] \le \frac{2^{b+1}}{d} \le \frac{\sqrt{2}}{4}$$

• Then, by union bound,

We have:

$$\Pr[\widehat{d} \geq 4d \text{ or } \widehat{d} \geq d/4] \leq \frac{1}{\sqrt{2}} \quad \land \quad /$$

Want:

$$\Pr[\widehat{d} \ge 4d \text{ or } \widehat{d} \ge d/4] \le \delta$$

for some given parameter δ .

We have:

$$\Pr[\widehat{d} \ge 4d \text{ or } \widehat{d} \ge d/4] \le \frac{1}{\sqrt{2}}$$

Want:

$$\Pr[\widehat{d} \ge 4d \text{ or } \widehat{d} \ge d/4] \le \delta$$

for some given parameter δ .

Idea: Repeat independently $\ell = 12 \log(2/\delta)$ times.

We have:

$$\Pr[\widehat{d} \ge 4d \text{ or } \widehat{d} \ge d/4] \le \frac{1}{\sqrt{2}}$$

Want:

$$\Pr[\widehat{d} \ge 4d \text{ or } \widehat{d} \ge d/4] \le \delta$$

for some given parameter δ .

Idea: Repeat independently $\ell = 12 \log(2/\delta)$ times.

Algorithm: Output median of the estimates $Q^{(1)}, Q^{(2)}, \dots, Q^{(\ell)}$.

Let Z be median of the $\ell = 12 \log(2/\delta)$ independent estimators.

$$\Pr[Z > 4d] \le \delta/2.$$

Let Z be median of the $\ell = 12 \log(2/\delta)$ independent estimators.

Lemma

$$\Pr[Z > 4d] \le \delta/2.$$

• Let A_i be event that estimate $Q^{(i)}$ is <u>bad</u>: that is, $Q^{(i)} > 4d$. Then, $\Pr[A_i] < \frac{\sqrt{2}}{4}$. Hence expected number of bad estimates is at most $\ell \cdot \frac{\sqrt{2}}{4}$.

Let Z be median of the $\ell = 12 \log(2/\delta)$ independent estimators.

$$\Pr[Z > 4d] \le \delta/2$$
.

- Let A_i be event that estimate $Q^{(i)}$ is <u>bad</u>: that is, $Q^{(i)} > 4d$. Then, $\Pr[A_i] < \frac{\sqrt{2}}{4}$. Hence expected number of bad estimates is at most $\ell \cdot \frac{\sqrt{2}}{4}$.
- For median estimate to be bad, more than half of A_i 's have to be bad.

Let Z be median of the $\ell = 12 \log(2/\delta)$ independent estimators.

$$\Pr[Z > 4d] \le \delta/2$$
.

- Let A_i be event that estimate $Q^{(i)}$ is <u>bad</u>: that is, $Q^{(i)} > 4d$. Then, $\Pr[A_i] < \frac{\sqrt{2}}{4}$. Hence expected number of bad estimates is at most $\ell \cdot \frac{\sqrt{2}}{4}$.
- For median estimate to be bad, more than half of A_i 's have to be bad.
- Let X_i be that random variable that takes value 1 when A_i happens and 0 otherwise.

Let Z be median of the $\ell = 12 \log(2/\delta)$ independent estimators.

$$\Pr[Z > 4d] \le \delta/2$$
.

- Let A_i be event that estimate $Q^{(i)}$ is <u>bad</u>: that is, $Q^{(i)} > 4d$. Then, $\Pr[A_i] < \frac{\sqrt{2}}{4}$. Hence expected number of bad estimates is at most $\ell \cdot \frac{\sqrt{2}}{4}$.
- For median estimate to be bad, more than half of A_i 's have to be bad.
- Let X_i be that random variable that takes value 1 when A_i happens and 0 otherwise.
- Let $X = \sum_{i=1}^{\ell} X_i$.
- Our output is "bad" if and only if X is at least $\ell/2$.

Applying Chernoff bound

- Let X_1, \ldots, X_k be k independent 0/1-random variables,
- $X = \sum_{i=1}^k X_i$, and
- $\mathbf{E}[X] \leq \mu_{\max}$.

Then, for any $0 < \varepsilon < 1$, it holds that:

•
$$\Pr[X \ge (1+\varepsilon)\mu] \le e^{\frac{-\varepsilon^2\mu_{max}}{3}}$$

Applying Chernoff bound

- Let X_1, \ldots, X_k be k independent 0/1-random variables,
- $X = \sum_{i=1}^k X_i$, and
- $\mathbf{E}[X] \leq \mu_{\max}$.

Then, for any $0 < \varepsilon < 1$, it holds that:

•
$$\Pr[X \ge (1+\varepsilon)\mu] \le e^{\frac{-\varepsilon^2 \mu_{max}}{3}}$$

$$\Pr[X \ge \ell/2] \le \Pr[X \ge 2\mu_{\max}]
\le \Pr[X \ge (1 + 0.99)\mu_{\max}]
\le e^{\frac{-(0.99)^2\mu_{\max}}{3}}
< e^{\frac{-(0.99)^2\sqrt{2}\ell}{12}}$$

Choose
$$\ell = 12 \cdot (\log \frac{1}{\delta})$$
. Then, $\Pr[X \ge \ell/2] \le \delta$

Let Z be median of the $\ell = 12 \log(2/\delta)$ independent estimators.

$$\Pr[Z < d/4] \le \delta/2.$$

Let Z be median of the $\ell = 12 \log(2/\delta)$ independent estimators.

Lemma

$$\Pr[Z < d/4] \le \delta/2.$$

We got $(O(1), \delta)$ -estimate

Let Z be median of the $\ell=12\log(2/\delta)$ independent estimators.

Lemma

$$\Pr[Z < d/4] \le \delta/2$$
.

We got $(O(1), \delta)$ -estimate

Space complexity: $O(\log(1/\delta)\log^2 n)$.

Summary

- We have seen estimating number of distinct elements
- We used pairwise independent hash family
- Median Trick

Thank You.