Reinforcement Learning for Business, Economics, and Social Sciences

Unit 3-2: Monte Carlo Learning

Davud Rostam-Afschar (Uni Mannheim)

How to learn from episodes?

RL Algorithms

Dynamic Programming Backup

Source: David Silver

RL Algorithms

Monte Carlo Backup

Source: David Silver

RL Algorithms

Temporal Difference Backup

$$V(S_t) \leftarrow V(S_t) + \alpha \left(R_{t+1} + \gamma V(S_{t+1}) - V(S_t) \right)$$

Source: David Silver

Model Free Evaluation

- Given a policy π estimate $V^{\pi}(s)$ without any transition or reward model
- ► Monte Carlo evaluation

$$egin{aligned} V^{\pi}(s) &= \mathbb{E}_{\pi}\left[\sum_{t} \gamma^{t} r_{t}
ight] \ &pprox rac{1}{n(s)} \sum_{k=1}^{n(s)} \left[\sum_{t} \gamma^{t} r_{t}^{(k)}
ight] \end{aligned} \qquad ext{(sample approximation)}$$

Toy Maze Example

3	r	r	r	+1
2	u		u	-1
1	u	ı	ı	I
	1	2	3	4

Start state: (1,1)

Terminal states: (4,2), (4,3)

No discount: $\gamma = 1$

Reward is -0.04 for non-terminal states

Four actions:

- **▶** up (**u**),
- ► left (**I**),
- **▶** right (**r**),
- **▶** down (**d**)

Do not know the transition probabilities

What is the value V(s) of being in state s

ightharpoonup Let G_k be a one-trajectory Monte Carlo target

$$G_k = \sum \gamma^t r_t^{(k)}$$

3	r	r	r	+1
2	u		u	-1
1	u	ı	_	I
	1	2	3	1

ightharpoonup Let G_k be a one-trajectory Monte Carlo target

$$G_k = \sum_t \gamma^t r_t^{(k)}$$

First sample (k = 1):

$$(1,1) \rightarrow (1,2) \rightarrow (1,3) \rightarrow (1,2) \rightarrow (1,3) \rightarrow (2,3) \rightarrow (3,3) \rightarrow (4,3)$$

 $-0.04 - 0.04 - 0.04 - 0.04 - 0.04 - 0.04 - 0.04 + 1$
 $G_1 = 0.72$

3	r	r	r	+1
2	u		u	-1
1	u	ı	I	ı
	1	2	3	4

ightharpoonup Let G_k be a one-trajectory Monte Carlo target

$$G_k = \sum_t \gamma^t r_t^{(k)}$$

First sample (k = 1):

$$(1,1) \rightarrow (1,2) \rightarrow (1,3) \rightarrow (1,2) \rightarrow (1,3) \rightarrow (2,3) \rightarrow (3,3) \rightarrow (4,3) -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 +1 G_1 = 0.72$$

▶ Second sample (k = 2):

$$\begin{array}{l} (1,1) \rightarrow (1,2) \rightarrow (1,3) \rightarrow (2,3) \rightarrow (3,3) \rightarrow (3,2) \rightarrow (3,3) \rightarrow (4,3) \\ -0.04 - 0.04 - 0.04 - 0.04 - 0.04 - 0.04 - 0.04 + 1 \end{array}$$

$$G_2 = 0.72$$

ightharpoonup Let G_k be a one-trajectory Monte Carlo target

$$G_k = \sum_t \gamma^t r_t^{(k)}$$

First sample (k = 1):

$$(1,1) \rightarrow (1,2) \rightarrow (1,3) \rightarrow (1,2) \rightarrow (1,3) \rightarrow (2,3) \rightarrow (3,3) \rightarrow (4,3) -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 +1 $G_1 = 0.72$$$

Second sample (k = 2):

$$(1,1) \rightarrow (1,2) \rightarrow (1,3) \rightarrow (2,3) \rightarrow (3,3) \rightarrow (3,2) \rightarrow (3,3) \rightarrow (4,3) -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 +1$$

$$G_2 = 0.72$$

▶ Third sample (k = 3):

$$\begin{split} &(1,1) \rightarrow (2,1) \rightarrow (3,1) \rightarrow (3,2) \rightarrow (4,2) \\ &-0.04 - 0.04 - 0.04 - 0.04 - 1 \\ &G_3 = -1.16 \end{split}$$

- ▶ Let G_k be a *one-trajectory* Monte Carlo target $G_k = \sum_t \gamma^t r_t^{(k)}$
- ► Approximate value function

$$V_n^{\pi}(s) \approx \frac{1}{n(s)} \sum_{k=1}^{n(s)} G_k$$

- ▶ Let G_k be a *one-trajectory* Monte Carlo target $G_k = \sum_t \gamma^t r_t^{(k)}$
- Approximate value function

$$egin{aligned} V_n^\pi(s) &pprox rac{1}{n(s)} \sum_{k=1}^{n(s)} G_k \ &= rac{1}{n(s)} \left(G_{n(s)} + \sum_{k=1}^{n(s)-1} G_k
ight) \ &= rac{1}{n(s)} \left(G_{n(s)} + (n(s)-1) V_{n-1}^\pi(s)
ight) \ &= V_{n-1}^\pi(s) + rac{1}{n(s)} \left(G_{n(s)} - V_{n-1}^\pi(s)
ight) \end{aligned}$$

- ▶ Let G_k be a *one-trajectory* Monte Carlo target $G_k = \sum_t \gamma^t r_t^{(k)}$
- Approximate value function

$$egin{aligned} V_n^\pi(s) &pprox rac{1}{n(s)} \sum_{k=1}^{n(s)} G_k \ &= rac{1}{n(s)} \left(G_{n(s)} + \sum_{k=1}^{n(s)-1} G_k
ight) \ &= rac{1}{n(s)} \left(G_{n(s)} + (n(s)-1) V_{n-1}^\pi(s)
ight) \ &= V_{n-1}^\pi(s) + rac{1}{n(s)} \left(G_{n(s)} - V_{n-1}^\pi(s)
ight) \end{aligned}$$

Incremental update

$$V_n^\pi(s) \leftarrow V_{n-1}^\pi(s) + lpha_n \left(G_n - V_{n-1}^\pi(s)
ight),$$
 where $lpha_n =$ learning rate $1/n(s)$

Stochastic approximation (Robbins-Monro algorithm)

- **Theorem**: If α_n is appropriately decreased with number of times a state is visited then $V_n^{\pi}(s)$ converges to correct value
- **Sufficient conditions** for α_n :

$$\sum_{n} \alpha_n \to \infty \tag{1}$$

$$\sum_{n} \alpha_{n} \to \infty \tag{1}$$

$$\sum_{n} \alpha_{n}^{2} < \infty \tag{2}$$

Stochastic approximation (Robbins-Monro algorithm)

- **Theorem**: If α_n is appropriately decreased with number of times a state is visited then $V_n^{\pi}(s)$ converges to correct value
- **Sufficient conditions** for α_n :

$$\sum_{n} \alpha_n \to \infty \tag{1}$$

$$\sum_{n} \alpha_{n} \to \infty \tag{1}$$

$$\sum_{n} \alpha_{n}^{2} < \infty \tag{2}$$

$$\frac{n(s)}{2}$$
 $\frac{\alpha_n}{50\%}$

Stochastic approximation (Robbins-Monro algorithm)

- **Theorem**: If α_n is appropriately decreased with number of times a state is visited then $V_n^{\pi}(s)$ converges to correct value
- **Sufficient conditions** for α_n :

$$\sum_{n} \alpha_{n} \to \infty \tag{1}$$

$$\sum_{n} \alpha_{n} \to \infty \tag{1}$$

$$\sum_{n} \alpha_{n}^{2} < \infty \tag{2}$$

$\overline{n(s)}$	α_n
2	50%
5	20%

Stochastic approximation (Robbins-Monro algorithm)

- **Theorem**: If α_n is appropriately decreased with number of times a state is visited then $V_n^{\pi}(s)$ converges to correct value
- **Sufficient conditions** for α_n :

$$\sum_{n} \alpha_n \to \infty \tag{1}$$

$$\sum_{n} \alpha_{n} \to \infty \tag{1}$$

$$\sum_{n} \alpha_{n}^{2} < \infty \tag{2}$$

n(s)	α_n
2	50%
5	20%
10	10%

Stochastic approximation (Robbins-Monro algorithm)

- **Theorem**: If α_n is appropriately decreased with number of times a state is visited then $V_n^{\pi}(s)$ converges to correct value
- **Sufficient conditions** for α_n :

$$\sum_{n} \alpha_{n} \to \infty \tag{1}$$

$$\sum_{n} \alpha_{n} \to \infty \tag{1}$$

$$\sum_{n} \alpha_{n}^{2} < \infty \tag{2}$$

n(s)	α_n
2	50%
5	20%
10	10%
20	5%

Stochastic approximation (Robbins-Monro algorithm)

- **Theorem**: If α_n is appropriately decreased with number of times a state is visited then $V_n^{\pi}(s)$ converges to correct value
- **Sufficient conditions** for α_n :

$$\sum_{n} \alpha_n \to \infty \tag{1}$$

$$\sum_{n} \alpha_{n} \to \infty \tag{1}$$

$$\sum_{n} \alpha_{n}^{2} < \infty \tag{2}$$

Stochastic approximation (Robbins-Monro algorithm)

- **Theorem**: If α_n is appropriately decreased with number of times a state is visited then $V_n^{\pi}(s)$ converges to correct value
- **Sufficient conditions** for α_n :

$$\sum_{n} \alpha_n \to \infty \tag{1}$$

$$\sum_{n} \alpha_{n} \to \infty \tag{1}$$

$$\sum_{n} \alpha_{n}^{2} < \infty \tag{2}$$

n(s)	α_n
2	50%
5	20%
10	10%
20	5%
40	2.5%
80	1.25%

First-visit Monte Carlo (MC) Evaluation

```
MCevaluation (\pi, V^{\pi})
   Initialize
      \pi \leftarrow \text{policy to be evaluated}
      V^{\pi}(s) \leftarrow arbitrary state-value function
      n(s) \leftarrow 0, \ \forall s \in S
   Repeat
      Generate the kth episode using \pi(s)
      For each state t appearing in the episode
      Return r following the first occurrence of t
      Update counts: n(s) \leftarrow n(s) + 1
      Learning rate: \alpha \leftarrow 1/n(s)
      Update value: V^{\pi}(s) \leftarrow V^{\pi}(s) + \alpha \left(\sum_t \gamma^t r_t^{(k)} - V^{\pi}(s)\right)
   Until convergence of V^{\pi}
   Return V^{\pi}
```

Monte Carlo Control

Monte Carlo Control

▶ Let G_k^a be a one-trajectory Monte Carlo target

$$G_k^a = \underbrace{r_0^{(k)}}_{a} + \underbrace{\sum_{t=1} \gamma_\pi^t r_t^{(k)}}_{\pi}$$

- Alternate between
 - Policy evaluation

$$Q_n^*(s,a) \leftarrow Q_{n-1}^{\pi}(s,a) + \alpha_n \left(G_k^a - Q_{n-1}^{\pi}(s,a)\right)$$

Policy improvement

$$\pi'(s) \leftarrow \underset{a}{\operatorname{argmax}} Q^{\pi}(s, a)$$

References I

- DENERO, J., D. KLEIN, B. MILLER, N. HAY, AND P. ABBEEL (2013): "The Pacman Al Projects," http://inst.eecs.berkeley.edu/~cs188/pacman/, Developed at UC Berkeley. Core by John DeNero and Dan Klein; student autograding by Brad Miller, Nick Hay, and Pieter Abbeel.
- POUPART, P. (2025): "Pascal Poupart's Homepage," https://cs.uwaterloo.ca/~ppoupart/, Accessed: 2025-05-24.
- Russell, S. J., and P. Norvig (2016): Artificial intelligence: a modern approach. Pearson.
- SIGAUD, O., AND O. BUFFET (2013): Markov decision processes in artificial intelligence. John Wiley & Sons.
- SUTTON, R. S., AND A. G. BARTO (2018): "Reinforcement learning: An introduction," *A Bradford Book*, Available at http://incompleteideas.net/book/the-book-2nd.html.
- SZEPESVÁRI, C. (2022): Algorithms for reinforcement learning. Springer nature, Available at https://sites.ualberta.ca/~szepesva/RLBook.html.

Takeaways

How to Learn Values Using Monte Carlo Methods?

- ▶ No need to know transition probabilities or reward function
 - \rightarrow Model free
- Average returns from complete episodes under the target policy
 - → Unbiased value estimation from samples
- ▶ Revises estimates only after each episode using the observed return
 - → Needs many trajectories