Fundamentos de Ingeniería Eléctrica

Tema 5: Teoremas

Contenidos

- Teorema linealidad
- Teorema superposición
- Teorema Thevenin
- Teorema Norton
- Teorema máxima transferencia potencia

Teorema de linealidad

Si en un circuito lineal se multiplican los valores de todas las fuentes de excitación independientes por una constante, su respuesta a estado inicial cero (bobinas y condensadores sin energía) queda multiplicada por la misma constante. El circuito puede incluir fuentes dependientes.

Dado el circuito de la figura usa el teorema de linealidad para calcular

a)
$$i \text{ con } v_g = 10 \cdot \beta[\text{V}]$$
 b) $i \text{ con } v_g = 20 \cdot \beta[\text{V}]$ c) $i \text{ con } v_g = 10 \cdot \gamma[\text{V}]$

Datos: $R_1 = \alpha[\Omega], R_2 = \gamma[\Omega], R_3 = \delta[\Omega]$

Solución 5-1

Resolvemos primero para $v_g=50~\mathrm{[V]}$ usando mallas

Para $v_g=100$, multiplicamos la intensidad por 2, $i_b=2\cdot 5{,}63=11{,}26$

Para $v_g=80$, multiplicamos la intensidad por 1.6, $i_b=1.6\cdot 5.63=9.01$

Para $v_g=10\cdot\epsilon$ [V] y $i_g=\kappa$ [A] la fuente de tensión está generando $100\cdot\lambda$ [W]. Calcula la intensidad i para $v_g=5\cdot\epsilon$ [V] y $i_g=\kappa/2$ [A]

Desactivación de fuentes independientes

Fuente de tensión independiente

Fuente de intensidad independiente

Teorema superposición

Si un circuito se energiza mediante N fuentes independientes, las tensiones o corrientes del mismo pueden obtenerse como la suma de las correspondientes tensiones o corrientes de cada uno de los circuitos que se obtienen desactivando N-1 fuentes independientes en el circuito original

$$i = i_1 + i_2$$
$$v = v_1 + v_2$$

Teorema superposición (cont)

- A veces la aplicación del principio de superposición simplifica los cálculos y otras veces no
- El teorema de superposición es aplicable para el cálculo de tensiones y corrientes, pero no para calcular potencia
- Las fuentes independientes/ (dependientes) solo pueden aparecer activas en uno de los subproblemas
- Las resistencias aparecen en todos los subcircuitos
- Puedes aplicar descomposición agrupando las fuentes de diferentes maneras
- Puedes combinar el teorema de superposición con el teorema de linealidad
- Solo sirve para circuitos lineales!!

Usa el teorema de superposición para calcular

a) i_2 [A]

b) v_3 [V]

- c) P_{vq} [W,gen] d) P_{R4} [W,con]

Datos:
$$v_g=100+10\cdot\epsilon[{\sf V}], i_g=10+\epsilon[{\sf A}], R_1=\lambda[\Omega], R_2=\theta[\Omega], R_3=\epsilon[\Omega], R_4=\kappa[\Omega]$$

Solución 5-3

El circuito original es

Aplicamos el teorema de superposición y resolvemos dos problemas más simples

Resuelvo el circuito con la fuente de tensión y pasivo la fuente de intensidad

$$i'_1 = \frac{120}{6+3||6} = 15 \text{ [A]}$$

$$i'_2 = \frac{6}{6+3}i'_1 = 10 \text{ [A]}$$

$$i'_4 = i'_1 - i'_2 = 5 \text{ [A]}$$

$$v'_3 = 2 \cdot i'_4 = 10 \text{ [V]}$$

Resuelvo el circuito con la fuente de intensidad y pasivo la fuente de tensión

$$\begin{aligned} 6||3+2&=4\Omega\\ i_3''&=-i_4''=6\text{ [A]}\\ i_1''&=\frac{3}{6+3}i_3''=2\text{ [A]}\\ i_2''&=i_1''-i_3''=-4\text{ [A]}\\ v_3''&=2\cdot i_3''=12\text{ [V]} \end{aligned}$$

Sumo los resultados de cada subproblema para calcular las tensiones e intensidad del circuito original

$$i_1 = i'_1 + i''_1 = 15 + 2 = 17$$
 [A]
 $i_2 = i'_2 + i''_2 = 10 - 4 = 6$ [A]
 $i_4 = i'_4 + i''_4 = 5 - 6 = -1$ [A]
 $v_3 = v'_3 + v''_3 = 10 + 12 = 22$ [V]

La potencia cedida por la fuente de tensión será:

$$P_{vg} = 120i_1 = 120 \cdot 17 = 2040$$
 [W,gen]

La potencia consumida por R_4 es

$$P_{R4} = R_4 \cdot i_4^2 = 4 \cdot (-1)^2 = 4$$
 [W,con]

En el circuito de la izquierda, con $v_g=10\cdot \alpha$ [V] se obtiene una intensidad $i_2=\beta$ [A], una tensión $v_4=\gamma$ [V]

En el circuito de la derecha, con $i_g=\epsilon$ [A] se obtiene una intensidad $i_2=\eta$ [A], una tensión $v_4=\theta$ [V]

Ejercicio 5-4 (cont)

Para el circuito de la figura calcula:

a) i_2 [A]

b) v_4 [V]

Circuito 3

Datos: $v_g = 10 \cdot \lambda \text{ [V]}, i_g = \alpha \text{ [A]}$

Solución 5-4

Nos damos cuenta que los dos primeros circuitos son simplemente el resultado de aplicar el teorema de superposición al circuito completo

Circuito	v_g [V]	i_g [A]	i_2 [A]	v_4 [V]
1	90	-	5	8
2	-	2	7	3
3	60	-9	?	?

Circuito 3 = $\frac{60}{90}$ · Circuito 1 - $\frac{9}{2}$ · Circuito 2

$$i_2^{(3)} = \frac{60}{90}i_2^{(1)} - \frac{9}{2}i_2^{(2)} = \frac{60}{90}5 - \frac{9}{2}7 = -28,17 \text{ [A]}$$

$$v_4^{(3)} = \frac{60}{90}v_4^{(1)} - \frac{9}{2}v_4^{(2)} = \frac{60}{90}8 - \frac{9}{2}3 = -8,17 \text{ [V]}$$

Resuelve el circuito usando el teorema de superposición y calcula

a) i_2 [A]

- b) v_3 [V] c) P_{vq} [W,gen] d) P_{iq_1} [W,gen]

Datos:

$$v_g = 10 \cdot \alpha[\mathsf{V}], i_{g1} = \beta[\mathsf{A}], i_{g2} = \gamma[\mathsf{A}], R_1 = \delta[\Omega], R_2 = \epsilon[\Omega], R_3 = \eta[\Omega]$$

Resuelve el siguiente circuito aplicando superposición y calcula:

Datos:
$$v_{g1} = 10 + \epsilon \ [V], v_{g2} = 20 + \kappa \ [V], R_1 = \kappa \ [\Omega], R_2 = \epsilon \ [\Omega], R_3 = \gamma \ [\Omega], R_4 = \kappa \ [\Omega]$$

Solución 5-6

Vamos a resolver este circuito por los el método de superposición. Por lo tanto descomponemos el circuito en

- Circuito A: Fuente independiente de 12V
- Circuito B: Fuente independiente de 24V
- ullet Circuito C: Fuente dependiente de $4v_2$

Circuito A

$$i_1^A = \frac{12}{4+2||(8+4)} = 2,1 \text{ [A]} \quad i_2^A = 2,1 \frac{12}{14} = 1,8 \text{ [A]} \quad i_3^A = 2,1 \frac{2}{14} = 0,3 \text{ [A]} \quad v_2^A = 2i_2^A = 3,6 \text{ [V]}$$

Importante: La fuente dependiente también está pasivada!!!!

Circuito B

$$\begin{split} i_3^B &= \frac{-24}{8+4+4||2} = -1,8 \text{ [A]} \qquad i_2^B = 1,8 \frac{4}{4+2} = 1,2 \text{ [A]} \\ v_2^B &= 2i_2^B = 2,4 \text{ [V]} \end{split}$$

Importante: La fuente dependiente también está pasivada!!!!

Circuito C

$$i_3^C = 4v_2 \frac{4}{4 + (8 + 4||2)} = 1,2v_2$$
 $i_2^C = -1,2v_2 \frac{4}{4 + 2} = -0,8v_2$ $v_2^C = 2i_2^C = -1,6v_2$

La intensidad de la fuente dependiente depende de v_2 y no de $v_2^C!!!!$

Circuito
$$A + B + C$$

$$v_2 = v_2^A + v_2^B + v_2^C \implies v_2 = 3.6 + 2.4 - 1.6v_2 \implies v_2 = 2.31 \text{ [V]}$$

 $i_3 = i_3^A + i_3^B + i_3^C = 0.3 - 1.8 + 1.2v_2 = 1.27 \text{ [A]}$

Resuelve el circuito usando el teorema de superposición y calcula

a) i_2 [A]

- b) v_5 [V] c) P_{vq} [W,gen] d) P_{iq} [W,gen]

Datos:
$$v_g=10\cdot \epsilon[\mathsf{V}], i_g=\alpha[\mathsf{A}], R_1=\lambda[\Omega], R_2=\theta[\Omega], R_3=\epsilon[\Omega], R_4=\kappa[\Omega], R_5=\beta[\Omega]$$

Resuelve el circuito usando el método de superposición y calcula

Datos: $i_g = \epsilon$ [A], $R_1 = \alpha$ [Ω], $R_2 = \beta$ [Ω], $R_3 = \gamma$ [Ω], $R_4 = \delta$ [Ω]

Teorema Thevenin

Todo circuito lineal conectado al exterior a través de una puerta es equivalente a un circuito compuesto simplemente por una fuente ideal de tensión en serie con una resistencia

Teorema Thevenin (cont)

- ¿Cómo se calcula la tensión Thevenin V_{th} ?
 - V_{th} es igual a la diferencia de tensión entre los terminales A y B con el circuito original. También se conoce como tensión a circuito abierto.
 - Cuidado con el signo de la tensión!!
- ¿Cómo se calcula la resistencia Thevenin R_{th} ?
 - Si solo hay fuentes independientes
 - 1) Se desactivan las fuentes independientes
 - 2) Se calcula la resistencia equivalente entre A y B (serie, paralelo,...)
 - En cualquier caso
 - 1) Se desactivan las fuentes independientes
 - 2) Se dejan en el circuito las fuentes dependientes
 - 3) Se coloca una tensión de prueba v_0 entre los terminales A y B
 - 4) Se calcula la intensidad suministrada por la fuente de prueba i_0 (mallas, nudos, superposición,...)
 - 5) Se calcula la resistencia Thevenin como $R_{th}=rac{v_0}{i_0}$
 - La resistencia Thevenin puede ser negativa!!

Calcula el equivalente Thevenin entre los terminales A y B

$$\mathsf{Datos:}\ v_g = 10 \cdot \epsilon + \beta[\mathsf{V}], i_g = \theta[\mathsf{A}], R_1 = \beta[\Omega], R_2 = 10 \cdot \epsilon[\Omega], R_3 = \kappa[\Omega]$$

Solución 5-9

En primer lugar calculamos la tensión a circuito abierto usando el método de nudos (normalmente suele ser más fácil)

Y por lo tanto

$$v_{AB} = v_A - v_B = 32 - 0 = 32$$
 [V]

En segundo lugar pasivamos las fuentes independientes y calculamos la resistencia equivalente entre $A\ y\ B$

$$R_{th} = 4 + 5||20 = 4 + \frac{5 \cdot 20}{5 + 20} = 8[\Omega]$$

Calcula el equivalente Thevenin entre los terminales A y B

Datos:
$$v_g=10\cdot \alpha[{\sf V}], i_g=\beta[{\sf A}], R_1=\delta[\Omega], R_2=\epsilon[\Omega], R_3=\eta[\Omega]$$

В

Calcula el equivalente Thevenin entre los terminales A y B

a) V_{th} [V]

b) $R_{th}[\Omega]$

Datos: $v_g=10\cdot \alpha[{\sf V}], i_g=\beta[{\sf A}], R_1=\delta[\Omega], R_2=\epsilon[\Omega], R_3=\eta[\Omega], R_4=\gamma[\Omega], R_5=\theta[\Omega]$

Solución 5-11

En primer lugar calculamos la tensión entre los terminales A y B con el circuito original

$$V_{th} = 44 \text{ [V]}$$

Como tenemos fuentes dependientes, pasivamos las independientes y usamos una tensión de prueba entre los terminales A y B.

Como $v_5 = 0$, tenemos

$$i_1 = 0$$

$$i_2 = \frac{v_0}{2}$$

$$i_4 = \frac{v_0}{8}$$

$$i_6 = i_2 - i_1 = \frac{v_0}{2}$$

$$i_0 = i_1 + i_4 + i_6 = \frac{5v_0}{8}$$

La resistencia Thevenin se calcula como $R_{th}=\frac{v_0}{i_0}=\frac{8}{5}=1.6\Omega$

Calcula el equivalente Thevenin entre los terminales A y B

a) V_{th} [V]

b) $R_{th}[\Omega]$

Datos: $v_g = 10 \cdot \alpha[V], i_g = \beta[A], R_1 = \delta[\Omega], R_2 = \epsilon[\Omega]$

Teorema Norton

Todo circuito lineal conectado al exterior a través de una puerta es equivalente a un circuito compuesto simplemente por una fuente ideal de intensidad en paralelo con una resistencia

Teorema Norton (cont)

- ¿Cómo se calcula la intensidad Norton I_{nt} ?
 - I_{nt} es igual a la intensidad que circularía entre los terminales A y B si estos son conectados con un cable de resistencia nula. También se conoce como corriente de cortocircuito.
 - Cuidado con el signo de la intensidad!!
- ¿Cómo se calcula la resistencia Norton R_{nt} ?
 - Si solo hay fuentes independientes
 - 1) Se desactivan las fuentes independientes
 - 2) Se calcula la resistencia equivalente entre A y B (serie, paralelo,...)
 - En cualquier caso
 - 1) Se desactivan las fuentes independientes
 - 2) Se dejan en el circuito las fuentes dependientes
 - 3) Se coloca una tensión de prueba v_0 entre los terminales A y B
 - 4) Se calcula la intensidad suministrada por la fuente de prueba i_0 (mallas, nudos, superposición,...)
 - 5) Se calcula la resistencia Thevenin como $R_{th} = \frac{v_0}{i_0}$
 - La resistencia Norton puede ser negativa!!
- Siempre se cumple que $R_{th} = R_{nt}$

Teorema Thevenin-Norton

$$V_{th} = R_{th}I_{nt}$$

Calcula el equivalente Norton entre los terminales A y B

$$\mathsf{Datos:}\ v_g = 10 \cdot \epsilon + \beta [\mathsf{V}], i_g = \theta [\mathsf{A}], R_1 = \beta [\Omega], R_2 = 10 \cdot \epsilon [\Omega], R_3 = \kappa [\Omega]$$

Solución 5-13

En primer lugar añadimos un cable entre los terminales A y B y calculamos la intensidad i_{cc} que circula por dicho cable aplicando nudos

$$\frac{25 - v_C}{5} + 3 = \frac{v_C}{20} + \frac{v_C}{4} \implies v_C = 16 \text{ [V]}$$

Y por lo tanto

$$i_{cc} = \frac{v_C}{4} = 4$$
 [A]

Calcula el equivalente Norton entre los terminales A y B

a) I_{nt} [A]

b) $R_{nt}[\Omega]$

43 / 63

Datos:

$$v_{g1} = \beta[V], v_{g2} = 10 \cdot \delta[V], i_g = \delta[A], R_1 = \delta[\Omega], R_2 = \epsilon[\Omega], R_3 = \epsilon[\Omega]$$

Calcula el equivalente Norton entre los terminales A y B

Datos:
$$v_{g1}=10+\epsilon[V], v_{g2}=20+\kappa[V], R_1=\kappa[\Omega], R_2=\epsilon[\Omega], R_3=\gamma[\Omega], R_4=\kappa[\Omega]$$

Solución 5-15

Cortocircuitamos los terminales A y B por lo que la resistencia R_3 no tiene ningún efecto en la resolución del circuito. Aplicamos método de nudos.

$$\frac{12 - v_A}{4} = \frac{v_A}{2} + 2v_A + \frac{v_A - 24}{4} \implies v_A = 3 \text{ [V]}$$

$$I_{cc} = \frac{v_A - 24}{4} + 2v_A = 0.75 \text{ [A]}$$

Solución 5-15 (cont)

Para calcular la resistencia Thevenin pasivamos las fuentes independientes y colocamos una fuente de prueba entre los terminales A y B. Aplicamos el método de nudos usando como referencia B ($v_B = 0 | V|, v_A = 1 | V|$).

$$\frac{1 - v_C}{2} + 2 \cdot (1 - v_C) + \frac{0 - v_C}{4} = \frac{v_C - 1}{4} \implies v_C = 0,92 \text{ [V]}$$

$$i + \frac{v_C - 1}{4} = \frac{1 - v_C}{2} + \frac{1 - 0}{8} \implies i = 0,185 \text{ [A]} \implies R_{th} = \frac{1}{i} = 5,41\Omega$$

Calcula el equivalente Norton entre los terminales A y B

Datos:
$$v_g=10\cdot\alpha[{\sf V}], R_1=\beta[\Omega], R_2=\beta[\Omega], R_3=\gamma[\Omega], R_4=\epsilon[\Omega], R_5=\eta[\Omega], R_6=\eta[\Omega]$$

Para el circuito de la figura, calcula de manera independiente la tensión Thevenin, la resistencia Thevenin, y la intensidad Norton entre los terminales A y B.

a) V_{th} [V]

b) $R_{th}[\Omega]$

c) I_{nt} [A]

Datos:

$$v_g = 10 \cdot \delta[V], i_g = \theta$$
 [A], $R_1 = \epsilon[\Omega], R_2 = \epsilon[\Omega], R_3 = \delta[\Omega], R_4 = \theta[\Omega]$

Para el circuito de la figura, calcula de manera independiente la tensión Thevenin, la resistencia Thevenin, y la intensidad Norton entre los terminales A y B.

c) I_{nt} [A]

Datos:
$$i_g = \beta$$
 [A], $R = \gamma[\Omega]$

Para el circuito de la figura, calcula de manera independiente la tensión Thevenin, la resistencia Thevenin, y la intensidad Norton entre los terminales A y B.

a) V_{th} [V]

b) $R_{th}[\Omega]$

c) I_{nt} [A]

Datos: $v_g = 10 \cdot \gamma \text{ [V]}, R_g = \delta[\Omega], R_1 = \epsilon[\Omega], R_2 = \eta[\Omega]$

Tenemos un circuito eléctrico formado únicamente por resistencias y fuentes independientes de tensión e intensidad, y solo tenemos acceso a los terminales A y B de la figura. Si corcocircuitamos dichos terminales, circula una intensidad de $10\cdot\alpha$ [A]. Si colocamos entre dichos terminales una resistencia de $\beta[\Omega]$, ésta consume una potencia de $10\cdot\gamma$ [W,con]. Calcular la potencia que consumiría una resistencia de $\delta[\Omega]$ entre los terminales A y B.

Máxima transferencia de potencia

¿Valor de $R \geqslant 0$ que consume la máxima potencia?

• Caso normal $(R_{th} \geqslant 0)$: Calculamos el máximo de P derivando con respecto a R e igualando a 0

$$\frac{\partial P}{\partial R} = \left(\frac{v_{th}}{R_{th} + R}\right)^2 + R \cdot 2\left(\frac{v_{th}}{R_{th} + R}\right) \frac{-v_{th}}{(R_{th} + R)^2} = \frac{(R_{th} - R)v_{th}^2}{(R_{th} + R)^3}$$

$$\frac{\partial P}{\partial R} = 0 \implies R = R_{th}$$

$$P^{\text{máx}} = R_{th} \left(\frac{v_g}{R_g + R_{th}}\right)^2 = \frac{v_{th}^2}{4R_{th}}$$

Máxima transferencia de potencia (cont)

¿Valor de $R \ge 0$ que consume la máxima potencia?

• Caso degenerado ($R_{th} < 0$): Este caso solo se da si hay fuentes dependientes en el circuito. La función P(R) tiene a infinito para $R = -R_{th}$. La resistencia que consume la máxima potencia será

$$R = -R_{th}$$

La fuente ideal estaría cortocircuitada, lo que daría lugar (en teoría) a una intensidad i y una potencia consumida por R igual a infinito

$$P^{\text{máx}} = \infty(999999,99)$$

Máxima transferencia de potencia (cont)

Calcula la resistencia a colocar entre A y B para que consuma la máxima potencia así como la potencia consumida por dicha resistencia

Datos:

$$v_g = 10 \cdot \alpha[V], i_g = \beta[A], R_1 = \delta[\Omega], R_2 = \epsilon[\Omega], R_3 = \eta[\Omega], R_4 = \gamma[\Omega]_{\frac{55}{63}}$$

Solución 5-21

Calculamos la tensión Thevenin

$$v_4 = -5 \cdot 8 = -40$$

 $v_{th} = -3v_4 + 1 \cdot 5 + 90 \implies v_{th} = 215 \text{ [V]}$

Solución 5-21 (cont)

Calculamos la resistencia Thevenin

$$\begin{split} i_0 &= \frac{v_0}{1} \implies R_{th} = \frac{v_0}{i_0} = 1\Omega \\ R^{\text{máx}} &= R_{th} = 1\Omega \\ P^{\text{máx}} &= \frac{v_{th}^2}{4R_{th}} = 11556,\!25 \text{ [W,con]} \end{split}$$

Calcula la resistencia a colocar entre A y B para que consuma la máxima potencia así como la potencia consumida por dicha resistencia

a)
$$R^{ ext{máx}}[\Omega]$$
 b) $P^{ ext{máx}}$ [W,con]

Datos:
$$v_{g1}=100\cdot\epsilon[V], v_{g2}=10\cdot\gamma[V], R_1=\theta[\Omega], R_2=\alpha[\Omega], R_3=\eta[\Omega], R_4=\beta[\Omega]$$

Ejercicio 5-23*

- a) Dado el circuito de la figura calcula la R_{th} entre A y B $[\Omega]$ Si entre A y B se coloca una bobina de 4H calcula
- b) w_L [J] c) $P_{i_{q1}}$ [W,con] d) $P_{v_{q2}}$ [W,con]
- Si sustituimos la bobina por una conductancia variable, calcula
- e) Potencia máxima que podrá consumir dicha conductancia [W,con]

Ejercicio 5-24*

Calcula el valor de la resistencia que colocada entre A y B consume la máxima potencia $[\Omega]$.

Datos: $v_g=\eta$ [V], $i_g=\alpha$ [A], $R_1=\beta$ [Ω], $R_2=\gamma$ [Ω], $R_3=\delta$ [Ω], $R_4=\epsilon$ [Ω], $R_5=\theta$ [Ω]

Ejercicio 5-25*

Calcula el valor de la resistencia que colocada entre A y B consume la máxima potencia $[\Omega]$.

Datos:
$$i_g = \alpha$$
 [A], $R_1 = \beta$ [Ω], $R_2 = \gamma$ [Ω], $R_3 = \delta$ [Ω]

Ejercicio 5-26*

Para el circuito de la figura, calcula de manera independiente la tensión Thevenin, la resistencia Thevenin, y la intensidad Norton entre los terminales A y B.

a) V_{th} [V]

b) R_{th} [Ω]

c) I_{nt} [A]

$$v_g = \alpha \text{ [V]}$$

$$R_1 = \beta \text{ [}\Omega\text{]}$$

$$R_2 = \gamma \text{ [}\Omega\text{]}$$

$$R_3 = \delta \text{ [}\Omega\text{]}$$

Ejercicio 5-27*

Resuelve el circuito usando el método de superposición y calcula i_3 [A]

Datos:
$$v_{g1}=\alpha$$
 [V], $v_{g2}=\theta$ [V], $i_g=\epsilon$ [A], $R_1=\beta$ [Ω], $R_2=\gamma$ [Ω], $R_3=\delta$ [Ω], $R_4=\eta$ [Ω]