机器人驱动与运动控制

第三章 机器人常用电机及驱动器

3.2 有刷直流永磁伺服电机及其驱动器

华东理工大学信息科学与工程学院

卿湘运

2024年1月

● 基本原理

● 电机结构

- ▶ 空心杯转子:转子惯量小、响应速度快、力矩-质量比大
- 原理:转子线圈通电,定子永磁励磁,电刷和换向器实现线圈电流换向

1. 换向器 2. 电刷 3. 空心杯电枢 4. 外定子 5. 内定子 6. 转轴 7. 轴承 8. 端盖 9. 接头

3

● 换向器和电刷

- ▶ 机械换向,控制电路简单
- ▶ 电刷易磨损,需保养

● 空心杯转子电机

▶ 优点

(a) 空心杯转子

(b)铁芯转子

- 极低的惯量
- 灵敏度高
- 力矩波动小,低速转动平稳,噪声很小
- 换向性能好,寿命长
- 损耗小,效率高

5

● 直流伺服电机模型

特征参数

*R*_a: 电枢电阻

Le: 电枢电感

*I*_r: 转子惯量

 B_r : 转子阻尼

 K_e : 感应电动势常数

Ka: 转矩常数

电学变量

ua: 电枢电压

*u*_e: 感应电动势

ia: 电枢电流

力学变量

 $\omega_{\rm m}$: 角速度

 $\varepsilon_{\rm m}$: 角加速度

τ_m: 电磁转矩

τ_{md}: 负载转矩

直流伺服电机的特性

- 静态特性——电机转子处于受力平衡状态时的运行特性
 - ▶ 静态模型

电学模型:
$$u_{\rm a} = R_{\rm a}i_{\rm a} + u_{\rm e}$$

力学模型:
$$\tau_{\rm m} = B_{\rm r}\omega_{\rm m} + \tau_{\rm md}$$

电磁转矩:
$$\tau_{\rm m} = K_{\rm a} i_{\rm a}$$

感应电动势: $u_e = K_e \omega_m$

$$\omega_{\rm m} = \frac{K_{\rm a}}{K_{\rm e}K_{\rm a} + R_{\rm a}B_{\rm r}} u_{\rm a} - \frac{R_{\rm a}}{K_{\rm e}K_{\rm a} + R_{\rm a}B_{\rm r}} \tau_{\rm md} \qquad \Longrightarrow \qquad \omega_{\rm m} = \omega_0 - k\tau_{\rm md}$$

空载转速

$$\omega_0 = \frac{K_{\rm a}}{K_{\rm e}K_{\rm a} + R_{\rm a}B_{\rm r}} u_{\rm a}$$

机械特性常数

$$k = \frac{R_{\rm a}}{K_{\rm e}K_{\rm a} + R_{\rm a}B_{\rm r}}$$

● 静态特性

——机械特性: 电枢电压恒定时, 电机转速与负载之间的关系

➤ 电枢电压ua恒定

● 机械特性

- > 不同电枢电压下的机械特性
 - 斜率不变
 - 电枢电压升高,空载转速和堵转力矩都变大
 - 为避免大的感应电动势,电机设计时要求 K_e 小、而 K_a 尽量大

- ▶ 电枢电压为额定值时的重要指标
 - 额定堵转转矩 $\tau_{\rm s} = u_{\rm ar} \cdot K_{\rm a}/R_{\rm a}$
 - 额定堵转电流 $i_{as}=u_{ar}/R_a$
 - 额定空载转速 $\omega_{\rm m}=u_{\rm ar}/K_{\rm e}$
 - <mark>额定转矩τ_r</mark> ——额定电压下能长时间输出的最 高转矩
 - <mark>额定转速ω_{mr}</mark> ——额定电压和额定转矩下的转速

- 调节特性
 - ——电机负载不变的情况下,电枢电压与转速的关系
 - > 不同负载时的调节特性

- 斜率: $\frac{K_a}{K_e K_a + R_a B_r}$
- 忽略阻尼时 B_r ,斜率为

$$\frac{1}{K_{\rm e}}$$

转速电压系数

● 动态特性

——电枢电压波动或负载变化时,电机的电流、转速和转矩的变 化过程

▶ 降压调速的机械特征曲线 (负载不变) ▶ 负载增大的调速过程 (电压不变)

● 动态特性

——直流伺服电机是自稳定系统,不会因电压和负载的波动而失稳

电学模型: $u_a = L_a \dot{i}_a + R_a i_a + u_e$

动力学模型: $\tau_{\rm m} = I_{\rm r}\dot{\omega}_{\rm m} + B_{\rm r}\omega_{\rm m} + \tau_{\rm md}$

电磁转矩: $\tau_{\rm m} = K_{\rm a} i_{\rm a}$

感应电动势: $u_{\rm e} = K_{\rm e} \omega_{\rm m}$

拉氏变换

$$I_{a}(s) = \frac{1}{R_{a} + L_{a}s} [U_{a}(s) - U_{e}(s)]$$
 $\tau_{m}(s) = K_{a}I_{a}(s)$

$$\Omega_{\rm m}(s) = \frac{1}{B_{\rm r} + I_{\rm r}s} [\tau_{\rm m}(s) - \tau_{\rm md}(s)] \qquad \qquad U_{\rm e}(s) = K_{\rm e} \Omega_{\rm m}(s)$$

12

● 动态特性——转速与电枢电压和负载力矩

$$I_{a}(s) = \frac{1}{R_{a} + L_{a}s} [U_{a}(s) - U_{e}(s)] \qquad \tau_{m}(s) = K_{a}I_{a}(s)$$

$$\Omega_{m}(s) = \frac{1}{B_{r} + I_{r}s} [\tau_{m}(s) - \tau_{md}(s)] \qquad U_{e}(s) = K_{e}\Omega_{m}(s)$$

$$\Omega_{\rm m}(s) = \frac{1}{(R_{\rm a} + L_{\rm a}s)(B_{\rm r} + I_{\rm r}s) + K_{\rm a}K_{\rm e}} [K_{\rm a}U_{\rm a}(s) - (R_{\rm a} + L_{\rm a}s)\tau_{\rm md}(s)]$$

● 动态特性

> 某真实电机性能参数

项目	符号	取值	单位
额定电压	u_{r}	24	V
额定转速	$\omega_{ m r}$	258	rad/s
额定转矩	$ au_{ m r}$	8.82×10^{-2}	N⋅m
额定电流	$\dot{l}_{ m r}$	1.09	A
电枢电阻	$R_{\rm a}$	2.49	Ω
电枢电感	$L_{\rm a}$	6.10×10^{-4}	Н
转矩常数	K_{a}	8.22×10^{-2}	$(N \cdot m)/A$
感应电动势常数	$K_{ m e}$	8.24×10^{-2}	V/(rad/s)
转子惯量	$I_{ m r}$	1.19×10^{-5}	$Kg \cdot m^2$
转子阻尼	$B_{ m r}$	4.10×10^{-4}	$(N \cdot m)/(rad/s)$

- 伺服电机电感很小,可忽略
- 拖动负载时,转子阻尼影响很小,可忽略

● 动态特性——转速与电枢电压和负载力矩

$$\Omega_{\rm m}(s) = \frac{1}{(R_{\rm a} + L_{\rm a}s)(B_{\rm r} + I_{\rm r}s) + K_{\rm a}K_{\rm e}} [K_{\rm a}U_{\rm a}(s) - (R_{\rm a} + L_{\rm a}s)\tau_{\rm md}(s)]$$

$$\Leftrightarrow L_{\rm a} = 0, \ B_{\rm r} = 0 \quad \downarrow$$

$$\Omega_{\rm m}(s) = \frac{1}{R_{\rm a}I_{\rm r}s + K_{\rm a}K_{\rm e}} [K_{\rm a}U_{\rm a}(s) - R_{\rm a}\tau_{\rm md}(s)]$$

$$\downarrow$$

$$\Omega_{\rm m}(s) = \frac{1/K_{\rm e}}{T_{\rm m}s + 1} [U_{\rm a}(s) - \frac{R_{\rm a}}{K_{\rm a}}\tau_{\rm md}(s)]$$

 $T_{\rm m} = \frac{R_{\rm a} I_{\rm r}}{K_{\rm a} K_{\rm e}}$ 电机的机电时间常数

直流伺服电机的特性

- 动态特性
 - ▶ 时域表达式——电枢电压阶跃变化

拉氏反变换

$$\omega_{\rm m}(t) = \frac{1}{K_{\rm e}} (u_{\rm a1} - \frac{R_{\rm a}}{K_{\rm a}} \tau_{\rm md} - \Delta u_{\rm a} {\rm e}^{-\frac{t}{T_{\rm m}}})$$

$$T_{\rm m}$$
 ——上升时间

$$T_{\rm m}$$
 ——上升时间 $\Delta u_{\rm a} = u_{\rm a1} - u_{\rm a0}$ ——电压阶跃值

● 动态特性

> 空载零速启动模型

$$\omega_{\rm m}(t) = \frac{u_{\rm a}}{K_{\rm e}} (1 - \mathrm{e}^{-\frac{t}{T_{\rm m}}})$$

$$T_{\rm m} = \frac{R_{\rm a}I_{\rm r}}{K_{\rm a}K_{\rm e}}$$

- $t = \infty$ 时: $\omega_{max} = \frac{u_a}{K_e}$ ——空载稳定转速
- t=T_m时: ω_m = 63%ω_{max}
 ——上升时间
- $t = 3T_{\rm m}$ 时: $\omega_{\rm m} = 95\% \omega_{\rm max}$ ——空载稳定时间
- 电枢电压*u*_a=12V或*u*_a=24V

项目	符号	取值	单位
额定电压	$u_{\rm r}$	24	V
额定转速	$\omega_{ m r}$	258	rad/s
额定转矩	$ au_{ m r}$	8.82×10^{-2}	N⋅m
额定电流	$i_{ m r}$	1.09	A
电枢电阻	$R_{\rm a}$	2.49	Ω
电枢电感	L_{a}	6.10×10^{-4}	Н
转矩常数	$K_{\rm a}$	8.22×10^{-2}	$(N \cdot m)/A$
感应电动势常数	K_{e}	8.24×10^{-2}	V/(rad/s)
转子惯量	$I_{ m r}$	1.19×10^{-5}	$Kg \cdot m^2$
转子阻尼	$B_{ m r}$	3.10×10^{-4}	$(N \cdot m)/(rad/s)$

● 主要性能参数

项目	名	称	常用单位	定义和说明	
1	额	i定电压	V	电机最佳工作状态下的电枢电压	
2	额	定转矩	$mN \cdot m$	额定电压下,电机能够持续运转,并连续输出的最高转矩	
3	额	定转速	rpm	额定电压和额定转矩下的电机转速	
4		定电流	mA	额定电压和额定转矩下的电枢电流	
5	额 定 <mark>堵</mark> 值	转转矩	mN∙m	额定电压下, 电机堵转时的转矩, 也是电机的最大转矩, 电机不能长时间工作在此状态。	
6	堵	转电流	mA	额定电压下, 电机堵转时的电枢电流	
7	空	载转速	rpm	负载为零时,额定电压下的电机最高转速,越大越好	
8	空	载电流	mA	负载为零时,额定电压下的电枢电流,越小越好	
9	最	大效率	W	额定电压下的最大效率	
10	电枢	电阻	Ω	伺服电机的电枢电阻通常小于5Ω	
11	电枢	☑电感	mH	伺服电机的电枢电感通常小于0.1mH	
12	转矩	常数	$mN \cdot m/A$	重要参数,可据此计算电机在任意电压下的堵转力矩	
13	转速	慰常数	rpm/V	重要参数,是感应电动势常数的倒数,可以据此计算任意转速下的电机感应电动势	
14	转速/车	 矩斜率	rpm/mN⋅m	电压不变时,转速随负载力矩变化的程度	
15	机电时	才间常数	ms	反应了电机的动态特性,越小越好, <mark>伺服电机的机电时间常数</mark> 通常不大于10ms	
16	转子	一惯量	g∙cm²	越小越好	

● 驱动器类型

PWM放大器

● 电压型放大器——PWM放大器

➤ PWM——Pulse Width Modulation脉冲宽度调制,简称脉宽调制

- ho 根据输入PWM信号的<mark>占空比(T_H/T)</mark>(和方向信号)改变 电机线圈两端电压大小和方向
 - > 电枢电压与控制电压成正比

● 电压型放大器——PWM放大器

- 电流型放大器——线性放大器
 - > 采用晶体管作为功率放大器件
 - 晶体管始终工作在线性放大区
 - ▶ 把基极控制电压u_c等比例地变换为集电极输出的电枢电流i_a

● 线性放大器与PWM放大器的对比

项目		线性放大器	PWM放大器
功率器件工作状态		线性放大状态	导通-截止状态
优点		线路简单,电磁干扰小,电流波动小,调速范围宽	调速范围宽,效率高
缺点		发热严重、效率低、体积大	电磁干扰大,输出电流波动大
适用场合		适用于小功率电机,力矩控制精度要求高,或对电磁干扰敏感的场合	适用功率范围大,对电磁干扰不敏感,可以采用速度控制的场合
实例	照片		
	最大连续输出功率(W)	200	250
	最大连续输出电流(A)	5	5
	尺寸 (mm³)	$203 \times 190 \times 37$	$43 \times 28 \times 13$
	质量(g)	900	9

- 电流型放大器——PWM电流闭环放大器
 - ▶ PWM放大器+电流PI控制器
 - ➤ 把控制电压u_c等比例地变换为电枢电流i_a
 - ▶ 体积小、功耗低
 - 有电磁噪声、电流波动比线性放大器大
 - ▶ 商用伺服驱动器中常用

2024/2/23

25

● 成套的直流电机系统

- 延伸——舵机(Servo Motor)
 - ▶ 内部封装了电机、减速器、旋转电阻、控制电路
 - ➤ 可由PWM信号直接控制输出轴转角或速度
 - ▶ 可用于小型机器人, 航模

课后作业

作业

- 1、有刷直流伺服电机的机械特性和调节特性分别是什么?
- 2、有刷直流伺服电机负载不变,且在某电枢电压作用下稳定运行,此时,如果升高电枢电压,试绘制升压调速机械特性曲线,结合曲线图简述电机输出力矩、转速的变化过程。