

MA2201/TMA4150

Vår 2015

Norges teknisk—naturvitenskapelige universitet

Institutt for matematiske fag

Løsningsforslag — Øving 12

Seksjon 27

 $\boxed{\mathbf{6}}$ $\mathbb{Z}_3[x]/\langle x^3+x^2+c\rangle$ er en kropp hvis og bare hvis $\langle x^3+x^2+c\rangle$ er et maksimalt ideal (Teorem 27.9). $\langle x^3+x^2+c\rangle$ er et maksimalt ideal hvis og bare hvis x^3+x^2+c er et irredusibelt polynom (Teorem 27.25). x^3+x^2+c er et irredusibelt polynom hvis og bare hvis det ikke har noen røtter i \mathbb{Z}_3 (Teorem 23.10). Vi må altså finne ut hvilke elementer $c\in\mathbb{Z}_3$ som gjør at polynomet ikke har noen røtter i \mathbb{Z}_3 .

La $p(x) = x^3 + x^2 + c$. Da har vi at p(0) = c, p(1) = 2 + c og p(2) = c. Altså er polynomet irredusibelt (og $\mathbb{Z}_3[x]/\langle x^3 + x^2 + c \rangle$ er en kropp) for c = 2.

31 f(x)|g(x) hvis og bare hvis det finnes et polynom $p(x) \in F[x]$ slik at g(x) = f(x)p(x). Men dette holder hvis og bare hvis $g(x) \in \langle f(x) \rangle$.

a) Vi trenger å vise at A + B er en additiv undergruppe, og at A + B er lukket under multiplikasjon med elementer fra R:

Lukket under addisjon: La $a, a' \in A$, $b, b' \in B$. Da er $(a + b) + (a' + b') = (a + a') + (b + b') \in A + B$, for A og B er lukket under addisjon

Inneholder nullelement: $0 \in A, B$, dermed er $0 + 0 \in A + B$

Inneholder additive inverser: For $a+b \in A+B$, er $-(a+b)=(-a)+(-b) \in A+B$.

Lukket under multiplikasjon med elementer fra R: Følger av at A og B er lukket under multiplikasjon med elementer fra R.

b) For alle $a \in A$ er $a+0 \in A+B$; dermed er $A \subseteq A+B$. Tilsvarende er $B \subseteq A+B$.

Andre oppgaver

 $|1| I = \{0\}$ er ok, for da er $I = \langle 0 \rangle$.

Anta nå at $I \neq \{0\}$; da eksisterer det et ikke-null element $a \in I$. Da er også $-a \in I$, så vi kan uten tap av generalitet anta at a er positivt. La nå $n \in I$ være det minste strengt positive elementet i I. Siden I er et ideal, vet vi at $n\mathbb{Z} \subseteq I$ Vi vil nå vise at $I = n\mathbb{Z}$.

Anta at $m \in I$ er slik at $m \notin n\mathbb{Z}$. Da har vi fra divisjonsalgoritmen at m = nq + r, der $q \in \mathbb{Z}$ og 0 < r < n. Dermed er også $r \in I$, men n skal være det minste positive elementet i I. Det følger at $m \in n\mathbb{Z}$ og dermed at $I = n\mathbb{Z}$.

- 2 \Rightarrow Anta at $n\mathbb{Z}$ er et maksimalt ideal, og anta at $p \in \mathbb{Z}^+$ deler n. Da er $n \in p\mathbb{Z}$, så $n\mathbb{Z} \subseteq p\mathbb{Z}$, som impliserer at $p\mathbb{Z} = \mathbb{Z}$ eller $p\mathbb{Z} = n\mathbb{Z}$, siden $n\mathbb{Z}$ er et maksimalt ideal. Dermed må p = n eller p = 1, så n er et primtall.
 - \Leftarrow Anta at n er et primtall, og la $n\mathbb{Z} \subseteq I \subseteq \mathbb{Z}$. Siden I er et ideal, vet vi fra forrige oppgave at det kan skrives som $I = m\mathbb{Z}$. Siden $n \in m\mathbb{Z}$ må n = mx for en $x \in \mathbb{Z}$. Siden n er et primtall, må vi ha m = 1 eller m = n, så dermed er $I = \mathbb{Z}$ eller $I = n\mathbb{Z}$. Dermed er $n\mathbb{Z}$ et maksimalt ideal.
- [3] $I = \{0\}$ er ok, for da er $I = \langle 0 \rangle$. Anta nå at $I \neq \{0\}$; la $f(x) \in I$ være et ikke-null polynom av lavest mulig grad i I. Vi vet da at $\langle f(x) \rangle \subseteq I$; vi vil nå vise at denne inklusjonen i virkeligheten er en likhet.

La $g(x) \in I$; $\deg g(x) \ge \deg f(x)$, så vi kan bruke divisjonsalgoritmen for polynomer til å få g(x) = f(x)p(x) + r(x), der $\deg r(x) < \deg f(x)$. Siden f(x) ble valgt til å være et ikke-null polynom av lavest mulig grad i I, og $r(x) \in I$, må vi ha at r(x) = 0. Følgelig er $g(x) \in \langle f(x) \rangle$, og $I = \langle f(x) \rangle$.

- Anta at $\langle f(x) \rangle$ er et maksimalt ideal, og anta at g(x) deler f(x), med deg $g(x) < \deg f(x)$. Da er $f(x) \in \langle g(x) \rangle$, så $\langle f(x) \rangle \subseteq \langle g(x) \rangle$, som impliserer at $\langle g(x) \rangle = F[X]$ eller $\langle g(x) \rangle = \langle f(x) \rangle$, siden $\langle f(x) \rangle$ er et maksimalt ideal. $\langle g(x) \rangle = F[x]$ impliserer at g er et konstant polynom. $\langle g(x) \rangle = \langle f(x) \rangle$ gir at deg $g(x) = \deg f(x)$, som går imot antagelsene over. Følgelig er f irredusibelt.
 - \Leftarrow Anta at f(x) er et irredusibelt polynom, og la $\langle f(x) \rangle \subseteq I \subseteq F[x]$. Siden I er et ideal, vet vi fra forrige oppgave at det kan skrives som $I = \langle g(x) \rangle$. Siden $f(x) \in \langle g(x) \rangle$ må f(x) = g(x)p(x) for en $p(x) \in F[x]$. Siden f(x) er irredusibelt, må vi ha at deg g(x) = 1, som gir $\langle g(x) \rangle = F[x]$, eller deg $g(x) = \deg f(x)$, som gir $\langle g(x) \rangle = \langle f(x) \rangle$. Dermed er $\langle f(x) \rangle$ et maksimalt ideal.

Eksamensoppgaver

V2011 - 3 Vi vet (via argumentet fra oppgave 27.6.) at $\mathbb{Z}_5/\langle f(x)\rangle$ er en kropp. Videre vet vi¹ at $|\mathbb{Z}_5/\langle f(x)\rangle| = 5^{\deg f(x)}$; dermed leter vi etter et polynom av grad 2. Ved å prøve oss frem (med kvalifiserte gjetninger) finner vi at $f(x) = x^2 + 2$ er irredusibelt. Altså er $\mathbb{Z}_5/\langle x^2 + 2 \rangle$ en kropp med 25 elementer.

H2010 - 3 a) De irredusible polynomene av grad 3 i $\mathbb{Z}_2[x]$ er alle på formen $p(x) = x^3 + ax^2 + bx + c$. Vi kan igjen bruke teorem 23.10 for å se at p(x) er irredusibelt hvis og bare hvis det ikke har noen røtter. Vi regner ut at p(0) = c og p(1) = 1 + a + b + c. For at 0 ikke skal være en rot må vi altså ha c = 1. For at 1 ikke skal være en rot må vi ha 1 + a + b + c = a + b = 1. Dermed ser vi at de irredusible polynomene av grad 3 i $\mathbb{Z}_2[x]$ er $x^3 + x^2 + 1$ og $x^3 + x + 1$.

 $^{^{1}{\}rm se}$ notat om konstruksjon av endelige kropper

- b) Vi kan finne at $c_A = \det(A xI_3) = x^3 + x + 1$ (på eksamen bør du ha med mellomregningen...). Siden $c_A(A) = 0$, har vi at $c_a(x) \in \ker \psi$, så $\langle c_a(x) \rangle \subseteq \ker \psi \subseteq \mathbb{Z}_2[x]$. Siden $c_A(x)$ er irredusibelt, er $\langle c_A(x) \rangle$ et maksimalt ideal. Dermed har vi at $\ker \psi = \langle c_A(x) \rangle$ eller $\ker \psi = \mathbb{Z}_2[x]$. Det siste stemmer ikke, for $x \notin \ker \psi$. Dermed er $\ker \psi = \langle c_A \rangle$.
- c) im $\psi = \mathbb{Z}_2[x]/\ker \psi = \mathbb{Z}_2[x]/\langle x^3 + x + 1 \rangle$ er en kropp med åtte elementer.
- d) $A = \psi(x) \in \operatorname{im} \psi$. Vi vet at $\operatorname{im} \psi$ er en kropp med åtte elementer; da er $\operatorname{im} \psi \setminus \{0\}$ en gruppe under multiplikasjon, som inneholder sju elementer. Dermed har vi at $A^7 = 1$, identitetselementet under multiplikasjon.

V2009 - 4 a) Om vi går systematisk frem ser vi at de irredusible, moniske andregradspolynomene i $\mathbb{Z}_3[x]$ er:

$$x^2 + 1$$
 $x^2 + x + 2$ $x^2 + 2x + 2$

De moniske irredusible andregradspolynomene i $\mathbb{Z}_5[x]$ er:

$$x^{2} + 2$$
 $x^{2} + 3$ $x^{2} + x + 1$ $x^{2} + x + 2$ $x^{2} + 2x + 3$ $x^{2} + 2x + 4$ $x^{2} + 3x + 3$ $x^{2} + 3x + 4$ $x^{2} + 4x + 1$ $x^{2} + 4x + 2$

- b) Vi finner (for eksempel via bruk av karakteristisk polynom) at $x^2 + 1 \in \ker \phi$, så $\langle x^2 + 1 \rangle \subseteq \ker \phi$. Etter et tilsvarende argument som i H2010-3 b, ser vi at $\ker \phi = \langle x^2 + 1 \rangle$.
- c) Her kan vi ikke bruke samme argument som over, for x^2+1 er ikke irredusibelt i $\mathbb{Z}_5[x]$. Tvert imot finner vi at $x^2+1=(x-2)(x-3)$. Siden $\phi(x^2+1)=0$ fortsatt, vet vi at $x^2+1\in\ker\phi$, så da må enten $\ker\phi=\langle x^2+1\rangle$, $\ker\phi=\langle (x-3)\rangle$, $\ker\phi=\langle x-2\rangle$ eller $\ker\phi=\mathbb{Z}_5[x]$. De tre siste mulighetene kan det ikke være, for x-3 og x-2 blir ikke sendt på null av ϕ . Dermed har vi at $\ker\phi=\langle x^2+1\rangle$.
- V2008 5 a) Polynomet er ikke irredusibelt for a = 0, 3, 4. Polynomet er irredusibelt for a = 1, 2, 5, 6.
 - **b)** Merk at

$$\begin{pmatrix} 0 & 2 \\ 2 & 2 \end{pmatrix}^2 = \begin{pmatrix} 4 & 4 \\ 4 & 1 \end{pmatrix} = 4 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + 2 \begin{pmatrix} 0 & 2 \\ 2 & 2 \end{pmatrix}$$

Dermed er $p(x) = x^2 + 5x + 3 \in \ker \phi$.

Siden dette polynomet er irredusibelt, og ϕ ikke er en nullhomomorfi, har vi at ker $\phi = \langle x^2 + 5x + 3 \rangle$.

im
$$\phi \cong \mathbb{Z}_7[x]/\ker \phi \cong \mathbb{Z}_7[x]/\langle x^2 + 5x + 3 \rangle$$

Dette er en kropp med 49 elementer.