Etec de São Paulo

Aluno:	Nº 2º
Curso: ETIM – Administração	Data: / / 2022
Componente Curricular: Matemática	Manaão
Professor(a): Marcia Xavier Cury	Menção:

Competências/Habilidades	Critérios de Avaliação
Identificar problemas e planejar estratégias apropriadas para sua resolução. Analisar	Não basta a resposta correta, é necessário apresentar argumentação
e avaliar argumentos e resultados. Aplicar os conceitos da matemática na resolução	válida que acarreta a resposta correta. Raciocínio lógico; Comparações;
de problemas. Ler e interpretar informações relativas ao problema. Ler e interpretar	Analogias; Organização; Clareza; Criticidade; Objetividade; Uso correto de
textos e representações matemáticas. Distinguir e utilizar raciocínios dedutivos.	termos técnicos; Linguagem adequada; Coerência; Embasamento
	conceitual.

- **1.** Calcule o valor da expressão $(0,027)^{-\frac{1}{3}} + 256^{0,75} 3^{-1} + (4,5)^{0}$.
- **2.** Calcular o valor numérico da expressão $\left(27^{\frac{1}{3}} \cdot 8^{\frac{2}{3}} \cdot 32^{0,4} \cdot 81^{0,75}\right)^{0,25}$.
- 3. Reduza a expressão $\sqrt[3]{\frac{0,0001\cdot1000^4}{10^5\cdot10^{-7}}}$ a uma única potência de 10.
- **4.** Reduza a expressão $\sqrt{\frac{x}{\sqrt[5]{x^4}}}$ a uma única potência de x.
- **5.** Simplificar $6\sqrt{3} \frac{1}{5}\sqrt{75} + \frac{1}{2}\sqrt{48} 4\sqrt{12} + \frac{1}{3}\sqrt{27}$.
- 6. Racionalizar os denominadores

a)
$$\frac{10}{\sqrt[4]{5}}$$

b)
$$\frac{6}{\sqrt{5}-\sqrt{2}}$$

7. Efetue e dê a resposta em notação científica

a)
$$1.5 \times 10^{10} - 2.36 \times 10^6 + 0.34 \times 10^7$$

b)
$$15 \times 10^{-9} \times 2 \times 10^{-9} \times 12 \times 10^{4}$$

- 8. Efetue $9.0 \cdot 10^9 \cdot \frac{0.23 \cdot 10^{-6} \cdot 0.60 \cdot 10^{-6}}{(3.0 \cdot 10^{-2})^2}$, dê a resposta em notação científica.
- **9.** Sabendo que $2^{25} = 33\,554\,432$, calcule o valor de $\left(\sqrt{2}\,\right)^{46}$.
- **10.** Racionalize e simplifique a expressão $\frac{9\sqrt{2}}{2\sqrt{2}+\sqrt{5}}$
- **11.** Encontre o valor da expressão $\frac{3^{12} 3^{11} 3^{10}}{3^{11} + 2 \cdot 3^{10}}$.
- **12.** Calcule o valor de $\frac{\left(3\cdot2^{20}+7\cdot2^{19}\right)\cdot52}{\left(13\cdot8^4\right)^2} \ .$
- **13.** Sabendo que $2 = 10^{0,301}$ e $3 = 10^{0,477}$, represente o número 72 na forma de uma potência de base 10.
- **14.** Sabendo que 197 gramas de ouro contêm $6 \cdot 10^{23}$ átomos, qual a massa de uma barra de ouro contendo $2,4 \cdot 10^{24}$ átomos de ouro?
- **15.** Simplifique a expressão $(2^n + 2^{n+1}) \cdot (3^n + 3^{n+1}) \div 6^{n+1}$