NAME: HRISHIKESH SHIVPUTRA KAMBLE

PROJECT:-

SOLVING CLASSIFICATION PREDICTION FOR "SMART HOME DEVICE USAGE" DATASET USING "LOGISTIC REGRESSION", "SVC", "GAUSSIAN NB", "BERNOULLI NB", "COMPLEMENT NB", "MULTINOMIAL NB", "K NEAREST NEIGHBOUR", "DECISION TREE CLASSIFIER", "ADABOOST", "BAGGING", "ANN".

APPROACH:

- 1.LOAD THE REQUIRED LIBRARIES SUCH AS PANDAS, MATPLOTLIB, SEABORN ALONG WITH GIVEN DATASET.
- 2.PERFORM EDA ON THE GIVEN DATASET.
- 3.CONVERT ALL THE REQUIRED COLUMNS INTO NUMERIAL COLUMNS USING GET DUMMIES FUNCTION FROM PANDAS LIBRARY.
- 4.CONVERTING ALL REQUIRED FEATURES IN NUMERIAL, CHECK FOR CORRELATION BETWEEN FEATURES AND TARGET AND CONSIDER THE ONLY FEATURES WITH HIGHER CORRELATION.
- 5.IMPORT "LOGISTIC REGRESSION", "SVC", "GAUSSIAN NB", "BERNOULLI NB", "COMPLEMENT NB", "MULTINOMIAL NB", "K NEAREST NEIGHBOUR", "DECISION TREE CLASSIFIER", "ADABOOST", "BAGGING", "ANN", AND SPLIT THE GIVEN DATASET INTO TRAINING AND TESTING DATA USING TRAIN_TEST_SPLIT FUNCTION. THEN CALCULATE ACCURACY SCORE USING SKLEARN LIBRARY BY IMPORTING METRICS.
- 6.ONCE WE GET ACCURACY SCORE OF ALL MODELS FOR BOTH TRAING AND TESTING DATA, CREATE A DATAFRAME AND LOAD ALL THE ACCURACY OF ALL MODEL.
- 7.VISUALIZATION: ONCE THE DATASET IS CREATED PLOT THE ACCURACIES OF ALL THE MODELS USING BARPLOT USING MATPLOTLIB.

```
In [1]: import pandas as pd
    import matplotlib.pyplot as plt
    import numpy as np
    import seaborn as sns
    import warnings
    warnings.filterwarnings("ignore")
    pd.set_option("display.Max_columns",100)
```

C:\Users\Hrishikesh\anaconda3\Lib\site-packages\pandas\core\arrays\masked.py:60: UserWarning: Pandas requires version
'1.3.6' or newer of 'bottleneck' (version '1.3.5' currently installed).
from pandas.core import (

Out[2]:

	UserID	DeviceType	UsageHoursPerDay	EnergyConsumption	UserPreferences	MalfunctionIncidents	DeviceAgeMonths	SmartHomeEfficiency
0	1	Smart Speaker	15.307188	1.961607	1	4	36	1
1	2	Camera	19.973343	8.610689	1	0	29	1
2	3	Security System	18.911535	2.651777	1	0	20	1
3	4	Camera	7.011127	2.341653	0	3	15	0
4	5	Camera	22.610684	4.859069	1	3	36	1
5398	5399	Thermostat	4.556314	5.871764	1	0	28	0
5399	5400	Lights	0.561856	1.555992	1	4	24	0
5400	5401	Smart Speaker	11.096236	7.677779	0	0	42	0
5401	5402	Security System	8.782169	7.467929	0	2	28	1
5402	5403	Thermostat	13.540381	9.043076	0	0	30	0

5403 rows × 8 columns

localhost:8888/notebooks/SMART HOME DEVICE USAGE.ipynb

```
In [3]: data.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5403 entries, 0 to 5402
Data columns (total 8 columns):

#	Column	Non-Null Count	Dtype
0	UserID	5403 non-null	int64
1	DeviceType	5403 non-null	object
2	UsageHoursPerDay	5403 non-null	float64
3	EnergyConsumption	5403 non-null	float64
4	UserPreferences	5403 non-null	int64
5	MalfunctionIncidents	5403 non-null	int64
6	DeviceAgeMonths	5403 non-null	int64
7	SmartHomeEfficiency	5403 non-null	int64
d+vn	as: float64(2) int64(5) object(1)	

dtypes: float64(2), int64(5), object(1)

memory usage: 337.8+ KB

In [4]: data.shape

Out[4]: (5403, 8)

In [5]: data.head()

Out[5]:

	UserID	DeviceType	UsageHoursPerDay	EnergyConsumption	UserPreferences	MalfunctionIncidents	DeviceAgeMonths	SmartHomeEfficiency
0	1	Smart Speaker	15.307188	1.961607	1	4	36	1
1	2	Camera	19.973343	8.610689	1	0	29	1
2	3	Security System	18.911535	2.651777	1	0	20	1
3	4	Camera	7.011127	2.341653	0	3	15	0
4	5	Camera	22.610684	4.859069	1	3	36	1

```
data.isna().sum()
In [6]:
Out[6]: UserID
                                  0
        DeviceType
                                  0
        UsageHoursPerDay
                                  0
        EnergyConsumption
                                  0
        UserPreferences
                                  0
        MalfunctionIncidents
                                  0
        DeviceAgeMonths
                                  0
        SmartHomeEfficiency
                                  0
        dtype: int64
        data["DeviceType"].unique()
In [7]:
Out[7]: array(['Smart Speaker', 'Camera', 'Security System', 'Thermostat',
                'Lights'], dtype=object)
        b=data["DeviceType"].value counts().reset index()
        b
Out[8]:
               DeviceType count
             Smart Speaker
                          1108
                  Camera
                          1101
         2
                   Lights
                          1087
         3 Security System
                          1068
               Thermostat
                          1039
        data.columns
In [9]:
Out[9]: Index(['UserID', 'DeviceType', 'UsageHoursPerDay', 'EnergyConsumption',
                'UserPreferences', 'MalfunctionIncidents', 'DeviceAgeMonths',
                'SmartHomeEfficiency'],
               dtype='object')
```

```
In [10]: plt.pie(b["count"],labels=b["DeviceType"],autopct="%1.1f%%")
    plt.show()
```


THE ABOVE PIECHART SHOWS THE DISTRIBUTION OF DEVICE TYPES.

Out[11]:

	DeviceType	UsageHoursPerDay	EnergyConsumption	UserPreferences	MalfunctionIncidents	DeviceAgeMonths	SmartHomeEfficiency
0	Smart Speaker	15.307188	1.961607	1	4	36	1
1	Camera	19.973343	8.610689	1	0	29	1
2	Security System	18.911535	2.651777	1	0	20	1
3	Camera	7.011127	2.341653	0	3	15	0
4	Camera	22.610684	4.859069	1	3	36	1
5398	Thermostat	4.556314	5.871764	1	0	28	0
5399	Lights	0.561856	1.555992	1	4	24	0
5400	Smart Speaker	11.096236	7.677779	0	0	42	0
5401	Security System	8.782169	7.467929	0	2	28	1
5402	Thermostat	13.540381	9.043076	0	0	30	0

5403 rows × 7 columns

```
In [12]: n=pd.get_dummies(data["DeviceType"],drop_first=True).replace({True:1,False:0})
n
```

Out[12]:

	Lights	Security System	Smart Speaker	Thermostat
0	0	0	1	0
1	0	0	0	0
2	0	1	0	0
3	0	0	0	0
4	0	0	0	0
5398	0	0	0	1
5399	1	0	0	0
5400	0	0	1	0
5401	0	1	0	0
5402	0	0	0	1

5403 rows × 4 columns

```
In [13]: data=pd.concat([data,n],axis=1).drop(columns="DeviceType")
```

In [15]: data

Out[15]:

	UsageHoursPerDay	EnergyConsumption	UserPreferences	MalfunctionIncidents	DeviceAgeMonths	Lights	Security System	Smart Speaker	Thermostat	S
0	15.307188	1.961607	1	4	36	0	0	1	0	
1	19.973343	8.610689	1	0	29	0	0	0	0	
2	18.911535	2.651777	1	0	20	0	1	0	0	
3	7.011127	2.341653	0	3	15	0	0	0	0	
4	22.610684	4.859069	1	3	36	0	0	0	0	
5398	4.556314	5.871764	1	0	28	0	0	0	1	
5399	0.561856	1.555992	1	4	24	1	0	0	0	
5400	11.096236	7.677779	0	0	42	0	0	1	0	
5401	8.782169	7.467929	0	2	28	0	1	0	0	
5402	13.540381	9.043076	0	0	30	0	0	0	1	

5403 rows × 10 columns

4

In [16]: data.corr()

Out[16]:

	UsageHoursPerDay	EnergyConsumption	UserPreferences	MalfunctionIncidents	DeviceAgeMonths	Lights	Security System	Sp
UsageHoursPerDay	1.000000	0.026253	0.002161	0.015126	0.025132	-0.000026	-0.002724	-0.00
EnergyConsumption	0.026253	1.000000	0.016709	-0.000894	-0.016691	-0.001642	0.014465	-0.00
UserPreferences	0.002161	0.016709	1.000000	0.002154	-0.013781	0.002517	-0.007951	0.00
MalfunctionIncidents	0.015126	-0.000894	0.002154	1.000000	-0.027023	-0.015969	-0.006193	-0.0
DeviceAgeMonths	0.025132	-0.016691	-0.013781	-0.027023	1.000000	-0.011805	0.005075	0.00
Lights	-0.000026	-0.001642	0.002517	-0.015969	-0.011805	1.000000	-0.249095	-0.2
Security System	-0.002724	0.014465	-0.007951	-0.006193	0.005075	-0.249095	1.000000	-0.2
Smart Speaker	-0.005574	-0.032159	0.007316	-0.010185	0.008420	-0.254896	-0.252104	1.00
Thermostat	0.003834	0.015264	-0.009124	0.025397	0.006678	-0.244872	-0.242190	-0.24
SmartHomeEfficiency	0.183065	-0.178467	0.608713	-0.120836	-0.197077	0.003420	-0.001203	0.0
4								•

In [17]: plt.figure(figsize=(18,9))
sns.heatmap(data.corr(),annot=True)

Out[17]: <Axes: >

MACHINE LEARNING:-

```
In [18]: features=data[['UsageHoursPerDay', 'EnergyConsumption', 'UserPreferences',
                'MalfunctionIncidents', 'DeviceAgeMonths',
                'Lights', 'Security System', 'Smart Speaker', 'Thermostat']]
         target=data['SmartHomeEfficiency']
In [19]: from sklearn.model selection import train test split
         x train,x test,y train,y test=train test split(features, target)
         LOGISTIC REGRESSION:-
In [20]: from sklearn.linear model import LogisticRegression
         L=LogisticRegression()
         L.fit(x train,y train)
Out[20]:
          ▼ LogisticRegression
         LogisticRegression()
In [21]: L1=L.score(x train,y train)*100
         L1
Out[21]: 87.24086870681145
In [22]: L2=L.score(x_test,y_test)*100
         L2
Out[22]: 87.71280532938565
 In [ ]:
```

SUPPORT VECTOR CLASSIFIER:-

```
In [23]: from sklearn.svm import SVC
         S=SVC()
         S.fit(x train,y train)
Out[23]:
          ▼ SVC
         sv¢()
In [24]: S1=S.score(x_train,y_train)*100
         S1
Out[24]: 83.21816386969397
In [25]: S2=S.score(x_test,y_test)*100
         S2
Out[25]: 82.08734270910438
In [ ]:
         KNN:-
In [26]: from sklearn.neighbors import KNeighborsClassifier
         K=KNeighborsClassifier()
         K.fit(x train,y train)
Out[26]:
          ▼ KNeighborsClassifier
          KNeighborsClassifier()
```

```
In [27]: K1=K.score(x_train,y_train)*100
         Κ1
Out[27]: 83.24284304047383
In [28]: K2=K.score(x_test,y_test)*100
         Κ2
Out[28]: 71.50259067357513
In [ ]:
         NAVIES BAYES:-
In [29]: from sklearn.naive bayes import ComplementNB, BernoulliNB, MultinomialNB, GaussianNB
In [30]: C=ComplementNB()
         B=BernoulliNB()
         G=GaussianNB()
         M=MultinomialNB()
         ComplementNB:-
In [31]: C.fit(x_train,y_train)
Out[31]:
          ▼ ComplementNB
          ComplementNB()
In [32]: C1=C.score(x_train,y_train)*100
         C1
Out[32]: 68.06515301085884
```

```
In [33]: C2=C.score(x_test,y_test)*100
         C2
Out[33]: 67.9496669133975
         BernoulliNB:-
In [34]: B.fit(x_train,y_train)
Out[34]:
          ▼ BernoulliNB
         BernoulliNB()
In [35]:
         B1=B.score(x_train,y_train)*100
         В1
Out[35]: 79.14610069101678
In [36]:
         B2=B.score(x_test,y_test)*100
         B2
Out[36]: 79.34863064396744
 In [ ]:
         GaussianNB:-
In [37]: G.fit(x_train,y_train)
Out[37]:
          ▼ GaussianNB
          GaussianNB()
```

```
In [38]: G1=G.score(x_train,y_train)*100
         G1
Out[38]: 83.21816386969397
In [39]: G2=G.score(x_test,y_test)*100
Out[39]: 83.4937083641747
In [ ]:
         MultinomialNB:-
In [40]: M.fit(x_train,y_train)
Out[40]:
          ▼ MultinomialNB
         MultinomialNB()
In [41]: M1=M.score(x_train,y_train)*100
         M1
Out[41]: 69.69397828232971
In [42]: M2=M.score(x_test,y_test)*100
         M2
Out[42]: 69.94818652849742
 In [ ]:
```

DECISION TREE:-

ENSEMBLE:-

ADABOAST:-

```
In [47]: A1=A.score(x_train,y_train)*100
         Α1
Out[47]: 94.54590325765054
In [48]: A2=A.score(x_test,y_test)*100
         Α2
Out[48]: 94.52257586972614
         BAGGING:-
In [49]:
         b=BaggingClassifier()
         b.fit(x train,y train)
Out[49]:
          ▼ BaggingClassifier
         BaggingClassifier()
In [50]:
         b1=b.score(x_train,y_train)*100
         b1
Out[50]: 98.81539980256665
In [51]: b2=b.score(x_test,y_test)*100
         b2
Out[51]: 94.74463360473723
In [ ]:
```

DEEP LEARNING:-

In [54]: model.fit(x_train,y_train,epochs=50)

Epoch 1/50							
	- 15	871us/step	_	accuracy:	0.5907 -	loss:	0.7091
Epoch 2/50		0, 203, 3 сер		acca. acy.	0.3307	1055.	01,032
· · · · · · · · · · · · · · · · · · ·	• 0s	760us/step	_	accuracv:	0.6562 -	loss:	0.6104
Epoch 3/50		,					
· · · · · · · · · · · · · · · · · · ·	0s	743us/step	-	accuracy:	0.6625 -	loss:	0.6048
Epoch 4/50		·		-			
127/127	• 0s	745us/step	-	accuracy:	0.7099 -	loss:	0.5644
Epoch 5/50							
127/127	• 0s	750us/step	-	accuracy:	0.7318 -	loss:	0.5387
Epoch 6/50							
	• 0s	759us/step	-	accuracy:	0.7974 -	loss:	0.4962
Epoch 7/50						_	
	• 0s	758us/step	-	accuracy:	0.8324 -	loss:	0.4389
Epoch 8/50	0-	740/			0.0500	1	0 2054
	· 0S	749us/step	-	accuracy:	0.8582 -	loss:	0.3954
Epoch 9/50 127/127 ————————————————————————————————————	0.5	76046/6400		2661102614	0 0600	10001	0 2400
Epoch 10/50	05	769us/step	-	accuracy.	0.0009 -	1055.	0.3499
•	- 05	888us/step	_	accuracy:	0 8731 -	loss	0 3461
Epoch 11/50	05	оооиз, эсер		accar acy.	0.0751	1033.	0.5101
127/127 ————	• 0s	891us/step	_	accuracv:	0.8647 -	loss:	0.3510
Epoch 12/50		, ,		,			
127/127	0s	745us/step	-	accuracy:	0.8647 -	loss:	0.3538
Epoch 13/50				_			
127/127	• 0s	743us/step	-	accuracy:	0.8551 -	loss:	0.3648
Epoch 14/50							
	• 0s	753us/step	-	accuracy:	0.8806 -	loss:	0.3126
Epoch 15/50						_	
	• 0s	753us/step	-	accuracy:	0.8732 -	loss:	0.3260
Epoch 16/50	0-	720/-+			0.0640	1	0.2524
	05	720us/step	-	accuracy:	0.8648 -	1055:	0.3524
Epoch 17/50 127/127 ————————————————————————————————————	. 00	786us/step		26611112611	a 9717	1000	0 2267
Epoch 18/50	03	780u3/3tep	_	accuracy.	0.0/1/ -	1033.	0.3307
127/127	- 05	777us/step	_	accuracy:	0.8655 -	loss	0.3401
Epoch 19/50	73	. , , цэ, эсср		accui acy .	3.0055	1000.	3.5.01
127/127 ————	• 0s	954us/step	_	accuracv:	0.8754 -	loss:	0.3380
Epoch 20/50				· · · · · · · · · · · · · · · · ·	· · · · · ·		
127/127	0s	754us/step	-	accuracy:	0.8695 -	loss:	0.3464
Epoch 21/50							

127/127	0s	760us/step	-	accuracy:	0.8706 -	loss:	0.3364
Epoch 22/50							
127/127	• 0s	758us/step	-	accuracy:	0.8793 -	loss:	0.3326
Epoch 23/50							
	• 0s	748us/step	-	accuracy:	0.8640 -	loss:	0.3424
Epoch 24/50							
127/127	· 0s	759us/step	-	accuracy:	0.8824 -	loss:	0.3109
Epoch 25/50							
127/127 —————	• 0s	742us/step	-	accuracy:	0.8697 -	loss:	0.3198
Epoch 26/50	_					_	
127/127 ————————————————————————————————————	· 0s	749us/step	-	accuracy:	0.8812 -	loss:	0.3253
Epoch 27/50	0-	020/-+			0.0675	1	0 2476
	05	929us/step	-	accuracy:	0.86/5 -	loss:	0.34/6
Epoch 28/50 127/127 ————————————————————————————————————	. 00	754us/step		2661102611	0 07/15	1000	0 2/12
Epoch 29/50	03	/34us/step	_	accui acy.	0.0743	1033.	0.5415
•	. 05	787us/step	_	accuracy:	0.8768 -	loss	0.3348
Epoch 30/50	03	707u373ccp		accai acy.	0.0700	1033.	0.3310
127/127 ————	. 0s	766us/step	_	accuracv:	0.8814 -	loss:	0.3388
Epoch 31/50		, , , , , , ,					
127/127	0s	752us/step	-	accuracy:	0.8779 -	loss:	0.3162
Epoch 32/50							
127/127	• 0s	760us/step	-	accuracy:	0.8776 -	loss:	0.3308
Epoch 33/50							
127/127 —————	0s	769us/step	-	accuracy:	0.8851 -	loss:	0.3147
Epoch 34/50						_	
	· 0s	769us/step	-	accuracy:	0.8802 -	loss:	0.3320
Epoch 35/50	•	010 / 1			0 0705	,	0 2427
127/127 ————————————————————————————————————	05	919us/step	-	accuracy:	0.8/35 -	loss:	0.3427
Epoch 36/50 127/127 ————————————————————————————————————	00	768us/step		2661102611	0 9966	10001	0 2065
Epoch 37/50	05	/oous/step	-	accuracy.	0.0000 -	1055.	0.3003
•	۵c	757us/step	_	accuracy:	0 8808 -	1000	0 3255
Epoch 38/50	03	757u3/3ccp		accuracy.	0.0000	1033.	0.5255
•	05	759us/step	_	accuracy:	0.8834 -	loss:	0.3151
Epoch 39/50		, 52 d.5, 5 ccp					010_0_
127/127 ————	0s	762us/step	_	accuracy:	0.8747 -	loss:	0.3149
Epoch 40/50		, ,		,			
127/127	0s	759us/step	-	accuracy:	0.8792 -	loss:	0.3214
Epoch 41/50		•		-			
127/127	0s	789us/step	-	accuracy:	0.8769 -	loss:	0.3435
Epoch 42/50							

```
0s 916us/step - accuracy: 0.8839 - loss: 0.3074
         127/127 -
         Epoch 43/50
         127/127 -
                                       0s 761us/step - accuracy: 0.8861 - loss: 0.2952
         Epoch 44/50
         127/127 -
                                      0s 766us/step - accuracy: 0.8828 - loss: 0.3259
         Epoch 45/50
                                      0s 757us/step - accuracy: 0.8773 - loss: 0.3228
         127/127 -
         Epoch 46/50
                                      0s 775us/step - accuracy: 0.8776 - loss: 0.3201
         127/127 -
         Epoch 47/50
                                      0s 773us/step - accuracy: 0.8743 - loss: 0.3317
         127/127 -
         Epoch 48/50
         127/127
                                      0s 919us/step - accuracy: 0.8881 - loss: 0.3041
         Epoch 49/50
                                     - 0s 761us/step - accuracy: 0.8780 - loss: 0.3134
         127/127 -
         Epoch 50/50
                                    - 0s 729us/step - accuracy: 0.8875 - loss: 0.3107
         127/127 -
Out[54]: <keras.src.callbacks.history.History at 0x1c028da1f90>
In [55]: T=model.predict(x test)
                                   - 0s 1ms/step
         43/43 -
Out[55]: array([[0.8194479],
                 [0.16767004],
                 [0.50828475],
                 . . . ,
                 [0.03387482],
                 [0.8636771],
                 [0.51185 ]], dtype=float32)
In [56]: pred=[]
```

```
In [57]: for i in T:
             if i>.5:
                 pred.append(1)
             else:
                 pred.append(0)
In [58]: pred
Out[58]: [1,
          1,
          1,
          0,
          0,
          1,
          0,
          1,
          0,
          0,
          0,
          1,
          0,
          0,
          0,
In [59]: from sklearn.metrics import confusion_matrix,accuracy_score, classification_report
         accuracy_score(y_test,pred)*100
Out[59]: 89.04515173945225
In [60]: confusion_matrix(y_test,pred)
Out[60]: array([[784, 58],
                 [ 90, 419]], dtype=int64)
```

```
In [61]: print(classification report(y test,pred))
                      precision
                                  recall f1-score support
                           0.90
                                     0.93
                                              0.91
                                                         842
                           0.88
                                    0.82
                                              0.85
                                                        509
                                              0.89
                                                       1351
            accuracy
                                              0.88
                                                       1351
           macro avg
                           0.89
                                     0.88
        weighted avg
                                                       1351
                           0.89
                                    0.89
                                              0.89
In [62]: train=model.evaluate(x train,y train)[1]*100
        train
        127/127 ----
                           Os 604us/step - accuracy: 0.8932 - loss: 0.3058
Out[62]: 88.69693875312805
In [63]: test=model.evaluate(x test,y test)[1]*100
        test
                         Os 831us/step - accuracy: 0.8906 - loss: 0.3166
         43/43 -
Out[63]: 89.04514908790588
In [ ]:
```

ACCURACY GRAPH:-

In [64]: A={"METHODS":["LOGISTIC REGRESSION","SVC","GAUSSIAN NB","BERNOULLI NB","COMPLEMENT NB","MULTINOMIAL NB","K NEAREST NEI A=pd.DataFrame(A) A=np.around(A,2) A

Out[64]:

	METHODS	TRAIN ACCURACY	TEST ACCURACY
0	LOGISTIC REGRESSION	87.24	87.71
1	SVC	83.22	82.09
2	GAUSSIAN NB	83.22	83.49
3	BERNOULLI NB	79.15	79.35
4	COMPLEMENT NB	68.07	67.95
5	MULTINOMIAL NB	69.69	69.95
6	K NEAREST NEIGHBOUR	83.24	71.50
7	Decision Tree Classifier	100.00	91.86
8	ADABOOST	94.55	94.52
9	BAGGING	98.82	94.74
10	ANN	88.70	89.05

```
In [65]: plt.bar(A["METHODS"],A["TRAIN ACCURACY"],width=0.3,label="TRAINING ACCURACY")
    plt.bar(A["METHODS"],A["TEST ACCURACY"],align="edge",width=0.3,label="TESTING ACCURACY")
    plt.legend(bbox_to_anchor=[1,0,0,1])
    plt.xlabel("METHODS------>")
    plt.ylabel("ACCURACY----->")
    plt.xticks(rotation=90)
    plt.show()
```


CONCLUSION:

FROM THE ABOVE BAR CHART IT IS CLEAR THAT LOGISTIC REGRESSION AND ADABOAST ARE BEST

In []: