Graduate Plan:

- Intellectual Merit: Harnessing wisdom of an artificial crowd tom improve LLM Reasoning
 Capability
 - Value gained in Fermi Estimations
- Currently researchers are trying to improve reasoning using the following techniques
 - Self-consistency
 - Conformal Prediction
 - o Ensemble methods
 - Transition to Project
- Hypothesis & Goal
 - Law of Large Numbers should improve estimations when calculating answers to complex tasks
 - To approach problem, I will utilize HPC to test different implementations of LLN applied to LLM Reasoning
 - Hypothesize that LLN applied to estimating components of output should construct the most accurate response
- Include a figure/diagram that represents the construction of certain tests/experimental setups
- Approach
 - Aim 1 Benchmark: Build and release a curated, unit-normalized Fermi benchmark with authoritative sources and acceptable ranges.
 - Aim 2 LLN: Implement Law of Large Numbers in LLM reasoning tasks.
 - Aim 3 Methods:
 - (3a) Do LLM ensembles exhibit a predictable reduction in Fermi estimation error with more diverse samples? What is the convergence

- rate of log-error as a function of sample size and diversity (temperature, prompts, model families)?.
- (3b) Can we elicit and calibrate distributional forecasts (e.g., 50% and 90% intervals) with correct coverage on Fermi tasks?
- (3c) Can structured factorization with unit-safe computation and retrieved base rates reduce systematic log-error and overconfidence?
- Aim 4 Evaluation

Broader Impacts

- Expand the idea of harnessing LLN to improve Reasoning
- Better LLM estimations can support LLM ensembles/checking
- o Connect to past work done in internship/research experience/project

Personal Statement:

- Commitment to service
 - SafeWalk App
 - Habitat for Humanity
 - Kaiser Permanente
 - Animal Shelter
- Research Lab Reading Groups
 - Fluids Lab
 - Lorenz-96 Two timescale system analysis on weather simulations
 - Robotics Lab
 - Imitation Learning Algorithm analysis
 - RL
- Research Work
 - Palo Alto Networks
 - ML Unstructured vs. Structured UPD
 - Production MaaS Push
 - PII Security
 - LoRA Model Hardening Transferability
 - o L3 Lab:
 - Background/Motivation
 - AI + Deep Learning Class
 - Reading papers
 - LoRA Model Hardening Transferability Experimentation
 - UNC Undergrad Research Conference
 - LLN Galton Project
 - Experiments being run

- Papers presented to Lab
- o USG
 - Data Engineering
 - Pitched Novel solution and improved pipeline
- o CS TA
 - Education Research
- o Chancellor Science Scholar
 - 2x Distinguished Scholar

Personal, Relevant Background and Future Goals Statement