3.14 Top-down design + examples

Top-down design: Capture, convert

Designers commonly follow a two-step design process:

- 1. Capture: The task of precisely describing a circuit's desired behavior.
- 2. Convert (aka implement): The task of translating captured behavior into a circuit.

Capture: For combinational circuits, designers commonly capture behavior as truth tables or equations.

Convert: A truth table can be converted to an equation first by ORing the minterms of each table row having an output 1. Ar be converted to a circuit by multiplying out to product terms (if not already), with each term becoming an AND gate, followegate.

Example: Medical radiation therapy device

A particular medical device delivers radiation to a patient to treat cancer. The device has two radiation strength levels, low (s = 1). The device has two radiation durations: short (d = 0) and long (d = 1). The device normally is used to deliver high str duration, or low strength for long duration. A hardware safety component can be enabled (e = 1) that detects high strength and automatically turns off the device after a minute, but on rare occasion a radiation therapist may disable that componer accidents, a designer wishes to sound an alarm if the device is ever configured to high strength for long duration with the s

_		
PARTICIPATION ACTIVITY	3.14.3: Radiation delivery device.	_
Consider the ra	adiation delivery device above.	
1) For the war inputs exist	rning system, how many t?	•
Check	Show answer	
2) A truth tabl rows?	e would have had how many	•
Check	Show answer	
	er captured the desired sing what equation?	-
Check	Show answer	
	on converted to how many R gates total?	~
Check	Show answer	

Exploring further:

• Therac-25: A well-known radiation therapy device with a bug that caused patient injury/death. (Source: Wikipedia)

Example: Weight threshold

A car's seat weight sensor provides three values a, b, c, to a system, indicating an object's relative weight in binary, ranging (heaviest). A designer wishes to design a "weight threshold" system that activates an airbag system (y = 1) if the weight is for this system, the designer chooses to capture desired behavior with a truth table, then converts to a circuit.

PARTICIPATION 3.14.5: Weight threshold system.	_	
Consider the weight threshold system above.		
1) To capture the system's behavior, the designer used		
O a truth table		
O an equation		
2) To convert the captured behavior to a circuit, the designer first		
O simplified		
O converted to an equation		
3) To continue converting, the designer converted an equation to		
O gates		
O a truth table		

Example: Majority voter circuit

Some systems are more prone to errors due to complexity or noise. And, some systems cannot tolerate errors. Ex: Spaceci complex control systems, are prone to errors due to noise/vibrations/heat, and may crash or explode if digital circuit outpu Such systems often have three independent calculations of output, and then use a circuit to take a majority vote, an arrang triple modular redundancy.

PARTICIPATION ACTIVITY	3.14.6: Majority voter circuit.
Start	2x speed

PARTICIPATION ACTIVITY

3.14.7: Majority voter circuit.

Consider the example above.

1) The gray boxes on the left each _____.

O are majority voter circuits

O carry out different functions

O carry out the same function

2) The majority voter circuit has three inputs. What other number of inputs would be most reasonable?

O One

O

3.14. Top-down design + examples	
Five O Twenty nine	
3) If the inputs to the majority voter circuit are 1 0 1, the output should be O 0	~
O 1 O Error	
 4) The inputs to the voter circuit are O always the same O always different O usually the same 	-
5) The voter circuit correct output.O helps yieldO guarantees	•
Exploring further: • Triple modular redundancy (Source: Wikipedia)	
p.coccia. recallation (codirect vinapedia)	

Provide feedback on this section