Projeto Aplicações IoT/IIoT: Sensor Oxímetro com Comunicação Sem Fio

Sensor Oxímetro com Comunicação Sem Fio

Versão <1.3>

Equipe: Amilto Romagno | Matheus Engleitner | Rodrigo Yuji

Histórico de Atualização

Atividades	Responsáveis	Data	Observações
Adequação template	Camargo	26/09/2020	
Primeiras Informações	Rodrigo Yuji	26/10/2020	
Correções de Detalhes	Amilto Romagno	26/10/2020	
Ajustes finais da versão 1.2	Rodrigo Yuji	06/12/2020	
Revisão 1.3	Matheus	07/12/2020	

Sumário

1	Intr	odução	4
	1.1	Objetivo deste documento	
	1.2	Escopo do produto	
		quisitos para a Solução (Produto)	
		Requisitos Funcionais	
		Requisitos Não Funcionais	
		efatos do Produto (Solução)	
	3.1	Hardware	
	3.2	Software	6
4	Artefatos do Projeto		7
	5 Considerações Finais		
6		êndices (evidências de Implementação)	

1 Introdução

1.1 Objetivo deste documento

Neste documento é apresentado a especificação de uma solução IoT para o sensor oxímetro Max30102, para tornar mais confortável ao usuário utilizando uma comunicação sem fio entre o hardware e o display.

1.2 Escopo do produto

A solução contempla o sensor oxímetro Max30102, um microcontrolador ESP32 e uma tela OLED para primeiro monitoramento e configuração. Após a primeira montagem o dispositivo irá enviar as informações a respeito dos biosinais captados diretamente para a tela do celular ou computador, passando as informações via Wi-Fi, através do ESP32 que já possui a tecnologia embutida.

1.3 Missão do produto

A missão do produto a ser desenvolvido é tornar prático a leitura e comunicação análise dos dados, através da conexão wireless. Descartando a necessidade da comunicação cabeada entre o dispositivo e o display, tornando a experiencia mais agradável ao usuário.

2 Requisitos para a Solução (Produto)

2.1 Requisitos Funcionais

RF1: Captar os biosinais através do Max30102;

RF2: Exportar os dados processados pelo ESP32 para o WebServer;

RF3: Mostrar biosinais em tempo real; RF4: Gerar os relatórios de saúde;

2.2 Requisitos Não Funcionais

RNF1: Comunicação Wi-Fi;

RNF2: Interface Arduino; RNF3: Sensor SPO2 e BPM;

RNF4: Interface Web;

RNF5: Confiabilidade dos dados;

RNF6: Bom desempenho no processamento das informações;

2.3 Diagrama de Caso de Uso

Fig. 1. Diagrama de caso de uso

3 Artefatos do Produto (Solução)

3.1 Hardware

Abaixo um modelo de como será a primeiro protótipo para testar os resultados gerados pelo oxímetro:

Fig. 2. Diagrama de primeiras conexões do dispositivo

Na Figura 2, o sensor está realizando a comunicação com o ESP32 que está fazendo o processamento dos dados e enviando para a Tela OLED.

Abaixo o modelo final de como serão as conexões do projeto:

Fig. 3. Diagrama de funcionamento do projeto

3.2 Software

O software utilizado no projeto, se trata de um software embarcado que fica instalado no ESP32, o link pode ser encontrado mais abaixo na parte de evidências de implementação.

Para fazer o sistema rodar deve se realizar a carregamento dele no ESP32 e posteriormente abrir no navegador no seguinte endereço (http://10.0.0.202/). Estando o hardware conectado ao usuário irá mostrar em tempo real as informações de Saturação de Oxigênio (SpO2) e Batimentos por Minuto (BPM), via navegador web, podendo ser acessado pelo celular ou computador.

4 Artefatos do Projeto

4.1 Montagem do Protótipo

Abaixo a figura com a primeira montagem do protótipo:

Fig. 4. Montagem do Protótipo do Projeto

Abaixo como ficou o protótipo final após estruturação e adequação para deixá-lo similar a um oxímetro de pulso:

Fig.5. Protótipo Final do Projeto

4.2 Tela do Software do Projeto no Navegador pelo Computador

Abaixo como fica a visualização do software pelo computador:

Fig.6. Software pelo Computador

4.3 Tela do Software do Projeto no Navegador pelo Celular

Abaixo como fica a visualização do software pelo celular:

ESP32 Oximetria

Sp02 100.00

врм 93.00

Fig.7. Software pelo Celular

5 Considerações Finais

Atualmente, existem diversas soluções para monitoramento de biosinais. A intenção desse projeto é a de oferecer mais uma dessas soluções, porém com a premissa da simplicidade e objetividade. Com esse projeto foi possível aprender a importância da conexão sem fio e o quão fundamental é tornar a usuabilidade do produto o mais confortável possível ao usuário.

6 Apêndices (evidências de Implementação)

Abaixo as evidências de implementação.

6.1 Links para acesso:

6.1.1 Acesso à configuração do ESP32:

Link GitHub: https://github.com/TCC-JSRR/WebServer-Oximetro-SPO2-BPM

6.2 Foto do uso e aplicação do projeto:

Uso e aplicação do Oxímetro conectado via Wi-Fi, com o Software sendo acessado pelo navegador no celular.

Fig.8. Uso e Aplicação do Projeto