Nomenklatur

Subskript:

adv Advektion
 diff Diffusion
 konv Konvektion
 i Komponentenspezifisch-Partialanteil
 D Dampf
 ∞ Umgebung

ges Gesamt
w Wasser
O Oberfläche
fl Flüssigkeit
v Verdampfung

Superskript:

FlächenbezogenVolumenbezogen

 Zeitliche Ableitung (Wärmestrom, Massenstrom, Enthalpiestrom etc.)

Symbole

m	Masse	[kg]
M	Molmasse	[kg/kmol]
n	Molmenge	[kmol]
ρ_{i}	Partialdichte	$[kg/m^3]$
ρ	Gesamtdichte	[kg/m ³]
С	Konzentration	[kmol/m ³]
ψ	Stoffmengenanteil	[-]
ξ	Massenkonzentration	[-]
p_i	Partialdruck	$[N/m^2]$
V	Volumen	$[kg/m^3]$
'n"	Stoffmengenstromdichte	[kmol/s m ²]
j ["]	Diffusionsstromdichte	[kg/s]
ṁ	Massenstrom	[kg/s]
D	Diffusionskoeffizienten	$[m^2/s]$
ν	Kinematische Viskosität	$[m^2/s]$
λ	Wärmeleitfähigkeit	[W/m K]
c_{p}	Spezifische Wärmekapazität	[J/kg K]
H_i	Henry-Koeffizient	[-]
u	Geschwindigkeit	[m/s]
α	Konvektiver Wärmeübergang	$[W/m^2 K]$
$\Delta h_{ m v}$	Verdampfungsenthalpie	[kJ/mol]
g	Stoffübergangskoeffizient	$[kg/m^2 s]$

Dimensionslose Kennzahl

Re	Reynoldszahl	[-]
Pr	Prandtl Zahl	[-]
Nu	Nusselt Zahl	[-]
Sh	Sherwood Zahl	[-]
Sc	Schmidt Zahl	[-]

V 01: Einführung in die Stoffübertragung

Lernziele:

- Rekapitulation der Größendefinitionen in binären Gemischen
- Verständnis der Annahmen für ein gasförmiges, binäres Stoffgemisch
- Kenntnis des Konzentrationsverlaufs der eindimensionalen, äquimolaren Diffusion in ruhenden, binären Gasgemischen

Verständnisfragen:

- ☐ Was besagt das Gesetz von Dalton?
- ☐ Was besagt das Ficksche Gesetz?
- ☐ Was bedeutet äquimolare Diffusion?
- ☐ In welchem Zusammenhang stehen Teilchenfluss und diffusiver Massenfluss?

V 02: Herleitung der Erhaltungsgleichung der Stoffdiffusion und Analogie zur Wärmeübertragung

Lernziele:

- Verständnis der notwendigen Schritte zur Erstellung/Berechnung eines Konzentrationsprofils
- Kenntnis der Gemeinsamkeiten von Wärme- und Stoffübergang

Verständnisfragen:

☐ Was ist das Analogon zum Diffusionskoeffizienten in der Wärmeübertragung und beim Impulstransport?

V 03: Beispiel zur Analogie: Instationäre 1-D Wärmeleitung / Diffusion

Lernziele:

- Rekapitulation der Lösung des eindimensionalen Wärmeleitungsproblems
- Verständnis der Schritte zur Lösung des eindimensionalen Diffusionsproblems
- Transferwissen zwischen Wärmeleitungs- und Diffusionsproblemen entwickeln

Verständnisfragen:

- ☐ Welche Anfangs- und Randbedingungen werden bei der Lösung des eindimensionalen instationären Diffusionsproblems gewählt?
- ☐ Für welche Art von Problemen lassen sich die Heisler-Diagramme verwenden? Welche Randbedingungen müssen erfüllt werden?

V 04: Phasengleichgewicht

Lernziele:

- Wie wird das Gleichgewicht zwischen zwei Phasen, flüssig/gasförmig oder flüssig/flüssig, beschrieben?
- Konsequenzen für den Konzentrationsverlauf

Verständnisfragen:

- ☐ Welche Größen bestimmen das Verhältnis der Massenkonzentration an einer Phasengrenze zwischen Flüssig- und Gasphase?
- ☐ Warum entsprechen die Massenkonzentrationen an der Phasengrenze auch im instationären Fall dem Gleichgewichtszustand?

V 05: Advektiver Stofftransport und Herleitung der Erhaltungsgleichungen

Lernziele:

Unterscheidung von diffusivem und advektivem Stofftransport

Verständnisfragen:

- ☐ Benennen Sie das treibende Potential der Diffusion und der advektiven Stoffübertragung?
- ☐ Welche Kennzahl der Stoffübertragung kann als Analogon zur Prandtl-Zahl in der Wärmeübertragung betrachtet werden?
- ☐ Warum ist die Summe aller Diffusionsströme gleich Null?

V 06: Verdunstung an einer flüssigen Oberfläche- (Stefan-Strom)

Lernziele:

- Verständnis der Besonderheiten des Stofftransports an einer flüssigen semi-permeablen Oberfläche
- > Zustandekommen und wichtige Randbedingungen des Stefan-Stroms verstehen und erklären können

Verständnisfragen:

- ☐ Wodurch wird der zusätzliche Konvektionsstrom hervorgerufen? Was gleicht dieser aus?
- ☐ Welche Größe beeinflusst die Verstärkung des Verdunstungsmassenstroms durch die Konvektion maßgeblich?

V 07: Technisches Rechenbeispiel: Verdunstung an einer flüssigen Oberfläche- Stefanstrom

Überlegungen:

➤ Limitiert der Stofftransport das Problem?

Massenstrom = Transportkoeffizient * Treibendes Potenzial

Limitiert der Wärmetransport das Problem?

Wärmestrom = Wärmeübergangskoeffizient * Treibendes Potenzial

Massenstrom = Wärmestrom / Verdampfungsenthalpie

$$\xi_{H_2O,i} = \frac{1}{\frac{1 - p_{H_2O}}{p_{H_2O}} \cdot \frac{M_{Luft}}{M_{H_2O}} + 1}$$

Verständnisfragen:

☐ Wie werden Massenanteile berechnet?

☐ Unter welchen Voraussetzungen gilt das Lewis- Gesetz?

☐ Wie wird der Stoffübertragungskoeffizient unter Geltung des Lewis Gesetzes berechnet?

V 08: Technisches Rechenbeispiel: Verdunstung eines Tropfens- Stefanstrom

Lernziele:

Bilanz am Tropfen

Gleichgewichtstemperatur bei Verdunstung eines Tropfens

Massenstrom des verdunsteten Kraftstoffs m

➤ Dauer der vollständigen Verdunstung eines Tropfens

Verständnisfragen:

☐ Weshalb ist die Bestimmung der Oberflächentemperatur nur iterativ möglich?

☐ Welche Überlegungen stehen hinter der Abschätzung zur Verdunstungszeit eines Tropfens?

☐ Weshalb ist die Verdunstungszeit eines Atemtropfens relativ groß?

