

PARTURITION HINDI SPEECH DATASET FOR AUTOMATIC SPEECH RECOGNITION

VANSH BANSAL, THISHYAN RAJ, NAGARATHNA, SHUBAM KORDE, JASKARAN KALRA, SUDHA MURUGESAN, RAMKRISHNAN, ABOLI GORE, VIPUL ARORA

MOTIVATION

3 DATA COLLECTION

ASR MODELS

CONCLUSION

CONTENTS

INTRODUCTION

- Automatic Speech Recognition has wide range of applications in varied sectors including the medical sector
- Traditionally ASR models were built using Hidden Markov Models (HMM) with Gaussian Mixture Model (GMM) based acoustic models and Finite State Transducer (FST) based language models
- End-to-End (E2E) models based on deep learning have provided superior results as compared to previous models
- It is desirable to have domain specific datasets for training ASR models for a specific task
- This paper presents the Parturition Hindi Dataset (PHS) which consists of the medical terms uttered by nurses in operation theatre

THE PROBLEMS

HEAVY PATIENT LOAD

COMPLICATED **PROTOCOLS**

LIMITED NURSES

TEDIOUS WORKFLOWS

AUTOMATIC SPEECH RECOGNITION

has a great potential to solve these problems allowing the nurses to automatically fill in data

RESEARCH CHALLENGES AND SOLUTION

HIGH ACCURACY REQUIREMENT

NOISY OPERATION ENVIRONMENT

CODE SWITCHING

LACK OF PROPER DATASETS

THEREFORE, CUSTOMIZED DOMAIN SPECIFIC **DATASET IS NEEDED**

5.6

HOURS OF RECORDED DATA

ANNOTATED AUDIO FILES

TRANSCRIPTIONS PROVIDED IN DEVANAGARI & ROMANIZED **TRANSLITERATION**

CORPUS SYNTHESIS

- PHS is a read-speech corpus, uttered inside a functioning maternity ward or operation theatre to emulate acoustics during parturition.
- Terms are sampled randomly from the set, $T = \{"BP", "Dilatation", "Discharge", "Drug", "Effacement", "FHR", "Pulse", "Temperature"\} with an initial probability mass function <math>P_T(t) = [0.2, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.2]$
- Sample utterance: "बी पी एक सौ तेरह बटा इकसठ टेम्परेचर सैंतीस पॉइंट एक पल्स नवासी "
- Each sentence in the corpus is a sequence of three parameters randomly sampled according to the above distribution.
- The values of these parameters are also sampled from their specific probability distributions

Numbers are sampled from Hindi as well as English numbers

CORPUS SYNTHESIS

Parameter	Range/Set	Prior
Blood Pressure	[80, 240]	Truncated Gaussian
Dilatation	[1, 10]	Truncated Gaussian then rounded to nearest integer
Discharge	{"रेड ","ब्राउन ", "येल्लो" ,"वाइट", " ग्रीन", "क्लियर"}	Uniformly sampled from the set
Drugs	{"टेबलेट मिसोप्रोस्टोल", "इन्जेक्शन ऑक्सीटॉसिन", "लिग्नोकेने", "एंटीबायोटिक "}	Customized probability mass function
Effacement	{"मोटा ", "पतला "}	Uniformly sampled from the set
Fetal Heart Rate	[80, 200]	Truncated Gaussian
Pulse	[50, 130]	Truncated Gaussian then rounded to nearest integer
Temperature	[35, 40]	Truncated Gamma distribution with location, shape, and scale parameters as 35, 4, and 0.55 respectively

AUDIO RECORDING ENVIRONMENT

- To emulate this environment accurately, the audio has been recorded in the labour rooms as well as triaging rooms of hospital facilities established in rural Bihar.
- They are asked to read the sentences, from the corpus described above, and record them into microphones while they are not performing a delivery
- Labour rooms have a low signal-to-noise ratio (*), because of the cries of mothers and the cross-talks between nurses.
- So, the nurses are provided with close-talking microphones to record their speech.

ETHICS

DATASET CHARACTERISTICS

This dataset consists of only a small set of words, totaling around 180.

LIMITED VOCABULARY

The nurses speak predominantly with a Bihar accent.

There are no restrictions as to whether the numbers are pronounced in Hindi or English.

This dataset is created to have words in a medical setup.

AUDIO RECORDING ENVIRONMENT

- To emulate this environment accurately, the audio has been recorded in the labour rooms as well as triaging rooms of hospital facilities established in rural Bihar.
- They are asked to read the sentences, from the corpus described above, and record them into microphones while they are not performing a delivery
- Labour rooms have a low signal-to-noise ratio (*), because of the cries of mothers and the cross-talks between nurses.
- To enhance the speech, the nurses are provided with close-talking microphones to record their speech.

DATA ANNOTATION

- There been a sufficient scope of natural variations such as numerals, abbreviations, and word mispronunciations.
- Therefore, a team of **25 annotators** re-transcribe the audio files manually.
- To ensure the correctness of the transcripts, inter-annotator validation has been performed.
- After training the model with the dataset, we feed in the audio to transcribe them using the ASR model. A comparison of the model-generated transcriptions with the ground truth helps in verifying the accuracy of the transcription.
- The data is collected with help of nurses from different backgrounds, with an anonymized speaker index with each audio file for possible use in automatic speaker identification

ASR MODELS

ASR MODELS

- The main intention of building this dataset is to evolve a model that can identify the readings spelt out by medical practitioners during intensive procedures.
 - el and
- We use this data to train and evaluate two kinds of ASR systems a traditional model and an E2E model.

Model	n) o	Word Error	Rate (WER)
GMM-HMM (Devanagari Script)		18.84%) 🗸 д
GMM-HMM (Romanized Transliteration)		21.77%	
E2E (without language model)(Romanized Transliteration)		12.01%	
E2E (with language model)(Romanized Transliteration)		2.7%	

TRADITIONAL TRAINING WORKFLOW

- A Gaussian Mixture Model–Hidden Markov Model (GMM– HMM) based system built using the Kaldi toolkit, is used as the traditional model.
- We use GMMs to model the phoneme probability densities, which the HMMs use as the emission probability densities.

	Ground Truth	Predictions
	डिस्चार्ज रेड एफेसमेन्ट मोटा डिस्चार्ज रेड	डिस्चार्ज रेड एफेसमेन्ट मोटा डिस्चार्ज रेड
	डिस्चार्ज ब्राउन टेम्परेचर सैंतीस पॉइंट चार बी पी एक सौ चालीस बटा छियासी	डिस्चार्ज ब्राउन टेम्परेचर सैंतीस पॉइंट चार बी पी एक सौ चालीस बटा छियासी
	टेम्परेचर *** सत्तानवे एफ एच आर एक सौ सैंतीस बी पी एक सौ बीस बटा एक सौ नौ	टेम्परेचर सोलह सत्तानवे एफ एच आर एक सौ सैंतीस *** पी एक सौ बीस बटा एक सौ ***
	बी पी वन फोर्टी सैवन बटे हंड्रेड नाइन एफेस- मेन्ट मोटा टेम्परेचर नाइंटी सैवन पॉइंट सिक्स	बी *** पल्स फोर्टी सैवन बटे हंड्रेड नाइन एफेसमेन्ट मोटा टेम्परेचर नाइंटी सैवन ***
7		पल्स

E2E TRAINING WORKFLOW

Ground Truth	Predictions
b p one hundred forty nine by	b p one hundred forty nine by
one hundred four effacement	one hundred four effacement
patla temperature ninety five	patla temperature ninety five
point nine	point nine
temperature thirty seven tem-	temperature thirty seven tem-
perature ninety six point five	perature ninety six point five
discharge red	discharge red
temperature ninety seven point	temperature ninety seven point
five discharge green pulse sixty	five discharge green pulse sixty
temperature chhattees point	temperature chhattees point
zero temperature untaalees	zero temperature untaalees
point do temperature saintees	point saat temperature
point one	saintees point one
	7 7

The NeMo toolkit is used to build the E2E ASR model During inference, we add a language model (KenLM model*) trained on our application domain to improve prediction accuracy.

CONCLUSION

CONCLUSION

- This paper presents a complete method for developing automatic speech recognition
 (ASR) solutions for limited vocabulary tasks, especially for local languages.
- This includes dataset preparation as well as developing ASR models. In particular, the paper offers a new Hindi dataset for healthcare applications.
- The experimental results validate the efficacy of the presented method.
- In future work, we plan to employ the presented method to prepare more datasets from regional dialects and other regional languages.
- We also plan to use the PHS dataset for diverse applications, such as to develop models which can detect out-of-vocabulary words.
- We will also develop models that can detect half-spelled words.

DEMO

Demo of Digital Parturition Assistant

https://youtu.be/qNk5xuop27Y

AUTHORS

IIT Kanpur

Prof. Vipul Arora

Jaskaran Kalra

Shubham Korde

Vansh Bansal

Thishyan Raj

Nagarathna

Care India

Dr. Aboli Gore

B Ramakrishnan

Sudha Murugesan

Thanks to Google
Al for Social
Good Grant for
supporting this
work

