POSITIVE MATCHING DECOMPOSITION OF GRAPHS

M. FARROKHI D. G.

JOINT WORK WITH
S. GHARAKHLOO AND A. A. YAZDAN POUR

IASBS
DEPARTMENT OF MATHEMATICS

SAMS 2021 NOVEMBER 29, 2021

PRELIMINARIES

•
$$[n] = \{1, \ldots, n\}$$

¹L. Lovász, On the Shannon capacity of a graph, *IEEE Trans. Inform. Theory* **25** (1979), 1–7.

- $[n] = \{1, \ldots, n\}$
- $\Gamma = ([n], E)$ a simple graph

¹L. Lovász, On the Shannon capacity of a graph, *IEEE Trans. Inform. Theory* **25** (1979), 1–7.

- $[n] = \{1, \ldots, n\}$
- $\Gamma = ([n], E)$ a simple graph
- $\bar{\Gamma}$ the complement of Γ

¹L. Lovász, On the Shannon capacity of a graph, *IEEE Trans. Inform. Theory* **25** (1979), 1–7.

- $[n] = \{1, \ldots, n\}$
- $\Gamma = ([n], E)$ a simple graph
- $\bar{\Gamma}$ the complement of Γ

Definition (Orthogonal representation of Γ in \mathbb{R}^d)

¹L. Lovász, On the Shannon capacity of a graph, *IEEE Trans. Inform. Theory* **25** (1979), 1–7.

- $[n] = \{1, \ldots, n\}$
- $\Gamma = ([n], E)$ a simple graph
- $\bar{\Gamma}$ the complement of Γ

Definition (Orthogonal representation of Γ in \mathbb{R}^d)

• Each vertex $i \in [n] \mapsto$ a vector $u_i \in \mathbb{R}^d$

¹L. Lovász, On the Shannon capacity of a graph, *IEEE Trans. Inform. Theory* **25** (1979), 1–7.

- $[n] = \{1, \ldots, n\}$
- $\Gamma = ([n], E)$ a simple graph
- $\bar{\Gamma}$ the complement of Γ

Definition (Orthogonal representation¹ of Γ in \mathbb{R}^d)

- Each vertex $i \in [n] \mapsto$ a vector $u_i \in \mathbb{R}^d$
- $\mathbf{u}_{i}^{\mathsf{T}}\mathbf{u}_{i} = \mathbf{0}$ whenever $\{i,j\} \in E(\bar{\Gamma})$

¹L. Lovász, On the Shannon capacity of a graph, *IEEE Trans. Inform. Theory* **25** (1979), 1–7.

- $[n] = \{1, \ldots, n\}$
- $\Gamma = ([n], E)$ a simple graph
- $\bar{\Gamma}$ the complement of Γ

Definition (Orthogonal representation¹ of Γ in \mathbb{R}^d)

- Each vertex $i \in [n] \mapsto$ a vector $u_i \in \mathbb{R}^d$
- $\mathbf{u}_{i}^{\mathsf{T}}\mathbf{u}_{j} = \mathbf{0}$ whenever $\{i,j\} \in E(\bar{\Gamma})$

Example

¹L. Lovász, On the Shannon capacity of a graph, *IEEE Trans. Inform. Theory* **25** (1979), 1–7.

- $[n] = \{1, \ldots, n\}$
- $\Gamma = ([n], E)$ a simple graph
- $\bar{\Gamma}$ the complement of Γ

Definition (Orthogonal representation¹ of Γ in \mathbb{R}^d)

- Each vertex $i \in [n] \mapsto$ a vector $u_i \in \mathbb{R}^d$
- $\mathbf{u}_{i}^{\mathsf{T}}\mathbf{u}_{j} = \mathbf{0}$ whenever $\{i,j\} \in E(\bar{\Gamma})$

Example

• $\{X_1, \ldots, X_c\}$ a proper coloring of $\bar{\Gamma}$

¹L. Lovász, On the Shannon capacity of a graph, *IEEE Trans. Inform. Theory* **25** (1979), 1–7.

- $[n] = \{1, \ldots, n\}$
- $\Gamma = ([n], E)$ a simple graph
- $\bar{\Gamma}$ the complement of Γ

Definition (Orthogonal representation¹ of Γ in \mathbb{R}^d)

- Each vertex $i \in [n] \mapsto$ a vector $u_i \in \mathbb{R}^d$
- $\mathbf{u}_{i}^{\mathsf{T}}\mathbf{u}_{j} = \mathbf{0}$ whenever $\{i,j\} \in E(\bar{\Gamma})$

Example

- $\{X_1, \ldots, X_c\}$ a proper coloring of $\bar{\Gamma}$
- Each vertex $\mathbf{x} \in \mathbf{X}_i \mapsto \mathbf{e}_i \in \mathbb{R}^c$

¹L. Lovász, On the Shannon capacity of a graph, *IEEE Trans. Inform. Theory* **25** (1979), 1–7.

Theorem (Lovász, Saks, and Schrijver, 1989¹, 2000²)

¹L. Lovász, M. Saks, and A. Schrijver, Orthogonal representations and connectivity of graphs, *Linear Algebra Appl.* **114/115** (1989), 439–454.

²L. Lovász, M. Saks, and A. Schrijver, A correction: Orthogonal representations and connectivity of graphs, *Linear Algebra Appl.* **313** (2000), 101–105.

Theorem (Lovász, Saks, and Schrijver, 1989¹, 2000²)

The followings are equivalent:

(1) Γ is (n-d)-connected,

¹L. Lovász, M. Saks, and A. Schrijver, Orthogonal representations and connectivity of graphs, *Linear Algebra Appl.* **114/115** (1989), 439–454.

²L. Lovász, M. Saks, and A. Schrijver, A correction: Orthogonal representations and connectivity of graphs, *Linear Algebra Appl.* **313** (2000), 101–105.

Theorem (Lovász, Saks, and Schrijver, 1989¹, 2000²)

- (1) Γ is (n-d)-connected,
- (2) Γ has an orthogonal representation in \mathbb{R}^d in general position.

¹L. Lovász, M. Saks, and A. Schrijver, Orthogonal representations and connectivity of graphs, *Linear Algebra Appl.* **114/115** (1989), 439–454.

²L. Lovász, M. Saks, and A. Schrijver, A correction: Orthogonal representations and connectivity of graphs, *Linear Algebra Appl.* **313** (2000), 101–105.

Theorem (Lovász, Saks, and Schrijver, 1989¹, 2000²)

- (1) Γ is (n-d)-connected,
- (2) Γ has an orthogonal representation in \mathbb{R}^d in general position.

¹L. Lovász, M. Saks, and A. Schrijver, Orthogonal representations and connectivity of graphs, *Linear Algebra Appl.* **114/115** (1989), 439–454.

²L. Lovász, M. Saks, and A. Schrijver, A correction: Orthogonal representations and connectivity of graphs, *Linear Algebra Appl.* **313** (2000), 101–105.

Theorem (Lovász, Saks, and Schrijver, 1989¹, 2000²)

- (1) Γ is (n-d)-connected,
- (2) Γ has an orthogonal representation in \mathbb{R}^d in general position.
- A set of vectors X in \mathbb{R}^d is in general position if any d-subset of X is linearly independent.

¹L. Lovász, M. Saks, and A. Schrijver, Orthogonal representations and connectivity of graphs, *Linear Algebra Appl.* **114/115** (1989), 439–454.

²L. Lovász, M. Saks, and A. Schrijver, A correction: Orthogonal representations and connectivity of graphs, *Linear Algebra Appl.* **313** (2000), 101–105.

•
$$S = \mathbb{R}[x_1, \dots, x_d]$$

¹L. Lovász, *Graphs and Geometry*, American Mathematical Society Colloquium Publications, **65**. American Mathematical Society, Providence, RI, 2019. **(Chapter 10)**

- $S = \mathbb{R}[x_1, \dots, x_d]$
- $V(\text{ideal } I) = \{\text{zeros of } I\} \subseteq \mathbb{R}^d \text{ the variety of } I$

¹L. Lovász, *Graphs and Geometry*, American Mathematical Society Colloquium Publications, **65**. American Mathematical Society, Providence, RI, 2019. **(Chapter 10)**

- $S = \mathbb{R}[x_1, \dots, x_d]$
- $V(\text{ideal } I) = \{\text{zeros of } I\} \subseteq \mathbb{R}^d \text{ the variety of } I$

¹L. Lovász, *Graphs and Geometry*, American Mathematical Society Colloquium Publications, **65**. American Mathematical Society, Providence, RI, 2019. **(Chapter 10)**

- $S = \mathbb{R}[x_1, \ldots, x_d]$
- $V(\text{ideal } I) = \{\text{zeros of } I\} \subseteq \mathbb{R}^d \text{ the variety of } I$

Definition (Lovász-Saks-Schrijver ideal of Γ in $\mathbb{K}[x_1,\ldots,x_d]$)

• $\Gamma = (V, E)$ a simple graph

¹L. Lovász, *Graphs and Geometry*, American Mathematical Society Colloquium Publications, **65**. American Mathematical Society, Providence, RI, 2019. **(Chapter 10)**

- $S = \mathbb{R}[x_1, \ldots, x_d]$
- $V(\text{ideal } I) = \{\text{zeros of } I\} \subseteq \mathbb{R}^d \text{ the variety of } I$

- $\Gamma = (V, E)$ a simple graph
- K a field

¹L. Lovász, *Graphs and Geometry*, American Mathematical Society Colloquium Publications, **65**. American Mathematical Society, Providence, RI, 2019. **(Chapter 10)**

- $S = \mathbb{R}[x_1, \ldots, x_d]$
- $V(\text{ideal } I) = \{\text{zeros of } I\} \subseteq \mathbb{R}^d \text{ the variety of } I$

- $\Gamma = (V, E)$ a simple graph
- K a field
- $S = \mathbb{K}[x_{i,k}: i = 1, ..., n, k = 1, ..., d]$

¹L. Lovász, *Graphs and Geometry*, American Mathematical Society Colloquium Publications, **65**. American Mathematical Society, Providence, RI, 2019. **(Chapter 10)**

- $S = \mathbb{R}[x_1, \ldots, x_d]$
- $V(\text{ideal } I) = \{\text{zeros of } I\} \subseteq \mathbb{R}^d \text{ the variety of } I$

- $\Gamma = (V, E)$ a simple graph
- $S = \mathbb{K}[x_{i,k}: i = 1, ..., n, k = 1, ..., d]$
- $L^{\mathbb{K}}_{\bar{\Gamma}}(d) = (x_{i,1}x_{j,1} + \cdots + x_{i,d}x_{j,d} : \{i,j\} \in E(\bar{\Gamma}))$

¹L. Lovász, *Graphs and Geometry*, American Mathematical Society Colloquium Publications, **65**. American Mathematical Society, Providence, RI, 2019. **(Chapter 10)**

- $S = \mathbb{R}[x_1, \dots, x_d]$
- $V(\text{ideal } I) = \{\text{zeros of } I\} \subseteq \mathbb{R}^d \text{ the variety of } I$

- $\Gamma = (V, E)$ a simple graph
- K a field
- $S = \mathbb{K}[x_{i,k}: i = 1, ..., n, k = 1, ..., d]$
- $L^{\mathbb{K}}_{\bar{\Gamma}}(d) = (x_{i,1}x_{j,1} + \cdots + x_{i,d}x_{j,d} : \{i,j\} \in E(\bar{\Gamma}))$
- $V(L_{\bar{\Gamma}}^{\mathbb{K}}(d)) = \{ \text{orthogonal representations of } \Gamma \}$

¹L. Lovász, *Graphs and Geometry*, American Mathematical Society Colloquium Publications, **65**. American Mathematical Society, Providence, RI, 2019. **(Chapter 10)**

DECOMPOSI-

Positive matching

TIONS (PMD)

Definition (Positive matchings¹ of graphs)

¹A. Conca and V. Welker, Lovász-Saks-Schrijver ideals and coordinate sections of determinantal varieties, *Algebra Number Theory* **13**(2) (2019), 455–484.

Definition (Positive matchings¹ of graphs)

• $\Gamma = (V, E)$ a simple graph

¹A. Conca and V. Welker, Lovász-Saks-Schrijver ideals and coordinate sections of determinantal varieties, *Algebra Number Theory* **13**(2) (2019), 455–484.

Definition (Positive matchings¹ of graphs)

- $\Gamma = (V, E)$ a simple graph
- M a matching in Γ

¹A. Conca and V. Welker, Lovász-Saks-Schrijver ideals and coordinate sections of determinantal varieties, *Algebra Number Theory* **13**(2) (2019), 455–484.

Definition (Positive matchings¹ of graphs)

- $\Gamma = (V, E)$ a simple graph
- M a matching in Γ

M is positive if $M = \{e \in E : \omega(e) > 0\}$ for some weight function $\omega : V \to \mathbb{R}$

¹A. Conca and V. Welker, Lovász-Saks-Schrijver ideals and coordinate sections of determinantal varieties, *Algebra Number Theory* **13**(2) (2019), 455–484.

Definition (Positive matchings¹ of graphs)

- $\Gamma = (V, E)$ a simple graph
- M a matching in Γ

```
M is positive if M = \{e \in E : \omega(e) > 0\}
for some weight function \omega : V \to \mathbb{R}
```

Remark

 \mathbb{R} can be replaced with \mathbb{Z}

¹A. Conca and V. Welker, Lovász-Saks-Schrijver ideals and coordinate sections of determinantal varieties, *Algebra Number Theory* **13**(2) (2019), 455–484.

Definition (Positive matching decompositions¹ of graphs)

¹A. Conca and V. Welker, Lovász-Saks-Schrijver ideals and coordinate sections of determinantal varieties, *Algebra Number Theory* **13**(2) (2019), 455–484.

Definition (Positive matching decompositions¹ of graphs)

• $\Gamma = (V, E)$ a simple graph

5

¹A. Conca and V. Welker, Lovász-Saks-Schrijver ideals and coordinate sections of determinantal varieties, *Algebra Number Theory* **13**(2) (2019), 455–484.

Definition (Positive matching decompositions¹ of graphs)

- $\Gamma = (V, E)$ a simple graph
- $\{E_1, \ldots, E_p\}$ an edge partition of E into matchings

5

¹A. Conca and V. Welker, Lovász-Saks-Schrijver ideals and coordinate sections of determinantal varieties, *Algebra Number Theory* **13**(2) (2019), 455–484.

Definition (Positive matching decompositions of graphs)

- $\Gamma = (V, E)$ a simple graph
- $\{E_1, \ldots, E_p\}$ an edge partition of E into matchings
- $E_0 = \emptyset$

5

¹A. Conca and V. Welker, Lovász-Saks-Schrijver ideals and coordinate sections of determinantal varieties, *Algebra Number Theory* **13**(2) (2019), 455–484.

Positive matching decompositions

Definition (Positive matching decompositions of graphs)

- $\Gamma = (V, E)$ a simple graph
- $\{E_1, \ldots, E_p\}$ an edge partition of E into matchings
- $E_0 = \emptyset$

$$(E_1, \ldots, E_p)$$
 is a pmd of Γ if E_i is a positive matching in $\Gamma \setminus E_1 \cup \cdots \cup E_{i-1}$, for all i with $1 \le i \le p$

¹A. Conca and V. Welker, Lovász-Saks-Schrijver ideals and coordinate sections of determinantal varieties, *Algebra Number Theory* **13**(2) (2019), 455–484.

Definition (Positive matching decompositions¹ of graphs)

- $\Gamma = (V, E)$ a simple graph
- $\{E_1, \ldots, E_p\}$ an edge partition of E into matchings
- $E_0 = \emptyset$

$$(E_1, \ldots, E_p)$$
 is a pmd of Γ if E_i is a positive matching in $\Gamma \setminus E_1 \cup \cdots \cup E_{i-1}$, for all i with $1 \le i \le p$

$$\operatorname{pmd}(\Gamma) = \min(p \colon (E_1, \dots, E_p) \text{ a pmd of } \Gamma)$$

¹A. Conca and V. Welker, Lovász-Saks-Schrijver ideals and coordinate sections of determinantal varieties, *Algebra Number Theory* **13**(2) (2019), 455–484.

Theorem (A. Conca and V. Welker, 20191)

¹A. Conca and V. Welker, Lovász-Saks-Schrijver ideals and coordinate sections of determinantal varieties, *Algebra Number Theory* **13**(2) (2019), 455–484.

Theorem (A. Conca and V. Welker, 20191)

• Γ a simple graph

¹A. Conca and V. Welker, Lovász-Saks-Schrijver ideals and coordinate sections of determinantal varieties, *Algebra Number Theory* **13**(2) (2019), 455–484.

Theorem (A. Conca and V. Welker, 20191)

- Γ a simple graph
- $d \ge \operatorname{pmd}(\Gamma)$

¹A. Conca and V. Welker, Lovász-Saks-Schrijver ideals and coordinate sections of determinantal varieties, *Algebra Number Theory* **13**(2) (2019), 455–484.

Positive matching decompositions

Theorem (A. Conca and V. Welker, 20191)

- Γ a simple graph
- $d \ge \operatorname{pmd}(\Gamma)$

 $L^{\mathbb{K}}_{\Gamma}(d)$ is a radical complete intersection $L^{\mathbb{K}}_{\Gamma}(d)$ is prime if $d \geq \operatorname{pmd}(\Gamma) + 1$

¹A. Conca and V. Welker, Lovász-Saks-Schrijver ideals and coordinate sections of determinantal varieties, *Algebra Number Theory* **13**(2) (2019), 455–484.

Theorem (A. Conca and V. Welker, 2019)

If Γ is a simple graph of order n > 1, then

Theorem (A. Conca and V. Welker, 2019)

If Γ is a simple graph of order n> 1, then

(1)
$$pmd(\Gamma) \leq 2n - 3$$
,

Theorem (A. Conca and V. Welker, 2019)

If Γ is a simple graph of order n > 1, then

- (1) $\operatorname{pmd}(\Gamma) \leq 2n 3$,
- (2) $\operatorname{pmd}(\Gamma) \leq n 1$ if Γ is a bipartite graph,

Theorem (A. Conca and V. Welker, 2019)

If Γ is a simple graph of order n > 1, then

- (1) $\operatorname{pmd}(\Gamma) \leq 2n 3$,
- (2) $\operatorname{pmd}(\Gamma) \leq n 1$ if Γ is a bipartite graph,
- (3) $pmd(\Gamma) \ge \Delta(\Gamma)$ with equality if Γ is a forest.

Theorem (A. Conca and V. Welker, 2019)

If Γ is a simple graph of order n > 1, then

- (1) $\operatorname{pmd}(\Gamma) \leq 2n 3$,
- (2) $\operatorname{pmd}(\Gamma) \leq n 1$ if Γ is a bipartite graph,
- (3) $pmd(\Gamma) \ge \Delta(\Gamma)$ with equality if Γ is a forest.

Corollary (A. Conca and V. Welker, 2019)

If Γ is a forest with maximum degree $\Delta(\Gamma)$, then

Theorem (A. Conca and V. Welker, 2019)

If Γ is a simple graph of order n > 1, then

- (1) $\operatorname{pmd}(\Gamma) \leq 2n 3$,
- (2) $\operatorname{pmd}(\Gamma) \leq n 1$ if Γ is a bipartite graph,
- (3) $pmd(\Gamma) \ge \Delta(\Gamma)$ with equality if Γ is a forest.

Corollary (A. Conca and V. Welker, 2019)

If Γ is a forest with maximum degree $\Delta(\Gamma)$, then

(1) $L_{\Gamma}^{\mathbb{K}}(d)$ is radical for all d,

Theorem (A. Conca and V. Welker, 2019)

If Γ is a simple graph of order n > 1, then

- (1) $\operatorname{pmd}(\Gamma) \leq 2n 3$,
- (2) $\operatorname{pmd}(\Gamma) \leq n 1$ if Γ is a bipartite graph,
- (3) $pmd(\Gamma) \ge \Delta(\Gamma)$ with equality if Γ is a forest.

Corollary (A. Conca and V. Welker, 2019)

If Γ is a forest with maximum degree $\Delta(\Gamma)$, then

- (1) $L_{\Gamma}^{\mathbb{K}}(d)$ is radical for all d,
- (2) $L_{\Gamma}^{\mathbb{K}}(d)$ is a complete intersection iff $d \geq \Delta(\Gamma)$,

Theorem (A. Conca and V. Welker, 2019)

If Γ is a simple graph of order n > 1, then

- (1) $\operatorname{pmd}(\Gamma) \leq 2n 3$,
- (2) $\operatorname{pmd}(\Gamma) \leq n 1$ if Γ is a bipartite graph,
- (3) $pmd(\Gamma) \ge \Delta(\Gamma)$ with equality if Γ is a forest.

Corollary (A. Conca and V. Welker, 2019)

If Γ is a forest with maximum degree $\Delta(\Gamma)$, then

- (1) $L_{\Gamma}^{\mathbb{K}}(d)$ is radical for all d,
- (2) $L_{\Gamma}^{\mathbb{K}}(d)$ is a complete intersection iff $d \geq \Delta(\Gamma)$,
- (3) $L_{\Gamma}^{\mathbb{K}}(d)$ is prime iff $d \geq \Delta(\Gamma) + 1$.

Definition

Definition

• Γ a simple graph

Definition

- Γ a simple graph
- ullet M a matching of Γ

Definition

- Γ a simple graph
- M a matching of Γ
- $\bullet \ M^c := E(\Gamma) \setminus M$

Definition

- Γ a simple graph
- M a matching of Γ
- $M^c := E(\Gamma) \setminus M$
- W a walk in Γ

Definition

- Γ a simple graph
- M a matching of Γ
- $M^c := E(\Gamma) \setminus M$
- W a walk in Γ

W is alternathing w.r.t. M if

the edges of W alternate between M and M^c

Theorem

The following conditions are equivalent for a matching M of a graph Γ :

Theorem

The following conditions are equivalent for a matching M of a graph Γ :

(1) M is positive matching,

Theorem

The following conditions are equivalent for a matching M of a graph Γ :

- (1) M is positive matching,
- (2) $\Gamma[M]$ has no alternating closed walk w.r.t. M,

Theorem

The following conditions are equivalent for a matching M of a graph Γ :

- (1) M is positive matching,
- (2) $\Gamma[M]$ has no alternating closed walk w.r.t. M,
- (3) $\Gamma[M']$ has a pendant edge belonging to M' for any $M' \subseteq M$,

Theorem

The following conditions are equivalent for a matching M of a graph Γ :

- (1) M is positive matching,
- (2) $\Gamma[M]$ has no alternating closed walk w.r.t. M,
- (3) $\Gamma[M']$ has a pendant edge belonging to M' for any $M' \subseteq M$,
- (4) $M = \{e_1, \dots, e_n\}$ s.t. e_i is pendant in $\Gamma[\{e_1, \dots, e_i\}]$, for all i with $1 \le i \le n$.

Theorem

The following conditions are equivalent for a matching M of a graph Γ :

- (1) M is positive matching,
- (2) $\Gamma[M]$ has no alternating closed walk w.r.t. M,
- (3) $\Gamma[M']$ has a pendant edge belonging to M' for any $M' \subseteq M$,
- (4) $M = \{e_1, \dots, e_n\}$ s.t. e_i is pendant in $\Gamma[\{e_1, \dots, e_i\}]$, for all i with $1 \le i \le n$.

Theorem

The following conditions are equivalent for a matching M of a graph Γ :

- (1) M is positive matching,
- (2) $\Gamma[M]$ has no alternating closed walk w.r.t. M,
- (3) $\Gamma[M']$ has a pendant edge belonging to M' for any $M' \subseteq M$,
- (4) $M = \{e_1, \dots, e_n\}$ s.t. e_i is pendant in $\Gamma[\{e_1, \dots, e_i\}]$, for all i with $1 \le i \le n$.

PMD of Graphs

Example

Example

• $\operatorname{pmd}(\Gamma) \leq |E(\Gamma)|$

Example

- $\operatorname{pmd}(\Gamma) \leq |E(\Gamma)|$
- $\operatorname{pmd}(\Gamma) = |E(\Gamma)| \text{ iff } \Gamma = K_{1,s} \cup tK_1$

Example

- $\operatorname{pmd}(\Gamma) \leq |E(\Gamma)|$
- $\operatorname{pmd}(\Gamma) = |E(\Gamma)| \text{ iff } \Gamma = K_{1,s} \cup tK_1$
- $pmd(\Gamma) = max\{pmd(C): C \text{ is a connected component of } \Gamma\}.$

Example

- $\operatorname{pmd}(\Gamma) \leq |E(\Gamma)|$
- $\operatorname{pmd}(\Gamma) = |E(\Gamma)| \text{ iff } \Gamma = K_{1,s} \cup tK_1$
- $pmd(\Gamma) = max\{pmd(C): C \text{ is a connected component of } \Gamma\}.$
- $\operatorname{pmd}(\Gamma) = 1 \text{ iff } \Gamma = sK_2 \cup tK_1$

Example

- $\operatorname{pmd}(\Gamma) \leq |E(\Gamma)|$
- $\operatorname{pmd}(\Gamma) = |E(\Gamma)| \text{ iff } \Gamma = K_{1,s} \cup tK_1$
- $\operatorname{pmd}(\Gamma) = \max\{\operatorname{pmd}(C): C \text{ is a connected component of } \Gamma\}.$
- $\operatorname{pmd}(\Gamma) = 1 \text{ iff } \Gamma = sK_2 \cup tK_1$
- $\operatorname{pmd}(\Gamma) = 2 \text{ iff } \Gamma = P_{n_1} \cup \cdots \cup P_{n_k} \text{ with } \max_i(n_i) > 1$

Example

- $\operatorname{pmd}(\Gamma) \leq |E(\Gamma)|$
- $\operatorname{pmd}(\Gamma) = |E(\Gamma)| \text{ iff } \Gamma = K_{1,s} \cup tK_1$
- $pmd(\Gamma) = max\{pmd(C): C \text{ is a connected component of } \Gamma\}.$
- $\operatorname{pmd}(\Gamma) = 1 \text{ iff } \Gamma = sK_2 \cup tK_1$
- $\operatorname{pmd}(\Gamma) = 2 \text{ iff } \Gamma = P_{n_1} \cup \cdots \cup P_{n_k} \text{ with } \max_i(n_i) > 1$
- $\operatorname{pmd}(C_n) = 3$ for all $n \geq 3$

Example

- $\operatorname{pmd}(\Gamma) \leq |E(\Gamma)|$
- $\operatorname{pmd}(\Gamma) = |E(\Gamma)| \text{ iff } \Gamma = K_{1,s} \cup tK_1$
- $pmd(\Gamma) = max\{pmd(C): C \text{ is a connected component of } \Gamma\}.$
- $\operatorname{pmd}(\Gamma) = 1 \text{ iff } \Gamma = sK_2 \cup tK_1$
- $\operatorname{pmd}(\Gamma) = 2 \text{ iff } \Gamma = P_{n_1} \cup \cdots \cup P_{n_k} \text{ with } \max_i(n_i) > 1$
- $\operatorname{pmd}(C_n) = 3$ for all $n \geq 3$

Question

Any characterization of graphs Γ with pmd(Γ) = 3?

GRAPHS ATTAINING THE LOWER BOUND FOR PMD

Remark

 $\operatorname{pmd}(\Gamma) \geq \Delta(\Gamma)$ for any graph Γ .

GRAPHS ATTAINING THE LOWER BOUND FOR PMD

Remark

 $\operatorname{pmd}(\Gamma) \geq \Delta(\Gamma)$ for any graph Γ .

Question

Any classification of graphs Γ with $\operatorname{pmd}(\Gamma) = \Delta(\Gamma)$?

GRAPHS ATTAINING THE LOWER BOUND FOR PMD

Remark

 $\operatorname{pmd}(\Gamma) \geq \Delta(\Gamma)$ for any graph Γ .

Question

Any classification of graphs Γ with $\operatorname{pmd}(\Gamma) = \Delta(\Gamma)$?

Theorem

Every graph Γ with maximum valency at least three has a subdivision Γ' satisfying $\operatorname{pmd}(\Gamma') = \Delta(\Gamma')$.

Definition

Definition

Γ a simple graph

Definition

- Γ a simple graph
- A corona graph of Γ: Attach pendants to vertices of Γ.

Definition

- Γ a simple graph
- A corona graph of Γ: Attach pendants to vertices of Γ.
- An antler graph (or hartshorne graph) of Γ: Attach trees to vertices of Γ or

a corona of corona of \dots corona of Γ .

Definition

- Γ a simple graph
- A corona graph of Γ: Attach pendants to vertices of Γ.
- An antler graph (or hartshorne graph) of Γ: Attach trees to vertices of Γ or

a corona of corona of \dots corona of Γ .

Theorem

Definition

- Γ a simple graph
- A corona graph of Γ: Attach pendants to vertices of Γ.
- An antler graph (or hartshorne graph) of Γ: Attach trees to vertices of Γ or

a corona of corona of \dots corona of Γ .

Theorem

• Γ a graph

Definition

- Γ a simple graph
- A corona graph of Γ : Attach pendants to vertices of Γ .
- An antler graph (or hartshorne graph) of Γ: Attach trees to vertices of Γ or

a corona of corona of \dots corona of Γ .

Theorem

- Γ a graph
- Γ' an antler graph of Γ

Definition

- Γ a simple graph
- A corona graph of Γ : Attach pendants to vertices of Γ .
- An antler graph (or hartshorne graph) of Γ: Attach trees to vertices of Γ or

a corona of corona of \dots corona of Γ .

Theorem

- Γ a graph
- Γ' an antler graph of Γ

$$\operatorname{pmd}(\Gamma') = \max\{\operatorname{pmd}(\Gamma), \Delta(\Gamma')\}.$$

Definition (Cactus graph)

A connected graph with any two cycles having at most one vertex in common.

Definition (Cactus graph)

A connected graph with any two cycles having at most one vertex in common.

Theorem

Definition (Cactus graph)

A connected graph with any two cycles having at most one vertex in common.

Theorem

Γ a cactus

Definition (Cactus graph)

A connected graph with any two cycles having at most one vertex in common.

Theorem

Γ a cactus

$$\Delta(\Gamma) \leq \operatorname{pmd}(\Gamma) \leq \Delta(\Gamma) + 1.$$

Definition (Cactus graph)

A connected graph with any two cycles having at most one vertex in common.

Theorem

Γ a cactus

$$\Delta(\Gamma) \leq \operatorname{pmd}(\Gamma) \leq \Delta(\Gamma) + 1.$$

 $\operatorname{pmd}(\Gamma) = \Delta(\Gamma)$ if Γ is triangle-free and non-cycle

Problem

Any characterization of cacti with given pmd?

A cactus with $\mathrm{pmd}=4$

Theorem

Theorem

• $\operatorname{pmd}(K_n) = 2n - 3$ for all $n \geq 2$.

Theorem

- $\operatorname{pmd}(K_n) = 2n 3$ for all $n \geq 2$.
- $\operatorname{pmd}(K_{m,n}) = m + n 1$ for all $m, n \geq 1$.

Theorem

- $\operatorname{pmd}(K_n) = 2n 3$ for all $n \geq 2$.
- $\operatorname{pmd}(K_{m,n}) = m + n 1$ for all $m, n \geq 1$.

Remark

Theorem

- $\operatorname{pmd}(K_n) = 2n 3$ for all $n \geq 2$.
- $\operatorname{pmd}(K_{m,n}) = m + n 1$ for all $m, n \ge 1$.

Remark

• $\Gamma = K_{m+1,n} (m < n)$

Theorem

- $\operatorname{pmd}(K_n) = 2n 3$ for all $n \ge 2$.
- $\operatorname{pmd}(K_{m,n}) = m + n 1$ for all $m, n \geq 1$.

Remark

• $\Gamma = K_{m+1,n} \ (m < n)$

$$\Delta(\Gamma) = n$$
 and $\operatorname{pmd}(\Gamma) - \Delta(\Gamma) = m$.

Theorem

- $\operatorname{pmd}(K_n) = 2n 3$ for all $n \ge 2$.
- $\operatorname{pmd}(K_{m,n}) = m + n 1$ for all $m, n \geq 1$.

Remark

• $\Gamma = K_{m+1,n} \ (m < n)$

$$\Delta(\Gamma) = n$$
 and $\operatorname{pmd}(\Gamma) - \Delta(\Gamma) = m$.

Conjecture

 $\operatorname{pmd}(\Gamma) \leq 2\Delta(\Gamma) - 1$ for any graph Γ .

Theorem

16 2:

Theorem

• $\Gamma = K_{n_1,\ldots,n_m}$ $(n_1 \leq \cdots \leq n_m)$

Theorem

•
$$\Gamma = K_{n_1,\ldots,n_m}$$
 $(n_1 \leq \cdots \leq n_m)$

$$\max\left\{\frac{3}{2}|\Gamma|-n_m-1,|\Gamma|+\frac{m}{2}-2\right\}\leq\mathrm{pmd}\big(\Gamma\big)\leq 2|\Gamma|-n_{m-1}-n_m-1.$$

Theorem

•
$$\Gamma = K_{n_1,\ldots,n_m}$$
 $(n_1 \leq \cdots \leq n_m)$

$$\max\left\{\frac{3}{2}|\Gamma|-n_m-1,|\Gamma|+\frac{m}{2}-2\right\}\leq \operatorname{pmd}(\Gamma)\leq 2|\Gamma|-n_{m-1}-n_m-1.$$

Corollary

Theorem

•
$$\Gamma = K_{n_1,\ldots,n_m}$$
 $(n_1 \leq \cdots \leq n_m)$

$$\max\left\{\frac{3}{2}|\Gamma|-n_m-1,|\Gamma|+\frac{m}{2}-2\right\}\leq \mathrm{pmd}(\Gamma)\leq 2|\Gamma|-n_{m-1}-n_m-1.$$

Corollary

• $pmd(K_{1,m,n}) = m + n + 1$

Theorem

• $\Gamma = K_{n_1,\ldots,n_m}$ $(n_1 \leq \cdots \leq n_m)$

$$\max\left\{\frac{3}{2}|\Gamma|-n_m-1,|\Gamma|+\frac{m}{2}-2\right\}\leq \mathrm{pmd}(\Gamma)\leq 2|\Gamma|-n_{m-1}-n_m-1.$$

Corollary

- $pmd(K_{1,m,n}) = m + n + 1$
- $\operatorname{pmd}(K_{2,m,n}) = m + n + 2 + \varepsilon \ (\varepsilon \in \{0,1\})$

Theorem

• $\Gamma = K_{n_1,\ldots,n_m} (n_1 \leq \cdots \leq n_m)$

$$\max\left\{\frac{3}{2}|\Gamma|-n_m-1,|\Gamma|+\frac{m}{2}-2\right\}\leq \mathrm{pmd}(\Gamma)\leq 2|\Gamma|-n_{m-1}-n_m-1.$$

Corollary

- $pmd(K_{1,m,n}) = m + n + 1$
- $\operatorname{pmd}(K_{2,m,n}) = m + n + 2 + \varepsilon \ (\varepsilon \in \{0,1\})$
- $pmd(K_{2,2,2}) = 6$

Theorem

• $\Gamma = K_{n_1,\ldots,n_m}$ $(n_1 \leq \cdots \leq n_m)$

$$\max\left\{\frac{3}{2}|\Gamma|-n_m-1,|\Gamma|+\frac{m}{2}-2\right\}\leq\mathrm{pmd}\big(\Gamma\big)\leq 2|\Gamma|-n_{m-1}-n_m-1.$$

Corollary

- $pmd(K_{1,m,n}) = m + n + 1$
- $\operatorname{pmd}(K_{2,m,n}) = m + n + 2 + \varepsilon \ (\varepsilon \in \{0,1\})$
- $pmd(K_{2,2,2}) = 6$
- $pmd(K_{2,2,3}) = 7$

Theorem

Theorem

• Γ a bipartite graph with $\Delta(\Gamma) \geq 3$

Theorem

- Γ a bipartite graph with $\Delta(\Gamma) \geq 3$
- M a perfect matching of Γ

Theorem

- Γ a bipartite graph with $\Delta(\Gamma) \geq 3$
- M a perfect matching of Γ

$$\operatorname{pmd}(\Gamma) \leq \operatorname{pmd}(\Gamma - M) + \Delta(\Gamma) - 1.$$

Corollary

Corollary

 \bullet $\Gamma = \Gamma_1 \cup \Gamma_2$ with Γ_1, Γ_2 spanning subgraphs

Corollary

- $\Gamma = \Gamma_1 \cup \Gamma_2$ with Γ_1, Γ_2 spanning subgraphs
- Γ₁ is r-regular

Corollary

- $\Gamma = \Gamma_1 \cup \Gamma_2$ with Γ_1, Γ_2 spanning subgraphs
- Γ₁ is r-regular
- Γ_2 is non-empty and $\Delta(\Gamma_2) = s$

Corollary

- $\Gamma = \Gamma_1 \cup \Gamma_2$ with Γ_1, Γ_2 spanning subgraphs
- Γ₁ is r-regular
- Γ_2 is non-empty and $\Delta(\Gamma_2) = s$

$$\operatorname{pmd}(\Gamma) \leq \operatorname{pmd}(\Gamma_2) + \binom{r}{2} + rs.$$

Corollary

- $\Gamma = \Gamma_1 \cup \Gamma_2$ with Γ_1, Γ_2 spanning subgraphs
- Γ₁ is r-regular
- Γ_2 is non-empty and $\Delta(\Gamma_2) = s$

$$\operatorname{pmd}(\Gamma) \leq \operatorname{pmd}(\Gamma_2) + \binom{r}{2} + rs.$$

Corollary

Corollary

- $\Gamma = \Gamma_1 \cup \Gamma_2$ with Γ_1, Γ_2 spanning subgraphs
- Γ₁ is r-regular
- Γ_2 is non-empty and $\Delta(\Gamma_2) = s$

$$\operatorname{pmd}(\Gamma) \leq \operatorname{pmd}(\Gamma_2) + \binom{r}{2} + rs.$$

Corollary

• Γ an r-regular bipartite graph

Corollary

- $\Gamma = \Gamma_1 \cup \Gamma_2$ with Γ_1, Γ_2 spanning subgraphs
- Γ₁ is r-regular
- Γ_2 is non-empty and $\Delta(\Gamma_2) = s$

$$\operatorname{pmd}(\Gamma) \leq \operatorname{pmd}(\Gamma_2) + \binom{r}{2} + rs.$$

Corollary

• Γ an r-regular bipartite graph

$$\operatorname{pmd}(\Gamma) \leq \binom{r}{2} + 2.$$

Definition (Cayley Graphs)

Definition (Cayley Graphs)

• G a group

Definition (Cayley Graphs)

- G a group
- C an inversed closed subset of G

Definition (Cayley Graphs)

- G a group
- C an inversed closed subset of G

$$Cay(G,C) = (G, \{edges \{g,gc\}\})$$

CAYLEY GRAPHS: $Cay(A_4, \{n^{-1}, \beta\})$

$$\alpha = (123)$$
 and $\beta = (12)(34)$
 $a = (), b = (14)(23), c = (12)(34), and $d = (13)(24)$$

Lemma

If $\Gamma = \text{Cay}(G, C)$, $c \in C$, $e = \{x, xc\}$, and $H = H_c \leq G$, then

Lemma

If $\Gamma = \text{Cay}(G, C)$, $c \in C$, $e = \{x, xc\}$, and $H = H_c \leq G$, then

(1) $H \cdot e$ is a matching iff $c \notin H^x$. In this case, $|H \cdot e| = |H|$.

Lemma

If $\Gamma = \operatorname{Cay}(G, C)$, $c \in C$, $e = \{x, xc\}$, and $H = H_c \leq G$, then (1) $H \cdot e$ is a matching iff $c \notin H^x$. In this case, $|H \cdot e| = |H|$. (2) $H \cdot e$ is a p.m. iff $H = \{h_1, \dots, h_n\}$ s.t. for any j > 1, either $(h_i^{-1}h_j)^x \notin C \cup cC \quad \text{or} \quad (h_i^{-1}h_j)^{xc} \notin C \cup c^{-1}C$ for all i < j.

Lemma

If $\Gamma = \operatorname{Cay}(G,C)$, $c \in C$, $e = \{x,xc\}$, and $H = H_c \leq G$, then

- (1) $H \cdot e$ is a matching iff $c \notin H^x$. In this case, $|H \cdot e| = |H|$.
- (2) $H \cdot e$ is a p.m. iff $H = \{h_1, \dots, h_n\}$ s.t. for any j > 1, either

$$(h_i^{-1}h_j)^x \notin C \cup cC$$
 or $(h_i^{-1}h_j)^{xc} \notin C \cup c^{-1}C$

for all i < j.

(3) $H \cdot e$ is a p.m. iff

$$H^{x} \cap (C \cup cC) = \{1\}$$
 or $H^{xc} \cap (C \cup c^{-1}C) = \{1\}.$

Lemma

If $\Gamma = \operatorname{Cay}(G,C)$, $c \in C$, $e = \{x,xc\}$, and $H = H_c \leq G$, then

- (1) $H \cdot e$ is a matching iff $c \notin H^x$. In this case, $|H \cdot e| = |H|$.
- (2) $H \cdot e$ is a p.m. iff $H = \{h_1, \dots, h_n\}$ s.t. for any j > 1, either

$$(h_i^{-1}h_j)^x \notin C \cup cC$$
 or $(h_i^{-1}h_j)^{xc} \notin C \cup c^{-1}C$

for all i < j.

(3) $H \cdot e$ is a p.m. iff

$$H^{\mathsf{x}} \cap (\mathsf{C} \cup \mathsf{cC}) = \{1\} \quad \text{or} \quad H^{\mathsf{xc}} \cap (\mathsf{C} \cup \mathsf{c}^{-1}\mathsf{C}) = \{1\}.$$

(4) $\Gamma[H \cdot e]$ is a union of edges iff

$$H^{x} \cap (C \cup cC) = \{1\}$$
 and $H^{xc} \cap (C \cup c^{-1}C) = \{1\}.$

Theorem

If $\Gamma = \operatorname{Cay}(G, C)$ and $\{H_c\}_{c \in C}$ is a family of subgroups of G satisfying $H_c = H_{c-1}$, and

$$H_c^X \cap (C \cup cC) = \{1\}$$
 or $H_c^{XC} \cap (C \cup c^{-1}C) = \{1\}$

for all $c \in C$ and $x \in G$, then

Theorem

If $\Gamma = \operatorname{Cay}(G, C)$ and $\{H_c\}_{c \in C}$ is a family of subgroups of G satisfying $H_c = H_{c-1}$, and

$$H_c^X \cap (C \cup cC) = \{1\}$$
 or $H_c^{XC} \cap (C \cup c^{-1}C) = \{1\}$

for all $c \in C$ and $x \in G$, then

(1) the edge sets $H_c \cdot \{x, xc\}$ partition $E(\Gamma)$.

Theorem

If $\Gamma = \text{Cay}(G,C)$ and $\{H_c\}_{c \in C}$ is a family of subgroups of G satisfying $H_c = H_{c^{-1}}$, and

$$H_c^X \cap (C \cup cC) = \{1\}$$
 or $H_c^{XC} \cap (C \cup c^{-1}C) = \{1\}$

for all $c \in C$ and $x \in G$, then

- (1) the edge sets $H_c \cdot \{x, xc\}$ partition $E(\Gamma)$.
- (2) the edge sets $H_c \cdot \{x, xc\}$ give rise to a pmd of Γ .

Theorem

If $\Gamma = \operatorname{Cay}(G,C)$ and $\{H_c\}_{c \in C}$ is a family of subgroups of G satisfying $H_c = H_{c^{-1}}$, and

$$H_c^X \cap (C \cup cC) = \{1\}$$
 or $H_c^{XC} \cap (C \cup c^{-1}C) = \{1\}$

for all $c \in C$ and $x \in G$, then

- (1) the edge sets $H_c \cdot \{x, xc\}$ partition $E(\Gamma)$.
- (2) the edge sets $H_c \cdot \{x, xc\}$ give rise to a pmd of Γ .
- (3) if I(C) = Involutions(C) and $H \in \{H_c\}_{c \in C}$ has min. order, then

$$\operatorname{pmd}(\Gamma) \leq \left(|C| - \frac{1}{2}|I(C)|\right)[G:H].$$

Theorem

• $Q_n = \text{Cay}(\mathbb{Z}_2^n, \{e_1, \dots, e_n\})$ the hypercube of dimension n

Theorem

- $\bullet \ \ Q_n = \text{\rm Cay}(\mathbb{Z}_2^n, \{e_1, \ldots, e_n\})$ the hypercube of dimension n
- $H_{e_i} = \left\{ (x_1, \dots, x_n) \colon \sum_{j=1}^n x_j = x_i = 0 \right\}$ for all i with $1 \le i \le n$

Theorem

- $Q_n = \text{Cay}(\mathbb{Z}_2^n, \{e_1, \dots, e_n\})$ the hypercube of dimension n
- $H_{e_i} = \left\{ (x_1, \dots, x_n) \colon \sum_{j=1}^n x_j = x_i = 0 \right\}$ for all i with $1 \le i \le n$ $\operatorname{pmd}(Q_n) \le 2n.$

Theorem

- $Q_n = \text{Cay}(\mathbb{Z}_2^n, \{e_1, \dots, e_n\})$ the hypercube of dimension n
- $H_{e_i} = \left\{ (x_1, \dots, x_n) : \sum_{j=1}^n x_j = x_i = 0 \right\}$ for all i with $1 \le i \le n$ $\operatorname{pmd}(Q_n) \le 2n.$
- Merging the last two (suitably chosen) matchings yields

$$\operatorname{pmd}(Q_n) \leq 2n - 1.$$

Theorem

- $Q_n = \text{Cay}(\mathbb{Z}_2^n, \{e_1, \dots, e_n\})$ the hypercube of dimension n
- $H_{e_i} = \left\{ (x_1, \dots, x_n) : \sum_{j=1}^n x_j = x_i = 0 \right\}$ for all i with $1 \le i \le n$ $\operatorname{pmd}(Q_n) < 2n.$
- Merging the last two (suitably chosen) matchings yields

$$\operatorname{pmd}(Q_n) \leq 2n-1.$$

Conjecture

$$pmd(Q_n) = 2n - 1$$

Thanks!