

Abstract Algebra

Author: Wenxiao Yang

Institute: University of Illinois at Urbana-Champaign; University of California Berkeley

Date: 2023 (Last Updated)

Contents

Chapte	r 1 Eq	uivalence Relations and Partition	1
1.1	Equiva	alence Relations (@ Lec 01 of ECON 204)	1
1.2	Equiva	alence Class (@ Lec 01 of ECON 204)	2
	1.2.1	[x]: equivalence class	2
	1.2.2	X/\sim : set of equivalence classes	2
1.3	Relation	onship of <u>Equivalence relation</u> , <u>Set of equivalence classes</u> and <u>Partitions</u>	2
	1.3.1	Partition (separate a set into disjoint sets with no element left)	2
	1.3.2	Theorem 1.2.7: any equivalence class forms a unique partition; any partition forms a	
		unqiue equivalence class (@ Lec 01 of ECON 204)	2
	1.3.3	Corollary: \sim_{π} equals to \sim , where $\pi(x) = [x]$	3
Chapte	r 2 Pei	rmutations	5
2.1	Sym(.	$X(X) = \{\sigma: X \to X \sigma \text{ is a bijection}\}: $ permutation group of $X(X): $	
	permu	ntations of X	5
	2.1.1	Properties of \circ on $Sym(X)$	5
	2.1.2	S_n : Permutation group on n elements, σ^i	5
	2.1.3	k-cycle, cyclically permute/fix	5
2.2	Disjoin	nt cycles	6
	2.2.1	Theorem: Every permutation is a union of disjoint cycles, uniquely	7
	2.2.2	Cycle Structure	9
2.3	Transp	position	9
	2.3.1	Theorem: Every permutation can be represented by a product of transpositions (not	
		require to be disjoint)	9
	2.3.2	Sign of Permutation	10
Chapte	r 3 Int	egers	12
3.1	Propos	sition 1.4.1: Properties of integers $\mathbb Z$	12
3.2	Defini	tion: Divide	12
3.3	Propos	sition 1.4.2: properties of integer division	12
3.4	Defini	tions: Prime, The Greatest common divisor $gcd(a,b)$	13

3.5	.5 Euclidean Algorithm							
3.6	.6 Proposition: $gcd(a,b)$ exists and is the smallest positive integer in the set $M=\{ma+nb m,n\in A\}$							
	$\mathbb{Z}\}$							
3.7	7 Well-Ordering Principle (Least Integer Axiom)							
3.8	Propos	sition 1.4.10: $gcd(b,c)$, $b ac \Rightarrow b a$	14					
	3.8.1	Corollary: $p ab \Rightarrow p a$ or $p b$	15					
3.9	Funda	mental Theorem of Arithmetic: Any integer $a \geq 2$ has a unique prime factorization	15					
	3.9.1	Existence	15					
	3.9.2	Uniqueness	15					
Chapte	r4 Mo	odular arithmetic	17					
4.1	Congr	uences	17					
	4.1.1	Congruent modulo m : $a \equiv b \mod m$	17					
	4.1.2	Proposition: For fixed $m \geq 2$, the relation " $a \sim b \Leftrightarrow a \equiv b \mod m$ " is an						
		equivalence relation	17					
	4.1.3	Theorem: the equivalence relation " $a \sim b \Leftrightarrow a \equiv b \mod m$ " partitions the integers into						
		m disjoint sets $\Omega_i = \{a a \sim i\}, i = 0, 1,, m-1 \dots, m-1 \dots$	17					
	4.1.4	Proposition: Addition and Mutiplication of Congruences	18					
4.2	Solvin	g Linear Equations on Modular m	18					
	4.2.1	Theorm: unique solution of $aX \equiv b \bmod m$ if $gcd(a,m) = 1 \ldots \ldots \ldots$	18					
4.3	Chines	se Remaindar Theorem (CRT): unique solution for x modulo mn	19					
4.4	Congr	uence Classes: $[a]_n = \{a + kn k \in \mathbb{Z}\}$	20					
	4.4.1	Set of congruence classes of mod n : $\mathbb{Z}_n = \{[a]_n a \in \mathbb{Z}\} = \{[0], [1],, [n-1]\}$	20					
	4.4.2	Proposition 1.5.5: Addition and Multiplication on Congruence Classes	21					
	4.4.3	Units(i.e. invertible) in Congruence Classes	21					
	4.4.4	Proposition 1.5.6: Set of units in congruence classes: $\mathbb{Z}_n^{\times} = \{[a] \in \mathbb{Z}_n [a] \text{ is a unit}\} =$						
		$\{[a] \in \mathbb{Z}_n gcd(a,n) = 1\}$	21					
	4.4.5	Corollary 1.5.7: if p is prime, $\varphi(p) = \mathbb{Z}_p^{\times} = \{[1], [2],, [p-1]\}$	22					
4.5	Euler 1	$\underline{\text{phi-function}}: \varphi(n) = \mathbb{Z}_n^{\times} \dots \dots$	22					
	4.5.1	$m n, \pi_{m,n}([a]_n) = [a]_m \dots \dots$	22					
4.6	Theore	em 1.5.8 (Chinese Remainder Theorem): $n = mk, gcd(m, k) = 1, F([a]_n) = (\pi_{m,n}([a]_n), gcd(m, k))$	$\pi_{k,n}([a]_n)$					
	$([a]_m,$	$[a]_k)$	23					

	4.6.1	Proposition 1.5.9+Corollary 1.5.10: $m, n, k > 0, n = mk, gcd(m, k) = 1$, then	
		$F(\mathbb{Z}_n^\times) = \mathbb{Z}_m^\times \times \mathbb{Z}_k^\times \text{, then } \varphi(n) = \varphi(m)\varphi(k) \ \dots \ $	23
4.7	prime	factorization: $n = p_1^{r_1} p_k^{r_k}$, then $\varphi(n) = (p_1 - 1) p_1^{r_1 - 1} (p_k - 1) p_k^{r_k - 1}$	23
Chapte	r 5 Gro	oup	25
5.1	Group	(G,*): a set with a binary operation(associative, identity, inverse)	25
	5.1.1	Definition	25
	5.1.2	Uniqueness of identity and inverse	25
	5.1.3	Examples: Permutation group $Sym(X)$, Klein 4-group, alternating group A_n , Dihedral	
		group	25
	5.1.4	Cancelation Laws	26
	5.1.5	Unique Solution of Linear Equation	27
5.2	Subgro	oup: $H \leq G$	27
	5.2.1	Proposition 2.6.8: $H < G, (H, *)$ is a group: A group's operation with its any subgroup	
		is also a group	28
5.3	Some l	Properties of Group Operation	29
5.4	Power	of an Element	29
5.5	$(G \times I)$	H,\circledast): Direct Product of G and H	29
	5.5.1	Proposition 3.1.7: $(G \times H, \circledast)$ is a group	29
5.6	Subgro	oups and Cyclic Groups	30
	5.6.1	Intersection of Subgroups is a Subgroup	30
	5.6.2	Subgroup Generated by A : $\langle A \rangle$	30
	5.6.3	Cyclic Group: group generated by an element	30
	5.6.4	Cyclic Subgroup	30
	5.6.5	Subgroups of a Cyclic Group must be Cyclic	30
	5.6.6	Theorem: $\langle a^v \rangle < \{1, a, a^2,, a^{n-1}\} \Rightarrow \langle a^v \rangle = \langle a^d \rangle$, $d = \gcd(v, n), \langle a^v \rangle = \frac{n}{d}$	31
	5.6.7	Corollary 3.2.4: G is a cyclic group $\Rightarrow G$ is abelian	31
	5.6.8	Equivalent properties of order of g : $ g = \langle g\rangle <\infty$	31
	5.6.9	$(\mathbb{Z},+)$ Theorem 3.2.9: $\langle a \rangle < \langle b \rangle$ if and only if $b a$	32
	5.6.10	$(\mathbb{Z}_n,+)$ Theorem 3.2.10: $\langle [d] \rangle < \langle [d'] \rangle$ if and only if $d' d$	32
	5.6.11	Subgroup Lattice	32
5.7	Homo	morphism	32
	571	Def: Homomorphism Image	32

	5.7.2	Properties of Homomorphism	34
	5.7.3	Kernel of Homomorphism	34
5.8	Isomor	phism	35
	5.8.1	Definition: Isomorphism	35
	5.8.2	Theorem: $\sigma:G\to G'$ injective and $\sigma(xy)=\sigma(x)\sigma(y)\ \forall x,y\in G\Rightarrow\sigma(G)\leq G',G$ is	
		isomorphic to $\sigma(G)$	35
	5.8.3	Cayley Theorem: G is isomorphic to a subgroup of S_G	36
5.9	Coset a	and Order	37
	5.9.1	index of a subgroup	37
	5.9.2	Lagrange Theorem: Order of subgroup divides the order of group	37
	5.9.3	Theoerm: Order of element $a \in G = \langle a \rangle $ divides $ G $	38
	5.9.4	Theorem: Order n cyclic group is isomorphic to $(\mathbb{Z}_n, +_n)$	38
5.10	Direct	Products	38
	5.10.1	Cartesian product	38
	5.10.2	Theorem: $\mathbb{Z}_m \times \mathbb{Z}_n$ is cyclic and is isomorphic to $\mathbb{Z}_{mn} \Leftrightarrow gcd(m,n) = 1 \dots \dots$	39
	5.10.3	Finitely Generated Abelian Groups	40
5.11	Def: N	formal Subgroup $H \lhd G: aH = Ha, \forall a \in G$	41
	5.11.1	Thm: Three ways to check if H is normal	41
	5.11.2	Thm: A subgroup is "Well-defined Left Cosets Multiplication" \Leftrightarrow "Normal"	41
5.12	Factor	Group $G/H = \{aH : a \in G\}$	42
	5.12.1	Def: kernel H forms a factor group G/H	42
	5.12.2	Cor: $ker\phi$ is a normal subgroup	42
	5.12.3	Corollary: normal subgroup H forms a group G/H $\ \ldots \ \ldots \ \ldots \ \ldots \ \ldots$	42
	5.12.4	Thm: $\underline{\text{normal subgroup is a kernel}}$ of a surjective homomorphism $\gamma:G\to G/H$	43
	5.12.5	The Fundamental Homomorphism Theorem: Every homomorphism ϕ can be factored	
		to a homomorphism $\gamma:G o G/H$ and isomorphism $\mu:G/H o \phi[G]$	43
	5.12.6	Thm: $(H \times K)/(H \times e) \simeq K$ and $(H \times K)/(e \times K) \simeq H$	45
	5.12.7	Thm: factor group of a cyclic group is cyclic [a]/N=[aN]	45
	5.12.8	Ex: 15.11 example $\mathbb{Z}_4 \times \mathbb{Z}_6/(\langle (2,3) \rangle) \simeq \mathbb{Z}_4 \times \mathbb{Z}_3$ or \mathbb{Z}_{12}	45
	5.12.9	Thm: Homomorphism $\phi:G\to G'$ preserves normal subgroups between G and $\phi[G]$.	45
5.13	Def: au	utomorphism, inner automorphism	45
5.14	Simple	Groups	46

5.15	The Ce	enter and Commutator Subgroups	46
	5.15.1	Def: center and commutator subgroup	46
	5.15.2	Thm: commutator subgroup is normal	46
	5.15.3	Thm: if $N \lhd G$, " G/N is abelian" \Leftrightarrow " $[G,G] \leq N$ "	47
5.16	Group	Action on a Set	47
	5.16.1	Def: action of group G on set X	47
	5.16.2	Thm: If G acts on $X,\phi:G\to S_X$ as $\phi(g)=\sigma_g$ is a homomorphism (where $\sigma_g(x)=gx$)	48
	5.16.3	Examples of Group Actions	48
5.17	Orbits		48
	5.17.1	Thm: Equivalence Relation: X is a G -set, $x_1 \sim x_2 \Leftrightarrow x_2 = gx_1, \ \exists g \in G \ldots \ldots$	48
	5.17.2	Def: $Gx = \{gx g \in G\}$ is the orbit of x	48
	5.17.3	Def: $G_x = \{g \in G gx = x\}$ is the <u>stabilizer</u> of $x \dots \dots \dots \dots \dots$	49
	5.17.4	Thm: if X is a G -set, stabilizer $G_x = \{g \in G gx = x\}$ is subgroup of $G, \forall x \in X$	49
	5.17.5	Orbit-Stabilizer Theorem: $ Gx = \frac{ G }{ G_x }$	49
5.18	Applic	ations of G —sets to Counting	50
	5.18.1	Burnside's Formula: number of orbits in X : $r = \frac{1}{ G } \sum_{g \in G} X^g \dots \dots$	50
	5.18.2	Example: Counting	50
Chapter	6 Rin	g and Field	52
6.1	Ring ($R,+,\cdot)$	52
	6.1.1	Definition of Ring: $+$ is associative, commutative, identity, inverse $\in R$; \cdot is associative,	
		distributes over $+ \dots $	52
	6.1.2	$S \subset R$: Subring (closed under $+$ and \cdot ; addictive inverse $-a \in S$)	52
	6.1.3	Def: Commutative ring: ring's · is commutative	52
	6.1.4	Def: A ring with 1: the ring exists multiplication identity $1 \in R$	52
	6.1.5	Def: In a ring R with 1, u is a <u>unit</u> if $\exists v \in R$ s.t. $uv = vu = 1 \dots \dots \dots$	53
	6.1.6	Def: A ring with 1, R is a <u>division ring</u> if every nonzero element of R is a unit	53
	6.1.7	Def: Ring Homomorphism: $\phi(a+b) = \phi(a) + \phi(b), \phi(ab) = \phi(a)\phi(b)$	53
	6.1.8	Def: <u>zero divisor</u> : a $a \neq 0 \in R$ if $\exists b \neq 0 \in R$ s.t. $ba = 0$ or $ab = 0$	53
	6.1.9	Remark: In \mathbb{Z}_n , an element is either 0 or unit or zero divisor	53
	6.1.10	Thm: $a \in \mathbb{Z}_n$ is a zero divisor $\Leftrightarrow gcd(a, n) \neq 1$	54
	6.1.11	Cor: \mathbb{Z}_p has no zero divisors if p is prime	54
	6.1.12	Def: An integral domain is a commutative ring with $1 \neq 0$ that has no zero divisors $\ .$	54

6.2	Field I	f	54
	6.2.1	Def: A <u>field</u> is a commutative division ring	54
	6.2.2	Differences between "Field" and "Integral Domain"	54
	6.2.3	Lemma: A unit is not zero divisor	54
	6.2.4	Lemma: A field doesn't has zero divisors	55
	6.2.5	Thm: Every field is an integral domain	55
	6.2.6	Thm: Every finite integral domain is a field	55
	6.2.7	Note: Finite Integral Domain \subset Field \subset Integral Domain	56
6.3	The C	haracteristic of a Ring	56
	6.3.1	Def: characteristic n is the least positive integer s.t. $n \cdot a = 0, \forall a \in R$	56
	6.3.2	Thm: In a ring with 1, characteristic $n \in \mathbb{Z}^+$ s.t. $n \cdot 1 = 0 \ldots \ldots \ldots \ldots$	56
Chapte	r7 Th	e Ring \mathbb{Z}_n (Fermat's and Euler's Theorems)	57
7.1	Ferma	t's Theorem	57
	7.1.1	Thm: nonzero elements in \mathbb{Z}_p (p is prime) form a group under multiplication	57
	7.1.2	Cor: (Little Theorem of Fermat) $a \in \mathbb{Z}$ and p is prime not dividing a , then $a^{p-1} \equiv$	
		$1 \mod p \ (p \text{ divides } a^{p-1} - 1) \dots $	57
	7.1.3	Cor: (Little Theorem of Fermat) If $a \in \mathbb{Z}$, then $a^p \equiv a \bmod p$ for any prime $p \ldots \ldots$	57
7.2	Euler's	s Theorem	57
	7.2.1	Thm: $G_n = \{a \in \mathbb{Z}_n : gcd(a, n) = 1\}$ forms a group under multiplication	57
	7.2.2	Def: <u>Euler phi function</u> $\phi(n) = G_n $, where $G_n = \{a \in \mathbb{Z}_n : gcd(a, n) = 1\} \dots$	58
	7.2.3	Thm: (Euler's Theorem) If $a\in\mathbb{Z},n\geq 2$ s.t. $gcd(a,n)=1$ then $a^{\phi(n)}\equiv 1$ mod n	58
7.3	Applic	eation to $ax \equiv b \pmod{m}$	58
	7.3.1	Thm: find solution of $ax \equiv b \pmod{m}$, $gcd(a, m) = 1 \dots \dots \dots \dots \dots$	58
	7.3.2	Thm: $ax \equiv b \pmod{m}$, $d = \gcd(a, m)$ has solutions if $d b$, the number of solutions is d	58
	7.3.3	Cor: $ax \equiv b \pmod{m}$, $d = gcd(a, m)$, $d b$, then solutions are $((\frac{a}{d})^{\phi(\frac{m}{d})-1}\frac{b}{d} + k\frac{m}{d}) + k\frac{m}{d}$	
		$(m\mathbb{Z}), k = 0, 1,, d - 1 $	59
Chapte	r 8 Riı	ng Homomorphisms and Factor Rings	60
8.1	Ring H	Homomorphism	60
	8.1.1	Def: Ring Homomorphism: $\phi(a+b) = \phi(a) + \phi(b), \phi(ab) = \phi(a)\phi(b)$	60
	8.1.2	Properties of Ring Homomorphism	60
	8.1.3	Def: kernel of ring homomorphism (the same as group homomorphism)	60

	8.1.4	Thm: one-to-one map $\Leftrightarrow Ker(\phi) = \{0\}$	60
8.2	Factor	(Quotient) Rings	61
	8.2.1	Thm: R/H is a ring for $H=ker\phi$ if operations well defined $\ \ldots \ \ldots \ \ldots \ \ldots$	61
	8.2.2	Thm: $(a+H)+(b+H)=(a+b)+H$ well defined $\Leftrightarrow ah\in H, hb\in H, \forall a,b\in R,b\in H$	61
	8.2.3	Def: $N < R$ is ideal $aN \subseteq N$ and $Nb \subseteq N \ \forall a,b \in R \ \dots \dots \dots \dots$	61
	8.2.4	Thm: N is ideal $\Rightarrow R/N$ is a ring	61
	8.2.5	Fundamental Homomorphism Theorem	61
	8.2.6	Thm: $I,J\subset R$ be $R-ideals$ and $I+J=R\Rightarrow R/_{I\cap J}\cong R/_I\times R/_J$	62
Chaptei	9 Pri	me and Maximal Ideals	63
9.1	Thm:	N is R -ideal has a unit $\Rightarrow N = R$	63
	9.1.1	Cor: Ideal of field F is $\{0\}$ or F	63
9.2	Def: M	Maximal ideal: no other ideal properly contains it	63
	9.2.1	Thm: R comm ring with 1, M maximal ideal $\Leftrightarrow R/M$ is a field	63
9.3	Def: P	rime ideal: $ab \in P \Rightarrow a \in P \text{ or } b \in P$	64
	9.3.1	Thm: N prime ideal $\Leftrightarrow R/N$ is an integral domain	64
	9.3.2	Cor: maximal ideal \Rightarrow prime ideal	64
9.4	Relatio	on Summary	64
9.5	Thm: 1	nomomorphism $\phi:\mathbb{Z}\to R,\phi(n)=n\cdot 1$	65
	9.5.1	Cor: Ring R 1. characteristic $n > 1 \Rightarrow$ has subring isomorphic to \mathbb{Z}_n 2. characteristic	
		$0\Rightarrow$ has subring isomorphic to $\mathbb Z$	65
	9.5.2	Thm: Field F 1. prime characteristic $p \Rightarrow$ has subfield isomorphic to \mathbb{Z}_p 2. characteristic	
		$0\Rightarrow$ has subfield isomorphic to $\mathbb Q$	65
9.6	Def: P	ricipal ideal (of comm ring R) generated by a : $\langle a \rangle = \{ra r \in R\} \dots \dots \dots$	65
	9.6.1	Thm: field F , every ideal in $F[x]$ is principal	66
	9.6.2	Thm: principal ideal $\langle p(x) \rangle \neq \{0\}$ of $F[x]$ is maximal $\Leftrightarrow p(x)$ is irreducible	66
Chaptei	· 10 The	e Field of Quotients of an Integral Domain	67
10.1	Step 1.	Define what the elements of F are to be. (Define S/\sim)	67
	10.1.1	Def: equivalent relation $(a,b) \sim (c,d) \Leftrightarrow ad = bc \ldots \ldots \ldots \ldots$	67
10.2	Step 2.	Define the binary operations of addition and multiplication on S/\sim	67
	10.2.1	lemma: well-defined operations $+, \times$	67
10.3	Step 3.	Check all the field axioms to show that F is a field under these operations	68

	10.3.1 Thm: S/\sim is a field with $+,\times$	68
10.4	Step 4. Show that F can be viewed as containing D as an integral subdomain	68
	10.4.1 Lem: $\phi(a) = [(a,1)]$ is an isomorphism between D and $\{[(a,1)] a \in D\}$	68
	10.4.2 Thm: every element of F can be expressed as a quotient of two elements of D :	
	$[(a,b)] = rac{\phi(a)}{\phi(b)}$	69
Chaptei	r 11 Polynomials	70
11.1	Def: Polynomials	70
11.2	Rings of Polynomials	70
	11.2.1 Thm: $R[x]$ is a ring under addition and multiplication	70
	11.2.2 Def: evaluation homomorphism	71
	11.2.3 Def: α is zero if $EV_{x=\alpha}(f(x))=0$	71
11.3	Degree of a Polynomial: $deg(f)$	72
	11.3.1 Lemma 2.3.3: $deg(fg) = deg(f) + deg(g), \ deg(f+g) \leq \max\{deg(f), deg(g)\}$	72
11.4	Corollary 2.3.5: Unit(invertible) in $\mathbb{F}[x]$: constant $\neq 0$ iff $deg(f) = 0 \dots \dots \dots \dots$	72
11.5	<u>Irreducible</u> Polynomials:	72
11.6	Theorem 2.3.6: nonconstant polynomials can be reduced uniquely	73
Chaptei	r 12 Divisibility of Polynomials	74
12.1	Thm: Euclidean Algorithm of polynomials	74
12.2	Cor: a is a zero of $f(x) \Leftrightarrow (x-a) f(x)$	74
12.3	Cor: Finite subgroup of multiplicative $F \setminus \{0\}$ is cyclic $\dots \dots \dots \dots \dots \dots$	75
	12.3.1 Greatest common divisor of f and g : is not unique, we denote monic Greatest common	
	divisor as $gcd(f,g)$	75
	12.3.2 Proposition 2.3.10:	76
	12.3.3 Proposition 2.3.12: $gcd(f,g)=1, f gh\Rightarrow f h$	76
	12.3.4 Corollary 2.3.13: irreducible $f, f gh \Rightarrow f g$ or $f h$	77
12.4	Roots	77
	12.4.1 Corollary 2.3.16(of Euclidean Algorithm): f can be divided into $(x - \alpha)q + f(\alpha)$ i.e.	
	if α is a root, then $(x-\alpha) f$	77
12.5	Multiplicity	77
	12.5.1 Sum of multiplicity $\leq deg(f)$	77
12.6	Roots in a filed may not in its subfield	77

Chapter	13 Sylow Theorems	79
13.1	Def: <i>p</i> -group	79
13.2	Sylow Theorems	79
13.3	Thm: finite $H, K \leq G, HK = \frac{ H K }{ H \cap K }$	79
13.4	Group action by conjugation	79
13.5	Lemma: $K \leq N_G(H) \Rightarrow HK \leq G$	80
13.6	Cor: if $H \lhd N_g(H) \leq G$, $\#$ subgroups of G conjugate to H is $[G:N_G(H)]$	80
13.7	Center $Z(G)=\{a\in G:ag=ga, \forall g\in G\}=\{a\in G:gag^{-1}=a, \forall g\in G\}$	80
13.8	Class Equation: $ G = Z(G) + \sum_{i=1}^r \frac{ G }{ C_G(g_i) } \dots \dots$	80
Chapter	· 14 Euclidean geometry basics	82
14.1	Euclidean distance, inner product	82
14.2	Isometry of \mathbb{R}^n : a bijection $\mathbb{R}^n \to \mathbb{R}^n$ preserves distance	82
	14.2.1 $Isom(\mathbb{R}^n)$: set of all isometries of \mathbb{R}^n	82
	14.2.2 $Isom(\mathbb{R}^n)$ is closed under \circ and inverse	82
14.3	$A \in GL(n, \mathbb{R}), T_A(v) = Av: A^t A = I \Leftrightarrow T_A \in Isom(\mathbb{R}^n) \dots \dots \dots \dots \dots$	83
14.4	Linear isometries i.e. orthogonal group $O(n)=\{A\in GL(n,\mathbb{R}) A^tA=I\}$	83
	14.4.1 Special orthogonal group $SO(n) = \{A \in O(n) det(A) = 1\}$: orthogonal group with	
	$det(A) = 1 \dots \dots$	83
14.5	translation: $\tau_v(x) = x + v$	83
	14.5.1 translation is an isometry	83
14.6	The composition of a translation and an orthogonal transformation is an isometry $\Phi_{A,v}(x)=$	
	$\tau_v(T_A(x)) = Ax + v \dots \dots$	84
	14.6.1 Theorem 2.5.3: All isometries can be represented by a composition of <i>a translation</i> and	
	an orthogonal transformation, $Isom(\mathbb{R}^n) = \{\Phi_{A,v} A \in O(n), v \in \mathbb{R}^n\} \dots \dots$	84
Chapter	15 Complex numbers	85
15.1	Geometric Meaning of Addition and Multiplication	85
15.2	Theorem 2.1.1: $f(x) = a_0 + a_1 x + + a_n x^n$ with coefficients $a_0, a_1,, a_n \in \mathbb{C}$. Then f has	
	a $\underline{\mathrm{root}}$ in \mathbb{C} : $\exists \alpha \in \mathbb{C}$ s.t. $f(\alpha) = 0$	86
	15.2.1 Corollary 2.1.2: $f(x) = a_n \prod_{i=1}^n (x - k_i) = a_n (x - k_1)(x - k_2)(x - k_n)$, where	
	$k_1, k_2,, k_n$ are roots of $f(x)$	87

15.2.2	Corollary 2.1.3:	a_i	$\in \mathbb{F}$	₹, j	f cai	ı be	e	xpr	esses	as	a	pro	duc	t o	f li	nea	ır	an	d c	Įua	adı	ati	c	
	polynomials																							87

Chapter 1 Equivalence Relations and Partition

1.1 Equivalence Relations (@ Lec 01 of ECON 204)

Definition 1.1 (Binary Relation)

A binary relation R from X to Y is a subset $R \subseteq X \times Y$. We write xRy if $(x,y) \in R$ and "not xRy" if $(x,y) \notin R$. $R \subseteq X \times X$ is a binary relation on X.

Definition 1.2 (Equivalence Relation)

A binary relation R is said to be

- 1. Reflexive if $\forall x \in X$, we have xRx
- 2. Symmetric if $\forall x, y \in X, xRy \Rightarrow yRx$
- 3. Transitive if $\forall x, y, z \in X$, $xRy, yRz \Rightarrow xRz$

The R is called **equivalence relation** if it is *reflexive, symmetric* and *transitive*. (which is also the definition of rational equivalence in microeconomics).

Example 1.1 Set $X = \{(a, b) \in \mathbb{Z}^2 | b \neq 0\}$, satisfies $(a, b) \sim (c, d)$ if ad = bc.

- 1. Reflexive: $(a,b) \sim (a,b), \forall (a,b) \in \mathbb{Z}^2$.
- 2. Symmetric: $\forall (a,b), (c,d) \in \mathbb{Z}^2, (a,b) \sim (c,d) \Rightarrow (c,d) \sim (a,b).$
- 3. Transitive: $\forall (a,b), (c,d), (u,v) \in \mathbb{Z}^2, (a,b) \sim (c,d), (c,d) \sim (u,v) \Rightarrow ad = bc, cv = du \Rightarrow acv = adu = bcu \Rightarrow av = bu \Rightarrow (a,b) \sim (u,v).$

So this is an equivalence relation.

Example 1.2 $f: X \to Y$ is a function, define \sim_f on X by $a \sim_f b$ if f(a) = f(b).

- 1. Reflexive: $a \sim a, \forall a \in X$.
- 2. Symmetric: $a, b \in X, a \sim b \Rightarrow b \sim a$.
- 3. Transitive: $\forall a, b, c \in X, a \sim b, b \sim c \Rightarrow f(a) = f(b) = f(c) \Rightarrow a \sim c$.

So \sim_f is an equivalence relation.

1.2 Equivalence Class (@ Lec 01 of ECON 204)

1.2.1 [x]: equivalence class

Definition 1.3 (Equivalence Class)

Given an equivalence relation \sim on X, define the **equivalence class** containing x to be the subset $[x] \subset X$:

$$[x] = \{y \in X : x \sim y\}$$

As \sim is reflexive, we have $x \in [x]$. We say that any $y \in [x]$ as a **representative** of the equivalence class.

1.2.2 X/\sim : set of equivalence classes

Set of equivalence classes is a set of division result of an equivalence relation

We write the set of equivalence classes

$$X/\sim = \{[x]|x \in X\}$$

1.3 Relationship of <u>Equivalence relation</u>, <u>Set of equivalence classes</u> and Partitions

1.3.1 Partition (separate a set into disjoint sets with no element left)

Definition 1.4 (Partition)

X a set, a partition of X is a collection ω of subsets of X s.t.

- 1) $\forall A, B \in \omega$ either A = B or $A \cap B = \emptyset$.
- $2) \cup_{A \in \omega} A = X.$

The subsets are the **cell**s of partition.

1.3.2 Theorem 1.2.7: any equivalence class forms a unique partition; any partition forms a unque equivalence class (@ Lec 01 of ECON 204)

Theorem 1.1 (Theorem 1.2.7)

Given an equivalence realtion \sim on X, X/\sim is a partition of X. Conversely, given a partition ω of X, there exists a unique equivalence relation \sim_ω s.t. $X/\sim_\omega=\omega$.

Proof 1.1

 $(1)X/\sim$ is a partition of X:

$$\forall x, y \in X \text{ s.t. } [x] \cap [y] \neq \emptyset$$

Let
$$z \in [x] \cap [y] \Rightarrow z \sim x, z \sim y$$

$$\forall w \in [x] \Rightarrow w \sim x \Rightarrow x \sim w \Rightarrow z \sim w \Rightarrow w \sim z \Rightarrow w \sim y \Rightarrow [x] \subset [y]$$

Similarly we can prove $[y] \subset [x] \Rightarrow [x] = [y]$

- (2) Given a partition ω of X, there exists a unique equivalence relation \sim_{ω} s.t. $X/\sim_{\omega}=\omega$:
- (2.1) Prove there exists an equivalence relation s.t. $X/\sim_{\omega}=\omega$:

We define a relation: $x \sim_{\omega} y$ if there exists $A \in \omega$ s.t. $x, y \in A \Rightarrow \sim_{\omega}$ is symmetric and transitive.

Since $\bigcup_{A \in \omega} A = X$, we know $\forall x \in X, \exists A \in \omega \text{ s.t. } x \in A \Rightarrow \sim_{\omega} \text{ is reflexive. So } \sim_{\omega} \text{ is an equivalence }$ relation.

We know
$$A = [x], \forall A \in \omega, \forall x \in A \text{ (by } \sim_{\omega}), \text{ then } X/\sim_{\omega} = \{[x]|x \in \cup_{A \in \omega} A\} = \{\{A^*|x \in A^*\}|A^* \in \omega\} = \omega.$$

(2.2) Prove the equivalence relation is unique:

Set \sim be any equivalence relation that make $X/\sim=\omega$, then we know $\forall A\in\omega, \exists x\in X \text{ s.t. } [x]=A.$ According to the definition of [x], if $x\in A$, $y\sim x$ if and only if $y\in [x]=A$. Which is exactly the \sim_{ω} .

Example 1.3 the same as example 5 $f: X \to Y$ is a function, define \sim_f on X by $a \sim_f b$ if f(a) = f(b). In this example the **equivalence classes** are precisely the fibers $[x] = f^{-1}(f(x))$. $y \sim_f x \Rightarrow y \in f^{-1}(f(x))$ **Example 1.4 the same as example 4** Set $X = \{(a,b) \in \mathbb{Z}^2 | b \neq 0\}$, satisfies $(a,b) \sim (c,d)$ if ad = bc. i.e. we write the equivalence of (a,b) as $\frac{a}{b} = [(a,b)]$. Then $X/\sim = \mathbb{Q}$.

1.3.3 Corollary: \sim_{π} equals to \sim , where $\pi(x) = [x]$

Corollary 1.1

If \sim is an equivalence relation on X, define a surjective function $\pi: X \to X/\sim$ by $\pi(x)=[x]$. Then $\sim_{\pi}=\sim$ (the definition of \sim_f in example 6.)

Proof 1.2

(1)Surjective:

$$X/\sim = \{[x]|x \in X\} = \{\pi(x)|x \in X\}, \text{ so } \forall y \in X/\sim, y \in \{\pi(x)|x \in X\}, \text{ there exists } x \in X \text{ s.t. } \pi(x) = y.$$

$$(2)\sim_{\pi}=\sim$$

 $a \sim_{\pi} b$ if $\pi(a) = \pi(b) \Leftrightarrow [a] = [b]$, which is exactly the definition of \sim .

- 1. Given \sim ;
- 2. Get the corresponding $X/\sim = \{[x]|x \in X\};$
- 3. $\pi(x) = [x];$
- 4. \sim_{π} : $a \sim_{\pi} b \text{ iff } \pi(a) = \pi(b)$
- 5. $\sim_{\pi}=\sim$

Proposition 1.1 (Proposition 1.2.13)

Given any function $f: X \to Y$ there exists a unique function $\tilde{f}: X/\sim Y$ such that $\tilde{f}\circ \pi = f$, where $\pi: X \to X/\sim$ in proposition 3. Furthermore, \tilde{f} is a bijection onto the image f(X).

Proof 1.3

(1) Existence:

We define $x_1 \sim_f x_2$ if $f(x_1) = f(x_2)$. Set $\tilde{f}: X/\sim_f \to Y$, $\tilde{f}([x]) = f(x)$. Then $\tilde{f}[\pi(x)] = \tilde{f}([x]) = f(x)$. Exactly what we require.

(2) Uniqueness:

Set any \tilde{f}' s.t. $\tilde{f}' \circ \pi = f$, then $\tilde{f}'[\pi(x)] = \tilde{f}'([x]) = f(x)$, i.e. the \tilde{f} is unique.

(3) Bijection:

Surjective, which we proved before $\forall f, \exists \tilde{f} \ s.t. \tilde{f} \circ \pi = f;$

Injective, we also have proved the uniqueness $f = \tilde{f} \circ \pi = \tilde{f}' \circ \pi \Rightarrow \tilde{f}' = \tilde{f}$.

Chapter 2 Permutations

Definition 2.1

Let X be a finite set, a permutation is bijection $\sigma: X \to X$.

Definition 2.2

Let $S_X(Sym(X))$ be the set of all bijection $\sigma: X \to X$.

If |X| = n, $|S_X| = n!$.

2.1 $Sym(X) = \{\sigma : X \to X | \sigma \text{ is a bijection}\}$: permutation group of X; elements in Sym(X): permutations of X

We set $Sym(X) = \{\sigma : X \to X | \sigma \text{ is a bijection}\} \subset X^X$. We call it symmetric group of X or permutation group of X. We call the elements in Sym(X) the permutations of X or the symmetries of X.

2.1.1 Properties of \circ **on** Sym(X)

Proposition 2.1 (Proposition 1.3.1.)

For any nonempty set X, \circ is an operation on Sym(X) with the following properties:

- (i) \circ is associative.
- (ii) $id_X \in Sym(X)$, and for all $\sigma \in Sym(X)$, $id_X \circ \sigma = \sigma \circ id_X = \sigma$, and
- (iii) For all $\sigma \in Sym(X)$, $\sigma^{-1} \in Sym(X)$.

2.1.2 S_n : Permutation group on n elements, σ^i

(\$)

Note When $X = \{1, ..., n\}, n \in \mathbb{Z}$, write $S_n = Sym(X)$ symmetric/permutation group on n elements.

Note $\sigma \in Sym(X)$, write $\sigma^n = \sigma \circ \sigma \circ ... \circ \sigma$, $\sigma^0 = id_X$, $\sigma^{-1} = inverse$, r > 0, $\sigma^{-r} = (\sigma^{-1})^r$. So, $r, s \in \mathbb{Z}$, $\sigma^{r+s} = \sigma^r \circ \sigma^s = \sigma^s \circ \sigma^r$.

2.1.3 k-cycle, cyclically permute/fix

Example 2.1

$$1 \stackrel{\sigma}{\mapsto} 2 \stackrel{\sigma}{\mapsto} 5 \stackrel{\sigma}{\mapsto} 1, \quad \tau_1$$

$$3 \stackrel{\sigma}{\mapsto} 4 \stackrel{\sigma}{\mapsto} 3, \quad \tau_2$$

Figure 2.1: Example of Cycle

In the example of Figure 1,
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 1 & 4 & 3 & 2 \end{pmatrix}$$
, $\sigma = \tau_1 \circ \tau_2$, where $\tau_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 1 & 3 & 4 & 2 \end{pmatrix}$, $\tau_2 = \frac{1}{2}$

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 4 & 3 & 5 \end{pmatrix}$$
. τ_1 is 3-cycle, τ_2 is 2-cycle. We could represent $\tau_1 = (1\ 5\ 2) = (5\ 2\ 1) = (2\ 1\ 5)$, i.e.

1
$$5$$
 Similarly, we can represent $\tau_2=(3,4)=(4,3)$, i.e. $3\longleftrightarrow 4$

We can find that $\forall x \in \{1, 2, 3, 4, 5\}$, $\tau_1^3(x) = x$, $\tau_2^2(x) = x$, so we write τ_1 as a **3-cycle** in S_5 , τ_2 as a **2-cycle** in S_5 .

Given $k \geq 2$, a **k-cycle** in S_n is a permutation σ with the property that $\{1,...,n\}$ is the union of two disjoint subsets, $\{1,...,n\} = Y \cup Z$ and $Y \cap Z = \emptyset$, such that

1. $\sigma(x) = x$ for every $x \in Z$, and

2.
$$|Y|=k$$
, and for any $x\in Y$, $Y=\{\sigma(x),\sigma^2(x),\sigma^3(x)...\sigma^k(x)=x\}$.

We say that σ cyclically permutes the elements of Y and fixes the elements of Z.

 $au_1=(1\ 2\ 5)$ cyclically permutes the elements of $Y=\{1,2,5\}$ and fixes the elements of $Z=\{3,4\}$.

 $\tau_2=(3\ 4)$ cyclically permutes the elements of $Y=\{3,4\}$ and fixes the elements of $Z=\{1,2,5\}$.

2.2 Disjoint cycles

Since the sets are cyclically permuted by τ_1, τ_2 (i.e. Y) are disjoint. We call the **disjoint cycle notation** $\sigma = \tau_1 \circ \tau_2 = (1\ 2\ 5)(3\ 4)$. (Commute the order is irrelevant)

2.2.1 Theorem: Every permutation is a union of disjoint cycles, uniquely.

Given $\sigma \in S_n$, there exists a unique (possibly empty) set of pairwise disjoint cycles.

Theorem 2.1

Let X be a finite set, the graph of permutation $\sigma \in S_X$ is a union of disjoint cycle.

 \Diamond

Proof 2.1

Prove by induction:

If |X| = 1, the graph is circle:

For |X| > 1, let $i_1 \in X$ and let $\mathcal{O}(i_1) = \{\sigma^r(i_1), r \geq 0\} = \{i_1, \sigma(i_1), \sigma^2(i_1), ...\}$. $\mathcal{O}(i_1)$ is finite, and there is a smallest r s.t. $\sigma^r(i_1) \in \{i_1, \sigma(i_1), \sigma^2(i_1), ..., \sigma^{r-1}(i_1)\}$. Then $\sigma^r(i_1) = i_1$ because other elements already have a pre-change under σ .

Then $i_1 \to \sigma(i_1) \to \sigma^2(i_1) \to \cdots \to \sigma^{r-1}(i_1) \to i_1$ is a cycle of length r.

For $j \notin \mathcal{O}(i_1)$, $\sigma(j) \notin \mathcal{O}(i_1)$, $\sigma^{-1}(j) \notin \mathcal{O}(i_1)$. Let $Y = X/\mathcal{O}(i_1)$ then $\sigma: Y \to Y$ is a bijection. Then prove by induction.

Example 2.2 $\sigma_1 = (1\ 2\ 6\ 5)(3)(4)$, can be written by $\sigma_1 = (1\ 2\ 6\ 5)$, $\sigma_2 = (2\ 3\ 5\ 4)$

 $\sigma_1 \circ \sigma_2 = (1\ 2\ 6\ 5) \circ (2\ 3\ 5\ 4)$

$$1 \xrightarrow{(2 \ 3 \ 5 \ 4)} 1 \xrightarrow{(1 \ 2 \ 6 \ 5)} 2$$

$$2 \xrightarrow{(2 \ 3 \ 5 \ 4)} 3 \xrightarrow{(1 \ 2 \ 6 \ 5)} 3$$

$$3 \xrightarrow{(2 \ 3 \ 5 \ 4)} 5 \xrightarrow{(1 \ 2 \ 6 \ 5)} 1$$

$$4 \xrightarrow{(2 \ 3 \ 5 \ 4)} 2 \xrightarrow{(1 \ 2 \ 6 \ 5)} 6$$

$$5 \xrightarrow{(2 \ 3 \ 5 \ 4)} 4 \xrightarrow{(1 \ 2 \ 6 \ 5)} 4$$

$$6 \xrightarrow{(2 \ 3 \ 5 \ 4)} 6 \xrightarrow{(1 \ 2 \ 6 \ 5)} 5$$

Then $\sigma_1 \circ \sigma_2 = (1 \ 2 \ 3) \circ (4 \ 6 \ 5)$

$$\sigma_2 \circ \sigma_1 = (2\ 3\ 5\ 4) \circ (1\ 2\ 6\ 5)$$

$$1 \xrightarrow{(1 \ 2 \ 6 \ 5)} 2 \xrightarrow{(2 \ 3 \ 5 \ 4)} 3$$

$$2 \xrightarrow{(1 \ 2 \ 6 \ 5)} 6 \xrightarrow{(2 \ 3 \ 5 \ 4)} 6$$

$$3 \xrightarrow{(1 \ 2 \ 6 \ 5)} 3 \xrightarrow{(2 \ 3 \ 5 \ 4)} 5$$

$$4 \xrightarrow{(1 \ 2 \ 6 \ 5)} 4 \xrightarrow{(2 \ 3 \ 5 \ 4)} 2$$

$$5 \xrightarrow{(1 \ 2 \ 6 \ 5)} 1 \xrightarrow{(2 \ 3 \ 5 \ 4)} 1$$

$$6 \xrightarrow{(1 \ 2 \ 6 \ 5)} 5 \xrightarrow{(2 \ 3 \ 5 \ 4)} 4$$

Then $\sigma_2 \circ \sigma_1 = (1\ 3\ 5) \circ (2\ 6\ 4)$

Note: $\sigma_1 \circ \sigma_2 \neq \sigma_2 \circ \sigma_1$

Example 2.3 Exercise 1.3.2. Consider $\sigma = (3\ 4\ 8)(5\ 7\ 6\ 9)$ and $\tau = (1\ 9\ 3\ 5)(2\ 7\ 4)$ in S_9 expressed in disjoint cycle notation. Compute $\sigma \circ \tau$ and $\tau \circ \sigma$ expressing both in disjoint cycle notation.

$$1 \to \sigma(\tau(1)) = \sigma(9) = 5; \ 2 \to \sigma(\tau(2)) = \sigma(7) = 6;$$

$$3 \to \sigma(\tau(3)) = \sigma(5) = 7; \ 4 \to \sigma(\tau(4)) = \sigma(2) = 2;$$

$$5 \to \sigma(\tau(5)) = \sigma(1) = 1; \ 6 \to \sigma(\tau(6)) = \sigma(6) = 9;$$

$$7 \to \sigma(\tau(7)) = \sigma(4) = 8; \ 8 \to \sigma(\tau(8)) = \sigma(8) = 3;$$

$$9 \to \sigma(\tau(9)) = \sigma(3) = 4;$$

$$\Rightarrow \sigma \circ \tau = (15)(2694)(378)$$

$$1 \to \tau(\sigma(1)) = \tau(1) = 9; \ 2 \to \tau(\sigma(2)) = \tau(2) = 7;$$

$$3 \to \tau(\sigma(3)) = \tau(4) = 2; \ 4 \to \tau(\sigma(4)) = \tau(8) = 8;$$

$$5 \to \tau(\sigma(5)) = \tau(7) = 4; \ 6 \to \tau(\sigma(6)) = \tau(9) = 3;$$

$$7 \to \tau(\sigma(7)) = \tau(6) = 6; \ 8 \to \tau(\sigma(8)) = \tau(3) = 5;$$

$$9 \to \tau(\sigma(9)) = \tau(5) = 1;$$

$$\Rightarrow \tau \circ \sigma = (19)(2763)(485)$$

Example 2.4 Let $\sigma, \tau \in S_7$, given in disjoint cycle, notation by $\sigma = (1\ 5\ 4)(3\ 7), \tau = (1\ 3\ 2\ 6\ 4)$, Compute $\sigma^2, \sigma^{-1}, \tau \circ \sigma$

$$\sigma^{2} = (1 \ 4 \ 5), \qquad \sigma^{-1} = (4, 5, 1)(3, 7),$$

$$1 \to \tau(\sigma(1)) = \tau(5) = 5, \quad 2 \to \tau(\sigma(2)) = \tau(2) = 6,$$

$$3 \to \tau(\sigma(3)) = \tau(7) = 7, \quad 4 \to \tau(\sigma(4)) = \tau(1) = 3,$$

$$5 \to \tau(\sigma(5)) = \tau(4) = 1, \quad 6 \to \tau(\sigma(6)) = \tau(6) = 4,$$

$$7 \to \tau(\sigma(7)) = \tau(3) = 2,$$

$$\Rightarrow \tau \circ \sigma = (1, 5)(2, 6, 4, 3, 7)$$

2.2.2 Cycle Structure

• How many permutation $\sigma \in S_{12}$ has cycle structure $(1\ 2\ 3)(4\ 5\ 6)(7\ 8)(9\ 10)(11\ 12)$?

$$\frac{12!}{3^2 2^3 (2!)(3!)}$$

12!: Arrange 12 elements in 12 slots.

3²: Every cycle with 3 element has 3 forms to represent a same permutation.

 2^3 : Every cycle with 2 element has 2 forms to represent a same permutation.

(2!): Due to the communicative of disjoint permutation, the arrange of cycles with three elements is 2! need to be divided.

(3!): Due to the communicative of disjoint permutation, the arrange of cycles with two elements is 3! need to be divided.

• $(1\ 2\ 3)(4\ 5)(6) \in S_6$?

$$\frac{6!}{3 \times 2} = 120$$

• General situation: $\sigma \in S_n$, r_i category of length i, i = 1, 2...

$$\frac{n!}{[1^{r_1}2^{r_2}3^{r_3}\cdots][(r_1!)(r_2!)(r_3!)\cdots]}$$

2.3 Transposition

Definition 2.3

A transposition is a cycle of length 2: $\sigma = (i \ j)$.

2.3.1 Theorem: Every permutation can be represented by a product of transpositions (not require to be disjoint)

Theorem 2.2

Every permutation σ of X is a product of transposition. (the product is not unique)

Equivalent: Given $n \geq 2$, any $\sigma \in S_n$ can be expressed as a composition of 2-cycles.(not require disjoint)

Proof 2.2

$$(x_1 x_k)(x_1 x_2, \dots x_{k-1} x_k) = (x_1 x_2 \dots x_{k-1})$$

$$(x_1 x_2 \dots x_{k-1} x_k) = (x_1 x_k)(x_1, x_2 \dots x_{k-1})$$

$$= (\mathbf{x_1} \mathbf{x_k})(\mathbf{x_1} \mathbf{x_{k-1}})(\mathbf{x_1} \mathbf{x_2} \dots \mathbf{x_{k-2}})$$

$$\dots$$

$$= (\mathbf{x_1} \mathbf{x_k})(\mathbf{x_1} \mathbf{x_{k-1}})(\mathbf{x_1} \mathbf{x_{k-2}}) \dots (\mathbf{x_1} \mathbf{x_2})$$

Version 2:

$$(x_1 \ x_2, \dots x_{k-1} \ x_k)(x_1 \ x_k) = (x_2 \ x_3 \ \dots x_k)$$
$$(x_1 \ x_2 \ \dots x_{k-1} \ x_k) = (x_2 \ x_3 \ \dots x_k)(x_1 \ x_k)$$
$$\dots$$
$$= (\mathbf{x_{k-1}} \ \mathbf{x_k})(\mathbf{x_{k-2}} \ \mathbf{x_k}) \dots (\mathbf{x_2} \ \mathbf{x_k})(\mathbf{x_1} \ \mathbf{x_k})$$

Claim 2.1

Cycle of length k can be written as a product of k-1 transpositions.

2.3.2 Sign of Permutation

Theorem 2.3

Although the product of transposition of a permutation is not unique, the parity (odd or even) of the number of transposition in a product is unique. We call it the **sign** of permutation.

$$sign(\sigma) = (-1)^{(\# even-length \ cycles \ in \ \sigma)}$$

$$= (-1)^{(\# \ transpositions \ in \ \sigma)}$$

Example 2.5

$$\sigma_1 = (1 \ 4 \ 7 \ 9)(2 \ 8)(6 \ 10)$$
: $N = 3 + 1 + 1 = 5$ is odd.

$$\sigma_2 = (1\ 2\ 3\ 4\ 5)(6\ 7\ 8\ 9\ 10)$$
: $N = 4 + 4 = 8$ is even

What happens to a permutation σ 's cycles if $\sigma \to (i \ j) \circ \sigma$?

- 1. i and j are not contained in σ .
- 2. i and j appear in the same cycle of σ .
- 3. i and j appear in disjoint cycles.

$$(i\ j)\circ(i--j\sim\sim)=(i--)\circ(j\sim\sim)$$

$$(i\ j)\circ(i--)\circ(j\sim\sim)=(i--j\sim\sim)$$

Proposition 2.2

$$sign((i\ j)\circ\sigma)=-1\cdot sign(\sigma)$$

Proof 2.3

Suppose
$$\sigma = (a_1 \ a_2 \ \cdots \ a_k \ b_1 \ b_2 \ \cdots \ b_l)$$

Then
$$(a_1 \ b_1) \circ \sigma = (a_1 \ a_2 \ \cdots a_k)(b_1 \ b_2 \ \cdots b_l)$$

$$sign(\sigma) = \begin{cases} +1 & \text{if } k+l \text{ is odd} \\ -1 & \text{if } k+l \text{ is even} \end{cases}$$

$$sign((a_1 \ b_1) \circ \sigma) = \begin{cases} -1 & \text{if } k+l \text{ is odd} \\ +1 & \text{if } k+l \text{ is even} \end{cases}$$

Chapter 3 Integers

3.1 Proposition 1.4.1: Properties of integers \mathbb{Z}

Proposition 3.1 (Proposition 1.4.1.)

The following hold in the integers \mathbb{Z} :

- (i) Addition and multiplication are commutative and associative operations in \mathbb{Z} .
- (ii) $0 \in \mathbb{Z}$ is an identity element for addition; that is, $\forall a \in \mathbb{Z}, 0 + a = a$.
- (iii) Every $a \in \mathbb{Z}$ has an additive inverse, denoted -a and given by -a = (-1)a, satisfying a + (-a) = 0.
- (iv) $1 \in \mathbb{Z}$ is an identity element for multiplication; that is, for all $a \in \mathbb{Z}$, 1a = a.
- (v) The distributive law holds: $\forall a, b, c \in \mathbb{Z}, a(b+c) = ab + ac$.
- (vi) Both $\mathbb{N} = \{x \in \mathbb{Z} | x \geq 0\}$ and $\mathbb{Z}_+ = \{x \in \mathbb{Z} | x > 0\}$ are closed under addition and multiplication.

That is, if x and y are in one of these sets, then x + y and xy are also in that set.

(vii) For any two nonzero integers $a, b \in \mathbb{Z}$, $|ab| \ge \max\{|a|, |b|\}$. Strict inequality holds if |a| > 1 and |b| > 1.

From this we get cancellation.

$$ab = ac \Rightarrow b = c \text{ or } a = 0$$

3.2 Definition: Divide

Suppose $a, b \in \mathbb{Z}, b \neq 0, \underline{b}$ divides \underline{a} if $\exists m \in \mathbb{Z}$, so that a = bm, b | a. Otherwise, write $b \nmid a$.

3.3 Proposition 1.4.2: properties of integer division

Proposition 3.2 (Proposition 1.4.2)

 $\forall a,b \in \mathbb{Z}$

- (i) if $a \neq 0$, then a|0
- (ii) if a|1, then $a=\pm 1$
- (iii) if a|b & b|a, then $a = \pm b$
- (iv) if a|b & b|c, then a|c
- (v) if a|b & a|c, then $a|(mc+nb)\forall m, n \in \mathbb{Z}$

3.4 Definitions: Prime, The Greatest common divisor gcd(a, b)

 $p > 1, p \in \mathbb{Z}$ is called *prime* if the only divisors are $\pm 1, \pm p$.

Given $a, b \in \mathbb{Z}$, $a, b \neq 0$, the greatest common divisor of a and b is $c \in \mathbb{Z}$, c > 0 s.t.

(1) c|a and c|b; (2) if d|a, d|b, then d|c

The c is unique, we write it gcd(a, b).

3.5 Euclidean Algorithm

Proposition 3.3 (Proposition 1.4.7(Euclidean Algorithm))

Given $a, b \in \mathbb{Z}, b \neq 0$, then $\exists q, r \in \mathbb{Z}$ s.t. $a = qb + r, 0 \leq r \leq |b|$.

Example 3.1 Exercise 1.4.3 For the pair (a,b)=(130,95), find gcd(a,b) using the *Euclidean Algorithm* and express it in the form gcd(a,b)=sa+tb for $s,t\in Z$.

$$130 = 95 + 35; \quad 95 = 2 \times 35 + 25$$

$$35 = 25 + 10;$$
 $25 = 2 \times 10 + 5$

$$10 = 2 \times 5 + 0$$

$$5 = 25 - 2 \times 10 = 25 - 2 \times (35 - 25) = 3 \times 25 - 2 \times 35 = 3 \times (95 - 2 \times 35) - 2 \times 35$$

$$= 3 \times 95 - 8 \times 35 = 3 \times 95 - 8 \times (130 - 95) = 11 \times 95 - 8 \times 130$$

$$gcd(130,95) = gcd(95,35) = gcd(35,25) = gcd(25,10) = gcd(10,5) = gcd(5,0) = 5$$

We can also express it by matrix

	q	r	s	t
-1		130	1	0
0	1	95	0	1
1	2	35	1	-1
2	1	25	-2	3
3	2	10	3	-4
4	2	5	-8	11

Hence $gcd(130, 95) = 5 = -8 \cdot 130 + 11 \cdot 95$

3.6 Proposition: gcd(a, b) exists and is the smallest positive integer in the set

$$M = \{ma + nb | m, n \in \mathbb{Z}\}\$$

Theorem 3.1

d = gcd(a, b) is of the form sa + tb

 \odot

Proof 3.1

We may assume $0 \le a \le b$

For
$$a = 0$$
, $d = b = 0 \cdot a + 1 \cdot b$.

For a > 0, let $b = q \cdot a + r$ with $0 \le r < a \le b$. Then

$$\{sa+tb: s,t \in \mathbb{Z}\} = \{sa+t(q \cdot a + r): s,t \in \mathbb{Z}\} = \{tr+ua: t,u \in \mathbb{Z}\}$$
$$= \dots \{x \cdot 0 + y \cdot d: x,y \in \mathbb{Z}\} = \{\dots, -2d, -d, 0, d, 2d, \dots\}$$

Proposition 3.4 (second form, second proof)

 $\forall a,b \in \mathbb{Z}, \textit{not both 0}, \textit{gcd}(a,b) \textit{ exists and is the smallest positive integer in the set } M = \{ma + nb | m, n \in \mathbb{Z}, mathematical expression | mathematical expr$

 \mathbb{Z} }. *i.e.* $\exists m_0, n_0 \in \mathbb{Z}$ *s.t.* $gcd(a, b) = m_0 a + n_0 b$.

•

Proof 3.2

Let c be the smallest positive integer in the set $M = \{ma + nb | m, n \in \mathbb{Z}\}$. $c = m_0 a + n_0 b > 0$.

Let $d = ma + nb \in M$, d = qc + r where $0 \le r < c$ (by Euclidean Algorithm).

$$r = d - qc = (m - qm_0)a + (n - qn_0)b \in M$$

Since c is the smallest integer in M and $r \in [0, c)$, so r = 0. $\Rightarrow d = qc$. So $c \mid d$.

$$a = 1a + 0b \in M \Rightarrow c|a, b = 0a + 1b \in M \Rightarrow c|b.$$

If t|a,t|b then $t|m_0a+n_0b$ i.e. $t|c. \Rightarrow c=gcd(a,b)$.

3.7 Well-Ordering Principle (Least Integer Axiom)

There is a smallest integer in every nonempty subset S of the natural numbers $\mathbb{N} = \{0, 1, 2, ...\}$

3.8 Proposition 1.4.10: gcd(b, c), $b|ac \Rightarrow b|a$

Proposition 3.5 (Proposition 1.4.10)

Suppose $a, b, c \in \mathbb{Z}$. If b, c are relatively prime i.e. gcd(b, c) = 1 and b|ac, then b|a.

Proof 3.3

 $gcd(b,c)=1 \Rightarrow \exists m,n \in \mathbb{Z} \text{ s.t. } 1=mb+nc \Rightarrow a=amb+anc. \text{ Since } b|nac,b|amb \Rightarrow b|a.$

3.8.1 Corollary: $p|ab \Rightarrow p|a$ or p|b

Corollary 3.1 (Corollary of Prop 1.4.10)

 $a,b,p \in \mathbb{Z}, p > 1$ prime. If p|ab, then p|a or p|b.

\Diamond

Proof 3.4

If p|b, done. Otherwise, gcd(p,b) = 1. By Prop 1.4.10, p|a.

3.9 Fundamental Theorem of Arithmetic: Any integer $a \ge 2$ has a unique prime factorization

3.9.1 Existence

Lemma 3.1

Any integer $a \geq 2$ is either a prime or a product of primes.

Proof 3.5

Set $S \subset \mathbb{N}$ be the set of all n without the given property.

Assume that S in nonempty and m is the least element in S.

Since m is not a prime, it can be written as m = ab with 1 < a, b < m. Since m is the least element in $S, a, b \notin S$. Then m is a product of primes. Contradiction. Thus, $S = \emptyset$.

3.9.2 Uniqueness

Theorem 3.2 (Fundamental Theorem of Arithmetic)

Any integer a>1 has a unique prime factorization: $a=p_1^{k_1}\cdot p_2^{k_2}\cdot ...p_n^{k_n}$ where $p_i>1$ is prime, $k_i\in\mathbb{Z}_+, \forall i=1,...,n, p_i\neq p_j, \forall i\neq j.$

Proof 3.6

- a) Existence: (Previous Lemma)
- b) Uniqueness:
 - 1) Method 1:

Suppose
$$a = p_1^{n_1} \cdot p_2^{n_2} \cdot ... p_k^{n_k} = q_1^{r_1} \cdot q_2^{r_2} \cdot ... q_j^{r_j}$$
. Where $p_1 > p_2 > ... > p_k, q_1 > q_2 > ... > p_k$

$$q_i, n_i, r_i \geq 1$$
.

 $p_1|a \Rightarrow \exists q_i \ s.t. \ p_1|q_i$. Similarly, $\exists q_i \ s.t. \ q_1|p_{i'}$.

$$q_1 \le p_{i'} \le p_1 \le q_i \Rightarrow q_1 = p_{i'} = p_1 = q_i$$

We can also know $n_1 = r_1$, otherwise we would have two prime factorization of the quotient where the largest primes are different by dividing $p_1^{\min\{n_1,r_1\}}$.

Then we can get $b=p_2^{n_2}\cdot...p_k^{n_k}=q_2^{r_2}\cdot...q_j^{r_j}$. Then prove it by induction.

2) Method 2:

Suppose $a=p_1\cdot p_2\cdot ...p_k=q_1\cdot q_2\cdot ...q_t$. For a p_i , there must exist a q_j s.t. $p_i=q_j$:

Assume that $p_i\neq q_t$, $gcd(p_i,q_t)=1$. Then $\exists a,b$ such that $1=ap_i+bq_t$. Multiplying both sides by $q_1\cdot q_2\cdot ...q_{t-1}$:

$$q_1 \cdot q_2 \cdot ... q_{t-1} = ap_i q_1 \cdot q_2 \cdot ... q_{t-1} + bq_1 \cdot q_2 \cdot ... q_t$$

Since $p_i|q_1 \cdot q_2 \cdot ... q_t$, we can conclude that $p_i|(ap_iq_1 \cdot q_2 \cdot ... q_{t-1} + bq_1 \cdot q_2 \cdot ... q_t)$

i.e.
$$p_i|q_1 \cdot q_2 \cdot ... q_{t-1}$$
 if $p_i \neq q_t$

Then prove by induction.

Chapter 4 Modular arithmetic

4.1 Congruences

4.1.1 Congruent modulo m: $a \equiv b \mod m$

Given $m \in \mathbb{Z}_+$, define a relation on \mathbb{Z} : congruence modulo m

$$a \equiv b \mod m$$
, if $m | (a - b)$

Read as "a is congruent to $b \mod n$ "; Notation: $a \equiv b \mod m$.

Equivalent to: a, b have the same remainder after division by m.

4.1.2 Proposition: For fixed $m \ge 2$, the relation " $a \sim b \Leftrightarrow a \equiv b \bmod m$ " is an equivalence relation

Proposition 4.1 (Proposition 1.5.1)

For fixed $m \geq 2$, the relation " $a \sim b \Leftrightarrow a \equiv b \mod m$ " is an equivalence relation

Proof 4.1

- 1) Reflexive: $\forall a \in \mathbb{Z}, m | 0 = (a a), \text{ so } a \equiv a \text{ mod } m \text{ i.e. } a \sim a.$
- 2) <u>Symmetric</u>: $\forall a, b \in \mathbb{Z}$, $a \equiv b \mod m$, then $m|(a-b) \Rightarrow m|(b-a) \Rightarrow b \equiv a \mod m$. i.e. $a \sim b \Rightarrow b \sim a$.
- 3) <u>Transitive</u>: $\forall a, b, c \in \mathbb{Z}$, $a \equiv b \mod m$, $b \equiv c \mod m$. Then $m|(a-b), m|(b-c) \Rightarrow m|(a-b) + (b-c) = (a-c) \Rightarrow a \equiv c \mod m$.

4.1.3 Theorem: the equivalence relation " $a \sim b \Leftrightarrow a \equiv b \mod m$ " partitions the integers into m disjoint sets $\Omega_i = \{a | a \sim i\}, i = 0, 1, ..., m-1$

Theorem 4.1

the equivalence relation " $a \sim b \Leftrightarrow a \equiv b \mod m$ " partitions the integers into m disjoint sets $\Omega_i = \{a|a \sim i\}, i=0,1,...,m-1$

Prove any $a \in \mathbb{Z}$ belongs to a unique Ω_i .

- a) Existence: Division Algorithm $\Rightarrow a = qm + r$, $0 \le r < m$. $a \in \Omega_r$.
- b) Uniqueness: Assume a in two sets, $a \in \Omega_r \cap \Omega_{r^1}$, $0 \le r^1 < r < m$.

 Then m|a-r and $m|a-r^1 \Rightarrow m|r-r^1$, which is impossible because $0 < r-r^1 < m$.

 Contradiction.

4.1.4 Proposition: Addition and Mutiplication of Congruences

Proposition 4.2

Fix integer $m \ge 2$. If $a \equiv r \mod m$ and $b \equiv s \mod m$, then $a + b \equiv r + s \mod m$ and $ab \equiv rs \mod m$

Proof 4.3

- a) Addition: $m|(a-r), m|(b-s) \Rightarrow m|(a-c) + (b-d) \Rightarrow m|(a+b) (c-d)$.
- b) Mutiplication: $m|(a-r)b+r(b-s) \Rightarrow m|ab-rs$.

4.2 Solving Linear Equations on Modular m

4.2.1 Theorm: unique solution of $aX \equiv b \mod m$ if gcd(a, m) = 1

Theorem 4.2

If gcd(a, m) = 1, then $\forall b \in \mathbb{Z}$ the congruence $aX \equiv b \mod m$ has a unique solution.

1) Existence: Since gcd(a, m) = 1, $\exists s, t \text{ such that }$

$$1 = sa + tm$$

(Version 1)

(Mutiplying X)

$$X = saX + tmX$$

$$aX \equiv b \bmod m \Leftrightarrow aX = km + b$$

$$\Leftrightarrow X = s(km + b) + b$$

$$\Leftrightarrow X \equiv sb \bmod m$$

(Version 2)

(Mutiplying s)

$$saX \equiv sb \bmod m$$

$$(1-tm)X \equiv sb \bmod m$$

$$X \equiv sb \bmod m$$

 $X \equiv sb \mod m$ is the solution to $aX \equiv b \mod m$.

2) Uniqueness: Assume x, y are two solutions,

$$ax \equiv b \mod$$
, $ay \equiv b \mod m \Rightarrow a(x - y) \equiv 0 \mod m$

Since
$$gcd(a, m) = 1$$
, $m|(x - y) \Rightarrow x = y$, $(x, y \in \{0, 1, ..., m - 1\})$

Example 4.1 Solve $3X \equiv 5 \mod 11$.

$$gcd(3,11) = 1$$
, $1 = 4 * 3 - 1 * 11$,

$$X \equiv 4 * 5$$

$$X \equiv 9$$

4.3 Chinese Remaindar Theorem (CRT): unique solution for x modulo mn

Theorem 4.3 (Chinese Remaindar Theorem (CRT))

If
$$gcd(m,n)=1$$
. Then
$$\begin{cases} x\equiv r \bmod m & (1) \\ x\equiv s \bmod n & (2) \end{cases}$$
 have a unique solution for $x \bmod n$ modulo mn .

$$(1) \Rightarrow x = km + r \text{ for some } k \in \mathbb{Z}.$$

substitute (2)
$$\Rightarrow km + r \equiv s \mod n$$

$$\Leftrightarrow mk \equiv s - r \bmod n \quad (3)$$

According to previous theorem, gcd(m, n) = 1, (3) has a **unique** solution.

We say $k \equiv t \mod n$, k = ln + t for some $l \in \mathbb{Z}$

 $\Rightarrow x = (ln + t)m + r = lnm + tm + r$, where tm + r is the unique solution to x modulo mn.

Example 4.2 (Similar to CRT) Find the smallest integer x such that

$$x \equiv 1 \bmod 11$$
 and $x \equiv 9 \bmod 13$

$$gcd(11, 13) = 1$$
 and $1 = 6 * 11 - 5 * 13$

Write x = 11k + 1. Substitute in $x \equiv 9 \mod 13$:

$$11k \equiv 8 \bmod 13$$

$$6*11k \equiv 6*8 \equiv 9 \bmod 13$$

$$(1+5*13)k \equiv 9 \bmod 13$$

$$k \equiv 9 \bmod 13$$

Then x = 11k + 1 = 100.

4.4 Congruence Classes: $[a]_n = \{a + kn | k \in \mathbb{Z}\}$

Fix $n \in \mathbb{Z}_+$, we call $[a]_n = [a]$ the **congruence class** of a modulo n.

$$[a] = \{b \in \mathbb{Z} | b \equiv a \bmod n\} = \{a + kn | k \in \mathbb{Z}\}\$$

4.4.1 Set of congruence classes of mod n: $\mathbb{Z}_n=\{[a]_n|a\in\mathbb{Z}\}=\{[0],[1],...,[n-1]\}$

The set of *congruence classes* of mod n is denoted $\mathbb{Z}_n = \{[a]_n | a \in \mathbb{Z}\}$

Proposition 4.3 (Proposition 1.5.2.)

For any $n \ge 1$ there are exactly n congruences classes modulo n, which we may write as

$$\mathbb{Z}_n = \{[0], [1], ..., [n-1]\}$$

For any $a \in \mathbb{Z}$. By Euclidean algorithm, a = qn + r, $q, r \in \mathbb{Z}$, $0 \le r < n \Rightarrow a \in [r]$. So, $\mathbb{Z}_n = \{[0], [1], ..., [n-1]\}$.

When $0 \le a < b \le n-1$, $n \nmid (b-a)$, so $[a] \ne [b]$ the n congruence classes listed are all distinct.

Hence, there are exactly n congruence classes.

4.4.2 Proposition 1.5.5: Addition and Multiplication on Congruence Classes

Fix $n \in \mathbb{Z}$, we define addition+ and multiplication on \mathbb{Z}_n :

$$[a] + [b] = [a+b] = \{a+b+(k+j)n|k, j \in \mathbb{Z}\}\$$

$$[a]\cdot [b]=[ab]=\{ab+(aj+bk+kjn)n|k,j\in\mathbb{Z}\}$$

This is well defined, follows Lemma 1.5.3.

Proposition 4.4 (Proposition 1.5.5.)

Let $a, b, c, d, n \in \mathbb{Z}, n \geq 1$, then

(i) Addition and multiplication are commutative and associative operations in \mathbb{Z}_n .

(ii)
$$[a] + [0] = [a]$$
.

$$(iii) [-a] + [a] = [0].$$

(iv)
$$[1][a] = [a]$$
.

$$(v) [a]([b] + [c]) = [a][b] + [a][c].$$

Proof 4.7

4.4.3 Units(i.e. invertible) in Congruence Classes

Say $[a] \in \mathbb{Z}_n$ is a **unit** or is **invertible** if $\exists [b] \in \mathbb{Z}_n$ so that [a][b] = [1].

4.4.4 Proposition 1.5.6: Set of units in congruence classes:

$$\mathbb{Z}_n^{\times} = \{[a] \in \mathbb{Z}_n | [a] \text{ is a unit}\} = \{[a] \in \mathbb{Z}_n | gcd(a, n) = 1\}$$

The set of **invertible** elements in \mathbb{Z}_n will be denoted $\mathbb{Z}_n^{\times} = \{[a] \in \mathbb{Z}_n | [a] \text{ is a unit}\}.$

Proposition 4.5 (Proposition 1.5.6.)

For all $n \geq 1$, we have $\mathbb{Z}_n^{\times} = \{[a] \in \mathbb{Z}_n | gcd(a, n) = 1\}.$

By Proposition 1.4.8, we know there exists b, c s.t. ab + cn = 1. So, $ab \equiv 1 \mod n$, [1] = [ab] = [a][b]. So, $\{[a] \in \mathbb{Z}_n | gcd(a, n) = 1\} \subset \mathbb{Z}_n^{\times}$ [a] is a unit $\Rightarrow \exists [b] \in \mathbb{Z}_n$ so that $[a][b] = [ab] = [1] \Rightarrow ab = 1 + kn, k \in \mathbb{Z} \Rightarrow ab - kn = 1, k \in \mathbb{Z} \Rightarrow gcd(a, n) = 1$. So, $\mathbb{Z}_n^{\times} \subset \{[a] \in \mathbb{Z}_n | gcd(a, n) = 1\}$.

\$

Note Inverse of [a] is unique, i.e. $[b] = [a]^{-1}$ is unique.

$$[a][b] = 1, [a][b'] = 1 \Rightarrow [b] = [b][1] = [b][a][b'] = [b']$$

4.4.5 Corollary 1.5.7: if p is prime, $\varphi(p)=\mathbb{Z}_p^\times=\{[1],[2],...,[p-1]\}$

Corollary 4.1 (Corollary 1.5.7)

If $p \geq 2$ is prime, $\mathbb{Z}_p^{\times} = \{[1], [2], ..., [p-1]\}.$

 \Diamond

4.5 Euler phi-function: $\varphi(n) = |\mathbb{Z}_n^{\times}|$

 $\underline{ \text{Euler phi-function}} \colon \varphi(n) = |\mathbb{Z}_n^\times|.$

p prime, $\varphi(p) = p - 1$.

4.5.1
$$m|n, \pi_{m,n}([a]_n) = [a]_m$$

Example 4.3 Exercise 1.5.4 If m|n, we can define $\pi_{m,n}: \mathbb{Z}_n \to \mathbb{Z}_m$ by $\pi_{m,n}([a]_n) = [a]_m$. Prove it is well-defined.

Proof 4.9

We write $[a]_n = [c]_n$, verify that $[a]_m = [c]_m$.

Since m|n, there exists $k \in \mathbb{Z}$ s.t. n = km.

$$[a]_n = [c]_n \Rightarrow \exists j \in \mathbb{Z} \text{ s.t. } c = a + jn.$$

 $[c]_m = [a+jn]_m = [a+jkm]_m = [a]_m$

4.6 Theorem 1.5.8 (Chinese Remainder Theorem): n = mk, gcd(m, k) = 1,

$$F([a]_n) = (\pi_{m,n}([a]_n), \pi_{k,n}([a]_n)) = ([a]_m, [a]_k)$$

Theorem 4.4 (Theorem 1.5.8 (Chinese Remainder Theorem))

If m, n, k > 0, n = mk, gcd(m, k) = 1, then $F : \mathbb{Z}_n \to \mathbb{Z}_m \times \mathbb{Z}_k$ which is given by $F([a]_n) = (\pi_{m,n}([a]_n), \pi_{k,n}([a]_n)) = ([a]_m, [a]_k)$, then F is a bijection.

Proof 4.10

(1)Injective: $F([a]_n) = F([b]_n) \Rightarrow [a]_m = [b]_m, [a]_k = [b]_k$ i.e. $a \equiv b \mod m, a \equiv b \mod n$. $\exists i, j \in \mathbb{Z} \text{ s.t. } b = a + im = a + jk \Rightarrow k|im$. Since $\gcd(m,k) = 1$, $k|i \Rightarrow n = mk|im$. Then $[b]_n = [a]_n + [im]_n = [a]_n$.

(2) Surjective: prove $\forall u, v \in \mathbb{Z}$, $\exists a \mathbb{Z}$ s.t. $[a]_m = [u]_m, [a]_k = [v]_k$.

Since gcd(m, k) = 1, $\exists s, t \in \mathbb{Z}$ so that 1 = sm + tk.

Let a = (1 - tk)u + (1 - sm)v, $[a]_m = [(u - v)sm + v]_m = [v]_m$, $[a]_k = [(v - u)tk + u]_k = [u]_k$.

Note $F([a]_n[b]_n) = F([ab]_n) = ([ab]_m, [ab]_k) = ([a]_m[b]_m, [a]_k[b]_k)$

Since *F* is a bijection, $[ab]_n = [1]_n$ iff $([a]_m[b]_m, [a]_k[b]_k) = ([1]_m, [1]_k)$.

4.6.1 Proposition 1.5.9+Corollary 1.5.10: m, n, k > 0, n = mk, gcd(m, k) = 1, then

$$F(\mathbb{Z}_n^{\times}) = \mathbb{Z}_m^{\times} \times \mathbb{Z}_k^{\times}$$
, then $\varphi(n) = \varphi(m)\varphi(k)$

Proposition 4.6 (Proposition 1.5.9+Corollary 1.5.10)

If $m, n, k > 0, n = mk, \gcd(m, k) = 1$, then $F(\mathbb{Z}_n^{\times}) = \mathbb{Z}_m^{\times} \times \mathbb{Z}_k^{\times}$, then $\varphi(n) = \varphi(m)\varphi(k)$.

4.7 prime factorization: $n = p_1^{r_1}...p_k^{r_k}$, then $\varphi(n) = (p_1 - 1)p_1^{r_1 - 1}...(p_k - 1)p_k^{r_k - 1}$

Proposition 4.7

If $n \in \mathbb{Z}$ is positive integre with prime factorization $n = p_1^{r_1}...p_k^{r_k}$, then $\varphi(n) = (p_1 - 1)p_1^{r_1 - 1}...(p_k - 1)p_k^{r_k - 1}$

Proof 4.11

 $\mathbb{Z}_{p^r}=\{[0],[1],...,[p^r-1]\}$, the number of multiples of p is $\frac{p^r}{p}=p^{r-1}$. Then $\varphi(p^r)=|\mathbb{Z}_{p^r}^{\times}|=p^{r-1}$.

4.7 prime factorization: $n=p_1^{r_1}...p_k^{r_k}$, then $\varphi(n)=(p_1-1)p_1^{r_1-1}...(p_k-1)p_k^{r_k-1}$

$$p^r-p^{r-1}=(p-1)p^{r-1}.$$
 So,
$$\varphi(n)=\varphi(p_1^{r_1})...\varphi(p_k^{r_k})=(p_1-1)p_1^{r_1-1}...(p_k-1)p_k^{r_k-1}$$

Chapter 5 Group

5.1 Group (G, *): a set with a binary operation(associative, identity, inverse)

5.1.1 Definition

A group is a nonempty set G with a binary operation $*: G \times G \to G$ s.t.

- (1) Binary operation on $G, *: G \times G \rightarrow G$
- (2) * is associative
- (3) G contains an **identity** element e for *: $\exists e \in G$ s.t. $e * g = g * e = g \ \forall g \in G$
- (4) Each element $a \in G$ has an **inverse** $b \in G$ s.t. a * b = b * a = e.

A Group is **abelian** if moreover

(5) * is commutative.

|G| =Order of a group (G, *)

 $(\mathbb{Z},+)$ is a group and + is commutative, we call this kind of groups(statify commutative) *abelian group*.

Example 5.1 If \mathbb{F} is a field, then $(\mathbb{F}, +)$ and $(\mathbb{F}^{\times}, \cdot)$ are abelian group.

Example 5.2 If V is a vector space over \mathbb{F} , then (V, +) abelian group.

As we know a V is a vector space over \mathbb{F} means V is a field whose subfields include \mathbb{F} .

5.1.2 Uniqueness of identity and inverse

Lemma 5.1

1. Identity of a group is unique. 2. Inverse of any element in a group is also unique.

\sim

Proof 5.1

- 1. Let e, e' be two identities in G, then e * e' = e = e'.
- 2. Suppose b, c are both inverse of a, then

$$b = b * e = b * (a * c) = (b * a) * c = e * c = c$$

5.1.3 Examples: Permutation group Sym(X), Klein 4-group, alternating group A_n , Dihedral group

Example 5.3 If X is any nonempty set, permutation group of $X : {\sigma : X \to X | \sigma \text{ is a bijection}}$, then

1. ∘ is associative;

2. $id: X \to X$, $id(x) = x \ \forall x \in X$ is the idenity;

3. $\sigma \in Sym(X), \sigma^{-1} \in Sym(X)$ is the inverse function.

 $(Sym(X), \circ)$ is a group called the symmetric group of X

Example 5.4 The Klein four-group is a group with four elements, in which each element is self-inverse (composing it with itself produces the identity) and in which composing any two of the three non-identity elements produces the third one. For example, $K \leq S_4$

$$K = \{(1), (12)(34), (13)(24), (14)(23)\}$$

Example 5.5 An alternating group is the group of even permutations of a finite set. An alternating group of degree n, A_n .

The cycle structure of A_5 ,

- (1) (abcde) even
- (3) (abc) even
- (4) (ab)(cd) even (odd permutation \times odd permutation)
- (6) *e* even

Example 5.6 Dihedral group

The dihedral group of order 2n, denoted D_{2n} , is the group of symmetries of a regular n-gon $A_1A_2...A_n$, which includes rotations and reflections. It consists of the 2n elements

$$\{1, \rho, \rho^2, \dots, \rho^{n-1}, \sigma, \sigma\rho, \sigma\rho^2, \dots, \sigma\rho^{n-1}\}$$
.

The element ρ corresponds to rotating the n-gon by $\frac{2\pi}{n}$, while σ corresponds to reflecting it across the line OA_1 (here O is the center of the polygon). So $\rho\sigma$ mean "reflect then rotate" (like with function composition, we read from right to left). In particular, $\rho^n = \sigma^2 = 1$. You can also see that $\rho^k \sigma = \sigma \rho^{-k} = \sigma \rho^{n-k}$.

26

5.1.4 Cancelation Laws

Theorem 5.1

Let G be a group. The left and right cancelation laws hold in G:

1.
$$a * x = a * y \Rightarrow x = y$$

2.
$$x * a = y * a \Rightarrow x = y$$

Proof 5.2

Let a * x = a * y. $\exists a' \text{ s.t. } a' * a = e$. $a' * (a * x) = a' * (a * y) \Rightarrow (a' * a) * x = (a' * a) * y \Rightarrow e * x = e * y \Rightarrow x = y$

Similar for the right cancel law.

5.1.5 Unique Solution of Linear Equation

Theorem 5.2

The linear equation a * x = b and y * a = b has unique solution.

\bigcirc

Proof 5.3

- 1. Existence: Multiply by a': $a' * (a * x) = a' * b \Rightarrow x = a' * b$ is a solution.
- 2. Uniqueness: if x' is another, $a * x = a * x' = b \Rightarrow x = x'$

5.2 Subgroup: $H \leq G$

Definition 5.1

A subset $H \subseteq G$ is a subgroup of G if H is itself a group.

write $H \leq G$, H < G if H is a subgroup of (G, *). (If H = G, H is an improper subgroup.)

If $H = \{e\}$, then H is a trivial subgroup.

If $H \neq \{e\}$, then H is a nontrivial subgroup.

Theorem 5.3

A subset $H \subseteq G$ is a subgroup of G if and only if

- 1. H is closed under *. $(\forall g, h \in H, g * h \in H)$
- 2. *identity* $e \in H$.
- 3. Each $a \in H$, the inverse $a' \in H$

Proof 5.4

" \Rightarrow ": if $H \leq G$ be a subgroup.

- 1. H is a group $\Rightarrow *$ is a binary operation on $H, *: H \times H \rightarrow H$ i.e. H is closed under *.
- 2. Identity of H, e_H is also a identity of G, due to the uniqueness of identity, $e_H = e_G$.

3. $a \in H$, a's inverse $a'_H \in H$ is also an inverse in G, due to the uniqueness of identity, $a'_H = a'_G$.

" \Leftarrow ":

- 1. H is closed under $* \Rightarrow *$ is a binary operation on H.
- 2. 2,3 fufill the requirement of identity and inverse.
- 3. * is operation of group $G \Rightarrow *$ is associative. Hence H is itself a group.
- 4. H is a subeset of G, then H is s subgroup of G.

5.2.1 Proposition 2.6.8: H < G, (H, *) is a group: A group's operation with its any subgroup is also a group

Proposition 5.1 (Proposition 2.6.8)

If (G, *) is a group, $H \subset G$ is a subgroup, then (H, *) is a group.

_

Example 5.7 (G, *) is a group, then e < G, G < G.

Example 5.8 $\mathbb{K} \subset \mathbb{F}$ is a subfield, then $\mathbb{K} < \mathbb{F}$, $\mathbb{K}^{\times} < \mathbb{F}^{\times}$.

Example 5.9 $W \subset V$ is a vector subspace, W < V.

Example 5.10 $1 \in S^1 \subset \mathbb{C}^{\times}$, $S^1 = \{z \in \mathbb{C} | |z| = 1\}$. S^1 is a subgroup.

Proof 5.5

$$S^1=\{e^{i\theta}|\theta\in\mathbb{R}\}. \text{ For any } e^{i\theta}, e^{i\psi}\in S^1, e^{i\theta}e^{i\psi}=e^{i(\theta+\psi)}\in S^1, e^{-i\theta}\in S^1.$$

Example 5.11 $Isom(\mathbb{R}^n) < Sym(\mathbb{R}^n)$

Example 5.12 If \mathbb{F} is a field, $Aut(\mathbb{F}) = \{\sigma : \mathbb{F} \to \mathbb{F} \in Sym(\mathbb{F}) | \sigma(a+b) = \sigma(a) + \sigma(b), \sigma(ab) = \sigma(a)\sigma(b)\} < Sym(\mathbb{F})$

Example 5.13 Dihedral Groups:

Let $P_n \subset \mathbb{R}^2$ be a regular n - gon

 $D_n < Isom(\mathbb{R}^2), D_n = \{\Phi \in Isom(\mathbb{R}^2) | \Phi(P_n) = P_n\}$

5.3 Some Properties of Group Operation

Proposition 5.2 (Proposition 3.1.1)

Let (G, *) be a group with identity $e \in G$, then

- (1) if $g, h \in G$ and either g * h = h or h * g = h, then g = e
- (2) if $g, h \in G$ and g * h = e then $g = h^{-1}$ and $h = g^{-1}$

Corollary 5.1 (Corollary 3.1.2)

$$e^{-1} = e, (g^{-1})^{-1} = g, (g * h)^{-1} = h^{-1} * g^{-1}$$

5.4 Power of an Element

We define g^n recursively for $n \ge 0$ by setting $g^0 = e$ and for $n \ge 1$, we set $g^n = g^{n-1} * g$. For $n \le 0$, we define $g^n = (g^{-1})^{-n}$.

Proposition 5.3 (Proposition 3.1.5)

(1)
$$g^n * g^m = g^{n+m}$$
; (2) $(g^n)^m = g^{nm}$

5.5 $(G \times H, \circledast)$: Direct Product of G and H

(G,*) a group (H,*) a group. Define an operation on $G \times H, \circledast$:

$$(h,k) \circledast (h',k') = (h*h',k*k')$$

5.5.1 Proposition 3.1.7: $(G \times H, \circledast)$ is a group

Proposition 5.4 (Proposition 3.1.7)

 $(G \times H, \circledast)$ is a group. The identity is (e_G, e_H) , inverse is (g^{-1}, h^{-1})

usually written as

$$(h,k)(h',k') = (hh',kk')$$

5.6 Subgroups and Cyclic Groups

5.6.1 Intersection of Subgroups is a Subgroup

Proposition 5.5 (Proposition 3.2.2)

Let G be a group and suppose \mathcal{H} is any collection of subgroups of G. Then $K = \bigcap_{H \in \mathcal{H}} H < G$ is a subgroup of G.

5.6.2 Subgroup Generated by $A: \langle A \rangle$

We define **Subgroup Generated by** A:

$$\langle A \rangle = \cap_{H \in \mathcal{H}(A)} H$$

where $\mathcal{H}(A)$ is the set of all subgroups of G containing the set A:

$$\mathcal{H}(A) = \{H < G | A \subset H \text{ and } H \text{ is a subgroup of } G\}$$

5.6.3 Cyclic Group: group generated by an element

A group G is cyclic if exists g (an element), $\langle g \rangle = G$.

g is called a generator for G in this case.

Easy to prove

$$G = \langle g \rangle = \{...g^{-2}, g^{-1}, e, g^1, g^2...\}$$

5.6.4 Cyclic Subgroup

If A is a subgroup of G, and $A = \langle \{a\} \rangle = \langle a \rangle$. Then A is the cyclic subgroup generated by a: $A = \langle a \rangle \leq G$

$$\langle a \rangle = \{...a^{-2}, a^{-1}, e, a^1, a^2...\}$$

5.6.5 Subgroups of a Cyclic Group must be Cyclic

Theorem 5.4

A subgroup of a cyclic group is cyclic.

Proof 5.6

Let $G = \{a^n : n \in \mathbb{Z}\}$ be a cyclic group. Let $H \leq G$ be a subgroup.

1. If $H = \{e\}$, then H is cyclic.

2. If $H \neq \{e\}$, then $a^n \in H$ for some n > 0. Check m be the minimal among all n.

Claim:
$$H = \langle a^m \rangle$$

<u>Proof:</u> Clearly $\langle a^m \rangle \subset H$. $\forall a^n \in H$, $n = qm + r, 0 \leq r < m$. Then $a^r = a^n (a^m)^{-q}$. Since m is the minimal positive integer s.t. $a^m \in H$, r = 0. $\Rightarrow n = qm \Rightarrow a^n \in \langle a^m \rangle$. Hence $H = \langle a^m \rangle$ which is cyclic.

Example 5.14 Subgroups of $(\mathbb{Z}, +)$

 \mathbb{Z} is a cyclic group $\langle 1 \rangle$. Its subgroups are $\langle n \rangle \leq \mathbb{Z}$ for some $n \geq 0$. (which is a multiplier of n. $(n\mathbb{Z})$) $n = 0, H = \{0\}; n = 1, H = \mathbb{Z}; n = 2, H = 2\mathbb{Z}$

5.6.6 Theorem: $\langle a^v \rangle < \{1, a, a^2, ..., a^{n-1}\} \Rightarrow \langle a^v \rangle = \langle a^d \rangle, d = \gcd(v, n), |\langle a^v \rangle| = \frac{n}{d}$

Theorem 5.5

Let G be a cyclic group of order n. $(G = \{1, a, a^2, ..., a^{n-1}\}$, where $a^n = 1$.). Let $H = \langle a^v \rangle$ be a subgroup of G. Then H is generated by a^d (i.e. $H = \langle a^d \rangle$), $d = \gcd(v, n)$ and $|H| = \frac{n}{d}$.

Proof 5.7

Let $H'=\left\langle a^d\right\rangle$, we need to show that H=H'. $d=\gcd(v,n)=d|v\Rightarrow a^v\in\left\langle a^d\right\rangle\Rightarrow H\subset H'.$ While d=sv+tn for some $s,t.\Rightarrow a^d=(a^v)^s(a^n)^t.$ Since $a^n=1,$ $a^d=(a^v)^s\Rightarrow H'\subset H.$ Hence, $H=H'=\left\langle a^v\right\rangle.$ $H=\{1,a^d,a^{2d},...,a^{n-d}\},|H|=\frac{n}{d}$

5.6.7 Corollary **3.2.4**: G is a cyclic group $\Rightarrow G$ is abelian

Corollary 5.2 (Corollary 3.2.4)

If G is a cyclic group (i.e. exits $g \in G$ s.t. $\langle g \rangle = G$), then G is abelian (i.e. commutative).

5.6.8 Equivalent properties of order of g: $|g| = |\langle g \rangle| < \infty$

Proposition 5.6 (Proposition 3.2.6)

Let G be a group for $g \in G$, the following are equivalent:

- (ii) $\exists n \neq m \text{ in } \mathbb{Z} \text{ so that } g^n = g^m$
- (iii) $\exists n \in \mathbb{Z}, \ n \neq 0 \text{ so that } g^n = e$
- (iv) $\exists n \in \mathbb{Z}_+$ so that $g^n = e$

 $\text{If } |g|<\infty \text{, then } |g|=\text{smallest } n\in\mathbb{Z}_+ \text{ so that } g^n=e \text{, and } \langle g\rangle=\left\{e,g,g^2,\ldots,g^{n-1}\right\}=\left\{g^n\mid n=0,\ldots,n-1\right\}$

5.6.9 $(\mathbb{Z},+)$ Theorem 3.2.9: $\langle a \rangle < \langle b \rangle$ if and only if b|a

Theorem 5.6 (Theorem 3.2.9)

If $H < \mathbb{Z}$ is a subgroup, then either $H = \{0\}$, or else $H = \langle d \rangle$, where

$$d = \min\{h \in H | h > 0\}$$

Consequently, $a \to \langle a \rangle$ defines a **bijection** from $N = \{0, 1, 2, ...\}$ to the set of subgroups of \mathbb{Z} . Furthermore, for $a, b \in \mathbb{Z}_+$, we have $\langle a \rangle < \langle b \rangle$ if and only if b|a.

5.6.10 $(\mathbb{Z}_n,+)$ Theorem 3.2.10: $\langle [d] \rangle < \langle [d'] \rangle$ if and only if d'|d

Theorem 5.7 (Theorem 3.2.10)

For any $n \geq 2$, if $H < \mathbb{Z}_n$ is a subgroup, then there is a positive divisor d of n so that

$$H = \langle [d] \rangle$$

Furthermore, this defines a bijection between divisors of H and subgroups of \mathbb{Z}_n . Furthermore, if d, d' > 0 are two divisors of n, then $\langle [d] \rangle < \langle [d'] \rangle$ if and only if d'|d.

If $H = \langle [d] \rangle$ is a subgroup of H, then $[n] \in H$, so d|n. And $|H| = |\langle [d] \rangle| = \frac{n}{d}$, so |H||d

5.6.11 Subgroup Lattice

The set of all subgroups of a group of G, together with the data of which subgroups contain which others is called the **subgroup lattice**. We often picture the subgroup lattice in a diagram with the entire group at the top, the trivial subgroup $\{e\}$ at the bottom, and the intermediate subgroups in the middle, with lines drawn from subgroups up to larger groups.

5.7 Homomorphism

5.7.1 Def: Homomorphism, Image

Definition 5.2

If (G,*) and (H,\circ) are groups, then a function $f:G\to H$ is a **homomorphism** if

$$f(x * y) = f(x) \circ f(y), \ \forall x, y \in G$$

If f is also a bijection, then f is called an **isomorphism**.

Figure 5.1

Example 5.15 Let S_n be the symmetric group on n letters, and let $\phi: S_n \to \mathbb{Z}_2$ be defined by

$$\phi(\sigma) = \begin{cases} 0 & \text{if } \sigma \text{ is an even permutation,} \\ 1 & \text{if } \sigma \text{ is an odd permutation.} \end{cases}$$

Show that ϕ is a homomorphism.

Example 5.16 Let $GL(n, \mathbb{R})$ be the multiplicative group of all invertible $n \times n$ matrices. Recall that a matrix A is invertible if and only if its determinant, $\det(A)$, is nonzero. Recall also that for matrices $A, B \in GL(n, \mathbb{R})$ we have

$$det(AB) = det(A)$$

Example 5.17

1.
$$\phi: (\mathbb{R}, +) \to (\mathbb{R}^*, x)$$
 $\phi(x) = 2^x$. Then

$$\phi(x+y) = 2^{x+y} = 2^x 2^y = \phi(x)\phi(y)$$

 ϕ is a homonorphism.

2.
$$\phi: G \to G$$
 $\phi(g) = g^{-1}$. Then

$$\phi(qh) = (qh)^{-1} = h^{-1}q^{-1} = \phi(h)\phi(q)$$

 ϕ is not a homomorphism in general; but it is homomorpgism if it is abelian.

Definition 5.3

Let ϕ be a mapping of a set X into a set Y, and let $A \subseteq X$ and $B \subseteq Y$. The $\underline{image \ \phi[A] \ of \ A \ in \ Y \ under \ \phi}$ is $\{\phi(a) \mid a \in A\}$. The set $\phi[X]$ is the $\underline{range \ of \ \phi}$. The $\underline{inverse \ image \ \phi^{-1}[B] \ of \ B \ in \ X}}$ is $\{x \in X \mid \phi(x) \in B\}$

5.7.2 Properties of Homomorphism

Theorem 5.8

Let ϕ be a homomorphism of a group G into a group G', then

- 1. if $e \in G$ is an identity in G, then $\phi(e) \in G'$ is the identity in G'.
- 2. if $a \in G$ has inverse $a' \in G$, then $\phi(a) \in G'$ has inverse $\phi(a') \in G'$.
- 3. if $H \leq G$ is a subgroup of G, then the image $\phi(H) = \{\phi(h) : h \in G\} \leq G'$ is a subgroup of G'.
- 4. if $K' \leq G'$ then the inverse image $\phi^{-1}(K') = \{x \in G : \phi(x) \in K'\} \leq G$.

5.7.3 Kernel of Homomorphism

Definition 5.4

Let $\phi: G \to G'$ be a homomorphism of groups. The subgroup $\phi^{-1}(e') = \{x \in G : \phi(x) = e'\}$ is the kernel of ϕ , denoted by $Ker(\phi)$.

$$Ker(\phi) \stackrel{def}{=} \phi^{-1}(e') = \{x \in G : \phi(x) = e'\}$$

Theorem 5.9 ($Ker\phi$ is normal)

Let $\phi: G \to G'$ be a homomorphism. $H = Ker\phi$, then for all $a \in G$, $\phi^{-1}[\phi(a)] = \{x \in G : \phi(x) = \phi(a)\}$ is the left coset aH of H, and is also the right coset Ha of H.

$$aH = Ha = \{x \in G : \phi(x) = \phi(a)\}$$

Proof 5.8

$$\phi(x) = \phi(a)$$

$$\Leftrightarrow \quad \phi(x)\phi(a)^{-1} = e'$$

$$\Leftrightarrow \quad \phi(x)\phi(a^{-1}) = e'$$

$$\Leftrightarrow \quad \phi(xa^{-1}) = e'$$

$$\Leftrightarrow xa^{-1} \in H$$

$$\Leftrightarrow x \in Ha$$

Similarity, we can prove $x \in aH$.

Theorem 5.10

A homomorphism is injective if and only if $Ker(\phi) = \{e\}$.

Proof 5.9

$$\phi(x) = \phi(y) \Leftrightarrow \phi(x)\phi^{-1}(y) = e'$$
$$\phi(x)\phi(y^{-1}) = e'$$
$$\phi(xy^{-1}) = e'$$
$$\Leftrightarrow xy^{-1} \in Ker(\phi)$$

Hence, we can also prove that

$$xy^{-1} \in Ker(\phi) \Leftrightarrow x = y \text{ if and only if } Ker(\phi) = \{e\}$$

5.8 Isomorphism

5.8.1 Definition: Isomorphism

Definition 5.5

We say that G and H are **isomorphic** if exists an **isomorphism** f, denoted by $G \cong H$ or $G \simeq H$. (since f is bijection, $G \cong H \Leftrightarrow H \cong G$)

Isomophic means these two pathes are the same.

$$G \times G \xrightarrow{*} \qquad G \xrightarrow{f} \quad H$$
 $G \times G \xrightarrow{(f,f)} \quad H \times H \xrightarrow{\circ} \quad H$

Example 5.18 $(\mathbb{Z}_2, +)$, $(\{-1, 1\}, \times)$ and $\phi: 0 \to 1; 1 \to -1$.

$$\phi(0+0) = 1 = \phi(0) \times \phi(0)$$

$$\phi(0+1) = -1 = \phi(0) \times \phi(1)$$

$$\phi(1+1) = 1 = \phi(1) \times \phi(1)$$

5.8.2 Theorem: $\sigma: G \to G'$ injective and $\sigma(xy) = \sigma(x)\sigma(y) \ \forall x,y \in G \Rightarrow \sigma(G) \leq G'$, G is isomorphic to $\sigma(G)$

Theorem 5.11

Let $\sigma: G \to G'$ be an injective map s.t.

$$\sigma(xy) = \sigma(x)\sigma(y), \ \forall x, y \in G$$

Then the image $\sigma(G) = {\sigma(x) : x \in G}$ is a subgroup of G' that is isomorphic to G.

Proof 5.10

- 1. Closed: $\forall a = \sigma(x), b = \sigma(y) \in \sigma(G)$, then $ab = \sigma(x)\sigma(y) = \sigma(xy) \in \sigma(G)$.
- 2. Identity: $\sigma(e) \in \sigma(G)$ is an identity for $\sigma(G)$: $\sigma(e)\sigma(x) = \sigma(ex) = \sigma(x) = \sigma(x) = \sigma(x)$
- 3. Inverse: $\sigma(x^{-1})$ is an inverse in $\sigma(G)$ for $\sigma(x)$: $\sigma(x^{-1})\sigma(x) = \sigma(e) = \sigma(x)\sigma(x^{-1})$

5.8.3 Cayley Theorem: G is isomorphic to a subgroup of S_G

Theorem 5.12 (Cayley Theorem)

Let G be a group and S_G is the symmetric group of G (the group of all permutation of G: $S_G = \{Bijection \ \sigma : G \to G\}$) Then G is isomorphic to a subgroup of S_G .

Proof 5.11

Set a bijection $\phi: G \to S_G$ such that $\phi(g) = \lambda_g, \forall g \in G$, where λ_g is a permutation $\lambda_g: x \to gx$.

Claim: $\lambda_g \in S_G$ (i.e. λ_g is a permutation of G, a bijection $G \to G$).

1. $\lambda_g: G \to G$ is injective

$$\lambda_g(x) = \lambda_g(y)$$

$$\Leftrightarrow gx = gy$$

$$\Leftrightarrow x = y$$

2. $\lambda_g: G \to G$ is surjective. Let $y \in G$

$$\lambda_q(x) = y$$

$$\Leftrightarrow gx = y$$

$$\Leftrightarrow x = g^{-1}y$$

Claim: $\phi(x)\phi(y) = \phi(xy)$

$$\phi(x)\phi(y) = \lambda_x \circ \lambda_y$$

$$(\lambda_x \circ \lambda_y)(z) = \lambda_x(yz) = xyz = \lambda_{xy}(z), \ \forall z \in G$$

$$\Rightarrow \phi(x)\phi(y) = \phi(xy)$$

According to previous theorem, $\phi(G) \leq G$ and G is isomorphic to $\phi(G)$.

5.9 Coset and Order

Definition 5.6

If H is a subgroup of a group G and $a \in G$, then $aH = \{ah | h \in H\} \le G$ is called left coset of H.

*

Theorem 5.13

Let $H \leq G$, $a, b \in G$,

- 1. aH = bH if and only if $a^{-1}b \in H$
- 2. $aH \cap bH = \emptyset$ or aH = bH
- 3. $|aH| = |H| \forall a \in G$

Proof 5.12

1. Assume that $aH \cap bH \neq \emptyset$ and let $ah = bk \in aH \cap bH$ with $h, k \in H$.

$$ah = bk \Leftrightarrow h = a^{-1}bk \Leftrightarrow a^{-1}b = hk^{-1} \in H$$
, thus $a^{-1}b \in H$.

- 2. When $aH \cap bH \neq \emptyset \exists k_1, h \in H$ such that $ak_1 = bh \in bH$. Then $\forall k_2 \in H$ $a = bhk_1^{-1} \Rightarrow ak_2 = bhk_1^{-1}k_2$ where $hk_1^{-1}k_2 \in H$ so $ak_2 \in bH$, $\forall k_2 \in H$.
- 3. $x \to ax$ is bijection $\Rightarrow |aH| = |H|$.

Claim 5.1

Coset can generate a partition of group:

 $G = a_1 H \cup a_2 H \cup \cdots \cup a_r H$

5.9.1 index of a subgroup

Definition 5.7

Let H be a subgroup of a group G. The number of left cosets of H in G is the **index**.

Note: Since $|aH| = |H| \ \forall a \in G$, the index of a subgroup is the number of subgroups which have order |H|.

5.9.2 Lagrange Theorem: Order of subgroup divides the order of group

Theorem 5.14 (Lagrange Theorem)

Let $H \leq G$ be a subgroup of finite group G. Then the order |H| divides the order |G|.

Proof 5.13

Give a partition

$$G = a_1 H \cup a_2 H \cup \dots \cup a_r H$$
$$|G| = |a_1 H| + |a_2 H| + \dots + |a_r H|$$
$$= r|H| \to |H| \Big| |G|$$

5.9.3 Theoerm: Order of element $a \in G = |\langle a \rangle|$ divides |G|

Theorem 5.15 (Order of element/cyclic subgroup)

For $a \in G$, the order of a (the smallest m such that $a^m = e$) divides |G|. The order of a is the order of cyclic subgroup $\langle a \rangle$ with generator a.

Proof 5.14

For $a \in G$, $H = \{a^n, n \in \mathbb{Z}\} \leq G$. H is the size of m. With lagrange theorm, |H| = m |G|

Corollary 5.3

Every group of prime order is cyclic.

\bigcirc

5.9.4 Theorem: Order n cyclic group is isomorphic to $(\mathbb{Z}_n, +_n)$

Theorem 5.16

Let G be a cyclic group with generator a. If the order of G is infinite, then G is isomorphic to $(\mathbb{Z},+)$. If G has finite order n, then G is isomorphic to $(\mathbb{Z}_n,+_n)$.

5.10 Direct Products

5.10.1 Cartesian product

Let $G_1, G_2, ..., G_n$ be n groups. Let $G = G_1 \times G_2 \times \cdots \times G_n$ be the Cartesian product. For $g \in G$, $g = (g_1, ..., g_n)$, $g_i \in G_i$.

Theorem 5.17

Then (G,*) becomes a group with operation * defined as

$$a * b = (a_1, ..., a_n) * (b_1, ..., b_n) = (a_1b_2, ..., a_nb_n) \quad a, b \in G$$

Proof 5.15

- (1) Binary operation $*: G \times G \to G$.
- (2) * is associative:

$$(a*b)*c = a*(b*c) = (a_1b_1c_1, ..., a_nb_nc_n)$$

(3) Identity: $e = (e_1, ..., e_n) \in G$

$$e * a = a = a * e$$

(4) Inverse: $a^{-1} = (a_1^{-1}, ..., a_n^{-1}) \in G$

$$a * a^{-1} = a^{-1} * a = e$$

5.10.2 Theorem: $\mathbb{Z}_m \times \mathbb{Z}_n$ is cyclic and is isomorphic to $\mathbb{Z}_{mn} \Leftrightarrow gcd(m,n) = 1$

Theorem 5.18

The group $\mathbb{Z}_m \times \mathbb{Z}_n$ is cyclic and is isomorphic to \mathbb{Z}_{mn} if and only if gcd(m,n) = 1.

\mathbb{C}

Proof 5.16

Claim: (1,1) generate $\mathbb{Z}_m \times \mathbb{Z}_n$

k(1,1) = (k,k) = (0,0) if and only if m|k and n|k. The smallest such k is k = lcm(m,n) = mn.

Hence, $\mathbb{Z}_m \times \mathbb{Z}_n$ is a cyclic group with order mn. Then $\mathbb{Z}_m \times \mathbb{Z}_n$ is isomorphic to \mathbb{Z}_{mn} .

We can define an isomorphism

$$\phi: \mathbb{Z}_m \times \mathbb{Z}_n \to \mathbb{Z}_{mn}$$

and its inverse

$$\psi: \mathbb{Z}_{mn} \to \mathbb{Z}_m \times \mathbb{Z}_n$$

Since $\mathbb{Z}_{mn}\langle 1 \rangle$, $\mathbb{Z}_m \times \mathbb{Z}_n = \langle (1,1) \rangle$, we can write

$$\psi(x \bmod mn) = (x \bmod m, x \bmod n)$$

 ψ is well-defined.

To describe $\phi : \mathbb{Z}_m \times \mathbb{Z}_n \to \mathbb{Z}_{mn}$ at 1 = sm + tn and let

$$\phi(a \bmod m, b \bmod n) = (atn + bsm \bmod mn)$$

$$\psi(atn + bsm \bmod mn) = (atn + bsm \bmod m, atn + bsm \bmod n)$$

$$= (atn \bmod m, bsm \bmod n)$$

$$= (a(1 - sm) \bmod m, b(1 - tn) \bmod n)$$

$$= (a \bmod m, b \bmod n)$$

Hence ψ is the inverse of ϕ .

Corollary 5.4

The group $\prod_{i=1}^n \mathbb{Z}_{m_i}$ is cyclic and is isomorphic to $\mathbb{Z}_{m_1 m_2 \cdots m_n}$ if and only if the numbers m_i for i = 1, ..., n are such that the gcd of any two of them is 1.

Example 5.19 If n is written as a product of powers of distinct prime numbers, as it

$$n = (p_1)^{n_1} (p_2)^{n_2} \cdots (p_r)^{n_r}$$

then \mathbb{Z}_n is isomorphic to

$$\mathbb{Z}_{(p_1)^{n_1}} \times \mathbb{Z}_{(p_2)^{n_2}} \times \cdots \times \mathbb{Z}_{(p_r)^{n_r}}$$

5.10.3 Finitely Generated Abelian Groups

Theorem 5.19 (Primary Factor Version of the Fundamental Theorem of Finitely Generated Abelian Groups)

Every finitely generated abelian group G is isomorphic to a direct product of cyclic groups in the form

$$\mathbb{Z}_{(p_1)^{r_1}} \times \mathbb{Z}_{(p_2)^{r_2}} \times \cdots \times \mathbb{Z}_{(p_n)^{r_n}} \times \mathbb{Z} \times \mathbb{Z} \times \cdots \times \mathbb{Z}$$

where the p_i are primes, not necessarily distinct, and the r_i are positive integers. The number of factors of \mathbb{Z} and the prime powers $(p_i)^{r_i}$ are unique.

- $\mathbb{Z}_{mn} \simeq \mathbb{Z}_m \times \mathbb{Z}_n$ if gcd(m, n) = 1.
- Abelian $\Leftrightarrow \mathbb{Z}_m \times \mathbb{Z}_n = \mathbb{Z}_n \times \mathbb{Z}_m$

Example 5.20 Find all abelian group of order 16

5 nonisomorphic abelian group.

$$\begin{cases}
\mathbb{Z}_{16} \\
\mathbb{Z}_8 \times \mathbb{Z}_2 \\
\mathbb{Z}_4 \times \mathbb{Z}_4 \\
\mathbb{Z}_4 \times \mathbb{Z}_2 \times \mathbb{Z}_2
\end{cases}$$

$$\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$$

Example 5.21

$$\mathbb{Z}_6 \times \mathbb{Z}_{40} \times \mathbb{Z}_{49} \simeq \mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_5 \times \mathbb{Z}_8 \times \mathbb{Z}_{49}$$
$$\mathbb{Z}_{210} \times \mathbb{Z}_{56} \simeq \mathbb{Z}_3 \times \mathbb{Z}_7 \times \mathbb{Z}_2 \times \mathbb{Z}_5 \times \mathbb{Z}_7 \times \mathbb{Z}_8$$

5.11 Def: Normal Subgroup $H \triangleleft G : aH = Ha, \forall a \in G$

Definition 5.8

A subgroup $H \leq G$ is **normal** if its left and right cosets coincide, that is, if

$$aH = Ha, \quad \forall a \in G$$

Notation: $H \triangleleft G$

Note that all subgroups of abelian groups are normal.

5.11.1 Thm: Three ways to check if H is normal

Theorem 5.20

"H < G is a normal subgroup of G $(H \triangleleft G)$ " is equivalent to

- (1) $ghg^{-1} \in H$ for all $g \in G$ and $h \in H$
- (2) $gHg^{-1} = H$ for all $g \in G$
- (3) gH = Hg for all $g \in G$

5.11.2 Thm: A subgroup is "Well-defined Left Cosets Multiplication" ⇔ "Normal"

Theorem 5.21

Let H be a subgroup of a group G. Then left coset multiplication is well defined by the equation

$$(aH)(bH) = (ab)H$$

if and only if $H \triangleleft G$ (H is a normal subgroup of G).

i.e. $x \in aH$ and $y \in bH \Rightarrow xy \in abH$ if and only if aH = Ha, $\forall a \in G$

Proof 5.17

• " \Rightarrow ": $\forall x \in aH$, $a^{-1} \in a^{-1}H \Rightarrow xa^{-1} \in H \Leftrightarrow x \in Ha \Rightarrow aH \subset Ha$;

Similarly $a^{-1}H \subset Ha^{-1} \Leftrightarrow Ha \subset aH \Rightarrow aH = Ha$

• "
$$\Leftarrow$$
": Let $x \in aH$, $y \in bH$. Say $x = ah_1, y = bh_2$

$$xy = (ah_1)(bh_2)$$

$$= a(h_1b)h_2$$

$$= a(bh_3)h_2 \quad (Since bH = Hb)$$

$$= (ab)(h_3h_2) \in abH$$

5.12 Factor Group $G/H = \{aH : a \in G\}$

Definition 5.9

The group $G/H = \{aH : a \in G\}$ with (aH)(bH) = abH is the factor group (or quotient group) of G by H.

5.12.1 Def: kernel H forms a factor group G/H

Definition 5.10

Let $\phi: G \to G'$ be a homomorphism of groups with <u>kernel H</u>. Then the cosets of H form a **factor group**, $G/H = \{aH : a \in G\}$. where (aH)(bH) = (ab)H.

Also, the map $\mu:G/H\to\phi[G]$ defined by $\mu(aH)=\phi(a)$ is an isomorphism. Both coset multiplication and μ are well defined, independent of the choices a and b from the cosets.

5.12.2 Cor: $ker\phi$ is a normal subgroup

Corollary 5.5

 $ker\phi$ is a normal subgroup: $ker\phi \triangleleft G$ for all homonorphisms.

5.12.3 Corollary: normal subgroup H forms a group G/H

By the Thm: A subgroup is "Well-defined Left Cosets Multiplication" \Leftrightarrow "Normal".

Corollary 5.6

Let $H \triangleleft G$ be a **normal subgroup** of G. Then the cosets of H form a group $G/H = \{aH : a \in G\}$ under the binary operation (aH)(bH) = (ab)H.

Proof 5.18

- (1) * is associative.
- (2) G/H has an identity H.

$$H*aH = aH*H = aH$$

(3) $aH \in G/H$ has inverse $a^{-1}H$

Note: This corollary contains the defintion because $\underline{\text{kernel is normal subgroup}}(\text{kernel} \Rightarrow \text{normal subgroup})$. (We can then prove they are exactly the same in the next theorem (kernel \Leftarrow normal subgroup))

5.12.4 Thm: normal subgroup is a kernel of a surjective homomorphism $\gamma:G\to G/H$

For any normal subgroup $H \triangleleft G$, we can define $\gamma(x) = xH$ which is surjective with $ker\gamma = H$

Theorem 5.22

Let $H \triangleleft G$ be a normal subgroup of G. Define $\gamma: G \rightarrow G/H$, $\gamma(x) = xH$. Then γ is a surjective homomorphism with $ker\gamma = H$.

Proof 5.19

- 1. γ is surjective homomorphism: $\gamma(ab) = abH = (aH)(bH) = \gamma(a)\gamma(b)$
- 2. $ker\gamma = H$: The identity in G/H is the coset H.

$$ker\gamma = \gamma^{-1}(H) = \{a \in G : \gamma(a) = aH = H\}$$

= $\{a \in G : a \in H\} = H$

5.12.5 The Fundamental Homomorphism Theorem: Every homomorphism ϕ can be factored to a homomorphism $\gamma:G\to G/H$ and isomorphism $\mu:G/H\to\phi[G]$

Figure 5.2: The Fundamental Homomorphism Theorem

Theorem 5.23 (The Fundamental Homomorphism Theorem)

Homomorphism $\phi: G \to G'$ with kernel H can be **factored**

$$\phi = \mu \gamma$$

where $\gamma:G\to G/H$ is a homomorphism, $\mu:G/H\to \phi[G]$ is an isomorphism

where $\gamma(g) = gH$, $\mu(gH) = \phi(g)$

Let $\phi: G \to G'$ be a group homomorphism with kernel H.

Then $\phi[G]$ is a group isomorphic to G/H, and $\mu: G/H \to \phi[G]$ given by $\mu(gH) = \phi(g)$ is an isomorphism. (If $\gamma: G \to G/H$ is the homomorphism given by $\gamma(g) = gH$, then $\phi(g) = \mu\gamma(g)$ for each $g \in G$.)

Proof 5.20

i.e. prove μ is (1) well-deifined, (2) isomorphism.

(1) well-defined: if aH = bH, then $a^{-1}b \in H$,

$$\mu(bH) = \mu((a(a^{-1}b))H) = \phi(a(a^{-1}b)) = \phi(a)\phi(a^{-1}b) = \phi(a) = \mu(aH)$$

(2) homomorphism:

$$\mu(aHbH) = \mu(abH) = \phi(ab) = \phi(a)\phi(b) = \mu(aH)\mu(bH)$$

(3) isomorphism i.e. prove $ker(\mu)$ is exactly the identity in G/H:

$$\mu(aH) = e' = \phi(a) \Leftrightarrow a \in ker(\mu), a \in ker(\phi) = H$$

 $\Leftrightarrow aH = H$, aH is the identity in G/H

Corollary 5.7

Let $\phi: G \to G'$ be a homomorphism for finite group G, G'.

Then (1). $|\phi(G)|$ |G|; (2). $|\phi(G)|$ |G'|

\mathbb{C}

Proof 5.21

- (1) According to the Fundamental Homomorphism theorem, $\phi(G)$ is one-to-one corresponse to G/H (H is the kernel of G), then $|\phi(G)| = |G/H| = |\{aH : a \in G\}| \Rightarrow |\phi(G)| = |G|/|H|$
- (2) Proved by Lagrange theorem.

5.12.6 Thm: $(H \times K)/(H \times e) \simeq K$ and $(H \times K)/(e \times K) \simeq H$

Theorem 5.24

Let $G=H\times K$ be the direct product of groups H and K. Then $\bar{H}=\{(h,e)\mid h\in H\}$ is a normal subgroup of G. Also G/\bar{H} is isomorphic to K in a natural way. Similarly, $G/\bar{K}\simeq H$ in a natural way.

Proof 5.22

 $\pi: H \times K \to K$ where $\pi(h,k) = k$ has kernal $\bar{H} = \{(h,e) \mid h \in H\}$, then $H \times K/\bar{H}$ is isomorphic to K. Prove $G/\bar{K} \simeq H$ in the same way.

5.12.7 Thm: factor group of a cyclic group is cyclic [a]/N=[aN]

Theorem 5.25

A factor group of a cyclic group is cyclic. [a]/N = [aN]

5.12.8 Ex: 15.11 example $\mathbb{Z}_4 \times \mathbb{Z}_6/(\langle (2,3) \rangle) \simeq \mathbb{Z}_4 \times \mathbb{Z}_3$ or \mathbb{Z}_{12}

5.12.9 Thm: Homomorphism $\phi: G \to G'$ preserves normal subgroups between G and $\phi[G]$.

Theorem 5.26

Let $\phi: G \to G'$ be a group homomorphism. If N is a normal subgroup of G, then $\phi[N]$ is a normal subgroup of $\phi[G]$. Also, if N' is a normal subgroup of $\phi[G]$, then $\phi^{-1}[N']$ is a normal subgroup of G.

Note: $\phi[N]$ is a normal subgroup of $\phi[G]$ not G'. Counterexample: $\phi: \mathbb{Z}_2 \to S_3$, where $\phi(0) = \rho_0$ and $\phi(1) = \mu_1$ is a homomorphism, and \mathbb{Z}_2 is a normal subgroup of itself, but $\{\rho_0, \mu_1\}$ is not a normal subgroup of S_3 .

5.13 Def: automorphism, inner automorphism

Definition 5.11

An isomorphism $\phi: G \to G$ of a group G with itself is an automorphism of G.

The automorphism $\phi_g: G \to G$, where $\phi_g(x) = gxg^{-1}$ for all $x \in G$, is the <u>inner automorphism</u> of G by g. Performing ϕ_g on x is called conjugation of x by g.

5.14 Simple Groups

Definition 5.12

A group G is simple if it is nontrivial $(G \neq \{e\})$ and has no proper nontrivial normal subgroups.

$$(\nexists H \neq \{e\} \triangleleft G)$$

Theorem 5.27

The alternating group A_n is simple for $n \geq 5$

(alternating group is a group of even permutations on a set of length n)

5.15 The Center and Commutator Subgroups

5.15.1 Def: center and commutator subgroup

Theorem 5.28

All finite subgroup G have two normal subgroups,

- (1) The center of G, $Z(G) = \{z \in G : za = az, \forall a \in G\} \triangleleft G$
- (2) The *commutator* subgroup of G, $C(G) = [G, G] = \{[a, b] : a, b \in G\}$.

Definition 5.13

 $[a,b]=aba^{-1}b^{-1}$ is the <u>commutator</u> of a and b. $[a,b]\in G$ is the unique element such that ab=[a,b]ba.

5.15.2 Thm: commutator subgroup is normal

Theorem 5.29

$$[G,G] \lhd G$$

Proof 5.23

Consider $[a,b] \in [G,G]$, prove that $\forall g \in G, g[a,b]g^{-1} \in [G,G]$

$$\begin{split} g[a,b]g^{-1} &= g(aba^{-1}b^{-1})g^{-1} = (gag^{-1})(gbg^{-1})(ga^{-1}g^{-1})(gb^{-1}g^{-1}) \\ &= (gag^{-1})(gbg^{-1})(gag^{-1})^{-1}(gbg^{-1})^{-1} = [gag^{-1},gbg^{-1}] \in [G,G] \end{split}$$

Example 5.22

- (1) For abelian group, Z(G) = G, $C(G) = \{e\}$
- (2) $G = S_6, Z(G) = \{e\}, C(G) = \{1, \rho, \rho^2\}$
- (3) $G = D_8 = \{1, \rho, \rho^2, \rho^3, \sigma, \sigma\rho, \sigma\rho^2, \sigma\rho^3\}, Z(G) = \{1, \rho^2\}, C(G) = \{1, \rho^2\}$
- (4) $G = D_{12}, Z(G) = \{1, \rho^3\}, C(G) = \{1, \rho^2, \rho^4\}$

(5)
$$G = A_4, Z(G) = \{(1)\}, C(G) = \{(1), (12)(34), (13)(24), (14)(23)\}$$

(6)
$$G = S_4, Z(G) = \{(1)\}, C(G) = A_4$$

Commutator subgroup of S_n is A_n .

Commutator subregoup of D_{2n} is $\{1, \rho^2, ..., \rho^{n-2}\}$

 $\sigma\rho^a=\rho^{n-a}\sigma=\rho^{n-2a}(\rho^a\sigma)\Rightarrow\rho^{n-2a}\text{ is a commutator }\forall a\in\mathbb{Z}\Rightarrow C(D_{2n})=\{1,\rho^2,...\rho^{n-2}\}\text{ if }n\text{ is even}.$

5.15.3 Thm: if $N \triangleleft G$, "G/N is abelian" \Leftrightarrow " $[G,G] \leq N$ "

Theorem 5.30

If N is a normal subgroup of G, then G/N is abelian if and only if [G,G] < N.

Proof 5.24

If N is a normal subgroup of G and G/N is abelian, then $\left(a^{-1}N\right)\left(b^{-1}N\right)=\left(b^{-1}N\right)\left(a^{-1}N\right)$; that is, $aba^{-1}b^{-1}N=N$, so $aba^{-1}b^{-1}\in N$, and $C\leq N$. Finally, if $C\leq N$, then

$$(aN)(bN) = abN = ab \left(b^{-1}a^{-1}ba\right)N$$
$$= \left(abb^{-1}a^{-1}\right)baN = baN = (bN)(aN)$$

5.16 Group Action on a Set

5.16.1 Def: action of group G on set X

Definition 5.14

Let X be a set and G a group. An action of G on X is a map $*: G \times X \to X$ such that

- (1) $ex = x \text{ for all } x \in X.$
- (2) $(g_1g_2)(x) = g_1(g_2x)$ for all $x \in X$ and all $g_1, g_2 \in G$.

Under these conditions, X is a G-set.

Example: Let X be any set, and let H be a subgroup of the group S_x of all permutations of X. Then X is an H-set.

5.16.2 Thm: If G acts on X, $\phi: G \to S_X$ as $\phi(g) = \sigma_g$ is a homomorphism (where $\sigma_g(x) = gx$)

Theorem 5.31

Let group G act on the set X,

- (1) $\phi: G \to S_X$ defined by $\phi(g) = \sigma_g$ is <u>well-defined</u>. ($\sigma_g: X \to X$ defined by $\sigma_g(x) = gx$ for $x \in X$ is a permutation of X)
- (2) $\phi: G \to S_X$ defined by $\phi(g) = \sigma_g$ is a homomorphism with the property that $\phi(g)(x) = gx$.

Special case: Let G act on itself, we get the **Cayley Theorem**: G is isomorphic to a subgroup of S_G In general, for a group G act on the set X, the homomorphism $\phi: G \to S_X$ is not injective. We say that G acts faithfully on X if ϕ is injective.

5.16.3 Examples of Group Actions

(Let $H \leq G$ be a subgroup of G)

- (1) $G \times G \rightarrow G$, $(g_1, g_2) \rightarrow g_1 g_2$
- (2) $G \times G \rightarrow G$, $(g_1, g_2) \rightarrow g_1 g_2 g_1^{-1}$ (conjugation)
- (3) $G \times G/H \to G/H$, $(g, aH) \to gaH$ (when H is not normal, X = G/H is just a set.)

5.17 Orbits

5.17.1 Thm: Equivalence Relation: X is a G-set, $x_1 \sim x_2 \Leftrightarrow x_2 = gx_1, \ \exists g \in G$

Theorem 5.32

For G acting on X, define a relation \sim on X via

$$x_1 \sim x_2 \Leftrightarrow x_2 = gx_1$$
 for some $g \in G$

Definition 5.15

A group G is transitive on a G-set X if for each $x_1, x_2 \in X$, there exists $g \in G$ such that $gx_1 = x_2$.

5.17.2 Def: $Gx = \{gx | g \in G\}$ is the orbit of x

Definition 5.16

For a group action G on X, X partitions into equivalence classes. Denote the class containing x by Gx.

 $Gx = \{gx | g \in G\}$ is called the orbit of $x \in X$.

Denote: the partition of X as equivalence classes takes the form

$$X = Gx_1 \cup Gx_2 \cup \cdots Gx_r$$

r disjoint orbits.

5.17.3 Def: $G_x = \{g \in G | gx = x\}$ is the <u>stabilizer</u> of x

Definition 5.17

Let G act on X, for $x \in X$, define $G_x = \{g \in G | gx = x\}$, then G_x is a subgroup of G called the stabilizer of x. (or the isotropy subgroup of x)

5.17.4 Thm: if X is a G-set, stabilizer $G_x = \{g \in G | gx = x\}$ is subgroup of G, $\forall x \in X$

Let

$$X^g = \{x \in X | gx = x\}; G_x = \{g \in G | gx = x\}$$

Theorem 5.33

Let X be a G-set then G_x is a subgroup of G, $\forall x \in X$.

\mathbb{C}

Proof 5.25

- (1) Closed: $\forall g_1, g_2 \in G_x$, $(g_1g_2)x = g_1(g_2x) = g_1x = x \Rightarrow g_1g_2 \in G_x$.
- (2) Identity: ex = x.
- (3) Inverse: gx = x, $x = ex = g^{-1}gx = g^{-1}(gx) = g^{-1}x$.

5.17.5 Orbit-Stabilizer Theorem: $|Gx| = \frac{|G|}{|G_x|}$

Theorem 5.34

Let G act on X, and let $x \in X$, then $|Gx| = [G:G_x] = |G/G_x| = \frac{|G|}{|G_x|}$

Proof 5.26

Since G_x is the subgroup of G, according to largerange theorem we know $|G_x| |G|$.

For a $x_1 = g_1 x \in Gx$ with $g_1 \notin G_x = \{g \in G | gx = x\}$. $G_{x_1} = \{g \in G | gx_1 = x_1\} = \{g \in G | g_1^{-1} gg_1 x = x\}$.

Prove $g \to g_1^{-1}gg_1$ is one to one: assume $g_1^{-1}gg_1 = g_1^{-1}g'g_1$, $\Rightarrow g = g'$.

Hence, $|G_{x_1}| = |G_x| \Rightarrow \frac{|G|}{|G_x|} = |Gx|$

5.18 Applications of G-sets to Counting

As we showed before, the partition of X as equivalence classes takes the form

$$X = Gx_1 \cup Gx_2 \cup \cdots Gx_r$$

where r is the number of orbits in X.

5.18.1 Burnside's Formula: number of orbits in X: $r = \frac{1}{|G|} \sum_{g \in G} |X^g|$

Theorem 5.35

Let G be a finite group and X a finite G-set. If r is the number of orbits in X under G, then

$$r = \frac{1}{|G|} \sum_{g \in G} |X^g|$$

i.e. r equals to the average $|X^g|$, where $X^g = \{x : gx = x\}$

 \odot

Proof 5.27

Since $G_{x_0} = \{g \in G | gx = x\} = \{(g, x) | gx = x, g \in G, x = x_0\},\$

$$\sum_{x \in X} |G_x| = |\{(g, x)|gx = x, g \in G, x \in X\}|$$

At the same time, $|X^{g_0}| = \{x \in X : gx = x\} = \{(g, x)|gx = x, g = g_0, x \in X\}$, then

$$\sum_{g \in G} |X^g| = |\{(g,x)|gx = x, g \in G, x \in X\}| = \sum_{x \in X} |G_x|$$

As we shoed before, $|G_x| = |G_y|, \forall x, y \in X$

$$\begin{split} \Rightarrow \sum_{x \in X} |G_x| &= |G| \sum_{x \in X} \frac{1}{|Gx|} = |G| \sum_{i=1}^r \sum_{x \in Gx_i} \frac{1}{|Gx|} = |G| \sum_{i=1}^r \frac{|Gx_i|}{|Gx_i|} = |G| r \\ \Rightarrow r &= \frac{\sum_{x \in X} |G_x|}{|G|} = \frac{\sum_{g \in G} |X^g|}{|G|} \end{split}$$

5.18.2 Example: Counting

Example 5.23 How many distinguishable necklaces (with no clasp) can be made using 7 different- colored beads of the same size?

If two necklaces are transitive ($\exists g \in D_1 4$ s.t. $gx_1 = x_2$), they are in the same necklace. Hence, we want to count the number of orbits. $|X^1| = 7!$ and $|X^g| = 0, \forall g \neq 1 \in D_{14}$ Then,

$$r = \frac{|X^1|}{|D_1 4|} = \frac{7!}{14} = 360$$

Example 5.24 Let X be the set of all 4-edge-colored equivalent triangle. Count the number of different coloring.

$$D_6 = \{(1), (1,2), (2,3), (1,3), (1,2,3), (1,3,2)\}$$

$$g \# |X^g|$$

$$(1) 1 4^3$$

$$(1,2,3)$$
 2 4(three points must be the same color)

$$r = \frac{1 \cdot 4^3 + 3 \cdot 4^2 + 2 \cdot 4}{6} = 20$$

Chapter 6 Ring and Field

6.1 Ring $(R, +, \cdot)$

6.1.1 Definition of Ring: + is associative, commutative, identity, inverse $\in R$; \cdot is associative, distributes over +

Definition 6.1 (Ring)

A ring is a nonempty set with two operations, called addition and multiplication, $(R,+,\cdot)$ such that

- (1). (R,+) is an abelian group: i.e. + is associative and commutative. $0,-a\in R$
- (2). · is associative.
- (3). \cdot distributes over +: $\forall a, b, c \in R$, $a \cdot (b+c) = a \cdot b + a \cdot c$ and $(b+c) \cdot a = b \cdot a + c \cdot a$.

4

Theorem 6.1 (Properties of Ring)

If R is a ring with additive identity 0, then for any $a,b\in R$ we have

- (1). 0a = a0 = 0,
- (2). a(-b) = (-a)b = -(ab),
- (3). (-a)(-b) = ab.

6.1.2 $S \subset R$: Subring (closed under + and \cdot ; addictive inverse $-a \in S$)

Proposition 6.1 (Proposition 2.6.27)

If $S \subset R$ is a subring, then $+, \cdot$ make S into a ring.

6.1.3 Def: Commutative ring: ring's · is commutative

If "·" is commutative, we call $(R, +, \cdot)$ a commutative ring.

6.1.4 Def: A ring with 1: the ring exists multiplication identity $1 \in R$

If there exists an element $1 \in R \setminus \{0\}$ such that a1 = 1a = a, $\forall a \in R$, then we say that R is a ring with 1 (a ring with unity).

Note: We usually discuss $1 \neq 0$. If 1 = 0, $a = 1a = 0 \Rightarrow R = \{0\}$.

6.1.5 Def: In a ring R with 1, u is a unit if $\exists v \in R$ s.t. uv = vu = 1

Definition 6.2

In a ring R with 1, u is a unit if it has a multiplicative inverse in R i.e. $\exists v \in R$ s.t. uv = vu = 1

Example 6.1 units in \mathbb{Z} are $\{-1, +1\}$; in \mathbb{Z}_n are $\{a \in \mathbb{Z}_n : gcd(a, n) = 1\}$

6.1.6 Def: A ring with 1, R is a division ring if every nonzero element of R is a unit

Definition 6.3

A ring with 1, R is a division ring if every nonzero element of R is a unit. This is equalivalent to R has identity and inverse in mutiplication.

6.1.7 Def: Ring Homomorphism: $\phi(a+b) = \phi(a) + \phi(b), \phi(ab) = \phi(a)\phi(b)$

Definition 6.4

Let R, R' be rings. A map $\phi: R \to R'$ is a ring homomorphism if

$$\phi(a+b) = \phi(a) + \phi(b)$$

$$\phi(ab) = \phi(a)\phi(b)$$

6.1.8 Def: zero divisor: a $a \neq 0 \in R$ **if** $\exists b \neq 0 \in R$ **s.t.** ba = 0 **or** ab = 0

Definition 6.5

A nonzero element $a \in R$ is called a zero divisor if there exists a nonzero $b \in R$ s.t. ba = 0 or ab = 0

Note: Mutiplication cancellation law holds when no zero divisors.

6.1.9 Remark: In \mathbb{Z}_n , an element is either 0 or unit or zero divisor

Remark: In \mathbb{Z}_n , an element is either (1) 0, (2) a unit, (3) a zero divisor.

$$0 \neq a \in \mathbb{Z}_n$$
 is a $\begin{cases} & \text{unit} & \text{if } gcd(a,n) = 1 \\ & \text{zero divisor} & \text{if } gcd(a,n) \neq 1 \end{cases}$ In $M_n(R)$ $\begin{cases} & \text{unit} & \text{if } rank(A) = n \\ & \text{zero divisor} & \text{if } rank(A) < n \end{cases}$

$$\operatorname{In} M_n(R) \left\{ \begin{array}{ll} \operatorname{unit} & \operatorname{if} \operatorname{rank}(A) = n \\ \operatorname{zero \ divisor} & \operatorname{if} \operatorname{rank}(A) < n \end{array} \right.$$

In $R = \mathbb{Z}$, $a \notin \{0, +1, -1\}$ is neither unit nor zero divisor.

6.1.10 Thm: $a \in \mathbb{Z}_n$ is a zero divisor $\Leftrightarrow gcd(a, n) \neq 1$.

Theorem 6.2

In the ring \mathbb{Z}_n , the zero divisors are precisely those nonzero elements that are not relatively prime to n. ${}_{\bigcirc}$

6.1.11 Cor: \mathbb{Z}_p has no zero divisors if p is prime.

6.1.12 Def: An integral domain is a commutative ring with $1 \neq 0$ that has no zero divisors

Definition 6.6

An integral domain is a commutative ring with $1 \neq 0$ that has no zero divisors.

 \mathbb{Z} and \mathbb{Z}_p for any prime p are integral domains, but \mathbb{Z}_p is not an integral domain if n is not prime.

6.2 Field \mathbb{F}

6.2.1 Def: A field is a commutative division ring.

Definition 6.7

A field is a commutative division ring.

Which is equal to a ring satisfies identity, inverse and commutative in multiplication. Field $(\mathbb{F}, +, \cdot)$ (close, associative, commutative, distributive(M over A), identity & inverse(M,A))

Note: nonzero elements of a finite field can form a cyclic (sufficient for abelian) mutiplication group.

6.2.2 Differences between "Field" and "Integral Domain"

Def: An integral domain is a commutative ring with $1 \neq 0$ that has no zero divisors

Def: A field is a commutative ring with $1 \neq 0$ that every nonzero element of R is a unit.

6.2.3 Lemma: A unit is not zero divisor

Proof 6.1

 $a \in R$ is a unit and $\frac{1}{a}$ is its inverse.

Assume there exists $b \neq 0$ s.t. ab = 0, then

$$\frac{1}{a}(ab) = \frac{1}{a}0 = 0$$
$$= (\frac{1}{a}a)b = b$$

Contradiction!

19.10 Figure A collection of rings.

Figure 6.1: example: $1.\mathbb{Z}_2, \mathbb{Q}, 2.\mathbb{Z}, 3.\mathbb{Z}_4, 4.2\mathbb{Z} 5.M_2(\mathbb{Z}), M_2(\mathbb{R}), 6.$ upper-triangular matrices with integer entries and all zeros on the main diagonal

Assume there exists $b \neq 0$ s.t. ba = 0, then

$$(ba)\frac{1}{a} = 0\frac{1}{a} = 0$$
$$= b(a\frac{1}{a}) = b$$

Contradiction!

6.2.4 Lemma: A field doesn't has zero divisors

Since a field is a division ring, its nonzero elements are unit which is not zero divisor.

6.2.5 Thm: Every field is an integral domain

Theorem 6.3

Every field is an integral domain.

prove by previous lemma.

6.2.6 Thm: Every finite integral domain is a field

Theorem 6.4

Every finite integral domain is a field.

Proof 6.2

The only thing we need to show is that a typical element $a \neq 0$ has a multiplicative inverse.

Consider $a, a^2, a^3, ...$ Since there are only finitely many elements we must have $a^m = a^n$ for some m < n. Then $0 = a^m - a^n = a^m(1 - a^{n-m})$. Since there are no zero-divisors we must have $a^m \neq 0$ and hence

 $1 - a^{n-m} = 0$ and so $1 = aa^{n-m-1}$ and we have found a multiplicative inverse for a.

6.2.7 Note: Finite Integral Domain ⊂ Field ⊂ Integral Domain

 \mathbb{Z}_p is a field.

 \mathbb{Z} is an integral domain but not a field.

6.3 The Characteristic of a Ring

6.3.1 Def: characteristic n is the least positive integer s.t. $n \cdot a = 0, \forall a \in R$

Definition 6.8

If for a ring R a positive integer n exists such that $n \cdot a = 0$ for all $a \in R$, then the least such positive integer is the characteristic of the ring R. If no such positive integer exists, then R is of characteristic 0.

Example 6.2 The ring \mathbb{Z}_n is of characteristic n, while $\mathbb{Z}, \mathbb{Q}, \mathbb{M}$, and \mathbb{C} all have characteristic 0.

6.3.2 Thm: In a ring with 1, characteristic $n \in \mathbb{Z}^+$ s.t. $n \cdot 1 = 0$

Theorem 6.5

Let R be a ring with 1. If $n \cdot 1 \neq 0$ for all $n \in \mathbb{Z}^+$, then R has characteristic 0. If $n \cdot 1 = 0$ for some $n \in \mathbb{Z}^+$, then the smallest such integer n is the characteristic of R.

Chapter 7 The Ring \mathbb{Z}_n (Fermat's and Euler's Theorems)

7.1 Fermat's Theorem

7.1.1 Thm: nonzero elements in \mathbb{Z}_p (p is prime) form a group under multiplication

Theorem 7.1

The nonzero elements in \mathbb{Z}_p (p is prime) form a group under multiplication.

\odot

Proof 7.1

 \mathbb{Z}_p is a finite field.

7.1.2 Cor: (Little Theorem of Fermat) $a \in \mathbb{Z}$ and p is prime not dividing a, then

$$a^{p-1} \equiv 1 \mod p$$
 (p divides $a^{p-1} - 1$)

Corollary 7.1 (Little Theorem of Fermat)

 $a \in \mathbb{Z}$ and p is prime not dividing a, then $a^{p-1} \equiv 1 \mod p$ (p divides $a^{p-1} - 1$)

Proof 7.2

Let $G_p = \{a \in \mathbb{Z}_p : a \neq 0\}$, by previous theorem, we know the G_p is a group under multiplication of size $|G_p| = p - 1$.

Then the order of a should divde $|G_p| = p - 1$, then

$$a^{p-1}=1\in G_p\Rightarrow a^{p-1}\equiv 1\bmod p$$

7.1.3 Cor: (Little Theorem of Fermat) If $a \in \mathbb{Z}$, then $a^p \equiv a \mod p$ for any prime p

7.2 Euler's Theorem

Euler's Theorem is more general form of Fermat's Theorem.

7.2.1 Thm: $G_n = \{a \in \mathbb{Z}_n : gcd(a, n) = 1\}$ forms a group under multiplication

Theorem 7.2

The set G_n of nonzero elements of \mathbb{Z}_n that are not zero divisors $(G_n = \{a \in \mathbb{Z}_n : gcd(a, n) = 1\})$ forms a group under multiplication modulo n.

7.2.2 Def: Euler phi function $\phi(n) = |G_n|$, where $G_n = \{a \in \mathbb{Z}_n : gcd(a, n) = 1\}$

More generally, any $n \in \mathbb{Z}^+$, $a^{p-1} \equiv 1 \mod p$. Then G_n is a group under mutiplication of size $|G_n| = \phi(n)$, we set $\phi(n)$ be the Euler phi function. E.g.

$$\phi(8) = \#\{a \in \mathbb{Z}_8 : gcd(a, 8) = 1\} = 4$$

$$\phi(15) = \#\{1, 2, 4, 7, 8, 11, 13, 14\} = 8$$

7.2.3 Thm: (Euler's Theorem) If $a \in \mathbb{Z}$, $n \geq 2$ s.t. gcd(a, n) = 1 then $a^{\phi(n)} \equiv 1 \bmod n$

Theorem 7.3

If a is an integer relatively prime to n, then $a^{\phi(n)} - 1$ is divisible by n, that is $a^{\phi(n)} \equiv 1 \mod n$.

\odot

Proof 7.3

order of a should divide $|G_n| = \phi(n)$ then $a^{\phi(n)} = 1 \in G_n \Rightarrow a^{\phi(n)} \equiv 1 \mod n$

7.3 Application to $ax \equiv b \pmod{m}$

7.3.1 Thm: find solution of $ax \equiv b \pmod{m}$, gcd(a, m) = 1

Theorem 7.4

 $a,b \in \mathbb{Z}_m, gcd(a,m) = 1$, then ax = b has a unique solution in \mathbb{Z}_m

Proof 7.4

By Euler's Theorem, $a^{\phi(m)} \equiv 1 \mod m$, which means a is a unit of \mathbb{Z}_m , there exists a unique $a^{-1} \in \mathbb{Z}_m$. Mutiply $a^{-1} \in \mathbb{Z}_m$ on both side, we can get $x = a^{-1}b$ is the solution.

7.3.2 Thm: $ax \equiv b \pmod{m}$, d = gcd(a, m) has solutions if d|b, the number of solutions is d

Theorem 7.5

Let m be a positive integer and let $a, b \in \mathbb{Z}_m$. Let d = gcd(a, m). The equation ax = b has a solution in \mathbb{Z}_m if and only if d divides b. When d divides b, the equation has exactly d solutions in \mathbb{Z}_m .

7.3.3 Cor: $ax \equiv b \pmod{m}$, d = gcd(a, m), d|b, then solutions are

$$((\frac{a}{d})^{\phi(\frac{m}{d})-1}\frac{b}{d}+k\frac{m}{d})+(m\mathbb{Z}), \quad k=0,1,...,d-1$$

Corollary 7.2

Let $d = \gcd(a, m)$. The congruence $ax \equiv b \pmod{m}$ has a solution if and only if d divides b. When this is the case, the solutions are the integers in exactly d distinct residue classes modulo m.

Steps:

(1) let $a_1 = a/d$, $b_1 = b/d$, $m_1 = m/d$, solve

$$a_1 s \equiv b_1 \bmod m_1 \Rightarrow s = a_1^{-1} b_1$$

where
$$a_1^{-1} = a_1^{\phi(m_1)-1}$$

(2) Solutions are

$$(s+km_1)+(m\mathbb{Z}), \quad k=0,1,...,d-1$$

Example 7.1 Find all solutions of $12x \equiv 27 \mod 18$

 $d=\gcd(12,18)=6$, $d \nmid 27 \Rightarrow$ no solutions.

Example 7.2 Find all solutions of $15x \equiv 27 \mod 18$

d=gcd(15,18)=3, $a_1 = 5$, $b_1 = 9$, $m_1 = 6$. Then $s = a_1^{-1}b_1 = 5 \cdot 9 = 3$, then solutions are $3 + 18\mathbb{Z}$, $9 + 18\mathbb{Z}$, $15 + 18\mathbb{Z}$

Chapter 8 Ring Homomorphisms and Factor Rings

8.1 Ring Homomorphism

8.1.1 Def: Ring Homomorphism: $\phi(a+b) = \phi(a) + \phi(b), \phi(ab) = \phi(a)\phi(b)$

Definition 8.1

Let R, R' be rings. A map $\phi: R \to R'$ is a ring homomorphism if

$$\phi(a+b) = \phi(a) + \phi(b)$$

$$\phi(ab) = \phi(a)\phi(b)$$

Example 8.1 Projection Homomorphisms Let $R_1, R_2, ..., R_n$ be rings. For each i, the map π_i : $R_1 \times R_2 \times ... \times R_n \to R_i$ defined by $\pi_i(r_1, r_2, ..., r_n) = r_i$ is a homomorphism.

8.1.2 Properties of Ring Homomorphism

- 1. $\phi(0) = 0'$.
- 2. $\phi(-a) = -\phi(a)$.
- 3. $S \subseteq R$ is a subring $\Rightarrow \phi(S) \subseteq R'$ is a subring.
- 4. $S' \subseteq R'$ is a subring $\Rightarrow \phi^{-1}(S') \subseteq R$ is a subring.
- 5. If $1 \in R$ is a unity of $R \Rightarrow \phi(1)$ is a unity of $\phi(R)$.

8.1.3 Def: kernel of ring homomorphism (the same as group homomorphism)

$$Ker(\phi) = \phi^{-1}[0'] = \{r \in R : \phi(r) = 0'\}$$

8.1.4 Thm: one-to-one map $\Leftrightarrow Ker(\phi) = \{0\}$

Similarly, a ring homomorphism is one-to-one map if and only if $Ker(\phi) = \{0\}$.

8.2 Factor (Quotient) Rings

8.2.1 Thm: R/H is a ring for $H = ker\phi$ if operations well defined

Theorem 8.1

Let $\phi: R \to R'$ be a ring homomorphism and let $H = \ker \phi$. Then R/H is a ring under the operation.

$$(a+H) + (b+H) = (a+b) + H$$

$$(a+H)(b+H) = ab + H$$

Also, $\mu: R/H \to \phi[R]$ defined by $\mu(a+H) = \phi(a)$ is an isomorphism.

8.2.2 Thm: (a+H)+(b+H)=(a+b)+H well defined $\Leftrightarrow ah\in H, hb\in H, \forall a,b\in R,b\in H$

Theorem 8.2

 $(a+H)+(b+H)=(a+b)+H \text{ is well defined if and only if } ah\in H \text{ and } hb\in H, \forall a,b\in R, \forall h\in H \text{ and } hb\in H, \forall$

8.2.3 Def: N < R is ideal $aN \subseteq N$ and $Nb \subseteq N \ \forall a,b \in R$

Definition 8.2

An addive subgroup N of a ring R is an **ideal** if $aN \subseteq N$ and $Nb \subseteq N \ \forall a,b \in R$

Example 8.2 $n\mathbb{Z}$ is an ideal in the ring \mathbb{Z} .

8.2.4 Thm: N is ideal $\Rightarrow R/N$ is a ring

Theorem 8.3

Let N be an ideal of a ring R. R/N is a ring with operations

$$(a+H) + (b+H) = (a+b) + H$$

$$(a+H)(b+H) = ab + H$$

We call this ring R/N is the factor ring of R by N

\bigcirc

8.2.5 Fundamental Homomorphism Theorem

Theorem 8.4

Let $\phi: R \to R'$ be a ring homomorphism with kernel N. Then

- 1. $\phi[R]$ is a ring.
- 2. $\mu: R/N \to \phi[R]$ given by $\mu(x+N) = \phi(x)$ is an isomorphism.
- 3. $\gamma: R \to R/N$ given by $\gamma(x) = x + N$ is a homomorphism.

4.
$$\phi(x) = \mu \gamma(x), \forall x \in R$$

\Diamond

8.2.6 Thm: $I, J \subset R$ be R - ideals and $I + J = R \Rightarrow R/_{I \cap J} \cong R/_I \times R/_J$

Theorem 8.5

Let R be a commutative ring with $1 \neq 0$, and $I, J \subset R$ be R – ideals such that I + J = R (I and J are relatively prime). Then,

$$R/_{I\cap J}\cong R/_I\times R/_J$$

Moreover, $IJ = I \cap J$ and $R/IJ \cong R/I \times R/J$

\bigcirc

Proof 8.1

Using that I + J = R and $1 \in R$, we can write 1 = x + y, $x \in I, y \in J$.

The natural map (direct product of two projections) $R \to R/I \times R/J$ is a ring homomorphism. $(r \to (r+I,r+J))$.

The ring $R/I \times R/J$ is generated by the element (1 + I, J), (I, 1 + J):

$$(a+I, b+J) = a(1+I, J) + b(I, 1+J)$$

Let $x + y = 1, x \in I, y \in J$

$$x \to (x + I, x + J) = (I, 1 - y + J) = (I, 1 + J)$$

$$y \to (y + I, y + J) = (1 - x + I, J) = (1 + I, J)$$

Then bx + ay = a(1 + I, J) + b(I, 1 + J). And $R \to R/I \times R/J$ is surjective.

We can prove that $I \cap J$ is the kernel of the ring $R/I \times R/J$:

$$r \rightarrow (r+I, r+J)$$
 maps r to $(I, J) = 0 \in R/I \times R/J$

$$\Leftrightarrow r \in I \text{ and } r \in J.$$

$$\Leftrightarrow r \in I \cap J$$
.

Then, according to the FHT $R/I \cap J \cong R/I \times R/J$ if I + J = R.

Moreover, we can prove $I + J = R \Rightarrow IJ = I \cap J$.

- 1. $(IJ \subset I \cap J)$: From the definition of ideal $IJ \subset I$ and $IJ \subset J \Rightarrow IJ \subset I \cap J$
- 2. $(I \cap J \subset IJ)$: Let $1 = x + y, x \in I, y \in J, r \in I \cap J$, then

$$r = r \cdot 1 = r(x+y) = rx + ry = xr + ry \in IJ$$

Chapter 9 Prime and Maximal Ideals

Every nonzero ring R has at least two ideals, the **improper ideal** R and the **trivial ideal** $\{0\}$. For these ideals, the factor rings are R/R, which has only one element, and $R/\{0\}$, which is isomorphic to R. These are uninteresting cases. Let's consider **proper nontrivial ideal** $N \subset R$.

9.1 Thm: N is R-ideal has a unit $\Rightarrow N = R$

Theorem 9.1

If R is a ring with 1, and N is an ideal of R containing a unit, then N = R.

 \Diamond

Proof 9.1

Since N is ideal, $rN \subseteq N, \forall r \in R. \ r^{-1} \in N \Rightarrow 1 \in N \Rightarrow r \cdot 1 \in N, \forall r \in R \Rightarrow N = R$

9.1.1 Cor: Ideal of field F is $\{0\}$ or F

Corollary 9.1

A field F contains no proper nontrivial ideals, i.e., ideal is $\{0\}$ or F.

 \sim

Proof 9.2

Every nonzero element of field is unit.

9.2 Def: Maximal ideal: no other ideal properly contains it

Definition 9.1

A proper ideal $M \subsetneq R$ is called **maximal** if

$$M \subseteq I \subseteq R \Rightarrow M = I \text{ or } I = R \text{ (for } R\text{-ideal } I).$$

i.e, there is no other ideal properly containing M.

*

9.2.1 Thm: R comm ring with 1, M maximal ideal $\Leftrightarrow R/M$ is a field

Theorem 9.2

Let R be a commutative ring with $1 \neq 0$. Then M is a maximal ideal of R if and only if R/M is a field.

Example 9.1 Since $\mathbb{Z}/n\mathbb{Z}$ is isomorphic to \mathbb{Z}_n and \mathbb{Z}_n is a field if and only if n is prime. Then we see that maximal ideals are $p\mathbb{Z}$ where p is any positive prime.

Example 9.2 Let $R = \mathbb{Z}[x]$ has ideals $(2) = 2\mathbb{Z}[x] \subseteq R$, $(x) = x\mathbb{Z}[x] \subseteq R$, $(2, x) = 2\mathbb{Z}[x] + x\mathbb{Z}[x] \subseteq R$

- (1) $R/(2) \cong \mathbb{Z}_2[x]$, $\mathbb{Z}_2[x]$ is not a field \Rightarrow (2) is not maximal ideal.
- (2) $R/(x) \cong \mathbb{Z}$, \mathbb{Z} is not a field $\Rightarrow (x)$ is not maximal ideal.
- (3) $R/(2,x) \cong \mathbb{Z}_2, \mathbb{Z}_2$ is a field $\Rightarrow (2,x)$ is maximal ideal.

9.3 Def: Prime ideal: $ab \in P \Rightarrow a \in P$ or $b \in P$

Definition 9.2

An ideal $P \subseteq R$ in a commutative ring R is a **prime** ideal if $ab \in P \Rightarrow a \in P$ or $b \in P$.

Note: $\{0\}$ is a prime ideal in \mathbb{Z} , and indeed in any integral domain.

Example 9.3 $\mathbb{Z} \times \{0\}$ is a prime ideal of $\mathbb{Z} \times \mathbb{Z}$, for if $(a,b)(c,d) \in \mathbb{Z} \times \{0\}$, then we must have bd = 0, then either $(a,b) \in \mathbb{Z} \times \{0\}$ or $(c,d) \in \mathbb{Z} \times \{0\}$

9.3.1 Thm: N prime ideal $\Leftrightarrow R/N$ is an integral domain

Theorem 9.3

Let R be a commutative ring with 1, and let $N \subseteq R$ be an ideal in R. Then R/N is an integral domain if and only if N is a prime ideal in R.

5

R/N is an integral domain: (aN)(bN) = 0, $(an_1)(bn_2) = 0$, $a, b \in R$, $\forall n_1, n_2 \in N$ where $an_1 \in N$, $bn_2 \in N$ since N is an ideal.

9.3.2 Cor: maximal ideal \Rightarrow prime ideal

Corollary 9.2

Every maximal ideal in a commutative ring R with 1 is a prime ideal.

9.4 Relation Summary

I is maximal \Leftrightarrow R/I is a field

I is prime \Leftrightarrow R/I is an integral domain

 \Downarrow

9.5 Thm: homomorphism $\phi: \mathbb{Z} \to R$, $\phi(n) = n \cdot 1$

Theorem 9.4

If R is a ring with unity 1, then the map $\phi: \mathbb{Z} \to R$ given by

$$\phi(n) = n \cdot 1$$

for $n \in \mathbb{Z}$ is a homomorphism of \mathbb{Z} into R.

9.5.1 Cor: Ring R 1. characteristic $n>1\Rightarrow$ has subring isomorphic to \mathbb{Z}_n 2. characteristic $0\Rightarrow$ has subring isomorphic to \mathbb{Z}

Corollary 9.3

If R is a ring with 1 and characteristic n > 1, then R contains a subring isomorphic to \mathbb{Z}_n . If R has characteristic 0, then R contains a subring isomorphic to \mathbb{Z} .

Review: Characteristic n is the least positive integer s.t. $n \cdot a = 0, \forall a \in R$

9.5.2 Thm: Field F 1. prime characteristic $p\Rightarrow$ has subfield isomorphic to \mathbb{Z}_p 2. characteristic $0\Rightarrow$ has subfield isomorphic to \mathbb{Q}

Theorem 9.5

A field F is either of prime characteristic p and contains a subfield isomorphic to \mathbb{Z}_p or of characteristic p and contains a subfield isomorphic to \mathbb{Q} .

Definition 9.3

We define \mathbb{Z}_p *and* \mathbb{Q} *are prime fields.*

9.6 Def: Pricipal ideal (of comm ring R) generated by a: $\langle a \rangle = \{ra | r \in R\}$

Definition 9.4

If R is a commutative ring with 1 and $a \in R$, the ideal $\{ra | r \in R\}$ of all multiples of a is the **principal** ideal generated by a and is denoted by $\langle a \rangle$. An ideal N of R is a **principal** ideal if $N = \langle a \rangle$ for some $a \in R$.

Example 9.4 Every ideal of the ring \mathbb{Z} is of the form $k\mathbb{Z}$, which is generated by k, so every ideal of \mathbb{Z} is a principal ideal.

Example 9.5 The ideal $\langle x \rangle$ in F[x] consists of all polynomials in F[x] having zero constant term.

9.6.1 Thm: field F, every ideal in F[x] is principal

Theorem 9.6

If F is a field, every ideal in F[x] is principal.

 \bigcirc

Proof 9.3

Let N be an ideal of F[x].

- 1. If $N = \{0\}$, then $N = \langle 0 \rangle$.
- 2. If $N \neq \{0\}$, and let g(x) be a nonzero element of N of minimal degree. If g(x) is constant (degree 0), then $g(x) \in F$ is a unit $\Rightarrow N = \langle 1 \rangle = F[x]$. If degree of $g(x) \geq 1$, then for all $f(x) \in N$, $\exists q(x), r(x)$ s.t. f(x) = g(x)q(x) + r(x), where r(x) = 0 or degree r(x); degree g(x). Since g(x) has minimal degree, $r(x) = 0 \Rightarrow f(x) = g(x)q(x) \Rightarrow N = \langle g(x) \rangle$

9.6.2 Thm: principal ideal $\langle p(x) \rangle \neq \{0\}$ of F[x] is maximal $\Leftrightarrow p(x)$ is irreducible

Theorem 9.7

An ideal $\langle p(x) \rangle \neq \{0\}$ of F[x] is maximal if and only if p(x) is irreducible over F.

 \mathbb{C}

Proof 9.4

- 1. "\(\Rightarrow\)": Suppose $\langle p(x)\rangle$ is a maximal ideal of F[x]. Then $\langle p(x)\rangle \neq F[x]$, so $p(x) \notin F$. Assume p(x) can be factorizated p(x) = f(x)g(x). Since $\langle p(x)\rangle$ is a maximal idea, it is also a prime ideal. Then $f(x) \in \langle p(x)\rangle$ or $g(x) \in \langle p(x)\rangle$, which is impossible since degree of f(x) and g(x) are both less than the degree of p(x). Hence, p(x) is irreducible.
- 2. "\(\infty\)": p(x) is irreducible over F. Suppose N is an ideal of F[x] s.t. $\langle p(x) \rangle \subseteq N \subseteq F[x]$. According to previous theorem, we know that N is a principal ideal. So, $N = \langle g(x) \rangle$ for some $g(x) \in F$. Since $p(x) \in F[x]$, p(x) = g(x)q(x) for some $q(x) \in F[x]$. As we set p(x) is irreducible, so degree g(x) = 0 or degree q(x) = 0. If degree g(x) = 0, $g(x) \in F$, g(x) is a unit in $F[x] \Rightarrow N = \langle g(x) \rangle = F[x]$. If degree q(x) = 0, $q(x) \in F$ is a unit, so $q^{-1}(x) \in F$ $\Rightarrow g(x) = p(x)q^{-1}(x) \Rightarrow N = \langle g(x) \rangle = \langle p(x) \rangle$

Chapter 10 The Field of Quotients of an Integral Domain

Let D be an integral domain (a ring with 1 has no zero divisors) that we desire to enlarge to a field of quotients F. A coarse outline of the steps we take is as follows:

10.1 Step 1. Define what the elements of F are to be. (Define S/\sim)

D is the given integral domain, $S = \{(a,b)|a,b \in D, b \neq 0\} < D \times D$

10.1.1 Def: equivalent relation $(a, b) \sim (c, d) \Leftrightarrow ad = bc$

Definition 10.1

Two elements (a,b) and (c,d) in S are equivalent, denoted by $(a,b) \sim (c,d)$, if and only if ad = bc.

Note: we can image it as $\frac{a}{b} = \frac{c}{d}$, but don't use this form.

Lemma 10.1

 \sim defines an equivalence relation on S.

 \Diamond

Proof 10.1

easy to prove (1) reflexive, (2) symmetric, (3) transitive.

10.2 Step 2. Define the binary operations of addition and multiplication on S/\sim .

The relation \sim can define a set of all equivalence classes on $[(a,b)], (a,b) \in S, S/\sim = \{[(a,b)]|(a,b) \in S\}$

10.2.1 lemma: well-defined operations $+, \times$

Lemma 10.2

For [(a,b)] and [(c,d)] in S/\sim , the equations

$$[(a,b)] + [(c,d)] = [(ad + bc,bd)]$$

and

$$[(a,b)][(c,d)] = [(ac,bd)]$$

give well-defined operations of addition and multiplication on S/\sim .

Proof 10.2

Assume $(a_1, b_1) \sim (a, b)$, $(c_1, d_1) \sim (c, d)$.

 $Verify + : (ad + bc, bd) \sim (a_1d_1 + b_1c_1, b_1d_1)$

10.3 Step 3. Check all the field axioms to show that F is a field under these operations.

10.3.1 Thm: S/\sim is a field with $+,\times$

Theorem 10.1

With operation $+, \times$. S/\sim is a field.

 \sim

Proof 10.3

Check all field axioms:

 $Associative: +: \qquad \checkmark \qquad \times : \checkmark$

 $Identity:+: \quad [(0,1)] \qquad \times : [(1,1)]$

[(a,b)] + [(0,1)] = [(a,b)], [(a,b)][(1,1)] = [(a,b)]

 $Inverse:+: \quad [(-a,b)] \qquad \times : [(b,a)], \forall a \neq 0$

 $[(a,b)] + [(-a,b)] = [(0,b^2)] = [(0,1)], where (0,b^2) \sim (0,1) \Leftrightarrow 0*1 = b^2*0;$

[(a,b)][(b,a)] = [(ab,ab)] = [(1,1)]

 $Commucative:+: \checkmark \times :\checkmark$

Distributive laws:

10.4 Step 4. Show that F can be viewed as containing D as an integral subdomain.

10.4.1 Lem: $\phi(a) = [(a,1)]$ is an isomorphism between D and $\{[(a,1)]|a \in D\}$

Lemma 10.3

The map $\phi: D \to F = S/\sim$ given by $\phi(a) = [(a,1)]$ is an <u>isomorphism</u> of D with a subring of $F(=S/\sim)$.

Proof 10.4

$$\phi(a+b) = [(a+b,1)] = [(a,1)] + [(b,1)]$$

$$\phi(ab) = [(ab,1)] = [(a,1)][(b,1)]$$

Injective: assume $\phi(a) = \phi(b)$, then

$$[(a,1)] = [(b,1)] \Leftrightarrow (a,1) \sim (b,1) \Leftrightarrow a = b$$

Surjective: $\forall [(a,1)]$ is mapped from a

We prove that ϕ is an isomorphism between D and $\{[(a,1)]|a \in D\}$.

10.4.2 Thm: every element of F can be expressed as a quotient of two elements of D:

$$[(a,b)] = \frac{\phi(a)}{\phi(b)}$$

 $\forall [(a,b)] \in F$,

$$[(a,b)] = [(a,1)][(1,b)] = \frac{[(a,1)]}{[(1,b)]^{-1}} = \frac{[(a,1)]}{[(b,1)]} = \frac{\phi(a)}{\phi(b)}$$

Theorem 10.2

Any integral domain D can be enlarged to (or embedded in) a field $F = S/\sim$ such that every element of F can be expressed as a quotient of two elements of D. (Such a field F is a **field of quotients** of D.)

Chapter 11 Polynomials

11.1 Def: Polynomials

Let R be any field. A polynomial over R in variable x is a formal sum:

$$a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n = \sum_{i=0}^{n} a_i x^i$$

where $n \geq 0$ is an integer, $a_1, a_1, ..., a_n \in \mathbb{F}$.

Polynomial is a squence $\{a_k\}_{k=0}^{\infty}$ with $a_m=0, \forall m>n$.

Remark: $f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_d x^d$ If $a_d \neq 0$ and $a_i = 0, \forall i > d, d$ is the <u>degree</u> of f(x).

11.2 Rings of Polynomials

11.2.1 Thm: R[x] is a ring under addition and multiplication

Theorem 11.1

The set R[x] of all polynomials in an indeterminate x with coefficients in a ring R is a ring under polynomial addition and multiplication.

Note: If R is commutative, then so is R[x], and if R has unity $1 \neq 0$, then 1 is also unity for R[x].

 \Diamond

Let R[x] denote the set of all polynomials with coefficients in the ring R.

$$R[x] = \{ \sum_{i=0}^{n} a_i x^i | n \ge 0, n \in \mathbb{Z}, a_0, ..., a_n \in R \}$$

We call the R[x] polynomial ring over the ring R.

$$f = \sum_{i=0}^{n} a_i x^i, g = \sum_{j=0}^{n} a_j x^j \in R[x]$$

$$f + g = \sum_{i=0}^{n} (a_i + b_i) x^i \in R[x]$$

$$fg = (\sum_{i=0}^{n} a_i x^i) (\sum_{j=0}^{n} a_j x^j) = \sum_{i=0}^{2n} (\sum_{j=0}^{i} a_j b_{i-j}) x^i$$

11.2.2 Def: evaluation homomorphism

Definition 11.1

Let F be a field, and let $\alpha \in F$. Define an evaluation map. $EV_{x=\alpha} : F[x] \to F$, $\phi_{\alpha}(\sum_{i=0}^{\infty} a_i x^i) = \sum_{i=0}^{\infty} a_i \alpha^i$. Then,

$$\phi_{\alpha}(f(x) + g(x)) = \phi_{\alpha}(f(x)) + \phi_{\alpha}(g(x))$$

$$\phi_{\alpha}(f(x)g(x)) = \phi_{\alpha}(f(x))\phi_{\alpha}(g(x))$$

 ϕ_{α} is a ring homomorphism. We call it evaluation homomorphism.

Example 11.1 Consider $EV_{x=2}: \mathbb{Q}[x] \to \mathbb{Q}$. $EV_{x=2}$ is a ring homomorphism. In particular it is a group homomorphism for addition.

$$\phi_2(a_0 + a_1x + \dots + a_nx^n) = a_0 + a_12 + \dots + a_n2^n$$

Note that

$$\phi_2(x^2 + x - 6) = 2^2 + 2 - 6 = 0.$$

Thus $x^2 + x - 6$ is in the kernel N of ϕ_2 . Of course,

$$x^{2} + x - 6 = (x - 2)(x + 3),$$

and the reason that $\phi_2(x^2+x-6)=0$ is that $\phi_2(x-2)=2-2=0$.

Example 11.2 Compute $EV_{x=4}(3x^{106} + 5x^{99} + 2x^{53}) \in \mathbb{Z}_7[x]$

$$EV_{x=4}(3x^{106} + 5x^{99} + 2x^{53}) =$$

According to the little Theorem of Fermat, $x^6 \equiv 1 \mod 7$.

$$=3x^4+5x^3+2x^5=0\in\mathbb{Z}_7$$

11.2.3 Def: α **is zero if** $EV_{x=\alpha}(f(x)) = 0$

Definition 11.2

We say that α is a zero of f(x) if $EV_{x=\alpha}(f(x)) = 0$.

Example 11.3 Find all zeros of $f(x) = x^3 + 2x + 2$ in \mathbb{Z}_7 .

Solve by checking all value f(x), $x = 0, 1, ..., 6 \Rightarrow$ zeros are x = 2, x = 3.

11.3 Degree of a Polynomial: deg(f)

 $f = \sum_{i=0}^{n} a_i x^i$, deg(f) = degree of f is,

$$deg(f) = \begin{cases} 0 & \text{if f is constant, $f \neq 0$} \\ n & \text{if $a_n \neq 0$ in above ($a_n = leading coefficient)$} \\ -\infty & \text{if $f = 0$} \end{cases}$$

Define $-\infty + a = a + (-\infty) = -\infty \ \forall a \in \mathbb{Z} \cup \{-\infty\}$

11.3.1 Lemma 2.3.3: $deg(fg) = deg(f) + deg(g), deg(f+g) \le \max\{deg(f), deg(g)\}$

Lemma 11.1 (Lemma 2.3.3)

For any field \mathbb{F} and f, $g \in \mathbb{F}[x]$,

$$deg(fg) = deg(f) + deg(g)$$
$$deg(f+g) \le \max\{deg(f), deg(g)\}\$$

11.4 Corollary 2.3.5: Unit(invertible) in $\mathbb{F}[x]$: constant $\neq 0$ iff deg(f) = 0

Corollary 11.1 (Corollary 2.3.5)

For any field \mathbb{F} and $f \in \mathbb{F}[x]$, Then f is a \underline{unit} (i.e. invertible) in $\mathbb{F}[x]$ iff deg(f) = 0.

Proof 11.1

Obviously, $deg(f) = 0 \Rightarrow f$ is a unit.

Suppose f is a unit, i.e. $\exists g \in \mathbb{F}[x] \text{ s.t. } fg = 1.$

$$0 = deg(fg) = deg(f) + deg(g) \Rightarrow deg(f), deg(g) \ge 0 \Rightarrow deg(f) = 0, deg(g) = 0.$$

11.5 <u>Irreducible</u> Polynomials:

A nonconstant polynomial f is irreducible if f = uv, $u, v \in \mathbb{F}[x]$, then either u or v is a unit(i.e., constant $\neq 0$)

11.6 Theorem 2.3.6: nonconstant polynomials can be reduced uniquely

Theorem 11.2 (Theorem 2.3.6)

Suppose \mathbb{F} is a field and $f \in \mathbb{F}[x]$ is any nonconstant. Then $f = ap_1p_2 \dots p_k$ where $a \in \mathbb{F}$, $p_1, \dots p_k \in \mathbb{F}[x]$ are irreducible <u>monic</u> polynomials (monic = i.e. leading coeff. 1). If $f = bq_1q_2 \dots q_r$ with $b \in \mathbb{F}$ and $q_1, q_2, \dots, q_r \in \mathbb{F}[x]$ monic irreducible, then a = b, k = r, and after reindexing $p_i = q_i, \forall i$

Lemma 11.2 (Lemma 2.3.7)

Suppose \mathbb{F} is a field and $f \in \mathbb{F}[x]$ is nonconstant monic polynomial. Then $f = p_1 p_2 \dots p_k$ where each p_i is monic irreducible.

Proof 11.2

Prove it by induction. When deg(f) = 1, f = uv, $u, v \in \mathbb{F}[x]$, $deg(f) = deg(u) + deg(v) \Rightarrow$ one of these is 0.

Suppose the lemma holds for all degree < n. When deg(f) = n,

Either f is irreducible, done.

Suppose f = uv with/ $deg(u), deg(v) \ge 1$

 $\Rightarrow deg(u), deg(v) < n \Rightarrow u = p_1 p_2 \dots p_k, v = q_1 q_2 \dots q_j$ So, $f = p_1 p_2 \dots p_k q_1 q_2 \dots q_j$.

Example 11.4 $x^2 - 1 \in \mathbb{Q}[x]$ reducible

 $x-1, x+1 \in \mathbb{Q}[x]$ irreducible

 $x^2 + 1 \in \mathbb{Q}[x]$ irreducible

 $x^2 + 1 \in \mathbb{C}[x]$ reducible

 $x^2 - 1 = x^2 + 1 = [1]x^2 + [1] \in \mathbb{Z}_2[x]$ reducible

Chapter 12 Divisibility of Polynomials

Proposition 12.1 (Proposition 2.3.8)

 $f,h,g \in \mathbb{F}[x]$, then

- (i) If $f \neq 0, f | 0$
- (ii) If f|1, f is nonzero constant
- (iii) If f|g and g|f, then f=cg for some $c\in\mathbb{F}$
- (iv) If f|g and g|h, then f|h
- (v) If f|g and f|h, then f|(ug+vh) for all $u,v\in\mathbb{F}[x]$.

12.1 Thm: Euclidean Algorithm of polynomials

Theorem 12.1

For nonzero elements in $\mathbb{F}[x]$, m > 0

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0$$

$$g(x) = b_m x^m + b_{m-1} x^{m-1} + \dots + b_0$$

Then there are unique polynomials q(x) and r(x) in $\mathbb{F}[x]$ such that f(x) = g(x)q(x) + r(x), where either r(x) = 0 or the degree of r(x) is less than the degree m of g(x).

Simplify: Given $f, g \in \mathbb{F}[x], g \neq 0$, then $\exists q, r \in \mathbb{F}[x]$ s.t. deg(r) < deg(g) and f = qg + r

Example 12.1

$$f = 3x^3 - 5x^2 - 3x + 5, g = x^3 - 2x^2 + 1 \in \mathbb{Q}[x]$$

$$f = 3q + x^2 - 3x + 2$$

 $f,g \in \mathbb{F}[x], f \neq 0, f \text{ divides } g, f|g \text{ means } \exists u \in \mathbb{F}[x] \text{ s.t. } g = fu.$

12.2 Cor: a is a zero of $f(x) \Leftrightarrow (x-a)|f(x)$

Corollary 12.1

An element $a \in F$ is a zero of $f(x) \in F[x]$ if and only if (x - a)|f(x).

Proof 12.1 (Proof method 2)

Suppose surjective homomorphism $\phi_a: F(x) \to F$ with $f(x) \to f(a)$

By defition of kernel $f(a) = 0 \Leftrightarrow f(x) \in ker\phi_a$.

Then we have $\langle (x-a) \rangle \subseteq \ker \phi_a \subsetneq F[x]$, where $\langle (x-a) \rangle = \{ ra | r \in F[x] \}$. Since x-a is irreducible, then $\langle (x-a) \rangle$ is a maximal ideal of F[x]. Then $\langle (x-a) \rangle = \ker \phi_a$

Thus

$$f(a) = 0$$

$$\Leftrightarrow f(x) \in ker\phi_a$$

$$\Leftrightarrow f(x) \in \langle (x - a) \rangle$$

$$\Leftrightarrow (x - a)|f(x)$$

12.3 Cor: Finite subgroup of multiplicative $F \setminus \{0\}$ is cyclic

Corollary 12.2

If G is a finite subgroup of the multiplicative group $F^* = F \setminus \{0\}$ of a field F, then G is cyclic. (In particular, the multiplicative group of all nonzero elements of a finite field is cyclic.)

Proof 12.2

12.3.1 Greatest common divisor of f and g: is not unique, we denote monic Greatest common divisor as gcd(f,g)

If $f,g\in\mathbb{F}[x]$ are nonzero polynomials, a greatest common divisor of f and g is a polynomial $h\in\mathbb{F}[x]$ such that

- (i) h|f and h|g, and
- (ii) if $k \in \mathbb{F}[x]$ and k|f and k|g, then k|h.

the gcd is not unique, but the monic gcd is unique. We call it **the monic greatest common divisor**, denote it gcd(f,g).

Example 12.2

$$x^{2} - 1, x^{2} - 2x + 1 \in \mathbb{Q}[x]$$
$$(x - 1)(x + 1), (x - 1)^{2} \in \mathbb{Q}[x]$$
$$x - 1 = \gcd(x^{2} - 1, x^{2} - 2x + 1)$$

12.3.2 Proposition 2.3.10:

Proposition 12.2 (Proposition 2.3.10)

Any 2 nonzero polynomials $f, g \in \mathbb{F}[x]$ have a gcd in $\mathbb{F}[x]$. In fact among all polynomials in the set $M = \{uf + vg | u, v \in \mathbb{F}[x]\}$ any nonconstant of minimal degree are gcds.

Proof 12.3

 $h \in M$, deg(h) = d minimal. Let k|f and $k|g \Rightarrow k|uf + vg$, $\forall u, v \Rightarrow k|h$. Suppose $h' \in M$ is any nonzero element. $deg(h') \geq deg(h) \Rightarrow \exists q, r \in \mathbb{F}, deg(r) < deg(h) h' = qh + r$. $r = h' - qh \in M$. Since deg(h) = d is nonconstant minimal degree, $r = 0 \Rightarrow h' = qh$. So $\exists q_1, q_2 \in \mathbb{F}[x], \ 1f + 0g = q_1h, 0f + 1g = q_2h \Rightarrow h|g, h|f$.

Example 12.3

$$f = 3x^3 - 5x^2 - 3x + 5, g = x^3 - 2x^2 + 1 \in \mathbb{Q}[x]$$

$$f = 3g + x^2 - 3x + 2$$

$$g = (x+1)(x^2 - 3x + 2) + x - 1$$

$$x^2 - 3x + 2 = (x-2)(x-1)$$

$$\Rightarrow \gcd(f,g) = x - 1$$

$$x - 1 = g - (x+1)(x^2 - 3x + 2) = g - (x+1)(f - 3g) = (3x+4)g - (x+1)f$$

Example 12.4 Find a greatest common divisor of $f = x^3 - x^2 - x + 1$ and $g = x^2 - 3x + 2$ in $\mathbb{Q}[x]$, and express it in form uf + vg, $u, v \in \mathbb{Q}[x]$.

$$f = (x+2)g + 3x - 3$$
$$g = \frac{1}{3}(x-2)(3x-3)$$
$$gcd(f,g) = 3x - 3$$
$$3x - 3 = f - (x+2)g$$

12.3.3 Proposition 2.3.12: $gcd(f,g) = 1, f|gh \Rightarrow f|h$

Proposition 12.3 (Proposition 2.3.12)

If $f, g, h \in \mathbb{F}[x]$, gcd(f, g) = 1, and f|gh, then f|h.

12.3.4 Corollary 2.3.13: irreducible f, $f|gh \Rightarrow f|g$ or f|h

Corollary 12.3 (Corollary 2.3.13)

If $f \in \mathbb{F}[x]$ is irreducible, and f|gh, then f|g or f|h.

Since f is irreducible, we have two possible situations:

- 1. gcd(f,g) = f, i.e. f|g done.
- 2. $\gcd(f,g)=1$, then according to Prop 2.3.12, we can know f|h.

12.4 Roots

Root: $\alpha \in \mathbb{F}$ is a root of f if $f(\alpha) = 0$.

12.4.1 Corollary 2.3.16(of Euclidean Algorithm): f can be divided into $(x-\alpha)q+f(\alpha)$ i.e. if α is a root, then $(x-\alpha)|f$

Corollary 12.4 (Corollary 2.3.16(of Euclidean Algorithm))

 $\forall f \in \mathbb{F}[x] \text{ and } \alpha \in \mathbb{F}, \text{ there exists a polynomial } q \in \mathbb{F}[x] \text{ s.t. } f = (x - \alpha)q + f(\alpha). \text{ In particular }, \text{ if } \alpha \text{ is a root, then } (x - \alpha)|f.$

12.5 Multiplicity

If α is a root of f, say its *multiplicity* is m, if $x - \alpha$ appears m times in irreducible factorization.

12.5.1 Sum of multiplicity $\leq deg(f)$

Proposition 12.4 (Proposition 2.3.17)

Given a nonconstant polynomial $f \in \mathbb{F}[x]$, the number of roots of f, counted with multiplicity, is at most deg(f).

12.6 Roots in a filed may not in its subfield

Note if $\mathbb{F} \subset \mathbb{K}$, then $\mathbb{F}[x] \subset \mathbb{K}$. $f \in \mathbb{F}[x]$ may have no roots in \mathbb{F} , but could have roots in \mathbb{K}

Example 12.5 $x^n - 1 \in \mathbb{Q}[x]$ has a root in \mathbb{Q} : 1; has 2 roots if n even: ± 1

$$\underline{roots\ in\ \mathbb{C}}: \zeta_n = e^{\frac{2\pi i}{n}}, \text{ then } \zeta_n^n = e^{2\pi i} = 1; (\zeta_n^k)^n = e^{2\pi ki} = 1 \text{ So, the roots: } \{e^{\frac{2\pi ki}{n}} | k = 0, ..., n-1\}$$

The roots of x^n-d : $\{e^{\frac{2\pi ki}{n}}\sqrt{d}|k=0,...,n-1\}$

Chapter 13 Sylow Theorems

13.1 Def: p-group

Definition 13.1

A group of order p^n , p is prime, for some $\alpha > 0$, is called p-group.

13.2 Sylow Theorems

- 1) <u>First Sylow Theorem:</u> If G is a finite group of order $p^{\alpha}m$, gcd(p,m)=1, then it conatins a subgroup H of order p^{α} . H is called a Sylow p-subgroup.
- 2) **Second Sylow Theorem:** Any two Sylow p-subgroups of group G are conjugate. $(H_1 \text{ and } H_2 \text{ are conjugate of } G \text{ if } \exists g \in G \text{ s.t. } H_1 = gH_2g^{-1})$
- 3) **Third Sylow Theorem:** The number of Sylow p-subgroups of a group G is 1 modulo p.

Example 13.1 $G = S_4, |G| = 4! = 2^3 \cdot 3$

- 1. First Sylow Theorem: Contains subgroup of order 8. (D_8)
- 2. Second Sylow Theorem: There are three kinds of D_8 : begin with (1,3,2,4)/(1,2,3,4)/(1,2,4,3) are conjugate to each other.
- 3. Third Sylow Theorem: $3 \equiv 1 \mod 2$

13.3 Thm: finite $H, K \leq G, |HK| = \frac{|H||K|}{|H \cap K|}$

Proposition 13.1

For finite subgroups $H, K \leq G$, define $HK = \{hk : h \in H, k \in K\}$.

$$|HK| = \frac{|H||K|}{|H \cap K|}$$

13.4 Group action by conjugation

Definition 13.2 (Group action by conjugation)

Let X be the set of all subgroups of a group G, G acts on X by conjugation

$$(g,H) \to gHg^{-1} \in X$$

$$g \in G, H \in X$$

2

The stabilizer of this action is called the <u>normalizer</u> of H in G

$$N_G(H) = \{g \in G : gHg^{-1} = H\} = \{g \in G : gH = Hg\}$$

13.5 Lemma: $K \leq N_G(H) \Rightarrow HK \leq G$

Lemma 13.1

If $K \leq N_G(H)$, then HK is a subgroup of G

Proof 13.1

Let $a = h_k k_1$, $b = h_2 k_2$, then

$$ab = h_1 k_1 h_2 k_2 = h_1 (k_1 h_2 k_1^{-1}) k_1 k_2$$
, where $k_1 h_2 k_1^{-1} \in H \Rightarrow ab \in HK$

$$a^{-1} = (h_1 k_1)^{-1} = (k_1^{-1} h_1^{-1} k_1) k_1^{-1}, \text{ where } k_1^{-1} h_1^{-1} k_1 \in H \Rightarrow ab \in HK$$

13.6 Cor: if $H \triangleleft N_q(H) \leq G$, # subgroups of G conjugate to H is $[G:N_G(H)]$

Corollary 13.1

By the Orbit-Stabilizer Theorem, if $H \triangleleft N_g(H) \leq G$, then the number of subgroups in G conjugate to H is $[G:N_G(H)]$.

Example 13.2
$$H = \langle (1, 2, 3, 4) \rangle \triangleleft D_8 \leq S_4, [S_4 : D_8] = 3$$

 S_4 has 3 subgroups conjugate to $H: \langle (1,2,3,4) \rangle, \langle (1,3,4,2) \rangle, \langle (1,4,2,3) \rangle$

13.7 Center

$$Z(G) = \{a \in G : ag = ga, \forall g \in G\} = \{a \in G : gag^{-1} = a, \forall g \in G\}$$

Size of orbit of a is $1 \Leftrightarrow a \in Z(G)$

13.8 Class Equation:
$$|G| = |Z(G)| + \sum_{i=1}^{r} \frac{|G|}{|C_G(g_i)|}$$

Let G act on itself by conjugate and $C_G(g_i)$ is the stabilizer of $g_i \in G$ under conjugation. Orbits of g_i of size > 1.

$$|G| = |Z(G)| + \sum_{i=1}^{r} \frac{|G|}{|C_G(g_i)|}$$

Prove by Orbit-Stabilizer Theorem. Every element $a \in Z(G)$, $|Ga| = \frac{|G|}{|C_G(a)|} = 1$. G is the union of all orbits.

Chapter 14 Euclidean geometry basics

14.1 Euclidean distance, inner product

Euclidean distance on \mathbb{R}^n :

$$|x-y| = \sqrt{(x_1 - y_1)^2 + \dots + (x_n - y_n)^2}$$

Euclidean inner product:

$$x \cdot y = x_1 y_1 + \dots + x_n y_n = x^T y$$

14.2 Isometry of \mathbb{R}^n : a bijection $\mathbb{R}^n \to \mathbb{R}^n$ preserves distance

An **isometry** of \mathbb{R}^n is a bijection $\Phi: \mathbb{R}^n \to \mathbb{R}^n$ that preserves distance, which means,

$$|\Phi(x) - \Phi(y)| = |x - y|, \ \forall x, y \in \mathbb{R}^n$$

14.2.1 $Isom(\mathbb{R}^n)$: set of all isometries of \mathbb{R}^n

We use $Isom(\mathbb{R}^n)$ denotes the set of all isometries of \mathbb{R}^n ,

$$Isom(\mathbb{R}^n) = \{ \Phi : \mathbb{R}^n \to \mathbb{R}^n | |\Phi(x) - \Phi(y)| = |x - y|, \ \forall x, y \in \mathbb{R}^n \}$$

14.2.2 $Isom(\mathbb{R}^n)$ is closed under \circ and inverse

Proposition 14.1

 $\Phi, \Psi \in Isom(\mathbb{R}^n)$, then $\Phi \circ \Psi, \Phi^{-1} \in Isom(\mathbb{R}^n)$

Proof 14.1

Since Φ, Ψ are bijections, so is $\Phi \circ \Psi$. Moreover,

$$|\varPhi\circ\varPsi(x)-\varPhi\circ\varPsi(y)|=|\varPhi(\varPsi(x))-\varPhi(\varPsi(y))|=|\varPsi(x)-\varPsi(y)|=|x-y|$$

Since $id \in Isom(\mathbb{R}^n)$,

$$|x - y| = |id(x) - id(y)| = |\Phi \circ \Phi^{-1}(x) - \Phi \circ \Phi^{-1}(y)| = |\Phi^{-1}(x) - \Phi^{-1}(y)|$$

14.3 $A \in GL(n,\mathbb{R}), T_A(v) = Av: A^tA = I \Leftrightarrow T_A \in Isom(\mathbb{R}^n)$

There is a matrix $A \in GL(n, \mathbb{R})$ i.e. a invertible linear transofrmations $T_A : \mathbb{R}^n \to \mathbb{R}^n$ is given by $T_A(v) = Av$.

$$T_A(v) \cdot T_A(w) = (Av) \cdot (Aw) = (Av)^t(Aw) = v^t A^t Aw$$

$$A^t A = I \Leftrightarrow T_A(v) \cdot T_A(w) = v \cdot w \Leftrightarrow_{(HW4)} T_A \in Isom(\mathbb{R}^n)$$

14.4 Linear isometries i.e. orthogonal group

$$O(n) = \{ A \in GL(n, \mathbb{R}) | A^t A = I \}$$

We define the all isometries in invertible linear transffrmations $\mathbb{R}^n \to \mathbb{R}^n$ as **orthogonal group**

$$O(n) = \{A \in GL(n, \mathbb{R}) | A^t A = I\} \subset GL(n, \mathbb{R})$$

14.4.1 Special orthogonal group $SO(n) = \{A \in O(n) | det(A) = 1\}$: orthogonal group with det(A) = 1

O(n) are the matrices representing linear isometries of \mathbb{R}^n . $1 = det(I) = det(A^tA) = det(A^t)det(A) = det(A)^2 \Rightarrow det(A) = 1$ or det(A) = -1. We use **special orthogonal group** represents A with det(A) = 1,

$$SO(n) = \{ A \in O(n) | det(A) = 1 \}$$

14.5 translation: $\tau_v(x) = x + v$

Define a translation by $v \in \mathbb{R}^n$,

$$\tau_v: \mathbb{R}^n \to \mathbb{R}^n, \ \tau_v(x) = x + v$$

14.5.1 translation is an isometry

Note [Exercise 2.5.3] $\forall v \in \mathbb{R}^n, \tau_v$ is an isometry.

Proof 14.2

$$|\tau_v(x) - \tau_v(y)| = |(x+v) - (y+v)| = |x-y|$$

14.6 The composition of a translation and an orthogonal transformation is an

isometry
$$\Phi_{A,v}(x) = \tau_v(T_A(x)) = Ax + v$$

Since the composition of isometries is an isometry, $\forall A \in O(n)$ and $v \in \mathbb{R}^n$, the composition

$$\Phi_{A,v}(x) = \tau_v(T_A(x)) = Ax + v$$

is an isometry. which could account for all isometries.

14.6.1 Theorem 2.5.3: All isometries can be represented by a composition of a translation and an orthogonal transformation, $Isom(\mathbb{R}^n) = \{\Phi_{A,v} | A \in O(n), v \in \mathbb{R}^n\}$

Theorem 14.1 (Theorem 2.5.3)

$$Isom(\mathbb{R}^n) = \{\Phi_{A,v} | A \in O(n), v \in \mathbb{R}^n\}$$

Chapter 15 Complex numbers

$$\mathbb{C} = \{a + bi | a, b \in \mathbb{R}\}, \mathbb{R} = \{a + 0i | a \in \mathbb{R}\} \subset \mathbb{C}$$

Addition & multiplication

$$(a+bi) + (c+di) = (a+c) + (b+d)i$$
$$(a+bi)(c+di) = ac + bci + adi + bdi^{2}$$
$$= (ac - bd) + (bc + ad)i$$

Complex conjugation: $z = a + bi, \bar{z} = a - bi, \overline{zw} = \bar{z}\bar{w}$

Absolute value: $|z| = \sqrt{a^2 + b^2}$, $|z|^2 = z\bar{z}$

Additive inverse: -z = -a - bi

 $\underline{\text{Multiplicative inverse}} \colon z^{-1} = \tfrac{1}{z} = \tfrac{1}{a+bi} = \tfrac{a-bi}{a^2+b^2} = \tfrac{\bar{z}}{|z|^2}$

$$z \in \mathbb{C}, \overline{z + \overline{z}} = \overline{z} + \overline{\overline{z}} = z + \overline{z}$$

Real part:
$$Re(z) = \frac{z + \overline{z}}{2}$$

Real part:
$$Re(z)=rac{z+ar{z}}{2}$$
 Imaginary part: $Im(z)=rac{z-ar{z}}{2i}$

15.1 Geometric Meaning of Addition and Multiplication

Addition: parallelogram law

Multiplication:

$$z = a + bi \neq 0$$

$$= r \cos \theta + r \sin \theta i$$

$$= r(\cos \theta + i \sin \theta)$$

$$|z|^2 = a^2 + b^2 = r^2$$

$$z = r(\cos \theta + i \sin \theta)$$

$$w = s(\cos \phi + i \sin \phi)$$

$$zw = rs[\cos \theta \cos \phi - \sin \theta \sin \phi + i(\cos \theta \sin \phi + \cos \phi \sin \theta)]$$

$$= rs[\cos(\theta + \phi) + i \sin(\theta + \phi)]$$

$$= |z||w|[\cos(\theta + \phi) + i \sin(\theta + \phi)]$$

We will write,

$$\cos \theta + i \sin \theta = e^{i\theta}$$
$$e^{i\theta}e^{i\phi} = e^{i(\theta + \phi)}$$
$$z = |z|e^{i\theta}$$

15.2 Theorem 2.1.1: $f(x) = a_0 + a_1 x + ... + a_n x^n$ with coefficients

 $a_0,a_1,...,a_n\in\mathbb{C}$. Then f has a <u>root</u> in \mathbb{C} : $\exists \alpha\in\mathbb{C}$ s.t. $f(\alpha)=0$

Theorem 15.1 (Theorem 2.1.1)

Supose a nonconstant polynomial $f(x) = a_0 + a_1x + ... + a_nx^n$ with coefficients $a_0, a_1, ..., a_n \in \mathbb{C}$.

Then f has a <u>root</u> in \mathbb{C} : $\exists \alpha \in \mathbb{C}$ s.t. $f(\alpha) = 0$.

15.2.1 Corollary 2.1.2:
$$f(x) = a_n \prod_{i=1}^n (x - k_i) = a_n (x - k_1)(x - k_2)...(x - k_n)$$
, where $k_1, k_2, ..., k_n$ are roots of $f(x)$

Corollary 15.1 (Corollary 2.1.2)

Every nonconstant polynomial with coefficients $a_0, a_1, ..., a_n \in \mathbb{C}$ can be factored as $f(x) = a_n \prod_{i=1}^n (x - k_i) = a_n (x - k_1)(x - k_2)...(x - k_n)$, where $k_1, k_2, ..., k_n$ are roots of f(x).

15.2.2 Corollary 2.1.3: $a_i \in \mathbb{R}$, f can be expresses as a product of linear and quadratic polynomials

Corollary 15.2 (Corollary 2.1.3)

If $f(x) = a_0 + a_1x + ... + a_nx^n$ is a nonconstant polynomial $a_0, a_1, ..., a_n \in \mathbb{R}, a_n \neq 0$. Then f can be expresses as a product of linear and quadratic polynomials.

 $a_0, a_1, ..., a_n$ is real number here!

Proof 15.1

(1) Obviously, the corollary holds at n = 1 and n = 2.

(2) Suppose the corollary holds for all situations that n < k.

When
$$n = k$$
, $f(x) = a_0 + a_1 x + ... + a_k x^k$, $a_k \neq 0$.

By F.T.A., f has a root α in \mathbb{C} .

If $\alpha \in \mathbb{R}$, long division $f(x) = q(x)(x - \alpha)$. q has real coefficients, degree of q = k - 1. Since the corollary holds at n = k - 1, q(x) is a product of linear and quadratics. Then, the corollary also holds at n = k.

If $\alpha \notin \mathbb{R}$

$$0 = f(\alpha) = a_0 + a_1 \alpha + \dots + a_k \alpha^k$$
$$0 = \overline{f(\alpha)} = a_0 + a_1 \overline{\alpha} + \dots + a_n \overline{\alpha}^n = f(\overline{\alpha})$$

Since $\bar{\alpha} \neq \alpha$, $(x - \alpha)(x - \bar{\alpha})|f$.

 $(x-\alpha)(x-\bar{\alpha})=x^2-(\alpha+\bar{\alpha})x+|\alpha|^2$ is a polynomial with coefficients in \mathbb{R} . So $f(x)=q(x)(x^2-(\alpha+\bar{\alpha})x+|\alpha|^2)$, q has real coefficients with degree k-2. The corollary also holds at n=k-2, q(x) is a product of linear and quadratics. Then, the corollary also holds at n=k.

Bibliography

- [1] Christopher J Leininger Introduction to Abstract Algebra (Draft) 2017.
- [2] Fraleigh, J. B. (2003). A first course in abstract algebra. Pearson Education India.