

Nome: Julio Cezar Maia Junior - 31134\_\_\_\_\_\_\_ Data: 19 de junho de 2018

1. Controle de Qualidade. Os dados a seguir foram obtidos em um ensaio R&R. Determine os parâmetros  $\%R\&R_{VT}$  e  $\%R\&R_{TOL}$  desses processos de medição e indique se eles são adequados ou não e o motivo (Extraído do livro Fundamentos de Metrologia Científica e Industrial de Armando Albertazzi G. Jr. e André R. de Souza,  $2^a$  edição, página 409).

|            | Peças     |       |       |       |       |       |       |       |       |       |
|------------|-----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Operadores |           | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     |
|            | Medição 1 | 58.22 | 58.13 | 58.29 | 58.46 | 58.52 | 58.23 | 58.04 | 58.17 | 58.1  |
| A          | Medição 2 | 57.98 | 58.07 | 58.08 | 58.53 | 58    | 58.3  | 58.35 | 58.33 | 57.8  |
|            | Medição 3 | 58.13 | 58.34 | 57.88 | 58.17 | 58.09 | 58.09 | 58.27 | 58.04 | 58.12 |
|            | Medição 1 | 58.32 | 57.97 | 58.16 | 58.19 | 58.22 | 58.22 | 57.77 | 58.04 | 58.23 |
| В          | Medição 2 | 58.67 | 58.04 | 58.29 | 58.51 | 58.35 | 57.92 | 58.21 | 58.54 | 57.99 |
|            | Medição 3 | 58.52 | 58.21 | 58.25 | 58.27 | 58.37 | 58.4  | 58    | 58.29 | 58.36 |
|            | Medição 1 | 58.2  | 58.18 | 58    | 58.58 | 58.62 | 58.15 | 58.45 | 58.68 | 58.51 |
| С          | Medição 2 | 58.14 | 58.36 | 58.18 | 58.19 | 58.32 | 58.07 | 58.08 | 58.08 | 57.93 |
|            | Medição 3 | 58.24 | 58.05 | 58.33 | 58.39 | 58.16 | 58.39 | 58.26 | 58.16 | 58.16 |

2. Ajuste Linear. Para determinar a constante de elasticidade de uma mola, um estudante pendura várias massas M em uma extremidade da mola e mede a sua correspondente dimensão l. Os resultados obtidos estão apresentados na Tabela 1. Como a força  $mg = k(l-l_0)$  é o comprimento da mola sem distensão, esses dados devem se ajustar a uma reta,  $l = l_0 + (g/k)m$ . Faça um ajuste por mínimos quadrados para essa reta, considerando os dados apresentados, e determine as melhores estimativas para  $l_0$  e para k. Calcule o comprimento l e sua incerteza para o peso de 1kg (Extraído do livro Introdução à análise de erros de John R. Taylor,  $2^a$  edição, página 200).

| Peso m (gramas)      | 200  | 300  | 400  | 500  | 600  | 700 | 800  | 900   |
|----------------------|------|------|------|------|------|-----|------|-------|
| Comprimento $l$ (cm) | 5.44 | 5.66 | 5.74 | 6.84 | 7.04 | 8.2 | 8.78 | 10.16 |

Tabela 1: Comprimento versus peso para uma mola M.

3. Medidas Correlacionadas. Considere o modelo matemático abaixo para medição de uma resistência com base nos valores simultaneamente observados de corrente e voltagem sob condições ambientais idênticas, utilizando um voltímetro e um amperímetro (ambos os instrumentos estavam com escala selecionada visando a menor incerteza associada ao conjunto de medições em questão, ver Tabelas 3 e 4), considerando a influência de correlação entre as variáveis e tendo ciência de que a temperatura ambiente estava oscilando entre  $20^{\circ}C$  e  $28^{\circ}C$ . Determine a incerteza no cálculo de R com 99.73% de confiança de acordo com a quantidade de algarismos significativos de acordo com o Método de Monte Carlo.

$$R = (V_a + V_{resol} + V_{calib} + V_{temp})/(I_a + I_{resol} + I_{calib} + I_{temp})$$
, sendo:

| N          | 1      | 2       | 3      | 4      | 5       | 6       | 7       | 8      |
|------------|--------|---------|--------|--------|---------|---------|---------|--------|
| $V_a(V)$   | 9.74   | 11.52   | 9      | 9.62   | 10.4    | 10.73   | 11.57   | 8.23   |
| $I_a (mA)$ | 98.271 | 114.931 | 89.888 | 96.505 | 103.231 | 106.825 | 115.358 | 82.195 |

Tabela 2: Medições simultâneas de voltagem e corrente

| Faixa                | Precisão           |
|----------------------|--------------------|
| 200mV, 2V, 20V, 200V | $\pm (0.5\% + 3D)$ |
| 1000V                | $\pm (1.0\% + 5D)$ |

Tabela 3: Incerteza do voltímetro de 3 1/2 dígitos, segundo o certificado de calibração, válida para temperatura ambiente oscilando entre  $-10^{\circ}C$  e  $40^{\circ}C$ .

| Faixa | Incerteza          |
|-------|--------------------|
| 20mA  | $\pm (0.8\% + 3D)$ |
| 200mA | $\pm (1.2\% + 4D)$ |
| 20A   | $\pm (2.0\% + 5D)$ |

Tabela 4: Incerteza do amperímetro de 5 1/2 dígitos, segundo o certificado de calibração, válida para temperatura de  $23^{\circ}C \pm 5^{\circ}C$  e umidade relativa < 75%.