REPORT

과 목 명 : 인공신경망과 딥러닝

담당 교수 : 황상흠 교수님

제 출일 : 2024. 04. 16

학번	이름
15181384	배태겸

1. 개요

본 '인공신경망과 딥러닝'교과서에 대한 보고서로써, MNIST 데이터셋을 대상으로 LeNet-5 신경망과 사용자 정의 다층 퍼셉트론(MLP) 모델을 적용하여 성능을 비교하고 기타 인공신경망 등에 대한 학습을 목표로한다. 이를 통해 딥러닝 모델의 선택 및 설계에 대한 이해를 높일 수 있을 것으로 기대된다.

2. 모델 설계 관련사항

1) 파라미터 수

- LeNet-5 : 총 44,190개
- · 첫 번째 합성곱층: 입력 채널이 1개, 출력 채널이 6개, 커널 크기가 5x5이므로 파라미터 수는 (입력 채널 * 출력 채널 * 커널 높이 * 커널 너비) = (1 * 6 * 5 * 5) = 150개
- · 두 번째 합성곱층: 입력 채널이 6개, 출력 채널이 16개, 커널 크기가 5x5이므로 파라미터 수는 (6 * 16 * 5 * 5) = 2,400개
- · 첫 번째 완전 연결 층: 입력 특징이 256개(16 * 4 * 4), 출력 특징이 120개이므로 파라미터 수는 (256
- * 120) = 30,7207H
- · 두 번째 완전 연결 층: 입력 특징이 120개, 출력 특징이 84개이므로 파라미터 수는 (120 * 84) = 10,080개
- · 세 번째 완전 연결 층(출력 층): 입력 특징이 84개, 출력 특징이 10개(클래스 수)이므로 파라미터 수는 (84 * 10) = 840개
- · 총 파라미터 수 = 150 + 2400 + 30,720 + 10,080 + 840 = 44,190개
- 사용자 정의MLP : 총 50,890개
- · 첫 번째 완전 연결 층의 파라미터 수: (입력 특징 수) * (출력 특징 수) + (출력 특징 수) = (784 * 64) + 64 = 50,240개
- · 출력 층의 파라미터 수: (입력 특징 수) * (출력 특징 수) + (출력 특징 수) = (64 * 10) + 10 = 650개
- · 총 파라미터 수 = 50,240 + 650 = 50,890개

3. 학습 및 검증

1) 훈련과정 모니터링

(1) LeNet-5

Epoch	Train Loss	Train Accuracy	Test Loss	Test Accuracy
1	0.4192	86.17%	0.1099	96.54%
2	0.0810	97.52%	0.0556	98.22%
3	0.0547	98.37%	0.0452	98.51%
4	0.0399	98.73%	0.0355	98.90%
5	0.0339	98.93%	0.0374	98.80%
6	0.0283	99.09%	0.0376	98.71%
7	0.0244	99.17%	0.0367	98.88%
8	0.0201	99.38%	0.0403	98.89%
9	0.0174	99.42%	0.0335	98.98%
10	0.0152	99.52%	0.0366	98.95%
평균	0.07	97.63%	0.05	98.54%

(2) 사용자 정의MLP

Epoch	Train Loss	Train Accuracy	Test Loss	Test Accuracy
1	0.3864	88.31%	0.2113	93.64%
2	0.1923	94.33%	0.1616	95.29%
3	0.1480	95.57%	0.1330	95.90%
4	0.1230	96.34%	0.1189	96.45%
5	0.1052	96.75%	0.1249	96.49%
6	0.0970	97.03%	0.1284	96.15%
7	0.0880	97.26%	0.1051	96.91%
8	0.0804	97.53%	0.0949	97.11%
9	0.0734	97.67%	0.0924	97.18%
10	0.0670	97.93%	0.0999	97.06%
평균	0.14	95.87%	0.13	96.22%

2) 훈련 및 테스트 데이터셋에 대한 평균 손실과 정확도 (Plot)

[그림 1. epoch별 평균 손실 및 정확도 곡선]

3) LeNet-5와 사용자 정의MLP의 예측 성능 비교

Test데이터셋에 대한 각 모델의 정확도는 98.54%, 96.22%이다. 따라서 LeNet-5의 정확도가 보다 뛰어나게 나타난다.

4) LeNet-5의 정확도와 일반적으로 알려진 LeNet-5의 정확도 비교

LeNet-5의 정확도 98.8%¹⁾와 비교하여 실제로 그 성능이 유사함을 확인할 수 있었다.

¹⁾ https://limepencil.tistory.com/4

4. LeNet-5모델 개선

1) 개요

LeNet-5모델을 개선하기 위한 방안으로 '드롭아웃'과 '배치 정규화'를 진행한다.

2) 드롭아웃(Dropout)

[그림 2. 드롭아웃의 개념도]

2) 배치정규화

: 학습 과정에서 각 배치 단위 별로 데이터가 다양한 분포를 가지더라고 각 배치별로 평균과 분산을 이용 해 정규화를 하는 것을 말함

[그림 3. 정규화를 통한 zero mean gaussaian 형태]

3) 결과

(1) 개선 후 LeNet5

Epoch	Train Loss	Train Accuracy	Test Loss	Test Accuracy
1	0.3144	90.49%	0.0552	98.21%
2	0.0912	97.44%	0.0481	98.50%
3	0.0636	98.17%	0.0384	98.89%
4	0.0550	98.49%	0.0368	98.86%
5	0.0470	98.68%	0.0366	98.80%
6	0.0415	98.87%	0.0285	99.09%
7	0.0356	98.97%	0.0374	98.93%
8	0.0331	99.08%	0.0295	99.16%
9	0.0297	99.16%	0.0344	99.07%
10	0.0264	99.20%	0.0349	99.11%
평균	0.07	97.86%	0.04	98.86%

(2) 비교 (평균 정확도)

개선 전	개선 후
98.54%	98.86%

평균적으로는 유사한, epoch가 뒤로 갈수록 개선 후 모델은 계속 상승하여 99.11%까지 퍼포먼스를 보였다. epoch 수를 늘린다면 더 성능이 향상 할 수 있을 것으로 기대된다.