A-3. Wzmacniacz Operacyjny - parametryzacja i zastosowanie

wersja 10'2019

1. Zakres ćwiczenia

Wyznaczenie stałoprądowych funkcji przenoszenia, amplitudowych charakterystyk częstotliwościowych, niektórych stałoprądowych parametrów wzmacniacza operacyjnego oraz parametrów czasowych:

- 1. wtórnika napięciowego
- 2. wzmacniacza nieodwracającego o wzmocnieniu +11V/V
- 3. wzmacniacza odwracającego o wzmocnieniu -10V/V
- 4. wzmacniacza odwracającego o wzmocnieniu -100V/V
- 5. wzmacniacza odejmującego o wzmocnieniu +10V/V
- 6. wzmacniacza. sumującego (wzm -10V/V jednego wejścia, wzm. -2V/V drugiego wejścia)
- 7. pomiar wejściowego napięcia niezrównoważenia Vos, pomiar dryfu temperaturowego tegoż napięcia Vos
- 8. pomiar wejściowego prądu polaryzacji I_B, pomiar wejściowego prądu niezrównoważenia I_{os}

Przykładowe wykorzystanie wzmacniacza operacyjnego w układach nieliniowych zaprezentowane zostanie na przykładzie układów:

- 1. generatora funkcyjnego,
- 2. wzmacniacza logarytmicznego.

2. Wstęp teoretyczny

2.1 Podstawowe parametry wzmacniaczy operacyjnych

Wzmacniacz operacyjny jest elektronicznym elementem aktywnym z symetrycznym wejściem różnicowym oraz niesymetrycznym wyjściem. Symbol wzmacniacza operacyjnego przedstawiony jest na rysunku 1. Wejście oznaczone symbolem "-" jest wejściem odwracającym, zaś wejście oznaczone symbolem "+" jest wejściem nieodwracającym fazę napięcia wyjściowego względem wejściowego. Wzmacniacze operacyjne charakteryzują się dużym wzmocnieniem w otwartej pętli oraz przeznaczone są do pracy z ujemnym sprzężeniem zwrotnym, które stabilizuje ich pracę, zwiększa zakres dynamiczny, poprawia liniowość i poszerza pasmo przenoszenia. Podstawowe parametry idealnego wzmacniacza operacyjnego zebrane są w tabeli 2.1.

W celu oceny na ile dany wzmacniacz operacyjny jest bliski idealnemu, określa się kilka podstawowych parametrów:

1. wzmocnienie różnicowe kUR, zwane też wzmocnieniem w otwartej pętli (ang. open loop gain), definiowane jako stosunek zmiany napięcia wyjściowego do wywołującej ją zmiany różnicowego napięcia wejściowego: $k_{UR} = \frac{\partial U_{WY}}{\partial U_R}$ dla zakresu nienasycenia wzmacniacza. Na rysunku 1 pokazana jest charakterystyka przenoszenia dla wzmacniacza idealnego (linia ciągła) i

rzeczywistego (linia przerywana). Nachylenie charakterystyki w zakresie liniowym odpowiada wzmocnieniu różnicowemu. Typowy liniowy zakres zmian napięcia wyjściowego, zależy od konfiguracji układowej, napięć zasilających i wewnętrznej architektury samego wzmacniacza operacyjnego.

Rysunek 1. Symbol graficzny wzmacniacza operacyjnego i jego charakterystyka przenoszenia

- 2. **wejściowe napięcie niezrównoważenia** Vos jest to napięcie różnicowe jakie należy przyłożyć na wejściu wzmacniacza rzeczywistego, aby na jego wyjściu uzyskać napięcie równe zeru (patrz rys.1). Typowo jest ono rzędu kilku μV do kilku mV i w zależności od zastosowań można je pominąć lub skompensować do zera.
- 3. **temperaturowy dryf wejściowego napięcia niezrównoważenia** definiowany jest jako stosunek zmiany wejściowego napięcia niezrównoważenia do wywołującej ja zmiany temperatury. Typowe wartości tego współczynnika sa rzedu kilku do kilkudziesięciu $\mu V/^{\circ}C$.
- 4. wzmocnienie sygnału wspólnego podając na oba wejścia wzmacniacza identyczny sygnał (tzw. sygnał wspólny U_S) w przypadku wzmacniacza idealnego spodziewamy się, że napięcie wyjściowe będzie równe zeru. Dla wzmacniaczy rzeczywistych obserwujemy różne od zera napięcie wyjściowe, co oznacza niezerowe wzmocnienie sygnału wspólnego: $k_{US} = \frac{\partial U_{WY}}{\partial U_S}$. Właściwość tą opisuje współczynnik tłumienia sygnału wspólnego CMRR (ang. Common mode rejection ratio), definiowany jako stosunek wzmocnienia różnicowego do wzmocnienia sygnału wspólnego: $CMRR = \frac{k_{UK}}{k_{US}}$, gdzie k_{UR} wzmocnienie różnicowe, k_{US} wzmocnienie sygnału wspólnego. Widzimy stąd, że dla wzmacniacza idealnego oczekujemy $CMRR \rightarrow \infty$. W rzeczywistych wzmacniaczach operacyjnych CMRR jest rzędu 80 120 dB.
- 5. **współczynnik** *PSRR* (ang. power supply rejection ratio) współczynnik określający odporność wzmacniacza na zmiany napięć zasilających, definiowany jako stosunek zmiany napięcia niezrównoważenia do zmiany napięcia zasilania.

Rysunek 2: Schemat zastępczy wzmacniacza operacyjnego z uwzględnieniem rezystancji wejściowych.

- 6. **rezystancja wejściowa**: na rys.2 przedstawiony jest schemat zastępczy wzmacniacza operacyjnego z uwzględnieniem wejściowej rezystancji różnicowej r_R (mierzonej między końcówkami wejściowymi wzmacniacza z otwartą pętlą) oraz wspólnej r_S (mierzonej między jednym z wejść a masa).
- 7. do wejść wzmacniacza operacyjnego wpływają niezerowe **prądy polaryzujące** jego stopień wejściowy. W zależności od technologii wzmacniacza wartości tych prądów wahają się w granicach od kilku *fA* do kilku *nA*, a w przypadku szybkich wzmacniaczy *1-2 µA*. Wejściowe prądy polaryzujące są przyczyną błędów wzmacniacza, gdyż mimo braku napięcia wejściowego powodują zmiany napięcia na wyjściu. Różnica wejściowych prądów polaryzujących jest nazywana **wejściowym prądem niezrównoważenia** *Ios*.

W poniższej tabelce, w ramach podsumowania, zestawione są wybrane parametry wzmacniacza operacyjnego idealnego i rzeczywistego:

Tabela 1: Wybrane parametry wzmacniacza idealnego i rzeczywistego.

Wybrane parametry	Idealny WO	Rzeczywisty WO
wzmocnienie różnicowe	∞	$10^5 - 10^7$
pasmo przenoszenia	od 0 do ∞	kilka MHz
napięcie niezrównoważenia	0	kilka μV – Mv
CMRR	∞	80 - 120 dB
PSRR	∞	50- 100 dB
rezystancja wejściowa	∞	kilka MΩ
rezystancja wyjściowa	0	kilkadziesiąt do kilkaset Ω
prąd polaryzujący	0	kilka fA - nA

2.2 Przykładowe wykorzystanie wzmacniaczy operacyjnych w układach nieliniowych

Generator funkcyjny

Rysunek 3. Generator funkcyjny i jego charakterystyka.

Dla $U_{WE}=0$ diody są odcięte napięciem $\left|\frac{UR}{R+R'}\right|$ i nachylenie charakterystyki wyjściowo - wejściowej wynosi $-\frac{R_F}{R}$. Jeśli jedna z diod zacznie przewodzić, to nachylenie wzrośnie dwukrotnie co do wartości bezwzględnej, bowiem $\frac{dU_{WY}}{dU_{WE}}=\frac{R_F}{R\parallel R}$. Zajdzie to w przypadku, gdy potencjał katody górnej diody zbliży się do zera po wartościach dodatnich, albo też gdy potencjał anody dolnej diody zbliży się do zera po wartościach ujemnych, to jest gdy $\left|\frac{U_{WE}}{R}\right|=\frac{U}{R'}$. Zakłada się tutaj idealną charakterystykę diod jako zaworów.

Wzmacniacz logarytmiczny

Rysunek 4. Wzmacniacz logarytmiczny i charakterystyka diody.

Zasada działania wzmacniacza logarytmicznego opiera się na nieliniowej charakterystyce prądowonapięciowej diody, tutaj spolaryzowanej w kierunku przewodzenia: $i = I_S \left(e^{\frac{U}{\eta U_T}} - 1\right) \approx I_S e^{\frac{-U_{WY}}{\eta U_T}}$ (dla U

$$> 4U_T$$
), gdzie:

$$U_T = \frac{kT}{q}$$
 (przy 20°C $U_T = 25mV$),

k- stała Boltzmana

T -temperatura w [K]

q – ładunek elektronu.

η - czynnik skalujący z zakresu 1 - 2

3. Uwagi do ćwiczenia

- 1. Układy są badane przy zastosowaniu:
 - a) regulowanego źródła napięcia stałego do wyznaczania charakterystyk przejściowych,
 - b) generatora sinusoidalnego w celu wyznaczenia charakterystyk częstotliwościowych,
 - c) generatora przebiegu prostokątnego i trójkątnego w celu zaobserwowania odpowiedzi na skok jednostkowy i napięcie narastające liniowo.
- 2. Wielkości zmierzone należy porównać z wyliczonymi teoretycznie na podstawie schematów lub z zamieszczonymi w nocie katalogowej producenta.
- 3. Charakterystyki częstotliwościowe rysować w typowym układzie: wzmocnienie w dB, częstotliwość w skali logarytmicznej.

Literatura

- 1. Kulka Z., Nadachowski M.: Liniowe układy scalone i ich zastosowanie.
- 2. Tietze U., Schenk Ch.: *Układy półprzewodnikowe*.
- 3. Zumbahlen H.: Linear Circuit Design Handbook.
- 4. Low Power, Precision Rail-to-Rail Output Operational Amplifier AD8622 data sheet: http://www.analog.com/static/imported-files/data_sheets/AD8622_8624.pdf
- 5. Dual Low-Power JFET-Input General-Purpose Operational Amplifier TL062 data sheet: http://www.ti.com/lit/ds/symlink/tl062.pdf

4. Program ćwiczenia

1. Wtórnik napięciowy:

UWAGA: pomiary zmienno-prądowe wtórnika napięciowego na wzmacniaczu U20 wykonać poprzez dopasowany bufor separujący U10

- a) wyznaczyć $U_2=f(U_1)$ dla napięcia stałego, znaleźć nachylenie $k_{u|\cdot|}$ (tj. wzmocnienie dla zerowej częstotliwości),
- b) znaleźć odpowiedz na skok napięcia dla sygnału małego (kilkaset mV), podać czas narastania,
- znaleźć odpowiedz na skok napięcia dla sygnału dużego (kilka volt), podać szybkość zmian napięcia na wyjściu,
- d) wyznaczyć amplitudową charakterystykę częstotliwościową $k_{u\approx}=f(f)$ dla małych sygnałów, podać częstotliwość graniczną, porównać z wartością katalogową,
- e) porównać $k_{u \mid \mid}$ i $k_{u \approx}$

2. Wzmacniacz nieodwracający o wzmocnieniu +11V/V

- a) wyznaczyć $U_2 = f(U_1)$ dla napięcia stałego, określić nachylenie charakterystyki $k_{u||}$,
- b) wyznaczyć $k_{u\approx}=f(f)$, określić częstotliwość graniczną.

3. Wzmacniacz odwracający o wzmocnieniu -10V/V

- a) wyznaczyć $U_2 = f(U_1)$ dla napięcia stałego, określić nachylenie charakterystyki $k_{u//}$,
- b) wyznaczyć k_{uz} =f(f), określić częstotliwość graniczną, wyznaczyć pole wzmocnienia
- 4. Wzmacniacz odwracający o wzmocnieniu -100V/V
- a) wyznaczyć $k_{0} = f(f)$, określić częstotliwość graniczną, wyznaczyć pole wzmocnienia
- 5. Wzmacniacz odejmujący o wzmocnieniu +10V/V

- a) wyznaczyć $U_3=f(U_2-U_1)$ dla napięć stałych przy stałej wartości $U_2=1V$, określić nachylenie charakterystyki $k_{u//}$. Napięcie U_1 zmieniać w zakresie od 0 do +2V.
- 6. Wzmacniacz sumujący (wzmocnienie -10V/V jednego wejścia, wzmocnienie -2V/V drugiego wejścia)

a) wyznaczyć $U_3=f(U_1+U_2)$ dla napięć stałych przy stałej wartości $U_2=IV$, określić nachylenie charakterystyki $k_{u/l}$. Napięcie U_1 zmieniać w zakresie od 0 do +1.5V

7. Pomiar wejściowego napięcia niezrównoważenia V_{OS} , pomiar dryfu temperaturowego tegoż napięcia $\Delta V_{OS}/\Delta T$

a) wyznaczyć wartość wejściowego napięcia niezrównoważeni V_{OS} ze wzoru:

$$V_{os} = \frac{U_{wyj}}{\left[1 + \frac{R_{34}}{R_{31}}\right]} = \frac{U_{wyj}}{1001}$$

Porównać wynik z wartością katalogową.

b) zmierzyć poziom dryfu V_{OS} w funkcji temperatury,

Podczas pomiaru V_{OS} jak poprzednio celem wyznaczenia dryfu $\Delta V_{OS}/\Delta T$ podłączyć do zacisków GRZAŁKA zasilacz napięcia stałego (HP E3631A, dekada: +25V), a w miejsce TEMEPRATURA miernik napięcia. Zmieniać powoli napięcie na zaciskach GRZAŁKA od wartości +2V do +12V jednocześnie odczytując U_{wyj} i napięcie $V_{TEMPERATURA}$ na zaciskach TEMPERATURA.

Wartość temperatury obliczyć ze wzoru:

$$T[{}^{o}C] = \frac{V_{TEMPERATURA}[mV] - 424mV}{6.25 \left\lceil \frac{mV}{{}^{o}C} \right\rceil}$$

Tabela pomiarowa:

$V_{TEMPERATURA}$ [mV]	U_{wyj} [mV]	TEMPERATURA [°C]	V_{OS} [μV]

Przedstawić graficznie zależność $V_{OS}=f(Temp)$. Wyznaczyć $\Delta V_{OS}/\Delta T$, porównać z wartością katalogową.

c) korekta wejściowego napięcia niezrównoważenia,

Przy U1=0 oczekujemy zerowego napięcia U2 na wyjściu. Korektę nieidealności dokonać potencjometrem P30. Po korekcie zmierzyć wartość napięcia na suwaku potencjometru P30. Porównać wynik z pomiarem V_{os} .

8. Pomiar wejściowego prądu polaryzacji I_B , pomiar wejściowego prądu niezrównoważenia I_{OS} .

a) wyznaczyć wartość wejściowego prądu polaryzacji I_B ,

Zwierając obie zworki (JMP40 i JMP41) zmierzyć U_{wvi} , obliczyć napięcie V_{os} :

$$V_{os} = \frac{U_{wyj}}{1 + \frac{R_{45}}{R_{40}}} = \frac{U_{wyj}}{1001}$$

Zwierając zworkę JMP40 przy rozwartej JMP41 wejściowy prąd polaryzacji I_{B-} płynie przez dużą rezystancję R43 powodując dodatkowy spadek napięcia ($I_{B-}*R43$) dokładający się do wcześniej wyznaczonego napięcia niezrównoważenia V_{OS} . Wartość napięcia na wyjściu wynosi:

$$U_{wyj_B-} = V_{OS}1001 - \left[1 + \frac{R_{45}}{100}\right]I_{B-}R_{43}$$

Zwierając zworkę JMP41 przy rozwartej JMP40 wejściowy prąd polaryzacji I_{B+} płynie przez dużą rezystancję R42 powodując dodatkowy spadek napięcia (I_{B+}*R42) dokładający się do wcześniej wyznaczonego napięcia niezrównoważenia V_{os}. Wartość napięcia na wyjściu wynosi:

$$U_{wyj_{-}B^{+}} = V_{OS}1001 + \left[1 + \frac{R_{45}}{100}\right]I_{B^{+}}R_{42}$$

Wyliczyć wartość wejściowego prądu polaryzacji $I_B = (/I_{B+}/ + /I_{B-}/)/2$. Wynik porównać z wartością katalogową.

b) wyznaczyć wartość wejściowego prądu niezrównoważenia I_{OS}

Rozwierając obie zworki JMP40 i JMP41 zmierzyć napięcie na wyjściu U_{wyj} . Wyliczyć wejściowy prąd niezrównoważenia I_{OS} ze wzoru:

$$I_{os} = (I_{B+} - I_{B-}) = \frac{\frac{U_{wyj}}{1001} - V_{os}}{R_{42}}$$

Wynik porównać z wartością katalogową.

9. Generator funkcyjny

- a) wyznaczyć statyczną charakterystykę przejściową U2=f(U1) dla danej wartości Ur (np. 15V),
- b) określić punkty załamania charakterystyki, podać jej nachylenie,
- c) dla wejściowego sygnału trójkątnego zaobserwować zniekształcenie przebiegu napięcia na wyjściu spowodowane załamaniem charakterystyki.

10. Wzmacniacz logarytmiczny

- a) wyznaczyć charakterystykę *Uwy2=f(U1)* dla napięcia stałego w przedziale zmienności *U1* pokrywającego co najmniej 3 dekady (np. 10mV.. +10V); napięcie wejściowe podać na wykresie w skali logarytmicznej,
- b) oszacować dokładność logarytmowania i podać główne źródła ewentualnego dryfu.

Dodatek A:

Parametry katalogowe wzmacniacza operacyjnego TL062:

(http://www.ti.com/lit/ds/symlink/tl062.pdf)

TL061, TL061A, TL061B TL062, TL062A, TL062B, TL064, TL064A, TL064B

www.ti.com

SLOS078K - NOVEMBER 1978 - REVISED JANUARY 2014

TL06xx Low-Power JFET-Input Operational Amplifiers

Check for Samples: TL061, TL061A, TL061B, TL062, TL062A, TL062B, TL064, TL064A, TL064B

FEATURES

- Very Low Power Consumption
- Typical Supply Current: 200 µA (Per Amplifier)
- Wide Common-Mode and Differential Voltage Ranges
- Low Input Bias and Offset Currents
- Common-Mode Input Voltage Range Includes V_{CC+}
- · Output Short-Circuit Protection
- High Input Impedance: JFET-Input Stage
- · Internal Frequency Compensation
- Latch-Up-Free Operation
- High Slew Rate: 3.5 V/µs Typ
- On Products Compliant to MIL-PRF-38535, All Parameters Are Tested Unless Otherwise Noted. On All Other Products, Production Processing Does Not Necessarily Include Testing of All Parameters.

DESCRIPTION

The JFET-input operational amplifiers of the TL06x series are designed as low-power versions of the TL08x series amplifiers. They feature high input impedance, wide bandwidth, high slew rate, and low input offset and input bias currents. The TL06x series features the same terminal assignments as the TL07x and TL08x series. Each of these JFET-input operational amplifiers incorporates well-matched, high-voltage JFET and bipolar transistors in an integrated circuit.

The C-suffix devices are characterized for operation from 0°C to 70°C. The I-suffix devices are characterized for operation from -40°C to 85°C, and the M-suffix devices are characterized for operation over the full military temperature range of -55°C to

A

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright @ 1978-2014, Texas Instruments Incorporated

SLOS078K - NOVEMBER 1978 - REVISED JANUARY 2014

www.ti.com

Symbols

Schematic (Each Amplifier)

C1 = 10 pF on TL061, TL062, and TL064 Component values shown are nominal.

SLOS078K - NOVEMBER 1978 - REVISED JANUARY 2014

Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)

		-					
			TL06_C TL06_AC TL06_BC	TL06_I	TL06_M	UNIT	
V _{CC+}	Supply voltage ⁽²⁾		18	18	18	V	
V _{cc} _	Supply voltage (=)		-18	-18	-18	٧	
V _{ID}	Differential input voltage ⁽³⁾		±30	±30	±30	٧	
VI	Input voltage ⁽²⁾⁽⁴⁾		±15	±15	±15	V	
	Duration of output short circuit ⁽⁵⁾		Unlimited	Unlimited	Unlimited		
		D package (8 pin)	97	97			
		D package (14 pin)	86	86			
		N package	80	80		°C/W	
_	Dealises the seed investors (5)(7)	NS package	76	76			
θ_{JA}	A Package thermal impedance ⁽⁶⁾⁽⁷⁾	P package	85	85			
		PS package	95	95			
		PW (8 pin) package	149	149			
		PW (14 pin) package	113	113		ı	
		FK package			5.61		
	Package thermal impedance (8)(9)	J package			15.05	°C/W	
θ _{JC}	Package thermal impedance (*****	JG package			14.5	C/VV	
		W package			14.65		
TJ	Operating virtual junction temperature		150	150	150	°C	
	Case temperature for 60 seconds	FK package			260	°C	
	Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds	J, JG, U, or W package			300	°C	
	Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	D, N, NS, P, PS, or PW package	260	260		°C	
T _{stg}	Storage temperature range		-65 to 150	-65 to 150	-65 to 150	°C	

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Conditions* is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

All voltage values, except differential voltages, are with respect to the midpoint between V_{CC+} and V_{CC}-.

Differential voltages are at IN+, with respect to IN-.

- The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 V, whichever is less. The output may be shorted to ground or to either supply. Temperature and/or supply voltages must be limited to ensure that the
- dissipation fating is not exceeded. Maximum power dissipation is a function of $T_{J(max)}$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_{J(max)} T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability. The package thermal impedance is calculated in accordance with JESD 51-7. Maximum power dissipation is a function of $T_{J(max)}$, θ_{JC} , and T_C . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_{J(max)} T_C)/\theta_{JC}$. Operating at the absolute maximum T_J of 150°C can affect reliability. The package thermal impedance is calculated in accordance with MIL-STD-883. (6)

Submit Documentation Feedback

SLOS078K - NOVEMBER 1978 - REVISED JANUARY 2014

www.ti.com

Electrical Characteristics

 $V_{CC\pm} = \pm 15 \text{ V} \text{ (unless otherwise noted)}$

	PARAMETER	TEST CON	ST CONDITIONS ⁽¹⁾		TL061C TL062C TL064C			TL061AC TL062AC TL064AC		UNIT
				MIN	TYP	MAX	MIN	TYP	MAX	
.,	land offertualism	V _O = 0, R _S = 50 Ω	T _A = 25°C		3	15		3	6	mV
V _{IO}	Input offset voltage	V _O = 0, R _S = 50 Ω	T _A = Full range			20			7.5	mv
a _{VIO}	Temperature coefficient of input offset voltage	V _O = 0, R _S = 50 Ω,	T _A = Full range		10			10		μV/°C
	Input offset current	V ₀ = 0	T _A = 25°C		5	200		5	100	pΑ
lio	input onset current	V ₀ = 0	T _A = Full range			5			3	nA
I _{IB}	Input bias current ⁽²⁾	V ₀ = 0	T _A = 25°C		30	400		30	200	pΑ
'IB	input bias current	V ₀ = 0	T _A = Full range			10			7	nΑ
V _{ICR}	Common-mode input voltage range	T _A = 25°C		±11	-12 to 15		±11	-12 to 15		V
.,	Maximum peak output	R _L = 10 kΩ, T _A = 25	5°C	±10	±13.5		±10	±13.5		v
V _{OM}	voltage swing	R _L ≥ 10 kΩ, T _A = Fu	ıll range	±10			±10			
	Large-signal differential	V _O = ±10 V,	T _A = 25°C	3	6		4	6		V/mV
A _{VD}	voltage amplification	R _L ≥ 2 kΩ	T _A = Full range	3			4			V/IIIV
B ₁	Unity-gain bandwidth	$R_L = 10 \text{ k}\Omega$, $T_A = 25$	5°C		1			1		MHz
rį	Input resistance	T _A = 25°C			10 ¹²			10 ¹²		Ω
CMRR	Common-mode rejection ratio	V _{IC} = V _{ICR} min, V _O = 0, R _S = 50 Ω,	T _A = 25°C	70	86		80	86		dB
k _{SVR}	Supply-voltage rejection ratio (ΔV _{CC±} /ΔV _{IO})	V _{CC} = ±9 V to ±15 \ V _O = 0, R _S = 50 Ω,		70	95		80	95		dB
P _D	Total power dissipation (each amplifier)	V _O = 0, No load, T _A	= 25°C		6	7.5		6	7.5	mW
Icc	Supply current (each amplifier)	V _O = 0, No load, T _A	= 25°C		200	250		200	250	μА
V ₀₁ /V ₀₂	Crosstalk attenuation	A _{VD} = 100, T _A = 25°	°C		120			120		dB

Copyright @ 1978-2014, Texas Instruments Incorporated

Product Folder Links: TL061 TL061A TL061B TL062 TL062A TL062B TL064 TL064A TL064B

All characteristics are measured under open-loop conditions with zero common-mode input voltage unless otherwise specified. Full range for T_A is 0°C to 70°C for TL06xC, TL06xAC, and TL06xBC and -40°C to 85°C for TL06xI.
 Input bias currents of an FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive, as shown in Figure 15. Pulse techniques are used to maintain the junction temperature as close to the ambient temperature as possible.

SLOS078K - NOVEMBER 1978 - REVISED JANUARY 2014

Electrical Characteristics

V_{CC±} = ±15 V (unless otherwise noted)

	PARAMETER	TEST CON	IDITIONS ⁽¹⁾		TL061BC TL062BC TL064BC			TL061I TL062I TL064I		UNIT
				MIN	TYP	MAX	MIN	TYP	MAX	
.,	land offertualism	V _O = 0, R _S = 50 Ω	T _A = 25°C		2	3		3	6	mV
V _{IO}	Input offset voltage	V _O = 0, R _S = 50 Ω	T _A = Full range			5			9	mv
a _{VIO}	Temperature coefficient of input offset voltage	V _O = 0, R _S = 50 Ω,	T _A = Full range		10			10		μV/°C
	Input offset current	V ₀ = 0	T _A = 25°C		5	100		5	100	pΑ
lio	input onset current	V ₀ = 0	T _A = Full range			3			10	nA
I _{IB}	Input bias current ⁽²⁾	V ₀ = 0	T _A = 25°C		30	200		30	200	pΑ
'IB	input bias current	V ₀ = 0	T _A = Full range			7			20	nΑ
V _{ICR}	Common-mode input voltage range	T _A = 25°C		±11	-12 to 15		±11	-12 to 15		V
.,	Maximum peak output	R _L = 10 kΩ, T _A = 25	5°C	±10	±13.5		±10	±13.5		v
V _{OM}	voltage swing	R _L ≥ 10 kΩ, T _A = Fu	ıll range	±10			±10			
	Large-signal differential	V _O = ±10 V,	T _A = 25°C	4	6		4	6		V/mV
A _{VD}	voltage amplification	R _L ≥2kΩ	T _A = Full range	4			4			v/mv
B ₁	Unity-gain bandwidth	R _L = 10 kΩ, T _A = 25	s°C		1			1		MHz
rį	Input resistance	T _A = 25°C			10 ¹²			10 ¹²		Ω
CMRR	Common-mode rejection ratio	V _{IC} = V _{ICR} min, V _O = 0, R _S = 50 Ω,	T _A = 25°C	80	86		80	86		dB
k _{SVR}	Supply-voltage rejection ratio (ΔV _{CC±} /ΔV _{IO})	V _{CC} = ±9 V to ±15 \ V _O = 0, R _S = 50 Ω,		80	95		80	95		dB
P _D	Total power dissipation (each amplifier)	V _O = 0, No load, T _A	= 25°C		6	7.5		6	7.5	mW
Icc	Supply current (each amplifier)	V _O = 0, No load, T _A	= 25°C		200	250	·	200	250	μА
V ₀₁ /V ₀₂	Crosstalk attenuation	A _{VD} = 100, T _A = 25°	°C		120			120		dB

Copyright © 1978–2014, Texas Instruments Incorporated

Submit Documentation Feedback

All characteristics are measured under open-loop conditions with zero common-mode input voltage, unless otherwise specified. Full range for T_A is 0°C to 70°C for TL06xC, TL06xAC, and TL06xBC and -40°C to 85°C for TL06xI.
 Input bias currents of an FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive, as shown in Figure 15. Pulse techniques are used to maintain the junction temperature as close to the ambient temperature as possible.

SLOS078K - NOVEMBER 1978 - REVISED JANUARY 2014

www.ti.com

Electrical Characteristics

 $V_{CC\pm} = \pm 15 \text{ V} \text{ (unless otherwise noted)}$

	PARAMETER	ARAMETER TEST CONDITIONS ⁽¹⁾			TL061M TL062MM			TL064M		
				MIN	TYP	MAX	MIN	TYP	MAX	
			T _A = 25°C		3	6		3	9	
V _{IO}	Input offset voltage	$V_0 = 0$, $R_8 = 50 \Omega$	T _A = -55°C to 125°C			9			15	mV
a _{VIO}	Temperature coefficient of input offset voltage	V _O = 0, R _S = 50 Ω, T _A = -55°C to 125°	c		10			10		μV/°C
			T _A = 25°C		5	100		5	100	pΑ
I _{IO}	Input offset current	V ₀ = 0	T _A = -55°C			20(2)			20(2)	nA
			T _A = 125°C			20			20	nA
			T _A = 25°C		30	200		30	200	pΑ
I _{IB}	Input bias current(3)	V ₀ = 0	T _A = -55°C			50 ⁽²⁾			50 ⁽²⁾	nA
			T _A = 125°C			50			50	nA
V _{ICR}	Common-mode input voltage range	T _A = 25°C	•	±11	-12 to 15		±11	-12 to 15		V
	Maximum peak output	R _L = 10 kΩ, T _A = 25°C		±10	±13.5		±10	±13.5		
V _{OM}	voltage swing	R _L ≥ 10 kΩ, T _A = -5	55°C to 125°C	±10			±10			V
	11 -177 17-1	V	T _A = 25°C	4	6		4	6		
A _{VD}	Large-signal differential voltage amplification	V _O = ±10 V, R _L ≥ 2 kΩ	T _A = -55°C to 125°C	4			4			V/mV
B ₁	Unity-gain bandwidth	$R_L = 10 \text{ k}\Omega$, $T_A = 25$	5°C							MHz
η	Input resistance	T _A = 25°C			10 ¹²			10 ¹²		Ω
CMRR	Common-mode rejection ratio	$V_{IC} = V_{ICR}min$, $V_{O} = 0$, $R_{S} = 50 \Omega$,	T _A = 25°C	80	86		80	86		dB
ksvR	Supply-voltage rejection ratio (ΔV _{CCz} /ΔV _{IO})	V _{CC} = ±9 V to ±15 \ V _O = 0, R _S = 50 Ω,		80	95		80	95		dB
PD	Total power dissipation (each amplifier)	V _O = 0, No load, T _A	= 25°C		6	7.5		6	7.5	mW
Icc	Supply current (each amplifier)	V _O = 0, No load, T _A	= 25°C		200	250		200	250	μΑ
V ₀₁ /V ₀₂	Crosstalk attenuation	A _{VD} = 100, T _A = 25°	°C		120			120		dB

All characteristics are measured under open-loop conditions, with zero common-mode voltage, unless otherwise specified.
 This parameter is not production tested.

Operating Characteristics

V_{CC±} = ±15 V, T_A= 25°C

	PARAMETER TEST CONDITIONS		MIN	TYP	MAX	UNIT	
SR	Slew rate at unity gain ⁽¹⁾	$V_I = 10 \text{ V},$ $R_L = 10 \text{ k}\Omega,$	C _L = 100 pF, See Figure 1	1.5	3.5		V/µs
t _r	Rise-time	V _I = 20 V,	C _L = 100 pF,		0.2		μs
	Overshoot factor	$R_L = 10 \text{ k}\Omega$,	See Figure 1		10		%
Vn	Equivalent input noise voltage	R _S = 20 Ω	f = 1 kHz		42		nV/√ Hz

⁽¹⁾ Slew rate at -55°C to 125°C is 0.7 V/µs min.

Submit Documentation Feedback

Copyright @ 1978-2014, Texas Instruments Incorporated

Product Folder Links: TL061 TL061A TL061B TL062 TL062A TL062B TL064 TL064A TL064B

⁽³⁾ Input bias currents of an FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive, as shown in Figure 15. Pulse techniques are used to maintain the junction temperature as close to the ambient temperature as possible.

Parametry katalogowe wzmacniacza operacyjnego LM741:

(http://www.ti.com/lit/ds/symlink/lm741.pdf)

LM741

SNOSC25D -MAY 1998-REVISED OCTOBER 2015

LM741 Operational Amplifier

1 Features

- · Overload Protection on the Input and Output
- No Latch-Up When the Common-Mode Range is Exceeded

2 Applications

- Comparators
- Multivibrators
- DC Amplifiers
- · Summing Amplifiers
- Integrator or Differentiators
- Active Filters

3 Description

The LM741 series are general-purpose operational amplifiers which feature improved performance over industry standards like the LM709. They are direct, plug-in replacements for the 709C, LM201, MC1439, and 748 in most applications.

The amplifiers offer many features which make their application nearly foolproof: overload protection on the input and output, no latch-up when the common-mode range is exceeded, as well as freedom from oscillations

The LM741C is identical to the LM741 and LM741A except that the LM741C has their performance ensured over a 0°C to +70°C temperature range, instead of -55°C to +125°C.

Device Information(1)

PART NUMBER	PACKAGE	BODY SIZE (NOM)
	TO-99 (8)	9.08 mm × 9.08 mm
LM741	CDIP (8)	10.16 mm × 6.502 mm
	PDIP (8)	9.81 mm × 6.35 mm

 For all available packages, see the orderable addendum at the end of the data sheet.

Typical Application

An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.

SNOSC25D-MAY 1998-REVISED OCTOBER 2015

www.ti.com

5 Pin Configuration and Functions

Pin Functions

PI	N	I/O	DESCRIPTION
NAME	NO.	1/0	DESCRIPTION
INVERTING INPUT	2	- 1	Inverting signal input
NC	8	N/A	No Connect, should be left floating
NONINVERTING INPUT	3	- 1	Noninverting signal input
OFFSET NULL	4.5		Offset pull ain used to aliminate the affect valtage and belongs the input valtages
OFFSET NULL	1, 5	'	Offset null pin used to eliminate the offset voltage and balance the input voltages.
OUTPUT	6	0	Amplified signal output
V+	7	1	Positive supply voltage
V-	4	- 1	Negative supply voltage

Copyright @ 1998–2015, Texas Instruments Incorporated

Submit Documentation Feedback

3

SNOSC25D -MAY 1998-REVISED OCTOBER 2015

www.ti.com

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) $^{(1)(2)(3)}$

		MIN	MAX	UNIT
Supply voltage	LM741, LM741A		±22	v
Supply voltage	LM741C		±18	ľ
Power dissipation (4)	•		500	mW
Differential input voltage			±30	V
Input voltage (5)			±15	V
Output short circuit duration		Conf	Continuous	
	LM741, LM741A	-50	125	°C
Operating temperature	LM741C	0	70	
L	LM741, LM741A		150	°C
Junction temperature	LM741C		100	
	PDIP package (10 seconds)		260	°C
Soldering information	CDIP or TO-99 package (10 seconds)		300	°C
Storage temperature, T _{stg}		-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. For military specifications see RETS741X for LM741 and RETS741AX for LM741A. If Military/Aerospace specified devices are required, please contact the TI Sales Office/Distributors for availability and specifications.

6.2 ESD Ratings

			VALUE	UNIT
V _(ESD)	Electrostatic discharge	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±400	V

⁽¹⁾ Level listed above is the passing level per ANSI, ESDA, and JEDEC JS-001. JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM	MAX	UNIT
Supply voltage (VDD-GND)	LM741, LM741A	±10	±15	±22	
Supply Voltage (VDD-GND)	LM741C	±10	±15	±18	٧
T	LM741, LM741A	-55		125	•0
Temperature	LM741C	0		70	°C

6.4 Thermal Information

		LM741			
THERMAL METRIC (1)	LMC (TO-99)	NAB (CDIP)	B (CDIP) P (PDIP)		
	8 PINS	8 PINS	8 PINS]	
R _{BJA} Junction-to-ambient thermal resistance	170	100	100	°C/W	
R _{BJC(top)} Junction-to-case (top) thermal resistance	25	_	_	°C/W	

⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

Submit Documentation Feedback

Copyright @ 1998-2015, Texas Instruments Incorporated

For operation at elevated temperatures, these devices must be derated based on thermal resistance, and T_i max. (listed under "Absolute Maximum Ratings*). T_j = T_A + (θ_A P_D).

(5) For supply voltages less than ±15 V, the absolute maximum input voltage is equal to the supply voltage.

SNOSC25D -MAY 1998-REVISED OCTOBER 2015

6.5 Electrical Characteristics, LM741⁽¹⁾

PARAMETER	TEST C	ONDITIONS	MIN	TYP	MAX	UNIT
land effect wellens	D < 40.10	T _A = 25°C		1	5	m۷
Input offset voltage	R _S ≤ 10 kΩ	$T_{AMIN} \le T_A \le T_{AMAX}$			6	mV
Input offset voltage adjustment range $T_{A} = 25^{\circ}\text{C}, \ \forall_{\mathbb{S}} = \pm 20 \ \forall$				±15		mV
land offert comment	T _A = 25°C			20	200	nA
Input offset current	$T_{AMIN} \le T_A \le T_{AMAX}$			85	500	
land bias summed	T _A = 25°C			80	500	nΑ
Input bias current	$T_{AMIN} \le T_A \le T_{AMAX}$				1.5	μΑ
Input resistance $T_A = 25^{\circ}C$, $V_S = \pm 20 \text{ V}$			0.3	2		MΩ
Input voltage range	$T_{AMIN} \le T_A \le T_{AMAX}$		±12	±13		٧
Large signal voltage gain	$V_{S} = \pm 15 \text{ V}, V_{O} = \pm 10 \text{ V}, R_{L} \ge 2$ $k\Omega$	T _A = 25°C	50	200		V/mV
Large signal voltage gain		$T_{AMIN} \le T_A \le T_{AMAX}$	25			v/mv
Output voltage swing	V _S = ±15 V	R _L ≥ 10 kΩ	±12	±14		V
Output voltage swing		$R_L \ge 2 k\Omega$	±10	±13		V
Output short circuit current	T _A = 25°C			25		mA
Common-mode rejection ratio	$R_S \le 10 \Omega$, $V_{CM} = \pm 12 V$, $T_{AMIN} \le T_A \le T_{AMAX}$		80	95		dB
Supply voltage rejection ratio	$V_S = \pm 20 \text{ V to } V_S = \pm 5 \text{ V}, R_S \le 10 \Omega, T_{AMIN} \le T_A \le T_{AMAX}$		86	96		dB
Transient Rise time	T - 25°C units asia			0.3		μs
response Overshoot T _A = 25°C, unity gain				5%		
Slew rate	T _A = 25°C, unity gain			0.5		V/µs
Supply current	T _A = 25°C			1.7	2.8	mA
	V _S = ±15 V	T _A = 25°C		50	85	
Power consumption		T _A = T _{AMIN}		60	100	mW
		$T_A = T_{AMAX}$		45	75	1

⁽¹⁾ Unless otherwise specified, these specifications apply for V_S = ±15 V, −55°C ≤ T_A ≤ +125°C (LM741/LM741A). For the LM741C/LM741E, these specifications are limited to 0°C ≤ T_A ≤ +70°C.

6.6 Electrical Characteristics, LM741A(1)

PARAMETER	TEST	CONDITIONS	MIN	TYP	MAX	UNIT
Input offset valtage	B < 50.0	T _A = 25°C		0.8	3	mV
Input offset voltage	R _S ≤ 50 Ω	$T_{AMIN} \le T_A \le T_{AMAX}$			4	mV
Average input offset voltage drift					15	μV/°C
Input offset voltage adjustment range	T _A = 25°C, V _S = ±20 V		±10			mV
nput offset current	T _A = 25°C			3	30	nA
input onset current	$T_{AMIN} \le T_A \le T_{AMAX}$				70	IIA.
Average input offset current drift					0.5	nA/°C
Input bigg gurrant	T _A = 25°C			30	80	nΑ
Input bias current	$T_{AMIN} \le T_A \le T_{AMAX}$				0.21	μΑ
Input resistance	T _A = 25°C, V _S = ±20 V		1	6		ΜΩ
input resistance	$T_{AMIN} \le T_A \le T_{AMAX}$, $V_S = \pm 20 \text{ V}$		0.5			IVILZ
	$V_S = \pm 20 \text{ V}, V_O = \pm 15 \text{ V}, R_L \ge 2 \text{ k}\Omega$	T _A = 25°C	50			
Large signal voltage gain		$T_{AMIN} \le T_A \le T_{AMAX}$	32			V/mV
	$V_S = \pm 5 \text{ V}, V_O = \pm 2 \text{ V}, R_L \ge 2 \text{ k}\Omega$	$T_{AMIN} \le T_A \le T_{AMAX}$	10			

⁽¹⁾ Unless otherwise specified, these specifications apply for V_S = ±15 V, −55°C ≤ T_A ≤ +125°C (LM741/LM741A). For the LM741C/LM741E, these specifications are limited to 0°C ≤ T_A ≤ +70°C.

Copyright © 1998–2015, Texas Instruments Incorporated

Submit Documentation Feedback

5

SNOSC25D -MAY 1998-REVISED OCTOBER 2015

www.ti.com

Electrical Characteristics, LM741A⁽¹⁾ (continued)

PARAM	ETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT	
Output voltage swing		V 120 V	R _L ≥ 10 kΩ	±16			V	
Output voltage s	swing	V _S = ±20 V	$R_L \ge 2 k\Omega$	±15			V	
Output short cire	it ausmant	$T_A = 25^{\circ}C$ $T_{AMIN} \le T_A \le T_{AMAX}$		10	25	35	mA	
Output short ciri	cuit current			10		40		
Common-mode	rejection ratio	jection ratio R _S ≤ 50 Ω, V _{CM} = ±12 V, T _{AMIN} ≤ T _A ≤ T _{AMAX}		80	95		dB	
Supply voltage	Supply voltage rejection ratio V _S = ±20 V to V _S = ±5 V, R _S ≤ 50 Ω, T _{AMIN} ≤ T _A ≤ T _{AM}		$0 \Omega, T_{AMIN} \le T_A \le T_{AMAX}$	86	96		dB	
Transient Rise time		T. OF CO. weith and			0.25	8.0	μs	
response	Overshoot	T _A = 25°C, unity gain			6%	20%		
Bandwidth (2)		T _A = 25°C		0.437	1.5		MHz	
Slew rate T _A :		T _A = 25°C, unity gain		0.3	0.7		V/µs	
			T _A = 25°C		80	150		
Power consump	tion	V _S = ±20 V	T _A = T _{AMIN}			165	mW	
			$T_A = T_{AMAX}$			135		

⁽²⁾ Calculated value from: BW (MHz) = 0.35/Rise Time (µs).

6.7 Electrical Characteristics, LM741C(1)

PARAM	ETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
Input offset voltage		D < 4010	T _A = 25°C		2	6	m∨
input onset votage		R _S ≤ 10 kΩ	$T_{AMIN} \le T_A \le T_{AMAX}$			7.5	m∨
Input offset voltage adjustment range		T _A = 25°C, V _S = ±20 V	T _A = 25°C, V _S = ±20 V		±15		mV
Input offset current		T _A = 25°C			20	200	nΑ
input onset current		$T_{AMIN} \le T_A \le T_{AMAX}$	$T_{AMIN} \le T_A \le T_{AMAX}$			300	IIA
Input bios surrent		T _A = 25°C			80	500	nA
Input bias current		$T_{AMIN} \le T_A \le T_{AMAX}$				0.8	μА
Input resistance		T _A = 25°C, V _S = ±20 V		0.3	2		ΜΩ
Input voltage range		T _A = 25°C		±12	±13		V
Large signal voltage gain		$V_S = \pm 15 \text{ V}, V_O = \pm 10 \text{ V}, R_L$ $\geq 2 \text{ k}\Omega$	T _A = 25°C	20	200		V/mV
			$T_{AMIN} \le T_A \le T_{AMAX}$	15			v/mv
Output voltage swing		V _S = ±15 V	R _L ≥ 10 kΩ	±12	±14		V
			$R_L \ge 2 k\Omega$	±10	±13		V
Output short circuit	current	T _A = 25°C			25		mA
Common-mode rejection ratio R _S ≤ 10 kΩ, V _{CM} = ±12		$R_S \le 10 \text{ k}\Omega, V_{CM} = \pm 12 \text{ V}, T_A$	_{MIN} ≤ T _A ≤ T _{AMAX}	70	90		dB
Supply voltage rejection ratio		$V_S = \pm 20 \text{ V to } V_S = \pm 5 \text{ V}, R_S \le 10 \Omega, T_{AMIN} \le T_A \le T_{AMAX}$		77	96		dB
Transient response	Rise time				0.3		μs
	Overshoot	T _A = 25°C, Unity Gain	T _A = 25°C, Unity Gain		5%		
Slew rate		T _A = 25°C, Unity Gain			0.5		V/µs
Supply current		T _A = 25°C			1.7	2.8	mA
Power consumption		V _S = ±15 V, T _A = 25°C			50	85	mW

⁽¹⁾ Unless otherwise specified, these specifications apply for V_S = ±15 V, −55°C ≤ T_A ≤ +125°C (LM741/LM741A). For the LM741C/LM741E, these specifications are limited to 0°C ≤ T_A ≤ +70°C.

Submit Documentation Feedback

Copyright @ 1998–2015, Texas Instruments Incorporated

SNOSC25D - MAY 1998 - REVISED OCTOBER 2015

7 Detailed Description

7.1 Overview

The LM74 devices are general-purpose operational amplifiers which feature improved performance over industry standards like the LM709. It is intended for a wide range of analog applications. The high gain and wide range of operating voltage provide superior performance in integrator, summing amplifier, and general feedback applications. The LM741 can operate with a single or dual power supply voltage. The LM741 devices are direct, plug-in replacements for the 709C, LM201, MC1439, and 748 in most applications.

7.2 Functional Block Diagram

7.3 Feature Description

7.3.1 Overload Protection

The LM741 features overload protection circuitry on the input and output. This prevents possible circuit damage to the device.

7.3.2 Latch-up Prevention

The LM741 is designed so that there is no latch-up occurrence when the common-mode range is exceeded. This allows the device to function properly without having to power cycle the device.

7.3.3 Pin-to-Pin Capability

The LM741 is pin-to-pin direct replacements for the LM709C, LM201, MC1439, and LM748 in most applications. Direct replacement capabilities allows flexibility in design for replacing obsolete parts.

Copyright @ 1998–2015, Texas Instruments Incorporated

Submit Documentation Feedback

7

SNOSC25D - MAY 1998 - REVISED OCTOBER 2015

www.ti.com

7.4 Device Functional Modes

7.4.1 Open-Loop Amplifier

The LM741 can be operated in an open-loop configuration. The magnitude of the open-loop gain is typically large thus for a small difference between the noninverting and inverting input terminals, the amplifier output will be driven near the supply voltage. Without negative feedback, the LM741 can act as a comparator. If the inverting input is held at 0 V, and the input voltage applied to the noninverting input is positive, the output will be positive. If the input voltage applied to the noninverting input is negative, the output will be negative.

7.4.2 Closed-Loop Amplifier

In a closed-loop configuration, negative feedback is used by applying a portion of the output voltage to the inverting input. Unlike the open-loop configuration, closed loop feedback reduces the gain of the circuit. The overall gain and response of the circuit is determined by the feedback network rather than the operational amplifier characteristics. The response of the operational amplifier circuit is characterized by the transfer function.

Submit Documentation Feedback

Copyright © 1998–2015, Texas Instruments Incorporated

SNOSC25D - MAY 1998 - REVISED OCTOBER 2015

8 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

The LM741 is a general-purpose amplifier than can be used in a variety of applications and configurations. One common configuration is in a noninverting amplifier configuration. In this configuration, the output signal is in phase with the input (not inverted as in the inverting amplifier configuration), the input impedance of the amplifier is high, and the output impedance is low. The characteristics of the input and output impedance is beneficial for applications that require isolation between the input and output. No significant loading will occur from the previous stage before the amplifier. The gain of the system is set accordingly so the output signal is a factor larger than the input signal.

8.2 Typical Application

Figure 1. LM741 Noninverting Amplifier Circuit

8.2.1 Design Requirements

As shown in Figure 1, the signal is applied to the noninverting input of the LM741. The gain of the system is determined by the feedback resistor and input resistor connected to the inverting input. The gain can be calculated by Equation 1:

The gain is set to 2 for this application. R1 and R2 are 4.7-k resistors with 5% tolerance.

8.2.2 Detailed Design Procedure

The LM741 can be operated in either single supply or dual supply. This application is configured for dual supply with the supply rails at ±15 V. The input signal is connected to a function generator. A 1-Vpp, 10-kHz sine wave was used as the signal input. 5% tolerance resistors were used, but if the application requires an accurate gain response, use 1% tolerance resistors.

Copyright @ 1998–2015, Texas Instruments Incorporated

Submit Documentation Feedback

9

SNOSC25D-MAY 1998-REVISED OCTOBER 2015

www.ti.com

Typical Application (continued)

8.2.3 Application Curve

The waveforms in Figure 2 show the input and output signals of the LM741 non-inverting amplifier circuit. The blue waveform (top) shows the input signal, while the red waveform (bottom) shows the output signal. The input signal is 1.06 Vpp and the output signal is 1.94 Vpp. With the 4.7- $\kappa\Omega$ resistors, the theoretical gain of the system is 2. Due to the 5% tolerance, the gain of the system including the tolerance is 1.992. The gain of the system when measured from the mean amplitude values on the oscilloscope was 1.83.

Figure 2. Waveforms for LM741 Noninverting Amplifier Circuit

9 Power Supply Recommendations

For proper operation, the power supplies must be properly decoupled. For decoupling the supply lines, a $0.1-\mu F$ capacitor is recommended and should be placed as close as possible to the LM741 power supply pins.

Submit Documentation Feedback

Copyright @ 1998–2015, Texas Instruments Incorporated

Dodatek C: Schemat funkcjonalny płytki pomiarowej (wersja 1)

Schemat funkcjonalny płytki pomiarowej (wersja 2):

