

线性方程组的迭代解法

- 直接解法的不足
 - □对大规模稀疏阵,由于"填入"导致巨大的计算时间、 空间开销; 处理稠密阵情况更糟, O(n³)复杂度
 - □不适合追求计算速度、允许一定准确度损失的场合
- ■内容
 - □一阶定常迭代法基本理论
 - □三种经典迭代法(Jacobi, G-S, SOR)
 - □非固定格式迭代法(最速下降法、共轭梯度法)

迭代法基本概念

M

基本概念

- 求解线性方程组Ax = b的迭代法
 - □ 通过向量序列 $x^{(0)}, x^{(1)}, \cdots, x^{(k)}, \cdots$ 逼近准确解 x^*
 - □类似于<u>不动点迭代法</u>的构造: $x^{(k+1)} = g(x^{(k)})$ x = g(x)为与原方程等价的方程
 - □希望每个迭代步计算量尽可能小,g为线性函数: $x^{(k+1)} = Bx^{(k)} + f$, $k = 0, 1, \cdots$,
 - $\square B$, f为常数矩阵和向量,称为"一阶定常迭代法"
 - □具体的构造方法——矩阵分裂法

$$A = M - N \longrightarrow Mx - Nx = b \iff x = M^{-1}Nx + M^{-1}b$$

- □怎么选M? 1. M非奇异; 2.迭代法易收敛、收敛快;
 - 3. 求解以M为系数矩阵的方程计算量小

迭代法的有关理论

- 判停准则
 - □类似"非线性方程求根": 残差判据、误差判据

 - $\|x^{(k)}-x^{(k-1)}\| \leq \epsilon_2$ 也有缺陷, 计算简单、改造出相对 量的判据
- 一阶定常迭代法的收敛性
 - $x^* = Bx^* + f \longrightarrow e^{(k+1)} = Be^{(k)} \longrightarrow e^{(k)} = B^k e^{(0)}$
 - □任意初始误差 $e^{(0)} \neq 0$,因此要保证一阶定常迭代法 收敛需要迭代矩阵B的幂序列 $\{B^k\}$: $\lim_{k \to \infty} B^k = 0$

M

迭代法的有关理论

- 定义4.1 $A^{(k)} = (a_{ij}^{(k)})$ 形成一矩阵序列,若 $\lim_{k\to\infty} a_{ij}^{(k)} = a_{ij}$, $\forall i, j$),则称序列 $\{A^{(k)}\}$ 收敛于 $A = (a_{ij})$
- 定理**4.1** 矩阵算子范数的等价性: $c_1 ||A||_{\infty} \le ||A||_t \le c_2 ||A||_{\infty}$
- 定理4.2 $\lim_{k\to\infty} A^{(k)} = A \iff \lim_{k\to\infty} \|A^{(k)} A\|_t = 0$
- 定理4.3 $\lim_{k\to\infty} A^{(k)} = A \iff \forall x$ 都有 $\lim_{k\to\infty} A^{(k)}x = Ax$
 - □ 一阶定常迭代法,要 $\lim_{k\to\infty} B^k = 0 \iff \forall x$ 都有 $\lim_{k\to\infty} B^k x = 0$

迭代法的有关理论

■ 矩阵的谱半径 $\rho(A) = \max_{1 \le i \le n} |\lambda_i|$, λ_i 为A的特征值

例:
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & -1 & 1 \end{bmatrix}$$

$$\det(\lambda \mathbf{I} - \mathbf{A}) = 0 \Longrightarrow (\lambda - 1)[(\lambda - 1)^2 + 1] = 0$$
$$\Longrightarrow \rho(\mathbf{A}) = \sqrt{2}$$

定理 若矩阵 $A \in \mathbb{R}^{n \times n}$,则 $\rho(A) \leq ||A||$; 若A为实对称矩阵,则 $||A||_2 = \rho(A)$

(A的谱半径是A的任意一种范数的下界)。

证明 对于谱半径对应的特征值与特征向量 λ 和x, $Ax = \lambda x$, 两边取范数并利用相容性,

$$\rho(A) \| x \| = \| \lambda x \| = \| Ax \| \le \| A \| \| x \|$$

M

迭代法的收敛性

■ 定理4.5 设 $\mathbf{B} = (b_{ij}) \in \mathbb{R}^{n \times n}$,则 $\lim_{k \to \infty} \mathbf{B}^k = \mathbf{0} \iff \rho(\mathbf{B}) < 1$

→ (I-B非奇异很重要,即原方程解唯一)

即根据向量序列 $\{x^{(k)}\}$ 对任意 $x^{(0)}$ 都收敛,证明 $\rho(B) < 1$ 。

设 $\lim_{k\to\infty} x^{(k)} = x^*$,易知 x^* 是方程 x = Bx + f 的唯一解 (由于 I - B 非奇异),因此对任意 $x^{(0)}$ 及其对应的误差 $e^{(0)}$,都有 $e^{(k)} = B^k e^{(0)} \to \mathbf{0}$,($k \to \infty$)。根据定理 4.3 得出 $\lim_{k\to\infty} B^k = \mathbf{0}$,再根据定理 4.5 得 $\rho(B) < 1$ 。

例(迭代法的收敛性): 迭代法解线性方程组的递推公式为

$$\mathbf{x}^{(k+1)} = \mathbf{B}\mathbf{x}^{(k)} + \mathbf{f}, (k = 0,1,2,\cdots)$$

其中,
$$\mathbf{B} = \begin{bmatrix} 0 & 2 \\ 3 & 0 \end{bmatrix}$$
, $\mathbf{f} = \begin{bmatrix} 5 \\ 5 \end{bmatrix}$, 试判断该迭代法的收敛性。

【解】首先, I - B 为非奇异矩阵, 再看矩阵 B 的特征方程 $\det(\lambda - I) = \lambda^2 - 6 = 0$, 因此 $\rho(B) = \sqrt{6} > 1$ 。根据定理 4.6 知, 该迭代法对任意的初始值不一定收敛。

例 试判断以下迭代公式是否收敛:

(1)
$$\begin{cases} x_1^{(k+1)} = -\frac{1}{3}x_2^{(k)} + \frac{5}{3} \\ x_2^{(k+1)} = -\frac{1}{2}x_1^{(k)} + \frac{5}{2} \end{cases}$$

(2)
$$\begin{cases} x_1^{(k+1)} = -0.7x_1^{(k)} + 0.5x_2^{(k)} + 4 \\ x_2^{(k+1)} = -0.1x_1^{(k)} + 0.2x_2^{(k)} + 3 \end{cases}$$

解 (1) 迭代矩阵
$$\mathbf{B} = \begin{bmatrix} 0 & -1/3 \\ -1/2 & 0 \end{bmatrix}$$

$$\mathbf{B} = \begin{bmatrix} 0 & -1/3 \\ -1/2 & 0 \end{bmatrix}$$

$$\|B\|_{\infty} = 1/2 < 1$$

 $\|\boldsymbol{B}\|_{\infty} = 1/2 < 1$,故迭代公式收敛。

(2) 迭代矩阵
$$\mathbf{B} = \begin{bmatrix} -0.7 & 0.5 \\ -0.1 & 0.2 \end{bmatrix}$$
 $\|\mathbf{B}\|_1 = \max\{0.8, 0.7\} = 0.8 < 1$

$$\|\boldsymbol{B}\|_1 = \max\{0.8, 0.7\} = 0.8 < 1$$

故迭代公式收敛。

迭代法的收敛性

- $\rho(B)$ < 1是一阶定常迭代法的收敛判据
 - □对任意初值 $x^{(0)}$, 迭代法都收敛 (全局收敛)
 - □若某种范数下 $\|B\|_t < 1$,则收敛 (充分条件)
- 收敛阶与收敛速度 1 阶定常迭代法为1 阶收敛

口若
$$\lim_{k\to\infty} \|e^{(k+1)}\|/\|e^{(k)}\|^p = c$$
,则p阶收敛 $e^{(k+1)} = Be^{(k)}$

$$e^{(k+1)} = Be^{(k)}$$

□设B可对角化,特征值按模递减为 $\{\lambda_i\}$,特征向量 $\{u_i\}$

设 $e^{(0)} = \sum_{i=1}^{n} \alpha_i \mathbf{u}_i$, 各误差成份随迭代衰减情况如下

$e^{(0)}$	$\alpha_1 \boldsymbol{u}_1$	$\alpha_2 \boldsymbol{u}_2$	• • •	$\alpha_n \boldsymbol{u}_n$
:	•	•	•	•
$e^{(k)}=B^ke^{(0)}$	$\lambda_1^k \alpha_1 oldsymbol{u}_1$	$\lambda_2^k \alpha_2 \boldsymbol{u}_2$	• • •	$\lambda_n^k \alpha_n oldsymbol{u}_n$

$$\lim_{k\to\infty}\frac{\left\|\boldsymbol{e}^{(k+1)}\right\|}{\left\|\boldsymbol{e}^{(k)}\right\|}=\rho(B)$$

1阶收敛,且

$$c = |\lambda_1| = \rho(\mathbf{B})$$

最小

经典迭代法

м

矩阵分裂法(splitting method)

- 求解线性方程组Ax = b的迭代法
 - □通过向量序列 $x^{(0)}, x^{(1)}, \dots, x^{(k)}, \dots$ 逼近准确解 x^* $x^{(k+1)} = Bx^{(k)} + f, \qquad k = 0, 1, \dots,$
 - $\square B$, f为常数矩阵和向量,称为"一阶定常迭代法"

$$A = M - N$$
 \longrightarrow $Mx - Nx = b \Leftrightarrow x = M^{-1}Nx + M^{-1}b$ 怎么选 M ?

- 1. M非奇异;
- 2. 迭代法要收敛且收敛快;
- 3. 求解以M为系数矩阵的方程组计算量小

Jacobi迭代法

以3阶方程组为例说明

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1 \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2 \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3 \end{cases}$$

$$x_{1} = -\frac{1}{a_{11}}(a_{12}x_{2} + a_{13}x_{3}) + \frac{b_{1}}{a_{11}}$$

$$x_{2} = -\frac{1}{a_{22}}(a_{21}x_{1} + a_{23}x_{3}) + \frac{b_{2}}{a_{22}}$$

$$x_{3} = -\frac{1}{a_{33}}(a_{31}x_{1} + a_{32}x_{2}) + \frac{b_{3}}{a_{33}}$$

■ 分量迭代计算公式

$$\begin{cases} x_1^{(k+1)} = -\frac{1}{a_{11}} \left(a_{12} x_2^{(k)} + a_{13} x_3^{(k)} \right) + \frac{b_1}{a_{11}} & \left[\mathbf{x}^{(k)} \longrightarrow \mathbf{x}^{(k+1)} \right] \\ x_2^{(k+1)} = -\frac{1}{a_{22}} \left(a_{21} x_1^{(k)} + a_{23} x_3^{(k)} \right) + \frac{b_2}{a_{22}}, & k = 0, 1, \dots, \\ x_3^{(k+1)} = -\frac{1}{a_{33}} \left(a_{31} x_1^{(k)} + a_{32} x_2^{(k)} \right) + \frac{b_3}{a_{33}} \end{cases}$$

■ 设A = D - (D - A), D 为对角阵

$$Dx^{(k+1)} = (D-A)x^{(k)} + b \implies x^{(k+1)} = D^{-1}(D-A)x^{(k)} + D^{-1}b$$

м

Jacobi迭代法

算法4.2 雅可比迭代法 $(A = (a_{ij}) \in \mathbb{R}^{n \times n})$

```
输入: x,A,b; 输出: x.

While 不满足判停准则 do
y:=x; {上一步迭代解}
For i=1,2,...,n
x_i:=(b_i-\sum_{j=1}^{i-1}a_{ij}y_j-\sum_{j=i+1}^{n}a_{ij}y_j)/a_{ii};
End
x_i:=(b_i-\sum_{j=1}^{i-1}a_{ij}y_j-\sum_{j=i+1}^{n}a_{ij}y_j)/a_{ii};
x_i:=(b_i-\sum_{j=1}^{i-1}a_{ij}y_j-\sum_{j=i+1}^{n}a_{ij}y_j)/a_{ii};
x_i:=(b_i-\sum_{j=1}^{i-1}a_{ij}y_j-\sum_{j=i+1}^{n}a_{ij}y_j)/a_{ii};
x_i:=(b_i-\sum_{j=1}^{i-1}a_{ij}y_j-\sum_{j=i+1}^{n}a_{ij}y_j)/a_{ii};
x_i:=(b_i-\sum_{j=1}^{i-1}a_{ij}y_j-\sum_{j=i+1}^{n}a_{ij}y_j)/a_{ii};
x_i:=(b_i-\sum_{j=1}^{i-1}a_{ij}y_j-\sum_{j=i+1}^{n}a_{ij}y_j)/a_{ii};
```

- □每步迭代的计算量相当于一次矩阵与向量的乘法; 对于稀疏矩阵,计算量为 N_{nz} 次乘法
- □ 计算过程不改变矩阵A gx

算法简单, 易实现

例 用雅可比 (Jacobi) 迭代法求解方程组

$$\begin{bmatrix} 5 & -1 & -1 & -1 \\ -1 & 10 & -1 & -1 \\ -1 & -1 & 5 & -1 \\ -1 & -1 & -1 & 10 \end{bmatrix} x = \begin{bmatrix} -4 \\ 12 \\ 8 \\ 34 \end{bmatrix}$$

(准确解是 $x = [1 \ 2 \ 3 \ 4]^{T}$), 取 $x^{(0)} = \mathbf{0}$.

迭代公式

$$\boldsymbol{x}^{(k+1)} = \begin{bmatrix} 0 & 0.2 & 0.2 & 0.2 \\ 0.1 & 0 & 0.1 & 0.1 \\ 0.2 & 0.2 & 0 & 0.2 \\ 0.1 & 0.1 & 0.1 & 0 \end{bmatrix} \boldsymbol{x}^{(k)} + \begin{bmatrix} -0.8 \\ 1.2 \\ 1.6 \\ 3.4 \end{bmatrix},$$

由于 $\|\mathbf{B}_{J}\|_{\infty} = 0.6 < 1$, 故 Jacobi 迭代法是收敛的.

k	0	1	2	3	4	5
	0	-0.800	0.440	0.716	0.883	0.948
	0	1.200	1.620	1.840	1.929	1.969
$x^{(k)}$	0	1.600	2.360	2.732	2.880	2.948
	0	3.400	3.600	3.842	3.929	3.969

Gauss-Seidel迭代法

- 与Jacobi迭代法类似
- 水出 $x^{(n+1)}$ 的第1个分量后, $x_2 = -\frac{1}{a_{22}}(a_{21}x_1 + a_{23}x_3) + \frac{b_2}{a_{22}}$ 即用它求第2个分量 $x_2^{(k+1)}$ ■ 求出 $x^{(k+1)}$ 的第1个分量后,

■ 设 $A = D - \tilde{L} - \tilde{U}$,则迭代公式为

$$Dx^{(k+1)} = \widetilde{L}x^{(k+1)} + \widetilde{U}x^{(k)} + b \longrightarrow (D - \widetilde{L})x^{(k+1)} = \widetilde{U}x^{(k)} + b$$

 $x^{(k+1)} = L^{-1}(L-A)x^{(k)} + L^{-1}b$, L为A的下三角阵 分裂法: M = L

 $x_1 = -\frac{1}{a_{11}}($ $a_{12}x_2 + a_{13}x_3) + \frac{b_1}{a_{11}}$

7

Gauss-Seidel迭代法

■ 算法4.3 高斯一赛德尔迭代法

```
输入: x,A,b; 输出: x.
While 不满足判停准则 do
For i=1, 2, ..., n
x_i := (b_i - \sum_{j=1}^{i-1} a_{ij} x_j - \sum_{j=i+1}^{n} a_{ij} x_j)/a_{ii};
End
End
```

,若A为稀疏 阵,改为只 遍历非零元

- □每步迭代的计算量相当于一次矩阵与向量相乘;不需保留上一步迭代解,与Jacobi迭代法计算量一样按从1到n的顺序计算解分量.
- □若从n到1更新解分量,则得"逆向G-S算法";
- □对称高斯-赛德尔(SGS)迭代法

例 用高斯一赛德尔(Gauss-Seidel) 迭代法求解方程组

$$\begin{bmatrix} 5 & -1 & -1 & -1 \\ -1 & 10 & -1 & -1 \\ -1 & -1 & 5 & -1 \\ -1 & -1 & -1 & 10 \end{bmatrix} x = \begin{bmatrix} -4 \\ 12 \\ 8 \\ 34 \end{bmatrix}, \quad (淮确解是 x = [1 \ 2 \ 3 \ 4]^T), \ \mathbb{R} x^{(0)} = \mathbf{0}.$$

迭代公式

$$\boldsymbol{x}^{(k+1)} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0.1 & 0 & 0 & 0 \\ 0.2 & 0.2 & 0 & 0 \\ 0.1 & 0.1 & 0.1 & 0 \end{bmatrix} \boldsymbol{x}^{(k+1)} + \begin{bmatrix} 0 & 0.2 & 0.2 & 0.2 \\ 0 & 0 & 0.1 & 0.1 \\ 0 & 0 & 0 & 0.2 \\ 0 & 0 & 0 & 0 \end{bmatrix} \boldsymbol{x}^{(k)} + \begin{bmatrix} -0.8 \\ 1.2 \\ 1.6 \\ 3.4 \end{bmatrix}$$

$$m{B}_{\mathrm{GS}} = egin{bmatrix} 0 & 0.1$$

k	0	1	2	3	4	5
	0	-0.800	0.476	0.889	0.977	0.995
	0	1.120	1.774	1.956	1.990	1.998
$\boldsymbol{x}^{(k)}$	0	1.664	2.770	2.949	2.989	2.998
	0	3.598	3.902	3.929	3.996	3.999

SOR迭代法

- Successive over relaxation method
- 在G-S迭代法基础上引入松弛因子ω 可能超出[0, 1]范围
- 先按G-S方法由 $x^{(k)}$ 算得 $\tilde{x}_1^{(k+1)}$,再将它与 $x_1^{(k)}$ 作加权平均得 $x_1^{(k+1)}$ … 类似地依次算出后续分量

3元方程的 计算公式

ω=1时, 是G-S方法 ω=0时, 没有意义

$$\begin{cases} x_1^{(k+1)} = (1-\omega)x_1^{(k)} + \omega \left(-\frac{a_{12}}{a_{11}}x_2^{(k)} - \frac{a_{13}}{a_{11}}x_3^{(k)} + \frac{b_1}{a_{11}} \right) \\ x_2^{(k+1)} = (1-\omega)x_2^{(k)} + \omega \left(-\frac{a_{21}}{a_{22}}x_1^{(k+1)} - \frac{a_{23}}{a_{22}}x_3^{(k)} + \frac{b_2}{a_{22}} \right) \\ x_3^{(k+1)} = (1-\omega)x_3^{(k)} + \omega \left(-\frac{a_{31}}{a_{33}}x_1^{(k+1)} - \frac{a_{32}}{a_{33}}x_2^{(k+1)} + \frac{b_3}{a_{33}} \right) \end{cases}$$

■ 一般地, 设 $A = D - \tilde{L} - \tilde{U}$, 则SOR迭代公式为 $x^{(k+1)} = (1 - \omega)x^{(k)} + \omega D^{-1}[\tilde{L}x^{(k+1)} + \tilde{U}x^{(k)} + b]$

м

SOR迭代法

$$\mathbf{x}^{(k+1)} = (1 - \omega)\mathbf{x}^{(k)} + \omega \mathbf{D}^{-1} [\tilde{\mathbf{L}}\mathbf{x}^{(k+1)} + \tilde{\mathbf{U}}\mathbf{x}^{(k)} + \mathbf{b}]$$
$$\mathbf{x}^{(k+1)} = (\mathbf{D} - \omega \tilde{\mathbf{L}})^{-1} [(1 - \omega)\mathbf{D} + \omega \tilde{\mathbf{U}}]\mathbf{x}^{(k)} + (\mathbf{D} - \omega \tilde{\mathbf{L}})^{-1} \omega \mathbf{b}$$

- 要求矩阵A的对角元不为O 对应于分裂法中, $M = \frac{1}{\omega}D \tilde{L}$
- 算法4.4 SOR迭代法

输入:
$$x$$
, A , b , ω ; 输出: x .

While 不满足判停准则 do

For i=1, 2, ..., n
$$x_i := (1-\omega)x_i + \omega (b_i - \sum_{j=1}^{i-1} a_{ij}x_j - \sum_{j=i+1}^n a_{ij}x_j)/a_{ii};$$
End
End

- □ 计算量与G-S迭代法差不多
- □需按从1到n的顺序计算解分量

例子

例4.3 / 4.4: 解线性方程组,设
$$x^{(0)} = [0,0,0]^T$$

$$\begin{bmatrix} 10 & 3 & 1 \\ 2 & -10 & 3 \\ 1 & 3 & 10 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 14 \\ -5 \\ 14 \end{bmatrix} \qquad \text{and } \mathbf{A}^* = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

准确解
$$x^* = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

- Jacobi迭代(解分量误差小于10⁻³)
 - $\square x^{(8)} = [1.0001, 0.9991, 1.0001]^T$

都收敛!

■ G-S迭代

 $\square x^{(5)} = [0.9998, 0.9998, 1.0001]^T$

收敛快慢不同

- SOR迭代
 - \square 当 $\omega = 0.95$, $\mathbf{x}^{(4)} = [1.0008, 0.9999, 0.9999]^T$
 - \square 当 $\omega = 1.1$, $\mathbf{x}^{(6)} = [1.0005, 1.0005, 0.9997]^T$
 - □ $\triangleq \omega = 0.6$, $\mathbf{x}^{(9)} = [1.0010, 1.0001, 0.9998]^T$

三种迭代法的收敛条件

A都是非奇异阵

■ 一阶定常迭代法的收敛判据: 迭代矩阵的谱半径 $\rho(B)$ <1

Jacobi方法: $B_I = D^{-1}(D-A)$

G-S方法: $B_C = L^{-1}(L - A)$

- = 若 $\|B_J\|_1 < 1$ 或 $\|B_J\|_\infty < 1$,则Jacobi迭代法收敛, G-S迭代法也收敛
- SOR迭代法收敛的必要条件: 松弛因子 ω 满足0 < 1 $\omega < 2$

三种迭代法的收敛条件

- 定理4.8 若A为对称正定阵,雅可比迭代法收敛 \Leftrightarrow 2D A正定
- 定理4.12 对称正定矩阵A
 - □ 求解Ax = b的G-S迭代法收敛
 - □ ± 0 < α < 2, 则相应的SOR迭代法收敛

三种迭代法的收敛条件

定理: 若线性方程组Ax=b的系数矩阵A按行严格对角占优,则Jacobi迭代法

和G-S迭代法对任意给定初值均收敛。

证明:
$$i e_k = \max_{1 \le j \le n} \left| x_j^{(k)} - x_j^* \right|$$
 为第 k 次近似值 $\left(x_1^{(k)}, x_2^{(k)}, \cdots, x_n^{(k)} \right)^T$ 的误差.

(1) Jacobi迭代法

$$\left| x_i^{(k+1)} - x_i^* \right| = \left| \sum_{\substack{j=1 \ j \neq i}}^n \frac{a_{ij}}{a_{ii}} \left(x_j^{(k)} - x_j^* \right) \right| \le \sum_{\substack{j=1 \ j \neq i}}^n \frac{|a_{ij}|}{|a_{ii}|} \left| x_j^{(k)} - x_j^* \right|$$

记
$$L = \sum_{\substack{j=1 \ j \neq i}}^{n} \left| \frac{a_{ij}}{a_{ii}} \right|$$
,则有 $\left| x_i^{(k+1)} - x_i^* \right| \le L \cdot \max_{1 \le j \le n} \left| x_j^{(k)} - x_j^* \right|$

上式对 i=1,2,...,n成立,故有 $e_{k+1} \leq Le_k \leq \cdots \leq L^{k+1}e_0$

因为A严格对角占优,故L < 1,从而有

$$\lim_{k\to\infty}\left|x_i^{(k+1)}-x_i^*\right|\leq \lim_{k\to\infty}L^{k+1}\left|x_i^{(0)}-x_i^*\right|=0$$
,即Jacobi方法收敛。

(2) **G-S**迭代法

考虑G-S方法的误差

$$\left| x_{i}^{(k+1)} - x_{i}^{*} \right| = \frac{\left| \sum_{j=1}^{i-1} a_{ij} \left(x_{j}^{(k+1)} - x_{j}^{*} \right) + \sum_{j=i+1}^{n} a_{ij} \left(x_{j}^{(k)} - x_{j}^{*} \right) \right|}{a_{ii}}$$

$$\leq \frac{\sum_{j=1}^{i-1} \left| a_{ij} \right| \left| x_{j}^{(k+1)} - x_{j}^{*} \right|}{\left| a_{ii} \right|} + \frac{\sum_{j=i+1}^{n} \left| a_{ij} \right| \left| x_{j}^{(k)} - x_{j}^{*} \right|}{\left| a_{ii} \right|}$$

记
$$L = \sum_{j=1}^{i-1} \frac{|a_{ij}|}{|a_{ii}|}, S = \sum_{j=i+1}^{n} \frac{|a_{ij}|}{|a_{ii}|}$$

则
$$\left|x_i^{(k+1)} - x_i^*\right| \le L \cdot \max_{1 \le j \le i-1} \left|x_j^{(k+1)} - x_j^*\right| + S \cdot \max_{i+1 \le j \le n} \left|x_j^{(k)} - x_j^*\right|$$

从而 $e_{k+1} \leq Le_{k+1} + Se_k$, 因为A严格对角占优, 故L < 1, S + L < 1, 从而有

$$e_{k+1} \le \frac{S}{1-L} e_k \le \dots \le \left(\frac{S}{1-L}\right)^{k+1} \cdot e_0$$

而
$$\left(\frac{S}{1-L}\right) = \frac{S-L+L}{1-L} = \frac{S+L}{1-L} - \frac{L}{1-L} < \frac{1}{1-L} - \frac{L}{1-L} = 1$$
,所以 $\lim_{k \to \infty} \left| x_i^{(k+1)} - x_i^* \right| = 0$,

即G-S迭代法收敛。

将线性方程组中的方程适当组合仍是同解方程组,但能改变系数矩阵.如果处理得当,可以使不收敛的变为收敛的,或使收敛慢的变成收敛快的.

例 对于线性方程组

$$\begin{cases} 2x_1 - 1.8x_2 + 0.4x_3 &= 1, \\ 3x_1 + 2x_2 - 1.1x_3 &= 0.2 \\ x_1 - x_2 + 7.3x_3 &= 1.6. \end{cases}$$

它的系数矩阵不是按行严格对角占优的,因此不能直接套用常规的 Jacobi 迭代公式或 Seidel 迭代公式. 但是,将第 1 个方程与第 2 个方程相加能使 x_1 的系数增大,而用 2 乘第 2 个方程减去第 1 个方程的 3 倍能使 x_2 的系数增大,且 x_1 的系数为零,得到同解方程组

$$\begin{cases} 5x_1 + 0.2x_2 & -0.7x_3 = 1.2, \\ 9.4x_2 & -3.4x_3 = -2.6, \\ -x_2 & +7.3x_3 = 1.6. \end{cases}$$

这个方程组的系数矩阵是按行严格对角占优的,从而可用常规的 Jacobi 迭代法或 Gauss-Seidel 迭代法求解.

习题3. 设方程组

$$\begin{cases} 5x_1 + 2x_2 + x_3 & = -12 \\ -x_1 + 4x_2 + 2x_3 & = 20 \\ 2x_1 - 3x_2 + 10x_3 & = 3 \end{cases}$$

- (1) 考查用雅可比迭代法、高斯-塞德尔迭代法解此方程组的收敛性。
- (2) 取初始解为 $[0,0,0]^T$, 用雅可比迭代法及高斯-赛德尔迭代法解此方程组, 要求当 $\|x^{(k+1)} x^{(k)}\|_{\infty} < 10^{-2}$ 时终止迭代。

解

- (1) 雅可比迭代法、高斯-赛德尔迭代法解此方程组时都收敛。
- (2) 雅可比迭代法经过 17 步迭代, 得到近似解 $[-4.00002 \quad 3.00000 \quad 2.00000]^{T}$;
- 高斯-赛德尔迭代法经过 8 步迭代, 得到近似解 $[-4.00002 \quad 3.00000 \quad 2.00000]^T$ 。

最速下降法、共轭梯度法

- ■构造迭代法的新思路
 - □一阶定常迭代法(SOR),对大规模矩阵收敛慢
 - □"变分原理":解线性方程组→在n维空间搜索极值点设A对称正定,求n元二次函数 $\varphi(x) = \frac{1}{2} x^T A x b^T x$ 的最小值点

$$\left(\frac{\partial \varphi}{\partial x_1} = a_{11}x_1 + \sum_{j \neq 1} a_{1j}x_j - b_1 = 0 \right) \longrightarrow \mathbf{A}\mathbf{x} - \mathbf{b} = \mathbf{0}$$

$$\frac{\partial \varphi}{\partial x_n} = a_{nn}x_n + \sum_{j \neq n} a_{nj}x_j - b_n = 0$$

 $\varphi(x)$ 最小值对应的x就是Ax = b的解

这个极值点一定是最小值?

$$Ax - b = 0$$
, $\varphi(x) = \frac{1}{2}x^{T}Ax - b^{T}x = -\frac{1}{2}b^{T}x$

$$\varphi(y) = \frac{1}{2} y^T A y - b^T y = \frac{1}{2} (y - x)^T A (y - x) - \frac{1}{2} b^T x$$

$$\varphi(y) - \varphi(x) = \frac{1}{2} (y - x)^T A (y - x) \ge 0$$

■直线搜索

- \square 求 $\varphi(x) = \frac{1}{2}x^T Ax b^T x$ 的最小值点
- □ 无约束优化问题,逐次搜索: $x^{(0)}, x^{(1)}, \dots, x^{(k)}, \dots$
- \square 在当前点 $\boldsymbol{x}^{(k)}$,设搜索方向 $\boldsymbol{p}^{(k)}$, $\boldsymbol{x}^{(k+1)} = \boldsymbol{x}^{(k)} + \alpha_k \boldsymbol{p}^{(k)}$
- □ 步长 α_k 应使 $\varphi(x^{(k+1)})$ 最小

$$f(\alpha) = \varphi(\mathbf{x}^{(k+1)}) = \varphi(\mathbf{x}_k + \alpha \mathbf{p}_k)$$

$$= \frac{1}{2} (\mathbf{x}_k + \alpha \mathbf{p}_k)^{\mathrm{T}} \mathbf{A} (\mathbf{x}_k + \alpha \mathbf{p}_k) - \mathbf{b}^{\mathrm{T}} (\mathbf{x}_k + \alpha \mathbf{p}_k)$$

$$= \frac{1}{2} \alpha^2 \mathbf{p}_k^{\mathrm{T}} \mathbf{A} \mathbf{p}_k - \alpha \mathbf{r}_k^{\mathrm{T}} \mathbf{p}_k + \varphi(\mathbf{x}_k), \quad \sharp \mathbf{p}_k^{\mathbf{r}(k)} = \mathbf{b} - \mathbf{A} \mathbf{x}^{(k)}$$

$$f(\alpha)$$
 有唯一的最小值
$$\frac{\mathrm{d}f(\alpha)}{\mathrm{d}\alpha} = \alpha \boldsymbol{p}_k^{\mathrm{T}} \boldsymbol{A} \boldsymbol{p}_k - \boldsymbol{r}_k^{\mathrm{T}} \boldsymbol{p}_k = 0 \qquad \alpha_k = \frac{(\boldsymbol{r}^{(k)})^T \boldsymbol{p}^{(k)}}{(\boldsymbol{p}^{(k)})^T \boldsymbol{A} \boldsymbol{p}^{(k)}}$$

$$\alpha_k = \frac{(\mathbf{r}^{(k)})^T \mathbf{p}^{(k)}}{(\mathbf{p}^{(k)})^T A \mathbf{p}^{(k)}}$$

■ 最速下降法

 $r^{(k)}$ 沿 $\varphi(x)$ 的梯度 方向、等值面法向

 $\varphi(x)$ 等值线(面)图

$$\left(\boldsymbol{p}^{(k)}\right)^T \boldsymbol{r}^{(k+1)} = 0$$

【搜索过程中相邻 一两步的搜索方向 总是相互正交

梯度
$$\nabla \varphi(\mathbf{x}^{(k)}) = \begin{bmatrix} \frac{\partial \varphi}{\partial x_1} \\ \vdots \\ \frac{\partial \varphi}{\partial x_n} \end{bmatrix}_{\mathbf{x} = \mathbf{x}^{(k)}} - \mathbf{b} = -\mathbf{r}^{(k)}$$

□ 沿负梯度方向 $p^{(k)} = r^{(k)}$ 搜索.

$$\boldsymbol{x}^{(k+1)} = \boldsymbol{x}^{(k)} + \alpha_k \boldsymbol{p}^{(k)}$$

$$\alpha_k = \frac{(r^{(k)})^T p^{(k)}}{(p^{(k)})^T A p^{(k)}} \quad \ \ \ \, \ \ \, \ \ \, \ \ \, \ \, \ \, \ \, \ \, \ \, \frac{(r^{(k)})^T r^{(k)}}{(r^{(k)})^T A r^{(k)}}$$

$$\boldsymbol{r}_{k+1} = \boldsymbol{b} - \boldsymbol{A}\boldsymbol{x}_{k+1} = \boldsymbol{b} - \boldsymbol{A}(\boldsymbol{x}_k + \alpha_k \boldsymbol{r}_k) = \boldsymbol{r}_k - \alpha_k \boldsymbol{A} \boldsymbol{r}_k$$

解线性方程组的最速下降算法 (steepest descent,SD)

输入: x, A, b; 输出: x. r:=b-Ax; While 不满足判停准则 do $\alpha := \mathbf{r}^T \mathbf{r} / \mathbf{r}^T (\mathbf{A} \mathbf{r});$ $x := x + \alpha r$; $r:=r-\alpha Ar$

用残差判据无额外代价 常用相对残差 $\|b - Ax\|/\|b\|$

End

- □每步做一次矩阵与向量乘法,运算量与SOR迭代法一样
- \square 需额外存储2个向量 Ar 和 r
- □ A对称正定, 有唯一最小值点, 最速下降法一定收敛

例: 解Ax = b, $A = \begin{bmatrix} 3 & 2 \\ 2 & 6 \end{bmatrix}$, $b = \begin{bmatrix} 2 \\ -8 \end{bmatrix}$ 设初始解为 $x^{(0)} = \begin{bmatrix} -2, -2 \end{bmatrix}^T$ $x^{(1)} = \begin{bmatrix} 0.08 \\ -0.6133 \end{bmatrix}$, ..., $x^{(9)} = \begin{bmatrix} 1.9926 \\ -1.9947 \end{bmatrix}$

 $\varphi(\mathbf{x}) = \frac{3}{2}x_1^2 + 2x_1x_2 + 3x_2^2 - 2x_1 + 8x_2$

■ 最速下降法的缺点 虽然每步找到局部最优解, 但迭代法收敛速度慢

共轭梯度法

改进:

没必要沿最速下降方向搜索!

Conjugate Gradient method (CG法)

给定初始向量 x_0 , 第一步仍选负梯度方向为搜索方向, 即 $p_0 = r_0$, 有

$$\alpha_0 = \frac{r_0^T r_0}{p_0^T A p_0}, \ x_1 = x_0 + \alpha_0 p_0, \ r_1 = b - A x_1$$

共轭梯度法

- □ 当前点 $x^{(k)}$, $\varphi(x)$ 的值减小最快的方向是 $r^{(k)}$, 前一个搜索方向是 $p^{(k-1)}$
- \Box 在过 $x^{(k)}$,上述两方向<u>张成的平面</u>上找函数 φ 的最小值

$$p^{(k)} = r^{(k)} + \beta_{k-1} p^{(k-1)}$$

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \alpha_k (\mathbf{r}^{(k)} + \beta_{k-1} \mathbf{p}^{(k-1)}) = \mathbf{x}^{(k)} + \alpha_k \mathbf{r}^{(k)} + \alpha_k \beta_{k-1} \mathbf{p}^{(k-1)}$$

$$f(\alpha, \beta) = \varphi(\mathbf{x}^{(k)} + \alpha \mathbf{r}^{(k)} + \alpha \beta \mathbf{p}^{(k-1)})$$

$$= \frac{1}{2} (\mathbf{x}^{(k)} + \alpha \mathbf{r}^{(k)} + \alpha \beta \mathbf{p}^{(k-1)})^{\mathrm{T}} \mathbf{A} (\mathbf{x}^{(k)} + \alpha \mathbf{r}^{(k)} + \alpha \beta \mathbf{p}^{(k-1)}) - \mathbf{b}^{\mathrm{T}} (\mathbf{x}^{(k)} + \alpha \mathbf{r}^{(k)} + \alpha \beta \mathbf{p}^{(k-1)})$$

$$(\mathbf{r}^{(k)})^{\mathrm{T}} \mathbf{p}^{(k-1)} = 0$$

$$\beta_{k-1} = -\frac{(r^{(k)})^T A p^{(k-1)}}{(p^{(k-1)})^T A p^{(k-1)}}$$

$$p^{(k)} = r^{(k)} + \beta_{k-1} p^{(k-1)},$$

$$\alpha_k = \frac{(\boldsymbol{r}^{(k)})^T \boldsymbol{p}^{(k)}}{(\boldsymbol{p}^{(k)})^T A \boldsymbol{p}^{(k)}}$$

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \alpha_k \mathbf{p}^{(k)}$$

公式可以进一步简化:

$$(\mathbf{p}^{(k)})^T \mathbf{A} \mathbf{p}^{(k-1)} = 0 \ (共轭正交)$$

残差向量相互正交,即 $\boldsymbol{r}_i^{\mathrm{T}}\boldsymbol{r}_j=0$, $i\neq j$

$$(\mathbf{r}^{(k)})^T \mathbf{p}^{(k)} = (\mathbf{r}^{(k)})^T \mathbf{r}^{(k)}$$

$$\mathbf{r}^{(k+1)} = \mathbf{r}^{(k)} - \alpha_k \mathbf{A} \mathbf{p}^{(k)}$$

共轭梯度法

- 几个重要的结论

 - 且在超平面 $x^{(0)} + \mathcal{K}(A, r^{(0)})$ 上使 $\varphi(x)$ 最小 \mathbb{R}^{k+1} 维子空间
 - □ 若不考虑数值误差, x⁽ⁿ⁾为准确解

```
算法4.7: r := b - Ax; p := r;
              While 不满足判停准则 do
                 \alpha := \mathbf{r}^T \mathbf{r} / \mathbf{p}^T \mathbf{A} \mathbf{p} ; {计算搜索步长}
                 x:=x+\alpha p; {更新解}
                 \tilde{r} := r; r := r - \alpha A p; {更新残差向量}
                 \beta := \mathbf{r}^T \mathbf{r} / \tilde{\mathbf{r}}^T \tilde{\mathbf{r}};
                                                {新的搜索方向}
                p:=r+\beta p;
              End
```

一次矩阵向量乘法 两次向量内积 收敛所需步数≤n

定理(共轭向量一定线性无关) S 为 $n \times n$ 的对称正定矩阵, 如果 $d^{(0)}$, $d^{(1)}$, ..., $d^{(k)} \in \mathbb{R}^n$, $0 < k \le n - 1$ 是关于 S 共轭的, 那么它们是线性无关的。

证明: 若存在一组标量 $\alpha_0, \alpha_1, \dots, \alpha_k$, 使得

$$\alpha_0 \mathbf{d}^{(0)} + \alpha_1 \mathbf{d}^{(1)} + \dots + \alpha_k \mathbf{d}^{(k)} = \mathbf{0}$$

两端左乘 $\mathbf{d}^{(j)\top}\mathbf{S}$, $0 \le j \le k$, 根据 \mathbf{S} 共轭的定义, 可知 $\mathbf{d}^{(j)\top}\mathbf{S}\mathbf{d}^{(i)} = 0$, $i \ne j$, 由此可得

$$\alpha_i \mathbf{d}^{(j)\top} \mathbf{S} \mathbf{d}^{(j)} = 0$$

由于 S对称正定, $d^{(j)} \neq 0$, 因此 $\alpha_j = 0, j = 0, 1, \dots, k$ 。

因此 $d^{(0)}$, $d^{(1)}$, ..., $d^{(k)}$, $0 < k \le n-1$ 是线性无关的。

推论 S 为 $n \times n$ 的对称正定矩阵, 关于 S 两两共轭的方向最多有n个。

例4.8 (与前例相同)

k	Ap_k	α_k	x_{k+1}	r_{k+1}	eta_k	p_{k+1}
0	$[52,72]^{\mathrm{T}}$	0.1733	$[0.08, -0.6133]^{\mathrm{T}}$	$[2.9867, -4.48]^{\mathrm{T}}$	0.1394	$4.6592, -3.365]^{T}$
1	$[7.2476, -10.8715]^{\mathrm{T}}$	0.4121	$[2, -2]^{T}$			

经过两步迭代, 共轭梯度法就得到了准确解。事实上, 由于 x_2 是在 p_1 和 r_1 所张成的二维平面上的 $\varphi(x)$ 的最小值点, 而本题的向量空间就是二维的, 因此 x_2 就是全局的最小值, 当然是方程 Ax = b 的准确解了。

为什么共轭梯度法原则上是一种直接法?但在实际计算中又将它作为迭代法?

在共轭梯度法中,由于 $\{r^{(k)}\}$ 互相正交,所以在 $r^{(0)}$, $r^{(1)}$, …, $r^{(n)}$ 中至少有一个零向量,若 $r^{(k)} = 0$,则 $r^{(k)} = x^*$,因而共轭梯度法求解 n 维对称正定线性方程组理论上最多 n 步可求得精确解,从这个意义上讲,CG 算法是一种直接法.

但在实际计算中,由于舍入误差的存在,很难保证 $\{r^{(k)}\}$ 的正交性. 另外当 n 很大时,往往在实际计算步数 $k \ll n$ 时即可达到精度要求而不必计算 n 步,所以实际计算中往往将 CG 算法作为迭代法.

м

数值微分

- 问题的描述
 - □近似计算函数的导数f'(x), 其中f(x)的表达式未知
 - □使用若干函数值近似计算其导数
- 基本的有限差分公式(finite difference)

$$\Box f'(x) \approx D_f(h) = \frac{f(x+h) - f(x)}{h} \qquad (向前差分)$$

$$\Box f'(x) \approx D_c(h) = \frac{f(x+h) - f(x-h)}{2h} \quad (中心差分)$$

$$f(x+h) = f(x) + hf'(x) + \frac{h^2}{2}f''(x) + \cdots$$
$$f(x-h) = f(x) - hf'(x) + \frac{h^2}{2}f''(x) - \cdots$$

Taylor展开

$$D_f(h) = \frac{f(x+h) - f(x)}{h} = f'(x) + O(h)$$

1 阶准确度

$$D_b(h) = \frac{f(x) - f(x - h)}{h} = f'(x) + O(h)$$

$$D_c(h) = \frac{f(x+h) - f(x-h)}{2h} = f'(x) + \frac{f^{(3)}(\xi)}{3!}h^2 = f'(x) + O(h^2)$$

2 阶准确度

$$G_{c}(h) = 2f[x - h, x, x + h] = \frac{f(x + h) - 2f(x) + f(x - h)}{h^{2}} = f''(x) + O(h^{2})$$

(二阶中心差分)

例 (正方形区域的拉普拉斯方程)

■ 有限差分法解偏微分方程

□正方形区域的二维Laplace方程

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0, \qquad x, y \in [0, 1]$$
(除边界上)

□ 已知u(x,y)在边界上的值, 求区域内的u(x,y).

每边均匀分n+1份得离散网格, 在网格点上设变量 $u_{i,i}$

二阶中心
$$\frac{\partial^2 u(x_i, y_j)}{\partial x^2} \approx \frac{u_{i+1,j} - 2u_{i,j} + u_{i-1,j}}{h^2}$$
 对每个格点列,微分方程变为代数方程

方程变为代数方程

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$

$$\begin{cases}
4u_{1,1} - u_{0,1} - u_{2,1} - u_{1,0} - u_{1,2} = 0 \\
4u_{2,1} - u_{1,1} - u_{3,1} - u_{2,0} - u_{2,2} = 0 \\
4u_{1,2} - u_{0,2} - u_{2,2} - u_{1,1} - u_{1,3} = 0 \\
4u_{2,2} - u_{1,2} - u_{3,2} - u_{2,1} - u_{2,3} = 0
\end{cases}$$

k=3

不同大小的一系列稀疏矩阵,每一行最多只有5个非零元素

方法比较

- 迭代法的比较
 - □收敛速度: Jacobi < G-S < SOR < CG
 - □随着k增大,前三种方法的 $\rho(B)$ 趋于1
 - □共轭梯度法的收敛显著好于这三种方法
- 直接法与迭代法比较
 - □直接法稳定、通用,但处理大规模问题有困难
 - □ 迭代法能很好利用矩阵稀疏性, 但无通用的有效方法