

Državni izpitni center

JESENSKI IZPITNI ROK

NAVODILA ZA OCENJEVANJE

Ponedeljek, 29. avgust 2022

SPLOŠNA MATURA

Odgovor

O • **∵ ○ ₽ ⊕** □ • e •

IZPITNA POLA 1

Naloga	Odgovor
1	0
2	A
ε	□ •
7	A +
9	♦ B
9	♦ B
2	A +
8	∀ •
6	○

Odgovor	D	В	В	A	A	В	В	A	D
Naloga	10	+	12 +	13	14	15 +	16	17 •	18

Naloga	Odgovor
19	○
20	○
21	◆ C
22	○
23	A A
54	• B
22	◆ B
76	◆ D
27	4 D

20	aloga	Odgovor
	19	0
	20	0
* * * * * * *	21	→ C
* * * * * *	22	○ • C
• • • •	23	∀ •
• • •	24	B •
• •	25	• B
•	26	Q •
	27	□ •

Naloga 28 29 30 31 32 33 34 35

Za vsak pravilen odgovor 1 točka.

Skupno število točk IP 1: 35

IZPITNA POLA 2

1. Merjenje

Dodatna navodila		Za 1 točko morata biti pravilni obe vrednosti.			Oznaka osi 1 točka.	Premica 1 točka. Premica 1 točka.
Rešitev	• razdalja x : 1,5 m	• vrednosti R v tabeli:	x [m] 0 3,0	$R = \frac{x}{\sqrt{(x^2 + h^2)^3}} \text{ [m^{-2}]}$ 0 0,064	narisana premica:	Wm ⁻² * Wm ⁻
Točke Reš	1 + ra	• •			•	
Vpr.	1.1	1.2			1.3	?

2

•	•		
L 4:	N	* smerni koeficient: 160 W $k = \frac{7.9 \text{ W m}^{-2}}{0.050 \text{ m}^{-2}} = 158 \text{ W}$	Postopek 1 tocka. Izračun 1 točka.
1.5	-	$lack zveza \ { m med} \ k \ { m in} \ P \colon \ k = P/(4\pi)$	
1.6	2	• svetlobni tok: 2000 W $P = 4\pi \cdot 158 \text{ W} = 2010 \text{ W}$	Postopek 1 točka. Izračun 1 točka.
1.7	7	$lacktriangle$ absolutna napaka: 100 W $\Delta_P = \delta_P \cdot P = 0.05 \cdot 2000 \ \mathrm{W} = 100 \ \mathrm{W}$	Postopek 1 točka. Izračun 1 točka.
8.	7	• relativna napaka: 3 % $\delta_j = \delta_k - \delta_R = 5 \% - 2 \% = 3 \%$ • zapis z relativno napako: $j = 15 \text{ W m}^{-2} (1 \pm 0.03)$	Relativna napaka 1 točka. Zapis 1 točka.
1.9	-	• odgovor: Ne. utemeljitev: Merjenje v mraku ne vpliva na izračun razdalje x , ker so se vrednosti osvetljenosti večje za enako vrednost oz. je graf gostote svetlobnega toka le premaknjen navzgor.	Odgovor in utemeljitev 1 točka

2. Mehanika

Vpr.	Točke	Rešitev	Dodatna navodila
2.1	-	lacktriangle Hookov zakon: $F=kx$ $lacktriangle$ količine: F — sila na vzmet, k — prožnostni koeficient vzmeti, x — raztezek vzmeti	
2.2	8	• čas padanja: 1,7 s $h = \frac{gt^2}{2} \to t = \sqrt{\frac{2h}{g}} = 1,748 \text{ s}$	Postopek 1 točka. Rezultat 1 točka.
2.3	7	• hitrost: 17 $\frac{m}{s}$ $v = gt = 9.81 \frac{m}{s^2} \cdot 1,748 \text{ s} = 17,2 \frac{m}{s}$	Postopek 1 točka. Rezultat 1 točka.
2.4	7	• kinetična energija: 10 kJ $W_{\rm k}=\frac{1}{2}mv^2=\frac{1}{2}$ 70 kg $\cdot \left(17,16~\frac{\rm m}{\rm s}\right)^2=10,3$ kJ	Postopek 1 točka. Rezultat 1 točka. Možen je tudi postopek z upoštevanjem ohranitve energije.
2.5	7	• prožnostna energija: 31 kJ $W_{\rm pr}=W_{\rm p}=mgh_{\rm max}=$ 70 kg \cdot 9,81 ms $^{-2}\cdot$ 45 m = 30,9 kJ	Postopek 1 točka. Rezultat 1 točka.
2.6	2	• prožnostni koeficient vrvi: 69 $\frac{\text{N}}{\text{m}}$ $W_{\text{pr}} = \frac{1}{2}kx^2 \rightarrow k = \frac{2W_{\text{pr}}}{x^2} = \frac{2 \cdot 30,9 \text{ kJ}}{30 \text{ m}^2} = 68,7 \text{ m}$	Postopek 1 točka. Rezultat 1 točka.
2.7	2	• raztezek vrvi: 10 m $F_g = F_{\rm v} = kx_0 \to x_0 = \frac{mg}{k} = \frac{70~{\rm kg} \cdot 9,81~{\rm m/s}^2}{68,7~{\rm N/m}} = 10,0~{\rm m}$	Postopek 1 točka. Rezultat 1 točka.
2.8	2	 ◆ oddaljenost od izhodišča: 25 m h₀ = h + x₀ = 15 m + 10 m = 25 m ◆ pojasnilo: Skakalec ima največjo hitrost takrat, ko se neha pospeševanje, to je takrat, ko se sila vrvi izenači s težo. 	Rezultat 1 točka. Pravilno pojasnilo 1 točka.

3. Termodinamika

Vpr.	Točke	Rešitev	Dodatna navodila
3.1	1	$ \bullet \mbox{ enačba: } pV = nRT \\ \bullet \mbox{ količine: } p-\mbox{tlak, } V-\mbox{ prostornina, } n-\mbox{množina snovi, } R-\mbox{ plinska konstanta, } T-\mbox{ temperatura} $	
3.2	-	• prostornina: 6,2 dm ³ $V = \mathit{Sh} = 0,031 \mathrm{m}^2 \cdot 0,20 \mathrm{m} = 0,0062 \mathrm{m}^3 = 6,2 \mathrm{dm}^3$	
3.3	7	• molska masa: 40 g/mol $M = \frac{mRT}{pV} = \frac{10 \text{ g} \cdot \text{8,314 Jmol}^{-1} \text{K}^{-1} \cdot 300 \text{ K}}{1.0 \cdot 10^5 \text{ Pa} \cdot 0,0062 \text{ m}^3} = 40,2 \text{ g/mol}$	Postopek 1 točka. Pravilen rezultat 1 točka.
3.4	8	• število molekul: 1,5·10 ²³ $N = \frac{mN_{\rm A}}{M} = \frac{10~{\rm g\cdot 6,02\cdot 10^{23}~mol^{-1}}}{40,2~{\rm g/mol}} = 1,50\cdot 10^{23}$	Postopek 1 točka. Pravilen rezultat 1 točka.
3.5	7	• notranja energija: 930 J $W_{\rm n} = \frac{3}{2}Nk_{\rm B}T = \frac{3}{2}\cdot 1,50\cdot 10^{23}\cdot 1,38\cdot 10^{-23}~\frac{\rm J}{\rm K}\cdot 300~{\rm K} = 932~{\rm J}$	Postopek 1 točka. Pravilen rezultat 1 točka. Možen je tudi drugačen postopek.
3.6	7	• delo: $A=320~\rm J$ • sprememba notranje energije: $\DeltaW_{\rm n}=0~\rm J$	Delo 1 točka. Sprememba notranje energije 1 točka.
3.7	7	• sprememba položaja: 13 cm $pSh=p'Sh'\to h'=\frac{p}{p'}h=\frac{1~{\rm bar}}{0,6~{\rm bar}}\cdot 20~{\rm cm}=33,3~{\rm cm}$ $\Delta h=h'-h=13,3~{\rm cm}$	Položaj po spremembi 1 točka. Sprememba položaja 1 točka.
3.8	7	• koeficient toplotne prevodnosti: 2,9 W m ⁻¹ K ⁻¹ $\lambda = \frac{Pd}{S\Delta T} = \frac{Qd}{S\Delta T^t} = \frac{320 \text{ J} \cdot 0,050 \text{ m}}{0,031 \text{ m}^2 \cdot 3 \text{ K} \cdot 60 \text{ s}} = 2,87 \text{ W m}^{-1}\text{K}^{-1}$	Postopek 1 točka. Pravilen rezultat 1 točka.

prostornina povecevati pospeseno in s tem se mora tudi bat premikati pospešeno.	Na diagramu $p-V$ zaporedne enake površine pod krivuljo zahtevajo vedno večje spremembe prostornine, torej se mora	Nalididat uobi tocko tudi za di uga lizikalilo piavilila pojasilila.
	prostornina povečevati pospešeno in s tem se mora tudi bat premikati pospešeno.	
	<i></i>	

4. Elektrika in magnetizem

Vpr.	Točke		Dodatna navodila
4.1	1	♦ kinetična energija: 600 eV ali 9,6·10 ⁻¹⁷ J $W_k = e_0 U = e_0 \cdot 600 \text{ V} = 600 \text{ eV} \\ = 1,6 \cdot 10^{-19} \text{ As} \cdot 600 \text{ V} = 9,6 \cdot 10^{-17} \text{ J}$	
4.2	2	♦ naboj: $2,2\cdot10^{-12}$ As $e = E\varepsilon_0 S = 2500 \text{ Vm}^{-1}\cdot 8,85\cdot 10^{-12} \text{ VsA}^{-1}\text{m}^{-1}\cdot 10^{-4} \text{ m}^2$ $e = 2,2\cdot 10^{-12} \text{ As}$	Postopek 1 točka. Rezultat 1 točka.
გ.	8	lacktriangleright označeni sili: $lacktriangleright lacktriangleright lacktrianglar lacktrianglerigh$	Sili nasprotni in enako veliki 1 točka. Prava smer obeh sil 1 točka.
		× × × × × ×	
		× × × × × ×	
		$\begin{array}{c} \times \\ \times $	
4.	8	• gostota magnetnega polja: 0,035 T $F_{\rm e}=F_{\rm m}\rightarrow e_0E=e_0vB$ $B=\frac{E}{v}=\frac{2500~{\rm V~m^{-1}}}{7,1\cdot 10^4~{\rm ms^{-1}}}=0,035~{\rm T}$	Pravilna odvisnost sil 1 točka. Rezultat 1 točka.

10

	Postopek izračuna magnetne sile 1 točka. Postopek izračuna pospeška 1 točka. Rezultat 1 točka.	Pravilno izračunan polmer 1 točka. Pravilen rezultat 1 točka.	Postopek izračuna 1 točka.
lackbreak lackbrea	$ \begin{array}{l} \bullet \text{ pospešek: } 1,5 \cdot 10^{11} \text{ ms}^{-2} \\ F_{\text{mag}} = e_0 vB = 1,6 \cdot 10^{-19} \text{ As} \cdot 7,1 \cdot 10^4 \text{ ms}^{-1} \cdot 0,5 \text{ T} = 5,7 \cdot 10^{-15} \text{ N} \\ ma = F_{\text{mag}} \rightarrow a = \frac{e_0 vB}{m} = \frac{5,7 \cdot 10^{-15} \text{ N}}{3,8 \cdot 10^{-26} \text{ kg}} = 1,5 \cdot 10^{11} \text{ ms}^{-2} \\ \end{array} $	• razdalja: 6,7 cm $a = \frac{v^2}{r} \rightarrow r = \frac{v^2}{a} = \frac{\left(7,1\cdot10^4~\text{m}\text{s}^{-1}\right)^2}{1,5\cdot10^{11}~\text{m}\text{s}^{-2}} = 3,36~\text{cm}$ $d = 2r = 6,7~\text{cm}$	• odgovor: Da. • utemeljitev: Ion izotopa $_{11}^{24}$ Na prileti na detektor na razdalji 2,9 mm od mesta, kamor prileti ion natrija $_{11}^{23}$ Na, kar je več kot 2,5 mm. $ d' = \frac{2v^2}{a'} = \frac{2v^2}{e_0 vB} = \frac{2v}{e_0 B} m', $ $ \Delta d = \frac{2v}{e_0 B} \Delta m = d \frac{\Delta m}{m} = 6,7 \text{ cm} \frac{1}{23} = 2,9 \text{ mm} $
-	ဧ	7	2
5.	4.6	4.7	8.4

7

5. Nihanje, valovanje in optika

Vpr.		Točke Rešitev	Dodatna navodila
5.1	-	• definicija gostote svetlobnega toka: $j=P/S$ • količine: P – svetlobni tok skozi površino S , ki leži pravokotno na smer širjenja svetlobe	
5.2	2	• svetlobni tok Sonca: $4.0 \cdot 10^{26}$ W $P = 4\pi l^2 j = 4\pi \left(1.5 \cdot 10^{11} \text{ m}\right)^2 1400 \frac{W}{\text{m}^2} = 3.96 \cdot 10^{26} \text{ W}$	Postopek 1 točka. Rezultat 1 točka.
5.3	7	• svetlobni tok: 2,8 W $P = j\pi r^2 = 1,0 \; \frac{\text{kW}}{\text{m}^2} \cdot 3,14 \cdot (0,03 \; \text{m})^2 = 2,83 \; \text{W}$	Postopek 1 točka. Rezultat 1 točka.
5.4	-	$lack oddaljenost$ od leče: 50 cm $b=f=50~{ m cm}$	
5.5	7	• premer slike Sonca: $4,7\cdot 10^{-3}$ m $d_{\rm slike} = \frac{f}{l} d_{\rm Sonca} = \frac{0,5 \text{ m}\cdot 1,4\cdot 10^9 \text{ m}}{1,5\cdot 10^{11} \text{ m}} = 4,67\cdot 10^{-3} \text{ m}$	Postopek 1 točka. Rezultat 1 točka.
5.6	က	• temperatura kroglice: 630 K $P_{\text{prej}} = P_{\text{odd}} = 4\pi r^2 \sigma T^4$ $T = \sqrt[4]{\left(\frac{P}{4\pi r_{\text{k}}^2 \sigma}\right)} = \sqrt[4]{4\pi \left(5,0.10^{-3} \text{ m}\right)^2 5,67.10^{-8} \text{ W m}^{-2} \text{K}^{-4}} = 631 \text{ K}$	Upoštevan pravilen svetlobni tok 1 točka. Upoštevana pravilna površina sevanja 1 točka. Rezultat 1 točka.
5.7	-	$lack postavitev$ razpršilne leče: 30 cm od zbiralne leče Gorišče razpršilne leče mora sovpadati z goriščem zbiralne leče: $d=f_{ m 2biralna}-f_{ m fazpršilna}=30$ cm.	

13

6. Moderna fizika in astronomija

Vpr.	Točke	Rešitev	Dodatna navodila
6.1	-	naravni satelit: Lunazvezda: Sonce	
6.2	-	$lacktriangle$ radialni pospešek: $a_{ m r} = \left(2\pi v ight)^2 r$	
6.3	м	$ \begin{array}{l} \bullet \text{ masa: } 2,0\cdot 10^{30} \text{ kg} \\ \\ G\frac{m_{\rm Z}m_{\rm S}}{r^2} = m_{\rm Z} \left(2\pi v\right)^2 r \rightarrow m_{\rm S} = \frac{\left(2\pi v\right)^2 r^3}{G} = \frac{\left(2\pi\right)^2 r^3}{t_0^2 G} \\ \\ \\ \left(2\pi\right)^2 \cdot \left(1,5\cdot 10^{11} \text{ m}\right)^3 \\ \\ \\ m_{\rm S} = \frac{\left(2\pi\right)^2 r^3}{6,67\cdot 10^{-11} \text{ Nm}^2 \text{ kg}^{-2} \cdot \left(365\cdot 86400 \text{ s}\right)^2} = 2,0\cdot 10^{30} \text{ kg} \\ \\ \end{array} $	Uporaba 2. Newtonovega zakona 1 točka. Izraz za maso 1 točka. Rezultat 1 točka.
6.4	7	• težni pospešek: 270 ms ⁻² $G \frac{mm_{\rm S}}{R_{\rm S}^2} = mg_{\rm S} \rightarrow g_{\rm S} = G \frac{m_{\rm S}}{R_{\rm S}^2}$ $g_{\rm S} = \frac{6,67 \cdot 10^{-11} {\rm Nm}^2 {\rm kg}^{-2} \cdot 2,0 \cdot 10^{30} {\rm kg}}{\left(7,0 \cdot 10^8 {\rm m}\right)^2} = 272 {\rm ms}^{-2}$	Postopek 1 točka. Rezultat 1 točka.
6.5	~	• čas: 500 s $s = c \cdot t \to t = \frac{s}{c} = \frac{1.5 \cdot 10^{11} \text{ m}}{3.0 \cdot 10^8 \text{ ms}^{-1}} = 500 \text{ s}$	
9.9	7	• moč: $4,0.10^{26}$ W $P = j4\pi r^2 = 1400 \text{ Wm}^{-2} \cdot 4\pi \cdot \left(1,5.10^{11} \text{ m}\right)^2 = 3,96.10^{26} \text{ W}$	Postopek 1 točka. Rezultat 1 točka.
6.7	м	$\begin{array}{l} \bullet \text{ masa: } 1,4\cdot 10^{17} \text{ kg} \\ W = mc^2 \rightarrow m = \frac{W}{c^2} = \frac{Pt}{c^2} \\ m = \frac{4,0\cdot 10^{26} \text{ W} \cdot 365\cdot 86400 \text{ s}}{\left(3,0\cdot 10^8 \text{ ms}^{-1}\right)^2} = 1,4\cdot 10^{17} \text{ kg} \end{array}$	Zveza med energijo in maso 1 točka. Postopek za izračun mase 1 točka. Rezultat 1 točka.

4

Postopek 1 točka. Rezultat 1 točka.	
	${^{-2} \text{ K}^{-4}} = 5820 \text{ K}$
• temperatura: 5800K $j = \sigma T^4 = \frac{P}{S} \rightarrow T = \sqrt[4]{\frac{P}{A - D^2}}$	$T = \sqrt[4]{\frac{4^{4} \Pi_{8}^{5} \sigma}{4,0.10^{26} \text{ W}}}$ $T = \sqrt[4]{4 \pi \cdot (7,0.10^{8} \text{ m})^{2} \cdot 5,67 \cdot 10^{-8} \text{ W m}^{-2} \text{K}^{-4}}$
α	
8.8	

Skupno število točk IP 2: 45