Lecture 7

Orthogonal Projections

DSC 40A, Summer 2024

Announcements

- Homework 3 is due on Friday, August 16th.
- Discussion is today, right after class. Groupwork is due tonight at 11:59p.
- The Midterm Exam is on **Thursday, August 22nd** in class.
 - Lots of review material on practice.dsc40a.com.
 - Many past exams, and collections of practice questions organized by topic.

Agenda

- Spans and projections.
- Matrices.
- Spans and projections, revisited.
- Regression and linear algebra.

Answer at q.dsc40a.com

Remember, you can always ask questions at q.dsc40a.com!

If the direct link doesn't work, click the " > Lecture Questions" link in the top right corner of dsc40a.com.

Spans and projections

Orthogonal projection

- Question: What vector in $\operatorname{span}(\vec{x})$ is closest to \vec{y} ?
- **Answer**: It is the vector $w^*\vec{x}$, where:

$$w^* = rac{ec{x} \cdot ec{y}}{ec{x} \cdot ec{x}}$$

• Note that w^* is the solution to a minimization problem, specifically, this one:

$$\operatorname{error}(w) = \| \vec{e} \| = \| \vec{y} - w\vec{x} \|$$

- We call $w^*\vec{x}$ the orthogonal projection of \vec{y} onto $\mathrm{span}(\vec{x})$.
 - Think of $w^*\vec{x}$ as the "shadow" of \vec{y} .

Exercise

Let
$$ec{a} = egin{bmatrix} 5 \\ 2 \end{bmatrix}$$
 and $ec{b} = egin{bmatrix} -1 \\ 9 \end{bmatrix}$.

What is the orthogonal projection of \vec{a} onto $\mathrm{span}(\vec{b})$?

Your answer should be of the form $w^*\vec{b}$, where w^* is a scalar.

Moving to multiple dimensions

- Let's now consider three vectors, \vec{y} , $\vec{x}^{(1)}$, and $\vec{x}^{(2)}$, all in \mathbb{R}^n .
- Question: What vector in $\mathrm{span}(\vec{x}^{(1)}, \vec{x}^{(2)})$ is closest to \vec{y} ?
 - \circ Vectors in $\mathrm{span}(ec x^{(1)},ec x^{(2)})$ are of the form $w_1ec x^{(1)}+w_2ec x^{(2)}$, where $w_1,w_2\in\mathbb{R}$ are scalars.
- Before trying to answer, let's watch ## this animation that Jack, one of our tutors,
 made.

- Question: What vector in $\mathrm{span}(\vec{x}^{(1)}, \vec{x}^{(2)})$ is closest to \vec{y} ?
 - \circ That is, what vector minimizes $||\vec{e}||$, where:

$$ec{e} = ec{y} - w_1 ec{x}^{(1)} - w_2 ec{x}^{(2)}$$

- Answer: It's the vector such that $w_1\vec{x}^{(1)} + w_2\vec{x}^{(2)}$ is orthogonal to \vec{e} .
- Issue: Solving for w_1 and w_2 in the following equation is difficult:

$$\left(w_1\vec{x}^{(1)} + w_2\vec{x}^{(2)}\right) \cdot \underbrace{\left(\vec{y} - w_1\vec{x}^{(1)} - w_2\vec{x}^{(2)}\right)}_{\vec{e}} = 0$$

• It's hard for us to solve for w_1 and w_2 in:

$$\left(w_1\vec{x}^{(1)} + w_2\vec{x}^{(2)}\right) \cdot \underbrace{\left(\vec{y} - w_1\vec{x}^{(1)} - w_2\vec{x}^{(2)}\right)}_{\vec{e}} = 0$$

- Observation: All we really need is for $\vec{x}^{(1)}$ and $\vec{x}^{(2)}$ to individually be orthogonal to \vec{e} .
 - \circ That is, it's sufficient for \overrightarrow{e} to be orthogonal to the spanning vectors themselves.
- If $\vec{x}^{(1)} \cdot \vec{e} = 0$ and $\vec{x}^{(2)} \cdot \vec{e} = 0$, then:

- Question: What vector in $\mathrm{span}(\vec{x}^{(1)}, \vec{x}^{(2)})$ is closest to \vec{y} ?
- Answer: It's the vector such that $w_1\vec{x}^{(1)}+w_2\vec{x}^{(2)}$ is orthogonal to $\vec{e}=\vec{y}-w_1\vec{x}^{(1)}-w_2\vec{x}^{(2)}$.
- Equivalently, it's the vector such that $\vec{x}^{(1)}$ and $\vec{x}^{(2)}$ are both orthogonal to \vec{e} :

$$egin{aligned} ec{m{x}^{(1)}} \cdot \left(ec{m{y}} - w_1 ec{m{x}^{(1)}} - w_2 ec{m{x}^{(2)}}
ight) = 0 \ ec{m{x}^{(2)}} \cdot \left(ec{m{y}} - w_1 ec{m{x}^{(1)}} - w_2 ec{m{x}^{(2)}}
ight) = 0 \ ec{m{e}} \end{aligned}$$

• This is a system of two equations, two unknowns (w_1 and w_2), but it still looks difficult to solve.

Now what?

• We're looking for the scalars w_1 and w_2 that satisfy the following equations:

$$ec{m{x}^{(1)}} \cdot \left(ec{m{y}} - w_1 ec{m{x}^{(1)}} - w_2 ec{m{x}^{(2)}}
ight) = 0$$
 $ec{m{x}^{(2)}} \cdot \left(ec{m{y}} - w_1 ec{m{x}^{(1)}} - w_2 ec{m{x}^{(2)}}
ight) = 0$

- In this example, we just have two spanning vectors, $\vec{x}^{(1)}$ and $\vec{x}^{(2)}$.
- If we had any more, this system of equations would get extremely messy, extremely quickly.
- Idea: Rewrite the above system of equations as a single equation, involving matrixvector products.

Matrices

Matrices

- An $n \times d$ matrix is a table of numbers with n rows and d columns.
- We use upper-case letters to denote matrices.

$$A = egin{bmatrix} 2 & 5 & 8 \ -1 & 5 & -3 \end{bmatrix}$$

- Since A has two rows and three columns, we say $A \in \mathbb{R}^{2 imes 3}$.
- Key idea: Think of a matrix as several column vectors, stacked next to each other.

Matrix addition and scalar multiplication

- We can add two matrices only if they have the same dimensions.
- Addition occurs elementwise:

$$egin{bmatrix} 2 & 5 & 8 \ -1 & 5 & -3 \end{bmatrix} + egin{bmatrix} 1 & 2 & 3 \ 0 & 1 & 2 \end{bmatrix} = egin{bmatrix} 3 & 7 & 11 \ -1 & 6 & -1 \end{bmatrix}$$

Scalar multiplication occurs elementwise, too:

$$2\begin{bmatrix} 2 & 5 & 8 \\ -1 & 5 & -3 \end{bmatrix} = \begin{bmatrix} 4 & 10 & 16 \\ -2 & 10 & -6 \end{bmatrix}$$

Matrix-matrix multiplication

ullet Key idea: We can multiply matrices A and B if and only if:

$$ig|\# ext{columns in } A = \# ext{ rows in } Big|$$

- If A is $n \times d$ and B is $d \times p$, then AB is $n \times p$.
- Example: If A is as defined below, what is A^TA ?

$$A=egin{bmatrix} 2 & 5 & 8 \ -1 & 5 & -3 \end{bmatrix}$$

Question 🤔

Answer at q.dsc40a.com

Assume A, B, and C are all matrices. Select the **incorrect** statement below.

- A. A(B+C) = AB + AC.
- B. A(BC) = (AB)C.
- C. AB = BA.
- D. $(A + B)^T = A^T + B^T$.
- E. $(AB)^T = B^T A^T$.

Matrix-vector multiplication

• A vector $\vec{v} \in \mathbb{R}^n$ is a matrix with n rows and 1 column.

$$ec{v} = egin{bmatrix} v_1 \ v_2 \ dots \ v_n \end{bmatrix}$$

- Suppose $A \in \mathbb{R}^{n \times d}$.
 - \circ What must the dimensions of \vec{v} be in order for the product $A\vec{v}$ to be valid?
 - \circ What must the dimensions of $ec{v}$ be in order for the product $ec{v}^T A$ to be valid?

One view of matrix-vector multiplication

- One way of thinking about the product $A\vec{v}$ is that it is **the dot product of** \vec{v} **with every** row of A.
- Example: What is $A\vec{v}$?

$$A = egin{bmatrix} 2 & 5 & 8 \ -1 & 5 & -3 \end{bmatrix} \qquad ec{v} = egin{bmatrix} 2 \ -1 \ -5 \end{bmatrix}$$

Another view of matrix-vector multiplication

- Another way of thinking about the product $A\vec{v}$ is that it is a linear combination of the columns of A, using the weights in \vec{v} .
- Example: What is $A\vec{v}$?

$$A = egin{bmatrix} 2 & 5 & 8 \ -1 & 5 & -3 \end{bmatrix} \qquad ec{v} = egin{bmatrix} 2 \ -1 \ -5 \end{bmatrix}$$

Matrix-vector products create linear combinations of columns!

• **Key idea**: It'll be very useful to think of the matrix-vector product $A\vec{v}$ as a linear combination of the columns of A, using the weights in \vec{v} .

$$A = egin{bmatrix} a_{11} & a_{12} & \dots & a_{1d} \ a_{21} & a_{22} & \dots & a_{2d} \ dots & dots & dots & dots \ a_{n1} & a_{n2} & \dots & a_{nd} \end{bmatrix} \qquad ec{v} = egin{bmatrix} v_1 \ v_2 \ dots \ v_d \end{bmatrix} \ igghtarrow igghtarro$$

Spans and projections, revisited

Moving to multiple dimensions

- Let's now consider three vectors, \vec{y} , $\vec{x}^{(1)}$, and $\vec{x}^{(2)}$, all in \mathbb{R}^n .
- Question: What vector in $\operatorname{span}(\vec{x}^{(1)}, \vec{x}^{(2)})$ is closest to \vec{y} ?
 - \circ That is, what values of w_1 and w_2 minimize $\|\vec{e}\| = \|\vec{y} w_1\vec{x}^{(1)} w_2\vec{x}^{(2)}\|$?

Matrix-vector products create linear combinations of columns!

$$ec{x}^{(1)} = egin{bmatrix} 2 \ 5 \ 3 \end{bmatrix} \qquad ec{x}^{(2)} = egin{bmatrix} -1 \ 0 \ 4 \end{bmatrix} \qquad ec{y} = egin{bmatrix} 1 \ 3 \ 9 \end{bmatrix}$$

• Combining $\vec{x}^{(1)}$ and $\vec{x}^{(2)}$ into a single matrix gives:

$$X = egin{bmatrix} ert \ ec{x}^{(1)} & ec{x}^{(2)} \ ert \ ert \end{bmatrix} = egin{bmatrix} ec{y} & ec{y} \ ec{$$

- ullet Then, if $ec{w}=egin{bmatrix} w_1 \ w_2 \end{bmatrix}$, linear combinations of $ec{x}^{(1)}$ and $ec{x}^{(2)}$ can be written as $Xec{w}$.
- The span of the columns of X, or $\operatorname{span}(X)$, consists of all vectors that can be written in the form $X\vec{w}$.

- ullet Goal: Find the vector $ec w = [w_1 \quad w_2]^T$ such that $\|ec e\| = \|ec y Xec w\|$ is minimized.
- As we've seen, \vec{w} must be such that:

$$\vec{x}^{(1)} \cdot \left(\vec{y} - w_1 \vec{x}^{(1)} - w_2 \vec{x}^{(2)} \right) = 0$$

$$\vec{x}^{(2)} \cdot \left(\vec{y} - w_1 \vec{x}^{(1)} - w_2 \vec{x}^{(2)} \right) = 0$$

 How can we use our knowledge of matrices to rewrite this system of equations as a single equation?

Simplifying the system of equations, using matrices

Simplifying the system of equations, using matrices

$$X = egin{bmatrix} | & | & | & | \ ec{x}^{(1)} & ec{x}^{(2)} \ | & | & \end{bmatrix} = egin{bmatrix} 2 & -1 \ 5 & 0 \ 3 & 4 \end{bmatrix} \qquad ec{y} = egin{bmatrix} 1 \ 3 \ 9 \end{bmatrix}$$

- 1. $w_1 \vec{x}^{(1)} + w_2 \vec{x}^{(2)}$ can be written as $X \vec{w}$, so $\vec{e} = \vec{y} X \vec{w}$.
- 2. The condition that \vec{e} must be orthogonal to each column of X is equivalent to condition that $X^T \vec{e} = 0$.

The normal equations

$$X = egin{bmatrix} | & | & | & | \ ec{x}^{(1)} & ec{x}^{(2)} \ | & | & \end{bmatrix} = egin{bmatrix} 2 & -1 \ 5 & 0 \ 3 & 4 \end{bmatrix} \qquad ec{y} = egin{bmatrix} 1 \ 3 \ 9 \end{bmatrix}$$

- ullet Goal: Find the vector $ec{w}=[w_1 \quad w_2]^T$ such that $\|ec{m{e}}\|=\|ec{m{y}}-m{X}ec{w}\|$ is minimized.
- We now know that it is the vector \vec{w}^* such that:

$$egin{aligned} oldsymbol{X}^T ec{oldsymbol{e}} &= 0 \ oldsymbol{X}^T (ec{oldsymbol{y}} - oldsymbol{X} ec{w}^*) &= 0 \ oldsymbol{X}^T ec{oldsymbol{y}} - oldsymbol{X}^T oldsymbol{X} ec{w}^* &= 0 \ \implies oldsymbol{X}^T oldsymbol{X} ec{w}^* &= oldsymbol{X}^T ec{oldsymbol{y}} \end{aligned}$$

The last statement is referred to as the normal equations.

The general solution to the normal equations

$$X \in \mathbb{R}^{n imes d}$$
 $ec{y} \in \mathbb{R}^n$

- ullet Goal, in general: Find the vector $ec w \in \mathbb{R}^d$ such that $\|ec e\| = \|ec y Xec w\|$ is minimized.
- We now know that it is the vector \vec{w}^* such that:

$$X^T \vec{e} = 0$$

$$\implies X^T X \vec{w}^* = X^T \vec{y}$$

• Assuming X^TX is invertible, this is the vector:

$$\left|ec{w}^* = (oldsymbol{X}^Toldsymbol{X})^{-1}oldsymbol{X}^Toldsymbol{ec{y}}
ight|$$

- \circ This is a big assumption, because it requires X^TX to be **full rank**.
- o If X^TX is not full rank, then there are infinitely many solutions to the normal equations, $X^TX\vec{w}^* = X^T\vec{y}$.

What does it mean?

- Original question: What vector in $\mathrm{span}(\vec{x}^{(1)}, \vec{x}^{(2)})$ is closest to \vec{y} ?
- Final answer: It is the vector $\vec{X}\vec{w}^*$, where:

$$ec{w}^* = (X^TX)^{-1}X^Tec{y}$$

• Revisiting our example:

$$X = egin{bmatrix} | & | & | & | \ ec{x}^{(1)} & ec{x}^{(2)} \ | & | \end{bmatrix} = egin{bmatrix} 2 & -1 \ 5 & 0 \ 3 & 4 \end{bmatrix} \qquad ec{y} = egin{bmatrix} 1 \ 3 \ 9 \end{bmatrix}$$

- ullet Using a computer gives us $ec{w}^* = (X^TX)^{-1}X^Tec{y} pprox egin{bmatrix} 0.7289 \ 1.6300 \end{bmatrix}$.
- So, the vector in $\mathrm{span}(\vec{x}^{(1)},\vec{x}^{(2)})$ closest to \vec{y} is $0.7289\vec{x}^{(1)}+1.6300\vec{x}^{(2)}$.

An optimization problem, solved

- We just used linear algebra to solve an optimization problem.
- Specifically, the function we minimized is:

$$\operatorname{error}(\vec{w}) = \|\vec{y} - X\vec{w}\|$$

- \circ This is a function whose input is a vector, \vec{w} , and whose output is a scalar!
- The input, \vec{w}^* , to $\mathbf{error}(\vec{w})$ that minimizes it is:

$$ec{w}^* = (X^TX)^{-1}X^Tec{y}$$

We're going to use this frequently!

Regression and linear algebra

Wait... why do we need linear algebra?

- Soon, we'll want to make predictions using more than one feature.
 - Example: Predicting commute times using departure hour and temperature.
- Thinking about linear regression in terms of **matrices and vectors** will allow us to find hypothesis functions that:
 - Use multiple features (input variables).
 - \circ Are non-linear in the features, e.g. $H(x)=w_0+w_1x+w_2x^2$.
- Let's see if we can put what we've just learned to use.

Simple linear regression, revisited

- Model: $H(x)=w_0+w_1x$.
- Loss function: $(y_i H(x_i))^2$.
- To find w_0^* and w_1^* , we minimized empirical risk, i.e. average loss:

$$R_{ ext{sq}}(H) = rac{1}{n} \sum_{i=1}^n \left(y_i - H(x_i)
ight)^2$$

• Observation: $R_{
m sq}(w_0,w_1)$ kind of looks like the formula for the norm of a vector,

$$\|\vec{v}\| = \sqrt{v_1^2 + v_2^2 + \ldots + v_n^2}.$$

Regression and linear algebra

Let's define a few new terms:

- The observation vector is the vector $\vec{y} \in \mathbb{R}^n$. This is the vector of observed "actual values".
- The **hypothesis vector** is the vector $ec{h} \in \mathbb{R}^n$ with components $H(x_i)$. This is the vector of predicted values.
- The **error vector** is the vector $\vec{e} \in \mathbb{R}^n$ with components:

$$e_i = y_i - H(x_i)$$

Example

Consider
$$H(x)=2+rac{1}{2}x$$
.

$$ec{y}= \qquad \qquad ec{h}=$$

$$ec{e} = ec{y} - ec{h} =$$

$$egin{aligned} R_{ ext{sq}}(H) &= rac{1}{n} \sum_{i=1}^n \left(rac{oldsymbol{y_i}}{n} - H(x_i)
ight)^2 \ &= \end{aligned}$$

Regression and linear algebra

Let's define a few new terms:

- The **observation vector** is the vector $\vec{y} \in \mathbb{R}^n$. This is the vector of observed "actual values".
- The **hypothesis vector** is the vector $ec{h} \in \mathbb{R}^n$ with components $H(x_i)$. This is the vector of predicted values.
- The **error vector** is the vector $\vec{e} \in \mathbb{R}^n$ with components:

$$e_i = y_i - H(x_i)$$

• **Key idea**: We can rewrite the mean squared error of \boldsymbol{H} as:

$$R_{ ext{sq}}(H) = rac{1}{n} \sum_{i=1}^n \left(oldsymbol{y_i} - H(x_i)
ight)^2 = rac{1}{n} \| ec{oldsymbol{e}} \|^2 = rac{1}{n} \| ec{oldsymbol{y}} - ec{h} \|^2$$

The hypothesis vector

- ullet The **hypothesis vector** is the vector $ec{h} \in \mathbb{R}^n$ with components $H(x_i)$. This is the vector of predicted values.
- ullet For the linear hypothesis function $H(x)=w_0+w_1x$, the hypothesis vector can be written:

$$ec{h} = egin{bmatrix} w_0 + w_1 x_1 \ w_0 + w_1 x_2 \ dots \ w_0 + w_1 x_n \end{bmatrix} = \ w_0 + w_1 x_n \end{bmatrix}$$

Rewriting the mean squared error

• Define the **design matrix** $X \in \mathbb{R}^{n \times 2}$ as:

$$X = egin{bmatrix} 1 & x_1 \ 1 & x_2 \ dots & dots \ 1 & x_n \end{bmatrix}$$

- ullet Define the **parameter vector** $ec{w} \in \mathbb{R}^2$ to be $ec{w} = egin{bmatrix} w_0 \ w_1 \end{bmatrix}$.
- Then, $\vec{h} = X\vec{w}$, so the mean squared error becomes:

$$R_{ ext{sq}}(\pmb{H}) = rac{1}{n} \| ec{\pmb{y}} - ec{h} \|^2 \implies \left| R_{ ext{sq}}(ec{w}) = rac{1}{n} \| ec{\pmb{y}} - \pmb{X} ec{w} \|^2
ight|$$

What's next?

• To find the optimal model parameters for simple linear regression, w_0^{st} and w_1^{st} , we previously minimized:

$$R_{ ext{sq}}(w_0,w_1) = rac{1}{n} \sum_{i=1}^n (m{y_i} - (w_0 + w_1m{x_i}))^2$$

• Now that we've reframed the simple linear regression problem in terms of linear algebra, we can find w_0^* and w_1^* by minimizing:

$$oxed{R_{ ext{sq}}(ec{w}) = rac{1}{n} \Vert ec{oldsymbol{y}} - oldsymbol{X} ec{w} \Vert^2}$$

• We've already solved this problem! Assuming X^TX is invertible, the best $ec{w}$ is:

$$\left|ec{w}^* = (X^TX)^{-1}X^Tec{y}
ight|$$