Р. С. КУРМАНОВ, Г. Б. ТОДЕР

ПОСТОЯННЫЙ ЭЛЕКТРИЧЕСКИЙ ТОК. ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

Министерство транспорта Российской Федерации Федеральное агентство железнодорожного транспорта Омский государственный университет путей сообщения

Р. С. Курманов, Г. Б. Тодер

ПОСТОЯННЫЙ ЭЛЕКТРИЧЕСКИЙ ТОК. ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

Утверждено методическим советом университета в качестве учебно-методического пособия для самостоятельной работы студентов при решении задач по физике

УДК 537.3(075.8) ББК 22.33я73

К93

Постоянный электрический ток. Примеры решения задач: Учебно-

методическое пособие / Р. С. Курманов, Г. Б. Тодер; Омский гос. ун-т путей со-

общения. Омск, 2016. 27 с.

Учебно-методическое пособие сформировано в соответствии с действу-

ющей программой по курсу общей физики для втузов, содержит список основ-

ных формул и примеры решения типовых задач по основным темам раздела

физики «Постоянный электрический ток», требующих применения законов

Ома, Джоуля – Ленца, Кирхгофа и др.

Предназначено для самоподготовки студентов очной и заочной форм

обучения к занятиям, контрольным мероприятиям и экзаменам.

Библиогр.: 5 назв. Рис. 16.

Рецензенты: доктор физ.-мат. наук, профессор Г. И. Косенко;

канд. техн. наук, доцент Е. Ю. Салита.

С Омский гос. университет путей сообщения, 2016

ОГЛАВЛЕНИЕ

Введение	5
1. Основные характеристики электрического тока и металлического проводника	6
1.1. Основные характеристики электрического тока	6
1.2. Сопротивление металлического проводника	6
1.3. Параллельное и последовательное соединение проводников	7
2. Законы Ома	9
2.1. Закон Ома для однородного участка цепи	9
2.2. Закон Ома для неоднородного участка цепи	11
2.3. Закон Ома для замкнутой цепи	13
3. Работа, мощность и тепловое действие тока	15
3.1. Работа и мощность тока	15
3.2. Закон Джоуля – Ленца	18
3.3. Передача энергии и мощности тока на расстояние	20
4. Правила Кирхгофа	23
Библиографический список	26

ВВЕДЕНИЕ

Успешное изучение общего курса физики в вузе [1-3] невозможно без умения применять знание физических законов при решении учебных задач, однако именно решение задач вызывает наибольшие затруднения у студентов.

В методических указаниях [4, 5] содержится набор задач для самостоятельной подготовки студентов очной и заочной форм обучения к занятиям, контрольным мероприятиям и экзаменам.

Цель данного учебно-методического пособия — оказать помощь студентам в освоении методики решения типовых задач по разделу «Постоянный электрический ток», представленных в работах [4, 5]. Каждый раздел пособия содержит краткие теоретические сведения и (или) рекомендации по решению задач, которые помогут подготовиться к занятиям, примеры решения типовых задач по основным темам раздела «Постоянный электрический ток».

В основу каждой физической задачи положен частный случай проявления законов физики, поэтому прежде чем приступить к решению задач, необходимо изучить теоретический материал по соответствующей теме [1-3].

Общий алгоритм решения задач, собранных в данном пособии, имеет следующий вид: 1) кратко записать условие и вопрос задачи (при необходимости перевести единицы измерения всех величин в основные единицы системы СИ), изобразить схему электрической цепи или ее участка, отражающую условие задачи; 2) записать тему задачи; 3) выбрать и записать формулы по теме, на которые будет опираться решение в соответствии с условием и вопросом задачи; 4) опираясь на выписанные формулы, составить и решить полученную систему уравнений; 5) записать ответ в стандартной форме. Такая схема деятельности позволит сформировать навык решения учебных физических задач.

Большую часть задач удобно решать в общем виде, т. е. сначала вывести формулу для расчета искомой величины, затем подставить в полученную формулу численные данные. Это позволит лучше понять физические закономерности, в частности, увидеть в явном виде зависимость искомой величины от величин, значения которых заданы в условии задачи, т. е. выяснить, как изменение искомой величины зависит от изменения исходных данных.

Перед рассмотрением задач на тему «Правила Кирхгофа» рекомендуется повторить разделы математики, связанные с методами решения систем алгебраических уравнений.

1. ОСНОВНЫЕ ХАРАКТЕРИСТИКИ ЭЛЕКТРИЧЕСКОГО ТОКА И МЕТАЛЛИЧЕСКОГО ПРОВОДНИКА

1.1. Основные характеристики электрического тока

1.1.1. Основные формулы и обозначения

Основные характеристики электрического тока — сила I и плотность \vec{j} . Плотность тока сонаправлена с током. Если плотность тока одинакова во всех точках сечения проводника площадью S, перпендикулярного току, то

$$j = I/S. (1)$$

Сила постоянного тока

$$I = q/t, (2)$$

где q — модуль заряда, прошедшего через это сечение за время t.

1.1.2. Примеры решения задач

3 а д а ч а 1. Какой заряд переносится за 10 с через поперечное сечение однородного цилиндрического проводника площадью 1,5 мм², если сила тока равна 3 А? Найти плотность тока, считая ее одинаковой во всех точках сечения.

Дано: t=10 с; Согласно формуле (2) заряд, прошедший через сечение $S=1,5\cdot 10^{-6}$ м²; проводника за время $t,\ q=I\cdot t=3\cdot 10=30$ Кл. По формуле (1) плотность тока: $j=I/S=3/(1,5\cdot 10^{-6})=2\cdot 10^6$ А/м². Ответ: q=30 Кл, $j=2\cdot 10^6$ А/м².

1.2. Сопротивление металлического проводника

1.2.1. Основные формулы и обозначения

Сопротивление однородного цилиндрического проводника длиной ℓ , площадью поперечного сечения S и удельным сопротивлением ρ_e может быть определено по формуле:

$$R = \rho_e \ell / S. \tag{3}$$

1.2.2. Примеры решения задач

Задача 2. Длина двужильного медного провода, с помощью которого лампа подключена к источнику тока, 4 м, его диаметр – 0,8 мм. Найти сопротивление провода.

Дано: a = 4 m; Найти: *R*. Решение.

Согласно формуле (3) сопротивление проводника $d = 8 \cdot 10^{-4} \text{ M};$ $R = \rho_e \ell / S$, где ρ_e – удельное сопротивление меди; $\rho_e = 1.7 \cdot 10^{-8} \,\,\mathrm{O_{M^{*}M}}; \quad \mid \ell = 2a = 8 \,\,\mathrm{M} -$ длина проводника (так как провод двужильный); $S = \pi d^2 / 4 = 3,14 \cdot (8 \cdot 10^{-4})^2 / 4 = 5,024 \cdot 10^{-7} \,\text{м}^2 -$ площадь поперечного сечения провода. Подставив эти значения в формулу (3), получим: $R = \frac{1.7 \cdot 10^{-8} \cdot 8}{5.024 \cdot 10^{-7}} = 0.27$ Ом.

Ответ: R = 0.27 Ом.

1.3. Параллельное и последовательное соединение проводников

1.3.1. Основные формулы и обозначения

Как правило, выделяют два простейших способа соединения элементов цепи: последовательное (рис. 1, а) и параллельное (рис. 1, б).

Рис. 1

При последовательном соединении сопротивлений:

- 1) сила тока, протекающего через все сопротивления, одинакова;
- 2) напряжение на всем участке цепи определяется по формуле: $U = \sum_{i=1}^{n} U_i$, где N — количество элементов участка; i — номер элемента;

3) полное сопротивление всего участка цепи определяется по формуле:

$$R_{\text{общ.посл}} = \sum_{i=1}^{N} R_i. \tag{4}$$

При параллельном соединении сопротивлений:

- 1) сила тока на всем участке цепи определяется по формуле: $I = \sum_{i=1}^{N} I_i$;
- 2) падение напряжения на всех сопротивлениях одинаково;
- 3) полное сопротивление участка цепи определяется по формуле:

$$R_{\text{общ.пар}} = \left(\sum_{i=1}^{N} (1/R_i)\right)^{-1}.$$
 (5)

1.3.2. Примеры решения задач

3 а д а ч а 3. Сопротивление лампы 2 равно сопротивлению лампы 1, а сопротивление лампы 3 в четыре раза больше сопротивления лампы 1 (рис. 2). Найти полное сопротивление всей цепи, если сопротивление лампы 1 равно 100 Ом.

Дано:

Решение.

 $R_2 = R_1$;

 $R_3 = 4R_1$;

 $R_1 = 100 \text{ Om};$

Найти: *R*.

Лампы 2 и 3 на рис. 3 включены параллельно, а лампа 1 – последовательно с ними. Сопротивление $R_{2,3}$ участка с лампами 2 и 3, рассчитанное по формуле (5),

$$R_{2,3} = R_2 R_3 / (R_2 + R_3). (6)$$

Согласно условию задачи $R_{2,3} = R_1 \cdot 4R_1/(R_1 + 4R_1) = 4R_1/5$.

Полное сопротивление всей цепи найдем по формуле (4): $R = R_1 + R_{2,3} = R_1 + 4R_1/5 = 9R_1/5$. Подставив в нее численные данные, получим: $R = 9 \cdot 100/5 = 180 \, \text{Om}$.

Ответ: R = 180 Ом.

2. ЗАКОНЫ ОМА

2.1. Закон Ома для однородного участка цепи

2.1.1. Основные формулы и обозначения

Обобщенная схема однородного участка цепи, содержащего только резисторы, показана на рис. 3. На таком участке падение напряжения U равно разности потенциалов на концах участка: $U = \varphi_1 - \varphi_2$. Закон Ома для однородного участка цепи имеет вид:

где R –активное электрическое сопротивление участка.

2.1.2. Примеры решения задач

3 а д а ч а 4. Милливольтметр, соединенный последовательно с резистором сопротивлением 800 Ом, показывает напряжение 12 мВ. Ток какой силы течет через резистор? Сопротивление прибора равно 1,2 кОм. Чему равно сопротивление всей цепи?

Дано:

 $R_R = 800 \,\mathrm{Om};$

 $U_V = 12 \cdot 10^{-3} \text{ B};$

 $R_V = 1.2 \cdot 10^3 \text{ Om.}$

Найти: *I*, *R*.

Решение.

Так как вольтметр и резистор соединены последовательно (рис. 4), сопротивление всей цепи равно $R = R_R + R_V = 800 + 1200 = 2000$ Ом. Через устройства течет одинаковый ток, сила которого определяется по закону Ома (7):

$$I = U_V / R_V = 1.2 \cdot 10^{-2} / 1.2 \cdot 10^3 = 10^{-5} \text{ A}.$$

Ответ: $I = 10^{-5}$ A, R = 2000 Ом.

3 а д а ч а 5. Какое шунтирующее сопротивление нужно включить параллельно к амперметру (рис. 5), имеющему шкалу на 100 делений с ценой деления 1 мкА/дел. и внутреннее сопротивление 180 Ом, чтобы амперметр мог измерять силу тока до 1 мА?

Дано:

N = 100 дел.;

C = 1 мкА/дел.;

 $R_{\Delta} = 180 \text{ Om};$

I = 1000 мкA.

Найти: $R_{\rm m}$.

Решение.

Сила тока $I_{\rm A}$, на которую рассчитан амперметр, равна $I_{\rm A}=N\cdot C=100\,$ мкА. Амперметр и шунтирующее сопротивление подключены параллельно, поэтому для сил токов выполняется равенство: $I_{\rm m}+I_{\rm A}=I$. Следовательно, сила тока, протекающего через шунт, вычисляется по формуле:

$$I_{\phi} = I - I_{\rm A} = 1000 - 100 = 900 \,\mathrm{mkA}.$$

При параллельном соединении устройств напряжение на их клеммах одинаково, поэтому по закону Ома (7) $U=I_{\rm A}R_{\rm A}=I_{\rm III}R_{\rm III}$, откуда с учетом численных значений $R_{\rm III}=I_{\rm A}R_{\rm A}/I_{\rm III}=100\cdot180/900=20$ Ом.

Ответ: $R_{\text{III}} = 20 \, \text{Ом}.$

3 а д а ч а 6. Амперметр с пренебрежимо малым сопротивлением и резистор соединены последовательно и подсоединены к источнику питания, как показано на рис. 6. К клеммам резистора подсоединен вольтметр с внутренним сопротивлением 4 кОм. Амперметр показывает силу тока 0,3 A, вольтметр – напряжение 120 В. Найти сопротивление резистора.

Дано: $R_{\rm A}=0~{\rm Om};$ $R_{\rm B}=4\cdot 10^3~{\rm Om};$ $I=0,3~{\rm A}.$ $U=120~{\rm B}.$ Найти: $R_{\rm p}.$

Решение.

Резистор и вольтметр соединены параллельно, поэтому полное сопротивление участка ab вычисляется согласно формуле (5):

$$R = \frac{R_{\rm p}R_{\rm B}}{R_{\rm p} + R_{\rm B}}.$$
 (8)

 $\begin{array}{c}
U & I \\
A \\
R_p \\
b
\end{array}$

Рис. 6

По закону Ома (7) R = U/I Подставив это выражение в формулу (8), получим: $\frac{U}{I} = \frac{R_{\rm p}R_{\rm B}}{R_{\rm p} + R_{\rm B}}$. Отсюда выразим сопротивление резистора: $R_{\rm p} = \frac{UR_{\rm B}}{IR_{\rm B} - U}$. Подстановка числен-

ных данных дает:
$$R_p = \frac{120 \cdot 4 \cdot 10^3}{(0, 3 \cdot 4 \cdot 10^3 - 120)} \approx 444$$
 Ом.

Ответ: $R_{\rm p} = 444$ Ом.

2.2. Закон Ома для неоднородного участка цепи

2.2.1. Основные формулы и обозначения

Обобщенная схема неоднородного участка цепи, содержащего резисторы и источники питания, показана на рис. 7. На таком участке падение напряжения U складывается из разности потенциалов на концах 1, 2 участка и алгебраической суммы электродвижущих сил (ЭДС) источников питания $\varepsilon_{1;2}$: $U = \varphi_1 - \varphi_2 + \varepsilon_{1;2}$. Закон Ома для неоднородного участка цепи имеет вид:

$$\varphi_{1} \xrightarrow{\mathcal{E}, r} I \xrightarrow{R} \varphi_{2}$$

$$1 = U / (R + r) = (\varphi_{1} - \varphi_{2} + \varepsilon_{1;2}) / (R + r), \qquad (9)$$
Puc. 7

где R — суммарное внешнее сопротивление участка; r — суммарное внутреннее сопротивление источников. Сила тока входит в уравнение (9) 1) со знаком \ll +», если направление тока, выбранное произвольно, совпадает с направлением

обхода участка, также выбранным произвольно; 2) со знаком «—», если направление тока противоположно направлению обхода участка. ЭДС входит в уравнение (9) 1) со знаком «+», если направление действия сторонних сил внутри источника на положительный заряд совпадает с направлением обхода участка; 2) со знаком «—», если направление действия сторонних сил противоположно направлению обхода. Сторонние силы внутри источника перемещают положительный заряд к положительно заряженной клемме.

2.2.2. Примеры решения задач

3 а д а ч а 7. Найти внутреннее сопротивление аккумуляторной батареи 6СТ-55 (рис. 8) с ЭДС 12,75 В, если при токе разряда силой 7,5 А разность потенциалов на зажимах батареи равна 12 В.

$$\begin{array}{ccccc}
\varphi_1 & & & & & \varphi_2 \\
\hline
1 & & & & & & & & \\
\end{array}$$
Puc. 8

Дано:

 ε =12,75B;

I = 7,5 A;

 $\varphi_2 - \varphi_1 = 12 \text{ B}.$

Найти: *r*.

Решение.

Рассматриваемый участок цепи содержит один элемент – аккумуляторную батарею, поэтому полное сопротивление участка равно внутреннему сопротивлению батареи.

Следовательно, согласно закону Ома для неоднородного участка цепи (7) $r=\frac{\mathcal{E}-(\varphi_2-\varphi_1)}{I}=\frac{12,75-12}{7,5}=0,1$ Ом.

Ответ: r = 0,1 Ом.

3 а д а ч а 8. Два гальванических элемента с ЭДС 1,5 и 1,6 В и внутренними сопротивлениями 0,60 и 0,40 Ом соответственно соединены разноименными полюсами, как показано на рис. 9. Пренебрегая сопротивлением соединительных проводов, определить разность потенциалов на зажимах элементов (между точками а и b).

Дано:

 $\varepsilon_1 = 1.5 \text{ B};$

 $\varepsilon_2 = 1.6 \text{ B};$

 $r_1 = 0.6 \text{ Om};$

 $r_2 = 0.4$ Om.

Найти: $\varphi_a - \varphi_b$.

Решение.

Точки а и b — концы неоднородных участков цепи: а ε_1 b и b ε_2 a. Выберем направления тока и обхода контура по часовой стрелке (см. рис. 9). Тогда по закону Ома (9) для участков получим уравнения:

$$I = (\varphi_{\mathbf{a}} - \varphi_{\mathbf{b}} + \varepsilon_{\mathbf{l}}) / r_{\mathbf{l}}; \tag{10}$$

$$I = (\varphi_{b} - \varphi_{a} + \varepsilon_{2})/r_{2}, \tag{11}$$

где знаки силы тока и ЭДС положительны, так как направления действия сторонних сил, тока и обхода контура совпадают. Исключив из уравнений (10) и (11)

силу тока, найдем:
$$\varphi_{\rm a}-\varphi_{\rm b}=\frac{\varepsilon_2r_1-\varepsilon_1r_2}{r_1+r_2}.$$

Подставив в полученное выражение численные данные, получим: $\varphi_{\rm a} - \varphi_{\rm b} = \frac{1,6 \cdot 0,6 - 1,5 \cdot 0,4}{0.6 + 0.4} = 0,36 \ {\rm B}.$

Ответ: $\varphi_{a} - \varphi_{b} = 0.36$ В.

2.3. Закон Ома для замкнутой цепи

2.3.1. Основные формулы и обозначения

Обобщенная схема замкнутой цепи, содержащей резисторы и источники питания, показана на рис. 10, а. Закон Ома для замкнутой цепи имеет вид:

$$I = \varepsilon/(R+r), \tag{12}$$

где R — суммарное внешнее сопротивление цепи; r — суммарное внутреннее сопротивление источников. В режиме короткого замыкания можно считать, что $R \approx 0$ Ом (рис. 10, б), поэтому закон (12) принимает вид:

$$I_{\kappa_3} = \varepsilon / r. \tag{13}$$

2.3.2. Примеры решения задач

3 а д а ч а 9. При замыкании источника на резистор сопротивлением 1,8 Ом сила тока в цепи равна 0,7 А, при замыкании на резистор 2,3 Ом – 0,56 А. Найти внутреннее сопротивление и ЭДС источника, силу тока короткого замыкания.

Дано:

 $I_{\scriptscriptstyle
m K.3}.$

Решение.

 $R_1 = 1.8 \text{ Om};$ $I_1 = 0.7 \text{ A};$ $R_2 = 2.3 \text{ Om};$ $I_2 = 0.56 \text{ A}.$

По закону Ома для замкнутой цепи (12) ЭДС источника в первом случае (рис. 11, а):

$$\varepsilon = I_1(R_1 + r),\tag{14}$$

Найти: $r, \varepsilon,$ во втором случае (рис. 11, б):

$$\varepsilon = I_2(R_2 + r). \tag{15}$$

Так как ЭДС не меняется, правые части выражений (14) и (15) равны друг другу: $I_1(R_1+r)=I_2(R_2+r)$. Отсюда выразим внутреннее сопротивление источника:

$$r = \frac{I_2 R_2 - I_1 R_1}{I_1 - I_2} = \frac{0,56 \cdot 2,3 - 0,7 \cdot 1,8}{0,7 - 0,56} = 0,2 \text{ Ом.}$$

Подставив найденное значение внутреннего сопротивления в формулу (14), получим: $\varepsilon = 0.7(1.8 + 0.2) = 1.4$ В.

Силу тока короткого замыкания найдем из соотношения (13): $I_{\text{к.з.}} = \varepsilon/r = 1,\!4/0,\!2 = 7\,\text{A}.$

Ответ: $I_{\kappa,3} = 7 A$.

3 а д а ч а 10. Параметры элементов электрической схемы, изображенной на рис. 12, следующие: ЭДС источника постоянного тока 12 В, его внутреннее сопротивление 1 Ом; сопротивления резисторов – R_1 = 5 Ом, R_2 = 6 Ом, R_3 = 7 Ом; сопротивление амперметра пренебрежимо мало. Каково показание амперметра?

Рис. 12

Дано:	Решение.
$\varepsilon = 12 \text{ B};$	Амперметр показывает силу тока, которую можно найти по за-
r=1 Om;	кону Ома для замкнутой цепи (12): $I = \varepsilon/(R+r)$. Так как резисторы
$R_1 = 5 \text{ Om};$	соединены последовательно, внешнее сопротивление цепи определя-
$R_2 = 6 \text{ Om};$	ется по формуле (3): $R = R_1 + R_2 + R_3$. Объединяя эти выражения, по-
$R_3 = 7$ Om;	лучим соотношение: $I = \varepsilon/(R_1 + R_2 + R_3 + r)$. Подставив в него чис-
$R_{\rm A} = 0$ Om.	ленные данные, найдем: $I = 12/(5+6+7+1) = 0.63$ A.
Найти: <i>I</i> .	Otbet: $I = 0.63 \mathrm{A}$.

3. РАБОТА, МОЩНОСТЬ И ТЕПЛОВОЕ ДЕЙСТВИЕ ТОКА

3.1. Работа и мощность тока

3.1.1. Основные формулы и обозначения

Работа силы электрического поля по переносу положительного заряда от одной точки цепи к другой (работа тока A) за время t и мощность тока (мощность устройства, через которое протекает ток) P определяются по формулам (при постоянном токе):

$$A = Pt = UIt; (16)$$

$$P = UI, (17)$$

где U — напряжение между точками; I — сила тока на участке цепи, по которому переносится заряд.

Работа тока A за время t по переносу положительного заряда от точки с большим потенциалом φ_1 к точке с меньшим потенциалом φ_2 и мощность тока P определяются

1) для однородного участка цепи по формулам:

$$A = Pt = IUt = I(\phi_1 - \phi_2)t = I^2R = U^2t / R;$$
(18)

$$P = IU = (\varphi_1 - \varphi_2)I = I^2R = U^2/R; \tag{19}$$

2) для неоднородного участка цепи – по формулам:

$$A = UIt = (\phi_1 - \phi_2)It + \varepsilon It; \tag{20}$$

$$P = UI = (\varphi_1 - \varphi_2)I + \varepsilon I; \tag{21}$$

3) для замкнутой цепи – по формулам:

$$A = UIt = \varepsilon It; \tag{22}$$

$$P = UI = \varepsilon I. \tag{23}$$

3.1.2. Примеры решения задач

З а д а ч а 11. Мощность автомобильного стартера 5,9 кВт. Найти работу тока за 10 с во время запуска двигателя.

Дано: P = $5,9 \cdot 10^3$ Вт; Согласно формуле (16) работа тока $A = Pt = 5,9 \cdot 10^3 \cdot 10 = t = 10$ с. t = 10 с. Найти: A. Ответ: $A = 5,9 \cdot 10^4$ Дж.

3 а д а ч а 12. При ремонте электрической плитки ее спираль укоротили на 20 %. Во сколько раз изменилась при этом мощность плитки?

 $P=U^2S/\rho_e\ell$, откуда $P_1=U^2S/\rho_e\ell_1$ и $P_2=U^2S/\rho_e\ell_2$ (при изменении сопротивления спирали напряжение на клеммах источника питания не меняется). Используя условие $\ell_2=\ell_1-0,2\ell_1=0,8\ell_1$, найдем отношение мощностей плитки

до и после ремонта: $\frac{P_2}{P_1} = \frac{U^2S}{\rho_e\ell_2} \frac{\rho_e\ell_1}{U^2S} = \frac{\ell_1}{\ell_2} = \frac{\ell_1}{0.8\ell_1}; \ \frac{P_2}{P_1} = 1,25.$

Otbet: $P_2/P_1 = 1,25$.

З а д а ч а 13. ЭДС батареи 24 В. Наибольшая сила тока, которую может обеспечить батарея, 10 А. Найти наибольшую мощность, которая может выделяться во внешней цепи.

Согласно закону Ома (12) для полной цепи

$$I = \varepsilon/(R+r) - \tag{25}$$

наибольшая сила тока, которую может обеспечить батарея, — это сила тока, соответствующая минимально возможному сопротивлению внешней цепи (R=0), — сила тока короткого замыкания. Поэтому $I_0=I_{\kappa,3}=\varepsilon/r$, откуда внутреннее сопротивление источника

$$r = \varepsilon / I_0. \tag{26}$$

Подставив уравнение (25) в выражение (24), получим:

$$P = \varepsilon^2 R / (R + r)^2. \tag{27}$$

Максимуму мощности (как функции R) соответствует равенство нулю производной: $\frac{dP}{dR} = \frac{d\left(\varepsilon^2R/(R+r)^2\right)}{dR} = \frac{\varepsilon^2(R+r)^2 - 2\varepsilon^2R(R+r)}{(R+r)^4}$. Следовательно, значение сопротивления R_m , при котором мощность максимальна, найдем, приравняв к нулю эту производную: $\frac{\varepsilon^2(R_m+r)^2 - 2\varepsilon^2R_m(R_m+r)}{(R_m+r)^4} = 0$. Отсюда

следует, что $(R_m + r) - 2R_m = 0$. Таким образом, $R_m = r$.

Подставив значение $R_m=r$ в формулу (27) и учитывая соотношение (26), получим: $P_m=\varepsilon^2R_m/(R_m+r)^2=\varepsilon^2/(4r)=\varepsilon I_0/4$. Численный расчет дает: $P_m=24\cdot 10/4=60\,\mathrm{Bt}$.

Ответ: $P_m = 60 \,\mathrm{Bt}$.

3.2. Закон Джоуля – Ленца

3.2.1. Основные формулы и обозначения

Количество теплоты Q, выделяющееся при протекании тока через неподвижный проводник, в котором не совершаются химические превращения, определяется законом Джоуля — Ленца:

$$Q = A = I^2 Rt. (28)$$

3.2.2. Примеры решения задач

Задача 14. Сколько времени потребуется для нагревания 800 г воды от 20 °C до кипения при помощи нагревателя сопротивлением 800 Ом, по которому течет ток силой 1 А (рис. 13)? Коэффициент полезного действия (КПД) нагревателя 80 %. Удельная теплоемкость воды 4200 Дж/кг·К.

Дано: Решение. КПД нагревателя определяется по формуле: $m = 0.8 \,\mathrm{kg}$; $t_1 = 20 \,{}^{\circ}\text{C};$ (29) $\eta = Q_{\Pi}/Q_{3}$. $t_2 = t_{\text{\tiny KUII}} = 100\,^{\circ}\text{C};$ где $R = 800 \,\mathrm{Om}$; $Q_{\Pi} = c_m m (t_2 - t_1)$ (30)I = 1A;И $\eta = 80 \% = 0.8$; $Q_{\alpha} = I^2 R \tau -$ (31) $c_m = 4200 \, \text{Дж/(кг·К)};$ Найти: τ.

соответственно полезное количество теплоты, которое пошло на нагревание воды, и затраченное количество теплоты, выделившееся по закону Джоуля — Ленца (28) при протекании тока через нагреватель.

Подставив выражения (30) и (31) в формулу (29), получим равенство: $\eta = c_m m(t_2-t_1)/(I^2R\tau)$. Отсюда — время нагревания $\tau = c_m m(t_2-t_1)/(I^2R\eta)$. Подстановка численных данных дает: $\tau = 4200 \cdot 0.8 \cdot (100-20)/(1^2 \cdot 800 \cdot 0.8) = 420 \, \mathrm{c}$.

Ответ: $\tau = 420 \,\mathrm{c}$.

Рис. 13

З а д а ч а 15. Спираль электрического чайника разделена на две секции, одна из которых имеет сопротивление 10 Ом. Найти сопротивление второй секции, если при параллельном включении секций в сеть вода вскипает в четыре раза быстрее, чем при последовательном. Начальная температура воды одинакова, КПД спирали не зависит от способа включения чайника.

Дано: $R_1 = 10\,\mathrm{Om};$ $\tau/\tau' = 4\,;$ $t_2' = t_2;$ $t_1' = t_1;$ $c_m = 4200\,\mathrm{Дж/(кг\cdot K)};$ Найти: R_2 .

Решение.

Схемы последовательного и параллельного соединения секций изображены на рис. 14, а и б соответственно.

Подаваемое на нагреватель напряжение U не меняется при переключении секций, поэтому, подставив в закон Джоуля — Ленца (28) закон Ома для участка цепи (7), получим, что при последовательном соединении секций за время τ выделится количество теплоты

$$Q_{2} = I^{2}R\tau = U^{2}\tau/R, \tag{32}$$

при параллельном соединении за время τ' выделится количество теплоты

$$Q_{2}' = I'^{2}R'\tau' = U^{2}\tau'/R', \tag{33}$$

где I и R — соответственно сила тока в цепи и сопротивление спирали при последовательном, а I' и R' — при параллельном соединении секций.

Рис. 14

Так как начальная и конечная температура воды в секциях в обоих случаях одинакова, на нагревание воды расходуется одинаковое количество теплоты:

$$Q_{\Pi}' = Q_{\Pi} = c_m m(t_2 - t_1). \tag{34}$$

КПД спирали неизменен: $\eta' = \eta$, следовательно, $Q'_{\Pi}/Q'_{3} = Q_{\Pi}/Q_{3}$, откуда, учитывая равенство (34), получим, что $Q_3' = Q_3$. Подставив в эту формулу выражения (32) и (33), получим: $U^2 \tau / R = U^2 \tau' / R'$, следовательно,

$$R/R' = \tau/\tau' = 4. \tag{35}$$

Общее сопротивление секций при их параллельном соединении рассчитывается по формуле (4): $R' = R_1 R_2 / (R_1 + R_2)$, при последовательном – по формуле (3): $R = (R_1 + R_2)$. Подставив эти формулы в соотношение (35), получим выражение $(R_1 + R_2)^2 / R_1 R_2 = 4$, преобразовав которое получим квадратное уравнение относительно R_2 : $R_2^2 - 2R_1R_2 + R_1^2 = 0$. Его решение записывается в виде: $R_2 = \frac{2R_1 \pm \sqrt{4R_1^2 - 4R_1^2}}{2} = R_1$. Следовательно, $R_2 = R_1 = 10$ Ом.

Ответ: $R_2 = 10$ Ом.

 $P_{\text{потр}}$:

3.3. Передача энергии и мощности тока на расстояние

3.3.1. Основные формулы и обозначения

При передаче электроэнергии (мощности, напряжения) от источника потребителю часть ее выделяется в виде тепла в подводящих проводах (рис. 15, I — сила тока в цепи; $R_{
m npos\ 1} = R_{
m npos\ 1} + R_{
m npos\ 2}$ — полное сопротивление двух подводящих проводов). При этом напряжение на клеммах источника $U_{\scriptscriptstyle \mathrm{UCT}}$ равно сумме падений напряжения в проводах $U_{\mathrm{пров}}$ и на клеммах потребителя $U_{\mathrm{потр}}$:

$$U_{\rm ист} = U_{\rm пров} + U_{\rm потр},$$
 (36) $R_{\rm пров \, 1} \, I$ а мощность на клеммах источника $P_{\rm ист}$ — сумме потерь мощности в проводах $P_{\rm пров} \, I$ и мощности потребителя $P_{\rm потр}$:

$$P_{\text{ист}} = P_{\text{пров}} + P_{\text{потр}}.$$
 (37)

3.3.2. Примеры решения задач

З а д а ч а 16. Сопротивление линии передачи 300 Ом. Какое напряжение должно быть на клеммах генератора, чтобы потери в линии не превышали 4 % от потребляемой мощности, равной 25 кВт?

Дано: $R_{\rm пров} = 300 \; {\rm OM}; \\ z = P_{\rm пров} / P_{\rm потр} = 0,04; \\ P_{\rm потр} = 25 \cdot 10^3 \; {\rm Bt}. \\ {\rm Haйtu:} \; U_{\rm ист}.$

Мощность, передаваемая от источника, расходуется на потребление и потери в проводах (выражение (37)): $P_{\rm ucr} = P_{\rm npob} + P_{\rm norp}$. Отсюда, учитывая условие задачи, получим: $P_{\rm ucr} = z P_{\rm norp} + P_{\rm norp} = P_{\rm norp} (1+z)$.

Согласно формуле (17) $P_{\text{ист}} = IU_{\text{ист}}$. Приравнивая эти соотношения друг к другу, получим: $IU_{\text{ист}} = P_{\text{потр}}(1+z)$, откуда

$$U_{\text{HCT}} = (1+z)P_{\text{HOTD}}/I. {39}$$

Подставив равенство (38) в выражение (39), получим: $U_{\rm ист} = (1+z)\sqrt{P_{\rm потр}R_{\rm пров}/z}.$ Подставив в это выражение данные задачи, найдем: $U_{\rm ист} = (1+0.04)\cdot\sqrt{25\cdot10^3\cdot300/0.04} = 1.4\cdot10^4~{\rm B}.$ Ответ: $U_{\rm ист} = 1.4\cdot10^4~{\rm B}.$

3 а д а ч а 17. Напряжение на шинах электростанции 10 кВ, расстояние от станции до потребителя 400 км. Станция должна передать потребителю мощность 100 кВт. Потери напряжения в подводящих проводах не должны превышать 4 %. Вычислить массу подводящих проводов, если они изготовлены из меди и имеют цилиндрическую форму.

Дано: $U_{\text{ист}} = 10^4 \text{ B};$ $a = 4 \cdot 10^5 \text{ m};$ $U_{\text{пров}} = 0.04 U_{\text{ист}};$ $P_{\text{потр}} = 10^5 \text{ BT};$ $\rho_e = 1.7 \cdot 10^{-8} \text{ Om·m};$ $\rho = 8.9 \cdot 10^3 \text{ кг/m}^3.$ Найти: m.

Решение.

Схема электрической цепи показана на рис. 15.

Массу проводов рассчитаем по формуле $m=\rho V$ через плотность меди ρ и объем цилиндра: $V=S\ell$, где $\ell=2a$ — длина проводов в двухпроводной линии (см. рис. 15); S — площадь поперечного сечения проводов, которая выражается из формулы (2): $R_{\rm пров}=\rho_e\ell/S$, $S=\rho_e\ell/R_{\rm пров}$, где ρ_e — удельное сопротивление меди. Объединив эти соотношения, получим:

$$m = \rho \cdot \rho_e \ell^2 / R_{\text{npob}} = 4\rho \cdot \rho_e a^2 / R_{\text{npob}}. \tag{40}$$

Чтобы найти сопротивление проводов, используем условие задачи $U_{\rm пров} = 0,04 U_{\rm ист}, \ {\rm уравнениe} \ (36):$

$$U_{\text{потр}} = U_{\text{ист}} - U_{\text{пров}} = (1 - 0.04)U_{\text{ист}}$$
 (41)

и закон Ома для однородного участка цепи (7):

$$I = U_{\text{пров}} / R_{\text{пров}} = 0.04 U_{\text{ист}} / R_{\text{пров}}.$$
 (42)

Согласно формулам (17), (41) и (42) получаемая потребителем мощность $P_{\text{потр}} = IU_{\text{потр}} = (1-0.04)IU_{\text{ист}} = (1-0.04)\cdot 0.04U_{\text{ист}}^2 / R_{\text{пров}}.$ Отсюда

$$R_{\text{пров}} = 0.96 \cdot 0.04 U_{\text{ист}}^2 / P_{\text{потр}}.$$
 (43)

Подставив соотношение (43) в формулу (40), найдем: $m = 4\rho \cdot \rho_e a^2 P_{\text{потр}} / \left(0.96 \cdot 0.04 U_{\text{ист}}^2\right).$ Произведя численный расчет, получим: $m = 4 \cdot 8.9 \cdot 10^3 \cdot 1.7 \cdot 10^{-8} \cdot (4 \cdot 10^5)^2 \cdot 10^5 / \left(0.96 \cdot 0.04 \cdot (10^4)^2\right) = 2.55 \cdot 10^6 \text{ кг}.$

Ответ: $m = 2.55 \cdot 10^6$ кг.

4. ПРАВИЛА КИРХГОФА

4.2.1. Основные формулы и обозначения

Расчет любой разветвленной цепи можно произвести, пользуясь двумя правилами Кирхгофа.

Первое правило Кирхгофа (для узлов цепи):

$$\sum_{i} I_i = 0, \tag{44}$$

где $\sum_{i} I_{i}$ — алгебраическая сумма сил токов, сходящихся в узле: сила тока, текущего к узлу, входит в уравнение (44) со знаком «+», а тока, текущего от узла, — со знаком «—».

Второе правило (для замкнутых контуров цепи):

$$\sum_{i} \varepsilon_{i} = \sum_{i} I_{i} R_{i}, \tag{45}$$

где i — номер неразветвленного участка контура, который характеризуется током силой I_i , полным сопротивлением R_i и падением напряжения $U_i = I_i R_i$;

 $\sum_{i} \varepsilon_{i}$ — алгебраическая сумма ЭДС контура: если направления обхода контура и действия сторонних сил внутри источника совпадают, то ЭДС входит в уравнение (45) со знаком «+», если противоположны, — со знаком «—»;

 $\sum_{i} I_{i}R_{i}$ — алгебраическая сумма падений напряжения в контуре: если направления обхода контура и тока на участке совпадают, то сила тока входит в уравнение (45) со знаком «+», если противоположны, — со знаком «—».

При решении задач на расчет разветвленной цепи необходимо:

- 1) произвольно выбрать и указать стрелкой направление тока на каждом неразветвленном участке цепи;
- 2) для цепи, содержащей N узлов, записать первое правило Кирхгофа для N-1 узлов (например, если N=2, то для одного любого узла);
- 3) определить число D независимых уравнений, которые могут быть составлены на основе первого и второго правил Кирхгофа, оно равно числу неразветвленных участков цепи (числу различных токов);

- 4) определить число независимых замкнутых контуров в цепи: M = D N + 1 (например, если N = 2, а D = 3, то M = 2);
- 5) найти любые M независимых контуров (например, если N=2, а D=3, то любые два контура);
- 6) произвольно выбрать направление обхода каждого взятого контура (по ходу часовой стрелки или против него);
 - 7) для каждого взятого контура записать второе правило Кирхгофа;
- 8) решить полученную систему уравнений (она имеет решение, если число независимых уравнений равно числу неизвестных), например, методом Гаусса или методом Крамера.

Если значение силы тока на каком-то участке окажется отрицательным, то в действительности ток течет на этом участке в противоположном направлении.

4.2.2. Примеры решения задач

3 а д а ч а 18. В схеме на рис. 16 ε_1 =11 В, ε_2 =4 В, ε_3 =6 В, R_1 =5 Ом, R_2 =10 Ом, R_3 =2 Ом, внутренние сопротивления источников тока пренебрежимо малы. Определить силы токов, текущих через сопротивления.

Дано: ε_1 = 11 B; ε_2 = 4 B; ε_3 = 6 B; R_1 = 5 Ом; R_2 = 10 Ом; R_3 = 2 Ом. Найти: I_1 , I_2 , I_3 .

Для расчета с помощью правил Кирхгофа выберем направление тока на каждом неразветвленном участке цепи (они указаны стрелкой на схеме рис. 16). Запишем первое правило Кирхгофа для любого из двух узлов, например, для узла А:

$$I_1 - I_2 - I_3 = 0. (46)$$

Сила тока I_1 входит в уравнение со знаком «+», так как этот ток втекает в узел, силы тока I_2 , I_3 — со знаком «—», так как эти токи вытекают из узла.

Для данной цепи на основе первого и второго правил Кирхгофа может быть составлено три независимых уравнения, так как она содержит три неразветвленных участка. Следовательно, с учетом уравнения (46) достаточно рассмотреть два независимых контура, например, контуры AGBDA и AFBGA. Выбранные произвольно направления обхода этих контуров («по часовой стрелке») указаны на схеме. Уравнения, составленные по второму правилу Кирхгофа для контуров AGBDA и AFBGA соответственно, имеют вид:

$$I_1 R_1 + I_2 R_2 = \varepsilon_1 - \varepsilon_2; \tag{47}$$

$$I_3 R_3 - I_2 R_2 = \varepsilon_2 - \varepsilon_3. \tag{48}$$

ЭДС ε_1 входит в уравнение (47), а ε_2 — в уравнение (48) со знаком «+», так как направления обхода контуров и действия сторонних сил внутри источника на соответствующих участках совпадают (см. рис. 16). ЭДС ε_2 входит в уравнение (47), а ε_3 — в уравнение (48) со знаком «—», так как направления обхода контура и действия сторонних сил противоположны. Силы тока I_1 и I_2 входят в уравнение (47), а сила тока I_3 — в уравнение (48) со знаком «+», так как направления обхода контура и тока на соответствующих участках совпадают. Сила тока I_2 входит в уравнение (48) со знаком «—», так как направления обхода контура и тока на соответствующих участках совпадают. Сила тока I_2 входит в уравнение (48) со знаком «—», так как направления обхода контура и тока на соответствующем участке противоположны.

Подставляя известные численные значения сопротивлений участков цепи и ЭДС источников тока в уравнения (46) – (48), получим систему трех линейных уравнений с тремя неизвестными $I_1,\ I_2,\ I_3$:

$$\begin{cases} I_1 - I_2 - I_3 = 0; \\ 5I_1 + 10I_2 + 0I_3 = 7; \\ 0I_1 - 10I_2 + 2I_3 = -2. \end{cases}$$
(49)

Решение такой системы дается формулами Крамера:

$$I_i = \frac{\Delta_i}{\Lambda}, \ i = 1, 2, 3,$$
 (50)

где Δ – определитель системы (49); Δ_i – определитель при неизвестном I_i .

Определители вычисляются по значениям коэффициентов системы (49):

$$\Delta = \begin{vmatrix} 1 & -1 & -1 \\ 5 & 10 & 0 \\ 0 & -10 & 2 \end{vmatrix} = 80; \ \Delta_1 = \begin{vmatrix} 0 & -1 & -1 \\ 7 & 10 & 0 \\ -2 & -10 & 2 \end{vmatrix} = 64;$$

$$\Delta_2 = \begin{vmatrix} 1 & 0 & -1 \\ 5 & 7 & 0 \\ 0 & -2 & 2 \end{vmatrix} = 24; \ \Delta_3 = \begin{vmatrix} 1 & -1 & 0 \\ 5 & 10 & 7 \\ 0 & -10 & -2 \end{vmatrix} = 40.$$

Подставив в формулу (50) значения соответствующих определителей, получим: I_1 = 0,8 A, I_2 = 0,3 A, I_3 = 0,5 A.

Заметим, что при решении системы (49) методом подстановок удобно выразить силы тока I_1, I_3 через I_2 , используя соответственно второе и третье уравнения системы:

$$I_1 = 1, 4 - 2I_2; (51)$$

$$I_3 = -1 - 5I_2, (52)$$

и, подставив выражения в первое уравнение: $(1,4-2I_2)-I_2-(-1-5I_2)=0$, найти силу тока I_2 . После подстановки значения $I_2=0,3$ А в соотношения (51),(52) вычисляются значения сил тока I_1,I_3 .

Otbet:
$$I_1 = 0.8$$
 A; $I_2 = 0.3$ A; $I_3 = 0.5$ A.

Библиографический список

- 1. Т р о ф и м о в а Т. И. Краткий курс физики / Т. И. Т р о ф и м о в а. М., 2012. 352 с.
- 2. Детлаф А. А. Курс физики / А. А. Детлаф, Б. М. Яворский. М., 2014. 720 с.
- 3. Савельев И.В. Курс общей физики: В 5 т. Т. 2. Электричество и магнетизм / И.В. Савельев. СПб, 2011. 348 с.
- 4. Практикум по физике. Часть 2. Электричество и магнетизм. Колебания: Методические указания к решению задач по физике / Т. А. А р о н о в а, С. В. Вознюк и др. / Омский гос. ун-т путей сообщения. Омск, 2014. 40 с.
- 5. К р о х и н С. Н. Контрольная работа № 2 по физике для студентов заочного факультета: Методические указания к решению задач и выполнению контрольных работ для студентов заочного факультета / С. Н. К р о х и н, Ю. М. С о с н о в с к и й / Омский гос. ун-т путей сообщения. Омск, 2012. 36 с.

Учебное издание

КУРМАНОВ Рамиль Султангареевич, ТОДЕР Георгий Борисович

ПОСТОЯННЫЙ ЭЛЕКТРИЧЕСКИЙ ТОК. ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

Учебно-методическое пособие

Редактор Н. А. Майорова

Подписано в печать 13.10.2016. Формат $60 \times 84^{1/16}$. Офсетная печать. Бумага офсетная. Усл. печ. л. 1,7. Уч.-изд. л. 1,9. Тираж 800 экз. Заказ

**

Редакционно-издательский отдел ОмГУПСа Типография ОмГУПСа

*

644046, г. Омск, пр. Маркса, 35