Rozhodněte, zda lze čtvercovou tabulku 4 × 4 vyplnit navzájem různými přirozenými čísly od 1 do 16 tak, že v každém řádku i každém sloupci existuje číslo, jehož sedminásobek je součtem zbylých tří čísel.

Úvod

Každý řádek n čtvercové tabulky vypadá následovně:

$$egin{bmatrix} a_n & b_n & c_n & d_n \end{bmatrix}$$

Číslo, jehož sedminásobek je roven součtu ostatních čísel v řádku bude vždycky a_n :

$$7 \cdot a_n = b_n + c_n + d_n$$

A součet čísel v řádku označíme s_n :

$$\begin{split} s_n &= a_n + b_n + c_n + d_n \\ s_n &= a_n + 7 \cdot a_n \\ s_n &= 8 \cdot a_n \end{split}$$

Součet celé tabulky

V tabulce jsou přirozená čísla od 1 do 16, takže k najití součtu můžeme využít vzoreček pro součet přirozených čísel od 1 do n:

$$s = \frac{n \cdot (n+1)}{2} = \frac{16 \cdot 17}{2} = 136$$

Součet celé tabulky se samozřejmě rovná součtu všech řádků:

$$s_1 + s_2 + s_3 + s_4 = s = 136$$

$$8 \cdot a_1 + 8 \cdot a_2 + 8 \cdot a_3 + 8 \cdot a_4 = 136$$

$$8 \cdot (a_1 + a_2 + a_3 + a_4) = 136$$

$$a_1 + a_2 + a_3 + a_4 = 17$$

Ohraničení a_n

$$a_n = \frac{b_n + c_n + d_n}{7}$$

Největší čísla, která můžeme dosadit za b_n, c_n , a d_n jsou 14, 15, a 16:

$$a_n \le \frac{14 + 15 + 16}{7}$$
$$a_n \le 6.4$$

A vzhledem k tomu, že a_n je přirozené, tak horní hranice pro a_n je 6.

$$a_n \leq 6$$

Kdyby bylo a_n rovno 1, tak nejmenší čísla, která můžeme dosadit za b_n, c_n , a d_n jsou 2, 3, a 4. Jejich součet (2+3+4=9) však přesahuje sedminásobek a_n $(7\cdot 1=7)$.

$$a_n \neq 1$$

Takže nám nakonec zbyde jen 5 možností pro a_n :

$$a_n \in \{2, 3, 4, 5, 6\}$$

Pořád platí, že čísla v tabulce musí být různá, tím pádem i a_n musí být různá. Jaká musí tedy být jednotlivá a_n ? Vybíráme 4 čísla z 5prvkové množiny $\{2,3,4,5,6\}$, jejichž součet musí být roven 17, takže stačí zjistit, které číslo vynecháme.

$$2+3+4+5+6=20$$

 $20-17=3$

Vynecháváme 3, takže pro \boldsymbol{a}_n zbývá:

$$a_n \in \{2,4,5,6\}$$

Označme si nejmenší z nich:

$$a_1 = 2$$

Finiš

Vyjma a_n nám do tabulky zbývá dát:

$$b_n, c_n, d_n \in \{1, ..., 16\} - \{2, 4, 5, 6\}$$

$$b_n, c_n, d_n \in \{1, 3\} \cup \{7, ..., 16\}$$

Jediné b_n , c_n , a d_n , rovnající se sedminásobku a_1 (14) jsou 1, 3, a 10. Proč? Kdyby bylo nejmenší číslo součtu 7 (nebo i vyšší číslo), tak nemáme šanci najít další 2 čísla aby součet vycházel 14. Takže tam musí být něco menšího než 7 (1 nebo 3). Trojici poté nalézáme metodou pokus - omyl.

$$7 \cdot a_1 = b_1 + c_1 + d_1$$
$$7 \cdot 2 = 1 + 3 + 10$$
$$14 = 14$$

Jenže my potřebujeme ještě jednu trojici (otazníky) se součtem 14, protože i součet sloupce musí být roven sedminásobku a_1 .

a_1	b_1	c_1	d_1
?			
?			
?			

Za ? nemůžeme použít jiné a_n , protože ty máme celkově jenom 4, takže kdybychom jedno z nich dali do sloupce společně s a_1 , tak bude v jiném sloupci a_n chybět.

Takže čtvercovou tabulku 4 × 4 NELZE vyplnit navzájem různými přirozenými čísly od 1 do 16 tak, že v každém řádku i každém sloupci existuje číslo, jehož sedminásobek je součtem zbylých tří čísel. ■