Machine Learning for Gravitational Waveforms from Binary Neutron Star mergers

Jacopo Tissino Advisors: Dr. Sebastiano Bernuzzi, Dr. Michela Mapelli

2021-10-21

GW170817: the first BNS merger detection

Time-frequency representation of the chirping waveform (Abbott et al. 2017).

BBH merger waveform

BNS merger waveform

The basics of GW data analysis

The signal is modelled as $s(t) = h_{\theta}(t) + n(t)$, where:

- the noise n(t) is taken to be stationary, with zero mean, and Gaussian with power spectral density $S_n(f)$;
- the signal $h_{\theta}(t)$ from a binary neutron star merger depends on:
 - intrinsic parameters: mass ratio $q = m_1/m_2$, spins $\vec{\chi}_1$ and $\vec{\chi}_2$, tidal polarizabilities Λ_1 and Λ_2 ;
 - extrinsic parameters: total mass $M=m_1+m_2$, luminosity distance D_L , inclination ι . . .

The Wiener distance

The likelihood used in parameter estimation reads (Maggiore 2007):

$$\Lambda(s|\theta) \propto \exp\left((h_{\theta}|s) - \frac{1}{2}(h_{\theta}|h_{\theta})\right),$$
 (1)

where (a|b) is the Wiener product:

$$(a|b) = 4 \operatorname{Re} \int_0^\infty \frac{\widetilde{a}^*(f)\widetilde{b}(f)}{S_n(f)} \, \mathrm{d}f \ . \tag{2}$$

Models and accuracy

The main strategies for the generation of theoretical waveforms are:

- numerical relativity;
- effective one body;
- post-Newtonian.

Their accuracy is computed according to the mismatch

$$\mathcal{F}[h_1, h_2] = 1 - \max_{t_0, \phi_0} \underbrace{\frac{(h_1|h_2(t_0, \phi_0))}{\sqrt{(h_1|h_1)(h_2|h_2)}}}_{\cos \theta}. \tag{3}$$

Amplitudes

Phases

mlgw_bns structure

Residuals: amplitude

Residuals: phase

PCA mismatches

Hyperparameter optimization

Pareto-front Plot

Fidelity

Amplitude reconstruction residuals

Phase reconstruction residuals

Evaluation time, varying initial frequency.

Evaluation time, varying initial frequency.

Evaluation time: $f_0 = 12 \,\text{Hz}$, downsampling.

Profiling the evaluation: 2×10^6 interpolation points

Profiling the evaluation: 8×10^3 interpolation points

Conclusions

- mlgw_bns is a surrogate model trained on effective one body waveforms;
- it is accurate (enough not to bias parameter estimation);
- it is fast(er than the state-of-the-art model it is trained on).

Fourier transform issues

Fourier transform issues

Fourier transform issues

Natural units and quadrupolar approximation

$$\frac{\left|\widetilde{h}(f)\right|}{M} \approx \frac{1}{\pi^{2/3}} \sqrt{\frac{5}{24}} (Mf)^{-7/6} \frac{M}{r} \sqrt{\frac{m_1 m_2}{M^2}}$$
 (4)

$$\left|h_{+}(f)\right| = \frac{1 + \cos^{2} \iota}{2} \left|h(f)\right| \tag{5}$$

$$|h_{\times}(f)| = \cos \iota |h(f)|. \tag{6}$$

Fidelity requirements

For detection: with a mismatch ${\mathcal F}$ we miss approximately a fraction

$$1 - (1 - \mathcal{F})^3 \tag{7}$$

of the signals.

For parameter estimation: in order for the modelling error to be at a 1σ level we need

$$\mathcal{F} \lesssim \frac{D}{2\mathsf{SNR}^2}$$
, (8)

where D is the number of intrinsic parameters we estimate.

Power Spectral densities and GW170817

Fidelity compared to TF2

Bibliography

Maggiore, Michele (Nov. 24, 2007). Gravitational Waves: Volume
1: Theory and Experiments. 1 edition. Oxford: Oxford University
Press. 576 pp.