ESTADÍSTICA TÉCNICA

AUTOEVALUACIONES

Unidad Temática 1: Introducción a la Estadística Descriptiva y al Análisis de Datos

- 1. La media aritmética de un conjunto de datos siempre coincide con alguno de los valores centrales del conjunto de valores observados.
- 2. La media aritmética es siempre un valor comprendido entre los valores máximo y mínimo observados.
- 3. La media aritmética siempre es la mejor medida de tendencia central de un conjunto de datos.
- 4. La media y mediana de un conjunto de datos no siempre coinciden.
- 5. La media de un conjunto de datos siempre es mayor que la mediana.
- 6. La mediana es una medida de la variabilidad de un conjunto de datos numéricos.
- 7. La mediana es una medida de tendencia central sensible a los valores extremos de la muestra.
- 8. La media aritmética es la medida que mejor describe la posición central del siguiente conjunto de datos (1; 2; 3; 3; 1; 2; 2; 1; 312).
- 9. Las medidas de tendencia central, en una muestra, proporcionan un resumen apropiado y acabado del conjunto de datos.
- 10. Le rango es una medida de dispersión muy fácil de calcular.
- 11. **U**na medida de tendencia central muy utilizada es la desviación estándar de la muestra.
- 12. <u>V</u> Si la unidad de medida de la desviación estándar de una variable se expresa en metros, la varianza estará expresada en metros cuadrados.
- 13. La suma de las desviaciones respecto de la media aritmética siempre es igual a cero.
- 14. V Los datos numéricos de estudios observacionales o de experimentos diseñados pueden ser discretos o continuos.
- Las medidas de tendencia central y de dispersión sólo pueden calcularse para datos continuos.
 - 16. La media de un conjunto de datos es simplemente un promedio.
 - 17. La media y mediana de un conjunto numérico de datos son siempre valores muy próximos entre sí.
 - 18. La varianza de la muestra es una medida de tendencia central.
 - 19. La desviación estándar de la muestra es igual a la raíz cuadrada de la varianza.
 - 20. Los percentiles son medidas de dispersión.
 - 21. El coeficiente de variación es de utilidad cuando se quieren comparar dos muestras que tienen la misma media.
- 22. ____ Si el modo es la mayor de las medidas de tendencia central, la distribución es asimétrica a derecha.
 - 23. Y Si una distribución tiene sesgo positivo, es asimétrica a derecha.
- → 24. Las medidas de forma son suficientes para describir un conjunto de datos.
 - 25. El tercer cuartil es el valor que deja por debajo de él, el 25% de los datos.
- ► 26. La simetría se da si la media, la mediana y la moda coinciden, en todo conjunto de datos.
 - 27. El k-ésimo percentil es el valor de la variable, tal que el k% de las observaciones están por debajo de él y el (100-k)% se encuentra por encima de él.

- 28. ____ Una distribución con un apuntamiento mayor que el normal tiene una varianza menor que la distribución normal.
- 29. ____ Cualquier función de las variables aleatorias comprendida entre cero y uno inclusive, que forman una muestra aleatoria, se llama estadística.
- 30. Las estadísticas que en general se utilizan para medir el centro de un conjunto de datos acomodados en orden de magnitud, son la media, mediana y moda.
- 31. La media es siempre la mejor medida de tendencia central de un conjunto de datos.
- 32. La media es una medida que no tiene desventajas.
- 33. La mediana se acerca más que la mediaºa la posición central de los datos, cuando las observaciones están influidas por valores extremos.
- 34. La media es una medida más estable que la mediana cuando estimamos el centro de una población con base en el valor de una muestra, ya que al seleccionar muestras de una población, las medias de las muestras, en general, no variarán tanto de una muestra a otra como las medianas.
- 35. Todo conjunto de datos presenta sólo una moda.
- 36. Dado un conjunto de datos, la moda puede no existir, y cuando existe no necesariamente es única.
- 27. La moda de un conjunto de datos tiene la ventaja de ser una medida que sólo requiere contar valores y que se utiliza tanto para datos cuantitativos como cualitativos.
- 38. El rango es una medida de variabilidad que nos describe cómo se distribuyen los valores intermedios de la variable.
- El rango es una medida de variabilidad que siempre resulta mayor o igual que cero.
- 5. El rango de una variable aleatoria discreta uniforme siempre es igual a cero.
- 41. Las gráficas de probabilidad normal y gráficas de cuantiles se utilizan para realizar una verificación diagnóstica de la suposición de que los datos provienen de una población con distribución normal.
- 42. Las estadísticas obtenidas de las muestras nos proporcionan información acerca de la tendencia central de los datos y de su dispersión, mientras que la presentación gráfica de los datos agrega información adicional en términos de imagen.
- 43. V El gráfico de caja y extensión es una representación que muestra, para muestras razonablemente grandes, el centro de la localización, la variabilidad y el grado de asimetría de los datos.
- 44. Los gráficos de caja y extensión no permiten realizar comparaciones visuales entre muestras.
- 45. La diferencia entre el tercer cuartil y el primer cuartil se denomina rango intercuartil.
- 46. V El percentil cincuenta de un conjunto de datos siempre coincide con el segundo cuartil.
- 47. Si el valor del sexto decil de un conjunto de datos es igual a 8, significa que la sexta parte de los datos son iguales o inferiores a 8.
- 48. Tres de los datos necesarios para construir un gráfico de caja y extensión son: el primer cuartil, la mediana y el percentil setenta y cinco.
- 49. Datos apartados son aquellos que se encuentran por encima del tercer cuartil y por debajo del primer cuartil, más allá de 1,5 veces el rango intercuartil.
- 50. En el gráfico de caja y extensión, la caja siempre encierra al 50% de las observaciones.
- En el histograma de frecuencias, si existe una clase modal, esta se puede identificar claramente, mientras que en el gráfico de caja y extensión, es muy fácil identificar la mediana de la variable en estudio.
- 52. Le gráfico de caja nos permite 'ver' las características de un conjunto de datos.
- 53. El gráfico de caja sirve para comparar la misma variable en dos muestras distintas.

- = 54. El diagrama de dispersión da una idea sobre el comportamiento del conjunto de datos analizados y es suficiente para analizar la relación existente entre ellos.
- - 56. Si Y aumenta a medida que aumenta X, r es positivo.
 - 57. Cuando se define la recta de regresión y = a+b.x, se puede estimar, a partir de ella, el valor de y para cualquier valor de x.
- ►58. ____ r².100% se interpreta como el porcentaje de la variabilidad de y que x puede explicar.
- 59. Y El signo de la covarianza depende de los valores de X y de Y.
- ← 60. Y Si las variables analizadas son independientes, el coeficiente de correlación vale 0 (cero).
 - 61. Le coeficiente de determinación varía entre 0 y 1.
- 62. ____ Podemos definir una dependencia funcional entre fenómenos aleatorios.
 - 63. El análisis de datos proporciona una importante información estadística que nos abre las puertas para estudios posteriores.

Unidad Temática 2: Probabilidad

1	El término <i>experimento estadístico</i> se utiliza para describir cualquier proceso que genere un conjunto de datos aleatorios.
2	Se denomina espacio muestral, al conjunto de todos los resultados posibles de un experimento estadístico.
3	Denominamos evento solamente a aquel conjunto que contiene los puntos muestrales que consideramos de nuestro interés, obtenidos de un experimento aleatorio.
4	Dados los resultados de un experimento aleatorio, es posible definir un subconjunto del espacio muestral, S, que se denomina conjunto vacío y que no contiene elemento alguno.
5	La intersección de dos eventos G y H da por resultado el evento que contiene a todos los elementos que pertenecen a G o a H o a ambos eventos.
б	Un evento está formado por una colección de puntos muestrales, que constituye un subconjunto del espacio muestral.
7	Dados dos eventos no excluyentes e independientes, A y B , se puede comprobar que si $P(A) = 0.15$ y $P(B) = 0.40$, entonces se cumplirá que $P(A \cap B) = 0.55$.
8	Dados dos eventos complementarios D y E , se cumple que $P(D) + P(E) = 1$.
9	Si después de lanzar un dado legal diez veces los resultados son: {2, 3, 5, 1, 5, 4, 1, 3, 4, 2}, se puede afirmar que la probabilidad de que el resultado de un nuevo lanzamiento sea el 6, es igual a 1/6.
10	
11	
	0,5.
12	
· - ·	probabilidad de que al lanzarla tres veces obtenga dos caras.
13	
	es igual a 0,30, y que la probabilidad de que mañana la temperatura en Mendoza alcance los 20° C es igual a 0,70. Dado que el riesgo país disminuye efectivamente cien puntos al finalizar el día, se puede afirmar que la probabilidad de que mañana la temperatura en Mendoza alcance los 20° C es igual a 0,21.
14	Si al realizar un experimento estadístico la ocurrencia de un evento es físicamente imposible, el cálculo de la probabilidad de ocurrencia de tal evento, en determinadas situaciones
	particulares, puede arrojar valores menores que cero.
15	_ El teorema de la probabilidad total exige que el espacio muestral esté constituido por una partición de subconjuntos mutuamente excluyentes.
16	_ Dado un experimento estadístico en el que pueden ocurrir los eventos H y K, se puede veri-
	ficar que $P(K \cap H) = P(K/H).P(K)$.
17	Si se sabe que una moneda está cargada con P(CARA) = 2/3 y P(CRUZ) = 1/3, se puede afirmar que la probabilidad de que al lanzarla dos veces se obtengan dos caras es igual a 4/9.
18	Si arrojamos un dado legal dos veces, el espacio muestral finito está compuesto por 36 eventos simples.
19	La probabilidad de que la suma de los resultados obtenidos al lanzar dos dados legales sea
17	igual a dos, es igual a 2/36.
20.	igual a dos, es igual a 2/36 Si dos eventos V y L son complementarios, siempre y sin restricción alguna se puede veri-
	ficar que $P(V \cap L) = 0$.
2.1	Si la $P(A/B) = 2/3$ y la $P(A') = 1/3$, los eventos A y B son independientes.
- · ·	_ STATE (III) = 10 j la I (II j = 1/5, 100 0 f ontob II j D bott independience.

22. ____ Si A y B son eventos cualesquiera, entonces $P(A \cup B) = P(A) + P(B)$, siempre y sin restricción alguna. 23. ____ Dos eventos M y N son complementarios si se cumple que P(M) + P(N) = 0. 24. Se dice que dos eventos A y B son independientes si se cumple la siguiente igualdad: $P(A \cap B) = P(A) + P(B)$. 25. ____ Dos eventos J y K son independientes si y sólo si P(J/K) = P(J) . P(K). 26. ____ Una regla multiplicativa importante está dada por el teorema que dice que si en un experimento aleatorio pueden ocurrir los eventos M y N, entonces se cumple $P(M \cap N) =$ P(M/N).P(N). 27. ____ El teorema o Regla de Bayes se utiliza para calcular probabilidades entre eventos independientes. 28. Si el espacio muestral para un experimento contiene N elementos, los cuales tienen la misma probabilidad de ocurrencia, asignamos una probabilidad igual a 1/N a cada uno de los *N* elementos. 29. Si una moneda está balanceada, la probabilidad de obtener una cara en un lanzamiento es igual a la probabilidad de obtener una cruz y vale 0,25. 30. ____ Para calcular la probabilidad de obtener un seis al lanzar un dado legal, es necesario utilizar la definición de la probabilidad frecuencial o de frecuencia relativa. 31. ____ Dados dos eventos A y B no excluyentes e independientes, con probabilidad de ocurrencia de cada uno de ellos P(A) = 0.40 y P(B) = 0.30, entonces se cumple que la $P(A \cap B) = 0.20$. 32. ____ Dados dos eventos A y B no excluyentes e independientes, con probabilidad de ocurrencia de cada uno de ellos P(A) = 0.45 y P(B) = 0.35, entonces se cumple que la P(A/B) = 0.45. Dados dos eventos no excluyentes e independientes, A y B, con P(A) = 0.15 y P(B) = 0.40, entonces se cumple que la $P(A \cap B) = 0.55$. 34. ____ Dados dos eventos J y K mutuamente excluyentes, con P(J) = 0.20 y P(K) = 0.10, se cumple que la $P(J \cap K) = 0.02$. 35. ____ Dados tres eventos mutuamente excluyentes, A, B y C, es posible verificar siempre que la $P(A \cup B \cup C) = P(A) + P(B) + P(C)$. 36. ____ Dados dos sucesos disjuntos A y B, con P(A) = 0.30 y P(B) = 0.20, entonces se cumplirá que $P(A \cap B) = 0.60$.

37. ____ La probabilidad de ocurrencia de un evento cualquiera A varía entre $-\infty$ y $+\infty$.

Unidad Temática 3: Variables aleatorias y distribuciones de probabilidad

	oto de variable aleatoria-Distribuciones discretas y continuas de probabilidad
1	Una variable aleatoria es una función que asigna un número real a cada resultado en el espacio muestral de un experimento aleatorio.
2	Por convención, las variables aleatorias se denotan con una letra mayúscula, por ejemplo
	X, y los particulares valores posibles de la misma, con su correspondiente letra minúscula,
_	en este ejemplo x.
3	Nunca es posible definir más de una variable aleatoria sobre un mismo espacio muestral.
4	El conjunto de los posibles valores que puede tomar una variable aleatoria X recibe el nombre de <i>rango de X</i> .
5	Una variable aleatoria se llama variable aleatoria discreta cuando tiene un <i>rango</i> finito o infinito numerable.
6	Un espacio muestral que contiene un número finito o infinito numerable de resultados
7	posibles de un experimento aleatorio, se denomina espacio muestral discreto.
7	El volumen de nafta que se pierde por evaporación durante el llenado del tanque de combustible, es una variable aleatoria discreta.
8	El número de moléculas raras presentes en una muestra de aire es una variable aleatoria
o	continua.
9	Las variables aleatorias se pueden clasificar en discretas y continuas.
10	Cuando una variable aleatoria puede tomar valores en una escala continua, se le denomina
	variable aleatoria continua.
11	
	mientras que las variables aleatorias discretas representan datos que se obtienen de vez en cuando.
12	
	datos <i>medidos</i> , mientras que las variables aleatorias discretas representan datos <i>contados</i> .
13	
	discreta.
14	
	localidad determinada en tres momentos del día, la temperatura media diaria es una varia-
15	ble aleatoria discreta. El número de sismos que ocurren por año en un lugar determinado, es una variable aleato-
13	ria discreta.
16.	El número de conexiones soldadas que no cumplen con ciertos estándares de calidad, de
	las 800 que tiene un circuito impreso, es una variable aleatoria discreta.
17	El tiempo promedio que tardan los alumnos de estadística en resolver su examen final, es
	una variable aleatoria continua.
D:	
	uciones discretas de probabilidad
18	El conjunto de pares ordenados $(x, f(x))$ se llama función de probabilidad, función masa de probabilidad o distribución de probabilidad de la variable aleatoria discreta X .
19	Otros autores expresan que la distribución de probabilidad para una variable aleatoria
±/·	discreta X es una tabla, gráfica o fórmula que da la probabilidad $f(x)$ asociada a cada posi-
	ble valor x .
20	La probabilidad de que la variable aleatoria discreta X tome valores menores o iguales
	que el particular valor x, está dada por el valor de la función de probabilidad $f(x)$.

21	La función de probabilidad $f(x)$ de una variable aleatoria discreta X , siempre y sin restric-
	ciones, toma valores iguales o mayores que cero.
22	_ Tanto en el caso de variables aleatorias discretas como continuas, la probabilidad de que
	la variable aleatoria Y tome el particular valor y , está dado por el valor de $f(y)$.
23	La distribución acumulada $F(x)$, de una variable aleatoria discreta X , se define sólo para
	los valores que toma la variable aleatoria dada.
24	•
	probabilidad $f(x)$, varía entre $-\infty$ y $+\infty$.
25	
	ya sea con una línea punteada perpendicular al eje o con una línea sólida. Las distancias
	de los puntos al eje están dadas por las probabilidades $f(x)$, medidas en el eje de ordena-
	das.
26	
	bases, de igual ancho, se centren en cada valor de x , y sus alturas sean iguales a las pro-
	babilidades dadas por $f(x)$.
27	
	graficando los puntos $(x, F(x))$, y queda representada por una función escalonada.
28.	Una variable aleatoria discreta sólo puede tomar valores mayores que cero.
29.	Dada una variable aleatoria discreta X con función de probabilidad $f(x)$, siempre se cum-
	ple la siguiente igualdad: $P(X < x) = P(X \le x)$.
30	
20	f(3)=0.15, debe interpretarse que la probabilidad de que dicha variable exceda el valor 3
	es 0,15.
31	
	bemos interpretar que la probabilidad de que la variable aleatoria X tome el valor 2 es
	igual a 0,4.
32	
	variable aleatoria discreta X , es que $-1 \le f(x) \le +1$.
33	• • • • • • • • • • • • • • • • • • • •
	da la probabilidad de que la variable aleatoria tome el particular valor x_1 .
	on in proceeding to que in Aminore menoria como er puritosiar Amor Mi
Dictri	buciones continuas de probabilidad
	_ La probabilidad de que una variable aleatoria continua tome <i>exactamente</i> uno de sus valo-
34	res posibles es igual a cero.
35	
<i>33</i>	de las formas posibles de expresar la distribución de probabilidad de una variable aleato-
	ria continua X.
36	
<i>5</i> 0	cumple siempre que la $P(X < x) = P(X \le x)$.
37	En la representación gráfica de la función de densidad de probabilidad $f(x)$ de una varia-
37	ble aleatoria continua X , las áreas encerradas por la curva y el eje de abscisas, representan
	probabilidades.
38	La función de densidad de probabilidad $f(x)$ de una variable aleatoria continua X , siempre
٥٥	y sin restricciones, toma valores iguales o mayores que cero.
39	y sin restricciones, tonia valores iguales o mayores que cero. La función de densidad de probabilidad $f(y)$ de una variable aleatoria continua Y , no pue-
۵)	de tomar valores mayores que uno.
40	
	de distribución acumulada toma el valor 0.5 .
	, ·

41	· · · · · · · · · · · · · · · · · · ·
42	de densidad de probabilidad inferior a uno.
42	7 1
	densidad de probabilidad es $f(x_1) = 0$, se debe concluir que es imposible que la variable
12	aleatoria tome ese particular valor x_I .
43	<u> </u>
	y función de distribución acumulada $F(u)$, siempre se cumple lo siguiente: $P(u_1 \le U < u_2)$
4.4	$= F(u_2) - F(u_1)$, donde $u_2 > u_1$ son particulares valores de la variable aleatoria U .
44	· · · · · · · · · · · · · · · · · · ·
	siempre se cumple lo siguiente: $P(a \le V < b) = P(a \le V \le b)$, donde a y b son particulares
4.5	valores de la variable aleatoria <i>V</i> .
45	
1.0	drá definirse sólo para los valores positivos de la variable.
46	· · · · · · · · · · · · · · · · · · ·
	en la representación gráfica de $f(x)$ en función de x , la probabilidad de que la variable to-
47	me el particular valor x_I se lee en el eje de ordenadas para el particular valor x_I .
47	La función de la distribución acumulada $F(x)$ de una variable aleatoria continua X no to-
	ma valores menores que cero.
Dietvih	puciones empíricas
	La función de probabilidad para el caso de variables aleatorias discretas y la función de
40	densidad de probabilidad para el caso de variables aleatorias discretas y la función de densidad de probabilidad para el caso de variables aleatorias continuas, son formas de ca-
	racterizar la distribución de probabilidad de una población.
49	1
	La única manera de determinar el número de intervalos de clase en una tabla de distribu-
50	ción de frecuencias, es construyendo previamente el diagrama de tronco y hojas.
51	Una distribución que carece de simetría con respecto a un eje vertical, se dice que es asi-
<i>0</i> 1	métrica o sesgada.
52	e
o 2.	la desviación estándar de la variable es igual a cero.
53	<u> </u>
	los datos con los cuales se ha construido el mismo, toma un valor negativo.
54.	Si el valor del sexto decil de un conjunto de datos es igual a 8, significa que la sexta parte
	de los datos son iguales o inferiores a 8.
55	El valor del quinto decil es igual al valor del segundo cuartil.
	El percentil cincuenta de un conjunto de datos siempre coincide con el segundo cuartil.
	Los puntos de cuartiles se pueden leer rápidamente en la gráfica de la distribución acumu-
	lada.
58	Los puntos de percentil se pueden leer rápidamente en el eje de ordenadas del histograma
	de frecuencias relativas.
59	Para identificar fácilmente la moda de un conjunto de datos representados gráficamente,
	es conveniente utilizar la gráfica de la distribución acumulada de la variable aleatoria es-
	tudiada.
60	_ Cuando los alumnos estudian y rinden un examen de estadística que les resulta muy fácil,
	la representación de las calificaciones se espera que dé como resultado una distribución
	sesgada a la izquierda.
61	Para cualquier distribución de probabilidad que sea simétrica, media, mediana y moda son
	coincidentes

Estadística Técnica AUTOEVALUACIONES 8

Distrib	ouciones de probabilidad conjunta
62	Los resultados de un experimento estadístico pueden dar lugar al estudio de una o más variables aleatorias.
63	Para el caso de dos variables aleatorias discretas, X y Y, la función de probabilidad con-
64	junta, $f(x,y)$, da la probabilidad de que ocurran los valores x y y al mismo tiempo.
64	
	los empleados de una empresa en un mes cualquiera del año, y Z el mes del año en que la
	solicitan, expresado en números del uno al doce. Si la función de probabilidad conjunta
	de Y y Z toma el valor $f(5,12) = 0.45$, debe interpretarse que la probabilidad de que cinco
	empleados soliciten licencia por enfermedad en el mes de diciembre, es por lo menos
65	igual a 0,45.
65	
66	probabilidad conjunta de las variables aleatorias discretas X y Y.
66	
	f(y,z), la representación gráfica de la misma dará una superficie sobre el plano yz , y puedo
	medir la $P[(Y, Z) \in A]$, donde A es cualquier región en el plano yz , en la escala graduada
67	de un eje perpendicular al plano yz.
67	Las variables aleatorias continuas Y y Z , con función de densidad conjunta $f(y,z)$, no pueden tomar valores menores que cero.
68	
06	es posible obtener las distribuciones marginales de X y Y , a partir de $f(x,y)$.
69	
07	Siempre se cumple que la suma de los valores de la distribución marginal de cualquiera
	de las variables sobre todos lo valores de la misma, es igual a uno.
70.	Las distribuciones marginales de las variables aleatorias continuas $Y y Z$, son en realidad
, o	las distribuciones de probabilidad de las variables individuales Y y Z solas.
Indene	endencia estadística
-	La simbología $f(x,y)$ debe leerse: probabilidad de que la variable aleatoria X tome el parti-
	cular valor x y que la variable aleatoria Y tome el particular valor y .
72.	La simbología $f(x/y)$ debe leerse: probabilidad de que la variable aleatoria X tome el par-
	ticular valor x , dado que la variable aleatoria Y toma el particular valor y .
73	Cuando $f(y/z)$ depende de z , la distribución condicional de la variable aleatoria Y dado
	que $Z = z$, es igual a la distribución marginal de la variable aleatoria Y.
74	Si $f(x/y)$ no depende de y , se cumple que $f(x/y) = g(x)$ y $f(x,y) = g(x)$. $h(y)$.
	Las variables aleatorias discretas Y y Z son estadísticamente independientes, si y sólo si,
	la función de distribución de probabilidad conjunta de las mismas es igual al producto de
	las distribuciones marginales, para toda (y, z) dentro de sus rangos.
76	Si se verifica algún punto (y, z) para el que $f(y,z) \neq g(y).h(z)$, las variables aleatorias dis-
	cretas Y y Z no son estadísticamente independientes.
77	Si se cumple que $f(x,y) = P(X=x, Y=y)$ entonces las variables aleatorias discretas X, Y, Y
	son estadísticamente independientes.
78	Dadas las variables aleatorias discretas Y y Z , con $f(2,1) = 7/5$; $g(2)=4/5$ y $h(1)=3/5$, se
	puede afirmar que las variables aleatorias discretas Y y Z son estadísticamente indepen-
	dientes

Esperanza matemática

Media de una variable aleatoria 79. ____ Si se conocen los valores que ocurren en un experimento aleatorio y sus frecuencias relativas asociadas, es posible calcular el valor esperado de una variable aleatoria definida para los resultados del experimento. 80. ____ Es común entre los estadísticos, referirse a la media como la esperanza matemática o el valor esperado de la variable aleatoria X y denotarla como E(X). 81. El valor esperado de variables aleatorias continuas se calcula del mismo modo que para las variables aleatorias discretas. 82. ____ El valor esperado del resultado obtenido al lanzar un dado legal es 3,5. 83. ____ Si el valor esperado del resultado obtenido al lanzar un dado legal es 3,5, debe interpretarse que los resultados que más se repiten son el 3 y el 4. 84. ____ Si sólo se conocen los valores que puede tomar una variable aleatoria en su rango, se puede calcular fácilmente el valor de la media de la variable en estudio. 85. ____ El valor esperado de la variable aleatoria Y = 2X - 1, es igual al doble del valor esperado de la variable aleatoria X. 86. ____ El concepto de valor esperado o esperanza matemática sólo tiene utilidad práctica para resolver problemas de juegos de azar. 87. ____ La media o valor esperado de una variable aleatoria X es de especial importancia en estadística, pues describe el lugar donde se centra la distribución de probabilidad. 88. ____ Si sólo conozco el valor esperado de una variable aleatoria, es suficiente para tener claro la forma de la distribución de la misma. 89. ____ Si el valor esperado de una variable aleatoria toma un valor menor que cero, significa que físicamente es imposible que la variable tome ese particular valor. Varianza y covarianza 90. ____ La varianza de una variable aleatoria nos proporciona información acerca de la variabilidad de las observaciones alrededor de la media. 91. ____ Si una variable aleatoria tiene una varianza pequeña, esperaríamos que la mayor parte de las observaciones se agrupen cerca y alrededor de la media. 92. ____ La varianza de la variable aleatoria Y = 2X - 1, es cuatro veces mayor que la varianza de la variable aleatoria X. 93. ____ Dado el valor de la media de una variable aleatoria y un intervalo alrededor de la misma, la probabilidad de que otra variable aleatoria similar, con igual media pero con varianza mayor, tome valores dentro de dicho intervalo, es mayor. 94. ____ Si se tiene un histograma simétrico de una distribución discreta de probabilidad, se debe concluir que la variabilidad en la distribución es nula. 95. La varianza de una variable aleatoria con distribución de probabilidad f(x) es el valor esperado del cuadrado de las desviaciones respecto de su media. Una forma de obtener la varianza de una variable aleatoria X es, haciendo la diferencia entre el valor esperado del cuadrado de la variable, y el valor esperado de la variable elevado al cuadrado. 97. ____ La varianza o la desviación estándar sólo tienen significado cuando se comparan dos o más distribuciones que tienen las mismas unidades de medida. 98. La covarianza entre dos variables aleatorias, σXY , es una medida de la naturaleza de la asociación entre las dos.

99	La covarianza entre dos variables aleatorias X, Y, con distribución de probabilidad conjunta f(x, y), se define como el valor esperado del producto de las desviaciones de las va-
100	riables respecto de sus propias medias.
	 La covarianza de dos variables aleatorias X, Y es siempre un valor positivo. La covarianza de dos variables aleatorias X, Y estadísticamente independientes, es siem-
	pre igual a cero. Lo opuesto, sin embargo, no siempre se cumple.
102	Una forma de calcular la covarianza de dos variables aleatorias X, Y, es haciendo la diferencia entre el valor esperado del producto de las variables, y el producto de las medias de las variables.
103.	La covarianza entre dos variables aleatorias sólo puede tener la unidad de medida de una
105	variable elevada al cuadrado, por ejemplo, m², kgf², (m³/s)², (hm³)², (° C)².
104	El coeficiente de correlación entre las variables aleatorias Y y Z es un valor adimensional
101	que siempre satisface la desigualdad: $(-1 \le \rho YZ \le +1)$.
105	El coeficiente de correlación entre dos variables aleatorias Y, Z, se define como el cocien-
103	te entre la covarianza entre las variables aleatorias, y el producto de las desviaciones de las variables.
106	La magnitud del coeficiente de correlación entre dos variables aleatorias X, Y, depende
100	de las unidades de medida de las variables estudiadas.
107.	El coeficiente de correlación puede tomar valores menores que cero.
	Si la covarianza entre dos variables aleatorias es igual a cero, el coeficiente de correlación
100	también lo será, siempre y sin excepción.
109	Si entre dos variables aleatorias existe una dependencia lineal exacta, el coeficiente de
10)	correlación sólo puede tomar el valor +1.
Media	s y varianzas de combinaciones lineales de variables aleatorias
110	El valor esperado de una constante es siempre igual a cero.
111	El valor esperado del producto de una constante por una variable aleatoria, es igual al
	producto de la constante por el valor esperado de la variable aleatoria.
112.	producto de la constante por el valor esperado de la variable aleatoria. El valor esperado de la suma algebraica de dos variables aleatorias, es siempre igual a la
112	El valor esperado de la suma algebraica de dos variables aleatorias, es siempre igual a la
	El valor esperado de la suma algebraica de dos variables aleatorias, es siempre igual a la suma de los valores esperados de las mismas.
	 _ El valor esperado de la suma algebraica de dos variables aleatorias, es siempre igual a la suma de los valores esperados de las mismas. _ El valor esperado del producto de dos variables aleatorias es igual al producto de los valo-
113	 _ El valor esperado de la suma algebraica de dos variables aleatorias, es siempre igual a la suma de los valores esperados de las mismas. _ El valor esperado del producto de dos variables aleatorias es igual al producto de los valores esperados de las mismas, siempre y sin excepción.
113 114	 El valor esperado de la suma algebraica de dos variables aleatorias, es siempre igual a la suma de los valores esperados de las mismas. El valor esperado del producto de dos variables aleatorias es igual al producto de los valores esperados de las mismas, siempre y sin excepción. La varianza de una constante es siempre igual a la constante elevada al cuadrado.
113 114	 _ El valor esperado de la suma algebraica de dos variables aleatorias, es siempre igual a la suma de los valores esperados de las mismas. _ El valor esperado del producto de dos variables aleatorias es igual al producto de los valores esperados de las mismas, siempre y sin excepción.
113 114 115	 El valor esperado de la suma algebraica de dos variables aleatorias, es siempre igual a la suma de los valores esperados de las mismas. El valor esperado del producto de dos variables aleatorias es igual al producto de los valores esperados de las mismas, siempre y sin excepción. La varianza de una constante es siempre igual a la constante elevada al cuadrado. La varianza de una constante por una variable aleatoria, es igual al cuadrado de la cons-
113 114 115	El valor esperado de la suma algebraica de dos variables aleatorias, es siempre igual a la suma de los valores esperados de las mismas. El valor esperado del producto de dos variables aleatorias es igual al producto de los valores esperados de las mismas, siempre y sin excepción. La varianza de una constante es siempre igual a la constante elevada al cuadrado. La varianza de una constante por una variable aleatoria, es igual al cuadrado de la constante multiplicado por la varianza de la variable aleatoria.
113 114 115	 El valor esperado de la suma algebraica de dos variables aleatorias, es siempre igual a la suma de los valores esperados de las mismas. El valor esperado del producto de dos variables aleatorias es igual al producto de los valores esperados de las mismas, siempre y sin excepción. La varianza de una constante es siempre igual a la constante elevada al cuadrado. La varianza de una constante por una variable aleatoria, es igual al cuadrado de la constante multiplicado por la varianza de la variable aleatoria.
113 114 115 <i>Teorer</i> 116	El valor esperado de la suma algebraica de dos variables aleatorias, es siempre igual a la suma de los valores esperados de las mismas. El valor esperado del producto de dos variables aleatorias es igual al producto de los valores esperados de las mismas, siempre y sin excepción. La varianza de una constante es siempre igual a la constante elevada al cuadrado. La varianza de una constante por una variable aleatoria, es igual al cuadrado de la constante multiplicado por la varianza de la variable aleatoria. **ma de Chebyshev** La proporción de valores que toma una variable aleatoria entre dos valores simétricos cualesquiera alrededor de la media, está relacionada con la desviación estándar de la variable aleatoria.
113 114 115 <i>Teorer</i> 116	El valor esperado de la suma algebraica de dos variables aleatorias, es siempre igual a la suma de los valores esperados de las mismas. El valor esperado del producto de dos variables aleatorias es igual al producto de los valores esperados de las mismas, siempre y sin excepción. La varianza de una constante es siempre igual a la constante elevada al cuadrado. La varianza de una constante por una variable aleatoria, es igual al cuadrado de la constante multiplicado por la varianza de la variable aleatoria. ma de Chebyshev La proporción de valores que toma una variable aleatoria entre dos valores simétricos cualesquiera alrededor de la media, está relacionada con la desviación estándar de la variable aleatoria. El teorema de Chebyshev da una estimación conservadora de la probabilidad de que una variable aleatoria tome un valor dentro de k desviaciones estándar de su media, para cual-
113 114 115 <i>Teorer</i> 116	El valor esperado de la suma algebraica de dos variables aleatorias, es siempre igual a la suma de los valores esperados de las mismas. El valor esperado del producto de dos variables aleatorias es igual al producto de los valores esperados de las mismas, siempre y sin excepción. La varianza de una constante es siempre igual a la constante elevada al cuadrado. La varianza de una constante por una variable aleatoria, es igual al cuadrado de la constante multiplicado por la varianza de la variable aleatoria. **ma de Chebyshev** La proporción de valores que toma una variable aleatoria entre dos valores simétricos cualesquiera alrededor de la media, está relacionada con la desviación estándar de la variable aleatoria. El teorema de Chebyshev da una estimación conservadora de la probabilidad de que una

119. ____ Según el teorema de Chebyshev, la probabilidad de que una variable aleatoria cualquiera tome un valor dentro de k desviaciones estándar de la media, es exactamente igual a: $1-1/k^2$.

Algunas distribuciones de probabilidad discreta

Distribución uniforme discreta

- 120. ____ En la distribución de probabilidad uniforme discreta, la variable aleatoria toma cada uno de sus valores con idéntica probabilidad.
- 121. ____ El parámetro de la distribución de probabilidad uniforme discreta, viene dado por la inversa de la cantidad de valores que puede tomar la variable aleatoria.
- 122. ____ La variable aleatoria que describe el número de caras obtenidas al lanzar dos monedas legales sigue una distribución de probabilidad uniforme.
- 123. ____ La media de una variable aleatoria discreta uniforme, f(x; k), siempre coincide con uno de los valores de la misma observados en el experimento.
- 124. ____ La varianza de una variable aleatoria discreta uniforme, f(x; k), no depende del número de valores que puede tomar la variable.

Distribución binomial y multinomial

- 125. ____ En la distribución binomial las pruebas que se repiten pueden ser dependientes o independientes.
- 126. ____ El número X de éxitos obtenidos en n experimentos de Bernoulli se denomina variable aleatoria binomial.
- 127. ____ La media de la distribución binomial b(x; n, p) viene dada por el producto n.p.
- 128. ____ El rango de valores de una variable aleatoria binomial va de cero a p.
- 129. ____ Una de las propiedades que debe cumplir el proceso de Bernoulli, es que la probabilidad de éxito permanezca constante en cada prueba.
- 130. ____ La varianza de la distribución binomial puede calcularse en función de la probabilidad con que ocurre cada éxito y del número de veces que se realiza la prueba en el experimento.
- 131. ____ El espacio muestral de un experimento Bernoulli puede representarse de manera conveniente como {éxito, fracaso}.
- 132. ____ Dado un tamaño de muestra n, para valores pequeños del parámetro p, digamos menores de 0,05 por ejemplo, la distribución binomial será sesgada a la izquierda.
- 133. ____ Cuando la probabilidad de éxito en un proceso Bernoulli es de 0,20, la gráfica de la distribución binomial resultante al realizar el experimento cinco veces es simétrica.
- 134. ____ El número de caras obtenidas al lanzar una moneda legal diez veces, sigue una distribución binomial.
- 135. ____ Un examen de opción múltiple contiene diez preguntas. Cada pregunta tiene cuatro opciones y sólo una de ellas es correcta. Si una persona responde al azar, el número de respuestas correctas sigue una distribución binomial.
- 136. ____ Los valores que puede tomar una variable aleatoria que sigue una distribución binomial, siempre están comprendidos entre cero y uno, inclusive.
- 137. ____ Las distribuciones binomiales para valores del parámetro p = 0,5 tienen una representación gráfica simétrica respecto de un eje vertical que pasa por el valor de la media de la distribución.

136	Para un valor fijo de fi, la distribución se vuelve mas simetrica a medida que el parametro
	p aumenta desde 0 hasta 0,5, o disminuye desde 1 hasta 0,5.
139	Para un valor fijo de p, la distribución binomial se vuelve más simétrica a medida que n
	aumenta.
140	La media y la varianza de una variable aleatoria binomial, dependen sólo de los paráme-
	tros n y p.
141	La distribución binomial no tiene mucha importancia debido a que puede aproximarse por
	otras distribuciones.
142	Si $p = 0.4$ en un proceso Bernoulli, entonces el cálculo de: 7C3 . $(0.4)3$. $(0.6)4$ da la pro-
	babilidad de obtener tres o más éxitos en 7 ensayos.
143.	Una variable aleatoria binomial sólo puede tomar valores positivos y el cero.
	El número de caras obtenidas al lanzar una moneda legal diez veces sigue una distribu-
	ción binomial y la representación gráfica de la distribución es simétrica respecto del valor
	x = 1.
145	
173	número de partes defectuosas en las siguientes 25 que produzca, sigue una distribución
	binomial de parámetros $n = 100 \text{ y p} = 0.25$.
146	1 ,
140	
	sólo una de ellas es correcta. Si una persona responde al azar, el número de respuestas
	contestadas de manera correcta sigue una distribución binomial, con parámetros n = 50 y
1.47	p = 0.10.
14/	En un experimento multinomial se realizan n pruebas independientes que se repiten, don-
	de cada prueba puede tomar alguno de los k resultados posibles del experimento, con
	probabilidades p1, p2,, pk respectivamente.
148	
	de los resultados posibles del experimento debe ser igual a uno.
149	En un experimento multinomial, todas las particiones del espacio muestral son mutua-
	mente excluyentes y ocurren con igual probabilidad.
150	En un experimento multinomial, con variables aleatorias X1, X2,, Xk; xk representa la
	probabilidad de que ocurra el resultado Ek en las n pruebas independientes.
TD: 4 1	
	bución hipergeométrica
151	La distribución hipergeométrica es de suma utilidad en aplicaciones al campo del control
	de calidad, donde el muestreo de aceptación se realiza con ensayos destructivos.
152	La variable aleatoria hipergeométrica sólo puede tomar valores positivos y el cero.
153	El modo en que se realiza el muestreo genera diferencias entre la distribución binomial y
	la distribución hipergeométrica.
154	Tanto en la distribución binomial como en la hipergeométrica, se debe repetir el experi-
	mento hasta encontrar el primer éxito.
155	Tanto en la distribución binomial como en la hipergeométrica, las pruebas son indepen-
	dientes.
156	En un experimento hipergeométrico, se selecciona, con reemplazo, una muestra aleatoria
	de tamaño n de un lote de N artículos, donde k de los N artículos se pueden clasificar co-
	mo éxitos y $(N - k)$ se pueden clasificar como fracasos.
157	
	que se selecciona una muestra aleatoria de tamaño tres, de un lote de tamaño veinte que
	tiene cinco elementos defectuosos, varía entre cero y cinco.
	· · · · · · · · · · · · · · · · · · ·

158	En un experimento hipergeométrico, la probabilidad de no encontrar éxitos en una mues-
150	tra aleatoria, es siempre igual a cero.
159	lote, la distribución binomial se puede imaginar como una versión de población grande de
	las distribuciones hipergeométricas.
	La expresión $(N-n)/(N-1)$ se conoce como factor de corrección de población finita.
161	La distribución hipergeométrica se puede reemplazar por la distribución binomial si el factor de corrección para poblaciones finitas $(N-n)/(N-1)$ está cercano a cero.
162	El muestreo con reemplazo es equivalente al muestreo de un conjunto infinito, ya que la proporción de éxitos permanece constante para cualquier ensayo en el experimento.
163	La distribución hipergeométrica multivariada permite calcular probabilidades cuando se realiza más de un experimento.
Distri	bución binomial negativa y geométrica
164	En los experimentos binomiales negativos la probabilidad de éxito p permanece constante
	en cada prueba.
165	La distribución geométrica es un caso particular de la distribución binomial negativa.
166	Los parámetros de la distribución binomial negativa son los mismos que para la distribu-
	ción binomial.
167	En la distribución binomial negativa la probabilidad de obtener un éxito en cada prueba,
	permanece constante en las n pruebas que se realizan.
	La variable aleatoria geométrica, en algunas situaciones, puede tomar valores negativos.
169	El parámetro de la distribución geométrica está dado por la probabilidad (siendo ésta constante en cada prueba) de obtener un éxito en una prueba cualquiera del experimento.
	En la distribución geométrica las pruebas son independientes.
171	La media de una variable aleatoria que sigue una distribución geométrica está dada por la
	inversa del parámetro de la misma.
Distri	bución de Poisson y proceso de Poisson
	La representación gráfica de la distribución de Poisson siempre tiene forma simétrica.
173	Para una distribución binomial dada, con n grande y p pequeña, las condiciones se aproximan a las del proceso de Poisson y el producto n.p permanece constante.
174	Una de las propiedades del proceso de Poisson es que la probabilidad de que ocurra un solo resultado durante un intervalo es independiente de la longitud del intervalo.
	En el proceso de Poisson, el número de resultados que ocurren en un intervalo o región específica, es independiente del número de ocurrencias que se producen en los intervalos o regiones adyacentes al considerado.
176	La media de una distribución de Poisson es igual a su varianza.
	El número promedio de resultados que ocurren en un intervalo de tiempo t de un experimento de Poisson, viene dado por el producto entre la tasa de ocurrencia y el tiempo, es decir, λt.
178	Siempre se cumple que, el número promedio de resultados en un proceso de Poisson en
1 / 0	un intervalo región específica de longitud t, coincide con la tasa de ocurrencia de los resultados.
179.	La distribución de Poisson es aplicable a variables que representen el número de sucesos
· · · ·	de interés en un continuo de espacio o de tiempo, en determinadas condiciones.
180	Una variable de Poisson sólo puede tomar valores comprendidos en el intervalo $[0; \lambda]$.

181	La variable aleatoria de Poisson puede tomar valores menores que cero, sólo cuando la tasa de ocurrencia sea menor que uno.
La dis	tribución de Poisson como forma limitante de la binomial
	Sea X una variable aleatoria binomial con distribución de probabilidad b(x; n, p). Siempre y en cualquier caso es posible utilizar la distribución de Poisson como forma limitante de la distribución binomial, es decir, b(x; n, p) \rightarrow p(x; μ).
183	Para una distribución binomial dada, con n grande y p pequeña, las condiciones se aproximan a las del proceso de Poisson si el producto n.p permanece constante.
184	Cuando p sea un valor cercano a la unidad, de ninguna manera será posible utilizar la distribución de Poisson para aproximar probabilidades binomiales.
Algui	nas distribuciones continuas de probabilidad
Distri	bución uniforme continua
	Si una variable aleatoria continua X está distribuida uniformemente en el intervalo [A; B], la probabilidad de que tome valores en cualquier intervalo de longitud Δx es la misma.
186	Dado que la función de densidad de probabilidad de una variable aleatoria uniforme continua X en el intervalo [A; B] es constante, tiene varianza nula.
187	El valor esperado de una variable aleatoria continua, distribuida uniformemente en el intervalo siguiente [-1; 3], es igual a 1.
188	La función de densidad de una variable aleatoria continua distribuida uniformemente en el intervalo [A; B], es simétrica respecto de un eje vertical que pase por la media.
Distri	bución normal
189	Los parámetros de la distribución de probabilidad de la variable aleatoria normal son su media y la desviación estándar (o su varianza).
190	Siempre y sin restricción alguna, la curva de la función de densidad de probabilidad de una variable aleatoria normal, es simétrica respecto de un eje vertical que pasa por la me- dia.
191	Para algunos valores particulares de los parámetros de la distribución normal, la curva de la función de densidad de probabilidad puede presentar más de una moda.
192	Si $X \sim n$ (x; μ , σ), media, mediana y moda son coincidentes.
193	La curva de la distribución normal tiene sus puntos de inflexión en correspondencia con los valores de la variable ubicados alrededor de la media, a una distancia de ± una vez la desviación estándar.
194	La probabilidad de que cualquier variable aleatoria distribuida normalmente, con media μ y varianza σ², tome valores entre μ ±3σ, es igual a 0,9973.
195	La probabilidad de que cualquier variable aleatoria distribuida normalmente, con media μ y varianza σ^2 , tome valores entre $\mu \pm 2\sigma$, es igual a 0,9545.
196	La probabilidad de que cualquier variable aleatoria distribuida normalmente, con media μ y varianza σ^2 , tome valores entre $\mu \pm 1\sigma$, es igual a 0,6827.
	La función de distribución acumulada F(x), de cualquier variable aleatoria X distribuida
	una variable aleatoria X distribuida normalmente está definida sólo para valores positivos de la misma.

199. ____ Si graficamos dos curvas normales con la misma desviación estándar que tienen medias diferentes, las curvas tendrán la misma forma pero estarán centradas en posiciones diferentes a lo largo del eje horizontal. 200. La función de densidad de una variable aleatoria normal es más chata y se extiende más sobre el eje de la variable (horizontal), mientras mayor sea su rango. 201. ____ La probabilidad de que una variable aleatoria normal tome el valor x1, se puede leer en el eje de ordenadas para n (x1; μ , σ). 202. La probabilidad de que una variable aleatoria $X \sim n$ (x; μ , σ) tome valores entre x = x1 y x=x2, está representada por el área bajo la curva de la función de densidad de probabilidad comprendida entre x1 y x2. 203. No siempre es posible realizar la transformación de una variable aleatoria $X \sim n$ (x; μ , σ), en otra variable aleatoria $Z \sim n$ (z; 0, 1). 204. La distribución de una variable aleatoria normal con media cero y varianza uno, se llama distribución normal estándar. 205. ____ La probabilidad de que una variable aleatoria $X \sim n$ (x; $\mu = 4$, $\sigma = 2$) tome valores entre 4.5 y 5.5 es igual a la probabilidad de que la variable aleatoria Z ~n (z; $\mu = 0$, $\sigma = 1$) tome valores entre 0,25 y 0,75. 206. ____ La probabilidad de que una variable aleatoria normal con media seis y desviación estándar igual a dos tome valores menores que seis, es igual a la probabilidad de que tome valores menores o iguales que seis. 207. ____ La curva de la función de distribución acumulada de una variable aleatoria normal es simétrica respecto de un eje vertical que pasa por el valor de la media. 208. ____ La función de distribución acumulada de una variable aleatoria normal, siempre y sin restricción alguna, toma el valor 0,5 para el valor particular de la variable igual a la media de la distribución. 209. ____ El percentil sesenta y siete de la una variable normal estándar es igual a 0,44. 210. ____ El quinto decil de una variable normal estándar es igual a 0,5. 211. ____ El percentil treinta y tres de una variable normal estándar es igual a -0.44. 212. ____ La probabilidad de que una variable aleatoria normal estándar tome valores mayores que uno, es igual a 0,8413. 213. ____ El área total bajo la curva de cualquier variable aleatoria distribuida normalmente es igual al área total bajo la curva de una variable normal estándar. Aproximación normal a la binomial 214. ____ Algunas veces, la distribución normal es una buena aproximación a una distribución binomial cuando esta última adquiere una forma de campana simétrica. 215. ____ La distribución binomial se aproxima bien por la normal cuando el tamaño de la muestra tiende a infinito. 216. ____ La aproximación normal para evaluar probabilidades binomiales es excelente cuando n es grande, y muy buena para valores pequeños de n, si p es razonablemente cercano a 0,5. 217. ____ En la práctica, si ambos productos n.p y n.q, son mayores o iguales a cinco, la aproximación normal para evaluar probabilidades binomiales será aceptable. 218. Si $X \sim b$ (x; n = 15, p = 0,4) y se dan las condiciones para aproximar el cálculo de probabilidades utilizando la distribución normal, entonces se puede verificar que: 219. ____ $P(4 \le X < 8) \approx P(-1,318 < Z < +0.791)$. 220. ____ Para efectuar la aproximación normal a la binomial, es necesario efectuar una corrección por continuidad de la variable.

Distribuciones gamma y exponencial 221. La media y la varianza de la distribución gamma son $\alpha\beta$ y $\alpha\beta^2$ respectivamente. 222. ____ La distribución exponencial es un caso particular de la distribución gamma. 223. ____ La función de densidad de probabilidad f(x), de una variable aleatoria continua X que tiene una distribución exponencial con parámetro β , es igual a uno para todo x < 0. 224. ____ La función de densidad de probabilidad f(x), de una variable aleatoria continua X que tiene una distribución exponencial, es simétrica respecto de un eje vertical que pasa por la 225. ____ La media y la varianza de la distribución exponencial son β y β ² respectivamente. 226. ____ Las aplicaciones de la distribución exponencial más importantes corresponden a situaciones donde se aplica el proceso de Poisson. 227. La función de densidad de probabilidad $f(x) = \lambda \cdot e^{-\lambda x}$ es la función de densidad de probabilidad de la distribución exponencial con $\lambda = 1/\beta$. 228. ____ El parámetro de la distribución exponencial es igual al cuadrado del parámetro de la distribución de Poisson. 229. ____ La importancia de la distribución gamma está en el hecho de que define una familia de la que otras distribuciones son casos especiales, aunque por sí misma tiene importantes aplicaciones en tiempo de espera y teoría de confiabilidad. 230. ____ La distribución exponencial describe el tiempo hasta la ocurrencia de un evento de sson (o el tiempo entre eventos de Poisson). 231. ____ El tiempo (o espacio) que transcurre hasta que ocurre un número específico de eventos de Poisson es una variable aleatoria cuya función densidad está descrita por la de la distribución gamma. Distribución ji cuadrada 232. ____ La distribución ji-cuadrada es un caso particular de la distribución gamma. 233. La media y la desviación estándar de la distribución ji-cuadrada son v y 2v respectivamente, siendo v el número de grados de libertad. 234. ____ Si graficamos dos curvas de variables aleatorias con distribución ji-cuadrada donde la media de la primera es menor que la media de la segunda, la curva de la segunda será más baja y se extenderá más lejos. 235. ____ La distribución ji-cuadrada tiene un papel importante en la metodología y en la teoría de la inferencia estadística. 236. ____ El parámetro de la distribución ji-cuadrada es el número de grados de libertad, v. 237. ____ La distribución ji-cuadrada está definida para los valores de la variable aleatoria comprendidos entre $-\infty$ y $+\infty$. 238. ____ La probabilidad de que una variable aleatoria con distribución ji cuadrada de parámetro igual a 30 tome valores menores que -13,787, es igual a 0,995. 239. ____ La probabilidad de que una variable aleatoria con distribución ji cuadrada de parámetro igual a 25 tome valores mayores que -2, es igual a uno. 240. ____ La probabilidad de que una variable aleatoria con distribución ji cuadrada de parámetro igual a 10 tome valores menores o iguales que la media, es igual a 0,5. Distribución logarítmica normal 241. ____ La distribución logarítmica normal se aplica en casos donde una transformación de logaritmo natural tiene como resultado una distribución normal.

Y=ln (X) tiene una distribución normal con media μ y desviación estándar σ.
Distribución de Weibull
243. ____ Los parámetros de la distribución de Weibull son su media y su varianza.
244. ___ La confiabilidad de un componente o producto se define como la probabilidad de que funcione apropiadamente por lo menos un tiempo específico, bajo condiciones experimentales específicas.
245. ___ Una de las distribuciones de aplicación en problemas de confiabilidad de componentes que forman los sistemas, es la distribución de Weibull.
246. ___ La confiabilidad de un componente dado en un tiempo t puede calcularse como la inversa de la distribución acumulada en el tiempo t.

247. ____ La función de densidad de una variable aleatoria con distribución de Weibull, es siempre

simétrica respecto de un eje vertical que pasa por la media.

242. ____ La variable aleatoria continua X tiene una distribución logarítmica normal si la variable

Funciones de variables aleatorias

Combinaciones lineales de variables aleatorias

- 248. ____ La distribución normal posee la propiedad reproductiva, por lo tanto, la suma de varias variables aleatorias independientes distribuidas normalmente, es una variable aleatoria normal.
- 249. ____ Si X1, X2, X3, ..., Xi, ..., Xn, son variables aleatorias mutuamente independientes que tienen, respectivamente, distribuciones ji cuadrada con v1, v2, v3, ..., vi, ..., vn, grados de libertad, entonces la variable aleatoria suma de las variables independientes W = X1 + X2 + X3 + ... + Xi + ... + Xn, tiene una distribución normal con media igual a la suma de las medias de las variables y varianza igual a la suma de las varianzas de las variables Xi.
- 250. ____ La suma del cuadrado de variables aleatorias normales estándar independientes tiene una distribución ji cuadrada, con parámetro igual al número de variables normales estándar cuyos cuadrados se suman.
- 251. ____ Dadas la variable aleatoria X distribuida normalmente con media igual a 50 y desviación estándar igual a 2, y la variable aleatoria Y distribuida normalmente con media igual a 20 y desviación estándar igual a 4, siendo X e Y variables aleatorias independientes, entonces la variable W = X Y tendrá una distribución normal con media igual a 30 y desviación estándar igual a 6.
- Dadas la variable aleatoria X que tiene una distribución ji cuadrada con 3 grados de libertad y la variable aleatoria Y que tiene una distribución ji cuadrada con 5 grados de libertad, siendo X e Y variables aleatorias independientes, entonces la variable W = X + Y tendrá una distribución ji-cuadrada con media igual a 8 y varianza igual a 16.

Unidad Temática 4: Distribuciones fundamentales de muestreo y descripciones de datos

	reo aleatorio
1	En estadística utilizamos el término <i>población</i> para referirnos a la totalidad de personas que constituyen el grupo en estudio.
2	Siempre será posible y no habrá dificultades en disponer del conjunto de todas las observaciones que constituyen la población.
3	Se denomina <i>muestra</i> a cualquier subconjunto de una población.
4	Cualquier procedimiento de muestreo que produzca inferencias que sobreestimen o subes-
5	timen de forma consistente alguna característica de la población, se dice que está sesgado.
	azar.
6	Cualquier muestra seleccionada de una población, permite hacer inferencias confiables acerca de los parámetros de la población de la cual proviene.
Distrik	buciones muestrales
7	
8	La distribución de probabilidad de una estadística depende del tamaño de la población y
9	La distribución muestral de X con tamaño muestral n es la distribución que resulta cuando
	un experimento se lleva a cabo una y otra vez, probando siempre con muestras de distin-
	tos tamaños, y resultan los diversos valores de X. Esta distribución muestral, describe la
	variabilidad de los promedios muestrales alrededor de la media de la población μ .
10	1
	azar.
Distrik	buciones muestrales de medias
11	
	distribución muestral de \overline{X} será normal con media μ y varianza σ^2/n , donde n es el tamaño
	de la muestra, sin importar qué tan pequeño sea el tamaño de las muestras.
12	
· _	s^2 conocida, la distribución muestral de \overline{X} será normal, con media μ y varianza σ^2/n ,
	donde n es el tamaño de la muestra, siempre que el tamaño de la muestra sea suficiente-
12	mente grande.
13	_ 1
1 /	si $n \ge 30$, sin importar la distribución de la población.
14	
	muestral de una población cualquiera, con media μ y varianza σ^2 , es la normal con media
	μ y varianza σ^2/n , cuando el tamaño de la muestra n tiende a infinito.
15	•
	media de la población o la diferencia entre las medias de dos poblaciones.
16	
	muestral de dicha variable, se distribuye normalmente cuando el tamaño de las muestras
	seleccionadas es suficientemente grande.

Distribu	ción muestral de la diferencia entre dos promedios
17	Si se extraen al azar muestras independientes de tamaño n_1 y n_2 de dos poblaciones cualesquiera, sean discretas o continuas, con medias μ_1 y μ_2 y varianzas σ_1^2 y σ_2^2 , respectivamente, entonces la distribución muestral de las diferencias de las medias ($\overline{X}_1 - \overline{X}_2$),
18.	está distribuida normalmente con media $(\mu_1 - \mu_2)$ y varianza $(\sigma_1^2/n_1 + \sigma_2^2/n_2)$, sin condición alguna. La distribución muestral de las diferencias de las medias es útil cuando se comparan las
10	medias desconocidas de dos poblaciones.
Distribu	ución muestral de S²
	Las distribuciones muestrales de estadísticas importantes nos permiten obtener información sobre los parámetros.
20	Si S^2 es la varianza de una muestra aleatoria de tamaño n que se toma de una población cualquiera que tiene varianza σ^2 , entonces la estadística $\chi^2 = (n-1)$. S^2 / σ^2 , tiene una distribución ji cuadrada con $v = n - 1$ grados de libertad.
21	La probabilidad de que una variable aleatoria con distribución ji cuadrada que tiene nueve grados de libertad tome valores menores que -2,7 es igual a 0,975.
22	La probabilidad de que una variable aleatoria con distribución ji cuadrada que tiene doce grados de libertad tome valores mayores que –1,5 es igual a 0,999.
	La probabilidad de que una variable aleatoria con distribución ji cuadrada que tiene diez grados de libertad tome valores menores que 4,865 es igual a 0,10.
24	La probabilidad de que una variable aleatoria con distribución ji cuadrada que tiene quince grados de libertad tome valores comprendidos entre 8,547 y 14,339 es igual a 0,40.
25	La probabilidad de que una variable aleatoria con distribución ji cuadrada que tiene cinco grados de libertad tome valores mayores que 12,832 es igual a 0,025.
Distribu	ución t
26	grados de libertad. Si Z y V son independientes, entonces la distribución de la variable
	aleatoria T se conoce como la distribución t con v grados de libertad, donde: $T = \frac{Z}{\sqrt{\frac{V}{v}}}$
27	Una variable aleatoria con distribución <i>t</i> se define como el cociente entre una variable aleatoria normal estándar y la raíz cuadrada del cociente entre una variable aleatoria con distribución ji cuadrada y su número de grados de libertad, siendo las variables independientes.
28	La distribución de una variable aleatoria T , con distribución t , difiere de la distribución de una variable normal estándar Z , en que la varianza de T depende del tamaño de la muestra n y siempre es mayor que uno. Sólo cuando el tamaño de la muestra tiende a infinito $(n\rightarrow\infty)$ las dos distribuciones coincidirán.
29	Si bien la distribución de T y la distribución de Z tiene forma de campana, la distribución de t es más variable que la de Z , debido al hecho de que los valores de T dependen de las fluctuaciones de dos cantidades, \overline{X} y S^2 , mientras que los valores de Z dependen sólo de los cambios de \overline{X} de una muestra a otra.

30	Si graficamos dos variables aleatorias con distribución t , donde v_1 es el número de gra-
	dos de libertad de la primera y v_2 el de la segunda, y $v_1 < v_2$, entonces la primera se ex-
	tenderá más sobre el eje horizontal.
31	Si X es la media muestral de n variables aleatorias independientes distribuidas normal-
	mente con la misma media μ , e idéntica varianza σ^2 , entonces la variable aleatoria
	$\overline{X} - \mu$
	$T = \frac{\overline{X} - \mu}{S} \cdot \sqrt{n}$
	tiene una distribución t con $v=n-1$ grados de libertad, donde S es la desviación estándar
	de la muestra, sin condicionamientos para el tamaño de la muestra.
32	El valor de t con $v = 10$ grados de libertad que deja a su izquierda y debajo de la curva un
·	área igual a 0,975 y a su derecha un área igual a 0,025 es igual a 2,228.
33	La distribución t se utiliza de manera extensa en problemas que tienen que ver con la infe-
	rencia acerca de la media de una población o en problemas que implican comparaciones
	de las medias de dos muestras.
34	El uso de la distribución t y la consideración del tamaño de la muestra no se relacionar
	con el teorema de límite central. El uso de la distribución normal estándar Z en lugar de 7
	para $n \ge 30$ sólo implica que S es un estimador suficientemente bueno de σ .
	Cuando $n \to \infty$, la distribución t y la distribución normal estándar coincidirán.
36	El uso de la distribución t de Student no tiene restricciones respecto de la distribución de
	la población muestreada.
Diataile	raión E
Distribu	
37	La estadística F se define como el cociente entre dos variables aleatorias ji cuadradas in-
20	dependientes, divididas cada una por su número de grados de libertad.
38	
20	respectivamente, entonces la estadística $F = [(U/v_1)/(V/v_2)]$ tiene una distribución F .
39	Conocidos el número de grados de libertad del numerador, v_1 , y el número de grados de libertad de denominador, v_2 , es posible graficar la función de densidad de una variable
	aleatoria con distribución F .
40	
	La distribución F encuentra su aplicación en la inferencia acerca del cociente de las va-
	rianzas de dos poblaciones.
42.	La estadística F se define como la suma del cuadrado de variables normales estándar in-
	dependientes.
43	La probabilidad de que una variable aleatoria con distribución F que tiene 5 grados de
	libertad en el numerador y siete en el denominador, tome valores menores que -3, es
	igual a uno.
44	La probabilidad de que una variable aleatoria con distribución F con $v_1 = 10$ y $v_2 = 8$ to-
	me exactamente el valor 4,7 es igual a cero.

Unidad Temática 5: Problemas de estimación de una y dos muestras

Infere	ncia estadística
1	
2	
3	
Métod	os clásicos de estimación – Estimación puntual
4	Genéricamente, $\hat{\Theta}$ es un estimador cuyo valor $\hat{\theta}$ es una estimación puntual de algún parámetro poblacional desconocido θ .
5	del parámetro a estimar.
6	nal que estén muy alejadas del valor real.
7	Nunca debe utilizarse la mediana de la muestra de una población para estimar el verdadero valor de la media de dicha población.
8	La media muestral, produce estimaciones puntuales más cercanas a la media poblacional de la cual proviene la muestra, que las estimaciones puntuales de la mediana muestral.
Estimo	ador insesgado
	Una de las propiedades deseables que debe reunir un estimador, es que sea insesgado.
10	
11	Una estadística $\hat{\Theta}$ es un estimador insesgado del parámetro poblacional θ , si el valor esperado de la estadística es igual al parámetro estimado.
12	La varianza muestral es un estimador sesgado de la varianza poblacional.
13	
14	cional, aunque el sesgo es insignificante en muestras grandes.
	Se puede demostrar que $E(S^2) = \sigma^2$.
16	Dividimos por $n-1$ en lugar de n cuando se estima la varianza de una población, porque de esta manera, la varianza muestral es un estimador insesgado del parámetro estimado.
Variar	nza de un estimador puntual
17	_ De todos los posibles estimadores de algún parámetro poblacional θ , se denomina estima-
	dor más eficiente de θ , al de menor varianza.
18	
19	Si consideramos como estimadores de la media poblacional μ , a la media muestral y la mediana muestral, es posible demostrar que la mediana muestral es un estimador más eficiente que la media muestral.

20	sesgados de la media de la población μ . y tienen la misma varianza.
21	· · · · · · · · · · · · · · · · · · ·
21	
22	seleccionar aquel que tenga menor varianza.
22	
23	población, son iguales y tienen el mismo valor numérico del parámetro estimado.
23	
	espera que la estimación puntual coincida con el valor del parámetro a estimar.
.	
	ución por intervalo
24	
	metro poblacional con exactitud, es preferible determinar un intervalo dentro del cual es-
	peramos que se encuentre el valor del parámetro.
25	
	cuenta la distribución de la población (si es normal, no normal o desconocida).
26	
	$\hat{\theta}_L < \theta < \hat{\theta}_U$, donde $\hat{\theta}_L$ y $\hat{\theta}_U$ dependen del valor de la estadística $\hat{\Theta}$ y también de la dis-
	tribución de muestreo de $\hat{\Theta}$.
27	
27	
	intervalo de confianza, $\hat{\theta}_L$ y $\hat{\theta}_U$, respectivamente, son valores constantes.
28	_ Al escribir $P(\hat{\Theta}_L < \theta < \hat{\Theta}_U) = 1 - \alpha$, debemos interpretar que tenemos una probabilidad
	de $(1-\alpha)$ de seleccionar una variable aleatoria que produzca un intervalo que contenga al
	parámetro poblacional θ .
29	1 1
۷۶	esta estimación depende del tamaño de la muestra seleccionada.
30	•
30	precisión en la estimación aumentando el tamaño de la muestra seleccionada.
31	•
J1	que lleguemos contendrá al parámetro poblacional.
	que neguemos contenera ai parametro poblacional.
IIna sa	ola muestra: estimación de la media
32	
<i>J</i> 2	de la cual proviene la muestra y, en la mayoría de las aplicaciones, la varianza de la me-
	dia muestral es más pequeña que la de cualquier otro estimador de la media poblacional.
33	
<i>33</i>	resulta importante en la estimación realizada.
3/1	Muestras diferentes de una misma población, producirán intervalos de estimación diferen-
J-1	tes del parámetro μ .
35	•
33	se construyan para la media de una población de varianza conocida σ^2 , a partir de mues-
	•
36	tras diferentes, serán del mismo ancho. El ancho del intervalo de confianza para estimar la media de una población depende del
36	tamaño de la muestra seleccionada y del nivel de confianza elegido.
37	· · · · · · · · · · · · · · · · · · ·
<i>5</i> / ·	intervalo de confianza, depende del error de estimación especificado.

38	Debemos hacer una distinción al calcular las estimaciones del intervalo de confianza para
	la media de una población, entre los casos de desviación estándar de la población conoci-
	da o desconocida.
39	Para estimar la media de una población cualquiera con desviación estándar desconocida,
	se usa la distribución muestral de la variable aleatoria <i>T</i> , con distribución <i>t</i> de Student.
40	El uso de la distribución t de Student no tiene restricciones respecto de la distribución de
40	
4.1	la población muestreada.
41	
	mismas es por lo menos igual a 30.
42	Cuando el tamaño de la muestra seleccionada de una población es mayor que treinta, la
	varianza muestral es un buen estimador puntual de la media de dicha población.
43	Al realizar una estimación por intervalos de la media de una población con desviación
	estándar conocida, a partir de muestras de tamaño n fijo, el máximo error de estimación
	para un grado de confianza dado, tiene siempre el mismo valor numérico.
44	
	mación por intervalos de la media poblacional a partir de una muestra pequeña de tamaño
	n, se debe utilizar la distribución t , con $n-1$ grados de libertad.
Error de	e estimación. Error estándar de una estimación puntual
45	
	puntual y el verdadero valor del parámetro a estimar.
46	El máximo error de estimación de la media de una población depende solamente del gra-
10	do de confianza elegido para realizar la estimación.
17	El error estándar de un estimador es su desviación estándar, por ejemplo, el error estándar
47	,
	de la media muestral viene dado por el cociente σ/\sqrt{n} .
Dos mu	estras: estimación de la diferencia entre dos medias
	La interpretación de un intervalo de confianza para la diferencia entre dos medias pobla-
	cionales, se puede extender a una comparación de las dos medias.
49	<u>.</u>
17	cia de las medias de dos poblaciones, $+3,43 < \mu_1 - \mu_2 < +8,57$, se debe interpretar, con un
50	grado de confianza dado, que la media μ_2 es mayor que la media μ_1 .
50	No es correcto que el cálculo de un intervalo de confianza para la diferencia de las medias
	de dos poblaciones, arroje resultados con extremos del intervalo negativos.
51	En la construcción de intervalos de confianza para estimar la diferencia entre dos medias
	poblacionales, de acuerdo a la información disponible, se pueden utilizar la distribución
	normal estándar o la distribución t.
IIma sol	
	a muestra: estimación de una proporción
	a muestra: estimación de una proporción
	Un estimador puntual de la proporción p en un experimento binomial está dado por la
52	Un estimador puntual de la proporción p en un experimento binomial está dado por la estadística $\hat{P} = X / n$, donde X representa el número de éxitos en n pruebas.
	Un estimador puntual de la proporción p en un experimento binomial está dado por la estadística $\hat{P} = X / n$, donde X representa el número de éxitos en n pruebas. Cuando el tamaño n de la muestra es pequeño y la proporción desconocida p es cercana al
52	Un estimador puntual de la proporción p en un experimento binomial está dado por la estadística $\hat{P} = X / n$, donde X representa el número de éxitos en n pruebas. Cuando el tamaño n de la muestra es pequeño y la proporción desconocida p es cercana al valor cero o al valor uno, el procedimiento visto en el texto de referencia que permite la
52 53	Un estimador puntual de la proporción p en un experimento binomial está dado por la estadística $\hat{P} = X / n$, donde X representa el número de éxitos en n pruebas. Cuando el tamaño n de la muestra es pequeño y la proporción desconocida p es cercana al valor cero o al valor uno, el procedimiento visto en el texto de referencia que permite la construcción del intervalo de confianza, no es confiable y por lo tanto no se debe utilizar.
52 53	Un estimador puntual de la proporción p en un experimento binomial está dado por la estadística $\hat{P} = X / n$, donde X representa el número de éxitos en n pruebas. Cuando el tamaño n de la muestra es pequeño y la proporción desconocida p es cercana al valor cero o al valor uno, el procedimiento visto en el texto de referencia que permite la construcción del intervalo de confianza, no es confiable y por lo tanto no se debe utilizar. Si necesitamos conocer el tamaño de muestra necesario para que el error no supere una
52 53	Un estimador puntual de la proporción p en un experimento binomial está dado por la estadística $\hat{P} = X / n$, donde X representa el número de éxitos en n pruebas. Cuando el tamaño n de la muestra es pequeño y la proporción desconocida p es cercana al valor cero o al valor uno, el procedimiento visto en el texto de referencia que permite la construcción del intervalo de confianza, no es confiable y por lo tanto no se debe utilizar.

Dos mu	estras: estimación de la diferencia entre dos proporciones
55	Para establecer una estimación por intervalos de confianza de la diferencia entre dos proporciones poblacionales, se deben seleccionar dos muestras aleatorias independientes, una de cada población.
56	Cuando el tamaño de las muestras seleccionadas de dos poblaciones es pequeño, la construcción de un intervalo de confianza para la diferencia entre las dos proporciones poblacionales, requiere la utilización de la distribución <i>t</i> .
57	Al estimar un intervalo de confianza para la diferencia entre dos proporciones poblaciona- les, las muestras aleatorias independientes seleccionadas de cada población, siempre de- ben tener el mismo tamaño.
Una sol	a muestra: estimación de la varianza
58	Para establecer una estimación por intervalos de la varianza poblacional σ^2 , se utiliza una estadística que tiene distribución t .
59	Al construir una estimación por intervalos de la varianza poblacional σ^2 , no tiene importancia la distribución de la población estudiada.
60	del tamaño de la muestra aleatoria seleccionada.
61	Cuando se tiene una muestra aleatoria pequeña, se acepta el empleo de la distribución <i>t</i> en la construcción de intervalos de confianza para estimar la varianza de una población.
Dos mu	estras: estimación de la razón de dos varianzas
62	Para la estimación por intervalos del cociente de las varianzas de dos poblaciones cualesquiera, σ_1^2/σ_2^2 , se utiliza una estadística que tiene distribución F .
63	Cuando el intervalo de confianza obtenido al estimar el cociente de las varianzas de dos poblaciones normales, contiene al valor cero, es correcto suponer que $\sigma_{l}^{2} = \sigma_{2}^{2}$, con un grado de confianza determinado.
64	Al realizar la estimación por intervalos del cociente de varianzas de dos poblaciones, las muestras aleatorias deben extraerse de poblaciones normales y ser independientes.
Aplicaci	iones
65	Se lleva a cabo un estudio para determinar si cierto tratamiento metálico tiene algún efecto sobre la cantidad de metal que se elimina en una operación de decapado. Se sumerge una muestra aleatoria de 100 piezas en un baño por 24 horas sin el tratamiento, lo que da un promedio de 12,2 milímetros eliminados de metal y una desviación estándar de 1,1 milímetros. Una segunda muestra de 200 piezas se somete al tratamiento, seguido de 24 horas de inmersión en el baño, lo que da como resultado una eliminación promedio de 9,1 milímetros de metal con una desviación estándar de 0,9 milímetros. Para verificar si el tratamiento reduce la cantidad media de metal eliminado se puede plantear un intervalo de confianza para la media de dos poblaciones, utilizando la distribución F con 99 grados de libertad en el numerador y 199 grados de libertad en el denominador.
66	Una máquina produce piezas metálicas de forma cilíndrica. Se toma una muestra aleatoria de las piezas y los diámetros, medidos en centímetros, son 1,01-0,97-1,03-1,04-0,99-0,98-0,99-1,01-1,03. Se acepta que el diámetro de las piezas de esta máquina tiene una distribución normal. Para construir un intervalo de confianza del 99% para la varianza poblacional de las piezas, se utiliza la distribución ji cuadrada con 8 grados de libertad.

Unidad Temática 6: Pruebas de hipótesis de una y dos muestras

Conce	otos generales
1	Una hipótesis estadística es una aseveración sobre los parámetros de una o más poblacio-
_	nes.
2	Para probar una hipótesis estadística tomamos una muestra aleatoria de la población en estudio y utilizamos los datos de la muestra para proporcionar evidencia que apoye o no
2	la hipótesis.
3	Al establecer una prueba de hipótesis correctamente diseñada, estamos seguros de que siempre tomaremos una decisión correcta cuando la hipótesis nula sea cierta.
4	Las hipótesis son siempre proposiciones sobre la muestra de la población o distribución en estudio.
5	Una hipótesis nula apropiada para probar que la media de una población es igual a 40, sería la siguiente: $\overline{X} = 40$.
5	El diseño de un proceso de decisión lleva consigo la idea de la probabilidad de una con-
J	clusión errónea.
7	
3	Si el ingeniero está interesado en apoyar con fuerza una opinión, planteará la estructura de la prueba de modo de llegar a la opinión en la forma de rechazo de una hipótesis.
9	El término <i>hipótesis nula</i> se refiere a cualquier hipótesis que deseamos probar y se denota con H_0 .
10	El rechazo de la hipótesis nula conduce a la aceptación de una <i>hipótesis alternativa</i> , que se denota con H_1 .
11	quier valor no especificado por la hipótesis alternativa.
12	
	del parámetro (o contenga la igualdad), mientras que la hipótesis alternativa permite la posibilidad de varios valores.
Dwash	a do una hinótosis estadística
13	a de una hipótesis estadística La prueba de hipótesis involucra la toma de una muestra aleatoria, el cálculo de un esta-
13	dístico de prueba a partir de los datos muestrales y luego el uso de este estadístico para tomar una decisión sobre la hipótesis nula.
14	•
	ba queda dividido en dos regiones, denominadas <i>región crítica</i> y <i>región de aceptación</i> . Las fronteras entre las regiones crítica y de aceptación reciben el nombre de <i>valores críti</i> -
1.5	
15	ésta es verdadera.
	El <i>error de tipo II</i> se define como la aceptación de la hipótesis nula, cuando ésta es falsa.
17	denota con la letra griega α .
18	
19	Para calcular la probabilidad de cometer un error de tipo II, no es necesario plantear una hipótesis alternativa específica.

20	Idealmente, deberíamos utilizar un procedimiento de prueba en el que los errores tipo I y
	tipo II sean pequeños.
21	Si el nivel de significancia de una prueba de hipótesis es $\alpha = 0.01$, significa que, si la hi-
	pótesis nula es cierta, existe una probabilidad igual a 0,01 de rechazarla.
22	Si la hipótesis nula de una prueba es cierta, la probabilidad de cometer un error de tipo II
	es nula.
23	La probabilidad de cometer simultáneamente los errores de tipo I y II en una prueba de
	hipótesis, está dado por el producto α.β, puesto que los errores son independientes.
24	Para calcular la probabilidad de cometer un error de tipo II, que se denota con la letra
	griega β, es necesario tener una hipótesis alternativa específica, esto es, debe proponerse
	un valor específico del parámetro que se prueba.
25	El tamaño de la región crítica y, en consecuencia, la probabilidad α de cometer un error
23	tipo I, siempre pueden reducirse mediante una selección apropiada de los valores críticos.
26	Al probar la hipótesis nula H_0 : $\theta = 70$, frente a la hipótesis alternativa H_1 : $\theta > 70$, para un
20	tamaño de muestra fijo, una disminución en la probabilidad de cometer error de tipo I, da
	como resultado un aumento en la probabilidad de cometer un error del tipo II.
27	Establecidos el o los valores críticos, en general, un aumento del tamaño de la muestra
27	•
20	aumenta tanto a α como a β .
28	Cuando la hipótesis nula es falsa, β aumenta a medida que el valor verdadero del paráme-
	tro se acerca al valor hipotético propuesto por la hipótesis nula. Mientras mayor sea la di-
•	ferencia entre el valor real del parámetro y el hipotético, β será menor.
29	Si la hipótesis nula es falsa, β es un máximo cuando el valor real de un parámetro coinci-
•	de con el valor hipotético.
30	Si graficamos las probabilidades de aceptación de H ₀ que corresponden a diversas alterna-
	tivas para ì, incluido el valor especificado por H ₀ , y unimos todos los puntos mediante
	una curva suave, obtenemos la curva de operación característica del criterio de prueba, o
	simplemente curva CO.
31	La probabilidad de aceptación de H_0 cuando es verdadera es simplemente $(1 - \alpha)$.
32	
	na alternativa específica es verdadera.
	La <i>potencia</i> de una prueba se puede calcular como $(1 - \beta)$.
34	La potencia de una prueba puede interpretarse como la probabilidad de rechazar de mane-
	ra correcta una hipótesis nula falsa.
35	La potencia de una prueba es una medida muy descriptiva y concisa de la sensibilidad de
	una prueba estadística, donde se entiende por sensibilidad a la capacidad de una prueba
	para "detectar diferencias".
36	Por definición, error de tipo II es la probabilidad de aceptar una hipótesis nula cuando
	ésta es falsa.
37	El error de tipo I consiste en rechazar la hipótesis nula cuando ésta es falsa.
	El error de tipo II consiste en aceptar la hipótesis nula cuando ésta es verdadera.
	El error de tipo I siempre es un valor comprendido entre 0,01 y 0,05.
40	El nivel de significancia en una prueba de hipótesis permanece insensible al tamaño de la
	muestra.
	Las pruebas de hipótesis sólo son aplicables a distribuciones normales.
42	Para un tamaño de muestra dado, al pasar de un nivel de significancia de 0,01 a 0,05 au-
	mentamos el riesgo de cometer un error de tipo I y disminuimos el riesgo de cometer un
	error de tipo II.

43	Cuando el ingeniero utiliza un nivel de significancia igual a 0,01 en sus experimentos en
4.4	inferencia estadística, significa que el 1% de las veces rechazará la hipótesis nula.
44	
15	un error de tipo II siempre será igual a 0,95. Un nivel de significancia de 0,01 significa que, en promedio, una de cada cien veces que
43	la hipótesis nula sea cierta, la rechazaremos.
46	Al diseñar una prueba de hipótesis, el investigador sólo puede controlar el error de tipo I
TO:	o el error de tipo II, pero no hay modo de controlar los dos simultáneamente.
47	Las pruebas de hipótesis sólo pueden ser utilizadas para hacer inferencias sobre las me-
'''	dias de las poblaciones.
48.	La potencia de una prueba de hipótesis es independiente del error de tipo II.
	Cuando el ingeniero utiliza un nivel de significancia igual a 0,05 en sus experimentos en
	inferencia estadística, significa que habrá rechazado indebidamente la hipótesis nula sólo
	el 5% de las veces.
Pruebas	s de una y dos colas
	A veces, la región crítica para la hipótesis alternativa $\theta > \theta_0$ se encuentra en la cola dere-
	cha de la distribución de la estadística de prueba.
51	•
	rección de la región crítica.
52	Una prueba con hipótesis alternativa bilateral del tipo $\theta \neq \theta_0$, se llama prueba de dos co-
	las, pues la región crítica se divide en dos partes, las que a menudo tienen probabilidades
	iguales que se colocan en cada cola de la distribución de la estadística de prueba.
53	La posición de la región crítica se puede determinar sólo después de establecer la hipóte-
	sis alternativa.
54	Para determinar cuál hipótesis se establecerá como H ₀ y cuál como H ₁ , si la afirmación
	sugiere una sola dirección como mayor que, menor que, superior a, inferior a, entonces
	H ₁ se debe establecer con el uso del símbolo de desigualdad que corresponda a la direc-
	ción sugerida (< o >).
55	Para determinar cuál hipótesis se establecerá como H_0 y cuál como H_1 , si la afirmación no
	sugiere ninguna, entonces H_1 se establece con el signo de diferente (\neq) .
Uso de 1	valores P para la toma de decisiones
56	Si no se tiene en mente un nivel de significancia a preseleccionado, es imposible sacar
	conclusiones en una prueba de hipótesis.
57	La preselección de un nivel de significancia α tiene sus raíces en la filosofía de que se
	debe controlar el riesgo máximo de cometer un error de tipo I.
58	La aproximación del valor P se diseña para dar al usuario una alternativa, en términos de
	probabilidad, a la simple conclusión de rechazo o no rechazo.
59	Un valor P es el nivel de significancia más bajo en el que el valor observado de la estadís-
_	tica de prueba es significativo.
60	El valor P de una prueba de hipótesis se puede calcular independientemente del nivel de
	significancia elegido.
61	El valor <i>P</i> de una prueba de hipótesis nunca resulta mayor que el nivel de significancia.

Respuestas de las Autoevaluaciones

Las respuestas están ordenadas por Unidades Temáticas. Las mismas se entregan para que sirvan de ayuda durante el autoaprendizaje. En primer lugar coloca tu respuesta en la autoevaluación. Si después de responder, tu respuesta no coincide con la que aquí te entregamos, trata de reconsiderar tu razonamiento sobre la afirmación. Finalmente, si después de tal reconsideración no estás de acuerdo con la respuesta que aquí se encuentra, **no dudes en preguntar**, juntos consideraremos la solución.

¡No trates de memorizar respuestas! Razona siempre antes de contestar.

Después de razonar y contestar cada afirmación, practica justificar tu respuesta.

	Unidades Temáticas									
Ítem	1	2	3	4	5	6	7	8	9	10
1	F	V	V	V	V	V	V	F	F	V
2	V	V	V	V	F	F	F	F	V	V
3	F	F	F	F	F	V	V	V	V	F
4	V	V	V	V	F	V	F	V	V	F
5	F	F	V	F	F	V	V	V	F	F
6	F	V	V	F	F	V	,	F	F	V
7	F	F	F	F	V	F		F	F	V
8	F	V	F	F	V	V		V	F	V
9	F	V	V	V	F	V		F	V	V
10	V	F	V	F	V	V		F	F	V
11	F	V	F	F	V	V		V	V	V
<i>12</i>	V	V	V	V	V	V		V	F	V
<i>13</i>	V	F	V	V	F	V		F	F	V
14	V	F	F	V	F	F		V	V	V
<i>15</i>	F	V	V	F	V	V		V	V	F
<i>16</i>	V	F	V	F	V	V		F	V	V
<i>17</i>	F	V	V	V	F	F		V	F	V
<i>18</i>	F	V	V	V	V	V		F	F	V
19	V	F	V	V	V	F		V	F	F
<i>20</i>	F	V	F	V	V	V		V	F	V
<i>21</i>	V	V	V	V	V	V		V	F	V
22	F	F	F	F	F	V		F	F	V
23	V	F	F	V	F	F		V	F	F
<i>24</i>	F	F	F	V	V	V		V	V	V
<i>25</i>	F	F	V	F	F	V		F	V	V
<i>26</i>	V	V	V	V	F	F		V	V	V
<i>27</i>	V	F	V	V	F	V		V	F	F
28	F	V	F	F	V	F		V	V	V
29	V	F	F	V	V	V		V	F	V
<i>30</i>	V	F	F	V	F	V		V	V	V
31	F	F	F	F	F	V		F	F	V
32	F	V	F	F	V	V		F	V	V
33	V	F	V	V	V	V		V	F	V
34	V	F	V	F	V	V		V	V	V
<i>35</i>	V	V	F	F	F	V		V	V	V

	Unidades Temáticas									
Ítem	1	2	3	4	5	6	7	8	9	10
36	V	F	V	F	F	V]	V	V	F
37	V	F	V	V	F	V		V	V	F
38	V		V	V	F	F		V	V	F
39	F		F	V	F	F		V	F	F
40	V		V	F	V	V		F	F	F
41			F	F	V	V		V	V	F
<i>42</i>			F		F	V		V	F	V
43			V		V	F		F	V	F
44			V		F	V		F	V	F
45			F		V	V		F	V	V
46			F		V	V		V	F	F
47			V		F	V		V	V	F
48 49			V		F	F V		V	V	F V
49 50			F		F V	V		V	F F	F
50 51			V		V	V		V	V	V
<i>52</i>			F		V	F		V	V	V
53			F		F	F		V	V	V
<i>54</i>			F		V	V		V	F	V
55			V		F	F		V	V	V
<i>56</i>			V		V	V		V	F	F
<i>57</i>			V		V	V		V	F	V
<i>58</i>			F		V	F		V	F	V
<i>59</i>			F		F	V		F	F	V
<i>60</i>			V		V	V		V	V	V
<i>61</i>			F		F	F		F	F	F
<i>62</i>			V		F	F		V	F	
<i>63</i>			V		F			V	F	
64			F		V			V	V	
65			F		F			F	F	
66			F					F	V	
67			F					V	V	
68 60			V						F	
69 70			V							
70 71			V							
71 72			V							
73			F							
<i>74</i>			V							
75			V							
<i>76</i>			V							
77			F							
<i>78</i>			F							