Functional Programming Functors, Applicatives, and Parsers

Prof. Dr. Peter Thiemann

Albert-Ludwigs-Universität Freiburg, Germany

WS 2024/25

Introduction

- Functors and applicatives are concepts from category theory
- A very general and abstract theory about structures and maps between them
- So general that mathematicians call it "general abstract nonsense"
- Yields very useful abstractions for functional programming
- After a brief review we specialize for Haskell

Plan

- Categories
- 2 Functors
- Applicatives
- Parsers

Categories

Definition (part 1)

A small category C is given by

- a set of objects,
- for each pair of objects A, B, a set Hom(A, B) of arrows (morphisms) between A and B,
- for each pair of arrows $f \in Hom(A, B)$ and $g \in Hom(B, C)$ (for objects A, B, C), there is an arrow $(f; g) \in Hom(A, C)$, the composition of f and g (alternatively), write $g \circ f$).

Moreover, the following laws are expected to hold

(Small) Categories

Definition (part 2: laws)

- For each object A there is a designated identity arrow $i_A \in Hom(A, A)$ which behaves as an identity with respect to composition:
 - ▶ for each $f \in Hom(A, B)$, i_A ; f = f,
 - ► for each $g \in Hom(B, A)$, g; $i_B = g$.
- Composition of arrows is associative, that is:

$$f;(g;h)=(f;g);h$$

for all $f \in Hom(A, B)$, $g \in Hom(B, C)$, and $h \in Hom(C, D)$ and objects A, B, C, D.

Examples of categories (not small)

Set

Objects are sets and morphisms are total functions.

Examples of categories (not small)

Set

Objects are sets and morphisms are total functions.

Par

Objects are sets, morphisms are partial functions.

Examples of categories (not small)

Set

Objects are sets and morphisms are total functions.

Par

Objects are sets, morphisms are partial functions.

Group, Ring, Vect

Objects are groups (rings, vector spaces), morphisms are group (ring, vector space) homomorphisms

FinSet (only essentially small)

Objects are finite sets and morphisms are total functions.

FinSet (only essentially small)

Objects are finite sets and morphisms are total functions.

Partially ordered sets

Every poset (A, \leq) gives rise to a category with objects $a \in A$ and a single morphism m_{ab} for each $a, b \in A$ such that $a \leq b$.

FinSet (only essentially small)

Objects are finite sets and morphisms are total functions.

Partially ordered sets

Every poset (A, \leq) gives rise to a category with objects $a \in A$ and a single morphism m_{ab} for each $a, b \in A$ such that $a \leq b$.

Graphs

Every directed graph (N, E) gives rise to category with objects $n \in N$ and morphisms paths in N.

FinSet (only essentially small)

Objects are finite sets and morphisms are total functions.

Partially ordered sets

Every poset (A, \leq) gives rise to a category with objects $a \in A$ and a single morphism m_{ab} for each $a, b \in A$ such that $a \leq b$.

Graphs

Every directed graph (N, E) gives rise to category with objects $n \in N$ and morphisms paths in N.

Hask (small?)

Objects are Haskell types, morphisms are Haskell functions.

Plan

- Categories
- 2 Functors
- 3 Applicatives
- Parsers

Functors (in general)

Definition

Suppose $\mathcal C$ and $\mathcal D$ are categories. A functor $F:\mathcal C\to\mathcal D$ consists of

- ullet a mapping from objects of ${\mathcal C}$ to objects of ${\mathcal D}$ and
- ullet a mapping from arrows of ${\mathcal C}$ to arrows of ${\mathcal D}$

such that

- $f \in HOM_{\mathcal{C}}(A, B)$ is mapped to $F(f) \in HOM_{\mathcal{D}}(FA, FB)$,
- $i_A \in HOM_{\mathcal{C}}(A, A)$ is mapped to $i_{FA} \in HOM_{\mathcal{D}}(FA, FA)$,
- $f \in HOM_{\mathcal{C}}(A, B)$ and $g \in HOM_{\mathcal{C}}(B, C)$ implies that $F(f; g) = F(f); F(g) : HOM_{\mathcal{D}}(FA, FC)$

for all objects A, B, C of C.

Functors (in general)

Definition

Suppose C and D are categories. A functor $F: C \to D$ consists of

- ullet a mapping from objects of ${\mathcal C}$ to objects of ${\mathcal D}$ and
- ullet a mapping from arrows of ${\mathcal C}$ to arrows of ${\mathcal D}$

such that

- $f \in HOM_{\mathcal{C}}(A, B)$ is mapped to $F(f) \in HOM_{\mathcal{D}}(FA, FB)$,
- $i_A \in HOM_{\mathcal{C}}(A, A)$ is mapped to $i_{FA} \in HOM_{\mathcal{D}}(FA, FA)$,
- $f \in HOM_{\mathcal{C}}(A, B)$ and $g \in HOM_{\mathcal{C}}(B, C)$ implies that $F(f; g) = F(f); F(g) : HOM_{\mathcal{D}}(FA, FC)$

for all objects A, B, C of C.

Remark

An Endofunctor on a category C is a functor from $C \to C$.

Functors (Endofunctors on Hask)

Definition

A functor is a mapping f between types such that for every pair of type a and b there is a function fmap :: (a -> b) -> (f a -> f b) such that the functorial laws hold:

- the identity function on a is mapped to the identity function on f a: fmap id fx == id fx, for all fx in fa
- fmap is compatible with function composition fmap (f . g) == fmap f . fmap g, for all f :: b -> c and g :: a -> b

Functors (Endofunctors on Hask)

Definition

A functor is a mapping f between types such that for every pair of type a and b there is a function fmap :: (a -> b) -> (f a -> f b) such that the functorial laws hold:

- the identity function on a is mapped to the identity function on f a: fmap id fx == id fx, for all fx in fa
- fmap is compatible with function composition fmap (f . g) == fmap f . fmap g, for all f :: b -> c and g :: a -> b

Functions on types

- Int, Bool, Double etc are types.
- parameterized types like [a], BTree a, IO a can be considered as a type constructor (i.e., [], BTree, IO) applied to a type
- We can express that formally by writing kindings: Int :: *, Bool :: *, Double :: *, but [] :: * -> *, BTree :: * -> *, IO :: * -> *

Functors in Haskell

The functor class

```
class Functor f where
```

fmap :: (a -> b) -> (f a -> f b)

Recall f is a type variable that can stand for type constructors (ie, functions on types) like IO, [], and others. So f :: * -> *!

Functors in Haskell

The functor class

class Functor f where

fmap ::
$$(a -> b) -> (f a -> f b)$$

Recall f is a type variable that can stand for type constructors (ie, functions on types) like IO, [], and others. So f :: * -> *!

Good news

We already know a couple of functors!

• To make list an instance of functor, we need to instantiate the type f in the type of fmap by [], the list type constructor

- To make list an instance of functor, we need to instantiate the type f in the type of fmap by [], the list type constructor
- fmap :: (a -> b) -> (f a -> f b)

- To make list an instance of functor, we need to instantiate the type f in the type of fmap by [], the list type constructor
- fmap :: (a -> b) -> (f a -> f b)
- fmap :: (a -> b) -> ([a] -> [b])

- To make list an instance of functor, we need to instantiate the type f in the type of fmap by [], the list type constructor
- fmap :: (a -> b) -> (f a -> f b)
- fmap :: (a -> b) -> ([a] -> [b])
- Looks familiar?

- To make list an instance of functor, we need to instantiate the type f in the type of fmap by [], the list type constructor
- fmap :: (a -> b) -> (f a -> f b)
- fmap :: (a -> b) -> ([a] -> [b])
- Looks familiar?
- It's the type of map

- To make list an instance of functor, we need to instantiate the type f in the type of fmap by [], the list type constructor
- fmap :: (a → b) → (f a → f b)
- fmap :: (a -> b) -> ([a] -> [b])
- Looks familiar?
- It's the type of map
- It remains to check the functorial laws on map

Functorial laws for list

fmap id fx == id fx

fx is a list, so we must proceed by induction

- map id [] == [] == id []
- map id (x:xs) == id x : map id xs == x : xs == id (x : xs)

Functorial laws for list

fmap id fx == id fx

fx is a list, so we must proceed by induction

- $\bullet \ \, \mathsf{map} \,\, \mathsf{id} \,\, [] == [] == \mathsf{id} \,\, []$
- map id (x:xs) == id x : map id xs == x : xs == id (x : xs)

fmap (f . g) == fmap f . fmap g

Must hold when applied to any list fx

- $\bullet \ \ \mathsf{map} \ (\mathsf{f} \ . \ \mathsf{g}) \ [] == [] == \mathsf{map} \ \mathsf{f} \ (\mathsf{map} \ \mathsf{g} \ [])$
- map (f . g) (x : xs) == (f . g) x : map (f . g) xs
- $== f(g \times) : (map f. map g) \times s by function composition and induction$
 - == f(g x) : map f(map g xs) by function composition
 - == map f (g x : map g xs) by map f
 - == map f (map g (x : xs)) by map g
 - == (map f. map g) (x : xs)

 $\bullet \ \, \mathsf{Reminder} \colon \, \mathbf{data} \, \, \mathbf{Maybe} \, \, \mathsf{a} = \mathbf{Nothing} \, \, | \, \, \mathbf{Just} \, \, \mathsf{a} \\$

- Reminder: data Maybe a = Nothing | Just a
- To make Maybe an instance of functor, we need to instantiate the type f in the type of fmap by the type constructor Maybe

- Reminder: data Maybe a = Nothing | Just a
- To make Maybe an instance of functor, we need to instantiate the type f in the type of fmap by the type constructor Maybe
- fmap :: (a -> b) -> (f a -> f b)

- Reminder: data Maybe a = Nothing | Just a
- To make Maybe an instance of functor, we need to instantiate the type f in the type of fmap by the type constructor Maybe
- fmap :: (a -> b) -> (f a -> f b)
- mapMaybe :: (a → b) → (Maybe a → Maybe b)

- Reminder: data Maybe a = Nothing | Just a
- To make Maybe an instance of functor, we need to instantiate the type f in the type of fmap by the type constructor Maybe
- fmap :: (a -> b) -> (f a -> f b)
- mapMaybe :: $(a \rightarrow b) \rightarrow (Maybe a \rightarrow Maybe b)$
- There is actually no real choice for its definition

- Reminder: data Maybe a = Nothing | Just a
- To make Maybe an instance of functor, we need to instantiate the type f in the type of fmap by the type constructor Maybe
- fmap :: (a −> b) −> (f a −> f b)
- mapMaybe :: $(a \rightarrow b) \rightarrow (Maybe a \rightarrow Maybe b)$
- There is actually no real choice for its definition
- mapMaybe g Nothing = Nothing

- Reminder: data Maybe a = Nothing | Just a
- To make Maybe an instance of functor, we need to instantiate the type f in the type of fmap by the type constructor Maybe
- fmap :: (a -> b) -> (f a -> f b)
- mapMaybe :: (a −> b) −> (Maybe a −> Maybe b)
- There is actually no real choice for its definition
- mapMaybe g Nothing = Nothing
- mapMaybe g (Just a) = Just (g a)

- Reminder: data Maybe a = Nothing | Just a
- To make Maybe an instance of functor, we need to instantiate the type f in the type of fmap by the type constructor Maybe
- fmap :: (a -> b) -> (f a -> f b)
- mapMaybe :: (a −> b) −> (Maybe a −> Maybe b)
- There is actually no real choice for its definition
- mapMaybe g Nothing = Nothing
- mapMaybe g (Just a) = Just (g a)
- Second equation could return Nothing, but that would violate the functorial laws

- Reminder: data Maybe a = Nothing | Just a
- To make Maybe an instance of functor, we need to instantiate the type f in the type of fmap by the type constructor Maybe
- fmap :: (a -> b) -> (f a -> f b)
- mapMaybe :: (a −> b) −> (Maybe a −> Maybe b)
- There is actually no real choice for its definition
- mapMaybe g Nothing = Nothing
- mapMaybe g (Just a) = Just (g a)
- Second equation could return Nothing, but that would violate the functorial laws
- It remains to check the functorial laws on mapMaybe

Functorial laws for Maybe

$fmap \ \textbf{id} \ fx == \textbf{id} \ fx$

fx is a Maybe, so we must proceed by induction (cases)

- mapMaybe id Nothing == Nothing == id Nothing
- mapMaybe id (Just x) == Just x == id (Just x)

Functorial laws for Maybe

fmap id fx == id fx

fx is a Maybe, so we must proceed by induction (cases)

- mapMaybe id Nothing == Nothing == id Nothing
- mapMaybe id (Just x) == Just x == id (Just x)

fmap (f . g) == fmap f . fmap g

Must hold when applied to any Maybe fx

- mapMaybe $(f \cdot g)$ Nothing == Nothing == map f (map g Nothing)
- mapMaybe (f . g) (Just x)
 - == Just ((f . g) x)
 - == Just (f (g x)) by function composition
 - == mapMaybe f (Just (g x)) by map f
 - == mapMaybe f (mapMaybe g (Just x)) by map g
 - == (mapMaybe f . mapMaybe g) (Just \times)

• Reminder: data BTree a = Leaf | Node (BTree a) a (BTree a)

- Reminder: data BTree a = Leaf | Node (BTree a) a (BTree a)
- To make BTree an instance of functor, we need to instantiate the type f in the type of fmap by the type constructor BTree

- Reminder: data BTree a = Leaf | Node (BTree a) a (BTree a)
- To make BTree an instance of functor, we need to instantiate the type f in the type of fmap by the type constructor BTree
- fmap :: (a -> b) -> (f a -> f b)

- Reminder: data BTree a = Leaf | Node (BTree a) a (BTree a)
- To make BTree an instance of functor, we need to instantiate the type f in the type of fmap by the type constructor BTree
- fmap :: (a -> b) -> (f a -> f b)
- mapBTree :: $(a \rightarrow b) \rightarrow (BTree \ a \rightarrow BTree \ b)$

- Reminder: data BTree a = Leaf | Node (BTree a) a (BTree a)
- To make BTree an instance of functor, we need to instantiate the type f in the type of fmap by the type constructor BTree
- fmap :: (a -> b) -> (f a -> f b)
- mapBTree :: $(a \rightarrow b) \rightarrow (BTree \ a \rightarrow BTree \ b)$
- There is actually no real choice for its definition

```
mapBTree g Leaf = Leaf mapBTree g (Node I a r) = Node (mapBTree g I) (g a) (mapBTree g r)
```

- Reminder: data BTree a = Leaf | Node (BTree a) a (BTree a)
- To make BTree an instance of functor, we need to instantiate the type f in the type of fmap by the type constructor BTree
- fmap :: (a -> b) -> (f a -> f b)
- mapBTree :: $(a \rightarrow b) \rightarrow (BTree a \rightarrow BTree b)$
- There is actually no real choice for its definition

```
\begin{array}{l} \text{mapBTree g Leaf} \\ \text{mapBTree g (Node I a r)} = \text{Node (mapBTree g I) (g a) (mapBTree g r)} \end{array}
```

• In the second equation we need to transform the data at the node by g and the subtrees of type BTree a recursively to BTree b using the mapBTree function

- Reminder: data BTree a = Leaf | Node (BTree a) a (BTree a)
- To make BTree an instance of functor, we need to instantiate the type f in the type of fmap by the type constructor BTree
- fmap :: (a -> b) -> (f a -> f b)
- mapBTree :: $(a \rightarrow b) \rightarrow (BTree \ a \rightarrow BTree \ b)$
- There is actually no real choice for its definition

```
mapBTree g Leaf = Leaf mapBTree g (Node I a r) = Node (mapBTree g I) (g a) (mapBTree g r)
```

- In the second equation we need to transform the data at the node by g and the subtrees of type BTree a recursively to BTree b using the mapBTree function
- It remains to check the functorial laws on mapBTree, but we'll leave this inductive proof to you.

Remark

- Many of the predefined type constructors have Functor instances
- Some of them may be unexpected
- For instance **instance Functor** ((,) a) makes the pair type into a functor by defining fmap on the second component
- Mapping on the first component would also define a (different) functor!
- (There are also functors with more than one argument. They have to fulfill the functorial laws in all arguments. The pair type constructor (,) is an example of a binary functor.)

Plan

- Categories
- 2 Functors
- 3 Applicatives
- Parsers

- An applicative (functor) is a special kind of functor
- It has further operations and laws
- We motivate it with a couple of examples

Example 1: sequencing IO commands

Example 1: sequencing IO commands

```
| sequence :: [IO a] -> IO [a] | sequence [] = return [] | sequence (io:ios) = do x <- io | xs <- sequence ios | return (x:xs)
```

Alternative way

```
sequence [] = return []
sequence (io:ios) = return (:) 'ap' io 'ap' sequence ios

return :: Monad m => a -> m a
ap :: Monad m => m (a -> b) -> m a -> m b
```

```
Example 2: transposition

transpose :: [[a]] -> [[a]]
transpose [] = repeat []
transpose (xs:xss) = zipWith (:) xs (transpose xss)
```

Example 2: transposition transpose :: [[a]] -> [[a]] transpose [] = repeat [] transpose (xs:xss) = zipWith (:) xs (transpose xss)

Rewrite

```
transpose [] = repeat []
transpose (xs:xss) = repeat (:) 'zapp' xs 'zapp' transpose xss

zapp :: [a -> b] -> [a] -> [b]
zapp fs xs = zipWith ($) fs xs
```

Applicative Interpreter

A datatype for expressions

```
data Exp v
= Var v — variables
| Val Int — constants
| Add (Exp v) (Exp v) — addition
```

Applicative Interpreter

A datatype for expressions

```
data Exp v
= Var v — variables
| Val Int — constants
| Add (Exp v) (Exp v) — addition
```

Standard interpretation

```
eval :: Exp v -> Env v -> Int
eval (Var v) env = fetch v env
eval (Val i) env = i
eval (Add e1 e2) env = eval e1 env + eval e2 env

type Env v = v -> Int
fetch :: v -> Env v -> Int
fetch v env = env v
```

Applicative Interpreter

Alternative implementation

```
eval' :: Exp v -> Env v -> Int
eval' (Var v) = fetch v
eval' (Val i) = const i
eval' (Add e1 e2) = const (+) 'ess' (eval' e1) 'ess' (eval' e2)
ess a b c = (a c) (b c)
```

Extract the common structure

```
class Functor f => Applicative f where
```

pure :: a -> f a

Laws

Identity

$$_{1}$$
 pure **id** $<*>$ v $==$ v

Composition

$$| pure (.) <*> u <*> v <*> w = u <*> (v <*> w)$$

Homomorphism

$$| pure f < *> pure x = pure (f x)$$

Interchange

$$|u| < *> pure y = pure ($ y) < *> u$$

Instances of Applicative

• List, Maybe, and IO are also applicatives

Instances of Applicative

• List, Maybe, and IO are also applicatives

Lists

```
instance Applicative [] where

-- pure :: a \rightarrow [a]

pure a = [a]

-- (<*>) :: [a \rightarrow b] \rightarrow [b]

fs <*> xs = concatMap (\f -> map f xs) fs
```

Instances of Applicative

• List, Maybe, and IO are also applicatives

Lists

```
instance Applicative [] where

-- pure :: a \rightarrow [a]

pure a = [a]

-- (<*>) :: [a \rightarrow b] \rightarrow [a] \rightarrow [b]

fs <*> xs = concatMap (\f -> map f xs) fs
```

Maybe

Plan

- Categories
- 2 Functors
- Applicatives
- Parsers

An interesting example for Applicatives

An interesting example for Applicatives

Task: Parsing expressions

- Read a string like "3+42/6"
- Recognize it as a valid term
- Return Bin (Con 3) Add (Bin (Con 42) Div (Con 6))

Parsing

The type of a simple parser

```
| \mathbf{type} | \mathsf{Parser} | \mathsf{token} | \mathsf{result} = [\mathsf{token}] | -> [(\mathsf{result}, [\mathsf{token}])]
```

Combinator parsing

Primitive parsers

```
pempty :: Parser t r
succeed :: r -> Parser t r
satisfy :: (t -> Bool) -> Parser t t
msatisfy :: (t -> Maybe a) -> Parser t a
lit :: Eq t => t -> Parser t t
```

Combinator parsing II

Combination of parsers

```
palt :: Parser t r -> Parser t r -> Parser t r pseq :: Parser t (s -> r) -> Parser t s -> Parser t r pmap :: (s -> r) -> Parser t s -> Parser t r
```

A taste of compiler construction

A lexer

A lexer partitions the incoming list of characters into a list of tokens. A token is either a single symbol, an identifier, or a number. Whitespace characters are removed.

Underlying concepts

Parsers have a rich structure

• parsing illustrates functors, applicatives, as well as monads that we already saw in the guise of IO instructions

Parsing is . . .

A functor

Check the functorial laws!

An applicative

Check applicative laws!

A monad

Check the monad laws (upcoming)!

Consequence

Can use do notation for parsing!

Parsers are Applicative!

```
instance Applicative (Parser' token) where
pure = return
(<*>) = ap

instance Alternative (Parser' token) where
empty = mzero
(<|>) = mplus
```

• what if there are multiple applicatives?

- what if there are multiple applicatives?
- they just compose (unlike monads)

- what if there are multiple applicatives?
- they just compose (unlike monads)
- applicative do notation

- what if there are multiple applicatives?
- they just compose (unlike monads)
- applicative do notation
- applicatives cannot express dependency

- what if there are multiple applicatives?
- they just compose (unlike monads)
- applicative do notation
- applicatives cannot express dependency
- enable more clever parsers