Random Ideals

Katharina Boudgoust

May 30, 2020

1 Introduction

Number theory, as the name indicates, is the mathematical study of numbers. Given two integers x and y in \mathbb{Z} , one can do a lot of funny things with them, as we learned in school. One can compute their sum x + y, their product $x \cdot y$ or even their greatest common divisor $\gcd(x,y)$, which is the smallest integer that divides both x and y. If the $\gcd(x,y)$ is 1, we call them relatively prime. An interesting result in number theory says that the probability that two random positive integers are relatively prime is $6/\pi^2$. This happens to be exactly the value of $1/\zeta(2)$, where ζ is the Riemann zeta function. More generally, one can prove that the probability that n positive integers are pairwise relatively prime is $1/\zeta(n)$. We can even further generalize this statement for any algebraic number field K with associated ring of integers O_K . We call two nonzero ideals \mathfrak{a} and \mathfrak{b} of O_K relatively prime if there does not exist a prime ideal $\mathfrak{p} \subseteq O_K$ such that $\mathfrak{p} | \mathfrak{a}$ and $\mathfrak{p} | \mathfrak{b}$. Sittinger and DeMoss show in (DS18) the following result:

Theorem 1.1. Fix a positive integer n. Then, the probability that n nonzero ideals of O_K are relatively prime equals

$$P_{n} = \prod_{\mathfrak{p}} \left(1 - \frac{1}{\mathfrak{N}(\mathfrak{p})} \right)^{n} + \frac{n}{\mathfrak{N}(\mathfrak{p})} \cdot \left(1 - \frac{1}{\mathfrak{N}(\mathfrak{p})} \right)^{n-1}$$
$$= \prod_{\mathfrak{p}} \left(1 - \frac{1}{\mathfrak{N}(\mathfrak{p})} \right)^{n-1} \cdot \left(1 + \frac{n-1}{\mathfrak{N}(\mathfrak{p})} \right),$$

where the product runs over all prime ideals \mathfrak{p} in O_K and where \mathfrak{N} denotes the norm of an ideal.

In general it is quite tricky to compute an *infinite* product. However, in many cases, it is sufficient to only know an approximative value of this probability. Sittinger and DeMoss (DS18) give a lower bound on the number N of prime ideals that we need to use in the product in order to have a satisfying approximation of the probability P_n . More precisely, let d denote the degree of O_K and t denote the decimal point accuracy for P_n that we want to have. In this case

$$N \ge \frac{d(n-1)^2 \cdot 10^t + (n-3)}{2}$$

is sufficient. In (DS18, Fig. 1), the authors give approximations of this probability for different examples of number fields. For example, for the case of the 5-th cyclotomic number field, the probability is approximatively 0.9155.

In this repository, we include a sage code to compute this probability for any cyclotomic number field.

2 Cyclotomic fields

In order to understand the sage code, it is crucial to understand how some specific ideals behave in the ring of integers O_K , when K is a cyclotomic number field. We only recall some important results that we use without proving or motivating them. We refer an interested reader to (LPR13) and (Con) for more details.

A number field $K = \mathbb{Q}(\zeta)$ of degree d is a finite extension of the rational number field \mathbb{Q} obtained by adjoining an algebraic number ζ . The set of all algebraic integers of K defines a ring, called the ring of integers which we denote by O_K .

A first fact that we need to know is that the norm of a prime ideal \mathfrak{p} in O_K is a power of a prime. Further, for every prime p the norm of the ideal generated by p has norm p^d , where d is the degree of the number field. Thus, in order to find all prime ideals in O_K , it is sufficient to compute the prime ideal factorization of the ideals $\langle p \rangle$, where p is a prime. Fortunately, this factorization in O_K exists and is unique (we call those rings Dedekind domains). In the special case of cyclotomic number fields, we exactly know the factoring behavior of those ideals.

A number field K is called the m-th cyclotomic field, when ζ is a primitive m-th root of unity. In this case the equality $O_K = \mathbb{Z}[\zeta]$ holds. We denote by $\varphi(m) = d$ the degree of O_K , where φ denotes the Euler's totient function. To give a concrete example, let $m = 2^k$ be a power of two. Then we can think of ζ as $\exp(2\pi i/m)$ and O_K will be isomorphic to $\mathbb{Z}[x]/\langle x^{m/2} + 1 \rangle$.

In the case of cyclotomic number fields, we know how the prime ideal factorization of principal ideals generated by prime numbers behaves. In more details, for an integer prime $p \in \mathbb{Z}$, the factorization of the principal ideal $\langle p \rangle \subseteq O_K$ is as fallows. Let $\ell \geq 0$ be the largest integer such that p^{ℓ} divides m, let $h = \varphi(p^{\ell})$, and let $f \geq 1$ be the multiplicative order of p modulo m/p^{ℓ} . Further let g = d/(hf). Then the ideal $\langle p \rangle$ splits in exactly g distinct prime ideals each of norm p^f , i.e., $\langle p \rangle = \mathfrak{p}_1^h \cdots \mathfrak{p}_q^h$.

To illustrate this, we may look at the specific case where $p=1 \bmod m$. Then we know that the ideal generated by p totally splits in d distinct primes, each of norm p (use $\ell=0, h=1, f=1$). Another example is the case where m is prime and thus for every $p \neq m$ we know that $\ell=0$ and h=1. Thus, the multiplicative order of p modulo m fully determines how the ideal $\langle p \rangle$ splits in O_K .

References

- [Con] K. Conrad. The different ideal. http://www.math.uconn.edu/~kconrad/blurbs/gradnumthy/different.pdf.
- [DS18] Ryan D. DeMoss and Brian D. Sittinger. The probability that ideals in a number ring are k-wise relatively r-prime, 2018.
- [LPR13] V. Lyubashevsky, C. Peikert, and O. Regev. On ideal lattices and learning with errors over rings. J. ACM, 60(6):43:1–43:35, 2013.