Question 1 (10 marks)

The following figure shows (a) a 3-bit image of size 5-by-5 image in the square, with x and y coordinates specified, (b) a Laplacian filter.

Jupi	401		***		•				
y X	0	1	2	3	4				
0	3	7	6	2	0	Laplacian filter			
1	2	4	6	1	1	0	1	0	
2	4	7	2	5	4	1	-4	1	
3	3	0	6	2	1	0	1	0	
4	5	7	5	1	2				
				(a)	(b)			

Compute the following:

- (a) The output of a 3×3 mean filter at (3,3).
- (b) The output of a 3×3 median filter at (2,3).
- (c) The output of the 3×3 Laplacian filter shown above at (1,3).
- (d) Obtain the histogram of the image.
- (e) Apply histogram equalization on the above image and calculate the histogram equalized image, and the new histograms.

a)
$$y \times 0 = 2$$
 $0 = 2 \times 4$
 $0 = 3 \times 4$
 $0 = 3 \times 4$
 $0 \times 4 \times 4$
 $0 \times 4 \times 4$
 $0 \times 4 \times 4$

b)
$$y \times 0 12$$
 median: 012255677
 0725
 062
 2751
 $y \times 012$
 0×12
 0×12

5

c)

Histogram Equalization:

New image: y 0 1 2 3 4
0 4 7 6 3 1
1 3 4 6 2 2
2 4 7 3 5 4
3 4 1 6 3 2
4 5 7 5 2 3

Question 2 (10 marks) Consider the following images,

The modulus of the 2D DFT (followed by fftshift) of these images is shown below. Which image corresponds to which Fourier spectrum? Explain the reasons.

1 - C Diagonal shape 2 - a Vertical and horizontal general gray level change 3 - d Significantly change of gray level 4 - b The edges of the photo will have bright result in the Fourier spectrum with perpendicular result

Ouestion 3 (10 marks)

Suppose that you form a lowpass spatial filter that average the four immediate neighbors of a point (x,y), but excludes the point itself.

- (a) Find the equivalent filter H(u,v) in the frequency domain.
- (b) Show that your result is a lowpass filter.

6)
$$g(x,y) = \frac{1}{4} [f(x,y+1) + f(x+1,y) + f(x-1,y) + f(x,y-1)]$$

 $f(x-x_0, y-y_0) \iff F(u,v) e^{-j2\pi(ux_0/M+vy_0/N)}$
 $\Rightarrow G(u,v) = \frac{1}{4} (e^{j2\pi v/N} + e^{j2\pi u/M} + e^{-j2\pi v/N}) F(u,v)$
 $= H(u,v) F(u,v)$

$$\Rightarrow H(u,v) = \frac{1}{2} \left[\cos(2\pi u/M) + \cos(2\pi v/N) \right]$$

b) When consider only one variable,

$$\cos(2\pi u/M) =) \cos(2\pi (u-M/2)/M)$$

it starts at 1 when $u = \frac{M}{2}$

-1 when $u = M$

- : The amplitude of the filter decrease as the frequency of the function increase
- : It is a low-pass filter