HW1 연산 및 레지스터 제어

- 8bit 레지스터 4개로 구성된 회로에서 다음과 같은 기능이 가능한 회로 설계
 - □ 제어 입력과 데이터 입력을 통하여 레지스터 초기화
 - □ 데이터가 저장된 레지스터 간에 연산을 하여 레지스터에 저장
 - □ 연산 unit을 통하여 레지스터 간에 데이터 전송

연산 unit

Input

□ A, R:8 bit

□ function code : 2 bit

Output

□ Out: 8 bit 연산결과

□ ADD 연산 결과의 carry 출력 무시

■ 동작 표

Func Code	Out
00	ADD: Out = A + R
01	Pass: Out = R
10	CIR: Out = Circular shift right A
11	CIL: Out = Circular shift left A

Register Bank 기능

- 4 개의 8bit Register
 - □ A, B, C, D
- 2개의 8bit 입력선
 - □ Extin : 외부 입력선으로 Rout 으로 연결 가능
 - □ Din : 연산 결과를 레지스터에 저장할 입력 선

- 2개의 8bit 출력선
 - □ Rout : Extin, B, C, D 중에 Rs(2bit) 에 의해 선택된 것이 연결됨.
 - □ Aout : 레지스터 A 출력이 직접 연결됨.
- 2개의 2bit 선택 입력
 - □ Rs : Rout 으로 연결될 레지스터 선택
 - □ Rd : Din 데이터 입력을 저장할 레지스터 선택

선택 입력에 사용되는 Register 번호

■ 2개의 선택 입력

□ Rs: Rout 으로 연결될 데이터 선택

Rs	Rout
00	Extin
01	В
10	С
11	D

□ Rd : Din 데이터 입력을 저장할 레지스터 선택

Rd	Register
00	A
01	В
10	C
11	D

연산 unit과 Register 제어 unit 을 연결한 그림

데이터 설정 및 동작 예

- 초기화
 - □ 외부 입력 Extin, Rs, Func, Rd 를 다음과 같이 설정하여 clock 입력
 - reg A <- 50 : Extin = 50, Rs = 0 (Extin), Func = 01 (Pass R), Rd = 0 (A)
 - reg B <- 01 : Extin = 01, Rs = 0 (Extin), Func = 01 (Pass R), Rd = 1 (B)

- A를 1씩 증가
 - \Box A <- A + B : Extin = xx, Rs = 1 (B), Func = 00 (A+B), Rd = 0 (A)
 - □ clock 이 입력될 때마다 증가 됨

동작 그림

- A를 1씩 증가하여 54까지
 - □ Func =00 선택 -> 클럭 4번

동작 그림

- A를 circular shift right 1번
 - □ Func = 10 선택 -> 클럭 1번

동작 그림

■ A를 circular shift left 2번

□ Func = 11 선택 -> 클럭 2번

로지심 모듈만을 사용해서 구현 가능

■ 디코더 모듈과 attribute 설정

Selection: Decoder		
North		
Bottom/Left		
2		
No		
Zero		
No		

■ 멀티플렉서 모듈과 attribute 설정

-		
Selection: Multiplexer		
Facing	East	
Select Location	Bottom/Left	
Select Bits	2	
Data Bits	8	
Disabled Output	Zero	
Include Enable?	No	

연산과 register 모듈

- Adder 와 Subtractor
 - □ c in 입력을 0 으로 연결
 - □ c out은 open

- register 모듈
 - □ 설정할 필요없이 디폴트 값으로 동작하도록 되 있음
 - □ 0 으로 표시된 비동기 clear 입력은 사용할 필요 없음

Selection: Register		
Data Bits	8	
Trigger	Rising Edge	
Label		
Label Font	SansSerif Plain 12	

요구사항

- 아래와 같은 Main 회로를 구성한다.
 - □ register bank 제어와 ALU 회로를 subcircuit 으로 만든다.
 - □ subcircuit 모양과 핀 배치를 최대한 주어진 모양과 비슷하게 만든다.
 - □ subcircuit 핀 이름들도 그림과 같은 이름으로 나타낸다.
 - □ 레지스터 모듈과 연산 모듈 출력에 Hex Digit Display로 값을 나타낸다.
 - □ Document 이름과 저자 정보

요구사항

- 앞에 동작 그림에서 보여준 4가지 Sample 출력과 같은 형식의 출력을 캡쳐하여 MS word 파일에 그림을 삽입하여 제출한다.
 - 4가지: 초기화한 후, A를 1씩 증가한 결과, Circular shift right 1번 후,
 Circular shift left 2번 후
- 로지심 회로에는 아래와 같이 입출력을 나타내는 main 회로와 2개의 subcircuit 로만 구성된 회로를 제출한다.

제출물

- logisim 회로 파일 (파일이름: 학번-hw1.circ)
- 샘플 출력들을 캡쳐한 MS word 파일 (파일이름: 학번-hw1-output.docx)
- 마감 일시:
 - □ 9월 28일 23시 59분