

Discrete Random Variables

Introductory course on Statistics and Probability

Nicholas A. Pearson

Università degli Studi di Trieste

September 10, 2025

Probability model

A probability model is a mathematical description of a random experiment consisting of a sample space and a way of assigning probabilities to events.

Random variable

A random variable (r.v.) X is a variable whose value represents a numerical outcome of a random phenomenon; that is, it is a well-defined but unknown number.

Some examples include:

- the number of tails on three coin tosses
- ► the number of defective items in a sample of 20 items from a large shipment
- the number of students attending the statistics class on Friday
- the delay time of the airplane
- ► the weight of a newborn
- ▶ the duration of a phone call with your mother

Random Variable

The probability distribution of a random variable X tells us what values X can take and how to assign probabilities to those values

$$P(x) = P(X = x), \forall x$$

Example: the number of tails on three coin tosses:

 $X: \{0,1,2,3\}$ and each value x has probability P(X=x)

Random Variables

There are two main types of random variables: discrete (if it has a finite list of possible outcomes), and continuous (if it can take any value in an interval).

- D the number of tails on three coin tosses
- D the number of defective items in a sample of 20 items from a large shipment
- D the number of students attending the statistics class on Friday
- C the delay time of the airplane
- C the weight of a newborn
- C the duration of a phone call with your mother

For continuous random variables we can assign probabilities only to a range of values, using a mathematical function. This allows us to calculate the probability of events such as "today's high temperature will be between 25° and 26° ".

Discrete Random Variables

X = rolling a dice

X	P	
1	1/6	
2	1/6	
3	1/6	
4	1/6	
5	1/6	
6	1/6	

Y = roulette result

У	Р
0	1/37
1	1/37
2	1/37
35	1/37
36	1/37

Discrete Random Variables

Z = sum the results of rolling two dice

Z	Р
2	1/36
3	2/36
4	3/36
5	4/36
6	5/36
7	6/36
8	5/36
9	4/36
10	3/36
11	2/36
12	1/36

Number of tails on two flips of a coin

We toss a coin two times, then we sum the number of tails T.

- ightharpoonup X = number of tails in flipping a coin two times
- ➤ X is a discrete random variable that can assume values: {0,1,2}
- ▶ The random experiment is represented in the tree diagram:

4 possible outcomes $= 2^2$

Number of tails on two flips of a coin

We toss a coin two times, then we sum the number of tails T.

- ightharpoonup X = number of tails in tossing a coin two times
- ➤ X is a discrete random variable that can assume values: {0,1,2}.
- Given a fair coin, the probability distribution of X is

outcomes	Р	X	Y	D	0.5 -	İ	
HH	1/4	0		Г	0.3		
	-/ •	-	0	P(HH) = 1/4	0.2 -		Ī
HT	1/4	1	1		0.1 -		
TH	1/4	1	1	$P(HT \cup TH) = 1/2$	0.0	1	
	1/ 1	_	2	P(TT) = 1/4	-	×	-
TT	1/4	2	_	. () =/ .			

Number of tails on three flips of a coin

- ► X = number of tails in tossing a coin three times
- ➤ X is a discrete random variable that can assume values: {0,1,2,3}

Number of tails on three flips of a coin

- \triangleright X = number of tails in tossing a coin three times
- ► X is a discrete random variable that can assume values: $\{0,1,2,3\}$
- Assuming a fair coin, the **probability distribution** of X is:

outcomes	Р	X	X	Р
HHH	1/8	0	0	1/8
HHT	1/8	1		
HTH	1/8	1	1	3/8
THH	1/8	1		
HTT	1/8	2		
TTH	1/8	2	2	3/8
THT	1/8	2		
TTT	1/8	3	3	1/8

$$P(X = 2) = P(HTT \cup TTH \cup THT) = P(HTT) + P(TTH) + P(THT)$$

Number of tails on n flips of a coin

- ightharpoonup X = number of tails in tossing a coin n times
- ► X is a discrete random variable that can assume values: $\{0, 1, 2, ..., n\}$
- ▶ There are 2^n possible outcomes

- ► Given a fair coin, each outcome (sequence of n trials) has probability $(\frac{1}{2})^n$
- ▶ To compute P(X = x) we have to count how many outcomes with x tails we can obtain in the random experiment:

$$\binom{n}{x} = \frac{n!}{x!(n-x)!}$$

► Then, the probability distribution is: $P(X = x) = \binom{n}{x} (\frac{1}{2})^n$

Binomial distribution

A random variable X follows the binomial distribution with dimension $n \in \mathbb{N}$ and parameter $p \in [0,1]$

$$X \sim Binom(n, p)$$

if $X \in \{0, 1, \dots, n\}$ and

$$P(X = x) = \binom{n}{x} p^{x} (1 - p)^{n - x}$$

 $X \sim Binom(n, p)$ is the number of successes in n independent trials with success probability p

- the number of observations/trials n is fixed
- the n observations are independent
- each observation can be a success or a failure

Blood Types

- Genetic says that children receive genes from their parents independently
- ► Each child of a particular pair of parents has a probability 0.25 of having type "0" blood
- ▶ If these parents have 5 children, the number who have type "0" blood is the count X of successes in 5 independent observations with probability 0.25 of success in each observation
- ▶ So X has the Binomial distribution with n = 5 and p = 0.25

$$X \sim Binom(5, 0.25)$$

$$P(X = x) = {5 \choose x} (0.25)^{x} (1 - 0.25)^{5-x}$$

Blood Types

 \blacktriangleright X has the Binomial distribution with n=5 and p=0.25

$$X \sim Binom(5, 0.25)$$

$$P(X = x) = {5 \choose x} (0.25)^{x} (1 - 0.25)^{5-x}$$

▶ What is the probability that two children have type "0" blood?

$$P(X=2) = {5 \choose 2} (0.25)^2 (1 - 0.25)^{5-2}$$

What is the probability that more than 4 children have type "0" blood?

$$P(X > 4) = P(X = 5) = (0.25)^5$$

PMF with countably finite support

Given a random variable X with finite support $\{x_1, x_2, \dots, x_n\}$, we define the **probability mass function** of the random variable X

$$P(X = x_i) = p(x_i), \forall i$$

such that

i.
$$p(x_i) \ge 0$$

ii.
$$\sum_{i=1}^{n} p(x_i) = 1$$

PMF with countably infinite support

Given a random variable X that assumes a countably infinite set of values $\{x_1, x_2, \dots, x_n, \dots\}$, we define its probability mass function as

$$P(X = x_i) = p(x_i), \forall i$$

such that

i.
$$p(x_i) \ge 0$$

ii.
$$\sum_{i=1}^{\infty} p(x_i) = 1$$
 (that is, the series must converge to 1)

CDF - discrete RV

Given a random variable X that assumes a countably infinite set of values x_1, \ldots, x_n, \ldots and with probability mass function p(x), we define the cumulative distribution function of X as

$$F(x) = P(X \le x) = \sum_{i:x_i \le x} p(x_i)$$

The cumulative distribution function represents the probability that X does not exceed the value \times

- i. $F(x) \geq 0, \forall x \in \mathbb{R}$;
- ii. F(x) is non decreasing;
- iii. $\lim_{x\to-\infty} F(x) = 0$;
- iv. $\lim_{x\to+\infty} F(x) = 1$.

CDF - discrete RV

Assume that X is a discrete random variable that follows a Binomial distribution with n=4 and p=0.4, then

$$X \in \{0, 1, 2, 3, 4\}$$

▶ and the probability mass function of X is

$$P(X = x_i) = {4 \choose x_i} p^{x_i} (1-p)^{4-x_i}$$

F_i
296
752
208
744
000

Cumulative distribution

Expectation

- ▶ In order to obtain a measure of the center of a probability distribution, we introduce the notion of the expectation of a random variable
- You know the sample mean as a measure of central location for sample data
- ► The expected value is the corresponding measure of central location for a random variable
- Let X be the number of errors on a page chosen at random from business area textbooks, from a review we found that 81% of all pages were error-free (X=0), 17% of all pages contained one error (X=1), and the remaining 2% contained two errors (X=2).
- ▶ Thus, the probability mass function of the variable X is

$$p(0) = 0.81, p(1) = 0.17, p(2) = 0.02$$

Expectation

- Let X be the number of errors on a page chosen at random from business area textbooks, from a review we found that 81% of all pages were error-free (X=0), 17% of all pages contained one error (X=1), and the remaining 2% contained two errors (X=2).
- ► Thus, the probability mass function of the variable X is

$$p(0) = 0.81, p(1) = 0.17, p(2) = 0.02$$

- ▶ What is the expected value of X?
- In computing the average number of possible values,

$$E(X) = (0+1+2)/3 = 1$$

we are ignoring how each value is likely to occur (assuming the same probability on each value)

$$E(X) = 0 \cdot 0.81 + 1 \cdot 0.17 + 2 \cdot 0.02 = \sum xp(x) = 0.21$$

Expected value

The expected value E(X), of a discrete random variable X is defined as

$$E(X) = \mu = \sum_{i=1}^{\infty} x_i p(x_i)$$

Using the definition of relative frequency probability, we can view the expected value of a rv as the long-run weighted average value that it takes over a large number of trials

Variance

The variance V(X), of a discrete random variable X is defined as the expectation of the squared deviations about the mean, $(X - E(X))^2$

$$V(X) = \sigma^2 = E[(X - E(X))^2] = \sum_{i=1}^{\infty} (x_i - E(x))^2 p(x_i)$$

$$V(X) = E(X^2) - [E(X)]^2$$

The **standard deviation** σ is the positive square root of the variance

Binomial: expected value and variance

It can be shown that for a Binomial $\operatorname{rv} X$ with dimension n and $\operatorname{probability} \operatorname{p}$, that is

$$P(X = x) = \binom{n}{x} p^{x} (1 - p)^{n - x}$$

then

$$E(X) = np$$
 $V(X) = np(1-p)$

Overbooking example

- ► A small airline accepts reservations for a flight with 20 seats and knows that of the people who book a trip 10% do not show up
- What is the expected number of people that show up at the airport?
- Assuming $X \sim Binom(20, 0.9)$

$$E(X) = np = 20 \cdot 0.9 = 18$$

Linear transformations

- We defined random variables as numbers, arithmetical operations are allowed
- e.g. given a random variable X we can define a new rv Y applying a linear transformation

$$Y = aX + b$$

- ► The values that the rv Y can assume and its probability distribution are derived from the ones of X
- ▶ If X assumes values $\{x_i\}$, then Y = aX + b assumes values $\{ax_i + b\}$, and the probability distribution of Y is

$$P(Y = ax_i + b) = P(X = x_i)$$

► Also,

$$E(Y) = E(aX + b) = aE(X) + b$$
$$V(Y) = V(aX + b) = a^{2}V(X)$$

Other Examples

- ► The number of failures in a large computer system during a given day
- ► The number of replacement orders for a part received by a firm in a given month
- ► The number of ships arriving at a loading facility during a 6-hour loading period
- ► The number of delivery trucks to arrive at a central warehouse in an hour
- ► The number of customers to arrive at a checkout aisle in your local grocery store during a particular time interval

All the random phenomena above describe the number of independent occurrences (successes) on a given interval of time.

Poisson distribution

A random variable $X \in \{0, 1, 2, \dots, n, \dots\}$ follows a Poisson distribution with parameter λ if and only if

$$P(X = x) = \frac{\lambda^x}{x!} e^{-\lambda}$$

 $X \sim Poisson(\lambda)$ is the number of occurrences/successes of a certain event in a given continuous interval (such as time, surface area, or length)

- assume that the interval is divided into a large number of equal subintervals each with a very small probability of occurrence of an event
- ▶ the probability of the occurrence of an event is constant for all subintervals
- ▶ there can be no more than one occurrence in each subinterval
- occurrences are independent; that is, an occurrence in one interval does not influence the probability of an occurrence in another interval

Poisson: expected value and variance

It can be shown that for a Poisson rv X with parameter λ , that is

$$P(X = x) = \frac{\lambda^x}{x!} e^{-\lambda}$$

then

$$E(X) = \lambda, V(X) = \lambda$$

Thus λ represents the expected number of successes per space unit and it can assume only positive values

Poisson distribution

$\lambda = 1$ $\lambda = 0$.2
-----------------------------	----

Xi	pi	Xi	pi		
0	0.36788	0	0.81873		
1	0.36788	1	0.16375		
2	0.18394	2	0.01637		
3	0.06131	3	0.00109		
4	0.01533	4	0.00005		
5	0.00307	5	0.00000		
6	0.00051	6	0.00000		
7	0.00007	7	0.00000		
8	0.00001	8	0.00000		
9	0.00000	9	0.00000		
10	0.00000	10	0.00000		
> 10	0.00000	> 10	0.00000		
E()	(X) = 1	E(X	E(X) = 0.2		
V(Z)	(X) = 1	V(X	V(X) = 0.2		

$$\begin{array}{c} 0.4 \\ 0.3 \\ 0.2 \\ 0.1 \\ 0.1 \\ 0.2 \\ 0.4 \\ 0.2 \\ 0.0 \\ 0.1 \\ 0.2 \\ 0.3 \\ 0.4 \\ 0.2 \\ 0.0 \\ 0.1 \\ 0.2 \\ 0.3 \\ 0.4 \\ 0.2 \\ 0.3 \\ 0.4 \\ 0.2 \\ 0.3 \\ 0.4 \\ 0.2 \\ 0.3 \\ 0.4 \\ 0.2 \\ 0.3 \\$$

 $\lambda = 1$

Football

A football team scores a number of goals per game that is assumed to be distributed as a Poisson distribution and on average, the team scores 1.5 goals per game

- 1. Compute the probability that in the next game, the number of goals by the football team is 0
- 2. Compute the probability that in the next game, the number of goals by the football team is greater than 4

Football

1. The number of goals per game follows a Poisson distribution with parameter $\lambda=1.5$, thus

$$P(X = 0) = \frac{\lambda^0}{0!}e^{-\lambda} = e^{-\lambda} = 0.2231$$

2.

$$P(X > 4) = P\left(\bigcup_{i=5}^{+\infty} (X = i)\right) = \sum_{i=5}^{+\infty} \frac{\lambda^{i}}{i!} e^{-\lambda} =$$
$$= 1 - \sum_{i=0}^{4} \frac{\lambda^{i}}{i!} e^{-\lambda} = 1 - 0.9814 = 0.01858$$