Facultad de Ciencias, UNAM Criptografía y Seguridad Tarea 3

Altamirano Vázquez Jesús Fernando Rubí Rojas Tania Michelle

9 de junio de 2020

- 1. Sea $\mathbb{E}: y^2 + 20x = x^3 + 21 \pmod{35}$ y sea $Q = (15, -4) \in \mathbb{E}$.
 - a) Factoriza 35 tratando de calcular 3Q.
 - b) Factoriza 35 tratando de calcular 4Q duplicándolo.
 - c) Calcula 3Q y 4Q sobre \mathbb{E} (mód 5) y sobre \mathbb{E} (mód 7). Explica por qué el factor 5 se obtiene calculando 3Q y por qué el factor 7 se obtiene calculando 4Q.
- 2. Sea \mathbb{E} la curva elíptica $y^2 = x^3 + x + 28$ definida sobre \mathbb{Z}_{71} .
 - a) Calcula y muestra el número de puntos de \mathbb{E} .
 - b) Muestra que \mathbb{E} no es un grupo cíclico.
 - c) ¿Cuál es el máximo órden de un elemento en E? Encuentra un elemento que tenga este órden.
- 3. Sea $\mathbb{E}: y^2 2 = x^3 + 333x$ sobre \mathbb{F}_{347} y sea P = (110, 136).
 - a) $Es\ Q = (81, -176)$ un punto de \mathbb{E} ?
 - b) Si sabemos que $|\mathbb{E}| = 358$. ¿Podemos decir que \mathbb{E} es criptográficamente útil? ¿Cuál es el órden de P? ¿Entre qué valores se puede escoger la clave privada?
 - c) Si tu clave privada es k = 101 y algún conocido te ha enviado el mensaje cifrado

$$(M_1 = (232, 278), M_2 = (135, 214))$$

¿Cuál era el mensaje original?

- 4. Sea $\mathbb{E}: F(x,y) = y^2 x^3 2x 7$ sobre \mathbb{Z}_{31} con $\#\mathbb{E} = 39$ y P = (2,9) es un punto de órden 39 sobre \mathbb{E} , el ECIES simplificado definido sobre \mathbb{E} tiene \mathbb{Z}_{31}^* como espacio de texto plano, supongamos que la clave privada es m = 8.
 - a) Calcula Q = mP.
 - b) Descifra la siguiente cadena de texto cifrado

$$((18,1),21),((3,1),18),((17,0),19),((28,0),8)$$

c) Supongamos que cada texto plano representa un carácter alfabético, convierte el texto plano en una palabra en Inglés. Usa la asociación $(A \to 1, ..., Z \to 26)$.