(12)特許協力条約に基づいて公開された国際出願

(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2004 年7 月15 日 (15.07.2004)

PCT

(10) 国際公開番号 WO 2004/058645 A1

(51) 国際特許分類7: C01G 9/02, C08K 3/22, C08L 101/00

(21) 国際出願番号:

PCT/JP2003/013283

(22) 国際出願日:

2003年10月17日(17.10.2003)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ: 特願 2002-374123

2002 年12 月25 日 (25.12.2002) JP 特願2003-126529 2003 年5 月1 日 (01.05.2003) JP

(71) 出願人 (米国を除く全ての指定国について): 中粉ハイテック株式会社 (CF HIGH TECH CO., LTD.) [JP/JP]; 〒509-5402 岐阜県 土岐市 曽木町169の2 Gifu (JP). ハクスイテック株式会社 (HAKUSUI TECH CO., LTD.) [JP/JP]; 〒531-0072 大阪府 大阪市北区 豊崎3丁目9番7号 Osaka (JP). 九州白水株式会社 (KYUSHU HAKUSUI

CO., LTD.) [JP/JP]; 〒820-0044 福岡県 飯塚市 大字横 田669番地 Fukuoka (JP).

- (72) 発明者; および
- (75) 発明者/出願人 (米国についてのみ): 黒岩 信奉 (KUROIWA,Nobuyuki) [JP/JP]; 〒509-5402 岐阜県土 岐市 曽木町169の2 中粉ハイテック株式会社内 Gifu (JP). 辻 一弘 (TSU,JI,Kazuhiro) [JP/JP]; 〒509-5402 岐阜県土岐市 曽木町169の2 中粉ハイテック株式会社内 Gifu (JP). 千住 晶 (SEN,JYUU,Akira) [JP/JP]; 〒509-5402 岐阜県土岐市 曽木町169の2 中粉ハイテック株式会社内 Gifu (JP).
- (74) 代理人: 小谷 悦司、外(KOTANI,Etsuji et al.); 〒 530-0005 大阪府 大阪市北区 中之島2丁目2番2号 ニチ メンビル2階 Osaka (JP).
- (81) 指定国(国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK,

[続葉有]

(54) Title: ELECTROCONDUCTIVE ZINC OXIDE POWDER AND METHOD FOR PRODUCTION THEREOF, AND ELECTROCONDUCTIVE COMPOSITION

(54) 発明の名称: 導電性酸化亜鉛粉末およびその製法、並びに導電性組成物

(57) Abstract: A novel electroconductive zinc oxide powder which comprises zinc oxide and, being present as a solid solution formed with the zinc oxide, 0.01 to 10 mass % relative to the zinc oxide of at least one element selected from the group consisting of IIIB Group elements, IVB Group elements and Fe, has an average primary particle diameter of 0.03 μ m or less as calculated from its specific surface area, a bulk density of 0.20 g/ml or less and a volume resistivity of $10^{10} \Omega$ cm or less; and a method useful for producing the electroconductive zinc oxide powder. The zinc oxide powder exhibits distinguished dispersibility when incorporated into a rubber, a resin or the like as an electroconductivity imparting agent, and thus can provide a material having a reduced electric resistance.

DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) 指定国 (広域): ARIPO 特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許 (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB,

GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

一 国際調査報告書

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイダンスノート」を参照。

(57) 要約: IIIB族元素、IVB族元素およびFeよりなる群から選択される少なくとも1種の元素が、酸化亜鉛に対し質量比で $0.01\sim1$ 0質量%固溶しており、比表面積から計算される平均1次粒子径が $0.03\,\mu$ m以下で、嵩密度が $0.20\,g$ /m l 以下、体積抵抗率が $10^{10}\Omega$ ・c m以下で、導電性付与材としてゴムや樹脂などに配合することにより、卓越した分散性を有し電気抵抗値の低い材料を与える新規な導電性酸化亜鉛粉末と、その有用な製法を開示する。

明 細 書

導電性酸化亜鉛粉末およびその製法、並びに導電性組成物

技術分野

本発明は、ゴムや樹脂などの基材に対して優れた分散性を有する導電性酸化亜鉛粉末とその製法に関し、より詳細には、導電性付与材としてゴムや樹脂などに配合する際に、卓越した分散性を有し電気抵抗値の低い材料を与える導電性酸化亜鉛粉末とその製法、更には、該導電性酸化亜鉛粉末を配合することによって導電性の付与された導電性組成物に関するものである。

背景技術

導電性酸化亜鉛は、塗料やゴム、樹脂などに導電性を付与するための添加材として広く実用化されている。このうち塗料分野では、一般に塗料粘度が高くなると塗装作業性が低下することから、塗料粘度を高めないよう、比較的粒径の大きい粉末を使用することが多い。これに対しゴムや樹脂などの分野では、配合物の粘性がそれほど問題にされないことから、比較的粒径の小さい導電性酸化亜鉛粉末が使用されている。

ところで、導電性酸化亜鉛粉末の製法としては既に幾つかの方法が提案されており、例えば特開平 1-126228 号公報には、酸化亜鉛と、水溶性または水分散性のアルミニウム化合物、および炭酸アンモニウム等との3成分を、無機質微粉末

の存在下に水分散系で撹拌処理し、濾過、脱水ののち非酸化性雰囲気下、600℃程度以下の温度で加熱処理することにより、平均粒径が 0.1μmレベルの透明性に優れた導電性酸化亜鉛微粉末を製造する方法が開示されている。

しかし、上記方法を含めて従来の導電性酸化亜鉛粉末は、 粒径が小さいとは言え平均1次粒径で 0.1μmレベルが限度 であり、この程度の粒子径では、該粉末をゴムや樹脂などの 基材に配合して均一に分散させたとしても、配合組成物内で 酸化亜鉛粒子同士が密に接触しないため、導電性酸化亜鉛粉 末の単独添加で十分な導電性を得ることは難しい。

導電性酸化亜鉛微粉末の粒子径を、現在の粒径から更に1桁以上小さい超微粒子状にすることができれば、これをゴムや樹脂などの基材内に均一分散させることで、粒子同士の接触点を増大させることができ、結果的に抵抗値の低いゴム組成物や樹脂組成物が得られると考えられる。

この様な微粒子状導電性酸化亜鉛の他の例として、特開平10-236822 号公報には、カルボン酸亜鉛塩とアルコールの混合液を加熱熟成して酸化亜鉛前駆体を生成させ、この前駆体を、金属水酸化物や水と反応して金属水酸化物を生成する化合物と混合した後、アルコールを留去してから焼成する方法が開示されている。そしてこの方法によれば、平均粒径で0.001~1 μm程度の酸化亜鉛微粉末が得られると記載されている。

また特開平 7-69631 号公報には、亜鉛塩とアルミニウム塩の混合溶液にヘキサメチレンテトラミン溶液や尿素溶液を加え、 p H 5.5~7.5 で加水分解することによって薄片状の塩基性亜鉛系共沈物を生成させ、該薄片状の共沈物に、アンチモン、インジウム、スズ、ジルコニウム、チタンよりなる群

から選択される少なくとも1種の元素の水溶性化合物を添加することによって、上記薄片状亜鉛共沈物の表面を被覆し、しかる後に焼成する方法が開示されている。この方法によって得られる酸化亜鉛は、平均厚みが $0.1\sim 2~\mu$ m、平均粒径が $1\sim 100~\mu$ m であり、電気抵抗は $1\times 1~0^3~\Omega$ · c m 以下になるとされている。

また用途は異なるが、導電性を有すると考えられる微粒子状酸化亜鉛を製造する方法の1つとして特開平11-279525号公報には、(a)IIIB族元素および IVB族元素から選ばれる少なくとも1種の元素を含む酸化亜鉛であって、(b)電子顕微鏡投影像における定方向算術平均粒子径が3~100nmであり、(c)上記 IIIB族元素および IVB族元素の総含有量が1~15モル%である、ドーピングされた導電性酸化亜鉛粉末が開示されている。

しかし本発明者らが検討したところによると、前述した様な従来法で製造された酸化亜鉛粉末をゴムや樹脂などの基材に分散させた場合、基材の特性は維持し得るものの電気抵抗値の低下が不十分であるか、基材特性と電気抵抗値の何れも不十分なものばかりであり、導電性酸化亜鉛粉末の添加目的を十分に発揮し得るものとはいえない。

本発明はこの様な事情に着目してなされたものであって、その目的は、ゴムや樹脂などの基材に配合することによって、当該基材の特性を低下させることなく、電気抵抗値が大幅に低減された組成物を与え得るような、優れた分散性と導電性付与特性を備えた導電性酸化亜鉛粉末とその製法を提供し、更には、該導電性酸化亜鉛粉末の特徴をゴムや樹脂の改質に活かした導電性組成物を提供することにある。

発明の開示

また本発明の製法は、上記特性を備えた導電性酸化亜鉛粉末の有用な製法として位置付けられるもので、その構成は

- (I)酸化亜鉛の水性スラリーに炭酸アルカリ塩を反応させて塩基性炭酸亜鉛を得る工程、
 - (II)該塩基性炭酸亜鉛を加熱熟成する工程、
- (III)得られる熟成液に、IIIB族元素、IVB族元素および Feよりなる群から選択される少なくとも1種の元素の水溶 性塩を混合して再熟成する工程、
 - (IV)該熟成物を脱水し乾燥する工程、
 - (V) 得られる乾燥物を焼成する工程、
- (VI)該脱水・焼成物を解砕する工程 を順次実施するところに要旨が存在する。

この製法を実施するに当っては、上記(I)の工程で使用する酸化亜鉛の水性スラリー濃度を10質量%以下とし、また、上記(V)の工程では、前記乾燥物を酸化性雰囲気または還元性雰囲気下に300~600℃で焼成する方法を採用すれば、本発明で規定する上記特性、即ち平均1次粒子径が0.03μm以下、嵩密度が0.20g/m1以下、体積抵抗率が10¹⁰Ω・cm以下といった特性を満たす導電性酸化亜鉛粉末をより確

実に得ることができるので好ましい。

本発明に係る上記導電性酸化亜鉛粉末は、ゴムや樹脂などを始めとする様々の基材に配合することによって優れた導電性を与えるが、中でもゴムや樹脂を基材として選択し、これらの基材 100 質量部に対して 10~300 質量部の該導電性酸化亜鉛粉末を均一分散させたものは、体積抵抗率で 10³~10¹1Ω・cmという優れた導電性を示す点で、本発明の好ましい利用形態として推奨される。

図面の簡単な説明

図1は、実施例で得た導電性酸化亜鉛粉末を例示する図面 代用電子顕微鏡写真、図2は、比較例で得た従来の導電性酸 化亜鉛粉末を例示する図面代用電子顕微鏡写真である。

発明を実施するための最良の形態

本発明者らは前述した様な従来技術に見られる問題点、殊に従来法で製造した導電性酸化亜鉛粉末をゴムや樹脂などの基材に分散させたときの電気抵抗値の低下が不十分であり、導電性酸化亜鉛粉末の添加効果が十分に発揮されない理由を明確にすべく、様々の角度から研究を進めた。

そして、導電性酸化亜鉛粉末の比表面積や顕微鏡投影像から算出される数値上の粒子径を如何に小さくしたとしても、それら導電性酸化亜鉛の1次粒子は微細であるため殆どが2次凝集しており、実際の使用条件下では実質的に 0.1μm以下まで微分散されておらず、これがゴムや樹脂などの基材に導電性を与える上で重大な障害になっているものと考えた。

即ち、前述した様な従来法で製造された導電性酸化亜鉛微粉末は、比表面積から計算されるBET径や電子顕微鏡投影像から求められる平均粒径などにみられる如く見掛け上の1次粒子径は小さいが、それらの1次粒子が強固に2次凝集しているため、ゴムや樹脂などの基材に分散させたときには、期待される程の微粒子状で分散していないものと思われる。

そこで、1次粒子径は十分小さいにも拘わらず、ゴムや樹脂などに配合した時にその特性が有効に発揮されない理由を明確にするため、導電性酸化亜鉛粉末がどの様な凝集形態をとっているのかを調べた。その結果、従来の導電性酸化亜鉛粉末を例示する図粉末は、後記図2(従来の導電性酸化亜鉛粉末を例示する図面代用顕微鏡写真)に見られる如く、1次粒子が何れも相対的に広い面積で接触しているか或いは複数の点で接触して紹のにより、即ち1次粒子が相互に面状に付着し合って密に集合一体化していることが確認された。

この様に、1次粒子が密に集合一体化した2次凝集体として存在する場合は、たとえ1次粒子を微細化したとして分散したとえ1次粒子を微細化したとして分散といるが2次凝集体として分散状態の場合したがであり、1次粒子が強い凝集力で集合一体化と従って、超微粒子状の1次粒子が強の緩やかな2次凝集体とすることができれば、ゴムや樹脂などの基材内へ配合とときに2次凝集体が簡単に解れ、超微粒子状の1次粒子としま材内へ微細均一に分散できるのではないかと考え、その線に沿って研究を進めた。

その結果、追って詳述する如く当該導電性酸化亜鉛粉末の 製造条件を工夫すれば、微細な1次粒子が互いに緩やかに点 接触した嵩高で極端に嵩密度が小さく、ゴムや樹脂などに対

して特異的に優れた分散性を有すると共に、体積抵抗率の非常に小さい組成物を与える新規な導電性酸化亜鉛粉末が得られることを突き止め、上記本発明に想到したものである。

従って本発明は、追って詳述する如く製法として実用上有用な発明であるが、当該方法によって製造される導電性酸化亜鉛粉末は、従来の導電性酸化亜鉛粉末には見られない特異な特性、特に、嵩密度が非常に小さく、分散性が良好で且つゴムや樹脂などの基材の体積抵抗率を著しく低減させるという特性を有している点で、産業上極めて有用な新規物質である。

以下、本発明の導電性酸化亜鉛粉末について、その特異的な物性を主体にして説明すると共に、その製法について詳述する。

本発明の導電性酸化亜鉛粉末は、比表面積から計算される平均 1 次粒子径が 0.03 μ m以下の超微粒子状粉末である。ここで比表面積から計算される平均 1 次粒子径とは、BET法により常法に従って比表面積を測定し、得られる値を下記式(1)に代入することによって算出される値である。

 $d = 1.06 / S \cdots \cdots (1)$

[式中、 d は平均 1 次粒子径(単位: μ m)、 S は B E T 法によって求められる

比表面積(単位: m²/g)を表わす]

本発明の導電性酸化亜鉛粉末には、IIIB族元素、IVB族元素およびFeよりなる群から選択される少なくとも1種の元素が、酸化亜鉛結晶中に固溶状態で含まれている。酸化亜鉛中の亜鉛原子は2価の+イオンとして存在するが、酸化亜鉛に上記の選択元素が固溶すると3価の+イオンになる。そしてこれらの選択元素が亜鉛に比べて1つ余分の電子を放出

することで、該電子が酸化亜鉛に導電性を与える直接の原因となる。

導電性付与のために添加される IIIB族元素としては、アルミニウム、ガリウム、インジウムなどが、また IVB族元素としては、ゲルマニウムや錫などが挙げられ、本発明では、これらの元素にFeを含めた一群の元素の中から選択される。これらの元素は単独で使用し得るほか、必要により2種以上を適宜組合せて使用しても構わない。

上記元素のうち、IIIB族および IVB族の元素は、酸化亜鉛に導電性を付与するためのドーピング元素として周知れられてあるが、本発明者らが確認したところ、Feもこれののドーピング元素と同様に導電性付与元素として有効にに導電性であるための還元性酸化亜鉛粉末を得るための還元性雰囲気下での焼成においても3価の状態を維持し、ドーパの適気下での焼成においても3価の状態を維持し、ドーパの適気下での焼成においても3価の状態を維持し、ドーパの適気下での焼成においても3価の状態を維持したが確認されており、その適気として有効に作用することが確認されており、その適気を酸化亜鉛に固溶させることによって導電性を付与できるのである。

上記元素は、酸化亜鉛に対して金属換算で 0.01~1 0 質量%の範囲で含有させることが望ましい。ちなみに、0.01質量%未満では、ドーピング不足で酸化亜鉛粉末に対して満足のいく導電性を与えることができず、得られる導電性酸化亜鉛粉末をゴムなどの基材に配合しても、意図するよう量を多くし過ぎると、導電性酸化亜鉛粉末としての体積抵抗率が得られ難くなる。また10質量%を超えて含有量を多くし過ぎると、導電性酸化亜鉛粉末としての体積抵抗率は低くなるものの、1次粒子径が粗大化する傾向が生じ、ゴムなどの基材に均一分散させたときの導電性付与効果が低下傾向を示すほか、基材本来の物性にも悪影響を及ぼす恐れがで

てくる。この様なことから、上記添加元素のより好ましい含有率は、酸化亜鉛に対し金属換算で 0.05 質量%以上、5質量%以下、更に好ましくは 0.1 質量%以上、3 質量%以下である。

本発明の導電性酸化亜鉛粉末は、上記の様に酸化亜鉛に対し特定の元素を適量含有させることによって、酸化亜鉛結晶中に該元素を固溶させ、その結果として体積抵抗率を10¹⁰ Ω ・cm以下に低減したもので、より好ましい体積抵抗率は10⁸ Ω ・cm以下、更に好ましくは10⁶ Ω ・cm以下である。体積抵抗率が10¹⁰ Ω ・cmを超えるものは、本発明で意図するレベルの導電性付与効果を確保できないものとして排除される。

ここで体積抵抗率とは、供試粉末10gを、ポリテトラフルオロエチレン樹脂加工した内径25mmの円筒に入れて10MPaで加圧し、該圧粉体の体積抵抗率を、株式会社カスタム製の体積抵抗率測定装置「CDM-2000 型テスター」で測定した値である。

て緩やかな付着状態で集合していると言えるのである。

この様に微細な1次粒子が極めて緩やかな付着状態で集合した状態となるには、1次粒子が相互に点接触状態で集合しておらねばならず、その結果として2次凝集体を含めた製品粉末は極めて嵩高なものとなり、非常に分散し易い状態の1次粒子の集合体となっているのである。こうした集合状態は、例えば後記実施例で提示する図1の図面代用顕微鏡写真によっても覗われる。本発明の特徴をより効果的に発揮させる上で更に好ましい嵩密度は、0.17g/m1以下である。

本発明の酸化亜鉛粉末は、上記の様に1次粒子が相互に極めて緩やかな点接触状態で集合した嵩密度の小さいもので、ゴムや樹脂など配合すると、粗大粒子はもとより微細な2次粒子も基材内で容易に崩壊し、殆どが1次粒子の形態で微分散すると考えられ、卓越した分散性を示す。該分散性の評価法としては、例えば次に示す様な方法が採用される。

- 1) 試料となる導電性酸化亜鉛粉末 4.7gとキシレン4gを精秤し、これをエポキシ樹脂(ジャパンエポキシレジン社製、商品名「1001 X 75」)80gに加え、ホモジナイザー(日本精機製作所社製、商品名「エースホモジナイザーAM-7型」)を用いて10,000rpmで10分間分散させることにより、導電性酸化亜鉛粉末の分散液を得る。
- 2)上記 1)で得た分散液にエポキシ樹脂硬化剤(ジャパンエポキシレジン社製、商品名「S002」) 4 8 gを加え、プロペラ式撹拌機で1分間撹拌して混合する。
- 3) 上記で得た分散液を、厚さ 250μmに設定したアプリケータによって厚さ 100μmの P E T フィルム上に塗布する。
- 4) 塗布後1日乾燥させてから、塗膜厚さをマイクロメーターで測定する。塗膜の厚さ(約 150μm)が揃っていてほぼ

一定な部分を切り出し、分光光度計(島津製作所製、商品名「UV-260」)内の積分球の入射光が入る部分に試験片を貼り付けて透過率を測定する。

上記の様にして測定される透過率において、可視光透過率が高くて紫外光透過率が低いものほど、酸化亜鉛粒子が微分散されていると判断できる。ちなみに、後記実施例、比較例でも明らかにする如く、本発明に係る導電性酸化亜鉛粉末の透過率は、可視光透過率が10%程度以上で、紫外光透過率は0.1%未満であるのに対し、従来の導電性酸化亜鉛粉末の可視光透過率は何れも10%未満で、紫外光透過率は2%を超えており、このことからも、本発明の導電性酸化亜鉛粉末は格段に優れた分散性を有していることが分る。

本発明において、上記の様に嵩高で分散性に優れた導電性酸化亜鉛粉末を得るための方法としては、例えば次の様な方法が推奨される。

- (I)酸化亜鉛の水性スラリーに炭酸アルカリ塩を反応させて塩基性炭酸亜鉛を得る工程、
 - (II) 該塩基性炭酸亜鉛を加熱熟成する工程、
- (III)得られる熟成液に、IIIB族元素、IVB族元素および Feよりなる群から選択される少なくとも1種の元素の水溶 性塩を混合して再熟成する工程、
 - (IV)該熟成物を脱水し乾燥する工程、
 - (V) 得られる乾燥物を焼成する工程、
 - (VI) 該 焼 成 物 を 解 砕 す る 工 程

を順次実施する方法である。

即ち、まず原料となる酸化亜鉛を含む水性スラリー中に、 炭酸アルカリ塩(もしくは、分解して炭酸ガスとアルカリを 生成する化合物) (以下、代表して炭酸アルカリ塩と称す

る)を添加し、塩基性炭酸亜鉛を生成させる(以下、この工程を、塩基性炭酸亜鉛生成工程ということがある)。

原料として使用される酸化亜鉛は、所謂酸化亜鉛であればどの様なものでもよく、例えば、a) 亜鉛を溶融・蒸発させて気相で酸化させるフランス法、b) 亜鉛鉱石を仮焼し、還元してから酸化するアメリカ法、c) 亜鉛塩溶液にソーダ灰を加えて塩基性炭酸亜鉛を沈殿させ、乾燥してから焼成する湿式法(加熱分解法)、等のいずれで製造したものでもよい。しかし、高純度の導電性酸化亜鉛粉末を得るには、できるだけ高純度の酸化亜鉛を用いることが望ましい。

この原料酸化亜鉛を懸濁させて水性スラリーとする際に用いる水にも格別の制限はなく、製品となる酸化亜鉛粉末に求められる純度に応じて、不純成分を除去した上水道水、イオン交換水、或いは蒸留水を適宜選択して使用すればよい。

上記の塩基性炭酸亜鉛生成工程で特に注意しなければならないのは、原料酸化亜鉛のスラリーを低濃度とし、好ましくは 0.1 質量%以上、 1 0 質量%以下、更に好ましくは 0.5 質量%以上、 8 質量%以下、最も好ましくは 1 質量%以上、 5 質量%以下にすることである。

ちなみに、スラリー濃度が10質量%を超えると、大粒径の塩基性炭酸亜鉛が生成したり、1次粒子が面状に強く凝集した凝集体が生成し易くなり、延いては、その後にドーピング処理することによって得られる導電性酸化亜鉛粉末も、本発明で意図する物性を満たすものになり難くなる。一方、スラリー濃度があまりに薄くなると、乾燥工程等で除去すべたカー濃度があまりに薄くなると、乾燥工程等で除去すべたで、実用にそぐわなくなる。

なお炭酸アルカリ塩の種類は特に制限されないが、一般的

なのは、炭酸ナトリウム、炭酸水素ナトリウム、炭酸アンモニウム、炭酸水素アンモニウム等であり、これらは単独で使用し得るほか、必要により2種以上を適宜組合せて使用しても構わない。また、尿素は硝酸アンモニウム等と反応させることで炭酸ガスとアルカリを生成するので、これらも炭酸アルカリ塩の同効物質として使用できる。

上記炭酸アルカリ塩を溶解させる際の水温が高いと、酸化 亜鉛スラリーと反応させる前に熱分解して炭酸ガスを発生す るので、水温は好ましくは30℃以下、より好ましくは2 0℃以下に抑えるのがよい。該炭酸アルカリ塩溶液の濃度は 特に限定されないが、以下に説明する塩基性炭酸亜鉛の形成 に十分な量の炭酸アルカリ塩を、適度の水、好ましくは飽和 溶解度以上の水に完全溶解させて使用すればよい。

塩基性炭酸亜鉛の生成工程で使用する装置についても格別の制限はないが、例えば撹拌手段、加熱手段、冷却手段などを備え、酸化亜鉛粒子を沈降させることなく確実に浮遊させてスラリー状を維持し、且つ、この中へ炭酸アルカリ塩を導入することで、酸化亜鉛粒子との反応を効率よく進めることのできる機能を備えた撹拌槽型の反応装置が好ましい。

塩基性炭酸亜鉛の生成は、実際には種々の方法で行うことができ、反応方式にも格別の制限はないが、好ましい方式としては、例えば、反応槽にまず酸化亜鉛スラリーを仕込んでおき、これに炭酸アルカリ塩溶液を連続的に供給して塩基性炭酸亜鉛スラリーと炭酸アルカリ塩溶液の両者を連続的に反応槽へ供給して塩基性炭酸亜鉛スラリーを生成させ、当該生成した塩基性炭酸亜鉛スラリーを連続的に反応槽から抜き出す連続法、などが好ましく採用される。

連続法の場合、用いる反応槽は1槽でもよいが、2槽以上を直列に接続した反応設備を使用すれば、塩基性炭酸亜鉛の収率を高めることができるので好ましい。また工業的には、反応の進行に十分な滞留時間を確保し得る様に設計されたインラインミキサーなどを用いて連続的に製造することも勿論有効である。

本発明において、酸化亜鉛粒子が炭酸アルカリ塩と反応して塩基性炭酸亜鉛を生成する反応(以下、塩基性炭酸亜鉛生成反応と称することがある)は、次の様にして進行するものと思われる。すなわち、酸化亜鉛自体は水に難溶性であるが、粒子表面近傍の境膜内には少量(例えば、18℃で 0.5 質量%程度)の酸化亜鉛が飽和状態で溶解しており、ここに、水に対する溶解度の高い炭酸アルカリ塩が溶け込んで当該粒子表面近傍まで拡散して行き、この固一液界面の境膜内で、例えば炭酸水素アンモニウムの場合は、下記式(2)によって液相反応が進行する。

 $5Zn0+2NH_4HCO_3+3H_2O\rightarrow 2ZnCO_3\cdot 3Zn(OH)_2+2NH_4OH\cdots\cdots(2)$ 生成した塩基性炭酸亜鉛は水に難溶性の塩であって、実質的に過飽和溶解度は存在せず、直ちに微細粒子として析出すると考えられる。

上記塩基性炭酸亜鉛を生成させる際の反応温度は、特に限定されないが、好ましくは10℃以上、80℃以下、より好ましくは20℃以上、70℃以下とするのがよい。上記式(2)で示される反応自体は温度が高いほど高速で進行するが、反応温度が高くなると二酸化炭素ガスが発生し、塩基性炭酸亜鉛の収率が低下してくるからである。従って、分解による二酸化炭素ガスの発生を防止しつつ反応速度を高めるには、上記温度範囲で反応を行うことが望ましい。

反応時間(連続法の場合は、反応器内における平均滞留時間)は、反応温度や導入される炭酸アルカリ塩の濃度などによっても変わってくるので一律に決めることはできないが、通常は10分~10時間、好ましくは30分~5時間程度である。用いる反応設備には、適正温度を得るため加熱手段や保温手段、温度制御手段などを設けておくことが望ましい。

本発明においては、上記の塩基性炭酸亜鉛生成工程で得られる塩基性炭酸亜鉛を含むスラリーに、導電性を付与するための添加剤として、IIIB族元素、IVB族元素およびFeよりなる群から選択される少なくとも1種の元素の化合物を、酸化亜鉛に対して、金属換算で 0.01~10質量%添加する。0.01 質量%未満では、最終的に得られる導電性酸化亜鉛粉末が導電性不足となり、ゴムや樹脂などに配合しても満足のいく導電性付与効果が得られない。また10質量%を超えて添加量が多くなり過ぎると、得られる導電性酸化亜鉛粉末の体積抵抗率は低くなるものの、粉末の粒径が大きくなると共に嵩密度も大きくなり、ゴムや樹脂などに対する分散性が低下して本発明の意図する特徴が十分に発揮されなくなる。

ドーピング用として添加される上記元素の化合物としては、酸化物、水酸化物、可溶性塩類の形態が好ましく用いられる。酸化物や水酸化物を使用する場合は、塩基性炭酸亜鉛スラリー中に均一に分散させるため、好ましくは平均粒径が1μm以下、より好ましくは 0.1μm以下の微粉末として添加するのがよい。可溶性塩類として添加する場合、これらは任意の濃度の溶液として添加されるが、塩基性炭酸亜鉛を含むスラリーの液性はアルカリ性であるため、添加する可溶性塩類はスラリーと接して直ちに微細な水酸化物を形成し、塩基性炭酸亜鉛とより均一に混合するので好ましい。

次いで行われる脱水工程は、通常のスラリー脱水法、例えば、遠心脱水機、フィルタープレス、ベルトフィルター、ヌッチェフィルター、スクリュープレス、ベルトプレス、スプレードライヤー等の固液分離法が制限なく使用できる。

また乾燥後の焼成は、酸化性雰囲気および非酸化性雰囲気 の何れで行ってもよいが、導電性酸化亜鉛の体積抵抗率をよ り下げたい場合は、還元性雰囲気で行うのがよい。焼成に用 いる炉としては、必要な温度まで加熱し得ると共に、焼成温 度などを任意に設定し且つ十分な精度で制御できるものであ れば、どの様な焼成炉を使用しても構わない。焼成は酸化性 雰 囲 気 お よ び 非 酸 化 雰 囲 気 の 何 れ で 行 っ て も 構 わ な い が 、 温 度は 300℃以上 (より好ましくは 350℃以上)、600℃以下 (より好ましくは 500℃以下、更に好ましくは 450℃以下) で行うのがよい。焼成温度が高過ぎると、塩基性炭酸亜鉛の 分解によって生成した酸化亜鉛が焼成過程で粒成長し、1次 粒 子 径 が 0.03 μ m 以 上 に 成 長 す る と 共 に 、 2 次 粒 子 以 上 の 凝集体の緻密化も進行して嵩密度が 0.20g/m1を超え、 ゴムや樹脂などに添加したときの分散性が乏しくなる。また 焼 成 温 度 が 300℃ 未 満 の 低 温 で は 、 塩 基 性 炭 酸 亜 鉛 の 熱 分 解 によって微細な酸化亜鉛は得られるが、前述した導電性付与 元素が酸化亜鉛に固溶し難くなり、導電性酸化亜鉛粉末とし ての体積抵抗率が10¹⁰Ω・cmを超えることになる。

上記の如く比較的低温の焼成によって得られる導電性酸化 亜鉛は、その後任意の方法で解砕し、必要により粒度調整す ることによって、所望の嵩密度を有する導電性酸化亜鉛粉末 とする。

かくして得られる本発明の導電性酸化亜鉛粉末は、先に詳述した如く1次粒子そのものが微細であることに加えて、そ

れらの2次凝集体は当該1次粒子が相互に点接触状態で緩やかに集合した極めて嵩密度の小さいもので、従来の2次凝集体に比べて卓越した分散性を有しており、ゴムや樹脂の如き各種の基材に対して容易に微分散させることができる。その結果、基材内において導電性酸化亜鉛微粉末同士の接触頻度が高まり、基材に対して優れた導電性付与効果、即ち体積抵抗率低減効果を発揮する。

従ってこうした特性を活かせば、以下に例示する如く様々のゴムや樹脂、繊維素材、塗料などに配合することによって、 導電性または帯電防止性素材として幅広く有効に活用できる。

[導電性または帯電防止性ゴム材]

電子写真用などの各種導電性ロールやベルト、キャスター材、導電性手袋、導電作業靴、クリーンルーム用靴底、圧力センサー材など。

[導電性または帯電防止性樹脂]

工場や住宅、共用建築物などの床面や壁面のタイル材や各種防汚パネル材、各種窓材、透明導電プレートや膜材、IC・LCI等の電子部品用の包装材や容器・筺体、半導体ケース、トレイ、治具など各種成形品素材、各種静電対策機器・什器素材、CRT窓など各種計器窓材、画像記録材、電形成材料、荷電制御材料、静電気応用材料、電子写真用トナー材、カラートナー材、トナーキャリア材、電磁波シールドパネル材、導電パイプ材、圧力センサー材など。

[導電性または帯電防止性塗料、コーティング材、プライマー]

導電性コーティング材、静電塗装用プライマー、導電塗料、透明塗料など。

[導電性または帯電防止性フィルム、シート]

ラッピングフィルムや帯電防止フィルムなどの静電・防塵フィルム材、導電ラミネート紙、導電ラミネートシート、テーブルシート、反射防止フィルム、タッチパネル、圧力センサー材、コンデンサー、薄膜複合回路材、液晶・EL・ECD・PDPなど各種パネル材、熱線または紫外線遮蔽性透明フィルム・シート材など。

[導電性または帯電防止性繊維]

クリーンルーム用衣服、帽子、手袋、作業着、壁クロス、カーテン、幕、マット、カーペット材、静電防止下着・被服、防塵プラシ、手術用衣服など、各種帯電防止性繊維製品素材など。

[導電性または帯電防止性ガラス]

導電性または帯電防止性ガラス材、ブラウン管素材、太陽電池パネル材、色素増感型電極素材など。

[導電性化粧品素材]

熱線防止クリーム、ファンデーション、白粉、プレストパウダー、口紅、頬紅、アイシャドー、日焼け止めクリーム・ルースパウダー・乳液等への添加材。

[その他]

静電記録紙、静電記録複写基体、通電感熱記録紙、放電破壊記録紙、電子写真紙、電子写真複写基体、脱硫材、面発熱体、電磁遮蔽材、熱伝導性ゴム・樹脂など。

上記用途の中でも、基材としてゴムや樹脂(塗料素材を含む)に適用し、本発明の導電性酸化亜鉛粉末を基材 100 質量部に対して例えば 1 0~300 質量部配合すると、体積抵抗率が 1000~1 0¹¹Ω・c m レベルの低い値を示す低抵抗のゴムや樹脂を得ることができる。

好ましい基材ゴムとしては、例えば天然ゴム(NR)、イ

ソプレンゴム (IR)、ブタジエンゴム (BR)、1,2-ポリブタジエンゴム(1,2-BR)、クロロプレンゴム (CR)、スチレン-ブタジエンゴム(SBR)、プチルゴ ム (I I R) 、ニトリルゴム (アクリロニトリループタジエ ンゴム)(NBR)、水素化ニトリルゴム(HNBR)、エ チレンープロピレンゴム (EPM, EPR, EPDM, EP ンゴム (CO, ECO)、エチレン-酢酸ビニルゴム (EV A)、シリコーンゴム(Q)、メチルシリコーンゴム(M Q)、ビニルーメチルシリコーンゴム (VMQ)、フェニル ーメチルシリコーンゴム(PMQ)、多硫化ゴム(T)、ウ レタンゴム (U)、ポリエーテルウレタンゴム (EU)、ポ リエステルウレタンゴム(AU)、フッ素ゴム(FKM)な どが例示され、これらは単独で使用し得るほか、必要に応じ て2種以上を適宜併用しブレンドゴムとして使用することも 可能である。

上記ゴムに対する前記導電性酸化亜鉛粉末の好ましい配合量は、上記の如く基材ゴム 100 質量部に対して10~300 質量部の範囲であり、10質量部未満では導電パスが十分につながらないため、改質ゴムとしての体積抵抗率が10 ¹¹ Ω・cmレベルを超え、また 300 質量部を超えて過度に配合しても、改質ゴムの体積抵抗率は10³ Ω・cmレベルで飽和してそれ以上に低くならないので、経済的に無駄になる。

なお、前記導電性酸化亜鉛粉末と共に基材ゴムに配合することのできる添加剤に格別の制限はなく、通常用いられるゴム配合剤を同様に使用できる。例えば基材ゴムに配合し得るものとしては、加硫剤(硬化剤)、加硫促進剤、加硫促進助剤、老化防止剤(酸化防止剤)、充填剤(補強剤、増量剤)、

着色剤、滑剤、紫外線吸収剤、光安定剤、抗菌剤、難燃剤などが制限なく例示される。

加硫剤としては、従来公知の例えば硫黄、無機質硫黄化合物、有機質硫黄化合物、有機過酸化物、金属酸化物などが例示され、特に硫黄や硫黄化合物を使用すると、体積抵抗率をより効果的に低減できるので好ましい。これら硫黄や硫黄化合物の好ましい配合量は、基材ゴム 100 質量部に対して 0.1 ~5 質量%程度である。

基材ゴムと前記導電性酸化亜鉛粉末、更にはその他の添加剤の混練は、常法に従ってバンバリーミキサー、ニーダー、インターミックス、ロール混練機等を使用すればよく、必要により他の有機質もしくは無機質導電材を配合することも可能である。

ゴム製品としての成形加工は、導電性酸化亜鉛粉末を配合した混練物を常法に従ってシート状、ベルト状、ロールなど任意の形状に加工すればよい。シート状(特に薄いシート)に加工する場合は、カレンダー加工やロールシートが好ましく、平板やシート、チューブ(単層または多層)、丸棒(ロール)、更には複雑な異形断面形状に加工する場合は、押出し成形や射出成形、プレス成形などが採用される。そして通常は、上記の様に成形加工した後に、或いは成形加工の最終工程で加硫が行われる。加硫は、上記の如くカレンダー加工や押出し加工などによって得た成形体を、硫黄の如き加硫剤の存在下に加熱して架橋させることにより、弾性質のゴム製品を得る。

加硫装置としては、前述した様な配合ゴム成形体を収容して加熱し得る機能を備えたものであればよい。加硫缶は代表的な加硫装置であり、これに配合ゴム成形体をセットし、水

蒸気加熱、熱風加熱、赤外線加熱、電気加熱、マイクロ波加熱など任意の手段で加熱すればよい。加熱プレス機を使用し、成形体を加圧しながら加熱することも可能である。 更に、成形体がシートやベルト状である場合は、当該シートやベルトを連続的に移動させながら加熱して加硫することも、好ましい方法として推奨される。

加硫温度は、基材ゴムや加硫剤、加硫促進剤などの種類によっても変わるが、通常は 120~200℃程度で実施される。加硫時間については、当該ゴム成形体の試験片を対象とし、予備実験によって所定温度条件下での引張り応力やトルクの変化を連続的に測定してグラフ化しておき、その結果を基にしてその都度設定するのがよいが、標準的には2~60分、より一般的には5~60分程度である。

得られる導電性ゴム成形体の体積抵抗率は、JIS K6911にも規定されており、この方法に準拠して、例えば三菱油化社製、商品名「HIRESTA-IP(100V)」等を用いて測定することができる。

また基材樹脂の種類にも特に制限はなく、例えば、エポキシ系樹脂、アクリル系樹脂、ポリアミド系樹脂、ポリウレタン系樹脂、ポリエステル系樹脂、ポリオレフィン系樹脂、フェノール系樹脂、ユリア系樹脂、メラミン系樹脂、珪素系樹脂などが全て使用できる。

上記基材樹脂に対する前記導電性酸化亜鉛粉末の好ましい配合量は、基材樹脂の種類や目的とする導電性樹脂に求められる導電性の程度によっても変わってくるので一律に決めることはできないが、通常は基材樹脂 100 質量部に対して10~300 質量部、より一般的には20~150 質量部の範囲である。ちなみに、導電性酸化亜鉛粉末の配合量が少な過ぎる場

合は、導電パスが十分につながり難くなって導電性不足となり、導電性組成物としての体積抵抗率が $10^{11}\Omega$ ・cmレベルを超え、また配合量が多過ぎても、改質樹脂の体積抵抗率は $10^{3}\Omega$ ・cmレベルで飽和してそれ以上に低くならないので、経済的に無駄になる。

なお、前記導電性酸化亜鉛粉末と共に基材樹脂に配合することのできる添加剤にも格別の制限はなく、通常用いられる樹脂配合剤を同様に使用できる。例えば基材樹脂に配合し得るものとしては、可塑剤、老化防止剤(酸化防止剤)、充填剤(補強剤、増量剤)、着色剤、滑剤、紫外線吸収剤、光安定剤、抗菌剤、難燃剤などが制限なく例示される。

基材樹脂と前記導電性酸化亜鉛粉末、更にはその他の添加剤の混練は、常法に従ってバンバリーミキサー、ニーダー、インターミックス等を使用すればよく、必要により他の有機質もしくは無機質導電材を配合することも可能である。

樹脂製品としての成形加工は、導電性酸化亜鉛粉末を配合 した混練物を常法に従って射出成形、押出し成形、プレス成 形、ブロー成形などを採用して任意の形状に成形すればよい。

また、本発明の導電性酸化亜鉛粉末を導電性もしくは帯電防止性塗料に使用する場合は、塗料を構成するベース樹脂中に乾燥塗膜全量中に占める比率で好ましくは10~50份量%、より一般的には15~40質量%の導電性酸化近場分中に均一に均では10%。塗料の形態には一切制限がなく、例えば有機溶剤型を割りが変料、スラリー塗料、粉体塗料などに全て適用である。塗料の形態には一切制限がなく、例えば、乾燥硬化型などに外用樹脂のタイプも、焼付硬化型、乾燥硬化型などのの種類に制力ず使用可能である。塗料を構成するベース樹脂、アクリル系樹

脂、ポリアミド系樹脂、ポリウレタン系樹脂、ポリエステル 系樹脂、ポリオレフィン系樹脂、アルキド樹脂などが全て使 用できる。

また塗料用樹脂中に配合することのできる添加材としては、可塑剤、老化防止剤、着色剤、体質含量、流動調整剤、滑剤、紫外線吸収剤、光安定剤、抗菌剤、難燃剤などが制限なく例示される。

実 施 例

以下、実施例及び比較例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更して実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。

実施例1

フランス法によって製造された平均粒径 1.0μmの酸化亜鉛粉末 150gを、温度20℃、2800mlの蒸留水に加えて分散する。他方、重炭酸水素アンモニウム75gを温度20℃、500mlの水に溶解しておき、この重炭酸水素アンモニウム水溶液を上記酸化亜鉛分散液中に加え、同温度で30分間撹拌した後、1℃/分の速度で70℃まで昇温し、塩基性炭酸亜鉛を生成させる。同温度で30分間熟成することにより、塩基性炭酸亜鉛結晶を成長させる。

次いで、硫酸アルミニウム 14.3gを 500m 1 の蒸留水に溶解し、上記で得た塩基性炭酸亜鉛の水分散液に加え、 3 0 分間撹拌して分散した後、液温を再度 7 0 ℃まで昇温してから、

再び30分間熟成する。

熟成後、分散液を吸引濾過し、固形物を濾取してから150℃以下で乾燥した後、300℃で3時間仮焼し、更に水素雰囲気下に400℃で2時間還元焼成を行う。得られた焼成物をパルペライザーで解砕することにより、平均粒径が3.0μmの導電性酸化亜鉛粉末を得た。

得られた導電性酸化亜鉛粉末の、BET法によって求められる比表面積から計算される平均 1 次粒子径は $0.02\,\mu$ mであり、体積抵抗率は $3000\,\Omega$ ・cm、嵩密度は $0.14\,g/m$ 1 であった。

図1は、得られた導電性酸化亜鉛粉末の図面代用電子顕微鏡写真(日本電子社製、商品名「JSM-5200」を使用、倍率 20000倍)であり、後記比較例1で得た導電性酸化亜鉛粉末に比べると、1次粒子が極めて疎な状態で緩やかに集合一体化した状態が、外観からも明確に観察できる。

実施例2

上記実施例1で用いたのと同じ酸化亜鉛 150gを、温度20℃、2800m1の蒸留水に加えて分散する。他方、重炭酸水素アンモニウム75gを温度20℃、500m1の水に溶解しておき、この重炭酸水素アンモニウム水溶液を上記酸化亜鉛分散液中に加え、同温度で30分間撹拌した後、1℃/分の速度で70℃まで昇温し、塩基性炭酸亜鉛を生成させる。同温度で30分間熟成することにより、塩基性炭酸亜鉛結晶を成長させる。

次いで、塩化ガリウム 1.9gを 500m 1 の蒸留水に溶解し、 上記で得た塩基性炭酸亜鉛の水分散液中に加え、 3 0 分間撹 拌して分散した後、液温を再度 7 0 ℃まで昇温してから、再

び30分間熟成する。

熟成後、分散液を上記実施例1と同様にして濾過、乾燥し、乾燥物を 300℃で3時間仮焼した後、引き続いて 400℃で2時間、水素雰囲気で還元焼成を行う。得られた焼成物をパルペライザーで解砕することにより、平均粒径が 2.0μmの導電性酸化亜鉛粉末を得た。

実施例3

前記実施例 1 で用いたのと同じ酸化亜鉛 150gを、温度 2 0 ℃、2800m 1 の蒸留水に加えて分散する。他方、重炭酸水素アンモニウム 7 5 gを温度 2 0 ℃、500m 1 の蒸留水に溶解しておき、この重炭酸水素アンモニウム水溶液を上記酸化亜鉛分散液中に加え、同温度で 3 0 分間分散した後、1 ℃/分の速度で 7 0 ℃まで昇温し、塩基性炭酸亜鉛を生成させる。同温度で 3 0 分間熟成することにより、塩基性炭酸亜鉛結晶を成長させる。

次いで、塩化鉄の6水和物 18.43gを 500m 1 の蒸留水に溶解し、上記で得た塩基性炭酸亜鉛の水分散液に加える。 3 0 分間撹拌して分散した後、液温を再度 7 0 ℃まで加熱してから、再び 3 0 分間熟成する。

熟成後、分散液を上記実施例1と同様にして濾過、乾燥し、乾燥物を 300℃で3時間仮焼した後、引き続いて 400℃で2時間、酸化性雰囲気で焼成を行う。得られた焼成物をパルペライザーで解砕することにより、平均粒径が 3.0μmの導電性酸化亜鉛粉末を得た。

得られた導電性酸化亜鉛粉末の比表面積から計算される平均 1 次粒子径は $0.02\,\mu$ m であり、体積抵抗率は 1×10^8 Ω ・ c m、嵩密度は 0.17 g / m 1 であった。

比較例1

前記実施例1で用いたのと同じ酸化亜鉛粉末 600gを、温度20℃、1800m1の蒸留水に分散する。他方、重炭酸水素アンモニウム 300gを温度20℃、1500m1の蒸留水に溶解しておき、これに硫酸アルミニウム 57.2gを加えて均一に分散させる。この分散液を、上記酸化亜鉛の分散液に加え30分間撹拌して分散した後、1℃/分の速度で70℃まで昇温し、A1を含む塩基性炭酸亜鉛を生成させる。同温度で30分間熟成することにより、塩基性炭酸亜鉛の結晶を成長させる。

得られた分散液を上記と同様にして濾過し、乾燥した後、300℃で3時間仮焼し、更に 800℃で2時間、水素雰囲気で還元焼成を行う。得られる焼成物をパルペライザーで解砕することにより、平均粒径が 6.0μmの導電性酸化亜鉛粉末を得た。

即ち本例の導電性酸化亜鉛粉末は、体積抵抗率の数値は十分に低いものの、比表面積から計算される粒子径は上記実施例1~3に比べて格段に大きく、嵩密度も非常に大きい。

比較例2

上記実施例1で用いたのと同じ酸化亜鉛粉末 600gを、温

度20℃、1800m1の蒸留水に分散する。他方、重炭酸水素アンモニウム 300gを温度20℃、1500m1の蒸留水に溶解しておき、硫酸アルミニウム 57.2gを加えて均一に分散させる。この分散液を、上記酸化亜鉛の分散液中に加え、30分間撹拌して分散した後、1℃/分の速度で70℃まで昇温し、A1を含む塩基性炭酸亜鉛を生成させる。同温度で30分間熟成することにより、塩基性炭酸亜鉛結晶を成長させる。

得られた分散液を上記と同様にして濾過し、乾燥した後、300℃で3時間仮焼し、更に 400℃で2時間、水素雰囲気で還元焼成を行う。得られる焼成物をパルペライザーで解砕することにより、平均粒子径が 6.0μmの導電性酸化亜鉛粉末を得た。

得られた導電性酸化亜鉛の比表面積から計算される平均 1 次粒子径は $0.03\,\mu$ m であり、体積抵抗率は $300\,\Omega$ ・ c m、 嵩密度は $0.35\,g$ / m 1 であった。即ちこの導電性酸化亜鉛粉末の体積抵抗率は低く、また比表面積から計算される粒子径は小さいが、嵩密度は大きいものであった。

図2は、得られた導電性酸化亜鉛粉末の図面代用電子顕微鏡写真(用いた電子顕微鏡は前記と同じ、倍率 20,000 倍)であり、前記実施例1で得た導電性酸化亜鉛粉末に比べると、1次粒子が平面で密に集合一体化した状態が、外観からも明確に観察できる。

比較例3

特公昭62-41171号公報に開示されている導電性酸化亜鉛の製造方法に記載された実施例1に準拠して、導電性酸化亜鉛粉末を製造した。

即ち、炭酸アンモニウム30gを水500mlに溶解する。

別に50m1の水に硫酸アルミニウム5gを溶解した溶液を調製し、これを上記炭酸アンモニウム溶液に投入する。この溶液を、前記実施例1で用いたのと同じ酸化亜鉛粉末100gを200m1の水に分散させた分散液に入れ、60℃に加温して撹拌し、同温度で1時間撹拌を続けた後、濾過し水洗することによって脱水ケーキを得る。このケーキを乾燥した後、水素雰囲気中800℃で60分間焼成することによって導電性酸化亜鉛粉末を得た。

得られた導電性酸化亜鉛粉末の比表面積から計算される平均1次粒子径は0.4μmであり、体積抵抗率は30Ω・cm、嵩密度は0.45g/m1であった。

即ちこの方法によって得られる導電性酸化亜鉛粉末の体積抵抗率の値は十分に低いが、また比表面積から計算される一次粒子径は前記実施例1~3に比べて格段に大きく、嵩密度も非常に大きい。

性能試験1

上記実施例1~3および比較例1~3で得た導電性酸化亜鉛粉末の分散性を調べるため、前述した分散性評価試験法によって透過率を測定したところ、下記表1に示す結果が得られた。この表から分る様に本発明の導電性酸化亜鉛粉末は、比較例で得た導電性酸化亜鉛粉末に比べて可視光透過率は高く、且つ紫外線透過率は極端に低く、極めて優れた分散性を有していることが分る。

表 1

	透 過 率 (%)			
	550nm 350nm			
実 施 例 1	10.56	0.02		
実 施 例 2	10.88	0.01		
実施例3	10.55	0.02		
比較例1	5.33	2.11		
比較例2	9.13	5.29		
比較例3	4.25	1.89		

性能試験 2

上記実施例1~3および比較例1~3で得た導電性酸化亜 鉛粉末について、ゴムに練り込むことによって得られる導電 性付与効果を、下記の方法で体積抵抗率によって評価した。

即ち、基材ゴムとしてエチレンープロピレンージエンゴム(EPDM)(JSR社製、商品名「EP-21」)を使用し、この基材ゴム 100質量部に、上記実施例及び比較例で得た各導電性酸化亜鉛粉末を各々100質量部配合し、2本ロールで均一に混練する。混練後、一定時間熟成してから加硫剤として硫黄 1.75 質量部と加硫促進剤(大内新興化学社製、商品名「ノクセラーEP-50」)1.0質量部を加え、更に均一に混練した後、厚さ2mmのシート状に成形する。

得られるシートを金型に入れて加硫機にセットし、圧力 $9.8 \, \mathrm{MPa}$ 、温度 $160 \, \mathrm{C}$ で $60 \, \mathrm{O}$ 間加硫することによって得られる硬質ゴム体の体積抵抗率を、 JIS K 6911 に準拠し、三菱油化製の測定機「HIRESTA-IP (100 V)」を用いて測定した。

結果は表2に示す通りであり、実施例で得た本発明の導電性酸化亜鉛粉末は、比較例で得た従来の導電性酸化亜鉛粉末

に比べて、ゴムに対する体積抵抗率低減効果において格段に 優れたものであることが分る。

表 2

		実施例		実 施 例	比較例	比較例	比較例
		1	2	3	1	2	3
導 電 性 酸 化 亜 鉛	粒 子 径 (μ m)	0.02	0.02	0.02	0.2	0.03	0.40
	嵩密度 (g/ml)	0.14	0.15	0.17	0.4	0.35	0.45
	体 積 抵 抗 率 (Ω·cm)	3000	1000	1 × 10 ⁸	150	300	30
EPDM 量(質量%)		100	100	100	100	100	100
導電性酸化亜鉛の 配合量(質量部)		100	100	100	100	100	100
ゴムの体 積 抵 抗 率 (Ω・c m)		9 × 10 ⁷	1 × 10 ⁷	8 × 10 ⁸	1 × 10 ¹⁵	1 × 10 ¹²	1 × 10 ¹⁵

性能試験3

上記実施例1~3および比較例1~3で得た導電性酸化亜鉛粉末について、樹脂に練り込むことによって得られる導電性付与効果を、以下に示す体積抵抗率の測定によって評価した。

即ち、基材樹脂としてエポキシ樹脂(JER社製、商品名「1001 X 75」)を使用し、この基材樹脂 5 0 g (樹脂固形分:75%)、キシレン 5.5g、イソブチルアルコール 5.5gと共に、上記実施例および比較例で得た各導電性酸化亜鉛粉末を各々4.06g配合し、実施例 1 ~3 と比較例 2 で得た導電性酸化亜鉛粉末については、分散剤(楠本化成社製、商品名「DA-325」)を粉末に対して9%加え、ホモジナイ

ザーを用いて 2000 r p m で 5 分間混練する。混練後、エポキシ樹脂硬化剤(J E R 社製、商品名「S 0 0 2 」) 3 0 g (樹脂固形分:62.5%)を加え、プロペラ撹拌機により1000 r p m で 1 分間混合した後、アプリケータ(メモリ:5 0)を用いて塗膜を形成し、2 5 \mathbb{C} で 4 8 時間乾燥する。

得られる厚さ 0.2mmの塗膜の体積抵抗率を、JIS K 6 9 1 1 に準拠して、三菱油化製の測定器「HIRESTA - IP (100V)」を用いて測定した。

結果は表3に示す通りであり、各実施例で得た導電性酸化 亜鉛粉末は、比較例で得た従来の導電性酸化亜鉛粉末に比べ て、塗料に対する体積抵抗率低減効果において格段に優れた ものであることが分る。

表 3

	1	2	3	比 較 例 1	2	3
塗膜の体積抵抗率 (Ω・cm)	5 × 10 ⁸	2 × 10 ⁸	3 × 10 ¹⁰	1 × 10 ¹⁵	5 × 10 ¹³	1 × 10 ¹⁵

産業上の利用可能性

本発明の導電性酸化亜鉛粉末は、上記の様に平均1次粒子径が極めて微細であるばかりでなく、その2次凝集物は、1次粒子が点接触状態で緩やかに集合した極めて嵩密度が動したがであり、ゴムや樹脂などの基材に対する分散性が強するとができ、従来の導電性酸化亜鉛に比べて格段に積低で発電性付与効果を有しており、各種の基材に対する体積に発率を飛躍的に小さくすることができるので、ゴムや樹脂、塗

料などを始めとする様々の素材に導電性を付与するための材料として幅広く有効に活用できる。

そして本発明の製法によれば、従来法では到底得ることのできなかった上記特性、殊に低嵩密度で卓越した分散性と導電性付与特性を有する導電性酸化亜鉛粉末の提供を可能にする。

請求の範囲

1. III B 族元素、 IV B 族元素および F e よりなる群から選択される少なくとも 1 種の元素が、酸化亜鉛に対し 0.01 ~ 1 0 質量% 固溶しており、比表面積から計算される平均 1 次粒子径が $0.03\,\mu$ m以下で、嵩密度が $0.20\,g$ / m 1 以下、体積抵抗率が 1 0 10 Ω · c m以下であることを特徴とする導電性酸化亜鉛粉末。

2 .

- (I)酸化亜鉛の水性スラリーに炭酸アルカリ塩を反応させて塩基性炭酸亜鉛を得る工程、
 - (II) 該塩基性炭酸亜鉛を加熱熟成する工程、
- (III)得られる熟成液に、IIIB族元素、IVB族元素および Feよりなる群から選択される少なくとも1種の元素の水溶 性塩を混合して再熟成する工程、
 - (IV) 該熟成物を脱水し乾燥する工程、
 - (V)得られる乾燥物を焼成する工程、
 - (VI) 該焼成物を解砕する工程

を順次実施することを特徴とする、上記請求項1に記載された導電性酸化亜鉛粉末の製法。

- 3. 前記(I)の工程で使用する酸化亜鉛の水性スラリー濃度を10質量%以下とする請求項2に記載の製法。
- 4. 前記(V)の工程で、乾燥物を酸化性雰囲気または還元性雰囲気下、300~600℃で焼成する請求項2または3に記載の製法。

5. 前記請求項1に記載された導電性酸化亜鉛粉末が、基材 100 質量部に対し分散状態で10~300 質量部含まれ、体積抵抗率が10³~10¹¹Ω・cmであることを特徴とする導電性組成物。

- 6. 前記基材がゴムである請求項5に記載の導電性組成物。
- 7.前記基材が樹脂である請求項5に記載の導電性組成物。

BEST AVAILABLE COPY

図 1

図 2

INTERNATIONAL SEARCH REPORT

International application No. PCT/JP03/13283

A. CLASSIFICATION OF SUBJECT MATTER					
Int.Cl ⁷ C01G9/02, C08K3/22, C08L101/00					
According to International Patent Classification (IPC) or to both national classification and IPC					
B. FIELD	OS SEARCHED				
Minimum d	documentation searched (classification system followed	by classification symbols)			
Int.	.Cl' C01G1/00-23/08, C08K3/22,	C08L101/00			
Documenta	tion searched other than minimum documentation to the	ne extent that such documents are included	in the fields searched		
Jits Koka	uyo Shinan Koho 1922-1996 i Jitsuyo Shinan Koho 1971-2004	Toroku Jitsuyo Shinan Koh Jitsuyo Shinan Toroku Koh	o 1994–2004 o 1996–2004		
Electronic of CAS	data base consulted during the international search (nar online	ne of data base and, where practicable, sea	rch terms used)		
C. DOCU	MENTS CONSIDERED TO BE RELEVANT				
Category*	Citation of document, with indication, where a	ppropriate, of the relevant passages	Relevant to claim No.		
Х	JP 2002-201024 A (Hakusui Te	ekku Kabushiki	1-4		
Ą	Kaisha),		5-7		
	16 July, 2002 (16.07.02), Full text				
	(Family: none)				
X A	JP 2002-201382 A (Hakusui Te Kaisha),	ekku Kabushiki	1-4		
A	19 July, 2002 (19.07.02),		5-7		
	Full text		İ		
	(Family: none)				
Х	JP 11-279525 A (Sakai Chemic	cal Industry Co	1-4		
Α	Ltd.),		5-7		
	12 October, 1999 (12.10.99),		,		
	Full text (Family: none)				
	(ramity. Hone)				
ļ					
× Furth	er documents are listed in the continuation of Box C.	See patent family annex.			
* Special	categories of cited documents: ent defining the general state of the art which is not	"T" later document published after the inter	mational filing date or		
conside	red to be of particular relevance document but published on or after the international filing	priority date and not in conflict with th understand the principle or theory under "X" document of particular relevance; the c	erlying the invention		
date "L" document which may throw doubts on priority claim(s) or which is considered novel or cannot be considered to involve an inventive step when the document is taken alone			ed to involve an inventive		
cited to establish the publication date of another citation or other special reason (as specified) 'O" cited to establish the publication date of another citation or other special reason (as specified) considered to involve an inventive step when the document is combined with one or more other such documents, such			when the document is		
reans document published prior to the international filing date but later than the priority date claimed the document family than the priority date claimed combination being obvious to a person skilled in the art document member of the same patent family					
Date of the a	Date of the actual completion of the international search Date of mailing of the international search report				
19 January, 2004 (19.01.04) 03 February, 2004 (03.02.04)					
Name and m	Name and mailing address of the ISA/ Authorized officer				
Japa	Japanese Patent Office				
Facsimile No.		Telephone No.			

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP03/13283

C (Continua	ation). DOCUMENTS CONSIDERED TO BE RELEVANT.	
Category*	Citation of document, with indication, where appropriate, of the relevant passages	
Y	WO 02/42382 A1 (ISHIHARA SANGYO KAISHA LTD.), 30 May, 2002 (30.05.02), Claims; description, page 6, line 11 to page 7, line 3	Relevant to claim No.
Y	& JP 2002-220549 A JP 10-236822 A (Kao Corp.), 08 September, 1998 (08.09.98), Claims; description, page 3, right column, line 14 to page 5, right column, line 39 (Family: none)	1-7
A	JP 58-161923 A (Hakusui Kagaku Kogyo Kabushiki Kaisha), 26 September, 1983 (26.09.83), (Family: none)	1-7
A	JP 62-275182 A (Sumitomo Chemical Co., Ltd.), 30 November, 1987 (30.11.87), (Family: none)	1-7

Form PCT/ISA/210 (continuation of second sheet) (July 1998)

発明の属する分野の分類(国際特許分類(IPC)) Α.

Int. Cl' C01G9/02, C08K 3/22, C08L 101/00

調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. Cl7 C01G 1/00-23/08, C08K3/22, C08L101/00

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報

1922-1996年

日本国公開実用新案公報 1971-2004年

日本国登録実用新案公報 1994-2004年

日本国実用新案登録公報 1996-2004年

国際調査で使用した電子データベース (データベースの名称、調査に使用した用語)

CAS online

C. 関連すると認められる文献

引用文献の		
カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
X A	JP 2002-201024 A (ハクスイテック株式会社) 2002.07.16 、全文 (ファミリーなし)	1-4 5-7
X A	JP 2002-201382 A (ハクスイテック株式会社) 2002.07.19、全文 (ファミリーなし)	$1-4 \\ 5-7$
X A	JP 11-279525 A (堺化学工業株式会社) 1999.10.12、全文 (ファミリーなし)	1 – 4 5 – 7
	-	

|X|| C欄の続きにも文献が列挙されている。

パテントファミリーに関する別紙を参照。

- 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献 (理由を付す)
- 「O」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

- の日の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日

19.01.2004

国際調査報告の発送日

03.2.2004

国際調査機関の名称及びあて先

日本国特許庁(ISA/JP)

郵便番号100-8915 東京都千代田区霞が関三丁目4番3号 特許庁審査官(権限のある職員) 廣野 知子

4 G 9266

電話番号 0.3-3581-1101 内線 3416

		四际山城街号 PCI/JP03/	1 3 2 8 3
C (続き).	関連すると認められる文献		
引用文献の カテゴリー*		きは、その関連する箇所の表示	関連する 請求の範囲の番号
Y	WO 02/42382 A1 (ISHIHAI 2002.05.30、請求の範囲、明 頁第3行&JP 2002-22054	RA SANGYO KAISHA LTD) 細書第6頁第11行~第7 9 A	1-7
Y	JP 10-236822 A (花玉 1998.09.08、請求の範囲、明 第5頁右欄第39行 (ファミリーなし	細書第3頁右欄第14行~	1 – 7
Α .	JP 58-161923 A (白水 1983.09.26 (ファミリーな	化学工業株式会社) し)	1 – 7
A	JP 62-275182 A (住友 1987.11.30 (ファミリーな	化学工業株式会社) し)	1 – 7
	·		
		·	