

Innovative Aircraft Design Study (IADS), Task II

VOLUME II APPENDICES

0

Aeronautical Systems Division

Contract F33615-76-C-0122

June 1977

BOEING

15 F33 615-76-C-P122

 $\frac{\text{IADS}}{\text{ASD/Boeing}}$

Innovative Aircraft Design Study.

Task II — Design

Subtask I.— Chemically Fueled Aircraft.

VOLUME II. APPENDICES

June, 1977

-1 41 9258 Ap

LIST OF APPENDICES

7	-	TIMA	ENT	C:
/	(UIII	1	10.

Appendix Number	<u>Title</u>	PAGE
А	Analysis of Innovative Configurations;	1
В	Parametric Configuration Characteristics	15
С	Stedlec Engine Characteristics;	87
D	Circular Body Cross Section Configuration Characteristics	93
Ε	Technology Assessment;	105
F	Mission Sensitivity	157
G	Weights Methodology's and	161
Н	Advanced Technology Cost Factor Methodology.	167

INDEX OF APPENDICES

SECTION	TITLE	PAGE
A	Analysis of Innovative Configur- ations	1
1.0	Canard	1
2.0	Tandem Wing	3
3.0	Tail-less	4
4.0	Oblique Wing	6
5.0	Ram Wing	9
6.0	References	12
В	Parametric Design Summaries	15
1.0	Design #1	16
2.0	Design #2	21
3.0	Design #3	26
4.0	Design #4	31
5.0	Design #5	36
6.0	Design #6	41
7.0	Design #7	46
8.0	Design #8	51
9.0	Design #9	56
10.0	Design #10	61
11.0	Design #11	66
12.0	Design #12	71
13.0	Design #13	76
14.0	Design #14	81
c	Stedlac Engine Characteristics	87
D	Configuration Characteristics for a Circular Cross Section Fuselage	93
E	Technology Assessment	105

SECTION	TITLE	PAGE
Ε	(Continued)	
1.0	Aerodynamics Technology	106
2.0	Propulsion Technology	116
3.0	Structures Technology	131
4.0	Mechanical-Electrical Technology	142
F	Mission Sensitivity-Block Time and Fuel Burn	157
G	Weights Methodology	161
1.0	Prediction Methods	162
2.0	Advance Technology Weight Reduction	162
3.0	Trade Studies	163
Н	Advanced Technology Cost Factor Methodology	167
1.0	Technological Cost Growth Index	168
2.0	Composite Structure Cost Factors	168

LIST OF FIGURES

Appendix Number	<u>er</u>	
FIGURE NUMBER	TITLE	PAGE
Appendix A	None	1
Appendix B	None	15
Appendix C		87
1	Stedlec Engine Installed Performance	88
2	Summary Stedlec Engine Technology Advancement	89
3	Stedlec Engine Characteristics	90
4	Stedlec Engine Section View	91
		22
Appendix D		93
1	Planform Characteristics	94
2	Sweep Sensitivity	95
3	Thickness Sensitivity	96
4	Effect of Cruise Mach Number	97
5	Range vs Grossweight	98
6	Fuel Efficiency	99
7	Fuel Burn	100
8	Life Cycle Cost	101
9	Direct Operating Cost	102
10	Cost Sensitivity	103
Appendix E		105
Table 1	Aerodynamics Advanced Technology Concepts	150
2	Propulsion Advanced Technology Concepts	151
3	Structures Advanced Technology Concepts	153
4	Mechanical-Electrical Advanced	154

Appendix Number		
FIGURE NUMBER	TITLE	PAGE
Appendix F		157
1	Block Fuel	158
2	Block Time	159
Appendix G		161
1	Body Cross-section Weights	164
2	Weight Empty Correlation	165
Appendix H	None	167

APPENDIX A

ANALYSIS OF INNOVATIVE CONFIGURATIONS

1.0 CANARD CONFIGURATION CONCEPT

The canard configuration concept has been extensively studied and applied to a number of aircraft. Applications to large subsonic cargo or transport aircraft are few, where the basic configuration has a high aspect ratio wing and the tail arm is large. An efficient transport requires a high cruise lift-drag ratio, in order to minimize the fuel burned, which results in the selection of a high aspect ratio wing. Additional cruise drag due to trimming results from the choice of an aft tail, canard, or elevons. In this situation, the wing is the most efficient lifting element due to its higher aspect ratio, thus the transport aircraft is relatively less sensitive to the trim concept selected, as compared to combat aircraft types which utilize low aspect ratio wings. Other requirements for transports include a good high-lift system and loading flexibility, which requires a large center of gravity range.

As relatively large tail arms are available for transport aircraft, the use of a canard rather than a tail will not result in a significantly improved cruise lift-drag ratio. The canard configuration obtains a low-speed advantage in that trimming the airplane with a upward lift can result in an increase in flaps-down lift. Trimming may be restricted to lower flap angles because of required margins on the maximum lift capability of the canard. Thus, body angles of attack during approach may be higher. High

lift devices may be needed on the canard. Reliability and fail-safe systems are essential. Directional instability can result from vortices shed from canards. The effect of the canard vortices can be altered by planform and location changes which require wind tunnel testing. For these reasons, the canard, as applied to a military transport aircraft, is regarded as a relatively high risk at this time, pending further development to resolve these major points.

Studies dealing with canards applied to commercial aircraft are discussed in References 1 and 2. Use of the canard in these applications emphasized the potential for improvements in landing performance and reductions in approach noise. Only small improvements, if any, were predicted in cruise lift-drag Reference 3 discusses the SAAB Viggen 37, which is frequently cite successful canard application. The results of wind tunnel and flight testing regarding the favorable interference achieved with this close-coupled canard and wing configuration are discussed. Note that these results were achieved for low aspect ratio planforms of the canard and wing. The size and location of the canard with respect to the wing is also fairly unique for achievement of favorable lift interference. References 4, 5 and 6 discuss the application of canards to combat aircraft and show lift-drag comparisons with aft tails. One set of study results shows higher lift-drag ratios at M = .85 for an aft tail configuration relative to the canard case, when comparable single vertical tail configuration data are examined. It is thus evident that application of canards must be considered on an individual configuration basis. Significant performance improvements due to application of a canard to a large military transport do not appear very probable.

2.0 TANDEM WING CONFIGURATION CONCEPT

Exploratory studies on concepts leading to possible reductions in drag have included the tandem wing configuration. Possible advantages include: reduced wing weight -- since two smaller wings should be lighter than a single large one, reduced parasite drag due to elimination of empennage, and further drag reduction by laminarization of shorter chord surfaces at lower cruise Reynolds numbers. Possible disadvantages of this configuration include; difficulty in locating the powerplants, increased drag-due-to-lift due to lifting system interference, difficulty of providing takeoff rotation capability, and inherent structural advantages may be eliminated due to the high inertia loads (produced by the crash load design criteria on the high rear wing). Initial preliminary weight estimates indicated that an improvement in the empty weight fraction in the order of 10 percent might be possible. Based upon this, further work was accomplished in order to evaluate this configuration in more detail.

The concept was applied to a commercial transport, meeting the requirements for intermediate range capability, and these basic studies are discussed in References 7, 8 and 9. These results are relevant to the military cargo transport configuration as the volume requirements and overall efficiency goals are similar.

Results of configurations, structures and aerodynamic studies, including a low speed wind tunnel test, indicated the following: (a) a satisfactory solution to the balance problem appears very difficult with the location of

the engines and wing on the rear of the fuselage, (b) weight benefits due to the advantages in the configuration were offset because of the weight penalty due to the high rear wing inertial loads (as required for crash protection), and the drag-due-to-lift is 30 percent worse than a comparable monoplane configuration. Wind tunnel test results confirmed the higher drag-due-to-lift values, as predicted by theory of Reference 10, for example. Based upon these findings, the tandem wing configuration is not a suitable candidate for a military cargo transport at this time.

3.0 TAIL-LESS CONFIGURATION CONCEPT

The configuration considered here is one in which the payload is entirely carried within a body and not in the wing. The distributed load concept, in which the payload is carried in the wing, is being studied separately by Boeing and other contractors.

This configuration most likely would have a wing with some sweepback and a thickness ratio similar to current jet transports. Elevons would probably be used for control and trim. Small vertical tails may also be required.

The tail-less configuration has traditionally been assessed and examined with respect to its obvious performance potential. The pure flying wing concept was based upon maximizing the ratio of maximum lift to minimum parasite drag when compared to conventional arrangements. This same figure-of-merit may also be applied to the tail-less configuration under consideration here. In this case, a thinner wing is used as the payload is in a

conventional fuselage. The ratio of minimum parasite drag coefficient for all wings airplanes compared to conventional types is approximately 1:2. For the tail-less concept considered here, the ratio would be slightly less favorable.

The low speed performance is restricted because of the limited ability to trim out the large pitching moments which occur with high lift devices. Depending upon the takeoff and landing performance required, this could result in a penalty if the wing is not sized for predominately cruise considerations. Values of trimmed maximum lift coefficient in the order of 1.7, have been noted in published reports, which is considerably less than 3.0 for conventional configurations. Because the elevons are used for trim as well as control, the trimmed c.g. range is only 5 or 6 percent compared with conventional values in the order of 12 or 14 percent. This narrow c.g. range reduces desired versatility in loading which is needed for cargo transports.

In general, a well-developed automatic flight control system is necessary for this type of aircraft. All-wing aircraft have a very low cross-wind derivative; thus a low side force results from side-slip. Some cross-wind force is required for precision flight such as tight formation flying or landing. Dynamic longitudinal response to gusts is such that the disturbance may perturb the aircraft further from the trim attitude, thus requiring more active pilot control. Dutch roll is more critical because of the combination of relatively large effective dihedral and low weathercock

stability. Spinning and tumbling characteristics would also have to be studied in detail for specific designs. Spin was a problem on some all-wing prototype aircraft.

There are a number of references available pertaining to the development of this type of aircraft. Northrop, in Reference 11, discusses in depth the problems associated with tail-less aircraft. Askensas, in Reference 12, shows results of a parametric study in which wing thickness ratios of over 12 percent are predicted for best performance. A wing thickness ratio of less than 12 percent thickness ratio is predicted as optimum for wing-body configurations. Lange, in Reference 13, discusses a swept-wing tail-less design in a recent paper, and forecasts reduced fuel consumption for such a concept. However, he concludes that realization of its performance potential will depend upon the extent to which development programs are applied to this design.

For the reason of low trimmed maximum lift coefficients, and stability and flight control questions, the tail-less configuration -- with the payload carried in the body -- is considered unsuitable for application to a military cargo transport without considerable technical development.

4.0 OBLIQUE WING CONFIGURATION CONCEPT

The oblique wing concept, as applied to a large military cargo transport, has been reviewed. The findings relative to this configuration application are as follows. With aft fuselage mounted engines, loadability and center of gravity travel problems result. Placing the engines on the wing to

solve the balance problem produces aerodynamic interference and mechanical reliability problems, as an engine swiveling arrangement is required.

Tailored pylon wing intersections for individual nacelle locations would have to be developed. Aerodynamic coupling between the longitudinal and lateral motions exist which will require modified control techniques. A slight weight penalty, relative to the reference configuration, probably exists due to the pivot arrangement. Considerable mission flexibility exists due to the variable wing sweep feature. Cruise lift-drag ratios will be about the same as for the reference configurations at comparible structural aspect ratios. Because these problems represent a high development risk, and there is a slight performance panelty in carrying out the basic mission, this concept is considered unsuitable for the large military cargo transport application.

Studies on the oblique wing concept have been conducted for transonic as well as subsonic cruise applications. Transonic commercial transports have been configured using this concept for pruposes of eliminating sonic booms associated with overland flights with attendent significant time savings. Kulfan and Jones, in References 14 and 15, show comparisons with other fixed delta wing and variable swept wing configurations. Application of this concept to the subsonic cruise speed regime has also been studied by Lange in Reference 16. A military transport configuration was included in this study.

While it seems clear that the oblique wing can generate higher lift-drag ratios in the transonic speed range, it is not clear that such an unusual arrangement could be successfully adapted to a complete aircraft configuration. The oblique wing aircraft concept introduces some new problems and considerable effort has been devoted to finding a good general arrangement. Engine and landing gear locations pose configuration problems which are difficult to solve because of balance or drag interference considerations. Also, factors such as increased structural weight, aeroeleastic instability, or other configurational features tend to nullify the purely aerodynamic efficiency advantage.

Boeing study results for a M = 1.2 oblique wing 200 passenger transport showed that this configuration had the lowest gross weight required for a 3000 mile range mission. The fixed delta wing configuration required about 10 percent more gross weight to accomplish the same mission. The lift-drag ratio of the delta configuration was significantly lower than for the oblique wing configuration, which offset the higher structural weight efficiency advantage.

The oblique wing configuration adopted for these studies featured engines installed on the aft portion of the body. A balance and loading analysis indicated a center-of-gravity range of 25 percent M.A.C. Forward allast was required for low payloads. Selective fuel management with an aft body fuel tank allowed the minimization of cruise trim drag. The slightly higher structural weight of the oblique wing was not primarily associated

with the variable geometry feature, but rather it was the result of the basic strength requirements of the high aspect ratio wing. The effect of the higher aspect ratio produces an advantage in aerodynamic efficiency, as the drag-due-to-lift is reduced. Another major performance difference results due to reduced wave drag.

The subsonic oblique wing transport study of Reference 3 built upon the previously cited transonic studies. There is a significant size effect, however, in the requirements established for a military transport when compared to the domestic passenger transport initially studied. Gross weights are in the order of 1.3 million pounds and six engines, of 60,000 pound thrust each, are required. The size effect produces major configuration problems for a transport aircraft from the standpoints of balance, when the payload is a high percentage of the gross weight and the engines are mounted on the wing. These problems were also noted on the much smaller transonic aircraft, but to a lesser degree.

5.0 RAM WING CONCEPT

Ram wing is a general term which stands for any lifting surface operating in the proximity to the ground or other solid boundary. Theoretical studies have shown that the induced drag of a planar wing flying at a given lift decreases steadily to zero as the ground is approached. To utilize this drag advantage, however, requires an extremely low altitude cruise mode. This perhaps precludes its operation as an all weather system. Despite obvious practical problems, interest has been shown in maritime applications of this concept.

Indications are, that for overwater operation, the lifting surfaces will need to be of low aspect ratio in order to withstand wave; impact, thus increasing induced drag. On the other hand, the water surface will behave in a manner similar to a solid ground plane in tending to reduce this drag component. In practice, it appears most likely the minimum operating height will be limited by the need to minimize wave impact. As a result, there will be a lower bound to the possible reduction of induced drag. Also, in order to obtain sufficient clearance over water for rough sea states a very large size is required, which is a disadvantage of the ram wing concept.

Advantages of the ram wing concept are that high values of lift-drag ratio are possible as a result of flight operation in the ground effect. When end-plated, an aspect ratio 2.0 wing may have lift-drag ratios of from 20 to 40 in ground effect. Use of a low aspect ratio wing results in high structural efficiency, so the estimated empty weight fraction is low.

Ashill, in Reference 17, extends planar wing induced drag ground effect theory to the end-plated case, which is of interest for the ram wing design. Lange, in Reference 18, discusses a ram wing design, which utilizes the benefits of reductions in induced drag. The wing geometry selected is Aspect Ratio 2, sweep angle zero degrees, and thickness ratio 15 percent. The wing span for this configuration is 245 feet and cruise is at 12 feet altitude. The gross weight was 1.2 million pounds. Turboprop power was utilized for a cruise speed of 110 knots. The additional References 19 and 20 discuss topics related to the ground effect wing concept, and utilize the theory developed by Ashill in Reference 17.

The ram wing configuration is considered unsuitable for application to a military cargo transport design, because: (a) the cruise altitude constraint severely restricts the versatility, (b) the overall design would require extensive development period, (c) size constraints preclude selection of anything but a very large vehicle.

REFERENCES

- 1. Howard, W., Application of Canards to Subsonic Commercial Airplanes,
 Bemo B-8320-904, May 20, 1974.
- 2. Eldridge, A., Landing Performance When Trimmed wit a Canard, Coordination Sheet 2707-AERO-804, October 1968.
- 3. Klinker, O. and Dahlstrom, E., SAAB Viggen and its First Flight Test Phase, Paper given to the Society of Experimental Test Pilots.
- 4. Goldstein, S. E. and Combs, C. P., Trimmed Drag and Maximum Flight Efficiency of Aft Tail and Canard Configurations, AIAA Paper No. 74-69, February, 1974.
- 5. McKinney, L. and Dollyhigh, S., Some Trim Drag Considerations for Maneuvering Aircraft, Journal of Aircraft, August, 1971.
- 6. Burns, B. R. A., The Design and Development of a Military Combat Aircraft, Part 3, Interavia, June, 1976.
- Hallstaff, T., Tandem Wing Progress Review, M = 0.80 Turbulent Flow Configuration, Coordination Sheet PD-AERO-75-08, February 1975.

- 8. Halstaff, T., Tandem Wing Study, Coordination Sheet PD-AERO-75-13, February, 1975.
- 9. Tolzmann, S., Wind Tunnel Test Summary: Wing Location Study for a Tandem Wing Configuration, UWAL 1153, March 1975.
- Glauert, H., The Performance of Tandem Systems, British R&M No. 949,
 December, 1922.
- 11. Northrop, J. K., The Development of All-Wing Aircraft, The Royal Aeronautical Society, 35th Wright Brothers Lecture, 1947.
- 12. Ashkenas, I., Range Performance of Turbojet Airplanes, Journal of the Aeronautical Sciences, February 1948.
- 13. Lange, R. H., Design Concepts for Future Cargo Aircraft, AIAA Paper 75-306, February 1975.
- 14. Kulfan, R. M., et al, High Transonic Speed Transport Study, NASA CR-114658, September 1973.
- 15. Jones, R. T. and Nisbet, J., Transonic Transport Wings -- Oblique or Swept? Astronautics and Aeronautics, January 1974.

- 16. Lange, R. H., An Analytical Study for Subsonic Oblique Wing Transport Concept, Lockheed-Georgia Company, Marietta, Georgia, Contract No. NAS2-8686, NASA-Ames Research Center, Final Oral Review, June 22, 1976.
- 17. Ashill, P. R., On the Minimum Induced Drag of Ground-Effect Wings, the Aeronautical Quarterly, Auust 1970.
- 18. Lange, R. H., Design Concepts for Future Cargo Aircraft, AIAA Paper 75-306, February 1975.
- Barrows, T. and Widnall, S., Optimum Lift-Drag Ratio for a Ram Wing Tube Vehicle, AIAA Journal, March 1970.
- 20. Mamada, H. and Ando, S., Minimum Induced Drag of Semi-Elliptic Ground Effect Machine, Journal of Aircraft, May 1974.

APPENDIX B PARAMETRIC DESIGN SUMMARIES

****CONFIGURATION CHARACTER	ISTICS ****	
WING		
AREAS		
TRAPEZOIDAL REFERENCE	7133.333	
AERODYNAMIC REFERENCE	7133.333	
WETTED	12346.597	
GLCVE	.000	
IGUHAY	.000	
AILERONS	300.880	
- SPOILERS	329.325	
SPAN, FEET	238.866	
TRAPEZOIDAL CHGRDS, FEET	250.00	144.
ROCT	43.005	
. S.O.B.	40.222	
TIP	16.716	
- MGC	31.782	
CHORD OF THE CONSTANT SECTION	40.376	
CHOKO OF THE CONSTANT SECTION	40.310	17
SWEEPS, DEGREES		
LEADING EDGE	10.000	
QUARTER CHCRD	6.917	
TRAILING EDGE	-2.508	
GLOVE LEADING EDGE	46.500	
YAHUDI TRAILING EDGE	18.000	
AVERAGE, EXPOSED, STREAMWISE T/C	.1000	
STRUCTURAL T/C	.1439	
TRAPEZOIDAL ASPECT RATIC	8.000	
AERO REF. ASPECT RATIO	8.000	
TRAPEZCIDAL TAPER RATIO	.309	
AERO REF. TAPER RATIO	.4156	
DESIGN LIFT C DEFFICIENT	.400	
FUEL		
WING	422123	
BODY	0	
LATET	422123	
FUSELAGE		
LENGTH, FT.	281.670	
MAXIMUM WIDTH	25.294	
MAXIMUM DEPTH	25.294	
STRUCTURAL WETTED AREA	20204.681	
AERODYNAMIC HETTED AREA	19126.131	
NOSE FINENESS RATIO	1.500	
BODY FINENESS RATIO	11.136	
AFT BODY CLOSURE ANGLE	15.000	
AFT BODY UPSKEEPANGLE	8.500	
AFT BODY UPSWEEP AREA	-671.474	

****CONFIGURATION CHARACTERISTICS - 1****

HORIZONTAL TAIL		
		•
AREA, FT2 REFERENCE	1644.348	
EXPUSED PLANFORM	1404.194	
WETTED	2843.890	
SPAN, FEET	77.208	
CHORD, FEET	30.673	
ROOT		
TIP	11.922	
MOMENT ARM, FEET	130.977	
LEADING EDGE SWEEP	10.000	
AVERAGE T/C	•0920	
TAPER RATIO	.389	
ASPECT RATIO	3.625	
VOLUME COEFFICIENT	.950	
VERTICAL TAIL		
AREA, FT2.		
REFERENCE	868.637	
EXPOSED PLANFORM	868.637	
WETTED	1763.560	
HEIGHT, FEET	37.651	
CHGRD, FEET		
ROCT	33.225	
TIP	12.915	
MOMENT ARM, FEET	129.605	
LEADING EDGE SMEEP	10.000	
AVERAGE T/C	.1000	
TAPER RATIC	.389	
ASPECT RATIO	1.632	
VOLUME COEFFICIENT	.066	
The second secon		
NACELLES		
NUMB ER	4.000	
FINENESS RATIC	2.560	
CLOSURE ANGLE	12.000	
D(EXIT)/D(MAX)	.624	
DESIGN INLET MACH NO.	.6500	
(ARC HT)/(LENGTH)	.052	
STRUT T/C	.100	
A STATE OF THE STA		
ENGINES	05.151.50	
ENGINE MANUFACTURER	GENELEC	c
SEA LEVEL PEFERENCE THRUST	33150.000	
SCALE FACTUR	1.824	
SFC CONSERVATISM	1.050	

GREUP WEIGHT SUMMARY

* MCDEL 1044.030 *

	WING	119995	
	HORIZONTAL TAIL	13502	
	VERTICAL TAIL	6254	
	BODY	137548	
	LANDING GEAR	55864	•
-	NACELLE STRUCTURE	16623	
	STRUCTURE	317658	
	ENGINE	38359	
	ENGINE ACC. AND INSTL.	590	
	FUEL SYSTEM	2725	
	ENGINE CONTROLS	200	
	STARTING SYSTEM	200	
	THRUST REVERSERS	8947	
	FROPULSION	51021	
	AUXILIARY POWER UNIT	930	
	INSTR. AND NAV ECUIP.	960	
~	SURFACE CONTROLS	16328	
		5465	
	HYDRAULICS ELECTRICAL	3440	
, 	AVIONICS	3450	
	ARMAMENT	0	
	FURNISHINGS EQUIP.	7532	
~··		5036	
	AIR COND. AND ANTI-ICING	0	
	BLC DISTRIBUTION AUXILIARY GEAR	2050	
	FIXED EQUIPMENT	39191	
	LIYER EARTHURN!	37171	
	WEIGHT EMPTY	407876	
	CREW	129C	
	CREW PROVISIONS	350	
	GIL AND TRAPPED DIL	411	
	UNAVAILABEL FUEL	844	
	NONEXPENDABLE USEFUL LOAD	2895	
	CPERATING WEIGHT	410766	
	MISSION GROSS WEIGHT	1070666	
	AMPR WEIGHT	343439	

MISSION SUMMARY DATA FOR MISSION FERRY 1

Ferry Mission Gross Weight, 1000 Lbs.	=	1070.000
Ferry Payload, 1000 Lbs.	=	400.000
Ferry Range, N.M.	=	3566.945
Total Ferry Fuel, 1000 Lbs.	=	259.234
Reserve Fuel, Lbs.	=	24984.102
Mission Fuel, 1000 Lbs.	=	234.250
Average Mission Range Factor, Taxi-Climb-Cruise	=	14436.128
Loiter Time, Hrs.	=	7.808
Loiter Radius, N. Mi.	=	127.028
Zero Loiter Time Radius, N Mi.	=	1783.473
Wing Loading, PSF	=	150.000
Thrust To Weight Ratio	=	.226
Takeoff Gross Weight, 1000 Lbs.	=	1070.000
Operating Weight, 1000 Lbs.	=	410.766
Take Off Distance, Feet	=	8060.767
Landing Distance, Feet	=	4092.729
Wing Area, Sq. Ft.	=	7133.333
Cruise Out Range Factor, NM	=	15150.406
Cruise Out SFC	=	.617
Cruise Out L/D	=	22.174
Cruise Out Drag	=	47298.230
C.O. Thrust Available, Lbs.	=	66477.703

LEG. NO.	LEG NAME	CON- FIG	PWR	DIST	TIME	INT. WEIGHT	INT. MACH	INT. ALT	FINAL WEIGHT	FINAL MACH
1.	Takeoff 3	1.0	6.0	.0	.052	1070000	.000	.0	1066720	.000
2.	MAXRCL	1.0	5.0	127.0	.326	1066720	.471	.0	1048777	.746
3.	Cruise 3	1.0	6.0	3439.9	7.569	1048777	.786	32203.4	835750	.786
4.	Loiter	1.0	6.0	.0	.500	835750	.312	.0	823727	.312
5.	Cruise 2	1.0	6.0	127.0	.284	842843	.780	35896.4	835750	.780
6.	Loiter	1.0	6.0	.0	7.808	1048777	.739	32197.6	842843	.684

CONFIGURATION CHARACTERISTICS

WING	
AREAS TRAPEZOIDAL REFERENCE AERODYNAMIC REFERENCE WETTED GLOVE YAHUDY AILERONS SPOILERS SPAN, FEET TRAPEZOIDAL CHORDS, FEET	8791.946 8791.946 15465.358 .000 .000 377.410 400.345 265.209
ROOT S.O.B. TIP MGC CHORD OF THE CONSTANT SECTION	47.886 45.076 18.416 35.325 44.939
SWEEPS, DEGREES LEADING EDGE QUARTER CHORD TRAILING EDGE GLOVE LEADING EDGE YAHUDI TRAILING EDGE AVERAGE, EXPOSED, STREAMWISE T/C STRUCTURAL T/C TRAPEZOIDAL ASPECT RATIO AERO REF. ASPECT RATIO TRAPEZOIDAL TAPER RATIO DESIGN LIFT COEFFICIENT FUEL	11.000 7.904 -1.598 46.500 18.000 .1000 .1439 8.000 8.000 .385 .4086 .400
WING BODY TOTAL	578698 0 578698
FUSELAGE LENGTH, FT. MAXIMUM WIDTH MAXIMUM DEPTH STRUCTURAL WETTED AREA AERODYNAMIC WETTED AREA NOSE FINENESS RATIO BODY FINENESS RATIO AFT BODY CLOSURE ANGLE AFT BODY UPSWEEP ANGLE AFT BODY UPSWEEP AREA	281.670 25.294 25.294 20204.681 18943.951 1.500 11.136 15.000 8.500 671.474

CONFIGURATION CHARACTERISTICS

HORIZONTAL TAIL AREA, FT2	
REFERENCE EXPOSED PLANFORM WETTED SPAN, FEET CHORD, FEET	2076.593 1772.826 3590.579 86.764
ROOT TIP MOMENT ARM, FEET	34.572 13.295 130.977
LEADING EDGE SWEEP AVERAGE T/C TAPER RATIO ASPECT RATIO VOLUME COEFFICIENT	11.000 .0920 .385 3.625 .876
VERTICAL TAIL AREA, FT2 REFERENCE EXPOSED PLANFORM WETTED HEIGHT, FEET CHORD, FEET	1178.136 1178.136 2391.831 43.849
ROOT TIP MOMENT ARM, FEET	38.811 14.925 129.005
LEADING EDGE SWEEP AVERAGE T/C TAPER RATIO ASPECT RATIO VOLUME COEFFICIENT	11.000 .10 0 0 .385 1.632 .065
NACELLES NUMBER FITNESS RATIO CLOSURE ANGLE D(EXIT)/D(MAX) DESIGN INLET MACH NO. (ARC HT)/(LENGTH) STRUT T/C	4.000 2.560 12.000 .624 .6500 .052 .100
ENGINES ENGINE MANUFACTURER ENGINE MODEL SEA LEVEL REFERENCE THRUST SCALE FACTOR SFC CONSERVATISM	GENELEC STEDLEC 33150.000 2.213 1.050

CONFIGURATION CHARACTERISTICS - 2

LANDING GEAR	
NO. MAIN TIRES	24.000
MAIN, TRUNION TO AXLE	134.850
NOSE, TRUNION TO AXLE	134.850
GEAR POD	
LENGTH	53.000
WETTED AREA	1983.810
L/D	5.000
CARGO COMPARTMENT	
COMPARTMENT HEIGHT	16.000
COMPARTMENT WIDTH	16.000
COMPARTMENT LENGTH	208.333
COMPARTMENT VOLUME	53333.333
PAYLOAD DENSITY	7.500
PAYLOAD WEIGHT	400000.0

PAYLOAD SIZED TO INPUT COMPARTMENT DIMENSIONS

GROUP WEIGHT SUMMARY MODEL 1044.000

WING HORIZONTAL TAIL VERTICAL TAIL BODY LANDING GEAR NACELLE STRUCTURE STRUCTURE	149024 17654 9201 144165 66097 12771 368595
ENGINE ENGINE ACC. AND INSTL. FUEL SYSTEM ENGINE CONTROLS STARTING SYSTEM THRUST REVERSERS PROPULSION	48854 590 3668 200 200 10857 64369
AUXILIARY POWER UNIT INSTR. AND NAV EQUIP SURFACE CONTROLS HYDRAULICS ELECTRICAL AVIONICS ARMAMENT FURNISHINGS EQUIP. AIR COND. AND ANTI-ICING BLC DISTRIBUTION AUXILIARY GEAR FIXED EQUIPMENT	930 960 12063 6803 3440 3450 0 7578 5052 0 2050 42326
WEIGHT EMPTY	475290
CREW CREW PROVISIONS OIL AND TRAPPED OIL UNAVAILABEL FUEL NONEXPENDABLE USEFUL LOAD	1290 350 499 1157 3296
OPERATING WEIGHT	478587
MISSION GROSS WEIGHT	1310000
AMPR WEIGHT	396520

MISSION SUMMARY DATA FOR MISSION FERRY 1

Ferry Mission Gross Weight, 1000 Lbs.	=	1310.000
Ferry Payload, 1000 Lbs.	=	400.000
Ferry Range, N.M.	=	5470.752
Total Ferry Fuel, 1000 Lbs.	=	431.413
Reserve Fuel, Lbs.	=	34691.727
Mission Fuel, 1000 Lbs.	=	396.722
Average Mission Range Factor, Taxi-Climb-Cruise	=	15165.283
Loiter Time, Hrs.	=	12.327
Loiter Radius, N. Mi.	=	119.485
Zero Loiter Time Radius, N. Mi.	=	2735.376
Wing Loading, PSF	=	149.000
Thrust To Weight Ratio	=	.224
Takeoff Gross Weight, 1000 Lbs.	=	1310.000
Operating Weight, 1000 Lbs.	=	478.587
Take Off Distance, Feet	=	8091.891
Landing Distance, Feet	=	3948.629
Wing Area, Sq. Ft.	=	8791.946
Cruise Out Range Factor, NM	=	15652.047
Cruise Out Sec	=	.642
Cruise Out L/D	=	22.226
Cruise Out Drag	=	57834.639
C.D. Thrust Available, LBS.	=	57834.639

LEG NO.	LEG NAME	CON- FIG	PWR	DIST	TIME	INT. WEIGHT	INT. MACH	INT. ALT	FINAL WEIGHT
1.	Takeof 3	1.0	6.0	.0	.052	1310000	.000	.0	1306019
2.	MAXRCL	1.0	5.0	119.5	.302	1306019	.479	.0	1285534
3.	Cruise 3	1.0	6.0	5351.3	11.828	1285534	.785	31584.7	913278
4.	Loiter	1.0	6.0	.0	.500	913278	.267	.0	900157
5.	Cruise 2	1.0	6.0	119.5	.266	920397	.782	38150.8	913278
6.	Loiter	1.0	6.0	.0	12.327	1285534	.747	31477.0	920397

CONFIGURATION CHARACTERISTICS

WING	AREAS	
	TRAPEZOIDAL REFERENCE AERODYNAMIC REFERENCE WETTED GLOVE YAHUDI AILERONS SPOILERS SPAN, FEET TRAPEZOIDAL CHORDS, FEET ROOT S.O.B. TIP MGC	10063.291 10063.291 17863.598 .000 .000 436.913 454.176 283.736 51.539 48.674 19.395 37.885
	CHORD OF THE CONSTANT SECTION	48.325
	SWEEPS, DEGREES LEADING EDGE QUARTER CHORD TRAILING EDGE GLOVE LEADING EDGE YAHUDI TRAILING EDGE AVERAGE, EXPOSED, STREAMWISE T/C STRUCTURAL T/C TRAPEZOIDAL ASPECT RATIO AERO REF. ASPECT RATIO TRAPEZOIDAL TAPER RATIO AERO REF. TAPER RATIO DESIGN LIFT COEFFICIENT FUEL WING	13.000 9.883 .243 46.500 18.000 .1000 .1439 8.000 8.000 .376 .3985 .400
	BODY TOTAL	0 711387
FUSEL	LAGE LENGTH, FT. MAXIMUM WIDTH MAXIMUM DEPTH STRUCTURAL WETTED AREA AERODYNAMIC WETTED AREA NOSE FINENESS RATIO BODY FINENESS RATIO AFT BODY CLOSURE ANGLE AFT BODY UPSWEEP AREA	281.670 25.294 25.294 20204.681 18747.269 1.500 11.136 15.000 8.500 671.474

CONFIGURATION CHARACTERISTICS - 1

HORIZONTAL TAIL - ~ -	
AREA, FT2 REFERENCE EXPOSED PLANFORM WETTED SPAN, FEET CHORD, FEET	2411.158 2057.358 4167.196 93.493
ROOT TIP MOMENT ARM, FEET	37.477 14.103 130.977
LEADING EDGE SWEEP AVERAGE T/C TAPER RATIO ASPECT RATIO VOLUME COEFFICIENT	13.000 .0920 .376 3.625 .828
VERTICAL TAIL AREA, FT2	
REFERENCE EXPOSED PLANFORM WETTED HEIGHT, FEET CHORD, FEET	1417.766 1417.766 2878.158 48.102
ROOT TIP MOMENT ARM, FEET	42.831 16.118 129.005
LEADING EDGE SWEEP AVERAGE T/C TAPER RATIO ASPECT RATIO VOLUME COEFFICIENT	13.000 .1000 .376 1.632 .064
NACELLES NUMBER FITNESS RATIO CLOSURE ANGLE D(EXIT)/D(MAX) DESIGN INLET MACH NO. (ARC HT)/(LENGTH) STRUT T/C	4.000 2.560 12.000 .624 .6500 .052 .100
ENGINES ENGINE MANUFACTURER ENGINE MODEL SEA LEVEL REFERENCE THRUST SCALE FACTOR SEC CONSERVATISM	GENELEC STEDLEC 33150.000 2.662 1.050

CONFIGURATION CHARACTERISTICS - 2

LANDING GEAR NO. MAIN TIRES MAIN, TRUNION TO AXLE NOSE, TRUNION TO AXLE	24.000 134.592 134.592
GEAR POD LENGTH WETTED AREA L/D	53.000 2236.960 5.000
CARGO COMPARTMENT COMPARTMENT HEIGHT COMPARTMENT WIDTH COMPARTMENT LENGTH COMPARTMENT VOLUME PAYLOAD DENSITY PAYLOAD WEIGHT	16.000 16.000 208.333 53333.333 7.500 40000.0

PAYLOAD SIZED TO INPUT COMPARTMENT DIMENSIONS

GROUP WEIGHT SUMMARY MODEL 1044.000

WING HORIZONTAL TAIL VERTICAL TAIL BODY LANDING GEAR NACELLE STRUCTURE STRUCTURE	173508 21065 11488 150767 77936 15240 415803
ENGINE ENGINE ACC. AND INSTL. FUEL SYSTEM ENGINE CONTROLS STARTING SYSTEM THRUST REVERSERS PROPULSION	61544 590 4683 200 200 13060 80277
AUXILIARY POWER UNIT INSTR. AND NAV EQUIP. SURFACE CONTROLS HYDRAULICS ELECTRICAL AVIONICS ARMAMENT FURNISHINGS EQUIP. AIR COND. AND ANTI-ICING B.L.C. DISTRIBUTION AUXILIARY GEAR FIXED EQUIPMENT	930 960 14008 8389 3440 3450 0 7622 5069 0 2050 45918
WEIGHT EMPTY	541999
CREW CREW PROVISIONS OIL AND TRAPPED OIL UNAVAILABLE FUEL NONEXPENDABLE USEFUL LOAD	1290 350 600 1423 3663
OPERATING WEIGHT	545662
MISSION GROSS WEIGHT	1590000
AMPR WEIGHT	446123

MISSION SUMMARY DATA FOR MISSION FERRY 1

Ferry Mission Gross Weight, 1000 Lbs.	=	1590.000
Ferry Payload, 1000 Lbs.	=	400.000
Ferry Range, N.M.	=	7256.741
Total Ferry Fuel, 1000 Lbs.	=	644.338
Reserve Fuel, Lbs.	=	46816.056
Mission Fuel, 1000 Lbs.	=	597.522
Average Mission Range Factor, Taxi-Climb-Cruise	=	15397.782
Loiter Time, Hrs.	=	16.511
Loiter Radius, N. Mi.	=	114.243
Zero Loiter Time Radius, N Mi.	=	3628.371
Wing loading, PSF	=	158.000
Thrust To Weight Ratio	=	.222
Takeoff Gross Weight, 1000 Lbs.	=	1590.000
Operating Weight, 1000 Lbs.	=	545.662
Take Off Distance, Feet	=	8709.642
Landing Distance, Feet	=	3998.520
Wing Area, Sq. Ft.	=	10063.291
Cruise Out Range Factor, NM	=	15754.435
Cruise Out Sec	=	.621
Cruise Out L/C	=	23.571
Cruise Out Drag	=	66257.806
C. O. Thrust Available, Lbs.	=	100326.357

LEG NO.	LEG NAME	CON- FIG.		DIST	TIME	INT. WEIGHT	INT. MACH	INT. ALT	FINAL WEIGHT
1.	Takeof 3	1.0	6.0	.0	.052	1590000	.000	.0	1585212
2.	MAXRCL	1.0	5.0	114.2	.283	1585212	.491	.0	1561760
3.	Cruise 3	1.0	6.0	7142.5	15.561	1561760	.791	30582.2	992478
4.	Loiter	1.0	6.0	.0	.500	992478	.280	.0	977878
5.	Cruise 2	1.0	6.0	114.2	.252	999828	.790	40035.9	992478
6.	Loiter	1.0	6.0	.0	16.511	1561760	.750	30576.5	999828

COFIGURATION CHARACTERISTICS

WING AREAS	
TRAPEZOIDAL REFERENCE AERODYNAMIC REFERENCE WETTED GLOVE YAHUDI AILERONS SPOILERS SPAN, FEET TRAPEZOIDAL CHORDS, FEET	10871.560 10871.560 19856.943 .000 .000 387.900 398.583 361.191
ROOT S.O.B. TIP MGC CHORD OF THE CONSTANT SECTION	44.705 42.659 15.494 32.454 41.784
SWEEPS, DEGREES LEADING EDGE QUARTER CHORD TRAILING EDGE GLOVE LEADING EDGE YAHUDI TRAILING EDGE AVERAGE, EXPOSED, STREAMWISE T/C STRUCTURAL T/C TRAPEZOIDAL ASPECT RATIO AERO REF. ASPECT RATIO TRAPEZOIDAL TAPER RATIO DESIGN LIFT COEFFICIENT FUEL	20.200 18.133 11.644 46.500 18.000 .1000 .1439 12.000 12.000 .347 .3632 .400
WING BODY TOTAL	661710 0 661710
FUSELAGE LENGTH, FT. MAXIMUM WIDTH MAXIMUM DEPTH STRUCTURAL WETTED AREA AERODYNAMIC WETTED AREA NOSE FINENESS RATIO BODY FINENESS RATIO AFT BODY CLOSURE ANGLE AFT BODY UPSWEEP AREA	281.670 25.294 25.294 20204.681 19018.743 1.500 11.136 15.000 8.500 671.474

CONFIGURATION CHARACTERISTICS -

HORIZONTAL TAIL AREA, FT2	
REFERENCE EXPOSED PLANFORM WETTED SPAN, FEET CHORD, FEET	2462.454 2115.312 4287.263 96.896
ROOT TIP MOMENT ARM, FEET	37.745 13.082 130.977
LEADING EDGE SWEEP AVERAGE T/C TAPER RATIO ASPECT RATIO VOLUME COEFFICIENT	20.200 .0920 .347 3.813 .914
VERTICAL TAIL AREA, FT2	
REFERENCE EXPOSED PLANFORM WETTED HEIGHT, FEET CHORD, FEET	1391.809 1391.809 2825.961 52.070
ROOT TIP MOMENT ARM, FEET	39.700 13.759 129.005
LEADING EDGE SWEEP AVERAGE T/C TAPER RATIO ASPECT RATIO VOLUME COEFFICIENT	20.200 .1000 .347 1.948 .046
NACELLES NUMBER FINENESS RATIO CLOSURE ANGLE D(EXIT)/D(MAX) DESIGN INLET MACH NO. (ARC HT)/(LENGTH) STRUT T/C	4.000 2.560 12.000 .624 .6500 .052
ENGINES ENGINE MANUFACTURER ENGINE MODEL SEA LEVEL REFERENCE THRUST SCALE FACTOR SFC CONSERVATISM	GENELEC STEDLEC 33150.000 1.600 1.050

CONFIGURATION CHARACTERISTICS - 2

LANDING GEAR NO. MAIN TIRES MAIN, TRUNION TO AXLE NOSE, TRUNION TO AXLE	24.000 141.452 141.452
GEAR POD LENGTH WETTED AREA L/D	53.000 1864.221 5.000
CARGO COMPARTMENT COMPARTMENT HEIGHT COMPARTMENT WIDTH COMPARTMENT LENGTH COMPARTMENT VOLUME PAYLOAD DENSITY PAYLOAD WEIGHT	16.000 16.000 208.333 53333.333 7.500 400000.0

PAYLOAD SIZED TO INPUT COMPARTMENT DIMENSIONS

GROUP WEIGHT SUMMARY MODEL 1044.000

WING HORIZONTAL TAIL VERTICAL TAIL BODY LANDING GEAR NACELLE STRUCTURE STRUCTURE	261527 22103 12910 140848 63725 9382 471697
ENGINE ENGINE ACC. AND INSTL. FUEL SYSTEM ENGINE CONTROLS STARTING SYSTEM THRUST REVERSERS PROPULSION	32562 590 2492 200 200 7848 43893
AUXILIARY POWER UNIT INSTR. AND NAV EQUIP. SURFACE CONTROLS HYDRAULICS ELECTRICAL AVIONICS ARMAMENT FURNISHINGS EQUIP. AIR COND. AND ANTI-ICING BLC DISTRIBUTION AUXILIARY GEAR FIXED EQUIPMENT	930 960 11844 6103 3440 3450 0 7555 5026 0 2050 41359
WEIGHT EMPTY	556949
CREW CREW PROVISIONS OIL AND TRAPPED OIL UNAVAILABLE FUEL NONEXPENDABLE USEFUL LOAD	1290 350 361 1323 3324
OPERATING WEIGHT	560273
MISSION GROSS WEIGHT	1185000
AMPR WEIGHT	495711

MISSION SUMMARY DATA FOR MISSION FERRY 1

Ferry Mission Gross Weight, 1000 Lbs.	=	1185.000
Ferry Payload, 1000 Lbs.	=	400.000
Ferry Range, N.M.	=	3581.250
Total Ferry Fuel, 1000 Lbs.	=	224.727
Reserve Fuel, Lbs.	=	21190.856
Mission Fuel, 1000 Lbs.	=	203.536
Average Mission Range Factor, Taxi-Climb-Cruise	=	19003.390
Loiter Time, Hrs.	=	7.533
Loiter Radius, N. Mi.	=	211.712
Zero Loiter Time Radius, N Mi.	=	1790.625
Wing Loading, PSF	=	109.000
Thrust To Weight Ratio	=	.179
Takeoff Gross Weight, 1000 Lbs.	-	1185.000
Operating Weight, 1000 Lbs.	=	560.273
Take Off Distance, Feet	=	8020.471
Landing Distance, Feet	=	3378.100
Wing Area, Sq. Ft.	=	10871.560
Cruise Out Range Factor, NM	=	20527.285
Cruise Out SFC	=	.611
Cruise Out L/D	=	29.717
Cruise Out Drag	=	38918.114
C.O. Thrust Available, LBS	=	47935.982

LEG NO.	LEG NAME	CON- FIG.		DIST	TIME	INT. WEIGHT	INT. MACH	INT. ALT	FINAL WEIGHT
1.	Takeoff 3	1.0	6.0	.0	.052	1185000	.000	.0	1182123
2.	MAXRCL	1.0	5.0	211.7	.590	1182123	.416	.0	1156547
3.	Cruise 3	1.0	6.0	3369.5	7.463	1156547	.787	37798.6	981464
4.	Loiter	1.0	6.0	.0	.500	981464	.280	.0	971509
5.	Cruise 2	1.0	6.0	211.7	.480	991989	.769	37363.6	981464
6.	Loiter	1.0	6.0	.0	7.533	1156547	.737	37787.7	991989

CONFIGURATION CHARACTERISTICS

WING	
AREAS TRAPEZOIDAL REFERENCE AERODYNAMIC REFERENCE WETTED GLOVE YAHUDI AILERONS SPOILERS SPAN, FEET TRAPEZOIDAL CHORDS, FEET	13302.752 13302.752 24549.731 .000 .000 482.761 481.274 399.541
ROOT S.O.B. TIP MGC CHORD OF THE CONSTANT SECTION	49.803 47.713 16.787 36.014 46.501
SWEEPS, DEGREES LEADING EDGE QUARTER CHORD TRAILING EDGE GLOVE LEADING EDGE YAHUDI TRAILING EDGE AVERAGE, EXPOSED, STREAMWISE T/C STRUCTURAL T/C TRAPEZOIDAL ASPECT RATIO AERO REF. ASPECT RATIO TRAPEZOIDAL TAPER RATIO AERO REF. TAPER RATIO DESIGN LIFT COEFFICIENT FUEL WING BODY TOTAL	22.500 20.451 13.973 46.500 18.000 .1000 .1439 12.000 12.000 .337 .3518 .400 899989 0
FUSELAGE LENGTH FT. MAXIMUM WIDTH MAXIMUM DEPTH STRUCTURAL WETTED AREA AERODYNAMIC WETTED AREA NOSE FINENESS RATIO BODY FINENESS RATIO AFT BODY CLOSURE ANGLE AFT BODY UPSWEEP ANGLE AFT BODY UPSWEEP AREA	281.670 25.294 25.294 2024.681 18817.359 1.500 11.136 15.000 8.500 671.474

CONFIGURATION CHARACTERISTICS - 1

HORIZONTAL TAIL AREA, FT2	
REFERENCE EXPOSED PLANFORM WETTED SPAN, FEET CHORD, FEET	3058.596 2626.091 5324.100 107.990
ROOT TIP MOMENT ARM, FEET	42.366 14.280 130.977
LEADING EDGE SWEEP AVERAGE T/C TAPER RATIO ASPECT RATIO VOLUME COEFFICIENT	22.500 .0920 .337 3.813 .836
VERTICAL TAIL AREA, FT2	
REFERENCE EXPOSED PLANFORM WETTED HEIGHT, FEET CHORD, FEET	1864.200 1864.200 3785.743 60.262
ROOT TIP MOMENT ARM, FEET	46.273 15.597 129.005
LEADING EDGE SWEEP AVERAGE T/C TAPER RATIO ASPECT RATIO VOLUME COEFFICIENT	22.500 .1000 .337 1.948 .045
NACELLES NUMBER FINENESS RATIO CLOSURE ANGLE D(EXIT)/D(MAX) DESIGN INLET MACH NO. (ARC HT)/(LENGTH) STRUT T/C	4.000 2.560 12.000 .624 .6500 .052
ENGINES ENGINE MANUFACTURER ENGINE MODEL SEA LEVEL REFERENCE THRUST SCALE FACTOR SFC CONSERVATISM	GENELEC STEDLEC 33150.000 1.957 1.050

CONFIGURATION CHARACTERISTICS - 2

LANDING GEAR	
NO. MAIN TIRES	24.000
MAIN, TRUNION TO AXLE	140.828
NOSE, TRUNION TO AXLE	140.828
GEAR POD	
LENGTH	53.000
WETTED AREA	2112.711
L/D	5.000
CARGO COMPARTMENT	
COMPARTMENT HEIGHT	16.000
COMPARTMENT WIDTH	16.000
COMPARTMENT LENGTH	208.333
COMPARTMENT VOLUME	53333.333
PAYLOAD DENSITY	7.500
PAYLOAD WEIGHT	400000.0
FAILUAD WLIGHT	400000.0

PAYLOAD SIZED TO INPUT COMPARTMENT DIMENSIONS

GROUP WEIGHT SUMMARY MODEL 1044.000

WING HORIZONTAL TAIL VERTICAL TAIL BODY LANDING GEAR NACELLE STRUCTURE STRUCTURE	332589 28784 18631 147605 75938 11362 568177
ENGINE ENGINE ACC. AND INSTL. FUEL SYSTEM ENGINE CONTROLS STARTING SYSTEM THRUST REVERSERS PROPULSION	41906 590 3366 200 200 9603 55865
AUXILIARY POWER UNIT INSTR. AND NAV EQUIP. SURFACE CONTROLS HYDRAULICS ELECTRICAL AVIONICS ARMAMENT FURNISHINGS EQUIP. AIR COND. AND ANTI-ICING BLC DISTRIBUTION AUXILIARY GEAR FIXED EQUIPMENT	930 960 13899 7593 3440 3450 0 7601 5042 0 2050 44965
WEIGHT EMPTY	669006
CREW PROVISIONS OIL AND TRAPPED OIL UNAVAILABLE FUEL NONEXPENDABLE USEFUL LOAD	1290 350 441 1800 3881
OPERATING WEIGHT	672888
MISSION GROSS WEIGHT	1450000
AMPR WE #GHT	593932

MISSON SUMMARY DATA FOR MISSION FERRY 1

Ferry Mission Gross Weight, 1000 Lbs.	-	1450.000
Ferry Payload, 1000 Lbs.	=	400.000
Ferry Range, N.M.	=	5485.015
Total Ferry Fuel, 1000 Lbs	=	377.112
Reserve Fuel, Lbs.	-	30077.399
Mission Fuel, 1000 Lbs	=	347.035
Average Mission Range Factor, Taxi-Climb-Cruise	=	20050.395
Loiter Time, Hrs.	-	12.076
Loiter Radius, N. Mi.	-	210.843
Zero Loiter Time Radius, N Mi.	=	2742.508
Wing Loading, PSF	=	109.000
Thrust to Weight Ratio	=	.179
Takeoff Gross Weight, 1000 Lbs.	=	1450.000
Operating Weight, 1000 Lbs	=	672.888
Take Off Distance, Feet	=	8125.778
Landing Distance, Feet	=	3324.387
Wing Area, Sq. Ft.	=	13302.752
Cruise Out Range Factor, NM	=	21109.870
Cruise Out SFC	=	.614
Cruise Out L/D	=	30.574
Cruise Out Drag	=	46314.095
C.O. Thrust Available, Lbs	=	57576.662

LEG NO.	LEG NAME	CON- FIG	PWR	DIST	TIME	INT. WEIGHT	INT. MACH	INT. ALT	FINAL WEIGHT
L.	Takeof 3	1.0	6.0	.0	.052	1185000	.000	.0	1182123
2.	MAXRCL	1.0	5.0	210.8	.575	.446479	.425	.0	1416014
3.	Cruise 3	1.0	6.0	5274.2	11.552	1416014	.796	38136.4	1102965
4.	Loiter	1.0	6.0	.0	.500	1102965	.271	.0	1091743
5.	Cruise 2	1.0	6.0	210.8	.474	1114405	.776	39606.5	1102965
6.	Loiter	1.0	6.0	.0	12.076	1416014	.746	38127.3	1114405

****CENFIGURATION CHARACTERISTICS ****

	WING	
	AREAS	
	TRAPEZOIDAL REFERÊNCE	14608.696
	AERODYNAMIC REFERENCE	14608.696
	WETTED	27080.734
	GLOVE	.000
	YAHUDI	.000
	AILERONS	534.340
	SPOILERS	525.270
	SPAN, FEET	418.694
	TRAPEZUIDAL CHURDS, FEET	
	ROCT	52.393
	S.O.B.	50.278
/	TIP	17.390
	MGC	37.808
	CHORD OF THE CONSTANT SECTION	48.892
	SWEEPS, DEGREES	
	LEADING EDGE	23.750
	QUARTER CHORD	21.713
	TRAILING EDGE	15.253
	GLOVE LEADING EDGE	46.500
	YAHUDI TRAILING EDGE	18.000
	AVERAGE, EXPOSED, STREAMWISE T/C	-1000
	STRUCTURAL T/C	.1439
	TRAPEZOIDAL ASPECT RATIC	12.000
	AERO REF. ASPECT RATIO	12.000
	TRAPEZOIDAL TAPER RATIO	• 332
	AERO REF. TAPER RATIO	.3459
	DESIGN LIFT COEFFICIENT	.400
	FUEL	.400
		1038484
	WING	1033454
	BCDY	
	TETAL	1038484
	FUSELAGE	
	LENGTH, FT.	281.670
· · · · · · · · · · · · · · · · · · ·	MAXIMUM WIDTH	25.294
	MAXIMUM DEPTH	25.294
	STRUCTURAL WETTED AREA	20204.681
	A ERODYNAMIC WETTED AFEA	18657.542
	NOSE FINENESS RATIJ	1.500
	BODY FINENESS RATIO	11.136
		15.000
	AFT BODY CLOSURE ANGLE	8.500
	AFT BODY UPSWEEPANGLE	
	AFT BODY UPSKEEP AREA	671.474

****COMFIGURATION CHARACTERISTICS - 1****

HGRIZONTAL TAIL		
AREA, FT2 REFERENCE	3376.317	
 EXPOSED PLANFORM	2898.123	
WETTED	5876.717	
SPAN, FEET	113.400	
 CHORD, FEET		
ROOT	44.684	
TIP	14.831	
 MOMENT ARM, FEET	136.977	
MULENT ARTY FEET	150.777	
LEADING EDGE SWEEP	23.750	
 AVERAGE T/C	.0920	
TAPER KATIO	.332	
ASPECT RATIO	3.813	
 VOLUME COEFFICIENT	.861	
VSEONE GGENTEGENT		
VERTICAL TAIL		
AREA - FT2		
REFERENCE	2107.274	
EXPOSED PLANFORM	2107.274	
WETTED GETTEW	4279.856	
HEIGHT, FEET	64.370	
CHORD, FEET		
 ROGT	49.388	
TIP	16.392	
MOMENT ARM, FEET	129.005	
LEADING EDGE SWEEP	23.750	
AVERAGE T/C	.1000	
 TAPER RATIO	.332	
ASPECT RATIO	1.948	
VOLUME COEFFICIENT	.044	
 VUEUNE CBEFFICIENT		
NACELLES		
NUMBER	4.000	
 FINENESS RATIO	2.560	
CLESURE ANGLE	12.000	
D(EXIT)/D(MAX)	.624	
 DESIGN INLET MACH NO.	6500	
(ARC HT)/(LENGTH)	.052	
STRUT T/C	.100	
ENGINES	CENELEC	
 ENGINE MANUFACTURER	GENELEC	
ENGINE MODEL	STEDLE	_
SEA LEVEL REFERENCE THRUST.		
 SCALE FACTOR SEC CONSERVATION	2.255	
SEC CONSERVATION	1.050	

****CONFIGURATION C	HARACTERISTICS - 2****
LANCING GEAR	
NO. MAIN TIRES	32.000
	126.989
MAIN, TRUNIEN TO AXLE	
MOSE, TRUNION TO AXLE	126.989
GEAR POD	
LENGTH	53.000
WETTED AREA	2314.641
L/0	5.000
CARGO COMPARTMENT	
COMPARTMENT HEIGHT	16.000
CUMPARTMENT WIDTH	16.000
COMPARTMENT LENGTH	208.333
COMPARTMENT VOLUME	53333.333
PAYLGAD DENSITY	7.500
PAYLDAD WEIGHT	4000000
PATEUAD WEIGHT	40000010
PAYLEAD SIZED TO INPUT COMPAR	THENT DIMENSIONS

N .	GREUF WEIGHT SUMM	ARY	
	********	. *	
1	* MCDEL 1044.880	•	
		37071	
	WING	372716 32706	
1	HORIZONTAL TAIL VERTICAL TAIL	21714	
8	BODY	152709	
	LANDING GEAR	84950	
1	NACELLE STRUCTURE	13004	
1	STRUCTURE	626281	
	3110010112		
1	ENGINE	50022	
1	ENGINE ACC. AND INSTL.	590	
	FUEL SYSTEM	4153	
	ENGINE CONTROLS	200	
	STARTING SYSTEM	200	
4	THRUST PEVERSERS	11064	
	PROPULSION	66230	
	AUXILIARY POWER UNIT	930	
4	INSTR. AND NAV EQUIP.	960	
	SURFACE CONTROLS	15570	
	HYDRAULICS	8904	
	ELECTRICAL	3440	
	AVICNICS	3450	
	ARMAMENT	0	
	FURNISHINGS EQUIF.	7635	
	AIR COND. AND ANTI-ICING	5054	
	BLC DISTRIBUTION	0	
	AUXILIARY GEAR	2050	
3	FIXED EQUIPMENT	47993	
1	WEIGHT EMPTY	740503	
1			
	CSEM	1290	
1	CPEW PROVISIONS	35C	
1	CIL AND TRAPPED CIL	508	
	LAMANATI ADEL EUEL	2/ 27	

UNAVAILABEL FUEL

NONEXPENDABLE USEFUL LOAD

OPERATING WEIGHT

AMPR WEIGHT

MISSION GROSS WEIGHT

2477

4225

1680000

744728

653946

		DESIGN 6	
MISSION SUMMARY DATA FOR MISSION FERRYI			
FERRY MISSION GROSS WEIGHT, 1000 LBS.	= 156(.	CCO	-
FERRY PAYLOAD, 1000 LBS	* 400.	600	
FEPRY RANGE, N. M.	- 7178.	545	
TOTAL FERRY FUEL, 1000 LBS	535.	272	
RESERVE FUEL, LBS	= 39058.	282	
MISSION FUEL, 1000 LBS	496.	213	
AVERAGE MISSION RANGE FACTOR, TAXI-CLIMB-CRUISE	- 20505.	708	
LOITER TIME, HRS.	16.	013	
LOITER PADIUS, N. MI.	- 209.	382	
ZERO LDITER TIME RADIUS, N MI.	= 3589.	273	
VING LOADING, PSF	= 115.	000	
THRUST TO WEIGHT RATIO	 .	176	
TAKEOFF GROSS WEIGHT, 1000 LBS	= 1680.	CúO	
SPERATING WEIGHT, 1000 LBS	= 744.	728	
TAKE OFF DISTANCE, FEET	€ 717•	451	
LANDING DISTANCE, FEET	= 3386.	692	
WING AREA, SQ. FT.	= 14608.	696	
CRUISE OUT RANGE FACTOR, NM	· 21313.	554	
CRUISE BUT SEC		617	
CRUISE GUT L/D	30.	771	
CRUISE GUT DRAG	= 53351.	212	
C G THRUST AVAILABLE, LBS	= 66715.		
G LEG CONFIG POWER DIST. TIME INT. INT. NAME WEIGHT MACH		WEIGHT	FI: MAS
1 TAKEDES 1.0 6.0 .0 .052 1680000 .000			
2 MAXRCL 1.0 5.0 209.4 .557 1675943 .435		1641649	•7:
CRUISE3 1.0 6.0 6969.2 15.097 1641649 .805	37966.1	1183787	.50
LOITER 1.0 6.0 .0 .500 1163787 .266	••	1171492	• 2 :
PUISE2 1.0 6.0 209.4 .466 1195856 .784	41668.4	1183787	• 7 =
6 LOITER 1.0 6.0 .0 16.018 1641649 .765	37957.5	1195855	•01

****CONFIGURATION CHARACTER	ISTICS ****	
WING		
AREAS		
TRAPEZOIDAL REFERENCE	3724.138	
AFRUDYNAMIC REFERENCE	3724.138	
WETTED	6210.982	
GLOVE	.000	
1 CUHAY	.000	
AILERGNS	131.082	
SPOILERS	158.156	
SPAN, FEET	195.854	
TRAPEZOIDAL CHGROS, FEET		
ROOT	27.385	
S.O.B.	25.223	
TIP	10.645	
MGC	20.238	
CHGRO OF THE CONSTANT SECTION	25.711	
SWEEPS, DEGREES		
LEADING EDGE	10.000	
QUARTER CHERD	7.619	
TRAILING EDGE	.306	
GLOVE LEADING EDGE	46.500	
YAHUDI TRAILING EDGE	18.000	
AVERAGE, EXPOSED, STREAMALSE T/C	. 1000	
STRUCTURAL T/C	.1439	
TRAPEZOIDAL ASPECT RATIO	10.360	
AERO REF. ASPECT RATIO	10.300	
TRAPEZGIDAL TAPER RATIO	• 38 9	
AERO REF. TAPER RATIO	. 4220	
DESIGN LIFT CCEFFICIENT	.400	
WING	140335	
BODY	0	
TOTAL	140335	
FUSELAGE	177 502	
LENGTH, FT.	177.503	
MAXIMUM WIDTH	25.294	
MAXIMUM DEPTH	25.294 11933.467	
STRUCTURAL WEITED AREA		The second second
AERODYNAMIC WETTED AREA	11266.136	
NOSE FINENESS RATIO	7.018	
BODY FINENESS RATIO	15.000	
AFT BODY CLOSURE ANGLE AFT BODY UPSWEEPANGLE	8.500	
	671.474	
AFT BODY UPSWEEP AREA	C11.417	

****CONFIGURATION CHARACTERISTICS - 1****

HORIZONTAL TAIL		
AREA, FT2 Reference	859.902	
EXPOSED PLANFURM	737.944	
WETTED PLANFORM	1494.553	
SPAN, FEET	56.658	
CHORD, FEET	70.033	
ROGT	21.858	
TIP	8.496	
MOMENT ARM, FEET	82.539	
MG.CERT ARMY FEET	52.537	
LEADING EDGE SWEEP	10.000	
A VERAGE T/C	.0920	
TAPER RATIO	. 389	
ASPECT RATID	3.733	
VOLUME CJEFFICIENT	.942	
VERTICAL TAIL		
AREA, FT2		
REFERENCE	533.634	
EXPOSED PLANFORM	533.634	
WETTED	1083.348	
HEIGHT, FEET	31.110	
CHGRO, FEET		
ROOT	24.704	
TIP	9.602	
MOMENT ARM, FEET	81.297	
LEADING EDGE SWEEP	10.000	
AVERAGE T/C	.1000	
TAPER RATIC	.389	
ASPECT RATIO	1.814	
VOLUME COEFFICIENT	.059	
TOLOTE COLLI TOLEN		
NACELLES		
MUMBER	4.000	
FINENESS RATIC	2.560	
CLOSURE ANGLE	12.000	
D(EXIT)/D(MAX)	.624	
DESIGN INLET MACH NO.	.6500	
(ARC HT)/(LENGTH)	.052	
STRUT T/C	.100	
ENGINES		
ENGINE MANUFACTURER	GENELEC	
ENGINE MODEL	STEDLEC	
SEA LEVEL REFERENCE THRUST		
SCALE FACTOR	. 23174.043	
SEC CONSERVATISK	.900	
SEC COMSERANTISM	1.000	

	****CENFIGURATION CHAR		GN =
	LANDING GEAR		
	NO. MAIN TIRES	16.500	
	MAIN, TRUNIEN TO AXLE	. 75.000	
	NOSE, TRUNION TO AXLE	75.000	
	GEAR POD		
	LENGTH	53.000	
	WETTED AREA	1145.186	
	L/D	5.000	
	CLOCK COURTSTACKT		
	CARGO COMPARTMENT	1/ 3/ 3	
	COMPARTMENT HEIGHT	16.000	
	COMPARTMENT WIDTH Compartment Length	16.000 104.167	
	COMPARTMENT VOLUME	26666.667	
	PAYLOAD DENSITY	7.500	
	PAYLOAD WEIGHT	200000.0	
	772070 4210111	2000000	
·			
·			

-				-	
GR	CUF	WF	IGHT	SUMM	ARY

* MCDEL 1044.00C

* MUDEL 1044.000 *		
WING	66454	
HORIZONTAL TAIL	6093	
VERTICAL TAIL	3705	
BODY	72221	
LANDING GEAR	23617	
NACELLE STRUCTURE	5466	
STRUCTURE	15 6518	
EKGINE	15867	
ENGINE ACC. AND INSTL.	590	
FUEL SYSTEM	1750	
ENGINE CONTROLS	200	
STARTING SYSTEM	200	
THRUST REVERSERS	4416	
PROPULSION	23022	
AUXILIARY POWER UNIT	930	
INSTR. AND NAV EQUIP.	960	
SURFACE CONTROLS	5890	
HYDRAULICS	2608	
ELECTRICAL	3440	
AVIONICS	345C	
APMAMENT	G	
FURNISHINGS EQUIP.	562G	
AIR COND. AND ANTI-ICING	3778	
ELC CISTRIBUTION	0	
AUXILIARY GEAR	2050	
FIXED EQUIPMENT	28725	
WEIGHT EMPTY	210266	
CREW	1290	
CREW PROVISIONS	350	
OIL AND TRAPPED OIL	203	
UNAVAILABEL FUEL	281	
NONEXPENDABLE USEFUL LOAD	2124	
OPERATING WEIGHT	212390	
MISSION GROSS WEIGHT	540000	-
AMPR WEIGHT	186095	

_			MISSI	N SUMMARY	DATA FI	CR MISSIEN	FERRY1		DESIGN #7
	FERRI	MISSI	ON GR	SS WEIGHT	, 1000	LBS.		- 540	.660
I	FERRY	PAYLO	AD, 1	DOO LES				- 200	.00
0	FERRY	RANGE	, N. F.					= 3618	.123
	LATET	FERRY	' FUEL	, 1000 LBS				= 127	.610
8	RESER	RVE FUE	L, L8	5				- 12065	. 993
1	HISSI	IN FUE	L, To	oo Las				= 115	.544
I	AVERA	GE MIS	SION	RANGE FACT	OR, TAX	I-CLIMB-CRU	ISE	- 15027	.811
8	LOIT	TER TIM	E, HR	S •				a 8.	.055
1-	LOIT	ER RAD	IUS,	N. MI.				= 141	769
	ZERO	LOITE	R TIM	E RADIUS,	N MI.			= 1809	C61
1	MIN	LOADI	NG, P	SF				= 145	.000
1	THRU	STTE	WEIGH	TRATIO					221
1	TAKE	OFF G	OSS M	EIGHT, 100	C LBS			= 540	.00
	JP E	ATING	WEIGH	T, 1000 LB	S			= 212	390
	TAKE	OFF (ISTAN	CE, FEET				7999	538
	LAND	ING DI	STANC	E, FEET				- 4002	261
.0	WING	AREA,	53.	FT.				= 3724	138
	CRUI	SE OUT	RANG	FACTOR,	NM			- 15879	767
	CRUI	SE_001	SEC						612
	CPUI	SE CUI	L/D					23	290
	CRUI	SECUT	DRAG	** ***				= 22684.	479
LEG	LEG C G	THRUST	AVAI	LABLE, LBS	TIME	INT	INT.	= 30999	
NO.	NAME		CHE	515.0		WEIGHT			WEIGHT
1	TAKEDE3	1.0	6.C	• 0	.052	540000	.000	•0	538381
2	MAXRCL	1.0	5.0	141.8	• 385	538381	.435		528332
- A						528332			
4						424456			
	CRUISES					428304			
6	LOITER	1.0	6.0	. 0	8.055	528332	.736	34625.7	428304

**** CO' FIGURATION UH4* ACTEMISTICS ****

```
' k I NG - - -
  Teablact seels and
                                            4517.241
        AFPROYNINIO PEFERENCE
                                            4517.241
        4 6 TT 50
                                            767: . 859
                                                .000
        CLCVE
        TOILTY
                                                .000
        41 LER 045 _
                                            1:1.597
        Seulfer?
                                             154.412
      SPAN . FEFT
                                             215.763
      IRAPEZOIDAL CHORUS, FEET
        RECT
                                              30.161
        5.0.8.
                                              27.499
        IIP.
                                              11.723
       MEC
                                              22.269
      CHOPP OF THE CONSTANT SECTION
      SEFERS. DEGEFES
        LEADING ELGE
                                              10.000
        CLASTEP_CHORD
                                              .7.569
        TRAILING EDGE
                                               .306
        GLEVE LEATING EDGE
                                              40.500
        ATHINI LATITING EDGE
                                              16.000
      AVERAGE, EXPOSED, STREAMUINE TIC
                                               .1000
      STELCTUPAL TIC
                                               .1439
      JAAFETOIDAL ALFECT KATIO
                                              10.300
      AERL REF. ASPECT FATIO
                                              10.300
      TRAFSZOIDAL TARER RATIO
                                               .389
      AERO PEF. TAPER SATIO
                                               .4187
      DEALON FIEL CUREFICIENT
                                                .400
       SI'm
                                              1 = 7 = 72
       SCOY
                                               22075
        TETAL
                                              209547
Fill, FLAGE - - -
      LEGGT-, ET.
                                             -77.563
      Mirimum WIDTH
                                             25.294
      MAYINI 4 PEDTH
                                              25.294
      STRUCTURAL WETTER AREA
                                           11933.467
      AFRECYNAMIC SETTED AFEA
                                           11163.592
      MULTE FINENES - SATIO
                                               1.500
      SUNY FINENSIS RATIO
                                               7.01×
      AFT 9007 CLISURE ANGLE
                                              15.000
      AFT SOOT HPSALEPANGLE
                                              a.500
      AFT PROY UPSACEP 4984
                                             671.474
```

####CENFIGURATION CHARACTERISTICS - 1***

FORTION TAIL			
1000.077 1000.077	+F2170:Tal Tall		
1000.777 1000.777			
### ##################################		1066.547	
1593,403 1593,403 1593,403 1593,403 1593,403 1593,403 1593,403 1593,403 1593,403 1593,403 1593,403 1593,403 1593,403 1593,403 1593,403 1593,403 1593,403 1593 1593,403 15		915.324	
CHOPP, GEST			
######################################			
######################################	Cupi.p. 0=57		
TIP		24.344	
PROPERTY 62.539 PROPERTY 62.539 PROPERTY 62.539 PROPERTY 6.0420 PROPERTY 6.0420 PROPERTY 6.0420 PROPERTY 6.0420 PROPERTY 6.0420 PROPERTY 6.0420 PROPERTY 712.878 PROPER			
LEARTHS ENSE. SHESE	the state of the s		
AVERAGE TYC TIPER CATIO ASPECT VATIO ASPECT VATIO ASPECT VATIO WELLING CORRESONS WELLING CORRESONS WELLING CORRESONS TO SERVE CORRESONS TO SERVE CORRESONS TO SERVE CORRESONS TO SERVE CATE WELLING CORRESONS TO SERVE CATE TO SERVE CAT	MUMENI AKM• FEE!	02	
Tipeq satio	LEASING FUGE SHEEP		
TAPPE LATIG		.0920	
ASPECT MATIC 3.733 1744 1745		. 3 6 9	
VOLUME CORFFICIENT		3.733	
V=VT CAL_TAIL		.874	
10 10 10 10 10 10 10 10	000 m; 00 m; 00 m;		
10 10 10 10 10 10 10 10	VERTICAL TAIL		
######################################			
######################################		712.273	
1447.236 1447.236 30.968		712.578	
######################################			
CHOSE SEET COST TIPE WINNERT ASM. FEET LANIAN SOUF STEEP LANIAN S			
######################################			
116		24.553	
Liniting 2006 Sinds 10.300 1000			
Learling = 0.0 F S EP 10.000			
A	MIMPRT AND FEEL	C L • C 7 !	
A	LABIAC SOUP SILEP	10.300	
TAPPH SATIO ASSECT PATIO VOLUME CORFERCIONT ***********************************			
######################################			
######################################			
######################################			
# # # # # # # # # # # # # # # # # # #	VCLUME GOEFFICIENT	• 5 . 7	
# # # # # # # # # # # # # # # # # # #	(186115)		
######################################		4.000	
# 12.000 # (2) 17 // (MAY) # (2) 17 // (MAY) # (5) 10 // (E) MACH MO. # (2) 2 // (E) MACH MO. # (3) 2 // (E) MACH MACH MO. # (3) 2 // (E) MACH MACH MACH MACH MACH MACH MACH MACH		2.500	
# (E) IT) /! (MAY) 0-1G! INLE! MICH MICH MICH MICH MICH MICH MICH MICH			
### ##################################			
(2+C +T)/(Lf:GTH) 6171/7 7/C 618189 6.61 - 0.00			
FIGURE WAS SEASTONES GENELED TODGE FIGURE WAS SEASTONES SHOW THOSE STORES OFFICE SEASTON THOSE STORES			
#: GINER #: GINER #: GINER #: JEAGTUNER #: GENELEG #: CIN. #(DEL NEX 1, WY) ELEGISHON THOMAS 33150.000 1.002			
FIGHT WATHERSTORMS FIGHT	C141,1 176		
FIGHT WATHERSTORMS FIGHT	5. C11.20		
FIGH #05L NEX 11 WOLL CLESS : NO. 1 HOUSE 33150.003 NO.L C 44073° 1.002		GENELEC	
\$62 1,000 \$1655,000 \$4000; 33150.003		2mm 4.	reduce
1.002	SER THERE BUGGE NOS THOUSE	33150.003	
	050 0 4 2347556		

****CONFIGURATION CHARACTE	.n.151100 - 2-4-1	
 LANGING CEAP		
NO. MAIN TIFES	16.000	
 ANTE TRUNCTE TO AVLE	75.000	
NOSS, TRUMION TE AXLE	75.000	
 6834 POO		
L ELGIH	53.000	
HETTED AKEA	1290.868 .	
 L/0	5.000_	
CAPGO COMPARTMENT		
CHAPARTHENT HEIGHT	16.000	
COMPARTMENT -IOTH	15.000	
COMPARTMENT LENGTH	164.167	
CONCAPTMENT VOLUME	. 26665.667	
PAYLEAD DENSITY	7.553	
PAYLCAD REIGHT	200000.0	
 PAYLOAD SIZED TO IN-UT COMPARTMENT D	IMENSIONS	

* MUCEL 1			
ए इस व ए सर्थ के क	(## c t u t * #		
» I : G	75-127		
HOSIZINTAL TAIL	1-36		
VERTICAL TAIL	5345		
-50×	75530		
LANDING GEAR	27356		
NACELLE STENCTURE	6347		
STALCTURE	183695		
21.61.1376			
F	20197		
FNGINE ACC. AND INSTL.	590		
FUEL SYSTEM	2314		
FRGINE CANTECLS	20 J		
CTARTING SYSTEM	200		
THRUST REVERSERS	5355		
be 1361 51UV	2-557		
MINITIADA SOREE LVIL	430		
THETE. AND NAV ECUIP.	963		
SUPPLIES CONTROLS	5-02		
HYTRAULICS	3214		
FLECTRICAL	3440		
\$V10*ICS	3450		
AKMAMENT			
FURMISHINGS CONTE.	5360		
118 COM 0. AND ANTI-ICH			
HLC CISTRIBUTION	33		
ALVILIASA GEOV	2050		
FIXED CONTONENT	30296		
1 1 4 5 6 5 6 6 7 7 7 7 7	30.40		
WEIGHT EROTY	243147		
1354	1240		
CRED PREVISIONS	350		***
CIL AND TRAPPED HIL	246		
INAVAILAFFL FUEL	413		
L(NEXOFNIABLE USE	FIL LOSD 2305		
CREPATING WEIGHT	245492		

13- (6040 0010714	GHT 655000		
Shar neital	206461		

	MISSION SUMBARY DATA HER MISSION F		DESIGN #8	
91	FERRY 0128115 GROSS WEIGHT, 1006 Lag.	ERKIL	=655.000 .	
	FEFFY PAYLCAG, 1927 LBS		= 200.000	
0	FERSY PANGE, A. M.		= 5520.009	
	TOTAL REPRY FUEL: 1000 LES .		= 209.540	
	RESERVE FLEL. LAS		= 16685.372	
	*ISSICN FUEL, 1000 L99		= 192.862	
	AVERAGE MISSICH PANGE FACTOR, TAXL-CLIMB-CENI	SE	= 15626.530	
	LOITER TIME, HOS.		= 12.770	
	LOITER RADIUS. N. MI.		= 130.619	
	ISON LEITER TIME RADIUS. N.MI.		= .2760.005_	
	WING LOADING, PSF		= 145.000	
(<u></u>	THRUST TO 481647-44710		= .221	
	TAKETEE GETSS .FIGHT. 1000 LBS		= 655.000	
-	SPECATING 481647, 1000 LBS		= 245.452	
•***	TAKE DEE CISTANCE. FEET		= 7999.53¢	
			= 3685.988	
	LANCING_CISIANCE, ESSI			
	AINC AREA, SC. RT.	- · · - · - - · - ·	= 4517.241	
	CRUISE OUT PANCE PACTOR, NY		= 16412.261	
			=	
	CANISE OUT LIN		= 23.329	
	CFLISH GUT PRAG		= 27509.929	
-0 L=		INT.	= 27509.929 INT. FINAL ALT. WEIGHT	F 1
	RFOF3 1.0 6.0 .0 .0-2 655000	•000	.0 653035	.0
2 ":	1971 1.2 5.0 130.0 .350 e5303e	.447	64177c	. 7
	#1468 1.0 e.M +344.4 12.108 641776	.774	33935.5 462135	. 7
	1776 1.J 6.C .0 .500 452136	.275	.0 455930	. 2
	\$ 130.5 .204 455004	.775	40442.9 462135	. 7
		.72-	33417.4 465404	.0

****CONFIGURATION_CHARACTER	ISTICS ****	
41NG		
AREAS		
TRAPEZOIDAL REFERENCE	5272.727	
A ERDDYNAMIC PEFERENCE	5272.727	
WETTED	9132.473	
GLOVE	.000	
10UHAY	.000	
AILERONS	178.911	
SPCILERS	204.901	
SPAM, FEET	240.907	
TRAPEZOIDAL CHORDS, FEET		
2001	32.438	
S•0.3•	30.151	
TIP	9.929	
MGC.	23.171	
CHORD OF THE CONSTANT SECTION	30.187	
SWEEPS, DEGREES		
LEADING EDGE	30.000	
CUARTER CHORD	28.019	
TRAILING EDGE	21.619	
GLOVE LEADING EDGE	46.500	
YAHUDI TRAILING EDGE	18.000	
AVERAGE, EXPOSED, STREAMWISE T/C	.1003	
STRUCTURAL T/C	.1439	
TPAPEZOIDAL ASPECT RATIO	11.750	
AEPO REF. ASPECT RATIO	11.750	
TRAPEZOIDAL TAPER RATIO	· 3C6	
AERO REF. TAPER SATIO	.3293	
DESIGN LIFT COEFFICIENT	.400	
FUEL		
WING	230728	
BCCY	0	
TCTAL	230728	
·		
FUSELAGE		
LENGTH, FT.	177,503	
HAXIMUM WIDTH	25.294	
MAXIMUM DEPTH	25.294	
STRUCTURAL WETTED AREA	11933.467	
A EROCYNAMIC WETTED AREA	11243.016	
NOSE FINENESS RATIO	1.500	
BODY FINENESS RATIO	7.018	
AFT BODY CLOSURE ANGLE	15.000	
AFT RODY UPSMEEPANGLE	8.500	
AFT BODY UPSWEEP AR EA	671.474	
47.1 32.41 ALGERTAL 27.24	<u> </u>	

CONFIGURATION CHARAC	IERISIICS - 1****
HORIZONTAL TAIL	
APEA, FTZ	
<u>REFERENCE</u>	1172.058
EXPOSED PLANFORM	1004.381
W ETTED	2039.148
SPAN, FEET	66.746
CHORD, FEET	
ROOT	26.889
T,I o	8.231
MOMENT ARM, FEET	62.539
LEADING EDGE SHEEP	30.000.
AVERAGE T/C	•0920
TAPER RATIO	• 306
ASPECT RATIC	3.801
VOLUME COEFFICIENT	• 792
VERTICAL TAIL	
AREA, FT2	
REFERENCE	745.847
EXPOSED PLANEORM	745.847
WETTED	1516.064
HEIGHT, FEET	37.923
CHORD, FEFT	
ROCT	30.116
LIo	9.218
MOMENT ARM, FEET	£1.297
LEADING EDGE SWEEP	30.000
AVERAGE T/C	.1000
TAPER RATIO	•306
ASPECT RATIO	1.928
VOLUME COEFFICIENT	.046
NACELLES	
	<u> </u>
FINENESS RATIO	2.560
CLOSUPE ANGLE	12.000
D(EXIT)/D(MAX)	
DESIGN INLET MACH NO.	.6500
(ARC HT)/(LENCTH)	•052
STRUT T/C	
ENGINES	
ENGINE MANUFACTURER	GENELEC
ENGINE MODEL	STEDLEC
SEA LEVEL REFERENCE THRUST	33150-000
SCALE FACTOR	
SEC CONSERVATISM	1.050

GROUP WEIGHT SUMMARY		
 * ************		
* MCDEL 1044.000 * *************		

WING	105944	
HORIZONTAL TAIL	8940	
VERTICAL TAIL	5461	
EDDA	73515	
LANDING GEAR	25621 .	
NACELLE STRUCTURE	5075	
STRUCTURE	207493	
 ENGINE	14362	
ENGINE ACC. AND INSTL.	590	
FUEL SYSTEM	1678	
 ENGINE CONTROLS	200	
STARTING SYSTEM	200	
THRUST REVERSERS	4077	
 PROPULSION	21108	
AUXILIARY POWER UNIT	930	
 INSTR. AND NAV EQUIP.	960	
SUPFACE CENTPOLS	6588	
HYDRAULICS	2818	
 <u>ELECTRICAL</u> AVIONICS	3440	
ARMAMENT	3450	
FURNISHINGS EQUIP.	5534	
 AIR COND. AND ANTI-ICING	3774	
BLC DISTRIBUTION	0	
AUXILIARY GEAP	2050	
FIXED EQUIPMENT	29744	
WEIGHT EMPTY	25.8341	
CREY	1200	
CREW PROVISIONS	1290 350	
CIL AND TRAPPED CIL	187	
UNAVAILASEL FUEL	461	
NOMEXPENDABLE USEFUL LOAD	2289	
 NORTH FERDADEL USEF OF LUAD	2207	
OPERATING WEIGHT	260630	
MISSION GROSS WEIGHT	580000	
AMER WEIGHT	229012	

									D.F.	SIGN #0
			MISSI	N SUMMAR	Y DATA F	OR MISSION	FERRYI		DE	SIGN #9
	FERP	Y MISS	CON_GP1	ISS_REIGH	T. 1000	L3S.			580.	600
	FERF	Y PAYL	DAD, 10	000 LES					200.	000
	FEKR	Y PANG	.N.M.					= 3	596.	024
	TOTA	L_FERRY	EUEL	1000 LB	S			=	119.	370
	RESE	RVE FU	EL, LBS	;				= 11	234.	C 8 5
-	MISS	ION FUE	L, 100	OO LBS					108.	136
	AVER	AGE MIS	SION	ANGE FAC	LOR. JAX	I-CLIMB-CRU	IISE	=_17	427.	933
	FCI	TER TI	15, HR S					•	7.	662
	FOI	TER RAI	OIUS, N	. MI.				=	193.	149
	ZER	O LCITE	R TIME	PADIUS	N MI.			1	798.	012
	WIN	G LOAD	ING. PS	F				=	110.	000
	THE	UST TO	WEIGHT	RATIC					•	190
	TAK	EPEF G	8022 HE	IGHT-10	261 22			_=	5.80.	coc
	OPE	PATING	WEIGHT	, 1000 L	8 \$			•	260.	630
	TAK	E CFF	DISTANC	E, FEET				= 8	042.	109
	LAN	DING C	STANCE	, FEET				_ = _3	527.	478
	WIN	G AREA,	50. F	т.				* 5	272.	727
	CRU	ISE DUT	RANGE	FACTOR,	мм			= 18	736.	106
	CRU	ISE OUT	SEC							610
	CRU	ISE OUT	L/D					=	26.	984
	CRU	ISE OUT	DRAG					= 20	969.	416
				ASLE. La						198
LEG NO.	LEG NAME	CONFIG	POWER	DIST.	TIME	INT. JEIGHT	INT. MACH	INT.		FINAL HEIGHT
1	TAKEUF 3	1.0	£.C	•0	.052	580000	.000		•0	578505
2_	MAXRCL	1.0	5.0	193.1	.555	578505	.391		•0	565840
3	CRUISE3	1.0	6.0	3402.9	7.480	565840	.793	36976	• 1	471864
4	LOITER	1.0	6.0	• 0	.500	471564	.285		• 0	466599
	CRUISF2	1.3	. 5.0	193.1	.442	476989_	763	37132	• 5	.471664
6	LOITER	1.0	6.0	•0	7.662	565840	.736	36965	•1	476469

****CONFIGURATION CHARACTERISTICS ****

wing		
AREAS		
. TRAPEZOIDAL REFERENCE	6363.636	
AERODYNAMIC REFERENCE	6363.636	
WETTED	11190.858	
GLOVE	.000	
IGUHAY	.000	
AILERONS	219.365	
SPOILERS	244.248	
SPAN, FEET	273.446	
TRAPEZGIDAL CHGROS, FEET		
ROOT	35.636	
S.O.B.	33.349	
TIP	10.908	
MGC	25.455	
CHORD OF THE CONSTANT SECTION	33.163	
SWEEPS, DEGREES		
LEADING EDGE	30.000	
QUARTER CHCRD	28.019	
TRAILING EDGE	21.619	
GLOVE LEADING EDGE	46.500	
YAHJDI TRAILING EDGE	18.000	
AVERAGE, EXPOSED, STREAMHISE T/C	.1000	
STRUCTURAL T/C	.1439	
TRAPEZOIDAL ASPECT RATIO	11.750	
AERO REF. ASPECT RATIO	11.750	
TRAPEZOIDAL TAPER RATIO	.306	
AERO REF. TAPER RATIO	•3271	
DESIGN LIFT COEFFICIENT	.400	
FUEL	305919	
WING	305919	
BODY	305919	
TOTAL	303919	
FUSELAGE		
LENGTH, FT.	177.503	
MAXIMUM WIDTH	25.294	
MAXIMUM DEPTH	25.294	
STRUCTURAL WETTED AREA	11933.467	
AERODYNAMIC WETTED AREA	11134.997	-
NOSE FINENESS RATIO	1.500	
BODY FINENESS RATIO	7.018	
AFT BODY CLOSURE ANGLE	15.000	
AFT BODY UPSWEEPANGLE	8.500	
AFT BODY UPSWEEP AREA	671.474	

****CONFIGURATION CHARACTERISTICS - 1****

	HORIZONTAL TAIL		
	AREA, FT2		
	REFERENCE	1442.462	
	EXPOSED PLANFORM	1236.101	
	WETTED	2509.598	
	SPAN, FEET	74.047	
	CHORD, FEET		
		20 320	
	ROOT	29.830	
	TIP	9.131	
	MOMENT ARM, FEET	32.539	
	LEADING SDOS CHEST	20.000	
	LEADING EDGE SWEEP	30.000	
	AVERAGE T/C	.0920	
	TAPER RATIO	.306	
	ASPECT RATIO	3.861	
	VOLUME COEFFICIENT	. 735	
	VERTICAL TAIL		
	AREA, FT2		
	REFERENCE	998.905	
	EXPOSED PLANFORM	988.905	
	WETTED	2010.122	
	HEIGHT, FEET	43.668	
	CHORD, FEET		
	ROCT	34.678	
	TIP	. 10.615	
	MOMENT ARM, FEET	81.297	
	AUMENI ARM) PEET	21.241	
	LEADING EDGE SWEEP	30.000	
		.1300	
	AVERAGE T/C		
	TAPER RATIO	.306	
	ASPECT RATIO	1.928	
_	VOLUME COEFFICIENT	.046	
	NACELLES		
	NUMB ER	4.300	
	FINENESS FATIO	2.560	
	CLOSURE ANGLE	12.000	
	D(EXIT)/D(MAX)	.624	
	DESIGN INLET MACH NO.	.6500	
	(ARC HT)/(LENGTH)	.052	
	CTUIT T/C	.100	
	31701 176		
	ENGINES		
	ENGINE MANUFACTURER	GENELEC	
	ENGINE MODEL	STED	-84
	SEA LEVEL REFERENCE THRUST	33150.000	
	SCALE FACTOR	1 . 003	
	SFC CONSERVATISM	1.003	
	SPC CUNSERVALISM	1.050	

****CONFIGURATION CHARACTERISTICS - 2****

LANDING GEAR	
NO. MAIN TIRES	16.300
BAXA OT NCINUST, NIAM	75.000
 NOSE, TRUNIEN TO AXLE	75.000
GEAR FOD	
LENGTH	53.000
WETTED AREA	1345.694
L/0	5.000
CARGO COMPARTMENT	
COMPARTMENT HEIGHT	16.000
 COMPARTMENT WIDTH	16.000
COMPARTMENT LENGTH	104.167
COMPARTMENT VOLUME	25666.667
 PAYLCAD DENSITY	7.500
PAYLDAD WEIGHT	200000.0
PAYLOAD SIZED TO INPUT COMPARTM	

* MDDEL 1044.GOC * ***********				
	WING	131547		
	HORIZONTAL TAIL	11449		
	VERTICAL TAIL	7874		
	BODY	76865		
	LANDING GEAR	30175		
	NACELLE STRUCTURE	6048		
	STRUCTURE	243842		
	ENGINE	18168		
	ENGINE ACC. AND INSTL.	590		
	FUEL SYSTEM	2215		
	ENGINE CONTROLS	200		
	STARTING SYSTEM	200		
	THRUST REVERSERS	4921		
	PROPULSION	26294		
	AUXILIARY POWER UNIT	930		
	INSTP. AND NAV EQUIP.	960		
	SURFACE CENTROLS	7711		
	HYDRAULICS	3453		
	ELECTRICAL	3440		
	AVIONICS	3450		
	ARMAMENT	C		
	FURNISHINGS EQUIP.	5674		
	AIR COND. AND ANTI-ICING	3784		
	BLC DISTRIBUTION	0		
	AUXILIARY GEAR	2050		
	FIXED EQUIPMENT	31453		
	WEIGHT EMPTY	301568		
	CPEW	1290		
	CREW PROVISIONS	350		
	CIL AND TRAPPED CIL	226		
	UNAVAILABEL FUEL	512		
	NONEXPENDABLE USEFUL LOAD	2478		
	CPERATING WEIGHT	304066		
	MISSION GROSS WEIGHT	700000		
	AMPR WEIGHT	266691		

MISSIDN SUMMARY DATA FOR MISSION FERRYL	DESIGN #10
FERPY MISSION GROSS WEIGHT, 1900 LBS.	= 706.000
FERRY PAYLCAD, 1000 LBS	= 200.000
FERRY RANGE, N.M.	5502.686
TOTAL FERRY FUEL, 1000 LBS	1 95.934
RESERVE FUEL, LBS	= 15586.162
MISSIGN FUEL, 1000 LBS	186.34 8
AVERAGE MISSION RANGE FACTOR, TAXI-CLIMB-CRUISE	
LOITER TIME, HRS.	= 12.142
LOITER RADIUS, N. MI.	= 194.689
ZERO LOITER TIME RADIUS, N MI.	= 2751.343
WING LOADING, PSF	- 110.000
THRUST TO WEIGHT RATIO	- 190
	- 700.000
SPERATING WEIGHT, 1000 LBS	= 304.066
	= 8042.109
LANDING DISTANCE, FEET	= 3441 • 350
WING AREA, SQ. FT.	• 6363.636
	= 19393,297
CRUISE CUT SFC	• .614
CRUISE DUT L/D	= 27.948
CRUISE OUT DRAG	= 24446.856
C C THRUST AVAILABLE, LBS	= 30340.894
LEG LEG CENFIG POWER DIST. TIME INT. INT. NO. NAME WEIGHT MACH	INT. FINAL F
1 TAKEDES 1.0 6.0 .G .052 700000 .G00	
2 MAXRCL 1.0 5.0 194.7 .546 698196 .412	.3 683251
, CRUISES 1.0 6.6 5308.0 11.53J 683251 .803	37529.5 519652
4 LOITER 1.0 6.0 .0 .500 . 519652 -275	.0 513863 .
CRUISE2 1.C 6.0 194.7 .437 525156 .776	39562.3 519652
	37526.1 525155

****CJNFIGURATION CHARACTERISTICS ****

WI	v6 ÷	
	AREAS	
	TRAPEZBIDAL REFERENCE	14 963 . 534
	AERBOYNAMIC REFERENCE	14963.504
	CETTEN	27255.045
	GLCVE	.000
	IOUHAY	.000
	AILERONS	671.678
	SPOILERS	657.965
	SPAM, FEET	345.988
	TRAPEZOIDAL CHORDS, FEET	
	ROCT	62.286
	5.0.8.	59.503
	TIP	24.211
	MGC	46.031
	CHORD OF THE CONSTANT SECTION	55.479
	SWEEPS, DEGREES	
	LEADING EDGE	10.000
	QUARTER CHERD	6.917
	TRAILING EDGE	-2.508
	GLOVE LEADING EDGE	46.560
	YAHUDI TRAILING EDGE	18.000
	AVERAGE, EXPOSED, STREAMWISE T/C	.1000
	STRUCTURAL I/C	.1439
	TRAPEZGIDAL ASPECT RATIO	8.000
	AERO REF. ASPECT RATIU	8.600
	TRAPEZGIDAL TAPER RATIO	.369
	AERO REF. TAPER RATIO	.4069
	DESIGN LIFT CEEFFICIENT	.400
	FUEL	
	WING	1282478
	BODY	0
	TOTAL	1282478
* - **		
FU:	SELAGE	385.837
	LENGTH, FT.	25.294
	MAXIMUM WIDTH	25.294
	MAXIMUM DEPTH	28475.896
	STPUCTURAL WETTED AREA AERODYNAMIC WETTED AREA	25698.198
	NOSE FINENESS RATIO	1.500
	BODY FINENESS RATIO	15.254
	AFT BODY CLESURE ANGLE	15.000
	AFT BODY UFSWEEPANGLE	8.500
	AFT BODY UPSWEEP AREA	671.474

****CONFIGURATION CHARACTERISTICS - 1****

100	HORIZENTAL TAIL		
	AREA, FT2		
	REFERENCE	3494.997	
	EXPOSED PLANFORM	2984.559	
	HETTED	6044.576	
	SPAN, FEET	112.561	
	CHORD, FEET		
	ROCT	44.718	
	TIP	17.382	
	MOMENT ARM, FEET	179.414	
	LEADING EDGE SWEEP	16.000	
	AVERAGE T/C	.0920	
	TAPER RATIO	.389	
	ASPECT RATIO	3.625	
	VOLUME COEFFICIENT	.910	
	VERTICAL TAIL		
419	AREA, FT2		
	REFERENCE	1807.253	
	EXPOSED PLANFORM	1807.253	
	WETTED	3669.194	-
	HEIGHT, FEET	54.309	
	CHORD, FEET		
_	ROOT	47.926	
	TIP	18.629	
	MOMENT ARM, FEET	176.713	
	1510146 5065 6: 550	10.000	
	LEADING EDGE SHEEP		
	AVERAGE T/C	.1000	-
	TAPER RATIO	.369	
	ASPECT RATIO	1.632	
	VOLUME CREFFICIENT	.062	
	NACELLES		
	NUMB ER	4.000	
	FINENESS FATIC	2.560	
	CLOSUPE ANGLE	12.000	
	D(EXIT)/D(MAX)	.624	
	CESIGN INLET MACH NO.	.6500	
	(ARC HT)/(LENGTH)	.052	
	STRUT T/C	.100	
	ENGINES		
	ENGINE MANUEACTURER	GENELEC	
	ENGINE MODEL	STEPLO	25
	SEA LEVEL REFERENCE IMRUSI	33150.000	
	SCALE FACTOR	3.247	
2.1	SCALE FACTOR SEC CONSERVATISM	3.247	
	3.0 CON3CN (2.13)		

 		DESIGN #1
****CENFIGURATION CHARA	CT COLUMN 2444	
 TATALENFIGURATION CHAR	C.EVI31162 - 5-4	
LANDING GEAR		
NO. MAIN TIRES	32.000	
 MAIN, TRUNION TO AXLE	217.410	
NOSE, TRUNION TO AXLE	217.410	
GEAR POD		
LENGTH	53.000	
WETTED AREA	2618.661	
 L/D	5.600	
CARGO COMPARTMENT		
COMPARTMENT HEIGHT	16.000	
COMPARTMENT WIDTH	16.000	
COMPARTMENT LENGTH	312.500	
COMPARTMENT VOLUME	000.000	
PAYLOAD DENSITY	7.500	
THRIBM CABLYAS	60000.0	
 PAYURAD SIZED TO INPUT COMPARTMEN	T DIMENSTONS	
PATERAD SIZES TO THEST COMPARTMENT	1 0185421643	
 		7 44 13 3

	711		7	-		-	 -		10		-	V
6 K	UL	F			1	0	1	2	U.T.	C. A	K	1

KING	287978
HORIZONTAL TAIL	33943
VERTICAL TAIL	16160
BCDY	226059
LANDING GEAR	120673
NACELLE STRUCTURE	18446
STRUCTURE	-649830
나는 사람들은 이번 사람이 하게 하지만 하는 것이 되었다.	
ENGINE	78380
ENGINE ACC. AND INSTL.	590
FUEL SYSTEM	4739
ENGINE CONTROLS	200
STARTING SYSTEM	200
THRUST REVERSERS	15928
PROPULSION	100538
AUXILIARY POWEP UNIT	936
INSTR. AND NAV EQUIP.	960
SURFACE CENTROLS	17874
HYDRAULICS	11043
ELECTRICAL	3440
AVIONICS	3450
ARMAMENT	0
FURNISHINGS EQUIF.	9394
AIR COND. AND ANTI-ICING	6083
ELC DISTRIBUTION	0
AUXILIAPY GEAR	2050
FIXED EQUIPMENT	55224
WEIGHT EMPTY	805592
CREW	1290
CREW PROVISIONS	350
CIL AND TRAPPED DIL	732
UNAVAILABEL FUEL	2565
NONEXPENDABLE USEFUL LOAD	4937
TOTAL TOTAL COLUMN	
OPERATING WEIGHT	810529
The state of the s	
MISSION GROSS WEIGHT	2050000
1331511 01333 11210111	
AMPR WEIGHT	677484
77 ,, C.2 C	

MISSIUM SUMMARY DATA FOR MISSION FERRYL	DESIGN #11	
FERRY MISSION GROSS WEIGHT, 1000 LBS.	= 2050.000	
FERRY PAYLDAD. 1000 LBS	- 600.000	
FERRY PANGE, N. M.	* 5405.964	
TOTAL FERRY FUEL, 1900 LBS	= 639.471	
RESERVE FUEL, LBS	= 51402.46d	
MISSION FUEL, 1000 Las	588.C68	
AVERAGE MISSION RANGE FACTOR, TAXI-CLIMB-CRUISE	= 16167.638	
LCITER TIME, HRS.	= 12.303	
LOITER RADIUS, N. MI.	= 130.369	
ZERO LOITER TIME RADIUS, N MI.	2732.982	
WING LEADING, PSF	= 137.000	
THRUST TO WEIGHT RATIO	.210	
	= 2050.000	
OPERATING WEIGHT, 1000 LBS	= 81C.529	
TAKE OFF DISTANCE, FEET	• 6008.160	
LANDING DISTANCE, FEET	= 3734.102	
WING AREA, SO. FT.	= 14963.504	
CRUISE OUT PANGE FACTOR, NM	= 16719.345	
CRUISE DUT SEC	• .610	
CRUISE DUT L/D	24.712	
CRUISE OUT DRAG	- 81397.681	
C C THRUST AVAILABLE, LBS	=119256.184	
EG LEG CONFIG POWER DIST. TIME INT. INT.	INT. FINAL	FI MA
1 TAKEDES 1.0 6.0 .0 .052 2050GCC .000	.0 2044160	
2 MAXRCL 1.0 5.0 130.4 .330 204416C .477	.0 2011510	• 7
CRUISES 1.0 6.0 5335.6 11.862 2011510 .780	31400.8 1461932	.7
7 LOITER 1.0 6.0 .0 .500 1461932 .285	.0 1442503	.:
GRUISE2 1.0 6.0 130.4 .292 1473568 .777	37784.5 1461932	.7
6 LOITER 1.0 6.0 .0 12.303 2011510 .743	31895.8 1473558	. t

****CONFIGURATION CHARACTER	ISTICS ****	
WING		
TRAPEZOIDAL REFERENCE	19038.462	
AERODYNAMIC REFERENCE	19038.462	
WETTED	35119.621	
GLCVE	.000	
YAFUDI	.000	
AILERONS	872.059	
SPOILERS	823.869	
SPAN, FEET	350.266	
TRAPEZOIDAL CHORDS, FEET		
POOT	70.257	
S.C.B.	67.474	
TIP	27.369	
MGC	51.921	
CHORD OF THE CONSTANT SECTION	65.963	
SWEEPS, DEGREES		
LEADING ENGE	10.000	
QUARTER CHORD	5.917	
TRAILING EDGE	-2.508	
GLOVE LEADING EDGE	46.500	
YAHUDI TRAILING_EDGE	18.000	
AVERAGE, EXPOSED, STREAMWISE T/C	.1000	
STRUCTURAL T/C	.1439	
TRAPEZOIDAL ASPECT RATIO	000.8	
AERO REF. ASPECT RATIO	000.8	
TRAPEZOIDAL TAPER RATIO	.389	
AERO REF. TAPER RATIO	.4047	
DESIGN LIFT CREFFICIENT	.400	
FUEL		
WING	1840551	
BOCY	0	
TCTAL	1840551	
		and the second s
FUSELAGE		
LENGIH. FJ.	385.837	
MAYIMUM WIDTH	25.294	
MAYIMUM DEPTH	25.294	
STRUCTURAL WETTED AREA	28475.896	
AERCDYNAMIC WETTED AREA	26400.706	
NOSE FINENESS RATIO	1.500	
BODY FINENESS SATIO	15.254	
AFT BODY CLOSURE ANGLE	15.000	
AFT BODY UPSWEEPANGLE	8.500	
AET BODY UPSWEEP AREA	671.474	

######################################	DESIGN #12
### HOPIZENTAL TAIL AREA, FT2 ***GEERRENCE** ***SPOSED PLANFORM** ***SPOSED PLANFORM** ***SPOSED PLANFORM** ***SPOSED PLANFORM** ***SPOSED PLANFORM** ***SPOSED PLANFORM** ***PAGE T/C ***TIP*** ***CCT***ST-12-6592 ***TIP****TIP*** ***PADING EDGE SKEEP** ***INCOMMAN FEET** ***INCOMMAN ARM** FEET** ***PADING EDGE SKEEP** ***INCOMMAN ARM** FEET** ***INCOMMAN ARM** ***IN	
### HOPIZENTAL TAIL AREA, FT2 ***GEERRENCE** ***SPOSED PLANFORM** ***SPOSED PLANFORM** ***SPOSED PLANFORM** ***SPOSED PLANFORM** ***SPOSED PLANFORM** ***SPOSED PLANFORM** ***PAGE T/C ***TIP*** ***CCT***ST-12-6592 ***TIP****TIP*** ***PADING EDGE SKEEP** ***INCOMMAN FEET** ***INCOMMAN ARM** FEET** ***PADING EDGE SKEEP** ***INCOMMAN ARM** FEET** ***INCOMMAN ARM** ***IN	
AREA, FT2 SEFERENCE 4508.465 EYPCSED PLANFORM 3501.265 WETTED 7901.167 128.652 CHORO, FEET 128.652 CHORO, FEET 19.873 MOMENT ARM. FEET 179.414 19.873 MOMENT ARM. FEET 10.000 AVERAGE T/C .0920 AVERAGE T/C .0920 AVERAGE T/C .0920 AVERAGE T/C .0920 AVERTICO 3.829 MOMENT ARTICLE ARTI	
AREA, FT2 SEFERENCE 4508.465 EYPCSED PLANFORM 3501.265 WETTED 7901.167 128.652 CHORO, FEET 128.652 CHORO, FEET 19.873 MOMENT ARM. FEET 179.414 19.873 MOMENT ARM. FEET 10.000 AVERAGE T/C .0920 AVERAGE T/C .0920 AVERAGE T/C .0920 AVERAGE T/C .0920 AVERTICO 3.829 MOMENT ARTICLE ARTI	
AREA, FT2 SEFERENCE 4508.465 EYPCSED PLANFORM 3501.265 WETTED 7901.167 128.652 CHORO, FEET 128.652 CHORO, FEET 19.873 MOMENT ARM, FEET 179.414 19.873 MOMENT ARM, FEET 10.000 AVERAGE T/C .0920 TAPER RATIO .369 ASPECT RATIO .369 ASPECT RATIO .369 ASPECT RATIO .3629 WERTICAL TAIL AREA, FTZ REFERENCE 2296.956 METTED MOMENT ARM, FEET .276.955 METTED .369.419 HEIGHT, FEET .360.955 METTED .369.419 HEIGHT, FEET .360.955 MOMENT ARM, FEET .360.02 TAPER PATIO .389 ASPECT PATIC .360 CURVING ARMED .650 CURVING ARMED .650 CURVING ARMED .624 GENERE MEMBER MAGE .200 CURVING ARMED .624 GENERE MEMBER MADER	
PEFERENCE 455E.465 EYPOSED PLANFORM 3961.265 WETTED 7901.167 SPAN, FEET 12E.552 CHORD, FEET 12E.552 CHORD, FEET 19.873 MOMENT ARM, FEET 19.873 MOMENT ARM, FEET 19.873 MOMENT ARM, FEET 19.873 MOMENT ARM, FEET 10.000 AVERAGE T/C .0920 TAPER RATIO .389 ASPECT RATIC .329 VERTICAL TAIL - AREA, FT2 296.956 SEPESENCE 2296.956 SEPESENCE 2296.956 <tr< td=""><td></td></tr<>	
### \$\text{SED PLANFORM \$\text{3601.265} \\ ### ### ### ### ### #### ##########	
WETTED 7901.167 SPAN. EBET 128.692 CHORO. FEET ROCT 51.126 TIP 19.873 MOMENT ARM. FEET 179.414 LEADING EDGE SKEEP 10.000 AVERAGE T/C .0920 TAPER RATIO .369 ASPECT RATIC .369 ASPECT RATIC .3629 VERTICAL TAIL AREA. FTZ REFERENCE 2296.956 EXPOSED PLANFORM 2296.956 WETTED 4063.419 HEIGHT, FEET 61.226 CHORO. FEET 21.002 MOMENT ASM. FEED 176.713 LEACING EDGE SWEEP 10.000 AVEPAGE I/C .1000 TAPER PATIO .389 ASPECT PATIC .389 ASPECT PATIC .369 ASPECT PATIC .505 NACELLES MUMBED .4000 FINENESS RATIO .2500 CLOSURE ANGLE 12.000 CLOSU	
SPAN, FEET	
CHORD, FEET RCCT TIP 19.873 MOMENT ARM, FEET 179.414 LEADING EDGE SEEP 10.000 AVERAGE T/C 1APER RATIO ASPECT RATIC ASPECT RATIC ASPECT RATIC VOLUME COEFFICIENT 229 VERTICAL TAIL AREA, FTZ REFERENCE SEPENCE SEPENCE SEPENCE SEPENCE CHORD, FEET RCCT RCCT MOMENT ARM, FEET 176.713 LESCING EDGE SWEEP ASPECT PATIC	
RCCT	
I.P.	
MOMENT ARM, FEET 179,414	
LEADING EDGE SKEEP	
AVERAGE T/C TAPER RATIO .369 ASPECT RATIC .2625 VOLUME COEFFICIENT .829 VERTICAL TAIL AREA, FTZ REFERENCE EXPOSED PLANFORM ETTED .2296.956 EXPOSED PLANFORM .2296.956 EXPOSED PLANFORM HEIGHT, FEET .2296.956 CHORD, FEET .2296.956 MOMENT ARM, FEET .2296.956 .22	
AVERAGE T/C TAPER RATIO .369 ASPECT RATIC .529 VOLUME COEFFICIENT .829 VERTICAL TAIL AREA, FTZ REFERENCE EXPOSED PLANFORM EXTED HEIGHT, FEET CHORD, FEET ROOT TIP TIP TIP TIP TIP TIP TIP TIP TIP TI	
TAPER RATIO	
VOLUME COEFFICIENT .829 VERTICAL TAIL	
VERTICAL TAIL AREA, FTZ REFERENCE 2296.956 SEPESED PLANFORM 2296.956 WETTED 4063.419 HEIGHT, FEET 61.226 CHGRC, FEET 54.030 TIP 21.002 MOMENT ARM, FEET 176.713 LEACING EDGE SHEEP 10.000 AVEPAGE T/C .1000 TAPER PATIO .389 ASPECT PATIC 1.632 VOLUME CREFFICIENT .055 NACELLES NUMBER FINENESS RATIO 2.560 CLOSURE ANGLE 12.000 CLOSURE ANGLE 12.000 CLOSURE ANGLE 12.000 CARC HIJ/(LENGTH) .650 (ARC HIJ/(LENGTH) .052 STRUTTIC .100 ENGINES .100 ENGINE MANUFACIURER GENELEC ENGINE MANUFACIURER GENELEC ENGINE MANUFACIURER GENELEC	
AREA, FTZ REFERENCE SXPDSED PLANFORM 2296.956 WETTED HEIGHT, FEET CHORD, FEET ROCT TIP ROCT TIP 21.062 MOMENT ARM, FEET LE-CING EDGE SHEEP ASPECT PATIC TAPER RATIO ASPECT PATIC VOLUME COEFFICIENT NACELLES FINENESS RATIO CLOSURF ANGLE DESIGN INLET MACH NO. (ARC HT)/(LENGTH) ENGINES ENGINE MODEL ENGINE MODEL GENELEC ENGINE MODEL	
AREA, FTZ REFERENCE SYPOSED PLANFORM 2296.956 WETTED HEIGHT, FEET CHORD, FEET ROCT TIP ROCT TIP ANAMAN, FEET LEADING EDGE SHEEP ASPECT PATIC ASPECT PATIC VOLUME COEFFICIENT NACELLES FINENESS RATIO CLOSURF ANGLE DESIGN INLET MACH NJ. (ARC HT)/(LENGTH) ENGINES —— ENGINE MODEL ENGINE MODEL ENGINE MODEL CENEIRE MANUFACTURER GENELEC ENGINE MODEL	
REFERENCE	
### ##################################	
WETTED	
#EIGHT, FEET CHORD, FEET ROOT TIP 21.002 MOMENT ARM, FEET LEACING EDGE SHEEP AVERAGE T/C TAPER PATID ASPECT PATIC VOLUME COEFFICIENT NACELLES FINENESS RATID CLOSURE ANGLE CLOSURE ANGLE CLOSURE ANGLE DESIGN INLET MACH NJ. CARC HT)/(LENGTH) ENGINES —— ENGINE MADDEL ENGINE MODEL GENELEC ENGINE MODEL	
### CHORD: FEET ### ROOT ### TIP #### TIP ###################################	
### ### ##############################	
TIP	
MOMENT ARM, FEET 176.713	
LEADING EDGE SHEEP AVERAGE T/C TAPER RATID ASPECT RATIC VOLUME COEFFICIENT NACELLES NUMBER FINENESS RATID CLOSURE ANGLE CLOSURE ANGLE DESIGN INLET MACH NO. (ARC HT)/(LENGTH) ENGINES ENGINE MANUFACTURER GENELEC ENGINE MODEL	
AVERAGE T/C .1000 TAPER PATIO .389 ASPECT PATIC 1.632 VOLUME COEFFICIENT .055 NACELLES NUMBER ANGLE 12.000 CLOSURE ANGLE 12.000 CLOSURE ANGLE 12.000 CLEXIT)/C(MAX) .624 DESIGN INLET MACH NO6500 (ARC HT)/(LENGTH) .052 STRUT T/C .100 ENGINES ENGINE MANUFACTURER GENELEC ENGINE MODEL	
AVERAGE T/C .1000 TAPER PATIO .389 ASPECT PATIC 1.632 VOLUME COEFFICIENT .055 NACELLES NUMBER ANGLE 12.000 CLOSURE ANGLE 12.000 CLEXIT)/Q(MAX) .624 DESIGN INLET MACH NO6500 (ARC HT)/(LENGTH) .052 STRUT T/C .100 ENGINES ENGINE MANUFACTURER GENELEC ENGINE MODEL	
TAPER RATIO ASPECT PATIC ASPECT PATIC VOLUME COEFFICIENT .055 NACELLES NUMBEP FINENESS RATIO CLOSURE ANGLE CLOSURE ANGLE DESIGN INLET MACH NJ. GARC HT)/(LENGTH) .05Z STRUT T/C ENGINES ENGINE MANUFACTURER GENELEC ENGINE MODEL	
ASPECT PATIC VOLUME COEFFICIENT .055 NACELLES NUMBER FINENESS RATIO CLOSURE ANGLE CLOSURE ANGLE DESIGN INLET MACH NJ. CARC HT)/(LENGTH) CARC HT)/(LENGTH) ENGINES ENGINE MANUFACTURER GENELEC ENGINE MODEL	
VOLUME COEFFICIENT .055 NACELLES NUMBER	
NACELLES NUMBER FINENESS RATIO CLOSURE ANGLE DLEXIT)/D(MAX) DESIGN INLET MACH ND. (ARC HT)/(LENGTH) STRUT T/C ENGINES ENGINE MANUFACTURER ENGINE MODEL 4.000 2.560 2.560 2.560 2.624 3.624 3.624 3.624 3.626	
NUMBER FINENESS RATIO CLOSURE ANGLE D(EXIT)/D(MAX) DESIGN INLET MACH NO. (ARC HT)/(LENGTH) STRUT T/C ENGINES ENGINE MANUFACTURER GENELEC ENGINE MODEL	
NUMBER FINENESS RATIO CLOSURE ANGLE DLEXIT)/D(MAX) DESIGN INLET MACH NO. (ARC HT)/(LENGTH) STRUT T/C ENGINES ENGINE MANUFACTURER GENELEC ENGINE MODEL	
FINENESS RATIO CLOSURE ANGLE D(EXIT)/D(MAX) DESIGN INLET MACH NO. (ARC HT)/(LENGTH) STRUT T/C ENGINES ENGINE MANUFACTURER ENGINE MODEL 2.560 12.000 6.24 .624 .6500 .6500 .100	
CLOSURE ANGLE D(EXIT)/D(MAX) DESIGN INLET MACH NO. (ARC HT)/(LENGTH) O52 STRUT T/C ENGINES ENGINE MANUFACTURER ENGINE MODEL	
D(EXIT)/D(MAX) .624 DESIGN INLET MACH NO6500 (ARC HT)/(LENGTH) .052 STRUT T/C .100 ENGINES ENGINE MANUFACTURER GENELEC ENGINE MODEL	
DESIGN INLET MACH NJ6500 (ARC HT)/(LENGTH) .052 STRUT T/C .100 ENGINES ENGINE MANUFACTURER GENELEC ENGINE MODEL	
(ARC HT)/(LENGTH) .052 .100 ENGINES ENGINE MANUFACTURER ENGINE MODEL GENELEC ENGINE MODEL	
STRUT T/C .160 ENGINES ENGINE MANUFACTURER GENELEC ENGINE MODEL	
ENGINES ENGINE MANUFACTURER GENELEC ENGINE MODEL	
ENGINE MANUFACTURER GENELEC ENGINE MODEL	
ENGINE MODEL	
ENGINE MODEL	
SEA LEVEL DEFENDENCE THOUSE	EDLEL
24 56 4 5 1 5 1 5 1 1 5 2 1 3 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
SCALE FACTUR 3.453	
SEC CONSERVATISM 1.050	

GROUP WEIGHT SUMMAR	RY	
 * MODEL 1044.000 *		

WING	376705	
HORIZONTAL TAIL	46420	
VERTICAL TAIL	22055	
BCDY	236185	
LANDING GEAR	141720	
 NACELLE STRUCTURE	19577	
STRUCTURE	776000	
ENGINE	85199	
ENGINE ACC. AND INSTL.	590	
FUEL SYSTEM	5886	
 ENGINE CONTROLS	200	
STARTING SYSTEM	200	
THRUST REVERSERS	16941	
 PROPULSION	109016	
AUXILIARY POWER UNIT	930	
INSTR. AND NAV EQUIP.	960	
SURFACE CENTROLS	20689	
HYDRAULICS	13540	
ELECTRICAL	3440	
AVIONICS	3450	
ARMAMENT	0	
 FURNISHINGS EQUIP.	9440	
AIR COND. AND ANTI-ICING	6090	
BLC DISTRIBUTION	G	
 AUXILIARY GEAR	2050	
FIXED FQUIPMENT	60588	
MEIGHT EMPTY	947503	
CREW	1290	
CREW PROVISIONS	350	
DIL AND TRAPPED CIL	773	
UNAVAILABEL FUEL	3681	
 NONEXPENDABLE USEFUL LOAD	6099	
CPERATING WEIGHT	953703	
MISSION GROSS WEIGHT	2475000	
AMPR WEIGHT	805563	

	FERRY FERRY TOTAL RESER MISSI AVERA LOIT LOIT ZERG	PAYLO RANGE FERRY VE FUE ON FUE GE MIS FR TIM	ON GRO AD, 10 ,N.M. EUEL, L, LBS L, 100 SIGN R E, HPS IUS, N	SS WEIGH OC LBS 1000 LB O LBS ANGE FAC	1000	I-CLIMS-CRU		= 600 = 7231 = 921 = 66242 = 855 = 17062 = 16	.000 .930 .297 .562 .054
	FERRY FERRY TOTAL RESER MISSI AVERA LOIT LOIT ZERG	PAYLO RANGE FERRY VE FUE ON FUE GE MIS FR TIM FR RAD	FUEL, LBS L, LBS SIGN R E, HPS IUS, N	OC LBS O LBS ANGE FAC	2			= 600 = 7231 = 921 = 66242 = 855 = 17062 = 16	.000 .930 .297 .562 .054
	FERRY TOTAL RESER MISSI AVERA LOIT LOIT ZERO	FERRY VE FUE ON FUE GE MIS FR TIM	FUEL, L, LBS L, 100 SIGN R E, HPS	O LBS ANGE FAC		I-CLIMS-CRU	!IŞE	= 7231 = 921 = 66242 = 855 = 17062 = 16	.930 .297 .562 .054
	TOTAL RESER MISSI AVERA LOIT LOIT ZERO	FERRY VE FUE ON FUE GE MIS FR TIM FR RAD	E, HPS	O LBS ANGE FAC		I-CLIMS-CRU	!ISE	= 921 = 66242 = 855 = 17062 = 16	.297 .562 .054
	RESER MISSI AVERA LCIT LCIT ZERC WING	VE FUE ON FUE GE MIS ER TIM ER RAD	L, LBS L, 100 SIGN R E, HRS	O LBS ANGE FAC		I-CLIMS-CRU	!ISE	= 66242 = 855 = 17062 = 16	•562 •054 •560
	MISSI AVERA LCIT LOIT ZERO	ON FUE	L, 100 SIEN R E, HPS	O LBS ANGE FAC	TGR, TAX	I-CLIMS-CRU	!ISE	= 855 = 17062 = 16	.054
	AVERA LCIT LOIT ZERO WING	GE MIS ER TIM ER RAD	SION R E, HPS	ANGE FAC	TOR, TAX	I-CLIMS-CRU	!ISE	<u>= 17062</u> = 16	• 560
	LCIT LOIT ZERC WING	FR TIM	E, HRS	. MI.	TOR, TAX	I <u>-CLIM6-CR</u> U	IŞE	= 16	
	LOIT ZERO WING	FR RAD	IUS, N	. MI.					•552
	ZERE	LOITE							
	WING		RTIME	RADIUS .				= 159	·58C
		LOADI			N MI.			<u> 3615</u>	• 965
	THRU		NG, PS	F				= 130	.000
		ST TO	WEIGHT	PATIO					.185
	TAKE	CFF GR	CSS HE	IGHT10	00 LBS			= 2475	.000
	OPER	ATING	WEIGHT	, 1000 L	.85			= 953	.703
	TAKE	OFF D	ISTANC	E, SET				= 8887	•364
	LAND	ING DI	STANCE	, FEFT				= 3498	.362
	WING	AREA,	SC. F	т.				= 19038	•462
	CRUI	SE OUT	RANGE	FACTOR,	NM			= 17515	•255
	CPUI	SE CUT	FC						.t14
	CRLI	SE DUT	L/C					2 25	.947
	CRUI	SE DUT	DF4G					= 93491	•927
	СБ	THRUST	AVAIL	ABLE, LE	S			=127663	•121
					TIME	INT. WEIGHT		INT.	FINAL
1	TAKEDF3	1.0	6.C		•052	2475000	.000	•0	2468769
2	MAYRCL	1.0_	5.0	159.6	.411	2468769	.468	.0	2425833_
3	CRUISE3	1.0	د.عَ	7072.3	15.741	2425833	.777	31709.9	1619946
-4	LOITER	1.0	6.0	• 0	.500	1619946	.269	•0	1599766
5	CRUISEZ	1.0_	6.0	154.6	.359	1635027	.774	39253.4	1619946
						2425833			1635027

		GIV # 15
****CONFIGURATION CHARACTER	ISTICS ****	
WING		
24234		
TRAPEZOIDAL REFERÊNCE	16917.293	
A EPODYNAMIC REFERENCE	16917.293	
WETTED	31571.260	
GL GVE	.000	
YAHUDI	.000	
AILERONS	626.455	
SPOILERS	602.424	
SPAN, FEET	454.564	
TRAPEZOIDAL CHORDS, FEET		
POOT	57.495	
S.C.B.	55.255	
TIP	17.599	
*GC	41.069	
CHORD OF THE CONSTANT SECTION	53.505	
SWEEPS, DEGFEES		
LEADING ENGE .	30.000	
QUARTER CHORD	28.061	
TRAILING EDGE	21.805	
GLOVE LEADING EDGE	46.500	
YAHUDI TRAILING EDGE	18.000	
AVERAGE, EXPOSED, STREAMHISE T/C	.1000	
STRUCTURAL T/C	•1439	
TRAPFICIDAL ASPECT RATIO	12.000	
AERO PEF. ASPECT RATIO	12.000	
TRAPEZOIDAL TAPER RATIO	.306	
AEPO PEF. TAPER RATIO	.3185	
DESIGN LIFT COEFFICIENT	.400	
FUEL	1212112	
HING BCOY	1312117	
TCTAL	0 1312117	
	1312111	
FUSELAGE		
LENGTH, FT.	385.837	
MAXIMUM WIDTH	25.294	
MAXIMUM DEPTH	25.294	
STRUCTURAL WETTED AREA	28475.896	
AERCDYNAMIC WETTED AREA	26589.978	
NOSE FINENESS RATIO	1.500	
BODY FINENESS PATIO	15.254	
AFT BODY CLOSURE ANGLE	15.600	
AFT BODY UPSWEEPANGLE	8.500	
AFT BODY UPSHEEP AREA	571.474	
ACT OUN! OF SHEET HIER		

###COMETCURATION CH	ARACTERISTICS - 1****
TTT-CORFIGORATION CHA	ARACTERIS (105 - 14444
HORIZONTAL TAIL	
AREA, FT2	
FEFERENCE	3590.667
EXPOSED PLANFORM	3078.559
WETTED	6250.234
SPAN, FEET	117.006
CHOPC. FEET	
ROCT	46.991
TIP	14.384
MOMENT ARM, FEET	179.414
LEADING COOK CHEED	26.022
LEADING EDGE SWEEP	30.000
AVERAGE T/C	•0920
TAPER RATIO	.306
ASPECT RATIO	3.813
VOLUME COEFFICIENT	•927
VERTICAL TAIL	
AREA. FT2	
REFERENCE	2214.218
EXPOSED PLANFORM	2214.218
WETTED	4500.893
HEIGHT, FEET	65.676
CHORD, FEET	
RCCT	51.626
TIP	15.803
MOMENT ARM, FEET	176.713
LEADING EDGE SWEEP	30.000
AVERAGE T/C	.1000
TAPER PATIO	.306
ASPECT RATIO	1.948
ADT TWE COEEETCIENT	.051
NACELLES	
NUMBER	4.000
FINENESS RATIO	2.560
CLOSURE ANGLE	12.000
D(EXIT)/D(MAX)	.624
DESIGN INLET MACH NO.	.6500
(ARC HT)/(LENGTH)	•052
STRUT T/C	.100
ENGINES	
ENGINE MANUFACTURER	GENELEC
ENGINE MODEL	STEDLEC
SEA LEVEL REFERENCE THRUS	33150.000
SCALE FACTOR	3.682
SFC CONSERVATION	1.050

		DESIG	N #13
	****CONFIGURATION_CHARA	ACTERISTICS - 2****	
	LANDING GEAR		
	. NO. MAIN TIPES	32.000	
	MAIN. TRUNION TO AXLE	236.209	
	NOSE, TRUNION TO AXLE	236.209	
	GEAR POD		
	LENGTH	53.000	
	WETTED AREA	2774.247	
	L/D	5.000	
	CARGO COMPARTMENT		
	COMPARTMENT HEIGHT	10.000	
11-11-2-11-2	COMPARTMENT WIDTH	16.000	
	COMPARTMENT LENGTH	312.500	
	COMPARIMENT VOLUME	000000000	
	PAYLOAD DENSITY	7.500	
	PAYLCAD WEIGHT	600000.0	
	PAYLOAD SIZED TO INPUT COMPARTMEN	T DIMENSIONS	

GROUP	*EIGHT	SUMMARY

* MODEL 1044.000 *

	FING	502575	
	HORIZONTAL TAIL	38544	
	VERTICAL TAIL	22713	
	BODY	230531	
	LANDING GEAR	138401	
	NACELLE STRUCTURE	20832	
	STRUCTURE	881492	
	ENGINE	92321	
	ENGINE ACC. AND INSTL.	590	
	FUEL SYSTEM	4575	
	ENGINE CONTROLS	200	
	STARTING SYSTEM	- 200	
	THRUST REVERSERS	18065	
	PREPULSION	115951	
	AUXILIARY POWER UNIT	930	
	INSTR. AND NAV EQUIP.	960	
	SURFACE CONTROLS	20529	
	HYDRAULICS	12213	
	ELECTRICAL	3440	
	AVIONICS	3450	
	ARMAMENT	0	
	FURNISHINGS EQUIP.	9417	
	AIR COND. AND ANTI-ICING	6097	
	BLC DISTPIBUTION	0	
	AUXILIARY GEAR	2050	
	FIXED EQUIPMENT	59185	
		7.103	
	WEIGHT EMPTY	1056628	
	CREW	1290	
	CREW PREVISIONS	350	
	OIL AND TRAPPED DIL	930	
	UNAVAILABEL FUEL	2624	
	NONEXPENDABLE USEFUL LOAD		
	OPERATING WEIGHT	1061722	
	MISSION GROSS WEIGHT	2250000	
	AMPR WEIGHT	909058	
A STATE OF THE STA			

MISSION SUMMARY DATA FOR MISSION FERRY1	DESIGN :	# 13
FERRY MISSION GRESS WEIGHT. 1000 LBS.	_= _2250.000	o
FERRY PAYLOAD, 1000 LBS	= 500.00	C
FERRY RANGE, N. M.	= 5394.990	
TOTAL FERRY EUEL: 1000 LBS	= _5:3.27	d
RESERVE FUEL, LBS	= 49543.06	1
MISSION FUEL, 1000 LBS	= 538.73	4
AVERAGE MISSION RANGE FACTOR, JAXI-CLIMB-CRUISE	= 19711.55	c
LCITER TIME, HRS.	= 11.67	3
LOITER RADIUS, N. MI.	= 128.85	7
ZERO LOITER TIME RADIUS, N MI.	= 2697.49	£
WING LEADING, PSF	= 133.000	O
THRUST TO WEIGHT RATIO	21	7
TAKECEE GROSS WEIGHT, 1000 LBS	= 2250.00	c
OPERATING WEIGHT, 1000 LBS	= 1061.72	2
TAKE OFF DISTANCE, FEET	= 8291.05	4
LANDING DISTANCE, FEET	= 3970.52	1
WING AREA, SQ. FT.	= 16917.29	3
CRUISE OUT RANGE FACTOR. NM	= 20638.77	5
CRUISE OUT SEC	<u> </u>	7
CRUISE GUT L/D	= 30.07	6
CRUISE DUT DP 4G	= 73436.64	2
LEG LEG COMFIG POWER DIST. TIME INT. INT.	=117952.70	
LEG LEG COMFIG POWER DIST. TIME INT. INT. NO. NAME WEIGHT MACH		INAL EIGHT
1 TAKEDF3 1.0 6.0 .0 .052 2250000 .000	•0 2	243377
2 MAXRCL 1.0 5.0 128.9 .322 2243377	02	236659
3 CRUISE3 1.0 6.0 5266.1 11.112 2208669 .826	36047.2 1	711255
4 LOITER 1.0 6.C .0 .500 1711256 .299	•C 1:	691136
5_CRUISF2_ 1.0 _ 6.0 _ 126.9272 _ 1722159626	41256.8 1	7.11255
e LCITER 1.0 6.C .C 11.673 2208669 .788	36043.6 1	722159

****CUNFIGURATION_CHARACTER		
. WING		
 AREMS		
TRAPEZOIDAL REFERENCE	20625.000	
AERODYNAMIC REFERENCE	20625.000	
 WETTED	38818.840	
GLCVE	.000	
YAHUBI	.000	
 A I LER ONS	776.573	
SPOILERS	724.927	
SPAN, FEET	497.494	
TRAPEZOIDAL CHORDS, FEET		
RCCT	63.483	
S • C • 8 •	61.244	
 IIP	19.432	
MGC	45.347	
CHORD OF THE CONSTANT SECTION	59.073	
SWEEPS, DEGREES		
LEADING EDGE	30.000	
QUARTER CHORD	28.061	
TRAILING EDGE	21.805	
GLOVE LEADING EDGE	46.500	
 YAHUDI TRAILING EDGE	18.000	
AVERAGE, EXPOSED, STREAMHISE T/C	.1000	
STRUCTURAL T/C	.1439	
 TPAPEZCIDAL ASPECT RATIO	12.000	
AERO REF. ASPECT RATIO	12.000	
TRAPEZOIDAL TAPER RATIO	.306	
 AERO REF. TAPER RATIO	.3173	
DESIGN LIFT COEFFICIENT FUEL	•400	
WING	1766312	
 BONY	0	
TOTAL	1766312	
FUSELAGE	205 007	
 LENGTH, FT.	385.837	
MAXIMUM WIDTH	25.294	
MAXIMUM DEPTH STRUCTURAL WETTED AREA	25.294	
 AFRODYNAMIC WETTED AREA	28475.896 26343.533	
NOSE FINENESS RATIO	1.500	
BODY FINENESS RATIO	15.254	
 AFT BODY CLOSURE ANGLE	15.000	
AFT BODY UPSWEEPANGLE	8.500	
AFT BODY UPSWEEP AREA		
 AFT SUDT UPSWEEP AKEA	671.474	

 ****CONFIGURATION_CHARACTE	
 HORIZONTAL TAIL	
AREA, FT2	
 REFERENCE	4477 • 8 8.8
EXPOSED PLANFORM	3639.242
WETTED	7794.671
 SPAN, FEET	130.665
CHORC, FEET	
RCCT	52.477
 TIP	16.063
MOMENT ARM, FEET	179.414
 LEADING EDGE SWEEP	30.000
AVERAGE T/C	.0920
TAPER PATID	.306
ASPECT RATIO	3.813
VOLUME COEFFICIENT	. 859
VERTICAL TAIL	
AREA, FT2	
REFERENCE	2523.736
EXPOSED PLANFORM	2523.736
WETTER	5130.058
HEIGHT, FEET	70.116
 CHORD, FEET	
ROOT	55.116
TIP	16.871
 MOMENT ARM, FEET	176.713
LEADING EDGE SWEEP	36.000
AVERAGE T/C	.1000
TAPER RATIO	•306
ASPECT RATIO	1.948
 VOLUME COEFFICIENT	• 043
NACELLES	
 NUMB ER	4.000
FINENESS RATIO	2.560
CLOSURF ANGLE	12.000
D(EXIT)/D(MAX)	
DESIGN INLET MACH NO.	•6500
(ARC HT)/(LENGTH)	•052
 STRUT T/C	.100
ENGINES	
 ENGINE MANUFACTURER	GENELEC
ENGINE MODEL	STROUTC
SEA LEVEL REFERENCE THRUST	33150.000
 SCALE FACTOR	3.643
SEC CONSERVATISM .	1.050

		DESIG	SN_ = 14
		ACTERISTICS - Z****	
<i>y</i>	LANDING GEAR		
	NO. MAIN TIRES	32.000	
	MAIN, TRUNION TO AXLE	233.492	
	NOSE, TRUNION TO AXLE	233.992	
	GE48 POD		
	LENGTH	53.000	
	WETTED AREA	3063.278	
	L/D	5.000	
	CARGO COMPARTMENT		
	COMPARIMENT HEIGHT	16.000	
	COMPARTMENT WIDTH	16.000	
	COMPARTMENT LENGTH	312.500	
	COMPARTMENT VOLUME	60000.000	
	PAYLOAD DENSITY	7.500	
	PAYLCAD WEIGHT	600000.0	
/	PAYLOAD SIZED TO INPUT COMPARTME		
- <u> </u>			
		A CO. MAN W. CO. LANSING ST. ST. ST. ST. ST.	

GROUP WEIGHT SUMMAR	Y	

* MGDEL 1044.000 *		

 WING	026311	
HORIZONTAL TAIL	49875	
VERTICAL TAIL	26915	
BODY	239560	
LANDING GEAR	158919 .	
NACELLE STRUCTURE	20620	
STRUCTURE	1036912	
ENGINE	91110	
ENGINE ACC. AND INSTL.	590	
FUEL SYSTEM	5511	
 ENGINE CONTROLS	200	
STARTING SYSTEM	200	
THRUST REVERSERS	17875	
 PROPULSION	115486	
AUXILIARY-POWER UNIT	930	
 INSTR. AND NAV EQUIP.	960	
SURFACE CONTROLS	23384	
HYDRAULICS	14519	
ELECTRICAL	3440	
AVIONICS	3450	
ARMAMENT	a	
 FURNISHINGS EQUIP.	9455	
AIR COND. AND ANTI-ICING	6095	
BLC DISTRIBUTION	C	
 AUXILIARY GEAR	2050	
FIXED EQUIPMENT	64283	
 WEIGHT EMPTY	1216682	
CREW	1290	
 CPEW PROVISIONS	350	
OIL AND TRAPPED DIL	521	
UNAVAILABEL FUEL	3533	
 NONEXPENDABLE USEFUL LOAD	5994	
OPERATING WEIGHT	1222676	
MISSION GROSS WEIGHT	2640000	
AMPR WEIGHT	1063020	

			HISSIO	N. SIIMMAD	Y GATA E	R MISSION	C 5 2 0 Y 1	DE	SIGN #14
	FERR'					.BS.		= 2640	.000
	FERR	Y PAYLO	AD, 10	30 LBS				= 600	.000
-	FERRY	Y RANGE	, N . M .					= 7112	.450
	TOTAL	FERRY	FUEL	1000 LB	s			<u> </u>	.324
	RESER	PVE FUE	L, LRS					= 61160	.277
	MISSI	IGN FUE	L, 100	261 0				= 756.	224
	AVER	AGE MIS	SION R	ANGE FAC	TOR, TAX	-CLIMB-CRU	ISE	21073	950
	LOI.	TER TIM	E, HRS					* 15	.548
	rai	TER RAD	IUS. N	. MI.				= 171	959
	ZER	o LOITE	RIME	RADIUS.	N MI.			= 3555	.233
	WIN	G LCADI	NG, PS	F				= 126	.000
	THR	UST TO	WEIGHT	RATIO				•	.133
	TAK	EDFF GR	055 W 8	IGHT, 10	00 L35			= 2640	. 0.36
	CPE	RATING	WEIGHT	, 1000 L	8 S			= 1222	676
	TAK	E OFF C	ISTANC	E, FFFT				= 9887	• 526
	LAN	DING DI	STANCE	, FEET				3757	.315
	WIN	G AREA,	SQ. F	т.				= 20625	.000
	CRU	ISE OUT	PANGE	FACTOR,	NM			= 21666	.734
	CRU	ISE OUT	SFC					_ =	· 624
	CFU	ISE DUT	L/D					= 31	.437
	CRU	ISE DUT	DRAG					= 82307	.232
				ABLE, LB				=115826	
LEG NO.	L E G NAME	CONFIG	POWER	DIST.	TIME	INT. WEIGHT	INT.	INT.	FINAL WEIGHT
1	TAKEOF3	1.0	6.0	•3	• 052	2640000	.000	.0	2633446
2	MAXPCL	1.0	5.0	172.0	.439	2633446	•457	c_	2567464
3	CPUISE3	1.0	6 • C	6940.5	14.657	2587464	.824	36255.2	1663776
4	LOITER	1.0	6.0	•0	.500	1883776	.288	• C	1863542
-	CRUISE2	1.0	5.0	172.0	•355	1898995	619	41507.1_	_1683776
6	LOITER	1.0	6.0	.0	15.548	2587464	.762	36245.8	1698995

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX C STEDLEC ENGINE CHARACTERISTICS

Figure 1 Stedlac Engine Installed Performance

Improved fan aerodynamics Composite fan blades and frame Advanced directionally solidified turbine blades

HPT clearance control
Ceramic stationary turbine components
Mixed flow Nacelle

Cycle Parameter Comparison

Turbine in let temperature (SLS, takeoff) Overall pressure ratio	STEDLEC 2600 ⁰ F	2350°F
(Takeoff) Fan pressure ratio	1.7:1	1.7.1
By pass ratio	7:1	4.4:1

At Equal Thrust

 $\frac{\text{STEDLEC weight}}{\text{CF6-50C weight}} = 88\%$

 $\frac{\text{STEDLEC TSFC}}{\text{CF6-50C TSFC}} = 90\%$

Figure 2 Summary Stedlac Engine Technology Advancement

	Tur	<u>bofan</u>	
	Basic	Scaled*	
Takeoff thrust, SLS Takeoff thrust, SL, M = 0.1 Bypass ratio Fan pressure ratio - design Overall pressure ratio - design Turbine inlet temperature (Takeoff @ 86°F, SLS) Exhaust system Fan tip diameter Bare engine weight Thrust/weight (SLS, takeoff) Description	33,150 29,650 7 1.7 38:1 1600°F Mixed 78.8" 4515 lbs 7.3	81,800 71,540 7 1.7 38:1 2600°F Mixed 124.2" 14,100 lbs 5.8 technology	*Scaled using General Electric scaling factors: $D = \left(\frac{81,700}{33,150}\right)^{.5} 78.8''$ $Wgt = \left(\frac{81,700}{33,150}\right)^{1.25} 4,515 \text{ lbs}$

	Prop Fan (Scaled)	
Takeoff thrust, SLS Takeoff thrust, SL, M = 0.1 Overall pressure ratio - design Turbine inlet temperature	47,420 71,540 38:1 2600°F	** • Core engine sized to match turbofan engine thrust at TO,SL, M = 0.1
(Takeoff @ 86°F, SLS)		
Prop diameter	25.6′	 Prop dimensions and weight, and gearbox weight derived from Hamilton
Bare engine weight	8950 lbs	
Gearbox weight	7290 lbs	
Prop weight	4500 lbs	Standard information
Description	Advanced technology 2-spool turboprop with prop fan	

Figure 3 Stedlac Engine Characteristics

Figure 4 Stedlac Engine Section View

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX D

CONFIGURATION CHARACTERISTICS FOR A CIRCULAR CROSS SECTION FUSELAGE

Figure 1. Planform Characteristics

Figure 2. Sweep Sensitivity

Figure 3. Thickness Sensitivity

Figure 4. Effect of Cruise Mach Number

Figure 5. Range Versus TOGW

Figure 6. Fuel Efficiency

- 1985 TECHNOLOGY
- 400,000 LB PAYLOAD
- STEDLAC ENGINE

Figure 7. Fuel Burn

Figure 8. Life Cycle Cost (LCC)

Figure 9. Direct Operating Cost (DOC)

Figure 10. Cost Sensitivity

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX E

Technology Assessment

Aerodynamics

Propulsion

Structures

Mechanical Electrical Systems

APPENDIX E

TECHNOLOGY ASSESSMENT ADVANCED TECHNOLOGY CONCEPT DESCRIPTION

1.0 AERODYNAMICS TECHNOLOGY

1.1 Variable Chamber

What It Does: Variable chamber changes wing section camber to allow optimum operation at all phases of the flight envelope which are normally flown "flaps up." This concept would allow an optimum high-speed cruise airfoil to be designed without compromise for "off design" performance such as long range cruise, climb, holding and buffet margin.

<u>Development Status</u>: Extensive analytical studies and wind tunnel tests have been conducted on thin wing combat configurations. Flight tests are currently being planned. Additional work is required to identify and quantify the variable camber payoff for thick wing subsonic designs.

<u>Development Costs</u>: Development costs which will involve large scale testing at high Reynolds number as well as manufacturing developments on the order of S10M.

<u>Development Time Scale</u>: Variable camber designs could be operational by 1985.

<u>Concept Applicability/Limitations</u>: Initial development of the variable camber concept has been for application to thin wing, highly maneuverable

combat aircraft. Applications to large transport aircraft with moderate to low wing loadings are forseen which would considerably simplify high lift systems together with climbout L/D benefits.

<u>Technical Payoff</u>: Variable camber may improve "off design" lift to drag ratio by 10%.

1.2 Laminar Flow Control

<u>What it Does</u>: Laminary flow control greatly reduces friction drag by maintaining a laminar boundary layer through sucking off low energy air close to the surface through holes, slots, or porous skin.

Development Status: The technical feasibility of LFC has been demonstrated in the research carried out by Dr. W. Pfenninger and his associates in the X-21 flight program. The economic feasibility has not been as well established and depends upon, 1) the weight penalty for a practical bleed slot, duct configuration, and pumping system, 2) maintenance and operational costs, including effects of utilization differences, if any, associated with the LFC system, and 3) initial airplane cost increment associated with LFC.

<u>Development Costs</u>: At the conclusion of the X-21 program, a number of problems existed that required additional understanding for the successful application of LFC to transport aircraft. Problems which still exist today (e.g., LE instability of BL, allowable roughness, steps and gaps, humidity

effects, high lift compatibility, construction techniques, etc.) must be resolved before a practical LFC oriented configuration concept can become a reality. It is estimated that such a R&D program would require between \$100M and \$200M.

Development Time Scale: A LFC airplane could be operational by 1990.

<u>Concept Applicability/Limitations</u>: LFC has the greatest potential performance benefit for long-range or high endurance airplanes, and in particular, freighter type aircraft with "global" range requirements.

<u>Technical Payoff</u>: LFC on a long range airplane can result in a net aerodynamic efficiency, ML/D increase of 30%.

1.3 Advanced High Speed Airfoils

What it Does: An advanced high speed airfoil permits increases in cruise speed without sacrificing L/D. At moderate subsonic Mach numbers, the relatively large variation in upper surface curvature on a conventional airfoil produces an area of supersonic flow that is terminated by a strong shock wave This shock produces a pressure drag associated directly with shock strength. On the other hand the high speed airfoil by virtue of its reduced upper surface curvature produces a partly isentropic recompression of the local supersonic flow on the airfoil surface. As a result of this nearly ideal recompression, the terminating shock wave can be kept weak until significantly higher free stream Mach numbers are reached.

Development Status: Analytical predictions and wind tunnel data which confirm the predicted gains are available. Also, available is some flight test data. Additional analytical work is required leading to a full three-dimensional transonic analysis method. Careful tailoring for each spanwise location to eliminate 3-D effects is required. The resulting method will have to be verified by both wind tunnel and actual flight tests.

<u>Development Costs</u>: To realize the full potential of advanced airfoil technology, an anticipated development cost of \$10M is required.

Development Time Scale: High speed airfoils can be developed by 1990.

<u>Concept Applicability/Limitations</u>: High speed airfoils will be most applicable to high subsonic/transonic long range aircraft.

<u>Technical Payoff</u>: High speed airfoil designs can increase aerodynamic efficiency, ML/D, by 10%.

1.4 Natural Laminar Flow

<u>What it Does</u>: Natural laminar flow reduces friction drag by delaying boundary layer transition. The low drag of laminar flow airfoils is achieved by designing for long stretches of laminar boundary layer by moving the point of maximum thickness and, therefore, the point of minimum pressure a considerable distance aft of the leading edge.

Development Status: The concept of natural laminar flow has been used and proven on low Reynolds number applications such as sail planes and up to a Reynolds number of 18 million on the P-63 King Cobra flight tests. Analytical work is in progress to design high-speed natural laminar flow airfoils. Additional analytical design work and flight test verification is required along with studies to establish smoothness and waviness criteria along with the che associated manufacturing costs.

<u>Development Costs</u>: Development of manufacturing and operational techniques are the primary drivers (e.g., surface waviness and roughness, gaps, contamination). An estimated \$5M is required including technical developments.

Concept Applicability/Limitations: Since natural laminar flow airplanes will have low sweep to avoid cross flow instability, as well as lower critical Mach number, cruise speeds will be relatively low (7-.78). This will tend to limit application to those cases where fuel burned is the primary figure of merit such as cargo or high endurance patrol aircraft.

<u>Technical Payoff</u>: Natural laminar flow airfoil design will increase aerodynamic efficiency, ML/D by 7%.

1.5 Compliant Skin

<u>What it Does</u>: Compliant skin reduces turbulent skin friction drag by providing a compliant wall which accommodates pressure fluctuations in the boundary layer and reduces shear stress.

Development Status: Although turbulent skin friction reductions have been achieved in wind tunnel tests of flat panels the mechanism of drag reduction are not fully understood. Further research into the mechanism of drag reduction, both theoretical and test, is required. Tests are also required on representative airplane components as well as verification of drag reductions in the aircraft flight environment. Research into the characteristics of low modulus materials is required to develop materials with the desired characteristics and durability. Studies will have to be done to determine the impact on manufacturing and maintenance and to develop methods to guide application of the compliant skin.

<u>Development Costs</u>: Somewhere between \$10M and \$100M - difficult to scope since "breakthrough" in understanding and material technology is required.

<u>Development Time Scale</u>: Compliant skin designs could be operational by 1990.

<u>Concept Applicability/Limitations</u>: Compliant skin offers the biggest payoff to those designs having a relatively large fuselage.

<u>Technical Payoff</u>: Compliant skin offers potentially the same improvement as body boundary layer control, 4% improvement in ML/D.

1.6 Body Boundary Layer Control

What it Does: Body boundary layer control reduces fuselage drag by the use of low energy air injection through a series of a ring slots around the front of the fuselage together with aft-body suction to prohibit separation and reduce the body profile drag. The low energy air required for the slot injection system could be obtained from an aft-body suction system or from a wing-tail laminar flow control system.

<u>Development Status</u>: Turbulent skin friction reductions have been obtained experimentally and these results have been consistent with analytical projections. Additional work includes, 1) research into the drag reductions mechanism, 2) tests to investigate configuration variation effects, 3) studies to determine manufacturing and maintenance impact, and, verification of drag reductions in flight tests.

<u>Development Costs</u>: Development of body BLC appears to be lower risk and more predictable than compliant skin developments to achieve the same payoff - hence projected development costs are the \$10M-\$20M range.

Development Time Scales: This concept could be developed by 1990.

<u>Concept Applicability/Limitations</u>: Body boundary layer control will have the greatest payoff for large payload cargo airplanes where the body is a significant portion of the parasite drag.

<u>Technical Payoff</u>: Body boundary layer control can improve aerodynamic efficiency ML/D by 4%.

1.7 High Aspect Ratio, Strut Braced Wings

<u>What it Does</u>: High aspect ratio, braced wings offer a means for increasing the wing span over that of an equal weight cantilever wing providing a direct reduction in induced drag.

<u>Development Status</u>: The ultimate development of high aspect ratio strut braced wings depends primarily on the ability to construct a high-modulus composite strut. Detailed structural analysis and testing of strut braced wings applied to a large subsonic transport on cargo aircraft is required. Aerodynamic test/development of strut interference effects at transonic Mach numbers needs to be determined.

Development Costs: Analytical and test developments are estimated at \$2M.

<u>Development Time Scale</u>: Strut braced wing aircraft could be operational by 1985.

<u>Concept Applicability/Limitations</u>: Strut braced wings will be most applicable to large cargo designs and other designs where fuel is the primary figure of merit.

<u>Technical Payoff</u>: Strut braced wings offer the potential of a 12% increase in lift to drag ratio.

1.8 Wing Tip Fins/Split Wing Tips

What it Does: Wing tip fins or split wing tips reduce induced drag by altering the lift distribution and modifying the trailing edge vortices. Increased wing lift results in a more efficient lifting surface; that is for a given total lift, a lower angle of incidence is required which directly reduces the wing-induced drag. An important secondary effect is the reduction of wake vorticity intensity.

<u>Development Status</u>: The use of wing tip fins to reduce drag of transport aircraft has received considerable renewed interest. A substantial background of theoretical and more recently experimental data concerning the aerodynamic characteritics of tip fins has been generated. Boeing has recently completed a study for the Air Force Flight Dynamics Laboratory that included detailed structural design and analyses of tip fins applied to the KC-135 and the C-141 military aircraft. A joint USAF/NASA/Boeing design flight test program is currently being planned for the KC-135.

<u>Development Costs</u>: No further development costs are anticipated in addition to funding already committed.

<u>Development Time Scale</u>: Wing tip fin designs could be operational by 1980.

<u>Concept/Applicability/Limitations</u>: This concept would be most beneficial for span limited designs. Greater drag reduction could be achieved by a simple span extension for new designs.

<u>Technical Payoff</u>: Wing tip fins and split wing tips have the potential to improve aerodynamic efficiency, ML/D, by 6 to 8% for a +1% increase in OEW, when considered as an "add-on."

1.9 Advanced Aerodynamic Design Methodology

What it Does: Advanced aerodynamic design methodology reduces parasite drag and increases cruise Mach number through the sophisticated integration and tailoring of the wing-body, the wing-nacelle-strut, and the off-body-empennage. For example proper wing-body contouring can lead to 1) a reduction of wing-body interference drag, 2) a reduction or even elimination of drag-producing shock wave formation on the upper surface of the inboard wing found on current airplanes, 3) an improvement in L/D and, 4) capability to cruise at near sonic speeds.

<u>Development Status</u>: Analytical methods along with a broad data base are available to accomplish advanced aerodynamic designs. The main unresolved problem is the relationship between manufacturing cost and the overall performance benefit. This must be evaluated on each configuration concept individually.

Development Cost: None. The tools are in hand.

<u>Development Time Scales</u>: Methods in hand can be applied immediately to 1980-1985 IOC designs.

• <u>Concept Applicability</u>: These concepts will be most useful applied to the design of high speed (subsonic), long range transport aircraft.

<u>Technical Payoff</u>: Advanced aerodynamic design methods can reduce airplane drag by upwards from 3%.

2.0 Propulsion Technology

2.1 Pre-Cooler

<u>What it Does</u>: A turbofan engine can utilize a pre-cooler to lower the temperature of the compressor discharge air (which is used for turbine cooling) by exchanging heat with the fan discharge air. This process can reduce the amount of cooling flow required to maintain a constant turbine metal temperature, thereby improving cycle efficiency and SFC.

<u>Development Status</u>: Presently, there are no existing engines which make use of the pre-cooler cycle due to the heat exchanger's complexities and the increased engine weight. All engine and airframe manufacturer work dealing with this type of engine cycle is analytical to date.

<u>Development Costs</u>: The cost of developing a lightweight and efficient heat exchanger integration with an engine and developmental costs would be on the order of \$20M for 1990 IOC.

Concept Applicability/Limitations: When advanced technology engine cycles utilizing improved component aerodynamics and advanced hot section materials and cooling are considered, significant gains due to pre-cooling are not achieved. This is due to the fact that cooling air requirements of the advanced engine cycles have already been reduced by the use of improved cooling and materials technology.

<u>Technical Payoff</u>: Compared to the current technology engines, SFC improvements of approximately 6% can be achieved by the use of pre-cooling in conjunction with increased overall pressure ratio. However, for the advanced technology engine cycles, SFC gains due to pre-cooling are negligible since cooling flow requirements have already been minimized.

2.2 Turbofan with Regenerator

<u>What it Does</u>: The regenerator is a heat exchanger which uses the hot exhaust gases leaving the turbine to pre-heat the relatively cool air leaving the compressor prior to its entry into the combustion chamber. For a given combustor exist temperature, the required heat addition from combustion of fuel is reduced, with a corresponding SFC improvement. Offsetting this improvement is the additional bulk, weight and complexity of the regenerator, and the corresponding increase in maintenance costs.

Design studies have shown that the volume and weight penalties of regenerative engines are minimized by the use of a rotary-type heat exchanger, and subsequent studies were based on this approach.

<u>Development Status</u>: Other than adaptation of designs of automotive gas turbine and some analytical work, development of regenerator systems for advanced airplane propulsion engines has been minimal.

<u>Development Costs</u>: Incorporation of this concept into an advanced airplane engine would require a major development effort by engine and airframe manufacturers. Development costs would be in the \$200 plus million range, spread over a 5 to 10 year period.

Concept Applicability/Limitations: Analytical studies of the regenerative engine have shown a potential for substantial gains in SFC over the conventional engine. A heat exchange with an efficiency of 60% and 7-9% pressure drop is the break-even point for SFC. Any lower pressure losses or higher exchanger efficiencies yields substantial SFC gains over the conventional engine.

The regenerative engine has SFC improvement characteristics which are minimized with overall pressure ratios, OPR, in the range 5 to 10. This range is substantially lower than conventional gas turbine cycles which can have OPR ranges of up to 40. The incorporation of the regenerator also increases the installed engine weight by 30 - 70%. It has been found that the higher overall pressure ratios, higher allowable metal temperatures and high component efficiencies of advanced conventional cycles result in SFC benefits comparable to the best advanced technology cycle with regeneration.

Technology Payoff: Because of the minimal improvement in SFC relative to conventional cycles incorporating advanced technology, the substantial weight increase (30 to 70%) of the regenerative engines, and anticipated increase in maintenance costs no overall improvement in airplane performance is likely, enough to warrant development fund expenditure.

2.3 Advanced Component Aerodynamics

What it Does: Through improved analytical aerodynamic and mechanical design techniques, significant improvements in SFC, and small reductions in engine weight, can be obtained from conventional turbofan configurations. These improvements result from increased component load factors and efficiencies, resulting from improved blade tip and intra-blade row analytical design procedures, and the use of composite structure.

Development Status: Turbofan studies show that fan surge margin is generally controlled by blade tip flow phenomena and research into the areas of tip clearance control, blade alignment with the end wall boundary layer and tip treatment techniques could significantly improve surge margin at a given loading level. This improvement could then be traded to achieve high loading levels at present surge margins. It is conceivable that within 10 years, fan duct loading coefficients of approximately 0.6 (20% increase) could be achieved without a sacrifice in surge margin. Gains in fan efficiency of approximately 3% at high wheel speeds should be attainable. This efficiency gain can be obtained through use of intra-blade rwo analysis, elimination of part span shrouds through composite structural designs and

through tip clearance control. With the intra-blade row analysis, designers will be able to shape the blade to control and reduce the strength of the shocks within the blade passage. Also, if part span shrouds are needed, the blade can be locally shaped to better account for the effects of the shroud and thus reduce the losses associated with a shroud.

from current values around 1200 ft/sec to approximately 1350 ft/sec within the next ten years. This expected increase in tip speed will improve the loading of the compressors. Studies show that efficiency improvements in compressors will be more difficult to achieve than in fans over the next ten years because the aerodynamics of compressors are predominately subsonic and reasonably well understood, while fans have large shock losses which may be minimized by improved analytical design techniques. However, there are areas of development which should increase efficiency by 1 to 2%, such as proper alignment of the blades with the endwall boundary layer to reduce losses in this region, improved tip clearances and seal leakages to reduce overall compressor losses. Similar improvements in turbine aerodynamic design are anticipated within this time period, resulting in increased loading coefficients (20%) and small efficiency improvements (1%).

<u>Development Costs and Time</u>: To achieve the component aerodynamic improvements discussed above, a ten year development program of analysis and test is required. The continuation of currenly funded APSI/ATEGG program should cover such developments as is augmented by FDL supporting programs.

Concept Applicability/Limitations: The improved component technology resulting from such a development program would be directly applicable to any new engine system, commercial or military.

<u>Technical Payoff</u>: Assessment of the aerodynamic and mechanical design improvements discussed above shows SFC benefits ranging from 7 to 10%, with small reductions in engine weight.

2.4 Advanced Materials, Cooling and Combustor Pattern Factors

<u>What it Does</u>: Advancement in engine hot section development can be put into perspective for the 1980's by considering technology trends for the following area:

- 1. Turbine blade materials
- 2. Annular combustors
- 3. First stage turbine blade cooling

1. <u>Turbine Blade Materials</u>

A new generation of materials is being developed to satisfy the demand for higher turbine efficiency. Microstructurally aligned eutectic alloys have the potential to be useful as high temperature structural materials since they are stable at temperatures within a few degrees of their melting points.

2. Annular Combustors

General Electric (GE) and Pratt & Whitney (P&WA) show a downward trend in the pattern factor for the combustor. This improvement in pattern factor will permit a decrease in turbine cooling air requirements, while improved materials will allow an increase in the combustor shell temperatures.

3. First Stage Turbine Blade Cooling

Assuming that the usable range of cooling flow per stage lays between 2 and 4%, the cooling effectiveness could increase by an average of 15% within the next 10 years by changing cooling methods from film-impingement convection to transpiration-impingement convection.

<u>Development Status</u>: Studies of the technology advances in the engine hot section materials and cooling indicate a potential combined increase of 300° F in combustor exit temperatures. The directionally solidified eutectic alloys are expected to contribute a 100° F increase; the improvements in combustor pattern factor and cooling effectiveness are expected to yield the remaining 200° F.

<u>Development Costs</u>: If the existing engine cores were to be used in conjunction with the advanced hot sections and cooling flow paths a cost of \$10M per year would be required for a 1990 engine certification date.

<u>Technical Payoffs</u>: The technology advances in the engine hot section materials and cooling yield their greatest SFC benefit in engines which utilize overall pressure ratio in the range of 4081, and cruise rotor inlet temperatures with 2500° R range. A 6-8% SFC improvement can be attained with little weight penalty. This performance increase is largely attributable to a reduction in the turbine cooling air requirements.

2.5 Electronic Fuel Controls

What It Does: Currently, most turbofan and turbojet engines incorporate conventional hydro-mechanical control systems, with a mechanical link between the cockpit and engine controller. Electronic fuel control systems provide automatic engine protection and thrust rating control, thereby preventing inadvertent overboost driving takeoff and climb, and minimize the crew workload. Also, the electronic system permits optimization of the engine steady-state and transient performance with a corresponding benefit in cruise SFC and engine response.

<u>Development Status</u>: Design trade studies and hardware developments of electronic fuel control systems are being conducted in conjunction with the engine manufacturers. An integrated propulsion control system has been demonstrated on the F-111 (IPCS) and is being developed for JTDE for demonstration (FADEC) with advanced technology components.

Additional work is required to establish the reliability and durability of electronic fuel control systems in service, so that redundancy requirements and maintenance costs can be established.

<u>Development Time And Costs</u>: Considerable development work has been accomplished and the technology is available to incorporate electronic fuel control systems. Such systems should be available within 5 years at a development costs of \$5 million.

<u>Concept Applicability/Limitations</u>: Electronic fuel control systems are applicable to any gas turbine engine installation, military or commercial, fixed or rotary wing.

<u>Technical Payoff.</u> More sophisticated scheduling of engine fuel flow and variable stators and reduction or elimination of engine trim, should give an SFC improvement of 1%. Maintenance costs should be reduced approximately 2%. Other potential benefits include reduced crew workload and improved interfacing with automatic flight control systems.

2.6 <u>Propulsion System & Airframe Structural Integration Program (PANSIP)</u>

What It Does: Propulsion system structural analysis has become increasingly important with the advent of the high-bypass engine and the continued quest for improved specific fuel consumption, engine maintainability, and reliability.

As propulsion systems become larger, the engines tend to become more flexible. The loads transferred through the nacelle and engine mount distort flexible engine cases, resulting in performance degradation. These difficulties have usually been repaired after engine performance deterioration exceeds limit, and can be time-consuming and costly.

The propulsion system and airframe structural integration program (PANSIP) is intended to achieve total propulsion system structural integrity. By appropriate mathematical modeling of the propulsion system, strut and wing structure, the effect of static, dynamic and thermal load environments on engine case deflections and seal and blade tip clearances can be predicted. The frequency and severity of blade tip rubbing, and the loss of engine performance and life resulting from consequent clearance changes can be determined during the design stage before the engine mount system and structural design have been finalized.

This integrated approach to the engine/airframe structural design offers potential SFC improvements by better blade tip clearance control, and reduced deterioration and maintenance costs, particularly for the high cost HPT (high pressure turbine) module.

<u>Development Status</u>: Implementation of PANSIP was commenced in 1973 and specific 1976 objectives are to 1) continue the propulsion system air and gyroscopic loads study, 2) continue the airframe dynamics loads interaction study, and, 3) expand the joint structural dynamics programs with the engine companies to encompass the effect of airplane loads on TSFC deterioration.

Since the propulsion system for the 1990 IOC cargo airplane will probably be a very large (>60,000 lbs thrust) high bypass (>7.5) turbofan or turboprop, PANSIP is expected to be directly applicable to the engine/nacelle structural design.

Development Costs And Time: The basic technology and communication lines for PANSIP have been established, but substantial development and testing must be accomplished before accurate definition of propulsion system loads and deflections can be achieved. A five year program is required with a total expenditure on the order of \$5M.

<u>Concept Applicability/Limitations</u>: PANSIP is a basic approach to engine/ airframe structural integration problems, and is directly applicable to any new jet or propellor powered military or commercial airplane program.

<u>Technical Payoff:</u> An improvement of between 1 and 2% in SFC and maintenance costs have been projected.

2.7 Improved Nacelle Aerodynamics

What It Does: Detailed design of nacelle installations requires accurate prediction of 3-D viscous and inviscid flows to achieve optimal performance with a minimum of testing. Application of advanced flow field prediction procedures to the internal and external flow regimes of a new engine/ nacelle installation allows rapid definition of the inlet, nacelle and exhaust geometry that minimizes installed SFC. In addition, the use of 3-D viscous flow procedures enables the complex geometry of the internal exhaust mixer to be optimized through parametric geometry variation: the maximum net thrust, and minimum weight, manufacturing cost, and complexity can be found. This procedure would minimize the expensive parametric testing currently employed in mixer and exhaust system development.

<u>Development Status</u>: Flow field prediction procedures are available to compute 3-D viscous flow within an axisymmetric duct. A refined version of this prediction procedure now under development will compute the flow through a duct of abritrary shape.

<u>Development Costs And Time</u>: The capability required is essentially in hand and no further funding is required for application to next generation vehicles.

Concept Applicability/Limitations: Earlier versions of the 3-D viscous flow analysis have been and are being applied to the design of the internal mixer/suppressor nozzle systems for the 727 A/P. The 3-D viscous analysis can be coupled to a 3-D potential flow analysis and applied to the design of powered lift nozzle installations. The viscous analysis will also be applied to the design of inlet and nozzle duct transitions (e.g., 2-D inlets which transition to round at the compressor face and "D" nozzles for upper surface blowing).

Technical Payoff: For the 1990 IOC cargo system technical payoff in terms of performance is estimated to be approximately 1% SFC improvement. However, use of the analysis for design should eliminate much of the prohibitively expensive parametric testing which has been necessary in the past. The analysis could have a large impact on reducing new propulsion system development costs and reduce the technical risk associated with a new design.

2.8 Advanced Fans and Prop-Fans

What They Do: Improvement of the propulsive efficiency of fan engines is possible by the use of 1) larger, more refined turboprops, 2) geared, variable pitch or variable camber, high bypass ratio shrouded fans (Q-fans), and, 3) high bypass ratio geared prop-fans. Each of these concepts provides the advantage of low specific fuel consumption due to the high propulsive efficiency that results from low slipstream velocity increase through the fan or prop. Each of the concepts attempt to blend the high takeoff thrust of the propeller with the high subsonic cruise capabilities of the turbofan. At 0.8 M.N., the Q fan and propfan operate at high enough efficiency to be of interest, while the turbo-prop is restricted to about 0.65 M.N.

The propfan typically uses eight high speed blades and has a bypass ratio of approximately 50. The shrouded Q-fan uses bypass ratios from 10-20. Engines with BPR's greater than 8 usually required a gearbox in order to provide reasonable fan tip speeds while still maintaining high rotor speed for efficient turbine operation. These high BPR, low pressure ratio (1.45) devices have blades which are compatible with various pitch designs, providing the tip speeds are restricted to approximately 1100 fps. The actuating mechanisms require hub/tip ratios \geq .44. The combination of variable pitch and variable nozzle area minimizes TSFC over a relatively large portion of the flight envelope.

<u>Development Status</u>: Full-scale Q-fans have been ground and tunnel tested with promising results. The current Hamilton-Standard Q-fan tests use a 62 inch fan and design pressure ratio limited to 1.18. Reverse thrust levels and the time required to obtain reverse thrust are excellent. Hamilton-Standard is currently testing full-scale prop-fans under NASA contract. Hamilton-Standard prop-fan models have been wind tunnel tested to M = .8, 35,000' with a net installed propeller efficiency of 0.80 (as compared to 0.62 for turbofans).

The basic thermodynamic and mechanical design programs that have been developed for turbojets and turbofan core engines apply equally to the systems under consideration and only require adapting specified propeller characteristics. The latter, including propeller and gear box weights for both prop-fans and propellers are currently furnished by Hamilton-Standard in the U.S., and Dowty-Rotol in the U.K. Boeing engine/airplane programs allow performance trades to be made with account for propeller tip speed, disc loading, propeller diameter, core engine pressure ratio and turbine temperature. The primary nozzle pressure ratio can be varied to optimize the thrust split between the propeller and core engine.

Computer studies which integrate the engine, airplane and mission requirements for turboprops, Q-fan and prop-fans, are sufficiently accurate to allow preliminary selection of optimum engine cycles and propeller or fan sizes.

<u>Development Costs</u>: Advanced fans and prop-fans will require a major development program involving engine and airframe manufacturers and government support. It is expected that \$5-10 million would be required per year over a ten year interval to realize the full potential of prop-fans in the 1990 time period.

Technical Payoff: There is evidence that the cruise efficiency of the prop-fan is higher than that of a conventional turbofan up to a cruise Mach number of at least 0.80. The cruise efficiency of the Q-fan is less than that of a prop-fan but still higher than the turbofan up to cruise Mach number of .8. Besides TSFC improvements below M = .8, the noise of the Q-fan is less than the turbofan due to relatively low tip speed, low pressure ratio and fewer blades. An appreciation for size and core horsepower requirements can be obtained by comparing a conventional turbofan (BPR 5:1) and a large Q-fan (BPR 20:1). For example, when sized to produce equivalent takeoff thrust, the Q-fan has a 40% larger cross-sectional area but requires a core producing only 1/2 the power required for the turbofan. The advantage of low TSFC is counterbalanced by configuration problems due to large fan size. Other concerns are blade failure, reliability, maintenance, and costs. Though these concerns are real, substantial improvement in the proposed systems relative to the earlier turbo-props should be recognized.

According to assessments by Hamilton-Standard, the potential payoff for using prop-fans rather than conventional turbofans on a 1990, M = .8 cargo plane include, 1) 15-20% lower TSFC at cruise, 2) 25% reduction in TSFC at slower speeds, 3) 20% better climb performance, 4) 15 PND less than FAR 36 allowed levels at takeoff powers, 5) faster thrust response, and, 6) simply more effective reverse thrust. Negative factors include increased engine weight (50% uninstalled) and potentially higher maintenance costs relative to a conventional turbofan.

3.0 STRUCTURES TECHNOLOGY

3.1 Technology Item: Active Controls Technology

Augmented Stability and Integrated Controls (maneuver and gust load control, fatigue rate reduction, and flutter mode control).

What It Does: Augmented Stability reduces or eliminates the need for inherent static or dynamic stability resulting in reduced empennage size and more favorable airplane balance. Maneuver load control redistributes wing lift during maneuvering flight in a way that shifts the center of lift inboard resulting in reduced wing root bending moments. Gust load control reduces airframe peak transient loads resulting from large gusts. It includes both rigid and flexible airplane response. Fatigue rate reduction is a technique for reducing the fatigue rate by using active controls to reduce amplitude and/or number of transient bending cycles due to continuous turbulence. Flutter mode suppression is any technique for actively damping flutter modes using aerodynamic surfaces. These items improve performance and/or reduce structural airframe weight.

Development Status And Projection: The use of active controls has been theoretically analyzed. All have been mechanized and verified by flight test on military aircraft. Fly by wire (FBW) systems, a necessary requirement for advancing active controls technology has recently been demonstrated on the F-16. Necessary elements under development are FBW digital FCS with built-in test equipment (BITE). Yet to be accomplished are integrated wing controls, development of an integrated interdisciplinary analysis capability and the development of system identification techniques to a routine basis.

<u>Development Costs</u>: The total research cost for active controls technology is estimated at \$8 million broken down as follows: Integrated interdisciplinary analysis capability at \$4 million; system identification at \$1 million; digital flight control system design philosophy at \$1 million and an Integrated Controls feasibility design study at \$2 million.

Development Time Scale: All of the above items could be accomplished by 1985.

Concept Applicability/Limitations: All of the above items are applicable but must be applied at the earliest design phase in the configuration development to be fully effective. Flutter mode control is a flight critical item that is only effective where considerable weight is required for flutter stability.

<u>Technical Payoff</u>: The magnitude of the payoff is configuration sensitive.

Studies and development programs to date have shown the following:

Augmented Stability - -1.5% OEW + improved performance;

Gust Load Control - -1% OEW + ride quality;

Fatigue Rate Reduction - -3% wing box weight + ride quality;

Maneuver Load Control - -4% wing box weight;

Flutter Mode Control - configuration dependent.

3.2 Technology Item: Materials

Improved Aluminum alloys, improved steel and titanium alloys, composite primary structure, powder metallurgy.

what It Does: Improved alluminum alloys provide higher strengths and higher toughness by using alloys with low silicon and iron content.
Fatigue life and stress corrosion resistance at the higher stress levels is maintained at current levels. Improved steel and titanium alloys provide increased resistance to stress corrosion and higher toughness, while maintaining current strengths. In the case of titanium, lower oxygen content results in higher toughness in thick sections, as well as more formable sheet alloys. Composite primary structure provides increases in strength and stiffness over metallic structure. Power metallurgy (PM) aluminum alloys offer increases in strength, fatigue life, fracture toughness, and corrosion protection.

Development Status and Projection: New aluminum alloy development began in 1975. New high temperature titanium alloys are being developed.

Composite primary structure currently exists in the horizontal stabilizer of new military fighters. A portion of the Lockheed L-1011 vertical fin is being built from composites for airline evaluation. Widespread usage of composites in the primary structure of large transports will require extensive development of design, analysis, and manufacturing methods.

Small PM aluminum extrusions have been produced on a pilot plant basis.

Major new facilities must be developed for full-scale production.

<u>Development Cost</u>: New aluminum alloy development will cost \$1.5 million.

Composite primary structure will cost \$150 to \$300 million to develop.

Powder metallurgy aluminum alloys will get \$2 - \$4 million to develop.

New facilities will be required at two aluminum suppliers.

<u>Development Time Scale.</u> Production status of high purity aluminum alloys is expected in 1979. Production status of composite primary structure for large transports is not expected until 1990, or later. Production status of power metallurgy could be attained in 1990.

Concept Applicability/Limitations: Improved aluminum alloys will be used in thick plate, bar, extrusion, and maybe in thin sheet. Hence the highly loaded wing box, and portions of the body will use these alloys. The pressure critical portion of the body may not use these alloys, since skin gages are thin and the benefits would be smaller. New titanium alloys

will be used in engine pylons, and large structural fittings, where they will replace steel. Steel alloys are being developed in plate and forgings for primary structure application. Composite primary structure can be used throughout the airframe, either as thick laminated panels, or as honeycomb panels. Special attention to lightning strike, moisture penetration, electrical continuity, rain erosion, hail strike, and electromagnetic pulse from atomic weapons is required for composite structure. Powder metallurgy will first be used in aluminum forgings and extrusions, with plate and sheet developed last.

Technical Payoff: Improved aluminum alloys are expected to result in a 5% reduction in the weight of the wing box. High temperature titanium alloys will reduce the weight of engine support fittings by 40%. Composite primary structure will be 15% to 25% lighter than current aluminum structure. PM aluminum structure will be 8% to 10% lighter than current aluminum structure.

3.3 Technology Item: Structural Arrangement

Metal-to-Metal Bonding, Aluminum Honeycomb Primary Structure, Advanced Skin-Stringer Body Structure, Windshield and Cockpit Design.

What It Does: Metal-to-metal bonding eliminates the weight and cost of riveting, and results in a weight saving in strength critical primary structure. Aluminum honeycomb eliminates panel stiffeners, and allows an increase in body frame spacing. Thus reducing parts. An advanced skin-

stringer body structure, using zee stringers and a special extruded frame, provides weight and cost reductions. The use of a circular, or double lobe, cross section for the cockpit allows use of a single curvature windshield, that carrys cabin pressure in hoop tension, resulting in lighter body structure and lower life cycle costs for the airframe.

Development Status And Projection: Extensive use of metal-to-metal bonding exists at Boeing using sheet and doublers, but no structural bonding of stiffeners has been developed. Large honeycomb body panels have been built for a test section of the 747, but static, fatigue, and corrosion tests remain to be completed. No development tests have been conducted at Boeing on zee stiffened body panels, but their use represents the application of state of the art knowledge. Curved windshields, carrying internal pressure load in hoop tension, are in use on several military aircraft. Problems of reliability, manufacturing fit-up, and cost remain to be solved.

Development Costs: It is estimated that the development of adhesive bonding for stiffened panels will cost \$1 - \$3 million, while aluminum honeycomb will cost \$1 - \$15 million depending on test component size.

Advanced skin-stringer body structure will cost \$.5 million to conduct panel compression and shear strength tests, stringer joint fatigue tests, sonic tests, and frame strength tests. The development of high reliability curved windshields will cost \$.2 to \$1.5 million.

<u>Development Time Scale</u>: All of the structural arrangements discussed can be developed by 1980, except aluminum honeycomb, which will not achieve production status until 1985.

Concept Applicability/Limitations: Metal-to-metal bonding of stiffeners if possible wherever straight line elements exist in the wing, body, or empennage, such as single curvature skin panels. Double curvature skin panels require more expensive tooling and result in a higher risk of stringer delamination. Aluminum honeycomb is competitive, weightwise, in any primary structure where the compression load/inch is below 10000 lbs/inch, except in very lightly loaded body structure, where cabin pressure loads dominate. body panels stiffened by zee stringers may not be adequate in high sonic fatigue areas, where hat stringers provide longer life. Curved windshields will be applicable to all future transports, particularly those that are pressurized.

<u>Technical Payoff</u>: A 5% weight reduction on strength critical structure is expected from metal to metal bonding, while a weight and cost saving is expected from aluminum honeycomb depending on the component. The advanced skin-stringer body will result in a 7% reduction in body weight using riveted construction, and a 12% reduction using bonding. Hoop tension windshields result in lighter window framing and lighter body structure.

3.4 Technology Items: Low Noise Transmission Design of Body Structures

What it Does: The body structure is designed to minimize the transmission of external noise from the engine and boundary layer. This is done by tuning the structural frequencies of skin panels, stringer, and frames. The tuning is accomplished by adjusting the thickness of the skin and the spacing and stiffness of the stringers and frames.

Development Status and Projection: The concept of intrinsic structural tuning has been under development at Boeing for the past three years.

Small structural components have been tested in the laboratory, while skin panels have been field tested. Flight testing of damping treatments on a 747 will be completed this year. Future development will determine to what extent this concept is practical on strength designed body structure.

<u>Development Cost</u>: Current development is directed toward skin-stringer-frame body structure. If this results in significant changes to the established geometry of hat stiffened panels, the development cost could be \$1 million. If changes are small, the analysis and test cost will be about \$.5 million.

<u>Development Time Scale</u>: Production design of low noise transmission skin-stringer structure is expected by 1985, while honeycomb panel and composite panel design would not occur until 1990 - 1995.

Concept Applicability/Limitations: The current design effort applys to skin-stringer body panels. Since skin gage is picked by shear or cabin pressure requirements, and stringer gage by tension or compression load, there may be a range of skin and stringer gages in which tuning is not possible.

<u>Technical Payoff</u>: Structural tuning is expected to reduce internal noise levels by 3 to 6 db. This results in the elimination of lead septum, with a cost and weight reduction.

3.5 Technology Item: Analysis and Design Methods

Stability Analysis of Columns, Plates, and Shells; (2) Optimization Methods for Wing Boxes and Stiffened Cylinders; (3) Damage Tolerance Analysis and Design of Wing Boxes and Pressure Cabins; (4) Pressure Cabin Stress Analysis Methods; (5) Improved Finite Element Analysis Methods;
 Sonic Fatigue of Flat and Curved Panels.

What it Does: Stability analysis provides new data for the design of wing and body skin panels and body frames. Optimization methods provide design data allowing increases in spacing of wing ribs and body frames. Damage Tolerance Analysis provides data for body pressure loading, while pressure cabin stress analysis provides detail definition of skin stress distribution. Improved finite element analysis is aimed at better prediction of element stresses at ultimate load. New sonic fatigue analysis methods consider the effects of spectrum shape, curvature, hoop tension, and temperature.

<u>Development Status and Projection</u>: In each of these areas there has been various amounts of development. New development will build on previous work in most areas. However, no analysis methods are available for the shear buckling of double curvature panels, while pressure cabin analysis methods give contradictory results.

Development Cost: Cost for all work varies between \$1 and \$3 million.

<u>Development Time Scale</u>: Development time varies from 4 years for sonic fatigue analysis to 10 years for optimization methods, with all design data available by 1985.

<u>Concept Applicability/Limitations</u>: Wing and body primary structure are affected, with primary emphasis in the body.

Technical Payoff: It is anticipated that stability analysis would provide a 4% reduction in wing and body weight in areas where skin buckling is critical. Optimization methods allow a cost reduction through wider rib and frame spacing, and hence fewer parts. Damage tolerance analysis and pressure cabin analysis may result in a 10% reduction in body skin gage in pressure critical areas. Improved finite element analysis will result in a 2% reduction of primary structure weight. Improved sonic fatigue analysis will result in both cost and weight reductions in sonic critical areas.

3.6 Technology Item: Manufacturing

What it Does: Improved fabrication processes such as N.C. roll forming of aluminum stringers and frames, pultruding of composite shapes, and superplastic forming of titanium provide lower cost details. Improved assembly techniques such as N.C. spar drilling and fastening, advanced faying surface seal methods, and single impact rivet installation, provide lower cost and improved quality assemblies. Computer aided manufacturing (CAM) such as in-line planning and computer controlled sheet metal fabrication centers provide better parts control, reduced inventory cost, and lower manufacturing cost.

Development Status and Projection: N.C. roll forming is currently being used to form 727 a/p stringers. Feasibility of pultruding composite shapes and superplastic forming of titanium have been proven. Improved assembly techniques such as N.C. spar drilling, advanced faying surface sealing and single impact riveting are currently being developed for Boeing Commercial Airplane Computer Aided Manufacturing (CAM). Development efforts are underway by the Air Force Material Laboratory and all aircraft manufacturers.

<u>Development Cost</u>: Development pultruded composite shapes and superplastic forming of titanium will range up to \$1 million each. N.C. spar drilling and fastening development costs will be approximately \$.5 million; advanced faying surface sealing techniques less than \$.5 million. A CAM generated N.C. sheet metal center will cost up to \$6 million.

<u>Development Time Scale</u>: Improved fabrication processes and assembly techniques are under continuous development. Advanced faying surface sealing and pultruded composites will be available in 1978; superplastic forming of titanium and N.C. spar drilling and fastening will be available in 1979; a complete N.C. sheetmetal center is expected by 1982.

Concept Applicability/Limitations: Applicable to all airplane components.

Technical Payoff: Reduced cost and improved quality.

- 4.0 MECHANICAL/ELECTRICAL SYSTEMS TECHNOLOGY
- 4.1 Secondary Power and Control System Mechanization

Significant advanced technology concepts which have potential payoffs are:

- o LOX-JP4 APU emergency power generation systems
- o Advanced/Integrated Actuators, IPA
- o Actuation Control Sequal Transducers (Digital, Fiber Optics)
- o Lightweight, High pressure Hydraulic Systems (LHS) 8000 psi
- o Permanent Magnet VSCF Starter/Generator

What it Does: Increased dependency of advanced design aircraft upon fluid and electrical power systems to actuate flight control surfaces and critical mission equipment requires increased availability and continuity of power

from these systems at reduced installation penalty to the aircraft. The LOX-JP4 APU, LHS, and the integrated actuator systems show potential to satisfy these requirements through weight and space reductions and improved availability of power.

The permanent magnet, PM, VSCF Starter/Generator combines the improved efficiency of PM concept for each function into one unit for generation of electrical power and for engine starting.

<u>Development Status</u>: LOX-JP4 emergency APU, lightweight hydraulic systems and integrated actuator packaged systems are in various stages of development under government funded programs. In addition, these concepts are receiving limited evaluation under Boeing IR&D program support. Increased interest and potential support is in evidence for these concept developments from the research laboratories of both the Navy and Air Force. These are low to medium risk development concepts.

The design of the permanent magnet rotor has been successfully completed by G.E. under Air Force contract. Design and test of the generator, is in progress. The complete system, including the VSCF converter, should be in test by next year.

<u>Developmental Costs</u>: Estimated costs to extend these concepts to a meaningful stage of development are:

0	LUX-JP4 emegency system	\$500 to \$1 \times 10 ⁶
0	Advanced/Integrated Actuators	\$1, to \$2, \times 10 ⁶
0	Digital Flight Computers & Electric Signalling	\$5, to \$10 x 10 ⁶
0	Lightweight Hydraulic System (8000 psi)	\$2 x 10 ⁶
0	VSCE. PM Generator/Engine Starter	\$3 x 10 ⁶

<u>Development Time Scale</u>: To continue concept development to an acceptable level of confidence it is estimated to be:

0	LOX-JP4 Emergency System	2-3 years
0	Advanced/Integrated Actuators	2-3 years
0	Digital Flight Computer & Elect. Signal.	5-7 years
0	Lightweight Hydraulic Systems	2-3 years
0	VSCF, PM Generator/Engine Starter	2-3 years

Concept Applicability/Limitations: The emergency APU, lightweight hydraulic and integrated actuator package system are applicable to the advanced military transport, particularly the LHS and IAP concepts. Integrated actuators become more useful in direct preparation to airplane size. Below 50,000 pound gross weight, there is little to be gained while large transports, the weight saving is substantial.

Practically all aircraft using medium-sized jet engines would benefit from use of the starter/generator concept. Further development would extend the usage to larger and/or smaller engines than the present F-100.

<u>Technical Payoff</u>: Improvement in generator efficiency should be around 5% to 10%, which reduces horsepower extraction from the engine and thus improves performance. Total weight reduction should be around 20 to 30 lbs.

The incorporation of the advanced integration actuator package would save an estimated 700 to 1500 lbs. Additional weight savings of 50 to 100 lbs for the LOX-JP4 emergency systems and 30% of the total hydraulic system weight by use of lightweight (8000 psi) hydraulic systems are possible to the aircraft O.W.E.

4.2 ECS - Avionics Cooling - Advanced Cooling Cycles

What it Does: Current technology transport obtain ventilation, pressurization and avionic cooling flow from engine compressor bleed air with associated airplane performance penalties. New concepts which extract less engine bleed air and provide recirculation flow for ventilation and cooling can significantly reduce operating penalties. One possible new concept uses bleed air for pressurization only coupled with a ram air turbine to provide more effective cooling per pound of ram air with associated lower drag.

<u>Development Status</u>: Air cycle machines are not under development. However, the concept does not require new turbo-machinery technology developments since dual nozzle turbines are in production.

<u>Development Cost</u>: A development program to obtain a test machine and conduct verification tests is estimated to cost \$500,000 to \$1,000,000.

<u>Development Time Scale</u>: Hardware design, manufacture and test program would require 12 to 18 months.

<u>Concept Applicability/Limitations</u>: Concept is applicable to all airplanes both subsonic and supersonic.

<u>Technical Payoff</u>: Technical payoff would result from reduced engine bleed air and ram air requirements with associated improvements in cruise SFC. A 3% to 4% improvement in airplane SFC may be obtainable.

4.3 Landing Gear System

Significant concepts which could provide technical payoff are:

- Limited slip closed loop anti-skid system
- Air cushion landing system (ACLS)
- o Advanced carbon brakes

What it Does: Limited slip-closed loop anti-skid control system provides more effective braking with associated shorter field lengths and less tire wear than current technology anti-skid systems. This is accomplished in the control system by limiting the wheel slip (%) to values which result in operating on the forward side of the brake force curve with associated lower tire wear and increased side force relative to current anti-skid systems which operated on the back side of the brake force curve.

Air cushion landing systems are currently under development for small low speed aircraft which can operate from rough fields. Potential payoff could be lower weight, lower airfield construction cost and less maintenance cost.

Advanced carbon brakes offer significant weight reduction with equivalent braking performance as present systems.

<u>Development Status</u>: Limited slip-closed loop control systems are being evaluated by Boeing on a bread board brake control analog-hardware simulator. Development time for full scale hardware would be approximately 3 years. Air cushion landing systems are under development on the Jindivik RPV and the Buffalo with flying hardware. Unresolved development problems in ACLS include:

- o Runway directional control
- o Airplane drag evaluation
- o Air trunk flutter
- o Inflation retraction
- o Material wear

Air cushion landing systems at present represent very high risk to obtain significant gains.

Carbon brakes are presently in use on several high performance USAF aircraft (e.g., F-15, B-1), and have encountered some operational problems, e.g., oxidation, moisture absorption, wear. These problems impact brake performance and life cycle costs. USAF is actively pursuing programs to resolve these problems. Advanced carbon materials available today appear to solve most of these crucial problems.

Development Costs:

Limited slip brake system \$500,000

Air cushion land system \$4 + million

Carbon brakes \$2-3 million

Development Time Scale:

Limited slip brake system 3 years
Air cushion land system 5 years
Carbon brakes 5 years

<u>Concept Applicability/Limitations</u>: Limited slip control concept is applicable to all USAF aircraft and commercial aircraft.

Air cushion landing systems have been applied only to small aircraft with unique landing requirements (water, rough fields).

Carbon brakes are also applicable to all aircraft.

<u>Technical Payoff</u>: Limited slip-anti-skid brakes have a potential reduction in field length of 10% - 25% (for wet and/or icy runways) relative to current technology and approximately 30% reduction in tire and brake maintenance cost due to less wear.

Since air cushion landing systems have not been applied to large transports it is difficult to quantify technical payoffs.

Advanced carbon brakes are significantly lighter than current brakes (33%) which would result in a weight decrement of approximately 2000 lbs. for a large military transport.

TABLE 1. AERODYNAMICS ADVANCED TECHNOLOGY CONCEPTS

TECHNOLOGY	2300 TI TAHK	DEVELOPMENT STATUS	COST & TIME	TECHNICAL PAYOFF POTENTIAL
Aero. Surfaces & Twist at all Flight Conditions		Extensive W-T and Analytical Work Complete. Needs Full Scale Hardware and Fit. Test Dev. \$ 10M For 1985 IOC		Simplify Hi-Lift Flap Systems Improve Off Design L/D ~ 102
Control Drag Through BL		Feasibility Deno. By X 21 Practical MFG & Operational Problems Not Solved	\$100-\$200M For 1990-95 10C	30% Increase in M L/D
Advanced High Speed Airfoils Approaches Isentropic Recompression On Airfoil Upper Surface		Analytical Predictions SION Additional Work Needed For 1990		10% Increase In M L/D If M ≥ 0.8 Cruise Required
Natural Laminar Flow	Delays Transition To Turbulent By Moving Min. Pressure Pt. AFT On Airfoil	Analytical Work In Infancy. BL Stability Analyses And Fit. Test Verif. Reg'd	\$ 54 For 1990 10C	7% Increase In M L/D For MS.≤ 0.75 Cruise Designs
Compliant Skin Reduces Turbulent Skin Friction Drag By Accommodating Pressure Fluctuations In The BL		Theo. & Test Work Meeded to Understand Current Status Inconclusive.	\$10-\$100M For 1990-95 TOC	4% M L/D Improvement If applied To Fuselage Only
Body Boundary Layer Control Reduces Turbulent Skin Friction Drag By Low Energy Air Injection		Has Been Demonstrated Experimentally. Needs More Analytical & Test Work. For Understand—ing & Invest. Of MFG and Operational Considerations	\$10-\$20M For 1590-95 10G	4% M L/O Improvement If Applied To Fuselage Only
High AR External Braced Wings	Reduced Induced Drag Through Increased Span While Maintaining Structural Efficiency	Detailed Struct. and Aero Analyses Required. Tech Not New But Application Size and Mach Is	\$2 M For 1985 IOC	12% Increase In ML/D
Wing Tip Fins	Reduced Induced Drag Through Altered Lift Distribution	Extensive Analytical and W-T Dev. Work Complete. Flight Test Needed (Planned For KC 135)	Mone (In Add'n To That For 1980 IOC)	6-8% Increase In M L/D For I% OEW Penalty
Adv. Aero. Design Methods	Reduces Parasite Drag Through Proper Integration and Tailoring Of Aero. Surfaces	Analytical Methods Available.	-Hone- For 1980 100	Upwards From 3% In L/O Increase

TABLE 2. PROPULSION ADVANCED TECHNOLOGY CONCEPTS

TECHNOLOGY CONCEPT	WHAT IT DOES	DEVELOPMENT STATUS	DEVELOPMENT COST & TIME	TECHNICAL PAYOFF POTENTIAL
Turbine Cooling Air Pre-Coolers			\$20 M For 1985 IOC	For Current Engines, 6% SFC Gain. For Advanced Engines, Megligible SFC Gain.
Regeneration	Utilizes Rotary Heat Exchanger To Transfer Heat From Exnaust To Compressor Discharge Air. Improves SFC At Expense of Weight & Cost.	Studies Show Significant SFC Gain For Current Engines; For Advanced Technology Engines. Gains Are Minimal, And Do Not Justify Large Weight Increase.	Development Of A'Recener- ative Engine Will Be An Undertaking Of Major Magnitude, \$200 M + For 1990 IOC	For Current Engines, 5 To 10% SFC Improvement With 30 To 70% Engine Weight Increase. For Advanced Engines, Aegligible Improvement.
Advanced Component Aerodynamics	Component Aerodynamic Development And Improved Mechanical Design Techniques Offer Significant SFC And Weight Improvements	Studies Show That Fan Loadings And Efficiencies Will Increase By 20% & 3% Respectively: Compressor Tip Speeds & Efficiencies By 10% & 10%	Major Develop- ment Program And Expend — iture Required. \$100 M For 1990 IOC.	With Small Weight Reduction.
Advanced Materials, Cooling Effectiveness & Combustor Pattern Factors.	Use of Directionally Solidified Eutectic Alloys, Better Cooling & Improved Pattern Factors Reduce Turbine Cooling Air Redts.	Studies Show A Potential Increase of 300°F Over Current Combustor Exit Temperatures	Development Program Redd. \$50 M For 1990 IDC.	6-8% SFC Gain Over Current Encines With Little Weight Penalty.
Electronic Control System.	Replaces Current Mechanical Cable & Hydro-Mechanical Engine Control System.	Studies Show Potential Gains In System Weight, SFC, Engine Response & Hot Section Life, Full-Scale JT80 Engine Tests With Electronic Control Successfully Compl.	Technology Available— System Could Be Available Within 4 Yrs. \$5M + For 1985 IOC	l To 2% SFC Gain With Significant Reduction In Maintenance Costs.
Engine & Nacelle Structural Integration (PANSIP)	Improves Engine Durability and Performance By Properly Accounting For Airframe Induced Loads, & Minimizes Installed Weight.	Joint Boeing/GE/PWA Study Initiated 1974 Shows That SFC Deterioration And Maintenance Costs Can Be Minimized By Better Definition Of Loads.	Basic Tech—nology Is Available—Additional Testing & Development Reed. For Application To New System; \$10 M For 1985 IOC.	1 To 2% Improvement In SFC, Maintenance Costs.

TABLE 2. PROPULSION ADVANCED TECHNOLOGY CONCEPTS (CONT'D)

TECHNOLOGY CONCEPT	MHAT IT DOES	DEVELOPMENT STATUS	DEVELOPMENT COSTS & TIME	TECHNICAL PAYOFF POTENTIAL
Improved Nacelle Aerodynamics.	Optimizes Thrust- Minus-Orag Of Nacelle Installation By Aerodynamic Tailoring Of Internal & External Nacelle Lines.	Additional Development Of Existing 3D & Boundary Layer Programs Required To Provide Necessary Design Tools.	Minimal \$ For 1985 IOC.	1% Reduction in Installed SFC. Plus Reduced Development Costs.
Advanced Fans & Prop-Fans.	Utilizes Very High By-Pass Ratio (10 To 50), Low Press. Ratio (1.05 - 1.4) Turbo-Fans To Achieve High Pro — pulsive Efficiency i.e. Low TSFC.	Studies Sow Signif— icant Reduction In SFC. Major Tech. Concerns Exist, i.e. Safety (Blade Failure), Mainten. Cost. Reliability, And Fan Efficiency At Cruise Speeds Above #-0.75-0.80.	\$100 to 200 M For 1990 IOC.	Up To 25% Reduction In SFC At Expense O Increase In Engine Wt. (Uninstalled) & Increased Maint. Costs & Reduced Cruise Speeds

TABLE 3. STRUCTURES ADVANCED TECHNOLOGY CONCEPTS

TECHNOLOGY CONCEPT	WHAT IT DOES	DOES DEVELOPMENT DEVELOPMENT COST & TIME		TECHNICAL PAYOFF POTENTIAL	
ACTIVE CONTROLS					
Augmented Stability	Reduced Size Of Empennage & Wing	Has Been Flight Tested On F-16)	-1.5% OEW	
Gust Load Control	Reduced Wing Bending Homents		\$8 Million	These -1% OEW May Not Se Additive	
Maneuver Load Control	Reduced Wing Bending Moments	Theoretical Analysis Complete - Experi	1985 Produc- tion Status	-4% Wing Box	
Fatigue Rate Reduction	Reduction In Wing Bending In Turbulence	mental Flight Tests On Military Aircraft		-3% Wing Box	
Flutter Mode Control	Elimination Of Stiffness Critical Structure	J .		Configuration Dependent	
MATERIALS					
Improved Aluminum Alloys	Increases In Strength. Fatigue Life. And Toughness	In Work 1975-1979	\$1.5 Million 1979 Produc- tion Status	5% Weight Reduction In Strength Critical Areas	
Cast Primary Structure	Reduced Cost	In Work 1976-1979	\$2.5 Million 30% Cost Reducti		
Improved Steel & Titanium Alloys	Increases In Stress Corrosion Resistance Of 230 KSI Steel	High Temperature Titanium Alloys In Development	\$80 M 1985 40% Weight Reduct In High Temp. Fts:		
Composite Primary Structure	Increases In Strength And Stiffness	Small Components In Service	\$150-\$300 M 15% to 25% 1990 Weight Reduction		
Aluminum Powder Metallurgy	Increase In Strength, Toughness, Fatigue Life Of Plate, Die Forgings and Extrusions	Small Extrusions Produced. Major Mill Facilities Req'd.	\$2-\$4 M + New Mills 1990	8% To 10% Weight Reduction	
MANUFACTURING Improved Fabrication Processes	Reduced Detail Cost	1978 - 1979]	
Improved Assembly Techniques	Reduced Assembly Cost And Improved Quality	1978 - 1979			
Computer Aided Manufacturing	Improved Parts Control, Reduced Inventory Cost. Lower Manufacturing Cost	1982 Production Status	\$6 Million	Cost Reduction	
Improved Inspection Methods	Reduced Life Cycle Cost	In Work	\$2.M1111on		

TABLE 4. MECHANICAL/ELECTIRCAL SYSTEMS ADVANCED TECHNICAL CONCEPTS

TECHNOLOGY WHAT IT DOES		DEVELOPMENT STATUS	DEVELOP COST & TIME	TECHNICAL PAYOFF POTENTIAL	
SECONDARY POWER & CONTROL SYST. MECH.					
LOX-JP4 APU	Provides Substantial Weight Reduction	USAF Funded Prog. To Dev. Gas Gen. & Other Equipment — Low Risk	\$.5 M - \$1 M For 1980-85 IOC	AMT = 100-500 15	
Adv. Integrated Actuators	Reduces Hyd. Syst. Wt Improves Actuated Syst. Suev. - Reduces Flt. Control. Surf. Wt.	Prototype Howre. Partially Devel Medium Risk	\$1 M - \$2 M For 1980-85 10C	∆¥T = 700-1500 ib	
Actuation Control Signal Transducers (Digital, Fiber Opt.)	Improves Flt. Control Reliability & Airplane Surv.	In Development - Low Risk	\$1 X 1980-85 IOC	AWT = 150 1b	
Lt. Weight High Press (8000 PSI) Hyd. Syst.	Reduces Hyd. Syst. And Actuator Weights	Limited Devel. Currently - Med. Risk	\$2 M 1980-85 IOC	-30% Syst. Wt.	
YSCF Permanent Starter/Generator	Combines Starter & Gen. Into One - Reduces Wt., Improve Power Gen. Eff.	Presently Being Dev. By G.E. Under USAF Contract	\$2 M - \$5 M For 1980-85 10C	&¥T~150 1bs	
ECS-AVIONICS COOLING SYSTEM Adv. Cooling Cycles - Closed Loop, Turbo- Ram Air, Positive Disp. Mach, Recirc.	Reduced Bleed, Ramair, Romts Fuel Heat Sink	New Concepts Show Signif. Reduction In Operating Penalty - USAF/FDL Has Current Test Prog. To Assess Positive Disp. Machines & Adv. ECS Cooling Pacs.	\$1 M For 1980 IOC	2-4% SFC	

TABLE 4. MECHANICAL/ELECTRICAL SYSTEMS ADVANCED TECHNICAL CONCEPTS (CONT'D)

TECHNOLOGY CONCEPT	WHAT IT DOES	DEVELOPMENT STATUS	DEVELOPMENT COST & TIME	TECHNICAL PAYOFF POTENTIAL
LANDING GEAR- BRAKES SYSTEM				
Limited Sup - Closed Loop Anti-Skid Syst.	Reduces Tire Skidding	Breadb'd Phase Of Dev Eval. On Brake Control Analog - Hardware Simulator	\$.5 M For 1980-85 ICC	10% Improved Field Length Perf. + 10% Reduction In Tire Maint. Costs.
Active Lndg. Gear (Shock Strut)	Reduced Airframe Struc. Load & Wt. + Wider Operational Capability	Studied Om USAF Contract For YC-14	\$1 M for 1980-85 IOC	100-200 Lb. Wt. Reduction + Wider Operating Range
Active Steering/Gnd. Handling	Provide Better Aircraft Control	Study Status - No Hardware	\$2 M For 1980-85 IOC	Reduce Maint, And Repair Costs Due To Yeeroffs
Air-Cushion Lndg. System	Operation From Un- improved Fields- Reduced Structural Loads Better Floatation.	Currently Being Eval. On Jindivik And Buffalo in Flying Hardware. Eval. Needs Ext. To Larger A/P's	\$2 M - \$5 M For 1985 IOC	Reduced Wt., Runway Cost Savings.
Ady. Carbon Brakes	Reduce Brake Wt. To Less Than 2/3 That Of Steel Brakes	Currently In Operational Use - Contamination Problems & High Operating Costs	\$2 M - \$5 M For 1985 10C	Reduced Brake Wt. By 1/3 (~2000 Lbs.)

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX F

BASELINE MISSION SENSITIVITY BLOCK FUEL AND BLOCK TIME

Figure 1. Block Fuel

Figure 2. Block Time

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX G

WEIGHTS METHODOLOGY

APPENDIX G WEIGHTS METHODOLOGY

1.0 WEIGHT ANALYSIS

1.1 Prediction Methods

Parametric and point design weights for this study were estimated from modified parametric/statistical methods published in the Boeing document, D6-15095 TN Rev F, "Guidelines for Mass Properties Estimating." The accuracy of the D6-15095-TN methods to predict weight for 45 actual aircraft is shown in Fig.1. Weight prediction techniques for the I.A.D.S. type of airplane were computerized for parametric studies and integrated into the performance design synthesis program so that the fallout airplanes could be mission sized. Figure 2 is a weight summary of the validated model 1044-013 configuration.

Weight increments for the double arc body shape, wing struts and cryogenic fuel containment were developed fromdetailed analysis side studies. Parametric weight equations to cover these special features were developed, computerized and used appropriately.

2.0 Advanced Technology Weight Reduction

The fluence of advanced technology (1985 time period) was applied by factoring current technology group weights in the following manner:

Group	Factor Applied to Current Technology Weight
Wing Horizontal tail Vertical tail Body Main landing gear Surface controls Hydraulics system	.895 .895 .895 .963 .967 .781

These factors were developed from consideration of specific advanced technology that was considered applicable for this design time period due to current industry research activities in the following areas:

- 1) Active controls
- 2) Advanced materials
- 3) Advanced structural arrangements
- 4) Improved analysis and design methods
- 5) Integrated control surface actuators
- 6) High pressure hydraulics system

3.0 Trade Studies

Special body weight trade studies were conducted in order to determine weight trends for varying outside contour of the lower radius, design differential pressure and number of cargo pallet lanes. Preliminary stress sizing calculations were used to establish these weight trends. Figure 2 depicts the method developed for computing weight increments for a double arc cross section with varying lengths of lower arc radii. The results of the pressure differential and number of cargo lanes studies were compared to the values developed by the basic fuselage weight prediction method in order to make certain that the weight trends for these issued (developed in the parametric studies) are practical. As a result of these studies, it was decided that the current Level I estimating methods for fuselage weight prediction were adequate, but that a research program should be established to design in detail and calculate weights of a fuselage for a large military cargo transport airplane with a double arc body cross section. This study would be conducted after the final cross section shape and payload were established.

Figure 1. Body Cross Section Weight

Figure 2. Weight Empty Correlation

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX H

ADVANCED TECHNOLOGY COST FACTOR METHODOLOGY

1.0 TECHNOLOGICAL COST GROWTH INDEX

The 1985 technology airplane was priced using the current technology airplane price as a base and factoring it for technological growth. The factor used was $\pm 10\%$.

This factor was derived from an analysis that placed the price to the government of a current technology fighter (F-15) about 25% higher than prior generation fighters. The earlier fighters were represented by the present Rand airplane cost model.

Transport type aircraft do not progress as quickly as fighters in a technological sense. Our analysis indicates that transport aircraft may only advance at 40% of fighters. As a result a +10% factor was applied for pricing the 1985 technology airplane.

2.0 COMPOSITE STRUCTURE COST FACTORS

The composite airplane was priced based on the latest Boeing experience in both the production and development shops. Cost elements were individually analyzed to arrive at the following adjustment:

Co	st	Adju	stmer	nt	to	the
			minun			

Engineering	+30% (hrs)
Tooling	+20% (hrs)
Production Labor	+10% (hrs/1b composite structure
Material	+250% (cost)

Combined with a weight reduction in MEW from 581,000 to 536,000 pounds, the above adjustments resulted in a net price increase of +20% for the composite airplane.