

TEKNOFEST 2020 ROKET YARIŞMASI Albatros Roket Takımı Atışa Hazırlık Raporu (AHR)

Takım Yapısı

KTR'den Değişimler

• Paraşütlerin renkleri değiştirildi. KTR raporunda tek renk yapılacağını söylemiştik, paraşütler en az iki renkten oluşacak ve parçalı / dilimli bir görüntüye sahip olacak.

Paraşütlerin Renkleri:

- Main Paraşüt Lacivert beyaz karışımı
- **Drogue Paraşüt** Turuncu Siyah karışımı
- Payload Paraşüt Siyah Beyaz Turuncu karışımı

Roket Alt Sistemleri

Parça Adı	Tedarik Durumu	Üretim Durumu
Nose Cone, Nose Cone Tip	-	Üretildi
Aviyonik Gövde (Upper Body Tube), Şeffaf Kapak	-	Üretildi
Motor Gövdesi (Lower Body Tube)	Tedarik Edildi	-
Kurtarma Sistemi	-	Üretildi
Payload Kurtarma Sistemi	-	Üretildi
Aviyonik Sistem, Yer İstasyonu Cihazı	-	Üretildi
Kanatçık İskeleti, Kanatçıklar	-	Üretildi
Mapa, Quick Ling, Fırdöndü, Metrik Vidalar, Paraşüt Kumaşı, Paraşüt İpi, Shock Cord, Barut Haznesi, Klemens YAGI Anten	Tedarik Edildi	-
Paraşütler	-	2 tane üretildi (1 tane daha üretilecek)
Centering Ring, Motor Retainer	-	Üretildi
Inner Tube, Tube Coupler,Bulkhead	-	Üretildi
Faydalı Yük (Payload)	-	Üretildi
Payload Tube	-	Üretilmedi (10 ağustosa kadar üretilecek)

#ALBATROS OpenRocket / Roket Tasarımı Genel Görünüm

Roket Alt Sistemleri Mekanik Görünümleri ve Detayları

#ALBATROS Burun ve Faydalı Yük Mekanik Görünüm

Burun 3 Boyutlu Görünümü (CAD)

Nose Cone Tip

Burun ve Faydalı Yük Video Linki : https://www.youtube.com/watch?v=a2Y03YvlCvk&feature=youtu.be

Burun – Detay

Nose Cone Tip & Nose Cone & Shoulder

- Burun konisi ogive şekline göre alüminyum malzemeden üretilmiştir. Boyu 730mm, dış çapı 150mm'dir.
- Burun konisi ucu (nose cone tip) CNC'de üretilmiştir. (Boy 50mm)
- Burun konisi üretiminde mazgala sıvama yöntemi kullanılmıştır. Burun konisi 3 parça şeklinde üretilmiş olup nose cone ve shoulder kaynaklanarak birleştirilmiştir. Burun konisi ucu (nose cone tip) ile burun konisi (nose cone) M8 mapa ile birleştirilmiştir. Burun konisi ucu bu sayede kolayca takılıp, çıkarılabilmektedir. Burun konisi ucuna takılan mapa, faydalı yük bölümü ile burun konisinin birbirine shock cord ile bağlı kalmasını sağlamaktadır.
- Parçanın bazı bölgelerine zımparalama işlemi yapılacaktır. Zımparalama işlemi 10 gün içerisinde tamamlanacaktır.

ALBATROS Faydalı Yük ve Faydalı Yük Bölümü – Detay

Faydalı Yük Bölümü, Faydalı Yük & Aviyonik Sistem

Faydalı Yük Bölümü, Faydalı Yük

Bulkhead

- Faydalı yük bölümü için 4 adet bulkhead üretilmiştir. Ortada kalan bulkhead'ler üzerine 2 adet aviyonik sistem yerleştirilmiştir. 4kg ağırlığında faydalı yük üretilmiş ve sisteme sabitlenmiştir.
- Ayrılma sistemi için tasarlanan bulkhead üzerine barut haznesi, klemens ve mapa takılmıştır. (Kullanılan mapa M8'dir.)
- Faydalı yük 4kg ağırlığında ve demir olarak üretilmiştir.
- Faydalı yük bölümünü gövdeye sabitlemek için bulkhead'lerin yan tarafına metrik 4 delikler açılmıştır. 4 adet bulkhead'l birleştirmek için M8 demir çubuk kullanılmıştır.
- Parçanın bazı bölgelerine zımparalama işlemi yapılacak ve faydalı yük bölümü için tasarlanan tube üretilecektir. Bu işlerin tamamı 10 ağustosa kadar tamamlanacaktır.

Kurtarma Sistemi Mekanik Görünüm

Bulkhead

Aviyonik Sistem

Kurtarma Sistemi Video Linki:

https://www.youtube.com/watch?v=bXFltIwMbOY&feature=youtu.be

Paraşüt Bağlantı Linki:

https://www.youtube.com/watch?v=9xBj9iC4t88&feature=youtu.be

Ayrılma Sistemi – Detay

Ayrılma Sistemi & Aviyonik Sistem

- Ayrılma sistemi için 4 adet bulkhead üretilmiştir. Ortada kalan bulkhead'ler üzerine 2 adet aviyonik sistem yerleştirilmiştir.
- Ayrılma sistemi için tasarlanan bulkhead üzerine barut haznesi, klemens ve mapa takılmıştır. (Kullanılan mapa M8'dir.)
- Ayrılma sisteminin her iki tarafındada barut haznesi, klemens, mapa bulunmaktadır. Ana (main) paraşüt ve sürüklenme (drogue) paraşütü bu ayrılma sistemi kullanılarak açılacaktır.
- Ayrılma sistemini gövdeye sabitlemek için bulkhead'lerin yan tarafına metrik 4 delikler açılmıştır. 4 adet bulkhead'i birleştirmek için M8 demir çubuk kullanılmıştır.
- Parçanın bazı bölgelerine zımparalama işlemi yapılacak olup, bu işlemler 10 ağustosa kadar tamamlanacaktır.

Paraşütler – Detay

Ana (Main) Paraşüt

- Paraşütler elliptical modeli baz alınarak üretilmiştir. Kubbe deliği (spin hole) büyüklüğü paraşüt çapının %20'si kadardır.
- Paraşüt ipleri (paracord), kubbeye kadar uzanmaktadır ve paraşütün dışına 1.5 metre bırakılmıştır.
- 2 metre shock cord kullanıldı , paraşüt bağlantılarına quick link ve fırdöndü eklenmiştir.

Paraşütlerin Renkleri:

- Main Paraşüt Lacivert beyaz karışımı
- Drogue Paraşüt Turuncu Siyah karışımı
- Payload Paraşüt Siyah Beyaz Turuncu karışımı
- Roket içerisinde 3 adet paraşüt kullanılacaktır. Ana (main) paraşüt ile faydalı yük (payload) paraşütünün çapı 1.8m, sürüklenme(drogue) paraşütünün çapı 1m'dir. Ana paraşüt ile faydalı yük paraşütü üretilmiş olup, sürüklenme paraşütü 7 ağustosa kadar üretilecektir.

Aviyonik Sistem Mekanik Görünüm

Aviyonik Sistem (Yuvarlak)

Aviyonik Sistem Önü (Kare)

Aviyonik Sistem Arkası (Kare)

Aviyonik Sistem Video Linki:

Aviyonik Sistem – Detay

- Aviyonik sistemin üretimi tamamlanmıştır. Aviyonik sistem şekil olarak yuvarlak ve kare biçiminde üretilmiştir. Her iki aviyonik sistemde aynı sensörler (LPS25H, IMU 9250 vs.), komponentler ve devreye sahiptir. Çalışma prensibleri aynı olduğu için ayrılma sistemi için ikisinden birisi tercih edilebilir.
- Aviyonik sistemler için 18650 lityum pil tercih edilmiştir.
- Kare olarak üretilen aviyonik sistemin, yuvarlak aviyonik sistemden tek farklı üzerinde iki adet pil (18650 lityum pil) bulundurmasıdır. Kare aviyonik üzerindeki 1. pil aviyonik sistemin çalışmasını, ikinci pil kurtarma sisteminin aktifleştirilmesi için gerekli olan güç için kullanılacaktır. Güç beslemelerinin ayrılması sayesinde kurtarma sistemleri aktifleştirilirken aviyonik sistemin çalışmasını engelleyecek problemlerin önüne geçilmiştir.
- Yuvarlak aviyonik sistem çalışır durumdadır ve aviyonik testleri yapılmıştır.
- Kare aviyonik sistem üretilmiş olup, üzerinde kullanılacak olan bazı komponentlerin gelmesi beklenmektedir. 6 Ağustos tarihinde bu komponentler elimizde olacaktır. 10 Ağustos tarihine kadar kare aviyonik sistemin dizimi yapılacak ve hazır hale getirilecektir.

Aviyonik Sistem Önü (Kare)

Aviyonik Sistem Arkası (Kare)

Aviyonik Sistem (Yuvarlak)

Kanatçıklar Mekanik Görünüm

Kanatçık ve Kanatçık Sistemi Video Linki : https://www.youtube.com/watch?v=6k9mcSJb-XY&feature=youtu.be

Kanatçıklar – Detay

Kanatçık İskeleti

Kanatçık

Kanatçık

- 4 adet kanatçık üretilmiştir
- Kanatçıkların malzemesi için alüminyum tercih edilmiştir.
- Kanatçıkların gövdeye giren kısmına 3 adet metrik 4 delik açılmıştır. Bu delikler kullanılarak kanatçık iskeletine (fin bed) sabitleme yapılacaktır.
- Kanatçık iskeleti alüminyumdan üretilmiştir. Kanatçıklar yandaki görselde olduğu gibi kanatçık iskeletine takılıp, sabitleneceklerdir.
- Kanatçık iskeleti içerisine inner tube yerleştirilecektir (Inner tube üzerinde centering ring'ler sabitlenmiş olacaktır). Montajı yapılan inner tube ve kanatçık iskeleti tek parça halinde motor gövdesine takılarak, sabitlenecektir.
- Dış gövdeye sabitleme işlemi için centering ring'lerin yanına açılan metrik delikler kullanılacaktır (Delikler M4 olarak açılmıştır).
- Parçanın bazı bölgelerine zımparalama işlemi yapılacaktır. Bu zımparalam işlemi 7 ağustosa kadar tamamlanacaktır.

Roket Genel Montaji

1

Burun Konisi (Nose Cone) & Payload Bölümü Montajı

Burun Konisi (Nose Cone)

- Faydalı yük , özgün tasarıma sahip payload bulkhead'lerin içerisine yerleştirilecektir. Aviyok sistemler, aviyonik bulkhead'lerin üzerine sabitlenecektir. Kurtarma sistemi için barut haznesi, klemens ve igniter parçaları aviyonik sistemin üstünde bulunan bulkhead üzerine yerleştirilecektir. Montaj işlemi biten bulkhead'ler M8 demir çubuk kullanılarak birleştirilecektir.
- Birleştirme işlemi biten faydalı yük bölümü, tek parça halinde burun konisinin içerisine sıkı geçme yöntemi ile yerleştirilecektir.

Faydalı Yük Bölümü

Roket Genel Montaji

2 4

Aviyonik Gövde & Kurtarma Sistemi Montajı

Aviyonik Gövde (Upper Body Tube)

Sürüklenme ve ana paraşütün kurtarma sistemleri bu bölümdedir. Sistemin her iki ucunda bulkhead üzerine barut haznesi, mapa, klemens parçalarının montajı yapılacaktır. Aviyonik sistem, bulkhead üzerine sabitlenecektir. Son olarak montajı yapılan bulkhead'ler M8 demir çubuk ile birleştirilip, tek parça haline getirilecektir.

Kurtarma Sistemi

Yarışma komitesi tarafından verilecek olan altimeter two, plastik kablo bağı ile aviyok sistemin bulunduğu bulkhead içerisine sabitlenecektir. Kara barut, kurtarma sistemi gövde içerisine sabitlenmeden önce barut haznesine konulacaktır. Haberleşmede problem yaşanmaması için gövde dışına açılan cepler, üretilen şeffaf (veya daha koyu bir renk olabilir) kapaklar ile kapatılıp, vida ile sabitlenecektir.

Motor Gövdesi (Lower Body Tube) & Kanatçık İskeleti Montajı

Motor Gövdesi (Center Body Tube)

Montajı yapılan motor kundağı (inner tube), kanatçıkları sabitlemek için tasarlanan kanatçık iskeleti içerisine yerleştirip, açılan vida delikleri kullanılarak sabitlenecektir. Son olarak kanatçıklar, iskelet üzerine takılıp, kanatçık sabitleme parçası ile sabitleneceklerdir.

Kanatçık sistemi ve motor bölümünün montajı için gövde üzerine açılan delikler kullanılacaktır.

Kanatçık İskeleti ve Kanatçıklar

Tube Coupler

Roket Genel Montajı Video Linki:

https://www.youtube.com/watch?v=T6a0xd8A5JM&feature=youtu.be

Barut Kullanımı Video Linki:

https://www.youtube.com/watch?v=pox8ne9F-Tw&feature=youtu.be

Roket Motoru Montaji

Motor Kundağı (Inner Tube)

1

ilk etapta motor kundağının (inner tube) üzerine 3 adet merkezleme halkası (centering ring) kaynak yöntemiyle sabitlenecektir. Kaynaklama işleminden sonra, merkezleme halkası üzerine açılan metrik 5 vida delikleri kullanılarak motor retainer sabitlenecektir.

Centering Ring

2

Montajı yapılan motor kundağı (inner tube), kanatçıkları sabitlemek için tasarlanan kanatçık iskeleti içerisine yerleştirilip, açılan vida delikleri kullanılarak sabitlenecektir. Son olarak kanatçıklar, iskelet üzerine takılıp, kanatçık sabitleme parçası ile sabitleneceklerdir.

Kanatçık

Kanatçık İskeleti

Motor Retainer & Motor Retainer Cover

Tüm montajlama işlemi bittikten sonra motor retainer kapağı takılacaktır (Motor retainer dişli bir yapıya sahiptir).

Roket Motoru Montajı Video Linki: https://www.youtube.com/watch?v=m8ASgfR3fQA&feature=youtu.be

Atış Hazırlık Videosu

https://www.youtube.com/watch?v=pox8ne9F-Tw&feature=youtu.be https://www.youtube.com/watch?v=T6a0xd8A5JM&feature=youtu.be

Testler	Test Yöntemi	Test Düzeneği	Test Sonucu
Aviyonik Algoritma Kod	 Aviyonik sistem üzerindeki sensörlerden doğru data alma Kurtarma sistemi için yazılan algoritmanın doğru çalıştığını anlayabilmek için hedeflenen durumlarda led yakılması Gyroscope datasının test edilmesi Basınç ve ivme sensörünün test edilmesi 	Aviyonik sistem	Başarılı
Aviyonik Donanım	Vakum Testi: Aviyonik sistem üzerindeki donanım ve komponentlerin testi için aviyonik sistem vakum torbası içerisine yerleştirilecek ve süpürge yardımı ile torba içerisindeki basınç azaltılacaktır. Torba içerisindeki basıncın azalmasıyla aviyonik sistemin çalışması test edilecektir. Test sırasında azalan basınçtan dolayı yükseklik artacak ve kurtarma sisteminin devreye girip girmediği test edilecektir.	Vakum Torbası, Süpürge, 3 adet led (kırmızı, yeşil,mavi), Breadboard, Aviyonik	Başarılı
Aviyonik Telekominikasyon	Alüminyum Gövdeden Sinyal/Data Gönderme Testi: Gövde malzemesi olarak alüminyum kullanılacaktır. Malzemenin özelliklerinden dolayı sinyal gönderme işleminde bazı problemlerin çıkması beklenmektedir. Bu problemleri çözmek için alüminyum gövdenin dışına cepler açılacak ve bu cepler şeffaf kapaklar ile kapatılacaktırGövde içerisine kurtarma sistemi yerleştirilip, sabitlenecektir. (Kurtarma sistemine aviyonik dahildir.) -Aviyonik sistem çalıştırılarak sinyal göndermesi test edilecektir.	Antenna 868 Mhz(Pcb için) Yer İstasyonu için Laptop Yer İstasyonu Cihazı Aviyonik Sistem	Başarılı

Testler	Test Yöntemi	Test Düzeneği	Test Sonucu
Yapısal	1) Basma Testleri Gövde ve kanatçıklar üzerinde basma testleri yapılacaktır. Yapılan bu testlerde kullanılan parçaların deforme miktarı, eğilme, bükülme, çatlama vb. durumları incelenecektir. Basme testleri üzerinde herhangi bir şekil bozulması olmadığı takdirde yapılan testler başarılı kabul edilecektir. 2) Serbest Bırakma Testleri Gövde ve Burun konisinin belli bir yükseklikten (5-10m) serbest bırakılarak parça üzerinde bozulma, kırılma vb. gibi durumlar test edilecektir. Herhangi bir deformasyon olmadığı takdirde test başarılı kabul edilecektir.	Çekme ve basma testleri üzerine yük bağlanarak yapılacaktır. Yapılacak Testlerde Kullanılacak Parçalar : Aviyonik Gövde (Upper Body Tube, Lower Body Tube), Kanatçık, Kanatçık İskeleti	Başarılı

Testler	Test Yöntemi	Test Düzeneği	Test Sonucu
Paraşüt Açılma	Serbest Bırakma Testi: Paraşüt testleri için ilk olarak serbest bırakılması ve üretimi yapılan paraşütün içerisine hava girmesi test edilecektir. Birinci adımda, 10 - 15 m yükseklikten paraşütler serbest bırakılarak yere inişleri gözlemlenecektir. İkinci adımda, paraşüte ağırlık bağlanacak ve bu şekilde inişi test edilecektir.	Paraşüt kumaşı (ripstop nylon) Paraşüt ipi Shock Cord Mapa (Paraşüt iplerini shock cord ile birleştirmek için kullacaktır.) Dikiş ipi,Dikiş makinesi	Başarılı
Ayrılma Paraşütler	Kara barut ile Ayrılma Testi (Yatay): Roket gövdesini oluşturan aviyonik gövde (upper body tube) ve motorgövdesi (lower body tube) tube coupler ile birbirine takılacaktır. (Sıkı geçme metodu). Aviyonik gövde içerisinde kurtarma sistemi bulunmaktadır ve bu sistem ile iki gövdenin birbirinden ayrılması test edilecektir.	Kurtarma sistemi, üzerindeki parçaların (mapa, bulkhead, klemens,barut haznesi, paraşüt, demir çubuk vs.) montajı yapılacaktır. Montajı yapılan sistem aviyonik gövde içerisine takılıp, sabitlenecektir. Gövde içerisine paraşüt bağlantıları yapılıp, gövdeler birbirine geçirilecektir.	Başarılı
Ayrılma Payload	Kara barut ile Ayrılma Testi (Yatay): Faydalı yük ve faydalı yük bölümünün montajı yapıldıktan sonra burun konisi içerisine yerleştirilecektir (Sıkı geçme metodu). Faydalı yük bölümünün içerisinde faydalı yük ve kurtarma sistemi bulunmaktadır. Yapılacak olan testlerde faydalı yükün istenilen zamanda burun konisi içerisinden çıkması amaçlanmaktadır.	Payload bölümü üzerindeki parçaların (mapa, bulkhead, klemens,barut haznesi, paraşüt, demir çubuk vs.) montajı yapılacaktır. Montajı yapılan sistem aviyonik burun konisi içerisine sıkı geçme ile takılacaktır. Paraşüt yerleştirilip, gerekli paraşüt bağlantıları yapılacaktır	Başarılı

Aviyonik Sistem Yazılım ve Donanım Test Videoları

Aviyonik Algoritma Testi:

https://www.youtube.com/watch?v=COIq5QLdf-I&feature=youtu.be

Aviyonik Donanım Testi :

https://www.youtube.com/watch?v=rXRjGSnYhPA&feature=youtu.be

Telekominikasyon Testleri

https://www.youtube.com/watch?v=CziNX-KeB3k&feature=youtu.be

Yapısal/Mekanik Mukavemet Testleri

Mukavemet Testleri:

https://www.youtube.com/watch?v=Rrc-grczTj0&feature=youtu.be

Kurtarma Sistemi Testleri

Paraşüt Açılma Testleri:

https://www.youtube.com/watch?v=9JkPAKVyq0g&feature=youtu.be

https://www.youtube.com/watch?v=brD3qUdxoJg&feature=youtu.be

https://www.youtube.com/watch?v=UggQFfYjCrM&feature=youtu.be

https://www.youtube.com/watch?v=Qjxe tTTbXA&feature=youtu.be

Ayrılma – Payload Testleri:

https://www.youtube.com/watch?v=ED4GQtxBpcs&feature=youtu.be

Ayrılma – Paraşüt Testleri :

https://www.youtube.com/watch?v=1UtEmHswR6s&feature=youtu.be

Yarışma Alanı Planlaması

Montaj ve Atış Günü Görevleri	Görevli
Motorun Yüklenmesi	Furkan Çınar ve Saeed Johar tarafından yapılacaktır.
Roketin Rampaya Taşınması	Ahmet Yiğit, Furkan Çınar, Saeed Johar, Emircan Keserkaya tarafından yapılacaktır.
Aviyonik Sistemlerin Çalıştırılması	Burak Bayram tarafından yapılacaktır.
Roketin Ateşlemesi	Danışman Dr. Aydın Tarık Zengin tarafından yapılacaktır.
Roketin Kurtarılması	Kurtarma ekibi, Ömer Faruk Aslan, Furkan Çınar, Saeed Johar ve Burak Bayram olmak üzere 4 kişiden oluşmaktadır.

Montaj alanında yaşanabilecek olumsuz durumlar ve risklerin belirlenmesi :

- Dış gövdede kullandığımız alüminyum borunun hasar görme ihtimalini göz önüne alarak gövde malzemesinden yedek götürülecek.
- -Üretimi yapılan paraşütlerin montaj sırasına yaşanabilecek olumsuz durumlar hesaba katılarak yedek paraşüt götürülecek.
- -Aviyonik sistemde yaşanabilecek donanımsal arızalardan dolayı yedek aviyonik sistem götürülecek.