Lecture 34:

CLOSING REMARKS

CSC111: Introduction to CS through Programming

R. Jordan Crouser

Assistant Professor of Computer Science

Smith College

- Administrivia: FP4 and FP5
- Semester in review
- "Half-hour hackathon"

FP4: Finished Version (i.e. code)

- Complete, organized, well-documented code:
 - in-line comments
 - appropriate variable / function names
 - docstrings explaining what each function / class does
 - includes all **supplemental files** (images, etc.)
- Include a text file named README containing:
 - a description of the project
 - information on how to run your project
 - install links to any required modules
 - a list of known bugs
- Runs without syntax errors

FP5: Write-up

- Due Monday December 14th at 11:55pm
- A short (2-3 page) paper, including:
 - a description of the **project**, including the **intended audience**
 - a description of the **architecture** (how you designed the code)
 - a discussion of at least one major challenge, and how you overcame it
 - a description of your specific contributions to the project
- Two options:
 - Each team member writes their own (most common)
 - One collaborative submission (also perfectly fine)

it's been **96 days** since we started programming

we had **34** lectures, **10** labs, & **6** assignments

together we wrote more than 127,311 lines of code

(not including your final projects)

that's roughly 1,286 lines per person

(>20 printed, single-spaced pages)

or ~3,700 lines for every day that we met

We have covered a LOT of ground...

- Basic hardware (processor, RAM, hard drive, etc.)
- Data types (int, float, string, bool, list, dict) and the operations they support
- Useful built-ins: print, range, eval, input
- Exceptions and how to handle them
- Conditional statements
- Loops (for and while)
- Defining / calling functions
- Handy packages (math, random, etc.)

We have covered a LOT of ground...

- Data structures
- Recursion
- Object-oriented programming
 - Classes
 - Inheritance
- Algorithms and efficiency
- Working with files
- Graphics, animation, and interaction
- Ethical issues in CS

Discussion

What do you think you will remember about this course in **5 years**?

How it works

 Objective: write a short program to commemorate your group's experience(s) in CSC111 – anything goes!

Suggested timing:

5 minutes: generate ideas

5 minutes: make a plan

- 20 minutes: implement and test

Discussion

What did you come up with?

