AMENDMENTS TO THE CLAIMS

1. (Currently Amended) A cyanine dye having the formula:

or

$$A_1$$
 A_2
 R
 R

Application No. 10/605,961 Amendment dated November 8, 2007

Reply to Office Action of August 8, 2007

$$A_1$$
 A_2

Docket No.:2921-0150PUS1

or

wherein A_1 and A_2 are each independently O, S or N, and R is H or a hydrocarbon, optionally containing a heteroatom, and m is an integer from 0 to 5, and n is an integer from 0 to 5.

- 2. (Original) The cyanine dyc of claim 1, wherein R is methyl or ethyl, and m is 1 and n is 0.
- 3. (Original) The cyanine dye of claim 1, wherein R is methyl or ethyl, m is 1 and n is 0, and A_1 and A_2 are S.

- 4. (Original) The cyanine dye of claim 1, wherein R is methyl or ethyl, m is 1 and n is 0, and A_1 and A_2 are O.
- 5. (Original)The cyanine dye of claim 1, wherein R is methyl or ethyl, m is 1 and n is 0, A_1 is S and A_2 is O.
- 6. (Currently Amended) A hybridization probe comprising a sequence-recognizing nucleic acid portion and a reporter portion, wherein the reporter portion comprises a cyanine dye having the formula:

$$A_1$$
 A_2
 R

or

Application No. 10/605,961 Amendment dated November 8, 2007 Reply to Office Action of August 8, 2007

$$A_1$$
 A_2
 A_2
 A_2
 A_3
 A_4
 A_4

$$\frac{\text{or}}{R}$$

wherein A_1 and A_2 are each independently O, S or N, and R is H or a hydrocarbon, optionally containing a heteroatom, and m is an integer from 0 to 5, and n is an integer from 0 to 5.

- 7. (Original) The probe of claim 6, wherein R is methyl or ethyl, and m is 1 and n is 0.
- 8. (Original) The probe of claim 6, wherein R is methyl or ethyl, m is 1 and n is 0, and A_1 and A_2 are S.

- 9. (Original) The probe of claim 6, wherein R is methyl or ethyl, m is 1 and n is 0, and A_1 and A_2 are O.
- 10. (Original) The probe of claim 6, wherein R is methyl or ethyl, m is 1 and n is 0, A_1 is S and A_2 is O.
- 11. (Currently Amended) A method for detecting the presence of double-stranded DNA in a sample comprising the steps of: introducing into the sample a cyanine dye having the formula:

$$A_1$$
 A_2
 R
 R

or

Application No. 10/605,961 Docket No.:2921-0150PUS1

Amendment dated November 8, 2007 Reply to Office Action of August 8, 2007

wherein A₁ and A₂ are each independently O, S or N, and R is H or a hydrocarbon, optionally containing a heteroatom, and m is an integer from 0 to 5, and n is an integer from 0 to 5; and detecting fluorescence from the cyanine dye, wherein the fluorescence intensity from the cyanine dye is increased in the presence of double-stranded DNA as a result of binding of the cyanine dye in the minor groove of the double-stranded DNA.

Application No. 10/605,961

Amendment dated November 8, 2007

Reply to Office Action of August 8, 2007

12. (Original) The method of claim 11, wherein R is methyl or ethyl, and m is 1 and n is

0.

13. (Original) The method of claim 11, wherein R is methyl or ethyl, m is 1 and n is 0,

and A_1 and A_2 are S.

14. (Original) The method of claim 11, wherein R is methyl or ethyl, m is 1 and n is 0,

and A_1 and A_2 are O.

15. (Original) The method of claim 11, wherein R is methyl or ethyl, m is 1 and n is 0, A₁

is S and A_2 is O.

16. (Currently Amended) A method for monitoring a real time PCR reaction by detection

of the formation of double-stranded DNA, comprising the steps of performing real time PCR in

the presence of a fluorescent dye that interacts with double-stranded DNA, and monitoring

fluorescence from the fluorescent dye, wherein the fluorescent dye increases its fluorescent

intensity when it is locked in a minor groove position in double stranded DNA, and wherein the

dye comprises a cyanine dye having the formula:

Birch, Stewart, Kolasch & Birch, LLP

Docket No.:2921-0150PUS1

$$A_1$$
 A_2
 A_2
 A_3
 A_4
 A_2
 A_3
 A_4
 A_4
 A_4
 A_4
 A_5
 A_4
 A_5
 A_5

OF

$$A_1$$
 A_2
 R
 R

Application No. 10/605,961 Docket No.:2921-0150PUS1 Amendment dated November 8, 2007

Reply to Office Action of August 8, 2007

or

wherein A_1 and A_2 are each independently O, S or N, and R is H or a hydrocarbon, optionally containing a heteroatom, and m is an integer from 0 to 5, and n to an integer from 0 to 5.

17-20. (Cancelled)

21. (Previously Presented) The method of claim 1, wherein R is methyl or ethyl, and m is 1 and n is 0.

Application No. 10/605,961 Amendment dated November 8, 2007 Reply to Office Action of August 8, 2007 Docket No.:2921-0150PUS1

- 22. (Previously Presented) The method of claim 1, wherein R is methyl or ethyl, m is 1 and n is 0, and A_1 and A_2 are S.
- 23. (Previously Presented) The method of claim 1, wherein R is methyl or ethyl, m is 1 and n is 0, and A_1 and A_2 are O.
- 24. (Previously Presented) The method of claim 1, wherein R is methyl or ethyl, m is 1 and n is 0, A_1 is S and A_2 is O.