International Rectifier

10BQ015

SCHOTTKY RECTIFIER

1 Amp

Major Ratings and Characteristics

Characteristics	10BQ015	Units
I _{F(AV)} Rectangular waveform	1.0	А
V _{RRM}	15	V
I _{FSM} @tp=5μssine	140	Α
V _F @1.0Apk,T _J =125°C	0.32	V
T _J range	- 55 to 125	°C

Description/Features

The 10BQ015 surface mount Schottky rectifier has been designed for applications requiring lowforward drop and very small foot prints on PC boards. The proprietary barrier technology allows for reliable operation up to 125°C junction temperature. Typical applications are in disk drives, switching power supplies, converters, free-wheeling diodes, battery charging, and reverse battery protection.

- 125°C T_I operation (V_R < 5V)
- Optimized for OR-ing applications
- Ultra low forward voltage drop
- High frequency operation
- Guard ring for enhanced ruggedness and long term reliability
- High purity, high temperature epoxy encapsulation for enhanced mechanical strength and moisture resistance

International IOR Rectifier

Voltage Ratings

Partnumber	10BQ015
V _R Max. DC Reverse Voltage (V)	15
V _{RWM} Max. Working Peak Reverse Voltage (V)	25

Absolute Maximum Ratings

	Parameters	10BQ	Units	Conditions		
I _{F(AV)}	Max.AverageForwardCurrent *SeeFig.5	1.0	А	50% duty cycle @ T _L = 84 °C, rectangular wave form.		
I _{FSM}	Max.PeakOneCycleNon-Repetitive	140	Α	5μs Sine or 3μs Rect. pulse	Following any rated load condition and with rated V _{RRM} applied	
	Surge Current * See Fig. 7	40		10ms Sine or 6ms Rect. pulse		
E _{AS}	Non-RepetitiveAvalancheEnergy	2.0	mJ	T _J =25°C,I _{AS} =0.2A,L=10mH		
I _{AR}	RepetitiveAvalancheCurrent	0.2	А	Currentdecaynglinearlytozeroin1 μ sec Frequency limited by T_J max. V_A = 1.5 x V_R typical		

Electrical Specifications

	Parameters	10BQ	Units		Conditions
V_{FM}	Max. Forward Voltage Drop (1)	0.35	V	@ 1.0A	T = 25 °C
	* See Fig. 1	0.44	V	@ 2.0A	T _J = 25 °C
		0.32	V	@ 1.0A	T ₁ = 125 °C
		0.40	V	@ 2.0A	1 _J = 125 0
I _{RM}	Max. Reverse Leakage Current (1)	0.5	mA	T _J = 25 °C	V = rated V
	* See Fig. 2	12	mA	T _J = 100 °C	V _R = rated V _R
V _{F(TO)}) Threshold Voltage	-	V	$T_J = T_J \text{ max.}$	
r _t	Forward Slope Resistance	-	mΩ		
Ст	Typical Junction Capacitance	390	pF	V _R = 5V _{DC} , (test signal range 100KHz to 1MHz) 25°C	
Ls	Typical Series Inductance	2.0	nH	Measured lead to lead 5mm from package body	
dv/dt	Max. Voltage Rate of Change	10000	V/µs	(Rated V _R)	

⁽¹⁾ Pulse Width < 300µs, Duty Cycle < 2%

Thermal-Mechanical Specifications

	Parameters	10BQ	Units	Conditions
T	Max.JunctionTemperatureRange (*)	-55 to 125	°C	
T _{stg}	Max.StorageTemperatureRange	-55 to 150	°C	
R _{thJL}	Max.Thermal Resistance Junction to Lead (**)	36	°C/W	DCoperation(SeeFig.4)
R _{thJA}	Max. Thermal Resistance Junction to Ambient	80	°C/W	DCoperation
wt	Approximate Weight	0.10(0.003)	g(oz.)	
	Case Style	SMB		SimilartoDO-214AA
	Device Marking	IR1C		

 $[\]frac{\text{(*)}}{\text{dTj}} < \frac{\text{dPtot}}{\text{Rth(j-a)}} < \frac{1}{\text{Rth(j-a)}}$ thermal runaway condition for a diode on its own heatsink

^(**) Mounted 1 inch square PCB

Fig. 1 - Max. Forward Voltage Drop Characteristics

Fig. 2-Typical Values Of Reverse Current Vs. Reverse Voltage

Fig. 3-Typical Junction Capacitance
Vs. Reverse Voltage

Fig. 4-Max. Thermal Impedance Z_{thJC} Characteristics (PerLeg)

 $Average\,Forward\,Current\,\hbox{-}\, IF_{(AV)}(A)$

 $Average\,Forward\,Current\,\hbox{-}\, IF_{(AV)}(A)$

Fig. 5 - Max. Allowable Case Temperature Vs. Average Forward Current

Square Wave Pulse Duration - t_{D} (microsec)

Fig. 7 - Max. Non-Repetitive Surge Current

(2) Formula used: $T_C = T_J - (Pd + Pd_{REV}) \times R_{thJC}$;
$$\begin{split} & \text{Pd=Forward\,PowerLoss=I}_{F(AV)} \text{x\,V}_{FM} \textcircled{@}(I_{F(AV)}/D) \text{ (see Fig. 6);} \\ & \text{Pd}_{REV} = & \text{Inverse\,Power\,Loss=V}_{R1} \text{x\,I}_{R} \text{(1-D); I}_{R} \textcircled{@} \text{V}_{R1} = 80\% \text{ rated\,V}_{R} \end{split}$$

Bulletin PD-2.396 rev. F 02/02

Tape & Reel Information

Marking & Identification

Each device has 8 characters, configurated 4 digits on two rows, for identification. The first row designates the device as manufactured by International Rectifier as indicated by the letters "IR", and the Part Number (indicates the current rating and voltage/process). The second row indicates the year and the week of manufacturing.

Ordering Information

10BQ SERIES - TAPE AND REEL

WHEN ORDERING, INDICATE THE PART NUMBER AND THE QUANTITY (IN MULTIPLES OF 3000 PIECES).

EXAMPLE: 10BQ015TR-6000PIECES

10BQ SERIES - BULK QUANTITIES

WHEN ORDERING, INDICATE THE PART NUMBER AND THE QUANTITY (IN MULTIPLES OF 1000 PIECES).

EXAMPLE: 10BQ015 - 2000 PIECES

10BQ015 Bulletin PD-2.396 rev. F 02/02

Data and specifications subject to change without notice. This product has been designed and qualified for Industrial Level.

Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7309 Visit us at www.irf.com for sales contact information. 02/02