Revisión 2 - Modelación agentes

Sandra Ximena Téllez Olvera (A01752142) Naomi Anciola Calderón (A01750363)

Modela, en equipo, el sistema multiagente necesario para simular una intersección controlada por señales de semáforos inteligentes:

- Mientras no haya un vehículo cercano, el semáforo estará en luz amarilla.
- Cuando un vehículo se acerque a la intersección, enviará un mensaje con el tiempo estimado de arribo.
- El semáforo dará luz verde al semáforo más cercano y establecerá un programa de luces a partir de ese punto para el resto de los vehículos.

Detalla cuáles serían los agentes involucrados, qué tipo de agente sería y forma de interacción entre ellos.

También realiza una descripción detallada del medio ambiente (environment) con todas sus características.

Agentes involucrados

Para este escenario los agentes involucrados son los conductores, y los semáforos. Los conductores buscan seguir su ruta y cruzar la intersección de forma segura rigiéndose por lo que comunique el semáforo, y los semáforos buscan eficientar el flujo a través de la intersección. TIPO DE AGENTE?

Descripción detallada del medio ambiente

El entorno de este sistema es una intersección de calles, la cual está controlada por semáforos inteligentes. Hay automóviles fluyendo en direcciones encontradas y estos diferentes flujos tienen que poder coexistir de forma segura sin colisiones. Esto en la terminología usada por los recursos compartidos en clase es llamada una intersección controlada, y es más fácil de modelar que una no controlada, ya que el flujo se rige simplemente por los semáforos, y las personas dentro de ella no tienen que pensar tanto para cruzar de forma segura.

Descripción PEAS de conductor

PEAS Conductor		
Medida de Actuación	Cruce en intersección sin colisiones, respetando leyes de tráfico	
Entorno	Intersección entre varias calles poblada por automóviles, controlada por semáforos	
Actuadores	acelerar, frenar, girar	
Sensores	visión (conoce otros coches en la calle, color de semáforo)	

Descripción PEAS de semáforos

PEAS Semáforos	
Medida de Actuación	Cruce en intersección sin colisiones, minimizar tiempo de espera en intersección para automóviles
Entorno	Intersección entre varias calles poblada por automóviles, controlada por semáforos
Actuadores	Cambiar de color (verde, amarillo, rojo)
Sensores	visión

Diagramas de Agente usando AUML

Semáforo

Grupo: infraestructura **rol:** regular tráfico

Servicio:

permite o bloquea el flujo de tráfico a lo largo de las calles, comunica a los autos si pueden o no pasar en una intersección

Protocolos:

manejar flujo,

avisar sobre tráfico actual

Eventos:

Llegó un coche a la intersección -> lo cuenta, estima tiempo de arribo, manda mensaje a semáforos cercanos y updatea el modelo

Objetivo:

que haya poco tráfico y que se optimice el flujo

Conductor

Grupo: Civil

Rol: movimiento dentro del mundo

Servicio:

manejar automovil

Protocolo:

Cruzar calle de forma segura

Eventos:

Semáforo en verde -> cruzar

Semáforo en rojo -> frenar, esperar a que cambie a verde

Semáforo en amarillo -> frenar, esperar a que cambie a verde

Objetivo:

cruzar intersección de forma segura

Memoria:

objetos en la calle

- 1. automóviles visibles -> coches delante (en N carriles) y detrás de sí
- 2. color de semáforo correspondiente al cruce deseado

Descripción del sistema

autos en la intersección quieren cruzar los semáforos les indican cuando

Agentes:

- Autos
- semáforos
 - hay 12 semáforos si se considera una intersección de 2 calles que las dos son en dos sentidos
 - entre estos se coordinan para que solo haya rutas compatibles al mismo tiempo y que el tráfico fluya

Entorno: intersección

Interacción entre agentes

Interacción entre conductor y semáforo 1:

Conductor observa luces del semáforo para decidir si cruzar o no

Interacción entre conductor y semáforo 2:

Semáforo monitorea calle para optimizar flujo

- 1. Semáforo observa automovil llegar,
- 2. Actualiza el modelo,
- 3. Notifica a otros semáforos,
- 4. toma decisión
 - a. (si este es el coche que llegará más pronto a la intersección se pone verde,
 - b. si otro llega antes se pone rojo),
- 5. cambia de color

Interacción entre semáforos de la misma intersección

cuando no hay flujo:

o se le da preferencia a coche más cercano de intersección

cuando hay flujo de un lado y flujo bloqueado del otro:

- o se alterna entre ambos, x segundos para cada uno.
- ¿Cómo se deciden cuántos de cada uno? cuentan coches esperando en flujos encontrados y se comparan

Bibliografía

 $\underline{https://driving\text{-}tests.org/beginner\text{-}drivers/crossing\text{-}paths\text{-}keeping\text{-}yourself\text{-}and\text{-}others\text{-}safe\text{-}at\text{-}int}}{ersections/}$