# **Further Topics in Text Mining**

#### Konstantin Todorov

todorov at lirmm dot fr

University of Montpellier

March 2019



K. Todorov 1/34

 Part of Speech Tagging Generalities Probabilistic Tagging The TreeTagger

N-grams: Definition and Applications

3 Feature Selection for Text Mining

K. Todorov 2 / 34

Part of Speech Tagging

Generalities Probabilistic Tagging The TreeTagger

N-grams: Definition and Applications

3 Feature Selection for Text Mining

K. Todorov 3 / 34

Part of Speech Tagging Generalities

Probabilistic Tagging
The TreeTagger

2 N-grams: Definition and Applications

3 Feature Selection for Text Mining

K. Todorov 4 / 34

What is part of speech tagging?

POS = Part of speech

The process of assigning automatically a part of speech label to each word in a given sentence.

#### Example:

Heat water in a large vessel. ->

Heat (verb) water (noun) in (preposition) a (determiner) large (adjective) vessel (noun).

K. Todorov 5 / 34

#### **Applications**

### **Applications**

- Information retrieval
- Text classification (e.g., opinion mining)
- Word sens disambiguation
- Parsing



Source: Wikipedia.

K. Todorov 6 / 34

#### **POS Tags**

### Standardized POS tags, e.g., Penn Treebank POS tags:

| POS Tag | Description                           | Example       |
|---------|---------------------------------------|---------------|
| СС      | coordinating conjunction              | and           |
| CD      | cardinal number                       | 1, third      |
| DT      | determiner                            | the           |
| EX      | existential there                     | there is      |
| FW      | foreign word                          | d'hoevre      |
| IN      | preposition/subordinating conjunction | in, of, like  |
| ננ      | adjective                             | big           |
| JJR     | adjective, comparative                | bigger        |
| JJS     | adjective, superlative                | biggest       |
| LS      | list marker                           | 1)            |
| MD      | modal                                 | could, will   |
| NN      | noun, singular or mass                | door          |
| NNS     | noun plural                           | doors         |
| NNP     | proper noun, singular                 | John          |
| NNPS    | proper noun, plural                   | Vikings       |
| PDT     | predeterminer                         | both the boys |
| POS     | possessive ending                     | friend's      |
| PRP     | personal pronoun                      | I, he, it     |

Source: http://www.monlp.com/2011/11/08/part-of-speech-tags/

#### **POS Tags**

#### Choice of a tag set:

- a tag per part of speech
- 5 basic tags: adj, noun, verb, adv, prep
- · Penn Treebank has 36 tags
- ..

#### Be consistent in the use of labels.

According to Penn's tagging, our example from the start looks like that:

Heat /VB water /NN in /IN a /DT large /JJ vessel /NN.

K. Todorov 8 / 34

What makes tagging difficult?

Any ideas?

Can't we just label all words once and for all?

K. Todorov 9 / 34

What makes tagging difficult?

How about ambiguity?

### Example:

"Scream like a savage."

scream: verb, noun?

• like: adverb, verb...?

• savage: adjective, noun?

K. Todorov 10 / 34

**POS Tagging** 

We want to tag words automatically.

...So, what kind of information we have to consider?

K. Todorov 11/34

Part of Speech Tagging

Generalities

Probabilistic Tagging

The TreeTagger

2 N-grams: Definition and Applications

3 Feature Selection for Text Mining

K. Todorov

# Estimate the probability that a tag occurs, given

a word, a set of previously known tags, a neighborhood of words...

Probability estimation is often based on frequency counts.

Remember estimating probability of a class in Bayes Classification?

To count frequencies we need data.

- · a training corpus of tagged sentences.
- Brown Corpus: about 1 million words and a set of POS tags assigned to each word

K. Todorov 13/34

A simple approach

Let the word w has a set of tags  $\{t_1, t_2, ..., t_k\}$ .

- Estimate  $P(t_i|w)$ ,  $\forall i = 1,...,k$
- From training data:  $P(t_i|w) = \frac{N(w,t_i)}{N(w,t_1)+N(w,t_2)+...+N(w,t_k)}$
- — The most popular wins.

Works in more than 80 percent of the cases.

Example: heat/NN (89%), heat/VB (5%) -> but is heat in our sentence a noun?

"Heat water in a large vessel."

K. Todorov 14/34

Bayesian Approach

Now let's look at the whole sentence,  $W = w_1, w_2, ..., w_n$ .

Example: W = heat, water, in, a, large, vessel

Goal: predict a tag sequence  $T = t_1, ..., t_n$  for W

- Look for the sequence T that maximizes P(T|W).
- Estimations come from training data, where every word w<sub>i</sub> has a set of tags {t<sub>1</sub>, t<sub>2</sub>, ..., t<sub>k</sub>}.

K. Todorov 15 / 34

#### Bayesian Approach

Bayes theorem tells us that P(T|W) = P(W|T)P(T)/P(W).

The T that maximizes P(W|T)P(T)/P(W), also maximizes P(W|T)P(T). We want to find that T.

Let's look at P(T) first.

- $P(T) = P(t_1)P(t_2|t_1)P(t_3|t_2,t_1)...P(t_n|t_{n-1},...,t_2,t_1)$
- In approximation,  $P(T) \approx P(t_1)P(t_2|t_1)P(t_3|t_2)...P(t_n|t_{n-1})$

Now let's look at P(W|T).

- Assume a word depends on its own POS tag only and not on the other words or their POS tags.
- $P(W|T) = P(w_1|t_1)P(w_2|t_2)...P(w_n|t_n)$

We have  $P(W|T)P(T) \approx P(w_1|t_1)P(w_2|t_2)...P(w_n|t_n)P(t_1)P(t_2|t_1)P(t_3|t_2)...P(t_n|t_{n-1})$ 

K. Todorov 16/34

#### Bayesian Approach

Bayes theorem tells us that P(T|W) = P(W|T)P(T)/P(W).

The T that maximizes P(W|T)P(T)/P(W), also maximizes P(W|T)P(T). We want to find that T.

Let's look at P(T) first.

- $P(T) = P(t_1)P(t_2|t_1)P(t_3|t_2,t_1)...P(t_n|t_{n-1},...,t_2,t_1)$
- In approximation,  $P(T) \approx P(t_1)P(t_2|t_1)P(t_3|t_2)...P(t_n|t_{n-1})$

Now let's look at P(W|T).

- Assume a word depends on its own POS tag only and not on the other words or their POS tags.
- $P(W|T) = P(w_1|t_1)P(w_2|t_2)...P(w_n|t_n)$

We have  $P(W|T)P(T) \approx P(w_1|t_1)P(w_2|t_2)...P(w_n|t_n)P(t_1)P(t_2|t_1)P(t_3|t_2)...P(t_n|t_{n-1})$ 

K. Todorov 17 / 34

#### Bayesian Approach

Bayes theorem tells us that P(T|W) = P(W|T)P(T)/P(W).

The T that maximizes P(W|T)P(T)/P(W), also maximizes P(W|T)P(T). We want to find that T.

Let's look at P(T) first.

- $P(T) = P(t_1)P(t_2|t_1)P(t_3|t_2,t_1)...P(t_n|t_{n-1},...,t_2,t_1)$
- In approximation,  $P(T) \approx P(t_1)P(t_2|t_1)P(t_3|t_2)...P(t_n|t_{n-1})$

Now let's look at P(W|T).

- Assume a word depends on its own POS tag only and not on the other words or their POS tags.
- $P(W|T) = P(w_1|t_1)P(w_2|t_2)...P(w_n|t_n)$

We have  $P(W|T)P(T) \approx P(w_1|t_1)P(w_2|t_2)...P(w_n|t_n)P(t_1)P(t_2|t_1)P(t_3|t_2)...P(t_n|t_{n-1})$ 

K. Todorov 18/34

Bayesian Approach

To compute

$$P(W|T)P(T) \approx P(w_1|t_1)P(w_2|t_2)...P(w_n|t_n)P(t_1)P(t_2|t_1)P(t_3|t_2)...P(t_n|t_{n-1})$$

We estimate from the training corpus

- $P(w_i|t_i) \approx \frac{N(w_i,t_i)}{N(t_i)}$
- $P(t_i|t_{i-1}) \approx \frac{N(t_{i-1},t_i)}{N(t_{i-1})}$ ,

where  $N(t_i)$  counts the number of appearances of  $t_i$  in the corpus,  $N(w_i, t_i)$  – the number of appearances of the couple  $(w_i, t_i)$ , and  $N(t_{i-1}, t_i)$  – the frequency of the tag sequence  $(t_{i-1}, t_i)$ .

K. Todorov 19 / 34

1 Part of Speech Tagging

Generalities
Probabilistic Tagging
The TreeTagger

2 N-grams: Definition and Applications

3 Feature Selection for Text Mining

K. Todorov 20 / 34

## TreeTagger

Introduced by H. Schmid in the 90s<sup>1</sup>.

Available here: http://www.cis.uni-muenchen.de/ schmid/tools/TreeTagger/

- A probabilistic tagger
- Use binary decision tree to estimate the POS tag of a word.
- Construct trees recursively by starting with a set of known tags.
- Usually, one needs to know three preceding consecutive tags the context.
- Intuition: closer tags provide more information

K. Todorov 21 / 34

<sup>&</sup>lt;sup>1</sup>http://www.cis.uni-muenchen.de/ schmid/tools/TreeTagger/data/tree-tagger2.pdf

## TreeTagger



- P(tag<sub>m</sub>= Nom | tag(-2)=déterminant, tag(-1) = Adjectif) = 70%
- P(tag<sub>m</sub>= Adjectif | tag(-2)=déterminant, tag(-1) = Adjectif) = 10%

Source: a course by M. Roche.

Probabilities are estimated from a training set.

K. Todorov 22 / 34

 Part of Speech Tagging Generalities Probabilistic Tagging The TreeTagger

2 N-grams: Definition and Applications

3 Feature Selection for Text Mining

K. Todorov 23 / 34

## N-grams

An n-gram is a contiguous sequence of n items from a given sequence of text or speech: uni-grams, bi-grams, 4-grams, etc.

An n-gram model is a type of probabilistic language model for predicting the next item in a sequence of items in the form of a (n-1)-order Markov model.

Given a sequence of letters, what is the likelihood of the next letter?

- Use conditional probabilities and estimate them from corpora.
- "For ex" -> likelihood of "ample"?

Independence assumptions are made so that each word depends only on the last n-1 words.

K. Todorov 24 / 34

# N-grams

#### Example

### The cow jumps over the moon.

- Bi-grams: the cow, cow jumps, jumps over, over the, the moon
- Tr-grams: the cow jumps, cow jumps over, jumps over the, over the moon.
- Uni-gram model singletons containing one word.

### Several applications:

- Indexing large corpora (the web)
- Creating a feature model for machine learning (SVM, Naive Bayes, ...)

Similarity measures on documents

K. Todorov 25 / 34

 Part of Speech Tagging Generalities Probabilistic Tagging The TreeTagger

N-grams: Definition and Applications

3 Feature Selection for Text Mining

K. Todorov 26 / 34

Feature selection (aka "Variable selection"): summarization of text content for better indexing!

- High dimensional feature space (high number of unique terms)
- —> a problem for most of the learning algorithms
- Automatic feature selection: removal of uninformative terms / construction of new terms as a combination of existing ones

K. Todorov 27 / 34

Methods

### Document frequency thresholding

- a simple feature selection technique
- based on the document frequency for each term in the training dataset

#### Two ways to go:

- terms with very rare occurrences are considered as unimportant for the regrouping of documents into categories (noise)
- terms with very frequent occurrences are considered as unimportant for the regrouping of documents into categories (stop-words).

K. Todorov 28 / 34

Methods

#### Mutual information

One considers the co-occurrences of a term and a category. Let t be a term and c – a category and let A be the number of times t and c co-occur, B – the number of times t occurs alone, C – the number of times c occurs alone and d – the total number of documents in the dataset. The mutual information criterion is estimated by

$$I(t,c) = log \frac{A \times m}{(A+C) \times (A+B)}.$$
 (1)

K. Todorov 29 / 34

Methods

### $\chi^2$ criterion

A related approach uses the  $\chi^2$  - statistics by testing the lack of independence between t and c. The criterion is estimated by

$$\chi^{2}(t,c) = \frac{m \times (AN - CB)^{2}}{(A+C) \times (B+N) \times (A+B) \times (C+N)},$$

where *N* is the number of times neither *t*, nor *c* occurs.

K. Todorov 30 / 34

Methods

### Term strength

#### Assumptions:

- 1 Documents with many shared words are assumed to be related.
- 2 Terms in the overlapping area of related documents are assumed to be important.

Let  $d_1$  and  $d_2$  be two documents – distinct, but assumed to be highly similar, and let t be a term. The strength of t is given by

$$s(t) = P(t \in d_1 | t \in d_2).$$

—> A criterion based on the conditional probability that a term appears in a document, given that it appears in another, related document. Estimated from training data of similar documents and frequency counts.

K. Todorov 31 / 34

# A take away message...



Preparing data (choosing the right descriptors, or features) for the machine learning task in view can be 80 percent of the job!

K. Todorov 32 / 34

## Sources and further reading

This course uses references and examples from the following tutorial http://www.cs.umd.edu/ nau/cmsc421/part-of-speech-tagging.pdf,

as well as from a course by Mathieu Roche: http://agents.cirad.fr/index.php/Mathieu+ROCHE.

Here's a link to the paper of H. Schmid on TreeTagger: http://www.cis.uni-muenchen.de/ schmid/tools/TreeTagger/data/tree-tagger2.pdf

and a link to a nice paper on feature selection:

https://pdfs.semanticscholar.org/c3eb/cef26c22a373b6f26a67934213eb0582804e.pdf

K. Todorov 33 / 34

K. Todorov 34 / 34