

在日常生活中,常會遇到『從一些事物中選出幾個出來,到底有多少種選法?』的問題。 我們先看下面一個簡單的問題:

在書店賣有4種不同的筆記本,某人欲從中任選3本,試問共有幾種選法? 解這個問題時,我們先將4本筆記本依序編號為A,B,C,D,如下步驟解之:

第一步: 任取3本做直線排列, 共有 $P_3^4 = 24$ 種:

ABC	ACB	BAC	BCA	CAB	CBA
ABD	ADB	BAD	BDA	DAB	DBA
ACD	ADC	CAD	CDA	DAC	DCA
BCA	BDC	CBD	CDB	DBC	DCB

第二步: 因筆記本的選取並無先後之考量, 故可將下述視為同一種:

如第一列都是A, B, C三本筆記本在排列, 若選取, 應屬於同一類(A, B, C), 餘類推。

ABC	ACB	BAC	BCA	CAB	CBA	屬於(A,B,C)
ABD	ADB	BAD	BDA	DAB	LDBA	屬於 (A,B,D)
ACD	ADC	CAD	CDA	DAC	DCA	屬於 (A,C,D)
BCD	BDC	CBD	CDB	DBC	DCB	屬於(B,C,D)

所以共有4種選法, 即(A,B,C), (A,B,D), (A,C,D), (B,C,D)。

若以文字來說明, 步驟如下:

- (1)先將這4本筆記本任選3本作直線排列,其排列數為 $P_3^4=24$ 。
- (2) 由於對固定的3本筆記本,作完全相異物直線排列時,其排列數為3!,且皆屬於同一種組合, 因此組合數為

$$\frac{P_3^4}{3!} = \frac{24}{6} = 4$$

事實上我們可以『相異物組合』的一般形式:

相異物組合

由n件不同的事物中,任取m件(不重複),而不計選出物的次序關係,稱為由n件事物取出m件的組合,以符號 C_m^n 來表示。其中

$$C_m^n = \frac{P_m^n}{m!} = \frac{n!}{m!(n-m)!} (0 \le m \le n)$$

組合 C_m^n 有一些性質, 我們列於下:

(1) $C_m^n \cdot m! = P_m^n \cdot$

(2)
$$C_n^n = 1, C_0^n = 1$$

(3)
$$C_m^n = C_{n-m}^n$$

在組合中, 有一重要的式子, 稱之為『巴斯卡原理』, 其形式與推導如下:

-巴斯卡原理

$$C_m^n = C_{m-1}^{n-1} + C_m^{n-1} (1 \le m \le n-1)$$

其推導並不難, 只要利用組合的概念, 就可以得到, 推導如下:

$$C_{m-1}^{n-1} + C_m^{n-1}$$

$$= \frac{(n-1)!}{(m-1)!(n-m)!} + \frac{(n-1)!}{m!(n-m-1)!}$$

$$= \frac{(n-1)!}{m!(n-m)!} \times [m+(n-m)]$$

$$= \frac{n!}{m!(n-m)!} = C_m^n$$

生活中的實例1

從六男五女中選出8人組成一訪問團, 試問共有多少種選法。

[解]: 此即組合的一般題型, 故共有

$$C_8^{11} = \frac{11 \times 10 \times 9}{3 \times 2 \times 1} = 165^{\text{?}}$$

隨堂練習1

某一組織有12人,從中推舉出5人參加座談會,試問共有幾種選法?

[解]: 792種。

生活中的實例2

若 $C_2^n=3$, 試求n之值。

[解]:

$$C_2^n = 3$$

$$\Rightarrow \frac{n!}{2! \times (n-2)!} = \frac{n(n-1)}{2} = 3$$

$$\Rightarrow n^2 - n - 6 = 0$$

$$\Rightarrow n = 3, n = -2$$

因 $n \ge 2$, 所以n = -2不合, 故n = 3。

隨堂練習2

設
$$C_m^{n-1}:C_m^n:C_m^{n+1}=3:7:14$$
。試求 n,m 之值。

[解]: n = 7, m = 7。

生活中的實例3

從6男5女中,任選4人組一委員會,其中至少包含2男1女,試問共有幾種選法?

[解]: 可能情形: 2男2女, 3男1女, 故共有

$$C_2^6 \times C_2^5 + C_3^6 \times C_1^5 = 250_{ ext{$rak 4$}} \; .$$

隨堂練習3

兄第二人在排成一列的20個空位中, 選坐不相鄰的兩個座位, 試問有多少種坐法。

「解]: 342種。

生活中的實例4

一副撲克牌共有52張, 自中任取5張, 5張為full house (如aaabb)共有多少種? [解]:

先從13個號碼中選1個: C_1^{13} ,

再從選出的號碼中選3種花色: C_3^4 ,

其次從剩下的12個號碼中選一個: C_1^{12} ,

從選出的第二個號碼中選2種花色: C_2^4 ,

故共有 $C_1^{13} \times C_3^4 \times C_1^{12} \times C_2^4 = 3744$ 種。

隨堂練習4

一副撲克牌共有52張, 自中任取5張, 5張為三條(如aaabc, 三同二異) 共有多少種?

[解]: $C_1^{13} \times C_3^4 \times C_2^{12} \times C_1^4 \times C_1^4 = 109824$ 種。

生活中的實例5

6本不同的書,按1,2,3分成3堆,共有幾種方法?

[解]:

先取1本: C_1^6 ,

其次從所剩的5本中任取2本: C_2^5 ,

最後將所剩的3本全取: C_3^3 ,

共總共有 $C_1^6 imes C_2^5 imes C_3^3 = 60$ 種。

隨堂練習5

6本不同的書,按1,2,3隨意分配給甲、乙、丙三人共有多少種方法?

[
$$\text{M}$$
]: $C_1^6 \times C_2^5 \times C_3^3 \times 3! = 360$

生活中的實例6

試求
$$C_0^2 + C_1^3 + C_2^4 + C_3^5 + \cdots + C_8^{10}$$
之值。

[解]:

因
$$C_0^2=1=C_0^3$$
,故

$$C_0^2 + C_1^3 + C_2^4 + C_3^5 + \dots + C_8^{10}$$

$$= C_0^3 + C_1^3 + C_2^4 + C_3^5 + \dots + C_8^{10}$$

$$= C_1^4 + C_2^4 + C_3^5 + \dots + C_8^{10}$$

$$= C_2^5 + C_3^5 + \dots + C_8^{10}$$

$$\vdots$$

$$= C_7^{10} + C_8^{10}$$

$$= C_8^{11} = 165$$

隨堂練習6

試求
$$C_2^2 + C_2^3 + C_2^4 + \cdots + C_2^{10}$$
之值。

[解]: 1140。

- 1. 某職業籃球隊有球員15人,每個人有固定打球的位置,其中中鋒有4人,後衛有5人,前鋒有6人。若一場比賽需上場五名球員,其中中鋒一名,後衛二名,前鋒二名,試問共有幾種不同的選擇球員的方法?
- 2. 要在一有十節車廂的火車上, 指定其中三節車廂准許吸煙, 兩節車廂放置公共電話。試問
 - (1) 共有幾種不同方式來放置吸煙區與公共電話區?
 - (2) 若三節准許吸煙的車廂須兩兩不相接,則放置准許吸煙的車廂有多少種?

2017/10/23 相異物紅

(3) 若吸煙區與公共電話不能在同一車廂, 則有幾種方式?

「解答部分]:

- 1.600種。
- 2. (1) 5400種, (2) 64種, (3) 2520種。

- 1. 試求 $C_{28}^{29} + C_{27}^{28} + \cdots + C_{2}^{3} + C_{1}^{2} + C_{0}^{1}$ 之值。
- 2. 二次方程式 $10x^2-C^n_mx-2P^n_{n-m}$ 的兩根為-8,20。試求n,m之值。
- 3. 投擲一公正骰子三次,第r次的結果以 A_r 表之,其中r=1,2,3。試求 $A_1 < A_2 < A_3$ 之情形共有多少種?
- 4. 某次拳擊比賽,規定每位選手必須和所有選手各比賽一場,賽程總計78場,試求選手之人數。
- 5. 平面上共有14條直線,其中4條共點,而另3條平行。這些直線共可構成多少個三角形。
- 6. 有兩個凸多邊形,共有16個邊、41條對角線,則此二多邊形的邊數分別為何。
- 7. 如下圖的14個點,可決定多少個三角形。

• • • •

• • • •

. . . .

• •

[解答部分]

- 1. 435 °
- 2. n = 10, m = 7
- 3. 20 °
- 4. 13人。
- 5. 326 °
- 6. 7與9。
- 7. 334 •