DOUBLE INTEGRALS OVER

MATH 1014

RECTANGLES

(12.1)

* Approximate with Riemann sums over rectangles.

$$\iint_{R} f(x,y) dA \approx \sum_{i=1}^{m} \sum_{j=1}^{n} f(x^{*},y^{*}) \Delta A_{ij}$$

DEFINITION

The double integral $\iint_{R} f(x,y) dA = \lim_{\substack{n \\ \text{max } \Delta x_{i}, \\ \Delta y_{j} = 00}} \frac{\sum_{j=1}^{n} f(x^{*}, y^{*}) \Delta A_{ij}}{\int_{R}^{\infty} f(x^{*}, y^{*}) \Delta A_{ij}},$

if it exists

* Note: dA = dxdy = dydx

* We can express $\iint_R f(x,y) dA$ as $\int_{\alpha} \left(\int_{\alpha} f(x,y) dy \right) dx$.

THEOREM (FUBINI'S THEOREM)

Hen $\iint_{R} f(x,y) dA = \iint_{a} \left(\int_{c}^{c} f(x,y) dy \right) dx = \iint_{c}^{b} f(x,y) dx \right) dy.$

PROPERTIES

- 1) $\iint_{R} \left[f(x,y) + g(x,y) \right] dA = \iint_{R} f(x,y) dA + \iint_{R} g(x,y) dA$
- 2) $\iint c \cdot f(x,y) dA = c \cdot \iint f(x,y) dA$ (where c is constant)
- 3) If $f(x,y) \ge g(x,y)$ for all $(x,y) \in \mathbb{R}$ then $\iint f(x,y) dA \ge \iint g(x,y) dA$