-. 1.
$$dy = \frac{1}{\cos y - 2} dx$$
 2. $y = 3 + 21(x - 1)$. 3. $\frac{x}{x + 1}$ 4. $\alpha < 2$. 5. $x = \frac{\sqrt{2}}{2}$

=. ACDAD

三. 1. 解
$$\lim_{x \to 1} \left(\frac{1}{\ln x} - \frac{1}{x - 1} \right) = \lim_{x \to 1} \frac{x - 1 - \ln x}{(x - 1)\ln x} = \lim_{x \to 1} \frac{1 - \frac{1}{x}}{\ln x + \frac{x - 1}{x}}$$
(3 分)

$$= \lim_{x \to 1} \frac{x - 1}{x \ln x + x - 1} = \lim_{x \to 1} \frac{1}{\ln x + 1 + 1} = \frac{1}{2} \qquad(3 \%)$$

或者

$$\lim_{x \to 1} \left(\frac{1}{\ln x} - \frac{1}{x - 1} \right) = \lim_{x \to 1} \frac{x - 1 - \ln x}{(x - 1) \ln x} \underbrace{t = x - 1}_{x \to 1} \lim_{x \to 1} \frac{t - \ln(1 + t)}{t \ln(1 + t)} = \lim_{x \to 1} \frac{t - [t - \frac{1}{2}t^2 + o(t^2)]}{t^2} = \frac{1}{2}.$$

2.
$$\mathbf{f} \lim_{n \to \infty} \sum_{k=1}^{n} \frac{n}{(n+k)^2} = \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \frac{1}{(1+\frac{k}{n})^2} = \int_{0}^{1} \frac{dx}{(1+x)^2}$$
(4 \(\frac{\psi}{n}\))

$$= \int_0^1 \frac{dx}{(1+x)^2} = -\frac{1}{1+x} \Big|_0^1 = \frac{1}{2}$$
.....(2 $\frac{1}{2}$)
$$= \int_0^1 \frac{dx}{(1+x)^2} = -\frac{1}{1+x} \Big|_0^1 = \frac{1}{2}$$
.....(2 $\frac{1}{2}$)

$$\square . 1. \int_{0}^{\frac{\sqrt{2}}{2}} \frac{x^{2} dx}{\sqrt{1-x^{2}}}$$

解 令
$$x = \sin t$$
, 则
$$\int_{0}^{\frac{\sqrt{2}}{2}} \frac{x^{2} dx}{\sqrt{1 - x^{2}}} = \int_{0}^{\frac{\pi}{4}} \frac{\sin^{2} t d\sin t}{\sqrt{1 - \sin^{2} t}} = \int_{0}^{\frac{\pi}{4}} \sin^{2} t dt \qquad(4 分)$$

$$= \int_{0}^{\frac{\pi}{4}} \frac{1 - \cos 2t}{2} dt = \left[\frac{t}{2} - \frac{\sin 2t}{4}\right]_{0}^{\frac{\pi}{4}} = \frac{\pi}{8} - \frac{1}{4} = \frac{\pi - 2}{8} \qquad \dots (2 \%)$$

2.
$$\mathbf{K} = \int \frac{xe^x}{(1+e^x)^2} dx = \int \frac{xd(1+e^x)}{(1+e^x)^2} = -\frac{x}{1+e^x} + \int \frac{dx}{1+e^x}$$
(3 分)

$$= -\frac{x}{1+e^x} + \int \frac{(1+e^x - e^x) dx}{1+e^x}$$
(2 \(\frac{\psi}{2}\))

$$= -\frac{x}{1+e^x} + x - \ln(1+e^x) + C = \frac{xe^x}{1+e^x} - \ln(1+e^x) + C \qquad \dots (1 \ \%)$$

而
$$A = \int_0^1 (ax^2 + bx) dx = \frac{a}{3} + \frac{b}{2} = \frac{2}{3}$$
,于是 $a = 2 - \frac{3b}{2}$(3 分)

$$V = \pi \int_0^1 (ax^2 + bx)^2 dx = \pi \left[\frac{a^2}{5} x^5 + \frac{ab}{2} x^4 + \frac{b^2}{3} x^3 \right]_0^1 = \pi \left[\frac{a^2}{5} + \frac{ab}{2} + \frac{b^2}{3} \right] \qquad \dots (4 \%)$$

将
$$a = 2 - \frac{3b}{2}$$
 代入可得 $V = \pi(\frac{b^2}{30} - \frac{b}{5} + \frac{4}{5})$.

当
$$b=3$$
时, V 最小. 于是 $a=-\frac{5}{2}$, $b=3$, $c=0$, $V_{\min}=\frac{\pi}{2}$.

六. 1.
$$\sum_{n=1}^{\infty} \frac{n}{2^n}$$
; 解: 由 $\lim_{n\to\infty} \frac{u_{n+1}}{u_n} = \frac{1}{2}$ 或 $\lim_{n\to\infty} \sqrt[n]{u_n} = \frac{1}{2}$ 知 $\sum_{n=1}^{\infty} \frac{n}{2^n}$ 收敛. (4 分)

$$2.\sum_{n=2}^{\infty} (-1)^{n-1} \frac{1}{n^p \ln n} (p > 0).$$

解: 当
$$p > 1$$
时, $|(-1)^{n-1} \frac{1}{n^p \ln n}| < \frac{1}{n^p}$, $\sum_{n=2}^{\infty} \frac{1}{n^p}$ 收敛,所以 $\sum_{n=2}^{\infty} (-1)^{n-1} \frac{1}{n^p \ln n}$ 绝对收敛. (3分)

当
$$0 时, $|(-1)^{n-1} \frac{1}{n^p \ln n}| = \frac{1}{n^p \ln n}$, $\sum_{n=1}^{\infty} \frac{1}{n^p \ln n}$ 发散, 但 $u_n = \frac{1}{n^p \ln n}$ 单调减且 $u_n \to 0$,$$

七.

单增区间	(-1,1)
单减区间	$(-\infty,-1),(1,+\infty)$
凹区间	$(-2,1),(1,+\infty)$
凸区间	$(-\infty, -2)$
极值	$-\frac{1}{4}$
拐点	$(-2, -\frac{2}{9})$
渐近线	x=1, y=0

へ. 证明 (1). 设 $F(x) = \int_a^x f(t) dt$, 则 F(x) 在区间 [a,b]上可导. 根据拉格朗日中值定理知存在 $\xi \in (a,b)$,使得 $F(b) - F(a) = F'(\xi)(b-a)$,

即
$$\int_a^b f(x) dx = f(\xi)(b-a)$$
(3 分)

(2). 由(1)知存在 $\xi \in (a,b)$,使得 $\int_a^b f(x) dx = f(\xi)(b-a) = 0$,即 $f(\xi) = 0$.

于是 f(x) 在区间 $[a,\xi]$ 上满足罗尔定理的条件,故存在 $\eta \in (a,\xi) \subset (a,b)$,使得

$$f'(\eta) = 0 \qquad \dots (3\,\%)$$