

CHEMIA SESJA ZIMOWA 2017

PAMIĘTAJ! Tylko jedna odpowiedź jest prawidłowa.

Fragn	Fragment układu okresowego dostarczy Ci informacji niezbędnych do rozwiązania niektórych zadań.																	
₁H																	₂ He	1
Wodór 1	2	1										13	14	15	16	17	Hel 4	•
3 Li Lit 7	₄ Be Beryl 9											₅ B Bor 11	₆ C Węgiel 12	₇ N Azot 14	₈ O Tlen 16	₉ F Fluor 19	10 Ne	2
11 Na Sód 23	₁₂ Mg Magnez 24	3	4	5	6	7	8	9	10	11	12	13 Al Glin 27	₁₄ Si Krzem 28	15 P Fosfor 31	16 S Siarka 32	17 CI Chlor 35,5	₁₈ Ar Argon 40	3
19 K Potas 39	₂₀ Ca Wapń 40	21 SC Skand 45	₂₂ Ti Tytan 48	₂₃ V Wanad 51	24 Cr Chrom 52	₂₅ Mn Mangan 55	₂₆ Fe Żelazo 56	₂₇ Co Kobalt 59	₂₈ Ni Nikiel 59	₂₉ Cu _{Miedź 64}	₃₀ Zn Cynk 65	31 Ga Gal 70	₃₂ Ge German 73	₃₃ As Arsen 75	34 Se Selen 79	35 Br Brom 80	36 Kr Krypton 84	4
37 Rb Rubid 85	38 Sr Stront 88	39 Y Itr 89	₄₀ Zr Cyrkon 91	41 Nb Niob 93	42 Mo Molibd. 96	43 Tc Technet	44 Ru Ruten 101	45 Rh Rod 103	46 Pd Pallad 106	47Ag Srebro 108	48 Cd Kadm 112	49 In Ind 115	₅₀ Sn Cyna 119	51 Sb Antymon	52 Te Te l ur 128	53 Jod 127	54 Xe Ksenon 131	5
₅₅ Cs Cez 133	₅₆ Ba Bar 137	La-Lu 57-71	72 Hf Hafn 178	73 Ta Tantal 181	74 W Wolfram 184	75 Re Ren 186	76 Os Osm 190	77 r Iryd 192	78 Pt Platyna 195	₇₉ Au Złoto 197	80 Hg Rtęć 201	81 TI Tal 204	82 Pb Ołów 207	83 Bi Bizmut 209	84 Po Polon 209	85 At Astat 210	86 Rn Radon 222	6
1. Masa cząsteczkowa chlorku cyny (IV) wynosi: 8. Reakcja chemiczna pomiędzy wodorem i chlorem																		
\bigcirc A)	154 u	Ов)	190 u	\bigcirc	C) 225	u (D) 2	61 u	przebiega zgodnie z równaniem:									
2. Wiązania chemiczne w cząsteczce o wzorze NO ₂						\bigcirc A) H + CI \longrightarrow HCI \bigcirc B) H ₂ + CI ₂ \longrightarrow 2 HCI												
są wiązaniami:						$\bigcirc C) H_2 + C I_2 \longrightarrow 2 HCI$ $\bigcirc C) H_2 + 2 CI \longrightarrow 2 HCI$												
(A) jonowymi						$\bigcirc D) 2 H + CI_2 \longrightarrow 2 HCI$												
B) kowalencyjnymi spolaryzowanymi C) atomowymi niespolaryzowanymi							9. Jeden ze składników powietrza o gęstości											
D) kowalencyjnymi niespolaryzowanymi						mniejszej niż powietrze, który odgrywa istotną rolę w procesach życiowych roślin, to:												
3. Gazem szlachetnym, który jest stosowany							\bigcirc	○A) tlenek węgla (IV)										
do napełniania balonów, jest:						(B) azot												
~ ′	○A) hel ○B) radon ○C) argon ○D) krypton						C) wodór											
4. Mieszanina wodoru i tlenu w stosunku masowym nazywana jest mieszaniną piorunującą.						10. Uczniowie przygotowali mieszaninę sproszkowanych 16 g glinu i 16 g siarki,												
○A) 2:1 ○B) 1:2 ○C) 1:8 ○D) 4:1						a następnie zapalili ją bez dostępu powietrza. W mieszanie poreakcyjnej znajdowało się:												
5. Reakcja chemiczna przedstawiona równaniem						A) 25 g siarczku glinu i 7 g siarki												
jest reakcją wymiany.						◯B) 32 g siarczku glinu												
(A) 2 NH ₃ + 3 Mg → Mg ₃ N ₂ + 3 H ₂						C) 9,75 g glinu i 22,25 g siarczku glinu												
$\begin{array}{c} \text{ (B) } N_2 + 3 \text{ H}_2 \longrightarrow 2 \text{ NH}_3 \\ \text{ (C) } 2 \text{ H}_2 \text{O} \longrightarrow 2 \text{ H}_2 + \text{O}_2 \end{array}$						◯D) 25 g siarczku glinu i 7 g glinu												
$\bigcirc O) 2 H_2 O \longrightarrow 2 H_2 + O_2$ $\bigcirc D) H_2 + CI_2 \longrightarrow 2 HCI$						11. Jedną z rud żelaza jest magnetyt, którego												
6. Atom posiada 6 elektronów walencyjnych.						głównym składnikiem jest tlenek o wzorze Fe₃O₄. Żelazo otrzymuje się z rudy w piecach												
A) węgla B) ołowiu								hutniczych w wyniku reakcji rudy z koksem w wysokiej temperaturze. Proces ten prezentuje										
	telluru			\simeq	D) chro					_	anie re		raturz	e. Pro	oces te	en pre	zentuj	е
								A) Fe ₃ (D ₄ + 2	C →	- 3Fe	+ 2 CC	$O_2\uparrow$					
7. Pierwiastek chemiczny, którego cząsteczka ma wzór nie jest gazem. (w warunkach								OB) Fe ₃ O ₄ + 4 C → 3Fe + 2 CO↑										
normalnych)							\bigcirc C) Fe ₃ O ₄ + 4 H ₂ \longrightarrow 3Fe + 4 H ₂ O↑ \bigcirc D) Fe ₃ O ₄ + 4 Mg \longrightarrow 3Fe + 4 MgO											
(A)		○В)	N ₂	\bigcirc	C) F ₂	()D) I ₂			D) Fe ₃ (O ₄ + 4	Mg —	→ 3F	e + 4 N	ЛgО			

12. Z 1000 kg magnet żelaza w procesie	tytu otrzymuje się ok hutniczym.	21. W skład izotopu wolframu ¹⁸⁶ W wchodzi cząstek elementarnych.						
○A) 333 kg	○B) 507 kg	OA) 260	○B) 186	OC) 112	OD) 74			
OC) 724 kg	OD) 912 kg							
				ównym składni	ikiem jest			
	na, która zachodzi w trakcie	żelazo, jest:						
11, jest reakcją	aza, o której mowa w zadaniu	A) tombak B) konstantan						
A) analizy		◯C) stal		◯D) elektro	on			
B) spalania		22 1:	-4					
C) utleniania-reduk	cii		atomowa oki		otko			
D) syntezy	-j.	A) liczbę nukleonów w jądrze pierwiastka B) liczbę protonów w jądrze pierwiastka						
<u></u>			-	-				
walencyjnych jak	y posiada tyle samo elektronów atom astatu, a jego elektrony e na 4 powłokach, to:	C) liczbę cząstek elementarnych w jądrze pierwiastka D) liczbę elektronów walencyjnych pierwiastka						
OA) brom	◯B) mangan				włokach atomu			
C) hafn	OD) german	opisuje konfiguracja K²L ⁸ M¹ ⁸ O ⁸ .						
.	J , J	OA) polon		◯B) osmu				
jest gazem o barv	óry w temperaturze pokojowej vie żółto-zielonej o duszącym	○C) krypto	onu	OD) ksenoi	nu			
trucizną i w czasi	Ten gaz jest bardzo silną e I wojny światowej był używany	25. Maksymalna wartościowość jodu w związkach chemicznych wynosi						
A) fluor	Jest on cięższy od powietrza. B) krypton	(A) I	⊝B) III	OC) V	OD) VII			
C) chlor	D) wodór							
OC) CHIO	رط) wodol				prowadzona do			
16. Wiązanie chemica	zne utworzone przez wspólną			lwutlenkiem w biega zgodnie				
	pochodzącą od jednego atomu		+ CO ₂ 2		2 rownamem.			
nazywamy wiązai			$CO_2 \longrightarrow Mg$	_				
(A) koordynacyjnym		○C) Mg + CO ₂ → MgCO ₂						
B) kowalencyjnym s	spolaryzowanym	$\bigcirc D) Mg + CO_2 \longrightarrow MgO_2 + C$						
C) jonowym			g					
OD) atomowym niesp	oolaryzowanym	27. Tlenek	niemetalu o	wzorze	jest			
17. Dachy wielu stary	ych pałaców i kościołów mają	w warunkach normalnych ciałem stałym.						
dachy o barwie zi	elonej. Przed wieloma laty	OA) CO	\bigcirc B) N_2O_5	\bigcirc C) P_4O_{10}	◯D) SO₃			
_	pokryte blachą							
A) stalową	◯B) ołowianą		z prawdziwe					
○C) cynkową	◯D) miedzianą	○A) W pov argon	•	ięcej dwutlenku	węgla niż			
18. Zielona powłoka i i kościołów to:	na dachach starych pałaców		ıpie 16 układu ują się tylko n	ı okresowego p iemetale.	ierwiastków			
○A) platyna	◯B) patyna	◯C) Stop j	jest mieszanir	ną jednorodną r	netali.			
C) patena	OD) patelnia	OD) Wszy	stkie metale s	są cięższe od w	ody.			
<u> </u>	dziwe zdanie o srebrze.			ın α i 1 przemia	any β izotopu			
A) Srebro jest najle elektrycznego.	pszym przewodnikiem prądu	radonu (A) ²⁰⁷ Pb	²¹⁹ Rn powsta (B) ²¹¹ Bi	nie izotop:	(D) ²¹² Po			
B) Srebro jest meta	llem o gęstości d < 5 g/cm³.	<i>= '</i>	= *	- ,	_ ,			
C) Srebro ma właśc	ciwości bakteriobójcze.			o liczba atomo				
OD) Srebro jest stoso	owane do wyrobu luster.		tnie większa wodoru, jest:	od masy cząs	teczkowej			
	ny o objętości 2,5 cm³ wynosi	i	em szlachetny	-				
	ość platyny wynosi:		-	nie niemetalem				
(A) 2,1 g/cm ³	○B) 5,6 g/cm³		•	h normalnych				
○C) 13,4 g/cm³	○D) 21,4 g/cm³	()D) gazer	n szlachetnyn	n				