高等数学 2

Monday 23rd December, 2024

目录

Ι	极阻		4
1	基础		4
	1.1	常用极限	4
	1.2	常用等价无穷小	4
2	间断	i点	4
	2.1	第一类间断点	4
		2.1.1 可去间断点	5
		2.1.2 跳跃间断点	5
	2.2	第二类间断点	5
		2.2.1 振荡间断点	5
		2.2.2 无穷间断点	5
3	洛心	·····································	5
•	3.1	使用条件	5
		结论	
1	泰勒	IRT	6
•	4.1		6
			U
5	极限	l审敛	6
II	导	数	6
6	基础	!	7
U	2 гщ	' - 求导法则	7
	6.2	常用高阶导数	•
	6.3	莱布尼茨公式	
	6.4	中值定理	8
	6.5	泰勒中值定理	8
	0.0	6.5.1 拉格朗日型余项	8
		6.5.2 佩亚诺型余项	8
	6.6	极值(拉格朗日乘数法)	8
	6.7	隐函数存在定理	9
	6.8	雅可比行列式	9
	0.0	ለኩ.ስ. ኮሮ II \ ለስቴ/ስ · · · · · · · · · · · · · · · · · · ·	Э
II	Γ 4Γ	R分	9
11	上竹	₹ <i>J</i> J	9

7	基础		LO
	7.1	牛顿-莱布尼茨公式	10
	7.2	第一类换元(凑微分)法	10
	7.3	第二类换元法	10
	7.4	分部积分	10
	7.5	常用积分表	11
		7.5.1 三角函数总表	11
		7.5.2 其他	11
		7.5.3 华里士公式	11
	7.6	区间再现	12
		7.6.1 对称区间	12
	7.7	极坐标图形面积	12
	7.8	旋转体体积(参数方程)	12
	7.9	旋转体侧面积(参数方程)	12
	7.10	平面曲线弧长(参数方程)	12
	7.11	平面曲线曲率(参数方程)	13
8	重积	分 :	13
	8.1	二重积分	13
		8.1.1 换元	13
		8.1.2 广义极坐标变换	13
	8.2	* 积分应用	13
		8.2.1 质量	13
		8.2.2 质心	14
		8.2.3 转动惯量	14
		8.2.4 古尔丁定理	14
IV	7 微	t分方程	4
9	n 阶	线性微分方程	L4
	9.1	线性相关	14
10	一阶	线性微分方程	L4
11	二阶	线性微分方程	15
			15
12	n 阶	常系数线性齐次微分方程	15
	12.1	特征方程	15
	12.2	通解对应项	15

	3 二阶常系数线性齐次微分方程	15
	13.1 特征方程	16
	13.2 通解	16
14	二阶常系数非齐次线性微分方程	16
	14.1 特解	16
	14.1.1 常系数非齐次通解的大致形式	16
	14.1.2 算子法求特解	17
15	5 全微分方程	17
	15.1 条件(微分换序)	17

Part I

极限

1 基础

1.1 常用极限

$$\begin{split} &\lim_{x\to 0^+} \left(1+\frac{1}{x}\right)^x &= 1 \\ &\lim_{x\to \infty} \left(1+\frac{1}{x}\right)^x &= \mathrm{e} \\ &\lim_{n\to \infty} \frac{1}{n} \sum_{i=1}^n f\left(\frac{i}{n}\right) &= \int_0^1 f\left(x\right) \mathrm{d}x \left(n \in \mathbb{N}^+\right) \end{split}$$

1.2 常用等价无穷小

x 为函数, $\lim_{x\to 0}$ 时, 可对乘除因子替换

 $x \sim \sin x \sim \tan x \sim \arcsin x \sim \arctan x$

$$x \sim (e^x - 1) \sim \ln(x + 1) \sim \ln\left(x + \sqrt{1 + x^2}\right)$$

$$x^3 \sim 6(x - \sin x) \sim 6(\arcsin x - x) \sim 3(\tan x - x)$$

$$x^3 \sim 3(x - \arctan x) \sim 2(\tan x - \sin x)$$

$$1 - \cos x \qquad \sim \frac{x^2}{2}$$

$$\log_a(1 + x) \qquad \sim \frac{x}{\ln a}$$

$$(1 + x)^a \qquad \sim ax + 1$$

$$a^x - 1 \qquad \sim x \ln a (0 < a \neq 1)$$

2 间断点

2.1 第一类间断点

$$\exists \lim_{x \to x_0^-} \mathbb{H} \exists \lim_{x \to x_0^+}$$

 $(1+ax)^{\frac{1}{bx}} \sim e^{\frac{a}{b}}(1-\frac{a^2}{2b}x)$

2.1.1 可去间断点

$$\lim_{x \to x_{0}^{-}} f\left(x\right) = \lim_{x \to x_{0}^{+}} f\left(x\right) = A\left(\iff \lim_{x \to x_{0}} f\left(x\right) = A\right)$$

2.1.2 跳跃间断点

$$\lim_{x \to x_0^-} f\left(x\right) \neq \lim_{x \to x_0^+} f\left(x\right)$$

2.2 第二类间断点

$$\lim_{x \to x_0^-}$$
 , $\lim_{x \to x_0^+}$ 至少满足有一个 \sharp

2.2.1 振荡间断点

左、右极限至少一个为振荡不存在

2.2.2 无穷间断点

左、右极限至少一个为 ∞

3 洛必达法则

3.1 使用条件

定义存在

$$x \in \mathring{U}(x_0)$$
 $(x_0$ 可取 ∞ $) , \exists f'(x_0), \exists g'(x_0)$

极限存在或为无穷

$$g'(x_0) \neq 0, \exists \lim_{x \to x_0} \frac{f'(x)}{g'(x)} \overrightarrow{\mathbb{R}} = \infty$$

符合 $\frac{0}{0}$ 或 $\frac{\cdot}{\infty}$

3.2 结论

$$\lim_{x \to x_0} \frac{f'(x)}{g'(x)} = A \implies \lim_{x \to x_0} \frac{f(x)}{g(x)} = A$$

$$\lim_{x \to x_0} \frac{f'(x)}{g'(x)} = \infty \implies \lim_{x \to x_0} \frac{f(x)}{g(x)} = \infty$$

$$\lim_{x \to x_0} \frac{f'(x)}{g'(x)} \implies \lim_{x \to x_0} \frac{f(x)}{g(x)}$$

4 泰勒展开

$$f(x) \sim \sum_{n \in \mathbb{N}} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

4.1 常用泰勒级数

$$\begin{array}{lll} \mathrm{e}^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + o\left(x^{3}\right) & = \sum_{n \in \mathbb{N}} \frac{x^{n}}{n!} \\ \sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} + o\left(x^{5}\right) & = \sum_{n \in \mathbb{N}} (-1)^{n} \frac{x^{2n+1}}{(2n+1)!} \\ \cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} + o\left(x^{4}\right) & = \sum_{n \in \mathbb{N}} (-1)^{n} \frac{x^{2n}}{(2n)!} \\ \tan x = x + \frac{1}{3}x^{3} + \frac{2}{15}x^{5} + o\left(x^{5}\right) & = \sum_{n \in \mathbb{N}} \frac{B_{2n}\left(-4\right)^{n}\left(1 - 4^{n}\right)^{2n-1}}{(2n)!} & x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \\ \arctan x = x - \frac{x^{3}}{3} + \frac{x^{5}}{5} + o\left(x^{5}\right) & = \sum_{n \in \mathbb{N}} \frac{(-1)^{n}}{2n+1}x^{2n+1} & x \in [-1, 1] \\ \arcsin x = x + \frac{1}{6}x^{3} + \frac{3}{40}x^{5} + o\left(x^{5}\right) & = \sum_{n \in \mathbb{N}} \frac{(2n)!}{4^{n}\left(n!\right)^{2}\left(2n+1\right)}x^{2n+1} & x \in (-1, 1] \\ \ln\left(1 + x\right) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} + o\left(x^{3}\right) & = \sum_{n \in \mathbb{N}} (-1)^{n-1} \frac{x^{n}}{n} & x \in (-1, 1] \\ \ln\left(1 - x\right) = -x - \frac{x^{2}}{2} - \frac{x^{3}}{3} + o\left(x^{3}\right) & = \sum_{n \in \mathbb{N}} (-x)^{n} & x \in (-1, 1] \\ \frac{1}{1 + x} = 1 - x + x^{2} - x^{3} + o\left(x^{3}\right) & = \sum_{n \in \mathbb{N}} (-x)^{n} & x \in (-1, 1) \\ \frac{1}{1 - x} = 1 + x + x^{2} + x^{3} + o\left(x^{3}\right) & = \sum_{n \in \mathbb{N}} \left(-x\right)^{n} & x \in (-1, 1) \\ (1 + x)^{\alpha} = 1 + \alpha x + \frac{\alpha\left(\alpha - 1\right)}{2!}x^{2} + o\left(x^{2}\right) & = \sum_{n \in \mathbb{N}} \left(\frac{\alpha}{n}\right)x^{n} & x \in (-1, 1) \end{array}$$

5 极限审敛

$$\lim_{x\to 0^+\atop y\to 0^+}\frac{x^py^q}{x^m+y^n}$$
 m 、 n 全为偶数且 $\frac{p}{m}+\frac{q}{n}>1$ 时 $\lim_{x\to 0^+\atop y\to 0^+\atop y\to 0^+}\frac{x^py^q}{x^m+y^n}=0$,否则不存在 $\frac{p}{m}+\frac{q}{n}\leqslant 1$ 时,路径 $y=kx^{\frac{m-p}{q}}$ 可说明极限不存在

Part II

导数

- 6 基础
- 6.1 求导法则

$$(f(x) + g(x))' = f'(x) + g'(x)$$

$$(f(x)g(x))' = f(x)g'(x) + f'(x)g(x)$$

$$(f(g(x)))' = f'(g(x))g'(x)$$

$$\left(\int_{v(x)}^{u(x)} f(t) dt\right)' = f[u(x)]u'(x) - f[v(x)]v'(x)$$

$$\left(\int_{v(x)}^{u(x)} f(x,t) dt\right)' = \int_{v(x)}^{u(x)} f'_x(x,t) dt + f[x,u(x)]u'(x) - f[x,v(x)]v'(x)$$

6.2 常用高阶导数

$$\sin^{(n)} \omega x = \omega^n \sin\left(\omega x + \frac{n\pi}{2}\right) \quad (n \in \mathbb{N})$$

$$\cos^{(n)} \omega x = \omega^n \cos\left(\omega x + \frac{n\pi}{2}\right) \quad (n \in \mathbb{N})$$

$$\ln^{(n)} (1+x) = (-1)^{n-1} \frac{(n-1)!}{(1+x)^n} \quad (n \in \mathbb{N}^+)$$

$$\ln^{(n)} (1-x) = -\frac{(n-1)!}{(1-x)^n} \quad (n \in \mathbb{N}^+)$$

6.3 莱布尼茨公式

$$(uv)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} u^{(n-k)} v^{(k)}$$

6.4 中值定理

定理	公式	约束
积分中值定理	$f(\xi) = \frac{\int_{a}^{b} f(x) dx}{x \Big _{a}^{b}}$	$\xi \in [a,b]$
罗尔中值定理	$f'(\xi) = 0$	$\xi \in (a,b)$
拉格朗日中值定理	$f'(\xi) = \frac{f(x) _a^b}{x _a^b}$	$\xi \in (a,b)$
柯西中值定理	$\frac{f'(\xi)}{g'(\xi)} = \frac{f(x) _a^b}{g(x) _a^b}$	$\xi \in (a,b)$

6.5 泰勒中值定理

 $R_n(x)$ 为余项

$$P_n(x) = \sum_{i=0}^{n} (x - x_0)^i \frac{f^{(i)}(x_0)}{i!} + R_n(x)$$

6.5.1 拉格朗日型余项

 ξ 介于 x,x_0

$$R_n(x) = (x - x_0)^{n+1} \frac{f^{(n+1)}(\xi)}{(n+1)!}$$

6.5.2 佩亚诺型余项

$$R_n(x) = o\left[(x - x_0)^n \right]$$

6.6 极值(拉格朗日乘数法)

二元情况

$$\begin{cases} \text{约束条件: } \varphi(x,y) = 0 \\ \text{目标函数: } f(x,y) \\ \begin{cases} \nabla f = \lambda \nabla \varphi \left(\mathbb{P} \nabla f \mid \nabla \varphi \right) \\ \varphi(x,y) = 0 \end{cases} \end{cases} \Longrightarrow \begin{cases} \text{解得几组 } (x_i,y_i) \text{ 即为可能的极值点} \\ \text{活无约束条件 } \varphi(x,y) = 0, \\ \text{可设约束为 } 0 = 0, \text{ } \mathbb{P} \nabla \varphi = (0,0) \\ \mathbb{P} \nabla f = (0,0) \end{cases}$$

检验可能的极值点 (x_0, y_0)

$$\begin{cases}
f_{xy}''^{2}(x_{0}, y_{0}) < f_{xx}''(x_{0}, y_{0}) f_{yy}''(x_{0}, y_{0}) \\
f_{xx}''(x_{0}, y_{0}) > 0
\end{cases} \implies f(x_{0}, y_{0})$$

$$f_{xx}''^{2}(x_{0}, y_{0}) < f_{xx}''(x_{0}, y_{0}) f_{yy}''(x_{0}, y_{0}) \\
f_{xx}''(x_{0}, y_{0}) < 0
\end{cases} \implies f(x_{0}, y_{0})$$

$$f_{xx}''(x_{0}, y_{0}) < 0
\end{cases} \implies f(x_{0}, y_{0})$$

$$f_{xx}''(x_{0}, y_{0}) < 0
\end{cases} \implies f(x_{0}, y_{0})$$

$$f_{xx}''(x_{0}, y_{0}) > f_{xx}''(x_{0}, y_{0}) f_{yy}''(x_{0}, y_{0}) \implies f(x_{0}, y_{0})$$

$$f_{xy}''(x_{0}, y_{0}) = f_{xx}''(x_{0}, y_{0}) f_{yy}''(x_{0}, y_{0}) \implies \text{a.i.}$$
高进一步讨论

n 元情况

$$\begin{cases} \text{约束条件\Phi: } \varphi_1\left(x_1,x_2,\cdots,x_n\right)=0\\ \varphi_2\left(x_1,x_2,\cdots,x_n\right)=0\\ \vdots\\ \varphi_{n-1}\left(x_1,x_2,\cdots,x_n\right)=0\\ \text{目标函数: } f\left(x_1,x_2,\cdots,x_n\right)\\ \\ \nabla f=\sum_i \lambda_i \nabla \varphi_i (\Xi \overline{\Lambda} \overline{n} \overline{n})\\ \text{约束条件\Phi} \end{cases} \Longrightarrow \mbox{解得几组}\left(x_1,x_2,\cdots,x_n\right) \mbox{即为可能的极值点}$$

6.7 隐函数存在定理

$$F(x,y)$$
 (二元)

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{F_x'}{F_y'} \left(F_y' \neq 0 \right)$$

$$F(x,y,z)$$
 (多元)

$$\frac{\partial y}{\partial x} = -\frac{F_x'}{F_y'} \left(F_y' \neq 0 \right)$$

6.8 雅可比行列式

$$\frac{\partial \left(\mathbf{u}_{1}, u_{2}, \cdots, u_{n}\right)}{\partial \left(x_{1}, x_{2}, \cdots, x_{n}\right)} = \begin{vmatrix} \partial_{x_{1}} \mathbf{u}_{1} & \partial_{x_{2}} \mathbf{u}_{1} & \cdots & \partial_{x_{n}} \mathbf{u}_{1} \\ \partial_{x_{1}} u_{2} & \partial_{x_{2}} u_{2} & \cdots & \partial_{x_{n}} u_{2} \\ \vdots & \vdots & \ddots & \vdots \\ \partial_{x_{1}} u_{n} & \partial_{x_{2}} u_{n} & \cdots & \partial_{x_{n}} u_{n} \end{vmatrix}$$

Part III

积分

- 7 基础
- 7.1 牛顿-莱布尼茨公式

$$\int_{a}^{b} f'(x) dx = f(x) \Big|_{a}^{b}$$

7.2 第一类换元(凑微分)法

$$\int f(x) g(x) dx = \int f(x) d\left(\int g(x) dx\right)$$

7.3 第二类换元法

$$\int f(x) dx = \int f(t) dt \Big|_{t=\varphi(x)}$$

$$\int_{a}^{b} f[\varphi(x)] dx = \int_{\varphi(a)}^{\varphi(b)} f(t) \frac{d\varphi^{-1}(t)}{dt} dt \Big|_{t=\varphi(x)}$$

7.4 分部积分

$$\begin{cases} u = u(x) \\ v = v(x) \end{cases}$$

$$uv = \int u dv + \int v du$$

$$uv|_a^b = \int_a^b u dv + \int_a^b v du$$

7.5 常用积分表

7.5.1 三角函数总表

$\int f(x) \mathrm{d}x + C$	f(x)	f'(x)	$\int f(x) \mathrm{d}x + C$	f(x)	f'(x)
$-\cos x$	$\sin x$	$\cos x$	$\sin x$	$\cos x$	$-\sin x$
$-\ln \cos x $	$\tan x$	$\sec^2 x$	$\ln \sin x $	$\cot x$	$-\csc^2 x$
$\ln\left \sec x + \tan x\right $	$\sec x$	$\sec x \tan x$	$-\ln\left \csc x + \cot x\right $	$\csc x$	$-\csc x \cot x$
	$\arcsin x$	$\frac{1}{\sqrt{1-x^2}}$		$\arccos x$	$-\frac{1}{\sqrt{1-x^2}}$
	$\arctan x$	$\frac{1}{1+x^2}$		$\operatorname{arccot} x$	$-\frac{1}{1+x^2}$
	arcsecx	$\frac{1}{ x \sqrt{x^2-1}}$		arccscx	$-\frac{1}{ x \sqrt{x^2-1}}$
$\cosh x$	$\sinh x$	$\cosh x$	$\sinh x$	$\cosh x$	$\sinh x$
$\ln \cosh x $	$\tanh x$	$\mathrm{sech}^2 x$	$\ln \sinh x $	$\coth x$	$-\operatorname{csch}^2 x$
$\arctan\left(\mathrm{e}^{x}\right)$	$\mathrm{sech}x$	$-\mathrm{sech}x\tanh x$	$-\ln \mathrm{csch}x + \mathrm{coth}x $	$\operatorname{csch} x$	$-\operatorname{csch} x \operatorname{coth} x$
	arsinhx	$\frac{1}{\sqrt{x^2+1}}$		$\operatorname{arcosh} x$	$\frac{1}{\sqrt{x^2 - 1}}$
	$\operatorname{artanh} x$	$\frac{1}{1-x^2}$		$\operatorname{arcoth} x$	$\frac{1}{1-x^2}$
	$\operatorname{arsech} x$	$-\frac{1}{ x \sqrt{1-x^2}}$		arcschx	$-\frac{1}{ x \sqrt{1+x^2}}$

7.5.2 其他

$$\int a^x dx = \frac{a^x}{\ln a} + C$$

$$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| + C$$

$$\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \arctan \frac{x}{a} + C$$

$$\int \frac{dx}{\sqrt{x^2 \pm a^2}} = \ln \left| x + \sqrt{x^2 \pm a^2} \right| + C$$

$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a} + C$$

7.5.3 华里士公式

$$\int_0^{\frac{\pi}{2}} \sin^n x dx = \int_0^{\frac{\pi}{2}} \cos^n x dx = \begin{cases} \frac{(n-1)!!}{n!!} \cdot \frac{\pi}{2} & n$$
为正偶数
$$\frac{(n-1)!!}{n!!} & n$$
为正奇数

7.6 区间再现

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a+b-x) dx$$

7.6.1 对称区间

$$\int_{-a}^{a} f(x) dx = \int_{0}^{a} [f(x) + f(-x)] dx$$

Definition 7.6.1 (以下极坐标方程中都有).

$$r = r(\theta)$$

7.7 极坐标图形面积

$$A = \iint_{\mathbb{R}} r \mathrm{d}r \mathrm{d}\theta = \frac{1}{2} \int_{\alpha}^{\beta} r^2 \mathrm{d}\theta$$

Definition 7.7.1 (以下参数方程中都有,且都可轮换).

$$\begin{cases} x = x(t) \\ y = y(t) \end{cases}$$

7.8 旋转体体积(参数方程)

绕 x 轴

圆盘法

$$V = \pi \int_{a}^{b} x' y^2 dt$$

柱壳法

$$V = 2\pi \int_{a}^{b} xy'ydt$$

7.9 旋转体侧面积(参数方程)

绕 x 轴

$$S = 2\pi \int_a^b y\sqrt{x'^2 + y'^2} dt$$

7.10 平面曲线弧长(参数方程)

$$s = \int_a^b \sqrt{x'^2 + y'^2} dt = \int_\alpha^\beta \sqrt{r^2 + r'^2} d\theta$$

7.11 平面曲线曲率(参数方程)

曲率半径 $\rho = K^{-1}$

$$K = \frac{|x'y'' - x''y'|}{(x'^2 + y'^2)^{\frac{3}{2}}}$$

在点 M(x,y) 处的曲率中心 (α,β) (曲率圆圆心) (不是参数方程)

$$\begin{cases} \alpha = x - \frac{y'(1 + y'^2)}{y''} \\ \beta = y + \frac{1 + y'^2}{y''} \end{cases}$$

曲率圆方程:

$$(x - \alpha)^2 + (y - \beta)^2 = \rho^2$$

8 重积分

8.1 二重积分

Definition 8.1.1 $(d\sigma = dxdy)$.

$$\iint\limits_{D} f\left(x,y\right) \mathrm{d}\sigma$$

8.1.1 换元

$$\begin{cases} x = x(u, v) \\ y = y(u, v) \\ J = \frac{\partial(x, y)}{\partial(u, v)} \Big|_{D'} \neq 0 \end{cases} \implies \iint_{D} f(x, y) \, \mathrm{d}x \mathrm{d}y = \iint_{D'} f(x, y) \, |J| \, \mathrm{d}u \mathrm{d}v$$

8.1.2 广义极坐标变换

$$\begin{cases} x(r,\theta) = x_0 + ar\cos\theta \\ y(r,\theta) = y_0 + br\sin\theta \end{cases} \implies \iint_D f(x,y) \, dx dy = ab \iint_D f(x,y) \, r dr d\theta$$

8.2 * 积分应用

密度为 $\rho(x,y)$ 或 $\rho(x,y,z)$

8.2.1 质量

$$M = \iint_{D} \rho(x, y) \, \mathrm{d}\sigma$$

8.2.2 质心

质心的 x 坐标为

$$\bar{x} = \frac{\iint\limits_{D} x \rho\left(x, y\right) d\sigma}{M}$$

$$\rho(\cdots) \equiv 1$$
 时, 质心相当于形心

8.2.3 转动惯量

绕x轴时

$$I_{x} = \iint_{D} y^{2} \rho(x, y) d\sigma$$

8.2.4 古尔丁定理

旋转体体积(平面图形 D 绕直线 l:Ax+By+C=0 旋转)

$$V = \iint_{D} 2\pi d_{l}(x, y) dxdy = 2\pi \iint_{D} \frac{|Ax + By + C|}{\sqrt{A^{2} + B^{2}}} dxdy$$

若 D 形心为 (x_0, y_0)

$$V = 2\pi d_l(x_0, y_0) S_D = 2\pi \frac{|Ax_0 + By_0 + C|}{\sqrt{A^2 + B^2}} \iint_D dxdy$$

Part IV

微分方程

9 n 阶线性微分方程

Definition 9.0.1.

$$y^{(n)} + \sum_{i=0}^{n-1} p_i(x) y^{(i)} = f(x)$$

9.1 线性相关

$$\frac{f(x)}{g(x)} = C(C \in \mathbb{C})$$

10 一阶线性微分方程

Definition 10.0.1 ($f(x) \equiv 0$ 时,为齐次).

$$(9.0.1) \atop n=1 \} \implies y' + P(x) y = f(x)$$

Theorem 10.0.1 (通解).

$$y = \frac{\int f(x) \exp(\int P(x) dx) dx + C}{\exp(\int P(x) dx)}$$

11 二阶线性微分方程

Definition 11.0.1.

$$y'' + P(x)y' + Q(x)y = f(x)$$

11.1 齐次、非齐次、通解、特解关系

齐特 + 齐特 (线性无关) = 齐通

齐通 + 非特 = 非通

齐特 + 非特 = 非特

非特 - 非特 = 齐特

12 n 阶常系数线性齐次微分方程

Definition 12.0.1.

$$y^{(n)} + \sum_{i=0}^{n-1} p_i y^{(i)} = 0 (p_i \in \mathbb{C})$$

12.1 特征方程

$$r^n + \sum_{i=0}^{n-1} p_i r^i = 0$$

12.2 通解对应项

k 重实根 r 在通解中对应项

$$y_r = \sum_{i=1}^k C_i x^{i-1} \cdot e^{rx}$$

特别的: r 为共轭复根($r = \alpha \pm \beta i$)时,可改写为两个实根

$$y_r = (C_1 \cos \beta x + C_2 \sin \beta x)e^{\alpha x}$$

13 二阶常系数线性齐次微分方程

Definition 13.0.1.

$$y'' + py' + qy = 0$$

13.1 特征方程

$$r^2 + pr + q = 0$$

13.2 通解

 $r_1 \neq r_2$

$$y = C_1 e^{r_1 x} + C_2 e^{r_2 x}$$

 $r_1 = r_2$

$$y = (C_1 + C_2 x) e^{r_1 x}$$

 $r_{1.2} = \alpha \pm \beta i$

$$y = (C_1 \cos \beta x + C_2 \sin \beta x)e^{\alpha x}$$

14 二阶常系数非齐次线性微分方程

Definition 14.0.1.

$$y'' + py' + qy = f(x)$$

14.1 特解

Theorem 14.1.1 (特解). \mathcal{P}_n 表示 n 次多项式

$$(14.0.1)$$

$$f(x) = \left[\mathcal{P}_{n_1}(x)\cos\omega x + \mathcal{P}_{n_2}(x)\sin\omega x\right]e^{\lambda x}$$

$$m = \max\{n_1, n_2\}$$

$$\Longrightarrow$$

$$y^* = x^k \left[\mathcal{U}_m(x) \cos \omega x + \mathcal{V}_m(x) \sin \omega x \right] e^{\lambda x} \begin{cases} k = 0 & (\lambda \pm \omega i \pi 是 特征方程根) \\ k = 1 & (\lambda \pm \omega i 是 特征方程根) \end{cases}$$

Theorem 14.1.2 (特解的特例). $\omega = 0$ 时, $m = n_1$

14.1.1 常系数非齐次通解的大致形式

$$y=$$
 C_1
 $a(x)$
 e^{r_1x}
 $+$
 C_2
 $b(x)$
 e^{r_2x}
 $+$
 $x^kc(x)$
 $e^{\lambda x}$
非齐次特解
非齐次特解

14.1.2 算子法求特解

Definition 14.1.1 (*D* 算子).

$$Df(x) = f'(x), \frac{1}{D}f(x) = \int f(x) dx$$

对于 (14.0.1):

$$y^* = \frac{1}{D^2 + pD + q} f(x) = \frac{1}{\mathcal{F}(D)} f(x)$$

若代入 D 后分母 $\mathcal{F}(D)$ 出现为 0 的状况,则(可多次使用,D 算子只对右侧 f(x) 有效):

$$y^* = x^n \frac{1}{\mathcal{F}(D)} f(x) \longrightarrow y^* = x^{n+1} \frac{1}{\mathcal{F}'(D)} f(x)$$

 $f(x) = \operatorname{Ce}^{kx}$: D 换为 k

$$y^* = \frac{1}{\mathcal{F}(D)} \operatorname{Ce}^{kx} = \frac{\operatorname{C}}{\mathcal{F}(k)}$$

 $f(x) = C \sin ax$ 或 $C \cos ax$: D^2 换为 $-a^2$ 若代入 D^2 后分母有 mD + n (mn > 0) 一次多项式,可以配平方将一次多项式化到分子,再代入 D^2 后直接使用 D 算子求导

 $f(x)=\mathcal{P}_n(x)$: 使用 $\frac{1}{1+x}=\sum\limits_{n\in\mathbb{N}}\left(-x\right)^n$ 泰勒展开 $\frac{1}{\mathcal{F}(D)}$ ($\mathcal{F}(D)-1$ 当作 x,不考虑收敛域),使得展开后 D 的最高次幂与 $\mathcal{P}_n(x)$ 相同即可

 $f(x) = e^{kx}y(x)$: 移位定理

$$y^* = \frac{1}{\mathcal{F}(D)} e^{kx} y(x) = e^{kx} \frac{1}{\mathcal{F}(D+k)} y(x)$$

 $f(x) = \mathcal{P}_n(x) \operatorname{C} \sin ax$:

$$y^* = \frac{1}{\mathcal{F}(D)} \mathcal{P}_n(x) \operatorname{C} \sin ax = \operatorname{Im} \left[\frac{1}{\mathcal{F}(D)} \mathcal{P}_n e^{\mathrm{i}ax} \right]$$

 $f(x) = \mathcal{P}_n(x) C \cos ax$:

$$y^* = \frac{1}{\mathcal{F}(D)} \mathcal{P}_n(x) C \cos ax = \text{Re}\left[\frac{1}{\mathcal{F}(D)} \mathcal{P}_n e^{iax}\right]$$

15 全微分方程

15.1 条件(微分换序)

$$P(x,y) dx + Q(x,y) dy = 0$$
是全微分方程 $\iff P'_y = Q'_x$