SPI (Serial Peripheral Protocol)

• Developed by Motorola for short distance commn.

Bus protocol

- SPI is bus protocol i.e. multiple devices can be connected on a single bus.
- SPI is multi-master bus protocol i.e. one bus can have multiple devices which can become master. However only one master at a time.
- Master generates clock and select (enable) the slave device to be communicated.

Physical characterics

- 4 wire bus protocol
- 4 wires
 - SCK/SCLK
 - MOSI/SDO
 - MISO/SDI
 - SS/CE
- Full duplex protocol
- Internally there is a single shift register used for tx & rx.
- TTL voltage levels

Logical characterics

- CPOL (Clock Polarity)
 - CPOL=0: Clock base is 0 and first edge is rising.
 - CPOL=1: Clock base is 1 and first edge is falling.
- CPHA (Clock Phase)
 - CPHA=0: Data is sampled/read on leading edge.
 - CPHA=1: Data is sampled/read on trailing edge.

CPOL CPHA Data reading

- 0 0 Rising
- 0 1 Falling
- 1 0 Falling
- 1 1 Rising
 - Data (single byte) write/read
 - Select the slave (SS=0)
 - Write/Read a byte of data (DR)
 - Deselect the slave (SS=1)

- Data (multi byte) write
 - Select the slave (SS=0)
 - Write internal address of slave
 - Write bytes of data (DR)
 - Deselect the slave (SS=1)
- SPI errors
 - Write Collision
 - Writing new data before current data is transmitted.
 - Read Overrun
 - Data is not read and new data arrive.
 - Mode Fault
 - Switch from Master mode to Slave mode when SS pin of current master device is cleared by some other device on bus.
 - Slave Abort
 - When slave device is not responding to master.

Applications

- SPI enabled LCD, RTC, EEPROM, ...
- SD-Card
- SPI-CAN bus (MCP-2515)

LPC1768 SPI

- Legacy SPI
 - SPI0
 - SPI is protocol.
- SSP (Serial Synchronous Port)
 - SSP0, SSP1.
 - SSP is 4-wire port that supports multiple protocols.
 - SPI Motorola
 - SSI TI
 - Microwire NS
 - 8-frame FIFO

BlueBoard SPI cct

- SSP0 --> Shift register (74HC595)
 - (P0.15) SCK --> SH_CP (Shift Clock) Rising edge

- (P0.16) SS (GPIO) --> ST CP (Storage Clock Pulse) Rising edge
- (P0.18) MOSI --> DS (Serial Data IN)
- (P0.17) MISO --> Q7' (Serial Data Out)

SPI/SSP Programming

- Pin selection
 - P0.15 as SCK0
 - PINSEL0[31:30] = 10
 - P0.17/P0.18 as MISO & MOSI
 - PINSEL1[3:2] & PINSEL1[5:4] = 10
 - P0.16 as GPIO (output)
 - PINSEL1[1:0] = 00
 - FIODIR to set as output
- CPSR register
 - Will divide PCLK to generate SPI clock.
 - Should be even number between 2 to 254.
 - Config: CPSR=2
 - PCLK = 18 MHz
 - SPI clock = 9 MHz
- CR0 register
 - bits[3:0] = 0111 for 8-bit transfer
 - bits[5:4] = 00 for SPI frame format
 - bit [6] = CPOL=1
 - bit [7] = CPHA=1
 - bits[15:8] = SCR
 - SPI clock = PCLK / (CPSDVSR * [SCR+1])
 - CPSDVSR = 2 (set in CPSR)
 - SCR = 0x00 (default)
 - SPI clock = 9 MHz
- CR1 register
 - bit[1] = SSP Enable(1) or Disable(0)
 - bit[2] = Master(0) or Slave(1)
- DR register
 - 4 to 16 bits
- SR register
 - bit[0] = Tx FIFO empty(1) or not empty(0).
 - bit[2] = Rx FIFO not empty(1) or empty(0).