2007 USAMO P1

LIN LIU

September 22, 2021

Problem

Let n be a positive integer. Define a sequence by setting $a_1 = n$ and, for each k > 1, letting a_k be the unique integer in the range $0 \le a_k \le k - 1$ for which $a_1 + a_2 + \ldots + a_k$ is divisible by k. For instance, when n = 9 the obtained sequence is $9, 1, 2, 0, 3, 3, 3, \ldots$. Prove that for any n the sequence a_1, a_2, \ldots eventually becomes constant.

Solution

Consider $b_i = \frac{a_1 + a_2 + ... + a_i}{i}$. Then notice that b_i is decreasing because

$$b_{i+1} = \frac{a_1 + a_2 + \dots + a_{i+1}}{i+1} > \frac{a_1 + a_2 + \dots + i}{i} = b_i + 1$$

Also notice that $b_i > 0$ for all i > 0 which means that b will become a constant eventually which means that a will also become a constant eventually.