Backward Propagation in CNN: Matrix Form

Forward Propagation in CNN

Forward Propagation in CNN

Input
$$\longrightarrow$$
 Conv 1 \longrightarrow Sigmoid \longrightarrow Flatten \longrightarrow FC 1 \longrightarrow Sigmoid \longrightarrow Output

Input = X $Z_1 = \text{conv}(X, f)$ $H_1 = \text{sigmoid}(Z_1)$ $Z_2 = W^T \cdot H_1 + b$ $O = \text{sigmoid}(Z_2)$
 $X = [100x22x22]$ $f = [3 \times 3]$ $H_1 = [100x20x20]$ $H_1 = [400 \times 100]$ $W^T = [1 \times 400]$ $O = [1 \times 100]$ $Z_1 = [100x20x20]$ $Z_2 = [1 \times 100]$

$$= (1X100)$$

$$= (1X100) * (1X100)$$

(400X100)

(1X100)

$$\frac{dE}{db} = \frac{dZ_2}{db_{ho}} \times \left[\frac{dE}{dO} * \frac{dO}{dZ_2} \right]^{T}$$

$$= conv((1X100) * (1X100) * (1X400) * (400X100), (100x22x22))$$

conv ((1X100) * (1X400) * (400X100), (100x22x22))

Thank You!

Forward Propagation in CNN

Input
$$\longrightarrow$$
 Conv 1 \longrightarrow Sigmoid \longrightarrow Flatten \longrightarrow FC 1 \longrightarrow Sigmoid \longrightarrow Output

Input = X $Z_1 = X * f$ $H_1 = sigmoid(Z_1)$ $Z_2 = W^T \cdot H_1 + b$ O = sigmoid(Z_2)

X = [100x22x22] $f = [5 \times 3 \times 3]$ $H_1 = [100x20x20x3]$ $W^T = [1200 \times 1]$ O = [1 x 100]

 $Z_1 = [100x20x20]$ $Z_2 = [1 \times 100]$

Parameters to be Updated

[1 x 100] * [1200 x 100]

Input = X
$$Z_1 = X * f$$
 $H_1 = \text{sigmoid}(Z_1)$ $Z_2 * W^T H_1 + b$ $O = \text{sigmoid}(Z_2)$

$$\frac{dE}{dW} = \frac{dE}{dO} * \frac{dO}{dZ_2} * \frac{dZ_2}{dW} = (O-Y) * O(1-O) * h_1$$

$$W^T = [1200 \times 1]$$

$$Error$$

$$\frac{dE}{dW} = \frac{dZ_2}{dW_{ho}} X \left[\frac{dE}{dO} * \frac{dO}{dZ_2} \right] = [1200 \times 100] * [1 \times 100] = [1200 \times 100]$$

Update equation

