Quantum Mechanics and Spectroscopy CHEM 3PA3 Assignment 17

- 1. Considering the Born-Oppenheimer approximation and neglecting the electron-electron interactions, what would be the energy of a 5 electron atom?
- 2. A Helium cation (He⁺) is described by the following wavefunction,

$$\Psi_{He^+}(\mathbf{r},t) = 0.5774\psi_{3s}(\mathbf{r},t) - 0.7071\psi_{3p_1}(\mathbf{r},t) + 0.4082\psi_{3d_2}(\mathbf{r},t).$$

Here, ψ_{label} are the normalized eigenfuctions of the He⁺ Hamiltonian and the subscripts indicate the n, l and m_l quantum numbers.

- (a) What is the expectation value for the energy in this system in atomic units?
- (b) What is the expectation value of the square magnitude of the total orbital angular momentum in terms of \hbar ?
- (c) What is the expectation value for the amount of orbital angular momentum about the z axis in terms of \hbar ?
- (d) What is the probability of obtaining "zero" when measuring the total orbital angular momentum of this system?
- (e) Does $\Psi(\mathbf{r},t)$ describe a stationary state?
- 3. Use first-order perturbation theory to calculate the first-order correction to the ground-state energy of a quartic oscillator whose potential energy is $V(x) = cx^4$. In this case, use a harmonic oscillator as the unperturbed system. What is the perturbing potential?
- 4. Consider a system subject to the potential $V(x) = kx^2/2 + \gamma_3 x^3/6 + \gamma_4 x^4/24$. Calculate the ground-state energy of this system using a trial function of the form $\phi = c_1 \psi_0(x) + c_2 \psi_2(x)$, where ψ_n are the harmonic-oscillator wavefunctions.
- 5. What are the values for the following quantum numbers for a state described by ^{5}I term symbol? When the term symbol is not sufficient to fully specify the quantum number, please list all the possible values.
 - (a) L (total orbital angular momentum)
 - (b) M_L (orbital angular momentum around the z-axis)
 - (c) S (total spin angular momentum)
 - (d) M_S (spin angular momentum around the z-axis)
- 6. What are the term symbols associated with the electron configurations, $2p^13p^1$ and $2p^2$?
- 7. An excited state of atomic calcium has the electron configuration $1s^22s^22p^63s^23p^63d^14f^1$,
 - (a) Derive all the term symbols for this electron configuration.
 - (b) Which term symbol corresponds to the lowest energy of this configuration?