Title: C-Language Empowered GPU Kernel Optimization Towards Greener AI

Abstract:

This paper examines how low-level programming, particularly in C/CUDA, can significantly impact kernel activity on GPU/TPU architectures, resulting in more efficient and environmentally conscious AI inference. With modern AI workloads consuming extensive computational and environmental resources, this investigation highlights how direct kernel control using C can improve memory access, computation throughput, and energy efficiency. We bridge the complex hardware-level theory and practical CUDA examples to present an accessible roadmap for optimizing AI workloads.

1. Introduction:

Artificial Intelligence (AI) models, profound deep learning architectures, are increasingly deployed for real-time inference. These workloads demand intensive computation and memory bandwidth, often resulting in significant energy consumption. While high-level libraries such as TensorFlow and PyTorch simplify AI deployment, they abstract away hardware control, resulting in less optimized kernel executions. This paper advocates the use of C and CUDA to enable direct control over GPU kernel behavior for performance gain.

2. Background:

2.1. GPU Kernel Fundamentals

A GPU Kernel is a function executed by multiple threads in parallel. Each thread performs a small portion of a larger task. Optimizing this function directly determines how efficiently AI tasks can be executed.

Conceptual Idea Diagram:

2.2. Problem with High-Level Abstractions

High-Level APIs automatically generate kernels, often without tuning memory usage or thread patterns for specific hardware. This results in:

- Memory Latency
- Redundancy in Computation
- Poor Cache utilization

2.3. Role of C/CUDA in Low-Level Optimization

C, when extended with CUDA, for NVIDIA GPUs, enables developers to:

- Manually assign thread blocks and grid dimensions
- Used shared memory explicitly
- Minimize global memory access
- Perform instruction-level parallelism

3. Computational Idea: C as the Key to Kernel Intelligence

This idea stems from the notion that C-Level kernel writing allows fine-tuning of GPU/TPU behavior. Rather than relying on generic, opaque kernels, developers can hand-craft memory access, synchronization, and compute scheduling for:

- Faster inference time
- Lower thermal output
- Reduced energy consumption

4. Case Study: Shared Memory Matrix Multiplication in CUDA

```
#define TILE_SIZE 16
#define N 512
__global__ void MatMulShared(float *A, float *B, float *C, int N)
{
    __shared__ float Asub[TILE_SIZE][TILE_SIZE]; // tile from A
    __shared__ float Bsub[TILE_SIZE][TILE_SIZE]; // tile from B
    int row = blockIdx.y * TILE_SIZE + threadIdx.y;
    int col = blockIdx.x * TILE_SIZE + threadIdx.x;
    float sum = 0.0f;
    for (int tile = 0; tile < N / TILE_SIZE; ++tile) {</pre>
        Asub[threadIdx.y][threadIdx.x] = A[row * N + tile *
TILE_SIZE + threadIdx.x];
        Bsub[threadIdx.y][threadIdx.x] = B[(tile * TILE_SIZE +
threadIdx.y) * N + col];
        __syncthreads(); // wait for all threads
        for (int k = 0; k < TILE SIZE; ++k) {
            sum += Asub[threadIdx.y][k] * Bsub[k][threadIdx.x];
        }
        __syncthreads(); // reuse tile
    }
    C[row * N + col] = sum;
}
```

Explanation

- Shared Memory: Used to store titles from matrices A and B for faster access
- Thread Cooperation: Threads load data cooperatively and reuse it across computation
- Performance Benefit: Reduces global memory access, increasing throughput

5. Future Directions: TPU and MLIR/XLA

While TPUs don't currently allow direct C access, compilers like MLIR and XLA could benefit from C-style thinking:

- Considering memory locality in loop fusion
- Optimize tensor layout
- Prioritize low-level IR tuning

Future hardware-aware compilers may expose more granular kernel tuning hooks for TPU accelerators.

6. Conclusion

By stepping beyond high-level abstractions and embracing C/CUDA, we can unlock granular control over kernel behavior, enabling powerful performance gains and environmental efficiency. This approach bridges the gap between AI's increasing resource demands and the imperative for sustainable computing.

Appendix: Installation of CUDA and Run .cu Files

- Install the CUDA Toolkit
- Visit: https://developer.nvidia.com/cuda-downloads
- Choose the operating system and follow the installation instructions

Confirm installation using:

Setup Environment

Ensure CUDA is added to the system PATH

Example path:

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.X\bin

Run the Executable

```
./matmul # Linux/macOS
matmul.exe # Windows
```

Compile and Run

nvcc matmul.cu -o matmul

Tips:

- N.B. Start with small matrix sizes for testing
- Match the CUDA version to your GPU driver
- Use GPU-Z or Nvidia-Smi to monitor usage

Keywords

• C language, GPU kernel, CUDA, shared memory, AI inference, optimization, eco-friendly AI, TPU, MLIR, XLA