Names	Values	Expressions
Binding	(Norme, Value	
The meaning not ek	of a con auge - stat	spuct should ic binding
		a "skucture"
let $x = 1$; let $x = 2$;		
MASKED ZZ	[x]	x 2
LOCAL BINDINGS let na	s me = exp, in	- exp2
1 Evaluate & 2 Bind na	exp, to get ?	ent it on top of the eno.
1 When this	evaluation is	s complete
semove 1	Le binding	from E

let se= 1 in let y = x in let 3 = 2 in y+3;; let x= 1 in let foo n = n + x in let x = 2 in foo x; foo ntx foo x

let for = ---
let bar = --- for --
for has an every, it needs to be corrected

let for = --- (correction) --
bar will remember the old definition.

You need to re-evaluate bor as well.

Let myadd a b = a + b $\equiv \text{ let myadd} = \text{ fun } a \rightarrow \text{ (fun } b \rightarrow a + b)$

let rec insert (n, l) = match I with $[n] \longrightarrow [n]$ | x::xs -> if n < x then n:: l else x: (insert n xs) ASSUMPTION; lie already sorted WHAT WE WANT: output is also sorted. Proof by induction on the length of l Base case later l=[] output = [n], is it sorted? Yes! Inductive case Assume insert works correctly when Ill & k for some k>0 Now we consider an l of length k+1 I is a number, IIS = k. output: case (a) $n \le x$, n:=(x:=xs) is clearly sorted case (b) n>x 2: (insert n x 8) x ≤ anything in xs (insert n 28) is sorted by inductive assumption