APS - Econometria Avançada

Grupo 3

Pedro Marinho, Victor Alves, João Casella, Pedro Ongaratto, João Gabriel Gomes

a)

Gráfico 1 - Série temporal de preços da VALE3

Fonte: Elaboração própria, 2022.

O gráfico do preço das ações da VALE apresentou um preço relativamente constante de 2008 até 2016. Em seguida, teve uma crescente até 2019 e permaneceu sem grandes alterações até 2020. Entre 2020 e 2022 o valor da ação explodiu variando em até +120% em um período de menos de 2 anos. Esse período de alta volatilidade pode ser explicado pela volatilidade no preço do minério de ferro (mais bem explicado em "b").

Como a Vale é uma das maiores empresas mineradoras do mundo e a extração de ferro compõe a maior parcela das operações faria sentido o valor das cotas da empresa estar positivamente correlacionado com o preço do minério de ferro que será explicado a seguir.

FERRO

240
200
160
120
80
40
0
2008 2010 2012 2014 2016 2018 2020 2022

Gráfico 2 - Série temporal de preços de ferro

Dentre os fatores que podem explicar a recente queda na cotação do minério de ferro, observa-se o cenário de alta inflação chinesa: a China (o maior consumidor de ferro do mundo) tem pressionado seus investimentos para uma queda na cotação do minério. Na intenção de diminuir sua inflação crescente, o país optou nos últimos anos por diminuir sua produção e limitar os níveis de demanda para importação. Em suma, observa-se um cenário de baixa produtividade do minério nos países. Vê-se uma intenção internacional de combate às altas inflacionárias e de alta influência chinesa no setor, uma vez que o país é o maior consumidor de ferro do mundo. É evidente que houve uma alta em junho de 2021 na cotação do minério, caindo bruscamente durante o mesmo ano. Essa desaceleração pode ser explicada pela aquisição feita pelo país de 80% da produção total mundial em 2020 e a pressão de controle inflacionário causando um choque nos preços.

No 1T22, a produção de minério de ferro apresentou uma queda de 13% no comparativo anual, somando 200 milhões de toneladas produzidas no 1T22. Além disso, obteve-se um faturamento acumulado do setor de R\$56,2 bilhões, com queda de 31% desde o trimestre anterior (4T21) e queda de 20% no comparativo anual (1T22 X 1T21). Os estados com maiores participações na atividade mineradora de ferro brasileiro são PA e MG, com 41% e 36% de participação respectivamente. Tratando de comércio exterior, as exportações minerais caíram 22,8% no comparativo anual e 21,3% no trimestre. As importações cresceram 119,9% no comparativo anual e caíram 3,1% no trimestre. Observa-se que o saldo mineral representa

52% do saldo brasileiro durante esse 1T22. A média anual da cotação do ferro em 1T22 foi de 141,33 US\$/t, com alta de 47,5% em relação a 1T21.

c)

120 100 80 60 40 20 0 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 VALES — FERRO

Gráfico 3 - Série temporal de preços da VALE3 e ferro

Fonte: Elaboração própria, 2022.

O gráfico acima mostra como as cotações da VALE3 são voláteis a impactos sistemáticos, ou seja, tem seus preços facilmente moldados por impactos no preço do minério de ferro e na produção setorial global. É evidente como, nos últimos dois anos, as cotações da empresa acompanharam os grandes movimentos do mercado, como efeito da guerra comercial na Austrália; da baixa demanda na construção civil; da massiva influência chinesa no setor; dentre outros.

d)

5.6 5.2 4.8 5.0 4.5 4.0 **4** 0 3.5 3.0 3.6 2.0 15 17 14 16 Log VALE3 -- Log FERRO

Gráfico 4 - Série temporal do logaritmo natural de preços da VALE3 e ferro

Fonte: Elaboração própria, 2022.

O gráfico acima, comparado com o gráfico das séries não transformadas pelo logaritmo natural, embora se mostre levemente linearizado, não teve mudanças muito drásticas (a não ser a alteração nos eixos causada pela transformação). O comportamento das séries se manteve parecido com a transformação. Se fosse desejada uma alteração tal que as séries tivessem suas médias constantes, e variâncias constantes, faria-se a primeira diferença.

e)
A seguir, o teste ADF do log do preço do ferro, para identificar a presença ou não de raízes unitárias:

Hipóteses do teste:

 $H_0^{}$: $\gamma = 0$ [log do preço do ferro possui raiz unitária]

 $\boldsymbol{H}_{\!\scriptscriptstyle A}\!:\!\gamma<0$ [\log do preço do ferro não possui raiz unitária]

No teste, para que o erro seja ruído branco, o número de defasagens da variável dependente que será incluído na equação auxiliar foi avaliado pelo critério SIC (Schwarz Information Criterion). Observa-se que, durante o processo de compreensão da série, foram aplicados dois teste ADF, um deles pensando que a série apenas controla-se com intercepto, e o outro que se controla com tendência e intercepto (trazendo a ideia de que a série possui tendência

determinística). Porém, ao observar o gráfico da série, optou-se pela primeira opção, já que a série não parece possuir uma regra que molda sua tendência.

Com um nível de significância de 5%, para o tamanho amostral de 184 observações, tem-se que a hipótese nula não será rejeitada, já que o p-valor de 0.0984 é maior do que o nível de significância de 5%. Dessa forma, conclui-se que o log do preço do ferro possui raiz unitária.

Tabela 1 - ADF do log do preço do ferro - c/ intercepto

Null Hypothesis: LFERRO has a unit root Exogenous: Constant Lag Length: 1 (Automatic - based on SIC, maxlag=22)								
			t-Statistic	Prob.*				
Augmented Dickey-Fu Test critical values:	ller test statisti 1% level 5% level 10% level		-2.582426 -3.465977 -2.877099 -2.575143	0.0984				
*MacKinnon (1996) on	e-sided p-value	es.						
Dependent Variable: D(LFERRO) Method: Least Squares Date: 10/11/22 Time: 14:33 Sample (adjusted): 2007M03 2022M06 Included observations: 184 after adjustments								
Method: Least Square: Date: 10/11/22 Time: Sample (adjusted): 20	s 14:33 07M03 2022M0		t-Statistic	Prob.				
Method: Least Square: Date: 10/11/22 Time: Sample (adjusted): 20 Included observations: Variable	s 14:33 07M03 2022M0 184 after adju Coefficient	Std. Error						
Method: Least Square: Date: 10/11/22 Time: Sample (adjusted): 20 Included observations: Variable LFERRO(-1)	14:33 07M03 2022M0 184 after adju Coefficient -0.047731	Std. Error 0.018483	-2.582426	0.0106				
Method: Least Square: Date: 10/11/22 Time: Sample (adjusted): 20 Included observations: Variable	s 14:33 07M03 2022M0 184 after adju Coefficient	Std. Error	-2.582426 5.111100	0.0106				

Tabela 2 - ADF para log do preço do retorno do ferro - c/ intercepto e tendência

Null Hypothesis: LFERRO has a unit root Exogenous: Constant, Linear Trend Lag Length: 1 (Automatic - based on SIC, maxlag=22) t-Statistic Prob.* Augmented Dickey-Fuller test statistic
Test critical values: 1% level -2.638392 0.2639 -4.008706 5% level -3.434433 10% level -3.141157 *MacKinnon (1996) one-sided p-values. Augmented Dickey-Fuller Test Equation Dependent Variable: D(LFERRO) Method: Least Squares Date: 10/11/22 Time: 14:35 Sample (adjusted): 2007M03 2022M06 Included observations: 184 after adjustments Variable Coefficient Std. Error t-Statistic Prob. LFERRO(-1) -0.050164 0.019013 -2 638392 0.0091 D(LFERRO(-1)) 0.355994 0.069594 5 115322 0.0000 0.241459 2.615815 0.092308 0.0097 C @TREND("2007M01") -8.03E-05 0.000142 -0.564356 0.5732 R-squared 0.142984 Mean dependent var 0.002492 0.128700 Adjusted R-squared S.D. dependent var 0.106977 0.099856 -1.748666 S.E. of regression Akaike info criterion Sum squared resid 1.794837 Schwarz criterion -1.678776 Log likelihood 164.8773 Hannan-Quinn criter -1.720339F-statistic 10 01035 Durbin-Watson stat 1.922394 Prob(F-statistic) 0.000004

Fonte: Elaboração Própria, 2022.

f)

A seguir, o teste ADF do log do preço da VALE3, para identificar a presença ou não de raízes unitárias:

Hipóteses do teste:

 H_0 : $\gamma = 0$ [$log\ do\ preço\ da\ VALE3\ possui\ raiz\ unitária$]

 $H_{_A}$: $\gamma < 0$ [$log\ do\ preço\ da\ VALE3\ n\~{a}o\ possui\ raiz\ unit\'aria$]

No teste, para que o erro seja ruído branco, o número de defasagens da variável dependente que será incluído na equação auxiliar foi avaliado pelo critério SIC (Schwarz Information Criterion). Observa-se que, durante o processo de compreensão da série, foram aplicados dois teste ADF, um deles pensando que a série apenas controla-se com intercepto, e o outro que se controla com tendência e intercepto (trazendo a ideia de que a série possui tendência determinística). Porém, de forma muito semelhante ao entendimento do item anterior, ao

observar o gráfico da série, optou-se pela primeira opção, já que a série não parece possuir uma regra que molda sua tendência.

Com um nível de significância de 5%, para o tamanho amostral de 184 observações, tem-se que a hipótese nula não será rejeitada, já que o p-valor de 0.8463 é maior do que o nível de significância de 5%. Dessa forma, conclui-se que o log do preço da VALE3 possui raiz unitária.

Tabela 3 - ADF para log do preço da VALE3 - c/ intercepto

Null Hypothesis: LVALE Exogenous: Constant Lag Length: 0 (Automa			22)				
t-Statistic Pr							
Augmented Dickey-Ful Test critical values:	ller test statisti 1% level 5% level 10% level		-0.686535 -3.465780 -2.877012 -2.575097	0.8463			
*MacKinnon (1996) on	e-sided p-value	es.					
Augmented Dickey-Fuller Test Equation Dependent Variable: D(LVALE) Method: Least Squares Date: 10/11/22 Time: 15:56 Sample (adjusted): 2007M02 2022M06 Included observations: 185 after adjustments							
Dependent Variable: D Method: Least Squares Date: 10/11/22 Time: Sample (adjusted): 200	(LVALE) s 15:56 07M02 2022M0	06	t-Statistic	Prob.			
Dependent Variable: D Method: Least Squares Date: 10/11/22 Time: Sample (adjusted): 200 Included observations:	(LVALE) s 15:56 07M02 2022M0 185 after adju	06 stments	t-Statistic -0.686535 0.842620	Prob. 0.4932 0.4005			

Tabela 4 - ADF para log do preço da VALE3 - c/ intercepto e tendência

Lag Length: 0 (Automat				
			t-Statistic	Prob.*
Augmented Dickey-Full	er test statisti	С	-1.279541	0.8897
Test critical values:	1% level		-4.008428	
	5% level		-3.434299	
	10% level		-3.141079	
*MacKinnon (1996) one	-sided p-value	es.		
Dependent Variable: D(Method: Least Squares	•			
	, 15:57 7M02 2022M0			
Method: Least Squares Date: 10/11/22 Time: ' Sample (adjusted): 200	, 15:57 7M02 2022M0		t-Statistic	Prob.
Method: Least Squares Date: 10/11/22 Time: ' Sample (adjusted): 200 ncluded observations:	15:57 7M02 2022M0 185 after adju Coefficient -0.021067	Std. Error 0.016465	-1.279541	0.2023
Method: Least Squares Date: 10/11/22 Time: : Sample (adjusted): 200 ncluded observations: Variable LVALE(-1) C	15:57 7M02 2022M0 185 after adju Coefficient -0.021067 0.057272	Std. Error 0.016465 0.048879	-1.279541 1.171716	0.2023 0.2428
Method: Least Squares Date: 10/11/22 Time: Sample (adjusted): 200 ncluded observations: Variable LVALE(-1)	15:57 7M02 2022M0 185 after adju Coefficient -0.021067	Std. Error 0.016465	-1.279541	0.2023
Method: Least Squares Date: 10/11/22 Time: : Sample (adjusted): 200 ncluded observations: Variable LVALE(-1) C	15:57 7M02 2022M0 185 after adju Coefficient -0.021067 0.057272	Std. Error 0.016465 0.048879	-1.279541 1.171716 1.328003	0.2023 0.2428
Method: Least Squares Date: 10/11/22 Time: ' Sample (adjusted): 200 ncluded observations: Variable LVALE(-1) C @TREND("2007M01")	15:57 7M02 2022M0 185 after adju Coefficient -0.021067 0.057272 0.000217	Std. Error 0.016465 0.048879 0.000163 Mean dependence S.D. dependence	-1.279541 1.171716 1.328003 dent var	0.2023 0.2428 0.1858 0.007769
Method: Least Squares Date: 10/11/22 Time: ' Sample (adjusted): 200 ncluded observations: Variable LVALE(-1) C @TREND("2007M01") R-squared	15:57 7M02 2022M0 185 after adju Coefficient -0.021067 0.057272 0.000217	Std. Error 0.016465 0.048879 0.000163 Mean depen	-1.279541 1.171716 1.328003 dent var	0.2023 0.2428 0.1858
Method: Least Squares Date: 10/11/22 Time: ' Sample (adjusted): 200 ncluded observations: Variable LVALE(-1) C @TREND("2007M01") R-squared Adjusted R-squared S.E. of regression Sum squared resid	15:57 7M02 2022MC 185 after adju Coefficient -0.021067 0.057272 0.000217 0.012141 0.001286 0.101273 1.866642	Std. Error 0.016465 0.048879 0.000163 Mean depen S.D. depend Akaike info of Schwarz cri	-1.279541 1.171716 1.328003 dent var dent var criterion terion	0.2023 0.2428 0.1858 0.007769 0.101338 -1.725905 -1.673683
Method: Least Squares Date: 10/11/22 Time: ' Sample (adjusted): 200 ncluded observations: Variable LVALE(-1) C @TREND("2007M01") R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	15:57 7M02 2022MC 185 after adju Coefficient -0.021067 0.057272 0.000217 0.012141 0.001286 0.101273 1.866642 162.6462	Std. Error 0.016465 0.048879 0.000163 Mean depen S.D. depend Akaike info of Schwarz cri Hannan-Qui	-1.279541 1.171716 1.328003 dent var Jent var Friterion terion nn criter.	0.2023 0.2428 0.1858 0.007769 0.101338 -1.725905 -1.673683 -1.704741
Method: Least Squares Date: 10/11/22 Time: ' Sample (adjusted): 200 ncluded observations: Variable LVALE(-1) C @TREND("2007M01") R-squared Adjusted R-squared S.E. of regression Sum squared resid	15:57 7M02 2022MC 185 after adju Coefficient -0.021067 0.057272 0.000217 0.012141 0.001286 0.101273 1.866642	Std. Error 0.016465 0.048879 0.000163 Mean depen S.D. depend Akaike info of Schwarz cri	-1.279541 1.171716 1.328003 dent var Jent var Friterion terion nn criter.	0.2023 0.2428 0.1858 0.007769 0.101338 -1.725905

g)

Em Econometria de Séries Temporais, a relação de equilíbrio de longo prazo identificada por Tessari é chamada correlação. Em forma prática, entende-se que existe uma relação de interdependência no longo prazo entre os valores admitidos por essas variáveis. É importante, contudo, discernir entre acontecimentos individuais a cada empresa e acontecimentos que impactam o setor como um todo. Assim, o comportamento dessas cotações nunca será exatamente o mesmo por longos períodos de tempo. Para as séries abordadas na questão, é observável a existência de correlação entre as duas séries no mesmo tempo "t" por se tratarem do mesmo produto comercializado. Como o principal minério produzido e vendido pela VALE3 é o ferro e que o minério tem grande peso no setor minerador brasileiro, é evidente a maneira à qual os impactos sofridos pelo setor minerador a efeitos da economia global irão diretamente afetar as cotações da empresa. Assim, com baixas cotações de ferro, por exemplo, a empresa terá um faturamento menor, diminuindo o valor de suas ações na maioria das situações.

Gráfico 5 - Série temporal do log-retorno do preço do ferro

Somente pela observação do gráfico acima, observa-se uma série que aparenta possuir média e variância constantes, evidências de uma possível estacionariedade. Assim, para melhor compreender a série, aplicou-se o teste ADF, que observa a existência ou não de raízes unitárias. O teste de raízes unitárias facilita a percepção sobre a existência de tendências na série. Assim, se existir pelo menos uma raiz unitária, a série possuirá tendência estocástica.

A seguir, as hipóteses do teste ADF da série Log-Retorno do preço do Ferro:

 H_0 : $\gamma=0$ [log retorno do preço do ferro possui raiz unitária] H_A : $\gamma<0$ [log retorno do preço do ferro não possui raiz unitária]

Tabela 5 - ADF log-retorno do ferro - c/ intercepto

Null Hypothesis: LOGR Exogenous: Constant Lag Length: 0 (Automat			:22)	
			t-Statistic	Prob.*
Augmented Dickey-Full	er test statisti	c	-9.569389	0.0000
Test critical values:	1% level		-3.465977	
	5% level		-2.877099	
	10% level		-2.575143	
*MacKinnon (1996) one	-sided p-value	es.		
Augmented Dickey-Full Dependent Variable: D(
Augmented Dickey-Full Dependent Variable: D(Method: Least Squares Date: 10/11/22 Time: Sample (adjusted): 200 Included observations:	LOGRETĖEF 17:17 7M03 2022M0	RRO) 06	t-Statistic	Prob.
Dependent Variable: D(Method: Least Squares Date: 10/11/22 Time: Sample (adjusted): 200 Included observations: Variable	LOGRETFEF 17:17 7M03 2022M0 184 after adju Coefficient	RRO) 06 stments Std. Error		
Dependent Variable: D(Method: Least Squares Date: 10/11/22 Time: Sample (adjusted): 200 Included observations:	LOGRETFEF 17:17 7M03 2022M0 184 after adju	RRO) 06 stments	t-Statistic -9.569389 0.209032	
Dependent Variable: D(Method: Least Squares Date: 10/11/22 Time: Sample (adjusted): 200 Included observations: Variable LOGRETFERRO(-1) C	17:17 7M03 2022M0 184 after adju Coefficient -0.668804 0.001560	06 stments Std. Error 0.069890 0.007464	-9.569389 0.209032	0.0000 0.8347
Dependent Variable: D(Method: Least Squares Date: 10/11/22 Time: Sample (adjusted): 200 Included observations: Variable LOGRETFERRO(-1) C R-squared	LOGRETÉEF 17:17 7M03 2022M0 184 after adju Coefficient -0.668804 0.001560 0.334730	RRO) 06 stments Std. Error 0.069890 0.007464 Mean depen	-9.569389 0.209032 ident var	0.0000 0.8347 -0.000321
Dependent Variable: D(Method: Least Squares Date: 10/11/22 Time: : Sample (adjusted): 200 Included observations: Variable LOGRETFERRO(-1) C R-squared Adjusted R-squared	LOGRETFEF 17:17 7M03 2022M0 184 after adju Coefficient -0.668804 0.001560 0.334730 0.331075	RRO) 06 stments Std. Error 0.069890 0.007464 Mean depens.D. dependence	-9.569389 0.209032 ident var	0.0000 0.8347 -0.000321 0.123745
Dependent Variable: D(Method: Least Squares Date: 10/11/22 Time:: Sample (adjusted): 200 Included observations: Variable LOGRETFERRO(-1) C R-squared Adjusted R-squared S.E. of regression	17:17 7M03 2022M0 184 after adju Coefficient -0.668804 0.001560 0.334730 0.331075 0.101209	Std. Error 0.069890 0.007464 Mean dependent of the control of th	-9.569389 0.209032 Ident var dent var criterion	0.0000 0.8347 -0.000321 0.123745 -1.732455
Dependent Variable: D(Method: Least Squares Date: 10/11/22 Time: Sample (adjusted): 200 Included observations: Variable LOGRETFERRO(-1) C R-squared Adjusted R-squared S.E. of regression Sum squared resid	17:17 7M03 2022M0 184 after adju Coefficient -0.668804 0.001560 0.334730 0.331075 0.101209 1.864260	Std. Error 0.069890 0.007464 Mean dependent of the street of the stree	-9.569389 0.209032 Ident var dent var criterion terion	0.0000 0.8347 -0.000321 0.123745 -1.732455 -1.697510
Dependent Variable: D(Method: Least Squares Date: 10/11/22 Time: Sample (adjusted): 200 Included observations: Variable LOGRETFERRO(-1)	17:17 7M03 2022M0 184 after adju Coefficient -0.668804 0.001560 0.334730 0.331075 0.101209	Std. Error 0.069890 0.007464 Mean dependent of the control of th	-9.569389 0.209032 Ident var dent var criterion terion inn criter.	0.0000 0.8347 -0.000321 0.123745 -1.732455

Fonte: Elaboração Própria, 2022.

Pelo teste ADF, tem-se que a série de Log-Retornos do preço do Ferro não possui raízes unitárias, já que o p-valor da série é zero, sendo, portanto, menor do que o nível de significância de 5%. Se não há raízes unitárias, exclui-se a possibilidade de existência de tendência estocástica.

Partindo dessas interpretações, parte-se para uma análise da FAC e da FACP da série Log-Retorno do preço do ferro, para que então se possa propor um modelo de estimação. Para observar essas informações, construiu-se o correlograma da série.

Gráfico 5 - Correlograma do log-retorno do preço do ferro

Date: 09/21/22 Tim Sample (adjusted): 2 Included observation Autocorrelation	2007M02 2022M06	ents	s AC	PAC	Q-Stat	Prob
ı 🗀		1	0.331	0.331	20.623	0.000
1 1			-0.016		20.672	0.000
101	1 1		-0.044	0.010	21.037	0.000
1 🛮 1	101	4	-0.062	-0.059	21.774	0.000
1 🗓 1	ı 📶	5	0.064	0.116	22.566	0.000
1 🗓 1	1 1	6	0.075	0.003	23.647	0.001
1 1	1 🛮 1	7	-0.029	-0.056	23.814	0.001
1 1	1 11	8	-0.000	0.043	23.814	0.002
1 1	1 1	9	0.010	0.002	23.835	0.005
1 1	1 1	10	0.026	0.026	23.966	0.008
10 1	ı <u>d</u> ı	11	-0.054	-0.101	24.546	0.011
(10 1	12	-0.138	-0.084	28.327	0.005
□ 1	10 1	13	-0.149	-0.086	32.773	0.002
□ :	ı <u> </u>	14	-0.145	-0.100	37.042	0.001
<u> </u>	10 1	15	-0.110	-0.070	39.484	0.001
10 1	10 1	16	-0.088	-0.072	41.082	0.001
101	1 1	17	-0.035	0.015	41.327	0.001
1 1	1 11	18	0.018	0.017	41.398	0.001
101	10 1	19	-0.048	-0.072	41.882	0.002
1 [1	1 1	20	-0.049	0.000	42.381	0.002
1 1	1 1	21	0.024	0.058	42.497	0.004
1 1	1 11	22	0.032	0.018	42.714	0.005
1 1	1 🛮 1	23	0.013	-0.024	42.750	0.007
1 1	1 1	24	0.007	0.002	42.761	0.011
1 [1	101	25	-0.029	-0.042	42.944	0.014
1 1	1 (1)	26	-0.004	-0.023	42.947	0.020
1 111	1 1	27	0.043	-0.013	43.353	0.024
1 [1	-	28	-0.034	-0.113	43.605	0.030
1 1	1 11	29	-0.003	0.020	43.608	0.040
1 11	1 1	30	0.039	0.003	43.951	0.048
1 🛅	1 🗓 1	31	0.089	0.066	45.716	0.043
1 11	101	32	0.033	-0.057	45.969	0.052
101	101	33	-0.071		47.126	0.053
1 🛭 1	1] 1		-0.034	0.044	47.395	0.063
ı <u>b</u> ı	ı b ı	35	0.106	0.123	50.001	0.048

A partir do correlograma construído, e na intenção de se identificar um modelo que seja qualificado para explicar a série temporal em questão, foram propostos e testados três possíveis modelos: ARMA(1,0), ARMA(0,1) e ARMA(1,1). O motivo pela escolha desses modelos foi por conta de uma interpretação ambígua dos correlogramas do nível dessa série. Em um primeiro momento, não soube se identificar com clareza se a FAC e a FACP decaem ou 'truncam', e em qual defasagem isso ocorre. Assim, entende-se que existe informação nos primeiros lags e que é necessário comparar a qualidade dos diferentes modelos. ARMA(1,0) assume que a FAC estaria decaindo e a FACP estaria truncando no primeiro lag; ARMA(0,1) assume que a FAC estaria truncando na primeira defasagem e a FACP estaria decaindo; e ARMA(1,1) assume que a FAC e FACP estão decaindo.

ARMA(1,0) - LOGRETFERRO

Para o modelo ARMA(1,0), que é o equivalente a um processo autorregressivo de primeira ordem (AR(1)), utilizou-se a noção de que a FAC decai e a FACP trunca no primeiro lag. Considerou-se a existência de intercepto para o modelo de estimação para admitir uma postura conservadora para a modelagem, porém observou-se que este não tem relevância no modelo, podendo muito bem ser removido - relevância observada com o p-valor do intercepto alto (p-valor de C = 0.8078). Esse modelo traz a interpretação, através do módulo de sua raiz invertida (raiz invertida = 0,33), de que a série é estacionária. Posteriormente, em um momento de comparação entre os modelos propostos, os valores dos critérios Akaike, Schwarz e Hannan-Quinn serão utilizados.

Tabela 6 - Modelo ARMA(1,0) c/ intercepto - log-retorno do ferro

Dependent Variable: LOG_RET_FERRO Method: ARMA Maximum Likelihood (OPG - BHHH) Date: 10/12/22 Time: 17:40 Sample: 2007M02 2022M06 Included observations: 185 Convergence achieved after 15 iterations Coefficient covariance computed using outer product of gradients Variable Coefficient Std. Error t-Statistic Prob. 0.002901 0.011904 0.243660 0.8078 AR(1) 0.329853 0.055191 5.976619 0.0000 SIGMASQ 0.010091 0.000894 11.28753 0.0000 R-squared 0.109831 Mean dependent var 0.002778 Adjusted R-squared 0.100049 S.D. dependent var 0.106757 0.101276 -1.725223 S.E. of regression Akaike info criterion Sum squared resid 1.866753 Schwarz criterion -1.673001 Log likelihood 162.5831 Hannan-Quinn criter. -1.704059 F-statistic 11 22777 Durbin-Watson stat 1.902066 Prob(F-statistic) 0.000025 Inverted AR Roots

Fonte: Elaboração Própria, 2022.

Análise Resíduos ARMA(1,0) - LOGRETFERRO

No propósito de identificar a qualidade do modelo em explicar o comportamento da série, foi aplicada uma análise dos resíduos do modelo em relação à série. Assim, essa análise se dividiu em três principais partes: observar, pelo correlograma dos resíduos, se o erro é um ruído branco; identificar se os erros são normalmente distribuídos; e avaliar se os erros têm comportamento homocedástico. Assim, caso algum desses critérios não tenha sido cumprido ao final da análise, não se pode afirmar que o modelo não é qualificado para explicar a série temporal em questão. O gráfico de linha traz um panorama geral da qualidade desse modelo

para explicar o comportamento da série: quanto mais a linha verde acompanha a linha laranja, mais o modelo acompanha o comportamento real da série.

O correlograma dos resíduos, rodado para 22 defasagens (número de dias úteis em um mês), apresentou p-valores grandes e FAC/FACP com valores dentro do intervalo de confiança, o que evidencia o erro ser um ruído branco.

Além disso, o teste de normalidade dos resíduos demonstra que os resíduos não são distribuídos normalmente, já que o p-valor é pequeno, a assimetria não é aproximada de zero e a curtose não é aproximada de três. Isso também pode ser facilmente observável pelo resultado Jarque-Bera, que é menor do que 5,1, não admitindo a normalidade.

Por fim, é observável que os resíduos são homocedásticos, uma vez que o p-valor indicado pelo teste ARCH é grande (maior do que o nível de significância de 5%), não capacitando a rejeição da hipótese nula.

Gráfico 6 - Resíduos e valores previstos do modelo ARMA(1,0) do log-retorno do preço do ferro

Gráfico 7 - Correlograma dos resíduos do modelo ARMA(1,0) do log-retorno do preço do ferro

Date: 10/12/22 Time: 17:42 Sample (adjusted): 2007M02 2022M06 Q-statistic probabilities adjusted for 1 ARMA term								
Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob		
- <u> </u>		1	0.048	0.048	0.4304			
d ·	d ·	2	-0.126	-0.129	3.4538	0.063		
101	1 1	3	-0.026	-0.013	3.5794	0.167		
ıЩ -	III	4	-0.085	-0.101	4.9573	0.175		
<u> </u>		5	0.075	0.082	6.0448	0.196		
ı ات ا ب	<u> </u>	6	0.080	0.048	7.2791	0.201		
141	'[['	7	-0.065	-0.055	8.0912	0.231		
1 1		8	0.007	0.025	8.1002	0.324		
1 1		9	0.003	0.001	8.1024	0.424		
<u> </u>	<u> </u>	10	0.048	0.060	8.5671	0.478		
1(1)	'['	11	-0.026	-0.054	8.6970	0.561		
· □ ·	'd '	12	-0.096	-0.074	10.544	0.482		
10 1	'[['	13	-0.080	-0.078	11.847	0.458		
ι α ι	<u> </u>	14	-0.085	-0.102	13.321	0.423		
141	'[['	15	-0.050	-0.080	13.828	0.463		
141	<u>"</u> '	16	-0.057	-0.104	14.486	0.489		
1(1		17	-0.017	-0.024	14.545	0.558		
<u> </u>		18	0.054	0.032	15.142	0.585		
'('	'['	19	-0.049	-0.061	15.634	0.618		
141	' '	20	-0.051	-0.039	16.181	0.645		
	 	21	0.036	0.040	16.452	0.688		
<u> </u>		22	0.026	0.039	16.595	0.735		

Gráfico 8 - Distribuição dos resíduos do modelo ARMA(1,0) do log-retorno do preço do ferro

Tabela 7 - Teste ARCH dos Resíduos ARMA (1,0)

F-statistic Obs*R-squared	0.977507 Prob. F(12,160) 11.81683 Prob. Chi-Square(12)		Prob. F(12,160) Prob. Chi-Square(12)			
Test Equation: Dependent Variable: Rt Method: Least Squares Date: 10/12/22 Time: 1 Sample (adjusted): 200 Included observations:	17:44 08M02 2022M0					
Variable	Coefficient	Std. Error	t-Statistic	Prob.		
С	0.006762	0.002675	2.527570	0.0125		
RESID^2(-1)	0.185308	0.078802	2.351550	0.0199		
RESID^2(-2)	-0.024419	0.079786	-0.306054	0.7600		
RESID^2(-3)	0.075144	0.079888	0.940622	0.3483		
RESID^2(-4)	-0.011492	0.080046	-0.143562	0.8860		
RESID^2(-5)	-0.011296	0.079941	-0.141309	0.8878		
RESID^2(-6)	-0.016534	0.080073	-0.206487	0.8367		
RESID^2(-7)	-0.042896	0.082802	-0.518054	0.6051		
RESID^2(-8)	0.041141	0.083843	0.490694	0.6243		
RESID^2(-9)	-0.015813	0.083951	-0.188360	0.8508		
RESID^2(-10)	-0.025774	0.083929	-0.307092	0.7592		
RESID^2(-11)	0.133631	0.088217	1.514793	0.1318		
RESID^2(-12)	0.083350	0.087978	0.947397	0.3449		
R-squared	0.068305	Mean depend	lent var	0.010352		
Adjusted R-squared	-0.001572	S.D. depende	ent var	0.018052		
S.E. of regression	0.018066	Akaike info cr		-5.117427		
Sum squared resid	0.052219	Schwarz crite	rion	-4.880475		
Log likelihood	455.6575	Hannan-Quin	n criter.	-5.021297		
F-statistic	0.977507	Durbin-Watso	n stat	1.991446		
· otationo	0.472600					

ARMA(0,1) - LOGRETFERRO

Para o modelo ARMA(0,1), que é o equivalente a um processo de médias móveis de primeira ordem (MA(1)), utilizou-se a noção de que a FAC trunca no primeiro lag e a FACP decai. Considerou-se a existência de intercepto para o modelo de estimação para admitir uma postura conservadora para a modelagem, porém observou-se que este não tem relevância no modelo, podendo muito bem ser removido - relevância observada com o p-valor do intercepto alto (p-valor de C = 0.7900 > 5% de significância). Esse modelo, por ser regido por um processo de médias móveis, entende a série como estacionária. O necessário, portanto, é observar se esse processo é invertível. Caso este não seja invertível, não fará sentido admiti-lo logicamente, pois informações passadas mais distantes no tempo (lag t-50, por exemplo) explicariam mais as informações no presente e no futuro do que informações mais próximas no tempo (lag t-1, por exemplo). Análoga à interpretação feita em AR(1), observa-se o módulo da raiz invertida do modelo para identificar a invertibilidade do mesmo: |-0,39| = 0,39 < 1, portanto, é invertível. Posteriormente, em um momento de

comparação entre os modelos propostos, os valores dos critérios Akaike, Schwarz e Hannan-Quinn serão utilizados.

Tabela 8 - Modelo ARMA(0,1) c/ intercepto - log-retorno do ferro

Dependent Variable: LOGRETFERRO Method: ARMA Maximum Likelihood (OPG - BHHH) Date: 09/21/22 Time: 11:40 Sample: 2007M02 2022M06 Included observations: 185 Convergence achieved after 16 iterations Coefficient covariance computed using outer product of gradients Variable Coefficient Std. Error Prob. t-Statistic 0.002929 0.010982 0.266752 0.7900 MA(1) 0.390684 0.058138 6.719963 0.0000 SIGMÁSO 0.009871 0.0000 0.000863 11.43331 R-squared 0.129235 Mean dependent var Adjusted R-squared 0.119666 S.D. dependent var 0.106757 S.E. of regression 0.100166 Akaike info criterion -1 746990 1 826061 -1 694768 Sum squared resid Schwarz criterion 164.5966 Hannan-Quinn criter. -1.725826 Log likelihood 13.50582 Durbin-Watson stat F-statistic 2.008152 Prob(F-statistic) 0.000003 Inverted MA Roots

Fonte: Elaboração Própria, 2022.

Análise de Resíduos ARMA(0,1) - LOGRETFERRO

A análise dos resíduos foi feita da mesma maneira descrita na ARMA(1,0):

Pelo correlograma dos resíduos, é evidente que os resíduos desse modelo ARMA(0,1) são classificados como ruído branco. Isso, pois a FAC e a FACP estão dentro do intervalo de confiança nas observações do correlograma.

Obtém-se do histograma da série dos resíduos do modelo ARMA(0,1) para o Log-Retorno do preço do ferro que os erros não se comportam em uma distribuição normal. Assim, o modelo ARMA(0,1) não pode ser considerado um modelo perfeito para explicar a série temporal admitida.

Os erros, quando observado o ARCH Test do modelo ARMA(0,1), são homocedásticos. Isso, pois os p-valores obtidos na saída são grandes, ou seja, não possibilitam a rejeição da hipótese nula de que os erros são homocedásticos.

Gráfico 9 - Correlograma dos resíduos do modelo ARMA(0,1) do log-retorno do preço do ferro

Date: 09/21/22 Time: 16:35 Sample (adjusted): 2007M02 2022M06 Q-statistic probabilities adjusted for 1 ARMA term								
Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob		
		2 3 4 5 6 7 8 9 10	-0.011 -0.013 -0.080 0.067 0.073 -0.060 0.021 -0.010 0.039 -0.037	-0.011 -0.013 -0.080 0.066 0.072	1.2705 2.1297 3.1594 3.8518 3.9395 3.9611 4.2690 4.5405	0.866 0.970 0.736 0.712 0.675 0.697 0.787 0.861 0.893 0.920 0.845		

Gráfico 10 - Resíduos e valores previstos do modelo ARMA (0,1) do log-retorno do preço do ferro

Fonte: Elaboração Própria, 2022.

Gráfico 11 - Distribuição dos resíduos do modelo ARMA(0,1) do log-retorno do preço do ferro

Tabela 9 - Teste ARCH dos Resíduos ARMA(0,1)

F-statistic Obs*R-squared	1.562268 18.14444	Prob. F(12,1 Prob. Chi-So	0.1077 0.1114	
Test Equation: Dependent Variable: R Method: Least Square: Date: 09/21/22 Time: Sample (adjusted): 20 Included observations:	s 16:38 08M02 2022M0			
Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.005928	0.002552	2.322592	0.0215
RESID^2(-1)	0.239723	0.078538 3.052307		0.0027
RESID^2(-2)	-0.095538	0.080555	-1.185988	0.2374
RESID^2(-3)	0.116023	0.080982	1.432707	0.1539
RESID^2(-4)	-0.000249	0.081392	-0.003055	0.9976
RESID^2(-5)	-0.031094	0.081202	-0.382925	0.7023
RESID^2(-6)	0.017927	0.081566	0.219780	0.8263
RESID^2(-7)	-0.062397	0.085432	-0.730368	0.4662
RESID^2(-8)	0.053025	0.087053	0.609105	0.5433
RESID^2(-9)	-0.040288	0.087217	-0.461935	0.6448
RESID^2(-10)	-0.017128	0.087210	-0.196403	0.8445
RESID*2(-11)	0.129018	0.092201	1.399302	0.1637
RESID ² (-12)	0.132006	0.091111	1.448855	0.1493
R-squared	0.104881	Mean depen		0.010085
Adjusted R-squared	0.037747	S.D. depend		0.017777
S.E. of regression	0.017438	Akaike info		-5.188111
Sum squared resid	0.048656	Schwarz cri		-4.951158
Log likelihood	461.7716	Hannan-Qui		-5.091981
F-statistic	1.562268	Durbin-Wats	on otat	1.978265

MODELO ARMA(1,1) - LOGRETFERRO

O último modelo testado foi o ARMA(1,1), que leva em consideração a noção de que tanto a FACP quanto a FACP decaem, tal que a série possua uma parte autoregressiva de primeira ordem (possuindo uma única raiz) e uma parte regida por médias móveis (de um única raiz, também). Assim, é observável pela saída gerada com a estimação do modelo que os p-valores do AR(1) e do MA(1) são pouco relevantes (p-valores maiores do que o nível de significância de 5%) para explicar a série. A raíz invertida da parte AR(1), em módulo, indica que essa parte é estacionária (módulo menor do que 1); e a raiz invertida da parte MA(1), em módulo, mostra que essa parte do processo é invertível. Foi colocado um intercepto no modelo apenas por boa medida, ou seja, uma postura conservadora de abordagem. É evidente pelo seu p-valor, que esse intercepto não tem relevância em explicar a série, podendo ser removido do modelo.

Tabela 10 - Modelo ARMA(1,1) c/ intercepto - log-retorno do ferro

Dependent Variable: LOGRETFERRO Method: ARMA Maximum Likelihood (OPG - BHHH) Date: 09/21/22 Time: 11:28 Sample: 2007M02 2022M06 Included observations: 185 Convergence achieved after 20 iterations Coefficient covariance computed using outer product of gradients Coefficient Std. Error Prob. Variable t-Statistic 0.002922 0.010793 0.270750 C 0.7869 AR(1) -0.056352 0.201428 -0.2797640.7800 0.439885 2.230059 MA(1) 0.197253 0.0270 SIGMÀŚQ 0.009866 0.000863 11.43462 0.0000 Mean dependent var R-squared 0.129603 Adjusted R-squared 0.115176 S.D. dependent var 0.106757 S.E. of regression 0.100421 Akaike info criterion -1.736588 Sum squared resid 1.825290 Schwarz criterion -1.666959 Log likelihood 164.6344 Hannan-Quinn criter. -1.708369F-statistic 8 983674 Durbin-Watson stat 1.992909 Prob(F-statistic) 0.000014 Inverted AR Roots - 06 Inverted MA Roots - 44

Fonte: Elaboração Própria, 2022.

Análise de Resíduos ARMA(1,1) - LOGRETFERRO

A análise de resíduos para o modelo ARMA(1,1) foi feita da mesma maneira que os modelos ARMA(1,0) e ARMA(0,1) já observados:

Pelo correlograma dos resíduos, é evidente que os resíduos desse modelo ARMA(1,1) são classificados como ruído branco. Isso, pois a FAC e a FACP estão dentro do intervalo de confiança nas observações do correlograma.

Obtém-se do histograma da série dos resíduos do modelo ARMA(1,1) para o Log-Retorno do preço do ferro que os erros não se comportam em uma distribuição normal. Isso, pois o p-valor obtido é menor do que o nível de significância de 5%, rejeitando a hipótese nula de que a distribuição dos erros é Normal. Assim, o modelo ARMA(1,1) não pode ser considerado um modelo perfeito para explicar a série temporal admitida.

Os erros, quando observado o ARCH Test do modelo ARMA(1,1), são homocedásticos. Isso, pois os p-valores obtidos na saída são grandes, ou seja, não possibilitam a rejeição da hipótese nula de que os erros são homocedásticos.

Gráfico 12 - Resíduos e valores previstos do modelo ARMA (1,1) do log-retorno do preço do ferro

Gráfico 13 - Correlograma dos resíduos do modelo ARMA(1,1) do log-retorno do preço do ferro

Date: 09/21/22 Time: 16:30 Sample (adjusted): 2007M02 2022M06 Q-statistic probabilities adjusted for 2 ARMA terms							
Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob	
1 1		1	0.002	0.002	0.0010		
1 1	1 1	2	0.006	0.006	0.0073		
1 🛮 1		3	-0.022	-0.022	0.0968	0.756	
101	101	4	-0.074	-0.074	1.1366	0.566	
ı b ı		5	0.064	0.065	1.9185	0.589	
ı b ı		6	0.073	0.074	2.9475	0.567	
101		7	-0.058	-0.063	3.5931	0.609	
1 1	1 1 1	8	0.022	0.018	3.6837	0.719	
1 1	1 1	9	-0.011	0.003	3.7078	0.813	
ı j ı		10	0.038	0.043	3.9985	0.857	
ı d ı	1 1	11	-0.039	-0.058	4.3011	0.890	
1	I <u>d</u>	12	-0.098	-0.095	6.2068	0.798	

Fonte: Elaboração Própria, 2022.

Gráfico 14 - Distribuição dos resíduos do modelo ARMA(1,1) do log-retorno do preço do ferro

Tabela 11 - Teste ARCH dos Resíduos ARMA(1,1)

Heteroskedasticity Tes	t: ARCH						
F-statistic Obs*R-squared	3.439132 13.12172	Prob. F(4,17 Prob. Chi-So	0.0098 0.0107				
Test Equation: Dependent Variable: RESID^2 Method: Least Squares Date: 10/14/22 Time: 14:14 Sample (adjusted): 2007M06 2022M06 Included observations: 181 after adjustments							
Variable	Coefficient	Std. Error	t-Statistic	Prob.			
C RESID^2(-1) RESID^2(-2) RESID^2(-3) RESID^2(-4)	0.007358 0.260782 -0.107256 0.120560 -0.011529	0.001770 0.075440 0.077503 0.077587 0.075503	4.157083 3.456831 -1.383892 1.553870 -0.152693	0.0001 0.0007 0.1681 0.1220 0.8788			
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.072496 0.051416 0.017022 0.050999 482,9603 3.439132 0.009814	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		0.009996 0.017478 -5.281329 -5.192973 -5.245508 1.995341			

Conclusão:

Ao analisar os 3 modelos [ARMA(1,0), ARMA(0,1) e ARMA(1,1)] e suas respectivas análises de resíduos foi observado que nenhum dos 3 modelos consegue explicar 100% a série temporal e todos eles apresentam problemas como a homocedasticidade dos erros. Entretanto, entre eles, como houve um "empate" na análise de resíduos, o próximo fator a ser olhado são os critérios. Neste caso, apesar de ter uma parte auto regressiva, o modelo com os menores critérios foi o **ARMA(0,1)**.

A seguir, o Log-Retorno do preço da VALE3:

LOGRETVALE

.3

.2

.1

.0

-.1

-.2

-.3

-.4

07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22

Gráfico 15 - Série temporal do log-retorno do preço do VALE3

Fonte: Elaboração Própria, 2022.

Ao observar o gráfico do Log dos retornos do preço das ações da Vale é possível observar evidências de estacionariedade, já que aparentemente essa série apresenta média constante e variância constante.

Gráfico 16 - Correlograma do log-retorno da VALE3

Date: 09/20/22 Tim Sample (adjusted): 1 Included observation Autocorrelation	2007M02 2022M06	ents AC	PAC	Q-Stat	Prob
		AC 1 0.05 2 0.08 3 -0.05 4 0.03 5 -0.09 6 0.06 7 0.06 8 0.04	3 0.058 7 0.084 3 -0.063 9 0.038 1 -0.087 5 0.067 5 0.067 5 0.097 1 0.021 1 0.021 3 0.066 3 0.053 5 -0.144 7 -0.053 5 -0.037 8 -0.022 7 -0.053 5 -0.037 8 -0.022 7 -0.053 5 -0.037 8 -0.053 9 -0.037 9 -0.053 9 -0.0	0.6313 2.0579 2.5966 2.8817 4.4720 5.2812 6.1087 6.4510 6.6894 7.0972 7.1195 11.784 11.784 11.786 12.253 12.709	Prob 0.427 0.357 0.357 0.458 0.578 0.578 0.597 0.699 0.597 0.689 0.623 0.660 0.693 0.740 0.793 0.727 0.685 0.739 0.5739 0.625 0.739 0.621 0.690 0.691
		29 0.03 30 0.02	1 0.051 7 0.004 4 -0.025 6 0.034 7 0.028 6 0.066	24.496 24.663 24.666 24.823 25.332 25.485 25.936	0.704 0.741 0.782 0.813 0.828 0.853 0.867

As FACs dessa série não possuem nenhuma barra que supera o intervalo de confiança, evidenciado pela análise gráfica e pelos p-valores altos. Isso significa que a série do log do retorno da VALE3 não tem memória.

Tabela 12 - ADF log-retorno da VALE3

Lag Length: 0 (Automatic	near Trend : - based on S	SIC, maxlag=22)	
			t-Statistic	Prob.*
Augmented Dickey-Fuller	r test statistic		-12.67486	0.0000
Test critical values:	1% level		-4.008706	
	5% level		-3.434433	
	10% level		-3.141157	
*MacKinnon (1996) one-	sided p-value	S.		
Dependent Variable: D(L Method: Least Squares	OG_RET_VA	LE)		
Method: Least Squares Date: 10/12/22 Time: 18 Sample (adjusted): 2007 Included observations: 1	3:04 M03 2022M0	6	t-Statistic	Prob.
Method: Least Squares Date: 10/12/22 Time: 18 Sample (adjusted): 2007 Included observations: 1 Variable	3:04 M03 2022M0 84 after adjus	6 etments Std. Error		
Method: Least Squares Date: 10/12/22 Time: 18 Sample (adjusted): 2007 Included observations: 1	8:04 M03 2022M0 84 after adjus Coefficient -0.945387	6 stments Std. Error 0.074588	-12.67486	0.0000
Method: Least Squares Date: 10/12/22 Time: 18 Sample (adjusted): 2007 Included observations: 1 Variable	3:04 M03 2022M0 84 after adjus	6 etments Std. Error		0.0000
Method: Least Squares Date: 10/12/22 Time: 18 Sample (adjusted): 2007 Included observations: 1 Variable LOG_RET_VALE(-1) C	8:04 M03 2022M0 84 after adjus Coefficient -0.945387 -0.002539	66 etments Std. Error 0.074588 0.015203	-12.67486 -0.167034 0.738333	0.0000 0.8675 0.4613
Method: Least Squares Date: 10/12/22 Time: 18 Sample (adjusted): 2007 Included observations: 1 Variable LOG_RET_VALE(-1) C @TREND("2007M01")	8:04 M03 2022M0 84 after adjus Coefficient -0.945387 -0.002539 0.000105	6 stments Std. Error 0.074588 0.015203 0.000142	-12.67486 -0.167034 0.738333	0.0000 0.8675 0.4613
Method: Least Squares Date: 10/12/22 Time: 18 Sample (adjusted): 2007 Included observations: 1 Variable LOG_RET_VALE(-1) C @TREND("2007M01") R-squared Adjusted R-squared	3:04 M03 2022M0 84 after adjus Coefficient -0.945387 -0.002539 0.000105	6 stments Std. Error 0.074588 0.015203 0.000142 Mean depend	-12.67486 -0.167034 0.738333 Jent var	0.0000 0.8675
Method: Least Squares Date: 10/12/22 Time: 18 Sample (adjusted): 2007 Included observations: 1 Variable LOG_RET_VALE(-1) C @TREND("2007M01") R-squared Adjusted R-squared S.E. of regression Sum squared resid	3:04 M03 2022M0 84 after adjus Coefficient -0.945387 -0.002539 0.000105 0.470254 0.464400 0.101845 1.877389	66 stments Std. Error 0.074588 0.015203 0.000142 Mean depende S.D. depende	-12.67486 -0.167034 0.738333 Jent var ent var iterion	0.0000 0.8675 0.4613 -0.000752 0.139161 -1.714568 -1.662151
Method: Least Squares Date: 10/12/22 Time: 18 Sample (adjusted): 2007 Included observations: 1 Variable LOG_RET_VALE(-1) C @TREND("2007M01") R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	3:04 M03 2022M0 84 after adjus Coefficient -0.945387 -0.002539 0.000105 0.470254 0.464400 0.101845 1.877389 160.7403	Std. Error 0.074588 0.015203 0.000142 Mean depende S.D. depende Akaike info crite Hannan-Quin	-12.67486 -0.167034 0.738333 Jent var ent var iterion rion in criter.	0.0000 0.8675 0.4613 -0.000752 0.139161 -1.714568 -1.662151 -1.693323
Method: Least Squares Date: 10/12/22 Time: 18 Sample (adjusted): 2007 Included observations: 1 Variable LOG_RET_VALE(-1) C @TREND("2007M01") R-squared Adjusted R-squared S.E. of regression Sum squared resid	3:04 M03 2022M0 84 after adjus Coefficient -0.945387 -0.002539 0.000105 0.470254 0.464400 0.101845 1.877389	Std. Error 0.074588 0.015203 0.000142 Mean depende S.D. depende Akaike info cr Schwarz crite	-12.67486 -0.167034 0.738333 Jent var ent var iterion rion in criter.	0.0000 0.8675 0.4613 -0.000752 0.139161

Fonte: Elaboração Própria, 2022.

Para adquirir mais evidências da estacionariedade e da propriedade da tendência, o teste ADF foi feito. Assim, antes de propor um modelo, esse teste apresentou um p-valor próximo a zero o que rejeita a hipótese nula e, dessa forma, diz que a série não possui raiz unitária. Este fato corrobora com a estacionariedade.

Apesar da série não apresentar memória em nenhum lag, optamos por propor 3 modelos da classe ARMA para, pecando pelo excesso, garantir que a série não é modelável.

Tabela 13 - Modelo ARMA(1,0) c/ intercepto - log-retorno da VALE3

Dependent Variable: LOG_RET_VALE Method: ARMA Maximum Likelihood (OPG - BHHH) Date: 10/12/22 Time: 18:05 Sample: 2007M02 2022M06 Included observations: 185 Convergence achieved after 13 iterations Coefficient covariance computed using outer product of gradients Coefficient Std. Error Prob. 0.007730 0.007908 0.977515 0.3296 AR(1) 0.058130 0.055746 1.042766 0.2984 SIGMASQ 0.010179 0.000918 11.08417 0.0000 R-squared 0.003387 Mean dependent var 0.007769 Adjusted R-squared -0.007565 S.D. dependent var 0.101338 S.E. of regression 0.101721 Akaike info criterion -1.717064 Sum squared resid 1.883184 Schwarz criterion -1.664842 Log likelihood 161.8284 Hannan-Quinn criter. -1.695900 F-statistic 0.309236 Durbin-Watson stat 2.000334 Prob(F-statistic) 0.734393 Inverted AR Roots

Fonte: Elaboração Própria, 2022.

Gráfico 17 - Correlograma de Resíduos ARMA(1,0) - log-retorno da VALE3

Date: 10/12/22 Time: 18:06 Sample (adjusted): 2007M02 2022M06 Q-statistic probabilities adjusted for 1 ARMA term						
Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
1 1	1 1	1	-0.005	-0.005	0.0039	
ı <u>İ</u> ni		2	0.087	0.087	1.4363	0.231
ıdı.		3	-0.060	-0.060	2.1285	0.345
ı <u>þ</u> i		4	0.047	0.040	2.5545	0.466
ı <u>⊑</u> ı	<u> </u>	5	-0.098	-0.089	4.4037	0.354
ı <u>İ</u> li		6	0.067	0.058	5.2597	0.385
1 j i 1		7	0.059	0.080	5.9378	0.430
1 j) 1	1 1	8	0.040	0.018	6.2577	0.510
1 (1)		9	-0.040	-0.038	6.5710	0.584
ı <u>þ</u> i		10	0.048	0.038	7.0221	0.635
1 1		11	0.011	0.026	7.0464	0.721
1 (1)	1 1	12	-0.038	-0.043	7.3325	0.772
□ '		13	-0.143	-0.147	11.472	0.489
1 1	1 1	14	0.008	-0.001	11.484	0.570
1(1)	1 1	15	-0.046	-0.019	11.908	0.614
101		16	-0.041	-0.052	12.249	0.660
10 1	10 1	17	-0.069	-0.072	13.230	0.656
1(1		18	-0.011	-0.036	13.256	0.719
1(1		19	-0.010	0.027	13.278	0.775
ı b ı		20	0.093	0.117	15.080	0.718
ı bu		21	0.082	0.086	16.494	0.686
1 1		22	-0.002	-0.027	16.495	0.741

Gráfico 18 - Distribuição dos Resíduos ARMA(1,0) - log-retorno da VALE3

Tabela 14 - Teste ARCH dos Resíduos ARMA(1,0) - log-retorno da VALE3

Heteroskedasticity Tes	: ARCH			
F-statistic	4.295420	Prob. F(12,16	0.0000	
Obs*R-squared	42.15316	Prob. Chi-Squ	uare(12)	0.0000
Test Equation: Dependent Variable: RI	EGIDVA			
Method: Least Squares				
Date: 10/12/22 Time:				
Sample (adjusted): 200	8M02 2022M0	6		
Included observations:	173 after adjus	tments		
Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.002924	0.001744	1.676103	0.0957
RESID^2(-1)	0.188841	0.078677	2.400192	0.0175
RESID^2(-2)	0.278207	0.079836	3.484716	0.0006
RESID^2(-3)	0.062087	0.082614	0.751528	0.4534
RESID^2(-4)	-0.024386	0.081941	-0.297605	0.7664
RESID^2(-5)	-0.047311	0.078986	-0.598972	0.5500
RESID^2(-6)	0.145315	0.078881	1.842209	0.0673
RESID^2(-7)	-0.049538	0.078829	-0.628425	0.5306
RESID^2(-8)	-0.024955	0.078868	-0.316412	0.7521
RESID^2(-9)	0.135676	0.078973	1.717997	0.0877
RESID^2(-10)	0.063114	0.080056	0.788380	0.4316
RESID^2(-11)	-0.078698	0.077598	-1.014175	0.3120
RESID^2(-12)	0.065606	0.076625	0.856197	0.3932
R-squared	0.243660	Mean depend		0.010322
Adjusted R-squared	0.186934	S.D. depende		0.016964
S.E. of regression	0.015296	Akaike info cr		-5.450220
Sum squared resid	0.037437	Schwarz crite		-5.213268
Log likelihood	484.4440	Hannan-Quin		-5.354090
F-statistic	4.295420	Durbin-Watso	n stat	2.007218
Prob(F-statistic)	0.000007			

Fonte: Elaboração Própria, 2022.

Os resultados relevantes do modelo ARMA(1,0) são que, apesar dos erros se comportarem como um ruído branco e seguirem uma distribuição normal, os erros são heterocedásticos. Entretanto, isso pode ser resolvido com o uso de uma variável robusta.

Tabela 15 - Modelo ARMA(0,1) c/ intercepto - log-retorno da VALE3

Dependent Variable: LOG_RET_VALE

Method: ARMA Maximum Likelihood (OPG - BHHH)

Date: 10/12/22 Time: 18:07 Sample: 2007M02 2022M06 Included observations: 185

Convergence achieved after 15 iterations

Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C MA(1)	0.007737 0.049288	0.007818 0.056308	0.989674 0.875343	0.3236 0.3825
SIGMASQ	0.010185	0.000920	11.06566	0.0000
R-squared	0.002876	Mean dependent var		0.007769
Adjusted R-squared	-0.008082	S.D. depende	nt var	0.101338
S.E. of regression	0.101747	Akaike info cri	terion	-1.716556
Sum squared resid	1.884150	Schwarz criter	ion	-1.664334
Log likelihood	161.7815	Hannan-Quin	n criter.	-1.695392
F-statistic	0.262449	Durbin-Watso	n stat	1.981560
Prob(F-statistic)	0.769456			
Inverted MA Roots	05			
Inverted MA Roots	05			

Fonte: Elaboração Própria, 2022.

Gráfico 19 - Correlograma de Resíduos ARMA(0,1) - log-retorno da VALE3

	2007M02 2022M06 ies adjusted for 1 ARN	//A te	rm			
Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
1 1	1 1	1	0.005	0.005	0.0044	
1 b 1	<u> </u>	2	0.090	0.089	1.5188	0.218
10 1	101	3	-0.059	-0.061	2.1906	0.334
1 j a 1		4	0.046	0.040	2.5992	0.458
' [] '	III	5	-0.097	-0.088	4.4062	0.354
יוםי		6			5.2601	0.385
۱ ۵ ۱۱	' b'	7		0.080		0.429
1 j i 1	1 1 1 1	8	0.041	0.017		
' ('	141	9			6.5778	
ינוןי		10		0.038		
1 11		11	0.011		7.0439	
' ['	'['				7.3460	
-	"		-0.144			
1 1	1 1 1		0.006			0.568
' ('	1111				11.950	
' ('	'['				12.307	
י 🗓 י	'¶'				13.305	
1 1	'(13.332	
1 1		19	-0.010			
ا ت ا ا	' 	20	0.093	0.118		0.711
' 	יום י	21			16.609	
1 1	'('	22	-0.002	-0.029	16.610	0.734

Tabela 16 - Teste ARCH dos Resíduos ARMA(0,1) - log-retorno da VALE3

Heteroskedasticity Test	: ARCH			
F-statistic Obs*R-squared	4.347604 42.53935	Prob. F(12,16 Prob. Chi-Squ	0.0000 0.0000	
Test Equation: Dependent Variable: Rt Method: Least Squares Date: 10/12/22 Time: ' Sample (adjusted): 200 Included observations:	18:08 08M02 2022M0			
Variable	Coefficient	Std. Error	t-Statistic	Prob.
C RESID*2(-1) RESID*2(-2) RESID*2(-3) RESID*2(-4) RESID*2(-6) RESID*2(-7) RESID*2(-7) RESID*2(-8) RESID*2(-9) RESID*2(-10) RESID*2(-11) RESID*2(-12)	0.002919 0.188807 0.283015 0.057955 -0.027551 -0.045012 0.146527 -0.050197 -0.030613 0.140095 0.066837 -0.083695 0.068097	0.001742 0.078652 0.079777 0.082617 0.081872 0.078755 0.078755 0.078700 0.078751 0.078866 0.080031 0.077508 0.076574	1.675737 2.400533 3.547579 0.701493 -0.336509 -0.570680 1.860549 -0.637819 -0.388735 1.776358 0.835142 -1.079811 0.889296	0.0957 0.0175 0.0005 0.4840 0.7369 0.5690 0.0646 0.5245 0.6980 0.0776 0.4049 0.2819 0.3752
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.245892 0.189334 0.015244 0.037182 485.0363 4.347604 0.000006	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		0.010324 0.016931 -5.457067 -5.220114 -5.360937 2.007056

Fonte: Elaboração Própria

Gráfico 20 - Distribuição dos Resíduos ARMA(1,0) - log-retorno da VALE3

Fonte: Elaboração Própria, 2022.

Os resultados relevantes do modelo ARMA(0,1) são extremamente semelhantes ao modelo ARMA(1,0). Assim, a análise de resíduos deste modelo apresentou um ruído branco, normal e heterocedástico.

Tabela 17 - Modelo ARMA(1,1) c/ intercepto - log-retorno da VALE3

Dependent Variable: LOG_RET_VALE Method: ARMA Maximum Likelihood (OPG - BHHH) Date: 10/12/22 Time: 18:09 Sample: 2007M02 2022M06 Included observations: 185 Convergence achieved after 23 iterations Coefficient covariance computed using outer product of gradients Variable Coefficient Std. Error t-Statistic Prob. 0.008530 0.007709 0.903757 0.3673 AR(1) 0.483819 0.613591 0.788503 0.4314 MA(1) -0.417175 0.635073 -0.656893 0.5121 SIGMASQ 0.000916 0.0000 0.010155 11.09129 0.005784 Mean dependent var 0.007769 R-squared -0.010695 0.101338 Adjusted R-squared S.D. dependent var -1.708642 S.E. of regression 0.101879 Akaike info criterion Sum squared resid 1.878655 Schwarz criterion -1.639012 Log likelihood 162.0494 Hannan-Quinn criter. -1.680423 F-statistic 0.350990 Durbin-Watson stat 2.016230 Prob(F-statistic) 0.788476 Inverted AR Roots .48 Inverted MA Roots .42

Fonte: Elaboração Própria, 2022.

Gráfico 21 - Correlograma de Resíduos ARMA(1,1) - log-retorno da VALE3

Date: 10/12/22 Time: 18:10 Sample (adjusted): 2007M02 2022M06 Q-statistic probabilities adjusted for 2 ARMA terms						
Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
1(1)	1 (1)	1	-0.012	-0.012	0.0285	
ւիլ		2	0.059	0.059	0.6898	
10 1	101	3	-0.073	-0.072	1.7054	0.192
ı j ı		4	0.038	0.034	1.9830	0.371
ı <u> </u>	III	5	-0.103	-0.095	4.0276	0.258
ı j ı	<u> </u>	6	0.064	0.055	4.8210	0.306
ı þ i	<u> </u>	7	0.061	0.078	5.5377	0.354
1 j) 1	1 11	8	0.038	0.018	5.8245	0.443
1 (1	1 1 1	9	-0.042	-0.035	6.1696	0.520
ւիլ		10	0.049	0.043	6.6506	0.575
1)1		11	0.016	0.032	6.7014	0.668
1 (1	1 1 1	12	-0.037	-0.040	6.9744	0.728
<u> </u>		13	-0.142	-0.144	11.038	0.440
1 1	1 1	14	0.012	0.000	11.067	0.523
1 (1	1 11	15	-0.039	-0.020	11.383	0.579
1 (1)	1 (1)	16	-0.039	-0.054	11.689	0.631
10 1	'd'	17	-0.068	-0.076	12.651	0.629
1 1	1 1 1	18	-0.012	-0.044	12.680	0.696
1 1	1 11	19	-0.010	0.021	12.700	0.756
ı b ı		20	0.096	0.116	14.620	0.688
ı þ i	<u> </u> -	21	0.086	0.090	16.186	0.645
1 1	1 1	22	-0.002	-0.022	16.187	0.705

Gráfico 22 - Distribuição dos Resíduos ARMA(1,1) - log-retorno da VALE3

Tabela 16 - Teste ARCH dos Resíduos ARMA(1,1) - log-retorno da VALE3

Heteroskedasticity Test	: ARCH			
F-statistic Obs*R-squared	4.324724 42.37031	Prob. F(12,16 Prob. Chi-Sq	0.0000 0.0000	
Test Equation: Dependent Variable: Rf Method: Least Squares Date: 10/12/22 Time: 1 Sample (adjusted): 200 Included observations:	18:12 08M02 2022M0			
Variable	Coefficient	Std. Error	t-Statistic	Prob.
C RESID^2(-1) RESID^2(-2) RESID^2(-2) RESID^2(-3) RESID^2(-4) RESID^2(-5) RESID^2(-6) RESID^2(-7) RESID^2(-7) RESID^2(-9) RESID^2(-10) RESID^2(-11) RESID^2(-12)	0.002973 0.190696 0.282682 0.069019 -0.030200 -0.057048 0.163643 -0.053006 -0.028569 0.125074 0.064584 -0.056229 0.037497	0.001740 0.078794 0.080108 0.083050 0.082526 0.079633 0.079544 0.079491 0.079658 0.080590 0.078016 0.076878	1.708684 2.420179 3.528768 0.831046 -0.365946 -0.716387 2.057261 -0.666808 -0.359270 1.570138 0.801397 -0.720734 0.487751	0.0894 0.0166 0.0005 0.4072 0.7149 0.4748 0.0413 0.5059 0.7199 0.1184 0.4241 0.4721
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.244915 0.188284 0.015329 0.037598 484.0718 4.324724 0.000006	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion in criter.	0.010298 0.017015 -5.445917 -5.208965 -5.349787 2.007724

Fonte: Elaboração Própria, 2022.

Assim como os 2 modelos anteriores a análise de resíduos do modelo ARMA(1,1) apresentou o mesmo resultado.

Dessa forma, como a análise de resíduos dos 3 modelos tiveram um "empate", para definir qual é o mais adequado dentre eles se é preciso olhar para os critérios. Portanto, ao compará-los, os critérios do modelo ARMA (1,1) são os menores entre eles.

Por conseguinte, a conclusão dessa análise é que como a série não apresenta memória, o modelo ARMA que melhor se enquadra é um ARMA(0,0).

j)

No caso da letra 'e' e 'f', olhamos o resultado de um teste ADF para o log dos preços de um ativo, nesse caso, do minério de ferro e da Vale. Como qualquer outro ativo, o esperado é que a série seja modelada por um passeio aleatório, sendo totalmente imprevisível, e não-estacionário, sem uma média constante e variância inconstante. Sendo assim, o esperado é que o teste ADF de uma série do log de um ativo não rejeite a hipótese nula, provando que a série possui raiz unitária, não sendo estacionária. Foi exatamente isso que ocorreu nesse primeiro caso.

Na letra 'g' nota-se que a relação afirmada é esperada, dada a importância do minério de ferro para a Vale.

A não existência de raiz unitária na série analisada na letra 'h' e 'i' é esperada dada a natureza da variável construída. Ao aplicar o retorno da variável preço se tem a exclusão da possível não-estacionaridade por raiz unitária da série. Ademais, ao se tirar o logaritmo natural neste resultado, obtém-se uma série com tendência suavizada, facilitando assim a modelagem da série obtida.

Na letra 'h' o modelo proposto não é o esperado. Como a série baseia-se em uma série de preços, não é esperado que algum modelo conhecido até o momento consiga explicar seu comportamento de maneira precisa. Ademais, ao se observar o correlograma do log dos retornos do preço do ferro, observa-se que o seu comportamento não condiz com os modelos conhecidos até o momento. Contudo, observando que há existência de memória em um lag e pela função de correlação truncar em um certo lag. Deste modo, ao se propor o modelo ARMA(0,1) captura-se a presença de possíveis choques que viriam a afetar o preço do modelo da Vale, o que é esperado, mas não torna o modelo bem especificado.

Na letra 'i', o resultado não foi o esperado. A série do logaritmo dos retornos da VALE3, sendo uma série derivada do preço de um ativo, se apresentou como um ruído branco. Depois de tentativas de proposição do modelo, o que melhor se adequou aos critérios foi um ARMA(1,1). Esse resultado em específico não foi antecipado, dado que evidentemente seria muito difícil saber qual modelo seria melhor para traçar a movimentação de um ruído branco.

k)

A partir do que foi visto em aula e do que foi observado nos testes durante essa APS o melhor modelo para explicar os preços das ações da Vale e o preço do minério de ferro é um **passeio** aleatório com drift. As evidências que encontramos para propor este modelo são , a seguir: O teste ADF aponta que essas séries possuem raiz unitária, além das FACs que decaem lentamente, isso é um indício para as séries não serem estacionárias.

Além disso, como a série aparentemente apresenta tendência o fator "a" foi adicionado para que, junto ao acúmulo dos choques, se vá criando uma tendência. Assim como o fator " e_t " que representa os erros aleatoriamente distribuídos.

$$y_t(Preço da VALE3) = a + y_{t-1} + e_t$$

 $y_t(Preço do Ferro) = a + y_{t-1} + e_t$

Gráfico 23 - Correlograma do preço da VALE3

Date: 10/12/22 Time Sample: 2007M01 20 Included observation Autocorrelation	022M06		AC	PAC	Q-Stat	Prob
Autocorrelation	railiai Colleialioli		AC	FAC	Q-Stat	FIUU
		1	0.973	0.973	178.85	0.000
1		2		-0.258	344.06	0.000
1		3	0.889	-0.021	495.07	0.000
1	[4	0.840	-0.123	630.59	0.000
1	₁	5	0.798	0.162	753.50	0.000
1	<u> </u>	6	0.764	0.078	866.92	0.000
1	1 10 1	7	0.734	-0.018	972.03	0.000
1		8	0.706	-0.016	1069.9	0.000
·	141	9	0.677	-0.059	1160.5	0.000
1	141	10	0.646	-0.037	1243.3	0.000
·	□	11	0.606	-0.154	1316.6	0.000
1		12	0.559	-0.069	1379.5	0.000
ı —	141	13	0.510	-0.033	1432.1	0.000
ı ——	<u> </u>	14	0.463	0.054	1475.7	0.000
ı —	1 1 1	15	0.420	0.010	1511.8	0.000
ı —	1 1 1	16	0.384	0.011	1542.1	0.000
ı 		17	0.354	0.040	1568.0	0.000
ı —	1 1	18	0.329	0.006	1590.6	0.000
ı <u>—</u>		19	0.303	-0.054	1609.8	0.000
1		20	0.282	0.090	1626.5	0.000
ı <u> </u>		21	0.266	0.111	1641.5	0.000
ı <u> </u>	1 1	22	0.250	-0.005	1654.8	0.000
· 🗀	1 1	23		-0.001	1666.7	0.000
· 🗀	1 1	24	0.223	0.005	1677.4	0.000
· 🗀		25	0.214	0.076	1687.3	0.000
ı <u> </u>	1 1	26	0.208	-0.016	1696.8	0.000
· =		27	0.204	0.010	1706.0	0.000
· =	' '	28		-0.036	1715.0	0.000
' 		29	0.199	0.007	1723.8	0.000
' 	"	30		-0.100	1732.1	0.000
' -	' '	31		-0.005	1739.8	0.000
' 	' '	32	0.178	0.017	1746.9	0.000
' -		33		-0.011	1753.6	0.000
' P	' '	34		-0.055	1759.7	0.000
' P	' '	35		-0.059	1765.1	0.000
· -	'[36	0.139	-0.075	1769.6	0.000

Gráfico 24 - Correlograma do preço do Ferro

Date: 10/12/22 Time Sample: 2007M01 20 Included observation: Autocorrelation	22M06		AC	PAC	Q-Stat	Prob
1	1	1	0.957	0.957	173.19	0.000
	ı ı	2	0.886	-0.366	322.24	0.000
	<u> </u>	3	0.810	0.027	447.49	0.000
1	1 1	4	0.736	-0.019	551.47	0.000
	<u> </u>	5	0.671	0.061	638.40	0.000
1	I <u>I</u> I	6	0.608	-0.085	710.26	0.000
1	101	7	0.545	-0.046	768.19	0.000
1	<u> </u>	8	0.486	0.039	814.56	0.000
1	10 1	9	0.428	-0.072	850.69	0.000
ı —	10 1	10	0.367	-0.070	877.46	0.000
- I	1 1	11	0.307	-0.017	896.31	0.000
ı 🔚	i j i i	12	0.253	0.032	909.12	0.000
ı <u>—</u>	<u> </u>	13	0.209	0.054	917.94	0.000
' 	<u> </u>	14	0.177	0.032	924.32	0.000
, i	ı b ı	15	0.160	0.106	929.57	0.000
ı 🗖	1 1	16	0.152	-0.004	934.29	0.000
ı 🗖	ı <u>b</u> ı	17	0.150	0.055	938.95	0.000
ı 🖿	1 1	18	0.151	-0.020	943.67	0.000
ı 🖿	1 11	19	0.155	0.062	948.70	0.000
1 🗖	ı []ı	20	0.166	0.059	954.48	0.000
, <u> </u>	ı <u>d</u> ı	21		-0.105	960.80	0.000
ı 🔚	1 1	22	0.173	-0.037	967.19	0.000
, i ii	ı lı	23	0.172	0.011	973.51	0.000
, E	1 1	24	0.170	0.021	979.78	0.000
, E	d ₁	25		-0.132	985.52	0.000
, E	illin i	26	0.155	0.069	990.76	0.000
, E	ı i i	27	0.148	0.032	995.55	0.000
i	i di	28		-0.026	999.81	0.000
; <u>F</u>	i lini	29	0.137	0.101	1004.0	0.000
; E	i Fi	30		-0.048	1004.0	0.000
i 6	i lini	31	0.131	0.093	1011.8	0.000
; 6	in in	32		-0.056	1015.5	0.000
; 5		33		-0.009	1013.3	0.000
; 5	i hi	34	0.113	0.049	1021.6	0.000
; <u> </u>	i i i	35		-0.013	1024.2	0.000
; <u> </u>		36		-0.013	1024.2	0.000
· Pr	۹'	100	0.034	-0.143	1020.3	0.000

Tabela 17 - Teste ADF - Preço do FERRO

Null Hypothesis: FERRO has a unit root

Exogenous: Constant, Linear Trend Lag Length: 1 (Automatic - based on SIC, maxlag=22)

		t-Statistic	Prob.*
Augmented Dickey-Ful		-3.000283	0.1350
Test critical values:	1% level	-4.008706	
	5% level	-3.434433	
	10% level	-3.141157	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(FERRO)

Method: Least Squares
Date: 10/12/22 Time: 18:54
Sample (adjusted): 2007M03 2022M06
Included observations: 184 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
FERRO(-1)	-0.060437	0.020144	-3.000283	0.0031
D(FERRO(-1))	0.388039	0.068552	5.660537	0.0000
C	8.025923	3.099464	2.589456	0.0104
@TREND("2007M01")	-0.012310	0.016203	-0.759768	0.4484
R-squared	0.170512	Mean dependent var		0.261304
Adjusted R-squared	0.156687	S.D. depende	ent var	12.35343
S.E. of regression	11.34441	Akaike info cr	iterion	7.716826
Sum squared resid	23165.21	Schwarz crite	rion	7.786716
Log likelihood	-705.9480	Hannan-Quin	n criter.	7.745154
F-statistic	12.33375	Durbin-Watso	on stat	1.958657
Prob(F-statistic)	0.000000			

17 18 VALE3

Gráfico 25 - Preço da VALE3 x Ferro em Série Histórica

Observando o gráfico de linha das duas séries, pode se notar que a relação entre as duas séries se perde entre 2018 e 2019 nota-se que a relação entre as séries não se mantém, é observada uma alta no preço do minério de ferro, este que não é respondido pelo preço da VALE3. Tal mudança pode ser explicada pelo fato de que o preço da VALE3 não responde somente ao preço do minério, mas também a outros fatores. Por exemplo, no início do ano de 2019, a Vale esteve envolta em problemas gerados pelo rompimento da barragem de Brumadinho.

Essa consideração pode trazer a necessidade de se incluir ao preço da VALE3 o preço do minério de ferro, capturando assim o efeito deste no preço da ação. Deste modo, uma alteração viável à proposta anterior seria adicionar o preço do minério de ferro ao modelo. Contudo, é necessário alguma forma de se capturar outros efeitos (como efeitos internos da empresa) por meio de choques. Deste modo, o modelo seria uma MA(1) unido ao preço do ferro no período anterior.

Tabela 18 - Modelo MA(1) c/ intercepto - Preço da VALE3

Dependent Variable: VALE Method: ARMA Maximum Likelihood (OPG - BHHH) Date: 10/12/22 Time: 19:03 Sample: 2007M01 2022M06 Included observations: 186 Convergence achieved after 9 iterations Coefficient covariance computed using outer product of gradients Variable Coefficient Std Error t-Statistic Prob C 11 77451 4 586123 2 567421 0.0110 FERRO 6.184718 0.182937 0.029579 0.0000 MA(1) 0.903358 0.040984 22.04174 0.0000 SIGMASQ 104.8215 12.11020 8.655635 0.0000 R-squared 0.750281 Mean dependent var 32 08097 Adjusted R-squared 0.746165 20.54331 S.D. dependent var 7.542249 S.E. of regression 10.35013 Akaike info criterion 19496.80 7.611620 Sum squared resid Schwarz criterion Log likelihood -697.4292 Hannan-Quinn criter 7.570361 F-statistic 182.2735 Durbin-Watson stat 0.427349 Prob(F-statistic) 0.000000 Inverted MA Roots

Fonte: Elaboração Própria, 2022.

Por meio dos resultados obtidos, nota-se que ambas as partes propostas aqui se mostram relevantes a um nível de significância de 5%. Ademais, o modelo mostra que o componente de médias móveis não possui raiz unitária, sendo algo favorável à proposição.

Partindo para os resíduos observa-se que eles apontam que os erros não apontam possuir distribuição normal. Contudo, a amostra é suficientemente grande, podendo ser utilizado o Teorema do Limite Central para contornar este problema. Também é observável que os resíduos não possuem um comportamento de ruído branco, mostrando a existência de uma memória não capturada pelo modelo. Quando observada a variância dos resíduos, tem-se que os erros são heterocedásticos, sendo um problema do modelo proposto. Por fim, tem-se também que os resíduos não possuem comportamento de ruído branco, mostrando a possível existência de memória.

Por fim, pode-se concluir que o modelo proposto está mal especificado. Tal resultado é dado pelo fato de que se está tentando modelar o preço de um ativo financeiro através de um modelo da classe ARMA(p, q).

Gráfico 26 - Correlograma de Resíduos MA(1) - Preço da VALE3

Date: 10/12/22 Time: 19:15 Sample: 2007M01 2022M06 Q-statistic probabilities adjusted for 1 ARMA term						
Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob*
1		1	0.781	0.781	115.31	
1		2	0.921	0.797	276.45	0.000
1	 	3	0.746	-0.161	382.67	0.000
1	1 1	4	0.845	-0.006	519.74	0.000
1	–	5	0.691	-0.119	611.87	0.000
1	<u> </u>	6	0.775	0.055	728.47	0.000
1	ונן ו	7	0.650	0.066	811.11	0.000
I		8	0.707	-0.054	909.25	0.000
1		9	0.613	0.036	983.54	0.000
ı	1 1	10	0.650	-0.009	1067.5	0.000
1	III	11	0.564	-0.086	1130.9	0.000
1	III	12	0.582	-0.073	1198.9	0.000
1	III	13	0.503	-0.071	1250.0	0.000
ı	1(1	14	0.508	-0.023	1302.4	0.000
ı	 	15	0.437	-0.026	1341.4	0.000
ı —		16	0.443	0.033	1381.7	0.000
· 🗀	1 1	17	0.378	-0.007	1411.3	0.000
· 🔚	 	18	0.400	0.125	1444.7	0.000
· 🗀	<u> </u>	19	0.342	0.041	1469.2	0.000
ı <u>—</u>	1 4 1	20	0.356	-0.073	1496.0	0.000
· 🗀	ւիւ	21	0.315	0.053	1517.0	0.000
ı 🔚	<u> </u>	22	0.331	0.070	1540.3	0.000
robabilities may no	ot be valid for this equ	ation	specifi	cation.		

Gráfico 27 - Distribuição dos Resíduos MA(1) - Preço da VALE3

Tabela 19 - Teste ARCH dos Resíduos MA(1) - Preço da VALE3

F-statistic Obs*R-squared	118.6103 132.5496	Prob. F(4,177 Prob. Chi-Sqi	0.0000	
Test Equation: Dependent Variable: Rt Method: Least Squares Date: 10/12/22 Time: 1	19:05			
Sample (adjusted): 200 Included observations: Variable			t-Statistic	Prob.
C RESID^2(-1) RESID^2(-2) RESID^2(-3) RESID^2(-4)	11.49014 0.070786 0.771505 0.219297 -0.121285	0.080991	1.305922 0.912139 9.525791 2.670956 -1.459364	0.1933 0.3629 0.0000 0.0083 0.1462
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.728295 0.722155 101.5608 1825682. -1096.671 118.6103 0.000000	Akaike info criterion Schwarz criterion Hannan-Quinn criter.		106.6807 192.6745 12.10628 12.19430 12.14196 1.970393

m)

A Fim de verificar a relação indicada por Senhor Tessari, a partir da discussão realizada na alternativa g, ou seja, a presença de correlação entre o valor da ação da vale e o preço do minério de ferro realizou-se a regressão da vale pelo preço do minério de ferro e chegou-se no gráfico 28. Por meio da figura, nota-se que os p-valores do teste LJung Box que testa a hipótese nula conjunta de que os m primeiros coeficientes de autocorrelação entre os erros são simultaneamente iguais a zero, são próximos de zero, indicando que os regressores tem relevância para explicar o preço da vale, ou seja, o preço do minério de ferro tem relevância estatística.

Ademais, para testar a heterocedasticidade dos erros usa-se o teste LM de Breusch–Godfrey de correlação serial realizado na tabela 20, tendo como hipótese nula a não presença de correlação serial. Por conseguinte, com o resultado é possível notar que como o p-valor do teste F é próximo de zero, então, rejeita-se a hipótese nula de que os parâmetros da equação auxiliar são zero demonstrando a presença da correlação. Ademais, o gráfico 29, mostra a não normalidade dos erros devido ao p-valor próximo de zero do teste jarque bera, no entanto, como nossa amostra é suficientemente grande, pelo TLC podemos afirmar a normalidade. Por

conseguinte, temos que a análise de resíduos valida o modelo de regressão e a regressão válida a presença de correlação entre as variáveis preço da vale e minério de ferro.

Para concluir essa análise realizou-se por meio da tabela 21, nessa tabela nota-se a presença da correlação entre essas variáveis de 44,68%, ou seja, uma correlação moderada relevante.

Por fim, realizou-se a correlação cruzada entre as séries de preço de ferro e Vale. Observando o gráfico 30 observa-se que as séries apresentam dependência dos valores passados. Deste modo, pode-se concluir que o preço da Vale apresenta relação em decaimento com os valores do Ferro, de modo que o valor presente afeta o preço atual de forma mais impactante e seus valores posteriores de forma menos impactante.

Gráfico 28 - Correlograma da regressão - Preços da VALE3 e do FERRO

Sample: 2007M01 20 ncluded observation Autocorrelation			AC	PAC	Q-Stat	Prob
Autocorrelation	T ditial Contolation		7.0	1710	a olai	1100
		1	0.971	0.971	178.12	0.000
	16 1	2	0.937	-0.087	345.08	0.000
	<u> </u>	3	0.908	0.053	502.49	0.000
	□	4	0.870	-0.170	647.81	0.000
	<u> </u>	5	0.835	0.066	782.47	0.000
	<u> </u>	6	0.806	0.047	908.59	0.000
1	1(1	7	0.774	-0.046	1025.6	0.000
1	1 11	8	0.744	0.017	1134.3	0.000
	1 1	9	0.717	0.006	1236.0	0.000
1	id i	10	0.686	-0.077	1329.5	0.000
1		11	0.652	-0.065	1414.4	0.000
1		12	0.617	-0.036	1490.9	0.000
I management		13	0.580	-0.044	1559.0	0.000
l management	1 1	14	0.543	-0.014	1618.8	0.000
ı <u>— — — — — — — — — — — — — — — — — — —</u>	1 1	15	0.508	-0.004	1671.5	0.000
ı —	<u> </u>	16	0.476	0.042	1718.1	0.000
1	<u> </u>	17	0.450	0.071	1759.9	0.000
ı —	<u> </u>	18	0.431	0.088	1798.6	0.000
· 🗀	II	19	0.410	-0.079	1833.7	0.000
ı —	<u> </u>	20	0.391	0.054	1866.0	0.000
ı 🚃	<u> </u>	21	0.380	0.083	1896.6	0.000
ı —	<u> </u>	22	0.372	0.085	1926.2	0.000

Tabela 20 - Teste LM serial correlation - Preços da VALE3 e do FERRO

F-statistic Obs*R-squared	1381.725 180.1334	Prob. F(4,180 Prob. Chi-Squ	,	0.0000 0.0000
Test Equation: Dependent Variable: RI Method: Least Squares Date: 10/12/22 Time: 1 Sample: 2007M01 202; Included observations: Presample missing val	18:42 2M06 186	duals set to zer	·o.	
Variable	Coefficient	Std. Error	t-Statistic	Prob.
C FERRO RESID(-1) RESID(-2) RESID(-3) RESID(-4)	1.435909 -0.010840 0.922781 0.096737 -0.012938 -0.007192	0.677408 0.005657 0.075734 0.105673 0.111151 0.082301	2.119709 -1.916061 12.18450 0.915438 -0.116402 -0.087390	0.0354 0.0569 0.0000 0.3612 0.9075 0.9305
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.968459 0.967583 3.308916 1970.806 -483.4445 1105.380 0.000000			-7.79E-15 18.37807 5.262845 5.366901 5.305012 1.909046

Fonte: Elaboração Própria, 2022.

Como os p-valores do teste F são próximos de zero então rejeita-se a hipótese nula, portanto, demonstrando a presença de correlação serial.

Gráfico 29 - Distribuição dos Resíduos do Preço da VALE3 e do Ferro

Tabela 21 - Preços da VALE3 e FERRO

	VALE	FERRO
VALE	1.000000	0.446865
FERRO	0.446865	1.000000

Fonte: Elaboração Própria, 2022.

Gráfico 30 - Cross Correlogram Of Vale and Ferro

Date: 10/14/22 Time: 08:02 Sample: 2007M01 2022M06 Included observations: 186 Correlations are asymptotically consistent approximations							
VALE,FERRO(-i)	VALE,FERRO(+i) VALE,FERRO(+i)						
		14 15 16 17 18 19 20 21	0.2586 0.2303 0.2102 0.1925 0.1658 0.1365 0.0951	0.3952 0.3610 0.3308 0.3084 0.2886 0.2713 0.2563 0.2436 0.2305 0.2158 0.2014 0.1898 0.1831 0.1790 0.1788 0.1810 0.1857 0.1918			

Tabela 22 - Resultados da Co-integração

Date: 10/14/22 Time: 13:23 Sample: 2007M01 2022M06 Included observations: 183
Series: LN_RET_VALE LN_RET_FERRO
Lags interval: 1 to 1

Selected (0.05 level*) Number of Cointegrating Relations by Model

Data Trend:	None	None	Linear	Linear	Quadratic
Test Type	No Intercept	Intercept	Intercept	Intercept	Intercept
	No Trend	No Trend	No Trend	Trend	Trend
Trace	2	2	2	2	2
Max-Eig	2	2	2	2	2

*Critical values based on MacKinnon-Haug-Michelis (1999)

Information Criteria by Rank and Model

Data Trend: Rank or No. of CEs		None Intercept No Trend	Linear Intercept No Trend	Linear Intercept Trend	Quadratic Intercept Trend		
	Log Likelihoo	d by Rank (ro	ws) and Mode	el (columns)			
0	282.3026	282.3026		282.3099	282.3140		
1	329.3688	329.8418	329.8489	330.3655	330.3667		
2	358.4673	359.1465	359.1465	359.7924	359.7924		
	Akaike Information Criteria by Rank (rows) and Model (columns)						
0	-3.041559	-3.041559		-3.019780			
1	-3.512227	-3.506467	-3.495616	-3.490333	-3.479418		
2	-3.786527*	-3.772093	-3.772093	-3.757294	-3.757294		
Schwarz Criteria by Rank (rows) and Model (columns)							
0	-2.971406	-2.971406	-2.914551	-2.914551	-2.857662		
1	-3.371922	-3.348624	-3.320234	-3.297413	-3.268960		
2	-3.576069*	-3.526558	-3.526558	-3.476683	-3.476683		

Tabela 23 - Cointegration Test

Date: 10/14/22 Time: 13:28

Sample (adjusted): 2007M05 2022M06 Included observations: 182 after adjustments Trend assumption: Quadratic deterministic trend Series: LN_RET_VALE LN_RET_FERRO Lags interval (in first differences): 1 to 2

Unrestricted Cointegration Rank Test (Trace)

Hypothesized No. of CE(s)	Eigenvalue	Trace Statistic	0.05 Critical Value	Prob.**
None *	0.317000	115.8670	18.39771	0.0000
At most 1 *	0.225371	46.47753	3.841465	0.0000

Trace test indicates 2 cointegrating eqn(s) at the 0.05 level

Fonte: Elaboração Própria, 2022.

Realizando o Johansen Test para testar a correlação entre duas ou mais séries temporais não estacionárias a longo prazo ou por um período especificado, sendo:

Ho: Não existe cointegração (Não existe relação no longo prazo entre as variáveis)

Ha: Existe cointegração

Se o p-valor é menor que 5%, rejeito Ho. Como o p-valor é próximo de 0, então, rejeita-se Ho, por conseguinte, existe cointegração entre as variáveis. Portanto, o resultado do Johansen Test indica para a existência de cointegração.

n)

(Aprender a Aprender) Com base em todas as análises feitas até aqui, proponha um modelo de regressão que seja capaz de relacionar adequadamente o preço das ações da Vale com o preço do minério de ferro. Ainda, estime os parâmetros deste modelo e analise os resultados obtidos. Comente sobre a validação do modelo.

Na questão "l)", foi proposto um modelo MA(1) somado ao preço do minério de ferro, que compõe a parte de tendência e estocástica do modelo, os resultados foram adequados e esse modelo poderia reger a relação entre os preços da ação da VALE3. No entanto, como a ação

^{*} denotes rejection of the hypothesis at the 0.05 level

^{**}MacKinnon-Haug-Michelis (1999) p-values

da VALE3 pode apresentar componente de inércia devido ao otimismo do mercado/ expectativas pode argumentar a adição de uma parte AR(1) nesse modelo e observar se a parte estatística será mais adequada quando comparado a somente utilizar uma parte MA(1). Nesse sentido, realizou-se o procedimento ARMA(1,1) somado ao preço corrente do minério de ferro para determinar o preço da ação da VALE3 por meio das seguintes estimações:

VALE com ARMA(1,1) somado com o preço do minério de ferro corrente

Tabela 24 - Modelo ARMA(1,1) somado ao preço do Ferro

Dependent Variable: VALE

Method: ARMA Maximum Likelihood (OPG - BHHH)

Date: 10/12/22 Time: 19:18 Sample: 2007M01 2022M06 Included observations: 186

Convergence achieved after 17 iterations

Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	28.24171	21.17565	1.333688	0.1840
FERRO	0.107924	0.020788	5.191647	0.0000
AR(1)	0.990157	0.009598	103.1653	0.0000
MA(1)	0.064314	0.075242	0.854755	0.3938
SIGMASQ	9.205411	0.581334	15.83498	0.0000
R-squared	0.978070	Mean dependent var		32.08097
Adjusted R-squared	0.977585	S.D. dependent var		20.54331
S.E. of regression	3.075663	Akaike info criterion		5.133262
Sum squared resid	1712.206	Schwarz criter	ion	5.219976
Log likelihood	-472.3934	Hannan-Quin	n criter.	5.168402
F-statistic	2018.110	Durbin-Watso	n stat	1.922622
Prob(F-statistic)	0.000000			
Inverted AR Roots	.99		·	·
Inverted MA Roots	06			

Fonte: Elaboração Própria

Gráfico 31 - Correlograma dos Resíduos ARMA(1,1) somado ao preço do Ferro

1 2 3 4 5 6 7	AC 0.006 0.118 0.003 -0.128 -0.033 0.021	0.118 0.002	Q-Stat 0.0063 2.6445 2.6465 5.7833	Prob* 0.104
2 3 4 5 6	0.118 0.003 -0.128 -0.033	0.118 0.002 -0.144	2.6445 2.6465	0.104
3 4 5 6	0.003 -0.128 -0.033	0.002 -0.144	2.6465	0.104
4 5 6	-0.128 -0.033	-0.144		0.104
5	-0.033		5.7833	
6		-0.034		0.055
_	0.021		5.9958	0.112
7	0.02	0.058	6.0845	0.193
	0.052	0.064	6.6082	0.251
8	0.006	-0.024	6.6149	0.358
9	0.044	0.018	6.9923	0.430
10	0.004	0.015	6.9950	0.537
11	0.072	0.086	8.0220	0.532
12	0.018	0.016	8.0871	0.620
13	0.009	-0.010	8.1023	0.704
14	-0.054	-0.063	8.6976	0.729
15	0.060	0.085	9.4319	0.740
16	-0.091	-0.072	11.149	0.674
17	-0.087	-0.118	12.711	0.625
18	0.029	0.024	12.889	0.681
19	-0.035	0.013	13.144	0.727
20	0.092	0.075	14.915	0.668
21	-0.028	-0.068	15.080	0.717
22	-0.024	-0.062	15.202	0.765
	10 11 12 13 14 15 16 17 18 19 20 21	10 0.004 11 0.072 12 0.018 13 0.009 14 -0.054 15 0.060 16 -0.091 17 -0.087 18 0.029 19 -0.035 20 0.092 21 -0.028	10 0.004 0.015 11 0.072 0.086 12 0.018 0.016 13 0.009 -0.010 14 -0.054 -0.063 15 0.060 0.085 16 -0.091 -0.072 17 -0.087 -0.118 18 0.029 0.024 19 -0.035 0.013	10 0.004 0.015 6.9950 11 0.072 0.086 8.0220 12 0.018 0.016 8.0871 13 0.009 -0.010 8.1023 14 -0.054 -0.063 8.6976 15 0.060 0.085 9.4319 16 -0.091 -0.072 11.149 17 -0.087 -0.118 12.711 18 0.029 0.024 12.889 19 -0.035 0.013 13.144 20 0.092 0.075 14.915 21 -0.028 -0.068 15.080

Gráfico 32 - Distribuição dos Resíduos ARMA(1,1) somado ao preço do Ferro

Como é possível notar, os erros são ruído branco válida-se o uso do modelo e apesar do

Tabela 25 - Teste ADF do Modelo ARMA(1,1) somado ao preço do Ferro

Null Hypothesis: VALE has a unit root Exogenous: Constant, Linear Trend Lag Length: 1 (Automatic - based on SIC, maxlag=22) t-Statistic Prob.* Augmented Dickey-Fuller test statistic -1.760458 0.7199 Test critical values: -4.008706 1% level 5% level -3.434433 10% level -3.141157 *MacKinnon (1996) one-sided p-values. Augmented Dickey-Fuller Test Equation Dependent Variable: D(VALE) Method: Least Squares Date: 10/13/22 Time: 11:41 Sample (adjusted): 2007M03 2022M06 Included observations: 184 after adjustments Variable Coefficient Std. Error t-Statistic Prob. VALE(-1) -0.026101 0.014827 0.0800 -1.760458 D(VALE(-1)) 0.307535 0.073874 4.162983 0.0000 0.165737 0.504860 0.328283 0.7431 @TREND("2007M01") 0.009293 0.005600 0.0988 1.659383 0.100505 0.315272 R-squared Mean dependent var Adjusted R-squared 0.085513 S.D. dependent var 3.360124 S.E. of regression 3.213247 Akaike info criterion 5.193940 1858.492 Sum squared resid Schwarz criterion 5.263830 Log likelihood -473.8425 5.222267 Hannan-Quinn criter. F-statistic 6.704087 Durbin-Watson stat 2.015759 Prob(F-statistic) 0.000258

Fonte: Elaboração Própria, 2022.

Observa-se, no entanto, que o modelo apresenta raiz unitária para o preço da vale, portanto, devemos realizar a primeira diferença do preço da vale para usar esse modelo, consequentemente, devemos realizar a primeira diferença do preço do ferro. Nessa perspectiva, realiza-se a regressão da 1a diferença das variáveis somada ao ARMA(1,1) da diferença do preço da vale.

Tabela 26 - Modelo ARMA(1,1) da Primeira Diferença da VALE3 somado à diferença do Ferro

Dependent Variable: DIF_VALE

Method: ARMA Maximum Likelihood (OPG - BHHH)

Date: 10/13/22 Time: 11:46 Sample: 2007M02 2022M06 Included observations: 185

Convergence achieved after 18 iterations

Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C DIF_FERRO AR(1) MA(1) SIGMASQ	0.278674 0.103308 0.409876 -0.325489 9.133877	0.266084 0.021018 0.498790 0.539143 0.564224	1.047313 4.915306 0.821741 -0.603716 16.18840	0.2964 0.0000 0.4123 0.5468 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.182167 0.163993 3.063918 1689.767 -467.1175 10.02346 0.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		0.315514 3.350983 5.103973 5.191009 5.139247 1.979402
Inverted AR Roots Inverted MA Roots	.41 .33			

Fonte: Elaboração Própria, 2022.

No entanto ao realizar esse modelo temos o p-valor do MA e AR como irrelevantes, portanto, esse modelo estaria errado.

Por conseguinte, voltamos ao modelo proposto na alternativa l, que é o preço da vale sendo igual ao preço do minério de ferro corrente somado ao MA(1). Complementando a análise de resíduos realizada na l, temos:

Tabela 27 - Modelo MA(1) somado ao preço do Ferro

Dependent Variable: VALE

Method: ARMA Maximum Likelihood (OPG - BHHH)

Date: 10/13/22 Time: 11:53 Sample: 2007M01 2022M06 Included observations: 186

Convergence achieved after 9 iterations

Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C FERRO MA(1) SIGMASQ	11.77451 0.182937 0.903358 104.8215	4.586123 0.029579 0.040984 12.11020	2.567421 6.184718 22.04174 8.655635	0.0110 0.0000 0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.750281 0.746165 10.35013 19496.80 -697.4292 182.2735 0.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		32.08097 20.54331 7.542249 7.611620 7.570361 0.427349
Inverted MA Roots	90			

Fonte: Elaboração Própria, 2022.

Gráfico 33 - Correlograma dos Resíduos do MA(1) somado ao preço do Ferro

Date: 10/13/22 Time: 16:44 Sample: 2007M01 2022M06 Q-statistic probabilities adjusted for 1 ARMA term						
Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob*
		1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	0.845 0.691 0.775 0.650 0.707 0.613 0.650 0.564 0.582 0.503 0.503 0.437 0.443 0.378 0.400	0.781 0.797 -0.161 -0.006 -0.119 0.055 0.066 -0.054 0.036 -0.009 -0.086 -0.073 -0.071 -0.023 -0.026 0.033 -0.007 0.125 0.041 -0.073 0.053 0.070	115.31 276.45 382.67 519.74 611.87 728.47 811.11 909.25 983.54 1067.5 1130.9 1250.0 1302.4 1341.4 1381.7 1444.7 1469.2 1496.0 1517.0 1540.3	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
*Probabilities may not be valid for this equation specification.						

Como os resíduos do modelo tem memória devido ao p-valor do teste Ljung Box ser próximo de zero nota-se que o erro não é ruído branco, por conseguinte, devemos descartar esse modelo devido a não aderência do modelo aos pressupostos básicos econométricos necessários para a validação do mesmo. Nesse sentido, **não podemos modelar a série** com precisão, o melhor seria considerá-la um passeio aleatório e não estimar os regressores.

0)

Como foi proposto na alternativa "n", o modelo para o preço da ação da Vale depende dos choques aleatórios e preço do minério de ferro, ademais o aumento de 1 unidade monetária resulta, em média, tudo mais constante, em um aumento no preço da Vale de 0,182937 unidades monetárias no preço da ação da Vale. Dessa forma, o fator mais relevante para recomendar a trajetória da ação da Vale é projetar o preço futuro do minério de ferro. Nesse sentido, para fazer determinada afirmação como é possível notar pelo fato de 80% das importações mundiais de ferro serem realizadas pela China, precisamos determinar a projeção de crescimento do setor imobiliário chinês e esse vem apresentando diversos problemas. A perspectiva na qual o setor imobiliário chinês se encontra é precária pois devido ao excesso de endividamento das empresas imobiliárias, Xi Jinping, o presidente da China, passou a temer o crescimento descontrolado da dívida das construtoras e o surgimento de uma bolha imobiliária que poderia destruir a economia.

Por isso, em 2020 ele lançou uma política que ficou conhecida como "as três linhas vermelhas" impondo um valor máximo que 3 métricas de endividamento poderiam chegar sendo eles: ativo por passivo, dívida líquida e dívida de curto prazo. Esses fatores estão provocando uma desaceleração do setor imobiliário chines que passa por uma crise. Além disso, por muito tempo a migração da população rural para o meio urbano foi um dos principais motores do boom na demanda imobiliária chinesa, mas agora isso está terminando, a maior parte da migração já ficou no passado e o setor de construção que corresponde por cerca de 20% do PIB chinês e foi peça chave no seu milagre econômico está desacelerando. Por conseguinte, uma desaceleração no crescimento imobiliário chines reduz drasticamente a demanda por minério de ferro, por isso, a tendência é uma queda dessa commodity no no curto prazo, além de uma alta volatilidade de difícil previsão, pois não se sabe se a demanda chinesa será preenchida pelo crescimento da Índia que demandará obras de infraestrutura, como um cenário de repetição da performance econômica chinesa na índia é difícil de ser repetida não podemos supor um crescimento do preço do ferro para o médio prazo, por isso,

não se recomenda a compra da vale para o médio/longo prazo devido a previsão para o preço do minério de ferro.

Como não é possível estimar a série, não podemos propor um preço ótimo para vale, ou seja, um valuation, no entanto, como sabe-se que o preço da vale depende do preço do minério de ferro recomenda-se não comprar com base na previsão de queda do mesmo.