Internet Protocols EBU5403 The Data Link Layer Part 2 D1

Michael Chai (michael.chai@qmul.ac.uk)
Richard Clegg (r.clegg@qmul.ac.uk)
Cunhua Pan (c.pan@qmul.ac.uk)

	Part I	Part 2	Part 3	Part 4
Ecommerce + Telecoms I	Richard Clegg		Cunhua Pan	
Telecoms 2	Michael Chai			

Structure of course

- Part A
 - Introduction to IP Networks
 - The Transport layer (part 1)
- Part B
 - The Transport layer (part II)
 - The Network layer (part I)
 - Class test (open book exam in class)
- Part C
 - The Network layer (part II)
 - The Data link layer (part I)
- Part D
 - The Data link layer (part II)
 - Security and network management

Data Link Layer

Link layer, LANs: outline

- 6. I introduction, services
- 6.2 error detection, correction
- 6.3 multiple access protocols
- 6.4 LANs
 - addressing, ARP
 - Ethernet
 - WiFi
 - switches
 - VLANS

- 6.5 link virtualization: MPLS
- 6.6 a day in the life of a web request

Multiple access links, protocols

two types of "links":

- point-to-point (connect two computers only)
- broadcast (shared wire or medium)
 - old-fashioned Ethernet
 - upstream HFC (hybrid fibre coaxial)
 - 802.11 wireless LAN
- Problems: "collision" 2 or more transmissions at once
- Solution: Multiple access protocol "share" medium

shared wire (e.g., cabled Ethernet)

shared RF (radio frequency) (e.g., 802.11 WiFi)

shared RF (satellite)

humans at a cocktail party (shared air, acoustic)

An ideal multiple access protocol

given: broadcast channel of rate R bps

Desired qualities:

- I. when one node wants to transmit, it can send at rate R.
- 2. when M nodes want to transmit, each can send at average rate R/M
- 3. fully decentralized:
 - no special node to coordinate transmissions
 - no synchronization of clocks, slots
- 4. Simple

Options:

Partition channel, random access, "take turns"

Channel partitioning MAC protocols: TDMA

TDMA: time division multiple access

- access to channel in "rounds"
- each station gets fixed length slot (length = packet transmission time) in each round
- unused slots go idle
- example: 6-station LAN, 1,3,4 have packets to send, slots 2,5,6 idle

Channel partitioning MAC protocols: FDMA

FDMA: frequency division multiple access

- channel spectrum divided into frequency bands
- each station assigned fixed frequency band
- unused transmission time in frequency bands go idle
- example: 6-station LAN, 1,3,4 have packet to send, frequency bands 2,5,6 idle

Random access protocols

- when node has packet to send
 - transmit at full channel data rate R.
 - no a priori coordination among nodes
- two or more transmitting nodes → "collision",
- random access MAC protocol specifies:
 - how to detect collisions
 - how to recover from collisions (e.g., via delayed retransmissions)
- examples of random access MAC protocols:
 - slotted ALOHA (not an acronym, means "hello" in Hawaii)
 - ALOHA
 - CSMA, CSMA/CD, CSMA/CA
 - Carrier Sense Multiple Access (collision detection/collision avoidance)

Slotted ALOHA

assumptions:

- all frames same size
- time divided into equal size slots (time to transmit I frame)
- nodes start to transmit only slot beginning
- nodes are synchronized
- if 2 or more nodes transmit in slot, all nodes detect collision

operation:

- when node obtains fresh frame, transmits in next slot
 - if no collision: node can send new frame in next slot
 - if collision: node retransmits frame in each subsequent slot with prob. p until success

Slotted ALOHA

C = collision E = empty S = successfully sent

Pros:

- single active node can continuously transmit at full rate of channel
- highly decentralized: only slots in nodes need to be in sync
- simple

Cons:

- collisions, wasting slots
- idle slots
- nodes may be able to detect collision in less than time to transmit packet
- clock synchronization

Pure (unslotted) ALOHA

- unslotted Aloha: simpler, no synchronization
- when frame first arrives
 - transmit immediately
- collision probability increases:
 - frame sent at t₀ collides with other frames sent in [t₀-1,t₀+1]
- Doesn't need unified clock but half as efficient as slotted.

CSMA (carrier sense multiple access)

CSMA: listen before transmit:

if channel sensed idle: transmit entire frame

 if channel sensed busy, defer transmission

human analogy: don't interrupt others!

CSMA collisions

- collisions can still occur: propagation delay means two nodes may not hear each other's transmission
- collision: entire packet transmission time wasted
 - distance & propagation delay play role in in determining collision probability

t.

CSMA collisions

- collisions can still occur: propagation delay means two nodes may not hear each other's transmission
- collision: entire packet transmission time wasted
 - distance & propagation delay play role in in determining collision probability

CSMA/CD (collision detection)

CSMA/CD: carrier sensing, deferral (backs off transmission) as in CSMA

- collisions detected within short time
- colliding transmissions aborted, reducing channel wastage
- collision detection:
 - easy in wired LANs: measure signal strengths, compare transmitted, received signals
 - difficult in wireless LANs: received signal strength overwhelmed by local transmission strength
- human analogy: polite talk where people wait for each other

CSMA/CD (collision detection)

Ethernet CSMA/CD algorithm

- I. Network Interface Card (NIC) receives datagram from network layer, creates frame
- If NIC senses channel idle, starts frame transmission. If NIC senses channel busy, waits until channel idle, then transmits.
- 3. If NIC transmits entire frame without detecting another transmission, NIC is done with frame!

Ethernet CSMA/CD algorithm

- 4. If NIC detects another transmission while transmitting, aborts and sends jam signal
- 5. After aborting, NIC enters binary (exponential) backoff:
 - after m th collision, NIC chooses K at random from {0,1,2, ..., 2^m-1}. NIC waits K·512 bit times, returns to Step 2
 - longer backoff interval with more collisions

Test your understanding

With Ethernet, if a host experiences two successive collisions it may next backoff for

. . .

- A. 0 or 1 time slots
- **B**. 0, 1, 2 or 3 time slots
- C. 0, 1, 2, 3, 4 or 5 time slots
- D. 0, 1, 2, 3, 4, 5, 6 or 7 time slots

Test your understanding

With Ethernet, if a host experiences two successive collisions it may next backoff for

. . .

- A. 0 or 1 time slots
- **B.** 0, 1, 2 or 3 time slots
- C. 0, 1, 2, 3, 4 or 5 time slots
- D. 0, 1, 2, 3, 4, 5, 6 or 7 time slots

CSMA/CD: Frame size

- Collision Detection
- Collision Window
 - Related to end-to-end propagation delay
- Minimum packet size must be greater than collision window
 - For 5000m (5km) bus @ 10 Mbits/sec,
 - RTT = $2x5000m/2x10^8$ m/s = 0.00005s min frame size = $0.00005s \times 10,000,000$ bits/sec

2x10^8 m/s =
2/3 speed of light =
speed of signal
in copper wire

Test your understanding

With CSMA/CD, a minimum frame size must be imposed to ensure

- A. The transmitting station is still transmitting long enough for a corrupted signal to be detected
- B. The frame overhead is limited
- C. Access to the shared medium is fair
- D. Stations do not keep hold of the shared medium for too long

Test your understanding

With CSMA/CD, a minimum frame size must be imposed to ensure

- A. The transmitting station is still transmitting long enough for a corrupted signal to be detected
- B. The frame overhead is limited
- C. Access to the shared medium is fair
- D. Stations do not keep hold of the shared medium for too long

CSMA/CA (Collision Avoidance)

- avoid collisions: 2⁺ nodes transmitting at same time
- 802.11: CSMA sense before transmitting
 - don't collide with ongoing transmission by other node
- 802.11: no collision detection!
 - difficult to receive (sense collisions) when transmitting due to weak received signals (fading)
 - can't sense all collisions in any case: hidden terminal, fading
 - goal: avoid collisions: CSMA/C(ollision)A(voidance)

Hidden and Exposed Station problems

(a) The hidden station problem.

A and C are hidden from each other

(b) The exposed station problem.

B is exposed to transmission from A

IEEE 802.11 MAC Protocol: CSMA/CA

802.11 sender

1 if sense channel idle for **DIFS** then transmit entire frame (no CD)

2 if sense channel busy then

start random backoff time

timer counts down while channel idle

transmit when timer expires

if no ACK, increase random backoff interval, repeat 2

802.11 receiver

- if frame received OK

return ACK after **SIFS** (ACK needed due to hidden terminal problem)

DCF = Distributed Coordination Function

DIFS = DCF InterFrame Space

SIFS = Short InterFrame Space

Avoiding collisions (more)

idea: allow sender to "reserve" channel rather than random access of data frames: avoid collisions of long data frames

- sender first transmits small request-to-send (RTS) packets to base station (BS) using CSMA
 - RTSs may still collide with each other (but they're short)
- BS broadcasts clear-to-send CTS in response to RTS
- CTS heard by all nodes
 - sender transmits data frame
 - other stations defer transmissions

avoid data frame collisions completely using small reservation packets!

Collision Avoidance: RTS-CTS exchange

What have we learned?

- channel partitioning, by time, frequency or code
 - Time Division, Frequency Division
- random access (dynamic),
 - ALOHA, S-ALOHA, CSMA, CSMA/CD
 - carrier sensing: easy in some technologies (wire), hard in others (wireless)
 - CSMA/CD used in Ethernet
 - CSMA/CA used in 802.11