Chapter 1 Relations and Functions

EXERCISE 1.1

Question 1:

Determine whether each of the following relations are reflexive, symmetric and transitive.

(i) Relation R in the set $A = \{1, 2, 3, \dots, 13, 14\}$ defined as

$$R = \{(x, y) : 3x - y = 0\}$$

(ii) Relation R in the set of N natural numbers defined as

$$R = \{(x, y) : y = x + 5 \text{ and } x < 4\}$$

(iii) Relation R in the set $A = \{1, 2, 3, 4, 5, 6\}$ defined as

$$R = \{(x, y) : y \text{ is divisible by } x\}$$

(iv) Relation R in the set of Z integers defined as

$$R = \{(x, y) : x - y \text{ is an integer}\}$$

- (v) Relation R in the set of human beings in a town at a particular time given by
 - (a) $R = \{(x, y) : x \text{ and } y \text{ work at the same place}\}$
 - (b) $R = \{(x, y) : x \text{ and } y \text{ live in the same locality}\}$
 - (c) $R = \{(x, y) : x \text{ is exactly 7cm taller than } y\}$
 - (d) $R = \{(x, y) : x \text{ is wife of } y\}$
 - (e) $R = \{(x, y) : x \text{ is father of } y\}$

Solution:

(i) $R = \{(1,3),(2,6),(3,9),(4,12)\}$

R is not reflexive because (1,1),(2,2)... and $(14,14) \notin R$.

R is not symmetric because $(1,3) \in R$, but $(3,1) \notin R$. [since $3(3) \neq 0$].

R is not transitive because $(1,3),(3,9) \in R$, but $(1,9) \notin R.[3(1)-9 \neq 0]$.

Hence, R is neither reflexive nor symmetric nor transitive.

(ii) $R = \{(1,6), (2,7), (3,8)\}$

R is not reflexive because $(1,1) \notin R$.

R is not symmetric because $(1,6) \in R$ but $(6,1) \notin R$.

R is not transitive because there isn't any ordered pair in R such that $(x,y),(y,z) \in R$, so $(x,z) \notin R$

Hence, R is neither reflexive nor symmetric nor transitive.

(iii) $R = \{(x, y) : y \text{ is divisible by } x\}$

We know that any number other than 0 is divisible by itself.

Thus, $(x, x) \in R$

So, R is reflexive.

 $(2,4) \in R$ [because 4 is divisible by 2]

But $(4,2) \notin R$ [since 2 is not divisible by 4]

So, R is not symmetric.

Let (x, y) and $(y, z) \in R$. So, y is divisible by x and z is divisible by y.

So, z is divisible by $x \Rightarrow (x, z) \in R$

So, R is transitive.

So, R is reflexive and transitive but not symmetric.

(iv) $R = \{(x, y) : x - y \text{ is an integer}\}$

For $x \in \mathbb{Z}$, $(x,x) \notin R$ because x-x=0 is an integer.

So, R is reflexive.

For, $x, y \in Z$, if $x, y \in R$, then x - y is an integer $\Rightarrow (y - x)$ is an integer.

So, $(y,x) \in R$

So, R is symmetric.

Let (x, y) and $(y, z) \in R$, where $x, y, z \in Z$.

 \Rightarrow (x-y) and (y-z) are integers.

 $\Rightarrow x-z = (x-y)+(y-z)$ is an integer.

So, R is transitive.

So, R is reflexive, symmetric and transitive.

(v)

a) $R = \{(x, y) : x \text{ and } y \text{ work at the same place}\}$

R is reflexive because $(x,x) \in R$

R is symmetric because,

If $(x, y) \in R$, then x and y work at the same place and y and x also work at the same place. $(y, x) \in R$.

R is transitive because,

Let
$$(x,y),(y,z) \in R$$

x and y work at the same place and y and z work at the same place.

Then, x and z also works at the same place. $(x, z) \in R$. Hence, R is reflexive, symmetric and transitive.

b) $R = \{(x, y) : x \text{ and } y \text{ live in the same locality}\}$

R is reflexive because $(x,x) \in R$

R is symmetric because,

If $(x, y) \in R$, then x and y live in the same locality and y and x also live in the same locality $(y, x) \in R$.

R is transitive because,

Let
$$(x, y), (y, z) \in R$$

x and y live in the same locality and y and z live in the same locality.

Then x and z also live in the same locality. $(x, z) \in R$. Hence, R is reflexive, symmetric and transitive.

c) $R = \{(x, y) : x \text{ is exactly 7cm taller than } y\}$

R is not reflexive because $(x,x) \notin R$

R is not symmetric because,

If $(x, y) \in R$, then x is exactly 7cm taller than y and y is clearly not taller than x. $(y, x) \notin R$.

R is not transitive because,

Let
$$(x, y), (y, z) \in R$$

x is exactly 7cm taller than y and y is exactly 7cm taller than z.

Then x is exactly 14cm taller than z. $(x,z) \notin R$ Hence, R is neither reflexive nor symmetric nor transitive.

d) $R = \{(x, y) : x \text{ is wife of } y\}$

R is not reflexive because $(x,x) \notin R$

R is not symmetric because,

Let $(x,y) \in R$, x is the wife of y and y is not the wife of x. $(y,x) \notin R$.

R is not transitive because,

Let
$$(x, y), (y, z) \in R$$

x is wife of y and y is wife of z, which is not possible.

$$(x,z) \notin R$$

Hence, R is neither reflexive nor symmetric nor transitive.

e) $R = \{(x, y) : x \text{ is father of } y\}$

R is not reflexive because $(x, x) \notin R$

R is not symmetric because,

Let $(x, y) \in R$, x is the father of y and y is not the father of x. $(y, x) \notin R$.

R is not transitive because,

Let
$$(x,y),(y,z) \in R$$

x is father of y and y is father of z, x is not father of z. $(x,z) \notin R$. Hence, R is neither reflexive nor symmetric nor transitive.

Question 2:

Show that the relation R in the set R of real numbers, defined as $R = \{(a,b) : a \le b^2\}$ is neither reflexive nor symmetric nor transitive.

Solution:

$$R = \left\{ (a,b) : a \le b^2 \right\}$$

$$\left(\frac{1}{2}, \frac{1}{2}\right) \notin R \quad \text{because } \frac{1}{2} > \left(\frac{1}{2}\right)^2$$

 \therefore R is not reflexive.

$$(1,4) \in R$$
 as $1 < 4$. But 4 is not less than 1^2 . $(4,1) \notin R$

: R is not symmetric.

$$(3,2)(2,1.5) \in R$$
 [Because $3 < 2^2 = 4$ and $2 < (1.5)^2 = 2.25$]
 $3 > (1.5)^2 = 2.25$
 $\therefore (3,1.5) \notin R$

: R is not transitive.

R is neither reflective nor symmetric nor transitive.

Question 3:

Check whether the relation R defined in the set $\{1,2,3,4,5,6\}$ as $R = \{(a,b): b = a+1\}$ is reflexive, symmetric or transitive.

Solution:

$$A = \{1, 2, 3, 4, 5, 6\}$$

$$R = \{(a,b): b = a+1\}$$

$$R = \{(1,2), (2,3), (3,4), (4,5), (5,6)\}$$

$$(a,a) \notin R, a \in A$$

 $(1,1),(2,2),(3,3),(4,4),(5,5) \notin R$
 \therefore R is not reflexive.

$$(1,2) \in R$$
, but $(2,1) \notin R$

: R is not symmetric.

$$(1,2),(2,3)\in R$$

$$(1,3) \notin R$$

: R is not transitive.

R is neither reflective nor symmetric nor transitive.

Question 4:

Show that the relation R in R defined as $R = \{(a,b) : a \le b\}$ is reflexive and transitive, but not symmetric.

Solution:

$$R = \{(a,b) : a \le b\}$$

$$(a,a) \in R$$

∴ R is reflexive.

$$(2,4) \in R \text{ (as } 2 < 4)$$

$$(4,2) \notin R \text{ (as } 4>2)$$

 \therefore R is not symmetric.

$$(a,b),(b,c) \in R$$

$$a \le b$$
 and $b \le c$

$$\Rightarrow a \leq c$$

$$\Rightarrow (a,c) \in R$$

∴ R is transitive.

R is reflexive and transitive but not symmetric.

Question 5:

Check whether the relation R in R defined as $R = \{(a,b) : a \le b^3\}$ is reflexive, symmetric or transitive.

Solution:

$$R = \left\{ \left(a, b \right) : a \le b^3 \right\}$$

$$\left(\frac{1}{2}, \frac{1}{2}\right) \notin R$$
, since $\frac{1}{2} > \left(\frac{1}{2}\right)^3$

 \therefore R is not reflexive.

$$(1,2) \in R(as 1 < 2^3 = 8)$$

$$(2,1) \notin R(as 2^3 > 1 = 8)$$

: R is not symmetric.

$$\left(3, \frac{3}{2}\right), \left(\frac{3}{2}, \frac{6}{5}\right) \in R$$
, since $3 < \left(\frac{3}{2}\right)^3$ and $\frac{2}{3} < \left(\frac{6}{2}\right)^3$
 $\left(3, \frac{6}{5}\right) \notin R3 > \left(\frac{6}{5}\right)^3$

: R is not transitive.

R is neither reflexive nor symmetric nor transitive.

Question 6:

Show that the relation R in the set $\{1,2,3\}$ given by $R = \{(1,2),(2,1)\}$ is symmetric but neither reflexive nor transitive.

Solution:

$$A = \{1, 2, 3\}$$

$$R = \{(1,2),(2,1)\}$$

$$(1,1),(2,2),(3,3) \notin R$$

 \therefore R is not reflexive.

$$(1,2) \in R$$
 and $(2,1) \in R$

: R is symmetric.

$$(1,2) \in R \text{ and } (2,1) \in R$$

$$(1,1) \in R$$

 \therefore R is not transitive.

R is symmetric, but not reflexive or transitive.

Question 7:

Show that the relation R in the set A of all books in a library of a college, given by $R = \{(x, y) : x \text{ and } y \text{ have same number of pages}\}$ is an equivalence relation.

Solution:

$$R = \{(x, y) : x \text{ and } y \text{ have same number of pages}\}$$

R is reflexive since $(x,x) \in R$ as x and x have same number of pages.

∴ R is reflexive.

$$(x,y) \in R$$

x and y have same number of pages and y and x have same number of pages $(y,x) \in R$ \therefore R is symmetric.

$$(x, y) \in R, (y, z) \in R$$

x and y have same number of pages, y and z have same number of pages.

Then x and z have same number of pages.

$$(x,z) \in R$$

: R is transitive.

R is an equivalence relation.

Question 8:

Show that the relation R in the set $A = \{1, 2, 3, 4, 5\}$ given by $R = \{(a,b): |a-b| \text{ is even}\}$ is an equivalence relation. Show that all the elements of $\{1,3,5\}$ are related to each other and all the elements of $\{2,4\}$ are related to each other. But no element of $\{1,3,5\}$ is related to any element of $\{2,4\}$.

Solution:

 $a \in A$ |a-a| = 0 (which is even)

∴ R is reflective.

$$(a,b) \in R$$

 $\Rightarrow |a-b|$ [is even]
 $\Rightarrow |-(a-b)| = |b-a|$ [is even]
 $(b,a) \in R$
 \therefore R is symmetric.

$$(a,b) \in R$$
 and $(b,c) \in R$
 $\Rightarrow |a-b|_{is \text{ even and }} |b-c|_{is \text{ even}}$
 $\Rightarrow (a-b)_{is \text{ even and }} (b-c)_{is \text{ even}}$
 $\Rightarrow (a-c) = (a+b) + (b-c)_{is \text{ even}}$

$$\Rightarrow |a-b|$$
 is even

$$\Rightarrow (a,c) \in R$$

∴ R is transitive.

R is an equivalence relation.

All elements of $\{1,3,5\}$ are related to each other because they are all odd. So, the modulus of the difference between any two elements is even.

Similarly, all elements $\{2,4\}$ are related to each other because they are all even.

No element of $\{1,3,5\}$ is related to any elements of $\{2,4\}$ as all elements of $\{1,3,5\}$ are odd and all elements of $\{2,4\}$ are even. So, the modulus of the difference between the two elements will not be even.

Question 9:

Show that each of the relation R in the set $A = \{x \in Z : 0 \le x \le 12\}$, given by

i.
$$R = \{(a,b): |a-b| \text{ is a mutiple of 4}\}$$

ii.
$$R = \{(a,b) : a = b\}$$

Is an equivalence relation. Find the set of all elements related to 1 in each case.

Solution:

$$A = \left\{ x \in Z : 0 \le x \le 12 \right\} = \left\{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 \right\}$$

i.
$$R = \{(a,b) : |a-b| \text{ is a mutiple of 4} \}$$

 $a \in A, (a,a) \in R$ $[|a-a| = 0 \text{ is a multiple of 4}]$
 \therefore R is reflexive.

$$(a,b) \in R \Rightarrow |a-b|$$
 [is a multiple of 4]
 $\Rightarrow |-(a-b)| = |b-a|$ [is a multiple of 4]
 $(b,a) \in R$

$$\therefore$$
 R is symmetric.

$$(a,b) \in R$$
 and $(b,c) \in R$
 $\Rightarrow |a-b|$ is a multiple of 4 and $|b-c|$ is a multiple of 4
 $\Rightarrow (a-b)$ is a multiple of 4 and $(b-c)$ is a multiple of 4
 $\Rightarrow (a-c) = (a-b) + (b-c)$ is a multiple of 4
 $\Rightarrow |a-c|$ is a multiple of 4

$$\Rightarrow (a,c) \in R$$

∴ R is transitive.

R is an equivalence relation.

The set of elements related to 1 is $\{1,5,9\}$ as

$$|1-1| = 0$$
 is a multiple of 4.

$$|5-1|=4$$
 is a multiple of 4.

$$|9-1|=8$$
 is a multiple of 4.

ii.
$$R = \{(a,b) : a = b\}$$

 $a \in A, (a,a) \in R$ [since a=a]
 \therefore R is reflective.

$$(a,b) \in R$$

$$\Rightarrow a = b$$

$$\Rightarrow b = a$$

$$\Rightarrow (b,a) \in R$$

∴ R is symmetric.

$$(a,b) \in R$$
 and $(b,c) \in R$

$$\Rightarrow a = b$$
 and $b = c$

$$\Rightarrow a = c$$

$$\Rightarrow (a,c) \in R$$

∴ R is transitive.

R is an equivalence relation.

The set of elements related to 1 is $\{1\}$.

Question 10:

Give an example of a relation, which is

- i. Symmetric but neither reflexive nor transitive.
- ii. Transitive but neither reflexive nor symmetric.
- iii. Reflexive and symmetric but not transitive.
- iv. Reflexive and transitive but not symmetric.
- v. Symmetric and transitive but not reflexive.

Solution:

i.

$$A = \{5, 6, 7\}$$

$$R = \{(5,6),(6,5)\}$$

$$(5,5),(6,6),(7,7) \notin R$$

R is not reflexive as $(5,5),(6,6),(7,7) \notin R$

$$(5,6),(6,5) \in R_{and}(6,5) \in R_{r}$$
, R is symmetric.

$$\Rightarrow$$
 (5,6),(6,5) \in R, but (5,5) \notin R

 \therefore R is not transitive.

Relation R is symmetric but not reflexive or transitive.

ii.
$$R = \{(a,b) : a < b\}$$

 $a \in R, (a, a) \notin R$ [since a cannot be less than itself]

R is not reflexive.

$$(1,2) \in R(as 1 < 2)$$

But 2 is not less than 1

$$\therefore (2,1) \notin R$$

R is not symmetric.

$$(a,b),(b,c) \in R$$

$$\Rightarrow a < b \text{ and } b < c$$

$$\Rightarrow a < c$$

$$\Rightarrow (a,c) \in R$$

∴ R is transitive.

Relation R is transitive but not reflexive and symmetric.

iii.
$$A = \{4, 6, 8\}$$

$$A = \{(4,4),(6,6),(8,8),(4,6),(6,8),(8,6)\}$$

R is reflexive since $a \in A, (a, a) \in R$

R is symmetric since $(a,b) \in R$

$$\Rightarrow (b,a) \in R \quad \text{for } a,b \in R$$

R is not transitive since $(4,6), (6,8) \in R, but (4,8) \notin R$

R is reflexive and symmetric but not transitive.

iv.
$$R = \{(a,b): a^3 > b^3\}$$

$$(a,a) \in R$$

 \therefore R is reflexive.

$$(2,1) \in R$$

$$But(1,2) \notin R$$

 \therefore R is not symmetric.

$$(a,b),(b,c) \in R$$

 $\Rightarrow a^3 \ge b^3 \text{ and } b^3 < c^3$
 $\Rightarrow a^3 < c^3$
 $\Rightarrow (a,c) \in R$

 \therefore R is transitive.

R is reflexive and transitive but not symmetric

v. Let
$$A = \{-5, -6\}$$

 $R = \{(-5, -6), (-6, -5), (-5, -5)\}$
R is not reflexive as $(-6, -6) \notin R$
 $(-5, -6), (-6, -5) \in R$
R is symmetric.
 $(-5, -6), (-6, -5) \in R$
 $(-5, -6), (-6, -5) \in R$

R is transitive.

: R is symmetric and transitive but not reflexive.

Question 11:

Show that the relation R in the set A of points in a plane given by

 $R = \{(P,Q): \text{ Distance of the point P from the origin is same as the distance of the point Q from the origin}\}$

, is an equivalence relation. Further, show that the set of all points related to a point $P \neq (0,0)$ is the circle passing through P with origin as centre.

Solution:

 $R = \{(P,Q) : \text{Distance of the point P from the origin is same as the distance of the point Q from the origin}\}$

Clearly,
$$(P, P) \in R$$

 \therefore R is reflexive.

$$(P,Q) \in R$$

Clearly R is symmetric.

$$(P,Q),(Q,S) \in R$$

 \Rightarrow The distance of P and Q from the origin is the same and also, the distance of Q and S from the origin is the same.

 \Rightarrow The distance of P and S from the origin is the same.

$$(P,S) \in R$$

 \therefore R is transitive.

R is an equivalence relation.

The set of points related to $P \neq (0,0)$ will be those points whose distance from origin is same as distance of P from the origin.

Set of points forms a circle with the centre as origin and this circle passes through P.

Question 12:

Show that the relation R in the set A of all triangles as $R = \{(T_1, T_2): T_1 \text{ is similar to } T_2\}$, is an equivalence relation. Consider three right angle triangles T_1 with sides 3,4,5, T_2 with sides 5,12,13 and T_3 with sides 6,8,10. Which triangle among T_1, T_2, T_3 are related?

Solution:

 $R = \{ (T_1, T_2) : T_1 \text{ is similar to } T_2 \}$

R is reflexive since every triangle is similar to itself.

If $(T_1, T_2) \in R$, then T_1 is similar to T_2 .

 T_2 is similar to T_1 .

$$\Rightarrow (T_2, T_1) \in R$$

 \therefore R is symmetric.

$$(T_1, T_2), (T_2, T_3) \in R$$

 T_1 is similar to T_2 and T_2 is similar to T_3 .

 $T_{1 \text{ is similar to }} T_{3}$.

$$\Rightarrow (T_1, T_3) \in R$$

 \therefore R is transitive.

$$\frac{3}{6} = \frac{4}{8} = \frac{5}{10} = \left(\frac{1}{2}\right)$$

 \therefore Corresponding sides of triangles T_1 and T_3 are in the same ratio.

Triangle T_1 is similar to triangle T_3 .

Hence, T_1 is related to T_3 .

Question 13:

Show that the relation R in the set A of all polygons as $R = \{(P_1, P_2): P_1 \text{ and } P_2 \text{ have same number of sides}\}$, is an equivalence relation. What is the set of all elements in A related to the right angle triangle T with sides 3,4*and5*?

Solution:

 $R = \{(P_1, P_2) : P_1 \text{ and } P_2 \text{ have same number of sides} \}$

 $(P_1, P_2) \in \mathbb{R}$ as same polygon has same number of sides.

 \therefore R is reflexive.

$$(P_1, P_2) \in R$$

 $\Rightarrow P_1$ and P_2 have same number of sides.

 \Rightarrow P_2 and P_1 have same number of sides.

$$\Rightarrow (P_2, P_1) \in R$$

 \therefore R is symmetric.

$$(P_1,P_2),(P_2,P_3) \in R$$

 \Rightarrow P_1 and P_2 have same number of sides.

 P_2 and P_3 have same number of sides.

 \Rightarrow P_1 and P_3 have same number of sides.

$$\Rightarrow (P_1, P_3) \in R$$

 \therefore R is transitive.

R is an equivalence relation.

The elements in A related to right-angled triangle (T) with sides 3,4,5 are those polygons which have three sides.

Set of all elements in a related to triangle T is the set of all triangles.

Question 14:

Let L be the set of all lines in XY plane and R be the relation in L defined as $R = \{(L_1, L_2) : L_1 \text{ is parallel to } L_2\}$. Show that R is an equivalence relation. Find the set of all lines related to the line y = 2x + 4.

Solution:

$$R = \{(L_1, L_2) : L_1 \text{ is parallel to } L_2\}$$

R is reflexive as any line L_1 is parallel to itself i.e., $(L_1, L_2) \in R$

If
$$(L_1, L_2) \in R$$
, then

$$\Rightarrow L_1$$
 is parallel to L_2 .

$$\Rightarrow L_2$$
 is parallel to L_1 .

$$\Rightarrow (L_2, L_1) \in R$$

 \therefore R is symmetric.

$$(L_1, L_2), (L_2, L_3) \in R$$

$$\Rightarrow L_1$$
 is parallel to L_2

$$\Rightarrow L_2$$
 is parallel to L_3

$$\therefore L_1$$
 is parallel to L_3 .

$$\Rightarrow (L_1, L_3) \in R$$

 \therefore R is transitive.

R is an equivalence relation.

Set of all lines related to the line y = 2x + 4 is the set of all lines that are parallel to the line y = 2x + 4.

Slope of the line y = 2x + 4 is m = 2.

Line parallel to the given line is in the form y = 2x + c, where $c \in R$.

Set of all lines related to the given line is given by y = 2x + c, where $c \in R$.

Ouestion 15:

Let R be the relation in the set $\{1,2,3.4\}$ given by

$$R = \{(1,2)(2,2),(1,1),(4,4),(1,3),(3,3),(3,2)\}.$$

Choose the correct answer.

- A. R is reflexive and symmetric but not transitive.
- B. R is reflexive and transitive but not symmetric.
- C. R is symmetric and transitive but not reflexive.
- D. R is an equivalence relation.

Solution:

$$R = \{(1,2)(2,2),(1,1),(4,4),(1,3),(3,3),(3,2)\}$$

$$(a,a) \in R$$
 for every $a \in \{1,2,3.4\}$

... R is reflexive.

$$(1,2) \in R \text{ but } (2,1) \notin R$$

 \therefore R is not symmetric.

$$(a,b),(b,c) \in R \text{ for all } a,b,c \in \{1,2,3,4\}$$

 \therefore R is not transitive.

R is reflexive and transitive but not symmetric.

The correct answer is B.

Question 16:

Let R be the relation in the set N given by $R = \{(a,b): a = b-2, b > 6\}$. Choose the correct answer.

- A. $(2,4) \in R$
- B. $(3,8) \in R$
- C. $(6,8) \in R$
- D. $(8,7) \in R$

Solution:

$$R = \{(a,b): a = b-2, b > 6\}$$

Now,

$$b>6,\left(2,4\right)\not\in R$$

$$3 \neq 8 - 2$$

$$\therefore$$
 (3,8) \notin R and as 8 \neq 7-2

$$\therefore (8,7) \notin R$$

$$8 > 6$$
 and $6 = 8 - 2$

$$\therefore (6,8) \in R$$

The correct answer is C.

EXERCISE 1.2

Question 1:

Show that the function $f: R_{\bullet} \to R_{\bullet}$ defined by $(x) = \frac{1}{x}$ is one –one and onto, where R_{\bullet} is the set of all non –zero real numbers. Is the result true, if the domain R_{\bullet} is replaced by N with codomain being same as R_{\bullet} ?

Solution:

$$f: R_{\bullet} \to R_{\bullet} \text{ is by } f(x) = \frac{1}{x}$$

For one-one:

$$x, y \in R_{\bullet}$$
 such that $f(x) = f(y)$

$$\Rightarrow \frac{1}{x} = \frac{1}{y}$$

$$\Rightarrow x = y$$

 \therefore f is one-one.

For onto:

For $y \in R$, there exists $x = \frac{1}{y} \in R_{\bullet} [\text{as } y \notin 0]$ such that

$$f(x) = \frac{1}{\left(\frac{1}{y}\right)} = y$$

 $\therefore f$ is onto.

Given function f is one-one and onto.

Consider function $g: N \to R_{\bullet}$ defined by $g(x) = \frac{1}{x}$

We have,
$$g(x_1) = g(x_2) \Rightarrow \frac{1}{x_1} = \frac{1}{x_2} \Rightarrow x_1 = x_2$$

 $\therefore g$ is one-one.

g is not onto as for $1.2 \in R_{\bullet}$ there exist any x in N such that $g(x) = \frac{1}{1.2}$

Function *g* is one-one but not onto.

Question 2:

Check the injectivity and surjectivity of the following functions:

i.
$$f: N \to N$$
 given by $f(x) = x^2$

ii.
$$f: Z \to Z$$
 given by $f(x) = x^2$

iii.
$$f: R \to R$$
 given by $f(x) = x^2$

iv.
$$f: N \to N$$
 given by $f(x) = x^3$

v.
$$f: Z \to Z$$
 given by $f(x) = x^3$

Solution:

i. For
$$f: N \to N$$
 given by $f(x) = x^2$
 $x, y \in N$
 $f(x) = f(y) \Rightarrow x^2 = y^2 \Rightarrow x = y$
 $f(x) = f(y) \Rightarrow x^2 = y^2 \Rightarrow x = y$

 $2 \in N$. But, there does not exist any x in N such that $f(x) = x^2 = 2$

 $\therefore f$ is not surjective

Function f is injective but not surjective.

 $-2 \in Z$ But, there does not exist any $x \in Z$ such that $f(x) = -2 \Rightarrow x^2 = -2$ $\therefore f$ is not surjective.

Function f is neither injective nor surjective.

iii.
$$f: R \to R$$
 given by $f(x) = x^2$
 $f(-1) = f(1) = 1$ but $-1 \ne 1$
 f is not injective.

 $-2 \in Z$ But, there does not exist any $x \in Z$ such that $f(x) = -2 \Rightarrow x^2 = -2$ $\therefore f$ is not surjective.

Function f is neither injective nor surjective.

iv.
$$f: N \to N$$
 given by $f(x) = x^3$
 $x, y \in N$
 $f(x) = f(y) \Rightarrow x^3 = y^3 \Rightarrow x = y$
 $f(x) = f(y) \Rightarrow x^3 = y^3 \Rightarrow x = y$

 $2 \in N$. But, there does not exist any x in N such that $f(x) = x^3 = 2$ $\therefore f$ is not surjective

Function f is injective but not surjective.

v.
$$f: Z \to Z$$
 given by $f(x) = x^3$
 $x, y \in Z$
 $f(x) = f(y) \Rightarrow x^3 = y^3 \Rightarrow x = y$
 $f(x) = f(y) \Rightarrow x^3 = y^3 \Rightarrow x = y$

 $2 \in \mathbb{Z}$. But, there does not exist any x in \mathbb{Z} such that $f(x) = x^3 = 2$. f is not surjective.

Function f is injective but not surjective.

Question 3:

Prove that the greatest integer function $f: R \to R$ given by f(x) = [x] is neither one-one nor onto, where [x] denotes the greatest integer less than or equal to x.

Solution:

$$f: R \to R \text{ given by } f(x) = [x]$$

 $f(1.2) = [1.2] = 1, f(1.9) = [1.9] = 1$
 $\therefore f(1.2) = f(1.9), \text{ but } 1.2 \neq 1.9$
 $\therefore f \text{ is not one-one.}$

Consider $0.7 \in R$

f(x) = [x] is an integer. There does not exist any element $x \in R$ such that f(x) = 0.7 $\therefore f$ is not onto.

The greatest integer function is neither one-one nor onto.

Question 4:

Show that the modulus function $f: R \to R$ given by f(x) = |x| is neither one-one nor onto, where |x| is x, if x is positive or 0 and |x| is -x, if x is negative.

Solution:

$$f: R \to R \text{ is}$$

$$f(x) = |x| = \begin{cases} x, & \text{if } x \ge 0 \\ -x, & \text{if } x < 0 \end{cases}$$

$$f(-1) = |-1| = 1 \text{ and } f(1) = |1| = 1$$

$$\therefore f(-1) = f(1) \text{ but } -1 \ne 1$$

$$\therefore f \text{ is not one-one.}$$

Consider $-1 \in R$

f(x) = |x| is non-negative. There exist any element x in domain R such that f(x) = |x| = -1 $\therefore f$ is not onto.

The modulus function is neither one-one nor onto.

Question 5:

 $f(x) = \begin{cases} 1, & \text{if } x > 0 \\ 0, & \text{if } x = 0 \\ -1, & \text{if } x < 0 \end{cases}$ is neither one-one nor Show that the signum function $f: R \to R$ given by onto.

Solution:

$$f(x) = \begin{cases} 1, & \text{if } x > 0 \\ 0, & \text{if } x = 0 \\ -1, & \text{if } x < 0 \end{cases}$$

$$f(1) = f(2) = 1, \text{ but } 1 \neq 2$$

$$f(3) = f(3) = 1, \text{ fis not one-one}$$

 \therefore f is not one-one.

f(x) takes only 3 values (1,0,-1) for the element -2 in co-domain

R, there does not exist any x in domain R such that f(x) = -2.

 $\therefore f$ is not onto.

The signum function is neither one-one nor onto.

Question 6:

Let $A = \{1, 2, 3\}$, $B = \{4, 5, 6, 7\}$ and let $f = \{(1, 4), (2, 5), (3, 6)\}$ be a function from A to B. Show that f is one-one.

Solution:

$$A = \{1, 2, 3\}, B = \{4, 5, 6, 7\}$$

 $f : A \to B \text{ is defined as } f = \{(1, 4), (2, 5), (3, 6)\}$
 $\therefore f(1) = 4, f(2) = 5, f(3) = 6$

It is seen that the images of distinct elements of A under f are distinct.

 $\therefore f$ is one-one.

Ouestion 7:

In each of the following cases, state whether the function is one-one, onto or bijective. Justify your answer.

i.
$$f: R \to R$$
 defined by $f(x) = 3 - 4x$

ii.
$$f: R \to R$$
 defined by $f(x) = 1 + x^2$

Solution:

i.
$$f: R \to R$$
 defined by $f(x) = 3 - 4x$

$$x_1, x_2 \in R_{\text{such that}} f(x_1) = f(x_2)$$

$$\Rightarrow$$
 3 - 4 x_1 = 3 - 4 x_2

$$\Rightarrow -4x = -4x$$

$$\Rightarrow x_1 = x_2$$

 \therefore f is one-one.

For any real number $(y)_{in} R$, there exists $\frac{3-y}{4}_{in} R$ such that $f\left(\frac{3-y}{4}\right) = 3-4\left(\frac{3-y}{4}\right) = y$. f is onto.

Hence, f is bijective.

ii.
$$f: R \to R$$
 defined by $f(x) = 1 + x^2$
 $x_1, x_2 \in R$ such that $f(x_1) = f(x_2)$
 $\Rightarrow 1 + x_1^2 = 1 + x_2^2$
 $\Rightarrow x_1^2 = x_2^2$
 $\Rightarrow x_1 = \pm x_2$
 $\therefore f(x_1) = f(x_2)$ does not imply that $x_1 = x_2$

Consider
$$f(1) = f(-1) = 2$$

 $\therefore f$ is not one-one.

Consider an element -2 in co domain R.

It is seen that $f(x) = 1 + x^2$ is positive for all $x \in R$.

 $\therefore f$ is not onto.

Hence, f is neither one-one nor onto.

Question 8:

Let A and B be sets. Show that $f: A \times B \to B \times A$ such that (a,b) = (b,a) is a bijective function.

Solution:

$$f: A \times B \to B \times A$$
 is defined as $(a,b) = (b,a)$.
 $(a_1,b_1), (a_2,b_2) \in A \times B$ such that $f(a_1,b_1) = f(a_2,b_2)$

$$\Rightarrow$$
 $(b_1, a_1) = (b_2, a_2)$

$$\Rightarrow b_1 = b_2$$
 and $a_1 = a_2$

$$\Rightarrow$$
 $(a_1,b_1)=(a_2,b_2)$

 \therefore f is one-one.

$$(b,a) \in B \times A$$
 there exist $(a,b) \in A \times B$ such that $f(a,b) = (b,a)$

 $\therefore f$ is onto.

f is bijective.

Question 9:

$$f(n) = \begin{cases} \frac{n+1}{2}, & \text{if } n \text{ is odd} \\ \frac{n}{2}, & \text{if } n \text{ is even} \end{cases}$$

Let $f: N \to N$ be defined as function f is bijective. Justify your answer.

for all $n \in N$. State whether the

Solution:

$$f(n) = \begin{cases} \frac{n+1}{2}, & \text{if } n \text{ is odd} \\ \frac{n}{2}, & \text{if } n \text{ is even} \end{cases}$$
 for all $n \in N$.

 $f: N \to N$ be defined as

$$f(1) = \frac{1+1}{2} = 1$$
 and $f(2) = \frac{2}{2} = 1$

$$f(1) = f(2)$$
, where $1 \neq 2$

 \therefore f is not one-one.

Consider a natural number n in co domain N.

Case I: n is odd

 $\therefore n = 2r + 1$ for some $r \in N$ there exists $4r + 1 \in N$ such that

$$f(4r+1) = \frac{4r+1+1}{2} = 2r+1$$

Case II: nis even

 $\therefore n = 2r$ for some $r \in N$ there exists $4r \in N$ such that

$$f(4r) = \frac{4r}{2} = 2r$$

 $\therefore f$ is onto.

f is not a bijective function.

Question 10:

Let $A = R - \{3\}$, $B = R - \{1\}$ and $f : A \to B$ defined by $f(x) = \left(\frac{x-2}{x-3}\right)$. Is f one-one and onto? Justify your answer.

Solution:

$$A = R - \{3\}, B = R - \{1\} \text{ and } f : A \to B \text{ defined by }$$

$$x, y \in A \text{ such that } f(x) = f(y)$$

$$\Rightarrow \frac{x-2}{x-3} = \frac{y-2}{y-3}$$

$$\Rightarrow (x-2)(y-3) = (y-2)(x-3)$$

$$\Rightarrow xy - 3x - 2y + 6 = xy - 3y - 2x + 6$$

$$\Rightarrow -3x - 2y = -3y - 2x$$

$$\Rightarrow 3x - 2x = 3y - 2y$$

$$\Rightarrow x = y$$

$$\therefore f \text{ is one-one.}$$

Let
$$y \in B = R - \{1\}$$
, then $y \neq 1$

The function f is onto if there exists $x \in A$ such that f(x) = y. Now,

$$f(x) = y$$

$$\Rightarrow \frac{x-2}{x-3} = y$$

$$\Rightarrow x-2 = xy-3y$$

$$\Rightarrow x(1-y) = -3y+2$$

$$\Rightarrow x = \frac{2-3y}{1-y} \in A \qquad [y \neq 1]$$

Thus, for any $y \in B$, there exists $\frac{2-3y}{1-y} \in A$ such that

$$f\left(\frac{2-3y}{1-y}\right) = \frac{\left(\frac{2-3y}{1-y}\right) - 2}{\left(\frac{2-3y}{1-y}\right) - 3} = \frac{2-3y-2+2y}{2-3y-3+3y} = \frac{-y}{-1} = y$$

 $\therefore f$ is onto.

Hence, the function is one-one and onto.

Question 11:

Let $f: R \to R$ defined as $f(x) = x^4$. Choose the correct answer.

- A. f is one-one onto
- B. f is many-one onto
- C. f is one-one but not onto
- D. f is neither one-one nor onto

Solution:

 $f: R \to R$ defined as $f(x) = x^4$

 $x, y \in R_{\text{such that}} f(x) = f(y)$

$$\Rightarrow x^4 = v^4$$

$$\Rightarrow x = \pm y$$

f(x) = f(y) does not imply that x = y.

For example f(1) = f(-1) = 1

 $\therefore f$ is not one-one.

Consider an element 2 in co domain R there does not exist any x in domain R such that f(x) = 2

 $\therefore f$ is not onto.

Function f is neither one-one nor onto.

The correct answer is D.

Question 12:

Let $f: R \to R$ defined as f(x) = 3x. Choose the correct answer.

- A. f is one-one onto
- B. f is many-one onto
- C. f is one-one but not onto
- D. f is neither one-one nor onto

Solution:

 $f: R \to R \text{ defined as } f(x) = 3x$

 $x, y \in R_{\text{such that}} f(x) = f(y)$

$$\Rightarrow 3x = 3y$$

$$\Rightarrow x = y$$

 $\therefore f$ is one-one.

For any real number y in co domain R, there exist $\frac{y}{3}$ in R such that $f\left(\frac{y}{3}\right) = 3\left(\frac{y}{3}\right) = y$ $\therefore f$ is onto.

Hence, function f is one-one and onto.

The correct answer is A.

EXERCISE 1.3

Question 1:

Let $f:\{1,3,4\} \to \{1,2,5\}$ and $g:\{1,2,5\} \to \{1,3\}$ be given by $f=\{(1,2),(3,5),(4,1)\}$ and $g=\{(1,3),(2,3),(5,1)\}$. Write down gof.

Solution:

The functions
$$f:\{1,3,4\} \to \{1,2,5\}$$
 and $g:\{1,2,5\} \to \{1,3\}$ are $f=\{(1,2),(3,5),(4,1)\}$ and $g=\{(1,3),(2,3),(5,1)\}$ gof $g=\{(1,3),(2,3),(5,1)\}$ [as $f=\{(1,3),(2,3),(5,1)\}$ and $g=\{(1,3),(2,3),(5,1)\}$ and $g=\{(1,3),(2,3),(5,1)\}$ and $g=\{(1,3),(2,3),(5,1)\}$ and $g=\{(1,3),(2,3),(5,1)\}$ and $g=\{(1,3),(3,1),(4,3)\}$ [as $f=\{(1,2),(3,5),(4,1)\}$ and $g=\{(1,3),(3,1),(4,3)\}$ are $f=\{(1,2),(3,5),(4,1)\}$ and $g=\{(1,3),(3,1),(4,3)\}$ are $f=\{(1,2),(3,5),(4,1)\}$ and $g=\{(1,3),(3,1),(4,3)\}$

Question 2:

Let f, g, h be functions from R to R. Show that

$$(f+g)oh = foh + goh$$

 $(f.g)oh = (foh).(goh)$

Solution:

$$(f+g)oh = foh + goh$$

$$LHS = [(f+g)oh](x)$$

$$= (f+g)[h(x)] = f[h(x)] + g[h(x)]$$

$$= (foh)(x) + goh(x)$$

$$= \{(foh) + (goh)\}(x) = RHS$$

$$\therefore \{(f+g)oh\}(x) = \{(foh) + (goh)\}(x) \text{ for all } x \in R$$
Hence, $(f+g)oh = foh + goh$

$$(f.g)oh = (foh).(goh)$$

$$LHS = [(f.g)oh](x)$$

$$= (f.g)[h(x)] = f[h(x)].g[h(x)]$$

$$= (foh)(x).(goh)(x)$$

$$= \{(foh).(goh)\}(x) = RHS$$

$$\therefore [(f.g)oh](x) = \{(foh).(goh)\}(x) \text{ for all } x \in R$$
Hence, $(f.g)oh = (foh).(goh)$

Question 3:

Find gof and fog, if

i.
$$f(x) = |x|_{and} g(x) = |5x-2|$$

ii.
$$f(x) = 8x^3$$
 and $g(x) = x^{\frac{1}{3}}$

Solution:

i.
$$f(x) = |x| \text{ and } g(x) = |5x - 2|$$

 $\therefore gof(x) = g(f(x)) = g(|x|) = |5|x| - 2|$
 $fog(x) = f(g(x)) = f(|5x - 2|) = ||5x - 2|| = |5x - 2|$

ii.
$$f(x) = 8x^3 \text{ and } g(x) = x^{\frac{1}{3}}$$

$$\therefore gof(x) = g(f(x)) = g(8x^3) = (8x^3)^{\frac{1}{3}} = 2x$$

$$fog(x) = f(g(x)) = f(x^{\frac{1}{3}})^3 = 8(x^{\frac{1}{3}})^3 = 8x$$

Question 4:

If
$$f(x) = \frac{(4x+3)}{(6x-4)}$$
, $x \ne \frac{2}{3}$, show that $f\circ f(x) = x$, $f\circ r\circ x = \frac{2}{3}$. What is the reverse of f ?

Solution:

$$(fof)(x) = f(f(x)) = f\left(\frac{4x+3}{6x-4}\right)$$

$$= \frac{4\left(\frac{4x+3}{6x-4}\right) + 3}{6\left(\frac{4x+3}{6x-4}\right) - 4} = \frac{16x+12+18x-12}{24x+18-24x+16} = \frac{34x}{34} = x$$

$$\therefore fof(x) = x \quad for \ all \ x \neq \frac{2}{3}$$

$$\Rightarrow fof = 1$$

Hence, the given function f is invertible and the inverse of f is f itself.

Question 5:

State with reason whether the following functions have inverse.

i.
$$f:\{1,2,3,4\} \to \{10\}_{\text{with}} f=\{(1,10),(2,10),(3,10),(4,10)\}$$

ii.
$$g:\{5,6,7,8\} \rightarrow \{1,2,3,4\}_{\text{with }} g=\{(5,4),(6,3),(7,4),(8,2)\}$$

iii.
$$h: \{2,3,4,5\} \rightarrow \{7,9,11,13\}_{\text{with }} h = \{(2,7),(3,9),(4,11),(5,13)\}$$

Solution:

i.
$$f:\{1,2,3,4\} \to \{10\}_{\text{with }} f = \{(1,10),(2,10),(3,10),(4,10)\}$$

 $f \text{ is a many one function as } f(1) = f(2) = f(3) = f(4) = 10$
 $f : \{1,2,3,4\} \to \{10\}_{\text{with }} f = \{(1,10),(2,10),(3,10),(4,10)\}$

Function f does not have an inverse.

ii.
$$g: \{5,6,7,8\} \rightarrow \{1,2,3,4\}_{\text{with }} g = \{(5,4),(6,3),(7,4),(8,2)\}$$
 $g \text{ is a many one function as } g(5) = g(7) = 4$
 $\therefore g \text{ is not one-one.}$
Function g does not have an inverse.

iii.
$$h: \{2,3,4,5\} \rightarrow \{7,9,11,13\}_{\text{with}} \ h = \{(2,7),(3,9),(4,11),(5,13)\}$$

All distinct elements of the set $\{2,3,4,5\}$ have distinct images under h.

 \therefore h is one-one.

h is onto since for every element y of the set $\{7,9,11,13\}$, there exists an element x in the set $\{2,3,4,5\}$, such that h(x) = y.

h is a one-one and onto function.

Function *h* has an inverse.

Question 6:

Show that $f:[-1,1] \to R$, given by $f(x) = \frac{x}{(x+2)}$ is one-one. Find the inverse of the function $f:[-1,1] \to R$ ange f.

(Hint: For
$$y \in Range f$$
, $y = f(x) = \frac{x}{x+2}$, for some x in $\begin{bmatrix} -1,1 \end{bmatrix}$, i.e., $x = \frac{2y}{(1-y)}$

Solution:

$$f:[-1,1] \to R$$
, given by $f(x) = \frac{x}{(x+2)}$

For one-one

$$f(x) = f(y)$$

$$\Rightarrow \frac{x}{x+2} = \frac{y}{y+2}$$

$$\Rightarrow xy + 2x = xy + 2y$$

$$\Rightarrow 2x = 2y$$

$$\Rightarrow x = y$$

 $\therefore f$ is a one-one function.

It is clear that $f:[-1,1] \to R$ is onto.

 $f:[-1,1] \to R$ is one-one and onto and therefore, the inverse of the function $f:[-1,1] \to R$ exists.

Let $g: Range f \rightarrow [-1,1]$ be the inverse of f.

Let \mathcal{Y} be an arbitrary element of range f.

Since $f:[-1,1] \rightarrow Range f$ is onto, we have:

$$y = f(x)$$
 for same $x \in [-1,1]$

$$\Rightarrow y = \frac{x}{x+2}$$

$$\Rightarrow xy + 2y = x$$

$$\Rightarrow x(1-y) = 2y$$

$$\Rightarrow x = \frac{2y}{1-y}, y \neq 1$$

Now, let us define $g : Range f \rightarrow [-1,1]_{as}$

$$g(y) = \frac{2y}{1-y}, y \neq 1$$

Now,

$$(gof)(x) = g(f(x)) = g\left(\frac{x}{x+2}\right) = \frac{2\left(\frac{x}{x+2}\right)}{1 - \frac{x}{x+2}} = \frac{2x}{x+2-x} = \frac{2x}{2} = x$$

$$(fog)(x) = f(g(y)) = f\left(\frac{2y}{1-y}\right) = \frac{\frac{2y}{1-y}}{\frac{2y}{1-y}+2} = \frac{2y}{2y+2-2y} = \frac{2y}{2} = y$$

$$\therefore gof = I_{[-1,1]} \quad and \quad fog = I_{Range f}$$

$$\therefore f^{-1} = g$$

$$\Rightarrow f^{-1}(y) = \frac{2y}{1-y}, y \neq 1$$

Question 7:

Consider $f: R \to R$ given by f(x) = 4x + 3. Show that f is invertible. Find the inverse of f.

Solution:

 $f: R \to R \text{ given by } f(x) = 4x + 3$

For one-one

$$f(x) = f(y)$$

$$\Rightarrow 4x + 3 = 4y + 3$$

$$\Rightarrow 4x = 4y$$

$$\Rightarrow x = y$$

 $\therefore f$ is a one-one function.

For onto

$$y \in R$$
, let $y = 4x + 3$

$$\Rightarrow x = \frac{y - 3}{4} \in R$$

Therefore, for any $y \in R$, there exists $x = \frac{y-3}{4} \in R$ such that

$$f(x) = f\left(\frac{y-3}{4}\right) = 4\left(\frac{y-3}{4}\right) + 3 = y$$

 $\therefore f$ is onto.

Thus, f is one-one and onto and therefore, f^{-1} exists.

Let us define $g: R \to R$ by $g(x) = \frac{y-3}{4}$

Now,

$$(gof)(x) = g(f(x)) = g(4x+3) = \frac{(4x+3)-3}{4} = x$$

 $(fog)(y) = f(g(y)) = f(\frac{y-3}{4}) = 4(\frac{y-3}{4}) + 3 = y - 3 + 3 = y$
 $\therefore gof = fog = I_R$

Hence, f is invertible and the inverse of f is given by

$$f^{-1}(y) = g(y) = \frac{y-3}{4}$$
.

Question 8:

Consider $f: R_+ \to [4,\infty)$ given by $f(x) = x^2 + 4$. Show that f is invertible with inverse f^{-1} of given f by $f^{-1}(y) = \sqrt{y-4}$, where R_+ is the set of all non-negative real numbers.

Solution:

$$f: R_{+} \to [4, \infty)$$
 given by $f(x) = x^{2} + 4$

For one-one:

Let
$$f(x) = f(y)$$

$$\Rightarrow x^2 + 4 = y^2 + 4$$

$$\Rightarrow x^2 = y^2$$

$$\Rightarrow x = y \qquad [as \ x \in R]$$

 $\therefore f$ is a one -one function.

For onto:

For
$$y \in [4, \infty)$$
, let $y = x^2 + 4$

$$\Rightarrow x^2 = y - 4 \ge 0 \qquad [as \ y \ge 4]$$

$$\Rightarrow x = \sqrt{y - 4} \ge 0$$

Therefore, for any $y \in R$, there exists $x = \sqrt{y-4} \in R$ such that $f(x) = f(\sqrt{y-4}) = (\sqrt{y-4})^2 + 4 = y - 4 + 4 = y$

 $\therefore f$ is an onto function.

Thus, f is one-one and onto and therefore, f^{-1} exists.

Let us define $g:[4,\infty) \to R_+$ by

$$g(y) = \sqrt{y-4}$$

Now,
$$gof(x) = g(f(x)) = g(x^2 + 4) = \sqrt{(x^2 + 4) - 4} = \sqrt{x^2} = x$$

And
$$fog(y) = f(g(y)) = f(\sqrt{y-4}) = (\sqrt{y-4})^2 + 4 = (y-4) + 4 = y$$

$$\therefore gof = fog = I_R$$

Hence, f is invertible and the inverse of f is given by

$$f^{-1}(y) = g(y) = \sqrt{y-4}$$

Question 9:

Consider $f: R_+ \to [-5, \infty)$ given by $f(x) = 9x^2 + 6x - 5$. Show that f is invertible with

$$f^{-1}(y) = \left(\frac{\left(\sqrt{y+6}\right)-1}{3}\right).$$

Solution:

$$f: R_+ \to [-5, \infty)$$
 given by $f(x) = 9x^2 + 6x - 5$

Let *y* be an arbitrary element of $[-5, \infty)$.

Let
$$y = 9x^2 + 6x - 5$$

$$\Rightarrow y = (3x+1)^2 - 1 - 5$$

$$\Rightarrow y = (3x+1)^2 - 6$$

$$\Rightarrow (3x+1)^2 = y+6$$

$$\Rightarrow 3x+1=\sqrt{y+6}$$
 [as $y \ge -5 \Rightarrow y+6 > 0$]

$$\Rightarrow x = \frac{\sqrt{y+6}-1}{3}$$

 $\therefore f$ is onto, thereby range $f = [-5, \infty)$.

Let us define
$$g:[-5,\infty) \to R_+$$
 as $g(y) = \frac{\sqrt{y+6}-1}{3}$

We have,

$$(gof)(x) = g(f(x)) = g(9x^{2} + 6x - 5)$$

$$= g((3x+1)^{2} - 6)$$

$$= \frac{\sqrt{(3x+1)^{2} - 6 + 6 - 1}}{3}$$

$$= \frac{3x+1-1}{3} = x$$

And,

$$(f \circ g)(y) = f(g(y)) = f\left(\frac{\sqrt{y+6}-1}{3}\right)$$

= $\left[3\left(\frac{\sqrt{y+6}-1}{3}\right)+1\right]^2 - 6$
= $\left(\sqrt{y+6}\right)^2 - 6 = y+6-6 = y$

$$\therefore gof = I_R$$
 and $fog = I_{[-5,\infty)}$

Hence, f is invertible and the inverse of f is given by

$$f^{-1}(y) = g(y) = \frac{\sqrt{y+6}-1}{3}$$
.

Question 10:

Let $f: X \to Y$ be an invertible function. Show that f has unique inverse.

(Hint: suppose g_1 and g_2 are two inverses of f. Then for all $y \in Y$, $fog_1(y) = I_Y(y) = fog_2(y)$. Use one-one ness of f.

Solution:

Let $f: X \to Y$ be an invertible function.

Also suppose f has two inverses (g_1 and g_2)

Then, for all $y \in Y$,

$$fog_1(y) = I_Y(y) = fog_2(y)$$

 $\Rightarrow f(g_1(y)) = f(g_2(y))$
 $\Rightarrow g_1(y) = g_2(y)$ [f is invertible \Rightarrow f is one-one]
 $\Rightarrow g_1 = g_2$ [g is one-one]

Hence, f has unique inverse.

Question 11:

Consider $f:\{1,2,3\} \to \{a,b,c\}$ given by f(1) = a, f(2) = b, f(3) = c. Find $(f^{-1})^{-1} = f$.

Solution:

Function $f: \{1,2,3\} \to \{a,b,c\}_{given by} f(1) = a, f(2) = b, f(3) = c$

If we define $g: \{a,b,c\} \to \{1,2,3\}_{as} g(a) = 1, g(b) = 2, g(c) = 3$

$$(fog)(a) = f(g(a)) = f(1) = a$$

$$(fog)(b) = f(g(b)) = f(2) = b$$

$$(fog)(c) = f(g(c)) = f(3) = c$$

And.

$$(gof)(1) = g(f(1)) = g(a) = 1$$

$$(gof)(2) = g(f(2)) = g(b) = 2$$

$$(gof)(3) = g(f(3)) = g(c) = 3$$

$$\therefore gof = I_X \quad \text{and} \quad fog = I_Y \quad \text{where } X = \{(1,2,3)\} \text{ and } Y = \{a,b,c\}$$

Thus, the inverse of f exists and $f^{-1} = g$.

:
$$f^{-1}:\{a,b,c\} \to \{1,2,3\}$$
 is given by, $f^{-1}(a)=1, f^{-1}(b)=2, f^{-1}(c)=3$

We need to find the inverse of $\boldsymbol{f}^{\text{--1}}$ i.e., inverse of $\boldsymbol{\mathcal{g}}$.

If we define $h: \{1,2,3\} \to \{a,b,c\}_{as} \ h(1) = a, h(2) = b, h(3) = c$

$$(goh)(1) = g(h(1)) = g(a) = 1$$

$$(goh)(2) = g(h(2)) = g(b) = 2$$

$$(goh)(3) = g(h(3)) = g(c) = 3$$

And,

$$(hog)(a) = h(g(a)) = h(1) = a$$

$$(hog)(b) = h(g(b)) = h(2) = b$$

$$(hog)(c) = h(g(c)) = h(3) = c$$

$$\therefore goh = I_X \quad \text{and} \quad hog = I_Y \quad \text{where } X = \{(1,2,3)\} \text{ and } Y = \{a,b,c\}$$

Thus, the inverse of \mathcal{G} exists and $g^{-1} = h \Rightarrow (f^{-1})^{-1} = h$. It can be noted that h = f.

Hence,
$$(f^{-1})^{-1} = f$$

Question 12:

Let $f: X \to Y$ be an invertible function. Show that the inverse of f^{-1} is f i.e., $(f^{-1})^{-1} = f$.

Solution:

Let $f: X \to Y$ be an invertible function.

Then there exists a function $g: Y \to X$ such that $g \circ f = I_X$ and $f \circ g = I_Y$

Here,
$$f^{-1} = g$$

Now, $gof = I_X$ and $fog = I_Y$

$$\Rightarrow f^{-1}of = I_X$$
 and $fof^{-1} = I_Y$

Hence, $f^{-1}: Y \to X$ is invertible and f^{-1} is f i.e., $(f^{-1})^{-1} = f$.

Question 13:

If $f: R \to R$ is given by $f(x) = (3 - x^3)^{\frac{1}{3}}$, then $f \circ f(x)_{is}$:

A.
$$\frac{1}{x^3}$$

B.
$$x^3$$

D.
$$(3-x^3)$$

Solution:

 $f: R \to R$ is given by $f(x) = (3 - x^3)^{\frac{1}{3}}$

$$f(x) = (3-x^3)^{\frac{1}{3}}$$

$$\therefore fof(x) = f(f(x)) = f(3-x^3)^{\frac{1}{3}} = \left[3 - \left(3-x^3\right)^{\frac{1}{3}}\right]^{\frac{1}{3}}$$
$$= \left[3 - \left(3-x^3\right)^{\frac{1}{3}}\right]^{\frac{1}{3}} = \left(x^3\right)^{\frac{1}{3}} = x$$

$$\therefore$$
 fof $(x) = x$

The correct answer is C.

Question 14:

If $f: R - \left\{-\frac{4}{3}\right\} \to R$ be a function defined as $f(x) = \frac{4x}{3x+4}$. The inverse of f is the map $g: Range\ f \to R - \left\{-\frac{4}{3}\right\}$ given by:

$$g(y) = \frac{3y}{3 - 4y}$$

$$g(y) = \frac{4y}{4 - 3y}$$

$$g(y) = \frac{4y}{3 - 4y}$$

D.
$$g(y) = \frac{3y}{4 - 3y}$$

Solution:

It is given that $f: R - \left\{-\frac{4}{3}\right\} \to R$ is defined as $f(x) = \frac{4x}{3x+4}$ Let \mathcal{Y} be an arbitrary element of Range f.

Then, there exists $x \in R - \left\{-\frac{4}{3}\right\}$ such that y = f(x).

$$\Rightarrow y = \frac{4x}{3x+4}$$

$$\Rightarrow 3xy + 4y = 4x$$

$$\Rightarrow x(4-3y)=4y$$

$$\Rightarrow x = \frac{4y}{4 - 3y}$$

Define $f: R - \left\{-\frac{4}{3}\right\} \to R$ as $g(y) = \frac{4y}{4 - 3y}$ Now,

$$(gof)(x) = g(f(x)) = g\left(\frac{4x}{3x+4}\right)$$

$$= \frac{4\left(\frac{4x}{3x+4}\right)}{4-3\left(\frac{4x}{3x+4}\right)} = \frac{16x}{12x+16-12x}$$

$$= \frac{16x}{16} = x$$

And

$$(fog)(x) = (g(x)) = f\left(\frac{4y}{4-3y}\right)$$

$$= \frac{4\left(\frac{4y}{4-3y}\right)}{3\left(\frac{4y}{4-3y}\right) + 4} = \frac{16y}{12y + 16 - 12y}$$

$$= \frac{16y}{16} = y$$

$$\therefore gof = I_{R - \left\{-\frac{4}{3}\right\}} \text{ and } fog = I_{Range f}$$

Thus, g is the inverse of f i.e., $f^{-1} = g$

Hence, the inverse of f is the map $g: Range f \to R - \left\{-\frac{4}{3}\right\}$, which is given by $g(y) = \frac{4y}{4 - 3y}$.

The correct answer is B.

EXERCISE 1.4

Question 1:

Determine whether or not each of the definition of * given below gives a binary operation. In the event that * is not a binary operation, give justification for this.

- i. On \mathbb{Z}^+ , define * by a*b=a-b
- ii. On \mathbf{Z}^+ , define * by a * b = ab
- iii. On **R**, define *by $a * b = ab^2$
- iv. On Z^+ , define * by a * b = |a b|
- v. On \mathbf{Z}^+ , define * by a * b = a

Solution:

i. On \mathbb{Z}^+ , define * by a*b=a-b

It is not a binary operation as the image of (1,2) under * is

$$1*2 = 1-2$$

$$\Rightarrow -1 \notin \mathbf{Z}^+$$
.

Therefore, * is not a binary operation.

ii. On \mathbf{Z}^+ , define * by a * b = ab

It is seen that for each $a,b \in \mathbb{Z}^+$, there is a unique element ab in \mathbb{Z}^+ .

This means that * carries each pair (a,b) to a unique element a*b = ab in \mathbb{Z}^+ . Therefore, * is a binary operation.

iii. On **R**, define * $a * b = ab^2$

It is seen that for each $a,b \in \mathbb{R}$, there is a unique element ab^2 in \mathbb{R} . This means that * carries each pair (a,b) to a unique element $a*b=ab^2$ in \mathbb{R} .

Therefore, *is a binary operation.

iv. On \mathbf{Z}^+ , define * by a*b = |a-b|

It is seen that for each $a,b \in \mathbb{Z}^+$, there is a unique element |a-b| in \mathbb{Z}^+ . This means that * carries each pair (a,b) to a unique element a*b=|a-b| in \mathbb{Z}^+ . Therefore, *is a binary operation.

v. On \mathbb{Z}^+ , define * by a * b = a*carries each pair (a, b) to a unique element in a * b = a in \mathbb{Z}^+ . Therefore, * is a binary operation.

Ouestion 2:

For each binary operation *defined below, determine whether * is commutative or associative.

i. On \mathbf{Z}^+ , define a * b = a - b

ii. On **Q**, define a * b = ab + 1

iii. On
$$\mathbf{Q}$$
, define $a * b = \frac{ab}{2}$

iv. On
$$\mathbf{Z}^+$$
, define $a * b = 2^{ab}$

v. On
$$\mathbf{Z}^+$$
, define $a * b = a^b$

vi. On
$$\mathbf{R} - \{-1\}$$
, define $a * b = \frac{a}{b+1}$

Solution:

i. On \mathbf{Z}^+ , define a * b = a - b

It can be observed that 1*2=1-2=-1 and 2*1=2-1=1.

$$\therefore 1*2 \neq 2*1$$
; where 1, $2 \in \mathbb{Z}$

Hence, the operation * is not commutative.

Also,

$$(1*2)*3 = (1-2)*3 = -1*3 = -1-3 = -4$$

$$1*(2*3) = 1*(2-3) = 1*-1 = 1-(-1) = 2$$

$$(1*2)*3 \neq 1*(2*3)$$

where $1, 2, 3 \in \mathbb{Z}$

Hence, the operation * is not associative.

ii. On **Q**, define a * b = ab + 1

$$ab = ba$$
 for all $a, b \in Q$

$$\Rightarrow ab+1=ba+1$$
 for all $a,b \in Q$

$$\Rightarrow a * b = b * a$$
 for all $a, b \in Q$

Hence, the operation * is commutative.

$$(1*2)*3 = (1 \times 2 + 1)*3 = 3*3 = 3 \times 3 + 1 = 10$$

$$1*(2*3) = 1*(2 \times 3+1) = 1*7 = 1 \times 7+1 = 8$$

$$(1*2)*3 \neq 1*(2*3)$$

where $1, 2, 3 \in \mathbf{Q}$

Hence, the operation * is not associative.

iii. On \mathbf{Q} , define $a * b = \frac{ab}{2}$

$$ab = ba$$
 for all $a, b \in Q$

$$\Rightarrow \frac{ab}{2} = \frac{ab}{2} \qquad \text{for all } a, b \in Q$$

$$\Rightarrow a * b = b * a$$
 for all $a, b \in Q$

Hence, the operation * is commutative.

$$(a*b)*c = \left(\frac{ab}{2}\right)*c = \frac{\left(\frac{ab}{2}\right)c}{2} = \frac{abc}{4}$$

And

$$a*(b*c) = a*\left(\frac{bc}{2}\right) = \frac{a\left(\frac{bc}{2}\right)}{2} = \frac{abc}{4}$$
$$\therefore (a*b)*c = a*(b*c)$$

Hence, the operation * is associative.

where $a,b,c \in \mathbf{Q}$

iv. On
$$\mathbf{Z}^+$$
, define $a*b=2^{ab}$
 $ab=ba$ for all $a,b\in Z$

$$\Rightarrow 2^{ab}=2^{ba}$$
 for all $a,b\in Z$

$$\Rightarrow a*b=b*a$$
 for all $a,b\in Z$

Hence, the operation * is commutative.

$$(1*2)*3 = 2^{1\times 2}*3 = 4*3 = 2^{4\times 3} = 2^{12}$$

 $1*(2*3) = 1*2^{2\times 3} = 1*2^6 = 1*64 = 2^{64}$
 $\therefore (1*2)*3 \neq 1*(2*3)$

Hence, the operation * is not associative.

where $1, 2, 3 \in \mathbb{Z}^+$

v. On
$$\mathbb{Z}^+$$
, define $a * b = a^b$
 $1*2 = 1^2 = 1$
 $2*1 = 2^1 = 2$
 $\therefore 1*2 \neq 2*1$

Hence, the operation * is not commutative.

$$(2*3)*4 = 2^3*4 = 8*4 = 8^4 = 2^{12}$$

 $2*(3*4) = 2*3^4 = 2*81 = 2^{81}$
 $\therefore (2*3)*4 \neq 2*(3*4)$

Hence, the operation * is not associative.

where $2,3,4 \in \mathbb{Z}^+$

where $1, 2, \in \mathbb{Z}^+$

vi. On
$$\mathbf{R} - \{-1\}$$
, define $a * b = \frac{a}{b+1}$
 $1*2 = \frac{1}{2+1} = \frac{1}{3}$
 $2*1 = \frac{2}{1+1} = \frac{2}{2} = 1$

$$\therefore 1*2 \neq 2*1$$
 where $1, 2, \in \mathbb{R} - \{-1\}$

Hence, the operation * is not commutative.

$$(1*2)*3 = \frac{1}{3}*3 = \frac{\frac{1}{3}}{3+1} = \frac{1}{12}$$

$$1*(2*3) = 1*\frac{2}{3+1} = 1*\frac{2}{4} = 1*\frac{1}{2} = \frac{1}{\frac{1}{2}+1} = \frac{1}{\frac{3}{2}} = \frac{2}{3}$$

$$\therefore (1*2)*3 \neq 1*(2*3)$$
 where $1,2,3 \in \mathbb{R} - \{-1\}$

Hence, the operation * is not associative.

Question 3:

Consider the binary operation \wedge on the set $\{1,2,3,4,5\}$ defined by $a \wedge b = \min\{a,b\}$. Write the operation table of the operation \wedge .

Solution:

The binary operation \land on the set $\{1,2,3,4,5\}$ is defined by $a \land b = \min\{a,b\}$ for all $a,b \in \{1,2,3,4,5\}$.

The operation table for the given operation \wedge can be given as:

^	1	2	3	4	5
1	1	1	1	1	1
2	1	2	2	2	2
3	1	2	3	3	3
4	1	2	3	4	4
5	1	2	3	4	5

Question 4:

Consider a binary operation * on the set $\{1,2,3,4,5\}$ given by the following multiplication table.

- i. Compute (2*3)*4 and 2*(3*4)
- ii. Is *commutative?
- iii. Compute (2*3)*(4*5). (Hint: Use the following table)

*	1	2	3	4	5
1	1	1	1	1	1
2	1	2	1	2	1

3	1	1	3	1	1
4	1	2	1	4	1
5	1	1	1	1	5

Solution:

$$(2*3)*4=1*4=1$$

i.
$$2*(3*4) = 2*1 = 1$$

ii. For every $a,b \in \{1,2,3,4,5\}$, we have a*b=b*a. Therefore, * is commutative.

iii.
$$(2*3)*(4*5)$$

$$(2*3) = 1$$
 and $(4*5) = 1$

$$(2*3)*(4*5) = 1*1 = 1$$

Question 5:

Let *' be the binary operation on the set $\{1,2,3,4,5\}$ defined by a*'b = H.C.F. of and and b. Is the operation *' same as the operation * defined in Exercise 4 above? Justify your answer.

Solution:

The binary operation on the set $\{1,2,3,4,5\}$ is defined by a*'b = H.C.F. of \emptyset and \emptyset . The operation table for the operation *' can be given as:

*'	1	2	3	4	5
1	1	1	1	1	1
2	1	2	1	2	1
3	1	1	3	1	1
4	1	2	1	4	1
5	1	1	1	1	5

The operation table for the operations *' and * are same. operation *' is same as operation *.

Question 6:

Let * be the binary operation on N defined by a*b = L.C.M. of a and b. Find

- i. 5*7,20*16
- ii. Is *commutative?
- iii. Is *associative?
- iv. Find the identity of *in N
- v. Which elements of N are invertible for the operation *?

Solution:

The binary operation on N is defined by a*b = L.C.M. of and b.

- i. 5*7=L.C.M of 5 and 7=35 20*16=LCM of 20 and 16=80
- ii. L.C.M. of a and b=LCM of b and a for all $a, b \in N$ $\therefore a * b = b * a$ Operation *is commutative.
- iii. For $a,b,c \in N$ (a*b)*c = (L.C.M. of a and b)*c = L.C.M. of a,b,c a*(b*c) = a*(L.C.M. of b and c) = L.C.M. of a,b,c $\therefore (a*b)*c = a*(b*c)$ Operation *is associative.
- iv. L.C.M. of a and 1=a=L.C.M. of 1 and a for all $a \in N$ a*1=a=1*a for all $a \in N$ Therefore, 1 is the identity of * in N.
- v. An element a in N is invertible with respect to the operation * if there exists an element b in N, such that a*b = e = b*a
 e=1
 L.C.M. of andb=1=LCM of b and a possible only when a and b are equal to 1.
 1 is the only invertible element of N with respect to the operation *.

Ouestion 7:

Is * defined on the set $\{1,2,3,4,5\}$ by a*b=LCM of a and b a binary operation? Justify your answer.

Solution:

The operation * on the set $\{1,2,3,4,5\}$ is defined by a*b = LCM of a and b. The operation table for the operation *' can be given as:

*	1	2	3	4	5
1	1	2	3	4	5
2	2	2	6	4	10
3	3	6	3	12	15
4	4	4	12	4	20
5	5	10	15	20	5

$$3*2 = 2*3 = 6 \notin A$$
,

$$5*2 = 2*5 = 10 \notin A$$
,

$$3*4 = 4*3 = 12 \notin A$$
,

$$3*5 = 5*3 = 15 \notin A$$
.

$$4*5 = 5*4 = 20 \notin A$$

The given operation *is not a binary operation.

Question 8:

Let * be the binary operation on N defined by a*b = H.C.F. of a and b. Is * commutative? Is * associative? Does there exist identity for this binary operation on N?

Solution:

The binary operation * on N defined by a*b = H.C.F. of and and b.

$$\therefore a * b = b * a$$

Operation * is commutative.

For all $a,b,c \in N$,

$$(a*b)*c = (HCF \text{ of } a \text{ and } b)*c = HCF \text{ of } a,b,c$$

$$a*(b*c)=a*(HCF. of b and c)=HCF of a,b,c$$

$$\therefore (a*b)*c = a*(b*c)$$

Operation * is associative.

 $e \in N$ will be the identity for the operation*if a * e = a = e * a for all $a \in N$. But this relation is not true for any $a \in N$.

Operation * does not have any identity in N.

Ouestion 9:

Let * be the binary operation on Q of rational numbers as follows:

i.
$$a * b = a - b$$

ii.
$$a*b = a^2 + b^2$$

iii.
$$a * b = a + ab$$

iv.
$$a * b = (a - b)^2$$

$$a + b = \frac{ab}{4}$$

$$Vi. a*b = ab^2$$

Find which of the binary operations are commutative and which are associative.

Solution:

On Q, the operation * is defined as a*b = a - b

$$\frac{1}{2} * \frac{1}{3} = \frac{1}{2} - \frac{1}{3} = \frac{3-2}{3} = \frac{1}{6}$$
And

$$\frac{1}{3} * \frac{1}{2} = \frac{1}{3} - \frac{1}{2} = \frac{2-3}{6} = \frac{-1}{6}$$

$$\therefore \left(\frac{1}{2} * \frac{1}{3}\right) \neq \left(\frac{1}{3} * \frac{1}{2}\right)$$

where $\frac{1}{2}$, $\frac{1}{3} \in Q$

Operation * is not commutative.

$$\left(\frac{1}{2} * \frac{1}{3}\right) * \frac{1}{4} = \left(\frac{1}{2} - \frac{1}{3}\right) * \frac{1}{4} = \frac{1}{6} * \frac{1}{4} = \frac{1}{6} - \frac{1}{4} = \frac{2 - 3}{12} = \frac{-1}{12}$$

$$\frac{1}{2} * \left(\frac{1}{3} * \frac{1}{4}\right) = \frac{1}{2} * \left(\frac{1}{3} - \frac{1}{4}\right) = \frac{1}{2} * \frac{1}{12} = \frac{1}{2} - \frac{1}{12} = \frac{6 - 1}{12} = \frac{5}{12}$$

where $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{4} \in Q$

Operation * is not associative.

On Q, the operation * is defined as $a * b = a^2 + b^2$ ii.

For $a, b \in O$

$$a*h = a^2 + b^2 = b^2 + a^2 = b*a$$

$$\therefore a * b = b * a$$

Operation * is commutative.

$$(1*2)*3 = (1^2 + 2^2)*3 = (1+4)*3 = 5*3 = 5^2 + 3^2 = 25 + 9 = 34$$

$$1*(2*3) = 1*(2^2 + 3^2) = 1*(4+9) = 1*13 = 1^2 + 13^2 = 1 + 169 = 170$$

$$(1*2)*3 \neq 1*(2*3)$$

where $1, 2, 3 \in O$

Operation * is not associative.

On Q, the operation * is defined as a * b = a + abiii.

$$1*2 = 1 + 1 \times 2 = 1 + 2 = 3$$

$$2*1 = 2 + 2 \times 1 = 2 + 2 = 4$$

 $\therefore 1*2 \neq 2*1$

$$\therefore 1 * 2 \neq 2 * 1$$

where $1, 2 \in Q$

Operation * is not commutative.

$$(1*2)*3 = (1+1\times2)*3 = 3*3 = 3+3\times3 = 3+9 = 12$$

$$1*(2*3) = 1*(2+2\times3) = 1*8 = 1+1\times8 = 1+8 = 9$$

$$(1*2)*3 \neq 1*(2*3)$$

where $1, 2, 3 \in Q$

Operation * is not associative.

iv. On Q, the operation * is defined as
$$a * b = (a - b)^2$$

For
$$a, b \in Q$$

$$a*b = (a-b)^2$$

$$b*a = (b-a)^2 = [-(a-b)]^2 = (a-b)^2$$

$$\therefore a * b = b * a$$

a * b = b * aOperation * is commutative.

$$(1*2)*3 = (1-2)^2*3 = (-1)^2*3 = 1*3 = (1-3)^2 = (-2)^2 = 4$$

$$1*(2*3) = 1*(2-3)^2 = 1*(-1)^2 = 1*1 = (1-1)^2 = 0$$

$$(1*2)*3 \neq 1*(2*3)$$

where $1, 2, 3 \in Q$

Operation * is not associative.

v. On Q, the operation * is defined as
$$a + b = \frac{ab}{4}$$

For
$$a, b \in Q$$

$$a*b = \frac{ab}{4} = \frac{ba}{4} = b*a$$

$$a * b = b * a$$

a * b = b * aOperation * is commutative.

For
$$a, b, c \in Q$$

$$(a*b)*c = \frac{ab}{4}*c = \frac{\frac{ab}{4} \cdot c}{4} = \frac{abc}{16}$$

$$a*(b*c) = a*\frac{ab}{4} = \frac{a \cdot \frac{ab}{4}}{4} = \frac{abc}{16}$$

$$\therefore (a*b)*c = a*(b*c)$$

where $a, b, c \in Q$

Operation * is associative.

vi. On Q, the operation * is defined as
$$a * b = ab^2$$

$$\frac{1}{2} * \frac{1}{3} = \frac{1}{2} \cdot \left(\frac{1}{3}\right)^2 = \frac{1}{2} \cdot \frac{1}{9} = \frac{1}{18}$$

$$\frac{1}{3} * \frac{1}{2} = \frac{1}{3} \cdot \left(\frac{1}{2}\right)^2 = \frac{1}{3} \cdot \frac{1}{4} = \frac{1}{12}$$

$$\therefore \left(\frac{1}{2} * \frac{1}{3}\right) \neq \left(\frac{1}{3} * \frac{1}{2}\right)$$

where
$$\frac{1}{2}$$
, $\frac{1}{3} \in Q$

Operation * is not commutative.

$$\left(\frac{1}{2} * \frac{1}{3}\right) * \frac{1}{4} = \left(\frac{1}{2} \cdot \left(\frac{1}{3}\right)^{2}\right) * \frac{1}{4} = \frac{1}{18} * \frac{1}{4} = \frac{1}{18} \cdot \left(\frac{1}{4}\right)^{2} = \frac{1}{18 \times 16}$$

$$\frac{1}{2} * \left(\frac{1}{3} * \frac{1}{4}\right) = \frac{1}{2} * \left(\frac{1}{3} \cdot \left(\frac{1}{4}\right)^{2}\right) = \frac{1}{2} * \frac{1}{48} = \frac{1}{2} \cdot \left(\frac{1}{48}\right)^{2} = \frac{1}{2 \times (48)^{2}}$$

$$\therefore \left(\frac{1}{2} * \frac{1}{3}\right) * \frac{1}{4} \neq \frac{1}{2} * \left(\frac{1}{3} * \frac{1}{4}\right)$$

$$\text{where } \frac{1}{2}, \frac{1}{3}, \frac{1}{4} \in Q$$

Operation * is not associative.

Operations defined in (ii), (iv), (v) are commutative and the operation defined in (v) is associative.

Ouestion 10:

Find which of the operations given above has identity.

Solution:

An element $e \in Q$ will be the identity element for the operation * if

$$a*e = a = e*a$$
, for all $a \in Q$

$$a*b = \frac{ab}{4}$$

$$\Rightarrow a * e = a$$

$$\Rightarrow \frac{ae}{4} = a$$

$$\Rightarrow e = 4$$

Similarly, it can be checked for e*a=a, we get e=4 is the identity.

Question 11:

 $A = N \times N$ and * be the binary operation on A defined by (a,b)*(c,d)=(a+c,b+d). Show that * is commutative and associative. Find the identity element for * on A, if any.

Solution:

 $A = N \times N$ and * be the binary operation on A defined by

$$(a,b)*(c,d) = (a+c,b+d)$$

$$(a,b)*(c,d) \in A$$

$$a,b,c,d \in N$$

$$(a,b)*(c,d) = (a+c,b+d)$$

$$(c,d)*(a,b) = (c+a,d+b) = (a+c,b+d)$$

$$\therefore (a,b)*(c,d) = (c,d)*(a,b)$$

Operation * is commutative.

Now, let
$$(a,b),(c,d),(e,f) \in A$$

 $a,b,c,d,e,f \in N$
 $[(a,b)*(c,d)]*(e,f) = (a+c,b+d)*(e,f) = (a+c+e,b+d+f)$
 $(a,b)*[(c,d)*(e,f)] = (a,b)*(c+e,d+f) = (a+c+e,b+d+f)$
 $\therefore [(a,b)*(c,d)]*(e,f) = (a,b)*[(c,d)*(e,f)]$
Operation * is associative.

An element $e = (e_1, e_2) \in A$ will be an identity element for the operation * if a + e = a = e * a for all $a = (a_1, a_2) \in A$ i.e., $(a_1 + e_1, a_2 + e_2) = (a_1, a_2) = (e_1 + a_1, e_2 + a_2)$, which is not true for any element in A.

Therefore, the operation * does not have any identity element.

Question 12:

State whether the following statements are true or false. Justify.

- i. For an arbitrary binary operation * on a set N, a*a = a for all $a \in N$.
- ii. If * is a commutative binary operation on N, then a*(b*c)=(c*b)*a

Solution:

- i. Define operation * on a set N as a * a = a for all $a \in N$. In particular, for a = 3, $3*3=9 \neq 3$ Therefore, statement (i) is false.
- ii. R.H.S. = (c*b)*a= (b*c)*a [* is commutative] = a*(b*c) [Again, as * is commutative] = L.H.S. $\therefore a*(b*c)=(c*b)*a$ Therefore, statement (ii) is true.

Ouestion 13:

Consider a binary operation * on N defined as $a * b = a^3 + b^3$. Choose the correct answer.

- A. Is * both associative and commutative?
- B. Is * commutative but not associative?
- C. Is * associative but not commutative?
- D. Is * neither commutative nor associative?

Solution:

On N, operation *is defined as $a * b = a^3 + b^3$.

For all $a, b \in N$

$$a*b = a^3 + b^3 = b^3 + a^3 = b*a$$

Operation * is commutative.

$$(1*2)*3 = (1^3 + 2^3)*3 = (1+8)*3 = 9*3 = 9^3 + 3^3 = 729 + 27 = 756$$

 $1*(2*3) = 1*(2^3 + 3^3) = 1*(8+27) = 1*35 = 1^3 + 35^3 = 1 + 42875 = 42876$
 $\therefore (1*2)*3 \neq 1*(2*3)$ Operation *is not associative.

Therefore, Operation * is commutative, but not associative. The correct answer is B.

MISCELLANEOUS EXERCISE

Question 1:

Let $f: R \to R$ be defined as f(x) = 10x + 7. Find the function $g: R \to R$ such that $g \circ f = f \circ g = I_R$.

Solution:

 $f: R \to R$ is defined as f(x) = 10x + 7

For one-one:

$$f(x) = f(y)$$
 where $x, y \in R$

$$\Rightarrow$$
 10 x + 7 = 10 y + 7

$$\Rightarrow x = y$$

 $\therefore f$ is one-one.

For onto:

$$v \in R$$
, Let $v = 10x + 7$

$$\Rightarrow x = \frac{y-7}{10} \in R$$

For any $y \in R$, there exists $x = \frac{y-7}{10} \in R$ such that

$$f(x) = f\left(\frac{y-7}{10}\right) = 10\left(\frac{y-7}{10}\right) + 7 = y-7+7 = y$$

 $\therefore f$ is onto.

Thus, f is an invertible function.

Let us define $g: R \to R$ as $g(y) = \frac{y-7}{10}$.

Now,

$$gof(x) = g(f(x)) = g(10x+7) = \frac{(10x+7)-7}{10} = \frac{10x}{10} = 10$$

And,

$$fog(y) = f(g(y)) = f(\frac{y-7}{10}) = 10(\frac{y-7}{10}) + 7 = y-7+7 = y$$

$$\therefore gof = I_R \text{ and } fog = I_R$$

Hence, the required function $g: R \to R$ as $g(y) = \frac{y-7}{10}$.

Question 2:

Let $f: W \to W$ be defined as f(n) = n - 1, if is odd and f(n) = n + 1, if n is even. Show that f is invertible. Find the inverse of f. Here, W is the set of all whole numbers.

Solution:

$$f: W \to W$$
 is defined as $f(n) = \begin{cases} n-1, & \text{if } n \text{ is odd} \\ n+1, & \text{if } n \text{ is even} \end{cases}$

For one-one:

$$f(n) = f(m)$$

If n is odd and m is even, then we will have n-1=m+1.

$$\Rightarrow n-m=2$$

Similarly, the possibility of n being even and m being odd can also be ignored under a similar argument.

 \therefore Both n and m must be either odd or even.

Now, if both n and m are odd, then we have:

$$f(n) = f(m)$$

$$\Rightarrow n - 1 = m - 1$$

$$\Rightarrow n = m$$

Again, if both n and m are even, then we have:

$$f(n) = f(m)$$

$$\Rightarrow n+1 = m+1$$

$$\Rightarrow n=m$$

 $\therefore f$ is one-one.

For onto:

Any odd number 2r+1 in co-domain N is the image of 2r in domain N and any even number 2r in co-domain N is the image of 2r+1 in domain N.

 $\therefore f$ is onto.

f is an invertible function.

Let us define
$$g: W \to W$$
 as $f(m) = \begin{cases} m-1, & \text{If } m \text{ is odd} \\ m+1, & \text{If } m \text{ is even} \end{cases}$
When r is odd

$$gof(n) = g(f(n)) = g(n-1) = n-1+1 = n$$

When r is even

$$gof(n) = g(f(n)) = g(n+1) = n+1-1 = n$$

When m is odd

$$fog(n) = f(g(m)) = f(m-1) = m-1+1 = m$$

When m is even

$$fog(m) = f(g(m)) = f(m+1) = m+1-1 = m$$

 $\therefore gof = I_{w \text{ and }} fog = I_{w}$

f is invertible and the inverse of f is given by $f^{-1} = g$, which is the same as f. inverse of f is f itself.

Question 3:

If
$$f: R \to R$$
 be defined as $f(x) = x^2 - 3x + 2$, find $f(f(x))$.

Solution:

$$f: R \to R$$
 is defined as $f(x) = x^2 - 3x + 2$.

$$f(f(x)) = f(x^2 - 3x + 2)$$

$$= (x^2 - 3x + 2)^2 - 3(x^2 - 3x + 2) + 2$$

$$= (x^4 + 9x^2 + 4 - 6x^3 - 12x + 4x^2) + (-3x^2 + 9x - 6) + 2$$

$$= x^4 - 6x^3 + 10x^2 - 3x$$

Question 4:

Show that function $f: R \to \{x \in R: -1 < x < 1\}$ be defined by $f(x) = \frac{x}{1+|x|}$, $x \in R$ is one-one and onto function.

Solution:

$$f: R \to \{x \in R: -1 < x < 1\}$$
 is defined by $f(x) = \frac{x}{1+|x|}, x \in R$.

For one-one:

$$f(x) = f(y)$$
 where $x, y \in R$

$$\Rightarrow \frac{x}{1+|x|} = \frac{y}{1+|y|}$$

If X is positive and Y is negative,

$$\frac{x}{1+|x|} = \frac{y}{1+|y|}$$

$$\Rightarrow 2xy = x - y$$

Since, x is positive and y is negative,

$$x > y \Rightarrow x - y > 0$$

2xy is negative.

$$2xy \neq x - y$$

Case of X being positive and Y being negative, can be ruled out.

 \therefore x and y have to be either positive or negative.

If x and y are positive,

$$f(x) = f(y)$$

$$\Rightarrow \frac{x}{1+x} = \frac{y}{1+y}$$

$$\Rightarrow x - xy = y - xy$$

$$\Rightarrow x = y$$

 $\therefore f$ is one-one.

For onto:

Let $y \in R$ such that -1 < y < 1.

If x is negative, then there exists $x = \frac{y}{1+y} \in R$ such that

$$f(x) = f\left(\frac{y}{1+y}\right) = \frac{\left(\frac{y}{1+y}\right)}{1+\left|\frac{y}{1+y}\right|} = \frac{\frac{y}{1+y}}{1+\left(\frac{-y}{1+y}\right)} = \frac{y}{1+y-y} = y$$

If x is positive, then there exists $x = \frac{y}{1-y} \in R$ such that

$$f(x) = f\left(\frac{y}{1-y}\right) = \frac{\left(\frac{y}{1-y}\right)}{1+\left|\frac{y}{1-y}\right|} = \frac{\frac{y}{1-y}}{1+\left(\frac{y}{1-y}\right)} = \frac{y}{1-y+y} = y$$

 $\therefore f$ is onto.

Hence, f is one-one and onto.

Ouestion 5:

Show that function $f: R \to R$ be defined by $f(x) = x^3$ is injective.

Solution:

 $f: R \to R$ is defined by $f(x) = x^3$

For one-one:

$$f(x) = f(y)$$
 where $x, y \in R$
 $x^3 = y^3$(1)

We need to show that x = y

Suppose $x \neq y$, their cubes will also not be equal.

$$\Rightarrow x^3 \neq y^3$$

This will be a contradiction to (1).

 $\therefore x = y$. Hence, f is injective.

Question 6:

Give examples of two functions $f: N \to Z$ and $g: Z \to Z$ such that *gof* is injective but $\mathcal E$ is not injective.

(Hint: Consider f(x) = x and g(x) = |x|)

Solution:

Define $f: N \to Z$ as f(x) = x and $g: Z \to Z$ as g(x) = |x|

Let us first show that \mathcal{Z} is not injective.

$$\left(-1\right) = \left|-1\right| = 1$$

$$(1) = |1| = 1$$

$$\therefore (-1) = g(1), \text{ but } -1 \neq 1$$

 $\therefore g$ is not injective.

$$gof: N \to Z$$
 is defined as $gof(x) = g(f(x)) = g(x) = |x|$
 $x, y \in N$ such that $gof(x) = gof(y)$
 $\Rightarrow |x| = |y|$

Since $x, y \in N$, both are positive.

$$\therefore |x| = |y|$$

$$\Rightarrow x = y$$

 \therefore gof is injective.

Question 7:

Given examples of two functions $f: N \to N$ and $g: N \to N$ such that *gof* is onto but f is not onto.

(Hint: Consider f(x) = x + 1 and $g(x) = \begin{cases} x - 1, & \text{if } x > 1 \\ 1, & \text{if } x = 1 \end{cases}$)
Solution:

Define
$$f: N \to Z$$
 as $f(x) = x + 1$ and $g: Z \to Z$ as $g(x) = \begin{cases} x - 1, & \text{if } x > 1 \\ 1, & \text{if } x = 1 \end{cases}$

Let us first show that \mathcal{G} is not onto.

Consider element 1 in co-domain N. This element is not an image of any of the elements in domain N.

 $\therefore f$ is not onto.

 $g: N \to N$ is defined by

$$gof(x) = g(f(x)) = g(x+1) = x+1-1 = x \qquad [x \in N \Rightarrow x+1>1]$$

For $y \in N$, there exists $x = y \in N$ such that gof(x) = y.

 \therefore gof is onto.

Question 8:

Given a non-empty set X, consider P(X) which is the set of all subsets of X.

Define the relation R in P(X) as follows:

For subsets A, B in P(X), ARB if and only if $A \subset B$. Is R an equivalence relation on P(X)? Justify you answer.

Solution:

Since every set is a subset of itself, ARA for all $A \in P(X)$.

 \therefore R is reflexive.

Let $ARB \Rightarrow A \subset B$

This cannot be implied to $B \subset A$.

If $A = \{1, 2\}$ and $B = \{1, 2, 3\}$, then it cannot be implied that B is related to A.

 \therefore R is not symmetric.

If ARB and BRC, then $A \subset B$ and $B \subset C$.

 $\Rightarrow A \subset C$

 $\Rightarrow ARC$

 \therefore R is transitive.

R is not an equivalence relation as it is not symmetric.

Question 9:

Given a non-empty set X, consider the binary operation *: $P(X) \times P(X) \to P(X)$ given by $A * B = A \cap B \ \forall A, B \text{ in } P(X)$ is the power set of X. Show that X is the identity element for this operation and X is the only invertible element in P(X) with respect to the operation *.

Solution:

$$P(X) \times P(X) \rightarrow P(X)$$
 given by $A * B = A \cap B \ \forall A, B \text{ in } P(X)$

$$A \cap X = A = X \cap A$$
 for all $A \in P(X)$

$$\Rightarrow A * X = A = X * A \text{ for all } A \in P(X)$$

X is the identity element for the given binary operation *.

An element $A \in P(X)$ is invertible if there exists $B \in P(X)$ such that A * B = X = B * A [As X is the identity element]

Or

$$A \cap B = X = B \cap A$$

This case is possible only when A = X = B.

X is the only invertible element in P(X) with respect to the given operation *.

Question 10:

Find the number of all onto functions from the set $\{1,2,3,...,n\}$ to itself.

Solution:

Onto functions from the set $\{1,2,3,\ldots,n\}$ to itself is simply a permutation on n symbols $1,2,3,\ldots,n$.

Thus, the total number of onto maps from $\{1,2,3,...,n\}$ to itself is the same as the total number of permutations on n symbols 1,2,3,...,n, which is n!.

Question 11:

Let $S = \{a,b,c\}$ and $T = \{1, 2,3\}$. Find F^{-1} of the following functions F from S to T, if it exists.

i.
$$F = \{(a,3),(b,2),(c,1)\}$$

ii.
$$F = \{(a,2),(b,1),(c,1)\}$$

Solution: $S = \{a,b,c\}, T = \{1, 2,3\}$

i.
$$F: S \to T$$
 is defined by $F = \{(a,3), (b,2), (c,1)\}$
 $\Rightarrow F(a) = 3, F(b) = 2, F(c) = 1$
Therefore, $F^{-1}: T \to S$ is given by $F^{-1} = \{(3,a), (2,b), (1,c)\}$

ii.
$$F: S \to T$$
 is defined by $F = \{(a,2), (b,1), (c,1)\}$
Since, $F(b) = F(c) = 1$, F is not one-one.
Hence, F is not invertible i.e., F^{-1} does not exists.

Question 12:

Consider the binary operations*: $R \times R \to R$ and $o: R \times R \to R$ defined as a * b = |a - b| and aob = a, $\forall a, b \in R$. Show that *is commutative but not associative θ is associative but not commutative. Further, show that $\forall a, b, c \in R$, a * (boc) = (a * b)o(a * c). [If it is so, we say that the operation * distributes over the operation θ]. Does θ distribute over *? Justify your answer.

Solution:

It is given that *: $R \times R \to R$ and $o: R \times R \to R$ defined as a * b = |a - b| and aob = a, $\forall a, b \in R$. For $a, b \in R$, we have a * b = |a - b| and b * a = |b - a| = |-(a - b)| = |a - b| $\therefore a * b = b * a$ \therefore The operation *is commutative.

$$(1*2)*3 = (|1-2|)*3 = 1*3 = |1-3| = 2$$

 $1*(2*3) = 1*(|2-3|) = 1*1 = |1-1| = 0$

$$(1*2)*3 \neq 1*(2*3)$$

where $1, 2, 3 \in R$

... The operation * is not associative.

Now, consider the operation θ :

It can be observed that 102 = 1 and 201 = 2.

$$\therefore 102 \neq 201$$
 (where $1, 2 \in R$)

 \therefore The operation θ is not commutative.

Let $a,b,c \in R$. Then, we have:

$$(aob)oc = aoc = a$$

 $ao(boc) = aob = a$
 $\Rightarrow (aob)oc = ao(boc)$

 \therefore The operation θ is associative.

Now, let $a,b,c \in R$, then we have:

$$a*(boc) = a*b = |a-b|$$

 $(a*b)o(a*c) = (|a-b|)o(|a-c|) = |a-b|$

Hence,
$$a*(boc) = (a*b)o(a*c)$$

Now,

$$1o(2*3) = 1o(|2-3|) = 1o1 = 1$$

 $(1o2)*(1o3) = 1*1 = |1-1| = 0$

$$\therefore 1o(2*3) \neq (1o2)*(1o3)$$

where $1, 2, 3 \in R$

 \therefore The operation θ does not distribute over*.

Question 13:

Given a non-empty set X, let *: $P(X) \times P(X) \rightarrow P(X)$ be defined as $A * B = (A - B) \cup (B - A)$. $\forall A, B \in P(X)$. Show that the empty set Φ is the identity for the operation * and all the elements $A ext{ of } P(X) ext{ are invertible with } A^{-1} = A$. (Hint: $(A-\Phi)\cup(\Phi-A)=A$ and $(A-A)\cup(A-A)=A*A=\Phi$).

(Hint:
$$(A-\Phi) \cup (\Phi-A) = A$$
 and $(A-A) \cup (A-A) = A \cdot A = \Phi$)

Solution:

It is given that *: $P(X) \times P(X) \rightarrow P(X)$ is defined as $A * B = (A - B) \cup (B - A)$, $\forall A, B \in P(X)$ $A \in P(X)$ then.

$$A * \Phi = (A - \Phi) \cup (\Phi - A) = A \cup \Phi = A$$

$$\Phi * A = (\Phi - A) \cup (A - \Phi) = \Phi \cup A = A$$

$$\therefore A * \Phi = A = \Phi * A \qquad \text{for all } A \in P(X)$$

 Φ is the identity for the operation *.

Element $A \in P(X)$ will be invertible if there exists $B \in P(X)$ such that $A*B=\Phi=B*A$ [As Φ is the identity element] $A*A = (A-A) \cup (A-A) = \Phi \cup \Phi = \Phi$ for all $A \in P(X)$.

All the elements A of P(X) are invertible with $A^{-1} = A$.

Question 14:

Define a binary operation * on the set $\{0,1,2,3,4,5\}$ as

$$a+b = \begin{cases} a+b, & \text{if } a+b < 6 \\ a+b-6 & \text{if } a+b \ge 6 \end{cases}$$

Show that zero is the identity for this operation and each element $a \neq 0$ of the set is invertible with 6-a being the inverse of a.

Solution:

Let
$$X = \{0,1,2,3,4,5\}$$

The operation *is defined as $a+b = \begin{cases} a+b, & \text{if } a+b < 6 \\ a+b-6, & \text{if } a+b \ge 6 \end{cases}$

An element $e \in X$ is the identity element for the operation *, if $a * e = a = e * a \quad \forall a \in X$ For $a \in X$,

$$a*0 = a + 0 = a$$
 $[a \in X \Rightarrow a + 0 < 6]$
 $0*a = 0 + a = a$ $[a \in X \Rightarrow 0 + a < 6]$
 $\therefore a*0 = a = 0*a \quad \forall a \in X$

Thus, 0 is the identity element for the given operation *.

An element $a \in X$ is invertible if there exists $b \in X$ such that a * b = 0 = b * a.

$$\begin{cases} a+b=0=b+a, & \text{if } a+b<6\\ a+b-6=0=b+a-6 & \text{if } a+b\geq 6 \end{cases}$$

$$\Rightarrow a = -b \text{ or } b = 6 - a$$

$$X = \{0,1,2,3,4,5\}$$
 and $a,b \in X$. Then $a \neq -b$.

 $\therefore b = 6 - a$ is the inverse of a for all $a \in X$.

Inverse of an element $a \in X$, $a \ne 0$ is 6-a i.e., a-1=6-a

Question 15:

Let $A = \{-1,0,1,2\}$, $B = \{-4,-2,0,2\}$ and $f,g: A \to B$ be functions defined by $x^2 - x$, $x \in A$ and $g(x) = 2 \left| x - \frac{1}{2} \right| -1$, $x \in A$. Are f and g equal?

Solution:

It is given that $A = \{-1,0,1,2\}$, $B = \{-4,-2,0,2\}$

Also,
$$f, g: A \to B$$
 is defined by $x^2 - x$, $x \in A$ and $g(x) = 2 \left| x - \frac{1}{2} \right| - 1$, $x \in A$.
 $f(-1) = (-1)^2 - (-1) = 1 + 1 = 2$
 $g(-1) = 2 \left| (-1) - \frac{1}{2} \right| - 1 = 2 \left(\frac{3}{2} \right) - 1 = 3 - 1 = 2$
 $\Rightarrow f(-1) = g(-1)$
 $f(0) = (0)^2 - 0 = 0$
 $g(0) = 2 \left| 0 - \frac{1}{2} \right| - 1 = 2 \left(\frac{1}{2} \right) - 1 = 1 - 1 = 0$
 $\Rightarrow f(0) = g(0)$

$$f(1) = (1)^{2} - 1 = 0$$

$$g(1) = 2 \left| 1 - \frac{1}{2} \right| - 1 = 2 \left(\frac{1}{2} \right) - 1 = 1 - 1 = 0$$

$$\Rightarrow f(1) = g(1)$$

$$f(2) = (2)^{2} - 2 = 2$$

$$g(2) = 2 \left| 2 - \frac{1}{2} \right| - 1 = 2 \left(\frac{3}{2} \right) - 1 = 3 - 1 = 2$$

$$\Rightarrow f(2) = g(2)$$

$$\therefore f(a) = g(a) \quad \forall a \in A$$

Hence, the functions f and g are equal.

Ouestion 16:

Let $A = \{1, 2, 3\}$. Then number of relations containing (1, 2) and (1, 3) which are reflexive and symmetric but not transitive is,

A. 1

B. 2

C. 3 D. 4

Solution:

The given set is $A = \{1, 2, 3\}$.

The smallest relation containing (1,2) and (1,3) which are reflexive and symmetric but not transitive is given by,

$$R = \{(1,1),(2,2),(3,3),(1,2),(1,3),(2,1),(3,1)\}$$

This is because relation R is reflexive as $\{(1,1),(2,2),(3,3)\}\in R$.

Relation R is symmetric as $\{(1,2),(2,1)\}\in R$ and $\{(1,3)(3,1)\}\in R$

Relation R is transitive as $\{(3,1),(1,2)\}\in R_{\text{but}}(3,2)\notin R$.

Now, if we add any two pairs (3,2) and (2,3) (or both) to relation R, then relation R will become transitive.

Hence, the total number of desired relations is one.

The correct answer is A.

Question 17:

Let $A = \{1, 2, 3\}$. Then number of equivalence relations containing (1, 2) is,

- A. 1
- B. 2
- C. 3 D. 4

Solution:

The given set is $A = \{1, 2, 3\}$.

The smallest equivalence relation containing (1,2) is given by:

$$R_1 = \{(1,1),(2,2),(3,3),(1,2),(2,1)\}$$

Now, we are left with only four pairs i.e., (2,3), (3,2), (1,3) and (3,1).

If we odd any one pair $[say^{(2,3)}]$ to R_1 , then for symmetry we must add(3,2). Also, for transitivity we are required to add (1,3) and (3,1).

Hence, the only equivalence relation (bigger than R_1) is the universal relation.

This shows that the total number of equivalence relations containing (1,2) is two. The correct answer is B.

Question 18:

 $f(x) = \begin{cases} 1, & x > 0 \\ 0, & x = 0 \\ -1, & x < 0 \end{cases} \text{ and } g: R \to R \text{ be the}$ Let $f: R \to R$ be the Signum Function defined as greatest integer function given by g(x) = [x], where [x] is greatest integer less than or equal to χ . Then does fog and gof coincide in (0,1]?

Solution:

$$f(x) = \begin{cases} 1, & x > 0 \\ 0, & x = 0 \\ -1, & x < 0 \end{cases}$$

It is given that $f: R \to R$ be the Signum Function defined as

Also $g: R \to R$ is defined as g(x) = [x], where [x] is greatest integer less than or equal to x. Now let $x \in (0,1]$,

$$[x] = 1$$
 if $x = 1$ and $[x] = 0$ if $0 < x < 1$.

Thus, when $x \in (0,1)$, we have $f \circ g(x) = 0$ and $g \circ f(x) = 1$. Hence, $f \circ g$ and $g \circ f$ does not coincide in (0,1].

Question 19:

Number of binary operations on the set $\{a,b\}$ are

A. 10

B. 16

C. 20

D. 8

Solution:

A binary operation * on $\{a,b\}$ is a function from $\{a,b\} \times \{a,b\} \rightarrow \{a,b\}$ i.e., * is a function from $\{(a,a),(a,b),(b,a),(b,b)\} \rightarrow \{a,b\}$ Hence, the total number of binary operations on the set $\{a,b\}$ is $2^4 = 16$. The correct answer is B.