PATENT ABSTRACTS OF JAPAN

(11)Publication number :

2005-090390

(43)Date of publication of application: 07.04.2005

(51)Int.Cl.

F01N 3/02 F02D 45/00 // BO1D 46/42

(21)Application number: 2003-326324 (22)Date of filing:

18.09.2003

(71)Applicant: NISSAN MOTOR CO LTD

(72)Inventor: OTAKE MAKOTO

KAWASHIMA JUNICHI TSUTSUMOTO NAOYA KONDO MITSUNORI KOGA TOSHIMASA INOUE TAKAO

(54) EXHAUST EMISSION CONTROL DEVICE OF INTERNAL COMBUSTION FINGING

(57)Abstract:

PROBLEM TO BE SOLVED: To restrain an excessive rise in the DPF temperature and a sudden change in an operation state, when starting regeneration processing of a PM collecting filter (DPF).

SOLUTION: When starting the regeneration processing. when changing a control quantity (for example, a fuel injection timing delay quantity) RT for raising the DPF temperature, switching time to for changing this quantity up to a set value RTm on a map from a present value (an initial value O), is set in response to a deviation between the target DPF temperature and the actual DPF temperature, and a PM deposit quantity of DPF.

LEGAL STATUS

[Date of request for examination]

27 07 2006

Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration

[Date of final disposal for application]

[Patent number]

[Date of registration]

(19) 日本国特許庁(JP)

(12)公開特許公報(A)

(11)特許出願公開番号 特關2005-90390

(P2005-90390A) (43) 公開日 平成17年4月7日(2005. 4.7)

					2001	十株17年4月1日(2003.4.1)		
(51) Int. C1.7	Fi					テーマコー	ド(参考	+)
FO1N 3/02	FO1N	3/0	2 3	321K		3G084		
FO2D 45/00	FO1N	3/0	2 3	321Z		3G090		
// BO1D 46/42	FO2D	45/0) 3	12R		4 D O 5 8		
	FO2D	45/0) 3	14R				
	FO2D	45/0) 3	14Z				
	審査請求 オ	精水	請求項	の数8	ΟL	(全 11 頁)	最終責	に続く
(21) 出願音号 (22) 出顧日	特願2003-326324 (P2003-326324) 平成15年9月18日 (2003.9.18)	3.9.18) 日産自動車株式会社						
		神奈川県横浜市神奈川区宝町2番地 (74)代理人 100078330						
		(/4)1	、班人		330 笹島	富二雄		
		(72) 勇	明者	大竹	莫			
					果横浜市 株式会社	神奈川区宝町 内	2番地	日産
		(72) 勇	明書	川島		. •		
						神奈川区宝町	2番地	日産
					株式会社	:内		
		(72) 発	明書		直哉			
					₽横浜市 株式会社	神奈川区宝町 内	2番地	日産
						根	終頁にを	売く

(54) 【発明の名称】内燃機関の排気浄化装置

(57) 【要約】

【課題】 PM捕集用フィルタ(DPF)の再生処理の開始時に、DPF温度の過上昇や運転状態の急変を抑制する。

【解決手段】 再生処理の開始時に、DPF温度の 上昇を上昇させるための制御量 (例えば燃料噴射時期遅 角量) RTを変化させる際に、これを現在の値 (初期値 の) からマップ上の設定値RTmまで変化させる切換時 間 t s を、目標DPF温度と楽DPF温度との偏差、及 び、DPFのPM堆積量に応じて、設定する。

【選択図】 図6

【特許請求の節用】

【請求項1】

排気通路に排気中のPMを捕集するフィルタを備える一方、前記フィルタの再生時期を判断する再生時期判断手段と、前記フィルタの再生時期と当断されたときに前記フィルタの温度を上昇させる再生処理を行って前記フィルタに捕集されているPMを燃焼除去する再生処理手段とを備える内機機関の排気分化装備において

前記再生処理の開始時に、少なくとも、目標フィルタ温度と実フィルタ温度との傷差に 応じて、フィルタ温度を上昇させるための制御量を変化させる時定数を設定し、該時定数 に基づいて制御量を変化させる手段を設けたことを特徴とする内燃機関の排気浄化装置。

【請求項2】

前記時定数は、前記偏差と、前記フィルタのPM堆積量とに応じて、設定することを特徴とする請求項1記載の内燃機関の排気浄化装置。

【請求項3】

前記再生処理手段は、目標フィルタ温度を実現するために、機関運転条件に応じてフィルタ温度を上昇させるための制御最を定めたマップを有し、

前記再生処理の開始時の制御量変化手段は、前記時定数として、制御量を現在の値から マンプ上の設定値まで変化させる切換時間を設定するものであることを特徴とする請求項 フスは請求項 2 記載の内機機関の無気冷化基度。

【請求項4】

前記切換時間は、前記偏差が大きいほど、長く設定することを特徴とする請求項3記載の内燃機関の排気浄化装置。

【請求項5】

前記切換時間は、前記フィルタのPM堆積量が多いほど、長く設定することを特徴とする請求項3又は請求項4記載の内燃機関の排気浄化装置。

【請求項6】

前配再生処理手段による再生処理は、排気温度関連パラメータにより選択される目標フィルタ温度が異なる複数の再生ステップを有することを特徴とする請求項1~請求項5のいずれか1つに記載の内燃機関の排気浄化装置。

【請求項7】

前配再生処理手段による再生処理は、再生経過時間により選択される目標フィルタ温度が異なる複数の再生ステップを有することを特徴とする請求項1~請求項5のいずれか1つに配載の内燃機関の排気浄化装置。

【請求項8】

前配再生処理手段による再生処理は、排気温度関連バラメータ及び再生経過時間により 選択される目標フィルタ温度が異なる複数の再性ステップを有することを特徴とする請求 項1~請求項5のいずれか1つに記載の内機機関の排気浄化装置。

【発明の詳細な説明】

【技術分野】

[0001]

本発明は、排気通路に排気中の粒子状物質である PM (Particulate Matter) を補集するフィルタを備える内燃機関の排気冷化装置に関し、特にそのフィルタの再生技術に関する。

【背景技術】

[0002]

従来より、特許文献 1 に示されるように、排気通路に P M 捕集用フィルタを配置し、所定の再生時期に、フィルタの温度を上昇させる再生処理を行ってフィルタに捕集されている P M を燃焼除去することが行われている。

2 1 141 5 WY ME BY TA 2 C C W. 11 4240 C A. 20°

【特許文献1】特期2002-89327号公報

【発明の開示】

【発明が解決しようとする課題】

50

10

20

30

10

20

50

[00031

ところで、PM捕集用フィルタの再生処理の開始時に、目標フィルタ温度を実現するように、排気温度を上昇させるための制御量を目標フィルタ温度に対応した制御量に瞬時に切換えると、現在のフィルタ温度と目標フィルタ温度との差が大きい時には、制御量の差が大きいため、フィルタ温度の過上昇を引き起こしたり、運転状態が急変して運転者に違和感を与える恐れがある。

[0004]

本発明は、このような問題点に鑑み、再生処理の開始時のフィルタ温度の過上昇や運転状態の急変を抑制できるようにすることを目的とする。

【課題を解決するための手段】

[0005]

このため、本発明では、再生処理の開始時に、少なくとも、目標フィルタ温度と実フィルタ温度との偏差に応じて、フィルタ温度を上昇させるための制御量を変化させる時定数を設定し、この時定数に基づいて制御量を変化させる構成とする。

【発明の効果】

【0006】 本発明によれば、再生処理の開始時の制御量の変化のさせ方(温度の上げ方)を適切に 設定することで、フィルタ温度の過上昇や運転状態の急変を抑制することができる。

【発明を実施するための最良の形態】

[0007]

以下に本発明の実施の形態を図面に基づいて説明する。

図1は本発明の一実施形態を示す車両用ディーゼルエンジンのシステム図である。

ディーゼルエンジン1の各気筒の燃焼室2には、吸気系のエアクリーナ3から、可変ノズル型過給機4の吸気コンプレッサ5、インタークーラ6、吸気絞り弁7、及び、吸気マニホールド8を経て、空気が吸入される。燃料供給系は、コモンレール(図示せず)からこれに苦圧された高圧燃料を導いて各気筒の燃焼室2内に任意のタイミングで燃料噴射が出た燃料噴射が出た、各気筒筒の圧縮行種にて燃料噴射(メイン噴射)がされ、圧縮着火により燃焼する。燃焼後の排気は、排気系の排気マニホールド10、可変ノズル型過給機4の排気タービン11を経て排出される。また、排気の一部は排気マニホールド10からEGR通路12より取出され、EGRクーラ13、EGR弁14を介して吸気マニホールド8に還流される。

[0008]

ここで、ディーゼルエンジン 1 から排出される排気中の P M を 浄化するため、排気 タービン 1 1 下流の排気通路には、ディーゼル・パティキュレート・フィルタ(以下「D P F」という) 1 5 を設け、これにより P M を 捕集する。

DPF15でのPMの捕集によりPM堆積量が増加すると、排気抵抗が増大して、運転性が膨化する。よって、所定の再生時期か否かを判断し、再生時期の場合は、再生処理手段(DPF15の温度、より具体的にはDPF15に流入する排気温度を上昇分せる毛の、例えば燃料噴射弁9の燃料噴射時期(メイン噴射時期)の遅角、燃料噴射弁9による膨張行程もしくは排気行程での追加的な燃料噴射であるポスト噴射、吸気絞り弁9にの間減少(吸気量減少→空燃比リッチ化→排気温度上昇)、可変ノズル型過給機4による過給圧の低下(吸気量減少→空燃比リッチ化→排気温度上昇)のうち少なくとも1つ、更にはこれらとEGR弁14によるEGR率制御との組み合わせなどを用いて、PMを燃焼させることにより、DPF15を再生する。

[0009]

このため、燃料噴射弁9、吸気較り弁7、可変ノズル型過給機4、EGR弁14の作動を制御するエンジンコントロールユニット(以下ECUという)20に、エンジン回転に同期したクランク角信号を発生しこれによりエンジン回転数を検出可能なクランク角センサ21、アクセル開度(アクセルペダルの略込み量)を検出するアクセル開度センサ(アクセル〇FF状態で〇Nとなるアイドルスイッチを含む)22、吸入空気量を検出するエ

10

20

30

50

アフローメータ 2 3、エンジン 冷却水温度を検出する水温センサ 2 4、車速を検出する車速センサ 2 5 などの他、 D P F 1 5 での圧力損失の検出のため D P F 1 5 の前後差圧を検出する 差圧センサ 2 6、 D P F 1 5 の入口 側及び出口側で排気温度をそれぞれ検出する排気温度センサ 2 7、 2 8 の信号を入力してある。

[0010]

ここにおいて、ECU20では、差圧センサ26の信号に基づいてDPF15の前後差圧を検出し、検出された前後差圧に基づいてPM堆積量を推定する。そして、推定されたPM堆積量に基づいて再生時期を判断し、再生時期と判断されたときに、再生処理を行う

次に、ECU20による具体的な制御内容を図2~図5のフローチャートにより説明する。

[0011]

図2は再生制御のフローチャートであり、所定時間毎に繰り返し実行される。

S1では、再生中フラグの値を判定し、0 (非再生中) の場合にS2へ進む。

S2では、図3のサブルーチン(S21~S23)に従って、DPF15のPM堆積量

(PMs) を推定する。

S 2 1 では、差圧センサ 2 6 の信号を読込んで、D P F 1 5 の前後差圧 (Δ P) を検出する。

[0012]

S22では、エンジン回転数と負荷(アクセル開度)とから所定のマップを参照するなどして排気流量(Ve)を推定する。

S23では、DPF前後差圧(Δ P)と排気流量(Ve)とから所定のマップを参照するなどしてDPF15のPM堆積量(PMs)を推定し、リターンする。ここで、PM堆積量の増加と共にDPF前後差圧が大きくなるので、DPF前後差圧が大きくなるほどPM堆積量を多く推定するが、DPF前後差圧は、排気流量に応じても変化し、同一のPM堆積量のときは、排気流量が増加するほど、大きくなる。よって、排気流量によりPM堆積量の推定値を補正するようにしている。

[0013]

S3では、S2で推定したPM堆積量を再生時期判断用の所定値と比較して、PM堆積 最≧所定値か否かを判定する。

PM 堆積盘 < 所定値の場合は、再生時期ではないと判断して、S16 へ進み、通常制御を行う。ここでいう通常制御とは、排気温度を上昇させるための制御パラメータのうち、燃料噴射時期(メイン噴射時期)、吸気絞り弁開度、過給圧、EGR 率などは、通常値に戻し、ポスト噴射(ポスト噴射量あるいはポスト噴射時期)については非実行とすることである。

[0014]

PM堆積量≧所定値の場合は、再生時期(要再生)と判断して、S4へ進む。

S 4 では、再生中フラグを1にセットして、S 5 へ進む。また、S 1 での判定で再生中フラグ=1 (再生中) の場合も、S 5 へ進む。

S5では、現在の運転条件が再生実施条件(再生可能な運転状態)を満足しているかどうかの判定を行い、アイドル運転時、波速運転時、及び極低車速(例えば20km/h未満)の時は、再生実施条件非成立として、S16へ進み、通常制御を行う。これら以外の時は、再生実施条件成立として、再生を実施すべく、S6へ進む。

[0015]

S6では、車速(排気温度関連パラメータ)を判定し、低車速(例えば20~40km/h)の場合は、S7へ進む。

S7では、DPF15の再生のため、DPF15の温度(DPF15に流入する排気温度)。を上昇させる再生ステップの1つとして、BPT (Balance Point Temperature) 制御を実行する。具体的には、燃料噴射弁9の燃料噴射時期(メイン噴射時期)の遅角、燃料噴射弁9による膨張行程もしくは排気行程での追加的な燃料噴射であるボスト噴射、燃

[0016]

S6での判定で、高車速(例えば40km/h以上)の場合は、S8へ進む。

S8では、後述するS10にて計時される完全再生制御第1ステージでの再生経過時間 (累積時間) t1が所定時間以上か否かを判定する。

t 2 <所定時間の場合は、S 9 へ進む。

[0017]

次のS10では、完全再生制御第1ステージでの再生経過時間 t1を計時する($t1=t1+\Delta t$; Δt は本ルーチンの実行時間隔)。

S8での判定で、t1≧所定時間(完全再生制御第1ステージ終了)の場合は、S11 へ進む。

S11では、DPF15の再生のため、DPF15の温度(DPF15に流入する排気温度)を上昇させる再生ステップの1つとして、完全再生制御第2ステージを実付する。具体的には、燃料噴射弁9の燃料噴射時別(メイン噴射時期)の遅角、燃料噴射弁9による膨張行程もしくは排気行程での追加的な燃料噴射であるポスト噴射、吸気絞り弁7の間度減少、可変ノズル型過給機4による過給圧の低下のうち、少なくとも1つ、更にはこれらとEGR弁14によるEGR率制御との組み合わせなどを用いて、排気温度を上昇させることで、DPF15内の温度をPMの燃焼可能な温度まで上昇させて、DPF15下の場度を上昇させて、DPF15下の機合、特にこの再生ステップでは、完全再生制築2ステージと称されるように、DPF15の温度を、例えば640℃に制御するように、燃料噴射時期(メイン噴射時期)、ポスト噴射量あるいはポスト噴射時期、吸気絞り弁開度、過給無圧、EGR率などを制御する。尚、完全再生制御第2ステージでは、第1ステージに、過給無圧、EGR率などを制御する。尚、完全再生制御第2ステージでは、第1ステージに再生がかなり進んで、PM残最が少なくなっているので、再生処理温度(目標DPF温度)を高くして(570℃→640℃)、完全再生制す。

[0018]

次の S 1 2 では、完全再生制御第 2 ステージでの再生経過時間 t 2 を計時する (t 2 = t 2 + Δ t)。

.

10

30

次のS13では、S12にて計時される完全制御第2ステージでの再生経過時間 t2が 所定時間以上か否かを判定する。

t2 ≥ 所定時間 (完全再生制御第2ステージ終了) の場合は、再生完了と判断し、S14 で再生中フラグを0にリセットすると共に、S15で再生経過時間 t1、t2を全て0に初期化する。以降は、通常制御 (S16)に厚み。

[0019]

尚、再生開始後に、S5での判定で再生実施条件非成立(再生中断条件成立)となった 場合は、S16へ進んで、通常制御に戻すことで、再生を中断し、その後、S5での判定 で再生実施条件成立となった段階で、再生を再開することになる。

次に、BPT制御、完全再生制御第1ステージ、第2ステージの詳細について、図4のフローチャートにより説明する。尚、ここでは、排気温度を上昇させる制御パラメータを、燃料噴射時期(メイン噴射時期)ITとし、その制御量として、通常値からの遅角量RTを算出するものとして説明する。

[0020]

S102では、BPT制御、発全再生制御第1ステージ、第2ステージの制御別のマップを参照して、エンジン回転数と負荷(アクセル開度)とから、目標DPF温度に対応する制御最基本値(燃料噴射時期遅角量基本値)RTmを設定する。

[0021]

S 1 0 3 では、排気温度センサ 2 7、 2 8 の信号よりDPF 入口 側排気温度 (Tin) 及び出口側排気温度 (Tout) を検出し、これらより実 DPF 温度 (Tbed) を推定する。 具体的には、Tbed = k × (Tin+Tout) / 2として推定する (k は定数)。

S 1 0 4 では、目標 D P F 温度 (t T bed) と実 D P F 温度 (T bed) との 偏差 Δ T bed = t T bed - T bed を求める。

[0022]

S105では、再生開始時制御が終了しているか否かを判定し、終了していない場合は、S106へ進む。

S10.6では、図5のサブルーチンに従って、再生開始時制御を行い、制御量 (燃料噴射時期遅角量) RTを算出する。これについては後述する。

再生開始時制御が終了している場合 (制御量RTが基本値RTmに収束している場合)は、S107〜進む。

[0023]

S 1 0 7 では、目標 D P F 温度 (t T bed) と実 D P F 温度 (T bed) との 偏差 Δ T bed (= t T bed - T bed) を、 0 と比較する。

ΔTbed > 0の場合(実DPF温度が目標DPF温度より低い場合)は、S108へ進んで、係数(フィードバック補正係数)Κを増大させる(実DPF温度を高くする方向)

[0024]

ΔT bed < 0 の場合(実 D P F 温度が目標 D P F 温度より高い場合)は、 S 1 0 9 へ進んで、係数(フィードバック補正係数) K を減少させる(実 D P F 温度を低くする方向)

これらの後、S110へ進む。

S110では、制御量基本値(燃料噴射時期遅角量基本値)RTmに係数Kを乗じて、制御 置(燃料噴射時期遅角量)RT=RTm*Kを算出する。尚、燃料噴射時期を制御する場合、燃料噴射時期の通常値をITOとすると、最終的な燃料噴射時期ITは、IT=ITO-RTとなる。

[0025]

図5は再生開始時制御のフローチャートである。

この制御は、図6を参照し、再生開始時(再生再開時を含む)に、制御量(燃料噴射時期遅角量)RTを、現在の値(通常値である初期値0)からマップ上の設定値(遅角最基本値)RTmまで変化させるの換時間tsを設定し、これに基づいて制御量RTを徐々に変化させるための制御である。

100261

S 2 0 1 では、再生開始時 (再生再開時を含む) か否かを判定し、再生開始時の場合は、S 2 0 2 ~ S 2 0 4 を実行する。

S 2 0 2 では、制御量 (燃料噴射時期遅角量) R T を初期値である 0 に設定する (R T = 0)。

S 2 0 3 では、図 7 に示すようなマップを参照し、目標 D P F 温度と実 D P F 温度との偏差 (Δ T bed) 及び P M 堆積量 (P M s) から、切換時間 t s を設定する。ここで、切換時間 t s は、前記偏差 (Δ T bed) が大きいほど、また、P M 堆積量 (P M s) が多いほど、長く設定する。尚、P M 堆積量 (P M s) は、再生開始の判断のため、図 2 のフローの S 2 で、図 3 のサブルーチンにより算出したものであるが、再生中断後の再生再開時の場合は、新たに算出する。

[0027]

 $\Delta R T = R T m * \Delta t / t s$

再生開始時は、S202~S204の実行後に、S205へ進み、再生開始時以外は、ダイレクトにS205へ進む。

[0028]

S205では、次式のごとく、現在の制御量(燃料噴射時期遅角量)RTに単位制御量 ARTを加算して、制御量(燃料噴射時期遅角量)RTを更新する。 RT=RT+ART

尚、燃料噴射時期を制御する場合、燃料噴射時期の通常値をITOとすると、最終的な燃料噴射時期ITは、IT=ITO-RTとなる。

[0029]

S206では、更新後の制御量RTが最終的な目標値であるRTmに収束した(RT与RTm)か否かを判定し、収束していない場合は、そのままリターンし、収束した場合は、S207で再生開始時制御終了として、リターンする。

尚、ここでは、排気温度を上昇させる制御パラメータを、燃料噴射時期(メイン噴射時期)ITとし、その制御量として、通常値からの遅角量RTを算出するものとして説明したが、これに限るものではなく、制御パラメータを、ポスト噴射量あるいはポスト噴射時期、吸気絞り弁開度、過給圧、EGR率などとしてもよい。ポスト噴射量あるいはポスト噴射時期を用いる場合、通常値はないので、ポスト噴射量の初期値は最小噴射量とし、ポスト噴射時期の初期値は比較的進角側の予め定めた値とする。

[0030]

また、図8に示すように、低回転・低負荷領域で、メイン噴射時期(IT)とポスト噴射(POST)と吸気絞りとを制御し、中回転・中負荷領域で、メイン噴射時期とポスト噴射とを制御し、高回転・高負荷領域で、メイン噴射時期を制御するようにしてもよい。

以上説明したように、本実施形態によれば、DPFの再生時期と判断されたときにDPFの温度を上昇させる再生処理を行ってDPFに捕集されているPMを燃焼除去する再生処理を使える場合に、再生処理の開始時に、少なくとも、目標DPF温度と変DPF温度との偏差に応じて、DPF温度を上昇させるための制御量を変化させる時定数(切除時間ts)を適切に設定し、該時量の変化のさせ方(温度の上げ方)を適切に設定することで、DPF温度の過上昇や運転状態の急変を抑制することができる。

10

20

30

[0031]

また、本実施形態によれば、前記時定数(切換時間 ts)は、前記偏差と、DPFのPM堆積量とに応じて、設定することにより、PM堆積量をも考慮して、より適切に設定できる。すなわち、PM堆積量が多い状態で排気温度を急激に高くすると、思わぬDPF温度の急上昇を招き、逆にPM堆積量が比較的少ない状態で排気温度をゆっくり上昇させると、DPF温度がなかなか上昇せず、再生効率が悪化するが、PM堆積量を考慮することで、良好な再生が可能となる。

[0032]

また、本実施形態によれば、前配再生処理手段は、目標DPF温度を実現するために、機関運転条件(回転数及び負荷)に応じてDPF温度を上昇させるための制御量を定めたマップを有し、前配再生処理の開始時の制御量変化手段は、前配時定数として、制御量を現在の値(初期値)からマップ上の設定値まで変化させる切換時間 tsを設定するものであることにより、この切換時間 tsの適切な設定で、DPF温度の過上昇や運転状態の急変を抑制することができる。

[0033]

また、本実施形態によれば、前記切換時間 tsは、前記偏差が大きいほど、長く設定することにより、適切に設定できる。

また、本実施形態によれば、前記切換時間 tsは、DPFのPM堆積量が多いほど、長く設定することにより、適切に設定できる。

また、本実施形態によれば、前記再生処理手段による再生処理は、排気温度関連パラメータ(車速)により選択される目標DPF温度が異なる複数の再生ステップ(BPT制御、完全再生制御)を有することにより、昇温制御を行わない場合の排気温度に応じて、的確に制御できる。

[0034]

また、本実施形態によれば、前記再生処理手段による再生処理は、再生経過時間により 選択される目標DPF温度が異なる複数の再生ステップ(完全再生制御第1ステージ、第 2ステージ)を有することにより、再生経過時間、すなわち、残PM最に応じて、的確に 制御できる。

また、本実施形態によれば、前記再生処理手段による再生処理は、排気温度関連パラメータ及び再生経過時間により選択される目標DPF温度が異なる複数の再生ステップ (BPT制御、完全再生制御第1ステージ、第2ステージ)を有することにより、昇温制御を行わない場合の排気温度や、再生経過時間、すなわち、残PM量に応じて、的確に制御できる。

[0035]

尚、本実施形態では、目標DPF温度を設定し、DPF温度を間接的ではあるが検出して、制御しているが、DPF温度=DPF入口側排気温度とみなすなどして、目標DPF入口側排気温度を検出して、制御するようにしてもよい。

【図面の簡単な説明】

[0036]

【図1】本発明の一実施形態を示すディーゼルエンジンのシステム図

【図2】再生制御のフローチャート

【図3】 PM堆積量推定のフローチャート

【図4】 BPT制御、完全再生制御第1ステージ、第2ステージのフローチャート

【図5】 再生開始時制御のフローチャート

【図6】切換時間の説明図

【図7】切換時間設定用マップを示す図

【図8】排気温度上昇させる制御パラメータの説明図

【符号の説明】

[0037]

50

40

10

20

- 1 ディーゼルエンジン
- 4 可変ノズル型過給機
- 7 吸気絞り弁
- 9 燃料噴射弁
- 14 EGR弁
- 15 DPF
- 20 ECU
- 21 クランク角センサ
- 22 アクセル開度センサ
- 2.6 差圧センサ
- 27 DPF入口側排気温度センサ
- 28 DPF出口側排気温度センサ

【図1】

【図2】

[図3]

[図4]

[図5]

【図7】

[图8]

[図6]

B 0 1 D 46/42 Z A B B

フロントページの続き

(51) Int. Cl. 7

FΙ

テーマコード (参考)

(72)発明者 近藤 光徳

神奈川県横浜市神奈川区宝町2番地 日産自動車株式会社内

(72)発明者 古賀 俊雅

神奈川県横浜市神奈川区宝町2番地 日産自動車株式会社内

(72)発明者 井上 尊雄

神奈川県横浜市神奈川区宝町2番地 日産自動車株式会社内

Fターム(参考) 3C084 AA01 BA05 BA08 BA13 BA15 BA20 BA24 CA03 CA06 DA04 DA08 DA10 DA11 DA25 DA28 DA35 EA07 EB02 EB08 EB11

EB13 EC03 EC04 FA00 FA10 FA12 FA13 FA17 FA27 FA33

FA37

3G090 AA01 BA01 CA01 CA02 CA04 DA04 DA12 DA13 DA18 DA19

DA20 DB03 DB07 EA04 EA05 EA06 EA07

4D058 JA01 MA41 MA52 MA54 PA04 SA08