

台灣各等大學

好發與否研究分析

1. 研究動機

2. 敘述統計

3. GLM

4. 降維、樹狀模型

5. 結論

研究動機

研究動機

登革熱簡介

- 登革熱(Dengue fever),是一種由**登革病毒**所引起的急性傳染病,這種 病毒會**經由蚊子傳播**給人類。登革病毒,可能引起宿主不同程度的症狀,比 方說如**發燒、出疹**的典型登革熱,或出現嗜睡、躁動不安、肝臟腫大等警示 徵兆,甚至可能導致嚴重出血或嚴重器官損傷的**登革熱重症**。
- 登革熱的好發地區,主要集中在熱帶、亞熱帶等有埃及斑蚊和白線斑蚊分布的國家,隨著全球化發展,各國之間相互流通越發頻繁,登革熱也開始向各國蔓延,成為嚴重的公共衛生問題。
- 臺灣位於亞熱帶地區,像這樣有點熱、又有點溼的環境,正是蚊子最喜歡的 生長環境,為登革熱流行高風險地區。

Vengue Fever

Symptoms

Causes

dengue viruses

spread by mosquitoes

Headache

High fever

Muscle, bone and joint pain

Pain behind the eyes

Rash

Fatigue

Bleeding from nose

Nausea and vomiting

敘述統計

	變數類型		變數名稱	意義
			Year	發病年分
			Month	發病月份
	類別	型	County	發病縣市
			Cases	案例數
			cloud_amount	雲量
		天氣相關	temp, temp_Max, temp_Min, tddewpoint	氣溫相關變數
			rainfall, rainfall_Hour, rainfall_Day,	
			rainfall_10minMax, rainfall_60minMax,	降雨相關變數
			rainfall_1DayMax	
	連續型		stn_pressure, stn_pressureMax, stn_pressure_Min	氣壓相關變數
	建縜空		windspeed, wind_strMax	風速變數
			sunshine, global_radio	日照相關變數
			rh	相對溼度
			evapA	蒸發量

人口數、人口密度

人口相關 population, population_den

變數介紹

發病區域(region)	發病縣市(County)				
北區	臺北市、新北市、基隆市、宜蘭縣、桃園市、新竹縣 新竹市				
中區	苗栗縣、臺中市、彰化縣、南投縣、雲林縣				
南區	嘉義縣、嘉義市、臺南市、高雄市、屏東縣				
東區	花蓮縣、臺東縣				

發病季節(season)	發病月份(Month)
春	2~4月
夏	5~7月
秋	8~10月
冬	11~1月

各縣市平均氣溫

臺灣四大地區分區病例總數

各年度雨量&病例數

四月 五月 六月 七月 八月 九月 十月 十一月 十二月

GLM

Zero-Inflated Model (零膨脹模型)

- Zero-Inflated Model零膨脹模型,運用在計數資料的實際研究中,觀察事件發生數中含有大量的零值。 例如由於疾病發生率很低,觀察值有許多零。這種數據數資料中的零值過多,超出了Poisson分布或 Negative Binomial等一般離散分布的預測能力。
- 相較於一般計數模型, Zero-Inflated Model多了一個參數 π 來估計不發生率。

發病案例數分布

Zero-Inflated Poisson vs. Poisson Distribution

$Y \sim ZIP(\pi, \mu)$	$Y \sim Poi(\mu)$
$P(Y = y) = \begin{cases} \pi + (1 - \pi) \frac{e^{\mu} \mu^{y}}{y!}, & y = 0\\ (1 - \pi) \frac{e^{\mu} \mu^{y}}{y!}, & y = 1,2,3, \dots \end{cases}$	$P(Y = y) = \frac{e^{\mu}\mu^{y}}{y!}, y = 0,1,2,3,$
$P(Y = 0) = \pi + (1 - \pi)e^{\mu}$	$P(Y=0)=e^{\mu}$

When $\pi = 0$, $Y \sim Poi(\mu)$.

Zero-Inflated Negative Binomial vs. Negative Binomial Distribution

$Y \sim ZINB(\pi, \mu, \alpha^{-1})$	$Y \sim NB(\mu, \alpha^{-1})$
$P(Y = y)$ $= \begin{cases} \pi + (1 - \pi) \frac{\Gamma(y + \alpha - 1)}{y! \Gamma(\alpha - 1)} (\frac{\alpha^{-1}}{\mu + \alpha^{-1}})^{\alpha^{-1}} (\frac{\mu}{\mu + \alpha^{-1}})^{y}, y = 0 \\ \frac{\Gamma(y + \alpha^{-1})}{y! \Gamma(\alpha^{-1})} (\frac{\alpha^{-1}}{\mu + \alpha^{-1}})^{\alpha^{-1}} (\frac{\mu}{\mu + \alpha^{-1}})^{y}, y = 1, 2, 3, \dots \end{cases}$	$P(Y = y) = \frac{\Gamma(y + \alpha - 1)}{y! \Gamma(\alpha - 1)} \left(\frac{\alpha^{-1}}{\mu + \alpha^{-1}}\right)^{\alpha - 1} \left(\frac{\mu}{\mu + \alpha^{-1}}\right)^{y}, y$ = 0,1,2,3,
$P(Y = 0) = \pi + (1 - \pi)(1 + \alpha\mu)^{-1/\alpha}$	$P(Y=0) = (1+\alpha\mu)^{-1/\alpha}$

When $\pi = 0$, $Y \sim NB(\mu, \alpha^{-1})$

Zero-Inflated Poisson vs. Zero-Inflated Negative Binomial Distribution

$Y \sim ZIP(\pi, \mu)$	$Y \sim ZINB(\pi, \mu, \alpha^{-1})$
$P(Y = y) = \begin{cases} \pi + (1 - \pi) \frac{e^{\mu} \mu^{y}}{y!}, & y = 0\\ (1 - \pi) \frac{e^{\mu} \mu^{y}}{y!}, & y = 1,2,3, \dots \end{cases}$	$P(Y = y)$ $= \begin{cases} \pi + (1 - \pi) \frac{\Gamma(y + \alpha - 1)}{y! \Gamma(\alpha - 1)} (\frac{\alpha^{-1}}{\mu + \alpha^{-1}})^{\alpha^{-1}} (\frac{\mu}{\mu + \alpha^{-1}})^{y}, y = 0 \\ \frac{\Gamma(y + \alpha^{-1})}{y! \Gamma(\alpha^{-1})} (\frac{\alpha^{-1}}{\mu + \alpha^{-1}})^{\alpha^{-1}} (\frac{\mu}{\mu + \alpha^{-1}})^{y}, y = 1, 2, 3, \dots \end{cases}$
$E(Y) = (1 - \pi)\mu$	$E(Y) = (1 - \pi)\mu$
$Var(Y) = (1 - \pi)\mu$	$Var(Y) = (1 - \pi)\mu(1 + \mu(\pi + \alpha))$

When $\alpha = 0$, $Y \sim ZIP(\pi, \mu)$

Zero-Inflated Regression

library(pscl)

$$\log(\mu) = \alpha + \beta X$$

 α : X=0時, $\mu = e^{\alpha}$

 β : X多1, μ 多 e^{β} 倍

2. Logistic Regression: (logit link)

$$\ln\left(\frac{\pi}{1-\pi}\right) = \alpha + \beta X \; ; \; \pi = \frac{e^{\alpha + \beta X}}{1 + e^{\alpha + \beta X}}$$

 $\alpha: X=0$ 時,本質是0的odds為 e^{α}

 β : X多1,本質是0的odds為 e^{β} 倍

Fitted Model 1&2 (drop cases = 0)

Model 1: (Poisson Regression)

```
log(E(cases \mid X))
= \beta_0 + \beta_{region}I(region) + \beta_{season}I(season) + \beta_{temp\_last}x_{temp\_last} + \beta_{rainfall\_last}x_{rainfall\_last}
```

Model 2: (Negative Binomial Regression)

```
log(E(cases \mid X))
= \beta_0 + \beta_{region}I(region) + \beta_{season}I(season) + \beta_{temp\_last}x_{temp\_last} + \beta_{rainfall\_last}x_{rainfall\_last}
```

Fitted Model 1&2 (drop cases = 0)

0.4628

-0.0010

 β_{temp_last}

 $\beta_{rainfall_last}$

0.0037

< 0.0001

126.5948

-63.6723

Theta: 0.4294

Std Err.: 0.0348

< 0.0001

0.4192

4.6755

0.8078

							Stu Lii.	. 0.03 4 6	
Model 1	Est.	S.E.	Z	P-value	Model 2	Est.	S.E.	Z	P-value
$\beta_{(Intercept)}$	-9.4044	0.1053	-89.2881	< 0.0001	$\beta_{(Intercept)}$	-3.5242	1.0572	-3.3337	0.0009
eta_{region} 地	-0.3737	0.0781	-4.7852	< 0.0001	β _{region} 址	-0.5838	0.3223	-1.8111	0.0701
$eta_{regionar{\mathbb{R}}}$	-0.1340	0.1634	-0.8203	0.4121	$eta_{regionar{p}}$	-0.5320	0.5090	-1.0452	0.2959
$eta_{regionar{p}}$	4.7499	0.0627	75.7486	< 0.0001	$eta_{regionar{p}}$	3.8327	0.3345	11.4572	< 0.0001
eta_{season 春季	-4.3369	0.1310	-33.0945	< 0.0001	eta_{season 春季	-3.8084	0.6109	-6.2339	< 0.0001
$oldsymbol{eta}_{season}$ 秋季	-0.1789	0.0211	-8.4779	< 0.0001	eta_{season 秋季	0.0904	0.4225	0.2140	0.8306
$eta_{season夏季}$	-2.8105	0.0266	-105.467	< 0.0001	β _{season夏季}	-1.1783	0.4942	-2.3845	0.0171

 β_{temp_last}

 $\beta_{rainfall_last}$

0.2330

0.0004

0.0498

0.0005

< 0.0001

< 0.0001

Fitted Model 3 (zero-inflated Poisson regression)

Count:

$$log(E(cases \mid X))$$

$$= \beta_0 + \beta_{region}I(region) + \beta_{season}I(season) + \beta_{temp_last}x_{temp_last} + \beta_{rainfall_last}x_{rainfall_last}$$

Zero:

$$Logit(\pi) = log(\frac{\pi}{1-\pi}) = \beta_0 + \beta_{region}I(region) + \beta_{season}I(season)$$

- base line:中區冬季
- 與中區相比,北區發生登革熱機率小;南區發生登革熱機率較大。
- 而季節來說, 秋冬之際發生登 革熱的機率較大。
- 與前述模型有類似的結論

COUNT	Est.	S.E.	Z	P-value
$\beta_{(Intercept)}$	-9.4742	0.1062	-89.216	< 0.0001
β _{region} 址	-0.3896	0.0803	-4.8543	< 0.0001
$oldsymbol{eta}_{regionar{ar{f p}}}$	-0.2179	0.1749	-1.2456	0.2129
$oldsymbol{eta}_{region}$ 南	4.7851	0.0643	74.4711	< 0.0001
$oldsymbol{eta_{season春季}}$	-4.3747	0.1348	-32.4554	< 0.0001
$oldsymbol{eta}_{season}$ 秋季	-0.1818	0.0211	-8.6069	< 0.0001
$oldsymbol{eta}_{season$ 夏季	-2.8181	0.0267	-105.654	< 0.0001
$oldsymbol{eta}_{temp_last}$	0.4642	0.0037	127.0435	< 0.0001
$oldsymbol{eta}_{rainfall_last}$	-0.001	< 0.0001	-69.4346	< 0.0001

ZERO	Est.	S.E.	Z	P-value
$\beta_{(Intercept)}$	1.9263	0.2620	7.3512	< 0.001
β _{region} 址	-0.6524	0.2334	-2.7951	0.0052
$eta_{regionar{\mathtt{p}}}$	-0.1018	0.3651	-0.2788	0.7804
$eta_{ m regionar{a}}$	-0.4219	0.2292	-1.8412	0.0656
$oldsymbol{eta_{season春季}}$	0.7356	0.4069	1.8077	0.0707
$oldsymbol{eta}_{season}$ 秋季	-0.5109	0.2252	-2.2689	0.0233
$oldsymbol{eta_{season夏季}}$	-0.2683	0.2415	-1.1111	0.2665

- base line:中區冬季
- 就地區來看,北區不 發生率的odds 顯著較 低。
- 就季節來看,秋季不 發生率的odds顯著較 低。

Fitted Model 4 (zero-inflated negbin regression)

Count:

 $log(E(cases \mid X))$

$$= \beta_0 + \beta_{region}I(region) + \beta_{season}I(season) + \beta_{temp_last}x_{temp_last} + \beta_{rainfall_last}x_{rainfall_last}$$

Zero:

$$Logit(\pi) = log(\frac{\pi}{1-\pi}) = \beta_0 + \beta_{region}I(region) + \beta_{season}I(season)$$

zeroinfl(cases ~ region + season + temp_last + rainfall_last | region + season , dt, dist = "negbin")

- base line:中區冬季
- 與中區相比,北區發生登革熱機率小;南區發生登革熱機率較大。
- 而季節來說, 秋冬之際發生登 革熱的機率較大。
- 與前述模型有類似的結論
- 而theta 估計為顯著因此使用 negbin 比 poisson 恰當。

COUNT	Est.	S.E.	Z	P-value
$\beta_{(Intercept)}$	-7.5128	1.1654	-6.4465	< 0.0001
β _{region} 址	-0.9894	0.4149	-2.3845	0.0171
$oldsymbol{eta}_{regionar{ar{\mathbf{p}}}}$	-0.6409	0.7392	-0.867	0.386
$oldsymbol{eta}_{region南}$	4.2013	0.5168	8.1293	< 0.0001
$eta_{season春季}$	-4.4576	0.6637	-6.7159	< 0.0001
eta_{season}	0.3298	0.4795	0.6877	0.4916
$eta_{season夏季}$	-1.4634	0.5689	-2.5724	0.0101
β_{temp_last}	0.3421	0.0601	5.6887	< 0.0001
$\beta_{rainfall_last}$	0.0001	0.0008	0.1373	0.8908
Log(theta)	-2.4569	0.1398	-17.5761	< 0.0001

ZERO	Est.	S.E.	Z	P-value
$\beta_{(Intercept)}$	0.4018	0.5400	0.7439	0.4569
β _{region} 北	-14.8979	891.84135	-0.0170	0.9870
eta_{region}	-0.4747	1.0072	-0.4713	0.6374
$eta_{regionar{m}}$	-0.0259	0.4456	-0.0581	0.9536
$oldsymbol{eta_{season春季}}$	-0.1337	0.7698	-0.1737	0.8621
$oldsymbol{eta_{season}}$	-0.6734	0.4340	-1.5515	0.1208
$eta_{season夏季}$	-0.2665	0.4557	-0.5848	0.5587

• base line:中區冬季

各區域各季節登革熱 的不發生率沒有顯著 不同。

Fitted Model 5

Count:

 $log(E(cases \mid X))$

 $= \beta_0 + \beta_{region}I(region) + \beta_{season}I(season) + \beta_{temp_last}x_{temp_last} + \beta_{rainfall_last}x_{rainfall_last}$

Zero:

$$Logit(\pi) = log(\frac{\pi}{1-\pi}) = \beta_0 + \beta_{region}I(region)$$

zeroinfl(cases ~ region + season + temp_last + rainfall_last | region , dt, dist = "negbin")

- base line:中區冬季
- 與中區相比,北區發生登革熱幾率小;南區發生登革熱機率較大。
- 而季節來說, 秋冬之際發生登 革熱的機率較大。
- 與前述模型有類似的結論
- 而theta 估計為顯著因此使用 negbin 比 poisson 恰當。

COUNT	Est.	S.E.	Z	P-value
$\beta_{(Intercept)}$	-7.7779	1.1373	-6.8389	< 0.0001
β _{region} 址	-0.8943	0.4070	-2.1972	0.028
$eta_{\text{region}ar{\mathbb{R}}}$	-0.5997	0.7008	-0.8557	0.3922
$eta_{ m region ar{p}}$	4.2647	0.5066	8.4179	< 0.0001
$eta_{season ar{b}}$	-4.4432	0.5593	-7.945	< 0.0001
eta_{season 秋季	0.4553	0.4652	0.9786	0.3278
$eta_{season夏季}$	-1.4132	0.5480	-2.5789	0.0099
$\beta_{rainfall_last}$	0.0001	0.0008	0.1692	0.8656
β_{temp_last}	0.3459	0.0594	5.8259	< 0.0001
Log(theta)	-2.4764	0.1399	-17.7024	< 0.0001

ZERO	Est.	S.E.	Z	P-value
$\beta_{(Intercept)}$	-0.1618	0.4733	-0.3419	0.7324
β _{region} 址	-12.2067	178.9677	-0.0682	0.9456
eta_{region} 東	-0.5114	1.0811	-0.4730	0.6362
$eta_{ m regionar p}$	0.1767	0.4552	0.3882	0.6979

• base line:中區冬季

各區域各季節登革熱
 的不發生率(π)沒有
 顯著不同。

Fitted Model 6 (with PC)

Count:

$$log(E(cases \mid X)) = \beta_0 + \beta_{region}I(region) + \beta_{season}I(season) + \beta_{PC1}x_{PC1} + \beta_{PC2}x_{PC2} + \beta_{PC3}x_{PC3}$$

pc1:溫度相關; pc2:雨量相關; pc3:氣壓相關

Zero:

$$Logit(\pi) = log(\frac{\pi}{1-\pi}) = \beta_0 + \beta_{region}I(region)$$

zeroinfl(cases ~ region + season + pc1+ pc2 +pc3 | region , dt, dist = "negbin")

- base line:中區冬季
- 與中區相比,北區發生登革熱幾率小;南區發生登革熱機率較大。
- 而季節來說, 秋冬之際發生登 革熱的機率較大。
- 與前述模型有類似的結論
- 而theta 估計為顯著因此使用 negbin 比 poisson 恰當。

COUNT	Est.	S.E.	Z	P-value
$\beta_{(Intercept)}$	-1.2531	0.4658	-2.6903	0.0071
β _{region} 址	-0.2144	0.4118	-0.5206	0.6026
$oldsymbol{eta}_{ ext{region}ar{f p}}$	-0.9098	0.6121	-1.4865	0.1371
$oldsymbol{eta}_{ m region ar{f a}}$	4.8210	0.4610	10.4582	<0.0001
eta_{season 春季	-4.4845	0.5154	-8.7012	<0.0001
$oldsymbol{eta_{season}}$ 秋季	2.1955	0.3495	6.2813	<0.0001
eta_{season 夏季	0.7060	0.3878	1.8206	0.0687
eta_{pc1}	1.2154	2.8057	0.4332	0.6649
$oldsymbol{eta}_{ extsf{pc2}}$	0.9219	2.0628	0.4469	0.6549
$oldsymbol{eta_{pc3}}$	-5.9025	1.8395	-3.2087	0.0013
Log(theta)	-3.1380	0.0791	-39.6775	<0.0001

ZERO	Est.	S.E.	Z	P-value
$\beta_{(Intercept)}$	-9.4683	355.1227	-0.0267	0.9787
β _{region} 址	-4.8934	428.6847	-0.0114	0.9909
$oldsymbol{eta}_{ ext{region}ar{ar{f p}}}$	-0.8067	374.7736	-0.0022	0.9983
$oldsymbol{eta}_{region}$ 南	-5.5975	117.6204	-0.0476	0.9620

• base line:中區冬季

各區域各季節登革 熱的不發生率(π)沒有顯著不同。

模型比較

	Model	AIC	BIC	AUC
Model 4	• $log(cases) = \beta_0 + \beta_{region}I(region) + \beta_{season}I(season) + \beta_{temp_last}x_{temp_last} + \beta_{rainfall_last}x_{rainfall_last}$ • $log(\frac{\pi}{1-\pi}) = \beta_0 + \beta_{region}I(region) + \beta_{season}I(season)$	2779.27	2861.75	0.852
Model 5	• $log(cases) = \beta_0 + \beta_{region}I(region) + \beta_{season}I(season) + \beta_{temp_last}x_{temp_last} + \beta_{rainfall_last}x_{rainfall_last}$ • $log(\frac{\pi}{1-\pi}) = \beta_0 + \beta_{region}I(region)$	勝 2730.43	勝 2807.41	勝 0.854
Model 6	• $log(cases) = \beta_0 + \beta_{region}I(region) + \beta_{season}I(season) + \beta_{PC1}x_{PC1} + \beta_{PC2}x_{PC2} + \beta_{PC3}x_{PC3}$ • $log(\frac{\pi}{1-\pi}) = \beta_0 + \beta_{region}I(region)$	2733.85	2733.85	0.840

Heatmap of Fitted Model 5

相對風險 (R.R.)	春	夏	秋	冬
北	0.005	0.100	0.645	0.409
中	0.012	0.243	1.577	1
南	0.836	17.317	112.180	71.158
東	0.006	0.134	0.865	0.549

115

15

相對風險:估計的案例數冬季中部(基準)估計的案例數的比值

Fitted Model 台南市&高雄市

Count:

$$cases = \beta_0 + \beta_{season}I(season) + + \beta_{temp_last}x_{temp_last} + \beta_{rainfall_last}x_{rainfall_last}$$

Zero:

$$Logit(\pi) = log(\frac{\pi}{1-\pi}) = \beta_0 + \beta_{$$
高雄市 $I($ 高雄市 $)$

- base line: 冬季
- 季節來說,秋冬之際發生登革 熱的機率較大。
- 與前述模型有類似的結論
- 而theta 估計為顯著因此使用 negbin 比 poisson 恰當。

COUNT	Est.	S.E.	Z	P-value
$\beta_{(Intercept)}$	-6.2422	3.526	-1.7704	0.0767
eta_{season 夏季	-1.6617	1.3239	-1.2551	0.2094
eta_{season 春季	-3.8508	0.892	-4.3172	< 0.0001
$oldsymbol{eta_{season}}_{M^{oldsymbol{lpha}}}$	1.0593	1.3115	0.8076	0.4193
$\beta_{rainfall_last}$	-0.0019	0.0018	-1.0387	0.299
eta_{temp_last}	0.4726	0.1562	3.0252	0.0025
Log(theta)	-2.5963	0.1738	-14.9375	< 0.0001

ZERO	Est.	S.E.	Z	P-value	
$\beta_{(Intercept)}$	-1.1125	-1.1125 0.8151		0.1723	
β _{County} 高雄市	-8.3627	105.4532	-0.0793	0.9368	

• base line: 臺南市

 臺南市與高雄市登革熱 的不發生率(π)沒有 顯著不同。

降維、樹狀模型

PCA Method

每個主成分解釋多少數據的變異

			cumulative.variance.percent
Dim.1	11.3983979108619	25.905449797413	25.90545
Dim.2	7.2051222600818	16.375277863822	42.28073
Dim.3	5.7663062205686		55.38597
Dim.4	2.6576542988521	6.040123406482	61.42609
Dim.5	2.4381876989787	5.541335679497	66.96743
Dim.6	2.2692584510458	5.157405570559	72.12483
Dim.7	1.6399783395874	3.727223499062	75.85206
Dim.8	1.3939648352338	3.168101898259	79.02016
Dim.9	1.1307963885651	2.569991792193	81.59015
Dim.10			83.76055
Dim.11			85.75252
Dim.12	0.7425993581277		87.44025
Dim.13	0.6661947644501	1.514079010114	88.95433
Dim.14	0.6020774565419	1.368357855777	90.32269
Dim.15	0.5735341887291	1.303486792566	91.62617
Dim.16	0.5080897202236	1.154749364144	92.78092
Dim.17	0.3886992761527	0.883407445802	93.66433
Dim.18		0.833243712675	94.49757
Dim.19	0.3123497227452	0.709885733512	95.20746
Dim.20	0.2538562396558	0.576945999218	95.78441
Dim.21	0.2375739007237	0.539940683463	96.32435
Dim.22	0.1989965992500	0.452264998295	96.77661
Dim.23	0.1614511667904	0.366934469978	97.14355
Dim.24	0.1468309123237	0.333706618918	97.47725
Dim.25	0.1375056946204	0.312512942319	97.78976
Dim.26	0.1234960405494	0.280672819430	98.07044
Dim.27		0.252638950283	98.32308
Dim.28	0.0902652528609	0.205148301957	98.52823
Dim.29	0.0791177208419	0.179813001913	98.70804
Dim.30	0.0753023631039	0.171141734327	98.87918
Dim.31	0.0685324407498	0.155755547159	99.03494
Dim.32	0.0645372725535	0.146675619440	99.18161

每個變數在主成分的貢獻比例 (超過平均貢獻視為重要變數)

每個變數在主成分的貢獻比例 (超過平均貢獻視為重要變數)

每個變數在主成分的貢獻比例 (超過平均貢獻視為重要變數)

Correlation Plot of Variables

降維:Factor Analysis(因子分析)

- 因子分析是以少數幾個因子來解釋一群相互之間有關係存在的變數
- 對資料作摘要、變數篩選、轉軸、因子命名
- **1. 特徵值 (eigenvalues):**每一個因素都會得到一個 eigenvalues,而這個值表示 在所有的變數裡面,這個因素可以解釋多少的 variance
- 2. 因素負荷量 (factor loadings):個別變數與因素之間的相關性,這些變數在這個因素裡面的weight有多少,或是這個變數多接近這個因素

•••

變項 50 = 權重₅₀₁ * 因素 1 + 權重₅₀₂ * 因素 2 + 權重₅₀₃ * 因素 3 + ··· + 誤差₃

Factor Analysis vs. Principle Component Analysis

• 主成份分析 (PCA) 與因子分析(FA) 是利用不同的方法來減少變數數量

	主成分(PCA)	因子分析(FA)
方法	將多個變數,縮減到 少數個主成份,在這同時儘量保留變數的variation	將多個變數用少數個factor所組成的線性關係表示
解釋	variance	covariance

8種分析組合

- 為何要使用8種分析組合?
- 1. 此資料有8成病例數都是0例 資料選取分成考慮 / 不考慮病例數為0的情況
- 2. 因子分析的方法會影響各因子的負載量、因子如何解釋──── 比較MLM、PCM兩種方法的預測效果
- 3. 決策樹僅用一棵樹分群,結果可能有偏差───── 考慮GBDT模型,比較兩模型的預測效果

8種分析組合

- 目標:
- 1. 觀察資料考慮 / 不考慮病例數為0的情況對結果有無差異
- 2. 觀察MLM / PCM 哪種因子分析方法對預測結果較好
- 3. 觀察DT / GBDT 哪種模型的預測結果較好
- 4. 透過DT / GBDT 模型結果視覺化觀察變數重要性、變數對於分群的影響

 資料選取
 因子分析方法
 樹狀模型

 納入病例數為 0
 最大概似法(MLM)
 決策樹(DT)

 排除病例數為 0
 主成分法(PCM)
 梯度提升決策樹(GBDT)

如何選擇因子個數?

選擇因子套件 psych::fa.parallel

解釋因子

如何命名因子

如何命名因子

模型驗證&評估指標

- 模型驗證
 - 20% test, 80% 作Cross Validation (train+validation)
 - 納入病例數為0:10-fold CV,排除病例數為0:Stratified 10-fold CV+SMOTE imbalance
- 評估指標
 - Accuracy, AUC

8種分析組合的預測效果

- 納入病例數為0的情況
 - DT / GBDT 模型效果差不多,MLM效果較好
- 排除病例數為0的情況
 - GBDT模型效果明顯比DT好,DT模型的PCM法效果較好,GBDT模型則是MLM法較好

資料選取	納入病例數為0				排除病例數為0			
模型	DT		GBDT		DT		GBDT	
因子分析 方法	MLM	PCM	MLM	PCM	MLM	PCM	MLM	PCM
Accuracy	0.8694	0.8611	0.8806	0.8222	0.6512	0.7209	0.7674	0.7209
AUC	0.7794	0.7034	0.7479	0.774	0.8227	0.673	0.8773	0.8132

Decision Tree : MLM法 (資料:納入病例數為0)

Decision Tree : MLM法 (資料:排除病例數為0)

GBDT: PCM法(資料:納入病例數為0)

GBDT: MLM法(資料:排除病例數為0)

結論

- 由所配適的GLM模型來看,在秋季及冬季時,南部地區若前一個月降水多且氣溫高,則須嚴防登革熱的爆發。
- 由Zero配飾的模型來看,各地區各個月分登革熱的不發生率沒有顯著差異,所以各地仍須 嚴防登革熱的發生。
- 由決策樹來看,雖然分類的狀況不佳,但大致可抓到人口與月份是重要的因子,**8到10月人口數較多**的地方,登革熱案例數會較多;人口數較少且降雨量較少的地區,登革熱案例數會較少。

The End