Homework 4

Jack Wilburn

November 10th, 2021

1 Q1: QuickSelect

1.1 Using the law of conditional expectation, prove that $T(n) \leq n + \sum_{i=1}^n \frac{1}{n} \max T(j-1), T(n-j).$

The time it takes to complete the algorithm depends on our choice of "pivot". If we choose poorly then we'll have a longer run time and if we choose well, we're done. That said, the expected running time (X_n) depends on the event (e_j) corresponding to choosing a certain pivot we choose. If we don't choose perfectly, we'll need to do n operations to move the elements into the corresponding arrays, B and C. We then have two choices, we look in array B or array C, where the expected run time of those recursive calls are also dependent on e_j . Since we know we're only going to be looking in one of the arrays, the worst case would happen when we get the sub-array that takes the longest to look through. That would be the max of the expected values of the two. To put that into symbols, $\mathbf{E}[X_j|e_j] = n + max(\mathbf{E}[X_{j-1}|e_j], \mathbf{E}[X_{n-j}|e_j])$.

By the law of conditional expectation, and the knowledge that each pivot is chosen with probability 1/n, we can modify the above equation to $\mathbf{E}[X_j] = n + \sum_{j=1}^n \max(\frac{1}{n}\mathbf{E}[X_{j-1}], \frac{1}{n}\mathbf{E}[X_{n-j}])$. We can now

factor out the $\frac{1}{n}$ to get $\mathbf{E}[X_j] = n + \frac{1}{n} \sum_{j=1}^n \max(\mathbf{E}[X_{j-1}], \mathbf{E}[X_{n-j}])$. Now, noticing that our sub problems are smaller than the original problem, we can translate the problem into a recurrence relationship: $T(n) \leq n + \frac{1}{n} \sum_{j=1}^n \max(T(j-1), T(n-j))$

1.2 Using this along with T(1) = 1, prove that $T(n) \le 4n$. Write down a description of all the events you use when you use conditional expectation.

Using T(1) = 1 as the base case and assuming that this holds for all values $\geq n$, I'll show that it holds for n+1S. That is, I need to show that $n+\frac{1}{n}\sum_{i=1}^n 4i \leq 4n+4$. We can use the integral trick we saw in

class to see take an integral approximation of the summation $n * \sum_{i=1}^{n} \frac{4i}{n} * \frac{1}{n}$, rearranged from above. The

integral approximation is $\int_{x=0}^{x=1} 4x dx = 2$. Now we can times that by the n that we placed to the left of the summation when we re-arranged to get 2n and we need to remember to add the n from the original equation. Therefore, we have $n+2n=3n\leq 4n$. Thus our guessed answer, $T(n)\leq 4n+4$ is true.

$\mathbf{2}$ Q2: Sampling from a stream

Prove that in the end, the variable x stores a uniformly random sample 2.1from the stream. (In other words, if the stream had N elements, P(x = $[a_i] = 1/N \text{ for all } i.)$

At t=1, the algorithm has a 100 percent chance of choosing a_1 . At time t=2, the algorithm has a 50 percent chance of choosing a_2 , and a 50 percent chance of staying with a_1 . This continues, with t=3being slightly more complex where the algorithm chooses a_3 with a $\frac{1}{3}$ probability, but has a $\frac{2}{3}$ probability of staying with the answer from the last step (50 percent a_1 and 50 percent a_2). If we multiply through, we get $x(3) = (1 - \frac{1}{3})(\frac{1}{2}a_1 + \frac{1}{2}a_2) + \frac{1}{3}a_3 = \frac{1}{3}a_1 + \frac{1}{3}a_2 + \frac{1}{3}a_3$ where the coefficients show the chance of each a_x being picked, and x(t) is x at time t. for t = 4 it would be $x(4) = (1 - \frac{1}{4})(\frac{1}{3}a_1 + \frac{1}{3}a_2 + \frac{1}{3}a_3) + \frac{1}{4}a_4 = \frac{1}{4}a_4$ $\frac{1}{4}a_1 + \frac{1}{4}a_2 + \frac{1}{4}a_3 + \frac{1}{4}a_4.$

We can generalize this form to following: $x(t) = \sum_{i=2}^{t-1} \prod_{j=2}^{i} (1 - \frac{1}{j})a_i + \frac{1}{t}a_t = \frac{1}{t}a_1 + \frac{1}{t}a_2 \dots \frac{1}{t}a_t$ and then

plug in n in place of t to show that for any number n, there is a $\frac{1}{n}$ probability of getting that number at the end of the stream.

3 Q3: Walking on a path

Prove that T(0) = 1 + T(1), and further, that for any 0 < s < n, $T(s) = 1 + \frac{T(s-1) + T(s+1)}{2}$.

At location v_0 , the particle is forced to move to location v_1 taking one step. Thus the solution for the expected time for the particle to move to v_n includes that first step and adds on the the expected time it takes for the particle to get from v_1 to v_n . This is the equation from above, T(0) = 1 + T(1).

At any other location (other than at v_n) v_s , the particle can either move towards v_n or away from it. The particle must move in one direction, so add that step and then if it moved towards v_n , add on the expected number of steps from v_{s+1} for 1+T(s+1), else add on the expected number of steps from v_{s-1} for 1+T(s-1). Since both of these outcomes are equally likely, we can multiply both of them by $\frac{1}{2}$ and then add the outcomes together. This yields $T(s) = 1 + \frac{T(s-1) + T(s+1)}{2}$

Use this to prove that T(s) = (2s+1) + T(s+1) for all $0 \le s < n$, and then 3.2find a closed form for T(0).

With a base case of T(0) = 1 + T(1) = 2(0) + 1 + T(1), assume that T(s) = (2s + 1) + T(s + 1) holds

for all values < n, we'll show that it holds for n. $T(n) = 1 + \frac{T(n-1) + T(n+1)}{2} = T(s) = 1 + \frac{(T(n) + 2(n-1) + 1) + T(n+1)}{2} \text{ by the induction hypothesis.}$ $\frac{T(n)}{2} = 1 + (n-1) + \frac{1}{2} + \frac{1}{2}T(n+1) \text{ by rearranging and some algebra (subtract } 0.5T(n) \text{ from both } 0.5T(n)$

T(n) = 2(n-1) + 3 + T(n) by multiplying through by 2

T(n) = (2n+1) + T(n)

This is what we we're trying to show.

Using the fact that T(s) = (2s + 1) + T(s + 1), and by plugging in for some smaller values, I guess that the general form for T(0) for a given n is $T(0) = \sum_{i=1}^{n} 2i - 1$. This holds for when n = 1 since (2(0) + 1) + 0 = 2(1) - 1.

Now assume that for some k, $T(0) = (2(0)+1)+(2(1)+1)+(2(2)+1)+...+(2(k-1)+1)+0 = \sum_{i=1}^{k} 2i-1$, I'll show that it holds for k+1. For k+1, T(0) = (2(0)+1)+(2(1)+1)+(2(2)+1)+...+(2(k-1)+1)+0 $1)+1)+(2(k)+1)+0\stackrel{?}{=}\sum_{i=1}^{k+1}2i-1$. Simplifying things a bit, and using the induction hypothesis, we

have $\sum_{i=1}^{k} 2i - 1 + (2(k) + 1) \stackrel{?}{=} \sum_{i=1}^{k} 2i - 1 + (2(k+1) - 1)$. Now I'll subtract the sums from both sides and expand the parentheses to yield 2k + 1 = 2k + 2 - 1, which is clearly true. Thus by induction, I've proved that the closed form for $T(0) = \sum_{i=1}^{n} 2i - 1$ for any n.

3.3 Give an upper bound for the probability that the particle walks for $>4n^2$ steps without getting absorbed.

Note that $\sum_{i=1}^{n} 2i - 1 = n^2$. Using Markov's inequality, $P(X \ge 4n^2) = \frac{n^2}{4n^2} = 1/4$ so there is a 25 percent chance that the particle "walks" $> 4n^2$ steps without getting absorbed.

4 Q4: Birthdays and applications

4.1 What is the expected number of pairs (i, j) with i < j such that person i and person j have the same birthday? For what value of n (as a function of m) does this number become 1?

Given m days in a year and a uniform distribution of birthdays, the chance of being born on any particular day is $\frac{1}{m}$. Therefore, the chance of 1 person not sharing a birthday with any other person is $1 - \frac{1}{m}$. The chance that one person doesn't share a birthday with the other n-1 people is $(1-\frac{1}{m})^{n-1}$. The expected number of people with no shared birthday in n people is $\mathbf{E}[X] = n * p = n(1-\frac{1}{m})^{n-1}$ since it's this probability for all n people at the same time. Therefore, the expected number of people who share a birthday with someone is $n(1-(1-\frac{1}{m})^{n-1})$

4.2 Prove that the probability of this happening (conditioned on the library size being a million songs) is < 0.05.

The probability of the radio station playing k distinct songs is $1*(1-\frac{1}{1000000})*(1-\frac{2}{1000000})*...*(1-\frac{k-1}{1000000})$. The equation above can be explained in plain English: for the first song there is no song to collide with, then for the second there is one song to collide with, for the third there are two, etc.. For k=200 the equation returns approximately 0.98. Thus the chance of a collision in this number of songs is approximately 0.02, which is less than 0.05. The fact that there was a collision calls into question, whether there truly are 1 million songs in the library.

5 Q5: Checking matrix multiplication

5.1 Prove that $\Pr[\langle a, x \rangle \neq \langle b, x \rangle (\mathbf{mod} 2)] = 1/2$

Given that A, B are not equal, and a random binary vector, r of the same length as A and B, then D = Ar - Br may equal 0 or 1 (if they were equal it would always be 0, just by factoring). Given that D = Ar - Br may equal 0 or 1, we can say there is some d_i that would equal zero or 1 that would be the determining piece of information that shows whether the algorithm returns true or false.

Since Ar, Br are just vector multiplication, we can expand that out to $p_i = \sum_{k=1}^n d_1 + ... + d_i + ... + d_n = d_i + y$. Using the law of conditional expectation we can convert this equation to $P(p_i = 0) = P(p_i = 0|y = 0) * P(y = 0) + P(p_i = 0|y \neq 0) * P(y \neq 0)$. We can use that $P(p_i = 0|y = 0) = P(r_i = 0) = \frac{1}{2}$ and $P(p_i = 0|y \neq 0) = P(r_i = 1 \land d_i = -y) \le P(r_i = 1) = \frac{1}{2}$ to get $P(p_i = 0) \le \frac{1}{2} \cdot P(y = 0) + \frac{1}{2} \cdot P(y = 0) = \frac{1}{2} \cdot P(y = 0) = \frac{1}{2}$. That's what we were trying to show.

Now, design an $O(n^2)$ time algorithm that tests if C = AB and has a success probability $\geq 1/2$

Pseudocode

- 1. Compute a new random vector, d, of length n where each element is 0 or 1 with $p=\frac{1}{2}$
- 2. Compute A*(B*d)=k
- 3. Check C * d == k. If it's true, output true, else false.

Correctness

Let P(incorrect) be the chance that we're incorrect after following this algorithm (i.e. the algorithm shows AB = C when they're not).

First assume that $AB \neq C$, that is for E = AB - C, $E \neq 0$. Then there exists some entry of E, call it e_{ij} , such that $e_{ij} \neq 0$. Finally, let $d_{-j} = (d_1, ..., d_{j-1}, d_{j+1}, ..., d_n)$

Given the above assumptions, $P(incorrect) \leq P(E*d=0) \leq P(\sum e_{ik}d_k=0)$, because the

probability that the matrix is zero is less than the probability that the individual multiplication of the rows is zero. $P(\sum_{k} e_{ik} d_k = 0) = P(e_{ij} d_j = -\sum_{k} e_{ik} d_k)$ where $k \neq j$. This is equal to $P(d_j = -\sum_{k} e_{ik} d_k)$

 $-\frac{1}{e_{ij}}\sum_{k}e_{ik}d_{k}$) where $k\neq j$. Now for the big jump using the law of total probability. The previous

equation is equal to
$$\sum_{x \in 0,1} P(d_j = -\frac{1}{e_{ij}} \sum_k e_{ik} d_k | d_{-j} = x) * P(d_{-j} = x) \le \sum_{x \in 0,1} \frac{1}{2} * P(d_{-j} = x) = \frac{1}{2}.$$
 Since $P(incorrect) \le \frac{1}{2}$ that implies $P(correct) \ge \frac{1}{2}$, which is what we were trying to prove.

Running Time

It takes linear time to generate d, quadratic time to multiply a nxn matrix by a length n vector for B*d, A*(B*d), and C*d, and linear time again to check A*(B*d) == C*d. Thus the largest component here is quadratic, making the overall complexity quadratic.

Show how to improve the success probability to 7/8 while still having 5.3running time $O(n^2)$

Pseudocode

- 1. Do the above algorithm above 3 time with 3 different d vectors.
- 2. Return true if all the 3 trials returned true, else false.

Correctness

The algorithm above is incorrect 50 percent of the time so if we run it 3 times, the chance that it's incorrect lowers to $\frac{1}{2^3} = \frac{1}{8}$, because each trial is independent. Thus, the chance we're correct is $1 - \frac{1}{8} = \frac{7}{8}$

The running time here is 3 times the running time above so it's still quadratic.