

AD-A163 714 A PROOF OF BRACE'S THEOREM BY INDUCTION(U) WISCONSIN 1/1
UNIV-MADISON MATHEMATICS RESEARCH CENTER
A W GOODMAN ET AL. OCT 85 MRC-TSR-2874 DARM29-80-C-0041

F/G 12/1 NL

UNCLASSIFIED

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1964 A

(2)

MRC Technical Summary Report #2874

A PROOF OF GRACE'S THEOREM BY INDUCTION

A.W. Goodman and I.J. Schoenberg

AD-A163 714

**Mathematics Research Center
University of Wisconsin—Madison
610 Walnut Street
Madison, Wisconsin 53705**

October 1985

(Received September 17, 1985)

DTIC
ELECTED
FEB 5 1986
S D
B

DTIC FILE COPY

Approved for public release
Distribution unlimited

Sponsored by

U.S. Army Research Office
P.O. Box 12211
Research Triangle Park
North Carolina 27709

86 2 5 04 1

- A -

UNIVERSITY OF WISCONSIN-MADISON
MATHEMATICS RESEARCH CENTER

A PROOF OF GRACE'S THEOREM BY INDUCTION

A.W. Goodman and I.J. Schoenberg

Technical Summary Report #2874
October 1985

ABSTRACT

Two polynomials in $\mathbb{C}[z]$

$$(1) \quad A(z) = \sum_{k=0}^n \binom{n}{k} a_k z^k, \quad B(z) = \sum_{k=0}^n \binom{n}{k} b_k z^k$$

are said to be apolar, provided that the equation

$$\sum_{k=0}^n (-1)^k \binom{n}{k} a_k b_{n-k} = 0$$

Grace's theorem states:

holds. This definition was given at the turn of the century by J.H. Grace who established in [1] the following

Theorem of Grace. Let the polynomials (1) be apolar. If the circular region C contains all the zeros of $A(z)$, then C must contain at least one of the zeros of $B(z)$.

By a circular region we mean either the closed interior of a circle, or the closed exterior of a circle, or a closed half-plane.

Here we give a proof of Grace's theorem by mathematical induction on the degree n .

AMS (MOS) Subject Classifications: 30C10, 30C15

Key Words: Zeros of polynomials; Möbius transformations.

Work Unit Number 3 (Numerical Analysis and Scientific Computing)

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.

SIGNIFICANCE AND EXPLANATION

Two polynomials in $\mathbb{C}[z]$

$$(1) \quad A(z) = \sum_{k=0}^n \binom{n}{k} a_k z^k, \quad B(z) = \sum_{k=0}^n \binom{n}{k} b_k z^k$$

are said to be apolar, provided that the equation

$$(2) \quad \sum_{k=0}^n (-1)^k \binom{n}{k} a_k b_{n-k} = 0$$

holds. This definition was given at the turn of the century by J.H. Grace who established in [1] the following

Theorem of Grace. Let the polynomials (1) be apolar. If the circular region C contains all the zeros of A(z), then C must contain at least one of the zeros of B(z).

By a circular region we mean either the closed interior of a circle, or the closed exterior of a circle, or a closed half-plane.

Here we give a proof of Grace's theorem by mathematical induction on the degree n.

The references [3] and [2] give numerous applications of Grace's theorem. For $n = 2$ the apolarity equation (1.2) is equivalent to the equation

$$\frac{\beta_2 - \alpha_2}{\beta_2 - \alpha_1} : \frac{\beta_1 - \alpha_2}{\beta_1 - \alpha_1} = -1,$$

hence the pair of points (β_1, β_2) divides (α_1, α_2) in harmonic ratio.

The responsibility for the wording and views expressed in this descriptive summary lies with MRC, and not with the authors of this report.

Availability Codes	
Dist	Avail and/or Special
A-1	

UNIVERSITY OF WISCONSIN-MADISON
MATHEMATICS RESEARCH CENTER

A PROOF OF GRACE'S THEOREM BY INDUCTION

A.W. Goodman and I.J. Schoenberg

1. Introduction. At the turn of the century J.H. Grace [1] introduced the following

Definition 1. Two polynomials

$$(1.1) \quad A(z) = a_0 + \binom{n}{1}a_1z + \dots + \binom{n}{k}a_kz^k + \dots + a_nz^n$$

and

$$(1.2) \quad B(z) = b_0 + \binom{n}{1}b_1z + \dots + \binom{n}{k}b_kz^k + \dots + b_nz^n$$

are said to be apolar provided that their coefficients satisfy the apolarity condition

$$(1.3) \quad a_0b_n - \binom{n}{1}a_1b_{n-1} + \dots + (-1)^k \binom{n}{k}a_kb_{n-k} + \dots + (-1)^n a_nb_0 = 0.$$

The coefficients of the polynomials may be real or complex. If $a_r \neq 0$ ($r \geq 0$) and $a_v = 0$ for $v = r+1, r+2, \dots, n$, then we regard $z = \infty$ as an $(n-r)$ -fold zero of $A(z)$. If all the coefficients of $A(z)$ are zero, then $A(z)$ is not regarded as a polynomial.

Grace discovered the following remarkable

Theorem of Grace. Let the polynomials (1.1) and (1.2) be apolar. Let a_1, a_2, \dots, a_n be the zeros of $A(z)$ and b_1, b_2, \dots, b_n be the zeros of $B(z)$. If the circular region C contains all of the a_v , then C must contain at least one of the b_v .

By a circular region we mean either the closed interior of a circle, or the closed exterior of a circle, or a closed half-plane.

In [3] G. Szegö gave a proof of Grace's theorem freed of the invariant-theoretic concepts used by Grace in [1], and he also gave a large number of applications. In the present note we establish Grace's theorem by induction on n . Our proof is different from those given earlier.

2. The invariance of apolarity by Möbius transformations.

By the transform of $A(z)$ under the Möbius transformation

$$(2.1) \quad z = \frac{aw+b}{cw+d} \quad (ad-bc \neq 0)$$

we mean the polynomial

$$A^*(w) \equiv (cw+d)^n A\left(\frac{aw+b}{cw+d}\right) \equiv \sum_{v=0}^n \binom{n}{v} a_v (aw+b)^v (cw+d)^{n-v} \equiv \sum_{v=0}^n \binom{n}{v} a_v^* w^v.$$

For example if $A(z) \equiv 1$, then $A^*(w) = (cw+d)^n$ and the n -fold zero of $A(z)$ at $z = \infty$ becomes an n -fold zero of $A^*(z)$ at $w = -d/c$ if $c \neq 0$.

Lemma 1. Let $A(z)$ and $B(z)$ be apolar polynomials. If the Möbius transformation (2.1) changes the polynomials (1.1) and (1.2) into

$$(2.2) \quad A^*(w) = \sum_{v=0}^n \binom{n}{v} a_v^* w^v \quad \text{and} \quad B^*(w) = \sum_{v=0}^n \binom{n}{v} b_v^* w^v,$$

then the polynomials (2.2) are also apolar.

Proof. It suffices to prove Lemma 1 for each of the three special transformations

$$(2.3) \quad (i) \quad z = w + h, \quad (ii) \quad z = kw, \quad (iii) \quad z = \frac{1}{w} .$$

$$(i) \quad A^*(w) = A(w+h) = \sum_{v=0}^n \frac{w^v}{v!} A^{(v)}(h)$$

and therefore

$$A^*(w) = \sum_{v=0}^n \binom{n}{v} \frac{(n-v)!}{n!} A^{(v)}(h) w^v.$$

Similarly

$$B^*(w) = \sum_{v=0}^n \binom{n}{v} \frac{(n-v)!}{n!} B^{(v)}(h) w^v.$$

The apolarity equation for these polynomials is

$$f(h) = \sum_{v=0}^n (-1)^v \binom{n}{v} \frac{(n-v)!}{n!} A^{(v)}(h) \frac{v!}{n!} B^{(n-v)}(h) = 0$$

or

$$(2.4) \quad n! f(h) = \sum_{v=0}^n (-1)^v A^{(v)}(h) B^{(n-v)}(h) = 0.$$

The apolarity of $A(z)$ and $B(z)$ gives $f(0) = 0$, and we must show that $f(h) = 0$ for all h . This will follow as soon as we show that for all h

$$(2.5) \quad f'(h) = 0.$$

From (2.4) we find that

$$n! f'(h) = \sum_{v=0}^n (-1)^v A^{(v+1)}(h) B^{(n-v)}(h) + \sum_{v=0}^n (-1)^v A^{(v)}(h) B^{(n-v+1)}(h).$$

Here the v th term ($v < n$) in the first sum cancels with the $(v+1)$ -st term in the second term, and hence

$$n! f'(h) = (-1)^n A^{(n+1)}(h) B(h) + A(h) B^{(n+1)}(h)$$

which is evidently zero because $A(z)$ and $B(z)$ are n th degree polynomials. This proves (2.5) and therefore (2.4) for all h .

(ii) For the second transformation in (2.3) we have

$$A^*(w) = a_0 + \binom{n}{1} a_1 w + \dots + a_n w^n,$$

and

$$B^*(w) = b_0 + \binom{n}{1} b_1 w + \dots + b_n w^n$$

which are evidently apolar by (1.3).

(iii) Finally, setting $z = 1/w$ gives

$$A^*(w) = a_n + \binom{n}{1} a_{n-1} w + \dots + a_0 w^n$$

and

$$B^*(w) = b_n + \binom{n}{1} b_{n-1} w + \dots + b_0 w^n$$

and these are also apolar by (1.3). \square

Lemma 2. If a is a zero of the polynomial $A(z)$, then its transform β under (2.1) is a zero of the transformed polynomial $A^*(z)$.

If neither a nor β is ∞ , then $a = (a\beta+b)/(c\beta+d)$ and

$$(2.6) \quad A^*(\beta) = (c\beta+d)^n A\left(\frac{a\beta+b}{c\beta+d}\right) = (c\beta+d)^n A(a) = 0.$$

If $a = \infty$ is an r -fold zero of $A(z)$, then $\beta = -d/c$ is clearly an r -fold zero of $A^*(z)$. If $a = a/c$ is an r -fold zero of $A(z)$, then the decomposition used in the proof of Lemma 1 shows that $\beta = \infty$ is an r -fold zero of $A^*(z)$. \square

It follows from Lemma 2 that if a circular domain C contains all the zeros of $A(z)$ then the transformed domain under (2.1) will contain all the zeros of $A^*(z)$.

3. Proof of Grace's Theorem. We use induction on n . For $n = 1$, the apolarity condition (1.3) gives $a_0 b_1 - a_1 b_0 = 0$ so $a_1 = \beta_1$, and the theorem is obviously true.

Next we assume the theorem is true for index $n-1$ and wish to prove that it is also true for index n . Here we use the method of contradiction. We shall assume that for some circular domain C and some pair of apolar polynomials $A(z)$ and $B(z)$

$$(3.1) \quad a_v \in C, \quad v = 1, 2, \dots, n, \quad \text{and } \beta_v \notin C, \quad v = 1, 2, \dots, n.$$

By a transformation we may assume that $\beta_n = \infty$, without loss of generality (use Lemmas 1 and 2). It follows that in (1.2)

$$(3.2) \quad b_n = 0.$$

The second assumption in (3.1) tells us that $\beta_n \notin C$ and hence C is bounded.

Therefore all a_v are finite and hence $a_n \neq 0$. The points $\beta_1, \beta_2, \dots, \beta_{n-1}$ (finite or not) are the zeros of

$$(3.3) \quad B(z) = b_0 + \binom{n}{1} b_1 z + \dots + \binom{n}{k} b_k z^k + \dots + \binom{n}{n-1} b_{n-1} z^{n-1}$$

which we now regard as a polynomial of degree $n-1$. Now consider the polynomial

$$(3.4) \quad \frac{1}{n} A'(z) = a_1 + \binom{n-1}{1} a_2 z + \dots + \binom{n-1}{k} a_{k+1} z^k + \dots + a_n z^{n-1}$$

having the zeros $\gamma_1, \gamma_2, \dots, \gamma_{n-1}$. These zeros are all finite because $a_n \neq 0$.

We claim the two polynomials (3.3) and (3.4) are apolar as polynomials of degree

$n-1$. To confirm this we rewrite (3.3) in the usual form

$$(3.5) \quad B(z) = b_0' + \binom{n-1}{1} b_1' z + \dots + \binom{n-1}{k} b_k' z^k + \dots + b_{n-1}' z^{n-1}.$$

Then

$$(3.6) \quad \binom{n}{k} b_k = \binom{n-1}{k} b_k', \quad k = 0, 1, 2, \dots, n-1.$$

But then our original apolarity condition (1.3)

$$\sum_{k=0}^{n-1} (-1)^k \binom{n}{k} b_k a_{n-k} = 0$$

(since $b_n = 0$ by (3.2)) becomes

$$\sum_{k=0}^{n-1} (-1)^k \binom{n-1}{k} b_k' a_{n-k} = 0.$$

This shows that the polynomials (3.4) and (3.5) are apolar.

We now appeal to the Gauss-Lucas Theorem which states that all the zeros $\gamma_1, \gamma_2, \dots, \gamma_{n-1}$ are in the convex hull of the zeros a_1, a_2, \dots, a_n of $A(z)$. By our first assumption (3.1) we conclude that $\gamma_v \in C$, for $v = 1, 2, \dots, n-1$. On the other hand $\beta_v \notin C$ for $v = 1, 2, \dots, n-1$. This contradicts Grace's Theorem for index $n-1$. Hence by the principle of mathematical induction Grace's Theorem is true for every positive integer n . ■

The reader is referred to Szegő's work [3] and the book by Marden [2] for many interesting applications of Grace's Theorem.

References

1. J.H. Grace, The zeros of polynomials, Proc. Cambridge Philos. Soc. 11 (1900-1902) 352-357.
2. Morris Marden, Geometry of polynomials, 2nd edition. Math Surveys #3. Amer. Math. Soc. 1966 Providence, Rhode Island.
3. Gabor Szegö, Bemerkungen zu einem Satz von J.H. Grace über die Wurzeln algebraischer Gleichungen, Math. Zeit. 13 (1922) 28-56.

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER 2874	2. GOVT ACCESSION NO. <i>AD-A163714</i>	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) A PROOF OF GRACE'S THEOREM BY INDUCTION	5. TYPE OF REPORT & PERIOD COVERED Summary Report - no specific reporting period	
7. AUTHOR(s) A.W. Goodman and I.J. Schoenberg	6. PERFORMING ORG. REPORT NUMBER DAAG29-80-C-0041	
9. PERFORMING ORGANIZATION NAME AND ADDRESS Mathematics Research Center, University of Wisconsin 610 Walnut Street Madison, Wisconsin 53705	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS Work Unit Number 3 - Numerical Analysis and Scientific Computing	
11. CONTROLLING OFFICE NAME AND ADDRESS U. S. Army Research Office P.O. Box 12211 Research Triangle Park, North Carolina 27709	12. REPORT DATE October 1985	
14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office)	13. NUMBER OF PAGES 6	
15. SECURITY CLASS. (of this report) UNCLASSIFIED		
15a. DECLASSIFICATION/DOWNGRADING SCHEDULE		
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited.		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Zeros of polynomials, Möbius transformations		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) Two polynomials in $\mathbb{C}[z]$ $(1) \quad A(z) = \sum_{k=0}^n \binom{n}{k} a_k z^k, \quad B(z) = \sum_{k=0}^n \binom{n}{k} b_k z^k$ <p>are said to be <u>apolar</u>, provided that the equation</p>		

20. ABSTRACT (Continued)

$$\sum_{k=0}^n (-1)^k \binom{n}{k} a_k b_{n-k} = 0$$

holds. This definition was given at the turn of the century by J.H. Grace who established in [1] the following

Theorem of Grace. Let the polynomials (1) be apolar. If the circular region C contains all the zeros of A(z), then C must contain at least one of the zeros of B(z).

By a circular region we mean either the closed interior of a circle, or the closed exterior of a circle, or a closed half-plane.

Here we give a proof of Grace's theorem by mathematical induction on the degree n.

END

FILMED

3-86

DTIC