Cache Structure and Access

Caiwen Ding
Department of Computer Science and Engineering
University of Connecticut

Adapted from *Computer Organization and Design* by Patterson & Hennessy

Cache

- Review access to a direct-mapped cache
- Direct-mapped cache
 - Diagram
 - Hardware cost
 - Handling hit and miss, on read and write
 - Write through/write back

Reading: 5.3.

Review

- What is cache hit?
- What is cache miss?
- How does cache check if a request is a hit?

Terms

Hit: data found in cache

Hit Rate: number of hits divided by number of memory accesses

Miss: data NOT in cache

Miss Rate: number of misses divided by number of memory accesses

What is hit rate plus miss rate?

Start with an empty cache (all blocks are not valid/blank).

					1		
0	4	8	12	16	12	16	60
00000	00 <mark>01</mark> 00	00 <mark>10</mark> 00	00 <mark>11</mark> 00	01 <mark>00</mark> 00	00 <mark>11</mark> 00	01 <mark>00</mark> 00	11 <mark>11</mark> 00
	0 miss	4 miss		8	miss	12	
00	Mem[0]	00 Me	em[0]	00	Mem[0]		
		00 M	em[4]	00	Mem[4]		
				00	Mem[8]		
1	16	12		1	16	60	

Start with an empty cache (all blocks are not valid/blank).

					•		
0	4	8	12	16	12	16	60
00000	00 <mark>01</mark> 00	00 <mark>10</mark> 00	00 <mark>11</mark> 00	01 <mark>00</mark> 00	00 <mark>11</mark> 00	01 <mark>00</mark> 00	11 <mark>11</mark> 00
	0 miss		miss	8	miss	12	,
00	Mem[0]	00 M	em[0]	00	Mem[0]	00 1	Mem[0]
		00 M	em[4]	00	Mem[4]	00	Mem[4]
				00	Mem[8]	00 1	Mem[8]
	16			1	6	60	

Start with an empty cache (all blocks are not valid/blank).

					1		
0	4	8	12	16	12	16	60
00 <mark>00</mark> 00	00 <mark>01</mark> 00	00 <mark>10</mark> 00	00 <mark>11</mark> 00	01 <mark>00</mark> 00	001100	01 <mark>00</mark> 00	11 <mark>11</mark> 00
	0 miss	4 miss		8	miss	12	2 miss
00	Mem[0]	00 Me	em[0]	00	Mem[0]	00 1	Mem[0]
		00 M	em[4]	00	Mem[4]	00	Mem[4]
				00	Mem[8]	00 1	Mem[8]
	16	12			16	60	

Start with an empty cache (all blocks are not valid/blank).

					4		
0	4	8	12	16	12	16	60
00 <mark>00</mark> 00) 00 <mark>01</mark> 00	00 <mark>10</mark> 00	00 <mark>11</mark> 00	01 <mark>00</mark> 00	001100	01 <mark>00</mark> 00	11 <mark>11</mark> 00
	0 miss		miss	8	B miss	12	miss
00	Mem[0]	00 Me	em[0]	00	Mem[0]	00 N	Mem[0]
		00 Me	em[4]	00	Mem[4]	00 N	Mem[4]
				00	Mem[8]	00 N	Mem[8]
						00 1	Mem[12]
	16	12			16	60	

Start with an empty cache (all blocks are not valid/blank).

0	4	8	12	16	12	16	60
00 <mark>00</mark> 00	000100	00 <mark>10</mark> 00	00 <mark>11</mark> 00	01 <mark>00</mark> 0	0 001100	01 <mark>00</mark> 00	11 <mark>11</mark> 00
	0 miss		miss	8	3 miss	12	2 miss
00	Mem[0]	00 Me	em[0]	00	Mem[0]	00 1	Mem[0]
		00 Me	em[4]	00	Mem[4]	00 1	Mem[4]
				00	Mem[8]	00	Mem[8]
						00	Mem[12]
	16	12			16	60	
00	Mem[0]						
00	Mem[4]						
00	Mem[8]						
00	Mem[12]						

Start with an empty cache (all blocks are not valid/blank).

					<u> </u>		
0	4	8	12	16	12	16	60
00 <mark>00</mark> 00	00 <mark>01</mark> 00	00 <mark>10</mark> 00	00 <mark>11</mark> 00	01 <mark>00</mark> 00	001100	01 <mark>00</mark> 00	11 <mark>11</mark> 00
	0 miss		miss	8 miss		12 miss	
00	Mem[0]	00 Me	em[0]	00	Mem[0]	00	Mem[0]
		00 Me	em[4]	00	Mem[4]	00	Mem[4]
				00	Mem[8]	00	Mem[8]
						00	Mem[12]
-	16 miss	12			16	60	
00	Mem[0]						
00	Mem[4]						
00	Mem[8]						
00	Mem[12]						

Start with an empty cache (all blocks are not valid/blank).

Start with an empty cache (all blocks are not valid/blank).

	0	4	8	12		16	12	16	60
C	0000	0 00 <mark>01</mark> 00	00 <mark>10</mark> 00	00 <mark>11</mark> 00)	01 <mark>00</mark> 00	001100	01 <mark>00</mark> 00	11 <mark>11</mark> 00
		0 miss 4 miss			8 miss			12 miss	
	00	Mem[0]	00	Mem[0]		00	Mem[0]	00	Mem[0]
			00	Mem[4]		00	Mem[4]	00	Mem[4]
						00	Mem[8]	00	Mem[8]
								00	Mem[12]
01		16 miss	1	12			16	6	0
01	08	Mem[8]	01	Mem[16]					
	00	Mem[4]	00	Mem[4]					
	00	Mem[8]	00	Mem[8]					
	00	Mem[12]	00	Mem[12]					

Start with an empty cache (all blocks are not valid/blank).

	0	4	8	12		16	12	16	60
C	0000	0 00 <mark>01</mark> 00	00 <mark>10</mark> 00	00 <mark>11</mark> 00	0	1 <mark>00</mark> 00	001100	01 <mark>00</mark> 0	0 11 <mark>11</mark> 00
	0 miss 4 miss			8	miss		12 miss		
	00	Mem[0]	00 1	Mem[0]		00	Mem[0]	00	Mem[0]
			00	Mem[4]		00	Mem[4]	00	Mem[4]
						00	Mem[8]	00	Mem[8]
								00	Mem[12]
01		16 miss	1	2 hit			16	•	60
01	00	Mem[8]	01	Mem[16]					
	00	Mem[4]	00	Mem[4]					
	00	Mem[8]	00	Mem[8]					
	00	Mem[12]	00	Mem[12]					

Start with an empty cache (all blocks are not valid/blank).

Start with an empty cache (all blocks are not valid/blank).

					1		
0	4	8	12	16	12	16	60
0000	00 <mark>01</mark> 00	00 <mark>10</mark> 00	00 <mark>11</mark> 00	01 <mark>00</mark> 00	00 <mark>11</mark> 00	01 <mark>00</mark> 00	11 <mark>11</mark> 00
	0 miss	4	miss	8	miss	12	2 miss
00	Mem[0]	00 Me	em[0]	00	Mem[0]	00	Mem[0]
		00 M	em[4]	00	Mem[4]	00	Mem[4]
				00	Mem[8]	00	Mem[8]
						00	Mem[12]
01	16 miss	12	hit	1	6 hit	60	
01	<u> </u>	01	Mem[16]	01	Mem[16]		
00	Mem[4]	00	Mem[4]	00	Mem[4]		
00	Mem[8]	00	Mem[8]	00	Mem[8]		
00	Mem[12]	00	Mem[12]	00	Mem[12]		

Start with an empty cache (all blocks are not valid/blank).

Start with an empty cache (all blocks are not valid/blank).

Start with an empty cache (all blocks are not valid/blank).

	0	4	8	12	16	12	16	60
0	00000	00 <mark>01</mark> 00	00 <mark>10</mark> 00	00 <mark>11</mark> 00	01 <mark>00</mark> 0	0 00 <mark>11</mark> 0	0 01 <mark>00</mark>	00 11 <mark>11</mark> 00
	0 miss 4 miss			8 miss		12 miss		
	00	Mem[0]	00 Me	em[0]	00	Mem[0]	00	Mem[0]
			00 M	em[4]	00	Mem[4]	00	Mem[4]
					00	Mem[8]	00	Mem[8]
							00	Mem[12]
01	16 miss 12 hit			16 hit		60 miss		
01	08	Mem[0]	01	Mem[16]	01	Mem[16]	01	Mem[16]
	00	Mem[4]	00	Mem[4]	00	Mem[4]	00	Mem[4]
	00	Mem[8]	00	Mem[8]	00	Mem[8]	00	Mem[8]
	00	Mem[12]	00	Mem[12]	00	Mem[12]	11	Mem[12] 60

Discussion

• 6 misses out of 8 requests

0	4	8	12	16	12	16	60
00 <mark>00</mark> 00	00 <mark>01</mark> 00	00 <mark>10</mark> 00	00 <mark>11</mark> 00	01 <mark>00</mark> 00	00 <mark>11</mark> 00	01 <mark>00</mark> 00	11 <mark>11</mark> 00
M	M	M	M	M	Н	Н	M

• What is the miss rate?

• What kind of locality are we taking advantage of?

A: Temporal.

B: Spatial.

Design parameters

• Let us keep the cache size the same, but increase block size

Previously,

Cache size: 4 words

Block size: 1 word

Number of blocks: 4

Now,

Cache size: 4 words

Block size: 2 words

Number of blocks: ?

Number of bits in cache index: ?

Let cache block hold two words (8 bytes). Again, start with an empty cache.

0 miss

Mem[4]	Mem[0]

4	hit

00	Mem[4]	Mem[0]

00	Mem[4]	Mem[0]

Let cache block hold two words (8 bytes). Again, start with an empty cache.

0 miss

Mem[4]	Mem[0]

hit

00	Mem[4]	Mem[0]

8 miss

00	Mem[4]	Mem[0]

Let cache block hold two words (8 bytes). Again, start with an empty cache.

0 miss

Mem[4]	Mem[0]

	4	hit

00	Mem[4]	Mem[0]

8	miss

00	Mem[4]	Mem[0]
00	Mem[12]	Mem[8]

Let cache block hold two words (8 bytes). Again, start with an empty cache.

0 miss

1em[4]	Mem[0]

hit

00	Mem[4]	Mem[0]

8 miss

00	Mem[4]	Mem[0]
00	Mem[12]	Mem[8]

00	Mem[4]	Mem[0]
00	Mem[12]	Mem[8]

Let cache block hold two words (8 bytes). Again, start with an empty cache.

0 miss

Mem[4]	Mem[0]

00	Mem[4]	Mem[0]

8 miss

00	Mem[4]	Mem[0]
00	Mem[12]	Mem[8]

hit

00	Mem[4]	Mem[0]
00	Mem[12]	Mem[8]

Let cache block hold two words (8 bytes). Again, start with an empty cache.

 $\mathbf{0}$ miss

Mem[4]	Mem[0]

hit

00	Mem[4]	Mem[0]

8 miss

00	Mem[4]	Mem[0]
00	Mem[12]	Mem[8]

hit

00	Mem[4]	Mem[0]
00	Mem[12]	Mem[8]

00	Mem[4]	Mem[0]
00	Mem[12]	Mem[8]

Let cache block hold two words (8 bytes). Again, start with an empty cache.

0 miss

90	Mem[4]	Mem[0]

4 hit
4 hit

00	Mem[4]	Mem[0]

8 miss

00	Mem[4]	Mem[0]
00	Mem[12]	Mem[8]

12 hit

00	Mem[4]	Mem[0]
00	Mem[12]	Mem[8]

16 miss

00	Mem[4]	Mem[0]
00	Mem[12]	Mem[8]

12

16

Let cache block hold two words (8 bytes). Again, start with an empty cache.

0 miss

00	Mem[4]	Mem[0]

4 hit

00	Mem[4]	Mem[0]

8 miss

00	Mem[4]	Mem[0]
00	Mem[12]	Mem[8]

12 hit

00	Mem[4]	Mem[0]
00	Mem[12]	Mem[8]

12

16

Let cache block hold two words (8 bytes). Again, start with an empty cache.

0 miss

00	Mem[4]	Mem[0]

4	hit

00	Mem[4]	Mem[0]

8 miss

00	Mem[4]	Mem[0]
00	Mem[12]	Mem[8]

12 hit

00	Mem[4]	Mem[0]
00	Mem[12]	Mem[8]

12

01	Mem[20]	Mem[16]
00	Mem[12]	Mem[8]

16

Let cache block hold two words (8 bytes). Again, start with an empty cache.

0 miss

00	Mem[4]	Mem[0]

4 hit

00	Mem[4]	Mem[0]

8 miss

00	Mem[4]	Mem[0]
00	Mem[12]	Mem[8]

12 hit

00	Mem[4]	Mem[0]
00	Mem[12]	Mem[8]

12 hit

01	Mem[20]	Mem[16]
00	Mem[12]	Mem[8]

16

Let cache block hold two words (8 bytes). Again, start with an empty cache.

0 miss

00	Mem[4]	Mem[0]

4 hit

00	Mem[4]	Mem[0]

8 miss

00	Mem[4]	Mem[0]
00	Mem[12]	Mem[8]

12 hit

00	Mem[4]	Mem[0]
00	Mem[12]	Mem[8]

01	16 miss	
86	Mem[4]	Mem[8]
00	Mem[12]	Mem[8]

12 hit

01	Mem[20]	Mem[16]
00	Mem[12]	Mem[8]

16

01	Mem[20]	Mem[16]
00	Mem[12]	Mem[8]

Let cache block hold two words (8 bytes). Again, start with an empty cache.

0 miss

00	Mem[4]	Mem[0]

4 hit

00	Mem[4]	Mem[0]

8 miss

00	Mem[4]	Mem[0]
00	Mem[12]	Mem[8]

12 hit

00	Mem[4]	Mem[0]
00	Mem[12]	Mem[8]

 01
 20
 16 miss

 00
 Mem[4]
 Mem[8]

 00
 Mem[12]
 Mem[8]

12 hit

01	Mem[20]	Mem[16]
00	Mem[12]	Mem[8]

16 hit

01	Mem[20]	Mem[16]
00	Mem[12]	Mem[8]

60

Let cache block hold two words (8 bytes). Again, start with an empty cache.

0 miss

00	Mem[4]	Mem[0]

4 hit

00	Mem[4]	Mem[0]

8 miss

00	Mem[4]	Mem[0]
00	Mem[12]	Mem[8]

12 hit

00	Mem[4]	Mem[0]
00	Mem[12]	Mem[8]

01	20	16
00 .	Mem[4]	Mem[@]
00	Mem[12]	Mem[8]

16

12 hit

01	Mem[20]	Mem[16]
00	Mem[12]	Mem[8]

16 hit

01	Mem[20]	Mem[16]
00	Mem[12]	Mem[8]

60

01	Mem[20]	Mem[16]
00	Mem[12]	Mem[8]

Let cache block hold two words (8 bytes). Again, start with an empty cache.

0 miss

00	Mem[4]	Mem[0]

4 hit

00	Mem[4]	Mem[0]

8 miss

00	Mem[4]	Mem[0]
00	Mem[12]	Mem[8]

12 hit

00	Mem[4]	Mem[0]
00	Mem[12]	Mem[8]

 16 miss

 20
 16

 08
 Mem[4]
 Mem[8]

 00
 Mem[12]
 Mem[8]

12 hit

01	Mem[20]	Mem[16]
00	Mem[12]	Mem[8]

16 hit

01	Mem[20]	Mem[16]
00	Mem[12]	Mem[8]

60 miss

01	Mem[20]	Mem[16]
00	Mem[12]	Mem[8]

Let cache block hold two words (8 bytes). Again, start with an empty cache.

00	Mem[4]	Mem[0]

00	Mem[4]	Mem[0]

00	Mem[4]	Mem[0]
00	Mem[12]	Mem[8]

12 hit

00 Mem[4] Mem[0]

00 Mem[12] Mem[8]

12 hit

16 hit

01	Mem[20]	Mem[16]	
00	Mem[12]	Mem[8]	

01 Mem[20] Mem[16]
00 Mem[12] Mem[8]
11 60 56

60 miss

Let cache block hold two words (8 bytes). Again, start with an empty cache.

0 miss

00	Mem[4]	Mem[0]	

-	-	-
=	=	=

00	Mem[4]	Mem[0]

8 miss

00	Mem[4]	Mem[0]		
00	Mem[12]	Mem[8]		

12 hit

00	Mem[4]	Mem[0]	
00	Mem[12]	Mem[8]	

12 hit

01	Mem[20]	Mem[16]		
00	Mem[12]	Mem[8]		

16 hit

01	Mem[20]	Mem[16]	
00	Mem[12]	Mem[8]	

60 miss

01	Mem[20] Mem[16]		
00	Mem[12]	Mem[8]	
11	60	56	

8 requests, 4 misses.

Discussion

• 6 misses out of 8 requests

0	4	8	12	16	12	16	60
00 <mark>00</mark> 00	00 <mark>01</mark> 00	00 <mark>10</mark> 00	00 <mark>11</mark> 00	01 <mark>00</mark> 00	00 <mark>11</mark> 00	01 <mark>00</mark> 00	11 <mark>11</mark> 00
M	Н	M	Н	M	Н	Н	M

• What is the miss rate?

• Why do we have fewer missies?

What kind of locality are we taking advantage of?

A: Temporal.

B: Spatial.

Building a cache

- Cache size = 4KiB
- Block size = one word

- How many blocks?
- Size of each field in cache?
 - Block offset, cache index, and tag
- How would you select a block?

Cache size

Amount of data that can be stored in cache

Index Va	alid	Tag	Data
0			
1	Ш		
2			
•	Щ		
1021	\vdash		
	щ		
1022	Щ		
1023			

Discussion

Assume we only access words.

What kind of locality can we take advantage of with the cache on the previous slide?

A: Temporal

B: Spatial

C: Both

Questions

What is the total number of bits in the cache?

Design parameters

• Let us keep the cache size the same, but increase block size

Cache size: 4 KiB

Previously, block size: 4 bytes (one word)

Now, Block size: 16 bytes (four words)

- How many blocks?
- Size of each field in cache?
 - Block offset, cache index, and tag
- How would you select a block? And then a word?

Cache size = 4KiB, block size = four words (16 bytes)

Block
offset

Cache size = 4KiB, block size = four words (16 bytes) **Block** 13 12 11 ... 5 4 3 2 1 0 31 30 ... offset Index Data Index Valid Tag 253 254 255

Cache size = 4KiB, block size = four words (16 bytes) Block 13 12 11 ... 5 4 3 2 1 0 31 30 ... offset Tag Index Data Index Valid Tag 253 254 255 **-20**

Discussion

Assume we only access words.

What kind of locality can we take advantage of with the cache on the previous slide?

A: Temporal

B: Spatial

C: Both

Questions

- What is the total number of bits in the cache?
- What percent of the bits are used for tags and status?

Number of Bits in a Direct Mapped Cache

Cache needs to store both data and tags

Although we normally just use data size, e.g., a 4KB cache.

32-bit byte address

- offset has m bits for a block size of 2^m bytes, to identify any byte within the block. The word address has lower 2 bits set to 0
- cache index has n bits for a direct mapped cache with 2^n blocks
- the rest of the bits are the tag
- The total number of bits in a direct-mapped cache is then
 - $2^n \times (block size + tag field size + number of status bits)$

Assume an address has 32 bits and there is only one status bit for each block. How many bits in total are in a direct mapped cache with 16KiB of data and 16-byte blocks?

Solutions:

Assume an address has 32 bits and there is only one status bit for each block. How many bits in total are in a direct mapped cache with 16KiB of data and 16-byte blocks?

Solutions:

Block size: 16 bytes

Assume an address has 32 bits and there is only one status bit for each block. How many bits in total are in a direct mapped cache with 16KiB of data and 16-byte blocks?

Solutions:

Block size: 16 bytes

→ Number of bits for selecting bytes in a block: 4 bits

Assume an address has 32 bits and there is only one status bit for each block. How many bits in total are in a direct mapped cache with 16KiB of data and 16-byte blocks?

Solutions:

Block size: 16 bytes

→ Number of bits for selecting bytes in a block: 4 bits

Cache size: 16 KiB

Assume an address has 32 bits and there is only one status bit for each block. How many bits in total are in a direct mapped cache with 16KiB of data and 16-byte blocks?

Solutions:

Block size: 16 bytes

→ Number of bits for selecting bytes in a block: 4 bits

Cache size: 16 KiB

 \rightarrow Number of blocks = 16 K / 16 = 1K (1024)

Assume an address has 32 bits and there is only one status bit for each block. How many bits in total are in a direct mapped cache with 16KiB of data and 16-byte blocks?

Solutions:

Block size: 16 bytes

→ Number of bits for selecting bytes in a block: 4 bits

Cache size: 16 KiB

 \rightarrow Number of blocks = 16 K / 16 = 1K (1024)

→ Number of bits in index: 10 bits (for 1K blocks)

Assume an address has 32 bits and there is only one status bit for each block. How many bits in total are in a direct mapped cache with 16KiB of data and 16-byte blocks?

Solutions:

Block size: 16 bytes

→ Number of bits for selecting bytes in a block: 4 bits

Cache size: 16 KiB

 \rightarrow Number of blocks = 16 K / 16 = 1K (1024)

→ Number of bits in index: 10 bits (for 1K blocks)

Number of bits in tag: 32 - 10 - 4 = 18 (the rest of address bits)

Assume an address has 32 bits and there is only one status bit for each block. How many bits in total are in a direct mapped cache with 16KiB of data and 16-byte blocks?

Solutions:

Block size: 16 bytes

→ Number of bits for selecting bytes in a block: 4 bits

Cache size: 16 KiB

 \rightarrow Number of blocks = 16 K / 16 = 1K (1024)

→ Number of bits in index: 10 bits (for 1K blocks)

Number of bits in tag: 32 - 10 - 4 = 18 (the rest of address bits)

Status bits: 1 (only the valid bit)

Assume an address has 32 bits and there is only one status bit for each block. How many bits in total are in a direct mapped cache with 16KiB of data and 16-byte blocks?

Solutions:

Block size: 16 bytes

→ Number of bits for selecting bytes in a block: 4 bits

Cache size: 16 KiB

 \rightarrow Number of blocks = 16 K / 16 = 1K (1024)

→ Number of bits in index: 10 bits (for 1K blocks)

Number of bits in tag: 32 - 10 - 4 = 18 (the rest of address bits)

Status bits: 1 (only the valid bit)

The number of bits needed for a block: $16 \times 8 + 18 + 1 = 147$ bits

Assume an address has 32 bits and there is only one status bit for each block. How many bits in total are in a direct mapped cache with 16KiB of data and 16-byte blocks?

Solutions:

Block size: 16 bytes

→ Number of bits for selecting bytes in a block: 4 bits

Cache size: 16 KiB

 \rightarrow Number of blocks = 16 K / 16 = 1K (1024)

→ Number of bits in index: 10 bits (for 1K blocks)

Number of bits in tag: 32 - 10 - 4 = 18 (the rest of address bits)

Status bits: 1 (only the valid bit)

The number of bits needed for a block: $16 \times 8 + 18 + 1 = 147$ bits

Total number of bits for 1K blocks:

Assume an address has 32 bits and there is only one status bit for each block. How many bits in total are in a direct mapped cache with 16KiB of data and 16-byte blocks?

Solutions:

Block size: 16 bytes

→ Number of bits for selecting bytes in a block: 4 bits

Cache size: 16 KiB

 \rightarrow Number of blocks = 16 K / 16 = 1K (1024)

→ Number of bits in index: 10 bits (for 1K blocks)

Number of bits in tag: 32 - 10 - 4 = 18 (the rest of address bits)

Status bits: 1 (only the valid bit)

The number of bits needed for a block: $16 \times 8 + 18 + 1 = 147$ bits

Total number of bits for 1K blocks:

$$147 \times 1K = 147 \times 1024 = 150528$$

Question

The number of bits needed for a block: $16 \times 8 + 18 + 1 = 147$ bits

Total number of bits for 1K blocks:

$$147 \times 1K = 147 \times 1024 = 150528$$

Common mistake: Forget to multiply 8

What percent of the bits are used for tags and status?

Round to the nearest whole percent. For example, 16 for 15.5%.

Cache operations

- Read (for both I\$ and D\$)
 - Read hit
 - This is what we want!
 - Read miss
 - Stall the pipeline
- Write (D\$ only)
 - Hit
 - Write-through or write-back
 - Handling Miss
 - Write allocate or No write allocate

Index	٧	Tag	Data
110	1	00010	123456

Address	Data
1101 0110	6378

Store 21763 into Mem[1101 0110] but we find that address is not currently in the cache. When we update Mem[1101 0110], should we also load it into the cache?

credit to: Howard Huang, Cache writes and examples

Handling Read Misses

- Read misses (I\$ and D\$)
 - Stall the pipeline
 - Fetch the block from the next level in the memory hierarchy into cache
 - Send the requested word to the processor
 - Let the pipeline resume

Write Hits

- The data to be updated is found in cache
- The problem? It has two copies
 - One in cache and one in memory

The address we want to write to is loaded in the cache (assume direct-mapped cache.)

credit to: Howard Huang, Cache writes and examples

Now the cache and memory contain different, inconsistent data!

Handling Write Hits: Write-through

Write-through: update both cache and memory

- Pros: The cache and memory are consistent
 - Always write the data into both the cache block and the next level in the memory hierarchy (write-through)
- Cons: Writes run at the speed of the memory very slow!
 - Think about initialization of an array in your code

Handling Write Hits: Write Back

Write-Back: update cache only.

Update memory later, when that cache block is "evicted"

Cache and memory are inconsistent.
They have different data

credit to: Howard Huang, Cache writes and examples

Each cache block has a dirty bit that indicates if the block has changed If a block is dirty, it is the only copy!

Illustration: Replacing a dirty block on read

- 1. The blue block is loaded in cache
- 2. CPU updates the block. The cache block is dirty
- 3. To load the yellow block from memory into the same cache block
 - 1) write the green block to memory and then 2) load yellow block in cache

Reduce Replacement Time

- We can do the following in parallel:
 - Load the yellow block into cache
 - Save the green block in an additional buffer (write-back buffer)

Write Operation: Write-through

- We can update cache block and check tags at the same time.
 - It is fine even if it is a miss because there is a copy in memory

Write Operation: Write-back

- With write-back, we cannot update before we know it is a hit
 - Need two steps: Is it a hit? If yes, then update cache
 - Takes two cycles, or requires a buffer
 - Otherwise, we may overwrite a dirty block on miss

Handling Write Misses (D\$ only)

- Write allocate: load the block in cache first
 - Stall the pipeline
 - Fetch the block from next level in the memory hierarchy into cache
 - May have to evict a dirty block if using a write-back cache
 - Write the word from the processor to the cache and set the dirty bit
 - Let the pipeline resume
- No write allocate: Skip the cache, write to memory directly
 - Just write the word to the write buffer
 - No need to stall if the write buffer is not full

Write Back Summary

- Updates cache only.
 - A dirty bit for each cache block indicates if the block is changed
- When placing a block in cache, we need to check if it replaces a dirty block
 - Write the dirty block to memory first
 - A miss may result in two memory operations: write dirty block and load the new block. Longer access time!
- When writing to a cache block, we must sure it is a hit before updating blocks
 - Cannot overwrite the only copy of the data in cache
 - At least 2 cycles!

Questions about cache

Q1: Where do we place a block in cache?

Q2: How do we find a data item is in the cache?

Where to find it? How to check it is the block?

Q3: How do we replace a block in cache?

Q4: How do we handle write?