Zadanie 3.2

Jarosław Socha

26 listopada 2023

1 Treść zadania

Zadanie 2

Niech G będzie gramatyką

$$S \to aS|aSbS|\varepsilon$$
.

Udowodnić, że

 $L(G) = \{x : każdy \text{ przedrostek } x \text{ ma co najmniej tyle symboli } a, \text{ co symboli } b\}.$

Niech $p_k(x)$ to k-elementowy przedrostek słowa x. Język możemy równoważnie zapisać jako

$$L(G) = \{x : (\forall k \in [0, |x|]) \mid |p_k(x)|_a \ge |p_k(x)|_b\}$$

2 Teoria

Aby udowodnić, że gramatyka G generuje język L musimy pokazać dwie rzeczy:

- $\bullet\,$ każde słowo generowane przez gramatykę Gnależy do języka L
- $\bullet\,$ każde słowo z języka Lda się wyprowadzić z gramatyki G

3 Dowód

3.1 Każde słowo generowane przez gramatykę G należy do języka L - dowód indukcyjny

Dowód indukcyjny po długości wyprowadzenia. Dla długości wyprowadzenia 1 możemy jedynie otrzymać ϵ , a $|p_k(\epsilon)|_a = 0 \geqslant 0 = |p_k(\epsilon)|_b$, więc słowo należy do języka. Załóżmy indukcyjnie, że słowo generowane przez wyprowadzenie długości co najwyżej n należy do języka. Teraz udowodnimy, że dla każdego możliwego kroku wyprowadzenia, niezależnie od tego, w którym momencie wyprowadzenia go zastosujemy, nowe słowo o długości wyprowadzenia n+1 należy do języka (rozpatrujemy tylko kroki, które powiększą długość wyprowadzenia).

Zadanie 3.2 Jarosław Socha

• $S \rightarrow aS$

Jeśli słowo, które powiększaliśmy to $w = w_1 w_2$, to nowe słowo $w' = w_1 a w_2$. Na mocy założenia indukcyjnego, w_1 i w_2 spełniają warunek należenia do języka. Weźmy dowolne $k \in [0, n+1]$.

- Jeśli $k \leq |w_1|$ to $p_k(w)$ się nie zmienił.
- Dla $|w_1| < k$ oba przedrostki zawierają w_1 , więc weźmy $j = k |w_1|$. Otrzymujemy:

$$p_j(aw_2) = ap_{j-1}(w_2)$$

Czyli liczba liter a w przedrostku zwiększyła się o 1, lub się nie zmieniła.

– Dla k = n + 1, liczba liter a w przedrostku zwiększyła się o 1.

W każdym przypadku liczba liter a nie zmalała, a liczba liter b nie wzrosła, zatem słowo należy do języka.

• $S \rightarrow aSbS$

Dla słowa $w = w_1 w_2 w_3$, nowe słowo to $w' = w_1 a w_2 b w_3$. Na mocy założenia indukcyjnego, w_1 , w_2 i w_3 spełniają warunek należenia do języka. Weźmy dowolne $k \in [0, n+1]$.

- dla $k \leq |w_1| + |w_2|$, dowód przebiega analogicznie do powyższego
- dla $k > |w_1| + |w_2|$ podobnie do powyższego dowodu, liczba liter a się nie zmieni, za to liczba liter b będzie stała lub zwiększy się o 1. Jako że jednak dla tych k liczba liter a już zwiększyła się o 1, to liczba liter a wciąż jest nie mniejsza niż liczba liter b

Podobnie jak powyżej, dla każdego każdego przedrostka słowo spełnia warunek $|p_k(x)|_a \ge |p_k(x)|_b$, więc należy ono do języka.

3.2 Każde słowo z języka L da się wyprowadzić z gramatyki G - algorytm wyprowadzenia

Zamieńmy słowo na równoważny ciąg liczb według zasady:

- 1. c = 0
- 2. Wypisz c
- 3. Przeczytaj litere
- 4. Jeśli to a, to c = c + 1
- 5. Jeśli to b, to c = c 1
- 6. wróć do 2.

Przykład:

Zauważmy, że każdy krok takiego wyprowadzenia należy do języka (dzięki $S \to \epsilon$) i na każdym kroku ciąg z nim powiązany będzie zaczynał się na 0*12 lub będzie miał fragment (n)(n+1)(n) (dla słów większych niż jedna litera). Algorytm:

Zadanie 3.2 Jarosław Socha

• Jeśli początek to 0*12 i każda następna liczba jest większa niż 0, to zmieniamy dopasowane 12 na 1 i każdą następną liczbę zmniejszamy o 1 (odpowiada to produkcji $S \to aS$)

• W przeciwnym wypadku znajdujemy najbliższe dopasowanie podciągu do (n)(n+1)(n) i zastępujemy ten fragment liczbą (n) (odpowiada to produkcji $S \to aSbS$)

Powtarzamy, aż nie zostaniemy z jednym zerem (koniec), lub ciągiem 01 (mamy jeszcze jedną produkcję $S \to aS$). Otrzymujemy w ten sposób ciąg produkcji prowadzących do słowa. Przykład:

Zatem L = L(G), co kończy dowód.