$$f(x) = x e^{1/x} = x e^{u}$$

avec
$$u = \frac{1}{x}$$
 => $u' = -\frac{1}{x^2}$

$$f(x) = x e^{1/x} = w v$$

avec
$$w = x$$
 et $v = e^{1/x} = e^{u}$

$$w' = 1$$
 $v' = u'e^{u} = -\frac{1}{x^2} e^{1/x}$

 $D_{\ell} = \mathbb{R} \setminus \{0\}$

$$f'(x) = w'v + wv' = e^{1/x} + x\left(-\frac{1}{x^2}e^{1/x}\right) =$$

$$= e^{1/x} - \frac{1}{x} e^{1/x} = e^{1/x} \left(1 - \frac{1}{x}\right) =$$

$$= e^{1/x} \left(\frac{x-1}{x} \right)$$

Étude de signe de l':

$$e^{1/x} > 0$$
 $x-1>0$ $x>0$
Toujours

\checkmark	-00	0 1	+ 10
$e^{1/\chi}$	+	+	+
x -1	_	- 6	+
\sim	_	+	+
1'	+	- 0	> +

Tableau de variations

$$m = f(1) = 1 \times e^{1/4} = e$$