Кузнечик (по имени Кронекер)

- Дано положительное иррациональное число α, меньшее 1. Кузнечик прыгает по окружности длины 1. За каждую секунду он прыгает по часовой стрелке на дугу длины α.
 - (a) Докажите, что когда-нибудь он окажется на расстоянии меньше чем 1/1000 от своего исходного положения (расстояние считается по окружности).
 - **(6)** Докажите, что кузнечик рано или поздно посетит любую наперёд выбранную дугу окружности. Верно ли, что он посетит любую наперёд заданную точку окружности?
 - (в) (Теорема Кронекера). Докажите, что если $\alpha > 0$ иррациональное число, то произвольный интервал (a,b) числовой прямой содержит число вида $n\alpha - m$, где m,n - неотрицательные целые числа. (Иными словами, множество значений выражения $n\alpha - m$ всюду плотно на числовой прямой).
- 2. Кузнечик прошел курсы повышения квалификации и теперь он умеет делать два прыжка: с длинами $\sqrt{2}$ и $\sqrt{3}$ в обе стороны. Теперь кузнечик готов прыгать по прямой. Докажите, что он сможет попасть в любой отрезок на прямой.
- 3. В каждой точке координатной плоскости с целыми координатами сидит круглый дятел радиуса r > 0. У дятла в точке (0,0) есть ружьё. Докажите, что в каком бы направлении он не стрельнул, пуля попадёт в другого дятла.
- **4.** (Теорема Дирихле) (а) Докажите, что для любых вещественного α и натурального N найдутся такие целые m и $0 < n \le N$, что $|n\alpha m| < 1/N$.
 - (6) Докажите, что для любых вещественных $\alpha_1, \dots, \alpha_k$ и для любого натурального N существуют такие целые m_1, \dots, m_k и $0 < n \leqslant N^k$, что одновременно выполнены неравенства

$$\left|n\alpha_1-m_1\right|<\frac{1}{N},\left|n\alpha_2-m_2\right|<\frac{1}{N},\ldots,\left|n\alpha_k-m_k\right|<\frac{1}{N}.$$

- **5. (а)** Докажите, что степень тройки с натуральным показателем может начинаться на любую комбинацию цифр.
 - **(6)** Докажите, что степень двойки может начинаться на те же 2025 цифр, что и оканчиваться (конечно, число при этом должно быть минимум 4050-значное).
- **6.** На прямой конечное число отрезков суммарной длиной 2.41 покрашено чёрным, в одной из черных точек сидит кузнечик. Он умеет прыгать по прямой на 1 влево или на $\sqrt{2}$ вправо. Докажите, что он не сможет всё время оставаться на черной части прямой.
- 7. Докажите, что при любом вещественном α число $[\alpha n^2]$ чётно для бесконечного множества натуральных чисел n.
- 8. Подряд записали первые цифры степеней двойки:

1248136125124 ...

Докажите, что различных блоков по 13 цифр подряд в этом ряду ровно 57.