Pontificia Universidad Católica del Perú Escuela de Posgrado Doctorado en Matemáticas

Variedades Complejas TAREA 1 2020-II

<u>Indicaciones Generales:</u> La TAREA 2, que provienen (textualmente) en su mayoría del libro texto de Huybrecht puede ser considerada un control de lectura. Ud. puede subir esta tarea a la plataforma Paideia o enviarla al correo electrónico jcuadros@pucp.edu.pe.

- 1. Show that \mathbb{C}^n does not have any compact submanifolds of positive dimension. (This is in contrast to the real situation, where any manifold, compact or not, can be realized as a submanifold of some \mathbb{R}^N .)
- 2. Prove the **Implicit function theorem:** Let $U \subset \mathbb{C}^m$ be an open subset and let $f: U \to \mathbb{C}^n$ be a holomorphic map, where $m \geq n$. Suppose $z_0 \in U$ is a point such that

$$\det\left(\frac{\partial f_i}{\partial z_j}(z_0)\right)_{1 \le i, j \le n} \ne 0$$

Then there exist open subsets $U_1 \subset \mathbb{C}^{m-n}$, $U_2 \subset \mathbb{C}^n$ and a holomorphic map $g: U_1 \to U_2$ such that $U_1 \times U_2 \subset U$ and $f(z) = f(z_0)$ if and only if $g(z_{n+1}, \ldots, z_m) = (z_1, \ldots, z_n)$.

3. On the projective space \mathbb{P}^n a homogeneous polynomial $F(z_0,\ldots,z_n)$ of degree k is not a function, since its value at a point $[a_0:\ldots:a_n]$ is not unique. However, the zero set in \mathbb{P}^n of a homogeneous polynomial $F(z_0,\ldots,z_n)$ is well defined, since $F(a_0,\ldots,a_n)=0$ if and only if

$$F(ta_0, \dots, ta_n) = t^k F(a_0, \dots, a_n) = 0$$
 for all $t \in \mathbb{C}^\times := \mathbb{C} - \{0\}$

The zero set of finitely many homogeneous polynomials in \mathbb{C}^n is called a **complex projective variety**. A projective variety defined by a single homogeneous polynomial of degree k is called a **hypersurface of degree** k. Show that the hypersurface Z(F) defined by $F(z_0, z_1, z_2) = 0$ is a complex manifold if $\partial F/\partial z_0$, $\partial F/\partial z_1$, and $\partial F/\partial z_2$ are not simultaneously zero on Z(F). (Hint: The standard coordinates on U_0 , which is homeomorphic to \mathbb{C}^2 , are $z = z_1/z_0$, $w = z_2/z_0$. In U_0 , $F(z_0, z_1, z_2) = z_0^k F(1, z_1/z_0, z_2/z_0) = z_0^k F(1, z, w)$. Define f(z, w) = F(1, z, w). Then f and F have the same zero set in U_0 . It is enough to show that zero is a regular value of f, from there, implicit function theorem establishes the existence of charts with holomorphic transition functions.)

REMARK In order to fully understand the statements of the next exercises, first you must understand the content of the following classical result (read Huybrechts text, pages 59-60):

Proposition. Let $G \times X \to X$ be the proper and free action of a complex Lie group G on a complex manifold X. Then the quotient X/G is a complex manifold in a natural way and the quotient map $\pi: X \to X/G$ is holomorphic.

4. Let V be a complex vector space of dimension n+1. As a generalization of the projective space $\mathbb{P}(V)$, which is naturally identified with the set of all lines in V, one defines the **Grassmannian** $\operatorname{Gr}_k(V)$ for $k \leq n+1$ as the set of all k-dimensional subspaces of V, i.e.

$$\operatorname{Gr}_k(V) := \{ W \subset V \mid \dim(W) = k \}$$

In particular, $\operatorname{Gr}_1(V) = \mathbb{P}(V)$ and $\operatorname{Gr}_n(V) = \mathbb{P}(V^*)$

In order to show that $\operatorname{Gr}_k(V)$ is a complex manifold, we may assume that $V=\mathbb{C}^{n+1}$. Any $W\in\operatorname{Gr}_k(V)$ is generated by the rows of a (k,n+1) matrix A of rank k. Let us denote the set of these matrices by $M_{k,n+1}$, which is an open subset of the set of all (k,n+1)-matrices. The latter space is a complex manifold canonically isomorphic to $\mathbb{C}^{k\cdot(n+1)}$. Thus, we obtain a natural surjection $\pi:M_{k,n+1}\to\operatorname{Gr}_k(\mathbb{C}^{n+1})$, which is the quotient by the natural action of $\operatorname{Gl}(k,\mathbb{C})$ on $M_{k,n+1}$

Let us fix an ordering $\{B_1, \ldots, B_m\}$ of all (k, k) -minors of matrices $A \in M_{k,n+1}$. Define an open covering $\operatorname{Gr}_k(\mathbb{C}^{n+1}) = \bigcup_{i=1}^m U_i$ where U_i is the open subset $\{\pi(A) \mid \det(B_i) \neq 0\}$ Note that if $\pi(A) = \pi(A')$, then $\det(B_i) \neq 0$ if and only if $\det(B'_i) \neq 0$, i.e. the open subsets U_i are well-defined. After permuting the columns of $A \in \pi^{-1}(U_i)$ we may assume that A is of the form (B_i, C_i) , where C_i is a (k, n+1-k) -matrix. Then the map $\varphi_i : U_i \to \mathbb{C}^{k \cdot (n+1-k)}, \pi(A) \mapsto B_i^{-1} C_i$ is well-defined.

- a) Verify that $\{(U_i, \varphi_i)\}$ defines a holomorphic atlas of $Gr_k(\mathbb{C}^{n+1})$, such that any \mathbb{C} linear isomorphism of \mathbb{C}^{n+1} induces a biholomorphic map of $Gr_k(\mathbb{C}^{n+1})$.
- b) Determine the dimension of the Grassmannian manifolds.

One can further generalize the notion of Grassmannians to so called **flag manifolds**. Let again V be a complex vector space of dimension n+1 and fix $0 \le k_1 \le k_2 \le \ldots \le k_\ell \le n+1$. Then Flag (V, k_1, \ldots, k_ℓ) is the manifold of all flags $W_1 \subset W_2 \subset \ldots \subset W_\ell \subset V$ with dim $(W_i) = k_i$. E.g. Flag $(V, k) = \operatorname{Gr}_k(V)$. Furthermore, Flag(V, 1, n) is the incidence variety $\{(\ell, H) \mid \ell \subset H\} \subset \mathbb{P}(V) \times \mathbb{P}(V^*)$ of all pairs (ℓ, H) consisting of a line $\ell \subset V$ contained in a hyperplane $H \subset V$. The fibre of the projections Flag $(V, 1, n) \to \mathbb{P}(V)$ $(\ell, H) \mapsto \ell$ and Flag $(V, 1, n) \to \mathbb{P}(V^*)$, $(\ell, H) \mapsto H$ over ℓ respectively H are canonically isomorphic to $\mathbb{P}(V/\ell)$ and $\mathbb{P}(H)$, respectively.

- 5. **Hopf Manifolds** Let \mathbb{Z} act on $\mathbb{C}^n \setminus \{0\}$ by $(z_1, \ldots, z_n) \mapsto (\lambda^k z_1, \ldots, \lambda^k z_n)$ for $k \in \mathbb{Z}$. Show that
 - a) for $0 < \lambda < 1$ the action is free and discrete.
 - b) Show that the quotient complex manifold $X = (\mathbb{C}^n \setminus \{0\}) / \mathbb{Z}$ is diffeomorphic to $S^1 \times S^{2n-1}$. For n = 1 this manifold is isomorphic to a complex torus \mathbb{C}/Γ . For n > 1 Hopf manifolds are examples of complex manifolds that are not symplectic (for this last fact, use Küneth formula and conclude that $H^2(X, \mathbb{R}) = 0$, since X is compact, it follows that is not symplectic...hence non-Kähler...hence non-projective!)
 - c) Show that any Hopf surface contains elliptic curves. (Hint: Observe that when n=2, we obtain something diffeomorphic to $S^1 \times S^3$. Since S^3 is the total space of a Hopf fibration over S^2 with S^1 fibers, the Hopf surface is like an elliptic fibration over S^2 but it is not projective.)

- d) Generalize the construction of the Hopf manifolds by considering the action of \mathbb{Z} given by $(z_1, \ldots, z_n) \mapsto (\lambda_1^k z_1, \ldots, \lambda_n^k z_n)$, where $0 < \lambda_i < 1$. Show that the quotient $(\mathbb{C}^n \setminus \{0\}) / \mathbb{Z}$ is again diffeomorphic to $S^1 \times S^{2n-1}$.
- 6. **Iwasawa manifold.** Let G be the complex Lie group that consists of all matrices of the form $\begin{pmatrix} 1 & z_1 & z_2 \\ 0 & 1 & z_3 \\ 0 & 0 & 1 \end{pmatrix} \in GL(3,\mathbb{C})$. Clearly, G is biholomorphic (as a complex

manifold not as a complex Lie group! because of the different group structure) to \mathbb{C}^3 . The group G (and every subgroup of it) acts on G by multiplication in $GL(3,\mathbb{C})$

Consider the subgroup $\Gamma := G \cap GL(3, \mathbb{Z} + i\mathbb{Z})$. Then $(w_1, w_2, w_3) \in \Gamma$ acts on G by left matrix multiplication:

$$(z_1, z_2, z_3) \mapsto (z_1 + w_1, z_2 + w_1 z_3 + w_2, z_3 + w_3).$$

Show that this action is properly discontinuous. Thus, the quotient $X := G/\Gamma$ is a complex manifold of dimension three. (Note that the first and third coordinates give a holomorphic map $f: X \to \mathbb{C}/(\mathbb{Z}+i\mathbb{Z}) \times \mathbb{C}/(\mathbb{Z}+i\mathbb{Z})$ which fibers are isomorphic to $\mathbb{C}/(\mathbb{Z}+i\mathbb{Z})$. Then locally, it looks like three copies of an elliptic curve (which is not T^6 .)

7. Let ρ be a fifth root of unity. The group $G = \langle \rho \rangle \cong \mathbb{Z}/5\mathbb{Z}$ acts on \mathbb{P}^3 by

$$(z_0: z_1: z_2: z_3) \mapsto (z_0: \rho z_1: \rho^2 z_2: \rho^3 z_3)$$

Describe all fix points of this action. Show that the surface Y defined by $\sum_{i=0}^{3} z_i^5 = 0$ is G-invariant and that the induced action is fix point free. (The quotient X = Y/G is called **Godeaux surface** and historically was the first compact complex surface with $H^i(X, \mathcal{O}) = 0, i = 1, 2$, that is not rational.)