AMSC HW6

Konstantinos Pantazis

November 2020

1 Solution of Exercise 3

We want to prove that the average size of the non-giant component a vertex v belongs to is:

$$\langle s \rangle = 1 + \frac{zu^2}{[1 - S][1 - G_1'(u)]}$$

First, the generating function for the total number of vertices reachable from the given vertex v that does not belong to the giant component if there is one is given by

$$H_1(x) = xG_1(H_1(x)).$$

If there is no giant component then the generating function is given by $H_0(x) = xG_0(H_1(x))$. From the definition of H_0 we have $H_0(1) = 1$ and $H'_0(1) = \langle s \rangle$ (when there is no giant component). Here, note that a giant component may exists so we need to renormalize all probabilities for component sizes in the series $H_0(x)$:

$$h_k \to \frac{h_k}{H_0(1)}$$

Since $1 - S = G_0(u)$ and $u \equiv H_1(1)$ is the smallest non-negative solution of $u = G_1(u)$ then $H_0(1) = 1 - S$. Also,

$$\langle s \rangle = \frac{H_0'(1)}{H_0(1)}.\tag{1}$$

Next, we compute the derivative of H_0 :

$$H'_0(x) = G_0(H_1(x)) + xG'_0(H_1(x))H'_1(x)$$

$$\Rightarrow H'_0(1) = G_0(H_1(1)) + xG'_0(H_1(1))H'_1(1)$$

$$= G_0(u) + G'_0(u)H'_1(1)$$
(2)

Similarly, the derivative of H_1 is

$$H'_1(x) = G_1(H_1(x)) + xG'_1(H_1(x))H'_1(x)$$

$$\Rightarrow H'_1(1) = G_1(H_1(1)) + xG'_1(H_1(1))H'_1(1)$$

$$= G_1(u) + G'_1(u)H'_1(1)$$

Hence,

$$H_1'(1) = \frac{G_1(u)}{1 - G_1'(u)}. (3)$$

Plugging Eqs.(2),(3) into Eq.(1) we get

$$\langle s \rangle = \frac{H'_0(1)}{H_0(1)}$$

$$= \frac{1}{H_0(1)} \Big(G_0(u) + G'_0(u) H'_1(1) \Big)$$

$$= 1 + zu \frac{H'_1(1)}{H_0(1)}$$

$$= 1 + \frac{zu^2}{[1 - S][1 - G'_1(u)]},$$

whence I used $G'_0(u) = zu$, where z is the mean degree. This derives from the fact that $G_1(u) = \frac{G'_0(u)}{G'_0(1)}$ and $G'_0(1) = z$ (Section IIA in the paper).

2 Solution of Exercise 1

The figures of both Ex1 and Ex2 are produced from hw6.m at https://github.com/kpantazis/hw6. To reproduce them you will need to download newt0.m file too (Newton's method for finding roots of f(S) numerically.)

Figure 1: The fraction of vertices S of the giant component over the mean degree z taking values from 0 to 4. Blue line corresponds to finding S numerically using Newton's method. Green line corresponds to finding S using DFS and averaging over 100 Erdos-Renyi random graphs.

Figure 2: The mean size of a non-giant component $\langle s \rangle$ over the (constant) mean degree z ranging from 0 to 4. Blue line corresponds to $\langle s \rangle$ using the optimal solution S from the previous part (Newton's method). Green line corresponds to $\langle s \rangle$ using DFS and averaging over 100 Erdos-Renyi random graphs.

3 Solution of Exercise 2

Figure 3: The average shortest path $\ell(N)$ over different values of the number of vertices N. The mean degree is set z=4. Blue line corresponds to the theoritical value $\ell(N)=\frac{\log N}{\log z}$, while the green line corresponds to $\ell(n)$ by using BFS and averaging the shortest paths of r=100 randomly chosen vertices.