Sets

The Clowder Project Authors

July 22, 2025

This chapter (will eventually) contain material on axiomatic set theory, as well as a couple other things.

Contents

3.1	Sets a	nd Functions	2
	3.1.1	Functions	2
3.2	The E	nrichment of Sets in Classical Truth Values	4
		(-2)-Categories	
		(-1)-Categories	
	3.2.3	0-Categories	9
		Tables of Analogies Between Set Theory and Category The-	
ory	• • • • • • •		9
A	Other	r Chapters	13

9001 3.1 Sets and Functions

0002 3.1.1 Functions

01Y2

01Y3

01Y4

01Y5

01Y6

01Y7

01Y8

0003 DEFINITION 3.1.1.1.1 ► FUNCTIONS

A **function** is a functional and total relation.

0004 NOTATION 3.1.1.1.2 ➤ ADDITIONAL NOTATION FOR FUNCTIONS

Throughout this work, we will sometimes denote a function $f: X \to Y$ by

$$f \stackrel{\text{def}}{=} [\![x \mapsto f(x)]\!].$$

1. For example, given a function

$$\Phi \colon \operatorname{Hom}_{\operatorname{Sets}}(X,Y) \to K$$

taking values on a set of functions such as $\operatorname{Hom}_{\mathsf{Sets}}(X,Y)$, we will sometimes also write

$$\Phi(f) \stackrel{\text{def}}{=} \Phi(\llbracket x \mapsto f(x) \rrbracket).$$

2. This notational choice is based on the lambda notation

$$f \stackrel{\text{def}}{=} (\lambda x. f(x)),$$

but uses a "→" symbol for better spacing and double brackets instead of either:

- (a) Square brackets $[x \mapsto f(x)]$;
- (b) Parentheses $(x \mapsto f(x))$;

hoping to improve readability when dealing with e.g.:

- (a) Equivalence classes, cf.:
 - i. $[[x] \mapsto f([x])]$
 - ii. $[[x] \mapsto f([x])]$

01Y9

iii. $(\lambda[x], f([x]))$

01YA

(b) Function evaluations, cf.:

01YB

i.
$$\Phi(\llbracket x \mapsto f(x) \rrbracket)$$

01YC

ii.
$$\Phi((x \mapsto f(x)))$$

01YD

iii. $\Phi((\lambda x. f(x)))$

01YE

3. We will also sometimes write -, -₁, -₂, etc. for the arguments of a function. Some examples include:

01YF

(a) Writing
$$f(-1)$$
 for a function $f: A \to B$.

01YG

(b) Writing
$$f(-1, -2)$$
 for a function $f: A \times B \to C$.

01YH

(c) Given a function
$$f: A \times B \rightarrow C$$
, writing

$$f(a,-): B \to C$$

for the function $[\![b \mapsto f(a,b)]\!]$.

01YJ

(d) Denoting a composition of the form

$$A \times B \xrightarrow{\phi \times id_B} A' \times B \xrightarrow{f} C$$

by
$$f(\phi(-1), -2)$$
.

01YK

4. Finally, given a function $f: A \rightarrow B$, we will sometimes write

$$ev_a(f) \stackrel{\text{def}}{=} f(a)$$

for the value of f at some $a \in A$.

For an example of the above notations being used in practice, see the proof of the adjunction

$$(A \times - \dashv \operatorname{Hom}_{\operatorname{Sets}}(A, -))$$
: Sets $\underbrace{\overset{A \times -}{\vdash}}_{\operatorname{Hom}_{\operatorname{Sets}}(A, -)}$ Sets,

stated in Constructions With Sets, Item 2 of Proposition 4.1.3.1.4.

0005 3.2 The Enrichment of Sets in Classical Truth Values

0006 3.2.1 (-2)-Categories

0007 DEFINITION 3.2.1.1.1 \triangleright (-2)-Categories

A (-2)-category is the "necessarily true" truth value. ^{1,2,3}

¹Thus, there is only one (-2)-category.

²A (-n)-category for $n=3,4,\ldots$ is also the "necessarily true" truth value, coinciding with a (-2)-category.

³For motivation, see [BS10, p. 13].

0008 3.2.2 (-1)-Categories

0009 DEFINITION 3.2.2.1.1 \triangleright (-1)-Categories

A (-1)-category is a classical truth value.

000A REMARK 3.2.2.1.2 ► MOTIVATION FOR (-1)-CATEGORIES

 $^{1}(-1)$ -categories should be thought of as being "categories enriched in (-2)-categories", having a collection of objects and, for each pair of objects, a Hom-object Hom(x,y) that is a (-2)-category (i.e. trivial). As a result, a (-1)-category C is either:

01D2 | 1. *Empty*, having no objects.

01D3

01D4

01D5

2. Contractible, having a collection of objects $\{a, b, c, \ldots\}$, but with $\operatorname{Hom}_C(a, b)$ being a (-2)-category (i.e. trivial) for all $a, b \in \operatorname{Obj}(C)$, forcing all objects of C to be uniquely isomorphic to each other.

Thus there are only two (-1)-categories up to equivalence:

1. The (-1)-category false (the empty one);

2. The (-1)-category true (the contractible one).

```
<sup>1</sup>For more motivation, see [BS10, p. 13].
```

000B

DEFINITION 3.2.2.1.3 ► THE POSET OF TRUTH VALUES

The **poset of truth values**¹ is the poset ($\{\text{true}, \text{false}\}, \leq$) consisting of:

- *The Underlying Set.* The set {true, false} whose elements are the truth values true and false.
- The Partial Order. The partial order

$$\leq$$
: {true, false} \times {true, false} \rightarrow {true, false}

on {true, false} defined by2

false
$$\leq$$
 false $\stackrel{\text{def}}{=}$ true,

true
$$\leq$$
 false $\stackrel{\text{def}}{=}$ false,

false
$$\leq$$
 true $\stackrel{\text{def}}{=}$ true,

000C

NOTATION 3.2.2.1.4 ► FURTHER NOTATION FOR THE POSET OF TRUTH VALUES

We also write $\{t, f\}$ for the poset $\{true, false\}$.

000D

PROPOSITION 3.2.2.1.5 ► CARTESIAN CLOSEDNESS OF THE POSET OF TRUTH VALUES

The poset of truth values $\{t, f\}$ is Cartesian closed with product given by

$$t \times t = t$$
, $f \times t = f$,
 $t \times f = f$, $f \times f = f$,

²See [BS10, pp. 33–34].

 $[\]mathsf{true} \preceq \mathsf{true} \stackrel{\mathsf{def}}{=} \mathsf{true}.$

¹Further Terminology: Also called the **poset of** (-1)-categories.

²This partial order coincides with logical implication.

and internal Hom $Hom_{\{t,f\}}$ given by the partial order of $\{t,f\}$, i.e. by

$$Hom_{\{t,f\}}(t,t) = t$$
, $Hom_{\{t,f\}}(f,t) = t$,
 $Hom_{\{t,f\}}(t,f) = f$, $Hom_{\{t,f\}}(f,f) = t$,

$Hom_{\{t,f\}}$	t	f
t	t	t
f	t	f

 $^{^1}$ Note that \times coincides with the "and" operator, while $Hom_{\{t,f\}}$ coincides with the logical implication operator.

PROOF 3.2.2.1.6 ► PROOF OF PROPOSITION 3.2.2.1.5

Existence of Products

We claim that the products $t \times t$, $t \times f$, $f \times t$, and $f \times f$ satisfy the universal property of the product in $\{t, f\}$. Indeed, suppose we have diagrams of the form

where the pr_1 and pr_2 morphisms are the only possible ones (since $\{t, f\}$ is posetal). We claim that there are unique morphisms making the diagrams

commute. Indeed:

01YL

01YM

- 1. If $P_1 = t$, then $p_1^1 = p_2^1 = id_t$, so there's a unique morphism from P_1 to t making the diagram commute, namely id_t .
- 2. If $P_1 = f$, then $p_1^1 = p_2^1$ are given by the unique morphism from f to t, so there's a unique morphism from P_1 to t making the diagram commute, namely the unique morphism from f to t.

01YN

3. If $P_2 = t$, then there is no morphism p_2^2 .

01YP

4. If $P_2 = f$, then p_1^2 is the unique morphism from f to t while $p_2^2 = \mathrm{id}_f$, so there's a unique morphism from P_2 to f making the diagram commute, namely id_f .

01Y0

5. The proof for P_3 is similar to the one for P_2 .

01YR

6. If $P_4 = t$, then there is no morphism p_1^4 or p_2^4 .

01YS

7. If $P_4 = f$, then $p_1^4 = p_2^4 = id_f$, so there's a unique morphism from P_4 to f making the diagram commute, namely id_f .

This finishes the existence of products part of the proof.

Cartesian Closedness

We claim there's a bijection

$$\operatorname{Hom}_{\{\mathsf{t},\mathsf{f}\}}(A \times B, C) \cong \operatorname{Hom}_{\{\mathsf{t},\mathsf{f}\}}(A, \operatorname{Hom}_{\{\mathsf{t},\mathsf{f}\}}(B, C)),$$

natural in $A, B, C \in \{t, f\}$. Indeed:

• For (A, B, C) = (t, t, t), we have

$$\begin{split} \text{Hom}_{\{t,f\}}(t\times t,t) &\cong \text{Hom}_{\{t,f\}}(t,t) \\ &= \{\text{id}_{true}\} \\ &\cong \text{Hom}_{\{t,f\}}(t,t) \\ &\cong \text{Hom}_{\{t,f\}}\big(t,\text{Hom}_{\{t,f\}}(t,t)\big). \end{split}$$

• For (A, B, C) = (t, t, f), we have

$$\begin{split} \operatorname{Hom}_{\{t,f\}}(t\times t,f) &\cong \operatorname{Hom}_{\{t,f\}}(t,f) \\ &= \emptyset \\ &\cong \operatorname{Hom}_{\{t,f\}}(t,f) \\ &\cong \operatorname{Hom}_{\{t,f\}}\big(t,\operatorname{\textbf{Hom}}_{\{t,f\}}(t,f)\big). \end{split}$$

• For
$$(A, B, C) = (t, f, t)$$
, we have

$$\begin{split} \text{Hom}_{\{t,f\}}(t\times f,t) &\cong \text{Hom}_{\{t,f\}}(f,t) \\ &\cong \text{pt} \\ &\cong \text{Hom}_{\{t,f\}}(f,t) \\ &\cong \text{Hom}_{\{t,f\}}(f,\text{Hom}_{\{t,f\}}(f,t)). \end{split}$$

• For (A, B, C) = (t, f, f), we have

$$\begin{split} \mathsf{Hom}_{\{t,f\}}(t\times f,f) &\cong \mathsf{Hom}_{\{t,f\}}(f,f) \\ &\cong \{\mathsf{id}_{\mathsf{false}}\} \\ &\cong \mathsf{Hom}_{\{t,f\}}(f,f) \\ &\cong \mathsf{Hom}_{\{t,f\}}\big(t,\mathsf{Hom}_{\{t,f\}}(f,f)\big). \end{split}$$

• For (A, B, C) = (f, t, t), we have

$$\begin{split} \text{Hom}_{\{t,f\}}(f\times t,t) &\cong \text{Hom}_{\{t,f\}}(f,t) \\ &\cong \text{pt} \\ &\cong \text{Hom}_{\{t,f\}}(f,t) \\ &\cong \text{Hom}_{\{t,f\}}\big(f,\text{Hom}_{\{t,f\}}(t,t)\big). \end{split}$$

• For (A, B, C) = (f, t, f), we have

$$\begin{split} \mathsf{Hom}_{\{t,f\}}(f\times t,f) &\cong \mathsf{Hom}_{\{t,f\}}(f,f) \\ &\cong \{\mathsf{id}_{\mathsf{false}}\} \\ &\cong \mathsf{Hom}_{\{t,f\}}(f,f) \\ &\cong \mathsf{Hom}_{\{t,f\}}\big(f,\mathsf{Hom}_{\{t,f\}}(t,f)\big). \end{split}$$

• For (A, B, C) = (f, f, t), we have

$$\begin{split} \operatorname{Hom}_{\{t,f\}}(f\times f,t) &\cong \operatorname{Hom}_{\{t,f\}}(f,t) \\ &\cong \operatorname{pt} \\ &\cong \operatorname{Hom}_{\{t,f\}}(f,t) \\ &\cong \operatorname{Hom}_{\{t,f\}}\big(f,\operatorname{Hom}_{\{t,f\}}(f,t)\big). \end{split}$$

• For (A, B, C) = (f, f, f), we have

$$\begin{split} \mathsf{Hom}_{\{t,f\}}(f\times f,f) &\cong \mathsf{Hom}_{\{t,f\}}(f,f) \\ &= \{\mathsf{id}_{\mathsf{false}}\} \\ &\cong \mathsf{Hom}_{\{t,f\}}(f,f) \\ &\cong \mathsf{Hom}_{\{t,f\}}\big(f,\mathsf{Hom}_{\{t,f\}}(f,f)\big). \end{split}$$

Since $\{t, f\}$ is posetal, naturality is automatic (Categories, Item 4 of Proposition 11.2.7.1.2).

000E 3.2.3 0-Categories

000F DEFINITION 3.2.3.1.1 ► 0-CATEGORIES

A 0-category is a poset.¹

 1 Motivation: A 0-category is precisely a category enriched in the poset of (-1)-categories.

000G DEFINITION 3.2.3.1.2 ▶ 0-GROUPOIDS

A 0-groupoid is a 0-category in which every morphism is invertible.¹

¹That is, a set.

Tables of Analogies Between Set Theory and CategoryTheory

Here we record some analogies between notions in set theory and category theory. The analogies relating to presheaves relate equally well to copresheaves, as the opposite X^{op} of a set X is just X again.

01D6 REMARK 3.2.4.1.1 ➤ BASIC ANALOGIES BETWEEN SET THEORY AND CATEGORY THEORY

The basic analogies between set theory and category theory are summarised in the following table:

Set Theory	Category Theory
Enrichment in {true, false}	Enrichment in Sets
$\operatorname{Set} X$	Category C
Element $x \in X$	$ObjectX \in Obj(\mathcal{C})$
Function $f: X \to Y$	Functor $F \colon \mathcal{C} \to \mathcal{D}$
Function $X \to \{\text{true}, \text{false}\}$	Copresheaf $C \rightarrow Sets$
Function $X \to \{\text{true}, \text{false}\}$	Presheaf $C^{op} \to Sets$

REMARK 3.2.4.1.2 ► ANALOGIES BETWEEN SET THEORY AND CATEGORY THEORY: POW-ERSETS AND CATEGORIES OF PRESHEAVES

The category of presheaves $\mathsf{PSh}(C)$ and the category of copresheaves $\mathsf{CoPSh}(C)$ on a category C are the 1-categorical counterparts to the powerset $\mathcal{P}(X)$ of subsets of a set X. The further analogies built upon this are summarised in the following table:

01D7

Set Theory	Category Theory
Powerset $\mathcal{P}(X)$	Presheaf category $PSh(C)$
Characteristic function $\chi_{\{x\}} : X \to \{t, f\}$	Representable presheaf $h_X \colon C^{\operatorname{op}} \hookrightarrow Sets$
Characteristic embedding $\chi_{(-)} \colon X \hookrightarrow \mathcal{P}(X)$	Yoneda embedding $\c : C^{\sf op} \hookrightarrow PSh(C)$
Characteristic relation $\chi_X(-1,-2): X \times X \to \{t,f\}$	Hom profunctor $\operatorname{Hom}_{\mathcal{C}}(1,2) \colon \mathcal{C}^{\operatorname{op}} \times \mathcal{C} \to \operatorname{Sets}$
The Yoneda lemma for sets $\operatorname{Hom}_{\mathcal{P}(X)}(\chi_x,\chi_U)=\chi_U(x)$	The Yoneda lemma for categories $\operatorname{Nat}(h_X,\mathcal{F})\cong\mathcal{F}(X)$
The characteristic embedding is fully faithful, $\operatorname{Hom}_{\mathcal{P}(X)}(\chi_x,\chi_y)=\chi_X(x,y)$	The Yoneda embedding is fully faithful, $\operatorname{Nat}(h_X,h_Y)\cong\operatorname{Hom}_C(X,Y)$
Subsets are unions of their elements $U = \bigcup_{x \in U} \{x\}$ or $\chi_U = \operatorname*{colim}_{\chi_x \in \mathcal{P}(U)} (\chi_x)$	Presheaves are colimits of representables, $\mathcal{F}\cong\operatorname*{colim}_{h_X\in\int_{\mathcal{C}}\mathcal{F}}(h_X)$

REMARK 3.2.4.1.3 ► ANALOGIES BETWEEN SET THEORY AND CATEGORY THEORY: CATEGORIES OF ELEMENTS

01D8

We summarise the analogies between un/straightening in set theory and category theory in the following table:

Set Theory	Category Theory
Assignment $U \mapsto \chi_U$	Assignment $\mathcal{F}\mapsto\int_{\mathcal{C}}\mathcal{F}$
Un/straightening isomorphism $\mathcal{P}(X) \cong Sets(X, \{t, f\})$	Un/straightening equivalence $DFib(C) \stackrel{\mathrm{eq.}}{\cong} PSh(C)$

REMARK 3.2.4.1.4 ► ANALOGIES BETWEEN SET THEORY AND CATEGORY THEORY: FUNC-TIONS BETWEEN POWERSETS AND FUNCTORS BETWEEN PRESHEAF CATEGORIES

01D9

We summarise the analogies between functions $\mathcal{P}(X) \to \mathcal{P}(Y)$ and functors $\mathsf{PSh}(\mathcal{C}) \to \mathsf{PSh}(\mathcal{D})$ in the following table:

Set Theory	Category Theory
Direct image function $f_! \colon \mathcal{P}(X) \to \mathcal{P}(Y)$	Left Kan extension functor $F_! \colon PSh(C) \to PSh(\mathcal{D})$
Inverse image function $f^{-1} \colon \mathcal{P}(Y) \to \mathcal{P}(X)$	Precomposition functor $F^* \colon PSh(\mathcal{D}) \to PSh(C)$
Codirect image function $f_* \colon \mathcal{P}(X) \to \mathcal{P}(Y)$	Right Kan extension functor $F_* \colon PSh(C) \to PSh(\mathcal{D})$

01DA

REMARK 3.2.4.1.5 ► ANALOGIES BETWEEN SET THEORY AND CATEGORY THEORY: RELA-TIONS AND PROFUNCTORS

We summarise the analogies between functions, relations and profunctors in the following table:

Set Theory	Category Theory
Relation $R: X \times Y \rightarrow \{t, f\}$	Profunctor $\mathfrak{p} \colon \mathcal{D}^{op} \times C \to Sets$
Relation $R: X \to \mathcal{P}(Y)$	Profunctor $\mathfrak{p} \colon C \to PSh(\mathcal{D})$
Relation as a cocontinuous morphism of posets $R \colon (\mathcal{P}(X), \subset) \to (\mathcal{P}(Y), \subset)$	Profunctor as a colimit-preserving functor $\mathfrak{p} \colon PSh(\mathcal{C}) \to PSh(\mathcal{D})$

Appendices

A Other Chapters

Preliminaries

- 1. Introduction
- 2. A Guide to the Literature

Sets

- 3. Sets
- 4. Constructions With Sets
- 5. Monoidal Structures on the Category of Sets
- 6. Pointed Sets
- 7. Tensor Products of Pointed Sets

Relations

- 8. Relations
- 9. Constructions With Relations

10. Conditions on Relations

Categories

- 11. Categories
- 12. Presheaves and the Yoneda Lemma

Monoidal Categories

13. Constructions With Monoidal Categories

Bicategories

 Types of Morphisms in Bicategories

Extra Part

15. Notes

References 14

References

[BS10] John C. Baez and Michael Shulman. "Lectures on *n*-Categories and Cohomology". In: *Towards higher categories*. Vol. 152. IMA Vol. Math. Appl. Springer, New York, 2010, pp. 1–68. doi: 10.1007/978-1-4419-1524-5_1. url: https://doi.org/10.1007/978-1-4419-1524-5_1 (cit. on pp. 4, 5).