

Одеська Політехніка Інститут комп`ютерних систем Кафедра інформаційних систем Дисципліна «Операційні системи»

Тема 2: Керування процесами

Лекція 11: Ядро операційної системи

Олександр А. Блажко, доцент кафедри інформаційних систем, E-mail: blazhko@ieee.org

Одеса, 15 травня 2023 року

Режим роботи ОС

Режим роботи

користувача

Режим роботи

ядра

Для досягнення мети ОС використовується абстрагування роботи користувачів комп'ютера від апаратури комп'ютера

Для цього ОС працює:

- в режимі користувача
- в режимі ядра

Режим користувача дозволяє:

- запускати програмні утиліти ОС для автоматизації роботи, використовуючи інтерфейс:
 - текстовий інтерфейс командного рядку;
 - графічний інтерфейс
- запускати прикладні програми;
- взаємодіяти з абстрактною апаратурою через API (Application Programming Interface)

забезпечення

Ядро операційної системи

Інтерфейс (англ. *Interface* - поверхня розділу, перекриття) — сукупність засобів, методів і правил взаємодії між елементами будь-якої системи Ядро (англ. *Kernel*) — центральна частина ОС, яка реалізовує інтерфейс між прикладними процесами та обладнанням комп'ютера.

Ядро ОС

Ядро ОС (Kernel) – частина ОС, яка:

- керує:
 - пам'яттю (віртуалізація пам'яті);
 - процесором (мульти-задачність);
 - INPUT/OUTPUT пристроями вводу/виводу (драйвери);
 - міжпроцесною комунікацією (IPC Inter Process Communications) при взаємодії паралельних завдань;
 - файловою системою;
 - віртуальною файловою системою (VFS Virtual File System);
 - телекомунікаційною взаємодією між комп'ютерами;
- надає АРІ для програм в режимі користувача

Типи ядер ОС

- Монолітне ядро всі функції ядра як одна велика програма
- Модульне ядро модифікація монолітного ядра, яка не вимагає повної перекомпіляції програмних модулів
- Мікро-ядро всі функції ОС розділені на дві окремі частини
- Гібридне ядро як компроміс між монолітним ядром і мікро-ядром
- Екзо-ядро надає лише функції для взаємодії між процесами і безпечного виділення/звільнення ресурсів.
- Нано-ядро найменше ядро, яке виконує лише обробку апаратних переривань, що генеруються пристроями комп'ютера

Монолітне ядро ОС

Монолітне ядро (Monolithic kernel) — найстаріший спосіб організації роботи ОС:

- всі функції режиму ядра представлені як велика програма;
- всі частини ядра:
 - працюють у одному адресному просторі;
 - використовують загальні структури даних;
- компіляція ядра в об'єктний код виконується окремо для кожного комп'ютера з його особливою апаратурою;

Переваги ядра:

- швидкість роботи;
- складність несанкціонованої зміни.

Модульне ядро ОС

Недоліки монолітного ядра:

- значна частина коду ядра не використовується і лише займає пам'ять;
- зайве витрачання часу на повну перекомпіляцію;
- помилка в роботі одного компоненту може порушити працездатність всієї ОС.

Модуль ядра, який завантажується (Loadable Kernel Module, LKM, Kernel Loadable Modules, KLM, Kernel Modules, KMOD) — об'єктний файл, який містить код, що розширює можливості ядра ОС.

Використовується для оперативної підтримки нових особливостей:

- апаратного забезпечення;
- файлових систем.

Після використання модуль може бути вивантажений для звільнення пам'яті.

Мікро-ядро ОС

Всі функції ОС розділені на дві окремі частини. Мікро-ядро - набір низькорівневих програмних викликів/сервісів, для:

- управління пам'яттю;
- управління процесором;
- управління пристроєм вводу-виводу;
- здійснення *IPC*; Інші функції працюють у просторі користувача як окремі процеси (сервери):
- драйвери пристроїв;
- реалізації файлових систем;
- мережева взаємодія

Приклади мікро-ядерних ОС:

- Symbian OS; Windows CE; QNX; AIX;
- *Minix* створена у 1987 році Ендрю Таненбаумом для освітніх цілей;
- Лінус Торвальдс, досліджуючи *Minix,* почав створювати ядро *Linux*.

Мікро-ядро ОС. Переваги та недоліки

Переваги:

- невеликий розмір ядра;
- простота налагодження компонентів як звичайних процесів;
- надійність, коли помилка в одному з компонентів призведе до завершення лише одного процесу компонента;
- модульність, коли більше компонентів може бути запущено або зупинено за необхідністю;
- гарантована безпека, коли програмний код модуля невеликого розміру можна перевірити на правильність вручну або автоматично

Недолік: високе споживання ресурсів через активне перемикання контексту під час *IPC*

Гібридне ядро ОС

Монолітне ядро і мікро-ядро — дві крайнощі реалізації ядер ОС Змішане ядро має поєднувати переваги монолітного ядра та мікроядра

Гібридне ядро (Hybrid kernel) - модифіковане мікро-ядро, яке для прискорення роботи дозволяє запускати модулі ОС у просторі ядра:

- програмна реалізація *IPC*;
- драйвери пристроїв.

Екзо-ядро. Нано-ядро ОС

Екзо-ядро є спрощеним, мінімалістичним мікро-ядром.

Екзо-ядро ОС надає:

- обмежений набір служб для взаємодії, координації між програмами;
- мінімум функцій для виділення і вивільнення ресурсів, контролю прав доступу до пристроїв комп'ютера.

Екзо-ядро НЕ:

- перемикає між процесами під час доступу до обладнання;
- абстрагує пристрої комп'ютера, чим займається спеціальна програмна бібліотека *libOS* на рівні користувача.

Нано-ядро - мінімалістичне ядро, яке виконує лише обробку апаратних переривань (сигналів), які генеруються пристроями комп'ютера.

Сьогодні нано-ядра використовуються для:

- віртуалізації апаратного забезпечення реальних комп'ютерів;
- реалізації механізму гіпервизора для управління віртуальними ОС.

Одеська Політехніка Інститут комп`ютерних систем Кафедра інформаційних систем Дисципліна «Операційні системи»

Дякую за увагу! Запитання?

Олександр А. Блажко, доцент кафедри інформаційних систем,

E-mail: blazhko@ieee.org

Telegram-канал: t.me/Operating_Systems_IS

Одеса, 15 травня 2023 року