QUIZ de MATHÉMATIQUES N°9

12/05/2017

Durée : 40 minutes. Aucun document n'est autorisé. La calculatrice collège est tolérée.

Veuillez ne pas répondre sur le sujet, mais sur la feuille de réponse prévue à cet effet.

Les questions peuvent présenter une ou plusieurs réponses valides. Une mauvaise réponse enlève des points, une absence de réponse n'a pas d'incidence.

Question 41. Parmi les graphes suivants, lesquels décrivent approximativement le domaine de définition de la fonction $f(x, y) = x^2 + y^2$?

5. aucune des réponses précédentes n'est correcte.

Question 42. Parmi les graphes suivants, lesquels décrivent approximativement le domaine de définition de la fonction $f(x,y) = \frac{xy}{\sqrt{1-x^2-y^2}}$?

5. aucune des réponses précédentes n'est correcte.

Question 43. Parmi les graphes suivants, lesquels décrivent approximativement le domaine de définition de la fonction $f(x,y) = \ln(y-x)$?

5. aucune des réponses précédentes n'est correcte.

Question 44. Parmi les graphes suivants, lequel décrit approximativement la fonction $f(x,y) = x^2 - y^2$?

5. aucune des réponses précédentes n'est correcte.

Question 45. Parmi les graphes suivants, lequel décrit approximativement la fonction $f(x,y) = -y^2$?

5. aucune des réponses précédentes n'est correcte.

2.

Question 46. Parmi les graphes suivants, lequel décrit approximativement la fonction f(x,y) = x + y?

5. aucune des réponses précédentes n'est correcte.

Question 47. Soit $f: \mathbb{R}^2 \to \mathbb{R}$ la fonction définie par :

$$f(x,y) = \begin{cases} \frac{y}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{sinon.} \end{cases}$$

- 1. La fonction f est continue sur \mathbb{R}^2 .
- 2. La matrice hessienne de f est une matrice 3×3 .
- 3. Si $(x,y) \neq (0,0), \frac{\partial f}{\partial x}(x,y) = 0$
- 4. Si $(x,y) \neq (0,0)$, $\frac{\partial f}{\partial x}(x,y) = \frac{-2xy}{(x^2+y^2)^2}$
- 5. aucune des réponses précédentes n'est correcte.

Question 48. Soit f(x,y) = 2xy + 3y + 2 une fonction de \mathbb{R}^2 .

- 1. f est continue dans \mathbb{R}^2 .
- 2. Le graphe de f est un plan.
- $3. \ \frac{\partial f}{\partial x}(x,y) = 2y$
- $4. \ \frac{\partial f}{\partial y}(x,y) = 3$
- 5. aucune des réponses précédentes n'est correcte.

Question 49. On considère une fonction f définie sur \mathbb{R}^2 dont les dérivées partielles sont : $\frac{\partial f}{\partial x}(x,y) = x(x-1)$ et $\frac{\partial f}{\partial y}(x,y) = y$. Parmi les affirmations suivantes lesquelles sont vraies ?

- 1. La fonction f n'admet aucun point critique.
- 2. Le point (0,0) est le seul point critique.
- 3. La fonction f admet deux points critiques.
- 4. La fonction f admet trois points critiques.
- 5. La fonction f admet quatre points critiques.

Question 50. On considère une fonction $f \in \mathcal{C}^2(\mathbb{R})$ dont les dérivées partielles vérifient : $\frac{\partial f}{\partial x}(1,0) = \frac{\partial f}{\partial y}(1,0) = 0$, $\frac{\partial^2 f}{\partial x \partial y}(1,0) = 2$ et $\frac{\partial^2 f}{\partial x^2}(1,0) = \frac{\partial^2 f}{\partial y^2}(1,0) = 1$. Parmi les affirmations suivantes lesquelles sont vraies ?

- 1. La fonction f n'admet aucun point critique.
- 2. Le point (1,0) est un point critique.
- 3. Le point (1,0) est un maximum local.
- 4. Le point (1,0) est un minimum local.
- 5. Le point (1,0) est un point selle.

Question 51. Soit $f \in \mathcal{C}^2$ et $f: D \subset \mathbb{R}^2 \to \mathbb{R}$ et (x_0, y_0) un point stationnaire. Si f est concave dans D:

- 1. tout plan tangent au graphe se trouve au-dessus de la fonction.
- 2. tout plan tangent au graphe se trouve au-dessous de la fonction.
- 3. alors f admet un point minimum global en (x_0, y_0) .
- 4. alors f admet un point maximum global en (x_0, y_0) .
- 5. aucune des réponses précédentes n'est correcte.

Question 52. Soient $f, g \in C^2$ et $f: D \subset \mathbb{R}^2 \to \mathbb{R}$, $g: D \subset \mathbb{R}^2 \to \mathbb{R}$. Parmi les affirmations suivantes lesquelles sont vraies?

- 1. La matrice hessienne bordée de f est une matrice 2×2 .
- 2. Le lagrangien associé à f et g est $L(x,y,\lambda) = f(x,y) \lambda g(x,y), \forall \lambda \in \mathbb{R}$.
- 3. La matrice hessienne bordée de f est symétrique.
- 4. $\frac{\partial^2 L}{\partial \lambda^2}(x,y) = 0$
- 5. aucune des réponses précédentes n'est correcte.

Question 53. Soit $f(x,y) = \frac{2xy}{\sqrt{x^2 + y^2}}$. Au point (0,0), en coordonnées polaires on a :

- 1. $x = r\cos(\theta)$ et $y = r\sin(\theta)$
- 2. $x = 2 + r\cos(\theta)$ et $y = 1 + r\sin(\theta)$
- 3. $f(r, \theta) = r \cos(\theta)$
- 4. $f(r,\theta) = 2r\cos(\theta)\sin(\theta)$
- 5. aucune des réponses précédentes n'est correcte.

Question 54. On considère la fonction f de la question précédente avec f(0,0) = 0. Parmi les suivantes affirmations, lesquelles sont vraies ?

- 1. $\lim_{(x,y)\to(0,0)} f(x,y) = 1$.
- 2. $\lim_{(x,y)\to(0,0)} f(x,y) = 2.$
- 3. $\lim_{(x,y)\to(0,0)} f(x,y) = 0.$
- 4. f peut être prolongée par continuité en (0,0).
- 5. aucune des réponses précédentes n'est correcte.

Question 55. On considère la courbe paramétrée $t \mapsto (2t-3, 3t+1)$ avec $t \in \mathbb{R}$. Elle identifie la paramétrisation

- 1. d'une parabole.
- 2. d'une droite passant par l'origine.
- 3. d'une droite passant par le point (-3,1) et de vecteur directeur (2,3).
- 4. d'une droite passant par le point (2,3) et de vecteur directeur (-3,1).
- 5. aucune des réponses précédentes n'est correcte.

Question 56. On considère la courbe paramétrée $t \mapsto (\cos t, \sin t)$ avec $t \in [0, 4\pi)$. Elle identifie la paramétrisation

- 1. d'une parabole. 2. d'un cercle parcouru une fois. 3. d'un cercle parcouru deux fois.
- 4. d'un cercle parcouru trois fois. 5. aucune des réponses précédentes n'est correcte.

Question 57. On considère une courbe paramétrée $t \mapsto M(t)$ avec $t \in \mathbb{R}$.

- 1. L'application $t \mapsto M(t)$ est injective.
- 2. Le vecteur dérivé ne peut jamais être le vecteur nul.
- 3. On peut avoir une tangente verticale.
- 4. On peut avoir une tangente horizontale.
- 5. aucune des réponses précédentes n'est correcte.

Question 58. On considère une courbe paramétrée $t \mapsto M(t) = (x(t), y(t))$ avec $t \in \mathbb{R}$.

Si
$$\lim_{t \to t_0} x(t) = +\infty$$
 et $\lim_{t \to t_0} y(t) = 0$, alors il y une

- 1. asymptote horizontale d'équation y = 0.
- 2. asymptote verticale d'équation y = 0.
- 3. asymptote verticale d'équation x = 0.
- 4. asymptote oblique.
- 5. aucune des réponses précédentes n'est correcte.

Question 59. On considère une courbe de représentation polaire $M(\theta) = 0 + r(\theta)\vec{u_{\theta}}$.

- 1. Tout point est un point régulier.
- 2. La tangente en $M(\theta) \neq 0$ est $\frac{d\vec{M}}{d\theta}(\theta) = r'(\theta)\vec{u_{\theta}} + r(\theta)\vec{v_{\theta}}$.
- 3. $\frac{d\vec{u}_{\theta}}{d\theta}(\theta) = \vec{v_{\theta}}$.
- 4. $\frac{d\vec{v}_{\theta}}{d\theta}(\theta) = \vec{u_{\theta}}$.
- 5. aucune des réponses précédentes n'est correcte.

Question 60. On considère la courbe d'équation polaire $r = \sqrt{\theta}$, pour $\theta \in [0, +\infty)$. Cette application représente

- 1. un cercle
- 2. une cardioïde
- 3. une spirale
- 4. une cycloïde
- $5.\ \, {\rm aucune}$ des réponses précédentes n'est correcte.