Speculation on the 23-Hz oscillations in ERCOT due to large loads

NERC Inverter-based Resource Performance Subcommittee (IRPS)

August 21st, 2025

Presenter: Lingling Fan, Professor, FIEEE

Collaborators: Farshid Salehi, Yunzhi Cheng, Shahil Shah

Smart Grid Power Systems Lab University of South Florida http://power.eng.usf.edu

DE-EE0011474

SPRING: Stability Prediction for IBR-Penetrated Grids Enabled by Digital Twins

References:

Page 4 – October 25 Event

Page 6 – Mitigation Action – November 1, 2024

Page 8 – Test in Mid December to determine the root cause of oscillation

October 25 Event

- ERCOT observed the load dropped ~300 MW within a single telemetry scan on Oct. 25
- Load had increased consumption to ~330 MW over the previous week
- ERCOT sent RFI to interconnecting TO and requested PMU data from TO of POIB
- PMU data showed no fault preceding drop in consumption; load reduced ~300 MW over 24 second period
- Oscillation magnitude preceding reduction was ~25 MW peak to peak and ~7.5 Hz (later determined true oscillation mode was ~23 Hz from higher resolution data)
- Cause of reduction was reported to be an offsite telecommunication failure that triggered a load control issue

Mitigation Action – November 1, 2024

- ERCOT notified interconnecting TO that control room will give an Operating Instruction to reduce consumption of the load to 120 MW (below level at which oscillation originally appeared in July)
- TO notified load owner and operator that they will need to reduce consumption
- ERCOT met with TO and load owner/operator and agreed that load could be reduced to level that oscillation
 is no longer present in load telemetry and verified with PMU data
- ERCOT gave Operating Instruction and load reduced consumption to 300 MW; oscillations were no longer present in load telemetry

Initial Test – Mid December

- Load owner and operator developed test plan to help determine root cause of oscillation
- Test plan involved increasing load consumption in 2 MW intervals while collecting data
- ERCOT approved test plan and coordinated with load operator to monitor for oscillations during test
- Oscillation was observed when load consumption increased to ~320 MW
- Load ramped back down to 300 MW after test

Remarks on the 23-Hz oscillations

- Real power has the most significant oscillations.
- When the load consumes more than 300 MW, oscillations appear.
- When the old firmware of certain equipment was updated over the holidays, no oscillations observed.
- Initial speculation:
 - This is sort of dynamic voltage stability issue: with more load demand, voltage at the load becomes more sensitive to the real power.
 - It also has to do with some firmware: this could be **power electronic converter's control**.

2017: Meta data centers' oscillations [2]

25 ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=97... Q ₩ ☆ □

Oscillation frequency: in the phase currents, 49 Hz and 71 Hz →

in power, 11 Hz.

"Meta data centers are designed to use the Open Compute Project (OCP) architecture [1]. The electrical system employs 480/277 V or 208/120 AC distribution, with a 48 V DC battery backup unit (BBU) integrated with a server power supply. The 480/277 V AC is fed from the utility grid through a distribution network that starts from a substation and includes medium-voltage (13.2) kV) pad-mounted transformers (PTX), backup generators, and several layers of switchboards and protection panels. Each power supply unit (PSU) receives a single-phase AC input and produces a 12 V or 48 V DC output. A PSU employs an AC-DC converter with power factor correction (PFC) and an isolated DC-DC converter. AC UPSs are also used in some parts of the data center, but the majority of PSUs are supplied directly from the building power system."

Lab replication [2]

$$L(s) = rac{Z_{
m s}(s)}{Z_{
m al}(s)} = Y_{
m al}(s)Z_{
m s}(s)$$

Fig. 15. Comparison of frequency response predicted by $Z_{\rm a}(s)$ with laboratory measurement of a power supply.

Meta's PSU input impedance measurement: in the static abc frame.

- 1. PSU's impedance magnitude dips at two frequency points: 50 Hz and 70 Hz, and shows negative resistance (damping) near those dipping points.
- 2. DC-link dynamics and dc-link voltage control attribute to the negative damping.

Fig. 16. Low-frequency resonance measured in a power supply operating with a high-impedance source.

Architecture Inside Server Racks

The PSUs are the most substantial loads within data centers, incorporating AC/DC converters.

PSU Response to ZVRT for 50 ms

Servers

Power Supply Units (PSUs)

- Under Normal ECO mode the PSUs is the main interface with the grid.
- Detailed EMT modeling of PSUs is critical for reliability risk assessment

J. Sun, M. Xu, M. Cespedes and M. Kauffman, "Data Center Power System Stability — Part I: Power Supply Impedance Modeling," in *CSEE Journal of Power and Energy Systems*, vol. 8, no. 2, pp. 403-419, March 2022,

Analysis

DC-link voltage Control (DVC)

PSU's dc-link voltage control influences real current/power consumption

AC voltage

further dc-link

dynamics

More power consumption reduces AC voltage at the load

V/P becomes more sensitive for weaker grid and higher power

consumption.

DC-link dynamics

At the design stage, the dc-link voltage control design is usually based on the dark green loop only, by assuming that the Vac is stiff. This loop is usually stable without any issue.

In operation, when the grid effect is included (weak grid, high power), the addition of the light green loop may introduce oscillations.

Here we assume that a PLL is used to track the angle. In [2], angle tracking is done differently through directly control the ac current to be in phase with the ac voltage.

Linear system analysis results

- Numerical case: Xg = 0.2, DVC bandwidth 56 Hz.
- Mitigation in converter control
 - Reduce DVC bandwidth so that the open loop gain's magnitude reduces at the 20-Hz region
 - Add PLL's damping
 - Both can be done by firmware upgrade

Reduce DVC bandwidth vs Increase PLL damping

DVC bandwidth: 5.56 Hz PLL 2nd-order filter $\zeta = 0.707$ Step Response

DVC bandwidth: 56 Hz, PLL 2nd-order filter ζ =1

Step Response

To do list:

- 1. EMT simulation;
- 2. More info collection and analysis on the power supply unit control algorithms and how they influence dynamics