Do Not Turn Back

Input file: standard input
Output file: standard output

Time limit: 4 seconds

Memory limit: 1024 megabytes

You are given a simple connected undirected graph G with N vertices numbered from 1 to N and M edges numbered from 1 to M. Each edge $1 \le i \le M$ connects vertices u_i and v_i .

You are given a positive integer K, and you need to find the number of walks of length K from vertex 1 to vertex N such that no edge is used consecutively.

More formally, find the number of sequences $a = (a_0, a_1, \dots, a_K)$ of length K + 1 that satisfy all of the following conditions:

- a_i is an integer between 1 and N for all $0 \le i \le K$.
- $a_0 = 1$ and $a_K = N$.
- There is an edge directly connecting a_{i-1} and a_i in G for all $1 \le i \le K$.
- $a_{i-2} \neq a_i$ for all $2 \leq i \leq K$.

Calculate the number of such sequences and output the answer modulo 998244353.

Input

The input is given from Standard Input in the following format:

- $1 \le N \le 100$
- $\bullet \ N-1 \le M \le \frac{N(N-1)}{2}$
- $1 \le K \le 10^9$
- $1 \le u_i < v_i \le N (1 \le i \le M)$
- G is a simple connected undirected graph.
- All input values are integers.

Output

Print the answer in a single line.

Examples

standard input	standard output
6 8 5	2
1 2	
1 3	
2 3	
2 4	
3 5	
4 5	
4 6	
5 6	
11 11 2023	1
1 2	
2 3	
3 4	
4 5	
5 6	
6 7	
7 8	
8 9	
9 10	
10 11	
1 11	
7 21 1000000000	405422475
1 2	
1 3	
1 4	
1 5	
1 6	
1 7	
2 3	
2 4	
2 5	
2 6	
2 7	
3 4	
3 5	
3 6 3 7	
4 5	
4 5 4 6	
4 6 4 7	
5 6	
5 7	
6 7	

Note

In the first example, $1 \rightarrow 2 \rightarrow 3 \rightarrow 5 \rightarrow 4 \rightarrow 6$ and $1 \rightarrow 3 \rightarrow 2 \rightarrow 4 \rightarrow 5 \rightarrow 6$ both satisfy the conditions.