ASSIGNMENT NUMBER 4, 21.630 Spring 2013

Due Wednesday, February 13, 2013

1. Let A>0 and b and X be continuous and nonnegative on $[t_0,\infty)$. Assume that

$$X(t) \le A + \int_{t_0}^t b(s) \sqrt{X(s)} ds$$

for all $t \geq t_0$ and show that

$$X(t) \le \left(\sqrt{A} + \frac{1}{2} \int_{t_0}^t b(s) ds\right)^2.$$

2. A) Solve

$$R(t) = 1 + \int_0^t \frac{1}{R(s)} ds$$

for R(t).

B) Assume that X is continuous and positive on $[0, \infty)$ and satisfies

$$X(t) \le 1 + \int_0^t \frac{1}{X(s)} ds$$

for $t \ge 0$. Does $X(t) \le R(t)$ follow? Either prove that it does or give a counter example.

3. Assume that f(t,x) = F(t,|x|)x and that solutions of $\dot{X} = f(t,X(t))$ are unique and exist for all t. Define $X(t,t_0,x_0)$ by

$$\frac{dX}{dt} = f\left(t, X(t, t_0, x_0)\right)$$

$$X(t_0, t_0, x_0) = x_0.$$

Show that if R is orthogonal (|Rx| = |x| for all $x \in \mathbb{R}^n$, R linear) then

$$f(t,Rx) = Rf(t,x).$$

Then show that

$$X(t, t_0, Rx_0) = RX(t, t_0, x_0).$$

4. Assume that f(t,x) is continuous and that solutions of $\dot{X}=f(t,X(t))$ are unique and exist for all t. Define $X(t,t_0,x_0)$ by $\dot{X}=f(t,X(t,t_0,x_0))$ and

 $X(t_0,t_0,x_0)=x_0$. Assume that for every $x_0,\lim_{t\to+\infty}X(t,t_0,x_0)$ exists (and is finite). Is $x_0\mapsto\lim_{t\to+\infty}X(t,t_0,x_0)$ continuous? Prove this or show it to be false.