Logica

Lecture 1

Logic • The *systematic* study of *valid* reasoning.

Propositional logic • logic of 'not', 'and', 'or', etc.

Predicate logic • logic of 'for all', 'for some', etc.

Law of Excluded Middle $LEM \bullet$ every statement is either true or false.

Law of Non-Contradiction $LNC \bullet$ no statement is both true and false

Classical logic \bullet both LEM and LNC hold.

Proposition • a statement that is either true or false.

Lecture 2

Set • an abstract collection of things, its *members* or *elements*. We can list its elements $(\mathbb{N} = \{1, 2, 3, ...\})$ or give *defining properties* $(\{x \in A : P(x)\})$

Axiom of Extensionality • For all sets X, Y : X = Y iff for all objects x, $x \in Xiffx \in Y$ (unordered: $\{a,b\}=\{b,a\}$, multiplicity: $\{a,a,b\}=\{a,b\}$)

Axiom of Separation • $\{x : x \in X \& P(x)\}$ is a set. Restricting to sets already known to exist when defining new sets is safe.

Union \bullet $X \cup Y = \{x : x \in X \text{ or } x \in Y\}.$

Intersection \bullet $X \cap Y = \{x : x \in X \text{ and } x \in Y\}$

Difference • $X \setminus Y = \{x \in X : x \notin Y\}$ (fe $\{a,b\} \setminus \{b\} = \{a\}$)

Subset • $X \subseteq Y \Leftrightarrow (x \in X \Rightarrow x \in Y)$

Power set • $\wp(X) = \{Y : Y \subseteq X\}$ fe $\wp(\{1,2\}) = \{\emptyset, \{1\}, \{2\}, \{1,2\}\}$. Axiom: for alls sets X, $\wp(X)$ is a set. **Proof strategies** (i) • If you want to show a *universal claim* holds (for all...), then show that it holds for an *arbitrary* object.

Proof strategies (ii) • If you want to show a conditional claim (if...then...) then show that you can get the "then"-part if you assume the "if"-part.

Recursion rule \bullet Determines what's the n-th place based on the places before and the starting point.

Recursive definition of a set \bullet Give (a) the starting point of the set (b) rules to determine new members based on the old.

Proof by induction \bullet We can easily prove things *about* recursively defined sets. Proof that the statement hold for the first element. Then prove, using recursive rules, it must be true for the next element as well.

Lecture 3

Formal language \bullet given by (a) basic symbols (b) rules for forming wffs.

PropLog Alphabet • (i)letters: $p_0, p_1, ...$ (ii) constant: \bot (iii)connectives: $\neg, \land, \lor, \leftrightarrow, \rightarrow$ (iv) auxiliary: ()

PropLog FOR $set \bullet (i)$ $p_i \in FOR$ (ii) $\bot \in FOR$ (iii) $A \in FOR \Rightarrow \neg A \in FOR$ (iv) $A, B \in FOR \Rightarrow (A \circ B)$

PropLog Parsing Trees \bullet for every $A \in FOR$ there is a unique parsing tree T(A)

Unique Readability Theorem • every formula has one correct way of reading it.

Order • From strong to weak: $\{\neg, \land or \lor, \rightarrow, \leftrightarrow\}$

Occurrence • An *occurrence* of σ in A is a node in T(A) labelled with σ .

Function • A function $f: X \to Y$ is a mapping that assings to every element $x \in X$ exactly one element $f(x) \in Y$. Domain: set of all possible input. Range: set of all possible output. Image: The image of x under f: if $x \in X$ then f(x) = Y.

Recursive definition of a function $RD \bullet$ Define a function by (a)starting point and (b)recursive rules.

Depth • The depth of a formula (aka *logical complexity*) measures the longest branch in T(A), starting at 0. **Reasons for RD** • (i)Infinite sets of value by finite statements (ii) Use recursively defined values on FOR to prove things about FOR.

Lecture 4-5

Semantics • Aim is to characterize the notion of a true sentence (under a given interpretation) and of entailment(implicaties)

Truth functions • Truth-values: $\{0,1\}=2$. Every p_i has a $V(p_i) \in 2$. The connectives express truth-functions.

Interpretation • V : FORM \rightarrow **2** is an interpretation: $V(p_i) = 1$ iff p_i is true; $V(p_i) = 0$ iff p_i is false.

Principle of Compositionality • The meaning of a sentence is a function of the meaning of its parts.

Principle of Truth-Functionality ● The truth-value of a sentence is a function of truth-values of its parts.

Consequence • $A \in FORM$ is a semantic consequence of a set $\Gamma \in FORM$ iff it is impossible that all members of Γ are true, without A being true as well: $\Gamma \models A$.

Logical truth • For $A \in FORM$ iff it's impossible for A to be false: $\models A$.

Therefore • Premisses support the conclusion: $\{A_n\} : B$. This is valid iff $\{A_n\} \models B$.

Functional complete • A set is functionally complete if every truth-function can be expressed as a combination of $(A \circ B)$. There are smaller sets that are functionally complete (fe 'Scheffer Stroke': $\{f|\}$)

Truth tables constructing \bullet (i) write down all p_i and the formula.(ii) Make 2^{p_i} rows. Divide rows and fill with 1/0; repeat.(ii) Work from bottom to top in the parsing tree.

Truth tables Semantics checking • (i) Logical Status Tautology: all 1. Contingency: mixed. Contradiction: all 0. (ii) Equivalence If formulas have the same truth-value, they are locigally equivalent. (iii) Validity $\{A_n\} : B \text{ iff } \{A_n\} \models B \text{ iff } (\{\land A_n\} \to B = \text{tautology}).$ Interpretation by recursion • (i)V(\bot)=0 (ii)V(\lnot A)=1-V(A) (iii)V(A \chartimes B)=min(V(A),V(B)) (iv)V(A \chartimes B)=max(1-V(A),V(B)) (viV(A \chartimes B)=1 if V(A)=V(B), 0 otherwise.

Lecture 6-7

Proof theory • $\Gamma \vdash A$ means there is a proof from Γ to A. Obtain a proof system, such that $\Gamma \vdash A$ iff $\Gamma \models A$. Why **Proof theory?** • (i)It is faster than large truth-tables. (ii) Truth tables don't work for more advanced logics.

Tableaus theorem $\bullet \Gamma \models A$ iff there is no interpretation V, such that $V \models \Gamma \cup \{\neg A\}$.

Tableaus constructing \bullet (i) Write down all members of the set (root) (ii) Apply tableaux rules, first non-branching (iii) Close if there is a branch tohrough both A and \neg A or \bot .(iv) Continue (ii) and (iii) till done. (v) closed iff all branches closed, open otherwise.

Tableaus interpretation \bullet Pick an open branch \mathfrak{B} and set $V(p_i) = 1$ if $p_i \in \mathfrak{B}$, $V(p_i) = 0$ otherwise.

Tableaus proof \bullet A closed tableaux for $\Gamma \cup \{\neg A\}$ is proof for $\Gamma \vdash A$.

Tableaus meta-theory \bullet If $\Gamma \vdash A$ then $\Gamma \models A$ (soundness) and if $\Gamma \models A$ then $\Gamma \vdash A$ (completeness).

Recap of lectures by J.Korbmacher sept 2017 Created by Raoul Grouls, 2017