Московский физико-технический институт Факультет молекулярной и химической физики

Лабораторная работа №2.3.1 «Получение и измерение вакуума»

Выполнил: студент 1 курса 642 группы ФМХФ Кожарин Алексей Сергеевич

Аннотация:

В этом отчёте изложены результаты выполнения лабораторной работы «Получение и измерение вакуума». С помощью установки, состоящей из форвакуумной и высоковакуумной частей мы получаем высокий вакуум ($p \sim 10^{-4}$ торр), а затем измеряем параметры установки: объемы всех ее частей и скорость откачки в стационарном режиме, при ухудшении и улучшении вакуума. Для этого мы создаем искусственную течь.

Цель работы:

- 1) измерение объёмов форвакуумной и высоковакуумной частей установки;
- 2) определение скорости откачки системы в стационарном режиме, а также при ухудшении и улучшении вакуума.

1. Теоретическое введение

По степени разрежения вакуумные установки принято делить на три класса: 1) низковакуумные – до $10^{-2}-10^{-3}$ торр; 2) высоковакуумные – $10^{-4}-10^{-7}$ торр; 3) установки сверхвысокого вакуума – $10^{-8}-10^{-11}$ торр. С физической точки зрения низкий вакуум переходит в высокий, когда длина свободного пробега молекул газа оказывается сравнима с размерами установки (а течение газа становится сугубо молекулярным); сверхвысокий вакуум характерен крайней важностью процессов адсорбции и десорбции частиц на поверхности вакуумной камеры.

В данной работе изучаются традиционные методы откачки механическим форвакуумным насосом до давления 10^{-2} торр и диффузионным масляным насосом до давления 10^{-5} торр, а также методы измерения вакуума в этом диапазоне.

2. Экспериментальная установка

Рис. 1. Схема экспериментальной установки

Установка изготовлена из стекла и состоит из форвакуумного баллона (ΦB), высоковакуумного диффузионного насоса (BH), высоковакуумного баллона (BB), масляного (M) и ионизационного (M) манометров, термопарных манометров (M1 и M2), форвакуумного насоса (ΦH) и соединительных кранов M1, M2, ..., M3 (M4).

Краны. Все краны вакуумной установки — стеклянные. Стенки кранов тонкие, пробки кранов — полые и составляют одно целое с рукоятками. Для герметизации используется вакуумная смазка.

Кран К1 используется для заполнения форвакуумного насоса и вакуумной установки атмосферным воздухом. Трехходовой кран К2 служит для соединения форвакуумного насоса с установкой или атмосферой. Кран К3 отделяет высоковакуумную часть установки от форвакуумной. Кран К4 соединяет между собой колена масляного манометра Краны К5 и К6 стоят по концам капилляра и соединяют его с форвакуумной и высоковакуумной частями установки.

 Φ орвакуумный насос. Устройство, обеспечивающее механическую откачку воздуха до 10^{-2} торр, называется форвакуумным насосом. Его использование необходимо для того, чтобы подготовить подходящие условия для работы диффузионного насоса. Схематически принцип работы форвакуумного насоса изображен на рис. 2.

Рис. 2. Схема форвакуумного насоса. В положениях «а» и «б» пластина «А» засасывает разреженный воздух из откачиваемого объёма, а пластина «Б» вытесняет ранее захваченный воздух в атмосферу. В положениях «в» и «г» пластины поменялись ролями

Диффузионный насос. Откачивающее действие диффузионного насоса основано на диффузии молекул разреженного воздуха в струю паров масла. Попавшие в струю молекулы газа увлекаются ею и уже не возвращаются назад. Это и создает откачивающее действие. Схематически это изображено на рис. 3. Диффузионный насос, используемый в нашей установке, имеет две ступени и соответственно два сопла. Одно сопло вертикальное (первая ступень), второе сопло горизонтальное (вторая ступень).

3. Процесс откачки

Рассмотрим обычную схему откачки. Обозначим через $Q_{\rm д}$ количество газа, десорбирующегося с поверхности откачиваемого объема в единицу времени, через $Q_{\rm n}$ — количество газа, проникающего в единицу времени в этот объем извне — через течи. Будем считать, что насос обладает скоростью откачки W и в то же время сам является

Рис. 3. Схема работы диффузионного насоса

источником газа; пусть $Q_{\rm H}$ — поток газа, поступающего из насоса назад в откачиваемую систему. Будем измерять количество газа $Q_{\rm H}$, $Q_{\rm H}$ и $Q_{\rm H}$ в единицах PV (легко видеть, что это произведение с точностью до множителя RT/μ равно массе газа). Основное уравнение, описывающее процесс откачки, имеет вид:

$$-VdP = (PW - Q_{\pi} - Q_{H} - Q_{H})dt \tag{1}$$

При достижении предельного вакуума:

$$\frac{dP}{dt} = 0$$

так что

$$P_{\rm np}W = Q_{\rm d} + Q_{\rm H} + Q_{\rm H} \tag{2}$$

Отсюда скорость откачки через предельный вакуум:

$$W = \frac{\sum Q_i}{P_{\text{mp}}}$$

Считая $Q_{\text{и}}, Q_{\text{н}}, Q_{\text{д}}$ постоянным, уравнение (1) можно проинтегрировать и, используя (2), получить

$$P - P_{\pi p} = (P_0 - P_{\pi p}) \exp\left(-\frac{W}{V}t\right) \tag{3}$$

где P_0 — начальное давление. Оно велико по сравнению с $P_{\rm np}$, поэтому имеем:

$$P = P_0 \exp\left(-\frac{W}{V}t\right) \tag{4}$$

Постоянная времени откачки $au=rac{V}{W}$ является мерой эффективности откачной системы. Для количества газа, протекающего через трубу в условиях высокого вакуума, справедлива формула:

$$\frac{d(PV)}{dt} = \frac{4}{3}r^3\sqrt{\frac{2\pi RT}{\mu}}\frac{P_2 - P_1}{L}$$
 (5)

Теория и рисунки взяты из [1]

4. Обработка данных

По перепаду давлений в U-образном манометре находим объём форвакуумной и высоковакуумной части по формуле $P_0V_0 = P_1V_1$,

где
$$P_1 = \rho_M g \Delta h$$
, $\rho_M = 0.886 \frac{\Gamma}{\text{см}^3}$, $g = 9.8 \frac{\text{M}}{\text{c}^2}$

$$\Delta h_{\Phi \text{B}} = 14.5 \text{ cm} \rightarrow \boxed{V_{\Phi \text{B}} = 3040 \text{ cm}^3}$$

$$\Delta h_{\text{BB}+\Phi \text{B}} = 10.75 \text{ cm} \rightarrow V_{\text{BB}+\Phi \text{B}} = 4100 \text{ cm}^3 \Rightarrow \boxed{V_{\text{BB}} = 1060 \text{ cm}^3}$$

Минимальное давление, которое можно получить только лишь с использованием форвакуумного насоса, равно $p_{\min} = 1.6 \cdot 10^{-2}$ торр. Для него длина свободного пробега

$$\lambda_1 = \frac{1}{n\sigma} = \frac{kT}{P\pi d^2} = 4.7 \text{ cm}$$

Для высоковакуумной установки можно получить давление $p_{\min}=2.2\cdot 10^{-4}$ торр. Для него $\lambda_2=1.2$ м

Для эксперимента с улучшением вакуума, как следует из формулы (4), строим график $\ln(p/p_0)(t)$:

t, c	μA , м A	$p \cdot 10^{-4}$, Topp	$\ln(p/p_0)$
0	91	9,1	0
2	78	7,8	-0,1541
4	67	6,7	-0,3061
6	59	5,9	-0,4333
8	52	5,2	-0,5596
10	48	4,8	-0,6396
12	44	4,4	-0,7266
14	40	4,0	-0,8219
16	38	3,8	-0,8732
18	35	3,5	-0,9555
20	33	3,3	-1,0143
22	32	3,2	-1,0451
24	30	3,0	-1,1096
26	29	2,9	-1,1435
28	28,5	2,9	-1,1609
30	28	2,8	-1,1786
32	27	2,7	-1,2150
34	26	2,6	-1,2527
36	26	2,6	-1,2527
38	$25,\!5$	2,6	-1,2721
40	25	2,5	-1,2919
42	25	2,5	-1,2919

Таблица 1. Значения, полученные при проведении эксперимента

Видно, что для больших промежутков времени теоретическая зависимость нарушается. Вероятнее всего, это связано с неприменимостью формулы (4) для почти стационарного процесса. Поэтому имеет смысл проводить аппроксимацию по первым точкам. По наклону определяем скорость откачки системы:

$$W = -V \cdot k = 67.8 \frac{\text{cm}^3}{\text{c}}$$

Зная p_{\min} и W, можно определить по (2) $Q_{\rm д} + Q_{\rm H} + Q_{\rm H}$:

$$Q_{\rm m} + Q_{\rm m} + Q_{\rm m} = 1.49 \cdot 10^{-2} \; \frac{\text{Topp} \cdot \text{cm}^3}{\text{c}}$$

По эксперименту с ухудшением вакуума можно судить о $Q_{\mathtt{A}}+Q_{\mathtt{u}}$:

t, c	μA , мА	p, торр ·10 ⁻⁴
0	22	2,2
2 4	26	2,6
4	29	2,9
6	32	3,2
8	34,5	3,45
10	38	3,8
12	40,5	4,05
14	43	4,3
16	46	4,6
18	49	4,9
20	51,5	5,15
22	54	5,4
24	57	5,7
26	59,5	5,95
28	62,5	6,25
30	65	6,5
32	68	6,8
34	71	7,1
36	73	7,3
38	76,5	7,65
40	78,6	7,86
42	82	8,2
44	84	8,4
46	86	8,6
48	89	8,9

Таблица 2. Табличные данные и значения, полученные при проведении эксперимента

Улучшение вакуума -100 10 20 30 40 50 0,2 ln(p/p0)0 $k=-0.064 c^{-1}$ -0,2-0.80 -1010 20 30 40 50

Рис. 4. Эксперимент с улучшением вакуума.

t, c

Пользуясь формулой
$$V_{\text{вв}}\frac{dP}{dt}=Q_{\text{д}}+Q_{\text{и}},$$
 находим $\boxed{Q_{\text{д}}+Q_{\text{и}}=1.46\cdot 10^{-2}\frac{\text{торр}\cdot\text{см}^3}{\text{c}}}$ Отсюда сразу $\boxed{Q_{\text{н}}=3\cdot 10^{-4}\frac{\text{торр}\cdot\text{см}^3}{\text{c}}}$ По полученным данным можно посчитать пропускную способность трубы:

$$C_{\rm Tp} = \left(\frac{dV}{dt}\right)_{\rm Tp} = \frac{4r^3}{3L}\sqrt{\frac{2\pi RT}{\mu}} = 2.18 \cdot 10^{-1} \frac{{\rm M}^3}{{\rm c}}$$
 (6)

Видно, что $W \ll C_{\scriptscriptstyle \mathrm{Tp}}$ — газ сильно разрежен.

Для эксперимента с искусственной течью через капилляр воспользуемся формулой (5):

$$\frac{d(PV)}{dt} = 1.29 \cdot 10^{-2} \frac{\text{Topp·cm}^3}{\text{c}}$$

Попробуем пойти несколько в обратном направлении. Зная $P_{\rm пр},\,P_{\rm уст}$ и $\frac{d(PV)}{dt},\,$ можно составить систему:

$$\begin{cases} P_{\pi p}W = Q_1 \\ P_{ycr}W = Q_1 + \frac{d(PV)_{\text{капп}}}{dt} \end{cases}$$

Разрешая её относительно W и $Q_1 = Q_{\rm д} + Q_{\rm H} + Q_{\rm H}$, получаем:

$$W=61.4 \; rac{
m cm^3}{
m c}$$
 $Q_1=1.35 \cdot 10^{-2} \; rac{
m topp\cdot cm^3}{
m c}$ $(3 десь мы учли, что, $p_u=4.3 \cdot 10^{-4} \; mopp)$$

Рис. 5. Эксперимент с ухудшением вакуума.

5. Заключение

В данной работе рассматривалось получение вакуума в две стадии. После измерения параметров установки были получены следующие значения:

$$p_{\text{пред}} = 2.2 \cdot 10^{-4} \text{ торр}$$
 $W = 67.8 \frac{\text{см}^3}{\text{c}}$
 $Q = 1.49 \cdot 10^{-2} \frac{\text{торр} \cdot \text{см}^3}{\text{c}}$

Список литературы

[1] Гладун А.Д. Лабораторный практикум по общей физике: Учебное пособие. В трех томах. Т. 1. Термодинамика и молекулярная физика. Москва: МФТИ, 2012.