

Ameba RTL8195am + ALC5680 智能语音 2-MIC 开发工具包

(百度 DuerOS 用户指南)

Ver1.0

Realtek Semiconductor Corp.

No. 2, Innovation Road II, Hsinchu Science Park, Hsinchu 300, Taiwan Tel.: +886-3-578-0211. Fax: +886-3-577-6047

www.realtek.com.tw

COPYRIGHT

© 2017 Realtek Semiconductor Corp. All rights reserved. No part of this document may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language in any form or by any means without the written permission of Realtek Semiconductor Corp.

DISCLAIMER

Realtek provides this document "as is", without warranty of any kind, neither expressed nor implied, including, but not limited to, the particular purpose. Realtek may make improvements and/or changes in this document or in the product described in this document at any time. This document could include technical inaccuracies or typographical errors.

TRADEMARKS

Realtek is a trademark of Realtek Semiconductor Corporation. Other names mentioned in this document are trademarks/registered trademarks of their respective owners.

USING THIS DOCUMENT

This document is intended for the hardware and software engineer's general information.

Though every effort has been made to ensure that this document is current and accurate, more information may have become available subsequent to the production of this guide. In that event, please contact your Realtek representative for additional information that may help in the development process.

目 录

1.	概述		6
2.	ALC5680 诩	『估板	6
,	2.1. 开发	板清单	6
,	2.2. 硬件	描述	7
	2.2.1.	供电	7
	2.2.2.	控制	7
	2.2.3.	音频接口	7
	2.2.4.	复位	7
	2.2.5.	麦克风	7
	2.2.6.	扬声器	8
	2.2.7.	SPI flash	8
,	2.3. 引脚		8
,	2.4. 搭建	并连接至 Realtek Ameba 开发板	9
,	2.5. 参考	原理图	10
3.	Ameba 评估	5板	11
,	3.1. 系统	需求	11
,	3.2. 硬件	框图	11
,	3.3. 引脚	说明	13
•	3.4. 天线	硬件连接	14
,	3.5. 外围	接口支持	15
	3.5.1.	引脚功能列表组合	15
	3.5.2.	外为接口描述	15
•	3.6. 硬件	配置	16
	3.6.1.	CMSIS-DAP	
	3.6.2.	J-Link/JTAG	
	3.6.3.	DAP 模式	
		环境设置	
		获得 IAR	
4		器设置	
	4.3.1.	CMSIS-DAP	
	4.3.2.		
		编译并下载代码	
		使用示例代码	
		ALC5680 固件	
		搭建	
		ALC5680 DSP bin 文件	
		TFTP 服务器	
		5680 DSP 固件升级	
	5.4.1.	编辑 Ameba 固件	
	5.4.2.	联接 Ameba 至 AP	
	5.4.3.	通过 TFTP 升级 ALC5680 DSP f/w	
		语音触发和语音输出功能	
6.	沁川 Patch I	DuerOS 到 Ameba SDK	34

6.1.	下载 Ameba SDK	.34
	下载 DuerOS Patch	
	添加 Patch DuerOS 到 SDK	34

图片

图 1	ALC5680 EVK 顶视图和开发板清单	6
	ALC5680 EVK 底视图	
	ALC5680 EVK 引脚	
图 4	ALC5680 EVK、Ameba EVK 和 MIC 电路板之间的连接	9
图 5	ALC5680 EVK 与电动扬声器的连接	9
图 6	ALC5680 EVK 参考原理图	11

REVISION HISTORY

Revision	Release Date	Summary
1.0	2017/6/30	Ver1.0 release

1. 概述

文档介绍了 ALC5680 评估板的特点,包括开发板信息、硬件描述、引脚信息、与 Realtek Ameba RTL8195 Arduino 无线开发板的连接方式、原理图及固件升级流程。ALC5680 评估板设计用于与 Realtek Ameba RTL8195 Arduino 无线开发板的互联,与 Realtek Ameba Rtl8195 Arduino 无线开发板 共同作为开发套件以便于建立语音控制的 IOT 应用原型。

2. ALC5680 评估板

2.1. 开发板清单

- ALC5680
- 2-MIC 麦克风模块
- 立体声输出
- SPI Flash
- LED(唤醒词侦测指示, 唤醒词**小度小度**)

图 1 ALC5680 EVK 顶视图和开发板清单

图 2 ALC5680 EVK 底视图

2.2. 硬件描述

2.2.1. 供电

Realtek Ameba RTL8195 Arduino 无线评估板通过 J22 对 ALC5680 评估板进行供电。

2.2.2. 控制

Ameba 通过 J21 的 I2C 接口对 ALC5680 进行控制。

2.2.3. 音频接口

ALC5680 和 Ameba 之间的音频接口是通过 J21 的 I2S 接口。

2.2.4. 复位

ALC5680 评估板通过 SW1 对 ALC5680 进行硬件复位, 并通过 J19 通知 Ameba。

2.2.5. 麦克风

麦克风模块通过 JM3 与 ALC5680 评估板相连接。

2.2.6. 扬声器

电动扬声器通过 PH1 与 ALC5680 评估板相联接。

2.2.7. SPI flash

开发板上载有 4M 字节(32位) SPI Flash,并支持固件升级。

2.3. 引脚

图 3 ALC5680 EVK 引脚

2.4. 搭建并连接至Realtek Ameba开发板

图 4 ALC5680 EVK、Ameba EVK 和 MIC 电路板之间的连接

图 5 ALC5680 EVK 与电动扬声器的连接

2.5. 参考原理图

图 6 ALC5680 EVK 参考原理图

3. Ameba 评估板

3.1.系统需求

- Windows PC (XP, Vista, 7)
- Windows PC (XP, Vista, 7)
- USB type A 至 Micro-B USB 连接线 x 1
- RS-232 to UART 转接板(debug) x 1, JTAG 连接线 x1 (option)

3.2. 硬件框图

- 芯片: RTL8195AM
- 模块 HDK 版本: HDK-AM95A03_1V0

● 开发板 HDK 版本: RTL-AMEBA_DEV01_1v1

3.3. 引脚说明

3.4.天线硬件连接

■ I-PEX/U.FL 连接器: R206

■ 外接天线: R207

■ PCB 天线: R208

3.5.外围接口支持

● 调试 UART: GPIOB_[0..1]

• JTAG: GPIOE_[0..4]

3.5.1. 引脚功能列表组合

● 连接组合支持多功能复用。

- 例如: 如果UART0生效,则采用GPIOA_6(Rx), GPIOA_7(Tx), GPIOA_3(RTS) 和 GPIOA_5(CTS)。GPIOA_3(RTS) and GPIOA_5(CTS)不能用作其它功能。
- 例如:如果 PWM 占用 GPIOC_0, GPIOC_1, GPIOC_2, GPIOC_3, GPIOC_1(PWM1)和 GPIOC_2(PWM2) 不能用作其它功能.

name	JTAG	SDD	SDH	MII	UART Group	12C Group	SPI Group	I2S Group	PCM Group	WL_LED	PWM	ETE	WKDT	GPIO INT	Default State	SCHMT
IOA_0		D2	D2	RX_Ck	UART2_IN		SPI1_MISO							GPIO_INT	PH	0
IOA_1		D3	D3	RXD0	UART2_CTS		SPI1_MOSI							GPIO_INT	HI	
IOA_2		CMD	CMD	RXD1	UART2_RTS		SPI1_CLK								PH	0
IOA_3		CLK	CLK	RXD2	UARTO_RTS			SPI							PH	0
IOA_4		D0	D0	RXD3	UART2_OUT		SPI1_CS								PH	
IOA_5		D1	D1	RXDV	UARTO_CTS	0711							D_SBY0		PH	
IOA_6		INT	CD		UARTO_IN										PH	
IOA_7		סום	WP	COL	UARTO OUT	4									HI	
IOB_0	2	DID			LOG_OUT							ETE0	D_SLP0		HI	
IOB_1			Jeb	ug co	nneove		/12C			WL_LED0		ETE1			PH	
IOB_2						I2C3_SCL						ETE2			HI	0
IOB_3						I2C3_SDA						ETE3		GPIO_INT	PH	
IOB_4							$\overline{}$			WL_LED0	PWM0			GPIO_INT	PH	
IOB_5							\Box		126	WL_LED0	PWM1				PH	0
IOC_0				TXD2	UARTO_IN		SPIO_CSO	12S1_WS	PCM1_SYNC		PWM0	ETE0			HI	
IOC_1				TXD1	UARTO_CTS		SPIO_CLK	IZS@ OUK	PCM1_CLK		PWM1	ETE1		GPIO_INT	HI	0
IOC_2	JTAG			TXD0	UARTO_RTS		SPI0_MOSI	2ST_SD_TX	PCM1_OUT		PWM2	ETE2 _D 1	۸/۸/		HI	
IOC_3	אונ			TX_CK	UARTO_OUT		SPI0_MISO	2S1_MCK	PCM1_IN		PWM3	ETE3	V 1V1	GPIO_INT	HI	0
IOC_4			UA	TXT 2		I2C1_SDA	SPIO_CS1	I2S1_SD_RX						GPIO_INT	HI	
IOC_5				TXEN		I2C1_SCL	SPIO_CS2							GPIO_INT	HI	0
IOD_4				MDC	UART2_IN		SPI1_CS		PCM1_SYNC		PWM0	ETE0		GPIO_INT	PH	0
IOD_5				MDIO			SPI1_CLK		PCM1_CLK			_	D_SBY2	GPIO_INT	PH	0
IOD_6					UART2_RTS	I2C1_SCL	SPI1_MOSI	I2SO_SD_RX	PCM1_OUT		PWM2	ETE2		GPIO_INT	PH	0
OD_7					UART2_OUT		SPI1_MISO		PCM1_IN		PWM3	ETE3		GPIO_INT	PH	0
	TRST				UARTO_OUT	I2C2_SCL	SPIO_CSO	12S0_WS	PCM0_SYNC		PWM0				PH	0
	TDI						SPIO_CLK	I2SO_CLK	PCM0_CLK		PWM1			GPIO_INT	PH	0
IOE_2	TDO				UARTO_CTS	I2C3_SCL	SPI0_MOSI	I2SO_SD_TX	PCM0_OUT		PWM2			GPIO_INT	PH	0
	TMS				UARTO_IN	I2C3_SDA	SPI0_MISO	I2SO_MCK	PCM0_IN		PWM3		D_SBY3	GPIO_INT	PH	0
	CLK					I2C3_SCL	SPIO_CS1								PH	0
IOE_5						I2C3_SDA	SPIO_CS2							GPIO_INT	PH	0

3.5.2. 外为接口描述

		Baud rate
	UART_LOG	38400 Hz
UART	UART0	4 MHz
	UART2	4 MHz
		Clock rate
	SPI0_Master	20.8 MHz
SPI	SPI0_Slave_TRx	4.1 MHz
SPI	SPI1_Master	41.6 MHz
	SPI1_Slave_TRx	
		Clock rate
	Standard mode	0~100 kb/s
I2C	Fast mode	<400 kb/s
	High-speed mode	<3.4Mb/s

3.6. 硬件配置

3.6.1. CMSIS-DAP

RTL-AMEBA_DEV01 支持 CMSIS-DAP 调试器。需要首先安装"串口转 USB 驱动",

串口转 USB 驱动见 tools\serial_to_usb\mbedWinSerial_16466。

采用 Micro-USB 连接开发板至主机。

3.6.2. J-Link/JTAG

将 JTAG 和 log UART 连接器紧密连接至 HDK 板,并通过间距 2.54mm 的 2x5pins 连接器相连。建议在底部连接接头。用户可以从顶部连接扩展板。

杜邦线或2.54mm 2x5针连接器。

开机(禁用DAP模式)

按住并保持tgt_nreset按钮(J24,红色圈出)然后按PDN按钮(J13,蓝色圈出)。开机后 松开按钮。

3.6.3. DAP 模式

在DAP模式下,可更新DAP固件。

按住并保持TGT_NRESET按钮(J24,红色圈出)然后按预置键(J17,蓝色圈出)。 然后DAP模式窗口会出现。

进入 DAP 模式时, DAP 窗口将出现。

4. Ameba 软件环境设置

4.1.简介

本章举例说明在 IAR SDK 环境下如何编译 Realtek 低功率 Wi-Fi 软件。

4.2.如何获得 IAR

IAR 提供 IDE 环境用于代码编译,下载和调试。检查网站 http://www.iar.com/上的 "IAR Embedded Workbench",可下载试用版本。需要采用的 IAR 版本不低于 v7.20 以支持 CMSIS-DAP。

4.3. 调试器设置

This board supports both CMSIS-DAP debugger and J-Link.开发板同时支持 CMSIS-DAP 调试器和 J-Link。

4.3.1. CMSIS-DAP

Ameba 设备板 2v0 支持 CMSIS-DAP 调试器。首先需安装"串行转 USB 驱动"。串口转 USB 的驱动在路径 tools\serial_to_usb\mbedWinSerial_16466 下可找到。

用 micro-USB 联机线将设备板连接至 PC 主机。

安装之后,将设备板连接至 PC, mbed 串口设备将在设备管理器中显示。

4.3.2. J-Link/JTAG

板子配置成 CMSIS-DAP 模式。要使用 J-Link 调试程序,请按照再下一节过程来处理。

硬件配置

将 JTAG 和 log UART 连接器紧密连接至 HDK 板,并通过间距 2.54mm 的 2x5pins 连接器相连。建议在底部连接接头。用户可以从顶部连接扩展板。

p.s. RTL-AMEBA_DEV_3V0 支持 J-Link

2.54mm 2x5pins 连接器 (或使用杜邦线)

IAR 设置

在 Project → Options → Debugger → Setup → Driver 中,将 IAR 工程的设置从 CMSIS-DAP 改为 J-Link/J-Trace,选择 OK 后可开始 JTAG 调试。

上电

注意,某些 J-Link 调试器可能需要禁用 CMSIS-DAP。

有两种方法可用来禁用 CMSIS-DAP 功能。一种是按住并保持按钮(红色圈出)状态,然后插入电源以禁用 CMSIS-DAP 功能,开机后松开按钮。另一个是按住并保持按钮(红色圈出)状态,然后按下按钮(黄色圈出)以禁用 CMSIS-DAP 功能。如果 CMSIS-DAP 功能被成功禁用,LED(D4和D5)将会灭掉。

注意:要复位主芯片,建议按下复位按钮(绿色圈出),而不是插拔电源线。

4.4.如何编译并下载代码

步骤 1: 打开 IAR Workbench

步骤 2: 打开项目,点击 File → Open → Workspace

步骤 3: 在 project\project_name_xxxx\EWARM-RELEASE 中选择 project.eww

步骤 4: 编译项目,点击 Project → Rebuild All

步骤 5: 下载代码,点击 Project → Download → Download 激活当前程序。

固件下载后,点击 reset 按钮以重启系统。

如何调试

设置断点。要逐步调试或跟踪代码,点击 Project → Download 然后开始调试。

4.5.如何使用示例代码

在文件夹"project\project_name_xxxx\ example_sources\"有多个外部设备的应用案例,可以复制粘贴例子中的"inc"和"src"到项目文件夹中。

例如,要使用i2c的示例代码,可以复制

"project\project_name_xxxx\example_sources\i2c\"下的"src" and "inc"。

5. Ameba 升级 ALC5680 固件

5.1. 环境搭建

- 确保网络相互连接。请按照下列步骤进行确认。
- 连接 PC 到 AP: 通过以太网或 Wi-Fi 都可以。
- 使用 AT 命令连接 Ameba + DSP 到 AP。

ATW0=SSID

ATW1=password

ATWC

ATW? to show IP information:

● PC can ping AmebaPC 可以 Ping Ameba

```
C: Wsers changyi.tsai>ping 192.168.31.179 -t

Ping 192.168.31.179 (使用 32 位元組的資料):
回覆自 192.168.31.179: 位元組=32 時間=108ms TTL=255
回覆自 192.168.31.179: 位元組=32 時間=114ms TTL=255
同覆自 192.168.31.179: 位元組=32 時間=35ms TTL=255
```

● Ameba 可以 ping 通 PC

```
#ATWI=192.168.31.180
[ATWI]: _AT_WLAN_PING_TEST_

[ping_test] PING 192.168.31.180 32(60) bytes of data

[ping_test] 32 bytes from 192.168.31.180: icmp_seq=1 time=3 ms
[ping_test] 32 bytes from 192.168.31.180: icmp_seq=2 time=6 ms
[ping_test] 32 bytes from 192.168.31.180: icmp_seq=2 time=3 ms
```

5.2. 生成ALC5680 DSP bin文件

- 将 DSP dat 文件放入 dsp_fw_combine_one_tool 文件夹下。
- 将文件名称改为 All in one.dat。
- 在相同路径下运行 alc_fw_upgrade.bat。
- 生成 alc_fw_upgrade.bin
- The binary data will add 12 bytes in file. Please see the below picture. 二进制数据文件中将多添加 12 个字节。请看下列图片。

5.3. 打开TFTP服务器

- 执行 TFTP
- 浏览 alc_fw_upgrade.bin(不能改变文件名称)
- 关掉 PC 的防火墙或允许 TFTP 工具运行。

5.4. ALC5680 DSP固件升级

5.4.1. 编辑 Ameba 固件

- 启用标志位并修改相关参数。
 - 1. 启用 platform_opt.h 中的如下示例标志位

```
/*Foe alc audio dsp firmware upgrade */
#define CONFIG_EXAMPLE_ALC_DSP_FW_UPGRADE
```

2. 在 example_alc_fw_dsp_upgrade.c 中修改 TFTP 服务器的 IP

```
#define ALC_DSP_FIRMWARE_NAME "alc_fw_upgrade.bin"
#define TFTP_HOST_IP_ADDR "192.168.1.100"
#define TFTP_HOST_PORT 69
```

3. 检查 flash 中是否存在 DSP 固件,如果固件存在,不作更新处理。如果打算强制升级 固件,设置如下定义的标志位。(DSP 升级完成后,需要禁用该标志位,否则将会强制 再次升级),建议添加一个按钮或使用 AT 命令替代强制升级。

```
#define FORCE UPGRADE 1
```

4. 编译完成后,将文件烧入 Ameba Flash。

5.4.2. 联接 Ameba 至 AP

● 网络联接:

可参考文档 AN0025 Realtek at command。

#ATW0=SSID

#ATW1=passphrase

#ATWC

#ATW? 显示 IP 信息:

5.4.3. 通过 TFTP 升级 ALC5680 DSP f/w

- 连上 AP 路由器后,升级过程即开始。
- 首先擦除 flash,将持续几秒钟的时间。
- 升级 DSP 的 f/w:

● 检查 CRC:

```
init_thread(53), Available heap 0x90f0wifi is connected
GPIO RESET
ALC568W_FW_UPGRADE_
codec id = 6385
status state = 1fc
VERSION:SESAMEE
The firmware already exist and force upgrade now...
Erase .... 1
Erase .... 1
Erase .... 1
Erase finish 0
addr 0x700000000 = ffffffff
codec id = 6385
status state = 1fc
NON-DEFINE VERSION ADDR=0x7000A004 ff
upgrade file name = alc_fw_upgrade.bin
start to tftp client
The IP port pair for the host is: IP:192.168.1.100 Port:69
recv file
tftp_client_get
codec size = 4cf04 checksum = 217633c version = 0
alc_addr_offset = 7004cf04 alc_len_offset = 4cf04
Last chunk detected (file chunk size: 272). exiting while loop
sending ack # 0616 (length: 4)
The Client has sent an ACK for packet
tget finish
Firmware upgrade successful
addr 0x70000000 = 6060000
checksum start

B3%
```

● 升级过程结束:

| checksum start | Checksum successful | bin_checksum 217633c alc_checksum = 217633c count = 315140 | GPIO RESET | codec id = 6385 | status state = 1fc | VERSION:SESAMEE

5.5. 验证语音触发和语音输出功能

运行 i2s_alc5680_voice_recognition 周边设备用例来验证该功能。 注意到 AM8711 没有 LED 触发响应功能,LED 控制引脚用于 AM8195。

- 1) 说出唤醒词,将会看到 LED 闪烁并打印语音中断 log 信息。
- 2) 如果想从语音输出线中听到语音,要在耳机插孔中插入耳机或扬声器。

6. 添加 Patch DuerOS 到 Ameba SDK

6.1. 下载 Ameba SDK

可到此处下载最新的 Ameba SDK sdk-ameba-v4.0a_without_NDA.zip: https://www.amebaiot.com.cn/ameba-sdk-download/

6.2. 下载DuerOS Patch

可到此处下载最新的 DuerOS patch 4.0a_patch_dueros(v01).zip: https://www.amebaiot.com.cn/ameba-sdk-faq/

6.3. 添加Patch DuerOS 到 SDK

解压缩 sdk-ameba-v4.0a_without_NDA.zip and 4.0a_patch_dueros(v01).zip, 复制 the 4.0a_patch_dueros(v01) 目录下的所有文件到 sdk-ameba-v4.0a_without_NDA 目录下

打开 IAR project, sdk-ameba-v4.0a_without_NDA\project\realtek_ameba1_va0_example\ EWARM-RELEASE\Project.eww, 依第 4 章描述,开始构建和下载 image 到 Ameba1.

更详细的说明请参考文件

UM0150 Realtek Ameba dueros user guide.cn.pdf of the 4.0a_patch_dueros(v01) directory.