Stelling 1 (Taylor's Formula over \mathbb{R}) Let $E \subseteq \mathbb{R}^n$ be open and let $\overline{B_r(a)} \subseteq E$. Suppose $f \in \mathcal{C}^k(E)$. Then

$$f(x) = \sum_{|\alpha| \leqslant k} \frac{D^{\alpha} f(a)}{\alpha!} (x - a)^{\alpha} + \sum_{|a| = k} h_{\alpha}(x) (x - a)^{\alpha}$$

for any $x \in B_r(a)$, where α is a multi-index, and $h_\alpha : B_r(a) \to \mathbb{R}$ such that $h_\alpha(x) \to 0$ when $x \to a$ for all $|\alpha| = k$.

Opmerking Observe

$$|(x-a)^{\alpha}| = \left| \prod_{i=1}^n \left(x_i - a_i \right)_i^{\alpha} \right| = \prod_{i=1}^n \left| x_i - a_i \right|_i^{\alpha} \leqslant |x-a|^{|\alpha|}$$

Therefore we have that

$$\left| \sum_{|\alpha|=k} h_{\alpha}(x) (x-a)^{\alpha} \right| \leqslant |x-a|^k \sum_{|\alpha|=k} |h_{\alpha}(x)|.$$

Bewijs (van Taylor's Formula over \mathbb{R}) Let $x \in B_r(a)$ and define $[a,x] = \{\varphi(t) \mid t \in [0,1]\}$, where $\varphi : [-1,1] \to \mathbb{R}^n$ is defined by $\varphi(t) = a + t(x-a)$. Now let $g(t) = f(\varphi(t))$ so that g(0) = f(a) and g(1) = f(x). Thus $g \in \mathcal{C}^k([-1,1])$, meaning

$$g(1) = g(0) + \frac{1}{1!}g'(0) + \dots + \frac{1}{(k-1)!}g^{(k-1)}(0) + \frac{1}{k!}g^{(k)}(c)$$

for some $c \in [0, 1]$. As shown previously, we have

$$f(x) = \sum_{|\alpha| \leqslant k-1} D^{\alpha} f(\varphi(t)) \cdot (x-a)^{\alpha}$$

for m = 1, ..., k by the Mixed Derivative Theorem. This implies

$$f(x) = \sum_{|\alpha| \leqslant k-1} \frac{D^{\alpha} f(a)}{\alpha!} (x-a)^{\alpha} + \sum_{|\alpha| = k} \frac{D^{\alpha} f(y)}{\alpha!} (x-a)^{\alpha}$$

for some $y \in [a,x]$. Now observe $D^{\alpha}f(y) = D^{\alpha}f(a) + (D^{\alpha}f(y) - D^{\alpha}f(a))$, where $D^{\alpha}f(y) - D^{\alpha}f(a) \to 0$ as $y \to a$. Lastly define $h_{\alpha}(x) = \frac{D^{\alpha}f(y) - D^{\alpha}f(a)}{\alpha!} \to 0$ as $x \to a$, where y is a function of x.

Lemma 2 (Archimedes) Voor elke $x \in \mathbb{R}$ bestaat er een $n \in \mathbb{N}$ zodat x < n.

Bewijs Veronderstel dat er een $x \in \mathbb{R}$ zou bestaan zodat $x \geqslant n$ voor alle $n \in \mathbb{N}$. Dan zou \mathbb{N} naar boven begrensd zijn en volgens de supremumeigenschap een supremum hebben, zeg $s = \sup \mathbb{N}$. Omdat s de kleinste bovengrens is van \mathbb{N} , is s-1 geen bovengrens van \mathbb{N} . We kunnen dus een $k \in \mathbb{N}$ vinden zodat s-1 < k, maar dan s < k+1 en omdat $k+1 \in \mathbb{N}$ is dit strijdig met de aanname dat s een bovengrens van \mathbb{N} is.