Lógica para computação

Fórmulas e equações lógicas

Conectivos vistos

Negação, conjunção, disjunção, disjunção exclusiva, implicação, bi-implicação

Definição

Dada uma implicação $(A \to B)$, definimos três variações dessa implicação como sendo a Recíproca, $(B \to A)$, a Inversa, $((\neg A) \to (\neg B))$ e a Contrapositiva, $((\neg B) \to (\neg A))$. Nas sentenças abaixo, determine o que se pede:

- A Recíproca de "Se tem quatro lados, é um quadrado".
- 2. A Inversa de "Se Maria é professora, ela é pobre".
- 3. A Contrapositiva de "Se José estudar, ele passará em lógica".
- 4. A Contrapositiva de "Se um político mente, ele ganha a eleição".

Fórmulas lógicas

- Todas as fórmulas atômicas são fórmulas.
- 2. Se A e B são fórmulas, então

```
(\neg A),

(A \land B),

(A \lor B),

(A \to B) e

(A \leftrightarrow B)
```

são também fórmulas.

 Uma dada expressão constitui uma fórmula se e somente se foi obtida pela aplicação de uma das regras (1 ou 2) acima.

- Dada uma fórmula qualquer S esta será a raiz da árvore de subfórmulas de S,
- 2. Se S é uma fórmula do tipo $n\tilde{a}o$, então ela é composta por uma fórmula A, de tal modo que $S = (\neg A)$, logo teremos $(\neg A)$

3. Se S é uma fórmula do tipo e, então ela é composta por duas fórmulas A e B de tal modo que $S = (A \land B)$, logo teremos $(A \land B)$.

4. Se S é uma fórmula do tipo ou, então ela é composta por duas fórmulas A e B de tal modo que $S = (A \lor B)$, daí teremos $(A \lor B)$

5. Se S é uma fórmula do tipo *implica*, então ela é composta por duas fórmulas A e B de tal modo que S é dado por $(A \rightarrow B)$, e teremos $(A \rightarrow B)$

6. Se S é uma fórmula do tipo bi-implica, então ela é composta por duas fórmulas A e B de tal modo que S é dado por $(A \leftrightarrow B)$, e teremos

1) $[A \rightarrow (B \lor C)]$

1)
$$[A \rightarrow (B \lor C)]$$

2)
$$\{\neg [[(\neg B) \land (\neg (\neg A))] \leftrightarrow [\neg (\neg (B \lor C))]]\}$$

- 1) $[A \rightarrow (B \lor C)]$
- 2) $\{\neg [[(\neg B) \land (\neg (\neg A))] \leftrightarrow [\neg (\neg (B \lor C))]]\}$
- 3) $\{[(A \rightarrow B) \rightarrow A] \rightarrow A\}$

- 1) $[A \rightarrow (B \lor C)]$
- 2) $\{\neg [[(\neg B) \land (\neg (\neg A))] \leftrightarrow [\neg (\neg (B \lor C))]]\}$
- 3) $\{[(A \rightarrow B) \rightarrow A] \rightarrow A\}$
- 4) $\{A \land [C \land (A \lor C)]\}$

- 1) $[A \rightarrow (B \lor C)]$
- 2) $\{\neg [[(\neg B) \land (\neg (\neg A))] \leftrightarrow [\neg (\neg (B \lor C))]]\}$
- 3) $\{[(A \rightarrow B) \rightarrow A] \rightarrow A\}$
- 4) $\{A \land [C \land (A \lor C)]\}$
- 5) $\{[(E \rightarrow C) \lor (A \land D)] \land [(E \leftrightarrow C) \leftrightarrow (A \lor D)]\}$

- 1) $[A \rightarrow (B \lor C)]$
- 2) $\{\neg [[(\neg B) \land (\neg (\neg A))] \leftrightarrow [\neg (\neg (B \lor C))]]\}$
- 3) $\{[(A \rightarrow B) \rightarrow A] \rightarrow A\}$
- 4) $\{A \land [C \land (A \lor C)]\}$
- 5) $\{[(E \rightarrow C) \lor (A \land D)] \land [(E \leftrightarrow C) \leftrightarrow (A \lor D)]\}$

Conclusão: Decompomos a fórmula em subfórmulas

Passos	Instruções
1	Construa a árvore de decomposição da fórmula.

Passos	Instruções
1	Construa a árvore de decomposição da fórmula.
2	Veja quais e quantas são as fórmulas atômicas.

Passos	Instruções
1	Construa a árvore de decomposição da fórmula.
2	Veja quais e quantas são as fórmulas atômicas.
3	Escreva em ordem alfabética as atômicas e trace colunas para cada uma delas
4	Trace 2n linhas, sendo n o número de atômicas

 $(\neg (B \land C))$

5	Agora olhe para a árvore de decomposição. Se houver apenas um ramo, olhe-as de baixo para cima, e escreva cada uma das sub-fórmulas da esquerda para a direita (sentido usual de escrita), cada uma em uma coluna separada
6	Se a árvore apresentar dois ramos, consideramos primeiro o ramo da esquerda, e escreva cada uma das sub-fórmulas começando pelas atômicas, de baixo para cima, transportando-as na primeira linha e escrevendo-as da esquerda para a direita (sentido usual de escrita), cada uma em uma coluna separada. Passe à coluna da direita e faça o mesmo, até esgotar todas as sub-fórmulas de A, até chegar à última fórmula que é A.

Preenchendo a tabela-verdade

Passos	Instruções
1	Olhemos inicialmente todas as colunas das atômicas.
2	. Na primeira coluna, preenchemos a primeira metade com 1 e a outra metade com 0.
3	Na segunda coluna, para cada metade de 1 da primeira coluna, preenchemos a primeira metade com 1 e a outra metade com 0. Na outra metade 0, ainda da primeira coluna, preenchemos a primeira metade com 1 e a outra metade com 0.
4	Nas demais colunas, repete-se o processo anterior, para cada bloco de 1 e de 0, até chegar à última coluna que deve apresentar-se assim: 1, 0, 1, 0, etc.

Preenchendo a tabela-verdade

Preenchimento das demais colunas.

Passos	Instruções
1	A tabela já está pronta para que a primeira coluna após as atômicas seja preenchível olhando-se a tabela verdade da fórmula da coluna.
2	Repete-se o processo acima, pois a tabela já dá a seqüência de preenchimento.
3	Como na última coluna deve figurar a fórmula A, a tabela-verdade de A está feita

$$(\neg (B \land C))$$

$$(\neg (B \land C))$$

$$D \rightarrow (\neg E)$$

$$(\neg (B \land C))$$

$$D \rightarrow (\neg E)$$

$$(A \rightarrow (B \land A))$$

$$(\neg (B \land C))$$

$$D \rightarrow (\neg E)$$

$$(A \rightarrow (B \land A))$$

$$(A \rightarrow (\neg (B \lor A)))$$

$$(\neg (B \land C))$$

$$D \rightarrow (\neg E)$$

$$(A \rightarrow (B \land A))$$

$$(A \rightarrow (\neg(B \lor A)))$$

 $(A \rightarrow (B \rightarrow A))$

$$(\neg (B \land C))$$

$$(A \rightarrow (B \rightarrow A))$$

$$D \rightarrow (\neg E)$$

$$((A \leftrightarrow B) \rightarrow A)$$

$$(A \rightarrow (B \land A))$$

$$(A \rightarrow (\neg (B \lor A)))$$

$$(\neg (B \land C))$$

$$D \rightarrow (\neg E)$$

$$(A \rightarrow (B \land A))$$

$$(A \rightarrow (\neg(B \lor A)))$$

$(A \rightarrow (B \rightarrow A))$

$$((A \leftrightarrow B) \rightarrow A)$$

$$\{A \rightarrow [(\neg B) \land C]\}$$

$$(\neg (B \land C))$$

$$D \rightarrow (\neg E)$$

$$(A \rightarrow (B \land A))$$

$$(A \rightarrow (\neg (B \lor A)))$$

$$(A \rightarrow (B \rightarrow A))$$

$$((A \leftrightarrow B) \rightarrow A)$$

$$\{A \rightarrow [(\neg B) \land C]\}$$

$$\{\neg[A \land (\neg A)]\} \leftrightarrow A)$$

Definição 1. Denomina-se função-verdade de n argumentos $(n \ge 1)$ a qualquer função $f: 2^n \to 2$, onde 2 denota o conjunto $\{0, 1\}$.

Definição 1. Denomina-se função-verdade de n argumentos $(n \ge 1)$ a qualquer função $f: 2^n \to 2$, onde 2 denota o conjunto $\{0, 1\}$.

Definição 1. Denomina-se função-verdade de n argumentos $(n \ge 1)$ a qualquer função $f: 2^n \to 2$, onde 2 denota o conjunto $\{0, 1\}$.

Definição 1. Denomina-se função-verdade de n argumentos $(n \ge 1)$ a qualquer função $f: 2^n \to 2$, onde 2 denota o conjunto $\{0, 1\}$.

$$((A \land B) \rightarrow B)$$

Definição 1. Denomina-se função-verdade de n argumentos $(n \ge 1)$ a qualquer função $f: 2^n \to 2$, onde 2 denota o conjunto $\{0, 1\}$.

$$((A \land B) \to B) \qquad (\neg(A \land (\neg A)))$$

Definição 1. Denomina-se função-verdade de *n* argumentos $(n \ge 1)$ a qualquer função $f: 2^n \to 2$, onde 2 denota o conjunto $\{0, 1\}$.

$$((A \land B) \to B) \qquad (\neg(A \land (\neg A)))$$

$$((A \to (B \to C)) \to ((A \to B) \to (A \to C)))$$

Definição 3. Diz-se que uma fórmula A implica tautologicamente a fórmula B se $(A \rightarrow B)$ constituir uma tautologia. Neste caso, diz-se também que B é uma consequência lógica de A.

Diz-se que as fórmulas A e B são logicamente equivalentes se ($A \leftrightarrow B$) constituir uma tautologia.

Definição 3. Diz-se que uma fórmula A implica tautologicamente a fórmula B se $(A \rightarrow B)$ constituir uma tautologia. Neste caso, diz-se também que B é uma consequência lógica de A.

Definição 3. Diz-se que uma fórmula A implica tautologicamente a fórmula B se $(A \rightarrow B)$ constituir uma tautologia. Neste caso, diz-se também que B é uma consequência lógica de A.

$$((A \lor B) \leftrightarrow (B \lor A))$$

Definição 3. Diz-se que uma fórmula A implica tautologicamente a fórmula B se $(A \rightarrow B)$ constituir uma tautologia. Neste caso, diz-se também que B é uma consequência lógica de A.

$$((A \lor B) \leftrightarrow (B \lor A)) \qquad ((A \land (B \lor C)) \leftrightarrow ((A \land B) \lor (A \land C)))$$

Definição 3. Diz-se que uma fórmula A implica tautologicamente a fórmula B se $(A \rightarrow B)$ constituir uma tautologia. Neste caso, diz-se também que B é uma consequência lógica de A.

$$((A \lor B) \leftrightarrow (B \lor A)) \qquad ((A \land (B \lor C)) \leftrightarrow ((A \land B) \lor (A \land C)))$$

$$((A \lor A) \leftrightarrow A)$$

Definição 3. Diz-se que uma fórmula A implica tautologicamente a fórmula B se $(A \rightarrow B)$ constituir uma tautologia. Neste caso, diz-se também que B é uma consequência lógica de A.

$$((A \lor B) \leftrightarrow (B \lor A)) \qquad ((A \land (B \lor C)) \leftrightarrow ((A \land B) \lor (A \land C)))$$
$$((A \lor A) \leftrightarrow A) \qquad (A \leftrightarrow (\neg(\neg A))$$

Algumas leis interessantes

$$(((A \rightarrow B) \leftrightarrow ((\neg B) \rightarrow (\neg A))))$$

Algumas leis interessantes

$$(((A \to B) \leftrightarrow ((\neg B) \to (\neg A))))$$

$$((\neg (A \lor B)) \leftrightarrow ((\neg A) \land (\neg B)))$$

$$((\neg (A \land B)) \leftrightarrow ((\neg A) \lor (\neg B)))$$