Problem Statement:

The market research team at AeroFit wants to identify the characteristics of the target audience for each type of treadmill offered by the company, to provide a better recommendation of the treadmills to the new customers. The team decides to investigate whether there are differences across the product with respect to customer characteristics.

- Perform descriptive analytics to create a customer profile for each AeroFit treadmill product by developing appropriate tables and charts.
- For each AeroFit treadmill product, construct two-way contingency tables and compute all conditional and marginal probabilities along with their insights/impact on the business.

Importing all packages

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

df =pd.read_csv("aerofit_treadmill.csv")
df.head()
```

•		Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	Miles
	0	KP281	18	Male	14	Single	3	4	29562	112
	1	KP281	19	Male	15	Single	2	3	31836	75
	2	KP281	19	Female	14	Partnered	4	3	30699	66
	3	KP281	19	Male	12	Single	3	3	32973	85
	4	KP281	20	Male	13	Partnered	4	2	35247	47

df.shape

₹

→ (180, 9)

df.info()

<<cl><<class 'pandas.core.frame.DataFrame'>
RangeIndex: 180 entries, 0 to 179
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Product	180 non-null	object
1	Age	180 non-null	int64
2	Gender	180 non-null	object
3	Education	180 non-null	int64
4	MaritalStatus	180 non-null	object
5	Usage	180 non-null	int64
6	Fitness	180 non-null	int64
7	Income	180 non-null	int64

8 Miles 180 non-null int64

dtypes: int64(6), object(3)
memory usage: 12.8+ KB

df.describe()

→		Age	Education	Usage	Fitness	Income	Miles	
	count	180.000000	180.000000	180.000000	180.000000	180.000000	180.000000	
	mean	28.788889	15.572222	3.455556	3.311111	53719.577778	103.194444	
	std	6.943498	1.617055	1.084797	0.958869	16506.684226	51.863605	
	min	18.000000	12.000000	2.000000	1.000000	29562.000000	21.000000	
	25%	24.000000	14.000000	3.000000	3.000000	44058.750000	66.000000	
	50%	26.000000	16.000000	3.000000	3.000000	50596.500000	94.000000	
	75%	33.000000	16.000000	4.000000	4.000000	58668.000000	114.750000	
	max	50.000000	21.000000	7.000000	5.000000	104581.000000	360.000000	

df.isnull().sum()

→		0
	Product	0
	Age	0
	Gender	0
	Education	0
	MaritalStatus	0
	Usage	0
	Fitness	0
	Income	0
	Miles	0

There are no missing values in these data

Univariate Analysis

dtype: int64

```
plt.subplots(2,2, figsize=(10, 7))
plt.subplot(2,2,1)
plt.title('Product distribution')
sns.countplot(data=df, x='Product')
```

```
plt.subplot(2,2,2)
plt.title('Gender distribution')
sns.countplot(data=df, x='Gender')

plt.subplot(2,2,3)
plt.title('Fitness distribution')
sns.countplot(data=df, x='Fitness')

plt.subplot(2,2,4)
plt.title('Education')
sns.countplot(data=df, x='Education')

plt.tight_layout()
plt.show()
```


3/17/25, 6:06 PM

```
plt.subplots(2,2, figsize=(10, 7))
plt.subplot(2,2,1)
plt.title('Gender vs Age')
sns.boxplot(data=df, x='Gender', y='Age',hue='Product')

plt.subplot(2,2,2)
plt.title('Usage vs Age')
sns.boxplot(data = df, x='Usage',y='Age' ,hue='Product')

plt.subplot(2,2,3)
plt.title('Fitness vs Age')
sns.boxplot(data = df, x='Fitness',y= 'Age' ,hue='Product')

plt.subplot(2,2,4)
plt.title('Fitness vs Education')
sns.boxplot(data = df, x='Fitness',y='Education' ,hue='Product')

plt.tight_layout()
plt.tight_layout()
plt.show()
```



```
probability_of_opting_KP281 = round((df[df['Product'] == 'KP281'].count()['Product']/df['Product'].value_counts().sum()),2)
probability_of_opting_KP481 = round((df[df['Product'] == 'KP481'].count()['Product']/df['Product'].value_counts().sum()),2)
probability_of_opting_KP781 = round((df[df['Product'] == 'KP781'].count()['Product']/df['Product'].value_counts().sum()),2)
probability_of_opting_KP281,probability_of_opting_KP481,probability_of_opting_KP781
```

→ (0.44, 0.33, 0.22)

probability of opting KP281 is 0.44

probability of opting KP481 is 0.33

probability of opting KP781 is 0.22

```
product_percent = df['Product'].value_counts().reset_index()
plt.pie(x=product_percent['count'], labels=product_percent['Product'], startangle= 90, autopct='%.2f')
plt.show()
```



```
fig, ax=plt.subplots(2,3,figsize=(15,10)) #Distribution of products by age
sns.histplot(ax=ax[0,0],data=df['Age'],bins=10)
ax[0,0].set_title('Distribution of Products by Age')
#plt.title('Distribution of Products by Age',ax=ax[0,0])
sns.countplot(ax=ax[0,1],data=df,x=df['Education'])
ax[0,1].set_title('Distribution of Products by Education')

sns.boxplot(ax=ax[0,2],x=df['Income'])
ax[0,2].set_title('Distribution of Customers by Annual Income in dollars')
sns.countplot(ax=ax[1,0],data=df,x=df['Usage'])
ax[1,0].set_title('Distribution of Products by Weekly Usage')
sns.countplot(ax=ax[1,1],data=df,x=df['Fitness'])
ax[1,1].set_title('Distribution of Products by fitness')
sns.histplot(ax=ax[1,2],data=df['Miles'],bins=10)
ax[1,2].set_title('Distribution of Products by Customer workout Miles per week')
plt.show()
```



```
sns.countplot(data=df,x='Fitness',hue='Product')
plt.title('Distribution of Type of Products by Fitness')
plt.show()
sns.countplot(data=df,x='MaritalStatus',hue='Product')
plt.title('Distribution of Type of Products by Marital Status')
plt.show()
```



```
plt.figure(figsize=(15,10))
sns.countplot(data=df[['Age','Product']], x=df['Age'],hue='Product')
plt.title('Distribution of Products by Age')
plt.show()
```


sns.pairplot(data=df,hue='Product')
plt.show()

ct1=pd.crosstab(df['Gender'],df['Product'],margins=True,margins_name='Total') ct1

	Product	KP281	KP481	KP781	Total
	Gender				
	Female	40	29	7	76
	Male	40	31	33	104
	Total	80	60	40	180

pd.crosstab(df['Gender'],df['Product'],margins=True,normalize=1)

_	Product Gender	KP281	KP281 KP481		A11
	Female	0.5	0.483333	0.175	0.422222
	Male	0.5	0.516667	0.825	0.577778

pd.crosstab(df['Gender'],df['Product'],margins=True,normalize=0)

	Product	KP281	KP481	KP781
	Gender			
	Female	0.526316	0.381579	0.092105
	Male	0.384615	0.298077	0.317308
	All	0.444444	0.333333	0.22222

Marginal probability of a customer buying KP281,KP481,KP781 are 0.44,0.33,0.22 respectivly Marginal probability of a male customer buying KP281,KP481,KP781 are 0.38,0.29,0.31 respectivly Marginal probability of a female customer buying KP281,KP481,KP781 are 0.52,0.38,0.09 respectivly

Here Customers are more willing to buy the base product based on their income, fitness levels i.e KP281 as it has more probability.

Among males and females, males are more interested to buy the higher end treadmill model KP781

Conditional Probabilities of KP281,KP481,KP781 given that customer is female are 0.53,0.38,0.09 and customer is male are 0.28, 0.3, 0.32

Joint probabilty

ct1

→	Product	KP281	KP481	KP781	Total
	Gender				
	Female	40	29	7	76
	Male	40	31	33	104
	Total	80	60	40	180

```
KP281_and_Female_prob=round(ct1.iloc[0,0]/ct1.Total[2],2)
KP481_and_Female_prob=round(ct1.KP481[0]/ct1.Total[2],2)
KP781_and_Female_prob=round(ct1.KP781[0]/ct1.Total[2],2)
```

print(f"Joint probabilities of customer being the female wrt the product being KP281,KP481,KP781 are:{KP281_and_Female_prob},{KP481_and_Female_prob},,{KP781_and_Female_prob}")

→ Joint probabilities of customer being the female wrt the product being KP281,KP481,KP781 are:0.22,0.16,0.04

```
KP281_and_male_prob=round(ct1.iloc[0,0]/ct1.Total[2],2)
KP481_and_male_prob=round(ct1.KP481[1]/ct1.Total[2],2)
KP781_and_male_prob=round(ct1.KP781[1]/ct1.Total[2],2)
```

print(f"Joint probabilities of customer being the male wrt the product being KP281,KP481,KP781 are: {KP281_and_male_prob},{KP481_and_male_prob},{KP781_and_male_prob}")

For Joint probabilities of customer being the male wrt the product being KP281,KP481,KP781 are: 0.22,0.17,0.18

Conditional Probabilities

```
prob_KP281_given_Female=round(ct1.iloc[0,0]/ct1.Total[0],2)
prob_KP481_given_Female=round(ct1.KP481[0]/ct1.Total[0],2)
prob_KP781_given_Female=round(ct1.KP781[0]/ct1.Total[0],2)
```

print(f"Conditional probabilities of customer being the female wrt the product being KP281,KP481,KP781 are:{prob_KP281_given_Female},{prob_KP481_given_Female},{prob_KP481_given_Female},{prob_KP781_giv

Conditional probabilities of customer being the female wrt the product being KP281,KP481,KP781 are:0.53,0.38,0.09

```
prob_KP281_given_male=round(ct1.iloc[0,1]/ct1.Total[1],2)
prob KP481 given male=round(ct1.KP481[1]/ct1.Total[1],2)
```

prob_KP781_given_male=round(ct1.KP781[1]/ct1.Total[1],2)

print(f"Conditional probabilities of customer being the male wrt the product being KP281,KP481,KP781 are:{prob_KP281_given_male},{prob_KP481_given_male},,{prob_KP781_given_male},,

Conditional probabilities of customer being the male wrt the product being KP281,KP481,KP781 are:0.28,0.3,0.32

_