1 Consider the least squares problem

$$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x}) \coloneqq \|A\mathbf{x} - \mathbf{b}\|^2,$$

where $A \in \mathbb{R}^{m \times n}$ is NOT necessarily of full-rank. Then the FONC points can be non-unique. Show that any FONC point \mathbf{x}^* is a global minimizer, i.e., $f(\mathbf{x}) \geq f(\mathbf{x}^*)$, $\forall \mathbf{x} \in \mathbb{R}^n$.

Solution Note that we can write $f(\mathbf{x})$ as

$$f(\mathbf{x}) = \mathbf{x}^{\top} (A^{\top} A) \mathbf{x} - 2(A^{\top} \mathbf{b})^{\top} \mathbf{x} + ||\mathbf{b}||^2$$

which is a quadratic form.

Note that

$$0 < ||A\mathbf{x}||^2 = \mathbf{x}^\top A^\top A\mathbf{x}$$

so $A^{\top}A \succeq 0$.

Thus, if \mathbf{x}^* is an FONC point, it is a global minimizer since f is a quadratic form with a positive semi-definite matrix.

2 Let $A \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^m$, $m \ge n$, and rank A = n. Consider the constrained optimization problem

$$\min \frac{1}{2} \mathbf{x}^{\top} \mathbf{x} - \mathbf{x}^{\top} \mathbf{b}$$
 s.t. $\mathbf{x} \in \text{im } A$

where im A denotes the range of A. Derive an expression for the global minimizer of this problem in terms of A and \mathbf{b} .

Solution For any $\mathbf{x} \in \operatorname{im} A$, which is of full column rank, there exists a unique $\mathbf{y} \in \mathbb{R}^n$ such that $A\mathbf{y} = \mathbf{x}$. Thus, we can rewrite the objective function as

$$f(\mathbf{y}) = \frac{1}{2} \mathbf{y}^{\top} A^{\top} A \mathbf{y} - (A^{\top} \mathbf{b})^{\top} \mathbf{y}$$

with $\operatorname{rank}(A^{\top}A) = n$. Since $A^{\top}A \in \mathbb{R}^{n \times n}$, it is invertible.

As f is a quadratic form with a positive definite matrix, it has a unique global minimizer, which is the unique FONC point $\mathbf{y}^* = (A^{\top}A)^{-1}A^{\top}\mathbf{b}$. Thus, the global minimizer of our original problem is

$$\mathbf{x}^* = A\mathbf{y}^* = A(A^{\top}A)^{-1}A^{\top}\mathbf{b}.$$

3 Given $A \in \mathbb{R}^{m \times n}$, $m \ge n$, rank A = n, and $\mathbf{b}_1, \dots, \mathbf{b}_p \in \mathbb{R}^m$, consider the problem

$$\min(\|A\mathbf{x} - \mathbf{b}_1\|^2 + \|A\mathbf{x} - \mathbf{b}_2\|^2 + \dots + \|A\mathbf{x} - \mathbf{b}_p\|^2).$$

Suppose that \mathbf{x}_{i}^{*} is a solution to the problem

$$\min \|A\mathbf{x} - \mathbf{b}_i\|^2$$
,

where i = 1, ..., p. Write the solution to the problem in terms of $\mathbf{x}_1^*, ..., \mathbf{x}_p^*$.

Solution As A is of full column rank, each \mathbf{x}_i^* is the solution to a least squares problem, so

$$\mathbf{x}_i^* = (A^\top A)^{-1} A^\top \mathbf{b}_i.$$

Notice that we can write our objective function as

$$f(\mathbf{x}) = \sum_{i=1}^{p} (\mathbf{x}^{\top} A^{\top} A \mathbf{x} - 2(A^{\top} \mathbf{b}_{i})^{\top} \mathbf{x} + \|\mathbf{b}_{i}\|^{2})$$
$$= p \mathbf{x}^{\top} A^{\top} A \mathbf{x} - 2(A^{\top} \sum_{i=1}^{p} \mathbf{b}_{i})^{\top} \mathbf{x} + \sum_{i=1}^{p} \|\mathbf{b}_{i}\|^{2}$$

which is a quadratic form with $Q = pA^{\top}A \succ 0$ and $\mathbf{b} = -2(A^{\top}\sum_{i=1}^{p}\mathbf{b}_{i})^{\top}$. Hence, our global minimizer is our FONC point. So,

$$\mathbf{0} = \nabla f(\mathbf{x}^*) = 2pA^{\top}A\mathbf{x}^* - 2(A^{\top}\sum_{i=1}^p \mathbf{b}_i)^{\top}$$

$$\implies \mathbf{x}^* = \frac{1}{p}(A^{\top}A)^{-1}A^{\top}\sum_{i=1}^p \mathbf{b}_i$$

$$\implies \mathbf{x}^* = \frac{1}{p}\sum_{i=1}^p \mathbf{x}_i^*.$$

4 This problem derives the so-called *projected gradient descent* algorithm. Consider the following constrained problem:

$$\min_{x \in \mathbb{R}^n} f(\mathbf{x}) \quad \text{s.t.} \quad A\mathbf{x} = \mathbf{b},$$

where $A \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^m$, m < n, and rank A = m.

a. Consider minimization of the following quadratic approximation to $f(\mathbf{x})$ around \mathbf{x}^k without the constraint:

$$\mathbf{x}^{k+1} = \arg\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x}^k) + (\nabla f(\mathbf{x}^k))^{\top} (\mathbf{x} - \mathbf{x}^k) + \frac{1}{2\alpha_k} ||\mathbf{x} - \mathbf{x}^k||^2$$

for some $\alpha_k > 0$. Show that $\mathbf{x}^{k+1} = \mathbf{x}^k - \alpha_k \nabla f(\mathbf{x}^k)$.

b. For any $\mathbf{y} \in \mathbb{R}^n$, show that the problem

$$\min_{x \in \mathbb{R}^n} \|\mathbf{x} - \mathbf{y}\|^2 \quad \text{s.t.} \quad A\mathbf{x} = \mathbf{b}$$

has a unique solution given by $\mathbf{x}^* = \Pi(\mathbf{y})$, where Π is a linear function on \mathbb{R}^n defined as

$$\Pi \colon \mathbf{x} \mapsto (I_n - A^{\top} (AA^{\top})^{-1} A) \mathbf{x} + A^{\top} (AA^{\top})^{-1} \mathbf{b}$$

with I_n being the identity matrix of order n.

c. Consider minimization of the following quadratic approximation to $f(\mathbf{x})$ around \mathbf{x}^k under the same constraint:

$$\mathbf{x}^{k+1} = \arg\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x}^k) + (\nabla f(\mathbf{x}^k))^{\top} (\mathbf{x} - \mathbf{x}^k) + \frac{1}{2\alpha_k} ||\mathbf{x} - \mathbf{x}^k||^2 \quad \text{s.t.} \quad A\mathbf{x} = \mathbf{b}$$

for some $\alpha_k > 0$. Show that $\mathbf{x}^{k+1} = \Pi(\mathbf{x}^k - \alpha_k \nabla f(\mathbf{x}^k))$. This gives the iteration for projected gradient descent.

Solution a. Note that if we let $\mathbf{y} = \mathbf{x} - \mathbf{x}^k$, then $f(\mathbf{y}) = f(\mathbf{x}^k) + (\nabla f(\mathbf{x}^k))^{\mathsf{T}} \mathbf{y} + \frac{1}{2\alpha_k} ||\mathbf{y}||^2$ is a quadratic form with

$$Q = \frac{1}{\alpha_k} > 0$$
 and $\mathbf{b} = \nabla f(\mathbf{x}^k)$

so its gradient is

$$\nabla g(\mathbf{x}) = \frac{1}{\alpha_k} \mathbf{x} + \nabla f(\mathbf{x}^k).$$

Note that

$$\nabla g(-\alpha_k \nabla f(\mathbf{x}^k)) = \mathbf{0}.$$

Since f is a quadratic form with a positive definite matrix, $\mathbf{y}^* = -\alpha_k \nabla f(\mathbf{x}^k)$. Hence,

$$\mathbf{y}^* = -\alpha_k \nabla f(\mathbf{x}^k) \implies \mathbf{x}^* = \mathbf{x}^k - \alpha_k \nabla f(\mathbf{x}^k),$$

as desired.

b. Consider the change in variable z = x - y. Then the problem becomes

$$\min_{\mathbf{z} \in \mathbb{R}^n} \|\mathbf{z}\|^2 \quad \text{s.t.} \quad A\mathbf{z} = \mathbf{b} - A\mathbf{y}$$

which, since A is full rank, has the unique solution

$$\mathbf{z}^* = A^{\top} (AA^{\top})^{-1} (\mathbf{b} - A\mathbf{y})$$

$$\implies \mathbf{x}^* = \mathbf{y} + A^{\top} (AA^{\top})^{-1} (\mathbf{b} - A\mathbf{y})$$

$$= I_n \mathbf{y} - A^{\top} (AA^{\top})^{-1} A \mathbf{y} + A^{\top} (AA^{\top})^{-1} \mathbf{b}$$

$$= (I_n - A^{\top} (AA^{\top})^{-1} A) \mathbf{y} + A^{\top} (AA^{\top})^{-1} \mathbf{b}$$

$$= \Pi(\mathbf{y}).$$

c. For all $\mathbf{x} \in \mathbb{R}^n$, we can write $\mathbf{x} = \mathbf{y} + \mathbf{x}^k - \alpha_k \nabla f(\mathbf{x}^k)$ for some $\mathbf{y} \in \mathbb{R}^n$. Then we can rewrite the objective function as

$$f(\mathbf{y}) = f(\mathbf{x}^k) + (\nabla f(\mathbf{x}^k))^{\top} (\mathbf{y} - \alpha_k \nabla f(\mathbf{x}^k)) + \frac{1}{2\alpha_k} \|\mathbf{y} - \alpha_k \nabla f(\mathbf{x}^k)\|^2$$

$$= f(\mathbf{x}^k) + (\nabla f(\mathbf{x}^k))^{\top} (\mathbf{y}) + \frac{1}{2\alpha_k} \|\mathbf{y}\|^2 - (\nabla f(\mathbf{x}^k))^{\top} (\alpha_k \nabla f(\mathbf{x}^k)) + \frac{1}{2\alpha_k} \|\alpha_k \nabla f(\mathbf{x}^k)\|^2 - \frac{1}{\alpha_k} \alpha_k (\nabla f(\mathbf{x}^k))^{\top} \mathbf{y}$$

$$= f(\mathbf{x}^k) + (\nabla f(\mathbf{x}^k))^{\top} (\mathbf{y}) + \frac{1}{2\alpha_k} \|\mathbf{y}\|^2 - \frac{1}{2\alpha_k} \|\alpha_k \nabla f(\mathbf{x}^k)\|^2 - (\nabla f(\mathbf{x}^k))^{\top} \mathbf{y} \quad (-\alpha_k \nabla f(\mathbf{x}^k)) \text{ is the minimizer}$$

$$= f(\mathbf{x}^k) - \frac{1}{2} \alpha_k \|\nabla f(\mathbf{x}^k)\|^2 + \frac{1}{2\alpha_k} \|\mathbf{y}\|^2$$

which is strictly increasing with respect to $\|\mathbf{y}\|^2$. Hence, the closest point to $-\alpha_k \nabla f(\mathbf{x}^k)$ will minimize the function in this point, i.e., minimizing the problem in this part is equivalent to minimizing the distance from \mathbf{x} to $-\alpha_k \nabla f(\mathbf{x}^k)$.

Thus, if we replace y in the equation in (b) with $-\alpha_k \nabla f(\mathbf{x}^k)$, we get

$$\mathbf{x}^* = \Pi(-\alpha_k \nabla f(\mathbf{x}^k)).$$

5 Convert the following problem into a standard form linear programming problem:

$$\min_{\mathbf{x} \in \mathbb{R}^n} \mathbf{c}^{\top} \mathbf{x}$$
 s.t. $A\mathbf{x} \ge \mathbf{b}, \mathbf{x} \le \mathbf{d},$

where $\mathbf{b} \in \mathbb{R}^m$ and $\mathbf{c}, \mathbf{d} \in \mathbb{R}^n$.

Solution We can rewrite the constraints as $\mathbf{y}_1 \coloneqq \mathbf{d} - \mathbf{x} \ge \mathbf{0}$ and $\mathbf{y}_2 \coloneqq A\mathbf{x} - \mathbf{b} \ge \mathbf{0}$. Then note that

$$\begin{pmatrix} A & I_n \end{pmatrix} \begin{pmatrix} \mathbf{y}_1 \\ \mathbf{y}_2 \end{pmatrix} = A\mathbf{d} - \mathbf{b}$$

and that $\mathbf{x} = \mathbf{d} - \mathbf{y}_1$, so our objective function becomes

$$\mathbf{c}^{\top}(\mathbf{d} - \mathbf{y}_1) = \mathbf{c}^{\top}\mathbf{d} + (-\mathbf{c}^{\top}\mathbf{y}_1) + \mathbf{0}^{\top}\mathbf{y}_2 = \mathbf{c}^{\top}\mathbf{d} + (-\mathbf{c}^{\top} \quad \mathbf{0}^{\top}) \begin{pmatrix} \mathbf{y}_1 \\ \mathbf{y}_2 \end{pmatrix}.$$

Since the first term is a constant the problem is equivalent to minimizing the second term. Thus, our problem becomes

$$\min_{(\mathbf{y}_1, \mathbf{y}_2)^\top \in \mathbb{R}^{n+m}} \begin{pmatrix} -\mathbf{c}^\top & \mathbf{0}^\top \end{pmatrix} \begin{pmatrix} \mathbf{y}_1 \\ \mathbf{y}_2 \end{pmatrix} \quad \text{s.t.} \quad \begin{pmatrix} A & I_n \end{pmatrix} \begin{pmatrix} \mathbf{y}_1 \\ \mathbf{y}_2 \end{pmatrix}, \ \begin{pmatrix} \mathbf{y}_1 \\ \mathbf{y}_2 \end{pmatrix} \geq 0$$

which is in standard form.