Syntax Diagrams

They are also sometimes called "Railroad Tracks" and are a graphical representation of EBNF rules. They are seldom seen anymore as EBNF is much more compact.

The diagrams corresponding to the various EBNF rules above are:

1. <a> ::= A [B]

2. <snum> ::= [-] <num>

3. $<a> ::= A { A }$

4. <a> ::= { A }

5. <block> ::= begin <cmd> { ; <cmd> } end

6. <snum> ::= [(+ | -)] <num>

It can be helpful to imagine train tracks, to help in drawing them correctly:

• Control structures (curves and switches) should be very clear:

• The train must never "reverse directions":

There are some common structures in programming languages. Here is the correct way to draw them in BNF, EBNF, and Syntax Diagrams:

	BNF	EBNF	Syntax Diagram
A is optional	M ::= xxAxx xxxx	M : := xx[A]xx	A
A is required	M ::= xxAxx	M ::= xxAxx	$-\!$
1 or more of A	M ::= MA A	M ::= A { A }	\longrightarrow
0 or more of A	M ::= MA ε	M ::= { A }	(A)
1 or more of A with separators	M ::= M ; A / A	M ::= A { ; A }	(i)
1 or more of A with terminators	M ::= MA; A;	M ::= A ; { A ; }	(A) (;)
0 or more of A with separators	M ::= H ∈ H ::= H ; A A	M ::= [A { ; A }]	A)
0 or more of A with terminators	M ::= MA; ε	M ::= { A ; }	;-A
	IVI— IVIA, E	IVI ::= { A ; }	(;)—(A)