Solutions to Problem Set 5

Problem 1: To show that f is not injective, we need to show that the statement

"For all
$$x_1, x_2 \in \mathbb{R}$$
, if $f(x_1) = f(x_2)$, then $x_1 = x_2$ "

is false, which is the same as showing that its negation

"There exists
$$x_1, x_2 \in \mathbb{R}$$
 with $f(x_1) = f(x_1)$ and $x_1 \neq x_2$ "

is true. In order to verify this, we just need to provide examples of such x_1 and x_2 (with justification). Notice that

$$f(0) = 0^3 - 8 \cdot 0$$

= 0 - 0
= 0,

and that

$$f(\sqrt{8}) = (\sqrt{8})^3 - 8\sqrt{8}$$
$$= (\sqrt{8})^2 \cdot \sqrt{8} - 8\sqrt{8}$$
$$= 8\sqrt{8} - 8\sqrt{8}$$
$$= 0.$$

Therefore, we have that $f(\sqrt{8}) = 0 = f(0)$. Since $\sqrt{8} \neq 0$ and $\sqrt{8}, 0 \in \mathbb{R}$, we have shown that f is not injective.

Problem 2: To determine if the three lines intersect, we want to determine if the system

$$\begin{array}{rclrcrcr} 2x & + & y & = & 5 \\ 7x & - & 2y & = & 1 \\ -5x & + & 3y & = & 4 \end{array}$$

has a solution. Suppose that (x, y) is a solution to this system. Adding twice the first equation to the second equation, we conclude that (x, y) must also satisfy 11x = 11, and hence we must have x = 1. Plugging this into the first equation, we see that (x, y) must also satisfy 2 + y = 5, and hence we must have y = 3. Therefore, the only possible solution is (1,3). We now verify that (1,3) is indeed a solution by checking that it satisfies all three equations.

- We have $2 \cdot 1 + 3 = 5$, so (1,3) satisfies the first equation.
- We have $7 \cdot 1 2 \cdot 3 = 1$, so (1,3) satisfies the second equation.
- We have $(-5) \cdot 1 + 3 \cdot 3 = 4$, so (1,3) satisfies the third equation.

Therefore, (1,3) is a solution to the above system. It follows that the three lines intersect at (1,3).

Problem 3a: We can rewrite our given equation as x = 6 + 9y. From here, we can give a parametric equation that traces out the solution set to our equation by making y our parameter:

$$x = 6 + 9t$$

$$y = t$$

Thus, the solution set to our equation can be written as

$$\left\{ \begin{pmatrix} 6+9t \\ t \end{pmatrix} : t \in \mathbb{R} \right\}.$$

We can rewrite this set as

$$\left\{ \begin{pmatrix} 6+9t\\0+1t \end{pmatrix} : t \in \mathbb{R} \right\},\,$$

which is the same as

$$\left\{ \begin{pmatrix} 6 \\ 0 \end{pmatrix} + t \cdot \begin{pmatrix} 9 \\ 1 \end{pmatrix} : t \in \mathbb{R} \right\}.$$

Thus, we can take

$$\vec{v} = \begin{pmatrix} 6 \\ 0 \end{pmatrix}$$
 and $\vec{u} = \begin{pmatrix} 9 \\ 1 \end{pmatrix}$

Problem 3b: We can rewrite our given equation as $y = -\frac{5}{3}x$. From here, we can give a parametric equation that traces out the solution set to our equation by making x our parameter:

$$x = t$$
$$y = (-5/3) \cdot t$$

Thus, the solution set to our equation can be written as

$$\left\{ \begin{pmatrix} t \\ (-5/3) \cdot t \end{pmatrix} : t \in \mathbb{R} \right\}.$$

We can rewrite this set as

$$\left\{t \cdot \begin{pmatrix} 1 \\ -5/3 \end{pmatrix} : t \in \mathbb{R} \right\},\,$$

and this set is the definition of

$$\operatorname{Span}\left(\begin{pmatrix}1\\-5/3\end{pmatrix}\right).$$

Therefore, we can take

$$\vec{u} = \begin{pmatrix} 1 \\ -5/3 \end{pmatrix}$$
.

Problem 3c: Since we want the solution set of ax + by = c to equal

Span
$$\begin{pmatrix} 2 \\ -7 \end{pmatrix}$$
,

which is a line through the origin, we should take c=0. Now the direction of our line is $\langle 2, -7 \rangle$, so our line should have slope $\frac{-7}{2}$. Since the slope of ax + by = c equals $-\frac{a}{b}$ (assuming that $b \neq 0$), we can guess that we should take a=7 and b=2.

To see that this works, consider the equation 7x + 2y = 0. If we parametrize as in part b, we arrive at

$$x = t$$
$$y = (-7/2) \cdot t.$$

Thus, the solution set to our equation can be written as

$$\left\{ \begin{pmatrix} t \\ (-7/2) \cdot t \end{pmatrix} : t \in \mathbb{R} \right\} = \left\{ t \cdot \begin{pmatrix} 1 \\ -7/2 \end{pmatrix} : t \in \mathbb{R} \right\},\,$$

which equals

$$\operatorname{Span}\left(\begin{pmatrix}1\\-7/2\end{pmatrix}\right).$$

Since the vectors

$$\begin{pmatrix} 2 \\ -7 \end{pmatrix}$$
 and $\begin{pmatrix} 1 \\ -7/2 \end{pmatrix}$

are multiples of each other, they have the same span. Therefore, our equation 7x + 2y = 0 has the required solution set.

Problem 4 Preamble: Before jumping into parts a and b of this problem, let's first play around to get a feel for what is happening. We'll pick examples of vectors in one set, and show why those vectors are in the other set.

- Notice that $\begin{pmatrix} 3 \\ -1 \end{pmatrix} \in A$ using c = 0, and that $\begin{pmatrix} 3 \\ -1 \end{pmatrix} \in B$ using c = -2.
- Notice that $\binom{4}{3} \in A$ using c = 1, and that $\binom{4}{3} \in B$ using c = -1.
- Notice that $\binom{5}{7} \in A$ using c = 2, and that $\binom{5}{7} \in B$ using c = 0.

From these small examples, it looks likely that if a vector is in A because of a certain value of c, then the number c-2 will witness the fact that the given vector is B. In the other direction, it looks likely that if a vector is in B because of a certain value of c, then the number c+2 will witness the fact that the given vector is A.

Problem 4a: Let $\vec{u} \in A$ be arbitrary. By definition of A, we can fix $d \in \mathbb{R}$ with

$$\vec{u} = \begin{pmatrix} 3 \\ -1 \end{pmatrix} + d \cdot \begin{pmatrix} 1 \\ 4 \end{pmatrix}.$$

Now notice that

$$\begin{pmatrix} 5 \\ 7 \end{pmatrix} + (d-2) \cdot \begin{pmatrix} 1 \\ 4 \end{pmatrix} = \begin{pmatrix} 5 \\ 7 \end{pmatrix} + d \cdot \begin{pmatrix} 1 \\ 4 \end{pmatrix} + (-2) \cdot \begin{pmatrix} 1 \\ 4 \end{pmatrix}$$

$$= \begin{pmatrix} 5 \\ 7 \end{pmatrix} + d \cdot \begin{pmatrix} 1 \\ 4 \end{pmatrix} + \begin{pmatrix} -2 \\ -8 \end{pmatrix}$$

$$= \begin{pmatrix} 3 \\ -1 \end{pmatrix} + d \cdot \begin{pmatrix} 1 \\ 4 \end{pmatrix}$$

$$= \vec{u}$$

Since $d-2 \in \mathbb{R}$, we conclude that $\vec{u} \in B$. Since $\vec{u} \in A$ was arbitrary, the result follows.

Problem 4b: Let $\vec{w} \in B$ be arbitrary. By definition of B, we can fix $d \in \mathbb{R}$ with

$$\vec{w} = \begin{pmatrix} 5 \\ 7 \end{pmatrix} + d \cdot \begin{pmatrix} 1 \\ 4 \end{pmatrix}.$$

Now notice that

$$\begin{pmatrix} 3 \\ -1 \end{pmatrix} + (d+2) \cdot \begin{pmatrix} 1 \\ 4 \end{pmatrix} = \begin{pmatrix} 3 \\ -1 \end{pmatrix} + d \cdot \begin{pmatrix} 1 \\ 4 \end{pmatrix} + 2 \cdot \begin{pmatrix} 1 \\ 4 \end{pmatrix}$$

$$= \begin{pmatrix} 3 \\ -1 \end{pmatrix} + d \cdot \begin{pmatrix} 1 \\ 4 \end{pmatrix} + \begin{pmatrix} 2 \\ 8 \end{pmatrix}$$

$$= \begin{pmatrix} 5 \\ 7 \end{pmatrix} + d \cdot \begin{pmatrix} 1 \\ 4 \end{pmatrix}$$

$$= \vec{w}$$

Since $d+2 \in \mathbb{R}$, we conclude that $\vec{w} \in A$. Since $\vec{w} \in B$ was arbitrary, the result follows.

Problem 5: Notice that for any $x \in \mathbb{R}$, we have

$$(f_a \circ g_b)(x) = f_a(g_b(x))$$

$$= f_a(x+b)$$

$$= a(x+b)$$

$$= ax + ab.$$

Also for any $x \in \mathbb{R}$, we have

$$(g_b \circ f_a)(x) = g_b(f_a(x))$$
$$= g_b(ax)$$
$$= ax + b.$$

Looking at these two results, it seems likely that we want ab = b for these two functions to be equal, which is the same as saying that either b = 0 or a = 1. We now prove this. Let $a, b \in \mathbb{R}$ be arbitrary.

• Case 1: Suppose that b = 0. In this case, we have

$$(f_a \circ g_b)(x) = ax + ab$$
 (from above)
= $ax + a \cdot 0$
= ax

for all $x \in \mathbb{R}$. Also, we have

$$(g_b \circ f_a)(x) = ax + b$$
 (from above)
= $ax + 0$
= ax

for all $x \in \mathbb{R}$. Therefore, we conclude that $(f_a \circ g_b)(x) = (g_b \circ f_a)(x)$ for all $x \in \mathbb{R}$, so $f_a \circ g_b = g_b \circ f_a$.

• Case 2: Suppose that a = 1. In this case, we have

$$(f_a \circ g_b)(x) = ax + ab$$
 (from above)
= $1 \cdot x + 1 \cdot b$
= $x + b$

for all $x \in \mathbb{R}$. Also, we have

$$(g_b \circ f_a)(x) = ax + b$$
 (from above)
= $1 \cdot x + b$
= $x + b$

for all $x \in \mathbb{R}$. Therefore, we conclude that $(f_a \circ g_b)(x) = (g_b \circ f_a)(x)$ for all $x \in \mathbb{R}$, so $f_a \circ g_b = g_b \circ f_a$.

• Case 3: Suppose that $b \neq 0$ and that $a \neq 1$. Notice that

$$(f_a \circ g_b)(0) = a \cdot 0 + ab$$
 (from above)
= ab

and that

$$(g_b \circ f_a)(0) = a \cdot 0 + b$$
 (from above)
= b

Now if ab=b, then since $b\neq 0$ we can divide both sides by it to conclude that a=1, which is a contradiction. Therefore, we have $ab\neq b$, and hence $(f_a\circ g_b)(0)\neq (g_b\circ f_a)(0)$. Since we have found a value where the two functions disagree, we conclude that $f_a\circ g_b\neq g_b\circ f_a$.