Variáveis aleatórias contínuas

MAE0221 - Probabilidade I Aline Duarte

Variável aleatória contínua

Uma v.a. é dita *contínua* quando o conjunto de valores possíveis que ela assume for não-enumerável (um intervalo de número reais).

- ► A altura de uma população
- ► Idade de uma população
- ► Tempo de vida de uma lâmpada
- ▶ Distância entre duas pessoas
- ► Aumento de peso após uma dieta

Caracterização de uma v.a. contínua

Função densidade de probabilidade

A função densidade de probabilidade (f.d.p.) de uma variável aleatória X é uma função $f(x) \geq 0$ satisfazendo, para qualquer intervalo de números reais [a,b],

$$P(X \in [a,b]) = P(a \le X \le b) = \int_a^b f(x) dx.$$

Propriedades da f.d.p.

- (i) $f(x) \ge 0$
- (ii) Se B = [a, b] com a = b então

$$P(X \in [a, a]) = P(X = a) = \int_{a}^{a} f(x)dx = 0.$$

Logo,

$$P(X \in [a,b]) = P(X \in (a,b]) = P(X \in [a,b)) = P(X \in (a,b))$$

(iii) Se
$$(a,b) = (-\infty,\infty) = \mathbb{R}$$

$$P(X \in (-\infty, \infty)) = P(-\infty \le X \le \infty) = 1$$

logo f(x) deve satisfazer $\int_{-\infty}^{\infty} f(x) dx = 1$.

Exemplos

1. Seja X uma v.a. contínua cuja f.d.p. é dada por

$$f(x) = \begin{cases} C(4x - 2x^2) & 0 < x < 2\\ 0 & \text{caso contrário} \end{cases}$$

- (a) Qual é o valor de C para que f esteja bem definida?
- (b) Determine P(X > 1).
- 2. A quantidade de tempo em horas que um computador funciona sem estragar é uma variável aleatória contínua com f.d.p dada por

$$f(x) = \begin{cases} \lambda e^{-\frac{x}{100}} & x \ge 0\\ 0 & \text{caso contrário} \end{cases}$$

Determine o valor de λ e calcule a a probabilidade de que

- (a) o computador funcione entre 50 e 150 horas antes de estragar?
- (b) ele funcione menos de 100 horas?

3. O tempo de vida, em horas, de uma válvula de rádio é uma v.a. com f.d.p dada por

$$f(x) = \begin{cases} 0 & x \le 100 \\ \frac{100}{x^2} & x > 100 \end{cases}$$

Qual é a probabilidade de que exatamente 2 de 5 válvulas no circuito de um aparelho de rádio tenham que ser trocadas nas primeiras 150 horas de operação? Suponha que o funcionamento das válvulas sejam independentes.

Valor esperado

Se X é uma variável aleatória contínua com função densidade de probabilidade f(x), então

$$EX = \int_{-\infty}^{\infty} x f(x) dx$$

Relação com caso discreto: $P(x \le X \le x + dx) \approx f(x)dx$

Exemplos

4. Determine EX quando a f.d.p. de X é dada por

$$f(x) = \begin{cases} 2x & 0 \le x \le 1\\ 0 & \text{caso contrário.} \end{cases}$$

5. Determine EX quando a f.d.p. de X é dada por

$$f(x) = \begin{cases} 3/8(4x - 2x^2) & 0 < x < 2\\ 0 & \text{caso contrário.} \end{cases}$$

Propriedades do Valor Esperado

Proposição

(i) Se X é uma v.a. não negativa com f.d.p f(x), então

$$EX = \int_0^\infty P(X > x) dx = \int_0^\infty \int_x^\infty f(z) dz dx.$$

(ii) Se X é uma v.a. não negativa com f.d.p f(x), então, para qualquer função g tomando valores em \mathbb{R} , vale que

$$E[g(X)] = \int_{-\infty}^{\infty} g(x)f(x)dx.$$

(iii) Se a e b são constantes reais, então

$$E[aX + b] = aEX + b.$$

6. Considere X um v.a. cuja f.d.p é dada por

$$f(x) = \begin{cases} 1 & 0 \le x \le 1 \\ 0 & \text{caso contrário.} \end{cases}$$

Determine $E[e^X]$.

Variância de uma v.a. contínua

Variância

Se X é uma variável aleatória com f.d.p f(x) e $EX = \mu$, então a variância de X é definida como

$$Var(X) = E[(X - \mu)^2] = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx$$

e o *desvio padrão* de X é definido como $DP(X) = \sqrt{Var(X)}$

Alternativamente,

$$Var(X) = E[X^2] - (EX)^2 = \int_{-\infty}^{\infty} x^2 f(x) dx - \mu^2.$$

7. Determine Var(X) quando a f.d.p. de X é dada por

$$f(x) = \begin{cases} 2x & 0 \le x \le 1\\ 0 & \text{caso contrário.} \end{cases}$$

8. Determine EX quando a f.d.p. de X é dada por

$$f(x) = \begin{cases} 3/8(4x - 2x^2) & 0 < x < 2\\ 0 & \text{caso contrário.} \end{cases}$$

Relação entre f.d.p e a média e a variância

Figura 3.6 – Três funções densidade com médias diferentes e com a variância constante

Relação entre f.d.p e a média e a variância

Figura 3.7 – Três funções densidade com variâncias diferentes e com a média constante E(X)

Propriedades da Variância

Proposição

Seja X é uma variável aleatória contínua. Para quaisquer a e b constantes reais, vale que

$$Var(aX + b) = a^2 Var(X)$$

Função de Distribuição de uma v.a.

Dada uma v.a. X contínua com f.d.p f(x), a função de distribuição acumulada (f.d.a.) de X é definida como

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(y)dy$$

9. Determine a f.d.a de X cuja f.d.p é dada por

$$f(x) = \begin{cases} 2x & 0 \le x \le 1\\ 0 & \text{caso contrário.} \end{cases}$$

Propriedades da f.d.a

Proposição

Dada uma v.a. X (contínua ou discreta) com f.d.a F temos que

- (i) F é uma função não decrescente $(x < y \text{ então } F(x) \le F(y));$
- (ii) $\lim_{x\to-\infty} F(x) = 0$;
- (iii) $\lim_{x\to\infty} F(x) = 1$;
- (iv) Se a < b então P(a < X < b) = F(b) F(a).

Relação entre f.d.a. e f.d.p

Por definição, a relação entre a função distribuição acumulada F e a função densidade de probabilidade f é dada por

$$F(a) = P(X \le a) = \int_{-\infty}^{a} f(x) dx$$

Derivando em ambos os lados da igualdade temos

$$\frac{d}{da}F(a)=f(a)$$

Distribuição Uniforme

Uma variável aleatória X é dita *uniformemente* distribuída ao longo do intervalo (a,b) se a sua função densidade de probabilidade é dada por

$$f(x) = \begin{cases} \frac{1}{b-a}, & \text{se } a < x < b \\ 0 & \text{caso contrário} \end{cases}.$$

Nessa caso, denotamos $X \sim Unif(a, b)$, e

$$EX = \frac{b+a}{2}$$
 e $Var(X) = \frac{(b-a)^2}{12}$.

Além disso,

$$F(x) = \begin{cases} 0 & \text{se } x \le a \\ \frac{x-a}{b-a} & \text{se } a < x < b \\ 1 & \text{se } x \ge b \end{cases}$$

O sistema justo

- 12. Seja $X \sim Unif(0, 10)$, calcule:
 - (a) P(X < 3)
 - (b) P(X > 6)
 - (c) P(3 < X < 8)
 - (d) P(a < X < b) para 0 < a < b < 10
- 13. Ônibus chegam em uma determinada parada em intervalos de 15 minutos começando as 7:00. Isto é, eles chegam às 7:00, 7:15,7:30, 7:45, e assim por diante. Se um passageiro chega na parada em um instante de tempo que é uniformemente distribuído entre 7:00 e 7:30, determine a probabilidade de que ele espere
 - (a) menos que 5 minutos por um ônibus;
 - (b) mais de 10 minutos por um ônibus.

Distribuição Exponencial

Uma variável aleatória contínua X é dita exponencial se sua função densidade de probabilidade é dada, para algum $\lambda>0$, por

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & \text{se } x \ge 0 \\ 0 & \text{se } x \le 0 \end{cases}.$$

Nesse caso, denotamos $X \sim Exp(\lambda)$ e

$$EX = \frac{1}{\lambda}$$
 e $Var(X) = 1/\lambda^2$

Além disso,

$$F(x) = \begin{cases} 1 - e^{-\lambda x} & \text{se } x \ge 0 \\ 0 & \text{se } x \le 0 \end{cases}.$$

Ē

- 14. Suponha que a duração de um telefonema, em minutos, seja uma variável aleatória exponencial com parâmetro $\lambda=1/10$. Se alguém chega logo na sua frente em uma cabine telefônica, determine a probabilidade de que você tenha que esperar
 - (a) mais de 10 minutos;
 - (b) entre 10 e 20 minutos.
- 15. O tempo de vida (em horas) de um transistor pode ser considerado uma v.a com distribuição exponencial com $\lambda=1/500$. Qual a probabilidade do transistor sobreviver mais que o 800h? E menos de 100h?

Distribuição Normal

Dizemos que X é uma variável aleatória normal (ou X é normalmente distribuída) com parâmetros μ e σ^2 , se a função densidade de X é dada, para todo $x \in \mathbb{R}$ por

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Nesse caso, denotamos $X \sim N(\mu, \sigma^2)$ e

$$EX = \mu$$
 e $Var(X) = \sigma^2$.

No caso especial em que $\mu=0$ e $\sigma^2=1$ dizemos que X é uma v.a. Normal padrão e geralmente denotamos por Z e sua f.d.p por

$$f_Z(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}.$$

f.d.a.

Propriedades

Proposição

Se
$$X \sim N(\mu, \sigma^2)$$
 e $Y = aX + b$ então $Y \sim N(a\mu + b, a^2\sigma^2)$

Em particular se $X \sim N(\mu, \sigma^2)$ então $Z = \frac{\chi - \mu}{\sigma}$ é um Normal padrão

Proposição

Se Z é uma v.a. Normal padrão, então sua distribuição é simétrica em torno de zero. Isto é, para qualquer $x \in \mathbb{R}$,

$$P(Z \le -x) = P(Z \ge x).$$

Em particular, se $\Phi(x)$ é a f.d.a de Z, dada por

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-z^2/2} dz,$$

então $\Phi(x)$ satisfaz, para qualquer valor $x \in \mathbb{R}$,

$$\Phi(-x) = 1 - \Phi(x)$$

Se
$$X \sim N(\mu; \sigma^2)$$
, definimos

$$Z = \frac{X - \mu}{\sigma}$$

- 16. Seja X uma variável aleatória normal com parâmetros $\mu=3$ e $\sigma^2=9$, determine as probabilidades abaixo em função de Φ
 - (a) P(2 < X < 5)
 - (b) P(X > 0)
 - (c) P(|X-3|>6)
- 17. O tempo gasto no exame vestibular de uma universidade tem distribuição Normal, com média 120 min e desvio padrão 15 min.
 - (a) Sorteando-se um aluno ao acaso, qual é a probabilidade dele terminar o exame antes de 1h e 40min minutos?
 - (b) Qual deve ser o tempo de prova, de modo a garantir que 95% dos vestibulandos terminem no prazo estipulado?
- 18. Considere uma prova cuja as notas dos alunos siga distribuição normal com média μ e variância σ^2 . Se um professor atribui o conceito A para os alunos cujas notas forem maiores que $\mu + \sigma$, B para aqueles cujas notas estiverem entre μ e $\mu + \sigma$, C para aqueles cujas notas estiverem entre $\mu \sigma$ e μ , D para aqueles cujas notas estiverem entre $\mu \sigma$ e μ , D para aqueles cujas notas estiverem entre $\mu \sigma$, E para aqueles com notas abaixo $\mu \sigma$. Qual a probabilidade de um aluno receber conceito A,B,C,D e E?

19. A glicemia de uma determinada população de ratos pode ser considerada como tendo distribuição normal com média 95 mg/dL e desvio padrão igual a 25 mg/dL. Em estudos de diabetes com ratos, muitas vezes a diabetes é induzida com a a aplicação de uma droga (como estreptozotocina ou aloxana). Para ratos com diabetes induzida com uma certa dose de uma droga, a glicemia tem distribuição normal com média 300 mg/dL e desvio padrão igual a 44 mg/dL. Considera-se situação de maior risco quando o rato tem glicemia no intervalo compreendido entre 155 mg/dL e 200 mg/dL. Calcule a proporção de ratos saudáveis (sem diabetes) com glicemia no intervalo de risco. Faça o mesmo para os ratos com diabetes.

Tabela 5.1 Área $\Phi(x)$ sob a curva normal padrão à esquerda de x

Tabela 3.1 Area $\Phi(x)$ 500 a curva normai padrao a esquerda de x										
X	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	0,5000	0,5040	0,5080	0,5120	0,5160	0,5199	0,5239	0,5279	0,5319	0,5359
0,1	0,5398	0,5438	0,5478	0,5517	0,5557	0,5596	0,5636	0,5675	0,5714	0,5753
0,2	0,5793	0,5832	0,5871	0,5910	0,5948	0,5987	0,6026	0,6064	0,6103	0,6141
0,3	0,6179	0,6217	0,6255	0,6293	0,6331	0,6368	0,6406	0,6443	0,6480	0,6517
0,4	0,6554	0,6591	0,6628	0,6664	0,6700	0,6736	0,6772	0,6808	0,6844	0,6879
0,5	0,6915	0,6950	0,6985	0,7019	0,7054	0,7088	0,7123	0,7157	0,7190	0,7224
0,6	0,7257	0,7291	0,7324	0,7357	0,7389	0,7422	0,7454	0,7486	0,7517	0,7549
0,7	0,7580	0,7611	0,7642	0,7673	0,7704	0,7734	0,7764	0,7794	0,7823	0,7852
0,8	0,7881	0,7910	0,7939	0,7967	0,7995	0,8023	0,8051	0,8078	0,8106	0,8133
0,9	0,8159	0,8186	0,8212	0,8238	0,8264	0,8289	0,8315	0,8340	0,8365	0,8389
1,0	0,8413	0,8438	0,8461	0,8485	0,8508	0,8531	0,8554	0,8577	0,8599	0,8621
1,1	0,8643	0,8665	0,8686	0,8708	0,8729	0,8749	0,8770	0,8790	0,8810	0,8830
1,2	0,8849	0,8869	0,8888	0,8907	0,8925	0,8944	0,8962	0,8980	0,8997	0,9015
1,3	0,9032	0,9049	0,9066	0,9082	0,9099	0,9115	0,9131	0,9147	0,9162	0,9177
1,4	0,9192	0,9207	0,9222	0,9236	0,9251	0,9265	0,9279	0,9292	0,9306	0,9319
1,5	0,9332	0,9345	0,9357	0,9370	0,9382	0,9394	0,9406	0,9418	0,9429	0,9441
1,6	0,9452	0,9463	0,9474	0,9484	0,9495	0,9505	0,9515	0,9525	0,9535	0,9545
1,7	0,9554	0,9564	0,9573	0,9582	0,9591	0,9599	0,9608	0,9616	0,9625	0,9633
1,8	0,9641	0,9649	0,9656	0,9664	0,9671	0,9678	0,9686	0,9693	0,9699	0,9706
1,9	0,9713	0,9719	0,9726	0,9732	0,9738	0,9744	0,9750	0,9756	0,9761	0,9767
2,0	0,9772	0,9778	0,9783	0,9788	0,9793	0,9798	0,9803	0,9808	0,9812	0,9817
2,1	0,9821	0,9826	0,9830	0,9834	0,9838	0,9842	0,9846	0,9850	0,9854	0,9857
2,2	0,9861	0,9864	0,9868	0,9871	0,9875	0,9878	0,9881	0,9884	0,9887	0,9890
2,3	0,9893	0,9896	0,9898	0,9901	0,9904	0,9906	0,9909	0,9911	0,9913	0,9916
2,4	0,9918	0,9920	0,9922	0,9925	0,9927	0,9929	0,9931	0,9932	0,9934	0,9936
2,5	0,9938	0,9940	0,9941	0,9943	0,9945	0,9946	0,9948	0,9949	0,9951	0,9952
2,6	0,9953	0,9955	0,9956	0,9957	0,9959	0,9960	0,9961	0,9962	0,9963	0,9964
2,7	0,9965	0,9966	0,9967	0,9968	0,9969	0,9970	0,9971	0,9972	0,9973	0,9974
2,8	0,9974	0,9975	0,9976	0,9977	0,9977	0,9978	0,9979	0,9979	0,9980	0,9981
2,9	0,9981	0,9982	0,9982	0,9983	0,9984	0,9984	0,9985	0,9985	0,9986	0,9986
3,0	0,9987	0,9987	0,9987	0,9988	0,9988	0,9989	0,9989	0,9989	0,9990	0,9990
3,1	0,9990	0,9991	0,9991	0,9991	0,9992	0,9992	0,9992	0,9992	0,9993	0,9993
3,2	0,9993	0,9993	0,9994	0,9994	0,9994	0,9994	0,9994	0,9995	0,9995	0,9995
3,3	0,9995	0,9995	0,9995	0,9996	0,9996	0,9996	0,9996	0,9996	0,9996	0,9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998

A aproximação normal para a distribuição binomial

B(n;0,7)

Teorema

Se X, representa o número de sucessos que ocorrem quando n tentativas independentes, cada uma com probabilidade de sucesso p, são realizadas, então, para qualquer a < b, quando $n \to \infty$

$$P\Big[a \leq \frac{X - np}{\sqrt{np(1-p)}} \leq b\Big] \rightarrow P(a \leq Z \leq b) = \Phi(b) - \Phi(a)$$

Note que

$$X \sim Bin(n, p)$$
 implica que $EX = np$ e $Var(X) = np(1 - p)$.

Ou seja, o teorema afirma é que quando $n \to \infty$, a distribuição de uma Bin(n,p) se aproxima de uma N(np,np(1-p)).

Caso particular do Teorema do Limite Central.

- 20. Seja X o número de vezes que observamos cara em 40 lançamentos de uma moeda honesta. Determine a probabilidade de que X=20. Use a aproximação normal e compare com a solução exata.
- 21. O tamanho ideal de uma turma de primeiro ano em uma determinada faculdade é de 150 alunos. A faculdade sabe de experiências anteriores que, em média, apenas 30% dos alunos aceitos vão de fato seguir o curso. Sendo assim, a faculdade costuma aprovar os pedidos de matrícula de 450 estudantes. Calcule a probabilidade de que mais de 150 estudantes de primeiro ano frequente as aulas nesta faculdade.
- 22. Seja $X \sim B(10.000; 0,001)$. Calcule a P(X=15) usando a distribuição exata e as aproximações por Poisson e Normal.

Distribuição de transformações de v.a.

Distribuição de uma função de uma v.a.

23. Considere $X \approx Unif(0,1)$ e defina $Y = X^n$. Determine a função de distribuição de Y.

É fácil ver que F(y)=0 para $y\leq 0$ e F(y)=1 para $y\geq 1$. Agora, se $0\leq y\leq 1$.

$$F_Y(y) = P(Y \le y)$$

= $P(X^n \le y)$
= $P(X \le y^{1/n})$
= $F_X(y^{1/n})$
= $y^{1/n}$

Derivando F_Y vemos que a f.d.p. de Y é dada por

$$f_Y(y) = egin{cases} rac{y^{1/n-1}}{n}, & 0 \leq y \leq 1 \\ 0 & \textit{caso contrario} \end{cases}$$

- 24. Considere X uma v.a. contínua com f.d.p f_X e defina $Y = X^2$. Determine a função de distribuição de Y.
- 25. Considere X uma v.a. contínua com f.d.p f_X e defina Y = |X|. Determine a função de distribuição de Y.

27. Fulano é gerente de uma revendedora de carros. Toda semana ele tem cinco carros para venda. Se ele vender até dois carros, não ganha qualquer adicional ao seu salário; porém, se conseguir vender três ou mais carros, ganha um prêmio de R\$ 500 por cada carro vendido. Suponha que as chances de venda dos diversos carros são independentes e que a probabilidade de cada carro ser vendido é 0,6. Determine a função de probabilidade do prêmio semanal ganho por Fulano.

Teorema

Seja X uma variável aleatória contínua com função densidade de probabilidade f_X . Suponha que g(x) seja uma função estritamente monotônica (crescente ou decrescente) e derivável (portanto contínua). Então a variável aleatória Y definida por Y=g(X) tem uma função densidade de probabilidade dada por

$$f_Y(y) = \begin{cases} f_X[g^{-1}(y)] \left| \frac{d}{dy} g^{-1}(y) \right|, & \text{se } y = g(x) \text{ para algum } x \\ 0 & \text{se } y \neq g(x) \text{ para todo } x \end{cases}$$

- 28. A carga de ruptura de cabos de aço de 8mm produzidos por uma certa Companhia têm uma distribuição Normal com média de 2.210kg e desvio padrão de 25kg. A especificação mínima para a dita carga é de 2.180kg. Suponha que o rolo de cabos com essa especificação pode ser vendido por R\$ 200. Cabos com carga de ruptura entre 2.130 e 2.180kg ainda podem ser comercializados a um preço de R\$ 120,00 e se a carga de ruptura for inferior a 2.130kg, eles devem ser descartados. Determine a distribuição de probabilidade do preço dos cabos.
- 29. O monóxido de carbono (CO) é um gás tóxico, classificado como asfixiante químico e um dos principais responsáveis pela poluição atmosférica. Se respirado em concentrações superiores a 0,4 gramas por litro (g/l), ele produz dores de cabeça e desconforto em duas ou três horas. Seja X a v.a. correspondente à concentração de CO no ar (medida em g/l). Admita que a função de densidade X é dada por

$$f(x) = \begin{cases} 5 - 12, 5x & 0 \le x \le 0, 4 \\ 0 & \text{caso contrário} \end{cases}.$$

Seja Y a v.a. que corresponde a essa mesma grandeza, porém medida em partes por milhão (ppm). Determine a função de densidade de Y. (1 g/l = 1.000ppm)

Valor esperado e variância

Proposição

ullet Se X é uma v.a. discreta com função de distribuição $p(x_i)$ e Y=g(X) então

$$EY = E(g(X)) = \sum_{i} g(x_i)p(x_i)$$

$$Var(Y) = Var(g(X)) = \sum_{i} (g(x_i) - E[g(X)])^2 p(x_i)$$

ullet Se X é uma v.a. contínua com f.d.p f(x) e Y=g(X) então

$$EY = E(g(X)) = \int_{-\infty}^{\infty} g(x)f(x)dx$$

$$Var(Y) = Var(g(X)) = \int_{-\infty}^{\infty} (g(x) - E[g(X)])^2 f(x) dx$$

- 30. [No exemplo do vendedor de carros] Determine o valor esperado e o desvio padrão do prêmio semanal a ser recebido por Fulano.
- 31. [No exemplo do monóxido de carbono] Determine o valor esperado e o desvio padrão quando a concentração é expressa em ppm.
- 32. [No exemplo do preço de cabos de aço] Determine o valor esperado e o desvio padrão quando a concentração é expressa em ppm.