APPROXIMATELY CONVEX FUNCTIONS

D. H. HYERS AND S. M. ULAM

In previous papers approximately linear functions [1] and approximately isometric transformations [2; 3; 4] have been studied. In both cases it was shown that the properties of linearity and isometry are "stable" in a certain sense. For example, it was proved that if a function f(x) satisfies the linear functional equation within an amount ϵ , that is, $|f(x+y)-f(x)-f(y)| \le \epsilon$, then there exists an actual solution g(x) of the linear functional equation such that $|g(x)-f(x)| \le \epsilon$, where ϵ is a given positive number.

In the present paper we discuss a similar problem for the property of convexity. We consider real-valued functions defined on subsets of n-dimensional Euclidean space E_n . A function f(x) defined on a convex subset S of E_n will be called ϵ -convex if $f(hx+(1-h)y) \leq hf(x)+(1-h)f(y)+\epsilon$, for all x and y in S and for $0 \leq h \leq 1$. Here ϵ is a fixed positive number. Our object is to show that to an ϵ -convex function f(x) there corresponds a convex function g(x) such that $|f(x)-g(x)| \leq k\epsilon$, for some constant k. In order to prove this we need some results on ϵ -convex functions and on approximating simplices given in the following four lemmas. The paper is self-contained.

LEMMA 1. Let f(x) be an ϵ -convex function defined on an n-dimensional simplex $S \subset E_n$. Let the vertices of the simplex be p_0, p_1, \dots, p_n , then if $x = \sum_{i=0}^{n} \alpha_i p_i$, $\alpha_i > 0$, $\sum_{i=0}^{n} \alpha_i = 1$ is any point of S, we have

(1)
$$f(x) \leq \sum_{i=0}^{n} \alpha_{i} f(p_{i}) + 2k_{n} \epsilon,$$

where $k_n = (n^2 + 3n)/(4n + 4)$.

PROOF. We prove the inequality by induction on n. For n=1, (1) reduces to the statement of ϵ -convexity, so it is true for n=1. We assume that (1) holds for n replaced by n-1, and prove it for n dimensions. The case in which some $\alpha_i=1$ is trivial, for in this case $x=p_i$, so we may assume that $\alpha_i<1$ for $i=1, \dots, n+1$. For convenience we may also assume that $\alpha_n \ge \alpha_j$, $j=0, \dots, n-1$. Put $h=1-\alpha_n$, $a_j=\alpha_j/h$, $j=0, \dots, n-1$, and $q=\sum_{j=0}^{n-1} a_j p_j$. Then $x=\sum_{j=0}^{n} \alpha_j p_j = hq + (1-h)p_n$, and since f is ϵ -convex,

(2)
$$f(x) \leq hf(q) + (1-h)f(p_n) + \epsilon.$$

Presented to the Society, April 28, 1951; received by the editors February 6, 1952.

¹ For a discussion of these and other related questions, see [6].

By the induction hypothesis,

(3)
$$f(q) \leq \sum_{i=0}^{n-1} a_i f(p_i) + \frac{(n-1)(n+2)}{2n} \epsilon.$$

Substituting (3) into (2), we get

(4)
$$f(x) \leq \sum_{i=0}^{n} \alpha_i f(p_i) + \left\{ 1 + \frac{h(n-1)(n+2)}{2n} \right\} \epsilon.$$

Since $\alpha_n \ge \alpha_j$, $j=0, \dots, n-1$, the minimum value which α_n can have is 1/(n+1), so the maximum value which h can have is 1-1/(n+1)=n/(n+1). Consequently an upper bound for the expression in brackets in inequality (4) is

$$1 + \frac{(n-1)(n+2)}{2(n+1)} = \frac{n^2 + 3n}{2n+2}.$$

Thus the lemma has been established.

LEMMA 2. Let f(x) be an ϵ -convex function defined on an open convex set $G \subset E_n$. Then on each closed bounded subset B of G, f(x) is bounded.

PROOF. f is bounded from above, since B may be covered with a finite number of n-dimensional simplices, each contained in G, and f is bounded on each simplex by Lemma 1.

To prove that f is bounded from below on B, let B be covered with a finite number of closed spheres S_i , such that each S_i is contained in G. Let x_i be the center of S_i , and let $x_i + y$ be any point of the sphere S_i . Then by ϵ -convexity

$$f(x_i) \leq 2^{-1}f(x_i + y) + 2^{-1}f(x_i - y) + \epsilon$$

or

$$f(x_i + y) \ge 2f(x_i) - f(x_i - y) - 2\epsilon$$

Now $x_i - y$ belongs to the sphere S_i , and since S_i is a closed subset of G, $f(x_i - y)$ is bounded from above as $x_i + y$ varies over S_i . Hence $f(x_i + y)$ is bounded from below for $x_i + y \in S_i$, and it follows that f is bounded from below on B. The proof of the following two lemmas is left to the reader.

LEMMA 3. Let x lie in an n-dimensional simplex with vertices q_0, q_1, \dots, q_n , so that $x = \sum_{i=0}^n \alpha_i q_i, \alpha_i \ge 0$, and $\sum_{i=0}^n \alpha_i = 1$. Suppose also that we have n+1 sequences $\{q_i^{(\nu)}\}$ $(i=0, \dots, n; \nu=1, 2, 3, \dots)$ of points such that $q_i^{(\nu)} \rightarrow q_i$ as $\nu \rightarrow \infty$, and that for each ν , x also lies in the n-dimensional simplex with vertices $q_i^{(\nu)}$ so that

$$x = \sum_{i=0}^{n} \alpha_i^{(\nu)} q_i^{(\nu)},$$

where $\alpha_i^{(\nu)} \geq 0$ and $\sum_{i=0}^n \alpha_i^{(\nu)} = 1$. Then as $\nu \to \infty$, $\alpha_i^{(\nu)} \to \alpha_i$.

LEMMA 4. Suppose x is interior to an n-dimensional simplex in E_n whose vertices are q_0 , q_1 , \cdots , q_n . Then if $q_i^{(\nu)} \rightarrow q_i$ in E_n as $\nu \rightarrow \infty$ $(i=0, \cdots, n)$, x is also interior to the simplex $S_n^{(\nu)}$ whose vertices are $q_i^{(\nu)}$ $(i=0, \cdots, n)$, for sufficiently large n.

THEOREM 1. Let f(x) be ϵ -convex on an open convex set $G \subset E_n$, and let B be any closed bounded convex subset of G. Then there exists a convex function $\phi(x)$ on B such that

$$|\phi(x) - f(x)| \leq k_n \epsilon,$$
 for $x \in B$,

where $k_n = (n^2 + 3n)/(4n + 4)$.

PROOF. Let H be a bounded convex open subset of G such that $B \subset H$, and $\overline{H} \subset G$. Since B is a compact subset of the open convex set G, the existence of such an H is easily shown. Let K denote the convex hull of the closure of the graph of the function f(x) for $x \in \overline{H}$, so that K is a convex set in E_{n+1} .

Define, for $x = (x_1, \dots, x_n) \in \overline{H}$, $g(x) = \inf [y; (x_1, x_2, \dots, x_n, y) \in K]$. Since f(x) is bounded on \overline{H} by Lemma 2, K is a compact set in E_{n+1} and g(x) is well defined on \overline{H} . It is easily seen that g(x) is a convex function, and that $g(x) \leq f(x)$ for $x \in H$. Given a point $x \in B$, let p denote the point $(x_1, x_2, \dots, x_n, g(x))$ in E_{n+1} . Now p evidently belongs to the boundary of K, and since K is closed, it also belongs to K. By a well known theorem, p lies on an p-dimensional simplex p whose vertices are points or limit points of the graph of p for p where p where p were in the interior of an p and p simplex with vertices in p would lie in the interior of p and not on its boundary.

There are three possible cases.

- (i) p is a point of the graph of f.
- (ii) p is a limit point of the graph of f.
- (iii) p is "interior" to some simplex S whose dimension is positive and less than or equal to m, and whose vertices are points or limit points of the graph of f.

In case (i), f(x) = g(x), and there is nothing to prove. In case (ii)

² See [5, p. 9].

³ A point will be called "interior" to a simplex S of dimension r if it belongs to S but not to any face of lower dimension than r.

it is convenient to translate the axes so that the origin of coordinates lies at the point x so that x=0. Then by hypothesis there exists a sequence of distinct points $x^{(\mu)} \in H \subset E_n$ tending to zero such that $\lim_{\mu \to \infty} f(x^{(\mu)}) = g(0)$. It is clear that an infinite number of these points must all lie in some one of the 2^n -tants determined by the coordinate hyperplanes. For definiteness, let us assume the first 2^n -tant contains an infinite number of these points. We denote them by $x^{(\nu)}$, so that all the coordinates of each $x^{(\nu)}$ may be assumed to be non-negative. Now choose on each coordinate axis a point p_j whose jth coordinate is negative, the others being zero, $j=1, 2, \cdots, n$, such that $p_j \in H$. Consider the simplex $S^{(\nu)}$ whose vertices are p_1, p_2, \cdots, p_n and $x^{(\nu)}$. Then the origin belongs to this simplex, and there exist $\alpha_i^{(\nu)}$, $i=1, \cdots, n+1$, such that

(5)
$$\sum_{i=1}^{n} \alpha_{i}^{(\nu)} p_{i} + \alpha_{n+1}^{(\nu)} x^{(\nu)} = 0,$$

where $\alpha_j^{(\nu)} \ge 0$, $\alpha_{n+1}^{(\nu)} > 0$, and $\sum_{i=1}^{n+1} \alpha_i^{(\nu)} = 1$.

To prove this, let p_{jj} be the jth coordinate of the point p_j and let $x_j^{(r)}$ be the jth coordinate of the point $x^{(r)}$. Then the "vector" equation (5) may be written in the form:

(6)
$$\alpha_{j}^{(r)} p_{jj} + \alpha_{n+1}^{(r)} x_{j}^{(r)} = 0, \qquad j = 1, \dots, n,$$

where $p_{jj} < 0$, and $x_j^{(\nu)} \ge 0$. Since $x_j^{(\nu)} \ne 0$, at least one of the $x_j^{(\nu)}$ must be positive. If $x_j^{(\nu)} = 0$, choose $\alpha_j^{(\nu)} = \rho_j^{(\nu)} = 0$. If $x_j^{(\nu)} \ne 0$ equation (6) determines the ratio $\rho_j^{(\nu)} = \alpha_j^{(\nu)}/\alpha_{n+1}^{(\nu)}$, which in this case is evidently positive. The value of $\alpha_{n+1}^{(\nu)}$ is then determined by the requirement that $\sum_{i=1}^{n+1} \alpha_i^{(\nu)} = (1 + \sum_{j=1}^{n} \rho_j^{(\nu)})\alpha_{n+1}^{(\nu)} = 1$. Thus relation (6) is established. By Lemma 1, it follows that

(7)
$$f(0) \leq \sum_{i=1}^{n} \alpha_{i}^{(r)} f(p_{i}) + \alpha_{n+1}^{(r)} f(x^{(r)}) + 2k_{n}\epsilon.$$

Now as $v \to \infty$, $x^{(v)} \to 0$. Hence by (6), $\alpha_j^{(v)} \to 0$ for $j = 1, \dots, n$. It follows that $\alpha_{n+1}^{(v)} \to 1$. Since $f(x^{(v)}) \to g(0)$, we have $f(0) \leq g(0) + 2k_n \epsilon$, or $f(x) \leq g(x) + 2k_n \epsilon$.

We now turn to case (iii). Here p lies in the interior of an r-dimensional simplex S_r $(1 \le r \le n)$ whose vertices p_i $(i=0, 1, \dots, r)$ are points or limit points of the graph of f.

Let π be a supporting hyperplane of $K \subset E_{n+1}$ through the point p. Now p is interior to at least one line segment S_1 belonging to S_r and hence to K. Any such line segment S_1 must lie in the hyperplane π , for otherwise S_1 would pierce the hyperplane π at p so that part of S_1 would lie on one side of π and part on the other, which is impossible since all of K lies on one side of π . It follows that S_r , and hence its vertices p_i , lies in π , and the p_i are boundary points of K.

This supporting hyperplane π cannot be perpendicular to E_n , for in this case π would project (orthogonally) into a hyperplane in E_n which would be a supporting hyperplane of the projection of the convex set K and which would contain the point x. Thus x would be on the boundary of the projection of K. But the projection of K includes the open set K which by hypothesis contains K, so K cannot lie on the boundary of K0 projection, and we have a contradiction.

Therefore the projection of S_r onto E_n is a simplex Σ_r of the same dimension r, and the interior of S_r projects into the interior of Σ_r , so that the point x which is the projection of p lies in the interior of Σ_r .

We use double subscripts to denote the coordinates of the vertices p_i of S_r , and we denote the projections of these vertices onto E_n by q_0, q_1, \dots, q_r . Then by hypothesis there exist sequences $q_i^{(\nu)}$ such that $p_{i,n+1} = \lim_{r \to \infty} f(q_i^{(\nu)})$, where $\lim_{r \to \infty} q_i^{(\nu)} = q_i$, and q_0, \dots, q_r are the vertices of the r-dimensional simplex $\Sigma_r \subset E_n$, which contains the point x in its interior. Our object is to construct a simplex $S_n^{(\nu)}$ of dimension n in E_n such that x is interior to $S_n^{(\nu)}$, and such that r of its vertices are points $q_0^{(\nu)}, \dots, q_r^{(\nu)}$. We can then apply Lemma 1 to this simplex and take the limit in the resulting inequality as $r \to \infty$.

Suppose first that r=n. In this case, x is interior to the n-dimensional simplex $\Sigma_n \subset E_n$, so that

$$x = \sum_{i=0}^{n} \alpha_i q_i, \qquad \alpha_i > 0, \qquad \sum_{i=0}^{n} \alpha_i = 1.$$

Since $q_i^{(\nu)} \to q_i$ in E_n as $\nu \to \infty$, it follows by Lemma 4 that $x = \sum_{i=0}^n \alpha_i^{(\nu)} q_i^{(\nu)}$, $\alpha_i^{(\nu)} > 0$, $\sum_{i=0}^n \alpha_i^{(\nu)} = 1$. Hence by Lemma 3, $\alpha_i^{(\nu)} \to \alpha_i$ as $\nu \to \infty$.

Now by Lemma 1, we have $f(x) \leq \sum_{i=0}^{n} \alpha_i^{(\nu)} f(q_i^{(\nu)}) + 2k_n \epsilon$. By taking limits as $\nu \to \infty$ we get

$$f(x) \leq \sum_{i=0}^{n} \alpha_{i} p_{i,n+1} + 2k_{n} \epsilon = g(x) + 2k_{n} \epsilon.$$

Now let us suppose that $1 \le r \le n$. Let F_r be the r-dimensional flat containing Σ_r . Now if for all but a finite number of ν 's, the $q_i^{(\nu)}$, $i=0, \dots, n; \nu=1, 2, 3, \dots$, are contained in F_r , then $q_i^{(\nu)} \rightarrow q_i$ in F_r and one has essentially case (iiia) with r replacing n, so the proof follows as before.

Next suppose that an infinity of points $q_i^{(\nu)}$ for some i lie outside this flat. We may as well assume (by relabeling and suppressing a subsequence if necessary) that all of the $q_0^{(\nu)}$ lie outside F_r .

Let us choose a new coordinate system with origin at q_0 and with the first r axes belonging to F_r , so that the equations of F_r are $z_j = 0$, j = r + 1, \cdots , n. The last n - r coordinates $q_{0,r+1}^{(\nu)}$, \cdots , $q_{0,n}^{(\nu)}$ of the point $q_0^{(\nu)}$ cannot all be zero for any ν . It follows that for some fixed j, $q_{0,r+1}^{(\nu)} \neq 0$, for all ν . We may without loss of generality assume that $q_{0,r+1}^{(\nu)} \neq 0$, for all ν . Now there must be an infinity of the numbers $q_{0,r+1}^{(\nu)}$ which are either all positive or all negative, and by reversing the (r+1)st coordinate axis if necessary, we may assume that $q_{0,r+1}^{(\nu)} > 0$ for all ν .

Next, if r+1 < n, we consider $q_{0,r+2}^{(r)}$. If $q_{0,r+2}^{(r)} = 0$ for all but a finite number of ν 's, we rotate the z_{r+1} and z_{r+2} axes through an acute angle, keeping all of the other axes fixed, in such a way that after the rotation $q_{0,r+1}^{(r)}$ will still be positive and $q_{0,r+2}^{(r)}$ will become positive for all but a finite number of ν 's.

On the other hand if $q_{0,r+2}^{(r)} \neq 0$ for an infinite number of ν 's, then for an infinite number of ν 's, these numbers are all positive or all negative. By reversing the z_{r+2} -axis if necessary we have $q_{0,r+2}^{(r)} > 0$ for an infinite number of ν 's. Thus by suppressing a subsequence if necessary we can arrange matters so that $q_{0,r+1}^{(r)} > 0$ and $q_{0,r+2}^{(r)} > 0$ for all ν .

If r+2 < n, we proceed in the same way, with r+1 replacing r, and so on. Thus, there will exist a coordinate system in E_n and sequences of points $q_i^{(r)} \rightarrow q_i$ $(i=0, 1, \dots, r)$ such that the origin lies at the point q_0 , and $q_{i,j}=0$, $q_{0,j}^{(r)}>0$ for $j=r+1, \dots, n$, where $f(q_i^{(r)}) \rightarrow p_{i,n+1}$, $x = \sum_{i=0}^r \alpha_i q_i$, $g(x) = \sum_{i=0}^r \alpha_i p_{i,n+1}$, $\sum_{i=0}^r \alpha_i = 1$, $\alpha_i > 0$.

Now let q_i $(i=r+1, \dots, n)$ be a point in H whose (r+1)st coordinate is a negative number and whose other coordinates are all zero. We now show that x is interior to the n-dimensional simplex whose vertices are $q_0^{(r)}$, q_1 , q_2 , \cdots , q_n , for sufficiently large ν .

Thus we must show the existence of positive numbers β_i $(i=0,\dots,n)$ with $\sum_{i=0}^{n} \beta_i = 1$ such that $x = \sum_{i=0}^{r} \alpha_i q_i = \beta_0 q_0^{(r)} + \sum_{i=0}^{n} \beta_i q_i$. That is, the β_i are to satisfy the following system of n+1 linear equations:

(8)
$$\beta_{0}q_{0,j}^{(r)} + \sum_{i=0}^{r} \beta_{i}q_{i,j} = \sum_{i=0}^{r} \alpha_{i}q_{i,j} \qquad (j = 1, \dots, r),$$

$$\beta_{0}q_{0,j}^{(r)} + \beta_{j}q_{i,j} = 0 \qquad (j = r + 1, \dots, n),$$

$$\sum_{i=0}^{n+1} \beta_{i} = 1.$$

Since $\alpha_i > 0$, $\sum_{i=0}^{r} \alpha_i = 1$, and $q_{0,j}^{(r)} \rightarrow q_{0,j} = 0$, it follows that for $0 < \beta_0 < 1$ there will exist a ν_0 , independent of β_0 , such that the first r equations of the system (8) have solutions for β_i , $i=1, \dots, r$, which are between zero and one, whenever $\nu \ge \nu_0$. Since $q_{i,j}$ and $q_{0,j}^{(\nu)}$ are of opposite signs by construction for $j=r+1, \dots, n$, it is clear that the next n-r equations will also have solutions β_i , $j=r+1, \dots, n$, which are between zero and one when β_0 is, and when ν is sufficiently large. With the help of the last equation all the β 's may be determined, with $0 < \beta_i < 1$, $i=0, \dots, n$.

Next, for a given ν , so large that x is interior to the simplex with vertices q_0^{ν} , q_1 , \cdots , q_n , there will exist by Lemma 4 an index $\mu = \mu(\nu)$ such that x is also interior to the simplex with vertices q_0^{ν} , q_1^{μ} , q_2^{μ} , \cdots , q_r^{μ} , q_{r+1} , \cdots , q_n . Let one such index μ be determined for each ν and put $\bar{q}_i^{\nu} = q_i^{\mu(\nu)}$, $i = 1, \cdots, r$. For convenience we also put $\bar{q}_0^{\nu} = q_0^{\nu}$. Then there exist $\alpha_i > 0$, i = 0, $1, \cdots, n$, such that $\sum_{i=0}^{n} \alpha_i^{\nu} = 1$ and $x = \sum_{i=0}^{r} \alpha_i q_i = \sum_{i=0}^{r} \alpha_i^{\nu} \bar{q}_i^{\nu} + \sum_{i=r+1}^{n} \alpha_i q_i$. By Lemma 1 we have

$$f(x) \leq \sum_{i=0}^{r} \alpha_{i} f(\bar{q}_{i}) + \sum_{i=r+1}^{n} \alpha_{i} f(q_{i}) + 2k_{n} \epsilon.$$

Now as $\nu \to \infty$, $\bar{q}_i^{\nu} \to q_i$, $f(\bar{q}_i^{\nu}) \to p_{i,n+1}$, and, by Lemma 3, we know that $\alpha_i^{\nu} \to \alpha_i$ for $i = 0, 1, \dots, r$, while $\alpha_j^{\nu} \to 0$, $j = r+1, \dots, n$. Hence by letting $\nu \to \infty$ in the last inequality we get

$$f(x) \leq \sum_{i=0}^{r} \alpha_{i} p_{i,n+1} + 2k_{n} \epsilon = g(x) + 2k_{n} \epsilon.$$

We have proved that for any point $x \in B$, $g(x) \le f(x) \le g(x) + 2k_n \epsilon$, where g(x) is a convex function. Now define $\phi(x) = g(x) + k_n \epsilon$. Then $\phi(x)$ is convex and

$$|\phi(x) - f(x)| \le k_n \epsilon$$
 for $x \in B$.

This completes the proof of theorem 1.

THEOREM 2. If f(x) is an ϵ -convex function defined on a convex open subset of G of E_n , then there exists a convex function $\phi(x)$ defined on G such that $|f(x) - \phi(x)| \le k_n \epsilon$.

PROOF. Let $H_{\mathfrak{p}}, \nu = 1, 2, 3, \cdots$, be a sequence of convex, compact subsets of G such that $H_{\mathfrak{p}+1} \subset H_{\mathfrak{p}}$ and such that $G = \bigcup_{\mathfrak{p}=1}^{\infty} H_{\mathfrak{p}}$ (the existence of such a sequence is easily demonstrated). Then by Theorem 1, there exists for each ν a convex function $\phi_{\mathfrak{p}}(x)$ on $H_{\mathfrak{p}}$ such that $|\phi_{\mathfrak{p}}(x) - f(x)| \leq k_{\mathfrak{p}} \epsilon$, for $x \in H_{\mathfrak{p}}$. For each fixed positive integer μ , the function f(x) is bounded on H_{μ} by Lemma 2. Hence the sequence $\{\phi_{\mathfrak{p}}(x)\}$ is defined and uniformly bounded on H_{μ} for $\nu \geq \mu$. By a well

known selection theorem there exists a subsequence $\{\phi_{1p}(x)\}$ of the $\phi_r(x)$ which converges for all $x \in H_1$. Similarly there is a subsequence $\{\phi_{2p}(x)\}$ of the $\phi_{1p}(x)$ which is defined and convergent on H_2 , and so on. Now consider the sequence $\{\phi_{pp}(x)\}$, $p=1, 2, 3, \cdots$. For any given $x \in G$, there exists a positive integer m so that $x \in H_m$. Hence for $p \ge m$, the sequence $\{\phi_{pp}(x)\}$ is defined and converges to a limit $\phi(x)$. Thus g(x) is defined, is convex, and satisfies the inequality $|\phi(x) - f(x)| \le k_n \epsilon$ for $x \in G$.

REFERENCES

- 1. D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. vol. 27 (1941) pp. 222-224.
- 2. D. H. Hyers and S. M. Ulam, On approximate isometries, Bull. Amer. Math. Soc. vol. 51 (1945) pp. 288-292.
- 3. —, Approximate isometries of the space of continuous functions, Ann. of Math. vol. 48 (1947) pp. 285-289.
- 4. D. G. Bourgin, Approximate isometries, Bull. Amer. Math. Soc. vol. 52 (1946) pp. 704-714.
 - 5. T. Bonnesen and W. Fenchel, Konvexe Körper, New York, 1948.
- 6. D. G. Bourgin, Classes of transformations and bordering transformations, Bull. Amer. Math. Soc. vol. 57 (1951) pp. 223-237.

THE UNIVERSITY OF SOUTHERN CALIFORNIA AND THE LOS ALAMOS SCIENTIFIC LABORATORY