Machine Learning

Machine Learning

Técnicas empleadas para que las máquinas aprendan de forma autónoma.

Aprender -> Generalizar comportamientos a partir de una información suministrada en forma de ejemplos.

Machine Learning

Clasificación de las técnicas de Machine Learning según el tipo de aprendizaje:

- Aprendizaje supervisado: Los datos traen relacionado un objetivo
- Aprendizaje No supervisado: Los datos no traen relacionado ningún objetivo

Machine Learning

Aprendizaje supervisado

- Clasificación
- Regresión (predicción)

Aprendizaje No supervisado

- Agrupación

Machine Learning

Aprendizaje supervisado

- Generalized Linear Models
- Nearest Neighbors (KNN)
- Support Vector Machines (SVM)
- Naive Bayes
- Decision Trees
- Neural network models (supervised)

- ...

Aprendizaje No supervisado

- Gaussian mixture models
- Manifold learning
- Clustering
- Density Estimation
- Covariance estimation
- Neural network models (unsupervised)
- ...

http://scikit-learn.org/stable/user_guide.ht

Machine Learning

Aprendizaje supervisado - Nearest Neighbors (KNN)

Método de clasificación supervisada que sirve para estimar la función de densidad F(x/Cj) de las predictoras x por cada clase Cj.

Estima el valor de la función de densidad de probabilidad o directamente la probabilidad a posteriori de que un elemento *x* pertenezca a la clase *Cj* a partir de la información proporcionada por un conjunto de datos de entrenamiento.

Es una técnica que utiliza aprendizaje vago, no entusiasta -> no existe una generalización previa.

Machine Learning

Aprendizaje supervisado - Nearest Neighbors (KNN)

Sistema para clasificar futuros deudores de un banco:

- Cliente que Pagó
- ▲ Cliente que Incumplió
- Fututo Deudor (a clasificar)

Machine Learning

Aprendizaje supervisado - Nearest Neighbors (KNN)

Variables que se correlacionan con el cumplimiento en el pago:

- Edad
- Estado civil
- Número de hijos
- Nivel de estudio
- ..

De acuerdo a estas variables ...

- (k = 3) De los 3 clientes más parecidos: la mayoría pagó o no?
- (k = 5) De los 5 clientes más parecidos: la mayoría pagó o no?

Machine Learning

Aprendizaje supervisado - Nearest Neighbors (KNN)

Algoritmo:

Conjunto de entrenamiento: Vectores p-dimensionales (p-> # de atributos)

$$x_i=(x_{1i},x_{2i},\ldots,x_{pi})\in X$$

Métrica para calcular cercanía de vecinos - Distancia euclidiana:

$$d(x_i,x_j) = \sqrt{\sum_{r=1}^p (x_{ri}-x_{rj})^2}$$

Machine Learning

Aprendizaje supervisado - Nearest Neighbors (KNN)

Ejemplo: Clasificador de especies de plantas Iris

from sklearn import datasets

iris = datasets.load_iris()
type(iris)
dir(iris)
iris.DESCR
iris.feature_names
iris.target_names

iris.data iris.target

Machine Learning

Aprendizaje supervisado - Nearest Neighbors (KNN)

Ejemplo: Clasificador de especies de plantas Iris


```
from sklearn.model_selection import train_test_split
```

```
x_train, x_test, y_train, y_test = train_test_split(iris.data, iris.target)
```

x_train

y_train

x_test

y_test

Machine Learning

Aprendizaje supervisado - Nearest Neighbors (KNN)

Ejemplo: Clasificador de especies de plantas Iris

from sklearn.neighbors import KNeighborsClassifier #Importamos al método

knn = KNeighborsClassifier(n_neighbors=5) #Declaramos el método knn.fit(x_train, y_train) #Ajustamos el método knn.score(x_test, y_test) # El porcentaje de acertamiento del método

knn.predict(x_test)
Y test

knn.predict(x_test[2:3][:4]) y_test[2:3][:4]

Machine Learning

Aprendizaje supervisado - Nearest Neighbors (KNN)

Ejemplo: Clasificador de especies de plantas Iris

from sklearn.neighbors import RadiusNeighborsClassifier

knn_r = RadiusNeighborsClassifier(radius=5)

knn_r.fit(x_train, y_train) #Ajustamos el método knn_r.score(x_test, y_test) # El porcentaje de acertamiento del método

knn_r.predict(x_test)
x_test

knn_r.predict(x_test[2:3][:4]) y_test[2:3][:4]

Machine Learning

Aprendizaje supervisado - Support Vector Machine (SVM)

Técnica de aprendizaje supervisado creada por Vladimir Vapnik que permite realizar tareas de clasificación y de regresión mediante la creación de hiperplanos que separan los datos de entrada.

Cuando los datos no son separables linealmente se utilizan funciones kernels que llevan los datos a dimensiones superiores donde si es posible dicha separación.

Machine Learning

Aprendizaje supervisado - Support Vector Machine (SVM)

Cuál Hiperplano?

Machine Learning

Aprendizaje supervisado - Support Vector Machine (SVM)

El que presente mayor margen entre los datos más cercanos.

Machine Learning

Aprendizaje supervisado - Support Vector Machine (SVM)

Que es un Hiperplano y cómo separa un plano en dos?

Machine Learning

Aprendizaje supervisado - Support Vector Machine (SVM)

Hiperplano límites (aceras)

Machine Learning

Aprendizaje supervisado - Support Vector Machine (SVM)

WIDTH

Distancia entre aceras

$$\overline{\omega} \cdot \overline{x}_{+} + b \ge 1$$

$$\overline{\omega} \cdot \overline{x}_{+} + b \le -1$$

$$(\overline{x}_{+} - \overline{x}_{-}) \cdot \frac{\overline{\omega}}{\|\omega\|} = \frac{2}{\|\omega\|}$$

Machine Learning

Aprendizaje supervisado - Support Vector Machine (SVM)

Distancia entre aceras

Machine Learning

Aprendizaje supervisado - Support Vector Machine (SVM)

Cuando los datos no son separables linealmente

Machine Learning

Aprendizaje supervisado - Support Vector Machine (SVM)

Kernels típicos:

- linear: $\langle x, x' \rangle$.
- ullet polynomial: $(\gamma\langle x,x'
 angle+r)^d$, where d is specified by parameter degree, r by coef0.
- rbf: $\exp(-\gamma \|x-x'\|^2)$, where γ is specified by parameter gamma, must be greater than 0.
- ullet sigmoid $anh(\gamma\langle x,x'
 angle+r)$, where r is specified by coef0.

Machine Learning

Aprendizaje supervisado - Decision Trees (DTs)

Los árboles de decisión son un método de aprendizaje supervisado no paramétrico utilizado para la clasificación y la regresión.

Su función es crear un modelo que prediga el valor de una variable objetivo mediante el aprendizaje de reglas simples de decisión inferidas a partir de las características de los datos.

Machine Learning

Aprendizaje supervisado - Decision Trees (DTs)

Reglas -> Secuencia de condiciones -> Representan en un grafo

	Atributo 1	$A tributo \\ 2$		$Atributo \\ n$	$egin{aligned} Valor \ Objetivo \end{aligned}$
$Nombres\ Atributos \rightarrow$	\boldsymbol{A}	B	•••	N	CLASE
patrón 1	a_1	b_1		n_1	Y_1
patrón 2	a_2	b_2		n_2	Y_2
	•••				
patrón m	a_m	b_m		n_m	Y_m

Conjunto de datos de entrenamiento

Machine Learning

Aprendizaje supervisado - Decision Trees (DTs)

Reglas -> Secuencia de condiciones -> Representan en un grafo

Conjunto de datos de entrenamiento

Machine Learning

Aprendizaje supervisado - Decision Trees (DTs)

Reglas -> Secuencia de condiciones -> Representan en un grafo

Machine Learning

Aprendizaje supervisado - Decision Trees (DTs)

Teoría de la información

Cantidad de información -> Entropía -> Ganancia de información

Machine Learning

Machine Learning

Aprendizaje supervisado - Decision Trees (DTs)

Teoría de la información

El atributo que tenga mayor Ganancia de información

$$\operatorname{Gan} \operatorname{Inf}(S,A) = \operatorname{Entropia}(S) - \sum_{v \in V(A)} rac{|Sv|}{|S|} \operatorname{Entropia}(Sv)$$

Machine Learning

Alumno		ATRIBUTO	Nota	
Alumno	Punt. y asist.	Participación	Aprovechamiento	NOLA
1	No asiste	Media	Excelente	Exento
2	Asiste	Alta	Bueno	Exento
3	No asiste	Media	Bueno	Final
4	No asiste	Baja	Bueno	Final
5	Asiste	Alta	Regular	Final
6	Asiste	Baja	Deficiente	Extraordinario
7	No asiste	Media	Regular	Extraordinario

Machine Learning

Alumno		ATRIBUTO	Nota	
Alumno	Punt. y asist.	Participación	Aprovechamiento	NOLA
1	No asiste	Media	Excelente	Exento
2	Asiste	Alta	Bueno	Exento
3	No asiste	Media	Bueno	Final
4	No asiste	Baja	Bueno	Final
5	Asiste	Alta	Regular	Final
6	Asiste	Baja	Deficiente	Extraordinario
7	No asiste	Media	Regular	Extraordinario

Variable	Ganancia de información (Variable)
Puntualidad y asistencia	1.56-[4/7(1.5)+3/7(1.58)] = 0.025
Participación	1.56-[2/7(1.0)+3/7(1.58)+2/7(1.0)] = 0.311
Aprovechamiento	1.56-[1/7(0)+2/7(1.0)+3/7(0.92)+1/7(0) = 0.880

$$\operatorname{Gan} \operatorname{Inf}(S,A) = \operatorname{Entropia}(S) - \sum_{v \in V(A)} rac{|Sv|}{|S|} \operatorname{Entropia}(Sv)$$

Machine Learning

Alumno		ATRIBUTO	ATRIBUTO	
Alullillo	Punt. y asist.	Participación	Aprovechamiento	Nota
1	No asiste	Media	Excelente	Exento
2	Asiste	Alta	Bueno	Exento
3	No asiste	Media	Bueno	Final
4	No asiste	Baja	Bueno	Final
5	Asiste	Alta	Regular	Final
6	Asiste	Baja	Deficiente	Extraordinario
7	No asiste	Media	Regular	Extraordinario

Variable	Ganancia de información (Variable)	
Puntualidad y asistencia	.56 [4/7(1.5)+3/7(1.58)] = 0.025	
Participación	1.56- <mark>2/7(1.0)+3/7(1.58)+2/7(1.0)] = 0.311</mark>	
Aprovechamiento	1.56-1/7(0)+2/7(1.0)+3/7(0.92)+1/7(0) = 0.88	

$$\operatorname{Gan\,Inf}(S,A) = \operatorname{ ext{Entropia}}(S) - \sum_{v \in V(A)} rac{|Sv|}{|S|} \operatorname{ ext{Entropia}}(Sv)$$

Clase
$$\begin{cases} \text{Exento} &= 2/7 \\ \text{Final} &= 3/7 \\ \text{Extraordinario} &= 2/7 \end{cases}$$

$$I(2/7, 3/7, 2/7) = -2/7 \log_2 2/7 - 3/7 \log_2 3/7 - 2/7 \log_2 2/7 = 1.56$$

Machine Learning

Aprendizaje supervisado - Decision Trees (DTs)

Alumno		ATRIBUTO		Nota
Alumno	Punt. y asist.	Participación	Aprovechamiento	NOLA
1	No asiste	Media	Excelente	Exento
2	Asiste	Alta	Bueno	Exento
3	No asiste	Media	Bueno	Final
4	No asiste	Baja	Bueno	Final
5	Asiste	Alta	Regular	Final
6	Asiste	Baja	Deficiente	Extraordinario
7	No asiste	Media	Regular	Extraordinario

Variable	Ganancia de información (Variable)
Puntualidad y asistencia	1.56-[4/7(1.5)+3/7(1.58)] = 0.025
Participación	1.56-[2/7(1.0)+3/7(1.58)+2/7(1.0)] = 0.311
Aprovechamiento	1.56-[1/7(0)+2/7(1.0)+3/7(0.92)+1/7(0) = 0.880

$$\operatorname{Gan} \operatorname{Inf}(S,A) = \operatorname{Entropia}(S) - \sum_{v \in V(A)} rac{|Sv|}{|S|} \operatorname{Entropia}(Sv)$$

• Puntualidad y Asistencia = {No asiste, Asiste}

PyA = No asiste

$$\begin{aligned} &\text{No Asiste} \begin{cases} \text{Exento} &= 1/4 \\ \text{Final} &= 2/4 \\ \text{Extraordinario} &= 1/4 \end{cases} \\ &I(\text{Py A} = \text{No Asiste}) = I(1/4, 2/4, 1/4) \\ &= -1/4 \log_2 1/4 - 2/4 \log_2 2/4 - 1/4 \log_2 1/4 = 1.50 \end{aligned}$$

Machine Learning

Aprendizaje supervisado - Decision Trees (DTs)

Alumno		ATRIBUTO	ATRIBUTO	
Alullillo	Punt. y asist.	Participación	Aprovechamiento	Nota
1	No asiste	Media	Excelente	Exento
2	Asiste	Alta	Bueno	Exento
3	No asiste	Media	Bueno	Final
4	No asiste	Baja	Bueno	Final
5	Asiste	Alta	Regular	Final
6	Asiste	Baja	Deficiente	Extraordinario
7	No asiste	Media	Regular	Extraordinario

Variable	Ganancia de información (Variable)
Puntualidad y asistencia	1.56-[4/7(1.5)+3/7 1.58] = 0.025
Participación	1.56-[2/7(1.0)+3/7(1.58)+2/7(1.0)] = 0.311
Aprovechamiento	1.56-[1/7(0)+2/7(1.0)+3/7(0.92)+1/7(0) = 0.880

$$\operatorname{Gan} \operatorname{Inf}(S,A) = \operatorname{Entropia}(S) - \sum_{v \in V(A)} rac{|Sv|}{|S|} \operatorname{Entropia}(Sv)$$

• Puntualidad y Asistencia = {No asiste, Asiste}

PvA = Asiste

$$\begin{aligned} & \text{Asiste} \begin{cases} \text{Exento} &= 1/3 \\ \text{Final} &= 1/3 \\ \text{Extraordinario} &= 1/3 \end{cases} \\ & I(\text{Py A} = \text{Asiste}) = I(1/3, 1/3, 1/3) \\ &= -1/3 \log_2 1/3 - 1/3 \log_2 1/3 - 1/3 \log_2 1/3 = 1.58 \end{aligned}$$

Machine Learning

Alumno		ATRIBUTO)	Nota
Alumno	Punt. y asist.	Participación	Aprovechamiento	NOLA
1	No asiste	Media	Excelente	Exento
2	Asiste	Alta	Bueno	Exento
3	No asiste	Media	Bueno	Final
4	No asiste	Baja	Bueno	Final
5	Asiste	Alta	Regular	Final
6	Asiste	Baja	Deficiente	Extraordinario
7	No asiste	Media	Regular	Extraordinario

Variable	Ganancia de información (Variable)
Puntualidad y asistencia	1.56-[4/7(1.5)+3/7(1.58)] = 0.025
Participación	1.56-[2/7(1.0)+3/7(1.58)+2/7(1.0)] = 0.311
Aprovechamiento	1.56-[1/7(0)+2/7(1.0)+3/7(0.92)+1/7(0) = 0.880

Machine Learning

Aprendizaje supervisado - Decision Trees (DTs)

Alumno	ATRIBUTO			Nota
	Punt. y asist.	Participación	Aprovechamiento	NOLA
1	No asiste	Media	Excelente	Exento
2	Asiste	Alta	Bueno	Exento
3	No asiste	Media	Bueno	Final
4	No asiste	Baja	Bueno	Final
5	Asiste	Alta	Regular	Final
6	Asiste	Baja	Deficiente	Extraordinario
7	No asiste	Media	Regular	Extraordinario

Entonces para "Aprovechamiento = Bueno" se tiene:

Variable	Ganancia de información (Variable)	
Puntualidad y asistencia	0.92-[2/3(0)+1/3(0)] = 0.92	
Participación	0.92-[1/3(0)+1/3(0)+1/3(0)] = 0.92	

$$\operatorname{Gan} \operatorname{Inf}(S,A) = \operatorname{Entropia}(S) - \sum_{v \in V(A)} rac{|Sv|}{|S|} \operatorname{Entropia}(Sv)$$

Aprovechamiento

Introducción a la ciencia de datos

Machine Learning

6

Asiste

No asiste

Aprendizaje supervisado - Decision Trees (DTs)

Deficiente

Regular

Extraordinario

Extraordinario

Baja

Media

Entonces para "Aprovechamiento = Bueno" se tiene:

Variable	Ganancia de información (Variable)	
Puntualidad y asistencia	0.92	[2/3(0)+1/3(0)] = 0.92
Participación	0.92	-[1/3(0)+1/3(0)+1/3(0)] = 0.92

$$\operatorname{Gan\,Inf}(S,A) = \operatorname{Entropia}(S) - \sum_{v \in V(A)} rac{|Sv|}{|S|} \operatorname{Entropia}(Sv)$$

• Información de la clase: I(C) = 0.92

$$ext{Bueno} egin{cases} ext{Exento} &= 1/3 \ ext{Final} &= 2/3 \ I(1/3,2/3) = -1/3\log_2 1/3 - 2/3\log_2 2/3 = 0.92 \end{cases}$$

Machine Learning

5

6

Asiste

Asiste

No asiste

Aprendizaje supervisado - Decision Trees (DTs)

Regular

Deficiente

Regular

Alta

Baja

Media

Entonces para "Aprovechamiento = Bueno" se tiene:

Variable	Ganancia de información (Variable)	
Puntualidad y asistencia	0.92-[2/3(0)+1/3(0)] = 0.92	
Participación	0.92-[1/3(0)+1/3(0)+1/3(0)] = 0.92	

$$\operatorname{Gan} \operatorname{Inf}(S,A) = \operatorname{Entropia}(S) - \sum_{v \in V(A)} rac{|Sv|}{|S|} \operatorname{Entropia}(Sv)$$

Puntualidad y Asistencia = {No asiste, Asiste}

Final

Extraordinario

Extraordinario

$$ext{Py A} = ext{No asiste}$$
 $ext{No Asiste} = egin{cases} ext{Exento} &= 0/2 \ ext{Final} &= 2/2 \end{cases}$

$$I(\text{Py A} = \text{No Asiste}) = I(0/2, 2/2)$$

= $-0/2 \log_2 0/2 - 2/2 \log_2 2/2 = 0.0$

Machine Learning

6

Asiste

No asiste

Aprendizaje supervisado - Decision Trees (DTs)

Deficiente

Regular

Extraordinario

Extraordinario

Baja

Media

Entonces para "Aprovechamiento = Bueno" se tiene:

Variable	Ganancia de información (Variable)	
Puntualidad y asistencia	0.92-[2/3(0)+1/3(0)] = 0.92	
Participación	0.92-[1/3(0)+1/3(0)+1/3(0)] = 0.92	

$$\operatorname{Gan} \operatorname{Inf}(S,A) = \operatorname{Entropia}(S) - \sum_{v \in V(A)} rac{|Sv|}{|S|} \operatorname{Entropia}(Sv)$$

Puntualidad y Asistencia = {No asiste, Asiste}

PvA = Asiste

$$\begin{aligned} \text{Py A} &= \text{Asiste} \\ \text{Asiste} & \begin{cases} \text{Exento} &= 1/1 \\ \text{Final} &= 0/1 \end{cases} \\ I(\text{Py A} &= \text{Asiste}) &= I(1/1, 0/1) \\ &= 1/1 \log_2 1/1 - 0/1 \log_2 0/1 \end{cases}$$

Machine Learning

Alumno	ATRIBUTO			Nota
	Punt. y asist.	Participación	Aprovechamiento	NOLA
1	No asiste	Media	Excelente	Exento
2	Asiste	Alta	Bueno	Exento
3	No asiste	Media	Bueno	Final
4	No asiste	Baja	Bueno	Final
5	Asiste	Alta	Regular	Final
6	Asiste	Baja	Deficiente	Extraordinario
7	No asiste	Media	Regular	Extraordinario

Machine Learning

Aprendizaje supervisado – Artificial Neural Networks (ANN)

Machine Learning

Aprendizaje supervisado – Artificial Neural Networks (ANN)

Machine Learning

Aprendizaje supervisado – Artificial Neural Networks (ANN)

Multi-layer Perceptron

Machine Learning

Aprendizaje supervisado – Artificial Neural Networks (ANN)

Multi-layer Perceptron

Cómo aprende?

Machine Learning

Aprendizaje supervisado – Artificial Neural Networks (ANN)

Multi-layer Perceptron

Cómo aprende?

Sinapsis: Se actualizan los pesos para minimizar el error entre la salida esperada y la salida actual.

Machine Learning

Aprendizaje supervisado – Artificial Neural Networks (ANN)

Multi-layer Perceptron

Cómo aprende?

Sinapsis: Se actualizan los pesos para minimizar el error entre la salida esperada y la salida actual.

Equation
$$E(y,y')=rac{1}{2}\|y-y'\|^2$$
 $E=rac{1}{2n}\sum_x \lVert (y(x)-y'(x))
Vert^2$ $w\mapsto E(f_N(w,x_1),y_1)$ $rac{\partial E}{\partial y'}=y'-y$

Machine Learning

Aprendizaje supervisado – Artificial Neural Networks (ANN)

Multi-layer Perceptron

Cómo aprende?

Sinapsis: Se actualizan los pesos para minimizar el error entre la salida esperada y la salida actual.

Equation
$$E(y,y')=rac{1}{2}\|y-y'\|^2$$
 $E=rac{1}{2n}\sum_x \lVert (y(x)-y'(x))
Vert^2$ $w\mapsto E(f_N(w,x_1),y_1)$ $rac{\partial E}{\partial y'}=y'-y$

