FACULTAD DE CIENCIAS EXACTAS, NATURALES Y AMBIENTALES CATÁLOGO STEM • ÁLGEBRA LINEAL Y GEOMETRÍA ANALÍTICA

RESUMEN NO. 6: INDEPENDENCIA LINEAL Y CONJUNTO GENERADOR Andrés Merino • Periodo 2025-1

1. CONJUNTO GENERADOR

DEFINICIÓN 1.

Sean $(E, +, \cdot, \mathbb{R})$ un espacio vectorial y $S \subseteq E$. Al subespacio vectorial más pequeño que contiene a S (es decir, la intersección de todos los subespacios que contienen a S) se lo denomina espacio generado por S y se denota por gen(S).

TEOREMA 1.

Sean $(E, +, \cdot, \mathbb{R})$ un espacio vectorial y $S \subseteq E$. Se tiene que

$$span(S) = gen(S)$$
.

DEFINICIÓN 2.

Sean $(E,+,\cdot,\mathbb{R})$ un espacio vectorial y $S=\{v_1,v_2,\ldots,v_k\}\subseteq E$. Se dice que S genera el espacio vectorial E si cada vector en E es una combinación lineal de los elementos de S, es decir, si para todo $v\in E$, existen $\alpha_1,\alpha_2,\ldots,\alpha_k\in K$ tales que

$$v = \alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_k v_k.$$

TEOREMA 2.

Sean $(E,+,\cdot,\mathbb{R})$ un espacio vectorial y $S=\{\nu_1,\nu_2,\ldots,\nu_k\}\subseteq E$. Se tiene que S genera el espacio vectorial E si y solo si

$$E = gen(S) = span(S)$$
.

2. INDEPENDENCIA LINEAL

DEFINICIÓN 3.

Sean $(E,+,\cdot,\mathbb{R})$ un espacio vectorial y $S=\{\nu_1,\nu_2,\ldots,\nu_k\}\subseteq E$. Se dice que S es un conjunto linealmente dependiente si existen $\alpha_1,\alpha_2,\ldots,\alpha_k\in\mathbb{R}$, no todos iguales a cero, tales que:

$$\alpha_1\nu_1+\alpha_2\nu_2+\cdots+\alpha_k\nu_k=0$$

en caso contrario, se dice que S es un conjunto linealmente independiente.

De esta definición, se tiene que $\{v_1, v_2, ..., v_k\}$ es linealmente independiente si y solo si

$$\alpha_1 \nu_1 + \alpha_2 \nu_2 + \cdots + \alpha_k \nu_k = 0$$

implica que

$$\alpha_1 = \alpha_2 = \cdots = \alpha_k = 0.$$

Se puede extender esta definición para conjuntos infinitos diciendo que S es linealmente independiente si todo subconjunto finito de S es linealmente independiente.

TEOREMA 3.

Sean $(E, +, \cdot, \mathbb{R})$ un espacio vectorial y $S \subseteq E$. Si $0 \in S$, entonces S es linealmente dependiente.

TEOREMA 4.

Sean $(E, +, \cdot, \mathbb{R})$ un espacio vectorial y $S = \{v_1, v_2, \dots, v_k\} \subseteq E$. Se tiene que S es un conjunto linealmente dependiente si y sólo si alguno de los vectores $v_j \in S$ es una combinación lineal de otros elementos de S.

3. BASES

DEFINICIÓN 4.

Sean $(E,+,\cdot,\mathbb{R})$ un espacio vectorial y $B\subseteq E.$ Se dice que B es una base de E si

- B genera a E y
- B es linealmente independiente.

TEOREMA 5: Base canónica de \mathbb{R}^n .

En \mathbb{R}^n , el conjunto $\{e^1, e^2, \dots, e^n\} \subset \mathbb{R}^n$, definidos por

$$e_{j}^{i} = \begin{cases} 0 & \text{si } i \neq j, \\ 1 & \text{si } i = j, \end{cases}$$

para todo $i, j \in \{1, 2, ..., n\}$, es una base de \mathbb{R}^n .

TEOREMA 6: Base canónica de $\mathbb{R}_n[x]$.

En $\mathbb{R}_n[x]$, el conjunto $\{1, x, ..., x^{n-1}, x^n\}$ es una base de $\mathbb{R}_n[x]$. A esta base se la denomina la base canónica de $\mathbb{R}_n[x]$.

TEOREMA 7.

Sean $(E, +, \cdot, \mathbb{R})$ un espacio vectorial y $B \subseteq E$ una base de E. Se tiene que todo elemento de E se puede escribir, de manera única, como combinación lineal de elementos de E.

TEOREMA 8.

Sean $(E, +, \cdot, \mathbb{R})$ un espacio vectorial y $B \subseteq E$. Se tiene que si todo elemento de E se puede escribir, de manera única, como combinación lineal de elementos de B, entonces B es una base de E.

TEOREMA 9.

Sean $(E, +, \cdot, \mathbb{R})$ un espacio vectorial y $S \subseteq E$ un conjunto que genera a E. Se tiene que algún subconjunto de S es base de E.

TEOREMA 10.

Todo espacio vectorial tiene una base.

4. DIMENSIÓN

TEOREMA 11.

Sean $(E,+,\cdot,\mathbb{R})$ un espacio vectorial y $B\subseteq E$ una base de E. Si $S\subseteq E$ es un conjunto linealmente independiente, entonces

$$|S| \leqslant |B|$$
.

TEOREMA 12.

Sean $(E, +, \cdot, \mathbb{R})$ un espacio vectorial y $B \subseteq E$ una base de E. Si $S \subseteq E$ es un conjunto que genera a E, entonces

$$|B| \leqslant |S|$$
.

TEOREMA 13.

Sean $(E, +, \cdot, \mathbb{R})$ un espacio vectorial y B, T \subseteq E bases de E. Se tiene que

$$|B| = |T|$$
.

DEFINICIÓN 5: Dimensión.

Sean $(E, +, \cdot, \mathbb{R})$ un espacio vectorial y $B \subseteq E$ una base de E. Se define la dimensión de E, denotado por dim(E), por la cantidad de elementos de E.

TEOREMA 14.

Se tiene que

- $dim(\mathbb{R}^n) = n$, $con n \in \mathbb{N}^*$;
- $dim(\mathbb{R}^{m \times n}) = mn$, $con m, n \in \mathbb{N}^*$;
- $\dim(\mathbb{R}_n[x]) = n + 1$, $\operatorname{con} n \in \mathbb{N}$;
- $dim(\{0\}) = 0$.

TEOREMA 15.

Sean $(E, +, \cdot, \mathbb{R})$ un espacio vectorial y $S \subseteq E$ un conjunto linealmente independiente. Se tiene que existe una base B de E que contiene a S.

TEOREMA 16.

Sean $(E,+,\cdot,\mathbb{R})$ un espacio vectorial, $B\subseteq E$ y $\mathfrak{n}\in\mathbb{N}^*$ tal que dim $(E)=\mathfrak{n}$ y $|B|=\mathfrak{n}.$ Se tiene que

Andrés Merino Resumen no. 6: Independencia Lineal y Conjunto Generador

- si B es linealmente independiente, entonces B es una base de E.
- si B genera a E, entonces B es una base de E.