CS3102 Theory of Computation

Decidable

A language is decidable iff it is exactly the set of strings accepted by some always-halting TM.

$w \in \Sigma^*$	a	b	aa	ab	ba	bb	aaa	aab	aba	abb	baa	bab	bba	bbb	aaaa	• • •
$M(w) \Longrightarrow$		X		X	X	×		×	X	×	×	×	X	X	\checkmark	• • •
L(M) =	{ a,		aa,				aaa,								aaaa	}

M must always halt on every input.

Recognizable

A language is Turing-recognizable iff it is exactly the set of strings accepted by some Turing machine.

$w \in \Sigma^*$	а	b	aa	ab	ba	bb	aaa	aab	aba	abb	baa	bab	bba	bbb	aaaa	• • •
$M(w) \Longrightarrow$		X		∞	X	∞		∞	∞	X	×	X	∞	×		• • •
L(M) =	{ a,		aa,			:	aaa,			:	:	:			aaaa	}

M can run forever on an input, which is implicitly a reject (since it is not an accept).

Computability

• Generally: Computable = Decideable

An Undecidable Problem/Language

- Acceptance Problem
- Given a Turing Machine description M (e.g. a program, states+transitions, etc.) and a string w, does M accept the input w?
- $A_{TM}(M, w) = \{\langle M, w \rangle | M(w) \text{ accepts} \}$

Acceptance problem is undecidable

- Assume toward reaching a contradiction that M_{acc} is a Decider for A_{TM} .
- Consider a new Turing Machine M' which receives as input a turing machine description M.
- If $\langle M, M \rangle \in A_{TM}$ then M' will reject, else M' accepts

Pseudocode for M'

```
public static boolean mPrime(String m){
    return !accept(m,m);
}
```

What does mPrime(source(mPrime)) return?

Acceptance problem is undecidable

- Assume toward reaching a contradiction that M_{acc} is a Decider for A_{TM} .
- Consider a new Turing Machine M' which receives as input a turing machine description M.
- If $\langle M, M \rangle \in A_{TM}$ then M' will reject, else M' accepts
- Consider M'(M')
 - If it accepts, then by definition M'(M') will reject
 - If it rejects, then by definition M'(M') with accept
 - Contradiction!
- Conclusion: M_{acc} cannot exist

Theorem: the acceptance problem (A_{TM}) is not decidable Proof: Assume some decider M_{acc} solves A_{TM} always stops with the correct answer for any M and w

Use M_{acc} , construct a TM M':

M'(M') accepts $\to M'(M')$ does not accept M'(M') does not accept $\to M'(M')$ accepts

Contradiction!

 $\rightarrow M_{acc}$ cannot exist! (at least as an algorithm / program / TM)

Proving Other language Undecidable

- Option 1: Closure properties
 - Decidable languages are closed under:
 - Union
 - Intersection
 - Complement
 - Reversal
 - Pretty much everything
- Option 2: Reduction
 - Convert some problem into a known undecidable one to show it's undecidable.

Proof by Reduction

Shows how two different problems relate to each other

Reduction Proofs

The name "reduces" is confusing: it is in the opposite direction of the making

Proof of Impossibility by Reduction

- 1. X isn't possible (e.g., X = some way to open the door)
- 2. Assume Y is possible(Y = some way to light a fire)

3. Show how to use *Y* to perform *X*.

4. X isn't possible, but Y could be used to perform X conclusion: Y must not be possible either

Proof of Impossibility by Reduction

1. X does not exist.

(e.g., $X = \text{some TM that decides } A_{TM}$)

2. Assume *Y* exists.

(Y = some TM that decides B)

3. Show how to use *Y* to perform *X*.

4. *X* doesn't exist, but *Y* could be used to make *X* conclusion: *Y* must not exist either

Converse?

Does this mean B is equally as hard as A? A = B

No!

Solving *Y* is only one way to solve *X* There may be an easier way

Common Reduction Traps

- Be careful: the direction matters a great deal
 - Using a solver for B to solve A shows A is not harder than B

```
\underline{A} Reduces to \underline{B}
```

- The transformation must use only things you can do:
 - Otherwise it may be that B exists, but some other step doesn't!

What "Can Do" Means

- Tools used in a reduction are limited by what you are proving
- Undecidability:
 - You are proving something about all TMs:
 - The transformation "can do" things a terminating TM "can do"

Spoiler alert!

- Complexity:
 - You are proving something about time required:
 - The time it takes to do the transformation is limited

The Halting Language

 $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM description and } M \text{ accepts input } w \}$ All machine description, input pairs in which the machine accepts that input

 $HALT_{TM} = \{ < M, w > \mid M \text{ is a TM description and } M \text{ halts on input } w \}$ All machine description, input pairs in which the machine halts on that input

Every < M, w > which halts at all belongs to $HALT_{TM}$ < M, w > belongs to A_{TM} if it both halts and accepts

$HALT_{TM}$ is Undecidable

- $HALT_{TM} = \{ < M, w > | M \text{ is a TM description and } M \text{ halts on input } w \}$
 - All machine description input pairs in which the machine halts on input
- To show $HALT_{TM}$ is undecidable show A_{TM} isn't harder than $HALT_{TM}$
- Want to use a solver for $\underline{HALT_{TM}}$ to build a solver for $\underline{A_{TM}}$
- A_{TM} reduces to $HALT_{TM}$

 $HALT_{TM}$

Deciding A_{TM} with HALT_{TM}

- Assume $HALT_{TM}$ is decidable.
- Then some TM R can decide $HALT_{TM}$.
- We can use R to build a machine D that decides A_{TM} :
 - Call R on < M , w >
 - If R rejects, it means M doesn't halt: reject
 - If R accepts, it means M halts:
 - Call *M* on *w*, respond equivalently

Any TM that decides $HALT_{TM}$ could be used to build a TM that decides A_{TM} (which is impossible) thus no TM exists that can decide $HALT_{TM}$

Another example: REG_{TM}

- $REG_{TM} = \{M \mid L(M) \text{ is regular}\}$
- How do we show that REG_{TM} is undecidable?
 - Reduce some language we already know is undecidable to REG_{TM}
 - Use REG_{TM} to solve $HALT_{TM}$

$REG_{TM} \geq HALT_{TM}$

- Given a potential instance of $HALT_{TM}$ (i.e. M, w), create a new turing machine M' whose language is regular if and only if M(w) halts
- If I knew whether or not L(M') was regular, I knew whether or not M(w) halted

Psuedocode for M'

```
public static boolean mPrime(String x){
       if(x \in a^n b^n){
               return true;
       y = M(w); If this line terminates
       return true; We can only get to this line
         If M(w) halts then L(M') = \Sigma^*
         If M(w) runs forever then L(M') = a^n b^n
```

How to solve $HALT_{TM}$ with REG_{TM}