Problem Set 5

[Your Full Name Here]

MATH 100 — Introduction to Proof and Problem Solving — Summer 2023

Problem 5.1. Let $a, b \in \mathbb{Z}$. Disprove the statement:

If ab and $(a + b)^2$ are of opposite parity, then a^2b^2 and a + ab + b are of opposite parity. *Solution*.

Problem 5.2. Following are the steps to prove the number $\sqrt{2}$ is irrational, this is a classic example of a proof by contradiction. Using these notes, write down a formal proof of this fact.

- Suppose $\sqrt{2}$ is rational, then $\sqrt{2} = q/p$ for some integers p, q.
- One can assume that p and q have no common factors (that is, they are coprime).
- Squaring, we get $q^2 = 2p^2$. Therefore $2 \mid q^2$.
- Argue that this gives us that $2 \mid q$ (Hint: check old lecture notes).
- Plug a new expression for q back in
- Argue that we know something then about p that contradicts some assumption of p and q

Solution.

Problem 5.3.

1	٦)	Show	that	thora	ovict 1	non	-70r0	roal	num	hore a	and	h	cuch	that
10	a /	\mathcal{I}_{1}	uiai	uiere	CAISU	io iioii	-Zeio	rear	Hulli	uers u	anu	ν	Suci	uiai

$$\sqrt{a^2 + b^2} = \sqrt[3]{a^3 + b^3}$$

Solution. \Box

(b) Disprove the statement:

There exist *odd* integers a and b such that $4 \mid (3a^2 + 7b^2)$.

(Hint: use a lemma we proved last week)

Solution.

Collaborators:

References:

• [Book(s): Title, Author]

• [Online: Link]

• [Notes: Link]

Fin.