Theoretische Informatik

Jil Zerndt FS 2024

Alphabete, Wörter, Sprachen

Alphabete endliche, nichtleere Mengen von Symbolen.

• $\Sigma_{\text{Bool}} = \{0, 1\}$ Boolsches Alphabet

Keine Alphabete: $\mathbb{N}, \mathbb{R}, \mathbb{Z}$ usw. (unendliche Mächtigkeit)

Wort endliche Folge von Symbolen eines bestimmten Alphabets.

Schreibweisen $|\omega| = \text{Länge eines Wortes}$

 $|\omega|_x =$ Häufigkeit eines Symbols x in einem Wort $\omega^R =$ Spiegelwort/Reflection zu ω

Teilwort (Infix) v ist ein Teilwort (Infix) von ω ist, wenn $\omega = xvy$. $\omega \neq v \rightarrow \text{ Echtes Teilwort}$, Präfix = Anfang, Suffix = Ende

Mengen von Wörtern $\Sigma^k =$ Wörter der Länge k über Alphabet Σ

- $\Sigma^* = \Sigma^0 \cup \Sigma^1 \cup \Sigma^2 \cup \Sigma^3 \cdots$ Kleensche Hülle

 ε Leeres Wort (über jedem Alphabet) $\Sigma^0 = \{\varepsilon\}$

Konkatenation = Verkettung von zwei beliebigen Wörtern x und y $x \circ y = xy := (x_1, x_2 \dots x_n, y_1, y_2 \dots y_m)$

Wortpotenzen Sei x ein Wort über einem Alphabet Σ

• $x^0 = \varepsilon$ • $x^{n+1} = x^n \circ x = x^n x$

Sprache über Alphabet $\Sigma = \text{Teilmenge } L \subset \Sigma^* \text{ von Wörtern}$

- $\Sigma_1 \subseteq \Sigma_2 \wedge L$ Sprache über $\Sigma_1 \to L$ Sprache über Σ_2
- Σ^* Sprache über jedem Alphabet Σ
- $\{\}=\emptyset$ ist die leere Sprache

Konkatenation von A und B: $AB = \{uv \mid u \in A \text{ und } v \in B\}$ Kleenesche Hülle A^* von A: $\{\varepsilon\} \cup A \cup AA \cup AAA \cup ...$

Reguläre Ausdrücke Wörter, die Sprachen beschreiben

 RA_{Σ} Sprache der Regulären Ausdrücke über $\{\emptyset, \epsilon, *, (), ...\} \cup \Sigma$

- $R \in RA_{\Sigma} \Rightarrow (R^*) \in RA_{\Sigma}$
- $\emptyset, \epsilon \in RA_{\Sigma}$ • $R, S \in RA_{\Sigma} \Rightarrow (RS) \in RA_{\Sigma}$
- $\Sigma \subset RA_{\Sigma}$ • $R, S \in RA_{\Sigma} \Rightarrow (R \mid S) \in RA_{\Sigma}$

Priorisierung von Operatoren

(1) * = Wiederholung \rightarrow (2) Konkatenation \rightarrow (3) |= Oder

Erweiterter Syntax

 $R^+ = R(R^*)$ $R^? = (R \mid \epsilon)$ $[R_1, \dots, R_k] = R_1 \mid R_2 \mid \dots \mid R_k$

Reguläre Sprache A über dem Alphabet Σ heisst regulär, falls A = L(R) für einen regulären Ausdruck $R \in RA_{\Sigma}$ gilt.

 $\forall R \in RA_{\Sigma}$ definieren wir die Sprache L(R) von R wie folgt:

- Leere Sprache: $L(\emptyset) = \emptyset$
- Sprache, die nur das leere Wort enthält: $L(\varepsilon) = \{\varepsilon\}$
- Beschreibt die Sprache $\{a\}$: $L(a) = \{a\} \quad \forall a \in \Sigma$
- Kombiniert die Wörter von R: $L(R^*) = L(R)^*$
- Verkettung von Wörtern (R = prefix): $L(RS) = L(R) \circ L(S)$
- Wörter in R oder S: $L(R \mid S) = L(R) \cup L(S)$

Endliche Automaten

Endliche Automaten Maschinen, die Entscheidungsprobleme lösen

- Links nach rechts
- Keinen Speicher
- Speichert aktuellen Zustand • Ausgabe über akzeptierende
- Keine Variablen
- Zustände

DEA deterministischer endlicher Automat: $M = (Q, \Sigma, \delta, q_0, F)$ Q: endliche Menge von Zuständen $q_0 \in Q$ Startzustand

- Σ : endliches Eingabealphabet
- $F \subseteq Q$ Menge der
- $\delta: Q \times \Sigma \to Q$ Übergangsfunktion akzeptierenden Zustände

DEA Funktionen $M = (Q, \Sigma, \delta, q_0, F) : EA.$

Konfiguration von M auf ω ist ein Element aus $Q \times \Sigma^*$

- Startkonfiguration von M auf ω $\{q_0, \omega\} \in \{q_0\} \times \Sigma^*$
- Endkonfiguration (q_n, ε)

Berechnungsschritt \vdash_M von $M(q,\omega) \vdash_M (p,x)$

Berechnung ist eine endliche Folge von Berechnungsschritten $(q_a, \omega_1 \omega_2 \dots \omega_n) \vdash_M \dots \vdash_M (q_e, \omega_j \dots \omega_n) \to (q_a, \omega_1 \omega_2 \dots \omega_n) \vdash_M^* (q_e, \omega_j \dots \omega_n)$

Nichtdeterministischer endlicher Automat (NEA)

Unterschied zum DEA: Übergangsfunktion δ Übergangsfunktion $\delta: Q \times \Sigma \to P(Q)$

Ein ε -NEA erlaubt zusätzlich noch ε -Übergänge

Teilmengenkonstruktion ∀ NEA kann in DEA umgewandelt werden

- 1. $Q_{NEA} \rightarrow P(Q_{NEA}) = Q_{DEA}$ (Potenzmenge)
- 2. Verbinden mit Vereinigung aller möglichen Zielzustände
- 3. Nicht erreichbare Zustände eliminieren
- 4. Enthält akzeptierenden Zustand = $F_{NEA} \rightarrow$ akzeptierend

↓	q	$\delta(q,0)$	$\delta(q,1)$	0,1
0	ø	Ø	Ø	
	$A = \{q_0\}$	$\{q_0, q_1\}$	$\{q_{0}\}$	$ \longrightarrow \text{Start} \longrightarrow \begin{matrix} 0 & 1 \\ 0 & 1 \end{matrix} $
1	$- \{q_1\}$	Ø	{q₂}	$\stackrel{Start}{\longrightarrow} q_0 \stackrel{q_1}{\longrightarrow} q_2$
4	{q ₂ }	Ø	Ø	
	$B = \{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$	_0
	$C = \{q_0, q_2\}$	$\{q_0, q_1\}$	$\{q_{0}\}$	
2	$-\{q_1,q_2\}$	Ø	{q₂}	$-\operatorname{Start} \longrightarrow A \longrightarrow B \longrightarrow 1 \longrightarrow C$
3	{90,91,92}	{an, a1}	{an, a2}	

Reguläre Sprachen und endliche Automaten

Reguläre Sprachen durch äquivalente Mechanismen beschreibbar

- Akzeptierender Mechanismus DEA, NEA, ε -NEA
- Beschreibender Mechanismus RA

Zustandsklasse $\Sigma^* = \bigcup_{p \in Q} [p]$ $[p] \cap [q] = \emptyset, \forall p \neq q, p, q \in Q$ Jedes Wort landet in einem Zustand, aber kein Wort landet nach dem Lesen in zwei Zuständen!

Eigenschaften Seien L, L_1 und L_2 reguläre Sprachen über Σ

- Vereinigung: $L_1 \cup L_2 = \{ \omega \mid \omega \in L_1 \vee \omega \in L_2 \}$
- Schnitt: $L_1 \cap L_2 = \{ \omega \mid \omega \in L_1 \land \omega \in L_2 \}$ • Differenz: $L_1 - L_2 = \{ \omega \mid \omega \in L_1 \land \omega \notin L_2 \}$
- Komplement: $\bar{L} = \Sigma^* L = \{\omega \in \Sigma^* \mid \omega \notin L\}$
- Konkatenation:

 $L_1 \cdot L_2 = L_1 L_2 = \{ \omega = \omega_1 \omega_2 \mid \omega_1 \in L_1 \land \omega_1 \in L_2 \}$

• Kleenesche Hülle:

 $L^* = \{ \omega = \omega_1 \omega_2 \dots \omega_n \mid \omega_i \in L \text{ für alle } i \in \{1, 2, \dots, n\} \}$

 $L(R_1)$: Menge der ganzen Zahlen in Dezimaldarstellung • $((- | \varepsilon)(1, 2, 3, 4, 5, 6, 7, 8, 9)(0, 1, 2, 3, 4, 5, 6, 7, 8, 9) | 0).0$

Kontextfreie Grammatiken

Kontextfreie Grammatik (KFG) ist ein 4-Tupel (N, Σ, P, A) mit

- N: Alphabet der Nichtterminale (Variablen)
- Σ: Alphabet der Terminale
- P: endliche Menge von Produktionen mit der Form $X \to \beta$ Mit Kopf $X \in N$ und Rumpf $\beta \in (N \cup \Sigma)^*$
- A: Startsymbol, wobei $A \in N$

Ein Wort $\beta \in (N \cup \Sigma)^*$ nennen wir Satzform.

Seien α, β und γ Satzformen und $A \rightarrow \gamma$ eine Produktion.

- Ableitungsschritt mit Produktion $A \to \gamma$ $\alpha A\beta \to \alpha \gamma\beta$
- Ableitung Folge von Ableitungsschritten $\alpha \to \cdots \to \omega$

Ableitungsbaum (Parsebaum)

mögliche Darstellung einer Ableitung

- $G_1 = \{\{A, B, C\}, \{0, 1\}, P, A\}$
- $P = \{A \to BC, B \to 0B | 0 | \varepsilon, C \to 1C | 1 | \varepsilon\}$

• $A \rightarrow BC \rightarrow 0AA \rightarrow 01C \rightarrow 011 \rightarrow ...$ $\rightarrow 011$

Mehrdeutige KFG \exists Wort, das mehrere Ableitungsbäume besitzt. Mehrdeutigkeiten eliminieren:

- Korrekte Klammerung vom Benutzer erzwingen
- Grammatik anpassen
- Den Produktionen einen Vorrang vergeben

Reguläre Srache durch KFG beschreiben ∀ L ∃ KFG

L reguläre Sprache $\Rightarrow \exists$ DEA $M = (Q, \Sigma, \delta, q_0, F)$ mit L(M) = LKFG für L bauen:

- \forall Zustand q_i gibt es ein Nichtterminal Q_i
- \forall Transition $\delta(q_i, a) = q_i$ erstelle Produktion $Q_i \to aQ_i$
- \forall akzeptierenden Zustand $q_i \in F$ erstelle Produktion $Q_i \to \varepsilon$
- Nichtterminal Q_0 wird zum Startsymbol A.

Kellerautomaten

Kellerautomaten (KA) besitzt «Speicher»

Deterministischer KA (DKA): $M = (Q, \Sigma, \Gamma, \delta, q_0, \$, F)$

Q: Menge von Zuständen $q_0 \in Q$: Anfangszustand

 Σ : Alphabet der Eingabe $\$ \in \Gamma$: Symbol vom Alphabet des Kellers

 Γ : Alphabet des Kellers $F \subseteq Q$: Akzeptierende Zustände Übergangsfunktion: $\delta: Q \times (\Sigma \cup \varepsilon) \times \Gamma \to Q \times \Gamma^*$

NKA: $\delta: Q \times (\Sigma \cup \varepsilon) \times \Gamma \to P(Q \times \Gamma^*)$ (Nichtdeterministischer KA)

Zusätzliche Einschränkungen \forall Zustand q und \forall Symbole x, b gilt: wenn $\delta(q, b, c)$ definiert ist, dann ist $\delta(q, \varepsilon, x)$ undefiniert.

Darstellung Übergang $\delta(q, b, c) = (p, \omega)$: $q - b, c/\omega \longrightarrow p$

Berechnungsschritt $\delta(q, b, c) = (p, \omega)$ wird wie folgt interpretiert:

q = Aktueller Zustand ω = Wort auf Stack geschrieben b =Symbol der Eingabe

p = Neuer Zustand c =Symbol wird entfernt

Sprache L(M) eines Kellerautomaten M ist definiert durch

 $L(M) = \left\{ \omega \in \Sigma^* \mid (q_0, \omega, \$) \vdash^* (q, \varepsilon, \gamma) \text{ für ein } q \in F \text{ und ein } \gamma \in \Gamma^* \right\}$

Elemente von L(M) werden von M akzeptierte Wörter genannt.

Furingmaschinen

Turingmaschine (TM) $M = (Q, \Sigma, \Gamma, \delta, q_0, \sqcup, F)$ Q: Menge von Zuständen $q_0 \in Q$: Anfangszustand

 $F \subseteq Q$: Akzeptierende Zustände Σ : Alphabet der Eingabe Γ und $\Sigma \subset \Gamma$: Bandalphabet \sqcup : Leerzeichen mit $\mu \in \Gamma$ und $\mu \notin \Sigma$

Übergangsfunktion: $\delta: Q \times \Gamma \to Q \times \Gamma \times D, D = \{L, R\}$

Sie bestehen aus einem Lese-/Schreibkopf und einem unendlichen Band von Zellen.

Sie bildet das 2-Tupel (q, X) auf das Tripel (p, Y, D)D = Direction $q, p \in Q \text{ und } X, Y \in \Gamma$

X = Read $a - X/Y, D \rightarrow p$ Y = Overwrite

Band Unterteilt in Zellen mit jeweils einem beliebigen Symbol Beinhaltet zu Beginn die Eingabe, d.h. ein endliches Wort aus Σ^* . Alle anderen Zellen enthalten das besondere Symbol ⊔

Konfiguration einer TM M wird eindeutig spezifiziert durch: Zustand der Zustandssteuerung, Position des Lese-/Schreibkopfes und Bandinhalt

Berechnungsmodelle

Turing-berechenbar = kann von Turing-Maschine gelöst werden Turing-berechenbare Funktion $T: \Sigma^* \to \delta^*$

$$T(\omega) = \begin{cases} u & \text{falls T auf } \omega \in \Sigma^* \text{ angesetzt, nach endlich vielen} \\ & \text{Schritten mit u auf dem Band anhält} \\ \uparrow & \text{falls T bei Input } \omega \in \Sigma^* \text{ nicht hält} \end{cases}$$

 \forall algorithmisch lösbare Problem ist turing-berechenbar \Rightarrow Computer \equiv TM

Primitiv rekursive Grundfunktionen $\forall n \in \mathbb{N}, \forall k \in \mathbb{N} \ (k = \text{Konstante})$

n-stellige konstante Funktion: $c_i^n = \mathbb{N}^n \to \mathbb{N}$ mit $c_i^n(x_1, ..., x_n) = k$ Nachfolgerfunktion: $\eta: \mathbb{N} \to \mathbb{N}$ mit $\eta(x) = x + 1$

n-stellige Projektion auf die k-te Komponente:

$$\pi_k^n: \mathbb{N}^n \to \mathbb{N} \text{ mit } \pi_k^n(x_1,...,x_k,...,x_n) = k \quad (1 < k < n)$$
n = Anzahl der Argumente, k = Position des Arguments

LOOP, WHILE, GOTO

Zuweisung: xi = xj + c oder xi = xj - c Konstanten: 0, 1, 2, ...Nach Ablauf eines Programms steht der | Operationszeichen: +, -Wert der Berechnung in der Variable x_0 Trennzeichen: ;

Variablen: $x0, x1, x2, \dots$

Loop (primitiv-rekursiv)

Schlüsselwörter: Loop, Do, End Sequenzen: P und $Q \rightarrow P$; QSchleifen: Loop x do P ... End

End: x0 = x2 + 0

M3: x0 = x2 + 0

M4: Halt

x2 = x2 + 1

Loop x1 Do

While (Turing vollständig)

Erweiterung der Sprache Loop While xi > 0 Do ... End

While x1 > 0 Do x1 = x1 - 1Loop x2 Do x0 = x0 + 1End: End;

GoTo (Turing vollständig)

Schlüsselwörter: Goto, If, Else Marker Mk: M1, M2, ... Sprunganweisung: If xi = c Then Goto MkM1: x0 = x3 + 0M2: If x1 = 0 Then Goto M4

Entscheidbarkeit

Entscheidbar ∃ Algorithmus, der ∀ Eingabe eine Antwort liefert Semi-entscheidbar: ∃ Algorithmus, der ∀ Eingabe eine Antwort liefert, falls Antwort die Antwort «Ja» ist

Entscheidbarkeit einer Sprache $A \subset \Sigma^*$

 $A \subset \Sigma^*$ ist entscheidbar $\Leftrightarrow A$ und \bar{A} sind semi-entscheidbar

 $\bar{A} = \Sigma^* \backslash A = \{ \omega \in \Sigma^* \mid \omega \notin A \}$ (Komplement von A)

Entscheidbarkeit mit Turingmaschinen

 $A \subset \Sigma^*$ heisst entscheidbar, wenn TM T existiert, sodass:

- Bandinhalt $x \in A$ T hält mit Bandinhalt «1» (Ja) an
- Bandinhalt $x \in \Sigma^* \backslash A$ T hält mit Bandinhalt «0» (Nein) an

Äquivalente Aussagen: $A \subset \Sigma^*$ ist entscheidbar

- Es existiert eine TM, die das Entscheidungsproblem $T(\Sigma, A)$ löst
- Es existiert ein WHILE-Programm, dass bei einem zu A gehörenden Wort stets terminiert \rightarrow Entscheidungsverfahren für A

Semi-Entscheidbarkeit mit Turingmaschinen

 $A \subset \Sigma^*$ heisst semi-entscheidbar, wenn TM T existiert, sodass:

- Bandinhalt $x \in A$ T hält mit Bandinhalt «1» (Ja) an
- Bandinhalt $x \in \Sigma^* \backslash A$ T hält nie an

Äquivalente Aussagen: $A \subset \Sigma^*$ ist semi-entscheidbar

- $A \subset \Sigma^*$ ist rekursiv aufzählbar
- Es gibt eine TM, die zum Entscheidungsproblem $T(\Sigma, A)$ nur die positiven («Ja») Antworten liefert und sonst gar keine Antwort
- Es gibt ein WHILE-Programm, dass bei einem zu A gehörenden Wort stets terminiert und bei Eingabe von Wörtern die nicht zu A gehören nicht terminiert

Reduktion $A \leq B \Rightarrow A \subset \Sigma^*$ reduzierbar auf $B \subset \Gamma^*$ Gilt wenn $\exists T: \Sigma^* \to \Gamma^*$ so dass: $\forall \omega \in \Sigma^* \quad \omega \in A \Leftrightarrow F(\omega) \in B$ T := total Turing-berechenbare Funktion

Eigenschaften:

Transitiv: $A \leq B$ und $B \leq C \rightarrow A \leq C$ $A \leq B \Rightarrow$ Entscheidbarkeit von B gleich wie von A

Halteproblem Ist es möglich einen Algorithmus zu schreiben, der für jede TM entscheiden kann, ob sie hält oder nicht? (Nein!)

Halteprobleme (HP) definiert als Sprachen: (# = Delimiter)

Allgemeines $H := \{\omega \# x \in \{0, 1, \#\}^* \mid T_\omega \text{ angesetzt auf } x \text{ hält}\}$ **Leeres** $H_0 := \{\omega \in \{0,1\}^* \mid T_\omega \text{ angesetzt auf das leere Band hält } \}$ **Spezielles** $H_S := \{ \omega \in \{0,1\}^* \mid T_\omega \text{ angesetzt auf } \omega \text{ hält } \}$

 $H_0 \leq H_S \leq H$

 H_0, H_S und H sind semi-entscheidbar und nicht entscheidbar.

Chromsky Hierarchie

Komplexitätstheorie

Quantitative Gesetze und Grenzen

- Zeitkomplexität: Laufzeit des besten Programms
- Platzkomplexität: Speicherplatz des besten Programms
- Beschreibungskomplexität: Länge des kürzesten Programms

Zeitbedarf von M auf Eingaben der Länge $n \in \mathbb{N}$ im schlechtesten Fall: $Time_M(n) = \max \{ Time_M(\omega) | |\omega| = n \}$

Sei M eine TM, die immer hält und sei die Eingabe $\omega \in \Sigma^*$ Zeitbedarf von M auf ω : Time $M(\omega) = \text{Anzahl Konfigurations}$ übergänge in der Berechnung von M auf ω

P vs NP Klassifizierung von Problemen

Ein Problem U heisst in Polynomzeit lösbar, wenn es eine obere Schranke $O(n^c)$ gibt für eine Konstante c > 1.

- $P \doteq \text{L\"osung finden in Polynomzeit}$
- $NP \doteq$ Lösung verifizieren in Polynomzeit

ACHTUNG: NP heisst nicht «nicht-polynomial» sondern «nichtdeterministisch polynomial»

NP-schwer und NP-vollständig

Eine Sprache L heisst NP-schwer, falls für alle Sprachen $L' \in NP$ gilt, dass $L' \preceq_n L$

Eine Sprache L heisst NP-vollständig. falls $L \in NP$ und L ist NP-schwer.

 $P \subset NP$ gilt, aber $P \neq \mathbb{N}P$ noch nicht bewiesen

Polynomzeit-Verifizierer Überprüft die Eingaben in einem Problem Zeuge: Informationen einer gültigen Eingabe

Asymptotische Komplexitätsmessung O-Notation

- $f \in O(q)$: $f(n) < c \cdot q(n)$
 - -f wächst asymptotisch nicht schneller als g
- $f \in \Omega(g)$: $f(n) \ge \frac{1}{d} \cdot g(n)$
 - f wächst asymptotisch mindestens so schnell wie g
- $f \in \Theta(q)$: Es gilt $f(n) \in O(q(n))$ und $f(n) \in \Omega(q(n))$
 - f und q sind asymptotisch gleich

Schranken für die Zeitkomplexität von U

- O(f(n)) ist eine obere Schranke, falls Eine TM existiert, die U löst und eine Zeitkomplexität in O(f(n)) hat.
- $\Omega(q(n))$ ist eine untere Schranke, falls Für alle TM M, die U lösen, gilt dass $Time_{M}(n) \in \Omega(q(n))$

Rechenregeln

- Konstante Vorfaktoren c ignorieren $(c \in O(1))$
- Bei Polynomen ist nur die höchste Potenz entscheidend
- Transitiv: $f(n) \in O(q(n)) \land q(n) \in O(h(n)) \rightarrow f(n) \in O(h(n))$

Übersicht wichtigste Laufzeiten

 $O(1) < O(\log \log n) < O(\sqrt{\log n}) < O(\log \sqrt{n}) < O(\log n)$ $< O(\sqrt{n}) < O(n) < O(n \log n) < O(n^2) < O(n^3)$ $< O(n^c) < O(2^n) < O(n!) < O(n^n)$

good luck <3