SOUTENANCE DE MÉMOIRE DE MASTER OPTION: ALGÈBRE COMMUTATIVE ET CRYPTOGRAPHIE SPÉCIALITÉ: THÉORIE DES FILTRATIONS

KABLAM Edjabrou Ulrich Blanchard

Université NANGUI ABROGOUA UFR Sciences Fondamentales Appliquées

10 Juillet 2024

THÈME : DÉPENDANCE INTÉGRALE, RÉDUCTION ET FILTRATIONS BONNES

Directeur de Mémoire : Mr. ASSAN Abdoulaye, M.C. Encadrant scientifique : Mr. BROU Kouadjo Pierre, M.A.

PLAN DE PRÉSENTATION

- PRÉLIMINAIRE
- DÉPENDANCE INTÉGRALE, RÉDUCTION ET FILTRATION BONNES
- CONCLUSION

PRÉLIMINAIRE

(a)
$$f = (I_n)_{n \in \mathbb{Z}} \in \mathbb{F}(A)$$
 si :
(i) $I_0 = A$

- (ii) $I_{n+1} \subset I_n, \forall n \in \mathbb{Z}$
- (iii) $I_pI_q \subset I_{p+q}, \forall p, q \in \mathbb{Z}$

PRÉLIMINAIRE FILTRATIONS

Remarque

On peut remarquer que pour tout $n \le 0$, $I_n = A$.

En effet, en utilisant la décroissance des idéaux (ii) et que $I_0 = A$ (i), il vient $I_n = A$, $n \le 0$ car $\forall n \in \mathbb{Z}$, les I_n sont des idéaux de A.

Ainsi au lieu d'étudier la famille $f=(I_n)_{n\in\mathbb{Z}}$ nous pouvons nous ramener à étudier la famille $f=(I_n)_{n\in\mathbb{N}}$.

PRÉLIMINAIRE CLASSES DES FILTRATIONS

f I — adique	$I_n = I^n, \forall n \in \mathbb{N}^*$
f I — bonne	$\exists n_0 \in \mathbb{N} \text{ tel que } II_n = I_{n+1}, \forall n \geqslant n_0.$
f <i>A.P</i> .	$\exists (k_n)_{n\in\mathbb{N}} ext{ tel que } orall ext{ n,m} \in \mathbb{N}, \ I_{mk_n} \subset I_n^m ext{ et } \lim_{n \longrightarrow +\infty} rac{k_n}{n} = 1$
f f.A.P.	$\exists k \geqslant 1, \forall n \in \mathbb{N}, \ I_{nk} = I_k^n$
f noeth.	son anneau de Rees $R(A, f)$ est noethérien.
f f. noeth.	$\exists k \geqslant 1, \forall m, n \in \mathbb{Z}, \ m, n \geqslant k, I_m I_n = I_{m+n}$
f E.P	$\exists N \geqslant 1, \forall n \geqslant N, \ I_n = \sum_{p=1}^N I_{n-p}I_p.$

PRÉLIMINAIRE PROPRIÉTÉ DES FILTRATIONS I-ADIQUES

- (i) Supposons que f est I-adique alors peu importe $n_0 \in \mathbb{N}$ choisi, $II^n = I^{n+1}$, pour tout $n \in \mathbb{N}$. Donc f est I-bonne.
- (ii) De proche en proche, on a $I^nI_{n_0}=I_{n_0+n}$, pour tout $n\geqslant 1$. En effet, $II_{n_0}=I_{n_0+1}$, en multipliant par I. On a : $I^2I_{n_0}=II_{n_0+1}$ et $I^1I_{n_0+1}=I_{n_0+2}$.

(iii) Supposons que f est I-bonne alors il existe $n_0\in\mathbb{N}$ tel que pour tout $m\geqslant 1$, $I^mI_n=I_{n+m}, \forall n\geqslant n_0$. Posons $k=n_0+1$, soient $m,n\in\mathbb{N}$ alors :

$$I_{m+n} = I^m I_n \subset I_1^m I_n \subset I_m I_n \subset I_{m+n}$$

Donc $\forall m, n \in \mathbb{Z}, m, n \geqslant k, I_m I_n = I_{m+n}$. Par suite f est fortement noethérienne.

(iv) Supposons que f est I – bonne alors il existe $n_0 \in \mathbb{N}$ tel que pour tout $m \ge 1$, $I^m I_n = I_{n+m}, \forall n \ge n_0$.

Posons $k = N = n_0 + 1$.

$$\sum_{p=1}^{N} I_{n-p} I_p = I_{n-1} I_1 + \sum_{p=2}^{N} I_{n-p} I_p$$

Prenons $n \geqslant N = n_0 + 1$ alors $n - 1 \geqslant n_0$.

Alors $I_{n-1}I_1 = I_n$.

D'où
$$I_n \subset \sum_{p=1}^N I_{n-p}I_p \subset I_n$$
.

Par suite f est E.P

(v) Supposons que f est I-bonne alors il existe $n_0 \in \mathbb{N}$ tel que pour tout $m \geqslant 1$, $I^m I_n = I_{n+m}, \forall n \geqslant n_0$. Par récurrence sur $n \in \mathbb{N}$, montrons que $I_{nk} = I_k^n$.

Posons k = n + 1 > 1

Posons $k = n_0 + 1 \geqslant 1$

Initialisation : n=0, n=1, évident.

Prenons n= 2, $I_{2k} \subset I_k I_k = I_k^2 \subset I_{2k}$, donc $I_{2k} = I_k^2$.

Hérédité : Soit $n \ge 2$. Supposons que $I_{nk} = I_k^n$.

On a: $I_{(n+1)k} = I^k I_k^n \subset I_k I_k^n \subset I_k^{n+1}$, donc $I_{(n+1)k} = I_k^{n+1}$.

Par suite f fortement A.P.

PRÉLIMINAIRE ÉLÉMENT ENTIER ET RÉDUCTION

- (i) Un élément x de A est dit entier sur f s'il existe un entier $m \in \mathbb{N}$ tel que : $x^m + a_1 x^{m-1} + \cdots + a_m = x^m + \sum_{i=1}^m a_i x^{m-i} = 0$, $m \in \mathbb{N}^*$ où $a_i \in I_i$, $\forall i = 1, \dots, m$.
- (ii) f est une β -réduction de g si :
 - a) $f \leq g$
 - b) $\exists k \geq 1$ tel que $J_{n+k} = I_n J_k, \forall n \geq k$.

PRÉLIMINAIRE FILTRATIONS (-BONNES

Soient
$$\varphi = (M_n)_{n \in \mathbb{Z}} \in \mathbb{F}(M)$$
, $f - compatible$, avec $f \in \mathbb{F}(A)$.

(a) φ est f- bonne s'il existe un entier naturel N \geqslant 1 tel que :

$$\forall n > N, M_n = \sum_{p=1}^{N} I_{n-p} M_p$$

- (b) Une filtration $f = (I_n)_{n \in \mathbb{Z}}$ est dite I bonne si :
 - (i) $\forall n \in \mathbb{N}, \quad II_n \subseteq I_{n+1}$;
 - (ii) $\exists k \in \mathbb{N}, II_n = I_{n+1}, n \geqslant k$.

- PRÉLIMINAIRE
- DÉPENDANCE INTÉGRALE, RÉDUCTION ET FILTRATIONS BONNES
- CONCLUSION

DÉPENDANCE INTÉGRALE, RÉDUCTION ET FILTRATION BONNE

Théorème Principal

Soient A noethérien, $f = (I_n)_{n \in \mathbb{N}} \leq g = (J_n)_{n \in \mathbb{N}} \in \mathbb{F}(A)$.

Si f est fortement noethérienne et g est noethérienne alors les assertions sont équivalentes et dans ce cas g est fortement noethérienne :

- (i) f est une réduction de g.
- (ii) I_n est une réduction de J_n pour tout n assez grand.
- (iii) Il existe un entier $k \ge 1$ tel que $g^{(k)}$ est I_k bonne

DÉPENDANCE INTÉGRALE, RÉDUCTION ET FILTRATION BONNE

Théorème Principal

- (iv) g est entière sur f.
- (iiv) g est fortement entière sur f.
- (iiiv) g est f fine.
- (ivv) g est f bonne.
- (vv) g est faiblement f bonne.
- (viv) P(f) = P(g)

- PRÉLIMINAIRE
- ② DÉPENDANCE INTÉGRALE, RÉDUCTION ET FILTRATIONS BONNES
- CONCLUSION

CONCLUSION BILAN ET PERSPECTIVES

- 1 Propriétés des f₁ et réduction minimale des filtrations bonnes
- 2 Étendre ces résultats aux autres classes de filtration.

MERCI POUR VOTRE AIMABLE ATTENTION

