Assignment No 4 25/10 9.1 Explain DPDA and NPDA with help of example. · DPAD (Deterministic Pushdown Automata) In a DPAD there is only one move in every situation. - A DPAA is less powerful than NPDA. Every context free language connot be accepted by a DPDA. For example, a string of the Form WWR cannot be processed by a DPDA. The class of a language a DPAA can accepts lies in between a regular language and CFL - A DPDA can be défined as-M = (9, 2, T, S, 20, 20, 1) where, S(q,q,n) has one more for any $q \in Q$, $X \in T$ and $a \in E$. XET and a E E. - For e.g., DPDA For binary number divisible · Transition diagram:

: DPDA is given by -

 $M = \left\{ \left\{ 20, 2, 25, \frac{1}{2}, \frac{1}{2}$

8 3

J. S.	O	2	
20	20	21	
21	22	20	
22	21	22	

· NPDA (Non-deterministic PDA)

+ A NPDA provides non-determinism to PDA.

every situation. Where as in cose of NPDA there could be multiple moves under a situation.

Every context free language cannot be recognized by a DPDA but it can be recognized by NPDA.

the class of language a DPDA can acrept lies in between a regular language and CFL.

A palindrome can be accepted by NPDA but it can not be accepted by a PPDA.

S), 2 ≒)	Construct PDA accepting languages of Polindrome 501":-
	· Transition diagram:
	$\begin{array}{c} 0,0 00\\ 0,2 01\\ \hline \\ 2_0 \\ \hline \end{array}$
•	$\frac{1}{2},\frac{1}{2},\frac{1}{2}$
	· Simulation!
	IIP 94ring: 20202
5	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$ \begin{array}{cccc} + & (90, 1) \\ + & (90, \varepsilon) \\ + & (92, \varepsilon) \end{array} $
	: The 10101 string accepted.

PDA con be defined as - $M = \{\{20, 2, 92\}, \{0, 1\}, \{0, 2, 20\}, \delta, 20, 20, 20, \{22\}\}.$

9.3 Construct PDA accepting the following longuages L= & antomica | min>=1}

Soln:-

Transition diagram: 0, 20/20 0, 20/2

· Transition Function:

$$\delta(20, 0, 20) = (20,020)
\delta(20,00) = (20,000)
\delta(20,00) = (20,00)
\delta(21,00) = (21,0)
\delta(21,00) = (22,0)
\delta(22,00) = (22,0)
\delta(22,00) = (23,0)
\delta(22,00) = (23,0)$$

- PDA can be défined as -

 $M = \left(\{ 20, 2, 293 \}, \{ a_{1}b_{1}c \}, \{ a_{1}20 \}, 20, 20 \right)$ $Z_{0}, \{ 239, 6 \}$

- Simulation:

(90, aabbcc) H (20, abbcc)
H (20, bbcc)
H (21, bcc)
H (22, C)
H (22, E)
H (23, E)

:. IIP string is accepted.

9.4 Design PDA for the following CFG.
Show acceptance of one of volid string

S-1 aAA

A - as

 $S \longrightarrow Q$

=) Sol^:-

The equivalent PDA, M is given by

M=(129, 1916), 1916, 5, AS, 8, 9, 5, \$9

where δ is given by - $\delta(2, \epsilon, s) = \delta(2, \alpha_{AA})$ $\delta(2, \epsilon, s) = \delta(2, \alpha_{AA})$ $\delta(2, \epsilon_{A}) = \delta(2, \alpha_{S}), (2, \delta_{S}), (2, \alpha_{S})$ $\delta(2, \alpha_{A}) = \delta(2, \epsilon_{S})$ $\delta(2, \delta_{A}) = \delta(2, \epsilon_{S})$

- Acceptance of abaq by M

8(9, abaaaa, s) — (9,9baaaa, aAA)

— (9, baaaa, AA)

— (9, baaaa, AA)

— (9, aaa, SA)

— (9, aaa, AAA)

— (9, aaa, AAA)

— (9, aa, AAA)

— (9, aa, AA)

Thus, the string about is accepted by Musing an empty stack.

i. aba4 €L.