Lineare Algebra 1 – WS 2024/25

Übungsblatt 6-4.12.2024

Aufgabe 1

Bestimmen Sie Basen von $\mathcal{L}(M) + \mathcal{L}(N)$ und $\mathcal{L}(M) \cap \mathcal{L}(N)$, für

$$M = \left\{ \begin{pmatrix} 1 \\ 0 \\ 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \\ 1 \end{pmatrix} \right\} \subseteq \mathbb{R}^4 \quad \text{und} \quad N = \left\{ \begin{pmatrix} 1 \\ 1 \\ 4 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ -3 \\ -1 \\ 1 \end{pmatrix}, \begin{pmatrix} 3 \\ 1 \\ 0 \\ 0 \end{pmatrix} \right\} \subseteq \mathbb{R}^4.$$

Aufgabe 2

Für $a \in \mathbb{R}$ und $n \in \mathbb{N}^+$ definieren wir Abbildungen $f_a, g_n, h_n \colon \mathbb{R} \longrightarrow \mathbb{R}$ durch

$$f_a(x) = x + a$$
, $g_n(x) = x^2 + 2nx + n^2$, $h_n(x) = \frac{1}{n+x^2}$

für alle $x \in \mathbb{R}$. Stellen Sie für folgende Mengen fest, ob diese als Teilmengen des \mathbb{R} -Vektorraums $Abb(\mathbb{R}, \mathbb{R})$ (definiert wie in Aufgabe 5 von Blatt 5) linear unabhängig sind.

- (a) $F = \{ f_a : \mathbb{R} \to \mathbb{R} \mid a \in \mathbb{R} \}.$
- (b) $G = \{ g_n : \mathbb{R} \to \mathbb{R} \mid n \in \mathbb{N}^+ \}.$
- (c) $H = \{ h_n : \mathbb{R} \to \mathbb{R} \mid n \in \mathbb{N}^+ \}.$

Aufgabe 3

Für $k=0,\ldots,3$ definieren wir die Abbildung $p_k\colon\mathbb{Z}_3\longrightarrow\mathbb{Z}_3$ durch $p_k(x)=x^k$ für alle $x\in\mathbb{Z}_3$. Untersuchen Sie, ob die $p_k,\,k=0,\ldots,3$ im \mathbb{Z}_3 -Vektorraum Abb $(\mathbb{Z}_3,\mathbb{Z}_3)$ linear unabhängig sind.

Aufgabe 4

Es seien K ein Körper, und X eine Menge. Für eine Teilmenge $M \subset X$ setzen wir

$$Z_M = \{ f \in Abb(X, K) \mid \forall x \in X \setminus M \colon f(x) = 0 \}.$$

Zeigen Sie für zwei Teilmengen M, N von X:

- (a) Z_M ist ein Unterraum von Abb(X, K).
- (b) $Z_M \cap Z_N = Z_{M \cap N}$.
- (c) $Z_{M \cup N} = Z_M + Z_N$.

Bestimmen Sie auch alle Paare (M,N) von Teilmengen von X, für die $\mathrm{Abb}(X,K)=Z_M\oplus Z_N$ gilt.

Aufgabe 5

Beweisen Sie Lemma 3.37 der Vorlesung (bzw. Lemma 4.37 aus dem Kappel–Skriptum): Es sei V ein Vektorraum über dem Körper K.

- (a) Ein einziges Element $a \in V$ ist genau dann linear unabhängig, wenn $a \neq o$ ist.
- (b) $a_1, \ldots, a_n \in V$, $n \geq 2$, sind genau dann linear abhängig, wenn für mindestens ein $k, 1 \leq k \leq n$, gilt:

$$a_k = \sum_{\substack{i=1\\i\neq k}}^n \lambda_i a_i \quad \text{mit} \quad \lambda_i \in \mathbb{K}.$$

Aufgabe 6

Es seien K ein Körper, V ein K-Vektorraum, I eine nicht leere Menge und $(W_i)_{i\in I}$ eine Familie von Unterräumen von V mit folgender Eigenschaft: sind $i, j \in I$, so gibt es $k \in I$ mit $W_i \subset W_k$ und $W_j \subset W_k$. Zeigen Sie

$$\sum_{i \in I} W_i = \bigcup_{i \in I} W_i.$$