Analysis of Algorithms

V. Adamchik

CSCI 570

Lecture 9

University of Southern California

Assignment Project Exam Help

Network Flow - 2
Add WeChat powcoder

Reading: chapter 7

The Ford-Fulkerson Algorithm

Algorithm. Given (G, s, t, c)start with f(u,v)=0 and $G_f=G$. while exists an augmenting s-t path in G_f find a bottleneckment Project Exam Help augment the flow along this path https://powcoder.com update the residual graph G_f

Reduction

Formally, to reduce a problem Y to a problem X (we write $Y \leq_p X$) we want a function f that maps Y to X such that:

Assignment Project Exam Help

- f is a polynomial time computable https://powcoder.com
- \forall instance $y \in X$ is solvable if and only if $f(y) \in X$ is solvable.

Solving by reduction to NF

- 1. Describe how to construct a flow network
- 2. Make a claim. Something like "this problem has a feasible something like "this problem has a "..."
- 3. Prove the abolite point both endirementions

Discussion Problem 1

At a dinner party, there are n families a_1 , a_2 , ..., a_n and m tables b_1 , b_2 , ..., b_m . The i-th family a_i has g_i members and the j-th table b_j has h_j seats. Everyone is interested in making new friends and the dinner party planner wants to seat people such that no two members of the same family are seated at the same table. Design an algorithm that decides if there exists a seating assignment such that everyone is seated and no two members of the same family are seated at the same table. What would be a seating assignment?

https://powcoder.com

Discussion Problem 2

A company has n locations in city A and plans to move some of them (or all) to another city B. The i-th location costs a_i per year if it is in the city A and b_i per year if it is in the city B. The company also needs to pay an extra cost, $c_{ij} > 0$, per year for traveling best wear ject ations. Harly j. We assume that $c_{ij} = c_{ji}$. Design an efficient algorithm to decide which company locations in this j and j

https://powcoder.com

https://powcoder.com

Circulation

Given a directed graph in which in addition to having capacities $c(u, v) \ge 0$ on each edge, we associate each vertex v with a supply/demand value d(v). We say that a vertex v is a deficient of d(v) < 0.

a 4 4 b 2 3 C 1

https://powcoder.com

Necessary Condition

For every feasible circulation $\sum_{v \in V} d(v) = 0$

Proof. Assignment Project Exam Help

https://powcoder.com

Reduction to Flow Problem

https://powcoder.com

Circulation with Demands

There is a feasible circulation with demands d(v) in G if and only if the maximum s-t flow in G' has value D.

Assignment Project Exam Help
$$\sum_{d(v)>0} d(v) = D$$

https://powcoder.com

We are given a directed graph G=(V, E) with a capacity c(e) and a lower bound $0 \le \ell(e) \le c(e)$ on each edge and a demand d(v) an each vertexoject Exam Help

$$L(v) = f_0^{in}(v) - f_0^{out}(v)$$

 $d'(v) = d(v) - L(v)$.

<u>Claim</u>: there is a feasible circulation in G iff there is a feasible circulation in a new graph G'.

Summary: given G with lower bounds, we:

subtract lower spinnent Project Example of each edge

https://powcoder.com

subtract L(v) from the demand of each node

solve the circulation problem on this new graph to get a flow f.

add $\ell(e)$ to every f(e) to get a flow for the original graph

Discussion Problem 4

Given the network below with the demand values on vertices and lower bounds on edge capacities, determine if there is a feasible circulation in this graph.

https://powcoder.com

Discussion Problem 5

CSCI 570 is a large class with n TAs. Each week TAs must hold office hours in the TA office room. There is a set of khour-long time intervals I_1 , I_2 , ... I_k in which the office room is available. The room can ascommodate up to 3 TAs at any time. Each TA provides a subset of the time intervals he or she can hold office hours with the minimum requirement of I hour per week, and the maximum m_i hours per week. Lastly, the total number of office hours preventing the week must be H. Design an algorithm to determine if there is a valid way to schedule the TA's office hours with respect to these constraints.

https://powcoder.com

https://powcoder.com

https://powcoder.com