MATH 330 – HW #20 Revision

Cristobal Forno

November 14, 2017

Propostion 10.7: Let $x, y \in \mathbb{Z}$. Then |x| < |y| if and only if $x^2 < y^2$.

Proof: Let $x, y \in \mathbb{Z}$. We want to prove if |x| < |y|, then $x^2 < y^2$ (1) and if $x^2 < y^2$, then |x| < |y| (2).

- (1) Assume |x| < |y|. Then $|y| |x| \in \mathbb{R}_{>\mathcal{F}}$. $(|y| |x|)^2 = |y|^2 2|x||y| |x|^2$. This can also be set as an inequality, $|x|^2 < 2|x||y| < |y|^2$. For our purposes, we will only focus on $|x|^2 < |y|^2$. Proposition 10.6 implies, $|x|^2 < |y|^2 = x^2 < y^2$. This proves our statement, if |x| < |y|, then $x^2 < y^2$.
- (2) Assume $x^2 < y^2$. Then, $y^2 x^2 \in \mathbb{R}_{>\mathcal{V}}$. Equivalently, $(y x) \cdot (y + x)$. We have x < y and x < -y. These two inequalities can only hold if |x| < |y|, by the definition of absolute value. \square

Proposition 10.9: Let $x \in \mathbb{R}$ be such that $0 \le x \le 1$, and let $m, n \in \mathbb{N}$ be such that $m \ge n$. Then $x^m \le x^n$.

Proof: Let $0 \le x \le 1$ and a fix $n \in \mathbb{N}$. Let P(m) be the statement $x^m \le x^n$. We will prove this by induction on m that P(m) is true for all $m \ge n$.

<u>Base Case:</u> When m = n is obiviously true since $x^n \le x^n$.

<u>Induction:</u> Now suppose $k \ge n$ and P(k) is true. Since $0 \le x \le 1$, we have $x^n \cdot x < x^n \cdot 1 = x^n$. So,

$$x^{k+1} = x^k \cdot x \le x^n \cdot x \le x^n,$$

where the first inequality follows from the induction hypothesis and the second inequality also holds since $0 \le x \le 1$ and it will make x^n less than or equal to itself. Thus, completing our proof by induction. \square