New Jersey Semi-Conductor Products, Inc.

20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081 U.S.A. TELEPHONE: (973) 376-2922

(212) 227-6005

FAX: (973) 376-8960

BUZ 10

SIPMOS ® Power Transistor

- N channel
- · Enhancement mode
- Avalanche-rated

Pin 1	Pin 2	Pin 3		
G	D	S		

Туре	V _{DS}	I _D	R _{DS(on)}	Package	_
BUZ 10	50 V	23 A	0.07 Ω	TO-220 AB	

Maximum Ratings

Parameter	Symbol	Values	Unit
Continuous drain current	I _D		Α
T _C = 26 °C		23	
Pulsed drain current	/ _{Dpuls}		
T _C = 25 °C		92	
Avalanche current,limited by $T_{ m jmax}$	/ _{AR}	23	i
Avalanche energy,periodic limited by $T_{ m jmax}$	E _{AR}	1.3	mJ
Avalanche energy, single pulse	E _{AS}		
$I_{\rm D}$ = 23 A, $V_{\rm DD}$ = 25 V, $R_{\rm GS}$ = 25 Ω			
L = 15.1 μH, T _j = 25 °C		8	
Gate source voltage	$V_{ m GS}$	± 20	V
Power dissipation	P _{tot}		W
T _C = 25 °C		75	
Operating temperature	T _j	-55 + 150]°C
Storage temperature	$ au_{ ext{stg}}$	-55 + 150	
Thermal resistance, chip case	R _{thJC}	≤ 1.67	K/W
Thermal resistance, chip to ambient	R _{thJA}	≤ 75	
DIN humidity category, DIN 40 040		E	
IEC climatic category, DIN IEC 68-1		55 / 150 / 56	

Quality Semi-Conductors

Downloaded from: http://www.datasheetcatalog.com/

Electrical Characteristics, at T_j = 25°C, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
Static Characteristics					
Drain- source breakdown voltage	V _{(BR)DSS}				V
$V_{GS} = 0 \text{ V}, I_D = 0.25 \text{ mA}, T_j = 25 \text{ °C}$		50	-	-	
Gate threshold voltage	V _{GS(th)}				
$V_{\rm GS} = V_{\rm DS}$, $I_{\rm D} = 1$ mA		2.1	3	4	
Zero gate voltage drain current	I _{DSS}				μA
$V_{\rm DS}$ = 50 V, $V_{\rm GS}$ = 0 V, $T_{\rm j}$ = 25 °C		-	0.1	1	
$V_{\rm DS}$ = 50 V, $V_{\rm GS}$ = 0 V, $T_{\rm j}$ = 125 °C		-	10	100	
Gate-source leakage current	I _{GSS}				nA
$V_{GS} = 20 \text{ V}, V_{DS} = 0 \text{ V}$		-	10	100	
Drain-Source on-resistance	R _{DS(on)}				Ω
V_{GS} = 10 V, I_{D} = 14 A		-	0.05	0.07	

Electrical Characteristics, at T_j = 25°C, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
Dynamic Characteristics					
Transconductance	g _{fs}				S
$V_{DS} \ge 2 * I_D * R_{DS(on)max}, I_D = 14 A$		7	13	-	
Input capacitance	Ciss				pF
$V_{GS} = 0 \text{ V}, V_{DS} = 25 \text{ V}, f = 1 \text{ MHz}$		-	650	820	
Output capacitance	Coss				
$V_{GS} = 0 \text{ V}, V_{DS} = 25 \text{ V}, f = 1 \text{ MHz}$		-	300	450	
Reverse transfer capacitance	C_{rss}				
$V_{GS} = 0 \text{ V}, V_{DS} = 25 \text{ V}, f = 1 \text{ MHz}$		_	110	170	
Turn-on delay time	$t_{d(on)}$				ns
$V_{\rm DD}$ = 30 V, $V_{\rm GS}$ = 10 V, $I_{\rm D}$ = 3 A					
R_{GS} = 50 Ω		-	20	35	
Rise time	t_{r}				
$V_{\rm DD}$ = 30 V, $V_{\rm GS}$ = 10 V, $I_{\rm D}$ = 3 A					
R_{GS} = 50 Ω		-	40	65	
Turn-off delay time	$t_{\rm d(off)}$				
$V_{\rm DD}$ = 30 V, $V_{\rm GS}$ = 10 V, $I_{\rm D}$ = 3 A					
$R_{\rm GS}$ = 50 Ω		-	80	110	
Fall time	t _f				
$V_{\rm DD}$ = 30 V, $V_{\rm GS}$ = 10 V, $I_{\rm D}$ = 3 A					
$R_{\rm GS}$ = 50 Ω		-	60	75	

Electrical Characteristics, at $T_j = 25$ °C, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
Reverse Diode					
Inverse diode continuous forward current	Is				Α
<i>T</i> _C = 25 °C		-	-	23	
Inverse diode direct current,pulsed	I _{SM}				
<i>T</i> _C = 25 °C		-	-	92	
Inverse diode forward voltage	V_{SD}				V
$V_{\rm GS} = 0 \text{ V}, I_{\rm F} = 46 \text{ A}$		_	1.5	1.9	
Reverse recovery time	t _{rr}				ns
$V_{R} = 30 \text{ V}, I_{F} = I_{S}, di_{F}/dt = 100 \text{ A/}\mu\text{s}$		-	60	_	
Reverse recovery charge	Q _{rr}				μC
$V_{R} = 30 \text{ V}, I_{F} = I_{S}, di_{F}/dt = 100 \text{ A/}\mu\text{s}$		_	0.1	-	

This datasheet has been downloaded from:

www. Data sheet Catalog.com

Datasheets for electronic components.