Homework 2

Hyun Suk Ryoo (hr2ee)

Problem 1

\mathbf{A}

```
course <- list(Name="Gretchen Martinet",</pre>
               Department= "Statistics",
               Courses=c(2559,3080),
               ActiveTeach2559= FALSE,
               ActiveTeach3080=TRUE,
               Enr2559=10,
               Enr3080=c(90,90,88),
               Days2559=c("Tuesday", "Thursday"),
               Days3080=matrix(c("Monday", "Wednesday", "Tuesday",
                                  "Thursday", "Tuesday", "Thursday"),
                                nrow=3, ncol=2, byrow=TRUE))
print(course)
## $Name
## [1] "Gretchen Martinet"
##
## $Department
## [1] "Statistics"
##
## $Courses
## [1] 2559 3080
## $ActiveTeach2559
## [1] FALSE
## $ActiveTeach3080
## [1] TRUE
##
## $Enr2559
## [1] 10
## $Enr3080
## [1] 90 90 88
##
## $Days2559
```

```
## [1] "Tuesday" "Thursday"
##
## $Days3080
## [,1] [,2]
## [1,] "Monday" "Wednesday"
## [2,] "Tuesday" "Thursday"
## [3,] "Tuesday" "Thursday"
```

Made a list containing different dataframes

\mathbf{B}

```
cap_3080 <- course$Enr3080
filled_3080 <- which(cap_3080 == 90)
print(filled_3080)
## [1] 1 2</pre>
```

Sections 1 and 2 are filled at 90 students. This was done by going through the enrollment vector of 3080 and equating it to 90.

\mathbf{C}

I added all the numbers in the vector Enr3080 in the list of courses.

Problem 2

\mathbf{A}

```
0.41, 0.43, -0.72, 0.67
prings <-c(FALSE, FALSE, FALSE, FALSE,
           TRUE, TRUE, TRUE, TRUE)
pmoons <-c("none", "none", "one", "more than one",
           "more than one", "more than one", "more than one", "more than one")
planet data <- data.frame(Name=pnames, distance=pdistance,</pre>
                           type=ptype, diameter=pdiameter,
                           rotation=protation, rings=prings,
                           moons=pmoons)
print(planet data)
##
        Name distance
                              type diameter rotation rings
                                                                     moons
## 1 Mercury
                 0.39 terrestrial
                                      0.382
                                                58.64 FALSE
                                                                      none
## 2
       Venus
                                             -243.02 FALSE
                 0.72 terrestrial
                                      0.949
                                                                      none
## 3
                                      1.000
                                                 1.00 FALSE
       Earth
                 1.00 terrestrial
                                                                       one
                                                 1.03 FALSE more than one
## 4
        Mars
                 1.52 terrestrial
                                      0.532
```

11.209

9.449

4.007

3.883

0.41 TRUE more than one

0.43 TRUE more than one

-0.72 TRUE more than one 0.67 TRUE more than one

I made several vectors and made it into a dataframe.

5.20

9.54

19.18

30.06

\mathbf{B}

5 Jupiter

7 Uranus

8 Neptune

Saturn

6

atleast2Au <- planet_data[which(planet_data\$distance > 2),]
print(atleast2Au)

gas

gas

gas

gas

```
##
        Name distance type diameter rotation rings
                                                            moons
## 5 Jupiter
                 5.20
                       gas
                              11.209
                                         0.41
                                               TRUE more than one
## 6 Saturn
                 9.54
                       gas
                              9.449
                                         0.43
                                               TRUE more than one
## 7 Uranus
                              4.007
                                        -0.72
                                               TRUE more than one
                19.18
                       gas
## 8 Neptune
                30.06
                              3.883
                                         0.67
                                               TRUE more than one
                       gas
```

I took which instances of the subset distance has a value greater than 2. Then I found the corresponding items in the original dataset that satisfies this condition. I then put it in a datafram called at less that 2Au

\mathbf{C}

```
opposite_rotation <- which(planet_data$rotation <0)
print(opposite_rotation)</pre>
```

[1] 2 7

The two planets that are rotating the opposite way are Venus (2) and Uranus (7) with a distance of 0.72, 19.18 respectively.

D

```
diameter_bigger <- planet_data[which(planet_data$diameter > 1), ]
print(diameter_bigger[,c(1,3)])

## Name type
## 5 Jupiter gas
## 6 Saturn gas
## 7 Uranus gas
## 8 Neptune gas
```

I made data frame where the contents conditions were that they have a diameter greater than earth's, which is 1. I then proceeded to take the first and third columns to represent only the name and type.

\mathbf{E}

morethanone_moon <- planet_data[which(planet_data\$moons == "more than one"),]
print(morethanone moon[,c(2,3)])</pre>

```
##
     distance
                       type
## 4
         1.52 terrestrial
## 5
         5.20
                        gas
## 6
         9.54
                        gas
## 7
        19.18
                        gas
## 8
        30.06
                        gas
```

I made a data frame where the contents conditions were that they have more than one moon. I then proceeded to take the second and third columns to isolate the distance and type of the original data frame.

Problem 3

\mathbf{A}

USArrests2 <- USArrests[-3]
print(USArrests2[1:10,])</pre>

##		Murder	Assault	Rape
##	Alabama	13.2	236	21.2
##	Alaska	10.0	263	44.5
##	Arizona	8.1	294	31.0

```
8.8
## Arkansas
                          190 19.5
## California
                  9.0
                          276 40.6
## Colorado
                  7.9
                          204 38.7
## Connecticut
                  3.3
                          110 11.1
## Delaware
                  5.9
                          238 15.8
## Florida
                 15.4
                          335 31.9
## Georgia
                 17.4
                          211 25.8
```

В

I took the sum of every crime and concated into a vector called arrests_tot

\mathbf{C}

PropRape <- USArrests2\$Rape / USArrests2\$Assault
USArrests2\$PropRape <- PropRape
print(USArrests2[1:10,])</pre>

##		Murder	Assault	Rape	${\tt PropRape}$
##	Alabama	13.2	236	21.2	0.08983051
##	Alaska	10.0	263	44.5	0.16920152
##	Arizona	8.1	294	31.0	0.10544218
##	Arkansas	8.8	190	19.5	0.10263158
##	California	9.0	276	40.6	0.14710145
##	Colorado	7.9	204	38.7	0.18970588
##	${\tt Connecticut}$	3.3	110	11.1	0.10090909
##	Delaware	5.9	238	15.8	0.06638655
##	Florida	15.4	335	31.9	0.09522388
##	Georgia	17.4	211	25.8	0.12227488

I first took the proportions then I put them in as a vector. I then proceeded to make a dataframe.

D

```
above20 <- USArrests2[which(PropRape > 0.2), ]
states_20 <- row.names(above20[0])
print(states 20)</pre>
```

[1] "Hawaii" "Iowa" "Minnesota" "Vermont" "Wisconsin"

You can see from the dataframe above that the states that have a proportion higher than 20% ARE Hawaii, Iowa, Minnesota, Vermont, and Wisconsin. I used the row.names to get the names of the rows (states). I first took which proportions have higher than 20, then I took those indicies and set them as a parameter to find the names and details in the USArrests2 dataframe.

 \mathbf{E}

sorted_murder <- USArrests2[order(USArrests2\$Murder, decreasing = TRUE),]
print(sorted_murder)</pre>

##		Murder	Assault	Rape	PropRape
##	Georgia	17.4	211	25.8	0.12227488
##	Mississippi	16.1	259	17.1	0.06602317
##	Florida	15.4	335	31.9	0.09522388
##	Louisiana	15.4	249	22.2	0.08915663
##	South Carolina	14.4	279	22.5	0.08064516
##	Alabama	13.2	236	21.2	0.08983051
##	Tennessee	13.2	188	26.9	0.14308511
##	North Carolina	13.0	337	16.1	0.04777448
##	Texas	12.7	201	25.5	0.12686567
##	Nevada	12.2	252	46.0	0.18253968
##	Michigan	12.1	255	35.1	0.13764706
##	New Mexico	11.4	285	32.1	0.11263158
##	Maryland	11.3	300	27.8	0.09266667
##	New York	11.1	254	26.1	0.10275591
##	Illinois	10.4	249	24.0	0.09638554
##	Alaska	10.0	263	44.5	0.16920152
##	Kentucky	9.7	109	16.3	0.14954128
##	California	9.0	276	40.6	0.14710145
##	Missouri	9.0	178	28.2	0.15842697
##	Arkansas	8.8	190	19.5	0.10263158
##	Virginia	8.5	156	20.7	0.13269231
##	Arizona	8.1	294	31.0	0.10544218
##	Colorado	7.9	204	38.7	0.18970588
##	New Jersey	7.4	159	18.8	0.11823899
##	Ohio	7.3	120	21.4	0.17833333
##	Indiana	7.2			0.18584071
##	Wyoming	6.8	161	15.6	0.09689441
##	Oklahoma	6.6	151	20.0	0.13245033
##	Pennsylvania	6.3			0.14056604
##	Kansas	6.0	115	18.0	0.15652174
##	Montana	6.0	109	16.4	0.15045872

```
## Delaware
                     5.9
                              238 15.8 0.06638655
                     5.7
                                   9.3 0.11481481
## West Virginia
## Hawaii
                     5.3
                               46 20.2 0.43913043
## Oregon
                     4.9
                              159 29.3 0.18427673
## Massachusetts
                     4.4
                              149 16.3 0.10939597
                     4.3
## Nebraska
                              102 16.5 0.16176471
## Washington
                     4.0
                              145 26.2 0.18068966
## South Dakota
                     3.8
                               86 12.8 0.14883721
## Rhode Island
                     3.4
                              174 8.3 0.04770115
## Connecticut
                     3.3
                              110 11.1 0.10090909
## Utah
                     3.2
                              120 22.9 0.19083333
                     2.7
## Minnesota
                               72 14.9 0.20694444
                     2.6
                              120 14.2 0.11833333
## Idaho
                     2.6
                               53 10.8 0.20377358
## Wisconsin
## Iowa
                     2.2
                               56 11.3 0.20178571
## Vermont
                     2.2
                               48 11.2 0.23333333
## Maine
                     2.1
                                  7.8 0.09397590
## New Hampshire
                     2.1
                               57
                                   9.5 0.16666667
## North Dakota
                     0.8
                               45
                                   7.3 0.16222222
```

I used the order function with the parameter decreasing=TRUE to sort the dataframe by descending murder counts.

\mathbf{F}

```
number_states <- sum(USArrests2$Murder > USArrests2$Rape)
print(number_states)
## [1] 0
```

I compared the muder and rape cases to which there were no states.

References

- $1. < https://stackoverflow.com/questions/7793295/ \ how-to-order-a-data-frame-by-one-descending-and-one-ascending-column>$
- 2. https://developmentality.wordpress.com/2010/02/12/ r-sorting-a-data-frame-by-the-contents-of-a-column/>
- 3. https://stackoverflow.com/questions/1813550/count-of-entries-in-data-frame-in-r