Тренировочная работа №2 по МАТЕМАТИКЕ 11 класс

13 декабря 2023 года Вариант MA2310209 (профильный уровень)

Выполнена: ФИС	класс	

Инструкция по выполнению работы

Работа по математике состоит из двух частей, включающих в себя 19 заданий. Часть 1 содержит 12 заданий с кратким ответом базового и повышенного уровней сложности. Часть 2 содержит 7 заданий с развёрнутым ответом повышенного и высокого уровней сложности.

На выполнение экзаменационной работы по математике отводится 3 часа 55 минут (235 минут).

Ответы к заданиям 1-12 записываются в виде целого числа или конечной десятичной дроби.

При выполнении заданий 13–19 требуется записать полное решение на отдельном листе бумаги.

При выполнении заданий можно пользоваться черновиком. Записи в черновике не учитываются при оценивании работы.

Баллы, полученные Вами за выполненные задания, суммируются.

Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов.

Желаем успеха!

Справочные материалы

 $\begin{aligned} \sin 2\alpha &= 2\sin\alpha \cdot \cos\alpha \\ \cos 2\alpha &= \cos^2\alpha - \sin^2\alpha \\ \sin(\alpha + \beta) &= \sin\alpha \cdot \cos\beta + \cos\alpha \cdot \sin\beta \\ \cos(\alpha + \beta) &= \cos\alpha \cdot \cos\beta - \sin\alpha \cdot \sin\beta \end{aligned}$

Математика. 11 класс. Вариант МА2310209

Часть 1

2

Ответом к каждому из заданий 1–12 является целое число или конечная десятичная дробь. Запишите ответы к заданиям в поле ответа в тексте работы.

1	Сумма двух углов параллелограмма равна 46°. Найдите один из оставшихся углов. Ответ дайте в градусах.
	Ответ:
2	Длины векторов \vec{a} и \vec{b} равны $3\sqrt{5}$ и $4\sqrt{10}$, а угол между ними равен 45° . Найдите скалярное произведение $\vec{a}\cdot\vec{b}$.
	Ответ:
3	Найдите объём многогранника, вершинами которого являются точки B , C , E , F , B_1 , C_1 , E_1 , F_1 правильной шестиугольной призмы $ABCDEFA_1B_1C_1D_1E_1F_1$, площадь основания которой равна 10, а боковое ребро равно 12.
	Ответ:
4	В случайном эксперименте бросают две игральные кости. Найдите вероятность того, что сумма выпавших очков равна 7. Результат округлите до сотых.
	Ответ:
5	Две фабрики выпускают одинаковые стёкла для автомобильных фар. Первая фабрика выпускает 30 % этих стёкол, вторая — 70 %. Первая фабрика выпускает 5 % бракованных стёкол, а вторая — 4 %. Найдите вероятность того, что случайно купленное в магазине стекло для автомобильной фары окажется бракованным.
	Ответ:

Решите уравнение $\sqrt{7x+18} = x$. Если уравнение имеет больше одного корня, в ответе запишите меньший из корней.

Ответ: .

7 Найдите значение выражения $\frac{5\left(m^5\right)^6+13\left(m^3\right)^{10}}{\left(2m^{15}\right)^2}$ при $m=\frac{5}{13}$.

Ответ: ______.

8 На рисунке изображён график функции y = f'(x) — производной функции f(x), определённой на интервале (-9;4). Найдите количество точек, в которых касательная к графику функции f(x) параллельна прямой y = 2x - 9 или совпадает с ней.

Ответ:

Зависимость объёма спроса q (единиц в месяц) на продукцию предприятиямонополиста от цены p (тыс. рублей за единицу) задаётся формулой q=70-2p. Выручка предприятия r (в тыс. рублей за месяц) вычисляется по формуле $r(p)=q\cdot p$. Определите наибольшую цену p, при которой месячная выручка r(p) составит не менее 600 тыс. рублей. Ответ дайте в тысячах рублей за единицу.

Ответ: ______.

Теплоход проходит по течению реки до пункта назначения 280 км и после стоянки возвращается в пункт отправления. Найдите скорость течения, если скорость теплохода в неподвижной воде равна 17 км/ч, стоянка длится 6 часов, а в пункт отправления теплоход возвращается через 40 часов после отплытия из него. Ответ дайте в км/ч.

Ответ: ______.

11 На рисунке изображён график функции $f(x) = ax^2 + bx + c$. Найдите значение f(2).

Ответ:

 12
 Найдите
 наименьшее
 значение
 функции
 $y = 13\cos x - 17x + 6$

 на отрезке
 $\left[-\frac{3\pi}{2}; 0 \right]$.

Ответ: ______.

Часть 2

5

Для записи решений и ответов на задания 13–19 используйте отдельный лист. Запишите сначала номер выполняемого задания (13, 14 и т. д.), а затем полное обоснованное решение и ответ. Ответы записывайте чётко и разборчиво.

- 13
- а) Решите уравнение $4\sin 2x 4\sqrt{3}\sin x + 12\cos x 6\sqrt{3} = 0$.
- б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[-4\pi; -\frac{5\pi}{2}\right]$.
- 14

В правильной треугольной пирамиде SABC сторона основания AB равна 10, а боковое ребро SA равно 7. На рёбрах AB и SC отмечены точки L и N соответственно, причём AL: LB = SN: NC = 1:4. Плоскость α содержит прямую LN и параллельна прямой BC.

- а) Докажите, что плоскость α параллельна прямой SA.
- б) Найдите угол между плоскостями α и SBC.
- 15

Решите неравенство $\frac{x^3 - 27}{|x - 3|} - x|x - 3| \ge 0$.

16

В июле 2025 года планируется взять кредит в банке на сумму 800 тысяч рублей на 10 лет. Условия его возврата таковы:

- в январе 2026, 2027, 2028, 2029 и 2030 годов долг возрастает на 18 % по сравнению с концом предыдущего года;
- в январе 2031, 2032, 2033, 2034 и 2035 годов долг возрастает на 16 % по сравнению с концом предыдущего года;
- с февраля по июнь каждого года необходимо выплатить часть долга;
- в июле каждого года долг должен быть на одну и ту же величину меньше долга на июль предыдущего года;
- к июлю 2035 года кредит должен быть полностью погашен.

Найдите общую сумму выплат после полного погашения кредита.

- **17** Диагонали равнобедренной трапеции ABCD с основаниями AD и BC перпендикулярны. Окружность с диаметром AD пересекает боковую сторону CD в точке M, а окружность с диаметром CD пересекает основание AD в точке N. Отрезки AM и CN пересекаются в точке P.
 - а) Докажите, что точка P лежит на диагонали BD трапеции ABCD .
 - б) Найдите расстояние от точки P до боковой стороны AB, если BC = 17, AD = 31.
- 18 Найдите все значения a, при каждом из которых неравенство $3a(a-2)-(a-2)\left(2^{x+2}+2\right) \le \left(x^2-4x\right)\left(2^{x+2}+2\right)-3ax^2+12ax$ имеет решения на промежутке (0;1].
- 19 Есть четыре коробки: в первой коробке находятся 93 камня, во второй 94, в третьей 95, а в четвёртой коробке камней нет. За один ход берут по одному камню из любых трёх коробок, всего три камня, и кладут в оставшуюся. Сделали некоторое количество таких ходов.
 - а) Могло ли в первой коробке оказаться 89 камней, во второй 94, в третьей 95, а в четвёртой 4?
 - б) Могло ли в четвёртой коробке оказаться 282 камня?
 - в) Какое наибольшее число камней могло оказаться в первой коробке?

math100.ru
Ответы на тренировочные варианты 2310209-2310212 (профильный уровень) от 13.12.2023

	1	2	3	4	5	6	7	8	9	10	11	12
2310209	157	60	80	0,17	0,043	9	4,5	3	20	3	- 33	19
2310210	139	90	120	0,03	0,031	7	1,5	4	12	2	- 46	14
2310211	105	- 60	35	0,5	0,96	- 9	7	3	3000	18	11	40
2310212	125	- 65	42	0,25	0,84	- 8	5	2	4000	24	34	24

Критерии оценивания заданий с развёрнутым ответом

13

- а) Решите уравнение $4\sin 2x 4\sqrt{3}\sin x + 12\cos x 6\sqrt{3} = 0$.
- б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[-4\pi; -\frac{5\pi}{2}\right]$.

Решение.

а) Преобразуем уравнение:

$$8\sin x \cos x - 4\sqrt{3}\sin x + 12\cos x - 6\sqrt{3} = 0;$$
$$(4\sin x + 6)(2\cos x - \sqrt{3}) = 0,$$

откуда следует, что $\cos x = \frac{\sqrt{3}}{2}$ или $\sin x = -\frac{3}{2}$.

Уравнение $\sin x = -\frac{3}{2}$ решений не имеет, а из уравнения $\cos x = \frac{\sqrt{3}}{2}$ получим

$$x = \pm \frac{\pi}{6} + 2\pi k$$
, $k \in \mathbb{Z}$.

б) C помощью числовой окружности отберём корни, принадлежащие отрезку $\left[-4\pi;-\frac{5\pi}{2}\right]$.

Получим число $-\frac{23\pi}{6}$

Ответ: a) $-\frac{\pi}{6} + 2\pi k$, $k \in \mathbb{Z}$; $\frac{\pi}{6} + 2\pi n$, $n \in \mathbb{Z}$; 6) $-\frac{23\pi}{6}$.

0 0	
Содержание критерия	Баллы
Обоснованно получены верные ответы в обоих пунктах	2
Обоснованно получен верный ответ в пункте а.	1
ИЛИ	
Получены неверные ответы из-за вычислительной ошибки, но при	
этом имеется верная последовательность всех шагов решения обоих	
пунктов: пункта a и пункта δ	
Решение не соответствует ни одному из критериев, перечисленных	0
выше	
Максимальный балл	2

© СтатГрад 2023-2024 уч. г.

- В правильной треугольной пирамиде SABC сторона основания AB равна 10, а боковое ребро SA равно 7. На рёбрах AB и SC отмечены точки L и N соответственно, причём AL: LB = SN: NC = 1: 4. Плоскость α содержит прямую LN и параллельна прямой BC.
 - а) Докажите, что плоскость α параллельна прямой SA.
 - б) Найдите угол между плоскостями а и SBC.

Решение.

а) Пусть плоскость α пересекает ребро SB в точке M . Поскольку прямая BC параллельна плоскости α , прямые MN и BC параллельны, а значит,

$$SM : MB = SN : NC = AL : LB$$
.

Следовательно, прямые LM и SA параллельны. Таким образом, плоскость α , содержащая прямую LM, параллельна прямой SA.

б) Пусть точка H — середина ребра BC. Тогда медианы AH и SH треугольников ABC и SBC соответственно являются их высотами, а значит, плоскость ASH перпендикулярна прямой BC.

Следовательно, плоскость ASH перпендикулярна плоскости α , параллельной прямой BC, и плоскости SBC, содержащей прямую BC. Значит, искомый угол равен углу между прямой I, по которой пересекаются

значит, искомый угол равен углу между прямой l, по которой пересекаются плоскости α и ASH, и прямой SH. Так как прямая l параллельна прямой AS, этот угол равен углу ASH или смежному с ним.

В треугольнике *ASH* имеем:

$$AS = 7$$
, $AH = 5\sqrt{3}$, $SH = \sqrt{SB^2 - BH^2} = \sqrt{SB^2 - \frac{BC^2}{4}} = 2\sqrt{6}$.

По теореме косинусов

$$\cos \angle ASH = \frac{SA^2 + SH^2 - AH^2}{2 \cdot SA \cdot SH} = \frac{49 + 24 - 75}{2 \cdot 7 \cdot 2\sqrt{6}} = -\frac{\sqrt{6}}{84}.$$

Ответ: б) $\arccos \frac{\sqrt{6}}{84}$.

Содержание критерия				
Имеется верное доказательство утверждения пункта а, и	3			
обоснованно получен верный ответ в пункте δ				
Получен обоснованный ответ в пункте δ .	2			
ИЛИ				
Имеется верное доказательство утверждения пункта а, и при				
обоснованном решении пункта δ получен неверный ответ из-за				
арифметической ошибки				

© СтатГрад 2023-2024 уч. г.

•	
Имеется верное доказательство утверждения пункта а.	1
ИЛИ	
При обоснованном решении пункта δ получен неверный ответ из-за	
арифметической ошибки.	
ИЛИ	
Обоснованно получен верный ответ в пункте δ с использованием	
утверждения пункта a , при этом пункт a не выполнен	
Решение не соответствует ни одному из критериев, приведённых	0
выше	
Максимальный балл	3

Решите неравенство $\frac{x^3 - 27}{|x - 3|} - x|x - 3| \ge 0$.

Решение.

Преобразуем левую часть неравенства:

$$\frac{x^{3}-27-x(x-3)^{2}}{|x-3|} \ge 0; \quad \frac{(x-3)(x^{2}+3x+9-x^{2}+3x)}{|x-3|} \ge 0;$$
$$\frac{3(x-3)(2x+3)}{|x-3|} \ge 0.$$

Отсюда получаем, что $x \le -1,5$ или x > 3.

Otbet: $(-\infty; -1,5], (3; +\infty).$

Содержание критерия		
Обоснованно получен верный ответ	2	
Обоснованно получен ответ, отличающийся от верного	1	
исключением точки -1,5.		
ИЛИ		
Получен неверный ответ из-за вычислительной ошибки, но при этом		
имеется верная последовательность всех шагов решения		
Решение не соответствует ни одному из критериев, перечисленных		
выше		
Максимальный балл	2	

- В июле 2025 года планируется взять кредит в банке на сумму 800 тысяч рублей на 10 лет. Условия его возврата таковы:
 - в январе 2026, 2027, 2028, 2029 и 2030 годов долг возрастает на 18 % по сравнению с концом предыдущего года;
 - в январе 2031, 2032, 2033, 2034 и 2035 годов долг возрастает на 16% по сравнению с концом предыдущего года;
 - с февраля по июнь каждого года необходимо выплатить часть долга;
 - в июле каждого года долг должен быть на одну и ту же величину меньше долга на июль предыдущего года;
 - к июлю 2035 года кредит должен быть полностью погашен.

Найдите общую сумму выплат после полного погашения кредита.

Решение.

3

По условию долг перед банком (в тысячах рублей) по состоянию на июль 2025–2035 годов должен уменьшаться до нуля следующим образом:

800; 720; 640; 560; 480; 400; 320; 240; 160; 80; 0.

В январе каждого года с 2026 по 2030 долг возрастает на 18 %, а в январе каждого года с 2031 по 2035 — на 16 %, значит, последовательность размеров долга (в тысячах рублей) в январе 2026–2035 годов такова:

944; 849,6; 755,2; 660,8; 566,4; 464; 371,2; 278,4; 185,6; 92,8.

Таким образом, выплаты (в тысячах рублей) должны быть следующими:

224; 209,6; 195,2; 180,8; 166,4; 144; 131,2; 118,4; 105,6; 92,8.

Значит, общая сумма выплат (в тысячах рублей) составит

 $224 + 209, 6 + 195, 2 + 180, 8 + 166, 4 + 144 + 131, 2 + 118, 4 + 105, 6 + 92, 8 = 1568 \,.$

Ответ: 1,568 млн рублей.

Содержание критерия	Баллы
Обоснованно получен верный ответ	2
Верно построена математическая модель	1
Решение не соответствует ни одному из критериев, перечисленных	0
выше	
Максимальный балл	2

- 17 Диагонали равнобедренной трапеции ABCD с основаниями AD и BC перпендикулярны. Окружность с диаметром AD пересекает боковую сторону CD в точке M, а окружность с диаметром CD пересекает основание AD в точке N. Отрезки AM и CN пересекаются в точке P.
 - а) Докажите, что точка P лежит на диагонали BD трапеции ABCD.
 - б) Найдите расстояние от точки P до боковой стороны AB, если BC = 17, AD = 31.

Решение.

а) Точка M лежит на окружности с диаметром AD, поэтому прямая AM перпендикулярна прямой CD, т. е. AM — высота треугольника ACD. Аналогично CN — высота треугольника ACD. Пусть O — точка пересечения диагоналей трапеции. По условию задачи прямая DO перпендикулярна прямой AC, значит, DO — третья высота треугольника ACD. Высоты треугольника пересекаются ACD водной точке, следовательно, точка ACD пересечения высот ACD и ACD пересечения высот ACD пересечения ACD

5

б) Точка N — основание высоты трапеции, опущенной на основание AD, поэтому

$$DN = \frac{1}{2}(AD - BC) = \frac{1}{2}(31 - 17) = 7$$
, $AN = \frac{1}{2}(AD + BC) = \frac{1}{2}(31 + 17) = 24$.

Трапеция равнобедренная, а её диагонали перпендикулярны, поэтому $\angle CAD = \angle ADB = 45^{\circ}$.

Значит,
$$BP = BC\sqrt{2} = 17\sqrt{2}$$
, $AO = \frac{AD}{\sqrt{2}} = \frac{31}{\sqrt{2}}$, $CN = AN = 24$.

По теореме Пифагора $AB = CD = \sqrt{DN^2 + CN^2} = \sqrt{24^2 + 7^2} = 25$.

Растояние от точки P до боковой стороны AB равно высоте PH треугольника APB, опущенной на сторону AB, а так как AO также высота этого треугольника, получаем, что $AB \cdot PH = BP \cdot AO$.

Следовательно,
$$PH = \frac{BP \cdot AO}{AB} = \frac{17\sqrt{2} \cdot \frac{31}{\sqrt{2}}}{25} = \frac{527}{25} = 21,08$$
.

Ответ: б) 21,08.

Содержание критерия				
Имеется верное доказательство утверждения пункта а, и	1 3			
обоснованно получен верный ответ в пункте δ				
Получен обоснованный ответ в пункте δ .	2			
ИЛИ				
Имеется верное доказательство утверждения пункта а, и при	į			
обоснованном решении пункта б получен неверный ответ из-за	Į l			
арифметической ошибки				

Имеется верное доказательство утверждения пункта а.	1
ИЛИ	ı
При обоснованном решении пункта δ получен неверный ответ из-за	Ĭ
арифметической ошибки.	ı
ИЛИ	ı
Обоснованно получен верный ответ в пункте δ с использованием	ı
утверждения пункта a , при этом пункт a не выполнен	ı
Решение не соответствует ни одному из критериев, приведённых	0
выше	ı
Максимальный балл	3

Найдите все значения a, при каждом из которых неравенство $3a(a-2)-(a-2)\left(2^{x+2}+2\right) \le \left(x^2-4x\right)\left(2^{x+2}+2\right)-3ax^2+12ax$ имеет решения на промежутке (0;1].

Решение.

Рассмотрим неравенство как квадратное относительно a.

$$3a(a-2)-(a-2)(2^{x+2}+2)-(x^2-4x)(2^{x+2}+2)+3ax^2-12ax \le 0;$$

$$(3a-2^{x+2}-2)(a+x^2-4x-2) \le 0.$$

Изобразим графики функций $a = \frac{4}{3} \cdot 2^x + \frac{2}{3}$

и $a = -x^2 + 4x + 2$ на плоскости xOa.

тогда и только тогда, когда $2 < a \le 5$.

Общие точки графиков — (0;2) и (2;6), что можно проверить подстановкой их координат в уравнения $a=\frac{4}{3}\cdot 2^x+\frac{2}{3}$ и $a=-x^2+4x+2$.

Больше двух точек быть не может в силу противоположной выпуклости данных кривых. На промежутке (0;1] решения неравенства есть

Ответ: $2 < a \le 5$.

Содержание критерия	Баллы
Обоснованно получен верный ответ	4
С помощью верного рассуждения получено множество значений а,	3
отличающееся от искомого только включением точки $a=2$	
С помощью верного рассуждения получено множество значений	2
$2 \le a \le 6$, возможно, не включая концы.	
ИЛИ	
Получен неверный ответ из-за вычислительной ошибки, но при	
этом верно выполнены все шаги решения	
Задача верно сведена к исследованию возможного значения корней	1
уравнения	
Решение не соответствует ни одному из критериев, перечисленных	0
выше	
Максимальный балл	4

- Есть четыре коробки: в первой коробке находятся 93 камня, во второй 94, в третьей 95, а в четвёртой коробке камней нет. За один ход берут по одному камню из любых трёх коробок, всего три камня, и кладут в оставшуюся. Сделали некоторое количество таких ходов.
- а) Могло ли в первой коробке оказаться 89 камней, во второй 94, в третьей 95, а в четвёртой 4?
- б) Могло ли в четвёртой коробке оказаться 282 камня?
- в) Какое наибольшее число камней могло оказаться в первой коробке?

Решение.

- а) Пусть 2 раза из первых трёх коробок переложили камни в четвёртую. Тогда в первой коробке оказался 91 камень, во второй 92 камня, в третьей 93 камня, а в четвёртой 6 камней. Если после этого переложить камни из первой, третьей и четвёртой коробок во вторую, то в первой коробке окажется 90 камней, во второй 95, в третьей 92, а в четвёртой 5. Если после этого переложить камни из первой, второй и четвёртой коробок в третью, то в первой коробке окажется 89 камней, во второй 94, в третьей 95, а в четвёртой 4.
- б) Если в четвёртой коробке оказалось 282 камня, то в первой, во второй и в третьей коробках не осталось камней.

Пусть в какой-то момент в коробках оказалось a, b, c и d камней соответственно. Тогда после одного хода в коробках могло оказаться либо a-1, b-1, c-1 и d+3 камня, либо a-1, b-1, c+3 и d-1 камень, либо a-1, b+3, c-1 и d-1 камень, либо a+3, b-1, c-1 и d-1 камень соответственно. Заметим, что разность между количествами камней во второй и в первой коробках либо не изменилась, либо изменилась на a+1. Сначала разность количеств камней во второй и в первой коробках

в) Сначала разность количеств камней в любых двух коробках не делится на 4. Следовательно, ни в какой момент в двух коробках не могло оказаться одинаковое число камней. Значит, во второй, в третьей и в четвёртой коробках не меньше 0+1+2=3 камней суммарно, а в первой коробке не больше 279 камней.

Покажем, что в первой коробке могло оказаться 279 камней. Пусть 24 раза из первых трёх коробок переложили камни в четвёртую. Тогда в первой коробке оказалось 69 камней, во второй — 70, в третьей — 71, а в четвёртой — 72. Если после этого 70 раз переложить камни из второй, третьей и четвёртой коробок в первую, то в первой коробке окажется 279 камней, во второй — 0 камней, в третьей — 1 камень, а в четвёртой — 2 камня.

Ответ: а) да; б) нет; в) 279.

Содержание критерия	Баллы
Обоснованно получены верные ответы в пунктах a , δ и ϵ	4
Обоснованно получен верный ответ в пункте в, и обоснованно	3
получен верный ответ в пункте a или δ	
Обоснованно получены верные ответы в пунктах a и δ .	2
ИЛИ	
Обоснованно получен верный ответ в пункте θ	
Обоснованно получен верный ответ в пункте a или δ	1
Решение не соответствует ни одному из критериев, перечисленных	0
выше	
Максимальный балл	4

равнялась 1. Следовательно, ни в какой момент она не могла стать равной 0. Значит, в этих двух коробках всегда разное число камней. Следовательно, в четвёртой коробке не могло оказаться 282 камней.