```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
```

In [2]:

data = pd.read_csv("insurance.csv")

In [3]:

data

Out[3]:

	age	sex	bmi	children	smoker	region	charges
0	19	female	27.900	0	yes	southwest	16884.92400
1	18	male	33.770	1	no	southeast	1725.55230
2	28	male	33.000	3	no	southeast	4449.46200
3	33	male	22.705	0	no	northwest	21984.47061
4	32	male	28.880	0	no	northwest	3866.85520
1333	50	male	30.970	3	no	northwest	10600.54830
1334	18	female	31.920	0	no	northeast	2205.98080
1335	18	female	36.850	0	no	southeast	1629.83350
1336	21	female	25.800	0	no	southwest	2007.94500
1337	61	female	29.070	0	yes	northwest	29141.36030

1338 rows × 7 columns

In [4]: ▶

data.head()

Out[4]:

	age	sex	bmi	children	smoker	region	charges
0	19	female	27.900	0	yes	southwest	16884.92400
1	18	male	33.770	1	no	southeast	1725.55230
2	28	male	33.000	3	no	southeast	4449.46200
3	33	male	22.705	0	no	northwest	21984.47061
4	32	male	28.880	0	no	northwest	3866.85520

In [5]:

```
data.tail()
```

Out[5]:

	age	sex	bmi	children	smoker	region	charges
1333	50	male	30.97	3	no	northwest	10600.5483
1334	18	female	31.92	0	no	northeast	2205.9808
1335	18	female	36.85	0	no	southeast	1629.8335
1336	21	female	25.80	0	no	southwest	2007.9450
1337	61	female	29.07	0	yes	northwest	29141.3603

In [6]:

data.shape

Out[6]:

(1338, 7)

In [7]: ▶

data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1338 entries, 0 to 1337
Data columns (total 7 columns):

Data	COTUMNIS (COCAI	/ COTUMITS	, •			
#	Column	Non-N	Null Count	Dtype			
0	age	1338	non-null	int64			
1	sex	1338	non-null	object			
2	bmi	1338	non-null	float64			
3	children	1338	non-null	int64			
4	smoker	1338	non-null	object			
5	region	1338	non-null	object			
6	charges	1338	non-null	float64			
dtype	es: float6	4(2),	int64(2),	object(3)			
memor	nemory usage: 73.3+ KB						

```
In [8]:
```

```
data.describe()
```

Out[8]:

	age	bmi	children	charges
count	1338.000000	1338.000000	1338.000000	1338.000000
mean	39.207025	30.663397	1.094918	13270.422265
std	14.049960	6.098187	1.205493	12110.011237
min	18.000000	15.960000	0.000000	1121.873900
25%	27.000000	26.296250	0.000000	4740.287150
50%	39.000000	30.400000	1.000000	9382.033000
75%	51.000000	34.693750	2.000000	16639.912515
max	64.000000	53.130000	5.000000	63770.428010

```
In [9]:
```

```
data.describe().columns
```

Out[9]:

```
Index(['age', 'bmi', 'children', 'charges'], dtype='object')
```

```
In [10]: ▶
```

```
data.isnull().sum()
```

Out[10]:

```
age 0
sex 0
bmi 0
children 0
smoker 0
region 0
charges 0
dtype: int64
```

```
In [11]:
```

```
import warnings
warnings.filterwarnings("ignore")
```

In [12]: ▶

```
data['sex'].value_counts()
```

Out[12]:

male 676 female 662

Name: sex, dtype: int64

In [13]:

```
data['sex'].value_counts().sort_index(ascending=False).plot(kind='bar')
```

Out[13]:

<matplotlib.axes._subplots.AxesSubplot at 0x2756037e20>

In [14]:

```
factors=['age', 'sex', 'bmi', 'children', 'charges']
data.groupby('sex')[factors].mean()
```

Out[14]:

	age	bmi	children	charges	
sex					
female	39.503021	30.377749	1.074018	12569.578844	
male	38.917160	30.943129	1.115385	13956.751178	


```
sns.boxplot(x='region', y='charges', data=data);
```


In [19]: ▶

from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()

```
In [21]:
```

```
data.sex = le.fit_transform(data.sex)
data.smoker = le.fit_transform(data.smoker)
data.region = le.fit_transform(data.region)
```

In [24]: ▶

```
plt.figure(figsize = (12,7))
sns.barplot(x = data.age, y = data.smoker, hue = data.sex)
```

Out[24]:

<matplotlib.axes._subplots.AxesSubplot at 0x2756c14100>

In [25]: ▶

```
plt.xticks(rotation = 90)
sns.barplot(x = data.sex, y = data.charges)
```

Out[25]:

<matplotlib.axes._subplots.AxesSubplot at 0x276bcf98b0>

In [27]: ▶

```
plt.figure(figsize = (12,7))
sns.barplot(x = data.smoker, y = data.charges, hue = data.sex)
```

Out[27]:

<matplotlib.axes._subplots.AxesSubplot at 0x276b72acd0>

In [28]:

```
sns.displot(kind='kde', x='smoker', y = 'charges', hue='sex', data=data, aspect=2);
```


sns.scatterplot(x="bmi", y="smoker", hue = 'charges', data=data)

Out[32]:

<matplotlib.axes._subplots.AxesSubplot at 0x276c6a2400>

In [33]: ▶

```
data_factors = data[['age', 'sex', 'bmi', 'children', 'smoker', 'region', 'charges']]
```

In [34]: ▶

```
print(data_factors.corr())
sns.heatmap(data_factors.corr())
```

	age	sex	bmi	children	smoker	region	cha
rges							
age	1.000000	-0.020856	0.109272	0.042469	-0.025019	0.002127	0.29
9008							
sex	-0.020856	1.000000	0.046371	0.017163	0.076185	0.004588	0.05
7292							
bmi	0.109272	0.046371	1.000000	0.012759	0.003750	0.157566	0.19
8341							
children	0.042469	0.017163	0.012759	1.000000	0.007673	0.016569	0.06
7998							
smoker	-0.025019	0.076185	0.003750	0.007673	1.000000	-0.002181	0.78
7251							
region	0.002127	0.004588	0.157566	0.016569	-0.002181	1.000000	-0.00
6208							
charges	0.299008	0.057292	0.198341	0.067998	0.787251	-0.006208	1.00
0000							

Out[34]:

<matplotlib.axes._subplots.AxesSubplot at 0x275613e6d0>


```
In [36]: ▶
```

```
x = data.drop(['charges'], axis =1)
```

```
In [37]:
```

y = data.charges

```
In [38]:
                                                                                        M
x.shape
Out[38]:
(1338, 6)
In [39]:
                                                                                        H
y.shape
Out[39]:
(1338,)
In [40]:
                                                                                        H
from sklearn.linear model import LinearRegression
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size = 0.2)
In [42]:
model= LinearRegression()
model.fit(X_train, y_train)
Out[42]:
LinearRegression()
In [43]:
                                                                                        H
y_pred = model.predict(X_test)
In [44]:
print("Training Accuracy :", model.score(X_train, y_train))
print("Testing Accuracy :", model.score(X_test, y_test))
Training Accuracy: 0.7412934137769827
Testing Accuracy : 0.7866891777516701
In [50]:
                                                                                        Ы
from sklearn.tree import DecisionTreeRegressor
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size = 0.2)
```

```
In [53]:
                                                                                        M
model1 = DecisionTreeRegressor()
model1.fit(X_train, y_train)
Out[53]:
DecisionTreeRegressor()
In [54]:
                                                                                        M
y_pred = model1.predict(X_test)
In [55]:
print("Training Accuracy :", model1.score(X_train, y_train))
print("Testing Accuracy :", model1.score(X_test, y_test))
Training Accuracy: 0.999510039812348
Testing Accuracy : 0.6727314220123752
In [56]:
                                                                                        H
from sklearn.ensemble import RandomForestRegressor
from sklearn.model selection import train test split
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size = 0.2)
In [57]:
                                                                                        H
model2 = DecisionTreeRegressor()
model2.fit(X_train, y_train)
Out[57]:
DecisionTreeRegressor()
                                                                                        M
In [58]:
y_pred = model2.predict(X_test)
In [59]:
                                                                                        M
print("Training Accuracy :", model2.score(X_train, y_train))
print("Testing Accuracy :", model2.score(X_test, y_test))
```

Training Accuracy: 0.9983206672851662 Testing Accuracy: 0.7331681300379966