Reprise de leçon de physique

_

Préparation à l'agrégation de physique de L'ENS Paris-Saclay

BENHAMOU-BUI Benjamin PLO Juliette

Système à deux niveaux de spin et RMN

T Objectifs de la leçon

Présenter le système à deux niveaux comme un modèle qui fonctionne très bien. Détailler tout le formalisme autour d'un exemple : la RMN.

\mathbf{II} Introduction

On appelle système à deux niveaux en mécanique quantique des systèmes dont les états évoluent dans un espace à deux dimensions. Il en existe des naturels comme un spin 1/2 dans un champ magnétique mais on peut aussi modéliser un certain nombre de problème par des systèmes à deux niveaux. Ici on va étudier un système à deux niveau naturel : le spin d'un proton dans un champ magnétique et son application à la RMN.

IIIProposition de plan

III.1 Le spin du proton : un système à deux niveaux

III.1.1 Effet d'un champ statique

- on applique un champ statique $\overrightarrow{B_0}=B_0\overrightarrow{e_z}$ et on se place dans la base (|+>,|->) de l'opérateur σ_z
- écriture de l'hamiltonien du spin avec champ statique et dire que les états (|+>,|->) sont toujours états propres car H est diagonal

Sur slide : représentation du système à deux niveaux

- établir l'expression d'un vecteur d'état quelconque $|\Psi>=a_+(t)|+>+a_-(t)|->$
- établir les relations dûes à l'équation de Schrödinger
- résoudre avec comme CIs : $|\Psi(0)\rangle = |+\rangle$
- conclure sur le fait que dans ce cas, les états propres du système sont des états stationnaires
- mise en évidence de la précession du moment magnétique μ autour de $\overrightarrow{B_0}$ en calculant : $<\mu_x>=$ $Kcos(w_0t)$ et $<\mu_y>=Ksin(w_0t)$

Transition: voyons ce qu'il se passe maintenant lorsqu'on ajoute un champ oscillant

III.1.2Effet d'un champ tournant

- présentation du couplage du champ magnétique oscillant : $\overrightarrow{B_1} = B_1[cos(wt)\overrightarrow{e_x} sin(wt)\overrightarrow{e_y}]$ établissement de l'hamiltonnien $H = \begin{pmatrix} -\frac{\hbar w_0}{2} & -\frac{\hbar w_1}{2}e^{iwt} \\ -\frac{\hbar w_1}{2}e^{-iwt} & \frac{\hbar w_0}{2} \end{pmatrix}$
- établissement des équations couplées
- changement de référentiel : $b_{+}(t) = e^{-2a} a_{+}(t)$ et $b_{-}(t) = e^{2a} a_{-}(t)$
- établissement des équations couplées après changement de variable : on obtient des coefficients constants :

$$\begin{cases} i\dot{b_{+}} &= \frac{w - w_{0}}{2}b_{+} - \frac{w_{1}}{2}b_{-} \\ i\dot{b_{-}} &= -\frac{w_{1}}{2}b_{+} - \frac{w - w_{0}}{2}b_{-} \end{cases}$$

Sur slide : expressions des solutions toujours en prenant $|\Psi(0)>=|f>$, faire remarquer qu'on a plus d'états stationnaires car les coefficients ne sont plus simplement des facteurs de phase : on sent apparaître un couplage entre |+> et |->

- établissement de la probabilité d'être dans l'état |-> au bout d'un temps t

- cas particulier où $\omega = \omega_0$: oscillations de Rabi Sur slide: tracer de P(t) dans le cas où $\omega = \omega_0$

<u>Transition</u>: maintenant qu'on a décrit la dynamique du système à deux niveaux en présence d'un couplage extérieur, nous allons voir son application à la RMN

III.2 Application à la RMN

III.2.1 Impulsion Π

- on cherche, à résonance, t_{π} tel que $P_{-}(t_{\pi})=1$: on trouve $t_{\pi}=\frac{\pi}{w_{1}}$
- impulsion Π : après un temps t_{π} d'exposition du système au champ tournant, le spin est dans l'état |->, de manière sûre, si il était initialement dans l'état |+> (et vice-versa si il était dans l'état |-> initialement)

III.2.2 Détection

- on considère un échantillon d'un milieu dense, contenant des protons, à analyser
- sous champ B_0 on une répartition Boltzmanienne des populations des spin : $\frac{p_+}{n} = e^{\frac{\hbar w_0}{k_B T}}$
- Odg: $B_0 = 1T \to \nu_0 = 42.5 MHz$ et $B_0 = 14T \to \nu_0 = 600 MHz$ donc $h\nu \ll k_B T = 25 meV$
- on a donc $p_+-p_-\simeq \frac{\hbar w_0}{k_BT}\simeq 5.10^5$ ce qui est faible mais suffisant car on regarde un échantillon macroscopique
- l'idée est de soumettre l'échantillon à une impulsion Π : ainsi, l'excès de protons dans l'état + se retrouve dans l'état -. On laisse ensuite librement le système évoluer et cet excès de protons va se retourner et on détectera un signal par induction

Sur slide : schéma du principe

- chaque proton ressent le champ B_0 différemment en fonction de son environnement chimique : $B_0^{eff} = (1 - \sigma)B_0$ où σ est le déplacement chimique, par conséquent la pulsation de résonance w_0 sera différente pour chaque protons et en faisant le spectre du champ détecté, on a des infos sur l'environnement chimique Sur slide : spectre de l'éthanol commenté

IV Conclusion et ouverture

Ouverture sur l'IRM, superbe outils de médecine qui permet l'étude du corps humain et la détection de maladies (Sur slide : gradient de champ B pour cartographier le corps humain + jolie image de cerveau)

V Commentaires

- j'ai fait le choix de présenter la RMN avec des impulsions Π pour simplifier. Il faut cependant avoir à l'esprit que dans la vraie vie ce n'est pas fait comme ça : on utilise des impulsions $\frac{\Pi}{2}$ pour amener les spin à precesser dans le plan équatorial puis les laisser revenir à l'équilibre. L'avantage c'est que c'est beaucoup plus rapide car le temps de retour à l'équilibre dans ce cas est beaucoup plus court.
- il faut aussi être un peu au point sur la notion d'écho de spin qui permet de s'affranchir des défauts d'homogénéités du champ magnétique

VI Expériences, animations, simulations

VII Bibliographie et exercices

Le Bellac Dalibard