Ayudantía 12 Álgebra Lineal

Profesor: Michael Karkulik

Ayudante: Sebastián Fuentes

16 de junio de 2022

Problema 1. Sean V, W espacios vectoriales de dimensión finita. Demuestre que la aplicación

$$L: \mathcal{L}(\mathbf{V}, \mathbf{W}) \to \mathcal{L}(W^*, \mathbf{V}^*), \qquad T \mapsto T^*$$

define un isomorfismo $\mathcal{L}(\mathbf{V}, \mathbf{W}) \cong \mathcal{L}(\mathbf{W}^*, \mathbf{V}^*)$.

Problema 2. Considere \mathbf{V}, \mathbf{W} espacios vectoriales de dimensión finita, y los isomorfismos naturales $\varphi_{\mathbf{V}} : \mathbf{V} \to \mathbf{V}^{**}, \varphi_{\mathbf{W}} : \mathbf{W} \to \mathbf{W}^{**}$ entre un espacio y su bidual. Considere ahora $T \in \mathcal{L}(\mathbf{V}, \mathbf{W})$ aplicación lineal. Demuestre que, bajo identificación con el bidual, T y su **doble traspuesta** $T^{**} : \mathbf{V}^{**} \to \mathbf{W}^{**}$ son iguales, esto es, se verifica la identidad $\varphi_{\mathbf{W}} \circ T = T^{**} \circ \varphi_{\mathbf{V}}$. En general, el hecho anterior se expresa diciendo que

$$\begin{array}{c}
\mathbf{V} \xrightarrow{\varphi_{\mathbf{V}}} \mathbf{V}^{**} \\
T \downarrow & \downarrow T^{**} \\
\mathbf{W} \xrightarrow{\varphi_{\mathbf{W}}} \mathbf{W}^{**}
\end{array}$$

es un diagrama conmutativo.

Problema 3. Sean $T, S \in \mathcal{L}(\mathbf{V})$ aplicaciones lineales.

- 1. Demuestre que ST y TS poseen los mismos valores propios.
- 2. Suponga ahora que S es un isomorfismo. Pruebe que T y STS^{-1} poseen los mismos valores propios. Encuentre una relación entre los valores propios de ambas aplicaciones.