PATH

정보처리기능사 실기

이 파일은 인쇄나 편집이 제한된 파일입니다. 영리목적으로 사용할 수 없고 개인적인 목적으로만 사용이 가능합니다.

컴퓨터자격증은PATH는 정보처리 이외에도 많은 자격증에 대한 안내를 계속할 예정입니다. 앞으로도 많은 관심 부탁드립니다.

알고리즘

알고리즘의 규칙

```
수의 변수는 어디선가 증감 한다 ex\rangle i = i + 1, i = i - 1 합의 초기값은 별도의 설정이 없을때 0 므로 선먼 ex\rangle sum = 0 합의 공식: 함 = 함 + + ex\rangle sum = sum + i 평균의 공식: 평균 = 함 / + ex\rangle avg = sum / cnt 부호의 변경(+ \leftrightarrow -) ex\rangle s = s * (-1)
```

알고리즘의 규칙

배열의 시작값은 대부분 0으로 시작한다. ex〉ar[5] = ar[0] ar[1] ...
최대값의 초기값은 가장 작은수 ex〉max = 0
최대값과 수를 비교하여 수가 크면 최대값 교체 ex〉max〈i --〉max = i
최소값의 초기값은 가장 큰수 ex〉min = 100
최소값과 수를 비교하여 수가 작으면 최소값 교체 ex〉min〉i --〉min = i

알고리즘의 규칙

몫은/로표川ex>5/2=2,4/2=2

나머지는 % 또는 mod 로 표시 ex > 5 mod 2 = 1,5 % 2 = 1

나머지를 활용하여 배수 표현 ex〉수 mod 2 == 0 은 짝수

수 mod 2!= 0은 홀수

수 mod 3 == 0 은 3미배수

순위의 초기값은 1 ex> rank = 1
각 값을 비교하여 작을 경우 순위를 증가 시킨다.

정보처리기능사 실기 핵심 요약

프로그래밍

정보처리기능사 실기 핵심 요약 프로그래밍

▶ ! 는 not 연산자로 사용되며, 논리값을 반전시켜 출력 ex>! (10 > 5) // 결과:0(False)

비트연산자: 10진수 값을 2진수로 변환하여 논리 연산

```
ex> a = 5, b = 2 // a 0101
c = a&b // b 0010
c = 0 // a와b를 and 연산 0000
```

증감연산자: 값을 증가 하거나 감소하는 연산자

```
ex〉전위: ++a,--a 〉 ID 연산가 증감후, 연산 수행후
후위: a++, a-- 〉 연산 수행후, ID 연산가 증감
a = 5, b = 5, c = 0
c = ++a + b-- // a는 증가후 연산, b는 연산후 감소
c = 11, a = 6, b = 4
```

삼항면산자: 조건 ? TRUE: FALSE

```
ex> num1 = 7, num2 = 3
result = num1 < num2 ? num1 : num2
위 조건을 만족하지 않으므로 false 인 3이 입력
```

```
ex> num = 5; // 0000 0101
result = num << 2 // 0001 0100 (20)
result = 20
```

정보처리기능사 실기 핵심 요약 프루그래밍

FOR문: 지정한 횟수 만큼 반복 for(기준값; 조건; 증감)

WHILE문: 조건에 부합하는 동안 반복 while(조건)

```
ex a=0, i=0;
    while(i(5) {
                          // 5미만까지 진행
                          // 0, 1, 2, 3, 4 가 누잭
    a += i;
                          // 증감문 없을시 무한루프
    i++;
    printf("%d %d",a , i);
                          // i 값은 반복문에서 4까지 진행후
                            1이 증가한 5가 저장됨
    출력: 10 5
```

프로그래밍

Switch case: case의 값과 일치 하면 해당문 실행

▶ break문 유무에 따라 실행 결과 상의

```
ex> int num = 2;
                                       ex> int num = 2;
   switch(num){
                                           switch(num){
   case 1:
                                           case 1:
      printf("1\n");
                                             printf("1\n"); break;
   case 2:
                                           case 2:
      printf("2\n");
                                             printf("2\n"); break;
   case 3:
                         출력: 2
                                           case 3:
                                                                       출력: 2
      printf("3\n");
                                             printf("3\n"); break;
   default:
                                           default:
                                exit
      printf("exit\n");
                                             printf("exit\n"); break;
```

재귀함수: 함수에서 자기 자신을 다시 호출하여 수행

```
ex) int fact(int n){
     if(n==1)
      return 1;
   return n*fact(n-1);
   void main(){
     int n=5;
     printf("%d",fact(n));
```

출력: 120

진수 변환: 프로그래밍은 기본적으로 10진 형태

```
ex〉 2진수 = 0b1001 ex〉 진수 입,출력: scanf, printf 에서의 진수 사용법
8진수 = 067 10진수 = %d 8진수 = %o 16진수 = %x
16진수 = 0xA2
```

데이터베이스

DBA: 데이터베이스 관리자

DataBase Administrator: DBMS를 사용하여 DB 관리하는 사람 혹은 그룹

DBMS: 데이터베이스 관리 시스템

DataBase Management System: DBA가 사용하는 데이터베이스 관리 시스템ex〉MySQL: 오라클 사의 RDBMS

데이터베이스: 자료(Data)의 모임

특징: 실시간 접근성, 지속적인 변화, 동시 공유, 상호 참조, 데이터 논리적 독립성

※ 데이터베이스 정규화: 불필요한 데이터 제거

데이터베이스 설계

요구조건분석 → 개념적 설계 → 논리적 설계 → 물리적 설계 → 구현

스키마(Schema): 데이터베이스 전반적인 명세

9부스키마: 개인의 관점 / 서브스키마

개념스키마: 조직적 관점 / 논리스키마

내부스키마: 시스템 프로그래머의 관점

Degree([]그리; 차수): 속성의 개수

속성(attribute), 필드(field)

Cardinality(카디널리티; 기수): 튜플의 개수

류물(Tuple), 레코드(record)

트랜잭션:하나의 작업 수행을 위한 연산들의 집합

ACID: 원자성(Atomicity), 일관성(Consistency), 독립성(Isolation), 지속성(Durability)

SQL: 데이터베이스 질의어

Structured Query Language; 정의어(DDL), 조작어(DML), 제어어(DCL)

DDL: 데이터베이스 정의(Definition) 언어

생성 : CREATE TABLE 데이블명

변경: ALTER TABLE 데이블명 ADD 컬럼명 데이터타입

제거: DROP TABEL 데이블명 [CASCADE/RESTRICT]

초기화 : TRUNCATE 데이블명

CREATE 컬럼명 FROM 테이블 WHERE 조건문

CREATE VIEW 뷰이름 AS SELECT 컬럼1, 컬럼2… FROM 테이블 WHERE 조건문

VIEW : 유도된 가상 테이블

ALTER TABLE 데이블명 ADD 컬럼명 데이터타입

ALTER ADD: ALTER문의 열 추가

ALTER TABLE 테이블명 MODIFY 컬럼명 데이터타입

ALTER MODIFY : ALTER문의 타입 변경

ALTER TABLE 테이블명 DROP 컬럼명

ALTER DROP: ALTER문의 열 삭제

DROP TABLE 테이블명 RESTRICT

RESTRICT : 참조 시 삭제 취소

DROP TABLE 테이블명 CASCADE

CASCADE : 참조 삭제

SELECT DISTINCT 컬럼명 FROM 테이블명

DISTINCT : 중복제거

DML: 데이터베이스 조작(Manipulation) 언어

검색 : SELECT 컬럼명 FROM 테이블명

갱신: UPDATE 데이블명 SET 컬럼명 = 수정값

삭제: DELETE [FROM] 테이블명

삽입: INSERT INTO 데이블명 VALUES 입력값1, 입력값2…

SELECT 컬럼명 FROM 테이블명 WHERE 조건문

WHERE: SQL 기본 조건문

SELECT 컬럼명 FROM 테이블명 ORDER BY 컬럼명 ASC

ORDER BY : 정렬 (ASC : 모른차순 / DESC : 내림차순)

SELECT 컬럼명 FROM 테이블명 GROUP BY 컬럼명 HAVING 조건문

GROUP BY : 그룹 (조건 작성 시 HAVING)

SELECT 컬럼명 FROM 테이블1 LEFT JOIN 테이블2 ON 테이블1.컬럼명 = 테이블2.컬럼명

조인: INNER JOIN / OUTER JOIN(LEFT/RIGHT/FULL)

SELECT 작성 순서

SELECT -> FROM -> WHERE -> GROUP BY -> HAVING -> ORDER BY

SELECT 실행 순서

FROM -> WHERE -> GROUP BY -> HAVING -> SELECT -> ORDERBY

DCL: 데이터베이스 제어(Control) 언어

완료: COMMIT

취소 : ROLLBACK

권한부여 : GRANT SELECT ON 테이블명 TO 컬럼명

권한제거: REVOKE SELECT ON 테이블명 FROM 컬럼명

UNION: 합집합(중복제거)

UNION ALL: 합집합(중복포함)

INTERSECT : 교집합

MINUS : 차집합

기본기: 후보키 중 선정된 키 / 중복 불가

후보기: 유일성 만족 / 최소성 만족

슈퍼키: 유일성 만족 / 최소성 불만족

내체기: 기본키로 선택되지 못한 후보키

외래키: 다른 테이블의 행식별 키

데이터베이스 이상현상(Anomaly; 아노말리)

데이터 불일치 현상 삽입이상 / 삭제이상 / 갱신이상

관계 대수: 정보유도 절차적 언어

관계 해석: 정보명시 비절차적 언어

정보처리기능사 실기 핵심 묘약

운명체제

정보처리기능사 실기 핵심 요약 운영체제

운명체제(Operating System)

컴퓨터 하드웨어와 사용자 간에 위치 하드웨어 및 소프트웨어의 자원 등을 관리

정보처리기능사 실기 핵심 묘약 **운영체제**

운영체제의 목적

처리능력(Throughput) , 반환시간(Turn around Time) 사용가능도(Availability), 신뢰도(Reliability)

운영체제의 발전 과정

일괄 -> 실시간 -> 다중프로그래밍 -> 시분할 -> 다중처리 -> 범용 시스템 -> 분산 처리

윈도우(Windows): 선점형멀티테스킹, GUI, PNP, NTFS

마이크로소프트 개발 / GUI: 그래픽 사용자 인터페이스 지원 / PNP: Pulg & Play

도스(DOS): CLI(CUI)

CLI: 문자기반 유저 인터페이스(혹은 CUI)

유닉스(Unix): 다중 사용자, 멀티 태스킹, CLI, 시분할

설(Shell): 명령어 번역기

커널(Kernel): 운영체제의 핵심 / 자원을 통제

리눅스(Linux): 모픈 소스 운영체제

유닉스를 기반으로 개발

PNP: Plug & Play

외부 장치 연결 시, 자동으로 해당 프로그램을 찾아 실행하는 기능

핫 스왑(Hot Swap): [전원ON] 장치면결 ○

시스템 전원이 켜진 상태에서, 외부 장치를 안전하게 연결 및 제거하는 기능

핫 플러그(Hot Plug): [전원0FF] 장치연결 ○

새로운 장치를 연결할 시, 시스템 전원이 꺼진 상태에서 사용하는 기능

아이노드(i-node): 자료 구조 (Unix)

정규 파일, 디렉터리 등 파일 시스템에 관한 정보 보유

심볼릭 링크, 소프트 링크: 바로가기 (Unix)

링크파일 삭제 시. 원본 유지(윈도우 운영체제의 바로가기와 통일)

하드 링크: 원본과 동기화된 바로가기 (Unix)

링크파일 삭제 시, 원본 삭제

FAT12, FAT16, FAT32 亚일 시스템 (windows)

연결리스트 형태의 자료 구조 / 긴 검색 시간

NTFS 파일 시스템 (windows)

FAT과 HPFS의 단점을 개선

UFS 파일 시스템 (Unix)

EXT2: UFS에서 불필요한 구조들을 제거한 유닉스 파일 시스템

EXT3: EXT2에서 저널링 기능을 추가한 유닉스 파일 시스템

가상화(Virtualization)

단일 호스트에서 다수의 서로 다른 운영체제를 구동 지원하는 기능

하이퍼바이저(Hypervisor)

단일 호스트에서 다수의 운영체제를 가상으로 구동 지원하는 플랫폼

윈도우 대표 단축키

Win(💝) + D : 바람화면 표시

M: 열검있는 창 최소화

E: 윈도우 탐색기 실행

R: 윈도우 실행창 실행

X: 윈도우 시스템 관리

l: 윈도우 설정(제어판)

L: 사용자 전환 / 윈도우 잠금

P: 프로젝트 창 실행(다른 화면 표시 , 듀얼모니터 프로젝터 설정)

Pause : 시스템 구성 묘소 확인

Tab: 테스크 바(Task bar)실행

Shift + S: 캡쳐도구 실행 (스크린샷)

윈도우 & 도스 vs 리눅스 명령어

기능	윈도우 / MS-DOS	김눅스
경로 변경	cd	cd
목록 출력	dir	Is
구조복사	хсору	ср
디렉토리 생성	mkdir,md	mkdir
하위파일 삭제	del	rm
속성 설정	attrib	chmod
화면 표시	type	cat
목적지 까지 경로	tracert	traceroute

리눅스 명령어

기능	리눅스	
프로세스 종료	kill	
실행중 프로세스 표시	ps	
디렉토리 경로 표시	pwd	
네트워크 상태 점검	ping	
접속한 사용자 표시	who	

프로세스(Process): 실행 중인 프로그램

프로세스 상태 전이

프로세스 스케줄링: 자원들이 우선순위를 관리

선점형 : 이미 실행중인 프로세스라도 강제로 빼앗아 선택하여 사용할 수 있음

- RR(라운드 로빈), SRT, 다단계 큐, 다단계 피드백 큐

비선점형: 실행중인 프로세스를 빼앗아 사용할 수 없음 순서대로 실행

- FIFO(FCFS), SJF, HRN, 우선순위

네트워크

정보처리기능사 실기 핵심 요약 네트워크

IPv4: 32bit .(옥텟) 유니/멀티/브로드캐스트

10진수로 구성 ex> 192,182,0,32

IPv6: 128bit :(콜론) 멀티/애니/유니캐스트

16진수로 구성 ex〉fe80:0230:e8f8:7707:a5bb::a41a:1111 ※ 0은 생략가능

OSI 7계층: 네트워크 통신을 계층으로 나눈 참조모델

응용 계층 : HTTP, FTP, DNS---

표현 계층: JPG, MPEG, AFP---

세선 계층 : NetBIOS, SSH---

전송 계층 : TCP, UDP---

네트워크 계층: IP, RIP, ARP, ICMP---

데이터링크 계층: 이터넷, PPP, HDLC…

물리 계층: RS:232, RS:449···

TCP/IP 4계층: 인터넷 정보교환 프로토콜 계층

응용 계층 : HTTP, FTP, DNS…

전송 계층 : TCP, UDP---

인터넷 계층: IP, RARP, ARP---

네트워크 계층: 이더넷, Token Ring, PPP---

정보처리기능사 실기 핵심 요약 네**드의** 그

OSI 7 계층	TCP/IP 4 계층	계층별 프로토콜			
응용(Application)		НТТР	FTP	DNS	
표현(Presentation)	응용계층 (Application)	SMTP	SNMP	SSL	
세션(Session)		telnet	DHCP	SSH	
전송(Transport)	전송계층(Transport)	ТСР		UDP	
네트워크(Network)	인터넷(Internet)	ICMP	IGMP I	P ARP	
데이터링크(Data Link)	네트워크 액세스 (Network Access)	Ethernet		Token ring	
물리(Physical)		Frame Ro	elay	ATM	

네트워크 단말 장치

허브: 하나의 대역폭 분매 장치(스위칭허브, 더미허브); 물리계층

리피터: 네트워크 전송 신호 증폭 ; 물리계층

라우터: 네트워크 상 최적의 경로 제공 ; 네트워크계층

브리지: 같은 구조 네트워크 연결 ; 데이터링크게층

게이트웨이: 다른 구조 네트워크 연결 ; 세선계층(전 계층 사용)

프로토콜(Protocol) 기본묘소

- 1. 구문(Syntax) : 데이터 형식 규정
- 2. **일미(Semantic)** : 오류 제어 정보 규정
- 3. 시간(Timing) : 속도 조정 규정

정보처리기능사 실기 핵심 묘약 네트워크

TELNET: 원격 통신 프로토콜 (비암호화로 위험성 1)

SSH: 원격 통신 프로토콜 (암호화로 위험성↓)

ARP: 논리주소(IP)로 물리주소(MAC) 검색

RARP: 물리주소(MAC)로 논리주소(IP) 검색

정보처리기능사 실기 핵심 요약 네트워크

TCP: 데이터 (검수)전송 프로토콜

UDP: 데이터 (비검수)전송 프로토콜

FTP: 파일 전송 프로토콜

HTTP: 웹 데이터 전송 프로토콜

정보처리기능사 실기 핵심 요약 네트워크

노드(Node): 단말 접합점

단말을 이어주는 분기와의 접합점

애드욱 네트워크(Adhoc Network): 자율 구조 네트워크

노드에 의해 자율적으로 구성된 기반 구조 없는 네트워크

정보처리기능사 실기 핵심 요약

애플리케이션 테스트

V-모델

소프트워에 개발 프로세스인 폭포수 모델의 확장된 형태

결함(Defect)

프로그램과 명세서 간의 차이, 업무 내용 불일치 기대 결과와 실제 관찰 결과 간의 차이

결함(Defect) 심각도: 결함이 전체 시스템에 미치는 영향의 척도

High - 프로세스를 진행할 수 없을 정도의 결함 / 시스템 다운 Medium - 시스템 흐름에 영향을 미치는 결함 / 보안 관련 오류 Low - 상황에 맞지 않는 결과 및 화면구성 결함 / 에러 메세지 미출력

결함(Defect) 검사

Fixed: 결함 수정

Assigned : 결함 할당

Open: 결함 보고(분석 전)

Closed: 수정 후 결함 미발견

Deferred : 수정 연기

Clarified : 비결함

결함(Fault): 의도와 다른 동작 & 결과

개발자가 설계한 의도와 다른 등작과 결과를 발생시키는 것

결함(Fault) 관리 프로세스 7과정

관리계획 - 기록 - 검토 - 수정 - 재확인 - 상태추적 - 최종분석

에건(Error): 개발 중 발생한 부정확한 결과

오류(Fault): 프로그램 버전간의 차이로 발생

실패(Failure): 프로그램 버전간의 실행 결과의 차이

휴먼에건(Human Error): 원인이 인간의 실수인 에건

코드 인스펙션: 자동화도구 사용, 결함 발견/수정

워크스루: 코드품질 평가, 개선 목적 검토

살충제 패러독스 : 동일한 테스트의 비정상적인 결함 검수

테스트 케이스: 요구사항 준수 여부 확인용 입력값

스텀: 하위 모듈 테스트 진행

상위 모듈은 있지만 하위 모듈이 없을 때 진행하는 하향식 테스트

드라이버: 상위모듈 테스트 진행

하위 모듈은 있지만 상위 모듈이 없을 때 진행하는 상황식 테스트

유스케이스: 사용자 시스템 동작 시나리오

시스템 요구사항을 알아내는 과정이자 동작을 표현한 시나건오

유스케이스 다이어그램: 시스템 간 상호작용 표현

시스템 범위, 엑터, 유스케이스, 관계

블랙박스 테스트: 사용자 관점 / 명세 기반

균등분할 / 한계값 테스트 / 원인효과그래프테스트 / 비교테스트

화이트박스 테스트: 개발자 관점 / 내부구조&동작 검사

기초경로 테스트 / 제어흐름 테스트 / 조건 테스트 루프 테스트 / 테이터흐름 테스트 / 분기 테스트

테스트 오라클: 사전 정의된 참 값을 대입 비교

- 1. 참 오라클(True Oracle): 기대 결과 생성 후 오류 검출
- 2. 샘플링 오라클(Sampling Oracle) : 특정 입력 값의 기대 결과 제공
- 3. 휴리스틱 오라클(Heuristic Oracle): 확률/직관,추정 에 의한 예상결과
- 4. 일관성 검사 오라클(Consistent Oracle): App. 변경 전후의 값 동일 여부 검증

소프트웨어 아키텍처(Software Architecture)

소프트웨어의 골격이 되는 기본 구조

구성요소 강의 관계를 표현하는 시스템 구조체

설계 기본원리: 모듈화 / 추상화 / 단계적 분해 / 정보은닉

JAVA: 전 마이크로시스템즈 개발 객체 지향 프로그래밍 언어

C언어: B언어에서 파생된 프로그래밍 언어

XUnit : 테스트 프레임 워크(JAVA : Junit, C++ : CppUnit)

JSON: XML의 단점을 보완한 JSP 기반 독립형 먼어