

要求:

- 1、完成本文档中所有的题目并写出分析、运行结果
- 2、无特殊说明,均使用VS2022编译即可
- 3、直接在本文件上作答,写出答案/截图(不允许手写、手写拍照截图)即可;填写答案时,为适应所填内容或贴图, 允许调整页面的字体大小、颜色、文本框的位置等
 - ★ 贴图要有效部分即可,不需要全部内容
 - ★ 在保证一页一题的前提下,具体页面布局可以自行发挥,简单易读即可
 - **★** 不允许手写在纸上,再拍照贴图
 - ★ 允许在各种软件工具上完成(不含手写),再截图贴图
- 4、转换为pdf后提交
- 5、9月15日前网上提交本次作业(在"文档作业"中提交)

贴图要求:只需要截取输出窗口中的有效部分即可,如果全部截取/截取过大,则视为无效贴图

例:无效贴图

例:有效贴图

ເ∝ Microsoft Visual Studio 调试控制台 Hello,world!

附:用WPS等其他第三方软件打开PPT,将代码复制到VS2022中后,如果出现类似下面的编译报错,则观察源程序编辑窗

基础知识:用于看懂float型数据的内部存储格式的程序如下:

注意:除了对黄底红字的具体值进行改动外,其余部分不要做改动,也暂时不需要弄懂为什么(需要第6章的知识才能弄懂)

```
#include <iostream>
using namespace std;
int main()
{
    float f = 123.456f;
    unsigned char* p = (unsigned char*)&f;
    cout << hex << (int) (*p) << endl;
    cout << hex << (int) (*(p+1)) << endl;
    cout << hex << (int) (*(p+2)) << endl;
    cout << hex << (int) (*(p+3)) << endl;
    return 0;
}
```

上例解读: 单精度浮点数123.456, 在内存中占四个字节, 四个字节的值依次为0x42 0xf6 0xe9 0x79(按打印顺序逆向取)

转换为32bit则为: 0100 0010 1111 0110 1110 1001 0111 1001 8位指数 23位尾数

基础知识:用于看懂double型数据的内部存储格式的程序如下:

注意:除了对黄底红字的具体值进行改动外,其余部分不要做改动,也暂时不需要弄懂为什么(需要第6章的知识才能弄懂)

```
Microsoft
#include <iostream>
using namespace std;
int main()
      double d = 1.23e4:
      unsigned char* p = (unsigned char*)&d;
      cout << hex << (int) (*p) << endl;
      cout \langle\langle hex \langle\langle (int)(*(p+1)) \langle\langle end1;
      cout \langle\langle hex \langle\langle (int) (*(p+2)) \langle\langle end1;
      cout << hex << (int) (*(p+3)) << end1;
      cout \langle\langle hex \langle\langle (int) (*(p+4)) \langle\langle endl;
      cout \langle\langle \text{ hex } \langle\langle \text{ (int) } (*(p+5)) \rangle\langle\langle \text{ endl};
      cout \langle\langle hex \langle\langle (int) (*(p+6)) \langle\langle endl;
      cout \langle\langle hex \langle\langle (int) (*(p+7)) \langle\langle end1;
      return 0:
```


自学内容: 自行以"IEEE754" / "浮点数存储格式" / "浮点数存储原理" / "浮点数存储方式"等关键字,

在网上搜索相关文档,读懂并了解浮点数的内部存储机制

学长们推荐的网址:

https://baike.baidu.com/item/IEEE%20754/3869922?fr=aladdin

https://zhuanlan.zhihu.com/p/343033661

https://www.bilibili.com/video/BVliW411d7hd?is_story_h5=false&p=4&share_from=ugc&share_medium=android&share_plat=android&share_session_id=e12b54be-6ffa-4381-9582-9d5b53c50fb3&share_source=QQ&share_tag=s_i×tamp=1662273598&unique_k=AuouME0

例: float型数的机内表示

100. 25 = 0110 0100. 01 = 1. 1001 0001 x 26 (确保整数部分为1,移6位) 符号位: 0 阶码: 6 + 127 = 133 = 1000 0101 尾数(舍1): 1001 0001 => 1001 0001 0000 0000 0000 (补齐23位,后面补14个蓝色的0)	格式要求: 多字节时,每8bit中间加一个空格或-(例: "11010100 00110001" 或 "11010100-00110001")	注意:
1) 得到的32bit的机内表示是:	#N 100.0F	1、作业中绿底/黄底文字/截图可不填
(2) 其中: 符号位是0	<u>· · </u>	
(2) 其中: 符号位是		
指数差 1000 0101 (填32bit中的原始形式) 指数转换为十进制形式是 133 (32bit中的原始形式按正进制原码形式转换) 指数表示的十进制形式是 6 (32bit中的原始形式按IEEE754的规则转换) 1000 0101 (0006 = 6)	(1) 特到前32b1ch37b174及外足:	/ 仅少安元王士昇
指数差 1000 0101 (填32bit中的原始形式) 指数转换为十进制形式是 133 (32bit中的原始形式按正进制原码形式转换) 指数表示的十进制形式是 6 (32bit中的原始形式按IEEE754的规则转换) 1000 0101 (0006 = 6)	(2) 其中: 符号位是 0	
指数转换为十进制形式是		
指数表示的十进制形式是	指数是1000_0101(填32bit中的原始形式)	
1000 0101 - 0111 1111 - 0000 0110 (0x06 = 6) 尾数是 100 1000 0000 0000 0000 0000 (填32bit中的原始形式) 尾数转换为十进制小数形式是 0.56640625 ★ (32bit中的原始形式按二进制原码形式转换) 尾数表示的十进制小数形式是 1.56640625 (加整数部分的1后) 100 1000 1000 0000 0000 0000 0000 = 2 0 + 2 1 + 2	指数转换为十进制形式是133(32bit中的原始形式按二进制原码形式转换)	
- 0111 1111 = 0000 0110 (0x06 = 6) 尾数是 100 1000 1000 0000 0000 (填82bit中的原始形式)		
= 0000 0110 (0x06 = 6)		
尾数是		
尾数转换为十进制小数形式是 0.56640625 (加整数部分的1后)		
尾数表示的十进制小数形式是 <u>1.56640625</u> (加整数部分的1后) 100 1000 1000 0000 0000 0000 = 2 ⁰ + 2 ⁰ + 2 ⁰ + 2 ⁰ + 2 ⁰ = 0.5 + 0.0625 + 0.00390625 = 0.56640625 => 加1 => 1.56640625 1.56640625 x 2 ⁶ = 100.25 (此处未体现出误差) 下面是十进制手工转float机内存储的方法: 100 = 0110 0100 (整数部分转二进制为7位) 0.25 = 01 (小数部分转二进制为2位) 100.25 = 01 (小数部分转二进制为2位) 100.26 (确保整数部分为1,移6位)		
100 1000 1000 0000 0000 0000 = 2 ⁻⁰ + 2 ⁻¹ + 2 ⁻⁴ + 2 ⁻⁸ = 0.5 + 0.0625 + 0.00390625 = 0.56640625 => 加1 => 1.56640625 1.56640625 x 2 ⁶ = 100.25 (此处未体现出误差) 下面是十进制手工转float机内存储的方法: 100 = 0110 0100 (整数部分转二进制为7位) 0.25 = 01 (小数部分转二进制为2位) 100.25 = 0110 0100.01 = 1.1001 0001 x 2 ⁶ (确保整数部分为1,移6位) 符号 位: 0 所 码: 6 + 127 = 133 = 1000 0101 尾数(含1): 1001 0001 => 1001 0001 0000 0000 0000 0		
= 0.5 + 0.0625 + 0.00390625 = 0.56640625 ⇒ 加1 ⇒ 1.56640625 1.56640625 x 2 ⁶ = 100.25 (此处未体现出误差) 下面是十进制手工转float机内存储的方法: 100 = 0110 0100 (整数部分转二进制为7位) 0.25 = 01 (小数部分转二进制为2位) 100.25 = 0110 0100.01 = 1.1001 0001 x 2 ⁶ (确保整数部分为1,移6位) 符号位: 0 阶码: 6 + 127 = 133 = 1000 0101 尾数(含1): 1001 0001 ⇒ 1001 0001 0000 0000 0000 (补齐23位,后面补14个蓝色的0) 100 1000 1000 1000 0000 0000 (从低位开始四位一组,共23位)		
1.56640625 x 2 ⁶ = 100.25 (此处未体现出误差) 下面是十进制手工转float机内存储的方法: 100 = 0110 0100 (整数部分转二进制为7位) 0.25 = 01 (小数部分转二进制为2位) 100.25 = 0110 0100.01 = 1.1001 0001 x 2 ⁶ (确保整数部分为1,移6位) 符号位:0		
100 = 0110 0100 (整数部分转二进制为7位) 0.25 = 01 (小数部分转二进制为2位) 100.25 = 0110 0100.01 = 1.1001 0001 x 2 ⁶ (确保整数部分为1,移6位) 符号位: 0		z 现出误差)
0. 25 = 01 (小数部分转二进制为2位) 100. 25 = 0110 0100. 01 = 1. 1001 0001 x 2 ⁶ (确保整数部分为1,移6位) 符号位: 0 阶码: 6 + 127 = 133 = 1000 0101 尾数(舍1): 1001 0001 => 1001 0001 0000 0000 0000 (补齐23位,后面补14个蓝色的0) 100 1000 1000 1000 0000 0000 (从低位开始四位一组,共23位)	下面是十进制手工转float机内存储的方法:	
100. 25 = 0110 0100. 01 = 1. 1001 0001 x 26 (确保整数部分为1,移6位) 符号位: 0 阶码: 6 + 127 = 133 = 1000 0101 尾数(舍1): 1001 0001 => 1001 0001 0000 0000 0000 (补齐23位,后面补14个蓝色的0)		
符号位:0		
所 码: 6 + 127 = 133 = 1000 0101 尾数(舍1): 1001 0001 => 1001 0001 0000 0000 0000 (补齐23位,后面补14个蓝色的0)		
尾数(舍1): 1001 0001 => 1001 0001 0000 0000 0000 (补齐23位,后面补14个蓝色的0)		
100 1000 1000 0000 0000 0000 (从低位开始四位一组,共23位)		
大百不田作答		
	100 1000 1000 0000 0000 0000 (水頂瓜近月如西亚组,夹25位)	本页不用作答

本页不用作答

例: float型数的机内表示

格式要求:多字节时,每8bit中间加一个空格或-(例:"11010100 00110001"或 "11010100-00110001") 注意:	
例2: 1234567. 7654321	绿底/黄底文字/截图可不填
[7][2: 1254507, 7054521	果可借助第三方工具完成,
仅必要	完全手算
(2) 其中: 符号位是0	
指数是1001_0011(填32bit中的原始形式)	
指数转换为十进制形式是147(32bit中的原始形式按二进制原码形式转换)	
指数表示的十进制形式是20(32bit中的原始形式按IEEE754的规则转换)	
1001 0011	
$\begin{array}{c} -0111 \ 1111 \\ = 0001 \ 0100 \ (0x14 = 20) \end{array}$	
三	
尾数定 <u>001 0110 1011 0100 0011 1110</u> (第3251 t 中的原始形式按二进制原码形式转换)	
尾数表示的十进制小数形式是 1.1773755503845214844 _ (加整数部分的1后)	
$001 \ 0110 \ 1011 \ 0100 \ 0011 \ 1110 = 2^{-3} + \cdots + 2^{-22}$	
= 0.17737555503845214844 => 加1 => 1.17737555503845214844	
1.17737555503845214844 * 2 ^{^20} = 1234567.75 (此处已体现出误差)	
下面是十进制手工转float机内存储的方法:	
1234567 = 0001 0010 1101 0110 1000 0111 (整数部分转二进制为21位)	
0.7654321 = 11000… (小数部分转二进制,再要3位就够了)	
1234567. 7654321 = 0001 0010 1101 0110 1000 0111. 110 = 1. 0010 1101 0110 1000 0111 110 x 2 ²⁰ (移20位)	
符号位: 0	
か 码: 20 + 127 = 147 = 1001 0011 尾 数: 0010 1101 0110 1000 0111 110 (23位)	
2010 1101 0110 1000 0111 110 (23位) 001 0110 1011 0100 0011 1110 (从低位开始四位一组,共23位)	

1、float型数的机内表示

格式要求: 多与	字节时,每8bit中间加一个空格或-(例: "11010100 00110001" 或 "11010100-00110001")
A. 2152988. 889 注:尾数为正、	92512 (此处假设学号是1234567,各人换成自己的学号,按1234567做的0分!!!) 指数为正
(1) 得到的32b	oit的机内表示是:01001010000000110110100001110100
(2) 其中: 符号	号位是0
指数	数是1001_0100(填32bit中的原始形式) 数转换为十进制形式是148(32bit中的原始形式按二进制原码形式转换) 数表示的十进制形式是21(32bit中的原始形式按IEEE754的规则转换)
尾数	数是000_0011_0110_1000_0111_0100(填32bit中的原始形式) 数转换为十进制小数形式是0.026625156402588_(32bit中的原始形式按二进制原码形式转换) 数表示的十进制小数形式是1.026625156402588(加整数部分的1)

1、float型数的机内表示

格式要求: 多字节时,每8bit中间加一个空格或-(例: "11010100 00110001" 或 "11010100-00110001")
B8892512. 2152988 (此处假设学号是1234567,各人换成自己的学号,按1234567做的0分!!!) 注:尾数为负、指数为正
(1) 得到的32bit的机内表示是:11001011000001111011000001100000
(2) 其中: 符号位是1
指数是1001 0110(填32bit中的原始形式) 指数转换为十进制形式是150(32bit中的原始形式按二进制原码形式转换) 指数表示的十进制形式是23(32bit中的原始形式按IEEE754的规则转换)
尾数是000 0111 1011 0000 0110 0000(填32bit中的原始形式) 尾数转换为十进制小数形式是0.0600700378417969(32bit中的原始形式按二进制原码形式转换) 尾数表示的十进制小数形式是1.0600700378417969(加整数部分的1)

1、float型数的机内表示

格式要求: 多字节时,每8bit中间加一个空格或-(例: "11010100 00110001" 或 "11010100-00110001")
C. 0. 002152988 (此处假设学号是1234567, 各人换成自己的学号, 按1234567做的0分!!!) 注:尾数为正、指数为负
(1) 得到的32bit的机内表示是: 0011101100001101000110010010010
(2) 其中: 符号位是0
指数是0111 0110(填32bit中的原始形式) 指数转换为十进制形式是118(32bit中的原始形式按二进制原码形式转换) 指数表示的十进制形式是9(32bit中的原始形式按IEEE754的规则转换)
尾数是000 1101 0001 1001 0010 0101(填32bit中的原始形式) 尾数转换为十进制小数形式是_0.1023298501968384(32bit中的原始形式按二进制原码形式转换) 尾数表示的十进制小数形式是_1.1023298501968384((加整数部分的1)

1, 1	float型	数的	机内	表示
--------	--------	----	----	----

格式要求: 多字节时,每8bit中间加一个空格或-(例: "11010100 00110001" 或 "11010100-00110001")
D0. 008892512 (此处假设学号是1234567, 各人换成自己的学号, 按1234567做的0分!!!) 注: 尾数为负、指数为负
(1) 得到的32bit的机内表示是:10111100000100011011000111100110
(2) 其中: 符号位是1
指数是0111 1000(填32bit中的原始形式) 指数转换为十进制形式是120(32bit中的原始形式按二进制原码形式转换) 指数表示的十进制形式是7(32bit中的原始形式按IEEE754的规则转换)
尾数是001 0001 1011 0001 1110 0110 填32bit中的原始形式) 尾数转换为十进制小数形式是_0.1382415294647217(32bit中的原始形式按二进制原码形式转换) 尾数表示的十进制小数形式是1.1382415294647217(加整数部分的1)

格式要求:	多字节时,	每8bit中间加一个空格或-(例	列: "11010100 00110001" ;	或 "11010100-00110001")
	3.8892512 正、指数为	(此处假设学号是1234567, 正	各人换成自己的学号,按15	234567做的0分!!!)
	164bit的机内 10010100000	* * * * * =	1110100101111110111011101	1
(2) 其中:	符号位是	0		
	指数转换为	10000010100(填64 十进制形式是1044 十进制形式是21	(64bit中的原始形式按	
形式)	尾数是	_000001101101000011100111	.000111010010111111011101	11011(填64bit中的原始
制原码形式	,,	十进制小数形式是0	. 026625103593444832	(64bit中的原始形式按二进
1147411 470 21		十进制小数形式是1	. 026625103593444832	(加整数部分的1)

格式要求:	多字节时,	每8bit中间加一个空格	或-(例:	″11010100 00	0110001″或	"11010100-(00110001")
B889251 注:尾数为		(此处假设学号是1234 正	·567,各 <i>)</i>	快成自己的!	学号,按123	4567做的0分	!!!)
(1) 得到的 1100	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	内表示是: 000111101100000110000	000011011	10001110111	01001001111		
(2) 其中:	符号位是	1					
	指数转换为	_10000010110 十进制形式是 十进制形式是23	1046	(64bit中的原	单始形式按二		
形式)	尾数是	000011110110000011	.00000001	10111000111	01110100100)1111	(填64bit中的原始
	,, , , , , , , ,	十进制小数形式是	_ 0.0600	700635074138	3	(64bit中的原	東始形式按二进制
	尾数表示的	十进制小数形式是	1.06007	00635074138		(加整数部分	的1)

格式要求:	多字节时,每8bit中间加一个空格或-(例: "11010100 00110001" 或 "11010100-00110001")
C. 0.00215 注: 尾数为	52988 <mark>(此处假设学号是1234567,各人换成自己的学号,按1234567做的0分!!!)</mark> 可正、指数为负
* * * * * * * * * * * * * * * * * * * *	J64bit的机内表示是: 1111101100001101000110010010100001100011101100101
(2) 其中:	符号位是0
	指数是01111110110(填64bit中的原始形式) 指数转换为十进制形式是1014(64bit中的原始形式按二进制原码形式转换) 指数表示的十进制形式是9(64bit中的原始形式按IEEE754的规则转换)
形式)	尾数是0001101000110010010010100001100011
1014)	尾数转换为十进制小数形式是0.102329856(64bit中的原始形式按二进制原码形式转换) 尾数表示的十进制小数形式是1.102329856(加整数部分的1)

各式要求:多字节时,每8bit中间加一个空格或-(例:"11010100 00110001"或"11010100-00110001")
0.008892512 <mark>(此处假设学号是1234567,各人换成自己的学号,按1234567做的0分!!!)</mark> 主: 尾数为负、指数为负
(1) 得到的64bit的机内表示是: 1011111110000010001101100011110011000001110000
2) 其中: 符号位是1
指数是01111111000(填64bit中的原始形式) 指数转换为十进制形式是1016(64bit中的原始形式按二进制原码形式转换) 指数表示的十进制形式是7(64bit中的原始形式按IEEE754的规则转换)
尾数是001000110110001111001100000111000001100111010
下20 尾数转换为十进制小数形式是 0.138241536(64bit中的原始形式按二进制原码形式 专换)
尾数表示的十进制小数形式是 1.138241536(加整数部分的1)

3、总结

- (1) float型数据的32bit是如何分段来表示一个单精度的浮点数的?给出bit位的分段解释 尾数的正负如何表示?尾数如何表示?指数的正负如何表示?指数如何表示?
- (2) 为什么float型数据只有7位十进制有效数字? 为什么最大只能是3.4x10³⁸ ? 有些资料上说有效位数是6[~]7位,能找出6位/7位不同的例子吗?
- (3) double型数据的64bit是如何分段来表示一个双精度的浮点数的?给出bit位的分段解释 尾数的正负如何表示?尾数如何表示?指数的正负如何表示?指数如何表示?
- (4) 为什么double型数据只有15位十进制有效数字? 为什么最大只能是1.7x10³⁰⁸ ? 有些资料上说有效位数是15[~]16位,能找出15位/16位不同的例子吗?

注:

- 文档用自己的语言组织
- 篇幅不够允许加页
- 如果用到某些小测试程序进行说明,可以贴上小测试程序的源码及运行结果
- 为了使文档更清晰,允许将网上的部分图示资料截图后贴入
- 不允许在答案处直接贴某网址,再附上"见**"(或类似行为),否则文档作业部分直接总分-50

(1) float型数据的32bit是如何分段来表示一个单精度的浮点数的?给出bit位的分段解释 尾数的正负如何表示?尾数如何表示?指数的正负如何表示?指数如何表示?

- 32 位浮点数内存占用示意图, 共使用了 32 个小格子
- 1. 符号位(蓝色)

符号位:占据最高位(第31位)这一位,用于表示这个浮点数是正数还是负数,为0表示正数,为1表示负数.(尾数正负)

2. 偏移后的指数位 (绿色)

指数位占据第 30 位到第 23 位这 8 位. 如上图的绿色部分.

用于表示以 2 为底的指数. 8 位二进制可以表示 256 种状态, IEEE754 规定, 指数位用于表示[-127, 128]范围内的指数.

浮点型的指数位都有一个固定的偏移量(bias), 用于使 指数 + 偏移量 = 一个非负整数.

在 32 位单精度类型中, 这个偏移量是 127.

3. 尾数位(红色)

尾数位: 占据剩余的 22 位到 0 位这 23 位. 用于存储尾数.

在以二进制格式存储十进制浮点数时, 首先需要把十进制浮点数表示为二进制格式

然后, 需要把这个二进制数转换为以 2 为底的指数形式:

尾数部分的最高位始终为 1. ,所以可以隐藏高位 1. 尾数其实只的是是隐藏了整数部分 1. 之后, 剩下的小数部分

(2) 为什么float型数据只有7位十进制有效数字? 为什么最大只能是3.4x10³⁸ ? 有些资料上说有效位数是6[~]7位,能找出6位/7位不同的例子吗?

一、大体来说,32 位浮点数的精度是 7 位有效数。由于计算机内数据的存储是离散的,所以最小的数据单元之间是有间隔的,是 导致了有效数字的产生(过小的数据无法准确表示)。由浮点数的存储形式,我们可以推知:间隔 = 指数间差值 / 移动次数 = (终点对应的值 - 起点对应的值) / 2^23。

根据右图 wiki 整理好的间隔数据,我们可以知道:

- 1、1024 ~ 2048 范围中的 间隔 约为 0.000122070, 只能精确到 小数点后三位 (无法存储 0.0005), 加上四位整数 (1024-2048), 是七位有效数字
- 2、8388608 ~ 16777215 范围中的间隔为 1, 所以精度为 7-8 位整数。
- 3、1~2 范围中的间隔为 1.19209e-7,只能精确到小数点 后6位(无法存储 0.0000012), 加上一位整数(1-2),是七位有效 数字。(其他范围内同理)

真实指数		最小值	最大值	间隔
Actual Exponent (unbiased)	Exp (biased)	Minimum	Maximum	Gap
-1	126	0.5	≈ 0.99999940395	≈ 5.96046e-8
0	127	1	≈ 1.999999880791	≈ 1.19209e-7
1	128	2	≈ 3.99999761581	≈ 2.38419e-7
2	129	4	≈ 7.999999523163	≈ 4.76837e-7
10	137	1024	≈ 2047.999877930	≈ 1.22070e-4
11	138	2048	≈ 4095.999755859	≈ 2.44141e-4
23	150	8388608	16777215	1
24	151	16777216	33554430	2
127	254	≈ 1.70141e38	≈ 3.40282e38	≈ 2.02824e31

- 二、对于规格数,由浮点数的存储形式,最大值<2*2¹²⁷≈3.4x10³⁸
- 三、对于精度只有6位,是因为存储的值不是一个蓝点值时,会发生舍入,自动舍入到离它最近的一个蓝点值。例如1024.001,会舍入到离它最近的蓝点1024.000976...,体现的好像精度不足7位。

而 1024.0011, 就会舍入到离它最近的蓝点 1024.00109..., 体现的好像精度又足 7 位了。

(3) double型数据的64bit是如何分段来表示一个双精度的浮点数的?给出bit位的分段解释 尾数的正负如何表示?尾数如何表示?指数的正负如何表示?指数如何表示?

64 位浮点数内存占用示意图, 共使用了 64 个小格子

1. 符号位(蓝色)

符号位:占据最高位(第63位)这一位,用于表示这个浮点数是正数还是负数,为0表示正数,为1表示负数.(尾数正负)

2. 偏移后的指数位(绿色)

指数位占据第 62 位到第 52 位这 11 位. 如上图的绿色部分.

用于表示以 2 为底的指数. 11 位二进制可以表示 2048 种状态, IEEE754 规定, 指数位用于表示[-1023, 1024]范围内的指数.

浮点型的指数位都有一个固定的偏移量(bias), 用于使 指数 + 偏移量 = 一个非负整数.

在 64 位单精度类型中, 这个偏移量是 1023.

3. 尾数位(红色)

尾数位: 占据剩余的 51 位到 0 位这 52 位. 用于存储尾数.

在以二进制格式存储十进制浮点数时, 首先需要把十进制浮点数表示为二进制格式

然后, 需要把这个二进制数转换为以 2 为底的指数形式:

尾数部分的最高位始终为 1. ,所以可以隐藏高位 1. 尾数其实只的是是隐藏了整数部分 1. 之后剩下的小数部分

(4) 为什么double型数据只有15位十进制有效数字? 为什么最大只能是1.7x10³⁰⁸ ? 有些资料上说有效位数是15[~]16位,能找出15位/16位不同的例子吗?

- 一、由于计算机内数据的存储是离散的,所以最小的数据单元之间是有间隔的,这就导致了有效数字的产生(过小的数据无法准确表示)。由浮点数的存储形式,我们可以推知:间隔 = 指数间差值 / 移动次数 = (终点对应的值 起点对应的值) / 2^52 。因为 2^52 = 4503599627370496,这意味着最多能有16位有效数字,但是能绝对能保证的为15位,精度为 15^6 0 位。
- 二、对于规格数,由浮点数的存储形式,最大值<2*21023~1.7x10308

三、

- 1、1024 ~ 2048 范围中的 间隔 约为 2.27e-13, 只能精确到小数点后12位, 加上四位整数, 是16位有效数字
- 2、8388608 ~ 16777215 范围中的间隔为0.000000018, 只能精确到小数点后8位, 加上7-8位整数, 精度为15-16位整数。
- 3、1 $^{\circ}$ 2 范围中的间隔为 $2.22e^{-16}$,只能精确到小数点后15位,加上一位整数(1-2),是16位有效数字。(其他范围内同理)