Practice Problems 5: Compact Sets and Continuity

ABOUT THE DEFINITIONS

- Compact sets capture a notion of "finiteness", so finding maximum elements or minimum elements on them is also guarantied.
- A set is convex if for any two elements in it, you always have "all the elements in between".
- A set is connected if it cannot be separated into two sets that do not intersect the other set's closure. I.e. A is connected if there is no two sets B, C such that $A = B \cup C$ and both $\bar{B} \cap C$, $B \cap \bar{C}$ are empty. This is a very intuitive concept with a somewhat cumbersome mathematical definition.
- Continuos functions are maps that link spaces preserving a lot of nice properties. Surprisingly, to define continuity we only need topologies in the domain and range.

USEFUL EXAMPLES

- 1. Find an open cover of the following sets that has not finite sub-cover to show they are not compact:
 - (a) * $A = [-1, 0) \cap (0, 1]$
 - (b) $B = [0, \infty)$.
- 2. Provide an example of the following (you can draw them if you want) or argue that such objects do not exist.
 - (a) * A connected set that is not convex
 - (b) A convex set that is not connected
 - (c) * A closed set with infinitely many elements but containing no open sets
 - (d) An open set in \mathbb{R} that is not convex
- 3. Let A = [-1,0) and B = (0,1] argue whether the following are compact, convex or connected.
 - (a) $A \cup B$
 - (b) * A + B (this is defined as $x \in A + B$ if x = a + b for some $a \in A$ and $b \in B$)
 - (c) $A \cap B$

COMPACT SETS

- 4. Show that in a metric space, a set A is compact iff it is sequentially compact. This is, any sequence in A has a convergent subsequence with limit in A.
- 5. * Let $\{x_n\}$ be a convergent sequence in X with limit x, and $A = \{x \in X; x \in \{x_n\}\} \cup x$. Show that A is compact.
- 6. * Give and example of an infinite collection of compact sets whose union is bounded, but not compact.
- 7. Consider \mathbb{R} with the usual metric. Let $C = \left\{ \frac{n}{n^2+1} : n = 0, 1, 2, \dots \right\}$. Show that C is compact using the definition of open covers.

CONTINUOUS FUNCTIONS

- 8. * Show that $f: \mathbb{R}_{++} \to \mathbb{R}_{++}$ with $f(x) = \frac{1}{x}$ is continuous (\mathbb{R}_{++} is the set of strictly positive reals).
- 9. * Suppose $f: \mathbb{R}^n \to \mathbb{R}$ is a continuous function. Show that the set

$$X = \{x \in \mathbb{R}^n | f(x) = 0\}$$

is a closed set.

10. Let $f: \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) = \begin{cases} 1 & \text{if } 0 \le x \le 1\\ 0 & \text{otherwise} \end{cases}$$

find an open set O such that $f^{-1}(O)$ is not open and find a closed set C such that $f^{-1}(C)$ is not closed.