

ACADGILD

SESSION 10: Correlations

Assignment 1

PROBLEM STATEMENT

- 1 Import dataset from the following link:
 https://archive.ics.uci.edu/ml/machine-learning-databases/00360/
 Perform the below written operations:
- a) Read the file in Zip format and get it into R
- b) Create Univariate for all the columns.
- c) Check for missing values in all columns.
- d) Impute the missing values using appropriate methods
- e) Create bi-variate analysis for all relationships
- f) Test relevant hypothesis for valid relations
- g) Create cross tabulations with derived variables
- h) check for trends and patterns in time series
- i) Find out the most polluted time of the day and the name of the chemical compound

SOLUTION

a) Read the file in Zip format and get it into R
The R-script for the given problem is as follows:

```
library(readxl)
```

```
#AirQualityUCI <-read_excel(unzip("F:/ACADGILD - Online Course/1. DATA SETS/AirQualityUCI.zip"))
```

AirQualityUCI <- read_excel(" F:/ACADGILD - Online Course/1. DATA SETS/AirQualityUCI.xlsx ")

AirQualityUCI <- read_excel("F:/ACADGILD - Online Course/1. DATA SETS/AirQualityUCI.xlsx")

View(AirQualityUCI)

dim(AirQualityUCI)

str(AirQualityUCI)

```
File Edit Code View Plots Session Build Debug Profile Tools
Source
  Console ~/ 🗇
  > library(readxl)
> AirQualityUCI <- read_excel("F:/ACADGILD - Online Course/1. DATA SETS/AirQualityUCI.xlsx")</pre>
     View(AirQualityUCI)
  > dim(AirQualityUCI)
[1] 9357 15
  > str(AirQualityUCI)
Classes 'tbl_df', 'tbl' and 'data.frame':
      asses 'tbl_df', 'tbl' and 'data.frame': 9357 obs. of 15 variables:

Date : POSIXCT, format: "2004-03-10" "2004-03-10" "2004-03-10" ...

Time : POSIXCT, format: "1899-12-31 18:00:00" "1899-12-31 19:00:00" "1899-12-31 20:00:00" ...

CO(GT) : num 2.6 2 2.2 2.2 1.6 1.2 1.2 1 0.9 0.6 ...

PTO8.51(CO) : num 1360 1292 1402 1376 1272 ...
    $ Date
   $ CO(GT)
                             : num 150 112 88 80 51 38 31 31 24 19 ...
: num 11.88 9.4 9 9.23 6.52 ...
: num 1046 955 939 948 836 ...
   $ C6H6(GT)
      PT08.S2(NMHC): num
   $ NOX(GT) : num 166 103 131 172 131 89 62 62 45 -200 ...
$ PT08.53(NOX) : num 1056 1174 1140 1092 1205 ...
$ NO2(GT) : num 113 92 114 122 116 96 77 76 60 -200 ...
      PT08.54(NO2):
                                        1692 1559 1554 1584 1490 ...
1268 972 1074 1203 1110 ...
   $ PT08.55(03)
$ T
                              : num
                                        13.6 13.3 11.9 11 11.2 ...
48.9 47.7 54 60 59.6 ...
0.758 0.725 0.75 0.787 0.789 ...
    $ RH
   $ AH
```


Conclusion/Interpretation:

The file is read from Zip format and is viewed with name AirQualityUCI.

b) Create Univariate for all the columns.

The R-script for the given problem is as follows:

library(psych)
describe(Air)

Conclusion/Interpretation:

Univariate for all the columns is created using describe() function

c) Check for missing values in all columns.

The R-script for the given problem is as follows:

```
col1<- mapply(anyNA,AirQualityUCI)
col1
summary(AirQualityUCI)
is.na(AirQualityUCI)
```

```
#c
```

```
> col1<- mapply(anyNA,AirQualityUCI)</pre>
> col1
                      Time
                                  CO(GT) PT08.S1(CO)
                                                           NMHC(GT)
        Date
C6H6(GT) PT08.S2(NMHC)
       FALSE
                     FALSE
                                   FALSE
                                                 FALSE
                                                              FALSE
FALSE
             FALSE
                                 NO2(GT) PT08.S4(NO2)
     NOx(GT) PT08.S3(NOx)
                                                        PT08.S5(03)
Т
            RH
       FALSE
                     FALSE
                                   FALSE
                                                 FALSE
                                                              FALSE
FALSE
             FALSE
          AΗ
       FALSE
> summary(AirQualityUCI)
     Date
                                   Time
                                                               CO(GT)
PT08.S1(CO)
       :2004-03-10 00:00:00
                              Min. :1899-12-31 00:00:00
Min.
                                                           Min. :-200.00
Min. :-200
1st Qu.:2004-06-16 00:00:00
                              1st Qu.:1899-12-31 05:00:00
                                                           1st Qu.:
                                                                      0.60
1st Qu.: 921
Median :2004-09-21 00:00:00
                              Median :1899-12-31 11:00:00
                                                           Median :
                                                                      1.50
Median:1052
                                   :1899-12-31 11:29:55
       :2004-09-21 04:30:05
                                                                  : -34.21
Mean
                              Mean
                                                           Mean
Mean
      :1049
3rd Qu.:2004-12-28 00:00:00
                              3rd Qu.:1899-12-31 18:00:00
                                                           3rd Qu.:
                                                                      2.60
3rd Qu.:1221
       :2005-04-04 00:00:00
                                   :1899-12-31 23:00:00
Max.
                                                                  : 11.90
                              Max.
                                                           Max.
      :2040
Max.
   NMHC(GT)
                                    PT08.S2(NMHC)
                   C6H6(GT)
                                                       NOx(GT)
PT08.S3(NOx)
                  NO2(GT)
Min.
       :-200.0
                 Min. :-200.000
                                    Min. :-200.0
                                                    Min. :-200.0
                                                                     Min.
:-200.0
        Min. :-200.00
1st Qu.:-200.0 1st Qu.: 4.005
                                    1st Qu.: 711.0
                                                    1st Qu.: 50.0
                                                                     1st
Qu.: 637.0 1st Qu.: 53.00
Median :-200.0
                 Median :
                            7.887
                                    Median : 894.5
                                                    Median : 141.0
                                                                     Median
: 794.2
         Median : 96.00
Mean :-159.1
                 Mean :
                            1.866
                                    Mean : 894.5
                                                          : 168.6
                                                    Mean
                                                                     Mean
: 794.9 Mean
                : 58.14
                                    3rd Qu.:1104.8
3rd Qu.:-200.0
                 3rd Qu.: 13.636
                                                    3rd Qu.: 284.2
                                                                     3rd
Qu.: 960.2 3rd Qu.: 133.00
Max.
       :1189.0
                 Max. : 63.741
                                    Max.
                                         :2214.0
                                                    Max.
                                                           :1479.0
                                                                     Max.
:2682.8
         Max.
                : 339.70
 PT08.S4(NO2)
                PT08.S5(03)
                                      Т
                                                        RH
AΗ
Min. :-200
               Min. :-200.0
                                Min. :-200.000
                                                  Min. :-200.00
                                                                    Min.
:-200.0000
1st Qu.:1185
               1st Qu.: 699.8
                                1st Qu.: 10.950
                                                  1st Qu.: 34.05
                                                                    1st
      0.6923
Qu.:
```

Median : 17.200

Median : 48.55

Median

Median : 942.0

Median :1446

0.9768

Mean :1391 Mean : 975.0 Mean : 9.777 Mean : 39.48 Mean

: -6.8376

3rd Qu.:1662 3rd Qu.:1255.2 3rd Qu.: 24.075 3rd Qu.: 61.88 3rd

Qu.: 1.2962

Max. :2775 Max. :2522.8 Max. : 44.600 Max. : 88.72 Max.

: 2.2310

> is.na(AirQualityUCI)

DATE TIME CO(GT) PT08.S1(CO) NMHC(GT) C6H6(GT) PT08.S2(NMHC) NOX(GT) PT08.S3(NOX) NO2(GT) [1], FALSE [2], FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [3], FALSE F	> 1s.na	(AirQualityUC					
[1,] FALSE F					NMHC(GT)	C6H6(GT)	PT08.S2(NMHC)
FALSE FALSE FALSE [2,] FALSE FALSE FALSE [3,] FALSE FALSE FALSE [3,] FALSE FALSE FALSE [3,] FALSE FALSE FALSE [3,] FALSE FALSE FALSE [4,] FALSE FALSE FALSE [4,] FALSE FALSE FALSE [4,] FALSE FALSE FALSE [5,] FALSE FALSE [5,] FALSE FALSE [5,] FALSE FALSE [6,] FALSE FALSE [7,] FALSE FALSE [7,] FALSE FALSE [8,] FALSE FALSE [8,] FALSE FALSE [8,] FALSE FALSE [9,] FALSE FALSE [10,] FALSE FALSE [10,] FALSE FALSE [10,] FALSE FALSE [11,] FALSE FALSE [11,] FALSE FALSE [12,] FALSE FALSE [13,] FALSE FALSE [14,] FALSE FALSE [15,] FALSE FALSE [16,] FALSE FALSE [16,] FALSE FALSE [17,] FALSE FALSE [18,] FALSE FALSE [18,]	NOx(GT)	PT08.S3(NOX)	NO2 (GT	·)			
[2,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE [3,] FALSE FALSE FALSE [3,] FALSE FALSE FALSE [4,] FALSE FALSE FALSE [4,] FALSE FALSE FALSE [4,] FALSE FALSE FALSE [5,] FALSE FALSE FALSE [5,] FALSE FALSE FALSE [5,] FALSE FALSE FALSE [6,] FALSE FALSE [7,] FALSE FALSE [7,] FALSE FALSE [7,] FALSE FALSE [7,] FALSE FALSE [8,] FALSE FALSE [8,] FALSE FALSE [8,] FALSE FALSE [9,] FALSE FALSE [9,] FALSE FALSE [10,] FALSE FALSE [10,] FALSE FALSE [11,] FALSE FALSE [12,] FALSE FALSE [12,] FALSE FALSE [13,] FALSE FALSE [14,] FALSE FALSE [15,] FALSE FALSE [16,] FALSE FALSE [16,] FALSE FALSE [16,] FALSE FALSE [17,] FALSE FALSE [18,] FALSE [18,] FALSE FALSE [18,] FALSE [18,] FALSE FALSE [18,] F	[1,]	FALSE FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
FALSE FALSE FALSE [3,] FALSE FALSE FALSE [4,] FALSE FALSE FALSE [4,] FALSE FALSE FALSE [4,] FALSE FALSE FALSE [5,] FALSE FALSE FALSE [5,] FALSE FALSE FALSE [6,] FALSE FALSE [7,] FALSE FALSE [7,] FALSE FALSE [7,] FALSE FALSE [7,] FALSE FALSE [8,] FALSE FALSE [8,] FALSE FALSE [8,] FALSE FALSE [9,] FALSE FALSE [10,] FALSE FALSE [10,] FALSE FALSE [10,] FALSE FALSE [11,] FALSE FALSE [11,] FALSE FALSE [12,] FALSE FALSE [13,] FALSE FALSE [14,] FALSE FALSE [15,] FALSE FALSE [16,] FALSE FALSE [16,] FALSE FALSE [16,] FALSE FALSE [17,] FALSE FALSE [18,] FALSE FALSE [18,] FALSE [18,] FALSE FALSE [18,] FALSE [18,] FALSE FALSE [18,] FALSE [18,] FALSE [18,] FALSE FAL	FALSE	FALSE	FALSE				
[3,] FALSE [4,] FALSE FALSE FALSE FALSE FALSE FALSE [5,] FALSE FALSE FALSE FALSE FALSE FALSE [5,] FALSE FALSE FALSE FALSE FALSE FALSE [6,] FALSE FALSE FALSE FALSE [6,] FALSE FALSE FALSE FALSE FALSE [6,] FALSE FALSE FALSE FALSE [6,] FALSE FALSE FALSE FALSE [7,] FALSE FALSE FALSE FALSE [7,] FALSE FALSE FALSE FALSE [8,] FALSE FALSE FALSE [8,] FALSE FALSE FALSE [8,] FALSE FALSE FALSE [9,] FALSE FALSE FALSE [10,] FALSE FALSE FALSE [10,] FALSE FALSE FALSE [11,] FALSE FALSE FALSE [11,] FALSE FALSE FALSE [12,] FALSE FALSE FALSE [12,] FALSE FALSE FALSE [13,] FALSE FALSE FALSE [14,] FALSE FALSE FALSE [15,] FALSE FALSE [15,] FALSE FALSE [15,] FALSE FALSE [16,] FALSE FALSE [17,] FALSE FALSE [17,] FALSE FALSE [18,] FALSE [18,] FALSE FALSE [18,] FALSE FALSE [18,] FALSE [18,] FALSE FALSE [18,] FALSE [1	[2,]	FALSE FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
FALSE FALSE FALSE [4,] FALSE FALSE FALSE [5,] FALSE FALSE FALSE [5,] FALSE FALSE [6,] FALSE FALSE [7,] FALSE FALSE [8,] FALSE FALSE [9,] FALSE FALSE [10,] FALSE FALSE [10,] FALSE FALSE [11,] FALSE FALSE [11,] FALSE FALSE [12,] FALSE FALSE [13,] FALSE FALSE [14,] FALSE FALSE [15,] FALSE FALSE [16,] FALSE FALSE [17,] FALSE FALSE [18,] FALSE [FALSE	FALSE	FALSE				
[4,] FALSE FALSEFALSEFALSEFALSEFALSEFALSEFALSEFALSEFALSEFALSEFALSEFALSE[5,] FALSE FALSEFALSEFALSEFALSEFALSEFALSEFALSEFALSE FALSEFALSEFALSEFALSEFALSEFALSEFALSE FALSEFALSEFALSEFALSEFALSEFALSEFALSE FALSEFALSEFALSEFALSEFALSEFALSEFALSE FALSE	[3,]	FALSE FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
FALSE FALSE FALSE [5,] FALSE FALSE FALSE FALSE [6,] FALSE FALSE FALSE [6,] FALSE FALSE FALSE [6,] FALSE FALSE FALSE [6,] FALSE FALSE [6,] FALSE FALSE [7,] FALSE FALSE [7,] FALSE FALSE [7,] FALSE FALSE [8,] FALSE FALSE [10,] FALSE FALSE [10,] FALSE FALSE [10,] FALSE FALSE [11,] FALSE FALSE [11,] FALSE FALSE [12,] FALSE [13,] FALSE FALSE [14,] FALSE FALSE [15,] FALSE [15,] FALSE [16,] FALSE [16,] FALSE [17,] FALSE FALSE [17,] FALSE FALSE [18] [18	FALSE	FALSE	FALSE				
[5,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE [6,] FALSE FALSE FALSE [6,] FALSE FALSE FALSE FALSE FALSE FALSE [7,] FALSE FALSE FALSE [7,] FALSE FALSE FALSE [7,] FALSE FALSE [7,] FALSE FALSE [7,] FALSE FALSE [7,] FALSE FALSE FALSE [8,] FALSE FALSE [9,] FALSE FALSE [9,] FALSE FALSE [10,] FALSE FALSE [10,] FALSE FALSE [10,] FALSE FALSE [11,] FALSE FALSE [11,] FALSE FALSE [12,] FALSE FALSE [12,] FALSE FALSE [12,] FALSE FALSE [13,] FALSE FALSE [14,] FALSE FALSE [15,] FALSE FALSE [16,] FALSE FALSE [16,] FALSE FALSE [16,] FALSE FALSE [17,] FALSE FALSE [17,] FALSE FALSE [17,] FALSE FALSE [18,] FALS	[4,]	FALSE FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
FALSE FALSE FALSE FALSE [6,] FALSE [7,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [8,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE [9,] FALSE FA	FALSE	FALSE	FALSE				
[6,] FALSE [7,] FALSE FALSE FALSE FALSE [8,] FALSE FALSE FALSE FALSE [8,] FALSE FALSE FALSE FALSE FALSE FALSE [9,] FALSE FALSE FALSE [10,] FALSE FALSE FALSE [10,] FALSE FALSE FALSE [11,] FALSE FALSE FALSE [12,] FALSE FALSE FALSE [13,] FALSE FALSE FALSE [13,] FALSE FALSE FALSE [14,] FALSE FALSE [15,] FALSE FALSE [16,] FALSE FALSE [16,] FALSE FALSE [16,] FALSE FALSE [17,] FALSE FALSE [16,] FALSE FALSE [17,] FALSE FALSE [17,] FALSE FALSE [18,] FALSE [18,] FALSE FALSE [18,]	[5,]	FALSE FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
FALSE FALSE FALSE FALSE [7,] FALSE FALSE FALSE FALSE [8,] FALSE FALSE FALSE [9,] FALSE FALSE FALSE [9,] FALSE FALSE FALSE FALSE [10,] FALSE FALSE [10,] FALSE FALSE [11,] FALSE FALSE [12,] FALSE FALSE FA	FALSE	FALSE	FALSE				
[7,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE [8,] FALSE FALSE FALSE [8,] FALSE FALSE FALSE [9,] FALSE FALSE FALSE [9,] FALSE FALSE [10,] FALSE FALSE [10,] FALSE FALSE [10,] FALSE FALSE [11,] FALSE FALSE [11,] FALSE FALSE [12,] FALSE FALSE [12,] FALSE FALSE [13,] FALSE FALSE [13,] FALSE FALSE [14,] FALSE FALSE [15,] FALSE [15,] FALSE FALSE [16,] FALSE [16,] FALSE [17,] FALSE FALSE [17,] FALSE FALSE [18,] FALSE	[6,]	FALSE FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
FALSE FALSE FALSE [8,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [9,] FALSE FALSE FALSE [10,] FALSE FALSE FALSE FALSE [10,] FALSE F	FALSE	FALSE	FALSE				
[8,] FALSE FALSE FALSE FALSE FALSE FALSE [9,] FALSE FA	[7,]	FALSE FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
FALSE FALSE FALSE FALSE [9,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE [10,] FALSE FALSE FALSE [10,] FALSE FALSE FALSE FALSE FALSE [11,] FALSE FALSE FALSE [11,] FALSE FALSE FALSE [12,] FALSE FALSE [12,] FALSE FALSE FALSE [13,] FALSE FALSE FALSE [13,] FALSE	FALSE	FALSE	FALSE				
[9,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE [10,] FALSE FALSE FALSE [10,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [11,] FALSE FALSE FALSE [11,] FALSE FALSE FALSE [12,] FALSE FALSE [12,] FALSE FALSE FALSE [13,] FALSE FALSE FALSE [13,] FALSE FALSE FALSE FALSE [14,] FALSE FALSE FALSE [14,] FALSE FALSE FALSE FALSE [15,] FALSE F	[8,]	FALSE FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
FALSE FALSE FALSE [10,] FALSE FALSE FALSE FALSE FALSE FALSE [11,] FALSE FALSE FALSE [11,] FALSE FALSE FALSE [11,] FALSE FALSE FALSE [12,] FALSE FALSE FALSE [12,] FALSE FALSE FALSE [13,] FALSE FALSE FALSE [13,] FALSE FALSE FALSE [14,] FALSE FALSE [14,] FALSE FALSE [15,] FALSE FALSE [15,] FALSE FALSE FALSE [16,] FALSE FALSE FALSE	FALSE	FALSE	FALSE				
[10,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE [11,] FALSE	[9,]	FALSE FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
FALSE FALSE FALSE [11,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE [12,] FALSE FALSE FALSE FALSE [13,] FALSE FALSE FALSE [13,] FALSE FALSE FALSE [14,] FALSE FALSE FALSE [14,] FALSE FALSE FALSE [15,] FALSE FALSE FALSE [16,] FALSE	FALSE	FALSE	FALSE				
[11,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE [12,] FALSE [13,] FALSE FALSE FALSE [13,] FALSE FALSE FALSE FALSE FALSE [14,] FALSE FALSE FALSE [14,] FALSE FALSE FALSE [15,] FALSE FALSE FALSE FALSE FALSE [15,] FALSE	[10,]	FALSE FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
FALSE FALSE FALSE [12,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [13,] FALSE	FALSE	FALSE	FALSE				
[12,] FALSE	[11,]	FALSE FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
FALSE FALSE FALSE [13,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [14,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE [15,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE [16,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE [17,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [17,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [17,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE	FALSE	FALSE	FALSE				
[13,] FALSE	[12,]	FALSE FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
FALSE FALSE FALSE [14,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [15,] FALSE FALSE FALSE FALSE FALSE FALSE [16,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE [16,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE	FALSE	FALSE	FALSE				
[14,] FALSE	[13,]	FALSE FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
FALSE FALSE FALSE [15,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [16,] FALSE FALSE FALSE FALSE FALSE FALSE [17,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE	FALSE	FALSE	FALSE				
[15,] FALSE [16,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE [17,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE	[14,]	FALSE FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
FALSE FALSE FALSE [16,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [17,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE	FALSE	FALSE	FALSE				
[16,] FALSE	[15,]	FALSE FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
FALSE FALSE FALSE [17,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE	FALSE	FALSE	FALSE				
[17,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE	[16,]	FALSE FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
FALSE FALSE	FALSE	FALSE	FALSE				
	[17,]	FALSE FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
[18,] FALSE FALSE FALSE FALSE FALSE FALSE	FALSE	FALSE	FALSE				
- ·-	[18,]	FALSE FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
FALSE FALSE	FALSE	FALSE	FALSE				
[19,] FALSE FALSE FALSE FALSE FALSE	[19,]	FALSE FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
FALSE FALSE	FALSE	FALSE	FALSE				
[20,] FALSE FALSE FALSE FALSE FALSE	[20,]	FALSE FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
FALSE FALSE	FALSE	FALSE	FALSE				

[21,]	FALSE FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
FALSE	FALSE	FALSE				
[22,]	FALSE FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
FALSE	FALSE	FALSE				
[23,]	FALSE FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
FALSE	FALSE	FALSE				
[24,]	FALSE FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
FALSE	FALSE	FALSE				
[25,]	FALSE FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
FALSE	FALSE	FALSE				
[26,]	FALSE FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
FALSE	FALSE	FALSE				
[27,]	FALSE FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
FALSE	FALSE	FALSE				
[28,]	FALSE FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
FALSE	FALSE	FALSE				
[29,]	FALSE FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
FALSE	FALSE	FALSE				
[30,]	FALSE FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
FALSE	FALSE	FALSE				
[31,]	FALSE FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
FALSE	FALSE	FALSE				
[32,]	FALSE FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
FALSE	FALSE	FALSE				
[33,]	FALSE FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
FALSE	FALSE	FALSE				
[34,]	FALSE FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
FALSE	FALSE	FALSE				
[35,]	FALSE FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
FALSE	FALSE	FALSE				
[36,]	FALSE FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
FALSE	FALSE	FALSE				
[37,]	FALSE FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
FALSE	FALSE	FALSE				
[38,]	FALSE FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
FALSE	FALSE	FALSE				
[39,]	FALSE FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
FALSE	FALSE	FALSE				
[40,]	FALSE FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
FALSE	FALSE	FALSE				
[41,]	FALSE FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
FALSE	FALSE	FALSE				
[42,]	FALSE FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
FALSE	FALSE	FALSE				
[43,]	FALSE FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
FALSE	FALSE	FALSE				
[44,]	FALSE FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
FALSE	FALSE	FALSE				
[45,]	FALSE FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
FALSE	FALSE	FALSE				

[46,]	FALSE FALSE	FALSE	FALSE	FAI	_SE	FALSE	FALSE
	FALSE						
	FALSE FALSE		FALSE	FAL	_SE	FALSE	FALSE
	FALSE		EALCE	- - - - - - - - - -	c.e.	EALCE	EALCE
	FALSE FALSE		FALSE	FAI	_SE	FALSE	FALSE
	FALSE FALSE FALSE		EALSE	EAL	C E	ENICE	FALSE
- /-	FALSE FALSE		FALSE	FAL	_3E	FALSE	FALSE
	FALSE FALSE		FALSE	ΕΔI	SF	EALSE	FALSE
	FALSE		IALSE	IAL	-3L	TALSE	TALSE
	FALSE FALSE		FALSE	FΔI	SF	FAI SF	FALSE
	FALSE		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	. ,	-0-	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.,,,,,,
	FALSE FALSE		FALSE	FAI	SE	FALSE	FALSE
	FALSE					.,	
	FALSE FALSE		FALSE	FAL	_SE	FALSE	FALSE
	FALSE						
	FALSE FALSE		FALSE	FAL	_SE	FALSE	FALSE
FALSE	FALSE	FALSE					
[55,]	FALSE FALSE	FALSE	FALSE	FAL	_SE	FALSE	FALSE
FALSE	FALSE	FALSE					
[56,]	FALSE FALSE	FALSE	FALSE	FAL	_SE	FALSE	FALSE
FALSE	FALSE	FALSE					
[57,]	FALSE FALSE	FALSE	FALSE	FAL	_SE	FALSE	FALSE
FALSE	FALSE	FALSE					
[58,]	FALSE FALSE	FALSE	FALSE	FAL	_SE	FALSE	FALSE
FALSE	FALSE	FALSE					
[59,]	FALSE FALSE	FALSE	FALSE	FAL	_SE	FALSE	FALSE
FALSE	FALSE	FALSE					
[60,]	FALSE FALSE	FALSE	FALSE	FAI	_SE	FALSE	FALSE
	FALSE						
	FALSE FALSE		FALSE	FAL	_SE	FALSE	FALSE
	FALSE						
- /-	FALSE FALSE		FALSE	FAI	_SE	FALSE	FALSE
	FALSE						
	FALSE FALSE		FALSE	FAL	_SE	FALSE	FALSE
	FALSE						
- /-	FALSE FALSE		FALSE	FAL	_SE	FALSE	FALSE
	FALSE		EAL 65	- 4.1	c.e.	EALCE	EALCE
	FALSE FALSE		FALSE	FAL	_SE	FALSE	FALSE
	FALSE FALSE FALSE		EALCE	EAL	CE	EALCE	EALCE
	FALSE FALSE		FALSE	FAL	_3E	FALSE	FALSE
TALSE	PT08.S4(NO2)		3) т	ВH	ΛН		
Γ1 T	FALSE						
	FALSE						
	FALSE						
	FALSE						
	FALSE						
	FALSE						
[7,]							
=							

[8,]	FALSE	FALSE FALSE FALSE
[9,]	FALSE	FALSE FALSE FALSE
[10,]	FALSE	FALSE FALSE FALSE
[11,]	FALSE	FALSE FALSE FALSE
[12,]	FALSE	FALSE FALSE FALSE
[13,]	FALSE	FALSE FALSE FALSE
[14,]	FALSE	FALSE FALSE FALSE
[15,]	FALSE	FALSE FALSE FALSE
[16,]	FALSE	FALSE FALSE FALSE
[17,]	FALSE	FALSE FALSE FALSE
[18,]	FALSE	FALSE FALSE FALSE
[19,]	FALSE	FALSE FALSE FALSE
[20,]	FALSE	FALSE FALSE FALSE
[21,]	FALSE	FALSE FALSE FALSE
[22,]	FALSE	FALSE FALSE FALSE
[23,]	FALSE	FALSE FALSE FALSE
[24,]	FALSE	FALSE FALSE FALSE
[25,]	FALSE	FALSE FALSE FALSE
[26,]	FALSE	FALSE FALSE FALSE
[27,]	FALSE	FALSE FALSE FALSE
[28,]	FALSE	FALSE FALSE FALSE
[29,]	FALSE	FALSE FALSE FALSE
[30,]	FALSE	FALSE FALSE FALSE
[31,]	FALSE	FALSE FALSE FALSE
[32,]	FALSE	FALSE FALSE FALSE
[33,]	FALSE	FALSE FALSE FALSE
[34,]	FALSE	FALSE FALSE FALSE
[35,]	FALSE	FALSE FALSE FALSE
[36,]	FALSE	FALSE FALSE FALSE
[37,]	FALSE	FALSE FALSE FALSE
[38,]	FALSE	FALSE FALSE FALSE
[39,]	FALSE	FALSE FALSE FALSE
[40,]	FALSE	FALSE FALSE FALSE
[41,]	FALSE	FALSE FALSE FALSE
[42,]	FALSE	FALSE FALSE FALSE
[43,]	FALSE	FALSE FALSE FALSE
[44,]	FALSE	FALSE FALSE FALSE
[45,]	FALSE	FALSE FALSE FALSE
[46,]	FALSE	FALSE FALSE FALSE
[47,]	FALSE	FALSE FALSE FALSE
[48,]	FALSE	FALSE FALSE FALSE
[49,]	FALSE	FALSE FALSE FALSE
[50,]	FALSE	FALSE FALSE FALSE
[51,]	FALSE	FALSE FALSE FALSE
[52,]	FALSE	FALSE FALSE FALSE
[53,]	FALSE	FALSE FALSE FALSE
[54,]	FALSE	FALSE FALSE FALSE
[55,]	FALSE	FALSE FALSE FALSE
[56,]	FALSE	FALSE FALSE FALSE
[57,]	FALSE	FALSE FALSE FALSE

```
[58,]
             FALSE
                          FALSE FALSE FALSE
[59,]
             FALSE
                          FALSE FALSE FALSE
[60,]
             FALSE
                         FALSE FALSE FALSE
[61,]
             FALSE
                          FALSE FALSE FALSE
[62,]
                         FALSE FALSE FALSE
             FALSE
[63,]
             FALSE
                         FALSE FALSE FALSE
[64,]
             FALSE
                         FALSE FALSE FALSE
[65,]
             FALSE
                         FALSE FALSE FALSE
[66,]
             FALSE
                          FALSE FALSE FALSE
[ reached getOption("max.print") -- omitted 9291 rows ]
          #or
          AirQualityUCI[AirQualityUCI == -200] <- NA
          View(AirQualityUCI)
          library(VIM)
          aggr(AirQualityUCI, col=c('pink','yellow'),
             numbers=TRUE, sortVars=TRUE,
             labels=names(AirQualityUCI), cex.axis=.7,
             gap=3, ylab=c("Missing data", "Pattern")) # graphical presentation of NAs
          sapply(AirQualityUCI, function(x) sum(is.na(x))) # count of NAs
          AirQualityUCI$`NMHC(GT)` <- NULL
```

```
> AirQualityUCI[AirQualityUCI == -200] <- NA</pre>
```

> View(AirQualityUCI)


```
> library(VIM)
Loading required package: colorspace
Loading required package: grid
Loading required package: data.table
data.table 1.12.0 Latest news: r-datatable.com
VIM is ready to use.
Attaching package: 'VIM'
The following object is masked from 'package:datasets':
    sleep
 aggr(AirQualityUCI, col=c('pink','yellow'),
       numbers=TRUE, sortVars=TRUE,
       labels=names(AirQualityUCI), cex.axis=.7,
       gap=3, ylab=c("Missing data","Pattern"))
                                                    # graphical presentation
+
of NAS
 Variables sorted by number of missings:
      variable
                   Count
      NMHC(GT) 0.9023191
        CO(GT) 0.1798653
       NO2(GT) 0.1754836
       NOX(GT) 0.1751630
   PT08.S1(CO) 0.0391151
      C6H6(GT) 0.0391151
 PT08.S2(NMHC) 0.0391151
  PT08.S3(NOX) 0.0391151
  PT08.S4(NO2) 0.0391151
   PT08.S5(03) 0.0391151
```

T 0.0391151 RH 0.0391151 AH 0.0391151 Date 0.0000000 Time 0.0000000


```
> sapply(AirQualityUCI, function(x) sum(is.na(x)))
                                                            # count of NAs
         Date
                         Time
                                      CO(GT)
                                                PT08.S1(CO)
                                                                  NMHC(GT)
C6H6(GT) PT08.S2(NMHC)
                            0
                                        1683
                                                         366
                                                                       8443
             0
366
               366
      NOx(GT)
                PT08.S3(NOx)
                                     NO2(GT)
                                               PT08.S4(NO2)
                                                               PT08.S5(03)
Т
              RH
                          366
                                        1642
                                                                        366
          1639
                                                         366
366
               366
           AH
           366
> AirQualityUCI$`NMHC(GT)` <- NULL</pre>
```

Conclusion/Interpretation:

Variable NMHC(GT) is having 90% of missing values. Hence, NMHC(GT) is not considered and omitted from the data frame

d) Impute the missing values using appropriate methods

The R-script for the given problem is as follows:

```
colSums(is.na(AirQualityUCI))
library(plyr)
AirQualityUCI[AirQualityUCI==-200.0]<-NA
for(i in 1:ncol(AirQualityUCI)){ AirQualityUCI[is.na(AirQualityUCI[,i]),i] <-
mean(AirQualityUCI[,i], na.rm = TRUE)} summary(AirQualityUCI)
```

The output of the R-Script (from Console window) is given as follows:

```
> AirQualityUCI[AirQualityUCI==-200.0]<-NA
> for(i in 1:ncol(AirQualityUCI)){
+ AirQualityUCI[is.na(AirQualityUCI[,i]),i] <- mean(AirQualityUCI[,i], na.rm = TRUE)}
> summary(AirQualityUCI)
       Date
                                           Time
                                     Min. :1899-12-31 00:00:00
1st Qu.:1899-12-31 05:00:00
 Min. :2004-03-10 00:00:00
1st Qu.:2004-06-16 00:00:00
                                                                          Min. : 0.100
1st Qu.: 1.200
 Median :2004-09-21 00:00:00
                                      Median :1899-12-31 11:00:00
                                                                          Median : 2.153
          :2004-09-21 04:30:05
                                              :1899-12-31 11:29:55
                                      Mean
                                                                          Mean
 3rd Qu.:2004-12-28 00:00:00
                                      3rd Qu.:1899-12-31 18:00:00
                                                                          3rd Qu.: 2.600
Max. :2003
PT08.S1(C0)
Win. : 647.2
941.2
          :2005-04-04 00:00:00
                                              :1899-12-31 23:00:00
                         00:00.00
NMHC(GT)
7.0
                                      Max.
                                                                          Max.
                                                                                   :11.900
                                              C6H6(GT)
                                                               PT08.S2(NMHC)
                                                  : 0.149
                                          Min.
                      Min.
                                                               Min.
                                                                          383.2
 1st Qu.: 941.2
                      1st Qu.: 218.8
                                          1st Qu.: 4.591
                                                               1st Qu.:
                                                                          742.5
 Median :1074.5
                      Median : 218.8
                                          Median: 8.593
                                                               Median:
                                                                          923.2
                             : 218.8
        :1099.7
                                                                          939.0
 Mean
                      Mean
                                          Mean :10.083
                                                               Mean
                      3rd Qu.: 218.8
 3rd Qu.:1221.2
                                          3rd Qu.:13.636
                                                               3rd Qu.:1104.8
         :2039.8
                              :1189.0
                                          мах.
                                                   :63.741
                                                                        :2214.0
                     Max.
                                                               Max.
   NOx(GT) 2.0
                                        NO2(GT)
Min. : 2.0
1st Qu.: 85.9
                     PT08.53(NOx)
                                                            PT08.54(NO2)
                                                                             PT08.S5(03)
Min. : 2.0
1st Qu.: 112.0
                    Min. : 322.0
1st Qu.: 665.5
                                                           Min. : 551
1st Qu.:1242
                                                                            Min.
                                                                            Min. : 221.0
1st Qu.: 741.8
                                                                            Median: 982.5
Median : 229.0
                    Median : 817.5
                                        Median :113.1
                                                           Median :1456
Mean
        : 246.9
                    Mean
                              835.4
                                        Mean
                                                :113.1
                                                           Mean
                                                                  :1456
                                                                            Mean
                                                                                    :1022.8
 3rd Qu.: 284.2
                    3rd Qu.: 960.2
                                        3rd Qu.:133.0
                                                           3rd Qu.:1662
                                                                             3rd Qu.:1255.2
       :1479.0
T
                                             :339.7
AH
                    Max. :2682.8
                                        Max.
                                                           Max.
                                                                   :2775
                                                                                     :2522.8
                                                                            Max.
Min. :-1.90
1st Qu.:12.03
                           : 9.175
                                               :0.1847
Min.
                   Min.
                                       Min.
                   1st Qu.:36.550
Median :49.232
                                       1st Qu.: 0.7461
Median :18.27
                                       Median :1.0154
        :18.32
                           :49.232
Mean
                   Mean
                                       Mean
                                              :1.0255
3rd Qu.:24.07
                   3rd Qu.:61.875
                                       3rd Qu.:1.2962
        :44.60
                           :88.725
                                       Max.
                                               :2.2310
                   Max.
```

Conclusion/Interpretation:

Missing values are hence imputed

e) Create bi-variate analysis for all relationships

The R-script for the given problem is as follows:

```
summary(AirQualityUCI)
plot(AirQualityUCI$`NOx(GT)`~AirQualityUCI$`PT08.S2(NMHC)`)
plot(AirQualityUCI$`PT08.S1(CO)`~AirQualityUCI$`PT08.S3(NOx)`)
plot(AirQualityUCI$`NO2(GT)`~AirQualityUCI$`PT08.S4(NO2)`)
plot(AirQualityUCI$`PT08.S5(O3)`~AirQualityUCI$T)
#or
pairs(AirQualityUCI) # graph
final <- complete
final$Date <- AirQualityUCI$Date
final$Time <- AirQualityUCI$Time
library(stringr)
AirQualityUCI$Time1 <- sub(".+? ", "", AirQualityUCI$Time)
AirQualityUCI$datetime <- as.POSIXct(paste(AirQualityUCI$Date,
AirQualityUCI$Time1), format="%Y-%m-%d %H:%M:%S")
View(AirQualityUCI)
str(AirQualityUCI)
```

The output of the R-Script (from Console window) is given as follows:

> plot(AirQualityUCI\$`NOx(GT)`~AirQualityUCI\$`PT08.S2(NMHC)`)

> plot(AirQualityUCI\$`PT08.S1(CO)`~AirQualityUCI\$`PT08.S3(NOx)`)

> plot(AirQualityUCI\$`NO2(GT)`~AirQualityUCI\$`PT08.S4(NO2)`)

> plot(AirQualityUCI\$`PT08.S5(03)`~AirQualityUCI\$T)


```
> final <- complete</pre>
> final$Date <- AirQualityUCI$Date</pre>
> final$Time <- AirQualityUCI$Time</pre>
> library(stringr)
> AirQualityUCI$Time1 <- sub(".+? ", "", AirQualityUCI$Time)</pre>
> AirQualityUCI$datetime <- as.POSIXct(paste(AirQualityUCI$Date,
AirQualityUCI$Time1), format="%Y-%m-%d %H:%M:%S")
> View(AirQualityUCI)
> str(AirQualityUCI)
                   tb1
Classes 'tbl_df', 'and
                             'data.frame':
                                                9357 obs. of 17 variables:
                : POSIXct, format: "2004-03-10" "2004-03-10" "2004-03-10" ...
 $ Date
                 : POSIXct, format: "1899-12-31 18:00:00" "1899-12-31
 $ Time
19:00:00" "1899-12-31 20:00:00" ...
 $ CO(GT)
                : num
                        2.6 2 2.2 2.2 1.6 1.2 1.2 1 0.9 0.6 ...
 $ PT08.S1(CO)
                : num
                              1292 1402 1376 1272 ...
                        11.88 9.49 9.23 6.52 ...
 $ C6H6(GT)
                  num
 $ PT08.S2(NMHC): num
                             955 939 948 836 ...
                        166 103 131 172 131 89 62 62 45 NA ...
 $ NOX(GT)
                : num
 $ PT08.S3(NOx) : num
                              1174 1140 1092 1205 ...
 $ NO2(GT)
                        113 92 114 122 116 96 77 76 60 NA ...
                 : num
                              1559 1554 1584 1490 ...
 $ PT08.S4(NO2) :
                  num
                             972 1074 1203 1110 ...
 $ PT08.S5(03)
                : num
 $ T
                : num
                              13.3 11.9 11 11.2 ...
 $ RH
                              47.7 54 60 59.6 ...
                  num
                        0.758 0.725 0.75 0.787 0.789 ...
 $ AH
                : num
                        12487 12487 12487 12487 ...
 $ Date1
                : num
                        "18:00:00" "19:00:00" "20:00:00" "21:00:00" ...
 $ Time1
                : chr
                : POSIXct, format: "2004-03-10 18:00:00" "2004-03-10
 $ datetime
19:00:00" "2004-03-10 20:00:00" ...
```

Conclusion/Interpretation:

Bi-variate analysis for all relationships are done and plotted.

f) Test relevant hypothesis for valid relations

The R-script for the given problem is as follows:

```
\label{eq:linear_continuous_continuous} t.test(AirQualityUCI\$`CO(GT)`, AirQualityUCI\$`PT08.S1(CO)`, paired = T) \\ t.test(AirQualityUCI\$`C6H6(GT)`, AirQualityUCI\$`PT08.S2(NMHC)`, paired = T) \\ t.test(AirQualityUCI\$`NOx(GT)`, AirQualityUCI\$`PT08.S3(NOx)`, paired = T) \\ mod <- lm(AirQualityUCI\$`CO(GT)`~AirQualityUCI\$Date1) \\ summary(mod) \\ mod <- lm(AirQualityUCI\$`CO(GT)`~AirQualityUCI\$T) \\ summary(mod) \\ mod <- lm(AirQualityUCI\$`CO(GT)`~AirQualityUCI\$RH) \\ summary(mod) \\
```

```
> t.test(AirQualityUCI$`CO(GT)`, AirQualityUCI$`PT08.S1(CO)`, paired = T)
       Paired t-test
data: AirQualityUCI$`CO(GT)` and AirQualityUCI$`PT08.S1(CO)`
t = -436.85, df = 7343, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -1113.299 -1103.352
sample estimates:
mean of the differences
              -1108.325
> t.test(AirQualityUCI$`C6H6(GT)`, AirQualityUCI$`PT08.S2(NMHC)`, paired =
       T) Paired t-test
data: AirQualityUCI$`C6H6(GT)` and AirQualityUCI$`PT08.S2(NMHC)`
t = -339.41, df = 8990, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -934.3112 -923.5812
sample estimates:
mean of the differences
              -928.9462
> t.test(AirQualityUCI$`NOx(GT)`, AirQualityUCI$`PT08.S3(NOx)`, paired =
       T) Paired t-test
data: AirQualityUCI$`NOx(GT)` and AirQualityUCI$`PT08.S3(NOx)`
t = -118.66, df = 7395, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
```

```
-591.8554 -572.6187
sample estimates:
mean of the differences
              -582.2371
> mod <- lm(AirQualityUCI$`CO(GT)`~AirQualityUCI$Date1)</pre>
> summary(mod)
call:
lm(formula = AirQualityUCI$`CO(GT)` ~ AirQualityUCI$Date1)
Residuals:
    Min 1Q Median 3Q Max -2.1512 -
1.0913 -0.3337 0.7422 9.7166
Coefficients:
                      Estimate Std. Error t value Pr(>|t|)
(Intercept) -4.8415230 1.8033975 -2.685 0.007276 **
AirQualityUCI$Date1 0.0005512 0.0001421 3.879 0.000106 *** ---
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.452 on 7672 degrees of
  freedom (1683 observations deleted due to missingness)
Multiple R-squared: 0.001957, Adjusted R-squared: 0.001827
F-statistic: 15.04 on 1 and 7672 DF, p-value: 0.000106
> mod <- lm(AirQualityUCI$`CO(GT)`~AirQualityUCI$T)</pre>
> summary(mod)
call:
lm(formula = AirQualityUCI$`CO(GT)` ~ AirQualityUCI$T)
Residuals:
    Min 1Q Median 3Q Max -2.1099 -
1.0686 -0.3368 0.7071 9.7894
Coefficients:
                Estimate Std. Error t value Pr(>|t|)
(Intercept)
                2.066033
                           0.037547 55.025
                                              <2e-16 ***
AirQualityUCI$T 0.003584
                           0.001891
                                      1.895
                                              0.0581 .
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.436 on 7342 degrees of
  freedom (2013 observations deleted due to missingness)
Multiple R-squared: 0.000489, Adjusted R-squared: 0.0003528
F-statistic: 3.592 on 1 and 7342 DF, p-value: 0.0581
> mod <- lm(AirQualityUCI$`CO(GT)`~AirQualityUCI$RH)</pre>
> summary(mod)
call:
lm(formula = AirQualityUCI$`CO(GT)` ~ AirQualityUCI$RH)
Residuals:
   Min 1Q Median 3Q Max -2.1595 -
1.0712 -0.3169 0.7328 9.6671
```

```
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.9322601 0.0499611 38.675 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.435 on 7342 degrees of
 freedom (2013 observations deleted due to missingness)
Multiple R-squared: 0.002391, Adjusted R-squared: 0.002255
F-statistic: 17.6 on 1 and 7342 DF, p-value: 2.765e-05
```

g) Create cross tabulations with derived variables

```
The R-script for the given problem is as follows:
mydata<-AirQualityUCI
View(mydata) # 2-Way Frequency Table
attach(mydata)
#mytable <- table(A,B) # A will be rows, B will be
columns #mytable # print table
margin.table(mytable, 1) # A frequencies (summed over B)
prop.table(mytable) # cell percentages prop.table(mytable,
1) # row percentages
range(AirQualityUCI$RH)
final <- within(AirQualityUCI,
          RHcat <- NA
          RHcat[RH<20] <- "Very Low"
          RHcat[RH>=20 & RH<=40] <- "Low"
          RHcat[RH>40 & RH<=60] <- "Medium"
          RHcat[RH>60 & RH<=80] <- "High"
          RHcat[RH>80] <- "Very High"
         })
mytable <- xtabs(`CO(GT)` \sim +RHcat, data = final)
ftable(mytable) # print table
summary(mytable) # chi-square test of indepedence
mytable <- xtabs(`C6H6(GT)` ~ +RHcat, data = final)
ftable(mytable) # print table
summary(mytable) # chi-square test of indepedence
mytable <- xtabs(`NOx(GT)` ~ +RHcat, data = final)
```

```
ftable(mytable) # print table
summary(mytable) # chi-square test of indepedence
with(final, tapply(`NO2(GT)`, list(RHcat=RHcat), sd)) # using with()
with(final, tapply(`NO2(GT)`, list(RHcat=RHcat), mean))
```

```
> mydata<-AirQualityUCI
> View(mydata) # 2-Way Frequency Table
> attach(mydata)
The following objects are masked from mydata (pos = 5):
     AH, C6H6(GT), CO(GT), Date, datetime, NO2(GT), NOX(GT), PT08.S1(CO),
     PT08.S2(NMHC), PT08.S3(NOx), PT08.S4(NO2), PT08.S5(O3), RH, T, Time, Time1
The following objects are masked from mydata (pos = 6):
     AH, C6H6(GT), CO(GT), Date, datetime, NO2(GT), NOx(GT), PT08.S1(CO),
     PT08.S2(NMHC), PT08.S3(NOX), PT08.S4(NO2), PT08.S5(O3), RH, T, Time, Time1
The following object is masked from package:base:
    Т
> #mytable <- table(A,B) # A will be rows, B will be columns</pre>
> #mytable # print table
> margin.table(mytable, 1) # A frequencies (summed over
B) RHcat
                           Medium Very High
      High
                  Low
                                                Very Low
 566943.9 417357.3 664434.1 77071.7
                                                  65314.5
> prop.table(mytable) # cell percentages
RHcat
       High Low Medium Very High Very Low 0.31653012
0.23301451 \ 0.37095981 \ 0.04302986 \ 0.03646570
> prop.table(mytable, 1) # row
percentages RHcat
                           Medium Very High
      High
                                               Very Low
 range(AirQualityUCI$RH)
[1] NA NA
> final <- within(AirQualityUCI,</pre>
                        RHcat <- NA
                       RHCat (- NA
RHCat [RH<20] <- "Very Low"
RHCat [RH>=20 & RH<=40] <- "Low"
RHCat [RH>40 & RH<=60] <- "Medium"
RHCat [RH>60 & RH<=80] <- "High"
RHCat [RH>80] <- "Very High"
> mytable <- xtabs(`CO(GT)` ~ +RHcat, data = final)
> ftable(mytable) # print table
mytable 497.1 662.5 4288.7 4302.4 5889.9
> summary(mytable) # chi-square test of
indepedence Number of cases in table: 15640.6
Number of factors: 1
> mytable <- xtabs(`C6H6(GT)` ~ +RHcat, data = final)</pre>
> ftable(mytable) # print table
mytable 2206.4370307221 4537.99826996217 23277.0380810769 25828.1012760302
```

```
1
                           1
                                               1
                                                                                         1
> summary(mytable) # chi-square test of
independence Number of cases in table: 90656.19
Number of factors: 1
> mytable <- xtabs(`NOx(GT)` ~ +RHcat, data = final)</pre>
> ftable(mytable) # print table
mytable 65314.5 77071.7 417357.3 566943.9 664434.1
                                                           1
                          1
                                     1
> summary(mytable) # chi-square test of
indepedence Number of cases in table: 1791122
Number of factors: 1
> with(final, tapply(`NO2(GT)`, list(RHcat=RHcat), sd)) # using with()
RHcat
                             Medium Very High Very Low
        High
                     Low
                      NA
           NA
                                  NA
                                              NA
> with(final, tapply(`NO2(GT)`, list(RHcat=RHcat),
mean)) RHcat
                   Low
                            Medium Very High Very Low
      Hiah
```

h) Check for trends and patterns in time series

The R-script for the given problem is as follows:

```
#plot time series
tsAirqualityUCI <- EuStockMarkets[, 1] # ts data
decomposedRes <- decompose(tsAirqualityUCI, type="mult") # use type = "additive" for
additive components
plot (decomposedRes) # see plot below
stlRes <- stl(tsAirqualityUCI, s.window = "periodic")
plot(AirQualityUCI$T, type = "l")
#or
library(xts)
timeseries <- xts(final$`CO(GT)`, final$datetime)
plot(timeseries)
summary(timeseries)
ts (AirQualityUCI, frequency = 4, start = c(1959, 2))# frequency 4 =>Quarterly
Data ts (1:10, frequency = 12, start = 1990) \# freq 12 => Monthly data.
ts (AirQualityUCI, start=c(2009), end=c(2014), frequency=1) # Yearly Data
ts (1:1000, frequency = 365, start = 1990) \# freq 365 => daily data.
```

```
> #plot time series
> tsAirqualityUCI <- EuStockMarkets[, 1] # ts data
> decomposedRes <- decompose(tsAirqualityUCI, type="mult") # use type =
"additive" for additive components
> plot (decomposedRes) # see plot below
```

Decomposition of multiplicative time series

- > stlRes <- stl(tsAirqualityUCI, s.window = "periodic")
 > plot(AirQualityUCI\$T, type = "l")

> library(xts)

- > timeseries <- xts(final\$`CO(GT)`, final\$datetime)</pre>
- > plot(timeseries)
- > summary(timeseries)

Index timeseries Min. :2004-03-10 18:00:00 Min. : 0.100 1st Qu.:2004-06-16 05:00:00 1st Qu.: 1.100 Median :2004-09-21 16:00:00 Median : 1.800 :2004-09-21 16:00:00 : 2.153 Mean Mean 3rd Qu.:2004-12-28 03:00:00 3rd Qu.: 2.900 :2005-04-04 14:00:00 Max. Max. :11.900 NA's :1683

timeseries 2004-03-10 18:00:00 / 2005-04-04 14:00:00

> ts (AirQualityUCI, frequency = 4, start = c(1959, 2))# frequency 4 =>Quarterly Data

		CO(GT)	PT08.S1(CO)	C6H6(GT)	PT08.S2(NMHC)
NOx(GT)					
1959 Q2 1078876	800 -2209010400	2.6	1360.0000	11.8817235	1045.5000
166.0					
1959 Q3 1078876	800 -2209006800	2.0	1292.2500	9.3971649	954.7500
103.0					
1959 Q4 1078876	800 -2209003200	2.2	1402.0000	8.9978169	939.2500
131.0					
1960 Q1 1078876	800 -2208999600	2.2	1375.5000	9.2287964	948.2500
172.0					
1960 Q2 1078876	800 -2208996000	1.6	1272.2500	6.5182237	835.5000
131.0					
1960 Q3 1078876	800 -2208992400	1.2	1197.0000	4.7410124	750.2500
89.0					
1960 Q4 1078963	200 -2209075200	1.2	1185.0000	3.6243992	689.5000
62.0					
1961 01 1078963	200 -2209071600	1.0	1136.2500	3.3266770	672.0000
62.0					
1961 Q2 1078963	200 -2209068000	0.9	1094.0000	2.3394162	608.5000
45.0	220300000	0.5	103.10000	213331202	
1961 Q3 1078963	200 -2209064400	0.6	1009.7500	1.6966583	560.7500
NA	2203001100	0.0	100317300	1.0300303	30011300
1961 Q4 1078963	200 -2209060800) NA	1011.0000	1.2936198	526.7500
21.0	200 220300000	, 11/1	1011.0000	1.2330130	320.7300
1962 Q1 1078963	200 -2209057200	0.7	1066.0000	1.1334306	512.0000
16.0	200 2203037200	0.7	1000.0000	1.1334300	312.0000
1962 Q2 1078963	200 -2209053600	0.7	1051.7500	1.6037679	553.2500
34.0	200 2203033000	0.7	1031.7300	1.0037073	, 333.2300
1962 Q3 1078963	200 -2209050000) 1.1	1144.0000	3.2436181	667.0000
98.0	200 -2203030000	, 1.1	1144.0000	J. 2430101	1 007.0000
	200 -2209046400		1333.2500	8.0137730	899.7500
· · · · · · · · · · · · · · · · · · ·	200 -2209046400	2.0	1333.2300	0.013//30	099.7300
174.0					

1963 Q1 129.0	1078963200	-2209042800	2.2	1351.0000	9.5406429	960.2500
1963 Q2 112.0	1078963200	-2209039200	1.7	1233.2500	6.3357824	827.2500
1963 Q3 95.0	1078963200	-2209035600	1.5	1178.7500	4.9715838	762.0000
1963 Q4 104.0	1078963200	-2209032000	1.6	1236.0000	5.2169190	774.2500
1964 Q1 146.0	1078963200	-2209028400	1.9	1285.5000	7.2699334	868.5000
1964 Q2 207.0	1078963200	-2209024800	2.9	1371.0000	11.5390072	1033.5000
1964 Q3 184.0	1078963200	-2209021200	2.2	1310.0000	8.8262227	932.5000
1964 Q4 193.0	1078963200	-2209017600	2.2	1291.7500	8.3014134	911.5000
1965 Q1 243.0	1078963200	-2209014000	2.9	1383.0000	11.1515812	1019.7500
1965 Q2 281.0	1078963200	-2209010400	4.8	1580.7500	20.7992169	1318.5000
1965 Q3 383.0	1078963200	-2209006800	6.9	1775.5000	27.3598075	1487.7500
1965 Q4 351.0	1078963200	-2209003200	6.1	1640.0000	24.0177569	1404.0000
1966 Q1 240.0	1078963200	-2208999600	3.9	1312.7500	12.7793682	1076.2500
1966 Q2 94.0	1078963200	-2208996000	1.5	964.5000	4.7070719	748.5000
1966 Q3 47.0	1078963200	-2208992400	1.0	912.7500	2.6457215	629.2500
1966 Q4 122.0	1079049600	-2209075200	1.7	1080.2500	5.8548015	805.0000
1967 Q1 133.0	1079049600	-2209071600	1.9	1043.7500	6.3742975	829.0000
1967 Q2 82.0	1079049600	-2209068000	1.4	987.7500	4.1323418	718.0000
1967 Q3 NA	1079049600	-2209064400	0.8	888.7500	1.8694446	574.2500
1967 Q4 21.0	1079049600	-2209060800	NA	831.0000	1.0682926	505.7500
1968 Q1 30.0	1079049600	-2209057200	0.6	847.2500	1.0224146	501.2500
1968 Q2 56.0	1079049600	-2209053600	0.8	927.0000	1.8304312	571.2500
	1079049600	-2209050000	1.4	1090.5000	4.3593410	730.2500
	1079049600	-2209046400	4.4	1587.0000	17.8655867	1235.5000
1969 Q1 NA	1079049600	-2209042800	NA	1544.5000	22.0741621	1353.0000
1969 Q2 187.0	1079049600	-2209039200	3.1	1350.2500	14.0270114	1117.5000
1969 Q3 216.0	1079049600	-2209035600	2.7	1262.7500	11.6456466	1037.2500
1969 Q4 143.0	1079049600	-2209032000	2.1	1206.2500	10.2246621	986.0000

•	2.5 125	1.5000 11.039	9360 1015.7500
160.0 1970 Q2 1079049600 -2209024800	2.7 128	7.0000 12.816	4462 1077.5000
163.0	2.0. 125	2 7500 14 172	0512 1122 2500
1970 Q3 1079049600 -2209021200 190.0	2.9 135	2.7500 14.173	8512 1122.2500
1970 Q4 1079049600 -2209017600	2.8 130	9.0000 12.690	5681 1073.2500
178.0 1971 Q1 1079049600 -2209014000	2.4 127	4.0000 11.738	4054 1040.5000
150.0			
1971 Q2 1079049600 -2209010400 206.0	3.9 150	9.5000 19.290	9749 1276.5000
1971 Q3 1079049600 -2209006800	3.7 152	5.2500 18.226	1783 1246.0000
202.0 1971 Q4 1079049600 -2209003200	6.6 184	3.0000 32.556	2783 1609.7500
340.0			
1972 Q1 1079049600 -2208999600 274.0	4.4 159	7.7500 20.092	9436 1299.0000
1972 Q2 1079049600 -2208996000	3.5 148	3.5000 14.321	3424 1127.0000
253.0 1972 Q3 1079049600 -2208992400	5.4 167	7.2500 21.812	8651 1346.0000
300.0			
1972 Q4 1079136000 -2209075200 193.0	2.7 127	9.5000 9.638	9998 964.0000
1973 Q1 1079136000 -2209071600	1.9 119	6.2500 7.375	1395 873.0000
139.0 1973 Q2 1079136000 -2209068000	1.6 118	3.7500 5.369	6042 781.7500
83.0	1.0 110	3.7300 3.303	701.7300
1973 Q3 1079136000 -2209064400	1.7 117	1.7500 5.390	1039 782.7500
NA			
•			
NA PT08.S3(NOx) NO2(GT) PT0 AH Date1 Time1 1959 Q2 1056.2500 113.0		т08.s5(03)	
NA PT08.S3(NOX) NO2(GT) PT0 AH Date1 Time1 1959 Q2 1056.2500 113.0 0.7577538 12487 NA	08.S4(NO2) P 1692.0000	т08.S5(O3) 1267.5000 13	T RH
NA PT08.S3(NOX) NO2(GT) PT0 AH Date1 Time1 1959 Q2 1056.2500 113.0 0.7577538 12487 NA 1959 Q3 1173.7500 92.0	08.S4(NO2) P 1692.0000	т08.S5(O3) 1267.5000 13	T RH
NA PT08.S3(NOX) NO2(GT) PT0 AH Date1 Time1 1959 Q2 1056.2500 113.0 0.7577538 12487 NA 1959 Q3 1173.7500 92.0 0.7254874 12487 NA	08.S4(NO2) P 1692.0000 1558.7500	T08.S5(03) 1267.5000 13 972.2500 13	T RH .600000 48.87500 .300000 47.70000
NA PT08.S3(NOx) NO2(GT) PT0 AH Date1 Time1 1959 Q2 1056.2500 113.0 0.7577538 12487 NA 1959 Q3 1173.7500 92.0 0.7254874 12487 NA 1959 Q4 1140.0000 114.0	08.S4(NO2) P 1692.0000 1558.7500	T08.S5(03) 1267.5000 13 972.2500 13	T RH
NA PT08.S3(NOX) NO2(GT) PT0 AH Date1 Time1 1959 Q2 1056.2500 113.0 0.7577538 12487 NA 1959 Q3 1173.7500 92.0 0.7254874 12487 NA 1959 Q4 1140.0000 114.0 0.7502391 12487 NA 1960 Q1 1092.0000 122.0	08.S4(NO2) P 1692.0000 1558.7500 1554.5000	1267.5000 13 972.2500 13 1074.0000 11	T RH .600000 48.87500 .300000 47.70000
PT08.S3(NOX) NO2(GT) PT0 AH Date1 Time1 1959 Q2	08.S4(NO2) P 1692.0000 1558.7500 1554.5000 1583.7500	1267.5000 13 972.2500 13 1074.0000 11 1203.2500 11	T RH .600000 48.87500 .300000 47.70000 .900000 53.97500 .000000 60.00000
PT08.S3(NOx) NO2(GT) PT0 AH Date1 Time1 1959 Q2	08.S4(NO2) P 1692.0000 1558.7500 1554.5000	1267.5000 13 972.2500 13 1074.0000 11 1203.2500 11	T RH .600000 48.87500 .300000 47.70000 .900000 53.97500
PT08.S3(NOx) NO2(GT) PT0 AH Date1 Time1 1959 Q2	08.S4(NO2) P 1692.0000 1558.7500 1554.5000 1583.7500	1267.5000 13 972.2500 13 1074.0000 11 1203.2500 11 1110.0000 11	T RH .600000 48.87500 .300000 47.70000 .900000 53.97500 .000000 60.00000
PT08.S3(NOX) NO2(GT) PT0 AH Date1 Time1 1959 Q2	08.S4(NO2) P 1692.0000 1558.7500 1554.5000 1583.7500 1490.0000 1393.0000	1267.5000 13 972.2500 13 1074.0000 11 1203.2500 11 1110.0000 11 949.2500 11	T RH .600000 48.87500 .300000 47.70000 .900000 53.97500 .000000 60.00000 .150000 59.57500 .175000 59.17500
PT08.S3(NOx) NO2(GT) PT0 AH Date1 Time1 1959 Q2	08.S4(NO2) P 1692.0000 1558.7500 1554.5000 1583.7500 1490.0000	1267.5000 13 972.2500 13 1074.0000 11 1203.2500 11 1110.0000 11 949.2500 11	T RH .600000 48.87500 .300000 47.70000 .900000 53.97500 .000000 60.00000 .150000 59.57500
PT08.S3(NOx) NO2(GT) PT0 AH Date1 Time1 1959 Q2	08.S4(NO2) P 1692.0000 1558.7500 1554.5000 1583.7500 1490.0000 1393.0000	1267.5000 13 972.2500 13 1074.0000 11 1203.2500 11 1110.0000 11 949.2500 11 732.5000 11	T RH .600000 48.87500 .300000 47.70000 .900000 53.97500 .000000 60.00000 .150000 59.57500 .175000 59.17500
PT08.S3(NOx) NO2(GT) PT0 AH Date1 Time1 1959 Q2	1692.0000 1558.7500 1554.5000 1583.7500 1490.0000 1393.0000 1332.7500	1267.5000 13 972.2500 13 1074.0000 11 1203.2500 11 1110.0000 11 949.2500 11 732.5000 10	T RH .600000 48.87500 .300000 47.70000 .900000 53.97500 .000000 60.00000 .150000 59.57500 .175000 59.17500 .325000 56.77500 .675000 60.00000
PT08.S3(NOx) NO2(GT) PT0 AH Date1 Time1 1959 Q2	08.S4(NO2) P 1692.0000 1558.7500 1554.5000 1583.7500 1490.0000 1393.0000 1393.7500 1332.7500 1276.0000	1267.5000 13 972.2500 13 1074.0000 11 1203.2500 11 1110.0000 11 949.2500 11 732.5000 11 729.5000 10 619.5000 10	T RH .600000 48.87500 .300000 47.70000 .900000 53.97500 .000000 60.00000 .150000 59.57500 .175000 59.17500 .325000 56.77500 .675000 60.00000 .650000 59.67500
PT08.S3(NOx) NO2(GT) PT0 AH Date1 Time1 1959 Q2	1692.0000 1558.7500 1554.5000 1583.7500 1490.0000 1393.0000 1332.7500	1267.5000 13 972.2500 13 1074.0000 11 1203.2500 11 1110.0000 11 949.2500 11 732.5000 11 729.5000 10 619.5000 10	T RH .600000 48.87500 .300000 47.70000 .900000 53.97500 .000000 60.00000 .150000 59.57500 .175000 59.17500 .325000 56.77500 .675000 60.00000
PT08.S3(NOx) NO2(GT) PT0 AH Date1 Time1 1959 Q2	1692.0000 1558.7500 1554.5000 1583.7500 1490.0000 1393.0000 1332.7500 1332.7500 1276.0000 1234.7500	1267.5000 13 972.2500 13 1074.0000 11 1203.2500 11 1110.0000 11 949.2500 11 732.5000 11 729.5000 10 619.5000 10 501.2500 10	T RH .600000 48.87500 .300000 47.70000 .900000 53.97500 .000000 60.00000 .150000 59.57500 .175000 59.17500 .325000 56.77500 .675000 60.00000 .650000 59.67500
PT08.S3(NOx) NO2(GT) PTC AH Date1 Time1 1959 Q2	08.S4(NO2) P 1692.0000 1558.7500 1554.5000 1583.7500 1490.0000 1393.0000 1393.7500 1332.7500 1276.0000 1234.7500 1196.7500	1267.5000 13 972.2500 13 1074.0000 11 1203.2500 11 1110.0000 11 949.2500 11 732.5000 11 729.5000 10 619.5000 10 501.2500 10 445.2500 10	T RH .600000 48.87500 .300000 47.70000 .900000 53.97500 .000000 60.00000 .150000 59.57500 .175000 59.17500 .325000 56.77500 .675000 60.00000 .650000 59.67500 .250000 60.20000 .075000 60.47500
PT08.S3(NOX) NO2(GT) PT0 AH Date1 Time1 1959 Q2	08.S4(NO2) P 1692.0000 1558.7500 1554.5000 1583.7500 1490.0000 1393.0000 1393.7500 1332.7500 1276.0000 1234.7500 1196.7500	1267.5000 13 972.2500 13 1074.0000 11 1203.2500 11 1110.0000 11 949.2500 11 732.5000 11 729.5000 10 619.5000 10 501.2500 10 445.2500 10	T RH .600000 48.87500 .300000 47.70000 .900000 53.97500 .000000 60.00000 .150000 59.57500 .175000 59.17500 .325000 56.77500 .675000 60.00000 .650000 59.67500 .250000 60.20000

1962 Q2	1738.2500	48.0	1221.2500	471.5000	10.450000 58.12500
0.7352951					
1962 Q3		82.0	1339.0000	729.7500	10.200000 59.60000
0.7417362					
•	1136.0000	112.0	1517.0000	1101.5000	10.750000 57.42500
0.7407946		101 0	1502 7500	1027 7500	10 500000 60 60000
0.7691108	1079.0000 12488 NA	101.0	1582.7500	1027.7500	10.500000 60.60000
	1218.0000	98.0	1445.7500	859 7500	10.800000 58.35000
0.7551831		30.0	1443.7300	033.7300	10.000000 30.33000
	1327.5000	92.0	1361.7500	670.5000	10.500000 57.92500
0.7351608		32.0	130117300	0.013000	101300000 37132300
	1301.2500	95.0	1401.2500	664.0000	9.525000 66.77500
0.7950538					
1964 Q1	1162.2500	112.0	1536.7500	799.0000	8.300000 76.42500
0.8392681	12488 NA				
1964 Q2		128.0	1730.2500	1036.5000	8.000000 81.15000
0.8735885					
•	1081.7500	126.0	1646.5000	946.2500	8.325000 79.80000
0.8777844					
•	1102.5000	131.0	1590.7500	956.7500	9.700000 71.15000
0.8569381		125 0	1710 7500	1104 0000	0 775000 67 63500
0.8185012	1008.0000 12488 NA	135.0	1718.7500	1104.0000	9.775000 67.62500
	798.5000	151.0	2083.0000	1408 5000	10.350000 64.17500
0.8065436		131.0	2003.0000	1400.3000	10.550000 04.17500
1965 Q3	702.2500	172.0	2332.5000	1704.0000	9.650000 69.30000
0.8319211		1,2.0	233213000	270110000	31030000 03130000
1965 Q4	742.7500	165.0	2191.2500	1653.7500	9.650000 67.75000
0.8133139	12488 NA				
1966 Q1	957.2500	136.0	1706.5000	1284.7500	9.125000 63.97500
0.7419242					
1966 Q2	1325.2500	85.0	1332.5000	821.0000	8.175000 63.40000
0.6904844					
-	1564.5000	53.0	1252.2500	551.7500	8.250000 60.82500
0.6657444		07.0	1275 0000	015 5000	0 225000 50 52500
1966 Q4 0.6437636		97.0	1375.0000	815.5000	8.325000 58.52500
1967 Q1		110.0	1378.2500	831.5000	7.725000 59.67500
0.6307661		110.0	1370.2300	031.3000	7.723000 33.07300
1967 Q2		91.0	1303.5000	691.5000	7.125000 61.80000
0.6275974		0_10		00_1000	
1967 Q3	1680.2500	NA	1187.0000	512.0000	6.975000 62.27500
0.6261075	12489 NA				
1967 Q4	1892.7500	32.0	1133.7500	384.0000	6.100000 65.90000
0.6247536	12489 NA				
1968 Q1	1894.5000	44.0	1154.7500	394.0000	6.275000 64.97500
0.6232823					
1968 Q2	1684.7500	71.0	1222.7500	486.5000	6.750000 62.95000
0.6234275		104.0	1260 7500	740 2500	C 450000 CF 07500
1968 Q3 0.6316281	1387.0000	104.0	1360.7500	748.2500	6.450000 65.07500
1968 Q4	12489 NA 896.5000	141.0	1900.2500	1400.2500	7.325000 63.15000
0.6499331		T-T.O	1300.2300	1700.2300	, . 323000 03. IJ000
1969 Q1	767.2500	NA	2058.0000	1587.7500	9.225000 56.20000
0.6560651		, .			

1969 Q2 912.0000	122.0	1711.7500	1237.0000	13.225000 41.75000
0.6319501 12489 NA 1969 Q3 969.0000	143.0	1598.2500	1166 5000	14.325000 38.45000
0.6243043 12489 NA	143.0	1396.2300	1100.3000	14.323000 36.43000
1969 Q4 1034.5000	113.0	1537.0000	959 0000	15.025000 36.50000
0.6195323 12489 NA	113.0	1337.0000	333.0000	13.023000 30.30000
1970 Q1 1007.5000	116.0	1592.7500	983.0000	16.100000 34.47500
0.6261647 12489 NA	110.0	133217300	303.0000	10.100000 31.17300
1970 Q2 948.7500	123.0	1660.2500	1060.7500	16.275001 35.72500
0.6560306 12489 NA				
1970 Q3 921.7500	126.0	1740.0000	1139.2500	15.825000 37.02500
0.6609611 12489 NA				
1970 Q4 954.0000	120.0	1657.2500	1112.2500	15.875000 37.17500
0.6657285 12489 NA				
1971 Q1 1005.7500	119.0	1609.7500	993.7500	16.875000 34.35000
0.6549085 12489 NA				
1971 Q2 812.2500	149.0	1909.7500	1409.5000	15.150000 39.55000
0.6766265 12489 NA				
1971 Q3 821.0000	145.0	1846.7500	1447.7500	14.400000 43.42500
0.7084498 12489 NA				
1971 Q4 624.0000	170.0	2390.2500	1886.5000	12.875000 50.52500
0.7478032 12489 NA				
1972 Q1 752.0000	149.0	1940.5000	1626.7500	12.150000 53.35000
0.7536202 12489 NA				
1972 Q2 839.0000	139.0	1723.0000	1491.0000	10.975000 59.12500
0.7739800 12489 NA				
1972 Q3 740.5000	134.0	2062.0000	1657.0000	9.675000 64.62500
0.7770739 12489 NA				
1972 Q4 962.5000	113.0	1543.5000	1285.2500	9.450000 64.12500
0.7597465 12490 NA				
1973 Q1 1071.2500	97.0	1463.2500	1144.2500	9.150000 63.90000
0.7422764 12490 NA	22.0	1264 5000	1010 7500	
1973 Q2 1176.2500	82.0	1364.5000	1042.7500	8.800000 63.92500
0.7256154 12490 NA		1270 7500	005 5000	7 000000 67 53500
1973 Q3 1178.5000	NA	1379.7500	995.5000	7.800000 67.52500
0.7173121 12490 NA				
datetime				
1959 Q2 1078921800 1959 Q3 1078925400				
1959 Q4 1078929000				
1960 Q1 1078932600				
1960 Q2 1078936200				
1960 Q3 1078939800				
1960 Q4 1078943400				
1961 Q1 1078947000				
1961 Q2 1078950600				
1961 Q3 1078954200				
1961 Q4 1078957800				
1962 Q1 1078961400				
1962 Q2 1078965000				
1962 Q3 1078968600				
1962 Q4 1078972200				
1963 Q1 1078975800				
1963 Q2 1078979400				
1963 Q3 1078983000				
1963 Q4 1078986600				
1964 Q1 1078990200				

```
1964 Q2 1078993800
1964 Q3 1078997400
1964 Q4 1079001000
1965 Q1 1079004600
1965 Q2 1079008200
1965 Q3 1079011800
1965 Q4 1079015400
1966 Q1 1079019000
1966 Q2 1079022600
1966 Q3 1079026200
1966 Q4 1079029800
1967 Q1 1079033400
1967 Q2 1079037000
1967 Q3 1079040600
1967 Q4 1079044200
1968 Q1 1079047800
1968 Q2 1079051400
1968 q3 1079055000
1968 Q4 1079058600
1969 Q1 1079062200
1969 Q2 1079065800
1969 Q3 1079069400
1969 Q4 1079073000
1970 Q1 1079076600
1970 Q2 1079080200
1970 Q3 1079083800
1970 Q4 1079087400
1971 Q1 1079091000
1971 Q2 1079094600
1971 Q3 1079098200
1971 Q4 1079101800
1972 Q1 1079105400
1972 Q2 1079109000
1972 Q3 1079112600
1972 Q4 1079116200
1973 Q1 1079119800
1973 Q2 1079123400
1973 Q3 1079127000
 [ reached getOption("max.print") -- omitted 9299 rows ]
> ts (1:10, frequency = 12, start = 1990) # freq 12 => Monthly
     data. Jan Feb Mar Apr May Jun Jul Aug Sep Oct
               3 4 5
                           6 7 8
1990
> ts (AirQualityUCI, start=c(2009), end=c(2014), frequency=1) # Yearly Data
Time Series:
Start = 2009
End = 2014
Frequency = 1
                       Time CO(GT) PT08.S1(CO) C6H6(GT) PT08.S2(NMHC)
           Date
NOx(GT) PT08.S3(NOx)
2009 1078876800 -2209010400
                                2.6
                                       1360.00 11.881723
                                                               1045.50
166
         1056.25
2010 1078876800 -2209006800
                                2.0
                                       1292.25 9.397165
                                                                954.75
103
        1173.75
2011 1078876800
                -2209003200
                                2.2
                                        1402.00 8.997817
                                                                939.25
131
        1140.00
2012 1078876800 -2208999600
                                2.2
                                       1375.50 9.228796
                                                                948.25
172
        1092.00
```

2013	10788			22089	96000	1	. 6	1272	2.25	6.5	18224		835	. 50	
131 2014 89	10788			22089	92400	1	. 2	1197	7.00	4.7	41012		750	. 25	
	NO2 (GT			S4(NC)2) P	T08.S	5(03)		Т	RH		AH [Date1	Time1	L
datet 2009	1	13		1692	.00	120	67.50	13.60	0 48	.875	0.757	7538	12487	N/	4
2010		92		1558	.75	9	72.25	13.30	0 47	.700	0.7254	1874	12487	N/	A
2011		14		1554	. 50	10	74.00	11.90	0 53	.975	0.7502	2391	12487	N/	A
2012		22		1583	.75	120	03.25	11.00	0 60	.000	0.7867	7125	12487	N/	A
2013		16		1490	.00	11:	10.00	11.15	0 59	. 575	0.7887	7942	12487	N/	A
10789 2014	36200	96		1393	00	9,	49 25	11 17	5 59	175	0.7847	7717	12487	N/	Δ
10789	39800														٦.
	(1:100 Series		frequ	uency	= 36	5, st	art =	1990)) # f	req	365 =>	dai	ly dat	a.	
	= c(1). 1)												
	c(199														
Frequ	ency =	36	5												
_	1] 1		2	3	4	5	6	7	8	9	10	11	12	13	14
	16 1														
[1	_		19	20	21	22	23	24	25	26	27	28	29	30	31
32 [3		4	36	37	38	39	40	41	42	43	44	45	46	47	48
		1	30	37	30	39	40	41	42	43	44	43	40	47	40
[5			53	54	55	56	57	58	59	60	61	62	63	64	65
		8													
[6 83	9] 6' 84 8		70	71	72	73	74	75	76	77	78	79	80	81	82
[8]			87	88	89	90	91	92	93	94	95	96	97	98	99
[10	3] 10		104	105	106	107	108	109	110	111	112	113	114	115	116
117 [12		.19 0	121	122	123	124	125	126	127	128	129	130	131	132	133
134 [13		.36 7	138	139	140	141	142	143	144	145	146	147	148	149	150
151	_	.53	130	133	140	1 71	172	143	177	173	140	147	140	143	130
[15	_		155	156	157	158	159	160	161	162	163	164	165	166	167
168 [17		.70 1	172	173	174	175	176	177	178	179	180	181	182	183	184
	_	.87													
[18	_	8 04	189	190	191	192	193	194	195	196	197	198	199	200	201
[20	5] 20	5	206	207	208	209	210	211	212	213	214	215	216	217	218
219 [22		21 2	223	224	225	226	227	228	229	230	231	232	233	234	235
236 [23		38 9	240	241	242	243	244	245	246	247	248	249	250	251	252
253		55	-	_	_	-	-	-	-		-	-			
[25	6] 25		257	258	259	260	261	262	263	264	265	266	267	268	269
[27	3] 27	3	274	275	276	277	278	279	280	281	282	283	284	285	286
287	288 2	89													

[290]	290	291	292	293	294	295	296	297	298	299	300	301	302	303
304 305 [307]	306 307	308	309	310	311	312	313	314	315	316	317	318	319	320
321 322 [324]	323 324	325	326	327	328	329	330	331	332	333	334	335	336	337
338 339 [341]	340 341	342	343	344	345	346	347	348	349	350	351	352	353	354
355 356 [358]	357 358	359	360	361	362	363	364	365	366	367	368	369	370	371
372 373 [375]	374 375	376	377	378	379	380	381	382	383	384	385	386	387	388
389 390 [392]	391 392	393	394	395	396	397	398	399	400	401	402	403	404	405
406 407 [409]	408 409	410	411	412	413	414	415	416	417	418	419	420	421	422
423 424 [426]	425 426	427	428	429	430	431	432	433	434	435	436	437	438	439
440 441 [443]	442 443	444	445	446	447	448	449	450	451	452	453	454	455	456
457 458 [460] 474 475	459 460 476	461	462	463	464	465	466	467	468	469	470	471	472	473
[477] 491 492	477 477 493	478	479	480	481	482	483	484	485	486	487	488	489	490
[494] 508 509	494 510	495	496	497	498	499	500	501	502	503	504	505	506	507
[511] 525 526	511 527	512	513	514	515	516	517	518	519	520	521	522	523	524
[528] 542 543	528 544	529	530	531	532	533	534	535	536	537	538	539	540	541
[545] 559 560	545 561	546	547	548	549	550	551	552	553	554	555	556	557	558
[562] 576 577	562 578	563	564	565	566	567	568	569	570	571	572	573	574	575
[579] 593 594	579 595	580	581	582	583	584	585	586	587	588	589	590	591	592
[596] 610 611	596 612	597	598	599	600	601	602	603	604	605	606	607	608	609
[613] 627 628	613 629	614	615	616	617	618	619	620	621	622	623	624	625	626
[630] 644 645	630 646	631	632	633	634	635	636	637	638	639	640	641	642	643
[647] 661 662	647 663	648	649	650	651	652	653	654	655	656	657	658	659	660
[664] 678 679	664 680	665	666	667	668	669	670	671	672	673	674	675	676	677
[681] 695 696	681 697	682	683	684	685	686	687	688	689	690	691	692	693	694
[698] 712 713	698 714	699	700	701	702	703	704	705	706	707	708	709	710	711
[715] 729 730	715 731	716	717	718	719	720	721	722	723	724	725	726	727	728
[732] 746 747	732 748	733	734	735	736	737	738	739	740	741	742	743	744	
[749] 763 764	749 765	750	751	752	753	754	755	756	757	758	759	760	761	762

[766]	766	767	768	769	770	771	772	773	774	775	776	777	778	779
780 781 [783]	782 783	784	785	786	787	788	789	790	791	792	793	794	705	796
[763] 797 798	703 799		700	700	707	700	709	790	791	792	793	794	795	790
[800]	800	801	802	803	804	805	806	807	808	809	810	811	812	813
814 815	816		002	005	00.	003	000	00.	000	005	010	011	011	015
[817]	817	818	819	820	821	822	823	824	825	826	827	828	829	830
831 832	833													
[834]	834		836	837	838	839	840	841	842	843	844	845	846	847
848 849	850													
[851]	851	852	853	854	855	856	857	858	859	860	861	862	863	864
865 866	867	0.00	070	071	070	072	074	075	076	077	070	070	000	0.01
[868]	868	869	870	871	872	873	874	875	876	877	878	879	880	881
882 883 [885]	884 885	886	887	888	889	890	891	892	893	894	895	896	807	898
899 900	901		007	000	009	030	091	032	093	034	093	090	037	090
Γ902]	902	903	904	905	906	907	908	909	910	911	912	913	914	915
916 917	918													
[919]	919	920	921	922	923	924	925	926	927	928	929	930	931	932
933 934	935													
[936]	936	937	938	939	940	941	942	943	944	945	946	947	948	949
950 951	952													
[953]	953	954	955	956	957	958	959	960	961	962	963	964	965	966
967 968	969		072	073	074	075	076	077	070	070	000	0.01	000	000
[970] 984 985	970 986	971	972	973	974	975	976	977	978	979	980	981	982	983
		988	989	990	991	992	993	994	995	996	997	998	999	1000
[30/]	<i>,</i> 0 <i>i</i>	500		550	JJI	JJL		J J T		550	551	550		T000

Conclusion/Interpretation:

Trends and patterns in time series are hence checked.

i) Find out the most polluted time of the day and the name of the chemical compound

The R-script for the given problem is as follows:

```
names(AirQualityUCI)
library(dplyr)

polluted <- AirQualityUCI%>% group_by(Time)%>%
    select(Time, `CO(GT)`, `C6H6(GT)`, `NO2(GT)`, `NOx(GT)`)%>%
    summarise(CO = mean(`CO(GT)`), C6H6 = mean(`C6H6(GT)`), NO2 =
    mean(`NO2(GT)`), NOX = mean(`NOx(GT)`))%>%
```

polluted[c(which.max(polluted\$CO), which.max(polluted\$C6H6), which.max(polluted\$NO2), which.max(polluted\$NOX)),]

```
> names(AirQualityUCI)
 [1] "Date" "Time" "CO(GT)" "PT08.S1(CO)" "C6H6(GT)"
 [6] "PT08.S2(NMHC)" "NOx(GT)"
                                       "PT08.S3(NOx)" "NO2(GT)"
"PT08.S4(NO2)"
[11] "PT08.S5(03)"
[16] "Time1"
                                       "RH"
                                                       "AH"
                                                                         "Date1"
                      "datetime"
> library(dplyr)
> polluted <- AirQualityUCI%>%group_by(Time)%>%
    select(Time, `CO(GT)`, `C6H6(GT)`, `NO2(GT)`, `NOx(GT)`)%>%
    summarise(CO = mean(`CO(GT)`), C6H6 = mean(`C6H6(GT)`), NO2
= mean(`NO2(GT)`), NOX =mean(`NOx(GT)`))%>%
polluted[c(which.max(polluted$CO), which.max(polluted$C6H6), which.max(polluted
$NO2), which.max(polluted$NOX)),]
```

Date	Time	CO(GT)	PT08.S1(CO)	NMHC(GT)	C6H6(GT)	PT08.S2(NMHC)
6/8/2004	8:00:00	5.8	1377	-200	36.1	1688
6/9/2004	8:00:00	6.4	1496	-200	36.9	1705
10/26/2004	18:00:00	9.5	1908	-200	52.1	2007
max		11.9	2039.8	1189.0	63.7	2214.0
Date	Time	NOx(GT)	PT08.S3(NOx)	NO2(GT)	PT08.S4(NO2)	PT08.S5(O3)
6/8/2004	8:00:00	376	525	125	2746	1708
6/9/2004	8:00:00	357	507	151	2691	2147
10/26/2004	18:00:00	952	325	180	2775	2372
max		1479.0	2682.8	339.7	2775.0	2522.8

${\bf Conclusion/Interpretation:}$

PT08.S4(NO2) is the highest pollution at 18.00 hrs