TTIC 31230, Fundamentals of Deep Learning

David McAllester, Winter 2020

Representing Functions with Shallow Circuits

The Classical Universality Theorems

Function Representations

Consider continuous functions $f:[0,1]^N\to\mathbb{R}$

Given the corner values, the interior can be filled.

$$f(x_1, ..., x_N) = E_{y_1, ..., y_N \sim \text{Round}(x_1, ..., x_N)} f(y_1, ..., y_n)$$

Hence each of the 2^N corners has an independent value.

The Kolmogorov-Arnold representation theorem (1956)

For continuous $f:[0,1]^N \to \mathbb{R}$ there exists continuous "activation functions" $\sigma_i: \mathbb{R} \to \mathbb{R}$ and continuous $w_{i,j}: \mathbb{R} \to \mathbb{R}$ such that

$$f(x_1, \ldots, x_N) = \sum_{i=1}^{2N+1} \sigma_i \left(\sum_{j=1}^N w_{i,j}(x_j) \right)$$

A Simpler, Similar Theorem

For (possibly discontinuous) $f:[0,1]^N \to \mathbb{R}$ there exists (possibly discontinuous) $\sigma, w_i: \mathbb{R} \to \mathbb{R}$.

$$f(x_1, \ldots, x_N) = \sigma \left(\sum_i w_i(x_i)\right)$$

Proof: Select w_i to spread out the digits of its argument so that $\sum_i w_i(x_i)$ contains all the digits of all the x_i .

Cybenko's Universal Approximation Theorem (1989)

For continuous $f:[0,1]^N\to\mathbb{R}$ and $\varepsilon>0$ there exists

$$F(x) = \alpha^{\top} \sigma(Wx + \beta)$$

$$= \sum_{i} \alpha_{i} \sigma \left(\sum_{j} W_{i,j} x_{j} + \beta_{i} \right)$$

such that for all x in $[0,1]^N$ we have $|F(x)-f(x)|<\varepsilon$.

How Many Hidden Units?

Consider Boolean functions $f: \{0,1\}^N \to \{0,1\}.$

For Boolean functions we can simply list the inputs x^0, \ldots, x^k where the function is true.

$$f(x) = \sum_{k} \mathbf{1}[x = x^k]$$

$$\mathbf{1}[x = x^k] \approx \sigma \left(\sum_i W_{k,i} x_i + b_k \right)$$

A simpler statement is that any Boolean function can be put in disjunctive normal form.

Representing Functions as IO Tables

These universality theorems implicitly treat functions as tables of intput-output pairs.

\mathbf{END}