One solution to the homogeneity problem is to add interaction terms

Suppose we have a 2-option commute model, where X_i is student status and Z is price:

$$u_{i,bus} = \beta_1 X_i + \gamma Z_1$$

 $u_{i,car} = \beta_2 X_i + \gamma Z_2$

One solution to the homogeneity problem is to add interaction terms

Suppose we have a 2-option commute model, where X_i is student status and Z is price:

We could introduce heterogeneity in γ by interacting Z_i with X_i :

$$u_{i,bus} = \beta_1 X_i + \widetilde{\gamma} Z_1 X_i$$

$$u_{i,car} = \beta_2 X_i + \widetilde{\gamma} Z_2 X_i$$

One solution to the homogeneity problem is to add interaction terms

Suppose we have a 2-option commute model, where X_i is student status and Z is price:

We could introduce heterogeneity in γ by interacting Z_j with X_i :

$$u_{i,bus} = \beta_1 X_i + \widetilde{\gamma} Z_1 X_i$$

$$u_{i,car} = \beta_2 X_i + \widetilde{\gamma} Z_2 X_i$$

Now a change in Z_j will have a heterogeneous impact on utility depending on X_i e.g. students $(X_i = 1)$ may be more/less sensitive to changes in price (Z_j)

But many dimensions of preferences are likely unobserved

In this case, we need to "interact" Z with something unobserved

But many dimensions of preferences are likely unobserved

In this case, we need to "interact" Z with something unobserved

One way to do this is to assume that β or γ varies across people

Assume some distribution for β or γ (e.g. Normal), called the mixing distribution

But many dimensions of preferences are likely unobserved

In this case, we need to "interact" Z with something unobserved

One way to do this is to assume that β or γ varies across people

Assume some distribution for β or γ (e.g. Normal), called the mixing distribution

Then integrate this out of the likelihood function

But many dimensions of preferences are likely unobserved

In this case, we need to "interact" Z with something unobserved

One way to do this is to assume that β or γ varies across people

Assume some distribution for β or γ (e.g. Normal), called the mixing distribution

Then integrate this out of the likelihood function

Coefficients that are "mixed" are called random coefficients

Models with discrete mixing distributions: latent class models or finite mixture models