Лабораторная работа №3

«Определение запасов устойчивости систем на основе частотного критерия Найквиста»

1. Цель работы

Научиться определять запасы устойчивости линейных систем по модулю и по фазе с помощью критерия Найквиста и диаграмм Боде.

- 2. Порядок выполнения работы
- 1. Получить передаточные функции разомкнутой и замкнутой систем
- 2. Построить график годографа Найквиста АФЧХ разомкнутой системы как функцию частоты и определить запасы устойчивости. Для проверки построить годограф АФЧХ при помощи встроенной функции nyquist.
- 3. Построить логарифмические частотные характеристики (диаграмму Боде) разомкнутой системы и определить запасы устойчивости.
- 4. Сравнить полученные двумя способами значения запасов устойчивости по амплитуде и по фазе, сделать вывод по полученным значениям.
- 4. Сделать выводы о способах определения запасов устойчивости по годографу Найквиста и по диаграмме Боде, сравнить результаты.

Исходные данные

T1=0,7

K1=1,6

Начальные условия: T = 0,1, K = 0.

Структурная схема линейной САУ

Для САУ на *рис. 1.* передаточная функция имеет вид $W(s)=\frac{k*k_1}{T*T_1*s^3+(T+T_1)*s^2+s}=\frac{B(s)}{A(s)}$. Тогда $B(s)=k*k_1$, $A(s)=T*T_1*s^3+(T+T_1)*s^2+s$. Для заданных условий: $W(s)=\frac{1.6k}{0.7T*s^3+(T+0.7)*s^2+s}, B(s)=1.6k, \ A(s)=0.7T*s^3+(T+0.7)*s^2+s.$

Листинг 1 — задание начальных условий и задание полиномов числителя и знаменателя замкнутой и разомкнутой систем

Листинг 2 – код, реализующий построение графика годографа АФЧХ разомкнутой системы.

Построить годограф $A\Phi YX$ и по нему определить координаты точек годографа, с помощью которых определяются запасы устойчивости по амплитуде h и по фазе ϕ .

Вычислить запас устойчивости по амплитуде h и запас устойчивости по фазе ϕ .

Листинг 3 – код, реализующий построение годографа. АФЧХ при помощи встроенной функции nyquist. Вычислить значения запасов устойчивости (учесть логарифмическую шкалу).

Сравнить полученные по графику и построенные с помощью встроенной функции координаты точек и полученные значения запасов устойчивости по амплитуде и фазе. Сделать вывод.

Содержание отчета

- 1. Цель работы
- 2. Порядок выполнения работы
- 3. Результаты работы: структурная схема, передаточные функции, листинги с кодом, графики, расчеты значений запасов устойчивости в соответствующих единицах измерения.
- 4. Выволы.

Теоретические сведения

Критерий Найквиста

Критерий Найквиста используется для исследования устойчивости замкнутых систем. Он позволяет по амплитудно-фазовой характеристике разомкнутой системы судить об устойчивости замкнутой системы.

Критерий Найквиста (формулировка 1). Для того чтобы замкнутая система с отрицательной обратной связью была устойчива, необходимо и достаточно, чтобы ам плитудно-фазовая частотная характеристика (АФЧХ) разомкнутой системы охваты- вала точку (-1, j0) в положительном направлении l/2 раз, где l — число правых корней характеристического уравнения разомкнутой системы.

Здесь предполагается, что у характеристического уравнения

разомкнутой системы l корней являются правыми, а остальные $n\!-\!l$ корней - левыми. Случай, когда имеются ней тральные корни, рассматривается отдельно.

Когда разомкнутая система устойчива, l=0, и критерий Найквиста формулируется следующим образом.

Eсли разомкнутая система устойчива, то для устойчивости замкнутой системы с отрицательной обратной связью необходимо и достаточно, чтобы $A\Phi YX$ разомкнутой системы не охватывала точку (-1, j0).

Критерий Найквиста (формулировка 2).

Для того, чтобы замкнутая система управления была устойчивой, необходимо и достаточно, чтобы разность между положительными и отрицательными переходами отрезка вещественной оси $(-\infty, -1)$ была равна l/2, где l — число правых корней характеристического уравнения системы.

АФЧХ и ЛАЧХ показаны на рисунке.

Погарифмический частомный критерий устойчивости. Для того чтобы замкнутая система была устойчива, необходимо и достаточно, чтобы разность между положительными и отрицательными переходами ЛФЧХ разомкнутой системы прямой $\phi(\omega) = +_{-}(2k+1)\pi$, k=0,1,2,... При частотах, когда $L(\omega) >$

0 (логарифмическая амплитудная частотная характеристика положительна), была равна l/2 (l — число правых корней характеристического уравнения разомкнутой системы).

Запасы устойчивости системы по модулю и фазе

Надежное функционирование САУ может быть обеспечено только при некотором удалении ее от границы устойчивости, т.к. уравнения элементов САУ во многом идеализированы и при их составлении не учитываются некоторые факторы, параметры элементов системы определены с некоторыми погрешностями, параметры однотипных элементов имеют технологический разброс, необходимо еще учитывать старение и износ элементов.

Запас устойчивости (критерий качества) — характеризует свойство системы сохранять свои параметры при отклонении параметров регулятора от расчетных, которое определяется удалением системы от границы устойчивости. Запас определяется по частотным характеристикам системы, а не по временным.

Устойчивость замкнутой САУ зависит от расположения годографа $W(j\omega)$ разомкнутой системы относительно критической точки с координатами (-1, j0). Чем ближе он к критической точке, тем ближе замкнутая система к границе устойчивости.

Для устойчивых систем удаление годографа $W(j\omega)$ характеризуется запасом устойчивости по модулю и фазе.

Минимальный отрезок действительной оси h, характеризующий расстояние между критической и ближайшей точкой пересечения годографа $W(j\omega)$ с действительной осью, называют запасом устойчивости по амплитуде.

Минимальный угол, образуемый радиусом, проходящим через точку пересечения годографа W ($j\omega$) с окружностью единичного радиуса (с центром в начале координат) и отрицательной частью действительной оси, называют запасом устойчивости по фазе.

Система обладает требуемым запасом устойчивости, если она, удовлетворяя условию устойчивости, имеет значения модуля характеристического вектора $W(j\omega)$, отличающиеся от единицы не менее чем на заданное значение h (запас устойчивости по модулю), и угол поворота или фазу,

отличающуюся от (-) не менее чем на заданное значение (запас устойчивости по фазе).

Положительному переходу сверху вниз через отрезок (- ∞ , -1) характеристики W (j ω) соответствует пересечение логарифмической фазовой характеристики (ЛФК) при LmA(ω) > 0 прямых π , 3π и т.д. снизу вверх (точка 2), а отрицательному переходу — сверху вниз (точка 1). Критерий устойчивости Найквиста применительно к логарифмическим частотным характеристикам в общем случае можно сформулировать следующим образом.

Для того, чтобы система автоматического управления была устойчива, необходимо и достаточно, чтобы разность между числом положительных и отрицательных переходов логарифмической фазовой характеристикой прямых $\pm \pi$ (2i + 1), (i= 0, 1, 2, ...) во всех областях, где амплитудночастотная характеристика положительна (LmA(w) > 0) была равна 2 1, где 1 — число правых корней характеристического уравнения разомкнутой системы.

На рисунке приведен пример АФХ разомкнутой системы W (jw) и соответствующие ей ЛАХ и ЛФХ. Исследование проводится в области положительных ординат ЛАХ, на чертеже – в области окаймленной штриховкой. Пересечению характеристики W (jw) с кругом единичного радиуса (рис. а) соответствует пересечение ЛАХ с осью абсцисс. Из их анализа видно, что разность между числом положительных отрицательных переходов $A\Phi X$ прямых - π при LmA(w) > 0 равна нулю. Следовательно, если разомкнутая система была устойчива (1 = 0), то и замкнутая система будет устойчива, при этом запасы устойчивости по амплитуде будут равны h1 и h2, а запас устойчивости по фазе равен ф.