Linear Algebra Quiz - 1

Course Instructor : Prof. R. Vittal Rao

Date: 28 August, 2010 **Duration**: 12:00 pm - 12:20 pm

1. Find all solutions to the equation

$$x^2 - 10x + 16 = 0$$

in (i) \mathbb{F}_2 (ii) \mathbb{F}_5 (iii) \mathbb{F}_8

Solution:

$$x^{2} - 10x + 16 = 0$$

$$x^{2} - 8x - 2x + 16 = 0$$

$$(x - 2)(x - 8) = 0$$
In $\mathbb{F}_{2} \Rightarrow x.x = 0$

$$x = 0 \text{ is the solution}$$
In $\mathbb{F}_{5} \Rightarrow x^{2} + 1 = 0$

It can be verified that x = 2 and x = 3 are solutions

$$In $\mathbb{F}_8 \Rightarrow x^2 - 2x = 0$$$

It can be verified that x = 0, x = 2, x = 4 and x = 6 are solutions

- 2. Let K be a set of numbers. Let $K(\sqrt{3})$ be the set of all real numbers of the form $\alpha + \beta\sqrt{3}$, where $\alpha, \beta \in K$.
 - (a) Is $K(\sqrt{3})$ a field when $K = \mathbb{Z}$?
 - (b) Is $K(\sqrt{3})$ a field when $K = \mathbb{N}$?
 - (c) Give an example of a set K so that $K(\sqrt{3})$ becomes a field.

Solution:

(a) No.

Observe that the additive identity is $0 = (0) + (0)\sqrt{3}$ and the multiplicative identity is $1 = (1) + (0)\sqrt{3}$. In a field, the multiplicative inverse exists for all non-zero elements. Suppose this is true, and $\mathbb{Z}(\sqrt{3})$ is a field. Then, for every non-zero $a + b\sqrt{3}$, there exists $c + d\sqrt{3}$ such that

$$(a + b\sqrt{3})(c + d\sqrt{3}) = 1$$

$$c + d\sqrt{3} = \frac{1}{a + b\sqrt{3}}$$

$$= \frac{a - b\sqrt{3}}{a^2 - 3b^2}$$

$$= \left(\frac{a}{a^2 - 3b^2}\right) + \left(\frac{b}{a^2 - 3b^2}\right)\sqrt{3}$$

$$\Rightarrow c = \frac{a}{a^2 - 3b^2}, d = \frac{b}{a^2 - 3b^2}$$
(1)

For a=b=1, we see that $c=d=-1/2 \notin \mathbb{Z}$. This violates the closure law for fields. Hence $\mathbb{Z}(\sqrt{3})$ is not a field

(b) No.

It is easy to see that the additive inverse of an element does not exist in $\mathbb{N}(\sqrt{3})$.

(c) Example 1: \mathbb{R} , \mathbb{C}

Notice that $\mathbb{R}(\sqrt{3}) = \mathbb{R}$. It is easy to show that \mathbb{R} is a field. The same applies to \mathbb{C} .

Example 2: \mathbb{Q}

The basic laws for addition, multiplication and distributivity can be easily verified.

We need to show that the multiplicative inverse exists for every non-zero element $a+b\sqrt{3}$. In equation (1), we see that $\forall a,b\in\mathbb{Q},\frac{a}{a^2-3b^2},\frac{b}{a^2-3b^2}\in\mathbb{Q}$. (Note that $\forall a,b\in\mathbb{Q},a\neq 0$ or $b\neq 0$, we have $a^2-3b^2\neq 0$.) Hence, it follows that the multiplicative inverse exists. It follows that $\mathbb{Q}(\sqrt{3})$ is a field.

Example 3: \mathbb{F}_p , where p is a prime number.

 \mathbb{F}_p is an integral domain when p is prime. If it can be shown that every non-zero element in \mathbb{F}_p has a multiplicative inverse, then it follows that \mathbb{F}_p is a field. Let $0 \neq a \in \mathbb{F}_p$. Consider a, a^2, a^3, \ldots Since \mathbb{F}_p has finitely many elements, we must have $a^m = a^n$ for some m < n. Then $a^m - a^n = 0 = a^m(1 - a^{n-m})$. Since \mathbb{F}_p is an integral domain, $ab = 0 \Rightarrow a = 0$ or b = 0. Since $a^m \neq 0$ (why??), we get $1 = a^{n-m} = aa^{n-m-1}$, and we have a multiplicative inverse for a. Thus, it follows that every element in \mathbb{F}_p has a multiplicative inverse, and hence it is a field.

It follows from the above that, whenever $a^2 - 3b^2 \neq 0$, we have $\frac{a}{a^2 - 3b^2} \in \mathbb{F}_p$ and $\frac{b}{a^2 - 3b^2} \in \mathbb{F}_p$ and hence every element in $\mathbb{F}_p(\sqrt{3})$ has a multiplicative inverse. Thus, it follows that $\mathbb{F}_p(\sqrt{3})$ is a field. If $a^2 - 3b^2 = 0$, this means $a^2 = 3b^2 \Rightarrow a = \sqrt{3}b \Rightarrow \sqrt{3}$ exists in $\mathbb{F}_p \Rightarrow \mathbb{F}_p(\sqrt{3}) = \mathbb{F}_p$ which we know to be a field.

- 3. Let $A = \begin{bmatrix} 0 & 1 \\ 2 & 0 \end{bmatrix}$
 - (a) Is A diagonalizable over the field of integers, \mathbb{Z} ?
 - (b) Does the answer change if we consider the above matrix over $i)\mathbb{Q}, \quad ii) \mathbb{F}_5$

Solution: Suppose $\exists P$ (invertible) s.t.

$$P^{-1}AP = D = \begin{bmatrix} d_1 & 0 \\ 0 & d_2 \end{bmatrix}$$
$$P^{-1}A^2P = D^2$$
We get $A^2 = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} = 2I$
$$\Rightarrow P^{-1}2IP = D^2$$
$$\Rightarrow d_1^2 = 2; d_2^2 = 2$$

It can seen that $d_1, d_2 \notin \mathbb{Z}$ or \mathbb{Q} . Hence the matrix A is not diagonalizable over \mathbb{Z} or \mathbb{Q} .

In $\mathbb{F}_5 = \{0, 1, 2, 3, 4\}$, we cannot find a d_1 such that $d_1^2 = 2$ (Note: Take modulo 5 after addition and multiplication operations). Hence the matrix A is not diagonalizable over \mathbb{F}_5 .

4. Prove that the equation $x^2 = 0$ has a unique solution in \mathbb{F}_n , where n = pq, p and q are distinct primes.

(Hint: If a prime p divides a product of integers $a \times b$, then p divides a or b, or both)

Solution: The equation $x^2 = 0$ in \mathbb{F}_n can be re-written as $x^2 \equiv 0 \pmod{n}$. Hence, $n|x^2$ (i.e., n divides x^2). Therefore, $pq|x^2 \Rightarrow p|x.x \Rightarrow p|x$ (a property of prime numbers). Similarly, $q|x.x \Rightarrow q|x$.

So, x=0 is the only integer solution in the range $\{0,1,...,n-1\}$ to $x^2\equiv 0 \pmod{n}$.

5. Let
$$A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

- (a) Is A diagonalizable over the field of rational numbers, \mathbb{Q} ?
- (b) Does the answer change if we consider the above matrix over i) \mathbb{R} , ii) \mathbb{F}_7

Solution: Suppose $\exists P$ (invertible) s.t.

$$P^{-1}AP = D = \begin{bmatrix} d_1 & 0 \\ 0 & d_2 \end{bmatrix}$$

$$P^{-1}A^2P = D^2$$
We get $A^2 = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} = 2I$

$$\Rightarrow P^{-1}(-I)P = D^2$$

$$\Rightarrow d_1^2 = -1; d_2^2 = -1$$

It can seen that $d_1, d_2 \notin \mathbb{Q}$ or \mathbb{R} or \mathbb{F}_7 . Hence the matrix A is not diagonalizable over \mathbb{Q} or \mathbb{R} .

In $\mathbb{F}_7 = \{0, 1, 2, 3, 4, 5, 6\}$, we cannot find a d_1 such that $d_1^2 = -1 \pmod{7} = 6$ (Note: Take *modulo* 7 after addition and multiplication operations). Hence the matrix A is not diagonalizable over \mathbb{F}_7 .

6. Find all solutions to the equation

$$x^2 - 7x + 12 = 0$$

in (i) \mathbb{F}_2 (ii) \mathbb{F}_5 (iii) \mathbb{F}_6

Solution:

$$x^{2} - 7x + 12 = 0$$

In $\mathbb{F}_{2} \Rightarrow x^{2} - x = 0$

x = 0 and x = 1 are the solutions

$$In $\mathbb{F}_5 \Rightarrow x^2 - 2x + 2 = 0$$$

It can be verified that x = 3 and x = 4 are solutions.

In
$$\mathbb{F}_6 \Rightarrow x^2 - x = 0$$

It can be verified that x = 0, x = 1, x = 3 and x = 4 are solutions.

7. Let
$$A = \begin{bmatrix} 0 & -2 \\ 2 & 0 \end{bmatrix}$$

- (a) Is A diagonalizable over the field of rational numbers, \mathbb{Q} ?
- (b) Does the answer change if we consider the above matrix over $i)\mathbb{R}, \quad ii) \mathbb{F}_7$

Solution: Suppose $\exists P$ (invertible) s.t.

$$P^{-1}AP = D = \begin{bmatrix} d_1 & 0 \\ 0 & d_2 \end{bmatrix}$$
$$P^{-1}A^2P = D^2$$
We get $A^2 = \begin{bmatrix} -4 & 0 \\ 0 & -4 \end{bmatrix} = -4I$
$$\Rightarrow P^{-1}(-4I)P = D^2$$
$$\Rightarrow d_1^2 = -4; d_2^2 = -4$$

It can seen that $d_1, d_2 \notin \mathbb{Q}$ or \mathbb{R} . Hence the matrix A is not diagonalizable over \mathbb{Q} or \mathbb{R} .

In $\mathbb{F}_7 = \{0, 1, 2, 3, 4, 5, 6\}$, we cannot find a d_1 such that $d_1^2 = -4 \pmod{7} = 3$ (Note: Take *modulo* 7 after addition and multiplication operations). Hence the matrix A is not diagonalizable over \mathbb{F}_7 .

8. Let $K(\sqrt{2})$ be the set of all real numbers of the form $\alpha + \beta \sqrt{2}$, where $\alpha, \beta \in K$.

- (a) Is $K(\sqrt{2})$ a field when $K = \mathbb{Z}$?
- (b) Is $K(\sqrt{2})$ a field when $K = \mathbb{N}$?
- (c) Give an example of a set K so that $K(\sqrt{2})$ becomes a field.

Solution:

The solution is similar to the solution for Question 2.

9. Let
$$A = \begin{bmatrix} 0 & 4 \\ 3 & 0 \end{bmatrix}$$

- (a) Is A diagonalizable over the field of integers, \mathbb{Z} ?
- (b) Does the answer change if we consider the above matrix over $i)\mathbb{Q}, \quad ii) \mathbb{F}_7$

Solution: Suppose $\exists P$ (invertible) s.t.

$$P^{-1}AP = D = \begin{bmatrix} d_1 & 0 \\ 0 & d_2 \end{bmatrix}$$
$$P^{-1}A^2P = D^2$$
We get $A^2 = \begin{bmatrix} 12 & 0 \\ 0 & 12 \end{bmatrix} = 12I$
$$\Rightarrow P^{-1}(12I)P = D^2$$
$$\Rightarrow d_1^2 = 12; d_2^2 = 12$$

It can seen that $d_1, d_2 \notin \mathbb{Z}$ or \mathbb{Q} . Hence the matrix A is not diagonalizable over \mathbb{Z} or \mathbb{Q} .

In $\mathbb{F}_7 = \{0, 1, 2, 3, 4, 5, 6\}$, we cannot find a d_1 such that $d_1^2 = 12 \pmod{7} = 5$ (Note: Take *modulo* 7 after addition and multiplication operations). Hence the matrix A is not diagonalizable over \mathbb{F}_7 .

10. Consider the set of integers $\mathbb Z$ with "addition" operation \oplus and "multiplication" operation \otimes . Define

$$x \oplus y = x + y - 1$$
, $x \otimes y = x + y - xy$.

- Determine the additive identity and also the multiplicative identity, if one exists.
- Show that $(\mathbb{Z}, \oplus, \otimes)$ is an integral domain. (Error in Quiz-1: Show that $(\mathbb{Z}, \oplus, \otimes)$ is not an integral domain.)

Solution:

 \bullet Let e be the additive identity. Then

$$x \oplus e = e \oplus x = x + e - 1 = x$$

The above must be true for all $x \in \mathbb{Z}$. So, $e - 1 = 0 \Rightarrow e = 1$. So, when e = 1, $x \oplus e = e \oplus x = x$, $\forall x \in \mathbb{Z}$.

Let the multipliative identity be u. Then $x \otimes u = u \otimes x = x$ must be true $\forall x \in \mathbb{Z}$. So, on solving x + u - xu = x we get u(1-x) = 0. So, u(1-x) = 0 must hold for all $x \in \mathbb{Z}$ which implies u = 0.

- Let $x \otimes y = e = 1$ (1 is the "zero element"). Therefore, $x \otimes y = x + y xy = 1$. On rearranging we get (1 x)(1 y) = 0. Hence, x = 1 or y = 1. So the product of "non-zero" elements is "non-zero." The other properties of an integral domain can be easily verified to hold true for $(\mathbb{Z}, \oplus, \otimes)$.
- 11. Find all solutions to the equation

$$x^2 - 9x + 18 = 0$$

in (i) \mathbb{F}_2 (ii) \mathbb{F}_5 (iii) \mathbb{F}_8

Solution:

$$x^2 - 9x + 18 = 0$$

In $\mathbb{F}_2 \Rightarrow x^2 - x = 0$

x = 0 and x = 1 are the solutions

In
$$\mathbb{F}_5 \Rightarrow x^2 - 4x + 3 = 0$$

It can be verified that x = 1, x = 3 are solutions.

$$In $\mathbb{F}_8 \Rightarrow x^2 - x + 2 = 0$$$

It can be verified that x = 3, x = 6 are solutions.

- 12. Let G be the set of matrices of the form $\begin{pmatrix} a & a \\ a & a \end{pmatrix}$, where $a \in \mathbb{Q}$, the set of rational numbers
 - We know that any integral domain S has the following property: The product of any two non zero elements is non zero. Does this property hold for G?
 - Determine the multiplicative identity of G.
 - ullet Does every non-zero element of G have a multiplicative inverse? If yes, find it.

Solution: Let $p = \begin{pmatrix} a & a \\ a & a \end{pmatrix}$ and $q = \begin{pmatrix} b & b \\ b & b \end{pmatrix}$ where $p, q \in S$.

$$p \times q = 0 \Rightarrow \begin{pmatrix} a & a \\ a & a \end{pmatrix} \begin{pmatrix} b & b \\ b & b \end{pmatrix} = 0 \tag{2}$$

$$\Rightarrow \begin{pmatrix} 2ab & 2ab \\ 2ab & 2ab \end{pmatrix} = 0 \tag{3}$$

$$\Rightarrow ab = 0 \tag{4}$$

Since $a, b \in \mathbb{Q}$ and \mathbb{Q} is an integral domain, we have that S satisfies the above mentioned property of integral domain.

Let $\begin{pmatrix} e & e \\ e & e \end{pmatrix}$ be the multiplicative identity. It can be shown $\begin{pmatrix} 0.5 & 0.5 \\ 0.5 & 0.5 \end{pmatrix}$ is the multiplicative identity.

Similarly, it can be shown $\begin{pmatrix} \frac{1}{4a} & \frac{1}{4a} \\ \frac{1}{4a} & \frac{1}{4a} \end{pmatrix}$ is the multiplicative inverse of any non-zero element of the set S.