الأستاذ: شايبي أمين

تعریف: n عدد طبیعی غیر معدوم . القول أن عددین a و b متوافقان بترديد n يعنى أن للعددين a و b نفس الباقى فى القسمة الإقليدية على $a\equiv b \lceil n \rceil$ ونقرأ $a\equiv b \lceil n \rceil$ بترديد, n

مثال: 9[7] = 16 ذلك لأن للعددين 16 و 9 نفس الباقي في القسمة على

 $\Leftrightarrow n$ مضاعف ل $a-b \Leftrightarrow a \equiv b[n]$

 $a-b \equiv 0[n] \Leftrightarrow$

ملاحظة $a-b\equiv 0$ مضاعف ل معناه يوجد عدد $a-b\equiv 0$ مخاه يوجد عدد a-b=k. محیت k حیث

 $16-9 \equiv 0$ [7] مثال : [7] و [7] الله المنافذ عند المنافذ الله المنافذ الله المنافذ المنا n على عن r أنه باقى قسمة $a\equiv r[b]$ على ملاحظة على عن عن أنه باقى قسمة $a\equiv r[b]$ $0 \le r < b$ في حالة إذا كان

خواص الموافقات في <mark>7</mark>

c,b,a عدد طبيعي غير معدوم. c,b,a أعداد صحيحة , لدينا الخواص التالية n $a \equiv a[n]$ ①

- . $b \equiv a[n]$ فإن $a \equiv b[n]$ ②
- $\int a \equiv b \left[n \right]$ 3 . (خاصية التعدي) $a \equiv c[n]$ $b \equiv c[n]$
- $a \equiv b \lfloor n \rfloor$. (خاصية الجمع) $a+c\equiv b+d\left[n\right]$ فإن $c \equiv d[n]$
 - $a \equiv b[n]$. (خاصية الضرب) $ac \equiv bd[n]$ $c \equiv d [n]$
- . (خاصية الرفع إلى القوى) $a^p \equiv b^p \lceil n \rceil$ فإن $a \equiv b \lceil n \rceil$

تمارين تدريبية

c = 3691 , b = 837 , a = 255 تمرين 1 :نكن الأعداد الصحيحة

- . 11 على عين باقى قسمة كل من الأعداد c , b , a, $a \times b$, a + b من كل من عين باقى قسمة كل من واص الموافقات عين باقى
 - . 11 على العدد $a \times b \times c$, a^2 , a+b+cالحل:
 - (2 الباقي هو 2) $a = 23 \times 11 + 2$
 - $b = 76 \times (11) + 1$ أي b = 1[11] (الباقي هو 1)
 - (6 ألباقي هو 6) c = 6[11] و الباقي هو 6 $c = 335 \times (11) + 6$
 - *2 تعيين باقى قسمة a+b على 11 :
- (الباقي هو 3) $a+b\equiv 3[11]$ ومنه فإن $\begin{cases} a\equiv 2[11] \\ b\equiv 1[11] \end{cases}$

: على 11 على $a \times b$ على 11

(خاصية الضرب) $a \times b \equiv 2[11]$

: على 11 على a+b+c على 11

 $a \equiv 2[11]$ (خاصية الجمع) $a+b+c\equiv 9[11]$ ومنه فإن $b\equiv 1[11]$ c = 6|11|

: عبین باقی قسمهٔ a^2 علی 11

 $a^2 \equiv 4[11]$ ابينا $a^2 \equiv 2^2[11]$ ومنه فإن $a \equiv 2[11]$

: 11 على $a \times b \times c$ على ال

 $a \equiv 2[11]$ لدينا $\{b \equiv 1$ ومنه $\{b \equiv 1 \mid 11\}$ ليس باقي لانه $\{b \equiv 1 \mid 11\}$ $c \equiv 6[11]$

أكبر من العدد 11).

 $a \times b \times c = 12[11]$ (بالتعدي $a \times b \times c \equiv 1[11]$ فإن بما أن $12 \equiv 1[11]$

 $b\equiv 4[5]$ و $a\equiv 3[5]$ عددان صحيحان حيث $a\equiv 3[5]$. 5 يين أن العدد 2a+b يقبل القسمة على \bigcirc

- . 5 عين باقى قسمة العدد $2a^2 + b^2$ على 5
- .5 تحقق أن b^{1436} واستنتج باقي قسمة b^{2015} و b^{1436} على 5.

لاثبات أن العدد 2a+b يقبل القسمة على 5 يكفى إثبات أن

 $2a+b \equiv 0[5]$

 $2a+b\equiv 10[5]$ ومنه $\begin{cases} 2a\equiv 6[5] \\ b\equiv 4[5] \end{cases}$ وبالتالي $\begin{cases} a\equiv 3[5] \\ b\equiv 4[5] \end{cases}$

وبما أن [5] = 0 فإن [5] = 0 فإن [5] = 0 وبما أن

أى a+b يقبل القسمة على 5.

r لتعيين باقى قسمة العدد $2a^2+b^2$ على 5 يكفى إيجاد العدد $2a^2+b^2$

 $2a^2 + b^2 \equiv r[5]$

ومنه $\begin{cases} 2a^2 \equiv 18[5] \\ b^2 \equiv 16[5] \end{cases}$ ومنه $\begin{cases} a^2 \equiv 9[5] \\ b^2 \equiv 16[5] \end{cases}$ ومنه $\begin{cases} a \equiv 3[5] \\ b \equiv 4[5] \end{cases}$

 $2a^2 + b^2 \equiv 4[5]$ فإن $34 \equiv 4[5]$ وبما أن $2a^2 + b^2 \equiv 34[5]$

b = -1[5] التحقق أن b = -1[5]

ط1/ لدينا b = -1[5] ومنه b = -1[5] ومنه b = -1[5]

 $b \equiv -1[5]$ ومنه $b = 0 \equiv 4 - 5[5]$ ومنه b = -1[5] ومنه b = -1[5]

تمارین تدریبیة لشعبة تقنی ریاضی + ریاضی

مرين 1:

- lacktriangleأدرس حسب قيم العدد الطبيعي n بواقي القسمة الإقليدية للعدد n
 - 2 عين باقي قسمة كل من 4^{2015} و 4^{1437} على 4^{2015}
 - . $53 \times 4^{2015} + 5 \times 4^{1437} \equiv 0$ [7] استنتج أن (3

حل التمرين 1:

دراسة حسب قيم العدد الطبيعي n بواقي القسمة الإقليدية للعدد $oldsymbol{\mathbb{Q}}$

: 7 على 7

الدور)
$$4^3 \equiv 1[7]$$
 , $4^2 \equiv 2[7]$, $4^1 \equiv 4[7]$, $4^0 \equiv 1[7]$

هو 3)

ومنه من أجل كل عدد صحيح k لدينا :

. $4^{3k+2}\equiv 2\big[7\big]$, $4^{3k+1}\equiv 4\big[7\big]$, $4^{3k}\equiv 1\big[7\big]$

منه جدول البواقي كما يلي:

			رائي کند بني.	ومعه جدون أبيو
قیم n	3 <i>k</i>	3k + 1	3k + 2	
$4^n \equiv$	1	4	2	[7]

$oldsymbol{2}$ تعيين باقي قسمة كل من 4^{2015} و 4^{1437} على 7

 $4^{2015} = 4^{3.(671)+2}$ لدينا 2015 = 3.(671) + 2 ومنه

. $4^{2015} \equiv 2[7]$ نستنتج أن

- $4^{1437} = 4^{3.(479)}$ ومنه 1437 = 3.(479)
 - . $4^{1437} \equiv 1[7]$ نستنتج أن

: $53 \times 4^{2015} + 5 \times 4^{1437} + 8 = 0[7]$ (3)

بما أن [7] = 5 = 5 و [7] , 53 = 4 فإن :

 $53 \times 4^{2015} + 5 \times 4^{1437} + 8 \equiv 4 \times 2 + 5 \times 1 + 1[7]$

 $53 \times 4^{2015} + 5 \times 4^{1437} + 8 \equiv 14[7]$ ومنه

 $53 \times 4^{2015} + 5 \times 4^{1437} + 8 \equiv 0 [7]$ إذن

تمرين 2:

- 7. عين تبعا لقيم العدد الطبيعي n باقي قسمة 3^n على 3
 - .7 عين باقي قسمة $9^{3n+2} + 10^{1418} + 9^{3n+2}$ على 2.

حل التمرين 2

- : 3^n تعيين تبعا لقيم العدد الطبيعي n بواقي قسمة 3^n على 1
 - , $3^3 \equiv 6[7]$, $3^2 \equiv 2[7]$, $3^1 \equiv 3[7]$, $3^0 \equiv 1[7]$

 $3^4 \equiv 4[7]$

 $3^6 \equiv 1[7], 3^5 \equiv 5[7]$

ومنه من أجل كل عدد صحيح k لدينا

 $3^{6k+3} \equiv 6[7]$, $3^{6k+2} \equiv 2[7]$, $3^{6k+1} \equiv 3[7]$, $3^{6k} \equiv 1[7]$

. $3^{6k+5} \equiv 5[7]$, $3^{6k+4} \equiv 4[7]$

: **7 على** 3 على $3^{1999} + 10^{1418} + 9^{3n+2}$ على 3^{1999}

(1)..... $3^{1999} \equiv 3[7]$ ومنه $3^{1999} = 3^{6.(333)+1}$ لدينا

ومنه [7] ومنه [7] الخن [7] ومنه [7]

صفحة 4

استنتاج باقي قسمة $b^{\,2015}$ و $b^{\,1436}$ على 5 :

تذكير :

ا فردي n إذا كان $\left(-1 ight)^n=1$ إذا كان $\left(-1 ight)^n=-1$

لدينا $b \equiv -1$ وبالتالي $b \equiv -1$ ومنه $b \equiv -1$

$$b^{2015} \equiv 4[5]$$
 فإن $-1 \equiv 4[5]$ وبما أن $b^{2015} \equiv -1[5]$

$$b^{1436} \equiv 1[5]$$
 ومنه $b^{1436} \equiv (-1)^{1436}[5]$

تطبيق 1

- n عين حسب قيم العدد الطبيعي n بواقي القسمة الإقليدية للعددين n على n
 - . 11 على 7^{2017} , 9^{2016} , 3^{2016} على 11
 - $\P^{2016} = 13.3^{2016} + 26.7^{2017} 9^{2016}$ على 11 على 3

الحل:

: على 11 على n تعيين حسب قيم العدد الطبيعي n بواقي قسمة العدد n

,
$$3^3 \equiv 5[11]$$
 , $3^2 \equiv 9[11]$, $3^1 \equiv 3[11]$, $3^0 \equiv 1[11]$
. (الدور هو 5). $3^5 \equiv 1[11]$, $3^4 \equiv 4[11]$

 $3^{5k} \equiv 1[11]$ من أجل كل عدد صحيح k فإن

نحصل على البواقي كما في الجدول :

قیم n	5 <i>k</i>	5 <i>k</i> +1	5k + 2	5k+3	5k+4	
3 ⁿ =	1	3	9	5	4	[11]

• تعيين باقي قسمة العدد "7 على 11:

, $7^3\equiv 2\left[11\right]$, $7^2\equiv 5\left[11\right]$, $7^1\equiv 7\left[11\right]$, $7^0\equiv 1\left[11\right]$

ح و منه فإن الدور هو 5 منه فإن الدور هو 5
$$7^5 \equiv 1 \begin{bmatrix} 11 \end{bmatrix}$$

 $7^{5k} \equiv 1[11]$ من أجل كل عدد صحيح

قیم n	5 <i>k</i>	5 <i>k</i> +1	5k + 2	5k + 3	5k + 4	
7 ⁿ ≡	1	7	5	2	3	[11]

- $m{2}$ على 11: $m{2}$ استنتاج باقي قسمة الاعداد $m{3}^{2016}$, $m{3}^{2016}$ على
 - $3^{2016} = 3^{5.(403)+1}$ أي 2016 = 5.(403) + 1
 - ومنه نستنتج أن $7[11] = 3^{2016}$
 - لدينا

$$9^{2016} = \left(3^2\right)^{2016} = \left(3^2\right)^{5.(403)+1} = 3^{2[5.(403)+1]} = 3^{5.(2.403)+2}$$

 $9^{2016} \equiv 5[11]$ ومنه نستنتج أن

Tech-Serrar Abdelhamid

صفحة3

 $10^{1418} \equiv 3^{6.(236)+2} [7]$

(2).....
$$10^{1418} \equiv 2[7]$$
 ومنه فإن

(3)....
$$9^{3n+2} \equiv 4[7]$$
 ولدينا $9^{3n+2} = (3^2)^{3n+2} = 3^{6n+4}$ ولدينا

$$3^{1999} + 10^{1418} + 9^{3n+2} \equiv 3 + 2 + 4[7]$$

$$3^{1999} + 10^{1418} + 9^{3n+2} \equiv 9[7]$$
 ومنه

وبالتالي [7]
$$= 2^{1999} + 10^{1418} + 9^{3n+2} = 2$$

التمرين 3:

. عدد طبيعي n

- 7 على العدد n على العدد n على 1 أدرس تبعا لقيم العدد n
 - . كين باقي القسمة الأقليدية للعدد 6^{2n} على 7
 - التي يكون من أجلها العدد n عين قيم الطبيعي n
 - . 7 قابلا للقسمة على $(5^n + 6^{2n} + 3)$

حل التمرين 3:

: 7 تعيين تبعا لقيم العدد الطبيعي n بواقي قسمة 5^n على 1

,
$$5^4 \equiv \overline{2[7]}$$
 , $5^3 \equiv 6[7]$, $5^2 \equiv 4[7]$, $5^1 \equiv 5[7]$, $5^0 \equiv 1[7]$
 . $5^6 \equiv 1[7]$, $5^5 \equiv 3[7]$

من أجل كل عدد صحيح k فإن

$$5^{6k+3} \equiv 6[7]$$
, $5^{6k+2} \equiv 4[7]$, $5^{6k+1} \equiv 5[7]$, $5^{6k} \equiv 1[7]$

. $5^{6k+5} \equiv 3[7]$, $5^{6k+4} \equiv 2[7]$

على 7: على 7: على 7:

$$6^{2n} \equiv (-1)^{2n} \begin{bmatrix} 7 \end{bmatrix}$$
 لدينا $6 \equiv -1 \begin{bmatrix} 7 \end{bmatrix}$ ومنه

 $6^{2n} \equiv 1[7] \equiv 6^{2n}$ وبالتالي

7 تعيين قيم n التي يكون من أجلها $n+6^{2n}+6^{2n}+3$ قابلا للقسمة على 3

وبالنالي
$$5^n + 1 + 3 \equiv 0$$
 ومنه $5^n + 6^{2n} + 3 \equiv 0$

$$n=6k+5$$
 ومنه $5^n\equiv 3[7]$ ومنه $5^n\equiv -4[7]$

مبرهنة غوص (تذكير):

و c أعداد صحيحة غير معدومة . b

a يقسم الجداء b imes c و a أُولي مع b فإن a يقسم b imes c .

تطبيقات على مبرهنة غوص

التمرين 1:

(*)..... 5x = 3(y + 2) : عددان صحیحان بحیث x

. (*) التي تحقق المعادلة (x, y) التي تحقق المعادلة -

حل التمرين 1

لدينا $\frac{5}{5}$ ومنه $\frac{5}{3}$, بما أن 5 و 3 أوليان فيما بينهما فإنه $\frac{5}{5}$ دينا $\frac{5}{5}$ ومنه وحسب مبر هنة غوص فإن $\frac{5}{(v+2)}$ وبالتالي يوجد عدد صحيح

$$y = 5k - 2$$
 بحیث $y + 2 = 5k$ ومنه

x=3k نجد y في المعادلة (*) نجد

 $S = \{(3k, 5k-2)/k \in Z\}$ ومنه مجموعة حلول المعادلة (*) هي

ax + by = c حل المعادلات من الشكل

مبرهنة: a و b أعداد صحيحة غير معدومة نعتبر المعادلة ax+by=c

. $p \gcd(a,b) = d$, Z حيث x و y مجهولان من x ديا الماد (1) ما x د مانا در مانا

يكون للمعادلة (1) حلولا في Z إذا كان المعدد c يقبل القسمة على d .

ax + by = c طریقة حل معادلة من الشكل

طريقة الأولى باستعمال نظرية غوص:

مرين

21x + 15y = 6....(1) حل في Z^2 المعادلة

 $p \gcd(21,15) = 3$

بما أن 6 تقبل القسمة على 3 فإن المعادلة (1) لها حلو لا في $\,Z^2\,$. المعادلة (1) تكافىء $\,2\,x\,+5\,y\,=2\,$

(1) لدينا الثنائية (1,-1) هي حل خاص للمعادلة

7x + 5y = 7.(1) + 5.(-1) ومنه $\begin{cases} 7x + 5y = 2 \\ 7.(1) + 5.(-1) = 2 \end{cases}$ ومنه 7x - 7.(1) = 5.(-1) - 5y إذن 7(x - 1) = 5.(-1 - y)

لدينا $\frac{7}{7}$ ومنه $\frac{7}{5}$. ومنه و 5 أوليان $\frac{7}{7}$

فيما بينهما فإن $k \in Z$ وعليه يوجد $k \in Z$ عيث

y ومنه y = -1 - 7k ومنه y = -1 - 7k

نجد $\frac{x = 1 + 5k}{x + 5k}$ مجموعة حلول المعادلة (1) هي

 $S = \{(1+5k, -1-7k) | k \in Z\}$

الطريقة الثانية باستعمال الموافقات:

مرين

21x + 15y = 6....(1) حل في Z^2 المعادلة

حل

 $p \gcd(21,15) = 3$

. Z^2 بما أن 6 تقبل القسمة على 3 فإن المعادلة (1) لها حلو X^2 في X^2 بما أن 6 تقبل القسمة على X^2 بما أن X^2

$$\begin{cases} 7x \equiv 2[5] \\ 5x \equiv 0[5] \end{cases}$$
 وبالتالي $7x \equiv 2[5]$ ومنه $7x = -5y + 2$

بالطرح نجد $2x \equiv 2[5]$ أي أن $2x \equiv 2[5]$ نجد إذن x = 5k + 1 ومنه فإن $x \equiv 1[5]$ مجموعة حلول المعادلة (1) هي $x \equiv S = \frac{1}{5}$

صفحة 6

صفحة 5

a=11n+3 : عير معدومة حيث n اعداد طبيعية غير معدومة

b = 13n - 1

بين ان كل قاسم مشترك للعددين a و b يقسم (1

تمارين مقترحة

50x - 11y = 1: باستعمال خوارزمية اقليدس عين حلا خاصا للمعادلة (2 50x - 11y = 3: ثم حل في \mathbb{Z} المعادلة

حل التمرين 1

يثبات أن كل قاسم مشترك للعددين a و b يقسم 50 dليكن d قاسم مشترك للعددين d و منه

$$\frac{d}{50}$$
 ومنه $\frac{d}{13a}$ ومنه $\begin{cases} \frac{d}{13a} \\ \frac{d}{11b} \end{cases}$ ومنه $\begin{cases} \frac{d}{a} \\ \frac{d}{b} \end{cases}$

2) باستعمال خوار زمية اقليدس تعيين حل خاص للمعادلا

50x - 11y = 1

$$\begin{cases} 50 = 4.(11) + 6......(1) \\ 11 = 1.(6) + 5......(2) \\ 6 = 1.(5) + 1......(3) \end{cases}$$

$$\begin{cases} 6 = 50 - 4.(11)......(4) \\ 5 = 11 - 1.(6)......(5) \\ 1 = 6 - 1.(5).....(6) \end{cases}$$

50.(2) - 11(9) = 1: بالتعویض نجد

ومنه الثنائية (2,9) هي حل خاص للمعادلة .

$$50x - 11y = 3$$
 حل المعادلة $50x - 11y = 3$ لدينا $\begin{cases} 50x - 11y = 3 \\ 50.(2) - 11(9) = 1 \end{cases}$

$$\begin{cases} 50.(2) - 11(9) = 1 \\ 50x - 11y = 3 \\ 50.(6) - 11(27) = 3 \end{cases}$$

$$\begin{cases} 50x - 11y = 3 \\ 50.(2 \times 3) - 11(9 \times 3) = 1 \times 3 \\ 50x - 50.(6) = 11y - 11.(27) \end{cases}$$
وبالطرح نجد

50(x-6)=11(y-27) أي أن ومنه 11/50 ومنه 11/50(x-6) ومنه 11/50(x-6) ومنه *

فيما بينهما فإنه وحسب مبر هنة غوص 11 تقسم (x-6) ومنه

x = 11k + 6 ومنه x = 6 = 11k يوجد $k \in \mathbb{Z}$ y = 50k + 27 بالتعويض في المعادلة نجد ومنه مجموعة الحلول هي

 $S = \{(11k + 6, 50k + 27)/k \in Z\}$

: نتبع مايلي ax + by = c...(E) نتبع مايلي الحل معادلة من الشكل

d نبحث عن $p \gcd(a,b) = d$ نبحث عن $p \gcd(a,b)$ a'x + b'y = c' فتصبح

التي تحقق المعادلة (E) باستعمال (x_0, y_0) التي تحقق المعادلة (E) باستعمال

وبالطرح نحصل على
$$\begin{cases} a'x + b'y = c' \\ a'x_0 + b'y_0 = c' \end{cases}$$
 وبالطرح نحصل على /3

$$a'(x-x_0)=b'(y-y_0)$$

4/ نطبق مبر هنة غوص للحصول على أحد المجاهيل ثم نعوض للحصول على المجهول الثاني .

صفحة 8

تمرين2 حل في Z كل من الجملتين التاليتين:

$$\begin{cases} 2x \equiv 2[4] \\ 4x \equiv 1[3] \end{cases} / 2 \qquad , \qquad \begin{cases} x \equiv 3[5] \\ x \equiv 1[6] \end{cases} / 1$$

$$6\beta - 5\alpha = 2$$
 ومنه $\begin{cases} x = 5\alpha + 3 \\ x = 6\beta + 1 \end{cases}$ ومنه $\begin{cases} x \equiv 3[5] \\ x \equiv 1[6] \end{cases}$

$$eta \equiv 2[5]$$
 ومنه $eta = 5\alpha + 2$ وبالتالي $eta = 5\alpha + 2$ ومنه $eta = 5k + 2$

وبالتعويض في المعادلة نجد $\alpha=6k+2$ مع $k\in Z$ مع

$$\begin{cases} 3x \equiv 3[6] \\ 2x \equiv 2[6] \end{cases}$$
 والنالي
$$\begin{cases} x \equiv 1[2] \\ x \equiv 1[3] \end{cases}$$
 نكافيء
$$\begin{cases} 2x \equiv 2[4] \\ 4x \equiv 1[3] \end{cases}$$
 /2

ومنه
$$x=6k+1$$
 ومنه $x=1[6]$ ومنه $x=3-2[6]$ ومنه $x=6k+1$

من أجل A عددطبيعي موجب تماما ومن أجل كل $1 \prec x$ فإنه يوجد $A = a_0 + a_1 x + a_2 x^2 + \dots + a x^n$: نشر وحيد للعدد A $a_n \neq 0$ أعداد طبيعية مع a_0, a_1, a_2, \dots

 $A = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n = \overline{a_n \dots a_2 a_1 a_0}^x$ ونكتب A مع $i \in [0,n]$ مع $a_i \prec x$ مع $i \in [0,n]$ في نظام التعداد ذو الأساس x .

 $rac{1}{a}$ عدد طبيعي حيث $a \succ 5$

 $N_a = 4a^5 + 2a^3 + a + 3$: نضع

. a الأساس في النظام ذي الأساس . N_a

 $N_a = \overline{4213}^a$: حسب التعريف فإن

1101101 . التعداد الثنائي بالشكل N في التعداد الثنائي بالشكل • ماهو أساس التعداد الذي يكتب فيه N كما يلى $\overline{214}$?

$$N = \overline{1101101}$$
 لدينا $N = \overline{214}$

$$\begin{cases}
N = 1.2^6 + 1.2^5 + 0.2^4 + 1.2^3 + 1.2^2 + 0.2^1 + 1.2^0 \\
N = 2x^2 + 1x + 4x^0
\end{cases}$$

$$\begin{cases} N = 109 \\ N = 2x^2 + x + 4 \end{cases}$$
 إذن
$$\begin{cases} N = 2^6 + 2^5 + 2^3 + 2^2 + 1 \\ N = 2x^2 + x + 4 \end{cases}$$

$$2x^2 + x - 105 = 0$$
 ومنه فإن $2x^2 + x + 4 = 109$ تكافيء

$$x_2 = -\frac{15}{2}$$
 , $x_1 = 7$ ومنه يوجد حلان للمعادلة و هما $\Delta = 840$

إذن الأساس هو 7.

صفحة 9

صفحة 10 🤇

تمارين مقترحة من سلاسل الأستاذ :حليلات عمار

13 على 10 على 13 التمرين (01) 1 - عين حسب قيم العدد الطبيعي n بواقي القسمة الإقليدية للعدد $(01)^2 + 10^{2008} + 1 = 0$ اتحقق أن $(10^{2008})^2 + 10^{2008} + 1 = 0$ العدد الطبيعي n بحيث يكون $(10^{2008})^2 + 10^{2n} + 10$

. 5 عدد طبیعی أكبر من n (02) عدد التمرین

b=2n+3 و a=n-2 و طبيعيان حيث a=n-2

b = a الأكبر للعددين a و b

ب - بين أن العددين a و b من مضاعفات 7 إذا وفقط إذا كان n+5 مضاعفا للعدد 7.

PGCD(a;b) = 7 جـ عيّن قيم n التي يكون من أجلها

 $q = n^2 - 7n + 10$ و $p = 2n^2 - 7n - 15$: و $p = 2n^2 - 7n - 15$ و $p = 2n^2 - 7n + 10$

n-5 و q يقبل القسمة على p أ - بيّن أن كل من العددين p

PGCD(p;q)، n و بدلالة n

التمرين (03) 1. نعتبر المعادلة : (1)....(1): x حيث x و y عددان صحيحان. (03) 1. بيّن أنه إذا كانت الثنائية (x,y) حلا للمعادلة (1) فإن (x,y) مضاعف للعدد 7 ب) حل المعادلة (1) .

9. الدرس حسب قيم العدد الطبيعي n بواقي القسمة الإقليدية للعدد n على .

.9 على القسمة على n القسمة على n العدد الطبيعي n بحيث يقبل العدد n

 $u_n = 2^{6n} - 1$ ، n عدد طبیعی 4

أ) تحقق أن u_n يقبل القسمة على 9.

، (x,y) ذات المجهول (7 u_1) $x + (u_2)y = 126567...(2): نات المجهول$

. حيث x و y عددان صحيحان

1.3 العدد n العدد n يقبل القسمة على 1.3 التورين (04) عدد طبيعي n العدد n يقبل القسمة على 2.4 استنتج أنه من أجل كل عدد طبيعي n ، يقبل كل من العددين n القسمة على n على n القسمة على n على n القسمة على n القسمة

n واستنتج ، حسب قيم n ، باقي القسمة الإقليدية للعدد n على n ، واستنتج باقي قسمة n على n على n .

 $A_p = 3^p + 3^{2p} + 3^{3p}$: p عدد طبیعي عن أجل كل عدد عن أجل كل عدد عن أجل كا

.13 على القسمة الإقليدية للعدد p=3n على أ- أ

.13 جارهن أنه إذا كان p=3n+1 فإن ميب برهن أنه إذا كان القسمة على p=3n+1

p=3n+2 من أجل من أجل على 13 على القسمة الإقليدية للعدد مين باقي القسمة الإقليدية العدد

: يكتب العددان الطبيعيان a و a في نظام العد ذي الأساس a كما يلي $b=\overline{1000100010000}$ و $a=\overline{10010010000}$

. النظام العشري $A_{\scriptscriptstyle p}$ الشكل $A_{\scriptscriptstyle p}$ النظام العشري b

4x-9y=319.....(I): y و x المحادلة ذات المجهولين الصحيحين x و x (05) نعتبر المعادلة ذات المجهولين المعادلية x (1) حل المعادلية x (1) حل المعادلة x (1) حل المعادلة x (1)

 $4a^2 - 9b^2 = 319....(II)$: عين الثنائيات (a,b) الصحيحية ، حلول المعادلة (a,b) عين الثنائيات

. استنتج الثنائيات $(x_0;y_0)$ حلول المعادلة (I) بحيث $(x_0;y_0)$ مربعين تامين (3

التمريين (06) نعتبر العدد الطبيعي n الذي يكتب في نظام العد ذي الأساس 7 كما يلي :

. حیث α عدد طبیعی $n = \overline{11\alpha00}$

.3 حتى يكون n قابلا للقسمة على α

عين العدد α حتى يكون n قابلا للقسمة على 5.

. 15 التي تجعل n قابلا للقسمة على α

. اكتب العدد $\alpha=4$ اكتب العدد $\alpha=4$

3x - 21y = 78: و x و x و x و التمرين (07) نعتبر المعادلة (E) ذات المجهولين الصحيحين x

. \diamondsuit^2 أ - بيّن أن (E) تقبل حلو لا في

 $x\equiv 5$ [7] فإن (E) فإن (E) من $(x\,,y\,)$ من $(x\,,y\,)$ فإن أثبت أنه إذا كانت الثنائية (E) من (E) فإن (E) فإن .

2) أ - ادرس ، حسب قيم العدد الطبيعي n ، بو اقي القسمة الإقليدية للعدد 5^n على 7. بو اقي القسمة الإقليدية للعدد $(x\,,y\,)$ من $(x\,,y\,)$

 $y' = (\ln 2)y$: النمرين (08) 1. حل المعادلة التفاضلية

 $f\left(x\right)$ عيّن عبارة $f\left(0\right)=1$ عين عبارة المعادلة الذي يحقق $f\left(0\right)=1$ عدد طبيعي .

أ) ادرس بواقي القسمة الإقليدية على 7 للعدد "2"

 $f\left(2009
ight)-4$ باقي القسمة الإقليدية على 7 للعدد القسمة الإقليدية باقي

 $S_n = f(0) + f(1) + f(n)$ حيث S_n مين المجموع S_n التي من أجلها S_n القسمة على 7. ب)عيّن قيم العدد الطبيعي S_n التي من أجلها S_n القسمة على 7.

5 على 4 على قسمة n عدد طبيعي n عين باقى قسمة n على 5

5 ادر س بو اقي قسمة 3^n على 5

3) ما هو باقي قسمة العدد 1429²⁰⁰⁹ على 5?

 $A_n = 2 + 4^{2n} + 3^n$ ليكن العدد الطبيعي (4

5 عيّن قيم n بحيث A_n يقبل القسمة على -

eta=n+2 و $lpha=n^2+1$: و lpha حيث n و n عدد طبيعي ليكن العددان lpha و n

 $PGCD(\alpha,\beta) = PGCD(\beta,n)$: ا) بر هن أن - 1

 $PGCD\left(lpha,eta
ight)$ استنتج القيم الممكنة للعدد

: ما يلي يكتبان في نظام التعداد ذي الأساس a كما يلي يa - 2 عددان طبيعيان يكتبان في نظام التعداد ذي الأساس $a=\overline{3520}$

b و a العددين a و قاسم مشترك للعددين a و أ

2(3n+2) او (3n+2) هو PGCD(a,b): استنتج تبعا لقيم n أن

PGCD(a,b) = 41: أين eta و eta إذا علمت أن lpha

. نعتبر المعادلة (E) عددان صحيحان x عددان صحيحان . (11) و عددان صحيحان .

أ) عين القاسم المشترك الأكبر للعددين 109 و 226 . ماذا يمكن استتتاجه فيما يخص المعادلة (E) ؟

 \bullet (141+226k;68+109k) بر هن أن مجموعة حلول المعادلة (E) هي مجموعة الثنائيات من الشكل (E) بر هن أن مجموعة حلول المعادلة (E)

. حيث k عدد صحيح

حلول مقترحة

حل التمرين (1)

: 13 على 10 على 10 تعيين حسب قيم العدد الطبيعي n بواقي القسمة الإقليدية ل 10^n على 13

$$10^6 \equiv 1 \begin{bmatrix} 13 \end{bmatrix} , \ 10^5 \equiv 4 \begin{bmatrix} 13 \end{bmatrix} , \ 10^4 \equiv 3 \begin{bmatrix} 13 \end{bmatrix} , \ 10^3 \equiv 12 \begin{bmatrix} 13 \end{bmatrix} , \ 10^2 \equiv 9 \begin{bmatrix} 13 \end{bmatrix} , \ 10^1 \equiv 10 \begin{bmatrix} 13 \end{bmatrix} , \ 10^0 \equiv 1 \begin{bmatrix} 13 \end{bmatrix}$$

$$10^{6k+4}\equiv 3igl[13igr]$$
 , $10^{6k+3}\equiv 12igl[13igr]$, $10^{6k+2}\equiv 9igl[13igr]$, $10^{6k+1}\equiv 10igl[13igr]$, $10^{6k}\equiv 1igl[13igr]$ من أجل كل $k\in Z$ فإن أجل

$$10^{6k+5} \equiv 4[13]$$

: كما يلي حسب قيم العدد الطبيعي n كما يلي

قیم n	6 <i>k</i>	6k + 1	6k + 2	6k + 3	6k + 4	6k + 5	
10 ⁿ =	1	10	9	12	3	4	[13]

: $(10^{2008})^2 + 10^{2008} + 1 \equiv 0[13]$: التحقق أن

$$\left(10^{2008}\right)^2 = 10^{2(2008)} = 10^{2(6.(334)+4)} = 10^{6.(668)+8} = 10^{6.(668)+6+2} = 10^{6.(669)+2} \text{ , } 10^{2008} = 10^{6.(334)+4} \text{ limits}$$

$$\left(10^{2008}\right)^2 + 10^{2008} + 1 \equiv 13 \begin{bmatrix} 13 \end{bmatrix} \; \text{ign} \; \left(10^{2008}\right)^2 + 10^{2008} + 1 \equiv 9 + 3 + 1 \begin{bmatrix} 13 \end{bmatrix} \; \text{exist} \; \left(10^{2008}\right)^2 = 9 \begin{bmatrix} 13 \end{bmatrix} \; \text{ign} \; \left(10^{2008}\right)^2 = 9 \begin{bmatrix} 13 \end{bmatrix} \; \text{exist} \; \left(10^{2008}\right)^2 + 10^{2008} = 3 \begin{bmatrix} 13 \end{bmatrix} \; \text{exist} \; \left(10^{2008}\right)^2 + 10^{2008} = 3 \begin{bmatrix} 13 \end{bmatrix} \; \text{exist} \; \left(10^{2008}\right)^2 + 10^{2008} = 3 \begin{bmatrix} 13 \end{bmatrix} \; \text{exist} \; \left(10^{2008}\right)^2 + 10^{2008} = 3 \begin{bmatrix} 13 \end{bmatrix} \; \text{exist} \; \left(10^{2008}\right)^2 = 9 \begin{bmatrix} 13 \end{bmatrix} \; \text{exist} \; \left(10^{2008}\right)^2 = 9 \begin{bmatrix} 13 \end{bmatrix} \; \text{exist} \; \left(10^{2008}\right)^2 = 9 \begin{bmatrix} 13 \end{bmatrix} \; \text{exist} \; \left(10^{2008}\right)^2 = 9 \begin{bmatrix} 13 \end{bmatrix} \; \text{exist} \; \left(10^{2008}\right)^2 = 9 \begin{bmatrix} 13 \end{bmatrix} \; \text{exist} \; \left(10^{2008}\right)^2 = 9 \begin{bmatrix} 13 \end{bmatrix} \; \text{exist} \; \left(10^{2008}\right)^2 = 9 \begin{bmatrix} 13 \end{bmatrix} \; \text{exist} \; \left(10^{2008}\right)^2 = 9 \begin{bmatrix} 13 \end{bmatrix} \; \text{exist} \; \left(10^{2008}\right)^2 = 9 \begin{bmatrix} 13 \end{bmatrix} \; \text{exist} \; \left(10^{2008}\right)^2 = 9 \begin{bmatrix} 13 \end{bmatrix} \; \text{exist} \; \left(10^{2008}\right)^2 = 9 \begin{bmatrix} 13 \end{bmatrix} \; \text{exist} \; \left(10^{2008}\right)^2 = 9 \begin{bmatrix} 13 \end{bmatrix} \; \text{exist} \; \left(10^{2008}\right)^2 = 9 \begin{bmatrix} 13 \end{bmatrix} \; \text{exist} \; \left(10^{2008}\right)^2 = 9 \begin{bmatrix} 13 \end{bmatrix} \; \text{exist} \; \left(10^{2008}\right)^2 = 9 \begin{bmatrix} 13 \end{bmatrix} \; \text{exist} \; \left(10^{2008}\right)^2 = 9 \begin{bmatrix} 13 \end{bmatrix} \; \text{exist} \; \left(10^{2008}\right)^2 = 9 \begin{bmatrix} 13 \end{bmatrix} \; \text{exist} \; \left(10^{2008}\right)^2 = 9 \begin{bmatrix} 13 \end{bmatrix} \; \text{exist} \; \left(10^{2008}\right)^2 = 9 \begin{bmatrix} 13 \end{bmatrix} \; \text{exist} \; \left(10^{2008}\right)^2 = 9 \begin{bmatrix} 13 \end{bmatrix} \; \text{exist} \; \left(10^{2008}\right)^2 = 9 \begin{bmatrix} 13 \end{bmatrix} \; \text{exist} \; \left(10^{2008}\right)^2 = 9 \begin{bmatrix} 13 \end{bmatrix} \; \text{exist} \; \left(10^{2008}\right)^2 = 9 \begin{bmatrix} 13 \end{bmatrix} \; \text{exist} \; \left(10^{2008}\right)^2 = 9 \begin{bmatrix} 13 \end{bmatrix} \; \text{exist} \; \left(10^{2008}\right)^2 = 9 \begin{bmatrix} 13 \end{bmatrix} \; \text{exist} \; \left(10^{2008}\right)^2 = 9 \begin{bmatrix} 13 \end{bmatrix} \; \text{exist} \; \left(10^{2008}\right)^2 = 9 \begin{bmatrix} 13 \end{bmatrix} \; \text{exist} \; \left(10^{2008}\right)^2 = 9 \begin{bmatrix} 13 \end{bmatrix} \; \text{exist} \; \left(10^{2008}\right)^2 = 9 \begin{bmatrix} 13 \end{bmatrix} \; \text{exist} \; \left(10^{2008}\right)^2 = 9 \begin{bmatrix} 13 \end{bmatrix} \; \text{exist} \; \left(10^{2008}\right)^2 = 9 \begin{bmatrix} 13 \end{bmatrix} \; \text{exist} \; \left(10^{2008}\right)^2 = 9 \begin{bmatrix} 13 \end{bmatrix} \; \text{exist} \; \left(10^{2008}\right)^2 = 9 \begin{bmatrix} 13 \end{bmatrix} \; \text{exist} \; \left(10^{2008}\right)^2 = 9 \begin{bmatrix} 13 \end{bmatrix} \; \text{exist} \; \left(10^{2008}\right)^2 = 9 \begin{bmatrix} 13 \end{bmatrix} \; \text{exist} \; \left(10^{2008}\right)^2 = 9 \begin{bmatrix} 13 \end{bmatrix} \; \text{exist} \; \left(10^{2008}\right)^2 = 9 \begin{bmatrix} 13 \end{bmatrix} \; \text{exist} \; \left(10^{2008}\right)^2 = 9 \begin{bmatrix} 13 \end{bmatrix} \; \text{exist} \; \left(10^{2008}\right)^2 = 9 \begin{bmatrix} 13 \end{bmatrix} \; \text{exist} \; \left(10^{2008}\right)^2 = 9 \begin{bmatrix} 13 \end{bmatrix} \; \text{exist} \; \left(10^{2008}\right)^2 = 9 \begin{bmatrix} 13 \end{bmatrix} \; \text{exist}$$

$$(10^{2008})^2 + 10^{2008} + 1 \equiv 0[13]$$
ومنه نجد

: $10^{2n} + 10^n + 1 \equiv 0$ [13] تعيين قيم العدد الطبيعي n حتى يكون

قيم n	6 <i>k</i>	6k + 1	6k + 2	6k + 3	6k + 4	6k + 5	
$10^n \equiv$	1	10	9	12	3	4	[13]
$10^{2n} \equiv$	1	9	3	1	9	3	[13]
1 ≡	1	1	1	1	1	1	[13]
$10^{2^n} + 10^n + 1 \equiv$	3	20	0	14	0	7	[13]

$$n \in \left\{6k+2;6k+4
ight\}$$
 هي $10^{2n}+10^n+1\equiv 0$ هي يكون $n \in \left\{6k+2;6k+4
ight\}$ هي $n \in \left\{6k+2;6k+4\right\}$

حل التمرين (2)

$$b = 2n + 3$$
 , $a = n - 2$, $n > 5$

: b و a القيم الممكنة للقاسم المشترك الأكبر للعددين a

نضع
$$PGCD(a,b) = d$$
 ومنه

$$d \in \{1,7\}$$
 وبالتالي $d \in D_7$ ومنه $d \neq 0$ اي $d \neq 0$ ومنه فإن $d \neq 0$ ومنه $d \neq 0$ ومنه $d \neq 0$

$$\begin{cases} n = 7k + 2 \\ 2n = 7k - 3 \end{cases}$$
 ومنه $\begin{cases} n - 2 = 7k \\ 2n + 3 = 7k \end{cases}$ بحیث $k \in \mathbb{Z}$ بحیث $k \in \mathbb{Z}$ ومنه $k \in$

. 7 و عليه
$$n+5\equiv 0$$
 و بالطرح نجد $n+5\equiv 0$ $\Rightarrow 2n-n\equiv -3-2$ و عليه $n+5\equiv 0$ و عليه $n+5\equiv 0$ و عليه $n+5\equiv 0$

من جهة أخرى إذا كان n+5 مضاعفا للعدد 7 فإن $n+5\equiv 0$ $n+5\equiv 0$ ومنه فإن

.7 من مضاعفات 7.
$$\begin{cases} a \equiv 0[7] \\ b \equiv 0[7] \end{cases} \Leftrightarrow \begin{cases} n-2 \equiv 0[7] \\ 2n+3 \equiv 0[7] \end{cases} \Leftrightarrow \begin{cases} n-2 \equiv -7[7] \\ 2n+3 \equiv -7[7] \end{cases} \Leftrightarrow \begin{cases} n-2 \equiv -5-2[7] \\ 2n+3 \equiv 2.(-5)+3[7] \end{cases}$$

: PGCD(a,b) = 7 قيم n التي يكون من أجلها n

$$n=7k+2$$
 ومنه $k\in Z$ ومنه يوجد $2/n-2$ ومنه $2/n-2$ ومنه $2/n-2$ ومنه $2/n-2$ لدينا

$$q = n^2 - 7n + 10$$
, $p = 2n^2 - 7n - 15$ /2

n-5 ا p ف p يقبلان القسمة على p :

$$p=2n^2-7n-15=(n-5) imes b$$
 أي $p=2n^2-7n-15=(n-5) imes (2n+3)$ نجد $p=2n^2-7n-15=(n-5) imes (2n+3)$ بالقسمة الإقليدية للعدد $p=2n^2-7n+10=(n-5) imes (n-5) imes (n-5)$ نجد $q=n^2-7n+10=(n-5) imes (n-5)$ أي $q=n^2-7n+10=(n-5) imes (n-5)$ ومنه نستنتج أن q و p يقبلان القسمة على $n-5$

$: PGCD(p,q) \ n$ با تعیین تبعا لقیم

$$PGCD(p,q) = PGCD[(n-5) \times b, (n-5) \times a] = \frac{(n-5) \times PGCD(a,b)}{(n-5) \times a}$$

- $PGCD(p,q) = (n-5) \times 7$ ومنه فإن PGCD(a,b) = 7 فإن n = 7k + 2
 - PGCD(p,q) = (n-5) ومنه فإن PGCD(a,b) = 1 فإن $n \neq 7k + 2$

حل التمرين (3)

7x + 65y = 2009....(1) نعتبر المعادلة

: 7 إثبات أنه إذا كانت الثنائية (x,y) حلا للمعادلة (1) فإن y مضاعف ل

• (1)
$$\Leftrightarrow$$
 7x - 2009 = 65y \Leftrightarrow 7(x - 287) = 65y

. $\frac{7}{y}$: ومنه غوص فإن $\frac{7}{65y}$ ويما أن 1 $\frac{7}{65y}$ ومنه $\frac{7}{7}$ ومنه غوص فإن ومنه $\frac{7}{65y}$

$$x=65k+287$$
 بما $\frac{7}{y}$ فإنه يوجد $k\in Z$ بحيث $k\in Z$ وبالتعويض في المعادلة نجد

$$S = \left\{ \left(65k + 287, 7k \right) / k \in Z \right\}$$

. $2^6 \equiv 1[9]$, $2^5 \equiv 5[9]$, $2^4 \equiv 7[9]$, $2^3 \equiv 8[9]$, $2^2 \equiv 4[9]$, $2^1 \equiv 2[9]$, $2^0 \equiv 1[9]$

. $2^{6k+5} \equiv 5[9]$, $2^{6k+4} \equiv 7[9]$, $2^{6k+3} \equiv 8[9]$, $2^{6k+2} \equiv 4[9]$, $2^{6k+1} \equiv 2[9]$, $2^{6k} \equiv 1[9]$ نجد $k \in \mathbb{Z}$ نجد $k \in \mathbb{Z}$

نلخص النتائج كما في الجدول

قیم n	6 <i>k</i>	6k + 1	6k + 2	6k + 3	6k + 4	6k + 5	
$2^n \equiv$	1	2	4	8	7	5	[9]

$^{-}$ 13 تعيين قيم العدد الطبيعي $^{-}$ حتى يقبل العدد $^{-}$ $^{-}$ 2 القسمة على $^{-}$ 3 تعيين قيم العدد الطبيعي المتحدد المتحدد الطبيعي المتحدد الطبيع المتحدد المتحدد الطبيع المتحدد المتحدد الطبيع المتحدد المتحدد المتحدد الطبيع المتحدد الطبيع المتحدد المت

$$3(n+1)\equiv 0$$
 [9] نكافيء $3(n+1)\equiv 0$ ومنه $3(n+1)\equiv 0$ تكافيء $2^{6n}+3n+2\equiv 0$ تكافيء نكافيء الدينا

.
$$k\in N$$
 ومنه $n=9$ ومنه $n=9$ ومنه فإن $n=8$ وبالتالي $n=9$ وبالتالي $n=1$

$$u_n = 2^{6n} - 1$$
 نضع /4

: 9 التحقق أن u_n يقبل القسمة على

. 9 فإن: 0[9] فإن: 0[9] معناه u_n معناه غلى 9 فإن: يقبل القسمة على 9

: $(7u_1)x + (u_2)y = 126567....(2)$

$$u_2 = 2^{12} - 1 = 4095$$
 , $u_1 = 2^6 - 1 = 63$ بما أن

$$(7 \times 7)x + (455)y = 14063$$
 نجد و نجد (2) بالقسمة على و نجد (2) بالقسمة المعادلة (2) المعادلة (2) المعادلة (2) المعادلة (2) المعادلة (2) المعادلة (2) المعادلة (3) المعادلة (455) المعاد

$$S = \left\{ \left(65k + 287, 7k \right) / k \in Z \right\}$$

$$\underline{\hspace{1cm}} \text{----} \qquad \underline{\hspace{1cm}} \text{-----} \underline{\hspace{1cm}} \text{-----} \ell \circ \bullet \ell \circ \bullet \circ \prec \prec \prec \ell \circ \circ \bullet \rightarrow \hbar \uparrow \hbar \hbar \bullet \rightarrow \succ \succ \odot \succ \rightarrow \succ$$

$$\prec \mp \circ \mp \circ \ell \bullet$$
 $\hbar \bullet \succ \odot \succ \leftarrow \bigcirc$

▁ႍઽċċℓο੯ዸ੦≺੦≺≺≺ℓ਼≎•ৣᡮੂ∱ᡮ₺•ુ≻≻⊙≻ુ≻•ु

⊙≻⊸≻

$$-\infty \ell \circ \mathbf{G} \ell \circ \prec \circ \prec \prec \ell \circ \circ \bullet , \hbar \uparrow \hbar \hbar \bullet , \succ \succ \circ \succ , \qquad -\infty \ell \circ \mathbf{G} \ell \circ \prec \circ \prec \prec \ell \circ \circ \bullet , \hbar \uparrow \hbar \hbar \bullet , \succ \succ \circ \succ ,$$

. 13 يقبل القسمة على 1n العدد n يقبل القسمة على 1n

. وبالتالي
$$[13]^n \equiv 1^n = 1^n$$
 تكافيء $[13]^n \equiv 1$ تكافيء $[13]^n \equiv 1^n = 3^n$ أي أن $[13]^n \equiv 1^n$ مضاعف ل 13 وهو المطلوب.

2/ استنتاج أن العددان $3^{3n+1} - 3$ و $9^{-3^{3n+1}}$ يقبلان القسمة على 13:

$$3^{3n+1} - 3 \equiv 0$$
 [13] تكافيء $3^{3n+1} = 3$ تكافيء تك

$$3^{3n+2}-9\equiv 0$$
[13] تكافيء $3^{3n+2}=9$ تكافيء $3^{3n+2}=9$ تكافيء $3^{3n+2}=3^2$ تكافيء $3^{3n+2}=3^2$ تكافيء $3^{3n+2}=3^2$ تكافيء $3^{3n+2}=3^2$ تكافيء $3^{3n+2}=3^2$ تكافيء $3^{3n+2}=3^2$ تكافيء $3^{3n+2}=3^2$

: 13 على 13 على 13 على 13 مبين حسب قيم العدد 3^n على 13 على 14 على 1

$$3^3 \equiv 1[13]$$
, $3^2 \equiv 9[13]$, $3^1 \equiv 3[13]$, $3^0 \equiv 1[13]$

$$3^{3k+2} \equiv 9 \begin{bmatrix} 13 \end{bmatrix}$$
 , $3^{3k+1} \equiv 3 \begin{bmatrix} 13 \end{bmatrix}$, $3^{3k} \equiv 1 \begin{bmatrix} 13 \end{bmatrix}$ نستنتج أن

استنتاج باقي قسمة 2005²⁰¹⁰ على 13:

$$2005^{2010} \equiv 1[13]$$
 فإن $2010 = 3 \times (670)$ وبما ان $2005 \equiv 3[13]$ فإن فإن

$$A_p = 3^p + 3^{2p} + 3^{3p}$$
 بوضع /4

: 13 من أجل p=3n إيجاد باقي القسمة للعدد p=3n على

من أجل
$$p=3^{3n}+3^{3.(2n)}+3^{3.(3n)}$$
 فإن $A_p=3^{3n}+3^{6n}+3^{6n}+3^{9n}$ ومنه $p=3n$

$$A_P \equiv 3[13] \quad \partial_P \equiv 1 + 1 + 1[13]$$

: 13 يقبل القسمة على p=3n+1 ثاب تبيان أنه من اجل p=3n+1

$$A_p = 3^{3n+1} + \left(3^{3n+1}\right)^2 + \left(3^{3n+1}\right)^3 \text{ أي أن } A_p = 3^{3n+1} + 3^{2.(3n+1)} + 3^{3.(3n+1)} + 2^{3n+1}$$
من اجل $p = 3n+1$

$$3^{3n+1} + \left(3^{3n+1}\right)^2 + \left(3^{3n+1}\right)^3 \equiv 13 \begin{bmatrix} 13 \end{bmatrix} \quad 3^{3n+1} + \left(3^{3n+1}\right)^2 + \left(3^{3n+1}\right)^3 = 3 + 9 + 1 \begin{bmatrix} 13 \end{bmatrix} \quad 3^{3n+1} \equiv 3 \begin{bmatrix} 13 \end{bmatrix}$$
بما أن : $\begin{bmatrix} 3^{3n+1} \equiv 3 \begin{bmatrix} 13 \end{bmatrix} \\ \left(3^{3n+1}\right)^2 \equiv 3^2 \begin{bmatrix} 13 \end{bmatrix}$

$$\begin{bmatrix} 3^{3n+1} \equiv 3 \begin{bmatrix} 13 \end{bmatrix} \\ \left(3^{3n+1}\right)^3 \equiv 3^3 \begin{bmatrix} 13 \end{bmatrix}$$

. معناه $A_p \equiv 0$ (من أجل n=3) معناه (من أجل) معناه $A_p \equiv 0$

p=3n+2 على 13 من أجل p=3n+2 ج) تعيين باقي القسمة الإقليدية للعدد

$$A_p = 3^{3n+2} + \left(3^{3n+2}\right)^2 + \left(3^{3n+2}\right)^3$$
 من أجل $p = 3^{n+2} + 3^{2,(3n+2)} + 3^{3,(3n+2)} + 3^{3,(3n+2)}$ من أجل $p = 3^{n+2} + 3^{n+$

. (p=3n+2 معناه $A_p\equiv 0$ (من أجل)

 $b = \overline{1000100010000}^3$, $a = \overline{1001001000}^3$ / 5

: قي النظام العشري و a يكتبان على الشكل A في النظام العشري a

$$a = 3^3 + 3^6 + 3^9$$
 \mathcal{L}^{\dagger} $a = 0.3^0 + 0.3^1 + 0.3^2 + 1.3^3 + 0.3^4 + 0.3^5 + 1.3^6 + 0.3^7 + 0.3^8 + 1.3^9$

$$p=3$$
 حيث $a=3^3+3^{2.(3)}+3^{3.(3)}$ ومنه $a=3^3+3^{2.(3)}+3^{3.(3)}$ ومنه

$$b = 0.3^{0} + 0.3^{1} + 0.3^{2} + 0.3^{3} + 1.3^{4} + 0.3^{5} + 0.3^{6} + 0.3^{7} + 1.3^{8} + 0.3^{9} + 0.3^{10} + 0.3^{10} + 1.3^{12}$$

.
$$p=4$$
 على الشكل A_p على النظام العشري على الشكل $b=3^4+3^{2.(4)}+3^{3.(4)}$ ومنه

حل التمرين (5)

التأكد أن الثنانية y , x عددان صحيحان y 319 مي حل للمعادلة y 319 مي عددان صحيحان التأكد أن الثنانية y 319 مي حل المعادلة y 319 مي حل المعادلة y 319 مي حل المعادلة y 319 مي حال التأكد أن الثنانية y 319 مي حددان صحيحان

. (1) هي حل خاص للمعادلة (82,1) ومنه الثنائية (82,1) هي حل خاص للمعادلة (82,1) دينا

:(I) حل المعادلة -

$$4(x-82) = 9(y-1) \iff 4x-4(82) = 9y-9(1) \iff 4x-9y = 4.(82)-9.(1) = 319$$
 لدينا
$$\begin{cases} 4x-9y=319 \\ 4.(82)-9.(1)=319 \end{cases}$$

ومنه
$$k \in \mathbb{Z}$$
 ومنه $4/(y-1)$ ومنه $4/(y-1)$ ومنه $p \gcd(4,9) = 1$ ومنه $4/(y-1)$ ومنه $4/(y-1)$ ومنه $4/(y-1)$ ومنه $y = 4k + 1$ ومنه $y = 4k + 1$ ومنه $y = 4k + 1$

$4a^2 - 9b^2 = 319....(II)$ علين الثنانيات الصحيحة (a,b) حلول المعادلة /2

$$(2a-3b).(2a+3b) = 319 \iff (2a)^2 - (3b)^2 = 319 \iff 4a^2 - 9b^2 = 319$$

$$b=53$$
 بما أن 319 عدد أولي و $a=80$ وبالتعويض نجد $a=80$ وبالتعويض نجد $a=320$ وبالتعويض نجد $a=30$ وبالتعويض نجد $a=30$

$$(a,b) = (80,53)$$
 وبالتالي توجد ثنائية وحيدة هي

) استنتاج الثنانية (x_0, y_0) بحيث x_0 و y_0 مربعين تامين:

$$\begin{cases} x_0 = 6400 \\ y_0 = 2809 \end{cases}$$
 ومنه $\begin{cases} x_0 = 80^2 \\ y_0 = 53^2 \end{cases}$ أي أن $\begin{cases} x_0 = a^2 \\ y_0 = b^2 \end{cases}$ ومنه $\begin{cases} 4x_0 - 9y_0 = 319 \\ 4a^2 - 9b^2 = 319 \end{cases}$ ومنه (II) و (II)

$$(x_0, y_0) = (6400, 2809)$$
 أي

حل التمرين (6)

 $\alpha \in N$, $n = \overline{11\alpha00}^7$

: 3 حتى يكون n قابلا للقسمة على lpha على lpha

n=49lpha+2744 ومنه $n=\overline{11\alpha00}^7=0.7^0+0.7^1+lpha.7^2+1.7^3+1.7^4$ لاينا

 $lpha+56\equiv0$ [3] تكافيء $49(lpha+56)\equiv0$ تكافيء $49(lpha+56)\equiv0$ تكافيء $n\equiv0$ تكافيء $n\equiv0$ تكافيء $n\equiv0$ قابلا للقسمة على 3 معناه $n\equiv0$

 $k\in Z$ حيث lpha=3k+1 وبالتالي lpha=1 وبالتالي lpha=-56 وبما أن lpha=-56 فإن lpha=-56

: 2 عيين العدد lpha حتى يكون n قابلا للقسمة على 2

 $lpha+56\equiv0$ [5] تكافيء $49(lpha+56)\equiv0$ تكافيء $49(lpha+56)\equiv0$ تكافيء $n\equiv0$ تكافيء $n\equiv0$ تكافيء $n\equiv0$

 $k\in Z$ حيث lpha=5k+4 وبالتالي lpha=4[5] خيث lpha=-4[5] حيث lpha=-56[5]

- استنتاج قيمة lpha التي تجعل n قابلا للقسمة على 15:

 $k\in Z$ حيث $\alpha=15k+4$ وبالتالي $\alpha=4$ [15] حيث $\alpha=-56$ [15]

: عتابة العدد n في النظام العشري lpha=4

n = 2940 وبالتالي n = 49.(4) + 2744

حل التمرين (7)

3x - 21y = 78....(E)

Z^{2} نا Z^{2} نقبل حلولا في Z^{2} :

. Z^2 وبما أن $\frac{3}{78}$ فإن المعادلة (E) تقبل حلولا في $p \gcd(3,21)=3$

: $x \equiv 5[7]$ فإن (E) علا للمعادلة (x,y) علا الثنائية الثنائية (x,y)

x = 5[7] ومنه x = 26[7] وعليه $x = 7y + 26 \Leftrightarrow x - 7y = 26 \Leftrightarrow (E)$ المعادلة

(E) استنتاج حلول المعادلة

لدينا x=7k=5 ومنه x=7k=0 وبالتالي يوجد عدد صحيح x=7k=5 بحيث x=5=7k=5 ومنه وبالتعويض في المعادلة

y = k - 3 وبالتالي 21 y = 7k - 21 ومنه فإن y = 7k - 21 ومنه فإن

 $S = \left\{ \left(7k + 5, k - 3\right)/k \in Z \right\}$: هي (E) مجموعة حلول المعادلة

2/أ) دراسة حسب قيم العدد الطبيعي n بواقى القسمة الإقليدية للعدد "5 على 7:

. $5^6 \equiv 1[7]$, $5^5 \equiv 3[7]$, $5^4 \equiv 2[7]$, $5^3 \equiv 6[7]$, $5^2 \equiv 4[7]$, $5^1 \equiv 5[7]$, $5^0 \equiv 1[7]$

. $5^{6k+5} \equiv 3\lceil 7 \rceil$, $5^{6k+4} \equiv 2\lceil 7 \rceil$, $5^{6k+3} \equiv 6\lceil 7 \rceil$, $5^{6k+2} \equiv 4\lceil 7 \rceil$, $5^{6k+1} \equiv 5\lceil 7 \rceil$, $5^{6k} \equiv 1\lceil 7 \rceil$ وبالنالي المالي ا

n يم	6 <i>k</i>	6k + 1	6k + 2	6k + 3	6k + 4	6k + 5	
5 ⁿ =	1	5	4	6	2	3	[7]

Tech-Serrar Abdelhamid

$5^x+5^y\equiv 3$ [7] من Z^2 التي هي حلول المعادلة (E) وتحقق و(x,y) من (x,y)

نستعين بالجدول التالي:

	قيم 🗴	6 <i>k</i>	6k + 1	6k + 2	6k + 3	6k + 4	6k + 5
قیم y	$5^x \equiv$ $5^y \equiv$	1	5	4	6	2	3

6k'	1	2	6	5	0	3	4
6k'+1	5	6	4	3	4	0	1
6k'+2	4	5	2	1	3	6	0
6k'+3	6	0	4	3	5	1	2
6k'+4	2	3	0	6	1	4	5
6k'+5	3	4	1	0	3	5	6

 $5^x+5^y\equiv 3$ [7] من خلال الجدول نستنتج أن الثنائيات (x,y) من (x,y) من خلال الجدول نستنتج

$$(x,y) \in \{(6k,6k'+4);(6k+2,6k'+1);(6k+2,6k'+3);(6k+3,6k'+2);(6k+3,6k'+5);(6k+4,6k')\}$$

حل التمرين (8)

$y' = (\ln 2)y$(1) حل المعادلة التفاضلية

المعادلة (1) من الشكل $y' = (\ln 2)y$ هي الدوال المعرفة ب $f_c(x) = c e^{ax}$ الدوال المعرفة ب y' = ay

$$f_c(x) = c e^{\ln 2^x}$$
 أي $f_c(x) = c e^{x \ln 2}$ وبالتالي $f_c(x) = c e^{\ln 2^x}$

: f(0) = 1 تعيين الحل الخاص f والذي يحقق

$$c=1 \iff c e^{\ln 2^0}=1 \iff f_c(0)=1$$
 معناه $f(0)=1$

$$f(x) = 2^x$$
 وبالنالي $f(x) = e^{\ln 2^x}$ ومنه

3/ أ) تعيين بواقي قسمة "2 على 7:

$$2^{3k+2}\equiv 4igl[7igr]$$
 , $2^{3k+1}\equiv 2igl[7igr]$, $2^{3k}\equiv 1igl[7igr]$: ومنه فإن $2^3\equiv 1igl[7igr]$, $2^2\equiv 4igl[7igr]$, $2^1\equiv igl[7igr]$, $2^0\equiv igl[7igr]$

البواقي هي 1, 2 و 4 على الترتيب.

ب) استنتاج باقي القسمة الإقليدية للعدد $f\left(2009 ight)-4$ على 7:

$$2009 = 3.(669) + 2$$
 و $f(2009) - 4 = 2^{2009} - 4$ لدينا

ومنه نستنتج أن
$$[7] = 4 - 4 = 2^{2009}$$
 وبالتالي $[7] = 4 - 4^{2009}$

S_n المجموع (المجموع S_n المجموع المجموع)

الأول 1
$$S_n = f(0) + f(1) + \dots + f(n)$$
 وبالتالي $S_n = 2^0 + 2^1 + \dots + 2^n$ تكافيء $S_n = f(0) + f(1) + \dots + f(n)$ وأساسها هو $S_n = f(0) + f(1) + \dots + f(n)$

$$S_n = (1). \frac{2^{n+1} - 1}{2 - 1} = 2^{n+1} - 1$$

. ك يعيين قيم العدد الطبيعي n التي من أجلها S_n يقبل القسمة على 7:

 $2^{n+1}-1\equiv 0$ یقبل القسمة على 7 إذا وفقط إذا كان S_n

n=3k-1 إذن n+1=3k اإذن n+1=3k في الجواب n+1=3k في الجواب n+1=3k الذن $2^{3k}=1$ وبما أن $2^{3k}=1$

حل التمرين (10):

 $n \in \mathbb{N}$ حيث $\beta = n + 2$, $\alpha = n^2 + n$

: $PGCD(\alpha,\beta) = PGCD(\beta,n)$ اثبات أن اثبات

lpha=n.eta+(-n) بقسمة العدد الطبيعي lpha على eta نجد lpha=n.(n+2)-n أي أن

. $PGCD\left(lpha,eta
ight)=PGCD\left(eta,-n
ight)=PGCD\left(eta,n
ight)$ ومنه وحسب خوارزمية إقليدس فإن

: $PGCD(\alpha, \beta)$ ب القيم الممكنة ل

 $PGCD(\alpha,\beta) = PGCD(\beta,n) = d$ نضع $PGCD(\alpha,\beta) = d$ ومنه $PGCD(\alpha,\beta) = d$

$$d \in \{1,2\}$$
 ومنه فإن: $d/\beta - n$ أي $d/(n+2) - n$ ومنه $d/\beta - n$ إذن $d/\beta - n$

 $b=\overline{384}$ و $a=\overline{3520}$ و $a=\overline{3520}$ و الأساس a=12 و الأسان في النظام ذو الأساس a=12

: b و a اثبات أن العدد a (3n+2) هو قاسم مشترك للعددان

 $a=3n^3+5n^2+2n$ ومنه $a=0.n^0+2.n^1+5.n^2+3.n^3$ ويالقسمة الإقليدية للعدد $a=3n^3+5n^2+2n=(3n+2).(n^2+n)$ نجد $a=3n^3+5n^2+2n=(3n+2).(n^2+n)$ نجد

(1)...... a قاسم للعدد (3n+2) قاسم العدد

 $b = 3n^2 + 8n + 4$ $b = 4.n^0 + 8.n^1 + 3.n^2$ equation $b = \overline{384}$

 $b = 3n^2 + 8n + 4 = (3n+2).(n+2)$ نجد $(3n+2) = 3n^2 + 8n + 4$ وبالقسمة الإقليدية للعدد

(2)..... b قاسم للعدد (3n+2) قاسم العدد

. b و a من (1) و (2) نستنتج ان العدد (3n+2) هو قاسم مشترك للعددين a

: 2ig(3n+2ig) ب ig(3n+2ig) أو PGCD(a,b) أو

$$D = PGCD(a,b) = PGCD((3n+2).(n^2+n);(3n+2).(n+2)) = (3n+2).PGCD((n^2+n);(n+2))$$
نضع

$$PGCD(a,b) = (3n+2)PGCD(\alpha,\beta) = (3n+2)PGCD(\beta,n)$$
 إِذِن

PGCD(a,b) = 2(3n+2) أو PGCD(a,b) = 2(3n+2) وبالتالي PGCD(a,b) = 2(3n+2) أو $PGCD(\beta,n) = 2$

: $PGCD\left(a,b\right)=41$ جين lpha و eta بحيث (ج

 $\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc$ فإن $PGCD\left(a,b\right)=41$ بما أن $PGCD\left(a,b\right)=41$ فإن $PGCD\left(a,b\right)=41$

2016/2015

 $S = \{(226k + 141,109k + 68)\}\$ ومنه y = 109k + 68