

Gaussian 09 基本介绍和使用

Gaussian的由来

历史悠久

The Nobel Prize in Chemistry 1998

J. A. Pople (1925-2004) Gaussian-系列程序

GAUSSIAN程序是John A. Pople和他在Carnegie-Mellon大学的课题组在1970年发布的,最初版本是Gaussian 70,目前已经有四十多年的历史。

Gaussian软件的发展、普及和应用对计算化学的 发展做出了巨大贡献 GAUSSIAN 70,

GAUSSIAN 76,

GAUSSIAN 80,

GAUSSIAN 82,

GAUSSIAN 86,

GAUSSIAN 88,

GAUSSIAN 90,

GAUSSIAN 92,

GAUSSIAN 94,

GAUSSIAN 98,

GAUSSIAN 03,

GAUSSIAN 09

GAUSSIAN 16

Gaussian的由来

Nature杂志的评价

实验研究者全新的工具

Nature, 2008, 455, 309-313.

"It was the release of Gaussian 70 (a general-purpose, ab initio computer program that has developed into today's Gaussian 03 software) and the advent of minicomputers, both in the 1970s, that brought the tools of quantum mechanics to organic chemists."

Gaussian View & Gaussian

GaussView是Gaussian软件的图形用户界面

GaussView 5.0 Gaussian 09 Gauss View 4.0 Gaussian 03 Gauss View 3.0 Gauss View 2.0 Gaussian 98 Gauss View 1.0

Gaussian的由来

为什么叫Gaussian?

Gaussian的由来

为什么叫Gaussian?

• 软件使用高斯型(Gaussian-type orbitals, GTO)基组 代替斯莱特型(Slater-type orbitals, STO)来提升计算 的速度。

Gaussian的功能

研究范围

- 各种物质形态,如气相、 液相、固相、多相
- 各种物质形式,如无机物、有机物、生物分子、晶体等
- 各种尺度,如分子尺度、 纳米尺度、介观尺度
- 周期性与非周期性体系
- 基态与激发态

研究内容

- 分子的平衡结构及过渡态结构
- 化学反应机理
- 分子间相互作用
- 分子性质
- 光谱

Gaussian的功能

对化学反应的全面研究

使用Gaussian 09 研究您感兴趣的化学问题

- 快速可靠地得到分子稳定结构
- 预测过渡态结构
- 确定局域稳定点是稳态还是过渡态
- 通过内禀反应坐标(IRC)来追踪反应路径,从而确定一个特定的过渡态连接的是哪个反应物和产物。一旦得到反应的势能面图像,反应热和能垒就能够被精确的预测。
- 研究反应机理
- 更多相关信息:
- http://www.gaussian.com/g prod/g09b.htm

▶ 基态有机金属络合物催化反应

在单金属Ta上N2的活化机理

J. Li, S. Li* Angew. Chem. Int. Ed. 2008, 47, 8040

▶基态酶催化反应

QM/MM方法计算过渡金属酶催化反应机理

ONIOM模型

- 专为大体系设计的理论 化学模型
- 支持Gaussian 09的所有 计算方法与分子性质预 测

异青霉素N合成酶

Lundberg, et al., *JCTC*, 5, 222 (2009)

▶基态酶催化反应

2013

Nobel Prize

QM/MM方法计算过渡金属酶催化反应机理

Keiji Morokuma 京都大学, Emory (passed away)

Photo: A. Mahmoud Martin Karplus

ONIOM模型

- 专为大体系设计的理论 化学模型
- 支持Gaussian 09的所有 计算方法与分子性质预 测

异青霉素N合成酶

Lundberg, et al., *JCTC*, **5**, 222 (2009)

▶激发态化学反应

Gaussian支持的模型化学方法

- 分子力学方法
- 基态半经验方法
- 自洽场方法(SCF-HF)
- 密度泛函方法(DFT)
- ●电子相关方法
- 组合式自动高精度能量计算方法
- 各种解析基组和密度拟合基组

Gaussian支持的模型化学方法

- 分子力学方法
- ●基态半经验方法
- 自洽场方法(SCF-HF)
- ●密度泛函方法(DFT)
- ●电子相关方法
- 组合式自动高精度能量计算方法
- 各种解析基组和密度拟合基组

密度泛函方法 (DFT)

- 可以使用所有支持的DFT方法进行闭壳层和开壳层的 能量、梯度和频率; 限制性开壳层方法(RO)计算能 量和梯度;
- 交换泛函:
 - Slater, Xa, Becke 88, Perdew-Wang 91, Barone-modified PW91, Gill
 96, OPTX, TPSS, BRx, PKZB, wPBEh, PBEh, etc.
- 相关泛函:
 - VWN, VWN5, LYP, Perdew 81, Perdew 86, Perdew-Wang 91, PBE, B95, TPSS, KCIS, BRC, PKZB, etc.

密度泛函方法 (DFT)

- 可以使用所有支持的DFT方法进行闭壳层和开壳层的 能量、梯度和频率; 限制性开壳层方法(RO)计算能 量和梯度;
- 交换泛函:
 - Slater, Xa, Becke 88, Perdew-Wang 91, Baronemodified PW91, Gill 96, OPTX, TPSS, BRx, PKZB, wPBEh, PBEh, etc.
- 相关泛函:
 - VWN, VWN5, LYP, Perdew 81, Perdew 86, Perdew-Wang 91, PBE, B95, TPSS, KCIS, BRC, PKZB, etc.

密度泛函方法 (DFT)

- 其它纯泛函:
 - VSXC、HCTH系列
- 杂化泛函:
 - B3LYP, B3P86, P3PW91, B1及其变体, B98, B97-1, B97-2, PBE1PBE, HSEh1PBE, O3LYP, TPSSh, BMK, M05 & M06及其变体, X3LYP;用户可自定义杂化方式;
- 经验弥散:
 - B97D
- 长程(LC)校正:
 - LC-wPBE, CAM-B3LYP, WB97XD及其变体; Hirao的通用 LC校正.

Gaussian View 简介

- ▶ GaussView 的窗口组成
- **GaussView鼠标键盘操作**
- > 构建工具面板【Builder】
- 文件工具栏【File】
- ▶ 坐标工具栏【Coordinates】
- 文件窗口工具栏【Windows】
- ▶ 计算工具栏【Calculate】
- ▶ 查看计算结果【Results】

GaussianView的窗口组成

鼠标和键盘的操作

- * 鼠标的操作
- 1. 在窗口内任意位置点击鼠标左键并按住,此时 移动鼠标,窗口内所有分子跟随转动。
- 在窗口内任意位置点击鼠标右键并按住上下移动鼠标:分子会放大缩小左右移动鼠标:分子沿垂直屏幕的轴转动。
- 3. 在窗口内任意位置点击鼠标中键(或者滚轮) 并按住,此时移动鼠标,屏幕内的所有分子将 跟随平移。
- 4. 使用滚轮前后滚动,当前窗口内分子放大缩少。

鼠标和键盘的配合

- 》 当窗口中有多个分子, 只想转动或者移动其中一个分子, 按住键盘【Alt】键
- 1. 用鼠标左键点击某个分子并按住,此时移动鼠标,只有被点击的分子会转动;
- 2. 用鼠标中键(或滚轮)点击某个分子并按住,移动鼠标 只有被点击的分子会跟随鼠标移动
- 3. 用鼠标右键分子点击某个分子并按住,左右移动鼠标, 只有被点击的分子会沿一个垂直屏幕的轴转动;
- 4. 如果鼠标没有中键/滚轮,或者使用中失效的处理:

按住【Alt】+【Shift】键,用鼠标左键点击你要转动的分子并按住,只有被点击的分子会跟随鼠标移动

练习一

使用刚才讲述的键盘鼠标操作知识将三个苯环摆到相互重叠的位置

调出独立的Builder面板

点击【View】菜单中的【Builder】即可调出独立的

构建工具面板(Builder)

工具栏"图钉"

"图钉"未按下

选择了需要的元素片段后 窗口会关闭

"图钉"已按下

选择了需要的元素片段后 窗口<mark>不</mark>关闭

环工具 × Ring Fragments cistrans-Decalin Decalin

常见分子片断和生物分子残基

键长、键角、二面角

练习二

*通过转动二面角将全重叠式丁烷转成全交叉式

Builder面板一些图标的意义

查询

重新键和

添加一个键合原 子(默认添加H)

删除一个原子

选择所有的原子

不选择任何原子

选择单个原子

选择多个原子

在质心添加一个原子/碎片

Gauss View 5.0新增功能

例如,在 C60 中所有原子的质心放置一个原子

点群对称性

Tools → 【Point group】

有对称性的分子, 在计算中使用对称性能 极大的提升计算速度。

剪切、复制、粘贴、删除

■粘贴有三种方式:

- 1. 添加到同一个分子集合中的新的分子
- 2. 替换当前视图中的分子(不可恢复,慎重使用!)
- 3. 附加到当前视图中
- ■删除执行后不可恢复,慎重使用!

练习

- *从头构建二茂铁分子,并将分子对称化到 D_{5d} 。推荐步骤如下:
- 搭建茂环 (D_{5h} C₅H₅)
- 2. 将搭建好的茂环append一份到窗口中,然后将两个茂环放置为堆积状态,调整环间距离约3.3埃
- 3. 旋转其中一个环,使两个茂环处于 交叉构象,并使用点群对称化。
- 4. 用在质心加入原子的方法加入铁原子并对称化。
- 调整键长到标准距离并定义联接关系。

化学反应势能面

实际应用中,优化结构就是找local minimum 和 saddle point

Gaussian软件的使用

- ➤分子优化 (minimum 和 transition state)
- ▶频率计算(确认)
- ▶内禀坐标(IRC)计算—确认TS

福井谦一 1981, Nobel Prize

赵成大,东北师范 1986年引入IRC

高斯输入文件结构

主要由五部分组成:

- 1. Link 0命令段
- 2. Route部分
- 3. Title部分
- 4. 分子说明部分
- 5. 额外输入部分

1. Link 0 命令段

这部分每行以%开头,用来控制Gaussian的计算资源分配。

1. 检查点文件

%chk=*filename*.chk

这是一个二进制文件,其中包含了大量在输出文件中没有包含的更细节的计算结果,也常常用于作业的重启,若不写,则不生成检查点文件。

2. 内存分配

%mem=100MW

可分配给该任务的最大内存,对于并行作业,是所有进程的内存之和,这和其他某些用MPI或PVM等来实现并行的程序不同。单位MW表示兆word,一个word为8个字节。也可使用我们熟悉的MB、GB等单位。

3. 进程数控制

%nprocshared=12

表示使用12个核并行。注意,对于开启了超线程技术的计算机,不建议使用超过实际物理核数的线程数。

以上是三个最常见的命令,对于更高级的比如指定临时文件目录、分不同位置存储临时 文件、是否保存临时文件等功能,可参考官方手册。

2. Route 部分

- 以#开头,若想在输出文件中看到更多信息,比如Hartree-Fock计算的每一步能量,可以用#p。后面指定计算所用的方法、基组、方法控制相关的关键词、要计算的性质、计算的算法等等。
- 高斯的关键词书写不分先后,比如opt和freq,程序会自动先优化结构再计算频率。
- 这一部分可以写在连续的几行中,最后以一个空行结束,通用的格式为 #p method/basis keyword1=(option1,option2) keyword2= (option1,option2, ...) ...

3-4. Title & 分子说明 部分

3. Title部分

这一行内容随意,可以写一些类似编程时的注释语句,比如说明这是什么体系,计算目的等等,尽量不要使用特殊字符,不要使用control+字母的组合。可连续多行书写,最后以空行结束。

4.分子说明部分

•电荷与自旋多重度 两者成对出现,在某些特殊计算如BSSE计算、ONIOM模型计算中可能有多套电荷和多重度。

•分子结构

•这部分可用**直角坐标**也可用**内坐标**,内坐标相对复杂。注意这部分的**数字必须 有小数点**。分子结构可来源于实验数据或使用GaussView等建模软件获得。

这部分一定要以空行结束。若不在结尾空一行,程序将无法运行。

5. 额外输入信息

对于一些特殊的计算任务,常常会有一些额外的输入信息,与 Route**部分的关键词配合使用**,例如**混合基组**的使用,**自定义 基组的使用,溶剂模型参数**等等。

优化和频率计算

Keywords: opt freq

过渡态的优化

E₁: 反应能垒

E₂: 反应能

options:

- 1. opt=(ts,noeigen,calcFC) freq
- 2. Opt=(ts, noeigen,calcFC, recalcFC=20)
- 3. Opt=(ts,noeigen,modredundant) 配合 额外输入信息使用
- 4. Fix scan

Text 01

 $CH_3Cl + Br \rightarrow CH_3Br + Cl$

S_N2 反应

Method : DFT--b3lyp

Basis Sets: 6-31+G*

Gibbs Energy profile

① Separated calculation

(Distances are in Å)

2 Incorporated calculation

Text 02

 $CH_2=CH-O-CH_2-CH=CH_2 \rightarrow CHO-CH_2-CH_2-CH=CH_2$

克莱森重排

Method : DFT--b3lyp

Basis Sets: 6-31+G*

Text 03

 $CH_2=CH-OH + O=CH_2 \rightarrow CHO-CH_2-CH_2-OH$

calculate method: DFT b3lyp

basic set: 6-311+G*

Input

	Input o	rientat	cion:		
Center Atomic	Atomic	Coordinates (Angstroms)			
Number Number	Type		X	Y	Z
1 8	0	0	.000000	0.000000	0.127140
2 1	0	0	.000000	0.757983	-0.508561
3 1	0	0	.000000	-0.757983	-0.508561
	Distance matri	ix (and	stroms)	 :	
	1 2	` .	3		
1 0 0.0000	00				
2 н 0.9892	70 0.000000				
3 H 0.9892	70 1.515966	0.000	0000		
Stoichiometry H	20				
Framework group C	2V[C2(O),SGV(H2	2)]			
	2				
Full point group		C2V	NOp	4	
Largest Abelian subgroup		C2V	ПОр	4	
Largest concise Abelian subgroup		C2	NOp	2	
	Standard	orient	tation:		
Conton Atomia	7+omia			dinataa (Ana	

Center	Atomic	Atomic	Coordinates (Angstroms)						
Number	Number	Type	X	Y	Z				
1	8	0	0.000000	0.000000	0.127140				
2	1	0	0.000000	0.757983	-0.508561				
3	1	0	0.000000	-0.757983	-0.508561				