Acides et Bases

Agrégation

Notion d'acidité et basicité au quotidien

Solutions acides

Solutions basiques

Echelle de pH

MESTRE Eloïse

Les acides et bases du quotidien

Solutions basiques

Base: hydroxyde HO

Acide éthanoïque dans l'eau

	CH₃COOH (aq)	$H_2O_{(l)}$	\longleftrightarrow	$H_3O^+_{(aq)}$	CH₃COO⁻(aq)
Etat initial	С	Excès		0	0
Etat final	$C(1-\alpha)$	Excès		Сα	Cα

$$pH = -\log[H_3O^+] = -\log(\alpha C)$$

 $0<\alpha<1$, le coefficient de dissociation

Détermination de la constante de dissociation de l'acide <u>éthanoïque dans l'eau</u>

	CH₃COOH (aq)	$H_2O_{(l)}$	\longleftrightarrow	$H_3O^+_{(aq)}$	CH₃COO⁻(aq)
Etat initial	С	Excès		0	0
Etat final	$C(1-\alpha)$	Excès		Cα	Cα

<u>Loi de Kohlrausch</u>: $\sigma = \lambda(H_3O^+)^{\circ}[H_3O^+] + \lambda(CH_3COO^-)^{\circ}[CH_3COO^-]$

A l'état final :
$$\sigma = [\lambda(H_3O^+)^{\circ} + \lambda(CH_3COO^-)^{\circ}]. C_{\alpha}$$

D'où
$$\alpha = \frac{\sigma}{[\lambda(H_3O^+)^{\circ} + \lambda(CH_3COO^-)^{\circ}].C}$$

 $0<\alpha<1$, le coefficient de dissociation

$$C = 10^{-3} \text{mol/L}$$

Un indicateur coloré : le bleu de bromothymol (BBT)

« HBBT », jaune, milieu acide

$$Br$$
 SO_3
 Br
 Br

« BBT2- », bleu, milieu basique

MESTRE Eloïse

Détermination du pKa du BBT

 $[BBT]_{1,2,3} = C = [BBTH]_{2} + [BBT^{-}]_{2}$

solution 2

$$pKA = pH_2 - log \frac{[BBT^-]_2}{[BBTH]_2}$$

Loi de Beer- Lambert pour les 3 solutions :

$$A_i = \epsilon_{BBT^-,\lambda}. l. [BBT^-]_i + \epsilon_{BBTH,\lambda}. l. [BBTH]_i$$

Or avec les approximations déduites du diagramme de prédominance :

$$A_{1} = \varepsilon_{BBTH,\lambda}.I. ([BBT^{-}]_{2} + [BBTH]_{2})$$

$$A_{2} = \varepsilon_{BBT-,\lambda}.I. [BBT^{-}]_{2} + \varepsilon_{BBTH,\lambda}.I. [BBTH]_{2}$$

$$A_{3} = \varepsilon_{BBT-,\lambda}.I. ([BBT^{-}]_{2} + [BBTH]_{2})$$

$$\frac{[BBT^{-}]_{2}}{[BBTH]_{2}} = \frac{A_{1} - A_{2}}{A_{2} - A_{3}}$$

Merci