Have multi-configurational wavefunction:

$$|M\rangle = \sum_{I} c_{I} |I\rangle \tag{1}$$

$$=|M\rangle = c_{i_1,i_2,\dots,i_N} a_{i_1}^{\dagger} a_{i_2}^{\dagger} \dots a_{i_N}^{\dagger} |0\rangle \tag{2}$$

A second quatized version of a component of an orbital rotation operator is

$$\hat{V}_{ij} = V_{ij} a_i^{\dagger} a_j \tag{3}$$

A transformations, \hat{U} , of the Hamiltonian can be constructed from a rensor product of rotations in reals space, \hat{S} , and another in real space \hat{R} :

$$\hat{U} = \hat{R} \otimes \hat{S} \tag{4}$$

 \hat{R} and \hat{S} can be constructed from transformation of the spatial and spin components of the orbitals. As basis formed from configuration state functions can be decomposed into a set subspaces, each of which are invariant under spin transformations \hat{S} , e.g.,

$$\begin{bmatrix}
[\Phi_{s_{-1}r_{1}}] \\
[\Phi_{s_{0}r_{1}}] \\
[\Phi_{s_{1}r_{1}}] \\
[\Phi_{s_{-1}r_{2}}] \\
[\Phi_{s_{0}r_{2}}] \\
[\Phi_{s_{1}r_{2}}] \\
\dots
\end{bmatrix} = [\hat{R}] \begin{bmatrix}
[\Phi_{s_{-1}r_{1}}] \\
[\Phi_{s_{1}r_{1}}] \\
[\Phi_{s_{-1}r_{2}}] \\
[\Phi_{s_{0}r_{2}}] \\
[\Phi_{s_{0}r_{2}}] \\
[\Phi_{s_{1}r_{2}}] \\
\dots
\end{bmatrix} (5)$$

i.e., the rotations \hat{R} only rotate between different CSFs, whilst the rotations, \hat{S} , rotate within multiplets. Accordingbly, a roitation in \hat{R} is enough to block diagonalize the Hamiltonian.

The $\gamma_{ij}^{M,I}$ derivatives have matrix elements $\sum_{J}\langle I|a_i^{\dagger}a_j|J\rangle c_{M,I}$. It would be nice to find a rotation Q such that

$$\begin{bmatrix} Q \end{bmatrix} \begin{bmatrix} c_{M,1} \\ c_{M,1} \\ \dots \\ c_{M,N_{det}} \end{bmatrix}$$

$$(6)$$