

Les concepts de base * Un élément fondamental dans la démarche de spécification d'un système d'information. * Les données doivent être organisées d'une manière qui soit à la fois conforme au point de vue de l'utilisateur et compatible avec les contraintes techniques de mise en œuvre. Modélisation entité-relation??

- Avantages du modélisation E/R:
 - © Normalisation : Eliminer les redondances, Préserver la cohérence des données
 - © Optimisation des transactions
 - © Réduction de l'espace de stockage

Exemple: Une simple recherche dans une table principale d'adresses clients.

- \Rightarrow Cette recherche est contrôlée par une clé d'adresse client, qui définit l'unicité de l'enregistrement et permet une recherche indexée extrêmement rapide.
- \Rightarrow Le respect des formes normales fait que cette mise à jour soit faite en une itération, sans risque d'oublier des enregistrements.

Les concepts de base

- Limites du modèle ER:
 - Schéma trop complet: plusieurs tables.
 - $\ensuremath{ ext{\ensuremath{eta}}}$ Pas d'interface graphique rendre utilisable le E/R.
 - 🙁 Données historiques difficilement représentées.
 - 🕾 Difficulté de compréhension par les utilisateurs non informaticien.
 - (3) Inadapté pour l'analyse.

Cours entrenêt de données

Les concents de hase

« Les modèles entité-relation ne peuvent pas servir de base pour construire des entrepôts de données de l'entreprise » (Kimball, 1997)

Besoin d'une modélisation spécifique aux Entrepôts des données

Cours entrepôt de donnée

Les concents de base

- ■Nouvelle méthode conceptuelle autour des concepts métiers ■Ne pas normaliser au maximum
- Introduction de nouveaux types de tables
- Table de faits
- Table de Dimensions
- Définition de nouveaux modèles
 - ■Schéma en étoile
 - Schéma en flocon

Cours entrepôt de donnée

- © Compréhensibilité:
 - Les données sont regroupées selon des catégories d'affaires
- © Performance:
- ■Un modèle dimensionnel est le résultat :
 - d'une analyse des besoins : ce que je souhaite étudier.
 - d'une analyse des données disponibles : ce que je peux étudier.

Cours entrenôt de donnée

Les concepts de base

- La modélisation multidimensionnelle
- appelée modélisation OLAP (Codd 1993)
- correspond mieux aux besoins du décideur en intégrant la modélisation par suiet.
- permet des accès hautement performants
- $\mbox{\tt =}$ considère les données comme des points dans un espace à plusieurs dimensions
 - ■Ces points représentent les centres d'intérêts décisionnels (sujets) analysés en fonction des différents axes d'analyse.

 Cours entrepté de décision

 10

 10

es concepts de base.

- Table de Fait
 - un centre d'intérêt décisionnel.
 - Ce que l'on souhaite mesurer
 - Quantités vendues, montant des ventes
 - Contient les clés étrangères des axes d'analyses (dimensions)
 - Date, produit

Cours entrepôt de données

Mesure

- Un indicateur d'analyse de type numérique et cumulable.
- Accompagnée d'un ensemble de fonctions d'agrégation qui permettent de l'agréger en fonction des axes d'analyse.
- Mesure Additive: additionnable selon toutes les dimensions ■Quantité vendue, chiffre d'affaire
- Mesure semi additive: additionnable suivant certaines dimensions ■ Solde d'un compte bancaire
- Mesure non additive: non additionnable quelque soit la dimension ■Prix unitaire

Exemple: ■ Fait: Montant des ventes, chaque jour pour chaque produit dans chaque → en général plusieurs lignes et peu de colonnes

Dimension ■Axe d'analyse selon lequel vont être étudiées les données. ■Dimension = axe d'analyse Client, produit, période de temps... ■Contient une clé primaire unique qui correspond à l'un des composants de la clé multiple de la table des faits.

- Paramètre
- un attribut appartenant à une dimension.
- représente un niveau de détail selon lequel sont visualisées les mesures d'activité d'un sujet d'analyse.
- Les paramètres d'une dimension peuvent être accompagnés de descripteurs appelés attributs faibles qui n'est pas utilisé dans les calculs de regroupement
 - ■Exemple, l'identifiant d'une agence Code_Ag peut être accompagné par le nom de celle-ci.

trepôt de données 18

Les concepts de base Exemple 1: Requête: Quels sont les frais de déplacement et le kilométrage des commerciaux de la région nord ayant des véhicules de 10 à 14 CV en avril 2004? Frais de déplacement Kilométrage Par Employé (fonction) Par Région Par Véhicule (puissance) Par Mois

■Exemple 2:

Requête: Quelles ont été les marges sur les ventes du produit 'P023' pour le client Ben Salah Ahmed à Hammamet durant le mois de Janvier?

- ■Marge
- ■Par Produit
- ■Par Client
- ■Par Ville
- ■Par Mois

Cours entrepôt de donnée

Les concepts de base

■Exemple 3:

Requête: Quels ont été les revenus sur les ventes de la marque 'Teams' en Tunisie durant l'année 2011?

- ■Revenu
- Marque
- ■Pays
- ■Année

urs entrepôt de données 22

Les concepts de base

■Exemple 4:

Requête: Quels ont été les quantités vendues de la gamme 'G006' durant le Trimestre 2 pour la région du nord ?

- Quantité
- Gamme
- Trimestre
- ■Région

Cours entrepôt de données

Les concepts de base

- © Diminution du nombre de tables et de jointures
- 😊 Modèle évolutif qui peut être modifié sans peine

Cours entrepôt de données

Les schémas dimensionnelles

- Schéma en étoile
- Schéma en flocon de neige
- Schéma en constellation

Cours entrepôt de donn

Les schémas dimensionnelles

- Schéma en étoile
 - 1 sujet d'analyse (Table de Fait) comportant un ou plusieurs indicateurs (mesures)
 - n axes d'analyse (Dimensions), comportant les descripteurs des dimensions (paramètres)
 - m perspectives d'analyse (Hiérarchies) organisant les paramètres en différentes granularités

entrepôt de données 26

Les schémas dimensionnelles Schéma en étoile Exemple : « Analyse des ventes en fonction du temps, de produits et de magasins » Ventes Code produit Ventes Code Précide Unifier, vendues Montant, ventes Montant, ventes Montant, coût Magain Montant, ventes Montant, coût Mogain Mogai

Les schémas dimensionnelles Schéma en étoile Facilité de navigation Performances : nombre de jointures limité ; gestion des données creuses. Gestion des agrégats Redondances dans les dimensions. Alimentation complexe..

Les schémas dimensionnelles

- Schéma en flocon de neige
 - ■= Modèle en étoile + normalisation des dimensions
 - Utilisé lorsque les tables sont très volumineuses
 - ■Dérivé du schéma en étoile où les tables de dimensions sont normalisées
 - La table des faits reste inchangée
 - Chacune des dimensions est décomposée selon sa (ou ses) hiérarchie(s)
 - Exemple : Commune, Département, Région, Pays, Continent

Les schémas dimensionnelles

Schéma en flocon de neige

Exemple: Normalisation de la dimension Produits

Marque

Produit

Ventes

Cocier

Coci

Les schémas dimensionnelles Schéma en flocon de neige Réduction du volume Permettre des analyses par pallier (drill down) sur la dimension hiérarchisée Navigation difficile Nombreuses jointures

Les schémas dimensionnelles

- Schéma en constellation
 - Fusionner plusieurs modèles en étoile qui utilisent des dimensions communes
 - Un modèle en constellation comprend donc :
 - Plusieurs tables de faits
 - Des tables de dimensions communes ou non à ces tables de faits.

ôt de données

Les schémas dimensionnelles

Schéma en constellation

Fournisseur

Achats

Description

Achats

Code, produit

Les schémas dimensionnelles Schéma en constellation Facilite les corrélation entre les différents sujets d'analyse. Simplifie la modélisation avec la possibilité de partager les dimensions.