CSC 565: Graph Theory Fall 2019

North Carolina State University
Computer Science

Lecture 6: Sep 11, 2019

Lecturer: Don Sheehy <arsheehy@ncsu.edu> Scribe: John Watson, Vishnu Ramachandran, Zitong Li

1 Simplicial Map

Definition 1. Let X and Y be simplicial complexes. A simplicial map $f: X \to Y$ is a pair of functions: $f_v: V_X \to V_Y$ and $f_S: S_X \to S_Y$

where $f_S(\sigma) = \{f_V(u) : u \in \sigma\}$

So, to get a simplicial map $f': simp(G) \to simp(H)$ from a graph morphism $f = (f_0, f_1)$ where $f_0: V_G \to V_H$ and $f_1: E_G \to E_H$, we simply define $f'_V = f_0$ and $f'_S(\sigma) = \{f'_V(u): u \in \sigma\} = \{f_0(u): u \in \sigma\}$ Note f'_S maps vertices to vertices and edges to edges.

Example 1. In the following example, let G be the graph on the right and H on the left. The morphism can be defined as

$$\begin{cases} f(A) = C \\ f(B) = D \end{cases}$$

The simplicial map can be defined as $\hat{f} = (\hat{f}_V, \hat{f}_S)$ where

$$\begin{cases} \hat{f_V}(A) = C\\ \hat{f_V}(B) = D \end{cases}$$

and \hat{f}_S can be expressed as

$$\begin{cases} \hat{f}_S(\emptyset) = \emptyset \\ \hat{f}_S(\{A\}) = \{C\} \\ \hat{f}_S(\{B\}) = \{D\} \\ \hat{f}_S(\{A, B\}) = \{C, D\} \end{cases}$$

Definition 2. A graph G is planer \iff G has no $K_{3,3}$ or K_5 minor \iff G has no $K_{3,3}$ or K_5 topological minor

Definition 3. A is a *minor* of B if there exists a surjective map $sim(B) \to sim(A)$ such that preimages are connected, i.e., $\forall v \in V_a$.

Note: What does connected mean for a simplicial complex?

In this case $f^{-1}(v)$ is a set of vertices and edges. Every edge in $f^{-1}(v)$ has both ends in $f^{-1}(v)$ and so it can naturally be treated as a graph.

Example 2. Equivalently, we form a minor by contracting edges as can be seen in the diagram below.

Example 3. Consider the set of graphs A and B. Both represent Peterson graphs being reduced to their minors and topological minors respectively. For the set of graphs in A, edges are contracted to show the existence of K_5 in the minor. For the case of graph set B, $K_{3,3}$ is shown to exist in the topological minor of the Peterson graph and hence, the original graph can't be planar (Definition 2).

An "Euler" Invariant

Two general graph invariants for isomorphism are :

$$c(G) = |V_G| + |E_G|$$

$$e(G) = |V_G| - |E_G|$$

Both are clearly invariants and are easy to compute. However, they capture very different information. In particular, e(G) will not distinguish between topologically equivalent graphs and hence is a topological invariant.

Theorem 1. If $geomG \equiv geomH$, then e(G) = e(H).

Proof idea. For topologically equivalent graphs, the only difference possible is for some path in one graph to be replaced by a single edge in the other. Each such operation removes k vertices and k edges. Thus, e(G) remains unchanged.

2 Path Connectivity in Top

Definition 4. Let $X \subset \mathbb{R}^2$ and $a, b \in X$. We say a and b are *path-connected* if there exists a (continuous) map $f : [0,1] \to \mathbb{R}^2$ such that f(0) = a and f(1) = b. We say X is path-connected if a and b are connected $\forall a, b \in X$.

Exercise: Prove that path-connected is an equivalence relation.

Theorem 2. A graph G is connected iff geom(G) is path-connected.