Multivariate Analysis Lecture 6: Sample Covariance Matrix and Wishart Distribution

Zhaoxia Yu Professor, Department of Statistics

2025-04-17

Section 1

The Big Picture

The Big Picture: Univariate vs Multivariate

- Review: A random sample, denoted by X_1, \dots, X_n , from a (univariate) normal distribution $N(\mu, \sigma^2)$
 - What are the distributions of \bar{X} , s^2 ? What useful statistics can be constructed?
- New material: A random sample, denoted by X_1, \dots, X_n , from a multivariate normal distribution $N(\mu, \Sigma)$
 - What are the distributions of $\bar{\mathbf{X}}, \mathbf{S}$? What useful statistics can be constructed?

- A random sample, denoted by X_1, \dots, X_n , from a (univariate) normal distribution $N(\mu, \sigma^2)$
- Let $\mathbf{X}_{n\times 1} = (X_1, \cdots, X_n)^T$. It is random vector with a multivarite normal distribution, i.e.,

$$\mathbf{X}_{n\times 1} = (X_1, \cdots, X_n)^T \sim \mathbf{N}(\mu \mathbf{1}, \sigma^2 \mathbf{I})$$

- $\bullet \quad \bar{X} \sim N(\mu, \sigma^2/n)$
- $\frac{(n-1)s^2}{\sigma^2} \sim \chi_{n-1}^2$
- 3 Independence between \bar{X} and s^2 .
- a t-statistic is

$$\frac{\frac{\bar{X}-\mu}{\sqrt{\sigma^2/n}}}{\sqrt{\frac{(n-1)s^2/\sigma^2}{n-1}}} = \frac{\sqrt{n}(\bar{X}-\mu)}{s}$$

It follows the t-distribution with n-1 degrees of freedom, denoted by t_{n-1} .

- A random sample X_1, \dots, X_n from a multivariate normal distribution $N(\mu, \Sigma)$.
- Let

$$\mathbf{X}_{n \times p} = \begin{pmatrix} \mathbf{X}_1^T \\ \vdots \\ \mathbf{X}_n^T \end{pmatrix}$$

X follows a matrix normal distribution.

- Sample mean vector follows a multivariate normal, i.e., $\bar{\mathbf{X}} \sim \mathbf{N}(\mu, \mathbf{\Sigma}/n)$
- ② Sample covariance matrix (n-1)**S** follows a Wishart distribution, i.e., (n-1)**S** \sim Wishart $_p(n-1,\Sigma)$
- 3 Independence between $\bar{\mathbf{X}}$ and S.
- Hoetelling's T^2 : $T^2 = (\bar{\mathbf{X}} \mu)^T \left(\frac{\mathbf{S}}{n}\right)^{-1} (\bar{\mathbf{X}} \mu)$

The Big Picture: outline

The Big Picture

00000

- Sample variance and chi-squared distribution
- Sample covariance matrix and Wishart distribution
- Hotelling's T²
- Maximum likelihood estimate

Section 2

Sample Variance

Sample Variance and Chi-squared Distribution

- Let $\mathbf{X} = (X_1, \dots, X_n)$ denote a random sample from $N(\mu, \sigma^2)$.
- Equivalently, $\mathbf{X} \sim N(\mu \mathbf{1}, \sigma^2 \mathbf{I})$.
- Let $s^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \bar{X})^2$ denote the sample variance.
- We would like to show that

$$\frac{(n-1)s^2}{\sigma^2} \sim \chi_{n-1}^2$$

Outline of proof

The Big Picture

- Projection matrices
- Chi-squared distribution
- 8 Rewrite $(n-1)s^2/\sigma^2$ as the sum of squared N(0,1) random variables

Projection Matrices

 A projection matrix is a square matrix that is both idempotent and symmetric

$$\mathbf{P}^2 = \mathbf{P}, \ \mathbf{P} = \mathbf{P}^T$$

Projection Matrices

The Big Picture

- Suppose **P** is a projection matrix. We have
 - The eigenvalues of P has eigenvalues are either 0 or 1, and the number of 1's is the same as the rank of the projection matrix.
 - $tr(\mathbf{P}) = rank(\mathbf{P})$
 - The spectral decomposition of P is

$$\mathbf{P} = \sum_{i=j}^{r} \gamma_j \gamma_j^T$$

where $r = rank(\mathbf{P})$, and $(\gamma_1, \dots, \gamma_r)$ are orthogonal vectors of norm 1, i.e.,

$$\gamma_i^\mathsf{T} \gamma_j = \left\{ \begin{array}{ll} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{array} \right.$$

Example: Projection onto a Plane in \mathbb{R}^3

Step 1: Define the Subspace (Plane x + y + z = 0)

The plane equation x + y + z = 0 has normal vector $\mathbf{n} = [1, 1, 1]^T$. We need two basis vectors $\mathbf{a}_1, \mathbf{a}_2$ that span the plane:

```
a1 <- c(1, -1, 0)  # Satisfies x + y + z = 0

a2 <- c(0, 1, -1)  # Also satisfies x + y + z = 0

A <- cbind(a1, a2)  # Basis matrix

print(A)
```

```
## a1 a2
## [1,] 1 0
## [2,] -1 1
## [3,] 0 -1
```

```
P <- A %*% solve(t(A) %*% A) %*% t(A) print(P)
```

```
## [,1] [,2] [,3]
## [1,] 0.6666667 -0.3333333 -0.3333333
## [2,] -0.3333333 0.6666667 -0.3333333
## [3,] -0.3333333 -0.3333333 0.6666667
```

Key Property: Verify $P^2 = P$ (idempotent):

```
all.equal(P, P %*% P) # Should return TRUE
```

```
## [1] TRUE
```

The Big Picture

Step 3: Project a Vector onto the Plane

```
Let's project \mathbf{v} = [3, 1, 2]^T:
```

[3,] 0.6666667

The Big Picture

```
v <- c(1, 1, 2)
v_proj <- P %*% v
print(v_proj) # Result should satisfy x + y + z = 0

## [,1]
## [1,] -0.3333333
## [2,] -0.3333333</pre>
```

Verification: Check if v_{proj} lies on the plane:

```
sum(v_proj) # Should be 0 (or very close due to floating-point)
```

A Special Projection Matrix: the Centering Matrix

- The centering matrix $\mathbb{C} = \mathbf{I} \frac{1}{n} \mathbf{1} \mathbf{1}^T$ is a very special matrix.
- It is a projection matrix, which is defined as both symmetric and idempotent:
 - $\mathbb{C}^T = \mathbb{C}$ (symmetric)
 - $\mathbb{C}^2 = \mathbb{C}$ (idempotent)
- One important result about a projection matrix is that its eigenvalues are either zero or one.
- By properties of projection matrices, we have
 - $rank(\mathbb{C}) = tr(\mathbb{C}) = n-1$
 - $\mathbb{C} = \sum_{i=1}^{n-1} \gamma_i \gamma_i^T$

```
set.seed(123)
# Generate a random sample
X=rnorm(10, mean=5, sd=1)
# the centering matrix
C=diag(10)-1/10*matrix(1,10,10)
# Check if C is symmetric
isSymmetric(C)
## [1] TRUE
# Check if C is idempotent
C2=C%*%C
all.equal(C, C2) # should be TRUE
```

The Big Picture

```
# Verify that CX is has mean 0
mean(C%*%X)
```

```
## [1] -1.776465e-16
```

```
plot(X, C%*%X, xlab="X", ylab="CX", main="Original vs Centered")
abline(a=-mean(X), b=1, col="red") # mean line
```



```
# Check the eigenvalues of C
eigen(C) $values
```

```
##
        1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+0
##
        1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 8.881784e-1
```

```
# Check the eigenvectors of C
round(eigen(C)$vectors, 2)
```

```
[,1]
                  [,2]
                         [,3]
                                [,4]
                                       [,5]
                                              [,6]
                                                     [,7]
                                                            [8,]
                                                                   [,9] [,10]
##
```

```
##
    [1.]
           0.00
                 0.00
                        0.00
                              0.00
                                     0.00
                                            0.95
                                                  0.00
                                                         0.00
                                                               0.00 - 0.32
##
    [2,]
          0.02
                 0.37
                        0.00 - 0.09
                                     0.24 - 0.11
                                                 -0.04
                                                         0.83 -0.05 -0.32
    [3,]
          0.00
                 0.79
                        0.00 - 0.02
                                     0.04 -0.11 -0.01 -0.51 -0.01 -0.32
##
```

[4,]0.87 - 0.140.00 -0.15 -0.30 -0.11 0.10 - 0.01## 0.04 - 0.32[5,] -0.25 - 0.140.00 0.02 - 0.25 - 0.110.45 - 0.01 - 0.74 - 0.32## ## [6.] -0.25 - 0.140.00 - 0.040.03 - 0.110.63 - 0.010.64 - 0.32

[7,] 0.05 - 0.350.00 - 0.280.77 -0.11 -0.14 -0.24 -0.15 -0.32 ## [8,] 0.05 - 0.140.00 0.91 0.09 - 0.11 - 0.17 - 0.010.04 - 0.32[9.] -0.25 -0.14 -0.71 -0.18 -0.31 -0.11 -0.41 -0.01 $0.11 - 0.32_{52}$

Note that

$$\mathbb{C} = \sum_{i=j}^{n-1} \gamma_j \gamma_j^T$$

```
Total_mat=matrix(0,10,10)
for(i in 1:9){
   Total_mat=Total_mat+Gamma[,i]%*%t(Gamma[,i])
}
all.equal(Total_mat, C)
```

[1] TRUE

A Special Projection Matrix: the Centering Matrix

- The centering matrix centers data
- Univariate: Let $\mathbf{X}_{n\times 1}$ be a random sample from $N(\mu, \sigma^2)$, i.e.,

$$\mathbf{X}_{n \times 1} \sim \mathit{N}(\mu \mathbf{1}, \sigma^2 \mathbf{I})$$

 $\mathbb{C} \mathbf{X}$ is a linear function of \mathbf{X} and it can be verified that $\mathbb{C} \mathbf{1} = \mathbf{0}$, we have

$$E[\mathbb{C}\mathbf{X}] = \mu \mathbb{C}\mathbf{1} = \mathbf{0}$$

- Multivariate: Let $\mathbf{X}_{n \times p}$ be a random sample from $N(\mu, \mathbf{\Sigma})$ Similarly, it can be shown that $\mathbb{C}\mathbf{X}$ has mean $\mathbf{0}_{n \times p}$. We have verified this numerically.
- In either situation, we have $\mathbb{C}\mathbf{X} = \mathbb{C}(\mathbf{X} E[\mathbf{X}])$ This fact will be used later.

Chi-squared distribution

The Big Picture

- Definition. Let $Z_1, Z_2, ..., Z_k$ be independent standard normal random variables. Then, the sum of squares $Q = Z_1^2 + Z_2^2 + ... + Z_k^2$ has a chi-squared distribution with k degrees of freedom, denoted by χ_k^2 .
- Alternative definition. Let $\mathbf{Z}_{k\times 1} \sim N(\mathbf{0}, \mathbf{I})$. We say $||\mathbf{Z}||^2 = \mathbf{Z}^T \mathbf{Z}$ follows χ_k^2 .
- The PDF of a chi-squared random variable with k degrees of freedom is given by:

$$f(x) = \frac{1}{2^{k/2}\Gamma(k/2)} x^{k/2-1} e^{-x/2}, x > 0$$

where $\Gamma(\cdot)$ is the gamma function.

Chi-squared distribution

The Big Picture

- The chi-squared distribution is a special case of the gamma distribution, where the shape parameter is k/2 and the rate parameter is 1/2.
- The MGF of a chi-squared random variable with k degrees of freedom is:

$$M_X(t) = (1-2t)^{-k/2}$$

 The mean and variance of a chi-squared random variable with k degrees of freedom are:

$$\mathsf{E}[X] = k, \, \mathsf{Var}[X] = 2k$$

Construct Chi-squared R.V.s using Normal R.V.s and Projection Matrices

• Let $\mathbf{P}_{n \times n}$ be a projection matrix with rank r and let $\mathbf{Z}_{n \times 1} \sim N(\mathbf{0}, \mathbf{I})$

$$\mathbf{Z}^{T}\mathbf{P}\mathbf{Z} = \mathbf{Z}^{T} \sum_{i=1}^{r} \gamma_{i} \gamma_{i}^{T} \mathbf{Z} = \sum_{i=1}^{r} \mathbf{Z}^{T} \gamma_{i} \gamma_{i}^{T} \mathbf{Z}$$
$$= \sum_{i=1}^{r} (\gamma_{i}^{T} \mathbf{Z})^{T} (\gamma_{i}^{T} \mathbf{Z})$$

- Let $Y_i = \gamma_i^T \mathbf{Z}$.
- Y_i is univariate and it is a linear combination of **Z**, therefore it follows a normal distribution (univariate).

$$Y_i \sim N(\gamma_i^T \mathbf{0}, \gamma_i^T \mathbf{I} \gamma_i^T) = N(0, 1)$$

- Thus, Y_i 's are independent standard normal random variables.

Construct Chi-squared R.V.s using Normal R.V.s and Projection Matrices

- $Cov(Y_i, Y_j) = cov(\gamma_i^T Z, \gamma_j^T) = \gamma_i^T \mathbf{I} \gamma_j^T = \gamma_i^T \gamma_j^T = 0$ for $i \neq j$. Thus, $Y_1, \dots, Y_r \stackrel{iid}{\sim} N(0, 1)$.
- Y_i^2 is the square of a standard normal random variable. Therefore, Y_i^2 follows a chi-squared distribution with 1 degree of freedom, denoted by χ_1^2 .
- Consequently, $Y_i^2 \stackrel{iid}{\sim} \chi_1^2$.
- Note that $\mathbf{Z}^T\mathbf{P}\mathbf{Z} = \sum_{i=1}^r Y_i^2$. By the definition of chi-squared distribution, we have $\mathbf{Z}^T\mathbf{P}\mathbf{Z} \sim \chi_r^2$

The Sample Variance

- We have shown that
 - $\mathbb{C} = \mathbf{I} \frac{1}{2} \mathbf{1} \mathbf{1}^T$
 - $\mathbb{C}^T = \mathbb{C}, \mathbb{C}^2 = \mathbb{C}$.
 - It is a projection matrix with rank n-1 and

$$\mathbb{C} = \sum_{j=1}^{n-1} \gamma_i \gamma_i^T$$

-The he centering matrix does center data, i.e.,

$$\mathbb{C}\mathbf{X} = \mathbb{C}(\mathbf{X} - E[\mathbf{X}])$$

• $(n-1)s^2 = \mathbf{X}^T \mathbb{C} \mathbf{X}$, where

The Sample Variance

• Therefore,

$$\frac{(n-1)s^2}{\sigma^2} = \frac{\mathbf{X}^T \mathbb{C} \mathbf{X}}{\sigma^2} = \frac{\mathbf{X}^T \mathbb{C}^T \mathbb{C} \mathbb{C} \mathbf{X}}{\sigma^2}$$
$$= \frac{(\mathbb{C} \mathbf{X})^T \mathbb{C} \mathbb{C} \mathbf{X}}{\sigma^2}$$
$$= \frac{(\mathbf{X} - E[\mathbf{X}])^T}{\sigma} \mathbb{C} \frac{(\mathbf{X} - E[\mathbf{X}])}{\sigma}$$

The Sample Variance

Let

$$\mathbf{Z} = \frac{(\mathbf{X} - E[\mathbf{X}])}{\sigma}$$

• Easy to see that $\mathbf{Z} \sim N(\mathbf{0}, \mathbf{I})$. Thus,

$$\frac{(n-1)s^2}{\sigma^2} = \mathbf{Z}^T \mathbb{C} \mathbf{Z}$$

Use the result in previous slides, we have

$$\frac{(n-1)s^2}{\sigma^2} = \mathbf{Z}^T \mathbb{C} \mathbf{Z} \sim \chi_{n-1}^2$$

Section 3

Sample Covariance

The Sample Covriance from A MVN Random Sample

• Let $X_1, \dots, X_n \stackrel{iid}{\sim} N(\mu, \Sigma)$.

The Big Picture

• Recall that the sample covariance matrix is defined as

$$S = \frac{1}{n-1} \sum_{i=1}^{n} (\mathbf{X}_i - \bar{\mathbf{X}}) (\mathbf{X}_i - \bar{\mathbf{X}})^T$$

We have shown that

$$(n-1)\mathbf{S} = \mathbf{X}^T \mathbb{C} \mathbf{X}$$

where **X** is the $n \times p$ random matrix.

The Sample Covriance from A MVN Random Sample

• The goal is to show that $(n-1)\mathbf{S}$ follows a Wishart distribution. More specifically, we would like to show that

$$(n-1)$$
S $\sim Wishart_p(n-1,\Sigma)$

Outline of proof

The Big Picture

- Wishart-distribution
- 2 Rewrite (n-1)**S**
- Apply properties of a projection matrix
- Use the definition of Wishart distribution

Wishart Distribution

The Big Picture

- The Wishart distribution is named after the British statistician John Wishart, who introduced it in his 1928 paper published in Biometrika.
- Wishart was interested in the problem of estimating the covariance matrix of a multivariate normal distribution.
- Wishart showed that the sample covariance matrix follows a particular probability distribution that we now call the Wishart distribution.
- The Wishart distribution has become a fundamental tool in multivariate statistical analysis

Definition of Wishart Distribution

The Big Picture

A Wishart distribution can be defined in the following way

Sample Covariance 000000000000000

- Let **W** be a $p \times p$ random matrix. We say **W** follows Wishart_p (k, Σ) if **W** can be written as **W** = X^TX where Xdenotes the random matrix formed by a random sample of size k from MVN $N(\mathbf{0}, \mathbf{\Sigma})$.
- The definition indicates that if we have a random sample $X_1, \cdots X_k$ from $N(0, \Sigma)$, then $\mathbf{X}^T\mathbf{X} = \sum_{i=1}^k \mathbf{X}_i \mathbf{X}_i^T \sim Wishart_p(k, \mathbf{\Sigma}).$
- Remark: $E[\mathbf{W}] = k\Sigma$.

Wishart vs Chi-squared

• Wishart: If $X_1, \dots X_k \stackrel{iid}{\sim} N(0, \Sigma)$, then

$$\mathbf{X}^T\mathbf{X} = \sum_{i=1}^k \mathbf{X}_i \mathbf{X}_i^T \sim Wishart_p(k, \mathbf{\Sigma}), \text{ where } \mathbf{X}_{k \times p} = \begin{pmatrix} X_1' \\ \vdots \\ X_k^T \end{pmatrix}$$

• Chi-squared: If $X_1, \dots, X_k \stackrel{iid}{\sim} N(0,1)$, then

$$\mathbf{X}^T\mathbf{X} = \sum_{i=1}^k X_i^2 \sim \chi_k^2$$
, where $\mathbf{X}_{k \times 1} = \begin{pmatrix} X_1 \\ \vdots \\ X_k \end{pmatrix}$

• When p = 1,

$$W = \sum_{i=1}^{k} X_i^2 = \sigma^2 \sum_{i=1}^{k} \left(\frac{X_i}{\sigma}\right)^2 \sim \sigma^2 \chi_k^2$$

The Sample Covariance Matrix

The Big Picture

• Let X_1, \dots, X_n be a random sample from $N(\mu, \Sigma)$. The $X_{n \times p}$ follows a matrix normal distribution:

$$X \sim N(\mathbf{1}_n \otimes \boldsymbol{\mu}^T, \boldsymbol{\Sigma}, \mathbf{I}_n)$$

- The sample covariance $(n-1)\mathbf{S} = \mathbf{X}^T \mathbb{C} \mathbf{X}$ is based on the centered data. The definition of Wishart distribution is not applicable immediately.
- Next we show that (n-1)**S** follows $Wishart_p(n-1, \Sigma)$.

The Sample Covariance Matrix

• Rewrite (n-1)**S**:

The Big Picture

$$(n-1)\mathbf{S} = \mathbf{X}^T \mathbb{C}^T \mathbb{C} \mathbb{C} \mathbf{X} = (\mathbb{C} \mathbf{X})^T (\mathbb{C} \mathbf{X})$$

$$= (\mathbb{C} \mathbf{X})^T \mathbb{C} (\mathbb{C} \mathbf{X})$$

$$= (\mathbb{C} \mathbf{X})^T \sum_{j=1}^{n-1} \gamma_i \gamma_i^T (\mathbb{C} \mathbf{X})$$

$$= \sum_{i=1}^{n-1} (\gamma_i^T \mathbb{C} \mathbf{X})^T (\gamma_i^T \mathbb{C} \mathbf{X})$$

Sample Covariance 000000000000000

The Sample Covariance Matrix

- Let $Y_i = (\gamma_i^T \mathbb{C} \mathbf{X})^T$, we have
 - $E[Y_i] = 0$ because \mathbb{C} is the centering matrix
 - In the following, we show that Y_i and Y_j are uncorrelated for $i \neq j$:

$$Cov[Y_i, Y_j] = E[(Y_i - \mathbf{0})(Y_j - \mathbf{0})^T]$$

$$= E[Y_i Y_j^T]$$

$$= E[(\gamma_i^T \mathbb{C} \mathbf{X})^T (\gamma_j^T \mathbb{C} \mathbf{X})]$$

$$= E[\mathbf{X}^T \mathbb{C} \gamma_i \gamma_j^T \mathbb{C} \mathbf{X}]$$

$$= \mathbf{0}$$

The last step is true because for $i \neq j$, $\gamma_i \gamma_i^T = 0$

The Sample Covariance Matrix

- Since Y_i and Y_j are two linear combinations of the same MVN distributed random matrix (or its vectorized version), we have Y_i and Y_j are independent for $i \neq j$.
- It can also be shown that $Y_i \sim N(\mathbf{0}, \Sigma)$.
- By the definition of Wishart, we can conclude that

$$(n-1)$$
S $\sim Wishart_p(n-1, \Sigma)$

- Consider a random sample from MVN $N(\mu, \Sigma)$. Let **S** denote the sample covariance matrix.
- We have already shown that $(n-1)\mathbf{S} \sim \textit{Wishart}_p(n-1, \mathbf{\Sigma})$
- What is the distribution of a diagonal element of (n-1)**S**?
- What is the distribution of the sum of elements of (n-1)**S**? Note, this is a special case of next question with $\mathbf{B} = (1, \dots, 1)$.
- What is the distribution of $(n-1)BSB^T$ where B is a fixed $q \times p$ matrix?
- If time permits, we will run some simulations

Some Interesting Results (continued)

- If you cannot get the answer to the last question, let's use the definition of Wishart distribution.
- Let $\mathbf{W} = (n-1)S$. Because it follows $Wishart_p(n-1, \mathbf{\Sigma})$, we know that $\mathbf{W} = \sum_{i=1}^{n-1} \mathbf{Z}_i \mathbf{Z}_i^T$ where \mathbf{Z}_i 's are iid frm $N(\mathbf{0}, \mathbf{\Sigma})$.
- Then

$$(n-1)\mathsf{BSB}^T = \mathsf{B} \sum_{j=1}^{n-1} \mathsf{Z}_j \mathsf{Z}_j^T \mathsf{B} = \sum_{j=1}^{n-1} \mathsf{B} \mathsf{Z}_j \mathsf{Z}_j^T \mathsf{B}^T$$
$$= \sum_{j=1}^{n-1} (\mathsf{B} \mathsf{Z}_j) (\mathsf{B} \mathsf{Z}_j)^T$$

Some Interesting Results (continued)

The Big Picture

Let $\mathbf{Y}_i = \mathbf{BZ}_i$. Note that it is a linear function of \mathbf{Z}_i ; therefore

$$\mathbf{Y}_{j} \sim N(\mathbf{0}, \mathbf{B} \mathbf{\Sigma} \mathbf{B}^{T})$$

and the \mathbf{Y}_i 's are iid (becaue ...).

By the definition of Wishart distribution, we have

$$(n-1)\mathsf{BSB}^{\mathsf{T}} \sim \mathit{Wishart}_q(n-1,\mathsf{B}\boldsymbol{\Sigma}\mathsf{B}^{\mathsf{T}})$$

Hotelling's T² ●00000

Section 4

Hotelling's T^2

The Hotelling's T^2 Statistic

- Finally we are ready to introduce Hotelling's
- The student's t is used for making inference of mean(s) of normal distribution(s)
- Hotelling generalized the student's t, which is for univarite, to Hotelling's T2, which the multivariate version

Definition Hotelling's T^2

- Definition. We say a random variable follows Hotelling's $T_{\rho,\nu}^2$ if the random variable can be written as $\mathbf{Z}^T \left(\frac{W}{\nu} \right)^{-1} \mathbf{Z}$ where
 - $\mathbf{0}$ $\mathbf{Z} \sim N(\mathbf{0}, \mathbf{\Sigma})$
 - **2** $\mathbf{W} \sim W_p(\nu, \mathbf{\Sigma})$

One-Sample Hotelling T^2

- Let $X_1, X_2, ..., X_n$ be a random sample from a multivariate normal distribution with mean vector μ and covariance matrix Σ .
- \bullet The sample mean vector and sample covariance matrix are denoted by $\bar{\textbf{X}}$ and S, respectively.
- ullet The null hypothesis of interest $H_0: oldsymbol{\mu} = oldsymbol{\mu}_0$
- The one-sample Hotelling T^2 is defined as

$$T^2 = (\hat{\mu} - \mu_0)^T (Cov(\hat{\mu}))^{-1} (\hat{\mu} - \mu_0)$$

The Big Picture

One-Sample Hotelling T^2 (continued)

• To see that T^2 does follow Hotelling's T^2 , we rewrite it

$$T^{2} = (\hat{\mu} - \mu_{0})^{T} (Cov(\hat{\mu}))^{-1} (\hat{\mu} - \mu_{0})$$

$$= (\bar{\mathbf{X}} - \mu_{0})^{T} (Cov(\bar{\mathbf{X}}))^{-1} (\bar{\mathbf{X}} - \mu_{0})$$

$$= (\bar{\mathbf{X}} - \mu_{0})^{T} (\frac{S}{n})^{-1} (\bar{\mathbf{X}} - \mu_{0})$$

$$= [\sqrt{n}(\bar{\mathbf{X}} - \mu_{0})]^{T} (\frac{(n-1)S}{n-1})^{-1} [\sqrt{n}(\bar{\mathbf{X}} - \mu_{0})]$$

- ullet We have shown that all the three conditions for constructing a Hotelling's \mathcal{T}^2 are satisfied
- As a result, $T^2 \sim T_{p,n-1}^2$ when $H_0: \mu = \mu_0$.

Hotelling's T^2 Distribution vs F Distribution

Hotelling's T^2

Claim:
$$T_{p,\nu}^2 \sim \frac{\nu p}{\nu+1-p} F_{p,\nu+1-p}$$
.

For the T^2 statistic, we have $T^2 \overset{H_0}{\sim} \frac{(n-1)p}{n-p} F_{p,n-p}$. We reject H_0 at significance level α when $T^2 > \frac{(n-1)p}{n-p} F_{p,n-p,1-\alpha}$.

Corollary.

$$\frac{n-p}{p}(\bar{X}-\mu_0)^T(\hat{\Sigma})^{-1}(\bar{X}-\mu_0)\stackrel{H_0}{\sim} F_{p,n-p}$$

where
$$\hat{\Sigma} = \frac{1}{n}X^T H X = \frac{1}{n}\sum_{i=1}^n (X_i - \bar{X})(X_i - \bar{X})^T = \frac{(n-1)S}{n}$$
.

Section 5

MLE

MLE: Introduction

- The maximum likelihood estimate (MLE) is a widely used method for estimating the parameters of a statistical model.
- In this presentation, we will focus on the MLE for a multivariate normal distribution.

The Big Picture

MLE: Multivariate Normal Distribution

• A random vector \boldsymbol{X} follows a p-dimensional multivariate normal distribution with mean vector $\boldsymbol{\mu}$ and covariance matrix $\boldsymbol{\Sigma}$, denoted by $\boldsymbol{X} \sim \mathcal{N}_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, if its probability density function is given by:

$$f_{\mathbf{X}}(\mathbf{x}) = \frac{1}{(2\pi)^{p/2} |\mathbf{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right)$$

where $|\Sigma|$ denotes the determinant of Σ .

MLE: Maximum Likelihood Estimate

The Big Picture

- Let $X_1, X_2, ..., X_n$ be a random sample from a multivariate normal distribution with mean vector μ and covariance matrix Σ.
- The log-likelihood function for the sample is given by:

$$\ell(\boldsymbol{\mu}, \boldsymbol{\Sigma}) = -\frac{n}{2} \log(2\pi) - \frac{n}{2} \log|\boldsymbol{\Sigma}| - \frac{1}{2} \sum_{i=1}^{n} (\boldsymbol{X}_i - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{X}_i - \boldsymbol{\mu})$$

• The MLE of μ is the sample mean $\bar{\mathbf{X}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i}$.

MLE:Maximum Likelihood Estimate (continued)

• To derive the MLE of Σ , we first take the derivative of the log-likelihood function with respect to Σ and set it equal to zero:

$$\frac{\partial \ell}{\partial \mathbf{\Sigma}} = -\frac{n}{2} \mathbf{\Sigma}^{-1} + \frac{1}{2} \sum_{i=1}^{n} (\mathbf{X}_i - \boldsymbol{\mu}) (\mathbf{X}_i - \boldsymbol{\mu})^T \mathbf{\Sigma}^{-2} = 0$$

ullet Solving for Σ , we obtain the MLE as:

$$\hat{\boldsymbol{\Sigma}} = \frac{1}{n} \sum_{i=1}^{n} (\boldsymbol{X}_i - \hat{\boldsymbol{\mu}}) (\boldsymbol{X}_i - \hat{\boldsymbol{\mu}})^T$$

ullet where $\hat{oldsymbol{\mu}}$ is the MLE of $oldsymbol{\mu}$, as previously derived.