

Departamento de Matemática

Curso: Eng.ª Informática

Disciplina: Matemática Computacional

Ano Letivo: 2015-16

TP_PL_3 – Método de Newton 3ª Aula

- 1. Calcule a raiz de $f(x) = x^2 + x 6$, usando o método de Newton, $x_0 = 3$ como estimativa inicial e com critério de paragem $|f(x_n)| < 0.020$.
- 2. Seja $f(x) = x^2 5$. Utilizando o método de Newton, obtenha uma aproximação da raiz positiva de f(x), com 5 casas decimais.
- 3. Dada a equação $x^4 x 1 = 0$,
 - a. Separe as suas raízes reais.
 - b. Utilize o Método de Newton, para calcular a raiz $x \in [1, 2]$, com erro máximo 10^{-6} .
- 4. Considere a equação $2(x-1)e^x-4=0$.
 - a. Separe as suas raízes.
 - b. Verifique a aplicabilidade do método de Newton na determinação da raiz real positiva e efetue duas iterações estimando um limite superior do erro.
- 5. Dada a equação $sen(x) = \frac{x+1}{x-1}$,

Apresente a estimativa da raiz $\alpha \in [-1, 0]$ obtida no final da segunda iteração. Trabalhe com 4 casas decimais e indique um limite superior do erro absoluto.

- 6. Sabendo que a equação sen(x) = xln(x) admite solução única no intervalo [1,2]. Calcule uma aproximação x_n satisfazendo a condição $\left|x_n x_{n-1}\right| \le 10^{-5}$, utilizando o método de Newton.
- 7. A equação $x^2 3x = 2\ln(x)$ tem duas raízes reais positivas.
 - a. Localize graficamente a menor delas.
 - b. Determine essa raiz a menos de 0.5×10^{-1} .
 - c. Use o método de Newton para determinar o valor desta raiz com erro inferior a 0.5×10^{-6} .
- 8. Dada a equação $x^3 2\cos(x) = 0$, $x \in [1, 2]$.
 - a. Partindo do intervalo dado, verifique a aplicabilidade do Método de Newton na determinação dessa raiz.
 - Apresente a estimativa da raiz obtida no final da segunda iteração. Trabalhe com 4 casas decimais e indique um limite superior do erro absoluto da estimativa obtida. Indique todos os cálculos.

- 9. Aproxime, com uma exatidão de duas casas decimais a raiz da equação $f(x) = x^2 4sen(x)$, sabendo que $x \in [1, 3]$.
- 10. Localize graficamente as raízes de $f(x)=x^2-1-\ln(x+1)$ e aproxime a maior delas usando o método de Newton duas vezes.
- 11. Considere a função $f(x) = e^x 2x^2 x$.
 - a. Mostre, analiticamente, que a função tem uma só raiz real no intervalo [0,1].
 - b. Usando o método de Newton, aproxime essa raiz de modo que na terceira iteração consiga obter pelo menos 3 casas decimais corretas.
- 12. Calcular a raiz, pertencente ao intervalo [-2,-1], da função $f(x)=1+x+e^x$, com um erro absoluto inferior a 5×10^{-6} .