

第十章 关系

计算机系 黄民烈

Tel: 18901155050

Office: FIT 4-504

http://coai.cs.tsinghua.edu.cn/hml/

aihuang@tsinghua.edu.cn

课前思考

- ⊙什么是关系? 关系的要素是什么?
- ⊙日常生活中有哪些常见的关系?

第十章 关系

- ◎10.1 二元关系
- ●10.2 <u>关系矩阵和关系图</u>
- ◎10.3 关系的逆、合成、(限制和象)*
- **●10.4** <u>关系的性质</u>
- ●10.5 <u>关系的闭包</u>
- ●10.6 等价关系和划分
- ●10.7 相容关系和覆盖*
- ●10.8 偏序关系

10.1.1 二元关系(有序对的集合)

如果一个集合满足以下条件之一:

- (1) 集合非空,且它的元素都是有序对(见定义9.3.4);
- (2) 集合是空集;

则称该集合为一个二元关系,记作R。二元关系也简称关系。

对于二元关系R,如果 $\langle x,y\rangle \in R$,也可记作xRy。

定义10.1.1 A到B的二元关系

设A,B为集合,A×B的任一子集所定义的二元关系称为A 到B的二元关系。

特别当A=B时,A×A的任一子集称为A上的一个二元关系。

定义10.1.2 n 元关系 (n 元组的集合)

若 $n \in \mathbb{N}$ 且 n > 1, $A_1, A_2, ..., A_n$ 是n个集合,则 $A_1 \times A_2 \times ... \times A_n$ 的任一子集称为从 A_1 到 A_n 上的一个n元关系。

10-1-2 集合上的包含关系与真包含关系

设A是集合,A上的包含关系可定义为:

$$R_{\subseteq} = \{ \langle x, y \rangle | x, y \in A \land x \subseteq y \}$$

A上的真包含关系可定义为:

$$R_{\subset} = \{\langle x, y \rangle | x, y \in A \land x \subset y\}$$

例如,对任意的集合A,A的幂集P(A)上的包含关系可定义为:

$$R \subseteq \{\langle x, y \rangle | x \in P(A) \land y \in P(A) \land x \subseteq y\}$$

定义10.1.3 三个特殊的关系—

(恒等关系、全域关系和空关系)

对任意的集合A,

A上的恒等关系 I_A 定义为

$$I_A = \{\langle x, x \rangle | x \in A\}$$

A上的全域关系(全关系) E_A 定义为

$$E_A = \{ \langle x, y \rangle | x \in A \land y \in A \}$$

定义10.1.3 三个特殊的关系—

(恒等关系、全域关系和空关系)

对任意的集合A,空集 Φ 是 $A \times A$ 的子集,定义为A上的空关系。

思考: 若|A| = n

A上 共可定义多少个不同的二元关系?

定义10.1.4 定义域和值域(domain & range) 设R是A到B的二元关系

(1) R中所有有序对的第一元素构成的集合称为R的定义域,记作 *dom*(R)。形式化表示为:

$$dom(R) = \{x | (\exists y)(\langle x, y \rangle \in R)\}$$

(2) R中所有有序对的第二元素构成的集合称为R的值域,记作*ran*(R)。形式化表示为:

$$ran(R) = \{y | (\exists x)(\langle x, y \rangle \in R)\}$$

(3) R的定义域和值域的并集称为R的域(field),记作 *fld*(R)。形式化表示为:

$$fld(R) = dom(R) \cup ran(R)$$

10.2 关系矩阵和关系图

定义10.2.1 关系矩阵

设集合 $X=\{x_1, x_2, ..., x_m\}$ $Y=\{y_1, y_2, ..., y_n\}$

若R是X到Y的一个关系。则R的关系矩阵是 $m \times n$ 矩阵,矩阵元素是 r_{ij} 。

$$M(R) = \left[r_{ij}\right]_{m \times n}$$

$$r_{ij} = \begin{cases} 1 & \text{if } \langle x_i, y_j \rangle \in R \\ 0 & \text{if } \langle x_i, y_j \rangle \notin R \end{cases} \quad (1 \leq i \leq m, 1 \leq j \leq n)$$

若R是X上的一个关系,则R的关系矩阵是 $m \times m$ 方阵,定义与上述类似。

10.2 关系矩阵和关系图

定义10.2.2 关系图

设集合 $X=\{x_1,x_2,...x_m\}$ $Y=\{y_1,y_2,...y_n\}$ 。若R是X到Y的一个关系,则R的关系图是一个有向图(digraph) G(R)=(V,E) ,它的顶点集是 $V=X\cup Y$,边集是E,从 x_i 到 y_i 的有向边 $e_{ij}\in E$,当且仅当 $\langle x_i,y_j\rangle\in R$ 。

若 R 是 X 上的一个关系,则 R 的关系图是上述情形的特例。

定义10.3.1 关系的逆、合成、限制和象

对X到Y的关系R, Y到Z的关系S, 定义:

(1) R的逆(inversion)R-1为Y到X的关系:

$$R^{-1} = \{ \langle x, y \rangle | \langle y, x \rangle \in R \}$$

- (2) R与S的合成(composite relation) S∘R(也称S为R的左复
- 合)为X到Z的关系

$$S \circ R = \{\langle x, y \rangle | (\exists z) (\langle x, z \rangle \in R \land \langle z, y \rangle \in S) \}$$

(3) 对任意的集合A,定义R在A上的限制R1A为A到Y的关系,其中R是X到Y的关系。

$$R \upharpoonright A = \{\langle x, y \rangle | \langle x, y \rangle \in R \land x \in A\}$$

(4) A 在R下的象R[A]为集合

$$R[A] = \{ y | (\exists x) (x \in A \land \langle x, y \rangle \in R) \}$$

10-3-1 S。R的关系矩阵

设A是有限集合,|A|=n。关系R和S都是A上的关系,R和S的关系矩阵 $M(R)=[r_{ij}]$ 和 $M(S)=[s_{ij}]$ 都是 $n\times n$ 的方阵。于是R与S的合成 $S \circ R$ 的关系矩阵

$$M(S \circ R) = [W_{ij}]_{n \times n}$$

可以用下述的矩阵逻辑乘计算(类似于矩阵乘法)。记作 $M(S \circ R) = M(R) \otimes M(S)$ 其中

$$w_{ij} = \bigvee_{k=1}^{n} (r_{ik} \wedge s_{kj})$$

(why?)

定理10.3.1 关系R的逆关系的性质

对X到Y的关系R和Y到Z的关系S,

$$(1) \quad dom(R^{-1}) = ran(R)$$

$$(2) \quad ran(R^{-1}) = dom(R)$$

$$(3) (R^{-1})^{-1} = R$$

(4)
$$(S \circ R)^{-1} = R^{-1} \circ S^{-1}$$

定理10.3.2 关系合成的结合律

对X到Y的关系Q,Y到Z的关系S,Z到W的关系R,

$$(R \circ S) \circ Q = R \circ (S \circ Q)$$

定理10.3.3 关系的合成的其它性质

对X到Y的关系 R_2 , R_3 , Y到Z的关系 R_1 ,

(1)
$$R_1 \circ (R_2 \cup R_3) = R_1 \circ R_2 \cup R_1 \circ R_3$$

- (2) $R_1 \circ (R_2 \cap R_3) \subseteq R_1 \circ R_2 \cap R_1 \circ R_3$ 对X到Y的关系,Y到Z的关系 R_1 , R_2
- $(3) \quad (R_1 \cup R_2) \circ R_3 = R_1 \circ R_3 \cup R_2 \circ R_3$
- (4) $(R_1 \cap R_2) \circ R_3 \subseteq R_1 \circ R_3 \cap R_2 \circ R_3$ (规定关系合成运算符优先于集合运算符)

定理10.3.4 集合在关系下的象的性质

对X到Y的关系R和集合A、B,

- $(1) \quad R[A \cup B] = R[A] \cup R[B]$
- (2) $R[UA] = U\{R[B]|B \in A\}$ (1和2是什么关系)
- $(3) \quad R[A \cap B] \subseteq R[A] \cap R[B]$
- (4) $R[\cap A] \subseteq \bigcap \{R[B] | B \in A\}$ $A \neq \Phi (3 \text{和 4 是 } A \text{ 4 } A \text$
- $(5) \quad R[A] R[B] \subseteq R[A B]$

补充资料

$$(5)R[A] - R[B] \subseteq R[A - B]$$

证明: 对任意的y, 可得

$$y \in R[A] - R[B] \Leftrightarrow y \in R[A] \land y \notin R[B]$$

$$\Leftrightarrow (\exists x)(x \in A \land < x, y > \in R) \land (\forall x)(< x, y > \in R \rightarrow x \notin B)$$

$$\Rightarrow$$
 $(\exists x)(x \in A \land x \notin B \land < x, y > \in R)$

$$\Leftrightarrow (\exists x)(x \in A - B \land < x, y > \in R)$$

$$\Leftrightarrow y \in R[A - B]$$

所以,
$$R[A] - R[B] \subseteq R[A - B]$$
.

定义10.4.1 自反性与非自反性

设R为集合A上的关系,

R在A上是自反的 \Leftrightarrow $(\forall x)(x \in A \rightarrow \langle x, x \rangle \in R)$

R在A上是非自反的 \Leftrightarrow $(\forall x)(x \in A \rightarrow \langle x, x \rangle \notin R)$

判断: 一个关系不是自反的, 就是非自反的

自反与非自反

- 假设集合A={a,b}
- \circ R₂={<a,b>}
- \circ R₃={<b,b>}

定义10.4.2 对称性与反对称性

设R为集合A上的关系,

- R 在A上是对称的 \Leftrightarrow $(\forall x)(\forall y)((x \in A \land y \in A \land \langle x,y \rangle \in R) \rightarrow \langle y,x \rangle \in R)$
- R在A上是反对称的 \Leftrightarrow $(\forall x)(\forall y)((x \in A \land y \in A \land \langle x, y \rangle \in R \land \langle y, x \rangle \in R) \rightarrow x = y)$
- R在A上是反对称的 \Leftrightarrow $(\forall x)(\forall y)((x \in A \land y \in A \land \langle x, y \rangle \in R \land x \neq y) \rightarrow \langle y, x \rangle \notin R)$

25 判断: 一个关系不是对称的, 就是反对称的

对称与反对称

- 假设集合A={a,b,c}
- \circ R₁={<b,a>,<a,b>}
- \circ R₃={<b,b>,<b,c>}
- \circ R₄={<b,a>,<a,b>,<b,c>}

- ◎ 判断: 一个关系既是对称的, 又是反对称的
- ◎ 判断: 一个关系既不是对称的, 又不是反对称的

定义10.4.3 传递性 设R为集合A上的关系,

R在A上是传递的

$$\Leftrightarrow (\forall x)(\forall y)(\forall z)$$

 $((x \in A \land y \in A \land z \in A \land \langle x, y \rangle \in R \land \langle y, z \rangle \in R)$

$$\rightarrow \langle x, z \rangle \in R$$

判断:一个关系要么是传递的,要么是非传递

传递性

- 全关系是传递的
- 恒等关系是传递的
- 空集合是传递的
- ●单元素关系集合是传递的{<a,b>}
- 这样的集合是传递的{<a,b>,<b,b>}; {<a,a>,<a,b>}

定理10.4.1 几个特殊关系的自反性

设 R_1 、 R_2 是A上的自反关系,则 R_1 -1、 R_1 ∩ R_2 、 R_1 U R_2 也是A上的自反关系。

定理10.4.2 几个特殊关系的对称性

设 R_1 、 R_2 是A上的对称关系,则 R_1 -1、 R_1 ∩ R_2 、 R_1 U R_2 也是A上的对称关系。

定理10.4.3 几个特殊关系的传递性

设 R_1 、 R_2 是A上的传递关系,

则 R_1^{-1} 、 $R_1 \cap R_2$ 是A上的传递关系。

但 R_1 U R_2 不一定是传递的。

定理10.4.4 几个特殊关系的反对称性

设 R_1 、 R_2 是A上的反对称关系,

则 R_1^{-1} 、 $R_1 \cap R_2$ 是A上的反对称关系。

但 R_1 U R_2 不一定是反对称的。

先分析理解再证明

定理10.4.5 对称性与反对称性的两个性质

设R是A上的关系,

- (1) R是对称的 $\Leftrightarrow R = R^{-1}$
- (2) R是反对称的 $\Leftrightarrow R \cap R^{-1} \subseteq I_A$

先分析理解再证明

	自反 Reflexive (10.4.1)	非自反 Irreflexive (10.4.1)	对称 Symmetric (10.4.2)	反对称 Antisymmetric (10.4.2)	传递 Transitive (10.4.3)
定义 要点	$x \in A \to xR x$	$x \in A \to x \mathbb{R} x$ $\langle x, x \rangle \notin \mathbb{R}$	$xRy \to yRx$ $\langle x, y \rangle \in R \to$ $\langle y, x \rangle \in R$	$xRy \land x \neq y$ $y R x$ $xRy \land yRx$ $x = y$	$xRy \wedge yRz$ $\rightarrow xRz$ $\langle x, y \rangle \in R \wedge$ $\langle y, z \rangle \in R \rightarrow$ $\langle x, z \rangle \in R$
关系矩阵的特点	r _{ii} = 1 主对角元 均为1	r _{ii} = 0 主对角元 均为0	对称矩阵 $r_{ij} = r_{ji}$	若 $r_{ij} = 1 \land i \neq j$ $\rightarrow r_{ji} = 0$	无直观特点 或难以直接判 断
关系图 的特点	每个结点 都有自圈	每个结点 都没有自圈	若两个结点 之间有边, 一定是一对 方向相反的 边	若两个结点之 间有边,一定 是一条有向边	若从结点 x_i 到 x_j 有边, x_j 到 x_k 有 边,则从 x_i 到 x_k 一定有边

运算性质

运算性质

- ⊙已知 R₁, R₂, R₃是A上满足相应性质的关系,
- ●问题:经过并,交,补,求逆,合成运算后是否还 具有原来的性质?

性质 运算	自反性	非自反性	对称性	反对称性	传递性
R^{-1}	\checkmark	√	\checkmark	\	$\sqrt{}$
$R_1 \cap R_2$		√		$\sqrt{}$	V
$R_1 \cup R_2$		√		×	×
$R_1 - R_2$	×	√		√	×
R_1 ° R_2		×	×	×	×

注:√表示经过左端的运算仍保持原来的性质,×则表示原来的性质不再满足。

注:按列来看。

关于关系合成

- 非自反性: $R_1 = \{\langle 2,1 \rangle\}, R_2 = \{\langle 1,2 \rangle\}$ $R_{10}R_2 = \{\langle 1,1 \rangle\}$
- **对称性:** $R_1 = \{ \langle 2,3 \rangle, \langle 3,2 \rangle \}, R_2 = \{ \langle 1,2 \rangle, \langle 2,1 \rangle \} R_1 O R_2 = \{ \langle 1,3 \rangle \}$
- 反对称: R₁={<2,3>, <2,1>}, R₂={<1,2>, <3,2>} R₁OR₂={<1,3>,
 <3,1>, <3,3>, <1,1>}
- 传递性: R₁={<2,3>, <3,1>, <2,1>}, R₂={<1,2>, <2,3>, <1,3>}
 R₁OR₂={<1,1>, <2,1>, <1,3>}

几个主要关系的性质

性质 关系	自反性	非自反性	对称性	反对称性	传递性
恒等关系 <i>I_A</i>	\checkmark	X	\checkmark	√	$\sqrt{}$
全域关系 <i>E_A</i>	$\sqrt{}$	X	\checkmark	×	$\sqrt{}$
<i>A</i> 上的空 关系 <i>Φ</i>	×	√	√	√	√
N上的整 除关系	$\sqrt{}$	×	×		$\sqrt{}$
包含关系		×	×	√	V
真包含关 系 ⊂	×	√	×	√	V

注:按照行来看