

What is claimed is:

- 1 1. An interconnect stage comprising:
 - 2 a. a vertical symmetry plane;
 - 3 b. a rotation axis substantially perpendicular to
4 said symmetry plane;
 - 5 c. a conductive see-saw structure including:
 - 6 i . a substantially planar central portion
7 horizontally extending around an
8 intersection of said symmetry plane and
9 said rotation axis;
 - 10 ii. a first peripheral arm laterally extending
11 from said central portion along said
12 symmetry plane and peripherally
13 terminating in a first contact tip, said
14 first arm pointing downwards in a first
15 angle with respect to said planar central
16 portion;
 - 17 iii.a second peripheral arm laterally
18 extending from said central portion along
19 said symmetry plane and peripherally
20 terminating in a second contact tip, said
21 second arm extending in opposing position
22 and orientation to said first arm, said
23 second arm pointing upwards in a second
24 angle with respect to said planar central
25 portion;
 - 26 d. a dielectric resilient means including:
 - 27 i. an interface portion combined with said
28 central portion;

ii. two torsion features laterally extending from opposing ends of said interface portion along said rotation axis; and wherein said resilient means is configured to be peripherally fixed and configured such that a force induced onto at least one of said first contact tip and said second contact tip results in a rotational displacement of said see-saw structure around said rotation axis, said rotational displacement being opposed by a resiliently torsion deformation of said torsion features.

2. The interconnect stage of claim 1, wherein said see-saw structure is substantially symmetric with respect to said symmetry plane.

3. The interconnect stage of claim 1, wherein said resilient means is substantially symmetric with respect to said symmetry plane.

4. The interconnect stage of claim 1, wherein said see-saw structure is substantially symmetric with respect to said rotation axis.

5. The interconnect stage of claim 1, wherein said resilient means is substantially symmetric with respect to said rotation axis.

5

1 6. The interconnect stage of claim 1, wherein
2 said resilient means has a constant
3 thickness.

4

1 7. The interconnect stage of claim 1, wherein
2 said see-saw structure has a constant
3 thickness.

4

1 8. The interconnect stage of claim 1, wherein
2 said see-saw structure further features a
3 slot propagating from at least one of said
4 first contact tip and said second contact
5 tip along said symmetry plane towards said
6 rotation axis, wherein said slot
7 conductively divides at least partially at
8 least one of said first peripheral arm, said
9 second peripheral arm and said central
10 portion.

11

1 9. The interconnect stage of claim 8,
2 wherein said slot propagates between
3 said first contact tip and said second
4 contact tip dividing said see saw
5 structure into at least two
6 conductively separated entities.

7

1 10. The interconnect stage of claim 1, wherein
2 said interface portion occupies a fraction
3 of said planar central portion such that a
4 top and a bottom of said central portion are

5 directly accessible in the vicinity of said
6 peripheral arms.

7

1 11. The interconnect stage of claim 1, wherein
2 said interface portion has a first width
3 substantially larger than a second width of
4 said torsion feature such that a
5 delamination origin between said central
6 portion and said interface portion is in a
7 larger distance to said rotation axis than a
8 peak shear point of said dielectric
9 resilient means.

10

1 12. The interconnect stage of claim 1, wherein
2 said resilient means further comprises a
3 flex feature extending from at least one of
4 said torsion features in direction
5 substantially parallel to said symmetry
6 plane in an offset to said see-saw structure
7 such that said rotational displacement is
8 additionally opposed by a resilient flexural
9 deformation of said flex feature.

10

1 13. The interconnect stage of claim 1, further
2 comprising a stiffening structure combined
3 with said interface portion on the opposite
4 side of said planar center portion.

5

1 14. An interconnect assembly comprising:
2 a. a carrier frame including:
3 i. a circumferential support frame;

4 ii. a dielectric carrier grid combined with
5 said circumferential support frame;
6 b .a number of two dimensionally arrayed
7 interconnect stages, at least one of said
8 interconnect stages comprising:
9 i. a vertical symmetry plane;
10 i i a rotation axis substantially
11 perpendicular to said symmetry plane:
12 iii. a conductive see-saw structure including:
13 1 a substantially planar central
14 portion horizontally extending around
15 an intersection of said symmetry
16 plane and said rotation axis;
17 2 .a first peripheral arm laterally
18 extending from said central portion
19 along said symmetry plane and
20 peripherally terminating in a first
21 contact tip, said first arm pointing
22 downwards in a first angle with
23 respect to said planar central
24 portion;
25 3 .a second peripheral arm laterally
26 extending from said central portion
27 along said symmetry plane and
28 peripherally terminating in a second
29 contact tip, said second arm
30 extending in opposing position and
31 orientation to said first arm, said
32 second arm pointing upwards in a
33 second angle with respect to said
34 planar central portion;

35 iv. a dielectric resilient means combined with
36 said carrier grid, said dielectric
37 resilient means including:

- 38 1 .an interface portion combined with
39 said central portion;
40 2 .two torsion features laterally
41 extending from opposing ends of said
42 interface portion along said rotation
43 axis; and

44 wherein said resilient means is configured such
45 that a force induced onto at least one of said
46 first contact tip and said second contact tip
47 results in a rotational displacement of said see-
48 saw structure around said rotation axis, said
49 rotational displacement being opposed by a
50 resilient torsion deformation of said torsion
51 features.

52

1 15. The interconnect assembly of claim 14,
2 wherein said see-saw structure is
3 substantially symmetric with respect to said
4 symmetry plane.

5

1 16. The interconnect assembly of claim 14,
2 wherein said resilient means is
3 substantially symmetric with respect to said
4 symmetry plane.

5

1 17. The interconnect assembly of claim 14,
2 wherein said see-saw structure is
3 substantially symmetric with respect to said
4 rotation axis.

5

1 18. The interconnect assembly of claim 14,
2 wherein said resilient means is
3 substantially symmetric with respect to said
4 rotation axis.

5

1 19. The interconnect assembly of claim 14,
2 wherein said resilient means has a constant
3 thickness.

4

1 20. The interconnect assembly of claim 14,
2 wherein said see-saw structure has a
3 constant thickness.

4

1 21. The interconnect assembly of claim 14,
2 wherein said see-saw structure further
3 features a slot propagating from at least
4 one of said first contact tip and said
5 second contact tip along said symmetry plane
6 towards said rotation axis, wherein said
7 slot conductively divides at least partially
8 at least one of said first peripheral arm,
9 said second peripheral arm and said central
10 portion.

11

1 22. The interconnect assembly of claim 21,
2 wherein said slot propagates between
3 said first contact tip and said second
4 contact tip dividing said see saw
5 structure into at least two
6 conductively separated entities.

7

1 23. The interconnect assembly of claim 14,
2 wherein said interface portion occupies a
3 fraction of said planar central portion such
4 that a top and a bottom of said central
5 portion are directly accessible in the
6 vicinity of said peripheral arms.

7

1 24. The interconnect assembly of claim 14,
2 wherein said interface portion has a first
3 width substantially larger than a second
4 width of said torsion feature such that a
5 delamination origin between said central
6 portion and said interface portion is in a
7 larger distance to said rotation axis than a
8 peak shear point of said dielectric
9 resilient means.

10

1 25. The interconnect assembly of claim 14,
2 wherein said torsion features of each of
3 said number of interconnect stages are fixed
4 at and protruding from x-oriented grid
5 members of said carrier grid.

6

1 26. The interconnect assembly of claim 14,
2 wherein said torsion features and said
3 interface feature of each of said number of
4 interconnect stages define y-oriented grid
5 members of said carrier grid.

6

1 27. The interconnect assembly of claim 14,
2 wherein said resilient means further
3 comprises a flex feature extending from at

4 least one of said torsion features in
5 direction substantially parallel to said
6 symmetry plane in an offset to said see-saw
7 structure such that said rotational
8 displacement is additionally opposed by a
9 resilient flexural deformation of said flex
10 feature.

11

1 28. The interconnect assembly of claim 27,
2 wherein said flex feature is part of an
3 x-oriented grid member of said carrier
4 grid.

5

1 29. The interconnect assembly of claim 27,
2 wherein an x-oriented grid member of
3 said carrier grid is defined by a
4 number of said flex feature of each of
5 said number of interconnect stages.

6

1 30. The interconnect assembly of claim 14,
2 further comprising a stiffening structure
3 combined with said interface portion on the
4 opposite side of said planar center portion.

5

1 31. The interconnect assembly of claim 14 being
2 part of a test apparatus for repetitively
3 receiving and testing a circuit chip,
4 wherein said first second contact tip of at
5 least one of said number of interconnect
6 stages is contacting a first contact of said
7 test apparatus and wherein said second
8 contact tip of at least one of said number

9 of interconnect stages is contacting a
10 second contact of said circuit chip.

11

1 32. The interconnect assembly of claim 14
2 fabricated by a method including the steps
3 of:

- 4 a. conductively combined planar shaping of
5 a number of said see-saw structure;
6 b. fabricating said carrier frame;
7 c. combining said number of said
8 conductively combined and planar shaped
9 see-saw structures with said carrier
10 frame;
11 d. electro plating said number of
12 conductively combined and planar shaped
13 see-saw structures and consecutively
14 releasing said number of said planar
15 shaped see-saw structures; and
16 e. 3D forming said number of said released
17 planar shaped see-saw structures.