Lab 6 grading sheet			Circle professor		
1) Name Last	First	EID	VJR, MT, JV, RY		
2) Name Last	First	EID	VJR, MT, JV, RY		
Use same spelling as listed on Blackboard	THSt	EID	VJK, WI1, JV, K1		
Ose same spetting as astea on Blackboard					
1. All source files that you have chan	iged or added (like main.c) should be	committed to SVN. Please		
do not commit other file types.					
2. Deliverables 20%:					
0) This sheet					
Combine the following components		2 0 0	•		
SVN before your checkout time. Have					
 Circuit diagram showing the D Software Design 	AC and any of	ner nardware used in i	inis iab, PCB Artist		
Draw pictures of the data	etructures used	to store the sound dat	ta		
If you organized the syste			.a		
then draw its data		_			
3) A picture of the dual scope (pa	Ŭ	•			
4) Measurement Data					
Show the theoretical response	onse of DAC v	oltage versus digital v	alue (part c, Table 6.3)		
Show the experimental re-					
Calculate resolution, rang					
5) Brief, one sentence answers to	the following	questions			
When does the interrupt to					
In which file is the interru					
List the steps that occur after trigger occurs and before processor executes handler.					
It looks like BX LR instruction simply moves LR into PC, how does this return?					
3. Performance 35%:					
Does it handle correctly all situ	iations as speci	fied?			
4. Adhere to coding standard 5%:					
Good Names have meaning					
Variables have units in comments	S				
Consistent indentation Consistent use of braces					
C99 style					

	1)	2)
5. Demonstration 40%:		

You should be able to demonstrate the three notes. Be prepared to explain how your software works. You should be prepared to discuss alternative approaches and be able to justify your solution. The TA may look at your data and expect you to understand how the data was collected and how DAC works. In particular, you should be able to design a DAC with 5 to 10 bits. What is the range, resolution and precision? You will tell the TA what frequency you are trying to generate, and they may check the accuracy with a frequency meter or scope. TAs may ask you what frequency it is supposed to be, and then ask you to prove it using calculations. Just having three different sounding waves is not enough, you must demonstrate the frequency is proper and it is a sinewave (at least as good as you can get with a 4-bit DAC). You will be asked to attach your DAC output to the scope (part g). Many students come for their checkout with systems that did not operate properly. You may be asked SysTick interrupt and DAC questions. If the desired frequency is f, and there are n samples in the sine wave table, what SysTick interrupt period would you use?

This lab mentions 32 samples per cycle. Increasing the DAC output rate and the number of points in the table is one way of smoothing out the "steps" that in the DAC output waveform. If we double the number of samples from 32 to 64 to 128 and so on, keeping the DAC precision at 4-bit, will we keep getting a corresponding increase in quality of the DAC output waveform?

As you increase the number of bits in the DAC you expect an increase in the quality of the output waveform. If we increase the number of bits in the DAC from 4 to 6 to 8 and so on, keeping the number of points in the table fixed at 32, will we keep getting a corresponding increase in quality of the DAC output waveform?

	1)	2)
Total:		