

NTE8556 Integrated Circuit 3-State Programmable Binary Counter

Description:

The NTE8556 is a tri-state four-bit binary counter which has both conventional and tri-state outputs. When the tri-state outputs are in the high-impedance mode they can be used to load information into the subsequent stage. This is particularly useful in applications involving program counters. Fully synchronous operation results when these devices are cascaded.

Features:

- Target propagation delay 27nS
- Target logic clock frequency 50MHz
- Tri-State Outputs
- Synchronous Loading
- Cascading Circuitry Provided Internally

Absolute Maximum Ratings: $(T_A = +25^{\circ}C)$ unless otherwise specified)

Supply Voltage, V _{CC}
Input Voltage, V _I 5.5V
Operating Temperature Range, T _{opr} 0°C to +70°C
Storage Temperature Range, T _{str} 65°C to +150°C

Recommended Operating Conditions: $(V_{CC} = 5V, T_A = +25^{\circ}C, unless otherwise specified)$

Parameter		Symbol	Min	Тур	Max	Unit		
Supply Voltage		V _{CC}	4.75	5	5.25	V		
High Level Input Voltage		High Level Input Voltage		V _{IH}	2	-	-	٧
Low Level Input Voltage		V _{IL}	-	-	0.8	٧		
High Level Output Current		I _{OH}	-	-	-5.2	mA		
Low Level Output Current		l _{OL}	-	-	16	mA		
Clock Frequency		f _{CLK}	0	-	25	MHz		
Pulse Width	Clock		25	_	_			
	Clear	t _W	20	-	-	ns		
	Load	"	30	_	-	1		
Count Enable Time	Setup		30	_	-			
	Hold	t _{CE}	-10	_	 -	ns		

<u>Recommended Operating Conditions (Cont'd)</u>: $(V_{CC} = 5V, T_A = +25^{\circ}C, unless otherwise specified)$

Parameter		Symbol	Min	Тур	Max	Unit	
Setup Time High Logic Level	Data		25	-	-		
	Load	t _{SETUP(1)}	30	-	-	ns	
Hold Time High Logic Level	Data	^t HOLD(1)	5	-	-		
	Load		-10	-	-	ns	
Setup Time Low Logic Level	Data	^t SETUP(0)	30	-	-	ns	
	Load		25	-	-		
Hold Time Low Logic Level	Data		5	-	-		
	Load	tHOLD(0)	-10	-	-	ns	
Free Air Operating Temperature		T _A	0	_	70	°C	

<u>Electrical Characteristics</u>: $(V_{CC} = 5V, T_A = +25^{\circ}C, unless otherwise specified)$

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Input Clamp Voltage	V _I	$V_{CC} = Min, I_I = -12mA$	_	-	-1.5	V
High Level Output Voltage	V _{CH}	V _{CC} = Min, I _{OH} = Max, V _{IL} = Max, V _{IH} = Max	2.4	_	_	V
Low Level Output Voltage	V _{OL}	$V_{CC} = Min, I_{OL} = Max,$ $V_{IL} = Max, V_{IL} = Max$	_	_	0.4	V
Input Current @ Max Input Voltage	lı	$V_{CC} = Max, V_I = 5.5V$	_	_	1	mA
High Level Input Current	I _{IH}	$V_{CC} = Max, V_I = 2.4V$	_	-	40	μΑ
Low Level Input Current	I _I L	$V_{CC} = Max, V_I = 0.4V$	_	-	-1.6	mA
Off-State Output Current with High Level Output Voltage Applied	l _{OZH}	$V_{CC} = Max$, $V_O = 2.4V$, $V_{IH} = Min$, $V_{IL} = Max$	_	-	40	μΑ
Off-State Output Current with Low Level Output Voltage Applied	l _{OZL}	$V_{CC} = Max, V_O = 0.4V$ $V_{IH} = Min, V_{IL} = Max$	_	_	-40	μΑ
Short Circuit Output Current	los	V _{CC} = Max (Note 1)	-25	_	-70	mA
Supply Current	I _{CC}	V _{CC} = Max	_	75	100	mA

Note 1. Note more than one output should be shorted at a time.

<u>Switching Characteristics</u>: $(V_{CC} = 5V, T_A = +25^{\circ}C, unless otherwise specified)$

				$R_L = 400\Omega$				
Parameter	Symbol	From (Input) To (Output)	C _L = 5 pF		C _L = 50 pF		Unit	
		10 (0 a.p.a.)	Min	Max	Min	Max		
Maximum Clock Frequency	f _{MAX}		-	_	25	_	MHz	
Propagation Delay Time Low to High Level Output	t _{PLH}	Clock to Output	-	-	_	22	ns	
Propagation Delay Time High to Low Level Output	t _{PHL}	Clock to Output	-	-	_	44	ns	
Propagation Delay Time Low to High Level Output	t _{PLH}	Clock to MAX-CNT	-	-	_	33	ns	
Propagation Delay Time High to Low Level Output	t _{PHL}	Clock to MAX-CNT	_	_	_	33	ns	
Propagation Delay Time High to Low Level Output	t _{PHL}	Reset to Output	-	-	_	44	ns	
Output Enable Time to High Level Output	t _{PZH}	Output Disable to Q	-	-	_	20	ns	
Output Enable Time to Low Level Output	t _{PZL}	Output Disable to Q	_	-	_	20	ns	
Output Disable Time from High Level Output	t _{PHZ}	Output Disable to Q	_	12	_	_	ns	
Output Disable Time from Low Level Output	t _{PLZ}	Output Disable to Q	-	20	_	_	ns	

