BTVN1

TRẦN KHÔI NGUYÊN VÂT LÝ LÝ THUYẾT

Ngày 20 tháng 10 năm 2024

Problem 3.4:
$$\mathcal{L}y = y'' - \lambda^2 y = f(x)$$
. $\begin{cases} y(0) = 0 \\ y(1) = 0 \end{cases}$.

Giải: Phương trình thuần nhất:

$$y'' - \lambda^2 y = 0$$
$$\Rightarrow y'' = \lambda^2 y.$$

Nghiệm tổng quát có dạng:

$$y_1 = A\cosh(\lambda x) + B\sinh(\lambda x). \tag{1}$$

$$y_2 = A\cosh(1 - \lambda x) + B\sinh(1 - \lambda x). \tag{2}$$

Áp dụng điều kiện biên cho (1):

$$\begin{cases} y_1(0) &= A \cosh(0) + B \sinh(0) = 0 \Rightarrow A = 0, \\ y_2(1) &= B \sinh(1 - \lambda) = 0 \Rightarrow \sinh(1 - \lambda) = 0 \Rightarrow \lambda = 1, \end{cases}$$

$$\Rightarrow \begin{cases} y_1 &= \sinh(x) \\ y_2 &= \sinh(1-x). \end{cases}$$
 (3)

Wronskian của y_1 và y_2 :

$$\begin{vmatrix} y1 & y2 \\ y1' & y2' \end{vmatrix} = \begin{vmatrix} \sinh(x) & \sinh(1-x) \\ \cosh(x) & -\cosh(1-x) \end{vmatrix}$$
$$= -\sinh(x)\cosh(1-x) - \cosh(x)\sinh(1-x)$$
$$= -\sinh 1.$$

 $\alpha(\xi) = 1.$

Hàm Green có dạng:

$$G(x,\xi) = \frac{1}{\alpha(\xi)W(\xi)} \left[\Theta(\xi - x)y_1(x)y_2(1 - \xi) + \Theta(x - \xi)y_2(1 - x)y_1(\xi) \right]$$

= $-\frac{1}{\sinh 1} \left[\Theta(\xi - x)\sinh(x)\sinh(1 - \xi) + \Theta(x - \xi)\sinh(1 - x)\sinh(\xi) \right].$ (4)

Nghiệm của $\mathcal{L}y = f$ là:

$$y = \int_{a}^{b} G(x,\xi)f(\xi)d\xi$$

$$= y_{2}(x) \int_{a}^{x} \frac{y_{1}(\xi)}{\alpha W} f(\xi)d\xi + y_{1}(x) \int_{x}^{b} \frac{y_{2}(\xi)}{\alpha W} f(\xi)d\xi$$

$$= \sinh(1-x) \int_{a}^{x} \frac{\sinh(\xi)}{\alpha W} f(\xi)d\xi + \sinh(x) \int_{x}^{b} \frac{\sinh(1-\xi)}{\alpha W} f(\xi)d\xi$$
(5)

với $\alpha=1, W=-\sinh 1$

Tính tích phân:
$$g_n(\xi) = 2 \int_0^1 G(x,\xi) \sin(n\pi x) dx$$
.

Trong đó:

$$G = \Theta(x - \xi)\sin\xi\cos x + \Theta(\xi - x)\cos\xi\sin x - \cot\theta\sin\xi\sin x,$$

thay vô $g_n(\xi)$ ta được,

$$RHS = 2\int_0^1 \left[\Theta(x-\xi)\sin\xi\cos x + \Theta(\xi-x)\cos\xi\sin x - \cot \sin\xi\sin x\right]\sin(n\pi x)dx$$