Учебно-исследовательская работа 2 (УИР 2)

"ИССЛЕДОВАНИЕ СИСТЕМ МАССОВОГО ОБСЛУЖИВАНИЯ НА МАРКОВСКИХ МОДЕЛЯХ"

1. Цель работы	1
2. Содержание работы	
3. Этапы работы	
4. Порядок выполнения работы	
5. Описание программы MARK	
6. Содержание отчета	
7. Варианты заданий	
8 Рекомениуемые формы таблиц	

1. Цель работы

Изучение метода марковских случайных процессов и его применение для исследования простейших моделей - систем массового обслуживания (СМО) с однородным потоком заявок.

2. Содержание работы

Разработка и расчет марковских моделей одно- и многоканальных СМО с однородным потоком заявок и выбор наилучшего варианта построения СМО в соответствии с заданным критерием эффективности.

В процессе исследований для расчета характеристик функционирования СМО используется программа MARK.

3. Этапы работы

- 3.1. Разработка марковских моделей исследуемых систем.
- 3.2. Освоение программы по расчету марковских моделей.
- 3.3. Проведение расчетов по разработанным моделям и обработка результатов.
 - 3.4. Анализ полученных результатов.
- 3.5. Выбор наилучшего варианта организации системы из двух вариантов в соответствии с заданным критерием эффективности.

4. Порядок выполнения работы

- 4.1. Получить вариант работы.
- 4.2. Построить графы переходов для заданных СИСТЕМЫ_1 и СИСТЕМЫ 2.
- 4.3. С использованием программы MARK рассчитать характеристики марковского процесса для СИСТЕМЫ 1 и СИСТЕМЫ 2.
 - 4.4. Проанализировать характеристики функционирования системы.

4.5. Выбрать и обосновать наилучший способ организации системы в соответствии с заданным критерием эффективности.

5. Описание программы MARK

Программа MARK предназначена для расчета характеристик марковских процессов с непрерывным временем по заданным значениям интенсивностей переходов и матрице интенсивностей переходов.

Результатами расчетов являются:

- стационарные вероятности состояний марковского процесса;
- значения характеристик марковской модели, вычисленные на основе стационарных вероятностей по заданным формулам.

Предусмотрена возможность варьирования значений интенсивностей переходов и вывод результатов варьирования в виде таблиц или графика зависимостей характеристик марковской модели от варьируемых параметров.

Результаты расчетов могут быть выведены на экран или на печать.

6. Содержание отчета

- 6.1. Постановка задачи и исходные данные.
- 6.2. Описание исследуемой системы.
- 6.3. Перечень состояний марковского процесса для исследуемой системы.
- 6.4. Результаты работы:
- размеченный граф переходов марковского процесса;
- матрица интенсивностей переходов;
- значения стационарных вероятностей, сведенные в таблицу (форма 1);
- формулы, используемые для расчета характеристик системы и значения характеристик системы, сведенные в таблицы (форма 2);
- результаты (графики и *выводы*) сравнительного анализа характеристик функционирования исследуемых систем;
- обоснование выбора наилучшего варианта организации системы в соответствии с заданным критерием эффективности.

Теоретический материал по марковским случайным процессам можно найти в учебном пособии «Основы моделирования дискретных систем», раздел 5 «Численное моделирование (модели случайных процессов)».

7. Варианты заданий

Номер варианта задается в виде двойки N1/N2, где N1 - номер варианта из табл.1, N2 - номер варианта из табл.2.

Таблица 1 Параметры структурной и функциональной организации исследуемых систем

Вариант	СИСТ	EMA_1	СИСТЕМА_2		Критерий	
	П	EH	П	EH	эффект.	
1	1 (H ₂)	3	3	2/0/0	(a)	
2	2	2/1	2 (H ₃)	2/1	(б)	
3	2	3/0	3	1/1/1	(B)	
4	2 (E ₂)	1/0	3	1/0/1	(r)	
5	2	6	2	4/2	(д)	
6	2	4/1	1 (E ₂)	2	(a)	
7	2	3/1	2	2/1	(б)	
8	1 (H ₂)	2	2	1/3	(B)	
9	2 (E ₂)	1/1	3	0/1/1	(r)	
10	2	5	2	1/3	(д)	
11	2	2/2	1 (E ₂)	3	(a)	
12	2	7	3 (H ₃)	1/0/0	(б)	
13	3	1/1/1	3	3	(B)	
14	3	2/0/0	2 (E ₂)	2/0	(r)	
15	3	3	3	2/1/0	(д)	
16	3	1/1/0	2	2/2	(a)	
17	3 (E ₂)	1/0/0	2	2/1	(б)	
18	3	0/0/1	2 (E ₂)	0/3	(B)	
19	3	0/0/2	2	1/2	(r)	
20	3 (H ₂)	0/0/1	2	0/3	(д)	
21	2	0/4	3	1/1/1	(a)	
22	2	0/3	3 (E ₂)	1/0/0	(б)	
23	2 (E ₂)	0/2	3	0/0/1	(B)	
24	$2(E_2)$	0/1	3	0/1/1	(r)	
25	2	6	$1(E_2)$	3	(д)	
26	2	1/4	2	5	(a)	
27	2	1/3	3	1/0/0	(6)	
28	2	1/2	$1(E_2)$	2	(B)	
29	2	1/1	3	1/1/0	(r)	
30	2	5	3	0/1/1	(д)	
31	2	1/1	2 (H ₂)	2	(a)	
32	2	7	2	3/1	(6)	
33	3 (H ₃)	1/0/1	2	2/0	(B)	
34	3	2/0/0	2	6	(r)	
35	3	0/3/0	2 (E ₂)	0/2	(д)	
36	3	0/2/0	2	1/1	(a)	
37	2 (H ₂)	1	2	2/2	(6)	
38	3	0/1/1	2	1/1	(B)	
39	3 (E ₂)	0/1/0	2	0/3	(r)	
40	3	4	3	2/0/0	(д)	

Таблица 1

(продолжение)

Вариант	СИСТ	EMA_1	СИСТЕМА_2		Критерий
_	П	EH	П	EH	эффект.
41	3	1/0/1	2 (E ₃)	0/3	(a)
42	3 (H ₃)	1/1/0	2	1/2	(б)
43	3	0/2/0	2	2/1	(B)
44	3	1/1/1	2 (E ₂)	1/0	(г)
45	1 (H ₂)	3	2	2/2	(д)
46	2	1/3	2 (E ₂)	4	(a)
47	2	1/3	3	1/0/0	(б)
48	2	1/2	$1(E_3)$	2	(B)
49	2 (E ₃)	1/1	3	1/1/0	(r)
50	2	5	3	0/1/1	(д)
51	1 (E ₃)	3	2	2/2	(a)
52	3 (H ₃)	2/0/0	2	7	(б)
53	$2(E_2)$	3	3	3/0/0	(B)
54	$2(E_2)$	2/0	3	2/0/0	(r)
55	3	1/0/1	3 (H ₂)	2	(д)
56	$2(E_2)$	1/1	3	1/1/0	(a)
57	2	2/1	3 (E ₂)	1/0/0	(б)
58	$2(E_2)$	0/2	3	0/0/1	(B)
59	2 (H ₃)	1/1	3	0/0/2	(r)
60	$2(E_2)$	0/3	3	0/0/3	(д)
61	2	4/0	3 (E ₂)	1/0/0	(a)
62	$2(E_2)$	2/0	3	2/0/0	(б)
63	2 (H ₂)	2	3	1/1/0	(B)
64	$2 (E_2)$	1/0	3	1/0/1	(r)
65	2	6	2 (H ₃)	1/3	(д)
66	2	4/1	$1(E_2)$	2	(a)
67	2	3/1	1 (H ₂)	4	(б)
68	$2(E_2)$	1/1	2	1/3	(B)
69	$2(E_2)$	1/1	3	0/1/1	(r)
70	2	5	2 (E ₂)	1/3	(д)
71	2	6	2 (H ₃)	2/1	(a)
72	2	3/2	2	7	(б)
73	2	2/0	3 (E ₂)	1/0/1	(B)
74	2	6	3	2/1/1	(1)
75	2 (E ₂)	0/2	3	0/3/0	(д)
76	2	3/3	3	0/2/0	(a)
77	2	2/3	3 (E ₂)	3	(б)
78	2 (E ₂)	1/1	3	0/1/1	(B)
79	2 (H ₂)	0/2	3	0/1/0	(L)
80	3	2/1/1	3	4	(д)

Обозначения в табл.1:

П - число обслуживающих Приборов;

 Π (**E**_k) - в одном из **Приборов** (любом) длительность обслуживания распределена по закону Эрланга k-го порядка;

<u>Н</u>ИУ ИТМО факультет ПИ и КТ

- Π (**H**_v) в одном из **Приборов** (любом) длительность обслуживания распределена по гиперэкспоненциальному закону с коэффициентом вариации, равным v;
- **ЕН Емкости Накопителей**: **X/Y/Z** (**X** перед первым прибором, **Y** перед вторым прибором и **Z** перед третьим прибором);

Указания: 1) заявка, поступившая в систему, с заданной вероятностью занятия прибора направляется к соответствующему прибору и ставится в очередь, либо теряется, если накопитель заполнен или отсутствует;

- 2) емкость накопителя, представленная одним числом, означает общий накопитель перед всеми приборами;
 - 3) критерий эффективности выбирается в соответствии с вариантом:
 - а) максимальная производительность системы;
 - б) минимальные потери заявок;
 - в) максимальная загрузка системы;
 - г) минимальное время пребывания в системе заявок;
 - д) минимальная суммарная длина очередей заявок.

Таблица 2 **Параметры нагрузки**

Номер	Интенс.	Ср.длит.	Вероятности занятия		
вари-	потока	обслуж.	П	рибора	•
анта	$\lambda_{1/c}$	<i>b</i> , c	П1	П2	П3
1	0,1	25	1/3	1/3	1/3
2	0,2	20	0,4	0,5	0,1
3	0,3	20	0,25	0,25	0,5
4	0,4	15	0,2	0,3	0,5
5	0,5	10	0,5	0,4	0,1
6	0,6	5	0,1	0,2	0,7
7	0,7	5	0,2	0,4	0,4
8	0,8	5	0,3	0,5	0,2
9	0,9	4	0,5	0,3	0,2
10	1,0	2	0,6	0,3	0,1
11	0,1	40	1/3	1/3	1/3
12	0,2	25	0,4	0,5	0,1
13	0,3	25	0,25	0,25	0,5
14	0,4	20	0,2	0,3	0,5
15	0,5	10	0,5	0,4	0,1
16	0,6	10	0,1	0,2	0,7
17	0,7	8	0,4	0,4	0,2
18	0,8	4	0,3	0,5	0,2
19	0,9	2	0,5	0,3	0,2
20	1,0	4	0,6	0,3	0,1

Указания к табл.2:

Вероятности занятия прибора определяются следующим образом:

30.09.23 VMP 2 5 (u3 7)

- в случае трехканальной СМО выбираются из табл.2 (см. вероятности занятия приборов П1, П2 и П3);
- в случае двухканальной СМО вероятность занятия прибора П1 выбирается из табл.2, а вероятность занятия прибора П2 принимается равной сумме вероятностей занятия приборов П2 и П3;
- в случае одноканальной СМО вероятность занятия прибора принимается равной 1.

8. Рекомендуемые формы таблиц

Форма 1 Стационарные вероятности состояний

Стационарные вероитности состоянии						
Номер	СИСТЕМА_1		СИСТЕМА_2			
состояния	Обозн.	Вер-ть	Обозн.	Вер-ть		
1						
2						
•••						
20						

Указание к форме 1:

В столбце "Обозн." указываются обозначения всех состояний марковского процесса, принятые в соответствии с выбранной кодировкой.

Характеристики СИСТЕМ

Форма 2

Zapakiepheinkh CifeTEM							
Хар-ка	Прибор	Расчетная формула	СИСТ.1	СИСТ.2			
	П1						
Нагрузка	П2						
	П3						
	Сумм.						
	П1						
Загрузка	•••						
	Сумм.						
Длина	П1						
очереди	•••						
	Сумм.		·				
	П1						
Число	• • •						
Заявок	Сумм.						
	П1						
Время	•••						
ожидания	Сумм.						
	П1						
Время	•••						
пребывания	Сумм.						
	П1						
Вероятность	•••						
потери	Сумм.						

Производительность	П1		
	•••		
	Сумм.		
•••			

Указание: расчет характеристик обслуживания заявок должен проводиться через вероятности состояний марковского процесса без использования фундаментальных зависимостей (формул Литтла и т.п.); последние могут и должны использоваться для проверки полученных результатов.