### Growth rate functions

We want to define the precise meaning of growth rate.

#### **Definition 1:**

$$\Theta(g(n)) = \{f(n) \mid \exists c_1 > 0, c_2 > 0, n_0 \ge 0 \text{ so that}$$
  
 $\forall n \ge n_0, 0 \le c_1 g(n) \le f(n) \le c_2 g(n)\}$ 

If  $f(n) \in \Theta(g(n))$ , we also write  $f(n) = \Theta(g(n))$  and say: the growth rate of f(n) is the same as the growth rate of g(n).



#### **Definition 2:**

$$O(g(n)) = \{f(n) \mid \exists c_2 > 0, n_0 \ge 0 \text{ so that}$$
  
$$\forall n \ge n_0, 0 \le f(n) \le c_2 g(n)\}$$

If  $f(n) \in O(g(n))$ , we also write f(n) = O(g(n)) and say: the growth rate of f(n) is at most the growth rate of g(n).



#### **Definition 3:**

$$\Omega(g(n)) = \{f(n) \mid \exists c_1 > 0, n_0 \ge 0 \text{ so that}$$
  
$$\forall n \ge n_0, 0 \le c_1 g(n) \le f(n)\}$$

If  $f(n) \in \Omega(g(n))$ , we also write  $f(n) = \Omega(g(n))$  and say: the growth rate of f(n) is at least the growth rate of g(n).



#### **Definition 4:**

$$o(g(n)) = \{f(n) \mid \forall c > 0, \exists n_0 \ge 0 \text{ so that}$$
  
 $\forall n \ge n_0, 0 \le f(n) \le cg(n)\}$ 

If  $f(n) \in o(g(n))$ , we also write f(n) = o(g(n)) and say: the growth rate of f(n) is strictly less than the growth rate of g(n).

#### **Definition 5:**

$$\omega(g(n)) = \{f(n) \mid \forall c > 0, \exists n_0 \ge 0 \text{ so that}$$
  
$$\forall n \ge n_0, 0 \le cg(n) \le f(n)\}$$

If  $f(n) \in \omega(g(n))$ , we also write  $f(n) = \omega(g(n))$  and say: the growth rate of f(n) is strictly bigger than the growth rate of g(n).

# The properties of growth rate functions:

The meaning of these notations (roughly speaking):

| if                    | the growth-rate is |
|-----------------------|--------------------|
| $f(n) = \Theta(g(n))$ | =                  |
| f(n) = O(g(n))        | <u> </u>           |
| $f(n) = \Omega(g(n))$ | ≥                  |
| f(n) = o(g(n))        | <                  |
| $f(n) = \omega(g(n))$ | >                  |

#### The properties of growth rate functions:

Some properties of growth rate functions:

• 
$$f(n) = \Theta(g(n)) \Longleftrightarrow f(n) = O(g(n))$$
 and  $f(n) = \Omega(g(n))$ 

• 
$$f(n) = O(g(n)) \iff g(n) = \Omega(f(n))$$

ロト 4個ト 4 重ト 4 重ト 9 9 0

©Xin He (University at Buffalo)

CSE 431/531 Algorithm Analysis and Design

15/30

#### The properties of growth rate functions:

Some properties of growth rate functions:

• 
$$f(n) = \Theta(g(n)) \iff f(n) = O(g(n))$$
 and  $f(n) = \Omega(g(n))$ 

• 
$$f(n) = O(g(n)) \iff g(n) = \Omega(f(n))$$

• 
$$f(n) = o(g(n)) \iff g(n) = \omega(f(n))$$

100,000,000,000

#### The properties of growth rate functions:

Some properties of growth rate functions:

- $f(n) = \Theta(g(n)) \iff f(n) = O(g(n))$  and  $f(n) = \Omega(g(n))$
- $f(n) = O(g(n)) \iff g(n) = \Omega(f(n))$
- $f(n) = o(g(n)) \iff g(n) = \omega(f(n))$
- f(n) = O(g(n)) and  $g(n) = O(h(n)) \Longrightarrow f(n) = O(h(n))$  if we replace O by  $\Theta, \Omega, o, \omega$ , it holds true.



©Xin He (University at Buffalo)

CSE 431/531 Algorithm Analysis and Design

15/30

#### The properties of growth rate functions:

Some properties of growth rate functions:

- $f(n) = \Theta(g(n)) \iff f(n) = O(g(n))$  and  $f(n) = \Omega(g(n))$
- $f(n) = O(g(n)) \iff g(n) = \Omega(f(n))$
- $f(n) = o(g(n)) \iff g(n) = \omega(f(n))$

- $f(n) = o(g(n)) \iff g(n) = \omega(f(n))$
- f(n) = O(g(n)) and  $g(n) = O(h(n)) \Longrightarrow f(n) = O(h(n))$  if we replace O by  $\Theta, \Omega, o, \omega$ , it holds true.
- $f(n) = o(g(n)) \Longrightarrow f(n) = O(g(n))$
- $f(n) = \omega(g(n)) \Longrightarrow f(n) = \Omega(g(n))$
- Read Ch. 3 for more relations and properties.



©Xin He (University at Buffalo)

CSE 431/531 Algorithm Analysis and Design

15/30

#### The properties of growth rate functions:

As an example, we prove one property:

$$f(n) = O(g(n)) \text{ and } g(n) = O(h(n)) \Longrightarrow f(n) = O(h(n))$$
 (1)

Proof: Suppose f(n) = O(g(n)). By definition, this means:

$$\exists c_1 > 0, n_1 \ge 0 \text{ so that } \forall n \ge n_1, 0 \le f(n) \le c_1 g(n)$$
 (2)

Similarly, g(n) = O(h(n)) means:

$$\exists c_2 > 0, n_2 \ge 0 \text{ so that } \forall n \ge n_2, 0 \le g(n) \le c_2 h(n)$$
 (3)

Take  $n_0 = \max\{n_1, n_2\}$ . Then for all  $n \ge n_0$  both (1) and (2) are true.

Hence:  $f(n) \le c_1 \cdot g(n) \le c_1 \cdot c_2 \cdot h(n) = c \cdot h(n)$ , where  $c = c_1 \cdot c_2$ .

By the definition of O, this means f(n) = O(h(n)). Thus the property (1) holds.

### **Limit Test**

Limit Test is a powerful method for comparing functions.

#### **Limit Test**

Let  $T_1(n)$  and  $T_2(n)$  be two functions. Let  $c = \lim_{n \to \infty} \frac{T_1(n)}{T_2(n)}$ .

- If c is a constant > 0, then  $T_1(n) = \Theta(T_2(n))$ .
- 2 If c = 0, then  $T_1(n) = o(T_2(n))$ .
- If c does not exists (or if we do not know how to compute c), the limit test fails.

Proof of (1):  $c = \lim_{n \to \infty} \frac{T_1(n)}{T_2(n)}$  means:  $\forall \epsilon > 0$ , there exists  $n_0 \ge 0$  such that for any  $n \ge n_0$ :  $\left| \frac{T_1(n)}{T_2(n)} - c \right| \le \epsilon$ ; or equivalently:  $c - \epsilon \le \frac{T_1(n)}{T_2(n)} \le c + \epsilon$ . Let  $\epsilon = c/2$ and let  $c_1 = c - \epsilon = c/2$  and  $c_2 = c + \epsilon = 3c/2$ , we have

$$c_1T_2(n) \leq T_1(n) \leq c_2T_2(n)$$

for all  $n \ge n_0$ . Thus  $T_1(n) = \Theta(T_2(n))$  by definition.



## L'Hospital Rule

### L'Hospital Rule

• If  $\lim_{n\to\infty} f(n) = 0$  and  $\lim_{n\to\infty} g(n) = 0$ , then

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=\lim_{n\to\infty}\frac{f'(n)}{g'(n)}$$

• If  $\lim_{n\to\infty} f(n) = \infty$  and  $\lim_{n\to\infty} g(n) = \infty$ , then

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=\lim_{n\to\infty}\frac{f'(n)}{g'(n)}$$

## Example

### Example 2

$$T_1(n) = n^2 + 6$$
,  $T_2(n) = n \lg n$ . (Recall:  $\lg n = \log_2 n$ .)

$$\lim_{n\to\infty} \frac{T_1(n)}{T_2(n)} = \lim_{n\to\infty} \frac{n^2+6}{n\lg n} = \lim_{n\to\infty} \frac{n+\frac{6}{n}}{\lg n}$$

$$= \lim_{n\to\infty} \frac{1-\frac{6}{n^2}}{\frac{1}{\ln 2 \cdot n}} \text{ (by L'Hospital Rule)}$$

$$= \ln 2 \lim_{n\to\infty} (n-\frac{6}{n}) = \ln 2(\infty-0) = \infty$$

By Limit Test, we have  $n^2 + 6 = \omega(n \lg n)$ .

# Stirling Formula

### Stirling Formula

$$\sqrt{2\pi n} \left(\frac{n}{e}\right)^n e^{\frac{1}{12n+1}} \leq n! \leq \sqrt{2\pi n} \left(\frac{n}{e}\right)^n e^{\frac{1}{12n}}$$

or: 
$$n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \cdot \left(1 + \Theta\left(\frac{1}{n}\right)\right)$$

When n = 10;

- n! = 3628800.
- $\sqrt{2\pi n} \left(\frac{n}{e}\right)^n = 3598696, 99\%$  accurate.

### Summation formulas

$$\sum_{i=1}^{n} i^{1} = 1 + 2 \cdots + n = \frac{n(n+1)}{2} = \Theta(n^{2})$$
 (3)

$$\sum_{i=1}^{n} i^2 = 1^2 + 2^2 \dots + n^2 = \frac{n(n+1)(2n+1)}{6} = \Theta(n^3)$$
 (4)

$$\sum_{i=1}^{n} i^3 = 1^3 + 2^3 \dots + n^3 = \frac{n^2(n+1)^2}{4} = \Theta(n^4)$$
 (5)

In general, for any k > 0, the following is true.

$$\sum_{i=1}^{n} i^k = \Theta(n^{k+1}) \tag{6}$$

# Calculate D(n)

To calculate the second sum, let t = j - i + 1. When j = i, t = 1. When j = n, t = n - i + 1. Thus

$$\sum_{j=i}^{n} (j-i+1) = \sum_{t=1}^{n-i+1} t = 1 + 2 + \dots + (n-i+1) = \frac{(n-i+2)(n-i+1)}{2}$$

Next we calculate:  $\sum_{i=1}^{n} \frac{(n-i+2)(n-i+1)}{2}$ . Let s = n-i+1. When i = 1, s = n. When i = n, s = 1. Thus:

$$\sum = \sum_{s=1}^{n} \frac{(s+1)s}{2} = \frac{1}{2} \{ \sum_{s=1}^{n} s^2 + \sum_{s=1}^{n} s \}$$
$$= \frac{1}{2} \{ \frac{n(n+1)(2n+1)}{6} + \frac{n(n+1)}{2} \} = \Theta(n^3)$$

### How to Find Summation Formula?

#### Fact:

For any **positive integer** k,  $\sum_{i=1}^{n} i^{k}$  is a polynomial in n of degree k+1.

Example: 
$$\sum_{i=1}^{n} i^2 = ?$$

We know  $\sum_{i=1}^{n} i^2$  is a polynomial of degree 3. Namely, for some unknown constants a, b, c, d, we have  $\sum_{i=1}^{n} i^2 = an^3 + bn^2 + cn + d$ . We need to find the values of a, b, c, d. Plug in n = 0, 1, 2, 3:

Solving these 4 equations, we get: a = 1/3, b = 1/2, c = 1/6, d = 0. So:  $\sum_{i=1}^{n} i^2 = \frac{n^3}{3} + \frac{n^2}{2} + \frac{n}{6} = \frac{1}{6}n(2n^2 + 3n + 1) = \frac{1}{6}n(2n + 1)(n + 1)$ 

Exercise: Find the sum formula of  $\sum_{i=1}^{n} i^3$ 

### **More Summations:**

The following summation formulas are useful.

$$\sum_{i=0}^{n} a^{i} = 1 + a + a^{2} + \dots + a^{n} = \begin{cases} \frac{1 - a^{n+1}}{1 - a} &= \Theta(1) & \text{if } 0 < a < 1\\ n + 1 &= \Theta(n) & \text{if } a = 1\\ \frac{a^{n+1} - 1}{a - 1} &= \Theta(a^{n}) & \text{if } 1 < a \end{cases}$$
(7)

 $\sum_{i=0}^{n} a^{i}$  is called geometric series.

$$H(n) = 1 + 1/2 + 1/3 + \dots + 1/n = \sum_{i=1}^{n} \frac{1}{i} = \Theta(\ln n)$$
 (8)

H(n) is called Harmonic series.

How to determine the growth rate of H(n)?

## Integration Method

### Integration Method

Let f(x) be an increasing function. Then for any  $a \le b$ :

$$\int_{a-1}^{b} f(x)dx \le \sum_{i=a}^{b} f(i) \le \int_{a}^{b+1} f(x)dx$$

In the Fig,  $\sum$  = the area of the staircase region. The first  $\int$  = the area of the shaded region. Since f(x) is increasing, the first  $\leq$  holds.



## Integration Method

In the Fig,  $\sum$  is the area of the staircase region. The second  $\int$  is the area of the shaded region. Since f(x) is increasing, the second  $\leq$  holds.



### Similarly:

Let f(x) be a decreasing function. Then for any  $a \le b$ :

$$\int_{a-1}^{b} f(x)dx \ge \sum_{i=a}^{b} f(i) \ge \int_{a}^{b+1} f(x)dx$$

# Solving Linear Recursive Equations

#### Fibonacci number

$$\mathsf{Fib}_0 = 0$$
,  $\mathsf{Fib}_1 = 1, \ldots$ ,  $\mathsf{Fib}_{n+2} = \mathsf{Fib}_{n+1} + \mathsf{Fib}_n$ 

We can compute  $Fib_n$  by above recursive definition. How to calculate it directly from n?

$$\mathsf{Fib}_n = \frac{1}{\sqrt{5}} \left( \frac{1+\sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left( \frac{1-\sqrt{5}}{2} \right)^n$$

- $\frac{1\pm\sqrt{5}}{2}$  are the two roots of the equation:  $x^2 = x + 1$ .
- Since  $\left|\frac{1-\sqrt{5}}{2}\right| < 1$ , the second term  $\to 0$ . So Fib<sub>n</sub>  $\approx \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^n$ .  $(\alpha = \frac{1+\sqrt{5}}{2} = 1.618... \text{ is called the golden ratio.})$
- For n = 8, Fib<sub>8</sub> = 21 where  $\frac{1}{\sqrt{5}}\alpha^8 = 21.0095$ .

# Linear recursive sequences

### Linear recursive sequences

A sequence  $\{f_0, f_1, \dots, f_n \dots\}$  is called a linear recursive sequence of order k if it is defined as follows:

- $f_0, f_1, \ldots, f_{k-1}$  are given.
- For all  $n \ge 0$ ,  $f_{n+k} = c_{k-1}f_{n+k-1} + c_{k-2}f_{n+k-2} + \cdots + c_1f_{n+1} + c_0f_n$  where  $c_{k-1}, c_{k-2}, \ldots c_0$  are fixed constants.

Example 1:  $\{Fib_n\}$  is a linear recursive sequence of order 2 where  $c_1 = 1$  and  $c_0 = 1$ .

Example 2:  $f_0 = 1$ ,  $f_1 = 2$ ,  $f_2 = 4$  and for all  $n \ge 0$ ,  $f_{n+3} = 3f_{n+1} - 2f_n$ Then  $\{f_n\}$  is a linear recursive sequence of order 3 where  $c_2 = 0$ ,  $c_1 = 3$  and  $c_0 = -2$ .

# Solving linear recursive sequences

• The characteristic equation of the linear recursive seq is:

$$x^{k} = c_{k-1}x^{k-1} + c_{k-2}x^{k-2} + \dots + c_{1}x^{1} + c_{0}$$

- Solve this equation for x. Let  $\alpha_1, \ldots, \alpha_k$  be the roots.
- Assuming all roots are distinct. Then the solution of  $f_n$  has the form

$$f_n = a_1(\alpha_1)^n + a_2(\alpha_2)^n + \dots + a_k(\alpha_k)^n$$

for some constants  $a_1, a_2, \ldots, a_k$ .

• Plug in the initial values  $f_0, f_1, \ldots, f_{k-1}$ , we get k equations. Solve them to find  $a_1, a_2, \ldots, a_k$ .

### **Master Theorem**

For DaC algorithms, the runtime function often satisfies:

$$T(n) = \begin{cases} O(1) & \text{if } n \leq n_0 \\ aT(n/b) + \Theta(f(n)) & \text{if } n > n_0 \end{cases}$$

- If  $n \le n_0$  ( $n_0$  is a small constant), we solve the problem directly without recursive calls. Since the input size is fixed (bounded by  $n_0$ ), it takes O(1) time.
- We make a recursive calls. The input size of each is n/b. Hence the runtime T(n/b).
- $\bullet$  T(n) = ?

### **Master Theorem**

### Master Theorem (Theorem 4.1, Cormen's book.)

- If  $f(n) = O(n^{\log_b a \epsilon})$  for some constant  $\epsilon > 0$ , then  $T(n) = \Theta(n^{\log_b a})$ .
- ② If  $f(n) = \Theta(n^{\log_b a})$ , then  $T(n) = \Theta(n^{\log_b a} \log n)$ .
- If  $f(n) = \Omega(n^{\log_b a + \epsilon})$  for some constant  $\epsilon > 0$ , and  $af(n/b) \le cf(n)$  for some c < 1 for sufficiently large n, then  $T(n) = \Theta(f(n))$ .

### **Example: MergeSort**

We have a=2, b=2, hence  $\log_b a = \log_2 2 = 1$ . So  $f(n) = \Theta(n^1) = \Theta(n^{\log_b a})$ .

By statement (2),  $T(n) = \Theta(n^{\log_2 2} \log n) = \Theta(n \log n)$ .