

PreServe: Intelligent Management for LMaaS Systems via Hierarchical Prediction

Zhihan Jiang, Yujie Huang, Guangba Yu, Junjie Huang, Jiazhen Gu, Michael R. Lyu The Chinese University of Hong Kong

Background

The <u>Language Model-as-a-Service</u> (<u>LMaaS</u>) paradigm has been widely adopted to deliver diverse LLMs to users in everyday applications.

millions of queries per day

Motivation

Effective management of LMaaS platforms is critical.

Example of LMaaS Management Platform

Goal of LMaaS Management

Auto-scaling LLM instances:

avoid resource under- or over-provisioning

Routing LLM requests:

ensure load balance across instances

Challenges

LMaaS exhibits distinct characteristics that introduce new management challenges.

Real-world LLM Service Workload from Azure

High Service workload variability

- Substantial TPS fluctuations
- Unpredictable peak demands
- Long cold-start issues

High request load variance

- Prefill and decode stress different resources
- Request load varies by orders of magnitude
- Resource demand increases during generation

Traditional service management techniques are not suitable for LMaaS.

Opportunities

Hierarchical (global and local) prediction for proactive management.

Service-level Workload Prediction

- forecast aggregate demand from historical TPS
- pre-scale resources for upcoming time windows

Request-level Load Prediction

- estimate load for individual LLM requests
- model resource trend of each LLM instance

Different auto-scaling paradigms

Different load balancing strategies

PreServe: a hierarchical prediction-based LMaaS management framework

Service-level Workload Prediction

- forecast aggregate demand from historical TPS
- pre-scale resources for upcoming time windows

Request-level Load Prediction

- estimate load for individual LLM requests
- model resource trend of each LLM instance

The overall framework of PreServe

PreServe: a hierarchical prediction-based LMaaS management framework

Service-level Workload Prediction

- forecast aggregate demand from historical TPS
- pre-scale resources for upcoming time windows

Request-level Load Prediction

- estimate load for individual LLM requests
- model resource trend of each LLM instance

An mLSTM model captures longterm trends to predict aggregate TPS over 10-minute intervals.

Algorithm 2: Online Phase of Service Workload Prediction

Input: Historical aggregated token sequences: $\mathbf{P} = \{P_{i-k}, \cdots, P_{i-1}\}, \mathbf{D} = \{D_{i-k}, \cdots, D_{i-1}\}$ Output: Estimated N_1 LLM instances for the next time window
1 for each current time window T_i do
2 | Predict current window tokens: $\hat{P}_i = \mathcal{M}_P(\mathbf{P}), \hat{D}_i = \mathcal{M}_D(\mathbf{D})$ $/* \text{ Extend historical sequences} \qquad */$ 3 | $\mathbf{P}' = \mathbf{P} + \{\hat{P}_i\}, \quad \mathbf{D}' = \mathbf{D} + \{\hat{D}_i\}$ 4 | Predict new window tokens: $P_{i+1} = \mathcal{M}_P(\mathbf{P}'), \hat{D}_{i+1} = \mathcal{M}_D(\mathbf{D}')$ $/* \text{ Determine the required number of instances} \qquad */$ 5 | $N_{i+1} = \max\left(\frac{P_{i+1}}{\mu_P}, \frac{D_{i+1}}{\mu_d}, \frac{P_{i+1}^2 + D_{i+1}}{\mu_d}\right)$ 6 | if T_i has concluded then
7 | Update historical sequences: $\mathbf{P} \leftarrow \mathbf{P} + \{P_i\}, \mathbf{D} \leftarrow \mathbf{D} + \{D_i\}$

The overall framework of PreServe

PreServe: a hierarchical prediction-based LMaaS management framework

Service-level Workload Prediction

- forecast aggregate demand from historical TPS
- pre-scale resources for upcoming time windows

Request-level Load Prediction

- estimate load for individual LLM requests
- model resource trend of each LLM instance

An mLSTM model captures longterm trends to predict aggregate TPS over 10-minute intervals.

An DistilBert model estimates the individual request load based on semantics in real time

Figure 6: Request Load predictor training in PreServe.

The overall framework of PreServe

PreServe: a hierarchical prediction-based LMaaS management framework

Service-level Workload Prediction

- forecast aggregate demand from historical TPS
- pre-scale resources for upcoming time windows

Request-level Load Prediction

- estimate load for individual LLM requests
- model resource trend of each LLM instance

An mLSTM model captures longterm trends to predict aggregate TPS over 10-minute intervals.

An DistilBert model estimates the individual request load based on semantics in real time

The overall framework of PreServe

Figure 7: The load anticipator within each LLM instance.

PreServe: a hierarchical prediction-based LMaaS management framework

Improving resource utilization while ensure load-balancing

Experiments

Settings

Framework: vLLM

Model: LLaMA-2-7B and 13B

Workload:

Azure LLM inference trace

ShareGPT datasets

RQ2: Instance Scaling

Reduces **peak normalized latency by 45.1**% than Llumnix [OSDI'24].

Cuts **resource usage by 49.4%** with minimal SLO violations (Llumnix: -48.3% but high violations)

RQ1: Hierarchical Prediction Accuracy

Table 1: Mean and maximum absolute percentage error (APE) of workload prediction in Azure datasets (10min-window).

Methods	Mean APE				Max APE			
	Azur prompt	e-code response	Azui prompt	re-chat response	Azur prompt	e-code response	Azui prompt	re-chat response
ARIMA ETS Prophet	59.17% 54.63% 26.26%	61.44% 55.55% 28.49%	15.94% 15.93% 8.05%	16.12% 16.10% 8.28%	91.00% 86.71% 67.88%	90.18% 83.54% 62.27%	74.03% 73.95% 27.30%	82.09% 81.96% 25.12%
PreServe average	7.74%	8.45% 10%	4.15%	4.30%	26.25%	30.30%	21.16%	19.88%
	6.17%				24.40%			

Table 2: The response length prediction accuracy (up to 4096).

Methods	MAE	Acc-25	Acc-50	Acc-100
μ-Serve PiA (Vicuna-13B) PiA (ChatGPT)	355.59 283.86 127.41	32.31% 39.27% 50.42%	49.35% 54.18% 61.25%	65.25% 68.56% 70.34%
PreServe Improvement	78.25 ↑ (38.6%)	56.77% ↑ (12.6%)	68.79 % ↑ (12.3%)	77.95% ↑ (10.8%)

Achieves SOTA prediction accuracy in both levels

Experiments

RQ3: Request Routing

Reduces mean TTFT, P99 normalized latency, SLO violation rate by 47.4%, 41.3% and 66.58% compared to Llumnix [OSDI'24].

RQ4: Management Efficiency

Introduces only 45.5 ms overhead on average, just 0.23% of request e2e latency.

Conclusion

PreServe: Intelligent Management for LMaaS Systems via Hierarchical Prediction

Pre-print paper

Artifact

Contact: zhjiang@link.cuhk.edu.hk