(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 25 September 2003 (25.09.2003)

PCT

(10) International Publication Number WO 03/077656 A1

(51) International Patent Classification7: A01N 43/54, 43/78, C07D 239/42

(21) International Application Number: PCT/EP03/02438

(22) International Filing Date: 10 March 2003 (10.03.2003)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data: 02405201.1 15 March 2002 (15.03.2002) EI

(71) Applicant (for all designated States except US): CIBA SPECIALTY CHEMICALS HOLDING INC. [CH/CH]; Klybeckstrasse 141, CII-4057 Basel (CII).

(72) Inventors; and

(75) Inventors/Applicants (for US only): MARQUAIS-BI-ENEWALD, Sophie [FR/FR]; 63, rue de Hagenthal, F-68220 Hegenheim (FR). HÖLZL, Werner [DE/FR]; 4, rue de l'Argent, F-68440 Eschentzwiller (FR). HAAP, Wolfgang [DE/DE]; Fridolin-Engel-Strasse 51, 79540 Lörrach (DE). PREUSS, Andrea [DE/CH]; Hochstrasse 35, CH-4053 Basel (CH). MEHLIN, Andreas [DE/DE]; Nägelestrasse 24, D-79618 Rheinfelden (DE).

(74) Common Representative: CIBA SPECIALTY CHEM-ICALS HOLDING INC.; Klybeckstrasse 141, CH-4057 Basel (CH).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM). European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, MI, MR, NE, SN, TD, TG).

Published:

with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

; ; , _

54) Title: 4-AMINOPYRIMIDINES AND THEIR USE FOR THE ANTIMICROBIAL TREATMENT OF SURFACES

(57) Abstract: Use of 4-aminopyrimidines of formula (1), wherein R_1 , R_2 , R_3 , R_4 and R_5 are as described in the description in the antimicrobial treatment of surfaces.

4-AMINOPYRIMIDINES AND THEIR USE FOR THE ANTIMICROBIAL TREATMENT OF SURFACES

The present invention relates to substituted 4-aminopyrimidines, to the preparation of such compounds, and to the use of such compounds in the antimicrobial treatment of surfaces, as antimicrobial active substances against gram-positive and gram-negative bacteria, yeasts and fungi and also in the preservation of cosmetics, household products, textiles and plastics and for use in disinfectants.

The present invention relates to the use of 4-aminopyrimidines of formula

(1)
$$R_1$$
 R_2 R_3 , wherein R_4 R_5

- R₁ and R₂ are each independently of the other hydrogen; C₁-C₅alkyl which is unsubstituted or substituted by one or more halogen atoms; biphenyl or C₆-C₁₀aryl which is unsubstituted or substituted by halogen, C₁-C₅alkyl, C₁-C₅alkoxy or by amino; a 5- to 7-membered heteroaryl radical; or cyclo-C₁-C₇alkyl;
- R₃ is hydrogen; phenyl or C₁-C₂alkyl which is unsubstituted or substituted by one or more halogen atoms;
- R₄ is hydrogen; C₁-C₁₀alkyl; phenyl; or a 5- to 7-membered heteroaryl radical;
- R_s is C_1 - C_{20} alkyl which is unsubstituted or substituted by one or more halogen atoms or by a heterocyclic radical or interrupted by one or more -O- or -N- groups or by a

bivalent heterocyclic radical; NR"R"'- C_1 - C_{20} alkyl which is unsubstituted or substituted by a heterocyclic radical or interrupted by one or more –O- or -N- groups or by a

bivalent heterocyclic radical; cyclo- C_s - C_a alkyl; hydroxy- C_1 - C_{20} alkyl; phenyl- C_1 - C_3 alkyl; a heterocyclic radical; or

 R_4 and R_5 , together with the nitrogen atom linking them, form a radical of

formula (1a)
$$-N$$
 $(CH_2)_{n_1}$ $(CH_2)_{n_2}$

R' is hydrogen; or C₁-C₃alkyl;

R" and R" are each independently of the other hydrogen; C_1-C_5 alkyl; or hydroxy- C_1-C_5 alkyl;

X is
$$O$$
; $CH-R^{nn}$; or $N-R^{nn}$;

R^{IIII} is hydrogen; C_1 - C_4 alkyl; or heteroaryl- C_1 - C_4 alkyl; and n_1 and n_2 are each independently of the other from 1 to 8; in the antimicrobial treatment of surfaces.

C₁-C₂₀Alkyl radicals are straight-chain or branched alkyl radicals, for example methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, tert-butyl, amyl, isoamyl or tert-amyl, heptyl, octyl, isooctyl, nonyl, decyl, undecyl, dodecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl or eicosyl.

C₃-C₁₀Cycloalkyl denotes, for example, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cycloctyl, cyclononyl or cyclodecyl. Those radicals may be substituted, for example by one or more identical or different C₁-C₄alkyl radicals, especially by methyl, and/or by hydroxy. When cycloalkyl radicals are substituted by one or more substituents, they are substituted preferably by one, two or four, especially by one or two, identical or different substituents.

C₁-C₅Alkoxy radicals are straight-chain or branched radicals such as, for example, methoxy, ethoxy, propoxy, butoxy or pentyloxy.

 C_6 - C_{10} Aryl and heteroaryl radicals may be unsubstituted or may carry one or more, for example one, two, three or four, identical or different substituents, which may be located in any positions. Examples of such substituents are, for example, C_1 - C_4 alkyl, halogen, hydroxy, C_1 - C_4 alkoxy, trifluoromethyl, cyano, hydroxycarbonyl, C_1 - C_4 alkoxycarbonyl, amino, C_1 - C_4 alkylamino, di- C_3 - C_4 alkylamino and C_1 - C_4 alkylamino.

Heteroaryl radicals are derived from heterocycles containing one, two, three or four identical or different ring hetero atoms, especially from heterocycles containing one, two or three, more especially one or two, identical or different hetero atoms. The heterocycles may be mono- or poly-cyclic, for example mono-, bi- or tri-cyclic. They are preferably mono- or bi-cyclic, especially monocyclic. The rings preferably contain 5, 6 or 7 ring members. Examples of monocyclic and bicyclic heterocyclic systems from which radicals occurring in the

compounds of formula (1) can be derived are, for example, pyrrole, furan, thiophene, imidazole, pyrazole, 1,2,3-triazole, 1,2,4-triazole, pyridine, pyridazine, pyrimidine, pyrazine, pyran, thiopyran, 1,4-dioxane, 1,2-oxazine, 1,3-oxazine, 1,4-oxazine, indole, benzothiophene, benzofuran, pyrrolidine, piperidine, piperazine, morpholine and thiomorpholine.

Unsaturated heterocycles may contain, for example, one, two or three unsaturated double bonds in the ring system. 5-membered rings and 6-membered rings in monocyclic and polycyclic heterocycles may also be, especially, aromatic.

Halogen is fluorine, chlorine, bromine or iodine, preferably fluorine or chlorine.

In accordance with the invention, preference is given to the use of compounds of formula (1) wherein

R_s is R"R""N-C₁-C₂₀alkyl which is uninterrupted or interrupted by one or more –O- or —N— groups or by a bivalent heterocyclic radical;

R' is hydrogen; or C₁-C₅alkyl;

R" and R" are each independently of the other hydrogen; or methyl; and

 R_1 , R_2 , R_3 and R_4 are as defined for formula (1).

Very special preference is given to the use of compounds of formula (1) wherein

$$R_s$$
 is R"R""N- C_1 - C_{20} alkyl which is uninterrupted or interrupted by N_1

In accordance with the invention, there are furthermore used compounds of formula (1) wherein

R_s is R"R""N-C_s-C₂₀alkyl which is uninterrupted or interrupted by one or more –O- or —N— groups;

R' is hydrogen; or C₁-C₅alkyl; and

R" and R" are each independently of the other hydrogen; or methyl.

Among those compounds, preference is given to those wherein

R_s is R"R"'N-C_s-C₂₀alkyl; and

R" and R" are each independently of the other hydrogen; or methyl.

Very special preference is also given to the use of compounds of formula (1) wherein

R₄ is hydrogen; or C₁-C₅alkyl;

 R_s is C_s - C_{20} alkyl which is unsubstituted or interrupted by -NH-; and

 R_1 , R_2 and R_3 are as defined for formula (1); especially compounds of formula (1) wherein

 R_1 is hydrogen; C_1 - C_3 alkyl; unsubstituted or C_1 - C_4 alkyl-substituted phenyl or phenyl- C_1 - C_4 alkyl; or pyridino;

R₂ is hydrogen; or C₁-C₅alkyl; especially methyl;

R₃ is hydrogen; or C₁-C₅alkyl;

R₄ is hydrogen; or C₁-C₅alkyl; and

R_s is C_s-C₂₀alkyl;

and very especially compounds of formula (1) wherein

 R_1 is hydrogen; C_1 - C_s alkyl, especially isopropyl or methyl; unsubstituted or C_1 - C_4 alkyl-substituted phenyl; or pyridino;

R₂ is methyl;

R₃ and R₄ are hydrogen; and

 R_s is C_8 - C_{18} alkyl.

Among the last-mentioned compounds very special preference is given to the use of those wherein

R_s is linear C₈-C₁₈alkyl.

Also preferably used are compounds of formula (1) wherein, in formula (1a), R'''' is hydrogen; or pyridyl- C_1 - C_3 alkyl; and n_1 are each 2.

Preference is also given to the use of compounds of formula (1) wherein

 R_1 and R_2 are each independently of the other hydrogen; C_1 - C_3 alkyl; phenyl which is unsubstituted or substituted by halogen, C_1 - C_3 alkyl, C_1 - C_3 alkoxy or by amino; biphenyl; cyclo- C_3 - C_3 alkyl; 3-pyridyl; 4-pyridyl; 2-thiophenyl; 3-thiophenyl; or thiazolyl;

or compounds of formula (1) wherein

R₃ is hydrogen; or phenyl;

or compounds of formula (1) wherein

R₄ is hydrogen.

Special preference is given to the use of compounds of formula

(2)
$$R_1$$
 R_2 R_3 R_4 R_3 R_4 R_5 R_5 R_5 R_6 R_7 R_8 R_8 R_9 R_9

wherein

X is -O-; or
$$-N-$$
;

R' is hydrogen; or C₁-C₃alkyl;

n is 1-3; and

m is 1-3;

and

 R_1 , R_2 and R_3 are as defined for formula 1.

The Table that follows lists, by way of example, further 4-aminopyrimidines according to the invention:

Comp. of formula	Structural formula	Purity [%] 254 nm	Purity [%] 280 nm
3	NH ₂	64	72

Comp. of formula	Structural formula	Purity [%] 254 nm	Purity [%] 280 nm
4	H ₂ N NH	37	96
5	NH ₂	83	97
6	O NH NH ₂	92	97
7		43 .	48
8	H ₂ N P	82	93

Comp. of formula	Structural formula	Purity [%] 254 nm	Purity [%] 280 nm
9	H ₂ N F	94	98
10		49	59
11	H ₂ N NH	75	89
12	H ₂ N NH	95	97
13	H ₂ N O O NH	94	99
14	NH ₂	91	97

Comp. of formula	Structural formula	Purity [%] 254 nm	Purity [%] 280 nm
15		91	98
16	HN N F F	42	44
17		39	43
18	H ₂ N————————————————————————————————————	42	51
19	H,N————————————————————————————————————	64	70

Comp. of formula	Structural formula	Purity [%] 254 nm	Purity [%] 280 nm
20	H ₂ N	63	77
21	NH ₂	70	82
22	H ₂ N F	51	65
23		67	82
24	NH ₂	95	97

Comp. of formula	Structural formula	Purity [%] _ 254 nm	Purity [%] 280 nm
25	H.M	88	96
26	HN NO	81	90
27	H ₂ N—N—N	88	93
28		86	93
29	H ₂ N	61	62

Comp. of formula	Structural formula	Purity [%] 254 nm	Purity [%] 280 nm
30		85	72
31		45	42
32		69	64
33	H ₃ C CH ₃	94 .	93
34		89	89

Comp. of formula	Structural formula	Purity [%] 254 nm	Purity [%] 280 nm
35		92	88
36		82	.73
37	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	82	66
38		56	34
39	H ₃ C CH ₃	67	46
40	NH NH	43	44

Comp. of formula	Structural formula	Purity [%] 254 nm	Purity [%] 280 nm
41		81	77
42		91	92
43		72	68
44		88	84
45		82	83
46		88	88

Comp. of formula	Structural formula	Purity [%] . 254 nm	Purity [%] 280 nm
47		72	67
48		81	85
49	NH NH	92	84
50		84	86
51		77	73

Comp. of formula	Structural formula	Purity [%] 254 nm	Purity [%] 280 nm
52		88	91
53		87	89
54		90	91
55	A STATE OF THE STA	85	87
56		87	84

Comp. of formula	Structural formula	Purity [%] 254 nm	Purity [%] 280 nm
57		99	99
58		58	78
59		34	64.
60		46	32
. 61		90	87
62		66	61

Comp. of formula	Structural formula	Purity [%] 254 nm	Purity [%] 280 nm
63		99	95
64		80	80
65		96	92
66		90	95
67		48	44
68		37	38
69) 5) 5	64	79

Comp. of formula	Structural formula	Purity [%] 254 nm	Purity [%] 280 nm
70		71	82
71		88	88
72		79	52
73		90	96
74		79	39
75		92	89

Comp			<u> </u>
Comp. of formula	Structural formula	Purity [%] 254 nm	Purity [%] 280 nm
76		97	95
77		86	90
78	H N N N N N N N N N N N N N N N N N N N	90	94
79		92	95
80		54	50
81	The state of the s	40	42
82		67	84

Comp. of formula	Structural formula	Purity [%] 254 nm	Purity [%] 280 nm
83	 	77	72
84		93	91
85		83	80
. 86		92	92
87		95	94

Comp. of formula	Structural formula	Purity [%] 254 nm	Purity [%] 280 nm
88		95	94
89	H ₃ C CH ₃	92	90
90	NH ₂	54	33
91		89	95
92		52	48
93		40	39
94		65	80

Comp. of formula	、Structural formula	Purity [%] . 254 nm	Purity [%] 280 nm
95		82	83
96		78	85
97		31	26
98		79	60
99		93	90

Comp. of formula	Structural formula	Purity [%] 254 nm	Purity [%] 280 nm
100		71	59
101		87	78
102	NH ₂	49	25
103		89	89
104		54	41
105		33	38

	,		
Comp. of \ formula	Structural formula	Purity [%] 254 nm	Purity [%] 280 nm
106		65	75
107	F F	80	82
108		87	96
109		87	87
110		90	94

			•
Comp. of formula	Structural formula	Purity [%] . 254 nm	Purity [%] 280 nm
111		94	92
112	H ₃ C CH ₃	87	90
113		92	85
114	NH ₂	41	28
115		93	96
116		58	46
117		39	40

			•
Comp. of formula	Structural formula	Purity [%] 254 nm	Purity [%] 280 nm
118		54	70
119		82	87
120	NH ₂	42	35
. 121		87	90
122	N	78	87
123		68	73

Comp. of formula	Structural formula	Purity [%] 254 nm	Purity [%] 280 nm
124		93	96
125		93	93
126		87	86
127		65	69
128		46	52
129		58	69
130		. 82	83

Comp. of formula	Structural formula	Purity [%] 254 nm	Purity [%] 280 nm
131		73	74
132		88	90
133		94	93
134		100	89
135		92	91
136		92	92

Comp. of formula	Structural formula	Purity [%]. 254 nm	Purity [%] 280 nm
137		49	44
138		41	41
139	N N N N N N N N N N N N N N N N N N N	50	66
140		100 .	80
141		74	71
142		100	83
143		84	79

Comp. of formula	Structural formula	Purity [%] 254 nm	Purity [%] 280 nm
144		62	54
145		43	39
146		34	35
147		61	73
.148		72	70
149	N HN W	91	89

Comp. of formula	Structural formula	Purity [%] 254 nm	Purity [%] 280 nm
150		87	88
151		88	86
152		91	83
153	HZ HZ	89	85
154	HZ HZ	94	85
155		85	81
156		86	82

Comp.	<u> </u>	1	1
of formula	Structural formula	Purity [%] 254 nm	Purity [%] 280 nm
157		62	63
158	$= \frac{\mathbb{E}^{z^{-z}}}{1 + 2}$	86	92
159	H Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	89	91
160	N N N N N N N N N N N N N N N N N N N	88	92
161	HN	87	92
162	N HZ Y	67	88

· .			
Comp of formul	Structural formula	Purity [%] 254 nm	Purity [%] 280 nm
163	N HN HN	67	66
164	HN OH	85	92
165	HN OH	81	92
166	HN O	68	75
167	HNN	92	89
168	HN HN	72	73

Comp. of formula	Structural formula	Purity [%] 254 nm	Purity [%] 280 nm
169		87	83
170		77	85
171		86	81
172	HE SOLUTION OF THE SOLUTION OF	87	72
173		69	67
174		66	87

Comp. of formula	Structural formula	Purity [%] 254 nm	Purity [%] 280 nm
175		69	64
176		82	57
177	DH NO H	87	92
178		77	69
179	N N N N N N N N N N N N N N N N N N N	77	85

The 4-aminopyrimidines used in accordance with the invention are prepared by methods known *per se* (J. Org. Chem.; 1967, 32, 1591). For that purpose, a cyano compound (R₁-C≡N) is reacted, in a suitable solvent such as, for example, methanol, ethanol, isopropanol, DMF, tetrahydrofuran etc., with ammonium acetate or ammonium chloride at a temperature of from -10°C to 100°C over a period of from 1 hour to 24 hours to form the corresponding amidine compound (R₁-VNH).

The amidine compound is then condensed with an appropriate β-keto ester

(
$$R_2$$
) using an auxiliary base such as, for example, sodium carbonate,

potassium hydroxide, sodium ethanolate, sodium methanolate, potassium tert-butanolate etc., in a suitable solvent such as, for example, methanol, ethanol, butanol, tert-butanol, THF, DMF, acetonitrile, toluene, xylene etc., over a period of from 1 to 24 hours at a temperature of from 40 to 120°C.

The 4-hydroxy-2-pyrimidine compound () thereby obtained is then converted R₃

into the corresponding 4-chloro-2-pyrimidine compound () by conventional () by conve

methods using phosphorus oxychloride.

The substituted 4-aminopyrimidines (R_3) are obtained by reacting the 4-chloro-2- R_4 R_5

pyrimidine compound with a primary or secondary amine (R₄R₅NH) in a suitable solvent such as, for example, DMF, dioxane, toluene, xylene, ethanol, butanol, and an auxiliary base such as, for example, triethylamine, DIEA, sodium carbonate, potassium hydroxide etc., or using an excess of amine at from 40 to 130°C over a period of from 1 to 24 hours.

The entire reaction proceeds according to the following scheme:

WO 03/077656 PCT/EP03/02438

 R_1 , R_2 , R_3 , R_4 and R_5 being as defined for formula (1).

Preparation of the compounds of formula (2) is carried out by reacting an excess of from 2 to 10 equivalents of the diamine compound H,N(CH,),X(CH,),MH, in, for example, DMF, dichloromethane, THF or dioxane with trityl chloride polystyrene resin at a temperature of from 10 to 50°C over a period of from 0.5 to 24 hours. From 2 to 10 equivalents of the

suitable solvent such as, for example, dichloromethane, DMF, THF or toluene, with the polymer-bound diamines at from 10 to 120°C over a period of from 2 to 48 hours. The 4chloropyrimidines are reacted with from 2 to 10 equivalents of various boronic acids, from 1 to 10 % of palladium catalyst and from 2 to 10 equivalents of auxiliary base such as, for example, CaCO, and NaCO, in, for example, THF, DMF or dioxane. After washing the resin to remove the excess, the target compounds are split off using from 1 to 30 % trifluoroacetic acid (TFA) in dichloromethane (DCM) at 25°C over a period of from 1 to 5 hours. For the purpose of further purification, the substances are freeze-dried from fBuOH/water 4:1 with from 1 to 10 % HOAc and once from fBuOH/water 4:1.

The entire reaction proceeds according to the following scheme:

 R_1 , R_2 , R_3 , X, m and n being as defined for formula (2).

Some of the 4-aminopyrimidines used in accordance with the invention are known from the literature and some are novel compounds. The invention relates also to those novel compounds.

The novel compounds correspond to formula

(1')
$$R_1 \longrightarrow N \longrightarrow R_2 \\ R_3 \text{ wherein}$$

- R₁ and R₂ are each independently of the other hydrogen; C₁-C₅alkyl which is unsubstituted or substituted by one or more halogen atoms; biphenyl or C₆-C₁₀aryl which is unsubstituted or substituted by halogen, C₁-C₅alkyl, C₁-C₅alkoxy or by amino; a 5- to 7-membered heteroaryl radical; or cyclo-C₃-C₇alkyl;
- R₃ is hydrogen; phenyl or C₁-C₅alkyl which is unsubstituted or substituted by one or more halogen atoms;
- R₄ is hydrogen; C₁-C₁₀alkyl; phenyl; or a 5- to 7-membered heteroaryl radical;
- R_s is C_1 - C_{20} alkyl which is unsubstituted or substituted by one or more halogen atoms or by a heterocyclic radical or interrupted by one or more -O- or -N- groups or by a

bivalent heterocyclic radical; NR"R"'-C₁-C₂₀alkyl which is unsubstituted or substituted by

PCT/EP03/02438 WO 03/077656

- 39 -

a heterocyclic radical or interrupted by one or more –O- or -N- groups or by a

bivalent heterocyclic radical; cyclo-C_s-C₈alkyl; hydroxy-C₁-C₂₀alkyl; phenyl-C₁-C₃alkyl; a heterocyclic radical; or

R, and R, together with the nitrogen atom linking them, form a radical of

formula (1a)
$$-N$$
 $(CH_2)_{n_1}$
 χ ;

is hydrogen; or C,-C,alkyl;

R" and R" are each independently of the other hydrogen; C1-C3alkyl; or hydroxy-C1-C3alkyl;

X is
$$O$$
; $CH-R^{(1)}$; or $N-R^{(1)}$;

R" is hydrogen; C,-C,alkyl; or heteroaryl-C,-C,alkyl; and n, and n, are each independently of the other from 1 to 8; not including compounds of formula (1') wherein simultaneously

 R_1 is C_6 - C_{10} aryl; or C_1 - C_4 alkyl; and

R, is C,-C,alkyl.

The 4-aminopyrimidines used in accordance with the invention exhibit pronounced antimicrobial action, especially against pathogenic gram-positive and gram-negative bacteria and against bacteria of the skin flora, and also against yeasts and moulds. They are accordingly suitable especially for disinfection, deodorisation, and for general and antimicrobial treatment of the skin and mucosa and of integumentary appendages (hair), more especially for the disinfection of hands and wounds.

They are accordingly suitable as antimicrobial active substances and preservatives in personal care preparations such as, for example, shampoos, bath additives, haircare preparations, liquid and solid soaps (based on synthetic surfactants and salts of saturated and/or unsaturated fatty acids), lotions and creams, deodorants, other aqueous or alcoholic solutions, e.g. cleansing solutions for the skin, moist cleaning cloths, oils or powders.

The invention accordingly relates also to a personal care preparation comprising at least one compound of formula (1) and cosmetically tolerable carriers or adjuvants.

The personal care preparation according to the invention contains from 0.01 to 15 % by weight, preferably from 0.1 to 10 % by weight, based on the total weight of the composition, of a compound of formula (1), and cosmetically tolerable adjuvants.

Depending upon the form of the personal care preparation, it comprises, in addition to the 4-aminopyrimidine of formula (1), further constituents such as, for example, sequestering agents, colorants, perfume oils, thickeners or solidifiers (consistency regulators), emollients, UV-absorbers, skin protective agents, antioxidants, additives that improve the mechanical properties, such as dicarboxylic acids and/or aluminium, zinc, calcium or magnesium salts of C₁₄-C₂₂fatty acids, and, optionally, preservatives.

The personal care preparation according to the invention may be in the form of a water-in-oil or oil-in-water emulsion, an alcoholic or alcohol-containing formulation, a vesicular dispersion of an ionic or non-ionic amphiphilic lipid, a gel, a solid stick or an aerosol formulation.

As a water-in-oil or oil-in-water emulsion, the cosmetically tolerable adjuvant contains preferably from 5 to 50 % of an oil phase, from 5 to 20 % of an emulsifier and from 30 to 90 % water. The oil phase may comprise any oil suitable for cosmetic formulations such as, for example, one or more hydrocarbon oils, a wax, a natural oil, a silicone oil, a fatty acid ester or a fatty alcohol. Preferred mono- or poly-ols are ethanol, isopropanol, propylene glycol, hexylene glycol, glycerol and sorbitol.

Cosmetic formulations according to the invention are used in various fields. There come into consideration, for example, especially the following preparations:

- skin-care preparations, e.g. skin-washing and cleansing preparations in the form of tablet-form or liquid soaps, synthetic detergents or washing pastes,
- bath preparations, e.g. liquid (foam baths, milks, shower preparations) or solid bath preparations, e.g. bath cubes and bath salts;
- skin-care preparations, e.g. skin emulsions, multi-emulsions or skin oils:
- cosmetic personal care preparations, e.g. facial make-up in the form of day creams or powder creams, face powder (loose or pressed), rouge or cream make-up, eye-care preparations, e.g. eyeshadow preparations, mascaras, eyeliners, eye creams or eye-fix creams; lip-care preparations, e.g. lipsticks, lip gloss, lip contour pencils, nail-care

- preparations, such as nail varnish, nail varnish removers, nail hardeners or cuticle removers;
- intimate hygiene preparations, e.g. intimate washing lotions or intimate sprays;
- foot-care preparations, e.g. foot baths, foot powders, foot creams or foot balsams,
 special deodorants and antiperspirants or callus-removing preparations;
- light-protective preparations, such as sun milks, lotions, creams or oils, sun-blocks or tropicals, pre-tanning preparations or after-sun preparations;
- skin-tanning preparations, e.g. self-tanning creams;
- depigmenting preparations, e.g. preparations for bleaching the skin or skin-lightening preparations;
- insect-repellents, e.g. insect-repellent oils, lotions, sprays or sticks;
- deodorants, such as deodorant sprays, pump-action sprays, deodorant gels, sticks or roll-ons;
- antiperspirants, e.g. antiperspirant sticks, creams or roll-ons;
- preparations for cleansing and caring for blemished skin, e.g. synthetic detergents (solid or liquid), peeling or scrub preparations or peeling masks;
- hair-removal preparations in chemical form (depilation), e.g. hair-removing powders,
 liquid hair-removing preparations, cream- or paste-form hair-removing preparations, hair-removing preparations in gel form or aerosol foams;
- shaving preparations, e.g. shaving soap, foaming shaving creams, non-foaming shaving creams, foams and gels, preshave preparations for dry shaving, aftershaves or aftershave lotions;
- fragrance preparations, e.g. fragrances (eau de Cologne, eau de toilette, eau de parfum, parfum de toilette, perfume), perfume oils or perfume creams;
- dental care, denture-care and mouth-care preparations, e.g. toothpastes, gel toothpastes, tooth powders, mouthwash concentrates, anti-plaque mouthwashes, denture cleaners or denture fixatives;
- cosmetic hair-treatment preparations, e.g. hair-washing preparations in the form of shampoos and conditioners, hair-care preparations, e.g. pretreatment preparations, hair tonics, styling creams, styling gels, pomades, hair rinses, treatment packs, intensive hair treatments, hair-structuring preparations, e.g. hair-waving preparations for permanent waves (hot wave, mild wave, cold wave), hair-straightening preparations, liquid hair-setting preparations, hair foams, hairsprays, bleaching preparations, e.g. hydrogen peroxide solutions, lightening shampoos, bleaching creams, bleaching powders.

bleaching pastes or oils, temporary, semi-permanent or permanent hair colorants, preparations containing self-oxidising dyes, or natural hair colorants, such as henna or camomile.

An antimicrobial soap has, for example, the following composition:

0.01 to 5 % by weight of a compound of formula (1)

0.3 to 1 % by weight titanium dioxide,

1 to 10 % by weight stearic acid,

soap base ad 100 %, e.g. a sodium salt of tallow fatty acid or coconut fatty acid, or glycerol.

A shampoo has, for example, the following composition:

0.01 to 5 % by weight of a compound of formula (1),

12.0 % by weight sodium laureth-2-sulfate,

4.0 % by weight cocamidopropyl betaine,

3.0 % by weight NaCl and

water ad 100 %.

A deodorant has, for example, the following composition:

0.01 to 5 % by weight of a compound of formula (1),

60 % by weight ethanol,

0.3 % by weight perfume oil, and

water ad 100 %.

The invention relates also to an oral composition containing from 0.01 to 15 % by weight, based on the total weight of the composition, of a compound of formula (1), and orally tolerable adjuvants.

Example of an oral composition:

10 % by weight sorbitol,

10 % by weight glycerol,

15 % by weight ethanol,

15 % by weight propylene glycol,

0.5 % by weight sodium lauryl sulfate,

0.25 % by weight sodium methylcocyl taurate,

0.25 % by weight polyoxypropylene/polyoxyethylene block copolymer,
0.10 % by weight peppermint flavouring,
0.1 to 0.5 % by weight of a compound of formula (1), and
48.6 % by weight water.

The oral composition according to the invention may be, for example, in the form of a gel, a paste, a cream or an aqueous preparation (mouthwash).

The oral composition according to the invention may also comprise compounds that release fluoride ions which are effective against the formation of caries, for example inorganic fluoride salts, e.g. sodium, potassium, ammonium or calcium fluoride, or organic fluoride salts, e.g. amine fluorides, which are known under the trade name Olafluor.

The 4-aminopyrimidines of formula (1) used in accordance with the invention are also suitable for treating, especially preserving, textile fibre materials. Such materials are undyed and dyed or printed fibre materials, for example of silk, wool, polyamide or polyurethanes, and especially cellulosic fibre materials of all kinds. Such fibre materials are, for example, natural cellulose fibres, such as cotton, linen, jute and hemp, as well as cellulose and regenerated cellulose. Preferred suitable textile fibre materials are made of cotton.

The 4-aminopyrimidines according to the invention are suitable also for treating, especially imparting antimicrobial properties to or preserving, plastics such as, for example, polyethylene, polypropylene, polyurethane, polyester, polyamide, polycarbonate, latex etc.. Fields of use therefor are, for example, floor coverings, plastics coatings, plastics containers and packaging materials; kitchen and bathroom utensils (e.g. brushes, shower curtains, sponges, bathmats), latex, filter materials (air and water filters), plastics articles used in the field of medicine such as, for example, dressing materials, syringes, catheters etc., so-called "medical devices", gloves and mattresses.

Paper, for example papers used for hygiene purposes, may also be provided with antimicrobial properties using the 4-aminopyrimidines according to the invention.

It is also possible for nonwovens such as, for example, nappies/dlapers, sanitary towels, panty liners, and cloths for hygiene and household uses, to be provided with antimicrobial properties in accordance with the invention.

The 4-aminopyrimidines of formula (1) are also used in washing and cleaning formulations such as, for example, liquid or powder washing agents or softeners.

The 4-aminopynmidines of formula (1) can also be used especially in household and general-purpose cleaners for cleaning and disinfecting hard surfaces.

A cleaning preparation has, for example, the following composition:

0.01 to 5 % of a compound of formula (1)

3.0 % octyl alcohol 4EO

1.3 % fatty alcohol C₈-C₁₀polyglucoside .

3.0 % isopropanol

water ad 100 %.

In addition to preserving cosmetic and household products, the preservation of technical products, the provision of technical products with antimicrobial properties and use as a biocide in technical processes are also possible, for example in paper treatment, especially in paper treatment iliquors, printing thickeners of starch or cellulose derivatives, surface-coatings and paints.

The 4-aminopyrimidines of formula (1) are also suitable for the antimicrobial treatment of wood and for the antimicrobial treatment of leather, the preserving of leather and the provision of leather with antimicrobial properties.

The compounds according to the invention are also suitable for the protection of cosmetic products and household products from microbial damage.

The following Examples illustrate, but do not limit, the present invention.

Implementation Examples:

General work procedure for parallel synthesis of 4-aminopyrimidines:

Example 1:

Reaction Scheme

Preparation of 4-chloro-6-methyl-2-phenylpyrimidine

2.2 g of benzamidine hydrochloride (14.05 mmol) are reacted, in 10 ml of absolute EtOH, with 5.43 ml (14.05 mmol) of 20 % sodium ethanolate solution and then condensed with 1.66 g of methyl acetoacetate (14.29 mmol) for 4 hours at 90°C.

The crude product is concentrated by evaporation and taken up in 30 ml of toluene.

4.31 g of phosphorus oxychloride (28.1 mmol) are added and the reaction mixture is heated at 120°C for 3 hours. After cooling to 20°C, the excess is neutralised with sodium hydroxide solution, and the mixture is diluted with ethyl acetate and then washed with water and saturated sodium chloride solution.

The product solution is dried over sodium sulfate and concentrated by evaporation.

2.2 g of 4-chloro-6-methyl-2-phenylpyrimidine (77.7 % of theory) are obtained.

Example 2: Reaction of 4-chloro-6-methyl-2-phenylpyrimidine with monoamines 20.5 mg of 4-chloro-6-methyl-2-phenylpyrimidine (0.1 mmol) are heated with 3 equivalents of monoamines (0.3 mmol) in 0.5 ml of absolute dioxane at 100°C for 20 hours. After cooling, the products are concentrated *in vacuo*, taken up in t-BuOH/water 4/1 and freezedried. The end products are analysed by LC-MS.

Example 3: Loading of trityl chloride polystyrene resin with N,N-bis(3-aminopropyl)methylamines and reaction with 4,6-dichloro-2,5-diphenylpyrimidine

In each case, 50 mg of resin (1.29 mmol/g) are shaken in 1 ml of DMF with 94 mg of N,N-bis(3-aminopropyl)methylamine (0.645 mmol) at 25°C for 3 hours. The resin is filtered off and washed with DCM, MeOH, THF, MeOH and DCM and dried *in vacuo*.

The resin is shaken in 1 ml of DMF with 0.194 g of 4,6-dichloro-2,5-diphenylpyrimidine (0.645 mmol) and 90 μ l of triethylamine (0.645 mmol) at 25°C for 3 hours.

The resin is filtered off and washed with DCM, MeOH, THF, MeOH, DCM and MeOH and dried in vacuo.

Example 4: Parallel reaction of 4-amino-6-chloro-1,5-diphenylpyrimidine-TCP resins with various boronic acids and splitting off

The resin is heated with 126.1 g of caesium carbonate (6 eq., 0.387 mmol) and 300 μ l of a toluene solution of 0.1 eq. of a palladium catalyst (WO 01/16057) at 95°C for 15 minutes. After adding 3 eq. of a boronic acid, dissolved in 700 μ l of toluene solution, the mixture is heated at 90°C for 1 hour.

After cooling, the resin is filtered off and washed with DMF, MeOH, THF, MeOH and DCM and dried *in vacuo*.

The products are split off using 1.5 ml of a 5 % TFA/DCM solution at room temperature for 3 hours. The resin is then washed with 1 ml of DCM and 1 ml of MeOH, and the combined solutions are concentrated to dryness by evaporation. The end products are analysed by LC-MS.

Example 5: Preparation of 4-chloro-6-methyl-2-tolylpyrimidine

2.5 g of 4-methyl-benzamidine hydrochloride (14.65 mmol) are reacted in 10 ml of absolute EtOH with 5.66 ml of a 20 % solution of sodium ethanolate (14.65 mmol) and then condensed with 1.73 g of methyl acetoacetate (14.88 mmol) at 90°C for 4 hours. The crude product is concentrated by evaporation and taken up in 30 ml of toluene. 6.74 g of

phosphorus oxychloride (44.0 mmol) are added and the reaction mixture is heated at 120°C for 3 hours. After cooling to 20°C, the excess is neutralised with sodium hydroxide solution, and the mixture is diluted with ethyl acetate, washed with saturated sodium hydrogen carbonate solution and then with water. The product solution is concentrated by evaporation and separated by column chromatography (hexane/EE: 5/1). 2.1 g of 4-chloro-6-methyl-2-tolylpyrimidine (66.5 % of theory) are obtained.

NMR: 1H (ppm in DMSO): 2.4,s,3H; 2.55,s,3H; 7.3,d,2H; 7.5,s,1H; 8.25,d,2H

Example 6: Reaction of 4-chloro-6-methyl-2-(4-methyl)-phenylpyrimidine with monoamines 21.9 mg of 4-chloro-6-methyl-2-(4-methyl)-phenylpyrimidine (0.1 mmol) are heated with 3 eq. of monoamines (0.3 mmol) in 0.5 ml of absolute dioxane at 100°C for 20 hours. After cooling, the products are concentrated *in vacuo*, taken up in t-BuOH/water 4/1 and freezedried. The end products are analysed by LC-MS.

Example 7: Reaction of 4-chloro-6-methyl-2-(4-methyl)-phenylpyrimidine with octylamine 1.36 g of 4-chloro-6-methyl-2-(4-methyl)-phenylpyrimidine (6.23 mmol) are heated with 886 mg of octylamine (6.85 mmol) and 2.58 g of potassium carbonate (18.68 mmol) in 10 g of dioxane at 100°C for 48 hours. After cooling, the product is taken up in 100 ml of ethyl acetate and washed with sodium hydroxide solution 0.5 mol/l, saturated sodium hydrogen carbonate solution and water. The product is concentrated *in vacuo*, taken up in t-BuOH/water 4/1 and freeze-dried.

1.92 g of 4-chloro-6-methyl-2-(4-methyl)-phenylpyrimidine (6.15 mmol, 98.7 % of theory) are obtained.

The end product is analysed by NMR, GC-MS and GC.

NMR 1H (ppm in DMSO): 0.9,t,3H; 1.25,m,12H; 1.55,m,2H; 2.25,s,3H; 2.3,s,3H; 6.4,s,1H; 7.1,m,1H; 7.2,d,2H; 8.2,d,2H; (m/z = 311);

GC: 95 % purity

Example 8: Preparation of 4-chloro-2-isopropyl-6-methylpyrimidine

76.1 g of 2-isopropyl-6-methyl-4-pynimidinol [2814-20-2] (500 mmol) are dissolved in 300 ml of toluene at 90°C. 80.5 g of phosphorus oxychloride (525 mmol) are added dropwise thereto at from 90 to 103°C, and the reaction mixture is heated at 110°C for 2 hours. After cooling to 20°C, the reaction mixture is adjusted to pH 8 using 4M sodium

hydroxide solution, with cooling. The aqueous phase is separated off and extracted with 100 ml of toluene. The combined organic phases are washed three times with 100 ml of water each time and dried at RT under 2 mbar. 89.7 g (105 %; contains toluene) are obtained.

Example 9: Preparation of 4-dodecylamino-2-isopropyl-6-methylpyrimidine (compound of formula (93))

79.2 g of 4-chloro-2-isopropyl-6-methylpyrimidine (464.1 mmol) are heated in 100 ml of dioxane at 100°C. A heated solution of 189.3 g of dodecylamine (1021 mmol, 2.2 eq) in 30 ml of dioxane is added dropwise thereto over the course of 2 hours, and the reaction mixture is further heated for 2 hours at 100°C and for 9 hours at 109°C. After cooling, 400 ml of ethyl acetate and 150 ml of 4M sodium hydroxide solution (600 mmol) are added thereto and the mixture is stirred at 50°C for 10 minutes. The lower, aqueous phase is discarded, the organic phase is washed with 300 ml of water, and 10 ml of saturated NaCl solution are added thereto. The organic phase is separated off and concentrated, and the excess dodecylamine is distilled *in vacuo* up to a bath temperature of 160°C.

NMR 1H (ppm in CDCl₃): 0.7,t,3H; 1.1, m, 24H; 1.4, m, 2H; 2.15, s, 3H; 2.75,Q, 1H; 3.05, m, 2H; 4.9, s, 1H; 5.8, s, 1H

Example 10: Determination of the minimum inhibitory concentration (MIC value) in microtitre plates

Nutrient medium:

Casein/soymeal peptone broth for preparation of pre-cultures of test bacteria and yeast.

Examples of test organisms:

Bacteria:

Pseudomonas aeruginosa CIP A-22 (=PA)

Escherichia coli NCTC 8196 (= EC)

Staphylococcus aureus ATCC 9144 (= SA)

Candida albicans ATCC 10231 (= CA)

Procedure:

The test substances are pre-dissolved in dimethyl sulfoxide (DMSO) and tested in a dilution series of 1:2.

Bacteria and yeast are cultured overnight in CASO broth.

All the test organism suspensions are adjusted to an organism count of $1 - 5 \times 10^8$ CFU/ml using 0.85 % sodium chloride solution.

The test substances are pre-pipetted into microtitre plates in amounts of 8 µl per well.

The pre-adjusted organism suspensions are diluted 1:100 in CASO broth and are added in amounts of 192 μ l per well to the test substances.

The test batches are incubated for 48 hours at 37°C.

After incubation, the growth is determined on the basis of the turbidity of the test batches (optical density) at 620 nm in a microplate reader.

The minimum inhibitory concentration (MIC value) is the concentration of substance at which (compared to the growth of the control) an appreciable inhibition of growth (\leq 20 % growth) of the test organisms is observed.

Three microtitre plates are used for each test organism and substance concentration. All the substances are tested in duplicate.

The microbiological test results are compiled in Table 2:

Table 2:						
Comp. of formula	Purity [%] 254 nm	Purity [%] 280 nm	MIC SA	MIC EC	MIC PA	MIC CA
3	64	72	7.5	15	>120	7.5
4	37	96	7.5	30	>120	15
5	83	97	7.5	>120	>120	>120

Table 2:						
Comp. of formula	Purity [%] 254 nm	Purity [%] 280 nm	MIC SA	MIC EC	MIC PA	MIC CA
6	92	97	7.5	60	>120	>120
7	43	48	15	15	>120	30
8	82	93	30	30	>120	120
9	94	98	15	15	>120	30
10	49	59	15	30	>120	30
11	75	89	7.5	15	>120	7.5
12	95	97	7.5	3.75	7.5	7.5
13	94	99	15	15	>120	30
14	91	97	15	3.75	30	15
15	91	98	15	>120	>120	>120
16	42	44	7.5	15	>120	15
17	39	43	15	30	>120	15
18	42	51	30	30	120	60
19	64	70	7.5	15	>120	8
20	63	77	15	30	>120	15
21	70	82	7.5	<3.75	7.5	<3.75
22	51	65	15	15	>120	7.5
23	67	82	15	7.5	30	7.5
24	95	97	30	15	30	30
25	88	96	>120	60	>120	120
26	81	90	60	60	>120	>120
27	88	93	30	30	>120	60
28	86	93	<3.75	>120	>120	>120
29	61	62	. 15	30	>120	30
30	85	72	60	30	>120	15
31	45	42	60	>120	>120	120
32	69	64	60	120	>120	60
33	94	93	30	>120	>120	60
34	89	89	7.5	120	>120	30

Table 2:						
Comp. of formula	Purity [%] 254 nm	Purity [%] 280 nm	MIC SA	MIC EC	MIC PA	MIC CA
35	92	88	15	30	120	30
36	82	73	7.5	15	60	7.5
37	82	66	7.5	15	>120	7.5
38	56	34	<3.75	7.5	>120	<3.75
39	67	46	<3.75	30	>120	15
40	43	44	60	>120	>120	120
41	81	77	30	>120	>120	60
42	91	92	<3.75	120	>120	30
43 -	72	68	60	>120	>120	120
44	88	84	120	>120	>120	120
45	82	83	60	>120	>120	120
46	88	88	120	>120	>120	120
47	72	67	120	>120	>120	>120
48	81	85	30	>120	>120	60
49	92	84	120	>120	>120	>120
50	84	86	120	>120	>120	>120
51	77	73	30	>120	>120	>120
52	88	91	30	>120	>120	120
53	. 87	89	. 60	>120	>120	120
54	90	91	15	>120	>120	120
55	85	87	120	>120	>120	>120
56	87	84	60	>120	>120	120
57	99	99	60	>120	>120	120
58	58	78	15	120	>120	60
59	34	64	15	60	>120	60
60	46	32	120	>120	>120	120
61	90	87	30	120	>120	120
62	66	61	60	120	>120	120
63	99	95	15	30	>120	60

WO 03/077656 PCT/EP03/02438

Table 2:						
Comp. of		Purity [%]	MIC SA	MIC EC	MIC PA	MIC CA
formula	254 nm	<u>280 nm</u>				
64	80	80	7.5	30	>120	15
65	96	92	30	60	>120	15
66	90	95	<3.75	30	>120	30
67	48	44	7.5	30	>120	7.5
68	37	38	15	30	>120	15
69	64	79	<3.75	30	>120	7.5
70	71	82	<3.75	15 .	>120	7.5
71	88	88	7.5	15	>120	7.5
72	79	52	7.5	15	>120	7.5
73	90	96	<3.75	7.5	>120	<3.75
74	79	39	<3.75	7.5	>120	<3.75
75	92	89	7.5	. 15	>120	7.5
76	97	95	15	60	>120	30
77	86	90	7.5	60	>120	15
78	90	94	<3.75	7.5	>120	<3.75
79	92	95	<3.75	<3.75	>120	<3.75
80	54	50	<3.75	7.5	>120	7.5
81	40	42	<3.75	<3.75	>120	<3.75
82	67	84	<3.75	15	>120	. 7.5
83	77	72	<3.75	7.5	>120	<3.75
84	93	91	15	. 15	>120	7.5
85	83	80	15	7.5	>120	7.5
86	92	92	15	15	>120	7.5
87	95	94	15	15	>120	7.5
88	95	94	15	15	>120	7.5
89	92	90	<3.75	<3.75	>120	<3.75
90	54	33	7.5	15	>120	<3.75
91	89	95	30	30	>120	15
92	52	48	<3.75	15	>120	7.5

Table 2:	····	<u> </u>	· · · · · · · · · · · · · · · · · · ·			
Comp. of formula	Purity [%] 254 nm	Purity [%] 280 nm	MIC SA	MIC EC	MIC PA	MIC CA
93	40	39	<3.75	15	>120	7.5
94	65	80	<3.75	15	>120	7.5
95	82	83	15	30	>120	15
96	78	85	15	30	>120	15
97	31	26	7.5	15	>120	15
98	79	60	15	15	>120	15
99	93	90	15	15	>120	30 .
100	71	59	15	15	>120	15
101	.87	78	7.5	7.5	>120	7.5
102	49	25	7.5	30	>120	15
103	89	89	15	60	>120	30
104	54	41	<3.75	7.5	>120	7.5
105	33	38	7.5	15	>120	7.5
106	65	75	<3.75	15	>120	15
107	80	82	7.5	15	>120	15
108	87	96	30	>120	>120	>120
109	87	87	15	60	>120	30
110	90	94	60	>120	>120	120
111	94	92	7.5	120	>120	60
112	87	90	15	120	>120	30
113	92	85	7.5	120	>120	30
114	41	28	15	>120	>120	30
115	93	96	7.5	>120	>120	120
116	58	46	7.5	60	>120	15
117	39	40	15	120	>120	30
118	54	70	7.5	60	>120	15
119	82	87	7.5	>120	>120	120
120	42	35	30	120	>120	30
121	87	90	30	>120	>120	>120

Table 2:			-			
		T	·			
<u>formula</u>	Purity [%] 254 nm	Purity [%] 280 nm	MIC SA	MIC EC	MIC PA	MIC CA
122	78	87	30	>120	>120	120
123	68	73	120	>120	>120	>120
124	93	96	60	120	>120	60
125	93	93	120	>120	>120	120
126	87	86	120.	>120	>120	120
127	65	69	60	>120	>120	60
128	46	52	120	>120	>120	120
129	58	69	120	>120	>120	120
130	82	83	120	>120	>120	>120
131	73	74	120	>120	>120	>120
132	88	90	60	>120	>120.	>120
133	94	93	15	>120	>120	>120
134	100	89	7.5	>120	>120	120
135	92	91	60	120	>120	30
136	92	92	7.5	>120	>120	60
137	49	44	15	30	>120	15
138	41	41	30	60	>120	30
139	50	66	7.5	60	>120	30
140	100	. 80	15	>120	>120	120
141	74	71	120	>120	>120	>120
142	100	83	30	>120	>120	120
143	84	79	>120	>120	>120	120
144	62	54	60	>120	>120	120
145	43	39	>120	>120	>120	120
146	34	35	>120	>120	>120	120
147	61	73	60	>120	>120	120
148	72	70	120	>120	>120	>120

Example 11: Agar incorporation test CG128e

Medium:

Casein/soymeal peptone agar (Merck)

*Sabouraud 4 % glucose agar (Merck)

Diluent:

Sterile 0.85 % NaCl solution

Incubation:

24 hours at 37°C

*3 days at 28°C

Test solution:

1 % stock solutions of all the test substances are prepared in a suitable

solvent and diluted in serial dilutions to end concentrations of from

1000 ppm to 10 ppm.

Test principle:

0.3 ml of each dilution step is mixed with 15 ml of nutrient medium while the latter is still liquid. After the nutrient medium has solidified, 10 µl of each of the following organism dilutions of the test strains in 0.85 % NaCl solution are spotted onto the agar medium:

Microorganisms used:

Staphylococcus aureus ATCC 6538	Staphylococcus aureus ATCC 9144
Staphylococcus epidermidis ATCC 12228	Corynebacterium xerosis * ATCC 373
C. minutissimum ATCC 23348	Propionibacterium acnes (*) ATCC 6919
Escherichia coli NCTC 8196	Escherichia coli ATCC 10536
Proteus vulgaris ATCC 6896	Klebsiella pneumoniae ATCC 4352
Salmonella choleraesuis ATCC 9184	Pseudomonas aeruginosa ATCC 15442
Candida albicans ATCC 10231	Aspergillus niger ATCC 6275

The plates are incubated at 37°C for 24 hours (A. niger at 28°C for 3 days) and then the highest dilution (lowest concentration) of the test substance at which growth is just no longer discernible (corresponds to the MIC) is determined.

The results are shown in Table 3.

Table 3:				
	Compound of formula			
Microorganism	(36)	(89)	(93)	
Staphylococcus aureus ATCC 6538	120	7.5	3.75	
Staphylococcus aureus ATCC 9144	120	7.5	3.75	
Staphylococcus epidermidis ATCC 12228	> 120	120	3.75	
Corynebacterium xerosis * ATCC 373	60	3.75	1.88 *	
C. minutissimum ATCC 23348	30	3.75	1.88	
Propionibacterium acnes (*) ATCC 6919	60	3.75	3.75 (*)	
Escherichia coli NCTC 8196	120	120	120	
Escherichia coli ATCC 10536	> 120	> 120	120	
Proteus vulgaris ATCC 6896	> 120	60	> 120	
Klebsiella pneumoniae ATCC 4352	60 **	> 120	60	
Salmonella choleraesuis ATCC 9184	> 120	. > 120	120	
Pseudomonas aeruginosa ATCC 15442	> 120	> 120	> 120	
Candida albicans ATCC 10231	> 120	> 120	> 120	
Aspergillus niger ATCC 6275	> 120	> 120	> 120	

Example 12: "Microbicidal activity" suspension test CG 161/EN1040

Test method:

Nutrient medium:

Casein/soymeal peptone broth for preparation of pre-cultures of test bacteria Examples of test organisms:

Staphylococcus aureus ATCC 6538 Escherichia coli ATCC 10536 Actynomyces viscosus ATCC 43146

Procedure:

The test substances are dissolved in dimethyl sulfoxide (DMSO) and tested in a concentration of 120 $\mu g/ml$.

Bacteria are incubated overnight in CASO broth and adjusted to an organism count of $1 - 5 \times 10^5$ CFU/ml using 0.85 % sodium chloride solution.

The test substances are pre-pipetted into microtitre plates in amounts of 8 μl per well.

The adjusted test organism suspensions are added in amounts of $192\,\mu l$ per well to the test substances and mixed. After defined contact times, the test batches are mixed, an aliquot is withdrawn and diluted in several steps in a dilution series of 1:10 in a suitable inactivation medium.

The test plates are incubated for 24 hours at 37°C. After incubation, the growth is determined on the basis of the turbidity of the test batches (optical density) at 620 nm in a microplate reader.

On the basis of the number of steps in the dilution series that exhibit growth, the reduction in the test organism concentration is determined in powers of ten (log value).

One microtitre plate is used for each test organism.

All the substances are tested in duplicate.

The results (log reduction) are shown in Table 4:

Table 4					
			Compound	of formula	
Organism	Contact time	(93) 0,12 %	(93) 120 ppm	(89) 0.12 %	(89) 120 ppm
S.aureus	5 min	>5	1.4		<1
S.aureus	30 min	>5	3.8		1,7
E. coli	5 min	>5	>5		4.6
E. coli	30 min	>5	>5		>5

Table 4							
		Compound of formula					
Organism	Contact time	(93) 0.12 %	(93) 120 ppm	(89) 0.12 %	(89) 120 ppm		
A. viscosus	5 min	>5	2	4.9	3.9		
A. viscosus	30 min	>5	4	>5	4.3		

Example 13: Determination of the minimum inhibitory concentration (MIC value) in microtitre plates

Nutrient medium and test procedure correspond to Example 10.

As test organisms there are used:

Staphylococcus aureus ATCC 6538 Escherichia coli ATCC 10536 Actynomyces viscosus ATCC 43146

The microbiological test results are compiled in Table 5:

Table 5					
Comp. of formula	Purity [%] 254 nm	Purity [%] 280 nm	MIC SA	MIC EC	MIC AV
149	91	89	120	>120	15
150	87	88	120	>120	60 .
151	88	86	120	>120	15
152	91	83	30	>120	15
153	89	85	120	>120	30
154	94	85	120	120	30
155	85	81	30	30	7.5
156	86	82	7.5	15	<3.75
157	62	63	15	>120	<3.75
158	86	92	>120	>120	7.5
159	89	91	120	>120	30
160	88	92	120	>120	15

Table 5					
Comp. of formula	Purity [%] 254 nm	Purity [%] 280 nm	MIC SA	MIC EC	MIC AV
161	87	92	120	>120	30
162	67	88	120	>120	30
163	67	66	>120	>120	60
164	85	92	120	>120	30
165	81	92	>120	>120	30
166	68	75	>120	>120	30
167	92	89	120	120	15
168	. 72	73	>120	>120	. 15
169	87	83	>120	>120	30
170	77 ·	85	>120	>120	15
171	86	81	120	>120	30
172	87	72	60	>120	15
173	69	67	60	60	15
174	66	87	120	>120	60
175	69	64	120	120	30
176	82	57	30	30	7.5
177	87	92	120	>120	30
178	77	69	120	120	30
179	77	85	120	120	30

What is claimed is:

1. Use of a 4-aminopyrimidine of formula

(1)
$$R_1$$
 N R_2 R_3 , wherein R_4 R_5

- R₁ and R₂ are each independently of the other hydrogen; C₁-C₅alkyl which is unsubstituted or substituted by one or more halogen atoms; biphenyl or C₆-C₁₀aryl which is unsubstituted or substituted by halogen, C₁-C₅alkyl, C₁-C₅alkoxy or by amino; a 5- to 7-membered heteroaryl radical; or cyclo-C₃-C₇alkyl;
- R₃ is hydrogen; phenyl or C₁-C₅alkyl which is unsubstituted or substituted by one or more halogen atoms;
- R₄ is hydrogen; C₁-C₁₀alkyl; phenyl; or a 5- to 7-membered heteroaryl radical;
- R_s is C_1 - C_{20} alkyl which is unsubstituted or substituted by one or more halogen atoms or by a heterocyclic radical or interrupted by one or more -O- or -N- groups or by a

bivalent heterocyclic radical; NR"R"- C_1 - C_2 alkyl which is unsubstituted or substituted by a heterocyclic radical or interrupted by one or more -O- or -N- groups or by a

bivalent heterocyclic radical; cyclo- C_s - C_a alkyl; hydroxy- C_1 - C_{20} alkyl; phenyl- C_1 - C_3 alkyl; a heterocyclic radical; or

R, and R, together with the nitrogen atom linking them, form a radical of

formula (1a)
$$-N$$
 $(CH_2)_{n_2}$ $(CH_2)_{n_2}$

R' is hydrogen; or C,-C,alkyl;

R" and R" are each independently of the other hydrogen; C,-C,alkyl; or hydroxy-C,-C,alkyl;

X is
$$O$$
; $CH-R^{""}$; or $N-R^{""}$;

R^{****} is hydrogen; C_1 - C_4 alkyl; or heteroaryl- C_1 - C_4 alkyl; and n_1 and n_2 are each independently of the other from 1 to 8; in the antimicrobial treatment of surfaces.

- 2. Use according to claim 1, wherein
- R_s is R"R""N-C₁-C₂₀alkyl which is uninterrupted or interrupted by one or more –O- or —N— groups or by a bivalent heterocyclic radical;
- R' is hydrogen; or C,-C,alkyl;

R" and R" are each independently of the other hydrogen; or methyl; and

 R_1 , R_2 , R_3 and R_4 are as defined in claim 1.

- 3. Use according to either claim 1 or claim 2, wherein
- R_s is R"R"'N- C_1 - C_{20} alkyl which is uninterrupted or interrupted by N
- 4. Use according to either claim 1 or claim 2, wherein
- R_s is R"R"N-C_s-C₂₀alkyl which is uninterrupted or interrupted by one or more –O- or —N— groups;
- R' is hydrogen; or C₁-C₅alkyl; and

R" and R" are each independently of the other hydrogen; or methyl.

- 5. Use according to claim 4, wherein
- R_s is R"R""N-C_s-C₂₀alkyl; and

R" and R" are each independently of the other hydrogen; or methyl.

- 6. Use according to claim 1, wherein
- R₄ is hydrogen; or C₁-C₂alkyl;
- R_s is C_s - C_{20} alkyl which is unsubstituted or interrupted by -NH-; and
- R₁, R₂ and R₃ are as defined in claim 1.
- 7: Use according to claim 6, wherein
- R_1 is hydrogen; C_1 - C_s alkyl; unsubstituted or C_1 - C_s alkyl-substituted phenyl or phenyl- C_1 - C_s alkyl; or pyridino;
- R₂ is hydrogen; or C₁-C₅alkyl; especially methyl;

- R₃ is hydrogen; or C₁-C₅alkyl;
- R₄ is hydrogen; or C₁-C₂alkyl; and
- R_s is C_s-C₂₀alkyl,
- 8. Use according to either claim 6 or claim 7, wherein
- R_1 is hydrogen; C_1 - C_3 alkyl, especially isopropyl or methyl; unsubstituted or C_1 - C_4 alkyl-substituted phenyl; or pyridino;
- R₂ is methyl;
- R₃ and R₄ are hydrogen; and
- R_s is C_8 - C_{18} alkyl.
- 9. Use according to any one of claims 6 to 8, wherein
- R_s is linear C_a-C₁₈alkyl.
- 10. Use according to claim 1, wherein, in formula (1a),
- R"" is hydrogen; or pyridyl-C₁-C₃alkyl; and
- n, and n, are in each case 2.
- 11. Use according to any one of claims 1 to 8, wherein
- R₁ and R₂ are each independently of the other hydrogen; C₁-C₃alkyl; phenyl which is unsubstituted or substituted by halogen, C₁-C₃alkyl, C₁-C₅alkoxy or by amino; biphenyl; cyclo-C₃-C₇alkyl; 3-pyridyl; 4-pyridyl; 2-thiophenyl; 3-thiophenyl; or thiazolyl.
- 12. Use according to any one of claims 1 to 6, wherein
- R₃ is hydrogen; or phenyl.
- 13. Use according to any one of claims 1 to 10, wherein
- R₄ is hydrogen.
- 14. Use according to claim 1, relating to compounds of formula

(2)
$$R_1$$
 R_2 R_3 R_3 R_4 R_3 R_4 R_5 R_5

wherein

R' is hydrogen; or C_1 - C_3 alkyl;

n is 1-3; and

m is 1-3;

and

 R_1 , R_2 and R_3 are as defined in claim 1.

15. A process for the preparation of a compound of formula (1), which comprises reacting 2-amidinopyridine with a keto ester using an auxiliary base in a suitable solvent in accordance with the following scheme:

wherein

 $R_{_{1}}\text{, }R_{_{2}}\text{, }R_{_{3}}\text{, }R_{_{4}}\text{ and }R_{_{5}}\text{ are as defined in claim 1.}$

16. A process for the preparation of a compound of formula (2), which comprises preparing the compound in a solid-phase synthesis using a trityl (TCP) resin in accordance with the following scheme:

wherein

R₁, R₂, R₃, X, m and n are as defined in claim 14.

- 17. Use according to claim 1, wherein the compound of formula (1) is used in the antimicrobial treatment, deodorisation and disinfection of the skin, mucosa and hair.
- 18. Use according to claim 1, wherein the compound of formula (1) is used in the treatment of textile fibre materials.
- 19. Use according to claim 1, wherein the compound of formula (1) is used in preservation.
- 20. Use according to claim 1, wherein the compound of formula (1) is used in washing and cleaning formulations.
- 21. Use according to claim 1, wherein the compound of formula (1) is used in imparting antimicrobial properties to, and preserving, plastics, paper, nonwovens, wood or leather.
- 22. Use of a compound of formula (1) in imparting antimicrobial properties to, and preserving, technical products, especially printing thickeners of starch or of cellulose derivatives, surface-coatings and paints.
- 23. Use of a compound of formula (1) as a biocide in technical processes.

24. A personal care preparation comprising

from 0.01 to 15 % by weight, based on the total weight of the composition, of a compound of formula (1), and cosmetically tolerable adjuvants.

- 25. An oral composition comprising from 0.01 to 15 % by weight, based on the total weight of the composition, of a compound of formula (1), and orally tolerable adjuvants.
- 26. A compound of formula

(1')
$$R_1$$
 N R_2 R_3 wherein

- R₁ and R₂ are each independently of the other hydrogen; C₁-C₃alkyl which is unsubstituted or substituted by one or more halogen atoms; biphenyl or C₆-C₁₀aryl which is unsubstituted or substituted by halogen, C₁-C₃alkyl, C₁-C₃alkoxy or by amino; a 5- to 7-membered heteroaryl radical; or cyclo-C₃-C₇alkyl;
- R_3 is hydrogen; phenyl or C_1 - C_3 alkyl which is unsubstituted or substituted by one or more halogen atoms;
- R₄ is hydrogen; C₁-C₁₀alkyl; phenyl; or a 5- to 7-membered heteroaryl radical;
- R_s is C_1 - C_{20} alkyl which is unsubstituted or substituted by one or more halogen atoms or by a heterocyclic radical or interrupted by one or more –O- or N_s —groups or by a

bivalent heterocyclic radical; NR"R"- C_1 - C_{20} alkyl which is unsubstituted or substituted by a heterocyclic radical or interrupted by one or more -O- or -N-groups or by a

bivalent heterocyclic radical; cyclo- C_s - C_s alkyl; hydroxy- C_1 - C_∞ alkyl; phenyl- C_1 - C_3 alkyl; a heterocyclic radical; or

R4 and R5, together with the nitrogen atom linking them, form a radical of

formula (1a)
$$-N$$
 (CH₂)₀₁ \times (CH₂)₀₂

R' is hydrogen; or C,-C,alkyl;

R" and R" are each independently of the other hydrogen; C₁-C₅alkyl; or hydroxy-C₁-C₅alkyl;

X is
$$\bigcirc$$
O; \bigcirc CH-R""; or \bigcirc N-R"";

R^{***} is hydrogen; C_1 - C_4 alkyl; or heteroaryl- C_1 - C_4 alkyl; and n_1 and n_2 are each independently of the other from 1 to 8; not including compounds of formula (1') wherein simultaneously

 R_1 is C_6 - C_{10} aryl; or C_1 - C_4 alkyl; and

 R_s is C_1 - C_7 alkyl.

INT NATIONAL SEARCH REPORT

naf Application No

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 A01N43/54 A01N43/78 C07D239/42 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC 7 A01N C07D Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EPO-Internal, CHEM ABS Data, WPI Data C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Citation of document, with indication, where appropriate, of the relevant passages Calegory ° X EP 0 323 757 A (UBE INDUSTRIES) 1,6-9, 11-13, 12 July 1989 (1989-07-12) 17-25 page 3, line 26 -page 5, line 12 table 1 EP 0 407 899 A (HOECHST AG) 1,6-10,X 12,13, 16 January 1991 (1991-01-16) 17-25 page 2, line 1 -page 4, line 38 table A X EP 0 519 211 A (HOECHST AG) 1,6-9, 11-13, 23 December 1992 (1992-12-23) 17-25 page 3, line 1 - line 3 table A Patent family members are listed in annex. X Further documents are listed in the continuation of box C. Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the *A* document defining the general state of the art which is not considered to be of particular relevance invention *E* earlier document but published on or after the international filing date "X" document of particular relevance; the claimed Invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive slep when the document is combined with one or more other such document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "O" document referring to an oral disclosure, use, exhibition or document published prior to the international filing date but later than the priority date claimed *&" document member of the same patent family Date of mailing of the international search report Date of the actual completion of the international search 0 9, 07, 03 6 May 2003 Name and mailing address of the ISA Authorized officer Europeen Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3016 Fort, M

INTERNATIONAL SEARCH REPORT

Internation No PCT/EP 03/02438

	PCT/EP 03/02438		
	Relevant to claim No.		
Citation of document, with indication, where appropriate, or the relevant passages	New and to claim to.		
WO 95 07278 A (DU PONT DE NEMOURS) 16 March 1995 (1995-03-16) * the whole document *	1,6-9, 11-13, 17-25		
US 6 207 668 B1 (RALF BRAUN ET AL.) 27 March 2001 (2001-03-27) * the whole document *	1,10-13, 17-25		
EP 0 424 125 A (UBE INDUSTRIES) 24 September 1991 (1991-09-24) * the whole document *	1,11-13, 17-25		
US 4 435 402 A (HIDEAKARA TSUJI ET AL.) 6 March 1984 (1984-03-06) column 1, line 24 -column 4, line 58	1,11,13, 17-25		
·			
	16 March 1995 (1995-03-16) * the whole document * US 6 207 668 B1 (RALF BRAUN ET AL.) 27 March 2001 (2001-03-27) * the whole document * EP 0 424 125 A (UBE INDUSTRIES) 24 September 1991 (1991-09-24) * the whole document * US 4 435 402 A (HIDEAKARA TSUJI ET AL.) 6 March 1984 (1984-03-06)		

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

1. Claims: 1-14, 17-25

Use of 4-aminopyrimidine of formula (1) in the antimicrobial treatment of surfaces and corresponding personal care preparation and oral composition

2. Claim: 15

Process for the preparation of a compound of a compound of formula (1) which comprises reacting an amidine compound with a keto ester

3. Claim : 16

Process for the preparation of a compound of formula (2) using a trityl (TCP) resin

4. Claim: 26

A compound of formula (1') not including compounds of formula (1') wherein simultaneously R1 is C6-C10 aryl; or C1-C4 alkyl; and R5 is C1-C7 alkyl.

INTERNATIONAL SEARCH REPORT

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This international Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful international Search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of Invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple Inventions in this International application, as follows:
see additional sheet
1. As all required additional search fees were timely paid by the applicant, this international Search Report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the Invention first mentioned in the claims; it is covered by claims Nos.: 1-14,17-25
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

INT NATIONAL SEARCH REPORT

Information on patent family members

Internation No PCT/EP 03/02438

					roi/Er	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	atent document d in search report		Publication date		Patent family member(s)	Publication date
EP	0323757	Α	12-07-1989	CA	1337525 C	07-11-1995
				DE	3853771 D1	14-06-1995
				DE	3853771 T2	05-10-1995
				ΕP	0323757 A2	12-07-1989
				JP	2007331 C	11-01-1996
				JP	2085263 A	26-03-1990
				JP	7045481 B	
						17-05-1995
				US	4931455 A	05-06-1990
EP	0407899	Α	16-01-1991	DE	3922735 A1	24-01-1991
				DE	59008571 D1	06-04-1995
				EP	0407899 A2	16-01-1991
				HU	54280 A2	28-02-1991
				PΤ	94645 A ,B	20-03-1991
				US	5250530 A	05-10-1993
EP	0519211	Α.	23-12-1992	EP	0519211 A1	23-12-1992
				JP	6234750 A	23-08-1994
				US	5668140 A	16-09-1997
WO	9507278	——— А	16-03-1995	AU	7551894 A	27-03-1995
	· ·			MO	9507278 A1	16-03-1995
115	6207668	B1	27-03-2001	DE	19613329 A1	09-10-1997
33	3207000	O1	LI 03 2001	AU	2159797 A	29-10-1997
				CA		
					2250836 A1	16-10-1997 16-10-1007
				MO	9737991 A1	16-10-1997
				EP	0892798 A1	27-01-1999
				JP	2000508636 T	11-07-2000
		·		ZA	9702794 A	31-10-1997
EP	0424125	A	24-04-1991	JP	3246281 A	01-11-1991
				JP	3275675 A	06-12-1991
				JP	4054169 A	21-02-1992
				EP	0424125 A2	24-04-1991
				JP	2730019 B2	25-03-1998
				JP	4225976 A	14-08-1992
				JP	3204864 A	06-09-1991
115	4435402		06-03-1984	JP	1762985 C	28-05-1993
00	, 100702	••	00 00 1904	JP	4053841 B	27-08-1992
				JP	57126481 A	06-08-1982
				JP		13-06-1991
					1607647 C	
				JP	2034944 B	07-08-1990
				JP	57176967 A	30-10-1982
				AU	551830 B2	15-05-1986
				ΑU	7992182 A	05-08-1982
				BR	8200471 A	30-11-1982
				CA	1218658 A1	03-03-1987
				DE	3263584 D1	27-06-1985
				EP	0057440 A1	11-08-1982
				ËS	8304944 A1	16-06-1983
				HU	188768 B	28-05-1986
				KR	8801851 B1	
				71.71	POOTQDI DI	22-09-1988
					100604 8	10 10 1004
				NZ	199604 A	19-10-1984
					199604 A 20344 A 8200545 A	19-10-1984 04-12-1986 26-10-1983