DAA ASSIGNMENT > 1

NAME > Hayal shooma COURSED B. Tech BRANEHY C.S.E

SECTION O A 8011. NO - 1961073

Ques > 1 > what do you understand by Psymptotic notations. Define different Asymptotic notations with example ?

Ans -> Asymptotic Notation

7 we use asymptotic notation to septement order by growth of function.

+ O notation .

+ O notation.

-) 1 notation.

1 Big o notation

- This is used to represent upper bound of a function.

-> Graphical representation

O(gn) = & fin): Oftin elgens where (& a Postere constant + n > mon ?

1 O notation

used to represent both upper as well as laser bound.

$$\Rightarrow IL(gn) = \xi f(n); \leq (gn) \leq f(n)$$
 where C is possitive constant V $n \geq n \geq 0$.

Any
$$2 \rightarrow 3$$
 for $(9 = 1 + 0 n)$

$$\begin{cases} (9 = 1 * 2)^{n}, \\ (9 = 1 * 2)^{n}, \\ (1, 2, 4, 8, -... n) \end{cases}$$

$$T(n) = O(\log_{2} n)$$

$$2n \times 33 = 7(n-1) \times 37(n-1) \times 37(n-$$

$$T(n) = 3T(n-1) - D$$
 $T(n-1) = 3T(n-2) - D$
 $T(n) = 9T(n-2) - D$
 $T(n) = 3^3 T(n-3) - D$
 $T(n) = 3^3 T(n-3) - D$
 $T(n) = 3^4 T(n-1) - D$
 $T(n) = 3^4 T(n-2) - D$

$$T(n) = 3^h T(0)$$

$$T(n) = 3^h.$$

$$T(n) = \Theta(3^h).$$

Ans) (1)
$$T(n) = \sqrt{2}T(n-) - 1$$
, $n \ge 0$ g

$$T(n) = 2T(n-1) - 1$$

```
T(n-1) = 2T(n-2) -1.
     T(n) = 4T(n-2)-1-2 -3
      TCn) = 8T(n-3) - (I+2+4) -(3)
      T(n)=2k T(n-k) - [1+2+ 4+ --- 2k-1]
          T (n-k) = T(0)
              n= K.
       T(n) = 2" T(0) - [1+2+4+ ----]
                         K. 40 smy.
                         9ts an A.P.
                           a= 1
                           8=2
        T(n) = 2^n - (2(2^{nq}-1)^2)
         T(n) = 2^n - 2^n + 1
          TLN)= 1.
          Ton ) = 0 (1).
Ans-15-) Put P=1, S=1:
         whole (sen)
            $ p + + 0
            Bant ((F#")"
          3
        (K. terms)
         Its with term 2 \times (k+1) = n.
           k= Jh,
```

```
T(n) = O(sn).
Ansstar void function (int n) &
           Prot 1, count = 0
           for (int == 2; ix i 2n; i+)
               count ++
           7(n)= O(sin )
Ans-)7-) T(n) = O(n* log2n * log2n)
          T(n) = D(n* (dog = n)2)
           T(n) = O(n(\log n)^2)
Ans -) 8 > Function (PNIN) &
                                  T(n)
            if(n==1) return;
            ford i= 2 to n)
              ξ for ( g = 1 +0 rg.
ξ port f("*")",
            fundion (n-3); T(n-3)
         T(n)= T(n-3) + n2 -0
          TCn-1) = TCn-U) + (n-1)2.
           T(n) = T(n-(1) + n2+ (n-y2
            Ten) = Ten-5) + n2 + (n-1)2 + (n-2)2
            T(n) = T(n-12) + (n2 + (n-1)2 + (n-2)24---)
                                   (R-2) terms.
               for TCM-K)=1
                    K = n-1
```

$$T(h) = T(1) + (n^{2} + n + 1)^{2} + (n + 2)^{2} + \cdots$$

$$(n + 3) + (n + 3) + (n + 2) + (n + 3) +$$

first
$$j=1$$
 ; $j=0$; while (SZn)

 $j=1+j$; $j=0$;
while (SZn)

 $j=1+j$; $j=0$;
 $j+1+j$;
 $j+1$

```
Mence space complexity of fabinacii series & O(n) as it depends on neight by recursive tree & it is equal to
    n Pn fabrica ci series.
Ansi 13 Dn (log n)
        voi d fun ( for (int j=0; j2 n; j++)
                      for ( int i=0; icn; l= i*2)
                       Ebent f (c= x 1);
        1
                n3
               # Include Zstdio.hs
                void main ()
                     cen > n;
                     for (Pnt i=0; i2n; i++)

{

For (int j=0; i2n; j++)

{

for (int k=0; k<n; k++)
                       3
            (logn)
 -) log
```

```
Any)15-) for (int iton)
           for ( ind f=1; f∠n; f+=1)
         3 3 (1 0(1) .
     K Afmes
             K = log2h
          n·(1+注, 益, 亡, --- 片)
              (n (log n))
               T(n) = O(nlogn).
  Ans-16-) for ( find P= 2; P<= n ; P= POLO (i, k))
           a, 2k, 2k2, 2k3, ---h
             9+ Co.P a=2
                   Kyp wam= ask-1
                   n= 2(2 K)K-1
                  let 1×(K-1) = 7(
                 Klogxk = logx
                   K = 109x -0
                  n = 2x
                   | \log_{10} n = \pi \log_{1}^{2} 
 | K = \log(\log(n)) 
 | \chi = \log_{10} n 
 | \chi = \log_{10} \log(\log(n)) 
 | \chi = \log(\log(n)) 
 | \chi = \log(\log(n)) 
 | \chi = \log(\log(n)) 
 | \chi = \log(\log(n)) 
                   from -(1).
```

Ansona) hence prot is divided in 99% & 1% $T(n) = T\left(\frac{99}{100}N\right) + T\left(\frac{N}{100}\right) + N$ Note as hore we can use. 2 extreme by a tree where shooting bind is N N 99 N N 100 (100)² (100)² (100)² (100)² N(99 x 9 9) + 99(1)) + +00 100 x 1000 N $=\frac{89}{100}N+\frac{N}{100}$ = N so cost of each level is Nonly. Total cost - height * cost of each level 50 for 1th stream - N, 99 N, (99)2N, ---(99) N = 1 a (109) n-1 = 1 $N = \left(\frac{100}{99}\right)^{h-1}$ 10g N = h 19y (1) h = log N or h = log N 1 1

Not so three complexity is o(N logN)

height by both extre is logN + 1 of loglooand logN + 1 of logloo loglooand logN + 1 of logloo logloo logloo

so we can conclude that it division is done more than height of tree will be more a when devision out of its less.

Ans. 18-20 n. n., logn, loglogn, root (n), nlogn, $2n, 2^n$, u^n, n^2 , loc any $O[100] \times [log logn) \times o(logn) \times o(10) \times o(nlogn) \times o(n^2) \times o(2^n) \times o(2^n) \times o(u^n)$

(b) (an), un, 2n, 1, log(n), log(log(n)), Viog(n), logan, alog n, n, log (n), n'i, n2, n log(n)

Any-> O(1) $\angle O(\log(\log n)) \angle O(\log(n!)) \angle O(\log(n)) \angle O$

```
@ 22h, logs h, nlogs (h), nlogs (N), log(n), log(n), 10g(n), 10g
     8 n2, 7 n3, sh.
 Ans) 0(86) 2 0(log (n)) 20(log, n) 20 (log(h) 20(n bg (n))
       < O(nlog,(n)) / O(sn) / O(8n3) / O(7 H3) / O(n!)
        < 0(8°3n).
Ans-214) void Linear search (int arxi), int n, int key)
              for (1=0 to 1=n)
               9f arr[P] = = Key
                  count 22 faind .
                 else
                  continue
Area 200) Iterative Insuration cost
```

Ars. 20-) Iterative Insertion (ort

-> void Insertion 2004 (cros, n)
$$\xi$$
.

Put θ , temp, θ

Por $(\theta-1.40 \text{ n})$

femp = $\alpha \pi \sigma I\theta$
 $\theta = \theta - 1$

where $\theta > 0$ 20 $\alpha \pi \pi I\theta$ > temp

are
$$[j+1] = arrely$$

g

g

RECURSIVE INSERTION SOFT

Permonentian sort (arr, n)

Permonentian sort (arr, n-1);

Pust = arren-1];

Past = arren-1];

Past = arren-1];

Arrelian = arrelin = arrelin

Insortion soot is called online sorting because 91 don't know the cold e Propert, it might make decision that later two out to be not offinal.

Other abouthm are off-line algoritms that are discussed in lectures.

Any-221-) TIME complexities

	BEST	AV4	worst	State
Buffe Bubble Sout	o(n2)	o(n2)	O(n2)	0(1)
solection sort	ocn2)	0 (n2)	$O(n^2)$	0(1)
Insertion sort	(n)	o(n2)	$O(r^2)$	0(1)
merge sort	ocnlogn)	o(nlogn)	O(nlgn)	O(n) Educto
auth sort	o(nlogn)	O(nlogn)	$O(n^2)$	O(n)
Hear sort	O(nlogn)	O(nlogn)	o(nlgn)	0(1)

Any 223		Implace	stable	online sorting.
	Bubble soot selection soot	Yes	yes	No
		Yes	NO	NO
	here Inscrition Soul	ges	yes	yes
	MERGE SOUT	No	yes	Nb
	Outck Sort	yes	NO	No
	HEAD SOUT	yos	NO	NO

```
search (ast, int n, kg)
Binary
  bog =0
   end = n+
    whole (beg 2=end)
      mpd= (bagt end) 12
      If [arr [mid] == wey]
        found
       else if uso [mid] < key
          bey = mid +1
         else
         end = mid-1
  3
Time complexity of linour search - ocn)
Space complotity of PinDaz search - OCV
     complexity of Binary search - O (log n)
 space
      complexity of Biropy search - O(n)
```

AN-24-) Tin)=T(3)+1.

An