Herbst 20 Themennummer 1 Aufgabe 5 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

Sei $g:[0,+\infty)\to[0,+\infty)$ eine stetige Funktion, so dass 0 die einzige Nullstelle von g ist. Betrachtet wird das Anfangswertproblem $\dot{x}=g(x),x(0)=x_0\in[0,+\infty)$ mit Lösungsintervallen der Form $[0,a),a\in(0,\infty)$. Zeigen Sie:

- a) Eine Lösung $\varphi:[0,a)\to\mathbb{R}$ des Anfangswertproblems nimmt nur nichtnegative Werte an und ist monoton steigend. Ist $t\in[0,a)$ mit $\varphi(t)>0$, so ist φ streng monoton steigend auf [t,a).
- b) Das Anfangswertproblem ist im Falle $x_0 > 0$ eindeutig lösbar. Hinweis: Trennung der Variablen.
- c) Gilt $\int_0^1 \frac{dx}{g(x)} = +\infty$, so ist das Anfangswertproblem im Falle $x_0 = 0$ eindeutig lösbar.

Lösungsvorschlag:

- a) Ist φ eine Lösung, so muss per Definitionem ihr Bild im Definitionsbereich der Strukturfunktion, d. h. in $[0, +\infty)$ liegen. Folglich kann φ nur nichtnegative Werte annehmen. Aus $\varphi'(t) = g(\varphi(t)) \geq 0$, folgt dann auch, dass φ monoton steigend ist. Gilt sogar $\varphi(t) > 0$, folgt für $s \in (t, a) : \varphi'(s) = g(\varphi(s)) > 0$, denn $\varphi(s) > \varphi(t) > 0$, und $g(z) = 0 \iff z = 0$ gelten. Also ist die Steigung strikt positiv und die Monotonie sogar streng auf [t, a).
- b) Nach dem Satz von Peano besitzt das Problem eine Lösung. Sei nun φ eine Lösung, dann folgt aus b), dass φ monoton steigend ist und nur Werte im Intervall $[x_0, +\infty)$ annimmt. Auf dem Bildbereich der Lösung wird g also nie 0 und daher ist 1/g darauf eine wohldefinierte, stetige Funktion, die eine Stammfunktion F besitzt. Nach Trennung der Variablen muss für alle $t \in [0, a)$ die Gleichung $F(\varphi(t)) = t + F(x_0)$ gelten, was zu $\varphi(t) = F^{-1}(t + F(x_0))$ aufgelöst werden kann, weil F' = 1/g > 0 ist, also F streng monoton steigend und folglich injektiv ist. Damit ist die eindeutige Lösung durch $\varphi(t) = F^{-1}(t + F(x_0))$ gegeben.
- c) Eine Lösung ist durch die Nullfunktion gegeben, wir wollen zeigen, dass jede Lösung schon konstant 0 ist. Das Integral in der Voraussetzung ist bei 0 uneigentlich, aus der Voraussetzung folgt schon $\int_0^c \frac{\mathrm{d}x}{g(x)} = +\infty$ für alle c > 0, für $c \ge 1$ ist das sofort klar. Wäre die Aussage für ein 0 < c < 1 falsch, so würde

$$+\infty = \int_0^1 \frac{\mathrm{d}x}{g(x)} = \int_0^c \frac{\mathrm{d}x}{g(x)} + \int_c^1 \frac{\mathrm{d}x}{g(x)} < \infty$$

gelten, denn das erste Integral ist endlich und das zweite Integral können wir durch (1-c)/G abschätzen, wobei G das Minimum der stetigen Funktion auf dem kompakten Intervall [c,1] ist. Dieses ist strikt positiv, denn das Minimum wird in [c,1] angenommen und g nimmt auf diesem Intervall nur positive Werte an.

Ist jetzt φ eine Lösung, die nicht konstant 0 ist und F wie in b) gewählt, so muss es ein $t_0 > 0$ geben mit $\varphi(t_0) > 0$ und nach Trennung der Variablen folgt $+\infty = \int_0^{\varphi(t_0)} \frac{\mathrm{d}x}{g(x)} = \int_0^{t_0} 1 \mathrm{d}s = t_0$, ein Widerspruch. Es kann also kein $t_0 > 0$ geben mit $\varphi(t_0) > 0$ und die Nullfunktion ist die einzige Lösung.

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$