本科概率论与数理统计作业卷(八)

一、填空题

1.设两个总体 X 和 Y 相互独立且均服从 $N(0,3^2)$, $X_1,...,X_9$ 和 $Y_1,...,Y_9$ 是分别取自总体 X 和 Y 的简单随机样本,则统计量 $\frac{X_1+\cdots+X_9}{\sqrt{Y_1^2+\cdots+Y_9^2}}$ 服从______分布,参数为_____.

解 :
$$\frac{X_i}{3} \sim N(0,1), \frac{Y_i}{3} \sim N(0,1)$$
 : $\overline{X} = \frac{1}{9} \sum_{i=1}^{9} X_i \sim N(0,1), U = \sum_{i=1}^{9} \left(\frac{Y_i}{3}\right)^2 = \frac{1}{9} \sum_{i=1}^{9} Y_i^2 \sim \chi^2(9)$
: $U = \frac{X_1 + \dots + X_9}{\sqrt{Y_1^2 + \dots + Y_9^2}} = \frac{\overline{X}}{\sqrt{U/9}} \sim t(9)$ 故应填 t 为 9

2.在天平上重复秤量一重量为a的物品,假设各次秤量的结果相互独立且均服从正态分布 $N(a,0.2^2)$,若以 $\overline{X_n}$ 表示 n 次秤量结果的算术平均值,则为使 $P\{|\overline{X_n}-a|<0.1\}\geq 0.95$,需要秤量的次数 n 的最少次数应为 ______.

解
$$: \overline{X_n} \sim N\left(a, \frac{0.2^2}{n}\right)$$
 $: \frac{\overline{X_n} - a}{0.2/\sqrt{n}} \sim N(0,1)$
 $: P\left\{ |\overline{X_n} - a| < 0.1 \right\} = P\left\{ \left| \frac{\overline{X_n} - a}{0.2/\sqrt{n}} \right| < \frac{\sqrt{n}}{2} \right\} = \Phi\left(\frac{\sqrt{n}}{2}\right) - \Phi\left(-\frac{\sqrt{n}}{2}\right) = 2\Phi\left(\frac{\sqrt{n}}{2}\right) - 1 \ge 0.95$
 $\Rightarrow \Phi\left(\frac{\sqrt{n}}{2}\right) \ge 0.975 \Rightarrow \frac{\sqrt{n}}{2} \ge 1.96 \Rightarrow n \ge (1.96 \times 2)^2 \approx 15.37$ 故 n 最少应取 16.

3. 设总体 X 服从正态分布 $N(\mu, 2^2)$, X_1, X_2, \cdots, X_7 是取自总体 X 的七个样本,若要求统计量 $a(X_1-2X_2+X_3)^2+b(X_4-X_5+X_6-X_7)^2\sim \chi^2(n)$,则应取 $a=___$, $b=___$, $n=___$. 解 $:: E(X_1-2X_2+X_3)=0$, $D(X_1-2X_2+X_3)=DX_1+4X_2+DX_3=24$ $\therefore X_1-2X_2+X_3\sim N(0,24)$ $\therefore \frac{X_1-2X_2+X_3}{\sqrt{24}}\sim N(0,1)$ $\therefore \frac{1}{24}(X_1-2X_2+X_3)^2\sim \chi^2(1)$ 类似可得 $\frac{1}{16}(X_4-X_5+X_6-X_7)^2\sim \chi^2(1)$ 由独立 χ^2 -分布随机变量具有可加性得 $\frac{1}{24}(X_1-2X_2+X_3)^2+\frac{1}{16}(X_4-X_5+X_6-X_7)^2\sim \chi^2(2)$ 故 $a=\frac{1}{24}$, $b=\frac{1}{16}$,n=2

二、选择题

1.设总体 $X \sim N(\mu, \sigma^2)$,其中 μ 已知, σ^2 未知, X_1 , X_2 , X_3 是取自该总体的三个样本,则不是统计量的是

$$(A)X_1 + X_2 + X_3$$
 $(B) \max\{X_1, X_2, X_3\}$ $(C) \sigma^2(X_1 + X_2 + X_3)$ $(D) \frac{1}{4}(X_1 + X_2 + X_3)$ 解 由于统计量是不含任何未知参数的样本的函数 故应选(C)

2.设总体 $X \sim N(\mu, \sigma^2)$, μ 和 σ^2 均未知, X_1, \dots, X_n 为 X 的样本,则下列选项正确的是

$$(A)\frac{\overline{X}-\mu}{S/\sqrt{n}} \sim t(n-1) \quad (B)\frac{\overline{X}-\mu}{S/\sqrt{n}} \sim t(n) \quad (C)\frac{\overline{X}-\mu}{S/\sqrt{n}} \sim t(n+1) \quad (D)\frac{\overline{X}-\mu}{S/\sqrt{n}} \sim t(n-2)$$

$$解 \quad : \frac{\overline{X}-\mu}{\sigma/\sqrt{n}} \sim N(0.1), \quad \frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1) \, \text{及,} \\ \text{由 } t\text{-}分布定义 \qquad \text{应选(A)}$$

3.设 $X_1,...,X_n$ 是正态总体 $N(\mu,\sigma^2)$ 的一组样本, μ 和 σ^2 均已知,则下列选项错误的是

$$(A)\overline{X} \sim N(\mu, \frac{\sigma^2}{n}) \quad (B)\frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \sim N(0, 1) \quad (C)\frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t(n - 1) \quad (D)\frac{(n - 1)S}{\sigma^2} \sim \chi^2(n - 1)$$

解 由数理统计基本知识知(A)、(B)、(C)均正确, $\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$ 故应选(D)

4.设 n 个随机变量 $X_1, X_2, \dots, X_n, (n \ge 2)$ 为来自总体 N(0,1) 的简单随机样本, \overline{X} 为样本均值, S^2 为样本方差, 则下列选项正确的是

(A)
$$\frac{(n-1)\overline{X}}{S} \sim t(n-1)$$
 (B) $\frac{(n-1)X_1^2}{\sum_{i=2}^n X_i^2} \sim F(1, n-1)$ (C) $nS^2 \sim \chi^2(n)$ (D) $n\overline{X} \sim N(0,1)$

解 ::
$$X_1 \sim N(0,1)$$
 :: $X_1^2 \sim \chi^2(1)$, $\sum_{i=2}^n X_i^2 \sim \chi^2(n-1)$
:: $\frac{X_1^2/1}{\sum_{i=2}^n X_i^2/(n-1)} = \frac{(n-1)X_1^2}{\sum_{i=2}^n X_i^2} \sim F(1,n-1)$ 故应选(B)

三、计算、证明题

1.设总体服从正态分布 $N(0,0.3^2)$, X_1, X_2, \dots, X_{10} 为 X 的一组样本, 求 $P\left\{\sum_{i=1}^{10} X_i^2 > 1.44\right\}$.

解 :
$$\frac{X_i}{0.3} \sim N(0,1), (i=1,\cdots,10)$$
 且它们相互独立 : $Y = \sum_{i=1}^{10} \left(\frac{X_i}{0.3}\right)^2 = \frac{1}{0.09} \sum_{i=1}^{10} X_i^2 \sim \chi^2(10)$: $P\left(\sum_{i=1}^{10} X_i^2 > 1.44\right) = P\left(\frac{1}{0.09} \sum_{i=1}^{10} X_i^2 > \frac{1.44}{0.09}\right) = P(Y > 16) = \alpha$

故 16 是 χ^2 (10) 的右侧分位数,查 χ^2 (10) 分布表得 $\alpha = 0.1$: $P\left\{\sum_{i=1}^{10} X_i^2 > 1.44\right\} = 0.1$

2.设总体 X 服从 $(0,\theta)$ 上的均匀分布, $\theta>0$ 是未知参数, $X_1,...X_n$ 是总体 X 的一组样本,记 $X_{(1)} = \min\{X_1,...,X_n\}$ 和 $X_{(n)} = \max\{X_1,...,X_n\}$ 分别是 $X_1,...X_n$ 的最小顺序统计量和最大顺序统计量,求 $X_{(1)}$ 和 $X_{(n)}$ 的概率密度函数 $f_{X_{(1)}}(x)$ 和 $f_{X_{(n)}}(x)$.

解 因总体
$$X$$
 的密度函数和分布函数分别为 $f(x) = \begin{cases} \frac{1}{\theta}, x \in (0, \theta) \\ 0, 其它 \end{cases}$, $F(x) = \begin{cases} 0, x < 0 \\ \frac{x}{\theta}, 0 \le x < \theta \\ 0, x \ge \theta \end{cases}$

$$\therefore f_{X_{(1)}}(x) = n \left[1 - F(x) \right]^{n-1} f(x) = \begin{cases} \frac{n}{\theta} \left(1 - \frac{x}{\theta} \right)^{n-1}, x \in (0, \theta) \\ 0, & \text{ } \sharp \text{ } \Xi \end{cases}$$

$$f_{X_{(n)}}(x) = n[F(x)]^{n-1} f(x) = \begin{cases} \frac{nx^{n-1}}{\theta^n}, 0 < x < \theta \\ 0, & \text{其它} \end{cases}$$

3.已知 $T \sim t(n)$, 证明 $T^2 \sim F(1,n)$

证明 设 $X \sim N(0,1), Y \sim \chi^2(n)$,且X与Y相互独立,则由t-分布定义知 $T = \frac{X}{\sqrt{Y/n}} \sim t(n)$

又因为
$$X^2 \sim \chi^2(1)$$
并由 F -分布定义知 $T^2 = \frac{X^2}{Y/n} = \frac{X^2/1}{Y/n} \sim F(1,n)$