

SUBSTRATE LAYOUT METHOD AND STRUCTURE FOR REDUCING CROSS TALK OF ADJACENT SIGNALS

Reference to Related Application

5 The present application claims priority from Taiwan Application No. 089126860, entitled "Substrate Layout Method and Structure for Reducing Cross Talk of Adjacent Signals," filed on 15th December 2000.

Background of the Invention

Field of the Invention

10 This invention relates to a substrate layout method and structure of a ball grid array(BGA), and more particularly to a substrate layout method and structure of a ball grid array for reducing cross talk of adjacent signals.

Description of the Related Art

15 To meet the demands of high speed and high performance for IC (Integrated Circuit) products, new package technology such as BGA (Ball Grid Array) is rapidly developed. Concerning the structure of BGA, refer to FIG. 1. FIG. 1 is a cross section of a prior art BGA. As shown in FIG. 1, all signals go from pads 12 on a die 10 to fingers 18 or rings 20 on the substrate 16 through bonding wires 14. The fingers 18 pass signals through vias 24 to solder balls 26 under the substrate 16 by traces 22, and the rings 20 pass signals through vias 24 to a power plane or a ground plane of the substrate 16 by traces 22. The power plane and the ground plane are used for providing a power signal and a ground signal respectively. As the signal frequency increases, cross talk between adjacent signals becomes stronger. In order to avoid cross talk from affecting the transfer quality of critical signals (such as clocks or signals sensitive to noise) cross talk interference must be considered when doing the IC design.

20 Currently, a solution for reducing cross talk is to increase distance of adjacent signals. As shown in FIG. 2a, two temporary traces 30 are added when the IC layout is being processed. After the IC layout is finished, as shown in FIG. 2b, two temporary traces 30 are removed. Thus, a distance between the clock trace 28 and the adjacent normal signal trace 32 is as follows:

CN=TW+2TT

Wherein the TW is the width of a single trace, and the TT is the closest distance of two adjacent traces.

5

Summary of the Invention

The object of the present invention is to provide a substrate layout method and structure for reducing cross talk of adjacent signals. After finishing the IC layout, designers utilize the available temporary traces to effectively avoid cross talk of the adjacent signals without increasing distance between traces or affecting the yield of the IC products.

10

In one embodiment, the substrate layout method for reducing cross talk of two adjacent signals is as follows: First, forming a guard pad between two adjacent signal pads. Second, forming a guard finger between two adjacent signal fingers. Next, forming one bonding wire to connect the guard pad to the ring. Then, forming another bonding wire to connect said ring to the guard finger. Subsequently, forming a guard trace to connect the guard finger to a via at the edge of the substrate, and connecting the guard trace to a short-circuiting place through the via. In the embodiment, the substrate is a ball grid array, and the bonding wires is selected from the group consisting of a power and ground bonding wire. The ring is selected from the group consisting of a power and ground ring. The short-circuiting place is selected from the group consisting of a power and ground plane of the substrate; if there is no power or ground plane, the short-circuiting place is selected from the group consisting of a power and ground solder ball under the substrate.

15

In another embodiment, the substrate layout method for reducing cross talk of two adjacent signals is as follows: First, forming a guard finger between two adjacent signal fingers. Second, forming a bonding wire to connect a ring to the guard finger. Next, forming a guard trace to connect the guard finger to a via at the edge of the substrate and connecting the guard trace to a short-circuiting place through the via. In the embodiment, the substrate is a ball grid array, and the bonding wire is selected from the group consisting of a power and ground bonding wire. The ring is selected from the group consisting of a power and ground ring. The short-circuiting place is selected from the

20

25

30

group consisting of a power and ground plane of the substrate; if there is no power or ground plane, the short-circuiting place is selected from the group consisting of a power and ground solder ball under the substrate.

The foregoing is a brief description of some deficiencies in the prior art and advantages of this invention. Other features, advantages and embodiments of the invention will be apparent to those skilled in the art from the following description, accompanying drawings and appended claims.

Brief Description of Drawings

The following detailed description, given by way of examples and not intended to limit the invention to the embodiments described herein, will be best understood in conjunction with the accompanying drawings in which:

FIG. 1 is a cross section of a prior art BGA;

FIG. 2a is a schematic diagram showing states where two temporary traces are added to the IC layout;

FIG. 2b is a schematic diagram showing states where two temporary traces are removed from the IC layout;

FIG. 3a is the first simulation of cross talk influence on rectangular wave signal due to the temporary traces.

FIG. 3b is the second simulation of cross talk influence on rectangular wave signal due to the temporary traces.

FIG. 3c is the third simulation of cross talk influence on rectangular wave signal due to the temporary traces.

FIG. 4a is a schematic diagram of one embodiment in accordance with this invention;

FIG. 4b is a cross section of the substrate having a power plane or a ground plane in FIG. 4a;

FIG. 4c is a cross section of the substrate having neither power plane nor ground plane in FIG. 4a;

FIG. 5 is a flow chart of substrate layout method in FIG. 4a;

FIG. 6 is a schematic diagram of another embodiment in accordance with this invention; and

FIG. 7 is a flow chart of substrate layout method in FIG.6.

Detailed Description of the Invention

From FIG.2a and FIG.2b, when IC layout is being processed, two temporary traces 30 are added to increase distance between the clock trace 28 and the normal signal trace 32 to reduce cross talk between the clock and the normal signal. However, after finishing the IC layout, the two temporary traces 30 are removed and not used anymore. In fact, in view of clock trace 28 the two temporary traces 30 can also be guard traces screening against cross talk between the clock and the normal signal. Thus, the present invention provides a design that utilizes the available temporary traces rather than increasing extra distance to avoid cross talk of the adjacent signals more effectively after the IC layout is finished.

One embodiment of the present invention is described below in connection with FIG. 3a, 3b and 3c. According to the layout of guard traces on a BGA substrate, simulating and finding the best screening design against cross talk, including four conditions: without guard trace, both side of guard trace shorten to ground, only one side of guard trace shorten to ground, and both side of guard trace are open. FIG. 3a is a simulation of cross talk influence on an ideal rectangular wave signal where the rising time is 0 ns due to the temporary traces. FIG. 3b is a simulation of cross talk influence on a rectangular wave signal where the rising time is 0.5 ns due to the temporary traces. FIG. 3c is a simulation of cross talk influence on a rectangular wave signal where the rising time is 1 ns due to the temporary traces. According to the simulation results, when both side of guard trace is shorten to ground, the maximum and average voltage variation of the rectangular wave signal are minimal. Thus, it can provide the best screening performance against cross talk.

Refer to FIG. 4a, 4b and 4c. As shown in FIG. 4a, there are normal signal pad 120, clock pad 121, power pad 122 and ground pad 123 etc. on the die 10 of BGA substrate, wherein power pad 122 and ground pad 123 are formed between normal signal pad 120 and clock pad 121 respectively. There are power ring 201 and ground ring 202 around the die 10. And there are normal signal finger 180, clock finger 181, first guard finger 182

and second guard finger 183 etc. around the ring 20, wherein first guard finger 182 and second guard finger 183 are formed between normal signal finger 180 and clock finger 181 respectively. Normal signal goes from normal signal pad 120 to normal signal finger 180 through normal signal bonding wire 140, and connects to corresponding solder ball 26 through normal signal trace 32. Similar to the transmitting of the normal signal, clock goes from clock pad 121 to clock finger 181 through clock bonding wire 141, and connects to corresponding solder ball 26 through clock trace 28. While the power pad 122 beside the clock pad 121 outputs a power signal to a power ring 201 through the power bonding wire 142, and connects the power ring 201 to the first guard finger 182 through the power bonding wire 142, then connects the first guard finger 182 to the edge of the substrate 16 through the power trace 301. The ground pad 123 beside the clock pad 121 outputs a ground signal to a ground ring 202 through the ground bonding wire 143, and connects the ground ring 202 to the second guard finger 183 through the ground bonding wire 143, then connects the second guard finger 183 to the edge of the substrate 16 through the ground trace 302. Take the power trace 301 for example, when the substrate 16 comprises a power plane 34 or a ground plane 36, as shown in FIG.4b, the power trace 301 connects to the power plane 34 or a ground plane 36 of the substrate 16 through the via 241 at the edge of the substrate 16; if the substrate 16 comprises neither power plane 34 nor ground plane 36, as shown in FIG.4c, the power trace 301 connects to the power solder ball 262 under the substrate 16 through the via 241 at the edge of the substrate 16. Thus, no matter the condition is FIG.4b or FIG.4c, the power trace 301 is a guard trace with both side shorted to ground. Likely, similar to the layout structure of FIG. 4b and FIG. 4c, the ground trace can be a guard trace with both side shorted to ground.

FIG. 5 is a flow chart of substrate layout method in FIG.4a. First in step 500, a guard pad is formed between a normal signal pad 120 and a clock pad 121. The guard pad is selected from the group consisting of a power pad 122 and a ground pad 123. In step 502, a guard finger is formed between a normal signal finger 180 and a clock finger 181. According to the guard pad type, the guard finger is selected from the group consisting of a first guard finger 182 and a second guard finger 183. In step 504, a bonding wire is formed to connect the guard pad to a ring. According to the guard pad type, the bonding wire is selected from the group consisting of a power bonding wire 142 and a ground bonding wire 143, and the ring is selected from the group consisting of a power ring 201

and a ground ring 202. Then in step 506, another bonding wire is formed to connect the ring to the guard finger. Subsequently in step 508, a guard trace is formed to connect the guard finger to a via 24 at the edge of the substrate 16, and connect the guard trace to a short-circuiting place through the via 16. If there is a power plane 34 or a ground plane 36, the short-circuiting place is selected from the group consisting of a power plane 34 and ground plane 36 of the substrate 16; if there is no power plane 34 nor ground plane 36, the short-circuiting place is selected from the group consisting of a power and ground solder ball under the substrate 16.

However, if there is neither power pad 122 nor ground pad 123 between the clock pad 121 and the normal signal pad 120, the layout method of BGA substrate is different from FIG. 4a. Refer to FIG. 6, FIG. 6 is a schematic diagram of another embodiment in accordance with this invention. The difference between FIG. 4a and FIG. 6 is that one side of the clock pad 121 is a normal signal pad 120 rather than a power pad or ground pad. Thus, the normal signal pad 120 directly connects to the normal signal finger 180 through the bonding wire 140, while the power bonding wire 142 for screening against cross talk directly connects the power ring 201 to the first guard finger 182, and then connects the first guard finger 182 to the edge of the substrate 16 through the power trace 301, subsequently connects to the power plane or the ground plane of the substrate 16 through the via 241 at the edge of the substrate 16. If there is neither power plane 34 nor ground plane 36, the power trace 301 connects to a power or ground solder ball under the substrate 16 through the via 241. Thus, the power trace 301 is a guard trace with both side shorted to ground. Consequently, if both side of the clock pad 121 are normal signal pad 120, only processing as the foregoing method can form a guard trace with both side shorted to ground between the clock trace 28 and the normal signal trace 32.

FIG. 7 is a flow chart of substrate layout method in FIG. 6. First in step 700, a guard finger is formed between the normal signal finger 180 and the clock finger 181. The guard finger is selected from the group consisting of a first guard finger 182 and a second guard finger 183. Second in step 702, a bonding wire is formed to connect a ring to the guard finger. The bonding wire is selected from the group consisting of a power bonding wire 142 and a ground bonding wire 143, and the ring is selected from the group consisting of a power ring 201 and a ground ring 202. Then in step 704, a guard trace is formed to connect the guard finger to a via 24 at the edge of the substrate 16 and connect

5

the guard trace to a short-circuiting place through the via 24. If there is a power plane 34 or a ground plane 36, the short-circuiting place is selected from the group consisting of a power plane 34 and ground plane 36 of the substrate 16; if there is neither power plane 34 nor ground plane 36, the short-circuiting place is selected from the group consisting of a power and ground solder ball under the substrate 16.

According to FIG. 4 and FIG. 7, the present invention provides a substrate layout method and structure, not only reducing cross talk on the protected signal (usually the clock) due to adjacent signals, but also reducing cross talk on adjacent signals due to the protected signal.

10

While the invention has been described with reference to various illustrative embodiments, the description is not intended to be construed in a limiting sense. Various modifications of the illustrative embodiments, as well as other embodiments of the invention, will be apparent to those skilled in the art upon reference to this description. It is therefore contemplated that the appended claims will cover any such modifications or embodiments as may fall within the scope of the invention defined by the following claims and their equivalents.

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
23100
23101
23102
23103
23104
23105
23106
23107
23108
23109
23110
23111
23112
23113
23114
23115
23116
23117
23118
23119
23120
23121
23122
23123
23124
23125
23126
23127
23128
23129
23130
23131
23132
23133
23134
23135
23136
23137
23138
23139
23140
23141
23142
23143
23144
23145
23146
23147
23148
23149
23150
23151
23152
23153
23154
23155
23156
23157
23158
23159
23160
23161
23162
23163
23164
23165
23166
23167
23168
23169
23170
23171
23172
23173
23174
23175
23176
23177
23178
23179
23180
23181
23182
23183
23184
23185
23186
23187
23188
23189
23190
23191
23192
23193
23194
23195
23196
23197
23198
23199
23200
23201
23202
23203
23204
23205
23206
23207
23208
23209
23210
23211
23212
23213
23214
23215
23216
23217
23218
23219
23220
23221
23222
23223
23224
23225
23226
23227
23228
23229
23230
23231
23232
23233
23234
23235
23236
23237
23238
23239
23240
23241
23242
23243
23244
23245
23246
23247
23248
23249
23250
23251
23252
23253
23254
23255
23256
23257
23258
23259
23260
23261
23262
23263
23264
23265
23266
23267
23268
23269
23270
23271
23272
23273
23274
23275
23276
23277
23278
23279
23280
23281
23282
23283
23284
23285
23286
23287
23288
23289
23290
23291
23292
23293
23294
23295
23296
23297
23298
23299
23300
23301
23302
23303
23304
23305
23306
23307
23308
23309
23310
23311
23312
23313
23314
23315
23316
23317
23318
23319
23320
23321
23322
23323
23324
23325
23326
23327
23328
23329
23330
23331
23332
23333
23334
23335
23336
23337
23338
23339
23340
23341
23342
23343
23344
23345
23346
23347
23348
23349
23350
23351
23352
23353
23354
23355
23356
23357
23358
23359
23360
23361
23362
23363
23364
23365
23366
23367
23368
23369
23370
23371
23372
23373
23374
23375
23376
23377
23378
23379
23380
23381
23382
23383
23384
23385
23386
23387
23388
23389
23390
23391
23392
23393
23394
23395
23396
23397
23398
23399
23400
23401
23402
23403
23404
23405
23406
23407
23408
23409
23410
23411
23412
23413
23414
23415
23416
23417
23418
23419
23420
23421
23422
23423
23424
23425
23426
23427
23428
23429
23430
23431
23432
23433
23434
23435
23436
23437
23438
23439
23440
23441
23442
23443
23444
23445
23446
23447
23448
23449
23450
23451
23452
23453
23454
23455
23456
23457
23458
23459
23460
23461
23462
23463
23464
23465
23466
23467
23468
23469
23470
23471
23472
23473
23474
23475
23476
23477
23478
23479
23480
23481
23482
23483
23484
23485
23486
23487
23488
23489
23490
23491
23492
23493
23494
23495
23496
23497
23498
23499
23500
23501
23502
23503
23504
23505
23506
23507
23508
23509
23510
23511
23512
23513
23514
23515
23516
23517
23518
23519
23520
23521
23522
23523
23524
23525
23526
23527
23528
23529
23530
23531
23532
23533
23534
23535
23536
23537
23538
23539
23540
23541
23542
23543
23544
23545
23546
23547
23548
23549
23550
23551
23552
23553
23554
23555
23556
23557
23558
23559
23560
23561
23562
23563
23564
23565
23566
23567
23568
23569
23570
23571
23572
23573
23574
23575
23576
23577
23578
23579
23580
23581
23582
23583
23584
23585
23586
23587
23588
23589
23590
23591
23592
23593
23594
23595
23596
23597
23598
23599
23600
23601
23602
23603
23604
23605
23606
23607
23608
23609
23610
23611
23612
23613
23614
23615
23616
23617
23618
23619
23620
23621
23622
23623
23624
23625
23626
23627
23628
23629
23630
23631
23632
23633
23634
23635
23636
23637
23638
23639
23640
23641
23642
23643
23644
23645
23646
23647
23648
23649
23650
23651
23652
23653
23654
23655
23656
23657
23658
23659
23660
23661
23662
23663
23664
23665
23666
23667
23668
23669
23670
23671
23672
23673
23674
23675
23676
23677
23678
23679
23680
23681
23682
23683
23684
23685
23686
23687
23688
23689
23690
23691
23692
23693
23694
23695
23696
23697
23698
23699
23700
23701
23702
23703
23704
23705
23706
23707
23708
23709
23710
23711
23712
23713
23714
23715
23716
23717
23718
23719
23720
23721
23722
23723
23724
23725
23726
23727
23728
23729
23730
23731
23732
23733
23734
23735
23736
23737
23738
23739
23740
23741
23742
23743
23744
23745
23746
23747
23748
23749
23750
23751
23752
23753
23754
23755
23756
23757
23758
23759
23760
23761
23762
23763
23764
23765
23766
23767
23768
23769
23770
23771
23772
23773
23774
23775
23776
23777
23778
23779
23780
23781
23782
23783
23784
23785
23786
23787
23788
23789
23790
23791
23792
23793
23794
23795
23796
23797
23798
23799
23800
23801
23802
23803
23804
23805
23806
23807
23808
23809
23810
23811
23812
23813
23814
23815
23816
23817
23818
23819
23820
23821
23822
23823
23824
23825
23826
23827
23828
23829
23830
23831
23832
23833
23834
23835
23836
23837
23838
23839
23840
23841
23842
23843
23844
23845
23846
23847
23848
23849
23850
23851
23852
23853
23854
23855
23856
23857
23858
23859
23860
23861
23862
23863
23864
23865
23866
23867
23868
23869
23870
23871
23872
23873
23874
23875
23876
23877
23878
23879
23880
23881
23882
23883
23884
23885
23886
23887
23888
23889
23890
23891
23892
23893
23894
23895
23896
23897
23898
23899
23900
23901
23902
23903
23904
23905
23906
23907
23908
23909
23910
23911
23912
23913
23914
23915
23916
23917
23918
23919
23920
23921
23922
23923
23924
23925
23926
23927
23928
23929
23930
23931
23932
23933
23934
23935
23936
23937
23938
23939
23940
23941
23942
23943
23944
23945
23946
23947
23948
23949
23950
23951
23952
23953
23954
23955
23956
23957
23958
23959
23960
23961
23962
23963
23964
23965
23966
23967
23968
23969
23970
23971
23972
23973
23974
23975
23976
23977
23978
23979
23980
23981
23982
23983
23984
23985
23986
23987
23988
23989
23990
23991
23992
23993
23994
23995
23996
23997
23998
23999
239100
239101
239102
239103
239104
239105
239106
239107
239108
239109
239110
239111
239112
239113
239114
239115
239116
239117
239118
239119
239120
239121
239122
239123
239124
239125
239126
239127
239128
239129
239130
239131
239132
239133
239134
239135
239136
239137
239138
239139
239140
239141
239142
239143
239144
239145
239146
239147
239148
239149
239150
239151
239152
239153
239154
239155
239156
239157
239158
239159
239160
239161
239162
239163
239164
239165
239166
239167
239168
239169
239170
239171
239172
239173
239174
239175
239176
239177
239178
239179
239180
239181
239182
239183
239184
239185
239186
239187
239188
239189
239190
239191
239192
239193
239194
239195
239196
239197
239198
239199
239200
239201
239202
239203
239204
239205
239206
239207
239208
239209
239210
239211
239212
239213
239214
239215
239216
239217
239218
239219
239220
239221
239222
239223
239224
239225
239226
239227
239228
239229
239230
239231
239232
239233
239234
239235
239236
239237
239238
239239
239240
239241
239242
239243
239244
239245
239246
239247
239248
239249
239250
239251
239252
239253
239254
239255
239256
239257
239258
239259
239260
239261
239262
239263
239264
239265
239266
239267
239268
239269
239270
239271
239272
239273
239274
239275
239276
239277
239278
239279
239280
239281
239282
239283
239284
239285
239286
239287
239288
239289
239290
239291
239292
239293
239294
239295
239296
239297
239298
239299
239300
239301
239302
239303
239304
239305
239306
239307
239308
239309
239310
239311
239312
239313
239314
239315
239316
239317
239318
239319
239320
239321
239322
239323
239324
239325
239326
239327
239328
239329
239330
239331
239332
239333
239334
239335
239336
239337
239338
239339
239340
239341
239342
239343
239344
239345
239346
239347
239348
239349
239350
239351
239352
239353
239354
239355
239356
239357
239358
239359
239360
239361
239362
239363
239364
239365
239366
239367
239368
239369
239370
239371
239372
239373
239374
239375
239376
239377
239378
239379
239380
239381
239382
239383
239384
239385
239386
239387
239388
239389
239390
239391
239392
239393
239394
239395
239396
239397
239398
239399
239400
239401
239402
239403
239404
239405
239406
239407
239408
239409
239410
239411
239412
239413
239414
239415
239416
239417
239418
239419
239420
239421
239422
239423
239424
239425
239426
239427
239428
239429
239430
239431
239432
239433
239434
239435
239436
239437
239438
239439
239440
239441
239442
239443
239444
239445
239446
239447
239448
239449
239450
239451
239452
239453
239454
239455
239456
239457
239458
239459
239460
239461
239462
239463
239464
239465
239466
239467
239468
239469
239470
239471
239472
239473
239474
239475