Embedded Systems

Time-Triggered Protocol (TTP)

EE4673/5673

by Dr. Maarten Uijt de Haag

So Far

- •
- Time in Embedded Systems
- Fault-Tolerance
- Communication between Nodes
- Controller Area Network (CAN)
- CAN Performance
- Now: Time-Triggered Protocol (TTP)
- •

Reference Material

Many articles on TTP can be found on:

http://www.tttech.com/technology/articles.htm

- Maier, Reinhard et al., "Time-Triggered Architecture: A Consistent Computing Platform"
- The articles include comparison articles

Introduction – History

- Developed at the Vienna University of Technology in Austria
- Hermann Kopetz

Two TTP Variations

TTP/A:

- Automotive Class A = soft real time
- A scaled-down version of TTP
- A cheaper master/slave variant
- Software on existing hardware

TTP/C:

- Automotive Class C = hard real time
- A full version of TTP
- A <u>fault-tolerant distributed variant</u>
- Dedicated hardware + software

TTP System

TTP/A intended to provide the non-critical interface of an Embedded Computer Unit (ECU) with a cluster of smart sensors; the fieldbus.

TTP/A

Master/Slave Configuration - Polling

Master polls slaves for messages and waits for response

TTP/A

Master/Slave Configuration - Polling

Advantage

- Simple protocol to implement
- Historically very popular
- Bounded latency for real-time applications

Disadvantage

- Single point of failure from centralized master
- Polling consumes bandwidth
- Network size is fixed during installation (or master must discover nodes during reconfiguration)

TTP/C

- A time-triggered communication protocol for <u>safety-critical</u> (fault-tolerant) distributed real-time control systems
 - Fault-tolerant Units = redundant nodes
 - Fail-silent nodes
 - Triple-Modular Redundancy (TMR)
 - Replicated communication channels (busses)
- Based on a <u>Time Division Multiple Access</u>
 (TDMA) media access strategy
- Based on <u>clock synchronization</u>

Comparison of TTP/A and TTP/C

Service	TTP/A	TTP/C
Clock synchronization	Central multi-master	Distributed fault-tolerant
Mode switches	Yes	Yes
Communication error detection	Parity	16/24 bit CRC
Membership service	Simple	Full
External Clock Synchronization	Yes	Yes
Time-redundant Transmission	Yes	Yes
Duplex nodes	No	Yes
Duplex channels	No	Yes
Redundancy management	No	Yes
Shadow node	No	Yes

Computational Cluster (TTP/C)

TTP: TTP Controller

CNI: Communications Network Interface

FTU: Fault Tolerant Unit

Consists of multiple hosts or nodes
This node is referred to as the

Smallest Replaceable Unit (SRU)

Hardware Structure of TTP Node

Timer which allows nodes to communicate within their predefined time frame.

BG: Bus Guardian

DPRAM: Dual Ported RAM

Node Configuration

- Communication Network Interface (CNI):
 - Interface between communication controller and the host computer within a node of a distributed system
- DPRAM (Dual Ported RAM):
 - Memory-mapped network interface
 - Used for data-passing between host and TTP controller
- Bus Guardian:
 - Monitors the bus
 - Protects the bus from being monopolized by a faulty node sending at arbitrary points in time ("babbling idiot" failure).
 - Hardware watchdog to ensure "fail silent"

TTP Layers

Performed by the host CPU

	Application Software in Host	Host Layer
FT-COM CNI	Redundancy Management Permanence of Messages	FT-COM Layer
TIPCNI	Communication Services Safety Services Higher Level Services	Protocol Service Layer
	TTP/C Frame Layout Bus Endianess	Data Link Layer
	Bit Synchronization Bit Encoding / Decoding	Physical Layer
Perform	ed by the TTP/C controller	

TTP Layers

TDMA

Each node transmits during a specific time slot

TTP/C Media Access - TDMA

This figure assumes that:

- One Fault-Tolerant Unit (FTU) consists of two nodes: SRU0 and SRU1
- There are two (redundant) busses

Cycles

TDMA Round:

- sequence of the periodic TDMA slots
- each node in the communication system is assigned to one slot (so-called sending slot)

Cluster Cycle:

- recurring sequence of TDMA rounds with possibly different message length and contents
- involves scheduling all possible message and tasks

TTP/C

- Static schedule for all messages in system
 - Order known <u>a priori</u> (at design time)!
 - A completely deterministic TDMA approach
- All tasks synchronized to network TDMA schedule
- The periodic fetch and delivery instances are contained in the message-descriptor list (MEDL)

TTP/C

- Message Descriptor List (MEDL)
 - Every node has its own personal MEDL
 - MEDLs of all nodes must be consistent
 - MEDLs are, in general, generated by a software tool for the whole cluster of nodes
- Globally shared schedule of messages and ordering
 - All nodes know the entire message schedule
 - Only one node is permitted to transmit at a time, and only its predetermined message

TTP/C - MEDL

Message Descriptor List (MEDL)

CDII Time	Address	Attributes			
SRU-Time		D	L	1	Α

Contains the <u>point in global time</u> (with SRU granularity) when the message specified in the address field must be communicated

Contains the <u>address</u> of the memory cell (in the CNI) where the data items must be stored or retrieved from

Message Descriptor List (MEDL)

CDII Timo	A al al ma a a	Attributes			
SRU-Time	Address	D	L	1	A

- D: direction subfield input message or output message
- L: length subfield length of the message to be communicated
- I: initialization subfield initialization message or normal message
- A: additional protective information

Name Mapping

- Unlike CAN the TTP messages do <u>NOT</u> include an identifier
- Name mapping via:
 - Point in time corresponds to a particular piece of information (name)
 - A particular time corresponds to a particular piece of data
 - CNI memory location and the application software in the host
 - A particular address corresponds to a particular piece on information

Example

camera

Example

MEDL in the FTU 1 Nodes

Camera needs gyro information to stabilize

SRU-Time	Address	Attributes			
SKU-TIME		D	L		A
0	0x0000	1	2	N	
200	0x0002	1	2	N	
400	0x0004	0	4	N	
600	0x0008	0	4	N	
Etc.	•••	• • •	• • •	• • •	

In network macroticks

Physical Layer

- TTP is flexible with respect to the transmission medium:
 - ISO11898 CAN Transceiver
 - up to 2 Mbps
 - RS-485
 - up to 10Mbps
 - Electrical 100BaseTx PHY driver & Optical 100BaseFx PHY driver
 - up to 25Mbps

TTP/C Frames

- Two kinds of frames:
 - I-Frames used for initialization
 - Also sent occasionally to permit recovered nodes to resync to cluster
 - C-state is current state of system (time & position in cluster schedule)
 - N-Frames used for normal messages

I-Frame

Header	C-State* (6 bytes)	CRC (24 bits)
--------	--------------------	---------------

Frame – Application Data - Message

Application data:

produced/consumed by the host

Frame:

Bit stream transmitted on the channel

Frame – Application Data – Message Example

Cyclic Redundancy Check (CRC)

CRC Calculation at Sender:

Message on Network

CRC Calculation at Receiver:

Cyclic Redundancy Check

C-State

Header

The TTP/C standard states:

The controller state (C-state) is a collection of state variables which describes the internal state of a TTP/C controller.
 Although the C-state is calculated locally by each controller, it represents a global view of the cluster and must agree with the calculated C-states of the other nodes in a correctly synchronized TTP/C cluster.

Consists of:

- Global time
- Round slot position
- Cluster mode
- Membership information
- Etc.

C-State

Global time

- "The global time of the transmission of the current node slot in node granularity (macroticks), updated at the start of the node slot."

Round slot position

 "The current slot in the cluster cycle (currently processed entry in the static schedule), updated at the start of the node slot"

Cluster mode

 "The current active cluster mode the controller is operating in, updated at the start of the node slot"

Membership information

"Consistent view of the activity of all nodes in the cluster. A node is in the membership after having correctly sent in its last slot. A node is outside the membership, if having not sent or sent incorrectly. The membership is updated after the acknowledgment algorithm is performed."

C-State

Header	C-State* (6 bytes)	CRC (24 bits)
--------	--------------------	---------------

 A C-state disagreement between a node and the majority of the other nodes will mark this node as faulty. Thus the exchange of the C-state between the nodes is one of the basic concepts of TTP/C to support fault detection.

TTP/C

- TTP/C is time-triggered =>
- TDMA causes TTP/C to be deterministic in nature

- @ 1Mbps => 1 bit = 1μ second
- @ 4 bytes data => 1 message takes 1+4+3 = 8 bytes = 64 bits = 64 μ seconds

TTP/C Demonstrator Vehicle (2000)

TTP Layers

Fault-Tolerant-Average (FTA) Algorithm

At every node:

Step 1:

Measure the N time differences between the node's clock and the clocks of all other nodes

Step 2:

Sort the time differences by size

Step 3:

Remove the 'k' largest and 'k' smallest time differences

Step 4:

Remaining N-2k time differences will be within the precision window: take the average to obtain the node's clock correction

- (1) Intentional delay so the error is observable $\,\Delta t_{\rm delay}$ (in MEDL)
- (2) Propagation delay Δt_{prop}

If there were <u>no offset</u> then: $t'_1 - t'_0 = t'_1 - t_0 = t_1 - t_0 + \Delta t_{prop} = \Delta t_{delay} + \Delta t_{prop}$

(3) - Clock difference Δt_{diff}

Node expects: $t'_1 - t_0 = \Delta t_{delay} + \Delta t_{prop}$

But, if there is an <u>offset</u> then: $t'_1 - t'_0 = \Delta t_{delay} + \Delta t_{prop} - \Delta t_{diff}$

Example:

According to Node B's MEDL Node A should transmit its frame in its slot starting at t_0 = 300* with a Δt_{delay} of 10 and Δt_{prop} of 0.

Node B receives the Node A transmission at its frame at t'_1 = 314 (assume Δt_{prop} = 0).

$$t_1 = t_0 + \Delta t_{delay} = 300 + 10 = 310$$

Thus,
$$\Delta t_{diff} = t'_1 - t_1 + \Delta t_{prop} = 314 - 310 + 0 = 4$$

Basic CNI Data Storage

- Status Registers
- Control Register
- Message Registers
 - Received messages and messages to be transmitted

Status Registers:

Current global time in slot granularity

Vector containing a bit for every node in the cluster "1" – Node was operation during its last sending slot "0" – Node was not operation during its last sending slot

part of C-state (Controller-State)

Basic CNI Data Storage

Control Registers:

node may take over the role of another node in the network that has failed

SRU Membership Mechanism

- Membership is updated locally according to a successful or unsuccessful data transmission
- With every transmission, each receiver sees and checks the sender's membership consistency
 - Is sender's membership equal to receiver's membership.
- Every sender with a different membership is assumed to be incorrect.

CRC Calculation at Receiver:

TTP Layers

RM Layer

Tasks include:

- Mode changes
 - a particular node can operate in various modes (i.e take-off, cruise, landing)
- Dynamic redundancy management
 - the replacement of a failed node by a shadow node (standby)
- Reintegration of a repaired node

Redundancy Management

Node #2 may break down, in that case the RM layer of its TTP controller may send a message to activate the shadow node. The reconfiguration register of the shadow node will indicate this role change.

Operating Modes

Base Address

of all MEDLs

- Different operating modes require different message schedules
 - Accelerating vs. cruise might need different information
 - Operation vs. diagnosis need emphasis on different aspects of the vehicle
 - Failure recovery might need access to different message traffic
- TTP solution: use multiple schedules
 - Pre-compute a different MEDL for entry: every possible situation
 - (And invent tool support to make this feasible)

Slot number

message has to be sent or received

TTP Layers

