PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO INSTITUTO DE CIÊNCIAS EXATAS E NATURAIS UNIVERSIDADE FEDERAL DO PARÁ

Tópicos Especiais em Computação: Aprendizado de Máquina

Cap 1: Introdução

Prof. Jefferson Morais Email: jmorais@ufpa.br

- Não existe técnica de AM universal, que se saia melhor em qualquer tipo de problema
- Implica na necessidade de experimentos
- Características do problema e das técnicas pode auxiliar em alguns casos
- Ex: modelo deve ser interpretável ightarrow técnicas simbólicas, dados possuem alta dimensão → SVM, etc
- Mesmo assim diversos algoritmos podem ser candidatos

- Mesmo que um único algoritmo seja escolhido
- □Variações de parâmetros produzem diferentes modelos
- → Domínio de AM: necessidade de experimentação
- Experimentos controlados
- Procedimentos que garantem a corretude e reproducibilidade dos experimentos

Avaliação Modelos Preditivos

- Direferentes aspectos podem ser considerados
- Acurácia do modelo nas previsões
- Compreensibilidade do conhecimento extraído
- Tempo de aprendizado
- ☐ Requisitos de armazenamento
- Etc

Concentraremos discussões a medidas de desempenho preditivo

- Desempenho na rotulação de objetos
- Métricas para classificação
- Taxa de erro
- Acurácia
- Métricas para regressão
- Erro quadrático médio
- Distância absoluta média

Taxa de erro de um classificador f

De classificações incorretas

$$err(f) = (1/n) \sum_{i=1...n} I(y_i \neq f(\mathbf{x}_i))$$

- Proporção de exemplos classificados incorretamente em um conjunto com n objetos
- Comparação da classe conhecida com a predita
- l é função identidade
- 1 se argumento é verdadeiro e 0 em caso contrário
- Varia entre 0 e 1 e valores próximos de 0 são melhores

Taxa de erro de um classificador f

De classificações incorretas

err(f) = (1/n)
$$\sum_{i=1...n} I(y_i \neq f(\mathbf{x}_i))$$

- Proporção de exemplos classificados incorretamente em um conjunto com n objetos
- Comparação da classe conhecida com a predita
- l é função identidade
- 1 se argumento é verdadeiro e 0 em caso contrário
- Varia entre 0 e 1 e valores próximos de 0 são melhores

Métricas para classificação

laxa de acerto ou acurácia de um classificador f

Complemento da taxa de erro

$$ac(f) = 1 - err(f) = (1/n) \sum_{i=1...n} I(y_i = f(x_i))$$

- Proporção de exemplos classificados corretamente em um conjunto com n objetos
- Varia entre 0 e 1 e valores próximos de 1 são melhores

Métricas para classificação

- Matriz de confusão
- □Alternativa para visualizar desempenho de classificador
- Predições corretas e incorretas em cada classe

Métricas para regressão

Erro pode ser calculado pela distância entre o valor conhecido e o valor predito pelo modelo

Erro quadrático médio (Mean Squared Error – MSE)

$$MSE(f) = (1/n) \sum (y_i - f(\mathbf{x}_i))^2$$

Distância absoluta média (Mean Absolute Distance MDA)

$$|\mathsf{MDA}(\mathsf{f}) = (1/\mathsf{n}) \sum |y_i - \mathsf{f}(\mathbf{x}_i)|$$

valores mais baixos correspondem a melhores modelos MSE e MAD são sempre não negativos; *****

- Tem-se usualmente um único conjunto de n objetos
- Deve ser usado para induzir e avaliar o preditor
- Desempenho no conjunto de treinamento é ótimista
- Todos os algoritmos tentam de alguma forma melhorar seu desempenho no conjunto de treinamento na fase indutiva
- Avaliar modelo no conjunto de treinamento é conhecido como resubstiuição
- □ Produz taxa de acerto/erro aparente

Amostragem

- Métodos de amostragem: obter estimativas de desempenho mais confiáveis
- Definindo subconjuntos disjuntos

Treinamento

Dados empregados na indução e no ajuste do modelo

Qualquer ajuste de parâmetros deve ser feito nos dados de treinamento

Teste

Simulam a apresentação de novos exemplos ao preditor (não vistos em sua indução)

Somente avaliar o modelo obtido

Em algumas situações, dados de treinamento são sub-divididos gerando conjunto de <mark>validação</mark> dedicado ao ajuste de parämetros

- Principais métodos de amostragem:
- ☐ Holdout
- Amostragem aleatória
- □ Validação cruzada
- Leave-one-outBootstrap

- Método mais simples:
- □ Divide conjunto de dados em proporção p para treinamento e (p-1) para teste
- Uma única partição
- Valores típicos de p: ½, 2/3 ou ¾

Holdout

Exemplo

2 1	855 854	5142 23155	2708 2716	Safra 95 Safra 95
2 2	854	23155	2716	Safra 95
v	0			
٠	288	16586	2670	670 Safra 95
4	877	16685	2677	2677 Safra 95
5	839	5142	2708	708 Safra 95
6	854	5005	2685	685 Safra 95
7	885	19455	2708	708 Safra 95
8	839	5027	2708	708 Safra 95
9	877	16823	2677	2677 Safra 95
10	892	19180	2716	16 Safra 95
=	24628	39437	381	81 Safra 96
12	43183	39277	328	28 Safra 96
13	27871	39712	389	89 Safra 96
14	42329	40307	328	28 Safra 96
15	41627	40032	335S	Safra 96
16	39399	40322	335	35 Safra 96
17	33677	40375	328	Safra 96
18	33539	40078	335	35 Safra 96
19	34150	40353	358	Safra 96
20	34485	40742	358	Safra 96
	4 6 7 10 11 12 14 15 16 18 20		877 839 854 885 885 887 877 892 24628 43183 27871 42329 41627 41627 39399 33677 33677 33677 334150	877 16685 26 839 5142 27 854 5005 26 885 19455 27 839 5027 27 839 5027 27 839 5027 27 27877 16823 26 892 19180 27 24628 39437 3 27871 39712 3 27871 39712 3 41627 40032 3 39399 40322 3 33677 40375 3 33539 40078 3 34150 40353 3 34485 40742 3

Holdout

Exemplo

11 24628	20 34485	17 33677	12 43183	19 34150	15 41627	18 33539	6 854	1 855	10 892	2 854	8 839	6 854	4 877	Objeto Atributo 1 Atributo 2 Atributo 3 Classe	Conjunto de treinamento
39437	40742	40375	39277	40353	40032	40078	5005	5142	19180	23155	5027	5005	16685	tributo 2 Atr	de treina
381 Safra 96	358 Safra 96	328 Safra 96	328 Safra 96	358 Safra 96	335 Safra 96	335 Safra 96	2685 Safra 95	2708 Safra 95	2716 Safra 95	2716 Safra 95	2708 Safra 95	2685 Safra 95	2677 Safra 95	ibuto 3 Classe	amento

)bjeto Atr	tributo 1	Atributo 2	Atributo 3	Classe
3	885	16586	2670	Safra 95
5	839	5142	2708 Safra	Safra 95
9	877	16823	2677 Safra	Safra 95
3	27871	39712	389	Safra 96
14	42329	40307	328 S	Safra 96
16	39399	40322	335	Safra 96

Holdout

- Indicado para grande quantidade de dados
- Se pequena quantidade de dados
- Poucos exemplos são usados no treinamento
- Modelo pode depender da composição dos conjuntos de treinamento e teste
- Quanto menor conjunto de treinamento, maior a variância do modelo
- Quanto menor conjunto de teste, menos confiável a acurácia estimada para ele
- Muito usado para definir subconjuntos de validação

- Não avalia o quanto o desempenho de uma técnica varia
- Quanto a diferentes combinação de exemplos de treinamento
- E possível que uma divisão deixe no subconjunto de teste exemplos "mais fáceis"
- Para tornar os resultados menos dependentes da partição feita: vários holdout
- Random subsampling (amostragem aleatória)

- Repetições de Holdout
- Há sobreposição entre os conjuntos de teste gerados
- Fornece uma média de desempenho

Método mais usado: r-fold cross validation

- Conjunto é dividido em r partes de tamanho aproximadamente igual
- Objetos de r-1 partes são usados no treinamento e a parte restante é usada para teste
- Procedimento é repetido r vezes usando cada partição para teste
- ⇒ subconjuntos de teste são independentes entre si
- Desempenho é dado por média
- Valor típico de r: 10

Validação cruzada

Variação: r-fold cross validation estratificado

- Manter a distribuição de classes em cada partição
- Ex: se conjunto de dados original tem 20% na classe c, e 80% na classe c₂, cada partição também deve manter essa proporção
- Distribuição de classes: proporção de exemplos em cada classe
- Para cada classe c_j , dist (c_j) = número de exemplos que possuem a classe c_i / número total de exemplos

$$dist(c_j) = \frac{1}{n} \sum_{i=1}^{n} I(y_i = c_j)$$

Ex.: conjunto de dados com 100 exemplos

- 60 são da classe c₁
- 15 são da classe c₂
- 25 são da classe c₃
- 0,25) = (60%, 15%, 25%)A distribuição de classe é dist $(c_1, c_2, c_3) = (0,60, 0,15,$
- A classe c₁ é a classe majoritária ou prevalente
- A classe c₂ é a classe minoritária

		Ohieto	tributo 1 At	rihuto 2 Atı	5	Caseo
П	_xemplo:	4	877 16685 2677S	16685	2677	2677 Safra 95
		9	877	16823	2677	Safra 95
•	<u>7</u>	18	33539	40078	335	Safra 96
	(11	24628	39437	381	Safra 96
		1	855	5142	2708	Safra 95
		ω	885	16586	2670	Safra 95
		14	42329	40307	328	Safra 96
		20	34485	40742	358	Safra 96
		7	885	19455	2708	Safra 95
		10	892	19180	2716	Safra 95
		15	41627	40032	335	Safra 96
		19	34150	40353	358	Safra 96
		9	854	5005	2685	Safra 95
		2	854	23155	2716	Safra 95
		17	33677	40375	328	Safra 96
		12	43183	39277	328	Safra 96
		8	839	5027	2708	Safra 95
		5	839	5142	2708S	Safra 95
		15	41627	40032	335	Safra 96
		16	39399	40322	335S	Safra 96
				00000		1000

Ex.: Iteração 1

Conjunto de treinamento

	ŀ				
Objeto	Atı	ibuto 1	Atributo 1 Atributo 2 Atributo	Atributo	Classe
	_	855	5142	2708	2708 Safra 95
	w	885	16586	2670	2670 Safra 95
	14	42329	40307	328	328 Safra 96
	20	34485	40742	358	358 Safra 96
	7	885	19455	2708	2708 Safra 95
	10	892	19180	2716	2716 Safra 95
	5	41627	40032	335	335 Safra 96
	19	34150	40353	358	358 Safra 96
	6	854	5005	2685	2685 Safra 95
	2	854	23155	2716	2716 Safra 95
	17	33677	40375	328	328 Safra 96
	12	43183	39277	328	328 Safra 96
	8	839	5027	2708	2708 Safra 95
	5	839	5142	2708	2708 Safra 95
	15	41627	40032	335	335 Safra 96
	16	39399	40322	335	335 Safra 96

Objeto	Atr	ibuto 1	Atributo 2	Atributo	Classe
	4	877	16685	2677	Safra 95
	9	877	16823		2677 Safra 95
	8	33539	40078	335	335 Safra 96
	11	24628	39437	381	381 Safra 96

Ex.: Iteração 2

Conjunto de treinamento

																Objeto	
6	15	5	8	12	17	2	6	19	15	10	7	11	8	9	4	At	-
39399	41627	839	839	43183	33677	854	854	34150	41627	892	885	24628	33539	877	877	Atributo 1 At	
40322	40032	5142	5027	39277	40375	23155	5005	40353	40032	19180	19455	39437	40078	16823	16685	Atributo 2 Atributo Classe	
335	335	2708	2708	328	328	2716	2685	358	335	2716	2708	381	335	2677	2677	ributo	
335 Safra 96	335 Safra 96	2708 Safra 95	2708 Safra 95	328 Safra 96	328 Safra 96	2716 Safra 95	2685 Safra 95	Safra 96	335 Safra 96	2716 Safra 95	2708 Safra 95	381 Safra 96	335 Safra 96	2677 Safra 95	2677 Safra 95	Classe	

Objeto	Atril	buto 1	Atributo 2	Atributo	Classe
	1	855	5142	2708	Safra 95
	ω	885	16586		2670 Safra 95
	14	42329	40307		328 Safra 96
	20	34485	40742		358 Safra 96

Ex.: Iteração 3

Conjunto de treinamento

Objeto																
o Atr	4	9	8	11	_	w	14	20	6	2	17	12	8	5	5	
tributo 1 Atri	877	877	33539	24628	855	885	42329	34485	854	854	33677	43183	839	839	41627	
Atributo 1 Atributo 2 Atributo Classe	16685	16823	40078	39437	5142	16586	40307	40742	5005	23155	40375	39277	5027	5142	40032	0
tributo	2677	2677	335	381	2708	2670	328	358	2685	2716	328	328	2708	2708	335	ייי
Classe	2677 Safra 95	2677 Safra 95	335 Safra 96	381 Safra 96	2708 Safra 95	2670 Safra 95	328 Safra 96	358 Safra 96	2685 Safra 95	2716 Safra 95	328 Safra 96	328 Safra 96	2708 Safra 95	2708 Safra 95	335 Safra 96	335 0 25-2 06

Objeto	Atr	ibuto 1 At	ributo 2 At	tributo	Classe	
	7	885	19455	2708	708 Safra 95	
	10	892	19180	2716	2716 Safra 95	
	15	41627	40032	335	335 Safra 96	
	19	34150	40353	358	358 Safra 96	

Ex.: Iteração 4

Conjunto de treinamento

																Objeto
6	15	5	8	19	15	10	7	20	14	ω	_	11	18	9	4	Ai
39399	41627	839	839	34150	41627	892	885	34485	42329	885	855	24628	33539	877	877	Atributo 1 Atributo 2 Atributo Classe
40322	40032	5142	5027	40353	40032	19180	19455	40742	40307	16586	5142	39437	40078	16823	16685	ributo 2 A
335	335	2708	2708	358	335	2716	2708	358	328	2670	2708	381	335	2677	2677	tributo
335 Safra 96	335 Safra 96	2708 Safra 95	2708 Safra 95	358 Safra 96	335 Safra 96	2716 Safra 95	Safra 95	358 Safra 96	328 Safra 96	2670 Safra 95	2708 Safra 95	381 Safra 96	335 Safra 96	2677 Safra 95	2677 Safra 95	Classe

Objeto	Atr	ibuto 1	Atributo 2	\tributo	Classe
	6	854	5005	2685	Safra 95
	2	854	23155	2716	716 Safra 95
	17	33677	40375	328	328 Safra 96
	12	43183	39277	328	Safra 96

Ex.: Iteração 5

Conjunto de treinamento

																	Objeto	
71	ڎ	17	2	6	19	15	10	7	20	14	w	_	11	8	9	4	Atr	
40100	12102	33677	854	854	34150	41627	892	885	34485	42329	885	855	24628	33539	877	877	Atributo 1 Atr	
11760	20277	40375	23155	5005	40353	40032	19180	19455	40742	40307	16586	5142	39437	40078	16823	16685	Atributo 2 Atributo Classe	
320	۵۲	328	2716	2685	358	335	2716	2708	358	328	2670	2708	381	335	2677	2677	ributo	
0C P IIP C 07C	Safra Of	328 Safra 96	2716 Safra 95	2685 Safra 95	358 Safra 96	335 Safra 96	2716 Safra 95	2708 Safra 95	358 Safra 96	328 Safra 96	2670 Safra 95	2708 Safra 95	381 Safra 96	335 Safra 96	2677 Safra 95	2677 Safra 95	Classe	

Objeto	Atr	ibuto 1	Atributo 2	Atributo	Classe
	8	839	5027	2708	Safra 95
	5	839	5142	2708	708 Safra 95
	5	41627	40032	335S	Safra 96
	16	39399	40322	335	335 Safra 96

- Caso extremo de *cross-validation* com *r=n*
- A cada ciclo exatamente um exemplo é separado para testes
- Os n-1 restantes são usados no treinamento
- Desempenho: soma dos desempenhos calculados para cada exemplo
- Produz estimativa mais fiel do desempenho preditivo
- Mas é computacionalmente caro
- Usado para conjuntos de dados pequenos

- Ex.: no caso do nosso exemplo a amostra tem 20 exemplos, então *r=20*
- □Ou seja, cada conjunto de treinamento será formado por 19 exemplos e o conjunto de teste por um único exemplo
- \square Assim, o processo todo será repetido 20 vezes
- E se o conjunto de dados tivesse 500 exemplos?

Validação cruzada

Crítica: uma parte dos dados é partilhada entre os subconjuntos de treinamento

- Baseado em amostragem com reposição
- l r subconjuntos de treinamento s.o amostrados, com reposição
- Um exemplo pode estar presente mais de uma vez em um conjunto de treinamento
- Exemplos não selecionados compõem conjuntos de teste
- Desempenho: média dos desempenhos nos testes
- □ Valor típico para r: 100 ou mais
- E um procedimento custoso aplicado em conjuntos pequenos

Bootstrap

• Ilustração:

- Há vários estimadores bootstrap, mais comum: e₀
- Cada subconjunto de treinamento tem n exemplos
- Cada exemplo tem probabilidade 1 − (1 − 1/n)ⁿ de ser selecionado ao menos uma vez
- Para n grande, tende a 1 1/e = 0,632
- Fração de exemplos não repetidos é de 63,2%
- Exemplos remanescentes formam subconjunto de teste
- Desempenho: média das iterações
- Estimativa estiticamente equivalente a LOO, com menor variancia

- Observações:
- Para médias de desempenho, é importante reportar também os valores de desvio-padrão
- ⊦Alto desvio padrão → alta variabilidade dos resultados
- Indicativo de sensibilidade a variações nos dados de treinamento
- Estimativas mais precisas também podem ser obtidas usando intervalos de confiança

Amostragem

Ex. Seja um dos métodos de amostragem

- r-fold CV, por ser o mais utilizado
- Um indutor A gerará r hipóteses h₁, h₂, ..., h_r
- E cada hipótese terá uma taxa de erro, medida em no iésimo fold
- A média e desvio-padrão do desempenho de A são então dados por (usando medida de erro):

$$med(A) = \frac{1}{r} \sum_{i=1}^{r} er(h_i)$$
 $dp(A) = \sqrt{\frac{1}{r-1} \sum_{i=1}^{r} (er(h_i) - med(A))^2}$

Amostragem

Exemplo:

- Em 10-fold CV, algoritmo A obteve os erros:
- (5,5; 11,40; 12,70; 5,20; 5,90; 11,30; 10,90; 11,20; 4,90; 11,00)
- Temos então:

$$med(A) = \frac{90}{10} = 9$$
 $dp(A) = \sqrt{\frac{1}{9}}90,30 = 3,17$

Classificação binária

- Seja um problema com duas classes: + e -
- Matriz de confusão:

verdadeira -

Classe

VP: verdadeiros positivos

Número de exemplos da classe + classificados corretamente

VN: verdadeiros negativos

Número de exemplos da classe classificados corretamente

FP: falsos positivos

Número de exemplos da classe classificados incorretamente como +

FP: falsos negativos

Número de exemplos da classe + classificados incorretamente como -

Outras medidas calculadas por matriz de confusão:

Taxa de erro na classe + (taxa de falsos negativos):

Proporção de exemplos da classe + incorretamente classificados

$$err+(f) = \frac{FN}{VP+FN}$$

Taxa de erro na classe - (taxa de falsos positivos):

Proporção de exemplos da classe - incorretamente classificados

$$err-(f) = \frac{FP}{VN+FP}$$

Outras medidas calculadas por matriz de confusão:

Taxa de erro total:

Soma da diagonal secundária da matriz / n

$$err(f) = \frac{FP + FN}{n}$$

Taxa de acerto ou acurácia total:

Soma da diagonal principal / n

$$ac(f) = \sqrt{P + \sqrt{N}}$$

Precisão:

preditos como + Proporção de exemplos + classificados corretamente entre os

$$prec(f) = \frac{\sqrt{P}}{\sqrt{P + FP}}$$

Sensibilidade ou revocação:

Taxa de acerto na classe positiva (taxa de verdadeiros positivos)

$$sens(f) = \frac{VP}{VP + FN}$$

Especificidade:

positivos. Taxa de acerto na classe -. Seu complemento é a taxa de falsos

$$esp(f) = VN$$

$$VP FN$$

$$VN + FP$$

$$FP VN$$

Seja um classificador com a seguinte matriz de confusão, definir:

- Acurácia
- Precisão
- Revocação
- Especificidade

Exemplo

Acurácia =
$$\frac{VP + VN}{VP + VN + FP + FN}$$
Precisão =
$$\frac{VP}{VP + FP}$$

Predito

Revocação =
$$\frac{VP}{VP + FN}$$

Exemplo

Generalizando para mais classes

- Para mais que duas classes:
- Considera cada uma + e as demais
- Ex. C1:

C3	C2	C1	
dd	FP	ПP	C1
NI	TN	FN	22
NT	TN	FN	C3

E)	C2	C1	
0	0	49	13
2	47	1	C2
48	3	0	ឩ

	+		
ЧЭ	٦P	+	C1
TN	FN		

	+		
0	49	+	C1
100	1		

$$prec(C1) = 1$$

 $rev(C1) = 0,98$

Generalizando para mais classes

- Para mais que duas classes:
- Ex. C2:

C3	C2	C1	
NI	FN	IN	C1
G	ПP	РP	22
NI	¥	IN	C3

ß	C2	C1	
0	0	49	C1
2	47	1	C2
48	3	0	C3

•	+		
ЬÞ	TP	+	C2
NI	FN		

	+		
3	47	+	C2
97	3		

$$prec(C2) = 0,94$$

 $rev(C2) = 0,94$

Generalizando para mais classes

- Para mais que duas classes:
- Ex. C2:

N	P	IN	CG
FN	ПP	FN	C2
TN	FP	TN	C1
C3	C2	C1	

CS	C2	C1	
0	0	49	13
2	47	1	C2
48	3	0	C3

	+		
Ч	TP	+	C2
NI	FN		

•	+		
3	47	+	C2
97	3		

$$prec(C2) = 0,94$$

 $rev(C2) = 0,94$

Para mais que duas classes:

Ex. C3:

83	22	13	
FN	TN	TN	C1
M	NI	NI	23
Ŧ	Ŧ	Ŧ	ឩ

C3	22	IJ	
0	0	49	CI
2	47	1	C2
48	3	0	ß

	+		
Ч	TP	+	C3
IN	FN		

	+		
ω	48	+	C3
97	2		

$$prec(C3) = 0,94$$

 $rev(C3) = 0,96$

Precisão vs revocação

Precisão e revocação costumam ser discutidas em conjunto, combinadas em uma medida F∶

$$F(f) = \frac{(w + 1) \text{ rev}(f) \text{ prec}(f)}{\text{rev}(f) + w \text{ prec}(f)}$$

- Média harmônica da previsão e revocação
- Usando w = 1 ⇒ mesmo grau de importância para duas medidas ⇒ F1 F1(f) = 2 rev(f) prec(f)rev(f) + prec(f)

Exemplos de Resultado no Weka

Data set: Soybean

1 0.25 0.883 0.	1 0.727 0.739 0.826	1 1 0.913 0.	0.6	ailed
1 0.018 0.012 0.012	013 013 0.0 0.0 0.0	007		racy By
1 0.25 .4 .896 0.88	8 0.7 714 1 85 0.7	1 1 955 0.9	0.6 0.6 1 1 957 1	ass ==
1 0.4 0.57 0.88	727 0.76 0.83 739 0.79 826 0.79	1 1 913 0.933	0.6 1 1 0.97	_
1 0.996 1 1 0.987	1 0.861 0.999 0.991		3	800
cyst-nematode cyst-nematode 2-4-d-injury herbicide-injury Weighted Avg.				

- Receiver Operating Caracteristic
- classificadores baseado em suas performances E uma técnica para visualizar, avaliar, organizar e selecionar
- Para realizar estas análises, gráficos ROC podem mostrar o dos classificadores limiar entre taxas de acertos e alarmes falsos (taxa de erros)
- Gráfico bidimensional plotado em espaço ROC
- Eixo x = taxa de falsos positivos (TFP)
- Eixo y = taxa de verdadeiros positivos (TVP)
- Desempenho de um classificador pode ser plotado nessa
- Equivale a um ponto no espaço ROC

Análise ROC

Ex.: colocar no gráfico ROC os 3 classificadores do exemplo anterior

Classificador 1
TFP =
$$0.3$$

TVP = 0.4

ponto no espaço ROC encontra-se acima e à esquerda do Um classificador é considerado melhor que outro se seu ponto correspondente ao segundo classificador

Análise ROC

Curvas no espaço ROC

- única classe, i. e., + ou -, para cada instância conjunto de regras, são desenvolvidos paraproduzir uma Muitos classificadores, tais como árvores de decisão ou
- Portanto, um classificador discreto gera apenas um ponto no espaço ROC
- Muitos classificadores produzem medidas que permitem ranquear respostas
- NB ou RNA, produzem uma probabilidade ou valor para cada instância instância que representa o grau de representatividade da classe sobre aquela

Curvas no espaço ROC

Evemplo de lima cilirva ROC produzida a partir de 20

	instâr	ncias d	escrit	instâncias descritas na Tabela	abela			710d	σ.	Jar	partir de zc	C	7	
Inst	Classe	Valor	Inst	Classe	Valor	_	0.9							
1	þ	0.9	11	þ	0.4	_	0.8					*		
2	þ	0.8	12	n	0.39	_	0.7							
ಬ	n	0.7	13	р	0.38	itive rate	0.6			•				
4	þ	0.6	14	n	0.37	True pos	0.4	*	,					
Οī	þ	0.55	15	n	0.36	_	0.3	*						
6	þ	0.54	16	n	0.35	_	0.2							
7	n	0.53	17	р	0.34		1							
∞	n	0.52	18	n	0.33		0	0.1	0.2	0.3	0.4 Fals	False positive rate	0.6 erate	0.7
9	р	0.51	19	p	0.30									
10	n	0.505	20	n	0.1									

Curvas no espaço ROC

- Para comparar classificadores é preciso reduzir a curva ROC a um valor escalar
- Método comum: calcular a área abaixo da curva ROC (Area Under ROC curve -UAC)
- Produz valores no intervalo [0,1]
- □ Valores mais próximos de 1 são considerados melhores
- É mais confiável usar média de AUCs
- Em validação cruzada

Area abaixo da curva ROC

Exemplo

Vantagens:

- Realizar medidas de desempenho independentes do limiar incorretas e distribuição das classes de classificação e de custos associados às classificações
- Uso de diferentes limiares representa maior ou menor ênfase à classe positiva
- Permite lidar com desbalanceamento e diferentes custos de classificação

Taxa de erro/acerto é bastante sensível a desbalanceamentos (ex. Conjunto com 90 + e 10 -, taxa de acerto de 0,90 não necessariamente indica bom desempenho preditivo

- Desvantagens:
- □ Análise originalmente limitada a classificação binária