SOLVING AN OPTIMAL BUSINESS LOCATION PROBLEM

EMRE SAYINER

In this project we will be determing the optimal location of a business in a city area by:

 Extracting the necessary data from the Madrid's City Hall and the Foursquare API.

Get the data

Work the data

 Making a segmentation by neighborhood and population characteristics in Madrid (Clustering). Analyzing the results and extracting conclusions based on them.

Extract insights from the data

The data that was used contained information about the nationalities of the inhabitants of each neighborhood and the quantity of people by neighborhood:

Country of P	Total Ciudad Ce	ntro	Arganzuela	Retiro	Salamanca	Chamartin	Tetuán
Rumanía	450360	8150	7540	4800	7530	6800	14680
China	372790	15000	13560	5 640	7550	£20	150000
Ecuador	239530	6470	7410	2650	6190	3800	13950
Ve nezue la	22.3560	15630	9130	6.880	15640	92.30	13 100
Colombia	226180	9980	7170	4830	8030	5510	8220
Marrieda	21,9090	11010	1500	1,840	3220	2800	12920
Italia	203080	30300	12190	8400	18170	10600	11940
Perd	155230	\$630	5210	2530	61.20	4130	965.0
Paraguay	186820	3640	4740	2370	5210	6570	33110
Republica Da	175110	3650	9840	2040	3440	32.20	22,72(1
Honduras	159810	1490	2280	2320	3320	3370	7550

In order to access the Foursquare API data, the raw data had to be transformed this into something useful for the API:

- A second dataframe was created
- The neighborhoods's names were included
- The latitude and longitude values of each neighborhood were added

Neighbor	Latitude	¥	Longitude Z
Centro	4041534	17	-3707371
Argenzuela	404027	13	-3655406
Retiro	4040807	72	-3676729
Salarmanica	ACM	13	- 34-7 77 75
Chamartin	4045333	33	-36775
Tetuán	4(4)(1)	d a	- 37
Chamberí	4043279)2	-3697186
Five no armal-E	4(44.78.6)	1	-370e722
Moncloa-Ara	4043515	51	-3718765
Latina	4,4,024		-3741254
Carabanchel	4038366	9	-3727989
Lisera	4,681,8	16.	-3706876
Puente de V	4039820)4	-3669059
Moretelez	4040486		- 34-4-44-36
Ciudad Linea	404	15	-365

Once the data was obtained, it was possible to draw the neighborhoods on a map:

Then, the nearby venues by neighborhood were extracted along with their frecuencies of occurrence:

VENUES BY NEIGHBORHOOD

Neighborho(N	leighborho(Ne	eighborhod	Venue	Venue Latitu	Venue Longi	Venue Categ
Centro	40415347	-3707371	Plaza Mayor	4,0415E+16	-3,7076E+16	Plaza
Centro	494.75347	-3707371	Mercano de	1,04297+139	1705+46	Market
Centro	40415347	-3707371	La Taberna d	4,0415E+16	-3,7081E+15	Other Nightl
Centro	10415547	-3707371	The Hell Me :	4,04140+18	-3.70738+34	Hotel
Centro	40415347	-3707371	Amorino	4,0416E+15	-3,7084E+16	Ice Cream Sh
Centro	AND THE PERSON	-3707771	Barikin .	2)2/14/15	-3,7003+25	Spenish Resi
Centro	40415347	-3707371	Bar El Cogoll	4,0414E+15	-3,7067E+15	Spanish Rest
Centro	40413347	-3007171	Chombierà	4,041,71+15	-5.70 6 (1+16	Chocolate Ed
Centro	40415347	-3707371	Pinkleton &	4,0415E+15	-3,7091E+16	Wine Bar

VENUES'S FRECUENCIES OF OCCURRANCE:

- ----Arganzuela----
- venue freq
- o Restaurant 0.10
- 1 Spanish Restaurant 0.09
- 2 Tapas Restaurant 0.05
- Bakery 0.05
- 4 Grocery Store 0.05

Finally, a dataframe containing the most common venues by neighborhood was created:

Neighborhood	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue
Arganzuela	Restaurant	Spanish Restaurant	Bakery
Harajas	Hotel	Spanish Restaurant	Restaurant
Carabanchel	Burger Joint	Fast Food Restaurant	Pizza Place
Centro			Flaza
Chamartin	Spanish Restaurant	Restaurant	Pizza Place

After obtaining these data, clusters could be made:

This is a sample of what our final clusters looked like:

Barajas 💌	Neighbor Cluster Labels	¥	1st Most Common Venue	¥	2nd Most Common Venue
3140	Centro	0	Spanish Restaurant		Tapas Restaurant
740	wille de Velle	O	Food		Spanish Beatecoant
1910	Retiro	0	Spanish Restaurant		Supermarket
3370	Outlan Lines	0	Spanish Restaurant		Bunger Johns
570	VicÃilvaro	0	Spanish Restaurant		Breakfast Spot
2550	Chamartar	0	Spanish Restaurant		Restaunant
920	Usera	0	Seafood Restaurant		Bubble Tea Shop
710	Tetulà in	Q	Spanish Restaurant		Brazilian (Bestaunant

Conclusions

 As far as we can see with this data, there are no Mexican populations registered in Madrid. However, in Cluster 1, it is possible to notice that there's a Mexican restaurant located in the "Centro" neighborhood, which is the town center.

- If a deeper exam is performed into this cluster, it is noticeable that its living
 population are mostly Latinos, mixed with some other Europeans, but mainly, the
 people living in this cluster come from south American countries. Apart of this
 fact, other kinds of Latin restaurants can be found, like Argentinian restaurants,
 tapas restaurants, and Italian restaurants. So, it is possible to tell that the
 inhabitants of this area like these kinds of food.
- By following this logic, if we would like to open a new Mexican restaurant in the city or any kind of restaurant in fact, it would only be necessary to find a where are the restaurants similar the one we want to open, study the population in that area, and find similar clusters of population in the city that don't have yet or have very few restaurants like the one we would like to open.
- In this example, clusters 4 and 5 could make a good match for our target population. Looking at the venues in these clusters, it is possible to find one Mexican restaurant, and a good bunch of fast food, Argentinian, and south American restaurants. So, in these clusters, it is possible to state that the existing restaurants matches the population's nationalities and tastes.
- In conclusion and taking into consideration the explanations given above as well as the data, it is highly possible that clusters 4 and five could be a good place to open our Mexican restaurants. As explained above, the same logic could apply to open other kind of restaurant or business in any other area of the city. It is only necessary to examine the existing businesses in our target area, and study the population, then compare these two factors with the same ones in areas where there are existing businesses like the one we want to open, and then verify if the matching is correct.

EMRE SAYINER