COMS 4721: Machine Learning for Data Science

Lecture 5, 1/26/2021

Prof. John Paisley

Department of Electrical Engineering
Columbia University

BAYESIAN LINEAR REGRESSION

Model

Have vector $y \in \mathbb{R}^n$ and covariates matrix $X \in \mathbb{R}^{n \times d}$. The *i*th row of y and X correspond to the *i*th observation (y_i, x_i) .

In a Bayesian setting, we model this data as:

Likelihood:
$$y \sim N(Xw, \sigma^2 I)$$

$$\mathbf{Prior}: \quad w \sim N(0, \lambda^{-1}I)$$

The unknown model variable is $w \in \mathbb{R}^d$.

- ► The "likelihood model" says how well the observed data agrees with w.
- ► The "model prior" is our prior belief (or constraints) on w.

This is called Bayesian linear regression because we have defined a prior on the unknown parameter and will try to learn its posterior.

REVIEW: MAXIMUM A POSTERIORI INFERENCE

MAP solution

MAP inference returns the maximum of the log joint likelihood.

Joint Likelihood:
$$p(y, w|X) = p(y|w, X)p(w)$$

Using Bayes rule, we see that this point also maximizes the *posterior* of w.

$$\begin{split} w_{\text{MAP}} &= & \arg\max_{w} & \ln p(w|y,X) \\ &= & \arg\max_{w} & \ln p(y|w,X) + \ln p(w) - \ln p(y|X) \\ &= & \arg\max_{w} & -\frac{1}{2\sigma^2}(y-Xw)^T(y-Xw) - \frac{\lambda}{2}w^Tw + \text{const.} \end{split}$$

We saw that this solution for W_{MAP} is the same as for ridge regression:

$$w_{\text{MAP}} = (\lambda \sigma^2 I + X^T X)^{-1} X^T y \quad \Leftrightarrow \quad w_{\text{RI}}$$

POINT ESTIMATES VS BAYESIAN INFERENCE

Point estimates

 W_{MAP} and W_{ML} are referred to as *point estimates* of the model parameters.

They find a specific value (point) of the vector *w* that maximizes an objective function — the posterior (MAP) or likelihood (ML).

- ▶ ML: Only considers the data model: p(y|w, X).
- ▶ MAP: Takes into account model prior: p(y, w|X) = p(y|w, X)p(w).

Bayesian inference

Bayesian inference goes one step further by characterizing uncertainty about the values in *w* using Bayes rule.

BAYES RULE AND LINEAR REGRESSION

Posterior calculation

Since w is a continuous-valued random variable in \mathbb{R}^d , Bayes rule says that the *posterior* distribution of w given y and X is

$$p(w|y,X) = \frac{p(y|w,X)p(w)}{\int_{\mathbb{R}^d} p(y|w,X)p(w) dw}$$

That is, we get an updated distribution on w through the transition

$$prior \ \rightarrow \ likelihood \ \rightarrow \ posterior$$

Quote: "The posterior of __ is proportional to the likelihood times the prior."

FULLY BAYESIAN INFERENCE

Bayesian linear regression

In this case, we can update the posterior distribution p(w|y, X) analytically.

We work with the proportionality first:

$$\begin{aligned} p(w|y,X) & \propto & p(y|w,X)p(w) \\ & \propto & \left[e^{-\frac{1}{2\sigma^2}(y-Xw)^T(y-Xw)}\right] \left[e^{-\frac{\lambda}{2}w^Tw}\right] \\ & \propto & e^{-\frac{1}{2}\left\{w^T(\lambda I + \sigma^{-2}X^TX)w - 2\sigma^{-2}w^TX^Ty\right\}} \end{aligned}$$

The \propto sign lets us multiply and divide this by anything as long as it doesn't contain w. We've done this twice above. Therefore the 2nd line \neq 3rd line.

BAYESIAN INFERENCE FOR LINEAR REGRESSION

We need to normalize:

$$p(w|y, X) \propto e^{-\frac{1}{2}\{w^{T}(\lambda I + \sigma^{-2}X^{T}X)w - 2\sigma^{-2}w^{T}X^{T}y\}}$$

There are two key terms in the exponent:

$$\underbrace{w^{T}(\lambda I + \sigma^{-2}X^{T}X)w}_{\text{quadratic in }w} - \underbrace{2w^{T}X^{T}y/\sigma^{2}}_{\text{linear in }w}$$

We can conclude that p(w|y, X) is Gaussian. Why?

- 1. We can multiply and divide by anything not involving w.
- 2. A Gaussian has $(w \mu)^T \Sigma^{-1} (w \mu)$ in the exponent.
- 3. We can "complete the square" by adding terms not involving w.

BAYESIAN INFERENCE FOR LINEAR REGRESSION

Compare: In other words, a Gaussian looks like this:

$$p(w|\mu, \Sigma) = \frac{1}{(2\pi)^{\frac{d}{2}} |\Sigma|^{\frac{1}{2}}} e^{-\frac{1}{2}(w^T \Sigma^{-1} w - 2w^T \Sigma^{-1} \mu + \mu^T \Sigma^{-1} \mu)}$$

and we've shown that, for some setting of Z,

$$p(w|y,X) = \frac{1}{Z}e^{-\frac{1}{2}(w^T(\lambda I + \sigma^{-2}X^TX)w - 2w^TX^Ty/\sigma^2)}$$

Conclude: What happens if in the above Gaussian we define:

$$\Sigma^{-1} = (\lambda I + \sigma^{-2} X^T X), \qquad \mu = (\lambda \sigma^2 I + X^T X)^{-1} X^T y?$$

Using these specific values of μ and Σ we only need to set

$$Z = (2\pi)^{\frac{d}{2}} |\Sigma|^{\frac{1}{2}} e^{\frac{1}{2}\mu^T \Sigma^{-1} \mu}$$

BAYESIAN INFERENCE FOR LINEAR REGRESSION

The posterior distribution

Therefore, the posterior distribution of w is:

$$\begin{split} p(w|y,X) &= N(w|\mu,\Sigma), \\ \Sigma &= (\lambda I + \sigma^{-2}X^TX)^{-1}, \\ \mu &= (\lambda \sigma^2 I + X^TX)^{-1}X^Ty \end{split}$$

Things to notice:

- $\blacktriangleright \mu = w_{\text{MAP}}$
- \triangleright Σ captures uncertainty about w, like $Var[w_{LS}]$ and $Var[w_{RR}]$ did before.
- ► However, now we have a full probability distribution on w.

USES OF THE POSTERIOR DISTRIBUTION

Understanding w

We saw how we could calculate the variance of w_{LS} and w_{RR} . Now we have an entire distribution. Some questions we can ask are:

Q: Is $w_i > 0$ or $w_i < 0$? Can we confidently say $w_i \neq 0$?

A: Use the marginal posterior distribution: $w_i \sim N(\mu_i, \Sigma_{ii})$.

Q: How do w_i and w_j relate?

A: Use their joint marginal posterior distribution:

$$\left[\begin{array}{c} w_i \\ w_j \end{array}\right] \sim N\left(\left[\begin{array}{c} \mu_i \\ \mu_j \end{array}\right], \left[\begin{array}{cc} \Sigma_{ii} & \Sigma_{ij} \\ \Sigma_{ji} & \Sigma_{jj} \end{array}\right]\right)$$

Predicting new data

The posterior p(w|y, X) is perhaps most useful for predicting new data.

Recall: For a new pair (x_0, y_0) with x_0 measured and y_0 unknown, we can predict y_0 using x_0 and the LS or RR (i.e., ML or MAP) solutions:

$$y_0 \approx x_0^T w_{\text{LS}}$$
 or $y_0 \approx x_0^T w_{\text{RR}}$

With Bayes rule, we can make a *probabilistic* statement about y_0 :

$$p(y_0|x_0, y, X) = \int_{\mathbb{R}^d} p(y_0, w|x_0, y, X) dw$$
$$= \int_{\mathbb{R}^d} p(y_0|w, x_0, y, X) p(w|x_0, y, X) dw$$

Notice that conditional independence lets us write

$$p(y_0|w, x_0, y, X) = \underbrace{p(y_0|w, x_0)}_{likelihood}$$
 and $p(w|x_0, y, X) = \underbrace{p(w|y, X)}_{posterior}$

Predictive distribution (intuition)

This is called the *predictive distribution*:

$$p(y_0|x_0, y, X) = \int_{\mathbb{R}^d} \underbrace{p(y_0|x_0, w)}_{likelihood} \underbrace{p(w|y, X)}_{posterior} dw$$

Intuitively:

- 1. Evaluate the likelihood of a value y_0 given x_0 for a particular w.
- 2. Weight that likelihood by our current belief about w given data (y, X).
- 3. Then sum (integrate) over all possible values of w.

We know from the model and Bayes rule that

Model:
$$p(y_0|x_0, w) = N(y_0|x_0^T w, \sigma^2)$$
,
Bayes rule: $p(w|y, X) = N(w|\mu, \Sigma)$.

With μ and Σ calculated on a previous slide.

The predictive distribution can be calculated exactly with these distributions. Again we get a Gaussian distribution:

$$p(y_0|x_0, y, X) = N(y_0|\mu_0, \sigma_0^2),$$

$$\mu_0 = x_0^T \mu,$$

$$\sigma_0^2 = \sigma^2 + x_0^T \Sigma x_0.$$

Notice that the expected value is the MAP prediction since $\mu_0 = x_0^T w_{\text{MAP}}$, but we now quantify our confidence in this prediction with the variance σ_0^2 .

$PRIOR \rightarrow POSTERIOR \rightarrow PRIOR$

Bayesian learning is naturally thought of as a sequential process. That is, the posterior after seeing some data becomes the prior for the next data.

Let y and X be "old data" and y_0 and x_0 be some "new data". By Bayes rule

$$p(w|y_0, x_0, y, X) \propto p(y_0|w, x_0)p(w|y, X).$$

The posterior after (y, X) has become the prior for (y_0, x_0) .

Simple modifications can be made sequentially in this case:

$$\begin{split} p(w|y_0,x_0,y,X) &= N(w|\mu,\Sigma), \\ \Sigma &= (\lambda I + \sigma^{-2}(x_0x_0^T + \sum_{i=1}^n x_ix_i^T))^{-1}, \\ \mu &= (\lambda \sigma^2 I + (x_0x_0^T + \sum_{i=1}^n x_ix_i^T))^{-1}(x_0y_0 + \sum_{i=1}^n x_iy_i). \end{split}$$

INTELLIGENT LEARNING

Notice we could also have written

$$p(w|y_0, x_0, y, X) \propto p(y_0, y|w, X, x_0)p(w)$$

but often we want to use the sequential aspect of inference to help us learn.

Learning w and making predictions for new y_0 is a two-step procedure:

- ▶ Form the predictive distribution $p(y_0|x_0, y, X)$.
- ▶ Update the posterior distribution $p(w|y, X, y_0, x_0)$.

Question: Can we learn p(w|y, X) intelligently?

That is, if we're in the situation where we can pick which y_i to measure with knowledge of $\mathcal{D} = \{x_1, \dots, x_n\}$, can we come up with a good strategy?

An "active learning" strategy

Imagine we already have data (y, X) for $X \subset \mathcal{D}$, and the posterior p(w|y, X). We can construct the predictive distribution for every remaining $x_0 \in \mathcal{D}$.

$$p(y_0|x_0, y, X) = N(y_0|\mu_0, \sigma_0^2),$$

$$\mu_0 = x_0^T \mu,$$

$$\sigma_0^2 = \sigma^2 + x_0^T \Sigma x_0.$$

For each x_0 , σ_0^2 tells how confident we are. This suggests the following:

- 1. Form predictive distribution $p(y_0|x_0, y, X)$ for all unmeasured $x_0 \in \mathcal{D}$
- 2. Pick the x_0 for which σ_0^2 is largest and measure y_0
- 3. Update the posterior p(w|y, X) where $y \leftarrow (y, y_0)$ and $X \leftarrow (X, x_0)$
- 4. Return to #1 using the updated posterior

Entropy (i.e., uncertainty) minimization

When devising a procedure such as this one, it's useful to know what *objective function* is being optimized in the process.

We introduce the concept of the *entropy* of a distribution. Let p(z) be a continuous distribution, then its (differential) entropy is:

$$\mathcal{H}(p) = -\int p(z) \ln p(z) dz.$$

This is a measure of the spread of the distribution. More positive values correspond to a more "uncertain" distribution (larger variance).

The entropy of a multivariate Gaussian is

$$\mathcal{H}(N(w|\mu,\Sigma)) = \frac{1}{2} \ln \left((2\pi e)^d |\Sigma| \right).$$

The entropy of a Gaussian changes with its covariance matrix. With sequential Bayesian learning, the covariance transitions from

$$\begin{array}{ll} \text{Prior}: & (\lambda I + \sigma^{-2}X^TX)^{-1} & \equiv & \Sigma \\ & & \Downarrow \\ \\ \text{Posterior}: & (\lambda I + \sigma^{-2}(x_0x_0^T + X^TX))^{-1} \equiv & (\Sigma^{-1} + \sigma^{-2}x_0x_0^T)^{-1} \end{array}$$

Using the "rank-one update" property of the determinant, we can show that the entropy of the prior \mathcal{H}_{prior} relates to the entropy of the posterior \mathcal{H}_{post} as:

$$\mathcal{H}_{\text{post}} = \mathcal{H}_{\text{prior}} - \frac{d}{2} \ln(1 + \sigma^{-2} x_0^T \Sigma x_0)$$

Therefore, the x_0 that minimizes \mathcal{H}_{post} also maximizes $\sigma^2 + x_0^T \Sigma x_0$. We are minimizing \mathcal{H} myopically, so this is called a "greedy algorithm".

MODEL SELECTION

Selecting λ

We've discussed λ as a "nuisance" parameter that can impact performance.

Bayes rule gives a principled way to do this via evidence maximization:

$$p(w|y,X,\lambda) \ = \ \underbrace{p(y|w,X)}_{likelihood} \underbrace{p(w|\lambda)}_{prior} \ / \ \underbrace{p(y|X,\lambda)}_{evidence}.$$

The "evidence" gives the likelihood of the data with *w* integrated out. It's a measure of how good our model and parameter assumptions are.

Selecting λ

If we want to set λ , we can also do it by maximizing the evidence.¹

$$\hat{\lambda} = \arg \max_{\lambda} \ln p(y|X,\lambda).$$

We notice that this looks exactly like maximum likelihood, and it is:

Type-I ML: Maximize the likelihood over the "main parameter" (w).

Type-II ML: Integrate out "main parameter" (w) and maximize over the "hyperparameter" (λ). Also called *empirical Bayes*.

The difference is only in their perspective.

This approach requires us to solve this integral, but we often can't for more complex models. Cross-validation is an alternative that's always available.

¹We can show that the distribution of y is $p(y|X, \lambda) = N(y|0, \sigma^2 I + \lambda^{-1} X X^T)$. This would require an algorithm to maximize over λ . The key point here is the general technique.