Your Name:_____

Please circle your discussion group (2 pt)

1 Gan Yinliang B416	4 Zhang Jinghao B425	7 Loigen Sodian B416
2 Zhang Junwei B424	5 Xu Hang B419	
3 Ke Wentao B419	6 Huang Nuoer B410	

- You will have one hour for the exam.
- No notes, books or electronics during the exam.
- Do not open this test booklet until a proctor says start.
- For all free response questions, show work that justifies your answer.
- Raise your hand if you have a clarification question.
- Scratch paper is provided. You can ask for more if needed.
- Do not leave early: this disturbs others. If you finish your test early, check your work
 or just relax.
- Quit working when the test ends and hand your test booklet to proctors.

Question	1	2	3	4	5	6	7	8	9	Total
Points	12	10	10	10	12	8	16	10	10	98
Score										

- 1. (12 points, 3 points each) Determine whether the statement is true or false. Circle the right answer.
 - (a) Suppose f is continuous on $[0, \infty)$, and $\lim_{x\to\infty} f(x) = 1$, $\int_0^\infty f(x)dx$ is convergent. (True or False)
 - (b) Midpoint Rule is always more accurate than the trapezoidal rule. (True or False)
 - (c) Since $\int_2^\infty \frac{dx}{\sqrt{x}}$ diverges, and $\frac{1}{\sqrt{x}} < \frac{1}{\sqrt{x-1}}$ for all x > 2, $\int_2^\infty \frac{dx}{\sqrt{x-1}}$ must diverge. (True or False)
 - (d) If f is a positive function and f'' < 0 for $a \le x \le b$, show that $T_n < \int_a^b f(x) dx < M_n$. (True or False)

2. (10 points) Evaluate the following integral

$$\int t \sec^2 6t \ dt$$

3. (10 points) Evaluate the following integral

$$\int \sqrt{33 + 8x - x^2} \, dx$$

4. (10 points) Find the average value of $f(x) = 6x^2 \ln x$ on the interval [1,3].

5. (12 points) Evaluate the following integral

$$\int \frac{\sqrt{(1+\ln x)}}{x \ln x} dx$$

6. (8 points) Write out the form of the partial fraction decomposition of the function. Do not determine the values of the coefficients. (the fractions need to be the most simple forms)

(a)
$$\frac{7x+1}{(x+1)^3(x^2+9)^2}$$

(b)
$$\frac{x^4}{(x^3+x)(x^2-x+3)}$$

7. (16 points) Determine whether the integral is convergent or divergent.

(a)
$$\int_{-\infty}^{20} re^{\frac{r}{4}} dr$$

- □ Convergent
- □ Divergent

(b)
$$\int_{e}^{\infty} \frac{49}{x(\ln x)^3} dx$$

- □ Convergent
 - □ Divergent

(c)
$$\int_{2}^{3} \frac{8}{\sqrt{3-x}} dx$$

- □ Convergent
- □ Divergent

(d)
$$\int_0^3 \frac{1}{x\sqrt{x}} dx$$

- □ Convergent
- □ Divergent

8. (10 points) Evaluate the integral

$$\int \frac{1}{\sec\theta + 1} d\theta$$

9. (10 points) A particle moves on a straight line with velocity function $v(t) = sinwtcos^2wt$. Find its position function s = f(t) if f(0) = 0.