HWZ.

problem 1 (a)
$$\frac{1}{2} \hat{\lambda}_{1,1:0} = \arg \max \sum_{i=1}^{n} \ln p(y_i|\vec{x}) + \sum_{i=1}^{n} \ln p(\lambda_i d) + \ln p(\lambda_i, d) \\
+ \sum_{i=1}^{n} \ln p(x_i, d|\lambda_i d) \\
= \sum_{i=1}^{n} \ln p(y_i|\vec{x}) + \sum_{i=1}^{n} \ln p(\lambda_i d) + \ln p(\lambda_i d) + \infty \\
= \sum_{i=1}^{n} \ln \frac{q^i}{r} (1+2)^{\frac{n}{2}} + \sum_{i=1}^{n} \ln \frac{\lambda_i d}{r} + \sum_{i=1}^{n} \ln \frac{\lambda_i d$$

 $\Rightarrow \hat{\pi} = \frac{\sum \hat{y}_{i}}{n}$ $\Rightarrow \hat{\pi} = \frac{\sum \hat{y}_{i}}{n}$ $\Rightarrow \hat{h} = \frac{\sum \hat{y}_{i}}{n}$

denote: $\lambda y: d = y: \lambda_1, d + (1-y:) \lambda_0 d$. $(\ln(\lambda_0, d) - \lambda_0, d + \ln(\lambda_1, d) - \lambda_1 d + \sum |X:a| \ln(y) \lambda_1 d + (1-y:) \lambda_0 d)$

(ln (No,d) - No,d + ln (N,d) - Nid + El (X:a ln (y) Nid + Cl-y:) Nod)
- cyi(Nid + Cl-yi) Nod) - (nix;d!)

(c)

Problem 3. (a).

(b)

(c). The drawback is Gaussian doesn't have a penalization term as RR in first homonork thus it may overfit

(d)

