$12n_{0812} \ (K12n_{0812})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -8.62027 \times 10^{76} u^{27} + 1.52401 \times 10^{78} u^{26} + \dots + 1.53506 \times 10^{82} b + 5.13581 \times 10^{81}, \\ &1.24052 \times 10^{82} u^{27} + 6.32881 \times 10^{82} u^{26} + \dots + 1.32476 \times 10^{85} a - 4.03731 \times 10^{85}, \\ &u^{28} + 5 u^{27} + \dots - 4802 u + 863 \rangle \\ I_2^u &= \langle 1.13096 \times 10^{16} u^{20} - 6.66784 \times 10^{16} u^{19} + \dots + 3.05068 \times 10^{16} b - 2.79012 \times 10^{16}, \\ &8.06048 \times 10^{16} u^{20} - 5.63230 \times 10^{17} u^{19} + \dots + 3.05068 \times 10^{16} a + 3.72544 \times 10^{17}, \ u^{21} - 7 u^{20} + \dots + 7 u - 1 \\ I_3^u &= \langle b - u + 1, \ a + u, \ u^2 + 1 \rangle \\ I_4^u &= \langle b, \ a - 1, \ u - 1 \rangle \end{split}$$

* 4 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 52 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -8.62 \times 10^{76} u^{27} + 1.52 \times 10^{78} u^{26} + \dots + 1.54 \times 10^{82} b + 5.14 \times 10^{81}, \ 1.24 \times 10^{82} u^{27} + 6.33 \times 10^{82} u^{26} + \dots + 1.32 \times 10^{85} a - 4.04 \times 10^{85}, \ u^{28} + 5u^{27} + \dots - 4802u + 863 \rangle$$

(i) Arc colorings

$$\begin{array}{l} a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \\ a_7 = \begin{pmatrix} 0 \\ u \end{pmatrix} \\ a_5 = \begin{pmatrix} 1 \\ u^2 \end{pmatrix} \\ a_{12} = \begin{pmatrix} -0.000936413u^{27} - 0.00477733u^{26} + \cdots - 8.38766u + 3.04758 \\ 5.61558 \times 10^{-6}u^{27} - 0.0000992801u^{26} + \cdots - 1.45523u - 0.334567 \end{pmatrix} \\ a_3 = \begin{pmatrix} -0.000263039u^{27} - 0.00140121u^{26} + \cdots - 1.03847u + 2.73441 \\ -0.000341879u^{27} - 0.00168333u^{26} + \cdots - 3.68231u + 0.495730 \end{pmatrix} \\ a_2 = \begin{pmatrix} -0.000263039u^{27} - 0.00140121u^{26} + \cdots - 1.03847u + 2.73441 \\ -0.000260254u^{27} - 0.00140121u^{26} + \cdots - 1.03847u + 2.73441 \\ -0.000260254u^{27} - 0.00132797u^{26} + \cdots - 3.49625u + 0.421496 \end{pmatrix} \\ a_1 = \begin{pmatrix} -0.000523293u^{27} - 0.00272919u^{26} + \cdots - 4.53472u + 3.15591 \\ -0.000260254u^{27} - 0.00132797u^{26} + \cdots - 3.49625u + 0.421496 \end{pmatrix} \\ a_8 = \begin{pmatrix} 0.000610060u^{27} + 0.00328680u^{26} + \cdots + 2.78600u - 1.92051 \\ 0.000182108u^{27} + 0.00132797u^{26} + \cdots + 2.73273u - 0.211107 \end{pmatrix} \\ a_9 = \begin{pmatrix} 0.000559019u^{27} + 0.00284931u^{26} + \cdots + 2.73273u - 0.211107 \\ -0.000130430u^{27} - 0.000448498u^{26} + \cdots + 1.08342u - 0.0158707 \end{pmatrix} \\ a_6 = \begin{pmatrix} -0.000175320u^{27} - 0.000448498u^{26} + \cdots + 1.01760u + 1.26490 \\ -0.0000404126u^{27} - 0.000267309u^{26} + \cdots - 0.405692u + 0.352147 \end{pmatrix} \\ a_{11} = \begin{pmatrix} -0.000930798u^{27} - 0.00487661u^{26} + \cdots - 9.84289u + 2.71301 \\ 5.61558 \times 10^{-6}u^{27} - 0.00487661u^{26} + \cdots - 9.84289u + 2.71301 \\ 5.61558 \times 10^{-6}u^{27} - 0.00495664u^{26} + \cdots - 1.45523u - 0.334567 \end{pmatrix} \\ a_{10} = \begin{pmatrix} -0.000726886u^{27} - 0.00405664u^{26} + \cdots - 4.78005u + 1.63403 \\ -0.0000519443u^{27} - 0.000325470u^{26} + \cdots - 4.78005u + 1.63403 \\ -0.0000519443u^{27} - 0.000325470u^{26} + \cdots - 4.78005u + 1.63403 \\ -0.0000519443u^{27} - 0.000325470u^{26} + \cdots - 2.70568u + 0.333453 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $0.00191539u^{27} + 0.00980758u^{26} + \cdots + 12.3575u 10.5692$

Crossings	u-Polynomials at each crossing
c_1	$u^{28} - 4u^{27} + \dots + 167u - 43$
c_2, c_6	$u^{28} + 2u^{27} + \dots + 207872u - 13157$
c_3, c_{11}	$u^{28} - 9u^{27} + \dots + 10968u - 4784$
c_4	$u^{28} - 5u^{27} + \dots + 4802u + 863$
c_5,c_9	$u^{28} + 13u^{26} + \dots - 2972u - 4630$
C ₇	$u^{28} - 3u^{27} + \dots + 56u - 8$
c ₈	$u^{28} + u^{27} + \dots + 9495203u + 439429$
c_{10}	$u^{28} - u^{27} + \dots + 14900u - 3331$
c_{12}	$u^{28} + 4u^{27} + \dots - 100u - 25$

Crossings	Riley Polynomials at each crossing
c_1	$y^{28} - 58y^{27} + \dots - 24449y + 1849$
c_2, c_6	$y^{28} + 60y^{27} + \dots - 31398071702y + 173106649$
c_3,c_{11}	$y^{28} + 37y^{27} + \dots - 349087040y + 22886656$
C ₄	$y^{28} - 21y^{27} + \dots - 7045376y + 744769$
c_5, c_9	$y^{28} + 26y^{27} + \dots + 2260696y + 21436900$
	$y^{28} + 11y^{27} + \dots - 768y + 64$
<i>c</i> ₈	$y^{28} - 85y^{27} + \dots - 41732534261399y + 193097846041$
c_{10}	$y^{28} - 51y^{27} + \dots - 22556382y + 11095561$
c_{12}	$y^{28} - 6y^{27} + \dots - 10150y + 625$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.459433 + 1.004210I		
a = -0.769069 - 0.424094I	-10.03210 - 2.03721I	1.40807 + 1.51569I
b = 2.01354 + 1.09433I		
u = -0.459433 - 1.004210I		
a = -0.769069 + 0.424094I	-10.03210 + 2.03721I	1.40807 - 1.51569I
b = 2.01354 - 1.09433I		
u = 0.273744 + 0.828909I		
a = -0.31857 - 1.39833I	3.25948 + 1.87994I	1.127245 + 0.255189I
b = 0.676810 + 0.678060I		
u = 0.273744 - 0.828909I		
a = -0.31857 + 1.39833I	3.25948 - 1.87994I	1.127245 - 0.255189I
b = 0.676810 - 0.678060I		
u = 0.229511 + 0.822937I		
a = 0.524171 + 0.383309I	0.13617 - 2.17117I	-0.52994 + 4.56699I
b = 0.390248 - 0.173189I		
u = 0.229511 - 0.822937I		
a = 0.524171 - 0.383309I	0.13617 + 2.17117I	-0.52994 - 4.56699I
b = 0.390248 + 0.173189I		
u = 0.822714		
a = 0.146759	-1.55304	-5.27900
b = -0.732140		
u = 0.836672 + 0.864882I		
a = -0.56617 + 1.86096I	1.97057 - 6.52494I	-1.83111 + 8.72203I
b = -0.562756 - 0.399087I		
u = 0.836672 - 0.864882I		
a = -0.56617 - 1.86096I	1.97057 + 6.52494I	-1.83111 - 8.72203I
b = -0.562756 + 0.399087I		
u = -0.480459 + 0.282436I		
a = 1.41640 + 0.49816I	1.51898 - 0.09189I	7.42707 - 0.14730I
b = 0.516137 - 0.268437I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.480459 - 0.282436I		
a = 1.41640 - 0.49816I	1.51898 + 0.09189I	7.42707 + 0.14730I
b = 0.516137 + 0.268437I		
u = -0.43263 + 1.42005I		
a = -0.322046 - 1.165460I	11.60450 + 1.52928I	5.96173 - 5.20161I
b = -0.08622 + 2.09948I		
u = -0.43263 - 1.42005I		
a = -0.322046 + 1.165460I	11.60450 - 1.52928I	5.96173 + 5.20161I
b = -0.08622 - 2.09948I		
u = 1.36989 + 0.62388I		
a = -0.522052 - 0.287024I	-2.93559 - 3.60574I	-2.03784 + 5.31911I
b = -0.856845 + 0.272486I		
u = 1.36989 - 0.62388I		
a = -0.522052 + 0.287024I	-2.93559 + 3.60574I	-2.03784 - 5.31911I
b = -0.856845 - 0.272486I		
u = 0.216176 + 0.152550I		
a = 1.23983 - 1.38812I	-1.34198 - 0.63181I	-7.39383 + 3.55585I
b = -0.694421 - 0.417839I		
u = 0.216176 - 0.152550I		
a = 1.23983 + 1.38812I	-1.34198 + 0.63181I	-7.39383 - 3.55585I
b = -0.694421 + 0.417839I		
u = 1.55762 + 0.81392I		
a = 0.785031 - 0.314648I	2.40615 - 3.22239I	0.05887 + 2.24675I
b = 0.41609 + 1.75558I		
u = 1.55762 - 0.81392I		
a = 0.785031 + 0.314648I	2.40615 + 3.22239I	0.05887 - 2.24675I
b = 0.41609 - 1.75558I		
u = -1.73297 + 0.36682I		
a = 0.207455 - 0.021422I	-3.72120 + 5.07083I	-0.01986 - 3.99214I
b = -0.093173 - 1.202150I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.73297 - 0.36682I		
a = 0.207455 + 0.021422I	-3.72120 - 5.07083I	-0.01986 + 3.99214I
b = -0.093173 + 1.202150I		
u = -1.05080 + 2.14321I		
a = 0.291815 + 0.781957I	14.9730 + 2.7474I	0
b = 1.45524 - 3.34171I		
u = -1.05080 - 2.14321I		
a = 0.291815 - 0.781957I	14.9730 - 2.7474I	0
b = 1.45524 + 3.34171I		
u = -1.85519 + 1.64553I		
a = -0.554886 - 0.593820I	15.8138 + 12.8690I	0
b = -1.69865 + 2.55029I		
u = -1.85519 - 1.64553I		
a = -0.554886 + 0.593820I	15.8138 - 12.8690I	0
b = -1.69865 - 2.55029I		
u = 2.92172		
a = 0.782361	-6.12420	0
b = 2.34197		
u = -2.84436 + 1.35079I		
a = 0.540100 + 0.227911I	14.6001 + 2.0794I	0
b = 2.21908 - 3.05252I		
u = -2.84436 - 1.35079I		
a = 0.540100 - 0.227911I	14.6001 - 2.0794I	0
b = 2.21908 + 3.05252I		

 $II. \\ I_2^u = \langle 1.13 \times 10^{16} u^{20} - 6.67 \times 10^{16} u^{19} + \dots + 3.05 \times 10^{16} b - 2.79 \times 10^{16}, \ 8.06 \times 10^{16} u^{20} - 5.63 \times 10^{17} u^{19} + \dots + 3.05 \times 10^{16} a + 3.73 \times 10^{17}, \ u^{21} - 7u^{20} + \dots + 7u - 1 \rangle$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -2.64219u^{20} + 18.4624u^{19} + \dots + 82.2885u - 12.2118 \\ -0.370723u^{20} + 2.18569u^{19} + \dots - 3.27253u + 0.914589 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 2.45654u^{20} - 16.5538u^{19} + \dots + 46.8691u + 2.84798 \\ -0.218854u^{20} + 1.77628u^{19} + \dots + 6.32405u - 0.684934 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 2.45654u^{20} - 16.5538u^{19} + \dots + 46.8691u + 2.84798 \\ -0.399174u^{20} + 2.83676u^{19} + \dots + 8.36141u - 1.32692 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 2.05736u^{20} - 13.7170u^{19} + \dots - 38.5077u + 1.52106 \\ -0.399174u^{20} + 2.83676u^{19} + \dots + 8.36141u - 1.32692 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0.847229u^{20} - 5.50818u^{19} + \dots - 36.8397u + 10.1554 \\ 0.852360u^{20} - 4.81815u^{19} + \dots - 3.93557u - 0.0851849 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -2.83718u^{20} + 20.1617u^{19} + \dots + 69.2365u - 4.68421 \\ 1.24144u^{20} - 7.58901u^{19} + \dots - 14.9295u + 2.08597 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0.608465u^{20} - 3.20801u^{19} + \dots + 25.3385u - 10.0693 \\ -0.0544761u^{20} + 0.450258u^{19} + \dots + 0.815373u + 0.880016 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -3.01292u^{20} + 20.6481u^{19} + \dots + 79.0160u - 11.2973 \\ -0.370723u^{20} + 2.18569u^{19} + \dots - 3.27253u + 0.914589 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -2.82469u^{20} + 19.6190u^{19} + \dots + 59.2542u - 2.89968 \\ 0.763744u^{20} - 4.65415u^{19} + \dots + 59.2542u - 2.89968 \\ 0.763744u^{20} - 4.65415u^{19} + \dots + 59.2542u - 2.89968 \\ 0.763744u^{20} - 4.65415u^{19} + \dots + 11.7302u + 1.63071 \end{pmatrix}$$

(ii) Obstruction class = 1

(iii) Cusp Shapes =

Crossings	u-Polynomials at each crossing
c_1	$u^{21} - 14u^{20} + \dots - 276u + 29$
c_2	$u^{21} + 4u^{20} + \dots - 9u + 1$
c_3	$u^{21} - u^{20} + \dots - 12u - 2$
c_4	$u^{21} - 7u^{20} + \dots + 7u - 1$
<i>C</i> ₅	$u^{21} - u^{20} + \dots + 12u + 2$
	$u^{21} - 4u^{20} + \dots - 9u - 1$
	$u^{21} + u^{19} + \dots + 40u + 16$
c ₈	$u^{21} - u^{20} + \dots - 210u + 293$
<i>c</i> ₉	$u^{21} + u^{20} + \dots + 12u - 2$
c_{10}	$u^{21} - 5u^{20} + \dots + 3u - 1$
c_{11}	$u^{21} + u^{20} + \dots - 12u + 2$
c_{12}	$u^{21} - 6u^{20} + \dots + 5u - 1$

Crossings	Riley Polynomials at each crossing
c_1	$y^{21} - 40y^{20} + \dots + 15276y - 841$
c_2, c_6	$y^{21} + 2y^{20} + \dots + y - 1$
c_3, c_{11}	$y^{21} + y^{20} + \dots + 20y - 4$
c_4	$y^{21} - 15y^{20} + \dots - 21y - 1$
c_5, c_9	$y^{21} + 17y^{20} + \dots - 12y - 4$
C ₇	$y^{21} + 2y^{20} + \dots - 288y - 256$
c ₈	$y^{21} - 15y^{20} + \dots - 660858y - 85849$
c_{10}	$y^{21} - 21y^{20} + \dots - 15y - 1$
c_{12}	$y^{21} + 8y^{19} + \dots + 13y - 1$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.595417 + 0.714984I		
a = 1.16017 - 2.46835I	2.73077 - 6.13856I	5.46973 + 5.13949I
b = -0.107234 + 0.749883I		
u = 0.595417 - 0.714984I		
a = 1.16017 + 2.46835I	2.73077 + 6.13856I	5.46973 - 5.13949I
b = -0.107234 - 0.749883I		
u = 0.675943 + 0.566498I		
a = -0.855139 - 0.146693I	-2.83225 - 2.16193I	-2.45279 - 0.29746I
b = -1.191560 - 0.086586I		
u = 0.675943 - 0.566498I		
a = -0.855139 + 0.146693I	-2.83225 + 2.16193I	-2.45279 + 0.29746I
b = -1.191560 + 0.086586I		
u = -0.749611 + 0.301572I		
a = -0.976455 + 0.377205I	-10.84280 - 2.10084I	-9.12543 + 2.93256I
b = 1.43585 + 0.70439I		
u = -0.749611 - 0.301572I		
a = -0.976455 - 0.377205I	-10.84280 + 2.10084I	-9.12543 - 2.93256I
b = 1.43585 - 0.70439I		
u = 1.290970 + 0.025247I		
a = 0.522611 + 0.056622I	-2.26631 - 5.66339I	1.20781 + 8.07266I
b = 0.899485 + 0.649626I		
u = 1.290970 - 0.025247I		
a = 0.522611 - 0.056622I	-2.26631 + 5.66339I	1.20781 - 8.07266I
b = 0.899485 - 0.649626I		
u = 0.88794 + 1.11736I		
a = -0.351110 + 1.218340I	1.01172 - 5.35912I	-2.61035 + 4.49568I
b = -0.427353 - 1.060580I		
u = 0.88794 - 1.11736I		
a = -0.351110 - 1.218340I	1.01172 + 5.35912I	-2.61035 - 4.49568I
b = -0.427353 + 1.060580I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.012030 + 0.568575I		
a = -0.14618 - 1.76060I	0.490057 - 0.177120I	-2.36077 + 0.19893I
b = -0.721762 + 0.323260I		
u = 0.012030 - 0.568575I		
a = -0.14618 + 1.76060I	0.490057 + 0.177120I	-2.36077 - 0.19893I
b = -0.721762 - 0.323260I		
u = -1.43446 + 0.38552I		
a = -0.039878 + 0.195657I	-4.44088 + 4.96227I	-12.04870 - 4.19355I
b = -0.472267 - 0.321301I		
u = -1.43446 - 0.38552I		
a = -0.039878 - 0.195657I	-4.44088 - 4.96227I	-12.04870 + 4.19355I
b = -0.472267 + 0.321301I		
u = 1.50701 + 0.33648I		
a = -0.866254 - 0.158557I	-3.97261 - 2.80730I	-6.02581 + 3.31421I
b = -0.676026 + 0.144051I		
u = 1.50701 - 0.33648I		
a = -0.866254 + 0.158557I	-3.97261 + 2.80730I	-6.02581 - 3.31421I
b = -0.676026 - 0.144051I		
u = -0.73848 + 1.41590I		
a = 0.498243 + 1.007080I	10.95750 + 1.10571I	-3.84568 + 1.01862I
b = 0.35528 - 2.25147I		
u = -0.73848 - 1.41590I		
a = 0.498243 - 1.007080I	10.95750 - 1.10571I	-3.84568 - 1.01862I
b = 0.35528 + 2.25147I		
u = 0.113196 + 0.211636I		
a = -0.39824 + 7.94323I	4.17812 + 2.68951I	7.17893 - 2.27785I
b = 0.457617 - 0.638917I		
u = 0.113196 - 0.211636I		
a = -0.39824 - 7.94323I	4.17812 - 2.68951I	7.17893 + 2.27785I
b = 0.457617 + 0.638917I		

	Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u =	2.68010		
a =	0.904455	-6.47598	0
b =	1.89595		

III.
$$I_3^u = \langle b-u+1, \ a+u, \ u^2+1 \rangle$$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u \\ u - 1 \end{pmatrix}$$

$$a_{12} - \begin{pmatrix} u - 1 \\ a_{3} = \begin{pmatrix} -u \\ 2u \end{pmatrix}$$

$$a_2 = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_9 = \begin{pmatrix} -u \\ 2u - 1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} -u \\ 3u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -1 \\ u - 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -1 \\ u \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 0

Crossings	u-Polynomials at each crossing
$c_1, c_4, c_{10} \\ c_{12}$	u^2+1
c_2	$(u-1)^2$
c_3, c_5	$u^2 + 2u + 2$
c_6, c_8	$(u+1)^2$
c ₇	u^2
c_9, c_{11}	$u^2 - 2u + 2$

Crossings	Riley Polynomials at each crossing
c_1, c_4, c_{10} c_{12}	$(y+1)^2$
c_2, c_6, c_8	$(y-1)^2$
c_3, c_5, c_9 c_{11}	$y^2 + 4$
	y^2

	Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u =	1.000000I		
a =	-1.000000I	0	0
b =	-1.00000 + 1.00000I		
u =	-1.000000I		
a =	1.000000I	0	0
b = -1.00000 - 1.00000I			

IV.
$$I_4^u = \langle b, a-1, u-1 \rangle$$

(i) Arc colorings

$$a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 0

Crossings	u-Polynomials at each crossing	
$c_1, c_2, c_4 \\ c_{10}, c_{12}$	u-1	
c_3, c_5, c_7 c_9, c_{11}	u	
c_{6}, c_{8}	u+1	

Crossings	Riley Polynomials at each crossing	
$c_1, c_2, c_4 \\ c_6, c_8, c_{10} \\ c_{12}$	y-1	
c_3, c_5, c_7 c_9, c_{11}	y	

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.00000		
a = 1.00000	0	0
b = 0		

V. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$(u-1)(u^{2}+1)(u^{21}-14u^{20}+\cdots-276u+29)$ $\cdot (u^{28}-4u^{27}+\cdots+167u-43)$
c_2	$((u-1)^3)(u^{21} + 4u^{20} + \dots - 9u + 1)$ $\cdot (u^{28} + 2u^{27} + \dots + 207872u - 13157)$
c_3	$u(u^{2} + 2u + 2)(u^{21} - u^{20} + \dots - 12u - 2)$ $\cdot (u^{28} - 9u^{27} + \dots + 10968u - 4784)$
c_4	$(u-1)(u^{2}+1)(u^{21}-7u^{20}+\cdots+7u-1)(u^{28}-5u^{27}+\cdots+4802u+863)$
c_5	$u(u^{2} + 2u + 2)(u^{21} - u^{20} + \dots + 12u + 2)$ $\cdot (u^{28} + 13u^{26} + \dots - 2972u - 4630)$
c_6	$((u+1)^3)(u^{21} - 4u^{20} + \dots - 9u - 1)$ $\cdot (u^{28} + 2u^{27} + \dots + 207872u - 13157)$
c_7	$u^{3}(u^{21} + u^{19} + \dots + 40u + 16)(u^{28} - 3u^{27} + \dots + 56u - 8)$
c_8	$((u+1)^3)(u^{21} - u^{20} + \dots - 210u + 293)$ $\cdot (u^{28} + u^{27} + \dots + 9495203u + 439429)$
<i>c</i> ₉	$u(u^{2} - 2u + 2)(u^{21} + u^{20} + \dots + 12u - 2)$ $\cdot (u^{28} + 13u^{26} + \dots - 2972u - 4630)$
c_{10}	$(u-1)(u^{2}+1)(u^{21}-5u^{20}+\cdots+3u-1)$ $\cdot (u^{28}-u^{27}+\cdots+14900u-3331)$
c_{11}	$u(u^{2} - 2u + 2)(u^{21} + u^{20} + \dots - 12u + 2)$ $\cdot (u^{28} - 9u^{27} + \dots + 10968u - 4784)$
c_{12}	$(u-1)(u^{2}+1)(u^{21}-6u^{20}+\cdots+5u-1)(u^{28}+4u^{27}+\cdots-100u-25)$ 24

VI. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$(y-1)(y+1)^{2}(y^{21} - 40y^{20} + \dots + 15276y - 841)$ $\cdot (y^{28} - 58y^{27} + \dots - 24449y + 1849)$
c_2, c_6	$((y-1)^3)(y^{21} + 2y^{20} + \dots + y - 1)$ $\cdot (y^{28} + 60y^{27} + \dots - 31398071702y + 173106649)$
c_3, c_{11}	$y(y^{2} + 4)(y^{21} + y^{20} + \dots + 20y - 4)$ $\cdot (y^{28} + 37y^{27} + \dots - 349087040y + 22886656)$
c_4	$(y-1)(y+1)^{2}(y^{21}-15y^{20}+\cdots-21y-1)$ $\cdot (y^{28}-21y^{27}+\cdots-7045376y+744769)$
c_5,c_9	$y(y^{2}+4)(y^{21}+17y^{20}+\cdots-12y-4)$ $\cdot (y^{28}+26y^{27}+\cdots+2260696y+21436900)$
c_7	$y^{3}(y^{21} + 2y^{20} + \dots - 288y - 256)(y^{28} + 11y^{27} + \dots - 768y + 64)$
c ₈	$((y-1)^3)(y^{21} - 15y^{20} + \dots - 660858y - 85849)$ $\cdot (y^{28} - 85y^{27} + \dots - 41732534261399y + 193097846041)$
c_{10}	$(y-1)(y+1)^{2}(y^{21}-21y^{20}+\cdots-15y-1)$ $\cdot (y^{28}-51y^{27}+\cdots-22556382y+11095561)$
c_{12}	$(y-1)(y+1)^{2}(y^{21}+8y^{19}+\cdots+13y-1)$ $\cdot (y^{28}-6y^{27}+\cdots-10150y+625)$