

Prof. Lorí Viali, Dr. viali@mat.pucrs.br

http://www.pucrs.br/~viali/

- Organização;
- Resumo;
- Apresentação.

Amostra
ou
População

De Grande Conjuntos de Dados

Dados não

organizados

Dados Brutos

Variavel qualitativa

Defeitos em uma linha de produção

Lascado	Menor	
Desenho	Maior	
Torto	Lascado	
Desenho	Esmalte	
Torto	Esmalte	
Lascado	Lascado	
Torto	Desenho	
Maior	Menor	
Menor	Maior	
Desenho	Torto	
• • • • • • • • • • • • • • • •	••••••	

Dados organizados em uma distribuição de frequências * Variável qualitativa *

Distribuição de frequências

Defeito	Freqüência	%
Desenho	71	14,20
Esmalte	95	19,00
Lascado	97	19,40
Maior	70	14,00
Menor	83	16,60
Torto	57	11,40
Trincado	27	5,40
TOTAL	500	100

Frequências (Tipos)

Freqüências - Representação

Valores	$\mathbf{f_i}$	$\mathbf{F_i}$	fri	fr _i	Fr _i
0	60	60	0,30	30	30
1	50	110	0,25	25	55
2	40	150	0,20	20	75
3	30	180	0,15	15	90
4	10	190	0,05	5	95
5	6	196	0,03	3	98
6	4	200	0,02	2	100
TOTAL	200		1,00	100	

Representação gráfica Diagrama de torta ou pizza (Pie Chart)

Dados Brutos

Variavel discreta

Número de irmãos dos alunos da turma 450 - Estatística - PUCRS - 2002/02

 0
 1
 1
 6
 3
 1
 3
 1
 1
 0

 4
 5
 1
 1
 1
 0
 2
 2
 4
 1

 3
 1
 2
 1
 1
 1
 5
 5
 6

 4
 1
 1
 0
 2
 1
 4
 3
 2
 2

 1
 0
 2
 1
 1
 2
 3
 0
 1
 0

Distribuição de frequências por ponto ou valores

Distribuição de frequências por ponto ou valores da variável: "Número de irmãos dos alunos da 450" disciplina: da turma **Probabilidade** e Estatística PUCRS - 2002/01.

N ⁰ de irmãos	N ⁰ de alunos
0	7
1	21
2	8
3	5
4	4
5	3
6	2
\sum	50

Representação gráfica

* Diagrama de colunas simples *

Diagrama de colunas simples da

variável: Número de irmãos dos

alunos da turma 450 Disciplina:

Estatística, PUCRS - 2002/02

Resumo de uma Distribuição de freqüências por ponto ou valores

Medidas de tendência ou posição central

(A) A média Aritmética

Neste caso, a média a dada por:

$$\overline{x} = \frac{f_1 x_1 + f_2 \cdot x_2 + \dots + f_k \cdot x_k}{f_1 + f_2 + \dots + f_k} = \frac{\sum f_i \cdot x_i}{n}$$

$\mathbf{X_i}$	$\mathbf{f_i}$	$f_i x_i$
0	7	0
1	21	21
2	8	16
3	5	15
4	4	16
5	3	15
6	2	12
$\sum_{i=1}^{n}$	50	95

A média será, então:

$$\overline{x} = \frac{\sum f_{i} \cdot x_{i}}{n} = \frac{95}{50} = 1,90 \text{ irmãos}$$

(B) A Mediana

Como n = 50 é par, tem-se:

$$m_e = \frac{x_{1}/2 + x_{1}/2 + x_{1}/2}{2} = \frac{x_{1}/2 + x_{1}/2 + x_{1}/2 + x_{1}/2}{2} = \frac{x_{1}/2 + x_{1}/2 + x_{1$$

$$= \frac{x25 + x26}{2} = \frac{1+1}{2} = 1 \text{ irmão}$$

$\mathbf{X_i}$	$\mathbf{f_i}$	$\mathbf{F_i}$
0	7	7
1	21	28
2	8 5	28 36
3	5	41
	4	45
4 5 6	4 3 2	48 50
6		50
$\sum_{i=1}^{n}$	50	

Total de dados n = 50 (par)

Metade dos dados n/2 = 25

(C) A Moda

m_o = valor(es) que mais se repete(m)

	-	_
X _i	f_{i}	_
0	7	
1	21	
2	Q	
3	5	
4	4	Pois ele se
5	3	repete mais
6	2	vezes
\sum	50	

Medidas de dispersão ou variabilidade

(A) A Amplitude (h)

$$h = x_{máx} - x_{mín}$$

$$h = 6 - 0 = 6 \text{ irmãos}$$

(B) Odma

Neste caso, o dma será dado por:

$$dma = \frac{f_1|x_1 - \overline{x}| + f_2|x_2 - \overline{x}| + \dots + f_k|x_k - \overline{x}|}{f_1 + f_2 + \dots + f_k} =$$

$$=\frac{\sum f_{i} |x_{i} - \overline{x}|}{n}$$

$\mathbf{X_i}$	$\mathbf{f_i}$	$f_i x_i - \overline{X} $
0	7	7. 0-1,90 =13,30
1	21	21. 1 - 1,90 = 18,90
2	8	8. 2-1,90 =0,80
3	5	5. 3 - 1.90 = 5.50
4	4	4. 4-1,90 =8,40
5	3	3. 5-1,90 =9,30
6	2	2. 6-1.90 =8.20
\sum_{i}	50	64,40

O dma será, então:

dma =
$$\frac{\sum f_{i} |x_{i} - \overline{x}|}{n} = \frac{64,40}{50} = 1,29 \text{ irmãos}$$

(C) A Variância (s²)

Neste caso, a variância será:

$$s^{2} = \frac{f_{1}(x_{1} - \overline{x})^{2} + f_{2}(x_{2} - \overline{x})^{2} + \dots + f_{k}(x_{k} - \overline{x})^{2}}{n} = \frac{\sum f_{i}(x_{i} - \overline{x})^{2}}{n} = \frac{\sum f_{i}(x_{i} - \overline{x})^{2}}{n} = \frac{\sum f_{i}x_{i}^{2}}{n} - \overline{x}^{2}$$

$\mathbf{X_i}$	$\mathbf{f_i}$	$f_i x_i^2$
0	7	$0^2.7 = 0$
1	21	$1^2.21 = 21$
2	8	$2^2.8 = 32$
3	5	$3^2.5 = 45$
4	4	$4^2.4 = 64$
5	3	$5^2.3 = 75$
6	2	$6^2.2 = 72$
\sum	50	299

A variância será, então:

$$s^{2} = \frac{\sum_{i}^{2} f_{i} x_{i}^{2}}{n} - \overline{x}^{2} = \frac{299}{50} - 1,90^{2} = \frac{2,3700}{1} = \frac{2,3700}{1} = \frac{2}{50} = \frac$$

(D) O Desvio Padrão (s)

O desvio padrão será dado por:

$$s = \sqrt{\frac{\sum_{i=1}^{\infty} f_{i} x_{i}^{2}}{n}} - \frac{1}{x^{2}} = \sqrt{2,3700} =$$

$$= 1,5395 \cong 1,54 \text{ irmãos}$$

(E) O Coeficiente de Variação (g)

Dividindo a média pelo desvio padrão, tem-se o coeficiente de variação:

$$g = \frac{1,539480}{1,90} = 81,03 \%$$

Dados Brutos

Variavel continua

Idade (em meses) dos alunos da turma 450 da disciplina: Probabilidade e Estatística PUCRS - 2002/02

276 245 345 240 270 310 368

334 268 288 336 299 236 239 355 330

287 344 300 244 303 248 251 265 246

240 320 308 299 312 324 289 320 264

252 298 315 255 274 264 263 230 303

369 247 266 275 281 230 234

Distribuição de frequências por classes ou intervalos

Distribuição por classes ou intervalos da variável "idade dos alunos da turma 450" da disciplina: Probabilidade e Estatística da PUCRS - 2002/02

Idades	Número de alunos
230 250	12
250 270	9
270 290	8
290 310	7
310 330	6
330 350	5
350 370	3
Total	50

Representação gráfica * Histograma *

Histograma de freqüências da variável "Idade dos alunos da turma 450" de Probabilidade e Estatística da PUCRS - 2002/02

Medidas

Antes de apresentar as medidas, i. é, representantes do é necessário conjunto, estabelecer uma notação para alguns elementos da distribuição.

Simbologia

 x_i = ponto médio da classe;

f_i = freqüência simples da classe;

li_i = limite inferior da classe;

ls_i = limite superior da classe;

h_i = amplitude da classe.

PONTO MÉDIO DA CLASSE

$\mathbf{x_i}$	$\mathbf{f_i}$	$\mathbf{X_i}$
230 250	12	240
250 270	9	260
270 290	8	280
290 310	7	300
310 330	6	320
330 350	5	340
350 370	3	360
\sum	50	

Medidas de tendência ou posição central

MÉDIA DA DISTRIBUIÇÃO

$\mathbf{X_i}$	$\mathbf{f_i}$	f _i . x _i
240	12	2880
260	9	2340
280	8	2240
300	7	2100
320	6	1920
340	5	1700
360	3	1080
\sum	50	14260

A média será:

$$\overline{x} = \frac{\sum f_{i} \cdot x_{i}}{n} = \frac{14260}{50} = 285,20$$
 meses

(B) A Mediana

Neste caso, utilizam-se as frequências acumuladas para identificar a classe mediana, i. é, a que contém o(s) valor(es) central(is)

$\mathbf{X_i}$	$\mathbf{f_i}$	$\mathbf{F_i}$
230 250	12	12
250 270	9	21
270 290	8	29
290 310	7	36
310 330	6	42
330 350	5	47
350 370	3 //	50
$\sum_{i=1}^{n}$	50	

Total de dados n = 50 (par)

Metade dos dados n/2 = 25

Portanto, a classe mediana é a terceira. Assim i = 3. A mediana será obtida através da seguinte expressão:

$$m_e = 1i_i + h_i \begin{bmatrix} \frac{n}{2} - F_{i-1} \\ f_i \end{bmatrix} = 270 + 20 \begin{bmatrix} \frac{50}{2} - 21 \\ 8 \end{bmatrix} =$$

$$= 270 + 20 \left[\frac{\frac{50}{2} - 21}{8} \right] = 270 + 20 \frac{4}{8} = 280 \text{ meses}$$

(C) A Moda

Neste caso é preciso inicialmente apontar a classe modal, i. é, a de maior frequência. Neste exemplo é a primeira com f_i = 12. Assim i = 1.

		<u> </u>	-
i	$\mathbf{X_i}$	$\mathbf{f_i}$	
1	230 250	12	
2	250 270	9	
3	270 290	8	Classe
4	290 310	7	modal, pois
5	310 330	6	$f_i = 12$.
6	330 350	5	
7	350 370	3	
	$\sum_{i=1}^{n}$	50	-

Portanto a moda poderá ser obtida através de uma das seguintes expressões:

Critério de King:

$$m_0 = 1i_i + h_i \left[\frac{f_{i+1}}{f_{i-1} + f_{i+1}} \right] = 230 + 20 \cdot \left[\frac{9}{0+9} \right] =$$

$$= 230 + 20. \left[\frac{9}{9} \right] = 250 \text{ meses}$$

Critério de Czuber:

$$m_{o} = li_{i} + h_{i} \left[\frac{f_{i} - f_{i-1}}{2.f_{i} - (f_{i-1} + f_{i+1})} \right] =$$

$$= 230 + 20 \cdot \left[\frac{12 - 0}{2.12 - (0 + 9)} \right] =$$

$$= 23 \ 0 + 20 \ . \left[\frac{12}{24 - 9} \right] =$$

= 230 + 16 = 246 meses

Medidas de dispersão ou variabilidade

(A) A Amplitude (h)

$$h = x_{m\acute{a}x} - x_{m\acute{i}n}$$

$$h = 370 - 230 = 140 \text{ meses}$$

(B) Odma

Neste caso, o dma será dado por:

$$dma = \frac{f_1|x_1 - \overline{x}| + f_2|x_2 - \overline{x}| + ... + f_k|x_k - \overline{x}|}{f_1 + f_2 + ... + f_k} = \frac{\sum f_i \cdot |x_i - \overline{x}|}{n}$$

$\mathbf{X_{i}}$	$\mathbf{f_i}$	$f_{i} x_{i}-\overline{X} $
240	12	12. 240 - 285,20 = 542,40
260	9	9. 260 - 285,20 = 226,80
280	8	8. 280 - 285,20 = 41,60
300	7	7. 300 - 285,20 = 103,60
320	6	6. 320 - 285,20 = 208,80
340	5	5. 340 - 285,20 = 274,00
360	3	3. 360 - 285,20 = 224,40
\sum	50	1621,60

O dma será, então:

dma =
$$\frac{\sum f_i \cdot |x_i - \overline{x}|}{n} = \frac{1621,60}{50} =$$

= 32,43 meses

(C) A variância (s²)

Neste caso, a variância será:

$$s^{2} = \frac{f_{1}(x_{1} - \overline{x})^{2} + f_{2}(x_{2} - \overline{x})^{2} + \dots + f_{k}(x_{k} - \overline{x})^{2}}{n} = \frac{\sum f_{i}(x_{i} - \overline{x})^{2}}{n} = \frac{\sum f_{i}(x_{i} - \overline{x})^{2}}{n} = \frac{\sum f_{i}x_{i}^{2}}{n} - \overline{x}^{2}$$

$\mathbf{X_i}$	$\mathbf{f_i}$	$f_{i.} x_i^2$
240	12	$12.240^2 = 691200$
260	9	$9.246^2 = 608400$
280	8	$8.280^2 = 627200$
300	7	$7.300^2 = 630000$
320	6	$6.320^2 = 614400$
340	5	$5.340^2 = 578000$
360	3	$3.360^2 = 388800$
\sum	50	4 138 000

A variância será, então:

$$s^{2} = \frac{\sum f_{i} X_{i}^{2}}{n} - \overline{X}^{2} =$$

$$=\frac{4138000}{50}$$
 - 285, 20² =

meses

2

(D) O Desvio Padrão (s)

O desvio padrão será dado por:

$$s = \sqrt{\frac{\sum_{i=1}^{\infty} f_{i} x_{i}^{2}}{n}} - \overline{x}^{2} = \sqrt{1420,96} =$$

$$= 37,6956 \cong 37,70 \text{ meses}$$

(E) O Coeficiente de Variação (g)

Dividindo a média pelo desvio padrão, tem-se o coeficiente de variação:

$$g = \frac{37,695623}{285,20} = 13,22\%$$

Medidas de Assimetria (Distorção)

- 1. Primeiro coeficiente de Pearson;
- 2. Segundo coeficiente de Pearson;
- 3. Coeficiente quartílico;
- 4. Coeficiente do momento.

Primeiro coeficiente de Pearson

 $a_1 = (média - moda) / desvio padrão$

Segundo coeficiente de Pearson

 $a_2 = 3$ (média - mediana) /desvio padrão

Coeficiente quartílico

$$CQA = [(Q_3 - Q_2) - (Q_2 - Q_1)]/(Q_3 - Q_1)$$

Coeficiente do momento

$$a_3 = m_3/s^3$$
, onde $m_3 = \Sigma(X - \overline{X})^3/n$

Coeficiente = 0 (Simétrica)

Coeficiente > 0 (Assimetria positiva)

Coeficiente < 0 (Assimetria negativa)

Medidas de Achatamento ou Curtose

Coeficiente de curtose [kurtosis]

$$a_4 = m_4/s^4$$
, onde $m_4 = \Sigma(X - \overline{X})^4/n$

 $a_4 = 3$ (Mesocúrtica)

 $a_4 > 3$ (Leptocúrtica)

a₄ < 3 (Platocúrtica)

