Problem 1

Let $H = \{1, 5, 9, 13, \dots\}$ be the set of all positive integers in the form 4k + 1.

- **a.** Show that the set H is closed under multiplication.
- **b.** List all numbers in H that are less than 150 and not Hilbert primes.
- **c.** Show that every number in H has a factorization into Hilbert primes.
- d. Show that H does **not** have (a) unique factorization by finding two different factorization(s) of 693 into Hilbert primes.
- e. What is the smallest number in H with two different factorizations into Hilbert primes?
- **a.** Let $a, b \in H$. Then a = 4k + 1 and b = 4j + 1 for some $k, l \in \mathbb{Z}$.

$$a \cdot b$$

$$= (4k+1)(4j+1)$$

$$= 16kj + 4k + 4j + 1$$

$$= 4(4kj + k + j) + 1$$

This is the form of a Hilbert number, thus H is closed under multiplication.

- **b.** Hilbert primes < 150 are $1, 5, 13, \ldots, 149$ or $H_0, H_1, H_2, \ldots H_{37}$. Since they are not primes, each H_i is in the form (4k+1)(4j+1) for some $k, j \in \mathbb{Z}$ such that 4k+1 > 1 and $4j+1 < H_i$. Let $k \leq j$. We can iterate through all possibilities of k and j to find non primes < 150. Doing so, we get 9 such numbers: 25, 45, 65, 81, 85, 105, 117, 125, 145.
- **c**. We will use strong induction.

<u>Base Case:</u> $H_0 = 1$. Since 1 is a Hilbert prime, it factors into itself. Thus, the base case is

Inductive Hypothesis: Assume that H_k has a factorization into Hilbert primes for all n and some k such that $0 \le n < k$. There are two cases for H_{k+1} : either it is a Hilbert prime or it

<u>Case 1:</u> If H_{k+1} is a Hilbert prime. Then $H_{k+1} = H_0 \cdot H_{k+1}$. Thus, it has a factorization into Hilbert primes.

Case 2: If H_{k+1} is not a Hilbert prime, then $H_{k+1} = H_j \cdot H_i$ for some $j, i \in \mathbb{N}$, such that H_j and H_i are not 1 or H_{k+1} . By the inductive hypothesis, H_i and H_i have factorization into Hilbert primes. Thus, H_{k+1} has a factorization into Hilbert primes.

By strong induction, we have shown that for every $a \in H$, H_a factorizes into Hilbert primes.

- **d.** $693 = 3^2 \cdot 7 \cdot 11$. From this we can see that $693 = H_5 \cdot H_8$ and $693 = H_2 \cdot H_{19}$. When we check, we see that H_5, H_2, H_8 , and $H_{19} < 150$ and are not part of the list of non-Hilbert-primes that we found. So, they are Hilbert primes. Thus, 693 has two different factorization into Hilbert primes, meaning that numbers in H do not necessarily have unique factorization.
- e. Let there be $k \in \mathbb{N}$ such that H_k has two different factorizations into Hilbert primes. Since we are looking for the smallest k, we can say $H_k = H_a \cdot H_b$ and $H_k = H_c \cdot H_d$ for some $a, b, c, d \in \mathbb{N}$ such that H_a, H_b, H_c , and H_d are Hilbert primes and distinct. Since $H_k = H_k$, $H_a \cdot H_b$ and $H_c \cdot H_d$ must have the same prime factorization. For them to be different Hilbert factorizations, we must arrange the factors differently. Obviously, H_a or H_b must be greater than 1 or there can't be two factorizations. Furthermore, at least one of H_a and H_b must be non-prime as it would factor to $H_0 \cdot H_k = H_a \cdot H_b$ - not distinct. We can iterate through all the possibilities, setting 693 as a baseline since we already know that that has two Hilbert prime factorizations.

a	b	H_a	H_b	$H_a \cdot H_b$
1	2	5	9	45
1	6	5	25	125
1	8	5	33	165
:	:	:	:	:
2	12	9	49	441
:	:	:	:	:
5	5	21	21	441
:	:	:	:	i i

By doing such, we find that smallest number in H with two different factorizations into Hilbert primes is 441.

Problem 2

Consider the polynomial $p(x) = x^7 + 2x^6 + Ax^5 + Bx^3 + Cx^2 - 4x + 1$ with all integer coefficients. Suppose you learn that A + B + C = 3. Show that p(x) cannot have rational roots.

By the rational root theorem, all roots r of p(x) must be in the form $\frac{s}{t}$ where $s|a_0$ and $t|a_n$. $a_0=a_n=1$. The only integers that divide 1 are 1 and -1. Thus, $\frac{s}{t}=\pm 1$. We are given A+B+C=3. If p(1) or p(-1) are roots, they will equal 1. Let us test both cases.

$$p(1) = 1^7 + 2(1)^6 + A(1)^5 + B(1)^3 + C(1)^2 - 4(1) + 1$$

= 1 + 2 + A + B + C - 4 + 1
= A + B + C

Obviously, $3 \neq 0$, so 1 is not a root.

$$p(-1) = (-1)^7 + 2(-1)^6 + A(-1)^5 + B(-1)^3 + C(-1)^2 - 4(-1) + 1$$

$$= -1 + 2 - A - B + C + 4 + 1$$

$$= -A - B + C + 6$$

$$-A - B + C = 6$$

Adding A + B + C = 3 and -A - B + C = 6 gives $2C = 9 \Rightarrow C = \frac{9}{2}$. However, this is not possible as C is defined as an integer. Thus. -1 is not a root. Therefore, p(x) does not have rational roots.

Problem 3

Compute (412, 600) and find m and n so that 412m + 600n = (412, 600).

We will utilize the extended Euclidean algorithm.

Thus, (412,600) = 4. m = 67 - 150t and n = -46 + 103t for some $t \in \mathbb{Z}$.

Problem 4

Calculate (840, 595, 476).

We will first compute (840, 595) to some d, then compute (d, 476) to get (840, 595, 476).

$$\begin{array}{c|cc} q & r \\ \hline & 840 \\ 1 & 595 \\ 2 & 245 \\ 2 & 105 \\ 2 & 35 \\ 3 & 0 \\ \end{array}$$

Thus, (840, 595) = 35. Now, we will compute (35, 476).

$$\begin{array}{c|cccc} q & r \\ \hline & 476 \\ 13 & 35 \\ 1 & 21 \\ 1 & 14 \\ 1 & 7 \\ 2 & 0 \\ \end{array}$$

Thus, (35, 476) = 7. Therefore, (840, 595, 476) = 7.

Problem 5

Search (on the web, in books, etc.) for an easy-to-state, easy-to-understand conjecture in number theory that has still not been proven. State the conjecture below.

The Erdős–Straus Conjecture, formulated in 1948, states that for all $n \in \mathbb{N}, n \geq 2$, there exists $x, y, z \in \mathbb{N}$ such that

$$\frac{4}{n} = \frac{1}{x} + \frac{1}{y} + \frac{1}{z}$$

That is, the number $\frac{4}{n}$ can be expressed as the sum of three unit fractions. So far, it has been verified up to $n \leq 10^{17}$. Interestingly, it also seems to work when you allow negative unit fractions.