Assoc. Prof. Nelson Uhan

Fall 2016

Quiz - 16 September 2016

Instructions. You have 25 minutes to complete this quiz. You may use your calculator. You may <u>not</u> use any other materials (e.g., notes, homework, books).

Standard	Problems	Score
B1	3ab	
B2	3cd	
C1	1ab	
C2	2ab	

Problem 1. Suppose X is a random variable with cdf

$$F_X(a) = \begin{cases} 0 & \text{if } a < 3, \\ \frac{1}{2}(a-3) & \text{if } 3 \le a < 5, \\ 1 & \text{if } a \ge 5. \end{cases}$$

a. Construct a random variate generator for X. Your solution should be in the form: " $X = \cdots$ where $U \sim \text{Uniform}[0,1]$."

b. Suppose you have access to a function random() that generates random variates of Uniform[0,1]. Briefly describe how you would use your random variate generator in part a to generate random variates of X.

Problem 2. The Markov Butcher Shop sells two types of meat: beef and pork. Customers arrive at the butcher shop and form a single queue. There is one butcher who serves customers from the queue on a first-come-first-served basis.

Based on historical data, 60% of the customers want beef, and 40% of the customers want pork. The interarrival time between customers is modeled by a random variable *G*. The service times for customers who want beef or pork are modeled by random variables *B* and *P*, respectively. The interarrival times and service times are assumed to be independent.

Professor I. M. Wright is consulting for the Markov Butcher Shop, and has started to model the shop as a stochastic process using the algorithmic approach we discussed in class, as follows:

• System events:

$$e_0$$
 = shop opens

 e_1 = customer arrives at shop

 e_2 = customer finishes being served and departs shop

• State variables:

 Q_n = number of customers in the queue after the nth system event

$$A_n = \begin{cases} 0 & \text{if butcher is available} \\ 1 & \text{if butcher is busy} \end{cases}$$
 after the *n*th system event
$$\mathbf{S}_n = (Q_n, A_n)$$

• Subroutine for e_0 :

$$e_0()$$
:
1: $Q_0 \leftarrow 0$
2: $A_0 \leftarrow 0$
3: $C_1 \leftarrow F_G^{-1}(\text{random}())$
4: $C_2 \leftarrow \infty$

The algorithm Simulation is provided below for your reference:

algorithm Simulation:

1:
$$n \leftarrow 0$$
 (initialize system event counter)
 $T_0 \leftarrow 0$ (initialize event epoch)
 $e_0()$ (execute initial system event)
2: $T_{n+1} \leftarrow \min\{C_1, \dots, C_k\}$ (advance time to next pending system event)
 $I \leftarrow \arg\min\{C_1, \dots, C_k\}$ (find index of next system event)
3: $\mathbf{S}_{n+1} \leftarrow \mathbf{S}_n$ (temporarily maintain previous state)
 $C_I \leftarrow \infty$ (event I no longer pending)
4: $e_I()$ (execute system event I)
 $n \leftarrow n+1$ (update event counter)
5: go to line 2

a. Professor Wright has written a subroutine for e_2 below. Annotate Professor Wright's subroutine, explaining what each line does.

```
e_{2}():

1: if \{Q_{n} = 0\} then

2: A_{n+1} \leftarrow 0

3: else

4: Q_{n+1} \leftarrow Q_{n} - 1

5: if \{\text{random}() \leq 0.6\} then

6: C_{2} \leftarrow T_{n+1} + F_{B}^{-1}(\text{random}())

7: else

8: C_{2} \leftarrow T_{n+1} + F_{P}^{-1}(\text{random}())

9: end if

10: end if
```

b. Write a subroutine for e_1 . Annotate your code line-by-line.

Problem 3. Consider a random variable X with pdf

$$f_X(a) = \begin{cases} 0 & \text{if } a < 0, \\ \frac{1}{4\sqrt{a}} & \text{if } 0 \le a \le 4, \\ 0 & \text{if } a > 4. \end{cases}$$

a. What is the cdf F_X of X? Make sure to define $F_X(a)$ for all $a \in (-\infty, \infty)$.

b. The expected value of *X* is $E[X] = \frac{4}{3}$. What is the variance of *X*?

c. What is the maximum value that X can take? Why?

d. For this random variable, which is more likely: a value near 1 or a value near 3? Why?