

UNCLASSIFIED

MAY 6 1979

JUN 03 1998

AEDC-TSR-78-V30
SEPTEMBER 1978

DOC_NUM SER CN
UNC28862-PDC A 1

(1,2)

**ARTIFICIALLY INDUCED TRANSITION RESULTS
FROM A 7-DEG, 14-7-DEG BICONIC, AND 5-DEG CONE
AT MACH 9 IN THE AEDC-VKF TUNNEL F**

A. H. Boudreau
ARO, Inc., AEDC Division
A Sverdrup Corporation Company
von Kármán Gas Dynamics Facility
Arnold Air Force Station, Tennessee

Period Covered: July 13, 1978 - August 16, 1978

Approved for public release; distribution unlimited.

Reviewed by:

ERVIN P. JASKOLSKI, Capt, USAF
Test Director, VKF Division
Directorate of Test Operations

Approved for Publication:
FOR THE COMMANDER

JAMES D. SANDERS, Col, USAF
Director of Test Operations
Deputy for Operations

Prepared for: AEDC/DOTR
Arnold Air Force Station,
Tennessee 37389

and

SAMSO/RSSE
P. O. Box 92960
Worldway Postal Center
Los Angeles, California 90009

UNCLASSIFIED

Property of U. S. Air Force
AEDC
FAC 11743

ARNOLD ENGINEERING DEVELOPMENT CENTER
AIR FORCE SYSTEMS COMMAND
ARNOLD AIR FORCE STATION, TENNESSEE

UNCLASSIFIED

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER AEDC-TSR-78-V30	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) Artificially Induced Transition Results from a 7-Deg, 14-7-Deg Biconic, and 5-Deg Cone at Mach 9 in the AEDC-VKF Tunnel F		5. TYPE OF REPORT & PERIOD COVERED Final Report - July 13, 1978 thru August 16, 1978
7. AUTHOR(S) A. H. Boudreau, ARO, Inc., a Sverdrup Corporation Company		6. PERFORMING ORG. REPORT NUMBER
9. PERFORMING ORGANIZATION NAME AND ADDRESS Arnold Engineering Development Center Air Force Systems Command Arnold Air Force Station, Tennessee 37389		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS Program Element 63311F
11. CONTROLLING OFFICE NAME AND ADDRESS Arnold Engineering Development Center/DOTR Air Force Systems Command Arnold Air Force Station, Tennessee 37389		12. REPORT DATE SEPTEMBER 1978
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)		13. NUMBER OF PAGES 29
		15. SECURITY CLASS. (of this report) Unclassified
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE N/A
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited.		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Boundary Layer Transition Tripping Hypersonic Flow		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) Tests are described which measured the artificially induced transition location on a slightly blunted 7-deg cone. Various distributed roughness and spherical type boundary layer trips were used. The tests were conducted at Mach 9 over a free stream Reynolds number range from $0.5 \times 10^6/\text{ft}$ to $20 \times 10^6/\text{ft}$. Test results are not included in the report.		

UNCLASSIFIED

CONTENTS

	<u>Page</u>
NOMENCLATURE	2
1.0 INTRODUCTION	3
2.0 APPARATUS	
2.1 Wind Tunnel	3
2.2 Model	3
2.3 Instrumentation and Measurement Accuracy	
2.3.1 Test Conditions	4
2.3.2 Model Instrumentation	4
3.0 PROCEDURES	
3.1 Test Procedures	5
3.2 Test Conditions	5
3.3 Data Acquisition and Reduction	6
4.0 DATA UNCERTAINTY	
4.1 Test Conditions	6
4.2 Model Data	7
5.0 DATA PACKAGE PRESENTATION	7
6.0 REFERENCES	8

APPENDIX A

I. ILLUSTRATIONS

Figure

1. AEDC-VKF Tunnel F Plant	10
2. Tunnel F Family of Contoured Nozzles	11
3. Model Installation	12
4. Model Details - Seven Degree Cone	13
5. The 14-7-deg Biconic Model	14
6. The 5-deg Cone Model	15
7. Tunnel F B. L. Rake	16
8. Comparison of Experimental Data and Theory	17

APPENDIX B

I. TABLES

Table

1. S, S/R _N for 7-deg Cone	19
2. S, S/R _N for Biconic Model	20
3. S, S/R _N for 5-deg Cone	21
4. Run Summary	22
5. Trip Description	23

APPENDIX C

SAMPLE TABULATED DATA	25
---------------------------------	----

NOMENCLATURE

ALPHA	Model angle of attack, deg
HO	Total enthalpy of gas, Btu/lbm
λ	Axial model length (Sharp)
λ_b	Axial model length with blunt nose, measured from stagnation point, in.
λ_n	Axial length of nose only, measured from stagnation point, in. (see Fig. 4)
M-INF	Free-stream Mach number
P	Model pressure, psia
P-INF	Free-stream static pressure, psia
P0	Reservoir pressure, psia
POP, PREF	Total pressure behind the normal shock, psia
Q-INF	Free-stream dynamic pressure, psia
Q	Heat-transfer rate, Btu/ $\text{ft}^2\text{-sec}$
Q0, QREF	Stagnation heat-transfer rate on a hemi- sphere cylinder referenced to 0.589-in. radius
R	Gas constant
RB	Model base radius, in.
RE/FT	Free-stream unit Reynolds number, per ft
RN	Model nose radius, in.
S	Surface distance measured from stagnation, in.
ST	Stanton number based on Q0
s_∞	Free-stream entropy
T-INF	Free-stream static temperature, °R
T0	Reservoir temperature, °R
T_w	Model wall temperature, °R
TIME	Test section time, msec
V-INF	Free-stream velocity, ft/sec
ϕ	Model circumferential angle, deg

1.0 INTRODUCTION

The work reported herein was conducted by the Arnold Engineering Development Center (AEDC), Air Force System Command (AFSC), at the request of the Space and Missile Systems Organization (SAMSO/RSSE) under Program Element 63311F. Mr. Elton Thompson of AEDC/DOTR was the project monitor. The results of the test were obtained by ARO, Inc., AEDC Division (a Sverdrup Corporation Company), contract operator of AEDC, AFSC, Arnold Air Force Station, Tennessee, under ARO Project Number V41F-56.

The test were conducted in the Hypervelocity Wind Tunnel (F), von Karman Gas Dynamics Facility (VKF), AEDC from July 13, 1978 through Aug. 16, 1978. The test objective was to measure transition position on various configurations using several types of boundary layer trips. The tests were conducted at a nominal free-stream Mach number of 9 and over a free-stream Reynolds number range from $0.5 \times 10^6/\text{ft}$ to $20 \times 10^6/\text{ft}$. Inquiries for copies of the test data should be directed to AEDC/DOTR, Arnold AFS, Tennessee, 37389. A microfilm record has been retained in the VKF at AEDC.

2.0 APPARATUS

2.1 WIND TUNNEL

The Hypervelocity Wind Tunnel F (Fig. 1) is an arc-driven wind tunnel of the hotshot type (Refs. 1 and 2) and capable of providing Mach numbers from about 7 to 13 over a Reynolds number per ft range from 0.2×10^6 to 50×10^6 . Tests are conducted in a family of three contoured nozzles. The three axisymmetric, contoured nozzles have 25-in., 40-in., and 48-in. exit diameters, which connect to the 54-in.-diam test station and provide a free-jet exhaust (Fig. 2). The test gas for aerodynamic and aerothermodynamic testing is nitrogen. Air is used for combustion tests. The test gas is confined in either a 1.0-cu-ft, 2.5-cu-ft, or a 4.0-cu-ft arc-chamber where it is heated and compressed by an electric arc discharge. The increase in pressure results in a diaphragm rupture with the subsequent flow expansion through the nozzle. Test times are typically from 50 to 200 msec. Shadowgraph, schlieren, and holography coverage is available at the 54-in. diam test station.

This test was conducted using the 40-in.-exit-diam contoured nozzle in the 54-in.-diam test section to obtain a nominal free-stream Mach number of 9. A tunnel installation sketch is presented in Fig. 3. Nitrogen was the test gas. The 4-cu-ft arc chamber was used, and useful test times up to approximately 100 msec were obtained. Because of the relatively short test times, the model wall temperature remained essentially invariant from the initial value of approximately 540°R , thus $T_w/T_0 \approx 0.20$ to 0.38 which approximates the condition of practical interest for re-entry vehicles.

2.2 MODEL

The test articles (existing VKF models) consisted of a 43.753 inch (blunt length) cone illustrated in Fig. 4 to which a 14-deg biconic nose could be added (Fig. 5) and a 5-deg cone illustrated in Fig. 6. Details of gage locations are presented in Tables 1, 2, and 3 of Appendix B. The

nominal surface roughness for all models was 32 microinches. Both distributed roughness and spherical type boundary layer trips were used. Their application to the various models is shown in Table 4 and trip details are given in Table 5 of Appendix B.

A small boundary layer survey rake was attached to the base of the 7-deg model on all runs as shown in Fig. 7. The rake was not used on the 5-deg model.

2.3 INSTRUMENTATION AND MEASUREMENT ACCURACY

2.3.1 Test Conditions

The test section was instrumented with various probes to monitor the tunnel conditions. These probes comprised two hemisphere cylinders instrumented with coaxial heat-transfer gages and two pitot pressures. The probes were mounted at an appropriate distance from the model to eliminate shock interference. In addition, four static pressure transducers were installed at Sta 365 in the 40-inch diam nozzle.

The diameter of the hemisphere cylinder heat probes was selected as the maximum size that would maintain a laminar boundary layer at the shoulder gage locations. This criterion dictated 1/2-in-diam probes at the Mach 9 test condition. The hemisphere cylinders were instrumented with coaxial surface thermocouples to measure the heat transfer rate at the stagnation and shoulder location. The reference stagnation heat transfer rate QREF on a sphere was obtained by inferring the shoulder readings to the stagnation point.

Pressure measurements were obtained using standard AEDC-VKF strain-gage transducers. The free-stream pitot pressure POP was measured with 15-, 100-, or 300-psid transducers featuring a sealed reference port. The nozzle static pressure measurements were obtained with 1- or 15-psid transducers referenced to vacuum or atmosphere, respectively. These pitot and static measurements are used to determine free stream Mach number (see Section 3.2).

Transducer accuracy is defined as a bandwidth which includes 95 percent of the calibration residuals, i.e. 2σ deviations. Based on periodic comparisons with secondary standards, the accuracy of the pressure transducers is estimated to be ± 1 percent of their reading. Likewise, coaxial thermocouple accuracy is estimated to be ± 3 percent of their reading based upon laboratory calibrations and comparison with a working standard.

2.3.2 Model Instrumentation

Model pressures were measured with internally mounted pressure transducers built and installed by AEDC-VKF. For pressures greater than 1 psid, a wafer style semiconductor strain gage transducer with a sealed reference port was used. For pressures less than 1 psid, a similar wafer transducer was used with the reference port at near vacuum pressure. The wafer transducer is nominally 0.56 in. diam by 0.25 in. thick. Application of a differential pressure produces a force on the metal

diaphragm. The diaphragm is instrumented with two semiconductor strain gages which sense the deflection. Based on periodic comparisons with secondary standards, the accuracy of these transducers is estimated to be ± 1 percent of reading.

Coaxial surface thermocouple gages built and installed by AEDC-VKF were used to measure the surface heating rate distributions. The coaxial gage consists of an electrically insulated Chromel® center conductor enclosed in a cylindrical constantan jacket. After assembly and installation in the model, the gage materials are blended together with a jeweler's file. This results in thermal and electrical contact between the two materials in a thin layer at the surface of the gage; i.e., a surface thermocouple. A second result of filing the gage surface is the opportunity for "perfect" contouring of the gage to the model surface, a fact that is important for transition studies since no measurable steps or gaps are introduced by the gages.

In practical measurement applications, the surface thermocouple behaves as a homogeneous, one-dimensional, semi-infinite solid. The instrument provides an electromotive force (E.M.F.) directly proportional to surface temperature which may be related by theory to the incident heat flux. All heat-transfer gages were bench calibrated prior to their installation into the model. Based on periodic comparisons with the working standard, the accuracy of the gage is estimated to be ± 3 percent of reading.

All instrumentation discussed was developed at AEDC specifically for Tunnel F applications. Further description and discussion can be found in Refs. 2, 3, and 4.

3.0 PROCEDURES

3.1 TEST PROCEDURES

The primary test variables were model cone angle, trip configuration, and Reynolds number. Angle-of-attack was held at zero. The miniature boundary layer survey rake was installed at the aft end of the 7-deg cone and biconic model, but not used on the 5-deg cone. The objective of each run was to establish the "effective point" of each trip configuration; i.e. the Reynolds number at which the trip produces fully turbulent flow over the entire model. A complete listing of pertinent variables is presented in the Run Summary (Table 4, Appendix B).

3.2 TEST CONDITIONS

The method of determining the tunnel flow conditions is briefly summarized as follows: instantaneous values of nozzle static pressure and pitot pressure POP are measured, and an instantaneous value of the stagnation heat transfer rate QREF is inferred from a direct measurement of shoulder heat rates on the hemisphere cylinder heat probes. Total enthalpy(H_0) is calculated from POP and QREF and the heat probe radius, using fay-Riddell theory, Ref. 5. The free-stream static pressure is

obtained from the nozzle static pressures in a correlation determined from previous detail tunnel calibrations. The Mach number is calculated from the isentropic relationship using the test section pitot pressure and static pressure.

The centerline pitot pressure on the test model, the Mach number and \dot{H}_0 are then used to calculate the free-stream conditions from isentropic flow equations and the normal shock relationships. The isentropic reservoir conditions are read from tabulated thermodynamic data for nitrogen (Ref. 6) using \dot{H}_0 and s_{∞}/R . The equations for this procedure are contained in Refs. 7 and 8.

Test conditions for this test were

<u>Condition</u>	<u>$\sim M-\text{INF}$</u>	<u>$\sim T_0 \text{ } ^\circ\text{R}$</u>	<u>$\sim (RE/FT \times 10^{-6})$ Range</u>
1	9	1800	18 to 8
2		2000	12 to 5
3		2200	5 to 3
4	↓	2500	3 to 0.5

3.3 DATA ACQUISITION AND REDUCTION

The model data (pressure and heat transfer rate) and the tunnel monitor probe data were recorded on the Tunnel F Transient Data System (TDS). The TDS is capable of scanning the 100 available data channels at preselected rates (normally 100,000 samples/sec). Data for an entire run were stored on the disk unit of a PDP 11/40 Computer which is an integral part of the TDS. The run data plus calibration results and model constants are transmitted to an off line digital computer for final data reduction.

Since Tunnel F operates with a constant volume reservoir with an initial charge density, the reservoir conditions decay with time. As a result, all tunnel conditions and model data results vary with time during the useful data range. Nondimensional values such as $M-\text{INF}$ and model pressure/POP are relatively constant with time. Timewise variations in Reynolds number permit acquisition of data at different Reynolds numbers for the same run.

4.0 DATA UNCERTAINTY

4.1 TEST CONDITIONS

The accuracy of the transducer output (pressure and heat transfer rate) under laboratory conditions was discussed in Section 2.3. The uncertainties of measured data, however, are higher due to the dynamics of the measurements and system errors. The uncertainties in the monitor probe measurements (POP and QO) were estimated considering both the static load calibrations and the repeatability of the test section pitot profiles. The uncertainty in the pressure data (POP) is estimated to be ± 4 percent for a single measurement and ± 3 percent based on an average of two measurements. The heat transfer rate (QO) uncertainty is ± 9 percent based on a single measurement and ± 5 percent based on an average of four measurements. The uncertainty in the Mach number ($M-\text{INF}$) determined from the nozzle static pressure correlation is ± 3 percent.

The accuracy (based on 2σ deviation) of the basic tunnel parameters, POP, Q0 and M-INF (see Section 2.3) was combined by the Taylor series method of error propagation to estimate uncertainties in the other free-stream parameters using Eq. (1).

$$(\Delta F)^2 = \left(\frac{\partial F}{\partial X_1} \Delta X_1 \right)^2 + \left(\frac{\partial F}{\partial X_2} \Delta X_2 \right)^2 + \left(\frac{\partial F}{\partial X_3} \Delta X_3 \right)^2 \dots + \left(\frac{\partial F}{\partial X_n} \Delta X_n \right)^2 \quad (1)$$

where ΔF is the absolute uncertainty in the dependent parameter $F = f(X_1, X_2, X_3, \dots, X_n)$ and X_n are the independent parameters (or basic measurements). ΔX_n are the uncertainties (errors) in the independent measurements (or variables). Representative uncertainties are given below:

UNCERTAINTY \pm , PERCENT

P-INF	T-INF	RE/FT
7	8	11

4.2 MODEL DATA

The uncertainty estimates for the model heat-transfer rate and pressure data are given below in terms of the absolute level measured. The reference heat transfer rate, Q0, uncertainty is ± 5 percent and POP is ± 3 percent. Therefore, the uncertainty of the nondimensional ratio Q/Q0 and P/POP by the Taylor series method of error propagation (Eq. 1) yields the following:

UNCERTAINTY (\pm), PERCENT

Q Range		<u>Q</u>		<u>Q/Q0</u>	
<u>Btu/ft²-sec</u>		9		10	
> 1.0		9		10	
0.2 \rightarrow 1.0		14		15	

P Range		<u>P</u>		<u>P/POP</u>	
<u>psia</u>		4		5	
>0.5		4		5	
<0.5		9		10	

5.0 DATA PACKAGE PRESENTATION

A sample of the test results in the form of tabulated timewise data and computer generated plots is presented in Appendix C. The timewise variation of Reynolds number during a typical Tunnel F run makes it particularly attractive for transition type testing. Sufficient time-points were provided on all runs such that variations in transition location can be observed.

Experimental results are shown in Fig. 8 for the case of run 6010. Comparison of these results with laminar and turbulent theory shows excellent agreement which is considered adequate validation of the data quality.

These data represent an expansion of earlier work by Boudreau (Ref. 9) and may be compared directly with those results.

6.0 REFERENCES

1. Test Facilities Handbook (Tenth Edition). "von Karman Gas Dynamics Facility, Vol. 3" Arnold Engineering Development Center, May 1974.
2. Pate, S. R. and Eaves, R. H., Jr. "Recent Advances in the Performance and Testing Capabilities of the AEDC-VKF Tunnel F (HOTSHOT) Hypersonic Facility." AIAA Paper No. 74-84, presented at the AIAA 12th Aerospace Sciences Meeting, Washington, D. C., January 30 - February 1, 1974.
3. Ledford, R. L., Smotherman, W. E., and Kidd, C. T. "Recent Developments in Heat-Transfer-Rate Pressure and Force Measurements for Hotshot Tunnels," AEDC-TR-66-228 (AD645764), January 1967.
4. Bynum, D. S. "Instrumentation for the AEDC/VKF 100-in. Hotshot (Tunnel F)," AEDC-TR-66-209 (AD804567), January 1967.
5. Fay, J. A. and Riddell, F. R. "Theory of Stagnation Point Heat Transfer in Dissociated Air," Journal of Aeronautical Sciences, Vol. 25, No. 2, February 1958, pp. 73-85, 121.
6. Brahinsky, Herbert S. and Neel, Charles A. "Tables of Equilibrium Thermodynamic Properties of Nitrogen," Vol. I-IV, AEDC-TR-69-126, August 1969.
7. Griffith, B. J. and Lewis, Clark H. "Laminar Heat Transfer to Spherically Blunted Cones at Hypersonic Conditions," AIAA Journal, Vol 2, No. 3, March 1964, pp. 438-444.
8. Grabau, Martin, Smithson, H. R., Jr., and Little, W. J. "A Data Reduction Program for Hotshot Tunnels Based on the Fay-Riddell Heat-Transfer Rate Using Nitrogen at Stagnation Temperatures from 1500°K to 5000°K," AEDC-TR-64-50 (AD601070), June 1964.
9. Boudreau, A. H. "Artificially Induced Boundary Layer Transition on Blunt-Slender-Cones Using Distributed Roughness and Spherical Type Tripping Devices at Hypersonic Speeds" AEDC-TR-77-120, February 1978 or AIAA Paper 78-1127 presented at the 11th Fluid and Plasma Dynamics Conference, Seattle, Washington, July 10-12, 1978.

APPENDIX A

ILLUSTRATIONS

10

Figure 1. AEDC-VKF Tunnel F Plant.

Figure 2. Tunnel F family of contoured nozzles.

A E D C
75-231
UNCLASSIFIED

Fig. 3 Model Installation

Fig. 4 Model Details - Seven Degree Cone

54 WALL HEATS
 2 WALL PRESSURES
 1 PITOT PRESSURE

 57 TOTAL

X PRESSURE GAGES
 ● HEAT TRANSFER GAGES

Fig. 5 The 14-7-deg. Bi-conic Model

INSTRUMENTATION

- 1 Nose pitot
- 20 Coax heats
- 11 Surface pressures
- 32 Total

SYM	<u>TYPE GAGE</u>
○	pressure
□	heat transfer

Fig. 6 The 5-Deg. Cone Model

Fig. 7 Tunnel F B. L. Rake

Fig. 8 Comparison of Experimental Data and Theory

APPENDIX B

TABLES

TABLE 1

 $S, S/R_N$ for 7-deg Cone

Gage Name	S inches	S/R_N	Gage Name	S inches	S/R_N
OQ6	1.95	3.31	OQ27	23.25	39.47
OQ7	2.95	5.01	OQ28	24.26	41.19
OQ8	4.06	6.89	OQ29	25.27	42.90
OQ9	5.08	8.62	OQ30	26.28	44.62
OQ10	6.09	10.33	OQ31	27.29	46.33
OQ11	7.10	12.05	OQ32	28.30	48.05
OQ12	8.11	13.77	OQ33	29.31	49.76
OQ13	9.13	15.50	OQ34	30.32	51.48
OQ14	10.14	17.22	OQ35	31.32	53.17
OQ15	11.15	18.93	OQ37	33.34	56.60
OQ16	12.16	20.65	OQ39	35.36	60.03
OQ17	13.17	22.36	OQ41	37.39	63.48
OQ18	14.18	24.07	OQ43	39.39	66.89
OQ19	15.19	25.79	OQ45	41.41	70.31
OQ20	16.20	27.50	OQ47	43.44	73.75
OQ21	17.21	29.22	90P47	43.44	73.75
OQ22	18.22	30.93	27P47	43.44	73.75
OQ23	19.22	32.63			
OQ24	20.23	34.35			
OQ25	21.24	36.06			
OQ26	22.24	37.76			

TABLE 2
S, S/R_N for Biconic Model

Gage Name	S inches	S/R _N	Gage Name	S inches	S/R _N
14Q1	1.42	2.41	OQ32	14.81	25.14
14Q2	2.45	4.16	OQ33	15.82	26.86
14Q3	3.48	5.91	OQ34	16.83	28.57
14Q4	4.51	7.66	OQ35	17.84	30.29
14Q5	5.54	9.41	OQ36	18.84	31.99
14Q6	6.57	11.15	OQ37	19.85	33.70
14Q7	7.60	12.90	OQ38	20.85	35.40
14Q8	8.63	14.65	OQ39	21.86	37.11
14Q9	9.66	16.40	OQ40	22.87	38.83
14Q10	10.69	18.15	OQ41	23.88	40.54
14Q11	11.72	19.90	OQ42	24.89	42.26
14Q12	12.75	21.65	OQ43	25.90	43.97
14Q13	13.78	23.40	OQ44	26.90	45.67
14Q14	1.42	2.41	OQ45	27.91	47.39
14Q15	2.45	4.16	OQ46	28.92	49.10
14Q16	3.48	5.91	OQ47	29.92	50.80
14Q17	4.51	7.66	18Q32	14.81	25.14
14Q18	5.54	9.41	18Q34	16.83	28.57
14Q19	6.57	11.15	18Q36	18.84	31.99
14Q20	7.60	12.90	18Q38	20.85	35.40
14Q21	8.63	14.65	18Q39	21.86	37.11
14Q22	9.66	16.40	18Q40	22.87	38.83
14Q23	10.69	18.15	18Q41	23.88	40.54
14Q24	11.72	19.90	18Q42	24.89	42.26
14Q25	12.75	21.65	18Q43	25.90	43.97
14Q26	13.78	23.40	18Q44	26.90	45.67
			18Q46	28.92	49.10
			18Q47	29.92	50.80
			90P47	29.92	50.80
			27P47	29.92	50.80

TABLE 3

S, S/R_N for 5-deg Cone

Gage Name	S inches	S/R _N	Gage Name	S inches	S/R _N
OQ1	5.00	10.00	OP1	12.50	25.00
OQ2	6.25	12.50	OP2	15.00	30.00
OQ3	7.50	15.00	OP3	17.50	35.00
OQ4	10.00	20.00	OP4	20.00	40.00
OQ5	12.90	25.80	OP5	22.50	45.00
OQ6	15.90	31.80	OP6	25.00	50.00
OQ7	18.90	37.80	OP7	27.50	55.00
OQ8	21.90	43.80			
OQ9	24.50	49.00			
OQ10	27.90	55.80			
18Q1	5.00	10.00	18P1	12.50	25.00
18Q2	6.25	12.50	18P3	17.50	25.00
18Q3	7.50	15.00	18P5	22.50	45.00
18Q4	10.00	20.00	18P7	27.50	55.00
18Q5	12.90	25.80			
18Q6	15.90	31.80			
18Q7	18.90	37.80			
18Q8	21.90	43.80			
18Q9	24.90	49.80			
18Q10	27.90	55.80			

Table 4
Run Summary

SAMSO/DOTR Hypersonic Turb. B.L. Invest. Phase 7

July - August 1978

M-INF ≈ 9

Model	Trip Configuration ¹	RE/FT ⁶ range	Run Number
7-deg Cone	Smooth - No trip	6.3 → 20.3	6005
	5-mil Grit Blast	6.0 → 20.5	6006
	" " "	1.1 → 10.4	6010
	8-mil NCM	2.5 → 10.0	6013
	14-mil Grit	1.8 → 5.1	6007
	14-mil NCM	1.7 → 4.5	6008
	40-mil Grit	.5 → 3.1	6009
	.063 & .109-in Spherical	1.9 → 5.9	6011
14-deg, 7-deg Biconic	" " "	2.0 → 8.1	6012
	Smooth - No trip	7.6 → 20.8	6016
	10-mil Grit	2.2 → 10.3	6019
	14-mil Grit	2.0 → 5.2	6017
5-deg Cone	.039-in. Spherical	1.7 → 5.1	6018
	10-mil Grit	5.1 → 18.2	6023
	" "	2.3 → 10.3	6024
	14-mil Grit	2.0 → 10.1	6020
	20-mil Grit	1.5 → 10.0	6021
	36-mil Grit	1.7 → 10.5	6022

* Note: Runs 6014 and 6015 were not part of this test.

¹ See Table 5 for details of trip configurations

Table 5
Trip Description

Type of Trip	Description
Grit Blast	Surface roughness was produced by impacting hardened steel particles onto the stainless steel nose. RMS peak-to-valley roughness height was 5-mils. Roughness extended from $S/RN = 0$ to 5.
Numerically Controlled Machine (NCM)	Roughness elements were machined as pyramids with a total height (peak-to-valley) of 8 and 14-mils. The base plane of the pyramids was recessed $\frac{1}{3}$ of the height below the original unaltered model surface. The roughness extended from $S/RN = .10$ to 5.
Grit	Roughness elements consisted of silicon carbide grit particles bonded to the model surface with epoxy. Grit sizes of 10, 14, 20, 36, and 40 mils were used and coverage extended from $S/RN = .8$ to 5.
.063 & .109-in. Spheres (7-deg. Model)	Tripping elements consisted of two rows of spheres: a row of .063-in spheres at $S/RN = 3.1$ and a row of .109-in spheres at $S/RN = 6.5$. Lateral spacing was four diameters. The spheres were spot welded to thin metal bands which were then bonded to the model.
.039-in. Spheres (14-7-deg Biconic)	Tripping elements consisted of a single row of .039-in. spheres at $S/RN = 6.8$. The spheres were laterally spaced four diameters apart and spot welded to thin metal bands which were then bonded to the model surface.

APPENDIX C

SAMPLE TABULATED DATA

SVERDRUP-ARO. VC. REDC DIVISION
 VON KARMAN GA. DYNAMICS FACILITY
 HYPERVELOCITY WIND TUNNEL F
 ARNOLD AIR FORCE STATION, TN.

SAMSO/DOTR TURB. B.L. TEST
 RUN 6016
 ALPHA 0.

V41F-56

DATE 23-AUG-78

PROJECT ENGINEER A.H.BOUDREAU

00,ST ,BASED ON .589 INCH RADIUS
 MODEL LENGTH = 48.00 INCHES

TIME MSEC	P-INF PSIA	T-INF DEG R	V-INF FT/SEC	M-INF	O-INF PSIA	RE/AFT X10-6	PO PSIA	TO DEG R	HO BTU/LBM	00 BTU/FT2-SEC	ST	POP PSIA	PREF PSIA
66	0.4585	101.0	4441.	8.86	25.21	20.78	7414.	1584.	4.19E+02	84.66	9.12E+02	46.71	46.71
69	0.4391	105.0	4545.	8.87	24.16	18.57	7219.	1656.	4.39E+02	89.08	9.53E+02	44.77	44.77
83	0.3740	115.2	4967.	9.09	21.64	14.27	7485.	1872.	5.02E+02	182.82	1.08E+03	40.15	40.15
100	0.3319	130.5	5024.	8.82	18.07	10.19	5758.	2009.	5.36E+02	103.53	1.15E+03	33.55	33.55
117	0.2939	138.4	5056.	8.62	15.28	8.07	4521.	2058.	5.45E+02	97.31	1.16E+03	28.38	28.38
132	0.2574	132.2	4936.	8.61	13.35	7.56	3936.	1967.	5.19E+02	85.00	1.11E+03	24.78	24.78

SVERDRUP-ARO, IC. AEDC DIVISION
 VON KARMAN GAL. DYNAMICS FACILITY
 HYPERVELOCITY WIND TUNNEL F
 ARNOLD AIR FORCE STATION, TN.

SAMSO/DOTR TURB. B.L. TEST
 RUN 6016
 ALPHA 0.

V41F-56

DATE 23-AUG-78

PROJECT ENGINEER A.H.BOURDREAU

PRESSURE DATA

PRESSURE, PSI

TIME	27P47	PR1	PR2	PR3	PR4	PR5	PR7	PR8	PR9	PR10
66	1.0809E+00	1.3801E+01	2.2452E+01	3.0883E+01	4.7393E+01	6.8292E+01	8.7309E+01	9.6350E+01	8.4596E+01	7.2122E+01
69	1.0495E+00	1.4125E+01	2.3306E+01	3.1307E+01	4.8299E+01	6.6645E+01	8.2593E+01	9.1719E+01	8.0003E+01	6.8309E+01
83	9.9899E-01	1.3430E+01	2.1631E+01	2.8454E+01	4.3292E+01	5.9165E+01	7.0502E+01	7.0181E+01	6.8593E+01	5.8807E+01
100	8.7366E-01	1.1359E+01	1.8541E+01	2.3714E+01	3.5954E+01	4.8307E+01	5.7681E+01	5.7563E+01	5.6408E+01	4.8823E+01
117	7.4730E-01	9.8419E+00	1.6203E+01	2.0557E+01	3.0647E+01	4.0785E+01	4.8592E+01	4.8724E+01	4.7914E+01	4.2080E+01
132	6.4992E-01	8.7094E+00	1.4553E+01	1.8495E+01	2.7349E+01	3.5807E+01	4.2726E+01	4.2813E+01	4.1902E+01	3.7333E+01

TIME	90P47
66	1.1087E+00
69	1.0717E+00
83	1.0224E+00
100	8.8487E-01
117	7.6050E-01
132	6.6327E-01

P / PREF

TIME	27P47	PR1	PR2	PR3	PR4	PR5	PR7	PR8	PR9	PR10
66	2.3141E-02	2.9547E-01	4.8091E-01	6.6121E-01	1.0147E+00	1.4621E+00	1.8693E+00	1.8488E+00	1.8112E+00	1.5441E+00
69	2.3442E-02	3.1550E-01	5.2056E-01	6.9926E-01	1.0789E+00	1.4886E+00	1.8445E+00	1.8252E+00	1.7887E+00	1.5255E+00
83	2.4084E-02	3.3452E-01	5.4379E-01	7.0377E-01	1.0784E+00	1.4737E+00	1.7561E+00	1.7481E+00	1.7036E+00	1.4548E+00
100	2.6039E-02	3.3853E-01	5.5260E-01	7.0677E-01	1.0716E+00	1.4421E+00	1.7191E+00	1.7156E+00	1.6835E+00	1.4551E+00
117	2.6336E-02	3.4684E-01	5.7102E-01	7.2446E-01	1.0800E+00	1.4373E+00	1.7121E+00	1.7171E+00	1.6886E+00	1.4830E+00
132	2.6185E-02	3.5145E-01	5.8724E-01	7.4632E-01	1.1036E+00	1.4449E+00	1.7241E+00	1.7276E+00	1.6941E+00	1.5065E+00

TIME	90P47
66	2.3737E-02
69	2.3937E-02
83	2.5467E-02
100	2.6372E-02
117	2.6801E-02
132	2.6765E-02

SVERDRUP-ARO. C. AEDC DIVISION
 VON KARMAN G4. DYNAMICS FACILITY
 HYPERVELOCITY WIND TUNNEL F
 ARNOLD AIR FORCE STATION, TN.

SAMSO/DOTR TURB. B.L. TEST
 RUN 6016
 ALPHA 8.

V41F-56

DATE 23-AUG-78

PROJECT ENGINEER A.H.BOURDEAU

HEAT-TRANSFER DATA

HEAT TRANSFER RATE, BTU/FT²-SEC

TIME	1401	1402	1403	1404	1405	1406	1407	1408	1409	14010
66	8.9699	7.1682	5.4367	5.3774	4.8336	4.6878	5.5219	5.5822	5.8450	5.7771
69	9.3591	7.4741	5.6791	5.6298	5.8321	4.8386	5.6671	5.5699	5.5967	5.7216
83	10.3689	8.2856	6.4526	6.4217	5.7852	5.4231	6.2863	6.1515	6.8897	6.1927
100	9.9982	7.9279	6.3787	6.3483	5.8153	5.3514	6.0599	6.0279	5.9242	5.9035
117	9.0155	7.1649	5.8433	5.8121	5.3371	4.7618	5.4424	5.3576	5.2888	5.2953
132	7.4158	5.9166	4.8285	4.8762	4.3694	3.9447	4.4273	4.3476	4.2052	4.1030
TIME	14011	14012	14013	14014	14015	14017	14018	14019	14020	14021
66	6.1332	7.3200	8.8120	9.1029	6.5298	4.9949	5.6372	5.6372	5.5579	5.0989
69	5.7037	6.5421	7.9514	9.5394	6.7773	5.2902	5.8776	5.8526	5.6869	5.2265
83	6.1309	6.8773	8.2312	10.6718	7.2677	5.9827	6.5911	6.5169	6.4198	5.8323
100	5.8205	6.4218	7.2511	10.3400	6.8740	5.7028	6.3585	6.2154	5.9103	5.4214
117	5.0809	5.6850	6.5034	9.3970	6.8874	5.0683	5.5690	5.4839	5.1389	4.5402
132	3.9708	4.3532	5.0052	7.5787	4.8755	4.0599	4.5804	4.4885	4.2089	3.7660
TIME	14022	14023	14024	14025	14026	0032	0033	0034	0035	0036
66	6.0857	5.1348	6.6249	7.1844	9.9322	6.1056	5.0916	4.6010	4.6942	4.9401
69	6.0676	5.0530	6.2032	6.7919	9.0997	5.5884	4.6613	4.5644	4.6625	5.0103
83	6.3286	5.3806	6.2132	6.6457	8.7460	6.1096	4.9379	4.8466	5.1143	5.4549
100	5.8247	4.8163	5.7894	5.9553	7.5712	5.1196	4.2773	4.1439	4.2812	4.5171
117	5.1238	4.1468	4.7691	4.6327	6.2970	4.5817	3.7181	3.5245	3.4956	3.6025
132	4.2239	3.5373	3.8256	3.8426	5.2468	3.5266	2.8138	2.5426	2.5596	2.5511
TIME	0037	0039	0040	0041	0042	0043	0044	0045	0046	0047
66	5.2114	5.7678	5.8206	6.4225	6.4183	6.4384	7.0004	7.3996	7.5760	8.2175
69	5.2512	5.9187	5.9903	6.6682	6.6905	6.7622	7.3011	7.8068	7.9424	8.6014
83	5.6908	6.2500	6.4720	7.3932	7.4501	7.7398	8.3921	8.8139	9.1433	9.8463
100	4.6311	5.2452	5.5005	6.5786	6.5061	7.1765	7.8554	8.5758	8.8993	9.2919
117	3.5635	4.1037	4.2053	4.7996	4.7899	5.5135	5.7308	6.4313	6.7119	6.7458
132	2.4575	2.9175	2.8819	3.5543	3.4607	4.1898	4.4681	5.2094	5.5634	5.4160

1.0

RUN NO 6016

TIME
69RE/FT
 $\times 10^{-6}$
1.86E+01

Q/QREF

.01

.001

0

10

20

30

40

50

60

70

80

S/RN

Turbulent

 10×10^6

Laminar

RUN NO 6016

TIME
182

RE/FT
 $\times 10^{-6}$
 $7.56E+00$

