

Edited BY

Ahmed Mohammed (AsossaSchool.com)

2020 ETHIOPIA

CHEMISTRY GRADE 9

UNIT-5

SUMMARY

PHYSICAL STATES OF MATTER

BY:ADDIS ABABA EDUCATION BUREAU
MAY 2020

Main Contents start

- 5.1 Introduction
- 5.2 The kinetic theory and properties of matter
- **5.3** The gaseous state
- **5.4** The liquid state
- 5.5 The solid state

5.1-Introduction

- *All object around us is called matter.
- Matter can exist in three physical state.

*The physical state of a given sample of matter depend on temperature & pressure

Eg; water

5.2 Kinetic theory and properties of matter

- **5.2.1** The kinetic Theory of matter
- * Generally, the kinetic theory of matter is based on the following three assumptions;
 - 1. All matter is composed of particles which are in constant motion.
 - 2. The particles possess kinetic energy and potential energy.
 - 3. The difference b/n the three states of matter is due to their energy contents and the motion of the particle.

It explain;

-The three state of matter in which substances are chemically the same but physically different and the nature of the motion and the heat energy.

Eg; Water

It explain;

-The three state of matter in which substances are chemically the same but physically different and the nature of the motion and the heat energy.

E.g; Water

5.2.2 Properties of Matter

1. Properties of Gases

* Gases have no definite shape and definite volume.

Gases exert pressure in all directions.

Gases have low densities compare with liquids and solids.

Gases easily flow and diffuse through one another.

2. Properties of Liquids

Liquids have a definite volume, but have no definite shape.

Liquids have higher density than gases.

- Liquids are slightly compressible
- Liquids are fluids

3. Properties of Solids

Solids have a definite shape and a definite volume

* Solids are extremely difficult to compress.

Solids are not fluids.

5.3 THE GASEOUS STATE

5.3.1 The Kinetic Molecular Theory of Gases

Assumptions of the kinetic molecular theory of gases

- 1. The particles are in a state of constant, continuous and random motion therefore possess Kinetic energy.
- 2. The volume of the particles is negligible compared to the total volume of the gas.
- 3. The attractive forces b/n the particles are negligible. when they collide, they do not stick together but immediately bounce

4. The average KE of gas particles depends on the temperature of the gas.

5.3.2- THE GAS LAWS

*Gas laws express mathematical relationships b/n the pressure, temperature, volume and quantity of a gas.

1. BOYLE'S LAW

2. CHARLE'S LAW

Eg;. A gas has a volume of 50L @STP. Assuming no temperature change, what volume will the gas occupy, if the pressure is doubled?

Eg;. A sample of gas is heated from 27°c to 627°c. By what factor does the volume increase if the pressure remains constant?

B

02

3. Combined Gas Law

T1 T2 4. Avogadro's law

PV= n RT

5. Graham's Law of Diffusion

Graham's Law State that "at constant temperature and pressure, the rate of diffusion of a gas, r, is inversely proportional to the square root of its density, d, or molar mass, M."

$$\frac{\mathbf{r1}}{\mathbf{r2}} = \sqrt{\frac{\mathbf{M2}}{\mathbf{M1}}} = \frac{\mathbf{d2}}{\mathbf{d1}}$$

(CNNT'D

• Eg;-

Eg;. A 35g of CO2 in a 1Lvessel @ 24oc exerts a pressure of 19.4atm. How many CO2 molecules does the sample contain?

Eg; If a gas occupies 44.8L at STP and has a mass of 34g,then the gas could be

A. NH3 B. CO2 C. H2O D. H2S

Eg; The density of a gas at a pressure of 1.34atm and a temperature of 303K is found to be 1.77g/L. What is the molar mass of this gas?

Eg;. Calculate the relative rates of diffusion of hydrogen (H2) and oxygen(O2)