MZT

Laboratorium 5

Przemysław Kleszcz

Nr albumu: 124624

Platforma testowa

Procesor	Intel Core i5-7440HQ, 2.8GHz, 6MB Cache
RAM	DDR4 - 16 GB
System operacyjny	Microsoft Windows 10 Pro
Środowisko programistyczne	Visual Studio Professional 2017 v15.5.7
Środowisko uruchomieniowe	.NET Framework 4.6.01055

Metoda klasyczna (i, k, j) – HP

Rozmiar bloku	Wydajność (Mflops)	
-	3281.91	

Metoda blokowa - Block_cache (ib, kb, jb::i, k, j)

Rozmiar bloku	Wydajność (Mflops)
36	5399.92

3. Metoda blokowa - (kb, jb=1, ib), block XMM registers, SSE2, SSE3, pack A, B (similar to Intel MKL library)

Rozmiar bloku	Wydajność (Mflops)
128	42119.8

Porównanie w trybie wielowątkowym

Tabela przedstawia wyniki badania przyśpieszenia Sp = T1/Tp = Wp/W1, gdzie W1, Wp – wydajność obliczeń na 1 i na p wątkach.

Wątki	Ideal	НР	Block cache	Block cache AVX
1	1	1	1	1
2	2	1.674369	1.937325	1.710687
3	3	2.30073	2.78856	2.291305
4	4	2.670293	3.406402	2.553839

Wykres przedstawia przyspieszenie wybranych algorytmów w trybie wielowatkowym.

Wnioski

Algorytm "block cache" osiągnął najlepszy wynik przyspieszenia. Zawiera najmniej przestojow procesora. Pracuje z dużymi tablicami danych dzięki czemu liczba pustych cykli procesora jest minimalna, a procesor wielokrotnie używa tych samych danych przechowywanych w pamięci podręcznej (cache). Jednak największą wydajność obliczeń osiągnął algorytm "block cache AVX".

Wykres przedstawia porównanie maksymalnej wydajności wybranych algorytmów w trybie wielowątkowym.

