

Université de Mostaganem Abdelhamid Ibn Badis FACULTÉ DES SCIENCES EXACTES ET D'INFORMATIQUE DÉPARTEMENT D'INFORMATIQUE

Master 2 ISI

Module : Systemes D'information décisionnels **Semestre**: 2017/2018

→ TD n°1 (Solution) ◄—

Exercice 1 : (Programmation linéaire)

$$\begin{cases} Max(x_1 + 2x_2) \\ x_1 + 3x_2 \le 21 \\ -x_1 + 3x_2 \le 18 \\ x_1 - x_2 \le 5 \\ x_1; x_2 \ge 0 \end{cases}$$
$$\begin{cases} Min(x_1 + 3x_2) \\ 3x_1 - 2x_2 \le 7 \\ -x_1 + 4x_2 \le 9 \\ -2x_1 + 3x_2 \le 6 \\ x_1; x_2 \ge 0 \end{cases}$$

Exercice 1: (Solution)

Problème 1 La première étape est d'introduire les variables d'écart (variable de base) aux contraintes du problème :

$$\begin{cases}
Z - (x_1 + 2x_2) = 0 \\
x_1 + 3x_2 + x_3 = 21 \\
-x_1 + 3x_2 + x_4 = 18 \\
x_1 - x_2 + x_5 = 5 \\
x_1; x_2 \ge 0
\end{cases}$$

Premier tableau du simplexe :

la variable entrante est x_2 qui correspond à l'élément le plus négatif de Z. La variable sortante se calcule en trouvant le plus petit rapport positif de la dernière colonne de droite et la colonne de x_2 (colonne entrante):

x_1	x_2	x_3	x_4	x_5		
1	3	1	0	0	21	x_3
-1	3	0	1	0	18	x_4
1	-1	0	0	1	5	x_5
-1	-2	0	0	0	0	

$$Min\left(\frac{21}{3}, \frac{18}{3}\right) = 6$$

Donc x_4 est la variable sortante. La ligne de x_4 sert de ligne pivot et on exécute une transformation du pivot autour de la valeur 3 (à l'intersection de la ligne de x_4 et de la colonne de x_2). On obtient le tableau suivant :

x_1	x_2	x_3	x_4	x_5		
2	0	1	-1	0	3	x_3
-1/3	1	0	1/3	0	6	x_2
2/3	0	0	1/3	1	11	x_5
-5/3	0	0	2/3	0	12	

On répète le même calcul ce qui conduit au tableau suivant :

x_1	x_2	x_3	x_4	x_5		
1	0	1/2	-1/2	0	3/2	x_1
0	1	1/6	1/6	0	13/2	x_2
0	0	-1/3	2/3	1	3/2 13/2 10	x_5
0	0	5/6	-1/6	0	29/2	

A la fin on obtiendra le dernier tableau :

x_1	x_2	x_3	x_4	x_5	
1	0	1/4	0	3/4	9
0	1	1/4	0	-1/4	4
0	0	-1/2	1	3/2	15
0	0	3/4	0	1/4	17

Ce tableau correspond à l'optimum car il n'y a plus de termes négatifs dans la ligne du Z. La première et la troisième contrainte sont saturées. On obtient donc comme solution :

$$\begin{cases} x_1^* = 9 \\ x_2^* = 4 \\ x_3^* = 0 \\ x_4^* = 15 \\ x_5^* = 0 \\ Z = 17 \end{cases}$$

Problème 2 On va suivre les mêmes étapes :

$$\begin{cases}
Z - (x_1 - 3x_2) = 0 \\
3x_1 - 2x_2 + x_3 = 7 \\
-x_1 + 4x_2 + x_4 = 9 \\
-2x_1 + 3x_2 + x_5 = 6 \\
x_1; x_2 \ge 0
\end{cases}$$

x_1	x_2	x_3	x_4	x_5		
3	-2	1	0	0	7	x_3
-1	4	0	1	0	9	x_4
-2	3	0	0	1	6	x_5
1	-3	0	0	0	0	

x_1	x_2	x_3	x_4	x_5		
0	0	1	-1	2	10	x_3
1	0	0	3/5	-4/5	3/5	x_1
0	1	0	2/5	-1/5	12/5	x_2
0	0	0	3/5	1/5	33/5	

Il n'y a plus de terme négatif dans la ligne Z et on est donc à l'optimum. La solution est :

$$\begin{cases} x_1^* = 3/5 \\ x_2^* = 12/5 \\ x_3^* = 10 \\ x_4^* = 0 \\ x_5^* = 0 \\ Z = -33/5 \end{cases}$$

La deuxième et la troisième contrainte sont saturées. Il ne faut pas oublier de rechanger le signe de la fonction objectif car ce tableau correspond à la maximisation de -f.

Exercice 2 : (Programmation linéaire)

Une raffinerie de SONATRACH traite deux catégorie de pétrole brute pour produire les produits avec le rendement suivant :

	Brute 1	Brute 2
	(%)	(%)
Essence	25	35
Gasoil	30	30
Fuel	45	35

Les exigences de production imposent de produire au plus 825 milliers de m^3 d'essence, 750 milliers de m^3 de gasoil et 1065 milliers de m^3 de fuel. La marge bénéficiaire laissée par le traitement du brut de type 1 est de 3 milliards de dinars par millier de m^3 et celle du brut de type 2 est de 4 milliards de dinars par millier de m^3 .

- Calculer, par la méthode du simplexe, quelles quantités de chaque pétrole il faut traiter pour obtenir un bénéfice maximal.

Exercice 2: (Solution)

On met x_1 et x_2 les quantités de brut 1 et 2. La fonction objectif est la marge totale, qu'il faut maximiser :

$$Max(3x_1+4x_2)$$

Les contraintes de production s'expriment :

$$\begin{cases}
Max(3x_1 + 4x_2) \\
0.25x_1 + 0.35x_2 \le 825 \\
0.30x_1 + 0.30x_2 \le 750 \\
0.45x_1 + 0.35x_2 \le 1065 \\
x_1; x_2 \ge 0
\end{cases}$$

On peut simplifier et rajouter les variables d'écart ce qui résulte le problème suivant :

$$\begin{cases}
Max(3x_1 + 4x_2) \\
5x_1 + 7x_2 + x_3 = 16500(\times 20) \\
x_1 + x_2 + x_4 = 2500(\times 100 \div 30) \\
9x_1 + 7x_2 + x_5 = 21300(\times 20) \\
x_1; x_2 \ge 0
\end{cases}$$

Maintenant on va résoudre le problème par la méthode simplexe (suivre les mêmes étapes):

x_1	x_2	x_3	x_4	x_5		
5	7	1	0	0	16500	x_3
1	1	0	1	0	2500	x_4
9	7	0	0	1	21300	x_5
-3	-4	0	0	0	0	

x_1	x_2	x_3	x_4	x_5		
5/7	1	1/7	0	0	16500/7	x_2
2/7	0	-1/7	1	0	1000/7	x_4
4	0	-1	0	1	4800	x_5
-1/7	0	4/7	0	0	66000/7	

x_1	x_2	x_3	x_4	x_5		
0	1	1/2	-5/2	0	2000	$ x_2 $
1	0	-1/2	7/2	0	500	x
0	0	1	-14	1	2800	$x_{!}$
0	0	1/2	1/2	0	9500	

$$\begin{cases} x_1^* = 500 \\ x_2^* = 2000 \\ x_3^* = 0 \\ x_4^* = 0 \\ x_5^* = 2800 \\ Z = 9500 \end{cases}$$

La valeur à l'optimum est Z=9500. Les quotas imposés pour l'essence et le gasoil sont atteints. La troisième présente un écart de 140 (2800 /20) (la valeur est de 2800 mais cette contrainte avait été multiplié par 20 avant d'être insérée (avant d'insérer les variables d'écarts) dans le tableau) : cela signifie que le quota de 1065 imposé sur le fuel n'est pas atteint et qu'on fabrique seulement 1065-140=925 milliers de m^3 de fuel.

4