Introducción a la Ingeniería Electrónica 86.02

Evaluación Parcial –	3ª. oportunidad	_	2do. cuatrimestre 2020	_	11-03-2	021
Apellido y Nombres				_ H	ojas entre	egadas
Padrón; TP apro	obado en cuatr d	de 20	; Turno de TP	_; C	arrera	; Plan

1) a)	1) b)	2) a)	2) b)	2)c)	3) a)	3) b)	3) c)	Final

1) Dada la forma de onda periódica que se ilustra en la figura, con un $V_{ON} = 5 \text{ V y } T = 140 \text{ ms, y un}$ multímetro de valor medio de 3 ¾ dígitos con escalas V_{DC} [4V ±(0,3% + 1), 40V ±(0,3% + 1)] y V_{AC} [4V ±(1,9% + 2), 40V ±(1,5% + 2)] y una Rent = $10 \text{ M}\Omega$. Considere suficiente el ancho de banda del multímetro como para realizar la medición.

- a) Indique qué escalas correspondería utilizar y exprese el resultado que se obtendría con la incertidumbre correspondiente, si se mide esta señal en modo VDC y si se mide en VAC.
- b) Qué valor indicaría un Voltímetro de Valor Eficaz Verdadero en modo V_{DC+AC}.
- 2) Considerando que al momento de cerrar la llave, el capacitor se encuentra inicialmente descargado (V = 10 V, R1 = $R2 = R3 = 10k\Omega$, $C = 10 \mu F$):

- a) Defina el sentido y calcule el valor de la tensión sobre R2 en función del tiempo a partir del instante en que se cierra la llave (sugerencia: considere el valor inicial y final de la tensión sobre dicho componente).
- b) Defina el sentido y calcule el valor de la corriente sobre R3 en función del tiempo.
- c) Suponga ahora que se remplaza la pila V por un generador de onda senoidal V = 10 V sen (ωt) , con $\omega = 2\pi f$, calcule la frecuencia de corte y el

valor de la tensión pico sobre el capacitor C a esa frecuencia.

- **3)** Dado el circuito de la figura, con $V1 = 10 \text{ V} sen(\omega t)$, con $\omega = 2\pi f \text{ y } f = 50 \text{ Hz}$; $R1 = R2 = 100 \Omega$.
- a) Calcular la potencia media en R2.
- b) Cuánto debería valer R1 para que la potencia media sea máxima sobre R2.
- c) Dibuje cómo conectar un osciloscopio para medir la tensión V1. Indique el ajuste de los controles de la escala vertical, escala horizontal, acople y disparo para lograr la menor incertidumbre. Indique también cómo se

ACLARACIONES:

Por favor ponga en cada hoja su nombre y apellido, número de padrón y el número de hoja correspondiente. Cuente la cantidad total de hojas entregadas INCLUYENDO ésta y complete el cuadro de arriba de esta hoja. Resuelva cada ejercicio en HOJAS SEPARADAS. Indique todos los razonamientos e hipótesis a los que recurre. Las condiciones que se creen no especificadas deberán ser establecidas explícitamente antes de hacer los cálculos. Si hay errores, indíquelos. Si sobran datos o son incompatibles, justifique cuáles usa. Expresar correctamente las unidades de medida, las incertidumbres y proponer respuestas breves; todos estos factores afectan la calificación. Un error conceptual o una cantidad incorrecta pueden invalidar la respuesta. (*) Las preguntas 1, 2, 3 y 4 evalúan distintos conceptos por lo que la evaluación es global.