Machine Learning Semisupervised Learning

Prof. Matthias Hein

Machine Learning Group
Department of Mathematics and Computer Science
Saarland University, Saarbrücken, Germany

Lecture 19, 17.01.2014

Roadmap

- What is semi-supervised learning (SSL)? What is transduction?
- The cluster/manifold assumption
- Graph-based SSL using regularized least squares
 - Interpretation in terms of label propagation
 - Interpretation in terms of a data-dependent kernel
- Experiments

Why semi-supervised learning?

- Human labels can be expensive and time consuming,
- There is a lot of unlabeled data around us e.g. images and text on the web. The knowledge about the unlabeled data "should" be helpful to build better classifiers,

What is semi-supervised learning?

Input space X, Output: $\{-1,1\}$ (binary classification):

- a small set L of labeled data (X_l, Y_l) ,
- a large set U of unlabeled data X_u .
- notation: n=l+u, total number of data points. T denotes the set of all points.

e.g. a small number of labeled images and a huge number of unlabeled images from the internet.

Definition:

- Transduction: Prediction of the labels Y_u of the unlabeled data X_u ,
- **SSL:** Construction of a classifier $f: X \to \{-1, 1\}$ on the whole input space (using the unlabeled data).

Is it always helpful?

No!

Because:

• in order to deal with a small amount of labeled data we have to make strong assumptions about the underlying joint probability measure P(X,Y) e.g. a relation of P(X) and P(Y|X).

But:

- empirical success of SSL methods shows that unlabeled data can improve performance.
- nice application of SSL from an unexpected side: spectral matting (Levin et al. 2006) a kind of user-interactive segmentation (foreground / background).

Matting

Left: Input Image with user labels, Right: Image segmentation

Approaches to SSL

The obvious one - Self Training

- use labeled data to build classifier.
- the unlabeled points on which the classifier is most "confident" are added to the label set,
- repeat until all points are labeled.

Problem:

- Wrongly assigned labels in the beginning can spoil the whole performance.
- How should we measure the confidence in the labels ?

Approaches to SSL II

Other more principled approaches to SSL:

- Co-Training,
- Transductive SVM,
- Harmonic function,
 Regularized least squares with the graph Laplacian,
 Label Propagation
- \implies Different aspects of the same graph based method
- Low Density Separation
- \Rightarrow in this lecture we treat the graph-based methods using Laplacian regularization.
- \Rightarrow graph-based methods are very flexible (can be applied on any kind of data).

The cluster assumption

Cluster assumption: points which can be connected via (many) paths through high-density regions are likely to have the same label.

The manifold-assumption

Manifold assumption: each class lies on a separate manifold.

The cluster/manifold-assumption

Cluster/Manifold assumption: points which can be connected via a path through high density regions on the data manifold are likely to have the same label.

⇒ Use regularizer which prefers functions which vary smoothly along the manifold and do not vary in high density regions.

The cluster/manifold-assumption II

Problem: We have only (a lot of) unlabeled and some labeled points and no information about the density and the manifold.

The cluster/manifold-assumption III

Approach: Use a graph to approximate the manifold (and density).

How to build such graphs?

Neighborhood graphs:

Given similarity $s: \mathcal{X} \times \mathcal{X} \to \mathbb{R}_+$ or dissimilarity measure $d: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$. Denote by $\mathrm{kNN}(X_i)$ the k most similar or least dissimilar points.

- k-nearest neighbor graphs: connect points X_i to X_j if
 - ▶ $X_i \in \text{knn}(X_i) \Rightarrow \text{kNN-graph (directed)}$
 - ▶ $X_i \in \text{kNN}(X_i)$ and $X_i \in \text{kNN}(X_i)$ (mutual) \Rightarrow mutual kNN-graph.
 - ▶ $X_i \in \text{kNN}(X_i)$ or $X_i \in \text{kNN}(X_i) \Rightarrow \text{symmetric kNN-graph}$.

The symmetric and mutual kNN-graph are undirected.

- epsilon-graphs: connect points X_i and X_i if
 - dissimilarity: $d(X_i, X_j) \leq \varepsilon$,
 - ▶ similarity: $s(X_i, X_j) \ge 1 \varepsilon$, Assumption: $\max_{x,y} s(x,y) = \max_x s(x,x) = 1$.

The epsilon-graph is undirected.

How to build such graphs?

Weighted neighborhood graph:

• Gaussian weights (single scale):

$$w(X_i,X_i)=e^{-\frac{d(X_i,X_j)^2}{\sigma^2}},$$

where $\sigma^2 = \frac{1}{n(n-1)} \sum_{i \neq j} d(X_i, X_j)^2$ or chosen by cross-validation.

• Gaussian weights (adaptive scaling)

$$w(X_i,X_j)=e^{-\lambda\frac{d(X_i,X_j)^2}{\sigma_k^2}},$$

where e.g. $\sigma_k^2 = \frac{1}{2}(\operatorname{dist}_k(X_i) + \operatorname{dist}_k(X_j))$ and $\operatorname{dist}_k(X_i)$ is the distance of X_i to its k-nearest neighbor and λ is either one or chosen by cross-validation.

Other user-defined measures...

The cluster/manifold-assumption IV

Define a regularization functional which penalizes functions which vary in high-density regions.

$$\langle f, \Delta f \rangle = \langle f, (D-W)f \rangle = \frac{1}{2} \sum_{i,j=1}^{n} w_{ij} (f_i - f_j)^2,$$

where $D=d_i\delta_{ij}$ with $d_i=\sum_{j=1}^n w_{ij}$ and the graph Laplacian is defined as $\Delta=D-W$.

For the ϵ -neighborhood graph one can show (Bousquet, Chapelle and H.(2003), H.(2006)) under certain technical conditions that as $\epsilon \to 0$ and $n\epsilon^m \to \infty$ (m is dimension of the manifold).

$$\lim_{n \to \infty} \frac{1}{n \epsilon^{m+2}} \sum_{i,j=1}^{n} w_{ij} (f_i - f_j)^2 \sim \int_{M} \|\nabla f\|^2 \, p(x)^2 dx$$

Regularized least squares

Transductive Learning via regularized least squares:

Zhu, Ghahramani, Lafferty (2002,2003):

$$\underset{f \in \mathbb{R}^n, \ f_L = Y_L}{\operatorname{arg\,min}} \quad \sum_{i,j \in T}^n w_{ij} (f_i - f_j)^2.$$

Belkin and Niyogi (2003):

$$\underset{f \in \mathbb{R}^n}{\operatorname{arg\,min}} \quad \sum_{i \in L} (y_i - f_i)^2 + \frac{\lambda}{2} \quad \sum_{i,j \in T} w_{ij} (f_i - f_j)^2.$$

Zhou, Bousquet, Lal, Weston and Schoelkopf (2003):

$$\underset{f \in \mathbb{R}^n}{\operatorname{arg\,min}} \quad \sum_{i \in T} (y_i - f_i)^2 + \frac{\lambda}{2} \sum_{i,j \in T} w_{ij} \left(\frac{f_i}{\sqrt{d_i}} - \frac{f_j}{\sqrt{d_j}} \right)^2,$$

where $y_i = 0$ if $i \in U$.

Regularized least squares

$$\underset{f \in \mathbb{R}^n}{\operatorname{arg\,min}} \quad \sum_{i \in T} (y_i - f_i)^2 + \frac{\lambda}{2} \sum_{i,j \in T} w_{ij} \left(\frac{f_i}{\sqrt{d_i}} - \frac{f_j}{\sqrt{d_j}} \right)^2,$$

where $y_i = 0$ if $i \in U$. Note that

$$f^{T}(1 - D^{-1/2}WD^{-1/2})f = \frac{1}{2}\sum_{i,j\in T}w_{ij}\left(\frac{f_{i}}{\sqrt{d_{i}}} - \frac{f_{j}}{\sqrt{d_{j}}}\right)^{2}.$$

The solution f^* can be found as:

$$f^* = \left(1 + \lambda (1 - D^{-1/2}WD^{-1/2})\right)^{-1}Y$$

or with $S=D^{-1/2}WD^{-1/2}$ and $\alpha=\frac{\lambda}{1+\lambda}$ (0 < α < 1),

$$f^* = \frac{1}{1+\lambda} \left[\mathbb{1} - \frac{\lambda}{1+\lambda} S \right]^{-1} Y = (1-\alpha)[\mathbb{1} - \alpha S]^{-1} Y,$$

Label Propagation

Interpretation of the solution f^* in terms of label propagation:

$$f^* = (1 - \alpha) \Big[\mathbb{1} - \alpha S \Big]^{-1} Y$$

One can show $[1 - \alpha S]^{-1} = \sum_{r=0}^{\infty} \alpha^r S^r$ if $|\alpha| ||S|| \le 1$.

$$f^* = (1 - \alpha) \left[\mathbb{1} - \alpha S \right]^{-1} Y = \frac{\sum_{r=0}^{\infty} \alpha^r S^r}{\sum_{r=0}^{\infty} \alpha^r} Y$$

Solution f^* can be interpreted as the limit $f^* = \lim_{t \to \infty} f_t$ of the iterative scheme f_t , typically $f_0 = Y$,

$$f_{t+1} = \alpha S f_t + (1 - \alpha) Y \quad \Rightarrow \quad f_{t+1} = \alpha^t S^t f_0 + (1 - \alpha) \sum_{r=0}^t (\alpha S)^r Y,$$

where $\lim_{t\to\infty} \alpha^t S^t f_0 = 0$.

Random walks on a graph

Given a weighted, undirected graph with n vertices we define the matrix P,

$$P = D^{-1}W$$
,

P is a stochastic matrix:

- P is a $n \times n$ -matrix,
- $P_{ij} \geq 0, \ \forall \ 1 \leq i, j \leq n$,
- $\sum_{i=1}^{n} P_{ij} = 1$.

Interpretation:

 P_{ij} is the probability to go to vertex j when the current vertex is i.

$$P_{ij} = P(X_{t+1} = j | X_t = i).$$

Random walks on a graph II

Probability measure $p_i(t) = P(X_t = i)$ on the graph at time t: $\sum_{i=1}^{n} p_i(t) = 1$. One step of the random walk:

$$P(X_{t+1} = j) = p_j(t+1) = \sum_{i=1}^n p_i(t) P_{ij} = \sum_{i=1}^n P(X_{t+1} = j \mid X_t = i) P(X_t = i).$$

This is again a probability measure,

$$egin{align} \sum_{j=1}^n
ho_j(t+1) &= \sum_{j=1}^n \sum_{i=1}^n
ho_i(t) P_{ij} = \sum_{i=1}^n
ho_i(t) \sum_{j=1}^n P_{ij} \ &= \sum_{i=1}^n
ho_i(t) = 1. \end{split}$$

This is a Markov stochastic process since the probability to do the next step just depends on the current probability measure on the graph and not on previous states.

Random walks on a graph III

Stationary distribution π : A probability distribution π is stationary if

$$\pi_j = \sum_{i=1}^n \pi_i P_{ij}.$$

Results:

 For an undirected graph there exists a not necessarily unique stationary distribution,

$$\pi_i = \frac{d_i}{d}$$
, where $d = \sum_{i=1}^n d_i$,

and $d_i = \sum_{j=1}^n w_{ij}$ (degree function).

 For an undirected graph the random walk converges to the stationary distribution if the graph is connected and non-bipartite. In this case the stationary distribution is unique.

Relation to random walks

The solution is given by

$$f^* = (1 - \alpha) \left[\mathbb{1} - \alpha S \right]^{-1} Y = \frac{\sum_{r=0}^{\infty} \alpha^r S^r}{\sum_{r=0}^{\infty} \alpha^r} Y$$

Using $S = D^{-1/2}WD^{-1/2}$ we get with the stochastic matrix $P = D^{-1}W$,

$$S = D^{1/2}PD^{-1/2}$$
 and $S^r = D^{1/2}P^rD^{-1/2}$.

Plugging the expression for S^r into the equation for the solution f,

$$f^* = D^{1/2} \frac{\sum_{r=0}^{\infty} \alpha^r P^r}{\sum_{r=0}^{\infty} \alpha^r} D^{-1/2} Y$$

Harmonic function

Semi-supervised learning as finding a harmonic function with boundary conditions:

$$\underset{f \in \mathbb{R}^n, \ f_L = Y_L}{\operatorname{arg\,min}} \quad \sum_{i,j \in T}^n w_{ij} (f_i - f_j)^2 = \langle f, \Delta f \rangle.$$

The solution can be found as:

$$f_L = Y_L, \qquad \Delta f = 0.$$

This leads to

$$f_U = (D_{UU} - W_{UU})^{-1} W_{UL} Y_L = (\mathbb{1}_{UU} - P_{UU})^{-1} P_{UL} Y_L.$$

where $P = D^{-1}W$ is the stochastic matrix of the random walk associated to the undirected graph.

Label Propagation

Interpretation of the solution in terms of a random walk:

$$f_U = (D_{UU} - W_{UU})^{-1} W_{UL} Y_L = (\mathbb{1}_{UU} - P_{UU})^{-1} P_{UL} Y_L.$$

We will use $(\mathbb{1}_{UU} - P_{UU})^{-1} = \sum_{s=0}^{\infty} (P_{UU}^s)$. Then we get for a point $i \in U$,

$$(f_{U})_{i} = \sum_{k \in L} \sum_{j \in U} (\mathbb{1}_{UU} - P_{UU})_{ij}^{-1} (P_{UL})_{jk} (Y_{L})_{k}$$

$$= \sum_{k \in L} \sum_{j \in U} \sum_{s=0}^{\infty} (P_{UU}^{s})_{ij} (P_{UL})_{jk} (Y_{L})_{k}$$

$$= \sum_{k \in L_{+}} \sum_{j \in U} \sum_{s=0}^{\infty} (P_{UU}^{s})_{ij} (P_{UL})_{jk} - \sum_{k \in L_{-}} \sum_{j \in U} \sum_{s=0}^{\infty} (P_{UU}^{s})_{ij} (P_{UL})_{jk}$$

= P(hits positive points | started in i) - P(hits negative points | start

Do you trust all your labels?

Relaxed version of the approach of Belkin et al:

$$\arg\min_{f\in\mathbb{R}^n} \sum_{i\in L} (y_i - f_i)^2 + \frac{\lambda}{2} \sum_{i,j\in T} w_{ij} (f_i - f_j)^2,$$

where $\lambda > 0$ is the regularization parameter.

Extremal equations with $\Delta = D - W$:

 $(1 + \lambda \Delta)f = Y$, on the labeled points, $\lambda \Delta f = 0$, on the unlabeled points.

With
$$Y_i=0$$
 if i -th point and $(\mathbb{1}_L)_{ij}=\left\{egin{array}{ll} 1 & \mbox{if } i=j \mbox{ and } i \mbox{ is labeled,} \\ 0 & \mbox{if } i \mbox{ is unlabeled.} \end{array}\right.,$ $(\mathbb{1}_I+\lambda\Delta)f=Y.$

Comments

ullet All approaches can also be interpreted as kernel machines. Let Δ^\dagger be the pseudo-inverse of the graph Laplacian. Then

$$K = \Delta^{\dagger}$$
,

is a (data-dependent) kernel on n points. Let $f_i = \sum_{j=1}^n \alpha_j k(x_i, x_j)$. Then

$$f^{\top} \Delta f = \alpha^{\top} K^{T} \Delta K \alpha = \alpha^{\top} K \alpha.$$

• The structure of the graph influences significantly the result. For high-dimensional data one can improve the performance by using "Manifold Denoising" as a preprocessing method.

Experiments

- DemoSSL
- Graph structure has large influence on result (mainly unexplored area in machine learning),
- Result "can" be pretty stable with respect to the location of the labeled points,
- If cluster assumption is not valid then SSL does not help (in the worst case it yields even a worse performance).
- for a few labeled points (say 10 times the number of classes) cross validation works already pretty well.