```
In [1]: import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

In [18]: data = pd.read_csv('forestfires.csv')

In [19]: data

Out[19]:

	X	Y	month	day	FFMC	DMC	DC	ISI	temp	RH	wind	rain	area
0	7	5	mar	fri	86.2	26.2	94.3	5.1	8.2	51	6.7	0.0	0.00
1	7	4	oct	tue	90.6	35.4	669.1	6.7	18.0	33	0.9	0.0	0.00
2	7	4	oct	sat	90.6	43.7	686.9	6.7	14.6	33	1.3	0.0	0.00
3	8	6	mar	fri	91.7	33.3	77.5	9.0	8.3	97	4.0	0.2	0.00
4	8	6	mar	sun	89.3	51.3	102.2	9.6	11.4	99	1.8	0.0	0.00
512	4	3	aug	sun	81.6	56.7	665.6	1.9	27.8	32	2.7	0.0	6.44
513	2	4	aug	sun	81.6	56.7	665.6	1.9	21.9	71	5.8	0.0	54.29
514	7	4	aug	sun	81.6	56.7	665.6	1.9	21.2	70	6.7	0.0	11.16
515	1	4	aug	sat	94.4	146.0	614.7	11.3	25.6	42	4.0	0.0	0.00
516	6	3	nov	tue	79.5	3.0	106.7	1.1	11.8	31	4.5	0.0	0.00

517 rows × 13 columns

```
In [20]: # visualize the distribution of age using a histogram
    plt.figure(figsize=(8,6))
    sns.histplot(data['area'], bins=30, kde=True)
    plt.title('Distribution of Burned Area')
    plt.show()
```



```
In [21]: #visualize the realtionship between temprature and wind using scatter plot
    plt.figure(figsize=(8,6))
    sns.scatterplot(data['temp'])
    sns.scatterplot(data['wind'])
    plt.title('Temperature vs Wind')
    plt.show()
```



```
In [36]: #create a bar plot to show the counts of different months in the dataset
plt.figure(figsize=(8, 6))
sns.barplot(x='month',y='RH',data=data)
```

Out[36]: <Axes: xlabel='month', ylabel='RH'>

4 of 7 01-06-2023, 23:08

In [37]: #create a box plot
sns.boxplot(x='month',y='FFMC',data=data) # used to show distribution of numer

Out[37]: <Axes: xlabel='month', ylabel='FFMC'>

5 of 7 01-06-2023, 23:08

In [42]: sns.displot(data['DC'],bins=20,kde=False, color='green') #displot is used for

Out[42]: <seaborn.axisgrid.FacetGrid at 0x216cf822e00>


```
In [47]: plt.figure(figsize=(8, 6))
sns.lineplot(data=data,x='day',y='DC',color='red')
```

Out[47]: <Axes: xlabel='day', ylabel='DC'>

In []: