Exercices : la colinéarité

Exercice 1. Pour chacun des couples \overrightarrow{u} et \overrightarrow{v} , déterminer $det(\overrightarrow{u}, \overrightarrow{v})$:

1.
$$\overrightarrow{u} \begin{pmatrix} 5 \\ 3 \end{pmatrix}$$
 et $\overrightarrow{v} \begin{pmatrix} 2 \\ 6 \end{pmatrix}$

2.
$$\overrightarrow{u} \begin{pmatrix} -2 \\ 3 \end{pmatrix}$$
 et $\overrightarrow{V} \begin{pmatrix} 4 \\ -6 \end{pmatrix}$

3.
$$\overrightarrow{u} \begin{pmatrix} -3 \\ 3 \end{pmatrix}$$
 et $\overrightarrow{v} \begin{pmatrix} -2 \\ -1 \end{pmatrix}$

4.
$$\overrightarrow{u} \begin{pmatrix} -2 \\ -1 \end{pmatrix}$$
 et $\overrightarrow{v} \begin{pmatrix} -3 \\ 3 \end{pmatrix}$

5.
$$\overrightarrow{u}$$
 $\begin{pmatrix} \sqrt{3} \\ \frac{1}{3} \end{pmatrix}$ et \overrightarrow{v} $\begin{pmatrix} \frac{1}{2} \\ 2\sqrt{3} \end{pmatrix}$

Parmi ces vecteurs, lesquels sont colinéaires?

Exercice 3.

Soient A(5; -2), B(-6; 8), T(-12; 22), et U(3; -1) quatre points dans un repère. Calculer le déterminant de AB et TÚ. Que peut-on en déduire?

Exercice 4.

- 1) Les droites (AB) et (CD) sont-elles parallèles?
- 2) Les droites (AC) et (BD) sont-elles parallèles?
- 3) Faire un dessin pour "vérifier".

Exercice 6. Dans chaque cas, les vecteurs \overrightarrow{u} et \overrightarrow{v} sont colinéaires. Déterminer la valeur du/des réel(s) x.

1.
$$\overrightarrow{u} \begin{pmatrix} x \\ 5 \end{pmatrix}$$
 et $\overrightarrow{v} \begin{pmatrix} 1 \\ 3 \end{pmatrix}$

2.
$$\overrightarrow{u} \begin{pmatrix} 2 \\ x \end{pmatrix}$$
 et $\overrightarrow{V} \begin{pmatrix} -2 \\ 3 \end{pmatrix}$

3.
$$\overrightarrow{u} \begin{pmatrix} -1 \\ x \end{pmatrix}$$
 et $\overrightarrow{v} \begin{pmatrix} 7 \\ 3 \end{pmatrix}$

4.
$$\overrightarrow{u} \begin{pmatrix} x \\ 6 \end{pmatrix}$$
 et $\overrightarrow{V} \begin{pmatrix} 3 \\ x \end{pmatrix}$

5.
$$\overrightarrow{u} \begin{pmatrix} \frac{3}{4} \\ \frac{1}{6} \end{pmatrix}$$
 et $\overrightarrow{v} \begin{pmatrix} x \\ \frac{-2}{3} \end{pmatrix}$

6.
$$\overrightarrow{u} \begin{pmatrix} 7 \\ 3 \end{pmatrix}$$
 et $\overrightarrow{v} \begin{pmatrix} 2x+5 \\ -3x+2 \end{pmatrix}$

Exercice 2. Pour chacun des couples de vecteurs suivants, déterminer, s'il existe, le réel λ tel que $\overrightarrow{u} = \lambda \overrightarrow{V}$:

1.
$$\overrightarrow{u} \begin{pmatrix} 5 \\ 15 \end{pmatrix}$$
 et $\overrightarrow{v} \begin{pmatrix} 1 \\ 3 \end{pmatrix}$

2.
$$\overrightarrow{u} \begin{pmatrix} 12 \\ -18 \end{pmatrix}$$
 et $\overrightarrow{v} \begin{pmatrix} -2 \\ 3 \end{pmatrix}$

3.
$$\overrightarrow{u} \begin{pmatrix} 3 \\ 5 \end{pmatrix}$$
 et $\overrightarrow{v} \begin{pmatrix} -6 \\ -10 \end{pmatrix}$

4.
$$\overrightarrow{u} \begin{pmatrix} 3 \\ 6 \end{pmatrix}$$
 et $\overrightarrow{v} \begin{pmatrix} 7 \\ 14 \end{pmatrix}$

5.
$$\overrightarrow{u} \begin{pmatrix} 12 \\ 4 \end{pmatrix}$$
 et $\overrightarrow{v} \begin{pmatrix} 20 \\ 5 \end{pmatrix}$

6.
$$\overrightarrow{u}$$
 $\left(\frac{1}{3}\right)$ et \overrightarrow{v} $\left(\frac{\sqrt{5}}{15}\right)$

Méthode:

- 1. Calculer les coordonnées de deux vecteurs.
- 2. Utiliser la formule du déterminant.
- 3. Conclure.

Exercice 5.

Soient A(-3; 2), B(1; 3), C(-2; 0), et D(0, 5; 4) quatre points. Soient A, B, et C trois points. Dans chaque cas, dire s'ils sont alignés ou non. Justifier.

1.
$$A(5;8)$$
, $B(-3;-1)$, $C(-1;9)$

2.
$$A(3;6)$$
, $B(-1;-4)$, $C(-5;3)$

Exercice 7. Soient les points A(2; 1), B(-2; 3), C(-1; -2), et D(-3; -1).

- 1. Les vecteurs \overrightarrow{AB} et \overrightarrow{BD} sont-ils colinéaires? Justifier.
- 2. En déduire la nature du quadrilatère ABCD.
- 3. Soit E(3; -4). Les points D, C, et E sont-ils alignés? Justifier.

Exercice 8. Soient B(6; 0) et C(0; 4) dans un repère (O; \overrightarrow{i} , \overrightarrow{j})

- 1. Déterminer les coordonnées du milieu M de [BC].
- 2. Vérifier que MO = MB = MC
- 3. En déduire que les points O, C, B appartiennent à un même cercle. Déterminer son centre et son rayon.
- 4. Déterminer les coordonnées du point G tel que $\overrightarrow{GO} + \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{O}$.
- 5. Démontrer que O, M, et G sont alignés.

Exercice 9. Soient A($\sqrt{3}$; -1), B(2; 1), C(2; $\sqrt{2}$).

- 1. Déterminer les coordonnées du point D tel que ABCD soit un parallélogramme.
- 2. Calculer l'aire de ABCD.

Exercice 10. Soit ABCD un parallélogramme de centre O. Soit E tel que $\overrightarrow{AE} = 2\overrightarrow{AB}$ et F tel que $\overrightarrow{CF} = -2\overrightarrow{AB} - \frac{1}{F}\overrightarrow{AD}$.

- 1. Démontrer, en utilisant la relation de Chasles, que $\overrightarrow{FE} = 4\overrightarrow{AB} \frac{4}{5}\overrightarrow{AD}$.
- 2. De même, démontrer que $\overrightarrow{FO} = \frac{3}{2}\overrightarrow{AB} \frac{3}{10}\overrightarrow{AD}$.
- 3. En déduire que les points F, O, et E sont alignés.