Cátedra: "MEDIOS DE ENLACE"

Prof. Adjunto: Esp. Ing. Eduardo J. Menso JTP: Ing. Jorge Zozaya

Curso: 3R1 Ciclo: 2014

Reflexión normal dieléctrico/dieléctrico (cont.)

- \triangleright 1) Si η1 = 10 Ω + j 20 Ω y η2 = 30 Ω + j 40 Ω, calcular: a) coeficiente de reflexión Γ_E; b) coeficiente de refracción T_E; c) relación de onda estacionaria ROE (ρ).
- > 2) Demostrar la fórmula de cálculo del coeficiente de reflexión del vector campo eléctrico Γε.
- \gt 3) Indicar lo que sucede con el frente de corriente en la carga ZL si al final de una línea de transmisión de impedancia característica Zo, está terminada en circuito abierto (ZL = ∞ Ω).
- \gt 4) Indicar lo que sucede con el frente de tensión en la carga ZL si al final de una línea de transmisión de impedancia característica Zo, está terminada en cortocircuito (ZL = O Ω).

Respuestas

Demostración del coeficiente de reflexión.
 Conociendo:

$$e = e^+ + e^-$$
$$i = i^+ + i^-$$

$$i^{+} = \frac{e^{+}}{z_{0}}$$
 $i^{-} = -\frac{e^{-}}{z_{0}}$

$$\Gamma = \frac{e^-}{e^+}$$

$$Z_{l} = \frac{e}{i} = \frac{e^{+} + e^{-}}{i^{+} + i^{-}} = \frac{e^{+} + e^{-}}{\frac{e^{+}}{z_{0}} - \frac{e^{-}}{z_{0}}} = \frac{e^{+}(1 + \frac{e^{-}}{e^{+}})}{e^{+}(\frac{1}{z_{0}} - \frac{e^{+}}{z_{0}})} = \frac{1 + \Gamma}{\frac{1}{z_{0}} - \frac{\Gamma}{z_{0}}}$$

$$Z_l = \frac{1+\Gamma}{\frac{1}{z_0} - \frac{\Gamma}{z_0}}$$

$$Z_l\left(\frac{1}{z_0} - \frac{\Gamma}{z_0}\right) = 1 + \Gamma$$

$$\left(\frac{Z_l}{Z_0} - \frac{\Gamma \cdot Z_l}{Z_0}\right) = 1 + \Gamma$$

$$\left(\frac{z_l}{z_0} - 1\right) = \frac{\Gamma \cdot z_l}{z_0} + \Gamma$$

$$\left(\frac{Z_l}{Z_0}-1\right)=\left(\frac{Z_l}{Z_0}+1\right).\,\Gamma$$

$$\Gamma = \frac{\left(\frac{Z_l}{z_0} - 1\right)}{\left(\frac{Z_l}{z_0} + 1\right)}$$

$$\Gamma = \frac{\left(\frac{Z_l - z_0}{z_0}\right)}{\left(\frac{Z_l + z_0}{z_0}\right)} \qquad \qquad \Gamma = \frac{Z_l - z_0}{Z_l + z_0}$$

Cátedra: "MEDIOS DE ENLACE"

Prof. Adjunto: Esp. Ing. Eduardo J. Menso JTP: Ing. Jorge Zozaya

Curso: 3R1 Ciclo: 2014

1)
$$\Gamma = \frac{5}{13} - \frac{1}{13}j$$

$$T_E = \frac{18}{13} - \frac{1}{13}J$$

$$ROE = 2.62$$

- 3) El frente de corriente es invertido cuando $z_l=\infty$ Ω
- 4) El frente de tensión es invertido cuando $~z_l=0\Omega$