Tout savoir sur les fonctions affines

L'essentiel à retenir

1 Définition

Définition 1: Fonctions affines

Une fonction affine est une fonction f définie sur $\mathbb R$ par :

$$f(x) = ax + b$$

avec a et b des constantes réelles, $a \neq 0$ qui porte le nom :

- a est le **coefficient directeur**, car selon son signe f est croissante ou décroissante sur \mathbb{R} .
- b est **l'ordonnée à l'origine**, car f(0) = b

2 Représentation graphique

2.1 Les fonctions affines sont des droites

Proposition 1

La courbe représentative d'une fonction affine est une **droite**.

Ci-contre, voici deux exemples de fonction affine.

f est croissante sur \mathbb{R} , alors que q est décroissante.

2.2 Lire le coefficient directeur d'une droite

Exemple 1

Ici, on peut lire deux points A et B qui appartiennent à la droite, avec :

$$A = (-1, -2, 5)$$
 et $B = (1, 5, 1, 25)$

On peut calculer Δx et Δy par :

$$\Delta x = 1.5 - (-1)$$
 $\Delta y = 1.25 - (-2.5)$
 $\Delta x = 2.5$ $\Delta y = 3.75$

On en déduit que le coefficient directeur a de la fonction affine f vaut :

$$a = \frac{\Delta y}{\Delta x} = \frac{3.75}{2.5} = 1.5$$

Donc
$$a = 1.5$$

3 Antécédent de 0

Proposition 2

Pour trouver les antécédents de 0, il suffit de résoudre l'équation f(x)=0.

Si
$$f(x) = ax + b$$
, alors l'antécédent de 0 est $x = \frac{-b}{a}$.

Exemple 2

Si f(x) = -3x + 5 alors résoudre f(x) = 0 revient à la résolution suivante :

$$-3x + 5 = 0$$
$$-3x = -5$$
$$x = \frac{-5}{-3}$$
$$x = \frac{5}{3}$$

2

Donc l'antécédent de 0 par la fonction f est $x = \frac{5}{3}$. Autrement dit $f\left(\frac{5}{3}\right) = 0$

4 Tableau de variation

Proposition 3

Pour f(x) = ax + b une fonction affine :

- 1. Si a > 0, alors f est **croissante** sur \mathbb{R} ,
- 2. Si a < 0 alors f est **décroissante** sur \mathbb{R} .

Exemple 3

Voici deux exemples de rédaction :

- 1. Si g(x) = 3x 2 alors a = 3 > 0 donc g est **croissante** sur \mathbb{R} .
- 2. Si f(x) = 8 4x alors a = -4 < 0 donc f est **décroissante** sur \mathbb{R} .

5 Tableau de signe

On utilise les résultats de la partie 3 pour trouver l'antécédent par une fonction affine de 0 et pouvoir compléter le tableau de signe.

Proposition 4

Si f est une fonction affine croissante sur \mathbb{R} , alors son tableau de signe est donné par le tableau 1

Proposition 5

Si f est une fonction affine décroissante sur \mathbb{R} , alors son tableau de signe est donné par le tableau 2

x	$-\infty$		$\frac{-b}{a}$		$+\infty$
f(x)		_	ф	+	

Figure 1 – Tableau de signe d'une fonction affine croissante (a > 0)

x	$-\infty$		$\frac{-b}{a}$		$+\infty$
f(x)		+	ф	_	

Figure 2 – Tableau de signe d'une fonction affine décroissante (a < 0)

6 Tableau de signe d'un produit de fonctions affines

Proposition 6

Si $f(x) = f_1(x) \times f_2(x)$ avec f_1 et f_2 deux fonctions affines, alors :

- 1. f(x) est positif si et seulement si $f_1(x)$ et $f_2(x)$ sont de même signe.
- 2. f(x) est égal à 0 si et seulement si $f_1(x)$ ou $f_2(x)$ est égal à 0
- 3. Dans tous les autres cas, f(x) est négatif.

Exemple 4

Soit la fonction f(x) = (4x - 5)(-2x + 2). Donner le tableau de signe de f sur \mathbb{R} .

7 Tableau de signe d'un quotient de fonctions affines

Proposition 7

Si $f(x) = \frac{f_1(x)}{f_2(x)}$ avec f_1 et f_2 deux fonctions affines, alors f est définie sur \mathbb{R} sauf pour l'antécédent de f_2 (car on ne peut pas diviser par f_2).

Pour tout $x \in \mathbb{R}$ excepté l'antécédent de 0 par f_2 , on a :

- 1. f(x) est positif si et seulement si $f_1(x)$ et $f_2(x)$ sont de même signe.
- 2. f(x) est égal à 0 si et seulement si $f_1(x)$ est égal à 0
- 3. Dans tous les autres cas, f(x) est négatif.

Exemple 5

Soit la fonction $f(x) = \frac{4x-3}{2x+1}$ Donner le tableau de signe de f sur $\mathbb{R} \setminus \{\frac{-1}{2}\}$.