Solution to Review Questions

MAT1320, Fall 2015

1. 3 / 2.

2.
$$x = \frac{\ln 2 + \ln 3}{2 \ln 2 - \ln 3} = \frac{\ln 6}{\ln(4/3)}$$
.

$$3. \ \ x = \frac{10e^{-3}}{1 + e^{-3}}.$$

4. (a)
$$-0.3$$
. (b) $\frac{\pi}{3}$. (c) $\frac{\pi}{3}$. (d) $\frac{a}{\sqrt{1+a^2}}$.

5. (a)
$$-\frac{4}{3}$$
. (b) $\frac{1}{6}$. (c) $\frac{1}{\sqrt{2}}$. (d) $-\frac{1}{2}$.

6.
$$a = -4$$
, $b = 15$.

7.
$$y' = 2x \cos(x^2) e^{\sin(x^2)}$$
.

8.

9.
$$y' = \frac{1}{\sqrt{2x-1}}$$
.

10.
$$y' = \frac{1}{\sqrt{x^2 + 4}}, y'' = -\frac{x}{(x^2 + 4)^{3/2}}.$$

11.
$$y^{(73)} = -\sin x$$
.

12.
$$y' = 7 / 8$$
.

13.
$$y' = \frac{(x^4+1)^{2/3}e^{x^2}}{\sqrt{x^2+1}} \left(\frac{8x^3}{3(x^4+1)} + 2x - \frac{x}{x^2+1} \right).$$

14.
$$y' = (\sin x)^{\sin x} \cos x (\ln \sin x + 1).$$

- **15.** 6 / 13 m / sec.
- **16.** $1.4 \text{ cm}^2 / \text{min.}$
- **17.** $y = \frac{5}{27}(x-4) + 3. \frac{79}{27}$.
- **18.** *π*.
- **19.** 7.
- **20.** $L_6 = 2.180$, $R_6 = 2.220$, $T_6 = 2.200$, $S_6 = 2.227$.
- **21.** $M_6 = 1.471$.
- **22.** $\frac{2128}{3}$ meters.
- **23.** $F'(x) = 3x^2(2x^6+1)^{1/3} 2x(2x^4+1)^{1/3}$.
- 24. $\frac{52}{5}$
- **25.** $\frac{5}{3}$.
- **26.** $\frac{1}{3}x^3 \arctan x \frac{1}{6}x^2 \frac{1}{6}\ln(1+x^2) + C$.
- 27. $\frac{4}{3}$.
- **28.** $-\frac{1}{12}\ln|3x+1|+\frac{3}{4}\ln|x-1|+C$.
- **29.** $\frac{1}{2}\ln(x^2+2x+5)+\frac{1}{2}\arctan\left(\frac{x+1}{2}\right)+C$.
- **30.** $\frac{1}{5} \ln|x| \frac{1}{10} \ln(x^2 + 2x + 5) \frac{1}{10} \arctan\left(\frac{x+1}{2}\right) + C$
- 31. $\frac{x}{\sqrt{1-x^2}} + C$.

32. (a)
$$y' = -\frac{4x-1}{5x^{4/5}(x+1)^2}$$
, $y'' = \frac{2(18x^2 - 9x - 2)}{25x^{9/5}(x+1)^3}$.

- (b) x = 0, x = 1/4.
- (c) The function is increasing when x < -1 or -1 < x < 1/4, and it is decreasing when x > 1/4.
- (d) Local maximum at x = 1/4. $y(1/4) = \frac{2^{8/5}}{5}$. No local minimum.
- (e) The graph of the function is concave up when x < -1 or $-\frac{1}{6} < x < 0$ or $x > \frac{2}{3}$, and it is concave down when $-1 < x < -\frac{1}{6}$ or $x > \frac{2}{3}$.
- (f) Inflection points: $\left(-\frac{1}{6}, -\frac{6^{4/5}}{5}\right), \left(\frac{2}{3}, \frac{2^{1/5} \cdot 3^{4/5}}{5}\right)$.
- (g) Vertical asymptote: x = -1, horizontal asymptote y = 0.
- (h) The graph:

- **33.** $-\frac{1}{2}$.
- **34.** 0.
- 35. e^{-2}

36.
$$\frac{1}{2}$$
.

- 37. $A_{\text{max}} = 300 \text{ cm}^2$.
- **38.** $w = \frac{10}{6 \sqrt{3}} \approx 2.343, h = \frac{1}{2} (10 \frac{30}{6 \sqrt{3}}) \approx 1.485. A \approx 5.858.$
- **39.** $x_2 = 1.556684$, $x_3 = 1.327124$, $x_4 = 1.261360$, $x_5 = 1.256462$, $x_6 = 1.256431$.