12 Криві другого порядку на площині. Коло, еліпс, гіпербола, парабола.

12.1 Коло, його канонічне рівняння.

Означення 12.1. *Колом* називається геометричне місце точок площини таких, що всі точки знаходяться на однаковій відстані R від фіксованої точки площини, яка називається центром кола.

Нехай на площині задано декартову систему координат Oxy. Складемо рівняння кола. Для цього зафіксуємо точку площини— центр кола $M_0(x_0, y_0)$. Нехай M(x, y)— довільна точка кола. Із означення випливає, що $|M_0M|=R$, тобто

$$\sqrt{(x-x_0)^2 + (y-y_0)^2} = R.$$

Звідси отримуємо рівняння

$$(x - x_0)^2 + (y - y_0)^2 = R^2. (12.1)$$

Рівняння (12.1) називається *канонічним рівнянням кола*. Якщо $x_0 = y_0 = 0$, то центр кола знаходиться у початку координат.

Отже, довільна точка, що належить колу, у деякій декартовій системі координат задовольняє рівняння (12.1).

12.2 Еліпс, його канонічне рівняння.

Означення 12.2. *Еліпсом* називається геометричне місце точок площини таких, що сума відстаней від кожної з них до двох фіксованих точок площини, які називаються фокусами, є величиною сталою і більшою за відстань між фокусами.

Канонічне рівняння еліпса. Зафіксуємо дві точки площини — фокуси F_1 і F_2 . Розглянемо на площині таку декартову систему координат Oxy, що вісь Ox проходить через фокуси F_1 і F_2 , а точка O є серединою відрізка F_1F_2 . Таким чином, $F_1(-c,0)$ і $F_2(c,0)$, де c — відоме додатне дійсне число.

Нехай M(x,y) — довільна точка еліпса, та сума відстаней від точки M(x,y) до фокусів дорівнює 2a, тобто $|MF_1|+|MF_2|=2a$. Відрізки $|MF_1|$ і $|MF_2|$ називаються фокальними радіусами.

Оскільки
$$|MF_1| = \sqrt{(x+c)^2 + y^2}, \, |MF_2| = \sqrt{(x-c)^2 + y^2}, \, \text{то}$$

$$\sqrt{(x+c)^2 + y^2} + \sqrt{(x-c)^2 + y^2} = 2a.$$

звідки

$$(a^2 - c^2)x^2 + a^2y^2 = a^2(a^2 - c^2).$$

За означенням еліпса a>c. Тому, покладаючи $a^2-c^2=b^2$, отримаємо рівняння

$$b^2x^2 + a^2y^2 = a^2b^2,$$

звідки

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1. ag{12.2}$$

Рівняння (12.2) називається *канонічним рівнянням еліпса*. Зауважимо, що у випадку, коли a=b, рівняння (12.2) описує на площині коло з центром у початку координат та радіуса R=a.

Отже, довільна точка, що належить еліпсу, у деякій декартовій системі координат задовольняє рівняння (12.2).

Форма та характеристики еліпса. Дослідимо за рівнянням (12.2) форму та розташування еліпса.

1. Змінні x та y входять у рівняння (12.2) у парних степенях. Тому, якщо точка (x,y) належить еліпсу, то і точки (-x,y),(x,-y),(-x,-y) також належать еліпсу.

Отже, фігура симетрична відносно осей Ox та Oy, а також точки O(0,0), яку називають центром еліпса.

- **2.** Знайдемо точки перетину еліпса з осями координат. Підставивши у рівняння $(12.2)\ y=0$, отримаємо, що вісь Ox еліпс перетинає у точках $A_1(a,0),\ A_2(-a,0).$ Поклавши x=0, отримаємо дві точки $B_1(0,b),\ B_2(0,-b),$ в яких еліпс перетинає вісь Oy. Точки $A_1,\ A_2,\ B_1,\ B_2$ називають вершинами еліпса. Відрізки A_1A_2 та B_1B_2 , а також їх довжини 2a і 2b називають відповідно великою та малою осями еліпса. Числа a і b називають відповідно великою та малою півосями еліпса.
- 3. З рівняння (12.2) також випливає, що $\frac{x^2}{a^2} \le 1$ і $\frac{y^2}{b^2} \le 1$, звідки $-a \le x \le a$ і $-b \le y \le b$. Тобто всі точки еліпса знаходяться всередині прямокутника, утвореного прямими $x = \pm a$ і $y = \pm b$.
- 4. Візьмемо на еліпсі точку (x,y) у першій чверті, тобто $x \ge 0, y \ge 0$, а тому $y = \frac{b}{a}\sqrt{a^2-x^2}, \ 0 \le x \le a$. Оскільки $y' = -\frac{bx}{a\sqrt{a^2-x^2}} < 0$, при 0 < x < a, то функція монотонно спадає при 0 < x < a. Аналогічно, оскільки $y'' = -\frac{ab}{(a^2-x^2)^{\frac{3}{2}}} < 0$, при 0 < x < a. Таким чином, еліпс є замкненою овальною кривою. За встановленими характеристиками побудуємо еліпс:

5. Відношення половини відстані між фокусами до більшої півосі $\frac{c}{a}$ називається ексцентриситетом еліпса і позначається літерою ε :

$$\varepsilon = \frac{c}{a}$$
.

Зауважимо, що $0 < \varepsilon < 1$. Перепишемо ексцентриситет наступним чином:

$$\varepsilon = \frac{c}{a} = \frac{\sqrt{a^2 - b^2}}{a} = \sqrt{1 - \frac{b^2}{a^2}},$$

тобто

$$\frac{b}{a} = \sqrt{1 - \varepsilon^2}.$$

Звідси випливає, що чим меншим є ексцентриситет, тим меньше сплющений еліпс.

6. Нехай M(x,y) — довільна точка еліпса. Розглянемо фокальні радіуси $|MF_1|=r_1$ і $|MF_2|=r_2$. Тоді $r_1+r_2=2a$, і мають місце рівності:

$$r_1 = a + \varepsilon x, \quad r_2 = a - \varepsilon x.$$

Прямі $x=\pm \frac{a}{\varepsilon}$ називаються $\partial upeкmpucamu$ еліпса. Значення директрис еліпса міститься у наступній теоремі.

Твердження 12.1. Якщо r- відстань від довільної точки еліпса до одного з двох фокусів, а d- відстань від цієї ж точки до відповідної цьому фокусу директриси, то відношення $\frac{r}{d}$ є величиною сталою, рівною ексцентриситету.

7. Якщо a < b, то рівняння (12.2) описує еліпс, більша вісь якого 2b лежить на осі Oy, а мала вісь 2a — на осі Ox. При цьому фокуси знаходяться у точках $F_1(0,c)$ $F_2(0,-c)$, де $c^2=b^2-a^2$, $\varepsilon=\frac{c}{b}$, а директриси мають рівняння $y=\pm\frac{b}{\varepsilon}$.

8. Якщо центр еліпса знаходиться у точці $O_1(x_0, y_0)$, то його канонічне рівняння має вигляд:

$$\frac{(x-x_0)^2}{a^2} + \frac{(y-y_0)^2}{b^2} = 1.$$

При цьому, якщо a > b, то фокуси знаходяться у точках $F_1(x_0 + c, y_0)$ і $F_2(x_0 - c, y_0)$, а директриси задаються рівняннями: $x = x_0 \pm \frac{a}{\varepsilon}$.

9. Канонічне рівняння еліпса (12.2) можна подати у параметричному вигляді наступним чином:

$$\begin{cases} x = a\cos t, \\ y = b\sin t. \end{cases}$$

12.3 Гіпербола, її канонічне рівняння.

Означення 12.3. *Гіперболою* називається геометричне місце точок площини таких, що модуль різниці відстаней від кожної з них до двох фіксованих точок площини, які називаються фокусами, є величиною сталою і меншою за відстань між фокусами.

Канонічне рівняння гіперболи. Зафіксуємо дві точки площини — фокуси F_1 і F_2 . Розглянемо на площині таку декартову систему координат Oxy, що вісь Ox проходить через фокуси F_1 і F_2 , а точка O є серединою відрізка F_1F_2 . Таким чином, $F_1(-c,0)$ і $F_2(c,0)$, де c — відоме додатне дійсне число.

Нехай M(x,y) — довільна точка гіперболи. За означенням гіперболи модуль різниці відстаней від точки M(x,y) до фокусів є сталою величиною. Позначимо це число 2a. А саме, $||MF_1| - |MF_2|| = 2a$. Відрізки $|MF_1|$ і $|MF_2|$ називаються фокальними радіусами.

Таким чином, $|MF_1| - |MF_2| = \pm 2a$, звідки

$$\sqrt{(x+c)^2 + y^2} - \sqrt{(x-c)^2 + y^2} = \pm 2a.$$

Спростивши це рівняння, отримаємо

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1, (12.3)$$

де $b^2 = c^2 - a^2$. Рівняння (12.3) називається *канонічним рівнянням гіперболи*. Отже, довільна точка, що належить гіперболі, у деякій декартовій системі координат задовольняє рівняння (12.3).

Форма та характеристики гіперболи. Дослідимо за рівнянням (12.3) форму та розташування гіперболи.

- 1. Змінні x та y входять у рівняння (12.3) у парних степенях. Тому, якщо точка (x,y) належить гіперболі, то і точки (-x,y), (x,-y), (-x,-y) також належать гіперболі. Отже, фігура симетрична відносно осей Ox та Oy, а також точки O(0,0), яку називають центром гіперболи.
- **2.** Знайдемо точки перетину гіперболи з осями координат. Підставивши у рівняння (12.3) y = 0, отримаємо, що гіпербола перетинає вісь Ox у точках $A_1(a,0)$, $A_2(-a,0)$. Поклавши x = 0, отримаємо рівняння $y^2 = -b^2$, яке не має розв'язків. Отже, гіпербола не перетинає вісь Oy. Точки A_1 , A_2 називаються вершинами гіперболи.

Відрізок $A_1A_2=2a$ називається ∂i йсною віссю гіперболи, а відрізок $B_1B_2=2b$ — уявною віссю гіперболи. Числа a і b називаються відповідно ∂i йсною та уявною півосями гіперболи. Прямокутник, утворений осями 2a та 2b називається головним прямокутником гіперболи.

- **3.** З рівняння (12.3) випливає, що $\frac{x^2}{a^2} \ge 1$, тобто $|x| \ge a$. Це означає, що всі точки гіперболи розташовані справа від прямої x = a (права гілка гіперболи) і зліва від прямої x = -a (ліва гілка гіперболи).
- **4.** Візьмемо на гіперболі точку (x,y) у першій чверті, тобто $x\geq 0,\ y\geq 0,\ a$ тому $y=\frac{b}{a}\sqrt{x^2-a^2},\ x\geq a.$ Оскільки $y'=\frac{bx}{a\sqrt{x^2-a^2}}>0,$ при x>a, то функція монотонно зростає при x>a. Аналогічно, оскільки $y''=-\frac{ab}{(x^2-a^2)^{\frac{3}{2}}}<0,$ при x>a, то функція є опуклою вгору при x>a.
- **5. Асимптоти гіперболи**. Гіпербола має дві асимптоти. Знайдемо асимптоту до гілки гіперболи, що знаходиться у першій чверті, а потім скористаємося

симетрією. Розглянемо точку (x,y) у першій чверті, тобто $x\geq 0,\,y\geq 0.$ В цьому випадку $y=\frac{b}{a}\sqrt{x^2-a^2},\,x\geq a.$ Тоді асимптота матиме вигляд y=Kx+B, де

$$K = \lim_{x \to +\infty} \frac{y}{x} = \lim_{x \to +\infty} \frac{\frac{b}{a}\sqrt{x^2 - a^2}}{x} = \frac{b}{a},$$

$$B = \lim_{x \to +\infty} (y(x) - Kx) = \lim_{x \to +\infty} \left(\frac{b}{a}\sqrt{x^2 - a^2} - \frac{b}{a}x\right) =$$

$$= \frac{b}{a} \lim_{x \to +\infty} \frac{\left(\sqrt{x^2 - a^2} - x\right)\left(\sqrt{x^2 - a^2} + x\right)}{\left(\sqrt{x^2 - a^2} + x\right)} = \frac{b}{a} \lim_{x \to +\infty} \frac{b^2}{\left(\sqrt{x^2 - a^2} + x\right)} = 0.$$

Отже, пряма $y=\frac{b}{a}x$ є асимптотою функції $y=\frac{b}{a}\sqrt{x^2-a^2},\ x\geq a.$ Тому в силу симетрії асимптотами гіперболи є прямі $y=\pm\frac{b}{a}x.$

За встановленими характеристиками побудуємо гілку гіперболи, що знаходиться у першій чверті, та скористаємося симетрією:

6. У випадку, коли b=a, тобто гіпербола описується рівнянням

$$x^2 - y^2 = a^2,$$

гіпербола називається *рівнобічною*. Рівнобічна гіпербола має асимптоти, які є бісектрисами координатних кутів: $y=\pm x$.

7. Відношення половини відстані між фокусами до більшої півосі $\frac{c}{a}$ називається $e\kappa cuehmpucumemom$ гіперболи і позначається літерою ε :

$$\varepsilon = \frac{c}{a}.$$

Зауважимо, що для гіперболи $\varepsilon > 1$, оскільки c > a. Ексцентриситет характеризує форму гіперболи. Дійсно, оскільки

$$\frac{b}{a} = \sqrt{\frac{c^2}{a^2} - 1} = \sqrt{\varepsilon^2 - 1},$$

то чим менше ексцентриситет гіперболи, тим менше відношення півосей гіперболи $\frac{b}{a}$, і тим більше розтягнутий її головний прямокутник.

У рівнобічної гіперболи $\varepsilon = \sqrt{2}$.

8. Нехай M(x,y) — довільна точка гіперболи. Розглянемо фокальні радіуси $|MF_1|=r_1$ і $|MF_2|=r_2$. Для точок правої гілки гіперболи вони мають вигляд:

$$r_1' = a + \varepsilon x, \quad r_2' = -a + \varepsilon x.$$

Для точок лівої гілки гіперболи фокальні радіуси задаються формулами

$$r_1'' = -a - \varepsilon x, \quad r_2'' = a - \varepsilon x.$$

відповідно.

Прямі $x=\pm \frac{a}{\varepsilon}$ називаються $\partial upeкmpucamu$ гіперболи. Оскільки у гіперболи $\varepsilon>1$, то $\frac{a}{\varepsilon}< a$, тобто її директриси розташовані між початком координат та вершинами $A_1(a,0),\,A_2(-a,0).$

Значення директрис гіперболи міститься у наступній теоремі.

Твердження 12.2. Якщо r- відстань від довільної точки гіперболи до одного з двох фокусів, а d- відстань від цієї ж точки до відповідної цьому фокусу директриси, то відношення $\frac{r}{d}$ є величиною сталою, рівною ексцентриситету гіперболи.

9. Крива, що задається рівнянням

$$\frac{y^2}{b^2} - \frac{x^2}{a^2} = 1,$$

також є гіперболою. Дійсна вісь 2b цієї гіперболи розташована на осі Oy, а уявна 2a — на осі Ox. Очевидно, що гіперболи $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ та $\frac{y^2}{b^2} - \frac{x^2}{a^2} = 1$ мають однакові асимптоти.

Гіпербола $\frac{y^2}{b^2} - \frac{x^2}{a^2} = 1$ називається *спряженою* до гіперболи $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$. На малюнку нижче спряжена гіпербола зображена пунктиром.

10. Канонічне рівняння гіперболи (12.3) можна подати у параметричному вигляді наступним чином:

$$\begin{cases} x = a \operatorname{ch} t, \\ y = b \operatorname{sh} t. \end{cases}$$

12.4 Парабола, її канонічне рівняння.

Означення 12.4. *Параболою* називається геометричне місце точок площини, кожна з яких рівновіддалена від фіксованої точки площини, що називається фокусом, та фіксованої прямої, яка називається директрисою.

Відстань від фокуса до директриси параболи називається параметром параболи і позначається $p\ (p{>}0).$

Зафіксуємо на площині фокус F та пряму — D — директрису параболи. Виберемо на площині декаротову систему координат так, щоб вісь Ox проходила через фокус F перпендикулярно директрисі D у напрямку від директриси до фокуса. Початок координат помістимо у середині перпендикуляра, опущеного з фокуса на директрису. У вибраній системі координат $F(\frac{p}{2},0)$, а директриса D має рівняння $x=-\frac{p}{2}$.

Нехай M(x,y) — довільна точка параболи. Знайдемо окремо відстань |FM|:

$$|FM| = \sqrt{(x - \frac{p}{2})^2 + y^2}.$$

Відрізок |FM| називається фокальним радіусом точки M. Позначимо через N — основу перпендикуляра з точки M на директрису. Тоді

$$|MN| = \sqrt{(x + \frac{p}{2})^2 + (y - y)^2} = \left| x + \frac{p}{2} \right|.$$

Таким чином, оскільки за означенням |FM| = |MN|, то

$$\sqrt{(x-\frac{p}{2})^2+y^2} = \left|x+\frac{p}{2}\right|.$$

Піднісши останню рівність до квадрату та спростивши її, отримаємо рівняння:

$$y^2 = 2px,$$

яке називається канонічним рівнянням параболи.

Форма та характеристики параболи. Дослідимо за канонічним рівнянням форму та розташування параболи.

- 1. У рівняння $y^2 = 2px$ змінна y входить у парній степені, звідки випливає, що парабола симетрична відносно осі Ox. Вісь Ox є віссю симетрії параболи.
- **2.** Оскільки p>0, то $x\geq 0$, звідки випливає, що парабола розташована справа від осі Oy.
- **3.** При x=0 маємо y=0, тобто парабола проходить через початок координат. Точка O(0,0) називається вершиною параболи.
- **4.** При збільшенні значень змінної x модуль y також зростає. Зобразимо параболу на малюнку:

Рівняння $y^2 = -2px$, $x^2 = 2py$, $x^2 = -2py$ (p > 0) також описують параболи:

Нижче схематично зображено параболи з вершинами у точці $O_1(x_0, y_0)$.

12.5 Загальне рівняння кривої другого порядку.

Означення 12.5. *Кривою другого порядку* на площині називається сукупність точок (геометричне місце точок), які в деякій декартовій системі координат Oxy задовольняють алгебраїчне рівняння другого порядку:

$$Ax^{2} + 2Bxy + Cy^{2} + 2Dx + 2Ey + F = 0, (12.4)$$

де $A,\,B,\,C,\,D,\,E,\,F$ — дійсні числа, причому принаймні одне з чисел $A,\,B,\,C$ не дорівнює нулю.

Насправді, рівняння (12.4) задає на площині еліпс, гіперболу або параболу. Детальне пояснення цього факту дає наступна теорема.

Теорема 12.1. Загальне рівняння (12.4) кривої другого порядку, задане у декартовій системі координат Оху, за допомогою перетворення системи координат можна звести до одного з наступних виглядів:

I.
$$\widehat{A}x_2^2 + \widehat{C}y_2^2 + \widehat{F} = 0$$
, $\widehat{A} \cdot \widehat{C} \neq 0$;
II. $\widehat{C}y_2^2 + 2\widehat{D}x_2 = 0$, $\widehat{C} \cdot \widehat{D} \neq 0$, або $\widehat{A}x_2^2 + 2\widehat{E}y_2 = 0$, $\widehat{A} \cdot \widehat{E} \neq 0$;
III. $\widehat{A}x_2^2 + \widehat{F} = 0$, $\widehat{A} \neq 0$, або $\widehat{C}y_2^2 + \widehat{F} = 0$, $\widehat{C} \neq 0$, де x_2 i y_2 — змінні у новій декартовій системі координат Ox_2y_2 .

Доведення. Покажемо, що в деякій декартовій системі координат задана крива другого порядку задається одним з трьох рівнянь.

Якщо у рівнянні (12.4) $B \neq 0$, то спочатку перейдемо від декартової системи координат Oxy до декартової системи координат Ox_1y_1 , у якій задана крива буде описуватися рівнянням другого порядку, що не містить доданка з множником xy. Для цього знайдемо кут α , на який потрібно повернути навколо точки O(0,0) осі координат Ox, Oy (див. пункт 9.2). Покладемо

$$\begin{cases} x = x_1 \cos \alpha - y_1 \sin \alpha, \\ y = x_1 \sin \alpha + y_1 \cos \alpha. \end{cases}$$

Підставляючи ці координати замість змінних x та y у рівняння (12.4), отримаємо:

 $A(x_1\cos\alpha - y_1\sin\alpha)^2 + 2B(x_1\cos\alpha - y_1\sin\alpha)(x_1\sin\alpha + y_1\cos\alpha) + C(x_1\sin\alpha + y_1\cos\alpha)^2 +$

$$+2D(x_1\cos\alpha - y_1\sin\alpha) + 2E(x_1\sin\alpha + y_1\cos\alpha) + F = 0.$$

Збираючи подібні доданки, бачимо, що коефіцієнт при x_1y_1 дорівнює

$$(-2A + 2C)\sin\alpha\cos\alpha + 2B(\cos^2\alpha - \sin^2\alpha).$$

Отже, нехай кут α такий, що

$$(-2A + 2C)\sin\alpha\cos\alpha + 2B(\cos^2\alpha - \sin^2\alpha) = 0.$$

Враховуючи, що $B \neq 0$, останнє рівняння еквівалентне наступному:

$$\operatorname{ctg}\alpha = \frac{A - C}{2B}.$$

Таким чином, при повороті осей Ox, Oy на кут α , ми отримаємо нову декартову систему координат Ox_1y_1 , у якій задана крива другого порядку буде описуватися рівнянням:

$$\widehat{A}x_1^2 + \widehat{C}y_1^2 + 2\widehat{D}x_1 + 2\widehat{E}y_1 + F = 0, \tag{12.5}$$

де $\widehat{A} = (A\cos^2\alpha + 2B\sin\alpha\cos\alpha + C\sin^2\alpha), \widehat{C} = (A\sin^2\alpha - 2B\sin\alpha\cos\alpha + C\cos^2\alpha),$ $\widehat{D} = D\cos\alpha + E\sin\alpha, \widehat{E} = -D\sin\alpha + E\cos\alpha.$

Розглянемо три випадки:

І. $\widehat{A} \cdot \widehat{C} \neq 0$. Тоді, виділяючи повні квадрати у рівнянні (12.5), отримаємо

$$\widehat{A}\left(x_1 + \frac{\widehat{D}}{\widehat{A}}\right)^2 + \widehat{C}\left(y_1 + \frac{\widehat{E}}{\widehat{C}}\right)^2 + \left(F - \frac{\widehat{D}^2}{\widehat{A}} - \frac{\widehat{E}^2}{\widehat{C}}\right) = 0.$$

Тому перенесемо паралельно початок координат $O_1(0,0)$ системи координат Ox_1y_1 у точку $\widehat{O}\left(-\frac{\widehat{D}}{\widehat{A}},-\frac{\widehat{E}}{\widehat{C}}\right)$ координатної площини Oxy.

При цьому рівняння заданої кривої другого порядку прийме вигляд:

$$\widehat{A}x_2^2 + \widehat{C}y_2^2 + \widehat{F} = 0, \quad \widehat{A} \cdot \widehat{C} \neq 0,$$

де $\widehat{F}=F-rac{\widehat{D}^2}{\widehat{A}}-rac{\widehat{E}^2}{\widehat{C}},$ і нові координати виражаються через старі наступним чином:

$$\begin{cases} x_2 = x_1 + \frac{\widehat{D}}{\widehat{A}}, \\ y_2 = y_1 + \frac{\widehat{E}}{\widehat{C}}. \end{cases}$$

II. Нехай $\widehat{C}\cdot\widehat{D}\neq 0$ (аналогічно, $\widehat{A}\cdot\widehat{E}\neq 0$). В цьому випадку рівняння (12.5) набуває вигляду:

$$\widehat{C}\left(y_1 + \frac{\widehat{E}}{\widehat{C}}\right)^2 + 2\widehat{D}\left(x_1 + \frac{F - \frac{\widehat{E}^2}{\widehat{C}}}{2\widehat{D}}\right) = 0.$$

Паралельним переносом осей координат у точку $\widehat{O}\left(-\frac{\widehat{E}}{\widehat{C}},\frac{\widehat{E}^2-F}{2\widehat{D}}\right)$ координатної площини Oxy, отримаємо у новій системі координат рівняння заданої кривої:

$$\widehat{C}y_2^2 + 2\widehat{D}x_2 = 0,$$

причому

$$\begin{cases} x_2 = x_1 + \frac{F - \frac{\widehat{E}^2}{\widehat{C}}}{2\widehat{D}}, \\ y_2 = y_1 + \frac{\widehat{E}}{\widehat{C}}. \end{cases}$$

III. $\widehat{A} \neq 0$ (аналогічно, $\widehat{C} \neq 0$). В цьому випадку, виділивши повний квадрат у рівнянні (12.5), отримаємо:

$$\widehat{A}\left(x_1 + \frac{\widehat{D}}{\widehat{A}}\right)^2 + \left(F - \frac{\widehat{D}^2}{\widehat{A}}\right) = 0.$$

Паралельним переносом початку координат системи Ox_1y_1 у точку $\widehat{O}\left(-\frac{\widehat{D}}{\widehat{A}},0\right)$, отримаємо рівняння заданої кривої у новій системі координат:

$$\widehat{A}x_2^2 + \widehat{F} = 0,$$

де $\widehat{F} = F - \frac{\widehat{D}^2}{\widehat{A}}$. При цьому

$$\begin{cases} x_2 = x_1 + \frac{\widehat{D}}{\widehat{A}}, \\ y_2 = y_1. \end{cases}$$

Таким чином, теорему доведено.

Рівняння I, II, III, наведені у теоремі 12.1, називаються найпростішими рівняннями кривих другого порядку.

Класифікація кривих другого порядку. Відповідно до теореми 12.1 рівняння (12.4) задає у деякій декартовій системі координат одну з наступних 9 ліній:

1.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 — еліпс

$$\frac{a^2}{a^2} + \frac{y^2}{b^2} = -1$$
 — уявний еліпс

$$a^2 + b^2 = 1$$
 сятис $a^2 + b^2 = 1$ сятис $a^2 + b^2 = -1$ — уявний еліпс $a^2 + b^2 = 0$ — дві уявні прямі, що перетинаються $a^2 + b^2 = 0$ — дві уявні прямі, що перетинаються

$$4. \ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 -$$
гіпербола

4.
$$\frac{1}{a^2} - \frac{1}{b^2} = 1$$
 — гипероола
5. $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$ — пара прямих, що перетинаються

6.
$$x^2 = 2py$$
 — парабола

7.
$$x^2 = a^2$$
 — пара паралельних прямих

- 8. $x^2 = -a^2$ пара уявних паралельних прямих
- 9. $x^2 = 0$ дві прямі, що співпадають

Поверхні другого порядку 13

Загальне рівняння поверхні другого порядку. 13.1

Означення 13.1. Поверхнею другого порядку називається сукупність точок (геометричне місце точок) простору, які в деякій декартовій системі координат Oxyz задовольняють алгебраїчне рівняння другого порядку:

$$a_{11}x^2 + a_{22}y^2 + a_{33}z^2 + 2a_{12}xy + 2a_{13}xz + 2a_{23}yz + 2a_{14}x + 2a_{24}y + 2a_{34}z + a_{44} = 0, (13.1)$$

де a_{11} , a_{22} , a_{33} , a_{12} , a_{13} , a_{23} , a_{14} , a_{24} , a_{34} , a_{44} — дійсні числа, причому принаймні одне з чисел a_{11} , a_{22} , a_{33} , a_{12} , a_{13} , a_{23} не дорівнює нулю.

Теорема 13.1. Загальне рівняння (13.1) поверхні другого порядку, задане у декартовій системі координат Охуг, за допомогою перетворення системи координат можна звести до одного з наступних виглядів:

I.
$$\lambda_1 x_1^2 + \lambda_2 y_1^2 + \lambda_3 z_1^2 + \lambda = 0$$
, $\lambda_1 \cdot \lambda_2 \cdot \lambda_3 \neq 0$;

II.
$$\lambda_1 x_1^2 + \lambda_2 y_1^2 + 2a_{34}' z_1 = 0$$
, $\lambda_1 \cdot \lambda_2 \cdot a_{34}' \neq 0$;

III.
$$\lambda_1 x_1^2 + \lambda_2 y_1^2 + \lambda = 0$$
, $\lambda_1 \cdot \lambda_2 \neq 0$;

IV.
$$\lambda_1 x_1^2 + a'_{24} y_1 = 0$$
, $\lambda_1 \cdot a'_{24} \neq 0$;

V.
$$\lambda_1 x_1^2 + \lambda = 0$$
, $\lambda_1 \neq 0$,

 $\partial e \ x_1, \ y_1, \ z_1 \ -$ змінні у новій декартовій системі координат $Ox_1y_1z_1, \ a \ \lambda_1, \ \lambda_2,$ $\lambda_3,\ \lambda,\ a'_{34},\ a'_{24}$ — нові коефіцієнти.

Рівняння I – V, наведені у теоремі 13.1, називаються найпростішими рівняннями поверхонь другого порядку.

Класифікація поверхонь другого порядку. Відповідно до теореми 13.1 рівняння (13.1) задає у деякій декартовій системі координат одну з наступних 17 поверхонь:

$$1. \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$
 — еліпсоїд

$$2. \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = -1$$
 — уявний еліпсоїд

1.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 - \text{еліпсоїд}$$
2.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = -1 - \text{уявний еліпсоїд}$$
3.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1 - \text{однопорожнинний гіперболоїд}$$
4.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1 - \text{двопорожнинний гіперболоїд}$$
5.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0 - \text{конус}$$

$$4. \frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1$$
 — двопорожнинний гіперболоїд

5.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0$$
 — конус

6.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 0$$
 — уявний конус

7. $\frac{x^2}{a^2}+\frac{y^2}{b^2}=z$ — еліптичний параболоїд 8. $\frac{x^2}{a^2}-\frac{y^2}{b^2}=z$ — гіперболічний параболоїд

9. $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ — еліптичний циліндр

 $10.\frac{x^2}{a^2} + \frac{y^2}{b^2} = -1$ — уявний еліптичний циліндр

11. $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 0$ — дві уявні площини, що перетинаються

12. $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ — гіперболічний циліндр

13. $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$ — дві площини, що перетинаються

14. $y^2 = 2px$ — параболічний циліндр

15. $x^2 = a^2, \, a \neq 0, \, -$ дві паралельні площини

16. $x^2 = -a^2$, $a \neq 0$, — дві уявні паралельні площини

17. $x^2 = 0$ — дві площини, які співпадають

13.2 Характеристики та форма основних поверхонь другого порядку.

Розглянемо основні поверхні другого порядку, задані канонічними рівняннями, та побудуємо їх. Для цього будемо застосовувати метод перерізів, який полягає у дослідженні форми поверхні шляхом дослідження геометричних властивостей перерізів поверхні координатними площинами, та площинами їм паралельними.

Еліпсоїд. Еліпсоїдом називається поверхня, яка у деякій декартовій системі координат задається рівнянням

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1. ag{13.2}$$

Дослідимо вид цієї поверхні. Змінні x, y z входять у рівняння (13.2) у парних степенях. Тому, якщо точка (x, y, z) належить еліпсоїду, то і точки $(\pm x, \pm y, \pm z)$ також належать еліпсоїду. Отже, поверхня симетрична відносно координатних осей та координатних площин. Точку O(0,0,0) називають центром еліпсоїда.

Знайдемо точки перетину еліпсоїда з осями координат. Підставивши у рівняння (13.2) x=0, y=0, отримаємо, що еліпсоїд перетинає вісь Oz у точках (0,0,-c), (0,0,c). Аналогічно, вісь Ox еліпсоїд перетинає у точках (-a,0,0), (a,0,0), а вісь Oy-у точках (0,-b,0), (0,b,0). Ці 6 точок перетину еліпсоїда з осями координат називаються вершинами еліпсоїда.

З рівняння (13.2) також випливає, що $\frac{x^2}{a^2} \le 1$ і $\frac{y^2}{b^2} \le 1$, $\frac{z^2}{c^2} \le 1$ звідки $-a \le x \le a$, $-b \le y \le b$, і $-c \le z \le c$. Таким чином, всі точки еліпсоїда знаходяться всередині прямого паралелепіпеда, утвореного площинами $x = \pm a$ і $y = \pm b$, $z = \pm c$.

Розглянемо переріз поверхні (13.2) площиною z=h=const, де h- довільне дійсне число. Тоді лінія, що отримується у перерізі має вигляд:

$$\begin{cases} \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 - \frac{h^2}{c^2}, \\ z = h. \end{cases}$$
 (13.3)

Якщо |h| > c, c > 0, то $\frac{x^2}{a^2} + \frac{y^2}{b^2} < 0$, тобто не існує точок перетину поверхні (13.2) з площинами z = h. Якщо |h| = c, тобто $h = \pm c$, то $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 0$, і лінія перетину вироджується у дві точки (0,0,-c), (0,0,c). Якщо |h| < c, то рівняння лінії (13.3) еквівалентне наступному:

$$\begin{cases} \frac{x^2}{\left(a\sqrt{1-\frac{h^2}{c^2}}\right)^2} + \frac{y^2}{\left(b\sqrt{1-\frac{h^2}{c^2}}\right)^2} = 1, \\ z = h, \end{cases}$$

тобто лінією перерізу є еліпс з півосями $a_1 = a\sqrt{1 - \frac{h^2}{c^2}}$ і $b_1 = b\sqrt{1 - \frac{h^2}{c^2}}$.

Аналогічні лінії ми отримаємо у перерізі еліпсоїда з площинами x=const, y=const.

Величини a, b, і c називаються niвосями еліпсоїда. Якщо всі вони різні, то еліпсоїд називається трьохосевим еліпсоїдом. Якщо будь-які два з цих чисел рівні між собою, то еліпсоїд називається еліпсоїдом обертання. Якщо a=b=c, то рівняння (13.2) задає $c\phi epy$ $x^2+y^2+z^2=a^2$.

Однопорожнинний гіперболоїд. *Однопорожнинним гіперболоїдом* називається поверхня, яка у деякій декартовій системі координат задається рівнянням

 $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1. ag{13.4}$

Дослідимо вид цієї поверхні. Змінні x, y z входять у рівняння (13.4) у парних степенях. Тому, якщо точка (x, y, z) належить цій поверхні, то і точки $(\pm x, \pm y, \pm z)$ також належать цій поверхні. Отже, поверхня симетрична відносно координатних осей Ox, Oy, Oz, та координатних площин. Точка O(0,0,0) називається центром однопорожнинного гіперболоїда.

Точками перетину однопорожнинного гіперболоїда з осями координат є точки (-a,0,0), (a,0,0), і (0,-b,0), (0,b,0). Ці точки називаються вершинами однопорожнинного гіперболоїда.

Розглянемо переріз поверхні площиною z=h=const, де h- довільне дійсне число. Тоді лінія, що отримується у перерізі має вигляд:

$$\begin{cases} \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 + \frac{h^2}{c^2}, \\ z = h, \end{cases}$$

або

$$\begin{cases} \frac{x^2}{\left(a\sqrt{1+\frac{h^2}{c^2}}\right)^2} + \frac{y^2}{\left(b\sqrt{1+\frac{h^2}{c^2}}\right)^2} = 1, \\ z = h. \end{cases}$$

Ця лінія для довільного числа h є еліпсом з півосями $a_1 = a\sqrt{1+\frac{h^2}{c^2}}$ і $b_1 = b\sqrt{1+\frac{h^2}{c^2}}$. Очевидно, півосі a_1 і b_1 досягають найменшого значення при h=0. При збільшенні |h| півосі a_1 і b_1 будуть збільшуватися.

Розглянемо переріз поверхні площиною x = h = const, де h — довільне дійсне

число. Тоді лінія, що отримується у перерізі задається системою рівняннь

$$\begin{cases} \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1 - \frac{h^2}{a^2}, \\ x = h. \end{cases}$$

Таким чином, на площині x=h ця лінія є гіперболою. Якщо |h| < a, то дійсною віссю гіперболи є вісь Oy, а уявною віссю є вісь Oz. В цьому випадку канонічне рівняння гіперболи має вигляд

$$\frac{y^2}{\left(b\sqrt{1-\frac{h^2}{a^2}}\right)^2} - \frac{z^2}{\left(c\sqrt{1-\frac{h^2}{a^2}}\right)^2} = 1.$$

Якщо ж |h| > a, то дійсною віссю гіперболи є вісь Oz, а уявною віссю є вісь Oy. В цьому випадку канонічне рівняння гіперболи має вигляд

$$\frac{z^2}{\left(c\sqrt{\frac{h^2}{a^2}-1}\right)^2} - \frac{y^2}{\left(b\sqrt{\frac{h^2}{a^2}-1}\right)^2} = 1.$$

При |h|=a, у перерізі маємо дві прямі, що перетинаються у початку координат: $\frac{y}{b}-\frac{z}{c}=0$ та $\frac{y}{b}+\frac{z}{c}=0.$

Аналогічний результат отримаємо, якщо розглянемо переріз поверхні площиною y=h=const, де h- довільне дійсне число, а саме

$$\begin{cases} \frac{x^2}{a^2} - \frac{z^2}{c^2} = 1 - \frac{h^2}{b^2}, \\ y = h. \end{cases}$$

Побудуємо поверхню.

Можно довести, що через будь-яку точку однопорожнинного гіперболоїда проходять дві прямі, що перетинаються.

Двопорожнинний гіперболоїд. Двопорожнинним гіперболоїдом називається поверхня, яка у деякій декартовій системі координат задається рівнянням

 $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1. {(13.5)}$

Дослідимо вид цієї поверхні. Змінні x, y z входять у рівняння (13.5) у парних степенях. Тому, якщо точка (x, y, z) належить цій поверхні, то і точки $(\pm x, \pm y, \pm z)$ також належать цій поверхні. Отже, поверхня симетрична відносно координатних осей Ox, Oy, Oz, та координатних площин, а також точки O(0, 0, 0), яку називають центром двопорожнинного гіперболоїда.

Очевидно, двопорожнинний гіперболоїд перетинає тільки вісь Oz у точках $(0,0,-c),\ (0,0,c).$ Ці точки називаються вершинами двопорожнинного гіперболоїда.

Розглянемо переріз поверхні площиною z=h=const, де h- довільне дійсне число. Тоді лінія, що отримується у перерізі має вигляд:

$$\begin{cases} \frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{h^2}{c^2} - 1, \\ z = h. \end{cases}$$

Звідси випливає, що при |h| < c, площини z = h не перетинають поверхню. При |h| = c, тобто $h = \pm c$, лінія перетину вироджується у дві точки (0,0,-c), (0,0,c). При |h| > c лінією перетину поверхні з площиною z = h є еліпс

$$\frac{x^2}{\left(a\sqrt{\frac{h^2}{c^2}-1}\right)^2} + \frac{y^2}{\left(b\sqrt{\frac{h^2}{c^2}-1}\right)^2} = 1,$$

причому чим більше |h|, тим більші його півосі.

Розглянемо переріз поверхні площиною x=h=const, де h- довільне дійсне число. Тоді лінія, що отримується у перерізі задається системою рівняннь

$$\begin{cases} \frac{z^2}{c^2} - \frac{y^2}{b^2} = 1 + \frac{h^2}{a^2}, \\ x = h. \end{cases}$$

Таким чином, на площині x = h ця лінія є гіперболою з дійсною віссю Oz, і уявною віссю Oy. Канонічне рівняння цієї гіперболи має вигляд

$$\frac{z^2}{\left(c\sqrt{1+\frac{h^2}{a^2}}\right)^2} - \frac{y^2}{\left(b\sqrt{1+\frac{h^2}{a^2}}\right)^2} = 1.$$

Аналогічно, розглянемо переріз поверхні площиною y=h=const, де h- довільне дійсне число. Тоді лінія, що отримується у перерізі задається системою рівняннь

$$\begin{cases} \frac{z^2}{c^2} - \frac{x^2}{a^2} = 1 + \frac{h^2}{b^2}, \\ x = h. \end{cases}$$

Таким чином, на площині y = h ця лінія є гіперболою з дійсною віссю Oz, і уявною віссю Ox. Канонічне рівняння цієї гіперболи має вигляд

$$\frac{z^2}{\left(c\sqrt{1+\frac{h^2}{b^2}}\right)^2} - \frac{x^2}{\left(a\sqrt{1+\frac{h^2}{b^2}}\right)^2} = 1.$$

Побудуємо поверхню.

Конус. *Конусом* називається поверхня, яка у деякій декартовій системі координат задається рівнянням

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0. ag{13.6}$$

Дослідимо вид цієї поверхні. Змінні x, y z входять у рівняння (13.6) у парних степенях. Тому, якщо точка (x, y, z) належить цій поверхні, то і точки $(\pm x, \pm y, \pm z)$

також належать цій поверхні. Отже, поверхня симетрична відносно координатних осей Ox, Oy, Oz, координатних площин, а також точки O(0,0,0). Точка O(0,0,0) називається вершиною конуса.

Розглянемо переріз поверхні площиною z=h=const, де h- довільне дійсне число. Тоді лінія, що отримується у перерізі має вигляд:

$$\begin{cases} \frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{h^2}{c^2}, \\ z = h. \end{cases}$$

Якщо h=0, то переріз поверхні (13.6) площиною z=h складається з однієї точки O(0,0,0). При $h\neq 0$ у перерізі поверхні (13.6) площиною z=h буде еліпс

$$\frac{x^2}{\left(\frac{ah}{c}\right)^2} + \frac{y^2}{\left(\frac{bh}{c}\right)^2} = 1,$$

півосі якого збільшуються при збільшенні |h|.

Розглянемо переріз поверхні (13.6) площиною x=0:

$$\begin{cases} \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0, \\ x = 0. \end{cases}$$

Таким чином, у перерізі — дві прямі, що перетинаються у початку координат

$$\frac{y}{h} - \frac{z}{c} = 0, \quad \frac{y}{h} + \frac{z}{c} = 0.$$

Аналогічно, у перерізі поверхні площиною y = 0 є лінія

$$\begin{cases} \frac{x^2}{a^2} - \frac{z^2}{c^2} = 0, \\ y = 0, \end{cases}$$

що складається з двох прямих

$$\frac{x}{a} - \frac{z}{c} = 0, \quad \frac{x}{a} + \frac{z}{c} = 0.$$

Перерізом поверхні (13.6) площиною $x=h,\,h\neq 0,\,\varepsilon$ гіпербола

$$\frac{z^2}{c^2} - \frac{y^2}{b^2} = \frac{h^2}{a^2}.$$

Перерізом поверхні (13.6) площиною $y = h, h \neq 0, \epsilon$ гіпербола

$$\frac{z^2}{c^2} - \frac{x^2}{a^2} = \frac{h^2}{b^2}.$$

Побудуємо поверхню.

Еліптичний параболоїд. *Еліптичним параболоїдом* називається поверхня, яка у деякій декартовій системі координат задається рівнянням

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = z. ag{13.7}$$

Очевидно, поверхня симетрична відносно координатних площин Oxz і Oyz, та відносно осі Oz. Вісь Oz є віссю симетрії параболоїда.

Розглянемо переріз поверхні (13.7) площиною z=h=const, де h- довільне дійсне число. Тоді лінія, що отримується у перерізі має вигляд:

$$\begin{cases} \frac{x^2}{a^2} + \frac{y^2}{b^2} = h, \\ z = h. \end{cases}$$

Якщо h<0, то $\frac{x^2}{a^2}+\frac{y^2}{b^2}<0$, тобто не існує точок перетину поверхні (13.7) з площиною z=h. Таким чином, поверхня розташована у верхньому півпросторі $z\geq 0$. Якщо h=0, то $\frac{x^2}{a^2}+\frac{y^2}{b^2}=0$, і лінія перетину вироджується у точку (0,0,0). Точка

(0,0,0) називається вершиною параболоїда. Якщо h>0, то перерізом поверхні з площиною z=h є еліпс

$$\frac{x^2}{(a\sqrt{h})^2} + \frac{y^2}{(b\sqrt{h})^2} = 1,$$

півосі якого збільшуються зі збільшенням h.

У перерізі поверхні (13.7) площиною x = h = const, отримаємо параболу:

$$y^2 = b^2 \left(z - \frac{h^2}{a^2} \right).$$

У перерізі поверхні (13.7) площиною y=h=const, отримаємо параболу:

$$x^2 = a^2 \left(z - \frac{h^2}{b^2} \right).$$

Побудуємо поверхню.

Гіперболічний параболоїд. *Гіперболічним параболоїдом* називається поверхня, яка у деякій декартовій системі координат задається рівнянням

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = z. ag{13.8}$$

Розглянемо переріз поверхні (13.8) площиною z=h=const, де h- довільне дійсне число. Тоді лінія, що отримується у перерізі має вигляд:

$$\begin{cases} \frac{x^2}{a^2} - \frac{y^2}{b^2} = h, \\ z = h. \end{cases}$$

При цьому, якщо h>0, то перерізом поверхні з площиною z=h є гіпербола

$$\frac{x^2}{(a\sqrt{h})^2} - \frac{y^2}{(b\sqrt{h})^2} = 1,$$

у якої дійсною віссю є вісь Ox, а уявною віссю є вісь Oy. Якщо h < 0, то перерізом є гіпербола

$$\frac{y^2}{(b\sqrt{-h})^2} - \frac{x^2}{(a\sqrt{-h})^2} = 1,$$

у якої дійсною віссю є вісь Oy, а уявною віссю є вісь Ox . Якщо h=0, то у перерізі — дві прямі, що перетинаються у початку координат:

$$\frac{x}{a} - \frac{y}{b} = 0, \quad \frac{x}{a} + \frac{y}{b} = 0.$$

Перерізом поверхні (13.8) площиною x=h=const, є парабола

$$y^2 = -b^2 \left(z - \frac{h^2}{a^2}\right).$$

Перерізом поверхні (13.8) площиною y = h = const, також є парабола

$$x^2 = a^2 \left(z + \frac{h^2}{b^2}\right).$$

Використовуючи встановлені характеристики, схематично побудуємо поверхню.

Еліптичний циліндр. *Еліптичним циліндром* називається поверхня, яка у деякій декартовій системі координат задається рівнянням

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1. (13.9)$$

Дослідимо вид цієї поверхні. Змінні x і y входять у рівняння (13.9) у парних степенях, а змінна z взагалі відсутня. Це означає, що поверхня симетрична відносно координатних площин. Крім того, з рівнянння (13.9) випливає, що $-a \le x \le a, -b \le y \le b,$ а змінна z може приймати будь-які значення.

Розглянемо переріз поверхні (13.9) площиною z=h=const, де h- довільне дійсне число. Тоді для будь-якого h у перерізі отримаємо еліпс

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1,$$

з півосями a та b, які не залежать від значення h.

Перерізом поверхні (13.9) площиною x=h=const, будуть дві прямі $y=\pm b\sqrt{1-\frac{h^2}{a^2}},$ якщо $|h|\leq a,$ і пуста множина, якщо |h|>a. Аналогічно, перерізом поверхні (13.9) площиною y=h=const, є дві прямі

Аналогічно, перерізом поверхні (13.9) площиною y=h=const, є дві прямі $x=\pm a\sqrt{1-\frac{h^2}{b^2}},$ якщо $|h|\leq b,$ і пуста множина, якщо |h|>b.

Таким чином, поверхня має вигляд:

Гіперболічний циліндр. *Гіперболічним циліндром* називається поверхня, яка у деякій декартовій системі координат задається рівнянням

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1. ag{13.10}$$

Дослідимо вид цієї поверхні. Змінні x і y входять у рівняння (13.10) у парних степенях, а змінна z взагалі відсутня. Це означає, що поверхня симетрична відносно координатних площин. Крім того, з рівнянння (13.10) випливає, що $|x| \geq a, \, |y| \geq b,$ а змінна z може приймати будь-які значення.

Розглянемо переріз поверхні (13.10) площиною z=h=const, де h- довільне дійсне число. Тоді для будь-якого h у перерізі отримаємо гіперболу

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1,$$

дійсна та уявна осі якої a та b не залежать від значення h.

Перерізом поверхні (13.10) площиною x=h=const, будуть дві прямі $y=\pm b\sqrt{\frac{h^2}{a^2}-1}$, якщо $|h|\geq a$, і пуста множина, якщо |h|< a. Аналогічно, перерізом поверхні (13.10) площиною y=h=const, є дві прямі

Аналогічно, перерізом поверхні (13.10) площиною y=h=const, є дві прямі $x=\pm a\sqrt{\frac{h^2}{b^2}+1},$ для будь-якого дійсного h.

Отже, поверхня схематично зображається наступним чином:

Параболічний циліндр. *Параболічним циліндром* називається поверхня, яка у деякій декартовій системі координат задається рівнянням

$$y^2 = 2px. (13.11)$$

Поверхня симетрична відносно координатних площин Oxz і Oxy.

Нехай p>0. Звідси випливає, що $x\geq 0$. Розглянемо переріз поверхні (13.11) площиною z=h=const, де h- довільне дійсне число. Тоді для будь-якого h у перерізі отримаємо параболу

$$y^2 = 2px.$$

Перерізом поверхні (13.11) площиною $x=h=const\geq 0,$ є дві паралельні осі Oz прямі: $y=\pm \sqrt{2ph}.$

Перерізом поверхні (13.11) площиною y=h=const, для будь-якого дійсного h є паралельна осі Oz пряма: $x=\frac{h^2}{2p}.$

