Mathematik für Informatiker 2 – SS 2025 Studiengang Angewandte Informatik

Gemischte Übungen 2: Folgen

1	Eigenschaften von	Folgen
---	-------------------	--------

	a) Skizzieren Sie eine unbeschränkte Folge, die nicht monoton steigend ist.						
1.1	b) Skizzieren Sie eine unbeschränkte Folge, die eine konstante (also beschränkte) Teilfolge hat. Fazit: Damit eine Folge unbeschränkt ist, genügt, dass eine Teilfolge unbeschränkt ist.						
2 Beispiele für Folgen, explizite und rekursive Bildungsvorschriften							
	Es sei a_n die Zahl, die sich ergibt, wenn wir $1,2,,n$ mit sich multiplizieren $(n\in\mathbb{N})$. Wie nennt man sie?						
	a) Beschreiben Sie die Bildungsvorschrift von a_n explizit.						
	b) Beschreiben Sie die Bildungsvorschrift von a_n rekursiv.						
2.1	c) Wie sieht eine iterative bzw. rekursive Implementierung dieser Funktion aus?						

Es sei a_n die Zahl, die sich ergibt, wenn wir 1, 2, ..., n addieren $(n \in \mathbb{N})$.

- a) Beschreiben Sie die Bildungsvorschrift von a_n explizit (Summenzeichen mit ... und mit Σ -Schreibweise)
- b) Eine Formel für die schnelle Berechnung dieser Summe lernen wir später kennen.
- 2.2 c) Beschreiben Sie die Bildungsvorschrift von a_n rekursiv.
 - d) Wie sieht eine iterative bzw. rekursive Implementierung dieser Funktion aus?

Lineare Rekursion der Form $a_n = q \cdot a_{n-1} + d$ wobei a_0, q, d konstant, z.B. $a_n = 3 \cdot a_{n-1} + 2$		
a) Leiten Sie eine explizite Bildungsvorschrift her.		
b) Für welche Summe wünsche wir uns eine Formel zur effizienteren Berechnung?		
6	a) Leiten Sie eine explizite Bildungsvorschrift her.	

3 Übung: Grenzwerte mittels Rechenregeln aus bekannten Grenzwerten berechnen

Berechnen Sie die Grenzwerte. Zum Vergleich, setzen Sie die Definition der Folge sowie (falls es endlich ist) ihr berechnetes Ergebnis in das Jupyter Notebook ein und vergleichen Sie grafisch, ob Sie richtig gerechnet haben.

Berechnen Sie die Grenzwerte		Rechenweg bzw. nachvollziehbare Begründung angeben!
3.1	$\lim_{n \to \infty} \frac{4 - 3\sqrt{n} - 2n^4}{1 + n(1 - n)^2}$	
3.2	$\lim_{n\to\infty} \left(3 - \left(\frac{1}{2}\right)^n\right)$	
3.3	$\lim_{n\to\infty}\frac{4^{n+1}}{5^n}$	
3.4	$\lim_{n \to \infty} \frac{1,05^{n+1} - 1}{1,05 - 1}$	
3.5	$\lim_{n \to \infty} \frac{0,05^{n+1} - 1}{0,05 - 1}$	

4 Übung: Grenzwerte durch Umformung oder durch Konvergenzkriterien argumentieren

Konvergent oder divergent?		Rechenweg angeben!	Kontrolle
4.1	$a_n = \frac{(-1)^n}{\log n}$		0
4.2	$a_n = (-1)^n \frac{2n + 512}{n^2}$		0
4.3	$a_n = \frac{(-1)^n 4^{n+1}}{5^n}$		0
4.4	$a_n = \frac{1}{\sqrt{n}}\cos(n)$		0