Variables Aleatorias Parte II

1/43

- En general tendremos que $P(X < x_0) = P(X \le x_0)$.
- Por otra parte podemos utilizar una regla parecida del cociente entre casos favorables y casos posibles de Laplace pero en este caso el conteo se hace por la "medida" de los casos posibles partida por la "medida" de los casos favorables.
- Veamos un ejemplo de v.a. continua, que ampliaremos en el tema siguiente, en el que se utilizan todos estos conceptos.

Variables aleatorias continuas

- Como ya hemos dicho las variables aleatorias continuas toman valores en intervalos o áreas.
- Lo más habitual es que estas variables tengan función de distribución continua y derivable (salvo a los más en una cantidad finita o numerable de puntos:-)).
- En lo que sigue supondremos que la función de distribución de variables aleatorias continuas cumplen estas propiedades.
- Notemos que si X es una v.a. con función de distribución continua se tiene que $P(X = x_0) = F_X(x_0) - F(x_0^-) = 0$. Por lo que no tiene sentido definir "función de probabilidad".

Ejemplo: Distribución uniforme en el intervalo unidad.

Supongamos que lanzamos un dardo a una diana de radio 1, de forma que sea "equiprobable" cualquier distancia al centro¹. Consideremos la v.a. continua X =distancia al centro.

$$F_X(x) = \begin{cases} 0 & \text{si } x \leq 0 \\ x & \text{si } 0 < x < 1 \\ 1 & \text{si } x \geqslant 1 \end{cases}$$

Ya que

- C.F. "longitud favorable" x 0
- C.P. "longitud posible" 1-0
- Luego $P(X \le x) = \frac{x-0}{1-0} = x$

¹!Cuidado! esto no es equivalente a que cualquier punto de la diana sea "equiprobable":-).

Función distribución uniforme.

Demostración:

b)
$$\{X < a\} \cap \{a < X < b\} = \emptyset$$

 $\{X < a\} \cup \{a < X < b\} = \{X < a\}$ entonces

$$P(X \le b) = P(\{X < a\} \cup \{a < X < b\})$$

= $P(X < a) + P(a < X < b)$

a)
$$P(X < b) = P(X < b) + P(X = b) = P(X < b)$$

c) Ídem que b) aplicando a).

En las variables continuas los sucesos del tipo $\{X \leq x\}$ y $\{X < x\}$ tendrán la misma probabilidad, y otros tipos de sucesos similares también, algunas de estas propiedades se explicitan en la siguiente proposición.

Propiedades

Dada una v.a. continua X se tiene que:

a)
$$P(X \le b) = P(X < b)$$

b)
$$P(X < b) = P(X < a) + P(a < X < b)$$

c)
$$P(a < X < b) = P(X < b) - P(X < a)$$

6/43

Las propiedades anteriores y combinaciones de ellas se pueden escribir utilizando la función de distribución de X:

Propiedades

Dada una variable aleatoria continua se tiene que:

a)
$$F_X(b) = F_X(a) + P(a < X < b)$$

b)
$$P(a < X < b) = F_X(b) - F_X(a)$$

c)
$$P(a \leqslant X \leqslant b) = F_X(b) - F_X(a)$$

Ejemplo

Demostración: ejercicio.

En los dardos:

$$P(0.25 < X < 0.3) = F_X(0.3) - F_X(0.25) =$$

= 0.3 - 0.25 = 0.05

9/43

10/4

Definición

Sea X una v.a. con función de distribución F_X . Sea $f: \mathbb{R} \to \mathbb{R}$ una función de densidad tal que

$$F_X(x) = \int_{-\infty}^x f_X(t) dt$$
. para todo $x \in \mathbb{R}$.

Entonces X es una variable aleatoria continua y f_X es la densidad de la v.a. X.

El conjunto $D_X = \{x \in \mathbb{R} | f_x(x) > 0\}$ recibe el nombre de soporte o dominio de la variable aleatoria continua y se interpreta su conjunto de resultados posibles.

Una función $f: \mathbb{R} \to \mathbb{R}$ es una función de densidad sobre \mathbb{R} si cumple que

- a) $f_X(x) \ge 0$ para todo $x \in \mathbb{R}$.
- b) f es continua salvo a lo más en una cantidad finita de puntos sobre cada intervalo acotado de \mathbb{R} .

c)
$$\int_{-\infty}^{+\infty} f_X(x) dx = 1.$$

En nuestra diana la función f es una densidad

$$f_X(x) = \begin{cases} 0 & \text{si } x \leqslant 0 \\ 1 & \text{si } 0 < x < 1 \\ 0 & \text{si } 1 \leqslant x \end{cases}$$

que es la densidad de X, en efecto:

- Si $x \le 0$ entonces $\int_{-\infty}^{x} f_X(t) dt = 0$.
- Si $0 \le x \le 1$ entonces $\int_{-\infty}^{x} f_X(t) dt = \int_{0}^{x} 1 dt = x$.
- Si $x \geqslant 1$ entonces $\int_{-\infty}^{x} f_X(t) dt = \int_{0}^{1} 1 dt = 1$.

Por lo tanto $F_X(x) = \int_{-\infty}^x f_X(t) dt$ para todo $x \in \mathbb{R}$.

13/43

La función de densidad nos permite calcular diversas probabilidades.

Propiedades

Sea X una v.a. continua con función de distribución F_X y de densidad f_X , entonces

a)

$$P(a < X < b) = P(a < X \leqslant b) = P(a \leqslant X < b)$$
$$= P(a \leqslant X \leqslant b) = \int_a^b f_X(x) dx.$$

b) Si A es un conjunto adecuado de \mathbb{R} entonces $P(X \in A) = \int_A f(x) dx = \int_{A \cap D_X} f(x) dx$.

curve(dunif(x,0,1),xlim=c(-0.5,1.5),col="blue",
 main="Densidad uniforme")

Densidad uniforme

Propiedades

Sea X una v.a. continua con función de distribución F_X y de densidad f_X , entonces:

- a) Si f_x es continua en un punto x, F_X es derivable en ese punto y $F_X'(x) = f_X(x)$.
- b) P(X = x) = 0 para todo $x \in \mathbb{R}$.

Ejemplo

Sea X = tiempo de ejecución de un proceso. Se supone que X sigue una distribución uniforme en dos unidades de tiempo, si tarda más el proceso se cancela. Entonces

$$F_X(x) = P(X \leqslant x) = \frac{CF}{CP} = \frac{x}{2}$$

Luego su función de distribución es:

$$F_X(x) = \begin{cases} 0 & \text{si } x \leqslant 0 \\ \frac{x}{2} & \text{si } 0 < x < 2 \\ 1 & \text{si } 2 \leqslant x \end{cases}$$

Ejercicio: Calcular la probabilidad de que uno de nuestros procesos tarde más de una unidad de tiempo en ser procesado. Calcular también la probabilidad de que dure entre 0.5 y 1.5 unidades de tiempo.

mientras que su función de densidad es:

$$f_X(x) = F_X'(x) = \begin{cases} 0 & \text{si } x \leqslant 0\\ \frac{1}{2} & \text{si } 0 < x \leqslant 2\\ 0 & \text{si } 2 \leqslant x \end{cases}$$

Efectivamente

- $f_X(x) \ge 0$, y tiene un conjunto finito de discontinuidades.
- $F_X(x) = \int_{-\infty}^x f_X(t) dt$. para todo $x \in \mathbb{R}$ (ejercicio, resolverlo gráficamente.)

•
$$\int_{-\infty}^{+\infty} f_X(x) dx = \int_{0}^{2} \frac{1}{2} dx = \frac{x}{2} \mid_{0}^{2} = = \frac{2}{2} - \frac{0}{2} = 1.$$

17/43 18/43

Los mismos comentarios y definiciones que se dieron en la sección correspondiente del tema de estadística descriptiva son aplicables aquí. Así que sólo daremos las definiciones, la forma de cálculo y algunos ejemplos.

20.//

Sea X una v.a. continua con función de densidad $f_X(x)$ entonces:

• su esperanza es :
$$E(X) = \int_{-\infty}^{+\infty} x f_X(x) dx$$
.

• Si g(x) es una función de la variable X entonces

$$E(g(X)) = \int_{-\infty}^{+\infty} g(x) f_X(x) dx.$$

•
$$Var(X) = \sigma_X^2 = E((X - \mu_X)^2) = \int_{-\infty}^{+\infty} (x - \mu_X)^2 f_X(x) dx$$
.

• A $\sigma_X = + \sqrt{\sigma_X^2}$ se le denomina desviación típica de X.

21/43 22/43

Propiedades

•
$$\sigma_X^2 \geqslant 0$$

•
$$Var(cte) = E(cte^2) - (E(cte))^2 = cte^2 - cte^2 = 0$$

•
$$Var(x) = E(X^2) - \mu_X^2 = \int_{-\infty}^{+\infty} x^2 f_X(x) dx - \mu_X^2$$
.

• El mínimo de $E((X-C)^2)$ se alcanza cuando C=E(X) y es Var(X).

Ejemplos Calcular μ_X y σ_X^2 en el dardo. Resultado $\mu_X=\frac{1}{2}$, $E(X^2)=\frac{1}{3}$, $Var(X)=\frac{1}{12}$.

3

Sea X una v.a. continua con $E(X) = \mu_X$ y $Var(X) = \sigma_X^2$ sea Y = a + bX, donde $a, b \in \mathbb{R}$, es una nueva v.a. continua obtenida mediante una transformación lineal de X. Se verifican las mismas propiedades que en el caso discreto:

- E(Y) = E(a + bX) = a + bE(X)
- $Var(Y) = Var(a + bX) = b^2 Var(X)$
- $\sigma_Y = |b|\sigma_X$
- $Z = \frac{X \mu_X}{\sigma_X}$ es una transformación lineal de X de forma que

$$E(Z) = 0$$
 y $Var(Z) = 1$

Muchas variables aleatorias son funciones de otras v.a. En lo que sigue resumiremos diversas técnicas para dada una v.a. X y una transformación Y = h(X) encontrar F_Y a partir de F_X .

Ejemplo En una empresa de venta de vinos por internet, sea X= número de litros de vino del país vendidos en un año. Supongamos que sabemos que E(X)=10000 y que Var(X)=100 Supongamos que los gastos fijos de distribución son 50000 y el beneficio por litro es de 10 pts por botella. Definimos T=10X-50000 que será el beneficio después de gastos entonces:

$$E(T) = 10E(X) - 50000 = 50000$$

У

$$Var(T) = 10^2 VAR(X) = 10000$$

5/43 26/43

Propiedades

Sea X una v.a. discreta con

 $X(\Omega) = \{x_1, x_2, \dots, x_n, ...\}$ y sea $h : \mathbb{R} \to \mathbb{R}$ una aplicación. Entonces Y = h(X) es también una v.a. discreta. Además si P_X y F_X son las funciones de probabilidad y de distribución de X entonces

a)
$$P_Y(y) = \sum_{x_i | h(x_i) = y} P_X(x_i).$$

b)
$$F_Y(y) = \sum_{x_i \mid h(x_i) \leqslant y} P_X(x_i).$$

28//

Desafortunadamente este caso no es tan sencillo como el anterior, pues la transformación de una v.a. continua puede ser continua, discreta, mixta . . .

Propiedades

Sea X una v.a. continua cuya función de densidad es f_X . Sea $h: \mathbb{R} \to \mathbb{R}$ una aplicación estrictamente monótona y derivable, tal que $h'(x) \neq 0$ para todo $x \in \mathbb{R}$. Sea Y = h(X) la transformación de X por h. Entonces Y es una v.a. continua con función de densidad

$$f_Y(y) = \frac{f_X(x)}{|h'(x)|}\Big|_{x=h^{-1}(y)}$$

29/43

Cuando no podamos aplicar las propiedades anteriores intentaremos calcular primero la función de distribución de la transformación y luego su densidad.

Notemos que en general si Y = g(X) es una v.a. transformación de la v.a. X entonces

$$F_Y(y) = P(Y \leqslant y) = P(g(X) \leqslant y)$$

Por ejemplo si g es estrictamente creciente y cont.

$$F_Y(y) = P(g(X) \le y) = P(X \le g^{-1}(y)) = F_X(g^{-1}(y))$$

y si g es estrictamente decreciente y cont.

$$F_Y(y) = P(g(X) \le y) = P(X \ge g^{-1}(y)) = 1 - F_X(g^{-1}(y))$$

Propiedades

Sea X una v.a. continua cuya función de densidad es f_X . Si $h: \mathbb{R} \to \mathbb{R}$ es una aplicación, no necesariamente monótona, pero sí derivable con derivada no nula, y si la ecuación h(x) = y tiene un número finito de soluciones $x_1, x_2, ..., x_n$ entonces:

$$f_Y(y) = \left. \sum_{k=1}^n \frac{f_X(x)}{|h'(x)|} \right|_{x=x_k}$$

30/43

Desigualdades de Markov y de Chebyshef

- Veremos en esta sección distintas desigualdades que acotan determinadas probabilidades de una variable aleatoria.
- Estas desigualdades sirven en algunos casos para acotar probabilidades de determinados sucesos.
- También son útiles desde el punto de vista teórico, por ejemplo para justificar que la varianza es una mediada de la dispersión de los datos.

Propiedades

Sea X una v.a. positiva con E(X) finita. Entonces $P(X \geqslant a) \leqslant \frac{E(X)}{a}$ para todo a > 0.

33/43 34/43

Propiedades

Sea X una v.a. con E(X) finita entonces para todo a>0

$$P(|X|\geqslant a)\leqslant \frac{E(|X|)}{a}$$

Demostración:

Si X es continua y sólo toma valores positivos

$$E(X) = \int_{-\infty}^{+\infty} x f_X(x) dx = \int_{0}^{+\infty} x f_X(x) dx$$
$$= \int_{0}^{a} x f_X(x) dx + \int_{a}^{+\infty} x f_X(x) dx$$
$$\geqslant \int_{a}^{+\infty} x f_X(x) dx \geqslant a \int_{a}^{+\infty} f_X(x) dx$$
$$= a \cdot P(X \geqslant a)$$

de donde se sigue que

$$P(X \geqslant a) \leqslant \frac{E(X)}{a}$$
.

Propiedades

Sea X una v.a.con $E(X) = \mu$ y $Var(X) = \sigma^2$ entonces para todo a>0

$$P(|X-\mu|\geqslant a)\leqslant \frac{\sigma^2}{a^2}$$

Demostración:

Apliquemos la consecuencia de la desigualdad de Markov a la v.a. no negativa

$$Y^2 = (X - \mu)^2$$

entonces

$$P(Y^2 \geqslant a^2) \leqslant \frac{E(Y^2)}{a^2} = \frac{E((X - \mu)^2)}{a^2}$$
$$= \frac{Var(X)}{a^2} = \frac{\sigma^2}{a^2}$$

37/43

Observación: Supongamos que X es una v.a. con Var(X) = 0 entonces. Aplicando la desigualdad anterior

$$P(|X - E(X)| \geqslant a) = 0$$

para todo *a* > 0*loqueimplicaque*

$$P(X = E(X)) = 1$$

Por lo que probabilidad de que X sea constantemente E(X) es 1.

Lo que nos confirma la utilidad de la varianza es una medida de la dispersión de los datos. Por otra parte

$$P(Y^2 \geqslant a^2) = P(|Y| \geqslant a) = P(|X - \mu| \geqslant a)$$

38/43

hecho que, junto con la desigualdad anterior, demuestra el resultado.

Ejemplo

Se sabe que el tiempo de respuesta medio y la desviación típica de un sistema multiusuario son 15 y 3 u.t. respectivamente. Entonces:

$$P(|X-15|\geqslant 5)\leqslant \frac{9}{25}=0.36.$$

Si substituimos a por $a \cdot \sigma$ en la desigualdad de Chebyshef.

40

Nos queda:

$$P(|X - \mu| \geqslant a\sigma) \leqslant \frac{\sigma^2}{(a\sigma)^2} = \frac{1}{a^2}.$$

Que es otra manera de expresar la desigualdad de Chebyshef. La desigualdad de Chebyshef también se puede escribir de al menos dos maneras más:

$$P(\mu - a \leqslant X \leqslant \mu + a) \geqslant 1 - \frac{\sigma^2}{a^2}$$

$$P(\mu - a \cdot \sigma \leqslant X \leqslant \mu + a \cdot \sigma)$$

41/43

Interpretación de la desigualdad

- Por ejemplo para a = 2 esta desigualdad se puede interpretar como que dada una v.a. X con cualquier distribución que tenga E(X) y Var(X) finitos la probabilidad de que un valor se aleje de la media μ más de a = 2 desviaciones típicas es menor o igual que 0.25.
- Es decir sólo el 25 % de los valores estarán alejados de la media más de 2σ ¡Sea cual sea la distribución de la v.a.!

Tomando la segunda expresión que hemos visto para la desigualdad de Chebyshef para distintos valores de a>0 tenemos la siguiente tabla.

a |
$$P(|X - E(X)| \ge a\sigma)$$

1 | ≤ 1
2 | ≤ 0.25
3 | ≤ 0.111
4 | ≤ 0.0025