

⑯ BUNDESREPUBLIK
DEUTSCHLAND

DEUTSCHES
PATENT- UND
MARKENAMT

⑰ Offenlegungsschrift
⑩ DE 100 61 081 A 1

⑤ Int. Cl.⁷:
C 08 L 69/00
C 08 L 51/06
C 08 K 5/521
C 08 K 5/5399
C 08 J 5/18

⑯ Aktenzeichen: 100 61 081.1
⑯ Anmeldetag: 8. 12. 2000
⑯ Offenlegungstag: 13. 6. 2002

DE 100 61 081 A 1

⑯ Anmelder:
Bayer AG, 51373 Leverkusen, DE

⑯ Erfinder:
Eckel, Thomas, Dr., 41540 Dormagen, DE; Seidel,
Andreas, Dr., 41542 Dormagen, DE

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

④ Flammwidrige Polycarbonat-Blends
⑤ Zusammensetzungen, enthaltend
A) aromatisches Polycarbonat und/oder Polyestercarbonat
B) Schlagzähmodifikator
C) gegebenenfalls thermoplastisches Homo- und/oder Copolymer
D) eine Kombination von
D.1 Phosphorverbindung und
D.2 Phosphor-Sauerstoff-Verbindung verschieden von
D.1 oder Phosphor-Schwefel-Verbindung oder das Reaktionsprodukt von D.1 und D.2.

DE 100 61 081 A 1

DE 100 61 081 A 1

Beschreibung

[0001] Die vorliegende Erfindung betrifft mit einer Kombination aus organischen Phosphorverbindungen und anorganischen Phosphor-Sauerstoffverbindungen oder Phosphor-Schwefelverbindungen ausgerüstete schlagzähmodifizierte Polycarbonat-Blends, die einen ausgezeichneten Flammeschutz und verbessertes Spannungsrißverhalten (gegenüber Medien wie Lösungsmittel oder Fetten) aufweisen.

5 [0002] In EP-A 0 640 655 werden Formmassen aus aromatischem Polycarbonat, styrolhaltigen Copolymerisaten und Pfropfpolymerisaten beschrieben, die mit monomeren und/oder oligomeren organischen Phosphorverbindungen flammwidrig ausgerüstet werden können.

10 [0003] In EP-A 0 363 608 werden flammwidrige Polymermischungen aus aromatischem Polycarbonat, styrolhaltigem Copolymer oder Pfropfcopolymer sowie oligomeren organischen Phosphaten als Flammeschutzzadditive beschrieben.

[0004] In US-A 5 061 745 werden Polymermischungen aus aromatischem Polycarbonat, ABS-Pfropfpolymerisat und/oder styrolhaltigem Copolymer und organischen Monophosphaten als Flammeschutzzadditive beschrieben.

15 [0005] Eine Kombination aus organischen Phosphorverbindungen und anorganischen Phosphor-Sauerstoff-Verbindungen oder Phosphor-Schwefel-Verbindungen wird dort nicht beschrieben. Allen zitierten Anmeldungen gemeinsam ist, dass zur Erzielung eines exzellenten Flammeschutzes mit sehr kurzen Nachbrennzeiten, sehr große Mengen an Phosphaten eingesetzt werden müssen, die sich negativ auf das Spannungsrißverhalten der entsprechenden Formmassen auswirken. Die Forderung nach einer Eigenschaftskombination aus hervorragender Flammwidrigkeit und sehr gutem Spannungsrißverhalten entspricht besonders der Forderung nach immer dünneren Wandstärken der Formteile.

20 [0006] Aufgabe der vorliegenden Erfindung ist die Bereitstellung von Polycarbonat-Zusammensetzungen mit einer verbesserten Flammfestigkeit und verbessertem Spannungsrißverhalten im Kontakt mit Medien wie beispielsweise Fetten, Ölen oder Lösungsmittel. Dieses Eigenschaftsspektrum wird besonders bei Anwendungen im Bereich Datentechnik wie etwa für Gehäuse von Monitoren, Druckern, Printern, Kopierern, Notebooks usw. gefordert.

[0007] Es wurde nun gefunden, dass Polycarbonat-Zusammensetzungen, die eine Kombination aus organischen Phosphorverbindungen und anorganischen Phosphor-Sauerstoff-Verbindungen als Flammeschutzmittel enthalten, die gewünschten Eigenschaften aufweisen.

25 [0008] Gegenstand der Erfindung sind daher Zusammensetzungen enthaltend

30 A) aromatisches Polycarbonat und/oder Polyestercarbonat
 B) Schlagzähmodifikator
 C) gegebenenfalls thermoplastisches Homo- und/oder Copolymer
 D) eine Kombination von
 D.1 Phosphorverbindung und
 D.2 Phosphor-Sauerstoff-Verbindung verschieden von D.1 oder Phosphor-Schwefel-Verbindung oder das Reaktionsprodukt von D.1 und D.2.

35 [0009] Komponente D ist bevorzugt in einer Menge von 0,1 bis 30 Gew.-Teilen (bezogen auf die Gesamtzusammensetzung) enthalten. Vorzugsweise enthält Komponente D.2 eine Phosphor-Sauerstoff-Verbindung.

[0010] Gegenstand der Erfindung sind vorzugsweise Blends enthaltend

40 A) 40 bis 99, vorzugsweise 60 bis 98,5 Gew.-Teile aromatisches Polycarbonat und/oder Polyestercarbonat
 B) 0,5 bis 60, vorzugsweise 1 bis 40, insbesondere 2 bis 25 Gew.-Teile Pfropfpolymerisat von
 B.1) 5 bis 95, vorzugsweise 30 bis 80 Gew.-% eines oder mehrerer Vinylmonomeren auf
 B.2) 95 bis 5, vorzugsweise 20 bis 70 Gew.-% einer oder mehrerer Pfropfgrundlagen mit einer Glasumwandlungstemperatur < 10°C, vorzugsweise < 0°C, besonders bevorzugt < -20°C,
 C) 0 bis 45, vorzugsweise 0 bis 30, besonders bevorzugt 2 bis 25 Gew.-Teile mindestens eines thermoplastischen Polymers, ausgewählt aus der Gruppe der Vinyl(co)polymerisate und Polyalkylenterephthalate,
 D) 0,1 bis 30 Gew.-Teile, vorzugsweise 1 bis 25 Gew.-Teile, besonders bevorzugt 2 bis 20 Gew.-Teile einer Kombination aus
 D.1) organische Phosphorverbindung und
 D.2) einer Phosphor-Sauerstoff-Verbindung oder Phosphor-Schwefel-Verbindung sowie
 E) 0 bis 5, vorzugsweise 0,1 bis 3, besonders bevorzugt 0,1 bis 1 Gew.-Teile, insbesondere 0,1 bis 0,5 Gew.-Teile fluoriertes Polyolefin,

50 [0011] wobei die Summe der Gew.-Teile der Komponenten A-E 100 ergibt.

Komponente A

[0011] Erfindungsgemäß geeignete aromatische Polycarbonate und/oder aromatische Polyestercarbonate gemäß Komponente A sind literaturbekannt oder nach literaturbekannten Verfahren herstellbar (zur Herstellung aromatischer Polycarbonate siehe beispielsweise Schnell, "Chemistry and Physics of Polycarbonates", Interscience Publishers, 1964 sowie die DE-A 14 95 626, DE-A 22 32 877, DE-A 27 03 376, DE-A 27 14 544, DE-A 30 00 610, DE-A 38 32 396; zur Herstellung aromatischer Polyestercarbonate z. B. DE-A 30 77 934).

60 [0012] Die Herstellung aromatischer Polycarbonate erfolgt z. B. durch Umsetzung von Diphenolen mit Kohlensäurehalogeniden, vorzugsweise Phosgen und/oder mit aromatischen Dicarbonsäuredihalogeniden, vorzugsweise Benzoldicarbonsäuredihalogeniden, nach dem Phasengrenzflächenverfahren, gegebenenfalls unter Verwendung von Kettenabbrechern, beispielsweise Monophenolen und gegebenenfalls unter Verwendung von trifunktionellen oder mehr als trifunktionellen Verzweigern, beispielsweise Triphenolen oder Tetraphenolen.

DE 100 61 081 A 1

[0013] Diphenole zur Herstellung der aromatischen Polycarbonate und/oder aromatischen Polyestercarbonate sind vorzugsweise solche der Formel (I)

wobei

A eine Einfachbindung, C₁-C₅-Alkylen, C₂-C₅-Alkyliden, C₅-C₆-Cycloalkyliden, -O-, -SO-, -CO-, -S-, -SO₂-, C₆-C₁₂-Arylen, an das weitere aromatische gegebenenfalls Heteroatome enthaltende Ringe kondensiert sein können, oder ein Rest der Formel (IIa) oder (IIb)

15

wobei

B jeweils C₁-C₁₂-Alkyl, vorzugsweise Methyl, Halogen, vorzugsweise Chlor und/oder Brom
x jeweils unabhängig voneinander 0, 1 oder 2,

35

p 1 oder 0 sind, und

R⁷ und R⁸ für jedes X¹ individuell wählbar, unabhängig voneinander Wasserstoff oder C₁-C₆-Alkyl, vorzugsweise Wasserstoff, Methyl oder Ethyl,

40

X¹ Kohlenstoff und

m eine ganze Zahl von 4 bis 7, bevorzugt 4 oder 5 bedeuten, mit der Maßgabe, dass an mindestens einen Atom X¹, R⁷ und R⁸ gleichzeitig Alkyl sind.

45

[0014] Bevorzugte Diphenole sind Hydrochinon, Resorcin, Dihydroxydiphenole, Bis-(hydroxyphenyl)-C₁-C₅-alkane, Bis-(hydroxyphenyl)-C₅-C₆-cycloalkane, Bis-(hydroxyphenyl)-ether, Bis-(hydroxyphenyl)-sulfoxide, Bis-(hydroxyphenyl)-ketone, Bis-(hydroxyphenyl)-sulfone und α,α-Bis-(hydroxyphenyl)-diisopropyl-benzole sowie deren kernbromierte und/oder kernchlorierte Derivate.

50

[0015] Besonders bevorzugte Diphenole sind 4,4'-Dihydroxydiphenyl, Bisphenol-A, 2,4-Bis(4-hydroxyphenyl)-2-methylbutan, 1,1-Bis-(4-hydroxyphenyl)-cyclohexan, 1,1-Bis-(4-hydroxyphenyl)-3,3,5-trimethylcyclohexan, 4,4'-Dihydroxydiphenylsulfid, 4,4'-Dihydroxydiphenyl-sulfon sowie deren di- und tetrabromierten oder chlorierten Derviate wie beispielsweise 2,2-Bis(3-Chlor-4-hydroxyphenyl)-propan, 2,2-Bis-(3,5-dichlor-4-hydroxyphenyl)-propan oder 2,2-Bis-(3,5-dibrom-4-hydroxyphenyl)-propan.

55

[0016] Insbesondere bevorzugt ist 2,2-Bis(4-hydroxyphenyl)-propan (Bisphenol-A).

[0017] Es können die Diphenole einzeln oder als beliebige Mischungen eingesetzt werden.

55

[0018] Die Diphenole sind literaturbekannt oder nach literaturbekannten Verfahren erhältlich.

[0019] Für die Herstellung der thermoplastischen, aromatischen Polycarbonate sind geeignete Kettenabbrecher beispielsweise Phenol, p-Chlorphenol, p-tert.-Butylphenol oder 2,4,6-Tribromphenol, aber auch langkettige Alkylphenole, wie 4-(1,3-Tetramethylbutyl)-phenol gemäß DE-A 28 42 005 oder Monoalkylphenol bzw. Dialkylphenole mit insgesamt 8 bis 20 C-Atomen in den Alkylsubstituenten, wie 3,5-di-tert.-Butylphenol, p-iso-Octylphenol, p-tert.-Octylphenol, p-Dodecylphenol und 2-(3,5-Dimethylheptyl)-phenol und 4-(3,5-Dimethylheptyl)-phenol. Die Menge an einzusetzenden Kettenabbrechern beträgt im allgemeinen zwischen 0,5 Mol-%, und 10 Mol-%, bezogen auf die Molsumme der jeweils eingesetzten Diphenole.

60

[0020] Die thermoplastischen, aromatischen Polycarbonate haben mittlere Gewichtsmittelmolekulargewichte (M_w, gemessen z. B. durch Ultrazentrifuge oder Strahlungsmessung) von 10 000 bis 200 000, vorzugsweise 20 000 bis 80 000.

65

[0021] Die thermoplastischen, aromatischen Polycarbonate können in bekannter Weise verzweigt sein, und zwar vorzugsweise durch den Einbau von 0,05 bis 2,0 Mol-%, bezogen auf die Summe der eingesetzten Diphenole, an trifunktionalen oder mehr als trifunktionalen Verbindungen, beispielsweise solchen mit drei und mehr phenolischen Gruppen.

[0022] Geeignet sind sowohl Homopolycarbonate als auch Copolycarbonate. Zur Herstellung erfundengemäßer Co-

DE 100 61 081 A 1

polycarbonate gemäß Komponente A können auch 1 bis 25 Gew.-%, vorzugsweise 2,5 bis 25 Gew.-% (bezogen auf die Gesamtmenge an einzusetzenden Diphenolen) Polydiorganosiloxane mit Hydroxy-aryloxy-Endgruppen eingesetzt werden. Diese sind bekannt (s. beispielsweise US-Patent 3 419 634) bzw. nach literaturbekannten Verfahren herstellbar. Die Herstellung Polydiorganosiloxanhaltiger Copolycarbonate wird z. B. in DE-A 33 34 782 beschrieben.

5 [0023] Bevorzugte Polycarbonate sind neben den Bisphenol-A-Homopolycarbonaten die Copolycarbonate von Bisphenol-A mit bis zu 15 Mol-%, bezogen auf die Molsummen an Diphenolen, anderen als bevorzugt bzw. besonders bevorzugt genannten Diphenole, insbesondere 2,2-Bis(3,5-dibrom-4-hydroxyphenyl)-propan.

[0024] Aromatische Dicarbonsäuredihalogenide zur Herstellung von aromatischen Polyestercarbonate sind vorzugsweise die Disäuredichloride der Isophthalsäure, Terephthalsäure, Diphenylether-4,4'-dicarbonsäure und der Naphthalin-10,2,6-dicarbonsäure.

[0025] Besonders bevorzugt sind Gemische der Disäuredichloride der Isophthalsäure und der Terephthalsäure im Verhältnis zwischen 1 : 20 und 20 : 1.

[0026] Bei der Herstellung von Polyestercarbonaten wird zusätzlich ein Kohlensäurehalogenid, vorzugsweise Phosgen als bifunktionelles Säurederivat mitverwendet.

15 [0027] Als Kettenabbrecher für die Herstellung der aromatischen Polyestercarbonate kommen außer den bereits genannten Monophenolen noch deren Chlorkohlensäureester sowie die Säurechloride von aromatischen Monocarbonsäuren, die gegebenenfalls durch C₁-C₂₂-Alkylgruppen oder durch Halogenatome substituiert sein können, sowie aliphatische C₂-C₂₂-Monocarbonsäurechloride in Betracht.

20 [0028] Die Menge an Kettenabbrechern beträgt jeweils 0,1 bis 10 Mol-%, bezogen im Falle der phenolischen Kettenabbrecher auf Mole Diphenole und Falle von Monocarbonsäurechlorid-Kettenabbrecher auf Mole Dicarbonsäuredichloride.

[0029] Die aromatischen Polyestercarbonate können auch aromatische Hydroxycarbonsäuren eingebaut enthalten.

[0030] Die aromatischen Polyestercarbonate können sowohl linear als auch in bekannter Weise verzweigt sein (siehe dazu ebenfalls DE-A 29 40 024 und DE-A 30 07 934).

25 [0031] Als Verzweigungsmittel können beispielsweise 3- oder mehrfunktionelle Carbonsäurechloride, wie Trimesinsäuretrichlorid, Cyanursäuretrichlorid, 3,3'-,4,4'-Benzophenon-tetracarbonsäuretetrachlorid, 1,4,5,8-Naphthalintetracarbonsäuretetrachlorid oder Pyromellithsäuretetrachlorid, in Mengen von 0,01 bis 1,0 Mol-% (bezogen auf eingesetzte Dicarbonsäuredichloride) oder 3- oder mehrfunktionelle Phenole, wie Phloroglucin, 4,6-Dimethyl-2,4,6-tri-(4-hydroxyphenyl)-hepten-2,4,4-Dimethyl-2,4-6-tri-(4-hydroxyphenyl)-heptan, 1,3,5-Tri-(4-hydroxyphenyl)-benzol, 1,1,1-Tri-(4-hydroxyphenyl)-ethan, Tri-(4-hydroxyphenyl)-phenylmethan, 2,2-Bis[4,4-bis(4-hydroxy-phenyl)-cyclohexyl]-propan, 2,4-Bis(4-hydroxyphenyl-isopropyl)-phenol, Tetra-(4-hydroxyphenyl)-methan, 2,6-Bis(2-hydroxy-5-methyl-benzyl)-4-methyl-phenol, 2-(4-Hydroxyphenyl)-2-(2,4-dihydroxyphenyl)-propan, Tetra-(4-[4-hydroxyphenyl-isopropyl]-phenoxy)-methan, 1,4-Bis[4,4'-dihydroxytri-phenyl]-methyl]-benzol, in Mengen von 0,01 bis 1,0 Mol% bezogen auf eingesetzte Diphenole verwendet werden. Phenolische Verzweigungsmittel können mit den Diphenolen vorgelegt, Säurechlorid-Verzweigungsmittel können zusammen mit den Säurechloriden eingetragen werden.

30 [0032] In den thermoplastischen, aromatischen Polyestercarbonaten kann der Anteil an Carbonatstruktureinheiten beliebig variieren. Vorzugsweise beträgt der Anteil an Carbonatgruppen bis zu 100 Mol-%, insbesondere bis zu 80 Mol-%, besonders bevorzugt bis zu 50 Mol-%, bezogen auf die Summe an Estergruppen und Carbonatgruppen. Sowohl der Ester- als auch der Carbonatanteil der aromatischen Polyestercarbonate kann in Form von Blöcken oder statistisch verteilt im Polykondensat vorliegen.

35 [0033] Die relative Lösungsviskosität (η_{rel}) der aromatischen Polycarbonate und Polyestercarbonate liegt im Bereich 1,18 bis 1,4, vorzugsweise 1,22 bis 1,3 (gemessen an Lösungen von 0,5 g Polycarbonat oder Polyestercarbonat in 100 ml Methylenchlorid-Lösung bei 25°C).

40 [0034] Die thermoplastischen, aromatischen Polycarbonate und Polyestercarbonate können allein oder im beliebigen Gemisch untereinander eingesetzt werden.

Komponente B

45 [0035] Die Komponente B umfasst ein oder mehrere Pfpolymerisate von

50 B.1 5 bis 95, vorzugsweise 30 bis 80 Gew.-%, wenigstens eines Vinylmonomeren auf
B.2 95 bis 5, vorzugsweise 70 bis 20 Gew.-% einer oder mehrerer Pfpolygrundlagen mit Glasübergangstemperaturen < 10°C, vorzugsweise < 0°C, besonders bevorzugt < -20°C.

55 [0036] Die Pfpolygrundlage B.2 hat im allgemeinen eine mittlere Teilchengröße (d_{50} -Wert) von 0,05 bis 5 µm, vorzugsweise 0,10 bis 0,5 µm, besonders bevorzugt 0,20 bis 0,40 µm.

[0037] Monomere B.1 sind vorzugsweise Gemische aus

60 B.1.1 50 bis 99 Gew.-Teilen Vinylaromaten und/oder kernsubstituierten Vinylaromaten (wie beispielsweise Styrol, α-Methylstyrol, p-Methylstyrol, p-Chlorstyrol) und/oder Methacrylsäure-(C₁-C₄)-Alkylester (wie z. B. Methylmethacrylat, Ethylmethacrylat) und
B.1.2 1 bis 50 Gew.-Teilen Vinylcyanide (ungesättigte Nitrile wie Acrylnitril und Methacrylnitril) und/oder (Meth)Acrylsäure-(C₁-C₈)-Alkylester (wie z. B. Methylmethacrylat, n-Butylacrylat, t-Butylacrylat) und/oder Derivate (wie Anhydride und Imide) ungesättigter Carbonsäuren (beispielsweise Maleinsäurcanhydrid und N-Phenyl-Maleinimid).

65 [0038] Bevorzugte Monomere B.1.1 sind ausgewählt aus mindestens einem der Monomere Styrol, α-Methylstyrol und Methylmethacrylat, bevorzugte Monomere B.1.2 sind ausgewählt aus mindestens einem der Monomere Acrylnitril, Ma-

DE 100 61 081 A 1

leinsäureanhydrid und Methylmethacrylat.

[0039] Besonders bevorzugte Monomere sind B.1.1 Styrol und B.1.2 Acrylnitril.

[0040] Für die Ppropfpolymerisate B geeignete Ppropfgrundlagen B.2 sind beispielsweise Dienkautschuke, EP(D)M-Kautschuke, also solche auf Basis Ethylen/Propylen und gegebenenfalls Dien, Acrylat-, Polyurethan-, Silikon-, Chloropren und Ethylen/Vinylacetat-Kautschuke. 5

[0041] Bevorzugte Ppropfgrundlagen B.2 sind Dienkautschuke (z. B. auf Basis Butadien, Isopren etc.) oder Gemische von Dienkautschuken oder Copolymerisate von Dienkautschuken oder deren Gemischen mit weiteren copolymerisierbaren Monomeren (z. B. gemäß B.1.1 und B.1.2), mit der Maßgabe, dass die Glasübergangstemperatur der Komponente B.2 unterhalb < 10°C, vorzugsweise < 0°C, besonders bevorzugt < -10°C liegt.

[0042] Besonders bevorzugt ist reiner Polybutadienkautschuk. 10

[0043] Besonders bevorzugte Polymerisate B sind z. B. ABS-Polymerisate (Emulsions-, Masse- und Suspensions-ABS), wie sie z. B. in der DE-A 20 35 390 (= US-A 3 644 574) oder in der DE-A 22 48 242 (= GB-A 1 409 275) bzw. in Ullmann, Enzyklopädie der Technischen Chemie, Bd. 19 (1980), S. 280 ff. beschrieben sind. Der Gelanteil der Ppropfgrundlage B.2 beträgt mindestens 30 Gew.-%, vorzugsweise mindestens 40 Gew.-% (in Toluol gemessen).

[0044] Die Ppropfcopolymerisate B werden durch radikalische Polymerisation, z. B. durch Emulsions-, Suspensions-, Lösungs- oder Massepolymerisation, vorzugsweise durch Emulsionspolymerisation hergestellt. 15

[0045] Besonders geeignete Ppropfkautschuke sind auch ABS-Polymerisate, die durch Redox-Initiierung mit einem Initiatorsystem aus organischem Hydroperoxid und Ascorbinsäure gemäß US-A 4 937 285 hergestellt werden.

[0046] Da bei der Ppropfreaktion die Ppropfmonomeren bekanntlich nicht unbedingt vollständig auf die Ppropfgrundlage aufgeppropft werden, werden erfahrungsgemäß unter Ppropfpolymerisaten B nur solche Produkte verstanden, die durch Ppropfpolymerisation der Ppropfmonomere in Gegenwart der Ppropfgrundlage gewonnen werden. 20

[0047] Geeignete Acrylatkautschuke gemäß B.2 der Polymerisate B sind vorzugsweise Polymerisate aus Acrylsäure-alkylestern, gegebenenfalls mit bis zu 40 Gew.-%, bezogen auf B.2 anderen polymerisierbaren, ethylenisch ungesättigten Monomeren. Zu den bevorzugten polymerisierbaren Acrylsäureestern gehören C₁-C₈-Alkylester, beispielsweise Methyl-, Ethyl-, Butyl-, n-Octyl- und 2-Ethylhexylester; Halogenalkylester, vorzugsweise Halogen-C₁-C₈-alkyl-ester, wie Chlорethylacrylat sowie Mischungen dieser Monomeren. 25

[0048] Zur Vernetzung können Monomere mit mehr als einer polymerisierbaren Doppelbindung copolymerisiert werden. Bevorzugte Beispiele für vernetzende Monomere sind Ester ungesättigter Monocarbonsäuren mit 3 bis 8 C-Atomen und ungesättigter einwertiger Alkohole mit 3 bis 12 C-Atomen, oder gesättigter Polyole mit 2 bis 4 OH-Gruppen und 2 bis 20 C-Atomen, wie z. B. Ethylenglycoldimethacrylat, Allylmethacrylat; mehrfach ungesättigte heterocyclische Verbindungen, wie z. B. Trivinyl- und Triallylcyanurat; polyfunktionelle Vinylverbindungen, wie Di- und Trivinylbenzole; aber auch Triallylphosphat und Diallylphthalat. 30

[0049] Bevorzugte vernetzende Monomere sind Allylmethacrylat, Ethylenglycoldimethacrylat, Diallylphthalat und heterocyclische Verbindungen, die mindestens 3 ethylenisch ungesättigte Gruppen aufweisen. 35

[0050] Besonders bevorzugte vernetzende Monomere sind die cyclischen Monomere Triallylcyanurat, Triallylisocyanurat, Triacyloylhexahydro-s-triazin, Triallylbenzole. Die Menge der vernetzten Monomere beträgt vorzugsweise 0,02 bis 5, insbesondere 0,05 bis 2 Gew.-%, bezogen auf die Ppropfgrundlage B.2.

[0051] Bei cyclischen vernetzenden Monomeren mit mindestens 3 ethylenisch ungesättigten Gruppen ist es vorteilhaft, die Menge auf unter 1 Gew.-% der Ppropfgrundlage B.2 zu beschränken. 40

[0052] Bevorzugte "andere" polymerisierbare, ethylenisch ungesättigte Monomere, die neben den Acrylsäureestern gegebenenfalls zur Herstellung der Ppropfgrundlage B.2 dienen können, sind z. B. Acrylnitril, Styrol, α-Methylstyrol, Acrylamide, Vinyl-C₁-C₈-alkylether, Methylmethacrylat, Butadien. Bevorzugte Acrylatkautschuke als Ppropfgrundlage B.2 sind Emulsionspolymerisate, die einen Gelgehalt von mindestens 60 Gew.-% aufweisen. 45

[0053] Weitere geeignete Ppropfgrundlagen gemäß B.2 sind Silikonkautschuke mit ppropfaktiven Stellen, wie sie in den DE-A 37 04 657, DE-A 37 04 655, DE-A 36 31 540 und DE-A 36 31 539 beschrieben werden.

[0054] Der Gelgehalt der Ppropfgrundlage B.2 wird bei 25°C in einem geeigneten Lösungsmittel bestimmt (M. Hoffmann, H. Krömer, R. Kuhn, Polymeranalytik I und II, Georg Thieme-Verlag, Stuttgart 1977). 50

[0055] Die mittlere Teilchengröße d₅₀ ist der Durchmesser, oberhalb und unterhalb dessen jeweils 50 Gew.-% der Teilchen liegen. Er kann mittels Ultrazentrifugenmessung (W. Scholtan, H. Lange, Kolloid, Z. und Z. Polymere 250 (1972), 782-1796) bestimmt werden.

Komponente C

[0056] Die Komponente C umfasst ein oder mehrere thermoplastische Vinyl (co)polymerisate C.1 und/oder Polyalkylterephthalate C.2. 55

[0057] Geeignet sind als Vinyl(co)Polymerisate C.1 Polymerisate von mindestens einem Monomeren aus der Gruppe der Vinylaromatene, Vinylcyanide (ungesättigte Nitrile), (Meth)Acrylsäure-(C₁-C₈)-Alkylester, ungesättigte Carbonsäuren sowie Derivate (wie Anhydride und Imide) ungesättigter Carbonsäuren. Insbesondere geeignet sind (Co)Polymerisate aus

C.1.1 50 bis 99, vorzugsweise 60 bis 80 Gew.-Teilen Vinylaromatene und/oder kernsubstituierten Vinylaromatene wie beispielsweise Styrol, α-Methylstyrol, p-Methylstyrol, p-Chlorstyrol und/oder Methacrylsäure-(C₁-C₈)-Alkylester wie z. B. Methylmethacrylat, Ethylmethacrylat, und
C.1.2 1 bis 50, vorzugsweise 20 bis 40 Gew.-Teilen Vinylcyanide (ungesättigte Nitrile) wie Acrylnitril und Methacrylnitril und/oder (Meth)Acrylsäure-(C₁-C₈)-Alkylester (wie z. B. Methylmethacrylat, n-Butylacrylat, t-Butylacrylat) und/oder ungesättigte Carbonsäuren (wie Maleinsäure) und/oder Derivate (wie Anhydride und Imide) ungesättigter Carbonsäuren (beispielsweise Maleinsäureanhydrid und N-Phenyl-Maleinimid). 60
65

[0058] Die (Co)Polymerisate C.1 sind harzartig, thermoplastisch und kautschukfrei.

[0059] Besonders bevorzugt ist das Copolymerisat aus C.1.1 Styrol und C.1.2 Acrylnitril.

[0060] Die (Co)Polymerisate gemäß C.1 sind bekannt und lassen sich durch radikalische Polymerisation, insbesondere durch Emulsions-, Suspensions-, Lösungs- oder Massopolymerisation herstellen. Die (Co)Polymerisate besitzen vorzugsweise Molekulargewichte \bar{M}_w (Gewichtsmittel, ermittelt durch Lichtstreuung oder Sedimentation) zwischen 15 000 und 200 000.

[0061] Die Polyalkylenterephthalate der Komponente C.2 sind Reaktionsprodukte aus aromatischen Dicarbonsäuren oder ihren reaktionsfähigen Derivaten, wie Dimethylestern oder Anhydriden, und aliphatischen, cycloaliphatischen oder araliphatischen Diolen sowie Mischungen dieser Reaktionsprodukte.

[0062] Bevorzugte Polyalkylenterephthalate enthalten mindestens 80 Gew.-%, vorzugsweise mindestens 90 Gew.-%, bezogen auf die Dicarbonsäurekomponente Terephthalsäurereste und mindestens 80 Gew.-%, vorzugsweise mindestens 90 Mol.-%, bezogen auf die Diolkomponente Ethylenglykol- und/oder Butandiol-1,4-Reste.

[0063] Die bevorzugten Polyalkylenterephthalate können neben Terephthalsäureresten bis zu 20 Mol%, vorzugsweise bis zu 10 Mol.-%, Reste anderer aromatischer oder cycloaliphatischer Dicarbonsäuren mit 8 bis 14 C-Atomen oder aliphatischer Dicarbonsäuren mit 4 bis 12 C-Atomen enthalten, wie z. B. Reste von Phthalsäure, Isophthalsäure, Naphthalin-2,6-dicarbonsäure, 4,4'-Diphenyldicarbonsäure, Bernsteinsäure, Adipinsäure, Sebacinsäure, Azelainsäure, Cyclohexan-diessigsäure.

[0064] Die bevorzugten Polyalkylenterephthalate können neben Ethylenglykol- bzw. Butandiol-1,4-Resten bis zu 20 Mol%, vorzugsweise bis zu 10 Mol.-%, andere aliphatische Diole mit 3 bis 12 C-Atomen oder cycloaliphatische Diole mit 6 bis 21 C-Atomen enthalten, z. B. Reste von Propandiol-1,3, 2-Ethylpropandiol-1,3, Neopentylglykol, Pentandiol-1,5, Hexandiol-1,6, Cyclohexan-dimethanol-1,4, 3-Ethylpentandiol-2,4, 2-Methylpentandiol-2,4, 2,2,4-Trimethylpentandiol-1,3, 2-Ethylhexandiol-1,3, 2,2-Diethylpropandiol-1,3, Hexandiol-2,5, 1,4-Di-(β -hydroxyethoxy)-benzol, 2,2-Bis-(4-hydroxycyclohexyl)-propan, 2,4-Dihydroxy-1,1,3,3-tetramethyl-cyclobutan, 2,2-Bis-(4- β -hydroxyethoxy-phenyl)-propan und 2,2-Bis-(4-hydroxypropoxypheynyl)-propan (DE-OS 24 07 674, 2 407 776, 2 715 932).

[0065] Die Polyalkylenterephthalate können durch Einbau relativ kleiner Mengen 3- oder 4-wertiger Alkohole oder 3- oder 4-basischer Carbonsäuren, z. B. gemäß DE-A 19 00 270 und US-A 3 692 744, verzweigt werden. Beispiele bevorzugter Verzweigungsmittel sind Trimesinsäure, Trimellithsäure, Trimethylolethan und -propan und Pentaerythrit.

[0066] Besonders bevorzugt sind Polyalkylenterephthalate, die allein aus Terephthalsäure und deren reaktionsfähigen Derivaten (z. B. deren Dialkylestern) und Ethylenglykol und/oder Butandiol-1,4 hergestellt worden sind, und Mischungen dieser Polyalkylenterephthalate.

[0067] Mischungen von Polyalkylenterephthalaten enthalten 1 bis 50 Gew.-%, vorzugsweise 1 bis 30 Gew.-%, Polyethylenterephthalat und 50 bis 99 Gew.-%, vorzugsweise 70 bis 99 Gew.-%, Polybutylenterephthalat.

[0068] Die vorzugsweise verwendeten Polyalkylenterephthalate besitzen im allgemeinen eine Grenzviskosität von 0,4 bis 1,5 dL/g, vorzugsweise 0,5 bis 1,2 dL/g, gemessen in Phenol/o-Dichlorbenzol (1 : 1 Gewichtsteile) bei 25°C im Ubbelohde-Viskosimeter.

[0069] Die Polyalkylenterephthalate lassen sich nach bekannten Methoden herstellen (s. z. B. Kunststoff-Handbuch, Band VIII, S. 695 ff., Carl-Hanser-Verlag, München 1973).

Komponente D

[0070] Phosphorhaltige Flammenschutzmittel gemäß Komponente D.1 sind bevorzugt ausgewählt aus den Gruppen der Mono- und oligomeren Phosphor- und Phosphonsäureester, Phosphonatamine und Phosphazene, wobei auch Mischungen von mehreren Komponenten ausgewählt aus einer oder verschiedenen dieser Gruppen als Flammenschutzmittel zum Einsatz kommen können. Auch andere hier nicht speziell erwähnte halogenfreie Phosphorverbindungen können alleine oder in beliebiger Kombination mit anderen halogenfreien Phosphorverbindungen eingesetzt werden.

[0071] Bevorzugte Mono- und oligomere Phosphor- bzw. Phosphonsäureester sind Phosphorverbindungen der allgemeinen Formel (III)

worin

R¹, R², R³ und R⁴, unabhängig voneinander jeweils gegebenenfalls halogeniertes C₁- bis C₈-Alkyl, jeweils gegebenenfalls durch Alkyl, vorzugsweise C₁-C₄-Alkyl, und/oder Halogen, vorzugsweise Chlor, Brom, substituiertes C₅- bis C₆-Cycloalkyl, C₆- bis C₂₀-Aryl oder C₇- bis C₁₂-Aralkyl, n unabhängig voneinander, 0 oder 1

q 0 bis 30 und

X einen ein- oder mehrkernigen aromatischen Rest mit 6 bis 30 C-Atomen, oder einen linearen oder verzweigten aliphatischen Rest mit 2 bis 30 C-Atomen, der OH-substituiert sein und bis zu 8 Etherbindungen enthalten kann, bedeuten.

[0072] Bevorzugt stehen R¹, R², R³ und R⁴ unabhängig voneinander für C₁-C₄-Alkyl, Phenyl, Naphthyl oder Phenyl-C₁-C₄-alkyl. Die aromatischen Gruppen R¹, R², R³ und R⁴ können ihrerseits mit Halogen- und/oder Alkylgruppen, vorzugsweise Chlor, Brom und/oder C₁-C₄-Alkyl substituiert sein. Besonders bevorzugte Aryl-Reste sind Kresyl, Phenyl, Xylenyl, Propylphenyl oder Butylphenyl sowie die entsprechenden bromierten und chlorierten Derivate davon.

DE 100 61 081 A 1

[0073] X in der Formel (III) bedeutet bevorzugt einen ein- oder mehrkernigen aromatischen Rest mit 6 bis 30 C-Atomen. Dieser leitet sich bevorzugt von Diphenolen der Formel (I) ab.

[0074] n in der Formel (III) kann, unabhängig voneinander, 0 oder 1 sein, vorzugsweise ist n gleich 1.

[0075] q steht für Werte von 0 bis 30. Bei Einsatz von Mischungen verschiedener Komponenten der Formel (III) können Mischungen vorzugsweise zahlgemittelte q-Werte von 0,3 bis 20, besonders bevorzugt 0,5 bis 10, insbesondere 0,5 bis 6 verwendet werden. 5

[0076] X steht besonders bevorzugt für

10

15

oder deren chlorierte oder bromierte Derivate, insbesondere leitet sich X von Resorcin, Hydrochinon, Bisphenol A oder Diphenylphenol ab. Besonders bevorzugt leitet sich X von Bisphenol A ab.

20

[0077] Der Einsatz von oligomeren Phosphorsäureestern der Formel (III), die sich vom Bisphenol A ableiten, ist besonders vorteilhaft, da die mit dieser Phosphorverbindung ausgerüsteten Zusammensetzungen eine besonders hohe Spannungsriß- und Hydrolysebeständigkeit sowie eine besonders geringe Neigung zur Belagsbildung bei der Spritzgussverarbeitung aufweisen. Des Weiteren lässt sich mit diesen Flammeschutzmitteln eine besonders hohe Wärmeformbeständigkeit erzielen. 25

[0078] Als erfahrungsgemäße Komponente D.1 können Monophosphate (q = O), Oligophosphate (q = 1-30) oder Mischungen aus Mono- und Oligophosphaten eingesetzt werden.

30

[0079] Monophosphorverbindungen der Formel (III) sind insbesondere Tributylphosphat, Tris-(2-chlorethyl)-phosphat, Tris-(2,3-dibrompropyl)-phosphat, Triphenylphosphat, Trikresylphosphat, Diphenylkresylphosphat, Diphenylocetylphosphat, Diphenyl-2-ethylkresylphosphat, Tri-(isopropylphenyl)-phosphat, halogensubstituierte Arylphosphate, Methylphosphonsäuredimethylester, Methylphosphensäurediphenylester, Phenylphosphonsäurediethylester, Triphenylphosphinoxid oder Trikresylphosphinoxid.

35

[0080] Die Phosphorverbindungen gemäß Komponente D.1 Formel (III) sind bekannt (vgl. z. B. EP-A 363 608, EP-A 640 655) oder lassen sich nach bekannten Methoden in analoger Weise herstellen (z. B. Ullmanns Encyklopädie der technischen Chemie, Bd. 18, S. 301 ff. 1979; Houben-Weyl, Methoden der organischen Chemie, Bd. 12/1, S. 43; Beilstein Bd. 6, S. 177).

40

[0081] Die mittleren q-Werte können bestimmt werden, indem mittels geeigneter Methode (Gaschromatographie (GC), High Pressure Liquid Chromatography (HPLC), Gelpermeationschromatographie (GPC)) die Zusammensetzung der Phosphat-Mischung (Molekulargewichtsverteilung) bestimmt wird und daraus die Mittelwerte für q berechnet werden.

45

[0082] Phosphonatamine sind vorzugsweise Verbindungen der Formel (IV)

in welcher

45

A für einen Rest der Formel (Va)

(Va)

50

oder (Vb)

55

(Vb)

60

steht,

R¹¹ und R¹² unabhängig voneinander für unsubstituiertes oder substituiertes C₁-C₁₀-Alkyl oder für unsubstituiertes oder substituiertes C₆-C₁₀-Aryl, stehen,

65

R¹³ und R¹⁴ unabhängig voneinander für unsubstituiertes oder substituiertes C₁-C₁₀-Alkyl oder unsubstituiertes oder substituiertes C₆-C₁₀-Aryl stehen oder

R¹³ und R¹⁴ zusammen für unsubstituiertes oder substituiertes C₃-C₁₀-Alkylen stehen,

y die Zahlenwerte 0, 1 oder 2 bedeuten und

DE 100 61 081 A 1

B¹ unabhängig für Wasserstoff, gegebenenfalls halogeniertes C₂-C₈-Alkyl, unsubstituiertes oder substituiertes C₆-C₁₀-Aryl steht.

[0083] B¹ steht vorzugsweise unabhängig für Wasserstoff, für Ethyl, n- oder iso-Propyl, welche durch Halogen substituiert sein können, unsubstituiertes oder durch C₁-C₄-Alkyl und/oder Halogen substituiertes C₆-C₁₀-Aryl, insbesondere Phenyl oder Naphthyl.

[0084] Alkyl in R¹¹, R¹², R¹³ und R¹⁴ steht unabhängig vorzugsweise für Methyl, Ethyl, n-Propyl, iso-Propyl, n-, iso-, sec. oder tert. Butyl, Pentyl oder Hexyl.

[0085] Substituiertes Alkyl in R¹¹, R¹², R¹³ und R¹⁴ steht unabhängig vorzugsweise für durch Halogen substituiertes C₁-C₁₀-Alkyl, insbesondere für ein- oder zweifach substituiertes Methyl, Ethyl, n-Propyl, iso-Propyl, n-, iso-, sec. oder tert.-Butyl, Pentyl oder Hexyl.

[0086] C₆-C₁₀-Aryl steht in R¹¹, R¹², R¹³ und R¹⁴ unabhängig vorzugsweise für Phenyl, Naphthyl oder Binaphthyl, insbesondere o-Phenyl, o-Naphthyl, o-Binaphthyl, welche durch Halogen (im allgemeinen ein-, zwei- oder dreifach) substituiert sein können.

[0087] R¹³ und R¹⁴ können zusammen mit den Sauerstoffatomen, an die sie direkt gebunden sind, und dem Phosphoratom eine Ringstruktur bilden.

[0088] Beispielhaft und vorzugsweise werden genannt: 5,5,5',5",5"-Hexamethyltris-(1,3,2-dioxaphosphorinan-methan)amino-2,2',2"-trioxid der Formel (Va-1)

25 (Versuchsprodukt XPM 1000 Fa. Solutia Inc., St. Louis, USA) 1,3,2-Dioxaphosphorinan-2-methanamin, N-butyl-N-[(5,5-dimethyl-1,3,2-dioxaphosphorinan-2-yl)methyl]-5,5-dimethyl-, P₂-dioide; 1,3,2-Dioxaphosphorinan-2-methanamin, N-[[5"-5-dimethyl-1,3,2-dioxaphosphorinan-2-yl)methyl]-5,5-dimethyl-N-phenyl-, P₂-dioide; 1,3,2-Dioxaphosphorinan-2-methanamin, N,N-dibutyl-5,5-dimethyl-, 2-oxid, 1,3,2-Dioxaphosphorinan-2-methanimin, N-[(5,5-dimethyl-1,3,2-dioxaphosphorinan-2-yl)methyl]-N-ethyl-5,5-dimethyl-, P₂-dioide, 1,3,2-Dioxaphosphorinan-2-methanamin, N-butyl-N-[(5,5-dichloromethyl-1,3,2-dioxaphosphorinan-2-yl)-methyl]-5,5-di-chloromethyl-, P₂-dioide, 1,3,2-Dioxaphosphorinan-2-methanamin, N-[(5,5-di-chloromethyl-1,3,2-dioxaphosphorinan-2-yl)methyl]-5,5-di-chloromethyl-N-phenyl-, P₂-dioide; 1,3,2-Dioxaphosphorinan-2-methanamin, N,N-di-(4-chlorobutyl)-5,5-dimethyl-2-oxide; 1,3,2-Dioxaphosphorinan-2-methanimin, N-[(5,5-dimethyl-1,3,2-dioxaphosphorinan-2-yl)methan]-N-(2-chloroethyl)-5,5-di(chloromethyl)-, P₂-dioide.

30 [0089] Bevorzugt sind weiterhin:
 35 [0089] Bevorzugt sind weiterhin:

Verbbindungen der Formel (Va-2) oder (Va-3)

45

55 wobei
 R¹¹, R¹², R¹³ und R¹⁴ die oben angegebenen Bedeutungen haben.

[0090] Besonders bevorzugt sind Verbindungen der Formel (Va-2) und (Va-1).

[0091] Die Herstellung der Phosphonamine ist beispielsweise in US-Patentschrift 5,844,028 beschrieben.

[0092] Phosphazene sind Verbindungen der Formeln (VIa) und (VIb)

60

65

worin

R jeweils gleich oder verschieden ist und für Amino, jeweils gegebenenfalls halogeniertes, vorzugsweise mit Fluor halogeniertes C₁- bis C₈-Alkyl, oder C₁- bis C₈-Alkoxy, jeweils gegebenenfalls durch Alkyl, vorzugsweise C₁-C₄-Alkyl, und/oder Halogen, vorzugsweise Chlor und/oder Brom, substituiertes C₅- bis C₆-Cycloalkyl, C₆- bis C₂₀-Aryl, vorzugsweise Phenyl oder Naphthyl, C₆- bis C₂₀-Aryloxy, vorzugsweise Phenoxy, Naphthyloxy, oder C₇- bis C₁₂-Aralkyl, vorzugsweise Phenyl-C₁-C₄-alkyl, steht,

k für 0 oder eine Zahl von 1 bis 15, vorzugsweise für eine Zahl von 1 bis 10 steht.

[0093] Beispielsweise genannt:

Propoxyphosphazene, Phenoxyphosphazene, Methylphenoxyphosphazene, Aminophosphazene und Fluoralkylphosphazene.

[0094] Bevorzugt ist Phenoxyphosphazene.

[0095] Die Phosphazene können allein oder als Mischung eingesetzt werden. Der Rest R kann immer gleich sein oder 2 oder mehr Reste in den Formeln (Ia) und (Ib) können verschieden sein.

[0096] Phosphazene und deren Herstellung sind beispielsweise in EP-A 728 811, DE-A 19 61 668 und WO 97/40092 beschrieben.

[0097] Die Flammeschutzmittel können allein oder in beliebiger Mischung untereinander oder in Mischung mit anderen Flammeschutzmitteln eingesetzt werden.

[0098] Phosphor-Sauerstoff-Verbindungen und Phosphor-Schwefel-Verbindungen gemäß Komponente D.2 sind vorzugsweise Phosphoroxide und Phosphorsulfide. Besonders bevorzugt ist P₂O₅. In Frage kommen weiterhin Aluminiumphosphate, Erdalkaliphosphate, Alkaliphosphate oder Ammoniumphosphate.

[0099] Die phosphorhaltigen Flammeschutzmittel gemäß Komponente D.1 und die Phosphorverbindungen gemäß Komponente D.2 können bei der Herstellung der Polymermischung separat oder gemischt als spezielle Zubereitung zugegeben werden. Die Mischung der Komponente D.1. und D.2 kann bei Raumtemperatur oder erhöhte Temperatur erfolgen. Vorzugsweise wird diese Mischung bei Temperaturen oberhalb 100°C, besonders bevorzugt oberhalb 200°C hergestellt. Im erfundungsgemäßen Sinn sind also auch die bei höheren Temperaturen aus Komponente D.1 und Komponente D.2 erhaltenen Produkte zu verstehen.

30

35

40

45

Komponente E

[0100] Die fluorierten Polyolefine E sind hochmolekular und besitzen Glasübergangstemperaturen von über -30°C, in der Regel von über 100°C, Fluorgehalte, vorzugsweise von 65 bis 76, insbesondere von 70 bis 76 Gew.-%, mittlere Teilchendurchmesser d₅₀ von 0,05 bis 1000, vorzugsweise 0,08 bis 20 µm. Im allgemeinen haben die fluorierten Polyolefine F eine Dichte von 1,2 bis 2,3 g/cm³. Bevorzugte fluorierte Polyolefine F sind Tetrafluorethylen, Polyvinylidenfluorid, Tetrafluorethylen/Hexafluorpropylen- und Ethylen/Tetrafluorethylen-Copolymerisate. Die fluorierten Polyolefine sind bekannt (vgl. "Vinyl and Related Polymers" von Schildknecht, John Wiley & Sons, Inc., New York, 1962, Seite 484-494; "Fluoropolymers" von Wall, Wiley-Interscience, John Wiley & Sons, Inc., New York, Band 13, 1970, Seite 623-654; "Modern Plastics Encyclopedia", 1970-1971, Band 47, Nr. 10A, Oktober 1970, Mc Graw-Hill, Inc., New York, Seite 134 und 774; "Modern Plastics Encyclopedia", 1975-1976, Oktober 1975, Band 52, Nr. 10A, Mc Graw-Hill, Inc., New York, Seite 27, 28 und 472 und US-PS 3 671 487, 3 723 373 und 3 838 092).

50

55

[0101] Sie können nach bekannten Verfahren hergestellt werden, so beispielsweise durch Polymerisation von Tetrafluorethylen in wässrigem Medium mit einem freien Radikale bildenden Katalysator, beispielsweise Natrium-, Kalium- oder Ammoniumperoxidisulfat bei Drucken von 7 bis 71 kg/cm² und bei Temperaturen von 0 bis 200°C, vorzugsweise bei Temperaturen von 20 bis 100°C. (Nähere Einzelheiten s. z. B. US-A 2 393 967). Je nach Einsatzform kann die Dichte dieser Materialien zwischen 1,2 und 2,3 g/cm³, die mittlere Teilchengröße zwischen 0,5 und 1000 µm liegen.

60

[0102] Erfundungsgemäß bevorzugte fluorierte Polyolefine E sind Tetrafluorethylenpolymerisate mit mittleren Teilchendurchmesser von 0,05 bis 20 µm, vorzugsweise 0,08 bis 10 µm, und eine Dichte von 1,2 bis 1,9 g/cm³ und werden vorzugsweise in Form einer koagulierten Mischung von Emulsionen der Tetrafluorethylenpolymerisate F mit Emulsionen der Ppropfpolymerisate B eingesetzt.

65

[0103] Weitere erfundungsgemäß bevorzugte Zubereitungen sind die fluorierten Polyolefine E:

DE 100 61 081 A 1

E.1) als koagulierte Mischung mit mindestens einer der Komponenten A bis C, wobei das fluorierte Polyolefin E bzw. Polyolefingemisch als Emulsion mit mindestens einer Emulsion der Komponenten A bis C gemischt und anschließend koaguliert wird.

5 E.2) als Präcompound mit mindestens einer der Komponenten A bis C, wobei die fluorierten Polyolefine E als Pulver mit einem Pulver oder einem Granulat mindestens einer der Komponenten A bis C vermischt und in der Schmelze, im allgemeinen bei Temperaturen von 208°C bis 330°C in den üblichen Aggregaten wie Innenkneter, Extruder oder Doppelwellenschnecken, compoundiert wird.

[0104] Bevorzugte Zubereitungen für die fluorierten Polyolefine E sind koagulierte Mischungen mit einem Ppropfpolymerisat B oder einem Vinyl(co)polymerisat C.

10 [0105] Geeignete, in Pulverform einsetzbare fluorierte Polyolefine E sind Tetrafluorethylenpolymerisate mit mittleren Teilchendurchmesser von 100 bis 1000 µm und Dichten von 2,0 g/cm³ bis 2,3 g/cm³.

15 [0106] Zur Herstellung einer koagulierten Mischung aus B und F wird zuerst eine wässrige Emulsion (Latex) eines Ppropfpolymerisates B mit einer feinteiligen Emulsion eines Tetrafluorethylenpolymerisates F vermischt; geeignete Tetrafluorethylenpolymerisat-Emulsionen besitzen üblicherweise Feststoffgehalte von 30 bis 70 Gew.-%, insbesondere von 50 bis 60 Gew.-%, vorzugsweise von 30 bis 35 Gew.-%.

[0107] Die Mengenangabe bei der Beschreibung der Komponente B kann den Anteil des Ppropfpolymerisats für die koagulierte Mischung aus Ppropfpolymerisat und fluoriertem Polyolefinen einschließen.

20 [0108] In der Emulsionsmischung liegt das Gewichtsverhältnis Ppropfpolymerisat B zum Tetrafluorethylenpolymerisat F bei 95 : 5 bis 60 : 40. Anschließend wird die Emulsionsmischung in bekannter Weise koaguliert, beispielsweise durch Sprühtrocknen, Gefriertrocknung oder Koagulation mittels Zusatz von anorganischen oder organischen Salzen, Säuren, Basen oder organischen, mit Wasser mischbaren Lösemitteln, wie Alkoholen, Ketonen, vorzugsweise bei Temperaturen von 20 bis 150°C, insbesondere von 50 bis 100°C. Falls erforderlich, kann bei 50 bis 200°C, bevorzugt 70 bis 100°C, getrocknet werden.

25 [0109] Geeignete Tetrafluorethylenpolymerisat-Emulsionen sind handelsübliche Produkte und werden beispielsweise von der Firma DuPont als Teflon® 30 N angeboten.

[0110] Die erfindungsgemäßen Formmassen können weingstens eines der üblichen Additive, wie Gleit- und Entformungsmittel, Nukleiermittel, Antistatika, Stabilisatoren sowie Farbstoffe und Pigmente enthalten.

30 [0111] Die erfindungsgemäßen Blends enthaltend die Komponenten A bis E und gegebenenfalls weitere bekannte Zutände wie Stabilisatoren, Farbstoffen, Pigmenten, Gleit- und Entformungsmitteln, Nukleiermittel sowie Antistatika, werden hergestellt, indem man die jeweiligen Bestandteile in bekannter Weise vermischt und bei Temperaturen von 200°C bis 300°C in üblichen Aggregaten wie Innenkneter, Extrudern und Doppelwellenschnecken schmelzcompoundiert und schmelzextrudiert, wobei die Komponente F vorzugsweise in Form der bereits erwähnten koagulierten Mischung eingesetzt wird.

35 [0112] Die Vermischung der einzelnen Bestandteile kann in bekannter Weise sowohl sukzessive als auch simultan erfolgen, und zwar sowohl bei etwa 20°C (Raumtemperatur) als auch bei höherer Temperatur.

[0113] Gegenstand der Erfindung ist daher auch ein Verfahren zur Herstellung der Formmassen.

40 [0114] Die erfindungsgemäßen Blends eignen sich aufgrund ihrer ausgezeichneten Flammfestigkeit und Spannungsverhalten und ihrer guten mechanischen Eigenschaften zur Herstellung von Formkörpern jeglicher Art, insbesondere solchen mit erhöhten Anforderungen an das Spannungsrisssverhalten wie etwa bei Kontakt mit Ölen, Fetten oder organischen Lösungsmitteln.

[0115] Die Blends der vorliegenden Erfindung können zur Herstellung von Formkörpern jeder Art verwendet werden. Insbesondere können Formkörper durch Spritzguss hergestellt werden. Beispiele für herstellbare Formkörper sind: Gehäuseteile jeder Art, z. B. für Haushaltsgeräte wie Saftpressen, Kaffeemaschinen, Mixer, für Büromaschinen, wie Monitore, Drucker, Kopierer oder Abdeckplatten für den Bausektor und Teile für den Kfz-Sektor. Sie sind außerdem auf dem Gebiet der Elektrotechnik einsetzbar, weil sie sehr gute elektrische Eigenschaften haben.

[0116] Weiterhin können die erfindungsgemäßen Formmassen beispielsweise zur Herstellung von folgenden Formkörpern bzw. Formteilen verwendet werden:

45 Innenausbauteile für Schienenfahrzeuge, Radkappen, Gehäuse von Kleintransformatoren enthaltenden Elektrogeräten, Gehäuse für Geräte zur Informationsverbreitung und -Übermittlung, Gehäuse und Verkleidung für medizinische Zwecke, Massagegeräte und Gehäuse dafür, Spielfahrzeuge für Kinder, flächige Wandelemente, Gehäuse für Sicherheitseinrichtungen, Heckspoiler, wärmeisolierte Transportbehältnisse, Vorrichtung zur Haltung oder Versorgung von Kleintieren, Formteile für Sanitär- und Badeausrüstungen, Abdeckgitter für Lüfteröffnungen, Formteile für Garten- und Gerätehäuser, Gehäuse für Gartengeräte.

55 [0117] Weitere Anwendungen sind möglich
als Dateitechnikgeräte: Telekommunikationsgeräte wie Telefongeräte und Telefaxe, Computer, Drucker, Scanner, Plotter, Monitor, Tastatur, Schreibmaschine, Diktiergeräte, usw.,
als Elektrogeräte: Netzteile, Ladegeräte, Kleintransformatoren für Computer und Unterhaltungselektronik, Niederspannungstransformatoren, usw.,

60 als Gartengeräte: Gartenmöbel, Rasenmähergehäuse, Rohre und Gehäuse für Gartenbewässerung, Gartenhäuser, Laubsauger, Schredder, Hächsler, Spritzgeräte usw.,
im Möbelbereich: Arbeitsplatten, Möbellamine, Rolladenelemente, Büromöbel, Tische, Stühle, Sessel, Schränke, Regale, Türelemente, Fensterclemente, Bettkästen usw.,

65 als Sport-/Spielgeräte: Spielfahrzeuge, Sitzflächen, Pedale, Sportgeräte, Fahrräder, Tischtennisplatte, Heimtrainer, Golf-Caddys, Snow boards, Bootsaussenteile, Campingartikel, Strandkörbe usw.,
im Bausektor innen/außen: Hausverkleidung, Profilleiste, Rohre, Kabel, Rolladenelemente, Briefkästen, Lampengehäuse, Dachziegel, Fliesen, Trennwände, Kabelkanäle, Fußbodenleiste, Steckdosen usw.

im Bereich der Kfz/Schienenfahrzeuge: Wand-, Decken-Verkleidungen, Sitzschalen, Sitze, Bänke, Tische, Gepäckablagen.

DE 100 61 081 A 1

gen, Radkappen, Heckspoiler, Kotflügel, Heckklappen, Motorhauben, Seitenteile usw.

[0118] Eine weitere Form der Verarbeitung ist die Herstellung von Formkörpern durch Tiefziehen aus vorher hergestellten Platten oder Folien. 5

[0119] Ein weiterer Gegenstand der vorliegenden Erfindung ist daher auch die Verwendung der erfindungsgemäßen Formmassen zur Herstellung von Formkörpern jeglicher Art, vorzugsweise der oben genannten, sowie die Formkörper aus den erfindungsgemäßen Formmassen.

Beispiele

Komponente A

10

[0120] Lineares Polycarbonat auf Basis Bisphenol A mit einer relativen Lösungsviskosität von 1,252, gemessen in CH₂Cl₂ als Lösungsmittel bei 25°C und einer Konzentration von 0,5 g/100 ml.

Komponente B

15

[0121] Ppropfpolymerisat von 40 Gew.-Teilen eines Copolymerisats aus Styrol und Acrylnitril im Verhältnis von 72 : 28 auf 60 Gew.-Teile teilchenförmigen vernetzten Polybutadienkautschuk (mittlerer Teilchendurchmesser d₅₀ = 0,40 µm), hergestellt durch Emulsionspolymerisation. 20

Komponente C

25

[0122] Styrol/Acrylnitril-Copolymerisat mit einem Styrol/Acrylnitril-Gewichtsverhältnis von 72 : 28 und einer Grenzviskosität von 0,55 dl/g (Messung in Dimethylformamid bei 20°C).

Komponente D

30

D.1.1 Triphenylphosphat, Disflamoll TP® der Firma Bayer AG, Leverkusen, Deutschland

D.1.2 m-Phenylen-bis(di-phenylphosphat), Fyrolflex® der Firma AKZO, Nobel Chemicals GmbH, 52349 Düren, Germany

D.2 handelsübliches P₂O₅, Fa. Riedel-de Haen, Deutschland

Da) Mischung aus D1.1 und D.2

Herstellung:

Das Triphenylphosphat wird unter Stickstoff bei 60°C aufgeschnolzen. Anschließend wird das Phosphorpentoxid zugegeben. Die Mischung wird 10 min kräftig gerührt, auf 270°C aufgeheizt und bei dieser Temperatur 120 Minuten gehalten. Nach der Reaktion wird das Produkt abgekühlt, wobei nadelförmige Kristalle entstehen. 35

Das Verhältnis Triphenylphosphat: P₂O₅ in Da) beträgt 90 : 10.

Db) Herstellung wie Da) jedoch nur 30 Min. bei 270°C Das Verhältnis Triphenylphosphat : P₂O₅ in Db) beträgt 72 : 25. Db) ist eine viskose Flüssigkeit. 40

Komponente E

45

[0123] Tetrafluorethylenpolymerisat als koagulierte Mischung aus einer SAN-Ppropfpolymerisat-Emulsion gemäß Komponente B in Wasser und einer Tetrafluorethylenpolymerisat-Emulsion in Wasser. Das Gewichtsverhältnis Ppropfpolymerisat B zum Tetrafluorethylenpolymerisat E in der Mischung ist 90 Gew.-% zu 10 Gew.-%. Die Tetrafluorethylenpolymerisat-Emulsion besitzt einen Feststoffgehalt von 60 Gew.-%, der mittlere Teilchendurchmesser liegt zwischen 0,05 und 0,5 µm. Die Ppropfpolymerisat-Emulsion besitzt einen Feststoffgehalt von 34 Gew.-% und einen mittleren Latexteilchendurchmesser von 0,4 µm.

Herstellung von E

50

[0124] Die Emulsion des Tetrafluorethylenpolymerisats (Teflon 30 N der Fa. DuPont) wird mit der Emulsion des Ppropfpolymerisats B vermischt und mit 1,8 Gew.-%, bezogen auf Polymerfeststoff, phenolischer Antioxidantien stabilisiert. Bei 85 bis 95°C wird die Mischung mit einer wässrigen Lösung von MgSO₄ (Bittersalz) und Essigsäure bei pH 4 bis 5 koaguliert, filtriert und bis zur praktischen Elektrolytfreiheit gewaschen, anschließend durch Zentrifugation von der Hauptmenge Wasser befreit und danach bei 100°C zu einem Pulver getrocknet. Dieses Pulver kann dann mit den weiteren Komponenten in den beschriebenen Aggregaten compoundiert werden. 55

Herstellung und Prüfung der erfindungsgemäßen Formmassen

60

[0125] Das Mischen der Komponenten erfolgt auf einem 3-l-Innenkneter. Die Formkörper werden auf einer Spritzgießmaschine Typ Arburg 270 E bei 260°C hergestellt.

[0126] Die Bestimmung der Wärmeformbeständigkeit nach Vicat B erfolgt gemäß DIN 53 460 (ISO 306) an Stäben der Abmessung 80 × 10 × 4 mm.

[0127] Das Spannungsrissverhalten (ESC-Verhalten) wird an Stäben der Abmessung 80 × 10 × 4 mm, (hergestellt bei 260°C Verarbeitstemperatur), untersucht. Als Testmedium wird eine Mischung aus 60 Vol.-% Toluol und 40 Vol.% Isopropanol verwendet. Die Probekörper werden mittels einer Kreisbogenschablone vorgedehnt (Vordehnung in Prozent) und bei Raumtemperatur im Testmedium gelagert. Das Spannungsrissverhalten wird über die Rißbildung bzw. den

DE 100 61 081 A 1

Bruch in Abhängigkeit von der Vordehnung ϵ) und der Expositionszeit im Testmedium beurteilt.

[0128] Das Brandverhalten der Proben wurde nach UL-Subj. 94 V an Stäben der Abmessung $127 \times 12,7 \times 1,6$ mm gemessen, hergestellt auf einer Spritzgußmaschine bei 260°C .

5 [0129] Die UL 94 V-O-Klassifizierung umfaßt die nachstehend beschriebenen Eigenschaften von Materialien, die gemäß der UL 94 V-Vorschrift geprüft werden.

[0130] Die Formmassen in dieser Klasse enthalten keine Proben, die länger als 10 s nach jeder Einwirkung der Restflamme brennen; sie zeigen keine Gesamtflammanzeit von mehr als 50 s bei der zweimaligen Flammeinwirkung auf jeden Probesatz; sie enthalten keine Proben, die vollständig bis hinauf zu der am oberen Ende der Probe befestigten Halteklammer abbrennen; sie weisen keine Proben auf, die die unterhalb der Probe angeordnete Watte durch brennende Tropfen oder Teilchen entzünden; sie enthalten auch keine Proben, die länger als 30 s nach Entfernen der Testflamme glimmen.

10 [0131] Andere UL 94-Klassifizierungen bezeichnen Proben, die weniger flammwidrig oder weniger selbstlöschend sind, weil sie flammende Tropfen oder Teilchen abgeben. Diese Klassifizierungen werden mit UL 94 V-1 und V-2 bezeichnet. N. B. heißt "nicht bestanden" und ist die Klassifizierung von Proben, die eine Nachbrennzeit von ≥ 30 s aufweisen.

15

Tabelle

Formmassen und ihre Eigenschaften

	1 (Ver-gleich)	2	3	4	5	6 (Ver-gleich)	7	8
Komponenten [Gew.-Teile]								
A	68,4	68,4	68,4	68,4	68,4	83,0	83,0	83,0
B	6,8	6,8	6,8	6,8	6,8	4,0	4,0	4,0
C	9,3	9,3	9,3	9,3	9,3	1,1	2,2	2,2
D1.1	8,1	8,1	8,1	8,1	8,1	-	-	-
D1.2	2,7	2,7	2,7	2,7	2,7	6,6	-	-
D2	-	0,25	0,5	0,75	1,0	-		
Da							6,6	
Db								6,6
E	4,2	4,2	4,2	4,2	4,2	3,6	3,6	3,6
Entformungsmittel	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4
Eigenschaften								
Vicat B120 ($^\circ\text{C}$)	97	97	97	97	97	108	109	116
GesamtNachbrennzeit UL 94 V 1,6 mm (sec)	32	25	22	19	11	65	36	60
ESC-Verhalten								
Bruch ϵ_x (%)	2,0 %	2,0 %	2,0 %	2,0 %	2,4 %	0,8 %	1,0 %	1,4 %
Zeit (min)	2:24	3:37	5:00	5:00	5:00	5:00	5:00	5:00

55 [0132] In Versuchsreihe 1 bis 5 wird deutlich, dass bei Verwendung von P_2O_5 Formmassen erhalten werden, die wesentlich kürzere Nachbrennzeiten und deutlich besseres Spannungsrißverhalten (Bruch bei größerer Vordehnung bzw. längeren Expositionzeiten) aufweisen. In den Versuchen 7 und 8 wurde aus P_2O_5 und Triphenylphosphat bei erhöhten Temperaturen eine spezielle Zubereitung hergestellt, die sich als sehr wirksames Flammenschutzmittel erweist. Die Formmasse aus Versuch 7 besitzt einen um 10% reduzierten Triphenylphosphatgehalt und hat trotzdem eine von 65 auf 36 Sekunden verkürzte Nachbrennzeit bei Vorteilen in der Wärmeformbeständigkeit und dem Spannungsrißverhalten.

Patentansprüche

65 1. Zusammensetzungen enthaltend

- A) aromatisches Polycarbonat und/oder Polyestercarbonat
- B) Schlagzähmodifikator
- C) gegebenenfalls thermoplastisches Homo- und/oder Copolymer
- D) eine Kombination von

DE 100 61 081 A 1

D.1 Phosphorverbindung und

D.2 Phosphor-Sauerstoff-Verbindung verschieden von D.1 oder Phosphor-Schwefel-Verbindung oder das Reaktionsprodukt von D.1 und D.2.

2. Zusammensetzung gemäß Anspruch 1 enthaltend Komponente D in einer Menge von 0,1 bis 30 Gew.-Teilen.
3. Zusammensetzung gemäß Anspruch 1 oder 2, worin D.2 eine Phosphor-Sauerstoff-Verbindung ist.
4. Zusammensetzung gemäß Anspruch 1 bis 3, wobei D.1 ausgewählt ist aus den Gruppen der Mono- und oligomeren Phosphor- und Phosphorsäureester, Phosphonataminen und Phosphazenen und/oder Mischungen hieraus.
5. Zusammensetzung gemäß Anspruch 1 bis 4, enthaltend als Komponente D.1 Phosphorverbindungen der allgemeinen Formel (III)

5

10

15

worin

R¹, R², R³ und R⁴, unabhängig voneinander jeweils gegebenenfalls halogeniertes C₁- bis C₈-Alkyl, jeweils gegebenenfalls durch Alkyl, und/oder Halogen substituiertes C₅- bis C₆-Cycloalkyl, C₆- bis C₂₀-Aryl oder C₇- bis C₁₂-Aralkyl,

20

n unabhängig voneinander, 0 oder 1

q 0 bis 30 und

X einen ein- oder mehrkernigen aromatischen Rest mit 6 bis 30 C-Atomen, oder einen linearen oder verzweigten aliphatischen Rest mit 2 bis 30 C-Atomen, der OH-substituiert sein und bis zu 8 Etherbindungen enthalten kann, bedeuten.

25

6. Zusammensetzung gemäß Anspruch 5 wobei X in Formel (III) für

25

30

35

oder deren chlorierte oder bromierte Derivate steht.

40

7. Zusammensetzung gemäß Anspruch 5 oder 6 enthaltend als Komponente D.1 Monophosphate, Oligophosphate oder Mischungen aus Mono- und Oligophosphaten.

8. Zusammensetzung gemäß Anspruch 1, enthaltend als Komponente D.1 Phosphonatamine der Formel (IV)

45

45

in welcher

A für einen Rest der Formel (Va)

50

oder (Vb)

55

60

steht,

R¹¹ und R¹² unabhängig voneinander für unsubstituiertes oder substituiertes C₁-C₁₀-Alkyl oder für unsubstituiertes oder substituiertes C₆-C₁₀-Aryl, stehen,

65

R¹³ und R¹⁴ unabhängig voneinander für unsubstituiertes oder substituiertes C₁-C₁₀-Alkyl oder unsubstituiertes oder substituiertes C₆-C₁₀-Aryl stehen oder

DE 100 61 081 A 1

R^{13} und R^{14} zusammen für unsubstituiertes oder substituiertes C_3 - C_{10} -Alkylen stehen,
 y die Zahlenwerte 0, 1 oder 2 bedeuten und
 B¹ unabhängig für Wasserstoff, gegebenenfalls halogeniertes C_2 - C_8 -Alkyl, unsubstituiertes oder substituiertes C_6 -
 C_{10} -Aryl steht,
 Phosphazene der Formeln (VIa) und (VIb)

worin

30 R jeweils gleich oder verschieden ist und für Amino, jeweils gegebenenfalls halogeniertes, C_1 - bis C_8 -Alkyl, oder C_1 - bis C_8 -Alkoxy, jeweils gegebenenfalls durch Alkyl, C_4 -Alkyl, und/oder Halogen substituiertes C_5 - bis C_6 -Cycloalkyl, C_6 - bis C_{20} -Aryl, C_6 - bis C_{20} -Aryloxy, oder C_7 - bis C_{12} -Aralkyl steht,
 k für 0 oder eine Zahl von 1 bis 15 steht.

35 9. Zusammensetzung gemäß Anspruch 1 bis 8 enthaltend als Komponente D.2 Phosphoroxide, Phosphorsulfide, Aluminiumphosphate, Erdalkaliphosphate, Alkaliphosphate oder Ammoniumphosphate oder Mischungen hieraus.

10. Zusammensetzung gemäß Anspruch 9 enthaltend Phosphorpentoxid als Komponente D.2.

11. Zusammensetzung gemäß der Ansprüche 1 bis 10 enthaltend Anti-dripping Mittel.

12. Zusammensetzung gemäß der Ansprüche 1 bis 11 enthaltend als Schlagzähmodifikator Ppropfpolymerisate B) von

40 B.1 5 bis 95 Gew.-% wenigstens eines Vinylmonomeren auf
 B.2 95 bis 5 Gew.-% einer oder mehrerer Ppropfgrundlagen mit Glasübergangstemperaturen < 10°C.

13. Zusammensetzung gemäß Anspruch 12, wobei Monomere B.1 ausgewählt sind aus
 B.1.1 50 bis 99 Gew.-Teilen Vinylaromaten, kernsubstituierten Vinylaromaten oder Methacrylsäure-(C_1 - C_4)-Alkylester oder Mischungen hieraus und

45 B.1.2 1 bis 50 Gew.-Teilen Vinylcyanide, (Meth)Acrylsäure-(C_1 - C_8)-Alkylester oder Derivate ungesättigter Carbonsäuren oder Mischungen hieraus.

14. Zusammensetzung gemäß Anspruch 13, wobei Monomere B.1.1 ausgewählt aus mindestens einem der Monomere Styrol, α -Methylstyrol und Methylmethacrylat, und Monomere B.1.2 aus mindestens einem der Monomere Acrylnitril, Maleinsäureanhydrid und Methylmethacrylat.

50 15. Zusammensetzung gemäß Anspruch 14, wobei B.1.1. Styrol und B.1.2 Acrylnitril ist.

16. Zusammensetzung gemäß Ansprüche 1 bis 15, wobei die Ppropfgrundlage B.2 ausgewählt ist aus der Gruppe der Dienkautschuke, EP(D)M-Kautschuke, Acrylat-, Polyurethan-, Silikon-, Chloropren- oder Ethylen/Vinylacetat-Kautschuke oder Mischungen hieraus.

17. Zusammensetzung gemäß Anspruch 16, wobei die Ppropfgrundlage B.2 ausgewählt ist aus Dienkautschuken, Copolymerisaten von Dienkautschuken mit weiteren copolymerisierbaren Monomeren oder Kautschukmischungen hieraus, mit der Maßgabe, dass die Glasübergangstemperatur der Komponente B.2 unterhalb < 10°C liegt.

55 18. Zusammensetzung gemäß der Ansprüche 1 bis 17, wobei Komponente C ausgewählt ist aus einem oder mehreren thermoplastischen Vinyl(co)polymerisaten C.1, Polyalkylenterephthalaten C.2 oder Mischungen hieraus.

19. Zusammensetzung gemäß der Ansprüche 1 bis 18, wobei das Antidripping-Mittel fluoriertes Polyolefin ist.

60 20. Zusammensetzung gemäß der Ansprüche 1 bis 19 enthaltend

- A) 40 bis 99 Gew.-Teile aromatisches Polycarbonat und/oder Polyestercarbonat
- B) 0,5 bis 60 Gew.-Teile Ppropfpolymerisat von
 - B.1) 5 bis 95, vorzugsweise 30 bis 80 Gew.-% eines oder mehrerer Vinylmonomeren auf
 - B.2) 95 bis 5, vorzugsweise 20 bis 70 Gew.-% einer oder mehrerer Ppropfgrundlagen mit einer Glasumwandlungstemperatur < 10°C, vorzugsweise < 0°C, besonders bevorzugt < -20°C,
- C) 0 bis 45, vorzugsweise 0 bis 30, besonders bevorzugt 2 bis 25 Gew.-Teile mindestens eines thermoplastischen Polymers, ausgewählt aus der Gruppe der Vinyl(co)polymerisate und Polyalkylenterephthalate,
- D) 0,1 bis 30 Gew.-Teile, vorzugsweise 1 bis 25 Gew.-Teile, besonders bevorzugt 2 bis 20 Gew.-Teile einer

DE 100 61 081 A 1

Kombination aus

- D.1) organischer Phosphorverbindung und
- D.2) einer Phosphor-Sauerstoff-Verbindung oder Phosphor-Schwefel-Verbindung sowie
- E) 0 bis 5, vorzugsweise 0,1 bis 3, besonders bevorzugt 0,1 bis 1 Gew.-Teile, insbesondere 0,1 bis 0,5 Gew.-Teile Antidripping Mittel,

5

wobei die Summe der Gew.-Teile der Komponenten A-E 100 ergibt.

21. Verwendung der Zusammensetzungen gemäß Anspruch 1 bis 20 zur Herstellung von Formteilen, Folien oder Platten.

22. Formkörper, Folien oder Platten, erhältlich aus Zusammensetzungen gemäß den Ansprüchen 1 bis 20.

10

15

20

25

30

35

40

45

50

55

60

65

- Leerseite -