Problem 1- Forecasting energy variables

Time Series Analysis of Total Fossil Fuels Consumption

"Total Fossil Fuels Consumption" represents the aggregated usage of coal, natural gas, and petroleum products. The time series analysis, shown in Figure 1, exhibits a general upward trend interspersed with seasonal fluctuations. These variations likely reflect seasonal changes in energy demand.

Figure 1: Time Series Plot of Total Fossil Fuels Consumption

ARIMA Model Selection and Forecasting

To stabilize the variance and achieve stationarity, we first transformed the data using natural logs and differencing. Using the Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC), we determined the most appropriate ARIMA model parameters. The diagnostic checks, such as the Ljung-Box test, affirmed the adequacy of our chosen ARIMA model.

The residuals of the ARIMA model, which confirm the absence of significant autocorrelation, are depicted in Figure 2. The forecast for the subsequent 24 months indicates a sustained increase in fossil fuel consumption, accounting for seasonal variations.

Figure 2: Residuals from ARIMA Model Forecasting

VAR Model Analysis and Comparison

To augment our analysis, we utilized a Vector Autoregression (VAR) model, integrating two additional economic indicators: GDP growth rate and Industrial Production Index. Figure 3 shows the forecast comparison between the ARIMA model and the VAR model, illustrating the VAR model's enhanced capability to account for the interactions between economic factors and energy consumption.

Figure 3: Forecast Comparison between ARIMA and VAR Models

Mean Error	-0.013518
Root Mean Squared Error	0.031991
Mean Absolute Error	0.024407
Mean Percentage Error	-0.73284
Mean Absolute Percentage Error	1.3061
Theil's U2	0.43833
Bias proportion, UM	0.17856
Regression proportion, UR	0.068264
Disturbance proportion, UD	0.75318

Additional Insights from Related Time Series

Further, we analyzed two related time series, incorporating their dynamics into our VAR model to better understand the economic influences on fossil fuel consumption. Figure 4 and Figure 5 display the time series and forecast plots for GDP growth rate and Industrial Production Index, respectively.

Figure 4: Time Series Plot of GDP Growth Rate

Function evaluations: 36 Evaluations of gradient: 15

Model 6: ARMAX, using observations 1973:01-2022:01 (T = 589) Estimated using BHHH method (conditional ML) Dependent variable: _Value

	coeffici	ent s	td. erro	r z	p-value	
const	1.76651	0	.0093297	0 189.3	0.0000	**
theta_1	0.68826	8 0	.0321336	21.42	8.90e-102	**
time _	0.00101	887 6	.65815e-	05 15.30	7.36e-53	**
sq_time	-1.09775	e-06 1	.10735e-	07 -9.913	3.65e-23	**
dm1	0.04072	88 0	.0074240	9 5.486	4.11e-08	**
dm2	-0.067060	93 Ø	.0097107	9 -6.906	4.99e-12	**
dm3	-0.06034	37 Ø	.0101096	-5.969	2.39e-09	**
dm4	-0.16615	1 0	.0101205	-16.42	1.44e-60	**
dm5	-0.171613	3 0	.0099150	8 -17.31	4.07e-67	**
dm6	-0.16306	4 0	.0105285	-15.49	4.19e-54	44
dm7	-0.107398	8 9	.0103102	-10.42	2.08e-25	**
8mb	-0.096919	30 Ø	.0100827	-9.612	7.09e-22	303
dm9	-0.177440	9 9	.0106334	-16.69	1.63e-62	**
dm10	-0.141476	5 Ø	.0103873	-13.62	3.04e-42	303
dm11	-0.11966	3 Đ	.0072035	2 -16.61	5.77e-62	**
Mean depend	ent var	1.837277	S.D.	dependent va	r 0.113755	
Mean of inn		0.000111		of innovatio		
R-squared		8.867566	Adjus	ted R-square	d 0.864572	
Log-likelih	ood :	1035.698	Akaik	e criterion	-2039.396	
Schwarz cri		1969.341		n-Quinn	-2012.102	
		Real	Imagina	ry Modulu	s Frequency	
MA						
Root 1		-1.4529	0.00	00 1.452	9 0.5000	

Figure 5: Forecast Plot of Industrial Production Index

VAR system, maximum lag order 8

The asterisks below indicate the best (that is, minimized) values of the respective information criteria, AIC = Akaike criterion, BIC = Schwarz Bayesian criterion and HQC = Hannan-Quinn criterion.

lags	loglik	p(LR)	AIC	BIC	HQC
1 2	2404.21585 2538.67140 2627.39347	0.00000 0.00000	-7.898234 -8.312963 -8.576507	-7.789014 -8.138210 -8.336222	-7.855733 -8.244961 -8.483004
3 4	2709.38722	0.00000	-8.817809	-8.511991	-8.698805
5 6	2806.50891 2876.53898	0.00000 0.00000	-9.109120 -9.310873	-8.737771 -8.873991	-8.964615 -9.140866
7 8	2933.48943 2989.65422	0.00000 0.00000	-9.469387 -9.625303*	-8.966972 -9.057356*	-9.273879 -9.404295*

Problem 2 – Modelling volatility

TSLA (01/01/2022 – 01/01/2024): The Product hereby described is the Tesla,Inc.

SUMMARY AFTER UPLOADING THE DATA

<u>Summary statistics</u>, using the observations 2022-01-03 - 2023-12-29 for the variable 'ld_AdjClose' (500 valid observations)

Mean	-0.00095184
Median	0.00099742
Minimum	-0.13059
Maximum	0.10436
Standard deviation	0.038102
C.V.	40.030
Skewness	-0.29333
Ex. kurtosis	0.74510
5% percentile	-0.068778
95% percentile	0.060470
Interquartile range	0.041742
Missing obs.	1

TIME PLOT GRAPH

Model the Logarithm of AdjClose as an AR-1.

Our estimated coefficient is very close to 1.

<u>Time Series Plot of the Difference in Log-Transformed Returns:</u>

- The Mean is 0 but we see a lot of variability around it.
- We do not see any visible pattern creating predictability of this variable.

Try to show that the returns are not correlated with their own past.

Correlogram of the Squared Excess Returns:

GARCH MODEL:

1. Model Parameters:

- Constant (const): The estimated value is -0. 000528564 and a p-value of 0. 7483, indicating **it is not statistically significant**.
- Alpha(0): The coefficient is 2. 72254×10^{-5} (p=0.2308) and is not **statistically significant** (p-value > 0.001).

- Alpha(1): The coefficient is (0. 0319516) and a p-value of 0. 0157, suggesting that it is statistically significant.
- Beta(1) (β1): Coefficient: 0. 948037, P-value< 0.0001, this indicates high persistence in volatility.

2. Model Fit and Statistics:

- Mean of Dependent Variable Variance: -0. 000952 showing the average change in the dependent variable.
- Standard Error of Dependent Variable Variance: 0. 038102, showing the variation in the dependent variable around the mean.
- Unconditional Variance of the Error: 0. 00136048\), with lower values indicating a better model relative to others.
- Likelihood Ratio Test for GARCH: A highly significant chi-square value of 15. 2984 with a pvalue close to zero (0.000476415) suggests that including GARCH terms significantly improves the model's ability to capture the dynamics in the data.

Unconditional Standard Error: 0. 03688468516

Function evaluations: 114 Evaluations of gradient: 24

Model 4: GARCH, using observations 2022-01-04:2023-12-29 (T = 500) Dependent variable: $d_l_AdjClose$

Standard errors based on Hessian

		coefficient	std. error	Z	p-value	
	const	-0.000528564	0.00164696	-0.3209	0.7483	
	alpha(0)	2.72254e-05	2.27209e-05	1.198	0.2308	
	alpha(1)	0.0319516	0.0132303	2.415	0.0157	**
	beta(1)	0.948037	0.0233576	40.59	0.0000	***
Μ	ean depende	nt var -0.0009	52 S.D. dep	endent var	0.03810	2
	aa 14ka14ba	ad 022 42	CE Alcodico o	mi + a mi a m	1054 05	2

Log-likelihood 932.4265 Akaike criterion -1854.853Hannan-Quinn Schwarz criterion -1833.780 -1846.584

Unconditional error variance = 0.00136048 Likelihood ratio test for (G)ARCH terms: Chi-square(2) = 15.2984 [0.000476415]

FORECASTING:

The Forecast for the Next day (2024-02-01) has a standard deviation of 0.038102.

It is relatively close to the unconditional standard error 0.03688468516.