WEEK 5

Lab Exercises:

1: Design and simulate a combinational circuit with external gates and a 4 to 16 decoder built using a decoder tree of 2 to 4 decoders to implement the functions below. F = ab'c + a'cd + bcd', G = acd' + a'b'c and H = a'b'c' + abc + a'cd

```
module dec2to4(W,En,Y);
input[1:0]W;
input En;
output [0:3]Y;
reg [0:3]Y;
always@(W or En)
begin
if(En==1)
case(W)
0: Y=4'b1000;
1: Y=4'b0100;
2: Y=4'b0010;
3: Y=4'b0001;
endcase
else
Y=4'b0000;
end
endmodule
module dec4to16(W,En,Y);
input [3:0]W;
input En;
output [0:15]Y;
wire[0:3]M;
dec2to4 dec1(W[3:2],En,M[0:3]);
dec2to4 dec2(W[1:0],M[0],Y[0:3]);
dec2to4 dec3(W[1:0],M[1],Y[4:7]);
dec2to4 dec4(W[1:0],M[2],Y[8:11]);
dec2to4 dec5(W[1:0],M[3],Y[12:15]);
endmodule
```

```
module lab5_1(W, En, f, g, h);
input [3:0] W;
input En;
output f, g, h;
wire [0:15]Y;
dec4to16 dec1(W, En, Y);
or(f, Y[3], Y[6], Y[7], Y[10], Y[11], Y[14]);
or(g, Y[2], Y[3], Y[10], Y[14]);
or(h, Y[0], Y[1], Y[3], Y[7], Y[14], Y[15]);
endmodule
```

Waveform:

2: Design and implement a full adder using 2 to 4 decoder(s) and other gates.

```
module dec2to4(W,En,Y);
input[1:0]W;
input En;
output [0:3]Y;
reg [0:3]Y;
always@(W or En)
begin
if(En==1)
case(W)
0: Y=4'b1000;
1: Y=4'b0100;
2: Y=4'b0010;
3: Y=4'b0001;
endcase
else
Y=4'b0000;
end
```

endmodule

```
module lab5_2(x, y, c_in, sum, c_out);
input x, y, c_in;
output sum, c_out;
wire [0:3] dec0w;
wire [0:3] dec1w;
wire [0:3] dec2w;
dec2to4 dec0({1'b0, x}, 1'b1, dec0w);
dec2to4 dec1({c_in, y}, dec0w[1], dec1w);
dec2to4 dec2({c_in, y}, dec0w[0], dec2w);
or(c_out, dec2w[3], dec1w[1], dec1w[2], dec1w[3]);
or(sum, dec2w[1], dec2w[2], dec1w[0], dec1w[3]);
endmodule
```

Waveform:

3: Design and simulate the circuit with 3 to 8 decoder(s) and external gates to implement thefunctions below. F(a, b, c, d)= Σ m(2,4,7,9) G (a, b, c, d)= Σ m (0,3,15) H(a, b, c, d)= Σ m(0,2,10,12)

```
module dec2to4(W,En,Y);
input[1:0]W;
input En;
output [0:3]Y;
reg [0:3]Y;
always@(W or En)
begin
if(En==1)
case(W)
0: Y=4'b1000;
1: Y=4'b0100;
2: Y=4'b0010;
3: Y=4'b0001;
endcase
else
```

```
Y=4'b0000;
end
endmodule
module dec3to8(W,En,Y);
input [2:0]W;
input En;
output [0:7]Y;
wire[0:3]M;
dec2to4 dec1({1'b0, W[2]},En,M);
dec2to4 dec2(W[1:0],M[0],Y[0:3]);
dec2to4 dec3(W[1:0],M[1],Y[4:7]);
endmodule
module lab5_3(W, En, f, g, h);
input [3:0] W;
input En;
output f, g, h;
wire [0:7] temp0;
wire [0:7] temp1;
wire [0:7] temp2;
wire [0:7] temp3;
wire [0:7] temp4;
dec3to8 dec00({1'b0, W[3],W[2]}, En, temp0);
dec3to8 dec11({1'b0, W[1], W[0]}, temp0[0], temp1);
dec3to8 dec22({1'b0, W[1], W[0]}, temp0[1], temp2);
dec3to8 dec33({1'b0, W[1], W[0]}, temp0[2], temp3);
dec3to8 dec44({1'b0, W[1], W[0]}, temp0[3], temp4);
or(f, temp1[2], temp2[0], temp2[3], temp3[1]);
or(g, temp1[0], temp1[3], temp4[3]);
or(h, temp1[0], temp1[2], temp3[2], temp4[0]);
endmodule
```

Waveform:

Start: 200.0ns		► ► End: 2	20.0ns	Interval:	20.0ns							
Name:	Value:		.0ns 40.	Ons 6	0.0ns 80.	Ons 100,0ns 1	20.0ns 140	.Ons 160.	Ons 180	Ons 200	Ons 220	0.0ns
iii≻– En	1											
–	0											
- © g	0											
- f	0											
ii W	B 0010	1111	0111	1111	(0001	0111	0000	0111	0001	0111	0010	X
c2to4:dec2 W	B 00	11 (01) 11			(00)	01	00	(01)	00	01		00
m≥ c2to4:dec3 W	B 00	11 (01) 11			(00)	00 (01		01	00	01		00
c2to4:dec2 W	B 10		11		(01) 11		00	(11)	01	11	10	X
c2to4:dec3 W	B 10		11		(01	11	00	(11)	01	11	10	χ
m≥ c2to4:dec2 W	B 10	11			(01	11	00	(11)	01	11	10	χ
	B 10		11		(01)	11	00	(11)	01	11	10	X
c2to4:dec2 W	B 10		11		(01	11	00	(11)	01	11	10	χ
m≥ c2to4:dec3 W	B 10		11		(01)	11	00	(11)	01	11	10	X
m≥ c2to4:dec2 W	B 10		11		(01)	11	00	(11)	01	11	10	X
m≥ c2to4:dec3 W	B 10		11		(01	11	00	(11)	01	11	10	X
III → W3	0											
™ W2	0											
II W1	1											
III W0	0											

WEEK 6

Lab Exercises:

1: Write behavioral Verilog code for a negative edge triggered TFF with asynchronous active low reset.

Program:

```
module lab6_1(T,Clock,Reset, Q); input T,Clock, Reset; output Q; reg Q; always @ (negedge Clock) begin if (T == 1) Q <= \sim Q; if (Reset == 0) Q <= 0; end endmodule
```

Waveform:

2: Write behavioural Verilog code for a positive edge-triggered JK FF with synchronous active highest.

```
module lab6_2(J, K, Clock, Reset, Q);
input J, K, Clock, Reset;
output Q;
reg Q;
always @ (posedge Clock or posedge Reset)
begin
```

```
case({J, K})
0: Q <= Q;
1: Q <= 0;
2: Q <= 1;
3: Q <= ~Q;
endcase
if(Reset == 1)
Q <= 0;
end
endmodule</pre>
```

Waveform:

Ref: 60.0ns	•	• • Time: 97	.8ns	Interval:										
					60.0ns									
Name:	_Value:	20.	Ons 40.	Ons 6	0. <mark>0ns</mark>	80.0ns	100.0ns	120.0ns	140.0ns	160.0ns	180.0ns	200.0ns	220.0ns	240.0
■ Reset	ື 1 ່													
III K	0													
III≻ J	0													
Clock	1													
- □ Q	1													
	1	l												

3: Design and simulate the following counters:

- a) 4-bit ring counter.
- b) 5 bit Johnson counter.

Program a:

endmodule

```
\label{eq:posterior} \begin{split} & \text{module DFlipFlop}(D, \, \text{clock,reset, } \, q); \\ & \text{input D, clock, reset;} \\ & \text{output q;} \\ & \text{reg q;} \\ & \text{always @ (posedge clock)} \\ & \text{begin} \\ & \text{if(reset)} \\ & \text{q} <= 0; \\ & \text{else if(D)} \\ & \text{q} <= 1; \\ & \text{else} \\ & \text{q} <= 0; \\ & \text{end} \end{split}
```

```
module j2bitc(clock, reset, q);
input clock, reset;
output [0:1]q;
wire [0:1]q;
DFlipFlop d1(~q[1], clock, reset, q[0]);
DFlipFlop d2(q[0], clock, reset, q[1]);
endmodule
module dec2to4(W,En,Y);
input[1:0]W;
input En;
output [0:3]Y; reg [0:3]Y;
always@(W or En)
begin
if(En==1)
case(W)
0: Y=4'b1000;
1: Y=4'b0100;
2:Y=4'b0010;
3:Y=4'b0001;
endcase
else
Y=4'b0000;
end
endmodule
module lab6_3_a(Clock, Reset, Q);
input Clock, Reset;
output [3:0] Q;
wire [3:0] Q;
wire [1:0] temp;
```

```
j2bitc c1(Clock, Reset, temp);
dec2to4 d1(temp, 1'b1, Q);
endmodule
```

Waveform a:

Program b:

```
module DFlipFlop(D, clock, reset, q);
input D, clock,reset;
output q;
reg q;
always @ (posedge clock)
begin
if(reset)
q \le 0;
else if(D)
q <= 1;
else
q <= 0;
end
endmodule
module lab6_3_b(clock, reset, q);
input clock, reset;
output [0:4]q;
wire [0:4]q;
DFlipFlop d1(\sim q[4], clock, reset, q[0]);
DFlipFlop d2(q[0], clock, reset, q[1]);
DFlipFlop d3(q[1], clock, reset, q[2]);
DFlipFlop d4(q[2], clock, reset, q[3]);
DFlipFlop d5(q[3], clock, reset, q[4]);
endmodule
```

