MAT350: Engineering Mathematics

Instructor: Dr. Preetom Nag

Associate Professor

Department of Mathematics & Physics

Office Room : SAC 1063A

Office Hour : 02:00 PM - 03:00 PM (T)

03:00 PM - 04:00 PM (W)

09:00 AM - 11:00 AM (R)

Course Assessment Process: Summer 2022

Category	Weight
Attendance	10%
Assignments (Minimum 3)	10%
Quizzes (Best 3 of 4)	15%
Mid-Term	30%
Final Exam	35%

Differential Equations

■ Modeling Approach

Newton's Law of cooling/heating:

$$\frac{dT(t)}{dt} \propto T - T_m \Rightarrow \frac{dT(t)}{dt} = k(T - T_m)$$

where T: body temperature, T_m : surrounding temperature, k: proportional constant

where r is proportional constant which can be called as the intrinsic rate of natural increase and P(0) = 2, P(10) = 4.

Newton's law of cooling

https://www.youtube.com/watch?v=gEwzDydciWc

• Free Falling Objects: $\frac{d^2y(t)}{dt^2} = -g$, where g is called the gravitational

constant and
$$y(0) = h$$
, $\frac{dy}{dt}\Big|_{t=0} = 0$.

Differential Equations

■ Modeling Approach

Predator-Prey Population Model:

$$\frac{dP_1}{dt} = aP_1 - bP_1P_2$$

$$\frac{dP_2}{dt} = -mP_2 + nP_1P_2$$

where P_1 : population of rabbits, P_2 : population of foxes

a: growth rate of rabbits, b: killing rate of rabbits,

m: death rate of foxes, and n: growth rate of foxes.

Spread of a Disease:

$$\frac{dP(t)}{dt} \propto P(t)Q(t) \Rightarrow \frac{dP(t)}{dt} = kP(t)Q(t) = kP(n+1-P)$$

where P(t): infected population,

Q(t): non-infected population, k: proportional constant,

n+1: total population with one infected person so that

$$P + Q = n + 1$$
 and $P(0) = 1$.

https://thumbs.dreamstime.com/z/infected-person-coronavirus-infection-epidemic-disease-spread-sickness-171599936.jpg

Differential Equations

Definitions and Terminology

Differential Equations: An equation containing the derivative of one or more unknown function (or dependent variables), with respect to one or more independent variables. E.g.,

$$\frac{dy}{dx} + 5y = e^{x}$$

$$y'' - y' + 6y = 0$$

$$y'y''' - \frac{3}{2}y'^{2} = 0$$

$$\frac{dx}{dt} + \frac{dy}{dt} = 2x + y$$

$$\frac{\partial^2 u}{\partial t^2} = c^2 \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right)$$

Types of Differential equations

Ordinary Differential Equation (ODE):

Differential equation containing only ordinary derivatives of one or more unknown functions with respect to a *single* independent variable. Here prime (') denotes differentiation with respect to x.

Partial Differential Equation (PDE):

Differential equation involving partial derivatives of one or more unknown functions of two or more independent variables.

Classifications of ODE

• **By Order:** The **order of an ODE** is the order of the highest derivative in the equation. For example,

$$\frac{dy}{dx} + 2y = 5$$
 (First order)

$$(y - x) dx + 4x dy = 0$$
 (First order)

$$\frac{d^2y}{dx^2} + 5\frac{dy}{dx} + 6y = 0$$
 (Second order)

$$\frac{d^2y}{dx^2} + 5\left(\frac{dy}{dx}\right)^3 + 6y = 0$$
 (Second order)

$$y'y''' - \frac{3}{2}y'^2 = 0$$
 (Third order)

$$F(x, y, y', y'', \dots, y^{(n)}) = 0$$
 (n-th order)

Classifications of ODE

• **By Linearity**: An *n*th-order ordinary differential equation $F(x, y, y', y'', ..., y^{(n)}) = 0$ is said to be **linear** if the dependent variable y and its various derivatives $y', y'', ..., y^{(n)}$ appear linearly in the equation. Otherwise, the ODE is said to be nonlinear. For example,

$$\frac{dy}{dx} + 2y = 5$$
 (First order, Linear)
$$(y - x) dx + 4x dy = 0$$
 (First order, Linear)
$$\frac{d^2y}{dx^2} + 5\frac{dy}{dx} + 6y = 0$$
 (Second order, Linear)
$$\frac{d^2y}{dx^2} + 5\left(\frac{dy}{dx}\right)^2 + 6y = 0$$
 (second order, Non-linear)
$$x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + y^2 = 0$$
 (second order, Non-linear)
$$\frac{d^2y}{dx^2} + \sin y = 0$$
 (Second order, Non-linear)

Solution of an ODE:

Any function $y = \phi(x)$, defined on an interval I = (a, b), is said to be a **solution** of an n-th order ODE

$$F(x, y, y', y'', ..., y^{(n)}) = 0$$

if $\phi(x)$ is defined and differentiable throughout the interval and is such that

$$F(x, \phi(x), \phi'(x), \phi''(x), ..., \phi^{(n)}(x)) = 0 \quad \forall x \in (a, b).$$

Example. $y = \frac{1}{16}x^4$ is a solution of the ODE: $\frac{dy}{dx} - x\sqrt{y} = 0$ on the interval $(-\infty, \infty)$.

Example. y = c/x is a solution of the ODE: $x \frac{dy}{dx} = -y$ on the interval $(-\infty, 0)$ or $(0, \infty)$.

Example. $y = xe^x$ is a solution of the ODE: y'' - 2y' + y = 0 on the interval $(-\infty, \infty)$.

Example. $x^2 + y^2 = 4$ is a solution of the ODE: $y' = -\frac{x}{y}$ on the interval (-2, 2).

Family of Solutions and Solution Curve:

Example. $y = \sin x + c$, where c is an arbitrary constant, is a family of solutions on the interval $(-\infty, \infty)$ for the ODE:

$$\frac{dy}{dx} = \cos x \text{ since } dy = \cos x \ dx \Rightarrow \int dy = \int \cos x \ dx \Rightarrow y = \sin x + c$$

Initial Value Problem (IVP):

An *n*-th order initial value problem on an open interval I = (a, b) can be defined as

Solve:
$$y^{(n)}(x) = f(x, y, y', ..., y^{n-1})$$

Subject to:
$$y(x_0) = y_0, y'(x_0) = y_1, y''(x_0) = y_2, ..., y^{(n-1)}(x_0) = y_{n-1}$$
, where $x_0 \in I$.

Example. Solve $\frac{dy}{dx} = y$ subject to the condition y(0) = 3.

Solution. The ODE is given by,

$$\frac{dy}{dx} = y \Rightarrow \frac{1}{y}dy = dx \Rightarrow \int \frac{1}{y}dy = \int dx \Rightarrow \ln y = x + \ln c \Rightarrow y(x) = ce^x$$

Since, $y(0) = 3 \Rightarrow ce^0 = 3 \Rightarrow c = 3$

Thus, the solution of the given IVP becomes, $y = 3e^x$.

Example. Solve $\frac{dy}{dx} = y$ subject to the condition y(1) = -2.

Solution. From the previous solution, $y(x) = ce^x$

Since,
$$y(1) = -2 \Rightarrow ce^{1} = -2 \Rightarrow c = -2e^{-1}$$

Thus, the solution of the given IVP becomes, $y = -2e^{x-1}$.

Exercises 1.1

H.W. from the text book

Determine the order and the linearity of the following ODE.

1.
$$(1-x)y'' - 4xy' + 5y = \cos x$$

2.
$$x \frac{d^3y}{dx^3} - \left(\frac{dy}{dx}\right)^4 + y = 0$$

$$3. t^5 y^{(4)} - t^3 y'' + 6y = 0$$

$$4. \frac{d^2u}{dr^2} + \frac{du}{dr} + u = \cos(r + u)$$

$$5. \frac{d^2y}{dx^2} = \sqrt{1 + \left(\frac{dy}{dx}\right)^2}$$

$$6. \frac{d^2R}{dt^2} = -\frac{k}{R^2}$$

7.
$$(\sin \theta)y''' - (\cos \theta)y' = 2$$

8.
$$\ddot{x} - \left(1 - \frac{\dot{x}^2}{3}\right)\dot{x} + x = 0$$

9.
$$(y^2 - 1) dx + x dy = 0$$
; in y; in x

10.
$$u dv + (v + uv - ue^u) du = 0$$
; in v ; in u

Verify that the indicated function is an explicit solution of the given differential equation. Assume an appropriate interval *I* of definition for each solution.

11.
$$2y' + y = 0$$
; $y = e^{-x/2}$

12.
$$\frac{dy}{dt} + 20y = 24$$
; $y = \frac{6}{5} - \frac{6}{5}e^{-20t}$

13.
$$y'' - 6y' + 13y = 0$$
; $y = e^{3x} \cos 2x$

14.
$$y'' + y = \tan x$$
; $y = -(\cos x)\ln(\sec x + \tan x)$

15.
$$(y-x)y'=y-x+8; y=x+4\sqrt{x+2}$$

16.
$$y' = 25 + y^2$$
; $y = 5 \tan 5x$

17.
$$y' = 2xy^2$$
; $y = 1/(4-x^2)$

18.
$$2y' = y^3 \cos x$$
; $y = (1 - \sin x)^{-1/2}$

Exercises 1.1

H.W. from the text book

Verify that the indicated family of functions is a solution of the given differential equation.

21.
$$\frac{dP}{dt} = P(1 - P); \quad P = \frac{c_1 e^t}{1 + c_1 e^t}$$

22.
$$\frac{dy}{dx} + 2xy = 1$$
; $y = e^{-x^2} \int_0^x e^{t^2} dt + c_1 e^{-x^2}$

23.
$$\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 4y = 0$$
; $y = c_1e^{2x} + c_2xe^{2x}$

24.
$$x^3 \frac{d^3y}{dx^3} + 2x^2 \frac{d^2y}{dx^2} - x \frac{dy}{dx} + y = 12x^2;$$

 $y = c_1 x^{-1} + c_2 x + c_3 x \ln x + 4x^2$

Verify that the indicated pair of functions is a solution of the given system of differential equations

37.
$$\frac{dx}{dt} = x + 3y$$

$$\frac{dy}{dt} = 5x + 3y;$$

$$x = e^{-2t} + 3e^{6t},$$

$$y = -e^{-2t} + 5e^{6t}$$
38.
$$\frac{d^2x}{dt^2} = 4y + e^t$$

$$\frac{d^2y}{dt^2} = 4x - e^t;$$

$$x = \cos 2t + \sin 2t + \frac{1}{5}e^t,$$

$$y = -\cos 2t - \sin 2t - \frac{1}{5}e^t$$