COSC3500 Forum Presentation

Max Bo

22nd of October

Outline

Description

Demo

Integration

Barnes-Hut

Correctness

Tables and Figures Mathematics

Description

The task was to create a stock-standard, 2-dimensional gravitational *n*-body simulator.

All bodies were to be assumed to be point masses. The simulation was to be accurate, maintaining a constant total energy, and exhibiting phenomena such as apsidal precession.

Demo

Integration I

$$F=G\frac{m_1m_2}{r^2}$$

$$a_i = F(x_i)$$
$$v_{i+1} = v_i + a_i \, \Delta t$$

Integration II

Dehen and Read note that the Euler method 'performs very poorly in practice', further noting that 'errors are proportional to Δt^2 '. They contrast it with the second-order *Leapfrog* symplectic integrator, which is 'heavily used in collisionless N-body applications'.

$$x_i = x_{i-1} + v_{i-1/2} \Delta t$$
 $a_i = F(x_i)$
 $v_{i+1/2} = v_{i-1/2} + a_i \Delta t$

which only requires a single acceleration calculation per every two half timesteps

Integration III

and a 'kick-drift-kick' form

$$v_{i+1/2} = v_i + a_i \frac{\Delta t}{2}$$

$$x_{i+1} = x_i + v_{i+1/2} \Delta t$$

$$v_{i+1} = v_{i+1/2} + a_{i+1} \frac{\Delta t}{2}$$

that is stable with variable timstepping, but incurs an additional acceleration calculation per every two half timesteps.

Barnes-Hut I

Barnes-Hut II

Barnes-Hut III

Barnes-Hut IV

Barnes-Hut V

Readable Mathematics

Let X_1, X_2, \ldots, X_n be a sequence of independent and identically distributed random variables with $\mathsf{E}[X_i] = \mu$ and $\mathsf{Var}[X_i] = \sigma^2 < \infty$, and let

$$S_n = \frac{X_1 + X_2 + \dots + X_n}{n} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

denote their mean. Then as n approaches infinity, the random variables $\sqrt{n}(S_n - \mu)$ converge in distribution to a normal $\mathcal{N}(0, \sigma^2)$.