Zadanie 1. Dane są implikacje

- i) jeśli $V \subset \mathbb{R}^n$ jest podprzestrzenią, to $(0, \dots, 0) \in V$,
- ii) dla $m \in \mathbb{Z}$, jeśli 4|m, to 2|m,
- iii) jeśli funkcja $f \colon \mathbb{R} \to \mathbb{R}$ jest ciągła, to jest różniczkowalna,
- iv) jeśli ciąg $\{a_n\}$ jest zbieżny, to jest ograniczony,
- v) ustalmy $A,B\in P(\mathbb{Z})$ takie, że $A\doteq B$ jest skończony, dla $C\in P(\mathbb{Z})$ jeśli $A\doteq C$ jest skończony, to $B\doteq C$ jest skończony.

Które z tych implikacji są prawdziwe? Sformułuj twierdzenia odwrotne, przeciwstawne i przeciwne. Które z nich są prawdziwe?

Zadanie 2. Niech $A_n = (2 - \frac{1}{n+1}, 4 - \frac{2}{n}]$ dla $n \in \mathbb{N}_{>0}$. Oblicz

- i) $\bigcap_{n=2}^4 A_n$,
- ii) $\bigcap_{n\in\mathbb{N}_{>0}} A_n$,
- iii) $\bigcup_{n=3}^{8} A_n$,
- iv) $\bigcup_{n\in\mathbb{N}_{>0}} A_n$.

Zadanie 3. Udowodnij tożsamość zbiorów

$$(A \times B) \setminus (C \times D) = (A \times (B \setminus D)) \cup ((A \setminus C) \times B).$$

Zadanie 4. Dla $a,b\in\mathbb{N}$ niech $aRb\leftrightarrow a=b^2$. Sprawdź czy relacja R jest

- i) antysymetryczna,
- ii) przeciwzwrotna,
- iii) przechodnia,
- iv) symetryczna.

Odp. tak, nie, nie, nie

Zadanie 5. Dla ponizszych relacji R

i)
$$R = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\},\$$

ii)
$$R = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}.$$

oblicz $R^{-1}, R^2, R^3, R \circ R^{-1}$.

Odp.

i)
$$R^{-1} = R, R^2 = \{(x, y) \in \mathbb{R}^2 \mid x \in [-1, 1] \land (x = y \lor x = -y)\}, R^3 = R, R \cdot R^{-1} = R^2,$$

ii)
$$R^{-1}=R, R^2=\{(x,y)\in\mathbb{R}^2\mid x\in[-1,1]\land y\in[-1,1]\}, R^3=R^2, R\cdot R^{-1}=R^2.$$

Zadanie 6. Która z poniższych relacji jest zwrotna, przeciwzwrotna, symetryczna, asymetryczna, antysymetryczna, przechodnia, spójna?

- i) $A = \text{mieszka\'ncy Polski}, xRy \leftrightarrow y \text{ jest bratem } x,$
- ii) $(x,y),(z,w)\in\mathbb{R}^2,\quad (x,y)R(z,w)\leftrightarrow x\leq z\wedge y\leq w,$
- iii) $(x,y),(z,w) \in \mathbb{R}^2$, $(x,y)R(z,w) \leftrightarrow x \le z \lor y \le w$,
- iv) $A, B \in P(\mathbb{Z}), ARB \leftrightarrow A \subset B,$
- v) $x, y \in \mathbb{Z}$, $xRy \leftrightarrow \max(x, y) = 1$.

Które z powyższych relacji są relacjami porządku częściowego?

Odp.

	zwr	pzwr	sym	asym	antysym	prz	$^{\mathrm{sp}}$
i)	-	+	-	-	-	-(!)	-
ii)	+	-	-	-	+	+	-
iii)	+	-	-	-	-	-	+
iv)	+	-	-	-	+	+	-
v)	-	-	+	-	-	-	-

Relacjami porządku częściowego jest relacja ii) oraz iv).

Zadanie 7. Narysuj diagramy Hassego dla relacji podzielności na zbiorach

- i) $X = \{1, 2, 3, 6, 12\},\$
- ii) $X = \{1, 2, 3, 5, 7, 11\},\$
- iii) $X = \{1, 3, 9, 27, 729\},\$
- iv) $X = \{2, 3, 5, 6, 10, 15, 20, 30, 60\}.$

Zadanie 8. Na zbiorze $X = \mathbb{N} \times \mathbb{N}$ zadajemy relację \leq_{lex}

$$(x,y) \leq_{lex} (z,w) \leftrightarrow (x < z) \lor [(x = z) \land (y \leq w)].$$

- i) wykaż, że jest to relacja porządku liniowego,
- ii) narysuj diagram Hassego dla relacji \leq_{lex} ,
- iii) uogólnij relację na $X = \mathbb{N}^3$.

Zadanie 9. Uporządkuj zbiór

$$X = \{(1,1,1), (1,1,2), (1,2,1), (0,0,4), (4,0,0), (0,1,0), (0,3,3)\},\$$

odpowiednio, względem porządków

- i) \leq_{lex} ,
- ii) \leq_{qrlex} .

Sprawdź, że relacja R

$$(\alpha_1, \alpha_2, \alpha_3)R(\beta_1, \beta_2, \beta_3) \leftrightarrow 2\alpha_1 + 5\alpha_2 - \alpha_3 \le 2\beta_1 + 5\beta_2 - \beta_3$$

jest quasi-porządkiem na zbiorze X i nie jest porządkiem częściowym na X.

Odp.

- i) (0,0,4), (0,1,0), (0,3,3), (1,1,1), (1,1,2), (1,2,1), (4,0,0),
- ii) (0,1,0), (1,1,1), (0,0,4), (1,1,2), (1,2,1), (4,0,0), (0,3,3).

Zadanie 10. Czy klasyczne algorytmy sortowania (przez wstawianie, bąbelkowe, przez łączenie, szybkie itp.) będą porządkowały zbiory n-tek liczb rzeczywistych według porządków \leq_{lex}, \leq_{grlex} , po zastąpieniu porównywania liczb porównywaniem n-tek względem tych porządków? Napisz własną funkcję w Pythonie 3 porównującą n-tki i użyj jej w jednym z klasycznych algorytmów.

Zadanie 11. Niech $f: \mathbb{R} \to \mathbb{R}$ będzie dowolną funkcją. Sprawdź, że relacja $R \subset \mathbb{R} \times \mathbb{R}$ zadana warunkiem

$$xRy \leftrightarrow f(x) \le f(y),$$

jest quasi-porządkiem na zbiorze $\mathbb R$. Podaj przykład funkcji f takiej, że R jest quasi-porządkiem, ale nie jest porządkiem częściowym. Podaj przykład funkcji f takiej, że R jest porządkiem częściowym. Podaj charakteryzację funkcji f jak wyżej.