IPE-432 MACHINE TOOLS SESSONAL

Md. Hasibul Islam
August 26, 2023

Contents

1	Exp	Experiment 05: Study of Gear Shaper				
	(Kaniz Maam)					
	1.1	Advan	atages of Generating	1		
			tant Points			
	1.3	Depth	of Cut	1		
	1.4	Motion	ns: 5 motions	1		
			Reciprocating Motion			
		1.4.2	Rotating Motion of Gear Cutter	1		
		1.4.3	Rotating Motion of Gear Blank	1		
		1.4.4	Radial In feed Motion	1		

1 Experiment 05: Study of Gear Shaper (Kaniz Maam)

Date: 19/08/2023

There are two methods:

- 1. Forming
- 2. Generating (in this experiment)

1.1 Advantages of Generating

- Involute profile
- speed & motion control
- ex gear shaper, gear hober

1.2 Important Points

- • in this experiment: cutter \rightarrow gear , work piece \rightarrow Gearblank
- Indexing: dividing equally any cylindrical or circular objects
- Automatic indexing is used in this experiment. That means, for 1 revolution of cutter, there will be 1 revolution of gear blank.
- Motion is maintained through change gear.
- Cutter: Z_c and work : Z
- $\frac{1}{Z_c} \times \text{gear cutter} = \frac{1}{Z} \times \text{gear blank}$

1.3 Depth of Cut

- one pass : cut a single teeth at a time. More friction, heat generation & gear cutter may break
- multi pass: cutting teeth by step by step in multiple pass. Time consuming.

1.4 Motions: 5 motions

- $\bullet\,$ Principle motion : Reciprocating motion
- Auxiliary motion : Rotating motion of gear cutter

- Auxiliary motion: Rotating motion of gear blank
- Auxiliary motion : Radial in feed motion
- Auxiliary motion : Withdrawal motion

1.4.1 Reciprocating Motion

Fly wheel \to Rack & pinion \to Shaft (Horizontal spline shaft) \to Shaft (vertical spline shaft) \to Reciprocating motion

- Motion in cutter.
- Cutting stroke: material will remove.
- Return stroke: no material will remove.
- Withdrawal motions helps not to cut in return stroke.

1.4.2 Rotating Motion of Gear Cutter

 $\begin{array}{l} \text{Motor} \rightarrow \text{Pulley} \rightarrow \text{Sprocket} \rightarrow \text{Worm screw} \rightarrow \text{Worm} \\ \text{wheel} \rightarrow \text{Bevel gear} \rightarrow \text{Change gear} \rightarrow \text{worm wheel} \rightarrow \\ \text{Cutter spindle} \rightarrow \text{Cutter} \end{array}$

1.4.3 Rotating Motion of Gear Blank

(Motor \rightarrow Pulley \rightarrow Sprocket \rightarrow Worm screw \rightarrow Worm wheel \rightarrow Bevel gear \rightarrow Change gear) \rightarrow Worm screw \rightarrow Worm wheel \rightarrow gear blank

- Change gear: A, B, C, D
- $C: Z_c$ (teeth of cutting gear)

1.4.4 Radial In feed Motion

Change gear \rightarrow cam \rightarrow in feed motion.

 $\bullet\,$ From table: A, B : find out feed per stroke

Follow Lab sheet also.