Southern University of Science and Technology Advanced Linear Algebra Spring 2023

MA109– Quiz #7

2023/04/06

Student I	Numb	er:						
. ~	_	4 (7 7)			 			

1. Suppose $T \in \mathcal{L}(V)$ and there exists a positive integer n such that $T^n = 0$. Prove that I - T is invertible and that $(I - T)^{-1} = I + T + \cdots + T^{n-1}$.

设 $T \in \mathcal{L}(V)$, 且存在一个正整数 n 使得 $T^n = 0$. 证明 I - T 可逆且 $(I - T)^{-1} = I + T + \cdots + T^{n-1}$.

Proof. We have

$$(I-T)(I+T+\cdots+T^{n-1}) = I+T+\cdots+T^{n-1}-T-T^2-\cdots-T^{n-1}-T^n$$

= $I-T^n$
= I

and

$$(I + T + \dots + T^{n-1})(I - T) = I + T + \dots + T^{n-1} - T - T^2 - \dots - T^{n-1} - T^n$$

= $I - T^n$
= I

Therefore I - T is invertible and $(I - T)^{-1} = I + T + \cdots + T^{n-1}$.

2. Suppose V is a finite dimensional vector space over \mathbb{C} , $\mathcal{A}, \mathcal{B} \in \mathcal{L}(V)$, $\mathcal{AB} = \mathcal{BA}$. Prove that \mathcal{A}, \mathcal{B} have some eigenvectors in common.

设 V 是复数域上的有限维向量空间, $\mathcal{A}, \mathcal{B} \in \mathcal{L}(V)$, $\mathcal{AB} = \mathcal{BA}$. 证明 \mathcal{A}, \mathcal{B} 有公共的特征向量.

Proof. Since V is a finite dimensional vector space over \mathbb{C} , $\mathcal{A} \in \mathcal{L}(V)$, then \mathcal{A} has an eigenvalue, we denoted it as λ_1 .

Let $E_{\lambda_1} = \{ \xi \in V : \mathcal{A}\xi = \lambda_1 \xi \}$ be the corresponding eigenspace of $\mathcal{A}, \forall \xi \in V_{\lambda_1}$, we have

$$\mathcal{AB}\xi = \mathcal{BA}\xi = \lambda_1 \mathcal{B}\xi \Rightarrow \mathcal{B}\xi \in V_{\lambda_1}$$

so V_{λ_1} is an invariant subspace of \mathcal{B} .

Consider $\mathcal{B}|_{V_{\lambda_1}}$, $\mathcal{B}|_{V_{\lambda_1}} \in \mathcal{L}(V_{\lambda_1})$, so $\mathcal{B}|_{V_{\lambda_1}}$ has an eigenvalue, denoted as λ_2 , and corresponding eigenvector η , i.e. $\mathcal{B}|_{V_{\lambda_1}}\eta = \lambda_2\eta$, then λ_2 is also an eigenvalue of \mathcal{B} , η is also the corresponding eigenvector of \mathcal{B} , i.e. $\mathcal{B}\eta = \lambda_2\eta$.

And since $\eta \in V_{\lambda_1}$, then η is also an eigenvector of \mathcal{A} , thus η is an common eigenvector of \mathcal{A} and \mathcal{B} .