1- Yes .	
2-No	
3-No	
$1 - S(n) = n^3$	
F(n) = 3n3+h2+n	
100 doláio - t(n) < (.9(n)	
3n3 +n2 +n < n3.51	
C1=5	
+(n) > Cs.g(n)	
-3 n3 + n2 + n 7/ C2. 2 n3	
3n3+n2+n >, 8n3.c2	
· C2 = 2.	
Sn3 23 n3 + n2+n 7/2n3	-2-70-70
$\Theta(\nu_3) = E(\nu)$	
$-\Theta(g(n)) = f(n)$	
- h . h . l	
$2-9(n)=2^n$, $f(n)=2^{n+1}$	
$\frac{f(n) < G - g(n)}{n}$	
$\frac{2n+1-2n+2i}{2} \leq 2n$	
$\frac{\Gamma(n) > C_2 \cdot 9(n)}{\Gamma(n)}$	
2n x 2 >, 2n . C2	
$\frac{C_2 - 2}{2}$	
$\frac{-n}{2 \cdot 2^n} > \frac{2^{n+1}}{2^{n+2}} > 2 \cdot 2^n$	
$\frac{1}{2} \Theta(2^n) = F(n)$	

1- F(n) = n3, g(n) = n2

2 -> f(n) >, C. 9(n) n3 7/ C. n2

. n3 grows faster than h?

f(n) = - (n2)

h3 = 1 (22)

E(n) < (5.3(n)

p3 < C5.2(x)

23 C5.25

2-f(n)=109(n), g(n): 1092(n)

Log(n) 7, C, log2(n)

Log(n) > G 109(nt G (2) 109(2)

: 0 (9(m)) = f(n)

· 109(m) - 1042(m)

-D F(n) 5 9.9(n)

109/21 5 Q 109/ml 109/21 5 Q

. o(y(n)) = f(n)

109(n) = 0 (109 2 cm))