

Malicious website detection with large scale belief propagation on Spark

Mijung Kim, Jun Li, <u>Manish Marwah</u>, <u>Alexander Ulanov</u>, Carlos Zubieta

Hewlett Packard Labs

Outline

- Introduction
- (Loopy) Belief Propagation
- Implementation on Spark
- Experiments
- Conclusions and Future Work

Introduction

Probabilistic Graphical Models

- Combine graphs and probability theory
- Vertices: random variables
- Edges: relationships between variables
- Model joint probability distribution
- Used for probabilistic reasoning

Graphical Model: An Example

Markov Random Field Model

- Model parameters
 - Priors / node factors
 - Edge factors
- Queries
 - -P(B)
 - -P(B|A, C)
 - -P(E|C)

–

Joint Probability

$$P(\boldsymbol{\mathcal{X}}) = \frac{1}{Z} \prod_{i \in \mathcal{C}} \psi_i$$

Observed

Hidden

Applications

- Computer vision
- Malware detection
- Fraud detection
- Bioinformatics
- Recommender system

—

Inference in Graphical Models

- Queries of the graphical model
 - P(A | B, C)?
 - P(D)?
 - Inference
- Methods
 - Exact
 - Approximate
 - Variational methods
 - Loopy Belief Propagation
 - Sampling based (e.g., Gibbs sampling)

Loopy Belief Propagation Algorithm

- Message passing iterative algorithm
- Exact on trees, approximate on graphs with loops
- Initialize messages
- At each node
 - Read messages from neighbors
 - Update own marginal probability (belief)

$$b(x_i) = \phi(x_i) \prod_{j \in \mathcal{N}(i)} m_{j \to i}$$

Send updated messages to all neighbors

$$m_{i\to j}(x_j) = \sum_{x_i} \phi(x_i) \psi_{ij}(x_i, x_j) \prod_{k\in\mathcal{N}(i)\setminus j} m_{k\to i}$$

Repeat until convergence

Application: Detection/Ranking of Malicious Websites

- Goal: To infer maliciousness score of a webhost/webpage
- Given web graph, exploit principle of "homophily"
- Malicious site → Malicious site
- Benign site → Benign site
- -more likely than
- Benign site → Malicious site

Transform into a Graphical Model

- Model web graph as a Markov random field
 - Vertices: probability of a host being malicious
 - Edges: hyperlinks
- Exploit web link structure
- Use whitelist and blacklist to assign priors for some nodes
- Use uniform prior for rest
- Edge factors are assigned based on domain knowledge
- Perform inference (run BP) to estimate marginal probability
- Estimate score and rank

Number/type of nodes not representative of real graph

Challenges of running BP on Large-Scale Graphical Models

- Large Size/Random access
 - Use large memory machine to keep graph in memory
- Communication bound
 - Use shared memory
- Parallelization
 - Synchronous processing (BSP)
- Partitioning
 - Heuristic to minimize vertex replication

Implementation

Requirements

- -Scalability
 - -Apache Spark GraphX
- -Generalized graph representation
 - Factor graph format
 - -Handles factor of any order and variable domain of any size
- Numerical stability
 - Log domain calculations to delay underflow (overflow)
 - -Factor math

Improvements

-Communication; memory

Scalability with Apache Spark GraphX

-Pros

- -Provided by Apache Spark => easy to combine with other big data workloads
- -Convenient message scatter/gather API
- -Cons
 - Is not actively developed
 - Large memory overhead due to internal representation
 - Requires 2X memory for iterative algorithms because data is immutable in Spark
 - -Graph on previous iteration and graph on this iteration
 - Graphframes library does not properly support iterative algorithms and outsources them to GraphX. Will move our implementation to Graphframes once this issue is addressed

Graph representation in GraphX

- -Graph in GraphX: VertexRDD, EdgeRDD, routing table
 - Vertex cut replicated vertices
 - Routing table data structure for updating replicated vertices
- -Spark's computation model (BSP):

$$t = t_{cp} + t_{cm}$$

Estimations for Belief Propagation

$$t_{cp} = \max_{i \in [1,n]} (E_i) / (F \cdot n) \cdot (S + 2 \cdot (S + S^2)) \quad t_{cm} = 32 / B \cdot r \cdot V \cdot S$$

- − E edges, V vertices, S number of states, F FLOPS, B bandwidth, r replication factor
- Insight: communication is proportional to the number of vertices, computation is relatively inexpensive
- More details about the model: "Modeling Scalability of Distributed Machine Learning" ICDE 2017

Graph Representation for BP

- Pairwise
 - Variables are represented as vertices
 - Factors are stored on edges
 - Number of vertices == number of variables
 - Number of edges == number of factors

- Factor graph (convenient in many domains)
 - Can represent higher-order factors (can be converted to pairwise)
 - Variables and factors are represented as vertices
 - Priors are factors, but can be merged to variable vertex
 - Number of vertices == number of variables + number of factors
 - Number of edges == 2 [if factors pairwise] * the number of factors

Hewlett Packard Enterprise

Numeric example from Chapter 7 of 2013 MIT EECS course 6.869, Bill Freeman and Antonio Torralba

Experiments: malicious web sites detection

Dataset

- Host graph from commoncrawl/web-data-commons
- 101.7M hosts, 1.75B edges
- Conversion for use-case
 - Host has two states: malicious and normal
 - Host priors from white and black lists
 - Whitelist Alexa500 (17.8M hosts in intersection)
 - Blacklist urlblacklist.com (0.93M hosts in intersection)
 - Factor represents link direction
- Goal: estimate probability of a host to be malicious (normal)
- Converged in 20 iterations, 250 seconds
- Result validation
 - Qualitatively on a subset
 - Malicious sites change quickly

- Hardware: SuperDome X
 - 16x Xeon E7-2890 v2 @ 2.80GHz
 - 11TB shared RAM

- BP algorithm on Spark 1.6.1
 - Shuffle dir in tempfs
 - -24 to 45 workers
 - 32 to 164GB RAM per worker
 - 1 core per worker

Experiments: various graphs

Vertices	Edges	Size on disk	Size in Spark	Iteration time, s.	Iterations
0.2M	0.7M	0.03GB	0.4GB	4	8
1.6M	8.9M	0.3GB	5.2GB	16.8	8
16.2M	99.3M	5.4GB	59.7GB	25.3	8
101.7M	1.75B	64GB	840.5GB	132	20

Vertices	Edges	Size on disk	Size in Spark	Iteration time, s	Iterations
0.9M	1.4M	0.05GB	1.2GB	1.3	14
10.7M	18M	0.6GB	13GB	21.8	15
115.5M	198.5M	6.9GB	154.2G B	33.5	16
1.9B	3.5B	118G	2485G	600	40

Improvements

- Hewlett Packard Labs project: Spark for large memory machines (Spark4TM)
- Spark communication layer rewritten
 - Shared memory shuffle engine
- Off-heap memory store introduced
 - Mutable data structure
 - Breaks fault-tolerance model, however
 - The computation takes 10s of minutes at maximum; We can do checkpointing
- Clever graph partitioning
 - Based on heuristic to minimize vertex replication factor
- Spark4TM (custom shuffling + off heap + partitioning) provides 9 s. per iteration on 101M graph vs 132
 s. in vanilla Spark
 - Code: https://github.com/HewlettPackard/sparkle

Project "Sandpiper"

- Open source implementation
 - -https://github.com/HewlettPackard/sandpiper
 - -https://spark-packages.org/package/HewlettPackard/sandpiper
- Example of use
- BP for pairwise factors
 - Two separate for files variables and factors
 - Each record on a separate line
 - Loading is automatically parallelized

File format: variables (id prior)

```
1 1.0 1.0
2 1.0 0.0
...
```

File format: factors (id1 id2 factor table in column major format)

```
1 2 1.0 0.9 0.9 1.0
2 3 0.1 1.0 1.0 0.1
...
```

Scala

```
import sparkle.graph._
val graph = PairwiseBP.loadPairwiseGraph(sc, variableFile, factorFile)
val beliefs = PairwiseBP(graph, maxIterations = 50, epsilon = 1e-3)
```


Example of use: Factor Graph BP

- BP for factor graph
 - -libDAI file format with explicit factor ID
 - Factor ID enables splitting the file into parts for loading parallelism

File format

```
# number of factors in the file
# factor id preceded with 3 hashes (unique, must not
intersect with variable name/id)
### 5
# number of vars
 name of vars
 number of values of vars
# number of non-zero entries in factor table
# non-zero factor table entries
```

Scala

```
import sparkle.graph._
val graph = Utils.loadLibDAIToFactorGraph(sc, inputPath)
val beliefs = BP(graph, maxIterations = 50, epsilon = 1e-3)
```


Conclusions and Future Work

- -Belief propagation algorithm for large graphs
- Application of malicious site detection using BP
- –Open source: project "sandpiper"
- -Demo at HP Discover
- -Future work
 - Re-compute only non-converged nodes
 - -Incremental computations
 - Incremental graph construction

Hewlett Packard Enterprise

View Summary

Thank you

Spark for large pools of memory

- Make HPE large-memory servers accessible to customers and developers
- Can in-memory analytics perform better with big shared memory?
- Apache Spark as a platform

Superdome X 8 blades x3TB

