Линейная алгебра

Векторное пространство. Базис.

Глеб Карпов

МНаД ФКН ВШЭ

Векторное пространство (Vector space)

Основной предмет изучения линейной алгебры

• Рассмотрим некоторое множество элементов V. Помимо того, что в нем просто живут абстрактные элементы, зададим там бинарные операции.

Векторное пространство (Vector space)

Основной предмет изучения линейной алгебры

- Рассмотрим некоторое множество элементов V. Помимо того, что в нем просто живут абстрактные элементы, зададим там бинарные операции.
- ullet Сложение. Любым двум элементам из множества V ставится в соответствие третий:

$$\forall x, y \in \mathbb{V}: \quad x \oplus y = w, w \in \mathbb{V}.$$

Векторное пространство (Vector space)

Основной предмет изучения линейной алгебры

- Рассмотрим некоторое множество элементов V. Помимо того, что в нем просто живут абстрактные элементы, зададим там бинарные операции.
- Сложение. Любым двум элементам из множества V ставится в соответствие третий:

$$\forall x,\,y\in\mathbb{V}:\quad x\oplus y=w,\,w\in\mathbb{V}.$$

ullet Умножение на скаляр. Любой паре элементов из ${\mathbb V}$ и ${\mathbb R}$ ставится в соответствие элемент из V:

$$\forall x \in \mathbb{V}, \ \forall \alpha \in \mathbb{R}: \quad \alpha \otimes x = w, \ w \in \mathbb{V}.$$

Векторное пространство

Примеры векторных пространств

Coordinate space. Множество последовательностей длины n, частным случаем которых являются геометрические векторы.

$$a = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ x_n \end{pmatrix}$$

Векторное пространство

Примеры векторных пространств

• Множество матриц $n \times m$.

$$A = \begin{pmatrix} 5 & 2 \\ -2 & 7 \end{pmatrix}, \ B = \begin{pmatrix} 1 & 4 \\ 3 & 0 \end{pmatrix}$$

Векторное пространство

Примеры векторных пространств

• Множество матриц $n \times m$.

$$A = \begin{pmatrix} 5 & 2 \\ -2 & 7 \end{pmatrix}, \ B = \begin{pmatrix} 1 & 4 \\ 3 & 0 \end{pmatrix}$$

• Множество полиномов (Что? Да!) фиксированной максимальной степени.

$$\begin{split} f(x) &= a_1 x^2 + b_1 x + c_1, \ g(x) = a_2 x^2 + b_2 x + c_2 \\ f(x) + g(x) &= (a_1 + a_2) x^2 + (b_1 + b_2) x + (c_1 + c_2) \\ \alpha &\in \mathbb{R}: \ \alpha f(x) = (\alpha a_1) x^2 + (\alpha b_1) x + (\alpha c_1) \end{split}$$

• С помощью определенных выше операций мы можем комбинировать элементы векторного пространства
--

- С помощью определенных выше операций мы можем комбинировать элементы векторного пространства.
- ullet Предположим, мы вытащили набор векторов v_1,\ldots,v_m из $\mathbb V$, и набор скаляров $lpha_1,\ldots,lpha_m$ из $\mathbb R.$

- С помощью определенных выше операций мы можем комбинировать элементы векторного пространства.
- ullet Предположим, мы вытащили набор векторов v_1,\dots,v_m из $\mathbb V$, и набор скаляров $lpha_1,\dots,lpha_m$ из $\mathbb R.$
- Линейная комбинация группы векторов новый вектор, построенный в виде:

$$x = \alpha_1 v_1 + \dots + \alpha_m v_m, x \in \mathbb{V}.$$

Линейная оболочка

Множество всех-всех возможных линейных комбинаций, полученных из зафиксированного набора векторов v_1, \dots, v_m , назовем линейной оболочкой этого набора и обозначим:

$$\mathrm{span}(v_1,\ldots,v_m)=\{\alpha_1v_1+\ldots+\alpha_mv_m:a_1,\ldots,\alpha_m\in\mathbb{R}\}.$$

Мотивация

• Рассмотрим набор векторов $\{v_1,\dots,v_m\}$, заранее извлеченных из $\mathbb V$, и произвольный набор скаляров α_1,\dots,α_m из $\mathbb R$. В результате построения линейной комбинации получим некий элемент $x\in\mathbb V$:

$$x = \alpha_1 v_1 + \ldots + \alpha_m v_m$$

Мотивация

• Рассмотрим набор векторов $\{v_1,\dots,v_m\}$, заранее извлеченных из $\mathbb V$, и произвольный набор скаляров α_1,\dots,α_m из $\mathbb R$. В результате построения линейной комбинации получим некий элемент $x\in\mathbb V$:

$$x = \alpha_1 v_1 + \dots + \alpha_m v_m$$

• Уникален ли такой набор $\{\alpha_1, \dots, \alpha_n\}$ или, может, существует другой набор $\{\tilde{\alpha}_1, \dots, \tilde{\alpha}_n\}$ такой, что:

$$x = \tilde{\alpha}_1 v_1 + \dots + \tilde{\alpha}_m v_m.$$

• С помощью определенных ранее операций мы	можем комбинировать элементы	векторного пространства.
--	------------------------------	--------------------------

- С помощью определенных ранее операций мы можем комбинировать элементы векторного пространства.
- ullet Предположим, мы вытащили набор векторов v_1,\ldots,v_m из $\mathbb V$, и набор скаляров $lpha_1,\ldots,lpha_m$ из $\mathbb R.$

- С помощью определенных ранее операций мы можем комбинировать элементы векторного пространства.
- ullet Предположим, мы вытащили набор векторов v_1,\ldots,v_m из $\mathbb V$, и набор скаляров $lpha_1,\ldots,lpha_m$ из $\mathbb R.$
- Линейная комбинация группы векторов новый вектор, построенный в виде:

$$x = \alpha_1 v_1 + \dots + \alpha_m v_m, x \in \mathbb{V}.$$

Линейная оболочка

Множество всех-всех возможных линейных комбинаций, полученных из зафиксированного набора векторов v_1, \dots, v_m , назовем линейной оболочкой этого набора и обозначим:

$$\mathrm{span}(v_1,\ldots,v_m)=\{\alpha_1v_1+\ldots+\alpha_mv_m:a_1,\ldots,\alpha_m\in\mathbb{R}\}.$$

Мотивация

• Рассмотрим набор векторов $\{v_1,\dots,v_m\}$, заранее извлеченных из $\mathbb V$, и произвольный набор скаляров α_1,\dots,α_m из $\mathbb R$. В результате построения линейной комбинации получим некий элемент $x\in\mathbb V$:

$$x = \alpha_1 v_1 + \ldots + \alpha_m v_m$$

Мотивация

• Рассмотрим набор векторов $\{v_1,\dots,v_m\}$, заранее извлеченных из $\mathbb V$, и произвольный набор скаляров α_1,\dots,α_m из $\mathbb R$. В результате построения линейной комбинации получим некий элемент $x\in\mathbb V$:

$$x = \alpha_1 v_1 + \dots + \alpha_m v_m$$

• Уникален ли такой набор $\{\alpha_1, \dots, \alpha_n\}$ или, может, существует другой набор $\{\tilde{\alpha}_1, \dots, \tilde{\alpha}_n\}$ такой, что:

$$x = \tilde{\alpha}_1 v_1 + \dots + \tilde{\alpha}_m v_m.$$

• Давайте предположим, что набор не уникален, и вычтем два равенства друг из друга:

$$\begin{split} (x-x) &= \mathbf{0} = (\alpha_1 - \tilde{\alpha}_1)v_1 + (\alpha_2 - \tilde{\alpha}_2)v_2 + \ldots + (\alpha_m - \tilde{\alpha}_m)v_m \\ &= \gamma_1v_1 + \gamma_2v_2 + \ldots + \gamma_mv_m \end{split}$$

• Давайте предположим, что набор не уникален, и вычтем два равенства друг из друга:

$$\begin{split} (x-x) &= \mathbf{0} = (\alpha_1 - \tilde{\alpha}_1)v_1 + (\alpha_2 - \tilde{\alpha}_2)v_2 + \ldots + (\alpha_m - \tilde{\alpha}_m)v_m \\ &= \gamma_1v_1 + \gamma_2v_2 + \ldots + \gamma_mv_m \end{split}$$

• Задача уникальности представления x теперь изменилась к задаче "как получить элемент 0" в результате линейной комбинации.

• Давайте предположим, что набор не уникален, и вычтем два равенства друг из друга:

$$\begin{split} (x-x) &= \mathbf{0} = (\alpha_1 - \tilde{\alpha}_1)v_1 + (\alpha_2 - \tilde{\alpha}_2)v_2 + \ldots + (\alpha_m - \tilde{\alpha}_m)v_m \\ &= \gamma_1v_1 + \gamma_2v_2 + \ldots + \gamma_mv_m \end{split}$$

- Задача уникальности представления x теперь изменилась к задаче "как получить элемент 0" в результате линейной комбинации.
- Если единственный возможный вариант получить ${f 0}$ это положить все $\gamma_i = 0$:

$$\forall i:\, (\alpha_i-\tilde{\alpha}_i)=0 \rightarrow \alpha_i=\tilde{\alpha}_i.$$

Что будет означать, что представление x уникально.

• Давайте предположим, что набор не уникален, и вычтем два равенства друг из друга:

$$\begin{split} (x-x) &= \mathbf{0} = (\alpha_1 - \tilde{\alpha}_1)v_1 + (\alpha_2 - \tilde{\alpha}_2)v_2 + \ldots + (\alpha_m - \tilde{\alpha}_m)v_m \\ &= \gamma_1v_1 + \gamma_2v_2 + \ldots + \gamma_mv_m \end{split}$$

- Задача уникальности представления x теперь изменилась к задаче "как получить элемент 0" в результате линейной комбинации.
- Если единственный возможный вариант получить 0 это положить все $\gamma_i = 0$:

$$\forall i:\, (\alpha_i-\tilde{\alpha}_i)=0 \rightarrow \alpha_i=\tilde{\alpha}_i.$$

Что будет означать, что представление x уникально.

• Если есть какой-то другой способ получить $\mathbf{0}$, т.е. хотя бы один $\gamma_k \neq 0$, значит $(\alpha_k - \tilde{\alpha}_k) \neq 0 \to \alpha_k \neq \tilde{\alpha}_k$. Что означает, что представление x не уникально - существует другой набор коэффициентов.

Определение

Мы назовем набор векторов линейно независимым, если единственная возможность получить элемент 0 как результат линейной комбинации:

$$\gamma_1 v_1 + \dots + \gamma_m v_m = \mathbf{0},$$

это положить все скаляры равными 0, $\gamma_1=...=\gamma_m=0$. (Также называется тривиальной комбинацией).

Определение

С другой стороны, мы назовем набор векторов линейно зависимым, если **существует** нетривиальная комбинация коэффициентов $\gamma_1, \dots, \gamma_m$, (не равные 0 одновременно), такая что:

$$\gamma_1 v_1 + \dots + \gamma_m v_m = \mathbf{0}.$$

Определение

• Набор векторов v_1, \dots, v_n из $\mathbb V$ называется базисом пространства V тогда и только тогда, когда любой вектор $x \in \mathbb V$ может быть уникально представлен в форме линейной комбинации:

$$x = \alpha_1 v_1 + \dots + \alpha_n v_n.$$

Определение

• Набор векторов v_1, \dots, v_n из $\mathbb V$ называется базисом пространства V тогда и только тогда, когда любой вектор $x \in \mathbb V$ может быть уникально представлен в форме линейной комбинации:

$$x = \alpha_1 v_1 + \dots + \alpha_n v_n.$$

• Соответствующие уникальные коэффициенты α_1,\ldots,α_n мы называем координатами вектора x в базисе (v_1,\ldots,v_n) .

Определение

• Набор векторов v_1, \dots, v_n из $\mathbb V$ называется базисом пространства V тогда и только тогда, когда любой вектор $x \in \mathbb V$ может быть уникально представлен в форме линейной комбинации:

$$x = \alpha_1 v_1 + \dots + \alpha_n v_n.$$

- Соответствующие уникальные коэффициенты α_1,\dots,α_n мы называем координатами вектора x в базисе (v_1,\dots,v_n) .
- Немного иначе: набор векторов v_1, \dots, v_n из $\mathbb V$ называется базисом пространства V тогда и только тогда, когда этот набор векторов линейно независим и $\mathrm{span}(v_1, \dots, v_n) = \mathbb V$, то есть мы можем 'дотянуться' до любого элемента из $\mathbb V$.

Базис. Примеры.