Lecture 4 pre-video

Numpy + OLS setup

https://github.com/COGS118A/demo_notebooks/blob/main/

Linear regression using Ordinary Least Squares

Jason G. Fleischer, Ph.D.

Asst. Teaching Professor Department of Cognitive Science, UC San Diego

jfleischer@ucsd.edu

https://jgfleischer.com

Logistics

- Please fill out the lecture participation survey every lecture day!
- Discussion section this week
 - Questions and time to work on D1 & A1
- To hand in this coming week
 - D1: Basic NumPy <- Fri 11:59pm on Datahub
 - A1: Basic math <- Mon 11:59pm on Gradescope
- Give me feedback about the lectures!
 - Email jfleischer@ucsd.edu, subject line COGS118A lecture feedback
 - or the anonymous course feedback form

Implementation NumPy basics

https://colab.research.google.com/github/COGS118A/demo_notebooks/blob/main/lecture_04_pre_numpy.ipynb

https://github.com/COGS118A/demo_notebooks.git

Implementation/

Recap: Convexity

Intuition: Understanding the convexity of the estimation functions allows us to better design the learning algorithms and allows us to judge the quality (global vs. local optimal) of the learned models.

Math:

or

$$\forall w_0, w_1, a \in [0, 1]$$

 $aL(w_0) + (1 - a)L(w_1) \ge L(aw_0 + (1 - a)w_1)$

Alternatively (for differentiable function):

$$L(w_1) \ge L(w_0) + \langle \nabla L(w_0), w_1 - w_0 \rangle$$

Non-convex functions that are differentiable

Compute $\frac{\partial L(w)}{\partial w}$ to solve the problem iteratively through gradient descent

Convex functions that are differentiable

An analytical (closed form) solution exists!

 $w^* = q(X, Y)$ where X and Y consists of your training data with the corresponding ground-truth labels.

You get your model in 1 shot, no iteration!

Convex function: differentiable

- 1. (Convex) Function
- 2. Set Derivative to 0
- 3. Solve for w

$$L(w) = (w-3)^2 + 4$$

$$\frac{dL(w)}{dw} = 2 \times (w - 3) \qquad \frac{dL(w)}{dw} = 0$$

$$2 \times (w - 3) = 0 \rightarrow w = 3$$

Regression

Regression (to the mean) - racists give us an important tool

Sir Francis Galton, polymath & eugenicist

Regression

The intuition

Regression The intuition

Regression

The intuition

$$y_i = f(x_i, w) + e$$

And if your sample is good enough the noise will cancel out "regression to the mean"

https://setosa.io/ev/ordinary-least-squares-regression/

Beta 1 - The y-intercept of the regression line.

Beta 2 - The slope of the regression line.

ASS-U-ME D properties

Linear Regression using Ordinary Least Squares

- A1. The linear regression model is "linear in parameters."
- A2. There is a random sampling of observations.
- A3. The conditional mean should be zero.
- A4. No multi-collinearity (or perfect collinearity).
- A5. Homoscedasticity
- A6: Error terms should be normally distributed

Anscombe's quartet

An example of what happens when data violates assumptions of OLS

OLS isn't the only game in town

Implementation Linear Regression using Ordinary Least Squares

https://colab.research.google.com/github/COGS118A/demo_notebooks/blob/main/lecture_04_linear_regression.ipynb

https://github.com/COGS118A/demo_notebooks.git