TD 23. Géométrie plane.

Le plan \mathcal{P} est muni d'un repère orthonormé direct $(O, \overrightarrow{i}, \overrightarrow{j})$.

Exercice 1. Soit ABC un triangle non aplati.

- a) Montrer que, pour tout point M de \mathcal{P} , on a : $\overrightarrow{AB} \cdot \overrightarrow{CM} + \overrightarrow{AC} \cdot \overrightarrow{MB} + \overrightarrow{AM} \cdot \overrightarrow{BC} = 0$.
- b) En déduire que les hauteurs du triangle ABC sont concourantes.

Exercice 2. Calculer l'aire du triangle ABC, où A(-1,0), B(2,4), C(3,3).

Exercice 3. Soit ABC un triangle non aplati, on note \hat{A} l'angle non orienté entre \overrightarrow{AB} et \overrightarrow{AC} , \hat{B} celui de \overrightarrow{BC} et \overrightarrow{BA} , et \hat{C} celui de \overrightarrow{CA} et \overrightarrow{CB} . On note également a=BC, b=AC, c=AB. Démontrer la formule d'Al-Kachi : $a^2=b^2+c^2-2bc\cos\hat{A}$.

Exercice 4. a) Donner une représentation paramétrique et une équation cartésienne de la droite Δ passant par A(1,2) et parallèle à la droite D d'équation : 4x - y + 1 = 0.

b) Étudier l'intersection de D et de la droite passant par le point (-2,5) et dirigée par $\overrightarrow{u}=(1,2)$.

Exercice 5. Soient A le point de coordonnées (1, -1) et \mathcal{D} la droite d'équation : 3x + 4y - 1 = 0. Calculer les coordonnées du point H, projeté orthogonal de A sur \mathcal{D} .

Exercice 6. Pour tout $a \in \mathbb{R}$, on définit la droite D_a d'équation : $(1-a^2)x + 2ay + (a^2 - 2a - 3) = 0$.

- a) Justifier que pour tout $a \in \mathbb{R}$, D_a est bien une droite.
- b) Existe-t-il un point du plan qui appartienne à toutes les droites D_a ?
- c) Déterminer l'ensemble des points M par lesquels il passe au moins une droite D_a .
- d) Déterminer l'ensemble des points M par lesquels il passe deux droites D_a et $D_{a'}$ perpendiculaires.

Exercice 7. Soit l'ensemble \mathcal{C} défini par l'équation cartésienne : $x^2 + y^2 - 4x - 2y - 4 = 0$.

- a) Montrer que \mathcal{C} est un cercle dont on précisera le centre et le rayon.
- b) Déterminer l'intersection de C et de la droite D: x y + 2 = 0.
- c) Soit A le point de coordonnées (5,0). Une droite est dite tangente à \mathcal{C} si elle n'a qu'un seul point d'intersection avec \mathcal{C} .

Déterminer les droites passant par A et tangentes à \mathcal{C} .

Exercice 8. Soit le cercle \mathcal{C} de centre l'origine et de rayon 10.

Soit \mathcal{C}' l'ensemble défini par l'équation : $x^2 + y^2 - 24x - 18y + 200 = 0$.

- a) Montrer que \mathcal{C}' est un cercle dont on déterminera le centre et le rayon.
- b) Étudier l'intersection de C et C'.

Exercice 9. A tout réel m, on associe l'ensemble C_m d'équation : $x^2 + y^2 - 4mx - 2my + 10(m-1) = 0$

- a) Montrer que, pour tout réel m, C_m est un cercle.
- b) Déterminer l'ensemble des centres Ω_m lorsque m décrit \mathbb{R} .
- c) Vérifier que, parmi tous les cercles \mathcal{C}_m , il y en a un et un seul dont le rayon est minimal.
- d) Prouver qu'il existe deux points A et B communs à tous les cercles C_m . Donner une équation de la droite (AB).
- e) Démontrer que, pour tout point $M_0(x_0, y_0)$ n'appartenant pas à la droite (AB), il existe un cercle \mathcal{C}_m et un seul contenant M_0 .