INTRODUCTION TO MACHINE LEARNING

Introduction
Pablo Cañas
pablocanas97@gmail.com

NORTHIN SUMMER SCHOOL Barcelona, July 2024

Course structure

- 1. Introduction: basic concepts, data preparation, linear regression
- Fundamental Machine Learning concepts: Loss functions, optimization, cross-validation, overfitting
- **3. Supervised learning**: naive bayes, k-NN, random forests, ...
- **4. Unsupervised learning**: clustering, dimensionality reduction.
- 5. Introduction to Deep Learning

What is Machine learning?

 Machine Learning is the science of getting computers to learn and act like humans do, and improve their learning over time in autonomous fashion, by feeding them data and information in the form of observations and real-world interactions

• Machine learning algorithms seek to provide knowledge to computers through data, observations, and interaction with the world. It is then used to make accurate predictions given new observations.

Machine learning is applied statistics!

Machine Learning/Deep Learning/ Al

Buzzwords, a lot of confusion. What are the differences?

Machine Learning/Deep Learning/ Al

Buzzwords, a lot of confusion. What are the differences?

Machine learning algorithms

- Supervised: Models are trained with input/output pairs (X, y) which we relate via a function y = f(X). Model learns f to make predictions on new data inputs X.
 - \triangleright Classification: predictions/outputs y are discrete (class labels)
 - \triangleright Regression: y is continuous

- Unsupervised: Only inputs X are given. We compute f such that y = f(X) is a "simpler" representation
 - \triangleright Clustering: discrete y (groups)
 - \triangleright **Dimensionality reduction**: continuous y

Supervised Learning: Regression

• Predict continuous valued output. Ex: Housing price prediction.

Housing price prediction.

Supervised Learning: Regression

• Predict continuous valued output. Ex: Housing price prediction.

Housing price prediction.

Linear regression model, predict price

Supervised Learning: Classification

• Predict discrete valued output. Ex: Breast cancer diagnose.

Supervised Learning: Classification

• Predict discrete valued output. Ex: Breast cancer diagnose $y \in \{0,1\}$.

Unsupervised Learning: Clustering

Customer segments

Find natural **clusters** or groups that share **similar** features. Ex: customer segmentation $y \in \{0,1,2...\}$.

- Red: Poor-buyers
- Green: Middle class-non-buyers
- Blue: Rich-buyers

Unsupervised Learning: Dimension reduction

- Reduce number of features, while keeping the maximum information
- Reduce the complexity of the problem!

Quiz: Supervised/Unsupervised

• Imagine a Telecomm company wants to **automatically** detect outages or **failures** in the network by identifying when there is a **drop** or **spike** in the network **traffic**.

Should we use a Supervised or Unsupervised algorithm?

Quiz: Supervised/Unsupervised

• Imagine a Telecomm company wants to **automatically** detect outages or **failures** in the network by identifying when there is a **drop** or **spike** in the network **traffic**.

Data preparation

- Data is the oil of machine learning
- Prepare and analyse the data before applying machine learning!

Source: Anaconda

Data preparation with Python: Pandas

 Pandas is a fast, powerful, flexible and easy to use data analysis and manipulation tool, built on top of Python

Source: Reuters

Python working environment

- Option 1: Local Python installation (<u>Anaconda</u> + <u>JupyterLab</u>)
 - Or VS Code Jupyter extension
- Option 2: JupyterLab in the <u>cloud</u>

 Libraries for Machine Learning/Data Science: Pandas, NumPy, Scipy, Matplotlib

Python working environment

Option 1: Lo.

• Option 2: Ju

Libraries for Matplotlib

JupyterLab)

ndas, NumPy, Scipy,

Source: Imgflip

Linear regression: overview

- Predict continuous-valued output
- Example: given the size of a house, predict its price

Training set of	Size in feet ² (x)	Price (\$) in 1000's (y)
housing prices	2104	460
(Portland, OR)	1416	232
(1534	315
	852	178

Notation:

x's = "input" variable / features

y's = "output" variable / "target" variable

Source: Coursera

Linear regression: overview

- Predict continuous-valued output
- Example: given the size of a house, predict its price

Linear regression: parameter interpretation

• Hypothesis: $h_{\beta}(x) = \beta_0 + \beta_1 x$ $y = \beta_0 + \beta_1 x + \epsilon$

- Slope β_0
- Intercept β_1

Linear regression: cost function

- Find the **optimal** parameters or weights β_0 , β_1 so that $h_{\beta}(x)$ is close to y for our training simples (x, y).
- **Residuals** or errors: $h_{\beta}(x^{(i)}) y^{(i)}$
- Minimize cost function

$$J(\beta_0, \beta_1) = \frac{1}{n} \sum_{i=1}^{n} (h_{\beta}(x^{(i)}) - y^{(i)})^{2y}$$

Mean squared error (MSE)

