Supersymmetric o-models via superspace

Lagrangian field theory

Fix spacetime $M^d = IR^{1/d-1}$ • field: $\phi(x)$, $\forall a(x)$, ...

Lagrangian: $Z = \frac{1}{2} \partial^{M} \phi \partial_{M} \phi - \lambda \phi^{2} - \lambda \phi^{4}$ Classical: ϕ s.t. $\frac{SS}{S\phi} = 0$ equation of motion quantum: $Z = \int \mathcal{D} \phi e^{-iS}$ $S = \int d^{d}x L \leftarrow action$

More fields: ϕ_1, \dots, ϕ_N $L = \frac{1}{2} \sum_{n} \mathcal{J}^n \phi_n \partial_n \phi_n - \lambda \sum_{n} \phi_n^2 - \lambda \left(\sum_{n} \phi_n^2 \right)^2$ $(\phi_1, \dots, \phi_N) : \mathcal{M}^d \to \mathbb{R}^N$

o-model (basic version)

Given a Riemann manifold (X,g) and a function $V:X \to IR$ (potential function) the fields in a G-model is given by a map

 $\phi: M \to X$

and the Lagrangian is $\angle = \frac{1}{2} |d\phi|^2 - \phi^* V$ $4 g_{ij}(\phi) y^{ij} \partial_{\mu} \phi^{ij} \partial_{\mu} \phi^{ij}$

Assume V is bounded below, define moduli space of vacua $M_{vac} := V^{-1}(min \ of \ V)$

Remark: fields that minimize energy are $\phi(x) = \phi_0 \in \mathcal{M}_{VAC}$

e.g.
$$X=IR$$
, $L=\frac{1}{2} \mathcal{J}''\phi \partial_{\mu}\phi - \mathcal{A}\phi^{2} - \lambda \phi^{4}$

$$\lambda > 0, \quad \lambda > 0, \quad M_{vac} = pt$$

$$\lambda < 0, \quad M_{vac} = \pm \sqrt{\frac{2}{\lambda}}$$

Superpartical on M'=IR'as vector space

Recall super-Poincaré $P=IR^{1,d-1} \oplus so(1,d-1) \oplus S^*$ $d=1, P=IR \oplus S^*$ $=\langle \partial_t, Q \rangle$ $\{Q,Q\}=-2\partial_t$ real rep. of Spin(1,d-1) $\{S^*,S^*\} \subset IR^{1,d-1} \text{ given by }$ $\Gamma: Sym^2 S^* \to IR^{1,d-1}$

Fix Riemann manifold X φ: M' → X bosonic 4 HO(p*TTX) fermionic Yeverse pairity L==1/dp/2+=/<4, 74/5 (e.g. X=IR, L=±(2+0)2+±(4,2+4)) 7): odd parameter $S\phi = -\eta \psi$ SY = 70 $SLdt = (\langle -\eta\dot{\psi},\dot{\phi}\rangle + \frac{1}{2}\langle \eta\dot{\phi},\dot{\psi}\rangle + \frac{1}{2}\langle \dot{\psi},\eta\ddot{\phi}\rangle)dt$ (assume X flat) = $\left(-\frac{1}{2}\langle \dot{\eta}\dot{\psi},\dot{\phi}\rangle + \frac{1}{2}\langle \dot{\eta}\dot{\psi},\dot{\phi}\rangle\right) dt$ = - 1/2 d < 4, 6>1.

Let
$$Q$$
 be the odd generator of S (1 Q gen. S for odd g)
$$[1,Q,1,Q] \phi = -21,1,2 \phi$$

$$[1,Q,1,Q] \psi = -21,1,2 \psi$$

$$\Rightarrow \{Q,Q\} = 2 t$$

$$M''' = |R \oplus TIR$$
 $t \in \Theta$
 $i : M' \rightarrow M'''$
 $i^* = Set \Theta = 0$

$$\Phi: M'' \to X$$
 superfield

Some useful vector fields on M'11

De oven

$$D = \partial_{\theta} - \theta \partial_{t}$$
 } odd
$$Q = \partial_{\theta} + \theta \partial_{t}$$
 } odd

$$[D,D]=-2\partial t$$

$$[Q,Q]=2\partial_t$$

$$\int d\theta (a+b\theta)=b \Rightarrow \int d\theta = \partial \theta$$

Idea: Construct L on M'' such that Solt do L is invariant.

then define $L = \int d\theta L$ "Berezin integral" $\Rightarrow \int dt L$ is invariant

Better way, $\phi = i^* \Phi$, $\gamma = i^* D \Phi$

$$\int d\theta I = -\frac{1}{2} \partial_{\theta} \langle -\theta \dot{\phi} + \psi, \dot{\phi} + \theta \dot{\psi} \rangle$$

$$= \frac{1}{2} \dot{\phi}^{2} + \frac{1}{2} \langle \psi, \dot{\psi} \rangle$$

Recall
$$Spin(1,2) \simeq SL(2,1R)$$
 $S=funda.$ rep of $SL(2,1R)$

$$Spin(1,2) \subseteq SL(2,1R)$$

$$P^{3/2} = V \oplus So(V) \oplus S^*$$

$$M^{3/2} = V \oplus TTS^*$$

 $y'', y'^2, y^{22} \quad 0', 0^2$

$$\theta^{a} \otimes \theta^{b} \rightarrow y^{ab}$$
 a, b $\in \{1,2\}$ $S = N \cdot dim_{R} S^{*}$

Scalar multiplet

$$\left(y^{11} = \frac{x^0 + x^1}{2}, y^{22} = \frac{x^0 - x^1}{2}, y^{12} = \frac{x^2}{2}\right)$$

$$[D_a, Q_b] = 0$$

$$\Phi: M^{3/2} \rightarrow X$$

$$\phi = i * \Phi$$

$$S\phi = -y^a + u$$

$$(\cancel{p})_a = -\varepsilon^{bc} \partial_{ab} \psi_c$$
 Dirac operator

$$\gamma^{\circ} = \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix}, \quad \gamma^{\prime} = \begin{pmatrix} 1 & -1 \\ -1 & -1 \end{pmatrix}, \quad \gamma^{2} = \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix}$$

L= = = Eab (Dat, Dot)

>> L= \(\frac{1}{2} | d\pli|^2 + \frac{1}{2} \langle \psi \psi + \frac{1}{2} \langle \frac{ab}{2} \(\frac{1}{2} \rangle \cd \langle \frac{1}{2} \rangle \frac{1}{2} \r

Remark: ① F only algebraic, auxiliary field equation of motion $\Rightarrow F = 0$

(2) We will focus on $\angle_{bos} = \angle |_{\gamma=0} = \frac{1}{2} |d\phi|^2$

More SUSY, Kähler/hyperkähler manifold.

Defin: A Kähler manifold is a Riemann manifold (M,g) with complex structure I such that $\nabla I = 0$ and $g(IY_1, IY_2) = g(Y_1, Y_2)$

Remark: $W(Y_1,Y_2) = g(IY_1,Y_2)$ is a closed, non-degenerate 2-form i.e. M is symplectic

Fact: There exists a real function K on M such that $g_{ij} = \frac{3K}{3\epsilon^i \, 3\bar{\epsilon}^j}$

 $\overline{z}^i, \overline{z}^j$ are local coordinates on M and $g = g_{ij} dz^i \otimes d\overline{z}^j$

Defin: A Hyperkähler manifold is a Riemann manifold (M,g) with 3 complex structures I, J, K that Kähler w.r.t. g. and $I^2 = J^2 = K^2 = IJK = -1$.

6

Proposition: The target manifold X of a 4d N=1 SUSY 6-model must be Kähler.

$$S = funda. rep. of $SL(2,C)$, $dim_R S = 4$$$

$$S_{\mathbb{C}} \simeq S' \oplus S'', \quad S'' = \overline{S'}, \quad \mathcal{B}^{a} \otimes \overline{\mathcal{B}}^{b} \longrightarrow \mathcal{F}^{ab}$$

$$\mathcal{M}^{4/4} = \bigvee \oplus \pi S^*$$

$$\partial ab = \frac{\partial}{\partial yab}$$

$$\int y^{1i} = \frac{x^{0} + x^{1}}{2}$$

$$\int y^{2i} = \frac{x^{0} - x^{1}}{2}$$

$$\int y^{1i} = \frac{x^{0} + x^{1}}{2}$$

$$\int y^{1i} = \frac{x^{0} + x^{1}}{2}$$

$$\int y^{1i} = \frac{x^{0} + x^{1}}{2}$$

$$\overline{Da} = \frac{\partial}{\partial \overline{g}a} - gb \partial_{ba} \qquad y^{2i} = \frac{x^2 i x^3}{2}$$

Observation:

1) We need X to have complex structure

$$\rightarrow$$
 require Φ to be chiral.
i.e. $D_{\dot{a}}\Phi=0$

> to see why X must be Kähler:

- (2) 3d N=1 SUSY 6-model

 (an be classified.
- (3) require addition SUSY.

 ⇒ complex structure is Kähler.

Given X Kähler, construct 4d N=1 Susy

K: Kähler potential

 $\Phi: M^{4/4} \rightarrow X$ superfield.

$$\mathcal{L} = K(\Phi, \bar{\Phi})$$

$$L = \int d\theta \, K(\Phi, \bar{\Phi})$$

$$\varphi = i^* \frac{1}{\sqrt{2}}$$

$$\forall a = \frac{1}{\sqrt{2}} i^* Da \Phi$$

$$\varphi = -\frac{1}{2} \varepsilon^{ab} i^* Da D_b \Phi$$

$$\varphi = \varphi + \theta^a ... + i \overline{\theta} \sigma^{M} \theta \partial_{\mu} \Phi$$

$$\overline{\partial}^{M} \overline{\phi}^{i} \partial_{\mu} \Phi^{i} g_{ij} \text{ in } L$$

SUSY with 8 supercharges (N=(1,0) to be precise) (3d N=4, or 4d N=2 or 6d N=1) Spin $(1.5) \cong SL(2,1H)$

8 real dim rep.

The target X must be hyperkähler

Remark: usually in components formulation since chival condition is too complicated.

77	* * * * * * * * * * * * * * * * * * *	12.	10	
				-
	×			ı
		a.		
		9		
		2		
		9		
		e e		
		æ		
		e e		
		2		