微积分

Ivan Chien

Contents

I 函数 极限 连续	. 2
I.i 函数	. 2
I.i.1 初等函数	. 2
I.i.1-a 反三角函数	. 2
I.ii 极限	. 2
I.ii.1 两个重要极限	. 2
I.ii.2 数列的极限	. 2
I.ii.3 函数的极限	. 3
I.ii.3-a 自变量趋于无穷大时函数的极限	. 3
I.ii.3-b 自变量趋于有限值时函数的极限	. 3
I.ii.4 极限的性质	. 3
I.ii.5 函数极限与数列极限的关系	. 4
I.ii.6 无穷小量与无穷大量	
I.ii.6-a 无穷小量	. 4
I.ii.6-b 无穷大量	. 4
I.ii.7 极限的计算	. 5
I.ii.7-a 第一重要极限	. 6
I.ii.7-b 第二重要极限	. 6
I.ii.7-c 等价无穷小替换	. 6
I.ii.7-d 洛必达法则	. 7
I.ii.7-e 夹逼准则	. 7
I.ii.7-f 泰勒公式	. 8
I.iii 连续性	. 8
I.iii.1 运算	. 9
I.iii.2 初等函数的连续性	. 9
I.iii.3 间断点	10
I.iii.4 闭区间上连续函数的性质	10
II 一元函数微分学	10
II.i 导数	10
II.i.1 导数的几何意义	10
II.ii 微分	10
II.ii.1 微分的几何意义	11
II.iii 连续、可导、可微之间的关系	11
II.iv 导数的计算	11
II.iv.1 反函数求导法则	11
II.iv.2 隐函数求导	12
II.iv.3 参数方程确定的函数求导法	12
II.iv.4 重要结论	
II.iv.5 高阶导数	12
II iv 6 微分的计算	12

II.v 中值定理、不等式与零点问题	13
II.vi 函数应用	13
II.vi.1 单调性	13
II.vi.2 极值	
II.vi.3 最值	13
II.vi.4 凹凸性	14
II.vi.5 拐点	14
II.vi.6 渐近线	14
II.vi.7 弧微分与曲率	15
III 一元函数积分学	15
III.i 基本性质	
III.i.1 变限积分	16
III.ii 不定积分与定积分的计算	
III.ii.1 基本积分公式	
III.ii.2 基本积分方法	
III.ii.2-a 凑微分法(第一换元法)	17
III.ii.2-b 换元积分法(第二换元法)	
III.ii.2-c 常见典型换元	
III.ii.2-d 定积分的换元积分	
III.ii.2-e 分部积分	17
III ii 2-f 非常好用的定积分公式	18

I 函数 极限 连续

I.i 函数

I.i.1 初等函数

I.i.1-a 反三角函数

- 1. $\arcsin x$ 和 $\arccos x$ 的定义域为 [-1,1]
- 2. $\arcsin x$ 的值域为 $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
- 3. $\arccos x$ 的值域为 $[0,\pi]$

I.ii 极限

I.ii.1 两个重要极限

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e$$

I.ii.2 数列的极限

定义 对于 $\forall \varepsilon > 0$, 总 \exists 正整数 N, 当 n > N 时, 恒有

$$|x_n - a| < \varepsilon$$

成立,则称常数 a 为数列 $\{x_n\}$ 当 n 趋于无穷时的极限,记为

$$\lim_{n\to\infty}x_n=a$$

I.ii.3 函数的极限

I.ii.3-a 自变量趋于无穷大时函数的极限

定义 对 $\forall \varepsilon > 0$, 总 $\exists X > 0$, 当 x > X 时,恒有 $|f(x) - A| < \varepsilon$,则称常数 A 为 f(x) 当 $x \to +\infty$ 时的极限,记为

$$\lim_{x \to +\infty} f(x) = A$$

定义 对 $\forall \varepsilon > 0$, 总 $\exists X > 0$, 当 x < -X 时,恒有 $|f(x) - A| < \varepsilon$,则称常数 A 为 f(x) 当 $x \to -\infty$ 时的**极限**,记为

$$\lim_{x \to +\infty} f(x) = A$$

定义 对 $\forall \varepsilon > 0$, 总 $\exists X > 0$, 当 |x| > X 时, 恒有 $|f(x) - A| < \varepsilon$, 则称常数 A 为 f(x) 当 $x \to \infty$ 时的极限, 记为

$$\lim_{x \to \infty} f(x) = A$$

I.ii.3-b 自变量趋于有限值时函数的极限

定义 对 $\forall \varepsilon > 0$, 总 $\exists \delta > 0$, 当 $0 < |x - x_0| < \delta$ 时,恒有 $|f(x) - A| < \varepsilon$,则称常数 A 为 f(x) 当 $x \to +\infty$ 时的极限,记为

$$\lim_{x \to x_0} f(x) = A$$

注:

- 1. ε 用来刻画 f(x) 与 A 的接近程度, δ 用来刻画 $x \to x_0$ 的极限过程
- 2. 该极限与 f(x) 在 $x=x_0$ 处有无定义、值是多少无关, f(x) 必须在 $x=x_0$ 的某去心邻域 $\mathring{U}(x,\delta)$ 处处有定义

这里的 |f(x)-A| 比任意的 ε 都要小, ε 可以小到非常小,所以说 ε 是用来刻画两者的接近程度的;f(x) 在某个去心邻域(会存在)中无限趋近于 A, δ 具体等于多少也无所谓,它也可以无限小。

定义 对 $\forall \varepsilon > 0$, 总 $\exists \delta > 0$, 当 $x_0 - \delta < x < x_0$ 时,恒有 $|f(x) - A| < \varepsilon$,则称常数 A 为函数 f(x) 当 $x \to x_0$ 时的左极限,记为

$$\lim_{x\to x_0^-}f(x)=A$$

定义 对 $\forall \varepsilon > 0$, 总 $\exists \delta > 0$, 当 $x_0 < x < x_0 + \delta$ 时,恒有 $|f(x) - A| < \varepsilon$,则称常数 A 为函数 f(x) 当 $x \to x_0$ 时的右极限,记为

$$\lim_{x\to x_0^+} f(x) = A$$

定理 $\lim_{x\to x_0}f(x)=A$ 当且仅当 $\lim_{x\to x_0^-}f(x)=A\wedge\lim_{x\to x_0^+}f(x)=A$

极限存在当且仅当左右极限都存在且相等。

I.ii.4 极限的性质

有界性 (数列)如果数列 $\{x_n\}$ 收敛,那么数列 $\{x_n\}$ 一定有界。 (函数)若 $\lim_{x\to x_0} f(x)$ 存在,则 f(x) 在 x_0 的某去心邻域有界(局部有界性)。

保号性 (数列)设 $\lim_{n\to\infty} x_n = A$

- (1) 如果 A > 0 (A < 0), 则 $\exists N > 0$, 当 n > N 时, $x_n > 0 (x_n < 0)$ 。
- (2) 如果 $\exists N > 0$, 当 n > N 时, $x_n \ge 0 (x_n \le 0)$, 则 $A \ge 0 (A \le 0)$ 。

(函数) 设 $\lim_{x\to x_0} x_n = A$

- (1) 如果 A > 0 (A < 0), 则 $\exists \delta > 0$, 当 $x \in \mathring{U}(x_0, \delta)$ 时, f(x) > 0 (f(x) < 0).
- (2) 如果 $\exists \delta > 0$, 当 $x \in \mathring{U}(x, \delta)$ 时, $f(x) \ge 0 (f(x) \le 0)$, 则 $A \ge 0 (A \le 0)$ (局部保号性)。

注意这里的等于号。

I.ii.5 函数极限与数列极限的关系

海因定理 若 $\lim_{x\to x_0}f(x)=A$,则对任意数列 $\{x_n\}$, $\lim_{n\to\infty}x_n=x_0$,且 $x_n\neq x_0$,都有 $\lim_{n\to\infty}f(x_n)=A_\circ$

I.ii.6 无穷小量与无穷大量

I.ii.6-a 无穷小量

无穷小量 若函数 f(x) 当 $x \to x_0$ 或 $x \to \infty$ 时的极限为零,则称 f(x) 为此时的无穷小量。

性质:

- 1. 有限个无穷小的和仍是无穷小
- 2. 有限个无穷小的积仍是无穷小
- 3. 无穷小量与有界量的积仍是无穷小

所以很多极限才可能通过简单的算术运算就得出结果啊。

比较:

- 1. 若 $\lim_{\alpha} \frac{\beta}{\alpha} = 0$, 则 β 是比 α 高阶的无穷小, 记作 $\beta = o(\alpha)$
- 2. 若 $\lim_{\alpha \to \infty} \frac{\beta}{\alpha} = \infty$, 则 β 是比 α **低阶的无穷小**
- 3. 若 $\lim_{\alpha \to 0} \frac{\beta}{\alpha} = c \neq 0$, 则 β 和 α 是同阶无穷小
- 4. 若 $\lim_{\alpha \to 0} \frac{\beta}{\alpha} = 1$, 则 β 和 α 是等价无穷小, 记作 $\alpha \sim \beta$
- 5. 若 $\lim_{\alpha \to 0}^{\alpha \over \beta} = c \neq 0$, 则 $\beta \neq \alpha$ 的k 阶无穷小

等价无穷小:

当 $x \rightarrow 0$ 时,有:

- $\cdot \sin x \sim x$
- $\ln(1+x)\sim x$
- $e^x 1 \sim x$
- $1 \cos x \sim \frac{1}{2}x^2$
- $\cdot \sqrt[n]{1+x} 1 \sim \frac{1}{n}x$

极限值与无穷小之间的关系:

$$\lim f(x) = A \Leftrightarrow f(x) = A + \alpha(x)$$

其中 $\lim \alpha(x) = 0_{\circ}$

I.ii.6-b 无穷大量

无穷大量 若对于 $\forall M > 0$,总 $\exists \delta > 0$,当 $0 < |x - x_0| < \delta$ 时,恒有 |f(x)| > M,则称 f(x)为 $x \to x_0$ 时的**无穷大量**,记为 $\lim_{x \to x_0} f(x) = \infty$ 。

性质:

- 1. 两个无穷大量的积仍为无穷大量
- 2. 无穷大量与有界变量之和仍为无穷大量
- 3. 无穷大量与非零常数乘积仍为无穷大量

和不一定,比如 $y_1 = \frac{1}{x}$ 和 $y_2 = -\frac{1}{x}$ 。

与无界变量的关系:

- 1. 数列 $\{x_n\}$ 是无穷大量: $\forall M > 0, \exists N > 0, \exists n > N$ 时,恒有 $|x_n| > N$ 。

无穷大量必无界, 无界变量不一定无穷大。

举一个无界的例子:

$$\lim_{x \to 0} \frac{1}{x^2} \sin\left(\frac{1}{x}\right)$$

使用海因定理,构造两个数列:

$$x_n = \frac{1}{2n\pi + \frac{\pi}{2}}$$

$$y_n = \frac{1}{2n\pi}$$

它们在 $x \to \infty$ 的极限都为 0,可带入函数极限中,但得到的结果分别为:

$$\lim_{n\to\infty}\frac{1}{\left(x_n\right)^2}\sin\!\left(\frac{1}{x_n}\right)=+\infty$$

$$\lim_{n \to \infty} \frac{1}{\left(y_n\right)^2} \sin\left(\frac{1}{y_n}\right) = 0$$

故这个函数极限的值不是无穷大,只是无界。

I.ii.7 极限的计算

若 $\lim f(x) = a$, $\lim g(x) = b$, 则:

- 1. $\lim [f(x) \pm g(x)] = \lim f(x) \pm \lim g(x) = a \pm b$
- 2. $\lim[f(x)g(x)]=\lim f(x)\cdot \lim g(x)=a\cdot b$ 3. $\lim \frac{f(x)}{g(x)}=\frac{\lim f(x)}{\lim g(x)}=\frac{a}{b}(b\neq 0)$

常用结论:

- 1. $\lim f(x) = A \neq 0 \Rightarrow \lim f(x)g(x) = A \lim g(x)$,**极限非零**的因子的极限可以先求出来
- 2. $\lim \frac{f(x)}{g(x)}$ 存在, $\lim g(x) = 0 \Rightarrow \lim f(x) = 0$ 3. $\lim \frac{f(x)}{g(x)} = A \neq 0$, $\lim f(x) = 0 \Rightarrow \lim g(x) = 0$

4.
$$\lim_{x\to 0} \frac{a^x-1}{x} = \ln a$$

5.
$$\lim_{n\to\infty} \sqrt[n]{n} = 1$$
, $\lim_{n\to\infty} \sqrt[n]{a} = 1$ ($a > 0$)

各种未定式的求法考虑以下:

- 1. 有理化
- 2. 通分
- 3. 化为第两重要极限(主要是 1∞型)

其实是废话?

I.ii.7-a 第一重要极限

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

这里其实还告诉你了可以用无穷小比阶来算某些 $\frac{0}{0}$ 形的结果。所以像 $\lim_{x\to 0}\frac{1-\cos x}{x^2}=\frac{1}{2}$ 这种也是成立的。

I.ii.7-b 第二重要极限

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e \ (数列极限)$$

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e$$

$$\lim_{x \to 0} \left(1 + x \right)^{\frac{1}{x}} = e \ (a)$$

这里同样可以将 (a) 式中的 x 换成无穷小量。

$$\lim_{x \to \infty} \left(1 - \frac{1}{x}\right)^x = \frac{1}{e}$$

$$\lim_{x\to\infty}\left(1+\frac{a}{x}\right)^{bx+c}=e^{ab}$$

第一重要极限是 $\frac{0}{0}$ 型,第二重要极限是 1^{∞} 型。

求幂指函数 $f(x)^{g(x)}$ 的极限,常用以下方法:

- 1. 利用 $f(x)^{g(x)} = e^{g(x)\ln f(x)}$
- 2. 若为 1∞型,可利用第二重要极限
- 3. 若 $\lim f(x) = A > 0$, $\lim g(x) = B$, 则 $\lim f(x)^{g(x)} = A^B$

I.ii.7-c 等价无穷小替换

等价无穷小替换定理 设 $f_1(x) \sim f_2(x), g_1(x) \sim g_2(x)$,且 $\lim \frac{f_2(x)}{g_2(x)}$ 存在,则

$$\lim \frac{f_1(x)}{g_1(x)} = \lim \frac{f_2(x)}{g_2(x)}$$

注意没有在加减里做等价无穷小替换的定理。

但有推论:

- · 若 $\alpha \sim \alpha_1, \beta \sim \beta_1$, 且 $\lim \frac{\alpha_1}{\beta_1} = A \neq 1$, 则 $\alpha \beta \sim \alpha_1 \beta_1$ · 若 $\alpha \sim \alpha_1, \beta \sim \beta_1$, 且 $\lim \frac{\alpha_1}{\beta_1} = A \neq -1$, 则 $\alpha + \beta \sim \alpha_1 + \beta_1$

即两个函数相减,能对这两个函数分别做无穷小替换,当且仅当这两个函数互相不是等价 无穷小。比如 $x - \sin x$ 就不能换成 x - x = 0,因为很显然 x 和 $\sin x$ 是等价无穷小。 最好还是别用。

常用等价无穷小:

当 $x \to 0$ 时:

- 1. $x \sim \sin x \sim \tan x \sim \arcsin x \sim \arctan x$
- 2. $1 \cos x \sim \frac{1}{2}x^2$
- 3. $\ln(1+x)\sim x, e^x 1\sim x, a^x 1\sim x \ln a$
- 4. $(1+x)^{\alpha} 1 \sim \alpha x (\alpha \neq 0) (\alpha) \frac{1}{n}$ 做开方时一样有效)
- 5. $\sqrt{1+x} \sqrt{1-x} \sim x$

这里的 x 都换成无穷小量 $\alpha(x)$ 一样成立。

I.ii.7-d 洛必达法则

洛必达法则 若

- (1) $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = 0$ 或
- (2) f(x) 和 g(x) 在 x_0 的某去心邻域内可导,且 $g'(x) \neq 0$
- (3) $\lim_{x\to x_0} \frac{f'(x)}{g'(x)}$ 存在(或 ∞)

则:

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim \frac{f'(x)}{g'(x)}$$

洛必达限制条件还挺多的。

给出求七种未定式的方法:

- 1. $\frac{0}{0}$, $\frac{\infty}{\infty}$ 型,用洛必达
- 2. 0 · ∞, 化为商, 变成情况 1
- 3. ∞ ± ∞, 通分或有理化, 变成情况 1
- $4.1^{\infty}, \infty^{0}, 0^{0}$,拆成 e^{\ln} 指数化为 $0 \cdot \infty$,变成情况 2

I.ii.7-e 夹逼准则

夹逼准则 若函数 f(x), g(x), h(x) 满足:

$$(1) g(x) \le f(x) \le h(x)$$

(2)
$$\lim_{x\to x_0}g(x)=\lim_{x\to x_0}h(x)=A$$

则
$$\lim_{x\to x_0} f(x) = A_\circ$$

I.ii.7-f 泰勒公式

定理 (带皮亚诺余项的泰勒公式)设 f(x) 在 $x = x_0$ 处 n 阶可导,则

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \ldots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + o(x - x_0)^n$$

特别的, 当 $x_0 = 0$ 时, 有:

$$f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \dots + \frac{f^{(n)}(0)}{n!}x^n + o(x^n)$$

常用的泰勒公式:

$$\begin{split} e^x &= 1 + x + \frac{x^2}{2!} + \ldots + \frac{x^n}{n!} + o(x^n) \\ \sin x &= x - \frac{x^3}{3!} + \ldots + (-1)^{n-1} \frac{x^{2n-1}}{(2n-1)!} + o(x^{2n-1}) \\ \cos x &= 1 - \frac{x^2}{2!} + \ldots + (-1)^n \frac{x^{2n}}{(2n)!} + o(x^{2n}) \\ \ln(1+x) &= x - \frac{x^2}{2} + \ldots + (-1)^{n-1} \frac{x^n}{n} + o(x^n) \\ (1+x)^\alpha &= 1 + \alpha x + \frac{\alpha(\alpha+1)}{2!} x^2 + \ldots + \frac{\alpha(\alpha-1)\ldots(\alpha-n+1)}{n!} x^n + o(x^n) \end{split}$$

I.iii 连续性

定义 设 y = f(x) 在点 x_0 的某邻域内有定义,若:

$$\lim_{\Delta x \to 0} \Delta y = \lim_{\Delta x \to 0} [f(x_0 + \Delta x) - f(x_0)] = 0$$

则称 y = f(x) **在点** x_0 **处连续**,并称 x_0 为 f(x) 的连续点。

定义 设 y = f(x) 在点 x_0 的某邻域内有定义,若 $\lim_{x \to x_0} f(x) = f(x_0)$,则称 y = f(x) 在点 x_0 处连续, x_0 为 f(x) 的连续点。

用人话讲就是:

- 1. f(x) 在 $x = x_0$ 处要有定义
- 2. f(x) 在 $x \to x_0$ 的极限要存在
- 3. 而且这两个值要相等

这三条与连续互为充要。

另外,连续是可以推极限存在的。 连续也分左连续和右连续,充要也跟左右极限相仿。

连续可以推出极限值和函数值相等。

定义 在开闭区间内的连续,非常 make sense,就不写了。

I.iii.1 运算

四则运算 若函数 f(x) 和 g(x) 在 x_0 处都连续,则四则运算后的结果在 x_0 处也连续。

复合函数连续性 如果函数 $u = \varphi(x)$ 在点 $x = x_0$ 处连续, $\varphi(x_0) = u$ 。而函数 y = f(u) 在点 $u = u_0$ 处连续,则复合函数 $y = f[\varphi(x)]$ 在 $x = x_0$ 处连续。

复合函数的连续性能带来下面的效果:

对于良定义下的 f 和 φ , 有:

$$\lim_{x\to x_0} f[\varphi(x)] = f\!\left[\lim_{x\to x_0} \varphi(x)\right] = f(u_0)$$

即当f连续时,才可以交换f和极限的次序。

反函数连续 设函数 y = f(x) 在某区间上连续,且单调增加(减少),则它的反函数 $y = f^{-1}(x)$ 在对应区间上连续,且**单调性相同**。

I.iii.2 初等函数的连续性

基本初等函数在其定义域内都连续。

初等函数在其定义区间内都连续。

这里说定义区间是要考虑比如初等函数组成的分段函数。

结合上面说的举例一个函数: y = |f(x)| (讨论 $x = x_0$ 处),因为 $y = |f(x)| = \sqrt{f^2(x)}$,首先基本初等函数在定义域上都连续,然后复合函数又能连续,所以 y = |f(x)| 在连续。

再讨论一个命题:

命题 若 f(x) 在 x_0 处连续, $f(x_0) \neq 0$,且 f(x)g(x) 在 x_0 处连续,则 g(x) 在 x_0 处连续。这是一个真命题,构选 $g(x) = \frac{f(x)g(x)}{f(x)}$ 即可。

I.iii.3 间断点

定义 间断点其实就是不连续。 左右极限都存在的间断点被称为**第一类间断点**,其它的就是**第** 二**类间断点**。

I.iii.4 闭区间上连续函数的性质

最值定理 f(x) 在闭区间上连续,那在这个区间内必有最大最小值。

有界性定理 同上。

介值定理 f(x) 在闭区间 [a,b] 上连续,且 $f(a) \neq f(b)$,则对于任意介于 f(a) 与 f(b) 之间的数 C,至少存在一点 $\xi \in (a,b)$,使得 $f(\xi) = C$ 。

零点定理 f(x) 在闭区间 [a,b] 上连续,且 $f(a) \cdot f(b) < 0$,则至少存在一点 $\xi \in (a,b)$,使 $f(\xi) = 0$ 。

这部分主要跟证明相关, 暂时略过。

II 一元函数微分学

II.i 导数

导数 设函数 y = f(x) 在 x_0 在某邻域内有定义,如果极限

$$\lim_{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \rightarrow 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

存在,则称 f(x) **在点** x_0 **处可导**,并称此极限值为 f(x) **在** x_0 **处的导数**,记为 $f'(x_0)$,或 $y'|_{x-x_0}$,或 $\frac{dy}{dx}|_{x=x_0}$;如果上述极限不存在,则称 f(x) 在点 x_0 处不可导。

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

导数也分左右, make sense。

区间上可导及导函数 make sense

II.i.1 导数的几何意义

有良定义下的 f(x),若 f(x) 在点 x_0 处可导,则曲线 f(x) 在点 $(x_0, f(x_0))$ 处必有切线,方程为:

有导数仅是有切线的充分条件。

II.ii 微分

微分 设函数 y = f(x) 在点 x_0 的某一邻域内有定义,如果函数的增量 $\Delta y = f(x_0 + \Delta x) - f(x_0)$ 可以表示为

$$\Delta y = A\Delta x + o(\Delta x), (\Delta x \to 0)$$

其中 A 为不依赖于 Δx 的常数, $o(\Delta x)$ 是 Δx 高阶无穷小。则称函数 y = f(x) 在点 x_0 处**可微**, 并称 Δy 的**线性主部** $A\Delta x$ 为函数 y = f(x) 在点 x_0 处的**微分**, 记作 dy, df(x) 即:

$$dy = A\Delta x$$

定理 函数 y = f(x) 在点 x_0 处可微的充分必要条件是 f(x) 在点 x_0 处可导,且有

$$dy = f'(x_0)\Delta x = f'(x_0)dx$$

在点x处,常记dy = f'(x)dx

II.ii.1 微分的几何意义

微分 $dy = f'(x_0)dx$ 在几何上表示曲线 y = f(x) 的切线上的点的纵坐标的增量。 $\Delta y = f(x_0 + \Delta x) - f(x_0)$ 在几何上表示曲线 y = f(x) 上的点的纵坐标的增量。 当自变量的增量 $|\Delta x|$ 充分小时, $\Delta y \approx dy$ 。

微分是估计的增量, Δ 是实际的增量,当自变量增量足够小的时候,这两个的差就能几乎为 0 $(o(\Delta x))$ 。

II.iii 连续、可导、可微之间的关系

定理 若函数 y = f(x) 在点 x_0 处可导,则 f(x) 在点 x_0 处连续。

可导仅是连续的充分条件。

定理 可导⇔可微。

II.iv 导数的计算

基本初等函数的导数公式、四则运算求导、链式法则略。

注意符号含义:

 $[f(\ln x)]'$ 是指先应用再求导,要用链式法则;

 $f'(\ln x)$ 是指先对 f(u) 求导再应用 $u = \ln x$,相当于 $f'(u)|_{u=\ln x}$ 。 于是,

$$[f(\ln x)]' = f'(\ln x) \cdot (\ln x)'$$

II.iv.1 反函数求导法则

对良定义的 y = f(x),其反函数 $x = \varphi(y)$ 在对应的区间内可导,且

$$\frac{dx}{dy} = \frac{1}{\frac{dy}{dx}} \operatorname{BF} \varphi'(y) = \frac{1}{f'(x)}$$

即,互为反函数的导数互为倒数。

注意分母不应为 0.

II.iv.2 隐函数求导

对隐函数 F(x,y) = 0,求导方法有二:

- 1. 对等式两边的 x 求导, 要记住 y 是关于 x 的函数
- 2. 亦可用多元函数微分法的

$$\frac{dy}{dx} = -\frac{F'_x}{F'_y}$$

II.iv.3 参数方程确定的函数求导法

设 y = y(x) 是由参数方程 $\begin{cases} x = \varphi(t) \\ y = \psi(t) \end{cases}$ 所确定的函数,其中 $\varphi(t)$ 和 $\psi(t)$ 都可导,且 $\varphi'(t) \neq 0$,则:

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{\psi'(t)}{\varphi'(t)}$$

II.iv.4 重要结论

- 1. 可导的偶函数的导函数是奇函数
- 2. vice versa
- 3. 可导周期函数的导函数周期不变

II.iv.5 高阶导数

这个符号

$$\frac{d^2y}{dx^2}$$

是

$$d\frac{dy}{\left(dx\right)^{2}} = \frac{d}{dx}\frac{dy}{dx}$$

的意思, 所以是这么写的。

莱布尼兹公式:

$$[u(x)v(x)]^{(n)} = \sum_{i=0}^{n} {n \choose i} u^{(n-i)}(x) \cdot v^{(i)}(x)$$

II.iv.6 微分的计算

若函数 y = f(x) 可微,则其微分计算公式为:

$$dy = f'(x)dx$$

一阶微分形式不变性 设 y=f(u) 对 u 可导, $u=\varphi(x)$ 可导,则复合函数 $y=f(\varphi(x))$ 的微分为

$$dy = f'(\varphi(x))d\varphi(x) = f'(\varphi(x))\varphi'(x)dx$$

y = f(u) 总是能写成 dy = f'(u)du 的形式。

II.v 中值定理、不等式与零点问题

费马定理 设 f(x) 在 $x = x_0$ 的某邻域 $U(x_0)$ 内有定义, $f(x_0)$ 是 f(x) 的一个极大(极小)值,又设 $f'(x_0)$ 存在,则 $f'(x_0) = 0$ 。费马定理是可导下极值点的必要条件。

罗尔定理 设 f(x) 在闭区间 [a,b] 上连续,在开区间 (a,b) 上可导,又设 f(a) = f(b),则至少存在一点 $\xi \in (a,b)$ 使 $f'(\xi) = 0$ 。

这里是"在闭区间上连续,在开区间可导"第一次出现,后文中可能会出现千奇百怪的省略叫法。当然我这里想表达的其实是,大家指的区间都是 [a,b] 和 (a,b)。

拉格朗日中值定理 设 f(x) 在闭区间上连续在开区间上可导,则至少存在一点 $\xi \in (a,b)$ 使 $f(b) - f(a) = f'(\xi)(b-a)$ 。

柯西中值定理 设有闭连开导的 $f(x), g(x), g'(x) \neq 0, x \in (a,b),$ 则至少存在一点 $\xi \in (a,b)$ 使

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(\xi)}{g'(\xi)}$$

证明方法相关暂且不看。

II.vi 函数应用

II.vi.1 单调性

设 f(x) 闭连开导,

- 1. 若在 (a,b) 内 f'(x) > 0,则 f(x) 在 [a,b] 上单调增
- 2. 若在 (a,b) 内 f'(x) < 0,则 f(x) 在 [a,b] 上单调减

II.vi.2 极值

定义 设 y = f(x) 在点 x_0 的某邻域内有定义,如果对于该领域内任何 x,恒有 $f(x) \le f(x_0)$ (或 $f(x) \ge f(x_0)$),则称 x_0 为 f(x) 的极大值点(或极小值点)。导数为 0 的点称为驻点。

极值的必要条件 设 y=f(x) 在点 x_0 处可导,如果 x_0 为 f(x) 的极值点,则 $f'(x_0)=0$ 。

可导+取极值=导为0

- **极值的第一充分条件** 设 y = f(x) 在点 x_0 的某动心领域内可导,且 $f'(x_0) = 0$,或 f(x) 在 x_0 处连续:
 - (1) 若 $x < x_0$ 时, f'(x) > 0, $x > x_0$ 时, f'(x) < 0, 则 x_0 为 f(x) 的极大值点
 - (2) 反之取极小值点
 - (3) 若两侧同号,则不为极值点

极值的第二充分条件 设 y = f(x) 在点 x_0 处二阶可导,且 $f'(x_0) = 0$:

- (1) 若 $f''(x_0) < 0$,则 x_0 为 f(x) 的极大值点 (2) 反之取极小值点
- (3) 如果二阶导数等于 0 则无法判断

II.vi.3 最值

最值定义 make sense。

连续函数 f(x) 在闭区间 [a,b] 上的最大最小值:

第一步: 求出 f(x) 在开区间 (a,b) 内的**驻点和不可导点**

第二步:求出这些点对应的函数值 第三步:做 max,非常 make sense

II.vi.4 凹凸性

定义 设函数 f(x) 在区间 I 上连续,如果对 I 上任意两点 x_1, x_2 恒有

$$f\Big(\frac{x_1+x_2}{2}\Big)<\frac{f(x_1)+f(x_2)}{2}$$

则称 f(x) 在 I 上的图形是凹的; 如果恒有

$$f\Big(\frac{x_1+x_2}{2}\Big)>\frac{f(x_1)+f(x_2)}{2}$$

则称 f(x) 在 I 上的图形是凸的。

注意在国内高等数学的范围内函数是上凸下凹的。

定理 设函数 y = f(x) 在 [a,b] 上连续,在 (a,b) 内二阶可导,那么:

- (1) 若在 (a,b) 内有 f''(x) > 0,则 f(x) 在 [a,b] 上的图形是凹的
- (2) 反之则为凸的

II.vi.5 拐点

拐点 连续曲线弧上的凹与凸的分界点称为曲线弧的拐点

- 必要条件 设 y = f(x) 在点 x_0 处二阶可导,且点 $(x_0, f(x_0))$ 为曲线 y = f(x) 的拐点,则 $f''(x_0) = 0$
- 第一充分条件 设 y=f(x) 在点 x_0 的某去心领域内二阶可导,且 $f''(x_0)=0$,或 f(x) 在 x_0 处连续:
 - (1) 若 f''(x) 在 x_0 的左、右两侧异号,则点 $(x_0, f(x_0))$ 为曲线 y = f(x) 的拐点
 - (2) 同号则不为
- 第二充分条件 设 y = f(x) 在点 x_0 处三阶可导,且 $f''(x_0) = 0$:
 - (1) 若 $f'''(x_0) \neq 0$,则点 $(x_0, f(x_0))$ 为曲线 y = f(x) 为拐点
 - (2) 反之不能判断

II.vi.6 渐近线

不关心定义。

- **水平渐近线** 若 $\lim_{x\to\infty}f(x)=A$ (或 $\lim_{x\to-\infty}f(x)=A$ 或 $\lim_{x\to+\infty}f(x)=A$,那么 y=A 是曲线 y=f(x) 水平渐近线。
- **垂直渐近线** 若 $\lim_{x\to x_0}f(x)=\infty$ (或 $\lim_{x\to -x_0}f(x)=\infty$ 或 $\lim_{x\to +x_0}f(x)=\infty$,那么 y=A 是曲线 y=f(x) 水平渐近线。
- **斜渐近线** 若 $\lim_{x\to\infty}\frac{f(x)}{x}=a$ 且 $\lim_{x\to\infty}(f(x)-ax)=b$ (或 $x\to\infty$, 或 $x\to+\infty$), 那么 y=ax+b 是曲线 y=f(x) 的斜渐近线。

II.vi.7 弧微分与曲率

弧微分 设 y = f(x) 在 (a,b) 内有连续导数,则有弧微分

$$ds = \sqrt{1 + y'^2} dx$$

曲率 设 y = f(x) 在二阶导数,则有曲率

$$K = \frac{|y''|}{(1 + y'^2)^{\frac{3}{2}}}$$

同时称 $\rho = \frac{1}{\kappa}$ 为曲率半径。

定义 若曲线 y = f(x) 在点 M(x,y) 处的曲率为 $K, K \neq 0$ 。在点 M 处曲线的法线上,在曲线 凹的一侧取一点 D,使 $|DM| = \rho$,以 D 为圆心, ρ 为半径的圆称为曲线在点 M 处的曲 率圆, 圆心 D 称为曲线在点 M 处的曲率中心。

III 一元函数积分学

定义 设 $F'(x) = f(x), x \in (a,b)$,则称 F(x) 为 f(x) 在 (a,b) 上的一个原函数。后方中省 略 "在 (a, b) 上"。

f(x) 的原函数族表示 f(x) 的**不定积分**,记成

$$\int f(x)dx = F(x) + C$$

不定积分和导数在某种意义上互为逆运算。

定积分 按定积分的老传统做分割,当下面的右式极限存在时,则称 f(x) 在 [a,b] 上可积,并 称之为 [a,b] 上的定积分

$$\int_a^b f(x)dx = \lim_{\lambda \to 0} \sum_{i=1}^n f(\xi_i) \Delta x_i$$

其中 $\lambda = \max_{1 \le i \le n} \{\Delta x_i\}_{\circ}$

III.i 基本性质

定积分的几何意义就是围成曲面梯形的面积。

- · 常规的求反、加减、系数、拼接等
- ・ 若 $f(x) \leq g(x), a \leq b$,则 $\int_a^b f(x) dx \leq \int_a^b g(x) dx$ ・ 若有在闭区间 [a,b] 上连续的 $f(x), g(x), f(x) \leq g(x)$,且至少存在点 $x_1, a \leq x_1 \leq b$,使 $f(x_1) < g(x_1)$,则 $\int_a^b f(x) dx < \int_a^b g(x) dx$

简单说就是这个区间内只要有一处是 f(x) < g(x), 就会破坏 $\int f(x) = \int g(x)$ 的可能, 使 之缩窄为 $\int f(x) < \int g(x)$

· 加强的**积分中值定理**: 设 f(x) 在 [a,b] 上连续,则至少存在一点 $\xi \in (a,b)$ 使

$$\int_{a}^{b} f(x)dx = f(\xi)(b-a)$$

定积分存在定理 (1) 设 f(x) 在 [a,b] 上连续,则 $\int_a^b f(x)dx$ 存在

(2) 设 f(x) 在 [a,b] 上有界,且只有有限个间断点,则 $\int_a^b f(x)dx$ 存在

原函数存在定理 设 f(x) 在 [a,b] 上连续,则在 [a,b] 上必存在原函数。

- 1. 如果不连续则不一点存在原函数。
- 2. 初等函数在定义区间上都连续, 但是它们的原函数不一定能表示成初等函数。

III.i.1 变限积分

定义 设 f(x) 在 [a,b] 上可积, 对 $x \in [a,b]$, f(x) 在 [a,x] 上可积, 于是

$$\Phi(x) = \int_a^x f(t) dt, x \in [a,b]$$

定义了一个以x为自变量的函数,称为**变上限的定积分**; 类似地,定义**变下限的定积分**为

$$\Phi(x) = \int_x^b f(t)dt, x \in [a, b]$$

统称为变限积分。

设一在闭区间 [a,b] 上连续的 f(x),则 $\left(\int_a^x f(t)dt\right)'_x=f(x), x\in [a,b]$ 。由此, $\int_a^x f(t)dt$ 是 f(x) 的一个原函数,所以有

$$\int f(x)dx = \int_{a}^{x} f(x)dt + C$$

牛顿-莱布尼茨定理 设 f(x) 在 [a,b] 上连续, F(x) 是 f(x) 的一个原函数, 则

$$\int_{a}^{b} f(x)dx = F(x)|_{a}^{b} = F(b) - F(a)$$

前有莱布尼兹公式,现有牛顿-莱布尼茨定理,我寻思这两不是一个人?

III.ii 不定积分与定积分的计算

III.ii.1 基本积分公式

提供一部分作为 cheatsheet:

$$\int \tan x dx = -\ln|\cos x| + C \qquad \int \cot x dx = -\ln|\sin x| + C$$

$$\int \sec x dx = \ln|\sec x + \tan x| + C \qquad \int \csc x dx = \ln|\csc x - \cot x| + C$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \arctan \frac{x}{a} + C \qquad \int \frac{1}{a^2 - x^2} dx = \frac{1}{2a} \ln \left| \frac{a + x}{a - x} \right| + C$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \arcsin \frac{x}{a} + C \qquad \int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left| x + \sqrt{x^2 \pm a^2} \right| + C$$

III.ii.2 基本积分方法

III.ii.2-a 凑微分法(第一换元法)

设 f(u) 连续, $\varphi(x)$ 具有连续的一队导数,则有公式:

$$\int f(\varphi(x))\varphi'(x)dx = \int f(\varphi(x))d\varphi(x) \stackrel{\diamondsuit \varphi(x)=u}{=} \int f(u)du$$

III.ii.2-b 换元积分法(第二换元法)

设 f(x) 连续, $x = \varphi(t)$ 具有连续导数 $\varphi'(t)$, 且 $\varphi'(t) \neq 0$, 则

$$\int f(x)dx \stackrel{x=\varphi(t)}{=} \left(\int f(\varphi(t))\varphi'(t)dt \right) \bigg|_{t=\psi(x)}$$

其中 $t = \psi(x)$ 是 $x = \varphi(t)$ 的反函数。

III.ii.2-c 常见典型换元

- · $\int R\left(x, \sqrt{a^2 x^2}\right) dx$, $\int R\left(x, \sqrt{x^2 \pm a^2}\right)$ 型, a > 0: 1. 含 $\sqrt{a^2 x^2}$, 令 $x = a \sin t$, $dx = a \cos t dt$
- · $\int R(x, \sqrt[n]{ax+b}, \sqrt[m]{ax+b})dx \stackrel{\text{def}}{=} 0$:

$$\Rightarrow \sqrt[mn]{ax+b} = t, x = \frac{t^{mn}-b}{a}, dx = \frac{mn}{a}t^{mn-1}dt$$

· $\int R(\sin x, \cos x) dx$ 型 (万能代换<mark>但变复杂警告</mark>)

$$\Rightarrow \tan \frac{x}{2} = t$$
, $y \sin x = \frac{2t}{1+t^2}$, $\cos x = \frac{1-t^2}{1+t^2}$, $dx = \frac{2}{1+t^2}dt$

分段函数分段积分,但在分段点处,原函数可导,一定连续,因为面积只可能连续变换。

III.ii.2-d 定积分的换元积分

设 f(x) 在 [a,b] 上连续, $x = \varphi(t)$ 满足条件: $a = \varphi(\alpha), b = \varphi(\beta)$,并且当 t 在以 α, β 为端点的 闭区间 I 上变动时, $a \le \varphi(t) \le b$, $\varphi'(t)$ 连续,则有定积分的换元积分公式

$$\int_a^b f(x)dx = \int_\alpha^\beta f(\varphi(t))\varphi'(t)dt$$

注意这里求 alpha 和 beta 类似 pattern matching:

$$\varphi(\alpha) = a$$
 $\qquad \qquad \varphi(\beta) = b$

是要求 $\varphi(\Box) = a$ 这里应该填什么,而不是 $\varphi(a) = \Box$ 这里的结果是什么。

III.ii.2-e 分部积分

分部积分法 设 u(x), v(x) 均有连续导数,则

$$\int u(x)dv(x) = u(x)v(x) - \int v(x)du(x)$$

对于定积分:

$$\int_a^b u(x)dv(x) = u(x)v(x)|_a^b - \int_a^b v(x)du(x)$$

常见用分部积分的型:

- · e^x , $\sin x$, $\cos x$ 与 x^n 的积考虑把前者拿到后面
- · $\ln x$, $\arctan x$, $\arcsin x 与 x^n$ 的积考虑把后者拿到后面
- · e^x 与 $\sin x$, $\cos x$ 的积可以做两次

III.ii.2-f 非常好用的定积分公式

1.

$$\int_0^a \sqrt{a^2-x^2} dx = \frac{1}{4}\pi a^2, \int_{-a}^a \sqrt{a^2-x^2} dx = \frac{1}{2}\pi a^2 (半圆面积)$$

2. 设 f(x) 在 [-a,a](a>0) 上是连续的偶函数,则

$$\int_{-a}^{a} f(x)dx = 2\int_{0}^{a} f(x)dx$$

3. 设 f(x) 在 [-a, a](a > 0) 上是连续的奇函数,则

$$\int_{-a}^{a} f(x)dx = 0$$

4. 设 f(x) 在 $(-\infty, \infty)$ 内是以 T 为周期的连续函数,则对于任意的常数 a,恒有

$$\int_{a}^{a+T} f(x)dx = \int_{0}^{T} f(x)dx \qquad \qquad \int_{a}^{a+nT} f(x)dx = n \int_{0}^{T} f(x)dx, n \in \mathbb{N}$$

5. 华里士公式(点火公式):

$$\int_0^{\frac{\pi}{2}} \sin^n x dx = \int_0^{\frac{\pi}{2}} \cos^n x d\xi$$

$$= \begin{cases} \frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdot \dots \cdot \frac{1}{2} \cdot \frac{\pi}{2}, & n \equiv 0 \pmod{2} \\ \frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdot \dots \cdot \frac{2}{3} \cdot 1, & n \equiv 1 \pmod{2} \end{cases}$$

特别的:

$$I_0 = \frac{\pi}{2}$$
$$I_1 = 1$$

6. f(x) 连续, 有

$$\int_0^{\pi} x f(\sin x) dx = \frac{\pi}{2} \int_0^{\pi} f(\sin x) dx$$