BLG 223E - Recitation 5 Balanced Trees

M. Alpaslan Tavukçu (<u>tavukcu22@itu.edu.tr</u>) Batuhan Can (<u>canb18@itu.edu.tr</u>)

Outline

- AVL Trees
- AVL Tree Implementation
- Red-Black Trees
- Red-Black Tree Implementation

Balanced Trees

- We want to benefit from the logarithmic characteristic of binary trees.
- BST may suffer in some cases, lose its balance, and act like it is an almost-LinkedList.
- Using a self-balancing tree is the choice, if we want to maintain the rapidness of tree operations.
- AVL Trees, Red-black Trees, etc.

AVL Trees

- Balance factor, for a tree node

- BF(T) = h(T.Right) - h(T.Left)

An AVL Tree maintains a
"balance factor" in each node of
0, 1, or -1

- Example shows the balance factor of each node

AVL Trees : Examples

(a)

(b)

AVL Trees : Subtree Height

AVL tree operations depend on height

- It can be computed recursively by walking the tree

- Or each node can keep track of its subtree height

as a field

```
private class TreeNode {
    private E data;
    private int height;
    private TreeNode left;
    private TreeNode right;
}
```


AVL: Insert Cases

- Consider the lowest node k_2 that has now become unbalanced.
- The new node could be in one of the four following grandchild subtrees relative to k_2. Left-Left, Left-Right, Right-Left, Right-Right

AVL Trees: Rotation

- If a node has become out of balanced in a given direction, rotate it in the opposite direction
- rotation: A swap between parent and left or right child, maintaining BST ordering

AVL Trees : Right Rotation

- Left child k_1 becomes parent
- Original parent k_2 demoted to right
- k_1's original right subtree B (if any) is attached to k_2 as left subtree
- It fixes Case 1 (Left-Left)

AVL Trees: Left Rotation

- Right child k_2 becomes parent
- Original parent k_1 demoted to left
- k_2's original right subtree B (if any) is attached to k_1 as left subtree
- It fixes Case 4 (Right-Right)

AVL Trees: Problem Cases

- A single right rotation does not fix Case 2 (Left-Right)
- A single left rotation does not fix Case 3 (Right-Left)

AVL Trees: Left-Right Double Rotation

- Left-rotate k_3's left child
- Right-rotate k_3
- It fixes Case 2 (Left-Right)

AVL Trees: Right-Left Double Rotation

- Right-rotate k_1's right child
- Left-rotate k_1
- It fixes Case 3 (Right-Left)

Red-Black Trees

- Some rules to follow:
 - 1. Every node is either red or black
 - 2. Every leaf (null pointer) is black
 - 3. If a node is red, both children are black
 - Every path from node to descendent leaf contains the same number of black nodes
 - 5. The root is always black
- Black-height: number of black nodes on path to leaf

Red-Black Trees: An Example: Coloring

- Some rules to follow:
 - 1. Every node is either red or black
 - 2. Every leaf (null pointer) is black
 - If a node is red, both children are black
 - Every path from node to descendent leaf contains the same number of black nodes
 - 5. The root is always black

Let's try to insert 8, and see what happens

- Some rules to follow :
 - 1. Every node is either red or black
 - 2. Every leaf (null pointer) is black
 - 3. If a node is red, both children are black
 - 4. Every path from node to descendent leaf contains the same number of black nodes
 - 5. The root is always black

Let's try to insert 11, and see what happens

- Some rules to follow :
 - 1. Every node is either red or black
 - 2. Every leaf (null pointer) is black
 - 3. If a node is red, both children are black
 - 4. Every path from node to descendent leaf contains the same number of black nodes
 - 5. The root is always black

Let's try to insert 11, and see what happens
We need to RECOLOR

- Some rules to follow :
 - 1. Every node is either red or black
 - 2. Every leaf (null pointer) is black
 - 3. If a node is red, both children are black
 - 4. Every path from node to descendent leaf contains the same number of black nodes
 - 5. The root is always black

Let's try to insert 10, and see what happens

- Some rules to follow :
 - 1. Every node is either red or black
 - 2. Every leaf (null pointer) is black
 - 3. If a node is red, both children are black
 - 4. Every path from node to descendent leaf contains the same number of black nodes
 - 5. The root is always black

Let's try to insert 10, and see what happens
Recoloring does not work, we need to
ROTATE

- Some rules to follow :
 - 1. Every node is either red or black
 - 2. Every leaf (null pointer) is black
 - 3. If a node is red, both children are black
 - 4. Every path from node to descendent leaf contains the same number of black nodes
 - 5. The root is always black

Red-Black Trees: Rotation

Is in-order key ordering preserved after rotation?

Red-Black Trees: Rotation Example

Red-Black Trees: Insertion

The basic idea is:

- Insert x into tree, color x red
- Only r-b property 3 might be violated
- If so, move violation up tree until a place is found where it can be fixed

Red-Black Trees: Insert Case #1

Change colors of some nodes, preserving #4: all downward paths have equal b.h. The while loop now continues with x's grandparent as the new x

Red-Black Trees: Insert Case #2

```
if (x == x->p->right)
    x = x->p;
    leftRotate(x);
// continue with case 3 code
    \( \Delta \)
    \( \Delta \)
```

Transform case 2 into case 3 (x is left child) with a left rotation

This preserves property 4: all downward paths contain same number of black nodes

Red-Black Trees: Insert Case #3

Perform some color changes and do a right rotation

Again, preserves property 4: all downward paths contain same number of black nodes

Red-Black Trees: A Quick Note

- Cases #1, #2, and #3 hold if x's parent is a left child
- If x's parent is a right child, cases #4, #5, and #6 are symmetric