Bài 1. Tọa độ của vectơ

A. Lý thuyết

1. Tọa độ của vectơ đối với một hệ trục tọa độ

1.1. Trục tọa độ

Trục tọa độ (gọi tắt là **trục**) là một đường thẳng trên đó đã xác định một điểm O (gọi là **điểm gốc**) và một vector \vec{e} có độ dài bằng 1 gọi là vector đơn vị của trục.

Ta kí hiệu trục đó là (O; e).

1.2. Hệ trục tọa độ

Hệ trục tọa độ $(O; \vec{i}, \vec{j})$ gồm hai trục $(O; \vec{i})$ và $(O; \vec{j})$ vuông góc với nhau. Điểm gốc O chung của hai trục gọi là *gốc tọa độ*. Trục $(O; \vec{i})$ được gọi là *trục hoành* và kí hiệu là Ox, trục $(O; \vec{j})$ được gọi là *trục tung* và kí hiệu là Oy. Các vecto \vec{i} và \vec{j} là các vecto đơn vị trên Ox và Oy. Hệ trục tọa độ $(O; \vec{i}, \vec{j})$ còn được kí hiệu là Oxy.

Chú ý: Mặt phẳng mà trên đó đã cho một hệ trục tọa độ Oxy được gọi là *mặt phẳng* tọa độ Oxy, hay gọi tắt là *mặt phẳng Oxy*.

1.3. Tọa độ của một vectơ

Trong mặt phẳng Oxy, cặp số (x; y) trong biểu diễn $\vec{a} = x\vec{i} + y\vec{j}$ được gọi là **tọa độ** của vecto \vec{a} , kí hiệu $\vec{a} = (x; y)$, x gọi là **hoành độ**, y gọi là **tung độ** của vecto \vec{a} .

Ví dụ:

+) Cho
$$\vec{a} = 3\vec{i} + 2\vec{j}$$
.

Ta có cặp số (3; 2) là tọa độ của vecto \vec{a} .

Ta kí hiệu là $\vec{a} = (3,2)$.

Trong đó 3 là hoành độ của vecto \vec{a} và 2 là tung độ của vecto \vec{a} .

+) Cho
$$\vec{p} = -5\vec{j} = 0\vec{i} - 5\vec{j}$$
.

Ta có cặp số (0; -5) là tọa độ của vecto \vec{p} .

Ta kí hiệu là $\vec{p} = (0; -5)$.

Trong đó 0 là hoành độ của vector \vec{p} và -5 là tung độ của vector \vec{p} .

Chú ý:

•
$$\vec{a} = (x; y) \Leftrightarrow \vec{a} = x\vec{i} + y\vec{j}$$
.

• Nếu cho
$$\vec{a} = (x; y)$$
 và $\vec{b} = (x'; y')$ thì $\vec{a} = \vec{b} \Leftrightarrow \begin{cases} x = x' \\ y = y' \end{cases}$.

Ví dụ:

+) Ta có
$$\vec{h} = (-1;7) \Leftrightarrow \vec{h} = -1.\vec{i} + 7\vec{j} = -\vec{i} + 7\vec{j}$$
.

+) Ta có
$$\vec{a} = (x; y)$$
 và $\vec{b} = (2; -4)$. Khi đó $\vec{a} = \vec{b} \Leftrightarrow \begin{cases} x = 2 \\ y = -4 \end{cases}$.

Nghĩa là, $\vec{a} = (2; -4)$.

1.4. Tọa độ của một điểm

Trong mặt phẳng tọa độ, cho một điểm M tùy ý. Tọa độ của vecto \overrightarrow{OM} được gọi là tọa độ của điểm M.

Nhận xét:

• Nếu $\overrightarrow{OM} = (x; y)$ thì cặp số (x; y) là tọa độ của điểm M, kí hiệu M(x; y), x gọi là **hoành độ**, y gọi là **tung độ** của điểm M.

•
$$M(x; y) \Leftrightarrow \overrightarrow{OM} = x\vec{i} + y\vec{j}$$
.

Ví dụ:

+) Nếu $\overrightarrow{OM} = (-3;8)$ thì cặp số (-3;8) là tọa độ của điểm M.

Ta kí hiệu là M(-3; 8).

Trong đó -3 là hoành độ của điểm M và 8 là tung độ của điểm M.

+) Cho điểm $M(4; 9) \Leftrightarrow \overrightarrow{OM} = 4\vec{i} + 9\vec{j}$.

Chú ý: Hoành độ của điểm M còn được kí hiệu là x_M , tung độ của điểm M còn được kí hiệu là y_M . Khi đó ta viết $M(x_M; y_M)$.

Ví dụ: Trong mặt phẳng Oxy, cho ba điểm M, N, P được biểu diễn như hình bên.

- a) Hãy biểu diễn các vecto \overrightarrow{OM} , \overrightarrow{ON} , \overrightarrow{OP} qua hai vecto \vec{i} và \vec{j} .
- b) Tìm tọa độ của các vecto $\vec{m}, \vec{n}, \vec{p}$ và các điểm M, N, P.

Hướng dẫn giải

a) Ta có:

+)
$$\overrightarrow{OM} = 3\overrightarrow{i} + 3\overrightarrow{j}$$
.

+)
$$\overrightarrow{ON} = -3\overrightarrow{i} + 2\overrightarrow{j}$$
.

+)
$$\overrightarrow{OP} = 0\vec{i} - 2\vec{j}$$
.

Vây
$$\overrightarrow{OM} = 3\vec{i} + 3\vec{j}$$
, $\overrightarrow{ON} = -3\vec{i} + 2\vec{j}$, $\overrightarrow{OP} = 0\vec{i} - 2\vec{j}$.

b) Từ kết quả ở câu a), ta có:

+)
$$\overrightarrow{OM} = 3\overrightarrow{i} + 3\overrightarrow{j} \Rightarrow \overrightarrow{OM} = (3,3)$$

$$\Rightarrow \vec{m} = \overrightarrow{OM} = (3;3) \text{ và } M(3;3).$$

+)
$$\overrightarrow{ON} = -3\overrightarrow{i} + 2\overrightarrow{j} \Rightarrow \overrightarrow{ON} = (-3,2)$$

$$\Rightarrow \vec{n} = \overrightarrow{ON} = (-3; 2) \text{ và N}(-3; 2).$$

+)
$$\overrightarrow{OP} = 0\overrightarrow{i} - 2\overrightarrow{j} \Rightarrow \overrightarrow{OP} = (0; -2)$$

$$\Rightarrow \vec{p} = \overrightarrow{OP} = (0; -2) \text{ và } P(0; -2).$$

Vậy
$$\vec{m} = (3;3)$$
, $\vec{n} = (-3;2)$, $\vec{p} = (0;-2)$ và M(3; 3), N(-3; 2), P(0; -2).

2. Biểu thức tọa độ của các phép toán vectơ

Cho hai vector $\vec{a} = (a_1; a_2)$, $\vec{b} = (b_1; b_2)$ và số thực k. Khi đó:

(1)
$$\vec{a} + \vec{b} = (a_1 + b_1; a_2 + b_2);$$

(2)
$$\vec{a} - \vec{b} = (a_1 - b_1; a_2 - b_2);$$

(3)
$$k\vec{a} = (ka_1; ka_2);$$

(4)
$$\vec{a} \cdot \vec{b} = a_1 \cdot b_1 + a_2 \cdot b_2$$
.

Ví dụ: Cho hai vector $\vec{a} = (10, -8), \vec{b} = (2, 5).$

- a) Tìm tọa độ của các vecto $\vec{a} + \vec{b}$, $\vec{a} \vec{b}$, $2\vec{a}$, $\vec{a} + 4\vec{b}$.
- b) Tính các tích vô hướng $\vec{a}.\vec{b}$, $2\vec{a}.(-4\vec{b})$.

Hướng dẫn giải

a) Với
$$\vec{a} = (10, -8), \vec{b} = (2, 5)$$
 ta có:

+)
$$\vec{a} + \vec{b} = (10 + 2; -8 + 5) = (12; -3);$$

+)
$$\vec{a} - \vec{b} = (10 - 2; -8 - 5) = (8; -13);$$

+)
$$2\vec{a} = (2.10; 2.(-8)) = (20; -16);$$

+)
$$4\vec{b} = (4.2;4.5) = (8;20)$$
.

Ta suy ra $\vec{a} + 4\vec{b} = (10 + 8; -8 + 20) = (18;12)$.

Vậy
$$\vec{a} + \vec{b} = (12; -3)$$
, $\vec{a} - \vec{b} = (8; -13)$, $2\vec{a} = (20; -16)$, $\vec{a} + 4\vec{b} = (18; 12)$.

b) Với
$$\vec{a} = (10; -8), \vec{b} = (2; 5)$$
 ta có:

+)
$$\vec{a} \cdot \vec{b} = 10.2 + (-8).5 = 20 - 40 = -20$$
;

+) Từ kết quả câu a), ta có $2\vec{a} = (20;-16)$ và $4\vec{b} = (8;20)$.

Ta suy ra
$$2\vec{a} = (20; -16)$$
 và $-4\vec{b} = (-8; -20)$.

Khi đó ta có
$$2\vec{a} \cdot (-4\vec{b}) = 20 \cdot (-8) + (-16) \cdot (-20) = -160 + 320 = 160$$
.

Vậy
$$\vec{a} \cdot \vec{b} = -20 \text{ và } 2\vec{a} \cdot (-4\vec{b}) = 160.$$

3. Áp dụng của tọa độ vectơ

3.1. Liên hệ giữa tọa độ của điểm và tọa độ của vectơ trong mặt phẳng

Cho hai điểm $A(x_A; y_A)$, $B(x_B; y_B)$. Ta có: $\overrightarrow{AB} = (x_B - x_A; y_B - y_A)$.

Ví dụ: Cho ba điểm A(2; 5), B(-1; 1), C(5; -7). Tìm tọa độ của các vector \overrightarrow{AC} , \overrightarrow{CB} , \overrightarrow{BA} .

Hướng dẫn giải

Với A(2; 5), B(-1; 1), C(5; -7) ta có:

•
$$\overrightarrow{AC} = (x_C - x_A; y_C - y_A) = (5 - 2; -7 - 5) = (3; -12).$$

•
$$\overrightarrow{CB} = (x_B - x_C; y_B - y_C) = (-1 - 5; 1 - (-7)) = (-6; 8).$$

•
$$\overrightarrow{BA} = (x_A - x_B; y_A - y_B) = (2 - (-1); 5 - 1) = (3; 4).$$

Vậy
$$\overrightarrow{AC} = (3;-12), \overrightarrow{CB} = (-6;8), \overrightarrow{BA} = (3;4).$$

3.2. Tọa độ trung điểm của đoạn thẳng và trọng tâm của tam giác

Cho hai điểm $A(x_A; y_A)$ và $B(x_B; y_B)$. Tọa độ trung điểm $M(x_M; y_M)$ của đoạn thẳng AB là:

$$X_{M} = \frac{X_{A} + X_{B}}{2}, Y_{M} = \frac{Y_{A} + Y_{B}}{2}.$$

Cho \triangle ABC có A(x_A; y_A), B(x_B; y_B), C(x_C; y_C). Tọa độ trọng tâm G(x_G; y_G) của tam giác ABC là:

$$x_G = \frac{x_A + x_B + x_C}{3}, y_G = \frac{y_A + y_B + y_C}{3}.$$

Ví dụ: Cho ΔDEF có tọa độ các đỉnh là D(3; 1), E(5; 8), F(9; 4).

- a) Tìm tọa độ trung điểm H của cạnh EF.
- b) Tìm tọa độ trọng tâm G của ΔDEF .

Hướng dẫn giải

a) Với E(5; 8), F(9; 4):

Vì H là trung điểm của cạnh EF.

Ta suy ra
$$\begin{cases} x_{H} = \frac{x_{E} + x_{F}}{2} = \frac{5+9}{2} = 7\\ y_{M} = \frac{y_{E} + y_{F}}{2} = \frac{8+4}{2} = 6 \end{cases}$$

Vậy H(7; 6).

b) Với D(3; 1), E(5; 8), F(9; 4):

Vì G là trọng tâm của ΔDEF.

Ta suy ra
$$\begin{cases} x_G = \frac{x_D + x_E + x_F}{3} = \frac{3+5+9}{3} = \frac{17}{3} \\ y_G = \frac{y_D + y_E + y_F}{3} = \frac{1+8+4}{3} = \frac{13}{3} \end{cases}$$

Vậy
$$G\left(\frac{17}{3}; \frac{13}{3}\right)$$
.

3.3. Ứng dụng biểu thức tọa độ của các phép toán vectơ

Cho hai vector $\vec{a} = (a_1; a_2)$, $\vec{b} = (b_1; b_2)$ và hai điểm $A(x_A; y_A)$, $B(x_B; y_B)$. Ta có:

•
$$\vec{a} \perp \vec{b} \Leftrightarrow a_1b_1 + a_2b_2 = 0$$
;

• \vec{a} và \vec{b} cùng phương $\Leftrightarrow a_1b_2 - a_2b_1 = 0$;

•
$$|\vec{a}| = \sqrt{a_1^2 + a_2^2}$$
;

• AB =
$$\sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$$
;

•
$$\cos(\vec{a}, \vec{b}) = \frac{\vec{a}.\vec{b}}{|\vec{a}|.|\vec{b}|} = \frac{a_1b_1 + a_2b_2}{\sqrt{a_1^2 + a_2^2}.\sqrt{b_1^2 + b_2^2}} \ (\vec{a}, \vec{b} \ \text{khác} \ \vec{0}).$$

Ví dụ: Trong mặt phẳng Oxy, cho Δ MNP có M(2; 1), N(-3; -2), P(7; -8).

- a) Tìm tọa độ H là chân đường cao của ΔMNP kẻ từ N.
- b) Giải tam giác MNP.

Hướng dẫn giải

a) Với M(2; 1), N(-3; -2), P(7; -8).

Gọi H(x; y).

Ta có:

+)
$$\overrightarrow{NH} = (x - (-3); y - (-2)) = (x + 3; y + 2).$$

+)
$$\overrightarrow{MH} = (x-2; y-1).$$

+)
$$\overrightarrow{MP} = (7-2; -8-1) = (5; -9)$$

Vì H(x; y) là chân đường cao của ΔMNP kẻ từ N nên ta có $NH \perp MP$.

Ta suy ra $\overrightarrow{NH} \perp \overrightarrow{MP}$.

Do đó $\overrightarrow{NH}.\overrightarrow{MP} = 0$.

$$\Leftrightarrow$$
 (x + 3).5 + (y + 2).(-9) = 0.

$$\Leftrightarrow 5x - 9y - 3 = 0$$
 (1).

Ta thấy hai vecto \overrightarrow{MH} , \overrightarrow{MP} cùng phương

$$\Leftrightarrow$$
 $(x-2).(-9) - (y-1).5 = 0.$

$$\Leftrightarrow -9x - 5y + 23 = 0 \quad (2).$$

Từ (1), (2), ta có hệ phương trình:
$$\begin{cases} 5x - 9y - 3 = 0 \\ -9x + 5y + 23 = 0 \end{cases} \Leftrightarrow \begin{cases} x = \frac{24}{7} \\ y = \frac{11}{7} \end{cases}$$

Vậy H
$$\left(\frac{24}{7};\frac{11}{7}\right)$$
.

b) Với M(2; 1), N(-3; -2), P(7; -8) ta có:

+)
$$\overrightarrow{MN} = (-5; -3) \text{ và } \overrightarrow{NM} = (5; 3)$$

$$\Rightarrow$$
 MN = $\left| \overrightarrow{MN} \right| = \sqrt{\left(-5\right)^2 + \left(-3\right)^2} = \sqrt{34}$.

+)
$$\overrightarrow{MP} = (5; -9).$$

$$\Rightarrow$$
 MP = $|\overrightarrow{MP}| = \sqrt{5^2 + (-9)^2} = \sqrt{106}$.

+)
$$\overrightarrow{NP} = (10; -6).$$

$$\Rightarrow NP = \left| \overrightarrow{NP} \right| = \sqrt{10^2 + \left(-6\right)^2} = 2\sqrt{34}.$$

+)
$$\cos M = \cos \left(\overrightarrow{MN}, \overrightarrow{MP} \right) = \frac{\overrightarrow{MN}.\overrightarrow{MP}}{MN.MP} = \frac{-5.5 + \left(-3\right).\left(-9\right)}{\sqrt{34}.\sqrt{106}} \approx 0,033.$$

Suy ra $M \approx 88^{\circ}7'$.

+)
$$\cos N = \cos(\overrightarrow{NM}, \overrightarrow{NP}) = \frac{\overrightarrow{NM}.\overrightarrow{NP}}{NM.NP} = \frac{5.10 + 3.(-6)}{\sqrt{34}.2\sqrt{34}} = \frac{8}{17}.$$

Suy ra $N \approx 61^{\circ}56'$.

+) Ta có $M + N + P = 180^{\circ}$ (định lí tổng ba góc của một tam giác).

$$P = 180^{\circ} - M - N \approx 180^{\circ} - 88^{\circ}7' - 61^{\circ}56' = 29^{\circ}57'$$
.

Vây MN =
$$\sqrt{34}$$
, MP = $\sqrt{106}$, NP = $2\sqrt{34}$,

$$M \approx 88^{\circ}7'$$
, $N \approx 61^{\circ}55'$, $P \approx 29^{\circ}57'$.

B. Bài tập tự luyện

Bài 1. Trong mặt phẳng Oxy, cho $\vec{a} = 2\vec{i} + \vec{j}$, $\vec{b} = 3\vec{i} + 4\vec{j}$, $\vec{c} = 7\vec{i} + 2\vec{j}$.

- a) Tìm tọa độ các vecto \vec{a} , \vec{b} , \vec{c} .
- b) Tìm tọa độ của \vec{u} , với $\vec{u} = 2\vec{a} 3\vec{b} + \vec{c}$.
- c) Tìm tọa độ của \vec{v} , với $\vec{v} + \vec{a} = \vec{b} \vec{c}$.
- d) Tìm các số thực h, k sao cho $\vec{c} = k\vec{a} + h\vec{b}$.

Hướng dẫn giải

a) Ta có:

+)
$$\vec{a} = 2\vec{i} + \vec{j} \implies \vec{a} = (2;1);$$

+)
$$\vec{b} = 3\vec{i} + 4\vec{j} \implies \vec{b} = (3;4);$$

+)
$$\vec{c} = 7\vec{i} + 2\vec{j} \implies \vec{c} = (7,2)$$
.

Vậy
$$\vec{a} = (2;1), \vec{b} = (3;4), \vec{c} = (7;2).$$

b) Ta có:

+)
$$2\vec{a} = (2.2; 2.1) = (4; 2)$$
.

+)
$$3\vec{b} = (3.3;3.4) = (9;12)$$
.

Ta suy ra
$$2\vec{a} - 3\vec{b} = (4 - 9; 2 - 12) = (-5; -10)$$
.

Khi đó ta có
$$\vec{u} = 2\vec{a} - 3\vec{b} + \vec{c} = (-5 + 7; -10 + 2) = (2; -8)$$
.

Vậy
$$\vec{u} = (2; -8)$$
.

c) Ta có
$$\vec{b} - \vec{c} = (3-7;4-2) = (-4;2)$$
.

Khi đó ta có
$$\vec{b} - \vec{c} - \vec{a} = (-4 - 2; 2 - 1) = (-6; 1)$$
.

Theo đề, ta có: $\vec{v} + \vec{a} = \vec{b} - \vec{c}$.

$$\Leftrightarrow \vec{v} = \vec{b} - \vec{c} - \vec{a} = (-6;1).$$

Vậy
$$\vec{v} = (-6;1)$$
.

- d) Ta có:
- +) $k\vec{a} = (2k;k);$

+)
$$h\vec{b} = (3h; 4h)$$
.

Suy ra $k\vec{a} + h\vec{b} = (2k + 3h; k + 4h)$.

Ta có $\vec{c} = k\vec{a} + h\vec{b}$.

$$\Leftrightarrow \begin{cases} 7 = 2k + 3h \\ 2 = k + 4h \end{cases} \Leftrightarrow \begin{cases} k = \frac{22}{5} \\ h = -\frac{3}{5} \end{cases}$$

Vậy $k = \frac{22}{5}$, $h = -\frac{3}{5}$ thỏa yêu cầu bài toán.

Bài 2. Trong mặt phẳng Oxy, cho \triangle ABC biết A(-3; 2), B(4; 3) và điểm C nằm trên trục Ox.

- a) Tìm tọa độ trọng tâm G của ΔABC và điểm C, biết G nằm trên trục Oy.
- b) Giải ΔABC.

c) Tìm tọa độ trực tâm H của ΔABC.

Hướng dẫn giải

a) Vì C nằm trên trục Ox nên ta có tọa độ $C(x_C;0)$.

Vì G nằm trên trục Oy nên ta có tọa độ G(0; y_G).

Ta có G là trọng tâm của ΔABC.

Ta suy ra
$$\begin{cases} x_{G} = \frac{x_{A} + x_{B} + x_{C}}{3} \\ y_{G} = \frac{y_{A} + y_{B} + y_{C}}{3} \end{cases} \Leftrightarrow \begin{cases} 0 = \frac{-3 + 4 + x_{C}}{3} \\ y_{G} = \frac{2 + 3 + 0}{3} \end{cases} \Leftrightarrow \begin{cases} x_{C} = -1 \\ y_{G} = \frac{5}{3} \end{cases}$$

Vậy
$$G\left(0; \frac{5}{3}\right)$$
, $C\left(-1; 0\right)$.

b) Với A(-3; 2), B(4; 3), C(-1; 0) ta có:

+)
$$\overrightarrow{AB} = (4-(-3);3-2)=(7;1)$$
.

$$\Rightarrow$$
 AB = $|\overrightarrow{AB}| = \sqrt{7^2 + 1^2} = 5\sqrt{2}$.

+)
$$\overrightarrow{AC} = (-1 - (-3); 0 - 2) = (2; -2).$$

$$\Rightarrow$$
 AC = $|\overrightarrow{AC}| = \sqrt{2^2 + (-2)^2} = 2\sqrt{2}$.

+)
$$\overrightarrow{BC} = (-1-4;0-3) = (-5;-3)$$
.

$$\Rightarrow$$
 BC = $\left|\overrightarrow{BC}\right| = \sqrt{\left(-5\right)^2 + \left(-3\right)^2} = \sqrt{34}$.

+)
$$\cos A = \cos(\overrightarrow{AB}, \overrightarrow{AC}) = \frac{\overrightarrow{AB}.\overrightarrow{AC}}{AB.AC} = \frac{7.2 + 1.(-2)}{5\sqrt{2}.2\sqrt{2}} = \frac{3}{5}.$$

Suy ra $A = 53^{\circ}8'$.

+)
$$\cos B = \cos(\overrightarrow{BA}, \overrightarrow{BC}) = \frac{\overrightarrow{BA}.\overrightarrow{BC}}{BA.BC}$$

Do đó cosB =
$$\frac{-7.(-5)+(-1).(-3)}{5\sqrt{2}.\sqrt{34}} = \frac{19\sqrt{17}}{85}$$
.

Suy ra $B = 22^{\circ}50'$.

+) Ta có $A + B + C = 180^{\circ}$ (định lí tổng ba góc của một tam giác).

$$\Leftrightarrow$$
 C = 180° - A - B \approx 180° - 53°8′ - 22°50′ = 104°2′.

Vậy AB =
$$5\sqrt{2}$$
, AC = $2\sqrt{2}$, BC = $\sqrt{34}$,

$$A \approx 53^{\circ}8', B \approx 22^{\circ}50', C \approx 104^{\circ}2'.$$

c)

Gọi H(x; y).

$$\Rightarrow \overrightarrow{BH} = (x-4; y-3) \text{ và } \overrightarrow{CH} = (x+1; y).$$

Ta có H(x; y) là trực tâm của $\triangle ABC$.

Suy ra
$$\begin{cases} \overrightarrow{BH} \perp \overrightarrow{AC} \\ \overrightarrow{CH} \perp \overrightarrow{AB} \end{cases}$$

Khi đó ta có
$$\begin{cases} \overrightarrow{BH}.\overrightarrow{AC} = 0\\ \overrightarrow{CH}.\overrightarrow{AB} = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} (x-4).2 + (y-3).(-2) = 0 \\ (x+1).7 + y.1 = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} 2x - 2y - 2 = 0 \\ 7x + y + 7 = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x = -\frac{3}{4} \\ y = -\frac{7}{4} \end{cases}$$

Vậy H
$$\left(-\frac{3}{4}; -\frac{7}{4}\right)$$
.

Bài 3. Trong mặt phẳng Oxy, cho ba vecto $\vec{a} = (1;2)$, $\vec{b} = (-3;1)$, $\vec{c} = (6;5)$. Tìm m để $\vec{u} = m\vec{a} + \vec{b}$ cùng phương với \vec{c} .

Hướng dẫn giải

Ta có $m\vec{a} = (m; 2m)$.

Ta suy ra $\vec{u} = m\vec{a} + \vec{b} = (m-3; 2m+1)$.

Ta có \vec{u} cùng phương với $\vec{c} \Leftrightarrow (m-3).5 - (2m+1).6 = 0$.

$$\Leftrightarrow -7m - 21 = 0$$

$$\Leftrightarrow$$
 m = -3.

Vậy m = -3 thỏa yêu cầu bài toán.