Улучшение робастности динамической системы в продольном канале управления с применением обратной динамики

А.Е. Пащенко

Московский авиационный институт

Задачи дипломной работы

Задачи дипломной работы

Задачи

- Расчет ЛТХ, ВПХ, а также характеристик манёвренности
- Синтез системы автоматического управления
- Рассмотреть один из основных способов улучшения робастности динамической системы с применением обратной динамики при помощи PI-котроллера.

Объект исследования

В расчёт ЛТХ входит

В расчёт ЛТХ входит

• Расчёт области установившихся горизонтальных полётов

В расчёт ЛТХ входит

- Расчёт области установившихся горизонтальных полётов
- 2 Расчёт траектории полёта

В расчёт ЛТХ входит

- Расчёт области установившихся горизонтальных полётов
- 2 Расчёт траектории полёта
- Расчёт транспортных возможностей самолёта

Расчёт области возможных полётов

Основные ограничения

- ullet Ограничение по $M_{min\ P}$
- ullet Ограничение по M_{max} $_P$

Дополнительные ограничения

- ullet Ограничение по C_y доп
- ullet Ограничение по $M_{
 m npeq}$
- ullet Ограничение по q_{max}

Результаты расчётов $M_{\mathcal{C}_y}$ доп и $M_{min\ P},\ \overline{M_{max\ P},\ M_{\text{наев}}}$

Результаты расчётов $q_{\text{ч}\ min}$ и $q_{\text{км}\ min}$

Результаты расчётов $M_{V_{_{V}}}$ $_{_{max}}$

Расчёт области возможных полётов

Расчёт области возможных полётов

Определение области

- $M_{min} = \max\{M_{min\ p},\ M_{C_{y\ gon}}\}$
- $M_{max} = min\{M_{max\ P},\ M_{npeg},\ M_{q_{max}}\}$

Определение теоретического и практического потолка

Определение теоретического и практического потолка

Потолки

Расчёт теоретического и практического потолка производится по $V_{y_{max}}^{*}$

Определение теоретического и практического потолка

Потолки

Расчёт теоретического и практического потолка производится по $V_{y_{max}}^*$ $H_{\rm T}=19.8~{
m Km}$

Определение теоретического и практического потолка

Потолки

Расчёт теоретического и практического потолка производится по $V_{y_{max}}^{*}$

 $H_{\scriptscriptstyle T}=19,8$ км

 $H_{\mathsf{np}} = 19,5$ км

Максимальные значения часового и километрового расходов

^расчёт траектории полёта

Траектория

Расчёт траектории полёта

Траектория

Траеткорию полёта принято разделять на три этапа

- Набор высоты
- Крейсерский полёт
- Снижение

Расчёт траектории набора

Выбор начальных параметров

Начальные значения H и M определяются следующим образом: $H_0 = 0$ км $M_0 = 1,2 \cdot M_{min\ don}$, а конечные значения выбираются из условия минимума километрового расхода топлива в установившемся горизонтальном полете. Высота и число Маха, при которых километровый расход топлива принимает наименьшее значение, определены в предыдущих слайдах

Расчёт траектории набор

Расчёт траектории набора

Результаты расчётов

Параметр	Значение	Единицы
$m_{T_{Ha6}}$	7225,6	КГ
L _{наб}	278,04	KM
Тнаб	20,06	мин

Расчёт крейсерского полёта

Выбор начальных параметров

 $ar{m}_{T_{\mathsf{Ha6}}} = 0.5$ — относительная масса пустого снаряженного самолета

 $ar{m}_{ ext{цн}} = 0.15$ — относительная масса целевой нагрузки

 $ar{m}_{\text{снп}} = 0.015$ — относительная масса топлива расходуемая при снижении и посадке

 $ar{m}_{T_{\mathsf{Ha6}}}$ – относительная масса топлива, расходуемая при наборе высоты

Расчёт крейсерского полёта

Выбор начальных параметров

 $ar{m}_{T_{\text{на6}}} = 0,5$ — относительная масса пустого снаряженного самолета $ar{m}_{\text{цн}} = 0,15$ — относительная масса целевой нагрузки

 $ar{m}_{\text{снп}} = 0.015$ — относительная масса топлива расходуемая при снижении и посадке

 $ar{m}_{T_{\mathsf{Ha6}}}$ – относительная масса топлива, расходуемая при наборе высоты

Результаты расчётов характеристик крейсерского полёта

Параметр	Значение	Единицы
Н _{к кр}	19.3	KM
L_{kp}	7610,74	КГ
$T_{\kappa p}$	403,43	мин

Расчёт траектории спуска

Расчёт траектории спуска

Результаты расчётов

Параметр	Значение	Единицы
$m_{T_{\rm cnyck}}$	756,936	КГ
L _{cпуск}	314,16	KM
Тспусе	41,929	мин

Расчёт траектории полёта

Расчёт транспортных возможностей самолёта

Расчёт транспортных возможностей самолёта

Основные положения

Расчёт транспортных возможностей самолёта

Основные положения

Расчёт ведётся для трёх режимов

Расчёт транспортных возможностей самолёта

Основные положения

Расчёт ведётся для трёх режимов

• Полет с максимальной коммерческой нагрузкой

Расчёт транспортных возможностей самолёта

Основные положения

Расчёт ведётся для трёх режимов

- Полет с максимальной коммерческой нагрузкой
- Полёт с максимальным запасом топлива

Расчёт транспортных возможностей самолёта

Основные положения

Расчёт ведётся для трёх режимов

- Полет с максимальной коммерческой нагрузкой
- Полёт с максимальным запасом топлива
- Полёт без коммерческой нагрузки ($m_{
 m цн}=0$) с максимальным запасом топлива

Диаграмма транспортных возможностей самолёта

Расчет взлетно-посадочных характеристик самолета

Результаты расчётов

$V_{\text{отр}}$, м/с	<i>L</i> _p , м	<i>L</i> _{вд} , м	$V_{\rm кас}$, м/с	<i>L</i> _{проб} , м	<i>L</i> _{пд} , м
88,85	1125,37	1392	64,58	576	1200,78

Расчёт характеристик манёвренности

Основные положения

Для неманёвренного самолёта характеристики предельного правильного виража рассчитываются для высоты H= 6км. Характеристики маневренности рассчитываются при 50%-ом выгорании топлива для массы самолета:

$$\bar{m}_c = 1 - 0, 5\bar{m}_{\scriptscriptstyle T}$$

Расчёт характеристик манёвренности

Графики

Задачи раздела

Расчет коэффициентов и моделирование системы стабилизации вертикальной скорости самолета для Concorde:

- Выбор параметров привода
- Расчет и оценка коэффициентов обратных связей и коэффициентов стабилизации системы
- Частотный анализ контуров системы
- Моделирование и анализ линейной и нелинейной САУ

Синез системы автоматического регулирования Исследуемая модель

$$\begin{cases} \dot{\alpha} = \omega_{z} - \bar{Y}^{\alpha} \alpha \\ \dot{\omega}_{z} = \bar{M}_{z}^{\alpha} \alpha + \bar{M}_{z}^{\omega_{z}} \omega_{z} + \bar{M}_{z}^{\dot{\alpha}} \dot{\alpha} + \bar{M}_{z}^{\delta_{\mathtt{B}}} \delta_{\mathtt{B}} \\ \dot{V}_{y} = V \cdot \bar{Y}^{\alpha} \alpha \end{cases}$$

$$A = \begin{pmatrix} -\bar{Y}^{\alpha} & 1 & 0 \\ \bar{M}_{z}^{\alpha} & \bar{M}_{z}^{\omega_{z}} & 0 \\ V \cdot \bar{Y}^{\alpha} & 0 & 0 \end{pmatrix}; B = \begin{pmatrix} 0 \\ \bar{M}_{z}^{\delta_{9}} \\ 0 \end{pmatrix}; C = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}; D = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Синтез системы автоматическог регулирования

Структурная схема системы стабилизации вертикальной скорости самолета

Выбор параметров привода

Выбор параметров привода

Передаточная функция привода

При решении задачи синтеза сервопривод описывается передаточной функцией колебательного звена:

$$W_{n} = \frac{1}{T_{n}^{2} p^{2} + 2\xi_{n} T_{n} p + 1}$$
 (1)

Значение постоянной времени $T_{\rm n}$ сервопривода, от которой зависит его полоса пропускания, определяется следующим образом: Устанавливается максимальное значение собственной частоты недемпфированных колебаний $\omega_0=\frac{1}{T_{\rm c}}$ в варианте управления продольным движением самолета, и исходя из этих значений, определяется потребная ширина полосы пропускания сервопривода (см. формула 1):

Выбор параметров привода

Вывод

- Максимальное значение ω_0 находится у поверхности земли со значением M=1 ($\omega_{0_{max}}=5,74~\frac{1}{c}$).
- $\omega_{\rm n} = 37, 19 \frac{1}{c} = T_{\rm n} = 0.0269 \ c$
- Из данного ряда чисел [0,02; 0,025; 0,003; 0,035; 0,04; 0,045; 0,05] 0,0269 более близко к 0,025, следовательно, данное число мы и примем за постоянную времени привода. Исходя из вышесказанного, получаем $\omega_{\rm n}=40~\frac{1}{c}$, $T_{\rm n}=0.025~c,\xi=0,5$.

Расчёт коэффициентов стабилизации системы

Расчёт коэффициентов стабилизации системы

Расчёт коэффициентов стабилизации системы

Вывод

Полученные значения коэффициентов обратных связей были успешно найдены и применены на модели рассматриваемой системы стабилизации вертикальной скорости в системе «Simulink». Моделирование показало, что коэффициенты найдены верно, так как заданная вертикальная скорость равна вертикальной скорости на выходе из системы. Более подробно будут показаны результаты моделирования и сама модель в разделе «Нелинейное моделирование».

Моделирование и анализ линейной и нелинейной САУ

Моделирование и анализ линейной и нелинейной САУ

Основные положения

Целью частотного анализа является построение логарифмических амплитудных и фазовых частотных характеристик (ЛАФЧХ) разомкнутых и замкнутых контуров управления до синтеза и после синтеза и проведение их сравнительного анализа.

Моделирование и анализ линейной и нелинейной САУ

Основные положения

Целью частотного анализа является построение логарифмических амплитудных и фазовых частотных характеристик (ЛАФЧХ) разомкнутых и замкнутых контуров управления до синтеза и после синтеза и проведение их сравнительного анализа.

Примечание

В данной презентации будет приведены частотные характеристики только для крейсерского полёта, для остальных режимов всё аналогично.

Частотный анализ крейсерского режима полёта

Моделирование линейной и нелинейной САУ

Общие положения

В данном разделе проводится анализ линейной и нелинейной САУ. В Simulink реализуется система управления на крейсерском режиме полета. Крейсерскому режиму полета для самолета-прототипа Concorde соответствуют M=0.982 и H=17 км.

Отклонения элевонов для стабилизации угла скольжения

Выходной сигнал системы стабилизации вертикальной скорости самолета

Обратная динамика _{Цели раздела}

Задачи

Обратная динамика _{Цели раздела}

Задачи

• Зачем использовать обратную динамику

Обратная динамика Цели раздела

Задачи

- Зачем использовать обратную динамику
- 2 Проблемы использования обратной динамики

Обратная динамика _{Цели раздела}

Задачи

- Зачем использовать обратную динамику
- 2 Проблемы использования обратной динамики
- Применение PI-контроллера в обратой динамики

Проблемы использования

Важно

- Порядок числителя выше порядка знаменателя
- "Шаткая"робастность системы

Пример

$$G^{-1} = \frac{a_n p^k + a_{n-1} p^{k-1} + \dots + a_0}{b_m p^{k-1} + b_{m-1} p^{k-2} + \dots + b_0}$$

Схема \dot{q}_d + G(s) m_w m_u

Результаты экспериментов

Робастность системы

№ э.	σ_e^2 , cm ²	$\sigma_c^2 \text{ cm}^2$	n_e см 2
1	0.103	13.54	0.0254
2	0.125	15.14	0.037
3	0.131	12.74	0.047

№ э.	Нули	Полюса	ξ	ω_c , 1/c
1	-2	-	1.0	0.5
	-1.9392	-0.7537		$1.59 \cdot 10^{-4}$
2	-0.7473	-0.0161	1.0	$1.64 \cdot 10^{-2}$
	-0.0164	0		$7.47 \cdot 10^{-1}$
	0			1.94
	-1.8207	0.8255		0
3	-0.8033	-0.0177	1.0	$1.85 \cdot 10^{-2}$
	-0.0185	0		$8.03 \cdot 10^{-1}$
	0			1.82

Результаты при изменении динамик самолёта на 80 %

Улучшение робасности с применением РІ-контроллера

Схема

Улучшение робасности с применением РІ-контроллера

Робастность системы

№ э.	σ_e^2 , cm ²	$\sigma_c^2 \text{ cm}^2$	$n_e \text{ cm}^2$
1	0.0886	5.913	0.01611
2	0.0952	6.01	0.01591
3	0.0943	6.004	0.01712

Робастность системы

№ э.	Полюса	Нули	ξ	ω_c , 1/c
1	-3.0000 + 1.0000i	-2.5	0.95	3.16
	-3.0000 - 1.0000 <i>i</i>			
2	-2.8660 + 1.1287i	-0.0161	1.0	0
	-2.8660 - 1.1287 <i>i</i>	-0.7537	1.0	$1.61 \cdot 10^{-2}$
	-0.7547 + 0.0000i	-2.5000	1.0	$7.51 \cdot 10^{-2}$
	0	0.0000	0.93	3.08
	-0.0161 + 0.0000i		0.93	
3	-2.5975 + 1.3096i	-0.0177	1	0
	-2.5975 - 1.3096 <i>i</i>	-0.8255	1	$1.77 \cdot 10^{-2}$
	-0.8292 + 0.0000i	-2.5000	1	$8.29 \cdot 10^{-1}$
	0	0	0.893	2.91
	-0.0177 + 0.0000i			

Благодарность

Спасибо за внимание

