Orthogonal Decomposition

The orthogonal decomposition of a vector \mathbf{y} in \mathbb{R}^n is the sum of a vector in a subspace W of \mathbb{R}^n and a vector in the orthogonal complement W^{\perp} to W.

The orthogonal decomposition theorem states that if W is a subspace of \mathbb{R}^n , then each vector \mathbf{y} in \mathbb{R}^n can be written uniquely in the form

$$y = \hat{y} + z$$

where $\hat{\mathbf{y}}$ is in W and \mathbf{z} is in W^{\perp} . In fact, if $\{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_p\}$ is any orthogonal basis of W, then

$$\hat{\mathbf{y}} = \frac{\mathbf{y} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \, \mathbf{u}_1 + \frac{\mathbf{y} \cdot \mathbf{u}_2}{\mathbf{u}_2 \cdot \mathbf{u}_2} \, \mathbf{u}_2 + \ldots + \frac{\mathbf{y} \cdot \mathbf{u}_p}{\mathbf{u}_p \cdot \mathbf{u}_p} \, \mathbf{u}_p,$$

and $\mathbf{z} = \mathbf{y} - \hat{\mathbf{y}}$.

Geometrically, $\hat{\mathbf{v}}$ is the orthogonal projection of \mathbf{v} onto the subspace W and \mathbf{z} is a vector orthogonal to $\hat{\mathbf{v}}$

SEE ALSO

Fredholm's Theorem, LU Decomposition, QR Decomposition

This entry contributed by Viktor Bengtsson

EXPLORE WITH WOLFRAM|ALPHA

★WolframAlpha
Solve your math problems and get step-by-step solutions
orthogonal decomposition
try:
2009!
convert tiger image to grayscale

REFERENCES

Golub, G. and Van Loan, C. Matrix Computations, 3rd ed. Baltimore, MD: Johns Hopkins University Press, 1996.

REFERENCED ON WOLFRAM|ALPHA

Orthogonal Decomposition

CITE THIS AS:

Bengtsson, Viktor. "Orthogonal Decomposition." From *MathWorld--*A Wolfram Web Resource, created by Eric W. Weisstein. https://mathworld.wolfram.com/OrthogonalDecomposition.html

SUBJECT CLASSIFICATIONS

Algebra Linear Algebra Matrices Matrix Decomposition Algebra Vector Algebra MathWorld Contributors Bengtsson