Definientia

Revision: May 9, 2016; Rendered: May 25, 2021

Definability in terms of projections, for computing definientia by interpolation. Makes use of scratch forgetting. Formalized with the *PIE* system.

1 Definientia

The following formula is valid if and only if formula G is definable in terms of predicates S within formula F. Definientia are exactly the interpolants of its antecedent and consequent.

definiens(G, F, S)

Defined as

$$proj(S, (F \wedge G)) \rightarrow \neg proj(S, (F \wedge \neg G)).$$

The following specification based on literal projection allows to restrict the polarity of the predicates in S:

 $definiens_lit(G, F, S)$

Defined as

$$projlit(S, (F \wedge G)) \rightarrow \neg projlit(S_1, (F \wedge \neg G)),$$

where

$$S_1 := \text{duals of } S.$$

definiens_lit_lemma is an incomplete version of definiens_lit that yields formulas which are more efficient to handle:

 $definiens_lit_lemma(G, F, S)$

Defined as

$$lemma \ projlit(S, (F \wedge G)) \rightarrow \neg lemma \ projlit(S_1, (F \wedge \neg G)),$$

where

$$S_1 := \text{duals of } S.$$

Definability of a single predicate in terms of a given set of predicates:

predicate definiens(P, F, S)

Defined as

$$definiens(P_X, F, S),$$

where

$$N :=$$
arity of P in F ,
 $X :=$ a sequence of N fresh symbols,
 $P_X := P(X)$.

Definability of a single predicate in terms of all other predicates:

 $predicate_definiens(P, F)$

Defined as

$$\exists P (F \land P_X) \rightarrow \neg \exists P (F \land \neg P_X),$$

where

N :=arity of P in F, X :=a sequence of N fresh symbols, $P_X := P(X)$.

1.1 Definientia: Examples

 $ex_definiens_1$

Defined as

$$definiens(pa, \\ \forall x (px \leftrightarrow qx) \land \forall x (px \leftrightarrow rx), \\ [q]).$$

Input: $ex_definiens_1$. Result of interpolation:

qa.

\mathbf{Index}

definiens(G, F, S), 1 $definiens_lit(G, F, S), 1$ $definiens_lit_lemma(G, F, S), 2$ $ex_definiens_1, 2$

 $predicate_definiens(P, F), 2$ $predicate_definiens(P, F, S), 2$