nr albumu: 347208 str. 1/2Seria: 7

Zadanie 1

Oznaczmy

$$\alpha_n = \begin{cases} (-1)^k & \text{jeśli } n = k^2 \\ 0 & \text{wpp.} \end{cases}$$

Zauważmy, że $s_n := a_0 + \ldots + a_n \in \{0,1\}$ w zależności od parzystości liczby kwadratów pośród liczb $0,1,\ldots,n$. Dokładniej: $s_{k^2+j} = \frac{1+(-1)^k}{2}$ dla $0 \le j < 2k+1$.

Zauważmy, że
$$\sigma_{(2k+1)^2-1} = 1 + 0 + 0 + 0 + \underbrace{1 + 1 + 1 + 1 + 1}_{5} + \underbrace{0 + 0 + 0 + 0 + 0 + 0 + 0}_{7} + \dots + \underbrace{1 + 1 + \dots + 1}_{4k+1}.$$

do $\frac{1}{2}$. Ponadto $\sigma_{(2k)^2-1}=\sigma_{(2k-1)^2-1}$ (zostały dodane same zera), skąd łatwo mamy znowu, że $\frac{\sigma_{(2k)^2-1}}{2k^2-1}\to\frac{1}{2}$. Gdy popatrzymy na $\frac{\sigma_n}{n}$, to zauważymy łatwo, że dla $k^2\leqslant n\leqslant (k+1)^2$ mamy, że wartość $\frac{\sigma_n}{n}$ leży między $\frac{\sigma_{k^2-1}}{k^2-1}$ a $\frac{\sigma_{(k+1)^2-1}}{(k+1)^2-1}$.

Stąd z twierdzenia o trzech ciagach łatwo mamy $\frac{\sigma_n}{n} \to \frac{1}{2}$. Na mocy twierdzenia Frobeniusa (o tym, że sumowalnośc w sensie Cesaro implikuje sumowalność w sensie Abela), szereg z zadania ma zatem sumę dążącą przy $x \rightarrow 1^-$ do $\frac{1}{2}$

Zadanie 2

Wystarczy udowodnić tezę dla liczb wymiernych z przedziału [0,1] na mocy tego, że obie strony są wielomianami, zatem gdy zgadzają się w nieskończenie wielu miejscach, to są tożsamościowo równe.

Zatem przyjmijmy $x=\frac{p}{q}$ dla $1\leqslant p\leqslant q$, gdzie $p,q\in\mathbb{N}$. Mamy wtedy $x^k(1-x)^{n-k}=\frac{p^k(q-p)^{n-k}}{q^n}$ Najpierw zauważmy, że $\sum\limits_{k=0}^n \binom{n}{k} p^k (q-p)^{n-k} = q^n$ na mocy wzoru dwumianowego Newtona.

Ponadto $\sum_{k=0}^{n} {n \choose k} kp^k (q-p)^{n-k} = npq^{n-1}$, gdyż obie strony odpowiadają zliczaniu następujących obiektów kombinatorycznych: mamy n ponumerowanych kulek, chcemy pomalowanać każdą z nich na jeden z q kolorów, przy czym p z tych kolorów jest jasnych. Chcemy ponadto, żeby dokładnie jedna kulka była pokolorowana błyszczącą farbą, ale ograniczenia technologiczne sprawiają, że błyszczące farby są tylko jasne.

Lewa strona równości odpowiada następującemu procesowi: decydujemy, że dokładnie k kulek będzie jasnych, wybieramy które $\binom{n}{k}$), jedną z nich ustalamy jako błyszczącą $\binom{n}{k}$, a następnie dla każdej jasnej kulki wybieramy jeden z jasnych kolorów (p^k) , a dla każdej ciemnej kulki – jeden z ciemnych $((q-p)^{n-k})$.

Prawa strona równości odpowiada wyborowi najpierw jednej błyszczącej kulki (n), pomalowaniu jej jasną farbą p, a następnie pomalowaniu reszty kulek na dowolny kolor q^{n-1} .

 $\text{Analogicznie} \sum_{k=0}^n \binom{n}{k} k(k-1) p^k (q-p)^{n-k} = n(n-1) p^2 q^{n-2}, \text{odpowiada takiej samej sytuacji, tyle, } \\ \dot{z}e \text{ teraz} \\ \dot{z}e \text{ ter$ mamy dwie wyróżnione kulki: błyszczącą i bardzo błyszczącą, przy czym obie muszą być pomalowane jasną farba.

Mamy jednak

$$\begin{split} \sum_{k=0}^{n} \binom{n}{k} (nx-k)^2 x^k (1-x)^{n-k} &= \frac{1}{q^n} \sum_{k=0}^{n} \binom{n}{k} \left(\frac{n^2 p^2}{q^2} - \left(\frac{2np}{q} - 1 \right) k + k(k-1) \right) p^k (q-p)^{n-k} \\ &= \frac{1}{q^n} \left(\frac{n^2 p^2}{q^2} q^n - \left(\frac{2np}{q} - 1 \right) npq^{n-1} + n(n-1)p^2 q^{n-2} \right) \\ &= \frac{1}{q^n} \left(n^2 p^2 q^{n-2} - 2n^2 p^2 q^{n-2} + npq^{n-1} + n^2 p^2 q^{n-2} - np^2 q^{n-2} \right) \\ &= \frac{np}{q} - \frac{np^2}{q^2} = nx(1-x) \end{split}$$

Krzysztof Pszeniczny nr albumu: 347208 str. 2/2 Seria: 7

Zadanie 3

Twierdzę, że ten ciąg jest zbieżny jednostajnie do funkcji $\exp(x)$. Ustalmy dowolne $\varepsilon > 0$. Pokażę, że istnieje takie N, że dla n > N zachodzi $\sup_{x \in [0,1]} |f_n(x) - \exp(x)| < \varepsilon$.

Dla każdego $t\in (0,1)$ wyrażenie $1+a_nt-na_n$ można oszacować (bo a_n oraz t są dodatnie) jako $1-na_n\leqslant 1+a_nt-na_n\leqslant 1-(n-1)a_n$. Mamy $na_n=\frac{\exp(n^{-1})-1}{n^{-1}}\to 1$, stąd i $(n-1)a_n=\frac{n-1}{n}na_n\to 1$ (przy n dążącym do nieskończoności), zatem możemy dobrać takie N, że dla n>N zachodzi $1-na_n>-\frac{\varepsilon}{\varepsilon}$ oraz $1-(n-1)a_n<\frac{\varepsilon}{\varepsilon}$,

Wtedy $-\frac{\varepsilon}{e} < 1 + a_n t - na_n < \frac{\varepsilon}{e}$, zatem $|1 + a_n t - na_n| < \frac{\varepsilon}{e}$.

Funkcja f_n – exp jest różniczkowalna na przedziale (0,1) i ciągła na [0,1], zatem supremum modułu osiągnie na krańcach przedziału lub w punkcie, w którym zeruje się pochodna.

Na krańach przedziału mamy $f_n(0) = 1, f_n(1) = e$, zatem tam $f_n(x) = \exp(x)$.

Załóżmy, że dla pewnego $t \in (0,1)$ pochodna funkcji $f_n(x) - \exp(x)$ się zeruje. Mamy tam, że $na_n(1+a_nt)^{n-1} - \exp(t) = 0$. Jednak zauważmy, że $f_n(t) - \exp(t) = (1+a_nt)^n - na_n(1+a_nt)^{n-1} + \underbrace{na_n(1+a_nt)^n - \exp(t)}_{-0} = \underbrace{na_n(1+a_nt)^n - \exp(t)$

 $(1 + a_n t)^{n-1} (1 + a_n t - na_n).$

Zauważmy jednak, że funkcja $[0,1] \ni r \mapsto (1+\alpha_n r)^{n-1}$ jest ściśle rosnąca (co widać np. po zróżniczkowaniu, bo nie ma w [0,1] takiego r, żeby $1+\alpha_n r=0$). Stąd łatwo badając wartości na końcach przedziału mamy $1 \le (1+\alpha_n t)^{n-1} \le e$. Stąd $|f_n(t)-\exp(t)| \le e|1+\alpha_n t-n\alpha_n| < \epsilon$.

Stąd mamy, że ponieważ nierównośc ta zachodzi dla wszystkich t, w których pochodna funkcji $f_n - \exp$ się zeruje, czyli zachodzi w szczególności na wszystkich ekstremach, a ponadto nierówność ta jest trywialnie spełniona na krańcach przedziału, zatem mamy $\|f_n - \exp\| < \varepsilon$, zatem $f_n \stackrel{[0,1]}{\Rightarrow} \exp$.

Zadanie 4

Przypuśćmy, że taki ciąg funkcji f_n istnieje.

Dla każdego $k,j \in \mathbb{N}$ zbiór $\{x: |f_k(x)-f_j(x)| \leqslant \frac{1}{10}\}$ jest domknięty (bo funkcja $|f_k-f_j|$ jest ciągła). Zatem zbiór $A_n = \bigcap\limits_{k,j\geqslant n} \{x: |f_k(x)-f_j(x)| \leqslant \frac{1}{10}\} = \{x: \forall_{k,j\geqslant n} |f_k(x)-f_j(x)| \leqslant \frac{1}{10}\}$ jest domknięty, jako przecięcie zbiorów domkniętych.

Mamy łatwo $A_0 \subseteq A_1 \subseteq A_2 \subseteq A_3 \subseteq \ldots$ Ponadto, gdy oznaczmy $A = \bigcup_{n \in \mathbb{N}} A_n$, to widzimy, że $A = \mathbb{R}$, gdyż dla każdego $x \in \mathbb{R}$ ciąg $f_n(x)$ jest zbieżny, zatem spełnia warunek Cauchy'ego.

Na mocy twierdzenia Baire'a, istnieje takie n, że A_n zawiera pewnien przedział długości dodatniej. Możemy tam wziąć jakiś podprzedział domknięty I.

Funkcja $(f_n)_{|I}$ jest ciągła na przedziale domkniętym, zatem jest jednostajnie ciągła, zatem istnieje takie $\delta>0$, że $|x-y|<\delta\implies |f(x)-f(y)|<\frac{1}{10}$. W przedziale I weźmy dowolny podprzedział długości conajwyżej δ i nazwijmy go J.

Ustalmy dowolne $x_0\in J\cap\mathbb{Q}, x_1\in J\setminus\mathbb{Q}.$ Mamy wtedy $f_k(x_0)\to 1$, $f_k(x_1)\to 0$ dla $k\to\infty$, jednakże $|f_k(x_0)-f_k(x_1)|=|f_k(x_0)-f_n(x_0)|+|f_n(x_0)-f_n(y_0)|+|f_n(y_0)-f_k(y_0)|\leqslant \frac{1}{10}+\frac{1}{10}+\frac{1}{10}=\frac{3}{10}.$ Przechodząc z $k\to\infty$ uzyskujemy, że $1\leqslant \frac{3}{10}$, co jest sprzecznością.

Zatem taki ciąg funkcji f_n nie istnieje.