

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Tensor Model- & Optimizer-Parallel Training

COMP6211Y

Binhang Yuan

Data Parallel SGD

Pipeline Parallel

- Data Parallelism:
 - **Memory issue**: each device needs to maintain <u>a complete copy of the model</u> (parameters, gradients, and optimizer status).
 - Statistical efficiency: if the global batch size is too large, it may affect the convergence rate
- Pipeline Parallelism:
 - **Bubble overhead:** the pipeline parallelism efficiency decreases as the number of stages increases.

Tensor Model Parallelism

TransformerBlocks($x \in R^{B \times L \times D}$) $\rightarrow x' \in \mathbb{R}^{B \times L \times D}$

- *B* is the batch size;
- *L* is the sequence length;
- *D* is the model dimension;
- Multi-head attention:

$$D = n_H \times H$$

- *H* is the head dimension;
- n_h is the number of heads.

Computation	Input	Output
$Q = xW^Q$	$x \in \mathbb{R}^{B \times L \times D}$, $\mathbb{W}^Q \in \mathbb{R}^{D \times D}$	$Q \in \mathbb{R}^{B \times L \times D}$
$K = xW^K$	$x \in \mathbb{R}^{B \times L \times D}$, $\mathbb{W}^K \in \mathbb{R}^{D \times D}$	$K \in \mathbb{R}^{B \times L \times D}$
$V = xW^V$	$x \in \mathbb{R}^{B \times L \times D}$, $\mathbb{W}^V \in \mathbb{R}^{D \times D}$	$V \in \mathbb{R}^{B \times L \times D}$
$\left[Q_1,Q_2\ldots,Q_{n_h}\right]=\operatorname{Partion}_{-1}(Q)$	$Q \in \mathbb{R}^{B \times L \times D}$	$Q_i \in \mathbb{R}^{B \times L \times H}$, $i = 1, \dots n_h$
$[K_1, K_2 \dots, K_{n_h}] = Partion_{-1}(K)$	$K \in \mathbb{R}^{B \times L \times D}$	$K_i \in \mathbb{R}^{B \times L \times H}, i = 1, \dots n_h$
$[V_1, V_2 \dots, V_{n_h}] = Partion_{-1}(V)$	$V \in \mathbb{R}^{B \times L \times D}$	$V_i \in \mathbb{R}^{B \times L \times H}$, $i = 1, \dots n_h$
$Score_{i} = softmax(\frac{Q_{i}K_{i}^{T}}{\sqrt{D}}), i = 1, n_{h}$	$Q_i, K_i \in \mathbb{R}^{B \times L \times H}$	$score_i \in \mathbb{R}^{B \times L \times L}$
$Z_i = \text{score}_i V_i, i = 1, \dots n_h$	$score_i \in \mathbb{R}^{B \times L \times L}, V_i \in \mathbb{R}^{B \times L \times H}$	$Z_i \in \mathbb{R}^{B \times L \times H}$
$Z = Merge_{-1} ([Z_1, Z_2 \dots, Z_{n_h}])$	$Z_i \in \mathbb{R}^{B \times L \times H}$, $i = 1, n_h$	$Z \in \mathbb{R}^{B \times L \times D}$
$Out = ZW^O$	$Z \in \mathbb{R}^{B \times L \times D}$, $\mathbb{W}^O \in \mathbb{R}^{D \times D}$	Out $\in \mathbb{R}^{B \times L \times D}$
$A = \text{Out } W^1$	Out $\in \mathbb{R}^{B \times L \times D}$, $\mathbb{W}^1 \in \mathbb{R}^{D \times 4D}$	$A \in \mathbb{R}^{B \times L \times 4D}$
$A' = \operatorname{relu}(A)$	$A \in \mathbb{R}^{B \times L \times 4D}$	$A' \in \mathbb{R}^{B \times L \times 4D}$
$x' = A'W^2$	$A' \in \mathbb{R}^{B \times L \times 4D}$, $\mathbb{W}^2 \in \mathbb{R}^{4D \times D}$	$x' \in \mathbb{R}^{B \times L \times D}$

Tensor Model Parallelism

- High-level idea:
 - The tensor is split up into multiple chunks;
 - Instead of having the whole tensor reside on a single GPU, each shard of the tensor resides on its designated GPU.
 - Each shard is processed separately and in parallel on different GPUs.
 - The results are synchronized at the end of the step.

Partition the Matrix Multiplication

Partition the Matrix Multiplication

Tensor Model Parallelism

- Split the first weight matrix col-wisely;
- Split the second weight matrix row-wisely;
- Duplicate the input on each GPU;
- Apply the computation as we illustrated above;
- Aggregate the outputs after the local computation.

- f is the identity operator in the forward pass and the AllReduce operator in the backward pass.
- g is the AllReduce operator in the forward pass and the identity operator in the backward pass.

Multi-Head Attention in Tensor Model Parallelism

(b) Self-Attention

- f is the identity operator in the forward pass and the AllReduce operator in the backward pass.
- g is the AllReduce operator in the forward pass and the identity operator in the backward pass.

TransformerBlocks in Tensor Model Parallelism

- *B* is the batch size;
- *L* is the sequence length;
- *D* is the model dimension;
- Multi-head attention:

$$D = n_H \times H$$

- *H* is the head dimension;
- n_H is the number of heads.
- d_{tp} is the tensor parallel degree: $d_{tp} \le n_H$.

Computation	Input	Output
$Q = xW^Q$	$x \in \mathbb{R}^{B \times L \times D}$, $\mathbb{W}^Q \in \mathbb{R}^{D \times \frac{D}{d_{tp}}}$	$Q \in \mathbb{R}^{B \times L \times \frac{D}{d_{tp}}}$
$K = xW^K$	$x \in \mathbb{R}^{B \times L \times D}$, $\mathbb{W}^K \in \mathbb{R}^{D \times \frac{D}{d_{tp}}}$	$K \in \mathbb{R}^{B \times L \times \frac{D}{d_{tp}}}$
$V = xW^V$	$x \in \mathbb{R}^{B \times L \times D}$, $\mathbb{W}^V \in \mathbb{R}^{D \times \frac{D}{d_{tp}}}$	$V \in \mathbb{R}^{B \times L \times \frac{D}{d_{tp}}}$
$\left[Q_1, Q_2 \dots, Q_{\frac{n_H}{d_{tp}}}\right] = \operatorname{Partion}_{-1}(Q)$	$Q \in \mathbb{R}^{B \times L \times \frac{D}{d_{tp}}}$	$Q_i \in \mathbb{R}^{B \times L \times H}, i = 1, \frac{n_H}{d_{tp}}$
$\left[K_1, K_2 \dots, K_{\frac{n_H}{d_{tp}}}\right] = \operatorname{Partion}_{-1}(K)$	$K \in \mathbb{R}^{B \times L \times \frac{D}{d_{tp}}}$	$K_i \in \mathbb{R}^{B \times L \times H}, i = 1, \frac{n_H}{d_{tp}}$
$\left[V_1, V_2 \dots, V_{\frac{n_H}{d_{tp}}}\right] = \text{Partion}_{-1}(V)$	$V \in \mathbb{R}^{B \times L \times \frac{D}{d_{tp}}}$	$V_i \in \mathbb{R}^{B \times L \times H}, i = 1, \frac{n_H}{d_{tp}}$
Score _i = softmax($\frac{Q_i K_i^T}{\sqrt{D}}$), $i = 1, \frac{n_H}{d_{tp}}$	$Q_i, K_i \in \mathbb{R}^{B \times L \times H}$	$score_i \in \mathbb{R}^{B \times L \times L}$
$Z_i = \operatorname{score}_i V_i, i = 1, \dots \frac{n_H}{d_{tp}}$	$score_i \in \mathbb{R}^{B \times L \times L}, V_i \in \mathbb{R}^{B \times L \times H}$	$Z_i \in \mathbb{R}^{B \times L \times H}$
$Z = \text{Merge}_{-1} \left(\left[Z_1, Z_2 \dots, Z_{\frac{n_H}{d_{tp}}} \right] \right)$	$Z_i \in \mathbb{R}^{B \times L \times H}, i = 1, rac{n_H}{d_{tp}}$	$Z \in \mathbb{R}^{B \times L \times \frac{D}{d_{tp}}}$
$Out = ZW^O$	$Z \in \mathbb{R}^{B \times L \times \frac{D}{d_{tp}}}, \mathbb{W}^O \in \mathbb{R}^{\frac{D}{d_{tp}} \times D}$	Out $\in \mathbb{R}^{B \times L \times D}$
AllReduce(Out)	Out $\in \mathbb{R}^{B \times L \times D}$	Out $\in \mathbb{R}^{B \times L \times D}$

- *B* is the batch size;
- *L* is the sequence length;
- *D* is the model dimension;
- Multi-head attention:

$$D = n_H \times H$$

- *H* is the head dimension;
- n_H is the number of heads.
- d_{tp} is the tensor parallel degree: $d_{tp} \le n_H$.

Computation	Input	Output
$A = \text{Out } W^1$	Out $\in \mathbb{R}^{B \times L \times D}$, $W^1 \in \mathbb{R}^{D \times \frac{4D}{d_{tp}}}$	$A \in \mathbb{R}^{B \times L \times \frac{4D}{\operatorname{d}_{tp}}}$
$A' = \operatorname{relu}(A)$	$A \in \mathbb{R}^{B \times L \times \frac{4D}{d_{tp}}}$	$A' \in \mathbb{R}^{B \times L \times \frac{4D}{\mathrm{d}_{tp}}}$
$x' = A'W^2$	$A' \in \mathbb{R}^{B \times L \times \frac{4D}{d_{tp}}}, W^2 \in \mathbb{R}^{\frac{4D}{d_{tp}} \times D}$	$x' \in \mathbb{R}^{B \times L \times D}$
AllReduce(x')	$x' \in \mathbb{R}^{B \times L \times D}$	$x' \in \mathbb{R}^{B \times L \times D}$

Tensor Model Parallelism in Megatron-LM

https://github.com/NVIDIA/Megatron-LM

Entrance of the Training Scripts

```
model = GPTModel(
    config=config,
    transformer_layer_spec=transformer_layer_spec,
    vocab_size=args.padded_vocab_size,
    max sequence length=args.max position embeddings,
    pre_process=pre_process,
    post_process=post_process,
    fp16_lm_cross_entropy=args.fp16_lm_cross_entropy,
    parallel_output=True,
    share_embeddings_and_output_weights=not args.untie_embeddings_and_output_weights,
    position_embedding_type=args.position_embedding_type,
    rotary_percent=args.rotary_percent,
```

https://github.com/NVIDIA/Megatron-LM/blob/main/pretrain_gpt.py#L60


```
GPT_ARGS="
    --tensor-model-parallel-size 2 \
    --pipeline-model-parallel-size 2 \
    --sequence-parallel \
    --num-layers 24 \
    --hidden-size 1024 \
    --num-attention-heads 16 \
   --seq-length 1024 \
    --max-position-embeddings 1024 \
    --micro-batch-size 4 \
    --global-batch-size 16 \
    --lr 0.00015 \
    --train-iters 500000 \
    --lr-decay-iters 320000 \
    --lr-decay-style cosine \
    --min-lr 1.0e-5 \
    --weight-decay 1e-2 \
    --lr-warmup-fraction .01 \
    --clip-grad 1.0 \
    --fp16
```

Parallel Strategies

- Data Parallelism:
 - **Memory issue**: each device needs to maintain <u>a complete copy of the model</u> (parameters, gradients, and optimizer status).
 - Statistical efficiency: if the global batch size is too large, it may affect the convergence rate
- Pipeline Parallelism:
 - **Bubble overhead:** the pipeline parallelism efficiency decreases as the number of stages increases.
- Tensor model parallelism:
 - Limited to transformer architectures.
 - Communication intensive: each TransformerBlock requests two AllReduces in the forward pass and two AllReduces in the backward pass.

Zero Redundancy Optimizer (ZeRO)

• Core design idea:

- Reduce the memory footprint per device for data-parallel training.
- Optimize the memory footprint:
 - Model parameters;
 - Gradients;
 - Optimizer status.

- ψ is the total number of parameters;
- *K* denotes the memory multiplier of optimizer states;
- N_d denotes the parallel degree.

• ZeRO Stage-1 Pos:

- The optimizer states are partitioned across the processes, so that each process updates only its partition.
- Same communication volume as data parallelism.

• ZeRO Stage-2 Pos+g:

- The reduced gradients for updating the model weights are also partitioned such that each process retains only the gradients corresponding to its portion of the optimizer states.
- Same communication volume as data parallelism.

• ZeRO Stage-3 Pos+g+p:

- The model parameters are partitioned across the processes. ZeRO-3 will automatically collect and partition them during the forward and backward passes.
- 50% increase in communication volume (when compared with data parallelism).

ZeRO Animation Illustration

ZeRO 4-way data parallel training

Using:

- P_{os} (Optimizer state)
- P_g (Gradient)
- P_p (Parameters)

- FullyShardedDataParallel (FSDP) is the corresponding implementation of ZeRO-S3 in PyTroch:
 - FSDP is a type of data parallelism that shards model parameters, optimizer states and gradients across DDP ranks.
 - When training with FSDP, the GPU memory footprint is smaller than when training with DDP across all workers.
 - Come with the cost of increased communication volume.
 - The communication overhead is reduced by internal optimizations like overlapping communication and computation.

FSDP in PyTorch

• In construction:

• Shard model parameters and each rank only keeps its own shard.

• In forward pass:

- Run AllGather to collect all shards from all ranks to recover the full parameter in this FSDP unit;
- Run forward computation;
- Discard parameter shards it has just collected.

• In backward pass:

- Run AllGather to collect all shards from all ranks to recover the full parameter in this FSDP unit;
- Run backward computation.
- Run ReduceScatter to sync gradients;
- Discard parameters.

FSDP in PyTorch

- FSDP decomposes the DDP gradient AllReduce into ReduceScatter and AllGather.
- During the backward pass, FSDP reduces and scatters gradients, ensuring that each rank possesses a shard of the gradients.
- Then FSDP updates the corresponding shard of the parameters in the optimizer step.
- In the subsequent forward pass, FSDP performs an AllGather operation to collect and combine the updated parameter shards.

FSDP in PyTorch

PyTorch FSDP Practice

FSDP API

FULLYSHARDEDDATAPARALLEL

A wrapper for sharding module parameters across data parallel workers.

This is inspired by Xu et al. as well as the ZeRO Stage 3 from DeepSpeed. FullyShardedDataParallel is commonly shortened to FSDP.

Example:

```
>>> import torch
>>> from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
>>> torch.cuda.set_device(device_id)
>>> sharded_module = FSDP(my_module)
>>> optim = torch.optim.Adam(sharded_module.parameters(), lr=0.0001)
>>> x = sharded_module(x, y=3, z=torch.Tensor([1]))
>>> loss = x.sum()
>>> loss.backward()
>>> optim.step()
```

Using FSDP

Use FSDP API

```
from torch.distributed.fsdp import (
   FullyShardedDataParallel,
   CPUOffload,
from torch.distributed.fsdp.wrap import (
   default auto wrap policy,
import torch.nn as nn
class model(nn.Module):
   def init (self):
       super().__init__()
       self.layer1 = nn.Linear(8, 4)
       self.layer2 = nn.Linear(4, 16)
       self.layer3 = nn.Linear(16, 4)
#model = DistributedDataParallel(model())
fsdp model = FullyShardedDataParallel(
   model(),
  fsdp auto wrap policy=default auto wrap policy,
   cpu_offload=CPUOffload(offload_params=True),
```

References

- https://huggingface.co/transformers/v4.9.2/parallelism.html
- https://arxiv.org/abs/2104.04473
- https://github.com/NVIDIA/Megatron-LM/tree/main
- https://arxiv.org/pdf/1910.02054.pdf
- https://deepspeed.readthedocs.io/en/latest/zero3.html
- https://pytorch.org/tutorials/intermediate/FSDP_tutorial.html