Table 1

 Marks
 10 - 20
 20 - 30
 30 - 40
 40 - 50
 50 - 60
 60 - 70
 70 - 80

 No. of students
 12
 30
 a
 65
 b
 25
 18

Given that the median mark is 46, determine the:

12 18 25 36 65 9 4

- (i) values of a and b;
- (ii) mean;
- (iii) mode.

(10 marks)

(b) Given that:

$$\Sigma x = 10$$
 $\Sigma y = 15$ $\Sigma xy = 38$ $\Sigma x^2 = 50$ $\Sigma y^2 = 86$ $\Sigma x = 15$

Determine the:

- (i) Karl Pearson's correlation coefficient;
- (ii) least squares regression line of y on x;
- (iii) least squares regression line of x on y.

(10 marks)

- (b) An amplifier has a gain A = 100, input resistance $Ri = 2K\Omega$ and output resistance $Ro = 40 K\Omega$. Determine the following when it is connected as a voltage-series negative feedback amplifier with a feedback factor $\beta = \frac{1}{20}$:
 - (i) gain;
 - (ii) input resistance;
 - (iii) output resistance;
 - (iv) reduction in distortion;
 - (v) percentage change in gain with feedback if the gain without feedback changes by 20%.

(10 marks)

- 3. (a) (i) Define the following with respect to operational amplifiers:
 - (I) input offset voltage;
 - (II) slew rate;
 - (III) common-mode voltage gain.
 - (ii) Figure 2 shows a circuit diagram of a first-order low-pass filter. Determine the:
 - (I) voltage gain;
 - (II) cutoff frequency.

(7 marks)

- (b) Table 1 shows the data of the gain/frequency characteristic of a two-stage tuned radio frequency amplifier.
 - (i) Plot, on the same axis, the gain/frequency curves for:
 - (I) single stage;
 - (II) two stages.
 - (ii) From the curves, determine the bandwidth of the single stage and the two stage

SECTION A: ANALOGUE ELECTRONICS II

Answer any TWO questions from this section.

- 1. (a) (i) State two advantages of a silicon controlled switch (SCS) over a silicon controlled rectifier (SCR).
 - (ii) Figure 1 shows a circuit diagram of an alarm system employing a silicon controlled switch. Describe its operation.

- (b) With the aid of a circuit diagram, describe the operation of a discrete-component bistable multivibrator. (8 marks)
- (c) An LED has the following ratings: power output $P_0 = 0.42$ mW, forward current $I_F = 80$ mA and forward voltage $V_F = 1.22$ V. It is connected in series with a current limiting resistor and supplied from a 5V source. The light from the LED is projected onto a flat surface 2.54 cm away and forms a divergence angle of 0.524 radians. Determine the:
 - (i) value of the current limiting resistor;
 - (ii) area illuminated by the LED;
 - (iii) incident irradiance at the flat surface.

(6 marks)

- (a) (i) State the **two** conditions necessary for oscillations to be sustained in a sinusoidal oscillator.
 - (ii) With the aid of a circuit diagram, describe the operation of a blocking oscillator.

 (10 marks)

2602/202

2603/202

Table 1	950	960	970	980	990	1000					
Frequency	130				200	1000	1010	1020	1030	1040	1050
Gain of 1 stage	1.98	2.45	3.12	4.47	7.07	10	7.07	4.47	3.12	2.45	
Gain of 2 stages		5.91	9.73	19.98	50	100	50	19.98		5.91	1.98

Show that the maximum theoretical efficiency of a class-B power amplifier is 78.54%. (c) (6 marks)

SECTION B: DIGITAL ELECTRONICS

Answer any THREE questions from this section.

- Perform the following number system conversion: (a)
 - 1011101001₂ to decimal; (i)
 - EB4A₁₆ to decimal (ii)

(6 marks)

- Perform the following arithmetic operations in the given bases: (b)
 - (i) $1011_2 \times 101_2$
 - $1A8_{16} + 67B_{16}$ (ii)

(c)

(i)

(6 marks)

- Table 2 shows the ASC11 code for alphanumeric characters. Obtain the: code for the letter e_2 . (I)
 - decimal number represented by the code 0111001. (II)

(c) Figure 5 shows a circuit diagram of a weighted resistor digital-to-analog converter.

Determine the value of the output voltage, Vo. (4 marks)

Fig. 5

8. (a) (i) State the packaging density of the following ICs:

0

- (I) medium scale integration;
- (II) very large scale integration.
- (ii) With the aid of a circuit diagram, describe the operation of a two-input CMOS NOR gate.

(10 marks)

(b) Figure 6 shows a circuit diagram of a transistor switch. If $V_{be} = 0.6V$, $V_{ce(sat)} = 0.2V$ and $\beta = 50$; determine the value of the base resistance at which the transistor will saturate. (10 marks)

THIS IS THE LAST PRINTED PAGE.

3	0	1	2	3	4	5	6	7
0	NUL	DLE	SP	()	(4)	P	Navigo Javiero, consensor do A	P
1	SOH	DC1	1	1	Α	Q	В	q
2	STX	DC2	. 11	2	В	H	b	. 1
3	ETX	DC3		3	C	S	c	- %
4	EOT	DC4		4	D	T	d	
5	ENQ	NAK	%	5	E	U	e	u
6	ACK	SYN	&	6	f 2	v		. v
7	BEL	ETB	1.	7	G.	w	g	w
8	BS	CAN	(8	н	x	h	x
9	HT	EM)	9	1	Y	. i	У
A	LF	SUB		-1	J	Z	j	z
В	VT	ESC			K	1	k	
C	FF	FS	- 1,7	<	L	1	1	. ;
0	CR	GS		75	M	1	m	}
Ε	so	RS		>	N	^	n	
7	SI	US	1	?	O	-	0	DI

(ii) Add 647₁₀ to 492₁₀ in the 8421 BCD code.

(8 marks)

- 5. (a) (i) Define the following with respect to edge-triggered flip-flops:
 - (I) set-up time;
 - (II) hold-up time.
 - (ii) With the aid of a logic diagram, describe the operation of a master-slave JK flip-flop when the clock is at logic 1 and makes a transition to logic 0. Assume the circuit is initially reset and the inputs J = K = 1.

(9 marks)

- (b) (i) State two applications of binary counters.
 - (ii) Figure 3 shows a logic diagram of a binary counter. Describe its operation for three clock pulses and draw the timing diagrams.

(8 marks)

(c) Draw the state diagram of a 4-bit Johnsons counter assuming that all the stages are in the '0' state. (3 marks)

/203, 2602/202 /202, 2603/202 ov. 2016 6. (a) Using Boolean algebra, simplify the equation

$$F = \overline{\overline{A}(B + \overline{C})}(A + \overline{B} + C)(\overline{\overline{A} \overline{B} \overline{C}})$$

(5 marks)

- (b) A digital vending machine is to dispense beverage at a time as indicated.
 - Tea and milk
 - Coffee and milk
 - Tea and sugar
 - Coffee and sugar
 - Tea, milk and sugar
 - Coffee, milk and sugar
 - (i) Draw the truth table for the vending machine operation.
 - (ii) Obtain the logic expression from the truth table and simplify.
 - (iii) Implement the simplified expression in b(ii).

(10 marks)

(c) Figure 4 shows a logic diagram of a serial adder/subtractor connected to add two 4-bit binary numbers. Outline the sequence of adding the two numbers. (5 marks)

- Fig. 4
- 7. (a) (i) Distinguish between random access memory (RAM) and read only memory (ROM).
 - (ii) With the aid of a circuit diagram, explain how a programmable ROM is programmed.

(8 marks)

(b) With the aid of a labelled block diagram, describe the operation of a ramp-type analog-to-digital converter. (8 marks)