

Retiming

Shao-Yi Chien

Introduction (1/2)

- Retiming
 - □ A transformation technique used to change the locations of delay elements in circuit without affecting the input/output characteristics

Introduction (2/2)

- Applications of retiming
 - Reducing the clock period
 - □ Reducing the number of registers
 - □ Reducing the power consumption
 - Logic synthesis

```
Modern synthesis tool has retiming incoporated in tool-set, like pipelining.

However, designers shall have the ability to do retiming themselves, ecspecially in higher-larel designs
```


Reducing the Clock Period

Critical path=3u.t.
Min. clock period=3u.t.

Critical path=2u.t.
Min. clock period=2u.t.

Reducing the Number of Registers

Number of registers: 4

Number of registers: 5

Reducing the Power

glitching inevitably happen in combinational circuits. If the comb. Consumption girtching inevitably happens to drive a lot of inputs. The apacter would continuously charge/discharge, wasting power

Placing registers at the inputs of nodes with large capacitances can reduce the switching activities at these nodes

Large power consumption due to glitch

Lower power consumption

Quantitative Description of Retiming

- Map circuit $G \rightarrow G_r$
- Retiming can be presented with r(V), V is one of the nodes in the circuit
- For an edge $U\stackrel{e}{ o} V$ Destination $w_r(e)=w(e)+r(V)-r(U)$
 - □ w(e): weight (delay) of the edge e in the origin circuit
 - \square w_r(e): weight of the edge e in the retimed circuit

An Example (1/2) $W_r(e) = W(e) + r(v) - r(a)$

Origin DFG

$$r(1) = r(2) = r(3) = r(4) = 0$$

Retimed DFG with

$$r(1)=0$$

$$r(2)=1$$

$$r(3)=0$$

$$r(4)=0$$

DSP in VLSI Design

An Example (2/2)

$$w_r(2 \xrightarrow{e} 1) = w(2 \xrightarrow{e} 1) + r(1) - r(2)$$

= 1 + 0 - 1 = 0

A retiming solution is feasible if

$$w_r(e) \ge 0 \quad \forall e \in G$$

Properties of Retiming (1/2)

The weight of the retimed path

$$p = V_0 \stackrel{e_0}{\to} V_1 \stackrel{e_1}{\to} \cdots \stackrel{e_{k-1}}{\to} V_k$$
 is given by $w_r(p) = w(p) + r(V_k) - r(V_0)$

□ Prof:

$$w_{r}(p) = \sum_{i=0}^{k-1} w_{r}(e_{i})$$

$$= \sum_{i=0}^{k-1} (w(e_{i}) + r(V_{i+1}) - r(V_{i}))$$

$$= \sum_{i=0}^{k-1} w(e_{i}) + \left(\sum_{i=0}^{k-1} r(V_{i+1}) - \sum_{i=0}^{k-1} r(V_{i})\right)$$

$$= w(p) + r(V_{k}) - r(V_{0}).$$

Properties of Retiming (2/2)

- Retiming does not change the number of delays in a cycle
- Retiming does not alter the iteration bound in a DFG because it cannot change the number of delays in a cycle
- Adding the constant value j to the retiming value of each node does not change the mapping from G to G_r

$$w_r(e) = w(e) + (r(V) + j) - (r(U) + j) = w(e) + r(V) - r(U)$$

Solving Systems of Inequalities (1/3)

 Given a set of M equalities in N variables, use shortest path algorithm to solve the results

Solving Systems of Inequalities (2/3)

- Step 1: draw a constraint graph
 - □ Draw the node i for each of the N variables r_i, i=1,2,...,N
 - □ Draw the node N+1
 - □ For each inequality r_i-r_j<=k, draw the edge j→i from the node j to node i with length k</p>
 - □ For each node i, i=1,2,...n, draw the edge N+1→i from the node N+1 to the node i with length 0

Solving Systems of Inequalities (3/3)

- Step 2: solve using a shortest path algorithm
 - The system of inequalities has a solution if and only if the constraint graph contains no negative cycles
 - □ If a solution exists, one solution is where r_i is the minimum-length path from the node N+1 to the node i

Example

$$r_1 - r_2 \le 0$$
 $r_3 - r_1 \le 5$
 $r_4 - r_1 \le 4$
 $r_4 - r_3 \le -1$
 $r_3 - r_2 \le 2$.

Bellman-Ford shortest path algorithm:

$$\mathbf{R}^{(6)} = \begin{bmatrix} \infty & \infty & 5 & 4 & \infty \\ 0 & \infty & 2 & 1 & \infty \\ \infty & \infty & \infty & -1 & \infty \\ \infty & \infty & \infty & \infty & \infty \\ 0 & 0 & 0 & -1 & \infty \end{bmatrix}$$

$$r_1=0, r_2=0, r_3=0, r_4=-1$$

Retiming Techniques

- Cutset retiming and pipelining
- Retiming for clock period minimization
- Retiming for register minimization

```
Hardware Architect would like to instinctly provide retiming/pipeling solutions.
While EDA
```


Cutset Retiming

- A special case of retiming that only affects the weights of the edges in the cutset
- For the disconnected subgraph G1 and G2
 - □ Adding k delays to each edge from G1 to G2
 - □ Removing k delays from each edge from G2 to G1

An Example of Cutset Retiming

The register count within a circle does not change.

K=1

DSP in VLSI Design

Shao-Yi Chien

Feasibility of Cutset Retiming

■ For each edge from G1 to G2

$$w_r(e_{1,2}) \ge 0 \Rightarrow w(e_{1,2}) + k \ge 0$$

For each edge from G2 to G1

$$w_r(e_{2,1}) \ge 0 \Rightarrow w(e_{2,1}) - k \ge 0$$

$$-\min_{G_1 \stackrel{e}{\to} G_2} \{w(e)\} \le k \le \min_{G_2 \stackrel{e}{\to} G_1} \{w(e)\}$$

Special Case of Cutset Retiming: Single Node Cutset

- Choose a node as a cutset
- Substract one delay from each edge outgoing from the node
- Add one delay from each edge incident into the node

DSP in VLSI Design

Shao-Yi Chien

Special Case of Cutset Retiming: Pipelining

Pipeline is actually a special case to retiming where happens in feed-forward cutset

Special Case: Combining with Slow-Down (1/2)

- Create N-slow version of the DFG first
 - □ Replace each delay element with N delays
- In an N-slow system, N-1 null operations (or 0 samples) must be interleaved after each useful signal sample to preserve the functionality

Special Case: Combining with Slow-Down (2/2)

Assume addition: 1 u.t., multiplication: 2 u.t.
Critical path is 105 u.t.
Minimum sample period is 105 u.t.

2-slow version

Retimed version. The critical path is 6 u.t. The minumum sample period is 12 u.t.

Example: Reduce the Critical Path of a Recursive DFG

For the IIR filter y(n+1)=ay(n)+bu(n) $T_{\rm M}$ =3u.t., T_{Δ} =1u.t.

Critical path=? 4 a.t
Iteration bound=? 4/1 = 4

■ Can we reduce the sampling period to 2u.t.? No.

Example: Reduce the Critical Path of a Recursive DFG

- Employ look-ahead transformation
 - Consider more than one iterations

```
y(n+2) = ay(n+1) + bu(n+1)
= a[ay(n)+bu(n)] + bu(n+1)
= a^2y(n)+abu(n)+bu(n+1)
```

```
Given a DFG, we cannot alter its iteration bound by any retiming techniques.

3) Redesign the algorithm.
```


Example: Reduce the Critical Path of a Recursive DFG

- Critical path=? 5
- Iteration bound=? ⁴/₂ = ²
- Can we reduce the sampling period to 2u.t.? Tes.

DSP in VLSI Design

Example: Reduce the Critical Path of a Recursive DFG

- Critical path=?
- Iteration bound=?
- Can we reduce the sampling period to 2u.t.?

DSP in VLSI Design

Shao-Yi Chien

Remarks

Retiming for Clock Period Minimization (1/8)

Minimum feasible clock period or critical path

$$\Phi(G) = \max\{t(p) : w(p) = 0\}.$$

- Define two quantities, U→V
 - Minimum number of registers of U→V

■ Maximum computation time of U→V

$$D(U,V) = \max\{t(p): U \overset{p}{\leadsto} V \text{ and } w(p) = W(U,V)\}$$
 DSP in VLSI Design Shao-Yi Chien W properties of D(U,V) = $\max\{(6,9)^{-2}\}$ 20

Retiming for Clock Period Minimization (2/8)

- Method to compute W(U,V) and D(U,V)
 - 1. Let $M = t_{max}n$, where t_{max} is the maximum computation time of the nodes in G and n is the number of nodes in G.
 - 2. Form a new graph G' which is the same as G except the edge weights are replaced by $w'(e) = \underbrace{Mw(e) - t(U)}_{\text{nege. delay tem. A # regs. into a term.}} for all edges <math>U \stackrel{e}{\to} V$.

 3. Solve the all-pairs shortest path problem on G'. Let S'_{UV} be the shortest
 - path from U to V.
 - 4. If $U \neq V$, then $W(U,V) = \left\lceil \frac{S'_{UV}}{M} \right\rceil$ and $D(U,V) = MW(U,V) S'_{UV} +$ t(V). If U=V, then W(U,V)=0 and D(U,V)=t(U).

Retiming for Clock Period Minimization (3/8)

Retiming for Clock Period Minimization (4/8)

Shortest path a >V

Sound

1	dust.									
(S'_{UV}	1	2	3	4	W(U,V)	1	2	3	4
	1	12	5	7	$\overline{15}$	1	0	1	1	2
le	2	7	12	14	22	2	1	0	2	3
	3	5	-2	12	20	3	1	0	0	3
	4	5	-2	12	20	4	1	0	2	0
		1					•		3	

D(U,V)	1	2	3	4
1	1	4	3	$\overline{3}$
2	2	1		4
3	4	3	2	6
Δ	4	3	6	2

$$D(U,V) = MW(U,V) - SW' + t(V)$$

some wmp, time

Retiming for Clock Period Minimization (5/8)

For an edge $U\stackrel{e}{ ightharpoonup}V$ Destination Source $w_r(e)=w(e)+r(V)-r(U)$

Constraints

If the desired clock period is c

For an edge
$$U \stackrel{e}{=} V$$
 $W_r(e) = W(e) + r(V) - r(U)$

feasibility constraint: $W_r(e) \ge 0$
 $= r(U) - r(V) \le W(e)$

- 1. (feasibility constraint) $r(U) r(V) \le w(e)$ for every edge $U \stackrel{e}{\to} V$ of G. and
- 2. (critical path constraint) $r(U) r(V) \leq W(U, V) 1$ for all vertices U, V in G such that D(U, V) > c.

$$\left(\mathcal{V}_{r}(U_{j}V) = \mathcal{W}(U_{j}V) + r(V) - r(U) > 1 \right)$$

Retiming for Clock Period (1) Minimization (6/8)

$$r(1) - r(3) \le 1$$
 $r(1) - r(4) \le 2$
 $r(2) - r(1) \le 1$
 $r(3) - r(2) \le 0$
 $r(4) - r(2) \le 0$

$$r(1) - r(2) \leq 0$$
 $r(2) - r(3) \leq 1$
 $r(2) - r(4) \leq 2$
 $r(3) - r(1) \leq 0$
 $r(3) - r(4) \leq 2$
 $r(4) - r(4$

Critical path constraints

 $r(4) - r(3) \leq 1.$

I (1) (2		D 3	(2)	2D
0		(4)	(2)	
1	find D	(U)	v) <i>;</i>	· 3	
2	r(u)-r(v)				l
0	$rac{D(U,V)}{1}$	$\frac{1}{2}$	2 4 1	3 4	$\frac{4}{3}$

Retiming for Clock Period Minimization (7/8) Slove the inequalities by Shortest Path Algorithm

How about c=2?

Constraint graph

r(1)=r(2)=r(3)=r(4)=0

DSP in VLSI Design

Shao-Yi Chien

Retiming for Clock Period Minimization (8/8) $\frac{D(U,V)}{1}$

■ If c=2

$$r(1) - r(3) \le 1$$

 $r(1) - r(4) \le 2$
 $r(2) - r(1) \le 1$
 $r(3) - r(2) \le 0$
 $r(4) - r(2) \le 0$

$$r(1) - r(2) \le 0$$

$$r(1) - r(3) \le 0$$

$$r(1) - r(4) \le 1$$

$$r(2) - r(3) \le 1$$

$$r(2) - r(4) \le 2$$

$$r(3) - r(1) \le 0$$

$$r(3) - r(2) \le -1$$

$$r(3) - r(4) \le 2$$

$$r(4) - r(1) \le 0$$

$$r(4) - r(2) \le -1$$

$$r(4) - r(3) \le 1$$

Feasibility constraints

Critical path constraints