<u>Example:</u> We analyse production functions for 81 manufacturing companies in the computer manufacturing industry for a given year (the data are provided in Stata Data file production.dta, while the programming code is given in Stata Do file production-commands-105.do). We have cross-section data available for the following variables:

- value added as a proxy for the product (Q; in 1,000 monetary units);
- \bullet average number of employed workers as a proxy for labour (L);
- sum of tangible and intangible assets as a proxy for capital (K; in 1,000 monetary units).
- a) Explore the data using different Stata commands. By using the scatter plots, examine the relationships of the linear and the Cobb-Douglas production function.
- b) Estimate the linear and the Cobb-Douglas production function by the least squares estimator. Interpret the results of both models. Also, calculate the regression coefficients from the computer printouts manually.
- c) Study direct, indirect and total effects of explanatory variables on the dependent variable for both production functions. What do the regression coefficients b_i represent?
- d) Study the validity of the Frisch-Waugh-Lovell theorem on the case of explanatory variable capital in the model of linear production function.

Computer printout of the results in Stata:

a) Data exploration

. describe

Contains data from production.dta

obs: 81 vars: 4 size: 810

variable name	_	display format	value label	variable label
n q 1 k	long byte	%8.0g %8.0g %8.0g %8.0g		Observation Value added Average number of employed workers Tangible and intangible assets

Sorted by:

. inspect q l k

q:	: Value added in 1000 monetary units			monetary units	Number of Observations			
						Total	Integers	Nonintegers
	#				Negative	_	_	-
	#				Zero	_	_	-
	#				Positive	81	81	_
	#							
- 1	#				Total	81	81	_
	# .				Missing	_		
+								
151	4		23	312943		81		
(81 un	ique	value	es)				

1:	Average number of	employed workers	Nun	ervations	
			Total	Integers	Nonintegers
	#	Negative	_	_	_
	#	Zero	_	_	_
	#	Positive	81	81	_
	#				
	#	Total	81	81	_
	#	Missing	_		
+		· 			
1		58	81		
	(22 unique values)				

k:	Та	ngibl	e a	nd	inta	ngible	assets	in 1,	.000	Nun	ber of O	bser	vations
										Total	Integer	 s	Nonintegers
- 1	#						Negati	ive		-	_		_
- 1	#						Zero			_	_		_
	#						Posit	ive		81	81		_
- 1	#												
	#						Total			81	81		_
	#						Missir	ng		-			
+													
38					3442	97				81			

(81 unique values)

. sum

Variable	Obs	Mean	Std. Dev.	Min	Max
n	81	41	23.52658	1	81
q	81	180519.3	388072.4	1514	2312943
1	81	10.39506	14.81442	1	58
k	81	40226.93	71409.35	38	344297

. list q l k

	+		+
	d d	1	k
1. 2. 3. 4.	1514 2106 2758 4117	1 1 1 1	43 43 266 639 38
5.	1 4243	1	656 I
6. 7. 8. 9.	4553 4649 4963 5749 5807	1 1 1 1 2	1597 287 287 560 962 2499
11. 12.	 6267 6353	1 2	418 855

. . .

74.	544607	48	344297	
75.	580309	30 	70084 	 -
76.	798583	40	187301	i
77.	864224	25	124547	
78.	965788	51	161713	
79.	1.5e+06	51	117635	
80.	1.7e+06	53	175943	
				٠
81.	2.3e+06	31	313144	

- . sort q
- . gen lq=log(q)
 . gen ll=log(l)
- . gen lk=log(k)

. twoway scatter q 1

. twoway scatter q k

. twoway scatter lq ll

. twoway scatter lq lk

b) Estimation of production functions

. regress q 1 k

Source	SS	df	MS		Number of obs	
Model Residual 		2 3.46 78 6.55	51e+10		F(2, 78) Prob > F R-squared Adj R-squared Root MSE	= 0.0000 = 0.5756
d	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
l k _cons	9687.383 2.27941 -11875.29	3640.852 .7553228 34865.13	2.66 3.02 -0.34	0.009 0.003 0.734	2439.003 .775678 -81286.43	16935.76 3.783142 57535.85

. gen cons=1

```
. mkmat cons 1 k, matrix(xlin)
```

. matrix list xlin

- . matrix xxlin=(xlin)'*xlin
- . matrix list xxlin

- . mkmat q, matrix(ylin)
- . matrix list ylin

```
ylin[81,1]
q
r1 1514
r2 2106
```

r81 2312943

- . matrix xylin=(xlin)'*ylin
- . matrix list xylin

xylin[3,1] q cons 14622065 1 4.856e+08 k 2.213e+12

- . matrix xxlininv=invsym(xxlin)
- . matrix list xxlininv

- . matrix blin=xxlininv*xylin
- . matrix list blin

blin[3,1] q cons -11875.29 1 9687.3835 k 2.2794101

. regress lq ll lk

 Source	SS	df		MS	Number of obs F(2, 78)		81 190.75
Model	178.261263 36.44752	2	89.13	306313 275898	Prob > F R-squared	=	0.0000 0.8302
 Total	214.708783	80	2.683	385978	Adj R-squared Root MSE		
 lq				t	 [95% Conf.	In	terval]
11				0 01	7257007	1	203206

lq | Coef. Std. Err. t P>|t| [95% Conf. Interval]

11 | .9645479 .1199229 8.04 0.000 .7257997 1.203296

1k | .1885438 .0673358 2.80 0.006 .0544886 .322599

_cons | 7.546026 .4617465 16.34 0.000 6.62676 8.465293

. mkmat cons ll lk, matrix(xlog)

. matrix list xlog

xlog[81,3]

	cons	11	lk
r1	1	0	3.7612002
r2	1	0	5.5834961

. . .

r81 1 3.4339871 12.654418

- . matrix xxlog=(xlog)'*xlog
- . matrix list xxlog

- . mkmat lq, matrix(ylog)
- . matrix list ylog

ylog[81,1] lq r1 7.3225102 r2 7.6525459

r81 14.654032

- . matrix xylog=(xlog)'*ylog
- . matrix list xylog

- . matrix xxloginv=invsym(xxlog)
- . matrix list xxloginv

. matrix blog=xxloginv*xylog

. matrix list blog

blog[3,1]

lq cons 7.5460264 ll .96454793 lk .18854381

c) Direct, indirect and total effects

. regress 1 k

Source	SS	df	MS		Number of obs F(1, 79)	= 81 = 201.49
Model Residual	12612.2633	1	12612.2633		Prob > F R-squared	= 0.0000 = 0.7183
Total	17557.358	80	219.466975		Adj R-squared Root MSE	= 0.7148
1	Coef.	Std. E	Err. t	P> t	[95% Conf.	Interval]
k _cons		.00001		0.000	.0001512 1.310571	.0002005

. predict resl, res

. regress q resl k

Source	SS	df	MS		Number of obs F(2, 78)	
Model Residual	6.9350e+12 5.1130e+12	2 3.46 ⁻ 78 6.555	75e+12 51e+10		Prob > F R-squared Adj R-squared	= 0.0000 = 0.5756
Total	1.2048e+13	80 1.506	60e+11		Root MSE	= 2.6e+05
d	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
resl k _cons	9687.383 3.982756 20305.28	3640.852 .4008578 32700.13	2.66 9.94 0.62	0.009 0.000 0.536	2439.003 3.18471 -44795.69	16935.76 4.780803 85406.25

. regress q 1 k

Source		df	MS		Number of obs F(2, 78)	= 81 = 52.90	
Model Residual	6.9350e+12	2 3. 78 6.	4675e+12 5551e+10		Prob > F R-squared Adj R-squared	= 0.0000 = 0.5756	
Total	1.2048e+13	80 1.	5060e+11		Root MSE	= 2.6e+0	
d		Std. Err	t. t	P> t	[95% Conf.	Interval]	
l k _cons	9687.383 2.27941	3640.852 .7553228 34865.13	3.02	0.009 0.003 0.734	2439.003 .775678 -81286.43	16935.76 3.783142 57535.85	

. regress k l

	SS 	df			Number of obs F(1, 79)	= 81 = 201.49
Model Residual	2.9304e+11 1.1490e+11	1 2 79 1	.9304e+11 .4544e+09		Prob > F R-squared Adj R-squared	= 0.0000 = 0.7183
•	4.0794e+11				Root MSE	= 38137
k	Coef.				[95% Conf.	Interval]
1	4085.427	287.815 5187.19	8 14.19	0.000	3512.544 -12566.19	4658.31 8083.516

. predict resk, res

. regress q l resk

Source	SS	df	MS		Number of obs F(2, 78)		81 52.90
Model Residual	6.9350e+12 5.1130e+12 1.2048e+13	78 	3.4675e+12 6.5551e+10 1.5060e+11		Prob > F R-squared Adj R-squared Root MSE	= = =	0.0000 0.5756 0.5647 2.6e+05
d	Coef.	Std. E		P> t		In	terval]
l resk _cons	18999.75 2.27941 -16984.22	1932.2 .75532 348	239 9.83 228 3.02	0.000	15152.95 .7756781 -86313.49	3	2846.54 .783142 2345.05

. regress q 1 k

Source	SS	df	MS		Number of obs F(2, 78)	
Model Residual	6.9350e+12	2 3.46 78 6.55	75e+12 51e+10		Prob > F R-squared Adj R-squared	= 0.0000 = 0.5756
Total	1.2048e+13	80 1.50	60e+11		Root MSE	= 2.6e+05
d	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
l k cons	9687.383 2.27941 -11875.29	3640.852 .7553228 34865.13	2.66 3.02 -0.34	0.009 0.003 0.734	2439.003 .775678 -81286.43	16935.76 3.783142 57535.85

d) Frisch-Waugh-Lovell theorem

. regress q 1 k

Source	SS	df	MS	Number of obs = 81 F(2, 78) = 52.90
	6.9350e+12 5.1130e+12		3.4675e+12 6.5551e+10	Prob > F = 0.0000 R-squared = 0.5756
+-	1.2048e+13			Adj R-squared = 0.5647 Root MSE = 2.6e+05

d	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
'	9687.383 2.27941 -11875.29		3.02	0.009 0.003 0.734	2439.003 .775678 -81286.43	16935.76 3.783142 57535.85

. predict resid1, res

. regress q l

Source		df	MS		Number of obs	
Model	6.3380e+12 5.7100e+12	1 79	6.3380e+12 7.2278e+10		F(1, 79) Prob > F R-squared Adj R-squared	
			1.5060e+11		Root MSE	= 2.7e+05
d	Coef.	Std. E	 rr. t	P> t	[95% Conf.	Interval]
1	18999.75 -16984.22	2028.9		0.000	14961.2 -89769.45	23038.3 55801.01

. predict resqfw, res

. regress k l

	SS		MS		Number of obs F(1, 79)		81 201.49
Model Residual	2.9304e+11 1.1490e+11	1 79	2.9304e+11 1.4544e+09		Prob > F R-squared Adj R-squared	=	0.0000 0.7183 0.7148
·	4.0794e+11				Root MSE		38137
· ·	Coef.				[95% Conf.	In	terval]
1	4085.427 -2241.338	287.81	58 14.19	0.000	3512.544 -12566.19		4658.31

. predict reskfw, res

. regress resqfw reskfw

Source	SS 	df	MS		Number of obs F(1, 79)	
Model Residual		1 5.96 79 6.47	98e+11 21e+10		Prob > F R-squared Adj R-squared	= 0.0032 = 0.1046
Total		80 7.13			Root MSE	= 2.5e+05
resqfw	Coef.	Std. Err.		P> t	[95% Conf.	Interval]
reskfw _cons	2.27941	.750527 28267.12	3.04	0.003	.7855237 -56264.3	3.773297 56264.3

. predict resid2, res

. list resid1 resid2

-		
	resid1 	resid2
3. 4.	3603.892 3687.584 3489.364 6218.29 4935.614	3603.892 3687.583 3489.364 6218.289 4935.614
8.	3100.689 6182.716 5874.438 5744.114 -7388.722	3100.688 6182.716 5874.437 5744.114 -7388.722
13.	7502.114 -3095.372 -4511.34 7905.542 -9865.388	7502.113 -3095.372 -4511.34 7905.541 -9865.387
	1406.51 10504.76 -23468.89 -30861.5 -3090.771	1406.51 10504.76 -23468.89 -30861.5 -3090.77
	 4126.923 -15702.03	4126.924 -15702.03
	-180972.1 -693306.2 141812.6	-180972.1 -693306.2 141812.6
77. 78. 79.	-3972.844 350021 114996.5 778072.3 816731.7	-3972.85 350021 114996.5 778072.3 816731.7
81.	1310726	1310726
Mean	 0010632	0011936