

CORONARY HEART DISEASE

PREDICTION DSING MACHINE LEARNING

data science

PIYA, SARBOTTAM

Introduction

Prominent causes of death

17.9 million people die annually of heart related diseases (WHO 2017)

difficult to diagnose

Diagnosis of heart

Expensive

Problem statement

Huge medical records

Difficult to comprehend

Data ignored

Clinical decisions

Objective

 Develop a predictive model of CHD using machine learning based on the demographic, comorbidity, vital sign and some laboratory investigation data

Audience

- Healthcare professional
- People associated with high risk factor

Dataset

 Original cohort dataset from Framingham heart study (FHS)

Demographic information

• Gender, Age And Education

Comorbidity

 Blood Pressure, Stroke, Hypertension, Diabetes, Smoking Habit

Vital Statistics

• Systolic Blood Pressure, Diastolic Blood Pressure, Body Mass Index (BMI), Heart Rate

Lab Investigation

- Total cholesterol level
- Glucose level

Data wrangling

- ♦ No duplicate rows
- **♦ 4240 rows**
- ♦ 3658 rows left after removing missing data

Exploratory data analysis

Target variables

- Class imbalance in the target variables
- Approximately, 5.5-fold higher dataset for no CHD compared to CHD

Categorical features

Chi-square test showed that all the categorical features except 'currentSmoker' were significantly associated with CHD

10

No BP Med

Numerical features

Correlation among variables

- None of the features were strongly correlated to CHD
- Some of the features were strongly correlated among themselves

Feature selection

Machine learning

- **⋄ Various machine learning models were evaluated**
- Grid search was done for hyperparameter tuning
- **♦ ROC-AUC** was used as a scoring metrics

Selection of best model

Algorithm	ROC-AUC score
Logistic Regression	0.732449
Naive Bayes	0.718285
Random Forest	0.717543
Gradient Boost	0.713462
KNN	0.696594
SVM	0.667709

Adjusting the Probability Threshold

beta =2,, threshold=0.162

	Precision	Recall	F1-Score	Support
No CHD	0.85	1.00	0.92	923
CHD	0.73	0.06	0.12	175
Accuracy			0.85	1098
Macro avg	0.79	0.53	0.52	1098
Weighted avg	0.83	0.85	0.79	1098

	Precision	Recall	F1-Score	Support
No CHD	0.93	0.67	0.78	923
CHD	0.30		0.42	175
Accuracy			0.68	1098
Macro avg	0.61	0.70	0.60	1098
Weighted avg	0.83	0.68	0.72	1098

Plot demonstrating F2 score, precision and recall at different thresholds

Undersampling improved the model

Beta = 2, threshold = 0.458

	Precision	Recall	F1-Score	Support
0	0.94	0.58	0.72	923
1	0.26	0.79	0.39	175
Accuracy			0.61	1098
Macro Avg	0.60	0.68	0.55	1098
Weighted Avg	0.83	0.61	0.66	1098

Oversampling with SMOTE further improved the model

Beta =2, threshold = 0.392

	Precision	Recall	F1-Score	Support
0	0.95	0.47	0.63	916
1	0.25	0.88	0.39	182
Accuracy			0.53	1098
Macro Avg	0.60	0.67	0.51	1098
Weighted Avg	0.83	0.53	0.59	1098

Will additional data improve the model?

Major findings

- Blood pressure, BMI, cholesterol, and glucose level are the key predictive features
- ♦ Logistic regression with oversampling performed the best (recall=0.8 and precision=0.28)
- Scope of future improvement

Acknowledgements

♦ I would like to thank Ben Bell for providing very helpful feedback to improve this project.

REFERENCES

CDC (2020). Heart Disease in the United States. https://www.cdc.gov/heartdisease/facts.htm. Retrieved on 1/30/2021.

World Health Organization (2017) Cardiovascular diseases (CVDs). https://www.who.int/en/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds). Retrieved on 1/30/2021.

