题目名称	graph	gcds	fight	perm	
题目类型	传统型	传统型	传统型	传统型	
输入文件名	graph.in	$graph.in \qquad gcds.in \qquad f$		perm.in	
输出文件名	graph.out	gcds.out	fight.out	perm.out	
子任务个数	3	3	无	7	
测试点个数	50	60 20		47	
时间限制	1s	1s	1s	$2\mathrm{s}$	
空间限制	128MiB	128MiB 128MiB		64MiB	
源程序文件名(C++)	graph.cpp	gcds.cpp	fight.cpp	perm.cpp	

编译选项(C++):-lm -std=c++17 -02

若无特殊说明,比对方式为逐行比对(忽略行末空格、制表符和文末回车)。

数据范围内的表格留空表示无特殊限制。

难度顺序与题目顺序无关

A (graph)

题目描述

有一个 n 个点的竞赛图(即任意不同两点间恰有一条边的有向简单图)。

接下来有m次操作,每次给定两个不同的点u,v,然后将u,v之间的边反向(即,若原来这条边是从u指向v则改为v指向u,反之亦然)。

如果在整个过程中,这个竞赛图没有成为过强连通图(即,任意时候,存在 u,v 使得从 u 开始没有到 v 的路径),那么我们称这个图是好的。

现在给定了 n, m 和这 m 次操作的 u, v。请构造出一个好的竞赛图。

若有多个好的竞赛图,输出任意一个均算对。可以证明在本题条件下有至少一个好的竞赛图。

输入格式

从文件 graph.in 中读入数据。

第一行,两个正整数 n, m。

接下来m行,第i行两个不同的正整数u,v,表示第i次操作的点对。

输出格式

输出到文件 graph. out 中。

输出 n-1 行。第 i 行包含 n-i 个数,值均为 0 或 1。

对于任意点对 $1 \le u < v \le n$, 若 u, v 间的边为 u 指向 v, 则第 u 行第 v - u 个数是 1, 否则是 0。

样例

样例输入

```
6 4
1 3
3 4
2 6
5 6
```

样例输出

```
1 0 1 1 1
0 0 0 1
1 1 1
1 1
0
```

本题比对方式为自定义校验器 (special judge)

对于所有数据,有 $1 \le n \le 400, 1 \le m \le \frac{n(n-1)}{2}$ 。

子任务编号	分值	$m \le$
1	30	n-2
2	40	$\lceil rac{3n}{2} ceil - 3$
3	30	2n - 14

B (gcds)

题目描述

给定长为 n 的正整数序列 a,求可以修改 a 中的任意一个元素,使它变为 $\leq 5 \cdot 10^5$ 的任意一个正整数时,它的 $\gcd > 1$ 的子串数量的最大值。

输入格式

从文件 gcds.in 中读入数据。

第一行,一个正整数 n。

第二行,n个正整数 a_i 。

输出格式

输出到文件 gcds.out 中。

一行,一个正整数,表示答案。

样例1

样例输入

5

4 5 10 3 7

样例输出

9

样例解释

对于样例 1, 其中一种方案是: 将 a_4 改为 70, 此时 $\gcd > 1$ 的子串有 (4),(5),(10),(70),(7),(5,10),(10,70),(70,7),(5,10,70), 共 9 个。可以证明不存在使答案更大的方案。

样例 2

见选手目录下的 $ex_data2.in$ 和 $ex_data2.out$,此样例满足子任务 2 的限制。

对于所有数据, $n \leq 5 \cdot 10^4, a_i \leq 5 \cdot 10^5$ 。

子任务编号	分值	$n \le$	$a_i \leq$	特殊性质	子任务依赖
1	15	100	100	√	
2	35		500	√	1
3	50				2

特殊性质: a_i 在范围内等概率随机生成。

C (fight)

题目描述

Yqh 的梦想是成为一名近战战士,在队友的增幅下冲锋陷阵。

Yqh 的队友 Dr. W 是一名牧师, 他有两种法术:

- 1. 增幅法术,使得 Yqh 的战斗力增加 1,但人类是有极限的,所以当 Yqh 的战斗力等于 MX时,该操作无效。
- 2. 削弱法术,使得所有敌人和队友的战斗力减少 1,当然,一个人的战斗力不能小于 0。所以当 **Yqh** 的战斗力等于 0 时,该操作无效。

我们现在已经知道了Dr.W的施法顺序,假如Yqh的初始战斗力为 V_0 时,不难得出她最后的战斗力 V_t 。

然而,对于 Yqh 而言,如果她过长时间没有接受到 Dr.W 的法术,她将获得一层法术抗性并使得 Dr.W 发的下一次法术对她无效。

形式化的来说,我们规定一个阈值 W,当一个法术的使用时间 — 上一个法术的使用时间 $\leq W$,则这个法术没有效果(但这个法术仍然会认为被使用了)

现在,你需要求出一个最大的 W,使得存在一个 V_0 , $V_t = V_S$ 。并求出在 W 最大时,使得 $V_t = V_S$ 的 V_0 的数量,其中 V_S 是我们给定的一个值。

输入格式

从文件 fight.in 中读入数据。

第一行三个整数 n, MX, V_S 。

接下来 n 行,每一行为一个字符 op 和一个整数 T_i 。

当 op = + 时,表示在 T_i 时刻时,Dr.W 释放了一次增幅法术。

当 op = - 时,表示在 T_i 时刻时,Dr.W 释放了一次削弱法术。

输出格式

输出到文件 fight. out 中。

一行,两个整数,表示最大的W和 V_0 的数量。

样例

见选手目录下的 $ex_fight1.in$ 和 $ex_fight1.out$ 。

对于 50% 的数据, $n \le 4000$ 。

对于 55% 的数据, $MX \leq 4$ 。

对于 100% 的数据, $n \leq 100000, MX \leq 5000, 0 \leq T_i \leq 10^9$ 。

D (perm)

题意描述

下文中「排列」均指1到n的排列。

两个排列 A, B 保证 $\forall i, A_i \neq B_i$ 。 求有多少个排列 C 满足 $\forall i, C_i \neq A_i, C_i \neq B_i$ 。 对 1000000007 取模。

输入格式

第一行一个正整数T表示数据组数。

对于每组数据,三行,分别为n,A,B。

输出格式

对于每组数据,一行一个整数表示答案。

样例 1

样例输入

```
1
4
2 4 1 3
1 3 2 4
```

样例输出

4

样例解释

合法的排列是 $\{3,1,4,2\}$, $\{3,2,4,1\}$, $\{4,1,3,2\}$, $\{4,2,3,1\}$ 。

样例2~8

见选手目录下的 ex_perm ?. in 和 ex_perm ?. out。

对于所有数据,保证 $1 \leq T \leq 10, 2 \leq n \leq 1000, A_i \neq B_i$ 。

子任务编号	分值	$n \le$	特殊性质	子任务依赖
1	2	10		
2	5	20		1
3	13	50		2
4	19	300		3
5	7		$A_i = B_{i \bmod n + 1}$	
6	7		$\exists k n, B_i = A_{i-1+k[i \bmod k=1]}$	
7	47			4, 5, 6