Deep Learning

Exercise 3: Universal Function Approximator

Room: **BIN-1-B.01**

Instructor: Manuel Günther

Email: guenther@ifi.uzh.ch

Office: AND 2.54

Friday, March 11, 2022

Outline

Universal Function Approximator

Outline

Universal Function Approximator

Goal of Exercise

- Implement a universal function approximator
 - → Two-layer network with logistic function as nonlinearity
- Try out how good it works for three functions
 - \rightarrow Learn from samples of three different functions

Data Samples of Three Functions

Task 1: Network

- ullet Implement 2-layer network with one input x and one output y
 - ightarrow Two fully-connected layers with weights $\Theta = (\mathbf{W}^{^{(1)}}, ec{w}^{^{(2)}})$
 - ightarrow Variable number of hidden nodes K with logistic activation function

Test 1: Test Network Outcome

- ullet What should be the output for $\mathbf{W}^{^{(1)}}=\mathbf{0}$ and $ec{w}^{^{(2)}}=ec{1}$
 - ightarrow For a given number of hidden neurons K
 - \rightarrow For any data point \vec{x}

Task 2: Gradient Implementation

- Take loss \mathcal{J}^{L_2} over dataset
- Implement function to return the gradient for a given dataset
 - \rightarrow Split gradient into $\nabla_{\mathbf{w}^{(1)}}$ and $\nabla_{\mathbf{a}\vec{\mathbf{r}}^{(2)}}$

Task 3: Gradient Descent

- Implement function to perform gradient descent
 - \rightarrow Dataset is of form $\{(\vec{x}^{[n]}, t^{[n]}) \mid n < 1 < N\}$
 - → Return optimized parameters

Task 4: Datasets

- Create different training data
 - $\rightarrow N$ random values x in the proposed range
 - \rightarrow Remember to add $x_0 = 1$ dimension
- Store as $X = \{(\vec{x}^{^{[n]}}, t^{^{[n]}}) \mid n \le 1 \le N\}$

Cosine

$$t = \cos(3x)$$

$$x \in [-2, 2]$$

Gaussian

$$t = e^{-x^2}$$

$$x \in [-2, 2]$$

Polynomial

$$t = x^5 + 3x^4 - 11x^3 - 27x^2 + 10x + 64$$

$$x \in [-4.5, 3.5]$$

Task 5: Define Parameters

• What is the appropriate number of hidden units for each function?

Task 6: Parameter Initialization

- Initialize Θ_1 , Θ_2 , Θ_3 for different functions/datasets
 - ightarrow Take weights randomly from [-1,1]

Task 7: Perform Gradient Descent

• Optimize the parameters Θ_i with according $X_i, i \in \{1, 2, 3\}$

Task 8/9: Implement and Call Plotting

- Plot data points with "x"
- Plot approximated functions in range $R = (x_{min}, x_{max})$
- Call plotting function three times

Example Results

