ENTREGA 2. GEOMETRÍA DIFERENCIAL DE CURVAS Y SUPERFICIES. 2021/2022. E. FERNÁNDEZ Y J. M. SANJURJO.

1. EJEMPLOS DE SUPERFICIES QUE NO ADMITEN PARAMETRIZACIÓN GLOBAL:

Sea X un espacio topológico con una cantidad finita de componentes conexas. Una curva continua $\gamma:[a,b]\to X$ es $\operatorname{cerrada}$ si $\gamma(a)=\gamma(b)$. Se dice que γ separa X si el número de componentes conexas $X\setminus \gamma[a,b]$ es mayor que el número de componentes de X. El $\operatorname{Teorema}$ de la Curva de Jordan establece que una curva de Jordan cerrada separa al plano \mathbb{R}^2 en dos componentes conexas disjuntas, una de ellas acotada y la otra no acotada; con frontera común la curva de Jordan .

Problema 1.i: Probar que si $U\subseteq\mathbb{R}^2$ es un abierto no vacío cualquiera con una cantidad finita de componentes conexas y $C\subseteq U$ es la imagen de una curva de Jordan cerrada entonces $U\setminus C$ tiene, al menos, una componente conexa más que U. En particular, es no conexo.

Problema 1.ii: Dibujar una superficie $S\subseteq\mathbb{R}^3$ que contenga una curva de Jordan cerrada que no separa S.

Problema 1.iii: Dibujar una superficie no compacta que no admita una parametrización global. Esto es, que no tenga un *atlas* conformado por una única carta.

Problema 1.iv: Contestar verdadero o falso a la próxima afirmación y argumentar la respuesta. La banda de Mobiüs admite una parametrización global.¹

2. Homogeniedad de superficies:

Una superficie S se dice homog'enea si su grupo de difeomorfismos actúa transitivamente sobre S. Esto es, si para cualesquiera puntos p y q en S existe un difeomorfismo $\varphi:S\to S$ de forma que $\varphi(p)=q$. Nótese que desde el punto de vista de la topolog'ia (diferencial) esto quiere decir que los puntos p y q son indistinguibles y que esto no es cierto desde el punto de vista de la geometr'ia.

En este ejercicio vamos a probar que en realidad cualquier superficie *conexa* es homogénea.

En lo sucesivo $\mathbb{B}^2(r) \subseteq \mathbb{R}^2$ denota la bola abierta de radio r > 0 en el plano centrada en el origen y $\mathbb{D}^2(r) = \overline{\mathbb{B}}^2(r)$ la bola cerrada (disco) de mismo radio y centro.

Problema 2.i: Considérese la función diferenciable $f: \mathbb{R} \to \mathbb{R}$ definida como

$$f(t) = \begin{cases} e^{-\frac{1}{t}} & \text{if } x > 0, \\ 0 & \text{if } x \le 0. \end{cases}$$

¹Cuidado que este problema NO se contesta usando los problemas anteriores. Usar que la banda de Mobiüs es no crientable.

²Esto lo vimos en clase en la parte de curvas con una función análoga.

Sean $\varepsilon, \mu > 0$ dos números reales positivos cualesquiera con $\mu < \varepsilon$. Probar que la función

$$G_{\varepsilon,\mu}: \mathbb{R}^2 \to \mathbb{R}, p \mapsto \frac{f(\varepsilon^2 - ||p||^2)}{f(\varepsilon^2 - ||p||^2) + f(||p||^2 - \mu^2)},$$

está bien definida y es diferenciable. Probar además que

- $$\begin{split} \bullet & \ 0 \leq G_{\varepsilon,\mu} \leq 1, \\ \bullet & \ G_{\varepsilon,\mu}(p) = 1 \text{ si } ||p|| \leq \mu, \\ \bullet & \ G_{\varepsilon,\mu}(p) = 0 \text{ si } ||p|| \geq \varepsilon. \end{split}$$

La función $G_{\varepsilon,\mu}$ se conoce como función meseta.

Problema 2.ii: Sean $\varepsilon, \mu > 0$ como antes fijos. Consideremos un punto cualquiera Q = $(q,0) \in \mathbb{R}^2$ en el eje X tal que $||Q|| = |q| < \mu$ y $||Q|| = |q| < \frac{1}{M}$ donde $M = \max \left| \frac{G_{\varepsilon,\mu}}{\partial x} \right|$. Sea

$$F: \mathbb{R}^2 \to \mathbb{R}^2, (x,y) \mapsto (x,y) + G_{\varepsilon,\mu}(x,y)Q = (x + G_{\varepsilon,\mu}(x,y)q,y).$$

Se pide demostrar que

- F(0,0) = Q,
- $F_{|\mathbb{R}^2 \setminus \mathbb{D}^2(\varepsilon)} = \mathrm{Id}_{|\mathbb{R}^2 \setminus \mathbb{D}^2(\varepsilon)}$, Para cada $y \in \mathbb{R}$ la función de variable real

$$f_y: \mathbb{R} \to \mathbb{R}, x \mapsto x + G_{\varepsilon,\mu}(x,y)q,$$

es estrictamente creciente y no acotada; i.e. un difeomorfismo de la recta real en sí misma. Deducir que $F: \mathbb{R}^2 \to \mathbb{R}^2$ es bivectiva.

• Sabiendo que F es biyectiva usar el Teorema de la función inversa para concluir que es un difeomorfismo.

Problema 2.iii: Sea $S \subseteq \mathbb{R}^3$ una superficie cualquiera. Sea $p \in S$ un punto cualquiera y $\varphi:\mathbb{B}^2(R)\to S$ cierta parametrización con $p=\varphi(0,0)$. Consideremos un punto cualquiera $p' \in \varphi(\mathbb{B}^2(R))$. Se pide demostrar que

- Existe una parametrización $\phi: \mathbb{R}^2 \to S$ tal que $\phi(0,0) = p$ y $\phi(q,0) = p'$ con Q = (q, 0) elegidos como en el problema anterior.³
- Existe un difeomorfismo $F: S \to S$ tal que F(p) = p' y $F_{|S \setminus \varphi(\mathbb{B}^2(R))} = \mathrm{Id}_{S \setminus \varphi(\mathbb{B}^2(R))}$.

Problema 2.iv: Concluir que fijado un punto $p \in S$ en una superficie el conjunto $\mathcal{A}_p \subseteq S$ conformado por aquellos puntos $p' \in S$ para los cuales existe un difeomorfismo $F_{p,p'}: S \to S$ S con F(p) = p' es abierto, cerrado y no vacío. Deducir que toda superficie conexa es homogénea.⁴

3. Orientabilidad de superficies:

Problema 3.i: Sea $\alpha:[a,b]\to S$ una curva continua en una superficie $S\subseteq\mathbb{R}^3$. Probar que existe una aplicación normal sobre α , esto es, una aplicación continua $N_{\alpha}:[a,b]\to\mathbb{S}^2$ tal

 $^{^3}$ Usar el hecho de que una bola abierta en \mathbb{R}^2 es difeomorfa a todo \mathbb{R}^2 y que la precomposición de una parametrización con un difeomorfismo sigue siendo una parametrización.

⁴Este problema es un ejemplo de una idea muy común en geometría/topología de superficies: se resuelve un problema localmente, i.e. en coordenadas; y luego se trata de globalizar la solución. En este caso utilizamos la función $G_{\varepsilon,\mu}$ para ello.

que $N_{\alpha}(t)$ es unitario y perpendicular a $T_{\alpha(t)}S$ para cada $t \in [a,b]$.⁵ Concluir que existen únicamente dos aplicaciones normales sobre α .

Problema 3.ii: Se dice que una curva $\alpha:[a,b]\to S$ cerrada, i.e. $\alpha(a)=\alpha(b)$; invierte la orientación si cualquier aplicación normal suya N_{α} satisface que $N_{\alpha}(a)=-N_{\alpha}(b)$. Sea $p\in S$ un punto cualquiera y

$$\Omega_p S = \{\alpha : [a, b] \to S : p = \alpha(a) = \alpha(b)\}\$$

el conjunto de curvas continuas cerradas en S que empiezan y acaban en p. Probar que una superficie conexa⁶ $S \subseteq \mathbb{R}^3$ es orientable si y sólo si NO existe una curva $\alpha \in \Omega_p S$ que invierta la orientación.⁷ Nótese que este problema afirma que la propiedad de ser orientable en realidad depende únicamente de las curvas en S, objetos de dimensión 1 no 2.8

Problema 3.iii: Usar (ii) para probar que la banda de Mobiüs no es orientable.

⁵Usar que $\alpha[a,b]$ es compacto en S y se puede recubrir con una cantidad finita de parametrizaciones, $\varphi_i: \mathbb{B}^2(1) \to S, i \in \{1,\ldots,N\}.$

⁶Nótese que una superficie es localmente conexa por caminos luego las nociones de conexión y conexión por caminos son equivalentes en una superficie.

 $^{^{7}}$ Usar el hecho de que ser orientable es equivalente a tener una aplicación normal. La idea de la prueba ya la habéis visto en varias ocasiones: repasar como se probaba que un campo vectorial en \mathbb{R}^{3} es un campo gradiente cuando su rotacional es cero o como se probaba que toda función holomorfa en el plano complejo admite una primitiva holomorfa.

 $^{^8}$ Como curiosidad: se puede probar que la propiedad de una curva de invertir la orientación o no se preserva por homotopía. En particular, si una superficie es orientable o no se puede comprobar sin más estudiando el conjunto de curvas $\Omega_p S$ módulo homotopía, ese conjunto cociente resulta ser un grupo y se conoce como grupo fundamental de S.