Interrogation de cours nº 4

Lundi 29 septembre 2025

E, F sont des \mathbb{K} -espaces vectoriels normés, de norme $\|\cdot\|$ (même notation pour les deux espaces), avec $\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$, et $A \subset E$. Durée: 20 min.

Définitions et énoncés (5 pts)

- **1.** Définition avec quantificateur de la continuité d'une fonction $f: A \to F$ en un point $a \in A$.
- **2.** Avec les mêmes notations, définition de la continuité uniforme pour f sur A.
- **3.** Énoncer le critère fondamental permettant d'assurer la continuité de $f = E \rightarrow F$ si f est linéaire.
- 4. Énoncer précisément le théorème des bornes atteintes.
- **5.** Définition précise d'une partie connexe par arcs de E.

Démonstrations (6 pts)

- a) Montrer que si $f: A \to F$ est continue en $a \in A$ et si $(x_n)_n$ est une suite de A qui converge vers a, alors $f(x_n) \to f(a)$.
- b) Si f est continue sur E, montrer que l'image réciproque de tout ouvert de F est un ouvert de E.
- c) (MPI) Montrer que si $f, g : E \to F$ sont continues et coincident sur A, avec A dense dans E, alors f = g.
- c) (MPI*) En utilisant la compacité des fermés bornés en dimension finie, montrer que tout sous-espace vectoriel de dimension finie de E est forcément fermé.