			10			20			30				40			50
			*	×												
AAT	111	GGA	000	ATG	GIG	AA(GAA	6((AGA	GGA	AAC	AG(AGC	(1(AAC	\mathbf{CC}
TIA	AGG	((1	(G G	TAC	143	TIG	(11	CGG	1(1	[[]	IIG	TCG	1(6	GAG	116	666
																Pro:
		60				70			8 0			90			1	0 0
	*			2		×	2		x		×	I				2
																166
																AG(
(ys	Leu	Glu	Gly	Ser	Ala	Ser	Ser	Gly	Ser	Glu	Ser	Ser	lys	Asp	Ser	Seri
					110				3.4						150	
		110			120			1	3 V			140			134	
	161															GAG
																(](61
Arg	Lys	261	Inr	Pro	uly	Leu	ASP	PFO	GIU	Arg	піз	810	Arg	נפט	Arg	Glu.
	1	60			170			180			1	90			200	
2										*		*	1		1	
AAG	ATG	AGG	(66	(GA	116	GAA	1(1	661	GAC	AAG	166	11(1(((1G	GAA	11(
																AAG
																Phe.
	210													2		
																1
11(((1	((1	(GA	ACT	GCT	GAG	GGA	6(1	GIC	AAI	CIC	AIC	ILA	. Auu	111	GAC
AAG	GGA	GGA	GCT	TGA	(GA	CIC	Ш	CGA	CAG	IIA	GAG	IAU	AUI	111		(16
Phe	Pro	Pro	Arg	Thr	Ala	Glu	Gly	Ala	Val	Asn	lev	116	Ser	Arg	Phe	Asp>
	260			270			2	8 0	٠		290			300		
																3
166	ATG	GſA	GCA	661	660	1))	(1(TAC	ATA	GAC	GIG	ACC	166	CAC	((A	GCA
הוו	TAT	(61	[6]	[[A	000	666	GAG	ATG	TAT	[16	CAC	166	ACC	GIG	GGT	(GT
Arn	Hel	Ala	Ala	Glv	Glv	Pro	Leu	TYE	Ile	Asp	Val	Thr	Trp	His	Pro	Ala>
y				,	1								•			

Fig. 1A

360			37	0		3	80			390			4	0 0		
									1					1	1	
338	GIG	AAC	TAE	TGT	000	CIG	GAG)] A	ATC	[16	CAC	ATG	A((160	IGC	(GT
CGG	CAC	116	AIG	A [A	.((6	GAC	(1(TGG	TAG	GAC	GTG	TAC	TGG	ACG	ACG	GCA
																Arg.
	•••		. 1.	.,.	,	•••			• • •					, -	•	,
410			420			43	0		Į	40			450			
															x	
CAG	((((16	GAG	GAG	ATC	ACG	66(CAT	(IG	CAC	AAA	GCT	AAG	(A G	(IG	GGC
GTC	GCG	GAC	[][(1(TAG	TGC	CCG	GTA	GAC	GIG	III	(GA	110	GTC	GAC	((G))
Gln	Arg	lev	Glu	Glu	Ile	Thr	Gly	His	Leu	His	lys	Ala	Lys	Gln	Leu	Gly>
		·														
460						480										
						=										
						616										
						GAC										
leu	Lys	Asn	Ile	Hel	Ala	leu	Arg	Gly	Asp	Pro	Ile	Gly	Asp	Gln	lrp	Glu.
			2 0			530									•	
			2	1				×	=				2	*		*
GAG	GAG	GAG	x GGA	300	11(x AAC	TA(x G(A	616	GAC	* [][GIG	x AAG	x (A(ATC	x CGA
(1(GAG (10	GAG CTC	x GGA CCT	100 000 000	TT(x AAC TIG	TAC ATG	x GCA CGT	# G1G (A(GA(x CTG GAC	GTG (AC	AAG TTC	x (A(616	ATC TAG	* (GA G(T
(1(GAG (10	GAG CTC	x GGA CCT	100 000 000	TT(x AAC TIG	TAC ATG	x GCA CGT	GTG (A(GA(x CTG GAC	GTG (AC	AAG TTC	x (A(616	ATC TAG	x CGA
(1(GAG (10	GAG CTC GIu	EGGA CCT Gly	56C (CG Gly	TT(AAG Phe	AAC TTG Asn	TAC ATG Tyr	g C A C G T A I a	DTG CAC Val	GAC CTG Asp	T CTG GAC Leu	GTG CAC Val	AAG TTC Lys	x (A(616	ATC TAG Ile	x CGA GCT Arg»
(1(GAG CTC Glu	GAG CTC Glu	GGA CCT Gly	66C (CG 61y	TTC AAG Phe	AAC TTG Asn	TAC ATG Tyr	g CA CGT Ala	GTG CAC Val	GAC CTG Asp	t CIG GAC Leu	GTG (AC Val-	AAG TIC Lys	CAC GTG His	ATC TAG Ile	x CGA GCT Arg>
(1C Glu	GAG CTC Glu	GAG CTC Glu	GGA CCT Gly	66C (CG Gly	TTC AAG Phe	AACTIGASn	TAC ATG Tyr	g CA CGT Ala	GTG CAC Val	GAC CTG Asp	T CIG GAC Lev	GTG CAC Val-	AAG TIC Lys	CAC GTG His	ATC TAG Ile	x CGA GCT Arg>
CTC Glu AGT	GAG CTC Glu	GAG CTC Glu 570	GGA CCT Gly	GGC CCG Gly	TTC AAG Phe	AAC TIG Asn 80	TAC ATG Tyr	GCA CGT Ala	GTG CAC Yal Yal	GAC CTG Asp	CIG GAC Leu GCA	GTG CAC Val-	AAG TIC Lys	CAC GTG His	ATC TAG IIe	CGA GCT Arg»
CTC Glu AGT TCA	GAG CTC Glu GAG CTC	GAG CTC Glu 570	GGA CCT Gly	GGC CCG Gly GAC CTG	TTC AAG Phe S	AAC TIG Asn 80	TAC ATG Tyr GAC CTG	GCA CGT Ala ATC TAG	GTG CAC Vai	GAC CTG Asp	CIG GAC Leu GCA CGI	GTG (AC Val- 600 EGT (CA	AAG TIC Lys	CAC GTG His	ATC TAG IIe	CGA GCT Arg.
CTC Glu AGT TCA	GAG CTC Glu GAG CTC	GAG CTC Glu 570	GGA CCT Gly	GGC CCG Gly GAC CTG	TTC AAG Phe S	AAC TIG Asn 80	TAC ATG Tyr GAC CTG	GCA CGT Ala ATC TAG	GTG CAC Vai	GAC CTG Asp	CIG GAC Leu GCA CGI	GTG (AC Val- 600 EGT (CA	AAG TIC Lys	CAC GTG His	ATC TAG IIe	CGA GCT Arg»
CTC Glu AGT TCA	GAG CTC Glu GAG CTC	GAG CTC Glu 570 * TTT AAA Phe	GGA CCT Gly	GGC CCG Gly GAC CTG	TTC AAG Phe 5 TAC ATG Tyr	AAC TIG Asn 80 TIT AAA Phe	TAC ATG Tyr GAC CTG	GCA CGT Ala ATC TAG Ile	GTG CAC Val 590 TGT ACA Cys	GAC CTG Asp	CTG GAC Leu GCA CGT Ala	GTG (AC Val 600 GGT (CA Gly	AAG TIC Lys TAC AIG	CAC GTG His	ATC TAG Ile 6 AAA TIT Lys	CGA GCT Arg.
CTC Glu AGT TCA	GAG CTC Glu GAG CTC	GAG CTC Glu 570	GGA CCT Gly	GGC CCG Gly GAC CTG	TTC AAG Phe 5 TAC ATG Tyr	AAC TIG Asn 80 TIT AAA Phe	TAC ATG Tyr GAC CTG Asp	GCA CGT AIa ATC TAG IIe	GTG CAC Vai 590 TGT ACA Cys	GAC CTG Asp GTG CAC Val	CTG GAC Leu GCA CGT Ala	GTG CAC Val- 600 GGT CCA Gly	AAG TIC Lys TAC AIG	CAC GTG His	ATC TAG IIe	CGA GCT Arg.
CTC Glu AGT TCA Ser	GAG CTC Glu GAG CTC Glu	GAG CTC Glu 570 * TTT AAA Phe	GGA CCT Gly GGT CCA Gly	GGC CCG Gly GAC CTG Asp	TTC AAG Phe STAC ATG Tyr	AACTIG Asn 80 TIT AAA	TAC ATG Tyr GAC CTG Asp	GCA CGT Ala ATC TAG Ile	GTG CAC Val 590 TGT ACA Cys	GAC CTG Asp GTG CAC Val	CIG GAC Leu GCA CGI Ala	GTG CAC Val 600 GGT CCA Gly	AAG TIC Lys TAC AIG Tyr	CAC GTG His	ATCTAGILE 6 AAATTT Lys	CGA GCT Arg.
CTC Glu AGT TCA Ser	GAG CTC Glu	GAG CTC Glu 570 TTT AAA Phe	GGA CCT Gly GGT CCA Gly	GGC CCG Gly GAC CTG Asp	TTC AAG Phe 5 TAC ATG Tyr	AACTIGASn 80 TITTAAAAPhe	TAC ATG Tyr GAC CTG ASP	GCA CGT AIa ATC TAG IIe	GTG CAC Val 590 TGT ACA Cys	GAC CTG Asp GTG CAC Val	CIGGAC Leu GCA CGT Ala	GTG CAC Val- 600 GGT CCA Gly	AAG TIC Lys TAC AIG Tyr	CAC GTG His CCC GGG Pro	ATCTAGITE 6 AAA TITLys 660 GAG	CGA GCT Arg.
CTC Glu AGT TCA Ser CAC GTG	GAG CTC Glu GAG CTC Glu	GAG CTC Glu 570 TTT AAA Phe GAA	GGA CCT Gly GGT CCA Gly	GGC CCG Gly GAC CTG Asp	TTC AAG Phe 5 TAC ATG Tyr 630	AAC TIG Asn 80 TIT AAA Phe	TAC ATG Tyr GAC CTG Asp	GCA CGT Ala ATC TAG Ile	GTG CAC Val 590 TGT ACA Cys	GAC CTG Asp GTG CAC Val	CIG GAC Leu GCA CGI Ala	GTG CAC Val 600 GGT CCA GIY 650 CAC GTG	TAC ATG Tyr	CAC GTG His CCC GGG Pro	ATCTAGITE 6 AAATTTLys 660 GAGCTC	CGA GCT Arg.

^{670 680 690 700 710}THE STATE OF THE STATE

	720			1	3 0			110			750			7 (60	
¥						R				x	1				1	I
A(A	110	110	(6(Ш	GIG	AAG	G(A	16(A((GAC	ATG	GGC	ATC	A(T	16(((
161	AAG	AAG	6(6	AAA	CAE	111	(GI	ACG	166	(1G	TAC	((6	TAG	TGA	ACG	GGG
Thr	Phe	Phe	Arg	Phe	Val	Lys	Ala	(ys	Thr	Asp	Mel	Gly	Ile	Thr	(ys	Pro>
			•			-		,								

B70 B80 B90 900 910

THE TENTH OF THE TOTAL CATE GAT GET ATE GAT THE GAT GET GET ATE COLOR ATE GAT GET GAT GET GET ATE COLOR THE GAT GET GAT GET ATE COLOR THE GOLOR ATE COLOR A

1030 1040 1050 1060 1070

THE TOTAL ACT TOTAL CITY COLOR GOOD TOTAL ACT TOTAL CITY COLOR GOOD TOTAL COLOR COLOR

1080

1090

1100

1110

1110

1120

1110

1110

1110

1110

1120

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1110

1130

1140

1150

1160

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1170

1180

1190

1200

1210

1220

1210

1220

1210

1220

1210

1220

1210

1220

1210

1220

1210

1220

1210

1220

1210

1220

1210

1220

1210

1220

1210

1220

1210

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1220

1230

1240

1250

1260

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1270

1280 1290 1300 1310 1320

GGG GAG GAG CTG ACC AGT GAA GCA AGT GTC TTT GAA GTC TTT GTT CTT TAC

[CC CTC CTC GAC TGG TCA CTT CGT TCA CAG AAA CTT CAG AAA CAA GAA ATG

Gly Glu Glu Leu Thr Ser Glu Ala Ser Val Phe Glu Val Phe Val Leu Tyr-

1380

1390

1400

1410

1420

AAC GAT GAG CCC CTG GCG GCT GAG ACC AGC CTG CTG AAG GAG GAG CTG CTG

TTG CTA CTC GGG GAC CGC CGA CTC TGG TCG GAC GAC TTC CTC CTC GAC GAC

Asn Asp Glu Pro Leu Ala Ala Glu Thr Ser Leu Leu Lys Glu Glu Leu Leu-

Fig. 1D

1430		1	1440			14	50		1	460			1470			
	GIG A	ı			x			2				2	=			
	[] []															
	Val A															
,																
1480		14	90		1	500			151	0		15	20		1	530
	2															
	AAG (
	IIC G															
uiy	t)s r	10.	261	251	wzh	FIU	116	141	uij	119	uij	riv	361	uij	uij	1712
		154	0		15	550			1560			157	7 0		15	80
	1			x		*		*						2		
	11((
	AAG G															
Val	Phe G	ln	Lys	Ala	lyr	leu	6 l ซ	Phe	Phe	lhr	251	Arg	UIU	ihr	A13	() (() »
					• • •			• •							173	
	* 12					0										
GCA	(11 (
	GAA G															
	leu l															
	164	0		1	650			166	i 0		1 (570		1	680	
		2		2	×		1		×	=		I			2	AAT
	AAT G															
	Asn V															
			•	•												
	1690)		17	700		1	1710			17	2 0		17	30	
	GTE A															
	CAG T															
Ald	741 1	11 [1 1 H	uij	11.6	. 45	710	uij	~ i y	410	115	115	U (II			
,	1740			17	50		17	760			1770			178	30	
×			x		2	*		=		*	1		=			
GTG	GAT ())	GTC	AGC	110	ATG	11(TGG	AAG	GAC	GAG	GCC	111	GCC	CIG	TGG
CAC	CTA 6	566	(AG	1(6	AAG	TAC	AAG)) A	110	CIG	(1((66	AAA	(6 6	GA() JA
Val	Asp F	0 1 0	Val	Ser	Phe	Hel	Phe	Trp	lys	Asp	Glo	A l a	Phe	Ala	Lev	Irp»

Fig. 1E

1790	1800	1810	1870	1830	
2	1 1	1 1		2 2	
AII UAU LUU	IUU UUA AAU	CIU INI UNU U	ING UNG ILL I		
DDD DTD AAT	ACC CCT TTC	GAC ATA CTC C	TE CTE AGG	GGC AGG GCG TGG	I A U
Ite Glu Arg	irp Gly Lys	Leu lyr blu b	ilu blu Ser I	Pro Ser Arg Thr	115,
1810	1850	1860	1870	1880	
1 1			1 1 .	1880	1
ATC (AG TAC	ATC CAC GAC	AAC TAC TTC (TG GTC AAC !	CTG GTG GAC AAT	GAL
TAG GTC ATG	TAG GTG CTG	TIG AIG AAG O	AC CAG TIG	GAC CAC CTG TTA	(16
Ile Gln Tyr	Ile His Asp	Asn Tyr Phe l	eu Val Asni	Leu Val Asp Asn	Asp.
1890	1900	1910	1920	1930	
	2 1		; z	1930	
TIC CCA CIG	GAC AAC TGC	(TC TGG (AG 0	ITG GTG GAA I	GAC ACA TIG GAG	
AAG GGT GAC	CIG IIG ACG	GAG ACC GTC (AC CAC CTT	OTO DAA TOT OTO	GAA
Phe Pro Leu	Asp Asn (ys	Leu Irp Gla \	/al Val Giu /	Asp Thr Lea Glu	leu,
1940	1950	1960	1970	1980 19	90
	1 1		1	1980 19	2
CTC AAC AGG	DA3 33A 333	AAT GCG AGA	JAA ACG GAG	DIDDADI ADD TO	(6
GAG TIG TCC	066 166 610	TTA CGC TCT I	(11 16((1((1) 15) (1)	CGA GGT ACTGGGAC	ul
Leu Asn Arg	Pro the Gin	Asn Ala Arg (110 INF U10	Ald Pro>	
2000	2010	2020	2030	2040 205	0
	x =	2 2		2 2 2	2
TCCTGACGCC	CIGCGTTGGA C	CCACTCCTG TEC	(((()))	TECACA GIGGIGCTT	((
AGGACIGEGG	GALGLAALLI	UUA JAUUAU LUU!	DEBUARD DAGO	AADJADJAJ TDTDDA	u
2060	2070	2080	2090	2100 211	0
	1 1	* *	1 · 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
TCTTGGGAAC	TCCACTCTCC	11(6161(1(1((CACCCCC CCC	011141111)A T
AGAACCETIG	AGGTGAGAGG	AAULALAUAU AUU	0100001 1007	AGGTGAG GGGGTGGAC	. •
2120	2130	2140	2150	2160 217	10
1 1	z z	1 1	x x	z z z	*
CAATGGCAGC	TAGACTGGAG	TGAGGCTICC AGG	CICITEC 166	ACCIGAG TCGGCCCC) () (
GTTACCGTCG	ATCIGACCIC	ACTCCGAAGG TCC	GAGAAGG ACC	TGGACTC AGCCGGGG	וט
7188	7190	2200	2210	2220	
	1 1	1 1	x x	3 1	
ATGGGAACCT	AGTACTETET	GCTCTAAAAA AA	*** ***	GGAATTC	
TACCCTIGGA	TCATGAGAGA	CGAGATITIT IT	ווו וווווווו	CCTTAAG	

Fig. 1F

IJ
4D
Q
<u>[1]</u>
l ala
4
Į.
æ
= []
[]
Marth affect of the state of th
This strate strate is a second of the second
Marth affect of the state of th

nthfr ecometf stymetf ysRAD1	mthfr ecometf stymetf ysRADI	nthfr ecometf stymetf ysRADI	mthfr ecometf stymetf	mthfr ecometf stymetf	mthfr ecometf stymetf	
AMVNE ARGNS SLNPC LEGSA SSGSE SSKDS SRCST PGLDP ERHER LREKM RRRLE SGD <u>KW FSLEF</u> ms ffHas qRdal ngsLa evgGqin vSfEF ms ffHan qREal ngsLa evgGqin vSfEF ms iRdLy haraspf iSLEF	100. FPPRI AEGAV NLISR FDRMA AGGPL YIDVI WHPAG DPGSD KETSS MMIAS TAVNY CGLET ILHMT FPPRI SEmeq tLwns i DRIs sikPk fvsVI yga nsGer drThs i-1kg ik-dr tGLEa apHl I FPPRI sEmeq tLwns i DRIs sikPk fvsVI yga nsGer drThs v-1kg ik-er tGLEa apHl I FPPRI sEmeq tLwns i DRIs sikPk fvsVI yga osGer drThs v-1kg ik-er tGLEa apHl I FPPRI elGtr NLmeR mhRMt AldPL fItVI Wga -gGtt aEktl t-lAS lAqqt Inipv cmHl I	CCROR LEEIT GHLHK AKOLG LKNIM ALRGD -PIGDO WEEEE GGFNY AVGLV KHIRS EFGDY FDICV Cidat pdElr tiard ywnnG irhIv ALRGD IPpGsg kpEmY AsdLV tilk- EvaD- FDIsV Cidat rdElr tiard ywnnG irhIv ALRGD IPpGsg kpEmY AadLV gilk- EvaD- FDIsV Ctnte kaild daldr cynaG irNII ALRGN IPIGvv Wlvsq snrll nmrLf>	200. AGYPK GHPEA GSFEA DLKHL KEKVS AGADF IITOL FFEAD IFFRF VKACT DMGIT CPIVP GIFPI AaYPe vHPEA KSaqA DLInL KrKVd AGAnr aITOF FFdve syl RF rdrCv saGId veliP GIIPv AaYPe vHPEA KSaqA DLInL KrKVd AGAnr aITOF FFdve syl RF rdrCv saGId veliP GIIPv	ggyHS LRQLV KLSKL EVPQE IKDVI EPIKD NDAAI RN-YGI ELAVS LCQEL LASGL VPGLH FYTLN snfkq akkfa dmtnv riPaw maqmf dgl-D dDAet RklvGa niAmd mvkil sreG- VkdfH FYTLN snfkq akkfa dmtnv riPsw mslmf Egl-D nDAet RklvGa niAmd mvkil sreG- VkdfH FYTLN	R-EMAT TEVLK RLGMY TEDPR RPLPY ALSAH PKRRE EDVRP IFWAS RPKSY IYRIO EVDEF PNGRV RAEMSY a-ich tLGvr pgl> RaEMSy a-ich tLGvr pgl> RaEMSy a-ich tLGvr pgl>	400. GNSSS PAFGE LKDYY LFYLK SKSPK E mthfr

Fig. 2

Fig. 4B

Fig. 5B

 \mathbb{C}

11/24

AAT TEE GGA GEE ATG GTG AAE GAA GEE AGA GGA AAE AGE AGE ETE AAE EEE TGE TTG GAG Hel Val Asn Glu Ala Arq Gly Asn Ser Ser Leu Asn Pro Cys Leu Glu GGC AGT GCC AGC AGT GGC AGT GAG AGC TCC AAA GAT AGT TCG AGA TGT TCC ACC CCG GGC Gly Ser Ala Ser Ser Gly Ser Glu Ser Ser Lys Asp Ser Ser Arg Cys Ser Thr Pro Gly TOD TOT KAD OTT ADD DOD DOA DIA DAA DAD DO) II) ADA DAD TAJ DD) DAD TOT DAD Lev Asp Pro Glu Arg His Glu Arg Lev Arg Glu Lys Hel Arg Arg Arg Lev Glu Ser Gly 56 GAE AAG IGG IIC ICC CIG GAA IIC IIC CCI CCI CGA ACI GCI GAG GGA GCI GIC AAT CIC 240 Asp Lys Trp Phe Ser Leu Glu Phe Phe Pro Pro Arg Thr Ala Glu Gly Ala Val Aso Leu ATC TEA AGG TIT GAC CGG ATG GCA GCA GGT GGC CCC CTC TAC ATA GAC GTG ACC TGG CAC Ile Ser Arg Phe Asp Arg Het Ala Ala Gly Gly Pro Leu Tyr Ile Asp Val Thr Trp His Pro Ala Gly Asp Pro Gly Ser Asp Lys Glu Thr Ser Ser Hel Hel Ile Ala Ser Thr Ala GTG AAC TAC TGT GGC CTG GAG ACC ATC CTG CAC ATG ACC TGC TGC TGT CAG CGC CTG GAG Val Asn Tyr (ys Gly Leu Glu Thr Ile Leu His Hel Thr Cys Cys Arg Gln Arg Leu Glu GAG ATE ACG GGE (AT ETG CAE AAA GET AAG CAG ETG GGE ETG AAG AAC ATE ATG GEG ETG 180 Glu Ile Thr Gly His Leu His Lys Ala Lys Gln Leu Gly Leu Lys Asn Ile Het Ala Leu CGG GGA GAC (CA ATA GGT GAC CAG TGG GAA GAG GAG GAG GGA GGC TIC AAC TAC GCA GTG Arg Gly Asp Pro Ile Gly Asp Glo Trp Glo Glo Glo Glo Gly Gly Phe Aso Tyr Ala Val GAC CTG GTG AAG CAC ATC CGA AGT GAG TIT GGT GAC TAC TIT GAC ATC TGT GTG GCA GGT Asp Leu Val Lys His Ile Arg Ser Glu Phe Gly Asp Tyr Phe Asp Ile Cys Val Ala Gly 196 TAC CCC AAA GGC CAC CCC GAA GCA GGG AGC TII GAG GCT GAC CTG AAG CAC TIG AAG GAG Tyr Pro Lys Gly His Pro Glu Ala Gly Ser Phe Glu Ala Asp Leu Lys His Leu Lys Glu 216 AAG GIG ICT GCG GGA GCC GAT TIC ATC ATC ACG CAG CTT TIC TIT GAG GCT GAC ACA TIC 720 Lys Val Ser Ala Giy Ala Asp Phe Ile Ile Thr Gin Leu Phe Phe Giu Ala Asp Thr Phe 236

Fig. 6A

TIC CGC TIT GTG AAG GCA TGC ACC GAC ATG GGC ATC ACT TGC CCC ATC GTC CCC GGG ATC Phe Arg Phe Val Lys Ala Cys Thr Asp Het Gly Ile Thr Cys Pro Ile Val Pro Gly Ile 256 TIT CCC ATC CAG GGC TAC (AC TCC CTT CGG CAG CTT GTG AAG CTG TCC AAG CTG GAG GTG Phe Pro Ile Gin Gly Tyr His Ser Leu Arg Gin Leu Val Lys Leu Ser Lys Leu Giu Val CLA CAG GAG ATC AAG GAC GTG ATT GAG CCA ATC AAA GAC AAC GAT GCT GCC ATC CGC AAC Pro Gln Glu Ile Lys Asp Val Ile Glu Pro Ile Lys Asp Asn Asp Ala Ala Ile Arg Asn TAT GGC ATC GAG CTG GCC GTG AGC CTG TGC CAG GAG CTT CTG GCC AGT GGC TTG GTG CCA Tyr Gly Ile Glu Leu Ala Val Ser Leu Cys Gln Glu Leu Leu Ala Ser Gly Leu Val Pro 316 GGC CTC CAC TTC TAC ACC CTC AAC CGC GAG ATG GCT ACC ACA GAG GTG CTG AAG CGC CTG 1020 Gly Lev His Phe Tyr Thr Lev Asn Arg Glv Hel Ala Thr Thr Glv Val Lev Lys Arg Lev 336 GGG ATG TGG ACT GAG GAC CCC AGG CGT CCC CTA CCC TGG GCT CTC AGT GCC CAC CCC AAG 1080 Gly Hel Trp Thr Glu Asp Pro Arg Arg Pro Leu Pro Trp Ala Leu Ser Ala His Pro Lys 356 CGC (GA GAG GAA GAT GTA (GT (CC ATC TTC TGG GCC TCC AGA CCA AAG AGT TAC ATC TAC 1140 Arg Arg Glu Glu Asp Val Arg Pro Ile Phe Trp Ala Ser Arg Pro Lys Ser Tyr Ile Tyr 376 LGT ACC CAG GAG TGG GAC GAG TTC CCT AAC GGC CGC TGG GGC AAT TCC TCT TCC CCT GCC 1200 Arg Thr Gin Giu Trp Asp Giu Phe Pro Asn Giy Arg Trp Giy Asn Ser Ser Ser Pro Ala 396 TIT GGG GAG CTG AAG GAC TAC TAC CTC TTC TAC CTG AAG AGC AAG TCC CCC AAG GAG GAG 1260 Phe Gly Glu Leu Lys Asp Tyr Tyr Leu Phe Tyr Leu Lys Ser Lys Ser Pro Lys Glu Glu 416 CTG CTG AAG ATG TGG GGG GAG GAG CTG ACC AGT GAA GCA AGT GTC TTT GAA GTC TTT GTT 1320 Lev Lev Lys Het Trp Gly Glv Glv Lev Thr Ser Glv Ala Ser Val Phe Glv Val Phe Val 436 CTT TAC CTC TCG GGA GAA CCA AAC CGG AAT GGT CAC AAA GTG ACT TGC CTG CCC TGG AAC 1380 Leu Tyr Leu Ser Gly Glu Pro Asn Arg Asn Gly His Lys Val Thr Cys Leu Pro Trp Asn 456 GAT GAG CCC CTG GCG GCT GAG ACC AGC CTG CTG AAG GAG GAG CTG CTG CGG GTG AAC CGC 1440 Asp Glu Pro Leu Ala Ala Glu Thr Ser Leu Leu Lys Glu Glu Leu Arg Val Asn Arg 476

Fig. 6B

CAG GGC ATC CTC ACC ATC AAC TCA CAG CCC AAC ATC AAC GGG AAG CCG TCC TCC GAC ECC 1500 Gin Gly Ile leu Thr Ile Asn Ser Gin Pro Asn Ile Asn Gly Lys Pro Ser Ser Asp Pro 496 ATC GTG GGC TGG GGC (CC AGC GGG GGC TAT GTC TTC CAG AAG GCC TAC TTA GAG TTT TTC 1560 Ile Val Gly Trp Gly Pro Ser Gly Gly Tyr Val Phe Gln Lys Ala Tyr Leu Glu Phe Phe 316 ACT TCC CGC GAG ACA GCG GAA GCA CTT CTG CAA GTG CTG AAG AAG TAC GAG CTC CGG GTT 1670 Thr Ser Arg Glu Thr Ala Glu Ala Leu Leu Gln Val Leu Lys Lys Tyr Glu Leu Arg Val 536 AAT TAC CAC CTT GTC AAT GTG AAG GGT GAA AAC ATC ACC AAT GCC CCT GAA CTG CAG CCG 1680 Asn Tyr His Leu Val Asn Val Lys Glý Glu Asn Ile Thr Asn Ala Pro Glu Leu Gln Pro 556 AAT GCT GTC ACT TGG GGC ATC TTC CCT GGG CGA GAG ATC ATC CAG CCC ACC GTA GTG GAT 1740 Asn Ala Val Thr Trp Gly Ile Phe Pro Gly Arg Glu Ile Ile Gln Pro Thr Val Val Asp 576 CCC GTC AGC TTC ATG TTC TGG AAG GAC GAG GCC TTT GCC CTG TGG ATT GAG CGG TGG GGA 1800 Pro Val Ser Phe Hel Phe Trp Lys Asp Glu Ala Phe Ala Leu Trp Ile Glu Arg Trp Gly 596 AAG CTG TAT GAG GAG TCC CCG TCC CGC ACC ATC ATC CAG TAC ATC CAC GAC AAC TAC 1860 lys Leu Tyr Glu Glu Glu Ser Pro Ser Arg Thr Ile Ile Gla Tyr Ile His Asp Asa Tyr 616 TTC CTG GTC AAC CTG GTG GAC AAT GAC TTC CCA CTG GAC AAC TGC CTC TGG CAG GTG GTG 1920 Phe Leu Val Asn Leu Val Asp Asn Asp Phe Pro Leu Asp Asn Cys Leu Trp Gln Val Val 636 GAA GAC ACA TIG GAG CII CIC AAC AGG CCC ACC CAG AAI GCG AGA GAA ACG GAG GCI CCA 1980 Glu Asp Thr Leu Glu Leu Leu Asn Arg Pro Thr Gin Asn Ala Arg Glu Thr Glu Ala Pro 656 TOA CCC TOC OTC CTO ACO CCC TOC OTT GOA GCC ACT CCT GTC CCG CCT TCC TCC ACA 2040 End OIG CTG CTT CTC TTG GGA ACT CCA CTC TCC TTC GTG TCT CTC CCA CCC CGG CCT CCA ETC 2100 CCC CAC CTG ACA ATG GCA GCT AGA CTG GAG TGA GGC TTC EAG GCT CTT CCT GGA CCT GAG 2160 TIG GIC TIA CAT GGG AAC ITA GTA CTE TIT GIT ITA AAA AAA AAA AAA AAA AAG GAA TT 2220

Fig. 6C

Fig. 7B

Fig. 11

Fig. 8A

Fig. 8B

Fig. 8D

Fig. 9A

Fig. 9B

Fig. 9C

Fig. 9D

EXON 1: 246 bp

(bp 3-248)

gggtgtggct gcctgcccc tgatgctccc tgccccaccc tgtgcagtag GAACCCAGCC ATGGTGAACG AAGCCAGAGG AAACAGCAGC CTCAACCCCT GCTTGGAGGG CAGTGCCAGC AGTGGCAGTG AGAGCTCCAA AGATAGTTCG AGATGTTCCA CCCCGGGCCT GGACCCTGAG CGGCATGAGA GACTCCGGGA GAAGATGAGG CGGCGATTGG AATCTGGTGA CAAGTGGTTC TCCCTGGAAT TCTTCCCTCC TCGAACTGCT GAGGGAGCTG TCAATCTCAT CTCAAGgtaa actcatgcaa ggttaaggtg agaggcggga gtggtggtgc ctgggg

EXON 2: 239 bp

(bp 249-487)

acggatgg tatttctcct ggaacctctc ttcagaaaca aaccccctacag GTTTGACCGG ATGGCAGCAG GTGGCCCCCT CTACATAGAC GTGACCTGGC ACCCAGCAGG TGACCCTGGC TCAGACAAGG AGACCTCCTC CATGATGATC GCCAGCACCG CCGTGAACTA CTGTGGCCTG GAGACCATCC TGCACATGAC CTGCTGCCGT CAGCGCCTGG AGGAGATCAC GGGCCATCTG CACAAAGCTA AGCAGCTGGG CCTGAAGAAC ATCATGGCGC TGCGGGGAGg tgtggagcca gcactcccct acactctggg ttctggcttt cccggaggc

EXON 3: 111 bp

(bp 488-598)

tctggaggtt gggtgagacc cagtgactat gacctccacc aaccctgcag ACCCAATAGG TGACCAGTGG GAAGAGGAGG AGGGAGGCTT CAACTACGCA GTGGACCTGG TGAAGCACAT CCGAAGTGAG TTTGGTGACT ACTTTGACAT CTGTGTGGCA Ggtgagtggc tggatcatcc tggtggcggg gatggagcta gggaggctga

EXON 4: 194 bp

(bp 599-792) ccttgaacag gtggaggcca gcctctcctg actgtcatcc ctattggcag GTTACCCAA AGGCCACCCC GAAGCAGGGA GCTTTGAGGC TGACCTGAAG CACTTGAAGG AGAAGGTGTC TGCGGGAGCC GATTTCATCA TCACGCAGCT TTTCTTTGAG GCTGACACAT TCTTCCGCTT TGTGAAGGCA TGCACCGACA TGGGCATCAC TTGCCCCATC GTCCCCGGGA TCTTTCCCAT CCAGgtgagg ggcccaggag agcccataag ctccctccac cccactctca ccgc

EXON 5: 251 bp

(bp 793-1043)

gctggccagc agccgccaca gcccctcatg tcttggacag GGCTACCACT CCCTTCGGCA GCTTGTGAAG CTGTCCAAGC TGGAGGTGCC ACAGGAGATC AAGGACGTGA TTGAGCCAAT CAAAGACAAC GATGCTGCCA TCCGCAACTA TGGCATCGAG CTGGCCGTGA GCCTGTGCCA GGAGCTTCTG GCCAGTGGCT TGGTGCCAGG CCTCCACTTC TACACCCTCA ACCGCGAGAT GGCTACCACA GAGGTGCTGA AGCGCCTGGG GATGTGGACT GAGGACCCCA Ggtgagggca gtggcccaga gatccccaga ggagggtcca agagcagccc c

EXON 6: 135 bp

(bp 1044-1178)

tecetetage caatecettg teteaattet etgteeceat eeteaceeag GCGTCCCTA CCCTGGGCTC TCAGTGCCCA CCCCAAGCGC CGAGAGGAAG ATGTACGTCC CATCTTCTGG GCCTCCAGAC CAAAGAGTTA CATCTACCGT ACCCAGGAGT GGGACGAGTT CCCTAACGGC CGCTGgtgag ggcctgcaga ccttccttgc aaatacatct ttgttcttgg gagcg

EXON 7: 181 bp

(bp 1179-1359)

actgccctct gtcaggagtg tgccctgacc tctgggcacc cctctgccag GGGCAATTCC
TCTTCCCCTG CCTTTGGGGA GCTGAAGGAC TACTACCTCT TCTACCTGAA GAGCAAGTCC
CCCAAGGAGG AGCTGCTGAA GATGTGGGGG GAGGAGCTGA CCAGTGAAGC AAGTGTCTTT
GAAGTCTTTG TTCTTTACCT CTCGGGAGAA CCCAAACCGGA ATGGTCACAA Agtgagtgat
gctggaagtg gggaccctgg ttcatcccct gcccctggcc t

EXON 8: 183 bp

(bp 1360-1542)

cagggtgcca aacctgatgg tcgcccagc cagctcaccg tctctccag GTGACTTGCC
TGCCCTGGAA CGATGAGCCC CTGGCGCTG AGACCAGCCT GCTGAAGGAG GAGCTGCTGC
GGGTGAACCG CCAGGGCATC CTCACCATCA ACTCACAGCC CAACATCAAC GGGAAGCCGT
CCTCCGACCC CATCGTGGGC TGGGGCCCCA GCGGGGCTA TGTCTTCCAG AAGgtgtggt
agggaggcac ggggtgcccc cctctcttga ccggcacccg tgg

EXON 9: 102 bp

(bp 1543-1644)

gggcgtctgg cagggctggg gttggtgaca ggcacctgtc tctcccacag GCCTACTTAG AGTTTTTCAC TTCCCGCGAG ACAGCGGAAG CACTTCTGCA AGTGCTGAAG AAGTACGAGC TCCGGGTTAA TTACCACCTT GTCAATGTGA AGgtaggcca ggccccacgg ttcccacaga gtaccaggcc cttcgttgaa ca

EXON 10: 120 bp

(bp 1645-1764)

actccagttg ttcttggcc aggtcttacc cccacccac atccctcag GGTGAAAACA
TCACCAATGC CCCTGAACTG CAGCCGAATG CTGTCACTTG GGGCATCTTC CCTGGGCGAG
AGATCATCCA GCCCACCGTA GTGGATCCCG TCAGCTTCAT GTTCTGGAAG gtaaaggagc
gggggcaagc ttgcccgcc cacctggaaa accgtgggga

EXON 11: 219 bp (stop codon) (bp 1765-1983) 432 bp (end of cDNA) (bp 1765-2196)

Ctctgtgtgt gtgtgcatgt gtgcgtgtgt gcgggggtat gtgtgtgtgg GACGAGGCCT
TTGCCCTGTG GATTGAGCGG TGGGGAAAGC TGTATGAGGA GGAGTCCCGG TCCCGCACCA
TCATCCAGTA CATCCACGAC AACTACTTCC TGGTCAACCT GGTGGACAAT GACTTCCCAC
TGGACAACTG CCTCTGGCAG GTGGTGGAAG ACACATTGGA GCTTCTCAAC AGGCCCACCC
AGAATGCGAG AGAAACGGAG GCTCCATGAC CCTGCGTCCT GACGCCCTGC GTTGGAGCCA
CTCCTGTCCC GCCTTCCTCC TCCACAGTGC TGCTTCTCTT GGGAAACTCCA CTCTCCTTCG
TGTCTCTCCC ACCCGGCCT CCACTCCCC ACCTGACAAT GGCAGCTAGA CTGGAGTGAG
GCTTCCAGGC TCTTCCTGGA CCCCACATGG GAACCTAGTA CTCTCTGCTC
TAgccaggag tctgtgctct tttggtggg agcacttgct cctgcagagg ac

EXON 1: 243 bp (bp 3-245) 21/24

gggtttggta	ccaqccctat	aatacccccg	gcccccaccc	tctacagcag	GAATCCAGCC
ATGGTGAACG	AGGCCAGAGG	AAGTGGCAGT	CCCAACCCGC	GATCTGAGGG	CAGCAGCAGT
GGCAGCGAGA	GTTCCAAGGA	CAGTTCAAGA	TGTTCCACCC	CCAGCCTGGA	CCCAGAGCGG
CACGAGAGAC	TCCGGGAGAA	GATGAGGCGC	AGAATGGACT	CTGGTGACAA	GTGGTTCTCC
CTGGAGTTCT	TCCCCCTCG	AACTGCTGAG	GGAGCTGTTA	ACCTCATCTC	CAG gtgagta
gggaggttaa	tccacaaaaa	tcggcaggct	tcaggggagc	gtg	

EXON 2: 239 bp (bp 246-484)

gagctcccta	tttaccccaq	gagcctactt	aaggaggaaa	tcccctacag	GTTTGACCGG
ATGGCAGCAG	GGGGCCCCCT	CTTCGTAGAT	GTTACCTGGC	ACCCAGCTGG	AGACCCTGGC
TCAGACAAGG	AGACCTCCTC	CATGATGATC	GCCAGCACAG	CAGTAAACTA	CTGCGGCTTG
GAAACCATCC	TGCATATGAC	CTGCTGCCAG	CAGCGCCCGG	AGGAGATCAC	AGGCCATCTG
CACAGAGCCA	AGCAGCTGGG	CCTGAAGAAC	ATAATGGCGC	TGAGGGGAG g	tgtggcgcca
		cttactttcc		-	_

```
EXON 3: 111 bp (bp 485-595)
```

tctggaggtc	aggggacacc	cagtgaccat	gacctccagc	aaccctgcag	ACCCTGTAGG
TGACCACTGG	GAAGCAGAGG	AAGGAGGCTT	CAGCTATGCC	ACAGACCTGG	TGAAGCACAT
CCGGACCGAG	TTTGCTGACT	ATTTTGACAT	CTGTGTGGCA	G gtaagtgag	gacagagaag
ggtcaggatg	agaggatagc	cagctagtct	t		

```
EXON 4: 194 bp (bp 596-789)
```

gcaggtaggt tgagaccagc cccctactc ttcttgtctc ctcctggtag GTTACCCC	
AGGCCACCC GATGCAGAGA GCTTCGAGGA TGACCTGAAG CATTTGAAGG AGAAGGTAT	rc
TGCAGGCGCC GACTTCATTA TCACTCAGCT CTTCTTTGAG GCCAGCACCT TCTTCAGCT	ГT
TGTGAAGGCC TGCACAGAGA TAGGCATCTC TTGCCCTATC CTGCCTGGGA TCTTCCCTA	ΥA
TCAGgtgagg ggcttgggag gacctgattc cctccgtcca gtgcatgcgg aagt	

EXON 5: 251 bp (bp 790-1040)

cagtggagca	taggccagag	atgaccccat	gccccttgtg	tctctgac <u>ag</u>	GGCTACACTT
CCCTTCGGCA	GCTTGTAAAA	CTGTCCAAGC	TGGAGGTGCC	ACAGAAGATC	AAGGATGTAA
TTGAGCCCAT	CAAAGACAAC	GATGCTGCCA	TCCGCAACTA	CGGCATTGAG	CTGGCTGTAA
GGCTGTGCCG	GGAGCTGCTG	GACAGTGGCT	TGGTGCCAGG	CCTCCACTTC	TATACCCTCA
ACCGCGAGGT	GGCCACCATG	GAGGTGCTAA	AGCAACTGGG	CATGTGGACC	GAGGACCCCA
Gataaacaat					

EXON 6: 135 bg (bp 1041-1175)

ctagctcagt	ctacctaagc	ccttgtcttt	tccctcttcc	ttccctccag	GCGTCCCTTG
			CGGGAGGAAG		
GCCTCCAGAC	CAAAGAGCTA	CATCTACCGC	ACACAGGACT	GGGATGAGTT	TCCTAACGGC
CGCTG ataaa	gagagaagcc	agggggtgtt	aggaattgct	ggtgcctggg	tggaa

EXON 7: 181 bp

(bp 1176-1356)

aataggacaa gatttacaac aaagtgcctt gtcccttata ctcctgccag GGGTAATTCT
TCCTCACCAG CCTTTGGGGA GCTGAAAGAC TACTACCTCT TCTACCTGAA AAGCAAGTCC
CCCAGGGAGG AGCTGCTGAA GATGTGGGGC GAGGAGCTCA CCAGCGAAGA GAGTGTCTTT
GAAGTCTTTG AACACTACCT CTCTGGAGAG CCGAATCGCC ATGGCTACAG Agtgagtggg
gtgaggagga acggcccagc tttgtctcag ccttgg

EXON 8: 183 bp

(bp 1357-1539)

CCCagtcccagactcagtgctgccctcgctcagcgcaccctgccctgcagGTAACCTGCCTGCCCTGGAACGATGAACCCCTGGCAGCGGAAACCAGCCTGATGAAGGAAGAGCTGCTCCGCGTGAACAGGCTGGGCATCCTCACCATCAACTCTCAGCCCAACATCAACGCAAAACCATCCTCAGACCCTGTTGTGGGCTGGGGCCCCAGTGGGGGTTATGTCTTCCAGAAGgtatgctaggatgcagtactctcgatatccccagggactgacacagaacc

EXON 9: 102 bp

(bp 1540-1641)

gagaacttgg caagtagtgg ggttgacatg ttgggtgtat tctccctcag GCCTACCTCG
AATTCTTCAC CTCCCGTGAA ACTGTGGAGG CGCTTCTGCA GGTGCTGAAG ACATACGAGC
TGCGGGTCAA CTACCACATC GTGGACGTGA AGgtaagcca gctccctccg gcttagacgc
agcaaggctt gaaaacacct aca

EXON 10: 120 bp

(bp 1642-1761)

agcagtggga ggttgcggtc accctgcctc agccctgcct ctgttctcag GGAGAGAACA
TCACTAATGC CCCTGAGCTG CAGCCCAATG CCGTGACGTG GGGCATCTTC CCGGGTCGAG
AGATCATCCA GCCTACTGTG GTGGACCCCA TCAGCTTCAT GTTCTGGAAG gtaagggagt
gggagggagt ggaggaccct ggctaccgtg agagcccag

EXON 11: 216 bp (stop codon) (bp 1762-1977)

ggaggtacca gccgtgctga ccctgctcgt gtgtctctgt tcacacgtag GATGAGGCCT
TTGCCCTGTG GATCGAGCAG TGGGGCAAGC TATACGAGGA GGAGTCGCCA TCCCGCATGA
TCATCCAATA CATCCATGAC AACTATTTCC TGGTCAACCT GGTGGACAAC GAGTTCCCGC
TGGACAGCTG CCTGTGGCAG GTGGTGGAGG ACACGTTTGA GCTGCTCAAC AGGCATCCCA
CGGAGAGAGA GACACAGGCT CCATGAQCCt qcatctctca acaggcacac catggagaga
gagacacagg ctctgtagc cgtgcatcc tcaacaggca caccacggag agagagacac
aggctccgtg agcctgcatc ccggtatctt cctcacctgg agcccctctc cctcatctct

MTHFR	MVNEARGNSSLNPCLEGSASSGSESSKDSSRCSTPGLDPERHERLREKMRRRLESGDKWFDDDDDDDgpsDrsDDD-DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD
mMTHFR	$\tt SLEFFPPRTAEGAVNLISRFDRMAAGGPLYIDVTWHPAGDPGSDKETSSMMIASTAVNYCDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD$
mMTHFR	$\label{eq:condition} $$\operatorname{GLETILHMTCCRQRLEEITGHLHKAKQLGLKNIMALRGDPIGDQWEEEEGGFNYAVDLVK}$$$GDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD$
mMTHFR	$\label{eq:continuous} \begin{split} &\text{HIRSEFGDYFDICVAGYPKGHPEAGSFEADLKHLKEKVSAGADFIITQLFFEADTFFRFV}\\ &DDDtDDaDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD$
mMTHFR	KACTDMGITCPIVPGIFPIQGYHSLRQLVKLSKLEVPQEIKDVIEPIKDNDAAIRNYGIE DDDDeiDDsDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD
mMTHFR	$ \verb LAVSLCQELLASGLVPGLHFYTLNREMATTEVLKRLGMWTEDPRRPLPWALSAHPKRREE 000x00r000dds 0000000000000000000000000000000$
mMTHFR	DVRPIFWASRPKSYIYRTQEWDEFPNGRWGNSSSPAFGELKDYYLFYLKSKSPKEELLKM DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD
mMTHFR	WGEELTSEASVFEVFVLYLSGEPNRNGHKVTCLPWNDEPLAAETSLLKEELLRVNRQGIL
mMTHFR	TINSQPNINGKPSSDPIVGWGPSGGYVFQKAYLEFFTSRETAEALLQVLKKYELRVNYHL
mMTHFR	VNVKGENITNAPELQPNAVTWGIFPGREIIQPTVVDPVSFMFWKDEAFALWIERWGKLYE
mMTHFR	EESPSRTIIQYIHDNYFLVNLVDNDFPLDNCLWQVVEDTLELLNRPTQNARETEAP

Fig. 15