Hands on data: Chemometrics

ANTARES 7th ANNUAL WORKSHOP

27th October, Mercedes Bertotto

Workshop agenda: Chemometrics

- 1. Introduction to Chemometrics
- 2. Exploratory analysis and Outlier Detection
- 3. Pretreatments on raw spectra
- 4. Feature selection
- 5. Cross validation or Data Split
- 6. Discrimination (PLSDA)
- 7. Hands on Data (30 min)

Statistics versus chemometrics

- Focus on distributions
- Inference based on hypothesis tests of parameters
- Density estimation
- Mandatory courses at every biological education

- Focus on individual samples
- Inferences based on future performance
- Clustering
- Voluntary course at only few institutions

Multivariate analysis

The predictor variables are partially selective of the chemical properties

Part 2: Exploratory analysis and Outlier Detection

"Delve deep enough into anything, and you will find mathematics" Dean Schlicter

Reducing dimensionality

☐ Identifying and Removing Irrelevant Variables to:
☐ Enhance Computational Performance
☐ Improve Model Interpretability and Result Comprehension
☐ Avoid overfitting and collinearity

One way to solve the problem: Transforming the initial set of variables into a lower-dimensional set while retaining most of the information

Objectives:

- Exploration/ Description/ Visualization
- Dimensionality Reduction
- Preparation and Cleaning (Outlier Identification, Noise)
- Discrimination of Individual Groups
- Determination of Relationships Among Individuals
- * Time evolution of scores is used to detect deviations in process monitoring
- **❖ Preliminary Stage for Further Chemometric Treatment**

PCA: Matrix decomposition

 $(N \times P)$

$$X=T.P'+E$$

 $(N \times A)$

T: scores

A: Number of PCs

$$X = TP^{T} + E - t_{1}p_{1}^{T} + t_{2}p_{2}^{T} + \dots + E$$

 $(P \times A)$

loadings P'

PCA: Matrix decomposition

Change of basis: Linear transformation

Eigenvalues and eigenvectors

- An eigenvalue of a matrix is a scalar that represents how a particular transformation, described by that matrix, stretches or compresses a vector in space
- Eigenvalues quantify how much the direction of a vector changes when it is multiplied by a matrix
- if A is a square matrix, and λ is a scalar, then λ is an eigenvalue of A if there exists a non-zero vector v (called an eigenvector) such that the following equation holds:

$$A * v = \lambda * v$$

The value λ is the eigenvalue associated with the eigenvector v

PCA explains the original variables through the strength of their relationship with the factors

Eigenvalues	Factor 1	Factor 2	Factor 3	Factor 4	Factor 5	Factor 6	Factor 7	Factor 8
	4.349726834	1.92281186	1.290080831	1.149885024	1.129518656	1.014206025	0.977356029	0.9318098

- √ The factors are extracted from the data sequentially
- √ The factor that explains the highest % of variance is extracted first.
- ✓Then, the factor that explains the second highest % of variance is extracted, and so on
- √The factors are orthogonal to each other
- √ They have zero correlation between them, each representing something unique

Factor rotation

0.2

0.6

The variables that are weakly related to the component are located near the center of the graph

-0.2

Factor 1

Loadings

Correlation coefficients

-1.0 : Perfect negative correlation

0.0: No correlation

1.0: Perfect positive correlation

In yellow: Loadings>0.5

The variables that load strongly on the same factor may share something in common. For example, products C, D, J, and U load strongly on the first factor. In this example, they are antibiotics

	Factor 1	Factor 2	Factor 3
Product A	0.338392	0.359125	-0.35551
Product B	-0.03337	0.359674	-0.44017
Product C	0.709268	0.313117	-0.10372
Product D	0.866839	0.026961	-0.09743
Product E	0.037134	-0.10703	-0.40144
Product F	0.140315	0.202643	-0.10759
Product G	0.118608	0.235802	-0.35763
Product H	0.029118	0.683191	0.2143
Product I	0.027812	0.522297	-0.23995
Product J	0.915644	-0.03241	-0.04724
Product K	-0.01446	0.280687	0.000529
Product L	0.138604	0.709171	-0.05589
Product M	0.017498	0.246222	-0.16969
Product N	0.329753	0.132799	-0.40502
Product O	0.136257	0.141867	-0.5055
Product P	0.189386	0.041223	-0.52597
Product Q	0.298836	0.418047	-0.32678
Product R	0.112088	0.08413	-0.55576
Product S	0.001687	0.16686	-0.55969
Product T	0.024188	0.358303	-0.17977
Product U	0.715734	-0.03241	-0.23856

Outlier detection

Hotelling or T2

$$T^2 = \sum_{i=1}^A \frac{t_i^2}{var(\mathbf{t_i})}$$

Q or residual

- •Null hypothesis (H_0) : the two samples are from populations with the same multivariate mean
- •<u>Alternate hypothesis</u> (H_1) : the two samples are from populations with different multivariate means"

https://www.statisticshowto.com/hotellings-t-squared/

$$Q_i = e_i e_i^T = x_i (I - P_k P_k^T) x_i^T$$

Isolation Forest

- We pick a column at random, and we select an arbitrary threshold within its range
- We divide all the samples into two groups according to that threshold
- There is a higher chance that the outlier point would end up in the smaller group or alone
- This randomized splitting process is repeated recursively
- The more common the point is, the more splits it will take to be isolated

Isolation depth: Number of partitions that it takes to isolate a point

A final score is obtained by averaging results of many trees

Part 3: Pretreatments on Raw Spectra

Near Infrared Spectroscopy

Ideal conditions

$$\mathcal{A}(\lambda) = arepsilon(\lambda) CL$$
 Lambert-Beer Law

Real conditions

Pretreatments eliminate spectral deformations to approach the pure contribution of the studied parameter

Multiplicative and additive effects

Real spectrum may be influenced by:

Photon diffusion

- 1) Enlarges the medium length of the optical path by factor **k**
- 2) Will cause a certain number of photons to escape from the captor, creating a leak term

Measurement noise

It is due to a set of random phenomena present throughout the measurement chain

Addiive effect

$$\mathcal{A}(\lambda) = k\varepsilon(\lambda)LC + \mathcal{A}_f(\lambda) + \mathcal{A}_b(\lambda)$$

NIR spectra of water and oil mixtures showing a multiplicative effect. Source: WUR.

NIR spectra showing an additive effect. Source: WUR.

(Fictional) example of an additive effect of a rising baseline. Source: IRSTEA Montpellier

Handmade example of NIR spectra with combined effect (additive and multiplicative)

Source: WUR

A millefeuille shape observed when plotting NIR spectra with additive effect versus the mean spectrum. Source: WUR.

A cone shape observed when plotting spectra with multiplicative versus their mean spectrum. Source: from author

No clear cone neither millefeuille shape shown; difficult to tell if there is additive or multiplicative effect present in spectra. Source: WUR

Intensities from the black rectangle can be plotted versus their mean spectrum, to understand the type of effect present. Source: WUR

This shows an additive effect in that spectral range. Source: WUR.

How to reduce a multiplicative effect (k)?

The residuals that remain after removing the line correspond to the absorbance peaks related to the chemical components of the sample

Detrend

Raw spectra

Detrend order 0

Detrend order 2

To remove noise

 $A_b(\lambda)$

polynomial of degree d

Savitsky Golay

w(odd)>d

At each point i in the spectrum, the raw value **xi** is replaced by **zi** from a polynomial fitted over a window around point **i**.

Derivatives

- They are also used to decrease the baseline. If the baselines are polynomials of degree K, then the derivatives of order k+1 will make them disappear

$$\mathcal{A}_f(\lambda) = a\lambda + b$$

$$\mathcal{A}(\lambda) = k\varepsilon(\lambda)LC + a\lambda + b$$

$$\frac{\partial^2 \mathcal{A}(\lambda)}{\partial \lambda^2} = k \frac{\partial^2 \varepsilon(\lambda)}{\partial \lambda^2} LC$$

Standard Normal Variate (SNV)

The SNV pre-processing of a spectrum X consists of removing the mean of X at each of its points, then dividing them by the standard deviation of X.

NIR spectra of honey, with both additive and multiplicative effects. Source: SENASA (Argentina)

$$Xc = X - mean$$

 $XSNV = Xc / SD(Xc)$

SNV NIR spectra of honey. Additive and multiplicative effects are gone.

Source: SENASA (Argentina)

Multiplicative Scatter Correction (MSC)

- "Mathematically, if we call Xm the mean spectrum, the multiplicative scatter correction is done in two steps.
- 1. We first regress each spectrum Xi against the mean spectrum
 This is done by ordinary least squares: Xi≈ai+biXm.
- 1. We calculate the corrected spectrum msc=()/Ximsc=(Xi-ai)/bi"

Source:https://nirpyresearch.com/two-scatter-correction-techniques-nir-spectroscopy-python/

After MSC

After EMSC, degree=6

After EMSC, degree=6

After EMSC, degree=2

Principles and Objectives of Discrimination

- We have a data matrix (nxp) where n samples
 were measured for p quantitative variables, and a vector Y
 of size n measured on the same samples
- This vector represents the membership of each sample to each class K
- Each class contains at least one sample, and each sample belongs to a single class

Part 7: Hands on data

Hands on data: R code

https://github.com/MMBDD/Serbia

Name	Functionality
OutlierDetection.R: NEEDED	Removes outliers Averages Spectra from the same Sepal into only One Spectrum per Sepal
GlobalModel.R: NEEDED	Creates PLSDA Classification models with different number of important variables as input for PLSDA
PLSDA.R: OPTIONAL	Creates PLSDA Classification models with optimized parameters using Rchemo
PLSDAmdatools.R: OPTIONAL	Creates PLSDA and SIMCA Classification models using mdatools
MSC.R: OPTIONAL	Pretreats raw data and plots the results

Description of initial datasets

Cultivar name/ number of	Pixels per sepal	Sepals per tomato	Tomatoes per image	Images	Spectra in the initial dataset	Spectra in the averaged dataset	Variables
Provine	Between 119 and 90	5 or 6	16	2	16156	159	112
Brioso	Between 45 and 53	5 or 6	32	1	6497	164	112
Cappricia	Between 81 and 124	5 or 6	16	2	12816	165	112

Number of spectra in each class (Healthy: Class 1; Diseased: Class 2) when dataset was split according to different labelling scenarios (Label 1: 0/123; Label 2: 01/23 and Label 3: 0.5/123).

Cultivar	n	Label 1		Label 2		Label 3	
		Healthy	Diseased	Healthy	Diseased	Healthy	Diseased
Cappricia	163	139	24	85	78	117	46
Brioso	153	145	8	78	75	126	27
Provine	152	137	15	72	80	129	23

References

- https://www.chemproject.org/ChemHouse
- https://www.fun-mooc.fr/en/courses/?limit=21&offset=0
- Personal Material from the International School of Chemometrics 2023
- https://eigenvector.com/wp-content/uploads/2022/10/Onion_SampleSelection.pdf
- https://nirpyresearch.com/two-scatter-correction-techniques-nir-spectroscopy-python/
- J.M. Roger, B. P., D. Bertrand, E. Fernandez-Ahumada (2011). "CovSel: Variable selection for highly multivariate and multi-response calibration. Application to IR spectroscopy." Chemometrics and Intelligent Laboratory Systems 106(2).
- J.M. Roger, B. P., D. Bertrand, E. Fernandez-Ahumada. (2011). CovSel: Variable selection for highly multivariate and multi-response calibration. Application to IR spectroscopy. Chemometrics and Intelligent Laboratory Systems, 106(2). doi:ff10.1016/j.chemolab.2010.10.003f

Thank you for your attention

Please, open your R studio!

Any questions or comments?

