Total No. of Questions: 8]

PA-912

SEAT No. : 8 [Total No. of Pages: 3

159271-342

B.E. (Computer Engineering)

DESIGN AND ANALYSIS OF ALGORITH	
(2019 Pattern) (Semester - VII) (41024)	1)
62, 69.	[Max. Marks: 70
Time: 2½ Hours/	Intax. Inta is

- Instructions to the candidates: Answer Q. Or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q.8.
 - Neat diagrams must be drawn wherever necessary. 2)
 - Figures to the right side indicate marks. 3)
 - Assume suitable data, if necessary. 4)
- Solve the matrix chain multiplication for the following 6 matrix problem 01) a) [10] using Dynamic programming. A,

Matrix 50×10 10×15 5×15 15×50 20×5 10×20 Dimensions

- Explain Greedy strategy: Principle control abstraction, time analysis of b) [8] control abstraction with suitable example. OR
- Explain the 'dynamic programming' approach for solving problems. Write *O2)* a) a dynamic programming algorithm for creating an optimal binary search tree for a set of 'n' keys. Use the same algorithm to construct the optimal binary search tree for the following 4 keys.

C B A Key 0.3 0.2 0.4 Probability 0.1

- Explain Dynamic programming: Principle, control abstraction, time analysis of control abstraction with suitable example.
- Explain the 'branch and bound' approach for solving problems. Write (Q3) a) a branch and bound algorithm for solving the U/I Knapsack problem. Use the same algorithm to solve the following On Knapsack problem. The capacity of the Knapsack is 15 kg.

B C A Item 10 12 10 18 Profit (Rs.) 6 4 9 Weight (kg.)

Explain with suitable example Backtracking, Principle, control abstraction, time analysis of control abstraction.

Q4) a)	What is Branch and Bound method? Write control abstraction for Least [9]
() ()	Cost search?
	the coloring problem. Find solution for
b)	Explain the backtracking with graph coloring problem. Find solution for [8]
	following graph
	C_1 C_2 C_5 C_5
	C, 0 1 0 1 0
	$C_2 = 1 0 0 10 0 0$
	$C_3 = 0 - 1 = 0 - 1 = 1$
	C 1 0 1
	C, 800 1 0 0
	Adjacency matrix for graph G
	Adjacency matrix for graph o
Q5) a)	Write short notes on the following. [10]
	i) Aggregate Analysis
	ii) Accounting Method
	iii) Potential Function method
	iv) Tractable and Non-tractable Problems
b)	Write short notes on with suitable example of each [8]
	i) Randomized algorithm
	ii) Approximation algorithm
	OR Q
Q6) a)	What is Potential function method of amortized analysis? To illustrate
	Potential method, find amortized cost of PUSH, POP and MULTIPOP
	stack operations. [9]
	Ka.
b)	What is embedded algorithm? Explain Embedded system scheduling
	using power optimized scheduling algorithm. [9]
[5927]-3	2

Q7) a) Write short notes on the following.

[10]

- i) Multithreaded matrix multiplication.
- ii) Multithreaded merge sort
- iii) Distributed breadth first search
- iv) The Rabin-Karp algorithm
- b) With respect to Multithreaded Algorithms explain Analyzing multithreaded algorithms. Parallel Joops, Race conditions. [7]

OR

- (98) a) Write and explain pseudo code for Multi-threaded merge sort algorithm. How parallel merging gives a significant parallelism advantage over Merge Sort?

 [9]
 - b) Write a pseudo code for naïve string matching algorithm and Rabinkarp algorithm for string matching and analyze the same. [8]