

REGRESSION – CONSOMMATION DE CARBURANTS

Objectif: Prédire la consommation de carburant des voitures en fonction de caractéristiques techniques

Données: AutoMPG - 398 observations, 8 variables

Variables quantitatives

Displacement - Cylindrée

Cylinders - Cylindres

Horsepower - Puissance

Weight - Poids

Acceleration - Accélaration

Model_year - Année du modèle

Origin - Origine

Mpg - Consommation

Modèles de régression

KNN

Arbres de décision

Forêt aléatoire

Gradient Boosting

XGBoost

Evaluation/Métriques utilisées

R²

MSE

RMSE

MAE

RÉSULTATS - COMPARAISON DES MODÈLES

Index	Modèle	MSE	RMSE	MAE	R2
0	KNN	6.68	2.59	1.94	0.88
1	DecisionTree	10.89	3.30	2.45	0.80
2	RandomForest	5.73	2.39	1.77	0.90
3	GradientBoosting	6.07	2.46	1.79	0.89
4	XGBoost	5.87	2.42	1.80	0.90
5	SVM	6.22	2.49	1.81	0.89

CONCLUSION ET AMELIORATIONS

IMPORTANCE DES VARIABLES PAR PERMUTATION

GRAPHES DE DEPENDANCE PARTIELLE DES VARIABLES

AMELIORATIONS A ENVISAGER

- INTÉGRER PLUS DE DONNÉES (OBSERVATIONS)
- INTEGRER DE NOUVELLES VARIABLES
- TESTER D'AUTRES MODELES
- TESTER D'AUTRES OPTIMISATIONS DE PARAMETRES DES MODELES

CLASSIFICATION BINAIRE – SURVIVANTS AU NAUFRAGE DU TITANIC

Objectif: Savoir si un passager a survécu en fonction de caractéristiques personnelles

Données: Titanic - 1309 observations et 14 variables

Variables quantitatives	Variables catégorielles			
age	pclass			
sibsp	survived			
parch	name			
fare	sex			
body	cabin			
	embarked			
	boat			
	Home.dest			

Modèles de régression				
KNN				
Régression logistique				
Analyse discriminante linéaire				
Random Forest				

Evaluation/Métriques utilisées
Accuracy et F1-Score
Courbes ROC
Matrice de confusion

RÉSULTATS - COMPARAISON DES MODÈLES

	Index	Modèle	Accuracy	AUC	Error_trai n	Error_test	F1-score (classe0)	F1-score (classe1)
	0	KNN	0.78	0.82	0.206	0.224	0.822	0.699
	1	Régression logistique	0.76	0.82	2.216	0.242	0.81	0.68
\	2	LDA	0.77	0.82	0.209	0.234	0.81	0.68
	3	RandomForest	0.78	0.84	0.179	0.219	0.83	0.71

CONCLUSION ET AMELIORATIONS

IMPORTANCE DES VARIABLES PAR PERMUTATION

GRAPHES DE DEPENDANCE PARTIELLE DES VARIABLES

AMELIORATIONS A ENVISAGER

- APPROFONDIR LES DISPARITES DANS LES CLASSES DESEQUILIBREES
- => 62% DE NON-SURVIVANTS ET 32% DE SURVIVANTS
- => DES POIDS DE CLASSES class_weight='balnced'
- UTILISER DES COURNES PRECISION-RECALL
- TESTER D'AUTRES MODELES
- TESTER D'AUTRES OPTIMISATIONS DE PARAMETRES DES MODELES