Lecture - 7

Probability Theory:

- Experiment... Observation.... Measurements
- Hypothesis.... Theory.... Model
- Identify degree of uncertainty in statements

Analysis Workflow:

- Measurements... Estimations... of parameters
- Quantify the estimation
- Test the extent to which the population agrees with the data

Sources of uncertainty:

- Stochasticity
- Incomplete data
- Unknowns (Incomplete modeling)

Probability theory:

- Analyze the frequency of "events", formally knows as "Frequentist"
 - o Probability P of an event X occurring,
 - **n** repeatable observations of events
 - fraction $p \rightarrow type x$

Ex: Disease in a population

- If you do a test, formally known as "Bayesian"
 - o How do you interpret?
 - Accuracy of the test
 - o Frequency of disease

Basic Definitions:

Set S with subsets A,B

- $\bullet \quad P(s) = 1$
- $\forall A: A \subset S: P(A) \geq 0$

• If $A \cap B = \emptyset$, then $P(A \cup B) = P(A) + P(B)$

- $P(\neg A) = 1 p(A)$
- $P(A \cup \neg A) = 1$
- $P(\emptyset) = 0$

• If $A \subset B \to P(A) \le P(B)$

• $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

Conditional probability:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

If
$$A \cup B = \emptyset$$
,

$$P(A,B) = P(A) P(B)$$

$$P(A|B) = \frac{P(A)P(B)}{P(B)} = P(A)$$

Interpretation

1. "Frequentist" => Relative frequency

A,B,.... Outcome of a repeatable experiment

$$P(A) = \lim_{n \to \infty} \frac{\# \ times \ A}{n}$$

2. "Bayesian" => Subjective probability

A,B,... hypothesis (true / false statements)

P(A) =degree of belief that A is correct (true)

Random Variable:

 $X \sim \{x_{1,}x_{2,}x_{3,}x_{4,}\dots,x_{n_i}\}$ where X can have different values (Discrete / Continuous)

Probability Mass Function

$$P(x=x_1)=P(x_1) \neq P(x)$$

If
$$P(x_1) = 1 \Rightarrow x$$
 is always x_1

If $P(x_1) = 0 \Rightarrow x$ is never x_1

 $x \sim P(x) \rightarrow x \text{ is drawn from } P(x)$

Properties:

- P domain must have all states of x $\forall x_1 \in x : 0 \le P(x_1) \le 1$
- For discrete, $\sum_{x_1 \in x} P(x) = 1$ (Normalization)
- $P(x \in [x_1, x_1 + \delta x]) = P(x)\delta x$, where P(x) is probability distribution function
- $\int P(x)dx = 1$