Societatea de Stiințe Matematice din România

Ministerul Educației Naționale și Cercetării Stiintifice

Olimpiada Națională de Matematică Etapa Județeană și a Municipiului București, 19 martie 2016 CLASA a 11-a

Enunturi și bareme

Problema 1. Fie $A \in \mathcal{M}_2(\mathbb{C})$, astfel încât

$$\det (A^2 + A + I_2) = \det (A^2 - A + I_2) = 3.$$

Demonstrați că

$$A^2 (A^2 + I_2) = 2I_2.$$

Supliment Gazeta Matematică

Soluţie. Fie $A = \begin{pmatrix} x & y \\ z & t \end{pmatrix}$, $x, y, z, t \in \mathbb{C}$, $\alpha = Tr(A)$ şi $\beta = \det(A)$. Atunci $A^2 - \alpha A + \beta I_2 = O_2$, de unde $A^2 + A + I_2 = (1 + \alpha) A + (1 - \beta) I_2$. Din $\det(A^2 + A + I_2) = 3$ reiese $\begin{vmatrix} (1 + \alpha)x + 1 - \beta & (1 + \alpha)y \\ (1 + \alpha)z & (1 + \alpha)t + 1 - \beta \end{vmatrix} = 3$. Din $x+t=\alpha$ şi $xt-yz=\beta$, obţinem ecuaţia $(\alpha+1)(\alpha+\beta)+(1-\beta)^2=3$. Analog obţinem şi $(\alpha - 1)(\alpha - \beta) + (1 - \beta)^2 = 3 \dots 3p$ Dacă $\alpha = 0$, atunci obținem $\beta = 2$ sau $\beta = -1$. Dacă $\beta = -1$ obținem $\alpha = 0.....2p$ Avem $A^2 - I_2 = O_2$ sau $A^2 + 2I_2 = O_2$ și de aici concluzia............1p **Problema 2.** Fie $A, B, C, D \in \mathcal{M}_n(\mathbb{C}), n \geq 2$ şi $k \in \mathbb{R}$ astfel încât $AC+kBD=I_n$ şi AD=BC. Demonstrați că $CA+kDB=I_n$ şi DA=CB. **Soluție.** Pentru început considerăm $k \neq 0$. Fie $w \in \mathbb{C}$ astfel încât $w^2 = -k$. Considerăm matricele X = A + wB, Y = C - wD, Z = A - wBşi U = C + wD. Ipoteza conduce la $XY = I_n$ şi $ZU = I_n \dots 3p$ Atunci $YX = I_n$ şi $UZ = I_n \dots 1$ Deducem $(CA + kDB) - w(DA - CB) = I_n$ şi (CA + kDB) + w(DA - CB)

Problema 3. Determinați funcțiile continue $f: \mathbb{R} \to \mathbb{R}$ cu proprietatea

Pentru k=0 rezultă $AC=I_n$, de unde $CA=I_n$. Din AD=BC și $CA = I_n$ deducem că ADA = B și apoi $DA = CB \dots 1$

$$f\left(x+\frac{1}{n}\right) \le f(x)+\frac{1}{n}$$
, pentru orice $x \in \mathbb{R}$ şi $n \in \mathbb{Z}^*$.

Problema 4. Fie $I\subset\mathbb{R}$ un interval deschis și $f,g:I\to\mathbb{R}$ două funcții care au proprietatea

$$\frac{f(x) - g(y)}{x - y} + |x - y| \ge 0, \text{ oricare ar fi } x, y \in I, x \ne y.$$

- i) Demonstrați că f și g sunt funcții crescătoare.
- ii) Dați exemplu de funcții $f,g:\mathbb{R}\to\mathbb{R},\,f\neq g$ care verifică relația din ipoteză.

ii) Un exemplu cu $I = \mathbb{R}$ este f(x) = 0 pentru x < 0, f(x) = 1 pentru $x \ge 0$ şi g(x) = 0 pentru $x \le 0$, g(x) = 1 pentru $x > 0 \dots 2\mathbf{p}$