Лабораторная работа №3

Моделирование стохастических процессов

Шуваев Сергей Александрович

Содержание

1	Цель работы	4
2	Задание	5
3	Выполнение лабораторной работы	6
4	Выводы	11

Список иллюстраций

3.1	Теоретические вероятности	9
3.2	Результат выполнения программы	9
3.3	Запуск программы отрисовки графика	10
3.4	График поведения длины очереди	10

1 Цель работы

Провести моделирование системы массового обслуживания (СМО).

2 Задание

- 1. Реализовать модель M|M|1;
- 2. Посчитать загрузку системы и вероятность потери пакетов;
- 3. Построить график изменения размера очереди.

3 Выполнение лабораторной работы

M|M|1 – это однолинейная СМО с накопителем бесконечной ёмкости. Поступающий поток заявок — пуассоновский с интенсивностью λ . Времена обслуживания заявок — независимые в совокупности случайные величины, распределённые по экспоненциальному закону с параметром μ .

Реализуем эту систему. Зададим параметры системы $\lambda=30,\ \mu=33,$ размер очереди 100000, длительность эксперимента 100000. Далее задаем узлы, между которыми будут идти пакеты, и соединяем их симплексным соединением с полосой пропускания 100 Кб/с и задержкой 0 мс, очередью с обслуживанием типа DropTail. Наложим ограничения на размер очереди. Источником трафика ставим UDP-агент, приемником Null-агент. Также осуществим мониторинг очереди. Процедура finish закрывает файлы трассировки. Процедура sendpack – случайно генерирует пакеты по экспоненциальному распределению. Также в данной сценарии рассчитывается по формулам загрузка система и вероятность потери пакетов.

```
# создание объекта Simulator
set ns [new Simulator]
# открытие на запись файла out.tr для регистрации событий
set tf [open out.tr w]
$ns trace-all $tf
# задаём значения параметров системы
set lambda 30.0
set mu 33.0
```

```
# размер очереди для M|M|1 (для M|M|1|R: set qsize R)
set qsize 100000
# устанавливаем длительность эксперимента
set duration 1000.0
# задаём узлы и соединяем их симплексным соединением
# с полосой пропускания 100 Кб/с и задержкой 0 мс,
# очередью с обслуживанием типа DropTail
set n1 [$ns node]
set n2 [$ns node]
set link [$ns simplex-link $n1 $n2 100kb 0ms DropTail]
# наложение ограничения на размер очереди:
$ns queue-limit $n1 $n2 $qsize
# задаём распределения интервалов времени
# поступления пакетов и размера пакетов
set InterArrivalTime [new RandomVariable/Exponential]
$InterArrivalTime set avg_ [expr 1/$lambda]
set pktSize [new RandomVariable/Exponential]
$pktSize set avg_ [expr 100000.0/(8*$mu)]
# задаём агент UDP и присоединяем его к источнику,
# задаём размер пакета
set src [new Agent/UDP]
$src set packetSize 100000
$ns attach-agent $n1 $src
# задаём агент-приёмник и присоединяем его
set sink [new Agent/Null]
$ns attach-agent $n2 $sink
$ns connect $src $sink
# мониторинг очереди
```

```
set qmon [$ns monitor-queue $n1 $n2 [open qm.out w] 0.1]
$link queue-sample-timeout
# процедура finish закрывает файлы трассировки
proc finish {} {
 global ns tf
  $ns flush-trace
 close $tf
  exit 0
}
# процедура случайного генерирования пакетов
proc sendpacket {} {
  global ns src InterArrivalTime pktSize
  set time [$ns now]
  $ns at [expr $time +[$InterArrivalTime value]] "sendpacket"
  set bytes [expr round ([$pktSize value])]
  $src send $bytes
}
# планировщик событий
$ns at 0.0001 "sendpacket"
$ns at $duration "finish"
# расчет загрузки системы и вероятности потери пакетов
set rho [expr $lambda/$mu]
set ploss [expr (1-\frac{rho}{pow}(\frac{rho}{qsize})/(1-pow(\frac{rho}{qsize})))]
puts "Теоретическая вероятность потери = $ploss"
set aveq [expr $rho*$rho/(1-$rho)]
puts "Теоретическая средняя длина очереди = $aveq"
# запуск модели
$ns run
```

Запустив эту программу, получим значения загрузки системы и вероятности потери пакетов (рис. ??).

```
openmodelica@openmodelica-VirtualBox:~/mip/lab-ns$ ns lab3.tcl
Теоретическая вероятность потери = 0.0
Теоретическая средняя длина очереди = 9.09090909090864
openmodelica@openmodelica-VirtualBox:~/mip/lab-ns$ ns lab3.tcl
Теоретическая вероятность потери = 0.0
Теоретическая средняя длина очереди = 9.09090909090864
openmodelica@openmodelica-VirtualBox:~/mip/lab-ns$
■
```

Рис. 3.1: Теоретические вероятности

```
#!/usr/bin/gnuplot -persist
# задаём текстовую кодировку,
# тип терминала, тип и размер шрифта
set encoding utf8
set term pdfcairo font "Helvetica,9"
# задаём выходной файл графика
set out 'qm.png'
# задаём название графика
set title "График поведения длины очереди"
# подписи осей графика
set xlabel "t" font "Helvetica, 10"
set ylabel "Пакеты" font "Helvetica, 10"
# построение графика, используя значения
# 1-го и 5-го столбцов файла qm.out
plot "qm.out" using ($1):($5) with lines lt rgb "red" title "Размер очереди (в пакетах)",\
        "qm.out" using ($1):($5) smooth csplines lt rgb "blue" title " Приближение сплайном ", \
        "qm.out" using ($1):($5) smooth bezier lt rgb "yellow" title " Приближение Безье
```

Рис. 3.2: Результат выполнения программы

В каталоге с проектом создадим отдельный файл, например, graph_plot touch graph_plot. Откроем его на редактирование и добавим следующий код, обращая внимание на синтаксис GNUplot (рис. ??).

Сделаем файл исполняемым. После компиляции файла с проектом, запустим скрипт в созданном файле graph_plot (рис. ??), который создаст файл qm.png с результатами моделирования

Рис. 3.3: Запуск программы отрисовки графика

Рис. 3.4: График поведения длины очереди

На данном графике изображен размер очереди в пакетах, а также его приближение сплайном и Безье.

4 Выводы

В процессе выполнения данной лабораторной работы я провел моделирование системы массового обслуживания (СМО).