PCT

ВСЕМИРНАЯ ОРГАНИЗАЦИЯ ИНТВЛЛЕКТУАЛЬНОЙ СОБ

Международ

МЕЖДУНАРОДНАЯ ЗАЯВКА, ОПУБЛ POM O NATEHTH

(51) Международная классификация изобретения ⁶: B01D 3/10, C10G 7/06

A1

(11) H (43) Дата международной публикации:

29 февраля 1996 (29.02.96)

(21) Номер международной заявки:

PCT/RU94/00197

(22) Дата международной подачи:

19 августа 1994 (19.08.94)

(71)(72) Заявители и изобретатели: ПЕГЕЛРСКИЙ Валерий Григорьевич [RU/RU]; 109457 Москва, ул. Ф.Полетаева, д. 5, корп. 1, кв. 16 (RU) [TSEGELSKY, Valery Grigorievich, Moscow (RU)].

(72) Изобретатели: н

(75) Изобретатели /Занвители (только для US): AБРО-СИМОВ Александр Алексеевич [RU/RU]; 109429 Москва, Капотня, квартал 1, д. 12, кв. 63 (RU) [ABROSIMOV, Alexandr Alexeevich, Moscow (RU)]. КОЧЕМАСОВ Александр Михайлович [RU/RU]; 109429 Москва, Капотня, квартал 1, д. 12, кв. 63 (RU) [KOCHEMASOV, Alexandr Mikhailovich, Mosсоw (RU)]. КОЧЕРГИН Иван Александрович [RU/ RU]; 109649 Москва, Капотня, квартал 5, д. 4, кв. 43 (RU) [KOCHERGIN, Ivan Alexandrovich, Moscow (RU)].

(74) Arent: «СОЮЗПАТЕНТ»; 103735 Москва, ул. Ильинка, д. 5/2 (RU) [-SOJUZPATENT-, Moscow (RU)].

9605900A1

(81) Указанные государства: BR, CA, JP, US, европейский патент (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Опубликована

С отчетом о международном поиске.

(54) Title: PROCESS FOR THE VACUUM DISTILLATION OF A LIQUID PRODUCT, PREFERABLY CRUDE PETROLEUM, AND A FACILITY FOR CARRYING OUT THE PROCESS

(54) Название изобретения: СПОСОБ ВАКУУМНОЙ ПЕРЕГОНКИ ЖИДКОГО ПРОДУКТА, преимущест-венно нефтяного сырья и установка для его осуществления

(57) Abstract

The proposed vacuum distillation process involves dividing the liquid product fed into a vessel under a vacuum into a steam/gas phase and at least one liquid fraction, removal of the steam/gas phase from the vessel using a vacuum-producing device, and subsequent division of the steam/gas phase into a gas and a liquid phase by condensation directly in the vacuum-producing device. A portion of the liquid phase is used as a liquid working medium for the vacuum-producing device. The proposed vacuum distillation facility comprises a vacuum vessel with pipes and a vacuum-producing device which includes a jet blower, separator and pump, these elements being interconnected by pipes.

AVAILABLE

Способ вакуумной перегонки включает разделение подаваемого в емкость под вакуумом жидкого продукта на парогазовую фазу, и, по меньшей мере, одну жидкую фракцию, отбор из емкости парогазовой фазы с использованием вакуумсоздающего устройства, и последующее разделение парогазовой фазы на газ и жидкую фазу путем конденсации, проводимой непосредственно в вакуумсоздающем устройстве. Часть жидкой фазы используют в качестве жидкого рабочего тела для вакуумсоздающего устройства.

Установка вакуумной перегонки содержит емкость под вакуумом с магистралями и вакуумсоздающее устройство, которое включает струйный аппарат, сепаратор и насос, соединенные между собой магистралями.

ИСКЛЮЧИТЕЛЬНО ДЛЯ ЦЕЛЕЙ ИНФОРМАЦИИ

Коды, используемые для обозначения стран-членов РСТ на тигульных листах брошюр, в которых публикуются международные заявии в соответствии с РСТ.

AT	Австрия	Fi	Финляниня	MR	Мавритания
ÂÜ	Австралия	FR	Франция	MW	Малави
BB	Барбадос	GA	Габон	NE	Нягер
BE	Бельгия	GB	Великобритания	NL	Нидеривиды
		GN	Ганна	NO	Норвегия
BF	Буркина Фасо	GR	Гредия	NZ	Новая Зеландия
BG	Болгария	HÜ	Венгрия	PL	Подъци
BJ	Бения	Œ		PT	Португалыя
BR	Бразилия		Ирланиня	RO	Румыния
ÇA	Канада	Щ	Ителия	RU	Российская Федерация
CF	Центральновфриканская	JP	Япония		
	Республика	KP	Корейская Народно-Демо-	SD	Судан
BY	Беларусь		кратическая Республика	SE	Швеция
CG	Конго	KR	Корейская Республика	SI	Словения
CH	Швейцария	ΚZ	Казахстан	SK	Сдования
CI	Кот д'Ивуар	Li	Лихтенштейн	SN	Сенегал
ČM	Камерун	LK	Шри Ланка	TD	Чад
ČN	Китай	LU	Люковибург	TG	Toro
cs	Чехоскования	ĹŸ	Латана	ŲA	Укранна
čz	Чепиская Республика	MC	Монако	US	Соединённые Штаты
		MG	Малагаскар		Амереккі
DE	Германия	ML	Мали	UZ.	Узбекистан
DK	Harre			VN	Вьетнам
ES	Испания	MN	Монголия	•••	

СПОСОБ ВАНУУМНОЙ ПЕРЕГОНКИ ЖИДКОГО ПРОДУКТА, ПРЕИМУЩЕСТВЕННО НЕФІЛНОГО СЫРЬЯ, И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

5

Область техники

Настоящее изобретение относится к способу и установке вакуумной перегонки жидкого продукта, преимущественно нефтяного сырья, и может быть использовано в нефтеперерабатывающей промышленности для ректификации нефтяного сырья в вакуумной колонне.

Предшествующий уровень техники

·15

20

25

30

35

IO

Известны способ и установка вакуумной перегонки нефтяного сырья, содержащая вакуумную колонну с боковой секцией, в которой создают пониженное давление с помощью струйного аппарата (эжектора), в котором в качестве рабочей (эжектирующей) среды используют водяной пар (U.S.P. № 2073446 и 2140342).

Однако недостатком известного способа и установки является смешение нефтяных фракций с водяным паром и соответственно унос водяным паром части нефтяных фракций, что приводит к загрязнению водяного пара и к снижению экономичности установки.

Известен способ вакуумной перегонки жидкого продукта, включающий подачу его в емкость под вакуумом, разделение жидкого продукта в емкости на газы и пары легколетучих фракций и, по меньшей мере, одну жидкую фракцию, откачку из верхней части емкости газов и паров с помощью вакуумсоздающего устройства через холодильник-конденсатор и отвод последних из него. (К.П. Шумский "Вакуумные аппараты и приборы химического машиностроения", Москва, Машиностроение, 1974, стр.123, 143, 153).

Известна также установка вакуумной перегонки нефтяного сырья, содержащая вакуумную колонну с магистралями подвода нефтяного сырья и отвода жидкой фракции и магистралью отвода газов и паров легколетучих (верхних) неф-

IO

I5

20

25

30

тяных фракций из верхней части колонны, соединенной с вакуумсоздающим устройством (эжекторным пароводяным насосом). В магистрали между верхней частью колонны и вакуумсоздающим устройством размещен холодильник-конденсатор. (Справочник нефтепереработчика. Под редакцией Г.А. Ластовкина, Ленинград, Химия, 1989, стр.74).

В известном способе и установке тлубина вакуума в колонне достигается эжекторным пароводяным насосом, в котором в качестве эжектирующей (рабочей) среды используется водяной пар.

Водяной пар смешивается с нефтяными парами и газами разложения, что приводит к загрязнению конденсата водяного пара последними, а также к уносу конденсатом водяного пара части верхних нефтяных фракций. Кроме того, эжекторный пароводяной насос не обеспечивает сжатие углеводородных газов, несконденсированных после холодильника — конденсатора до давления, требуемого для подачи этих газов, например, в топливный коллектор нефтеперерабатывающего завода. Поэтому такие газы приходится сжигать в факелах, если отсутствует дополнительная компрессорная установка.

Конденсаты из вакуумсоздающего устройства поступают в отстойник, где происходит отделение нефтепродукта от водного конденсата. Такие отстойники несомненно являются источником загрязнения окружающей среды.

Другим недостатком известного способа и установки является конденсация легколетучих фракций до вакуумсоздающего устройства в холодильнике - конденсаторе, что в силу перепада давления в последнем приводит или к более высокому давлению в верхней части колонны, что уменьшает степень выхода легколетучих (светлых) фракций, или к увеличению мощности, потребляемой вакуумсоздающим устройством.

Раскрытие изобретения

35

В основу настоящего изобретения поставлена задача создания такого способа и установки вакуумной перегонки жидкого продукта, которые позволяют интенсифицировать процесс вакуумной перегонки путем создания замкнутого

IO

15

20

25

30

35

контура вакуумсоздающего устройства, что приводит к уменьщению загрязнения окружающей среды, а также к сокращению энергетических затрат при повышении производительности установки.

Поставленная задача решается тем, что в способе вакуумной перегонки жидкого продукта, преимущественно нефтяного сырья, включающем подачу жидкого продукта в емкость
под вакуумом, разделение жидкого продукта в емкости на
паро-газовую фазу и, по меньшей мере, одну жидкую фракцию
и последующее разделение парогазовой фазы на газ и жидкую
фазу путем конденсации пара, причем отбор парогазовой фазы
из емкости осуществляют с использованием вакуумсодержащего устройства, конденсацию пара проводят непосредственно в
вакуумсоздающем устройстве, а часть жидкой фазы используют
в качестве жидкого рабочего тела для вакуумсоздающего устройства с предварительным отбором от нее избытка тепла.

Предпочтительно производить обновление жидкого рабочего тела путем добавления в него, по меньшей мере, части жидкой фракции из емкости.

В установке вакуумной перегонки жидкого продукта, преимущественно нефтяного сырья, содержащей емкость под вакуумом с магистралями подвода жидкого продукта и отвода, по меньшей мере, одной жидкой фракции и магистралью отвода паро-газовой фазы, соединяющей верхнюю часть емкости с вакуумсоздающим устройством, вакуумсоздающее устройство включает струйный аппарат, сепаратор и насос, соединенные между собой магистральний при этом газовый вход струйного аппарата соединен с магистралью отвода парогазовой фазы, жидкостный вход струйного аппарата соединен с выходом насоса, выход струйного аппарата соединен с выходом сепаратора, а жидкостный выход сепаратора соединен с входом насоса.

Целесообразно разместить холодильник в магистрали между жидкостным входом струйного аппарата и жидкостным выходом сепаратора, что позволяет отбирать от жидкой фазы избыток тепла.

Соединение дополнительного входа сепаратора с магистралью отвода жидкой фракции из емкости обеспечивает обновление жидкого рабочего тела жидкой фракцией, поступаю-

IO

I5

20

25

30

35

щей из емкости в замкнутый контур вакуумсоздающего устро-йства.

Предложенные способ вакуумной перегонки жидкого продукта и установка позволяют эффективно откачивать парогазовую фазу из верхней части емкости с последующей конденсацией ее как в проточной части струйного аппарата, так и в магистрали за струйным аппаратом. Несконденсированные газы (в случае нефтепереработки - углеводородные газы) одновременно сжимаются до давления, требуемого потребителем. Это дает возможность подавать из сепаратора потребителю углеводородный газ под давлением, который может быть использован на технологические нужпы, а избыток жидкой фазы направлять в качестве полубабриката для дальнейшей технологической переработки. В отличие от прототипа в предложенном способе не происходит смешения конденсата верхних нефтяных фракций с водой и выброса конденсата и углеводородных газов (в случае нефтепереработки) в окружающую среду. Таким образом предложенный способ является экологически чистым .

Кроме того, заявленный способ позволяет не применять холодильник — конденсатор паров этих легких нефтяных фракций на магистрали, соединяющий верхнюю часть емкости с вакуумосоздающим устройством, так как конденсация паров легких нефтяных фракций происходит в струйном аппарате. Заявленный способ позволяет также уменьшить расход внешнего циркуляционного орошения верхней части колонны, что приводит к уменьшению перепада давления на них и в конечном итоге это приводит к уменьшению давления в нижней части колонны, что в свою очередь способствует увеличению выхода низкокипящих (светлых) продуктов вакуумной перегонки.

Такой способ и конструктивное выполнение установки вакуумной перегонки жидкого продукта обеспечивают значительное уменьшение загрязнения окружающей среды, сокращение энергозатрат и соответственно повышение производительности установки.

I0

I5

20

25

30

35

Краткое описание чертежей

В последующем изобретение поясняется подробным описанием примера его выполнения со ссылкой на прилагаемый чертеж, где на фиг. I представлена схема установки вакуумной перегонки жидкого продукта.

Предпочтительный вариант осуществления изобретения. Предложенная установка содержит ректификационную вакуумную колонну I с магистралью 2 подвода нагретого жидкого продукта (например, нефтяного сырья), магистрально 3 отвода жидкой фракции, магистралью 4 внешнего циркуляционного орошения, магистралью 5 отвода паро-газовой фазы и магистралью 6 отвода остатка колонны. Магистраль 5 соединяет верхнюю часть колонны І с жидкостно-газовым струйным аппаратом 7, который соединен магистралями с сепаратором 8 и насосом 9. Струйный аппарат 7, сеппаратор 8 и насос 9 составляют вакуумсоздающее устройство, в котором газовый вход струйного аппарата 7 соединен с магистралью отвода 5 парогазовой фазы, жидкостный вход струйного аппарата 7 соединен с выходом насоса 9, выход струйного аппарата 7 соединен с входом сепаратора 8, а жидкостный выход сеппаратора 8 соединен с входом насоса 9.

В магистрали между жидкостным входом струйного аппарата 7 и жидкостным выходом сепаратора 8 установлен холодильник 10. Сепаратор 8 соединен магистралью II с топливной системой потребителя и магистралью I2 с приемником нефтепродукта (соответственно на чертеже не показаны). Дополнительный вход сеппаратора 8 соединен с магистралью 3 отвода жидкой фракции на колонны I посредством магистрали I3 подпитки вакуумсоздающего устройства жидкой фракцией из колонны. В магистрали 3 подпитки вакуумсоздающего устройства установлены холодильник I4 и насос I5. Выход холодильника I4 соединен магистралью 4 внешнего циркуляционного орошения с колонной I.

Работа предложенной установки вакуумной перегонки жидкого продукта осуществляется следующим образом.

ΙO

15

20

25

30

35

Нагретый жидкий продукт (в случае нефтеперегонки нефтяное сырье) подают в колонну I под давлением IO-60 мм.рт. ст. по магистрали подвода 2. По магистрали 3 отводят жидкую фракцию (вакуулный газойль), которая проходит через насос 15, охлаждается в холодильнике 14, и затем разделяется на два потока, один из которых по магистрали 4 идет на внешнее циркуляционное орошение верхней части колонны, а второй поток по магистрали 13 поступает через дополнительный вход в сепаратор 8 вакуумсоздающего устройства для постоянного обновления жидкой фазы, циркулирующей по замкнутому контуру вакуумсоздающего устройства. Жидкая фаза постепенно насыщается газами разложения (углеводородными газами), откачиваемыми из верхней части колонны, что снижает глубину вакуума в колонне из-за выделения этих газов в сопле струйного аппарата. Это приводит к увеличению энергозатрат на привод насоса жидкой фазы вакуумсоздающего устройства. Поэтому с целью получения более глубокого вакуума и уменьшения энергозатрат на его создание циркулирующую в вакуумсоздающем устройстве жидкую фазу постепенно обновляют жидкой фракцией, поступающей из колонны в замкнутый контур вакуумсоздающего устройства.

Из верхней части колонны по магистрали 5 отводят парогазовую фазу, которую отсасывают жидкостно-газовыми струйным аппаратом 7 за счет энергии жидкой фазы, циркулирующей по замкнутому контуру с помощью насоса 9. В холодильнике 10 вакуумсоздающего устройства происходит отбор избытка тепла от жидкой фазы, образованного частично за счет диссипации механической энергии в контуре циркулирующей жидкой фазы и частично за счет конденсации пара и охлаждения несконденсированного газа, отсасываемого из колонны I жидкостно-газовым струйным аппаратом 7, что обеспечивает температурную стабилизацию.

На выходе из жидкостно-газового струйного аппарата в результате передачи энергии от активной жидкой фазы к пассивной паро-газовой фазе, поступающей по магистрали 5 из верхней части колонны I, образуется двухфазная смесь с павлением более 0, II МПа, которая поступает в сепаратор 8,

IO

I5

20

25

30

35

В смеси происходит окончательная конденсация паровой фазы, которая не успела сконденсироваться в проточной части струйного аппарата. В сепараторе 8 вакуумсоздающего устройства смесь разделяется на газовую и жидкую фазы. Газовую фазу по магистрали II отводят в топливную систему потребителя (на чертеже не показана). Жидкая фаза, частично обновленная жидкой фракцией (вакуумным газойлем) из колонны I поступает на вход насоса 9. Избыток жидкой фазы, образованной как за счет сконденсированных паров, поступивших в струйный аппарат 7 из верхней части колонны I, так и за счет притока по магистрали 13 жидкой фракции, сливают по магистрали I2 в приемник нефтепродукта (на чертеже не показан). В начальный момент запуска вакуумсоздающего устройства в качестве жидкого рабочего тела используют любую жидкость, родственную по химическим и физическим свойствам с жидкой фазой, состоящей из конденсата паров и жидкой фракции, отводимой по магистрали 3. Но постепенно происходит замена ее смесью конденсата паров и жидкой фракции, накапливаемой в сепараторе 8. По магистрали 6 отводят тяжелую фракцию вакуумной перегонки.

Таким образом, предложенный способ и установка вакуумной перегонки жидкого продукта решают актуальные задачи в нефтеперерабатывающей промышленности: реализуется экологически чистая технология вакуумной переработки нефтепродуктов, уменьшаются финансовые затраты на получение вакуума в колонне, увеличивается выход светлых фракций вакуумной перегонки нефтепродуктов.

Промышленная применимость

Настоящее изобретение может быть использовано для получения продукта вакуумной перегонки другого, отличного от нефтяного сырья, например, в химической, пищевой или фармацевтической промышленности.

25

30

35

THATTHEORY AND ARCHITECTURE

- І. Способ вакуумной перегонки жидкого продукта, преимущественно нефтяного сырья, включающий подачу жид-5 кого продукта в емкость под вакуумом, разделение жидкого продукта в емкости на парогазовую фазу и, по меньшей мере, одну жидкую фракцию и последующее разделение парогазовой фазы на газ и жидкую фазу путем конденсации пара, причем отбор парогазовой фазы из емкости осуществляют с IO использованием вакуумсоздающего устройства, в которое подают жидкое рабочее тело, о т л и ч а ю щ и й с я что конденсацию пара проводят непосредственно в вакуумсоздающем устройстве, а часть жидкой фазы используют в качестве жидкого рабочего тела для вакуумсоздающего уст-**I**5 ройства с предварительным отбором от нее избытка тепла.
 - 2. Способ по п.І, о т л и ч а ю щ и й с я тем, что добавляют, по меньшей мере, часть жидкой фракции из ем-кости в жидкое рабочее тело.
 - 3. Установка вакуумной перегонки жидкого продукта, преимущественно нефтяного сырья, содержащая емкость под вакуумом с магистралями подвода жидкого продукта и отвода, по меньшей мере, одной жидкой фракции и магистралью отвода парогазовой фазы, соединяющей верхнюю часть емкости с вакуумсоздающим устройством, о т л и ч а ю щ а я с я тем, что вакуумсоздающее устройство включает струйный аппарат, сепаратор и насос, соединенные между собой магистралями, при этом газовый вход струйного аппарата соединен с магистралью отвода паро-газовой фазы, жидкостный вход струйного аппарата соединен с выходом насоса, выход струйного аппарата соединен с выходом сепаратора, а жидкостный выход сепаратора соединен с входом насоса.
 - 4. Установка по п.3,о т л и ч а ю щ а я с я тем, что дополнительно содержит холодильник, установленный в магистрали между жидкостным входом струйного аппарата и

жидкостным выходом сеппаратора.

5. Установка по п.3, о т л и ч а ю щ а я с я тем, что магистраль отвода жидкой фракции из емкости соединена с дополнительным входом сепаратора. 1/1

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.