Automatic Cyclic Termination Proofs for Recursive Procedures in Separation Logic

Reuben Rowe and James Brotherston

University College London

TAPAS, Edinburgh, Wednesday 7th September 2016

```
proc shuffle(x) {
    if x != nil {
        y := *x;
        reverse(y);
        shuffle(y);
    }
}
```

```
proc shuffle(x) {
   if x != nil {
       V := *X;
       reverse(y);
       shuffle(y);
                                  recursion
```

```
proc shuffle(x) {
   if x != nil {
                                 intermediate
       V := *X;
                                  procedures
       reverse(y);
       shuffle(y);
                                   recursion
```


· MUTANT, THOR

· MUTANT, THOR

· Julia, Costa, AProVE

· MUTANT, THOR

· Julia, Costa, AProVE

Dafny

· MUTANT, THOR

· Julia, Costa, AProVE

Dafny

· HIPTNT+

• Following the approach of Brotherston Et Al. (POPL '08)

• We use the CYCLIST framework for automation

Advantages of Using Cyclic Proof

Termination measures extracted automatically

Advantages of Using Cyclic Proof

Termination measures extracted automatically

· Supports compositional reasoning

Advantages of Using Cyclic Proof

Termination measures extracted automatically

Supports compositional reasoning

Naturally encapsulates inductive principles

Ingredients of our Approach: Symbolic Execution

$$\text{(free): } \frac{\{\phi\} \, \mathsf{C} \, \{\psi\}}{\{\phi * \mathsf{X} \mapsto \mathsf{y}\} \, \mathsf{free(x); C} \, \{\psi\}}$$

Ingredients of our Approach: Symbolic Execution

$$\label{eq:free} \text{(free): } \frac{\{\phi\}\, C\, \{\psi\}}{\{\phi*\mathbf{x} \mapsto \mathbf{y}\}\, \mathtt{free(x); } C\, \{\psi\}}$$

$$(\text{load}): \ \frac{\{\mathbf{x} = \mathbf{v}[\mathbf{x}'/\mathbf{x}] \land (\phi * \mathbf{y} \mapsto \mathbf{v})[\mathbf{x}'/\mathbf{x}]\} \, \mathsf{C}\,\{\psi\}}{\{\phi * \mathbf{y} \mapsto \mathbf{v}\}\, \mathbf{x} := *\mathbf{y}; \, \mathsf{C}\,\{\psi\}} \ (\mathsf{x}' \; \mathsf{fresh})$$

Ingredients of our Approach: Symbolic Execution

$$(\text{load}): \ \frac{\{\mathbf{x} = \mathbf{v}[\mathbf{x}'/\mathbf{x}] \land (\phi * \mathbf{y} \mapsto \mathbf{v})[\mathbf{x}'/\mathbf{x}]\} \, \mathsf{C}\,\{\psi\}}{\{\phi * \mathbf{y} \mapsto \mathbf{v}\}\, \mathbf{x} := *\mathbf{y}; \, \mathsf{C}\,\{\psi\}} \ (\mathsf{x}' \; \mathsf{fresh})$$

$$\label{eq:proc} (\text{proc}): \ \frac{\{\phi\} \, \mathrm{C} \, \{\psi\}}{\{\phi\} \, \mathrm{proc}(\vec{\mathrm{x}}) \, \{\psi\}} \, (\text{body(proc}) = \mathrm{C})$$

· We support user-defined inductive predicates, e.g.

· We support user-defined inductive predicates, e.g.

$$\frac{\mathsf{x} = \mathsf{nil} \land \mathsf{emp}}{\mathsf{list}(\mathsf{x})} \qquad \frac{\mathsf{x} \mapsto \mathsf{y} * \mathsf{list}(\mathsf{y})}{\mathsf{list}(\mathsf{x})}$$

· Explicit approximations used as termination measures, e.g.

$$\{\operatorname{list}_{\alpha}(\mathsf{X}) * \phi\} \subset \{\psi\}$$

· We support user-defined inductive predicates, e.g.

$$\frac{\mathsf{x} = \mathsf{nil} \land \mathsf{emp}}{\mathsf{list}(\mathsf{x})} \qquad \frac{\mathsf{x} \mapsto \mathsf{y} * \mathsf{list}(\mathsf{y})}{\mathsf{list}(\mathsf{x})}$$

· Explicit approximations used as termination measures, e.g.

$$\{\operatorname{list}_{\alpha}(\mathsf{X}) * \phi\} \subset \{\psi\}$$

· A logical rule schema allows case split

$$\frac{\{(\mathsf{x} = \mathsf{nil} \land \mathsf{emp}) * \phi\} \, \mathsf{C} \, \{\psi\} \quad \{(\beta < \alpha \land \mathsf{x} \mapsto \mathsf{y} * \mathsf{list}_{\beta}(\mathsf{x})) * \phi\} \, \mathsf{C} \, \{\psi\}}{\{\mathsf{list}_{\alpha}(\mathsf{x}) * \phi\} \, \mathsf{C} \, \{\psi\}}$$

· We support user-defined inductive predicates, e.g.

$$\frac{\mathsf{x} = \mathsf{nil} \land \mathsf{emp}}{\mathsf{list}(\mathsf{x})} \qquad \frac{\mathsf{x} \mapsto \mathsf{y} * \mathsf{list}(\mathsf{y})}{\mathsf{list}(\mathsf{x})}$$

· Explicit approximations used as termination measures, e.g.

$$\{\operatorname{list}_{\alpha}(\mathsf{X}) * \phi\} \subset \{\psi\}$$

· A logical rule schema allows case split

$$\frac{\{(\mathsf{x} = \mathsf{nil} \land \mathsf{emp}) * \phi\} \, \mathsf{C} \, \{\psi\} \quad \{(\beta < \alpha \land \mathsf{x} \mapsto \mathsf{y} * \mathsf{list}_{\beta}(\mathsf{x})) * \phi\} \, \mathsf{C} \, \{\psi\}}{\{\mathsf{list}_{\alpha}(\mathsf{x}) * \phi\} \, \mathsf{C} \, \{\psi\}}$$

```
proc shuffle(x){ifx!=nil{y:=*x; reverse(y); shuffle(y);}}
```

```
proc shuffle(x) { if x!=nil { y:=*x; reverse(y); shuffle(y); } }
```



```
proc shuffle(x) { if x!=nil { y:=*x; reverse(y); shuffle(y); } }
```

$$\{ \mathsf{list}_\alpha(\mathsf{x}) \} \, \mathsf{shuffle}(\, \mathsf{x} \,) \, \{ \mathsf{list}_\alpha(\mathsf{x}) \}$$

```
proc shuffle(x) { if x!=nil { y:=*x; reverse(y); shuffle(y); } }
```

```
\frac{\{ \mathsf{list}_{\alpha}(\mathsf{x}) \} \; \mathsf{if} \, \mathsf{x} ! = \mathsf{nil} \, \{ \, \mathsf{y} : = *\mathsf{x} ; \, \mathsf{reverse}(\mathsf{y}) ; \, \mathsf{shuffle}(\mathsf{y}) ; \, *\mathsf{x} : = \mathsf{y} ; \, \} \, \, \{ \mathsf{list}_{\alpha}(\mathsf{x}) \}}{\{ \mathsf{list}_{\alpha}(\mathsf{x}) \} \, \, \mathsf{shuffle}(\mathsf{x}) \, \, \{ \mathsf{list}_{\alpha}(\mathsf{x}) \}} }
```

```
proc shuffle(x) { if x!=nil { y:=*x; reverse(y); shuffle(y); } }
```

```
\begin{split} &\{|\text{list}_{\alpha}(\textbf{x})\} \text{ if } \textbf{x}! = \text{nil } \dots \{|\text{list}_{\alpha}(\textbf{x})\}\} \\ &\qquad \qquad (\text{proc} \\ &\{|\text{list}_{\alpha}(\textbf{x})\} \text{ shuffle}(\textbf{x}) \{|\text{list}_{\alpha}(\textbf{x})\} \end{split}
```

```
proc shuffle(x){ifx!=nil{y:=*x; reverse(y); shuffle(y);}}
```

```
 \begin{cases} \{\beta < \alpha \land x \mapsto y * \operatorname{list}_{\beta}(y)\} \operatorname{rev}(y); & \ldots \{\operatorname{list}_{\alpha}(x)\} \\ \hline \{\beta < \alpha \land x \mapsto v * \operatorname{list}_{\beta}(v)\} \text{ $y := *x$; } \ldots \{\operatorname{list}_{\alpha}(x)\} \\ \hline \{x \neq \operatorname{nil} \land \operatorname{list}_{\alpha}(x)\} \text{ $y := *x$; } \ldots \{\operatorname{list}_{\alpha}(x)\} \\ \hline \{\operatorname{list}_{\alpha}(x)\} \text{ if $x != \operatorname{nil} \ldots \{\operatorname{list}_{\alpha}(x)\}$} \\ \hline \{\operatorname{list}_{\alpha}(x)\} \text{ if $x != \operatorname{nil} \ldots \{\operatorname{list}_{\alpha}(x)\}$} \\ \hline \{\operatorname{list}_{\alpha}(x)\} \text{ shuffle}(x) \{\operatorname{list}_{\alpha}(x)\} \end{cases}
```

$$\begin{cases} \beta < \alpha \wedge x \mapsto y \\ * \operatorname{list}_{\beta}(y) \end{cases} \operatorname{rev}(y); \begin{cases} \beta < \alpha \wedge x \mapsto y \\ * \operatorname{list}_{\beta}(y) \end{cases} \\ \{\beta < \alpha \wedge x \mapsto y * \operatorname{list}_{\beta}(y)\} \operatorname{shuf}(y); \{\operatorname{list}_{\alpha}(x)\} \end{cases}$$
 (seq)
$$\begin{cases} \{\beta < \alpha \wedge x \mapsto y * \operatorname{list}_{\beta}(y)\} \operatorname{rev}(y); \dots \{\operatorname{list}_{\alpha}(x)\} \\ \{\beta < \alpha \wedge x \mapsto y * \operatorname{list}_{\beta}(y)\} \operatorname{rev}(y); \dots \{\operatorname{list}_{\alpha}(x)\} \end{cases}$$
 (and)
$$\{\beta < \alpha \wedge x \mapsto y * \operatorname{list}_{\beta}(y)\} \operatorname{y:=*x}; \dots \{\operatorname{list}_{\alpha}(x)\} \end{cases}$$
 (and)
$$\{x \neq \operatorname{nil} \wedge \operatorname{list}_{\alpha}(x)\} \operatorname{y:=*x}; \dots \{\operatorname{list}_{\alpha}(x)\} \end{cases}$$
 (proc)
$$\{\operatorname{list}_{\alpha}(x)\} \operatorname{shuffle}(x) \{\operatorname{list}_{\alpha}(x)\} \end{cases}$$
 (proc)

```
 \frac{\{ \text{list}_{\beta}(y) \} \text{ rev}(y); \{ \text{list}_{\beta}(y) \}}{\left\{ \beta < \alpha \land x \mapsto y \\ * \text{ list}_{\beta}(y) \right\}} \text{ rev}(y); \left\{ \beta < \alpha \land x \mapsto y \\ * \text{ list}_{\beta}(y) \right\}} \text{ rev}(y); \left\{ \beta < \alpha \land x \mapsto y \\ * \text{ list}_{\beta}(y) \right\} \text{ rev}(y); \left\{ \beta < \alpha \land x \mapsto y \\ * \text{ list}_{\beta}(y) \right\} \text{ rev}(y); \dots \{ \text{list}_{\alpha}(x) \}} \text{ (seq)} 
 \frac{\{ \beta < \alpha \land x \mapsto y \\ * \text{ list}_{\beta}(y) \} \text{ rev}(y); \dots \{ \text{list}_{\alpha}(x) \}}{\text{ (load)}} \text{ (load)} 
 \frac{\{ \beta < \alpha \land x \mapsto y \\ * \text{ list}_{\beta}(y) \} \text{ v:=*x;} \dots \{ \text{list}_{\alpha}(x) \}}{\text{ (case list)}} \text{ (respectively)} \text{ (list}_{\alpha}(x) \} \text{ or } \text{ (list}_{\alpha}(x) \} \text{ (list}_{\alpha}(x) \}} \text{ (list}_{\alpha}(x) \} 
 \frac{\{ \text{list}_{\alpha}(x) \} \text{ if } x! \text{ enil} \dots \{ \text{list}_{\alpha}(x) \}}{\text{ (list}_{\alpha}(x) \}} \text{ (proc)} 
 \frac{\{ \text{list}_{\alpha}(x) \} \text{ shuffle}(x) \{ \text{list}_{\alpha}(x) \}}{\text{ (list}_{\alpha}(x) \}} \text{ (list}_{\alpha}(x) \}} \text{ (list}_{\alpha}(x) \}} \text{ (list}_{\alpha}(x) \}}
```

proc shuffle(x){ifx!=nil{y:=*x; reverse(y); shuffle(y);}}

```
\{list_{\beta}(y)\} rev(y); \{list_{\beta}(y)\}
                                                                                                              \{\beta < \alpha \land x \mapsto y * list_{\beta}(y)\} shuf(y); \{list_{\alpha}(x)\}
                                                                                                                                                                                                         (sea)
 \{\beta < \alpha \land x \mapsto y * list_{\beta}(y)\} rev(y); \dots \{list_{\alpha}(x)\}
                                                                                        — (load)
\{\beta < \alpha \land x \mapsto v * list_{\beta}(v)\}\ y := *x; \dots \{list_{\alpha}(x)\}\
                                                                                          — (case list)
       \{x \neq \text{nil} \land \text{list}_{\alpha}(x)\}\ y := *x; \dots \{\text{list}_{\alpha}(x)\}\
                                                                                                             \{x = nil \land list_{\alpha}(x)\} \in \{list_{\alpha}(x)\}
                                                   \{list_{\alpha}(x)\}\ if\ x!=nil\ \dots\ \{list_{\alpha}(x)\}
                                                                                                                – (proc)
                                                     \{list_{\alpha}(x)\}\ shuffle(x)\{list_{\alpha}(x)\}\
```

proc shuffle(x){ifx!=nil{y:=*x; reverse(y); shuffle(y);}}

proc shuffle(x) { if x!=nil { y:=*x; reverse(y); shuffle(y); } }

proc shuffle(x){ifx!=nil{y:=*x; reverse(y); shuffle(y);}}

proc shuffle(x) { if x!=nil { y:=*x; reverse(y); shuffle(y); } } $\{list_{\alpha}(x)\}\ shuf(x); \{list_{\alpha}(x)\}$ (subst) $\{list_{\beta}(y)\}\ shuf(y); \{list_{\beta}(y)\}$ $\{ list_{\beta}(v) \} rev(v); \{ list_{\beta}(v) \}$ $\{\beta < \alpha \land x \mapsto y * list_{\beta}(y)\} shuf(y); \{list_{\alpha}(x)\}$ (sea) $\{\beta < \alpha \land x \mapsto y * list_{\beta}(y)\} rev(y); \dots \{list_{\alpha}(x)\}$ (load) $\{\beta < \alpha \land x \mapsto v * list_{\beta}(v)\}\ y := *x; \dots \{list_{\alpha}(x)\}\$ — (case list) $\{x \neq \text{nil} \land \text{list}_{\alpha}(x)\}\ y := *x; \dots \{\text{list}_{\alpha}(x)\}\$ $\{x = nil \land list_{\alpha}(x)\} \in \{list_{\alpha}(x)\}$ $\{list_{\alpha}(x)\}\ if\ x!=nil\ \dots\ \{list_{\alpha}(x)\}$ $\{list_{\alpha}(x)\}\ shuffle(x)\ \{list_{\alpha}(x)\}\$

```
proc shuffle(x) { if x!=nil { y:=*x; reverse(y); shuffle(y); } }
                                                                                                                  \{\operatorname{list}_{\alpha}(x)\}\ \operatorname{shuf}(x);\ \{\operatorname{list}_{\alpha}(x)\}
                                                                                                                                                            (subst)
                                                                                                                  \{list_{\beta}(y)\}\ shuf(y); \{list_{\beta}(y)\}
                  \{ list_{\beta}(v) \} rev(v); \{ list_{\beta}(v) \}
                                                                                                    \{\beta < \alpha \land x \mapsto y * list_{\beta}(y)\} shuf(y); \{list_{\alpha}(x)\}
                                                                                                                                                                                        (sea)
 \{\beta < \alpha \land x \mapsto y * list_{\beta}(y)\} rev(y); \dots \{list_{\alpha}(x)\}
                                                                                 (load)
\{\beta < \alpha \land x \mapsto v * list_{\beta}(v)\} y := *x; \dots \{list_{\alpha}(x)\}
                                                                                   — (case list)
       \{x \neq \text{nil} \land \text{list}_{\alpha}(x)\}\ y := *x; \dots \{\text{list}_{\alpha}(x)\}\
                                                                                                       \{x = nil \land list_{\alpha}(x)\} \in \{list_{\alpha}(x)\}
                                               \{list_{\alpha}(x)\}\ if\ x!=nil\ \dots\ \{list_{\alpha}(x)\}
                                                 \{list_{\alpha}(x)\}\ shuffle(x)\ \{list_{\alpha}(x)\}\
```

• CYCLIST is a generic framework for cyclic proof search

- CYCLIST is a generic framework for cyclic proof search
 - Entailment queries also handled by CYCLIST

- · CYCLIST is a generic framework for cyclic proof search
 - Entailment queries also handled by CYCLIST

· Currently, we need to provide procedure summaries

- · CYCLIST is a generic framework for cyclic proof search
 - Entailment queries also handled by CYCLIST

- · Currently, we need to provide procedure summaries
- Procedure calls (and backlinks!) require frame inference

- CYCLIST is a generic framework for cyclic proof search
 - Entailment queries also handled by CYCLIST

- · Currently, we need to provide procedure summaries
- Procedure calls (and backlinks!) require frame inference
 - Driven by unfolding predicates/matching atomic spatial assertions

- CYCLIST is a generic framework for cyclic proof search
 - Entailment queries also handled by CYCLIST

- Currently, we need to provide procedure summaries
- Procedure calls (and backlinks!) require frame inference
 - Driven by unfolding predicates/matching atomic spatial assertions
 - Requires deciding entailment of sets of constraints $\alpha < \beta$

Empirical Evaluation: Comparison with HIPTNT+

Benchmark	Time (seconds)	
Benchinark	HIPTNT+	CYCLIST
traverse acyclic linked list	0.31	0.02
traverse cyclic linked list	0.52	0.02
append acyclic linked lists	0.36	0.03
TPDB Shuffle	1.79	0.21
TPDB Alternate	6.33	1.47
TPDB UnionFind	4.03	1.21

Empirical Evaluation: Comparison with AProVE

Benchmark		Time (seconds)	
Suite	Test	AProVE	CYCLIST
Costa_Julia_09-Recursive	Ackermann	3.82	0.14
	BinarySearchTree	1.41	0.95
	BTree	1.77	0.03
	List	1.43	1.74
Julia_10-Recursive	AckR	3.22	0.14
	BTreeR	2.68	0.03
	Test8	2.95	0.97
AProVE_11_Recursive	CyclicAnalysisRec	2.61	5.21
	RotateTree	5.86	0.32
	SharingAnalysisRec	2.47	4.72
	UnionFind	TIMEOUT	1.21
BOG_RTA_11	Alternate	5.47	1.47
	AppE	2.19	0.09
	BinTreeChanger	3.38	3.33
	CAppE	2.04	1.78
	ConvertRec	3.72	0.06
	DupTreeRec	4.18	0.03
	GrowTreeR	3.53	0.05
	MirrorBinTreeRec	4.96	0.02
	MirrorMultiTreeRec	5.16	0.63
	SearchTreeR	2.74	0.34
	Shuffle	11.72	0.21
	TwoWay	1.94	0.02

· Cyclic proof-based termination analysis competes!

· Cyclic proof-based termination analysis competes!

 $\boldsymbol{\cdot}$ More expressive contraints for predicate approximations

· Cyclic proof-based termination analysis competes!

More expressive contraints for predicate approximations

· Can we infer procedure specifications?

· Cyclic proof-based termination analysis competes!

More expressive contraints for predicate approximations

- · Can we infer procedure specifications?
 - Constraints on explicit approximations

· Cyclic proof-based termination analysis competes!

More expressive contraints for predicate approximations

- · Can we infer procedure specifications?
 - Constraints on explicit approximations
 - Entire pre-/post-conditions (bi-abduction)

github.com/ngorogiannis/cyclist