I

Exploring Land Use Effects on Intraurban CO₂ using Machine Learning Algorithms for Urban Decarbonization

M.Sc. Environmental Data Science and Machine Learning
IRP Presentation

September 9th, 2024 Anna C. Smith

Intraurban CO₂ & Land Use Regression

Research Questions

CRQ: How well do the models explored in this study simulate the distribution and variability of intraurban CO₂ concentrations in the San Francisco Bay Area?

SQ1: Can LUR effectively predict intraurban CO₂ concentrations?

SQ2: Can ML / DL algorithms improve upon LUR model performance?

SQ3: What are the key predictors of intraurban CO₂ concentrations in the San Francisco Bay Area?

BEACO₂N Data

BEACO₂N Data

age Credit: Ron Hipschman

Feature Data Collection & Extraction

Feature Data Collection & Extraction

Land Use & Industrial

Annual Average Daily Traffic

Road Length

NDVI

Population Density

Total area [m²] in buffer, per Land Use type

$$\sum_{i=1}^{n} (\text{area})_{i},$$

n = total # polygons per LU type in buffer

Total AADT sum in buffer

$$\sum_{i=1}^{n} (AADT)_{i},$$

n = total # AADT observations in buffer

Total length of roads [m] in buffer

$$\sum_{i=1}^{n} (\text{road length})_{i},$$

n = total # of roads in buffer

Average NDVI in buffer

$$\frac{1}{n}\sum_{i=1}^{n}(\mathsf{NDVI})_{i},$$

n = total # of pixels in buffer

Total population density in buffer area

$$\frac{1}{\text{buffer area } [km^2]} \sum_{i=1}^{n} \left(\frac{\text{ppl}}{\text{mi}^2}\right)_i \times (mi^2)_i,$$

n = total # of polygons in buffer

Methods

Feature Selection

11 selected features:

- Temperature
- Pressure
- Relative humidity
- Trees (50 m)
- Total road length (1000 m)
- Total road length (200 m)
- Built area (2000 m)
- Total AADT (3000 m)
- Flooded Vegetation (1000 m)
- Industrial area (5000 m)
- Average NDVI (1000 m)

Feature	Spearman's ≥ 0.03	VIF < 3
temp	-0.51	1.26
pressure	0.40	2.47
rh	-0.11	1.20
Trees_area_100m	-0.09	-
Trees_area_50m	-0.08	2.14
Trees_area_200m	-0.06	-
Trees_area_300m	-0.06	-
Trees_area_500m	-0.05	-
avg_pop_dens_2000m	0.05	-
avg_ndvi_100m	-0.05	-
Built_Area_area_1000m	0.05	-
avg_pop_dens_3000m	0.05	-
avg_pop_dens_4000m	0.04	-
Built_Area_area_3000m	0.04	-
Built_Area_area_4000m	0.04	-
avg_ndvi_200m	-0.04	-
avg_pop_dens_1000m	0.04	-
total_road_length_1000m	0.04	1.65
Trees_area_1000m	-0.04	-
avg_ndvi_300m	-0.04	-
total_road_length_200m	0.04	1.46
Built_Area_area_2000m	0.04	1.93
avg_ndvi_500m	-0.04	-
avg_pop_dens_5000m	0.04	
total_AADT_3000m	0.04	1.40
Flooded_Vegetation_area_1000m	-0.03	1.22
Industrial_area_5000m	0.03	1.53
Built_Area_area_500m	0.03	-
total_AADT_1000m	0.03	-
avg_pop_dens_500m	0.03	-
avg_ndvi_50m	-0.03	1.37
avg_ndvi_1000m	-0.03	-

Model Performance

Evaluation Step	Metric	LUR	XGBoost	CNN
Test Set (20% of training node data)	R^2	0.34	0.58	0.58
	RMSE	15.81	12.56	12.63
	MSE	250.02	157.66	159.45
	MAE	12.04	9.14	9.08
Central Test Nodes	R ²	0.31	0.42	0.42
	RMSE	19.13	17.48	17.46
	MSE	366.05	305.67	304.71
	MAE	15.47	12.90	13.01
Fringe Test Nodes	R ²	-0.69	-0.88	-0.47
	RMSE	20.21	21.24	18.77
	MSE	404.76	451.14	352.46
	MAE	17.24	18.11	16.10

Feature Importance

Feature	Spearman	Partial R ² (LUR)
temp	-0.51	0.16
pressure	0.40	0.14
rh	-0.11	0.03
Trees_area_50m	-0.08	0.05
total_road_length_1000m	0.04	<0.005
total_road_length_200m	0.04	<0.005
Built_Area_area_2000m	0.04	0.01
total_AADT_3000m	0.04	<0.005
Flooded_Vegetation_area_1000m	-0.03	<0.005
Industrial_area_5000m	0.03	0.01
avg_ndvi_50m	-0.03	<0.005

Spatial Trends

https://ese-msc-2023.github.io/irp-acs223/

bayareaco2 Explore

Welcome to the bayareaco2 Explore page. This interactive page is designed to help visualize the data and results associated with the bayareaco2 prediction models. The Feature Explorer demonstrates the feature data used to train the models, as well as the BEACO2N sensor locations. The Results Explorer gives a spatial representation of model performance. You can explore performance metrics for different models and for individual nodes. The data plotted on these maps is meant to be interacted with, so feel free to click and scroll around! Some feature maps have been optimized for the webpage interface.

Select an Explore page below to get started:

About This Site

This page is hosted by GitHub Pages from the irp-acs223 GitHub repository. The work presented here was completed by Anna C. Smith, under the supervision of Fangxin Fang and Linfeng Li in completion of her MSc in Environmental Data Science and Machine Learning at Imperial College London. Consult the repository for more code and information about the project. Contact anna.smith23@imperial.ac.uk with any questions.

Contributions

- 1. Using BEACO₂N data for modeling of intraurban CO₂ concentrations in San Francisco Bay Area
- 2. Application of LUR to predict CO₂ concentrations
- 3. Using XGBoost and CNN to predict CO₂ concentrations
- 4. Using unseen node data to test transferability

Conclusions

- XGBoost and CNN consistently outperformed LUR
- Overall weak transferability to distant unseen locations
- Feature importance related to variability and abundance
- Spatial features limited by constant temporal resolution
- Model performance limited by validity and consistency of CO₂ data

Need for more spatiotemporally distributed CO₂ sensor networks!

Thank you! ©

M.Sc. Environmental Data Science and Machine Learning
IRP Presentation

September 9th, 2024 Anna C. Smith