Floor Localization

CS 435: Deep Learning

Course Project Milestone 2 Update

Aya Ashraf 02

Khaled Barie 21

Outline

- Problem Statement
- Progress Summary
- Base Models
 - SkyLoc Baseline
 - Fully Connected Architecture
- Dataset Setup
 - Using Homogeneous Datasets
 - Using Heterogeneous Datasets
- Time Series Classification Architectures
- Investigating Heterogeneity
- Feature Selection & Augmentation
- Next Steps

Problem Statement

• Create a floor localization system that can predict a user's floor depending only on cellular signals

Problem Statement

- Fingerprints are organized as a vector of the received signal strength heard from different cell towers in the area of collection. Each sample is paired with the floor it is collected from
- Below are examples for such fingerprints

Data Summary (Vodafone)

- This table summarizes the number of samples collected on each floor from 3 phones on vodafone
- 41 unique cell towers were detected across all samples from vodafone phones

Floor #	нтс хэ	Moto G5	Oneplus 6	Total
0	5553	5133	2776	13462
1	5945	9955	6102	22002
2	6694	8011	4555	19260
3	6297	7510	4254	18061
4	6146	7201	5786	19133
5	6015	7297	2738	16050
Total	36650	45107	26211	107968

Data Summary (Orange)

- This table summarizes the number of samples collected on each floor from 2 phones on orange
- 18 unique cell towers were detected across all samples from orange phones

Floor #	Galaxy S5	Galaxy Note 3	Total
0	2885	2899	5784
1	5740	7663	13403
2	4387	2739	7126
3	4342	5380	9722
4	4626	5440	10066
5	3873	3783	7656
Total	25853	27904	53757

Progress Summary

- Collected data from the campus in the Electrical Engineering building using 5 devices on 2 carriers
- Experimented with multiple base architectures and produced initial results
- Implemented a baseline from literature (based on the SkyLoc paper)
- Experimented with different data setups
- Started investigating the heterogeneity problem and conducting analysis on the data
- Used popular time series classification architectures from literature
- Tuned all architectures used to maximize output accuracy
- Employed feature selection and data augmentation to increase accuracy

SkyLoc Baseline

- Implemented the naive approach from the skyloc paper*
- Calculates euclidean distance in RSS space from collected samples to estimate the floor of new samples

$$\sqrt{(R_1^{t\,r}-R_1^{t\,st})^2+(R_2^{t\,r}-R_2^{t\,st})^2+(R_3^{t\,r}-R_3^{t\,st})^2}$$

Fully Connected Architecture

Using Homogeneous Datasets

- As remarked in the previous milestone, we started by testing our models against homogeneous datasets
- Train and Test data are both sampled from the same collection/distribution
- Each dataset used was partitioned as 80% training,
 10% validation and 10% test.

Dataset	SkyLoc	kyLoc FC	
нтс х9	100	99.8	
Moto G5	100	99.8	
Oneplus 6	100	100	
ombined Dataset	99.9	99.8	

Using Heterogeneous Datasets

- We moved on to investigating how to solve the heterogeneity problem
- This involves training a model using data from some phones and attempting to classify data from other "unseen" phones
- We used a "leave on out" approach where we train our model using data from all phones except one, and use unseen data from that remaining phone for validation and test
- Most of our experiments used data from the HTC X9 and Moto G5 for training and data from the Oneplus 6 for validation and testing

Within-k-floors	SkyLoc	FC
0	34.6	43.8
1	63.3	67.8
2	79.4	88.9
3	93.2	95.9
4	99.1	99
5	100	100

Accuracy of SkyLoc and FC using a heterogeneous dataset at different levels of error

Time Series Classification Architectures

- We formalized the problem as a sequence model, leveraging a history of RSS scans to produce better predictions
- We tested with multiple time series CNN architectures from literature
 - o 1D CNN
 - SeriesNet
 - InceptionTime
 - 1D ResNet

CNN

- Tuned our 1D CNN model, the full model is shown below
- Tuned the model using different regualizers to reduce overfitting

SerieNet

- An architecture used in time series forecasting
- We adapted the model to our problem by replacing the last layer with a softmax layer
- Uses dilated convolution

InceptionTime

• Inspired from the Inception network architecture, using different kernels for convolution and

concatenating their results

• This figure show 1 inception unit

InceptionTime

- The full network uses successive inception units and employs skip connections similar to ResNet
- We attempted tuning on the number of the units (Depth)

ResNet

Follows the same architecture of the original ResNet but uses 1D convolutions

We attempted tuning the model on regularization to reduce

overfitting

Maximum Accuracy at k floors

Within-k-floors	SkyLoc	FC	CNN	SeriesNet	Inception Time	ResNet
0	34.6	43.8	50.2	44.4	47.8	50.2
1	63.3	67.8	79.3	76.7	80.7	78.6
2	79.4	88.9	93.8	92.7	96.1	93.5
3	93.2	95.9	96.4	96.2	99.2	96.5
4	99.1	99	98.3	98.9	99.7	99.5
5	100	100	100	100	100	100

Accuracy table for various architectures using a heterogeneous vodafone dataset

Accuracy Plots for various architectures using a heterogeneous vodafone dataset

Investigating Heterogeneity

- Seeing that accuracy was still low, we proceeded to analyze the dataset to gather some insights
- We plotted histograms describing the distribution of RSS received in each floor from each cell tower for all phones
- This figure is a sample of the generated plots, full plots can be found here
- Insights obtained
 - Some cell towers were only picked up by one or two phones, not all
 - Some cell towers were heard only in a few number of scans
- Using these insights, we applied two feature selection techniques

Feature Selection

Method 1:

- Drop cell towers with a fewest number of samples
- This method had no significant effect on accuracy
- Plot show the sensitivity of FC to the number of towers

Method 2:

- Drop cell towers that were not heard by all phones in the dataset
- This gave a slight increase in accuracy from 43% to 46% within-0-floors accuracy and from 67% to 77% within-1-floors accuracy
- Plot shows the effect of dropping these cell towers

Data Augmentation

- Generated new samples using the gaussian noise method from literature*
 - Involves sampling random gaussian noise and adding it to existing data to generate new examples
- This had no significant effect on accuracy

^{*} H. Rizk, A. Shokry and M. Youssef, "Effectiveness of Data Augmentation in Cellular-based Localization Using Deep Learning," 2019 IEEE Wireless Communications and Networking Conference (WCNC), Marrakesh, Morocco, 2019, pp. 1-6.

Next Steps

- Combining all insights gained to compile the best model achievable
- Conduct further investigation on how to overcome heterogeneity
- Creating website and poster

Thank you.

