Problem 1:

Let R be a UFD and P be a prime ideal.

Let P fail to be principal. Let $a \in P$.

Now, a has a prime factorization, $p_1^{\alpha_1} \dots p_n^{\alpha_n}$.

Then one of the $p_i^{\alpha_i}$ is in P; $a \in P$, so $p_1^{\alpha_1} \in P$ or $p_2^{\alpha_2} \dots p_n^{\alpha_n} \in P$. If $p_2^{\alpha_2} \dots p_n^{\alpha_n} \in P$, then $p_2^{\alpha_2} \in P$ or $p_3^{\alpha_3} \dots p_n^{\alpha_n} \in P$. We can iterate this process, so one of the $p_i^{\alpha_i}$ is in P.

So $p_i \in P$, by applying the same method.

So $(p_i) \subset P$. Because p_i is prime, (p_i) is prime (and nonzero). But it's not P, as P is not principal.

So P has a proper, nonzero prime ideal.

Problem 2:

Let k be a field and $n \geq 2$.

If $\operatorname{char}(k) = 2$, $x_1^2 + x_2^2 \dots x_n^2 - 1$ is equal to $(x_1 + x_2 + \dots + x_n - 1)^2$ (when you multiply it out, every term has a factor of 2 except the x_i^2 and -1 terms) and so $x_1^2 + x_2^2 \dots x_n^2 - 1$ is reducible.

Now, if $\operatorname{char}(k) \neq 2$, then $x_1^2 + x_2^2 - 1$ is irreducible in $k[x_1, x_2]$; $x_1^2 + x_2^2 - 1$ is a is a monic polynomial of degree 2 in $k[x_1][x_2] = k[x_1, x_2]$. So if it factors, it factors into a product of degree 1 polynomials; so it factors into something of the form $(x_2 + s)(x_2 + r)$, with r and s both in $k[x_1]$. But the only way for this to happen is if s = -r. That is, $1 - x_1^2$ must be a perfect square. However, its unique prime factorization is $(x_1 + 1)(x_1 - 1)$; it is not a perfect square.

We proceed by induction:

Let $x_1^2 + x_2^2 \dots x_{n-1}^2 - 1$ is irreducible in $k[x_1, x_2 \dots x_{n-1}]$, and set this equal to p. It is clear that $x_n^2 + p$ is a monic polynomial of degree 2 in $k[x_1, x_2 \dots x_{n-1}][x_n] = k[x_1, x_2 \dots x_n]$. So if it factors, it factors into a product of degree 1 polynomials; so it factors into something of the form $(x_n + s)(x_n + r)$, with r and s both in $k[x_1, x_2 \dots x_{n-1}]$. But this would mean that p = rs for some $r, s \in k[x_1, x_2 \dots x_{n-1}]$, so p would be reducible.

So if $x_1^2 + x_2^2 \dots x_{n-1}^2 - 1$ is irreducible in $k[x_1, x_2 \dots x_{n-1}]$, then $x_1^2 + x_2^2 \dots x_n^2 - 1$ is irreducible in $k[x_1, x_2 \dots x_n]$.

So we have our result.

Problem 3:

By the reduction criterion, $x^4 + 3x^3 + 3x^2 - 5$ is irreducible in $\mathbb{Z}[x]$ if it is irreducible in $\mathbb{Z}/(7)[x]$.

Now, if $x^4 + 3x^3 + 3x^2 - 5 = x^4 + 3x^3 + 3x^2 + 2$ is reducible, it either has a root or it can be written as a product of two monic order 2 polynomials.

But $p(x) = x^4 + 3x^3 + 3x^2 + 2$ has no roots;

$$p(0) = 2$$

 $p(1) = 2$
 $p(2) = 5$
 $p(3) = 2$
 $p(4) = 1$
 $p(5) = 6$
 $p(6) = 3$

So if p is reducible, then p can be written as a product of two monic order 2 polynomials. That is,

$$x^{4} + 3x^{3} + 3x^{2} + 2 = (x^{2} + ax + b)(x^{2} + cx + d)$$
$$= x^{4} + (a + c)x^{3} + (b + d + ac)x^{2} + (ad + bc)x + bd$$

This means that

$$a + c = 3$$
$$b + d + ac = 3$$
$$ad + bc = 0$$
$$bd = 2$$

The first equation can be reduced to c = 3 - a, which yields

$$b + d + 3a - a^{2} = 3 (\alpha)$$
$$ad + 3b - ba = 0 (\beta)$$
$$bd = 2 (\gamma)$$

Now, (γ) only 6 solutions; we are working in a field, so for any given b there is a unique solution of that equation for d. Also, b=0 fails.

So we have that the only six valid solutions for b and d are:

$$b = 1, d = 2$$

$$b = 2, d = 1$$

$$b = 3, d = 3$$

$$b = 4, d = 4$$

$$b = 5, d = 6$$

$$b = 6, d = 5$$

The middle two fail, for any value of a; because ad=ba, (β) gives us 3b=0, which fails for any nonzero b. We are left with

$$b = 1, d = 2$$

 $b = 2, d = 1$
 $b = 5, d = 6$
 $b = 6, d = 5$

A rearrangement of (α) gives us a(3-a)=3-b-d.

For the first two cases, b + d = 3, so we have that a = 3 or a = 0. If a = 0, then (β) reduces to 3b = 0, which fails for any nonzero b. If a = 3, then (β) reduces to 3d = 0 which fails for any nonzero d.

For the last two cases, b + d = 30 = 2. This means that (α) gives us that a(3-a) = 1. But this is unsatisfiable; if q = a(3-a), then:

$$q(0) = 0$$

 $q(1) = 2$
 $q(2) = 2$
 $q(3) = 0$
 $q(4) = 3$
 $q(5) = 4$
 $q(6) = 3$

That is, every possible solution for (γ) modulo 7 fails to satisfy the system of equations. That is, we cannot reduce $x^4 + 3x^3 + 3x^2 + 2$ modulo 7.

So by the reduction criterion, $x^4 + 3x^3 + 3x^2 - 5$ is irreducible in $\mathbb{Z}[x]$. So $x^4 + 3x^3 + 3x^2 - 5$ is irreducible in $\mathbb{Q}[x]$.

Problem 4:

Let $R = \mathbb{Z}[\sqrt{-5}]$, and K = Quot(R).

Consider $3x^2 + 4x + 3$. By the quadratic formula, if this polynomial has roots, they are $\frac{-2}{3} \pm \frac{\sqrt{-5}}{3}$. A factorization of $3x^2 + 4x + 3$ is given by $3(x + \frac{2}{3} + \frac{\sqrt{-5}}{3})(x + \frac{2}{3} - \frac{\sqrt{-5}}{3})$. So the polynomial is reducible in K[x]. Now, in R[x], $3x^2 + 4x + 3$ cannot have a constant factored out of it. As it

Now, in R[x], $3x^2 + 4x + 3$ cannot have a constant factored out of it. As it is a degree 2 polynomial, this means that it factors only as a product of two degree 1 polynomials. So any factorization of that polynomial must be of the form $(rx+r'(2+\sqrt{-5}))(sx+s'(2-\sqrt{-5}))$, with $r', s' \in \mathbb{Z}[\sqrt{-5}]$ and r=3r', s=3s'. Yet, this means that the leading coefficient of the polynomial is a multiple of 9, which 3 isn't. So the polynomial is irreducible in R[x].

Problem 5:

Note: I'm playing fast and loose with notation. I recognize this, but feel that it's still clear in context what is meant.

Let R be a UFD and P be a prime ideal of R[x] with $P \cap R = 0$. Define K = quot(R).

We can view P as a subset of K[x]. Consider $(P) \subset K[x]$. We see that (P) is principal, as K[x] is a principal ideal domain. Moreover, (P) is not the entire ring, because $P \cap R = 0$. So (P) = (p) for some $p \in K[x]$, with p having degree at least 1.

We can impose that $p \in P$; if it isn't, then we can multiply p by the least common multiple of the quotients of the coefficients of p to get it in R[x]. Also, $R[x] \cap (P) = P$; if $x \in (P) \cap R[x]$ and, then there's a nonzero $r \in R$ such that $rx \in P$, but $r \notin P$, so $x \in P$. (Also, $P \subset R[x]$ and $P \subset (P)$).

Further, we can impose that the leading coefficient of p divides the leading coefficient of any element of P.

This means that p must be prime in K[x]; let $r, s \in K[x]$ with rs = p. One of r or s must have degree at least one, then. We can factor out a constant, k, with p = kr's' and $r', s' \in R[x]$. That is, $r's' \in (P) \cap R[x]$, so $r's' \in P$. This means that r' or s' is in P. So r' or s' is in (P). So r or s is a multiple of p in K[x]. So p is irreducible in K[x], so p is prime.

Thus, p is prime in R[x].

Now, we imposed that $p \in P$, so $(p) \subset P$.

Next, let $q \in P$. Then $q \in (P) \subset K[x]$, so $q \in (p) \subset K[x]$. That means that $p \mid q$ in K[x]; there is an $r \in K[x]$ such that q = pr. By multiplying by the least common multiple of the quotients of the coefficients of r, we can say that there is a $k \in R$ such that kq = pr' for some $r' \in R[x]$. That is, $kq \in (p)$ for some $k \in R$. But (p) is prime, and $(p) \subset P$. So $k \notin (p)$, so $q \in (p)$.

So (p) = P; P is a principal ideal.