

Sistemas Computacionais

Parte 04 – Circuitos lógicos e operações I

Prof. Fancisco Javier

Circuitos lógicos e operações

Representação algébrica

Postulados (ou axiomas)

Representação algébrica

 Vimos que as operações booleanas básicas podem ser representadas algebricamente.

Operação boolena	Representação algébrica
OR	x = A + B
AND	$x = A \cdot B$
NOT	$x = \overline{A}$

Ou simplesmente: x = AB

Representação algébrica

Combinando diversas portas lógicas básicas

São pressuposições aceitas como verdadeiras

Edward Vermilye Huntington (1874 – 1952): matemático americano.

 Estabeleceu, em 1904, os postulados da Álgebra de Boole, na Universidade de Harvard.

As leis da álgebra também se fazem presentes nas operações booleanas.

Leis Cumulativas

Operação booleana	Representação algébrica
OR	$A + B \equiv B + A$
AND	$A \cdot B \equiv B \cdot A$

Símbolo de equivalência

As leis da álgebra também se fazem presentes nas operações booleanas.

Leis Associativas

Operação booleana	Representação algébrica
OR	$(A + B) + C \equiv A + (B + C)$
AND	$(A.B).C \equiv A.(B.C)$

As leis da álgebra também se fazem presentes nas operações booleanas.

Leis Distributivas

Operação booleana	Representação algébrica
AND / OR	$A.(B+C) \equiv (A.B) + (A.C)$
OR / AND	$A + (B . C) \equiv (A + B) . (A + C)$

E agora?

Vamos conferir na tabela-verdade de $\mathbf{x} = A + B$. \mathcal{C}

Α	В	С	Y = B . C	A + Y	Α	В	С	Y = A + B	Y.C
0	0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	1	0	0
0	1	0	0	0	0	1	0	1	0
0	1	1	1	1	0	1	1	1	1
1	0	0	0	1 🛑	1	0	0	1	0 🛑
1	0	1	0	1	1	0	1	1	1
1	1	0	0	1 🛑	1	1	0	1	0 🛑
1	1	1	1	1	1	1	1	1	1

E agora?

Y.C

Vamos conferi

A	
Ç	
0	
0	
1	
1	0
1	
1	

Usa-se a mesma convenção da álgebra "normal".

- 1. A operação AND tem prevalência sobre a operação OR;
 - 2. Para alterar essa prevalência usamos o parêntesis.

					1	1	1
	U			1	0	1	0 🛑
1	1	1	1	1	1	1	1

 $x = A + B \cdot C$

x =	(1		P	
Λ —	(\mathbf{A})	Τ.	ן ע	U

Α	В	С	B.C	A + (B.C)	
0	0	0	0	0	
0	0	1	0	0	
0	1	0	0	0	
0	1	1	1	1	
1	0	0	0	1 🛑	
1	0	1	0	1	
1	1	0	0	1 🛑	
1	1	1	1	1	

Α	В	С	A + B	(A+B) . C
0	0	0	0	0
0	0	1	0	0
0	1	0	1	0
0	1	1	1	1
1	0	0	1	0
1	0	1	1	1
1	1	0	1	0
1	1	1	1	1

Circuitos lógicos

Teoremas booleanos

É algo que se pode provar com passos lógicos a partir de axiomas

Sendo K o conjunto dos números booleanos

Os elementos 0 e 1 são únicos.

$$a + a = a$$

$$a \cdot a = a$$

$$A = 0$$

$$A = 0$$

$$A = 1$$

$$A = 1$$

$$X = 1$$

$$A = 0$$

$$A = 0$$

$$A = 0$$

$$A = 1$$

$$A = 1$$

$$X = 1$$

• Para todo elemento a em K, temos:

$$a + 0 = a$$

$$a.1 = a$$

$$A = 0$$

$$1$$

$$X = 0$$

$$1$$

$$X = 1$$

$$a + 1 = 1$$

$$a.0 = 0$$

$$A = 1$$

$$1$$

$$X = 1$$

$$1$$

$$X = 1$$

$$A = 1$$

$$0$$

$$X = 0$$

$$0$$

$$X = 0$$

• Os elementos 0 e 1 são distintos e $\overline{1} = 0$

$$a + \overline{a} = 1$$

$$a.\overline{a}=0$$

$$A = 0$$
 $\overline{A} = 1$
 $X = 1$
 $X = 1$
 $X = 1$

$$A = 1$$
 $\overline{A} = 0$
 $X = 0$
 $\overline{A} = 1$
 $X = 0$

$$a = \overline{\overline{a}}$$

• Para todo par de elementos a e b em K, temos:

$$a + a.b = a$$

Α	В	AB	A + AB	$A \longrightarrow$
0	0	0	0	A conexão direta
0	1	0	0	
1	0	0	1	
1	1	1	1	

Α	В	Y = A + B	A.Y
0	0	0	0
0	1	1	0
1	0	1	1
1	1	1	1

Circuitos lógicos

Exercite seus conhecimentos!!!

Adição Booleana

Adição é equivalente à função **OR Igual a 1 quando tem qualquer entrada igual a 1.**

Adição Booleana

- 1. Determine os valores para os quais o resultado de A+B+C+D é igual a 0
- 2. Determine os valores para os quais o resultado de A+B+C é igual a 0

$$2) => A = B = C = 0$$

Multipicação Booleana

Multiplicação é equivalente à função AND Igual a 0 quando tem qualquer entrada igual a 0.

Multiplicação Booleana

- Determine os valores para os quais o resultado de ABCD é igual 1
- 2. Determine os valores para os quais o resultado de **ABC** é igual **1**

- 1) A = D = 1 e B = C = 0
- 2) A=C=1eB=0

Comutativa da adição

$$A+B=B+A$$

$$\begin{array}{c|c}
A & \longrightarrow & B \\
B & \longrightarrow & B + A
\end{array}$$

Comutativa da Multiplicação

$$AB = BA$$

$$\begin{bmatrix} A & & & \\ B & & & \\ & & & \end{bmatrix} - AB = \begin{bmatrix} B & & & \\ A & & & \\ & & & \end{bmatrix} - BA$$

Associativa da adição

$$A+(B+C) = (A + B) + C$$

Associativa da Multiplicação

$$(AB)C = A(BC)$$

Lei Distributiva

$$A(B+C) = AB + AC$$

Regra da álgebra Booleana

1.
$$A + 0 = A$$

$$2. A + 1 = 1$$

3.
$$A \cdot 0 = 0$$

4.
$$A \cdot 1 = A$$

5.
$$A + A = A$$

6.
$$A + \overline{A} = 1$$

7.
$$A \cdot A = A$$

8.
$$A \cdot \overline{A} = 0$$

9.
$$\overline{\overline{A}} = A$$

10.
$$A + AB = A$$

11.
$$A + AB = A + B$$

12.
$$(A + B)(A + C) = A + BC$$

$$10 \Rightarrow A+A.B = A(1+B) = A.(1) = A$$

Regra I. A + 0 = A A operação OR de uma variável com 0 é sempre igual a variável. Se a variável de entrada A for 1, a variável X de saída será 1, que é igual a A. Se A for 0, a saída será 0, que também é igual a A. Essa regra é ilustrada na Figura 4–6, na qual a entrada inferior da porta está fixa em 0.

$$A = 1$$

$$0$$

$$X = 1$$

$$0$$

$$X = 0$$

$$0$$

$$X = A + 0 = A$$

Regra 2. A + I = I A operação OR da variável com 1 é igual a 1. Um 1 numa entrada de uma porta OR produz um 1 na saída, independente do valor da variável na outra entrada. Essa regra é ilustrada na Figura 4–7, na qual a entrada inferior da porta está fixa em 1.

$$A = 1$$

$$1$$

$$X = 1$$

$$1$$

$$X = 1$$

$$X = A + 1 = 1$$

Regra 3. $A \cdot 0 = 0$ A operação AND da variável com 0 sempre é igual a 0. Todas as vezes que uma entrada de uma porta AND for 0, a saída será 0, independente do valor da variável na outra entrada. Essa regra está ilustrada na Figura 4–8, na qual a entrada inferior está fixa em 0.

$$A = 1$$

$$0$$

$$X = 0$$

$$0$$

$$X = 0$$

$$X = A \cdot 0 = 0$$

Regra 4. $A \cdot I = A$ A operação AND da variável com 1 é sempre igual a variável. Se A for 0 a saída da porta AND será 0. Se A for 1, a saída da porta AND será 1 porque ambas as entradas agora são 1s. Essa regra é mostrada na Figura 4–9, onde a entrada inferior está fixa em 1.

$$A = 0$$

$$1$$

$$X = 0$$

$$1$$

$$X = 1$$

$$X = A \cdot 1 = A$$

Regra 5. A + A = A A operação OR da variável com ela mesma é sempre igual a variável. Se A for 0, então 0 + 0 = 0; e se A for 1, então 1 + 1 = 1. Isso é mostrado na Figura 4–10, onde as duas entradas são a mesma variável.

$$A = 0$$

$$A = 0$$

$$A = 1$$

$$A = 1$$

$$A = 1$$

$$X = A + A = A$$

Regra 6. $A + \overline{A} = I$ A operação OR da variável com o seu complemento é sempre igual a 1. Se A for 0, então $0 + \overline{0} = 0 + 1 = 1$. Se A for 1, então $1 + \overline{1} = 1 + 0 = 1$. Veja a Figura 4–11, onde uma entrada é o complemento da outra.

$$A = 0$$

$$\overline{A} = 1$$

$$X = 1$$

$$\overline{A} = 0$$

$$X = 1$$

$$\overline{A} = 0$$

$$X = A + \overline{A} = 1$$

Regra 7. $A \cdot A = A$ A operação AND de uma variável com ela mesma é sempre igual a variável. Se A = 0, então $0 \cdot 0 = 0$; e se A = 1, então $1 \cdot 1 = 1$. A Figura 4–12 ilustra essa regra.

$$A = 0$$

$$A = 0$$

$$X = 0$$

$$A = 1$$

$$A = 1$$

$$X = 1$$

$$X = A \cdot A = A$$

Regra 8. $A \cdot \overline{A} = 0$ A operação AND de uma variável e o seu complemento é sempre igual a 0. Nesse caso, ou \overline{A} ou sempre será 0; e quando um 0 é aplicado na entrada de uma porta AND, a saída também será 0. A Figura 4–13 ilustra essa regra.

$$A = 1$$

$$\overline{A} = 0$$

$$X = 0$$

$$\overline{A} = 1$$

$$X = 0$$

$$X = A \cdot \overline{A} = 0$$

Regra 9. $\overline{A} = A$ O complemento duplo de uma variável é sempre igual a variável. Se complementarmos (invertermos) a variável A uma vez, obtemos \overline{A} . Então se complementarmos (invertemos) \overline{A} , obtemos A, que é a variável original. Essa regra é mostrada na Figura 4–14 usando inversores.

$$A = 0 \qquad \qquad \overline{\overline{A}} = 1 \qquad \qquad \overline{\overline{A}} = 0 \qquad \qquad A = 1 \qquad \overline{\overline{A}} = 0$$

$$\overline{\overline{A}} = A$$

Regra 10. A + AB = A Essa regra pode ser provada aplicando a lei distributiva, Regra 2, e a Regra 4 como a seguir:

$$A + AB = A(1 + B)$$
$$= A \cdot 1$$
$$= A$$

Fatorando (lei distribuitiva)

Regra 2:
$$(1 + B) = 1$$

Regra 4:
$$A \cdot 1 = A$$

A prova é mostrada na Tabela 4–2, onde temos a tabela-verdade e a consequente simplificação do circuito lógico.

A	В	AB	A + AB	$A \rightarrow $
0	0	0	0	
0	1	0	0	$B \longrightarrow A$
1	0	0	1	1
1	1	1	1	Aconexão direta

Regra II. $A + \overline{A}B = A + B$ Essa regra pode ser provada da seguinte forma:

$$A + \overline{A}B = (A + AB) + \overline{A}B$$
 Regra 10: $A = A + AB$
 $= (AA + AB) + \overline{A}B$ Regra 7: $A = AA$
 $= AA + AB + A\overline{A} + \overline{A}B$ Regra 8: adicionando $A\overline{A} = 0$
 $= (A + \overline{A})(A + B)$ Fatorando
 $= 1 \cdot (A + B)$ Regra 6: $A + \overline{A} = 1$
 $= A + B$ Regra 4: simplifica o 1

A prova é mostrada na Tabela 4–3, onde temos a tabela-verdade e a consequente simplificação do circuito lógico.

Α	В	ĀB	A + AB	A + B	$A \longrightarrow$				
0	0	0	0	0					
0	1	1	1	1					
1	0	0	1	1	A				
1	1	0	1	1	$B \longrightarrow D$				
igual									

Regra 12. (A + B)(A + C) = A + BC Essa regra pode ser provada da seguinte forma:

$$(A + B)(A + C) = AA + AC + AB + BC$$

$$= A + AC + AB + BC$$

$$= A(1 + C) + AB + BC$$

$$= A \cdot 1 + AB + BC$$

$$= A(1 + B) + BC$$

$$= A \cdot 1 + BC$$

$$= A + BC$$

Lei distribuitiva Regra 7: AA = AFatorando (lei distribuitiva) Regra 2: 1 + C = 1Fatorando (lei distribuitiva) Regra 2: 1 + B = 1Regra 4: $A \cdot 1 = A$

Regra da álgebra Booleana

1.
$$A + 0 = A$$

7.
$$A \cdot A = A$$

$$2. A + 1 = 1$$

$$8. A \cdot \overline{A} = 0$$

3.
$$A \cdot 0 = 0$$

9.
$$\overline{\overline{A}} = A$$

4.
$$A \cdot 1 = A$$

10.
$$A + AB = A$$

5.
$$A + A = A$$

11.
$$A + \bar{AB} = A + B$$

6.
$$A + \overline{A} = 1$$

12.
$$(A + B)(A + C) = A + BC$$

Universidade Católica de Brasília

A prova é mostrada na Tabela 4-4, onde temos a tabela-verdade e a consequente simplifica-

Resumo das Propriedades:

(1)
$$x \cdot 0 = 0$$

(2)
$$X \cdot 1 = X$$

(3)
$$x \cdot x = x$$

$$(4) \quad x \cdot \overline{x} = 0$$

(5)
$$X + 0 = X$$

Resumo das Propriedades:

$$(8) \quad X + \overline{X} = 1$$

$$(8) \quad X + \overline{X} = 1$$

Resumo das Propriedades:

(9)
$$x + y = y + x$$

(10) $x \cdot y = y \cdot x$
(11) $x + (y + z) = (x + y) + z = x + y + z$
(12) $x(yz) = (xy)z = xyz$
(13a) $x(y + z) = xy + xz$
(13b) $(w + x)(y + z) = wy + xy + wz + xz$
(14) $x + xy = x$
(15) $x + \overline{x}y = x + y$

Próxima aula

- Circuitos lógicos
 - Portas NAND e NOR
 - Teorema de De Morgan
 - Atraso de propagação

Dúvidas?

