

Actividad de la lección 1.4.5.1

Longitud de Arco.

Instrucciones. Calcular la longitud de arco de la función dada en el intervalo señalado.

1.
$$y = 3x^{\frac{2}{3}} - 10$$
 de $A(8,2)$ a $B(27,17)$

2.
$$8x^2 = 27y^3$$
 de $A\left(1, \frac{2}{3}\right)$ a $B\left(8, \frac{8}{3}\right)$

2	$c^{3}\sqrt{2}$	1 1 . 1	(17)	D (0.25)
3. y =	$6\sqrt{x^2}$	- 1 ae <i>A</i>	(-1,7) a	1 B (-	8,25)

4.
$$y = \frac{4}{3}\sqrt{2}(x)^{3/2} - 1$$
, $0 \le x \le 1$.

5.
$$x = \frac{y^3}{3} + \frac{1}{4y}$$
, $1 \le y \le 3$

6. (a) Hallar una curva por el punto (1, 1) cuya integral de longitud sea $L = \int_{1}^{4} \sqrt{1 + \frac{1}{4x}} dx$

b) ¿Cu	ántas curvas	como ésa hay	/? Justifica sı	u respuesta		
'. (a) H	allar una cur	va a través de	el punto (0,1) cuya integra	al de longitud s	ea $L = \int_{1}^{2} \sqrt{1 + \frac{1}{y^4}} dy$

(b) ¿Cuántas curvas como ésa hay? Justifica su respuesta

8. Hallar la longitud de la curva $y = \int_{0}^{x} \sqrt{\cos 2t} dt$ desde x = 0 hasta $x = \frac{\pi}{4}$.