1000	somephe po	Some	9		Bay	pia	im	12	10			
	anne 1.									00000		
			5		0	2 5		e A	70	(/		
8-9	6: 102 = 10	5	00									
Balgo	una 2.					79					5	
	6: 3+3.2		2.1:	= 15	20.0			4/2				
		+ 3.	2.0									
Jabgo	nno 3.											
08	cuumu (, 23	-3.	C 7				143		P- 8		
36 ig	$cu : \frac{25!}{23!2}$	1 - 3.	71.	31=	25.	12-	-5.8	2.9		-60		
				1				26				
	A did K WE			1			2					
	anna 4.							8		18-8		
1	Ax: Ax	1 = 10										
1		7 2 1	5					1		1990		
	C 4 : C 9	= 3	3 2		17							
								Ó.				
	umens											
1	$\frac{x!}{(x-y)!}$	(- 9 +	1)! =	= 10						1		
1	(x-y)	x!								(A)		
	x! y!(x-y)!	(x - 9 -	+1)!	(y-1	11	= 5 /	. (1			800		
L	9!(x-9)!		x			1	3		-		200	
Contra	muus:										9	
cypa	$\begin{array}{c} (x - y + i) \frac{1}{y} \end{array}$			3	10		5			1	, , ,	15
	x - 9 + 1 = 11	2	->		9	=	3		9 1	1	1	
9	(x-4+1)1	_ 5	-	1	X.	-4+	1=	10			9=	6

B-96: (x,'9) = (15,'6) Babganne g. a) $P(A) = \frac{20}{1000} + \frac{5}{1000} + \frac{1}{1000} = \frac{13}{500} = 0,026$ 8) $P(D) = P(A) + \frac{50}{1000} = \frac{19}{250} = 0,076$ B-96: a) P(A) = 0,026; 8) P(D) = 0,076 Babganna 5. B-96: 4! = 24 3abganne 6. $A_x^2 = 56 \Rightarrow \frac{x!}{(x-2)!} = 56 \Rightarrow x = 8$ $x(x-1)=56 \Rightarrow x_1=8, x_2=-7 \text{ are } x 7/2$ B-96: 8 3abganne 7. Sabganue 7. $d_n = \frac{h(n-3)}{2}$... $d_s = \frac{8.5}{2} = 20$ B-96: 20 3abgarne 8. $P(A) = \frac{3}{10}$ B-96: PCA) = 0,3 3abgarno 10. $P(A) = \frac{C_5^2}{C_{12}^2} + \frac{C_4^2}{C_{12}^2} + \frac{C_3^2}{C_{12}^2} = \frac{19}{66}$ B-96: PCA) = 19 20,2879

Лаборатьр	ng p	0000	mq		2				E	a	pid	24	m	10	2	Ī		
3 abganna																		
OSuncuum											0	-		be				
1 (3 A	5 -	C 11)	+	C	8	A	1	3		A .	E						
B-96 : ≈														174.5				
Babganne	2.					40							1)	7			
P(A) =	2 =	10		A				100			140	VP						
B-96: P	2																	
3abganne.	3.							A							-			
P, = 0,4,		1. 75.00				- 1			1		0							
P2 = 0,9,	92	=0,	1															H
P3 = 0,5	2 P				00							A)	9					
		0,9	101	R	ar	m	auc	u	d,	0	2			0	7			H
$ \begin{cases} \rho_1 = O_1 1 \\ \rho_2 = O_1 2 \end{cases} $	923	= 0,8			re	rui	0	ius	× 54		101	13						H
1) P(A) = =	, 0	1+	1	. (2,2			1										
21 (O1)		2	1.5	-	=	2				L								
8) PA (B2)	1	13.	0,2	2	=	1 2												H
																		1

```
B-96: 1) P(A) = \frac{2}{15};
           2) a) P_{A}(B_{1}) = \frac{1}{2}; \delta_{1} P_{A}(B_{2}) = \frac{1}{2}.
3abgarne 6.
  P(A) - insbipuient mois, up bei ospani
 gemani ne E Spanobamunu
 P(A) - inobipnieme moro, us xonas ogus
 Spanobana.
 3a ognavenmen P(A) + P(A) =1
 36igcu P(A) = 1-P(A)
P(A) = \frac{C_{99}'}{C_{100}'} \cdot \frac{C_{99}'}{C_{100}'} - \left[\frac{99}{100}\right]^{100}
P(\bar{A}) = 1 - \frac{g_{9}^{100}}{100^{100}} = 1 - 0,99^{100}
 B-96: P(A) = 1-0,99100 2 0,6339
3abganne 7. (100)
 f(A) = \frac{56}{60}, \frac{55}{59}, \frac{54}{58}, \frac{53}{57} \approx 0,7532
B-96: P(A) = 0,7532
```

3abganna 8. $P(A) = \frac{C_{5000}}{C_{10000}} + \frac{C_{1000}}{C_{10000}} + \frac{C_{1000}}{C_{10000}} = \frac{6100}{10000} = 0,61$ B-96: P(A) = 61 = 0,61 3ab ganne g P, = 0,7, 9, = 0,3 P2 = 0,5 , 92 = 0,5 P3 = 0,9 ,93 = 0,112 + 10,113 and more P(A) = 0,7.0,5.0,9 = 0,315 B-96: P(A) = 0,315 3abganna 10 $P(A) = \frac{5}{10} \cdot 0,05 + \frac{3}{18} \cdot 0,01 + \frac{10}{18} \cdot 0,1 = 0,071$ ge P(A) - i usbipniemo sparay kebuenna Gremoi kawecku. PA(B2) = 3/18.0,01 2 0,0235 B-96: PA(B2) 20,0235 * 3aloganne 4. $P(A) = 44/56 \cdot \frac{C_2^2}{C_2^2} + 56/44 \cdot \frac{C_2^2}{C_2^2} + 54/44 \cdot \frac{C_3^2}{C_4^2} +$ + 44 54. 63 + 44 44. 62 + 54 54. 62 He $44|\overline{b}\overline{b} = \frac{C_5^2}{C_5^2} \cdot \frac{C_2^2}{C_5^2} = \frac{1}{126} i\overline{b}\overline{b}|44 = \frac{C_3^2}{C_5^2} \cdot \frac{C_8^2}{C_5^2} = \frac{1}{15}$

muc	
	Nasopamopus posoma 3 Bapiann 12
	3abganne 1.
	$\rho = 0,3 \Rightarrow q = 0,7$
	P4 = C4.0,32.0,7 = 0,2646
	13-96: P(A) = 0,2646
	3 abgarne 2. Mars de la
	B-96: mo = 6, P(A) = 0,2066
	3abganns 3.
	$P=0,1 \Rightarrow q=0,9$
	n = 100
a)	Proo(m <15) = Proo (0 < m < 14)
	Buxopuema eus immerpantuy mesperny hamaca:
	$(m, \leq m \leq m_2) = \mathcal{P}(x_2) - \mathcal{P}(x_1)$
	ge $P(x) = \frac{1}{\sqrt{2n}} \int_{0}^{x} e^{-\frac{x^{2}}{2}} dt$, $x_{i} = \frac{m_{i} - np}{\sqrt{npq}}$
	Verio Vnpa
9830 9 3	Pioc (0 < m < 14) = P(1,3) - P(-3,3) & 0, 4082 +
+	94996 20,9078
8>	P100 (5 6 m 612) = P(0,6) - (-1,6) = 0,2454+
+	0,4515 = 0,6969 !!
6)	P100 (m>20)=1-P100 (05m519)
Commercial	

```
: Pios(0 & m s(g) = P(3) -P(-3,3) =)
   => Pioo (0 & m (19) = 0,4987 + 0,4988 =
0 = 0,9975 700 3 (3) 70. - 3
  B-96: a) 0,0078; d1 0,6969; 6) 0,9975
 p = 9,7 , q = 0,3
  as P = C7.0,77.0,3 = 0,2668
  8) Pio (m>8) = Pis + Pio + Pio = 0,3828
 €) Po =0,000006 € 6.10 6
 B-g6: a) 0,2668; 8) 0,3828; 6) 0,000006
 3abganne 5.
  n = 200 => n = 200.0,025 = 5
   P_m \approx \frac{\lambda^m}{m!} e^{\lambda}, \lambda = np, 1p/<0,1
a) P200 (m (3) = P200 + P1 + P2 + P3 200 20
\approx \left(\frac{5}{0!} + \frac{5}{1!} + \frac{5}{2!} + \frac{5}{3!}\right) = 5 \approx 0,265
δ) po ~ 5° = 5 = 0,0067
6) P200 (m >, 4) 1-0, 265 = 0, 735
 B-96: a) 0,265; 8,0,0067; 6,0,735
```

3abganne 6. p = 0,1 , n = 400 Proo ~ 1. 9(1,6) ~ 0,167.0,1006 & 0,0167 8) P400 (30 < m (50) = P(1,6) - P(-1,6) = = 2 \$(1,6) = 2.0,4452 = 0,8904 6) P400 (m < 30) = P400 (0 < m < 30) = = P(-1,6) - P(-6,6) = P(6,6) - P(1,6)= = 0,5 - 0,4452 = 0,0548

Nacopamopue posome 4 Baptaum 12 3abganne 1. $M(x) = \sum_{i=1}^{6} x_i p_i = -0,05$ $D(x) = M(x^2) - M^2(x) = \sum_{i=1}^{6} x_i^2 p_i - 0.08^2 =$ = 17,91-0,0081= 17,9019 $\sigma(x) = \sqrt{D(x)} = \sqrt{17}, 9019 \approx 4,23106$ B-96: M(x) = -0,09; D(x) = 17, 9019; 0(x) 4, 23106 3a bgarine 2. 1 man and an annual man P=0,3,9=0,7, K=5 X; 0 1 2 3 Fi 0,16807 0,36 015 0,3087 0,1323 0,02835 0,00 243 P: = P; , Pm = Cmpq n-m P5 = 0,16807; P1 = 0,36015; P5 = 0,3087 $P_5^3 = 0,1323$; $P_5^4 = 0,02835$; $P_5^5 = 0,00243$ M(x) = 1,50 $D(x) = 3,3-1,5^2 = 1,05$ 5(x) = √1,05 ≈ 1,0247 B-96: M(x) = 1,5) D(x) = 1,05 ; 5(x) = 1,0247.

	Babgar	ne	3.	3		27	700	95	V NGV		1000	A
	llexa											
	$X = X_i +$											4
				70 (2.00)								7
	ouck	nnu	nio	1010	any	u' q	Box	700	ull	wy	Ky	Sura'
		T		(0 11			(32)	
	i. ua	e wo	bai	ioux	indi	nay	ou -	inco.				
	= 900	0 -			210	(1)			11.3		(6)	
	1	1,1	1	2,1		3,1		4,1		5,1		6,1
		1,2				3,2		4,2	0	5,2	19	6,2
	1			2, 3		3,3		4,3		5,3		6,3
	$(x_1,x_2) \Rightarrow$	1,4	9	2, 4		3,4	SIL	4,4		5,4	1 1 X	6,4
		1,5		2, 5		3,5		455		5,5		6,5
Take V	4 (1) 1		2 9	2,6			00	4,6	(10)	5,6	186	6,6
	Nosyg			5				9			1	
		13	17	1	0	1/	0		10	100	1 6	-
	1			1		Y//						
	1			1	5	8					1	
	Pi 36				<u>5</u> 36	36	<u>5</u> 36		36		36	
	Pi 36	36	3 36	1	5/36	36					36	
	1	36	3 36	1	5/36	36					36	
	$P_i = \frac{1}{36}$ $M(x)$	$= \frac{2}{36}$	36	36	5/36	36		36	36	36		i,
	$P_i = \frac{1}{36}$ $M(x)$	$= \frac{2}{36}$	36	36	5/36	36		36		36		i,
	$P_i = \frac{1}{36}$ $M(x)$ $D(x)$	= 7	3 36	-49	5/36	35 6	5 36	36	3 3 6	36		
	$P_i = \frac{1}{36}$ $M(x)$ $D(x)$	= 7	3 36	-49	5/36	35 6	5 36	36	3 3 6	36		
	$P_i = \frac{1}{36}$ $M(x)$ $D(x)$ $\delta(x)$	= 7 $= 7$	3 3 3 6 3 5 6	<u>4</u> 36 -49	=	$\frac{8}{36}$ $\frac{35}{6}$ 23	5 36	36	3 36	36		
	$P_i = \frac{1}{36}$ $M(x)$ $D(x)$	= 7 $= 7$	3 3 3 6 3 5 6	<u>4</u> 36 -49	=	$\frac{8}{36}$ $\frac{35}{6}$ 23	5 36	36	3 36	36		
	$P_i = \frac{1}{36}$ $M(x)$ $D(x)$ $\delta(x)$	= 7 $= 7$	3 3 3 6 3 5 6	<u>4</u> 36 -49	5 36 =	$\frac{35}{6}$ 23 $(x) =$	5 36	36	3 36	36		
	$P_i = \frac{1}{36}$ $M(x)$ $D(x)$ $\delta(x)$	= 7 $= 7$	3 3 3 6 3 5 6	<u>4</u> 36 -49	=	$\frac{35}{6}$ 23 $(x) =$	5 36	36	3 36	36		
	$P_i = \frac{1}{36}$ $M(x)$ $D(x)$ $\delta(x)$	= 7 $= 7$	3 3 3 6 3 5 6	<u>4</u> 36 -49	5 36 =	$\frac{35}{6}$ 23 $(x) =$	5 36	36	3 36	36		
	$P_i = \frac{1}{36}$ $M(x)$ $D(x)$ $\delta(x)$	= 7 $= 7$	3 3 3 6 3 5 6	<u>4</u> 36 -49	5 36 =	$\frac{35}{6}$ 23 $(x) =$	5 36	36	3 3 6 7(x)	= 2,1	4152	
	$P_i = \frac{1}{36}$ $M(x)$ $D(x)$ $\delta(x)$	= 7 $= 7$	3 3 3 6 3 5 6	<u>4</u> 36 -49	5 36 =	$\frac{35}{6}$ 23 $(x) =$	5 36	36	3 3 6 7(x)	36	4152	
	$P_i = \frac{1}{36}$ $M(x)$ $D(x)$ $\delta(x)$	= 7 $= 7$	3 3 3 6 3 5 6	<u>4</u> 36 -49	5 36 =	$\frac{35}{6}$ 23 $(x) =$	5 36	36	3 3 6 7(x)	= 2,1	4152	
	$P_i = \frac{1}{36}$ $M(x)$ $D(x)$ $\delta(x)$	= 7 $= 7$	3 3 3 6 3 5 6	<u>4</u> 36 -49	5 36 =	$\frac{35}{6}$ 23 $(x) =$	5 36	36	3 3 6 7(x)	= 2,1	4152	

5)
$$\begin{pmatrix} c, & x \leq -5 \\ c, & 0 \geq 2, & -5 \leq x \leq -4 \\ o, & 0 \leq 5, & -4 \leq x \leq -3 \\ o, & 0 \leq 5, & -4 \leq x \leq -3 \\ o, & 0 \leq 5, & -3 \leq x \leq -1 \\ o, & 0 \leq 1, & 0 \leq x \leq 1 \\ o, & 0 \leq 1, & 0 \leq x \leq 1 \\ o, & 0 \leq$$

$$A_{s} = -0.0262$$

$$A_{s} = \frac{M_{4}}{\delta_{4}} - 3 = \frac{1}{\delta_{4}} (V_{4} - 4V_{1}V_{3} + 6V_{1}^{2}V_{2} - 3V_{1}^{4}) = 3$$

$$E_{s} = -1.077$$

Λαδορα	торке робон	ne 5	Bapiann	12	
X	6 11 16	21	7	8-X-X	
6	0,058 0,092 0,12	280,052	3		
	0,072 0,098 0,06		- 70-71	NM	
10	0,0880,022 0,19	18 0,112	= (9 - 1/4)	JM .	
X 6	8 10 1	6 ,	1 16	21	
Pi 0,33	0,3 0,37 P	j 0,218 °,	212 0, 338	2) 232	
M(x) =	8,08	M(Y) =	13,92		
	2,7936				
	1,67141				
Y _x _y =	6(X) (X; Y) =	$\sigma(x)$	5(Y)		
M(xY)	$=\sum_{i=1}^{3}\sum_{j=1}^{4}x_{i}y_{j}$	Pij = 113	,34		
i. rxy	= 113,34-8,0	08.13,92	= 0,09	8 7	
	=> p = 0,0				
X Y=21		10			
Pi	13 17 58	28 58			9 4 8 4

