2.11. PROBLEMS 49

17. Derive the formula (Eq. 44) for the volume V of a hyperellipsoid of constant Mahalanobis distance r (Eq. 43) for a Gaussian distribution having covariance Σ .

- 18. Consider two normal distributions in one dimension: $N(\mu_1, \sigma_1^2)$ and $N(\mu_2, \sigma_2^2)$. Imagine that we choose two random samples x_1 and x_2 , one from each of the normal distributions and calculate their sum $x_3 = x_1 + x_2$. Suppose we do this repeatedly.
- (a) Consider the resulting distribution of the values of x_3 . Show from first principles that this is also a normal distribution.
- (b) What is the mean, μ_3 , of your new distribution?
- (c) What is the variance, σ_3^2 ?
- (d) Repeat the above with two distributions in a multi-dimensional space, i.e., $N(\mu_1, \Sigma_1)$ and $N(\mu_2, \Sigma_2)$.
- 19. Starting from the definition of entropy (Eq. 36), derive the general equation for the maximum-entropy distribution given constraints expressed in the general form

$$\int b_k(x)p(x) \ dx = a_k, \quad k = 1, 2, ..., q$$

as follows:

(a) Use Lagrange undetermined multipliers $\lambda_1, \lambda_2, ..., \lambda_q$ and derive the synthetic function:

$$H_s = -\int p(x) \left[\ln p(x) - \sum_{k=0}^{q} \lambda_k b_k(x) \right] dx - \sum_{k=0}^{q} \lambda_k a_k.$$

State why we know $a_0 = 1$ and $b_0(x) = 1$ for all x.

(b) Take the derivative of H_s with respect to p(x). Equate the integrand to zero, and thereby prove that the minimum-entropy distribution obeys

$$p(x) = \exp\left[\sum_{k=0}^{q} \lambda_k b_k(x) - 1\right],$$

where the q+1 parameters are determined by the constraint equation.

- 20. Use the final result from Problem 19 for the following.
- (a) Suppose we know only that a distribution is non-zero in the range $x_l \le x \le x_u$. Prove that the maximum entropy distribution is uniform in that range, i.e.,

$$p(x) \sim U(x_l, x_u) = \begin{cases} 1/|x_u - x_l| & x_l \le x \le x_u \\ 0 & \text{otherwise.} \end{cases}$$

(b) Suppose we know only that a distribution is non-zero for $x \ge 0$ and that its mean is μ . Prove that the maximum entropy distribution is

$$p(x) = \begin{cases} \frac{1}{\mu} e^{-x/\mu} & \text{for } x \ge 0\\ 0 & \text{otherwise.} \end{cases}$$

(c) Now suppose we know solely that the distribution is normalized, has mean μ , and standard deviation σ^2 , and thus from Problem 19 our maximum entropy distribution must be of the form

$$p(x) = \exp[\lambda_0 - 1 + \lambda_1 x + \lambda_2 x^2].$$

Write out the three constraints and solve for λ_0, λ_1 , and λ_2 and thereby prove that the maximum entropy solution is a Gaussian, i.e.,

$$p(x) = \frac{1}{\sqrt{2\pi}} \exp \left[\frac{-(x-\mu)^2}{2\sigma^2} \right].$$

- **21.** Three distributions a Gaussian, a uniform distribution, and a triangle distribution (cf., Problem 4) each have mean zero and standard deviation σ^2 . Use Eq. 36 to calculate and compare their entropies.
- **22.** Calculate the entropy of a multidimensional Gaussian $p(\mathbf{x}) \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$.

Section 2.6

- **23.** Consider the three-dimensional normal distribution $p(\mathbf{x}|\omega) \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ where $\boldsymbol{\mu} = \begin{pmatrix} \frac{1}{2} \\ \frac{2}{2} \end{pmatrix}$ and $\boldsymbol{\Sigma} = \begin{pmatrix} \frac{1}{0} & \frac{0}{5} & \frac{0}{5} \\ 0 & \frac{1}{2} & \frac{1}{5} \end{pmatrix}$.
 - (a) Find the probability density at the point $\mathbf{x}_0 = (.5, 0, 1)^t$.
 - (b) Construct the whitening transformation \mathbf{A}_w . Show your $\mathbf{\Lambda}$ and $\mathbf{\Phi}$ matrices. Next, convert the distribution to one centered on the origin with covariance matrix equal to the identity matrix, $p(\mathbf{x}|\omega) \sim N(\mathbf{0}, \mathbf{I})$.
 - (c) Apply the same overall transformation to \mathbf{x}_0 to yield a transformed point \mathbf{x}_w .
 - (d) By explicit calculation, confirm that the Mahalanobis distance from \mathbf{x}_0 to the mean $\boldsymbol{\mu}$ in the original distribution is the same as for \mathbf{x}_w to $\mathbf{0}$ in the transformed distribution.
 - (e) Does the probability density remain unchanged under a general linear transformation? In other words, is $p(\mathbf{x}_0|N(\boldsymbol{\mu},\boldsymbol{\Sigma})) = p(\mathbf{T}^t\mathbf{x}_0|N(\mathbf{T}^t\boldsymbol{\mu},\mathbf{T}^t\boldsymbol{\Sigma}\mathbf{T}))$ for some linear transform \mathbf{T} ? Explain.
 - (f) Prove that a general whitening transform $\mathbf{A}_w = \mathbf{\Phi} \mathbf{\Lambda}^{-1/2}$ when applied to a Gaussian distribution insures that the final distribution has covariance proportional to the identity matrix \mathbf{I} . Check whether normalization is preserved by the transformation.

2.11. PROBLEMS 51

- **24.** Consider the multivariate normal density for which $\sigma_{ij} = 0$ and $\sigma_{ii} = \sigma_i^2$, i.e., $\Sigma = diag(\sigma_1^2, \sigma_2^2, ..., \sigma_d^2)$.
 - (a) Show that the evidence is

$$p(\mathbf{x}) = \frac{1}{\prod_{i=1}^{d} \sqrt{2\pi}\sigma_i} \exp\left[-\frac{1}{2} \sum_{i=1}^{d} \left(\frac{x_i - \mu_i}{\sigma_i}\right)^2\right].$$

- (b) Plot and describe the contours of constant density.
- (c) Write an expression for the Mahalanobis distance from \mathbf{x} to $\boldsymbol{\mu}$.
- **25.** Fill in the steps in the derivation from Eq. 57 to Eqs. 58–63.
- **26.** Let $p(\mathbf{x}|\omega_i) \sim N(\boldsymbol{\mu}_i, \boldsymbol{\Sigma})$ for a two-category *d*-dimensional problem with the same covariances but arbitrary means and prior probabilities. Consider the squared Mahalanobis distance

$$r_i^2 = (\mathbf{x} - \boldsymbol{\mu}_i)^t \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}_i).$$

(a) Show that the gradient of r_i^2 is given by

$$\nabla r_i^2 = 2\Sigma^{-1}(\mathbf{x} - \boldsymbol{\mu}_i).$$

- (b) Show that at any position on a given line through μ_i the gradient ∇r_i^2 points in the same direction. Must this direction be parallel to that line?
- (c) Show that ∇r_1^2 and ∇r_2^2 point in opposite directions along the line from μ_1 to μ_2 .
- (d) Show that the optimal separating hyperplane is tangent to the constant probability density hyperellipsoids at the point that the separating hyperplane cuts the line from μ_1 to μ_2 .
- (e) True of False: For a two-category problem involving normal densities with arbitrary means and covariances, and $P(\omega_1) = P(\omega_2) = 1/2$, the Bayes decision boundary consists of the set of points of equal Mahalanobis distance from the respective sample means. Explain.
- **27.** Suppose we have two normal distributions with the same covariances but different means: $N(\mu_1, \Sigma)$ and $N(\mu_2, \Sigma)$. In terms of their prior probabilities $P(\omega_1)$ and $P(\omega_2)$, state the condition that the Bayes decision boundary *not* pass between the two means.
- **28.** Two random variables \mathbf{x} and \mathbf{y} are called "statistically independent" if $p(\mathbf{x}, \mathbf{y} | \omega) = p(\mathbf{x} | \omega) p(\mathbf{y} | \omega)$.
 - (a) Prove that if $x_i \mu_i$ and $x_j \mu_j$ are statistically independent (for $i \neq j$) then σ_{ij} as defined in Eq. 42 is 0.
 - (b) Prove that the converse is true for the Gaussian case.
 - (c) Show by counterexample that this converse is *not* true in the general case.

2.11. PROBLEMS 51

- **24.** Consider the multivariate normal density for which $\sigma_{ij} = 0$ and $\sigma_{ii} = \sigma_i^2$, i.e., $\Sigma = diag(\sigma_1^2, \sigma_2^2, ..., \sigma_d^2)$.
 - (a) Show that the evidence is

$$p(\mathbf{x}) = \frac{1}{\prod_{i=1}^{d} \sqrt{2\pi}\sigma_i} \exp\left[-\frac{1}{2} \sum_{i=1}^{d} \left(\frac{x_i - \mu_i}{\sigma_i}\right)^2\right].$$

- (b) Plot and describe the contours of constant density.
- (c) Write an expression for the Mahalanobis distance from \mathbf{x} to $\boldsymbol{\mu}$.
- **25.** Fill in the steps in the derivation from Eq. 57 to Eqs. 58–63.
- **26.** Let $p(\mathbf{x}|\omega_i) \sim N(\boldsymbol{\mu}_i, \boldsymbol{\Sigma})$ for a two-category *d*-dimensional problem with the same covariances but arbitrary means and prior probabilities. Consider the squared Mahalanobis distance

$$r_i^2 = (\mathbf{x} - \boldsymbol{\mu}_i)^t \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}_i).$$

(a) Show that the gradient of r_i^2 is given by

$$\nabla r_i^2 = 2\Sigma^{-1}(\mathbf{x} - \boldsymbol{\mu}_i).$$

- (b) Show that at any position on a given line through μ_i the gradient ∇r_i^2 points in the same direction. Must this direction be parallel to that line?
- (c) Show that ∇r_1^2 and ∇r_2^2 point in opposite directions along the line from μ_1 to μ_2 .
- (d) Show that the optimal separating hyperplane is tangent to the constant probability density hyperellipsoids at the point that the separating hyperplane cuts the line from μ_1 to μ_2 .
- (e) True of False: For a two-category problem involving normal densities with arbitrary means and covariances, and $P(\omega_1) = P(\omega_2) = 1/2$, the Bayes decision boundary consists of the set of points of equal Mahalanobis distance from the respective sample means. Explain.
- **27.** Suppose we have two normal distributions with the same covariances but different means: $N(\mu_1, \Sigma)$ and $N(\mu_2, \Sigma)$. In terms of their prior probabilities $P(\omega_1)$ and $P(\omega_2)$, state the condition that the Bayes decision boundary *not* pass between the two means.
- **28.** Two random variables \mathbf{x} and \mathbf{y} are called "statistically independent" if $p(\mathbf{x}, \mathbf{y} | \omega) = p(\mathbf{x} | \omega) p(\mathbf{y} | \omega)$.
 - (a) Prove that if $x_i \mu_i$ and $x_j \mu_j$ are statistically independent (for $i \neq j$) then σ_{ij} as defined in Eq. 42 is 0.
 - (b) Prove that the converse is true for the Gaussian case.
 - (c) Show by counterexample that this converse is *not* true in the general case.

 \bigoplus Section 2.10

47. Suppose we have three categories in two dimensions with the following underlying distributions:

- $p(\mathbf{x}|\omega_1) \sim N(\mathbf{0}, \mathbf{I})$
- $p(\mathbf{x}|\omega_2) \sim N\left(\binom{1}{1}, \mathbf{I}\right)$
- $p(\mathbf{x}|\omega_3) \sim \frac{1}{2}N\left(\binom{.5}{.5}, \mathbf{I}\right) + \frac{1}{2}N\left(\binom{-.5}{.5}, \mathbf{I}\right)$

with $P(\omega_i) = 1/3, i = 1, 2, 3.$

- (a) By explicit calculation of posterior probabilities, classify the point $\mathbf{x} = \begin{pmatrix} .3 \\ .3 \end{pmatrix}$ for minimum probability of error.
- (b) Suppose that for a particular test point the first feature is missing. That is, classify $\mathbf{x} = \binom{*}{3}$.
- (c) Suppose that for a particular test point the second feature is missing. That is, classify $\mathbf{x} = \binom{\cdot 3}{\cdot}$.
- (d) Repeat all of the above for $\mathbf{x} = \begin{pmatrix} .2 \\ .6 \end{pmatrix}$.

48. Show that Eq. 93 reduces to Bayes rule when the true feature is μ_i and $p(\mathbf{x}_b|\mathbf{x}_t) \sim N(\mathbf{x}_t, \mathbf{\Sigma})$. Interpret this answer in words.

Section 2.11

49. Suppose we have three categories with $P(\omega_1) = 1/2$, $P(\omega_2) = P(\omega_3) = 1/4$ and the following distributions

- $p(x|\omega_1) \sim N(0,1)$
- $p(x|\omega_2) \sim N(.5,1)$
- $p(x|\omega_3) \sim N(1,1)$,

and that we sample the following four points: x = 0.6, 0.1, 0.9, 1.1.

- (a) Calculate explicitly the probability that the sequence actually came from $\omega_1, \omega_3, \omega_3, \omega_2$. Be careful to consider normalization.
- (b) Repeat for the sequence $\omega_1, \omega_2, \omega_2, \omega_3$.
- (c) Find the sequence having the maximum probability.