General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some
 of the material. However, it is the best reproduction available from the original
 submission.

Produced by the NASA Center for Aerospace Information (CASI)

(NASA-TM-X-73127) NASA AMES POTENTIAL FLOW ANALYSIS (POTFAN) GEOMETRY PROGRAM (POTGEM), VERSION 1 (NASA) 208 P MF a01/HC A10 CSCL 01A N77-13000

Unclas G3/02 56949

NASA TECHNICAL MEMORANDUM

NASA TM X-73,127

NASA TM X-73,127

NASA AMES POTENTIAL FLOW ANALYSIS (POTFAN)
GEOMETRY PROGRAM (POTGEM) —
VERSION 1

R. T. Medan and R. B. Bullock

NASA Ames Research Center Moffett Field, California 94035 and Computer Sciences Corporation Applied Technology Division 1101 San Antonio Road Mountain View, California 94043

August 1976

1. Report No. NASA TM X-73,127	2. Government Accession No.	3. Recipient's Catalog No.		
4. Title and Subtitle NASA AMES POTENTIAL FLOW ANALYS	5, Report Date			
(POTGEM) — VERSION 1	6. Performing Organization Code			
7. Author(s) R. T. Medan and R. B. Bullock	8. Performing Organization Report No. A-6558			
	10. Work Unit No.			
9. Performing Organization Name and Address	9. Performing Organization Name and Address			
NASA Ames Research Center a Moffett Field, Calif. 94035	11. Contract or Grant No.			
	1101 San Antonio Road Mountain View, Calif. 94043	13. Type of Report and Period Covered		
12. Sponsoring Agency Name and Address	Technical Memorandum			
National Aeronautics and Space Washington, D. C. 20546	14. Sponsoring Agency Code			
15. Supplementary Notes				

16. Abstract

This document describes a computer program known as POTGEM which has been developed as an independent segment of the NASA Ames Three-Dimensional Linearized, Potential Flow Analysis System (POTFAN) and which is used to generate a panel point description of arbitrary, three-dimensional bodies from convenient engineering descriptions consisting of equations and/or tables. Due to the independent, modular nature of the program, it may be used to generate corner points for other computer programs.

ORIGINAL PAGE IS OF POOR QUALITY

17. Key Words (Suggested by Author(s))		18. Distribution Statemen		
Geometrical surfaces Potential flow Surface fitting Curve fitting		Unlimited		
Incompressible flow Computer analysis			STAR Category	- 02
19. Security Classif. (of this report)	20. Security Classif. (c	of this page)	21. No. of Pages	22. Price*
Unclassified	Unclassified		206	\$7.25

TABLE OF CONTENTS

A	В	S	T	R	A	C	T

4	***	M 12 . 3	21100	~ ~ ~ ~
1	1 N	'1' W I 1	11111	1
		1110	Duc.	rion

2. PROBLEM TASK DESCRIPTION

3. METHOD OF SOLUTION

- 3.1 SURFACE REPRESENTATION
- 3.1.1 Cross Sections
- 3.1.2 Arbitrary Axis
- 3.1.3 Orientation of Cross Sections
- 3.1.4 Representation of Functions
- 3.1.5 Interpolation Between Cross Sections
- 3.1.6 Summary of Geometry Algorithm
- 3.1.7 Surface Segmentation
- 3.2 PANELLING
- 3.2.1 Segment Boundaries
- 3.2.2 Grid Line Intersections with Boundaries
- 3.2.3 Intersections of S-Wise and V-Wise Grid Lines

4. PROGRAM DESCRIPTION

- 4.1 CALLING STRUCTURE
- 4.2 COMMON BLOCKS
- 4.3 LOGICAL UNITS
- 4.4 MEMORY REQUIREMENTS
- 4.5 SYSTEM DEPENDENT SUBROUTINES
- 4.6 RESTRICTIONS AND LIMITATIONS

5. OPERATING INSTRUCTIONS

- 5.1 GENERAL DATA INPUT CONSIDERATIONS
- 5.2 INPUT DESCRIPTION
- 5.3 SYSTEM CONTROL CARDS
- 5.4.1 INFONET Univac 1108 System

- 5.4 PROGRAM MODIFICATIONS
- 5.4.1 Additional Curve Fitting Capability
- 5.4.2 Additional Types of Panel Distributions
- 5.4.3 Increasing Array Dimensions
- 5.4.4 Use of POTGEM not in Conjunction with Other POTFAN Modules

6. PROGRAM OUTPUT

- 6.1 DETAILED DESCRIPTION OF GEOMETRY FILE
- 6.2 SUMMARY OF GEOMETRY FILE DATA
- 7. SAMPLE CASES
- 7.1 TEST CASE NO. 1 -- Thin, Symmetrical, Swept, Flat Wing Input with WING Command
- 7.2 TEST CASE NO. 2 -- Thin, Symmetrical, Swept Flat Wing
- 7.3 TEST CASE NO. 3 -- NASA Ames 12.192-by-24.384 Meter wind Tunnel
- 7.4 TEST CASE NO. 4 -- Thin, Swept, Uncambered, Untwisted Wing with Dihedral
- 7.5 TEST CASE NO. 5 -- Sphere with S the Circumferential Variable
- 7.6 TEST CASE NO. 6 -- Two Dimensional Airfoil
- 7.7 TEST CASE NO. 7 -- Thin Wing with Twist, Camber, and Dihedral
- 8. RELATED PROGRAMS
- 8.1 SUBROUTINE READGM
- 8.2 SUBROUTINE RDGMA
- 8.3 EDITGM
- 8.4 PLOTGM
- 9. REFERENCES

APPENDIX A--STANDARDIZED FILE HANDLING PROCEDURES
FOR POTFAN PROGRAMS

APPENDIX B--STANDARDIZED FORMAT OF POTFAN FILES
APPENDIX C--ARRAY NOTATION

TABLES

FIGURES

NASA Ames

Potential Flow Analysis (POTFAN)

Geometry Program (POTGEM).

Version 1

R. T. Medan Ames Research Center

R. B. Bullock Computer Sciences Corporation

ABSTRACT

This document describes a computer program known as POTGEM which has been developed as an independent segment of the NASA Ames Three-Dimensional Linearized, Potential Flow Analysis System (POTFAN) and which is used to generate a panel point description of arbitrary, three-dimensional bodies from convenient engineering descriptions consisting of equations and/or tables. Due to the independent, modular nature of the program, it may be used to generate corner points for other computer programs.

1 INTRODUCTION

This document describes Version 1 of a geometry generating code (POTGEM) which computes panel corner points and other geometrical data necessary to run the remaining segments of POTFAN, which is a program system for analyzing three-dimensional, subcritical potential flows about arbitrary configurations. An overview of the POTFAN system is given by Medan (1976). In addition to being the first segment of POTFAN, POTGEM can be used to generate geometrical corner point data for other computer programs.

Some of the important characteristics of the POTGEM program are the following:

- 1. Complicated components can be handled with a minimum of input. Components that can be handled include complicated aircraft fuselages; thick wings with variable section, twist, and dihedral; wings with control surfaces; wind tunnels; and fan wakes. One or more components considered together constitute a configuration.
- 2. In addition to computing panel corner points, the program computes position vectors to control points, vortex force sensing locations, and other useful data.
- 3. Simple panel distributions are easily handled, yet the program does allow complex and non-uniform panel and control point distributions.
- 4. The program allows components to be decomposed into segments. The geometrical description of the component and the independent variables may be different in each segment.
- 5. The program has a general rotate, shift, and scale capability.
- 6. The program runs under a command format which makes the program flexible, easy to use, and easy to modify even though the program is quite complex and versatile.
- 7. Variable dimensioning is used so that oddly-sized problems can be handled without redimensioning.

- 8. Machine dependent language features have been generally avoided to make conversions to other computers relatively easy.
- 9. The program has been liberally documented internally with comment cards to make it easy to modify.
- 10. The program checks for user input errors in many places. This makes it somewhat difficult to improperly run the program.
- 11. The program is coded in FORTRAN IV.
- 12. To date the program has been run on a UNIVAC 1108 computer with 65k words of memory.
- 13. The program can be executed in either batch or conversational modes.
- 14. The program is based on a generalized coordinate system that reduces to Cartesian, polar, or spherical in special cases, yet is more flexible than any of these.

One major feature lacking in the program is that because each component of a configuration is considered independently, the program cannot automatically put panel edges along lines of intersection with other components. It is necessary for the user to supply these intersection lines in the form of the VL(S), VU(S), SL(V), or SU(V) curves that are defined in Section 3.2.1. It should be noted, however, that the program produces output (S and V at corner and boundary condition points as described in Section 6.1) that would allow another program to be developed which could automatically calculate the intersection lines. This would allow POTGEM to then be rerun with the correct intersection lines. Therefore, part of the intersection problem has already been solved in POTGEM. It is expected that such a program will be developed in the future.

Another disadvantage of POTGEM is that it cannot automatically distribute panels in relationship to surface curvature (e.g., dense panelling in regions of high curvature). Furthermore, POTGEM cannot be easily modified to do this automatically. However, the output from POTGEM (see Chapter 6) is suitable for driving another program which could redistribute panels based on surface curvature.

Finally, the cross sectional data (Section 3.1.1) that is input to POTGEM is not in parametric form. If the program had initially been designed this way, it would have been somewhat easier to use and, in some cases, multiple segments (Section 3.1.7) would not have been required. This deficiency is expected to be corrected in version 2 of FOTGEM.

2 PROBLEM TASK DESCRIPTION

This section describes the basic specifications that guided the development of this program and the basic mathematical problems confronting the authors at the beginning of the task.

The task that the program was required to perform is to produce a file called the geometry file and containing the data described in Section 6. It was required that this file be created from a convenient engineering description of as general a component as possible. Furthermore, it was required that the program be flexible, easy to use, easy to modify, well documented, and easy to convert to other computers.

There are basically two mathematical associated with determining a panel corner point description of a component from an engineering description. is to devise a method which will give the position vector of any point on the surface given the two independent panelling variables, which are called S and V. The second problem is to divide an appropriate region of the S-V plane into quadrilaterals with the corner points of the quadrilaterals corresponding either to corner points of the panels or to control points of the panels. It is important to realize that these two problems are completely independent. the computer program handles these phases Therefore, separately and the method of solution of either of the problems is independent of the other.

3 METHOD OF SOLUTION

This section describes the solutions of the two mathematical problems posed in the previous section.

3.1 SURFACE REPRESENTATION

As shown in Figure 3.1-1, the surface is described in part by a set of cross sections, an arbitrarily curved axis (which is not necessarily perpendicular to the cross sections), and the angular orientation of the cross sections. This data together with a method for interpolating between cross sections completely defines the surface. Each of these subjects is discussed in detail below. Following this there are explanations of how the pieces are fit together to make a working algorithm and of the multiple segment capability.

3.1.1 Cross Sections

The set of cross sections defining the component consists of one or more members. Each member of the set may consist of an open or closed curve, but the curves are restricted to lie in a plane.

The independent variable in the cross section is V and the dependent variable is V2. V may be either y^* , z^* , or θ and V2 may be either z^* , y^* or R, respectively, where R = SQRT($y^***2 + z^***2$), $\theta = ATAN(z^*/y^*)$, and where $y^* = Y^*/YPSCAL(S)$ and $z^* = Z^*/ZPSCAL(S)$. Here Y^* and Z^* are defined by Figure 3.1-1 and YPSCAL and ZPSCAL are arbitrary scaling factors. These scaling factors are functions of the other independent variable, S.

The choice of which pair of cross section variables that may be used is restricted only by the requirement that V2(V) be a single valued curve. If none of the three choices yields a convenient, single valued curve, then the component must be broken into two or more segments such that for each segment V2(V) is single valued. 'The multiple segment capability will be discussed further in Section 3.1.7. The choice of V and V2 cannot vary from cross section to cross section within the same segment, but may vary from segment to segment.

Once an appropriate set of cross section variables has been chosen, it is necessary to consider how the cross sections can be mathematically described. Each cross section may be described either by the coefficients of a expansion (e.g., $VZ(V) = R(\Theta) = AO * COS(\Theta) +$ series A1*COS(θ)+B1*SIN(θ)+...) or by a set of data points together with a specification of an interpolation method. In the latter case, the data points need not be (V, V2) pairs, but can be (y',z'), (z',y'), or (Θ,R) pairs since the program can internally convert whatever is given to it into (V, V2) pairs. The method used to describe any cross section is independent of the methods used to describe other cross sections (i.e., a table may be used for one cross section and a series expansion for another). More details on the mathematical description of these curves are given in Section 3.1.4.

The maximum number of cross sections allowed is governed by the variable MXD05 as explained in subroutine GEOM.

3.1.2 Arbitrary Axis

The axis equation has been chosen to be the following parametric form:

XAXIS = XAXIS(S)YAXIS = YAXIS(S)

ZAXIS = ZAXIS(S)

The functions XAXIS(S), YAXIS(S), and ZAXIS(S) can be described using the same methods used for the cross sections. These methods are described in Section 3.1.4. Each of the three functions can be defined independently.

In view of the general form of the axis equation, the independent variable S can be identified with several physical quantities. If, for example, XAXIS(S) = S, then S is the value of X along the axis. S could also be Y or Z or the arc length. Furthermore, if XAXIS = YAXIS = ZAXIS = 0, S may even be an angle (see Section 7.5 for an example). Usually, however, S is the value of X along the axis.

3.1.3 Orientation of Cross Sections

It is well known (Euler's rigid body theorem) that the rotation of any rigid body can be effected by a single rotation about some axis. In the present case, the body is to be identified with the cross section and the rotation refers to the angle through which the Y, Z plane must be rotated to make it parallel to the Y', Z' plane.

If the amount of rotation is denoted by PHI, and the

axis of rotation has the components EX, EY, and EZ, then the rotation can be defined by a 3-by-3 matrix, T, whose equation is the following:

$$T(PHI) = COS(PHI) \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} + (3.1.3-1)$$

$$SIN(PHI) \begin{bmatrix} 0 & -EZ^{\circ} & EY^{\circ} \\ EZ^{\circ} & 0 & -EX^{\circ} \\ -EY^{\circ} & EX^{\circ} & 0 \end{bmatrix} + (1-COS(PHI)) \begin{cases} EX^{\circ} \\ EY^{\circ} \\ EZ^{\circ} \end{cases} EX^{\circ} EY^{\circ} EZ^{\circ}$$

where

$$EX^* = EX/SQRT (EX**2 + EY**2 + EZ**2)$$
 (3.1.3-2a)

$$EY^{\dagger} = EY/SQRT(EX**2 + EY**2 + EZ**2)$$
 (3. 1. 3-2b)

$$EZ^* = EZ/SQRT(EX**2 + EY**2 + EZ**2)$$
 (3.1.3-2c)

Each of the quantities PHI, EX, EY, and EZ is considered to be a function of S and can be described using the methods discussed in Section 3.1.4.

If the matrix T is known, but PHI, EX, EY, and EZ are not known, then PHI, EX, EY, and EZ must be calculated since the program works only with PHI, EX, EY, and EZ and not with the individual components of T. To calculate these quantities in the general case, one must first determine the eigenvalues and eigenvectors of T. One of these eigenvalues must equal one. The components of the eigenvector corresponding to the unit eigenvalue can be defined to be EX, EY, and EZ. PHI can then be determined by working backwards through equations 3.1.3-2 and 3.1.3-1.

This cross section rotation is usually nonzero only in three types of problems. The first consists of a wing with a twist distribution; the second consists of a highly cambered fuselage whose cross sections perpendicular to the axis are much easier to obtain than those parallel to the Y-Z plane; and the third consists of an axisymmetric, but

otherwise arbitrary, body. In the first case the axis of rotation is the spanwise axis and PHI is the twist angle. In the second case the axis of rotation is perpendicular to the plane in which the cambered body axis lies and PHI is the arctangent of the derivative of the camber. In the third case the axis degenerates to a point and PHI becomes a spherical polar angle (see Section 7.5 for an example).

3.1.4 Representation of Functions

In the previous three sections a number of functions were introduced, but no mention was made of how these various functions can be described to the computer program. This will now be explained.

To begin with, all of the various functions will be treated in the same way and will be referenced with the same variable names. Therefore each of the functions requires an index to uniquely identify it. This index is the integer variable IC. Table 3.1.4-1 lists the correspondence between IC and the various functions defining the surface. This table also shows in parenthesis the defaults of the various curves.

As just mentioned, all of the functions described in the previous three sections will be referenced by the same names. In particular, VAR1 will stand for S or V (depending on the value of IC), and VAR2 will stand for XAXIS, YAXIS, ZAXIS, PHI, EX, EY, EZ, YPSCAL, ZPSCAL, or V2 at any input cross section (depending on the value of IC).

In addition to the index, there is an integer function option, COPT, which identifies the basic type of description to be used. For example, COPT=1 implies that the function will be determined by linear interpolation from an input table and COPT= -2 implies that the function will be determined by a power series expansion from an input set of coefficients. The above types of function definitions as well as others are implemented in subroutine INTRP3 and subroutines. 3.1.4-2 lists the associated Table correspondence between the function option number and the types of functions available in INTRP3. Note the following correspondence between INTRP3 variables and the variables associated with the functions introduced in the previous three sections:

IOPT = COPT(IC)

XIN(*) = VAR1(*,IC)

YIN(*) = VAR2(*,IC)

PARAM(*) = PARAM(*,IC)

NIN = NTAB(IC)

Therefore, in order to describe to the computer what any of the functions in the previous sections is, basically what one needs to do is to input the value of IC and the variables COPT(IC) and NTAB(IC) and the arrays (VAR1(*,IC)), (VAR2(*,IC)), and (PARAM(*,IC)). Then the program will determine the function, when required, using subroutine INTRP3.

The above variables are frequently all that one needs to consider when inputting any of the curves discussed in the previous section. However, in certain applications involving tables, some additional data manipulation capability is useful or required. This capability consists of three transformations that may be performed on the arrays (VAR1) and/or (VAR2). The first transformation consists of the following general affine transformation:

 $VAR1^{\dagger} = AFTRAN(1) + VAR1 + AFTRAN(3) + VAR2 + AFTRAN(5)$

 $VAR2^{\bullet} = AFTRAN(2) * VAR1 + AFTRAN(4) * VAR2 + AFTRAN(5)$

This has obvious usefulness for scaling and shifting tables.

The second transformation is a more general transformation of the arrays (VAR1) and (VAR2) and includes an affine transformation as a general case. However, the most typical use of this second transformation is when the curve is a cross section curve (i.e. IC ≥11) and (VAR1) and (VAR2) constitute a table. In this case the second transformation is used to transform (VAR1) and (VAR2) so that (VAR1) will be an array of V values and (VAR2) will be an array of V2 values. This second transformation would thus be very useful if, for example, it were necessary to use polar coordinates for V and V2 and the available data were in Cartesian coordinates. Both the first and second transformations are effected by subroutine TRAN2 as called by subroutines SRFIN1 and/or SRFIN2.

The third, and final transformation is somewhat different than the first two. In the first place it only affects the array (VAR1). In the second place it has no effect on the meaning of the variables V and V2. That is (VAR1) does not become an array of V values until after the first two transformations while the third transformation, although changing (VAR1), does not have an effect on the significance of V. Another way of stating this is if a certain set of program input data that did not specify the third transformation were used to describe a component, then the same input data only with the third transformation invoked would describe the same component. Thus the use of the third transformation does not require changes in the remaining input data. Also the third transformation will not affect the S and V values at corner points or boundary condition points. The only affect that the third

transformation has is on the quality of interpolated values. To clarify how this is possible, consider a two-dimensional blunt airfoil in the $Y^{\bullet}-Z^{\bullet}$ plane with the nose at the origin. The upper surface of this component can be described as

$$Z^{*}(Y^{*}) = \lambda * Y^{*} * * * .5 + B*Y^{*} + C*Y^{*} * * 1.5 + ...$$

Christy an interpolation using polynominal spline fits would require many points near the nose to be accurate. Now let Y'' = SQRT(Y'). Then

$$Z^{\dagger}(Y^{\dagger}) = A + B*Y^{\dagger} + CY^{\dagger}*2 + ...$$

This curve does not require a large number of points to result in an accurate interpolation. This is the function of the third transformation, namely to effect a pre-interpolation transformation of the independent variable to result in a much more accurate curve fit.

The main situation in which this transformation would be used is on cross sections (i.e. V2(V) curves) when such cross sections are blunt nosed airfoils. See Section 7.6 for an example. This transformation is effected by subroutine TRAN1.

In summary, each of the curves required to define the surface can be input either as tables or coefficients and there are transformations available to manipulate tables and improve the accuracy of table interpolations. The input of these curves is accomplished with the SRI1 and SRI2 commands discussed in Section 5.2. It should be noted that each of the curves may be input in a completely independent manner (e.g., PHI(S) may be described by a power series, YPSCAL by linear interpolation from a table containing five data pairs, V2(V) at SCS(1) by CODIM interpolation from a table containing ten data pairs, V2(V) at SCS(2) by a Fourier series, etc.).

3.1.5 Interpolation Between Cross Sections

A typical set of cross sections at which data is given is shown in Figure 3.1.5-1. Each of the vertical lines in the S-V plane is a cross section and, therefore, by using the methods indicated in the previous section, each is a line upon which the dependent variable, V2, can be determined. Now the methods used to determine V2(S,V) in the remainder of the S-V plane will be described.

Consider an arbitrary point, P, in the S-V plane and a horizontal line drawn through this point. The horizontal line intersects the given cross sections and at each intersection the value of V2 can be calculated. These V2

values together with the corresponding values of S constitute a table. Interpolation from this table is used to determine the value of V2 at the point P.

This interpolation in the S-wise direction is done using subroutine INTRP3 and, therefore, all of the methods available in INTRP3 are available for this interpolation. The method actually used is governed by the variable IOPTS and the array (PARAMS) that are entered with the PANL command (see Section 5.2). These variables are the same as IOPT and (PARAM) in subroutine INTRP3, respectively.

As is the case for the various functions described in Sections 3.1.1 - 3.1.3, there is a pre-interpolation transformation that can be invoked to increase the quality of the interpolation. As mentioned in the previous section, this transformation can be used with no other changes required to the input. This transformation is governed by STOPT and (PARST) that are entered with the PANL command. These variables correspond to IOPT and (PARAM) in subroutine TRAN1, which performs the transformation. The most typical use of this transformation in this instance would be for a fuselage with both ends blunt and located at S1 and S2. For this case, STOPT should be 4 and PARST(3) = (S1 + S2)/2 and PARST(4) = (S2 - S1)/2.

It should be noted that the interpolation between cross sections is done <u>prior</u> to rotating the cross sections, <u>prior</u> to putting the cross sections on the arbitrary axis, and <u>prior</u> to scaling the cross sections. This is consistent with the way in which aeronautical structures are generally defined and, therefore, this results in an easy to use method.

3.1.6 Summary of Geometry Algorithm

In the previous sections various aspects of the method were explained. This section explains how these pieces are combined to make a working algorithm.

There are two major phases. The first is the geometry input phase and the second is the actual calculation phase.

In the geometry input phase the functions XAXIS(S), YAXIS(S), ZAXIS(S), PHI(S), EX(S), EY(S), EZ(S), YPSCAL(S), ZPSCAL(S), and a set of cross section curves, V2(V), are defined according to the method described in Section 3.1.4 and using the SRI1 and SRI2 commands. (Commands are described in Section 5.) Also the definitions of V and V2 are established by one of the commands POLR, CARY, or CARZ.

Next comes the calculation phase in which values of X,

Y, and Z on the body surface are determined for given values of S and V. This phase is performed mainly in subroutine SURFAS. The determination of the actual values of S and V tor which calculations will be made is independent of the geometry definition method and is discussed in Section 3.2.

Let (S, V) denote one of the given values of S and V. Then the first step is the calculation of the S-wise interpolation table (Section 3.1.5) for the given value of Next, the given S and values of S in the table are transformed according to the value of STOPT (Section 3.1.5) to make the interpolation more accurate. Then the interpolation is performed. As a result V2(S,V) is determined. Then y' and z' are calculated from V and V2 according to the definition of V and V2 (Section 3.1.1). This definition is stored in the variable VTYPE, which is established by the POLR, CARY, or CARZ command. Then the values of XAXIS(S), YAXIS(S), ZAXIS(S), PHI(S), EX(S), EY(S), EZ(S), YPSCAL(S), and ZPSCAL(S) are calculated. The variables y' and z' are multiplied by YPSCAL(S) and ZPSCAL(S), respectively, to yield Y' AND Z'. The cross section rotation matrix, T, is calculated from equations 3.1.3-1 and 3.1.3-2 and, finally, x, y, and z are calculated from

```
X(S,V) = XAXIS(S) + T(1,2;S)*Y'(S,V) + T(1,3;S)*Z'(S,V)

Y(S,V) = YAXIS(S) + T(2,2;S)*Y'(S,V) + T(2,3;S)*Z'(S,V)

Z(S,V) = ZAXIS(S) + T(3,2;S)*Y'(S,V) + T(3,3;S)*Z'(S,V)
```

The last two terms in the above equations represent the rotation of the cross section to its final orientation.

In addition to being used to find X, Y, and Z values of corner points, the above method is used to determine the X, Y, and Z values of boundary condition points and also to calculate the unit normals. This is in contrast to many existing programs, which determine boundary condition points and unit normals from the corner points. The latter method is generally not as accurate.

The calculation of the unit normals will now be discussed. Consider a point P in the S,V plane. Let the points A, B, C, and D be arranged around P in the manner shown in Figure 3.1.6-1. The program calculates the position vectors (RA, RB, RC, and RD) to each of these points, calculates the cross product of RC-RA with RD-RB, normalizes the result, and calls it the unit normal. If UNEPSS and UNEPSV are small enough (but not too small), this method is generally more accurate than using the panel corner points. It should be noted that a consistent sign convention has been applied so that the unit normal will lie on the same side of the surface as a vector in the N1-cross-N2 direction. If S and V are either both increasing or both decreasing functions of the N1 and N2

indices, then the unit normals will be in the 5-cross-V direction.

3.1.7 Surface Segmentation

A component may be divided into a number of segments. There are several reasons why this is done.

In the first place the geometry may be naturally segmented. For example the NASA Ames 12.2m-by-24.4m (40°x80°) wind tunnel has a cross section in the shape of a square with semi-circles on each side. (Figure 7.3-1 shows one side of this configuration.) The top and bottom surfaces can be easily and exactly described in a Cartesian coordinate system and one side can be easily and exactly described in a polar coordinate system with origin coinciding with the center of the corresponding semi-circle. (See Section 7.3 for an example.)

A second reason for segmentation rests in the fact that the cross section curves, V2(V), must be single-valued. An example of where this requirement necessitates segmentation is a thick wing section. In this case two segments are required. One is the upper surface and the other is the lower.

A third reason is that the component may be too complicated to handle as a single segment. That is, there may be too many cross sections and/or table entries to fit in the program at once.

A final reason is that there may be certain lines on the component along which panel edges must be constrained to lie. An example of this is a wing planform with a crank. In modelling such wings it is best to have panel edges at the spanwise location of the crank.

In addition to the above examples, some components may have to be segmented for more than one reason. A thin wing with a deflected control surface, for example, may be easier to describe in segmented form and also panel edges should be made to lie along the hinge line.

Despite the differing reasons for segmentation, the program handles all cases of segmentation in the same manner. Different aspects of this treatment are discussed in the following paragraphs.

The total number of segments and the number of panels in each segment must be established once for each component before any panelling is done. This is accomplished by a DSEGMENTS command (Section 5.2). Note that this command is

somewhat different from the geometry definition commands, the SEGMENT command, and the PANL command because it refers to the entire component, whereas the others refer to a segment (except the geometry definition commands need not be repeated if the geometry description remains the same).

Prior to panelling each segment, the segment must be identified (see the SEGMENT command, Section 5.2), the boundaries of the segment in the S,V plane must be defined (see the SL, SU, VL, and VU commands, Sections 3.2 and 5.2), and the distribution of corner points and boundary condition points along the boundaries (see the SLBC, SUBC, VLBC, and VUBC commands, Section 5.2) must be established. Also, prior to panelling each segment, those aspects of the geometry that are different from those of the previous segment must be redefined.

Because of the fact that boundaries between segments may represent situations where the actual geometry is discontinuous (e.g., between a wing and the side edge of a control surface) the program inserts a pseudo row of panels in between each segment. In many cases it is desirable to eliminate these rows. This is accomplished by the NRI1 and NRI2 commands (Section 5.2).

3.2 PANELLING

In the previous section, a method was described for determining the position vector to the surface given the two independent panelling variables, S and V. This section will now describe how the values of S and V are determined. For each segment (Section 3.1.7), the locations of corner points are determined from the boundaries of the segment, the intersections of the corner and boundary condition grid lines with the boundaries of the segment, and a method for constructing grid lines from the boundaries and intersection points. Each of these topics is discussed in detail in the following sections.

3.2.1 Segment Boundaries

All segment boundaries in the S-V plane are in the form of four arbitrary functions SL(V), SU(V), VL(S), and VU(S) as shown in Figure 3.2.1-1. Although in most applications the four curves are straight lines, there are situations where more general curves are desirable or essential (e.g. on a fuselage where a wing intersects).

Each of these four functions can be described to the program in basically the same manner that the functions

describing the geometry can (Section 3.1.4). That is, subroutine INTRP3, with all of its various options, is used. These functions are input using the commands SL, SU, VL and VU (Section 5.2).

As will be seen later, one of the necessary steps in determining S and V values in the interior of the segment is the calculation of the intersections of the VL and VU curves with the SL and SU curves. The method that the program uses for this calculation is an iterative one that cannot be guaranteed to converge for all cases. This iterative method is described in subroutine GRID. A sufficient condition for convergence at the intersection of the VL(S) and SL(V) curves is that

ABS (d(VL)/dS) * ABS (d(SL)/dV) < 1

Similar conditions hold for the other three intersections. In the extreme cases for which the above conditions do not hold, the intersections must be determined a priori and input to the program with a PANL command.

The notation for these intersections is defined in Figure 3.2.3-1 (e.g., (SSUVL, VSUVL) is (S,V) at the intersection of SU(V) with VL(S)).

3.2.2 Grid Line Intersections with Boundaries

Grid lines are lines in the S-V plane along which corner points or boundary condition points can be located. More specifically, corner points and boundary condition points are located at the intersections of grid lines extending nominally in the S direction with those extending nominally in the V direction. These grid lines are defined, in part, by their interesections with the boundaries of the segment. This section explains terminology related to these intersections and how the intersections are input.

A nondimensional system is used to describe the grid line and boundary intersections. This system is illustrated in Figure 3.2.2-1 for the VL(S) curve. The intersection of VL(S) with SL(V) is, by definition, at XGP=-1 and the intersection of VL(S) with SU(V) is at XGP=+1. Furthermore, XGP, by definition, varies linearly with S. In the program the intersections of the V-wise corner point grid lines with the VL(S) curve are contained in the array (XGPVLC) and the intersections of the V-wise boundary condition point grid lines with the VL(S) curve are contained in the array (XGPVLB). Similar notation applies to the other grid line boundary intersections (e.g., (XGPSUB) contains the intersections of the SU(V) curve with the S-wise boundary condition point grid lines).

The program does not assume that any of the elements of the XGP arrays are equal to -1 or +1 (i.e., corner points need not lie on the segment boundaries). Also the program allows, for example, XGPSLC(I) to be unequal to XGPSUC(I), although the program will assume that XGPSUC(I) is equal to XGPSLC(I) unless instructed otherwise.

The intersection point arrays (i.e., (XGPSLC). etc.) defined for the program using the SLBC, SUBC, VLBC, and VUBC commands. Although the arrays may be input explicitly with these commands, the usual procedure is to select one of a set of predefined rules and have the program calculate the These details are governed by the variable TOPT values. that is input with the SLBC, SUBC, VLBC, and VUBC commands. If IOPT is zero, then the intersections are expected as Otherwise, the will calculate program intersections. The correspondence between some valid IOPT values and the intersections calculated is shown in Figure 3.2.2-2 for the case of four panels and IOPT greater than The spacings for IOPT less than zero are reversed from those of positive IOPT. For example, IOPT=-4 gives finer spacing near XGP=+1. For any nonzero IOPT the XGP arrays will always be in ascending order. The computation of corner point and boundary condition control point spacings is done in subroutine XPANCP.

As will be seen in the next section it will be necessary to calculate the S and V values at the intersections of the grid lines with the boundaries. The notation for these intersections is shown in Figure 3.2.3-1. The characters C and B standing for corner points and boundary condition points, respectively, have been dropped because the procedure is identical for both. The intersections of the S-wise grid lines with the SL(V) boundary curve are given by the following equations:

$$VGPSL(K2) = (1-XGPSL(K2)) * VSLVL/2 + (3.2.2-1)$$

$$(1+XGPSL(K2)) * VSLVU/2$$

$$SGPSL(K2) = SL(VGPSL(K2)) \qquad (3.2.2-2)$$

In the above equation SL(VGPSL(K2)) is calculated using subroutine INTRP3 and the data entered with the SL command. Similar equations are used for the other three grid line and boundary intersections.

3.2.3 Intersections of S-Wise and V-Wise Grid Lines

As mentioned in the previous section the nondimensional

description of the intersections contained in the arrays (XGPSLC), (XGPSLB), etc., only defines the grid lines in part. Namely, these arrays define the grid line intersections with the boundaries of the segment and they do so nondimensionally. This section completes the definition by explaining how grid lines are extended to the interior of the segment and how their intersections with other grid lines are calculated.

The method used is identical for corner point grid lines and boundary condition point grid lines, and therefore, the characters C and E in the arrays describing the intersections will be dropped for the remainder of this section. The particular value of (S,V) to be determined is denoted by (S(K1,K2),V(K1,K2)) where K1 is an index that varies in the S direction and K2 is an index that varies in the V direction. All of the various symbols introduced to this point are shown in Figure 3.2.3-1.

A simple, yet effective way to determine S(K1,K2) would be to consider it a weighted average of the S values at the intersections of the S-wise grid line with the SL(V) and SU(V) curves. Mathematically this can be stated as

$$S(K1,K2) = (1-FS(K1,K2))*SGPSL(K2)/2 + (3.2.3-1)$$

(1+FS(K1,K2))*SGPSU(K2)/2.

FS(K1, K2) is a nondimensional number that is equal to -1 when the V-wise grid line coincides with SL(V) and is equal to +1 when the V-wise grid line coincides with the SU(V) curve. A similar expression is used for V(K1, K2):

$$V(K1,K2) = (1-FV(K1,K2))*VGPVL(K1)/2 + (3.2.3-2)$$

(1+FV(K1,K2))*VGPVU(K1)/2.

This raises the question of how to determine FS(K1,K2) and FV(K1,K2). The answer is shown in Figure 3.2.3-2. This figure shows that FS(K1,K2) and FV(K1,K2) are at the intersection of two straight lines drawn from (XGPVL(K1),-1) to (XGPVU(K1),+1) and from (-1,XGPSL(K2)) to (+1,XGPSU(K2)). In other words FS(K1,K2) and FV(K1,K2) are the simultaneous solution to

$$FS(FV(K1,K2)) = FV(FS(K1,K2)).$$

More explicitly, FS(K1,K2) and FV(K1,K2) are the simultaneous solution of

$$FV(K1,K2) = (1-FS(K1,K2))*XGPSL(K2)/2 + (3.2.3-3)$$

$$(1+FS(K1,K2))*XGPSU(K2)/2$$

$$FS(K1,K2) = (1-FV(K1,K2))*XGPVL(K1)/2 + (3.2.3-4)$$

$$(1+FV(K1,K2))*XGPVU(K1)/2$$

Due to their linearity, the above equations are easily solved analytically. Subroutine GRID contains the actual equations. This completes the description of how S and V values are determined.

In summary, the VL(S), VU(S), SL(V), and SU(V) segment boundary curves are defined by the VL, VU, SL, and SU commands, respectively. The grid line intersections with the boundary curves are defined by the VLBC, VUBC, SLBC, and SUBC commands. Then, when a PANL command is given, program executes the following: (1) It calculates boundary curve intersections ((SSLVL, VSLVL), etc.); Using equations 3.2.2-1 and 3.2.2-2 and similar equations, it calculates S and V values on the boundaries; (3) solves 3.2.3-3 and 3.2.3-4 simultaneously: (4) Finally calculates S and V from equations 3.2.3-1 and 3.2.3-2. The program executes the preceding (as required, i.e., redundant calculations are avoided) for all of the corner points and all of the boundary conditions points and, also under the FANL command, determines the position vectors to the corner points and boundary condition points and the unit normals at the boundary condition points using the methods described in Section 3.1.

An example of an actual network of grid lines generated by the above method is shown in Figure 3.2.3-3.

4 PROGRAM DESCRIPTION

To a great extent the description of the inner workings of the program has been relegated to comment cards in the FORTRAN source decks. This includes descriptions of the functions of the subroutines and their input and output. The remainder of the section presents relevant descriptive data which could not effectively be placed on comment cards.

4.1 CALLING STRUCTURE

Figure 4.1-1 shows the subroutine calling structure. Table 4.1-1 shows the calling structure in a different format.

4.2 COMMON BLOCKS

Table 4.2-1 shows the common blocks. These common blocks are the same length in every program in which they appear.

4.3 LOGICAL UNITS

Table 4.3-1 summarizes the logical units (tape, disks, or drums) which the program uses.

4.4 MEMORY REQUIREMENTS

without the 25 arrays dimensioned in the main program and without using overlays, the POTGEM program requires approximately 45,000 decimal words of core storage. This requirement includes all system subroutines and internal symbol dictionaries and was determined on the INFONET Univac 1108 operating system. The size of the 25 arrays must be added to this number to determine the total amount of storage required by the program. An overlay structure and compilation without internal symbol dictionaries can be used to decrease the storage required.

4.5 SYSTEM DEPENDENT SUBROUTINES

Subroutines FILEND, OPENW, and TIMEST all call system dependent subroutines. Therefore, they all generally must be modified when the program is used on a new computer system.

4.6 RESTRICTIONS AND LIMITATIONS

The most important restriction regarding the POTGEM program is the limitation on the total number of corner points. This is limited by the dimensions of the 25 arrays in the main program. If these dimensions are not sufficient, then they must be increased, the main program must be recompiled, and the program must be relinked.

There are also limitations on the maximum number of corner points in the N1 or S direction and in the N2 or V direction, the maximum number of cross sections, the maximum number of table entries, etc. These limitations are discussed in more detail in subroutine GEOM, instructions for changing the maximum limits are also given in GEOM.

The program itself checks for violations of the above restrictions, so there is no a priori need for the user to worry about them.

5 OPERATING INSTRUCTIONS

The purpose of this section is to provide the user with information necessary to execute the program. Instructions for modifying the program are also given.

5.1 GENERAL DATA INPUT CONSIDERATIONS

The program is designed to use commands as the basic form of input to control the program flow. These commands consist of four letters placed in the first four columns and are recognized as keys that cause the program to perform particular operations. These operations consist of reading input, writing output, or calculations, or a combination of all three. After the operations are performed, the program flow returns to the beginning of the program and reads the next command. This continues until a STOP command encountered, whereby the program terminates. Any command input record whose first four columns are left blank is considered a "comment" command. In the conversational mode, any command that is not recognized by the program is printed and program flow is returned to the next command without any operations being performed. In the batch unrecognizable command causes program termination unless the variable CONTIN has been made .TRUE. by a preceding DATA command. Following each command some data must usually entered. This data is prescribed in either NAMELIST or regular formats.

In the batch mode each command line that is read in is printed out before any action is taken on it. The entire 80 columns are printed even though only the first four columns comprise the command. This allows the output to be documented with "comment" commands and helps to pinpoint sources of errors.

Aside from commands, most of the input data is in NAMELIST format. The program has been coded to take maximum advantage of the way in which NAMELIST works. In particular, only the specific data that is actually required needs to be input, the data elements can be in any order, and (except where noted otherwise) data that is entered with one command need not be reentered with succeeding commands unless it is to be changed. To effect this last advantage, intermediate arrays are used for some commands (SRI1, VLBC, VUBC, SLBC, SUBC, VL, VU, SL, and SU). These intermediate

arrays allow similar curves stored in different core locations to be input with a minimum of data.

Other input data is in regular format form. Integers are always input under a 1615 format and floating point numbers under an 8F10.0 format.

5.2 INPUT DESCRIPTION

Detailed descriptions of the various available commands are given in the listing of subroutine GEOM. This subroutine is arranged in a number of sections. The first section consists of general commentary and a summary of the available commands. The next section is the specification section (sets data types, dimensions, common blocks, etc.). The next section sets the initial default values for those variables having default values. The next section is the command read and branch section. By examining this section, one can determine to which point control is transferred for specific commands. Each of the following sections contains detailed commentary and code necessary to effect each command. Thus by determining the command transfer point from the command read and branch section, one is led to the place in the listing that contains the detailed description of the command and further input required for the command. Since the listing contains the detailed command and input descriptions, they will not be repeated here.

Instead, the most typical ordering of commands and some general comments will be given:

- 1. TITLE
- 2. DSEGMENTS
- 3. Geometry definition -- SRI1, SRI2, POLR, CARY, and CARZ.
- 4. SEGNENT. Not required if NSEGS=NSEGV=1 for the first segment to be panelled.
- 5. Segment boundary definition -- SL, SU, VL, and VU. All four commands are frequently not required for the second and subsequent segments.
- 6. Corner and control point distribution definition -- SLBC and VLBC commands. Use Figure 3.2.2-2 as a guide to available distributions. SUBC and VUBC are not usually required.
- 7. GRID. Prints distributions determined in step 6.
- 8. PANL.

- 9. Repeat 3 through 8 as required for the remaining segments. The segments may be considered in any order. However, for each specific case, there is generally an optimal order that will minimize the amount of data required. Unless indicated in the detailed instructions, it is not necessary to repeat data that does not change. If all of the data input with any SRI1, SRI2, SL, SU, VL, or VU command remains unchanged, the command may be left out.
- 10. NRI1 commands if there are multiple segments in V-direction and component is continuous.
- 11. NRI2 commands if there are multiple segments in S-direction and component is continuous.
- 12. Singularity Definition -- BCFLAG, DSFLAG, and UVW.
- 13. ROSS. May be given more than once.
- 14. FINISH. Enter variables in Section 6.1 that are marked with an asterisk (*).
- 15. STORE
- 16. PRINT
- 17. STOP or compute a new geometry beginning with INITIALIZE followed by steps 1 through 16 or compute a modified geometry starting with an XINIT command followed by a subset of steps 1 through 16.

It needs to be stressed that the above outline is not to be considered a rigid one. The commands, except where noted, may be given in a different order. Also not all of the commands need to be given in all applications.

Also it should be noted that segments do not need to be panelled in any specific order.

5.3 SYSTEM CONTROL CARDS

This section describes the control cards that are necessary to run POTGEM on the various computer systems that have or are being used to run it.

5.3.1 INFONET Univac 1108 System

Since this system allows automatic file definition commands determined from the file identification number (Apppendix A) entered after the STORE command, the only

control card required is the name of the main program which is POTGEM/POTF. All geometry files created by the STORE command will show up in the user's LIB\$ library with names identical to the file identification number and a version identifier of GM. Thus, for example, inputting ID=1023 after the STORE command will create a file named 1023.GM/LIB\$. The content of these files is described in Section 6.

In addition to POTGEM/POTF, the user may also want to switch IN\$ and OUT\$.

5.4 PROGRAM MODIFICATIONS

There are a few modifications that receivers of this program might typically want to change. These are described in the following sections.

5.4.1 Additional Curve Fitting Capability

If the curve fit routines provided are not adequate, it is a simple matter to add new ones. All that is required is that the input can be made compatible with the input to subroutine INTRP3. If it can, then a new option can be inserted into INTRP3. An examination of the INTRP3 listing will make it obvious how this can be easily done. The only changes required to POTGEM are some simple additions of cards in INTRP3.

5.4.2 Additional Types of Panel Distributions

New panel and control point distributions can be easily added by simple modifications to subroutine XPANCP. This subroutine calculates the distributions demanded with any SLBC, VLBC, SUBC, or VUBC command. An examination of the listing of XPANCP will make it obvious how the modifications can be easily done. The only changes required are some simple additions of cards in XPANCP.

5.4.3 Increasing Array Dimensions

See Section 4.6.

5.4.4 Use of POTGEM not in Conjunction with Other POTFAN Modules

Persons wanting to use POTGEM to generate corner point descriptions of geometries for use by their own programs can do so without modifying POTGEM. However, by eliminating

unneeded arrays and the code that computes them, savings in CPU time and core memory can be realized. This section will explain how to eliminate the following arrays:

(UVWX), (UVWY), (UVWZ), (BCFLAG), (DSFLAG), (SSFLAG), (UNX), (UNY), (UNZ), (DA), (XS1), (YS1), (ZS1), (XS2), (YS2), and (ZS2).

First of all these arrays should be eliminated in the main program. In the CALL GEOM statement replace each of the array names with XCP(N) where N is an integer larger than the core memory. The purpose of this is to ensure that a fatal execution error occurs in case the program should happen to try to compute one of these arrays. It is not necessary to remove the DIMENSIONS for these arrays in subroutine GEOM.

The next step is to remove the code that calculates these arrays. An examination of a compiler cross reference map of subroutine GEOM will indicate which code can be removed. In particular note that the second CALL PANL2 after a PANL command can be removed and so can the calls to FSENS1 and FSENS2. Furthermore, note that some entire subroutines called by POTGEM can be removed. Also make appropriate modifications to (LOG) (see Section 6.2).

The final step is to remove the code that writes out these arrays. These are written out in subroutine STORGM and PRNTGM. An examination of compiler cross reference listings of these subroutines will indicate clearly what to remove. Note that it is not necessary to eliminate the arrays from the argument lists.

If these changes are made, then like changes must be made in the auxiliary subroutines READGM and RDGMA and in the EDITGM and PLOTGM programs. (see Section 8).

6 PROGRAM OUTPUT

Output from POTGEM consists of line printer output and geometry files. The line printer output is meant to be self explanatory and will not be discussed further.

The geometry files are created according to the procedure in Appendix A and conform to the for it in Appendix B. Control cards for managing the geometr, files are given in Section 5.3. Each geometry file consists of 8 to 18 binary records (i.e., each is created by 8 to 18 write statements of the form WRITE (NTG) ...data...). The data contained on the geometry file is explained in detail in Section 6.1 and is summarized in Section 6.2.

6.1 Detailed Description of Geometry File

All of the geometry file data on the most general POTFAN geometry file is described in this section. The current POTGEM version cannot determine all of this data because there has not yet been an actual need for it. It should be stressed, however, that other POTFAN programs assume that geometry files they read in may contain any of the data described herein even though POTGEM can not yet put it there.

Data denoted as being default data is only used if not changed by other POTFAN programs. The array notation used is explained in Appendix C. Variables in the first record marked with an asterisk must be entered with a FINISH command. All other variables are determined automatically or as the result of other commands. Variables or records marked with a + are ones that would probably not be of interest unless POTGEM is used with other POTFAN modules (i.e., persons using POTGEM to obtain corner points for their own programs may ignore variables and records marked with a +).

In addition to defining the standard geometry file format, explanations of how some of the data is determined by POTGEM are included.

First Record

- (Note--At this point the reader should be familiar with Appendices B and C.)
- NCTIME--number of words in (CTIME). 1≤NCTIME≤5.
- (CTIME(NCTIME)) -- Time stamp to identify the approximate time of creation of the file. This should be printed out in an A4 format whenever the file is read in by a subsequent program.
- NTITL--Number of words in (TITLE). 1 \(\text{NTITL} \leq 20.
- (TITLE(NTITL)) -- Alphanumeric titling information input with the TITLE command. When required, this information is to be written out under a format such as (1X,20A4).
- NRECS--Number of records on the file including the first. 1 < NRECS < 20.
- (IFORM (NRECS)) -- An integer describing the format of each record. See Appendix B. NRECS and (IFORM) are on all POTFAN files so that the EDITPF program can be used to list them. In POTGEM the array (IFORM) is computed with a FINISH command.
- NID--Number of file identification numbers. 1<NID<10.
- (ID(NID)) -- Identification number array. In POTGEM NID=1 and ID(1) is the same as ID entered with the STORE command. Note, however, that if the EDITPF or EDITGM program (Section 8.3) is used to modify a geometry file created by POTGEM, then NID on the modified file will be greater than 1.
- NLOG--Number of words in (LOG). 1<NLOG<50.
- LOG(1) = BCFLG--This logical variable is .TRUE. iff. there are boundary condition flags stored on a subsequent record of the file. For geometry files created by POTGEM, BCFLAG will be .TRUE. if a BCFLAG command was given or if the null rows of panels between geometrical segments have not been eliminated by NRI1 and/or NRI2 commands.
- +LOG(2) -- Not used any more.
- LOG(3) = UVw--This variable is .TRUE. iff. there are unit wake vectors in the direction of shed wake lines stored on a subsequent record of the file. For geometry files created by POTGEM, UVW will be .TRUE. if a UVW command was given.

- +*LOG(4) = DANDS--This is .TRUE. iff. both doublet and source singularities are to be placed on the body.
- LOG (5) = DSF--This is .TRUE. iff. there are doublet singularity flags on a subsequent record. For geometry files created by POTGEM, DSF will be .TRUE. if a DSFLAG command was given or if the null rows of panels between geometrical segments have not been eliminated by NRI1 and/or NRI2 commands.
- LOG (6) = SSF--This is .TRUE. iff. there are source singularity flags on a subsequent record. Currently POTGEM cannot determine these flags, so SSF is always .FALSE. on files created by POTGEM.
- LOG (7) =NTOP--This is .TRUE. iff. there are top surface boundary condition vectors stored on a subsequent record. If NTOP is .FALSE., then PCTFAN programs use the unit normals instead. Currently POTGEM cannot determine these vectors, so NTOP is always .FALSE. on geometry files created by POTGEM.
- LOG (8) = NBOT -- This is .TRUE. iff. there are bottom surface boundary condition vectors stored on a subsequent record. If NBOT is .FALSE., then POTFAN programs use the negatives of the unit normals instead. Currently POTGEM cannot determine these vectors, so NBOT is always .FALSE. on files created by POTGEM.
- LOG (9) = OTOPL--This is .TRUE. iff. the top surface outflow along the top surface boundary condition vectors at the control points is stored on a subsequent record. If OTOPL is .FALSE., then POTFAN programs assume zero outflow. Currently POTGEM cannot determine the top surface outflow, so OTOPL is always .FALSE. on geometry files created by POTGEM.
- LOG(10) = OBOTL--This is .TRUE. iff. the bottom surface outflow along the bottom surface boundary condition vectors at the control points is stored on a subsequent record. If OBOTL is .FALSE., then POTFAN programs assume zero outflow. Currently POTGEM cannot determine the bottom surface outflow, so OBOTL is always .FALSE. on geometry files created by POTGEM.
- **LOG(11) -- Default value for the variable NOS1 in the VVIM (vortex velocity influence matrix calculator) program. Making the variable .TRUE. if there are no bound vortex legs in the N1 direction (e.g.,

- axisymmetric body in axisymmetric flow) will save significantly on CPU time in VVIM.
- +*LOG(12) -- Default value for the variable NOS2 in VVIM.

 Making this variable .TRUE. if there are no bound

 vortex legs in the N2 direction (e.g., planar

 wings modelled by horseshoe vortices) will save

 significantly on CPU time in VVIM.
- +*LOG(13)--Default value for the variable SLINE1 in VVIM. If each of the N2 rows of N1 direction vortex legs (i.e., each group of contiguous N1 direction panel edges) contains legs that are of the same length and parallel to those in its own row, then SLINE1 may be set to TRUE. to save some CPU time in VVIM. This situation usually exists only for certain, simple, planar components.
- +*LOG(14)--Default value for the variable SLINE2 in VVIM. This is the same as SLINE1 except it applies in the N2 direction.
- **LOG(15) -- Default for the variable SUM1 in VVIM. This should be .TRUE. if the influence of singularities should be summed in the N1 direction (e.g., it the component is a shed wake with N1 being the streamwise direction).
- +*LOG(16) -- Default for the variable SUM2 in VVIM. This is the same as SUM1 except it applies in the N2 direction.
- +*LOG(17) = DBLT--This should be .TRUE. if doublet type signularities will be placed on the component.
- +*LOG(18) = SOURCE--This should be .TRUE. if source type singularities will be placed on the component.

 Note--LOG(4) = LOG(17) . AND. LOG(18).
- *LOG(19) = RS1--This is .TRUE. iff. the force sensing locations of the N1 direction vortex segments (panel edges of constant doublet singularities) are on a subsequent record of the file. If these are not on the file, then other POTFAN programs use the midpoints determined by averaging corner points. These force sensing locations are only used if vortices model the component and the Kutta-Joukowskii method is used to calculate forces. In POTGEM, RS1 is established by the PANL command.
- +LOG(20) =RS2--This is the same as RS1 except it applies to the N2 direction.

- NINT--Number of words in (INT). 1 < NINT < 50.
- *INT(1)=NNBC--Number of null boundary condition flags (i.e., number of words in (BCFLAG) that are equal to 1).
- INT(2)=N1--Total number of corner points in the N1
 direction.
- INT(3) = N2--Total number of corner points in the N2
 direction.
- INT(4) = N1BC = N1-1--Number of boundary condition points
 in the N1 direction. This is also the number of
 panels in the N1 direction.
- INT(5)=N2BC=N2-1--Number of boundary condition points or panels in the N2 direction. N1BC*N1BC is thus the total number of panels.
- +INT(6) = NNDS--Number of null doublet singularity flags (i.e., number of words in (DSFLAG) that are equal to 1).
- *INT(7)=NNSS--Number of null source singularity flags.

 Currently POTGEM cannot compute these flags, so

 NNSS is always 0 on geometry files created by

 POTGEM.
- INT(8) -- Not used.
- INT (9) -- Not used.
- +*INT(10)=FFISL--This is the default flow field indicator for the I1=1 edge of the component as is required when vortices model the component. In the case of a single segment this is the SL edge. A value of 1 is required when there will be a symmetric image of the component attached at its A symmetric image is one which I1=1 edge. together with the component creates a symmetrical flow field about the plane situated symmetrically A value of 2 is used for between them. antisymmetrical image. A value of 3 is used when the I1=1 edge is physically coincident with the I1=N1 edge. Any other value indicates no special edge condition.
- +*INT(11) =FFISU--This is the same as FFISL except that it applies to the I1=N1 edge.
- +*INT(12)=FFIVL--This is the same as FFISL except it applies at the I2=1 edge.

- +*INT(13)=FFIVU--This is the same as FFISL except it applies at the I2=N2 edge.
- NFLT--Number of words in (FLT). 1 < NFLT < 50.
- +*FLT(1) = AREF--Component reference area for normalizing
 forces and moments. In POTGEM this is computed
 with a FINISH command if it is not input. See the
 GEOM listing for details.
- +*FLT(2)=XLEN1--Reference length for normalizing moments about the X axis. In POTGEM this is computed with a FINISH command if it is not input. See the GEOM listing for details.
- +*FLT(3)=XLEN2--Reference length for normalizing moments about the Y axis. In POTJEM, this is computed with a FINISH command if it is not input. See the GEOM listing for details.
- +*FLT(4)=XLEN3--Reference length for normalizing moments about the Z axis. In PCTGEM, this is computed with a FINISH command if it is not input. See the GEOM listing for details.
- +*FLT(5) = DUVWX--Default for the X component of the unit wake vectors. This is used if the wake vectors are required and LOG(3) = UVW=. FALSE.
- +*FLT(6) = DUVWY--Same as DUVWX except that it applies in the Y direction.
- +*FLT(7) = DUVWZ--Same as DUVWX except that it applies in the Z direction.
- **FLT(8) -- Default value for the variable RDVORT used in VVIM. This is the distance beyond which the divortlet approximation for a vortex segment's influence will be used. In POTGEM this is computed if it is not input. See the GEOM listing for details.
- **FLT(9) -- Default value for the variable HCUT used in VVIM. This is the perpendicular distance within which the influence of semiinfinite wake lines is set to zero. In POTGEM this is computed if it is not input. See the GEOM listing for details.
- +*FLT(10)--X component of the position about which moments should be computed.
- +*PLT(11)--Y component of the position about which moments should be computed.

+*FLT(12)--Z component of the position about which moments should be computed.

Second Record

(Note--Appendix B defines J1, J2, J3, and NW.)

J1=N1--Number of corner points in the N1 direction.

J2=N2--Number of corner points in the N2 direction.

J3=5

NW=N1*N2*5

(XCP(N1,N2)) -- X components of position vectors to corner points.

(YCP(N1,N2)) -- Y components of position vectors to corner points.

(ZCP(N1,N2)) -- Z components of position vectors to corner points.

+ (SCP(N1,N2)) -- Values of S at corner points.

+ (VCP(N1, N2)) -- Values of V at corner points.

+Next Record (if LOG(3) = . TRUE.)

(Note--This record is not present unless LOG(3) = . TRUE..)

J1=N1

J2=N2

J3=3

NW=N1*N2*3

(UVWX(N1,N2)) -- X components of unit wake vectors along wake elements originating from each corner point.

(UVWY(N1,N2)) -- Y components of unit wake vectors along wake elements originating from each corner point.

(UVWZ(N1,N2)) -- Z components of unit wake vectors along wake elements originating from each corner point.

In POTGEM (UVWX), (UVWY), and (UVWZ) are established by the UVW command.

If this record is not present, then other POTFAN programs assumethe following:

UVWX (I1,I2) = FLT (5) UVWY (I1,I2) = FLT (6) UVWZ (I1,I2) = FLT (7).

+Next Record (if LCG(1) = . TRUE.)

J1=N1BC--Number of panels in the N1 direction.

J2=N2BC--Number of panels in the N2 direction.

J3 = 1

NW = N1BC * N2BC

(BCFLAG(N1BC, N2BC)) -- integer boundary condition flag denoting the type of boundary condition point. Values of 0 indicate a regular boundary condition point. Values of 1 indicate a completely boundary condition point. For closed surfaces to be modelled by doublet panels at least one panel must have a null boundary condition flag. other value indicates that the boundary condition influence of the panel is to be ignored, but the velocity on the panel is to be computed. latter would be the case if constraint functions with deleted boundary conditions were to be used. If this record is not present, then other POTFAN programs assume BCFLAG (I1, I2) = 0. IN POTGEM this array is determined mainly as the result of a BCFLAG command. If, however, the null rows of panels between geometrical segments are left in by not using the NRI1 and/or NRI2 commands, then the elements of (BCFLAG) corresponding to these panels are set to 1. The latter is accomplished with a FINISH command and by looking for elements in (XBP) (X coordinates of boundary condition control points) that are less than or equal to -1.E30.

+Next Record (If LOG(5) = .TRUE.)

J1=N1BC

J2=N2BC

J3 = 1

NW=N1BC*N2BC

(DSPLAG(N1BC, N2BC))--Integer doublet singularity flags. These are used by the VVIM program to indicate what type of vortex distribution each panel has. These flags could also be used by a module that replaces VVIM. In VVIM a value of 1 implies no singularity: a value of 2 implies a closed quadrilateral vortex; and a value of 30 implies a horseshoe vortex of type 2 (i.e., a type used for wings with I2=1 being the leading edge). There are a large number of other types available. various types are shown in Figure 6.1-1. Together they allow hodies to be modelled with practically any combination of vortex segments on panel edges in the N1 direction, vortex segments in the N2 direction, and semi-infinite vortices shed from any corner points. If this array is not present, In POTGEM these VVIM assumes DSFLAG(I1,I2)=30. flags are determined in the same ways that (BCFLAG) is determined, except that the DSFLAG command is used instead of the BCFLAG command.

+Next Record (If LOG(6) = . TRUE.)

J1=N1BC

J2=N2BC

J3 = 1

NW=N1BC*N2BC

(SSFLAG(N1BC, N2BC)) -- Integer source singularity flags.
Currently POTGEM cannot determine these flags.

*Next Record

J1=N1BC

J2=N2BC

J3 = 5

NW=N1BC*N2BC*5

(XBC(N1BC, N2BC)) -- X components of position vectors to control points.

(YBC(N1BC, N2BC)) -- Y components of position vectors to control points.

(ZBC(N1BC, N2BC)) -- Z components of position vectors to control points.

(SBC(N1BC,N2BC)) -- Values of S at control points.

(VBC(N1BC,N2BC)) -- Values of V at control points.

+Next Record

J1=N1BC

J2=N2BC

J3 = 4

NW = N1BC * N2BC * 4

(UNX(N1BC, N2BC)) -- X components of "outward" unit normals at control points.

(UNY(N1BC, N2BC)) -- Y components of "outward" unit normals at control points.

(UNZ(N1BC, N2BC)) -- Z components of "outward" unit normals at control points.

The "outward" direction is defined as being on that side of the surface on which a vector in the N1-cross-N2 direction lies. This may give unit vectors that actually point inward. If the boundary condition is one of zero inflow or outflow, the direction of the unit normals makes no difference. For POTGEM generated geometry files, the direction may be reversed by switching the SL and SU curves or the VL and VU curves.

(DA(N1BC,N2BC)) -- Areas of the individual panels.
POTGEM determines these areas with a FINISH
command, which in turn calls subroutine AREAS.

+Next Record (If LCG(7) = TRUE.)

J1=N1BC

J2=N2BC

J3=3

NW = N1BC * N2BC * 3

(NTOPX(N1BC, N2BC)) -- X components of top surface boundary condition vectors.

(NTOPY(N1BC, N2BC)) -- Y components of top surface boundary condition vectors.

(NTOPZ (N1BC, N2BC) -- Z components of top surface boundary condition vectors.

The NTOP vectors are not necessarily perpendicular to the surface. If this record is absent, subsequent POTFAN programs use the unit normals as the top surface boundary condition vectors.

This record is not found on POIGEM generated geometry files.

+Next Record (if LCG(8) = . TRUE.)

J 1= N 1BC

J2=N2BC

J3=3

NW = N1BC * N2BC * 3

(NBOTX (N1BC, N2BC)) -- X components of bottom surface boundary condition vectors.

(NBOTY(N1BC, N2BC)) -- Y components of bottom surface boundary condition vectors.

(MBOTZ(N1BC, N2BC)) -- Z components of bottom surface boundary condition vectors.

If this record is absent, subsequent POTFAN programs use the negatives of the unit normals as the bottom surface boundary condition vectors.

This record is not found on PCTGEM generated geometry files.

<u>+Next_Record</u> (if LOG(9) = . IRUE.)

J 1= N 1BC

J2=N2BC

J3=1

NW=N1BC*N2BC

(OTOP(N1BC,N2BC)) -- Desired values of net velocity along the top surface boundary condition vectors. If this record is not present, then subsequent POTFAN programs assume zero net velocity. This record is not found on geometry files created by POTGEM.

+Next_Record (if LOG(10) = . TRUE.)

J 1= N 1BC

J2=N2BC

J3 = 1

NW = N1BC * N2BC

(OBOT (N1BC*N2BC)) -- Desired values of net velocity along the bottom surface boundary condition vectors. If this record is not present, then subsequent POTFAN programs assume zero net velocity. This record is not found on geometry files created by POTGEM.

+Next Record

This record and the following three records define the outside boundaries of the component. This definition is necessary because panels need not extend up to the boundaries.

J 1=N1

J2 = 10

J3=1

NW=N1*10

(XVLC(N1)--X values at the intersection of the I1=1 boundary (VL(S) curve in POTGEM) with the corner point grid lines extending nominally in the V or N2 direction. If the panels extend to the boundaries of the component, then XVLC(I2)=XCP(1,I2), but panels need not extend to the component boundaries (e.g., the panels at leading edges of thin wings to be modelled with vortices are set back from the edge).

The significance of most of the arrays on this and the next three records should be clear from the explanation of (XVLC), therefore, they will not be defined.

(XVUC(N1))

(YVLC (N1))

(YVUC (N1))

(ZVLC(N1))

```
(ZVUC(N1))
     (SVLC(N1))
     (SVUC(N1))
     (VVLC(N1))
     (VVUC(N1))
+Next Record
    J1 = N1BC
    J_2 = 12
    J3=1
     NW = N1BC * 12
     (XVLB(N1BC)) -- Same as (XVLC) except that boundary
          condition point grid lines are involved.
     (XVUB (N1BC))
     (YVLB (N1BC))
     (YVUB(N1BC))
     (ZVLB(N1BC))
     (ZVUB(N1BC))
     (SVLB(N1BC))
     (SVUB(N1BC))
     (VVLB(N1BC))
     (VVUB(N1BC))
     (CORD1(N1BC)) -- Reference chord lengths in the
          direction. These are used in PCTFOR, which is the
          program that computes span loads. In POTGEM this
          array is computed after a FINISH command.
     (SPAN1(N1BC)) -- Reference
                                widths
                                             of
                                                   rows
          singularities extending in the N2
                                                  direction.
          These widths are some measure of lengths in the N1
          direction and are used in determining sectional
          aerodynamic properties such as section lift
                        In POTGEM this
          coefficient.
                                          array is computed
          after a FINISH command.
```

+Next Record

J1=N2

J2 = 10

J3=1

NW=N2*10

```
(XSLC (N2))
     (XSUC(N2))
     (YSLC(N2))
     (YSUC (N2))
     (ZSLC(N2))
     (ZSUC(N2))
     (SSLC(N2))
     (SSUC(N2))
     (VSLC(N2))
     (VSUC (N2))
+Next Record
     J1 = N2BC
     J2 = 12
     J3=1
     NW = N2BC * 12
     (XSLB(N2BC))
     (XSUB(N2BC))
     (YSLB(N2BC))
     (YSUB(N2BC))
     (ZSLB(N2BC))
     (ZSUB (N2BC))
     (SSLB(N2BC))
     (SSUB(N2BC))
     (VSLC(N2BC))
     (VSUB(N2BC))
     (CORD1 (N2BC))
     (SPAN2 (N2BC))
+Next Record (if LOG(19) = . TRUE.)
     J 1= N 1BC
     J2=N2
     J3=3
     NW = N1BC + N2 + 3
     (XS1(N1BC, N2)) -- X components of force sensing locations
           on the N1 direction vortex segments.
     (YS1(N1BC, N2))--Y components of force sensing locations
           on the N1 direction vortex segments.
      (ZS1(N1BC, N2)) -- Z components of force sensing locations
           on the N1 direction vortex segments.
```

These arrays are used only if vortices are used to model the component and then only if the Kutta Joukowskii theorem is used to determine the forces. this record is absent, subsequent POTFAN programs requiring the N1 force sensing locations assume the midpoints of the N1 segments. In POTGEM these arrays are computed if the variable RS1 is entered as .TRUE. on a PANL command.

+Next Record (if LOG(20) = . TRUE.)

J1=N1

J2=N2BC

J3=3

NW = N1 + N2BC + 3

(XS2(N1, N2BC)) -- X components of force sensing locations on the N2 direction vortex segments.

(YS2(N1,N2BC)) -- Y components of force sensing locations on the N2 direction vortex segments.

(ZS2(N1,N2BC)) -- Z components of force sensing locations on the N2 direction vortex segments.

These arrays serve the same function for the N2 vortex segments that (XS1), (YS1), and (ZS1) do for the N1 vortex segments. In POTGEM these arrays are calculated if the variable RS2 is entered as .TRUE. PANL=COMMAND

6.2 SUMMARY OF GEOMETRY FILE DATA

This section summarizes the geometry data by presenting in pseudo-FORTRAN form the statements that could be used to create a geometry file. They are as follows:

CALL OPENW (NTG, 1, ID (NED), 1)

WRITE (NTG) NCTIME, (CTIME), NTITL, (TITL), *NRECS, (IFORM), NID, (ID),

#NLOG, (LOG), NINT, (INT), NFLT, (FLT)

N1 = INT(2)

N2=INT(3)

N 1BC=INT (4)

N2BC=INT(5)

WRITE (NTG) N1, N2, 5, N1*N2*5, (XCP), (YCP), (ZCP), (SCP), (VCP)

- IF (LOG(3)) WRITE (NTG) N1, N3,2, N1*N2*3, (UVWX), (UVWX), (UVWZ)
- IF (LOG(1)) WRITE (NTG) N1BC, N2BC, 1, N1BC*N2BC, (BCFLAG)
- IF (LOG(5)) WRITE (NTG) N1BC, N2BC, 1, N1BC*N2BC, (DSFLAG)
- IF (LOG(6)) WRITE (NTG) N1BC, N2BC, 1, N1BC*N2BC, (SSFLAG)
- WRITE (NTG) N1BC, N2BC, 5, N1BC*N1BC*5, # (XBC), (YBC), (ZBC), (SBC), (VBC)
- WRITE (NTG) N1BC, N2BC, 4, N1BC*N2BC*4 # (UNX), (UNY), (UNZ), (DA)
- IF (LOG (7)) WRITE (NTG) N1BC, N2BC, 3, N1BC*N2BC*3, # (NTOPX), (NTOPY), (NTOPZ)
- IF (LOG (8)) WRITE (NTG) N1BC, N2BC, 3, N1BC*N2BC*3, # (NBOTX), (NBOTY), (NBOTZ)
 - IF (LOG(9)) WRITE (NTG) N1BC, N2BC, 1, N1BC*N2BC, (OTOP)
 - IF (LOG(10)) WRITE (NTG) N1BC, N2BC, 1, N1BC*N2BC, (OBOT)
- WRITE (NTG) N1, 10, 1, N1*10, (XVLC), (XVUC), (YVLC), (YVUC), # (ZVLC), (ZVUC), (SVLC), (SVUC), (VVLC), (VVUC)
- WRITE (NTG) N1BC, 12, 1, N1BC*12, (XVLB), (XVUB), (YVLB), (YVUB), (ZVLB), (ZVUB), (SVLB), (SVUB), (VVLB), (VVUB), (CORD2), (SPAN1)
- WRITE(NTG) N2, 10, 1, N2 * 10, (XSLC), (XSUC), (YSLC), (YSUC), # (ZSLC), (ZSUC), (SSLC), (SSUC), (VSLC), (VSUC)
- WRITE (NTG) N2BC, 12, 1, N2BC*12, (XSLB), (XSUB), (YSLB), (YSUB), *(ZSLB), (ZSUB), (SSLB), (SSUB), (VSLB), (VSUB), (CORD1), (SPAN2)
- IF (LOG(19)) WRITE (NTG) N1BC, N2, 3, N1BC*N2*3, #(XS1), (YS1), (ZS1)
- IF (LOG(20)) WRITE(NTG) N1, N2BC, 3, N1*N2BC*3,
 # (XS2), (YS2), (ZS2)
- In POTGEM the geometry file is written by subroutine STORGM.

7 SAMPLE CASES

This section presents a number of sample cases. These cases were not only devised to test the program, but to serve as the basis of a tutorial guide for assisting users in learning how to use the program. This tutorial proceeds from simple cases to more complex ones with each new facet of the program being explained the first time it is introduced. Potential users are therefore advised to study every sample case.

7.1 TEST CASE NO. 1 - THIN, SYMMETRICAL, SWEPT, FLAT WING

The so-called Warren 12 planform shown in Figure 7.1-1 has been chosen as the first test case. Note the SL(V), SU(V), VL(S), and VU(S) curves. This wing consists of a single segment, which is the right hand half of the wing, and only half the wing needs to be considered due to the symmetry. The spanwise direction has been chosen as the S or N1 direction and the chordwise direction as the V or N2 direction. These could have been reversed, but for more complicated wings this is generally the best way to choose the directions. This wing can be handled most simply by using the WING command or else by inputting the SL, SU, VL, and VU curves explicitly. The former method is the subject of this section, while the latter is discussed in Section 7.2.

The input deck illustrating the use of the WING command is shown in Figure 7.1-2. Comments concerning some cards are given below:

 $\underline{\text{Card 7}}$ --This card specifies that there should be 10 panels in the S direction (spanwise in this case) and 4 in the V direction (chordwise).

<u>Card 9--Uniform</u> spacing of the vortices in the S direction is requested.

Card 11--IOPT=2 specifies the typical (1/4 and 3/4) spacing of vortices and control points in the V direction.

Card 13--RS1 is .TRUE. because it is intended that loads should be determined using the Kutta-Joukowskii law. There will be no load-carrying vortex segments in the N2 direction.

Cards 14-17--These cards cause all panels to have a type 30 doublet singularity on them. This type of singularity is a horseshoe vortex with bound portion in the N1 direction. The -1 values on cards 15 and 16 signal the program to use the number of panels in the N1 and N2 directions, respectively, as the upper limits.

Card 19--LOG(12) is .TRUE. because there are no bound vortex legs in the N2 direction.

LOG(13) is .TRUE. because the vortex legs along each panel line in the N1 direction are all parallel and of the same length.

INT(10) is 1 because the SL edge (i.e., the centerline) is in a symmetry plane.

FLT(5), FLT(6), and FLT(7) are the components of the unit wake vectors. In this case the wake vectors are all identical (if the angles vary from corner point to corner point the UVW command should be used) and parallel to the X AXIS.

The printed output for this case is shown in Figure 7.1-3. Figure 7.1-4 shows the arrangement of panels, wing outline (dashed), and wake vectors. This figure was generated using the PLOTGM program (Section 8.4). The input to PLOTGM is shown in Figure 7.1-5.

7.2 TEST CASE NO. 2

The results from this test case are identical to case no. 1. The only difference is that this case was run using a different input method. With this method, which is more complicated, but more general, it is necessary to explicitly consider the component axis, the cross sectional planes, and the VL, VU, SL, and SU curves. The component's axis is taken to be the Y axis. The Y' axis is the X axis and the Z' axis is the Z axis. Thus the Y-Z plane must be rotated by -90 degrees about the Z axis in order to become parallel to the Y'-Z' plane. The SL, SU, VL, and VU curves are shown in Figure 7.1-1. The input is shown in Figure 7.2-1. Specific comments on the input deck follow:

<u>Card 6--COPT=0</u> causes the corresponding function to be zero. Thus XAXIS(S)=0.

card 8--copt=2 implies YAXIS(S)=S.

Card 10--Causes PHI(S) to equal -90.

Card 12--Causes EX(S) to equal 0.

Card 14--Causes EY(S) to equal 1. Note that NTAB =1 does not have to be entered because it was given on Card 10.

<u>Card 16</u>--This is the only cross section. Since there is only one cross section, SCS does not have to be entered. COPT=0 then implies that V2(S,V)=0 or Z(Y,X)=0.

Cards 23-30-- These define the SL, SU, VL, and VU curves shown in Figure 7.1-1.

The output from this case is shown in Figure 7.2-2.

This same wing could have been done by a somewhat different procedure. Namely the default axis and cross sections could have been used initially and, after panelling, the entire component could have been rotated by 90 degrees and about the Z axis. If this were to be done, cards 5 through 14 would be deleted and a ROSS command and appropriate data would be inserted after card 32 or 37.

7.3 TEST CASE NO. 3 - NASA AMES 12.192-by-24.384 METER WIND TUNNEL

A cross section view of the right half of the 12.192-by-24.384 (40'x80') test section is shown in Figure 7.3-1. It can be described analytically as follows:

Section A-B: Z'(Y') = -6.096 for $-6.096 \le Y' \le 0$ Section B-C: $r(\theta) = 6.096$ for -90 degrees $\le \theta \le 90$ degrees Section C-D: Z'(Y') = 6.096 for $0 \ge Y' \ge 06.096$.

The most accurate method of describing this geometry to the program is to take advantage of the multiple segment capability with the segments being the sections A-B, B-C, and C-D. The V variable is y' in sections A-B and C-D and is 0 in section B-C. The S variable is chosen to be X. The equations for the axis are the following:

XAXIS(S) = S YAXIS(S) = 6.096 ZAXIS(S) = 0.

In the first segment (A-B) the equations for V2, VL(S), and VU(S) are:

V2 = -6.096 VL = -6.096VU = 0

In the second segment (B-C) the equations for V2, VL(S), and VU(S) are:

V2 = 6.096 VL = -90 VU = 90

In the third segment (C-D) the equations for V2, VL(S), and VU(S) are:

V2 = 6.096 VL = 0VU = -6.096

Note that VU(S) may be less than VL(S).

If the longitudinal extent of the portion of the tunnel to be modelled is from X = -10 to X = +20, then SL(V) and SU(V) are:

SL = -10 SU = 20

The input which implements the description just given is shown in Figure 7.3-2. Comments on certain of the input cards are given below:

Cards 4-5--Define YAXIS(S) as 6.096.

Card 6--Defines V2 as y'.

<u>Card 10</u>--NSEGVT is the total number of segments in the V direction. NBPV = 3,10,3 causes 3 panels in the first segment (A-B), 10 panels in the second segment (B-C), and 3 panels in the third segment (C-D).

Card 23--Panels the first segment.

Card 25--Defines V2 as 0.

Cards 28-29--Name the next segment to be panelled.

Cards 36-37--Panel the second segment. Note that the VLBC command was not required for this segment.

Cards 47-48--Panel the third segment. Note that the VLBC command was not required for this segment and also it was not necessary to give an SRI1 command for IC=11 because V2 is numerically the same as in the previous segment (even though its basic definition has been changed by the CARY command on card 38).

<u>Cards 53-56</u>--Set all doublet singularity flags to type 2.

<u>Cards 57-59</u>--Set the doublet singularity flags along the trailing edge to type 4. See Figure 6.1-1.

The output from the program is shown in Figure 7.3-3. Figure 7.3-4 shows various views of the resultant panel distributions, control points and shed wakes. Figure 7.3-5 shows the PLOTGM input that generated Figure 7.3-4.

7.4 TEST CASE NO. 4 - THIN, SWEPT, UNCAMBERED, UNTWISTED WING WITH DIHEDRAL

Top and rear views of the subject wing are shown in Figure 7.4-1.

The first step in treating this wing is to rotate it by 90 degrees around the Z axis. The resultant plan view is shown in Figure 7.4-2. Note the SL, SU, VL and VU curves and that S = -X and $V = y^* = Y$. Also $V2 = z^* = Z$. Two cross sections which are sufficient to complete the geometry description are:

$$V2 = z^{\dagger} = 0 \text{ at } S = 0$$

and
 $V2 = z^{\dagger} = .5 \text{ at } S = 2$

After the wing is input to the program via the above description, it is rotated by 90 degrees about the -Z axis so that it conforms to Figure 7.4-1 and then it is rotated by 45 degrees about the Y axis to put it at 45 degrees angle of attack. This final rotation is not necessary to obtain a solution for the wing at 45 degrees angle of attack, but has been done for testing purposes.

A schematic of the vortex singularity model used for this wing together with the doublet singularity flags is shown in Figure 7.4-3.

The input deck for this case is shown in Figure 7.4-4. Comments on some cards are given below:

Card 6--COPT=3 defines XAXIS(S) as being equal to -S.

Cards 7-10--These cards define the two cross sections.

<u>Cards 28-29--These</u> cards rotate the wing so that the YAXIS is the spanwise direction.

<u>Cards 32-42--These</u> cards define the doublet singularities shown in Figure 7.4-3.

Card 44--LOG(13) is .TRUE. because the N1 vortex segments for any given value of N2 are all of the same length and parallel.

The output from the program is shown in Figure 7.4-5. Figure 7.4-6 shows top and side views of the wing outline

(dashed), panels, and shed wakes.

7.5 TEST CASE NO. 5 - SPHERE WITH S THE CIRCUMPERENTIAL VARIABLE

Figure 7.5-1 shows the choice of the S and V variables and the y^*-z^* plane, which varies with S. Note that as S varies, the origin of the y^*-z^* plane remains fixed. Therefore, it is necessary that

$$XAXIS(S) = YAXIS(S) = ZAXIS(S) = 0.$$

The variable PHI in this case is identical to S and the -Y axis is the rotation axis of the cross section. Hence,

PHI(S) = S EX(S) = 0 EY(S) = -1EZ(S) = 0

Also the variable V2 in this case is just the radius of the sphere and is taken equal to 1.

Figure 7.5-2 shows the input deck for this case. A total of 5 panels are laid out in the S direction with S varying from 1 to 90 degrees (i.e., only 1/4 of the sphere is panelled). The panel corners occur at equal increments in S. In the V direction 10 panels are laid out at equal increments with the first corner points being moved back from the nose (V = 0), which is necessary for the sphere to be modelled with doublet singularities. Type 19 and type 27 doublet singularities are selected due to the axisymmetry (see Figure 6.1-1). Finally the component is rotated so that the nose is on the negative X axis.

Figure 7.5-3 shows the output from POTGEM for this case.

7.6 TEST CASE NO. 6 - TWO DIMENSIONAL AIRFOIL

The purpose of this test case is to show how cross sections of typical thick wings can be handled. The cross section is decomposed into two segments. The first segment is the lower surface starting at the trailing edge and ending at the nose. The second segment is the upper surface beginning at the nose and ending at the trailing edge. For both cases the V-variable is X.

In both the first and second segments the input data is proportional to SQRT(V) near V = 0. The interpolation routines provided in the program are not able to fit curves to such data accurately. To overcome this difficulty one of

the transformation capabilities of the program is invoked so that the independent variable for interpolation is SQRT(V). In terms of this variable the input data is now linear near V=0, and, therefore, interpolation is much more accurate. See Section 3.1.4 for more details.

The program deals with three-dimensional bodies, therefore the airfoil section is considered to be of unit thickness and centered at the origin. Thus the S variable is Y and SL(V) = -.5 and SU(V) = .5. Also there is one panel in the S direction.

The section is input as if it were parallel to the Y-Z plane and after the section is panelled, it is rotated so that it is parallel to the X-Z plane. This is the typical procedure that is followed for all wings when the usual aerodynamicist's coordinate system is used.

The input deck for this case is shown in Figure 7.6-1 and the program output is shown in Figure 7.6-2. Specific comments on the input deck are given below:

Card 6--COPT=6 specifies that the controlled deviation interpolation method be used for interpolation within the cross section. IOPT1=1 specifies that the independent variable for this interpolation will be SQRT(V) instead of V.

Card 29--IOPT=6 gives dense panels near the nose.

<u>Cards 73-80</u>—when modelling closed bodies with doublet panels, a hole must be left somewhere in the body. These cards make the first panel null and thus the hole will be at the trailing edge on the bottom surface. These cards also define the remaining panels as type 32 (see Fig. 6.1-1).

<u>Cards 81-88--</u>These cards create a null boundary condition point at the null panel so that the resulting influence matrices will be square.

<u>Cards 89-95--In</u> order to make the flow field two dimensional, the wake vectors on the I1 = 1 edge must be directed in the +Y direction while the vectors on the I1 = 2 edge must be directed in the -Y direction.

Figure 7.6-3 shows the resulting corner point model of this airfoil.

7.7 TEST CASE NO. 7 - THIN WING WITH TWIST, CAMBER, AND DIHEDRAL

The purpose of this test case is to show how complicated, thin wings can be handled.

The planform of the subject wing <u>prior</u> to the addition of the twist is shown in Figure 7.7-1. At Y = 0.0 the mean camber line is Z/C = 0.0 where c is the wing chord. At Y = 15.479 the camber line is the parabolic arc given by

$$Z/c = x(1-x)$$

where x is the linear function of X that is equal to 0.0 at the leading edge and 1.0 at the trailing edge. At Y = 25.0 the camber line is derived from Table 7.7-1 by multiplying the Z/c values by a factor of 12.0. Note that the table entries extend beyond the leading edge. This is done in order to control the interpolation near the leading edge. Also it should be noted that between X = .2025 and X = 1.0 the camber line is exactly straight. At Y = 35.107 the camber line is also derived from Table 7.7-1, only the factor to be applied is 15.0. Between the given stations the mean camber surface varies linearly with Y along the lines X = constant.

The twist in degrees is equal to -.0097363*Y**2. The twist center is the trailing edge of the wing and the twist axis is everywhere parallel to the Y axis. The vertical displacement of the trailing edge of the wing is given by Z = .25Y.

If the cross sections are initally chosen to be parallel to the Y-Z plane, the above description of the geometry can be accommodated by the following:

```
S = X
YAXIS(S) = -Xte(Y) (Fig. 7.7-1)
ZAXIS(S) = .25*S
PHI(S) = -.0097636*S**2
EX(S) = 1
EY(S) = 0
YPSCAL(S) = c(Y)
V = 1 - x = (Xte - X)/c(Y)
VL(S) = 1
VU(S) = 0
```

In addition V2 will be the value of Z on the surface <u>prior</u> to adding in the twist or dihedral.

The wing is modelled with quadrilateral vortices. These are placed in the typical manner chordwise and in both the root segment and tip segment they are evenly spaced spanwise. A wake is shed from the trailing edge and the rearward half of the tip edge and trails back at an angle of 10 degrees.

This wing is treated in a manner similar to test case no. 4. The primary differences are the addition of camber

and twist, the dihedral is handled somewhat differently, and the presence of the break in the trailing edge creates the need to assure that panel edges occur also at the break.

The input deck for this case is shown in Figure 7.7-2. Specific comments on some of the cards are given below:

<u>Card 35</u>--COPT=6 and PARAM(1)=0 cause the controlled deviation interpolation method with linear interpolation in the end intervals to be used for this cross section. Linear interpolation in the last interval is ideal because the rear portion of the camber line is exactly straight. Linear interpolation near the leading edge would not be very good, however, so the table has been extended beyond the leading edge.

Card 42--The table (Cards 36-39) does not have to be entered again even though it was transformed by the previous command. This is because the transformations are not done on the intermediate arrays (see subroutine SRFIN1).

<u>Card 68--Note</u> that the SL(V) curve does not have to be entered for the second segment. This is because it is identical to the SU(V) curve from the previous segment.

Cards 81, 84, 87, and 90-- See Figure 6.6-1 for a schematic of these vortex models.

The output from this case is shown in Figure 7.7-3. Various views of the panels, boundary condition points, and shed wakes are shown in Figure 7.7-4.

8 **RELATED PROGRAMS**

This chapter describes programs and subrcutines related to POTGEM and which are also available.

8.1 SUBROUTINE READGM

This subroutine reads a geometry file in a straightforward manner. The principal drawbacks are that <u>all</u> of the data on the file is read in whether necessary or not and the program does not supply the data defaults discussed in Section 6.1.

8.2 SUBROUTINE RDGMA

This subroutine also reads in a geometry file. It differs from READGM on three counts. First of all, it does not read in any data that is not required. Secondly, if some data is not available on the file, but is requested, RDGMA will compute it according to established conventions (see Section 6.1). Finally RDGMA packs all of the requested data solidly into a single array and computes the addresses of the individual arrays. Thus RDGMA is compatible with calling programs using dynamic memory allocation.

8.3 EDITGM

EDITGM is a separate program that can be used to manipulate POTFAN geometry files in various ways. It operates in the same way that all POTFAN programs do. That is, it operates using commands as the basic form of logic control. The commands in EDITGM allow geometry files to be read in, printed out, edited, compared with other geometry files, and, after editing, to be stored. Also, EDITGM can be used to rotate, shift, and scale the component.

The EDIT command has been found to be very useful for changing flags ((BCFLAG) and (DSFLAG)) and parts of the introductory record that should have been entered with a FINISH command but were not.

The PRINT command is another useful command. It is frequently used to print out geometry file data that, for whatever reason, was not printed out when POTGEM was run.

The ROSS command can be used to rotate, shift, and scale the component. This command works in the identical way that ROSS works in POTGEM.

The listing of EDITGM contains all of the necessary instructions to run the program.

8.4 PLOTGM

PLOTGM is an independent and separate program that can be used to graphically display a component described by any POTPAN geometry file. This display consists mainly of the corner points connected by straight line segments in either or both directions. Optionally the boundary condition points, unit normals, unit wake vectors, and component outline can be displayed. The display can be from any viewing angle and to any desired scale.

PLOTGM is currently set up to run a Zeta plotter, but can be easily converted to use a Calcomp plotter.

PLOTGM works on a command basis in the same way that all other POTFAN programs do. These commands and all necessary user instructions are contained in the PLOTGM listing. PLOTGM was used to prepare figures for this report. In some cases the input decks have been shown to serve as examples since no separate documentation will be available for this program (see Chapter 7).

9 REFERENCES

Medan, R. (1976): Overview of the NASA-Ames Three-Dimensional Potential Flow Analysis System (POTFAN). To be published.

APPENDIX A

A--STANDARDIZED FILE HANDLING PROCEDURES FOR POTFAN PROGRAMS

Standardized FORTRAN procedures and subroutines for opening and closing files have been developed to facilitate using and coding POTFAN programs and the conversion of these codes to different computer systems.

A.1 FILE CREATION

This section describes actions taken before and after any POTFAN program attempts to write a POTFAN file.

Prior to writing any permanent file onto a unit, all POTFAN programs call a system dependent subroutine as follows:

CALL OPENW (NT, IFTYP, ID, IR)

If IR is not zero, then NT and ID are considered subroutine inputs. NT is the logical unit number on which the file will be written and ID is the file creation identifier, which should also be the primary file identification number. If IR is zero, then ID is not considered a subroutine input and NT is only the default unit number. In this case the program reads in ID and NT from a card via 215 format. If the value of NT on the card is zero, the subroutine replaces NT with the default value.

If the value of ID determined in either case is then still zero and if it is possible on the computer system being used, the program will replace ID with the current number on the identification number file and also update the identification number file.

In addition to NT, ID, and IR, IFTYP is also input to the program. IFTYP defines the type of file being created according to the following table:

IFTYP TYPE OF FILE

1	Geometry
2	Boundary condition
3	Influence matrix
4	Velocity matrix
5	Solutions
6	Velocity at force sensing location of N1 segments
7	Velocity at force sensing location of N2 segments
8	Constraint function transformation matrix
9	Zeta plot file
10	Constrained influence matrix
12	Preset solution
15	Inverse or decomposition of influence matrix
16	External velocity
17	Surface pressures
18	Surface velocity

Once ID and NT have been determined, the program opens (if possible on the system being used) the file for writing using a file name determined from ID and IFTYP. On IBM systems, opening a file consists of issuing a DDEF to the operating system. On the INFONET UNIVAC 1108 system, an EQUATE command is involved. This feature eliminates the need for job control cards to handle files on those systems for which FORTRAN programs can open files.

The program then rewinds the file and writes a message indicating which unit has been opened and the value of ID and IFTYP.

After the file has been opened and written upon, it is released by calling another system dependent subroutine as follows:

CALL ENDFIL (NT)

This subroutine writes an end-of-file mark on the unit and (if required by the system being used), releases the unit. The subroutine also writes a message indicating that unit NT has been closed.

A.2 FILE ACCESSING

This section describes actions taken before and after any POTFAN program attempts to read any POTFAN file.

Prior to reading any permanent file from a unit all FOTFAN programs call a system dependent subroutine as follows:

CALL OPENR (NT, IFTYP, ID, IR)

If IR is not zero, then NT and ID are considered subroutine inputs. NT is the logical unit number from which the file is read and ID is the file access identifier, which should also be the primary file identification number. If IR is zero, then ID is not considered a subroutine input and NT is only the default unit number. In this case, the program reads in ID and NT from a card via 215 format. If the value of NT on the card is zero, the subroutine replaces NT with the default value.

In addition to NT, ID, and IR, IFTYP is also input to the program. IFTYP defines the type of file being read according to the table in the previous section.

Once ID and NT have been determined, the program attempts to open the file using a file name determined from ID and IFTYP. The capability to open a file from a FORTRAN program depends on the system being used. As explained in the previous section, this may involve a DDEF or EQUATE command and can eliminate the need for job control cards to handle files.

The program rewinds the file and writes a message indicating which unit has been opened and the value of ID and IFTYP.

After control is returned to the calling program and the first record of the file has been read, all POTFAN programs check to see if the access identifier is equal to the actual primary file identification number existing on the first record. If not equal, the program writes an informational diagnostic message and proceeds. This feature is meant to be a helpful filekeeping technique for those systems that do not permit automated file control.

After the file has been read and there is no further use for it, it is released by calling another system

dependent subroutine as follows:

CALL FILEND (NT)

This subroutine rewinds unit NT and (if required by the system being used) releases the unit.

APPENDIX B

E STANDARDIZED FORMAT OF POTFAN FILES

A standard format has been developed for POTFAN files. This format is applicable to all files except scratch files and plot files. This standard has been developed for the following reasons:

- 1. to minimize the effects of changes in one POTFAN segment on other POTFAN segments;
- 2. to allow a program to be developed (EDITPF) which can list and/or edit the contents of any POTFAN file; and
- 3. to promote consistency among POTFAN programs.

Briefly, the standardized POTFAN file consist of one or more records. The first record is called the introductory record and contains miscellaneous data including the primary identification number, a title, and real, integer, and logical parameters reflecting how the data on the remaining records was calculated and/or how it is to be used. The second and subsequent records generally contain the bulk of the data and are called data records. The latter records contain one or more arrays which are always either integer or floating point numbers (i.e. integer and floating point numbers are not mixed on a single record). A detailed description is given below.

First Record (Introductory Record)

This record is created by an unformatted write statement such as the following:

WRITE(NT) NCTIME, (CTIME(N), N=1, NCTIME), NTITL, # (TITL(N), N=1, NTITL), NRECS, (IFORM(N), N=1, NRECS), #NID, (ID(N), N=1, NID), NLOG, (LOG(N), N=1, NLOG), #NINT, (INT(N), N=1, NINT), NFLT, (FLT(N), N=1, NFLT)

The values of NCTIME, NRECS, NID, NLOG, NINT, and NPLT are all at least one and can vary from file to file even for files of the same type (e.g. NINT may be different on two different geometry files). An explanation of these variables is given below:

NCTIME Number of words in (CTIME)

(CTIME) Creation time in A4 alphanumeric format. Whether or not this array can be filled out depends on the availability of a system dependent subroutine to compute it. This array is used only as a filekeeping aid. It is printed out whenever a file is created or read.

NTITL The number of words in (TITL). Generally NTITL is a multiple of 20.

(TITL) Alphanumeric titling information (e.g. "Delta wing with flaps"). This array is to be written under a format such as (1x, 20A4/).

NRECS The number of records (including the first) comprising the file. NRECS is also the number of words in (IFORM).

(IFORM) An integer array indicating the kind of numbers on each record. A value of zero implies an integer and a value of one implies a floating point number. IFORM(1) has no significance.

NID The number of words in (ID)

(ID) Identification number array. IC(NID) is the primary file identification number. In order to keep track of files ID(NID) should be unique for each file. This number is printed out whenever the file is created or read.

NLOG The number of words in (LOG)

(LOG) An array of logical parameters

NINT Number of words in (INT)

(INT) An array of integer parameters

NFLT Number of words in (FLT)

(FLT) An array of floating point parameters. If the remaining data on the file is dependent on Mach number, then FLT(1) is the Mach number.

Second and Subsequent Records (Data Records)

The remaining records of POTFAN files contain one or more arrays. If the data record contains more than one array, then all arrays on the record must be of the same type (i.e. either integers or real numbers, but not both) and all arrays must have the same number of words. The records also contain array dimensions (J1, J2, and J3) and the total number of words in all arrays on the record (NW). Following are some examples of code used to create data records:

```
NW = J1*J2*J3
WRITE(NT) J1,J2,J3,NW,(((A(I,J,K),I=1,J1),J=1,J2),K=1,J3)

J3 = 2
NW = J1*J2*J3
WRITE(NT) J1,J2,J3,NW,((A(I,J),I=1,J1),J=1,J2),

*((B(I,J),I=1,J1),J=1,J2)

J2 = 1
J3 = 1
NW = J1
WRITE(NT) J1,J2,J3,NW,(A(I),I=1,NW)

J2 = 3
J3 = 1
NW = 3*J1
WRITE(NT) J1,J2,J3,NW,(A(I),I=1,J1),(B(I),I=1,J1),

*(C(I),I=1,J1)
```

Note that in the above examples all dimensions with multiple arrays were written with the leftmost indices varying most rapidly. This practice is always followed unless it is strictly necessary to do otherwise.

No matter how a data record was created, it can be read in by either of the following:

```
READ (NT) J1, J2, J3, NW, (A(I), I=1, NW)
READ (NT) J1, J2, J3, NW, ((A(I, J, K), I=1, J1), J=1, J2), K=1, J3)
```

In the former case, the data is packed solidly into core. In the latter case, some a priori knowledge of J1, J2, and

J3 or their maximum allowable values must have been available in order to properly dimension (A). Such a priori knowledge is generally contained as elements of (INT).

Different data records may contain data of different types and may have differing values of J1, J2, J3, and NW.

APPENDIX C

C ARRAY NOTATION

A shorthand notation for referring to arrays in the internal and external documentation of POTFAN programs has been developed. This notation is illustrated by the following examples:

- (A) This implies that A is an array.
- (A(N)) This refers to all the words in (A) from 1 through N.
- A(N) This refers only to the Nth word of (A).
- (A(I,J)) This refers to all the words in the doubly dimensioned array A for which the first index varies from 1 to I and the second from 1 to J.
- A(I,J) This refers to the element in (A) for which the first index is I and the second is J.
- (A(I,J),J=3,K) This refers to the words of (A) for which the first index is I and the second index varies from 3 to K.
- (A(I,*)) This refers to those elements of (A) for which the first index varies from 1 to I and the second index varies from 1 to some value which for some reason cannot be defined.

TABLE 3.1.4-1--The correspondence between IC and various functions defining the surface and default values of the functions.

1	
(YAXIS=0) * ZAXIS(S) (ZAXIS=0) * PHI (S) (PHI=0) * EX (S) (EX=1) * EY (S) (EY=0) * ZEZ(S) (EZ=0) * YPSCAL(S) (YPSCAL=1) *	
(ZAXIS=0) * PHI (S) (PHI=0) * EX (S) (EX=1) * EY (S) (EY=0) * ZEZ (S) (EZ=0) * PHI (S) (EX=1) *	
(PHI=0) * EX (S) (EX=1) * EY (S) (EY=0) * ZEZ (S) (EZ=0) * YPSCAL (S) (YPSCAL=1) * ZPSCAL(S) (ZPSCAL=1) *	
6 EY(S) (EY=0)* 7 EZ(S) (EZ=0)* 8 YPSCAL(S) (YPSCAL=1)* 9 ZPSCAL(S) (ZPSCAL=1)*	
7	
8 YPSCAL(S) (YPSCAL=1)* 9 ZPSCAL(S) (ZPSCAL=1)*	
9 ZPSCAL(S) (ZPSCAL=1) *	
(ZPSCAL=1) *	
10 Not used	
せいしゅう アンドラ こうしょう とうしゅう しょうしゅう しゅうしゅう はんしょう かんりょう 買いない アンドラン	
11 $V2(V)$ at $S = SC(V2=1)*$:s (1)
12 $\forall 2 (\forall) \text{ at } S = SC (\forall 2=1) *$	S (2)

^{*} denotes that this is the default function

TABLE 3.1.4-2--Current Valid Values of IOPT and the Corresponding Types of Function

IOPT	Definition of Function Y(X)
0	y(x) = 0
1	<pre>Linear interpolation from the table (XIN(NIN)), (YIN(NIN))</pre>
2	y(x) = x
3	y(x) = -x
4	y=YIN(1)=constant
6	y(x) determined by controlled deviation interpolation method in subroutine CODIM.
7	y(x) determined by modified cubic spline fit in subroutine CRVFT2
-1	y(x) = Fourier series = YIN(1) + YIN(2)*COS(x) + YIN(3)*COS(2*x) ++ XIN(2)*SIN(x) + XIN(3)*SIN(2*x) +
-2	y(x) = power series in z=x-PARAM(2) XIN(1)+XIN(2)*z+XIN(3)*z**2 +

TABLE 4.1-1. Subprogram Call Structure

PROGRAM	CALLED BY	CALLS
ADJUST	GEOM	None
AREAS	GEOM	None
CFLAG	STORGM	None
CHORD 1	GEOM	None
CHORD2	GEOM	None
CODIM	INTRP3	None
CRVFT2	INTRP3	None
FILEND	STORGM	None
FREAD3	GEOM	None
FROT	GEOM	TRANS
FSENS1	GEOM	None
FSENS2	GEOM	None
GEOM	POTGEM	AREAS, CHORD 1, CHORD 2 FREAD 3, FSENS 1, FSENS 2, NRI 1, NRI 2, NULL P, OBEY, PANL 2, PRNTGM, RDFLGS, RTSHFT, SETNRC, SPN 1, SPN 2, SRFIN 1, SRFIN 2, SRFSET, STORGM, TRAN 1, ADJUST, FROT, TRAN 2, XPANCP
GRID	PANL2	INTRP3
INTRP3	GRID, SURFAS	CODIM, CRVFT2, STRAT2
NRI1	GEOM	None
NRI2	GEOM	None
NULLP	GEOM	None

CPENW	STORGM	None
PANL2	GEOM	GRID, SURFAS
POTGEM	None	GEOM, TIMEST
FRNTGM	GEOM	None
RDFLGS	GEOM	None
RTSHFT	GEOM	TRANS
SETNN	STORGM	None
SETNRC	GEOM	None
SPN1	GEOM	None
SPN2	GEOM	None
SRPIN 1	GEOM	TRAN 1, TRAN2
SRFIN2	GEOM	TRAN1, TRAN2
SRFSET	GEOM	None
STORGM	GEOM	CPLAG, FILEND, OPENW, SETNN, TIMEST,
STRAT2	INTRP3	None
SURFAS	PANL2	INTRP3, TRAN1, TRAN2, TRANS
TIMEST	STORGM, POTGEM	None
TRANS	RTSHFT, FROT, SURFAS	None
TRAN 1	GEOM, SRFIN1, SRFIN2, SURFAS	None
TRAN2	GEOM, SRFIN1, SRFIN2, SURFAS	None
XPANCP	GEOM	None

TABLE 4.2-1 Common Block Usage

COMMON BLOCK NAME	USING SUBPROGRAMS
COM1	GEOM, GRID, PANL2
COM2	GEOM, PANL2
COM3	GEOM, PRNTGM, STORGM
COM4	GEOM, RTSHFT
CONST	POTGEM, GEOM, CFLAG, CHORD1, CHORD2, CRVFT2, FILEND, FREAD3, GRID, INTRP3, CPENW, PRNTGM, RDFLGS, SPN1, SPN2, SRFIN1, SRFIN2, STORGM, SURFAS, TRAN1, TRAN2, XPANCP, ADJUST, FROT
SRFDAT	GEOM, SRFIN1, SRFIN2, SRFSET, SURFAS

TABLE 4.3-1 Logical Units Used by POTGEM

FORTRAN VARIABLE	LOGICAL UNIT DESCRIPTION	DEFAULT VALUE	
NTCP	Output device for conversational prompts and error messages	6	
NTP	Output device for normal printout	6	
NTR	Card input device	5	
NTS	Device for storing geometry file	1	

TABLE 7.7-1 Values of the Mean Camber Line of the NACA 5-Digit 230 Airfoil

X	Z/c	
0200	0067692	
0.0000	0.0000000	.
.0200	.0054767	
.0400	.0097886	
.0600	.0130632	
.0800	.0154283	
.1000	.0170115	
. 1200	.0179405	
.1400	.0183864	
. 1500	-0183864	
.1600	.0183463	
.1800	.0189785	
.2000	.0176670	
.2025	.0176119	
1.0000	0.0000000	

FIGURE 3.1-1. Data Needed to Define an Arbitrary Surface.

Figures-1

FIGURE 3.1.5-1. Illustration of Interpolation Between Cross Sections.

FIGURE 3.1.6-1. Method of Calculating Unit Normals.
Figures-3

FIGURE 3.2.1-1. Segment Boundaries.
Figures-4

FIGURE 3.2.2-1. Nondimensional Scale for Grid Line Intersections With VL(S) Boundary Curve.

FIGURE 3.2.2-2. Some Panel Spacing Options Available with the SLBC, SUBC, VLBC, and VUBC Commands.

FIGURE 3.2.2-2. Continued.

Figures-7

FIGURE 3.2.2-2. Continued.

Figures-8

FIGURE 3.2.2-2. Concluded.

Figures-9

FIGURE 3.2.3-1. Definition of Various Quantities Required in the Calculation of (S,V) Values in the Interior of a Segment.

FIGURE 3.2.3-2. Determination of FS(K1,K2) and FV(K1,K2) from the Non-dimensional Description of the Grid Line and Segment Boundary Intersections.

FIGURE 3.2.3-3. Example of Nonuniform Network of Corner Point (Connected by Line Segments) and Boundary Condition Point (shown as dots) Grid Lines.

FIGURE 4.1-1. POTGEM Program Subroutine Structure.

DSFLAG	VORTEX MODEL	DSFLAG	VORTEX MODEL
1	NULL NULL N1	2	N2 N1
3	N2 BOUND VORTEX N1	4	N2 SEMI-INFINITE SHED WAKES
5	N1	6	N2 N1

FIGURE 6.1-1. Vortex Models Available in VVIM

DSFLAG	VORTEX MODEL	DSFLAG	VORTEX MODEL
7	N2 N1	8	N2 N1
9	N2 N1	10	N2
11	N2 N1	12	N2

FIGURE 6.1-1. Vortex Models Available in VVIM (Cont'd).

DSFLAG VORTEX MODEL	DSFLAG VORTEX MODEL
13 N1	N2 N1
N2·	N2
15 N1	16 N1
N2	N2 N2 N1

FIGURE 6.1-1. Vortex Models Available in VVIM (Cont'd).

DSFLAG	VORTEX MODEL	DSFLAG	VORTEX MODEL
DOILAG	VOITEX MODEL	DSI LAG	VORTEX MODEL
	→ N2		N2
	• •		• •
19		20	N1
	N1		
	→ N2		N2
21	•	22	7
	N1		N1
	N2		N2
23		24	
	N1		N1 100 100 100 100 100 100 100 100 100 1
<u></u>	b	<u>U </u>	<u> </u>

FIGURE 6.1-1. Vortex Models Available in VVIM (Cont'd).

D05: 40	VODTEVASODE	205: 16	
DSFLAG	VORTEX MODEL	DSFLAG	VORTEX MODEL
	N2		→ N2
25	SAME AS DSFLAG = 23 N1	26	N1-
			\ \frac{1}{2}
	→ N2		N2
27	N1	28	N1
	N2		N2
29	SAME AS DSFLAG = 27 N1	30	N1

FIGURE 6.1-1. Vortex Models Available in VVIM (Cont'd).

DSFLAG	VORTEX MODEL	DSFLAG	VORTEX MODEL
	— → N2		N2
31	SAME AS DSFLAG = 19	32	N1
	N1		
.33	SAME AS DSFLAG = 21	34	N2 N1
	N2		ح
35	N1	36	N2 N1

FIGURE 6.1-1. Vortex Models Available in VVIM (Concluded).

FIGURE 7.1-1. Thin, Symmetrical, Swept, Flat Wing (Warren 12 Planform).

Figures-20

```
2,
            TITLE
            TEST CASE 1 . WARREN 12 WING
5.
            *DATA CROOT=1.0407,CT;P=.3536,LAMLE=53,543,R2=1.0 SEND
6.
7.
8.
            DSEGMENTS
            DATA NOPS=10, NOPV=4 SEND
            VLBC
10.
            ADATA SEND
            SLAC
            TOATA TOPTED SEND
11,
12,
13,
14,
15,
16,
17,
            PANI
            TOATA RELET SEND
            DSFL
                     -1
               30
            0
19
20
21
22
23
24
           FINISH
            *DATA LOG(12) #T, T, INT(10) #1, FLT(5) #1,0,0,0,0,0 SEND
            STORE
            +DATA ID=1 SEND
           PRINT
            DATA PRINTELENT SEND
25.
            STOP
```

FIGURE 7.1-2. Input for POTGEM Test Case 1.

```
POTFAN GEUMETRY PROGRAM. VERSTON 1'3
                  02123158
TIME = 08/09/76
ENTER BATCH
+TITLE
TEST CASE 1 - WARREN 12 WING
+WING
+DSEGMENTS
+VI BC
+SLBC
+PANE
+DSFL
+FINISH
+STORF
                         HAS BEEN OPENED FOR WRITING ON UNIT 1
FILE 1.GM.PNC/LIBS
CREATION TIME = 08/09/76
                           02:24:05
CREATION UF GEOMETRY FILE
TITLE . TEST CASE 1 - WARREN 12 WING
        FFFFFFFFFFFFFFFFFFFFF
(LOG) =
(INI) #
                                       70715000
                                                                    1.0000000
                                                                                                        0
                                                                                                                13,296146
         70715000
                                                     1,0000000
                        1,0000000
(FLT) =
          .13296146E-02
+PRINT
PRINTOUT UF GEOMETRY FILE DATA
TITLE & TEST CASE 1 - WARREN 12 WING
```

FIGURE 7.1-3. Output for POTGEM Test Case 1.

Figures-22

CREATION TIME = 08/09/76

(IFORM) = 1101111111

02124105

(1D) =						
(LOG) = F			7 2 7 2			
ORIGINAL PAGE	7 11 5	10 4 0	1	1 0 0	()	
BB (INT)	7071500	1,0000000	0 7071500		1,000000	0 7
7 € € € € € € € € € € € € € € € € € € €	13, 2961460	0013296	0.	1,000000	0	•
O D	13.2701440	,00,152.0	•	••	•	
POOR						
PANEL CURNE	R POINTS					
	x (1, J)	Y (T , J)	7(7,3)	S(I,J)	V(T,J)	
PAGE	0662937	0000000			066293A	
AG 2 i	1972289	1000000	0,	0.1000000	1972289	
与自 3 i	3281641	2000000	<i>∧ f</i>	2000000	3281641	
NE 4 i	4590993	23000000	o'	3000000	4590993	
5 1	5900345	4000000	0'	4000000	5900345	
6 1	7209697	5000000	o'	5000000	7209697	
7	8519049	6000000	o'	6000000	8519049	
8 1	9828401	700000	^*	7000000	9828401	
9 1	1,1137753	8000000	o T	8000000	1,1137753	
10 i	1'2447104	900000	0,	900000	1.2447105	
ii i	1 3756457	1 0000000		1,0000000	1 3756457	
î ž	3314688	0000000	oʻ	0'	3314688	
2 2	4447264	1000000	0	1000000	4447264	
2 Z	5579841	2000000	0	2000000	5579841	
4 2	6712418	3000000	o T	3000000	6712418	
5 2	7844995	4000000	o f	4000000	1844995	
6 2	⁵ 8977572	5000000	A.7	5000000	8977572	
7 2	1 0110149	6000000	0,	6000000	1.0110149	
8 2	1 1242726	7000000	o'	700000	1,1242726	
9 2	1 2375303	8000000	o "	8000000	1.2375303	
10 2	1 3507880	9000000	0	900000	1,3507880	
11 2	1 4640457	1,0000000	0 f 0 f 0 f	1,0000000	1.4640457	
1 3	5966437	-,0000000	o f	0 '	5966438	
2 3	6922239	1000000	0	1000000	6922239	
3 3	7878041	2000000	0,	2000000	7878041	
4 3	8833843	3000000	0'	1000000	8833843	
5 3	9789645	4000000	0 _	4000000	9789645	
6 3	1 0745447	5000000	0 0	5000000	1 0745447	
7 3	1 1701249	6000000	0'.	6000000	1,1701249	
8 3	1"2657051	7000000	0 (7000000	1.2657051	
9 3	1 3612853	8000000	0	6000000	1,3612853	
10 3	1 4568654	9000000	0 . 0 .	9000000	1 4568655	
		•	•	• •		

FIGURE 7.1-3. Output for POTGEM Test Case 1 (Cont'd).

	(7	- 3	ì
١		7	•	
١	۱		١	
	1		j	_
	•	ŀ		
		}		

```
1,5524457
                                                             1,0000000
                                                                             1.5524457
11
   3
                            1,0000000
                                            00000
              8618187
                                                                              8618188
1
                            -.0000000
             9397214
                                                                              9397214
 2
                              1000000
                                                               1000000
                             2000000
                                                                             1.0176241
            1 0176241
 3
                                                               2000000
                             3000000
                                                               3000000
                                                                             1.0955268
 4
            1 0955268
                             4000000
             1734295
                                                               4000000
                                                                             1.1734295
                             5000000
                                                                             1.2513322
              2513322
                                                               5000000
 6
    4
 7
                                                               6000000
                                                                             1.3292349
    4
             13292349
                              6000000
                             7000000
 8
             4071376
                                                               7000000
                                                                             1.4071376
                             8000000
 Q
             4850403
                                            0.
                                                               8000000
                                                                             1.4850403
                             9000000
                                                                             1 5629430
10
            175629430
                                                               9000000
                                            0,
                            1 0000000
                                                               0000000
                                                                             1 6408457
11
             6408457
              0607000
                                                                             1,0607000
    5
                            -.0000000
    5
                                                                             1.1253446
 2
              1253445
                              1000000
                                                               1000000
                                            0000000000
    5
                                                               2000000
 3
              1899891
                              2000000
                                                                             1 1899891
    5
                                                               3000000
                                                                             1.2546337
 4
              2546337
                              3000000
                                                                             1,3192783
    5
                              4000000
                                                               4000000
             3192783
                             15000000
 6
    5
             $383922A
                                                               5000000
                                                                             1.3839228
             4485674
    5
                                                               6000000
                                                                             1 4485674
                              6000000
                             7000000
                                                               7000000
                                                                             1,5132120
 8
    5
            1'5132120
                             8000000
 9
    5
            1 5778565
                                                               8000000
                                                                             1 5778565
                             9000000
            1 6425011
                                                               9000000
10
    5
                                                                             1 6425011
    5
            1 7071457
                                                             1,0000000
                                                                             1,7071457
11
                            1,0000000
```

UNIT VECTORS ALONG WAKE ELEMENTS

I J UVWX(1,J) UVWY(1,J) UVWZ(1,J)

UNAVAILABLE

BOUNDARY CONDITION FLAGS

I J BUFLAG(I,J)

UNAVAILABLE

DOUBLET SINGULARITY FLAGS
I J DSFLAG(I,J)
1 1 30
2 1 30

FIGURE 7.1-3. Output for POTGEM Test Case 1 (Cont'd).

```
30
30
30
30
30
30
30
                                         3n
3n
                                        30
                                        30
30
30
30
30
30
30
                                        3n
3n
3n
                                        30
30
30
                                        3333333333
10
                                        30
30
```

SOURCE SINGULARITY FLAGS

FIGURE 7.1-3. Output for POTGEM Test Case 1 (Cont'd).

UNAVAILABLE

BOUNDARY	CONDITION POIN			0.0.1.1	Votat II
I J	HC(I,J)	YAC(I,J)	ZBC(I,J)	SHC(I,J)	VRC(1,J) _2599295
1 1	2599295	0500000	0	,0500000	3820259
2 1	3820259	1500000	0]	1500000	
3 1	5041223	2500000	0	2500000	5041224
4 1	6262188	73500000	0	,3500000	6262188 7483152
5 1	7483152	4500000	0	4500000	
6 1	8704117	5500000	0,	,5500000	8704117
7 1	9925081	6500000	0	6500000	9925081
8 1	1/1146045	7500000	0′	7500000	1 1146046
9 1	1/2367010	8500000	0'	.8500000	1.2367010
10 1	1/3587974	9500000	0	9500000	1.3587974
1 2	5162657	20500000	0 🛴	0500000	5162657
5 5	6206846	1500000	0	1500000	6206847
3 2	77251036	2500000	0 '	, 2500000	,7251036
4 2	8295225	3500000	o'	3500000	8295225
5 2	9339415	4500000	0′	4500000	9339415
6 2	1 0383604	5500000	0 _	` 5500000	1 0383604
7 Ž	1 1427794	(6500000	oʻ.	6500000	1,142/794
8 2	1 2471983	7500000	0',	, 7500000	1,2471983
9 2	1 3516172	8500000	0	.8500000	1,3516172
10 2	1 4560362	9500000	0′	950000	1,4560362
1 3	7726020	0500000	0	,0500000	7726020
و ج	8593434	1500000	0	1500000	8593434
3 3	79460848	2500000	0′	2500000	9460848
4 3	1'0328263	3500000	0	350000	1 0328263
5 3	1,1195677	4500000	0	4500000	1,1195677
6 3	1,5063045	5500000	0 ′	5500000	1.2063092
7 3	1,2930506	6500000	0 7	6500000	1,2930506
	1 3797920	7500000	0,7	750000	1 3797920
0 7	1 4665335	8500000	o f	8500000	1,4665335
10 3	1,5532749	9500000	o,	7 9500000	1,5532749
1 4	1 0289382	0500000	0	[0500000	1[0289382
2 4	150080021	1500000	o •	1500000	55008601
3 4	1 1670661	2500000	0	2500000	1,1670661
4 4	1,5361300	3500000	0	3500000	1,2361300

FIGURE 7.1-3. Output for POTGEM Test Case 1 (Cont'd).

5	4 1'3051940 4 1'3742579	4500000 5500000	0,	4500000 5500000	1.3051940
7	4 1,4433218	6500000	ν.	6500000	1.443321
8	4 1/5123858	7500000	0 . 0 .	7500000	1,5123850
9	4 1,5814497	28500000	0,	8500000	1.5814497
10	4 1,6505137	9500000	ŏ.	950000	1,650513
10	1,0303137	. 430000	•	, 7300000	1,030313
UNIT					
I	A HNX(1,1)	NMA(1+2)	(L.I)SNU	DA(I,J)	
1	0	0	_1,0000000	, 0256336	
5	1 0'	0	_1.0000000	,0238659	
3	1 0'	0	_1.0000000	1860220	
4	1 0'	0	_1.0000000	,0203304	
5	1 0'	0,	_1,0000000	,0185626	
6	1 0	0	-1.000000	,0167949	
. 7	1 0'	0,	_1,0000000	0150271	
- 8	1 0	0	"1 .0000000	0132594	
9	1 07	0	_1.0000000	0114916	
10	0'	0	_1,0000000	.0097239	
1	2 0'	0	_1,0000000	, 0256336	
. 5	> 0'	0,	-1.0000000	0238659	
3	ž 0'	0'	-1.0000000	1890550	
. 4	ט מי	0′	_1,0000000	.0203304	
5	ž 0'.	0'	_1.0000000	0185626	
6	> 0'	0,	-1.0000000	0167949	
7	o η'	0′	_1,0000000	0150271	
8	2 0'	0,	-1.0000000	10132594	
9	2 n'	0,	-1.0000000	0114916	•
1.0	ο	0	-1.0000000	20097239	
. 1	Z 6/	0 .	-1.0000000	0256336	
2	1 0'	0	-1.0000000	0238659	
3	Λ	oʻ.	-1.0000000	_0220981	
. 4	7 n'	0 '	-1,0000000	[0203304	
5	3 0	0	.1.0000000	0185626	
6	z 0,*	oʻ	-1.0000000	0167949	
7	7 A.F	o'	-1.0000000	0150271	
8	2 0 ⁷	0	_1,0000000	0132594	
g	1 0	o'	-1.0000000	0114916	
10	3 0'	0,	-1.0000000	0097239	
1	u 07	o'.	-1.0000000	0192252	
1	· • • • • • • • • • • • • • • • • • • •	* •	mr # 0000000		

FIGURE 7.1-3. Output for POTGEM Test Case 1 (Cont'd).

```
3
            0'
                                           -1.0000000
                                                              0178994
            ŏ'
                                                              0165736
                                           -1.0000000
            0
  4
                                                              0152478
                                           -1.0000000
            0"
  5
                                                              0139220
                                           -1.0000000
            0
  6
                                                              0125962
                                           -1,0000000
            0'
  7
                                                              0112703
                                           -1.0000000
            0
                                                             0099445
  8
                                           -1.0000000
            0'
                                                             ,0086187
  9
                                           -1,6900000
 10
                                           -1.0000000
                                                              [0072929
NTOP VETTORS
                          NTOPY: 1, J)
                                          NTOP7(1,J)
          NTOPX(1,J)
  I J
UNAVAILABLE
NBOT VECTORS
  I J
          N-OTX(I,J)
                          NAOTY(I.J)
                                          NBOTZ(1.J)
UNAVAILABLE
VELOCITY ALONG NTOP VECTORS
  I J
           GTOP(T.J)
UNAVAILABLE
VELOCITY LUNG NBOT VECTORS
           (Lal) TORO
UNAVAILABLE
CORNER POINTS ALONG VL AND VU EDGES
  I
        XVLr(1)
                     YYLC(I)
                                  ZVLc(1)
                                               SVLc(I)
                                                           VVLC(I)
                                                                                                              SVUC(I)
                                                                                                                           VVIICELY
                                                                        XVUC(1)
                                                                                     YVUC(I)
                                                                                                 ZVUC(I)
                                 0'.
C'.
                                                                        1,06070
                                                                                     -.00000
                                                                                                 0.
                                                                                                                           1.06070
                                                            13535
```

FIGURE 7.1-3. Output for POTGEM Test Case 1 (Cont'd).

27071

40606

1 12534

1 18999

1 25463

10000

.20000

30000

0.

0.

0.

10000

.20000

30000

1 12534

1,18999

1,25463

Figures-28

10000

20000

30000

13535

27071

40606

2

3

.10000

. 20000

.30000

0

5 6 7 8 9 10	54142 767677 781213 794748 1706284 1721819 1735355	40000 0, 50000 0, 60000 0, 70000 0, 80000 0, 100000 0,	40000 50000 60000 70000 80000 90000	54142 667677 81213 194748 108284 121819 135355	1.31928 1.38392 1.44857 1.51321 1.57786 1.64250 1.70715	40000 50000 60000 70000 80000 90000	0.		40000 50000 60000 70000 80000 100000	1,31928 1,38392 1,44857 1,51321 1,57786 1,64250 1,70715
BOUNDA I 1 2 3 4 5 6 7 8 9	RY POINTS XVLp(1) 7068 7203 7338 7474 7609 7744 7860 17015 17151 17286	ALONG VL AND VU EDG YVLB(I)	ES SVLB(I) VVLB(I)	XVUB (1) 1.093 1.158 1.222 1.287 1.352 1.416 1.481 1.546 1.610	YVUB(I) ,050 ,150 ,250 ,350 ,450 ,550 ,750 ,850 ,950	ZVUB(I) S	VUB(I) .050 .150 .250 .350 .450 .550 .650 .750 .850	VVUB(1) 1.093 1,158 1,282 1,287 1,352 1,416 1,481 1,546 1,610 1,675	CORD2(1) 1.025 .955 .884 .613 .743 .672 .601 .530 .460 .389	SPAN1(I)
CORNER I 1 2 3 4 5	POINTS AL XSLr(1) '06629 '33147 '59664 '86182 1,06070		C(I) SSLC(I) 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	VSLC(I) 106629 133147 159664 186182 1106070	X9UC(I) 1'37565 1'46405 1'55245 1'64085 1'70715	YSUCTI) 1,00000 1,00000 1,00000 1,00000	0. 0. 0.	c(1)	55UC(1) 1,00000 1,00000 1,00000 1,00000	VSUC(1) 1,37565 1,46405 1,55245 1,64065 1,70715
	RY POINTS XSLR(1) 199 1464 729 1994	ALONG SL AND SU EDG YSLB(I) ZSLB(I) 000 0. 000 0. 000 0.	ES SSLB(I) VSLB(I) 199 07 464 67 729 694	XSUB(I) 1,420 1,508 1,597 1,685	YSUB(1) 1,000 1,000 1,000	ZSUB(I) S	SUB(I) 1,000 1,000 1,000	VSUB(1) 1,420 1,508 1,597 1,685	CORD1(1) 1.000 1.000 1.000	SPAN2(I) .265 .265 .265 .199

FORCE SENSI, G LOCATIONS IN NI-DIRECTION

FIGURE 7.1-3. Output for POTGEM Test Case 1 (Cont'd).

```
YS1(1,J)
0500000
          1317613
                                            Z51(1,J)
             2626965
                               1500000
                                             0
 S
    1
              3936317
                               2500000
                                             0000000
 3
             5245669
                               3500000
             f 6555021
                               4500000
 5
             7864373
                              5500000
 6
             9173725
                               6500000
 8
            1 0483077
                               7500000
 9
            1 1792428
                               8500000
            1 3101780 3880976
                               9500000
                                             0
10
                                             0
                               0500000
    5
                               1500000
                                              0
 5
    2
             15013553
                               2500000
             6146130
                                             00000
 3
    2
             7278707
                               3500000
    5
             8411284
                               4500000
 5
    2
                               5500000
             9543860
 6
    2
                               6500000
 7
            1 0676437
                                              0,
            1 1809014
                               7500000
 8
 9
            1 2941591
                               8500000
                              9500000
            1 4074168
10
    2
                               0500000
              6444338
 1
    3
             7400140
                                             0
                               1500000
 S
    3
             18355942
                               2500000
 3
    3
                                             0
             9311744
                              3500000
 4
    3
            1 0267546
 5
                               4500000
                               5500000
    3
            1 1223348
                               6500000
            1 2179150
    3
                              7500000
            1 3134952
 8
                               8500000
 9
    3
            1 4090753
                              9500000
            1 5046555
10
              9007701
                               0500000
                                              0 0 0 0 0 0
 1
             79786728
                               1500000
 2
    4
            1 0565754
                               2500000
 3
 4
            1 1344761
                               3500000
 5
                               4500000
            1 2123808
              2902835
                               5500000
 6
                               6500000
 7
            1 3681862
                               7500000
 8
            1 4460889
            15239916
                               8500000
    4
                              9500000
            1 6018943
1.0
```

FIGURE 7.1-3. Output for POTGEM Test Case 1 (Cont'd).

```
,0500000
,1500000
,2500000
                              0930223
1576668
          5
5
5
                              2223114
                                                               3500000
                          1'3516005
1'4162451
1'4808897
1'5455342
1'6101788
1'6748234
          5
                                                               4500000
     5
                                                            4500000
5500000
6500000
7500000
9500000
          5
           5
  10
FORCE SENSING LOCATIONS IN NZ-DIRECTION I J x52(1,J) Y52(1,J)
                                                                                         Z$2(1,J)
UNAVAILABLE
+STOP
STOP 777
```

FIGURE 7.1-3. Output for POTGEM Test Case 1 (Concluded).

FIGURE 7.1-4. Planview of POTGEM Test Case 1.

Figures-32

```
TRUE
    THIS IS THE PLOTGM RUN TO PLOT THE PLANFORM VIEW OF
    GEOMETRY TEST CASE 1 (WAPREN 12 WING).
    THIS VIEW INCLUDES THE PANELS, OUTLINE, AND
    UNIT WAKE VECTORS.
    THE SCALE IS SET TO PLOT THE SEMISPAN (1.0 UNITS)
    IN A DISTANCE OF 20.0 CM.
READ
IPLOT
         0
              0
    0
PL OT
 $DATA YOFF=2, XSCALE=.05, YSCALE=.05 $END
OUTLINE
 $DATA | PEN=4,4 $END
WA KES
 $DATA WAKECM=7, ARRWCM=0.7 $END
STOP
```

FIGURE 7.1-5. PLOTGM Input That Generated Figure 7.1-4.

```
1.
2.
          TITLE
          TEST CASE 2 - WARREN 12 WING
3.
4.
          CIRY
5.
          SHIT
           INCRVI IC=1, COPT=0 SEND
6.
7,
          SHIT
8.
           *INCRV1 IC=2.COPT=2 SEND
9.
          SFT1
           4 INCRV1 IC=4, COPT=1, NTAB=1, VAR2==98, SEND
11.
          5411
12.
           "INCRVI IC=5. COPT=0 SEND
13.
          SHTI
14
            TINCRV1 IC=7.COPT=1.VAR2=1. SEND
          SRII
16
           TI,CRV1 IC=11,COPT=0 SEND
17.
          DSEGMENTS
18,
19,
           -DATA NBPS#10.NBPV#4 REND
          VERC
50.
           "DATA SEND
21.
          SLBC
           DATA TOPTES REND
22,
23.
          SL DATA INPTSVEN REND
24.
25,
26
27
            LDATA IOPTSV=1, NTABSV=1, VAR2SV=1 0 REND
58
           *DATA NTABSV=2, VARISV=0.,1., VARZSV=0.,1.3535457 SEND
29
          VU
30 .
           IDATA VAR2SV#1.0607,1.7071457 SEND
31.
          PANI
           TOATA RESTAT BEND
32.
33,
34,
          DAFL
                   -1
35
36
                   -1
              30
```

FIGURE 7.2-1. Input for POTGEM Test Case 2.

```
37. 0
38. FINISH
39. **DATA LOG(12)**T,T,INT(1)**1,INT(10)**1,FLT(1)**.70715,FLT(5)**1.,0.,0. %END
40. STORE
41. **DATA ID=2 **END
42. PKINT
43. **DATA PRINT**18*T **END
44. STOP
```

FIGURE 7.2-1. Input for POTGEM Test Case 2 (Concluded).

```
TIME # 08,09,76 02124123
ENTER BATCH
*TITLE
TEST CASE 2 - WARREN 12 WING
+CARY
+SRI1
+SRI1
+SRII
+SRT1
+SRT1
+SRI1
+DSEGMENTE
+VLBC
+SLBC
+51
+SU
+VL
+ VII
+PANI
+DSFL
+FINISH
+STORF
FILE 2.6M-PNC/LIAS HAS BEEN OPENED FOR WRITING ON UNIT 1
CREATION TIME = 08/09/76 02:24:34
CREATION OF GEOMETRY FILE
TITLE = TEST CASE 2 - WARREN 12 WING
(LOG) * FFFFTFFFFFFTFFFFFFFF
(INT) =
        0 11 5 10 4 0
```

POTFAN GEOMETRY PROGRAM. VERSTON 13

FIGURE 7.2-2. Output for POTGEM Test Case 2

```
0[
                                                                                                                           13.296146
                                          70714998
                                                          1,0000000
                                                                           1,0000000
                                                                                                  0.
          .70715000
                          1.0000000
(FLT) =
          .13296146E-02
+PRINT
PRINTOUT OF GEOMETRY FILE DATA
TITLE = TEST CASE 2 - WARREN 12 HING
                              02:24:34
CREATION TIME # 08/09/76
(IFORM) . 110111111
(ID) =
               FTFFF
(LOG) =
                                              7071500
(INT) .
                            10
                                                                                               0
                                                               1,0000000
                                                                               1,0000000
                                                                                                               0.
                               1,0000000
                 7071500
(FLT) =
                                0013296
              13 2961460
PANEL CURNER POINTS
                                             7(1,3)
                                                             S(1,J)
                                                                             V(T,J)
             (L.f)X
                             (L,I)Y
                                                                              .0662938
                             .,0000000
                                             0
               0662937
  1
                                                                              1972289
                                                               1000000
  2
              1972289
                               1000000
                              2000000
                                                                              3281641
                                                               2000000
  3
              3281641
                                                                              4590993
                                                              3000000
                               3000000
              4590993
                                             0
                                                                              5900345
                                                               4000000
                               4000000
  5
              5900345
                              5000000
                                                                               7209697
              7209697
                                                               5000000
  6
                                            ó,
                                                               6000000
                                                                               8519049
  7
              8519049
                               6000000
                                             o'
                              7000000
                                                               7000000
                                                                               9828401
  8
              9828401
                                             o.
                                                               8000000
                                                                             1.1137753
             1 1137753
                               8000000
  9
                                                                             1 2447105
                                                               9000000
 10
             1 2447104
                               9000000
                                                                             1,3756457
                                                               0000000
             1 3756457
                             1,0000000
                                             0
 11
                                             0
                                                                               3314688
               3314688
                             -.0000000
  1
     5
                                                                               4447264
  2
              4447264
                                             0
                                                               1000000
                               1000000
     5
                                                                              [5579841
  3
              5579841
                                                               5000000
                               5000000
     2
              6712418
                               3000000
                                             0
                                                               3000000
                                                                               6712418
     2
                                            0
                                                                               7844995
                                                               4000000
  5
              7844995
                               4000000
     2
                              ′5000000
                                                               5000000
                                                                               8977572
  6
     2
              18977572
                                             0
                                                                             1.0110149
                                                               6000000
  7
             1 0110149
                               6000000
                                                               7000000
                                                                             1,1242726
  8
              1242726
                               7000000
                                             0
                                                               8000000
                                                                             1.2375303
  9
             1 2375303
                               8000000
     5
                              _9000000
                                                               9000000
                                                                             1,3507880
 10
     2
             1 3507880
                                                                             1.4640457
                             1 0000000
                                                             1,0000000
             1 4640457
 11
```

FIGURE 7.2-2. Output for POTGEM Test Case 2 (Cont'd).

1 3	5966437	0000000	0′	0',	5966438
2 3 '	6922239	1000000	0,	1000000	,6922239
3 3	7878041	2000000	0′	2000000	7878041
4 3	8833843	3000000	· 0′	. 500000	.8833843
5 3	9789645	4000000	0,	4000000	9789645
A 2 1	0745447	5000000	0	5000000	1 0745447
7	1701249	6000000	ō'	5600000	1.1701249
4 9 1	2657051	7000000	0.7	700000	1.2657051
0 7 1	3612853	8000000	ŏ	8000000	1.3612853
9 3 1	4568654	7900000	n'	900000	1 4568655
10 3	5524457	1 0000000	o f	1,000000	1 5524457
11 3 1	8618187	0000000	ŏ.	o'	8618188
1 4		1000000	ň.	1000000	9397214
2 4	9397214	2000000	Ŏ.	2000000	1 0176241
3 4 1	0176241		0.	3000000	1.0955268
4 4	0955268	3000000	0,	2400000	1 1734295
5 4 1	1734295	400000	0,	5000000	1 2513322
6 4 1	2513322	5000000	0,	6000000	1,3292349
7 4 1	3292349	6000000	0,	7000000	1.4071376
8 4 1	4071376	7000000	· ,	800000	1 4850403
9 4 1	4850403	,8000000	9,		1.5629430
10 4 1	5629430	,9000000	0,	900000	1.6408457
11 4 1	6408457	1,0000000	0	1,0000000	1,0400437
151	0607000	-,0000000	0,	0,	1.0607000
2 5 1	1253445	1000000	0,	1000000	1.1253446
3 5 1	1899891	,2000000	0	, 2000000	1 1899891
4 5 1	2546337	3000000	0	3000000	1 2546337
5 5 1	3192783	400000	0	4000000	1,3192783
6 5 1	3839228	5000000	0′.	,5000000	1,3839228
7 5 1	4485674	6000000	0′	,6000000	1,4485674
8 5 1	5132120	7000000	0 _	700000	1,5132120
9 5 1	5778565	8000000	oʻ	[8000000	1,5778565
10 5 1	6425011	9000000	0 [[9000000	1.6425011
	7071457	1,0000000	0	1,0000000	1,7071457

UNIT VECTORS ALONG WAKE ELEMENTS

I J HVWX(T,J) UVWY(I,J) UVWZ(I,J)

UNAVAILABLE

FIGURE 7.2-2. Output for POTGEM Test Case 2 (Cont'd).

BOUNDARY CONDITION FLAGS I J BEFLAG(1.J)

UNAVAILABLE

```
DOUBLET SINGULARITY FLAGS
I J DSFLAG(I,J)
                 3n
3n
                 30
                 30
                 30
                 30
                 30
                 30
                 30
                 30
 10
                  30
30
       5 5
                 30
                 30
                 3n
3n
       2
                 30
                  30
                  30
 10
       2
                 30
       3
                 30
                  30
                 30
                 3n
3n
       3
                 30
                 30
30
30
       3
 16
                 30
                 30
       4
                 3n
   2
```

FIGURE 7.2-2. Output for POTGEM Test Case 2 (Cont'd).

```
4 4 3n
5 4 3n
6 4 3n
7 4 3n
8 4 3n
9 4 3n
```

SOURCE SINGULARITY FLAGS
I J SSFLAG(I, J)

UNAVAILABLE

BOUNDARY CON	DITION POINT	S			
I J x	RC(I,J)	YBC(I,J)	Z8C(1,J)	SBC(1,1)	VRC(1, J)
1 1	2599295	0500000	0 '	.0500000	2599295
2 1	3820259	1500000	0,	1500000	3820259
3	5041223	2500000	0	[2500000	5041224
4 1	6262188	3500000	0 -	3500000	6262188
5 1	7483152	4500000	07	4500000	7483152
6 1	8704117	5500000	0	5500000	8704117
7 1	9925081	6500000	0 7	6500000	9925081
8 1	1 1146045	7500000	0,	7500000	1 1146046
9 1	1'2367010	8500000	0 7	8500000	1.2367010
10 1	1 3587974	9500000	0 ⁷	9500000	1 3587974
1 2	75162657	0500000	0 7	[0500000	5162657
2 2	6206846	1500000	0"	1500000	6206847
3 2	7251036	2500000	0 ,	2500000	7251036
4 2	18295225	3500000	0 7	3500000	8295225
5 2	9339415	4500000	0	4500000	9339415
6 2	1 0383604	5500000	0,	5500000	1 0383604
7 2	1 1427794	6500000	0 (6500000	1.1427794
8 2	1 2471983	7500000	0′	7500000	1.2471983
9 2	1 3516172	8500000	0 ^f	[8500000	1,3516172
10 2	1 4560362	950000	0 ,	[9500000	1 4560362
1 3	7726020	.0500000	0	[050000	7726020
2 3	8593434	1500000	0	1500000	8593434
3 3	7 9460848	2500000	. 0′	2500000	9460848
4 3	1 0328263	2500000	0.	3500000	1,0328263

FIGURE 7.2-2. Output for POTGEM Test Case 2 (Cont'd).

5 3 1'1195677 '4500000	o'	4500000	1,1195677
6 3 1/2063092 5500000	o'.	5500000	1.2063092
7 3 1 2930506 6500000	ñ	6500000	1.2930506
8 3 (3797920 7500000	0	750000	1.3797920
9 3 1,4665335 8500000	0,	8500000	1 4665335
	0.	19500000	1.5532749
10 3 1 1 5532749 1 9500000 1 4 1 0289382 1 0500000	0'	050000	1.0289382
2 4 1 0980021 1500000	0'	1500000	1.0980022
3 4 1/1670661 2500000	0,	2500000	1,1670661
4 4 1 2361300 3500000	0'	3500000	1,2361300
		4500000	1.3051940
5 4 1/3051940 /4500000	0	5500000	1.3742579
6 4 1 3742579 5500000	0',	6500000	1 4433219
7 4 1,4433218 6500000	0,	7500000	1,5:23858
8 4 1/5123858 /7500000 9 4 1/5814497 /8500000	0.		1 5814497
	٧.	8500000	1,6505137
10 4 1,6505137 9500000	0 ,	950000	1.0202131
UNIT NORMALS AND AREAS			
I = J = HNX(I,J) UNY(I,J)	UNZ(I,J)	DA(I,J)	
1 1 0	-1,0000000	0256336	
2 1 0'	-1.0000000	0238659	
3 1 0"	_1,0000000	0220981	
4 1 0	_1,0000000	0203304	
5 1 0' 0'	_1,0000000	0185626	
6 ()	_1.0000000	0167949	
7 1 0	_1.0000000	0150271	
R · A' A'	_1.0000000	0132594	
	_1.0000000	0114916	
	_1.0000000	0097239	
1 3 0'	_1,0000000	0256336	
2 2 0' 0'	-1.0000000	0238659	
X 7 A	-1.0000000	1890550	
A 3 A*	-1,0000000	0203304	
5 2 6" 6"	-1.0000000	0185626	
A > 0'	_1,0000000	0167949	
7 2 0	-1.0000000	0150271	
8 2 0 0 0 .	_1,0000000	0132594	
9 2 n' n'	_1,0000000	0114916	
9 2 3 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	m1,0000000	0097239	
1 3 0'	-1.0000000	0256336	
1 3 U.	* I * 0000000	0520330	

FIGURE 7.2-2. Output for POTGEM Test Case 2 (Cont'd).

2 3 0' 0'	-1.000000	0238659
3 3 0'	-1.0000000	20220981
4 3 0'	-1.0000000	0203304
5 3 0'	-1.0000000	0185626
6 3 0'	-1.0000000	0167949
7 3 0'	-1.0000000	0150271
8 3 0'	-1.0000000	0132594
9 \$ 0,0	-1.000000	0114916
10 3 0	-1.0000000	0097239
1 4 0	-1.0000000	0192252
2 4 0'	_1,0000000	0178994
3 4 07	-1.000000	0165736
u u n'	21,000000	0152478
5 // 07		0139220
6 4 0'	_1,0000000	0125962
	_1.0000000	
7 4 0	-1,000000	0112703
0	_1,000000	0099445
9 4 0'	-1.0000000	0086187
10 4 0'	-1,0000000	0072929

NTOP VECTORS

I J NTOPX(T,J) NTOPY(T,J) NTOPZ(T,J)

UNAVAILABLE

NBOT VECTORS
I J N.OTX(I,J)

NHOTY(I,J)

NBOTZ(1,J)

UNAVAILABLE

VELOCITY ALONG NTOP VECTORS

I J HTOP(I,J)

UNAVAILABLE

VELOCITY ALONG NROT VECTORS

I J DBOT(I,J)

FIGURE 7.2-2. Output for POTGEM Test Case 2 (Cont'd).

UNAVAILABI E

CORNE	R POINTS AL	ONG VL AND	VU EDGES									
1	XuLr(1)	YVLC(I)	ZVLC	1)	SVLC(I)	VVLC(I)	XVUC(I)	YYUC	(I) ZV	(IC(I)	SVHC(1)	VVIIC(I)
1	0"	0.	0'_		0	0,	1 06070	-,000	00 0.		0	1,06070
2	13535	10000	0 -		10000	13535	1,12534	100			10000	1,12534
3	127071	20000	0		20000	27071	1 18999				20000	1 18999
4	40606	30000	0,		30000	40606	1 25463	300			30000	1 25463
5	754142	40000	0,7		40000	54142	1 31928	400			40000	1 31928
6	67677	50000	o r		50000	67677	1 38392	500	00 0.		50000	1 38392
7	61213	60000	ŏ,		60000	81213	1 44857	600			60000	1 44857
Д	94748	70000	ŏ*		70000	94748	1/51321	700			70000	1,51321
ģ	1 08284	80000	ŏ.		80000	1 08284	1 57786				80000	1,57786
10	1'21A19	.90000			90000	1 21819	1 64250				90000	1.64250
11	1'35355	1.00000	ŏ.		1,00000	1735355	1,70715				1,00000	1 70715
		.,,,,,,,	•				•	•			•	•
BOUND	ARY POINTS	HONG VL AN	D VU EDGES									
7	XVLa(1)			VLB(I)	VVLB(I)	(I) aUVX	YVUB(I)	CIDBUNE	SYUB(I)	VVUn(I)	CORDS(1)	SPAN1(I)
1	068	.050	0	050	068	1,093	050	0.	050	1 093	1.025	100
,	7203	150	0	150	203	1 158	150	0.	150	1,158	ຸ 955	100
7	338	250	o *	250	338	1,222	250	0.	250	1,222	884	100
ŭ	474	350	0	350	474	1 287	350	0	350	1 287	813	100
5	609	450	0.	450	609		450	0.	.450	1,352	743	100
-6	7744	550	0	550	744	1 416	550	0.	550	1 416	672	100
7	7840	650	ò	650	880	1 481	650	0	650	1 481	601	100
8	1'015	750	o .	750	1 015	1,546	750	o.	750	1 546	530	100
9	1/151	850	ň.	850	1,151	1,610	850	0	850	1,610	460	100
10	1 286	950	o.	950	1 286	1 675	950	ŏ.	950	1,675	389	100
. 0	1 51.0		V •	• 730	1,200	4 - 4 - 4 - 4	•	•	•	• • • •	•	• • • • • • • • • • • • • • • • • • • •
COBAF	P POTATE AL	ONG SL AND	SII FORFS									
CUNNU	XSLr(1)	YSLC(1)	ZSLer	• 1	SSLC(1)	VSLc(I)	XSUC(1)	YSUC	11 70	ยะ(1)	ssuc(1)	VsUc(1)
1	06629	00000		1.	ח'	06659	1,37565	1,000		~,,	1,00000	1,37565
2	33147	00000	0.		0.	33147	1 46405	1.000			1.00000	1 46405
7	59664	00000	0.		0.	59664	1,55245				1,00000	1 55245
<i>3</i>	86182	.00000	o .		ň.	86182	1 64085				1.00000	1 64065
5	1 06070	00000	Ŭ.		ň,*	1,06070	1,70715				1.00000	1.70715
7	1 06070	# # BAAAA	0.		0.	1,000,0	7.10173	1.000	, 4 4			

FIGURE 7.2-2. Output for POTGEM Test Case 2 (Cont'd).

		U EDGES					
I XSL, (1) YS	LH(I) ZSLB	(1) SSLB(I)	VSLB(I)	XSUB(I)	YSUB(I)	ZSUB(I)	SSUB(I)
1 100	000 0.	۸,	199	1.420	1,000	0.	1,000
2 464	.000 0.	0,	464	1,420	1,000	0 🗼	1.000
3 729	000 0.	0' 0'	729	1 547	1,000	0	1,000
	.000 0.	0,	994	1 685	1 000	0	1,000
	•,000		•		•	-	•
FORCE SENSING LOCA	TIONE IN MI-	DIPECTION					
T. J. xSt.t.	VS1	1.11 281	(1,3)				
1 0 1017190	, , , , , , , , ,	500000 0.	1100				
1 1 1 1317		500000 0.					
3 1 3936	31/						
4 1 5245	669	500000 0,					
5 1 6555		500000 0,					
6 1 7864	3/3	500000 0,					
7 1 9173	725 ,0	500000 0,					
8 1 1,0483	077 ,1	500000 0.					
9 1 1,1792	428	500000 0,					
10 1 1,3101	780 ,9	500000 0					
1 2 3880	976 ,0	500000 0,					
2 2 5013		500000 0					
3 2 6146		500000 0					
4 2 7278	707 .3	500000 0					
5 2 8411	284 4	500000 0					
6 2 9543	860 5	500000 0					
7 2 1 0676	437 6	500000 0.					
8 2 1,1809	014 7	500000 0					
9 2 1/2941		500000 0					
10 2 1,4074		500000 0					
1 3 6444		500000 0.					
2 3 7400		500000 0					
3 3 6355	042	500000 0					
4 3 9311	744	500000 0					
5 3 170267	E46 1	500000 0					
6 3 1,1553	208	500000 0					
7 3 1/2179		500000 0.					
	065	500000 0.					
8 3 1,3134	775	500000 0					
	177		•				
10 3 1,5046	777	500000 0, 500000 0,	r 				
1 4 . 9007	101	500000 0	•				

FIGURE 7.2-2. Output for POTGEM Test Case 2 (Cont'd).

VSUB(1) 1,420 1,508 1,597 1,685

CORDI(1)

1,000 1,000 1,000

1.000

SPANZ(I)

```
,1500000
,2500000
               79786728
70565754
                1344781
                                     3500000
                                    4500000
                 2123808
                                   5500000
                 2902835
                                     6500000
                3681862
                                                      00000
                                    7500000
8500000
                 4460889
                 5239916
                                     9500000
                6018943
10
                                   0500000
                1576668
                                     1500000
                                                      0.
                                     2500000
              1 2223114
                                     3500000
4500000
                2869560
                                                      0000
                3516005
                                     5500000
 6
                4162451
                                   7500000
7500000
8500000
               4808897
5455342
              1 6101788
 9
                                   79500000
10
```

FORCE SENSING LOCATIONS IN N2-DIRECTION
1 J x82(1,J) Y82(1,J) Z82(1,J)

UNAVAILABLE +STOP STOP 777

FIGURE 7.2-2. Output for POTGEM Test Case 2 (Concluded).

FIGURE 7.3-1. Cross Section of the NASA Ames 12.192 by 24.384 Meter Wind Tunnel Test Section.

```
2.
           TITLE
3,
           TEST CASE 3 . 40 X 80 WIND TUNNEL
4,
           SHIT
5,
            *INCRV1 IC#2, VAR2#6,096 SEND
6.
7.
           SKT1
           *INCRV1 IC#11, VAR2#-6.096 SEND
А,
9.
           DSEGMENTS
           "DATA NBPS=3, NSEGVT=3, NBPV=3, 10, 3 SEND
10.
11.
           VLAC
12.
           ADATA SEND
13.
           SLAC
           +DATA SEND
14,
15.
16.
            DATA VARZSVE-10. SEND
17.
           IDATA VARZSVEZO" REND
18
19.
          VL *DATA VARSSY*-6.096 SEND
20.
21.
          VU. ADATA VARZSVEO, SEND
22.
          PANE
23.
24
            DATA SEND
25.
          PAIR
26.
          5-11
           TINERVI ICHII, VARZ#6.096 SEND
27.
28.
          SEGMENT.
           IDATA NSEGVEZ SEND
29.
30.
          SLAC
31,
           IDATA SEND
32.
33.
           TDATA VARZSV==90, SEND
34.
           EDATA VARZSVE90. REND
35.
30.
          PAN
```

FIGURE 7.3-2. Input for POTGEM Test Case 3.

```
37.
           *DATA SEND
38.
           CARY
39
          SF GMENT
40.
           ADATA NSEGVES SEND
41.
           SIRC
            TDATA SEND
42,
43.
          *DATA VARZSV*0. SEND
44.
45.
           *DATA VARZSV=+6.096 SEND
46.
47.
          PANE
48.
           EDATA SEND
          NETT TOATA 12=15 SEND
49.
50,
51.
           NRT1
52,
           ADATA 1284 SEND
53.
          DSFI
54
55.
                   -1
-1
56.
               2
57.
               3
58.
                   -1
59,
60.
61.
          FINISH
           ADATA SEND
62.
          STORF
63.
           DATA IDES SEND
64.
65.
          PRINT
           ADATA PRINTELBAT SEND
66,
67.
          STOP
```

FIGURE 7.3-2. Input for POTGEM Test Case 3 (Concluded).

```
POTFAN GEOMETRY PROGRAM. VERSTON 1.3
TIME = 08/09/76
                      02:24:58
ENTER BATCH
+TITLE
TEST CASE 3 - 40 X 80 WIND TUNNEL
+SRI1
+CARY
+SRI1
+DSEGMENTS
+VLBc
+SLBC
+5L
+SU
+VL
+VU
+PANI
+POLR
+SRI1
+SEGMENT
+SLBC
+VL
+VU
+PANL
+CARY
+SEGMENT
+51 BC
+VL
+70
+PANL
+NRI1
+NRI1
+DSFL
+FINISH
```

FIGURE 7.3-3. Output for POTGEM Test Case 3.

```
+STORF
                           HAS BEEN OPENED FOR WRITING ON UNIT 1
FILE 3. GMUPNE/LIRS
CREATION TIME # 08/09/76
                           02125110
CREATION OF GEOMETRY FILE
TITLE . TEST CASE 3 . 40 X 80 WIND TUNNEL
(LOG) =
(INT) =
                                                                         1,0000000
                                                                                                0.
                                                                                                                        442,04416
(FLT) =
          937,93457
          .44204415E-01
+PRINT
PRINTOUT OF GEOMETRY FILE DATA
TITLE = TEST CASE 3 - 40 X 80 WIND TUNNEL
CREATION: TIME # 08/09/76
                             02:25:10
(IFORM) = 110111111
(ID) =
(LOG) =
        F F F F T F F F F
                 4 17
(INT) =
                                                                                             0'
            937 9345700
                                                                             1,0000000
(FLT) *
                               60442044
            442 0441690
PANEL CURNER POINTS
                            Y ( [ . J )
  1 :
            X(T,J)
                                           7(1.3)
                                                           SITIA
                                                                           V(T.J)
                                          -6 0960000
                                                                          -6,0960000
  1 1
          -10'0000000
                                                         -10,0000000
            -.0000001
                                           -6.0960000
                                                           _.0000001
                                                                          -6.0960000
          10'000000
                                                                          -6.0960000
     1
                                           -6.0960000
                                                          10,0000000
    1
           20,0000000
                                           -6.0960000
                                                          50,0000000
                                                                          -6.0960000
                              0320000
  1
     2
          -10.0000000
                                          -6,0960000
                                                         -10.0000000
                                                                          -4.0640000
  2
     2
                              0320000
            -.0000001
                                           _6.0960000
                                                           ...0000001
                                                                          -4.0640000
  3
     2
           10'0000000
                                           -6,0960000
                                                          10,0000000
                              0320000
                                                                          -4 0640000
     2
           50,0000000
                              0320000
                                          -6,0960000
                                                          20,0000000
                                                                          -4.0640000
  1
     3
          -10,0000000
                              0640000
                                           -6.0960000
                                                         -10,0000000
                                                                          -2.0320000
     3
  2
            -.0000001
                            4,0640000
                                           -6.0960000
                                                           -,0006001
                                                                          -5.0350000
           10,0000000
    3
                            4.0640000
                                           -6,0960000
                                                          10,0000000
                                                                          -2.0320000
```

FIGURE 7.3-3. Output for POTGEM Test Case 3 (Cont'd).

4 3 20'000000 4'064000 -6.0960000 -20.000000 1 4 -10.000000 6'0960000 -6.0960000 -10.000000 2 4 -000001 6'0960000 -6.0960000 -0000000 3 4 10'0000000 6'0960000 -6.0960000 20.0000000 4 20'0000000 7'9797674 -5.7976404 -10.0000000 2 5 -0000001 7'9797674 -5.7976404 -0000000 4 5 0000000 7'9797674 -5.7976404 20.000000 4 5 0000000 7'9797674 -5.7976404 20.000000 4 5 0000000 7'9797674 -5.7976404 20.000000 4 5 0000000 7'9797674 -5.7976404 20.0000000 4 5 0000000 7'9797674 -5.7976404 20.0000000 4 6 -0000000 7'9797674 -5.7976404 20.0000000 4 6 -0000000 7'9797674 -5.7976404 20.0000000 5 6 -0	-2.0320000 -90.0000000 -90.0000000
2 4	-90.0000000 -90.000000
3 4 1070000000 670960000 -6.0960000 10.0000000 4 2070000000 670960000 -6.0960000 20.0000000 1 5 -10.0000000 779797674 -5.7976404 -10.000000 2 5 -0000000 779797674 -5.7976404 10.0000000 4 5 207000000 779797674 -5.7976404 20.0000000 4 5 207000000 779797674 -5.7976404 20.0000000 1 6 -10.0000000 779797674 -5.7976404 20.0000000 2 6 -10.0000000 779797674 -5.7976404 20.0000000 3 6 10.0000000 976791390 -4.9317675 -10.0000000 4 6 -07000000 976791390 -4.9317675 10.0000000 1 7 -10.0000000 11/0277670 -3.5831389 -10.0000000 2 7 -0000000 11/0277670 -3.5831389 10.0000000 1 8 -10.0000000 11/8936400 -1.8837677 -10.00000000 <td< th=""><th>-90,0000000</th></td<>	-90,0000000
4 20'0000000 6'0960000 20.0000000 1 5 -10.0000000 7'9797674 -5.7976404 -10.000000 2 5 -0000001 7'9797674 -5.7976404 -0000001 3 5 10'0000000 7'9797674 -5.7976404 10.0000000 4 5 20'000000 7'9797674 -5.7976404 20.0000000 1 6 -10.0000000 9'6791390 -4.9317675 -10.000000 2 6 -0'000000 9'6791390 -4.9317675 10.0000000 3 6 10'0000000 9'6791390 -4.9317675 20.0000000 4 6 -0'0000000 11'0277670 -3.5831389 -10.0000000 2 7 -0000001 11'0277670 -3.5831389 10.0000000 4 7 -0'0000000 11'8936400 -1.8837677 -10.0000000 3 8 10'0000000 11'8936400 -1.8837677 20.0000000 4 8 20'0000000 12'1920000 -1.8837677 20.0000000 9 -1.8837677 </th <th></th>	
4 20'0000000 6'0960000 20.0000000 1 5 -10.0000000 7'9797674 -5.7976404 -10.000000 2 5 -0000001 7'9797674 -5.7976404 -0000001 3 5 10'0000000 7'9797674 -5.7976404 10.0000000 4 5 20'000000 7'9797674 -5.7976404 20.0000000 1 6 -10.0000000 9'6791390 -4.9317675 -10.000000 2 6 -0'000000 9'6791390 -4.9317675 10.0000000 3 6 10'0000000 9'6791390 -4.9317675 20.0000000 4 6 -0'0000000 11'0277670 -3.5831389 -10.0000000 2 7 -0000001 11'0277670 -3.5831389 10.0000000 4 7 -0'0000000 11'8936400 -1.8837677 -10.0000000 3 8 10'0000000 11'8936400 -1.8837677 20.0000000 4 8 20'0000000 12'1920000 -1.8837677 20.0000000 9 -1.8837677 </th <th></th>	
1 5	-90,0000000
2 5	-72,0000010
3 5 10,0000000 7,9797674 -5,7976404 10,0000000 4 5 20,0000000 7,9797674 -5,7976404 20,0000000 1 6 -10,0000000 9,6791390 -4,9317675 -10,000000 3 6 10,0000000 9,6791390 -4,9317675 -0,000000 4 6 -2,0000000 9,6791390 -4,9317675 20,0000000 1 7 -10,0000000 11,0277670 -3,5831389 -10,0000000 2 7 -,0000001 11,0277670 -3,5831389 -10,0000000 3 7 10,0000000 11,0277670 -3,5831389 10,0000000 4 7 -0,0000000 11,8936400 -1,8837677 -10,0000000 2 8 -0,000000 11,8936400 -1,8837677 10,0000000 4 8 -0,000000 12,1920000 -1,8837677 20,0000000 1 9 -10,000000 -1,8837677 20,0000000 1 9	-72,0000010
4 5 >0'0000000 7'9797674 =5.7976404 20.000000 1 6 -10'000000 9'6791390 -4.9317675 -10.000000 3 6 10'000000 9'6791390 -4.9317675 10.000000 4 6 -2'000000 9'6791390 -4.9317675 20.000000 1 7 -10.000000 11'0277670 -3.5831389 -10.000000 2 7 -,0000001 11'0277670 -3.5831389 -0000000 4 7 -00'000000 11'0277670 -3.5831389 10.0000000 4 7 -00'000000 11'0277670 -3.5831389 20.0000000 1 8 -10.0000000 11'8936400 -1.8837677 -10.0000000 2 8 -0000001 11'8936400 -1.8837677 -00000000 1 9 -10.0000000 12'1920000 -1.8837677 20.0000000 2 9 -0000001 12'1920000 -0000002 -10.000000	-72.0000010
1 6	-72.0000010
3 6 10'0000000 9'6791390 -4.9317675 10.0000000 1 7 -10.0000000 11'0277670 -3.5831389 -10.000000 2 7 -0000001 11'0277670 -3.5831389 -0000001 3 7 10'0000000 11'0277670 -3.5831389 10.0000000 4 7 40'0000000 11'0277670 -3.5831389 20.0000000 1 8 -10.0000000 11'8936400 -1.8837677 -10.0000000 2 8 0000001 11'8936400 -1.8837677 0000000 4 8 -0'0000000 11'8936400 -1.8837677 10.0000000 4 8 -0'0000000 11'8936400 -1.8837677 20.0000000 1 9 -10.0000000 12'1920000 0000002 -10.0000000 2 9 0000001 12'1920000 0000002 0000001	-54,0000010
3 6 10'0000000 9'6791390 -4.9317675 10.0000000 1 7 -10.0000000 11'0277670 -3.5831389 -10.000000 2 7 -0000001 11'0277670 -3.5831389 -0000001 3 7 10'0000000 11'0277670 -3.5831389 10.0000000 4 7 40'0000000 11'0277670 -3.5831389 20.0000000 1 8 -10.0000000 11'8936400 -1.8837677 -10.0000000 2 8 0000001 11'8936400 -1.8837677 0000000 4 8 -0'0000000 11'8936400 -1.8837677 10.0000000 4 8 -0'0000000 11'8936400 -1.8837677 20.0000000 1 9 -10.0000000 12'1920000 0000002 -10.0000000 2 9 0000001 12'1920000 0000002 0000001	-54,0000010
4 6	-54,0000010
2 7	-54 0000010
2 7	-36,0000010
4 7 do'0000000 11'0277670 _3.5831389 20.0000000 1 8 _10.0000000 11'8936400 _1.8837677 _10.0000000 2 8 _0000000 11'8936400 _1.8837677 _0000000 4 8 _20'0000000 11'8936400 _1.8837677 _20.0000000 1 9 _10.0000000 12',1920000 _0000002 _10.000000 2 9 _0000001 12',1920000 _0000002 _0000001	-36,0000010
4 7 do'0000000 11'0277670 _3.5831389 20.0000000 1 8 _10.0000000 11'8936400 _1.8837677 _10.0000000 2 8 _0000000 11'8936400 _1.8837677 _0000000 4 8 _20'0000000 11'8936400 _1.8837677 _20.0000000 1 9 _10.0000000 12',1920000 _0000002 _10.000000 2 9 _0000001 12',1920000 _0000002 _0000001	-36,0000010
1 8 =10.0000000 11'8936400 =1.8837677 =10.0000000	-36,0000010
3 8 10'0000000 11'8936400	-18,0000010
3 8 10'0000000 11'8936400	-18.0000010
4 8 20'000000 11'8936400 1.8837677 20.0000000 1 9 -10.0000000 12'19200000000002 -10.0000000 2 90000001 12'192000000000020000001	-18,0000010
1 9 -10,0000000 12,1920000 -,0000002 -10,00000000 2 9 -,0000001 12,1920000 -,0000002 -,0000001	-18,0000010
2 9 - 0000001 12 1920000 - 0000002 - 0000001	-,0000014
3 9 10 0000000 12 1920000000002 10 0000000	0000014
	0000014
~4	0000014
1 10 -10,0000000 11,8936410 1,8837673 -10,0000000	17,9999980
2 100000001 11 8936410 1 88376730000001	17,9999980
3 10 10 0000000 11 8936410 1 8837673 10 0000000	17,9999980
4 10 20 0000000 11 8036410 1 8037673 20 0000000	17,9999980
1 11 -10,000000 11,0277680 3,5831386 -10,0000000	35 9999980
2 11 - 0000001 11 0277680 3 58313860000001	35,9999980
3 11 10,0000000 11,0277680 3,5831386 10,0000000	35,9999980
4 11 20 0000000 11 0277680 3 5831386 20 0000000	35,9999980
1 1210_0000000 9 6791390 4 931767310,0000000	53,9999970
2 120000001 9 6791390 4.93176730000001	53 9999970
3 12 10 0000000 9 6791390 4 9317673 10 0000000	53,9999970
4 12 20,000000 9,6791390 4,9317673 20,0000000	53 9999970
1 13 -10,0000000 7,9797679 5,7976403 -10,0000000	71,9999970
2 13 - 0000001 7 9797679 5 7976403 - 0000001	71.9999970
3 13 10 000000 7 9797679 5 7976403 10 0000000	71.9999970
4 13 20,0000000 7,9797679 5,7976403 20,0000000	71,9999970

FIGURE 7.3-3. Output for POTGEM Test Case 3 (Cont'd).

```
6,0960000
  1 14
          -10,0000000
                             6 0960000
                                                           -10,0000000
                                                                            0.
                                            6,0960000
                               0960000
  2 14
             -.0000001
                                                            -.0000001
  3 14
                                                                             0.
           10'0000000
                               0960000
                                                           10.0000000
                                            6 0960000
                                                           00000000
  4 14
           20'0000000
                               0960000
                                                                           -2.0319999
  1 . 15
          -10.0000000
                               0640000
                                            6 0960000
                                                           -10.0000000
                                                                            -2.0319999
  2 15
            -.0000001
                               0640000
                                             6,0960000
                                                            ..0000001
  3 15
                                             6 0960000
                               0640000
                                                                            -2.0319999
           10'0000000
                                                           10,0000000
                                            6 0960000
           20,0000000
  4 15
                               0640000
                                                           20,0000000
                                                                            -2.0319999
                                                          -10.0000000
  1 16
          -10.0000000
                               0320001
                                             6.0960000
                                                                            -4.0639999
  2 16
                             2'0320001
                                             6,0960000
                                                                            -4.0639999
             -.0000001
                                                             __,0000001
  3 16
                              1000520
                                             6 0960000
                                                           10.0000000
                                                                            -4,0639999
           10'0000000
  4 16
                                             6 0960000
                               0320001
                                                           20,0000000
                                                                            -4.0639999
           20'0000000
          -10,0000000
                                             6,0960000
                                                           -10,0000000
                                                                            -6.0960000
  1 17
            -,0000001
                            0
  2. 17
                                            6,0960000
                                                            -,0000001
                                                                            -6.0960000
                                                                            -6,0960000
  3 17
           10'0000000
                                                           10.0000000
                            o'
                                                                            -6,0960000
                                             6 0960000
  4 17
           20,0000000
                                                           20,0000000
UNIT VECTORS ALONG WAKE ELEMENTS
                                           UVWZ (I,J)
                           UVWY(I,J)
           UVWX(IcJ)
UNAVAILABLE
BOUNDARY CONDITION FLAGS
  I J BCFLAG(I,J)
UNAVAILABLE
DOUBLET SINGULARITY FLAGS
        DSFLAG(I,J)
     1
             2
  2
     1
             2
  3
     1
     2
             2
  2
     5
             7
  3
     2
     3
             ۶
  5
     3
             ۶
  3
     3
```

FIGURE 7.3-3. Output for POTGEM Test Case 3 (Cont'd).

```
1 10
2 10
3 10
2 11
3 11
12
12
13
12
13
13
14
14
15
15
16
16
16
```

FIGURE 7.3-3. Output for POTGEM Test Case 3 (Cont'd).

UNAVAILABLE

BOU	NDARY	CONDITION POINT	S			
1	j	YBC(1,J)	YRC(I,J)	ZBC(I,J)	SBC(I,J)	VRC(I,J)
1	1	5.0000000	1,0160000	_6.0960000	.S.0000000	-5.0799999
2	i	5'0000000	1,0160000	-6.0960000	5,0000000	-5 0799999
3	1	15 0000000	1,0160000	_6.0960000	15,0000000	5 0799999
1	2	5.0000000	3.0480000	6.0960000	-5.0000000	-3.0480000
7.	2	5,0000000	3 0480000	6.0960000	5,0000000	-3,0480000
3	5	15 0000000	3,0480000	_6.0960000	15,0000000	-3,0480000
1	3	5,0000000	5 0799999	_6.0960000	-5,0000000	-1.0160001
2	3	5 0000000	5 079999	_6.0960000	5,0000000	-1.0160001
3	3	15,0000000	5 0799999	_6.0960000	15,0000000	-1 0160001
1	4	_5.0000000	7 0496244	-6.0209481	-5,0000000	-81 0000010
: 5	4	5,0000000	7,0496244	-6,0209481	5.0000000	-81 0000010
3	4	15 0000000	7,0496244	_6.0209481	15,0000000	#81 0000010
. 1	5	_5,0000000	8 8635260	_5,4315757	-5.0000000	-63,0000010
2	5	5 0000000	8,8635260	.5,4315757	5.0000000	-63,0000010
3	5	15,0000000	8 8635260	.5,4315757	15,0000000	-63,0000010
1	6	5,0000000	10,4065230	_4,3105229	-5,0000000	-45,0000010
5	6	5,0000000	10,4065230	4.3105229	5,0000000	-45,0000010
- 3	6	15,0000000	10,4065230	4.3105229	15,0000000	-45.0000010
1	7	5,0000000	11,5275760	.2.7675262	-5,0000000	-27,0000010
2	7.	5'0000000	11,5275760	_2,7675262	5,0000000	-27,0000010
- 3	7	15,0000000	11,5275760	_2,7675262	15,0000000	-27.0000010
1	8	_5,0000000	12,1169480	_,9536245	-5.0000000	-9,0000000
2	8	5,0000000	12,1169480	- 9576245	5,0000000	-9.0000000
3	8	15,0000000	12,1169480	-,9536245	15,0000000	-9,0000000
1	9	5,0000000	12,1169480	9536241	-5,0000000	8,9999970
. 2	9	5,0000000	12,1169480	9536241	5,0000000	8,9999970
3	9	15,0000000	12,1169480	9536241	15,0000000	8 9999970
. 1	10	_5,0000000	11,5275760	2,7675257	-5,0000000	26,9999970
S	10	5,0000000	11,5275760	2,7675257	5,0000000	26,9999970
3	10	15'0000000	11,5275760	2 7675257	15,0000000	26,9999970
1	11	.5,0000000	10,4065230	4,3105226	-5,0000000	44,9999970
5	11	5,0000000	10,4065230	4,3105226	5,0000000	44 9999970
3	11	15'0000000	10 4065230	4,3105226	15,0000000	44 9999970

FIGURE 7.3-3. Output for POTGEM Test Case 3 (Cont'd).

	E 000000	8'8635260	5 4315755	-5.0000000	62,9999970
1 12	-5,0000000 5'0000000	8 8635260	5,4315755	5,0000000	62,9999970
2 12 3 12	15,0000000	8 8635260	5 4315755	15,0000000	62.9999970
1 13	-5.0000000	7 0496248	6,0209480	-5.0000000	80 9999970
2 13	5,000000	7 0496248	6 0209480	5,0000000	80,9999970
3 13	15,0000000	7 0496248	6 0209480	15 0000000	80 9999970
1 14	5.0000000	5 0800000	6.0960000	5.0000000	-1.0160000
2 14	5,0000000	5'0800000	6 0960000	5,0000000	-1 0160000
3 14	15,0000000	5'0800000	6 0960000	15,0000000	-1_0160000
1 15	5 000000	3 0480000	6 0960000	-5.0000000	-3.0480000
2 15	5,0000000 5,0000000	3 0480000	6 0960000	5,0000000	-3,0480000
3 15	15 0000000	3'0480000	6 0960000	15,0000000	-3,0480000
1 16	_5_0000000	1 0160001	6.0960000	-5.0000000	-5.0799999
5 16	5,0000000	1 0160001	6 0960000	5,0000000	- 5,0799999
3 16	15,0000000	1 0160001	6,0960000	15,0000000	-5.0799999
	15.000000			<u>.</u>	
UNIT NOR	MALS AND AREAS			Deat Is	
I J	(L.E) XNI)	UNY (I,J)	UNZ(I,J)	DA(1,J)	
1 1	0	0,	1,0000000	20,3200000	
5 1	o'	0,	1,0000000	20,3200000	
3 1	o',	υ,	1,0000000	20,320000	
1 5	0,	0,	1,0000000	20,3199990	
5 5	o ,	0,	1,0000000	20,3200000	
3 2	o',	0	1,0000000	20,3200000	
1 3	0,	0,	1,0000000	50,3200000	
2 3	0,	0	1,0000000	20,3200010	
3 3	0,	0.	1,0000000 9876947	19'072//880	
1 4	0,	1563943	9876947	19,0724880 19,0724880	
2 4	0,	1563943	9876947	19,0724880	
3 4		1563943	8910395	19:0724900	
1 5	0,	-,4539258	8910395	19,0724900	
2 5	0,	4539258	8910395	AAPRETA TOL	
3 5	•	4539258		19,0724880	
1 6	0,	7071068	7071068 7071068	10 0724880	
5 6	0	7071068	7071068	19 0724880	
3 6	ν,	w.7071068	4538691	19,0724890 19,0724890 19,0724890 19,0724900	
1 7	0,	8910684	4538691	10,0154800	
2 7	0,	8910684	4538691	19 0724900	
3 7	0′,	8910684	1563186	19,0724890	
1 8	0.	9877067	1202100	14.015-010	

FIGURE 7.3-3. Output for POTGEM Test Case 3 (Cont'd).

```
19,0724890
 2 B
            0,
                             -. 9877067
                                               1563186
                                             1563186
                                                            19,0724900
                             -. 9877067
 3
    8
            0"
                                             ...1563132
                             _.9877075
 1
     9
            0'
                                                            19 0724880
                                             -, 1563132
 5
     9
                             -. 9877075
            0
                                             -,1563132
                                                            19,0724880
                             .,9877076
 3
     9
            0
                                             4538691
                                                            19 0724890
                             ...8910684
 1 10
            0
                                             .. 4538691
                                                            19 0724890
                             ...8910684
  2 10
                                             ...4538691
                                                            19,0724900
                             __8910684
 3 10
            0'
                                             ...7068265
                                                            19'0724880
                             ...7073870
 1 11
            0
                                             -,7068265
                                                            19,0724880
                             .. 7073870
  2 11
            0,
                                             -,7068265
                                                            1910724890
 3 11
                             -.7073870
                             .,4539216
                                             -.8910416
                                                            19,0724890
  1 12
            0,00
                                                             19 0724890
                                             -.8910416
                             -,4539216
  51 5
                                             -.8910416
                                                             19 0724900
                             -,4539216
  3 12
                                             -,9876947
                                                             19.0724940
                             -, 1563943
  1 13
                                             -. 9876947
                                                             19,0724940
                             .. 1563943
  5 13
            0
                             ., 1563943
                                                             19 0724940
                                             __9876947
  3 13
            ő.
                                                             20 3199990
                                            _1.0000000
  1 14
            0.
                                                             20 3199990
  2 14
                                            _1,0000000
            o r
                                                             20,3200000
                                            _1.0000000
  3 14
                                                             20,3199990
            0
                                            -1.0000000
  1 15
            ŏ*
                                                             20[3199990
                                            _1,0000000
  2 15
            07
                                                             20 3200000
                                            _1,0000000
  3 15
            0
                                                             50,3500000
                                            _1,0000000
  1 16
                                                            20,3200000
            0,
                                            -1,0000000
  2 16
                                                             20,3200010
                                            -1.0000000
  3 16
NTOP VECTORS
                           NTOPY(1,J)
                                           NTOPZ(T,J)
  T J
           NTOPX(T,J)
UNAVAILABLE
NBOT VECTORS
                           NAOTY(I,J)
                                           NAOTZ(I,J)
```

UNAVAILABLE

VELOCITY ALONG NTOP VECTORS

N. OTX(I,J)

FIGURE 7.3-3. Output for POTGEM Test Case 3 (Cont'd).

I J 010P(1,J)

UNAVAILABLE

VELOCITY LONG NBOT VECTORS

I J OBOT(1,J)

OBIGINAL PAGE IS

UNAVATLABLE

CORNE 1 1 2 3 4	R POINTS ALD XVLr(I) -10,00000 -,00000 10'00000 20'00000	VL AND VU YVLC(I) 0. 0. 0.	ZVLC(I) =6.09600 =6.09600 =6.09600 =6.09600	SVLC(I) -10.00000 00000 10.00000 20.00000	VVLC(I) =6,09600 =6,09600 =6,09600	XVUCTI) -10,00000 -,00000 10,00000 20,00000	YVUC (0. 0. 0.		7VUC(I) 6,09600 6,09600 6,09600 6,09600	5VUC(I) -10,00000 -,00000 10,00000 20,00000	VVUC(1) =6.09600 =6.09600
BOUNT	ARY POINTS A	LING VL AND	VU EDGES								
. 1	XVLa(1) Y	VLB(I) ZVL	8(1) SVL8(1		XVUB(1)	YVUB(I)	ZVUB(1)	SVUBCI			SPANI(I)
1	-5,000		,096 -5,00		-5,000	0,	6,096	-5.00			0.
5	5/000		5,00		5,000	0,	6,096	5.00			0.
3	15'000	0, •6	0,096 15,00	-6,096	15,000	0	6.096	15,00	0 -6,0	96 0,	0 .
			. EDFEA								
COKN	R POINTS ALO		EDGES	991-271	VSLc(1)	XSUC(I)	YSUCC	1.1	ZSUC(1)	ssuc(1)	VSUC(1)
# 1	XSLr(I)	YSLC(I)	ZSLC(I)	\$\$LC(1) -10.00000	_6.09600	50,0000	0.		6.09600	00000	-6,09600
	-10.00000	0. 2.03200	-6.09600 -6.09600	-10.00000	_4.06400	20'00000	2,032		6.09600	20.00000	-4.06400
7.	-10,00000	4.06400	-6,09600	10.00000	2.03200	20,00000	4.064		6.09600	20.00000	-2.03200
и.	-10.00000 -10.00000	6.09600	-6.09600	-10.00000	-90.00000	20,00000	6,096		6,09600	20.00000	-90,00000
· 🐔	-10,00000	1,97977	5,79764	-10.00000	172,00000	20,00000	7,979	77 -	5.79764	20.00000	-72.00000
Á	-10.00000	9.67914	-4.93177	-10.00000	-54,00000	20,00000	9,679	14 -	4,93177	20,00000	-54,00000
7	-10.00000	11.02777	-3.58314	-10.00000	-36.00000	20,00000	11,027		3.58314	20.00000	-56,00000
8	-10,00000	11.89364	-1.88377	-10.00000	-18,00000	20,00000	11,893	64 -	1.88377	20,00000	-18,00000
•	-10,00000	12,19200	00000	-10.00000	00000	50,00000	12,192		00000	20,00000	-,00000
10	-10.00000	11 89364	1.88377	-10,00000	18,00000	20,00000	11 893		1 88377	20,00000	18,00000
11	-10.00000	11.02777	3.58314	-10,00000	36,00000	20,00000	11,027	77.	3.58314	20,00000	36,00000
is	-10.00000	9 67914	4.93177	-10.00000	54 00000	20,00000	9 679	14	4 93177	20 00000	54,00000
13	-10,00000	7 97977	5.79764	-10.00000	72 00000	20,00000		77	5.79764	20.00000	72,00000

FIGURE 7.3-3. Output for POTGEM Test Case 3 (Cont'd).

14 15 16	-10.00000 -10.00000 -10.00000	4,06 2,03	400 6.0 200 6.0	9600 -10 9600 -1	0.0000 0.0000 0.0000	0'. 2:03200 4:06400	50,00000 50,00000 50,00000	6.096 4.064 2.032	00 6	09600 09600	50.0000 50.0000 50.0000	0. -2.03200 -4.06400
17	-10,00000	0.	.	09600 -1	0,00000	<u>.6</u> ,09600	50,00000	0.	٠.	09600	20,00000	-6 ,09600
BOUN	DARY POINTS	ALONG SL	AND SU EDO	ES								
I	YSLn(1)	YSLB(1)	ZSLB(I)	SSLB(1)	VSLB(I)	XSUB(1)	YSUB(I)	78UB(1)	SSUB(I)	VSUB(I)		SPANZ(1)
1	-10,000	1.016	-6,096	-10,000	-5,080	20,000	1,016	-6.096	20.000	-5,080	0.	0
2	-10,000	3.048	-6.096	-10.000	-3.048	20,000	3 048	-6.096	20,000	_3,048		0.
3	-10.000	5,080	-6.096	-10.000	-1.016	20,000	5 080	-6.096	20,000	-1.016	0.	0
4	-10'000	7.050	-6.021	-10,000	-81 000	50,000	7,050	-6.021	20,000	-R1.000	0	0
5	-10.000	8.864	-5.432	10.000	-63,000	20,000	8 864	-5.432	20.000	-63,000	0.	0.
6	-10,000	10.407	-4.311	-10,000	-45.000	20,000	10 407	-4.311	20,000	-45,000		0
7	-10.000	11,528	-2.768	-10.000	-27,000	20,000	11,528	-2.768	20,000	-27,000		0
8	-10.000	12,117	95/	-10.000	-9.000	20,000	12,117	954	20.000	-9,000		0 _
9	-10.000	12, 117	954	-10,000	9.000	50,000	12,117	954	20,000	9,000		0 .
10	-10.000	11,528	2.768	-10.000	27,000	20,000	11,528	2,768	20,000	27,000		0 -
11	-10,000	10,407	4.311	-10,000	45,000	20,000	10,407	4.311	20,000	45,000		0.
12	-10,000	8 864	5,432	-10.000	63,000	20,000	8 864	5 432	20.000	63,000		0
13	-10,000	7.050	6.021	-10.000	81,000	20,000	7,050	6,021	20,000	81,000		· 0.*
14	-10,000	5.080	6.096		1,016	50,000	5,080	6 096	20.000	-1.016		ň.
15	-10.000	3.048	6.096	-10.000 -10.000	-3.048	20,000	3,048	6,096	20.000	3,048		ň.
		3,070	6 076		-5.080		1 016	6 096	20,000	5.080		ň.
16	-10,000	1.016	6.096	-10,000	#3.000	50.000	1,016	0,070	E4 6000	● 2 • 000	0.	•

FORCE SENSING LOCATIONS IN NI-DIRECTION

I J XS1(1,J) Y81(1,J) Z81(1,J)

UNAVAILABLE

FORCE SENSING LOCATIONS IN N2-DIRECTION

1 J ×82(1,J) YS2(1,J) ZS2(1,J)

UNAVAILABLE +STOP STOP 777

FIGURE 7.3-3. Output for POTEGM Test Case 3 (Concluded).

NASA AMES 40X80 TUNNEL

FIGURE 7.3-4(a). Top View of POTGEM Test Case 3.

FIGURE 7.3-4(b). Front View of POTGEM Test Case 3.

Figures-60

Figures-61

TRUE

THIS IS A PLOTGM RUN TO PLOT AN X-Y VIEW, Y-Z VIEW, AND OBLIQUE VIEW OF A SAMPLE PANELLING APRANGEMENT ON THE NASA AMES 12.2 M. BY 24.2 M. (40X80) WIND TUNNEL. THE PANEL ARRANGEMENT TO BE PLOTTED IS THAT PPODUCED BY POTGEM TEST CASE 3 AS DESCRIBED IN NASA TM-X 73,127, "NASA AMES POTENTIAL FLOW ANALYSIS (POTGEM) GEOMETRY PROGRAM (POTGEM). VERSION 1."

READ IN THE GEOMETRY FILE READ

. 3

INITIALIZE THE PLOTTER FOR AN OFFLINE PLOT AT 15 CHARACTERS PER SECOND.

THE PLOTTER DIRECTIVES WILL BE STORED ON FILE 3.PT FOR LATER PLOTTING. THE FILE WILL BE CREATED BY WRITES TO UNIT 8. IPLOT

15 3 8

PLOT THE PLAN VIEW (X-Y VIEW) 10 CM. TO THE RIGHT AND 10 CM. ABOVE THE CURRENT PEN LOCATION.

PL OT

\$DATA YOFF=10, XOFF=10, XSCALE=1.0, YSCALE=1.0 \$END NOW PLOT THE CONTROL POINTS. THESE WILL SHOW UP AS DOTS.

PBCP

FIGURE 7.3-5. PLOTGM Input That Generated Figure 7.3-4.

```
WAKES
 $DATA WAKECM=5.0, ARRWCM=.75 $END
    ENTER TITLE AND PLOT IT.
RTITLE
NASA AMES 40X80 TUNNEL
PTITLE
 $DATA XTITLE=10, YTITLE=5, HEIGHT=.762 $END
    NOW PLOT THE FRONT VIEW (Y-Z VIEW).
PAGE
YZVIEW
PLOT
 $DATA $END
PBCP
    FINALLY, PLOT AN OBLIQUE VIEW OF THE TUNNEL.
PAGE
OBVIEW
PL OT
 $DATA $END
PBCP
WA KES
 $DATA $END
ST OP
```

FIGURE 7.3-5. PLOTGM Input That Generated Figure 7.3-4 (Concluded).

FIGURE 7.4-1. The Thin, Swept, Uncambered, Untwisted Wing with Dihedral Used for Test Case 4.

FIGURE 7.4-2. Rotation and Selection of S and V for Test Case No. 4.

Figures-65

FIGURE 7.4-3. Vortex Singularity Model and Doublet Singularity Flags for Test Case 4.

```
2.
           TITLE
3,
           TEST CASE 4 -- THIN, SWEPT, UNCAMBERED, UNTWISTED WING WITH DIHEDRAL
           SPTI
            *INCRV1 ICE!, COPTES SEND
7.
8
            +INCRVI IC=11, COPTEO, SCSEO. SEND
10.
            INCRVI ICE12, NTABEL, VAR2(1)E0.5, COPTEL, SCSEZ SEND
11.
           DIEGHENTS
12.
            TDATA NEPS(1)=2, NEPV(1)=2 SEND
           VLBC
14.
15.
            +DATA SEND
           SURC
16,
            TOATA TOPTES SEND
17,
           SE TOATA INPISVED SEND
19,
            *DATA TOPTSV#1, NTABSV#1, VAR2SV(1)#2 SEND
21.
22.
23.
24.
            TOATA NTARSVEZ, VARISV(1)=0,2, VARZSV(1)=0,0,5 SEND
           VIL TOATA VARESV(1)=2,1.5 SEND
25.
26.
27.
           GRID
           PANI
            DATA RSINT, RSZET SEND
28,
29,
30,
            *DATA EAXIS(1)=0,0,=1,PHI=90 SEND
           Ross
31.
            YDATA EAXIS(1)=0,1,0,PHI=45 SEND
32.
           DEFL
33,
                     2
34.
35.
36.
               5
```

FIGURE 7.4-4. Input for POTGEM Test Case 4.

```
37, 2
38, 6
39, 2
40, 2
41, 12
42, 0
43, FINISH
44, DATA LOG(13)=T,INT(10)=1,FLT(5)=1,0,0,FLT(1)=3 gEND
45, STORE
46, DATA ID=4 gEND
47, PRINT
48, SDATA PRINT(1)=18+T SEND
49, STOP
```

FIGURE 7.4-4. Input for POTGEM Test Case 4 (Concluded).

```
POTFAN GEOMETRY PROGRAM. VERSION 1 3
TIME = 08/04/76
                   07134124
ENTER BATCH
FTTTE
TEST CASE 4 - THIN, SWEPT, UNCAMBERFO, UNTWISTED WING WITH DIHEDRAL
+CARY
+SRI1
+5R11
+SRI1
+DSEGMENTS
*VLEC
+SLAC
+SL
+511
+ VI:
+VU
+GHID
NSEGS = . .
               NSEGV # 1
                               NBPS(NSEGS) = 2
                                                     NUPVINSEGV) = 2
XGPVLC *
-1.0000 6.
                 1,0000
XGPVIIC #
                 1.0000
-1.0000 5.
XGPVIR =
          ...000
-,5000
XGPVIIB #
-.5000
          ,5000
```

FIGURE 7.4-5. Output for POTGEM Test Case 4.

```
XGPSLC .
 -. 7500
         .2500 1.0000
KGPSHC +
 -,7500
          2500 1,0000
XGPS(+) =
 -.2500
          . 1500
XGPSHF . #
 -.2500
         . 7500
+PANI
+R055
+ROSS
+DSF1
+FINISH
+STURE
FILE GLEMAPSCALINA
                         HAS BEEN OPENED FOR WRITING ON UNIT 1
CHEATION TIME # 00/09/76
                           07134124
UNIT TEMPTILED AND RELEASED
CREATION OF GEOMETRY FILE
TITLE : TEST CASE 4 -- THIN, SWEPT, UNCAMBERED, UNTWISTED WIND WITH DIBEDRAL
(LOG) = FEFFIFFFFFFFFFTFTT
THI)
         n 5
                       . 5
                               5
(Fit) =
         3,0000000
                        5,0000000
                                      1 0606601
                                                     5,0000000
                                                                    1,0000000
                                                                                         0.
                                                                                                       0
                                                                                                               86.602540
         .46602540F-02
+PHINT
PRINTOUT OF GEOMETRY FILE DATA
TITLE - TEST CASE 4 -- THIM, SWEPT, UNCAMBERED, UNTWISTED WING WITH DINEDRAL
CREATION TIFF # 08/09/76
                           07:34:24
(IFGPM) = 11011111111
(II) ==
```

FIGURE 7.4-5. Output for POTGEM Test Case 4 (Cont'd).

O.

```
(INT) E
                                                  0
                                                                  9
                                                             1
                                               1,0606601
                               2,0000000
                                                                                               0".
(FL1) =
               3,0000000
                                                               2.0000000
                                                                               1,0000000
              86,6025400
                                0086603
                                               0
PANEL CURHER POINTS
  1
     J
             KIT, J.
                             (L.TIY
                                             211.33
                                                             5(1.3)
                                                                             V(T,J)
             1767767
                                             a. 1767767
  1
                             ...0000000
                                                             0,
                                                                               .2500000
  چ
                                                                              4375000
                             1,0000000
                                             -,1325825
                                                             1 0000000
             77954751
  3
                                                             5,0000000
                                                                               6250000
                             2,0000000
                                             -. 0883883
             7,8838835
     5
                                             ...8838835
                                                                              1,2500000
                             -.0000000
             1 0164660
  5
     5
                             1,0000000
                                             -.6629126
                                                             1.0000000
                                                                              1_1875000
  3
             1 1490485
                                             -,4419417
                                                             2,0000000
     .2
                             2 0000000
                                                                             1,1250000
             1/4142135
  1
     3
                             -.0000000
                                            -1.4142135
                                                                             2,0000000
             1 4142135
  2
     3
                                            500000.1.
                                                               0000000
                                                                             1,7500000
                             1,0000000
  5
             1,4142135
                                                             8.0000000
                                                                             1,5000000
                             5,0000000
                                             -. 7071068
UNIT VECTORS ALONG WARF ELEMENTS
                           (L.I)YWYIE
            (L.T.XWV.
                                            HVWZ(T.J)
UNAVATEABLE
BOUNDARY CONDITION FLAGS
 I J BOFFAG(E,J)
UNAVAILABLE
DOUBLET SINGULARITY FLAGS
 I
        DSFLAG(1,J)
  1
  2
  1
     2
     5
             12
```

FIGURE 7.4-5. Output for POTGEM Test Case 4 (Cont'd).

UNAVATEABLE

UNAVAILABLE

```
BOUNDARY COMDITION POINTS
  1
           ARCET, J)
                          VHC(T,J)
                                          JBC(T,J)
                                                         SHC(T,J)
                                                                         VRC(I,J)
  1
              6408155
                              5000000
                                           -.4640388
                                                                           7812500
                                                             5000000
             TH617864
  5
                                           ... 3314563
                            1,5000000
                                                           1,5000000
                                                                           8437500
            1 2595339
  1
    - 5
                              5000000
                                          -1.0827572
                                                            5000000
                                                                          1.6562500
            1 3037281
                                                                          1,4687500
                            1.5000000
                                           -. 7733980
                                                          1,5000000
UNIT NORMALS AND AREAS
           HNXIT, JY
    J
                          UNYITADE
                                          BN7/1/31
                                                         CLILIAG
                             2425356
            -. 6859944
                                          ·* . 6859943
                                                            401454
                            ,2425356
                                                           6442352
            - 6854943
                                         . - 6859943
                             2425356
                                                           6764470
     5
            - 6H59943
                                           -.6859943
  5 5
            - 6859945
                             2425356
                                           ...6859943
                                                            4831764
NTOP. VECTORS
 t J
          NTOPX(T,J)
                         NTOPY(1.J)
                                         NIOPTITIJI
UNAVAILARIE
NBOT VECTORS
  I J NOTIX(I,J)
                         NROTY(I,J)
                                         NAOTZ(I,J)
UNAVAILABLE
VELOCITY ... LUNG NTOP VECTORS
 1 J
          OTOP(T,J)
```

FIGURE 7.4-5. Output for POTGEM Test Case 4 (Cont'd).

VELOCITY (LONG NRUT VECTORS I J UROT(1/J)

UNAVAILABLE

CORNER 1 1 2 3	POINTS A XVLCTII 0' 135355 170711	YVLC(I) 0. 1.00000	7VLr(I)	SVLC(11) 0 1,00000 2,00000	VVLc(1) 0. 	XVIIC(1) 1.01421 1.41421 1.41421	00000.5 00000.5 1-00000.5	-1.41421	SVUC(1) 0. 1.00000 2.00000	VVIIC(1) 2,00000 1,75000 1,50000
A GUNDB 1 2	RY FOINTS XVE: (1) 1177 2540	YVI P(I) ZV	VI: EDGES 1B(1) SVLR(1) .000		xviiq(1) 1 414 1 414	YVIIB (1) 500 1,500	2VIN(1) S +1,237 -,884	VUR(1) VVUR(1) ,500 1,875 1,500 1,625	1.237	SPAN1(1) 1,000 1,000
CORNER 1 2 3	POINTS A XNI-(17) (17678 (88388 1741421	YS((11) 00000 00000	U FDGES 78 rr1)1767888388 -1.41421	551 r(1) 0. 0.	VS[C111 25000 1,25000 2,00000	XSUC(1) 79550 14905 14421	2,00000	08839 44194	5.00000 5.00000 5.00000 5.00000	VSUF(1) 62500 1,12500 1,50000
	RY POINTS XSL.(1) 5:0 1,257	YSLA(1) 7S	SU EDGES LE(1) SSLE(1) -,530 0, 1,237 0.	VSLR(1) 750 1.750	×8UH(1) 972 1,324	Y5UR(1) 2,000 2,000	75Uk([] S 265 619	SUR(I) VSUR(I) 2,000 875 2,000 1,375	5,000	SPAN2(1) 707 530

FORCE SENSING LOCATIONS IN NI-DIRECTION

			# 1	
7	J 15	1(1,1)	Y\$111,J)	15111131
1	i	3314563	5000000	-,1546796
چ	1	6008155	1 5000000	-,1104854
1	2	9501747	5000000	-,7733980
ج	2 1	0827572	1,5000000	-,5524272

FIGURE 7.4-5. Output for POTGEM Test Case 4 (Cont'd).

```
-1.2374368
-.8838835
                1'4142135
                                    5000000
1,5000000
  2 3
FORCE SENSING LOCATIONS IN NZ-DIRECTION
              YS2(7.J)
                                   YS2(1,J)
                                                       252(1,3)
                 75303301
7513009
9722718
                                    -.0000000
                                                        -,5303301
      1
                                    0000000
                                                        -, 3977476
                                                        -,2651650
                1,2374368
1,2816310
1,3258252
                                    -.0000000
1,0000000
2,0000000
                                                       -1.237436H
      2
                                                        -. 9280776
      2
                                                        -.6187184
  3
      5
+STAP
 STOP 777
```

FIGURE 7.4-5. Output for POTGEM Test Case 4 (Concluded).

FIGURE 7.4-6(a). Top View of POTGEM Test Case 4.
Figures-75

FIGURE 7.4-6(b). Front View of POTCEM Test Case 4.

Figures-76

FIGURE 7.4-6(c). Side View of POTGEM Test Case 4.
Figures-77

FIGURE 7.5-1. S and V Variables for Test Case 4.

Figures-78

```
ORIGINAL' PAGE IS
```

```
1.
ź.
          TITIF
           TEST CASE 5 -- SPHERE WITH S THE CIRCUMPERENTIAL VARIABLE
4.
5.
           SKT
            *INCRV1 1C#1, COPT#0 SEND
6.
           SRIT
            "INCRV! IC#4, COPT#3 SEND
           SHTI
            INCRVI ICES, COPTED SEND
10.
           SPIT
11.
12.
            =INCRV1 IC=6, COPT=4, VAR2(1)=1 SEND
           SFIL
23.
            INCRVI ICE11 SEND
14.
           DISEGMENTS
15.
            "DATA NBPS(1) #5, NBPV(1) #10 SEND
16.
           VLBC
17.
            EDATA SEND
18.
           SLBC
19,
            IDATA TOPTES KEND
20.
21.
            ADATA IOPTSVED SEND
22.
           ٧L
23.
           ADATA SEND
24.
25,
           +DATA IOPTSV=1,NTABSV=1,VARZSV(1)=90 SEND
26,
           HDATA VARZSV(1)=180 SEND
27.
28.
          PAN
           «DATA SEND
29,
30,
31.
           SDATA EAXIS(1)=0,0,1,PHI=90 SEND
32.
          DSFL
33.
34.
35.
             19
36.
                    5
```

FIGURE 7.5-2. Input for POTGEM Test Case 5.

```
37. 10
38. 27
39. 0
40. FINISH
41. +DATA FLT(1)=3.1415927,3±1,LQG(12)=T,INT(10)=1,1 SEND
42. SIORF
43. +DATA ID=5 SEND
44. PRINT
45. +DATA PRINT(1)=18±1 SEND
46. SIOP
```

FIGURE 7.5-2. Input for POTGEM Test Case 5 (Concluded).

```
POTFAN GEUMFTRY PROGRAM, VERSION 1.3
TIME = 08,09/76
                 07134157
FNTER BATCH
+TITLE
TEST CASE S -- SPHERE WITH S THE CIRCUMPERENTIAL VARIABLE
+SKIT
+5H11
+SR11
+SRT1
+SRT1
+DSEGMENTS
+VIBC
+SLHC
+51
+ V1;
+5U
+ VIII
4PANI
+Rnss
+pSFI
*FINISH
+STOPE
                        HAS BEEN OPPNED FOR WRITING ON UNIT :
FILE 5.6MmPHC/LIBS
CREATION IT E # 08/09/76
                         07:34:59
CREATION HE GEOMETRY FILE
TITLE # 165T CASE & .. SPHERE WITH S THE CINCEMPERENTIAL VARIABLE
FIGURE 7.5-3. Output for POTGEM Test Case 5.
```

```
3.1415927
                          1,0000000
                                           1.0000000
                                                           1,0000000
(FLT) =
                                                                                                                   0.
                                                                           1.0000000
                                                                                                   ٥.
           .250662836=02
+PRINT
PRINTOUT OF GEOMETRY FILE DATA
TITLE : TEST CASE 5 - SPHERE WITH S THE CIRCUMFERENTIAL VARIABLE
CREATION TIME = 08/09/76
                              07:34:59
(IFORM) * 110111111
(1D) =
(LUG) =
         *************
(INI)
                     - 11
                                 10
                                                                               1.0000000
                                                                                               0
                               1,0000000
                                               1.0000000
                                                               1,0000000
(FLT) =
               3.1415927
              25,0662830
                                .0025066
PANEL CORNER POINTS
  I J
            XYT.J)
                             YIT, JI
                                             217.33
                                                             Stt.J)
                                                                             (L,T)V
                                               0784591
                                                                             4 4999997
  1
             - 9969173
                             - 0000000
     1
                                                            18,0000000
            - 9969173
                                                                             4 4999997
  5
                                               0746190
     1
                             -.0242452
  3
             - 9969173
                                               0634747
                                                            36 0000000
                                                                             4 4999997
    1
                             -.0461171
                                                            53<sup>7</sup>9999990
71<sup>7</sup>9999990
             -. 9969173
  4 1
                                               0461171
                                                                             4 4999991
                             -.0634747
  S,
             -. 9969173
                             -. 0746190
                                               0242452
                                                                             4 4999997
             - 9969173
  6
                             -.0784591
                                             -.0000000
                                                            90,0000000
                                                                             4 4999997
    . 1
             .. 9238795
  1
     S
                             -,0000000
                                               3826834
                                                                            22,5000000
                                                            18,0000000
  2
    ٤
             -. 9258795
                             -.1182557
                                               3639536
                                                                            22,5000000
  3
     2
             -. 9238795
                             -. 2249357
                                               3095974
                                                            36,0000000
                                                                            22,5000000
  4
                                                            53 9999990
     2
             -.9238795
                             -. 3095974
                                               2249357
                                                                            22,5000000
                                                            71,999999
  5
     2
            - 9238795
                                                                            22,5000000
                             4.3639536
                                               1182557
     5
                                             ...0000000
                                                            90,0000000
            - 9238795
                             -. 3826834
                                                                            22,5000000
                                               6494480
                                                                            40 4999990
  1
     3
            -. 7604060
                             -.0000000
                                                            18 0000000
  2
     3
            -. 7604060
                             -.2006905
                                               6176618
                                                                            40 4999990
                                                                            40 4999999
  3
     3
                             -. 3817360
                                               5254145
                                                            36,0000000
            - 7604060
  4
            -. 7604060
                             -.5254145
                                               3817360
                                                            53,4999990
                                                                            40 4999990
                                                            71 9999990
     3
            -.7604060
                             -.6176618
                                               2006905
                                                                            40.4999990
            -. 7604060
                                                                            40 4999990
  ь
     5
                             -.64944HO
                                             -.0000000
                                                            90.0000000
                                                                            58 4999990
     4
            -. 5224986
                                              8526401
                             -.0000000
```

(INT) .

5 10

FIGURE 7.5-3. Output for POTGEM Test Case 5 (Cont'd).

25,066283

5	H	* 5224986	-,2634803	8109090	18,0000000	58,49 999 90
3	4	- 5224986	5011693	6898004	36,0000000	58 [*] 4999990
4	4	- 5224986	6898003	5011693	53 9999990	58,4999990
5	4	- 5224986	6109090	2634803	71 4999990	58 4999990
6	4	- 5224986	8526401	0000000	90,0000000	58,4999990
1	5	- 2334454	0000000	9723699	0	16 4999990
د	. 5	- 2334454	3004788	9241787	18 0000000	76 4999990
3	5	2334454	5715447	7866638	36,0000000	76,4999990
14	5	- 2334454	7866638	5715447	53,9999990	16,4999990
5	5	- 2334454	9247787	3004788	71 9999990	76 4999990
6	5	- 2334454	9723699	0000000	90.0000000	16_4999990
1	6	0784590	0000000	9969173	0	94 4999980
2	6	0784590	3080644	9481247	18,0000000	94 4999980
. 3	6	0784590	5859733	8065231	36,0000000	94 4999980
4	6	[0784590	8065230	5859733	53,9999990	94 4999980
Κ,	6	0784590	9481247	3080644	71,9999990	94,4999980
6	6	0784590	4,9969173	0000000	90,0000000	94 4999980
1	7	3676834	(0000000	9238796	0	112,4999970
ā.	7.	3826834	2854945	[8786617	18,0000000	112,4999970
. 3	7	13826R34	-,5430428	7474345	36.0000000	112,4999970
. 4	7	3826834	7474342	5430428	53 ` 999999 0	112,4999970
e.	7	3826834	8786617	2854945	71,9999990	112,4999970
6	7	_3826H34	9238796	0000000	90,0000000	112,4999910
1	H	6494450	,000000	.7604060	0	130,5000000
۲	Ş,	6494480	2349784	7231891	18,0000000	150,5000000
- 3	. H	2.6494480	- 4469554	6151814	36,0000000	130,5000000
u.	, A	6494480	6151814	4469555	53,9999990	130,5000000
34	В	6494486	7231891	2349784	71,999999 ₀	130,5000000
6	ь	6494480	* ,7604060	-,0000000	90,0000000	130,5000000
1.,	9	. 8526401	2000000	5224987	0	148,5000000
5	9	,8526401	1614610	4969258	16,0000000	148,5000000
3	Q	8526401	= 3071170	4227103	36.0000000	148,5000000
4	9	8526401	-,4227103	.3071170	53,9999990	148,5000000
5	9	8526401	4969257	1614610	71 9999990	148,5000000
6	. 9	_8526401	w.5224986	-,0000000	90,000000	148,5000000
1	10	9723699	0000000	2334455	0	166,5000000
2	10	,9723699	0721386	.2220198	18,0000000	106,5000000
3	10	9723699	-,1372158	1888613	36,0000000	166,5000000
4	10	79723699	-,1888613	1372158	53,9999990	166.5 000 000

FIGURE 7.5-3. Output for POTGEM Test Case 5 (Cont'd).

```
9723699
                            -.2334455
  6 10
                                             -.0000000
                                                            90,0000000
                                                                           166 5000000
              0000000
                              .0000000
  1 11
                                               0000000
                                                                           180,0000000
                                                            18,0000000
  2 11
                                              .0000000
              0000000
                             -.0000000
                                                                           180,0000000
  3 11
              0000000
                                                            36,0000000
                                                                           180,0000000
                             -.0000000
                                               0000000
                                              20000000
                                                            53,9999990
                                                                           180,0000000
  4 11
              0000000
                             -.0000000
                                                           71,9999990
  5 11
                                              .0000000
              0000000
                                                                           180 0000000
                             .....
             1 0000000
                                                            90 0000000
                                                                           180 0000000
  6 11
                             -.0000000
                                             -.0000000
UNIT VECTURS ALONG MAKE ELEMENTS
           DVWX(I.J)
                                           UVWZer,J)
                           (L.I)YWVU
UNAVAILABLE
BOUNDARY CONDITION FLAGS
  I. J . BCFLAG(I,J).
UNAVAILABLE
DOUBLET SINGULARITY FLAGS
        DSFLAG(1,J)
  1
     1
            19
  2
            19
  3
             19
  4
            19
  5
             19
  1
     2
            19
  2
     2
            19
  3
     2
            19
  4
            19
  5
            19
     3
            19
  2
     3
            19
  ţ
     3
            19
  4
     3
            14
  5
     3
            19
```

8910555.-

5 10

9723699

71,9999990

.0721386

106,5000000

FIGURE 7.5-3. Output for POTGEM Test Case 5 (Cont'd).

```
19
              19
              19
              19
              14
              10
              19
              14
              10
              19
              19
              19
              19
              10
              1.0
              19
              10
              ţġ
              19
              10
              19
              19
              19
              19
              19
              10
              19
              14)
              10
              18
              27
              21
21
4 10
5 10
             57
```

SOURCE SINGULARITY FLAGS
1 J SSFLAG(1,J)

FIGURE 7.5-3. Output for POTGEM Test Case 5 (Cont'd).

BOUNDAR	Y CONDITION POINT	5			
I J	YRC(1,J)	YEC(I.J)	70C(1.J)	SRC(1,J)	VRC(1.J)
1 1	• 9723699	0365189	2305713	8 9999990	13 4999960
5 1	- 9723699	1059820	2080013	27,0000000	13 4999990
3 1	- 9723699	1650708	1650708	45 0000000	13,4999990
4 1	- 9723699	2080013	1059820	62.9999990	13,4999990
5 1	- 9723699	2305712	0365189	80 9999990	13 4999990
1 2	- 8526402	0817368	5160657	8 9999990	31 4999990
5 2	- 8526402	2372094	4655496	27,0000000	31 4999990
3 2	- 8526402	3694623	3694623	45 0000000	31 4999990
4 2	- 8526402	4655496	2372094	62 9999990	31 4999990
5 2	- 8526402	- 5160657	0817368	80~9999990	31 4999990
1 3	6494481	1189537	7510441	8 [*] 9999990	49 4999980
2 3	6494481	-,3452171	6775267	27,0000000	49 4999980
3 3	6494481	-,5376882	5376882	45 0000000	49,4999980
4 3	- 6494481	6775266	3452171	62,9999990	49 4999980
5 3	- 6494481	7510441	1189537	80 9999990	49,4999980
t 4	3826835	-,1445266	9125050	B 9999990	67 4999980
2 4	3826835	4194325	8231827	27,0000000	67 4999980
3 4	3826835	.,6532815	6532815	45,0000000	67 4999980
. 4	3826835	-,8231826	4194325	62,9999990	67 4999980
5 4	3826835	-,9125050	1445266	80 9999990	67.4494980
1 5	± 0784591	1559522	9846436	8 9999990	85_4999980
2 5	0784591	4525910	8882598	27,0000000	85 4999980
3 5	0784591	7049270	7049270	45.0000000	85 4999980
4 5	-,0784591	8882598	4525910	45,9999990	85 4999980
5 5 ·	0784591	9846436	1559522	80,9999990	85.4999980
1 6	2334453	1521122	9603985	8 ´ 99999 90	103,4999970
5 6	2334453	4414467	8663880	27,0000000	103 4999970
3 6	2334453	6875694	6875694	45,0000000	103 4999970
4 6	2334455	- ,8663879	4414467	62,9999990	103,4999970
5 6	2334453	9603984	,1521122	80 9999990	103 4999970
1 7	5224985	-,1333823	8421428	8,9999990	121,4999980
2 7	5224985	.,3870905	,7597080	27,000000	121 4999980
3 , 7 .	<u> </u>	-,6029077	6029077	45,0000000	121 4999980
4 7	5224985	7597080	.3870906	62,9999990	121 4999980

FIGURE 7.5-3. Output for POTGEM Test Case 5 (Cont'd).

```
1333823
                                                              801999990
                              ...8421428
                                                                              121,4999980
     7
               5224985
                                                                 9999990
                                                                              139,5000000
     8
               7604059
                              -..)15961
                                                 6414523
                                                 5786625
                                                              27,0000000
  2
     Ŗ
               7604059
                              ... 2948433
                                                                              139_5000000
               7604059
                                                 4592292
                                                              45 0000000
                                                                              139,9000000
     8
                              -. 4592292
                                                              62,9999990
     8
               7604059
                              ...5786625
                                                 2948433
                                                                              139,5000000
                                                              80 9999990
                                                                              139,5000000
  5
     ĸ
               7604059
                              -.6414523
                                                 1015961
                                                                 9999990
     9
               9238795
                              -.0598649
                                                 3779721
                                                                              157 5000000
                                                              27,0000000
                                                                              157 5000000
     9
               9238795
                                                 3409735
  2
                              -. 1737347
              9238795
                                                              45,0000000
  3
     9
                              -.2705981
                                                2705981
                                                                              157 4000000
              79238795
                                                              62,9999990
     9
                              ... 3409735
                                                1737347
                                                                              157,5000000
              9236795
     Q
                              .. 3779721
                                                 0598649
                                                              80 9999990
                                                                              157,5000000
                                                               8 9999990
               9969174
                              -.0122737
                                                 0774932
                                                                              175 5000000
  1 10
                                                              27,000000
                                                                              175,5000000
  2 10
               9969173
                              ...0356197
                                                 0699076
              9969174
                                                0554790
                                                              45 0000000
                                                                              175 5000000
                              -. 0554790
  $ 10
                                                              62,9999990
                                                0356197
                                                                              175.5000000
              9969175
                              -. 0699076
  4 10
                                                              80,9999990
  5 10
                                                0122737
                                                                              175,5000000
               9969173
                              .. 0774932
HATT NORM I - AND AREAS
             NXITIJI
                             HNY(T,J)
                                             UNZITIJ
                                                              DACLOJA
                                                                .0223073
                                                , 2306378
                              -.0365668
             -.9723523
                                                                 .0223073
             - 972351A
                                                2080713
                              -. 1000107
                                                                .0223073
             -. 9123548
                                                .1651154
                              -. 1651154
                                                                .0223073
             -. 9723512
                              m.2080o83
                                                1060227
                                                                .0223073
                                                 0365292
             -.4723523
                              ...230643A
             -.8526058
                                                                 0500047
                              -. 0817654
                                                 5161184
     5
                                                                 ,0500647
  2
     2
             - 8525861
                              · 2372028
                                                 4656520
                                                                .0500647
  3
     7
             - NSP5799
                              -. 3695318
                                                 3695318
                                                                .0500647
     2
             - 8525861
                              -.4655978
                                                2373092
                                                                 0500047
     2
             *. 8526046
                              -. 5161475
                                                0815925
                                                                 0731370
             - 6493522
                                                 7511334
     3
                              -. 1184132
     3
             -.64936H2
                                                 6775213
                                                                 0731370
  5
                              -, 3453779
                                                                .0731370
             -. 6494157
                                                5377078
     3
                              5377077
             -.6494782
                                                3451658
                                                                 0731370
     3
                              -. 6775239
                                                                ,0731370
  5
             -. 6494717
                                                 1189426
     š
                              .. 7510254
     Ц
             ... 3827577
                              -. 1445023
                                                 9124777
                                                                 0891621
     4
                              -.4194507
                                                 8231052
                                                                 0891021
             -.3828302
  3
     4
             -.3827067
                              -.6532747
                                                 6532747
                                                                 1501980
                                                4194153
                                                                 0891621
     4
             -.3827888
                              ...8231425
```

FIGURE 7.5-3. Output for POTGEM Test Case 5 (Cont'd).

```
.0891621
5
  4
          - 3827577
                           -. 9125003
                                              1443600
1
   5
          -.0784985
                           -.1558293
                                              9846600
                                                              0963765
2
          -.0786133
                           -.4525625
                                             8882607
                                                              0963765
   5
3
                                              7049228
                                                              0963765
           +.0785345
                           -.7049228
   5
                                                              0963765
           -.0784241
                           ...8882740
                                              4525693
                                                             0963765
5
   5
           - 0784985
                           ... 9846825
                                             1556869
                                                              0939478
             2335332
                           *.1519898
                                              9603964
   6
                                                             0939478
2
   6
             2334914
                           -,4414139
                                              8663922
                                                              0939478
                           -.6875636
                                             6875636
3
   6
             2334794
                                                             0939478
                                              4414621
   6
             2334456
                           -.8663800
                                                              0939478
             2335332
                           -.9603873
                                              1520475
5
   6
                                              8420968
                                                              0821590
   7
             5225613
                           -. 1334036
                                                             0821590
            -5226325
   7
                                              7596694
ج
                           -.3869853
                                                             0821590
3
   7
                                              6028470
             5226386
                           -. 6028470
                                             3870238
                                                              0821590
   7
             5224942
                           w. 7597450
4
5
                                             1332613
                                                              0821590
   7
             5225673
                           -.8421193
                                                             0023440
1
   H
             7605071
                                             6413334
                           -.1015889
                                                             ,0623440
                                             5785634
2
   8.
             7604449
                           -. 2949371
                                                             .0623440
3
   8
                                              4591785
             7604612
                           -. 4591785
                                                             0623440
   8
             7603647
                           -.5787334
                                              2948103
                                                             0623440
   8
             7604165
                           ...6414318
                                              1016468
                                                             0306101
   9
             9238914
                           -.0598710
                                              3779421
                                                             0366101
            79238809
   9
                                              3409567
                           -. 1757604
           9238827
                                                             .0366101
3.
   9
                           -.2705926
                                             2705926
           9238948
                                                             .0366101
4
   9
                                              1737451
                           -.3409267
           9238759
                                                             .0366101
   9
                                              0597974
5
                           -. 3779915
            79969258
                                                             0084805
1 10
                                              0773828
                           -.0122832
                                                             0084805
           19969258
2 10
                                              0698115
                           -. 0355719
                                                             0084805
3 10
             9969258
                           -. 0554026
                                              0554026
            19969259
                                                              0084805
4 10
                           -.0698098
                                             0355710
            9969258
                                                             0084805
5 16
                           -.0773861
                                             .0122624
```

NTOP VECTORS

1 J NIOPX(1,J) NTOPY(1,J) NTOPZ(1,J)

UNAVATEABLE

FIGURE 7.5-3. Output for POTGEM Test Case 5 (Cont'd).

```
NAOT VECTORS
                          NROTY (I, J)
                                          NAUTZ(T.J)
          N. OTX (I.J)
 I J
HNAVAILABLE
VELOCITY RIGHG NTOP VERTORS
 T J HINPITADI
UNAVAILABLE
VELOCITY FLUNG NBUT VECTORS
        in ant(I,J)
 1 3
UNAVAILABLE
CORNER FOIRTS ALONG VL AND VU EDGES
                                                                                     YVUC(1)
                                                                                                  AMICELLY.
                                                                                                               SVUCTE
                                                                                                                            VVIICED
                                                           VVLr(I)
                                                                        XVHC(I)
                                               SVLC(I)
                                  7410111
        XVL (T)
                     YVLC(I)
                                                                                                                          180,00000
                                                                                      .00000
                                                                         1 00000
                                                                                                    00000
  1
       -1.00000
                     -.00000
                                                                                                              18,00000
                                                                                                                          100 00000
                                                                        1 00000
                                                                                     -.00000
                                                                                                   .00000
                                  0
                                              18,00000
                                                            0
       -1,00000
                     -.00000
                                                                                                                          180 00000
                                                                                                              36 00000
                                                                                     -.00000
                                                                                                   .00000
                                                                        1 00000
  3
       -1.00000
                     -.00000
                                  0.
                                              36,00000
                                                                                                              54,00000
                                                                                                                          180 00000
                                                                                                    00000
                                 0.
                                              54,00000
                                                           0
                                                                        1 00000
                                                                                     -.00000
  ıl
       -1.00000
                     -.00000
                                                                                                   .00000
                                                                                                              72,00000
                                                                                                                          180 00000
                                                                        1 00000
                                                                                     -.00000
                                  0.
                                              72 00000
  5
       -1.00000
                     -.00000
                                                                                                                          180 00000
                                                                                                  -.00000
                                                                                                              90,00000
                                                           0
                                                                         1 00000
                                                                                     -.00000
                                              90,00000
       -1.00000
                     -.00000
BOUNDARY FOIRTS ALONG VL AND VU FORF
                                                                                                                           SPANICE)
                                                                                                                CORDS(1)
                                                                                 7VU((1)
                                                                                            SVUR(1)
                                                                                                       (I) gilVV
                                                 VVLH(I)
                                                            XVIIR(1)
                                                                       YVURCI
      XVL (1)
                 YVLB(L)
                           ZVLR(I) SVLB(I)
                                                                                              9.000
                                                                                                      180,000
                                                                                                                              0,
                                                                                                                   2.000
                                        9'000
                                                                                    ,000
                             0.
                                                              1.000
                                                                         -.000
       -1.000
                   -.000
  1
                                       27 000
                                                                                                                              0.
                                                                        -.000
                                                                                             27,000
                                                                                                       180,000
                                                                                                                   2.000
                                                              1,000
                                                                                    .000
       -1.000
                   _.000
                             0
                                       45 000
                                                                                    .000
                                                                                                                              0.
                                                                         ...000
                                                                                             45 000
                                                                                                       180,000
                                                                                                                   5.000
                             0
                                                            1.000
  . 3
       -1.000
                   -.000
                                       63,000
81,000
                                                              1,000
                                                                         -,000
                                                                                                       180,000
                                                                                                                   2,000
                                                                                                                              0.
                             0.
                                                                                    .000
                                                                                             63,000
                   -.000
  Ц
       -1.000
                                                                                                       180,000
                                                                                                                   2.000
                                                                                                                              0.
                                                              1.000
                                                                         -.000
                                                                                    000
                                                                                             81,000
  5
       -1.000
                   -.000
```

FIGURE 7.5-3. Output for POTGEM Test Case 5 (Cont'd).

VSLC(I)

SSLC(I)

XSUC(1)

YSUC(I)

ZSUC(1)

SSUC(1)

VSUC(I)

Figures-89

CORNER POINTS ALONG SE AND SU FOGES

YSLT(I)

ZSLr(I)

X5Lc(1)

I

```
22 50000
                                                             22.50000
                                                                           -.92388
                                                                                         -. 38268
                                                                                                      -.00000
                                                                                                                  90,00000
 2
        -. 92388
                      -.00000
                                     38268
                                                 0.
                                                                                                                                40,50000
                                                             40,50000
                                                                                         - 64945
                                                                                                      -.00000
                                                                                                                  90,00000
  3
                      -.00000
                                     64945
                                                                           -. 76041
        -,76041
                                                                                                                                58 50000
                                                0.
                                                             58,50000
                                                                           -.52250
                                                                                         -.85264
                                                                                                      _.00000
                                                                                                                  90 00000
                                     85264
  4
        -.52250
                      -.00000
                                                             76,50000
                                                                                                                  90,00000
                                                                                                                                76,50000
                                                                           -.23345
                                                                                         -.97237
                                                                                                      __00000
  5
        -. 21345
                      -.00000
                                     97237
                                                0
                                                                            07846
                                                                                                                  90.00000
                                                                                         -,99692
                                                                                                                                94 50000
                                     99692
                                                             94 50000
                                                                                                      -.00000
          107846
                       .00000
                                                 0.
  6
                                                                                        .. 92388
                                                                                                                  90,00000
                                                                                                                               112,20000
                                    192388
                                                            112,50000
                                                                             38268
                       00000
                                                                                                      __00000
         134208
                                                 0
                                    76041
                                                                                                                               130 50000
                                                           130 50000
                                                                             64945
                                                                                         -. 76041
                                                                                                      -.00000
                                                                                                                   90,00000
                       .00000
  8
          64945
                                                 0
                                                                                                                               148 50000
                                                                              85264
                                                                                         -.52250
                                                                                                                   90 00000
  9
          * 85264
                       .00000
                                     52250
                                                 0
                                                            148 50000
                                                                                                      -.00000
                                                                            191737
                                                                                                                   90,00000
                                                                                                                               166 50000
                                                            166 50000
                                                                                         ...23345
                                                                                                      -.00000
          191237
 10
                       00000
                                     23345
                                                            180 00000
                                                                           1 00000
                                                                                                                               180,00000
                                                                                                      -.00000
                                                                                                                   90,00000
                                                                                         -.00000
 11
         1'00000
                       .00000
                                     _00000
BOUNDARY POINTS ALONG SE AND SU EDGES
                                                                                                                    CORDICIO
                                                                                                                                SPANZ(1)
                                                                                                          VSUH(I)
                                        SSLECT
                                                              XSUR(I)
                                                                         YSUR(I)
                                                                                    75UB(1)
                                                                                               SSUA(I)
      XSL( [1]
                  YSLB(1)
                             25t B(1)
                                                   VSLB(I)
                                                                                                                                    .073
                                                                                                            15,500
                                . 233
                                          0
                                                                -. 972
                                                                            -. 233
                                                                                       -.000
                                                                                                 90,000
                                                                                                                         .233
                    _.000
                                                    13,500
        -. 972
  1
                                         0
                                                                                                            31,500
49,500
                                                    31,500
                                                                           -.522
                                                                                                 90.000
                                                                                                                         .225
                                                                                                                                     .163
                                .522
                                                                -,853
                                                                                      -.000
         .. 853
                    -.000
                                                                                                                         760
                                                                                                                                    538
                                          of
                                                                                      -,000
                                                                                                 90.000
                                                    49,500
                                                                -. 649
                                                                           -. 760
  3
         .. 649
                    -.000
                                760
                                                                                                                         924
                                                                                                            67,500
85,500
                                924
                                                                                                 90.000
                                                                                                                                    289
                    ...000
                                                    67,500
                                                                ... 383
                                                                            -. 924
                                                                                       -,000
         -.303
                                                                           -.991
                                                                                                                         997
                                                                                                                                    312
                                997
                                                    85.500
                                                                                                 90,000
  5
         -.078
                    -.000
                                                                .. 078
                                                                                       -.000
                                                                                                                                    304
                                                                                                           105 500
                                                                                                                         972
                     .000
                                                   103,500
                                                                 . 233
                                                                                      -.000
                                                                                                 90.000
                                 472
                                          0,
                                                                            -,972
          7 233
  h
                                                                                                           121 500
                                                                                                                         .853
                                                   121 500
                                                                                                 90,000
                                                                                                                                    267
                                                                                       -.000
                                                                 .522
                                                                            -.853
  7
          1522
                     000
                                 853
                                          0,
                                                                                                          139,500
157,500
175,500
                                                                                                                         .649
                                                                                                                                    .203
                     000
                                 649
                                                   139,500
                                                                  .760
                                                                                       -.000
                                                                                                 90,000
          700
                                                                            - 649
                                          0
                                                                                                                         384
                                                                                                                                    120
                                                                                       -.000
                     .000
                                                   157 500
                                                                  924
                                                                                                 90.000
          1924
                                383
                                                                            -. 384
  9
                                                                                                                         .078
                                                                                                 90,000
                                                                                                                                     980
          947
                                078
                                                   175,500
                                                                  997
                                                                            -.078
                                                                                       -.000
                     000
                                          0
 10
```

4,50000

-,99692

-.07846

90,00000

-.00000

4,50000

FORCE SENSING | OCCATIONS IN NI-DIRECTION

T J SELLI, J) YSILI, J) 781(1, J) 781(1, J)

-.00000

07846

UNAVAILABLE

-. 94692

1

FORCE SENSING LOCATIONS IN NE-DIRECTION
T J 482(1,J) Y82(1,J) (52(1,J)

HAVATEABLE +STOP STOP 717

FIGURE 7.5-3. Output for POTGEM Test Case 5 (Concluded).

```
5.
          TITES
3.
          TEST CASE 6 -- TWO DIMENSIONAL AIRFOIL
          CARY
          SHILL
6.
           TICRVI IC#11,COPT#6,IOPTI#1,PARAM#0,,NTAB#43,
           VAR1# 1.0, 0.9983622, 0.9935470, 0.9855340, 0.9743373, 0.9600039, 0.94261
           0.9222884, 0.8991708, 0.8734423, 0.845310, 0.8150037, 0.7827722, 0.748878
           0.7135940, 0.6771951, 0.6399556, 0.6021480, 0.5640343, 0.5258664, 0.487883
10
           0,4503093, 0,4133530, 0,3772072, 0,3420477, 0,3080369, 0,2753196, 0,244028
11.
           0,2142782, 0,1861764, 0,1598156, 0,1352774, 0,1126334, 0,91946546,01
15.
           n.7326961E-01, 0.5664764F-01, 0.4211732F-01, 0.2970805E-01, 0.1944131F-01
13
           0.1133259F-01. 0.5389590F-02. 0.1613787F-02. 8.0
14,
           VAP2# -0.4356997E=05, -0.2324360E=03, -0.9588039E=04, 0.3166141F=03, 0.9069827E=3
           n.1571516F=02, 0.2204748F=02, 0.2704052F=02, 0.2973656E=02, 0.2929086F=02
16.
           0.2500009F-02. 0.1633710F-02. 0.2954737F-03. -0.1526688F-02. -0.3826301F-02
17.
           .0.6576072k=02. -0.9730574F=02. =0.1322808E=01. =0.1699367E=01. =0.2094175E=01
18.
           _0_2497944E-01, -0,2900910E+01, -0,3293188E-01, -0,3665068F-01, -0,4007220E-01
19.
           _0_4310983E=01_ =0_4568411F=01_ =0_4772490F=01_ =0_4917301F=01_ =0_4997965E=01
20.
           _0.5010815E-01, =0.4953281E-01, =0.4823973E-01, =0.4622664E-01, =0.4350132E-01
21.
           _0.4008242F=01, =0.3599801E=01, =0.3128479E=01, =0.2598772E=01, =0.2015871E=01
22.
           0,1385612F-01, -0,7143803F-02, -0,8996113E-04, 7.0
23.
           .END
24.
          DIEGMENTS
25.
           -DATA NSEGVIEZ, NBPS±1, NBPV=30, 30 SEND
26.
          VI BC
27.
           DATA SEND
28.
          SUBC
29.
           EDATA INPTER SEND
30.
31.
           DATA VARZSVE-.5 SEND
32,
          54
33,
           *DATA VAR2SV# 5 SEND
34.
35.
           TDATA VARZSVEL SEND
36.
```

FIGURE 7.6-1. Input for POTGEM Test Case 6.

```
-DATA VAR2SVEO. 0 REND
37.
38.
          PANE
39
           DATA UNEPSVE 2001 SEND
40.
41.
           -INCRV1 IC=11.COPT=6,IOPT1=1.PARAM=0.,NTAB=47,
42
           VARIE 0.0 0.5360453E-03 0.3204324E-02 0.7980466E-02 0.1483292E-01 0.237257E-1
           0.34615876-01 0.47453656-01 0.62184976-01 0.78748766-01 0.97079286-01
44,
           0.1171044E0 0.1387470E0 0.1619247E0 0.1865507E0 0.2125319E0 0.2397717E0
           0.2681689E0, 0.2976173E0, 0.3280070E0, 0.3592237E0, 0.3911495E0, 0.4236625E0
46,
           0,456636160 0,489941260 0,5234444F0 0,557008560, 0,5904924F0, 0,623751660
           0.6566373F0, 0.6889974F0, 0.7206745F0, 0.7515085F0, 0.7813352F0, 0.8099871E0
48
           0.837293360 0.863080160 0.887172560 0.909395160 0.929572160 0.947531360
           0.963105160 0.976132960 0.986464560 0.993962360, 0.998508260, 0.10601
50,
51
52
           VAR2# =0.8996113E=04, 0.7233523F=02, 0.147520F=01, 0.2238896E=01, 0.3006683E=01
           0.37707936-01, 0.45235176-01, 0.52572686-01, 0.5964706-01, 0.66387416-01, 0.727276-1
53.
           0.7860291E-01. 0.8395720E-01. 0.8873755E-01. 0.9289736E-01. 0.9639704F-01
54
55.
           0.9920382E=01, 0.1012926E0, 0.1026458E0, 0.1032543E0, 0.1031172F0, 0.1022425E0
           0.1006469E0 0.9835541E-01 0.9540266E-01 0.9183091E-01 0.8769143E-01 0.83043E-1
56,
           0.7795185F-01 0.7249117E-01 0.6673938F-01 0.6078041E-01, 0.5470140E-01
57
           0.4859197E-01, 0.4254199E-01, 0.3664087E-01, 0.3097472E-01, 0.2562474E-01
           0.2066502E=01, 0.1616049E=01, 0.1216468E=01, 0.8717481E=02, 0.5844172E=02
58'
59
           0.3553224E-02 0.1835613E-02 0.6646207E-03 -0.4343466E-05 34.0
60.
           END
61.
          SEGMENT.
62,
           TDATA NSEGVEZ SEND
63.
          SLBC
           TDATA IDPT## SEND
64.
65.
           BDATA VARZSVEL. SEND
66.
67.
          PANE
68.
           +DATA SEND
69.
          NRTI
70
           DATA 12831 SEND
71.
          RASS
72
           EDATA EAXISEO . O . -1 . PHIR90 . SEND
```

FIGURE 7.6-1. Input for POTGEM Test Case 6 (Cont'd).

```
DAFLAG
73.
74.
75.
76.
77.
78.
79.
                             -1
                     3.2
                BCFLAG
80.
81.
82.
83.
84.
85.
86.
87.
91.
92.
93.
                             _1
                HVW
                0 0
                                               0.0
                0.0
                                                  0.0
96.
97.
98.
                FINISH
                  IDATA FLIENAL, LOG(12) MT KEND
99,
100,
101,
102,
                STORE
                  DATA IDEA SEND
                 PHINT
                  EDATA PRINTELBAT REND
                 SINP
103.
```

FIGURE 7.6-1. Input for POIGEM Test Case 6 (Concluded).

```
POTFAN GEHMETRY PROGRAM. VERSTON 13
                    07137:19
TIME = 08/09/76
ENTER BATCH
*TITUE
TEST CASE 6 -- TWO DIMENSIONAL AIRFOIL
+CARY
+ SR 11
+DSEGMENTS
+VLBC
+SLHC
+51
+5U
+ VI.
∔∀11
+PANT
+5H11
+SEGMENT
+SLP
+VU
+PANI,
+NRII
+ROSS
+DSFLAG
+BCFL AG
+UVW
+FINISH
+STORE
                           HAS BEEN OPENED FOR WRITING ON UNIT 1
FILE 6.GM-PNC/LIBS
                             07137124
CHEATION | 11-E = 08/09/76
CREATION OF GEOMETRY FILE
```

FIGURE 7.6-2. Output for POTGEM Test Case 6.

```
TITLE = TEST CASE 6 -- TWO DIMENSIONAL AIRFOIL
(LOG) :
         (INI) =
                                                     0
                                                                     0
                                                                          n
                                                                                                                      12,909945
                                         1.0000000
                                                                                              0.
(F(T) =
          1.0000000
                          1,0000000
                                                         1,0000000
                                                                        1,0000000
          . (2909944F = 02
+PRINT
PRINTOUT OF GEDMETRY FILE DATA
TITLE - TEST CASE 6 -- THU DIMENSIONAL ATHROIL
CREATION II E = 08/09/76
                             01:37:24
(IFURM) = 11100111111
(ID) =
(LOG) =
(TAT) #
                                                                            1.0000000
                                                            1.0000000
                                                                                           0
                                             1,0000000
                                                                                                           0.
                              1,0000000
(FIT) =
              1.0000000
             12,9099456
                                0015610
PANEL (UR'E" POINTS
     J
  Ţ
            XIT, J.
                            (L. 11Y
                                           711133
                                                          SITIJI
                                                                          V(1.J)
                                                          -.5000000
              0000000
                             5000000
                                           -,0000044
                                                                          1.0000000
  ٤.
                                                                          1,0000000
              0000000
                            -5000000
                                           ....0000044
                                                            _5000000
             9476640
                             5000000
                                            .0020404
                                                           -.5000000
                                                                            9476640
                                            0020404
                                                                            9476640
  Ş
              9476640
                                                            5000000
                            -,5000000
     Ś
              H954715
                             5000000
                                            0029895
                                                          -.5000000
                                                                            A954715
              8954715
                            a.5000000
                                            2686200
                                                            5000000
                                                                            8954715
             1 4435655
                             5000000
                                            .0024616
                                                          -.5000000
                                                                           8435655
                                                                           R435655
     и
              8435655
                                            .0024616
                                                            $4000000
                            *.5000000
             7920883
  1
     5
                             5000000
                                            .0007224
                                                          -.5000000
                                                                            7920883
  2
     5
              7920885
                            -,5000000
                                            0007224
                                                            5000000
                                                                           7920863
              7411809
                             5000000
                                           -.0019940
                                                           -.5000000
                                                                            7411809
     Ь
                                                                           .7411809
              7411809
                            -.5000000
                                           *.0019940
                                                            .5000000
     b
             6909830
                                                                           6909830
  1
    7
                             5000000
                                           -.0054941
                                                           -.5000000
     7
              6909450
                            -.5000000
                                           -. 0054941
                                                           .5000000
                                                                           6909830
```

FIGURE 7.6-2. Output for POTGEM Test Case 6 (Cont'd).

ť	8	6416320	5000000	009 58 25	-,5000000	.6416320
2	8	6416320	-,5000000	-,0095825	` 5000000	6416320
1	9	5932633	.5000000	0140870	5000000	,5932633
ج .	9	5932633	5000000	-,0140870	.5000000	5932633
1	10	5460095	`500000 0	0188406	5000000	5460095
2	10	5460095	5000000	0188406	. 500000	5460095
1	11	5000000	5000000	0236824	5000000	5000000
. 5	11	5000000	- 5000000	0236824	5000000	5000000
1	12	4553610	5000000	0284687	5000000	4553610
ج	12	4553610	5000000	0284687	<u> </u>	4553610
1	13	4122147	5000000	0330509	-,5000000	4122147
2	15	74122147	⊸ 5000000	- 0330509	15000000	4122147
•	14	5706796	5000000	0373020	5000000	3706796
٤	14	73706796	5000000	0373020	5000000	3706796
1	15	73308694	5000000	041103B	5000000	3308694
2	15	3308694	5000000	0411038	5000000	3308694
1	16	2928932	5000000	0443496	5000000	2668262
. 5	16	2928932	5000000	0443496	5000000	2928932
1	17	72568552	5000000	0469453	5000000	2568552
ڃ	17	ົ 2568552	5000000	0469053	5000000	2568552
1	18	7228540	5000000	0488122	5000000	2228540
. 2	18	2228540	5000000	0488122	5000000	2228540
1	19	1909830	5000000	n/498864	5000000	1909830
2	10	1909830	5000000	0498864	, 5000000	1909830
ŧ	20	1613294	5000000	.,0501200	 5000000	1613294
5	20	1613294	5000000	-,0501200	.5000000	1613294
1	21	1339746	5000000	0494801	5000000	1339746
5	-21	1339746	5000000	0494801	.5000000	.1339746
- 1	55	1089935	5000000	0479498	5000000	1089935
5	55	1089935	5000000	0479498	.5000000	1089935
ł	23	<u>୍ଚିତ୍ୟ64545</u>	.5000000	-,0455272	5000000	0864545
S	23	10864545	-,5000000	0455272	_5000000	.0864545
1	24	0664196	25000000	0422252	_,5000000	.0664196
۶,	24	0664196	 5000000	0422252	.5000000	.0664196
1	25	0489435	5000000	0380716	5000000	0489435
5	25	0489435	5000000	0380716	5000000	0489435
1	26	70340742	5000000	-,0331078	5000000	0340742
. 2	26	0340742	-,5000000	0331078	.5000000	0340742
1	27	0218524	5000000	-,0273888	5000000	.0218524

FIGURE 7.6-2. Output for POTGEM Test Case 6 (Cont'd).

2	27	0218524	+.5000000	0273888	5000000	0218524
1	24	0123117	5000000	0209823	5000000	0123117
5	28	0123117	5000000	0209823	` 5000000	0123117
. 1	٥٥	0054781	5000000	0139739	5000000	0054781
5	29	0054781	5000000	-,0139739	5000000	0054781
- 1	30	0013705	5000000	0065903	5000000	0013705
5	30	0013705	5000000	0065903	5000000	0013705
1	31.	0000000	5000000	-,0060900	-,5000000	0
5	31	0000000	5000000	0000700	5000000	0
1	- 32	0013705	5000000	0103631	-,5000000	0013705
ح	32	0013705	5000000	0103631	5000000	0013705
- 1	33	0054781	5000000	0187957	5000000	0054781
7	33	0054781	-,5000000	0187957	5000000	0054781
1	34	0123117	5000000	0275021	5000000	0123117
5	34	0123117	5000000	[0275021	5000000	0123117
1	35	0218524	5000000	0362389	5000000	0218524
5	35	0218524	5000000	0362389	5000000	0218524
1	30	0340742	5000000	0448944	~. 5000000	0340742
ح	36	0340742	-,5000000	0448944	5000000	0340742
1	37	0489435	5000000	0533440	5000000	0489435
2	3.7	0489435	+,500000n	0533440	5000000	0489435
1	- 48	0664196	. 5000000	.0614761	-,5000000	0664196
5	3.4	0664196	5000000	0614761	.5000000	0664196
1	39	0864545	[500000	0691782	-,5000000	0864545
ج	39	0864545	-,5000000	.0691782	5000000	0864545
1	40	1089935	<u> </u>	.0763404	5000000	1089935
5	4.0	1089935	- ,5000000	0763404	5000000	1089935
4	41	1339746		. 0828568	5000000	1339746
ح	41	1339746	- ,5000000	0828568	` 5000000	1339746
1	44	1613294	500000	0886>61	-,5000000	1613294
2	42	1613294	+y500000a	0886261	5000000	1613294
1	43	1909830	5000000	.0935547	-,5000000	1909830
5	43	1309830	-,5000000	.0935547	5000000	1909830
1	44	2228540	25000000	0975582	 5000000	.2226540
2	44	,222H5u0	5000000	.0975582	.5000000	.2226540
. 1	45	2568552	15000000	1005574	5000000	2568552
2	45	\$2568552	5000000	1005574	5000000	32568552
1	46	, 5658635	25000000	1024818	-,5000000	.2928932
.5	46	2928932	~.5 000000	1024818	5000000	2928932

FIGURE 7.6-2. Output for POTGEM Test Case 6 (Cont'd).

1 47	3308694	5000000	1032724	5000000	3308694
2 47	7308694	5000000	1032724	5000000	3308694
1 48	f 3706796	75000000	1028852	-,5000000	3706796
2 48	3706796	5000000	1028852	.5000000	3706796
1 /10	4122147	5000000	1012867	- 5000000	4122147
2 49	4122147	5000000	1012867	5000000	4122147
1 50	4553610	5000000	0984561	- 5000000	4553610
2 50	4553610	5000000	0984561	5000000	4553610
	5000000	5000000	0943913	5000000	5000000
1 51 2 51	5000000	5000000	0943913	5000000	5000000
1 52	5460095	5000000	0891073	5000000	5460095
2 52	5460095	5000000	0891073	5000000	5460095
1 53	5932633	5000000	0826363	5000000	5932633
	•	5000000	0826363	5000000	5932633
2 53	5932633	5000000	0750329	5000000	6416320
1 54	6416320	•	0750329	500000	6416320
2 54	6416320	5000000		5000000	5909830
1 55	76909830	25000000	0663751 0663751	5000000	6909830
2.55	6409830	-,5000000	0003/31	5000000	7411809
1 56	7411809	5000000	,0567657		7411809
2 56	7411809	-,5000000	0567657	5000000	7920883
1 57	1920A83	5000000	0463406	-,5000000	
2 57	7920883	-,5000000	,0463406	5000000	7920883
1 58	8435655	15000000	0352702	5000000	8435655
2.58	8435655	-,5000000	0352702	.5000000	,8435655
1 59	4954715	5000000	0237741	-,5000000	8954715
2 59	8954715	5000000	0237741	,5000000	8954715
1 60	9476640	15000000	0181352	-, 5000000	9476640
2 60	9476640	5000000	0121352	5000000	9476640
1 61	1 0000000	25000000	0000043	-,5000000	1,0000000
2.61	1 0000000	-,5000000	0000043	5000000	1,0000000
UNIT VECTO	RS ALONG WAKE	ELEMENTS			
1 J	HVWXCT, J)	UVWY(1,J)	UVWZ(T,J)		
1 1	0'	1,0000000	0.		
2 1	o î	-1.0000000	0 🛴		
دُا	0,7	1 0000000	0		

UNIT	VECTORS ALONG WAKE	ELEMENTS	
1	(L.T.XWV.) L	(L.f.)YWVD	(L.TISHVU
1	1 0'	1,0000000	0.
5	1 0	-1,0000000	0
1	ک و ک	1 0000000	0
2	5 0,	-1.0000000	0 .
1	3 0"	1,0000000	0,

FIGURE 7.6-2. Output for POTGEM Test Case 6 (Cont'd).

```
-1,0000000
                                              000000
   4
                             10000000
                           -1.0000000
5
                             1,0000000
                           -1.0000000
                             1,0000000
                           -1,0000000
                                              0000000
                              _0000000
                           -1 0000000
   B
                              0000000
                           -1.0000000
   9
                             1,0000000
                           -1,0000000
  10
                             1,0000000
                                              0000
2 10
                           -1,0000000
1 11
                            1,0000000
2 11
                           -1,0000000
1 12
                             1,0000000
                           -1.0000000
1 13
                             1,0000000
2 13
                           -1,0000000
                                             0.00
1.14
                             1,0000000
2 14
                           -1.0000000
1 15
                             1,0000000
                           -1.0000000
                             1,0000000
1 16
2 16
                           -1.0000000
                                              0
1 17
                             1,0000000
2 17
                            -1,0000000
1 18
                             1 0000000
                                              0
                                              0
2 18
                            -1,0000000
1 19
                             1,0000000
                                              0.
2 19
                           -1.0000000
                                              0.0
1 20
                             1,0000000
5 50
                           -1,0000000
1 21
                             1 0000000
5 55
1 55
1 55
1 51
                           -1,0000000
                             1,0000000
                            -1,0000000
```

FIGURE 7.6-2. Output for POTGEM Test Case 6 (Cont'd).

1	23	0.	1,0000000	٥.
2	23	0	-1,0000000	0.
1	24	0	1,0000000	0.
5	24	0,	-1.0000000	0
1	25	0°	1,0000000	0
ż	25	0	-1,0000000	o T
1	56	0,	1 0000000	0,
5	26	0,	-1.0000000	ň.*
1	27	0,	1 0000000	γ.•
5		۷.	-1.0000000	Α.
1	27	u,	1,0000000	۸.
1	85	0		Ň,
5	28	0,	-1,0000000	٧,
1	54	0	1,0000000	v.
. 5	29	0	-1,0000000	η,
1	30	0	1,0000000	0.
5	30 .	0	-1,0000000	0.
. 1	31	0,	1,000000	0
5	31	0	-1,0000000	Ω.
1	32	0'	1,000000	0
ج	32.	0.7	-1.0000000	0
1	. 3 5	0.7	1,0000000	0
Ž.	33	0	-1.0000000	ດີ
1	34	0,	1 0000000	0
è	34	0	-1.0000000	0.
1	35	o'	1 0000000	ດ້
خ	35	0'	-1.0000000	o °
1	36	o,*	1,0000000	0
رخ	36	0	-1.0000000	0.
1	57	0,7	1,0000000	ň.
5	37	0,	-1.0000000	0.
	5 P			ν.•
4		0,		٠.
5	3.8	0	-1.0000000	٠,
1	39	0'	1,0000000	٧.
5	39	0	-1,0000000	υ.
1	40	0	1,0000000	. <u>9</u> ±.
5	40	0	-1,0000000	0.
1	41	0'	1,0000000	0.
. 5	41	.0 _	-1,0000000	0.
1	42	0 .	1,0000000	0.

FIGURE 7.6-2. Output for POTGEM Test Case 6 (Cont'd).

2 42	0.	-1.0000000	0.
1 45	o,*	1 0000000	0.
2 43	0	-1.0000000	0
1 44	o,*	1,0000000	0
44 ح	o *	-1.0000000	0
1 45	0.	1 0000000	0
2 45	0	-1.0000000	0
1 46	0.7	1 0000000	ŏ*
2 46	őŕ	-1.0000000	ŏ.
1 47	Ö	1 0000000	0
2 47	o *	-1.0000000	o.
1 48	o f	1 0000000	0
2 48	őŕ	-1,0000000	ŏ*
1 49	ŏ,	1 0000000	ν.
2 49	o,	-1.000000	٥.
1 50	o'	1'0000000	Ŏ,*
2 50	0	-1.0000000	0.4
1.51	0.*	1,0000000	ŏ.
2 51	Ÿ.	-1.0000000	Ň.
1 52	0.5	1,0000000	γ.
2 52	٠ <u>٠</u>	-1.000000	٧.
1 53	0.5	1,0000000	ν.
2 53	\\ f	-1.0000000	ν.*
- 1 54	0,*	1,0000000	٧.
2 54	0,5	-1.0000000	٠,٠
			V .
1.55	0.	1,0000000	v.
2 55	0	-1.0000000	٠.
1 56	0	1 0000000	Ü.
2.56	0,	-1,0000000	٠.
1 57	0	1,0000000	0.
2 57	0	-1,0000000	0.
1.58	07	1,0000000	0.
2.58	0	-1,0000000	0,
1 59	0'	1 0000000	0
2 59	0	-1,0000000	0,
1 60	0,	1.000000	0
5 60	0	-1,0000000	0,
1:61	0.	1,0000000	0
2 61	0	 -1.0000000	0

FIGURE 7.6-2. Output for POTGEM Test Case 6 (Cont'd).

					LON FLA	G
ŧ	J	ВÇ	FL A		(,J)	
1	1			1 .		
1	5			n		
1	3			r.		
1	4			ń		
1.	5			Ġ:		
1	6			O		
1	7			e.		
1	8			n		
1	4)			n		
1	1.0			n		
1.	11			Ċ.		
1	12			n ·		
1	13			n		
1	14			Ô		
. 1	15			O		
1	16			0		
1.	17			o .		
1	18			0 -		
• t	19			c		
- 1	20			Ð		
1	21			n		
1	25			r		
1	23			Ø.		
1	24			(r		
. 1	25			<u>n</u> :		
1	56			n .		
1	21			n		
1	58			n		
1	29			G		
1	30			n		
. 1	31			Δ.		
1	32			n		
1	33			ñ		
1	34			0		
1	35			n		

FIGURE 7.6-2. Output for POTGEM Test Case 6 (Cont'd).

```
1 36
1 38
1 39
1 40
1 41
1 42
1 43
1 44
1 45
1 46
1 47
1 46
  49
1 50
1 51
1 52
1 53
1 54
1 55
1 56
1 57
1 58
1 59
            n
1 66
```

```
DOUBLET SINGULARITY FLAGS

I J DEFLAGFI, J

1 1

1 2 32

1 3 32

1 4 32

1 5 32

1 6 32

1 7 32

1 8 32

1 9 32

1 10 32
```

FIGURE 7.6-2. Output for POTGEM Test Case 6 (Cont'd).

```
1 11
1 12
1 13
1 14
1 15
1 16
                                                       1 17
1 18
1 19
1 20
1 21
1 23 44 1 25 6 7 8 9 0 1 1 3 3 3 4 4 1 3 3 5 6 7 8 9 0 1 1 3 3 3 4 4 2 3 4 4 5 1 4 4 5 1 4 4 5
   1 46
   1 48
```

FIGURE 7.6-2. Output for POTGEM Test Case 6 (Cont'd).

```
1 50
            3>
  51
            32
  52
            32
  55
            3>
1 54
            35
1 55
            32
1 56
            32
1 57
            32
1 58
            32
1 59
            3>
1 60
            32
```

SOURCE SINGULARITY FLAGS I J Soft AG(1.3)

BOUNDARY CONDITION POINTS

3505519

3116454

2746256

2395940

2066467

UNAVALI ABLE

1 14

1 15

1 16

1 17

1 18

```
SHC(1,J)
         (RC(I,J)
                                         Z80(1,J)
                                                                          VRC(1,J)
            9738230
                          -.0000000
                                            0009326
                                                           0
                                                                             9738230
           79215409
                                            .0027178
                                                           0
                          -.0000000
                                                                             9215409
           8694738
                                            .0028925
                                                                            8694736
   3
                          ...0000000
            8177644
                                            .0017278
                                                           0
                                                                             H177644
                          .......
   5
            7665546
                                          -.0005264
                                                           0
                                                                             7665546
                          ...0000000
            7159846
                                                           0,
                          -.0000000
                                          -.0036593
                                                                            7159846
            6661931
                          -.0000000
                                          -.0074741
                                                                            6661931
                                                          ٥,
            6173165
                          -,0000000
                                          -.0117948
                                                                             6173165
           5694889
                                                          0
                                          -.0164441
                                                                             5694889
                          -.0000000
                                                          0.
 10
            5228412
                          -.0000000
                                          .. 0212593
                                                                             5228412
                                                          0.
1 11
            4775014
                                                                             4775014
                          -.0000000
                                          -.0260905
           4335938
1 12
                          -.0000000
                                          -. 0307920
                                                           0
                                                                             433593A
           3912386
1:13
                                          -. 0352263
                                                           0.
                                                                             3912386
                          -.0000000
```

-.0392678

-.0428037

-.0457341

-.0479736

..0494512

0. Ò,

0

3505519

3116454

2746256

2395940

2066467

YHC(I.J)

-.0000000

..0000000

-.0000000

-.0000000

-.0000000

FIGURE 7.6-2. Output for POTGEM Test Case 6 (Cont'd).

		 1	The second second			
1	19	1758738	-,0000000	0501103	0,	1758738
1	∂ 20	[1473598	-,0000000	0499105	0,	1473598
- 1	21	1211829	0000000	0488265	٥,	.1211829
1	5.5	0974147	~, 0000000	-,0466489	0.	0974147
1	23	0761205	 000000	-,0439840	0.	.0761205
_1	24	<u> </u>	 0000000	0402524	0	.0573585
1	25	0411805	0000000	0356888	0	0411803
1	56	0276301	0000000	0303403	0.	0276301
1.	21	[0167451	0000000	0242682	0	0167451
1	24	0085551	0000000	0175466	0	0085551
1	5.4	0030827	0000000	0102363	0	0030427
• 1	- 50	0003427	0000000	0033404	o .	.0003427
: 1	31	0005427	0000000	.0057655	0	0003427
1	32	0030827		0145037	0	0030827
. 1	33	0085551	0000000	.n231338	0 🗇	0085551
2	34	0167451	0000000	0318701	0.	0167451
1	. 45	10276301	0000000	0405829	0 .	0276301
1	56	0411803	000000	0491514	0	0411803
. 1	57	0573585	-,0000000	0574586	Ű,	0573565
1	3,8	0761205	0000000	0653599	0.	0761205
1	39	0974147		0728336	0 .	0974147
1	40	~1211 <i>1</i> 29	0000000	0796840	0.	1211429
1	41	1473598	. .0000000	0858393	0.	1473598
- 1	42	1758748	0000000	0912015	0	1758738
1	43	2066467	 000000	0956791	0.	2066467
-1	44	2395940	-,0000000	0991882	Ο,	2395940
1	45	2746256	.0000000	1016565	0	2746256
1	46	3116454	0000000	1030715	0 .	3116454
L	47	3505519	0000000	1032295	0	3505519
: 1	4.8	3912386	000000	1055301	ດ້	3912386
1	44	4335938	 0000000	1000253	0.	4335938
1	50	4775014	- .000000∪.	.0965777	ο΄.	4775014
1	51	5225412	0000000	0919003	0.	5220412
- 1	2	5694889	••0000000	.0860171	0	5694889
1	53	6173165	0000000	0789718	ο.	6173165
1	54	6661931	0000000	0708302	0.	6661931
1	55	7159846	0000000	0616815	0.	7159846
- 1	56	7665546	0000000	0516454	ο΄.	7665546
1	57	8177644	000000	0408736	0 🚡	8177644

FIGURE 7.6-2. Output for POTGEM Test Case 6 (Cont'd).

Figures-106

1 58	7 8694738	0000000	10295594	0	.8694738
1 59		0000000	0179521		9215489
1 60		0000000	0063540	0	9738250
				-	•
UNIT N	ORMAL S AND AREAS				
1 3	(Nygyky)	(L,Y,YHU	UN2(1.J)	DATIJ	
1 1	0496880	, 000000	9987648	.0523759	
ı è	- 0181037	0000000	- 9998361	0255011	
1 5	0105192	0000000	9999468	0519087	
1 4	0337174	0000000	9994314	0515066	
1 5		0000000	9985590	0509798	
1 6	0694030	0000000	.,9975887	0503198	
1 7	0828655		9965607	[0495200	
1 8	0929636	0000000	- 9956695	0485780	
1 9	0999792	0000000	9949895	0474924	
1 10	1045243	0000000	9945223	0462636	
1 11		0000000	9942965	0448949	
1 12	1058760	0000000	. 9943794	0433888	
1 13	1020906	,0000000	-,9947751	0017521	
1 14	0952280	-,0000000	-,9954555	0399913	
1 15	0851610	0000000	-,9965672	0381146	
1 16	[071.7375	• .0000000	-,9974235	0301314	
1 17	0548097	0000000	* , 9984968	0340523	
1. 18		0000000	-, 9994305	0318891	
1 19	0079470	0000000	9999685	0296545	
1 20		_0000000	-,9997271	.0273023	
1 21	0611664	0000000	-,9981276	0250280	
1 22		0000000	- 9942709	0226688	
1 23		0000000	-, 9866957	0203053	
1 54		0000000	- 9729520	0179629	
1 25		0000000	- 9486033	0156759	
1 26		0000000	- 9056A47	0154937	
1 27		0000000	8299061	0114921	
1 28		000000	6973391	0097885	
1 29		0000000	4746740	0084493	
1 30	9789399	0000000	2041485	0066452	
1 31		0000000	1149966	0105425	
1 32		000000	4370333	0092798	

FIGURE 7.6-2. Output for POTGEM Test Case 6 (Cont'd).

```
.0110679
                               0000000
                                               .6167651
  1 33
             - 7871473
                                                               .0129367
                                               7374959
  1 34
             -. 6753516
                               0000000
                                               8159432
  1 35
             - 5781320
                                                               .0149763
                               0000000
                                                               ,0171024
  1 36
                               0000000
                                               8691181
             -. 4946046
                                              9064510
                                                              .0192755
  1. 37
             -.4223109
                               0000000
                                              9333767
                                                               .0214644
             - 3588981
  1 38
                               0000000
                                                               .0236496
                                              9531549
  1 39
             -. 3024A25
                               0000000
                                                               .0258170
  1 40
                               0000000
                                               9676120
             - 2524421
                                                              0279566
                                              9784119
    41
                               0000000
             -. 2060644
                                              9864128
  1 42
                               0000000
                                                                0300604
             -.1642858
                                              9921881
    43
                               0000000
                                                                0321215
             -.1247512
    44
             · 0876758
                               0000000
                                               9961491
                                                                0541531
                                               9985749
                                                                0360894
             -. 0533689
    45
                               0000000
                                              9991793
    46
             - 0510111
                               0000000
                                                               03/9844
                                                              ,0398121
    47
               0096436
                                               9999535
                             -.0001000
                                                              0415659
    44
               0386079
                                               9992544
                             -.0000000
                                               9978571
                                                               0432390
    49
               0654306
                             -.0000600
                                              9958845
    50
               0906315
                                                                0448237
                             -,0000000
                                              4934611
    51
                                                               0465119
               1141710
                             -.0000000
              1356967
                                                                0476949
                                               9907504
  1 52
                             -,0000000
                                                              0489027
  1 53
              1553221
                                               9878639
                             ..0000000
  1 54
                                               9849422
                                                               0501046
               1728841
                             -.0000000
                                                              .0511095
  1 55
                                               9821562
               1880672
                             ...0000000
                                               9796336
                                                               0519638
    56
               2007935
                             -,0000000
                                              9776079
                                                                0526541
  1 57
               2104350
                             -,0000000
                                                               .0531638
              2164664
  1 58
                                               9762901
                             -.0000000
                                                              0534745
                                               9759660
  1 59
               2179228
                             -.0000000
              2152431
                                               9765517
                                                               (0537255
  1 60
                             -.0000000
NTOP VELTORS
          NIOPX(T,J)
                           NTOPY(1.J)
                                           NTOP/(T.J)
UNAVAILABLE
NADY YELTURA
                                           NgOTZ(I,J)
  I
          N. ((1×1), J)
                           NHOTY, L.J.
```

FIGURE 7.6-2. Output for POTGEM Test Case 6 (Cont'd).

UNAVAIL ABLE

VELOCITY ALUNG NTOP VERTORS

I. J. STOP(T,J)

BNAVATLABLE

VELOCITY (LUNG NHOT VECTORS

HNAVATEABLE

COHNER 1 1	**************************************	ONG VE AND YVEC(I) 50000	7VL 0 - 0	0000	5VIC(1) 50000 -50000	VVLC(1) 1_00000 1_00000	XVIIC (1)	YVUC(1) 50000 50000	00000	5V4Cr1) -,50000 -50000	VVECTI) 1,00000 1,00000
BOUNDA	1_00000 kRY PO+NTS xYL (1)	ALONG VL AN	ND VU EDG			XV116713	YViiR(I)		VIIB(I) VVIIB(SFAH1(1)
. 1	1,000	-, 000	~ * 0 0 0	0	1 000	1,000	~. 000	000	0, 1,0	00 0,	1.000
L OKWŁ F	XSL (1)	YSECTI		r(I)	\$51 r(1)	VSLc(1)	xsUcrI)	YSUC(1)		SSUC(I)	VSU(/1)
٥	1,00000	, 40001 , 50001	0 0	0204	50000	1.00000	1,00000 ,94766 ,89547	-,50000 -,50000	.00204	.50000 .50000 .50000	1,00000 94766 99547
ų.	89547 (84357	.50000 .50000	0 0	0246 0246	50000 50000	89547 84357	84357 79209	50000 50000	00546	50000 50000	84357 79209
5	774209	.50000 .50000	0	0199	-,50000 -,50000	79209 74118	74118	-,50000 -,50000	00199	\$0000 \$0000	74118
8	64098	50000 50000	0	0549 0958	-,50000 -,50000	69098 64163	69098 64163	-,50000 -,50000	00958	50000	64163
10	754326 754601 750000	.50000 .50000 .50000	0	1409 1884 2368	50000 50000 50000	59326 54601 50000	59326 54601 50000	-,50000 -,50000 -,50000	01884	\$0000 50000 \$0000	.59326 .54601 .50000

FIGURE 7.6-2. Output for POTGEM Test Case 6 (Cont'd).

12	45536	.50000	02847	50000	45536	45536	50000	02847	.50000	45536
13	41221	50000	03305	- 50000	41221	41221	50000	03305	50000	41221
14	3/068	50000	03730	50000	37068	37068	50000	03730	50001	37068
15	33087	50000	04110	50000	33087	33087	50000	04110	50000	33087
16	129289	50000	04435	- 50000	29289	29289	50000	04435	50000	29289
1.7	1 25686	50000	04695	50000	25686	25686	50000	04695	50000	25686
18	124285	50000	04881	50000	22285	22285	50000	04861	50000	22285
19	19098	50000	-,04989	50000	19098	19098	50000	04989	50000	19098
50	11/133	.50000	-,05012	-,50000	16133	16133	50000	05012	50000	16133
21	1 4397	50000	04948	50000	13397	13397	- 50000	04948	50000	13397
55	10899	.50000	04795	50000	10899	10899	50000	04795	50000	10899
23	04645	.50000	04553	50000	08645	08645	50000	04553	50000	08645
24	04642	50000	04223	50000	06642	06642	-,50000	04223	50000	06645
25	04894	50000	-03807	50000	04894	04894	50000	03807	50000	04894
56	0.407	50000	03311	50000	03407	04407	50000	03311	50000	03407
27	02145	50000	02739	- 50000	02185	02185	50000	02739	50000	02185
28	01231	50000	02098	- 50000	01231	01231	50000	02098	50000	01231
29	00548	50000	01397	50000	00548	00548	-50000	-01397	50000	00548
30	'0n137	50000	00559	50000	00137	00137	50000	00659	50000	00137
31	00000	50000	00009	- 50000	0	.00000	-,50000	00009	\$0000	00137
32	00137	50000	01036	50000	00137	00137	50000	01036	\$50000	00137
33	00548	50000	01880	-,50000	00548	00548	50000	01880	50000	00548
34	01231	50000	02750	50000	01231	01231	- 50000	02750	50000	01231
35	02185	50000	03624	- 50000	02185	02185	50000	03624	50000	02185
36	0 5407	50000	04489	50000	03407	03407	50000	04469	50000	03407
37	04894	50000	05334	50000	04894	04894	50000	05334	50000	04894
38	06642	50000	06148	50000	06642	06642	50000	06148	\$50000	06642
39	04645	50000	06918	50000	08645	08645	- 50000	06918	\$50000	08645
40	111899	50000	07634	50000	10899	10899	50000	07654	\$0000	10899
41	114397	50000	08286	-,50000	13397	13397	- 50000	08286	50000	13397
42	1-133	50000	08865	50000	16133	10133	50000	08865	50000	16133
43	17098	50000	09355	50000	19098	19098	50000	09355	50000	19098
44	22285	50000	09756	50000	22285	22285	-,50000	09/56	50000	22285
45	125686	50000	10056	50000	25686	25686	50000	10056	50000	•
46	29289	50000	10248	50000	29289	29289	50000	10246	50000	25686
47	33087	50000	10327	50000	33087	33087	50000	10327	50000	.29269
48	137068	50000	10289	~,50000	37068	37068	50000	10289	50000 50000	33067
49	141221	50000	10129	50000	41221	41221	-,50000	10129	50000	37066
50	45536	50000	09846	50000	45536	45536	50000	09646		41221
				-,,				.0.7040	.50000	4553

FIGURE 7.6-2. Output for POTGEM Test Case 6 (Cont'd).

Figures-110

ZO E	5123 555 555 556 556 560 61
------	---

NAI, PAGE IS		50000 50001 50326 64163 64098 74118 77209 84357 84547 794766	\$6 \$6 \$6 \$6 \$6 \$6 \$6	0000 0000 0000 0000 0000 0000 0000		09439 08911 08264 07503 06638 05677 04634 03527 02377 01214 00000	50000 50000 50000 50000 50000 50000 50000 50000	50000 54601 59326 64163 69098 74118 79209 84357 89547 94766	50000 54601 59326 64163 69098 74118 79209 84357 89547 94766 1 00000	500 500 500 500 500 500 500	00 00 00 00 00 00 00 00 00	99439 98911 98264 97503 96638 95677 94634 93527 91214	50000 50000 50000 50000 50000 50000 50000 50000	50000 54601 59326 64163 69098 74118 79209 84357 89547 94706
800		POINTS	ALONG SL YSLB(I)		SU EI Larin	DGFS SSLR(I)	V518(1)	XSUACIA	YSUR(1)	250k(1)	SSUBILI	VSUR(1)	CORDICIO	SPANZ(1)
		974	500		.001	-,500	974	974	500	.001	500	970	1.000	052
,	,	1972	500		0.03	500	922	556	-,500	003	500	256	1,000	.05≥
7	5	1869	500		005	-,500	869	869	- 500	0.0,3	500	869	1,000	.05≥
U	1	7818	500		002	- 500	818	818	500	500	500	818	1,000	.051
	;	17.7	500		001	500	767	,767	500	001	500	767	1,000	051
é	1	7716	.500		- 004	- 500	716	.716	-,500	004	500	716	1,000	050
7	,	666	.500		007	500	666	606	-,500	007	500	666	1,000	049
F	•	617	500	100	012	500	617	617	-,500	012	,500	617	1.000	.048
q	7	7569	500		016	-,500	.569	569	-,500	-,016	500	.569	1,000	047
1.0)	1523	.500		150.0	500	523	.523	-,500	021	.500	. 523	1,000	.046
11		4/8	500		026	500	478	. 478	-,500	026	.500	478	1,000	045
12	,	7 4 4 4	500		031	500	434	434	-,500	031	.500	434	1,000	043
1.3	5	7391	.50n		035	500	. 591	391	-,500	055	.500	391	1,000	.042
14	1	1351	.500		039	500	351	351	-,500	0.039	,500	. 351	1,000	040
15	,	1312	500		043	500	312	312	-,500	043	500	312	1,000	038
1.5	,	1275	500		046	-,500	275	275	500	046	500	. [275]	1,000	.036
17	,	1240	.500		048	-,500	240	240	500	048	500	540	1,000	034
1.8	ś	1207	.500		049	- 500	207	207	500	049	. 500	207	1,000	.032
19	}	1176	200		050	- 500	.176	.176	- ,500	050	.500	. 176	1,000	0.50
20)	1147	500		050	500	147	.147	500	050	.500	147	1.000	027
21		121	500		049	500	121	.121	- ,500	049	.500	121	1,000	. 025
22		1047	500		047	- 500	097	097	500	047	500	.097	1.000	.023
23		076	500		044	500	076	076	-,500	- 044	,500	.076	1,000	020
24		7057	500		040	500	057	057	500	040	500	057	1.000	017

Output for POTGEM Test Case 6 (Cont'd). FIGURE 7.6-2.

	5	.041	500	036	500	.041	.041	-,500	036	.500 .500	.041	1,000	.015
	6	028	• S O O	030	-,500	.028	028	-,500	-,030	500	028 017 009	1.000	012
	7	017	500	024	-,500	017	.017	- ,500	024	.500	017	1,000	_010
-	8	009	500	-,018	-,500	009	.009	-,500	018	500	.004	1,000	007
. 5	9	003	500	-,010	-,500	003	.003	-,500	-,010	,500	.003	1,000	004
3	0	7000	500	003	-,500	000	000	500	-, 003	500	.000	1.000	001
3	1	1000	500	.006	500	000	000	-,500	.00n	500	000	1,000	001
3	2	003	500	.015	500	003	003	- 500	015	500	003	1,000	004
3	3	009	500	023	- 500	009	009	-,500	023	500	009	1,000	007
	4	017	500	032	-,500	017	017	500	032	500	017	1,000	010
3	5	1028	500	041	- \$500	850	028	- 500	041	500	850	1,000	012
. 3	6	001	500	.049	-,500	041	041	-,500	049	500	041	1.000	015
3	,7	1057	500	057	- 500	. 057	.057	500	057	500	057	1,000	017
3	8	₹ 076	500	065	- 500	076	.076	-,500	065	500	076	1.000	020
3	9	1047	500	073	- 500	097	097	-,500	073	500	097	1,000	023
4	0	121	500	080	- 500	121	121	-,500	080	500	121	1,000	025
4	11	1147	500	086	- 500	147	147	- 500	086	500	147	1,000	027
- 4	جا	176	500	.091	- 500	176	.176	- 500	091	500	176	1,000	030
4	3	105	500	096	-,500	207	707	-,500	09ъ	500	207	1,000	032
4	4	7240	500	099	-,500	240	240	-, 500	049	500	240	1,000	034
4	5	1275	500	501.	500	215	275	500	102	500	275	1,000	036
4	6	1312	วิริยก	103	- 500	312	312	- 500	103	500	312	1,000	038
4	7	7351	500	103	-,500	351	351	-,500	105	500	141	1,000	040
4	8	301	500	102	-,500	391	391	-,500	102	500	391	1,000	042
4	9	434	500	100	-,500	434	434	500	100	500	434	1.000	043
5	0	478	500	.097	500	478	478	-,500	097	_500°	478	1.000	045
5	1	5.3	500	.092	-,500	523	523	-,500	092	500	523	1.000	046
5	2	549 -	500	.086	500	569	569	500	.086	500	_469 -	1,000	047
5	3	617	500	.079	500	617	.617	500	079	500	617	1,000	048
5	4	1 466	500	.071	 500	666	666	-,500	071	500	666	1.000	.049
5	5	7116	500	.062	500	716	,716	-,500	.062	500	716	1,000	.050
	6	707	300	052	-,500	767	,767	500	052	500	767	1,000	.051
	7	818	500	041	500	818	.818	-,500	041	.500	818	1,000	.051
	8	1869	500	030	500	869	8.69	-,500	030	500	869	1,000	052
5	9	1922	500	018	500	. 922	. 922	-,500	018	500	_05S	1.000	.052
6	0	914	500	006	-,500	974	974	-,500	006	.500	974	1,000	052

FORCE SENSING LOCATIONS IN NI-DIRECTION

FIGURE 7.6-2. Output for POTGEM Test Case 6 (Concluded).

FIGURE 7.6-3(a). Side View of POTGEM Test Case 6.

FIGURE 7.6-3(b). Oblique View of POTGEM Test Case 6.

Figures-114

FIGURE 7.7-1. Planform of Test Case 7.
Figures-115

```
1.
2.
          TYTLE
          TEST CASE 7 . THIN WING WITH TWIST, CAMBER AND DIHEDRAL
3.
          CARY
4.
              THE NEXT 2 COMMANDS CAUSE THE AXIS TO COINCIDE WITH THE TRAILING EDGE
5.
          SHII
6.
7
           *INCRV1 IC#2.NTAB#3.VAR1(1)#0..15.479.35.107.
                    VAR2(1)==19.6025.-24.557.-36.411.COPT=1 SEND
Α.
9.
          S-11
           * INCRV1 IC=3, VAR2(1)=0.,3.86975,8.77675 SEND
10.
              THE NEXT COMMAND DEFINES THE TWIST ABOUT THE TRAILING EDGE
11,
              AS PHI # -.0097363+5**2 (DEG.)
12.
13.
          SHIT
           «INCRV1 IC#4, COPT##2, PARAM(2) #0, NTAB#3, VAR1(1) #0, 0, ..., 0097363 .END
14
              THE NEXT & COMMANDS CAUSE THE TWIST AXIS TO BE THE X-AXIS
15.
          SHI 1
16.
           STNCRVI 1045, COPTEI, NTABEI, VARZ(I) EL, SEND
17.
18.
          SHII
19
           FINCRY1 IC#6, COPT#0 SEND
              THE NEXT COMMAND CAUSES YPSCAL TO EQUAL THE LOCAL CHORD'
20.
21,
25.
            a INCRV1 IC#8;COPT#1;NTAB#3,VAR1(1)#0.,15.479,35.107,
                     VAR2(1)=19.6025,10.619419,4.8 SEND
23.
24.
              THE NEXT 4 COMMANDS DEFINE THE 4 CROSS SECTIONS
25.
          SHIT
56.
           *INCRV1 ICE11 COPTED SCSED REND
27.
          SHI
28.
           "INCRV1 TE#12.SCS#15.479.COPT#=2.PARAM(2)#0.,NTAB#5,
29,
                    VARI(1)=0.,10.619419,+10.619419 SEND
              THE AFFINE TRANSFORMATION CAPABILITY WILL BE USED IN THE NEXT
30.
              COMMAND TO AVOID HAND MULTIPLYING THE Z/C VALUES BY 12*C
31.
              AND TO AVOID TRANSFORMING THE INDEPENDENT VARIABLE TO V BY HAND.
32.
33.
                   AFTRAN(4)=93.55896=12±C
34,
35,
           .INCRVI IC=13.SCS=25.0.COPT=6.PARAM=0..NTAB=15.
                    VAR1(1)=-.02,0.,.02,.04,.06,.05,.10,.12,.14,.15,.16,.18,.20,.2025,1,,
36.
```

FIGURE 7.7-2. Input for POTGEM Test Case 7.

```
37.
38.
39.
40.
                     VAR2(1)=-,0067692,0.,.0054767,.0097886,.0130632,,0154283,.0170115,
                              .0179405..0183428..0183864..0183463..0180785..0176670.
                              .0176119.0.
                     AFFINERT_AFTRANS-1.,0.,0.,93,55896,1.,0. REND
41.
           SPIT
            INCRV1 IC=14 SCS=35,107 AFTRAN(4)=72, PCFINL=T SEND

> SPANWISE SEGMENTS WILL RE USED. THERE WILL HE 7 PANELS IN THE
42
43.
44.
               INBOARD SEGMENT AND & PANELS IN THE OUTBOARD SEGMENT! THERE WILL
45.
               HE 5 CHORDWISE PANELS SET BACK 1/4 PANEL FROM LEADING EDGE!
46.
           DISECMENTS
47.
            DATA NSEGSTER, NEPSET, 9, NEPVES KEND
48.
           VLBC
49.
            ADATA SEND
50.
           SLAC
51,
            ADATA IDPT#3 KEND
52.
53.
            -DATA INPTSVan SEND
54
55
            *DATA Inptsv=1, NTABsv=1, VAR2sv(1)=15,479 REND
56.
               THE VL(S) FURVE DEFINED BY THE FOLLOWING COMMAND WILL BE
57.
               SATISFACTORY FOR THE SND SEGMENT ALSO
58.
59.
            SDATA VARZSV(1)=1. SEND
60.
61,
            TDATA INPISYED SEND
62,
           PANE
63.
            SDATA SEND
64.
           SEGMENT
65.
            #DATA NSEGS#2 SEND
66.
           VLHC
67.
            TDATA INPITE SEND
68.
            &DATA INPTSV#1, VAR2SV#35 107 SEND
69.
70.
           PANI
71.
            + DATA SENU
72.
               THE FOLLOWING COMMAND ELIMINATES THE NULL ROW OF PANELS
```

FIGURE 7.7-2. Input for POTGEM Test Case 7 (Cont'd).

```
RETHEEN THE 1ST AND 2ND SEGMENTS
73.
          NHIS
74.
           ADATA ITHE REND
RASS.
           EDATA EAXIS(1)=0.,0.,1.,PHI=90. SEND
          DSFL
                   -1
                  -1
                  16
                  16
                  16
5
             16
             12
          FINISH
           *DATA FLT(5) #1.,0.,.176326981 SEND
          STORF -DATA 1087 SEND
          PRINT
           FRATA SEND
          STOP
```

FIGURE 7.7-2. Input for POTGEM Test Case 7 (Concluded).

```
POTEAN GEOMETRY PROGRAM. VERSION 1.3
TIME = 08/09/76
                   07138112
                                                                                    ORIGINAL PAGE IS
ENTER BATCH
+TITLE
TEST CASE 7 . THIN WING WITH THIST, CAMBER AND DIHEOPAL
+CARY
     THE FORT P COMMANDS CAUSE THE AXIS TO COINCIDE WITH THE TRAILING EDGE
+5811
+SRII
     THE STEAT COMMAND DEFINES THE TWIST ABOUT THE TRAILING EDGE
     AS PHI # #.009/363*5**# (DEG.)
+5R11
     THE FERT & CUMMANDS CAUSE THE THIST AXIS TO BE THE XMAXIS
+SF [ 1
+5811
THE LEST COMPAND CAUSES YPSCAL TO EDUAL THE LOCAL CHORD.
+5h 11
     THE MEAT A COMMANOS DEFINE THE A THOSS SECTIONS
+SHI1
+5811
     THE AFFINE TRANSFORMATION CAPARILITY WILL BE USED IN THE NEXT
    LOMMAND TO AMOID HAND MULTIPLYING THE ZZC VALUES BY 124C
     AND TO AVOID BRANSFORMING THE INDEPENDENT VARIABLE TO V BY HAND
         *FTRAN(4)=95.55896=12+0
+5k11
+SHI1
= ((41, *1544V, (41, *11)) =
                                      1 0000000
                                                     0
                                                                                                                        .7047792
                                                                        4800000
                                                                                       3943224
                                                                                                         9600000
     1.0200000
                    - 4873824
                                                                                      1.2248280
                                                                                                         8800000
                                                                                                                       1,2917160
      9400000
                     9405504
                                       9200000
                                                     1,1108376
                                                                        9000000
```

FIGURE 7.7-3. Output for POTGEM Test Case 7.

```
.06000000
                   1.3206816
                                    8500000
                                                  1 3238208
                                                                   8400000
                                                                                 1,3209336
                                                                                                  0000058
                                                                                                               1.3016520
     28000000
                                    7975000
                   1.2720240
                                                 1, 5680268
                                                                                 0.
    2 SPANAISE SEGMENTS WILL HE USED! THERE WILL HE 7 PANELS IN THE
    INDUARD SEGMENT AND A PANELS IN THE DUTBOARD SEGMENT. THERE WILL
     HE 5 CORDWISE PANELS SET BACK 1/4 PANEL FROM LEADING EDGE.
+DSEGMENTS
+ VLISC
+SLAC
+51
*SU
    THE VERS, CURVE DEFINED BY THE FOLLOWING COMMAND WILL BE
    SATISFACTORY FOR THE 2ND SEGMENT ALSO.
+ VI
+ VII-
+PANI
+SEGMENT
+VLHL
+SU
+PANI
  THE FOILOWING COMMAND ELIMINATES THE NULL ROW OF PANELS
    BETWEEN THE IST AND 2ND SEGMENTS
+NH 12
+RASS
+DSFT
+FINISH
+STORE
FILE 7.6MmPMC/LIHS HAS BEEN OPENED FOR WRITING ON UNIT 1
CREATION TIME = 08/09/76 07:38:20
CREATION OF GEOMETRY FILE
TITLE = TEST CASE 7 - THIN WING WITH TWIST, CAMBER AND DIHEDRAL
(LOG) # FFFFFFFFFFFFFFFFFFFF
(INI) =
         O
             17
                       1.6
                                   0
        401,49040
                       35,106999 10,918957 35,106999
                                                                                                17364818
(FLT) =
                                                                                        0.
                                                                                                              224 02299
```

FIGURE 7.7-3. Output for POTGEM Test Case 7 (Cont'd).

```
0
          . 124022991-01
                                  ٥.
                                                                  0
+PRINT
PRINTOUT OF GEOMETRY FILE DATA
TITLE & TEST CASE 7 w THIN WING WITH TWIST, CAMBER AND DIMEDRAL
CREATION TIPE = 08/09/76
                              07:38120
(IFORM) = 1;0111111
= (01)
(LOG) =
           FFFFFFFF
                              FFFFFFFFF
([HT] =
                              35, 1069990
(F(T) =
             401.4904000
                                              10,9189570
                                                              35,1069990
                                                                                9848078
                                                                                               0
                                                                                                                1736462
             224 0229900
                                0224023
PANEL CURRER POINTS
                                             761,33
             (L, t, x)
                             TL. TIY
                                                             S(T,J)
                                                                             (L,1)V
               9801249
                                                                              4500000
                               0000000
  2
             2 9069893
                             2,5115857
                                                                               9500000
                                               6104210
                                                             2,5115851
                                                                              9500000
  3
             4 8335716
                             4 4225713
                                             1 1959718
                                                             4,4225714
  4
             6 7596813
                             6.6338576
                                             1.7627275
                                                             6.6338571
                                                                               9500000
  5
             8 6851800
                             8 8451430
                                             2.3167590
                                                             8 8451430
                                                                               9500000
  h
            10 6099340
                            11,0564280
                                             2.8641313
                                                            11,0564280
                                                                               9500000
                                             3,4109015
  7
            12 5337610
                            13 2677140
                                                            13, 2677140
                                                                               9500000
            14 4563800
  8
                            15,4790000
                                             3 9631141
                                                            15,4790000
                                                                               9500000
  ġ
           16 3795280
                                             4 5485559
                                                            17.6598890
                                                                               9500000
                            17 6598880
           18 2997800
                                                                               9500000
 10
                            19 8407770
                                             5 1 344998
                                                            19 8407770
 11
           20 2165860
                            22 0216660
                                             5 7237971
                                                           22,0216660
                                                                               9500000
           22 1292940
 12
                            24, 2025550
                                             6 3192591
                                                           24,2025550
                                                                               9500000
 13
           24" 0510310
                                              8067142
                                                           26 38 34 440
                                                                               9500000
                            26 3834440
 14
           75'9811200
                                                            28 5643530
                            28' 5643320
                                             7 2391884
                                                                               9500000
 15
           27 9125960
                            30, 7452210
                                             7 6872207
                                                            30,7452220
                                                                               9500000
           29 8450350
 16
                            32, 9261100
                                             H_1537990
                                                            32 9201100
                                                                               9500000
     1
                              1069990
 17
     1
            41 7777920
                                             8 6418920
                                                            35,1070000
                                                                              9500000
             4 9006249
 . 1
     2
                               0000000
                                                                               7500000
  5
     2
            6 5706519
                                               8258557
                              2112457
                                                             2 2112857
                                                                              7500000
  3
     2
            N 2393220
                              4225713
                                                             4 4225714
                                             1.6320706
                                                                              .7500000
            9'9053500
                             6 6338570
                                             2.4234352
                                                             6 6338571
                                                                              .7500000
```

FIGURE 7.7-3. Output for POTGEM Test Case 7 (Cont'd).

5 2 11 5674920 11 0564280 3 2047090 8 8451430 7500000 7 2 14 8751250 11 0564280 3 9806230 11 0564280 7500000 7 2 14 8751250 12 677140 4 7558605 13 2677140 7500000 8 2 16 5179890 15 4790000 5 5350512 15 4790000 7500000 10 2 20 0926280 19 8407770 6 2775055 19 8407770 7500000 11 2 21 8817890 22 0216660 6 6515889 22 0216660 7500000 12 2 23 6728410 22 0216660 6 6515889 22 0216660 7500000 13 2 25 4843570 26 3834440 7 4323506 26 3834440 7500000 14 2 27 2565580 28 5643320 7 8524904 28 5643330 7500000 15 2 29 0503230 30 7452210 8 2846900 30 7452220 7500000 16 2 00 8454920 32 7261100 8 7513180 32 9261100 7500000 17 2 42 6417270 35 1069990 9 1947380 35 1070000 7500000 13 3 8 8211250 0000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0						•	
7 2 14 78751250 13 2877140 4 7558605 13 2877140 7500000 8 2 16 517890 15 4790000 5 5350512 15 4790000 7500000 9 2 18 3048830 17 6598880 5 9061142 17 6598890 7600000 10 2 20 0922290 19 8407770 6 2775055 19 8407770 7500000 11 2 21 8817890 22 0216660 6 6515689 22 0216660 7500000 12 2 23 6728410 24 2025550 7 0306663 24 2025550 7500000 13 2 25 4643570 26 3834440 7 4323506 26 3834440 7700000 14 2 27 2565580 28 5643320 7 852490 88 5643330 7500000 15 2 29 0503230 50 7452210 8 2846900 30 7452220 7500000 16 2 30 8454920 32 9261100 8 7313180 32 9261100 7500000 17 2 32 6417270 35 1069990 9 1947380 35 1070000 7500000 2 3 10 2344160 2 2112857 9199216 2 2112857 5500000 3 3 11 6458790 4 4225713 1 8254412 4 4225714 5500000 4 3 13 0537410 6 6338570 2 7200547 6 6338571 5500000 6 3 15 8516900 11 0564280 4 4904217 11 0564280 5500000 6 3 15 8516900 11 0564280 4 4904217 11 0564280 5500000 8 3 18 6414770 15 4790000 6 2581389 15 4790000 5500000 9 3 20 2756490 13 2677140 5 3729569 13 2677140 5 5000000 10 3 21 9432760 19 8407770 6 5577943 19 8407770 5500000 11 3 28 69785430 26 383440 7 2092867 26 383440 5500000 12 3 26 7785430 26 383440 7 2092867 26 383440 5500000 13 3 21 9432760 19 8407770 6 5577943 19 8407770 5500000 14 3 28 6440540 28 5643320 7 6627821 28 5643330 5500000 15 3 30 3107110 30 7452210 8 1251210 30 7452220 5500000 17 3 17 7437560 28 7598880 7 76627821 28 5643330 5500000 18 3 28 7598400 28 5643320 7 6627821 28 5643330 5500000 19 3 26 7785430 26 383440 7 2092867 26 3834440 5500000 17 3 17 7437560 19 7407570 6 5577943 19 8407770 5500000 17 3 17 7448260 28 5643320 7 6627821 28 5643330 5500000 17 3 17 7448260 28 5643320 7 6627821 28 5643330 5500000 18 3 15 6532430 4 4225713 1 7760835 4 4225714 3500000 18 4 15 6332430 4 4225713 1 7760835 4 4225714 3500000 19 4 17 5514780 8 8851430 3 5228889 8 8451430 3500000 17 4 12 7416250 0 0000000 0 0 000000 0 0000000 0 00000	5	2	11,5674920 8,6	1451430	3.2047096	8 8451430	7500000
7 2 14 78751250 13 2877140 4 7558605 13 2877140 7500000 8 2 16 517890 15 4790000 5 5350512 15 4790000 7500000 9 2 18 3048830 17 6598880 5 9061142 17 6598890 7600000 10 2 20 0922290 19 8407770 6 2775055 19 8407770 7500000 11 2 21 8817890 22 0216660 6 6515689 22 0216660 7500000 12 2 23 6728410 24 2025550 7 0306663 24 2025550 7500000 13 2 25 4643570 26 3834440 7 4323506 26 3834440 7700000 14 2 27 2565580 28 5643320 7 852490 88 5643330 7500000 15 2 29 0503230 50 7452210 8 2846900 30 7452220 7500000 16 2 30 8454920 32 9261100 8 7313180 32 9261100 7500000 17 2 32 6417270 35 1069990 9 1947380 35 1070000 7500000 2 3 10 2344160 2 2112857 9199216 2 2112857 5500000 3 3 11 6458790 4 4225713 1 8254412 4 4225714 5500000 4 3 13 0537410 6 6338570 2 7200547 6 6338571 5500000 6 3 15 8516900 11 0564280 4 4904217 11 0564280 5500000 6 3 15 8516900 11 0564280 4 4904217 11 0564280 5500000 8 3 18 6414770 15 4790000 6 2581389 15 4790000 5500000 9 3 20 2756490 13 2677140 5 3729569 13 2677140 5 5000000 10 3 21 9432760 19 8407770 6 5577943 19 8407770 5500000 11 3 28 69785430 26 383440 7 2092867 26 383440 5500000 12 3 26 7785430 26 383440 7 2092867 26 383440 5500000 13 3 21 9432760 19 8407770 6 5577943 19 8407770 5500000 14 3 28 6440540 28 5643320 7 6627821 28 5643330 5500000 15 3 30 3107110 30 7452210 8 1251210 30 7452220 5500000 17 3 17 7437560 28 7598880 7 76627821 28 5643330 5500000 18 3 28 7598400 28 5643320 7 6627821 28 5643330 5500000 19 3 26 7785430 26 383440 7 2092867 26 3834440 5500000 17 3 17 7437560 19 7407570 6 5577943 19 8407770 5500000 17 3 17 7448260 28 5643320 7 6627821 28 5643330 5500000 17 3 17 7448260 28 5643320 7 6627821 28 5643330 5500000 18 3 15 6532430 4 4225713 1 7760835 4 4225714 3500000 18 4 15 6332430 4 4225713 1 7760835 4 4225714 3500000 19 4 17 5514780 8 8851430 3 5228889 8 8451430 3500000 17 4 12 7416250 0 0000000 0 0 000000 0 0000000 0 00000	: 6	2	13 2245090 11 0	564280	3 9806230	11.0564280	7500000
8 2 16 5170490 15 4790000 5 5350512 15 4790000 7500000 10 2 20 0348350 17 6598860 5 9061142 17 6598890 7500000 11 2 21 8818990 22 0216660 6 6515689 22 0216660 7500000 12 2 23 6728410 24 2025550 75000663 24 2025550 7500000 13 2 27 2565580 24 5643320 7 8524908 28 5643330 7500000 14 2 27 2565580 28 5643320 7 8524908 28 5643330 7500000 15 2 29 0503230 50 7452210 8 2846900 30 7452220 7500000 16 2 30 68454920 32 9261100 8 7313180 32 9261100 7500000 17 2 42 6417270 35 1069990 9 1947380 35 1070000 7500000 13 8 8211550 7000000 0 9 1947380 35 1070000 7500000 13 8 8211550 7000000 0 9 1947380 35 1070000 7500000 13 8 8211550 7000000 0 9 1947380 35 1070000 7500000 13 11 6565790 47 4225715 18 2544160 2 2112857 9199216 2 2112857 5500000 13 11 6565790 47 4225715 18 254412 4225715 5500000 15 3 11 6665790 47 4225715 18 2500000 15 3 11 6665790 17 6568280 8 8451430 35072439 8 8451430 5500000 75000000 7500000 75000000 75000000 75000000 75000000 75000000 75000000 75000000 75000000 75000000	7	2	14 8751250 13 2	677140	4 7558605		7500000
9 2 18 3048830 17 6598880 5,9061142 17 6598890 7500000 10 2 20 09026290 19 407770 6,2775055 19 8407770 7500000 11 2 21 8417890 22 0216660 6,6515689 22 0216660 7500000 12 2 23 6728410 24 2025550 7 0306663 24 2025550 7500000 13 2 25 4443570 26 58834440 7 4325506 26 3834440 7500000 14 2 27 2565580 28 5643320 7 8524908 28 5643330 7500000 15 2 29 0503230 50 7452210 8 2846900 30 7452220 7500000 16 2 30 8454920 32 9261100 8 7313180 32 9261100 7500000 17 2 52 6417270 35 1069990 9 1947380 35 1070000 7500000 18 3 8 8811250 7 9199216 2 2112857 5500000 19 3 10 2344160 2 2112857 9199216 2 2112857 5500000 10 3 11 6458790 4 4225713 1 8254412 4 4225714 5500000 10 3 13 83 6537410 6 6338570 2 7200567 6 6338571 5500000 11 3 14 4562580 8 8451430 3 5072439 8 8451430 5500000 12 3 17 2382690 13 2677140 5 3729569 13 2677140 5 500000 13 3 17 4382690 13 2677140 5 3729569 13 2677140 5 500000 14 3 13 6537410 15 4790000 6 2581389 15 4790000 5500000 18 3 18 6141770 15 4790000 6 2581389 15 4790000 5500000 19 3 20 2756390 17 6598880 6 4077773 17 6598890 500000 10 3 21 942760 19 407770 6 5577943 19 8407770 5500000 11 3 23 6187890 22 0216660 6 7101015 22 0216660 5500000 12 3 25 3038120 24 2025550 6 8668802 24 2025550 5500000 13 3 31 7845960 22 0216660 6 7101015 22 0216660 5500000 14 3 28 6440540 28 5643320 7 6627821 28 5643330 5500000 15 3 30 3107110 30 7452210 6 1251210 30 7452220 5500000 16 3 31 7845980 26 5884380 7 6627821 28 5643330 5500000 17 3 43 6486670 35 1069990 9 0832740 35 1070000 5500000 18 4 15 6532430 4 4225713 1 7760835 4 4225714 3500000 19 4 12 7416250 0 0000000 0 0 5500000 10 4 12 7416250 0 0000000 0 0 0 5500000 11 4 12 7416250 0 0000000 0 0 0 5500000 12 4 13 6882800 2 2112857 0 8920248 2 2112857 3 3500000 13 4 15 6532430 4 4225713 1 7760835 4 4225714 3500000 14 4 16 7048550 6 6738510 2 6752860 6 6338571 3500000 15 4 17 5514780 8 8451430 3 5243619 8 8451430 3500000 16 4 18 4914740 11 6964280 4 3935273 11 6564280 3500000 17 4 19 6231920 15 277140 5 52621903 13 2677140 35000000 18 4 16 7048740 11 6764280 4 3935273 11 6564280 3500	8	ج	16 5170890 15	790000	5.5350512	15 4790000	7500000
10 2 20,0026290 19,8407770 6,2775055 19,8407770 7500000 11 2 21,8417890 22,0216660 6,6515689 22,0216660 7500000 12 2 23,6728410 24,2025550 7,0306663 24,2025550 7500000 13 2 25,4643570 26,3834440 7,4323506 26,3834440 7,00000 14 2 27,2565580 28,5643320 7,8524904 28,5643330 7500000 15 2 29,0503230 30,7452210 8,2846900 30,7452220 7500000 16 2 30,8454920 32,9261100 8,7313180 32,9261100 7,500000 17 2 52,6417270 35,1069990 9,1947380 35,1070000 7500000 13 3 8,8711250 000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9	2	18 3048830 17 6	598880	5,9061142	17 6598890	7500000
11 211 8817890 222 0216660 6,6515689 22 0216660 7500000 12 2 23,6728410 24,2025550 7 0306663 24,2025550 7500000 13 2 25,4443570 26,3834440 7,4323506 26,5834440 7500000 14 2 27,256580 28,5643320 7,8524908 28,5643330 7500000 15 2 99,0503230 30,7452210 8,2846900 30,7452220 7500000 16 2 0,844920 32,9261100 8,7313180 32,9261100 7500000 17 2 42,6417270 35,1069990 9,1947380 35,1070000 7500000 2 3 10,2344160 2,2112857 9199216 2,2112857 5500000 3 3 11,6458790 4,4225713 1,8254412 4,4225714 5500000 4 3 13,0537410 6,6338570 2,7200547 6,6338571 5500000 5 3 14,4562580 8,8451430 3,6072439 8,8451430 5500000 6 3 15,864900 11,0564280 4,400217 11,0564280 5500000 7 3 17,442760 13,2677140 5,700000 5,57144 <t< td=""><td>10</td><td>2</td><td>20'0926290 19'6</td><td>3407770</td><td></td><td>19 8407770</td><td>7500000</td></t<>	10	2	20'0926290 19'6	34 0777 0		19 8407770	7500000
12 2 23,6728410 24,2025550 7,0306663 24,2025550 7500000 13 2 25,4643570 26,3834440 7,4323506 26,3834440 7,500000 14 2 27,2565580 28,5643320 7,8524904 28,5643330 7500000 15 2 29,0503230 30,7452210 8,2846900 30,7452220 7500000 16 2 60,8454920 32,9261100 8,7313180 32,9261100 7500000 17 2 42,6417270 35,10649990 9,1947380 35,1070000 7500000 13 4,8211250 0000000 0 0 0 5500000 2 3 10,2344160 2,2112857 9199216 2,2112857 5500000 3 3 11,6458790 4,4225713 1,8254412 4,4225714 5500000 4 3 13,0537410 6,6338570 2,720587 6,338571 5500000 5 3 14,4562580 8,8451430 3,6072439 8,8451430 5500000 7 3 17,2382690 11,5664280 4,4904217 11,0564280 5300000 7 3 17,2382690 13,2677140 5,729569 13,2677140 5,500000 8 3 18,6141770 15,4790000 6,2581389 15,4790000 5500000 10 3 21,79432760 19,8407770 6,5577943 19,8407770 5,500000 11 3 23,6187890 22,0216660 6,7101015 22,0216660 5,500000 12 3 26,776390 17,6598880 6,4077737 17,6598890 5,500000 13 3 26,776390 17,7452210 8,5577943 19,8407770 5,500000 13 3 26,776390 22,0216660 6,7101015 22,0216660 5,500000 14 3 28,6440540 28,5643320 7,667821 28,5643330 5,500000 15 3 3,669785430 26,3834440 7,2092867 26,3834440 5,500000 16 3 31,7783980 32,9261100 8,5980400 32,9261100 5,500000 17 3 43,6486670 55,1069990 9,0832740 35,1070000 5,500000 18 4 15,05322430 4,4225713 1,7760835 4,4225714 3,500000 19 4 13,8982800 2,2112857 8,926248 2,2112857 3,500000 19 4 13,8982800 2,2112857 8,926248 2,2112857 3,500000 19 4 13,8982800 2,2112857 8,926248 2,2112857 3,500000 2 4 13,8982800 2,2112857 8,926248 2,2112857 3,500000 2 4 13,8982800 2,2112857 8,926248 2,2112857 3,500000 2 4 13,8982800 2,2112857 8,926248 2,2112857 3,500000 2 4 13,698280 4,4225713 1,7760835 4,4225714 3,500000 2 4 13,698280 4,4225713 1,7760835 4,4225714 3,500000 2 4 13,698280 4,4225713 1,7760835 4,4225714 3,500000 2 4 13,698280 4,4225713 1,7760835 4,4225714 3,500000 2 4 13,698280 2,2112857 8,926248 2,2112857 3,500000 2 4 13,698280 2,2112857 8,926248 2,2112857 3,500000	11	5	21'8817890 22'0	216660	6 6515689	25,0516660	7500000
13 2 5 444570 26 3834440 7,4323506 26 3834440 7,500000 14 2 7 255580 28 5643320 7,8524908 28 5643330 7,500000 15 2 29 0503230 30 7452210 8,2846900 30 7452220 7500000 16 2 30 84874920 32 9261100 87313180 32 9261100 7500000 1 3 848711250 0000000 0 0 5500000 2 3 10 2344160 2 2112857 9199216 2 2112857 5500000 3 3 11 6458790 4 4225713 1 825412 4 4225714 5500000 4 3 13 0537410 6 6338570 2 7200547 6 6338571 5500000 5 3 14 4562580 8 8451430	12	2	23 6728410 24 2	2025550	7 0 506663	24[2025550	7500000
14 2 772565580 28 5643320 7 8524908 28 5643330 7500000 15 2 99 503230 30 7452210 8 2846900 30 745220 7500000 16 2 60 8454920 32 9261100 8 7313180 32 9261100 7500000 17 2 42 6417270 35 1069990 9 1947380 35 1070000 7500000 1 3 8 8211250 00000000 0 0 5500000 3 3 11 6458790 4 4225713 1 8254412 4 4225714 5500000 4 3 13 0537410 6 6338570 2 7200567 6 6338571 5500000 5 3 14 6962580 8 4841430 3 5072439 8 4841430 5500000 6 3 15 8516900 11 0564280 4 4904217 11 0564280 5500000 7 3 17 2382690 13 2677140 5 3729569 13 2677140 5 500000 8 3 18 141770 15 4790000 6 2581389 15 4790000 5500000 9 3 20 2756390 17 659880 </td <td>13</td> <td>. 5</td> <td>25 4643570 26 3</td> <td>8834440</td> <td>7.4323506</td> <td>26 38 34440</td> <td>7500000</td>	13	. 5	25 4643570 26 3	8834440	7.4323506	26 38 34440	7500000
15 2 299 0503230 30 7452210 3 2846900 30 7452220 7500000 16 2 30 8454920 32 9261100 8 7313180 32 9261100 7500000 17 2 37 6417270 35 10699990 9 1947380 35 1070000 7500000 2 3 10 2344160 2 2112857 919216 2 2112857 5500000 3 3 11 6458790 4 4225713 1 7254412 4 4225714 5500000 4 3 13 6537410 6 6338570 2 7200547 6 6338571 5500000 5 3 14 4562580 8 8451430 3 6072439 8 8451430 5500000 6 3 15 816990 11 6564280 4 4904217 11 664280 500000 7 3 17 2382690 13 2677140 5 1729569 13 2677140 5 500000 8 3 18 6141770 15 4790000 6 2581389 15 4790000 5500000 9 3 20 2756390 17 6598880 6 40777	14	2			1 8524908	28 5643330	7500000
16 2 40,8454920 32,9261100 8,7313180 32,9261100 7500000 17 2 42,6417270 35,1069990 9,1947380 35,107000 7500000 1 3 8,641150 0000000 0 0 5500000 2 3 10,2344160 2,2112857 5500000 35,00000 35,00000 3 3 11,6458790 4,4225713 1,8254412 4,4225714 5500000 4 3 13,0537410 6,6338570 2,7200547 6,6338571 5500000 5 3 14,4562580 8,8451430 3,6072439 8,8451430 5500000 6 3 15,8516900 11,0564280 4,4904217 11,0564280 5900000 7 3 17,2332690 13,2677140 5,1729569 13,2677140 5500000 8 3 18,6141770 15,4790000 6,2581389 15,4790000 5500000 9 3 20,2756390 17,659880 6,407737 17,659889 5500000 10 3 21,79432760 19,8407770	15	5	29 0503230 30 1	452210	8 2846900	30 7452220	7500000
17 2	16	2	(0.8454920 32.5		8 7313180	32,9261100	1500000
1 3 8'8911250	17	5	42 6417270 35 1	069990	9 1947380	35,1070000	7500000
2 3 10 2344160 2 2112857 9199216 2 2112857 5500000 3 3 11 6458790 4 4225713 1 8254412 4 4225714 5500000 4 3 13 0537410 6 6338570 2 7200567 6 6338571 5500000 5 3 14 4562580 8 8451430 3 6072439 8 8451430 5500000 6 3 15 8516900 11 0564280 4 4904217 11 0564280 5500000 7 3 17 2382690 13 2677140 5 3729569 13 2677140 5500000 8 3 18 6141770 15 4790000 6 2581389 15 4790000 5500000 9 3 20 2756390 17 6598880 6 4077737 17 6598890 5500000 10 3 21 9432760 19 8407770 6 5577943 19 8407770 5500000 11 3 23 6187890 22 0216660 6 7101015 22 0216660 5500000 12 3 25 3038120 24 2025550 6 8666802 24 2025550 5500000 13 3 26 9785430 26 3834440 7 2092867 26 3834440 5500000 14 3 28 6440540 28 5643320 7 6627821 28 5643330 5500000 15 3 30 3107110 30 7452210 8 1251210 30 7452220 5500000 16 3 31 9783980 32 9261100 8 5980400 32 9261100 5500000 17 3 43 6468670 35 1069990 9 0832740 35 1070000 5560000 18 4 12 7416250 00000000 2 4 13 8982800 2 2112857 8926248 2 2112857 3500000 3 4 15 0532430 4 4225713 1 7760835 4 4225714 3500000 4 4 16 2048550 6 6338570 2 6525980 6 6338571 3500000 5 4 17 3514780 8 8451430 3 5248619 8 8451430 3500000 6 4 18 4914740 11 0564280 4 3935273 11 0564280 3500000 7 4 19 6231920 15 2677140 5 2621903 13 2677140 3500000 7 4 19 6231920 15 2677140 5 2621903 13 2677140 3500000	1	3	8,8511580 (0	000000	0	0	5500000
3 11 6458790 4 4225713 1 A254412 4 4225714 5500000 4 3 13 0537410 6 6338570 2 7200567 6 6338571 5500000 5 3 14 4562580 8 8451430 3 6072439 8 8451430 5500000 6 3 15 8516900 11 0564280 4 4904217 11 0564280 5500000 7 3 17 2382690 13 2677140 5 3729569 13 2677140 5500000 8 3 18 6141770 15 4790000 6 2581389 15 4790000 5500000 9 3 20 2756390 17 6598880 6 4077737 17 6598890 5500000 10 3 21 79432760 19 8407770 6 5577943 19 8407770 5500000 11 3 23 6187890 22 0216660 6 7101015 22 0216660 5500000 12 3 26 785430 26 3834440 7 2092867 26 3834440 5500000 14 3 24 640540 28 5643320 7 6627821	2	3	10,5344160 5,5	2112857	9199216	2 2112857	5500000
4 3 13,0537410 6,6338570 2,7200567 6,6338571 5500000 5 3 14,4562580 8,8451430 3,6072439 8,8451430 5500000 6 3 15,8516900 11,0564280 4,4904217 11,0564280 5500000 7 3 17,2382690 13,2677140 5,500000 3,2677140 5,500000 8 3 18,6141770 15,4790000 6,2581389 15,4790000 5500000 9 3 20,2756390 17,6598880 6,4077737 17,6598890 5500000 10 3 21,79432760 19,8407770 6,5577943 19,8407770 5500000 11 3 23,6187890 22,0216660 6,7101015 22,0216660 5500000 12 3 26,9785430 24,2025550 6,8666802 24,2025550 5500000 13 3,649785430 26,3834440 7,2092867 26,3834440 5500000 14 3,7452400 28,5643320 7,6627821 28,5643330 5500000 15 3 30,3107110 30,7452210	3	3	11 6458790 4 4			4 4225714	5500000
6 3 15,8516900 11,0564280 4,4904217 11,0564280 5,300000 7 3 17,2342690 13,2677140 5,3729569 13,2677140 5,500000 8 3 18,6141770 15,4790000 6,2581389 15,4790000 5,500000 9 3 20,2756390 17,6598880 6,4077737 17,6598890 5,500000 10 3 21,9432760 19,8407770 6,5577943 19,8407770 5,500000 11 3 23,6187890 22,0216660 6,7101015 22,0216660 5,500000 12 3 25,3038120 24,2025550 6,8666802 24,2025550 5,500000 13 3 26,9785430 26,3834440 7,2092867 26,3834440 5,500000 14 3 28,6440540 28,5643320 7,6627821 28,5643330 5,500000 15 3 30,73107110 30,7452210 8,1251210 30,7452220 5,500000 16 3 31,79783980 32,9261100 8,1251210 30,7452220 5,500000 17 3 43,6466670 35,106999 7,0832740 35,1070000 5,500000 2 4 13,8982	4	3	13 0537410 6 6		2 7200587		5500000
6 3 15,8516900 11,0564280 4,4904217 11,0564280 5,300000 7 3 17,2342690 13,2677140 5,3729569 13,2677140 5,500000 8 3 18,6141770 15,4790000 6,2581389 15,4790000 5,500000 9 3 20,2756390 17,6598880 6,4077737 17,6598890 5,500000 10 3 21,9432760 19,8407770 6,5577943 19,8407770 5,500000 11 3 23,6187890 22,0216660 6,7101015 22,0216660 5,500000 12 3 25,3038120 24,2025550 6,8666802 24,2025550 5,500000 13 3 26,9785430 26,3834440 7,2092867 26,3834440 5,500000 14 3 28,6440540 28,5643320 7,6627821 28,5643330 5,500000 15 3 30,73107110 30,7452210 8,1251210 30,7452220 5,500000 16 3 31,79783980 32,9261100 8,1251210 30,7452220 5,500000 17 3 43,6466670 35,106999 7,0832740 35,1070000 5,500000 2 4 13,8982	5	3			3 6072439	8[8451430	5500000
7 3 17 2382690 13 2677140 5 3729569 13 2677140 5500000 8 3 18 6141770 15 4790000 6 2581389 15 4790000 5500000 9 3 20 2756390 17 6598880 6 4077737 17 6598890 5500000 10 3 21 9432760 19 8407770 6 5577943 19 8407770 5500000 12 3 25 3038120 24 2025550 6 8666802 24 2025550 5500000 12 3 26 9785430 26 3834440 7 2092867 26 3834440 5500000 13 3 26 9785430 26 3834440 7 2092867 26 3834440 5500000 14 3 28 6440540 28 5643320 7 6627821 28 5643330 5500000 15 3 30 3107110 30 7452210 8 1251210 30 7452220 5500000 15 3 30 3107110 30 7452210 8 1251210 30 7452220 5500000 17 3 43 6466670 35 1069990 9 0832740 35 1070000 5500000 17 3 43 6466670 35 1069990 9 0832740 35 1070000 5500000 14 12 7416250 0 0000000 0 0 0 0 0 0 0 0 0 0 0 0 0	6	4	15[8516900 11[0	564280	4 4904217		5500000
8 3 18'6141770 15'4790000 6'2581389 15'4790000 5500000 9 3 20'2756390 17'6598880 6'4077737 17'6598890 5500000 10 3 21'9432760 19'8407770 6'5577943 19'8407770 5500000 11 3 23'6187890 22'0216660 6'7101015 22'0216660 5500000 12 3 25'3038120 24'2025550 6'866802 24'2025550 5500000 13 3 26'9785430 26'3834440 7'2092867 26'3834440 5500000 14 3 28'6440540 28'5643320 7'6627821 28'5643330 5500000 15 3 30'3107110 30'7452210 8'1251210 30'7452220 5500000 16 3 31'9783980 32'9261100 8'5980400 32'9261100 5500000 17 3 43'6468670 35'1069990 9'0832740 35'1070000 5500000 2 4 12'7416250 0'0000000 0' 35'00000 5500000 3 4 15'0532430 4'4225713 1'760835 4'4225714 3500000 4 4 16'2048550 6'633857	7	3	17,5385690 13,5	2677140	5 3729569	13,2677140	\$5500000
9 3 20°2756390 17′6598880 6 4077737 17′6598890 5500000 10 3 21°9432760 19′8407770 6 5577943 19′8407770 5500000 11 3 23°6187890 22°0216660 6 7101015 22°0216660 5500000 12 3 25°3038120 24°2025550 6 8666802 24°2025550 5900009 13 3 26°9785430 26°3834440 7 2092867 26°3834440 5500000 14 3 28°6440540 28°5643320 7°6627821 28°5643330 5500000 15 3 30°3107110 30°7452210 8°1251210 30°7452220 5500000 16 3 31°9783980 32°9261100 8°5980400 32°9261100 5500000 17 3 33°6468670 35°1069990 9°0832740 35°1070000 5500000 17 4 12°7416250 0°0000000 0 0°0000000000000000000000	· . 8 .	3	18,6141770 15,4	1790000	6 2581389		5500000
10 3	Q.	3	20, 542, 563, 50 17, 6	598880	6.4077737	17[6598890	5500000
12 3 25'303H120 24'2025550 68666802 24'2025550 5500000 13 3 26'9785430 26'3834440 7'2092867 26'3834440 5500000 14 3 28'6440540 28'5643320 7'6627821 28'5643330 5500000 15 3 30'3107110 30'7452210 8'1251210 30'7452220 5500000 16 3 31'9783980 32'9261100 8'5980400 32'9261100 5500000 17 3 43'6468670 35'1069990 9'0832740 35'1070000 5560000 14 12'7416250 9'0000000 0 35'00000 35'00000 24 13'8982800 2'2112857 8926248 2'2112857 3500000 34 15'0532430 4'4225713 1'760835 4'4225714 3500000 34 15'0532430 4'4225713 1'760835 4'4225714 3500000 34 17'3514780 8'8451430 3'5243619 8'8451430 3500000 35 18'4914740 11'0564280 4'3935273 11'0564280 3500000	1.0	3	71 9432760 1916	3407770	6 5577943	19.8407770	5500000
13 3 26 9785430 26 3834440 7 2092867 26 3834440 5500000 14 3 28 6440540 28 5643320 7 6627821 28 5643330 5500000 15 3 30 3107110 30 7452210 8 1251210 30 7452220 5500000 16 3 31 9783980 32 9261100 8 5980400 32 9261100 5500000 17 3 43 6468670 35 1069990 9 0832740 35 1070000 5500000 2 4 12 7416250 9 000000 0 3500000 3500000 2 4 13 8982800 2 2112857 8926248 2 2112857 3500000 3 4 15 0532430 4 4225713 1 7760835 4 4225714 3500000 4 4 16 2048550 6 6338570 2 6525980 6 6338571 3500000 5 4 17 3514780 8 8451430 3 5243619 8 8451430 3500000 6 4 18 4914740 11 0564280 4 3935273 11 0564280 3500000 7 4 19 6231920 13 2	1.1	3		216660		55,0516060	5500000
14 3 28 6440540 28 5643320 7 6627821 28 5643330 5500000 15 3 30 3107110 30 7452210 8 1251210 30 7452220 5500000 16 3 31 9783980 32 9261100 8 5980400 32 9261100 5500000 17 3 43 6468670 35 1069990 9 0832740 35 1070000 5560000 1 4 12 7416250 0000000 0 3500000 2 4 13 8982800 2 2112857 8926248 2 2112857 3500000 3 4 15 0532430 4 4225713 1 7760835 4 4225714 3500000 4 4 16 2048550 6 6338570 2 6525980 6 6338571 3500000 5 4 17 3514780 8 8451430 3 5243619 8 8451430 3500000 6 4 18 4914740 11 0564280 4 3935273 11 0564280 3500000 7 4 19 6231920 13 2677140 5 2621903 13 2677140 3500000 8 4 20 7449460 15 4790000 6 1323771 15 4790000 3500000		3		2025550	6 8666802	24,2025550	5500000
15 3 30°3107110 30°7452210 8°1251210 30°7452220 5500000 16 3 31°9783980 32°9261100 8°5980400 32°9261100 5500000 17 3 43°6468670 35°1069990 9°0832740 35°1070000 55500000 1 4 12°7416250 °0000000 0 2°2112857 8926248 2°2112857 3500000 2 4 13°8982800 2°2112857 8926248 2°2112857 3500000 3 4 15°0532430 4°4225713 1°7760835 4°4225714 3500000 4 4 16°2048550 6°6338570 2°6525980 6°6338571 3500000 5 4 17°3514780 8°8451430 3°5243619 8°8451430 3500000 6 4 18°4914740 11°0564280 4°3935273 11°0564280 3500000 7 4 19°6231920 13°2677140 5°2621903 13°2677140 3500000 8 4 20°77449460 15°4790000 6°1323771 15°4790000 35000000	13	3 .		SR34440	7,2092867	26.3834440	.5500000
15 3 30°3107110 30°7452210 8°1251210 30°7452220 5500000 16 3 31°9783980 32°9261100 8°5980400 32°9261100 5500000 17 3 43°6468670 35°1069990 9°0832740 35°1070000 55500000 1 4 12°7416250 °0000000 0 2°2112857 8926248 2°2112857 3500000 2 4 13°8982800 2°2112857 8926248 2°2112857 3500000 3 4 15°0532430 4°4225713 1°7760835 4°4225714 3500000 4 4 16°2048550 6°6338570 2°6525980 6°6338571 3500000 5 4 17°3514780 8°8451430 3°5243619 8°8451430 3500000 6 4 18°4914740 11°0564280 4°3935273 11°0564280 3500000 7 4 19°6231920 13°2677140 5°2621903 13°2677140 3500000 8 4 20°77449460 15°4790000 6°1323771 15°4790000 35000000	•	3	28,5440540 28,5		7, 6627821	28,5643330	.5500000
17 3 436468670 351069990 70832740 351070000 5560000 1 4 1277416250 0000000 0 3500000 2 4 136862800 25112857 8926248 25112857 3500000 3 4 156532430 44225713 1760835 44225714 3500000 4 4 1662048550 66338570 26525980 66338571 3500000 5 4 173514780 868451430 35243619 88451430 3500000 6 4 1864914740 116564280 43935273 116564280 3500000 7 4 196231920 1352677140 56261903 1362677140 3500000 8 4 2067449460 1564790000 661323771 1564790000 3500000	15	3	30,3107110 30,1	452210	8,1251210	30.7452220	\$5500000
1 4 12'7416250 '0000000 0 3500000 2 4 13'8982800 2'2112857 8926248 2'2112857 3500000 3 4 15'0532430 4'4225713 1'7760835 4'4225714 3500000 4 4 16'2048550 6'6338570 2'6525980 6'6338571 3500000 5 4 17'3514780 8'8451430 3'5243619 8'8451430 3500000 6 4 18'4914740 11'0564280 4'3935273 11'0564280 3500000 7 4 19'6231920 13'2677140 5'2621903 13'2677140 3500000 8 4 20'7449460 15'4790000 6'1323771 15'4790000 3500000	-	3	31, 31, 32, 3	7261100	8 5980400	32,9261100	5500000
2 4 13 8982800 2 2112857 8920248 2 2112857 3500000 3 4 15 0532430 4 4225713 1 7760835 4 4225714 3500000 4 4 16 2048550 6 6338570 2 6525980 6 6338571 3500000 5 4 17 3514780 8 8451430 3 5243619 8 8451430 3500000 6 4 18 4914740 11 0564280 4 3935273 11 0564280 3500000 7 4 19 6231920 13 2677140 5 2621903 13 2677140 3500000 8 4 20 7449460 15 4790000 6 1323771 15 4790000 3500000	17	3	33 6468670 35 1	1069990	9.0832740	35,1070000	5560000
3 4 15 0532430 4 4225713 1 7760835 4 4225714 3500000 4 4 16 2048550 6 6338570 2 6525980 6 6338571 3500000 5 4 17 3514780 8 8451430 3 5243619 8 8451430 3500000 6 4 18 4914740 11 0564280 4 3935273 11 0564280 3500000 7 4 19 6231920 13 2677140 5 2621903 13 2677140 3500000 8 4 20 7449460 15 4790000 6 1323771 15 4790000 3500000	- 1	U U		000000	0	0.	.3500000
4 4 16 20 48550 6 63 38570 2 65 25 980 6 63 38571 3500000 5 4 17 35 14780 8 845 1430 3 52 43 619 8 845 1430 3500000 6 4 18 49 14740 11 05 64280 4 39 35 273 11 05 64280 3500000 7 4 19 62 31920 13 26 77 140 5 26 21903 13 26 77 140 3500000 8 4 20 74 449460 15 47 90000 6 13 23 771 15 47 90000 3500000		ц			8926248		.3500000
5 4 17 3514780 8 8451430 3 5243619 8 8451430 3500000 6 4 18 4914740 11 0564280 4 3935273 11 0564280 3500000 7 4 19 6231920 13 2677140 5 2621903 13 2677140 3500000 8 4 20 7449460 15 4790000 6 1323771 15 4790000 3500000		4		1225713	1,7760835	4.4225714	3500000
6 4 18 4914740 11 0564280 4 3935273 11 0564280 3500000 7 4 19 6231920 13 2677140 5 2621903 13 2677140 3500000 8 4 20 7449460 15 4790000 6 1323771 15 4790000 3500000		4				6,6338571	.3500000
6 4 18'4914740 11'0564280 4,3935273 11.0564280 3500000 7 4 19'6231920 13'2677140 5'2621903 13'2677140 3500000 8 4 19'057449460 15'4790000 6'1323771 15'4790000 3500000	- 5	4	17,3514780 8,8	3451430	3,5243619	8 8451430	3500000
8 4 : 120,7449460 15,4790000 6,1323771 15,4790000 3500000	6	4	18,4914740 11,0	1564280	4 3935273	11.0564280	3500000
8 4 : 120,7449460 15,4790000 6,1323771 15,4790000 3500000		u	19 6231920 13 2		5,2621903		\$500000
9 4 22 2810900 17 6598880 6 2553988 17 6598890 3500000		4	20,7449460 15,4		6 1323771		3500000
	. 9	4	22,5810000 12,6	5598880	6, 2553988	17,6598890	.3500000

FIGURE 7.7-3. Output for POTGEM Test Case 7 (Cont'd).

10	4		23" A246940	19"8407770	6 3787581	19 8407770	3500000
11	4		r5 3776630	55,0516660	6[5037808	55,0516660	3500000
12	- 4		26 9418550	24 2025550	6 6318908	24,2025550	3500000
13	4		8 4927290 8 م	26 3834440	6,9865558	26,3834440	3500000
14	4		70 0315490	28 5643320	7 4730734	28 5643330	3500000
15	4		31 5710990	30 7452210	7 9655516	30.7452220	1500000
16	ü		53 1113030	32 9261100	8 4647630	32,9261100	3500000
17	4		34 6520060	35 1069990	8 9718110	35 1070000	3500000
1	4		16 6621250	0000000	0	0	1500000
Ź	5		17 5622450	2,2112857	7439632	2,2112857	1500000
3,	5		18 4614140	4,4225713	1 4839977	4 4225714	1500000
ú	5		1973586920	6 6338570	2 2210532	6 6338571	1500000
L,	5		20 2531520	8 8451430	2 9560637	8 8451440	1500000
6	5		21 1436640	11 0564280	3 6899399	11 0504280	1500000
7	5		22 0298950	13 2677140	4 4235607	13, 2677140	1500000
8	Ś		22 4102950	15 4790000	5 1577659	15,4740000	1500000
9	5		247 3212340	17 6598880	5 4489894	17,6598890	1500000
1.0	5		75' 7368A50	19 8407770	5.7403972	19 8407770	1500000
11	5		27 1584140	22,0519990	6.0326069	22,0216060	1500000
12	5		28*5869680	24'2025550	6,3262981	24,2025550	1500000
13	5		30 0069150	26, 3834440	6.7631589	26.3834440	1500000
14	5		41 4190440	28 5643320	7 2833647	28,5643330	1500000
15	5		52 8314860	30 7452210	7 8059824	30,7452220	1500000
16	5		34,5445060	32,9261100	H 3314860	32.9261100	1500000
17	5		45 6571460	35, 1069990	8 8603480	35,1070000	1500000
1	6		19[6025000	0000000	0	0	0
۶	6		20 ⁷ 3102850	2,2112851	5528214	2,2112857	0
3	6		21 0180710	4 4225713	1 1056428	4,4225714	0
а	6		r1 7258570	6 6338570	1 6584645	6.6338571	0
5	6		22"4336420	6 8451430	2 2112857	8 8451430	0
6	6	1.1	23 1414280	11,0564280	2 7641071	11,0504280	0
. 7	6		23 8492140	13, 2677140	3 1169285	13 2677140	0
Ŋ.	6		24°5569990	15,4790000	3 8697500	15,4790000	0 .
9	ь		35 8741100	17 6598880	4 4149721	17 6598890	ດ້
10	6		27, 1915550	19 8407770	4 9601943	19 8407770	0
11	6	1, 6	28 5083330	25,0516660	5/5054166	22,0216660	0
12	6		29 8254440	24 2025550	6 0506 187	24,2025550	0
13	6		51 1425550	26 3834440	6 5958610	26,3834440	0
14	b		12 4596650	28 5643320	7 1410832	28 5643330	0

FIGURE 7.7-3. Output for POTGEM Test Case 7 (Cont'd).

```
7.6863054
8.2315280
            43,7767770
45,0938880
                             30',7452210
32',9261100
35',1069990
                                                                 30.7452220
 15 6
                                                                32,9261100
 10 6
                                                8 7767500
                                                                 35,1070000
             46 4109990
 17 6
UNIT VECTORS ALONG WAKE ELEMENTS
            (LityxwVI)
                             HVWYF1,J)
                                               UVW7(T.J)
UNAVATLABLE
BOUNDARY CONDITION FLAGS
  I J BEFLAGELIJY
UNAVAILABLE
DOUBLET SINGULARITY FLAGS
  1 J Obflagfi, J)
  1 1
  5
  3
  4
   5
  7
  9
 1.0
 11
 15
 13
 14
 15
  16
  1
     . 5
      2
               7
   3
      2
               7
   4
```

FIGURE 7.7-3. Output for POTGEM Test Case 7 (Cont'd).

Figures-124

```
10
11
12
13
14
15
13
13
14
15
16
1 n
1 1
```

FIGURE 7.7-3. Output for POTGEM Test Case 7 (Cont'd).

```
12
    - 4
               2
13
    4
               2
14
               چ
15
    4
               2
16
     4
     5
    5
 3
     5
     5
               ń
 5
    5
 6
     5
               6
 7
     5
     •
               6
 9
               h
10
     5
               6
11
12
     5
13
     5
14
    5
               6
15
    5
               ь
16
    5
              12
```

SOURCE SINGULARITY FLAGS

I J SAFLABILATI

UNAVAILABLE

```
BOUNDARY CONDITION POINTS
     J
            VHCTTAUT
                            YHC(I.J)
                                            ZRC(1,J)
                                                             SAC(1,J)
                                                                             VBC(1,J)
                                             3697753
1,0912772
1,7932414
                                                                               .8500000
     1
             3' 8396496
                             1,1056428
                                                              1.1056428
                                                                               8500000
  2
            5 6377413
                             3 3169286
                                                             3.3169286
            7 4345226
                                                                               8500000
                             5.5282142
                                                             5,5282143
  3
     1
            9, 5565000
                             1 7394999
                                                                               8500000
                                             2'4810903
                                                             7 7395000
                             9 9507850
           11 0210410
                                                             9 9507860
                                             3 1602287
                                                                               8500000
                                                                               8500000
                            12 1620710
                                                            12 1620710
            12 8092420
                                             3 4360364
                                                            14,3733570
  7
            14 5929680
                                             4 5138606
                                                                                8500000
                            14.3733570
            16 4082760
                                                                               8500000
                            16,5694440
                                             5 1286113
                                                            16.5694440
```

FIGURE 7.7-3. Output for POTGEM Test Case 7 (Cont'd).

9.	. 1	181 2568550	18,7503330	5'6750262	18.7503330	8500000
10	1	70,1051400	20 9312220	6.2229809	20, 9315550	8500000
11	. 1	21 9439160	23' 1121110	6 7749831	23,1121110	_R500000
12	1	23 7840410	25"2929990	7 3106763	25 2930000	8500000
13	1	25 6391580	27 4738880	7,7103723	27,4738880	8500000
14	1	27,4960480	29,6547770	8 1222030	29 6547170	8500000
15	1	29 3546130	31 8356660	8 5490550	31 8356060	8500000
10	1	3172145680	34 0165540	8 9936100	34 0105550	8500000
. 1	5	7 6318039	1 1056428	4464160	1.1056428	6500000
2	2	9 1728200	3, 3109549	1 3254457	3,3169286	6500000
3	5	10,7113600	5 5282142	2[1895291	5.5282143	6500000
. 4	2	12 2458400	7 7394999	3 0427954	7,7395000	6500000
5	دم	1477746960	9,9507850	5 8893400	9,9507860	6500000
h	2	15 2963520	12 1620710	4 7332106	12,1620710	6500000
7	- A	16 8091830	14,3733570	5,5783929	14.3733570	6500000
8.	2	18 4234200	16 5694440	6 1207851	10.5694440	6500000
g	2	20 1494330	18, 7503330	6 3567032	18,7503330	6500000
10	5	21 8800970	50, 9315550	6 5940542	20,9312220	6500000
11	5	23 6166240	23,1121110	6 8350049	23,1121110	6500000
12	. 5	25 3575340	25, 2929990	7,1056877	25,2930000	6500000
1.5	چ	27 0857060	27[4738880	7.5380494	27,4738880	6500000
14	2.	28 8152480	29,6547770	7 9798362	29,6547770	6500000
15	. 2	30 5460930	31 8356660	8 4331010	31 8356660	6500000
16	2	32 2780290	34,0165540	8 8998960	34,0165550	6500000
1	3	11,4239710	1,1056428	4623744	1,1056428	4500000
5	5	12 7082400	3,3169286	1,3775673	3,3169286	4500000
3	3	13,9897730	5,5282142	2,2824089	5,5282143	4500000
4	3	15,2667940	7 1394999	3,1797460	7.7395000	4500000
5	3	16 5375390	9,9507850	4,0723873	9,9507860	4500000
- 6	3	17 8002380	12,1620710	4,9630895	12.1620710	4500000
7	3.	19,0530870	14,3733570	5 4545403	14,3733570	4500000
- 8	3	20,4738400	16,5694440	6 3574039	16,5694440	4500000
4	. 3	72 0760460	18,7503330	6,4693696	16,7503330	4500000
10	3	23,6462450	50, 6315550	6,5625137	20,9312220	4500000
11	3	25,3075160	23,1121110	6 6985132	23,1121110	4500000
15	. 3	26,9349080	25,2929990 27,4738680	6 8649376	25, 2930000	4500000
13	3	28 5365990	27,4738680	7.3320256	27,4738880	4500000
14	3	30'1392400	29,6547770	7 8056387	29.6547770	4500000
15	3	51 7427820	31 8356660	8 2871980	31.8356660	4500000

FIGURE 7.7-3. Output for POTGEM Test Case 7 (Cont'd).

16	3	53' 3470800	34,0165540	8.7781240	34.0165550	4500000
1	4	15 7161510	1,1056428	4176504	1,1056428	.2500000
5	4	16 2440000	3,3169286	1,2476421	3,3169286	2500000
3	4	17, 2697620	5,5282142	2,0718809	5,5282143	2500000
4	4	18 2920720	7, 7394999	2 8919417	7.7395000	2500000
5	4	19, 1095750	959507850	3.7093704	9,9507860	2500000
6	4	20 3209010	12,1620710	4 5256728	12,1620710	2500000
7	4	21,3246790	14 3733570	5/3423027	14,3733570	2500000
.:8	4	22'5593420	16,5694440	5,8425875	16 5694440	2500000
9	4	c4 0359560	18 7503330	6 0253767	18,7503330	2500000
10	is .	25'5199910	20 9312220	6 2089241	20,9312220	2500000
11	4	27 0130840	23,1121110	6 3442596	23,1121110	2500000
12	4	28 5122820	25 2929990	6 6241875	25 2930000	2500000
13	4	2919874930	27,4738880	7,1260018	27,4738880	2500000
14	4	41 4632320	29 6547770	7 6314412	29,6547770	2500000
15	4	32 9394710	31 8356660	8 1412950	31 8356060	2500000
16	4	34 4161310	34 0165540	8 6563530	34,0165550	2500000
1	5	19 0083430	1 1056428	3122439	1,1056428	0500000
5	5	19 7801000	3,3169286	9356700	3 3169286	0500000
. 3	5	2075513270	5,5282142	1,5579451	5,5282143	0500000
4	5	21, 3216740	7,7394999	2,1793827	7,7395000	0500000
5	5	72 0907940	9,9507850	2 8002893	9,9507860	0500000
. 6	5	~ 2 8583400 ·	12,1620710	3,4209608	12,1620710	0500000
7	5	73 6239600	14, 3733570	4 0416802	14 3733570	0500000
#	5	24 6799270	16,5694440	4 5763358	16.5694440	0500000
. 9	5	56,0561650	18,7503330	5.0247244	18,7503330	0500000
10	5	2713804450	20,9312220	7 4/12854	20.9312220	0500000
11	5	PAT 7342190	73 1121110	5, 9252444	23.1121110	0500000
12	5	30 0896560	25 2929990	6 3834374	25, 2930000	0500000
13	5	31 4383870	>7 4738880	6.9199780	27,4738880	0500000
1.4	5	32 7872230	29,6547770	7.4572437	29.6547770	0500000
15	5	54 1361600	31 8356660	7 9953922	31,8356660	.0500000
16	5	55,4851810	34 0165540	8,5345820	34.0165550	0500000
UNIT	NORM	IALS AND AREAS				
Ţ	j	**** x (7 , J)	UNY(I.J)	under.J)	DA(1,J)	
1	1	0269473	2947488	9551947	8,7767790	
5	1	0889628	2385487	-,9670471	8 0884320	

FIGURE 7.7-3. Output for POTGEM Test Case 7 (Cont'd).

3	1	1624938	1729049	9114421	7,4705653
4	1	2475506	.0968012	-,9640271	6,9360656
5	1	3424741	0102235	-,9394717	6,5000352
6	1 1	4431294	PS01580.	8924090	6,1784354
7	1	5420756	1849325	8193309	5,9855506
8.	i	5552256	-,2743643	7851425	5,6784288
9	1	4931270	2057153	8452851	5.0938376
10	: 1	3999404	1087659	9100646	4.5319505
11	1	7528148	0236667	9645555	4.0040907
ŝi	4	1089801	0863467	9902866	3.58bh994
13	1	1284765	0744404	9889148	3 2807368
14	1	1495455	0621984	-,9867966	3,0048304
15	•	1721693	0495220	985821B	2,1297753.
16	1	11962905	0366774	-,9798596	2,4557089
•	ر	0113625	3657542	- 9306421	8 9919640
. 5	٠٠٠	0350012	3431492	9385119	8.3143980
3	2	0705566	3178351	9455171	7,6535445
. 4	ر دع	1100451	2889960	-,9509844	7,0110598
4	٦	1577224	2554963	-,4538581	6.3895310
6	2	77150799	. [2158864]	-, 9524357	5,7928681
7	2	2837714	1681278	- 9440375	5,2268870
8	2	2862131	- 1234611	- 9501786	4,6714138
· Q	2	2002734	0527437	9783193	4.2697192
10	چ	0940522	0341673	 9949 808	3,9490099
11	2	+ 0309565	1352611	-,9903263	3,7321280
12	. 2	- 1439675	[2993130	-,9432312	3.5774349
13	ē	134292A	. . 2958700	9457412	3,3460451
14	?	1247014	2932854	-,9478572	3,0466619
15	2	- 1157489	2919994	-,9493885	2,7493594
16	5	1082310	2925874	9500940	2,4543614
. 1	3	003#988	3863291	9223544	9.0694540
2	-3	0101520	[3 854124	9226886	8,4528230
3	.3	- 0165505	3853457	-,9226239	7.8004948
: 4	3	- 0230055	3862721	-,9220979	7, 2323956
. 5	- 3	- 0299458	3883465	-,9210267	6,6285439
-6	3	0379682	3918479	9192463	6.0290830
7	3	0479207	3970126	9165613	5,4343507
8	3	0667749	0999101	-,9927533	4,5489289
G	3	0843981	1131187	9899905	4.2873366

FIGURE 7.7-3. Output for POTGEM Test Case 7 (Cont'd).

10	. 3	- 1043389	1289544	-,9861461	4.0318066
1.1	. 3	-,1272653	1479867	-,9807668	3, 1837845
15	3	1436443	3058707	9411745	3,5927880
13	3	1340279	3019332	-,9438606	3,3526942
14	- 3	1244945	2986132	9462195	3,0519051
15	3	- 1155899	2963279	-,9480656	2,7531244
16	3	1081100	2954650	9492169	2,4566225
t	4	=_0184630	3601170	-,9327244	8 9758280
. >	. 4	0578611	3731211	9259767	8 4304710
3	4	1011724	3874288	9163313	7,9049879
4	. 4	- 1491810	4030197	9029508	7 40 54 948
- 5	4	2026715	4196937	8847494	6 9310804
6	. 4	2622909	4371367	-,8602944	6 4939584
7	4	3284076	4544116	8280450	6.0995701
8	4	3691086	3224446	-,8716584	5,2808126
. 9	4	=.3276871	2976468	-,8966758	4 8245777
10	4	2771520	2671202	9229483	4 3797331
11	4	2150482	2289588	-,9493851	3,9500083
15	4	1433312	3123693	-,9390855	3,6392320
1.3	. 4	1337504	3079661	-,9419489	3,3594788
14	4	- 1242753	3039074	9445611	3,0572403
15	4	- 1154349	3005507	9467545	2 7569446
16	и.	1080234	2983582	- 9483213	2,4589064
1	. 5	0343160	2825459	-,9586398	6,5891076
ج .	5	 1076617	5041940	9464840	6,2207965
3	r,	1878885	3260217	9265030	5,8914660
41	5	2736461	3472363	8969642	5 6082224
5	- 5	3634144	3666644	-,8564387	5.3785920
6	. 5	-,4543528	3832253	8041778	5,2099108
7	5	-,5428159	\$956022	7408440	5,1084775
ð	-5	5360079	4748926	6979775	4 8689519
9	5	4790513	4514305	7528083	4 2677265
10	. 5	- 3996004	4158935	8169162	3 6941341
11	5	- 2855537	3603737	8880259	3 1641678
12	5	1430000	3188583	9369527	2.7811529
13	5	1334749	3139548	9400090	2,5241370
14	5	-,1240483	3091837	9428772	2,2964840
15	5	1152703	3048281	-,9454061	2.07024n2
16	5	1079164	3012309	- 9474249	1.8456896

FIGURE 7.7-3. Output for POTGEM Test Case 7 (Cont'd).

```
ORIGINAL PAGE IS OF POOR QUALITY
```

```
NTOP VECTORS

T. J. NTOPX(I,J) NTOPY(I,J) NTOPZ(I,J)

UNAVAILABLE

NHOT VECTORS

T. J. NEOTX(I,J) NEUTY(I,J) NEOTZ(I,J)

UNAVAILABLE
```

LINAVATI AHLE

VELOCITY LONG NBOT VECTORS
1 J HBOT(1,1)

VELOCITY ALONG NTOP VECTORS
T J GTOP(T.J)

INAVAIL ARLE

1 Xete(1)	YVLC(1)	ZVLC(1)	SVLC(1)	VVLc(1)	XVIJC(I)	AAHC(I)	2 7 U(; (1)	8400(1)	VVUC(I
1 9'	0.	0	0	1,00000	19, 60250	.00000	0	. 0	0_
7 1,99109		53760	2,21129	1,00000	20 31029	5,21159	55282	2,21129	Ų.
3 31 94526		1,04902	4,42257	1 00000	21 01807	4 42257	1,10564	4 42257	oΞ
4 5/97369	6.63386	1 54066	6 63386	1 00000	21 72586	6 63386	1 65846	6 63386	0
5 7196561		- 2 01893	8 84514	1,00000	22 43464	8 84514	2,21129	8 84514	0
6 9194826	11.05643	2 49021	11.05643	1 00000	23 14143	11_05643	P. 75411	11.05643	0
7 11'941#2	13.26771	2 98093	13, 26771	1 00000	23 84921	13,26771	3.31693	13.267/1	0
8 13'94638	15.47900	3 43750	15,47900	1,00000	24 55700	15 47900	3 86975	15,47900	0
9 15, 91530	17,65989	3 88670	17 65989	1,00000	25 87411	17,65989	4 41497	17 65989	0
10 17 88587	19.84078	4 33679	19 84078	1 00000	27,19122	19 84078	4 96019	19 840/8	0 .
11 19'85818	22.02167	4 79095	22 02167	1 00000	28[50833	22,02167	5 50542	22.02167	0

FIGURE 7.7-3. Output for POTGEM Test Case 7 (Cont'd).

12 13 14 15 16 17	21'83220 23'80776 25'76454 27'76201 29'73945 31'71589	24.20256 26.38344 28.56433 30.74522 32.92611 35.10700	5,2523 5,7241 6,2096 6,7117 7,2337 7,7787	9	1,00000 1,00000 1,00000 1,00000 1,00000	29,82544 31,14256 52,45967 33,77678 35,09389 36,41100	24,20256 26,38344 28,56433 30,74522 32,92611 35,10700	6,59586 7,14108 7,68631 8,23153	24,20256 26,38344 28,56433 50,74522 32,92611 35,10700	0. 0. 0. 0.
Bottsif	PART POINTS	ALONG VL AND) VII EDGES							
1	XVLr(t)			LR(T) VVLB(T)	XVUB(1)	· YVUR(T)	ZVUB(1) 5	VUB(I) VVUB(I)	CnR02(1)	SPANI(I)
1	996	1,106		1,106 1,000	19,956	1,106	. 276	1,106 0	18,961	2,211
ۮ	2'9"7	3.317		3'317 1,000	20 664	3,317	829	3,317 0	17,578	2,211
3	47978	5 528	1 297	5,528 1,000	21 372	5 528	1 382	5 528 0'	16.394	2,211
4	6 970	7.739	1 781	7,740 1,000	22,080	7 739	1,935	7 740 0	15,110	2,211
5	8 962	9,951	2 255	9.951 1 000	22,788	9 951	2 488	9 951 0	13.826	2,211
6	10 955	12,162	2,725	2'162 1'000 4'373 1'000	23,495	501,51	5.041	15,165 0	12,540	2,211
7	12, 946	14.373	3,198	4' 373 1' 000	24.203	14 373	3,593	14 3/3 0	11.254	2,211
8	14 9 51	16.509	3,662	6 569 1 000	25 216	16,569	4,142	16 569 0	10,285	2,181
9	16,000	1A,750	4 111 1	8 750 1 000	26,533	18,750	4 688	18 750 0	9,632	2,181
1.0	18' A72	20 931	4,563 2	0 931 1 000		20 931	5,233	20 931 0	8 978	2,181
1.1	201845	23,112	5,021 2	1,000	27,850 29,167	23,112	5 778	23,112 0	8.322	2 181
12	22 A20	25.293	5 487 2	5 293 1 000	30.404	24,293	6 323	25,293 0,	7.664	2,181
1.3	24' 796	27.474	5 905 2	7 474 1 000	31 801	27 474	6 868	27,474 0	7,005	2,181
14	26 713	29 655	6 458 2	9,655 1,000	33 118	29 655	7.414	29 655 0	6,345	2,161
15	28 751	31.836	6 970 3	1,836 1,000	34 435	31 836	7,959	31,836 0	5,685	2,181
10	30 728	34.017	7,503 3	1 836 1 000	35,752	34.017	8 504	34 017 0	5,025	2,181
CORNE	R POINTS AL	ONG SE AND S	SU FDGFS							
1	X5Le(I)	YSLT(1)	781011) SSLC(I)	VSLr(I)	XSUc(I)	YSUC(I)	28Uc(1)	SSUC(1)	VSUCTI
1	190012	.00000	0	0	95000	31,77779	35,10700		35,10700	95000
2	4 90062	00000	o.	0	15000	32,64173	35,10700	9 19474	35 10700	75000
5	8 8 113	00000	o ·	o •	55000	33 64687	35,10700	9 08327	35,10700	55000
4	12 74103	.00000	o.•	o.	35000	34 65201	35 10700	8,97181	35,10700	35000
5	16 60213	.00500		ກຸ	15000	35,65715	35,10700	8 86035	35,10700	15000
6	19 60250	00000	0 8	o .	0.	36,41100	35,10700	8.77675	35 10700	0
		•	•	5. ♥	•				· · · · · · · · · · · · · · · · · · ·	•

BOUNDARY POINTS ALONG SE AND SU EDGES

FIGURE 7.7-3. Output for POTGEM Test Case 7 (Concluded).

FIGURE 7.7-4(a). Top View of POTGEM Test Case 7.
Figures-133

FIGURE 7.7-4(b). Front View of POTGEM Test Case 7.
Figures-134

FIGURE 7.7-4(c). Side View of POTGEM Test Case 7.