32 点群の可約表現とこれらの 既約表現の指標

Reducible Representations and the Characters of the Irreducible Representations of 32 Point Groups

大森啓一(Keiichi Omori)*

序

鉱物結晶内の原子の振動,回転等を赤外吸収帯の解析などで取扱う時,32点群の既約表現の対称種と指標が基礎になる。これは可約表現と密接に関係している。既にSeitz (1934) はこの可約表現を述べているが、座標軸の順序が鉱物学の慣例と異なり、又誤植があるために、これらはこの論文の勝れた独創性を害うものではないが、読み辛いので、これをここに書き直し、既約表現の指標を並記して、参考に供しようと思う。筆者の不明のために不備な個所が少くないであろう。これらについての御教示をお願いする。

ユニタリ行列

結晶の連続した三次元点多様体はアカルト座標系と考えることができる。この3軸に対する,結晶の1点の座標をx, y, z とすると,動径ベクトルx は単列行列

$$x = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \tag{1}$$

で示される。

結晶多様体はユークリッド的であるので、2点x及びx'間の距離の自乗は

$$|x-x'|^2 + |y-y'|^2 + |z-z'|^2$$

であり、(1)の長さの自乗は

$$x^* \cdot x = x^2 + y^2 + z^2$$

である。ここに*は共役転置を、又・は行列の積を示す。ここでは次の形の実変換を

^{*} 東北大学理学部岩石鉱物鉱床学教室

取扱う。

$$x' = \alpha_{11}x + \alpha_{12}y + \alpha_{13}z$$

 $y' = \alpha_{21}x + \alpha_{22}y + \alpha_{23}z$
 $z' = \alpha_{31}x + \alpha_{32}y + \alpha_{33}z$

この係数の行列を

$$\begin{pmatrix} \alpha_{11} & \alpha_{12} & \alpha_{13} \\ \alpha_{21} & \alpha_{22} & \alpha_{23} \\ \alpha_{31} & \alpha_{32} & \alpha_{33} \end{pmatrix} = \alpha$$

とすると、 $x'=\alpha \cdot x$ となる。

ここに2つの幾何学的解釈がある。1つは結晶の点を固定し,座標軸を対称操作に従って変換して,点x(x,y,z)が点x'(x',y',z')に移ると考える場合である。この行列をローマ字イタリック体大文字で以下に示す。

他は座標軸を固定し、点xが対称操作に従って点x に移る場合である。この考え方の行列をギリシャ文字で示す。結晶体の回転、反射等を論ずる時には、常にこの考え方が採用されている。

結晶は固体であるので、任意の2つのベクトルx及びyのスカラー積x・yは変化しないようにしたい。総ての距離と角がそのまま保たれるようにすると、

$$\alpha^* \cdot \alpha = 1 \tag{2}$$

となる。 ここに 1 は単位行列

$$\left(\begin{array}{cccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right)$$

を示す。(2)を満足する行列をユニタリ行列という。

次にユニタリ行列の主な性質を記す。

- (i) 行列式の絶対値が1であるので、 α の要素の総でが実数であると、行列式 α = ± 1 となる。
 - (ii) 任意のユニタリ行列の列は

$$x_i^* \cdot x_j = \delta_{ij}, \ \delta_{ij} = \begin{cases} 1 \ (i=j) \\ 0 \ (i \neq j) \end{cases}$$

を満足する3つのベクトル $x_i(i=1,2,3)$ で作られる。ここに δ_{ij} はクロネッカーのデルタ (Kronecker delta) で、iとjが等しいときは1、異なるときは0である。このような単位ベクトルを直交という。

(iii) 座標軸の変換の際,距離がそのまま保たれ,変換行列Aがユニタリの時には,新らしい座標の, α に相当する形 β は

$$\beta = A^* \cdot \alpha \cdot A$$

で与えられる。この変換をユニタリ同値変換 (similarity transformation) という。

(iv) 任意のユニタリ行列 α はユニタリ行列 Aによるユニタリ同値変換の方法で、対角形に変換することができる。 この行列 Aは重要な性質をもっている。 即ちこの行列 Aは

$$\alpha \cdot x_i = \alpha_i x_i \tag{3}$$

を満足する3つの単位ベクトルで作られる。ここに α_i は α の一定の固有値である。

(v) 上記 (3) 式から適合関係 (compatibility relation)

行列式
$$(\alpha - \alpha_i 1) = 0$$

が成立し、これによって固有値 α_i が求められる。 α が対角形のとき、 α_i は対角要素となる。又 $A^*\cdot x_i$ は 0 以外の成分を 1 つしかもたない。これは絶対値 1 である。

結晶学の座標系では、成分 α は実数であるので、複素固有値が絶対値1の共役根の対として現われ、又実固有値は ± 1 となる。かくして、三次元行列は次の形に帰着される。

$$\begin{pmatrix}
e^{-i\varphi} & 0 & 0 \\
0 & e^{i\varphi} & 0 \\
0 & 0 & +1
\end{pmatrix}$$

ここにφは任意の角である。

(vi) 複素共役固有値をもつ固有ベクトルは共役成分をもっている。従って ±1 の固有値をもつベクトルのみが実成分を も ち,一般に実変換でユニタリ行列を対角形に変換することは不可能である。

ここでは次の形のいずれかに帰着できるようなαに考察を限定する。

$$\left[\begin{array}{cccc} \cos\varphi & \sin\varphi & 0 \\ -\sin\varphi & \cos\varphi & 0 \\ 0 & 0 & 1 \end{array} \right] \, (4\,a\,) \text{,} \quad \left[\begin{array}{cccc} \cos\varphi & \sin\varphi & 0 \\ -\sin\varphi & \cos\varphi & 0 \\ 0 & 0 & -1 \end{array} \right] \, (4\,b\,)$$

- (4a) は z 軸(これを δz と記す,他も同様)のまわりに,正の向きに角 φ だけ回転する本義回転の変換行列である。(4b) は xy 面の反射の前又は後に,z 軸で φ だけ回転する転義回転の変換行列である。前者は純回転,後者は回映を示す。 行列の跡はそれぞれ $1+2\cos\varphi$ 及び $-1+2\cos\varphi$ で,又行列式の値はそれぞれ 1 及び -1 である。明かに(4a)と(4b)は直交している。
- (vii) 任意の行列の対角要素の和はユニタリ同値変換で、総て不変である。この不変量は跡と呼ばれ、(4a) 及び (4b) から

を得る。これよりφが定められる。

(viii) 本義回転に対して +1, 又転義回転に対して -1 となるようなベクトル成分 x,y,z には

$$x: y: z = (\alpha_{23} - \alpha_{32}): (\alpha_{31} - \alpha_{13}): (\alpha_{12} - \alpha_{21})$$

の関係がある。右辺の差が総て0でないとき, x, y, z が決定される。

(ix) 以上の他の主な法則を記すと,

2つの本義回転の積は本義回転である。

2つの転義回転の積は本義回転である。

本義回転と転義回転の積は転義回転である。

一つの群の中の本義回転の組は部分群をつくる。

有限群の中の転義回転の数は0か,又は本義回転の数に等しい。

対称を支配する法則は行列(4a)及び(4b)の回転許容角 φ を限定することで得られる。ここに φ は 2π の有理数倍、即ち

$$\varphi = \frac{m}{n} \cdot 2\pi \tag{6}$$

で、m及びnは整数、nは1,2,3,4 及び6,又n-1>m>0である。

便宜上、32点群を n=1、 $n\le 2$ 、 $n\le 3$ 、 $n\le 4$ 、 $n\le 6$ の各場合、及び $n\ge 3$ の軸が 1 つ以上ある場合に分けて以下に述べよう。

n=1 の 群

点群 C_1 n=1 のときは (6) 式より $\varphi=0$, これより (4a) は

$$\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) = \varepsilon \; (=E)$$

となる。点群 C_1 の可約表現は ϵ である。 C_1 の ϵ は 32 点群の総てに含まれる。

 C_1 の既約表現の指標は次のように示される。

点群 C_s n=1, $\varphi=0$ より, (4b) は

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} = \sigma_h (= \sigma(xy))$$

となる。これは水平な反射面をもつ群で,この自乗は単位要素となる($\sigma_h^2=1$)。従って,これと要素Eを元とする点群 C_s ができる。即ち, C_s の可約表現は E, $\sigma(xy)$ である。

C_s の既約表現の種類(対称種)と指標は次のようになる。

対称種	ŀ	σ (xy)
A'	1	1
A"	1	-1

22 ここに、対称種の符号は水平の反射面が対称(1)のときを $^{\prime}$, 又逆対称 (-1) のときを "とする。

2 つの反射面の組合せ 2 つの反射面を、その垂線が角 θ をなすように組合 せ てみ る。今、1つの反射面をy軸に垂直にとると、この変換行列は

$$\left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{array}\right) = \sigma(xy)$$

である。この面と角 θ で交わり、交線がz軸となる反射面の変換行列は

$$\left(\begin{array}{cccc} \cos 2 \, \theta & -\sin 2 \, \theta & 0 \\ -\sin 2 \, \theta & -\cos 2 \, \theta & 0 \\ 0 & 0 & 1 \end{array}\right)$$

である。これら2つの反射面の可能な積は

$$\begin{pmatrix} \cos 2\theta & \sin 2\theta & 0 \\ -\sin 2\theta & \cos 2\theta & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} \cos 2\theta & -\sin 2\theta & 0 \\ -\sin 2\theta & -\cos 2\theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} \cos 2\theta & -\sin 2\theta & 0 \\ \sin 2\theta & \cos 2\theta & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos 2\theta & -\sin 2\theta & 0 \\ -\sin 2\theta & -\cos 2\theta & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

となる。ここに得られた

$$\begin{pmatrix}
\cos 2 \theta & \pm \sin 2 \theta & 0 \\
\pm \sin 2 \theta & \cos 2 \theta & 0 \\
0 & 0 & 1
\end{pmatrix}$$

は (4a) 式に於ける $\varphi=\pm 2\theta$ の本義回転である。即ち2つの反射面を組合すと、交 線は回転軸となる。以下では、回転軸の許容角から反射面の組合せの制限を考えると とにする。尚、 C_1 と C_s は1回回転軸をもつ群と考えることができる。

n≤2 の 群

点群 C_2 及び $C_i(=S_2)$ n=2, m=1 のときは (6) 式より $\varphi=\pi$, これを (4a) に 代入して,

$$\begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \delta_2(=C_2(z))$$

を得る。これは z 軸が 2 回回転軸の場合の行列である。

 C_2 の可約表現 E, $C_2(z)$

又 $\varphi=\pi$ を (4b) に代入して,

$$\begin{pmatrix}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{pmatrix} = \iota (=i)$$

を得る。これは対称心を示す。

 C_i の可約表現 E, i

これら両者とも $\alpha^2=1(=E)$ を満足しているから、巡回群に属する。一般に $\alpha^n=E$ の巡回群をn次の巡回群という。但し、 $\varphi=\frac{2\pi}{n}$ に於て、nが偶数の時は (4a) 及び (4b) はn次の巡回群になるが、nが奇数の時、(4b) は2n次の巡回群になる。

 C_2 及び C_i の既約表現の指標は同形で、次のように示される。尚これは C_s とも同形である。

 	- "	•	.,		• • • •
C2			E	C_2	
	C_i		E	C_i	
Α	Ag		1	1	
В	Au		1	-1	

第1表 C_2 及び C_i の既約表現の指標

既約表現の符号は主軸の回転軸が1(対称)のときをA,又-1(逆対称)のときをBとし、対称心が1のとき添字g(gerade)、又-1のとき添字u(ungerade)をつける。

点群 C_{2v} 1 つの 2 回回転軸を得るために組合せ得る反射面の最大数は 2 で あ る。 これは 2 回回転軸を

$$\begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = C_2(z)$$

とすると, これを満足する

$$\left(\begin{array}{ccc} \cos 2\,\theta & \pm \sin 2\,\theta & 0 \\ \pm \sin 2\,\theta & \cos 2\,\theta & 0 \\ 0 & 0 & 1 \end{array}\right)$$

 $02\theta = \pi$ であることから明らかである。

今,2つの反射面を

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \sigma(xz)$$

$$\begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \sigma(yz)$$

としよう。

$$\sigma(yz) = \sigma(xz) \cdot C_2(z)$$

から明かなように、 $\sigma(yz)$ は $\sigma(xz)$ と $C_2(z)$ の組合せでできる。

C20 の可約表現

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = E, \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = C_2(z), \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \sigma(xz), \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \sigma(yz)$$

既約表現の指標はEは総て1である。他の3種の対称操作に1と-1を割当てると,合計 2^3 =8 種類できるが,ここに $C_2(z)$, $\sigma(zz)$, $\sigma(yz)$ はこの中の任意の2種の組合せで残りができるから,2種の対称操作と考えてよい。従って, 2^2 =4種類の既約表現の種類(対称種)ができる。これを表示すると,第2表となる。

対称種	E	$C_2(z)$	$\sigma(xz)$	$\sigma(yz)$	
$\mathbf{A_1}$		1			T(z)
A ₂	1	1	-1	-1	R(z)
\mathbf{B}_{1}	1	-1	1	-1	T(x), R(y)
\mathbf{B}_{2}	1	-1	-1	1	T(y), R(x)

第2表 С20 の既約表現の指標

ここに対称種の符号は C_2 の指標が1をA, -1をBとし、添字1及び2は $\sigma(xz)$ の1を1, -1を2とする。第2表は点群 C_{2h} 及び D_2 と同形である。

単純指標の対称(1)と逆対称(-1) 既約表現の指標を単純指標という。 H_2O 分子は O原子を中心にして,この両側にH原子が平面内で 104.5° で結合している。O原子を座標の原点に置き,H O H を $\sigma(yz)$ に,又この分子の C_2 を z 軸とする。この H_2O 分子に x,y,z 軸方向の並進と,回転を施し,対称要素が対称に保たれているか,逆対称であるかを考える。

第1図のステレオ投影から明かなように、z 軸方向に H_2O 分子を動かしても、E、 $C_2(z)$ 、 $\sigma(yz)$ は対称を保って移動する。即ち総て対称(1)である(第2表のT(z)の行)。

第1図 点群 C₂₀ に属する H₂O 分子の

- (1) z 軸方向の並進運動 T(z)
- (2) z軸のまわりの回転運動 R(z)
- (3) x軸方向の並進 T(x) 及び y軸の回転 R(y)
- (4) y 軸方向の並進 T(y) 及びx 軸の回転 R(x)

をステレオ投影に示した図

他の対称種については第1図から明かであるので、説明を省略する。

点群 C_{2k} $C_2(z)$ に垂直に反射面を添加しよう。 この可能性はただ1つである。この際 $\sigma(xy)$ と $C_2(z)$ の積から C_i ができる。

$$\begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

 $\sigma(xy)$ に C_i を添加しても, $C_2(z)$ に C_i を添加しても, これと同じ結果が生じ, これ以外の新らしい群はできない。

C2h の可約表現

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = E, \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = C_2(z), \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} = \sigma(xy), \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} = C_i$$

 C_{2v} で述べたように、 C_{2h} の既約表現の種類の数は $2^2=4$ である。 この指標を第 3表に示す。

対称種	E	$C_2(z)$	$C_i(=S_2)$	$\sigma(xy)$							
A_g	1	1	1	1	R(z)						
$\mathbf{A}_{\mathbf{u}}$	1	1	-1	-1	T(z)						
$B_{\mathbf{g}}$	1	-1	1	-1	R(x), R(y)						
B_{u}	1	-1	-1	1	T(x), T(y)						

第3表 С24 の既約表現の指標

点**群と部分群の対称種の対比** 第3表から明かなように、 C_{2h} の部分群は C_2 , C_i 及 $\mathcal{C}_{\mathbf{z}}^{\mathsf{T}}$ である。指標の1及び -1 に注目して、 C_{2h} とこれらの部分群の対称種を対比すると、第4表のようになる。

•			, #1 C -27/3	13.1E-27.33
	C_{2h}	C ₂	C_i	C_s
	Ag	A	Ag	Α′
	$\mathbf{A}_{\mathbf{u}}$	A	$\mathbf{A}_{\mathbf{u}}$	A"
	$\mathbf{B}_{\mathbf{g}}$	В	$\mathbf{A_g}$	A"
	$\mathbf{B}_{\mathbf{u}}$	В	$\mathbf{A}_{\mathbf{n}}$	A'

第4表 C. と部分群との対称種の対比

点群 $D_2(=V)$ 次に1つ以上の2回回転軸をもつ群を導き出すことにしよう。z軸を2回回転軸とし、これと角 φ をなす方向に、2回回転軸 δ_2 を添加する。 δ_2 の行列は

$$\begin{pmatrix} -1 & 0 & 0 \\ 1 & -\cos 2\varphi & \sin 2\varphi \\ 0 & \sin 2\varphi & \cos 2\varphi \end{pmatrix} = \delta_2$$

で示される。 δ_2 と $C_2(z)$ の積は

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos 2\varphi & \sin 2\varphi \\ 0 & -\sin 2\varphi & \cos 2\varphi \end{pmatrix} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -\cos 2\varphi & \sin 2\varphi \\ 0 & \sin 2\varphi & \cos 2\varphi \end{pmatrix} \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

となる。これはx軸が 2φ の本義回転軸であることを示す。今 φ 号の許容角を $\frac{\pi}{2}$ 及び π に限定すると、2回回転軸は直交しなければならない。

$$\delta_2$$
の行列の 2φ に $\pi\left(\varphi=\frac{\pi}{2}\right)$ を代入すると,

$$\begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} = \delta_2' = C_2(y)$$

を得る。 $C_2(x) = C_2(z) \cdot \delta_2'$

$$\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right) = \left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right) \left(\begin{array}{cccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right)$$

点群 $D_2(=V)$ の可約表現

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = E, \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = C_2(z), \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} = C_2(y), \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} = C_2(x)$$

D₂ の既約表現の指標を第5表に示す。

		•			
対称種	E	$C_2(z)$	$C_2(y)$	$C_2(x)$	
Α	1	1	1	1	
$\mathbf{B_1}$	1	1	-1	-1	T(z), R(z)
$\mathbf{B_2}$	1	-1	1	-1	T(y), R(y)
$\mathbf{B_{3}}$	1	-1	-1	1	T(x), R(x)

第5表 D₂の既約表現の指標

この指標の表は C_{2n} 及び C_{2h} と同形である。ここに対称種Aが1種で,又Bが3種あるのは $C_{2}(z)$, $C_{2}(y)$ 及び $C_{2}(x)$ が置換し得るためである。

点群 $D_{2h}(=V_h)$ D_2 に反射面を加え得る可能性を調べてみよう。反射面を $\sigma(xy)$ とすると, これと D_2 の要素との積から, C_i , $\sigma(yz)$ 及び $\sigma(xz)$ ができる。

$$C_{i} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

$$\sigma(yz) = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

$$\sigma(xz) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

これより D_{2h} の可約表現は次のようになる。

 D_{2h} は D_2 に C_i を添加して作ることができる。従って D_{2h} の既約表現の指標は直積 $D_2 \times I$ (ここにI は対称心)として示され,対称種及び対称操作の数は倍になる。 D_{2h} の既約表現の対称種と指標を第 6 表に示す。

			~~~	- 2n 0.	2 13/4/1/3/20	いっしつコロの	•		
対称種	E	$\sigma(xy)$	$\sigma(xz)$	$\sigma(yz)$	i	$C_2(z)$	$C_2(y)$	$C_2(x)$	
$\mathbf{A}_{\mathbf{g}}$	1	1	1	1	1	1	1	1	
$\mathbf{A_u}$	1	-1	-1	-1	-1	1	1	1	
$\mathbf{B_{1g}}$	1	1	-1	-1	1	1	-1	-1	R(z)
$\mathbf{B_{1u}}$	1	-1	1	1	-1	1 .	-1	-1	T(z)
$\mathbf{B_{2g}}$	1	-1	1	-1	1	-1	1	-1	R(y)
$\mathbf{B_{2u}}$	1	1	-1	1	-1	-1	1	-1	T(y)
$B_{3g}$	1	-1	-1	1	1	-1	-1	1	R(x)
$\mathbf{B_{3u}}$	1	1	1	-1	-1	-1	-1	1	T(x)

表 6 表 D2h の既約表現の指標

次に  $D_2$  の z 軸に反射面

$$\begin{pmatrix}
\cos 2 \theta & -\sin 2 \theta & 0 \\
-\sin 2 \theta & -\cos 2 \theta & 0 \\
0 & 0 & 1
\end{pmatrix} = \sigma_{v}$$

を添加する。 ここに  $\theta$  は反射面の垂線と x 軸との間の角である。 この反射面では, z 軸は変化せず, x 軸又は y 軸が自身で正負交換されるか,又は x 軸と y 軸とが互いに交換されるかの何れかである。

前者を満足するには  $\sin 2\theta=0$ , 従って  $\theta=0$ ,  $\frac{\pi}{2}$ ,  $\pi$ ,  $\frac{3\pi}{2}$ ,  $2\pi$ となり, これは  $C_{2v}$  と  $D_2$  より成る群であって,  $D_{2h}$  に等しい。

後者の場合には、ベクトル 
$$\begin{pmatrix} 0 \\ a \\ 0 \end{pmatrix}$$
 が  $\begin{pmatrix} \pm a \\ 0 \\ 0 \end{pmatrix}$  に送られるか、又はこの逆である。逆

の場合は上記の行列が

$$\left(\begin{array}{ccc}
0 & \pm 1 & 0 \\
\pm 1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) = \sigma_{v}'$$

とならねばならない。ことに 2 つの非対角要素の符号が等しくなるためには,  $\theta=\frac{\pi}{4}$ ,  $\frac{3\pi}{4}$ ,  $\frac{7\pi}{4}$  である。 $\delta_2' \cdot \sigma_{v}'$  を求めると,

$$\begin{pmatrix} 0 & \pm 1 & 0 \\ \pm 1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \quad \begin{pmatrix} 0 & \pm 1 & 0 \\ \pm 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

ここに得られた行列は n=4 の群に現われるので、後に述べることにする。

#### n≤3 の 群

 $n \le 3$  の回転軸が1つ存在する場合をここで取扱うことにし、2つ以上存在する場合は後に述べる。

点群  $C_s$  n=3, m=1 のときは (6) 式より,  $\varphi=\frac{2}{3}\pi$ , これを (4a) 及び (4b) に代入して、

$$\begin{pmatrix} -\frac{1}{2} & \frac{i\sqrt{3}}{2} & 0 \\ -\frac{i\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix} = \delta_{3}, \begin{pmatrix} -\frac{1}{2} & \frac{i\sqrt{3}}{2} & 0 \\ -\frac{i\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & -1 \end{pmatrix} = \delta_{3}'$$

を得る。

次に, (δ₃)² より

$$\begin{pmatrix} -\frac{1}{2} & \frac{-\sqrt{3}}{2} & 0\\ \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0\\ 0 & 0 & 1 \end{pmatrix} = (\delta_3)^2$$

又、 $\delta_3 \cdot (\delta_3)^2 = 1 (=E)$ 、これよりこの群が巡回群であることが判る。

点群  $C_a$  の可約表現

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -\frac{1}{2} & \frac{\cancel{\cancel{1}}}{2} & 0 \\ -\frac{\cancel{\cancel{1}}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -\frac{1}{2} & -\frac{\cancel{\cancel{1}}}{2} & 0 \\ \frac{\cancel{\cancel{1}}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

点群  $C_3$  の既約表現の指標を第7表(a)に示す。この指標は第7表(b)のように示される場合もある。

第7表(a) 点群  $C_3$  の既約表現の指標

	E	2 C ₃	
A	1	1	T(z), $R(z)$
<b>E</b>	2	-1	(T(x), T(y)), (R(x), R(y))

第7表(b) 同

	E	$C_3$	$C_3^2$	$\varepsilon = e^{2\pi i/3}$
Α	1	1	1	T(z), R(z)
E {	1	ε ε*	e* e	$\begin{cases} (T(x), T(y)) \\ (R(x), R(y)) \end{cases}$

点群  $C_{3h} = S_3$  上記と同様にして  $\delta_3$  より

$$\begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & -1 \end{pmatrix} = \boldsymbol{\delta_3} \cdot \boldsymbol{\delta_3}', \quad \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} = (\boldsymbol{\delta_3})^2 \cdot \boldsymbol{\delta_3}'$$

を得,これらと  $C_3$  の要素より  $C_{3h}$  の可約表現は次のようになる。

点群 Csk の可約表現

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

点群 C3k の既約表現の指標を第8表(a)及び(b)に示す。

第8表(a) 点群 C_{3h} の既約表現の指標

	E	2 C ₃	o h	2 S ₃	
Α′	1	1	1	1	$ \begin{vmatrix} R(z) \\ T(z) \\ (T(x), T(y)) \\ (R(x), R(y)) \end{vmatrix} $
A"	1	1	-1	-1	T(z)
E'	2	-1	2	-1	(T(x), T(y))
E"	2	-1	-2	1	(R(x), R(y))

第8表(b) 同,  $C_3 \times \sigma_k$ 

		E	$C_3$	$C_3^2$	o h	$S_3$	$S_3{}^S$	$\varepsilon = e^{2\pi i/3}$
A'	i	1	1	1	1	1	1	R(z)
A"		1	1	1	-1	-1	-1	T(z)
E'	1	1	ε ε*	ε*	1	ε	ε*	T(x), T(y)
E	1	1	ε*	ε	1	ε*	ε	$\left  \int_{-\infty}^{\infty} (1_{x}(\mathbf{x}), 1_{y}(\mathbf{y})) \right $
E"	ſ	1	ε	ε*	-1	-ε	$-\epsilon^*$	$\left  \left\{ (R(x), R(y)) \right\} \right $
E.	f	1	€*	ε	-1	-ε*	$-\epsilon$	) (K(2), K(9))

点群  $C_{3v}$   $C_{3h}$  は  $C_{3}$  に水平な反射面を添加した群である。 $C_{3}$  に垂直な反射面を添加すると, $C_{3v}$  ができる。

点群 Cs, の可約表現

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ \frac{\sqrt{3}}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

これ以上,垂直方向の反射面を添加することはできない。 この既約表現の指標を第9表に示す。これは点群 $D_3$ と同形である。

第9	表	点群	$C_{3v}$	の既約表現の指標
----	---	----	----------	----------

	E	$2C_3(z)$	$3\sigma_v$	
A ₁	1	1	1	T(z)
A ₂	1	1	-1	$egin{array}{c} T(z) \\ R(z) \end{array}$
E	2	-1	0	(T(x), T(y)) (R(x), R(y))

対称種Eは2 重縮重種を示す。上記可約表現の左上方の $2 \times 2$  行列について,跡を求めると、順次2、-1、-1、0、0、0 である。これが第9 表対称種Eに属する指標となる。

点群  $D_3$  次に n=2 の回転軸を添加してみよう。単位ベクトル  $\begin{pmatrix} 0 \\ \sin \varphi \\ \cos \varphi \end{pmatrix}$  の方向が 2 回回転軸であると,  $D_2$  で述べた行列  $\delta_2$  と なる。 z 軸の条件に従って,ベクトル  $\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$  を  $\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$  又は  $\begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix}$  に送ると, $\cos 2\varphi=0$ ,即ち  $\varphi=0$ , $\frac{\pi}{2}$ , $\pi$  となる。 $\varphi=0$  及び  $\varphi=\pi$  の場合はz 軸は n=6 となり,z 回回転軸は総てz 軸と直交しなければならない。

今,
$$d=\begin{pmatrix}0\\1\\0\end{pmatrix}$$
 方向に  $2$  回回転軸を選ぶと,これと同価の方向  $d'=\begin{pmatrix}\frac{\sqrt{3}}{2}\\-\frac{1}{2}\\0\end{pmatrix}$  及  $v'$   $d''$ 

$$=egin{pmatrix} -rac{1}{2} \\ -rac{1}{2} \\ 0 \end{pmatrix}$$
 に他の2回回転軸が生じ、これらの間の角 $heta$ は  $\cos heta=-rac{1}{2}$ 、即ち  $heta=$ 

 $\frac{2\pi}{3}$ ,  $\frac{4\pi}{3}$  となる。これに相当する回転は

$$\begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} = \delta_{2}', \begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & -1 \end{pmatrix} = \delta_{2}'', \begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & -1 \end{pmatrix} = \delta_{2}'''$$

となり、これらと  $C_3$  の要素より  $D_3$  の可約表現ができる。

点群 D₃ の可約表現

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
-\frac{1}{2} & \frac{\cancel{\cancel{1}}}{2} & 0 \\
-\frac{\cancel{\cancel{1}}}{2} & -\frac{1}{2} & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
-\frac{1}{2} & -\frac{\cancel{\cancel{1}}}{2} & 0 \\
\frac{\cancel{\cancel{1}}}{2} & -\frac{1}{2} & 0 \\
0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{pmatrix}
\begin{pmatrix}
\frac{1}{2} & -\frac{\cancel{\cancel{1}}}{2} & 0 \\
-\frac{\cancel{\cancel{1}}}{2} & -\frac{1}{2} & 0 \\
0 & 0 & -1
\end{pmatrix}
\begin{pmatrix}
\frac{1}{2} & \frac{\cancel{\cancel{1}}}{2} & 0 \\
\frac{\cancel{\cancel{1}}}{2} & -\frac{1}{2} & 0 \\
0 & 0 & -1
\end{pmatrix}$$

第10表 点群 D3の既約表現の指標

	E	$2C_3(z)$	3 C ₂	
Aı	1	1	1	
A ₂	1	1	-1	T(z), R(z)
E	2	-1	0	(T(x),T(y))(R(x),R(y))

点群  $D_{sh}$   $C_s$  に対称心(反転)を添加してみよう。即ち

$$\begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

これは明かに、n=6、m=1 のときのz軸の回映(転義回転)である。この群並びに $C_{3h}$  に対称心を添加する場合は後に述べる。

 $D_3$  で述べた 2 回回転転を  $C_{3h}$  に添加してみよう。 この時には  $D_3$  の要素の総てが現われ,又  $C_{3h}$  の転義回転の要素も現われる。

点群 Дз の可約表現

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
-\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\
-\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\
0 & 0 & -1
\end{pmatrix}
\begin{pmatrix}
-\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\
\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\
0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{pmatrix}
\begin{pmatrix}
-\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\
-\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
-\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\
-\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\
0 & 0 & -1
\end{pmatrix}
\begin{pmatrix}
-\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\
\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\
0 & 0 & -1
\end{pmatrix}$$

$$\begin{pmatrix}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{pmatrix}
\begin{pmatrix}
\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\
-\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\
0 & 0 & -1
\end{pmatrix}
\begin{pmatrix}
\frac{1}{2} & \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\
0 & 0 & -1
\end{pmatrix}$$

$$\begin{pmatrix}
\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\
\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\
-\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\
0 & 0 & 1
\end{pmatrix}$$

ここに現われた新らしい行列

$$\begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix} = \sigma_{v'} \qquad \begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix} = \sigma_{v''}$$

はそれぞれ 
$$\begin{pmatrix} -\frac{1}{2} \\ \frac{1/3}{2} \\ 0 \end{pmatrix}$$
 及び  $\begin{pmatrix} -\frac{1}{2} \\ -\frac{1/3}{2} \\ 0 \end{pmatrix}$  方向に垂直な反射面を示す。

 $\delta_{2}$ 'の2回回転軸を  $C_{3}$  に添加すると、反転が生ずる。この群は後に述べる。  $C_{37}$  の2つの反射面を2等分する方向に2回回転軸を添加すると、この行列は

$$\begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & -1 \end{pmatrix} = \tilde{\delta}_{2}^{""}$$

となり,この軸は  $C_{3v}$  の1つの反射面の垂線方向  $\left(egin{array}{c} rac{\sqrt{3}}{2} \ rac{1}{2} \ 0 \end{array}
ight)$  である。 $\delta_{2}^{\prime\prime\prime}\cdot\sigma(xz)$  より

得られる行列

$$\begin{pmatrix}
\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\
\frac{\sqrt{3}}{2} & \frac{1}{2} & 0 \\
0 & 0 & -1
\end{pmatrix} = \begin{pmatrix}
\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\
\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\
0 & 0 & -1
\end{pmatrix} \begin{pmatrix}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{pmatrix}$$

は n=6 の転義回転であり、これも後に述べる。又  $\delta_2$ " は  $D_3$  に含まれているので、この代りに  $\delta_2$ ' を  $\sigma(xz)$  に添加すると、

$$\begin{pmatrix} \frac{1}{2} & \frac{1\sqrt{3}}{2} & 0 \\ -\frac{1\sqrt{3}}{2} & \frac{1}{2} & 0 \\ 0 & 0 & -1 \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & -\frac{1\sqrt{3}}{2} & 0 \\ -\frac{1\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

ここに得られた行列も n=6 の場合に現われる。

D_{3k} の既約表現の対称種と指標を第11表に示す。

第11表 D₃ の既約表現の指標

	E	2 C ₃ (	z) 3 C ₂	o h	3 S	3 ov	
A ₁ '	1	1	1	1	1	1	
$A_1''$	1	1	1	-1	-1	-1	
$A_2'$	1	1	-1	1	1	-1	R(z)
A ₂ "	1	1	-1	-1	-1	1	T(z)
E'	2	-1		2	-1	0	(T(x), T(y))
E"	2	-1	0	-2	1	0	(R(x), R(y))

#### n≤4 の 群

点群  $C_4$  n=4 の群を (4a) から作ると,  $C_4$  の可約表現として

$$\left(\begin{array}{cccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right) \, \left(\begin{array}{cccc} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{array}\right) \, \left(\begin{array}{cccc} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{array}\right) \, \left(\begin{array}{cccc} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{array}\right)$$

を得る。この既約表現の指標を第12表(a)及び(b)に示す。

## 大森啓一

第12表(a) C₄の既約表現の指標

,	E	2 C.	$C_4^2 \equiv C_2$	
A	1	1	1	T(z), R(z)
В	1	-1	1	
E	2	0	- <b>2</b>	(T(x), T(y)) (R(x), R(y))

第 12 表(b) 同

	E	C ₄	$C_2$	$C_4^3$	
A	1	1	1	1	T(z), R(z)
В	1	-1	1	-1	
- (	1	i	-1	-i	T(T(x), T(y))
E {	1	-i	-1	i	$\{R(x), R(y)\}$

点群  $S_a$  n=4 の群を (4b) から作ると、可約表現として

$$\left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right) \, \left(\begin{array}{ccc} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{array}\right) \, \left(\begin{array}{ccc} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{array}\right) \, \left(\begin{array}{ccc} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{array}\right)$$

を得る。この既約表現の指標は  $C_4$  と同形で,第 13 表(a)及び(b)に示す。

第13表(a) S. の既約表現の指標

	E	2 S ₄	$S_4^2 \equiv C_2$	
A	1	1	1	R(z)
В	1	-1	1	T(z)
E	2	0	- <b>2</b>	(T(x), T(y)) (R(x), R(y))

第13表(b) 同

	E	$S_4$	$C_2$	$S_4^3$	
Α	1	1	1	1	R(z)
В	1	-1	1	-1	T(z)
ъ (	1	i	-1	-i	$\left. \right\}_{(R(x), R(y))}^{(T(x), T(y))}$
E {	1	-i	-1	i	$\int (R(x), R(y))$

点群  $C_{4h}$   $S_4$  は z 軸に垂直な反射面を含まない。この反射面を  $C_4$  及び  $S_4$  に添加すると、 $C_{4h}$  ができる。この可約表現は

$$\left( \begin{array}{cccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right) \, \left( \begin{array}{cccc} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{array} \right) \, \left( \begin{array}{cccc} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{array} \right) \, \left( \begin{array}{cccc} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{array} \right) \\ \left( \begin{array}{ccccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{array} \right) \, \left( \begin{array}{ccccc} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{array} \right) \, \left( \begin{array}{ccccc} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{array} \right)$$

この既約表現の指標を第14表(a)及び(b)に示す。

第14表(a) C_{4k}の既約表現の指標

	E	2 C ₄	$C_4^2 \equiv C_4$	$C_2'' \sigma_h$	2 S ₄	$S_2 \equiv i$	-
Ag	1	1	1	1	1	1	R(z)
$\mathbf{A}_{\mathbf{u}}$	1	1	1	-1	-1	-1	T(z)
$\mathbf{B}_{\mathbf{g}}$	1	-1	1	1	-1	1	
$\mathbf{B}_{\mathbf{u}}$	1	-1	1	-1	1	-1	
$\mathbf{E}_{\mathbf{g}}$	2	0	-2	-2	0	2	(R(x), R(y))
$\mathbf{E}_{\mathbf{u}}$	2	0	-2	2	0	-2	(T(x), T(y))

第 14 表(b) 同, $(C_4 \times I)$ 

	$\boldsymbol{E}$	$C_4$	$C_2$	$C_4$ ³	i	$S_4{}^3$	$\sigma_h$	$S_4$	
Ag	1	1	1	1	1	1	1	1	R(z)
Au	1	1	1	1	-1	-1	-1	-1	T(z)
Bg	1	-1	1	-1	1	-1	1	-1	
$\mathbf{B}_{\mathbf{u}}$	1	-1	1	-1	-1	1	-1	1	
E [	1	i	-1	-i	1	i	-1	-i	) (B(x) B(x)
$\mathbf{E_g}$ {	1	-i	-1	i	1	-i	-1	i	$\bigg\} \ (R(x), \ R(y)$
p (	1	i	-1	-i	-1	-i	1	i	) (7) (7)
E _u {	1	-i	-1	i	-1	i	1	-i	$\bigg\} \ (T(x), \ T(y)$

点群  $C_{4v}$   $C_{4}$  に  $\sigma(xz)$  の反射面を添加してみよう。 この時にはこれに垂直な方向 に、同価の反射面  $\sigma(yz)$  が現われ、可約表現は次のようになる。

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix} = E, \begin{pmatrix}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix} = C_4, \begin{pmatrix}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{pmatrix} = C_2(z), \begin{pmatrix}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix} = C_4^3$$

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{pmatrix} = \sigma(xz), \begin{pmatrix}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix} = \sigma(yz), \begin{pmatrix}
0 & -1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix} = \sigma_d, \begin{pmatrix}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix} = \sigma_{d'}$$

ここに現われた新らしい転義操作

$$\begin{pmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \sigma_d, \quad \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \sigma_{d'}$$

$$\begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}$$

はそれぞれ 
$$\begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ 0 \end{pmatrix}$$
 及び  $\begin{pmatrix} -\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \\ 0 \end{pmatrix}$  方向に垂直な反射を示す。

 $C_{4v}$  の既約表現の対称種と指標を第 15 表に示す。 この指標は  $D_4$  及び  $D_{2d}$  と同形である。

			2,5	• • • • • • • • • • • • • • • • • • • •		
	E	$2C_4(z)$	$C_4^2 \equiv C_2''$	$2 \sigma_v$	$2 \sigma_d$	
A ₁	1	1	1	1	1	T(z)
$\mathbf{A_2}$	1	1	1	-1	-1	R(z)
$\mathbf{B_1}$	1	-1	1	1	-1	
$\mathbf{B_2}$	1	-1	1	-1	1	
E	2	0	<b>—2</b>	0	0	(T(x), T(y)) (R(x), R(y))

第15表 С4,の既約表現の指標

点群  $D_{2d}(=V_d)$   $S_4$  に  $\sigma(xz)$  を添加しよう。 $\sigma(xz)\cdot S_4$  から

$$\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

これは
$$egin{pmatrix} rac{1}{\sqrt[3]{2}} \\ 1 \\ \sqrt[3]{2} \\ 0 \end{pmatrix}$$
 方向の $2$ 回回転軸である。従って $S_4$ から $2$ 回回転軸をもつ $D_{2d}$ がで

きる。この可約表現は次のようになる。

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

この既約表現の指標は  $C_{40}$  と同形で,第 16 表のようになる。

	E	$2S_4(z)$	$S_4^2 \equiv C_2''$	2 C ₂	$2 \sigma_d$	
A ₁	1	1	1	1	1	
$A_2$	1	1	1	-1	-1	R(z)
$\mathbf{B_i}$	1	-1	1	1	-1	
$\mathbf{B_2}$	1	-1	1	-1	1	T(z)
$\boldsymbol{E}$	2	0	-2	0	0	(T(x), T(y)) (R(x), R(y))

第 16 表  $D_{2d}(=V_d)$  の既約表現の指標

単純指標の特性 既約表現の標指(跡)を特に単純指標という。群の中に g 個の類(対称操作の総数) があるとき、指標の自乗の和は

$$\sum_{n} \chi_{i}^{2}(R) = g$$

となり、指標は  $\frac{1}{\sqrt{g}}$  に規格化されている。第 16 表では g=8 である。これはどの対称種の指標にもあてはまる。

2種の既約表現の指標を $x_i$ ,  $x_j$ , 対称操作をRとすると、

$$\sum_{\mathbf{R}} \chi_{i}(\mathbf{R}) \chi_{j}(\mathbf{R}) = 0$$

となり、直交性をもっている。ここに0はクロネッカーのデルタ  $\delta_{ij}$  の i + j の場合の0 である。この直交性は対称種の総てにあてはまる。

点群  $D_{ih}$   $C_{ih}$  に  $\sigma(xz)$  を添加すると  $D_{ih}$  ができる。この可約表現は次のようである。

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 
$$\begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 
$$\begin{pmatrix} 1 & 0 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

この既約表現の指標を第17表に示す。これは $D_4 imes I$ で求めることもできる。

第17表 Dukの既約表現の指標

	E	2 C4	$C_4^2 \equiv C_2''$	2 C ₂	2 C ₂ '	ơ h	2 συ	$2 \sigma_d$	2 S ₄	$S_2 \equiv i$	
A _{1g}	1	1	1	1	1	1	1	1	1	1	
A _{1u}	1	1	1	1	1	-1	-1	-1	-1	-1	
A _{2g}	1	1	1	-1	-1	1	-1	-1	1	1	R(z)
A _{2u}	1	1	1	-1	-1	-1	1	1	-1	-1	T(z)
B _{1g}	1	-1	1	1	-1	1	1	-1	-1	1	
B ₁ u	1	-1	1	1	-1	-1	-1	1	1	-1	
B _{2g}	1	-1	1	-1	1	1	-1	1	-1	1	
B _{2u}	1	-1	1	-1	1	-1	1	-1	1	-1	
$\mathbf{E}_{\mathbf{g}}$	2	0	-2	0	0	-2	0	0	0	2	(R(x), R(y))
Eu	2	0	-2	0	0	2	0	0	0	-2	(T(x), T(y))

$$C_{4v}$$
 と  $D_{4k}$  は  $\sigma(xz)$ ,即ち $egin{pmatrix} 1 & 0 & 0 \ 0 & -1 & 0 \ 0 & 0 & 1 \end{pmatrix}$ と共に現われる反射面  $\sigma_{d}$ ,即ち $egin{pmatrix} 0 & 1 & 0 \ 1 & 0 & 0 \ 0 & 0 & 1 \end{pmatrix}$ 

をもっているが, $D_{2d}$  はこれをもたない。 $D_{2d}$  にこの反射面を添加すると  $D_{4h}$  となる。

る。 点群  $D_4$  z 軸に垂直に 2 回回転軸を添加してみよう。 $C_4$  に  $\begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} = C_2(y)$ を添えると  $D_4$  ができる。この可約表現を次に示す。

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 3 & 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$\begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

 $D_4$  の既約表現の指標を第 18 表に示す。これは  $C_{4v}$  及び  $D_{2d}$  と同形である。

第18表 Д。の既約表現の指標

	E	2 C4	$C_4{}^2 \equiv C_2{''}$	2 C ₂	2 C2'	
A ₁	1	1	1	1	1	
$\mathbf{A_2}$	1	1	1	-1	-1	T(z), R(z)
$B_1$	1	-1	1	1	-1	
$B_2$	1	-1	1	-1	1	
$oldsymbol{E}$	2	0	-2	0	0	(T(x), T(y)) (R(x), R(y))

次に 
$$S_4$$
 に  $\begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} = C_2(y)$  を添加すると、 $z$ 軸のまわりに  $\frac{\pi}{4}$  回転した

 $D_{2d}$  となる。又  $C_{4h}$  に  $C_{2}(y)$  を添加すると  $D_{4h}$  となり、新らしい群はできない。

又 
$$C_4$$
,  $S_4$ ,  $C_{4v}$ ,  $D_{2d}$  に  $\begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} = i$  を添加すると,  $C_4$  と  $S_4$  は  $C_{4h}$  になり,

 $C_{4v}$  と  $D_{2d}$  は  $D_{4h}$  となり、新らしい群はできない。

#### n≤6 の 群

点群  $C_6$  n=6 の群を (4a) から作ると,  $C_6$  の可約表現として

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & \frac{\cancel{\cancel{1}}\sqrt{3}}{2} & 0 \\ -\frac{\cancel{\cancel{1}}\sqrt{3}}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -\frac{\cancel{\cancel{1}}\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -\frac{\cancel{\cancel{1}}\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -\frac{1}{2} & -\frac{\cancel{\cancel{1}}\sqrt{3}}{2} & 0 \\ \frac{\cancel{\cancel{1}}\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & -\frac{\cancel{\cancel{1}}\sqrt{3}}{2} & 0 \\ \frac{\cancel{\cancel{1}}\sqrt{3}}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

を得る。この既約表現の指標を第19表(a)及び(b)に示す。

第19表(a) C₆の既約表現の指標

	E	2 C ₆	$2 C_6^2 \equiv 2 C_3$	$C_6{}^3 \equiv C_2$	
A	1	1	1	1	T(z), R(z)
В	1	-1	1	-1	
$\mathbf{E}_{1}$	2	1	-1	-2	$\begin{cases} (T(x), T(y)) \\ (R(x), R(y)) \end{cases}$
$\mathbf{E_2}$	2	-1	-1	2	(21(2), 21(9))

第19表(b) 同

	E	$C_6$	$C_3$	$C_2$	$C_3^2$	$C_6^{5}$	$\varepsilon = e^{2\pi i^{16}}$
Α	1	1	1	1	1	1	T(z), R(z)
В	1	-1	1	-1	1	-1	
E (	1	ε	ε*	-1	—ε	ε*	$\int (T(x), T(y))$
E ₁ {	1	ε*	<b>ε</b>	-1	$-\epsilon^*$	ε	
E S	1	ε*	$-\varepsilon$	1	$-\epsilon^*$	-ε	1
E ₂ {	1	— e	$-\varepsilon^*$	1	— e	-ε <b>*</b>	<b>\</b>

点群  $C_{3i}(=S_6)$  同様に (4b) から作られた  $C_{3i}$  の可約表現は

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$\begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\ \frac{\sqrt{3}}{2} & \frac{1}{2} & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

この既約表現の指標を第20表(a)及び(b)に示す。これは $C_6$ と同形である。

第 20 表(a)  $C_{3i}(=S_6)$  の既約表現の指標

	E	2 C ₃	2 S ₆	i	
Ag	1	1	1	1	R(z)
$\mathbf{A_u}$	1	1	-1	-1	T(z)
$\mathbf{E}_{\mathbf{g}}$	2	-1	-1	2	(R(x), R(y)) (T(x), T(y))
$\mathbf{E}_{\mathbf{u}}$	2	-1	1	-2	(T(x), T(y))

第 20 表(b) 同

	E	$C_3$	$C_{3}^{2}$	i	$S_6^5$	$S_{\scriptscriptstyle 6}$	$\varepsilon = e^{2\pi i/3}$
Ag	1	1	1	1	1	1	R(z)
Au	1	1	1	-1	-1	-1	T(z)
E 1	1	ε	ε*	1	ε	ε*	$\Big\} (R(x), R(y))$
E _g {	1	ε*	ε	1	ε*	ε	
Eu {	1	ε	ε*	-1	— ε	$-\epsilon^*$	$\Big\} \ (T(x), \ T(y))$
Lu )	1	ε*	ε	-1	—ε*	-ε	) (1 (2), 1 (9))

点群  $C_{6k}$   $C_6$  或は  $C_{3i}(=S_6)$  に水平な反射面を添加すると、 $C_{6k}$  ができる。この可約表現は

$$\left( \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right) \left( \begin{array}{ccc} \frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 1 \end{array} \right) \left( \begin{array}{ccc} -\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 \end{array} \right)$$

$$\begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\ \frac{\sqrt{3}}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} & \frac{1}{2} & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} & \frac{1}{2} & 0 \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

この既約表現の指標を第21表に示す。

第 21 表  $C_{sh}$  の既約表現の指標

	E	$2C_6$	$2C_3$	$C_6{}^3 \equiv 0$	$C_2 \sigma_h$	$2S_6$	$2S_3$	$S_2 \equiv i$	
Ag	1	1	1	1	1	1	1	1	R(z)
Au	1	1	1	1	-1	-1	-1	-1	T(z)
$B_g$	1	-1	1	-1	-1	1	-1	1	
Bu	1	-1	1	-1	1	-1	1	-1	
E _{1g}	2	1	-1	-2	-2	-1	1	2	(R(x), R(y))
E _{1u}	2	1	-1	-2	2	1	-1	-2	(T(x), T(y))
E ₂ g	2	-1	-1	2	2	-1	-1	2	
E _{2u}	2	-1	-1	2	-2	1	1	-2	
									1

点群  $C_{6v}$   $C_6$  に  $\sigma(xz)$  を添加すると  $C_{6v}$  ができる。この可約表現は

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$\begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\ \frac{\sqrt{3}}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

に垂直な反射面を示す。 これらの面の垂線のなす角は  $\frac{\pi}{6}$  であって,許容角の最小値である。

 $C_{\rm ev}$  の既約表現の指標を第22表に示す。これは $D_{\rm e}$  と同形である。

第22表  $C_{6v}$  の既約表現の指標

	E	2 C ₆	$2 C_6^2 \equiv 2 C_3$	$C_6^3 \equiv C_2$	3 ov	$3 \sigma_d$	
A ₁	1	1	1	1	1	1	T(z)
$A_2$	1	1	1	1	-1	-1	R(z)
$\mathbf{B_1}$	1	-1	1	-1	1	-1	
$\mathbf{B_2}$	1	-1	1	-1	-1	1	
$\mathbf{E_{i}}$	2	1	-1	-2	0	0	(T(x), T(y)) (R(x), R(y))
$\mathbf{E_2}$	2	-1	-1	2	0	0	

点群  $D_{3d}$   $C_{3i}(=S_6)$  に  $\sigma(xz)$  を添加すると  $D_{3d}$  ができる。この可約表現は

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & \frac{1\sqrt{3}}{2} & 0 \\ -\frac{1\sqrt{3}}{2} & \frac{1}{2} & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} -\frac{1}{2} & \frac{1\sqrt{3}}{2} & 0 \\ -\frac{1\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} -\frac{1}{2} & -\frac{1\sqrt{3}}{2} & 0 \\ \frac{1\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & -\frac{1\sqrt{3}}{2} & 0 \\ \frac{1\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

$$\begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ \frac{\sqrt{3}}{2} & \frac{1}{2} & 0 \\ \frac{\sqrt{3}}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

とこに2回回転軸が生じ、これらの方向は $\begin{pmatrix} -\frac{\sqrt{3}}{2} \\ \frac{1}{2} \\ 0 \end{pmatrix}$ , $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ , $\begin{pmatrix} \frac{\sqrt{3}}{2} \\ \frac{1}{2} \\ 0 \end{pmatrix}$ である。

D_{3d} の既約表現の指標を第23表に示す。

第23 表  $D_{3d}$  の既約表現の指標

	E	$2S_6(z)$	$2S_6^{\ 2} \equiv 2C_3$	$S_6{}^3 \equiv S_2 \equiv i$	$3C_2$	$3 \sigma_d$	
A _{1g}	1	1	1	1	1	1	
$A_{1u}$	1	-1	1	-1	1	-1	
$A_{2g}$	1	1	1	1	-1	-1	R(z)
$A_{2u}$	1	-1	1	-1	-1	1	T(z)
$\mathbf{E}_{\mathbf{g}}$	2	-1	-1	2	0	0	(R(x), R(y))
E _u	2	1	-1	-2	0	0	(T(x), T(y))

点群  $D_{eh}$   $C_{eh}$  に  $\sigma(xz)$  を添加すると  $D_{eh}$  ができる。 $C_{ev}$  に現われた反射面と,

これに垂直な 2 回回転軸がある。又  $D_3$  に反射面  $\begin{pmatrix} rac{1}{2} & -rac{1\sqrt{3}}{2} & 0 \ -rac{1\sqrt{3}}{2} & -rac{1}{2} & 0 \ 0 & 0 & 1 \end{pmatrix}$  を添加する

と, $C_6$  及び  $C_{6h}$  の要素の総てが現われ, $D_{6h}$  なる。 $D_{6h}$  の可約表現は 24 個の元から成り,この中の 12 個は  $C_{6h}$  の元と同じである。

 $D_{6h}$  の可約表現  $C_{6h}$  の元の他に,

$$\left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{array}\right) \left(\begin{array}{ccc} \frac{1}{2} & -\frac{\imath\sqrt{3}}{2} & 0 \\ -\frac{\imath\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 \end{array}\right) \left(\begin{array}{ccc} -\frac{1}{2} & -\frac{\imath\sqrt{3}}{2} & 0 \\ -\frac{\imath\sqrt{3}}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 1 \end{array}\right)$$

$$\begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -\frac{1}{2} & \frac{1\sqrt{3}}{2} & 0 \\ \frac{1\sqrt{3}}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & \frac{1\sqrt{3}}{2} & 0 \\ \frac{1\sqrt{3}}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & -\frac{1\sqrt{3}}{2} & 0 \\ -\frac{1\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & -\frac{1\sqrt{3}}{2} & 0 \\ -\frac{1\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} -\frac{1}{2} & -\frac{1\sqrt{3}}{2} & 0 \\ -\frac{1\sqrt{3}}{2} & \frac{1}{2} & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} -\frac{1}{2} & \frac{1\sqrt{3}}{2} & 0 \\ \frac{1\sqrt{3}}{2} & \frac{1}{2} & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & \frac{1\sqrt{3}}{2} & 0 \\ \frac{1\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

D_{6h} の既約表現の指標を第24表に示す。

第24表 Den の既約表現の指標

						-	•••						
	E	2 C ₆	$\begin{array}{c} 2 C_6^2 \\ 2 C_3 \end{array}$	$C_{6}^{3} \equiv C_{6}^{3}$	3 C ₂	3 C2	' oh	3 συ	3 od	2 S ₆	2 S ₃	$S_6^3 \equiv  S_2 \equiv i $	
A _{1g}	1	1	1	1	1	1	1	1	1	1	1	1	
A _{1u}	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1	
A _{2g}	1	1	1	1	-1	-1	1	-1	-1	1	1	1	R(z)
A _{2u}	1	1	1	1	-1	-1	-1	1	1	-1	-1	-1	T(z)
$B_{1g}$	1	-1	1	-1	1	-1	-1	-1	1	1	-1	1	
$B_{1u}$	1	-1	1	-1	1	-1	1	1	-1	-1	1	-1	
$B_{2g}$	1	-1	1	-1	-1	1	-1	1	-1	1	-1	1	
$B_{2u}$	1	-1	1	-1	-1	1	1	-1	1	-1	1	-1	
E1g	2	1	-1	-2	0	0	-2	0	0	-1	1	2	(R(x),R(y))
Eıu	2	1	-1	-2	0	0	2	0	0	1	-1	-2	(T(x),T(y))
$E_{2g}$	2	-1	-1	2	0	0	2	0	0	-1	-1	2	
$E_{2u}$	2	-1	-1	2	0	0	-2	0	0	1	1	-2	

点群  $D_6$  上述では  $\sigma(xz)$  を添加してきた。次にz軸に垂直に2回回転を添加してみよう。 $C_6$  に2回軸を添加すると  $D_6$  ができる。 $C_{3i}(=S_6)$  に2回軸を添加すると $D_{3d}$  になり, $C_{6h}$  及び  $C_{6v}$  にこれを添加すると,共に  $D_{6h}$  になり,同様に  $D_3$  からも  $D_{6h}$  ができる。

 $D_6$  の可約表現は次の通りである。

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
\frac{1}{2} & \frac{\cancel{\cancel{1}}}{\cancel{\cancel{2}}} & 0 \\
-\frac{\cancel{\cancel{\cancel{1}}}}{\cancel{\cancel{3}}} & \frac{1}{2} & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
-\frac{1}{2} & \frac{\cancel{\cancel{\cancel{1}}}}{\cancel{\cancel{3}}} & -\frac{1}{2} & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
-\frac{1}{2} & -\frac{\cancel{\cancel{\cancel{1}}}}{\cancel{\cancel{3}}} & 0 \\
\frac{\cancel{\cancel{\cancel{\cancel{1}}}}}{\cancel{\cancel{3}}} & -\frac{1}{2} & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
\frac{1}{2} & -\frac{\cancel{\cancel{\cancel{1}}}}{\cancel{\cancel{3}}} & 0 \\
\frac{\cancel{\cancel{\cancel{\cancel{1}}}}}{\cancel{\cancel{3}}} & -\frac{1}{2} & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
\frac{1}{2} & -\frac{\cancel{\cancel{\cancel{\cancel{1}}}}}{\cancel{\cancel{3}}} & 0 \\
\frac{\cancel{\cancel{\cancel{\cancel{1}}}}}{\cancel{\cancel{3}}} & -\frac{1}{2} & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
\frac{1}{2} & -\frac{\cancel{\cancel{\cancel{\cancel{1}}}}}{\cancel{\cancel{3}}} & 0 \\
-\frac{\cancel{\cancel{\cancel{\cancel{1}}}}}{\cancel{\cancel{3}}} & -\frac{1}{2} & 0 \\
0 & 0 & -1
\end{pmatrix}
\begin{pmatrix}
-\frac{1}{2} & -\frac{\cancel{\cancel{\cancel{\cancel{1}}}}}{\cancel{\cancel{3}}} & 0 \\
-\frac{\cancel{\cancel{\cancel{\cancel{1}}}}}{\cancel{\cancel{3}}} & -\frac{1}{2} & 0 \\
0 & 0 & -1
\end{pmatrix}
\begin{pmatrix}
-\frac{1}{2} & \frac{\cancel{\cancel{\cancel{\cancel{1}}}}}{\cancel{\cancel{3}}} & 0 \\
\frac{\cancel{\cancel{\cancel{\cancel{\cancel{1}}}}}}{\cancel{\cancel{3}}} & \frac{1}{2} & 0 \\
0 & 0 & -1
\end{pmatrix}
\begin{pmatrix}
\frac{1}{2} & \frac{\cancel{\cancel{\cancel{\cancel{1}}}}}{\cancel{\cancel{3}}} & 0 \\
\frac{\cancel{\cancel{\cancel{\cancel{\cancel{1}}}}}}{\cancel{\cancel{3}}} & -\frac{1}{2} & 0 \\
0 & 0 & -1
\end{pmatrix}$$

 $D_6$  の既約表現の指標を第25 表に示す。これは  $C_{60}$  と同形である。

第25表 D。の既約表現の指標

	E	2 C ₆	$2 C_6^2 \equiv 2 C$	$C_3 C_6{}^3 \equiv C_2$	" 3 C ₂	3 C2'	
$\mathbf{A}_{1}$	1	1	1	1	1	1	
A ₂	1	1	1	1	-1	-1	T(z), R(z)
B ₁	1	-1	1	-1	1	-1	
$\mathbf{B_2}$	1	-1	1	-1	-1	1	
E ₁	2	1	-1	-2	0	0	(T(x),T(y))(R(x),R(y))
E ₂	2	-1	-1	2	0	0	

#### *n*≥3 軸が1つ以上存在する群

本義回転の組合せ 初めに回転の組合せに関する一般的なことがらを述べる。ここでは本義回転(純回転)を取扱う。

**2**つの軸が角 $\varphi$ で交わっていて、この軸が n=p (回軸) 及び n=q (回軸) とすると、各々を便宜上、

$$\alpha_{p} = \begin{pmatrix} \cos 2\pi/p & \sin 2\pi/p & 0 \\ -\sin 2\pi/p & \cos 2\pi/p & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\alpha_q = \begin{pmatrix} \cos 2\pi/q & \cos \varphi \sin 2\pi/q & -\sin \varphi \sin 2\pi/q \\ -\sin 2\pi/q \cos \varphi & \sin^2\varphi + \cos^2\varphi \cos 2\pi/q & \sin \varphi \cos \varphi (1 - \cos 2\pi/q) \\ \sin \varphi \sin 2\pi/q & \sin \varphi \cos \varphi (1 - \cos 2\pi/q) & \cos^2\varphi + \sin^2\varphi \cos 2\pi/q \end{pmatrix}$$

の行列で示すことができる。後者の回転軸は  $\begin{pmatrix} \mathbf{0} \\ \sin \varphi \\ \cos \varphi \end{pmatrix}$  である。

 $1+2\cos\phi=$ 跡  $(\alpha_q \cdot \alpha_p)$  より,

$$\cos\varphi = \frac{\cos\pi/p\cos\pi/q \pm \cos\psi/2}{\sin\pi/p\sin\pi/q}$$

を得る。ここに角 $\phi$ は n=1, 2, 3, 4 或は 6 回軸に対して許された角である。第 26 表には,p, q, n に対する  $\cos \varphi$  の値が示されている。空欄は  $\cos \varphi > 1$  のため,実在しない。

		N) X	P, 4, 10 (2)(3) 0		
<b>p</b> – q	n = 1	n=2	n = 3	n=4	n=6
2 - 2	±1	0	±1/2	1/2/2	√3/2
2 - 3		0	$\sqrt{3}/3$	₁ √6/3	1
2 - 4		0	$\sqrt{2}/2$	1	
2 - 6		0	1		
3 – 3	-1	1/3	1, -1/3	$(1-2\sqrt{2})/3$	$(1-2\sqrt{3})/3$
3 – 4		$\sqrt{3}/3$	$\sqrt{3}(1-\sqrt{2})/3$	$-\sqrt{3}/3$	$\sqrt{3}(1-\sqrt{6})/3$
3 – 6		1	$1-2\sqrt{3}/3$	$1 - 2\sqrt{6}/3$	-1
4 – 4	-1	1	0	$1-\sqrt{2}/2$	$1-\sqrt{3}$
4 – 6			$\sqrt{3} - \sqrt{2}$	$\sqrt{3}-2$	$\sqrt{3}-\sqrt{6}$
6 - 6			1	$3-2\sqrt{2}$	$3-2\sqrt{3}$

第26 表 p, q, n に対する  $\cos \varphi$  の値

次に n=p 軸を z 方向にとる。又 n=q 軸を x=o 面内にあって, z 軸と角 $\varphi$  をなす方向にとる。この方向を  $\begin{pmatrix} 0 \\ \sin \varphi \\ \cos \varphi \end{pmatrix}$  としよう。これと同価な方向に隣接同価軸が現

われる。2つの隣接同価軸間の角 $\theta$ は

$$\cos\theta = \cos^2\varphi (1 - \cos 2\pi/p) + \cos 2\pi/p$$

第27表 p, q, n に対する  $\cos \theta$  の値

p - q	n=1	n=2	n = 3	n=4	n=6
2 - 2	1	-1	-1/2	0	1/2
2 - 3		-1	-1/3	1/3	1
2 - 4		-1	0	1	
2 - 6		-1	1	i.	
3 – 2		-1/2	0	1/2	1
3 – 3	1	-1/3	1, -1/3	$1 - 2\sqrt{2}/3$	$2\sqrt{3}/6-2\sqrt{3}/3$
3 – 4		0	$1 - \sqrt{2}$	0	$(7-2\sqrt{6})/3$
3 – 6	$9-8\sqrt{3}/2$	1	$3-4\sqrt{3}/2$	$5-2\sqrt{6}$	1
4 – 2		0	1/2	1	
4 - 3		1/3	$(1+2\sqrt{3})/3$	1/3	$(7-2\sqrt{6})/3$
4 – 4	1	1	0		$4-2\sqrt{3}$
4 - 6			$5-2\sqrt{6}$	$7 - 4\sqrt{3}$	$3(3-2\sqrt{3})$
6 – 2		1	1/2		
6 – 3	$11\sqrt{3}-8\sqrt{3}/6$	1	$(5-2\sqrt{3})/3$	$(7-2\sqrt{6})/3$	1
6 – 4			$3-\sqrt{6}$	$4-2\sqrt{3}$	$5-3\sqrt{2}$
6 – 6	1		1	$9-6\sqrt{2}$	$11 - 6\sqrt{3}$

第26表及び第27表から許容値の組合せを求めると第28表のようになる。ここに* 印の12個が既述でないものである。

第28表 許容値の組合せ

<b>p</b> - q	n	$\cos \varphi$	cos θ	<b>p</b> - q	n	$\cos \varphi$	$\cos \theta$	<b>p</b> - q	n	$\cos \varphi$	cos θ
2 - 2	3	±1/2	-1/2		4	√ <del>6</del> /3	1/2	4 – 3	2*	₁ /3/3	1/3
	4	$\sqrt{2}/2$	0		6	1	1		4*	$\sqrt{3}(1-\sqrt{2})/3$	1/3
	6	1/3/2	1/2	3 – 3	1	-1	1	4 – 4	1	-1	1
2 - 3	2	0	-1		2*	1/3	-1/3		2	1	1
	3*	1/3/3	-1/3		3*	1, -1/3	1, -1/3		3*	0	0
	6	1	1	3 – 4	2*	$\sqrt{3}/3$	0	6 – 2	2	0	1/2
2 - 4	2	0	-1		4*	$-\sqrt{3}/3$	0		3	1	1
	3*	$\sqrt{2}/2$	0	3 – 6	2	1	1	6 – 3	2	1	1
	4	1	1		6	1	1		6	-1	1
2 - 6	2	0	-1		3*	$1 - 2\sqrt{3}/3$	$3-2\sqrt{3}$	6 - 6	1	-1	1
	3	1	1	4 – 2	2	0	0		3	1	1
3 - 2	2	0	-1/2		3*	$\sqrt{2}/2$	1/2				
	3*	/3/3	0		4	1	1		1		

点群T 第 28 表の 2-3, 3*  $\sqrt{3}/3$  -1/3 の場合を考察しよう。z 軸を 2 回回転軸 とし、3 回回転軸を  $\begin{pmatrix} \sqrt{3}/3 \\ \sqrt{3}/3 \end{pmatrix}$  方向にとると、操作は  $\begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$  及び  $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$ 

となる。これを基にして可能な総ての積を作ると、点群Tの可約表現は次のようになる。

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & 1 \\ -1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & -1 \\ -1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & -1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ -1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \end{pmatrix}$$

点群Tの既約表現の指標を第29表に示す。

第29表 Tの既約表現の指標

	E	8 C ₃	3 C ₂	
A	1	1	1	
E	2	-1	2	
F	3	0	-1	(T(x), T(y), T(z)) (R(x), R(y), R(z))

ここに対称種Fは3重縮重種を示す。

点群 **0** 第 28 表の 2-4, 3* √ 2/2 0 を考察しよう。 2 回回転軸と 4 回回転軸を ( -1 0 0 ) ( 0 0 -1 )

それぞれ 
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
 及び  $\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$  とすると,これから点群 $oldsymbol{O}$ ができる。

この可約表現は次の 24 個の元からできている。

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 - 1 & 0 \\ 0 & 0 & 1 \\ -1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 - 1 \\ -1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 - 1 & 0 \\ 0 & 0 - 1 \\ 1 & 0 & 0 \end{pmatrix}$$

点群Oの既約表現の指標を第30表に示す。これは $T_d$ と同形である。

	E	8 C ₃	6 C ₂ '	6 C ₄	$3 C_4^2 \equiv 3 C_2''$	
A ₁	1	1	1	1	1	
$\mathbf{A_2}$	1	1	-1	-1	1	
E	2	-1	0	0	2	
$\mathbf{F_1}$	3	0	-1	1	-1	$\begin{pmatrix} (T(x), T(y), T(z)) \\ (R(x), R(y), R(z)) \end{pmatrix}$
$\mathbf{F_2}$	3	0	1	-1	-1	(21(2),21(9),11(2))

第30表 0の既約表現の指標

第 28 表でこの他にも点群Oになる場合がある。3-6,3  $1-2\sqrt{3}/3$  3-2 $\sqrt{3}$  は新らしい群を導くように見えるが,これが新らしい群である場合には,逆に 6-3,3  $1-2\sqrt{3}/3$  が組合せ中に見出される筈である。しかし,これは第 28 表中にないから,3-6 の組合せは存在しない。同様に 4-3,4  $\sqrt{3}(1-\sqrt{2})/3$  1/3 も存在しない。この他の*印の組合せは総て点群Oを作る。

点群  $T_k$  点群Oに反射面  $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} = \sigma(xy)$  を添加すると、24 個の元から成る

 $T_{k}$  ができる。この可約表現はTの元12個の他に、

である。

T_h の既約表現の指標を第31表に示す。

大森啓一

第31表 T の既約表現の指標

	E	8 C ₃	3 C ₂	3 o _h	8 S ₆	i	
Ag	1	1	1	1	1	1	
$\mathbf{A_u}$	1	1	1	-1	-1	-1	
$\mathbf{E}_{\mathbf{g}}$	2	1	2	2	1	2	
$\mathbf{E}_{\mathbf{u}}$	2	1	2	-2	-1	-2	
$\mathbf{F}_{\mathbf{g}}$	3	0	-1	-1	0	3	(R(x),R(y),R(z))
$\mathbf{F_u}$	3	0	-1	1	0	-3	(T(x),T(y),T(z))

点群  $T_d$  垂直な反射面を対角位で添加すると,垂直方向の 2 回回転軸は 4 回回映軸になる。点群Tに $\begin{pmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ を添加すると,点群  $T_d$  ができる。

 $T_d$  の可約表現はTの元 12 個の他に、次の 12 個の計 24 個である。

$$\begin{pmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$
 
$$\begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0 \end{pmatrix}$$
 
$$\begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

 $T_d$  の既約表現の指標を第32表に示す。これはOと同形である。

第32表  $T_d$  第表の既約表現の指標

	E	8 C ₃	6 o _d	6 S ₄	$3 S_4^2 \equiv 3 C_2$	
A ₁	1	1	1	1	1	
$A_2$	1	1	-1	-1	1	
E	2	-1	0	0	2	
$\mathbf{F_1}$	3	0	-1	1	-1	(R(x),R(y),R(z))
$\mathbf{F_2}$	3	0	1	-1	-1	(T(x),T(y),T(z))

点群  $O_k$  点群Oの 4回回転軸は  $D_2$  の 2回回転軸と同様にならんでいる。Oに反射面を添加してみよう。 1軸を通る反射面が他の 1軸をも通る ように置くと、Oには

 $O_h$  の可約表現はOの元 24 個の他に、次の 24 個の計 48 個から成る。

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ -1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ -1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & -1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & -1 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \end{pmatrix}$$

 $O_h$  の既約表現の指標を第33表に、又  $O_h$  とこの部分群の対称種の対比を第34表 に示す。

第33表  $O_k$  の既約表現の指標

	E	8 C ₃	6 C ₂	6 C ₄	$\begin{array}{c} 3 C_4^2 \equiv \\ 3 C_2'' \end{array}$	$S_2 \equiv i$	6 S ₄	8 S ₆	3 o _h	6 σ _d	
$A_{1g}$	1	1	1	1	1	1	1	1	1	1	
$A_{1u}$	1	1	1	1	1	-1	-1	-1	-1	-1	
$A_{2g}$	1	1	-1	-1	1	1	-1	1	1	-1	
$\mathbf{A_{2u}}$	1	1	-1	-1	1	-1	1	-1	-1	1	
$\mathbf{E}_{\mathbf{g}}$	2	-1	0	0	2	2	0	-1	2	0	
$\mathbf{E}_{\mathbf{u}}$	2	-1	0	0	2	-2	0	1	-2	0	
$F_{1g}$	3	0	-1	1	-1	3	1	0	-1	-1	(R(x), R(y), R(z))
$F_{1u}$	3	0	-1	1	-1	-3	-1	0	1	1	(T(x),T(y),T(z))
$F_{2g}$	3	0	1	-1	-1	3	-1	0	-1	1	
F ₂ u	3	0	1	-1	-1	-3	1	0	1	-1	

第34表 0 と部分群の対称種の対比

Oh	0	$T_d$	$T_h$	$D_{4h}$	$D_{3d}$
A _{1g}	A ₁	A ₁	Ag	$A_{1g}$	$A_{1g}$
A _{1u}	$\mathbf{A_1}$	$A_2$	$\mathbf{A}_{\mathbf{u}}$	$A_{1u}$	$\mathbf{A_{1u}}$
A _{2g}	$\mathbf{A_2}$	$\mathbf{A_2}$	$\mathbf{A}_{\mathbf{g}}$	$\mathbf{B_{1g}}$	$A_{2g}$
A _{2u}	$\mathbf{A_2}$	$\mathbf{A_1}$	$\mathbf{A_u}$	$\mathbf{B_{1u}}$	$A_{2u}$
Eg	E	E	$\mathbf{E}_{\mathbf{g}}$	$\mathbf{A_{1g}} + \mathbf{B_{1g}}$	$\mathbf{E}_{\mathbf{g}}$
Eu	E	E	$\mathbf{E}_{\mathbf{u}}$	$A_{1u}+B_{1u}$	$\mathbf{E}_{\mathbf{u}}$
F _{1g}	$\mathbf{F_1}$	$\mathbf{F_1}$	$\mathbf{F}_{\mathbf{g}}$	$A_{2g}+E_g$	$A_{2g} + E_{g}$
Fiu	$\mathbf{F_1}$	$\mathbf{F_2}$	$\mathbf{F}_{\mathbf{u}}$	$A_{2u}+E_{u}$	$A_{2u}+E_{u}$
F _{2g}	$\mathbf{F_2}$	$\mathbf{F_2}$	$\mathbf{F}_{\mathbf{g}}$	$\mathbf{B_{2g}} + \mathbf{E_g}$	$A_{1g} + E_g$
F _{2u}	$\mathbf{F_2}$	$\mathbf{F_1}$	$\mathbf{F}_{\mathbf{u}}$	$B_{2u}+E_{u}$	$A_{1u} + E_{u}$

## 文 献

参考にした文献のうち, 主なものは

Jaffé, H. H. and Orchin, M. (1965) Symmetry in chemistry. (本書の訳本:斉藤喜彦訳 (1966) 群論入門―化学における対称,東京化学)

Margenau, H. and Murphy, G. M. (1955) The mathematics of physics and chemistry. (本書の訳本:佐藤次彦, 国宗 真訳 (1959) 物理と化学のための数学 I, II. 共立)

水島三一郎, 島内武彦 (1958) 赤外線吸収とラマン効果, 共立

Seitz, F. (1934) A matrix-algebric development of the crystallographic groups. Zeit. Krist. 88, 433-459.

遠山 啓 (1952) 行列論, 共立

Wilson, E. B., Decius, J. C. and Cross, P. C. (1955) Molecular vibrations. McGraw-Hill.