Feedback — Week4B (Basic)

Help Center

You submitted this quiz on **Mon 2 Mar 2015 7:46 PM PST**. You got a score of **4.00** out of **4.00**.

Question 1

Note: In this question, all columns will be written in their transposed form, as rows, to make the typography simpler. Matrix M has three rows and two columns, and the columns form an orthonormal basis. One of the columns is [2/7,3/7,6/7]. There are many options for the second column [x,y,z]. Write down those constraints on x, y, and z. Then, identify in the list below the one column that could be [x,y,z]. All components are computed to three decimal places, so the constraints may be satisfied only to a close approximation.

Your Answer		Score	Explanation
[857, .286, .429]			
[.485,485, .728]			
[937, .312, .156]	~	1.00	
[.312, .156,937]			
Total		1.00 / 1.00	

Question 2

Note: In this question, all columns will be written in their transposed form, as rows, to make the typography simpler. Matrix M has three rows and three columns, and the columns form an orthonormal basis. One of the columns is [2/7,3/7,6/7], and another is [6/7, 2/7, -3/7]. Let the third column be [x,y,z]. Since the length of the vector [x,y,z] must be 1, there is a constraint that $x^2+y^2+z^2=1$. However, there are other constraints, and these other constraints can be used to deduce facts

1 of 4 3/2/2015 10:46 PM

about the ratios among x, y, and z. Compute these ratios, and then identify one of them in the list below.

Your Answer		Score	Explanation
2x = -3z			
x = 2y			
● y = -3z	~	1.00	
z = -3y			
Total		1.00 / 1.00	

Question 3

Suppose we have three points in a two dimensional space: (1,1), (2,2), and (3,4). We want to perform PCA on these points, so we construct a 2-by-2 matrix whose eigenvectors are the directions that best represent these three points. Construct this matrix and identify, in the list below, one of its elements.

Your Answer		Score	Explanation
24			
0 13			
1 9			
● 17	~	1.00	
Total		1.00 / 1.00	

Question 4

Find, in the list below, the vector that is orthogonal to the vector [1,2,3]. Note: the interesting concept regarding eigenvectors is "orthonormal," that is unit vectors that are orthogonal. However,

2 of 4 3/2/2015 10:46 PM

this question avoids using unit vectors to make the calculations simpler.

Your Answer
Score
Explanation

[1, -2, 1]

[-3, -2, 5]

[-1, -2, 0]

[-1, 1, -1]

Total

1.00 / 1.00

3 of 4 3/2/2015 10:46 PM

4 of 4