Chapter 1

Some Basic Concepts of Chemistry

1.	The molality of a ure of urea, [(NH ₂) ₂ CO]		•
	water at STP is		[AIEEE-2011]
	(1) 3 33 x 10 ⁻² m	(2) 0.55	5 m

- (3) 5.55×10^{-4} m
- (4) 33.3 m
- The density of a solution prepared by dissolving 120 g of urea (mol. mass = 60 u) in 1000 g of water of 1.15 g/mL. The molarity of this solution is

[AIEEE-2012]

- (1) 1.78 M
- (2) 1.02 M
- (3) 2.05 M
- (4) 0.50 M
- The molarity of a solution obtained by mixing 3. 750 mL of 0.5 (M) HCl with 250 mL of 2 (M) HCl will be [JEE (Main)-2013]
 - (1) 0.875 M
- (2) 1.00 M
- (3) 1.75 M
- (4) 0.975 M
- 4. At 300 K and 1 atm, 15 mL of a gaseous hydrocarbon requires 375 mL air containing 20% O₂ by volume for complete combustion. After combustion the gases occupy 330 mL. Assuming that the water formed is in liquid form and the volumes were measured at the same temperature and pressure, the formula of the hydrocarbon is

[JEE (Main)-2016]

- (1) C_3H_8
- (2) C₄H₈
- (3) C_4H_{10}
- (4) C_3H_6
- 5. 1 gram of a carbonate (M₂CO₃) on treatment with excess HCl produces 0.01186 mole of CO₂. The molar mass of M₂CO₃ in g mol⁻¹ is

[JEE (Main)-2017]

- (1) 118.6
- (2) 11.86
- (3) 1186
- (4) 84.3
- The most abundant elements by mass in the body of a healthy human adult are:

Oxygen (61.4%); Carbon (22.9%); Hydrogen (10.0%) and Nitrogen (2.6%).

The weight which a 75 kg person would gain if all ¹H atoms are replaced by ²H atoms is

[JEE (Main)-2017]

- (1) 7.5 kg
- (2) 10 kg
- (3) 15 kg
- (4) 37.5 kg
- The ratio of mass percent of C and H of an organic compound $(C_vH_vO_z)$ is 6 : 1. If one molecule of the above compound (C_xH_yO₇) contains half as much oxygen as required to burn one molecule of compound C_xH_y completely to CO₂ and H₂O. The empirical formula of compound C_xH_yO_z is

[JEE (Main)-2018]

- (1) $C_3H_6O_3$
- (2) C_2H_4O
- (3) $C_3H_4O_2$
- (4) $C_2H_4O_2$
- A solution of sodium sulfate contains 92 g of Na⁺ ions per kilogram of water. The molality of Na+ ions in that solution in mol kg⁻¹ is [JEE (Main)-2019]
 - (1) 16

(2) 4

(3) 8

- (4) 12
- For the following reaction, the mass of water produced from 445 g of C₅₇H₁₁₀O₆ is

 $2C_{57}H_{110}O_6(s) + 163O_2(g) \rightarrow 114CO_2(g) + 110H_2O(l)$

[JEE (Main)-2019]

- (1) 890 g
- (2) 490 g
- (3) 445 g
- (4) 495 g
- 10. The amount of sugar (C₁₂H₂₂O₁₁) required to prepare 2 L of its 0.1 M aqueous solution is

[JEE (Main)-2019]

- (1) 136.8 g
- (2) 17.1 g
- (3) 34.2 g
- (4) 68.4 q
- 11. 8 g of NaOH is dissolved in 18 g of H₂O. Mole fraction of NaOH in solution and molality (in mol kg⁻¹) of the solution respectively are

[JEE (Main)-2019]

/ A \		<u> </u>	20	20
26) (1 /		70

(2) 0.167, 22.20

(4) 0.2, 11.11

12. The percentage composition of carbon by mole in methane is [JEE (Main)-2019]

(1) 80%

(2) 75%

(3) 20%

(4) 25%

13. For a reaction, $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$.

Identify dihydrogen (H₂) as a limiting reagent in the following reaction mixtures. [JEE (Main)-2019]

(1) $35 \text{ g of N}_2 + 8 \text{ g of H}_2$

(2) $28 \text{ g of N}_2 + 6 \text{ g of H}_2$

(3) 56 g of N_2 + 10 g of H_2

(4) $14 \text{ g of } N_2 + 4 \text{ g of } H_2$

14. What would be the molality of 20% (mass/mass) aqueous solution of KI? (molar mass of KI = 166 g mol^{-1}) [JEE (Main)-2019]

(1) 1.48

(2) 1.51

(3) 1.08

(4) 1.35

15. The minimum amount of O₂(g) consumed per gram of reactant is for the reaction:

(Given atomic mass : Fe = 56, O = 16, Mg = 24, P = 31, C = 12, H = 1) [JEE (Main)-2019]

(1) $2Mg(s) + O_2(g) \rightarrow 2MgO(s)$

(2) $4Fe(s) + 3O_2(g) \rightarrow 2Fe_2O_3(s)$

(3) $C_3H_8(g) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(l)$

(4) $P_4(s) + 5O_2(g) \rightarrow P_4O_{10}(s)$

16. The mole fraction of a solvent in aqueous solution of a solute is 0.8. The molality (in mol kg⁻¹) of the aqueous solution is [JEE (Main)-2019]

(1) 13.88×10^{-2}

(2) 13.88×10^{-3}

(3) 13.88

(4) 13.88 × 10⁻¹

17. 5 moles of AB_2 weigh 125×10^{-3} kg and 10 moles of A_2B_2 weigh 300×10^{-3} kg. The molar mass of $A(M_A)$ and molar mass of $B(M_B)$ in kg mol⁻¹ are **[JEE (Main)-2019]**

(1) $M_A = 25 \times 10^{-3}$ and $M_B = 50 \times 10^{-3}$

(2) $M_A = 50 \times 10^{-3}$ and $M_B = 25 \times 10^{-3}$

(3) $M_A = 5 \times 10^{-3}$ and $M_B = 10 \times 10^{-3}$

(4) $M_A = 10 \times 10^{-3}$ and $M_B = 5 \times 10^{-3}$

18. 25 g of an unknown hydrocarbon upon burning produces 88 g of ${\rm CO_2}$ and 9 g of ${\rm H_2O}$. This unknown hydrocarbon contains

[JEE (Main)-2019]

(1) 22 g of carbon and 3 g of hydrogen

(2) 24 g of carbon and 1 g of hydrogen

(3) 20 g of carbon and 5 g of hydrogen

(4) 18 g of carbon and 7 g of hydrogen

19. Amongst the following statements, that which was not proposed by Dalton was [JEE (Main)-2020]

(1) All the atoms of a given element have identical properties including identical mass. Atoms of different elements differ in mass

(2) Matter consists of indivisible atoms.

(3) Chemical reactions involve reorganization of atoms. These are neither created nor destroyed in a chemical reaction.

(4) When gases combine or reproduced in a chemical reaction they do so in a simple ratio by volume provided all gases are at the same T & P.

20. A solution of two components containing n_1 moles of the 1st component and n_2 moles of the 2nd component is prepared. M_1 and M_2 are the molecular weights of component 1 and 2 respectively. If d is the density of the solution in g mL⁻¹, C_2 is the molarity and x_2 is the mole fraction of the 2nd component, then C_2 can be expressed as [JEE (Main)-2020]

(1)
$$C_2 = \frac{1000 \text{ x}_2}{\text{M}_1 + \text{x}_2(\text{M}_2 - \text{M}_1)}$$

(2)
$$C_2 = \frac{1000 \text{ d } x_2}{M_1 + x_2(M_2 - M_1)}$$

(3)
$$C_2 = \frac{d x_2}{M_2 + x_2(M_2 - M_1)}$$

(4)
$$C_2 = \frac{d x_1}{M_2 + x_2(M_2 - M_1)}$$

21. The average molar mass of chlorine is 35.5 g mol⁻¹. The ratio of ³⁵Cl to ³⁷Cl in naturally occurring chlorine is close to [JEE (Main)-2020]

	(1) 1.1	(2) 2 . 1	31.	The formula of a gaseous hydrocarbon which
	(3) 3:1	(4) 4:1		requires 6 times of its own volume of ${\rm O_2}$ for complete oxidation and produces 4 times its own
	errous sulphate heptahydrate is used to fortify bods with iron. The amount (in grams) of the salt			volume of CO_2 is C_xH_y . The value of y is
		10 ppm of iron in		[JEE (Main)-2021]
		[JEE (Main)-2020] 85; S = 32.00; O = 16.00	32.	Complete combustion of 1.80 g of an oxygen
23.		spacecrafts, to produce		containing compound $(C_xH_yO_z)$ gave 2.64 g of CO_2 and 1.08 g of H_2O . The percentage of oxygen in
	O ₂ . The daily consumption	on of pure O ₂ by a person		the organic compound is : [JEE (Main)-2021]
		K. How much amount of irred to produce O ₂ for the		(1) 50.33 (2) 53.33
	3	person at 1 atm, 300 K?		(3) 51.63 (4) 63.53
	$\begin{array}{c} \\ \text{NaClO}_3(s) + \text{Fe}(s) \rightarrow \text{O}_2 \end{array}$	[JEE (Main)-2020] (g) + NaCl(s) + FeO(s)	33.	The number of significant figures in 50000.020×10^{-3} is [JEE (Main)-2021]
	$R = 0.082 L atm mol^{-1} k$		34.	The NaNO ₃ weighed out to make 50 mL of an
24.		in a sample which has		aqueous solution containing 70.0 mg Na ⁺ per mL
	density 1.4 g/mL and ma (Molecular Weigh	ass percentage of 63% is at of HNO ₃ = 63)		is g. (Rounded off to the nearest integer)
		[JEE (Main)-2020]		[Given : Atomic weight in g mol^{-1} - Na : 23; N :
25.		rcentages of 'C & H' and cyclic organic compound		14; O : 16] [JEE (Main)-2021]
	'X' are 4 : 1 and 3 : 4 res	pectively. Then, the moles	Then, the moles	A 6.50 molal solution of KOH (aq.) has a density of 1.89 g cm ⁻³ . The molarity of the solution is
	of oxygen gas required to two moles of organic con	or complete combustion of npound 'X' is		mol dm ⁻³ . (Round off to the Nearest Integer).
	S	[JEE (Main)-2020]		[Atomic masses : K : 39.0 u; O : 16.0 u; H : 1.0 u]
26.		lucose (C ₆ H ₁₂ O ₆) in an		[JEE (Main)-2021]
		ion is 0.1. The mass to the nearest integer, is	36.	Complete combustion of 750 g of an organic
		[JEE (Main)-2020]		compound provides 420 g of CO ₂ and 210 g of H ₂ O. The percentage composition of carbon and
27.		are present in 10 g of a		hydrogen in organic compound is 15.3 and
	5 g of substance 'x' in	ty of a solution containing 2 L solution is		respectively. (Round off to the Nearest
	× 10 ⁻³ .	[JEE (Main)-2020]	27	Integer). [JEE (Main)-2021]
28.		grams produced when 2.8 tively reacts with 1 kg of	37.	When 35 mL of 0.15 M lead nitrate solution is mixed with 20 mL of 0.12 M chromic sulphate
	dihydrogen is			solution, × 10^{-5} moles of lead sulphate
29.		moles of O ₂ required for		precipitate out. [JEE (Main)-2021]
		1 mole of propane and 2 [JEE (Main)-2020]		(Round off to the Nearest Integer).
30.		V = 90) was used to make	38.	The number of chlorine atoms in 20 mL of chlorine gas at STP is 10 ²¹ . (Round off to the
		olution. The molarity of the		Nearestinteger). [JEE (Main)-2021]
	(Rounded off to the near	The value of x is est integer)		[Assume chlorine is an ideal gas at STP
		[JEE (Main)-2021]		R = $0.083 \text{ L bar mol}^{-1}\text{K}^{-1}$, $N_A = 6.023 \times 10^{23}$]

J.	$x \times 10^{22}$ molecules of water. The value of x is	46.	g of oxalic acid ($H_2C_2O_4\cdot 2H_2O$) in 250 mL of water in mol L ⁻¹ is $\times \times 10^{-2}$. The value of \times is	
	(Round off to the Nearest Integer).		(Nearest integer)	
	[Use: $N_A = 6.023 \times 10^{23}$;		[Atomic mass : H : 1.0, C : 12.0, O : 16.0]	
	Atomic masses in u : C : 12.0 ; O : 16.0 ; H : 1.0]		[JEE (Main)-2021]	
	[JEE (Main)-2021]	49.	Sodium oxide reacts with water to produce sodium	
0.	250 mL of 0.5 M NaOH was added to 500 mL of 1 M HCI. The number of unreacted HCI molecules in the solution after complete reaction is $___ \times 10^{21}$. (Nearest integer) (N _A = 6.022 × 10^{23})		hydroxide. 20.0 g of sodium oxide is dissolved in 500 mL of water. Neglecting the change in volume, the concentration of the resulting NaOH solution is	
	[JEE (Main)-2021]		× 10 ⁻¹ M. (Nearest integer)	
1.	If the concentration of glucose $(C_6H_{12}O_6)$ in blood is		[Atomic mass : Na = 23.0, O = 16.0, H = 1.0]	
	0.72 g L ⁻¹ , the molarity of glucose in blood is × 10 ⁻³ M. (Nearest integer)		[JEE (Main)-2021]	
	(Given : Atomic mass of C = 12, H = 1, O = 16 u)	50.	If 80 g of copper sulphate ${\rm CuSO_4\cdot 5H_2O}$ is dissolved in deionised water to make 5 L of solution. The	
	[JEE (Main)-2021]		concentration of the copper sulphate solution is $x \times x$	
2.	amount of butane utilized to produce 72.0 g of water		10^{-3} mol L ⁻¹ . The value of x is [Atomic masses Cu : 63.54 u, S : 32 u, O : 16 u,	
	is × 10 ⁻¹ g. (in nearest integer)		H : 1 u] [JEE (Main)-2021]	
	[JEE (Main)-2021]	51.	The number of atoms in 8 g of sodium is $x \times 10^{23}$. The	
3.	The number of significant figures in 0.00340 is		value of x is (Nearest integer)	
4	[JEE (Main)-2021]		[Given : $N_A = 6.02 \times 10^{23} \text{ mol}^{-1}$	
4.	The density of NaOH solution is 1.2 g cm ⁻³ . The molality of this solution is m.		Atomic mass of Na = 23.0 u] [JEE (Main)-2021]	
	(Round off to the Nearest Integer)	52.	If a rocket runs on a fuel (C ₁₅ H ₃₀) and liquid oxygen, the weight of oxygen required and CO ₂ released for	
	[Use : Atomic masses : Na : 23.0 u, O : 16.0 u H : 1.0 u Density of $\rm H_2O$: 1.0 g cm ⁻³]		every litre of fuel respectively are:	
	[JEE (Main)-2021]		(Given : density of the fuel is 0.756 g/mL)	
5.	An aqueous KCl solution of density 1.20 g ml ⁻¹ has a molality of 3.30 mol kg ⁻¹ . The molarity of the		[JEE (Main)-2022] (1) 1188 g and 1296 g	
	solution in mol L^{-1} is (Nearest integer) [Molar mass of KCl = 74.5] [JEE (Main)-2021]		(2) 2376 g and 2592 g	
6	100 mL of Na_3PO_4 solution contains 3.45 g		(3) 2592 g and 2376 g	
Ο.	of sodium. The molarity of the solution is $_$ × 10^{-2} mol L ⁻¹ . (Nearest integer)		(4) 3429 g and 3142 g	
	[Atomic Masses - Na : 23.0 u, O : 16.0 u, P : 31.0 u]	53.	The number of N atoms in 681 g of $C_7H_5N_3O_6$ is	
	[JEE (Main)-2021]		$x \times 10^{21}$. The value of x is (N _A = 6.02 × 10^{23} mol ⁻¹) (Nearest Integer)	
7.	100 g of propane is completely reacted with 1000 g of oxygen. The mole fraction of carbon dioxide		[JEE (Main)-2022]	
	in the resulting mixture is x × 10 ⁻² . The value of x is (Nearest integer)	54.	A protein 'A' contains 0.30% of glycine (molecular weight 75). The minimum molar mass of the protein	
	[Atomic weight : H = 1.008; C = 12.00; O = 16.00]		'A' is × 10 ³ g mol ⁻¹ [nearest integer]	
	[.IEE/Main)-20211		[IEE (Main)-2022]	

55. A commercially sold conc. HCl is 35% HCl by mass. If the density of this commercial acid is 1.46 g/mL, the molarity of this solution is :

(Atomic mass : CI = 35.5 amu, H = 1 amu)

[JEE (Main)-2022]

- (1) 10.2 M
- (2) 12.5 M
- (3) 14.0 M
- (4) 18.2 M
- 56. CNG is an important transportation fuel. When 100 g CNG is mixed with 208 g oxygen in vehicles, it leads to the formation of CO₂ and H₂O and produced large quantity of heat during this combustion, then the amount of carbon dioxide, produced in grams is _____. [nearest integer]

[Assume CNG to be methane]

[JEE (Main)-2022]

57. The moles of methane required to produce 81 g of water after complete combustion is _____ × 10⁻² mol. [nearest integer]

[JEE (Main)-2022]

58. Given below are two statements: one is labelled as **Assertion (A)** and the other is labelled as **Reason (R)**.

Assertion (A): At 10°C, the density of a 5 M solution of KCI [atomic masses of K & CI are 39 & 35.5 g mol⁻¹ respectively], is 'x' g ml⁻¹. The solution is cooled to –21°C. The molality of the solution will remain unchanged.

Reason (R): The molality of a solution does not change with temperature as mass remains unaffected with temperature.

In the light of the above statements, choose the **correct** answer from the options given below.

[JEE (Main)-2022]

- (1) Both (A) and (R) are true and (R) is the correct explanation of (A).
- (2) Both (A) and (R) are true but (R) is not the correct explanation of (A).
- (3) (A) is true but (R) is false.
- (4) (A) is false but (R) is true.
- 59. Two elements A and B which form 0.15 moles of A₂B and AB₃ type compounds. If both A₂B and AB₃ weigh equally, then the atomic weight of A is _____ times of atomic weight of B.

[JEE (Main)-2022]

 Compound A contains 8.7% Hydrogen, 74% Carbon and 17.3% Nitrogen. The molecular formula of the compound is,

Given: Atomic masses of C, H and N are 12, 1 and 14 amu respectively.

The molar mass of the compound A is 162 g mol^{-1} .

[JEE (Main)-2022]

- (1) $C_4H_6N_2$
- (2) C_2H_3N
- (3) C_5H_7N
- (4) $C_{10}H_{14}N_2$
- 61. Using the rules for significant figures, the correct answer for the expression $\frac{0.02858\times0.112}{0.5702} \text{ will be}$

[JEE (Main)-2022]

- (1) 0.005613
- (2) 0.00561
- (3) 0.0056
- (4) 0.006
- 62. 56.0 L of nitrogen gas is mixed with excess of hydrogen gas and it is found that 20 L of ammonia gas is produced. The volume of unused nitrogen gas is found to be

 L. [JEE (Main)-2022]
- 63. Chlorophyll extracted from the crushed green leaves was dissolved in water to make 2 L solution of Mg of concentration 48 ppm. The number of atoms of Mg in this solution is $x \times 10^{20}$ atoms. The value of x is . (Nearest integer)

(Given : Atomic mass of Mg is 24 g mol⁻¹; $N_A = 6.02 \times 10^{23} \text{ mol}^{-1}$) [JEE (Main)-2022]

64. When 800 mL of 0.5 M nitric acid is heated in a beaker, its volume is reduced to half and 11.5 g of nitric acid is evaporated. The molarity of the remaining nitric acid solution is $x \times 10^{-2}$ M. (Nearest integer)

(Molar mass of nitric acid is 63 g mol⁻¹)

[JEE (Main)-2022]

65. Haemoglobin contains 0.34% of iron by mass. The number of Fe atoms in 3.3 g of haemoglobin is

(Given : Atomic mass of Fe is 56 u, $N_A = 6.022 \times 10^{23}$ mol⁻¹) [JEE (Main)-2022]

- (1) 1.21×10^5
- (2) 12.0 × 10¹⁶
- (3) 1.21×10^{20}
- $(4) 3.4 \times 10^{22}$

$$X + Y + 3Z \rightleftharpoons XYZ_3$$

if one mole of each of X and Y with 0.05 mol of Z gives compound XYZ_3 . (Given : Atomic masses of X, Y and Z are 10, 20 and 30 amu, respectively.) the yield of XYZ_3 is _____ g. (Nearest integer)

[JEE (Main)-2022]

67. On complete combustion of 0.492 g of an organic compound containing C, H and O, 0.7938 g of CO₂ and 0.4428 g of H₂O was produced. The % composition of oxygen in the compound is _____.

[JEE (Main)-2022]

- 68. 2 L of 0.2 M H₂SO₄ is reacted with 2 L of 0.1 M NaOH solution, the molarity of the resulting product Na₂SO₄ in the solution is _____ millimolar. (Nearest integer) [JEE (Main)-2022]
- 69. $N_{2(g)} + 3H_{2(g)} \rightleftharpoons 2NH_{3(g)}$

Consider the above reaction, the limiting reagent of the reaction and number of moles of NH₃ formed respectively are: [JEE (Main)-2022]

- (1) H₂, 1.42 moles
- (2) H₂, 0.71 moles
- (3) N₂, 1.42 moles
- (4) N₂, 0.71 moles
- 70. Consider the reaction

$$4HNO_3(I) + 3KCI(s)$$

$$\rightarrow$$
 Cl₂(g) + NOCl(g) + 2H₂O(g) + 3KNO₃(s)

The amount of HNO_3 required to produce 110.0 g of KNO_3 is

(Given : Atomic masses of H, O, N and K are 1, 16, 14 and 39 respectively.) [JEE (Main)-2022]

- (1) 32.2 g
- (2) 69.4 g
- (3) 91.5 g
- (4) 162.5 g

Chapter 1

Some Basic Concepts of Chemistry

1. Answer (3)

$$m = \frac{W_1}{M_1 \times W_2(\text{in kg})} = \frac{0.01}{60 \times 0.3} = 0.000555$$
$$= 5.55 \times 10^{-4} \text{ m}$$

- 2. Answer (3)
- 3. Answer (1)

The molarity of a solution obtained by mixing 750 mL of 0.5 M HCl with 250 mL of 2 M HCl is given by

Molarity =
$$\frac{750 \times 0.5 + 250 \times 2}{1000}$$
 = 0.875 M

4. Answer (1)

$$C_3H_8(g) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(l)$$

So, volume of O_2 required for the combustion of 1 mL hydrocarbon = 5 mL.

So, volume of O_2 requierd for the combustion of 15 mL of hydrocarbon = 75 mL (*i.e.*, 20% of 375 mL air)

NOTE: But for this, the total volume of gases after combustion should be 345 mL, rather than 330 mL.

5. Answer (4)

$$\mathrm{M_2CO_3} + 2\mathrm{HCI} \rightarrow 2\mathrm{MCI} + \mathrm{H_2O} + \mathrm{CO_2}$$

$$n_{M_2CO_3}=n_{CO_2}$$

$$\frac{1}{M_{M_2CO_3}} = 0.01186$$

$$M_{M_2CO_3} = \frac{1}{0.01186}$$

= 84.3 g/mol

6. Answer (1)

Mass of hydrogen =
$$\frac{10}{100} \times 75 = 7.5 \text{ kg}$$

Replacing ¹H by ²H would replace 7.5 kg with 15 kg

- ∴ Net gain = 7.5 kg
- 7. Answer (4)

Element	Relative mass	Relative mole	Simplest whole number ratio
С	6	$\frac{6}{12}$ = 0.5	1
н	1	$\frac{1}{1} = 1$	2

So.
$$X = 1$$
. $Y = 2$

Equation for combustion of C_vH_v

$$C_XH_Y + \left(X + \frac{Y}{4}\right)O_2 \longrightarrow XCO_2 + \frac{Y}{2}H_2O$$

Oxygen atoms required = $2\left(X + \frac{Y}{4}\right)$

As per information,

$$2\left(X + \frac{Y}{4}\right) = 2Z$$

$$\Rightarrow \left(1+\frac{2}{4}\right)=Z$$

$$\Rightarrow$$
 Z = 1.5

Molecule can be written

$$C_X H_Y O_Z$$

$$C_1 H_2 O_{3/2}$$

$$\Rightarrow$$
 $C_2H_4O_3$

8. Answer (2)

92 g of Na⁺ =
$$\frac{92}{23}$$
 = 4 moles

Molality =
$$\frac{\text{number of moles}}{\text{mass of solvent (inkg)}}$$

$$=\frac{4}{1}=4 \text{ mol kg}^{-1}$$

9. Answer (4)

$$2C_{57}H_{110}O_6(s) + 163O_2(g) \rightarrow 114CO_2(g) + 110H_2O(l)$$

$$n = \frac{445}{890} = 0.5$$

$$\therefore \text{ Moles of water } = \frac{110}{2} \times 0.5 = 27.5$$

10. Answer (4)

Molarity =
$$\frac{\text{Mole of sugar}}{\text{Volume of solution (in L)}}$$

$$\Rightarrow$$
 0.1 = $\frac{\text{Mole of sugar}}{2 \text{ L}}$

Mole of sugar = 0.2 mol

Mass of sugar = Mole × Molar mass of sugar

$$= 0.2 \times 342 = 68.4 \text{ g}$$

11. Answer (3)

Mole faction
$$=\frac{n_2}{n_2 + n_1} = \frac{\frac{1}{5}}{\frac{1}{5} + 1} = 0.167$$

$$n_2 = \frac{8}{40} \quad n_1 = \frac{18}{18}$$

Molality =
$$\frac{8}{40} \times \frac{1000}{18} = 11.11 \text{ m}$$

12. Answer (3)

In CH₄

one atom of carbon among 5 atoms (1C + 4H atoms)

∴ Mole % of C =
$$\frac{1}{5} \times 100 = 20\%$$

13. Answer (3)

28 g N₂ react with 6 g H₂

$$\begin{array}{ccc} N_2 & + & 3H_2 & \longrightarrow & 2NH_3 \\ \text{1 mole} & \text{3 moles} \\ \text{28 g} & \text{6 g} \end{array}$$

For 56 g of N₂, 12 g of H₂ is required.

14. Answer (2)

20% w/w KI solution

i.e. 100 g solution contains 20 g KI

$$\therefore$$
 Mass of solvent = 100 – 20 = 80 g

$$\therefore \quad \text{Molality} = \frac{20 \times 1000}{166 \times 80} \simeq 1.51 \text{ molar}$$

15. Answer (2)

(1) 2 Mg +
$$O_2 \longrightarrow 2$$
 MgO

1 g requires
$$\frac{32}{48}$$
 g = 0.66 g of O₂

$$(2) 4Fe + 3O_2 \longrightarrow 2Fe_2O_3$$

1 g Fe requires = 0.43 g of oxygen

(3)
$$C_3H_8 + 5O_2 \longrightarrow 3CO_2 + 4H_2O$$

1 g of C_3H_8 requires = 3.6 g of O_2

16. Answer (3)

Let, total 1 moles be present.

$$n_{\text{solute}} = 0.2$$

$$n_{\text{solvent}} = 0.8 \Rightarrow g_{\text{solvent}} = 0.8 \times 18$$

$$m = \frac{0.2 \times 1000}{0.8 \times 18}$$

$$=\frac{1000}{4\times18}\approx13.88$$

17. Answer (3)

5 mol AB₂ weighs 125 g

$$\therefore$$
 AB₂ = 25 g/mol

10 mol A₂B₂ weighs 300 g

$$\therefore$$
 A₂B₂ = 30 g/mol

∴ Molar mass of A = 5

Molar mass of B = 10

18. Answer (2)

$$C_xH_y + \left(x + \frac{y}{4}\right)O_2 \longrightarrow xCO_2 + \frac{y}{2}H_2O$$
(excess)

2 moles
$$\frac{1}{2}$$
 moles

$$\Rightarrow$$
 x = 2 \Rightarrow y = 1

$$\therefore$$
 x = 2 and y = 1

Hydrocarbon: (C₂H)_n

2 mol carbon contains 24 g

1 mol hydrogen contains 1 g

19. Answer (4)

"When gases combine or reproduced in a chemical reaction, they do so in a simple ratio by volume provided all gases are at the same T & P"

This is not a postulate of Dalton's theory

20. Answer (2)

To express C_2 in terms of mole fraction \boldsymbol{x}_2

	1 st component	2 nd component
mole	n_1	n ₂
m.w	M_1	M_2
mass	n₁M₁	n_2M_2

mass of solution = $n_1M_1 + n_2M_2$

mole fraction
$$x_2 = \frac{n_2}{n_1 + n_2}$$

$$n_1 = \frac{n_2(1-x_2)}{x_2}$$

Mass of solution = $n_1M_1 + n_2M_2$

$$= \frac{n_2 M_1 (1 - x_2)}{x_2} + n_2 M_2$$

$$= \frac{n_2}{x_2} [M_2 x_2 - x_2 M_1 + M_1]$$

Volume of solution

$$= \frac{n_2[M_2x_2 - x_2M_1 + M_1]}{1000dx_2} \text{ Litre}$$

$$C_2 = \frac{1000n_2 dx_2}{n_2[M_2 x_2 - x_2 M_1 + M_1]}$$

$$C_2 = \frac{1000 \, dx_2}{M_1 + x_2 (M_2 - M_1)}$$

21. Answer (3)

Average molar mass =
$$\frac{35 \times 3 + 37 \times 1}{4} = 35.5$$

$$\Rightarrow$$
 35Cl : 37Cl = 3 : 1

22. Answer (4.97)

Mass of iron needed in 100 kg wheat =
$$\frac{10}{10^6} \times 10^5$$

= 1.0 gm

Molecular mass of FeSO₄.7H₂O is 277.85 55.85 gm iron is present in 277.85 gm of salt

1 gm iron is present in
$$\frac{277.85}{55.85} = 4.97$$
 gm.

23. Answer (2130.00)

$$NaClO_3(s) + Fe(s) \longrightarrow NaCl(s) + FeO(s) + O_2(g)$$

moles of NaClO₃ = moles of O₂

moles of
$$O_2 = \frac{PV}{RT} = \frac{1 \times 492}{0.082 \times 300} = 20 \text{ mol}$$

mass of NaClO₃ =
$$20 \times 106.5 = 2130 \text{ g} = 2130.00$$

24. Answer (14.00)

63% W/W HNO $_3$ solution having density 1.4 g/mL i.e. 100 g solution has 63 g HNO $_3$

Volume of 100 g solution =
$$\frac{100}{1.4}$$
 mL

:. Molarity =
$$\frac{63 \times 1.4 \times 1000}{63 \times 100}$$
 = 14 mol/L

25. Answer (5)

Let the masses of C, H and O in organic compound X be x, y and z respectively

	Mass			Moles
С	x	4	12	1
Н	у	1	3	3
0	Z	<u>16</u> 3	16	1

∴ Empirical formula : CH₃O

Molecular formula : C₂H₆O₂

$$2C_2 H_6 O_2 + 5O_2 \rightarrow 4CO_2 + 6H_2O_2$$

:. Number of moles of O_2 required to oxidise 2 moles of (X) = 5.

26. Answer (47)

Mole fraction of glucose in aqueous solution = 0.1 Mass percentage of water in it

$$= \left[\frac{0.9 \times 18}{0.9 \times 18 + 0.1 \times 180} \right] \times 100$$
$$= 47.37 \approx 47$$

27. Answer (25.00)

Mass of 6.023×10^{22} molecules of a substance = 10 g

Mass of 6.023×10^{23} molecules of the substance = 100 g

Molar mass of the substance = 100 g mol⁻¹

Molarity of the solution =
$$\frac{5}{100 \times 2}$$
 = 2.5×10⁻²
= 25 × 10⁻³

28. Answer (3400)

$$N_2(g) + 3H_2(g) \longrightarrow 2NH_3(g)$$

Number of moles of
$$N_2 = \frac{2.8 \times 10^3}{28} = 100$$

Number of moles of
$$H_2 = \frac{1000}{2} = 500$$

Number of moles of NH₃ produced = 200

Mass of NH_3 produced = $200 \times 17 = 3400$ gm

29. Answer (18)

$$C_3H_8(g) + 5O_2(g) \longrightarrow 3CO_2(g) + 4H_2O(I)$$

$$C_4H_{10}(g) + \frac{13}{2}O_2(g) \longrightarrow 4CO_2(g) + 5H_2O(l)$$

No. of moles of O₂ required to oxidise 1 mole of propane and 2 moles of butane = $5 + 2 \times \frac{13}{2} = 18$

30. Answer (2)

Molarity =
$$\frac{\text{no. of moles of solute}}{\text{vol}^{\text{m}} \text{ of sol}^{\text{n}} (\text{in L})}$$

= $\frac{4.5 \times 1000}{90 \times 250}$
= $2 \times 10^{-1} \text{ M}$

31. Answer (8)

$$C_xH_y(g) + \left(x + \frac{y}{4}\right)O_2(g) \rightarrow xCO_2(g) + \frac{y}{2}H_2O(l)$$

$$x + \frac{y}{4} = 6$$

$$x = 4$$

$$y = 8$$

32. Answer (2)

$$C_xH_yO_z + O_2 \rightarrow xCO_2 + \frac{y}{2}H_2O_2$$

2.64 g of CO₂ contains 0.72 g C.

1.08 g of H₂O contains 0.12 g H.

$$\therefore$$
 mass of oxygen present = 1.80 - (0.72 +0.12) = 0.96 g

% of O =
$$\frac{0.96}{1.80} \times 100 = 53.33 \%$$

33. Answer (8)

No. of significant figures in $50000.020 \times 10^{-3} = 8$

34. Answer (13)

Mass of Na $^+$ in 50 mL = 70 × 50 mg

Millimoles of NaNO₃ =
$$\frac{70 \times 50}{23}$$

Mass of NaNO₃ =
$$\frac{70 \times 50 \times 85 \times 10^{-3}}{23}$$

$$= 12.9 \simeq 13 \text{ g}$$

35. Answer (9)

Molality =
$$\frac{\text{Moles of solute}}{\text{Mass of solvent (in kg)}}$$

6.50 molal solution of KOH means

6.50 moles of KOH in 1000 g of water (solvent)

364 g of KOH in 1364 g of solution

Volume of solution =
$$\frac{\text{Mass of solution(g)}}{\text{density of solution (g mL}^{-1})}$$
$$= \frac{1364}{1.89}$$

Molarity =
$$\frac{\text{Moles of solute}}{\text{Volume of solution (in L)}} = \frac{6.50 \times 1.89}{1364 \times 10^{-3}} = 9.00 \text{ M}$$

Weight of
$$H = \frac{210}{18} \times 2 = 23.333 g$$
 (in 750 g

% of H =
$$\frac{23.333}{750} \times 100$$

37. Answer (525)

3Pb(NO₃)₂ + Cr₂(SO₄)₃ → 3PbSO₄
$$\downarrow$$
 + 2Cr(NO₃)₃
m.moles of Pb(NO₃)₂ = 35 × 0.15 = 5.25 m.moles
m.moles of Cr₂(SO₄)₃ = 20 × 0.12 = 2.4 m.moles
∴ Pb(NO₃)₂ is limiting reagent.
m.moles of PbSO₄ formed = 5.25 m.moles
= 525 × 10⁻⁵ moles

38. Answer (1)

Volume of Cl₂ at STP = 20 mL

Moles of chlorine gas =
$$\frac{20}{22400}$$

Molecules of
$$Cl_2$$
 gas = $\frac{20}{22400} \times 6.023 \times 10^{23}$

Atoms of CI =
$$2 \times \frac{20}{22400} \times 6.023 \times 10^{23}$$

$$\approx 1 \times 10^{23}$$

39. Answer(18)

$$C_2H_6 + \frac{7}{2}O_2 \rightarrow 2CO_2 + 3H_2O$$

Number of moles of ethane = $\frac{3}{30}$ = 0.1

Number of moles of water = $3 \times 0.1 = 0.3$

.. Number of molecules of water

$$= 6.023 \times 10^{23} \times 0.3$$

$$= 18.069 \times 10^{22}$$

$$\approx 18 \times 10^{22}$$

40. Answer (226)

NaOH + HCl
$$\rightarrow$$
 NaCl + $\mathrm{H_2O}$
125 m mol 500 m mol - - - - - 375 m mol 125 m mol -

Number of unreacted molecules of

HCI =
$$375 \times 10^{-3} \times 6.022 \times 10^{23}$$

= 2258.25×10^{20}
= 225.825×10^{21}
 $\approx 226 \times 10^{21}$

41. Answer (4)

Concentration of glucose in blood = 0.72 g/L

$$=\frac{0.72}{180}=4\times10^{-3}$$
 molar

42. Answer (464)

$$2C_4H_{10}(g) + 13O_2(g) \longrightarrow 8CO_2(g) + 10H_2O(l)$$

116 g 180 g
46.4 q 72.0 q

So, the amount of butane required is 464×10^{-1} g for the production of 72.0 g of H₂O.

43. Answer(3)

The number of significant figures in 0.00340 is three.

44. Answer (5)

Given, density of water = 1 g cm⁻³
density of NaOH solution = 1.2 g cm⁻³
mass of 1 L solution = 1200 g
mass of 1 L solvent = 1000 g
mass of solute = 200 g

molality =
$$\frac{200 \times 1000}{40 \times 1000}$$
 = 5 m

45. Answer (3)

Molar mass of KCl =
$$39 + 35.5$$

= 74.5 g mol^{-1}
Density of solution = 1.20 g ml^{-1}

Density of solution =
$$1.20 \text{ g mi}^{-1}$$

Mass of solution = $1000 + 3.3 \times 74.5$
= 1245.85 g

Voume of solution =
$$\frac{1245.85}{1.2}$$
 ml = 1038.20 ml

Molarity =
$$\frac{3.3 \times 1000}{1038.20}$$
 = 3.17 mol/l \approx 3

46. Answer (50)

$$Mole = \frac{Given mass}{Molar mass}$$

$$=\frac{3.45}{23}=0.15 \text{ mol of Na}^+$$

Each mole of Na₃PO₄ has 3 mole of Na⁺. So 0.15 mole of Na⁺ is present in $\frac{0.15}{3}$ mole of Na₃PO₄.

Molarity =
$$\frac{0.15 \times 1000}{3 \times 100}$$
 = 0.5 mol L⁻¹

Molarity = $50 \times 10^{-2} \text{ mol L}^{-1}$

47. Answer (19)

Mole fraction of
$$CO_2 = \frac{\frac{300}{44}}{19.89 + 6.81 + 9.09}$$

= 19.02

48. Answer (20)

Molar mass of oxalic acid $H_2C_2O_4 \cdot 2H_2O = 126$ g/mol

Molarity =
$$\frac{\text{Number of moles of solute}}{\text{Vol. of solution (in L)}}$$
$$= \frac{6.3 \times 1000}{126 \times 250}$$

49. Answer (13)

Moles
$$\frac{20}{23 \times 2 + 16}$$
 $+$ $\frac{H_2O}{H_2O}$ \rightarrow $\frac{2NaOH}{2NaOH}$ $=$ $\frac{2 \times 20}{(23 \times 2 + 16)}$

Molarity =
$$\frac{0.645 \times 1000}{500}$$

= 1.290 M
= 12.90 × 10⁻¹ M
= 13 × 10⁻¹ M

50. Answer (64)

$$M = \frac{\text{moles of solute}}{\text{volume of solution in L}}$$

$$M = \frac{80}{249.54 \times 5} \approx 64 \times 10^{-3} \text{ mol } L^{-1}$$

51. Answer (2)

$$Moles = \frac{Number of atom}{Avogadro's number}$$

Moles =
$$\frac{\text{Given mass}}{\text{Molar mass}}$$

$$\frac{8}{23} = \frac{\text{Number of atoms}}{6.02 \times 10^{23}}$$

Number of atoms = 2×10^{23}

52. Answer (3)

$$C_{15}H_{30} + \frac{45}{2}O_2 \rightarrow 15CO_2 + 15H_2O_3$$

One litre of fuel has a mass (0.756) × 1000 g.

∴ moles of
$$C_{15}H_{30} = \frac{756}{210}$$

Moles of
$$O_2$$
 required = $\frac{45}{2} \times \frac{756}{210}$

Mass of O₂ required =
$$\frac{45}{2} \times \frac{756}{210} \times 32 \text{ g} = 2592 \text{ g}$$

Mass of
$$CO_2$$
 formed = $15 \times \frac{756}{210} \times 44 = 2376 \text{ g}$

53. Answer (5418)

Molar mass of C₂H₂N₂O₆ = 227 g/mol

681 g of $C_7H_5N_3O_6 = 3 \text{ mol}$

 \therefore 681 g of C₇H₅N₃O₆ has 9 mole of N.

= 54.18 × 10²³ N atoms

 $= 5418 \times 10^{21}$

54. Answer (25)

0.3% glycine means

100 g protein 'A' contains 0.3 g glycine.

Since, molar mass of glycine is 75

75 g glycine will be present in $\frac{100}{0.3} \times 75$ g protein

Minimum molar mass of protein A is 25 × 10³ g/mol

55. Answer (3)

Molarity =
$$\frac{35}{(36.5) \times \frac{100}{1.46}} \times 1000 = 14.0 \text{ M}$$

56. Answer (143)

$$CH_4 + 2O_2 \longrightarrow CO_2 + 2H_2O$$

wt. of
$$CH_4 = 100 \text{ g}$$

wt. of $O_2 = 208 \text{ g}$

$$n_{O_2} = \frac{208}{32}$$

In this reaction O₂ is limiting reagent

2 moles of O₂ _____ 1 mole of CO₂

1 mole of O_2 \longrightarrow $\frac{1}{2}$ mole of CO_2

 $\frac{208}{32} \text{ mole of O}_2 \longrightarrow \frac{208}{32} \times \frac{1}{2} \text{ mole of CO}_2$

 $\longrightarrow \frac{208}{32} \times \frac{1}{2} \times 44 \text{ gm of CO}_2$

 \longrightarrow 143 gm of CO_2

57. Answer (225)

$$CH_4 + 2O_2 \longrightarrow CO_2 + 2H_2O$$

1 mol CH₄ \longrightarrow 2 mole H₂O

 $36 \, \mathrm{gm} \, \mathrm{H_2O} \, \longrightarrow \, 1 \, \mathrm{mole} \, \mathrm{CH_4}$

81 gm H₂O $\longrightarrow \frac{1}{36} \times 81$ mole CH₄

——→ 2.25 mole

→ 225×10⁻²

58. Answer (1)

Density = 'x' gm ml^{-1}

: molality,
$$m = \frac{5 \times 1000}{[x(1000) - 372.5]} = 7.96$$

≃ 8 m

(Assuming x = 1)

 $\Delta T_f = iK_f m$

Assuming complete dissociation of salt (100%)

$$(i = 2)$$

$$\Delta T_f = 2 \times 1.86 \times 8 \approx 29.76$$

Hence, the solution does not freeze at -21° C. This means that molality of the solution won't change as $x \ge 1$.

Statement (II) is also correct as molality is mass dependent and hence, does not change with temperature. However, as solvents are not mentioned, statement (I) can also be incorrect.

59. Answer (2)

Mole of A₂B = moles of AB₃

$$\frac{W}{2A+B} = \frac{W}{A+3B}$$

$$A + 3B = 2A + B$$

$$2B = A$$

Atomic weight of A is 2 times that of B.

60. Answer (4)

Element	%mass	Moles	Whole number ratio
С	74	6.17	5
Н	8.7	8.7	7
N	17.3	1.236	1

Empirical Formula = C_EH₂N

Empirical formula mass = 81 g

n × 81 = 162

n = 2

Hence molecular formula is C₁₀H₁₄N₂

61. Answer (2)

$$\frac{0.02858 \times 0.112}{0.5702} = .00561$$

Answer expressed in 3 significant figures.

62. Answer (46)

$$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$$

Since H₂ is in excess and 20 L of ammonia gas is produced.

Hence, 2 moles $NH_3 \equiv 1 \text{ mole } N_2 \quad (v \propto n)$

$$20 \text{ L NH}_{3} \equiv 10 \text{ L N}_{2}$$

Volume of N_{2} left = 56 - 10 = 46 L

63. Answer (24)

In $2L \rightarrow 96$ mg of Mg

Number of atoms of Mg = $\frac{96 \times 10^{-3}}{24} \times N_A$

$$= 4 \times 10^{-3} \times 6 \times 10^{23}$$
$$= 24 \times 10^{20}$$

$$= 24 \times 10^{20}$$

64. Answer (54)

m moles of $HNO_3 = 800 \times 0.5$

Moles of HNO₃ = $400 \times 10^{-3} = 0.4$ moles

Weight of $HNO_3 = 0.4 \times 63 \text{ g} = 25.2 \text{ g}$

Remaining acid = 25.2 - 11.5 = 13.7 g

$$M = \frac{13.7 \times 1000}{400 \times 63}$$

$$=\frac{137}{252}=0.54$$

$$= 54 \times 10^{-2}$$

65. Answer (3)

According to the question,

100 g of haemoglobin contains 0.34 g of iron

3.3 g of haemoglobin contains $\frac{0.34}{100} \times 3.3$ g of iron

moles of Fe =
$$\frac{0.34 \times 3.3}{100 \times 56} = \frac{N}{N_A}$$

$$N = \frac{0.34 \times 3.3 \times 6.022 \times 10^{23}}{100 \times 56} = 1.21 \times 10^{20}$$

66. Answer (2)

$$\begin{array}{c} X + Y + 3Z \rightleftharpoons xyz_3 \\ n_{\text{moles}} = 1 & 1 & .05 \end{array}$$

Limiting reagent is $Z = \frac{.05}{3} = .016$

3 moles of $Z \rightarrow 1$ mole of XYZ_3

.05 mole of Z $\rightarrow \frac{1}{3} \times .05$ mole of XYZ₃

M.wt. of $XYZ_3 = 10 + 20 + 90$

= 120 amu

Wt. of XYZ₃ =
$$\frac{.05}{3} \times 120$$

$$= 2 g$$

67. Answer (46)

% of H =
$$\frac{2}{18} \times \frac{\text{wt. of H}_2\text{O}}{\text{wt. of organic compound}} \times 100$$

$$= \frac{2}{18} \times \frac{0.4428}{0.492} \times 100$$

$$= 0.11 \times 0.9 \times 100$$

$$= .099 \times 100 = 9.9$$

% of C =
$$\frac{12}{44} \times \frac{0.7938}{0.492} \times 100$$

$$= 0.27 \times 1.61 \times 100$$

$$=43.47$$

68. Answer (25)

Molarity of
$$Na_2SO_4 = \frac{0.1}{4} = 0.025 \text{ M}$$

69. Answer (3)

$$N_{2(g)} + 3H_{2(g)} \rightleftharpoons 2NH_{3(g)}$$

Ideally 28 g $\rm N_2$ reacts with 6 g $\rm H_2$ limiting reagent is $\rm N_2$

= 25 millimolar.

 \therefore Amount of NH $_3$ formed on reacting 20 g N $_2$ is,

$$=\frac{34\times20}{28}=24.28~g$$

= 1.42 moles

70. Answer (3)

$$4HNO_3(I) + 3KCI(s) \longrightarrow CI_2(g) + NOCI(g) +$$
 $2H_2O(g) + 3KNO_2(s)$

∴ 110 g of KNO₃
$$\Rightarrow$$
 moles of KNO₃ = $\frac{110}{101}$

= 1.089 mol

As, 4 mole of ${\rm HNO_3}$ produces 3 mol of ${\rm KNO_3}$. Hence, the moles of ${\rm HNO_3}$ required to produce

1.089 moles of
$$KNO_3 = \frac{4}{3} \times 1.089 = 1.452 \text{ mol}$$

Hence, mass of HNO₃ required is 1.452×63 = 91.5 g (approx.)