Targeting the Formation of ¹³C-¹²C Bonds *In-Vivo*: A Unique Approach to Probe Complex Processes

Amy Jenne¹, Ronald Soong¹, Wolfgang Bermel², and Andre J. Simpson¹

Environmental NMR Center, University of Toronto, 1265 Military Trail, Toronto, ON, Canada, M1C 1A4

Bruker BioSpin GmbH, Silberstreifen 4 Rheinstetten, Germany

Introduction

labelling. Daphnia magna (water fleas) are one of the most commonly (B) shows the H-13C-12C bonds. used organism for aquatic toxicity studies, see Figure 1. They are found in almost all freshwater bodies, have a well understood genome, and a relatively short lifestyle. Their lipid content is also solely provided from food.² This makes then an ideal candidate for *in-vivo* studies as they can be placed directly into the NMR using a 5 mm flow system, and provided food and oxygen keeping them alive indefinitely.³

2D ¹H - ¹³C *in-vivo* datasets are complex, making it challenging to monitor specific processes of interest. Here, a new experiment is introduced that targets the formation of ¹²C - ¹³C - ¹H bonds.

Figure 1. Image of Daphnia magna.

Sequence

A simplified version of the utilized pulse sequence can be seen in Figure 2, broken down into three blocks. The first block (A) is a reversed HSQC where the CH₂ are reflected arounds the carbon offset.⁴ The result of block A is that ¹H's on ¹³C's are selected. Block B allows the selected protons to correlate via TOCSY transfer to other protons in the spin system, but only to neighbouring atoms. Block C suppresses one bond ¹H $^{-13}$ C correlations leaving only the relays from a 1 H on a 12 C (not suppressed by the filter) correlating to the adjacent ¹³C (¹H-¹³C-¹²C). In simple terms ¹²C-¹³C bonds are selectively detected. The data are collected in an interleaved fashion producing two data sets. One dataset contains all ¹H-¹³C bonds while the other contains only units where a ¹³C and ¹²C are adjacent to each other.

Figure 2. Schematic of the pulse sequence utilized to provide information on the ¹H-¹³C- ¹²C bonds in samples of *D. magna*. A, B, and C are discussed in the text.

Proof of Concept

NMR is unique in its ability to provide a wide range of metabolic. As an example of utilizing this sequence, a spectrum of singly labelled information *in-vivo*, especially when combined with isotopic ¹³C glucose was examined, see Figure 3. (A) shows only the ¹H-¹³C bonds where

Figure 3. ¹³C-1-Glucose measured with the new sequence. A) only the ¹³C and B) the ¹³C-¹²C bonds.

Monitoring a Reaction

The next step is to follow a simple process. For this purpose the ¹³C-1-Glucose and bakers yeast (Saccharomyces cerevisiae) were used to examine the formation of ethanol over 24 hours, see Figure 4. The initial spectrum matches the two above, the resulting spectra contain the ethanol product, which can only be seen on the ¹³C spectrum as the OH peak is directly bonded to carbon 1. $\beta\alpha$

Figure 4. 13C-1-Glucose and bakers yeast used to examine the formation of labelled (2) Soong, R.; Nagato, E.; Sutrisno, A.; Fortier-Mcgill, B.; Akhter, M.; Schmidt, S.; Heumann, H.; Simpson, A. J. Magn. Reson. Chem. 2015, No. 53, 774ethanol after 48 hours A) the ¹H-¹³C spectrum with and B) examining the ¹²C-¹³C bonds.

In-Vivo Applications

To demonstrate the concept, fully ¹³C enriched *D. magna* were fed ¹²C Chlamydomonas reinhardtii for 96 hours, see Figure 5. (A) shows only the ¹³C bonds after feeding of non-enriched algae for 96 hours and (B) shows only the ¹²C-¹³C bonds. In Figure 6, the horizontal projections of the feeding process, as seen from this, there exists the presence of energy molecules early on that are rapidly consumed to allow the formation of sugars and lipids over time.

Figure 5. Fully labelled ¹³C Daphnia that have been fed ¹²C algae a) Shows all ¹H-¹³C bonds in the sample. b) shows) the ¹³C-¹²C bonds.

Figure 6. Horizontal Projections of the ¹²C-¹³C bonds over time in fully ¹³C enriched Daphnia fed C. reinhardtii for 96 hours.

Discussion

This approach can easily be extended to follow the fate of drugs, contaminants, or target nutrients *in-vivo*. Future work will examine how fully labelled compounds can be used as probe molecules to examine how non-enriched organisms use and convert specific substances in their systems.

References

(1) Persoone, G.; Baudo, R.; Cotman, M.; Blaise, C.; Thompson, K. C.; Moreira-Santos, M.; Vollat, B.; Törökne, A.; Han, T. Knowl. Manag. Aquat. Ecosyst. (3) Sakhaii, P.; Bermel, W. J. Magn. Reson. 2015, 259, 82-86.