Site Design

SWE 432, Fall 2016

Design and Implementation of Software for the Web

What's left?

- Project Reflection now out, due 12/8
- Of by one errors:
 - 2 more quizes
 - No HW12
- Final exam

Today

- How do you help users understand if it is possible to do what they'd like to do?
- How do you help users find what they're looking for?
- How do you organize information in a site to maximize efficiency?

Analogy: Buying a chainsaw

You walk in to a hardware store to buy a chainsaw.
 What do you do?

Site design

- If users can not find what they are looking for, they will leave.
- If users take a long time to find things, your software is not usable.
- Site design considers how users interact with information, including organization, labeling, and search
- Challenges (differences from physical world):
 - No spatial sense of scale. 50 pages? 500 pages?
 50,000 pages?
 - No sense of direction. Which way did I just go?
 - No sense of location. No spatial anchoring of where I am now and how that relates to where I could go.

Planning

- Help users determine what they can do
- Support users in how they determine what to do

What can you do with this app?

Clear system task model

- Help users accomplish goals by providing clear model of how users should view system in terms of tasks
- Design to match users' conception of high level task organization
- Help users understand what features exist and how they can be used
- Help users decompose long tasks into small pieces
- Keep task context visible to minimize memory load

Effective planning

- Help users plan most efficient ways to complete tasks
- Keep users aware of task progress, what has been done and what is left to do
- Provide constraints to avoid transaction completion slips
 - e.g., prevent users from starting task and accidentally throwing away work mid-task

Orchestration & interaction flow

- Interaction flow the next thing the interface wants to do is exactly what user expects
 - Follow users' mental model
 - Let user direct software
 - Keep all related tools available
- Surprises interrupt interaction flow
- Interfaces should be invisible

Interaction flow guidelines

- Don't use dialogs to report normal behavior
- Separate commands from configuration
- Don't ask questions, give users choices
 - Give users default input, show possible options
- Make dangerous choices hard to reach
- Design for the probable, provide for the possible

Progressive disclosure

- a.k.a. details on demand
- Separate information & commands into layers
- Present most frequently used information & commands first

Metaphors & idioms

Metaphors

 One way to communicate interaction techniques is through metaphors to the real world

Metaphors - advantages

- Leverages understanding of familiar objects & their functions
 - File cabinets, desks, telephones
- Provides intuitive understanding of possible affordances & eases mapping tasks to actions
 - Open a folder, throw file in trash, momentum scrolling

Metaphors - disadvantages

- Tyranny of metaphor: ties interactions closely to workings of physical world
- Adds useless overhead in extra steps, wastes visual bandwidth
- Taken literally, becomes non-sensical
 - e.g., nesting folders
 10 levels deep

Alternative - Idioms

- A consistent mental model of how something works
 - e.g., Files: open / close / save / save as
- Offers intuitive understanding of affordances & interactions
- Provides consistent vocabulary for describing interactions
- Only have to learn it once
- Might have originated in real world, but thought of in terms of mental model for UI interactions

Exercise: Examples of idioms

LaToza/Bell GMU SWE 432 Fall 2016

Examples of idioms

- Email
- Clipboard: cut / copy / paste
- Format painter
- Newsfeed
- Follow item

Task Structure

Task structure

- Flow of tasks and task steps
- Task design simplicity, flexibility, efficiency
- Maintenance of locus of control
- Direct manipulation

Separate long tasks into sequences

- Reduce STM demands by having user only work on one aspect of larger task at a time
- Don't interrupt users in the middle with unrelated tasks
- Provide closure of each subtask at the end

Design for flexibility & efficiency

- Users may take paths never envisioned by designer
- Using studies to identify different task flows, design flexible support for each

Delta: Flight Booking, New User

24

Delta: Flight Booking, Existing User

Anticipate likely next actions

 Based on typical observed task flows, surface options for user to take likely next steps

What if folder does not exist?

Keep users in control

- Important users do not feel constrained
- Want users to feel that they can do things the way they want to do them, not as software dictates to them

Navigation

Navigation usability problems

- User can't find desired location
- User loses track of location
- User can't remember information from another location

Navigation

- Many different contexts where navigation is important
 - Among windows & screens
 - Among panes or frames in a window
 - Among tools and menus
 - Within an information space

Information foraging

- Mathematical model describing navigation
- Analogy: animals foraging for food
 - Can forage in different patches (locations)
 - Goal is to maximize chances of finding prey while minimizing time spent in hunt
- Information foraging: navigating through an information space (patches) in order to maximize chances of finding prey (information) in minimal time

Information environment

Information environment represented as topology

 Information patches connected by traversable links

- Examples
 - Web pages, connected by links
 - Menu options & dialogs connected by commands
 - Locations on map, connected by search, scroll, move interactions with map

Traversing links

- Links connection between patch offered by the information environment
- Cues information features associated with outgoing links from patch
 - E.g., text label on a hyperlink
- User must choose which, of all possible links to traverse, has best chance of reaching prey

Scent

- User interprets cues on links by likelihood they will reach prey
 - e.g., do I think that the "Advanced" options are likely to have the option I'm looking for?

Simplified mathematical model

- Users make choices to maximize possibility of reaching prey per cost of interaction
- Predators (idealized) choice = max [V / C]
 - V value of information gain, C cost of interaction
- Don't usually know ground truth, have to estimate
- Predator's desired choice = max [E[V] / E[C]]

Some design implications of information foraging theory

- Organize information into functionally related groups
- Design effective cues, describing what will be found by traversing links
- Match expectations of user's mental model
- Provide search

Web navigation conventions

Conditions of Use Privacy Notice Interest-Based Ads. © 1996-2016, Amazon.com, Inc. or its affiliates

LaToza/Bell GMU SWE 432 Fall 2016

Web navigation conventions

Site ID

You are here

Local navigation

Utilities Sections

Footer navigation

Conditions of Use Privacy Notice Interest-Based Ads. © 1996-2016, Amazon.com, Inc. or its affiliates

. . .

Persistent navigation

- Forms a common idiom users already understand
- Gives instant confirmation that still on the same site
- Supports consistency and standards
 - If all of your pages function same way, users know how to do actions & what to expect
 - Ok for specialized page like forms that are clearly different to not follow conventions.

Breadcrumbs

- Offer trail of where the user has been and how they got there
- Shows hierarchy of information space
- Shows current location

Conditions of Use Privacy Notice Interest-Based Ads. © 1996-2016, Amazon.com, Inc. or its affiliates

Tabs

- Example of a metaphor: tab dividers in a three ring binder or folders in a file drawer
- Partition into sections
- Advantages
 - Easily understood and self-evident
 - (Usually) hard to miss

Questions for a good site design

- Answers to the following should be obvious for a good site design
 - What site is this? (Site ID)
 - What page am I on? (Page name)
 - What are the major sections of this site? (Sections)
 - What are my options at this level? (Local navigation)
 - Where am I in the site? ("You are here" indicators)
 - How can I search?

In Class Activity: Design a course catalog & registration system

- In groups of 2 or 3
 - Design a course catalog & registration system
 - Create sketches showing key screens
 - Should support
 - browsing course catalog, registering for classes, waitlists
 - building plan of courses to take over multiple semesters to fulfill degree requirements