Estimation by weighting

lan Lundberg Soc 212b ilundberg.github.io/soc212b

Winter 2025

Learning goals for today

At the end of class, you will be able to estimate average causal effects by modeling treatment assignment probabilities.

Optional reading:

► Hernán and Robins 2020 Chapter 12.1–12.5, 13, 15.1

Review of what we have learned

Causal assumptions

$$\vec{\chi} \xrightarrow{A \to Y} Y$$

Review of what we have learned

Causal assumptions

$$\vec{\chi} \xrightarrow{A \to Y} Y$$

Nonparametric estimator

- ightharpoonup Group by L, then mean difference in Y over A
- ► Re-aggregate over subgroups

Review of what we have learned

Causal assumptions

$$\vec{\chi} \xrightarrow{A \to Y} Y$$

Nonparametric estimator

- ► Group by *L*, then mean difference in *Y* over *A*
- ► Re-aggregate over subgroups

Outcome modeling estimator

- \blacktriangleright Model Y^1 given L among the treated
- \blacktriangleright Model Y^0 given L among the untreated
- ► Predict for everyone and take the difference
- Average over all units

Inverse probability weighting: Population mean

Population Outcomes			Sampled Outcomes
	Y_{Maria}	$S_{Maria} = 1$	Y_{Maria}
	$Y_{William}$	$S_{William} = 0$	
	Y_{Rich}	$S_{Rich} = 0$	
	Y_{Sarah}	$S_{Sarah} = 1$	Y_{Sarah}
	$Y_{Alondra}$	$S_{Alondra} = 0$	
	Y _{Jesús}	$S_{Jesús} = 1$	Y _{Jesús}

How many people do Maria, Sarah, and Jesús each represent?

Inverse probability weighting: Population mean

How many people do Maria, Sarah, and Jesús each represent?

Inverse probability weighting: Population mean

Each unit has a probability of being sampled.

$$P(S=1\mid \vec{X})$$

If we believe conditionally exchangeable sampling,

$$S \perp \!\!\! \perp Y \mid \vec{X}$$

weight by the inverse probability of sampling.

$$w = \frac{1}{P(S = 1 \mid \vec{X})}$$

$$\hat{F}(X) = \sum_{i} w_{i} y_{i}$$

$$\hat{\mathsf{E}}(Y) = \frac{\sum_{i} w_{i} y_{i}}{\sum_{i} w_{i}}$$

Inverse probability weighting: Non-probability sample

Suppose we have the Xbox sample (Wang et al. 2015)

- ► Imagine we believe conditional exchangeability
- ▶ They have the counts $n_{\vec{x}}$ in each demographic subgroup \vec{x} in the sample
- ▶ They estimate the population sizes $N_{\vec{x}}$ from exit polls
- ► Can we estimate by weighting?
 - ► Assume for simplicity that each $n_{\vec{x}}$ is much greater than 0

Inverse probability weighting: Non-probability sample

1. Estimate the probability of sampling

$$\hat{\pi}_i = \hat{\mathsf{P}}(S=1 \mid \vec{X} = \vec{x}_i) = \frac{n_{\vec{X} = \vec{x}_i}}{N_{\vec{X} = \vec{x}_i}} = \frac{\sum_{j}^{Number of sample members who look like unit } i}{\sum_{j}^{Number of } \sum_{j}^{Number of population members who look like unit } i}$$

2. Weight by inverse probability of sampling

$$\hat{\mathsf{E}}(Y) = \frac{\sum_{i} \hat{w}_{i} y_{i}}{\sum_{i} \hat{w}_{i}} \qquad \text{for } \hat{w}_{i} = \frac{1}{\hat{\pi}_{i}}$$

Inverse probability weighting: Non-probability sample

Takeaway: Exactly like a probability sample except

- conditional exchangeability holds only by assumption
- ▶ inverse probability of sampling weights must be estimated

Inverse probability weighting: Mean under treatment

A=1 indicates child completed college

	Sampled Treatment
$A_{Maria} = 1$	Y^1_{Maria}
$A_{\mathbf{William}} = 0$	
$A_{Rich} = 0$	
$A_{\sf Sarah}=1$	Y^1_{Sarah}
$A_{Alondra} = 0$	
$A_{Jesús} = 1$	Y ¹ Jesús
	Sampling $A_{Maria} = 1$ $A_{William} = 0$ $A_{Rich} = 0$ $A_{Sarah} = 1$ $A_{Alondra} = 0$

How many people do Maria, Sarah, and Jesús each represent?

Inverse probability weighting: Mean under treatment

A = 1 indicates child completed college

How many people do Maria, Sarah, and Jesús each represent? Inverse probability weighting: Mean under treatment A = 1 indicates child completed college. \vec{X} indicates parent completed college.

When estimating the mean outcome under treatment,

$$\mathsf{E}(Y^1)$$

each unit has a probability of being treated.

$$P(A=1\mid \vec{X})$$

Weight treated units by the inverse probability of treatment.

$$w = \frac{A}{\mathsf{P}(A=1\mid\vec{X})}$$

Inverse probability weighting: Mean under control

A = 1 indicates child completed college

Population Outcomes		Randomized Treatment	Sampled Outcomes
No Parent Completed College	Y ⁰ Maria Y ⁰ William Y ⁰ Rich	$A_{ extsf{Maria}} = 1$ $A_{ extsf{William}} = 0$ $A_{ extsf{Rich}} = 0$	Y _{William}
A Parent Completed College	Y _{Sarah} Y _{Alondra} Y _{Jesús}	$A_{Sarah} = 1$ $A_{Alondra} = 0$ $A_{Jesús} = 1$	Y ⁰ Alondra

How many people do William, Rich, and Alondra each represent?

Inverse probability weighting: Mean under control

A=1 indicates child completed college. $ec{X}$ indicates parent completed college.

When estimating the mean outcome under treatment,

$$E(Y^0)$$

each unit has a probability of being untreated.

$$P(A=0\mid\vec{X})$$

Weight treated units by the inverse probability of treatment.

$$w = \frac{1 - A}{\mathsf{P}(A = 0 \mid \vec{X})}$$

Inverse probability weighting: Average causal effect

Define inverse probability of treatment weights

$$w_i = egin{cases} rac{1}{P(A=1|ec{X}=ec{x_i})} & ext{if treated} \ rac{1}{P(A=0|ec{X}=ec{x_i})} & ext{if untreated} \end{cases}$$

Estimate each mean potential outcome by a weighted mean

$$\hat{E}(Y^{1}) = \sum_{i:A_{i}=1} w_{i} Y_{i} / \sum_{i:A_{i}=1} w_{i}$$

$$\hat{E}(Y^{0}) = \sum_{i:A_{i}=0} w_{i} Y_{i} / \sum_{i:A_{i}=0} w_{i}$$

Take the difference between $\hat{E}(Y^1)$ and $\hat{E}(Y^0)$

Exercise: Weight for ATT

Goal: Average treatment effect on the treated

When
$$X = 1$$
,

- ▶ 7 treated units
- ▶ 3 untreated units
- ► $P(A = 1 \mid X = 1) = 0.7$

When
$$X = 0$$
,

- ▶ 4 treated units
- ► 6 untreated units
- $P(A = 1 \mid X = 0) = 0.4$

Each treated unit weighted by 1. Total untreated weight at each x should equal total treated weight.

Inverse probability weighting: Experiment

Takeaway:

- ▶ weight = inverse probability of observed treatment condition
- estimate by weighted means

Now treatment is not randomly assigned. How do we use weighting?

Inverse probability weighting: Observational study

Now treatment is not randomly assigned. How do we use weighting?

- ▶ assume conditionally exchangeable treatment assignment
- estimate inverse probability of treatment weights

Inverse probability weighting: Observational study

Model probability of treatment

$$\hat{\mathsf{P}}(\mathsf{A}=1\mid \vec{X}) = \mathsf{logit}^{-1}\left(\hat{lpha} + \hat{ec{\gamma}} \vec{X}
ight)$$

Estimate inverse probability of treatment weights

$$\hat{w}_i = egin{cases} rac{1}{\hat{\mathsf{P}}(A=1|\vec{X}=\vec{x_i})} & ext{if treated} \\ rac{1}{\hat{\mathsf{P}}(A=0|\vec{X}=\vec{x_i})} & ext{if untreated} \end{cases}$$

Estimate each mean potential outcome by a weighted mean

$$\hat{E}(Y^{1}) = \sum_{i:A_{i}=1} \hat{w}_{i} Y_{i} / \sum_{i:A_{i}=1} w_{i}$$

$$\hat{E}(Y^{0}) = \sum_{i:A_{i}=0} \hat{w}_{i} Y_{i} / \sum_{i:A_{i}=0} w_{i}$$

Unit i was sampled with probability 0.25.

$$P(S = 1 | \vec{X} = \vec{x_i}) = \frac{1}{4} = 0.25$$
 $w_i^{\text{Sampling}} = 4$

Unit i was sampled with probability 0.25.

$$P(S = 1 | \vec{X} = \vec{x_i}) = \frac{1}{4} = 0.25$$

 $w_i^{\text{Sampling}} = 4$

Given sampling, received treatment with probability 0.33.

$$P(A = 1 | \vec{X} = \vec{x_i}, S = 1) = \frac{1}{3} = 0.33$$
 $w_i^{Treatment} = 3$

Unit i was sampled with probability 0.25.

$$P(S = 1 | \vec{X} = \vec{x_i}) = \frac{1}{4} = 0.25$$

 $w_i^{Sampling} = 4$

Given sampling, received treatment with probability 0.33.

$$P(A = 1 \mid \vec{X} = \vec{x_i}, S = 1) = \frac{1}{3} = 0.33$$

 $w_i^{Treatment} = 3$

How many population Y^1 values does unit i represent?

Unit i was sampled with probability 0.25.

$$P(S = 1 | \vec{X} = \vec{x_i}) = \frac{1}{4} = 0.25$$

 $w_i^{Sampling} = 4$

Given sampling, received treatment with probability 0.33.

$$P(A = 1 \mid \vec{X} = \vec{x_i}, S = 1) = \frac{1}{3} = 0.33$$

 $w_i^{Treatment} = 3$

How many population Y^1 values does unit i represent?

$$w_i^{\text{Sampling}} \times w_i^{\text{Treatment}} = 4 \times 3 = 12$$

In math: To observe Y^1 , a unit must be sampled and treated.

P(Observe
$$Y^1 \mid \vec{X}$$
) = P($S = 1, A = 1 \mid \vec{X}$)
= P($A = 1 \mid S = 1, \vec{X}$)P($S = 1 \mid \vec{X}$)

In math: To observe Y^1 , a unit must be sampled and treated.

$$\begin{split} \mathsf{P}(\mathsf{Observe}\ Y^1 \mid \vec{X}) &= \mathsf{P}(S = 1, A = 1 \mid \vec{X}) \\ &= \mathsf{P}(A = 1 \mid S = 1, \vec{X}) \mathsf{P}(S = 1 \mid \vec{X}) \end{split}$$

The inverse probability weight is thus the product of sampling and treatment weights.

$$\frac{1}{\mathsf{P}(\mathsf{Observe}\ Y^1\mid\vec{X})} = \underbrace{\frac{1}{\mathsf{P}(A=1\mid S=1,\vec{X})}}_{\substack{\mathsf{inverse}\ \mathsf{probability}\ \mathsf{of}\ \mathsf{treatment}\ \mathsf{weight}}} \times \underbrace{\frac{1}{\mathsf{P}(A=1\mid S=1,\vec{X})}}_{\substack{\mathsf{inverse}\ \mathsf{probability}\ \mathsf{of}\ \mathsf{sampling}\ \mathsf{weight}}}$$

Outcome and treatment modeling: A visual summary

Outcome modeling: Model Y^0 and Y^1 given \vec{X}

$$\vec{\chi} \rightarrow A \rightarrow Y$$

Treatment modeling: Model A given \vec{X} . Reweight.

$$\vec{X} \xrightarrow{A} \vec{A} \vec{Y}$$
 $\vec{X} \xrightarrow{A} \vec{Y}$

Original population

Reweighted population

What are the advantages of each strategy? How to choose?

- 1. Outcome modeling
 - ► Model Y^1 and Y^0 given \vec{X}
 - ► Predict for everyone
 - Unweighted average
- 2. Treatment modeling
 - ► Model A given X
 - ► Create weights: how many units each case represents
 - ► Weighted average

An advantage of treatment modeling

how most social scientists think about research: model the outcome

Advantages of each strategy: Treatment modeling

- how we already think about population sampling: reweight observed cases to learn about all cases
- transparency about influential observations

Focus on a feasible subpopulation: Region of common support

Focus on a feasible subpopulation: Region of common support

Focus on a feasible subpopulation: Region of common support

Restrict to a subgroup

Focus on a feasible subpopulation: Region of common support

Restrict to a subgroup

Focus on a feasible subpopulation: Region of common support

Restrict to a subgroup

Estimate in the subgroup

$$\mathsf{E}\Big(Y^1 - Y^0 \mid k_1 < \mathsf{P}(A = 1 \mid \vec{X}) < k_2\Big)$$

Learning goals for today

At the end of class, you will be able to estimate average causal effects by modeling treatment assignment probabilities.

Optional reading:

► Hernán and Robins 2020 Chapter 12.1–12.5, 13, 15.1