High-School Maths

Establish a workflow, get to know our tools, review basic concepts

Yordan Darakchiev
Technical Trainer

Software University

https://softuni.bg

Have a Question?

sli.do

#MathForDevs

Table of Contents

- Maths in Real Life
- Methods
- Setting up Our Environment
- Math Notation
- Linear Equations
- Systems of Linear Equations

Mathematics in Nature

Honeycomb cells

 The hexagonal cells leave no unused space, and consume the least amount of wax and energy

Snowflakes

- All snowflakes are unique but they are perfectly symmetrical
- This makes them strong enough to stay together

Mathematics in Nature

- Romanesco broccoli
 - Each little floret looks exactly like the whole plant
 - Seen from above, the florets form a spiral
- Fibonacci spirals everywhere
 - Flowers, pinecones
 - Animal shells
 - Hurricanes
 - Galaxies

Mathematics in Music

- Sound is a combination of waves travelling through the air
 - Each sound wave has a frequency (pitch)
 - Every note is associated with a certain frequency
 - A4 produces 440 oscillations every second (440 Hz)
 - Some combinations of tones sound pleasant, others sound harsh
 - Example: "A major" chord
 - A4: 440 *Hz*, C#5: 554,37 *Hz*, E5: 659,25 *Hz*
 - $A4: C#5: E5 \approx 4:5:6$
 - $A4: E5 \approx 2:3$

Divide and Conquer

- Useful for any kind of problem
- Assumption: Complicated things are a combination of many, very simple things
 - Algorithms: Merge sort, Discrete Fourier transform
 - Software architecture
 - "I want to build an ecommerce system"
 - ⇒ I want shop owners to add new products
 - \Rightarrow I want to store products in the DB \Rightarrow ...
 - ⇒ def save_product(name, price)
 - Debugging
 - The bug is somewhere in my code ⇒ the bug is ">=" instead of ">" on line 45 in user.py

The Scientific Method Steps

- Ask a question
- Do some research
- Form a hypothesis
- Test the hypothesis with an experiment
 - Experiment works ⇒ Analyze the data
 - Experiment doesn't work \Rightarrow Fix experiment
- **Results align with hypothesis** ⇒ OK
- Results don't align with hypothesis ⇒ new question, new hypothesis
- Communicate the results

Why Use the Scientific Method?

- Useful when we're exploring something new
- Based on common logic
- Experiments
- Examples
 - Research: My logs show that this Web page on my server takes too much time to load
 - Hypothesis: This piece of code is too slow. I need to improve it
 - Control: Measure the runtime (in seconds)
 - **Experiment:** Try to fix the problem and repeat the runtime test
 - Communication: Show the results and implement the fix

Setting Up Our Environment

Getting ready to conquer math, science and programming

Anaconda

- You can install the Python interpreter and all libraries manually
 - Hard, boring and repetitive work
 - Error-prone
- Easy solution: platforms like Anaconda
 - Everything you need to get started with Python for science:
 - Python interpreter
 - Packages (720+) + package manager
 - Jupyter lab
- Download from the Anaconda website

Setting Up an IDE (Optional)

- You can use the built-in IDE called Spyder
- If you want to use another IDE, you need to configure it to work with Python
- Visual Studio Code
 - Preferred editor / IDE
 - Python in VSCode tutorial
 - Python extension
 - Jupyter extension
- Visual Studio
 - Python Tools

Python Online

- There are places where you can execute your code online:
 - https://www.python.org/shell/
 - https://www.pythonanywhere.com/try-ipython/
 - https://www.kaggle.com/code
- To share your code, you can use:
 - https://gist.github.com/
 - http://pastebin.com/

Jupyter Lab

- A very nice and clean way to document your research
- Included in Anaconda
- Can create documents that contain live code, equations, visualizations and explanatory text
 - HTML / CSS / JavaScript
 - Markdown
 - LaTeX
 - Python
- Start
 - use the Anaconda shortcut
 - type into the Command Prompt

jupyter lab

How to Use Jupyter Lab?

- Create a new notebook
- Every piece of text or code exists within a cell
 - Text cells
 - Code cells
 - You can run (execute) code cells
 - Jupyter "remembers" the code that you already ran
- Execute cell: Ctrl + Enter

Math Notation

How to write more quickly and concisely

Math Notation

- The basic symbols we use are numbers and letters
 - Usually English or Greek letters
- Special symbols:
- Indices:

$$=, \geq, \in, \rightarrow, \nabla, \infty, \int$$

$$\sum_{n=0}^{10}$$
, $\lim_{x\to 0}$

Scientific Notation

- Used for very large or very small numbers
- Numbers are expressed as decimals with exactly one digit before the decimal point
- All other digits are expressed as a power of 10
- $15 000 = 1, 5. 10^4$
- $-0,000015 = 1,5.10^{-5}$

Summation Notation

- "Sigma" notation
- Used as a shorthand for writing long sums of numbers or symbols
 - Very similar to a for-loop
 - Greek capital "sigma" denotes the sum, the two numbers below and above it denote the start and end points

$$\sum_{i=1}^{5} i = 1 + 2 + 3 + 4 + 5$$

$$\sum_{k=1}^{n} x_k = x_1 + x_2 + \dots + x_n$$

Equality Sign

- Important as it has different meanings
 - Like programming: "=", "==" and "==="
- Identity
 - The two statements around "=" are always equal: $x(x+3) = x^2 + 3x$
 - We can also use the "identity" symbol: $(a+b)^2 \equiv a^2 + 2ab + b^2$
- Equation
 - The two statements are true only for specific values of the symbols

$$2x + 5 = 4$$
, $x = -0.5$ $x^2 - 1 = 0$, $x = \pm 1$ $\frac{dx}{dt} = 5x - 3$

Definition $\sum i := \sum_{i=1}^{n} i := 1 + 2 + 3 + \dots + n$

Review

- Equations of a variable x
- x is "on its own"
 - Not inside a function
 - No powers
- General form: ax + b = 0
 - a and b: fixed numbers (parameters)

Examples

$$2x + 3 = 0$$

$$2(2x+3) - 3x - 3(-4+3x) = 12$$

Solutions of the parametric equation

- $a = 0, b = 0 \Rightarrow 0.x = 0, \ \forall x$ (every x is a solution)
- $a = 0, b \neq 0 \Rightarrow 0.x = -b$ (no solution)
- $a \neq 0, \Rightarrow x = -b/a$ (one solution, regardless of b)

Exercise: Linear Equations

- Write a Python function which solves a linear equation given the definition from the previous slide
- The function should accept the a and b as arguments
- The function should return
 - The solution, if there is only one
 - Empty list [] if no solution or all x satisfy the equation

Exercise: Linear Equations


```
import math
def solve_linear_equation(a, b):
  if a == 0:
      return []
  else:
    return -b / a
```

```
# Test cases
solve_linear_equation(0, 0) # []
solve_linear_equation(0, 5) # []
solve_linear_equation(5, 0) # 0.0
solve_linear_equation(5, 5) # -1.0
solve_linear_equation(2.5, -5.3) # 2.12
```


Linear Systems of Equations

- Many simultaneous equations
 - To solve the system, we need to find values of the variable(s) which satisfy all equations at once
 - Even if all individual equations have solutions, the system may have no solution
- Solution
 - Method 1: Solve one equation and substitute
 - Method 2: Use sum of equations

Example

$$4x + 3y = 7$$
$$3x + 5y = 8$$
$$x - 2y = -1$$

$$(3): x = -1 + 2y$$

$$(3) \rightarrow (2) : 3(-1+2y) + 5y = 8$$

$$-3 + 6y + 5y = 8$$

$$11y = 11$$

$$y = 1$$

$$(2) \rightarrow (3) : x = -1 + 2.1$$

$$x = 1$$

$$(1): 4.1 + 3.1 = 7$$

$$\Rightarrow$$
 $(x,y) = (1,1)$ is the only solution of the system

Note: The numbers of equations and variables matter!

Summary

- Maths in real life
 - "Pause and ponder"
- The scientific method as a "guiding light"
- Tooling
- Math notation
- Linear equations
 - Does an equation always have a solution?
 - How about infinitely many solutions?
- Systems of linear equations
 - Substitution method

Questions?

SoftUni Diamond Partners

THE CROWN IS YOURS

Trainings @ Software University (SoftUni)

- Software University High-Quality Education,
 Profession and Job for Software Developers
 - softuni.bg, about.softuni.bg
- Software University Foundation
 - softuni.foundation
- Software University @ Facebook
 - facebook.com/SoftwareUniversity

License

- This course (slides, examples, demos, exercises, homework, documents, videos and other assets) is copyrighted content
- Unauthorized copy, reproduction or use is illegal
- © SoftUni https://about.softuni.bg/
- © Software University https://softuni.bg

