CarMax Analytics Showcase

BEC CONSULTING

Meet The Team

Aaron Huynh

Freshman

Science & Data
Science
Fairfax, VA

Ajeet Subramanian

Senior

Applied

Mathematics *Mechanicsburg, PA*

Simon Wang

Economics & Psychology Wyomissing, PA

Rohan Krishnan

Senior

Economics & BIS

Mechanicsburg, PA

Agenda

Basic Data Exploration

132717 Observations				
31 Variables				
Appraised Vehicles	Appraisal Offer, Make, Model, Trim, Year, Mileage, Engine, Cylinders, MPG (City), MPG (Highway), Horsepower, Fuel Capacity, Vehicle Type, Color			
Purchased Vehicles	Purchasing Price, Make, Model, Trim, Year, Mileage, Engine, Cylinders, MPG (City), MPG (Highway), Horsepower, Fuel Capacity, Vehicle Type, Color			
Other	State Where Sale Occured, Online vs In-Person Appraisal, Days Between Offer and Sale			

Data Cleaning

- 1. Using R and Python programming languages
- Many missing values coded as "null" → removed from data
- 3. "model" and "model_appraisal" had too many categories to effectively contribute to modelling
- 4. Conducted exploratory & PCA analysis

Most Popular Makes (Overall and By Region)

Ford	<u>15891</u>
Nissan	14560
Chevrolet	13438
Toyota	12589
Honda	11718
Jeep	9978
Hyundai	7690
Dodge	5296
Kia	4947
Volkswagen	2735

Region	Appraised	Purchased
Midwest	Jeep	Chevrolet
Northeast	Jeep	Jeep
South	Toyota	Ford
West	Toyota	Toyota

Where are customers buying?

Do average vehicle prices and appraisal offers differ by region?

Do Online Appraisals Differ From In-Store Ones?

95 Percent Confidence Interval of Difference Between Online and In-Store

\$10345.747

\$7915.642

With a **p-value** \approx **0 and** α = **0.05**, the difference between the average appraisal of a car online versus in-store is significantly different that 0.

Does mileage affect brand loyalty?

	Brand Loyal	Not Brand Loyal	Total	Proportion Brand Loyal
High Mileage	8,842	30,076	38,918	.227
Low Mileage	17,464	76,335	93,799	.186

NOTE: High Mileage → Mileage > 100k miles

Two-Sample Proportion Z Test (unpooled)

With a **p-value** \approx **0 and** α = **0.05**, the proportion of drivers with a high-mileage car that are brand loyal is significantly greater than the proportion of those with a low-mileage car that are also brand loyal.

Does mileage affect vehicle type loyalty?

	Type Loyal	Not Type Loyal	Total	Proportion Type Loyal
High Mileage	13,527	25,391	38,918	.348
Low Mileage	27,904	65,895	93,799	.297

NOTE: Vehicle type refers to the body description (small SUV, pickup, van, ect.)

Two-Sample Proportion Z Test (unpooled)

With a **p-value** \approx **0 and** α = **0.05**, the proportion of drivers with a high-mileage car that are type loyal is significantly greater than the proportion of those with a low-mileage car that are also type loyal.

Principal Component Analysis (PCA)

Change in proportion of variance explained for principal components becomes negligible after 5.

Based on this, we can take a look at the following variables as the main principal components (quantitative variables only) of our data set.

Principal Components (From the Data)

- 1. Purchased Highway MPG
- 2. Appraisal Mileage
- 3. Appraisal Offer
- 4. Purchased Mileage
- 5. Purchasing Price

Conclusions

Standardize in-store appraisal procedures to reduce differences in average appraisal offer between in-store and online interactions

Ensure adequate stock of Ford vehicles in Southern distribution channels and Toyota in Western distribution channels

Adjust car make recommendations based on appraisal car mileage (show similar brands to people who traded in high-mileage cars)

Adjust vehicle type recommendations based on appraisal car mileage (show similar vehicle types to people who traded in high-mileage cars)

Make highway MPG, mileage, and price directly visible on each car's profile to improve ease of shopping for customers