Q.1	Define Bipartite Graph, Isomorphism, and Traversal. What is the difference between Eulerian and									
	Hamiltonian paths? How can you represent a graph in computer memory?									
Q.2	In a computer network, every connection between computers can be represented as an edge in a graph,									
	and each computer is represented as a vertex. If a network has 8 computers and the degrees of these									
	computers (i.e., the number of connections each computer has) are as follows:									
	Computer A: 3 connect	ions Co	Computer B: 2 connections Computer C: 4 connections							
	Computer D: 3 connect	ions Co	Computer E: 2 connections Computer F: 1 connection							6
	Computer G: 3 connect	ions Co	ns Computer H: 2 connections							
	Using the Handshaking Theorem: What is the total number of connections (edges) in the network? If one									
	additional connection is added between Computer E and Computer F, what will be the new degrees of									
	the affected computers, and what will be the updated total number of connections?									
Q.3	Explain how Dijkstra's algorithm is applied in navigation									
	systems like Google Maps to calculate the shortest driving,									
	biking, or walking route between two locations. Consider									
	the given graph to solve by algorithm, where vertices (A) 15 (C) 10 (B) 10 (F)									
	represent locations (intersections, or landmarks), and edges									
	represent the roads connecting these locations. Each edge									
	will have a weight corresponding to the travel time (in									
	minutes) between the locations (A-F).									
Q.4	A cloud service provider has three data centers (sources) and four regional servers (destinations). The									
	goal is to minimize the cost of sending data packets from data centers to regional servers, subject to the									
	availability of data at the data centers and the demand at the regional servers. The transportation costs are									
	measured in terms of latency or bandwidth usage. (Use Steppingstone method)									7
	_	C	$\frac{D_1}{8}$	D_2	$\frac{D_3}{10}$	<i>D</i> ₄ 9	Supply			
	_	S_1	9	6	13	7	100			
	_	S_2	14	9	16	5	200			
		S ₃	120		130	100	200			
0.5										
Q.5										4
	be represented as a directed graph, where: Vertices represent network nodes (servers									
	or routers). Edges represent the communication links between nodes, with capacities									
	indicating the maximum bandwidth (in Mbps) that can be utilized on each link. The									
	goal is to determine the maximum bandwidth that can be allocated from the source									
	server to the destination server using the Ford-Fulkerson algorithm.									
L	bet to the destination set for doing the force function disjoint in.									