Lecture 15 Rotations in 3D

Apsects of 3D Programming

0. JavaScript Hints (asynch programming, subclasses - online resources)

- 1. Cameras (covered last lecture plus 14A)
- 2. Lights (briefly last lecture plus 14B)
- 3. Action (didn't get to lecture 14C)

- 4. Transformations (Rotations) focus today
- 5. Shape (Meshes WB8)

Cameras (from 3D to 2D)

Projection

- perspective, orthographic
- how the perspective transform makes a matrix

Viewing (how to point the camera)

- camera as a rigid object (plus field of view)
- Lookat Transformation (determines rotation)

Lights (and materials)

"Standard" (Computer Graphics) Model

- Three.js MeshPhongMaterial not MeshStandardMaterial
- A simplifying hack:
 - o diffuse, specular, ambient
- Lighting Geometry

The Standard Lighting Model

Specular (Mirror) Diffuse (Chalk) Ambient (indirect)

What do we control?

- 1. how focused is specular
- 2. how much specular
- 3. what color is specular
- 4. how much diffuse
- 5. what color is diffuse
- 6. what color/amount is ambient

Metal (specular is same color) vs. Plastic (specular is white)

What is THREE's Standard Model?

Two improvements:

- 1. improved workflow more intuitive parameters
- 2. improved **models** fancier equations

Different parameters:

roughness - controls specular vs. diffuse

metalness - controls colors

Types of Lights

Point Directional Spot

Lights, Camera, Action

Update and Redraw on every update

how to avoid redrawing everything - hard (so make it fast to draw)

Some things are hard to update quickly

- some of this is general
- some of this is THREE (but THREE is like most systems)

What is easy to animate?

Easy

Change a transformation
Change a material property (*)
Change a light property

Properties designed to be animated

- small number of numbers
- specialized mesh operations

Hard

Change points in a Mesh Change a material Change a light type

- Anything that requires sending large data to the hardware
- Anything that requites recompiling a shader

We (usually) animate by changing Transformations

this means transformations are **really** important!

- we need to understand them (hierarchical modeling, rotations)
- fancy transformations used for complex shape changes (end of semester)

Differences from 2D

- 1. 3x3 linear tranformations --> 4x4 homogeneous transformations
 - affine (translation) and perspective projections!
- 2. Scene Graph API handles composition for us
 - objects have local transformations relative to parent
- 3. API tried to make things more convenient and flexible
 - but might be confusing
- 4. Rotations are more complicated

Rotations

What is a rotation anyway?

It is a **rigid** transformation

- preserves distances
- preserves handedness

Two type of rigid transformations

- translations (all points change the same amount)
- rotations (one point the center doesn't change)

Rotations are Linear Transformations

Orthonormal Matrices

- all rows (columns) have unit length
- all rows (columns) mutually orthogonal

Positive determinant (preserve handedness)

Not all matrices are rotations

Rotation Facts

- Have an inverse
- The inverse is the transpose (only rotations)

- Closed set (composition yields another rotation)
- Associates (do operation in any order)
- Does not commute (in general)

There is a **center** and **axis** of rotation

Rotation vs. Orientation

2D Rotations in 3D

Center of rotation is an axis

Normal 2D rotation is about the Z axis

Center of Rotation

Rotation is about the origin

Shift the origin to where you want to rotate Shift it back after rotation

Center of Rotation in THREE

Use a Group to put the center in the right place
Put the object in the group (relative to object's center)

stack demo

Default Hierarchy

Cubes have their center in the center Notice the distance to stack Place one cube in another

```
let cube1 = cube("orange");
cube1.position.set(-2,.5,3);
let cube2 = cube("cyan");
cube1.add(cube2);
cube2.position.set(0,1,0);
scene.add(cube1);
```

With a Group

Place the group at the corner of cube Place the 2nd cube in group Rotate the Group

```
let cube3 = cube("orange");
cube3.position.set( 2,.5,3);
let group1 = new T.Group();
cube3.add(group1);
group1.position.set(-.5,.5,.5);
let cube4 = cube("cyan");
group1.add(cube4);
cube4.position.set(.5,.5,-.5);
scene.add(cube3);
```

Rotations about Axes

Rotation about X

Rotation about Y

Rotation about Z

demo: EulerToy 1

Axes in the world vs. local axes

demo: EulerToy 1 (better with ET3)

Sequences of Rotations

demo: Euler Toy 2

Euler's Theorems

- 1. Any rotation can be represented as a single rotation about some axis
- 2. Any rotation can be represented as a sequence of three rotations about a fixed axis

Euler Angles

Be careful: Euler invented many different kinds of angles

Rotation around 3 fixed axes

- Could be any order (XYZ, ZYX, ZXY)
- Can repeat (ZXZ)
- Can be local or global
 - easier to think "global to the left"

Play with them

Demo: EulerToy 3

More on Euler Angles

Earlier rotations change the meaning of later ones

Order matters

Local to global (or global to local)

(demo)

(incremental rotations in the workbook)

Composing Rotations

In a single axis (like in 2D):

$$R_z(a)\circ R_z(b)=R_z(a+b)$$

With different axes, this does not hold!

$$R_x(a)\circ R_y(b)=R_?(?)$$

And things in between cause problems

$$R_x(a)\circ R_y(b)\circ R_x(c)
eq R_x(a+c)R_y(b)$$

Getting Stuck

Rotate about X then Y

Rotate about Z is the same as the first rotate about X

Gimbal Lock

No matter what X is, Y=90 aligns Z with it

- There is no way to get the Y axis out of the X=0 plane
- We lost a degree of freedom

(demo EulerToy3)

Two ways to the same place

Rotate about X then Y
Rotate about Y then Z
same! (but different path)

(90,90,0) = (0,90,90) - but can't interpolate!

(demo EulerToy4)

Euler Angles (XYZ)

Good:

Easy for 1 axis
Easy for simple combinations

Bad:

Hard to get what you want (unintuitive combinations)
Can't interpolate
Gimbal lock (can't get there from here)

Axis Angle (Euler's other theorem)

Demo: et-axisangle

Axis Angle

Downsides:

- hard to figure out what axis
- hard to compose

Rotation Vector

Store the angle as the magnitude of the axis

Rotation Matrices

- hard to interpret
- easy to "drift"
- hard to insure it's a rotation
 - Gramm Schmidt Orthonomalization

Unit Quaternions

4 numbers:

- Axis angle: θ , $\hat{\mathbf{n}}$
- Unit quaternion: $\cos(\frac{\theta}{2}), \sin(\frac{\theta}{2})\mathbf{\hat{n}}$
- Will have magnitude 1

Why?

What is a Quaternion anyway?

4-dimensional complex number

Consider 2D complex numbers (a + bi)

- we can do arithmetic on them
- multiplication is meaningful

4D Complex Numbers?

Don't worry... you can look up:

- formulas to multiply
- formulas to convert to Matrix form
- formulas to interpolate (and preserve unit-ness)

but you should know...

- these formulas exist
- multiplication preserves unit-ness
- multiplication composes transformations

Why is this better? (or is it?)

- No Gimbal Lock (but antipodes)
- Represents orientations
- Close things are close (except for sign flips)

But Really:

- Easy to compose
- Easy to interpolate (not linear interpolation)
- Other nice math (interpolation)
- 3x3 rotation matrices are a pain
- Easy to fix drift

Convert to Quaternions

(Other direction is MUCH harder)

Axis angle
$$(\theta, \hat{\mathbf{v}}) \rightarrow (\cos(\frac{\theta}{2}), \sin(\frac{\theta}{2})\hat{\mathbf{v}})$$

Euler Angles XYZ (x,y,z)

- make a quaterion for each $(\cos(\frac{x}{2}), sin(\frac{x}{2}[1,0,0]))$
- multiply the quaternions together

THREE.js and rotations

Internally, stores quaternions

- it provides all conversions
- it does conversions automatically (beware errors!)
- it provides good quaternion functions
- it gives you operations using other forms
 - axis angle, euler angle, matrix,

You never **need** to see the quaternions... unless you want to

THREE and Rotations

State (variables / orientation)

matrix (normalMatrix, ...)

position

scale

quaternion

rotation

Transforms (motions / rotations)

applyMatrix4

translate (x,y,z, onAxis, ...)

applyQuaternion

rotate (x,y,z, onAxis, ...)

lookAt, setFrom are special (a method that sets) an absolute orientation

Internally...

The quaternion is used for everything

If you do something else, it is converted to the quaternion

If you apply a matrix it must be **decomposed** into rotate, translate, scale

```
applyMatrix: function ( matrix ) {
         this.matrix.multiplyMatrices( matrix, this.matrix );
         this.matrix.decompose( this.position, this.quaternion, this.scale );
}, // in Object3D.js
```

Internally

```
translateX: function () {
        var v1 = new Vector3( 1, 0, 0 );
        return function translateX( distance ) {
                return this.translateOnAxis( v1, distance );
        };
}(),
translateOnAxis: function () {
        // translate object by distance along axis in object space
        // axis is assumed to be normalized
        var v1 = new Vector3();
        return function translateOnAxis( axis, distance ) {
                v1.copy( axis ).applyQuaternion( this.quaternion );
                this.position.add( v1.multiplyScalar( distance ) );
                return this;
        };
}(),
                              45
```

Old School JavaScript hidden constant

```
translateX: function () {
    var v1 = new Vector3( 1, 0, 0 );
    return function translateX( distance ) {
        return this.translateOnAxis( v1, distance );
    };
}(),
```

A Special Rotation: LookAt

Point the Z axis towards a point

- Useful for cameras
- Useful for other objects

Note this is not unique

Only specifies 2 dergees of freedom

Up Vector!

Lookfrom / Lookat / Up

- In Three
 - position of object center
 - lookat method
 - up vector (object property)

Internally, it will convert to quaternion

Geometric Derivation

- 1. Point z at target \sim
 - normalize(at from) (at from)
- 2. Find x (right) as $\widehat{up} imes z$
- 3. Find y (local up) as $z \times x$

Notice: we have built a rotation matrix!

It has all the right properties

We never figured out angles

Rotations Summary: What you need to know

- 1. Basic facts (rigid, orthonormal, composition, ...)
- 2. Single Axis Rotations
- 3. Euler Angles be able to think about them
 - local vs. global
 - how things compose (and complexities)
- 4. Axis Angle forms understand what they are
- 5. Quaternions
 - basic facts and know they are inside THREE

50

- 6. Lookfrom/Lookat/VUp
- 7. Use in THREE (including centers)