Machine Learning

Jie Tang

Department of Computer Science & Technology
Tsinghua University

A bit about Jie...

- Jie Tang, Professor, ACM/AAAI/IEEE Fellow, Computer Science of Tsinghua University. My interest is artificial general intelligence (AGI). Recently, I put all efforts into Large Language Models (LLMs): ChatGLM, CodeGeeX, etc.
- I have been visiting scholar at Cornell U. (working with John Hopcroft, Jon Kleinberg), UIUC (working with Jiawei Han), CUHK (with Jeffrey Yu), and HKUST (with Qiong Luo).

- My research received the SIGKDD Test-of-Time Award (10-year Best Paper).
- Have published more than 300 paper on international conf/journals, including KDD (30), IJCAI/AAAI (30), NIPS/ICML, IEEE Trans. (30), Machine Learning J
- #Citation: 31,607 and *h*-index: 92
- Have a notable system, AMiner.org for academic researcher network analysis. The system has attracted 30 million users from 220 countries/regions.
- Homepage: http://keg.cs.tsinghua.edu.cn/jietang/

Contact Information

- Jie Tang
 - Software Division, Computer Science, Tsinghua

- Office: Rm 1-308, FIT Building
- E-mail: jietang@tsinghua.edu.cn
- Phone: 62788788-20, 13911215746

Better to make an appointment in advance

Teaching Assistant

- TA: Dan Zhang
 - FIT 1-308
 - E-mail: zd18@tsinghua.org.cn
 - Open hours: Anytime on demand☺
- TA: Wenyi Hong
 - FIT 1-308
 - E-mail: wenyi.hong@outlook.com
 - Open hours: Anytime on demand☺

Resources

Conferences:

- Theory: NIPS, COLT, STOC/FOCS
- Algorithm: ICML, KDD, UAI, IJCAI/AAAI
- App: SIGIR, WWW, ACL

Journals:

- JMLR, JAIR, MLJ, ACM TKDD, IEEE TKDE

Handbooks

- Yoshua Bengio, Ian J. Goodfellow, Aaron Courville. Deep Learning. 2016.
- Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer, 2007.
- Daphne Koller, Nir Friedman. Probabilistic Graphical Models. MIT Press, 2009

Artificial Intelligence

人工智能的发展(2019年的PPT)

符号AI

1956 Dartmouth Conference:

符号模型/ 规则模型/ 感知机

认知智能

DARPA

张钹院士2016年提出第三代人 工智能雏形, DARPA 2018年 发布AI Next计划。核心思路是 推进数据统计与知识推理融合 的计算;与脑认知机理融合的 计算。

第一代

第二代

第三代

Microsoft

DeepMind

大数据驱动的统计学 习方法初步实现了针 对文本、图像、语音 等的感知与识别

感知智能

目前急需的是高质量超大规模 知识图谱(AI的基础设施)以 及对超大规模数据的深度理解 能力(面向认知的深度学习)

AI趋势 (2019年的PPT)

表示、计算 、存储与人 机输入/出

文本内容识 别、图像识 别、语音识 别

知识数据双驱 动、认知推理 、决策智能

自学习、记忆 机理、有(无) 意识处理器

计算

感 知

认 知

意识

认知智能

趋势:用计算模型可描述的人类认知问题,计算机很快达到甚至超过人类水平。

很快=5-20年(2019年)

Al in Tsinghua

- In 2019/09, we established Tsinghua Al Institute
 - By Prof. Bo Zhang
- Focus
 - Fundamental theories and methodologies
 - Interdisciplinarity

Foundation Model in Tsinghua

- In 2023/06, we established Foundation Model Research Center in Tsinghua Al Institute
- Focus
 - Fundamental tech for LLM
 - Interdisciplinarity

Beijing Al Institute (BAAI)

- In 2019/11, Beijing launched Beijing Al Institute
 - By Dr. Hongjiang Zhang
- Focus
 - -ground-breaking research

This Course

Overview of Class

- Introduction
- Deep learning basics
- Transformer
- Pre-training models
- P-tuning, LLM fine tune and prompt
- Training 100B-scale LLM
- Chat Models
- Visual Models: CNN, ViT, etc.
- Text to Image: DaLL.E, CogView
- Image to Text: CLIP, VisualGLM
- More abilities of LLM: protein, code, math

Grading

- Homeworks (40%)
 - 4 homeworks (10 points each time)
- Project (60%)
 - 2-3 students to form a team
 - Apply machine learning to solve a real problem
 - Choose one task at Kaggle (http://www.kaggle.com/competitions)
 - Submit materials:
 - a proposal (6th week), a mid-term report (9th week), a final report (17th week), and the implementation code (17th week)
 - All reports should be in NIPS format, written in English: (http://nips.cc/Conferences/2014/PaperInformation/StyleFiles)
 - Poster presentation (15th week)

Potential achievements

- Able to understand the underlying principles of classical ML algorithms
- Able to apply right ML algorithms to the applications at you hand
- Able to design effective ML algorithms to solve new problems
- We will try to provide necessary GPU platform for practicing large-scale deep learning...
 - Please apply first...

About final report

- We expect to see
 - Problems (what?)
 - Motivations (why?)
 - Techniques (how?)
 - Results & Analysis (did you verify what you claimed above?)
 - Conclusions
- The final report should look like a NeurIPS technical paper
 - Style file: https://neurips.cc/Conferences/2019/PaperInformation/StyleFiles

- Any suggestions?
- Any problems?
- Anything else you want to learn in class?

Jie Tang, KEG, Tsinghua U Download data & Codes