Satz von Arzelà-Ascoli

In diesem Paragraphen sei $\emptyset \neq A \subseteq \mathbb{R}$ und \mathcal{F} sei eine Familie (Menge) von Funktionen $f: A \to \mathbb{R}$.

Definition

 \mathcal{F} heißt auf A

(1) punktweise beschränkt : $\iff \forall x \in A \ \exists c = c(x) \ge 0$:

$$|f(x)| \le c \ \forall f \in \mathcal{F}$$

(2) gleichmäßig beschränkt : $\iff \exists \gamma \geq 0$:

$$|f(x)| \le \gamma \ \forall x \in A \ \forall f \in \mathcal{F}$$

(3) **gleichstetig** : $\iff \forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0$:

$$|f(x) - f(y)| < \varepsilon \ \forall x, y \in A \ \text{mit} \ |x - y| < \delta \ \text{und} \ \forall f \in \mathcal{F}$$

Satz (Satz von Arzelà-Ascoli)

A sei beschränkt und abgeschlossen, \mathcal{F} sei punktweise beschränkt und gleichstetig auf A und (f_n) sei eine Folge in \mathcal{F} .

Dann enthält (f_n) eine Teilfolge, welche auf A gleichmäßig konvergiert.

Beweis

Analysis II, 2.3 \implies es existiert eine abzählbare Teilmenge $B = \{x_1, x_2, \ldots\} \subseteq A$ mit $\overline{B} = A$.

 $(f_n(x_1))$ ist beschränkt $\xrightarrow{\text{Analysis I}}$ (f_n) enthält eine Teilfolge $(f_{1,n})$ mit $(f_{1,n}(x_1))$ konvergent. $(f_{1,n}(x_2))$ ist beschränkt $\xrightarrow{\text{Analysis I}}$ $(f_{1,n})$ enthält eine Teilfolge $(f_{2,n})$ mit $(f_{2,n}(x_2))$ konvergent.

Wir erhalten Funktionenfolgen

$$(f_{1,n}) = (f_{1,1}, f_{1,2}, f_{1,3}, \dots)$$

$$(f_{2,n}) = (f_{2,1}, f_{2,2}, f_{2,3}, \dots)$$

$$(f_{3,n}) = (f_{3,1}, f_{3,2}, f_{3,3}, \dots)$$

$$\vdots$$

 $(f_{k+1,n})$ ist eine Teilfolge von $(f_{k,n})$ und $(f_{k,n}(x_k))_{n=1}^{\infty}$ konvergiert $(k \in \mathbb{N})$.

 $g_j := f_{j,j} \ (j \in \mathbb{N}); \ (g_j)$ ist eine Teilfolge von (f_n) .

 $(g_k, g_{k+1}, g_{k+2}, \ldots)$ ist eine Teilfolge von $(f_{k,n}) \implies (g_j(x_k))_{j=1}^{\infty}$ ist konvergent $(k=1,2,\ldots)$.

1. Satz von Arzelà-Ascoli

Sei $\varepsilon > 0$. Wir zeigen:

(*)
$$\exists j_0 \in \mathbb{N} : |g_j(x) - g_{\nu}(x)| < 3\varepsilon \ \forall j, \nu \geq j_0 \ \forall x \in A$$

(woraus die gleichmäßige Konvergenz von (g_i) folgt)

 \mathcal{F} gleichstetig \Longrightarrow

(i)
$$\exists \delta > 0 : |g_j(x) - g_j(y)| < \varepsilon \ \forall x, y \in A \text{ und } |x - y| < \delta \ \forall j \in \mathbb{N}$$

 $A \subseteq \bigcup_{x \in A} U_{\frac{\delta}{2}}(x)$. Analysis II, 2.3 $\Longrightarrow \exists y_1, \dots, y_p \in A4$:

$$(ii)$$
 $A \subseteq \bigcup_{j=1}^{p} U_{\frac{\delta}{2}}(y_j)$

 $\overline{B} = A \implies \forall q \in \{1, \dots, p\} \ \exists z_q \in B : z_q \in U_{\frac{\delta}{2}}(y_q) \ (g_j)(z_q))_{j=1}^{\infty} \text{ ist konvergent für alle } q \in \{1, \dots, p\} \implies \exists j_0 \in \mathbb{N}:$

(iii)
$$|g_j(z_q) - g_\nu(z_q)| < \varepsilon \ \forall j, \nu \ge j_0 \ (q = 1, \dots, p)$$

Seien $j, \nu \geq j_0$ und $x \in A \stackrel{(ii)}{\Longrightarrow} \exists q \in \{1, \dots, p\} : x \in U_{\frac{\delta}{2}}(y_q) \Longrightarrow |x - z_q| = |x - y_q + y_q - z_q| \leq |x - y_q| + |y_q - z_q| < \frac{\delta}{2} + \frac{\delta}{2} = \delta \stackrel{(i)}{\Longrightarrow} |g_j(x) - g_j(z_q)| < \varepsilon, |g_\nu(x) - g_\nu(z_q)| < \varepsilon \text{ (iv)}$

$$\implies |g_{j}(x) - g_{\nu}(x)| = |g_{j}(x) - g_{j}(z_{q}) + g_{j}(z_{q}) - g_{\nu}(z_{q}) + g_{\nu}(z_{q}) - g_{\nu}(x)|$$

$$\leq \underbrace{|g_{j}(x) - g_{j}(z_{q})|}_{<\varepsilon \ (iv)} + \underbrace{|g_{j}(z_{q}) - g_{\nu}(z_{q})|}_{<\varepsilon \ (iii)} + \underbrace{|g_{\nu}(z_{q}) - g_{\nu}(x)|}_{<\varepsilon \ (iv)}$$

$$< 3\varepsilon \implies (*)$$