

42081 - SISTEMAS OPERATIVOS E DE TEMPO-REAL

2021-2022

Ex	kam,	Duration: 2h00m	
#N	ИЕС	:: Name:	
N	ote	1: all answers should be properly justified. Just answering Yes/No or results without indicating the equations and values used implies to answer will not be considered.	_
N	ote	2: the weight of each question is placed at the beginning, between se "[0.5]".	quare brackets. E.g.
N	ote	3: several answers have a limited size. In such cases the maximum is be used is indicated at the end of the question. E.g. "[5 lines]" me text can be used for the answer. Diagrams/figures are not size-lim	eans that up to 5 lines of
		Part I – Short Questions (6/20 points)	
孠	1.	[1.0] Consider the following statement: "All Real-Time tasks must deadline". Do you agree? Justify! [6 lines]	have an associated
,	2.	[1.0] Identify three factors that can contribute to the variation of the Time of a task. [8 lines]	e Worst-Case Execution
孠	3.	[1.0] Consider a set of three tasks with periods 25, 30 and 50 t.u., s OS. Compute the optimum value for the tick value, providing a bri	
孠	4.	[1.0] Consider a task set composed of independent periodic tasks, spreemption. If this task set is schedulable with Rate-Monotonic, the is also schedulable with EDF? Why? [4 lines]	
孠	5.	[1.0] One of the code optimization techniques is called "cycle expanded how this technique is applied in practice (you can use an example, one potential benefit and one potential drawback. [6 lines]	± -
=	6.	[1.0] Regarding cache, multi-core systems have additional problem core ones? If so, which ones? [6 lines]	ns with respect to single-

Part II – Development Questions (14/20 points)

- 1. [7.0] An industrial milling machine with numerical control has 3 orthogonal axes, each equipped with closed-loop position control and range-limit sensors for their protection, and also two milling cutter pressure sensors to detect jam situations. The global control is performed by a CPU that executes six tasks concurrently. It is used an EDF scheduler, tasks are preemptible and deadlines are set to the period/mit. The tasks are characterized as follows:
 - τ_1 reads instructions from a control program written in a high-level language, one at each iteration, and transforms them into simple movements used by task τ_2 . It is fired whenever the execution of an instruction ends.
 - \triangleright Sporadic, C₁=1 ms, mit₁=50 ms
 - τ_2 interprets the movements generated by task τ_1 and generates the set-points appropriate for each of the axes.
 - \triangleright Periodic C₂=5 ms, T₂=20 ms
 - τ_3 to τ_5 perform the closed loop control of each axis.
 - Periodic $C_{3-5}=1$ ms, $T_{3-5}=5$ ms
 - τ₆ is activated by triggering any of the protection sensors and stops the machine in safe conditions.
 - \triangleright Aperiodic, C₆=1 ms, R₆=10 ms, R = maximum allowable response time for a single event
- a) [1.0] Determine, justifying, if it is possible to guarantee the scalability of the set of tasks τ_1 to τ_5 , by using a criteria based on utilization rate.
- b) [4.0] Admitting now that the relative deadlines of tasks τ_3 to τ_5 are D_{3-5} =4 ms, determine **analytically** if the task set is schedulable.
- c) [2.0] It is intended to use a server to handle task τ_6 . Select a suitable server and determine the parameters that allow to comply with the task's response time constraint. Justify clearly your reasoning.

2. [7.0] Consider the task set described below, where R_1 , R_2 and R_3 are shared resources that require mutual exclusion and $E_i(R_i)$ stands for the worst-case time that task τ_i spends on R_j . $E_i(R_j) = 0$ means that task τ_i does not use R_j . The system is scheduled with RM and nested shared resource access is not allowed.

	Ci	$T_i=D_i$	$E_i(R_1)$	E _i (R ₂)	E _i (R ₃)
τ_1	2	5	1	0	1
τ_2	2	10	0	1	0
τ_3	5	20	2	4	1

- a) [1.0] Is preemption disabling a suitable method for handling shared resources in this case? If not, provide an example. [Diagram + 4 lines]
- b) [2.0] Assume that it is used PCP. Compute the blocking times for each task.
- c) [4.0] Determine **analytically** if the system is schedulable with PCP.