Таблица БМ Φ при $x \to 0$

• $\sin x \sim x$

• $\tan x \sim x$

• $\arcsin x \sim x$

• $\arctan x \sim x$

 $\bullet \ \cos x \sim 1 - \frac{x^2}{2}$

• $ln(1+x) \sim x$

• $\log_a(1+x) \sim \frac{x}{\ln a}$

• $e^x - 1 \sim x$

• $a^x - 1 \sim x \ln a$

 $\bullet \ (1+x)^a - 1 \sim ax$

Производные

 $\bullet (x^n)' = nx^{n-1}$

 $\bullet \ (a^x)' = a^x \cdot \ln a$

 $\bullet \ (e^x)' = e^x$

• $(\log_a u)' = \frac{u'}{u \ln a}$, $(\ln u)' = \frac{u'}{u}$

• $(\sin x)' = \cos x$, $(\cos x)' = -\sin x$

 $\bullet \ (\sqrt{u})' = \frac{u'}{2\sqrt{u}}$

• $(tgu)' = \frac{u'}{\cos^2 u}$, $(ctgx)' = -\frac{u'}{\sin^2 u}$

• $(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}$

• $(\arccos x)' = -\frac{1}{\sqrt{1-x}}$

 $\bullet \ (\operatorname{arctg} x)' = \frac{1}{1 + x^2}$

 $\bullet \ (\operatorname{arcctg} x)' = -\frac{1}{1+x^2}$

• $(\operatorname{sh} x)' = \operatorname{ch} x$

• $(\operatorname{ch} x)' = \operatorname{sh} x$

 $\bullet (thx)' = \frac{1}{ch^2x}$

 $\bullet \ (\operatorname{cth} x)' = -\frac{1}{\operatorname{sh}^2 x}$

 $\bullet \ (x^x)' = x^x \cdot (1 + \ln x)$

• $\left(\ln\left(x + \sqrt{1 + x^2}\right)\right)' = \frac{1}{\sqrt{1 + x^2}}$

 $\bullet \left(\frac{1}{2}\ln\left(\frac{1+x}{1-x}\right)\right)' = \frac{1}{1-x^2}$

• $(1/x)^{(n)} = \frac{(-1)^n \cdot n!}{x^{n+1}}$

 $\bullet \ (a^x)^{(n)} = a^x \cdot \ln^n x$

• $(\sin x)^{(n)} = \sin\left(x + \frac{\pi n}{2}\right)$

• $(\cos x)^{(n)} = \cos\left(x + \frac{\pi n}{2}\right)$

• $(\ln x)^{(n)} = \frac{(-1)^{(n-1)} \cdot (n-1)!}{x^n}$

• $(u^{\nu})' = \nu \cdot u^{\nu-1} \cdot u' + u^{\nu} \cdot \ln u \cdot v' - \left(\sqrt{1+x^2}\right)' = \frac{x}{\sqrt{x^2+1}}$

Формулы из приложений определённого интеграла

Площадь

• Типикал $S = \int_a^b y(x)dx$

• Типикалі, но с двумя кривыми $S = \int_a^b (y_2(x) - y_1(x)) dx$

• Параметрическое

$$-S = -\int_{T_0}^{T} y(t)x'(t)dt$$

$$-S = \int_{T_0}^{T} x(t)y'(t)dt$$

$$-S = \frac{1}{2} \int_{T_0}^{T} (x(t)y'(t) - y(t)x'(t)) dt$$

• Явная полярка
$$S=\frac{1}{2}\int_{\alpha}^{\beta}r^{2}(\varphi)d\varphi$$

• Параметрическая полярка
$$S = \frac{1}{2} \int_{T_0}^T r^2(t) \varphi'(t) dt$$

Вычисление длины дуги

• Декартовые
$$L = \int_a^b \sqrt{1 + (f'(x))^2} dx$$

• Параметр
$$L = \int_{t_0}^{t_1} \sqrt{(\varphi'(t))^2 + (\psi'(t))^2} dt$$

• Полярка
$$L = \int_{\alpha}^{\beta} \sqrt{(r'(\varphi))^2 + (r(\varphi))^2} d\varphi$$
.

Вычисление объемов тел вращения

$$\bullet \ \ V = \int_{a}^{b} S(x) dx$$

$$\bullet \ V_{OX} = \pi \int_{a}^{b} f^{2}(x) dx$$

•
$$V_{OY} = 2\pi \int_{a}^{b} x f(x) dx$$

• Сектор в полярке
$$V = \frac{2}{3}\pi \int_{\alpha}^{\beta} r^3(\varphi) \sin \varphi d\varphi$$

Площадь поверхности вращения

•
$$S_{OX} = 2\pi \int_{a}^{b} |f(x)| dl = 2\pi \int_{a}^{b} f(x) \sqrt{1 + (f'(x))^{2}} dx$$

•
$$S_{OX} = 2\pi \int_{t_0}^{t_1} \psi(t) \sqrt{(\psi \gamma(t))^2 + (\varphi \prime(t))^2} dt$$

•
$$S_{OX} = 2\pi \int_{\alpha}^{\beta} r(\varphi) |\sin \varphi| \sqrt{r^2(\varphi) + (r'(\varphi))^2} d\varphi$$