Green financing and firm dynamics

Felicien Goudou Université de Montréal and CIREQ

September 10, 2022

- Concerns surrounding climate change have heightened considerably in recent years.
- Investing according to ESG criteria is gaining momentum

Figure: Growth of ESG-Dedicated funds

Source: Bloomberg Finance L.P.; JPMorgan Chase & Co.; and IMF staff calculations.; YTD=year to date.

Increasing in the threat of greenwashing.

- Increasing in the threat of greenwashing.
- Motivation for consideration of realised measures (firm's carbon intensity) rather than project base classification (Ehlers et al. (2020)).

- Increasing in the threat of greenwashing.
- Motivation for consideration of realised measures (firm's carbon intensity) rather than project base classification (Ehlers et al. (2020)).
- Ex-ante firm heterogeneity in terms of asset and ability for green innovation become relevant for firm financing.

- Increasing in the threat of greenwashing.
- Motivation for consideration of realised measures (firm's carbon intensity) rather than project base classification (Ehlers et al. (2020)).
- Ex-ante firm heterogeneity in terms of asset and ability for green innovation become relevant for firm financing.
- This paper:

- Increasing in the threat of greenwashing.
- Motivation for consideration of realised measures (firm's carbon intensity) rather than project base classification (Ehlers et al. (2020)).
- Ex-ante firm heterogeneity in terms of asset and ability for green innovation become relevant for firm financing.

This paper:

What are the effects of green financing on firm growth and survival?

- Increasing in the threat of greenwashing.
- Motivation for consideration of realised measures (firm's carbon intensity) rather than project base classification (Ehlers et al. (2020)).
- Ex-ante firm heterogeneity in terms of asset and ability for green innovation become relevant for firm financing.

This paper:

- What are the effects of green financing on firm growth and survival?
- Are the effects quantitatively significant?

- Increasing in the threat of greenwashing.
- Motivation for consideration of realised measures (firm's carbon intensity) rather than project base classification (Ehlers et al. (2020)).
- Ex-ante firm heterogeneity in terms of asset and ability for green innovation become relevant for firm financing.

This paper:

- What are the effects of green financing on firm growth and survival?
- Are the effects quantitatively significant?
- What are the role of R&D policy in mitigating the effects?

Motivating facts

Data

MSCI ESG KLD STATS data

- Positive performance indicators designed to capture the company's management best practices concerning environmental risks and opportunities.
- - ▶ If a company meets the assessment criteria established for an indicator, it has scored 1 otherwise 0.
- Construct aggregate indicator by summing up all the scores for each company
 - Number of positive climate performance met by a company
- Compustat-CRSP merged data
 - Informations on companies balance sheet.
- Balanced annual panel dataset of 1479 companies over 2015-2018 for the U.S. after combining the two data source.
- Exclusion of financial companies (SIC 6000-6999) and companies in utilities sector (SIC=4900) leading to 1151 publicly traded companies in the sample.
- All the data comes from the Wharton Research Data Services (WRDS)

Fact 1: Larger firms are more likely reduce their carbon footprint

Fact 2: The better is the firm climate performance the higher is its financial leverage

Model

Built on Clementi and Palazzo (2016) and Moll (2014)

Model- Setup

- ▶ Time is discrete $(t \ge 0)$
- Continuum of heterogeneous firms i operated by price takers entrepreneurs
- Heterogeneity in entrepreneurs' net worth a_t and productivity z_t .
- z_t is persistent random with conditional probability distribution $H(z_{t+1}|z_t)$.
- A each t, the state of the economy is the joint distribution : $\Gamma(z_t, a_t)$
- Firms produce homogeneous good using capital k_t and labor ℓ_t .
 - Pollution is emitted during production process at t:

$$y_{it} = z_{it}(1 - \Gamma(M_t)) \left(k_{it}^{\alpha} \ell_{it}^{1-\alpha}\right)^{\theta}, \qquad \alpha, \theta \in (0,1)$$
 (1)

where M_t is an emission stock and $\Gamma(M_t)$ a damage function attached to pollution.

• Denote E_{it} Pollutant emitted by firm i at time t:

$$E_{it} = \frac{1}{\varphi_{it}} y_{it} \tag{2}$$

Model: Setup - II

• φ_{it} is the abatement technology evolving as:

$$\varphi_{it+1} = (1 - \delta_{\varphi})\varphi_{it} + f(x_{it})$$
(3)

- φ_{i0} is given and equal φ_0 for all firm.
- x_{it} is the (in final good terms) R&D spending on improving abatement technology.
- Firm i borrows capital $b_{it} = k_{it} a_{it}$, s.t borrowing constraint $k_{it} \leq \gamma(e_{it}) a_{it}$
- $e_{it} = \frac{E_{it}}{y_{it}}$ is the emission per unit of output of firm i at time t.
- Leverage ratio is endogenously linked to the emission per unit of output of firm.
- In addition firm faces a carbon tax p_c per unit of emission.

Incumbent problem

Firm static profit:

$$\pi(\Gamma, z, a) = \left\{ \max_{k, \ell} y - Rk - w\ell - p_c \frac{y}{\varphi} \quad \text{s.t.} \quad k \le \gamma(\varphi^{-1}) a \right\}$$
 (4)

A firm's flow budget constraint (in final good terms) is:

$$a' = \pi(\Gamma, z, a) + R a + (1 - \delta)a - x \tag{5}$$

- Homogeneous good is the numeraire.
 - R: real rental rate of capital

- δ : capital depreciation rate
- p_c : real carbon tax per unit of emission
- ▶ w: real wage

Assuming functional form for leverage ratio:

$$\gamma(s) = 1 + \exp\left(\frac{1}{s}\right) \tag{6}$$

Dynamic problem.

- Dynamic problem of firm (choice of R&D spending : x)
 - The start-of-period value of an incumbent firm $V(\Gamma, z, a)$ solves:

$$V(\Gamma, z, a) = \pi(z, a, \varphi) + R a + (1 - \delta)a + \max \left\{ 0; \tilde{V}(\Gamma, z, a) - \chi \right\}$$
 (7)

where:

$$\tilde{V}(\Gamma, z, a) = \max_{x} -x - g(x, \varphi) + \beta \int V(\Gamma', z', a') dH(z'|z) J(\Gamma'|\Gamma)$$
s.t.
$$\varphi' = (1 - \delta_{\varphi})\varphi + f(x)$$

$$a' = \pi(z, a, \varphi) + R a + (1 - \delta)a - x$$
(9)

- δ_{φ} : depreciation rate of abatement tech.
- f: transform final good to abatement tech. (f' > 0, f'' < 0)
- ▶ g: abatement techn. adjustment cost
- β : discount factor.
- χ : fixed cost of operation.

Exit/Entry

- Firms that exit producing cannot reenter the market at a later stage
- Prospective entrant enter replacing exiting firm
 - Inherits the same firm (same asset a and technology abatement φ)
 - But receives a signal q about her productivity with $q \sim Q(q)$.
 - Conditional on entry, the distribution of the idiosyncratic shock in the first period of operation is H(z'|q), strictly decreasing in q
 - ▶ pays entry cost $c_e \ge 0$ when decide to enter.
- Given aggregate state Γ, the value of a prospective entrant that obtains a signal q is:

$$V_{e}(\Gamma, q, a) = \max_{x} -x - g(x, \varphi) + \beta \int V(\Gamma', z', a') dH(z'|q) J(\Gamma'|\Gamma)$$
s.t.
$$\varphi' = (1 - \delta_{\varphi})\varphi + f(x)$$

$$a' = \pi(z, a, \varphi) + R a + (1 - \delta)a - x$$
(10)

• She starts operating if $V_e(\Gamma, q, a) \ge c_e$

Next Steps

- Robustness check of facts 1 and 2 with other measures of firm environment performance
- Defining Stationary equilibrium
- Calibrate and simulate the model.
 - Look at the NSF' survey on R&D at firm level (publicly available)
- Analyze the aggregate dynamics from the model
- Add government and analyze R&D policy

Distribution of firms over environmental performance

Summary statistics

Variable	Obs	Mean	Std. Dev.	Min	Max	P25	P50	P75
Env. perf.	4604	.56	1.04	0	6	0	0	1
Firm size	4553	7.61	1.55	3.89	13.3	6.44	7.43	8.55
Leverage ratio	4595	.57	.28	-1.64	4.35	.42	.57	.71
Inv. ratio	4473	.06	.14	0	0.91	.01	.04	.12
R&D ratio	4498	.14	.15	0	.95	.01	.1	.21
CF ratio	4536	.03	.05	0	1.26	0	.01	.03
Tobin Q	4598	1.87	1.93	.02	25.03	.72	1.27	2.3

MSCI ESG KLD STATS INDICATOR

→ Return

Positive	
Environment	
Performance	Data Set Column
Indicators	Headers
Environmental	
Opportunities -	
Clean Tech	ENV-str-A
Waste	
Management -	
Toxic Emissions	
and Waste	ENV-str-B
Waste	
Management -	
Packaging	
Materials & Waste	ENV-str-C
Climate Change -	
Carbon Emissions	ENV-str-D
Environmental	
Management	
Systems	ENV-str-G
Natural Resource	
Use - Water Stress	ENV-str-H
Natural Resource	
Use - Biodiversity &	
Land Use	ENV-str-I
Natural Resource	
Use - Raw Material	
Sourcing	ENV-str-J
Natural Resource	
Use - Financing	
Environmental	ENV-str-K

Impact	
Environmental	
Opportunities -	
Green Buildings	ENV-str-L
Environmental	
Opportunities in	
Renewable Energy	ENV-str-M
Waste	
Management -	
Electronic Waste	ENV-str-N
Climate Change -	
Energy Efficiency	ENV-str-O
Climate Change -	
Product Carbon	
Footprint	ENV-str-P
Climate Change -	
Insuring Climate	
Change Risk	ENV-str-Q
Environment -	
Other Strengths	ENV-str-X

Large firms perform better in managing environmental risk and opportunities (Manufacturing)

→ Return

High leverage firms perform better in managing environmental risk and opportunities (Transport and Utilities sector)

→ Return

References I

- Clementi, G. L. and Palazzo, B. (2016). Entry, exit, firm dynamics, and aggregate fluctuations. *American Economic Journal: Macroeconomics*, 8(3):1–41.
- Ehlers, T., Mojon, B., and Packer, F. (2020). Green bonds and carbon emissions: Exploring the case for a rating system at the firm level. *BIS Quarterly Review, September*.
- Moll, B. (2014). Productivity losses from financial frictions: Can self-financing undo capital misallocation? *American Economic Review*, 104(10):3186–3221.