Lecture 5: Clustering

Reading: Chapter 10, Sections 3.1-2

STATS 202: Data mining and analysis

Jonathan Taylor, 10/3 Slide credits: Sergio Bacallado

As in **classification**, we assign a class to each sample in the data matrix. However, the class *is not an output variable*; we only use input variables.

As in **classification**, we assign a class to each sample in the data matrix. However, the class *is not an output variable*; we only use input variables.

Clustering is an **unsupervised** procedure, whose goal is to find homogeneous subgroups among the observations.

We will discuss 2 algorithms:

As in **classification**, we assign a class to each sample in the data matrix. However, the class *is not an output variable*; we only use input variables.

Clustering is an **unsupervised** procedure, whose goal is to find homogeneous subgroups among the observations.

We will discuss 2 algorithms:

► *K*-means clustering

As in **classification**, we assign a class to each sample in the data matrix. However, the class *is not an output variable*; we only use input variables.

Clustering is an **unsupervised** procedure, whose goal is to find homogeneous subgroups among the observations.

We will discuss 2 algorithms:

- K-means clustering
- Hierarchical clustering

K-means clustering

ightharpoonup K is the number of clusters and must be fixed in advance.

Figure 10.5

K-means clustering

- K is the number of clusters and must be fixed in advance.
- ► The goal of this method is to maximize the similarity of samples within each cluster:

$$\min_{C_1, \dots, C_K} \sum_{\ell=1}^K W(C_\ell)$$

Figure 10.5

K-means clustering

- K is the number of clusters and must be fixed in advance.
- ► The goal of this method is to maximize the similarity of samples within each cluster:

$$\min_{C_1, \dots, C_K} \sum_{\ell=1}^K W(C_\ell) \quad ; \quad W(C_\ell) = \frac{1}{|C_\ell|} \sum_{i, j \in C_\ell} \mathsf{Distance}^2(x_{i,:}, x_{j,:}).$$

Figure 10.5

1. Assign each sample to a cluster from 1 to K arbitrarily, e.g. at random.

- 1. Assign each sample to a cluster from 1 to K arbitrarily, e.g. at random.
- 2. Iterate these two steps until the clustering is constant:

- 1. Assign each sample to a cluster from 1 to K arbitrarily, e.g. at random.
- 2. Iterate these two steps until the clustering is constant:
 - ▶ Find the *centroid* of each cluster ℓ ; i.e. the average $\overline{x}_{\ell,:}$ of all the samples in the cluster:

$$x_{\ell,j} = \frac{1}{|C_{\ell}|} \sum_{i \in C_{\ell}} x_{i,j}$$
 for $j = 1, \dots, p$.

- 1. Assign each sample to a cluster from 1 to K arbitrarily, e.g. at random.
- 2. Iterate these two steps until the clustering is constant:
 - ▶ Find the *centroid* of each cluster ℓ ; i.e. the average $\overline{x}_{\ell,:}$ of all the samples in the cluster:

$$x_{\ell,j} = \frac{1}{|C_{\ell}|} \sum_{i \in C_{\ell}} x_{i,j}$$
 for $j = 1, \dots, p$.

Reassign each sample to the nearest centroid.

Figure 10.6

▶ The algorithm always converges to a local minimum of

$$\min_{C_1,\dots,C_K} \sum_{\ell=1}^K W(C_\ell) \quad ; \quad W(C_\ell) = \frac{1}{|C_\ell|} \sum_{\substack{i:i \in C_\epsilon}} \mathsf{Distance}^2(x_{i,:},x_{j,:}).$$

▶ The algorithm always converges to a local minimum of

$$\min_{C_1,\dots,C_K} \sum_{\ell=1}^K W(C_\ell) \quad ; \quad W(C_\ell) = \frac{1}{|C_\ell|} \sum_{i,j \in C_\ell} \mathsf{Distance}^2(x_{i,:},x_{j,:}).$$

Why?

$$\frac{1}{|C_\ell|} \sum_{i,j \in C_\ell} \mathsf{Distance}^2(x_{i,:}, x_{j,:}) = 2 \sum_{i \in C_\ell} \mathsf{Distance}^2(x_{i,:}, \overline{x}_{\ell,:})$$

▶ The algorithm always converges to a local minimum of

$$\min_{C_1,\dots,C_K} \sum_{\ell=1}^K W(C_\ell) \quad ; \quad W(C_\ell) = \frac{1}{|C_\ell|} \sum_{i,j \in C_\ell} \mathsf{Distance}^2(x_{i,:},x_{j,:}).$$

Why?

$$\frac{1}{|C_\ell|} \sum_{i,j \in C_\ell} \mathsf{Distance}^2(x_{i,:}, x_{j,:}) = 2 \sum_{i \in C_\ell} \mathsf{Distance}^2(x_{i,:}, \overline{x}_{\ell,:})$$

This side can only be reduced in each iteration.

▶ The algorithm always converges to a local minimum of

$$\min_{C_1,\dots,C_K} \sum_{\ell=1}^K W(C_\ell) \quad ; \quad W(C_\ell) = \frac{1}{|C_\ell|} \sum_{i,j \in C_\ell} \mathsf{Distance}^2(x_{i,:},x_{j,:}).$$

Why?

$$\frac{1}{|C_{\ell}|} \sum_{i,j \in C_{\ell}} \mathsf{Distance}^2(x_{i,:}, x_{j,:}) = 2 \sum_{i \in C_{\ell}} \mathsf{Distance}^2(x_{i,:}, \overline{x}_{\ell,:})$$

This side can only be reduced in each iteration.

► Each initialization could yield a different minimum.

Example: K-means output with different initializations

Figure 10.7

Example: K-means output with different initializations

Figure 10.7

In practice, we start from many random initializations and choose the output which minimizes the objective function.

Hierarchical clustering

Most algorithms for hierarchical clustering are agglomerative.

The output of the algorithm is a dendogram. We must be careful about how we interpret the dendogram.

Notion of distance between clusters

At each step, we link the 2 clusters that are "closest" to each other.

Hierarchical clustering algorithms are classified according to the notion of distance between clusters.

Complete linkage:

The distance between 2 clusters is the *maximum* distance between any pair of samples, one in each cluster.

Notion of distance between clusters

At each step, we link the 2 clusters that are "closest" to each other.

Hierarchical clustering algorithms are classified according to the notion of distance between clusters.

Single linkage:

The distance between 2 clusters is the *minimum* distance between any pair of samples, one in each cluster.

Notion of distance between clusters

At each step, we link the 2 clusters that are "closest" to each other.

Hierarchical clustering algorithms are classified according to the notion of distance between clusters.

Average linkage:

The distance between 2 clusters is the average of all pairwise distances.

Example

Figure 10.12

Is clustering appropriate? i.e. Could a sample belong to more than one cluster?

- ▶ Is clustering appropriate? i.e. Could a sample belong to more than one cluster?
 - ▶ Mixture models, soft clustering, topic models.

- ▶ Is clustering appropriate? i.e. Could a sample belong to more than one cluster?
 - ▶ Mixture models, soft clustering, topic models.
- How many clusters are appropriate?

- Is clustering appropriate? i.e. Could a sample belong to more than one cluster?
 - ▶ Mixture models, soft clustering, topic models.
- ► How many clusters are appropriate?
 - ▶ Choose subjectively depends on the inference sought.

- Is clustering appropriate? i.e. Could a sample belong to more than one cluster?
 - ▶ Mixture models, soft clustering, topic models.
- ► How many clusters are appropriate?
 - ▶ Choose subjectively depends on the inference sought.
 - There are formal methods based on gap statistics, mixture models, etc.

- Is clustering appropriate? i.e. Could a sample belong to more than one cluster?
 - ▶ Mixture models, soft clustering, topic models.
- ► How many clusters are appropriate?
 - ▶ Choose subjectively depends on the inference sought.
 - There are formal methods based on gap statistics, mixture models, etc.
- Are the clusters robust?

- ▶ Is clustering appropriate? i.e. Could a sample belong to more than one cluster?
 - ▶ Mixture models, soft clustering, topic models.
- ► How many clusters are appropriate?
 - Choose subjectively depends on the inference sought.
 - There are formal methods based on gap statistics, mixture models, etc.
- Are the clusters robust?
 - ► Run the clustering on different random subsets of the data. Is the structure preserved?

- ▶ Is clustering appropriate? i.e. Could a sample belong to more than one cluster?
 - ▶ Mixture models, soft clustering, topic models.
- ► How many clusters are appropriate?
 - Choose subjectively depends on the inference sought.
 - There are formal methods based on gap statistics, mixture models, etc.
- Are the clusters robust?
 - ► Run the clustering on different random subsets of the data. Is the structure preserved?
 - Try different clustering algorithms. Are the conclusions consistent?

- Is clustering appropriate? i.e. Could a sample belong to more than one cluster?
 - ▶ Mixture models, soft clustering, topic models.
- ► How many clusters are appropriate?
 - Choose subjectively depends on the inference sought.
 - There are formal methods based on gap statistics, mixture models, etc.
- Are the clusters robust?
 - Run the clustering on different random subsets of the data. Is the structure preserved?
 - Try different clustering algorithms. Are the conclusions consistent?
 - Most important: temper your conclusions.

▶ Should we scale the variables before doing the clustering.

- ▶ Should we scale the variables before doing the clustering.
 - ► Variables with larger variance have a larger effect on the Euclidean distance between two samples.

	(Area in acres,	Price in US\$,	Number of houses)
Property 1	(10,	450,000,	4)
Property 2	(5,	300,000,	1)

- ▶ Should we scale the variables before doing the clustering.
 - Variables with larger variance have a larger effect on the Euclidean distance between two samples.

	(Area in acres,	Price in US\$,	Number of houses)
Property 1	(10,	450,000,	4)
Property 2	(5,	300,000,	1)

Does Euclidean distance capture dissimilarity between samples?

Example: Suppose that we want to cluster customers at a store for market segmentation.

- ► Samples are customers
- ► Each variable corresponds to a specific product and measures the number of items bought by the customer during a year.

► Euclidean distance would cluster all customers who purchase few things (orange and purple).

- Euclidean distance would cluster all customers who purchase few things (orange and purple).
- ► Perhaps we want to cluster customers who purchase *similar* things (orange and teal).

- Euclidean distance would cluster all customers who purchase few things (orange and purple).
- ▶ Perhaps we want to cluster customers who purchase *similar* things (orange and teal).
- ► Then, the **correlation distance** may be a more appropriate measure of dissimilarity between samples.

