LOGIC GATE Semiconductor-3

JEE MAIN

List of Content on Eduniti YouTube Channel:

- 1. PYQs Video Solution Topic Wise:
 - (a) JEE Main 2018/2020/2021 Feb & March
- 2. Rank Booster Problems for JEE Main
- 3. Part Test Series for JEE Main
- 4. JEE Advanced Problem Solving Series
- 5. Short Concept Videos
- 6. Tips and Tricks Videos
- 7. JEE Advanced PYQs
- 8. Formulae Revision Series

.....and many more to come

Playlist Link in Description

MODERN PHYSICS - PART 1 FORMULAE

ATOMIC PHYSICS

MODERN PHYSICS - PART 2 FORMULAE

PHOTOELECTRIC EFFECT

FREE PDF NOTES

TOPICS COVERED

- 1. Analog and Digital Signal
- 2. Logic Gates (Types)
- 3. NOT Gate
- 4. AND Gate
- 5. OR Gate
- 6. Rules of Boolean Algebra & De Morgan's Theorem
- 7. NAND Gate
- 8. NOR Gate
- 9. Exclusive Gates (XOR & XNOR)
- 10.PYQs (Build your understanding)

(EN) EDUNITI

1. ANALOG & DIGITAL SIGNAL

2. LOGIC GATES

L) E ectrical cicuits using logical relation between input and output voltages. → NOT Gate BASIC -, AND Gate > GATES , or Gate)

> -> NAND Gate) UNIVERSAL -> NOR Gate (GATES

Logic gates are integral part of Digital Electronics

3. NOT GATE (Inversion Gate)

$$Y = \overline{A}$$

TRUTH TABLE

A	$Y = \overline{A}$
	D
0	1

#Truth Table: Relation between Input and Output

4. AND GATE

Loutput high (1), if both input is high (1)
Loutput low (0), if either input is Low (0)

TRUTH TABLE

A	B	Y= A·B
1	0	D
0	1	0
1	1	1
0	0	0

switch close: 1

switch open: 0

e|se = 0

5. OR GATE

L, Output high (1), if either input is high (1) Loutput Low (0), if both input Low (0)

TRUTH TABLE

A	B	Y=A+B
1	0	1
0	1	1
1	1	1
0	0	0

6 RULES OF BOOLEAN AIGEBRA & DE MORGAN'S THEOREM

$$(a) A + 0 = A$$

$$(b) A+A=A$$

$$(c) A.A = A$$

$$(d) A.\overline{A} = 0$$

$$(e) \overline{A} = A$$

DE MORGAN'S THEOREM

$$\overline{A \cdot B} = \overline{A} + \overline{B}$$
 $\overline{A + B} = \overline{A} \cdot \overline{B}$

Ly Boolean Expressions

7. NAND GATE (AND + NOT)

Inverts the AND GATE OUTPUT.

TRUTH TABLE

A	B	Y= A·B
1	0	1
0	1	1
1	1	0
0	0	1

NAND GATE -(UNIVERSAL GATE)

$$+Y=\overline{A}.\overline{B}=\overline{A}+\overline{B}=\overline{A}+B$$

8. NOR GATE (OR +NOT)

Inverts the AND GATE OUTPUT.

TRUTH TABLE

A	B	$Y = \overline{A + B}$
1	0	D
0	1	0
1	1	0
0	0	1

NOR GATE -(UNIVERSAL GATE)

$$\begin{array}{c} \text{NoT} \\ \hline \end{array}$$

$$\frac{OR}{B} \xrightarrow{A+B} 0Y = A+B$$

$$+ Y = \overline{A + B} = \overline{A \cdot B} = A \cdot B$$

9. EXCLUSIVE GATES

Y=A·B+AB

A B Y=A·B+A·B

XOR (EXCLUSIVE OR GATE)

XNOR (EXCLUSIVE NOR GATE)

A	B	Y
1	0	1
0	1	1
1	1	0
0	0	0

A	B	Y
1	0	D
0	1	0
1	1	1
0	0	1

LINK IN VIDED

DESCRIPTION

BOX.

