- > Semiconductors exhibit different types of temperature coefficients.
- A component that becomes less resistive with temperature has a negative temperature coefficient.
- A component that becomes **more resistive** with temperature has a **positive temperature coefficient**.
- The Zener diodes have a **negative temperature coefficient** while avalanche diodes have a **positive temperature coefficient**.
- The polarity of the temperature coefficient is easy to spot in a graph of resistance versus temperature.
- As temperature increases, a positive slope indicates a positive temperature coefficient. A negative slope indicates a negative temperature coefficient.

Negative Temperature Coefficient

- An increase in the temperature of a semiconducting material results in an increase in charge-carrier concentration.
- This results in a **higher number of charge carriers** available for recombination, increasing the conductivity of the semiconductor.
- The increasing conductivity causes the resistivity of the semiconductor material to decrease with the rise in temperature, resulting in a **negative temperature coefficient** of resistance.

Positive Temperature Coefficient

- ➤ In the case of conductors, when temperature increases resistivity increases as electrons collide more frequently with vibrating atoms.
- This reduces drift speed of electrons (and thus current reduces). Thus, conductors have **positive temperature** coefficient of resistance.
- Temperature coefficient affects from major power circuit components can enhance or reduce efficiency.

- the voltage drop across a forward-biased pn-junction changes with Temperature Effect on Semiconductor Diode by approximately -1.8 mV/°C for a silicon device, and by -2.02 mV/°C for germanium.
- A diode V_F at any temperature can be calculated from a knowledge of V_F at the starting temperature (V_{F1} at T_1), the temperature change (ΔT), and the voltage/temperature coefficient (ΔV_F /°C).

$$V_{F2} = (V_{F1} \text{ at } T_1) + [\triangle T \times (\triangle V_F / C)]$$

What causes the I-V curves to shift to lower V at higher T?

Effect of temperature on avalanche diodes

Diode Power Dissipation

- The power dissipation in a diode is simply calculated as the device terminal voltage multiplied by the current level.
- Device manufacturers specify a maximum power dissipation for each type of diode. If the specified level is exceeded, the device will overheat and it may short-circuit or open-circuit.
- When the Temperature Effect on Semiconductor Diode exceeds the specified level, the device maximum power dissipation must be derated.

Diode Resistance

Diode Resistance

DC or Static Resistance

The resistance of the diode at the operating point can be found simply by finding the corresponding levels of V_D and I_D and applying the following Equation

$$R_D = \frac{V_D}{I_D}$$

- The dc resistance levels at the knee and below will be greater than the resistance levels obtained for the vertical rise section of the characteristics.
- The resistance levels in the reverse-bias region will naturally be quite high.
- The dc resistance of a diode is independent of the shape of the characteristic in the region surrounding the point of interest.

AC or Dynamic Resistance

- ➤ If a sinusoidal rather than dc input is applied, the situation will change completely.
- The varying input will move the instantaneous **operating point up and down** a region of the characteristics and thus defines a specific **change in current and voltage**.
- ➤ With no applied varying signal, the point of operation would be the Q-point appearing on determined by the applied dc levels.
- The designation Q-point is derived from the word quiescent, which means "still or unvarying."
- A straight-line drawn tangent to the curve through the Q-point will define a particular change in voltage and current that can be used to determine the ac or dynamic resistance for this region of the diode characteristics.

$$r_D = \frac{\Delta V_D}{\Delta I_D}$$

Diode Resistance

DC or Static Resistance

$$R_F = \, \frac{OA}{OB}$$

AC or Dynamic Resistance

$$r_f = \frac{CE}{DF} = \frac{\Delta V}{\Delta I}$$

Diode Equivalent Circuits

- An equivalent circuit is a combination of elements properly chosen to best represent the actual terminal characteristics of a device, system, or such in a particular operating region.
- In other words, once the equivalent circuit is defined, the device symbol can be removed from a schematic and the equivalent circuit inserted in its place without severely affecting the actual behavior of the system.
- The result is often a network that can be solved using traditional circuit analysis techniques.

Figure 1.32 Components of the piecewise-linear equivalent circuit.

6.5 Crystal Diode Equivalent Circuits

It is desirable to sum up the various models of crystal diode equivalent circuit in the tabular form given below:

S.No.	Туре	Model	Characteristic
1.	Approximate model	+ V ₀ r _f	I_F V_F
2.	Simplified model	+ V ₀	V_F
3.	Ideal Model	DEAL DIODE	V_F