Architektura Komputerów Opracowanie zagadnień na kolokwium z wykładu

Krystian Kolad

Rok akademicki 2017/2018

Spis treści

1	Wz	
	1.1	Dodawanie pozycyjne
	1.2	Odejmowanie pozycyjne
	1.3	Równania logiczne sumatora binarnego
	1.4	Równania logiczne subtraktora binarnego
	1.5	Równania logiczne sumatora prefixowego
	1.6	Równania logiczne subtraktora prefixowego
	1.7	Przekształcenie sumatora w subtraktor
	1.8	Przekształcenie subtraktora w sumator
	1.9	Obliczanie ilości układów (3,2) w CSA w dodawaniu
		Obliczanie ilości układów (3,2) w CSA w mnożeniu
		Ilośc poziomów redukcji w CSA
		Operator przeniesień
		Przekodowanie Booth'a
		Przekodowanie Booth'a-McSorleya
		Liczba przeciwna
		Sprawdzanie przekroczenia zakresu w dodawaniu n-pozycyjnych argumentów w U2 .
		Wartość liczby Eulera $\varphi(mn)$
		Ile wynosi funkcja Carmichaela dla f(mn)
	1.10	ne wynosi iunkeja Carmenacia dia i(iini)
2	Algo	orytmy
	2.1	Reprezentacja uzupełnieniowa liczby całkowitej
	2.2	Reprezentacja pozycyjna liczby naturalnej
	2.3	Reprezentacja ułamka właściwego
	2.4	Dzielenie w systemie uzupełnieniowym
	2.5	Dzielenie nieodtwarzające
	2.6	Mnożenie Baugh'a-Wooley'a
	$\frac{2.5}{2.7}$	Pierwiastek kwadratowy
		1 tot wiedstoon in additionary
3	Dow	vody
	3.1	Rozmiar iloczynu nie przekracza sumy rozmiarów mnożnej i mnożnika
	3.2	Lewostronne rozszerzenie argumentów n-pozycyjnych o 1 pozycję zapewnia wytwo-
		rzenie poprawnej (n+1)-pozycyjnej różnicy
	3.3	Podaj zalezność opisującą zamanę liczby k-bitowej w kodzie U2 na sumę liczby natu-
		ralnej i stałej
	3.4	Inkrementację wartości liczby danej w k-bitowym kodzie $+(2^{k-1}-1)$ można wykonać
		bezpośrednio na tym kodzie
	3.5	Suma liczby danej w k-bitowym kodzie $+(2^{k-1}-1)$ oraz jej binarnego dopełnienia
	٠.٠	ma watość 1
	3.6	Sposób sprawdzania poprawności k-bitowej różnicy w kodzie U2 w odejmowaniu liczb
	5.0	
		Warunki, dla których $\frac{1}{mmodn} = a$
	3.7	Warunki, dla których $\frac{1}{mmodn} = a$
	3.8	Zależność C6 od C3

4	Sun	natory	11
	4.1	Sumator 16-bitowy kodu NB z modułów subtraktora	11
	4.2	11-bitowy kod $+(2^{11}-1)$ z modułów sumatora	12
	4.3	Inkrementer 16-bitowy kodu U2 z modułów subtraktora	13
	4.4	Wartość przeciwna (0-X)liczby 15 bitowej z modułów sumatora 4 bit u2	13
	4.5	Odwrotność liczby 15-bitowej z modułów subtraktora 4-bitowego	13

1 Wzorki

1.1 Dodawanie pozycyjne

$$s_i = \begin{cases} x_i + y_i + c_i & \text{gdy } x_i + y_i + c_i < B, \text{ wtedy } c_{i+1} = 0 \\ x_i + y_i + c_i - B & \text{gdy } x_i + y_i + c_i > B, \text{ wtedy } c_{i+1} = 1 \end{cases}$$

1.2 Odejmowanie pozycyjne

$$s_i = \begin{cases} x_i - y_i - c_i & \text{gdy } x_i - y_i - c_i > = 0, \text{ wtedy } c_{i+1} = 0 \\ x_i - y_i - c_i + B & \text{gdy } x_i - y_i - c_i < 0, \text{ wtedy } c_{i+1} = 1 \end{cases}$$

1.3 Równania logiczne sumatora binarnego

$$s_i = x_i \oplus y_i \oplus c_i$$

$$c_{i+1} = x_i * y_i + (x_i \oplus y_y) * c_i \text{ lub } c_{i+1} = x_i * y_i + (x_i + y_y) * c_i$$

1.4 Równania logiczne subtraktora binarnego

$$s_i = \overline{\overline{x_i} \oplus y_i \oplus c_i}$$

$$c_{i+1} = \overline{x_i} * y_i + (\overline{x_i} \oplus y_y) * c_i \text{ lub } c_{i+1} = \overline{x_i} * y_i + (\overline{x_i} + y_y) * c_i$$

1.5 Równania logiczne sumatora prefixowego

$$s_i = x_i \oplus y_i \oplus c_i = h_i \oplus c_i$$

$$c_{i+1} = g_i + p_i * c_i$$

$$g_i = x_i * y_i$$

$$p_i = x_i \oplus y_y \text{ lub } p_i = x_i + y_i$$

1.6 Równania logiczne subtraktora prefixowego

$$\begin{aligned} s_i &= \overline{\overline{x_i} \oplus y_i \oplus c_i} = \overline{h_i \oplus c_i} \\ c_{i+1} &= g_i + p_i * c_i \\ g_i &= \overline{x_i} * y_i \\ p_i &= \overline{x_i} \oplus y_y \text{ lub } p_i = \overline{x_i} + y_i \end{aligned}$$

1.7 Przekształcenie sumatora w subtraktor

$$X - Y = \overline{\overline{X} + Y}$$

1.8 Przekształcenie subtraktora w sumator

$$X + Y = \overline{\overline{X} - Y} = \overline{\overline{Y} - X}$$

1.9 Obliczanie ilości układów (3,2) w CSA w dodawaniu

N2:

$$n(k-2)$$

U2:

$$n(k-2) + 2$$

gdzie:

n - liczba bitów

k - liczba liczb

1.10 Obliczanie ilości układów (3,2) w CSA w mnożeniu

$$n^2 - x * 2$$

gdzie:

n - liczba bitów

 $n \leqslant x \leqslant 2n - 1$

Wybieramy najmniejsze x.

1.11 Ilośc poziomów redukcji w CSA

Liczymy z wzoru $k_{i+1} = \text{floor}(\frac{3}{2}k_i), k_1 = 3$ Liczymy k_i dopóki k_{i+1} jest mniejsze od liczby liczb wejściowych, a następnie dodajemy 1.

Przykład:dla 24 liczb 8-bitowych

 $k_1 = 3$

 $k_2 = 4$

 $k_3 = 6$

 $k_4 = 9$

 $k_5 = 13$

 $k_6 = 19$

Jako, że $k_7 = 28$, przerywamy, ale musimy z 24 bitów zredukować do 19, więc potrzebujemy jeszcze jeden poziom, przez co mamy 7 poziomów. Podany przykład jest w kodzie N2, w systemie uzupełnieniowym dodajemy jeszcze 1 do wyniku.

1.12 Operator przeniesień

$$(a,p)o(b,q) = (a+pb,pq)$$

1.13 Przekodowanie Booth'a

$$Y_{SD-2} = 2X_{U2} - X_{U2}$$
 lub $y_i = x_{i-1} - x_i$

1.14 Przekodowanie Booth'a-McSorleya

$$Y_{SD-4} = 2X_{U2} - X_{U2}$$
czyli $y_i = -2x_{i+1} + x_i + x_{i-1}$

1.15 Liczba przeciwna

$$-X = 0 - X = \overline{x} + ulp$$

1.16 Sprawdzanie przekroczenia zakresu w dodawaniu n-pozycyjnych argumentów w $\mathrm{U}2$

$$ov = c_n \oplus c_{n-1} = c_n \oplus x_{n-1} \oplus y_{n-1} \oplus s_{n-1}$$

1.17 Wartość liczby Eulera $\varphi(mn)$

$$\varphi(mn)=\varphi(m)\varphi(n),$$
jeśli $NWD(m,n)=1$

1.18 Ile wynosi funkcja Carmichaela dla f(mn)

2 Algorytmy

2.1 Reprezentacja uzupełnieniowa liczby całkowitej

- 1. Weź $Q_0 = X$.
- 2. Obliczaj $Q_{i+1} = int(\frac{Q_i}{\beta})$ i $x_i = Q_i \text{ mod } \beta$ dopóki $Q_{i+1}! = Q_i$.
- 3. Wszystkie kolejne $x_{i+1} = x_i$

2.2 Reprezentacja pozycyjna liczby naturalnej

- 1. Weź $Q_0 = X$.
- 2. Obliczaj $Q_{i+1} = int(\frac{Q_i}{\beta})$ i $x_i = Q_i \mod \beta$ dopóki $Q_{i+1}! = Q_i$.
- 3. Wszystkie kolejne $x_{i+1} = 0$

2.3 Reprezentacja ułamka właściwego

Mając ułamek w postaci x = 0,n:

- 1. Weź $Q_0 = x$
- 2. Obliczaj $x_{-i}=int(Q_i*\beta)$ i $Q_{i+1}=Q_i*\beta-x_{-i}$ dopóki $Q_{i+1}!=0$ lub do otrzymania pożądanej dokładności

2.4 Dzielenie w systemie uzupełnieniowym

Zakładając, że X - dzielna, Y- dzielnik, Q - wynik, R - kolejna liczba, k - liczba przesunięć:

- 1. Przeskaluj dzielnik k razy tak, aby $|\beta^{-k}X| < |Y|$
- 2. Jeżeli znaki dzielnej i dzielnika są takie same, $q_0=0,\,R_0=\beta^{-k}X,$ w przeciwnym wypadku $q_0=\beta-1,\,R_0=\beta^{-k}X+Y$
- 3. Dla i = 0,1,2,... powtarzamy: Znajdź największe $q_{-i-1},$ dla którego $R_{i+1}=\beta R_i-q_{-i-1}Y$ oraz $R_{i+1}Y\geqslant 0$

2.5 Dzielenie nieodtwarzające

Zakładając, że X - dzielna, Y- dzielnik, Q - wynik, R - kolejna liczba, k - liczba przesunięć:

- 1. Przeskaluj dzielnik k razy tak, aby $|\beta^{-k}X| < |Y|$
- 2. Jeżeli znaki dzielnej i dzielnika są takie same, $q_k=0,\,R_0=\beta^{-k}X,$ w przeciwnym wypadku $q_k=1,\,R_0=\beta^{-k}X+Y$
- 3. Dla i = 0,1,2,... powtarzamy: Jeśli znaki R_i i Y są takie same, to $q_{k-i}=1,\,R_{i+1}=2R_i-Y,$ w przeciwnym wypadku $q_{k-i}=0,\,R_{i+1}=2R_i+Y$

2.6 Mnożenie Baugh'a-Wooley'a

Zakładając, że X- mnożna, Y- mnożnik,n - ilość cyfr mnożnej, k - ilość cyfr mnożnika:

- 1. Dla i=0,1,...,k-2 zamień każdy iloczyn częściowy 2^iy_iX na $2^iy_iX-2^{i+k-1}$ poprzez zanegowanie najwyższego bitu
- 2. Zamień iloczyn częściowy $2^{n-1}y_{n-1}(-X)$ na $2^{n-1}y_{n-1}(-X)-2^{n-1+k-1}$ poprzez zanegowanie najwyższego bitu
- 3. Oblicz sumę iloczynów częściowych dodając korektę $-2^{n+k-1}+2^{k-1}$

2.7 Pierwiastek kwadratowy

- 1. Przeskaluj X tak, aby $R_0 = X * B^{-2k}$
- 2. Dla i={1,2...} znajdź największe q_i takie, że $R_i=\beta^2R_{i-1}-(2*\beta*Q_{i-1}+q_i)*q_i\geqslant 0$, następnie $Q_i=\beta*Q_{i-1}+q_i$

3 Dowody

3.1 Rozmiar iloczynu nie przekracza sumy rozmiarów mnożnej i mnożnika

$$\begin{aligned} -\frac{1}{2}B^n &\leqslant X < \frac{1}{2}B^n \\ &\text{oraz:} \\ -\frac{1}{2}B^m &\leqslant Y < \frac{1}{2}B^m \\ &\text{to:} \\ -\frac{1}{2}B^{n+m} &< -\frac{1}{4}B^{n+m} < XY \leqslant \frac{1}{4}B^{n+m} < \frac{1}{2}B^{n+m} \end{aligned}$$

3.2 Lewostronne rozszerzenie argumentów n-pozycyjnych o 1 pozycję zapewnia wytworzenie poprawnej (n+1)-pozycyjnej różnicy

$$\begin{aligned} & -\frac{1}{2}B^n \leqslant X, Y < \frac{1}{2}B^n \\ & \text{to:} \\ & -\frac{1}{2}B^{n+1} \leqslant -B^n < X - Y < B^n \leqslant \frac{1}{2}B^{n+1} \end{aligned}$$

3.3 Podaj zależność opisującą zamanę liczby k-bitowej w kodzie U2 na sumę liczby naturalnej i stałej

$$\begin{array}{c} -x_{k-1}2^{k-1} + x_{k-2}2^{k-2} + \ldots + x_12^1 + x_0 = \\ -2^{k-1} + 2^{k-1} - x_{k-1}2^{k-1} + x_{k-2}2^{k-2} + \ldots + x_12^1 + x_0 = \\ -2^{k-1} + (1 - x_{k-1})2^{k-1} + x_{k-2}2^{k-2} + \ldots + x_12^1 + x_0 \end{array}$$

- 3.4 Inkrementację wartości liczby danej w k-bitowym kodzie $+(2^{k-1}-1)$ można wykonać bezpośrednio na tym kodzie
- 3.5 Suma liczby danej w k-bitowym kodzie $+(2^{k-1}-1)$ oraz jej binarnego dopełnienia ma watość 1

Jeśli x jest w kodzie
$$+(2^{k-1}-1)$$
, to $-x=\overline{x}-1$, więc $\overline{x}=-x+1$, więc $x+\overline{x}=x-x+1=1$

3.6 Sposób sprawdzania poprawności k-bitowej różnicy w kodzie U2 w odejmowaniu liczb k-bitowych danych w kodzie U2

Rozszerzając k-bitową liczbę o 1 w lewo otrzymujemy $x_k = x_{k-1}$ oraz $y_k = y_{k-1}$. Mając s_{k-1} obliczamy $s_k = x_k - y_k - c_k$, jeśli $s_k > 0$ lub $s_k = x_k - y_k - c_k + \beta$, jeśli $s_k < 0$, gdzie c_k jest równe przeniesieniu z s_{k-1} . Jeśli $s_k * s_{k-1} > 0$, odejmowanie jest poprawne.

9

3.7 Warunki, dla których
$$\frac{1}{mmodn} = a$$

3.8 Zależność C6 od C3

$$C_6 = g_5 + p_5 * c_5 = g_5 + p_5(g_4 + p_4 * c_4) = g_5 + p_5 * (g_4 + p_4 * (g_3 + p_3 * c_3))$$

Sumatory 4

Sumator 16-bitowy kodu NB z modułów subtraktora

4.2 11-bitowy kod $+(2^{11}-1)$ z modułów sumatora

4.3 Inkrementer 16-bitowy kodu U2 z modułów subtraktora

- 4.4~ Wartość przeciwna (0-X)
liczby 15 bitowej z modułów sumatora 4 bit u
2
- 4.5 Odwrotność liczby 15-bitowej z modułów subtraktora 4-bitowego