Design Variables and the Grammar of Graphics SMM635 - Week 2

Prof. Simone Santoni

Bayes Business School

Today's Journey

Part 1: Grammar of Graphics

- Framework & Philosophy
- Core Components
- Building Blocks

Part 2: Visual Forms

- Univariate Charts
- Bivariate Charts
- Multivariate Charts

Learning Objectives

By the end of today's session, you will:

- 1. Understand the grammar of graphics framework
- 2. Map data to visual variables effectively
- 3. **Build** complex visualizations from simple components
- 4. Implement layered graphics approaches
- 5. Create appropriate charts for different data types

Part 1: Grammar of Graphics

Moving Beyond Chart Types

How Do We Describe a Chart?

How Do We Describe a Chart?

Traditional Approach:

- ▶ Pie chart
- ► Bar chart
- ► Line chart
- Scatter plot

i Note

We can use labels or conceptual categories

Grammar Approach:

- Data
- Aesthetics
- Geometries
- Scales
- Coordinates

i Note

We can refer to a chart's constitutive components

What is Grammar of Graphics (GoG)?

"Grammar makes language expressive. A language consisting of words and no grammar expresses only as many ideas as there are words." - Leland Wilkinson

Leland Wilkinson

The Grammar of Graphics

Second Edition

What's the Connection between GoG and ggplot2?

- **ggplot2** is an implementation of the Grammar of Graphics in R
- Created by Hadley Wickham based on Leland Wilkinson's framework
- ➤ The "gg" in ggplot2 stands for "Grammar of Graphics"
- Allows users to build plots **layer by layer** using the grammar components
- Instead of choosing from pre-made chart types, you compose visualizations from fundamental building blocks

The Power of GoG

```
# Traditional thinking
make_pie_chart(data)
make_bar_chart(data)

# Grammar thinking
ggplot(data) +
  geom_bar() +
  coord_polar() # Bar chart → Pie chart!
```

Important

A pie chart is just a stacked bar chart in polar coordinates!

A Bar Chart

50 -

40 -

```
library(ggplot2)
# Create data with five categories
data <- data.frame(</pre>
  category = c("A", "B", "C", "D", "E"),
  value = c(23, 45, 31, 52, 38)
# Create bar chart
ggplot(data, aes(x = category, y = value)) +
  geom bar(stat = "identity")
```


Pie Chart = Bar Chart + Polar Coordinates

```
# Create data with five categories
data <- data.frame(</pre>
  category = c("A", "B", "C", "D", "E"),
  value = c(23, 45, 31, 52, 38)
# Create bar chart
ggplot(data, aes(x = "", y = value, fill = category)) +
  geom bar(stat = "identity") +
  coord polar(theta = "y", start = 0) +
  theme_void()
```

Core Components of the GoG

- 1. **DATA**: What we want to visualize
- 2. **AESTHETICS**: How we map data to visual properties
- GEOMETRIES: The visual marks we use
- 4. **FACETS**: Creating small multiples
- STATISTICS: How to transform or summarize the raw data
- COORDINATES: The space we're working in
- 7. **THEMES**: Overall visual appearance

Source: https://r.qcbs.ca/

1. Data: The Foundation

```
# Data is structured information
sales_data <- data.frame(
  month = c("Jan", "Feb", "Mar", "Apr'
  revenue = c(45000, 52000, 48000, 610
  region = c("North", "North", "South'
)</pre>
```


Good visualization starts with well-structured data

Tidyverse is your friend!

2. Aesthetics: Visual Mappings Mapping Data → Visual Properties

Data Variables

- Continuous values
- Categories
- Ordered factors
- Time series

date	region	sales	profit
2024-01-01	North	1250.50	325.15
2024-02-01	North	980.75	245.20
2024-01-01	South	1450.25	410.75
2024-02-01	South	1100.00	290.50

Visual Variables

- Position (x, y)
- Size
- Color
- Shape
- Transparency
- Line type

Visual Variables in Action

```
ggplot(sample_data, aes(
    x = date,  # Position
    y = sales,  # Position
    color = region,  # Color
    size = profit  # Size
)) +
    geom_point()
```


profit250

300 350

3. Geometries: Visual Marks Points

4. Facets: Small Multiples No Facets

All data in a single plot

5. Statistics: Transforming Data Raw Data

Jan 01 Jan 08 Jan 15 Jan 22 Jan 29

6. Coordinates: The Canvas Cartesian (default)

```
ggplot(sample_data, aes(x = region, y = sales)) +
 geom_bar(stat = "identity") +
 coord_cartesian()
   2000
                       North
                                                 South
                                   region
```

7. Themes: Overall Visual Appearance theme_minimal()

Layering: The Power of Composition

```
ggplot(economics, aes(date, unemploy)) +
  geom_area(alpha = 0.3) +  # Layer 1: Area
  geom_line(size = 1.2) +  # Layer 2: Line
  geom_smooth(se = FALSE, col = "red") # Layer 3: Trend
```


Part 2: Visual Forms

From Simple to Complex

Univariate Charts

Exploring Single Variables

Continuous Data

- Histograms
- Density plots
- ► Box plots
- ▶ Violin plots

Categorical Data

- Bar charts
- Pie charts
- ► Waffle charts
- Dot plots

Univariate: Continuous Data Histogram

```
ggplot(data, aes(x = value)) +
geom_histogram(bins = 30)
```

Histograms divide data into bins and count observations in each bin.

- **Best for:** Understanding the distribution shape and identifying patterns
- ▶ Shows: Frequency, central tendency, spread, and skewness
- **Key parameter:** Number of bins affects granularity

Density

```
ggplot(data, aes(x = value)) +
  geom_density(fill = "skyblue", alpha = 0.5)
```

Density plots show a smoothed version of the distribution.

- **Best for:** Comparing multiple distributions, identifying modes
- ▶ **Shows:** Probability density across the range of values
- ▶ Advantage: Smooth curve makes patterns easier to see

Univariate: Categorical Data

```
ggplot(data, aes(x = category)) +
  geom_bar()
```

Bar charts use bar length to encode category counts or values.

- ▶ Best for: Comparing categories, showing rankings
- **Shows:** Frequency or magnitude for each category
- Advantage: Easy to compare values, natural visual ordering

Pie Chart

```
ggplot(data, aes(x = "", fill = category)) +
  geom_bar() +
  coord_polar("y")
```

Pie charts show parts of a whole as slices of a circle.

- **Best for:** Showing proportions when there are few categories (2-5)
- **Shows:** Relative proportions and percentages
- **Limitation:** Difficult to compare similar-sized slices

Bivariate Charts

Exploring Relationships Between Two Variables

X Variable	Y Variable	Best Chart Types
		Scatter plot, Line chart Box plot, Violin plot
Categorical Time	_	Heatmap, Grouped bars Line chart, Area chart

Bivariate: Continuous × Continuous Scatter Plot

```
ggplot(data, aes(x = height, y = weight)) +
geom_point()
```

Scatter plots display individual data points in 2D space.

- **Best for:** Exploring relationships, identifying correlations, spotting outliers
- ▶ Shows: Direction, strength, and form of relationship between two variables
- **Key insight:** Patterns reveal linear, non-linear, or no correlation

With Trend

```
ggplot(data, aes(x = height, y = weight)) +
  geom_point() +
  geom_smooth(method = "lm")
```

Scatter plot with trend line adds a fitted model to show the relationship.

- ▶ Best for: Confirming correlation patterns, making predictions
- **Shows:** Overall trend and strength of linear relationship

Bivariate: Categorical \times Continuous Grouped Box Plot

```
ggplot(data, aes(x = category, y = value)) +
geom_boxplot()
```

Grouped box plots compare distributions across multiple categories.

- ▶ Best for: Comparing central tendency and spread across groups
- **Shows:** Median, quartiles, and outliers for each category
- ▶ Advantage: Compact representation of multiple distributions side-by-side

Violin Plot

```
ggplot(data, aes(x = category, y = value)) +
geom_violin()
```

Violin plots combine box plots with kernel density estimation.

- ▶ **Best for:** Revealing distribution shapes and multimodality
- **Shows:** Full distribution shape for each category
- ▶ Advantage: More informative than box plots for complex distributions

Multivariate Charts

Beyond Two Dimensions

Strategies for encoding multiple variables:

- 1. Color/Fill: 3rd dimension
- 2. Size: 4th dimension
- 3. **Shape**: 5th dimension (categorical only)
- 4. Faceting: Create small multiples
- 5. Animation: Time as dimension

Multivariate Example: The Economics Dataset

Table 3: US Economic Time Series Data (1967-2015)

date	pce	pop	psavert	uempmed	unemploy
1967-07-01	506.7	198712	12.6	4.5	2944
1967-08-01	509.8	198911	12.6	4.7	2945
1967-09-01	515.6	199113	11.9	4.6	2958
1967-10-01	512.2	199311	12.9	4.9	3143
1967-11-01	517.4	199498	12.8	4.7	3066
1967-12-01	525.1	199657	11.8	4.8	3018

Multivariate Example: The Economics Dataset

i Note

Dataset Variables:

- **date**: Month of data collection
- **pce**: Personal consumption expenditures (billions USD)
- **pop**: Total population (thousands)
- psavert: Personal savings rate (%)
- **uempmed**: Median duration of unemployment (weeks)
- unemploy: Number of unemployed (thousands)

 $\text{Multivariate Example} \\ \text{1960s}$ 1970s 1980s 12000 8000 Population (1000s) 200000 225000 250000 275000 300000 4000 unemploy 1990s 2000s 2010s Savings Rate (%) 12000 8000 4000

1. Start simple: Add dimensions gradually

- 1. Start simple: Add dimensions gradually
- 2. Prioritize: Most important variables get best encodings

- 1. **Start simple**: Add dimensions gradually
- 2. Prioritize: Most important variables get best encodings
- 3. Test perception: Can viewers decode all dimensions?

- 1. Start simple: Add dimensions gradually
- 2. Prioritize: Most important variables get best encodings
- 3. **Test perception**: Can viewers decode all dimensions?
- 4. **Consider alternatives**: Sometimes multiple simple charts > one complex chart

- 1. **Start simple**: Add dimensions gradually
- 2. Prioritize: Most important variables get best encodings
- 3. **Test perception**: Can viewers decode all dimensions?
- 4. **Consider alternatives**: Sometimes multiple simple charts > one complex chart
- 5. Interactive solutions: Tooltips, filtering, zooming

Putting It All Together

A Practical Workflow

- 1. Understand your data
 - ► Types of variables
 - ► Relationships to explore
- 2. Choose appropriate forms
 - Match chart to data type
 - Consider your message
- 3. Apply the grammar
 - ► Map variables to aesthetics
 - Layer geometries
 - Refine with scales

➤ The Grammar of Graphics provides a **systematic framework** for creating any visualization

- The Grammar of Graphics provides a **systematic framework** for creating any visualization
- Complex visualizations are built from simple, reusable components

- ► The Grammar of Graphics provides a **systematic framework** for creating any visualization
- Complex visualizations are built from simple, reusable components
- Visual variables (position, size, color, etc.) are tools for encoding information

- ► The Grammar of Graphics provides a **systematic framework** for creating any visualization
- Complex visualizations are built from simple, reusable components
- Visual variables (position, size, color, etc.) are tools for encoding information
- Choose chart types based on data types and relationships

- ► The Grammar of Graphics provides a **systematic framework** for creating any visualization
- Complex visualizations are built from simple, reusable components
- Visual variables (position, size, color, etc.) are tools for **encoding information**
- Choose chart types based on data types and relationships
- Iteration and layering lead to rich, informative graphics

Next Week

Topic 3: Exploratory Data Analysis

- ► EDA workflow and visualization
- Distribution visualization techniques
- Correlation and relationship exploration
- Time series exploration
- Case Study: Nomis Solutions

Homework

- Practice creating layered visualizations
- Experiment with different coordinate systems
- Read: Wickham's "Layered Grammar of Graphics"

Questions?

Let's explore the grammar together!

Simone.Santoni.1@city.ac.uk

Course website: https://simonesantoni.github.io/data-viz-smm635

Office hours: Wednesdays 3-5 PM