Recherche décentralisée de connexité pour réseaux de capteurs mobiles

Merwan Achibet

Université du Havre

Jeudi 16 février 2012

Sommaire

- Introduction
- Déterminer la connexité
- Créer la connexité

Problème

- Des capteurs sont lâchés dans un espace
- Doivent être proches pour communiquer
- Sont mobiles
- Sont vulnérables aux pannes
- ullet ightarrow Un réseau dynamique

Deux questions:

- ① Comment savoir si le réseau est connexe?
- 2 Comment rendre le réseau connexe?

Et ce. de manière décentralisée!

- ▶ et sont connectés
- est isolé

Sommaire

- Introduction
- Déterminer la connexité
- Créer la connexité

Cadre

- On se place du point de vue d'un capteur c
- On considère que le réseau est connexe si c pense que le réseau est connexe

- Peut être ramené à un problème de comptage décentralisé
- Les capteurs connaissent *n*
- Un capteur sait que \tilde{n} nœuds sont sur sa composante connexe
- Si $\tilde{n} = n$, le réseau est connexe

ldée

- Chaque capteur surveille son voisinage et entretient sa propre vision du réseau
- Chaque information de présence est étiquettée temporellement
- Chaque capteur partage régulièrement sa vision du système
- À chaque partage, on évalue les avis puis soit on intègre, soit on ignore

Dans la mémoire interne de chaque capteur

Ν

Contient les voisins de c.

Exemple : $\{b, f, z\}$

Dans la mémoire interne de chaque capteur

C

Contient les nœuds que c pensent connectés au réseau. Ses entrées sont des triplets (x, t, s) avec

- x le nœud dont l'on suppose la présence
- t le temps de sa dernière détection
- s le nœud ayant transmis l'information (un voisin)

Exemple: $\{(a, 23, c), (f, 5, a)\}$

Dans la mémoire interne de chaque capteur

D

Contient les nœuds dont c doute de l'appartenance au réseau. Ses entrées sont des paires (x,t) avec

- x le nœud dont l'on suppose l'absence
- t le temps auquel son absence a été détectée

Exemple : $\{(p, 103)\}$

Modification par ses propres observations

c reçoit un message d'un nouveau voisin c'

$$c' o \mathsf{N}, \, \mathsf{C}$$

Pas de message d'un voisin c' enregistré depuis un certain temps (surveillance)

$$N, C \rightarrow D$$

Modification par évaluation des rumeurs

À chaque réception d'un message, on l'évalue par rapport à nos connaissance pour juger quelles informations intégrer et quelles informations ignorer.

Critère d'évaluation

L'étiquette temporelle

Quelques exemples

$$C' = \{..., (a, 42, e)\}$$
 et aucune mention de a dans C ou D $\rightarrow C = \{..., (a, 42, c')\}$

$$C' = \{\dots, (a, 42, e)\} \text{ et } C = \{\dots, (a, 28, f)\}$$

 $C' = \{\dots, (a, 42, c')\}$

Quelques exemples

$$C' = \{..., (a, 42, e)\}$$
 et $D = \{...(a, 78, f)\}$
On ignore l'information

$$D' = \{..., (a, 42, e)\}$$
 et $C = \{..., (a, 28, f)\}$
 $C = \{...\}$
 $D = \{..., (a, 42, c')\}$

À quoi sert la source?

```
D' = \{\dots, (b, 54, z)\} et C = \{\dots, (a, 23, b), (b, 11, c)\} (b, 11, c) passe de C à D (a, 23, b) aussi car b en est la source
```

$$N = \{\}$$
 $C = \{\}$
 $D = \{\}$

Sommaire

- Introduction
- Déterminer la connexité
- Créer la connexité

Contraintes opposées

- Pour communiquer, il doivent être proches
- Pour être efficaces, ils doivent être dispersés

→ On recherche un compromis équilibré.

Inspirations

Boids

- Craig W. Reynolds, 1987
- Un jeu de règles simple
- Les actions locales...
- ... aboutissent à un comportement global

Systèmes particulaires

- Cheng, Cheng et Nagpal, 2005
- Forces de répulsion
- Répartition de particules dans des formes géométriques

L'attraction

$$\vec{a} = rac{\vec{p}_c - \vec{p}_v}{|\vec{p}_c - \vec{p}_v|^2}$$

La répulsion

$$\vec{r} = rac{\vec{p} - \vec{p_{v}}}{|\vec{p} - \vec{p_{v}}|} (R_{r} - |\vec{p} - \vec{p_{v}}|)$$

La gravité

$$ec{g} = -rac{ec{p}}{|ec{p}|}$$

Combiner les différentes influences

$$\vec{f} = \frac{\vec{a} + \vec{r} + \vec{g}}{3} \tag{1}$$

- Chaque force a la même importance
- Au début de la simulation, acceptable
- Ensuite, le maillage s'affaisse

 \rightarrow Démonstration

Combiner les différentes influences

Prioritiser les forces

Chaque capteur a une vitesse maximale.

- 1 On applique la 1ère force
- 2 S'il reste de la magnitude, on applique la 2nde force
- 3 S'il reste de la magnitude, on applique la 3ème force

Répulsion \rightarrow **Attration** \rightarrow **Gravité**

 \rightarrow Démonstration

Et les obstacles?

- Une nouvelle force de répulsion capteur/obstacle
- En premier dans la liste de priorités

