El viaje más largo

¡Los organizadores de la IOI están en un gran problema! Olvidaron planear el viaje a Ópusztaszer para el día siguiente. Pero tal vez aún no es demasiado tarde...

Hay N monumentos en Ópusztaszer enumerados de 0 a N-1. Algunos pares de estos monumentos son conectados por **caminos** *bidireccionales*. Cada par de monumentos son conectados a lo mucho por un camino. Los organizadores *no conocen* cuales monumentos están conectados por caminos.

Decimos que la **densidad** de la red de caminos en Ópusztaszer es **al menos** δ si cada 3 distintos monumentos tienen al menos δ caminos a través de ellos. En otras palabras, por cada tripleta de monumentos (u,v,w) tal que $0 \leq u < v < w < N$, a través de los pares de monumentos (u,v), (v,w) y (u,w) al menos δ pares están conectados por un camino.

Los organizadores *conocen* un entero positivo D, tal que la densidad de la red de caminos es al menos D. Note que el valor de D no puede ser mayor que 3.

Los organizadores pueden hacer **llamadas telefónicas** al celular del centro de información de Ópusztaszer para obtener información sobre las conexiones de caminos entre monumentos. En cada llamada telefónica, dos arreglos no vacíos de monumentos $[A[0],\ldots,A[P-1]]$ y $[B[0],\ldots,B[R-1]]$ deben ser especificados. Los monumentos deben ser distintos dos a dos, es decir:

- $A[i] \neq A[j]$ para todo i y j tal que $0 \leq i < j < P$;
- B[i]
 eq B[j] para todo i y j tal que $0 \le i < j < R$;
- $\bullet \ \ A[i] \neq B[j] \ \mathsf{para} \ \mathsf{todo} \ i \ \mathsf{y} \ j \ \mathsf{tal} \ \mathsf{que} \ 0 \leq i < P \ \mathsf{y} \ 0 \leq j < R.$

Para cada llamada, el centro de información reporta si hay un camino conectando un monumento en A y un monumento en B. Mas precisamente, el centro de información itera sobre todos los pares i y j tal que $0 \le i < P$ y $0 \le j < R$. Si es que, para alguno de estos valores, los monumentos A[i] y B[j] están conectados por un camino, el centro de información retorna true. Caso contrario, el centro de información false.

Un **recorrido** de longitud l es una secuencia de *distintos* monumentos $t[0], t[1], \ldots, t[l-1]$, donde para todo i entre 0 y l-2, inclusive, el monumento t[i] y el monumento t[i+1] están conectados por un camino. Un recorrido l es llamado un **recorrido más largo** si no existe ningún otro recorrido de longitud al menos l+1.

Tu tarea es ayudar a los organizadores a encontrar un recorrido más largo en Ópusztaszer haciendo llamadas al centro de información.

Detalles de Implementación

Debes implementar la siguiente función:

```
int[] longest_trip(int N, int D)
```

- N: el número de monumentos en Ópusztaszer.
- *D*: la densidad mínima garantizada para la red de caminos.
- La función debe retornar un arreglo $t=[t[0],t[1],\ldots,t[l-1]]$, representando un recorrido más largo.
- Esta función puede ser llamada múltiples veces en cada caso de prueba.

La anterior función puede llamar a la siguiente función:

```
bool are_connected(int[] A, int[] B)
```

- *A*: un arreglo no vacío de monumentos distintos.
- *B*: un arreglo no vacío de monumentos distintos.
- *A* y *B* deben ser disjuntos.
- ullet Esta función retorna true si hay un monumento de A y un monumento de B conectados por un camino. En otro caso, retorna false.
- Esta función puede ser llamada a lo mucho $32\,640$ veces en cada llamada de longest_trip, y a lo sumo $150\,000$ veces en total.
- La longitud total de los arreglos A y B pasados a esta función en todas las llamadas no puede exceder $1\,500\,000$.

El evaluador es **no adaptativo**. Cada envío es evaluado en el mismo conjunto de casos de prueba. Es decir, los valores de N y D, así como los pares de monumentos conectados por caminos, se fijan antes de llamar a longest_trip.

Ejemplos

Ejemplo 1

Considera un escenario en el cual N=5, D=1, y los caminos son los mostrados en la siguiente figura:

La función longest_trip se llama de la siguiente forma:

La función puede llamar a are_connected de la siguiente forma.

Llamada	Pares conectados por un camino	Valor retornado
are_connected([0], [1, 2, 4, 3])	(0,1) y $(0,2)$	true
are_connected([2], [0])	(2,0)	true
are_connected([2], [3])	(2,3)	true
are_connected([1, 0], [4, 3])	ninguno	false

Después de la cuarta llamada, resulta que *ninguno* de los pares (1,4), (0,4), (1,3) y (0,3) está conectado por un camino. Como la densidad de la red es al menos D=1, vemos que en la tripleta (0,3,4), el par de monumentos (3,4) deben estar conectados por un camino. De forma similar, los monumentos 0 y 1 deben estar conectados.

En este punto, se puede concluir que t=[1,0,2,3,4] es un recorrido de longitud 5, y que no existe un recorrido de longitud mayor que 5. Por lo tanto, la función longest_trip puede retornar [1,0,2,3,4].

Considere otro escenario en el cual N=4, D=1, y los caminos entre los monumentos son como se muestra en la siguiente figura:

La función longest_trip se llama de la siguiente forma:

En este escenario la longitud de un recorrido más largo es 2. Por lo tanto, después de unas cuantas llamadas a la función are_connected, la función longest_trip puede retornar uno de los siguientes: [0,1], [1,0], [2,3] o [3,2].

Ejemplo 2

La subtarea 0 contiene un ejemplo adicional de caso de prueba con N=256 atracciones. Este caso de prueba se incluye en el paquete adjunto que se puede descargar del sistema de competencia.

Límites

- $3 \le N \le 256$
- La suma de N en todas las llamadas a longest_trip no excede 1024.
- $1 \le D \le 3$

Subtareas

- 1. (5 puntos) D=3
- 2. (10 puntos) D = 2
- 3. (25 puntos) D=1. Sea l^\star la longitud de un recorrido más largo. La función longest_trip no tiene que retornar un recorrido de longitud l^\star . En vez de eso, debería retornar un recorrido de longitud al menos $\left\lceil \frac{l^\star}{2} \right\rceil$.
- 4. (60 puntos) D = 1

En la subtarea 4 el puntaje se determina basado en el número de llamadas a la función $are_connected$ en una sola llamada a $longest_trip$. Sea q el número máximo de llamados en todas las llamadas a $longest_trip$ en todos los casos de prueba de la subtarea. El puntaje para esta subtarea se calcula de acuerdo a la siguiente tabla:

Condición	Puntos
$2750 < q \leq 32640$	20
$550 < q \leq 2750$	30
$400 < q \leq 550$	45
$q \leq 400$	60

Si en cualquiera de los casos de prueba, los llamados a la función are_connected no cumplen con las restricciones descritas en Detalles de Implementación, o el arreglo retornado por longest_trip no es correcto, el puntaje de la solución para esta subtarea será de 0.

Evaluador de Ejemplo

Sea C el número de escenarios, esto es, el número de llamadas a longest_trip. El evaluador de ejemplo lee la entrada en el siguiente formato:

• línea 1: *C*

Siguen las descripciones de ${\cal C}$ escenarios.

El evaluador de ejemplo lee la descripción de cada escenario en el siguiente formato:

- línea 1: *N D*
- línea 1+i ($1 \leq i < N$): $U_i[0]$ $U_i[1]$ \dots $U_i[i-1]$

Aquí, cada U_i es un arreglo de longitud i, describiendo que parejas de monumentos están conectados por un camino. Para cada i y j tales que $1 \le i < N$ y $0 \le j < i$:

- Si los monumentos j y i están conectados por un camino, entonces el valor de $U_i[j]$ debe ser 1:
- Si no hay un camino conectando los monumentos j y i, entonces el valor de $U_i[j]$ debe ser 0.

En cada escenario, antes de ser llamado longest_trip, el evaluador de ejemplo verifica que la densidad de la red de carreteras sea al menos D. Si la condición no se cumple, imprime el mensaje Insufficient Density y termina.

Si el evaluador de ejemplo detecta una violación a las restricciones imprimirá Protocol Violation: <MSG>, donde <MSG> es uno de los siguientes mensajes de error:

- ullet invalid array: En una llamada a are_connected, al menos uno de los arreglos A y B
 - o está vacío, o
 - \circ contiene un elemento que no es un entero entre 0 y N-1, inclusive, o
 - o contiene el mismo elemento al menos dos veces

- ullet non-disjoint arrays: En una llamada a are_connected, los arreglos A y B no son disjuntos.
- too many calls: El número de llamados hechos a are_connected excede $32\,640$ en la llamada actual a longest trip, o excede $150\,000$ en total.
- too many elements: El número total de monumentos enviados a are_connected en todas las llamadas excede $1\,500\,000$.

En otro caso, sean $t[0], t[1], \ldots, t[l-1]$, los elementos del arreglo devueltos por longest_trip en un escenario, para algún l no negativo. El evaluador de ejemplo imprime tres líneas para este escenario en el siguiente formato:

- línea 1: *l*
- línea $2: t[0] \ t[1] \ \dots \ t[l-1]$
- línea 3: La cantidad de llamadas a are_connected en este escenario.

Finalmente, el evaluador de ejemplo imprime:

• línea $1+3\cdot C$: El numero máximo de llamadas a are_connected sobre todas las llamadas a longest_trip