Flerdimensjonal analyse (MA1103)

Øving 13 - Ekstra øving

Oppgave 1 (6.12: 2)

Regn ut flateintegralet $\iint_T \mathbf{F} \cdot \mathbf{n} \, dS$ når $\mathbf{F}(x, y, z) = (x, y, 0)$, og T er den delen av flaten $z = 2 - x^2 - 2y^2$ som ligger over xy-planet. Bruk enhetsnormalen med negativ z-komponent.

Oppgave 2 (6.12: 8)

Regn ut flateintegralet $\iint_T \mathbf{F} \cdot \mathbf{n} \, dS$ når $\mathbf{F}(x,y,z) = (0,yz,z^2)$, og T er den delen av sylinderen $y^2 + z^2 = 1$, $0 \le x \le 1$ som ligger over xy-planet. Bruk enhetsnormalen med positiv z-komponent.

Oppgave 3 (6.12: 13)

En torus T er parametrisert ved

$$\mathbf{s}(u, v) = ((R + r\cos(u))\cos(v), (R + r\cos(u))\sin(v), r\sin(u)), \qquad 0 \le u, v \le 2\pi, 0 < r < R.$$

a) Vis at det fundamentale vektorproduktet er

$$\frac{\partial \mathbf{s}}{\partial u} \times \frac{\partial \mathbf{s}}{\partial v} = -r(R + r\cos(u))(\cos(u)\cos(v), \cos(u)\sin(v), \sin(u))$$

b) Regn ut $\iint_T \mathbf{F} \cdot \mathbf{n} \, dS$ når $\mathbf{F}(x,y,z) = (0,0,z)$ og \mathbf{n} er enhetsnormalen som peker ut av torusen.

Oppgave 4 (6:13: 1)

Regn ut divergensen og curlen til vektorfeltene:

a)
$$\mathbf{F}(x, y, z) = (y + z, x + z, x + y + z)$$

b)
$$\mathbf{F}(x, y, z) = (x^2, 4xy^3, xy^2)$$

Oppgave 5 (6.13: 2)

Vis at div $\mathbf{F} = 0$ og finn et vektorfelt G slik at $\mathbf{F} = \text{curl } \mathbf{G}$

a)
$$\mathbf{F}(x, y, z) = (y - z, z - x, x - y)$$

b)
$$\mathbf{F}(x, y, z) = (x^2 + yz, -2xy - 2yz, xy + z^2)$$

Oppgave 6 (6:14 2)

Bruk divergensteoremet til å regne ut flateintegralet $\iint_T \mathbf{F} \cdot \mathbf{n} \, dS$ når

$$\mathbf{F}(x, y, z) = (x^3, y^3, z^2)$$

og T er overflaten til halvkulen $x^2+y^2+z^2\leq 1,\,z\geq 0$. Enhetsnormalen skal peke ut av halvkulen.

Oppgave 7 (6.14: 7)

I denne oppgaven er T den delen av paraboloiden $z = 4 - x^2 - y^2$ som ligger over xy-planet.

- a) Finn arealet til T.
- b) Finn volumet til området V avgrenset av T og xy-planet.
- c) Finn $\iint_T \mathbf{F} \cdot \mathbf{n} \, dS$ når

$$\mathbf{F}(x, y, z) = (4xz, -2yz, -z^2 + 8z)$$

og \mathbf{n} er enhetsnormalen med positiv tredjekomponent.

Oppgave 8 (6.15: 10)

Vektorfeltet F er definert ved $\mathbf{F}(x, y, z) = (-y, xz^2, z^2)$.

- a) Beregn curl **F**. Er **F** et konservativt felt?
- b) La T være den delen av paraboloiden $z=2-x^2-y^2$ som ligger inni kjeglen $z=\sqrt{x^2+y^2}$. Finn arealet til T.
- c) Finn $\iint_T \operatorname{curl} \mathbf{F} \cdot \mathbf{n} \, dS$ når **n** har positiv tredjekomponent.

Merknad: De som etter Øving 12 har bare 7 godkjente øvinger, kan bruke denne ekstra øving for å få 8 godkjente øvinger. Øvingen leveres ikke, men veiledning og registrering skjer på øvingstimer i uka 19.04.17-25.04.17.

Oppgavene finnes i boka Flervariabel analyse med lineær algebra av T.Lindstrøm og K.Hveberg. Se henvisningen i parentes.