DSAA ASS 13 12310401 =319

1. () O(V+E)

(2) O(V+E)

(3) O(V)

 $(4) \qquad \mathcal{O}(V^2)$

 The strategy can produce solution for some case, but not all the case.

Prouduce solution case

 e_{3} e_{1} v_{1} v_{2} v_{3}

e, mt monitored > V1, V2

⇒ e,, e2, e3 are monitored solution right

Can't produce solution

 e_{ψ} e_{λ} e_{λ} e_{λ}

e, not monitored $\rightarrow V_1, V_2$ $\rightarrow e_1, e_2, e_4$ monitored, e_3 not monitored $\rightarrow V_3, V_4$

It will use 4 camera but the solution is 2 as {v1, v3} or {v2, v4}

Greedy Strategy: While there is an unmonitored edge, put one video camera on the one connect the most number of unmonitored edge. Of its vertices

- 4. It still works. Because the last line of the BFS is
 just a describe of the state, use a bit can represent
 the status and not change the algorithm.
- 5. It will scan the V-1 nodes except the top for V times if use matrix. Thus $T = O(V) + O(V) \cdot O(V) = O(V^2)$