Maths/LA/Tutorial/Ch6 (Rev 24 July 2021)

Sep 2020, Rev A

(21) Lay5e/ch6.1/pg 338/Ex1

Compute the quantities in Exercises 1–8 using the vectors

$$\mathbf{u} = \begin{bmatrix} -1\\2 \end{bmatrix}, \quad \mathbf{v} = \begin{bmatrix} 4\\6 \end{bmatrix}, \quad \mathbf{w} = \begin{bmatrix} 3\\-1\\-5 \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} 6\\-2\\3 \end{bmatrix}$$

1.
$$\mathbf{u} \cdot \mathbf{u}, \mathbf{v} \cdot \mathbf{u}, \text{ and } \frac{\mathbf{v} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}}$$

1.
$$\mathbf{u} \cdot \mathbf{u}$$
, $\mathbf{v} \cdot \mathbf{u}$, and $\frac{\mathbf{v} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}}$ 2. $\mathbf{w} \cdot \mathbf{w}$, $\mathbf{x} \cdot \mathbf{w}$, and $\frac{\mathbf{x} \cdot \mathbf{w}}{\mathbf{w} \cdot \mathbf{w}}$

$$3. \frac{1}{\mathbf{w} \cdot \mathbf{w}} \mathbf{w}$$

$$\sqrt{4}$$
. $\frac{1}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u}$

$$\int \left(\frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}}\right) \mathbf{v}$$

$$\int \int \left(\frac{\mathbf{x} \cdot \mathbf{w}}{\mathbf{x} \cdot \mathbf{x}}\right) \mathbf{x}$$

Q2) Lay5e/ch6.1/ pg 338/ Ex19

In Exercises 19 and 20, all vectors are in \mathbb{R}^n . Mark each statement True or False. Justify each answer.

$$\mathbf{19.} \mathbf{a.} \quad \mathbf{v} \cdot \mathbf{v} = \|\mathbf{v}\|^2.$$

- b. For any scalar c, $\mathbf{u} \cdot (c\mathbf{v}) = c(\mathbf{u} \cdot \mathbf{v})$.
- //c. If the distance from u to v equals the distance from u to -v, then u and v are orthogonal.
 // d. For a square matrix A, vectors in Col A are orthogonal to

 - e. If vectors $\mathbf{v}_1, \dots, \mathbf{v}_p$ span a subspace W and if \mathbf{x} is orthogonal to each \mathbf{v}_1 orthogonal to each \mathbf{v}_i for $j = 1, \dots, p$, then \mathbf{x} is in W^{\perp} .

Ans: T,T,T,F,T

Lav5e /ch6.1/ pg 339/Ex30)

- **30.** Let W be a subspace of \mathbb{R}^n , and let W^{\perp} be the set of all vectors orthogonal to W. Show that W^{\perp} is a subspace of \mathbb{R}^n using the following steps.
 - a. Take z in W^{\perp} , and let u represent any element of W. Then $\mathbf{z} \cdot \mathbf{u} = 0$. Take any scalar c and show that $c\mathbf{z}$ is orthogonal to \mathbf{u} . (Since \mathbf{u} was an arbitrary element of W, this will show that $c\mathbf{z}$ is in W^{\perp} .)
 - b. Take \mathbf{z}_1 and \mathbf{z}_2 in W^{\perp} , and let \mathbf{u} be any element of W. Show that $\mathbf{z}_1 + \mathbf{z}_2$ is orthogonal to \mathbf{u} . What can you conclude about $\mathbf{z}_1 + \mathbf{z}_2$? Why?
 - c. Finish the proof that W^{\perp} is a subspace of \mathbb{R}^n .

Q4) Lay5e/ Example 3, pg 342,

EXAMPLE 3 Let $\mathbf{y} = \begin{bmatrix} 7 \\ 6 \end{bmatrix}$ and $\mathbf{u} = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$. Find the orthogonal projection of \mathbf{y} onto \mathbf{u} . Then write \mathbf{y} as the sum of two orthogonal vectors, one in Span $\{\mathbf{u}\}$ and one orthogonal to u.

Q5) Lay5e/ch6.2/pg 347/Ex17,18

In Exercises 17–22, determine which sets of vectors are orthonormal. If a set is only orthogonal, normalize the vectors to produce an orthonormal set.

17.
$$\begin{bmatrix} 1/3 \\ 1/3 \\ 1/3 \end{bmatrix}$$
, $\begin{bmatrix} -1/2 \\ 0 \\ 1/2 \end{bmatrix}$

$$\begin{bmatrix} 1/3 \\ 1/3 \\ 1/3 \end{bmatrix}, \begin{bmatrix} -1/2 \\ 0 \\ 1/2 \end{bmatrix}$$
 18. $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \\ 0 \end{bmatrix}$

Q6) Lay5e/ch6.2/pg 347/Ex23+24

In Exercises 23 and 24, all vectors are in \mathbb{R}^n . Mark each statement True or False. Justify each answer.

- 23. a Not every linearly independent set in \mathbb{R}^n is an orthogonal set.
 - b. If y is a linear combination of nonzero vectors from an orthogonal set, then the weights in the linear combination can be computed without row operations on a matrix.
 - of the vectors in an orthogonal set of nonzero vectors are normalized, then some of the new vectors may not be orthogonal.
 - A matrix with orthonormal columns is an orthogonal matrix.
 - e. If L is a line through 0 and if ŷ is the orthogonal projection of y onto L, then ||ŷ|| gives the distance from y to L.
- **24.** A. Not every orthogonal set in \mathbb{R}^n is linearly independent.
 - 8. If a set $S = \{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ has the property that $\mathbf{u}_i \cdot \mathbf{u}_j = 0$ whenever $i \neq j$, then S is an orthonormal set.
 - If the columns of an $m \times n$ matrix A are orthonormal, then the linear mapping $\mathbf{x} \mapsto A\mathbf{x}$ preserves lengths.
 - d. The orthogonal projection of \mathbf{y} onto \mathbf{v} is the same as the orthogonal projection of \mathbf{y} onto $c\mathbf{v}$ whenever $c \neq 0$.
 - e An orthogonal matrix is invertible.

Q7) Lay5e/ch6.2/pg 347/Ex31

Show that the orthogonal projection of a vector v onto a line L through the origin in R² does not depend on the choice of the nonzero u in L used in the formula for ŷ. To do this, suppose v and u are given and ŷ has been computed by formula (2) in this section. Replace u in that formula by cu, where c is an unspecified nonzero scalar. Show that the new formula gives the same ŷ.

Q8) Lay5e/ch6.3/pg351,pg353/Example2+3+4

EXAMPLE 2 Let
$$\mathbf{u}_1 = \begin{bmatrix} 2 \\ 5 \\ -1 \end{bmatrix}$$
, $\mathbf{u}_2 = \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$, and $\mathbf{y} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$. Observe that $\{\mathbf{u}_1, \mathbf{u}_2\}$

is an orthogonal basis for $W = \text{Span}\{\mathbf{u}_1, \mathbf{u}_2\}$. Write \mathbf{y} as the sum of a vector in W and a vector orthogonal to W.

EXAMPLE 3 If
$$\mathbf{u}_1 = \begin{bmatrix} 2 \\ 5 \\ -1 \end{bmatrix}$$
, $\mathbf{u}_2 = \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$, $\mathbf{y} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$, and $W = \text{Span}\{\mathbf{u}_1, \mathbf{u}_2\}$,

as in Example 2, then the closest point in W to y is

EXAMPLE 4 The distance from a point \mathbf{y} in \mathbb{R}^n to a subspace W is defined as the distance from \mathbf{y} to the nearest point in W. Find the distance from \mathbf{y} to $W = \mathrm{Span}\{\mathbf{u}_1, \mathbf{u}_2\}$, where

$$\mathbf{y} = \begin{bmatrix} -1 \\ -5 \\ 10 \end{bmatrix}, \quad \mathbf{u}_1 = \begin{bmatrix} 5 \\ -2 \\ 1 \end{bmatrix}, \quad \mathbf{u}_2 = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}$$

Q9) Proof Theorem 10 of Lay5e/ch6.3/pg 353

THEOREM 10

If $\{\mathbf{u}_1,\ldots,\mathbf{u}_p\}$ is an orthonormal basis for a subspace W of \mathbb{R}^n , then

$$\operatorname{proj}_{W} \mathbf{y} = (\mathbf{y} \cdot \mathbf{u}_{1})\mathbf{u}_{1} + (\mathbf{y} \cdot \mathbf{u}_{2})\mathbf{u}_{2} + \dots + (\mathbf{y} \cdot \mathbf{u}_{p})\mathbf{u}_{p}$$
(4)

If $U = [\mathbf{u}_1 \ \mathbf{u}_2 \ \cdots \ \mathbf{u}_p]$, then

$$\operatorname{proj}_{W} \mathbf{y} = UU^{T} \mathbf{y} \quad \text{for all } \mathbf{y} \text{ in } \mathbb{R}^{n}$$
 (5)

Q10) Lay5e/ch6.3/pg355/Ex21

In Exercises 21 and 22, all vectors and subspaces are in \mathbb{R}^n . Mark each statement True or False. Justify each answer.

- 21. a. If $\underline{\mathbf{z}}$ is orthogonal to $\underline{\mathbf{u}}_1$ and to $\underline{\mathbf{u}}_2$ and if $\underline{W} = \operatorname{Span}\{\underline{\mathbf{u}}_1,\underline{\mathbf{u}}_2\}$, then $\underline{\mathbf{z}}$ must be in W^{\perp} .
 - For each y and each subspace W, the vector $\mathbf{y} \operatorname{proj}_W \mathbf{y}$ is orthogonal to W.
 - The orthogonal projection $\hat{\mathbf{y}}$ of \mathbf{y} onto a subspace W can sometimes depend on the orthogonal basis for W used to compute $\hat{\mathbf{y}}$.
 - d If $\underline{\mathbf{y}}$ is in a subspace W, then the orthogonal projection of $\underline{\mathbf{y}}$ onto W is $\underline{\mathbf{y}}$ itself.
 - e. If the columns of an $n \times p$ matrix U are orthonormal, then $UU^T\mathbf{y}$ is the orthogonal projection of \mathbf{y} onto the column space of U.

Q11) Lay/ch6.4/pg 359/Ex19+20

19. Suppose A = QR, where Q is $m \times n$ and R is $n \times n$. Show that if the columns of A are linearly independent, then R must be invertible. [Hint: Study the equation $R\mathbf{x} = \mathbf{0}$ and use the fact that A = QR.]

20. Suppose A = QR, where R is an invertible matrix. Show that A and Q have the same column space. [Hint: Given y in Col A, show that y = Qx for some x. Also, given y in Col Q, show that y = Ax for some x.]

Q12) Lay5e/ch6.4/pg359/Example4

EXAMPLE 4 Find a QR factorization of
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$
.

Q13) Lay5e/ch6.4/pg 360/

- **2.** Suppose A = QR, where Q is an $m \times n$ matrix with orthogonal columns and R is an $n \times n$ matrix. Show that if the columns of A are linearly dependent, then R cannot be invertible.
 - ======= End of Tut Ch 6 ========