

Pediu pra parar parou!

Quer ver este material pelo Dex? Clique aqui

Exercícios

1. O gráfico a seguir é de uma função polinomial do 1º grau e descreve a velocidade v de um móvel em função do tempo t:

Assim, no instante t = 10 horas o móvel está a uma velocidade de 55 km/h, por exemplo.

Sabe-se que é possível determinar a distância que o móvel percorre calculando a área limitada entre o eixo horizontal t e a semirreta que representa a velocidade em função do tempo. Desta forma, a área hachurada no gráfico fornece a distância, em km, percorrida pelo móvel do instante 6 a 10 horas. É correto afirmar que a distância percorrida pelo móvel, em km, do instante 3 a 9 horas é de:

- a) 318
- b) 306
- c) 256
- d) 212
- **e)** 202

2. No plano cartesiano a seguir, estão representados o gráfico da função definida por $f(x) = x^2 + 2$, com $x \in \mathbb{R}$ e os vértices dos quadrados adjacentes ABCD e DMNP.

Observe que B e P são pontos do gráfico da função f e que A, B, D e M são pontos dos eixos coordenados.

Desse modo, a área do polígono ABCPNM, formado pela união dos dois quadrados, é:

- **a)** 20
- **b)** 28
- c) ³⁶
- **d)** 40
- **e)** 42

3. Seja f a função de IR em IR, dada pelo gráfico a seguir.

É correto afirmar que:

- a) f é sobrejetora e não injetora.
- **b)** f é bijetora.
- c) f(x) = f(-x) para todo x real.
- **d)** f(x) > 0 para todo x real.
- e) o conjunto imagem de f é] ∞; 2].

- **4.** Considere os seguintes subconjuntos de números naturais:
 - $N = \{0,1,2,3,4,...\}$
 - $P = \{x \in N / 6 \le x \le 20\}$
 - $A = \{x \in P / x \in par\}$
 - $B = \{x \in P / x \text{ \'e divisor de } 48\}$
 - $C = \{x \in P / x \text{ é múltiplo de 5}\}\$
 - O número de elementos do conjunto (A B) \cap C é:
 - a) 2
 - **b)** 3
 - c) 4
 - **d)** 5
 - **e)** 6
- **5.** Em uma determinada empresa, os trabalhadores devem se especializar em pelo menos uma língua estrangeira, francês ou inglês. Em uma turma de 76 trabalhadores, têm-se:
 - 49 que optaram somente pela língua inglesa;
 - 12 que optaram em se especializar nas duas línguas estrangeiras.
 - O número de trabalhadores que optaram por se especializar em língua francesa foi:
 - **a)** 15.
 - **b)** 27.
 - **c)** 39.
 - **d)** 44.
 - **e)** 64.
- **6.** Considere os triângulos retângulos PQR e PQS da figura a seguir. Se RS = 100, quanto vale PQ?

- a) $100\sqrt{3}$
- **b)** $50\sqrt{3}$
- **c)** 50
 - $(50\sqrt{3})$
- d) 3
- e) $25\sqrt{3}$

- 7. Sendo x um número real, o menor valor da expressão $\frac{1}{3-\cos x}$ é:
 - **a)** -1
 - b) ½
 - **c)** -1/2
 - d) ¼
 - **e)** 1
- **8.** Na figura a seguir, M, N e P são pontos de tangência e a medida de OM é 16. Então o perímetro do triângulo assinalado é:

- a) 32.
- **b)** 34.
- c) ³⁶.
- **d)** 38.
- **e)** 40.
- **9.** Uma circunferência está inscrita em um quadrado cuja diagonal mede 20 cm. O comprimento da circunferência é:
 - a) $\pi\sqrt{2}$ cm
 - **b)** $5 \pi \sqrt{2} \text{ cm}$
 - **c)** $10 \pi \sqrt{2} \text{ cm}$
 - **d)** $20 \pi \sqrt{2} \text{ cm}$
 - **e)** $30 \pi \sqrt{2} \text{ cm}$

10. Na figura, $\alpha = 30^{\circ}$, O é o centro da circunferência e AB é o lado do polígono regular inscrito na circunferência. Se o comprimento da circunferência é 4π , a área desse polígono é:

- a) $4\sqrt{3}$
- b) $6\sqrt{3}$
- c) $8\sqrt{3}$
- d) $12\sqrt{3}$
- **e)** $16\sqrt{3}$

Gabarito

1. A

Calculando:

$$f(x) = ax + b$$

$$f(0) = 50 \Rightarrow b = 50$$

$$a = \frac{55 - 50}{10 - 0} = \frac{5}{10} = \frac{1}{2}$$

$$f(x) = \frac{x}{2} + 50$$

$$f(3) = \frac{3}{2} + 50 = 51,5$$

$$f(9) = \frac{9}{2} + 50 = 54,5$$

$$S = \frac{\left(51, 5 + 54, 5\right) \cdot \left(9 - 3\right)}{2} \Rightarrow S = 318$$

2. [

Sendo f(0) = 2, vem B = (0, 2). Como ABCD é um quadrado, temos D = (2, 0). Finalmente, como f(2) = 6, vem P = (2, 6) e, portanto, o resultado é $2^2 + 6^2 = 40$.

3. A

- a) /b): f é sobrejetora, pois Im(f) = Cd(f) e não é injetora, pois existe valor de y associado a mais de um valor de x (f não é, portanto, bijetora).
- **b)** $f(2) \neq f(-2)$, por exemplo.
- **c)** f(2) = -2 < 0, por exemplo.
- d) Im(f) = R

$$P = \{6, 7, 8, 9, ..., 20\}$$

$$B = \{6, 8, 12, 16\}$$

$$C = \{10, 15, 20\}$$

$$A - B = \{10, 14, 18, 20\}$$

$$(A - B) \cap C = \{10, 20\} \rightarrow 2 \text{ elementos}$$

5. B

Número de trabalhadores que optaram apenas pela Língua francesa: x = 76 - 12 - 49 = 15. Portanto, o número de trabalhadores que optaram por se especializar em língua francesa foi de: x + 12 = 15 + 2 = 17.

6. E

Note que PR = RS = 100 (o triângulo PRS é isósceles).

O triângulo PQR é egípcio e PQ é o cateto oposto ao ângulo de 60° . Logo, PQ vale metade da hipotenusa multiplicada por $\sqrt{3}$ = $50\sqrt{3}$.

7.

O menor valor da fração será quando (3 – cosx) for o <u>maior</u> possível. Como cosx está com sinal negativo a fração será a maior possível quando cosx = -1. Portanto:

$$Min\left(\frac{1}{3-\cos x}\right) = \frac{1}{3-(-1)} = \frac{1}{3+1} = \frac{1}{4}$$

8. A

$$OM = OP = 16$$

$$AM = AN = x$$

$$BP = BN = y$$

$$OA = 16 - x$$

$$OB = 16 - y$$

Portanto, o perímetro do triângulo assinalado será dado por:

$$P = 16 - x + 16 - y + x + y$$

$$P = 32$$

9. C

Sabemos que I = 2R e d = $1\sqrt{2}$

$$\sqrt{2} = 20 \rightarrow l = 10\sqrt{2} = 2R \rightarrow R = 5\sqrt{2}$$

$$C = 2\pi R = 2\pi$$
. $5\sqrt{2} = 10\pi\sqrt{2}$

10. B

Observe que α é um ângulo inscrito e o arco AB mede 60° . Logo, o segment AB é o lado de um hexágono (regular) inscrito na circunferência e a medida do lado desse hexágono é igual ao raio,

$$C = 2\pi R = 4\pi \rightarrow R = 2 = lado do hexágono$$

$$A = 6.\frac{2^2\sqrt{3}}{4} = 6\sqrt{3}$$