

COMPUTE TRENDS

COMPUTE TRENDS

SEQUENCING TRENDS

Sequencing Data Growing in Volume and Complexity

SEQUENCING TRENDS

Worldwide Annual Sequencing Capacity

Sequencing Data Types

Phenotype variability

Whole Genomes Sequencing Experiments Annually*

500,000

SEQUENCING TRENDS: Genomics

RNA-seq Experiments Annually*

500,000

SEQUENCING TRENDS: Transcriptomics

ATAC-seq Experiments Annually*

25,000

SEQUENCING TRENDS: Epigenomics

SEQUENCING TRENDS: Nanopore Long Read Sequencing

MinION Experiments Annually*

2,000

Variant Calling

Reference

Illumina Reads TGGATTTGAAAACGGAGCAAATGACTG
TGGATTTGAAAACGGAGCAAATGACTG

TGGATTTGAAAACGGAGCAAATGACTG

TGGATTTGAAAACAGAGCAAATGACTG
TGGATTTGAAAACAGAGCAAATGACTG

TGGATTTGAAAACAGAGCAAATGACTG

TOURTTURARACAGRACARATURCTO

TGGATTTGAAAACGGAGCAAATGACTG

- Identify sites with potential mismatch
- True variants or instrument errors?
- SNPs or insertions or deletions?
- Heterozygous or homozygous variants?

Likely heterozygous variant

Example Pileup Input Data

GATK Variant Calling Pipeline

Variant Calling Pipeline

Align to Reference

Sort
Mark Duplicates
Calibrate

Call Variants

Joint Call

Filter Variants

Accelerated GATK Variant Calling Pipeline

Accelerated Variant Calling Pipelines

Whole Genome Processing in Minutes

Deep Averaging Network (DAN)

DAN Development

PyTorch-based 1D model

• Learned embeddings of bases

Encoding variant proposals

Downsample easy variant candidates during training

Variant Calling Errors

Total Errors on PrecisionFDA HG002

Variant Calling Error Breakdown

Indel Errors on PrecisionFDA HG002

DNA: Open And Closed

Closed DNA inactive

Open DNA active

Open DNA changes affect development & disease

Atac Sequencing

Mapping Open DNA Sites

Atac-seq Limits

AtacWorks SDK

AtacWorks Model

Denoising + Open Chromatin Identification

Denoising Low Sequencing Data

AtacWorks identifies open chromatin from low-coverage data

Genome-wide Sequencing Reduction

AtacWorks Reduces Sequencing Requirements 3x

Pearson Correlation with clean (50 M read) data

Pearson correlation with clean data (50M reads)

Denoising Low Quality Sample

AtacWorks improves signal-to-noise ratio in low quality samples

Denoising Single Cell Atac-seq Data

AtacWorks Improves Open DNA Detection From Few Cells

AtacWorks SDK

SDK on Clara Genomics: https://github.com/clara-genomics/AtacWorks
AtacWorks Preprint: https://www.biorxiv.org/content/10.1101/829481v1

Long Read De Novo Assembly

Genome Assembly Workflow

Before ClaraGenomicsAnalysis

ClaraGenomicsAnalysis 0.1

ClaraGenomicsAnalysis 0.2

ClaraGenomicsAnalysis 0.3

ClaraGenomicsAnalysis SDK

Enabling Accelerated Genome Assembly

CLARA GENOMICS SW

Open Source CUDA-Accelerated Sequencing Analysis Tools

Reference Applications

Integration with 3rd Party Applications and Workflows

C++ and Python APIs

CUDA Accelerated HPC and Deep Learning Modules

Useful Links

- Parabricks: https://www.parabricks.com
- ClaraGenomicsAnalysis
 - SDK on GitHub: https://github.com/clara-genomics/ClaraGenomicsAnalysis
 - C++ API Examples: <u>cudapoa</u>, <u>cudaaligner</u>
 - Python API Examples: <u>cudapoa</u>, <u>cudaaligner</u>
- AtacWorks
 - SDK on GitHub: https://github.com/clara-genomics/AtacWorks
 - AtacWorks Preprint: https://www.biorxiv.org/content/10.1101/829481v1
- 3rd party integrations:
 - Racon: https://github.com/lbcb-sci/racon
 - Raven: https://github.com/lbcb-sci/raven
 - Bonito: https://github.com/nanoporetech/bonito
- Additional GPU Accelerated Genomics Applications:
 - Kipoi Model Zoo: https://ngc.nvidia.com/catalog/containers/hpc:kipoi
 - SigProfiler: https://github.com/AlexandrovLab/SigProfilerExtractor

