Deep Residual Learning for Image Recognition

박은우

Abstract

Why "ResNet"?

To ease the training of networks that are deeper than those used previously.

Advantage

Easier to optimize, can gain accuracy from considerably increased depth.

ImageNet Classification top-5 error (%)

1. Introduction

 Recent evidence reveals that network depth is of crucial importance.

- But, is learning better networks as easy as stacking more layers?
- 1. vanishing/exploding gradients
- ✓ hamper convergence from the beginning
- ✓ solve the problem by normalized initialization & intermediate normalization layers
- 2. Degradation
- ✓ Not by overfitting
- ✓ adding more layers to a suitably deep model leads to higher training error
- ✓ solve the problem by construction to the deeper model
- : added layers are identity mapping, the other layers are copied from the learned shallower model

- Address the degradation problem by introducing a deep residual learning framework
- -extra para. X
- -computational complexity ↑ x
- H(x) := F(x) + x
- 출력과 입력 간 차에 대해 학습시키면 Degradation 해결 가능
- F(x)=H(x)-x를 H(x)에 근사시키는 것이 이전 모델을 optimize하는 것보다 쉽다.

Figure 2. Residual learning: a building block.

2. Related work

- 이전에는 multigrid method를 사용하였음
- "highway networks" present shortcut connections with gating functions.
- our identity shortcuts are never closed, and all info is always passed through.

3. Deep Residual Learning

3.1 Residual learning

Approximate the residual functions: H(x)-x (assuming that the input and output are of the same dimensions)

 This reformulation is motivated by the counterintuitive phenomena about the degradation problem

상식: deeper, training error는 낮은 모델보다 더 낮을 수x

• 3.2 Identity Mapping by Shortcuts
ResNet은 layer가 적게 쌓여도 residual learning을 적용한다.
shortcut은 extra para가 필요x라는 것과 complexity 증가 x라는 것이 기존의 plain과 residual을 비교하는 데 매력적인 요소이다.

$$F = W_2 \sigma(W_1 x)$$

- 3.3 Network Architectures
- 1. plain network
- ✓그냥 layers를 쌓음. 대부분 3x3 filters를 가짐
- ✓같은 크기의 output feature map가지고 같은 수 filters 가짐
- ✔feature map size 반으로 줄면 time-complexity를 유지하기 위해 filters 의 수 2배
- ✓ VGG보다 filter 수 적고 complexity 낮음
- 2. residual network
- ✓ plain에 기반하여 shortcut 추가한 버전.
- ✓ input과 output 차원 동일하면 identity shortcut 바로 사용 가능
- (1) zero-padding
- (2) 차원 맞추기 위해 1x1 convolution 사용
- -> stride=2

• 3.4 Implementation [256,480] randomly sampled batch normalization 적용 learning rate=0.1 (local min-> 1/10) iter 60x10^4 weight decay=0.0001, momentum=0.9, dropout x 10-crop 사용

(a) Single Center Crop

(b) Part of a 10-Crop

4. Experiments

4.1 ImageNet Classification

layer name	output size	18-layer	34-layer	50-layer	101-layer	152-layer	
conv1	112×112	7×7, 64, stride 2			7		
conv2_x		3×3 max pool, stride 2					
	56×56	$\left[\begin{array}{c}3\times3,64\\3\times3,64\end{array}\right]\times2$	\[\begin{array}{c} 3 \times 3, 64 \ 3 \times 3, 64 \end{array} \] \times 3	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	
conv3_x	28×28	$\left[\begin{array}{c} 3 \times 3, 128 \\ 3 \times 3, 128 \end{array}\right] \times 2$	$\left[\begin{array}{c} 3 \times 3, 128 \\ 3 \times 3, 128 \end{array}\right] \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 8$	
conv4_x	14×14	$\left[\begin{array}{c}3\times3,256\\3\times3,256\end{array}\right]\times2$	$\left[\begin{array}{c}3\times3,256\\3\times3,256\end{array}\right]\times6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 23$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 36$	
conv5_x	7×7	$\left[\begin{array}{c}3\times3,512\\3\times3,512\end{array}\right]\times2$	$\left[\begin{array}{c}3\times3,512\\3\times3,512\end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	\[\begin{array}{c} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{array} \] \times 3	
	1×1	average pool, 1000-d fc, softmax					
FLOPs		1.8×10 ⁹	3.6×10 ⁹	3.8×10^{9}	7.6×10^9	11.3×10 ⁹	

Table 1. Architectures for ImageNet. Building blocks are shown in brackets (see also Fig. 5), with the numbers of blocks stacked. Downsampling is performed by conv3_1, conv4_1, and conv5_1 with a stride of 2.

4.1.1 Plain Networks
 18,34 layer, plain network

	plain	ResNet
18 layers	27.94	27.88
34 layers	28.54	25.03

Table 2. Top-1 error (%, 10-crop testing) on ImageNet validation. Here the ResNets have no extra parameter compared to their plain counterparts. Fig. 4 shows the training procedures.

• 4.1.2 Residual networks

Figure 4. Training on **ImageNet**. Thin curves denote training error, and bold curves denote validation error of the center crops. Left: plain networks of 18 and 34 layers. Right: ResNets of 18 and 34 layers. In this plot, the residual networks have no extra parameter compared to their plain counterparts.

• 4.1.3 Identity vs projection shortcuts

model	top-1 err.	top-5 err	
VGG-16 [41]	28.07	9.33	
GoogLeNet [44]	-	9.15	
PReLU-net [13]	24.27	7.38	
plain-34	28.54	10.02	
ResNet-34 A	25.03	7.76	
ResNet-34 B	24.52	7.46	
ResNet-34 C	24.19	7.40	
ResNet-50	22.85	6.71	
ResNet-101	21.75	6.05	
ResNet-152	21.43	5.71	

Table 3. Error rates (%, **10-crop** testing) on ImageNet validation. VGG-16 is based on our test. ResNet-50/101/152 are of option B that only uses projections for increasing dimensions.

• 4.1.4 Deeper Bottlenect Architectures

Figure 5. A deeper residual function \mathcal{F} for ImageNet. Left: a building block (on 56×56 feature maps) as in Fig. 3 for ResNet-34. Right: a "bottleneck" building block for ResNet-50/101/152.

• 4.1.5 50-layers ResNet 3-layer bottlenect block을 차원 증가

• 4.1.6 101-layers and 152-layers ResNet depth만 증가. 좋은 성능. Degradation x

• 4.1.7 Comparisons with State-of-the-art methods

method	top-5 err. (test)
VGG [41] (ILSVRC'14)	7.32
GoogLeNet [44] (ILSVRC'14)	6.66
VGG [41] (v5)	6.8
PReLU-net [13]	4.94
BN-inception [16]	4.82
ResNet (ILSVRC'15)	3.57

Table 5. Error rates (%) of **ensembles**. The top-5 error is on the test set of ImageNet and reported by the test server.

• 4.2.1 Analysis of layer Responses

Figure 7. Standard deviations (std) of layer responses on CIFAR-10. The responses are the outputs of each 3×3 layer, after BN and before nonlinearity. **Top**: the layers are shown in their original order. **Bottom**: the responses are ranked in descending order.

• 4.2.2 Exploring over 1000 layers

me	error (%)		
Max	9.38		
NII	8.81		
DS	8.22		
	# layers	# params	
FitNet [35]	19	2.5M	8.39
Highway [42, 43]	19 32	2.3M 1.25M	7.54 (7.72±0.16) 8.80
Highway [42, 43]			
ResNet	20	0.27M	8.75
ResNet	32	0.46M	7.51
ResNet	44	0.66M	7.17
ResNet	56	0.85M	6.97
ResNet	110	1.7M	6.43 (6.61±0.16)
ResNet	1202	19.4M	7.93

4.3 Object Detection on PASCAL and MS COCO

training data	07+12	07++12	
test data	VOC 07 test	VOC 12 test	
VGG-16	73.2	70.4	
ResNet-101	76.4	73.8	

Table 7. Object detection mAP (%) on the PASCAL VOC 2007/2012 test sets using **baseline** Faster R-CNN. See also Table 10 and 11 for better results.

metric	mAP@.5	mAP@[.5, .95]
VGG-16	41.5	21.2
ResNet-101	48.4	27.2

Table 8. Object detection mAP (%) on the COCO validation set using **baseline** Faster R-CNN. See also Table 9 for better results.