## Тема: Розв'язування вправ на повторення матеріалу за 6 клас

## Опорний конспект

#### <u>ПОВТОРЕННЯ</u>



Для знаходження НСД двох чисел можна розкласти ці числа на прості множники і знайти добуток їх спільних множників.

Приклади: а) Знайти НСД (6600; 6300):  $6600 = 2 \cdot 2 \cdot 2 \cdot 3 \cdot 5 \cdot 5 \cdot 11$ ,  $6300 = 2 \cdot 2 \cdot 3 \cdot 3 \cdot 5 \cdot 5 \cdot 7$ , HCД (6600; 6300) =  $2 \cdot 2 \cdot 3 \cdot 5 \cdot 5 \cdot 5 \cdot 7$ , HCД (6600; 6300) =  $2 \cdot 2 \cdot 3 \cdot 5 \cdot 5 \cdot 5 \cdot 5 \cdot 7$ ,  $34 \ 398 = 2 \cdot 3 \cdot 3 \cdot 3 \cdot 7 \cdot 7 \cdot 13$ ,  $1260 = 2 \cdot 2 \cdot 3 \cdot 3 \cdot 5 \cdot 7$ ,  $6552 = 2 \cdot 2 \cdot 2 \cdot 3 \cdot 3 \cdot 7 \cdot 13$ , HCД (34 \ 398; 1260; 6552) =  $2 \cdot 3 \cdot 3 \cdot 7 \cdot 7 \cdot 126$ .



#### Запам'ятайте!

## Правило знаходження НСК

Щоб знайти НСК двох чисел:

- 1) розкладіть дані числа на прості множники;
- 2) запишіть розклад одного з даних чисел;
- допишіть до цього розкладу такі множники із розкладу іншого числа, які ще не увійшли до добутку;
- 4) обчисліть отриманий добуток.

🥐 Як знайти НСК двох взаємно простих чисел? кількох чисел?

Оскільки у взаємно простих чисел немає інших спільних дільників, крім 1, то НСК таких чисел дорівнює їх добутку. Наприклад,  $HCK(8; 21) = 8 \cdot 21 = 168$ .

НСК кількох чисел шукають так само, як і двох чисел. Наприклад, знайдемо НСК (9; 12; 15). Маємо:  $9=3\cdot 3=3^2$ ,  $12 = 2 \cdot 2 \cdot 3 = 2^2 \cdot 3$ ,  $15 = 3 \cdot 5$ . Звідси НСК (9; 12; 15) =  $=3^2 \cdot 2^2 \cdot 5 = 9 \cdot 4 \cdot 5 = 180$ .

#### МАТЕМАТИКА 5 клас 9 частина

Подільність чисел

Картка 28 А,

| _        |
|----------|
| F-4-1    |
|          |
| un.      |
| <br>2000 |

| Алгоритм                                                                                                                       | Зразок                                            |   |     |    |          |                                                            |     |    |  |
|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|---|-----|----|----------|------------------------------------------------------------|-----|----|--|
| Алгофитм знаходження НСД  1. Розклади подані числа на прості множники.                                                         |                                                   |   |     |    | кратн    | Знайди найменше спільне кратне чисел.     1) НСК (72; 156) |     |    |  |
| 2. Випиши всі спільні множники.                                                                                                | 72                                                | 2 | 156 | 2  | 72       | 2                                                          | 156 | 2  |  |
| <ol> <li>Обчисли добуток спільних множників.</li> <li>Запиши відповідь: НСД (a; b) = c.</li> </ol>                             | 36                                                | 2 | 78  | 2  | 36       | 2                                                          | 78  | 2  |  |
|                                                                                                                                | 18                                                | 2 | 39  | 3  | 18       | 2                                                          | 39  | 3  |  |
| Алгоритм знаходження НСК                                                                                                       | 9                                                 | 3 | 13  | 13 | 9        | 3                                                          | 13  | 13 |  |
| <ol> <li>Розклади подані числа на прості<br/>множники.</li> </ol>                                                              | 3                                                 | 3 | 1   | l  | 3        | 3                                                          | 1   | l  |  |
| <ol> <li>Доповни прості множники більшого<br/>числа простими множниками іншого<br/>числа, яких більше число не має.</li> </ol> | $72 = 2^3 \cdot 3^2$ $156 = 2^2 \cdot 3 \cdot 13$ |   |     |    | 72 = 2   | $72 = 2^3 \cdot 3^2$ $156 = 2^2 \cdot 3 \cdot 13$          |     |    |  |
|                                                                                                                                | 2) Спільні множники: 2; 2 і 3.                    |   |     |    | . 2) 156 | 2) $156 = 2^2 \cdot 3 \cdot 13 \cdot 3 \cdot 2$            |     |    |  |
| 3. Обчисли добуток усіх записаних                                                                                              | 3) 2 · 2 · 3 = 12                                 |   |     |    | 3) 22    | 3) $2^2 \cdot 3 \cdot 13 \cdot 3 \cdot 2 = 936$            |     |    |  |
| простих множників.<br>4. Запиши відповідь: НСК $(a; b) = c$ .                                                                  | 4) HCД (72; 156) = 12                             |   |     |    | 4) HC    | 4) HCK (72; 156) = 936                                     |     |    |  |

#### ПОВТОРЕННЯ

# Наприклад:

$$\frac{\sqrt[4]{1}}{3} + \frac{\sqrt[3]{1}}{4} = \frac{3}{12} + \frac{4}{12} = \frac{4+3}{12} = \frac{7}{12}$$

- 1) Знайдемо НСЗ даних дробів: НСК(3;4)=12
- Знайдемо додаткові множники: 12:3=4, 12:4=3
- 3) Помножимо чисельник і знаменник кожного дробу на його додатковий множник.

### Правило:



Щоб додати (відняти) дроби з різними знаменниками, достатньо:

- 1) звести ці дроби до найменшого спільного знаменника;
- 2) додати (відняти) їх за правилом додавання (віднімання) дробів з однаковими знаменниками.

Приклад 1. Знайти суму  $\frac{1}{6} + \frac{3}{10}$ .

$$\frac{\sqrt[5]{1}}{6} + \frac{\sqrt[3]{3}}{10} = \frac{5}{30} + \frac{9}{30} = \frac{5+9}{30} = \frac{14}{30} = \frac{7}{15}.$$

Приклад 2. Знайти різницю  $\frac{7}{8} - \frac{5}{12}$ .

$$\frac{\sqrt[3]{7}}{8} - \frac{\sqrt[2]{5}}{12} = \frac{21 - 10}{24} = \frac{11}{24}$$

## Задача



- 1) звести дроби до спільного знаменника;
- 2) та виконати додавання із дробами, у яких знаменники однакові.

1) 
$$\frac{2}{5} + \frac{1}{3} = \frac{2 \cdot 3}{15} + \frac{1 \cdot 5}{15} = \frac{6}{15} + \frac{5}{15} = \frac{11}{15}$$







2) 
$$1 - \frac{11}{15} = \frac{15}{15} - \frac{11}{15} = \frac{4}{15}$$







a) 
$$1\frac{1}{2} + 4\frac{3}{4} = 1\frac{2}{4} + 4\frac{3}{4} = 5\frac{5}{4} = 6\frac{1}{4}$$
;

6) 
$$1\frac{3}{8} + \frac{3}{16} = 1\frac{6}{16} + \frac{3}{16} = 1\frac{9}{16}$$
;

B) 
$$\frac{4}{15} + 2 \frac{8}{9} = \frac{12}{45} + 2 \frac{40}{45} = 2 \frac{52}{45} = 3 \frac{7}{45}$$
;

r) 
$$3\frac{5}{21} + 5\frac{13}{14} = 3\frac{10}{42} + 5\frac{39}{42} = 9\frac{7}{42} = 9\frac{1}{6}$$
.

1) 
$$\frac{4}{5} + \frac{3}{7} = \frac{28 + 15}{35} = \frac{43}{35} = 1\frac{8}{35};$$
2)  $\frac{5}{12} + \frac{9}{20} = \frac{25 + 27}{60} = \frac{52}{60} = \frac{13}{15};$ 
3)  $\frac{5}{18} + \frac{4}{45} = \frac{25 + 8}{90} = \frac{33}{90} = \frac{11}{30};$ 
4)  $\frac{12}{17} + \frac{27}{34} = \frac{24 + 27}{34} = \frac{51}{34} = 1\frac{17}{34} = 1\frac{1}{2};$ 
5)  $\frac{5}{9} - \frac{7}{18} = \frac{10 - 7}{18} = \frac{3}{18} = \frac{1}{6};$ 
6)  $\frac{11}{12} - \frac{3}{4} = \frac{11 - 3}{12} = \frac{8}{12} = \frac{2}{3};$ 
7)  $\frac{8}{21} - \frac{3}{35} = \frac{40 - 12}{105} = \frac{28}{105};$ 
8)  $\frac{11}{63} - \frac{3}{42} = \frac{22 - 15}{126} = \frac{7}{126} = \frac{1}{18}.$ 

## Робота з інтернет ресурсами

https://youtu.be/zw8JG26MxVM

https://youtu.be/fSmMFA8eGk0

https://youtu.be/UR7K6aM1e6E