

DM-Spring-2020-Q7-Grade

94.44% (17/18)

- **/**
- 1. (Classification) Decision Tree Decision Boundaries
- A are a step-wise constant function
- **B** I do not know
- c continuous function
- are axis-parallel rectangles
- 2. Root Node has
 - A no incoming edges and zero or more outgoing edges
 - B one incoming edge and two or more outgoing edges
 - c one incoming edge and no outgoing edges
 - **D** I do not know
- ✓ 3. Pruning the tree means
 - A Simplify the tree
 - B Split the tree's nodes
 - c Merge the tree's nodes
 - **D** I do not know
- 4. Gini index equals to
 - A 1 sum (pi^2)
 - **B** 1 + sum (pi²)
 - c sum(pi * log(pi))
 - D -sum(pi * log(pi))
 - E I do not know

/	5.	Entropy starts with 0 (rough mathematically)
	A	True
	В	False
	C	I do not know
/	6.	Overall impurity measure can be obtained by
	A	a weighted average of individual rectangles
	В	majority voting
	C	I do not know
/	7.	At each stage, we choose the split with
	A	the lowest Gini index
	В	the lowest Chi-square value
	C	the highest entropy
	D	I do not know
/	8.	We can perform the Decision Trees in r using
	A	rpart()
	В	decisiontree()
	C	destree()
	D	reg.tree()
	E	I do not know
/	9.	minsplit in R means
	A	the minimum number of observations that must exist in a node in order for a split to be attempted
	В	the minimum number of observations in any terminal node
	C	the minimum number of splits
	D	I do not know

/	10.	Bagging is a technique used to reduce
	A	the variance of our predictions
	В	the bias of our predictions
	C	both
	D	I do not know
/	11.	Bootstrap aggregation allows sampling
	A	with replacement
	В	without replacement
	C	I do not know
	D	both
/	12.	How can Ensemble methods be constructed?
	Α	By manipulating the training set
	В	By manipulating the input features
	C	By manipulating the class labels
	D	By manipulating the learning algorithm
	E	All of them
	F	None
	G	I do not know
/	13.	Repeatedly sampling observations are taken
	A	from general population
	В	original sample data set
	C	I do not know
	D	None
/	14.	Random Forest differs from bagging
	A	by a random sample of m predictors
	В	by bootstrapped training samples
	C	by adaptive sampling
	D	I do not know

X	15.	Boosting differs from bagging
	Α	by a random sample of m predictors
	В	by bootstrapped training samples
	C	by adaptive sampling
	D	I do not know
/	16.	Averaging many highly correlated quantities
	A	lead to as large of a reduction in variance
	В	does not lead to as large of a reduction in variance
	C	lead to as large of a reduction in bias
	D	I do not know
/	17.	We can perform a Random forest in R using the function
/	17.	We can perform a Random forest in R using the function randomForest()
\		
\	A	randomForest()
\	A B	randomForest() rf()
\	B C	randomForest() rf() randomF()
\	A B C D	randomForest() rf() randomF() boot()
	A B C D	randomForest() rf() randomF() boot()
	A B C D	randomForest() rf() randomF() boot() I do not know
	B C D E	randomForest() rf() randomF() boot() I do not know Random Forest works
	A B C D E	randomForest() rf() randomF() boot() I do not know Random Forest works for classification
	A B C D E 18. A B	randomForest() rf() randomF() boot() I do not know Random Forest works for classification for regression
	A B C D E 18. A B C	randomForest() rf() randomF() boot() I do not know Random Forest works for classification for regression both