Potential field and controller CS 470 Introduction To Artificial Intelligence

Daqing Yi

Department of Computer Science Brigham Young University

Outline

- 1 Intelligence without representation
 - Reactive robotics
- 2 Potential field
 - Potential field
- 3 Controller
 - Controller

Reactive robotics

- "Intelligence without representation"
- Reflex agent

Reactive robotics

Behavior-based robotics

- activity-generating building block
- sensor input o
- action a
- a = f(o)

Reactive robotics

When we need a reflex agent

- Rule-based requirement
- Simple
- Fast response

Example: pick up something

Controlle BYU 1855

Potential field

potential

energy distribution on the map

potential field

- gradient of the potential
- array (or field) of vector
- vector represents a force (magnitude and direction)

Attractive potential field

$$d = \sqrt{(x_G - x)^2 + (y_G - y)^2}$$

$$\theta = \arctan(\frac{y_G - y}{x_G - x})$$
if $d < f$ $\Delta x = \Delta y = 0$
if $r \le d \le s + r$ $\Delta x = \alpha(d - r)\cos(\theta)$

$$\Delta y = \alpha(d - r)\sin(\theta)$$
if $d > s + r$ $\Delta x = \alpha s\cos(\theta)$

$$\Delta y = \alpha s\sin(\theta)$$

Repulsive potential field

$$d = \sqrt{(x_G - x)^2 + (y_G - y)^2}$$
$$\theta = \arctan(\frac{y_G - y}{x_G - x})$$

$$\begin{aligned} \text{if } d < f & \Delta x = -sign(\cos(\theta)) \infty \\ \Delta y = -sign(\sin(\theta)) \infty \end{aligned} \\ \text{if } r \leq d \leq s + r & \Delta x = -\beta(s + r - d)\cos(\theta) \\ \Delta y = -\beta(s + r - d)\sin(\theta) \\ \text{if } d > s + r & \Delta x = \Delta y = 0 \end{aligned}$$

Tangential potential field

$$\theta = \arctan(\frac{y_G - y}{x_G - x})$$
 if $d < f$
$$\Delta x = -sign(\cos(\theta \pm \frac{\pi}{2})) \infty$$

$$\Delta y = -sign(\sin(\theta \pm \frac{\pi}{2})) \infty$$
 if $r \le d \le s + r$
$$\Delta x = -\beta(s + r - d)\cos(\theta \pm \frac{\pi}{2})$$

$$\Delta y = -\beta(s + r - d)\sin(\theta \pm \frac{\pi}{2})$$
 if $d > s + r$
$$\Delta x = \Delta y = 0$$

 $d = \sqrt{(x_G - x)^2 + (y_G - y)^2}$

Application

Merge potential field

Weighing the potential fields

Application

path planning + obstacle avoidance

Uniform potential field

Perpendicular potential field

Random potential field

Controller NOUNG (1), OOOO BYU

Controller

- error = reference state
- action = controller (error)
- state = environment (action)

Controller

- Position reaching
- Trajectory tracking

Controller

PID controller

PID controller

$$u(t) = K_p e(t) + K_i \int_0^t e(\tau) d\tau + K_d \frac{d}{dt} e(t)$$

• Propotional: $K_p e(t)$

• Integral: $K_i \int_0^t e(\tau) d\tau$

• **D**erivative: $K_d \frac{d}{dt} e(t)$

Controller

PID controller

Parameter tuning

- Propotional K_p
 - current error
 - ullet too small \longrightarrow long rise time
 - ullet too big \longrightarrow big overshoot
- Integral K_i
 - accumulated error
 - increase the precision
 - ullet too small \longrightarrow big overshoot
 - too big → long setting time
- Derivative K_d
 - error variation
 - sensitive to noise
 - dependent on sampling interval

PID controller

- P controller
- PI controller
- PID controller