Bilkent University
Computer Engineering Department
CS224- Computer Organization
Preliminary Design Report
Section 1
Berdan Akyürek
21600904
27.11.2019

b) Machine code to assembly instruction

Location	Machine Code	MIPS instruction		
0x0000000	0x20020005	addi \$v0, \$zero, 5		
0x00000004	0x2003000c	addi \$v1, \$zero, 12		
0x00000008	0x2067fff7	addi \$a3, \$v1, -9		
0x000000C	0x00e22025	or \$a0, \$a3, \$v0		
0x00000010	0x00642824	and \$a1, \$v1, \$a0		
0x00000014	0x00a42820	add \$a1, \$a1, \$a0		
0x00000018	0x10a7000a	beq \$a1, \$a3, 10		
0x000001C	0x0064202a	slt \$a0, \$v1, \$a0		
0x00000020	0x10800001	beq \$a0, \$zero, 1		
0x00000024	0x20050000	addi \$a1, \$zero, 0		
0x00000028	0x00e2202a	slt \$a0, \$a3, \$v0		
0x0000002C	0x00853820	add \$a3, \$a0, \$a1		
0x00000030	0x00e23822	sub \$a3, \$a3, \$v0		
0x00000034	0xac670044	sw \$a3, 68(\$v1)		
0x00000038	0x8c020050	lw \$v0, 80(\$zero)		
0x0000003C	0x08000011	j 0x0000011		
0x00000040	0x20020001	addi \$v0, \$zero, 1		
0x00000044	0xac020054	sw \$v0, 84(\$zero)		
0x00000048	0x08000012	j 0x0000012		

c) RTL expressions for new instructions

lui rt, imm:

 $R[rt] = \{imm, 16'b0\}$

PC ← PC+4

jalm rt, imm(rs):

R[rt] = R[pc] + 4

R[pc] = M[R[rs] + imm]

d) Addisions to datapath

e) Table

Instruc- tion	Op _{5:0}	_	Reg Dst	Alu Src	Branch		Mem toReg	ALU Op _{1:0}	Jump
R-type	000000	1	1	0	0	0	0	1x	0
lw	100011	1	0	1	0	0	1	00	0
sw	101011	0	Х	1	0	1	Х	00	0
beq	000100	0	Х	0	1	0	Х	01	0
j	000010	0	Х	Х	Х	0	Х	XX	1
addi	001000	1	0	1	0	0	0	00	0
lui	001111	1	0	0	0	0	01	XX	0
jalm	010111	0	1	1	Х	0	00	00	1

f) Test code

```
L1:
// Set values to zero
addi $s0, $zero, 0
addi $s1, $zero, 0
addi $s2, $zero, 0
addi $s3, $zero, 0
addi $s0, $s0, 5
add $s0, $s0, $s0
sub $s0, $s0, 5
addi $s1, $s1, 3
and $s2, $s0, $s1
or $s2, $s0, $s1
slt $s2, $s0, $s1
slt $s2, $s1, $s0
sw $s0, 4($s1)
lw $s3, 4($s1)
beq $s3, 999, L2
beq $s0, 5, L2
nop
L2:
lui $s4, 0x1234
addi $s4, $zero, 0
jalm $t0, 84($s4)
nop
nop
```

j L1