

#### **PROGRAMMA**

09u30 Ontvangst met koffie Verwelkoming & introductie EAVISE 10u00 10u15 Introductie objectcategorisatie + voorstelling algoritme 11u00 11u15 Eerste hands-on sessie: de object annotatie tool en de preprocessing van de nodige data
Middagmaal – warme lunch (aangeboden door 🍫 data vision ) 12u30 13u30 Tweede hands-on sessie: het trainingsproces dieper bekijken, het intrainen van een objectmodel en het uittesten van detector 15u00 Pauze 15u15 Toelichting van enkele knelpunten (rotatie, clutter, occlusie) en de 'kwaliteit' van de detector bespreken 15u50 Vragen & evaluatie

KU LEUVEN

EAVISE
Embedded Artificially intelligent VISion

Einde van de workshop



 Implementeren van geavanceerde beeldverwerkingstechnieken op embedded systemen .

 Optimaliseren van visiealgoritmes tot real time performantie

 Toepassen van nieuwe Artificial Intelligence technieken in computer visie applicaties.





|    |    | $\bigcirc$ $\Gamma$ | N A | N // I | A // A |
|----|----|---------------------|-----|--------|--------|
| PR | () | (ik                 | ťΑI | I\/I I | VI A   |

| 09u30 | Ontvangst met koffie                                              |
|-------|-------------------------------------------------------------------|
| 10u00 | Verwelkoming & introductie EAVISE                                 |
| 10u15 | Introductie objectcategorisatie + voorstelling algoritme          |
| 11u00 | Pauze                                                             |
| 11u15 | Eerste hands-on sessie: de object annotatie tool en de            |
|       | preprocessing van de nodige data                                  |
| 12u30 | Middagmaal – warme lunch (aangeboden door 🔥 data vision           |
| 13u30 | Tweede hands-on sessie: het trainingsproces dieper bekijken,      |
|       | het intrainen van een objectmodel en het uittesten van detecto    |
| 15u00 | Pauze                                                             |
| 15u15 | Toelichting van enkele knelpunten (rotatie, clutter, occlusie) en |

de 'kwaliteit' van de detector bespreken

15u50 Vragen & evaluatie
16u00 Einde van de workshop

KU LEUVEN

# RECENTE EVOLUTIE VAN VISUELE



KU LEUVEN

# WAT IS OBJECTCATEGORISATIE?



# WAT IS OBJECTCATEGORISATIE?

 FOCUS → de objecten binnen een klasse vertonen onderlinge variatie in kleur vorm grootte zoals bij auto's









• Moeilijker naarmate er meer variatie is











KU LEUVEN

### ALGEMENE AANPAK BIJ OBJECTCATEGORISATIE

- **Trainingsstap**: leer uit voorbeelden een algemene beschrijving van de objectklasse = model
- Detectiestap: zoek in nieuwe beelden naar object door met dit ingetrainde model te vergelijken



KU LEUVEN

# ALGEMENE AANPAK BIJ OBJECTCATEGORISATIE





# HEEL WAT VARIATIE UITDAGINGEN IN **OBJECT CATEGORISATIE.**



**Belichting** 

















variatie in het voorkomen

KU LEUVEN

#### EEN ZO ROBUUST MOGELIJK RESULTAAT





- · State-of-the-art technieken kunnen al heel wat:
  - o Inleren van deze variatie (voorkomen, schaal, vorm, ...) in de objecten
  - Compenseren voor clutter, occlusie en overlappende objecten

KU LEUVEN

# **DOEL TOBCAT PROJECT**



- Deze modernere state-of-the-art technieken van objectclassificatie bekend maken bij de doelgroep van industriële bedrijven
- Toegankelijk en transparant maken van de beschikbare technologie voor de bedrijven van de doelgroep, zodat men er zelf mee aan de slag kan gaan
- Objectcategorisatie **effectief bij bedrijven** uit de doelgroep **introduceren** zodat zij het kunnen toepassen voor hun industrieel relevante problemen







# **TOEPASSINGEN IN TOBCAT (1)**



# **TOEPASSINGEN IN TOBCAT (2)**



# **TOEPASSINGEN IN TOBCAT (3)**



| PROGRAMMA                                                                                                                                                                                                                             |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 09u30 Ontvangst met koffie 10u00 Verwelkoming & introductie EAVISE 10u15 Introductie objectcategorisatie + voorstelling algoritme 11u00 Pauze 11u15 Eerste hands-on sessie: de object annotatie tool en de                            |  |
| preprocessing van de nodige data  12u30 Middagmaal – warme lunch (aangeboden door 💠 data vision )  13u30 Tweede hands-on sessie: het trainingsproces dieper bekijken, het intrainen van een objectmodel en het uittesten van detector |  |
| 15u00 Pauze 15u15 Toelichting van enkele knelpunten (rotatie, clutter, occlusie) en de 'kwaliteit' van de detector bespreken                                                                                                          |  |
| 15u50 Vragen & evaluatie<br>16u00 Einde van de workshop                                                                                                                                                                               |  |
| KU LEUVEN                                                                                                                                                                                                                             |  |
|                                                                                                                                                                                                                                       |  |
|                                                                                                                                                                                                                                       |  |
|                                                                                                                                                                                                                                       |  |
|                                                                                                                                                                                                                                       |  |
| STATE-OF-THE-ART ALGORITMES                                                                                                                                                                                                           |  |
| <ol> <li>Viola&amp;Jones : Haar/AdaBoost [CVPR2001] (workshop)</li> <li>Dalal&amp;Triggs : HOG/SVM [CVPR2005]</li> </ol>                                                                                                              |  |
| <ol> <li>Felzenswalb : deformable part models [CVPR2010]</li> <li>Dollár : integral channel features [BMVC2009]</li> </ol>                                                                                                            |  |
| 2.                                                                                                                                                                                                                                    |  |
| gradien histogram grad LUV                                                                                                                                                                                                            |  |
|                                                                                                                                                                                                                                       |  |
|                                                                                                                                                                                                                                       |  |
|                                                                                                                                                                                                                                       |  |
|                                                                                                                                                                                                                                       |  |
|                                                                                                                                                                                                                                       |  |
| VANDAAG GEBRUIKTE TECHNIEK:<br>VIOLA & JONES                                                                                                                                                                                          |  |
| Kort overzicht van de genomen stappen in het algoritme<br>Vertrekken vanuit een sliding window aanpak                                                                                                                                 |  |
| Features selecteren                                                                                                                                                                                                                   |  |
| Opbouwen zwakke classifiers                                                                                                                                                                                                           |  |
| Combineren tot een sterke classifier                                                                                                                                                                                                  |  |
|                                                                                                                                                                                                                                       |  |
| KU LEUVEN                                                                                                                                                                                                                             |  |

#### **VANDAAG GEBRUIKTE TECHNIEK: VIOLA & JONES**

- 1. Features selecteren
  - Gebruik HAAR-like wavelets
  - Kleine filters door vergelijken pixel waarden in regio's in beeld
  - Som pixel intensiteitswaarden grijs - som pixel intensiteitswaarden wit
  - 24x24 pixels → +-50,000 features
  - Gebruik van integraalbeeld
  - Snel sommen uitrekenen



#### VANDAAG GEBRUIKTE TECHNIEK: **VIOLA & JONES**

- 2. Opbouwen weak classifiers
  - AdaBoost algoritme
  - Welke feature of combinatie van features kan snel object en nietobjecten van elkaar scheiden
  - Tot een bepaalde accuraatheid behaald wordt







KU LEUVEN

# **VANDAAG GEBRUIKTE TECHNIEK: VIOLA & JONES**

- 3. Combineren tot een strong classifier
  - Cascade / waterval structuur
  - Weak classifiers → sneller uitrekenen / minder features
  - Om de fout te reduceren (individueel zeer hoog)
  - 'Early rejection'





# **PROGRAMMA**

09u30 Ontvangst met koffie 10u00 Verwelkoming & introductie EAVISE 10u15 Introductie objectcategorisatie + voorstelling algoritme 11u00 11u15 Eerste hands-on sessie: de object annotatie tool en de preprocessing van de nodige data

Middagmaal – warme lunch (aangeboden door 🍫 data vision ) 12u30 13u30 Tweede hands-on sessie: het trainingsproces dieper bekijken, het intrainen van een objectmodel en het uittesten van detector 15u00 15u15 Toelichting van enkele knelpunten (rotatie, clutter, occlusie) en de 'kwaliteit' van de detector bespreken 15u50 Vragen & evaluatie 16u00 Einde van de workshop

KU LEUVEN

#### HET IDEE HANDS-ON 1

- Vanuit een dataset, alles klaarstomen om een volledig objectmodel op te bouwen.
- Hoe kan een bedrijf een willekeurig object detecteren op verschillende achtergronden.
- Uit te voeren stappen:



# ENKELE RICHTLIJNEN VOOR HANDS-ON GEDEELTES

- Inloggen op computers via tobcat account, pwd = tobcat
- Open een terminal window
  - Standaard ~/ directory
- o Wij zullen werken vanuit

/home/tobcat/Documents/tobcat\_workshop/

- Enkele veelgebruikte commando's
  - o cd <path> → veranderen van folder
  - $_{\circ}~$  Is  $\Rightarrow$  opsomming van inhoud huidige folder
  - $_{\circ}$  ./<executable\_naam> [groene kleur in Is]  $\rightarrow$  code snippets
  - o Als executable niet groen is → chmod +x <executable>

| ENKELE RICHTLIJNEN VOOR HANDS-ON<br>GEDEELTES                                                                                                                                                                                                                                                                     |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| <ul> <li>Als C++ ontwikkelomgeving maken we gebruik van Code::Blocks.</li> <li>vooraf geïnstalleerd</li> <li>Folder software bevat alle projecten → reeds geconfigureerd</li> <li>Folder code_blocks bevat code voor tweede hands-on</li> <li>Veel voorkomend probleem = Code::Blocks 'vergeet' OpenCV</li> </ul> |  |
| <ul> <li>Project – Build Options – Linker settings – Additional Linker<br/>Commands</li> </ul>                                                                                                                                                                                                                    |  |
| <ul> <li>Add `pkg-config opencvlibs`</li> <li>Indien problemen met software, aarzel niet om een assistent<br/>aan te spreken!</li> </ul>                                                                                                                                                                          |  |
| KU LEUVEN                                                                                                                                                                                                                                                                                                         |  |
|                                                                                                                                                                                                                                                                                                                   |  |
| OBJECT ANNOTATIE TOOL & PREPROCESING STAPPEN                                                                                                                                                                                                                                                                      |  |
| We verplaatsen ons naar de folder/tobcat_workshop/data/mini_model/                                                                                                                                                                                                                                                |  |
| We zien hier een bestaande structuur  Positive folder bevat alle afbeeldingen met objecten  Negative folder bevat alle afbeeldingen zonder objecten                                                                                                                                                               |  |
| <ul> <li>Deze structuur dien je zelf op te bouwen op je systeem</li> <li>Naam van de folders is niet belangrijk, al is een betekenisvolle naam wel duidelijker</li> </ul>                                                                                                                                         |  |
| 28 KU LEUVEN                                                                                                                                                                                                                                                                                                      |  |
|                                                                                                                                                                                                                                                                                                                   |  |
| OBJECT ANNOTATIE TOOL & PREPROCESING STAPPEN                                                                                                                                                                                                                                                                      |  |
| We verplaatsen ons naar de folder/tobcat_workshop/data/mini_model/                                                                                                                                                                                                                                                |  |
| We zien hier een bestaande structuur  Positive folder bevat alle afbeeldingen met objecten                                                                                                                                                                                                                        |  |
| <ul> <li>Negative folder bevat alle afbeeldingen zonder objecten</li> </ul>                                                                                                                                                                                                                                       |  |
| <ul> <li>Deze structuur dien je zelf op te bouwen op je systeem</li> <li>Naam van de folders is niet belangrijk, al is een betekenisvolle naam wel duidelijker</li> </ul>                                                                                                                                         |  |
| beteveriisvolle Haam wel duidelijker  KU LEUVEN                                                                                                                                                                                                                                                                   |  |

| <b>OBJECT</b> | <b>ANNO</b> | TATIE | TOOL  | . & |
|---------------|-------------|-------|-------|-----|
| PREPRO        | CESIN       | G ST  | APPEN | J   |

Welke stappen dienen er nu te gebeuren voor we een model van een objectklasse kunnen intrainen?

1. Alle code snippets werken op basis van een txt file waarin referenties zitten naar de data

SNIPPET - ./folder\_listing

NODIG - positives.txt / negatives.txt / testset.txt

2. Object annotatie - zorgen dat de objecten uit positive files gescheiden worden van achtergrondinformatie

SNIPPET - ./annotate\_images

NODIG - annotate van elk object - universeel formaat

KU LEUVEN

# OBJECT ANNOTATIE TOOL & PREPROCESING STAPPEN

NAME #DETECTIONS X1 Y1 W1 H1 ... Xn Yn Mn Hn

D:\cookies\positives\ 1.png 6 160 1 138 132 321 5 136 141 153 139 151

D:\cookies\positives\ 1.png 6 160 1 138 132 321 5 136 141 153 139 151

D:\cookies\positives\ 2.png 6 141 14 148 138 309 2 141 146 165 164 150

D:\cookies\positives\ 2.png 6 141 14 148 138 309 2 141 146 165 164 150

D:\cookies\positives\ 3.png 6 131 43 156 129 299 4 142 137 180 180 149

D:\cookies\positives\ 3.png 8 13 34 143 154 25 206 174 146 6 347 137

D:\cookies\positives\ 4.png 6 132 57 153 129 199 195 143 137 261 349 1

D:\cookies\positives\ 4.png 6 132 57 153 129 199 195 143 137 261 349 1

D:\cookies\positives\ 4.png 6 139 143 152 253 5 154 149 345 145 152

D:\cookies\positives\ 5.png 6 117 6 143 152 253 5 154 149 345 145 152

D:\cookies\positives\ 5.png 6 17 7 39 147 156 34 201 153 150 5 355 142

D:\cookies\positives\ 6.png 6 87 89 149 154 180 219 153 143 228 14 148

D:\cookies\positives\ 6.png 6 87 89 149 154 180 219 153 143 228 14 148

D:\cookies\positives\ 7.png 6 197 19 148 146 75 116 146 153 173 239 14

KU LEUVEN

# OBJECT ANNOTATIE TOOL & PREPROCESING STAPPEN

Welke stappen dienen er nu te gebeuren voor we een model van een objectklasse kunnen intrainen?

- De geannoteerde data moet in een OpenCV data vector komen
  - Universeel formaat voor modeltraining
  - Schaalt naar modelgrootte

    SNIPPET ./average\_dimensions & ./create\_samples

    NODIG datavector.vec

| OBJECT ANNOTATIE TOOL & PREPROCESING STAPPEN                                                                                                                                                                                                                                                                                                |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Welke stappen dienen er nu te gebeuren voor we een model van een objectklasse kunnen intrainen?                                                                                                                                                                                                                                             |  |
| 3. De geannoteerde data moet in een OpenCV data vector komen  • Universeel formaat voor modeltraining  • Schaalt naar modelgrootte  SNIPPET – ./average_dimensions & ./create_samples  NODIG – datavector.vec                                                                                                                               |  |
| NODIO – datavector.vec                                                                                                                                                                                                                                                                                                                      |  |
| KU LEUVEN                                                                                                                                                                                                                                                                                                                                   |  |
| OBJECT ANNOTATIE TOOL &                                                                                                                                                                                                                                                                                                                     |  |
| PREPROCESING STAPPEN  Nuttige tools - snippets voor bedrijven                                                                                                                                                                                                                                                                               |  |
| /video2images – veel data gecapteerd als videomateriaal.  Deze snippet zet een video compressieloos om in frames.                                                                                                                                                                                                                           |  |
| //generate_negatives – veel bedrijven verzamelen beeldmateriaal in van objecten, maar niet van de achtergronden afzonderlijk     Leest een annotatie file in     Knipt de annotaties uit positieve beelden     Gebruikt de overschot van de beelden als negatieve beelden     Heeft wel invloed op performantie! (onnatuurlijke overgangen) |  |
| KU LEUVEN                                                                                                                                                                                                                                                                                                                                   |  |
|                                                                                                                                                                                                                                                                                                                                             |  |
| LUNCH                                                                                                                                                                                                                                                                                                                                       |  |
| De maaltijd wordt aangeboden door 💠 data vision                                                                                                                                                                                                                                                                                             |  |
| <ul> <li>Systeem van zelfbediening voor maaltijd</li> </ul>                                                                                                                                                                                                                                                                                 |  |
| ■ Eten in zaal 'de fruytenborg'                                                                                                                                                                                                                                                                                                             |  |
| Koffie nadien inbegrepen                                                                                                                                                                                                                                                                                                                    |  |
|                                                                                                                                                                                                                                                                                                                                             |  |
| NU LEUVEN                                                                                                                                                                                                                                                                                                                                   |  |

| PITCH – Data Vision                                                                                                                                 |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                                                     |  |
|                                                                                                                                                     |  |
| Een kleine bedrijfspitch van 👍 data vision                                                                                                          |  |
| •                                                                                                                                                   |  |
|                                                                                                                                                     |  |
|                                                                                                                                                     |  |
| KU LEUVEN                                                                                                                                           |  |
|                                                                                                                                                     |  |
|                                                                                                                                                     |  |
|                                                                                                                                                     |  |
|                                                                                                                                                     |  |
| PROGRAMMA                                                                                                                                           |  |
| 09u30 Ontvangst met koffie 10u00 Verwelkoming & introductie EAVISE 10u15 Introductie objectcategorisatie + voorstelling algoritmes                  |  |
| 11u00 Pauze 11u15 Eerste hands-on sessie: de object annotatie tool en de preprocessing van de nodige data                                           |  |
| 12u30 Middagmaal – warme lunch (aangeboden door 🂠 data vision ) 13u30 Tweede hands-on sessie: het trainingsproces dieper bekijken,                  |  |
| het intrainen van een objectmodel en het uittesten van detector 15u00 Pauze 15u15 Toelichting van enkele knelpunten (rotatie, clutter, occlusie) en |  |
| de 'kwaliteit' van de detector bespreken  15u50 Vragen & evaluatie  16u00 Einde van de workshop                                                     |  |
| 25 KU LEUVEN                                                                                                                                        |  |
|                                                                                                                                                     |  |
|                                                                                                                                                     |  |
|                                                                                                                                                     |  |
|                                                                                                                                                     |  |
| TRAININGSPROCES + TESTEN DETECTOR MET OBJECTMODEL                                                                                                   |  |
| We hebben data klaargestoomd om een model in te trainen.                                                                                            |  |
| <ul><li> ./train_cascade SNIPPET</li><li> Overzicht van alle parameters - een woordje uitleg</li></ul>                                              |  |
| Test met 'eenvoudig' model                                                                                                                          |  |
| <ul> <li>Variatie zit in de snoepjes → segmentatie is hier al<br/>moeilijker door opdruk</li> </ul>                                                 |  |
| Op achtergrond testopstelling                                                                                                                       |  |
| Output van training van dichterbij bekijken                                                                                                         |  |
| KU LEUVEN                                                                                                                                           |  |

| TRAININGSPROCES + TESTEN DETECTOR MET OBJECTMODEL                                                                                   |   |
|-------------------------------------------------------------------------------------------------------------------------------------|---|
| Voor tweede hands-on baseren we ons op ingetrained model                                                                            |   |
| <ul> <li>Ga naar/data/candy/</li> <li>160 positieve beelden 1000 negatieve beelden</li> </ul>                                       |   |
| ■ 17 stage classifier = # gecombineerde zwakke detectoren                                                                           |   |
| Eerst interface voor detectie in OpenCV uittesten                                                                                   |   |
| Daarna zelf schrijven  1. Beeld preprocessen – BGR2GRAY / histogram equalisatie                                                     |   |
| Detectiestap + invloed parameters     Vizualisatiestap + invloed parameters                                                         |   |
| 37                                                                                                                                  | - |
| KU LEUVEN                                                                                                                           |   |
|                                                                                                                                     |   |
|                                                                                                                                     |   |
|                                                                                                                                     |   |
|                                                                                                                                     |   |
| ROTATIE INVARIANTIE                                                                                                                 |   |
| 1 model = 1 oriëntatie                                                                                                              |   |
| Hoe omgaan met verschillende rotaties     Alles in 4 medel?                                                                         |   |
| <ul><li>Alles in 1 model?</li><li>Afbeelding roteren? Patch roteren?</li></ul>                                                      |   |
| Live simulatie van rotatie invariante candy detector                                                                                |   |
| <ul><li>Invloed van parameters</li></ul>                                                                                            |   |
| Real time performance mogelijk?                                                                                                     |   |
| De broncode even dieper bekijken, welke stappen dien je te nemen?                                                                   |   |
| 38 KU LEUVEN                                                                                                                        |   |
|                                                                                                                                     |   |
|                                                                                                                                     |   |
|                                                                                                                                     |   |
|                                                                                                                                     |   |
|                                                                                                                                     |   |
| PROGRAMMA                                                                                                                           |   |
| 09u30 Ontvangst met koffie 10u00 Verwelkoming & introductie EAVISE                                                                  |   |
| 10u15 Voorstelling algoritmes + introductie in de software 11u00 Pauze 11u15 Eerste hands-on sessie: de object annotatie tool en de |   |
| preprocessing van de nodige data  12u30 Middagmaal – warme lunch (aangeboden door 🍫 data vision )                                   |   |
| 13u30 Tweede hands-on sessie: het trainingsproces dieper bekijken, het intrainen van een objectmodel en het uittesten van detector  |   |
| 15u00 Pauze 15u15 Toelichting van enkele knelpunten (rotatie, clutter, occlusie) en de 'kwaliteit' van de detector bespreken        |   |
| 15u50 Vragen & evaluatie 16u00 Einde van de workshop                                                                                |   |
| 39 KU LEUVEN                                                                                                                        |   |
| KOLEUVEN                                                                                                                            |   |

| ENKELE KNELPUNTEN (ROTATIE, CLUTTER, OCCLUSIE)                                                                                      |  |
|-------------------------------------------------------------------------------------------------------------------------------------|--|
| Rotatie werd reeds besproken!                                                                                                       |  |
| Techniek half bestand tegen clutter  ■ Hangt sterk af van trainingsdata  ■ Enkel perfecte voorbeelden → imperfecte voorbeelden      |  |
| zullen nooit gedetecteerd worden                                                                                                    |  |
| Techniek niet bestand tegen occlusie  Detectoren haken al snel af als er occlusie optreedt  DPM techniek is een waardig alternatief |  |
| <ul> <li>lets robuuster dan V&amp;J framework</li> <li>kuleuven</li> </ul>                                                          |  |
|                                                                                                                                     |  |
|                                                                                                                                     |  |
|                                                                                                                                     |  |
|                                                                                                                                     |  |
| ENKELE KNELPUNTEN (ROTATIE, CLUTTER, OCCLUSIE)                                                                                      |  |
| In begin stelden we 4 technieken voor, wat kan je verwachten van OpenCV en C++ naar enkele mogelijkheden toe.                       |  |
| ■ Viola & Jones                                                                                                                     |  |
| <ul> <li>Goed ondersteund – tutorials / documentatie / bugfree</li> <li>Grote community die ondersteuning kan bieden</li> </ul>     |  |
| ■ SVM + HOG                                                                                                                         |  |
| <ul><li>Afzonderlijke componenten JA</li><li>Gecombineerd tot een effectief algoritme NEEN</li></ul>                                |  |
| <ul> <li>Machine learning SVM → slechte ondersteuning – bugs</li> <li>KULEUVEN</li> </ul>                                           |  |
|                                                                                                                                     |  |
|                                                                                                                                     |  |
|                                                                                                                                     |  |
|                                                                                                                                     |  |
| ENKELE KNELPUNTEN (ROTATIE, CLUTTER, OCCLUSIE)                                                                                      |  |
| In begin stelden we 4 technieken voor, wat kan je verwachten van OpenCV en C++ naar enkele mogelijkheden toe.                       |  |
| ■ DPM model Felzenswalb                                                                                                             |  |
| <ul> <li>In openCV enkel detectiesoftware – LatentSVM module</li> <li>Gebaseerd op xml modellen van Pascal VOC Challenge</li> </ul> |  |
| <ul> <li>Challenge gestopt, dus ook toevoer modellen</li> <li>Training niet voorzien → origineel project nodig</li> </ul>           |  |
| ■ ICF Dollar                                                                                                                        |  |
| In openCV 'development' branch                                                                                                      |  |
| Coop robuusto implementatio                                                                                                         |  |

# ENKELE KNELPUNTEN (ROTATIE, CLUTTER, OCCLUSIE)

In begin stelden we 4 technieken voor, wat kan je verwachten van OpenCV en C++ naar enkele mogelijkheden toe.

- Al deze software zal ter beschikking gesteld worden via tobcat projectwebsite
- Alsook via de github account (source code repository) https://github.com/StevenPuttemans/tobcat

KU LEUVEN

#### **PROGRAMMA**

| 09u30 | Ontvangst met kome                                                                                                              |
|-------|---------------------------------------------------------------------------------------------------------------------------------|
| 10u00 | Verwelkoming & introductie EAVISE                                                                                               |
| 10u15 | Voorstelling algoritmes + introductie in de software                                                                            |
| 11u00 | Pauze                                                                                                                           |
| 11u15 | Eerste hands-on sessie: de object annotatie tool en de preprocessing van de nodige data                                         |
| 12u30 | Middagmaal – warme lunch (aangeboden door 🔥 data vision )                                                                       |
| 13u30 | Tweede hands-on sessie: het trainingsproces dieper bekijken,<br>het intrainen van een objectmodel en het uittesten van detector |
| 15u00 | Pauze                                                                                                                           |
| 15u15 | Toelichting van enkele knelpunten (rotatie, clutter, occlusie) en de 'kwaliteit' van de detector bespreken                      |
| 15050 | Vragen & evaluatio                                                                                                              |

KU LEUVEN

# EVALUEREN VAN OBJECTDETECTOREN

16u00 Einde van de workshop

1. Receiver Operating Characteristic



| ı | IN | m  | - | г |   | $\neg$ | Œ | 1 | 1 | 17 | <b>~</b> - | _ | п | - | _   | ~ | ١- | т. |        |   |     |   | ١,  |     | п | п |   | 11  | 7 | F. | ١ |
|---|----|----|---|---|---|--------|---|---|---|----|------------|---|---|---|-----|---|----|----|--------|---|-----|---|-----|-----|---|---|---|-----|---|----|---|
| ı | Ш, | N. |   | г | ı |        | " | J | u | м  | ,          |   | ш |   | - 1 | v | ,  |    | $\Box$ | А | . , | u | , 1 | ر ا | ι | , | г | . \ | / | г, | ) |

- ROC = Receiver Operating Characteristic
- Vind zijn oorsprong in elektronische signaal detectie theorie (1940 's – 1950 's)
- Zeer populair geworden in biomedische toepassingen, vooral in radiologie en beeldverwerking
- Ook gebruikt in machine learning applicaties om de kwaliteit van classifiers te definieren
- Kan gebruikt worden om opstellingen / procedures met elkaar te vergelijken

KU LEUVEN

# ROC CURVES: EEN VOORBEELD CASE

- Neem bijvoorbeeld een diagnostische test voor een ziekte
- Deze testen hebben 2 mogelijke uitkomsten:
  - o 'positief' = aanwezigheid van een ziekte
  - o 'negatief' = er is geen ziekte aanwezig
- Een individu kan een positief of negatief label krijgen bij een diagnostische test

KU LEUVEN

# True disease state vs. Test result

| Disease Test          | Not rejected                 | rejected                    |
|-----------------------|------------------------------|-----------------------------|
| No disease<br>(D = 0) | $\odot$                      | X                           |
|                       | specificity                  | Type I error<br>(False +) α |
| Disease<br>(D = 1)    | X                            | $\odot$                     |
|                       | Type II error<br>(False -) β | Power 1 - β;<br>sensitivity |
|                       | •                            | KU LEUVE                    |

16

# True disease state vs. Test result

| Disease Test          | not rejected         | rejected             |
|-----------------------|----------------------|----------------------|
| No disease<br>(D = 0) | $\odot$              | X                    |
|                       | True Positive<br>TP  | False Negative<br>FN |
| Disease<br>(D = 1)    | X                    | $\odot$              |
|                       | False Positive<br>FP | True Negative<br>TN  |

# SPECIFIEK VOORBEELD



KU LEUVEN

# OP BASIS VAN EEN THRESHOLD



# **DEFINITIES**



# **DEFINITIES**



#### **DEFINITIES**



# **DEFINITIES**



# ROC CURVE = VERSCHUIVEN VAN DE THRESHOLD WAARDE



# **ROC CURVES VERGELIJKEN**



# **ROC CURVES: EXTREMA**

# Beste Test: Slechtste test: 100% Rate Geval wanneer de distributies niet overlappen Slechtste test: Wanneer de distributies volledig overlappen KULEUVEN

# AREA UNDER ROC CURVE (AUC)

- Een algemene maat van test performatie
- Twee testen *vergelijken* gebaseerd op hun *geschatte AUC*
- Continue data gebruikt men de Mann-Whitney Ustatistic

KU LEUVEN

# AREA UNDER ROC CURVE (AUC)



# TOEPASSEN OP OBJECT DETECTOREN

- Detectoren gaan over een afbeelding in een sliding window aanpak over de verschillede schaken heen:
- Elk window wordt aan een analyse van de detector onderworpen.



· Sliding window over image · Each sub-window is analyzed by detector



KU LEUVEN

#### WAT DE DETECTOR ZIET



# EVALUEREN VAN DETECTOR RESULTATEN



| Detector result    | detected               | not detected           |
|--------------------|------------------------|------------------------|
| Object<br>present  | True<br>Positive       | X<br>False<br>Negative |
| Object not present | X<br>False<br>Positive | True<br>Negative       |
|                    |                        | KU LEUVE               |

# PROBLEEM MET ROC CURVES VOOR **DETECTOREN**

- Het aantal true negatives is voor afbeeldingen niet gekend
- · Alternatief: precision-recall curve





KU LEUVEN

### PRECISION-RECALL CURVES VOOR **VOETGANGER DETECTOREN**



Resultaten van state-of-the-art voetganger detectoren op een standard test set "Caltech"

KU LEUVEN

# **EVALUATIE SNOEP DETECTOR**



Threshold = 5

(object gedetecteerd)

(een detectie op een niet object)

(een object werd niet gedetecteerd)

# **EVALUATIE SNOEP DETECTOR**



Threshold = 5

TP? (object gedetecteerd)

(een detectie op een niet object)

(een object werd niet gedetecteerd)

KU LEUVEN

# **EVALUATIE SNOEP DETECTOR**



Threshold = 5

(object gedetecteerd)

(een detectie op een niet object)

(een object werd niet

KU LEUVEN

# **EVALUATIE SNOEP DETECTOR**



Threshold = 5

(object gedetecteerd)

(een detectie op een niet object)

(een object werd niet gedetecteerd)

| EVALUATIE ONOED DETECTOR                                                                                                                                                  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| EVALUATIE SNOEP DETECTOR                                                                                                                                                  |  |
| Precision = TP / (TP + FP)                                                                                                                                                |  |
| Recall = TP / (TP + FN)                                                                                                                                                   |  |
|                                                                                                                                                                           |  |
|                                                                                                                                                                           |  |
| KU LEUVEN                                                                                                                                                                 |  |
|                                                                                                                                                                           |  |
|                                                                                                                                                                           |  |
|                                                                                                                                                                           |  |
| Om een object detector te evalueren:                                                                                                                                      |  |
| <ul> <li>Een set beelden annoteren</li> <li>Op een subset van de annotaties een detector trainen</li> </ul>                                                               |  |
| (training set)  De overige beelden (test set) gebruiken om                                                                                                                |  |
| TP, FP & FN rates te berekenen  Vervolgens precision & recall uitrekenen                                                                                                  |  |
| Precision-recall curves for uitplotten voor verschillende threshold waarden                                                                                               |  |
| <ul> <li>OPGELET OpenCV: sommige detectoren (e.g.<br/>Viola&amp;Jones) geven niet automatisch een score terug</li> </ul>                                                  |  |
| waardoor je geen threshold kan toepassen  → geen PR-curve mogelijk  KU LEUVEN                                                                                             |  |
|                                                                                                                                                                           |  |
|                                                                                                                                                                           |  |
|                                                                                                                                                                           |  |
|                                                                                                                                                                           |  |
| PROGRAMMA                                                                                                                                                                 |  |
| 09u30 Ontvangst met koffie 10u00 Verwelkoming & introductie EAVISE                                                                                                        |  |
| <ul> <li>10u15 Voorstelling algoritmes + introductie in de software</li> <li>11u00 Pauze</li> <li>11u15 Eerste hands-on sessie: de object annotatie tool en de</li> </ul> |  |
| preprocessing van de nodige data  12u30 Middagmaal – warme lunch (aangeboden door data vision )  13u30 Tweede hands-on sessie: het trainingsproces dieper bekijken,       |  |
| het intrainen van een objectmodel en het uittesten van detector 15u00 Pauze 15u15 Toelichting van enkele knelpunten (rotatie, clutter, occlusie) en                       |  |
| de 'kwaliteit' van de detector bespreken  15u50 Vragen & evaluatie  16u00 Einde van de workshop                                                                           |  |
| 72 KU LEUVEN                                                                                                                                                              |  |
|                                                                                                                                                                           |  |