Statistics: The Science of Decisions Project

Question #1

What is our independent variable? What is our dependent variable?

The independent variable is the word conditions. There are two types of word conditions - Congruent words condition and an Incongruent words condition.

Dependent variable is the time taken by the participant to name the ink colors in each words condition.

Question #2.

What is an appropriate set of hypotheses for this task? What kind of statistical test do you expect to perform? Justify your choices.

The appropriate set of hypotheses would be

H0:
$$\mu c = \mu i$$

HA: $\mu c \neq \mu i$

Where,

H0 is the null hypothesis states that there is no significant difference between congruent and incongruent words

 ${\rm H}{\it A}$ is the alternative hypothesis states that there is a significant difference between congruent and incongruent words

 μ c is the average population response time of the congruent words μi is the average population response time of the incongruent words

T -tests are performed when

• The population parameters are unknown

• When you have a sample of small size

We assume that the sampling distribution is approximately normal because of the small sample size.

A paired t-test is used when we have two related observations (ie each participant take part in two word conditions). Hence it falls under the dependent sample or repeated measures.

Non-directional alternative hypothesis does not predict whether μc is larger or smaller than the μi we are interested in knowing whether μc is equal to μi or not.

Two tailed ,dependent t-test at $\alpha = 0.05$ is our statistical test

Question #3. Report some descriptive statistics regarding this dataset. Include at least one measure of central tendency and at least one measure of variability.

The central tendency

Mean of the congruent words condition= 14.05 Mean of the incongruent words condition = 22.02

The dataset can be modified as below to calculate the mode

Value Range	Congruent words	Incongruent words
0-5	0	0
5-10	4	0
10-15	11	0
15-20	8	8
20-25	1	12
25-30	0	2
30-35	0	2

Congruent words has highest occurences in the value range 10-15

Measure of Variability

	Congruent words	Incongruent words
Sum of squares	291.39	529.27
variance	12.67	23.01
Standard deviation	3.56	4.80

Congruent	Incongruent	congruent	Incongruent			
12.079	19.278	3.889277016	7.496187674			
16.791	18.741	7.506915016	10.72507917		congruent	incongruent
9.564	21.214	20.13429077	0.6430703403	variance=	12.66902907	23.01175704
8.63	15.687	29.38859627	40.05518617	std deviation=	3.559357958	4.797057122
14.669	22.803	0.3817695156	0.6195001736			
12.238	20.878	3.287422266	1.29485434			
14.692	24.572	0.4107207656	6.533562007			
8.987	17.394	25.64536202	21.36211367			
9.401	20.762	21.62366252	1.572307007			
14.48	26.282	0.1839337656	18.19946701			
22.328	24.524	68.50665977	6.290482007			
15.298	18.644	1.554697266	11.36982201			
15.073	17.51	1.044228516	20.30328501			
16.929	20.33	8.282164516	2.842315007			
18.2	35.255	17.21316377	175.2733275			
12.13	22.158	3.690721266	0.02018767361			
18.495	25.139	19.74802502	9.753649507			
10.639	20.429	11.64259702	2.518304507			
11.344	17.425	7.328525766	21.07651584			
12.369	34.288	2.829544516	150.6040293			
12.944	23.894	1.225725766	3.527197007			
14.233	17.96	0.03307851562	16.45046001			
19.71	22.058	32.02286627	0.001771006944			

16.004	21.157	3.813720766	0.7377378403		
mean=	mean=	sum of squares=	sum of squares=		
14.05112 5	22.01591667	291.3876686	529.2704118		

Question #4

Provide one or two visualizations that show the distribution of the sample data. Write one or two sentences noting what you observe about the plot or plots.

The sample data can be visualized using a bar diagram ,scatterplot or histogram

On visualizing the sample data ,the data points of incongruent words are higher than the datapoints of congruent words.

Bar diagram :

congruent and incongruent

Scatterplot:

Question #5.

Now, perform the statistical test and report your results. What is your confidence level and your critical statistic value? Do you reject the null hypothesis or fail to reject it? Come to a conclusion in terms of the experiment task. Did the results match up with your expectations?

Congruent	Incongruent	difference	
12.079	19.278	-7.199	0.5864368767
16.791	18.741	-1.95	36.17771879
9.564	21.214	-11.65	13.58076046
8.63	15.687	-7.057	0.8240857101
14.669	22.803	-8.134	0.02863146007
12.238	20.878	-8.64	0.4559062934
14.692	24.572	-9.88	3.66802296
8.987	17.394	-8.407	0.1955482101
9.401	20.762	-11.361	11.53423104
14.48	26.282	-11.802	14.72416779
22.328	24.524	-2.196	33.27895729
15.298	18.644	-3.346	21.33323646
15.073	17.51	-2.437	30.55648071
16.929	20.33	-3.401	20.82819438
18.2	35.255	-17.055	82.63188754
12.13	22.158	-10.028	4.256828627
18.495	25.139	-6.644	1.744490627
10.639	20.429	-9.79	3.33138546
11.344	17.425	-6.081	3.548671043
12.369	34.288	-21.919	194.7199302
12.944	23.894	-10.95	8.911468793
14.233	17.96	-3.727	17.95887821
19.71	22.058	-2.348	31.54834863
16.004	21.157	-5.153	7.906172377
mean=	mean=	mean=	sum=
14.051125	22.01591667	-7.964791667	544.33044

```
S=4.86482691
```

Standard error =0.993

n=24 df=23

t statistic = -8.02t critical = ± 2.069

Margin of error =2.05

95% Confidence Interval =(-10.02, -5.91)

The t statistic value falls in the critical region hence we reject the null.

Our statistical test shows that there is a significant difference between congruent and incongruent words. The results did match up with the visualized data.

Question #6

What do you think is responsible for the effects observed? Can you think of an alternative or similar task that would result in a similar effect? Some research about the problem will be helpful for thinking about these two questions!

The carryover effects might have caused this trend. When a participant takes part in the congruent words ,it is easier to read the colour of ink as it matches with its colour name. Brain gets used to this and when the same participant takes incongruent words ,they tend to read the words by congruent way initially and corrects themselves later .so the time taken in reading a incongruent words is higher. Hence I say carryover effects has an impact.

The stroop effect with direction likely to have same effect of this one.

The stroop effect with direction is carried by showing Up,Down,left and right in a square. In congruent method, each directional word matches with its position whereas in incongruent method,each directional word does not match with its position in the square. Stroop effect with incongruent method likely to take more time than congruent method.

References:

http://study.com/academy/lesson/identifying-interpreting-independent-dependent-variables.html

https://faculty.washington.edu/chudler/words.html

http://www.math.unt.edu/~tam/SelfTests/StroopEffects.html