		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Sc. Wu	NDS 108,1057 (2007)	1-Mar-2007

 $Q(\beta^{-})=-7.50\times10^{3} \ 6$; $S(n)=8694 \ 15$; $S(p)=3021 \ 18$; $Q(\alpha)=8072 \ 5$ 2012Wa38

Note: Current evaluation has used the following Q record -7.50E3 7 8694 30 2996 25 8071 6 2003Au03.

Calculations, compilations, systematics:

Cluster model for α decay, Geiger-Nuttall plot: 1991Bu05, 1986Ir01.

n-p interaction energy: 1990Mo11.

Quasi-bands in even-even nuclei: 1984Sa37. Spontaneous emission of heavy ions: 1986Po06. Super- and hyperdeformed configurations: 1995We02.

²¹⁶Th Levels

Cross Reference (XREF) Flags

A $(HI,xn\gamma)$

E(level) [†]	${ m J}^{\pi}$	${{ m T}_{1/2}}^{\dagger}$	XREF	Comments
0.0	0+	26.0 ms 2	A	$\%\alpha=100; \%\varepsilon+\%\beta^+\approx0.01 \text{ syst}$
				% ε : from gross β -decay strength function (1973Ta30). 1968Va18 report % ε <0.6.
				$\log ft > 3.6$ gives $\%\varepsilon + \%\beta^+ < 0.2$ for any single $\varepsilon + \beta^+$ group.
				$E\alpha$ =7921 keV 3, weighted average of $E\alpha$ =7923 keV 5 from 2005Ku31; 7919 keV 6
				from 2001Ha46 and 7911 keV 8 from 1968Va18. 7922 keV 10 from 2000He17 is
				superseded by the value from 2005Ku31.
				$T_{1/2}$: weighted average of values measured in α -decay: 26.0 ms 2 from 2005Ku31,
				25.4 ms 8 from 2001Ha46 and 28 ms 2 from 1968Va18. OThers: 27.0 ms 3 and 30
1.450.0.1	2+			ms 3 from 2000H317 are superseded by data from 2005Ku31.
1478.2 <i>I</i>	2 ⁺		A	J^{π} : stretched E2 to 0^+ .
1687.7 2	3- 4+		A	J^{π} : E1 to 2+, E1 from 4+.
1813.8 2 2013.7 2	6 ⁺		A A	J^{π} : stretched E2 to 2^+ . J^{π} : stretched E2 to 4^+ .
2013.7 2	8 ⁺	134 μs <i>4</i>	A	3° : Stretched E2 to 4°. 8° :
2040 9	O	13+ μs +		$%\alpha = 2.83$ % from 2005Ku31. Other: 5 +5-3 from 2001Ha46. %IT=97 <i>I</i> calculated by
				1983Hi08 from the observed isomer ratio and comparison with that for ²¹⁷ Pa(29/2
				level).
				Configuration= $h_{9/2}f_{7/2}$.
				$E\alpha$ =9923 keV 8, weighted average of $E\alpha$ =9930 keV 10 from 2005Ku31; 9915 keV
				15 from 2001Ha46 and 9912 keV 20 from 1983Hi08. 9933 keV 15 from 2000He17 is superseded by the value from 2005Ku31.
				E(level): from the energy difference for the α -decay from this level and the
				ground state to the ²¹² Ra ground state, corrected for recoil.
				J^{π} : suggested by 1983Hi08 on the basis of systematics of N=126 nuclei
				(²¹⁰ Po, ²¹² Rn, ²¹⁴ Ra). Current systematics of Z=90 nuclei (N=132,130,128) and
				Z=88 nuclei (N=130,128,126,124) confirm the expectation of an 8^+ level at ≈ 2
				MeV.
				$T_{1/2}$: weighted average of values measured in α -decay: 0.135 ms 4 from 2005Ku31;
				0.128 ms 8 from 2001Ha46 and 0.18 ms 4 from 1983Hi08. Other: 0.140 ms 5 from
				2000He17 is superseded by data from 2005Ku31.
2130.5 2	(8^+)	0.50	A	Configuration= $h_{9/2}^2$.
2646.8 <i>1</i>	11-	$0.58 \ \mu s \ 3$	A	Configuration= $h_{9/2}^{9/2}i_{11/2}$.
				J^{π} : suggested by 1983Hi08 on the basis of systematics is an 11 ⁻ level. Extrapolation
				from ²¹⁰ Po (2849 keV), ²¹² Rn (2760 keV) and ²¹⁴ Ra (2683 keV) puts the 11 ⁻¹
				level in 216 Th at \approx 2.6 MeV. This extrapolation is again supported by the behavior

²¹⁶Th Levels (continued)

E(level) [†]	J^{π}	$T_{1/2}^{\dagger}$	XREF	Comments
	<u> </u>			of the 11 ⁻ level in Z=88 nuclei (²¹⁸ Ra to ²¹² Ra).
3530.2 4	(12^{+})		A	
3681.4 7	(14^{+})	$0.74 \ \mu s \ 7$	Α	

 $^{^{\}dagger}$ From (HI,xn γ), except as noted.

 $\gamma(^{216}\text{Th})$

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	E_f .	J_f^{π} Mult.	α^{\dagger}	Comments
1478.2	2+	1478.2 <i>I</i>	100	0.0 0	+ E2	0.00487	
1687.7	3-	209.5 1	100	1478.2 2 ⁺	+ E1	0.0846	
1813.8	4 ⁺	126.1 <i>I</i>	100	1687.7 3	- E1	0.283	
		335		1478.2 2	+ E2	0.1216	
2013.7	6+	199.9 <i>1</i>	100	1813.8 4 ⁺	+ E2	0.660	
2130.5	(8^{+})	(90.5 3)		2040 8	+		
2646.8	11-	516.3 2	8 2	2130.5 (8	8 ⁺) [E3]	0.1428	B(E3)(W.u.)=5.0 15
		606.8 <i>1</i>	100 4	2040 8	+ E3	0.0876	B(E3)(W.u.)=21 2
3530.2	(12^{+})	883.4 <i>3</i>	100	2646.8 11	1-		
3681.4	(14^{+})	151.2 6	100	3530.2 (1	(2 ⁺) E2	1.94 5	B(E2)(W.u.)=0.053 8

[†] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

History											
Type	Author	Citation	Literature Cutoff Date								
Full Evaluation	Balraj Singh	ENSDF	10-Jun-2021								

 $Q(\beta^{-}) = -6283 \ 21$; $S(n) = 7910 \ 15$; $S(p) = 3625 \ 15$; $Q(\alpha) = 9849 \ 9$ 2021Wa16 $Q(\varepsilon)=1520\ 60,\ S(2n)=14074\ 15,\ S(2p)=5503\ 13\ (2021Wa16).$

Additional information 1. 218 Th identified by 1973Hi06 in 209 Bi(14 N,5n) reaction and by 1973Ha32 in 206 Pb(16 O,4n), the two independent studies, 1973Hi06 published July 23, 1973, and 1973Ha32 on July 30, 1973.

Search for long-lived isomers: 2008La14 (no evidence found), 2007Ma57 (claimed evidence of presence of isomers). Theory references: consult NSR database (www.nndc.bnl.gov/nsr/) for 64 primary references for calculations of half-lives of

radioactive decays, and 23 for nuclear structure.

²¹⁸Th Levels

Cross Reference (XREF) Flags

- $^{222}\mathrm{U}~\alpha$ decay (4.7 $\mu\mathrm{s})$
- $^{174}{\rm Yb}(^{48}{\rm Ca}, 4n\gamma) \\ ^{206}{\rm Pb}(^{16}{\rm O}, 4n\gamma), ^{209}{\rm Bi}(^{14}{\rm N}, 5n\gamma)$

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments
0.0#	0^{+}	122 ns 5	ABC	$\%\alpha = 100$
				Only the α decay has been observed. Theoretical partial $T_{1/2}>100$ s for 218 Th $\varepsilon+\beta^+$ decay (2019Mo01) gives $\%\varepsilon+\%\beta^+<1.2\times10^{-7}$. $T_{1/2}$: from decay curve for g.s. to g.s. 9666 α . Weighted average (NRM) of 122 ns δ (1973Ha32); 96 ns δ (1973No09,1973Hi06); 125 ns δ (1982Ch29); 0.16 μ s δ (2015Kh09); and 169 ns δ (2018Br13). Regular weighted average is 117 ns δ 7, with reduced δ 2 of 3.7 as compared to critical δ 2=2.4. Weighted
				average is 125 ns 5 if the lowest value of 96 ns from 1973Hi06 is omitted.
				Configuration= $\pi(h_{9/2}^6 f_{7/2}^2) \otimes \nu g_{9/2}^2$ with 14% probability (2020Od01).
689.0 [#] <i>3</i>	2+		BC	J^{π} : E2 γ to 0^+ .
				Configuration= $\pi(h_{9/2}^6 f_{7/2}^2) \otimes \nu g_{9/2}^2$ with 25% probability (2020Od01).
1078.0 6	(3^{-})		BC	XREF: C(?).
				J^{π} : $\Delta J=(1) \gamma$ to 2^+ .
ш				Configuration= $\pi h_{9/2}^8 \otimes v(g_{9/2}^1 j_{15/2}^1)$ with 26% probability (2020Od01).
1192.3 [#] 5	4+		BC	J^{π} : E2 γ to 2 ⁺ .
ш				Configuration= $\pi(h_{9/2}^6 f_{7/2}^2) \otimes \nu g_{9/2}^2$ with 28% probability (2020Od01).
1560.8 [#] 6	6+		BC	J^{π} : E2 γ to 4 ⁺ , yrast band member.
ш				Configuration= $\pi(h_{9/2}^6 f_{7/2}^2) \otimes \nu g_{9/2}^2$ with 28% probability (2020Od01). $T_{1/2}$: from ce(t) in 209 Bi(14 N,5n γ).
1761.7 [#] 7	8+	1.2 ns 2	BC	$T_{1/2}$: from ce(t) in 209 Bi(14 N,5n γ).
				J^{π} : E2 γ to 6 ⁺ , yrast band member.
# -				Configuration= $\pi(h_{9/27/2}^6) \otimes vg_{9/2}^2$ with 28% probability (2020Od01).
2099.5 [#] 9	10 ⁺	0.25 ns <i>15</i>	BC	$T_{1/2}$: from ce(t) in $209 \text{Bi}(^{14}\text{N}, 5\text{n}\gamma)$.
				J^{π} : E2 γ to 8^+ , yrast band member.
2272.6 [@] 10	(11=)		D.C.	Configuration= $\pi(h_{9/2}^6 f_{7/2}^2) \otimes \nu(i_{11/2}^1 g_{9/2}^1 \text{ with 26\% probability (2020Od01)}.$
22/2.6 10	(11^{-})		BC	XREF: C(?). J^{π} : $\Delta J=(1)$, (E1) γ to 10^{+} ; shell-model prediction (2020Od01).
				Configuration= $\pi h_{9/2}^8 \otimes v(g_{9/2}^4j_{15/2}^1)$ with 32% probability (2020Od01).
2686.3 [@] 10	(13^{-})		ВС	276 From Section = 769/2 From Section XREF: C(?).
2000.3 10	(13)		ВС	J^{π} : $\Delta J=(2) \gamma$ to (11^-) ; band member; shell-model prediction (2020Od01).
				Configuration= $\pi(h_{9/2}^6 i_{13/2}^2) \otimes \nu(g_{9/2}^6 j_{15/2}^1)$ with 31% probability (2020Od01).

²¹⁸Th Levels (continued)

E(level) [†]	Jπ‡	XREF	Comments
3160.0 [@] 12	(15 ⁻)		J^{π} : $\Delta J=(2) \gamma$ to (13 ⁻); band member; shell-model prediction (2020Od01).
3306.7 13	(16 ⁺)	В	Configuration= $\pi(h_{9/2}^6 i_{13/2}^2) \otimes v(g_{9/2}^1 j_{15/2}^1)$ with 37% probability (2020Od01). J^{π} : $\Delta J=1$, (E1) transition to (15 ⁻); shell-model prediction (2020Od01). Configuration= $\pi(h_{9/2}^7 f_{1/2}^1) \otimes vg_{9/2}^2$ with 42% probability (2020Od01).

[†] From Eγ data.

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.	α &	Comments
689.0	2+	689.0 <i>3</i>	100	0.0 0+	E2 [‡]	0.0209	E_{γ} : 689.6 6 in (16 O,4n γ).
1078.0	(3^{-})	388.9 6	100	689.0 2+	(D)#		E_{γ} : 390.5 10 in ($^{16}O,4n\gamma$).
1192.3	4+	114.2 7	2.3 2	1078.0 (3-)	(D)#		E_{γ} : from (⁴⁸ Ca,4n γ) only.
		503.3 <i>3</i>	100.0 17	689.0 2 ⁺	E2 [‡]	0.0420	E_{γ} : 504.6 6 in (16 O,4n γ).
1560.8	6+	368.5 <i>3</i>	100	1192.3 4+	E2 [‡]	0.093	E_{γ} : 369.7 6 in (16 O,4n γ).
1761.7	8+	200.9 4	100	1560.8 6 ⁺	E2 [‡]	0.648 11	B(E2)(W.u.)=11 2
							E_{γ} : 201.9 6 in (16 O,4n γ).
2099.5	10 ⁺	337.8 5	100	1761.7 8 ⁺	E2 [‡]	0.1187	B(E2)(W.u.)=6 +9-2
							E_{γ} : 338.2 6 in ($^{16}O,4n\gamma$).
2272.6	(11^{-})	173.1 4	100	2099.5 10 ⁺	(E1) [@]	0.133 2	E_{γ} : 173.3 6 in (^{16}O ,4n γ).
2686.3	(13^{-})	413.7 4	100	2272.6 (11 ⁻)	(Q)#		E_{γ} : 414.5 <i>10</i> in (^{16}O ,4n γ).
3160.0	(15^{-})	473.7 5	100	2686.3 (13-)	(Q)#		E_{γ} : from (48 Ca,n $_{\gamma}$) only.
3306.7	(16 ⁺)	146.7 5	100	3160.0 (15 ⁻)	(E1) [@]	0.197 4	E_{γ} : from (⁴⁸ Ca,n γ). An unplaced 146.9 6 γ was seen in (¹⁶ O,4n γ).

[†] From 174 Yb(48 Ca, 4 n γ). Values in 206 Pb(16 O, 4 n γ), 209 Bi(14 N, 5 n γ), listed under comments, seem consistently higher by about

[‡] In addition to the arguments given, the assignments are supported from shell-model calculations in 2020Od01.

[#] Band(A): Yrast (g.s.) band.

[@] Band(B): Band based on (11⁻).

[‡] From K/L ratios in ce data in 209 Bi(14 N,5n γ), supplemented by Δ J=2, quadrupole from γ -ray angular distributions in $^{174}{\rm Yb}(^{48}{\rm Ca},4{\rm n}\gamma)$, and by RUL for E2 and M2, when level half-lives are known. $^{\#}{\rm From}~\gamma$ -ray angular distributions in $^{174}{\rm Yb}(^{48}{\rm Ca},4{\rm n}\gamma)$, with mult=(Q) and (D), most likely (E2) and (E1), respectively.

[@] From γ -ray angular distribution in 174 Yb(48 Ca, 4 n γ), and intensity balance arguments.

[&]amp; Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

Level Scheme

Intensities: Relative photon branching from each level

History

Type Author Citation Literature Cutoff Date
Full Evaluation Balraj Singh, M. S. Basunia, Jun Chen et al. , NDS 192,315 (2023) 25-Sep-2023

 $Q(\beta^{-})=-4860 \ 90; \ S(n)=7808 \ 13; \ S(p)=4620 \ 60; \ Q(\alpha)=8132.6 \ 29$ 2021Wa16

 $Q(\varepsilon)=581\ 11$, $S(2n)=13629\ 17$, $S(2p)=7647\ 13$ (2021Wa16).

1970To07: 222 Th produced and identified in 208 Pb(16 O,2n), E(16 O)=10.6 MeV/nucleon at the Yale accelerator facility; measured α -decay and half-life.

1970Va13: ²²²Th produced and identified in ²⁰⁸Pb(¹⁸O,4n); ²⁰⁸Pb(²⁰Ne, α 2n); ²⁰⁸Pb(²²Ne, α 4n); ²⁰⁹Bi(¹⁹F, α 2n); E=10.3 MeV/nucleon from Berkeley HILAC facility; measured α -decay and half-life.

Later studies of ²²²Th decay: 1991AnZZ, 1999Ho28, 2000He17, 2001Ku07, 2005Li17, 2016Pa28, 2018Mi11.

Theoretical nuclear structure calculations:

2022Ja07: calculated fragmentation potentials and preformation probabilities as functions of mass and charge distributions, fission $\sigma(E)$ using dynamical cluster-decay model (DCM), including quadrupole β_2 and octupole β_3 deformations of fission fragments.

2020Ca18: calculated deformation parameters β_2 , β_3 , octupole deformation energies, proton moments Q_{20} and Q_{30} for octupole-deformed nuclei using Skyrme energy density functionals, and covariant energy density functionals.

2020No13: calculated potential energy surface in (β_2,β_3) plane, energies of yrast positive-parity and negative-parity states, energy splitting between positive- and negative-parity yrast bands, B(E1), B(E2), B(E3), transition quadrupole and octupole moments using interacting boson model (IBM).

2018Ah03: calculated levels, J^{π} , bands using IBM-1, Bohr-Mottelson, and IVBM models.

2018Ry04: calculated deformation energy relative to (β_{20},β_{30}) plane, quadrupole and octupole deformation of the mean-field minimum, excitation energies of rotational states using cranked HFB approach; deduced sudden change in configuration and shape of the observed yrast states from large octupole deformation at low spin to small octupole deformation at high spin.

2017Xi15: calculated levels, J^{π} , B(E1), B(E2), B(E3), electric dipole moments, deformation energy surface in (β_2,β_3) plane, states of reflection-asymmetric nuclei using microscopic quadrupole-octupole collective Hamiltonian (QOCH) based on relativistic PC-PK1 energy density functionals.

2017Ne02: calculated potential energy surface, deformation, g.s. and superdeformed quadrupole moments using Fourier shape parameterization.

2013No07: calculated levels, J^{π} , bands, potential energy surfaces, B(E2), B(E1) using microscopic framework based on nuclear density functional theory.

2008Fr03: calculated energy differences between positive and negative parity yrast sequences, and energies of aligned octupole multiphonon bands for heart-shaped nuclei.

2005Bo18: calculated g.s. and vibrational bands, level energies, B(E1), B(E2), shape transitions using analytic quadrupole octupole axially symmetric model.

2000Bo34: calculated octupole bands transition energies, beat patterns using algebraic models.

1995Jo11: calculated alternating-parity ground state bands level energies, octupole correlations, rotational spectra.

1989Eg02: calculated octupole barrier energies, pairing energy, deformations using microscopic model.

1987Na10: calculated levels, J^{π} , routhians, rotational bands, shapes, B(E1)/B(E2) ratios using the cranking model.

1986Le05: calculated B(E1)/B(E2) branching ratio, shell effects on collective E1 excitations, adiabatic isovector and isoscalar deformations.

1984Fr06: calculated quasiparticle routhians for pear-shaped rotating nuclei, octupole-quadrupole deformed axial Woods-Saxon potential.

1984Na08: calculated β_2 , β_3 deformation parameters using Woods-Saxon-Bogolyubov cranking theory.

Other theoretical calculations: 73 primary references for structure, and 75 for decay modes (α , ¹⁴C and clusters, SF) retrieved from the NSR database are listed as 'document' records in this dataset.

Additional information 1.

²²²Th Levels

The $K^{\pi}=0^+$ g.s. band and the $K^{\pi}=0^-$ band at 246 keV have been interpreted as octupole parity-doublet bands. Additional high-spin levels, decaying by a single transition each, with no J^{π} assignments, are proposed only by 1988ScZF at 1477.2, 1502.4, 1541.4, 1593.3, 1612.6, 1774.6, 1906.2, 1926.2, 1935.2, 2035.8, 2304.8, 2312.6 and 2404.0 keV. These are not listed in this dataset, as evaluators consider these as unconfirmed, but can be found in the 208 Pb(18 O,4n γ) dataset.

Cross Reference (XREF) Flags

```
A ^{226}U α decay (268 ms) ^{208}Pb(^{18}O,4nγ)
```

				$B = \frac{200 \text{Pb}(100,4\text{n}\gamma)}{100}$
E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	XREF	Comments
0.0@	0+	1.964 ms 2	AB	%α=100 %ε<1.3×10 ⁻⁸ , estimated by evaluators from a possible ε branch to ²²² Ac g.s., with log $f_t>5.9$. Theoretical partial $T_{1/2}>100$ s for ²²² Th ε decay (2019Mo01) gives %ε<0.002, and theoretical partial $T_{1/2}\approx8\times10^{+4}$ s of 1973Ta30 gives %ε≈3×10 ⁻⁶ . $T_{1/2}$: from 2016Pa28 (recoil-α decay, authors used the RITU separator and measured αγ-coin and Eα). Others: 2.3 ms +8−5 (2018Mi11); 2.4 ms 3 (2005Li17), 2.237 ms I_3 (2001Ku07, recoil-α decay curve), 2.0 ms I_3 (2000He17), 4.2 ms 5 (1999Ho28), 2.2 ms 2 (1991AnZZ), 2.8 ms 3 (1970Va13), 4 ms I_3 (1970To07). Precise values from 2001Ku07 (conference report), and 1999Ho28 are in severe disagreement with that from 2016Pa28, the former differing by ≈20 standard deviations, and the latter larger by a factor of two. The three measurements (2016Pa28, 2001Ku07, 1999Ho28) are from the same laboratory, with several of the same authors. For this reason, values from 2001Ku07 and 1999Ho28 are not considered in the averaging procedure. Other values agree with the adopted value within about two σ, but are too imprecise to be considered in the averaging procedure.
182.9 [@] 2	2+	240 ps 20	AB	
246 ^{&} 20	(1-)		A	E(level): from E α and Q(α). J^{π} : proposed by 2000He17, based on systematics of 1 ⁻ states in neighboring nuclei.
439.2 [@] 3	4+	46 ps 6	В	
466.6 6	(3 ⁻)		В	
650.4 ^{&} 4	5-		В	
749.3 [@] 4	6+	<51 ps	В	T _{1/2} : <45 ps 6 (1985Bo32). B(E1)/B(E2)=0.00016 3 (1983Wa20), 0.00011 2 (1985Bo32).
922.6 <mark>&</mark> 4	7-		В	B(E1)/B(E2)=0.00018 7 (1983Wa20), 0.00011 3 (1985Bo32).
1092.8 [@] 5	8+		В	B(E1)/B(E2)=0.00015 3 (1983Wa20), 0.00025 5 (1985Bo32).
1254.2 ^{&} 5	9-		В	B(E1)/B(E2)=0.00014 3 (1983Wa20), 0.00014 3 (1985Bo32).
1460.8 [@] 5	10 ⁺		В	B(E1)/B(E2)=0.00029 16 (1983Wa20), 0.00026 6 (1985Bo32).
1622.0 & 5	11-		В	B(E1)/B(E2)=0.00021 6 (1983Wa20), 0.00026 7 (1985Bo32).
1850.6 [@] 5	12+		В	B(E1)/B(E2)=0.00022 11 (1983Wa20), 0.00019 3 (1985Bo32).
2015.1 ^{&} 6	13-		В	B(E1)/B(E2)=0.00019 5 (1983Wa20), 0.00026 5 (1985Bo32).
2259.7 [@] 6	14+		В	B(E1)/B(E2)=0.00009 3 (1983Wa20), 0.00022 4 (1985Bo32).
2431.7 ^{&} 6	15-		В	B(E1)/B(E2)=0.00020 6 (1983Wa20), 0.00034 8 (1985Bo32).
2688.0 [@] 6	16 ⁺		В	B(E1)/B(E2)=0.00008 3 (1983Wa20).
2873.1 ^{&} 6	17-		В	B(E1)/B(E2)=0.00022 8 (1983Wa20).
3133.9 [@] 6	18 ⁺		В	
3340.9 <mark>&</mark> 7	19-		В	

²²²Th Levels (continued)

E(level) [†]	Jπ‡	XREF	E(level) [†]	$J^{\pi \ddagger}$	XREF
2270.0	20 ⁺	В	4348.5 ^{&} 7 4579.2 [@] 7	23-	В
3836.0 ^{&} 7	21^{-}	В	4579.2 [@] 7	24 ⁺	В
4078.6 [@] 7	22 ⁺	В	4882.1? ^{&} 8 5099.2? [@] 9	(25^{-})	В
			5099.2? [@] 9	(26^{+})	В

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$_{\mathrm{I}_{\gamma}}^{\dagger}$	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.‡	$lpha^{\#}$	Comments
182.9	2+	182.9 2	100	0.0 0+	E2	0.920 14	B(E2)(W.u.)=75 6
439.2	4 ⁺	256.3 2	100	182.9 2+	E2	0.278 4	B(E2)(W.u.)=109 15
466.6	(3^{-})	283.7	100	182.9 2+	[E1]	0.0421 7	()()
650.4	Š- ´	211.1 3	100	439.2 4+	E1	0.0831 12	
749.3	6+	98.7 <i>3</i>	80 7	650.4 5-	(E1)	0.1215 20	B(E1)(W.u.)>0.0013
		310.2 <i>3</i>	100 10	439.2 4+	E2	0.1524 22	B(E2)(W.u.)>22
922.6	7-	173.1 <i>3</i>	100 10	749.3 6+	E1	0.1329 19	
		272.4 <i>3</i>	1.4 4	650.4 5	(E2)	0.2280 33	
1092.8	8+	170.1 <i>3</i>	100 10	922.6 7-	E1	0.1385 20	
		343.6 <i>3</i>	18 <i>6</i>	749.3 6 ⁺	E2	0.1131 <i>16</i>	
1254.2	9-	161.2 <i>3</i>	100 11	1092.8 8+	E1	0.1575 23	
		331.6 <i>3</i>	23 7	922.6 7-	E2	0.1252 18	
1460.8	10^{+}	206.4 3	100 10	1254.2 9	E1	0.0876 13	
		368.1 <i>3</i>	15 5	1092.8 8+	E2	0.0932 13	
1622.0	11-	161.1 <i>3</i>	100 20	1460.8 10 ⁺	E1	0.1577 23	
		367.8 <i>3</i>	54 17	1254.2 9-	E2	0.0934 13	
1850.6	12 ⁺	228.5 <i>3</i>	100 20	1622.0 11	E1	0.0691 10	
		389.8 <i>3</i>	13 4	$1460.8 10^{+}$	(E2)	0.0798 11	
2015.1	13-	164.4 <i>3</i>	100 <i>21</i>	$1850.6 12^{+}$	(E1)	0.1503 22	
		393.2 <i>3</i>	45 15	1622.0 11	(E2)	0.0780 11	
2259.7	14 ⁺	244.6 <i>3</i>	100 <i>19</i>	2015.1 13	E1	0.0590 8	
		409.2 3	10 4	1850.6 12 ⁺	(E2)	0.0702 10	
2431.7	15-	171.7 <i>3</i>	100 21	$2259.7 14^{+}$	[E1]	0.1355 20	
		416.6 <i>3</i>	47 16	2015.1 13	(E2)	0.0670 9	
2688.0	16 ⁺	256.2 <i>3</i>	100 28	2431.7 15	[E1]	0.0531 8	
		428.5 <i>3</i>	26 8	2259.7 14+	(E2)	0.0624 9	
2873.1	17-	185.1 <i>3</i>	100 2 <i>I</i>	2688.0 16 ⁺	(E1)	0.1133 16	
	40+	441.3 3	35 11	2431.7 15	(E2)	0.0579 8	
3133.9	18 ⁺	260.6 <i>3</i>	100 2 <i>1</i>	2873.1 17	(E1)	0.0511 7	
22100	40-	446.0 <i>3</i>	40 12	2688.0 16 ⁺	[E2]	0.0564 8	
3340.9	19-	206.9 3	100 19	3133.9 18+	[E1]	0.0871 13	
2506.0	20+	468.0 3	41 12	2873.1 17	(E2)	0.0500 7	
3596.8	20+	256.0 3	100 28	3340.9 19-	[E1]	0.0532 8	
2026.0	21-	462.8 3	37 11	3133.9 18+	(E2)	0.0514 7	
3836.0	21-	239.2 <i>3</i>	100 30	3596.8 20 ⁺	[E1]	0.0622 9	

[†] From ²⁰⁸Pb(¹⁸O,4n γ), based on least-squares fit to E γ data. Exceptions are noted. [‡] From transition multipolarities measured in ²⁰⁸Pb(¹⁸O,4n γ) from conversion electron measurements and $\gamma(\theta)$ for selected γ rays, and g.s. yrast band, and octupole rotational band, as assigned in 1995Sm06 and 1988ScZF.

[#] For excited states, values are from measurement in ²⁰⁸Pb(¹⁸O,4nγ) (1985Bo32) using recoil-shadow method for conversion electrons.

[@] Band(A): $K^{\pi}=0^+$ g.s. band.

[&]amp; Band(B): $K^{\pi}=0^{-}$ octupole-vibrational band.

γ (222Th) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.‡	α#
3836.0	21-	494.9 3	29 9	3340.9	19-	(E2)	0.0437 6
4078.6	22 ⁺	242.3 <i>3</i>	100 29	3836.0	21-	[E1]	0.0603 9
		482.0 <i>3</i>	21 7	3596.8	20^{+}	(E2)	0.0466 7
4348.5	23^{-}	269.8 <i>3</i>	100 29	4078.6	22 ⁺	[E1]	0.0472 7
		512.6 <i>3</i>	60 19	3836.0	21^{-}	[E2]	0.0402 6
4579.2	24+	230.7 <i>3</i>	100 <i>30</i>	4348.5	23-	[E1]	0.0676 10
		500.7 <i>3</i>	34 11	4078.6	22 ⁺	(E2)	0.0425 6
4882.1?	(25^{-})	304 [@]		4579.2	24+		
		533.3	100	4348.5	23-	[E2]	0.0367 5
5099.2?	(26^+)	217 [@]		4882.1?	(25^{-})		
		520.0	100	4579.2	24+	[E2]	0.0389 6

 $^{^{\}dagger}$ From $^{208} Pb(^{18}O,4n\gamma).$ ‡ From ce and $\gamma(\theta)$ data in $^{208} Pb(^{18}O,4n\gamma).$

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified. [@] Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

γ Decay (Uncertain)

•

 \mathcal{S}

$$^{222}_{90}\mathrm{Th}_{132}$$

	History		
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh, Sukhjeet Singh	ENSDF	08-Mar-2022

 $Q(\beta^{-})=-3867$ 12; S(n)=7461 12; S(p)=5118 12; $Q(\alpha)=7299$ 6 S(2n)=13350 14, S(2p)=8903 10 (2021Wa16).

Theoretical calculations: 109 references extracted from the NSR database are listed in document records. Additional information 1.

²²⁴Th Levels

D₀/Q₀=electric dipole moment to electric quadrupole moment ratio deduced by 1993Ac02 from B(E1)/B(E2) ratios determined in $(\alpha,6n\gamma)$ reaction.

Cross Reference (XREF) Flags

- 228 U α decay (9.1 min)
- ²⁰⁸Pb(¹⁶O,Fγ):GDR ²⁰⁸Pb(¹⁸O,2nγ) В
- C
- 226 Ra(α ,6n γ)

E(level) [†]	$J^{\pi \#}$	T _{1/2}	XREF	Comments
0.0	0+	1.04 s 2	A CD	$\%\alpha$ =100
				$T_{1/2}$: weighted average of 0.812 s 99 (2000He17 from α decay), 1.05 s 2 (1978IbZZ), 1.03 s 5 (1970Va13, from α decay curve), 1.05 s 5 (1958To25, detection of integral α particles with pulsed beam).
98.1 [@] 3	2+	0.590 ns 40	A CD	J^{π} : E2 γ to 0^+ .
0				$T_{1/2}$: (186 ce(L2))(98 ce(L2))(t) in 226 Ra(α ,6n γ) (1986Sc18).
251.0? ^{&} 3	(1^{-})		A D	XREF: D(?).
6				J^{π} : possible member of $K^{\pi}=0^-$ band.
284.1 [@] 5	4+		A CD	J^{π} : stretched E2 γ to 2^{+} .
305.3 ^{&} 5	(3^{-})		CD	
464.5 <mark>&</mark> 5	(5^{-})		CD	
534.7 [@] 5	6+		CD	$D_0/Q_0=7.3\times10^{-4} \text{ fm}^{-1} II.$
699.5 <mark>&</mark> 5	(7^{-})		CD	
833.9 [@] 6	8+		CD	$D_0/Q_0=6.7\times10^{-4} \text{ fm}^{-1} 7.$
997.7 <mark>&</mark> 6	(9^{-})		CD	
1173.8 [@] 6	10+		CD	$D_0/Q_0=7.3\times10^{-4} \text{ fm}^{-1} 4.$
1347.3 <mark>&</mark> 6	(11^{-})		CD	XREF: C(?).
				$D_0/Q_0 = 8.8 \times 10^{-4} \text{ fm}^{-1} 6.$
1549.8 [@] 6	12+		D	$D_0/Q_0=8.4\times10^{-4} \text{ fm}^{-1} 4.$
1738.7 <mark>&</mark> 6	(13^{-})		D	$D_0/Q_0 = 8.0 \times 10^{-4} \text{ fm}^{-1} 4.$
1958.9 [@] 7	14+		D	$D_0/Q_0=9.3\times10^{-4} \text{ fm}^{-1} 5.$
2164.7 <mark>&</mark> 7	(15^{-})		D	$D_0/Q_0=8.9\times10^{-4} \text{ fm}^{-1} 6.$
2398.0 [@] 7	16 ⁺		D	

²²⁴Th isotope identified and produced by 1949Me54 in Th(α ,X) at E(α)=100-120 MeV, with an estimated half-life of \approx 1 s. Later studies of ²²⁴Th decay: 1958To25, 1961Ru06, 1970Va13, 1978IbZZ, 1989An13, 2000He17.

²⁰²⁰Cs01: theoretical structure calculations for levels, J^{π} , low-lying bandheads using pseudo- and proxy-SU(3) semimicroscopic algebraic quartet model (SAQM).

²²⁴Th Levels (continued)

E(level) [†]	$J^{\pi \#}$	$T_{1/2}$	XREF	Comments
2620.2? ^{&} 7	(17 ⁻)		D	$D_0/Q_0 = 10.0 \times 10^{-4} \text{ fm}^{-1} 13.$
2864? [@]	18 ⁺		D	
$10.8 \times 10^{3 \ddagger} 3$		4.4 MeV 6	В	
14.1×10^{3} 6		5.9 MeV 10	В	

[†] From least squares fit to E γ data.

$\gamma(^{224}\text{Th})$

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.‡	α@	Comments
98.1	2+	98.1 <i>3</i>	100	$0.0 0^{+}$	E2#	12.33 25	B(E2)(W.u.)=96 7
251.0?	(1^{-})	152.9 <i>3</i>	50 <i>13</i>	98.1 2+	[E1]	0.179	I_{γ} : from ²²⁸ U α decay.
	, ,	246 <i>3</i>	100 25	$0.0 \ 0^{+}$	[E1]	0.059	E_{γ}, I_{γ} : γ seen in ²²⁸ U α decay only.
284.1	4+	186.0 <i>3</i>	100	98.1 2+	E2#	0.863	
305.3	(3^{-})	207.2 3	100	98.1 2+	(E1)	0.0868	
464.5	(5^{-})	180.4 <i>3</i>	100	284.1 4+	(E1)	0.1204	
534.7	6+	70.2 <i>3</i>	85 25	464.5 (5 ⁻)	[E1]	0.299 6	
		250.6 <i>3</i>	100	284.1 4+	(E2)	0.299	
699.5	(7^{-})	164.8 <i>3</i>		534.7 6+	(E1)	0.151	
		235.0 <i>3</i>		$464.5 (5^{-})$			
833.9	8+	134.4 <i>3</i>	100	699.5 (7-)	(E1)	0.243	
		299.2 <i>3</i>	50 10	534.7 6+	[E2]	0.170	
997.7	(9^{-})	163.8 <i>3</i>		833.9 8+			
		298.2 <i>3</i>		699.5 (7-)			
1173.8	10 ⁺	176.1 <i>3</i>	100	997.7 (9-)	(E1)	0.1276	
		339.9 <i>3</i>	36 <i>4</i>	833.9 8+	[E2]	0.1166	
1347.3	(11^{-})	173.4 <i>3</i>	100	1173.8 10 ⁺	(E1)	0.1323	
		349.6 <i>3</i>	30 4	997.7 (9-)	[E2]	0.1076	
1549.8	12 ⁺	202.5 3	100	1347.3 (11 ⁻)	[E1]	0.0916	
		376.0 <i>3</i>	29 <i>3</i>	1173.8 10 ⁺	[E2]	0.0880	
1738.7	(13^{-})	188.9 <i>3</i>	100	1549.8 12 ⁺	[E1]	0.1080	
		391.4 <i>3</i>	50 5	1347.3 (11-)	[E2]	0.0790	
1958.9	14 ⁺	220.2 3	100	1738.7 (13 ⁻)	[E1]	0.0753	
		409.0 <i>3</i>	29 <i>3</i>	1549.8 12 ⁺	[E2]	0.0703	
2164.7	(15^{-})	205.8 <i>3</i>	100	1958.9 14 ⁺	[E1]	0.0882	
		426.1 <i>3</i>	45 6	1738.7 (13 ⁻)	[E2]	0.0633	
2398.0	16 ⁺	233.3 <i>3</i>		2164.7 (15 ⁻)			
		439.1 <i>3</i>		1958.9 14 ⁺			
2620.2?	(17^{-})	222.3 <mark>&</mark>	100	2398.0 16 ⁺	[E1]	0.0737	
		455.4 ^{&} 3	42 11	2164.7 (15 ⁻)	[E2]	0.0535	
2864?	18 ⁺	466 <mark>&</mark>		2398.0 16 ⁺			

[†] From 226 Ra(α ,6n γ), where data are more extensive and generally given with uncertainties. The E γ and γ branching ratios

[‡] GDR.

[#] Based on multipolarities for selected transitions in in-beam γ -ray studies, band structures and systematics of neighboring nuclides, unless specific arguments are given.

[@] Band(A): $K^{\pi} = 0^{+}$ g.s. band.

[&]amp; Band(B): $K^{\pi} = 0^{-}$ band.

γ (224Th) (continued)

available from $^{208}\text{Pb}(^{18}\text{O},2n\gamma)$ are in agreement with those from $(\alpha,6n\gamma)$ reaction but are less complete. The only exception is $251,(1^-)$ level, where energy of one γ ray and intensities are taken from α decay.

- [‡] From $\gamma(\theta)$ data in (¹⁸O,2n γ), unless otherwise stated.
- # Intensities of L1, and L2+L3 peaks in (¹⁸O,2nγ) displayed in spectral figure 1 of 1986Sc12 are consistent with E2.
- [@] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.
- & Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Band(A): $K^{\pi}=0^+$ g.s. band

$$^{224}_{90}\mathrm{Th}_{134}$$

		History	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	Y. A. Akovali	NDS 77,433 (1996)	1-Feb-1996

 $Q(\beta^{-}) = -2836 \ 13$; $S(n) = 7185 \ 7$; $S(p) = 5730 \ 7$; $Q(\alpha) = 6450.9 \ 23$ 2012Wa38

Note: Current evaluation has used the following Q record -2834 13 7187 8 5733 9 6451.2 10 1995Au04.

Wave functions and energies of K=0⁻,2⁺,2⁻,3⁻ and second 0⁻ octupole-vibrational states were calculated by 1975Iv03. See 1985Bo43, 1983Pi04, 1983Da28 for calculations of K=0⁻, 0⁺ vibrational states energies for various nuclear potentials; see 1970Ne08 for calculated energies of K=0⁻,1⁻,2⁻ and 3⁻ bands. See 1972Va20 for a noncollective description of a low-lying 0⁺ state and its calculated energy.

See 1995De13 and 1995La01 for calculations of the 0⁺ and 0⁻ rotational band energies.

For calculations of equilibrium deformation parameters see, for example, 1970Ga12, 1975Iv03, 1981Gy03, 1982Du16, 1982Le19, 1983Ro14, 1984Na22 and 1985Na07.

For calculations of electric quadrupole and hexadecapole moments see, for example, 1970Ga12, 1975Iv03 and 1983Ro14.

See 1970Ne08 and 1985Bo43 for calculated B(E3; 0^+ to 3^-); 1977Ba45 for calculated B(E3; 0^+ to 3^-) and B(E1; 0^+ to 1^-) values for K=0⁻ band; 1995La01 for transition matrix elements for 1^- to 0^+ , 2^+ to 0^+ , 3^- to 1^- and 3^- to 0^+ γ transitions.

The fermion dynamic symmetry model was used by 1992Ch20 to calculate the properties of the predicted superdeformed state. See 1992Ch20 for the calculated potential well, level energies and deformations.

²²⁶Th Levels

Cross Reference (XREF) Flags

- A $^{230}\mathrm{U}~\alpha~\mathrm{decay}$
- B 226 Ac β^- decay
- C (HI,xn γ)

E(level)	J^{π} @	T _{1/2}	XREF	Comments
0.0	0+	30.57 min <i>10</i>	ABC	%α=100
				$T_{1/2}$: measured by 1987Mi10. Other measurement: 30.9 min (1948St42).
72.20 [†] 4	2+	0.395 ns 20	ABC	J^{π} : 72.20 γ to 0 ⁺ is E2.
				$T_{1/2}$: by (α) (ce 72γ)(t) in 230 U α decay (1960Be25).
226.43 [†] 5	4+		ABC	J^{π} : intensity balance at 226.43-keV level suggests that 154.23 γ to 2 ⁺ level is E2; α hindrance factor is consistent with $J^{\pi}=4^+$ of the g.s. band.
230.37 [‡] 5	1^{-}		ABC	J^{π} : 230.37 γ to 0 ⁺ g.s. is E1.
307.5 [‡] 2	3-		ABC	J^{π} : intensity balance at the 307.5 level in 230 U α decay suggests that 81.0 and 235.3 γ' s to 4 ⁺ and 2 ⁺ levels are E1.
351 2			Α	•
362 <i>3</i>			Α	
447.3 [†] 2	6+		A C	J^{π} : 220.9 γ to 4 ⁺ level of g.s. band; energy fit to the rotational band.
450.5 [‡] 2	5-		A C	J^{π} : γ to 4^+ state; energy fit to the K=0 ⁻ band.
657.9 [‡] 2	7-		С	
721.9 [†] 2	8+		С	
805.2 [#] 4	(0+)		AB	J ^π : in analogy to 831.7-keV, 0 ⁺ level in ²²⁸ Th, 1976Ku08 proposed J ^π =0 ⁺ . γ transition to 1 ⁻ state, hindrance factor ≈8 for the α transition from ²³⁰ U and log ft =8.9 I for the β ⁻ decay J=(1) ²²⁶ Ac are consistent with this assignment.
847.8 [#] 4	(2+)		AB	J^{π} : log ft for β^- decay from J=(1) 226 Ac and γ to 3 ⁻ level limit J^{π} to 1 ⁻ , 2 ⁺ . Intensity ratio of photons deexciting 847.8-keV level is in agreement with the Alaga rule for K=0, J=2.
923.1 [‡] <i>3</i>	9-		C	
1040.3 [†] 3	10 ⁺		С	

²²⁶Th Levels (continued)

E(level)	J^{π}	XREF	E(level)	J^{π}	XREF	E(level)	J^{π}	XREF
1238.4 [‡] 4	11-	С	1781.5 [†] 5 1989.4 [‡] 5 2195.8 [†] 6	14+	С	2412.8 [‡] 6	17-	С
1395.2 [†] 4	12+	C	1989.4 [‡] 5	15-	C	2635.1 [†] 7	18+	С
1596.0 [‡] 5	13-	C	2195.8 [†] 6	16 ⁺	C	2861.1 [‡] 7	19-	С
						3097.1 [†] 8	20^{+}	C

[#] Band(C): $K^{\pi}=0^{+}$ β -vibrational band.

@ Assignments for J≥8 and J≥7 members of the g.s. and the octupole-vibrational bands, respectively, are based on (HI,xn γ) data.

$\gamma(^2$	²⁶ Th)
11	111/

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	$I_{\gamma}^{\#}$	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.‡	α&	Comments
72.20	2+	72.20 4	100 @	0.0	0+	E2	53.5	B(E2)(W.u.)=164 10
226.43	4+	154.23 <i>3</i>	100 [@]	72.20	2+	(E2)	1.83	
230.37	1-	158.18 <i>3</i>	60 5	72.20		È1	0.167	
		230.37 5	100 5	0.0	0^{+}	E1	0.0683	
307.5	3-	81.0 5	4.1 10	226.43	4+			
		235.3 <i>1</i>	100 7	72.20	2+			
447.3	6+	220.9 <i>1</i>	100 [@]	226.43	4+	[E2]	0.461	
450.5	5-	224.1 2	100 [@]	226.43	4+	[E1]	0.0723	
657.9	7-	207.4 1		450.5	5-	. ,		
		210.7 <i>1</i>		447.3	6+			
721.9	8+	63.9 <i>1</i>	0.13 5	657.9	7-			
		274.6 <i>1</i>	1.0	447.3	6+			
805.2	(0^{+})	574.8 <i>3</i>		230.37	1-			
847.8	(2^{+})	540.4 <i>3</i>	100 20	307.5	3-			
		617.4 <i>4</i>	90 20	230.37				
923.1	9-	201.3 <i>I</i>	400 40	721.9	8+			
		265.2 <i>1</i>	100	657.9	7-			
1040.3	10 ⁺	116.9 2	27.6 21	923.1	9-			
1000 4		318.4 2	100	721.9	8+			
1238.4	11-	198.2 2	161 12	1040.3	10 ⁺			
1205.2	12+	315.2 2	100	923.1	9-			
1395.2	12+	156.7 2 354.9 2	42 <i>3</i> 100	1238.4 1040.3	11 ⁻ 10 ⁺			
1596.0	13-	200.9 2	100	1395.2	10 12 ⁺			
1390.0	13	357.6 2		1238.4	11-			
1781.5	14 ⁺	185.5 2	40 4	1596.0	13-			
1701.5	11	386.3 2	100	1395.2	12 ⁺			
1989.4	15-	208.0 2	61 10	1781.5	14 ⁺			
		393.4 2	100	1596.0	13-			
2195.8	16 ⁺	206.3 <i>3</i>		1989.4	15-			
		414.3 <i>3</i>		1781.5	14 ⁺			
2412.8	17^{-}	216.9 <i>3</i>	43 7	2195.8	16 ⁺			
		423.5 <i>3</i>	100	1989.4	15^{-}			
2635.1	18 ⁺	439.3 <i>3</i>		2195.8	16 ⁺			
2861.1	19-	226.0 <i>3</i>	42 10	2635.1	18+			
		448.3 <i>3</i>	100	2412.8	17-			
3097.1	20+	462.0 <i>3</i>		2635.1	18+			

[†] Band(A): $K^{\pi}=0^+$ ground-state band. † Band(B): $K^{\pi}=0^-$ octupole-vibrational band.

γ (226Th) (continued)

 † From $^{230}{\rm U}~\alpha$ decay and $^{226}{\rm Ac}~\beta^-$ decay. ‡ From ce measurements in $^{226}{\rm Ac}~\beta^-$ decay.

[#] Relative photon intensity from each level.

[®] Set to 100 (β . Singh). [&] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

Level Scheme

Intensities: Relative photon branching from each level

Band(A): $K^{\pi}=0^+$ ground-state band

$$^{226}_{\ \, 90}\mathrm{Th}_{136}$$

		History	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	Khalifeh Abusaleem	NDS 116, 163 (2014)	31-Dec-2012

 $Q(\beta^{-})=-2152 \text{ 4}; S(n)=7105.3 22; S(p)=6367.7 21; Q(\alpha)=5520.08 22$ 2012Wa38

Calculations, compilations, systematics:

 α decay width and half-life: 1996De19, 2011Qi06, 2011Sh13, 2011Si14 2011Zh36, 2010Wa31, 2009De32, 2009Ni06, 2009Qi07, 2009Wa01, 2008Bh05.

Binding energies, deformation role: 1986Ch23.

B(E1) from octupole states: 1989De11, 1986Le05, 1981Le15, 2010Ch35. Cluster model for α decay; Geiger-Nuttall plot: 1991Bu05, 1986Da03.

Equilibrium deformation: 1988So08, 1984Na22, 1981Gy03.

Heavy cluster spontaneous emission: 1996Bu05, 1994Bu07, 1993Go18, 1992Sa30, 1986Po15, 1986Po06.

Levels, shapes, $B(\lambda)$: 1996Li18, 1995De13, 1995La01, 1989Hu05, 1989Sh35, 1988Ri07, 1986An10, 1986Go07, 1984Ba59,

1984Ba63, 2011Ra05.

Octupole shapes and shape changes: 1987Na10.

p-n interaction energy: 1990Mo11.

Rotational bands in even-even nuclei: 1992So10, 1988Ab07.

Quasi-bands in even-even nuclei: 1984Sa37.

Super- and hyper-deformed configurations: 1995We02.

Octupole and quadrupole deformation: 2008Bi03.

Yrast band parity splitting: 1994Jo02, 1993Jo12.

Production cross section: 2012Er03, 2011Ch57.

 β^{-} decay: 2009So02.

For a discussion of the level scheme and the rotational bands see 1995Ba42, 1987Da28.

²²⁸Th Levels

Cross Reference (XREF) Flags

²²⁸Ac β^- decay

band.

 $T_{1/2}$: from ²³²U α decay.

 232 Th(n,5n γ)

			E C I	$C = \frac{232}{232}$ U α decay $C = \frac{230}{330}$ Th(p,t)
E(level) [†]	J^{π}	T _{1/2}	XREF	Comments
0.0‡	0+	1.9116 y <i>16</i>	ABCD FGH	$%\alpha$ =100 $%^{20}$ O=1.13×10 ⁻¹¹ 22 (1993Bo20). $T_{1/2}$: value (698.2 d 6) recommended by 1991BaZS; based on measurements from 1971Jo14, 1962Ma57, 1956Ki16 (tropical year (365.24220 days) used in conversion). Others: 1.912 y 2 (recommended value, 1990Ho28), 1.906 y (1918Me01). Isotope shift: Δ <r<sup>2>=-0.413 5 relative to ²³²Th (1989Ka29).</r<sup>
57.773 [‡] 3	2+	0.406 ns 7	ABCDEFGH	J^{π} : L(p,t)=2 for even-even nucleus; E2 γ to 0 ⁺ g.s. $T_{1/2}$: from ²³² U α decay.
186.838 [‡] <i>3</i>	4+	0.164 ns 4	ABCDEFGH	J^{π} : L(p,t)=4 for even-even nucleus;E2 γ to 2 ⁺ level; member of g.s. rotational

Continued on next page (footnotes at end of table)

E(level) [†]	J^{π}	T _{1/2}	XREF	_	Comments
328.019 [#] 3	1-		ABCD FG	I J	$^{\tau}$: L(p,t)=1 for even-even nucleus; E1 γ to 0^+ g.s.
378.195 [‡] <i>12</i>	6+		ABCDEFG		7 : L(p,t)=6 for even-even nucleus; E2 γ to 4 ⁺ level: member of g.s. rotational band.
396.094 [#] 4	3-		ABCD FG	I J	τ : L(p,t)=3 for even-even nucleus; E1 γ 's to 4 ⁺ and 2 ⁺ levels.
519.208 [#] 5	5-		ABCD FG		T: $L(p,t)=(5)$ for even-even nucleus; E1 γ 's to 4 ⁺ and 6 ⁺ levels.
622.5‡ 3	8+		DEFG		7 : L(p,t)=(8) for even-even nucleus. 7 : E2 γ to 6 ⁺ level; member of g.s. rotational band.
695.45 [#] 15	7-		B D FG		$^{\pi}$: L(p,t)=(7) for even-even nucleus. $^{\pi}$: γ to 6 ⁺ level; member of K^{π} =0 ⁻ octupole band.
831.842 [@] 10	0_{+}		ABC FG	\mathbf{J}^{2}	$^{\tau}$: L(p,t)=0 for even-even nucleus.
874.535 [@] 16	2+		ABC FG	J^{i}	$^{\tau}$: L(p,t)=2 for even-even nucleus.
911.8 [‡] <i>3</i>	(10^+)		D FG	I J	τ : γ to 8^+ level; member of g.s. band.
920.77 [#] 22	9-		D FG		τ^{-1} : γ to 7^{-1} and 8^{+1} levels; member of $K^{\pi}=0^{-1}$ octupole band.
938.61 <mark>&</mark> 7	0+		AB G		τ : L(p,t)=0 for even-even nucleus.
944.205 ^b 12	1-		AB E G		τ : L(p,t)=1 for even-even nucleus.
968.381 ^b 22	2-		AB		τ : γ 's to 1 ⁻ , band member.
968.451 [@] 24	4 ⁺		B F		τ^{-1} : γ to 3 ⁻¹ and 5 ⁻¹ levels; $K^{\pi}=0^{+}$ band member.
968.984 ^c 4	2+		AB FG		τ : L(p,t)=2 for even-even nucleus.
979.522 <mark>&</mark> <i>13</i>	2+		AB G	J^{i}	τ : γ 's to 0^+ g.s. and 4^+ level.
1016.386 ^b 16	3-		AB G		† : L(p,t)=3 for even-even nucleus.
1022.542 ^c 6	(3)+		AB FG		^{τ} : E2 γ to 4 ⁺ and E2+M1 to 2 ⁺ levels; E1 γ from 4 ⁻ level; member of K^{π} =2 ⁺ band.
1059.928 ^b 22	4-		AB	J^{7}	$^{\pi}$: γ' s to 3 ⁻ and 5 ⁻ levels; $J^{\pi}=3^-,4^+,5^-$ ruled out by $\gamma(\theta,H,T)$ (²²⁸ Pa decay).
1074.80 <mark>&</mark> 6	4+		B G	J^{i}	$^{\tau}$: L(p,t)=4 for even-even nucleus.
1091.048 ^c 11	4+		AB FG	\mathbf{J}^{j}	τ : L(p,t)=4 for even-even nucleus.
1105.38 [@] 15	6+		FG		T: $L(p,t)=6$ for even-even nucleus.
1119.7 ^a 10	0+		B G		T: $L(p,t)=0$. Probably bandhead of third $K^{\pi}=0^{+}$.
1122.959 ^d 5	2-		AB		7 : E1 γ to 2 ⁺ level, E2+M1 γ to 1 ⁻ level, (E1+M2) γ to (3) ⁺ level; member of K^{π} =2 ⁻ band.
1143.16 ^b 10	5-		B G		T: $L(p,t)=5$ for even-even nucleus.
1153.487 ^e 9	2+	0.29 ns 2	AB G		7 : γ to 2^+ has E0 component.
1160 5			G	1	$f_{1/2}$: from ²²⁸ Ac β^- decay.
1168.389 ^d 6	3-			TŽ	$^{\tau}$: L(p,t)=3 for even-even nucleus.
1174.515 ^c 18	5 (5 ⁺)		AB G AB F		The contraction is $\gamma = 1$ for even-even indeceds. The contraction is $\gamma = 1$ in $\gamma = $
1175.41 ^a 4	2+		AB G		$\frac{1}{\tau}$: L(p,t)=2 for even-even nucleus.
1189.8 [#] 3	11-		D F		τ : γ 's to 9^- and (10^+) levels; band structure.
1200.60 ^e 3	3(+)		B G		τ : L(p,t)=3 for even-even nucleus.
1226.580 ^d 7	4-		AB G		(level): $L(p,t)=4$, may not be the same level.
1239.3 [‡] 4	(12^{+})		D F		τ : γ to 10^+ level; member of g.s. band.
1261.57 ^e 8	4+		B G		τ : L(p,t)=4 for even-even nucleus.
1270.08 ^c 18	6+		B FG	J^{i}	τ : $L(p,t)=6$ for even-even nucleus.
1280.41 [@] 22 1290.07 ^a 8	8 ⁺ 4 ⁺		F		γ^{\prime} : γ^{\prime} s to 6^{+} , 7^{-} , and 9^{-} ; member of a rotational band.
1290.07 ^d 8 1297.435 ^d 10	-		B G		τ : L(p,t)=4 for even-even nucleus.
1297.435 <i>a</i> 10 1319.2 4	(5^{-}) (2^{+})		AB G		π: L(p,t)=(5) for even-even nucleus. π: L(p,t)=(2) for even-even nucleus.
1344.142^{f} 20	3-		AB G		τ : L(p,t)=3 for even-even nucleus.
1379.5° 3	7+		F F		τ : γ 's to θ and θ +; member of a rotational band.

E(level) [†]	J^π	L	S	X	REF	Comments
1393.31 <i>7</i> 1416.10 <i>6</i> 1420? 2	(1 ⁺ ,2,3 ⁻) (3 ⁻)			B AB	G G	J^{π} : γ' s 1 ⁺ , 2 ⁺ and 3 ⁻ ; probable 1 ⁺ (band head of $K^{\pi}=1^+$) from DCO ratio. J^{π} : $L(p,t)=3$ for even-even nucleus.
1423.8 5	(2^{+})	(2)	0.03		G	J^{π} : L(p,t)=2 for even-even nucleus.
1431.994 5	4+			AB	G	J^{π} : L(p,t)=4 for even-even nucleus.
1448.92 7	3,4-			В		J^{π} : Multiple γ to (2^+) , 3^- , and 4.
1450.402 10	4-			AB	_	J^{π} : M1+E2 γ' s to 3 ⁻ (5) ⁻ levels.
1453.5 <i>3</i> 1467? 2	(3-)				G G	J^{π} : L(p,t)=(3) for even-even nucleus.
1470.0 5	(6^+)				G	J^{π} : L(p,t)=(6) for even-even nucleus.
1490.2 [@] 3	10+					J^{π} : γ 's to 11 ⁻ , 9 ⁻ , and 8 ⁺ ; member of a rotational band.
1490.2 3 1497.0 [#] 4					F	·
1497.0" 4	(13 ⁻)				DFH	E(level): Tentative in $(\alpha, 2n\gamma)$, but σ' s to 11^- and 12^+ are consistent with data.
1497.2 ^c 4	8+				F	J^{π} : γ' s to 11^- and 12^+ levels; band structure. J^{π} : γ' s to 6^+ and 8^+ ; member of a rotational band.
1497.70 8	(5^{-})			В	G	J^{π} : L(p,t)=(5) for even-even nucleus.
1511.1 3	0+				G	J^{π} : L(p,t)=0 for even-even nucleus.
1531.490 5	0+&3+			AB	G	J^{π} : L(p,t)=0,3 for even-even nucleus; E2+M1 γ to 2 ⁺ , M1 γ to 4 ⁺ .
1539.21 8	2+			AB	G	XREF: G(1544).
						J^{π} : L(p,t)=2 for even-even nucleus.
1580.92 6	(2-)			В		J^{π} : (M1+E2) γ 's to 3 ⁻ and 1 ⁻ levels.
1586.9 <i>4</i>	2+			_	G	
1588.347 14	(4-)			В		
1599.4 [‡] 5	(14^{+})				DFH	XREF: H(1595.9).
						E(level): Shown tentative in $(\alpha,2n\gamma)$, which deexcites by E γ =357.2 keV to 12 ⁺ state.
	. 1					J^{π} : γ to (12 ⁺); member of g.s. band.
1617.80 7	4 ⁺			AB		J^{π} : γ' s to 4^+ and 2^+ levels.
1618.3 <i>5</i> 1627.8 ^{<i>c</i>} <i>4</i>	4 ⁺ (9 ⁺)				G F	J^{π} : L(p,t)=4 for even-even nucleus. J^{π} : γ to (10 ⁺) and 8 ⁺ ; member of rotational band.
1627.9 <i>3</i>	0+				r G	J^{π} : $L(p,t)=0$ for even-even nucleus.
1638.284 9	2+			AB	G	J^{π} : L(p,t)=0 for even-even nucleus.
1643.131 14	$(2^-,3^-)$			AB	Ğ	J^{π} : (M1) γ' s to 2^- and 3^- levels.
1643.82 <mark>8</mark> 7	4+			В	G	J^{π} : L(p,t)=4 for even-even nucleus.
1646.003 11	3+			AB		J^{π} : E2 γ' s to 2 ⁺ and 4 ⁺ levels, γ' s to 2 ⁻ and 4 ⁻ levels.
1651.4 <i>3</i>	(3 ⁻)				G	J^{π} : L(p,t)=(3) for even-even nucleus.
1667.38 <i>15</i>	2+			В	G	J^{π} : L(p,t)=2 for even-even nucleus.
1672.3 5	2+			_	G	J^{π} : L(p,t)=2 for even-even nucleus.
1678.42 7	2^+ $(2^+, 3^+, 4^+)$			В	G	J^{π} : L(p,t)=2 for even-even nucleus.
1682.81 <i>3</i> 1683.80 <i>4</i>	(2,3,4) (4^{-})			AB AB		J^{π} : (E2) γ to 4^+ level, γ to 2^+ level. J^{π} : (M1+E2) γ' s to 3^- and 5^- levels.
1688.408 10	2+,3+			AB		J^{π} : γ' s to 2^+ and 4^+ levels; $J^{\pi} \neq 3^-, 4^+$ excluded in $\gamma(\theta, H, T)$ (²²⁸ Pa decay).
1691.4 4	0^{+}			AD	G	J^{π} : L(p,t)=0 in 230Th(p,t); even-even nucleus.
1707.29 16	$(2,3^{-})$			В		J^{π} : γ to 1 ⁻ and 3 ⁻ .
1710.7 6	0+				G	J^{π} : $L(p,t)=0$ for even-even nucleus.
1724.299 5	2+			AB	G	J^{π} : L(p,t)=2 for even-even nucleus.
1733.1 <i>3</i>	12+				F	J^{π} : γ' s to 13 ⁻ , 11 ⁻ , and (10 ⁺).
1735.49 <i>4</i>	4 ⁺			AB	G	XREF: G(1733.8).
17/2 002 19	4+			A D	_	J^{π} : L(p,t)=4 for even-even nucleus.
1743.902 <i>18</i>	4			AB	G	XREF: $G(1742.8)$. J^{π} : $L(p,t)=4$ for even-even nucleus.
						J^{π} : (E2) γ to 2 ⁺ ; (E2+M1) γ to 4 ⁺ ; γ 's to 1 ⁻ , 3 ⁻ , 4 ⁻ , and 6 ⁺ .
1750.7 <i>3</i>	0^{+}				G	J^{π} : L(p,t)=0 for even-even nucleus.
1758.06 20	2+			В	Ğ	J^{π} : L(p,t)=2 for even-even nucleus.
						J^{π} : γ' 's to 1 ⁻ , (2 ⁺), and 3 ⁻ .

E(level) [†]	\mathbf{J}^{π}	L	XRE	F	Comments
1758.26 12	2+,3,4+		A		J^{π} : γ' s to 2^+ and 4^+ levels.
1760.209 21	$2^{(+)},3^{(+)}$		AB		J^{π} : (E2) γ to 4 ⁺ level, γ to 2 ⁺ level; $\gamma(\theta,H,T)$ excludes $J^{\pi}=4^{+}$ 228 Pa decay; log
1760 66 4	10+			_	ft = 8.13.
1762.6 ^c 4	10+			F	J^{π} : γ to 8^+ and 10^+ ; member of a rotational band.
1795.92 <i>10</i>	4+		A	G	J^{π} : L(p,t)=4 for even-even nucleus.
1796.44 8	4+		В	G	J^{π} : L(p,t)= for even-even nucleus.
1797.67 8	2+		Α		J^{π} : γ' s to 0^+ g.s. and 3^- level; $\log f^{1u}t=8.4$ for β^- decay from 3^+ ²²⁸ Ac.
1802.86 <i>15</i>	2+	2	В	G	J^{π} : L(p,t)=2 for even-even nucleus.
1804.672 <i>18</i>	4+		В	G	J^{π} : M1+E2 γ to 3 ⁺ level, M1+E2 γ to 4 ⁺ level, γ to 6 ⁺ level.
1811.56 <i>15</i>	$(1^-,2,3^-)$		В		J^{π} : γ' s to 1 ⁻ and 3 ⁻ levels.
1812.7 <mark>8</mark> 4	(6^+)			G	J^{π} : $L(p,t)=(6^+)$ for even-even nucleus.
1817.435 20	4-		В		J ^π : multiple γ 's to 4 ⁻ , 2 ⁻ , and 5; (E2)+M1 γ to 3 ⁻ level; $\gamma(\theta, H, T)$ excludes J^{π} =3 ⁻ ,5 ⁻ (log ft =7.57 6 1998Wi13).
1823.47 <i>16</i>	(4^{+})		В	G	XREF: G(1826).
1023.17 10	(.)			•	J^{π} : L(p,t)=(4) for even-even nucleus.
1838.1 [#] 5	(15-)		D :	E .	J^{π} : γ to (13 ⁻) level; band structure.
	(15^{-})				
1842.23 11	(2,3)		В	G	J^{π} : γ' s to 4 ⁺ , (3) ⁺ , 2 ⁺ , 1 ⁻ levels; log ft =8.38 for ε decay from 3 ⁺ ²²⁸ Pa.
1858.6 5	(6^+)		D	G G	J^{π} : L(p,t)=(6 ⁺) for even-even nucleus.
1864.95 <i>5</i>	(2^{+})		В	G	XREF: $G(1863.9)$. J^{π} : $L(p,t)=(2)$ for even-even nucleus.
1876.46 22	(2- 45-)		D		J^{π} : γ' s to 5 ⁻ and 3 ⁻ levels.
1879.1 <i>3</i>	$(3^-,4,5^-)$ (3^-)		B B	G	J^{π} : L(p,t)=(3) for even-even nucleus.
1893.003 <i>15</i>	3 ⁺		AB	ď	J^{π} : E2+M1 γ to 2 ⁺ level, M1+E2 γ to 4 ⁺ level, log ft =7.52.
1899.955 20	(2^{+})	(2)	AB	G	J^{π} : L(p,t)=(2+) for even-even nucleus.
1901.92 ^h 7	(6^+)			G	
		(6)	В	G	J^{π} : L(p,t)=(6) for even-even nucleus.
1906.65 10	(2 ⁺) 0 ⁺		A	_	J^{π} : γ to 0 ⁺ g.s., γ to 2 ⁺ ,3 ⁻ level; log ft =7.98 from 3 ⁺ ²²⁸ Ac.
1908.39 8			В	G	J^{π} : L(p,t)=0 for even-even nucleus.
1924.16 6	$(2^{-},3,4)$		В	_	J^{π} : γ to 3 ⁻ level; log ft =7.90 from 3 ⁺ ²²⁸ Pa.
1924.64 9	4 ⁺ ,5 ⁻ 3 ⁺ ,4 ⁺		В	G	J^{π} : L(p,t)=4,5 for even-even nucleus. J^{π} : M1+E2 γ to 4 ⁺ level, γ to 3 ⁻ level; $\gamma(\theta,H,T)$ excludes $J^{\pi}=2^+,3^-$.
1925.21 <i>4</i> 1928.49 <i>5</i>	3 , 4 3+		B AB		J^{π} : γ' s to 2 ⁺ and 4 ⁺ levels; $\gamma(\theta, H, T)$ excludes $J^{\pi} = 2^+, 3^-, 4^+$.
1937.18 9	2 ⁺ ,3,4 ⁺				J^{π} : γ 's to 2^+ and 4^+ levels.
1937.18 9	(4^+)		A B	G	J^{π} : L(p,t)=(4) for even-even nucleus.
1939.07 9 1944.904 <i>11</i>	3 ⁺		AB	ď	J^{π} : E2+M1 γ' s to 2 ⁺ and 4 ⁺ levels; M1 to 2 ⁺ level.
1945.74 9	4 ⁺ ,5 ⁻		В		J^{π} : γ' s to 5^- , 3^- , and 6^+ levels.
1949.73 10	(2^+)		В	G	XREF: G(1947.8).
1949.73 10	(2)		ь	ď	J^{π} : L(p,t)=(2) for even-even nucleus.
1958.35 <i>16</i>	(2^{+})		AB	G	J^{π} : L(p,t)=(2) for even-even nucleus.
1965.05 8	(2^{+})		В	•	J^{π} : γ to 2^+ and 4^+ levels; multiple placed γ to 0^+ g.s., would limit J^{π} to 2^+ .
1974.19 <i>11</i>	$(2^+,3^-)$		В	G	XREF: G(1971.7).
	(= ,=)				J^{π} : L(p,t)=(2,3) for even-even nucleus.
1981.90 5	(3^{-})		В	G	J^{π} : L(p,t)=(3) for even-even nucleus.
1987.47 <i>10</i>	4+		A		J^{π} : γ' s to 2^+ and 6^+ levels.
1987.9 [‡] 6	(16^{+})		D :	F	J^{π} : γ to (14 ⁺) level; member of g.s. band.
1993.9 5	(3-)			G	J^{π} : L(p,t)=(3) for even-even nucleus.
2010.15 5	(2 ⁺)		AB	G	J^{π} : L(p,t)=(2) for even-even nucleus.
2013.6 <i>3</i>	$2^{+}, 3, 4^{+}$		A		J^{π} : γ' s to 2^+ and 4^+ levels.
2016.75 9	$(4^+,5^-)$		В		J^{π} : (M1+E2) γ to 3 ⁻ .
2022.82 8	(2+)		AB		J^{π} : Multiple γ to 2^+ level, and γ' s to 0^+ , $(3)^+$ levels.
2030.40 11	2+		Α	G	J^{π} : L(p,t)=2 for even-even nucleus.
2037.01 17	$2^+,3,4^+$		A		J^{π} : γ' s to 2^+ and 4^+ levels.
2044.7 5	0_{+}			G	J^{π} : $L(p,t)=0$ for even-even nucleus.
2052.1 4	(6^{+})			G	J^{π} : $L(p,t)=(6)$ for even-even nucleus.
2069.6 5	2+			G	J^{π} : L(p,t)=2 for even-even nucleus.
2079.9 5	0^{+}			G	J^{π} : L(p,t)=0 for even-even nucleus.

E(level) [†]	J^{π}	XREF	Comments
2091.2 7	(6 ⁺)	G	J^{π} : L(p,t)=(6) for even-even nucleus.
2111.6 5	(2^{+})	G	J^{π} : $L(p,t)=(2)$ for even-even nucleus.
2123.1 <i>3</i>	(2+)	A	E(level): the level may be questionable, $Q(\beta^-)(^{228}Ac)=2127 \ 3$.
	(-)		J^{π} : γ' s to 4^+ and 1^- levels; log $ft=4.9$ 5 indicates an allowed transition.
2131.3 6	0^{+}	G	J^{π} : L(p,t)=0 for even-even nucleus.
2152.8 4	(4 ⁺)	Ğ	J^{π} : L(p,t)=(4) for even-even nucleus.
2159.4 5	0+	Ğ	J^{π} : L(p,t)=0 for even-even nucleus.
2170.3 4	(2^{+})	G	J^{π} : L(p,t)=(2) for even-even nucleus.
2198.2 4	2+	G	J^{π} : L(p,t)=2 for even-even nucleus.
2209.5 [#] 6	(17^{-})	D F	J^{π} : γ to (15 ⁻) level; band structure.
2215.9 4	(4^{+})	G	J^{π} : L(p,t)=(4) for even-even nucleus.
2235.2 7	(4 ⁺)	Ğ	J^{π} : L(p,t)=(4) for even-even nucleus.
2290.0 7	0+	Ğ	J^{π} : L(p,t)=0 for even-even nucleus.
2302.9 5	(4^{+})	Ğ	J^{π} : L(p,t)=(4) for even-even nucleus.
2323.2 5	2+	Ğ	J^{π} : L(p,t)=2 for even-even nucleus.
2335.9	$(4^+,0^+)$	G	J^{π} : L(p,t)=(4,0) for even-even nucleus.
2344.2 5	(3^{-})	G	J^{π} : L(p,t)=(3) for even-even nucleus.
2356.2 5	(2+)	G	J^{π} : $L(p,t)=(2)$ for even-even nucleus.
2375.5 8	(2^{+})	G	J^{π} : $L(p,t)=(2)$ for even-even nucleus.
2398.3 9	(3^{-})	G	J^{π} : $L(p,t)=(3)$ for even-even nucleus.
2400.5 [‡] 8	(18^{+})	D	J^{π} : γ to (16 ⁺); member of g.s. band.
			E(level): 2407.9 in $(\alpha, 2n\gamma)$ with E γ =419.9 to (16^+) .
2408.8 9	(4 ⁺)	G	J^{π} : L(p,t)=(4) for even-even nucleus.
2441.7 5	(2^{+})	G	J^{π} : L(p,t)=(2) for even-even nucleus.
2456.8 5	0+	G	J^{π} : L(p,t)=0 for even-even nucleus.
2476.8 5	(2^+)	G	J^{π} : L(p,t)=(2) for even-even nucleus.
2494.1 5	(2^{+})	G	J^{π} : L(p,t)=(2) for even-even nucleus.
2513.5 7		G	
2531.5 7		G	
2536.8 9		G	
2542.4 <i>9</i> 2554.5 <i>5</i>		G G	
2566.3 6		G	
2595.4 5		G	
2606.1 5		G	
2608.4? [#]	(19^{-})	D	J^{π} : γ to (17 ⁻); member of a rotational band.
2615.1 9	(19)	ر G	3. y to (17), member of a fotational band.
2634.8 5		G	
2644.0 3		G	
2657.1 4		G	
2660.1 5		G	
2667.1 5		G	
2676.0 6		G	
2688.4 <i>4</i>		Ğ	
2695.6 7		Ğ	
2705.5 5		G	
2718.4 5		Ğ	
2742.3 <i>4</i>		G	
2763.7 4		G	
2781.4 5		G	
2798.6 8		G	
2805.6 7		G	
2821.0 5		G	
2834.4? [‡]	(20^+)	D	J^{π} : γ to (18 ⁺); member of a rotational band.
2839.3 6		G	

²²⁸Th Levels (continued)

E(level) [†]	${f J}^\pi$	XREF	Comments
2853.7 5		G	
2868.1 5		Ğ	
2877.5 8		Ğ	
2883.7 9		G	
2918.8 6		G	
2927.4 5		G	
2936.8 9		G	
2945.3 9		G	
2955.1 8		G	
2993.1 <i>12</i>		G	
2999.5 10		G	
3014.3 <i>11</i>		G	
3035.6 9		G	
3046.4 <i>6</i>		G	
3059.2 5		G	
3075.2 <i>5</i>		G	
3085.2 8		G	
3097.0 <i>6</i>		G	
3104.7 6		G	
3112.7 <i>11</i>		G	
3119.9 9		G	
3128.2 10		G	
3158.8 8		G	
3165.7 6		G	
3186.0 6		G	
3195.2 6		G	
3209.6 12		G	
3214.8 9		G	
3225.0 20		G	
3232.9 13		G	
3239.9 8		G	
3283.4? [‡]	(22^{+})	D	J^{π} : γ to (20^{+}) ; member of a rotational band.

[†] From least squares fit to E γ .

 $^{^{\}ddagger}$ Band(A): g.s. rotational band. # Band(B): K^{π} =0 $^{-}$ octupole-vibrational band.

[@] Band(C): first $K^{\pi}=0^{+}$ band.

[&]amp; Band(D): second $K^{\pi}=0^{+}$ band.

^a Band(E): third $K^{\pi}=0^{+}$ band.

^b Band(F): $K^{\pi}=1^{-}$ octupole-vibrational.

^c Band(G): first $K^{\pi}=2^{+}$ band.

^d Band(H): $K^{\pi}=2^{-}$ octupole-vibrational band.

^e Band(I): second $K^{\pi}=2^{+}$ band.

^f Band(J): $K^{\pi}=3^{-}$ octupole-vibrational band head.

^g Band(K): $K^{\pi}=4^{+}$ band.

^h Band(L): $K^{\pi}=6^+$ band.

$\gamma(^{228}\text{Th})$

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f	J_f^{π}	Mult.‡	δ^{\ddagger}	α^{h}	$I_{(\gamma+ce)}$	Comments
57.773	2+	57.766 ^a 5	100	0.0	0+	E2		153 2		B(E2)(W.u.)=167 6
										Mult.: also from 232 U α decay.
186.838	4+	129.065 ^a 1	100	57.773	2+	E2		3.74 6		B(E2)(W.u.)=242 9
328.019	1-	270.245 ^a 2	100.0 ^{&} 16	57.773	2+	E1		0.0470 <i>7</i>		Mult.: also from $(\alpha, \alpha' 2n\gamma)$.
328.019	1	$\frac{270.245^{a}}{328.022^{a}}$ 3	88.3 ^{&} 7		0+	E1		0.0470 7		
378.195	6 ⁺	191.349 ^a 17	100 8	186.838		E1 E2		0.0303 3		Mult.: also from $(\alpha, \alpha' 2n\gamma)$.
396.094	3-	68.08	≤0.05	328.019		[E2]		0.770 11		with also from $(\alpha, \alpha, 2\pi\gamma)$.
570.071	J	209.253 ^a 6	34.2 6	186.838		E1		0.0848 12		
		338.320 ^a 3	100.0 17	57.773		E1		0.0285 4		
519.208	5-	141.01 2	9.90 6	378.195		E1		0.217 3		
		332.370 ^a 4	100 5	186.838		E1		0.0297 5		
622.5	8+	244.3 10	100	378.195	6+	E2		0.326 5		Mult.: from $(\alpha, \alpha' 2n\gamma)$.
695.45	7-	317.2 [@] 2	@	378.195		[E1]				
831.842	0_{+}	503.823 13	100 5	328.019		(E1)		0.0124 2		
		774.05 <i>14</i>	32 5	57.773						222
	- 1	831	< 0.5		0+	E0			0.04 2	E_{γ} , Mult., $I_{(\gamma+ce)}$: from ²³² U α decay.
874.535	2+	478.40 6	100 5	396.094		E1		0.0138 2		
		546.45 2	90 4	328.019		[E1]				
		688.10 ^{id} 5	25 ⁱ 8	186.838		[E2]				
		816.62 <i>10</i> 874.45 <i>6</i>	12.3 20	57.773 0.0	0+	[M1+E2]				
011.0	(10±)	289.3^{b} 2	23 3			[E2]				
911.8	(10^{+})		100	622.5	8+					
920.77	9-	225.23^{b} 26	24.6 ^b 15	695.45	7-					
	- 1	298.3 ^b 26	100 ^b 7	622.5	8+					
938.61	0^{+}	610.65 9	100 22	328.019		[E1]				
		880.76 ^a 10	27 ^a 8	57.773		[E2]				
944.205	1-	547.8 [@] 2	15 [@] 4	396.094						
		616.21 2	100 @ 8	328.019		(M1+E2)	+1.5 5	0.055 18		
		886.44 [@]	≤3.7 [@]	57.773						
		944.196 <i>14</i>	100 [@] 8		0_{+}					
968.381	2-	572.23 8	100 11	396.094						
		640.34 3	39 8	328.019		[E2]				
		910.6 [@] _1	98 <mark>@</mark> 9	57.773						
968.451	4+	449.23 [@] 3	58 [@] 6	519.208	5-					
		572.3 [@] 1	100 [@] 10	396.094						
		590.1 [@] 3	1.5 [@] 5	378.195						
		781.9 [@] 3	13 [@] 3		-					

γ (228Th) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.‡	δ^{\ddagger}	α^{h}	Comments
968.451	4+	910.7 [@] 1	46 [@] 8	57.773 2 ⁺				
968.984	2+	782.140 5	1.84 11	186.838 4 ⁺	[E2]			
		911.204 4	100 2	57.773 2+	E2+M1	+24 8	0.0120 2	
050 500	2+	968.974 <i>17</i>	61.3 10	$0.0 0^{+}$	E2		0.0106 2	
979.522	2+	583.41 5	$100^{ga} 8 81^{ga} 7$	396.094 3-	[E1]			
		651.48 <i>5</i> 792.74	$\approx 73^a$	328.019 1 ⁻ 186.838 4 ⁺	[E1]			
		921.94 ^c 11	13.2^{a} 19	57.773 2 ⁺	[E2] [M1,E2]			Doubly placed γ with undivided intensity (I γ =16.3 23)
		921.94 11	13.2 19	31.113 2	[1411,122]			in ²²⁸ Ac decay.
		979.46 ^a 10	23 ^a 3	$0.0 0^{+}$				To decay.
1016.386	3-	497.0 ^{@#}	36 [@] 8	519.208 5				
		620.33 6	28.4 13	396.094 3-				
		688.11 ⁱ 4	24.0 ⁱ 15	328.019 1-				
		829.55 ^{#@}	≤28 [@]	186.838 4+				
		958.62 <i>4</i>	100 12	57.773 2 ⁺				
		1016.44 ^{ia} 15	6.8 <mark>ia</mark> 11	$0.0 0^{+}$				
1022.542	$(3)^{+}$	835.701 <i>15</i>	33.1 10	186.838 4+	E2		0.0142 2	Mult.: $\delta \le -9$ (228 Pa decay).
		964.777 <mark>a</mark> 11	100.0 18	57.773 2 ⁺	E2+M1	-7.2 10	0.0112 2	•
1059.928	4-	540.68 <i>5</i>	58 10	519.208 5-	[M1,E2]			
		663.88 6	87 7	396.094 3	(M1+E2)		0.06 4	
		873.11 12	100 10	186.838 4+	[E1]			
1074.80	4+	555.5 [@] 1	100 [@] 11	519.208 5				
		678.6 [@] 2	90 <mark>@</mark> 11	396.094 3-				
		697.1 [@] 4	16 [@] 4	378.195 6 ⁺				
		887.9 [@] 3	26 [@] 5	186.838 4+				
		1017.0 [@] 3	37 [@] 5	57.773 2 ⁺				
1091.048	4+	571.8 ^{#@} 2	2.3 [@] 8	519.208 5-				
		694.8 <mark>#@</mark> 2	2.9 [@] 4	396.094 3-				
		713.1 ^{#@} 3	1.8 [@] 4	378.195 6 ⁺				
		904.19 <i>3</i>	100 4	186.838 4 ⁺	E2		0.0121 2	$δ$: ≥+3.7 (228 Pa decay).
		1033.25 ^b 9	26.9 <mark>b</mark> 7	57.773 2 ⁺	E2		0.0094 1	•
1105.38	6+	409.9 ^b 2	89 ^b 11	695.45 7-				
		586.4 ^b 2	100 ^b 44	519.208 5				
		918.1 ^b 3	83 ^b 11	186.838 4 ⁺				
1119.7	0+	1062.4 ^{@k} 1	100@	57.773 2+				
1119.7	2-	1002.4 <i>I</i> 100.41 ^{<i>a</i>} 3	2.2^{a} 3	1022.542 (3) ⁺	(E1+M2)	≈0.23	≈3.10	
1122,707	_	153.962 ^a 9	16.8 4	968.984 2+	E1	-0.25	0.1757 25	
		178.7 [@] 2	2.0 [@] 9	944.205 1				

 ∞

γ (228Th) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.‡	δ^{\ddagger}	α^{h}	Comments
1122.959	2-	726.864 ^a 5	13.6 17	396.094 3-	(E2)		0.0187 3	
		794.948 <mark>a</mark> 5	100.0 17	328.019 1-	E2+M1	-4.4 10	0.0179 14	
		1065.19 4	3.04 15	57.773 2 ⁺				
1143.16	5-	624.0 [@] 2	47 [@] 13	519.208 5-				
		747.0 [@] 4	30 [@] 10	396.094 3-				
		764.5 [@] 3	17 [@] 7	378.195 6 ⁺				
		956.6 [@] 2	100 [@] 33	186.838 4+				
1153.487	2+	173.964 <i>13</i>	15.5 22	979.522 2+	M1+E2	1.2 + 11 - 6	2.2 9	B(M1)(W.u.)=4.E-5 +6-4; $B(E2)(W.u.)=0.6 +7-6$
		184.54 ^a 2	31 ^a 4	968.984 2+	E0+M1		63 8	$B(M1)(W.u.)=1.2\times10^{-4}$ 3
								$\alpha(K)$ exp, L1/L2, L1/L3 indicate E0+5.4%M1 transition
								$(^{228}\text{Ac }\beta^- \text{ decay}).$
		214.9 2		938.61 0+				I_{γ} : Unresolved doublet in ²²⁸ Ac β ⁻ decay.
		278.70 ^j 10	71 ^j 9	874.535 2+	(M1+E2)		0.6 5	•
		321.646 ^a 8	100 5	831.842 0+	[E2]		0.137 2	B(E2)(W.u.)=0.29 5
		1095.679 ^a 20	55 4	57.773 2 ⁺	[M1,E2]		0.017 9	
		1153.52 4	61 4	$0.0 0^{+}$	[E2]			B(E2)(W.u.)=0.00030 6
1168.389	3-	77.34 ^a 3	1.70 24	1091.048 4+				
		145.84 ^a 1	10.4 4	$1022.542 (3)^{+}$	E1		0.200 3	
		199.41 ^a 1	20.83 ^a 28	968.984 2+	E1		0.0950 14	
		199.8#@ 2	0.7 2	968.451 4+				
		224.0 ^{#@} 2	6.8 [@] 24	944.205 1				
		649.03 ⁱ 13	2.35 ⁱ 23	519.208 5-				
		772.29 ^a 1	100.0 19	396.094 3-	E2+M1	-3.4 + 8 - 27	0.021 3	
		840.38 ^a 1	62.0 20	328.019 1-	E2		0.0140 2	
		981.5 ^{@#} 2	3.0 [@] 4	186.838 4+				
		1110.61 <i>^{ja} 1</i>	18.9 ^{<i>j</i>} 12	57.773 2 ⁺	E1		0.00288 4	
1174.515	(5^{+})	796.2 <i>1</i>	48 9	378.195 6 ⁺				
		987.70 <i>7</i>	100 12	186.838 4 ⁺				
1175.41	2+	231.42 ^a 10	≤2 <mark>@</mark>	944.205 1-				
		779.5 <mark>#@</mark> 6	6 [@] 3	396.094 3-				
		847.1 ^{#@} 4	5 [@] 2	328.019 1-				
		988.45 9	100 10	186.838 4+				
		1117.56 <i>13</i>	44 [@] 5	57.773 2 ⁺				
		1175.33 9	23 [@] 5	$0.0 0^{+}$				
1189.8	11-	268.9 ^b 3	67 ^b 5	920.77 9-				
	••	278.2 ^b 3	100 ^b	911.8 (10 ⁺)				
	3(+)	178.14 [@] 7	≤8 [@]	$1022.542 (3)^{+}$	(E0)			
1200.60	4(')	1/0/14						

9

γ (228Th) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.‡	δ^{\ddagger}	α^{h}	Comments
1200.60	3(+)	326.1 3	100 24	874.535 2+				
		1013.54 ^{i@} 13	11 ^{i@} 2	186.838 4 ⁺	[M1+E2]			
		1142.78 [@]	4.0 [@] 12	57.773 2+	[M1+E2]			
1226.580	4-	135.51 2	3.4 5	1091.048 4+	E1		0.238 4	
		204.031 ^a 10	21 3	1022.542 (3)+	E1		0.0900 13	
		$258.1^{j\#@}$ 2	$4.1^{j@}$ 2	968.451 4+				
		$258.1^{j\#@}$ 2	4.1 ^{j@} 2	968.381 2-				
		282.37 ^{#@k} 707.40 <i>3</i>	27.5 13	944.205 1 ⁻ 519.208 5 ⁻	(E2)		0.0100.2	
		830.486 ^a 8	100 4	396.094 3 ⁻	(E2) E2(+M1)	-7.7 9	0.0198 <i>3</i> 0.0150 <i>3</i>	
		1039.84 8	10.0 5	186.838 4+	L2(+W11)	1.1)	0.0150 5	
1239.3	(12^+)	327.3 ^b 4	100	911.8 (10+)			
1261.57	4+	170.6 [@] 2	36 [@] 7	1091.048 4+				
		239.1 [@] 3	54 [@] 14	1022.542 (3) ⁺				
		292.5 [@]	≤36 <mark>@</mark>	968.984 2+				
		293.1 [@] 2	46 [@] 11	968.451 4+				
		387.0 [@] 3	32 ^{@} 11	874.535 2+				
		883.4 [@] 3	39 [@] 11	378.195 6 ⁺				
		1074.7 [@] 3	100 [@] 18	186.838 4 ⁺				
		1204.1 [@] 3	82 [@] 11	57.773 2+				
1270.08	6+	891.8 2	100 8	378.195 6 ⁺				
		1083.2	.	186.838 4+				I_{γ} : Weak γ -ray.
1280.41	8+	359.6^{b} 2	30^{b}_{b} 10	920.77 9-				
		585.0^{b} 2	100^{b}_{b} 30	695.45 7				
		902.3 ^b	<i>b</i>	378.195 6 ⁺				I_{γ} : γ -ray peak is masked.
1290.07	4+	911.7 [@] 1	100 [@] 50	378.195 6 ⁺				
		1103.4 [@] 1	55 [@] 5	186.838 4+				
1297.435	(5 ⁻)	206.3 ^{#@} 1	100 @ 14	1091.048 4+				
		$602.0^{i\#@k}$	≤40 ^{i@}	695.45 7				
		778.1 [@] 2	54 [@] 6	519.208 5-				
		901.26 <i>13</i>	45 [@] 12	396.094 3-				
1244 142	2-	1110.61 ^j 1	$48^{j@}$ 4	186.838 4+	E1		0.00288 4	
1344.142	3-	168.62 9 824.94 2	10 <i>3</i> 48 <i>5</i>	1175.41 2 ⁺ 519.208 5 ⁻				
		947.98 ^a 11	$100^{a} 8$	396.094 3				
		1016.44 <i>ia</i> 15	18 ia 3	328.019 1				
		1157.14 ^a 15	6.6 ^a 12	186.838 4+				

10

$\gamma(^{228}\text{Th})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	$_{\mathrm{I}_{\gamma}}^{\dagger}$	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.‡	δ^{\ddagger}	α^{h}
1344.142	3-	1286.27 ^a 20	47 ^a 9	57.773 2+	· <u></u>		
1379.5	7+	756.9 <mark>b</mark> 3	50 <mark>b</mark> 19	622.5 8+			
		1001.3 ^b 3	100 ^b 13	378.195 6 ⁺			
1393.31	$(1^+,2,3^-)$	425.0 [@] 2	64 [@] 12	968.451 4+			
		449.2 [@] 1	100 [@] 31	944.205 1			
		1065.4 [@] 4	44 [@] 16	328.019 1-			
1416.10	(3^{-})	399.8 ^{#@} 2	90 [@] 10	1016.386 3-			
		447.8 ^{#@} 2	33 [@] 3	968.451 4 ⁺			
		471.77 ^a 12	100 ^a 9	944.205 1			
		1019.86 ^a 10	64 ^a 12	396.094 3-			
		1088.18 ^a 15	18 ^a 4	328.019 1-			
		1229.40^a 15	90^{a} 10	186.838 4+			
	. 1	1358.3#@	87 [@] 13	57.773 2+			
1431.994	4 ⁺	134.9#@ 2	0.89 4	1297.435 (5-)			
		161.6 ^{#@} 4	0.36 13	1270.08 6+			
		231.4 ^{#@} 1	3.7 [@] 2	1200.60 3 ⁽⁺⁾			
		257.49 [@] 2	0.64 3	1174.515 (5+)			1.285 <i>18</i>
		263.62 [@] 2	0.96 4	1168.389 3-	E1		0.0497 7
		278.70 ^j 10	0.71 ^{<i>j</i>} 7	1153.487 2+			
		340.98 [@] 2	8.8 4	1091.048 4+	E2+M1	-5.2 18	0.133 21
		357.1 ^{#@} 2	1.65 [@] 18	$1074.80 4^+$			
		372.2 ^{#@} 2	0.4 [@] 1	1059.928 4			
		409.461 6	43.7 8	$1022.542 (3)^{+}$	E2+M1	-5.4 8	0.080 4
		415.6 ^{#@} 1	2.1 @ 2	1016.386 3			
		452.51 <i>5</i> 463.005 <i>6</i>	0.45 <i>4</i> 100.0 ^{<i>a</i>} <i>16</i>	979.522 2 ⁺ 968.984 2 ⁺	E2		0.0514 8
		463.3 ^{#@} 1	7.1 [@] 18	968.451 4 ⁺	EZ		0.0314 8
		557.4 ^{#@} 1	2.5 [@] 3	874.535 2 ⁺			
		1053.8 ^{#@} 1	≈0.002 [@]	378.195 6 ⁺			
		1053.8" • 1 1103.41 ^{ca} 10	≈ 0.002 0.34^a 11	378.195 6° 328.019 1 ⁻			
		1245.16 6	2.21 12	186.838 4 ⁺			
		1374.24 6	$0.32^{a}9$	57.773 2 ⁺			
1448.92	3,4-	389.1 [@] 1	100 [@]	1059.928 4			
	,	432.5 [@] 3	<75 [@]	1016.386 3-			
		480.6 [@] 2	≤75 [@]	968.451 4+			
		1052.7 @ @ 2	<75 [@] @	396.094 3-			
		1261.7 4	≤38	186.838 4+			

 γ (228Th) (continued)

 δ^{\ddagger}

+0.608

-0.185

-0.51 12

 α^{h}

6.47 9

4.56 21

1.85 4

0.83 7

4.09

0.295 5

0.08 4

0.07 3

Comments

 E_{γ} : Unweighted avg. Weighted avg.= 481.97 26 with

 E_{γ} : deduced from E(level).

chi-squared=28.

 I_{γ} : Weak γ -ray.

Mult.‡

[E1]

M1+E2

M1+E2

M1+E2

 E_{γ}^{\dagger}

153.02^{@#} 2

223.80[@] 2

275.85[@] 4

327.45[@] 4

359.36^{@#} 3

390.45^{@#} 5

427.90^{@#} 3

481.5 6

931.0 *1*

1054.22 5

 300.6^{b} 3

569.5^b 2

867.1^b 5

257.6^b 3

307.2^b 3

874.7^b 3

354.5[@] 2

481.4[@] 2

529.0[@] 2

978.3[@] 3

1119.5[@] 3

1310.8[@] 1

99.509^a 6

356.94^a 10

377.99^a 10

440.44^a 5

562.500^a 4

1135.24^a 15

1344.59^a 15

416.30^a 20

1142.85^a 15

508.97 4

1119.1<mark>b</mark>

434.01@#@ 3

282.01 2

18.4

 $E_i(level)$

1450.402

1490.2

1497.0

1497.2

1497.70

1539.21

4-

 10^{+}

 (13^{-})

8+

 (5^{-})

1531.490 0+&3+

2+

 I_{γ}^{\dagger}

11.9[@] 16

43.4 20

3.58[@] 19

2.6[@] 13

4.19[@] 23

3.58[@] 19

4.0[@] 3

5.6[@] 3

6.0 13

11.0 13

10.9 10

33^b 13

100^b 13

14^b 4

52^b 4

100^b 15

b

69[@] 19

10[@] 4

33[@] 12

21[@] 8

100[@] 10

1.35^a 14

2.00^a 18

9.6^a 6

0.8^a 1

 0.7^{a} 1

7.8^a 16

100^a 16

40 10

71 4

100 6

≈21[@]

100^b

60.0^a 16

100 10

 E_f

1431.994 4+

1297.435 (5-)

1226.580 4-

1168.389 3-

1122.959 2-

1091.048 4+

1059.928 4-

 $1022.542 (3)^{+}$

1016.386 3-

968.381 2-

519.208 5

396.094 3-

11-

9-

8+

 (12^{+})

 11^{-}

8+

1189.8

622.5

1239.3

1189.8

622.5

378.195 6⁺

1143.16 5-

1016.386 3-

968.984 2+

519.208 5

378.195 6⁺

186.838 4+

1431.994 4+

1153.487 2+

1091.048 4+

 $1022.542 (3)^{+}$

968.984 2+

396.094 3-

186.838 4⁺

1122.959 2

396.094 3-

1174.515 (5⁺)

M1

M1

E2(+M1)

E2+M1

>1.1

+1.66

920.77

1174.515 (5⁺)

 \mathbf{J}_f^{π}

						7()	Continue		
$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.‡	δ^{\ddagger}	α^{h}	Comments
1580.92	(2-)	354.2 ^{i@} 2	43 ^{i@} 7	1226.580	4-				
	, ,	601.7 ^{i@} 3	44 ^{i@} 7	979.522					
		1184.71 [@] 9	69 [@] 6	396.094	3-	(M1+E2)	1.29	0.014 7	
		1252.98 [@] 10	100 [@] 9	328.019		(M1+E2)	1.115	0.012 6	
		1523.4 ^{i@} 2	88 ^{i@} 9	57.773		, ,			
1588.347	(4^{-})	56.86 [@] 3	8.8 [@] 4	1531.490		E1		0.524 8	
	,	137.95 [@] 2	55 [@] 2	1450.402		M1		7.44 11	
		156.34 [@] 2	11.3 [@] 22	1431.994		E1		0.169 2	
		420.03 [@] 8	5.7 [@] 4	1168.389		2.		0.10, 2	
		465.4 [@] 1	100 [@] 17	1122.959					
		528.5 [@] 2	7.5 [@] 17	1059.928					
1599.4	(14^{+})	360.1 ^b 3	7.5 17		(12^+)				
1617.80	4+	649.03 ⁱ 13	100 ⁱ 9	968.984					
		1430.95 ^a 10	72 13	186.838					
		1559.78 <i>14</i>	38 ^a 6	57.773					
1627.8	(9^+)	715.9 <mark>b</mark> 3	38 ^b 8	911.8	(10^+)				
		1005.4 ^b 3	100 ^b 15	622.5	8+				
1638.284	2+	470.20 19	2.3 5	1168.389	3-				
		515.12 7	10 4	1122.959					
		1309.71 ^a 20	3.2 ^a 9	328.019					
		1451.40 ^a 15 1580.53 3	1.80 28 100 6	186.838 57.773		(M1,E2)			
		1638.28 ^a 1	85 7	0.0	0+	(E2)			
1643.131	$(2^{-}3^{-})$	299.0 ^{#@} 2	16 [@] 8	1344.142		(22)			
1043.131	(2 ,5)	416.5 ^{#@} <i>I</i>	≤33 [@]	1226.580					
		474.75 ^a 10	4.6^{a} 10	1168.389					
		520.152 ^a 16	12.5 10	1122.959		(M1)		0.189 3	
		583.2 ^{#@}	15 [@] 4	1059.928					
		626.81 <i>21</i>	2.8 4	1016.386					
		674.16 ^{fa}	≤21 ^a @	968.984	2+				E_{γ} : from level energies.
		674.7 ^f 2	7.7 [@] 11	968.381	2-				E_{γ} : from level energies.
		698.96 8	7.5 7	944.205	1-				7
		1247.08 <i>3</i>	100 5	396.094		(M1)		0.0187 3	
		1315.31 9	2.46 19	328.019					
1643.82	4+	442.9 [@] 3	4 @ 2	1200.60					
		490.4 @ 2	32.8 [@] 16	1153.487					
		552.9 [@] 2	7.2 [@] 16	1091.048	4+				

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	\mathbf{E}_f	J_f^π	Mult.‡	δ^{\ddagger}	α^{h}	Comments
1643.82	4+	621.4 [@] 1	37 [@] 4	1022.542	$(3)^{+}$				
		674.7 [@] 1	100 [@] 12	968.984					
1646.003	3 ⁺	114.54 6	0.28 4	1531.490					
		229.9 ^{#@} 4	4.3 [@] 18		(3^{-})				
		419.40 9	0.65 10	1226.580					
		444.9 ^{#@} 3	2.7 [@] 13	1200.60	3(+)				
		$470.6^{\#@k}$ 2	3.2 ^{@} 13		2+				
		477.5 ^{#@} 1	9.1 [@] 13	1168.389					
		492.30 7	0.74 5	1153.487					
		523.132 ^{ca} 16	3.5 <i>3</i>	1122.959	2-				
		555.10 <i>16</i>	1.40 14	1091.048	4+				
		571.1 ^{#@} 1	15 [@]	1074.80	4+				
		586.2 ^{#@} 2	3.2 [@] 8	1059.928					
		623.48 22	0.45 25	1022.542					
		629.40 ^c 5	1.24 20	1016.386					
		666.47 ^{<i>j</i>} 4	1.77 ^j 16	979.522					
		677.07 9	1.99 16	968.984					
		1249.97 <i>14</i>	1.93 17	396.094		F2			
		1459.14 2 1588.19 <i>3</i>	23.7 <i>12</i> 100.0 <i>25</i>	186.838 57.773		E2 E2			
1667.38	2+	1148.2 [@] 2	42 [@] 24	519.208		E2			
1007.58	2	1480.5 [@] 2	100 [@] 28						
1.650.40	2+	$503.0^{\cite{1}480.5}$	1.3 @ 4	186.838					
1678.42	2+			1175.41					
		803.8 2	1.7 9	874.535					
		1282.6 [@] 4	2.0 [@] 6	396.094					
		1620.67 [@] 10	100 [@] 4	57.773					
1682.81	$(2^+,3^+,4^+)$	660.1 ^a 3	≈0.58 ^a	1022.542					
		1286.3 ^{#@}	91 [@] 29	396.094					
		1496.03 ^c 12	100 5	186.838		(E2)			E_{γ} : Unweighted avg. Weighted avg.=1495.93 7 with chi-squared=14.4.
		1625.06 ^c 5	29.1 19	57.773					
1683.80	(4-)	457.35 7	19.1 19	1226.580					
		515.1 ^{#@} 2	23 @ 4	1168.389					
		623.7 ^{@#} 2	23 [@] 4	1059.928	4-				γ not resolved from the 623.27 γ from 1645 level in ²²⁸ Pa decay, I(doublet)=23 3. Not reported in ²²⁸ Ac decay.
		667.5 ^{#@} 3	103 [@] 32	1016.386	3-				accaj.
		1164.55 4	83 5	519.208		(M1+E2)	1.09	0.015 8	
		-10	00 0	217.200	-	(1.11 112)	1.07	0.010 0	

$\gamma(\frac{228}{\text{Th}})$ (continued)

$E_i(level)$	J_i^π	$\mathrm{E}_{\gamma}{}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.‡	δ^{\ddagger}	α^h
1683.80	(4-)	1287.77 8	100 7	396.094	3-	$\overline{(M1+E2)}$	0.91	0.012 6
1688.408	$2^{+},3^{+}$	42.46 ^a 5	0.61 15	1646.003				
		672.00 ^a 15	1.7 ^a 5	1016.386				
		813.77 ^a 15	0.46 11	874.535				
		1501.57 ^a 5	29.4 15	186.838		0.54.75		
		1630.627 ^a 10	100.0 ^a 26	57.773		(M1,E2)		0.007 3
1707.29	$(2,3^{-})$	1311.6 [@] 4	26 [@] 10	396.094				
		1379.2 [@] 2	100 [@] 48	328.019	1-			
1724.299	2+	308.2 ^{@#} 2	23 [@]	1416.10	(3^{-})			
		497.49 ^a 15	a	1226.580	4-			
		523.5 ^{#@} 1	26 [@] 5	1200.60	3(+)			
		548.74 9	2.20 21	1175.41	2+			
		570.88 <i>4</i>	17.2 8	1153.487		(M1)		0.147 2
		701.744 <i>14</i>	18.1 9	1022.542	. /	(M1)		0.0850 1
		755.315 ^a 4	100 3	968.984		M1		0.070 1
		780.2 ^{a#@} 3	5.1 [@] 13		1-			
		849.5 ^{#@} 2	5.1 [@] 20	874.535	2+			
		1537.87 ^c 10	4.2 5	186.838		3.61		0.0000 1
		1666.522 6	17.3 <i>7</i> 2.75 <i>3</i>	57.773	2 ⁺ 0 ⁺	M1		0.0090 1
1500 1	12+	1724.20 <i>4</i>		0.0	-			
1733.1	12+	236.0^{b} 3	25 ^b 8	1497.0	(13 ⁻)			
		543.3 ^b 2	100 ^b 17	1189.8	11-			
		821.6 ^b 4	15 ^b 11	911.8	(10^{+})			
1735.49	4+	1217.03 ^{cak} 10	39 ^a 6	519.208				
		1357.78 ^{cak} 15	37 ^a 7	378.195				
		1548.65 <i>4</i>	68 7	186.838				
1712.002	4.1	1677.7 6	100 8	57.773				
1743.902	4+	399.84 ^e 15	16.3 17	1344.142				
		590.40 [@] 11	9.40 11	1153.487				
		683.97 [@] 3	10.6 3	1059.928				
		727.2 ^{@#} 3	16 [@] 5	1016.386	3-			
		764.3 ^{@#} 3	27 [@] 11	979.522	2+			
		1347.52 ^a 16	8.4 17	396.094				
		1365.71 2	9.0 4	378.195				
		1415.69 <i>10</i>	19 5	328.019		(FQ 140)	100	0.007.3
		1557.09 4	100.0 17	186.838		(E2+M1)	+1.2 2	0.007 1
1550.06	2+	1686.12 7	54 <i>3</i>	57.773		(E2)		0.0039 1
1758.06	2+	741.9 [@] 3	74 [@] 26	1016.386	3			

γ (²²⁸Th) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^π	Mult.‡	δ^{\ddagger}	α^h	Comments
1758.06	2+	1361.4 [@] 5	63 [@] 26	396.094	3-				
		1430.0 [@] 3	100 [@] 37	328.019					
1758.26	$2^+,3,4^+$	326.04 ^a 20	100 ^a 15	1431.994					
		1571.52^{a} 20	17^{a} 5	186.838					
17(0.200	2(+),3(+)	1700.59 ^a 20 416.15 [@] #	31 ^a 7 22.3 [@] 23	57.773					
1760.209	2(1),3(1)	585.03 ^{i#@}	$10^{i@} 3$	1344.142					
		585.03*** © 668.9 ^{#@} 2	10° 3 100 [@] 12	1175.41 1091.048					
		737.72 5	100 ° 12 49 21	1091.048					
		791.44 ^j 9	$11^{\frac{1}{j}}4$	968.984					
		1573.26 5	39 15	186.838		(E2)		0.0044 1	
		1702.43 3	62 19	57.773		, ,			
1762.6	10 ⁺	850.8 ^b 3	100 ^b 50	911.8	(10^{+})				
		1140.2 ^b	b	622.5	8+				I_{γ} : Weak γ -ray.
1795.92	4+	1276.69 ^a 10	78 ^a 17	519.208					
1=0< 11		$1738.22^a 25$	$100^{a} 22$	57.773					
1796.44	4+	621.9 [@] 2	17 [@] 5 65 [@] 22	1174.515					
		705.3 [@] 2 1609.6 [@] <i>I</i>	65 22 100 8	1091.048					
1797.67	2+	1609.6 ° 1 1401.49 ^a 10	$60^a 15$	186.838 396.094					
1/9/.0/	2	1469.71 ^a 15	$100^{a} 20$	328.019					
		1740.4 ^a 3	55 ^a 15	57.773					
		1797.5 ^a 5	10 ^a 4		0_{+}				
1802.86	2+	1406.8 [@] 2	100 [@] 25	396.094					
		1474.8 [@] 2	28 [@] 16	328.019					
1804.672	4+	116.26 [@] 5	1.45 [@] 18	1688.408					
		121.18 ^{@ck} 7	1.7 [@] 3	1683.80					
		121.87 [@] 3	3.0 [@] 3		$(2^+, 3^+, 4^+)$				
		158.74 [@] 3	11.4 [@] 6	1646.003		M1+E2	0.55 15	4.2 2	
		216.3 [@] 1	100 [@] 27	1588.347					
		354.21 ^{i@}	$2.6^{i@}$ 5	1450.402					
		372.60 [@] c 3	14.3 [@] 7	1431.994					
		651.5 [@] 2	3.1 6 5	1153.487					
		713.6 [@] 2	9.1 6 5	1091.048					
		781.8 [@] <i>c I</i>	62 [@] 8	1022.542					
		835.63 [@]	@	968.984					
		1286.0 [@] 3	13 [@] 4	519.208	5-				

γ (228Th) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	$_{\mathrm{I}_{\gamma}}{}^{\dagger}$	E_f	${\rm J}_f^\pi$	Mult.‡	δ^{\ddagger}	α^{h}	Comments
1804.672	4+	1426.43 [@]	4.4 [@] 5	378.195	6 ⁺				
1001.072		1618.0 [@] 1	8.2 [@] 5	186.838		(M1,E2)		0.007 3	
		1746.84 [@]	≤27 <mark>@</mark>	57.773		()			
1811.56	$(1^-,2,3^-)$	1415.5 [@] 2	100 [@] 7	396.094					
	, , , ,	1483.5 [@] 2	58 [@] 18	328.019					
1817.435	4^{-}	229.3 [@] 2	49 [@] 29	1588.347					
		367.04 [@] 2	41.5 [@] 20	1450.402		M1(+E2)		0.484 7	
		590.7 [@] 1	56 [@] 12	1226.580	4-				
		642.7 [@] 2	48 [@] 14	1174.515	(5^{+})				
		649.0 [@] 1	100 [@] 14	1168.389	3-				
		674.6 [@] 3	≤34 <mark>@</mark>	1143.16	5-				
		694.5 [@] 1	85 [@] 17	1122.959					
		726.3 [@] 2	31 [@] 10	1091.048	4+				
		757.4 [@] 2	32 [@] 8	1059.928					
		801.1 [@] 1	78 [@] 8	1016.386					
		1298.3 2	7.6 [@] 8	519.208		(M1+E2)	0.77		δ : +0.27 \leq δ \leq +5 from $\gamma(\theta,H,T)$ in ²²⁸ Pa decay.
		1421.1 2	23.7 12	396.094		E2+M1	+2.0 5	0.007 1	
1823.47	(4^{+})	596.8 [@] 2	100 27	1226.580					
		732.9 [@] 4	47 [@] 20	1091.048					
1838.1	(15-)	1304.2 [@] 3 238.6 5	47 [@] 20	519.208 1599.4	5 ⁻ (14 ⁺)				
1030.1	(15^{-})	341.2^{b} 3			(14°) (13^{-})				
1842.23	(2,3)	751.1 [@] 2	29 [@] 1	1091.048					
1042.23	(2,3)	819.9 [@] 2	27 [@] 8	1022.542					
		862.8 [@] 3	18 [@] 6	979.522					
		1513.4 [@] 5	10 [@] 3	328.019					
		1784.4 [@] 2	100 8	57.773					
1864.95	(2^{+})	696.5 [@] 2	17 <mark>@</mark> 4	1168.389					
	(-)	741.8 [@] 2	28 [@] 4	1122.959					
		895.9 [@] 1	100 [@] 5	968.984					
		990.3 [@] 2	16 [@] 4	874.535					
		1468.8 [@] 3	20 [@] 5	396.094					
		1536.8 [@] 3	10 [@] 4	328.019					
		1807.2 [@] 1	43 [@] 3	57.773					
		1865.1 [@] 1	57 [@] 3	0.0	0^{+}				

17

γ (²²⁸Th) (continued)

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	$E_f J_f^\pi$	Mult.‡	δ^{\ddagger}	α^{h}	Comments
1876.46	$(3^-,4,5^-)$	1357.2 [@] 3	100 [@] 33	519.208 5				
	. , , ,	1480.4 [@] 3	87 [@] 48	396.094 3-				
1879.1	(3^{-})	1359.9 [@] 3	65 [@] 25	519.208 5				
		1482.9 [@] 23	100 [@] 30	396.094 3-				
1893.003	3 ⁺	157.5 ^{@#} 2	11 [@] 3	1735.49 4+				
		214.6 ^{@#} 1	≤6 <mark>@</mark>	1678.42 2 ⁺				
		255.2 ^{@#} 3	3.8 [@] 13	1638.284 2+				
		444.0 <mark>@#</mark> 2	31 [@] 11	1448.92 3,4-				
		477.1 ^{@#e} 3	4.4 [@] 13	1416.10 (3-)				
		666.47 ^{<i>j</i>} 4	1.31 ^{j@} 9	1226.580 4-				
		692.47 [@] 7	12.6 [@] 9	1200.60 3 ⁽⁺⁾	(M1+E2+E0)		0.24 3	α : from $\alpha(K)$ exp in ²²⁸ Pa decay.
		718.0 ^{@#} 2	10 [@] 4	1175.41 2+				
		724.5 ^{i@#} 1	$4.8^{i@}$ 6	1168.389 3-				
		739.2 ^{@#} 2	3.6 [@] 6	1153.487 2 ⁺				
		770.2 [@] 2	14.2 [@] 9	1122.959 2-				
		801.7 ^{@#} 3	7 [@] 3	1091.048 4+				•••
		870.45 2	99 5	$1022.542 (3)^{+}$	M1			$δ$: $-0.1 I$ (228 Pa decay).
		876.7 ^{@#} 2	13 [@] 5	1016.386 3-				
		913.0 [@] c# 1	24 [@] 8	979.522 2+				•••
		924.0 ^{@#} I	100 [@] 13	968.984 2+				E_{γ} : ²²⁸ Ac decay reports unresolved doublets around 924.03 keV without uncertainty. ²²⁸ Pa decay resolves the doublets to 924.0 <i>I</i> , 924.5 <i>I</i> , and 924.6 <i>I</i> . There is also disagreement in the reported relative intensities. Since level decay in ²²⁸ Pa is more complete than ²²⁸ Ac decay, the evaluator adopts the <i>γ</i> -rays reported in ²²⁸ Pa decay with their relative intensities.
		924.5 ^{@#} 1	62 [@] 19	968.451 4+				E_{γ},I_{γ} : See note on 924.0 <i>1</i> .
		924.6 ^{@#} 1	31 [@] 6	968.381 2-				E_{γ} , I_{γ} : See note on 924.0 <i>1</i> .
		1018.5 ^{@#} 1	81 [@] 19	874.535 2+	364 770	0.40.4	0.00=0.0	
		1706.17 <i>7</i> 1835.29 <i>5</i>	18.0 8 64 8	186.838 4 ⁺ 57.773 2 ⁺	M1+E2 E2+M1	+0.42 <i>4</i> +2.9 <i>3</i>	0.0078 <i>2</i> 0.0038 <i>1</i>	
1899.955	(2 ⁺)	253.9 ^{@#} 5	22 [@] 9	1646.003 3 ⁺	E2±WH	+4.9 3	0.0038 1	
1077.933	(2)	253.9° " 5 261.6 ^{@#} 2	48 [@] 18	1638.284 2 ⁺				
		506.5 ^{@#} 2	48° 18 ≤87 [@]	1393.31 (1 ⁺ ,2,3	-\			
		724.7 [@] c#k 3	44 [@] 22	1393.31 (1 ⁺ ,2,3 1175.41 2 ⁺)			

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	${\rm I}_{\gamma}{}^{\dagger}$	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.‡	δ^{\ddagger}	α^{h}	Comments
1899.955	(2+)	780.3 ^{@#}	83 [@] 9	1119.7	0+				
	,	877.39 7	40.6 33	1022.542	$(3)^{+}$				
		883.53 ^{@#} 3	6.6 [@] 18	1016.386	3-				
		920.46 ^{@#} 3	17 [@] 4	979.522					
		930.99 7	35 11	968.984					
		1503.7 ^{@#} 2	31.4 26	396.094					
		1572.0 ^{@#} 1	176 [@] 44	328.019	1-				I _γ : Seems larger than expected because it is considered as unresolved doublet.
		1713.47 ^a 20	12.9 ^a 24	186.838					
		1842.14 8	100 5	57.773		M1+E2	-0.86 14	0.0055 4	
1001.02	(C+)	1900.14 17	9 3		0+				
1901.92	(6^+)	255.9 [@] 2	56 [@] 24 48 [@] 20	1646.003					
		640.3 [@] 2	48 [®] 20 48 [®] 16		4+				
		810.7 [@] 2		1091.048					
		826.6 ^{@k} 3	80 40		4+				
		933.1 @ 3	100 [@] 40 22 [@] 2	968.984					
		1383.2 2		519.208					
		1505.9 [@] 2	22 [@] 2	396.094					
		1523.4 ^{i@} 2	$24.0^{i@}$ 24	378.195					
1906.65	(2^{+})	1715.06 [@] 10 490.33 ^a 15	20.0 [@] 12 93 ^a 19	186.838 1416.10	4 ⁺ (3 ⁻)				
1900.03	(2')	1074.71 ^a 15	84 ^a 25	831.842	. ,				
		1907.18 ^a 20	$100^{a} 8$		0+				
1908.39	0+	785.2 [@] 2	67 [@] 28	1122.959					
		817.4 [@] 3	33 [@] 10	1091.048					
		848.6 [@] 2	27 [@] 10	1059.928					
		885.7 [@] 2	63 [@] 13	1022.542					
		891.9 [@] 2	63 [@] 13	1016.386					
		939.9 [@] 2	77 [@] 17	968.451					
		964.3 [@] 3	100 [@] 43	944.205					
		1512.9 [@] 3	47 [@] 17	396.094					
1924.16	$(2^-,3,4)$	697.6 [@] 1	80 [@] 13	1226.580					
	(= ,0,.)	723.6 [@] 1	100 [@] 17		3(+)				
		755.7 [@] 1	70 [@] 17	1168.389					
1924.64	4+,5-	750.10 [@] 10	100 [@] 12	1174.515					
	. ,	902.1 6 5	45 [@] 15	1022.542					

$E_i(level)$	J_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.‡	α^{h}	Comments
1924.64	4+,5-	1405.5 [@] 2	48 [@] 12	519.208	5-			
1925.21	3+,4+	476.7 [@] 2	4 [@] 2	1448.92				
		663.5 [@] 2	11 [@] 2	1261.57	4+			
		724.42 ^{i@} 11	3.0 ^{i@} 4	1200.60	3(+)			
		771.72 [@]	≤4 <mark>@</mark>	1153.487	2+			
		834.1 [@] 1	100 [@] 16	1091.048				
		850.5 [@] 2	13 [@] 6	1074.80				
		865.2 [@] 2	2.0 [@] 3	1059.928				
		908.7 [@] 3	12 [@] 4	1016.386				
		956.8 [@] 2	88 [@] 20	968.381				
		1529.02 [@] 6	10.4 6 5	396.094				
		1547.0 [@] 2	18 [@] 5	378.195				
		1738.48 [@] 5	38 [@] 2	186.838		M1+E2	0.006 2	
1928.49	3+	168.65 [@] c 10	2.0 4	1760.209				
		389.12 [@] 15	6.9 [@] 11	1539.21				
		584.4 ^{i#@e} 3 774.86 ^{@#}	4.9 ^{i@} 16	1344.142				
		7/4.86 837.0 © c# 1	≤22 [@] 100 [@] 22	1153.487 1091.048				
		906.0 ^{@#} 6	38 [@] 13	1091.048				
		1741.72 18	9.3 [@] 18	186.838				
		1870.81 9	16.2 [@] 9	57.773		(M1+E2)	0.0051 18	I_{γ} : Largest in ²²⁸ Ac decay, since the γ -ray set seems more
				31.113	2	(WII+L2)	0.0031 10	in ²²⁸ Pa, the evaluator adopts Iγ reported in ²²⁸ Pa decay.
1937.18	$2^+,3,4^+$	397.94 ^a 10	100° 11	1539.21				
		1062.55 ^a 15	37 ^a 11 30 ^a 3	874.535				
		1750.54 ^a 20 1879.6 ^a 3	4.8 ^a 18	186.838 57.773				
1939.07	(4 ⁺)	677.8 [@] 2	30 [@] 11	1261.57				
1757.07	()	764.0 [@] 3	49 [@] 27	1175.41				
		847.8 [@] 3	14 [@] 5	1091.048				
		879.1 [@] 3	16 [@] 5	1059.928				
		916.6 [@] 3	46 [@] 14	1022.542				
		1419.8 [@] 2	54 [@] 24	519.208				
		1542.8 [@] 2	76 [@] 14	396.094	3-			
		1752.1 [@] 2	100 [@] 11	186.838				
1944.904	3 ⁺	148.4 ^{@#} 2	12 [@] 4	1796.44	4+			

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	${\rm I}_{\gamma}{}^{\dagger}$	E_f J_f^{π}	Mult.‡	δ^{\ddagger}	α^{h}	Comments
1944.904	3 ⁺	184.61 ^{@#} 5	1.7 [@] 2	1760.209 2 ⁽⁺⁾ ,3 ⁽⁺⁾	(M1)		3.26 5	
		220.61 ^{@#} 2	5.2 [@] 3	1724.299 2+	(M1)		1.98 <i>3</i>	
		237.7 ^{@#} 3	8 [@] 3	1707.29 (2,3-)				
		299.10 ^{@#} 10	1.79 [@] 21	1646.003 3 ⁺	M1		0.849 12	
		306.61 ^{@#} 2	8.3 [@] 4	1638.284 2 ⁺	M1		0.793 12	
		512.79 ^{@#} 11	5.5 [@] 6	1431.994 4+				
		551.79 ^{@#} 11	≤8 @	1393.31 (1+,2,3-)				
		683.4 ^{@#} 2	4.2 ^{@} 17	1261.57 4+				
		718.31 2	26.2 17	1226.580 4	(E1)			
		744.2 ^{@#} 1	15 [@] 4	1200.60 3 ⁽⁺⁾				
		769.6 ^{@#} 1	17 [@] 8	1175.41 2 ⁺				
		776.52 <i>4</i>	32 3	1168.389 3-				
		791.44 ^{<i>j</i>} 9	14.4 ja 3	1153.487 2+	(M1)		0.0618 9	
		853.7 <i>4</i> 922.08 <i>21</i>	3.4 <i>3</i> 9.7 <i>14</i>	1091.048 4 ⁺ 1022.542 (3) ⁺				
		928.4 ^{@#} 2	3.7 [@] 3	1016.386 3				
		965.3 ^{@#} 2	50 [@] 8	979.522 2 ⁺				
		975.98 <i>5</i>	56 <i>3</i>	968.984 2 ⁺	M1		0.0356 5	
		976.5 ^{@#} 1	25 [@] 8	968.381 2-				
		976.5 ^{@#} 1	29 [@] 12	968.451 4+				
		1000.69 ^a 15	5.6 ^a	944.205 1-				
		1070.40 ^{@#} 7	5.0 [@] 3	874.535 2 ⁺				
		1548.8 ^{@#} 2	5.0 [@] 8	396.094 3-				
		1758.11 5	37.7 20	186.838 4+	E2+M1	-9 <i>1</i>		
4045.54		1887.12 5	100 5	57.773 2 ⁺	E2+M1	-9.1 9		
1945.74	$4^{+},5^{-}$	1426.6 [@] 1	40 [@] 5	519.208 5-				
		1549.3 [@] 2	100 [@] 17 19 [@] 9	396.094 3 ⁻				
1040.53	(2±)	1567.6 [@] 3 827.1 [@] 3	19 [©] 9 89 [©] 29	378.195 6 ⁺				
1949.73	(2^{+})	827.1° 3 927.2° 2		1122.959 2				
		927.2 2 980.7 2	100 [@] 18 54 [@] 18	1022.542 (3) ⁺				
		980.7 2		968.984 2+				
		1005.5 2	43 [@] 14	944.205 1 ⁻				
1050.25	(2±)	1075.1 [@] 2	50 14	874.535 2 ⁺				
1958.35	(2^{+})	935.2 ^{@#}	90 [@] 17	1022.542 (3)+				
		1561.7 ^{@#} 4 1772.2 ^a 3	34 [@] 14 83 28	396.094 3 ⁻ 186.838 4 ⁺				γ not reported in ²²⁸ Pa decay.
		1//2.2 3	03 20	100.030 4				y not reported in Fra decay.

$\gamma(^{228}\text{Th})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	${\mathbb E}_{\gamma}{}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	\mathbf{E}_f \mathbf{J}_f^{π}	Comments
					I_{γ} : Adopted as a ratio between $I_{\gamma}(1958.2)$ ($^{228Pa}/^{228Ac}$) since $I_{\gamma}(1772.2)$ is largest in 228 Ac and it is not reported in 228 Pa decay.
1958.35	(2^{+})	1958.2 2	100 10	$0.0 0^{+}$	
1965.05	(2^{+})	321.75 ^{@k}	@	1643.131 (2-,3-)	
		548.9 ^{i@k} 11	41 ^{<i>i</i>@} 5	1416.10 (3-)	Multiply placed γ in ²²⁸ Pa decay with $I\gamma$ (doublet)=41 5.
		1778.0 [@] _6	6.1 @ 20	186.838 4+	
		1907.13 [@] 11	100 [@] 5	57.773 2 ⁺	
		1965.22 ^{i@} 12	43 ^{i@} 4	$0.0 0^{+}$	
1974.19	$(2^+,3^-)$	1455.0 [@] 2	61 [@] 4	519.208 5	
		1578.2 [@] 2	70 [@] 7	396.094 3-	
		1595.8 [@] 3	100 [@] 42	378.195 6 ⁺	
		1787.2 [@] 2	19.5 [@] 21	186.838 4 ⁺	
		1916.6 [@] 3	7.9 [@] 16	57.773 2 ⁺	
1981.90	(3^{-})	684.6 [@] 3	12 ^{@} 5	1297.435 (5-)	
		890.6 [@] 3	8 [@] 2	1091.048 4+	
		959.1 [@] 1	50 [@] 7	1022.542 (3) ⁺	
		1013.44 [@]	≤1.6 [@]	968.381 2-	
		1013.54 [@] <i>13</i>	25 [@] 8	968.451 4 ⁺	
		1585.5 [@] 2	27 [@] 8	396.094 3-	
		1795.15 [@] 6	100 [@] 6	186.838 4 ⁺	
		1924.2 [@] 2	15.1 [@] <i>17</i>	57.773 2 ⁺	
1987.47	4+	1017.92 ^a 20	29 <mark>a</mark> 7	968.984 2+	
		1609.41 ^a 15	39 ^a 8	378.195 6 ⁺	
		$1800.86^{a} 20$	$22^a 4$	186.838 4 ⁺	
1987.9	(16^+)	1929.78 ^a 20 388.5 ^b 3	100 ^a 11 100	57.773 2 ⁺ 1599.4 (14 ⁺)	
2010.15	(16°) (2 ⁺)	388.3° 3 214.85 ^{ak} 10	49 ^a 7	1795.92 4 ⁺	γ not reported in ²²⁸ Pa decay.
2010.15	(2')	372.57 ^{ac} 20	11 ^a 3	1638.284 2 ⁺	γ not reported in $^{-3}$ Pa decay.
		887.33 10	43 5	1122.959 2	
		919.0 ^a 1	46 ^a 5	1091.048 4+	Mult.: possible E0 component (228 Ac β^- decay).
		1040.91 <i>15</i>	76 <i>14</i>	968.984 2+	
		1823.21 10	65 4	186.838 4 ⁺	
2013.6	2+,3,4+	1952.37 <i>10</i> 1826.7 ^a 3	100 7 100 ^a 38	57.773 2 ⁺ 186.838 4 ⁺	
2013.0	۷ ,3,4	1826.74 3 1955.9 ^a 5	$38^a 14$	57.773 2 ⁺	
2016.75	$(4^+,5^-)$	1048.2 [@] 3	43 [@] 17	968.451 4 ⁺	
2010.73	(+ ,5)	1497.5 [@] 2	100 0 7	519.208 5 ⁻	
		1771.3 2	100 /	317.200 J	

γ (²²⁸Th) (continued)

E_i (level)	\mathtt{J}_i^{π}	E_{γ}^{\dagger}	${\rm I}_{\gamma}{}^{\dagger}$	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.‡	Comments
2016.75	$(4^+,5^-)$	1620.67 [@] 10	97 [@] 27	396.094	3-	(M1+E2)	
		1638.5 [@] 3	30 [@] 13	378.195	6+		
2022.82	(2^{+})	384.63 ^a 20	33 <i>a</i> 7	1638.284	2+		
		1000.4 ^{@#} 3	16 [@] 7	1022.542	$(3)^{+}$		
		1053.23 ^c 28	36 17	968.984			Possibly part of a doublet in ²²⁸ Pa decay.
		1148.16 <i>14</i>	22 8	874.535			
		1190.81 ^a 21	30° 8	831.842			
		1965.23 ⁱ 12	100 <i>ia</i> 9	57.773			
2030.40	2+	939.87 ^{ac} 15	100° 33	1091.048			
		1013.58 ^a 20	55 ^a 14	1016.386			
		1971.9 ^a 3	40 ^a 9	57.773			
		2029.4 ^a 5	20 ^a 6		0+		
2037.01	$2^+,3,4^+$	1850.13 ^a 20	100° 18	186.838			
		1979.3 ^a 3	41 ^a 11	57.773			
2123.1	(2^{+})	1795.1 ^a 5	100° 38	328.019			
		1936.3 ^a 3	100° 24	186.838	4 ⁺		
2209.5	(17^{-})	371.4 ^b 3	b	1838.1	(15^{-})	[E2]	
2400.5	(18^{+})	412.6 5	100	1987.9	(16^{+})		
2608.4?	(19^{-})	399 ^k 1		2209.5	(17^{-})		
2834.4?	(20^+)	434 ^k 1		2400.5	(18^{+})		
3283.4?	(22^{+})	449 ^k 1		2834.4?	(20^{+})		

[†] Weighted average of measurements in ²²⁸Ac and ²²⁸Pa decays, unless otherwise noted.

[‡] From 228 Ac β^- decay and/or 228 Pa ε decay.

[#] γ -ray not reported in 228 Ac β^- decay.

 $^{^{\}tiny{\textcircled{@}}}$ From 228 Pa ε decay.

[&]amp; From 232 U α decay.

^a From ²²⁸Ac β ⁻ decay.

^b From $(\alpha, 2n\gamma)$ data set.

^c Energy fit poor. Not included in E(level) calculation.

^d Doublet, energy not included in E(level) calculation.

^e A γ of this energy was seen in ²²⁸Pa decay and placed here in level scheme; however, the γ 's deexciting the final level of this γ were not seen in ²²⁸Pa decay.

f γ' s of approximately same energy and intensity seen in both 228 Ac and 228 Pa decays. On the basis of coin with 911 γ , it is suggested in 228 Ac decay, that the γ feeds the 2⁺ 968.968 level. In 228 Pa decay, the γ is placed feeding the 3⁻ 968.368 level. The energy fit is much better feeding the 3⁻ level. Possibly the γ seen is a doublet feeding both the 968 and 969 levels. Iy(doublet)=24 6, E(doublet)=674.65 5.

^g There is a disagreement in the ratio $I\gamma(583\gamma)/I\gamma(651\gamma)$ between ²²⁸Ac decay (1.23 15) and ²²⁸Pa decay (2.26 24).

- h Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.
- ⁱ Multiply placed with undivided intensity.
- Multiply placed with intensity suitably divided.
 Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

---- γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

Level Scheme (continued)

Legend

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Legend

Level Scheme (continued)

Level Scheme (continued)

Legend

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

γ Decay (Uncertain)

 $^{228}_{\ 90}\mathrm{Th}_{138}$

Level Scheme (continued)

Level Scheme (continued)

Legend

Level Scheme (continued)

Legend

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

γ Decay (Uncertain) $\frac{(2,3^{-})}{2^{+},3^{+}} \\
\underline{(4^{-})} \\
(2^{+},3^{+},4^{+}) \\
\underline{2^{+}} \\
\underline{2^{+}} \\
3^{+}$ 1707.29 1688.408 1683.80 1682.81 1678.42 1667.38 1646.003 (3-) 1416.10 1226.580 1200.60 1175.41 1168.389 1153.487 0.29 ns 2 1122.959 1091.048 1074.80 $\frac{4^{-}}{(3)^{+}}$ 1059.928 1022.542 3-1016.386 979.522 968.984 874.535 519.208 396.094 328.019 186.838 0.164 ns 4 57.773 0.406 ns 7 0.0 1.9116 y *16*

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

²²⁸₉₀Th₁₃₈

Level Scheme (continued)

Legend

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

---- γ Decay (Uncertain)

Level Scheme (continued)

Legend

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

---- γ Decay (Uncertain)

Level Scheme (continued)

Legend

Level Scheme (continued)

Level Scheme (continued)

Band(L): $K^{\pi}=6^+$ band

(6⁺) 1901.92

Band(K): $K^{\pi}=4^+$ band

1812.7

1643.82

 (6^{+})

Band(G): First $K^{\pi}=2^+$ band

10⁺ 1762.6

(9⁺) 1627.8

8⁺ 1497.2

 $(3)^{+}$

 2^+

1379.5

1022.542

968.984

Band(J): K^π=3⁻ octupole-vibrational band head

3- 1344.142

Band(H): $K^{\pi}=2^{-}$ octupole-vibrational band Band(I): Second $K^{\pi}=2^{+}$ 1297.435 band 1270.08 1261.57 1226.580 <u>3</u>(+) 1200.60 (5^{+}) 1174.515 1168.389 1153.487 1122.959 1091.048

 $^{228}_{\ 90}\mathrm{Th}_{138}$

Type Author Citation Literature Cutoff Date
Full Evaluation E. Browne, J. K. Tuli NDS 113,2113 (2012) 1-May-2012

 $O(\beta^{-})=-1311 \ 3$; $S(n)=6793.9 \ 23$; $S(p)=7123 \ 12$; $O(\alpha)=4769.8 \ 16$ 2012Wa38

Note: Current evaluation has used the following Q record -1310.5 28 6795.6 23 7175 324769.8 15 2011AuZZ. Additional information 1.

Wave functions and energies for the $K=2^+$ γ vibrational, $K=0^-$, 1^- , 2^- , 3^- octupole vibrational states were calculated by 1964So02 and 1975Iv03. See also 1969B113, 1970Ne08, 1974Be69, 1976Iv01, 1988Ot02 for calculated energies of these collective states. 1964So02 calculated also two-quasiparticle state energies. K=2 γ - and K=0 β -band energies were calculated by 1978To13, 1984Ba59; and $K=0^-$, $K=0^+$ band energies by 1990TrZY. See 1989Eg02 for calculated level energies and systematics of 1^- states. For calculations of two-phonon state energy, see 1981So05, 1988Le14. For calculated positive parity, K=0 and K=2 band spectra and comparison with experiments, see 1989Br21.

The B(E2) and B(E3) values for excitation of the 2⁺ and 3⁻ members of quadrupole and octupole band, respectively, were calculated by 1975Iv03, 1970Ne08, 1988Ot02. B(E2) was also calculated by 1981So11, 1982Gu05 and 1990TrZY. The B(E3) and B(E1) values for the excitation of 3⁻, 1⁻ levels of K=0, K=1 bands, respectively, were calculated by 1977Ba45. See also 1984Ba59 and 1989Ch07 for calculated B(E3) values.

For calculations and discussions on reduced transition probabilities of gammas deexciting the octupole vibrational states, see for example, 1965So04, 1971Ku25, 1972Va24, 1987Na05, 1987Na27, 1989Eg02, 1990TrZY, 1990Na30. For calculated reduced E2 transition probabilities of gammas from the β and the γ vibrational band to the g.s. band, see 1965Be40, 1986Go07, 1989Br21.

In order to explain the observed (p,t) cross section to the 0^+ state at 635 keV, various formalisms were applied; (t,p) and (p,t) strengths, E0 and E2 reduced transition probabilities were calculated by 1972Va20, 1973Im02, 1976Ra12. Hindrance factor of α transition to this 0^+ state was calculated by 1969Cr05, 1972Ci02.

For proposed structures of low-lying 0⁺ states and for discussions, see for example, 1969Cr05, 1972Ci02, 1972Ma15, 1972Va20, 1973Im02, 1976Ra12, 1976Iv04, 1990TrZY.

For calculated equilibrium quadrupole and hexadecapole deformation parameters, see 1970Ga12, 1974Br36, 1982Du16, 1982Le19, 1982Li01, 1983Ro14, 1984Eg01, 1984Na22, for example.

For deformation parameters deduced from Coulomb excitation, see 1973Be44 and 1977Mi11. For deformation parameter deduced from the ratio of (p,t) spectroscopic factors for g.s. and the first 0⁺ state, see 1979Ab10.

1985Na07 studied the influence of octupole deformation on high-spin properties of nuclear spectra. See also 1986Sc18 for discussions on stable octupole deformations in neighboring thorium isotopes that may be deduced from displacement energy of the positive- and the negative-parity bands, and from enhanced E1 transitions connecting those bands.

Changes in nuclear shapes were studied by 1984Va24 as dependence on spin.

For systematics of the proton- and neutron-pairing interaction strengths estimated from empirical odd-even mass differences, see 1989Pi03.

For calculations of nuclear potential at large deformation, see for example, 1971Pa20, 1971Oh07, 1972Ma11, 1987Be42. For calculations of fission-barrier energies, see 1972Ma11, 1979Sh01, 1980Ku14. For experimentally deduced energies, see 1988Bl03 (triple-humped fission barrier) and 1974Ba28 (double-humped barrier). Nuclear properties (energy, ε (2,3,4,5,6), moment of inertia) at the third minimum were studied by 1987Be42.

Level energies of the shape isomers in two wells were deduced by 1988Bl03 from fission probability measurements in ²²⁹Th(d,pF) reaction. Level energy of the shape isomer in first well was calculated by 1972Ma11.

Deformations, quadrupole and hexadecapole moments, moment of inertia of the expected first shape isomer were calculated by 1973So01, 1974Br36, 1978Po01.

Other references:

Calculated level energies, J^{π} : 2012Cu01, 2011Bo12, 2011No04, 2011Ra05, 2011Ri05, 2010Ab21, 2010Bo25, 2010Ch35, 2008Bi03, 2008Bu11, 2008Ch15, 2008Fr03, 2007Bo46.

Calculate alpha decay half-lives: 2012Qi01, 2011Qi01, 2011Sh13, 2011Zh36, 2009De32, 2009Qi07, 2007Pe30.

Calculated fission barriers and half-lives: 2012Lu02, 2010Ab23, 2010Sa09, 2009Dr05, 2008Xu06.

Cluster decay: 2011Ko36, 2010Ni13, 2010Si12, 2010Zh51, 2009Ar11, 2009Ni06, 2009Ro16, 2008Ku21, 2008Ro08.

Nuclear Structure: 2010Ko36, 2009Pa46, 2009So02, 2009Wa01, 2009Zh28, 2008Al13, 2008Bh05.

Calculated Q(α): 2010Wa23, 2008Zh12. Calculated nuclear moments: 2010Vr01. Calculated B(E2) ratios: 2011In03. Nuclear reactions: 2011Ch57, 2011Si14.

 $^{230}_{90} \mathrm{Th}_{140} \text{-2} \hspace{1.5cm} \mathrm{From} \; \mathrm{ENSDF} \hspace{1.5cm} ^{230} \mathrm{Th}_{140} \text{-2}$

Adopted Levels, Gammas (continued)

²³⁰Th Levels

Cross Reference (XREF) Flags

		B 230 Ac	α decay β^- decay mb excitation (d,d')	E 230 Pa ε decay I 230 Th(d,pn γ) F 232 Th(p,t) J 232 Th(236 Pb γ) H 232 Th(206 Pb, 208 Pb γ) E=56 MeV
E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}$	XREF	Comments
0.0#	0+	$7.54 \times 10^4 \text{ y } 3$	ABCDEFGHIJ	$%\alpha = 100; %^{24}$ Ne=5.8×10 ⁻¹¹ 13; %SF≤4×10 ⁻¹²
	-	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		% ²⁴ Ne from $T_{1/2}(^{24}\text{Ne})=1.3\times10^{17}$ y 3 (1996Bu05). %SF from $T_{1/2}(\text{SF})>2\times10^{18}$ y (1985TrZY). Value recommended in
				2000Ho27. Relative probability of cluster and α emission was measured by 1986Tr10; clusters were identified as neon ions from their residual
				ionic paths, and assigned to ²⁴ Ne from comparison of experimental
				path distribution with calculations and from its decay energies.
				For theoretical predictions of various cluster decay modes (mostly ²⁴ Ne) calculations of their partial half-lives, relative branchings, and
				decay energies, see 1984Po22, 1985Po10, 1986Po15, 1986Ka46,
				1986Pi11, 1986Ir01, 1987Po08, 1987Sh04, 1988Bl11, 1989Ci03, 1989Ma43, 1989Sh37, 1990Sh01, 1990Ba20, 1990Ka15, 1990Bu09,
				1990Bu13, 1991Bu01, 1991Ro03, 1996Bu05, 1997MiZP, 1997Ro24,
				1997Tr17, 1998Bu18, 1998Ro11, 1999De51, 2000Bu32, 2000Bu02, 2002Du16, 2002Ba80, 2003Sh02, 2003Mi18, 2003Ad34, 2003Ad32,
				2004Re22, 2004He16, 2004Ba64, 2005Ku32, 2005Ku04, 2005Bu38,
				2005Bh02, 2006Xu15. T _{1/2} : measurement of 1980Me10 (specific activity). Other measured
				values: 8.23×10 ⁴ y 25 (1930Cu02, from ²²² Rn growth), 7.3×10 ⁴ y
				4 (1931So01, from 226 Ra growth), 8.0×10^4 y 3 (1949Hy03, specific
				activity), 7.61×10 ⁴ y 14 (1962At01, calorimetry). See 1980Me10 and 1990Ho28 for earlier measurements and for recalculated half-lives.
				Other value: $>1.5\times10^{17}$ y (1952Se67).
				$T_{1/2}(SF) \ge 1.5 \times 10^{17}$ y (1952Se67) yields %SF $\le 5 \times 10^{-11}$. See 1979Po23 and 2004Ro01 for theoretical half-life values.
				Isotope shift relative to ²³² Th was measured by 1989Ka29 by LASER
				spectroscopy: IS=15360 30 MHz [IS= ν (²³⁰ Th)- ν (²³² Th)].
				For calculated charge radii, theoretical quadrupole and hexadecapole moments at g.s., and comparison with the values deduced from
				Coulomb excitation, see 1974Br36, 1982Li01, 1983Ro14.
53.227 [#] 11	2+	0.354 ns 9	ABCDEFGHIJ	J^{π} : 53.20 γ to 0 ⁺ is E2.
				$T_{1/2}$: From (α)(ce)(t) in ²³⁴ U decay (1965Ne03). Other values: $T_{1/2}$ =0.37 ns 2 from γ ce(t) in ²³⁰ Pa decay (1960Be25), $T_{1/2}$ =0.352
				ns 5 calculated by the evaluator from B(E2) of 8.06 11.
174.111 [#] <i>17</i>	4+	0.166 ns 5	ABCDEFGHIJ	B(E4)↑=1.19 32
				J^{π} : 120.90 γ E2 to 2 ⁺ ; hindrance factor from ²³⁴ U alpha decay. $T_{1/2}$: from (α)(ce)(t) in ²³⁴ U decay (1965Ne03).
356.47 [#] <i>14</i>	6+		CD FGHIJ	$1_{1/2}$. Holli (α)(ce)(t) III — 0 decay (1903/Ne03).
508.150 [@] 13	1-		ABCDEF IJ	J^{π} : 508.2 γ E1 to 0 ⁺ .
571.756 [@] 15	3-		BCDEF IJ	B(E3)↑=0.64 6
593.79 [#] 20	0+		CD POUT	J^{π} : 518.5 γ E1 and 397.7 γ E1 to 2 ⁺ and 4 ⁺ levels.
593.79" 20 634.919 ^{&} 18	8 ⁺		CD FGHIJ ABCDEF I	J^{π} : 634.9-keV E0 transition to 0 ⁺ .
UJT.917 10	U		ADCDET I	J. OJT./-RCV LO Halishion to U.

230Th Levels (continued)

E(level) [†]	Jπ‡	$T_{1/2}$	XREF	Comments
677.515 ^{&} 18	2+	15 ps 2	ABC EF I	B(E2) \uparrow =0.046 6 T _{1/2} : calculated by the evaluator from B(E2). See Coulomb excitation. J ^{π} : 624.3 γ E0+M1+E2 to 2 ⁺ .
686.6 [@] 3 769.6 6	(5 ⁻) (4 ⁺)		CD F II	J^{π} : 114.9 γ to 3 ⁻ , 330.1 γ to 6 ⁺ . J^{π} : γ rays to 2 ⁺ and 6 ⁺ states.
775.5 ^{&} 3 781.375 ^a 13	(4 ⁺) 2 ⁺	3.3 ps 5	F I BCDEF I	B(E2) \uparrow =0.123 <i>13</i> J ^π : 781.35γ E2 to 0 ⁺ .
825.664 ^a 21	3+		BC EF I	$T_{1/2}$: calculated by the evaluator from B(E2). See Coulomb excitation. J^{π} : 772.4 γ E2 to 2 ⁺ ; γ ray to 4 ⁺ , and γ ray from 2 ⁻ ; ratio of reduced transition rates agrees with theory (Alaga rule): B(E2,772.4 γ)/B(E2,651.6 γ)=0.39 <i>17</i> observed, 0.40 theory.
852.14 [@] 21	(7^{-})		CD F IJ	
879.3 [#] <i>3</i>	(10^{+})		C FGHI	
883.6 <mark>a</mark> 6	4+		CD F I	J^{π} : γ rays to 2^+ , 4^+ , 6^+ states.
922.95 <mark>&</mark> 20	(6^+)		FI	
951.898 ^b 14	1-		BCDEF	J^{π} : 951.95 γ E1 to 0 ⁺ .
955.04 ^a 23	(5 ⁺)		I	V 1 701170 / 21 to V 1
971.726 <mark>b</mark> 17	2-		BC EF	J^{π} : 463.6 γ M1+E2 to 1 ⁻ , 399.95 γ M1+E2 to 3 ⁻ .
1009.601 ^c 14	2+	≥0.8 ps	BC EF I	B(E2) $\uparrow \le 0.097$ XREF: F(1011.6). T _{1/2} : Calculated by evaluators from B(E2). See Coulomb excitation. J ^{π} : 1009.6 γ E2 to 0 ⁺ .
1012.46 ^b 3	3-		BCDEF	B(E3)↑≤0.57 XREF: F(1011.6). J^{π} : 959.2 γ E1 to 2 ⁺ ; 838.4 γ to 4 ⁺ .
1022 2			F	J . 939.27 ET to 2 , 636.47 to 4 .
1039.45 ^a 23	(6^+)		C F I	
1052.14 ^c 10	(3 ⁺)		C EF I	
1065.3 [@] 4	(9-)		C F II	
1079.216 ^d 15	(2)		BC EF	J ^{π} : 1026 γ E1 to 2 ⁺ ; 253.6 γ to 3 ⁺ state; no γ ray to 4 ⁺ ; ratio of reduced transition rates is in fair agreement with theory (Alaga rule): B(E2,571 γ)/B(E2,508 γ)=2.7 <i>14</i> observed, 4.0 theory.
1089 2	(44)		F	
1108.2 ^c 7	(4^{+})		C F I	
1108.9 ^b 7	(5 ⁻)		CD	J^{π} : γ -ray transitions to 4^+ , 3^- states of the K=0 ⁺ g.s. and K=0 ⁻ octupole-vibrational bands, but no γ rays to 0^+ , 2^+ and 1^- states of these bands.
1117.4 ^{&} 3 1125.6 5	(8^+) $(1^-),(0^+)$		I F	
1127.789 ^d 15	3-		CDE	J^{π} : 1074.68 γ E1 to 2 ⁺ ; 954 γ to 4 ⁺ state.
1127.789 13 1134.2 ^a 3 1144 2 1148.0 9	(7 ⁺)		I F F	J. 1074.069 E1 to 2, 9349 to 4 state.
1176.0 ^c 3 1184.8 9	(5 ⁺)		C I	
1196.8 ^d 10	(4-)		С	J^{π} : 1022.7 γ to 4 ⁺ state, but no γ rays to the 0 ⁺ , 2 ⁺ states of the g.s. band.
1206.6 [#] 5 1241.2 9	(12^+)		C GHIJ F	
1243.0^a 3	(8+)		I	

²³⁰Th Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments
1251.2 8	(8 ⁺)	С	
1255.4 ^c 4	(6^{+})	FI	
1259.2 6	(3^{-})	F	
1283.6 6	(5^{-})	F	
1297.14 8	0+	B F	
1322.0 [@] 5	(11 ⁻)	C IJ	
1322.3 5	(3^{-})	F 15	
1337.2 5	4 ⁺	F	
1349.0 ^c 4	(7 ⁺)	I	
1358.4 ^a 4	(9^+)	Ī	
1359.5 7	(2^{+})	F	
1375.28 6	$(1,2^+)$	B F	J^{π} : γ ray to 0^+ level.
1400.89 5	(2^{+})	B F	J^{π} : γ rays to 0^+ and 4^+ levels.
1401.5 5	2+	F	V 1 / Taylo to V and I Tollow
1420.4 5	(3^{+})	F	
1440.4 8	(3 ⁺)	F	
1447.9 5	0+	F	
1448.4 ^c 5	(8^{+})	I	
1485.62 8	(4 ⁺)	В	
1496.0 <i>10</i>		F	
1507.4 5	4 ⁺	F	
1520.1 <mark>a</mark> 8	(10^{+})	С	
1524.8 <i>5</i>	2+	F	
1566.2 <i>6</i>	(1^{-})	F	
1571.8 [#] 7	(14^{+})	C J	
1573.51 20	$1^{(-)},2^+$	B D F	J^{π} : 1573.5 γ to 0 ⁺ ; populated in (d,d').
1584.7 6	$(4^-,5^+)$	F	
1589.8 <i>3</i>	0_{+}	B D F	J^{π} : L=0 in ²³² Th(p,t) reaction.
1594.7 8	(1^{-})	F	
1601.2 <i>11</i>	(3^{-})	F	
1612.1 <i>10</i>	$(4^-,5^+)$	F	
1616.0 [@] 6	(13^{-})	C J	
1618.7 9	$(4^-,5^+)$	F	
1628 2		D F	
1630.1 7	2+	F	
1638.45 9	(0^+)	B F	J^{π} : γ rays to 2 ⁺ states; log ft =7.1 from (1 ⁺) ²³⁰ Ac β ⁻ decay.
			$J^{\pi}=2^{+}$, K=0 was suggested by 1972Ma15 from energy difference of the 1638.5- and
	(e4)		1589.8-keV levels.
1653.2 11	(6^+)	F	
1663 3	(4±)	D	
1668.2 <i>7</i> 1679.1 <i>7</i>	(4^+)	F F	
1683.3 7	(2^{+})		
1694.9 7	(4^{-}) (4^{+})	F F	
1695.71 9	$1^{(-)},2^+$	B D	J^{π} : 1695.7 γ to 0 ⁺ level. Populated in (d,d').
1708.8 8	2+	F F	J. 1093./y to 0 level. Fopulated III (d,d).
1708.8 8 1718 <i>3</i>	2	D	
1723.5 7	(4^{+})	F	
1745.3 8	(0^{+})	B F	
1750.7 8	(3^{-})	F	
1762.3 8	(4 ⁺)	F	
1769.6 8	(4 ⁺)	F	
1770.73 <i>10</i>	$(1,2^+)$	В	J^{π} : 1770.5 γ to 0 ⁺ level.
1775.22 7	$(1,2^+)$	B F	J^{π} : 1775.3 γ to 0 ⁺ level.

230Th Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments
1789.4 5	1 ⁽⁻⁾ ,2 ⁺	B D	J^{π} : 1789.4 γ to 0 ⁺ level. Populated in (d,d').
1793.1 6	(5^{-})	F	J. 1769.47 to 0 level. I opulated iii (u,u).
1802.5 6	0+	F	
		В	J^{π} : 1810.7 γ to 0 ⁺ level.
1810.74 6	$(1,2^+)$ 4^+		J. 1810.77 to 0 level.
1812.0 8	•	F	
1824.9 7	(6^+)	F	
1839.61 20	$1^{(-)},2^+$	B D F	J^{π} : 1839.6 γ to 0 ⁺ level. Populated in (d,d').
1849.54 9	(2^{+})	В	J^{π} : γ rays to 4^+ , 2^+ , and 2^- levels; log ft =6.9 from $(1^+)^{230}$ Ac β - decay.
1851.4 7	(3^{-})	F	
1858.2 5	(3 ⁻)	B D F	
1868.9 7	$(0^+)&(6^+)$	F	
1887.0 9	(2+)	F	
1902.70 9	$(1,2^+)$	В	J^{π} : 1902.7 γ to 0 ⁺ level.
1910.0 9	(6 ⁺)	F	
1914.7 9	(1-)	F	
1926.0 7	4+	F	
1931.1 8	(1-)	F	
1939.8 11	(1) 4 ⁺	F	
1947.0 6		F	
1947.1 [@] 7	(15^{-})	C J	177 1040 0 · · · · · · · · · · · · · · · · ·
1949.87 7	$(1,2^+)$	В	J^{π} : 1949.8 γ to 0 ⁺ level.
1956.4 <i>6</i> 1967.00 <i>10</i>	2+	F	J^{π} : 1966.7 γ to 0 ⁺ level.
1967.00 <i>10</i> 1969.5 [#] 8	$(1,2^+)$	B F	J ^{**} : 1900.7γ to 0 ^{**} level.
	(16^+)	C J	J^{π} : 1973.5 γ to 0 ⁺ level, and possible 1147.9 γ to 3 ⁺ state.
1973.44 <i>10</i> 1985.4 8	$(1^+,2^+)$ (5^-)	B F F	J": 1973.57 to 0" level, and possible 1147.97 to 3" state.
2000.91 10	$(1,2^+)$	В	J^{π} : 2000.9 γ to 0 ⁺ level.
2001.6 8	(3^{-})	F	J . 2000.9 y to 0 level.
2010.13 9	$(1,2^+)$	B F	J^{π} : 2010.1 γ to 0 ⁺ level.
2017.3 7	(3^{-})	F	3 . 2010.1 y to 0 . level.
2024.67 <i>13</i>	$(1^+,2^+)$	B F	J^{π} : γ rays to 0^+ and 3^+ levels.
2032.8 7	4+	F	v. / rajo to o and o revelo.
2039.1 7	4+	F	
2048.7 7	(4^{+})	F	
2060.9 12	(3-)	F	
2073.2 8	(8+)	F	
2074.9 8	(4 ⁺)	F	
2078.25? 10		В	
2085.9 8	(4^{+})	F	
2093.9 7	0_{+}	F	
2102.0 7	4+	F	
2118.4 6	4+	F	
2122.77 9	$(1,2^+)$	В	J^{π} : 2122.8 γ to 0 ⁺ level.
2130.7 7	2+	F	
2133.14? 12	2+	B F	
2137.9 7	2 ⁺ 0 ⁺	F	
2150.5 <i>6</i> 2151.81 <i>10</i>	$(1,2^+)$	F B	J^{π} : 2152.0 γ to 0 ⁺ level.
2151.81 10	$(1,2^+)$ (4^+)	Б F	J . 2132.07 to 0 16761.
2175.1 6	0+	F	
2181.7 7	(4^{+})	F	
2187.1 6	2+	F	
2194.8 8	(6 ⁺)	F	
2205.4 10	2+	F	
2207.8 8	(4^{+})	F	

²³⁰Th Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments
2216.0 7	(4 ⁺)	F	
2226.0 6	2+	F	
	2+	r T	
2241.0 7		F	
2249.9 7	(6 ⁺)	F	
2255.3 7	4+	F	
2268.9 <i>6</i>	0+	F	
2276.0 8	(4^{+})	F	
2282.98 <i>16</i>	$1,2^{+}$	B F	J^{π} : 2282.5 γ to 0 ⁺ level.
2295.9 8	4+	F	
2298.6 <i>3</i>	$(1,2^+)$	В	J^{π} : 2298.6 γ to 0^{+} level.
2305.4 7	2+	F	
2310.5 [@] 8	(17^{-})	C J	
2311.2 8	(4^+)	F	
2314.27? 15	$(1,2^+)$	В	J^{π} : 2314.0 γ to 0 ⁺ level.
2317.7 7	4 ⁺		3 . 2514.0y to 0 level.
2329.6 7	2 ⁺	F F	
		r	
2337.1 8	(5^{-})	F	
2354.8 10	(6^+)	F	
2368.91 17	(0^+)	B F	
2383.8 8	(4^{+})	F	
2388.4 10	- 1	F	
2395.2 7	0_{+}	F	
2396.3 [#] 9	(18^{+})	C J	
2402.0 8	(6^{+})	F	
2411.6 7	2+	F	
2422.7 7	2+	F	
2426.4 9	(0^{+})	F	
2436.6 9	2+	F	
2442.5 8	2+	F	
2449.2 2	(3^{-})	F	
2461.0 7	2+	F	
2467.2 7	2+	F	
2474.3 8	2+	F	
2478.5 8	4+	F	
2481.3 12	(6^{+})	F	
2493.8 7	0^{+}	F	
2501.1 7	4+	F	
2508.3 7		F	
2519.3 7	(6^{+})	F	
2528.1 7	0^{+}	F	
2536.9 7	4+	F	
2549.8 11	0^{+}	F	
2556.2 8	(4^{+})	F	
2562.9 9	(4^{+})	F	
2573.2 7	(6^{+})	F	
2589.1 7	2+	F	
2596.4 8	(0^+)	F	
2601.3 7	(4^{+})	F	
2616.0 7	2+	F	
2625.9 7	2+	F	
2640.0 8	4+	F	
2660.9 7	4+	F	
2666.4 7	(2^{+})	F	
2671.6 7	4+	F	
2679.2 8	2+	F	

230Th Levels (continued)

E(level) [†]	Jπ‡	XREF
2694.9 7	2+	F
2703.7 [@] 9		-
2706.5 7	(19 ⁻) 2 ⁺	C J
2712.9 5	(6 ⁺)	F F
2712.9 3	2 ⁺	F
2740.6 7	2+	F
2746.2 7	4 ⁺	F
2754.2 10	(6 ⁺)	F
2764.9 7	2+	F
2777.3 7	2+	F
2791.5 7	4+	F
2799.7 8	2 ⁺ 0 ⁺	F
2808.1 7	0_{+}	F
2824.4 10	4+	F
2834.0 10	2+	F
2841.3 7	(2^{+})	F
2848.6 [#] 11	(20^+)	C J
2855.9 7	2+	F
2862.9 7	2+	F
2870.6 10	(3 ⁻) 2 ⁺	F
2879.7 7		F
2886.1 <i>10</i>	(1^{-})	F
2896.1 7	2+	F
2906.4 8	(3^{-})	F
2913.6 <i>15</i>	(4+)	F
2923.7 9	2+	F
2930.6 7	2 ⁺ 2 ⁺	F
2940.6 7	2+	F
2950.5 8	(6 ⁺)	F
2987.9 10	(6 ⁺)	F
2999.0 7	2 ⁺	F
3009.9 <i>8</i> 3020.6 <i>8</i>	2 ⁺ 2 ⁺	F
3030.3 9	2+	F F
3043.0 7	2+	F
3052.4 9	(3 ⁺)	F
3064.3 15	(2^{+})	F
3072.6 8	(6^+)	F
3083.8 7	2+	F
3100.9 7	2 ⁺	F
3113.9 12	<u>-</u> (≤4)	F
3124.7 8	(4+)	F
3125 [@]	(21^{-})	C J
3135.9 10	(≤4)	F
3147.4 8	(≤4)	F
3162.0 7	2+	F
3173.6 8	2 ⁺	F
3186.1 7	(6^{+})	F
3198.4 7	2+	F
3212.2 7	2+	F
3223.1 7	2+	F
3234.0 7		F
3248.6 7	2+	F
3258.8 8		F
3269.9 12	(2^{+})	F

²³⁰Th Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XRE	F	Comments
3324.0 [#] <i>12</i>	(22+)	С	J	
3572.5? [@]	(23^{-})		J	
3819? [#]	(24^{+})	C	J	
$50 \times 10^2 \ 4$		F		Group of levels containing deep-hole states (1982Na06).

[†] Deduced by evaluators from a least squares fit to adopted γ -ray energies, unless otherwise specified.

[‡] Spin/parity assignments are based on rotational and band structures, on γ -ray multipolarities, on log ft values from 230 Ac β -decay and 230 Pa ε decay, and on hindrance factors from 234 U alpha decay. For levels populated only in 234 Th(p,t), spin/parity assignments are based on angular distribution of scattered tritons. Some additional specific arguments are given for individual levels.

[#] Band(A): K^{π} =0⁺ g.s. rotational band. Assignments for levels with J^{π} ≥6⁺ are from inband γ rays observed in Coulomb excitation. For g.s. band level-energy calculations, see 1989Hu05 (by using Harris expansion) and 1989Xu04 (by least square, four parameter fitting to rotational-band formula). For theoretical calculations of moment of inertia, see 1974Br36, 1980Du07, 1987Mi26, for example.

[@] Band(B): K^{π} =0⁻ octupole-vibrational band. Assignments for levels with J^{π} ≥5⁻ are from γ rays to lower members of the K=0⁻ octupole-vibrational band and to the g.s. rotational band. See 1989Ku23 for a discussion on alignments.

[&]amp; Band(C): $K^{\pi}=0^{+} \beta$ -vibrational band.

^a Band(D): $K^{\pi}=2^+$ γ-vibrational band. Assignments for levels with $J^{\pi}≥6^+$ are from γ ray decays to the g.s. rotational band, and from fit to the K=2 γ- vibrational band.

b Band(E): K^π=1⁻ octupole-vibrational band. Distorted by Coriolis interaction. For discussions see 1971Ku25, 1973ChZH, 1989Ku23, for example.

^c Band(F): $K^{\pi}=2^{+}$ band. Assignments for levels with $J^{\pi}\geq3^{+}$ are from γ decays to the g.s. band observed in Coulomb excitation.

^d Band(G): $K^{\pi}=2^{-}$ octupole-vibrational band.

$\gamma(^{230}\text{Th})$

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\sharp}$	I_{γ}^{\ddagger}	\mathbf{E}_f .	\mathbf{J}_f^{π}	Mult.#	$lpha^\dagger$	$I_{(\gamma+ce)}$	Comments
53.227	2+	53.20 2	100	0.0) +	E2	228		$\alpha(L)$ =166.8 24; $\alpha(M)$ =45.7 7; $\alpha(N+)$ =15.39 22 $\alpha(N)$ =12.22 18; $\alpha(O)$ =2.72 4; $\alpha(P)$ =0.448 7; $\alpha(Q)$ =0.001240 18 B(E2)(W.u.)=196 6
174.111	4+	120.90 2	100	53.227 2	2+	E2	4.94		E _γ : From ²³⁴ U alpha decay. $\alpha(K)$ =0.257 4; $\alpha(L)$ =3.42 5; $\alpha(M)$ =0.940 14; $\alpha(N+)$ =0.318 5 $\alpha(N)$ =0.252 4; $\alpha(O)$ =0.0562 8; $\alpha(P)$ =0.00936 14; $\alpha(Q)$ =5.21×10 ⁻⁵ 8
356.47 508.150	6 ⁺ 1 ⁻	182.5 2 454.92 2	100 100 <i>3</i>	174.111 ⁴ 53.227 ²		E1	0.01528		B(E2)(W.u.)=265 9 E _y : From ²³⁴ U alpha decay. E _y : From ²³² Th(¹³⁶ Xe,Xy). α (K)=0.01237 18; α (L)=0.00220 3; α (M)=0.000525 8; α (N+)=0.0001782 25
		508.15 2	60 3	0.0)+	E1	0.01222		$\alpha(N)=0.0001391\ 20;\ \alpha(O)=3.25\times10^{-5}\ 5;\ \alpha(P)=6.15\times10^{-6}\ 9;\ \alpha(Q)=5.10\times10^{-7}\ 8$ $\alpha(K)=0.00992\ 14;\ \alpha(L)=0.001743\ 25;\ \alpha(M)=0.000415\ 6;\ \alpha(N+)=0.0001410\ 20$ $\alpha(N)=0.0001099\ 16;\ \alpha(O)=2.57\times10^{-5}\ 4;\ \alpha(P)=4.88\times10^{-6}\ 7;$
571.756	3-	63.5 2 397.62 2	87 4	508.150 1 174.111 4		E1	0.0202		$\alpha(Q)=4.13\times10^{-7} \ 6$ E_{γ} : From 230 Th(d,pn γ). $\alpha(K)=0.01630 \ 23$; $\alpha(L)=0.00295 \ 5$; $\alpha(M)=0.000704 \ 10$; $\alpha(N+)=0.000239 \ 4$
		518.54 2	100 5	53.227 2	2+	E1	0.01174		$\alpha(N)=0.000187 \ 3; \ \alpha(O)=4.36\times10^{-5} \ 6; \ \alpha(P)=8.20\times10^{-6} \ 12; \ \alpha(Q)=6.65\times10^{-7} \ 10 \ \alpha(K)=0.00953 \ 14; \ \alpha(L)=0.001671 \ 24; \ \alpha(M)=0.000398 \ 6; \ \alpha(N+)=0.0001351 \ 19 \ \alpha(N)=0.0001054 \ 15; \ \alpha(O)=2.47\times10^{-5} \ 4; \ \alpha(P)=4.68\times10^{-6} \ 7;$
593.79 634.919	8 ⁺	237.4 2 581.65 <i>10</i>	100 100	356.47 6 53.227 2		E2	0.0302		$\alpha(Q)=3.97\times10^{-7} 6$ E_{γ} : From $^{232}\text{Th}(^{136}\text{Xe},\text{X}\gamma)$. $\alpha(K)=0.0203 \ 3; \ \alpha(L)=0.00735 \ 11; \ \alpha(M)=0.00188 \ 3;$ $\alpha(N+)=0.000641 \ 9$
		634.9 2		0.0)+	E0		120 25	$\alpha(N)=0.000503$ 7; $\alpha(O)=0.0001158$ 17; $\alpha(P)=2.09\times10^{-5}$ 3; $\alpha(Q)=1.089\times10^{-6}$ 16
677.515	2+	503.55 ^f 10	86 ^f @ 13	174.111 4	4 ⁺	E2	0.0420		B(E2)(W.u.)=10 4 α (K)=0.0266 4; α (L)=0.01141 16; α (M)=0.00296 5; α (N+)=0.001007 15 α (N)=0.000792 11; α (O)=0.000181 3; α (P)=3.24×10 ⁻⁵ 5;
		624.33 7	88 5	53.227 2	2+	E0+M1+E2	0.07 5		$\alpha(Q)=1.463\times10^{-6}\ 2I$ $\alpha(K)=0.06\ 4;\ \alpha(L)=0.012\ 6;\ \alpha(M)=0.0028\ I3;\ \alpha(N+)=0.0010\ 5$

$\gamma(^{230}\text{Th})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\ddagger}$	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult.#	α^{\dagger}	Comments
677.515	2+	677.53 6	100 9	0.0	0+	E2	0.0217	$\alpha(N)=0.0008\ 4;\ \alpha(O)=0.00018\ 9;\ \alpha(P)=3.4\times10^{-5}\ 17;\ \alpha(Q)=2.9\times10^{-6}\ 20$ α : Experimental value. B(E2)(W.u.)=2.7 9 $\alpha(K)=0.01533\ 22;\ \alpha(L)=0.00475\ 7;\ \alpha(M)=0.001204\ 17;\ \alpha(N+)=0.000410\ 6$ $\alpha(N)=0.000322\ 5;\ \alpha(O)=7.43\times10^{-5}\ 11;\ \alpha(P)=1.359\times10^{-5}\ 19;\ \alpha(Q)=8.03\times10^{-7}$
686.6	(5 ⁻)	114.9 ^a 330.1 ^a	19 ^a 6 55 ^a 4	571.756 356.47				12
769.6	(4 ⁺)	512.6 ^a 413.0 ^a 595.5 ^a 716.4 ^a	$100^{a} 6$ $\leq 45^{a}$ $82^{a} 55$ $100^{a} 37$	174.111 356.47 174.111 53.227	6 ⁺ 4 ⁺			
775.5	(4 ⁺)	419.7 ^b 5	16 <mark>b</mark> 4	356.47	6+			
781.375	2+	601.1 ^b 3 607.41 8	100 ^b 10 2.7 12	174.111 174.111		[E2]	0.0274	$\alpha(K)$ =0.0187 3; $\alpha(L)$ =0.00647 9; $\alpha(M)$ =0.001654 24; $\alpha(N+)$ =0.000563 8 $\alpha(N)$ =0.000442 7; $\alpha(O)$ =0.0001018 15; $\alpha(P)$ =1.85×10 ⁻⁵ 3; $\alpha(Q)$ =9.98×10 ⁻⁷ 14
		728.13 2	100 5	53.227	2+	E2	0.0187	B(E2)(W.u.)=0.37 14 α (K)=0.01345 19; α (L)=0.00391 6; α (M)=0.000985 14; α (N+)=0.000336 5 α (N)=0.000263 4; α (O)=6.09×10 ⁻⁵ 9; α (P)=1.120×10 ⁻⁵ 16; α (Q)=6.97×10 ⁻⁷
		781.39 2	75 4	0.0	0+	E2	0.01618	B(E2)(W.u.)=5.5 18 α (K)=0.01184 17; α (L)=0.00325 5; α (M)=0.000815 12; α (N+)=0.000278 4 α (N)=0.000217 3; α (O)=5.04×10 ⁻⁵ 7; α (P)=9.32×10 ⁻⁶ 13; α (Q)=6.08×10 ⁻⁷ 9
825.664	3+	651.61 <i>6</i>	27 4	174.111	4+	M1+E2	0.06 4	B(E2)(W.u.)=2.9 9 α (K)=0.05 4; α (L)=0.010 5; α (M)=0.0025 12; α (N+)=0.0009 4 α (N)=0.0007 4; α (O)=0.00016 8; α (P)=3.0×10 ⁻⁵ 15; α (Q)=2.6×10 ⁻⁶ 18
		772.41 6	100 7	53.227	2+	M1+E2	0.041 25	$\alpha(N)=0.0007$ 4; $\alpha(O)=0.00016$ 8; $\alpha(P)=3.0\times10^{-5}$ 15; $\alpha(Q)=2.6\times10^{-6}$ 18 $\alpha(K)=0.033$ 21; $\alpha(L)=0.007$ 4; $\alpha(M)=0.0016$ 8; $\alpha(N+)=0.0005$ 3 $\alpha(N)=0.00042$ 20; $\alpha(O)=0.00010$ 5; $\alpha(P)=1.9\times10^{-5}$ 10; $\alpha(Q)=1.7\times10^{-6}$ 11
852.14	(7-)	165.5 2 258.2 2	6 <i>5</i> 30 <i>3</i>	593.79	(5 ⁻) 8 ⁺			Eγ from 230 Th(d,pnγ); Iγ from Coulomb Excitation. Eγ from 230 Th(d,pnγ); Iγ from Coulomb Excitation.
879.3 883.6	(10 ⁺) 4 ⁺	495.8 2 285.6 2 205.9 ^{ag} 527.0 ^a 709.5 ^a	$ \begin{array}{c} 100 \ 5 \\ 100 \\ 6.0^{a} \ 30 \\ 6.3^{a} \ 15 \\ 100^{a} \ 5 \end{array} $	593.79 677.515 356.47 174.111	6 ⁺ 4 ⁺			Eγ from ²³⁰ Th(d,pnγ); Iγ from Coulomb Excitation.
922.95	(6 ⁺)	830.4 ^a 566.5 2 748.8 3	36.2 ^a 30 34 4 100 7	53.227 356.47 174.111	6+			E γ from ²³⁰ Th(d,pn γ); I γ from Coulomb Excitation. E γ from ²³⁰ Th(d,pn γ); I γ from Coulomb Excitation.

10

$\gamma(^{230}\text{Th})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.#	δ	$lpha^\dagger$	Comments
951.898	1-	170.53 5	≤0.02 ^{&}	781.375 2+	E1		0.1377	$\alpha(K)$ =0.1083 16; $\alpha(L)$ =0.0223 4; $\alpha(M)$ =0.00537 8; $\alpha(N+)$ =0.00181 3 $\alpha(N)$ =0.001417 20; $\alpha(O)$ =0.000326 5; $\alpha(P)$ =5.94×10 ⁻⁵ 9; $\alpha(O)$ =4.00×10 ⁻⁶ 6
		274.38 2	0.25 2	677.515 2+	E1		0.0454	$\alpha(K)=0.0363 \ 5; \ \alpha(L)=0.00690 \ 10; \ \alpha(M)=0.001656 \ 24;$ $\alpha(N+)=0.000560 \ 8$ $\alpha(N)=0.000438 \ 7; \ \alpha(O)=0.0001017 \ 15; \ \alpha(P)=1.89\times10^{-5} \ 3;$ $\alpha(O)=1.426\times10^{-6} \ 20$
		316.99 2	0.57 4	634.919 0+				$u(Q)=1.420\times10$ 20
		380.12 2	1.12 6	571.756 3	E2		0.0854	$\alpha(K)$ =0.0457 7; $\alpha(L)$ =0.0293 5; $\alpha(M)$ =0.00776 11; $\alpha(N+)$ =0.00263 4 $\alpha(N)$ =0.00208 3; $\alpha(O)$ =0.000472 7; $\alpha(P)$ =8.26×10 ⁻⁵ 12; $\alpha(O)$ =2.67×10 ⁻⁶ 4
		443.74 2	19.6 <i>10</i>	508.150 1-	M1+E2	0.6 6	0.23 8	$\alpha(K)$ =0.18 7; $\alpha(L)$ =0.036 9; $\alpha(M)$ =0.0088 20; $\alpha(N+)$ =0.0030 7 $\alpha(N)$ =0.0024 6; $\alpha(O)$ =0.00056 13; $\alpha(P)$ =0.00011 3; $\alpha(Q)$ =9.E-6 4
		898.66 2	19.6 <i>12</i>	53.227 2+	E1		0.00418 6	$\alpha(K)=0.00343\ 5;\ \alpha(L)=0.000570\ 8;\ \alpha(M)=0.0001347\ 19;$ $\alpha(N+)=4.59\times10^{-5}\ 7$ $\alpha(N)=3.57\times10^{-5}\ 5;\ \alpha(O)=8.41\times10^{-6}\ 12;\ \alpha(P)=1.617\times10^{-6}\ 23;$ $\alpha(O)=1.471\times10^{-7}\ 21$
		951.95 6	100 5	0.0 0+	E1		0.00377 6	$\alpha(K)=0.00310 \ 5; \ \alpha(L)=0.000513 \ 8; \ \alpha(M)=0.0001211 \ 17;$ $\alpha(N+)=4.13\times10^{-5} \ 6$ $\alpha(N)=3.21\times10^{-5} \ 5; \ \alpha(O)=7.57\times10^{-6} \ 11; \ \alpha(P)=1.455\times10^{-6} \ 21;$ $\alpha(Q)=1.332\times10^{-7} \ 19$
955.04	(5^+)	598.6 ^b 3	48 ^b 4	356.47 6 ⁺				
	. ,	780.9 ^b 3	100 ^b 5	174.111 4+				
971.726	2-	294.23 2	0.65 9	677.515 2+	E1		0.0388	$\alpha(K)=0.0311\ 5;\ \alpha(L)=0.00585\ 9;\ \alpha(M)=0.001403\ 20;$ $\alpha(N+)=0.000475\ 7$ $\alpha(N)=0.000371\ 6;\ \alpha(O)=8.63\times10^{-5}\ 12;\ \alpha(P)=1.609\times10^{-5}\ 23;$ $\alpha(O)=1.231\times10^{-6}\ 18$
		399.95 2	7.8 5	571.756 3	M1+E2	1.4 6	0.18 9	$\alpha(K)$ =0.13 8; $\alpha(L)$ =0.036 9; $\alpha(M)$ =0.0089 20; $\alpha(N+)$ =0.0031 7 $\alpha(N)$ =0.0024 6; $\alpha(O)$ =0.00056 13; $\alpha(P)$ =0.00010 3; $\alpha(Q)$ =7.E-6 4
		463.59 6	10.3 7	508.150 1	M1+E2	-0.28 3	0.242 5	$\alpha(K)$ =0.194 4; $\alpha(L)$ =0.0368 7; $\alpha(M)$ =0.00884 15; $\alpha(N+)$ =0.00303 5 $\alpha(N)$ =0.00236 4; $\alpha(O)$ =0.000557 10; $\alpha(P)$ =0.0001079 19; $\alpha(O)$ =1.008×10 ⁻⁵ 20
		918.50 2	100 5	53.227 2+	E1		0.00402 6	$\alpha(Q)=1.008 \times 10^{-20}$ $\alpha(K)=0.00330 5; \alpha(L)=0.000548 8; \alpha(M)=0.0001294 19;$ $\alpha(N+)=4.41 \times 10^{-5} 7$ $\alpha(N)=3.43 \times 10^{-5} 5; \alpha(O)=8.08 \times 10^{-6} 12; \alpha(P)=1.553 \times 10^{-6} 22;$ $\alpha(Q)=1.417 \times 10^{-7} 20$
1009.601	2+	183.90 <i>11</i>	0.20	825.664 3+	M1+E2		2.1 12	$\alpha(\mathrm{K})\!=\!1.4$

$\gamma(^{230}\text{Th})$ (continued)

							<u> </u>			
$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{ \ddagger}$	$I_{\gamma}^{\ \ddagger}$	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.#	δ	$lpha^\dagger$	$\mathrm{I}_{(\gamma+ce)}$	Comments
1009.601	2+	228.23 5	0.41 7	781.375	2+	E0+E2+M1		1.1 7	27 8	B(M1)(W.u.)<0.051 ce(K)/(γ +ce)=0.37 20; ce(L)/(γ +ce)=0.11 4; ce(M)/(γ +ce)=0.029 10; ce(N+)/(γ +ce)=0.010 4 ce(N)/(γ +ce)=0.008 3; ce(O)/(γ +ce)=0.0018 7; ce(P)/(γ +ce)=0.00033 12; ce(Q)/(γ +ce)=2.0×10 ⁻⁵ 18
		332.07 5	2.96 7	677.515	2+	[E2]		0.1247		$\alpha(K)=0.0596$ 9; $\alpha(L)=0.0479$ 7; $\alpha(M)=0.01279$ 18; $\alpha(N+)=0.00434$ 6 $\alpha(N)=0.00343$ 5; $\alpha(O)=0.000776$ 11; $\alpha(P)=0.0001345$ 19; $\alpha(Q)=3.61\times10^{-6}$ 5 B(E2)(W.u.)<27 Although an admixture of M1 multipolarity is possible, the 332.0-keV γ ray is assumed to be E2, since a $J^{\pi}=2^{+}$,K=2 to 2^{+} ,0 M1 transition is K forbidden and since the relative photon intensities of 332.0 γ and 374.7 γ agree with the Alaga rule (see 230 Ac β^{-} decay) when 332.0 γ is taken as E2.
		374.67 ^e 2		634.919	0+	(E2)		0.0888		$\alpha(K)=0.0470\ 7;\ \alpha(L)=0.0309\ 5;\ \alpha(M)=0.00818\ 12;$ $\alpha(N+)=0.00278\ 4$ $\alpha(N)=0.00219\ 3;\ \alpha(O)=0.000497\ 7;\ \alpha(P)=8.69\times10^{-5}\ 13;$ $\alpha(O)=2.75\times10^{-6}\ 4$
		835.59 8	3.7 4	174.111	4+	E2		0.01415		B(E2)(W.u.)<0.38 α (N)=0.000182 3; α (O)=4.24×10 ⁻⁵ 6; α (P)=7.86×10 ⁻⁶ 11; α (Q)=5.35×10 ⁻⁷ 8
		956.38 2	100 8	53.227	2+	M1+E2	6.1 4	0.01157 <i>19</i>		B(E2)(W.u.)<5.2 α (K)=0.00883 15; α (L)=0.00206 4; α (M)=0.000509 8; α (N+)=0.000174 3 α (N)=0.0001357 21; α (O)=3.17×10 ⁻⁵ 5; α (P)=5.94×10 ⁻⁶ 10; α (Q)=4.43×10 ⁻⁷ 8 δ: From ²³⁰ Pa ε Decay.
		1009.59 2	68 4	0.0	0+	E2		0.00980 14		B(E2)(W.u.)<2.7 α (K)=0.00750 11; α (L)=0.001734 25; α (M)=0.000427 6; α (N+)=0.0001458 α (N)=0.0001139 16; α (O)=2.66×10 ⁻⁵ 4; α (P)=4.99×10 ⁻⁶ 7; α (Q)=3.74×10 ⁻⁷ 6
1012.46	3-	440.78 <i>10</i>	20 4	571.756		M1+E2		0.18 12		$\alpha(K)=0.14$ 11; $\alpha(L)=0.031$ 14; $\alpha(M)=0.008$ 3; $\alpha(N+)=0.0026$ 11 $\alpha(N)=0.0020$ 8; $\alpha(O)=0.00047$ 20; $\alpha(P)=9.E-5$ 4; $\alpha(Q)=7.E-6$ 6
		503.55 ^f 10 838.45 5	$\leq 3^{f@}$ 7.0 25	508.150 174.111		E1		0.00473 7		$\alpha(K)$ =0.00388 6; $\alpha(L)$ =0.000649 9; $\alpha(M)$ =0.0001534 22;

γ (²³⁰Th) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	\mathbf{E}_f \mathbf{J}^{r}	Mult.#	δ	$lpha^{\dagger}$	Comments
1012.46	3-	959.28 <i>4</i>	100 13	53.227 2+	E1		0.00372 6	$\alpha(N+)=5.22\times10^{-5} 8$ $\alpha(N)=4.07\times10^{-5} 6; \ \alpha(O)=9.57\times10^{-6} \ 14; \ \alpha(P)=1.84\times10^{-6} \ 3;$ $\alpha(Q)=1.659\times10^{-7} \ 24$ $\alpha(K)=0.00305 \ 5; \ \alpha(L)=0.000506 \ 7; \ \alpha(M)=0.0001194 \ 17;$ $\alpha(N+)=4.07\times10^{-5} \ 6$ $\alpha(N)=3.17\times10^{-5} \ 5; \ \alpha(O)=7.46\times10^{-6} \ 11; \ \alpha(P)=1.435\times10^{-6} \ 20;$ $\alpha(Q)=1.315\times10^{-7} \ 19$
1039.45	(6 ⁺)	683.0 ^b 2	100 <mark>b</mark> 6	356.47 6 ⁺				u(Q)=1.515×10 17
	()	865.2 ^b 5	34 ^b 5	174.111 4+				
1052.14	(3^{+})	374.67 ^{eg} 2		677.515 2+				
	, ,	878.02 10	57 7	174.111 4+				I_{γ} : I_{γ} =129 48 from Coulomb Excitation may have a contribution from other γ -ray transition.
		999.4 10	100 7	53.227 2+				220
1065.3	(9-)	213.2 2	50 10	852.14 (7	,			Ey from 230 Th(d,pny), Iy from Coulomb Excitation.
1070 216	(2)=	471.4 2	100 10	593.79 8+			0.0544	Ey from ²³⁰ Th(d,pny), Iy from Coulomb Excitation.
1079.216	(2)	253.55 2	1.4 <i>I</i>	825.664 3+	E1		0.0544	$\alpha(K)$ =0.0433 6; $\alpha(L)$ =0.00834 12; $\alpha(M)$ =0.00200 3; $\alpha(N+)$ =0.000677 10
		297.86 2	6.0 <i>4</i>	781.375 2 ⁺	E1		0.0378	$\alpha(N)=0.000530 \ 8; \ \alpha(O)=0.0001228 \ 18; \ \alpha(P)=2.28\times10^{-5} \ 4; \ \alpha(Q)=1.687\times10^{-6} \ 24 \ \alpha(K)=0.0303 \ 5; \ \alpha(L)=0.00569 \ 8; \ \alpha(M)=0.001363 \ 19;$
		277.00 2	0.0 7	701.373 2	21		0.0370	α (N+)=0.000462 7 α (N)=0.000361 5; α (O)=8.39×10 ⁻⁵ 12; α (P)=1.564×10 ⁻⁵ 22; α (Q)=1.200×10 ⁻⁶ 17
		401.62 10	1.2 2	677.515 2+	E1		0.0198	$\alpha(K)$ =0.01596 23; $\alpha(L)$ =0.00289 4; $\alpha(M)$ =0.000689 10; $\alpha(N+)$ =0.000234 4
								α (N)=0.000182 3; α (O)=4.26×10 ⁻⁵ 6; α (P)=8.03×10 ⁻⁶ 12; α (O)=6.52×10 ⁻⁷ 10
		571.08 2	76 <i>4</i>	508.150 1	M1+E2	0.11 2	0.1457	$\alpha(Q) = 0.32 \times 10^{-10}$ $\alpha(K) = 0.1169 \ 17; \ \alpha(L) = 0.0217 \ 4; \ \alpha(M) = 0.00521 \ 8; \ \alpha(N+) = 0.00179$
								$\alpha(N)=0.001389\ 20;\ \alpha(O)=0.000329\ 5;\ \alpha(P)=6.38\times10^{-5}\ 10;$
		1025.96 2	100 5	53.227 2+	E1		0.00330 5	$\alpha(Q)=6.05\times10^{-6} 9$ $\alpha(K)=0.00272 4$; $\alpha(L)=0.000448 7$; $\alpha(M)=0.0001056 15$;
		1023.70 2	100 5	33.221 2	LI		0.00330 3	$\alpha(N)=0.00272$ 4, $\alpha(E)=0.000448$ 7, $\alpha(M)=0.0001030$ 13, $\alpha(N+)=3.60\times10^{-5}$ 5 $\alpha(N)=2.80\times10^{-5}$ 4; $\alpha(O)=6.60\times10^{-6}$ 10; $\alpha(P)=1.272\times10^{-6}$ 18;
								$\alpha(Q)=1.173\times10^{-7}$ 17
1108.2	(4^{+})	934.0 <mark>a</mark>	59 ^a 28	174.111 4+				
		1055.0 ^a	100 ^a 25	53.227 2+				
1108.9	(5^{-})	537.0		571.756 3				E _γ : From Coulomb Excitation.
		935.0		174.111 4+				E_{γ} : From Coulomb Excitation.

$\gamma(^{230}\text{Th})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.#	α^{\dagger}	Comments
1117.4	(8^{+})	524.1 ^b 5	20 ^b 5	593.79	8+			$\alpha(K) \exp = 2.9 \ 12.$
	` ′	760.7 <mark>b</mark> 3	100 <mark>b</mark> 10	356.47	6+			
1127.789	3-	175.84 <i>5</i>	0.7 <mark>&</mark> 2	951.898				I_{γ} : From ²³⁰ Pa ε Decay.
		302.16 4	1.6 2	825.664		E1	0.0366	$\alpha'(K)$ =0.0293 5; $\alpha(L)$ =0.00550 8; $\alpha(M)$ =0.001318 19; $\alpha(N+)$ =0.000446 7 $\alpha(N)$ =0.000349 5; $\alpha(O)$ =8.11×10 ⁻⁵ 12; $\alpha(P)$ =1.514×10 ⁻⁵ 22; $\alpha(Q)$ =1.164×10 ⁻⁶ 17
		346.39 <i>3</i>	1.69 <i>15</i>	781.375	2+	E1	0.0271	$\alpha(K)$ =0.0218 3; $\alpha(L)$ =0.00402 6; $\alpha(M)$ =0.000961 14; $\alpha(N+)$ =0.000326 5 $\alpha(N)$ =0.000254 4; $\alpha(O)$ =5.93×10 ⁻⁵ 9; $\alpha(P)$ =1.111×10 ⁻⁵ 16; $\alpha(O)$ =8.78×10 ⁻⁷ 13
		450.22 ⁸ 2	≈1.5	677.515	2+			The 450-keV γ from $J^{\pi}=3^-$ of K=2 band to the $J^{\pi}=2^+$ state of the K=0 band is a K-forbidden [E1] transition.
		556.06 2	26.9 15	571.756	3-	M1+E2	0.10 7	$\alpha(K)$ =0.07 6; $\alpha(L)$ =0.016 8; $\alpha(M)$ =0.0039 18; $\alpha(N+)$ =0.0013 6 $\alpha(N)$ =0.0010 5; $\alpha(O)$ =0.00024 12; $\alpha(P)$ =4.7×10 ⁻⁵ 23; $\alpha(Q)$ =4.E-6 3 M1 part of the 556.0 γ from the 3 ⁻ state of the K=2 band to the 3 ⁻ state of the K=0 octupole band is K-forbidden.
		619.66 2	24 2	508.150	1-	E2	0.0263	the K=0 octupole band is K-forbidden. $\alpha(K)$ =0.0181 3; $\alpha(L)$ =0.00611 9; $\alpha(M)$ =0.001559 22; $\alpha(N+)$ =0.000531 8 $\alpha(N)$ =0.000417 6; $\alpha(O)$ =9.60×10 ⁻⁵ 14; $\alpha(P)$ =1.744×10 ⁻⁵ 25; $\alpha(Q)$ =9.59×10 ⁻⁷ 14
		954 <i>1</i>	23 5	174.111				
		1074.52 2	100 5	53.227	2+	E1	0.00305 5	$\alpha(K)=0.00251 \ 4; \ \alpha(L)=0.000412 \ 6; \ \alpha(M)=9.71\times10^{-5} \ 14; \ \alpha(N+)=3.31\times10^{-5} \ 5 \ \alpha(N)=2.58\times10^{-5} \ 4; \ \alpha(O)=6.08\times10^{-6} \ 9; \ \alpha(P)=1.171\times10^{-6} \ 17; \ \alpha(Q)=1.084\times10^{-7} \ 16$
1134.2	(7^{+})	540.3 ^b 3	34 ^b 4	593.79	8+			
		777.8 <mark>b</mark> 3	100 <mark>b</mark> 7	356.47	6+			
1176.0	(5^+)	819.5 <mark>b</mark> 3	65 <mark>b</mark> 6	356.47	6+			
		1001.9 ^b 4	100 <mark>b</mark> 7	174.111				
1196.8	(4^{-})	1022.7	100	174.111				E_{γ} : From Coulomb Excitation.
1206.6	(12^{+})	327.9 5	100	879.3	(10^{+})			
1243.0	(8^{+})	365.3 ^{bg}	≤20 ^b	879.3	(10^{+})			
		649.4 ^b 3	100 ^b 10	593.79	8+			
		886.1 ^b 4	35^{b}_{a} 7	356.47	6+			
1251.2	(8^{+})	657.3 ^a	$100^{a} 38$	593.79	8+			
	L.	894.8 ^a	62 ^a 44	356.47	6 ⁺			
1255.4	(6^+)	661.4 ^{bg}	$\leq 12^{b}$	593.79	8+			
		898.9 ^b 3	100 <mark>b</mark> 8	356.47	6+			
		1081.4 b g	≤30 <mark>b</mark>	174.111				

$\gamma(^{230}\text{Th})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\ddagger}$	${\rm I}_{\gamma}^{ \ddagger}$	\mathbf{E}_f	\mathbf{J}_f^{π}	Comments
1297.14	0+	789.0 ^c 1	15.2 ^c 8	508.150	1-	
		1243.9 ^c 1	100° 3	53.227		
1322.0	(11^{-})	256.6 ^d 5		1065.3	(9^{-})	
		442.2 ^d 5		879.3	(10^+)	
1349.0	(7^{+})	755.6 ^b 5	86 <mark>b</mark> 11	593.79	8+	
	,	992.2 ^b 5	100 <mark>b</mark> 12	356.47	6+	
1358.4	(9 ⁺)	479.7 ^b 6	39 ^b 8	879.3	(10^+)	
1550.1	()	764.5 ^b 3	100 ^b 12	593.79	8+	
1375.28	$(1,2^+)$	423.2° 1	7.4 ^c 14	951.898		
	() /	867.1 ^c 3	38.5° 21	508.150		
		1322.1 ^c 1	58 ^c 4	53.227		
		1375.4 ^c 1	100° 4	0.0	0_{+}	
1400.89	(2^{+})	448.9 ^C 1	7.9 ^c 16	951.898		
		892.7° 1	43.9° 21	508.150		
		1226.7 ^c <i>I</i> 1347.7 ^c <i>I</i>	61 ^c 4 100 ^c 3	174.111 53.227		
		1401.0 ^c I	20.9° 21	0.0	0+	
1448.4	(8 ⁺)	569.0^{bg}	$\leq 25^{\frac{b}{b}}$	879.3	(10^+)	
1440.4	(0)	854.6 ^b 4	100^{b} 14	593.79	8+	
		1092.1^{bg}	$\leq 25^{b}$	356.47	6 ⁺	
1485.62	(4^{+})	913.7° 2	50 ^c 13	571.756		
1403.02	(+)	977.6 ^c 2	29 ^c 13	508.150		
		1432.4° <i>I</i>	100° 9	53.227		
1520.1	(10^{+})	313.0 ^{ag}	44 <mark>a</mark> 15	1206.6	(12^{+})	
		640.7 ^a	33 ^a 19	879.3	(10^{+})	
		926.3 ^a	100 ^a 41	593.79	8+	
1571.8	(14^{+})	365.3 ^d 5	100	1206.6	(12^{+})	220
1573.51	$1^{(-)},2^+$	1573.5° 2	100 ^C	0.0	0+	E_{γ} : From ²³⁰ Ac $β$ ⁻ decay.
1589.8	0_{+}	1536.6° 3	100 ^c	53.227		E_{γ} : From ²³⁰ Ac β^- decay.
1616.0	(13^{-})	293.4 ^d 5		1322.0	(11^{-})	
		409.8 ^d 5		1206.6	(12^{+})	
1638.45	(0^{+})	628.8° 1	100° 11	1009.601		
1605 71	1(-) 2+	1585.4° 2	72 ^c 7	53.227		
1695.71	$1^{(-)},2^+$	1187.5 ^c 3 1642.5 ^c 2	45 ^c 11 38 ^c 7	508.150 53.227		
		1642.3° 2 1695.7° 1	100° 11	0.0	0+	

$\gamma(^{230}\text{Th})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\ \ddagger}$	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}
1745.3	(0^+)	735.1 ^c 2	16 ^c 4	1009.601	2+	2024.67	$(1^+,2^+)$	1198.9 ^c 2	100 ^c 23	825.664	3+
	(-)	1691.7 ^c 1	100° 6	53.227	2+		(1971.3° 5	28 ^c 12	53.227	2+
1770.73	$(1,2^+)$	1717.5 ^c 1	100 ^c 6	53.227	2+			2024.6 ^c 3	33 ^c 12	0.0	0^{+}
		1770.5 ^c 10	15 ^c 4	0.0	0_{+}	2078.25?		999.1 ^c 1	100 ^c 19	1079.216	$(2)^{-}$
1775.22	$(1,2^+)$	1267.1 ^c 2	37 ^c 4		1-			1068.1 ^c 3	30 ^c 12	1009.601	2+
		1721.9 ^c 1	59 ^c 3	53.227	2+			1252.5 <i>3</i>	30 8	825.664	
		1775.3° 1	100° 4	0.0	0_{+}	2122.77	$(1,2^+)$	1043.2° 3	14 ^c 5	1079.216	
1789.4	$1^{(-)},2^+$	1789.4 ^c 5	100 ^c	0.0	0_{+}			2069.5° 2	51 ^c 5	53.227	2+
1810.74	$(1,2^+)$	1302.6 ^c 1	62 ^c 3		1-			2122.8° 1	100 ^c 5	0.0	0_{+}
		1757.5° 1	100° 3	53.227	2+	2133.14?		388.3° 1	67 ^c 6	1745.3	(0^{+})
		1810.7 ^c 1	19.8 ^c 19	0.0	0+			1455.5° 2	100° 28	677.515	2+
1839.61	$1^{(-)},2^+$	1839.6° 2	100 ^c	0.0	0+			1625.1 ^{cg} 3	≤78 ^c	508.150	
1849.54	(2^{+})	363.9 ^c 3	23° 9	1485.62	(4^{+})	2151.81	$(1,2^+)$	750.7° 3	28° 5	1400.89	(2^{+})
		839.9 ^c 1	100° 9	1009.601	2+			2098.6 ^c 1	100 ^c 5	53.227	2+
		878.0° 2	45° 5	971.726		2202.00	1.0+	2152.0 10	6.3 16	0.0	0+
1050.0	(2-)	1675.4 ^c 3	45° 10	174.111		2282.98	1,2+	1311.5° 2	$100^{\circ} 23$	971.726	
1858.2	(3^{-})	1805.0 ^C 5	100 ^c 22 ^c 6	53.227	2+			2229.5° 5	61 ^c 12 78 ^c 6	53.227	0 ⁺
1902.70	$(1,2^+)$	1394.5 ^c 2 1902.7 ^c 1	$100^{\circ} 4$	508.150	0+	2208.6	(1.2±)	2282.5 ^c 3 2245.4 ^c 10	78° 6 57° 29	0.0	0 · 2+
404=4	/4 = _\		100° 4	0.0	-	2298.6	$(1,2^+)$			53.227	_
1947.1	(15^{-})	331.0^{d} 5		1616.0	(13^{-})			2298.6 ^c 3	100 ^C 15	0.0	0_{+}
		375.5 ^d 5		1571.8	(14^{+})	2310.5	(17^{-})	341 ^d 1		1969.5	(16^{+})
1949.87	$(1,2^+)$	1896.7 ^c 1	42 ^c 2	53.227	2+			363.4 ^d 5		1947.1	(15^{-})
		1949.8 ^c 1	100° 2	0.0	0_{+}	2314.27?	$(1,2^+)$	503.5° 2	c	1810.74	$(1,2^+)$
1967.00	$(1,2^+)$	1913.8 ^c 1	100° 5	53.227	2+			1636.8° 2	100 ^c 22	677.515	2+
		1966.7 ^c 3	15 ^c 3	0.0	0_{+}			2314.0° 10	26 ^c 6	0.0	0_{+}
1969.5	(16^{+})	397.7 <mark>d</mark> 5		1571.8	(14^{+})	2368.91	(0^+)	968.0° 2	100 ^c 42	1400.89	(2^{+})
1973.44	$(1^+,2^+)$	1147.9 ^{cg} 1	92 ^c 6	825.664	3 ⁺			1797.2 ^c 3	83 ^c 17	571.756	3-
		1920.2 ^c 1	100° 4	53.227	2+	2396.3	(18^{+})	426.8 ^d 5		1969.5	(16^{+})
		1973.5 ^c 5	10 ^c 4	0.0	0^{+}	2703.7	(19^{-})	393.2 ^d 5		2310.5	(17^{-})
2000.91	$(1,2^+)$	991.2 ^{cg} 1	27 ^c 7	1009.601	2+	2848.6	(20^+)	452.3 ^d 5		2396.3	(18^{+})
		2000.9 ^c 1	100° 10	0.0	0^{+}	3125	(21^{-})	421.6 ^{dg} 5		2703.7	(19^{-})
2010.13	$(1,2^+)$	1956.9 ^c 1	100° 6	53.227	2+	3324.0	(22^{+})	475.4 ^d 5		2848.6	(20^+)
		2010.1° 2	17 ^c 4	0.0	0^{+}	3572.5?	(23^{-})	446.9 ^{dg} 5		3125	(21^{-})
2024.67	$(1^+,2^+)$	1053.1° 2	100° 23	971.726	2-	3819?	(24+)	495 <i>dg</i> 1		3324.0	(22+)

16

 $^{^{\}dagger}$ Additional information 2. ‡ From $^{230}\text{Pa}~\varepsilon$ decay, unless otherwise specified.

γ (230Th) (continued)

- # From ce measurements in 230 Pa ε decay. Multipolarities in square brackets are from level scheme; they are included for transition-rate calculations when needed. @ Doublet. Individual intensities were determined from coincidence data in 230 Pa ε decay.
- & Weak γ ray; seen only in $\gamma\gamma$ coincidence spectra in ²³⁰Pa ε decay.
- ^a From Coulomb Excitation. ^b From ²³⁰Th(d,pnγ).

- ^c From ²³⁰Ac β ⁻ decay. ^d From ²³²Th(¹³⁶Xe,X γ).
- ^e Multiply placed.
- f Multiply placed with intensity suitably divided.
- ^g Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

 $^{230}_{\ 90} Th_{140}$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

---- → γ Decay (Uncertain)

Level Scheme (continued)

Legend

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

sity suitably divided

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

121

0.0

0+

Band(F): $K^{\pi}=2^+$ band

(8⁺) 1448.4

Band(G): $K^{\pi}=2^{-}$ octupole-vibrational band

(4-) 1196.8

(5⁺) 1176.0

Band(E): K^{π} =1 $^-$ octupole-vibrational band

3- 1127.789

 $\begin{array}{cccc} (5^{-}) & 1108.9 & (4^{+}) & 1108.2 \end{array}$

(2) 1079.216

(3⁺) 1052.14

 3^- 1012.46 2^+ 1009.601

2- 971.726

1- 951.898

 $^{230}_{\,90}\mathrm{Th}_{140}$

```
History
                                                                            Citation
                                                                                               Literature Cutoff Date
                                        Type
                                                        Author
                                                     E. Browne
                                                                    NDS 107,2579 (2006)
                                                                                                     1-Nov-2004
                                  Full Evaluation
O(\beta^{-}) = -499 \ 8; S(n) = 6440.1 \ 11; S(p) = 7603 \ 14; O(\alpha) = 4081.6 \ 14
                                                                         2012Wa38
Note: Current evaluation has used the following O record -500
                                                                         8 6440.3 11 776E1 10 4081.6 14
Other reactions:
<sup>232</sup>Th(n,Fission): E=1 eV- 20 keV, measured cross-section (1991Na03); E<20 MeV, calculated fission cross-section (2004Ma84).
^{232}Th(\gamma,Fission): E=68-264 MeV (2000Sa09); E=40-100 MeV (1996Ka16); E=4.75-6.5 MeV (1996Se07); E=6.44-13.15 MeV,
    deduced height of fission barrier (1993Pi05); E=250-1200 MeV, measured fission cross-section (1993Bi16); E=6.73-9.72 MeV,
    measured \gamma rays (1992Ge01).
^{232}Th(\gamma,f) E\gamma=4-7 MeV bremsstrahlung, quadrupole component in photofission deduced (1979Zh01). Others: 1978Zh03,
    1978Zh04, 1977Zh06, ^{232}Th(\gamma,f), isomer at \approx3 MeV in third minimum decaying primarily by \gamma emission suggested (1978As02).
<sup>232</sup>Th(pol \gamma,Fission): E=52 meV (1991Ta15); E=69 MeV (1991Ma22).
232Th(e,Fission), E=4.54-6.64 MeV, measured cross-sections of fission fragments (1994EnZZ).
<sup>232</sup>Th(e,e'f) E(e)=20-120 MeV. Possible E2 component deduced (1977Sh15) E(e)=10-40 MeV, possible E2 component at 22 MeV
    (1976Kn01).
Fission following ^{232}Th(\alpha,\alpha') studied at E(\alpha)=120 MeV. Small fission probability found in the region of the giant-quadrupole
    resonance (1980Va14). Fission mass asymmetry studied in ^{232}Th(\gamma,fission) for bremsstrahlung of 15-55 MeV (1980Gu12).
Three-humped fission barrier proposed. Branching=2.5 \times 10^{-4} 15 for isomeric fission; E=2.4 MeV 2 for excitation energy of the
    fission shape isomer are deduced from ^{232}Th(\gamma,f). Ey(bremsstrahlung)=3.25-5.75 MeV (1978Bo07,1979Be33).
<sup>232</sup>Th(\gamma,n), (\gamma,2n), (\gamma,f) studied for E\gamma=5-18.3 MeV. Deduced \beta(2)=0.290, Q=9.8 4 from giant-dipole resonance parameters
    (1980Ca08).
<sup>232</sup>Th(p,p): 2002Ig01, 2000De61.
<sup>232</sup>Th(pol p,p): 1998Do16.
<sup>232</sup>Th(p-bar,x): anti-proton absorption (1993Ja09,1993Wv05,1998Lu05,2001Tr19,2001Tr23).
Additional information 1. 232Th(40Ar, 40Ar), E=200 MeV (1993Ad01). Other: 1991An16.
<sup>232</sup>Th(<sup>12</sup>C, <sup>12</sup>C) (1992An12).
Optical-model parameters deduced from (d,d) (1974Ch27).
Cluster radioactivity:
<sup>232</sup>Th <sup>26</sup>Ne decay (1997Tr17,1997MiZP,1995Si05,1975ChZj,2002Sa55).
<sup>232</sup>Th <sup>24</sup>Ne decay (1993Si26).
<sup>232</sup>Th Double beta decay with emission of two neutrinos (2004Ra13,2002Tr04). Other: 2002Hi06.
Isotope shifts measured by LASER spectroscopy, mean square charge radii of Th isotopes determined (1989Ka29).
Deduced mean square charge radii of U and Pu isotopes from muonic x-rays relative to 232Th (1990Na22).
g-factors for g.s. band up to J^{\pi}=22^{+} studied by 1982Ha03.
```

²³²Th Levels

Additional information 2.

Band(ayz) $K=0^+$ g.s. rotational band.

Cross Reference (XREF) Flags

```
^{232}\mathrm{Ac}~\beta^- decay
                                              ^{232}Th(d,pn\gamma)
                                                                                           ^{232}Th(n,n'\gamma)
                                                                                   K
^{232}Pa \varepsilon decay
                                                                                           <sup>232</sup>Th(d,d')
                                     G
                                             Coulomb excitation: HI
                                                                                L
                                                                                           ^{232}Th(\alpha,\alpha'),(\gamma,X) E=resonance
^{236}U \alpha decay
                                     Η
                                             Coulomb excitation: Li
<sup>230</sup>Th(t,p)
                                     Ι
                                             Inelastic scattering
^{232}Th(\gamma, \gamma'), ^{232}Th(e,e')
                                              Muonic atom
```

²³²Th Levels (continued)

E(level) [†]	\mathbf{J}^{π}	$T_{1/2}$	XREF	Comments
0	0+	1.40×10 ¹⁰ y <i>I</i>	ABCDEFGHI KL	$%\alpha$ =100; %SF=1.1×10 ⁻⁰⁹ 4 Deformation $β_4$ =0.050 5 from (p,p') (1972BrZK). Additional information 3. Q(0), giant-dipole resonance studied (1973Ve01). $T_{1/2}$: Evaluated and recommended in 1990Ho28. Weighted average of: 1.39×10 ¹⁰ y 3 (1938Ko01, 1956Pi42), 1.42×10 ¹⁰ y 7 (1956Se17), 1.45×10 ¹⁰ y 5 (1956Ma43), 1.41×10 ¹⁰ y 14 (1960Fa07), and 1.40×10 ¹⁰ y 7 (1963Le21). %SF: From $T_{1/2}$ (SF)=1.2×10 ²¹ y 4, evaluated and recommended in 2000Ho27, from: >0.0014×10 ²¹ y (1952Se67), >0.1×10 ²¹ y (1955Po45), >1×10 ²¹ y (1958Fl44), >1.0×10 ²¹ y 3 (1967Sp12), >0.7×10 ²¹ y (1975Em03), and 1.22 y 43 (1995Bo18). Others: 1997Ro12, 2004Ro01. $T_{1/2}$: $T_{1/2}$ ¹² C, ¹⁶ O emissions >3×10 ¹⁸ y (1975ChZJ). $T_{1/2}$: Measured $T_{1/2}$ ²⁴ Ne- ²⁶ Ne emissions >5.06×10 ²¹ y (1995Bo18). Others: 1996Bo18, 1975ChZJ.
49.369 9	2+‡	345 ps <i>15</i>	ABCDEFGHI KL	J ^π : 49.4 γ E2 to 0 ⁺ . T _{1/2} : Delayed coincidence (1960Be25). Other values: 320 ps 24 Mossbauer (1973Ca29), 345 ps 15 delayed coincidence (1960Be25), 315 ps 3 from B(E2)=9.21 9 (1973Be44) and α=332 (reducing α by 1.5% 7 as recommended by 1987Ra01 would give T _{1/2} =320 ps 4).
162.12 2	4+‡	164 ps <i>13</i>	A CD FGHI KL	B(E4)↑=1.16 5 (1976Co08) $T_{1/2}$: Doppler-shift recoil distance (1982Ow01). J^{π} : 112.7 γ E2 to 2 ⁺ . $T_{1/2}$: The effect of charge-state of recoils on $T_{1/2}$ is probably <20%. μ : Studied for 4 ⁺ ,6 ⁺ levels by γ , γ precession in Fe (1971MuZN).
333.26 8	6+‡	62 ps 4	C FGHI KL	$T_{1/2}$: Weighted average of 58.4 ps 42 (1976Gu12) and 66.2 ps 51 (1975Jo07), Doppler-shift recoil distance. J^{π} : 171.2 γ E2 to 4 ⁺ .
556.9 1	8+‡	24 ps <i>1</i>	FGHI L	$T_{1/2}$: Weighted average of 23.8 ps 13 (Doppler-shift recoil distance, 1976Gu12), 25.1 ps 23 (Doppler-shift recoil distance, 1975Jo07), and 20 ps 3 (From B(E2)=4.0 2, 1982Ow01). J^{π} : 226.3 γ E2 to 6 ⁺ .
714.42 <mark>&</mark> 9	1-‡		A EFGHI KL	J^{π} : 714.4 γ (E1) to 0 ⁺ , 665.0 γ (E1) to 2 ⁺ . σ in ²³² Th(d,d').
730.6 <mark>a</mark> 2	0+‡		GH KL	J^{π} : 730.0 γ E0 to 0 ⁺ .
774.15 ^a 14	2+‡	6 ps 2	A de GH KL	J^{π} : 724.7 γ E0+E2 to 2 ⁺ . T _{1/2} : From B(E2)=0.086 <i>14</i> (1993Mc07).
774.43 <mark>&</mark> 7	3-‡		A deFGHI KL	J^{π} : 612.3 γ (E1) to 4 ⁺ , 724.7 γ (E1) to 2 ⁺ . σ in ²³² Th(d,d').
785.25 ^b 8	2+‡	2.3 ps <i>3</i>	A E GH KL	J ^{π} : 785.3 γ E2 to 0 ⁺ . T _{1/2} : From B(E2)=0.145 <i>15</i> (1993Ko42).
826.8 1	10+‡	10.3 ps 6	FGHI	J ^{π} : Weighted average of 10.4 ps 6 (Doppler-shift recoil distance, 1976Gu12), 11.2 ps 17 (Doppler-shift recoil distance, 1975Jo07), and 9.5 ps 11 (from B(E2)=3.9 2, 1982Ow01). J ^{π} : 269.8 γ E2 to 8 $^+$.
829.6 ^b 2	$(3^+)^{\ddagger}$		GH K	J^{π} : 780.2 γ to 2 ⁺ , 667.5 γ to 4 ⁺ .
873.0 ^a 3	4 ^{+‡}		GH K	J^{π} : 823.6 γ E2 to 2 ⁺ , possible 539.9 γ to 6 ⁺ .
883.8 ^{&} 1	5-‡		FGHI KL	J^{π} : 550.4 γ (E1) to 6 ⁺ . σ in ²³² Th(d,d').
890.1 ^b 2	4 ^{+‡}		GH K	J^{π} : 840.5 γ E2 to 2 ⁺ , 558.1 γ E2 to 6 ⁺ .
960.24 ^b 15	$(5^+)^{\ddagger}$		G K	J^{π} : 627.2 γ to 6 ⁺ , 797.9 γ to 4 ⁺ .
1023.3 ^a 1	6+‡		GH	J^{π} : 861.2 γ E2 to 4 ⁺ , 466.7 γ E2 to 8 ⁺ .

²³²Th Levels (continued)

E(level) [†]	J^π	T _{1/2}	XREF	Comments
1042.9 <mark>&</mark> 1	7-‡		FGHI	J^{π} : 159.2 γ E2 to 5 ⁻ , 486.0 γ to 8 ⁺ .
1050.9 ^b 1	6 ^{+‡}		GH	J^{π} : 492.3 γ E2 to 8^{+} , 888.4 γ E2 to 4^{+} .
1053.9 <i>1</i>	(2^+)		GH KL	J^{π} : 891.9 γ (E2) to 4 ⁺ , 1054.0 γ (E2) to 0 ⁺ .
1072.4 3	$(2^+)^{@}$		A H K	Additional information 4.
1077.9 2	$(1^{-})^{@}$		A d GH Kl	J^{π} : Possible $K^{\pi}=1^-$ bandhead.
1078.6 <i>1</i>	(0^+)		A dE H Kl	J^{π} : From γ -ray deexcitation.
1094.4 2	$(2)^{+}$ $(2)^{+}$ $(2)^{-}$ $(2)^{+}$		E H K	Additional information 5.
1105.7 <i>I</i>	3		A GH KL	B(E3)↑=0.26 5 J ^π : 1056γ E1 to 2 ⁺ , 943γ E1 4 ⁺ .
1121.68 8	2+		A GH K	J^{π} : 1122.0 γ E2 to 0 ⁺ .
1137.1 5	12+‡	5.5 ps 4	FG I	$T_{1/2}$: Weighted average of 5.5 ps 4 (Doppler-shift recoil distance, 1976Gu12), and 5.8 ps 7 (From B(E2)=3.6 2, 1982Ow01). J^{π} : 310.2 γ E2 to 10 ⁺ .
1143.3 2	(4^{-})		K	J^{π} : 981.2 γ to 4 ⁺ , rotational band structure (possibly $K^{\pi}=2^{-}$).
1146.3? <i>15</i>	(7^{+})		G	J^{π} : 812.7 γ to 6 ⁺ .
1148.3 2	(4 ⁺)		g KL	J^{π} : 815.0 γ to 6 ⁺ , 986.3 γ to 4 ⁺ , rotational band structure, (possibly K^{π} =0 ⁺).
1182.6 2 1208.8 <i>I</i>	3 ⁻ (5 ⁻)		GH KL GH KL	J^{π} : 1020.5 γ E1 to 4 ⁺ , 1133.2 γ E1 to 2 ⁺ , (possibly K^{π} =3 ⁻ band). J^{π} : 434.3 γ to 3 ⁻ , 875.6 γ to 6 ⁺ , rotational band structure, (possibly
1218.1 <i>3</i>			K	$K^{\pi}=2^{-}$).
1222.1 ^a 1	(8 ⁺) [‡]		GH	J^{π} : 888.8 γ to 6 ⁺ , possible 395 γ to 10 ⁺ .
1249.6 ^{&} 1	9-‡		FGHI	J^{π} : 206.8 γ E2 to 7 ⁻ , 422.7 γ to 10 ⁺ .
1219.0 1			TOIL	Additional information 6.
1258.7? ^b 10	$(8^+)^{\ddagger}$		G	J^{π} : From Coulomb excitation cross-section.
1293.0 <i>3</i>	$(5^{-})^{\textcircled{0}}$		GH L	J^{π} : 959.7 γ to 6 ⁺ .
1303.2 6	- 1		K	P.(TA) 4 . 0.0000 . 0
1322.3 3	2+		G	B(E2)↑=0.00220 22 J ^π : 1322.3γ E2 to 0 ⁺ .
1327.4 2	2+		GH KL	$B(E2)\uparrow=0.00113 \ I3$
	_			J^{π} : 1327.7 γ E2 to 0 ⁺ .
1352.2 <i>1</i>			H	
≈1370 ^b	(9 ⁺) [‡]		G	J^{π} : From Coulomb excitation cross-section.
1387.1 <i>I</i>	2+	0.4 ps <i>1</i>	н к	J^{π} : 1387.2 γ E2 to 0 ⁺ .
				$T_{1/2}$: From B(E2)=0.0105 8 (1993Mc07) and adopted Branching(1387 γ)=0.075 23.
1413.8 ^c 2	4 ^{+‡}	2.2 ps 5	GH	T _{1/2} : From Coulomb Excitation: HI (1995Ko15).
		1		Additional information 7.
				J^{π} : 584.2 γ M1+E2 to 3 ⁺ , 524 γ M1+E2 to 4 ⁺ , 628.5 E2 to 2 ⁺ .
1419? 2 1450.3 2			L K	E(level): From 232 Th(d,d'). Seen only at one angle.
1466.4 <i>I</i>	4+		Н	J^{π} : 691.9 γ to 3 ⁻ , 1133.5 γ to 6 ⁺ .
≈1469.3? ^a	$(10^+)^{\ddagger}$		G	J^{π} : 912.5 γ to 8 ⁺ .
1477.0 2	2+		Н	J^{π} : 1477.0 γ E2 to 0 ⁺ .
1480.1 2			G K	
1482.2 6	14 ^{+‡}	3.1 ps 2	GΙ	$T_{1/2}$: Doppler-shift recoil distance (1976Gu12). Other value: 3.1 ps 3 (From B(E2)=3.8 2, 1982Ow01). J^{π} : 345.2 γ E2 to 12 ⁺ .
1484.9 2	(5^+)		G KL	J^{π} : 1323 γ to 4 ⁺ , 524 γ to (5 ⁺); σ in 232Th(d,d').
1489.4 <i>4</i>	$(1,2^+)$		K	J^{π} : 1489 γ to 0 ⁺ , 1440 γ to 2 ⁺ .
≈1490 ^C	$(5^+)^{\ddagger}$		G	J^{π} : From Coulomb excitation cross-section.
1498.7 <mark>&</mark> 5	11-‡		FG I	J^{π} : 249.2 γ E2 to 9 ⁻ , 361.6 γ to 12 ⁺ .

232Th Levels (continued)

E(level) [†]	J^{π}	T _{1/2}	XREF	Comments
				Additional information 8.
≈1511.9 ^b 1519.8 2	$(10^+)^{\ddagger}$		G K	J^{π} : From Coulomb excitation cross-section.
1553.8 <i>I</i> 1561.4 <i>5</i> 1573.0 <i>I5</i>	2 ⁺ (1,2 ⁺) (1,2 ⁺)	110 fs <i>10</i>	E H K KL K	T _{1/2} : From B(E2)=0.0279 20 (1993Mc07) and branching(1554γ) from Coulomb Excitation: Li. J ^π : 1554.0γ E2 to 0 ⁺ . T _{1/2} : from B(E2). J ^π : 1561.4γ to 0 ⁺ . J ^π : 1572.8γ to 0 ⁺ , 1523.8γ to 2 ⁺ .
1573.7 ^c 7 1578.5 4 1609.1 5 1618.0 7	(6 ⁺) [‡] (2 ⁺)		G K K KL	J^{π} : 614 γ M1+E2 to (5 ⁺), 683 γ (E2) to 4 ⁺ , 550 γ to 6 ⁺ . J^{π} : 1578.3 γ to 0 ⁺ , 1527.4 γ to 2 ⁺ , 1417.0 γ to 4 ⁺ .
≈1640? ^b 1647.6 8 1690.9 10 1727.6 7	(11+)‡		g K KL K	J^{π} : From Coulomb excitation cross-section.
1738.1 10	$(1,2^+)$		KL	J^{π} : 1738 γ to 0 ⁺ .
≈1755 <i>a</i>	$(12^+)^{\ddagger}$		G	J^{π} : From Coulomb excitation cross-section.
1783 ^c 1	(8)+‡		G	J^{π} : 760 γ E2 to 6 ⁺ , 637 γ to (7 ⁺).
1784.7 <mark>&</mark> 6 1791 2	13-‡		G I L	J^{π} : 286.0 γ E2 to 11 ⁻ , 302.5 γ to 14 ⁺ . E(level): From ²³² Th(d,d'). Δ E estimated by evaluator.
$\approx 1801^{b}$	(12 ⁺) [‡]		G	J^{π} : From Coulomb excitation cross-section.
	16 ^{+‡}	2.2 mg 2		
1858.5 7	10.4	2.3 ps 2	GΙ	$T_{1/2}$: Weighted average of 2.2 ps 2 (Doppler-shift recoil distance, 1976Gu12), and 2.7 ps 6 (From B(E2)=3.5 2, 1982Ow01). J^{π} : 376.3 γ E2 to 14 ⁺ .
2043.2 15	1+#	6.1 fs 4	E	$T_{1/2}$: From B(M1)=1.48 9 and branching(2043 γ)=0.650 8 in 232 Th(γ , γ') (1988He02).
≈2080 ^a	$(14^+)^{\ddagger}$		G	J^{π} : From Coulomb excitation cross-section.
2101.6 <mark>&</mark> 7	15-‡		GI	J^{π} : 316.9 γ E2 to 13 ⁻ , 243.1 γ to 16 ⁺ .
≈2117 ^b	$(14^+)^{\ddagger}$		G	J^{π} : From Coulomb excitation cross-section.
2248.2 15	1+#	13 fs 2	E	B(M1)↑=0.55 7 $T_{1/2}$: From B(M1)=0.55 7 and branching(2248 γ)=0.70 12 in 232 Th(γ , γ') (1988He02).
2262.4 9	18+‡	1.4 ps 2	GΙ	$T_{1/2}$: Weighted average of 1.3 ps 2 (Doppler-shift recoil distance, 1976Gu12), and 1.6 ps 4 (From B(E2)=3.7 6, 1980Ow01). J^{π} : 403.9γ E2 to 16 ⁺ .
2274 4	1+#	25 fs 6	E	B(M1)↑=0.25 3 $T_{1/2}$: From B(M1)=0.25 3 and branching(2274 γ)=0.62 12 in 232 Th(γ , γ') (1988He02).
2296 4	1+#	19 fs 9	E	B(M1)↑=0.32 6 $T_{1/2}$: From B(M1)=0.31 6 and branching(2296 γ)=0.59 25 in 232 Th(γ , γ') (1988He02).
≈2441 ^a	$(16^+)^{\ddagger}$		G	J^{π} : From Coulomb excitation cross-section.
2445.3 ^{&} 9	17-‡		GI	J^{π} : 343.7 γ E2 to 15 ⁻ .
2445.7 <mark>b</mark>	$(16^+)^{\ddagger}$		G	J^{π} : From Coulomb excitation cross-section.
≈2446 ^b	$(16^+)^{\ddagger}$		G	
2691 <i>1</i>	20+#	1.2 ps 2	GI	J^{π} : From B(E2)=3.4 4 (1982Ow01). J^{π} : 428.9γ E2 to 18 ⁺ .
≈2767 ^b	(18 ⁺) [‡]		G	,

²³²Th Levels (continued)

E(level) [†]	J^{π}	$T_{1/2}$	XREF	Comments
2813 ^{&} 1	19-‡		GΙ	J^{π} : 367.8 γ E2 to 17 ⁻ .
≈2832 ^a	$(18^+)^{\ddagger}$		G	J^{π} : From Coulomb excitation cross-section.
3144 <i>1</i>	22 ^{+‡}	0.8 ps 1	GI	J ^{π} : From B(E2)=3.9 <i>6</i> (1982Ow01). J ^{π} : 452.7 γ E2 to 20 ⁺ .
3204 <mark>&</mark> 2	21-‡		GI	J^{π} : 390.6 γ E2 to 19 ⁻ .
≈3249 ^a	$(20^+)^{\ddagger}$		G	J^{π} : From Coulomb excitation cross-section.
3616 <mark>&</mark> 2	23-‡		GI	J^{π} : 412.6 γ E2 to 21 ⁻ .
3620.0 <i>15</i>	24+‡	1.1 ps <i>3</i>	G	J ^{π} : From B(E2)=2.1 7 (1982Ow01). J ^{π} : 476 γ E2 to 22 ⁺ .
4050 <mark>&</mark> 2	$25^{-\ddagger}$		GI	J^{π} : 433.8 γ E2 to 23 ⁻ .
4117 2	26 ⁺ ‡	0.6 ps 2	GI	J ^{π} : From B(E2)=3.3 <i>13</i> (1982Ow01). J ^{π} : 497 γ E2 to 24 ⁺ .
4506 <mark>&</mark> 3	27-‡		GI	J^{π} : 456 γ E2 to 25 ⁻ .
4633 2	$(28^+)^{\ddagger}$	≈0.2 ps	GI	J^{π} : From B(E2)≈7 (1982Ow01). J^{π} : 516γ (E2) to 26 ⁺ .
5164 <i>3</i>	$(30^+)^{\ddagger}$		GΙ	J^{π} : 530.5 γ (E2) to (28 ⁺).

 $[\]dagger$ Deduced by evaluator from a least-squares fit to γ -ray energies, unless given otherwise.

[‡] From rotational band structure. Additional arguments are given with individual levels. [#] From M1 excitation in 232 Th(γ,γ') and 232 Th(e,e').

[@] Coulomb excited by light ions, $\gamma(\theta)$, and ratios of γ -ray reduced transition probabilities (1993Mc07).

[&]amp; Band(A): $K^{\pi}=0^{-}$ Octupole vibrational band.

^a Band(B): $K^{\pi}=0^{+}$ Beta vibrational band.

 $[^]b$ Band(C): $\mathrm{K}^\pi{=}2^+$ Gamma vibrational band.

^c Band(D): $K^{\pi}=4^{+}$ Two-phonon gamma vibrational band.

$\gamma(^{232}\text{Th})$

$E_i(level)$	\mathtt{J}_{i}^{π}	\mathbb{E}_{γ}	I_{γ}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.a	δ	α^{b}	Comments
49.369	2+	49.369 ^{&} 9	100&	0	0+	E2&		332	$\alpha(L)=244; \ \alpha(M)=66.4$ B(E2)(W.u.)=198 II E _{\gamma} : From ²³² Ac \(\rho^{-}\) decay.
162.12	4+	112.75 [†] 2	100 [†]	49.369	2+	E2 [†]		6.82	$\alpha(K)$ =0.234; $\alpha(L)$ =4.78; $\alpha(M)$ =1.31; $\alpha(N+)$ =0.490 B(E2)(W.u.)=286 24
333.26	6+	171.2 [‡] <i>1</i>	100‡	162.12	4+	E2 [‡]		1.21	$\alpha(K)$ =0.208; $\alpha(L)$ =0.729; $\alpha(M)$ =0.199; $\alpha(N+)$ =0.0738 B(E2)(W.u.)=326 22
556.9	8+	223.6 [‡] 1	100‡	333.26	6+	E2 [‡]		0.450	$\alpha(K)$ =0.131; $\alpha(L)$ =0.233; $\alpha(M)$ =0.0633; $\alpha(N+)$ =0.0234 B(E2)(W.u.)=344 <i>15</i>
714.42	1-	665.0 [†] 2	100 † 2	49.369	2+	(E1) [†]		0.00729	$\alpha(K)=0.00594; \ \alpha(L)=0.00102$
		714.4 [†] 2	16 [†] 2	0	0^{+}	(E1) [†]		0.00637	$\alpha(K)=0.00520; \alpha(L)=0.00088$
730.6	0^{+}	681.1 [‡] <i>3</i>	100 [‡]	49.369	2+				
		≈730.4 [#]		0	0^{+}	E0			
774.15	2+	612.0 ^{&} 3	≈43 &	162.12	4+	[E2]&		0.0273	$\alpha(K)=0.0187$; $\alpha(L)=0.00646$ B(E2)(W.u.) ≈ 3.3
		724.7 ^{&} 2	≈1.8 <mark>&</mark>	49.369	2+	E0+E2&			B(E2)(W.u.)≈0.52 Additional information 9.
		774.1 ^{&} 4	100 <mark>&</mark>	0	0+	E2&		0.0167	$\alpha(K)$ =0.0122; $\alpha(L)$ =0.00339 B(E2)(W.u.)=2.8 <i>12</i>
774.43	3-	612.3 <mark>&</mark> <i>1</i>	100 <mark>&</mark>	162.12	4+	(E1)&		0.0085	$\alpha(K)=0.00694; \alpha(L)=0.00120$
		724.7 ^{&} 5	≈9 <mark>&</mark>	49.369	2+	(E1) &		0.00620	$\alpha(K)$ =0.00506; $\alpha(L)$ =0.00086 Additional information 10.
785.25	2+	623.1 [‡] <i>1</i>	≈0.8 [‡]	162.12	4+	(E2) [‡]		0.0262	$\alpha(K)=0.0181$; $\alpha(L)=0.00613$ B(E2)(W.u.) ≈ 0.13
		735.9 [‡] 2	100‡ 4	49.369	2+	E2+M1 [‡]	23 10	0.0186 <i>3</i>	$\alpha(K)=0.0134\ 2;\ \alpha(L)=0.00389\ 4$ B(M1)(W.u.)=2.4×10 ⁻⁵ 22; B(E2)(W.u.)=7.2 7
		785.3 [‡] 2	56 [‡] 5	0	0+	E2 [‡]		0.0162	$\alpha(K)=0.0118$; $\alpha(L)=0.00327$ B(E2)(W.u.)=2.9 4 Additional information 11.
826.8	10+	269.8 [‡] 1	100 [‡]	556.9	8+	E2 [‡]		0.240	$\alpha(K)$ =0.091; $\alpha(L)$ =0.109; $\alpha(M)$ =0.0293; $\alpha(N+)$ =0.0108 B(E2)(W.u.)=363 21
829.6	(3^{+})	667.5 [#] 4	25 [#] 6	162.12	4+				
	(-)	780.2 [#] 2	100 [#] 6	49.369					
873.0	4+	539.9 [†] <i>c</i> 10	100 [†]	333.26		†			Not seen in 232 Th(n,n' γ).
		823.6 [‡] <i>3</i>		49.369		E2		0.0147	$\alpha(K)=0.0109; \ \alpha(L)=0.00289$
883.8	5-	550.4 [†] 5		333.26		(E1)		0.0105	$\alpha(K)=0.0085; \alpha(L)=0.00149$
883.8	5-	550.4 5		333.26	6+	(E1)		0.0105	$\alpha(K)=0.0085; \ \alpha(L)=0.00149$

$\gamma(^{232}\text{Th})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. ^a	δ	α^{b}	Comments
883.8	5-	≈722 [†] <i>c</i>		162.12 4+	(E1)		0.00625	$\alpha(K)=0.00510; \ \alpha(L)=0.00087$
890.1	4+	558.1 ^{†c} 10	5.0 [†] 16	333.26 6 ⁺	E2 [†]		0.0335	$\alpha(K)=0.0222; \ \alpha(L)=0.0085$ Not seen in $^{232}Th(n,n'\gamma)$.
		728.0 [†] 2	100 [†] 4	162.12 4+	†			
		840.5 [†] 4	18 [†] 4	49.369 2+	E2 [†]		0.0141	$\alpha(K)=0.0105$; $\alpha(L)=0.00275$
960.24	(5^{+})	627.2 [#] 2	52 [#] 5	333.26 6+	#			
		797.9 <mark>#</mark> 2	100 [#] 5	162.12 4+	#			
1023.3	6+	466.7 [‡] 2	$2.0^{\ddagger} 3$	556.9 8+	E2 [‡]		0.0512	$\alpha(K)$ =0.0311; $\alpha(L)$ =0.0148; $\alpha(M)$ =0.00386; $\alpha(N+)$ =0.00142
		690.0 [‡] 1	30 [‡] 5	333.26 6+				
		861.2 [‡] <i>10</i>	100 [‡] <i>17</i>	162.12 4+	E2‡		0.0135	$\alpha(K)=0.0100; \ \alpha(L)=0.00258$
1042.9	7-	159.2 [‡] <i>1</i>	100 [‡] <i>14</i>	883.8 5-	E2‡		1.61	$\alpha(K)$ =0.230; $\alpha(L)$ =1.01; $\alpha(M)$ =0.275; $\alpha(N+)$ =0.102
		486.0 [‡] <i>1</i>	65 [‡] 10	556.9 8+				
		≈710 ^C	0.6 6	333.26 6+				
1050.9	6+	492.3 † 10		556.9 8+	E2		0.0450	$\alpha(K)=0.0281; \ \alpha(L)=0.0125; \ \alpha(M)=0.00324; \ \alpha(N+)=0.00119$
		717.7 [‡] 1	100 [‡] 15	333.26 6 ⁺	a.			
		888.4 [‡] 5	25 [‡] 4	162.12 4 ⁺	E2 [‡]		0.0127	$\alpha(K)=0.0095; \ \alpha(L)=0.00239$
1053.9	(2^{+})	268.4 [‡]	<33‡	785.25 2 ⁺				
		279.5 [‡] 3	81 [‡] 29	774.15 2 ⁺				
		323.2‡ 2	100 [‡] 14	730.6 0+				
		891.9 [‡] <i>3</i>		162.12 4 ⁺	(E2)		0.0126	$\alpha(K)=0.0094; \ \alpha(L)=0.00237$
		1004.6 [‡] 3		49.369 2+	(M1+E2)	2.6 4	0.0133 11	$\alpha(K)=0.0103 \ 9; \ \alpha(L)=0.00222 \ 15$
		1054.0 [‡] <i>3</i>		$0 0^{+}$	(E2)		0.0091	$\alpha(K)=0.00702; \ \alpha(L)=0.00159$
1072.4	(2^{+})	1023.0 [‡] 3	100 [‡]	49.369 2+	‡			
1077.9	(1^{-})	1028.5 [‡] 3		49.369 2+				
		1078.0 [‡] 3		$0 0_{+}$				
1078.6	(0^{+})	364.2 [‡] 1		$714.42 1^-$				
		1029.2‡		49.369 2+				
1094.4	$(2)^{+}$	932.3‡ 3		162.12 4 ⁺	A.			
		1045.0 [‡] 3	‡	49.369 2+	M1+E2 [‡]	-3.7 + 34 - 17	0.011 20	$\alpha(K)=0.008\ 16;\ \alpha(L)=0.002\ 3$
1105.7	3-	331.3‡ 1	38 [‡] 6	774.43 3				
		391.3 [‡] 3	5‡ 1	$714.42 1^-$	a.			
		943.5‡ 1	100 [‡] 15	162.12 4 ⁺	E1 [‡]		0.00384	$\alpha(K)=0.00315; \ \alpha(L)=0.00052$
		1056.4 [‡] <i>3</i>		49.369 2+	E1		0.00315	$\alpha(K)=0.00258; \ \alpha(L)=0.00043$

$\gamma(^{232}\text{Th})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.a	δ	$\alpha^{\mathbf{b}}$	Comments
1121.68	2+	347.2 [‡] 1	30 [‡] 5	774.43	3-	E1 [‡]		0.0272	$\alpha(K)=0.0219; \ \alpha(L)=0.00402; \ \alpha(M)=0.00096; \ \alpha(N+)=0.00034$
		407.3 [‡] 1	37 [‡] 6	714.42	1-				
		959.3 [‡] 2	100 [‡] <i>15</i>	162.12	4+	E2 [‡]		0.0109	$\alpha(K)=0.00829$; $\alpha(L)=0.00199$
		1072.6 [‡] 3		49.369	2+	M1+E2	1.45 16	0.0156 11	$\alpha(K)=0.0123$ 9; $\alpha(L)=0.00245$ 16
		1122.0 [‡] <i>3</i>		0	0_{+}	E2		0.00812	$\alpha(K)=0.00629; \ \alpha(L)=0.00138$
1137.1	12+	310.2 [†] 5	100 [†]	826.8	10 ⁺	E2 [†]		0.155	α (K)=0.0691; α (L)=0.0631; α (M)=0.0169; α (N+)=0.00625 B(E2)(W.u.)=3.7×10 ² 3
1143.3	(4^{-})	981.2 [#] 2	100 [#]	162.12	4+				
1146.3?	(7^{+})	812.7 [†] <i>c</i> 10		333.26	6+				
1148.3	(4^{+})	815.0# 2	47 [#] 18		6+				
		986.3 [#] 2	100 [#] 18	162.12	4+				
1182.6	3-	408.2 [‡] 3		774.15	2+	E1		0.0192	$\alpha(K)$ =0.0155; $\alpha(L)$ =0.00280; $\alpha(M)$ =0.00067; $\alpha(N+)$ =0.00024
		1020.5 [‡] 3			4+	E1		0.00335	$\alpha(K)=0.00274; \ \alpha(L)=0.00045$
		1133.2 [‡] <i>3</i>		49.369		E1		0.00279	$\alpha(K)=0.00229; \ \alpha(L)=0.00038$
1208.8	(5^{-})	325.0 [‡] 1	9.6 [‡] <i>15</i>	883.8	5-				
		434.3‡ 2	3.4 [‡] <i>11</i>		3-				
		875.6 [‡] 2	1.9 [‡] 6		6+				
		1046.7 [‡] <i>1</i>	100 [‡] 15	162.12	4+				
1218.1		884.8 [#] <i>3</i>	100 [#]	333.26	6+				
1222.1	(8^{+})	≈395.3 [†]		826.8	10 ⁺				
		888.8 10	4	333.26	6+	4			
1249.6	9-	206.8‡ 1	71 [‡] <i>1</i> 2	1042.9	7-	E2 [‡]		0.595	$\alpha(K)=0.151; \ \alpha(L)=0.323; \ \alpha(M)=0.088; \ \alpha(N+)=0.0325$
		422.7‡ 1	100‡ 15	826.8	10+				
1293.0	(5^{-})	959.7 [‡] 3	100‡		6+				
1303.2		1303.2# 6	100#	0	0+	774		0.00	TV 0.004-00 TV 0.0000
1322.3	2+	1322.3# 3	100 [#]	0	0+	E2		0.00598	$\alpha(K) = 0.00470; \ \alpha(L) = 0.00096$
1327.4	2+	1165.1 [‡] 3		162.12	4 ⁺	E2		0.00757	$\alpha(K) = 0.00588; \ \alpha(L) = 0.00127$
		1277.8 [‡] 3		49.369		(M1+E2)		0.013 7	$\alpha(K) = 0.010 \ 6; \ \alpha(L) = 0.0019 \ 9$
1050.0		1327.7‡ 3	100	0	0+	E2		0.00594	$\alpha(K)=0.00467; \ \alpha(L)=0.00096$
1352.2	2+	637.8‡ 1	100‡	,	1-				
1387.1	2+	612.7 [‡] 3	100 [‡] 21		3-	F2		0.0224	(W) 0.01(A (I) 0.00520
		656.7 ^{‡c} 11	55 [†] 0	730.6	0+	E2		0.0234	$\alpha(K) = 0.0164; \ \alpha(L) = 0.00528$
		672.6 [‡] <i>1</i>	55 [‡] 8	714.42	Ι-	E1 [‡]		0.00713	$\alpha(K)=0.00581$; $\alpha(L)=0.00099$ B(E1)(W.u.)=0.00011 3

 ∞

$\gamma(^{232}\text{Th})$ (continued)

$E_i(level)$	J_i^π	E_{γ}	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult.a	δ	α^{b}	Comments
1387.1	2+	1225.1 [‡] 3	64 [‡] 19	162.12	4+	E2 [‡]		0.00689	$\alpha(K)$ =0.00538; $\alpha(L)$ =0.00114 B(E2)(W.u.)=0.51 <i>18</i>
		1337.8 [‡] <i>3</i>	40 8	49.369	2+	M1+E2	-1.5 5	0.0092 21	$\alpha(K)=0.0073 \ 18; \ \alpha(L)=0.0014 \ 3$ I_{γ} : From $^{232}Th(n,n'\gamma)$.
		1387.2 [‡] <i>3</i>	21 6	0	0+	E2		0.00548	$\alpha(K)=0.00432; \ \alpha(L)=0.00087$ I_{γ} : From 232 Th(n,n' γ).
1413.8	4+	≈524 [†]		890.1	4+	M1+E2	1.4	≈0.092	$\alpha(K)=0.0699; \ \alpha(L)=0.0168$
		584.2 [†] 2	29 [†] 5	829.6	(3 ⁺)	M1+E2 [†]	<5	0.09 6	$\alpha(K)$ =0.07 5; $\alpha(L)$ =0.015 7 B(M1)(W.u.)>0.00028; B(E2)(W.u.)<12
		628.5 [†] 2	100 [†] 15	785.25	2+	E2 [†]		0.0257	$\alpha(K)$ =0.0178; $\alpha(L)$ =0.00598 B(E2)(W.u.)=23 7
1450.3		1400.9 2		49.369					
1466.4	4+	582.6 [‡] 1	87 13	883.8	5-				
		691.9‡ 2	34 5	774.43	3-				
		1133.5‡ 2	100 19	333.26	6+				
		1304.3 ^{‡c}	<85	162.12	4+				
≈1469.3?	(10^{+})	≈912.5 [†] <i>c</i>	100 [†]	556.9	8+				
1477.0	2+	702.6 [‡] 3		774.15	2+	M1+E2	2.0 5	0.034 8	$\alpha(K)=0.026\ 7;\ \alpha(L)=0.0062\ 10$
		1427.6 [‡] 3		49.369					
		1477.0 [‡] 3	#	0	0+	E2		0.00488	$\alpha(K)=0.00387; \ \alpha(L)=0.00076$
1480.1		1430.7# 2	100#	49.369		4-			
1482.2	14+	345.2 [†] 5	100 [†]	1137.1	12+	E2 [†]		0.114	α (K)=0.0559; α (L)=0.0423; α (M)=0.0113; α (N+)=0.00417 B(E2)(W.u.)=3.9×10 ² 3
1484.9	(5^{+})	523.8 [#] 10		960.24	(5^{+})				
		≈1150.9 [†]		333.26	6+				
		1322.8# 2	100 [#]	162.12	4+				
1489.4	$(1,2^+)$	530.3 [#] 16	ш	960.24	(5^+)				
		1440.0 5	100 [#] 13	49.369					
		1489.3 [#] 5	89 [#] 13	0	0_{+}				
1498.7	11-	249.2 5		1249.6	9-	E2		0.311	$\alpha(K)$ =0.106; $\alpha(L)$ =0.149; $\alpha(M)$ =0.0404; $\alpha(N+)$ =0.0149
		361.6 5	ш	1137.1	12+				
1519.8		1470.4# 2	100 [#]	49.369					
1553.8	2+	681.0 ^{‡c} 3		873.0	4+	E2		0.0217	$\alpha(K)=0.0153; \ \alpha(L)=0.00478$
		768.5 ^{‡c} 3		785.25	2+	M1+E2	≈6	≈0.0184	$\alpha(K)=0.0135; \ \alpha(L)=0.00365$
		779.6 [‡] <i>3</i>		774.15	2+	M1+E2	2.5 5	0.024 4	$\alpha(K)=0.018 \ 3; \ \alpha(L)=0.0043 \ 5$

9

$\gamma(^{232}\text{Th})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	Εγ	I_{γ}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.a	δ	α^{b}	Comments
1553.8	2+	823.5 ^{‡c} 3		730.6	0+	E2		0.0147	$\alpha(K)=0.0109; \ \alpha(L)=0.00289$
		839.4 [‡] <i>1</i>		714.42	1-	E1		0.00474	$\alpha(K)=0.00387; \ \alpha(L)=0.00065$
		1391.9 ^{‡c} 3		162.12	4+	E2		0.00544	$\alpha(K)=0.00429; \ \alpha(L)=0.00086$
		1504.6 ^{‡c} 3		49.369	2+	M1+E2	-2.7 + 26 - 12	0.004 6	$\alpha(K)=0.004\ 6$
		1554.0 ^{‡c} 3		0	0^{+}	E2		0.00354	$\alpha(K)=0.00354$
1561.4	$(1,2^+)$	1561.4 [#] 5	100 [#]	0	0^{+}				
1573.0	$(1,2^+)$	1523.8 [#] 2	45 [#] 17	49.369	2+				
		1572.8 [#] 2	100 [#] <i>17</i>	0	0^{+}				
1573.7	(6^{+})	550 [†]	32	1023.3	6+				
		614 [†]	100	960.24	(5^{+})	M1+E2 [†]	<6	0.08 5	$\alpha(K)=0.06\ 5;\ \alpha(L)=0.013\ 7$
		≈683 [†]	37 [†]	890.1	4+	$(E2)^{\dagger}$		≈0.0216	$\alpha(K)=0.0153; \ \alpha(L)=0.00474$
1578.5	(2^{+})	1417.0 <mark>#</mark> 5	100 [#] <i>17</i>	162.12	4+				
		1527.4 <mark>#</mark> 8	86 [#] 17	49.369	2+				
		1578.3 [#] <i>14</i>	92 [#] <i>17</i>	0	0_{+}				
1609.1		1447.0 [#] 5	100#	162.12					
1618.0		1568.6 <mark>#</mark> 7	100#	49.369					
1647.6		1485.5 [#] 8	100#	162.12					
1690.9		1641.5 [#] 10	100#	49.369					
1727.6		1679.1 [#] <i>15</i>	100#	49.369					
		1727.3 [#] 8	61# 20	0	0+				
1738.1	$(1,2^+)$	1738.1 [#] 10	100#	0	0+				
1783	(8)+	637†	100†	1146.3?	(7+)	+			
		760 [†]	59 [†]	1023.3	6+	E2 [†]		0.0173	$\alpha(K)=0.0126; \ \alpha(L)=0.00356$
1784.7	13-	286.0 [†] 5		1498.7	11-	E2		0.199	$\alpha(K)$ =0.0812; $\alpha(L)$ =0.086; $\alpha(M)$ =0.0232; $\alpha(N+)$ =0.0086
4050 5		302.5 [†] 5	100 [‡]	1482.2	14+	+		0.000	gr
1858.5	16 ⁺	376.3 [†] 5	100†	1482.2	14+	E2 [†]		0.089	$\alpha(K)$ =0.0472; $\alpha(L)$ =0.0310; $\alpha(M)$ =0.00819; $\alpha(N+)$ =0.00303 B(E2)(W.u.)=3.9×10 ² 4
2043.2	1+	1994 <mark>@</mark> 2	53 [@] 2	49.369		".0			
		2043 [@] 2	100 [@]	0	0_{+}	M1 ^{#@}			B(M1)(W.u.)=0.2849 9
2101.6	15-	243.1 5		1858.5	16 ⁺				
		316.9 [†] 5		1784.7	13-	E2		0.146	$\alpha(K)$ =0.0662; $\alpha(L)$ =0.0582; $\alpha(M)$ =0.0156; $\alpha(N+)$ =0.00576
2248.2	1+	2199 <mark>@</mark> 2	42 [@] 7	49.369		".			
		2248 [@] 2	100 [@]	0	0^{+}	M1 ^{#@}			B(M1)(W.u.)=0.1107 3

10

γ (232Th) (continued)

E_i (level)	\mathtt{J}_i^{π}	E_{γ}	I_{γ}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.a	α^{b}	Comments
2262.4	18+	403.9 [†] 5	100 [†]	1858.5	16 ⁺	E2 [†]	0.0739	$\alpha(K)$ =0.0411; $\alpha(L)$ =0.0241; $\alpha(M)$ =0.00635; $\alpha(N+)$ =0.00235 B(E2)(W.u.)=4.5×10 ² 7
2274	1+	2225 [@] 5	62 [@] 13	49.369	2+			
		2274 [@] 5	100 [@]	0	0^{+}	M1#@		B(M1)(W.u.)=0.0431 3
2296	1+	2247 [@] 5	69 [@] 29	49.369	2+			
		2296 [@] 5	100 [@]	0	0^{+}	M1#@		B(M1)(W.u.)=0.0590 4
2445.3	17-	343.7 [†] 5	100 [†]	2101.6	15-	E2 [†]	0.115	$\alpha(K)=0.0564; \ \alpha(L)=0.0430; \ \alpha(M)=0.0114; \ \alpha(N+)=0.00423$
2691	20+	428.9 [†] 5	100 [†]	2262.4	18 ⁺	E2 [†]	0.0633	$\alpha(K)=0.0366$; $\alpha(L)=0.0197$; $\alpha(M)=0.00515$; $\alpha(N+)=0.00190$
								$B(E2)(W.u.)=3.6\times10^2 6$
2813	19-	367.8 [†] <i>10</i>	100	2445.3	17^{-}	E2 [†]	0.095	$\alpha(K)=0.0493; \ \alpha(L)=0.0336; \ \alpha(M)=0.0089; \ \alpha(N+)=0.00329$
3144	22+	452.7 [†] 5	100 [†]	2691	20 ⁺	E2 [†]	0.0552	$\alpha(K)=0.0330; \ \alpha(L)=0.0164; \ \alpha(M)=0.00428; \ \alpha(N+)=0.00158$
		4.				a.		$B(E2)(W.u.)=4.2\times10^2 \ II$
3204	21-	390.6 [†] <i>10</i>	100	2813	19-	E2 [†]	0.0808	$\alpha(K)=0.0438$; $\alpha(L)=0.0271$; $\alpha(M)=0.00716$; $\alpha(N+)=0.00265$
3616	23-	412.6 [†] <i>10</i>	100	3204	21^{-}	E2 [†]	0.0699	$\alpha(K)$ =0.0394; $\alpha(L)$ =0.0224; $\alpha(M)$ =0.00589; $\alpha(N+)$ =0.00218
3620.0	24 ⁺	476 [†] 1	100	3144	22 ⁺	E2 [†]	0.0488	$\alpha(K)=0.0300$; $\alpha(L)=0.0139$; $\alpha(M)=0.00362$; $\alpha(N+)=0.00133$
		.				4.		$B(E2)(W.u.)=2.4\times10^2 7$
4050	25-	433.8 [†] 10	100	3616	23-	E2 [†]	0.0615	$\alpha(K)=0.0358$; $\alpha(L)=0.0189$; $\alpha(M)=0.00495$; $\alpha(N+)=0.00183$
4117	26 ⁺	497 [†] <i>1</i>	100 [†]	3620.0	24 ⁺	E2 [†]	0.0440	$\alpha(K)=0.0276$; $\alpha(L)=0.0121$; $\alpha(M)=0.00314$; $\alpha(N+)=0.00115$
		+	4			4		$B(E2)(W.u.)=3.5\times10^2 \ 12$
4506	27-	456 2	100	4050	25-	E2 [†]	0.0543	$\alpha(K)=0.0325$; $\alpha(L)=0.0160$; $\alpha(M)=0.00418$; $\alpha(N+)=0.00154$
4633	(28^{+})	516 [†] 1	100 [†]	4117	26 ⁺	(E2) [†]	0.0401	$\alpha(K)=0.0257; \alpha(L)=0.0108$
		+	+			4		$B(E2)(W.u.)\approx 7.0\times 10^2$
5164	(30^{+})	530.5 [†] 20	100 [†]	4633	(28^{+})	(E2) [†]	0.0376	$\alpha(K)=0.0244; \ \alpha(L)=0.0099$

[†] From Coulomb Excitation: HI.

[†] From Coulomb Excitation: Li. # From 232 Th(n,n' γ).

[@] From 232 Th (γ, γ') . [&] From 232 Ac β^- decay.

^a From $\gamma(\theta)$ and $\gamma\gamma(\theta)$ in light-ion and heavy-ion Coul. ex., unless otherwise specified.

b Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^c Placement of transition in the level scheme is uncertain.

49.369 345 ps 15

0 1.40×10¹⁰ y 1

 $^{232}_{90}\mathrm{Th}_{142}$

Band(A): K^{π} =0 $^-$ Octupole vibrational band

Band(B): $K^{\pi}=0^+$ Beta vibrational band

$$(20^+) \qquad \approx 3249$$

$$\begin{array}{c|c} (16^+) & \approx 2446 \\ \hline (16^+) & 2445.7 \end{array}$$

$$(14^+) \qquad \approx 2117$$

$$\begin{array}{ccc} (12^{+}) & \approx 1801 \\ \\ (11^{+}) & = \approx 1640 \end{array}$$

$$\begin{array}{c|cccc}
 & 207 \\
\hline
 & 1042.9 \\
\hline
 & 5^{-} & 883.8 \\
\hline
 & 3^{-} & 774.43 \\
\hline
 & 1^{-} & 714.42
\end{array}$$

$$\begin{array}{ccc} 6^{+} & 1023.3 \\ \hline 4^{+} & 873.0 \\ \hline 2^{+} & 774.15 \\ 0^{+} & 730.6 \\ \hline \end{array}$$