```
In [3]: import pandas as pd
    import matplotlib.pyplot as plt
    %matplotlib inline
    from sklearn.model_selection import train_test_split
    from sklearn.tree import DecisionTreeClassifier
    from sklearn.metrics import accuracy_score,confusion_matrix
    from sklearn.preprocessing import LabelEncoder
    from sklearn.ensemble import GradientBoostingClassifier
    import warnings
    warnings.filterwarnings('ignore')
```

In [4]: data = pd.read_csv('Company_Data.csv')
 data

Out[4]:

	Sales	CompPrice	Income	Advertising	Population	Price	ShelveLoc	Age	Education	Urbar
0	9.50	138	73	11	276	120	Bad	42	17	Yes
1	11.22	111	48	16	260	83	Good	65	10	Yes
2	10.06	113	35	10	269	80	Medium	59	12	Yes
3	7.40	117	100	4	466	97	Medium	55	14	Yes
4	4.15	141	64	3	340	128	Bad	38	13	Yes
395	12.57	138	108	17	203	128	Good	33	14	Yes
396	6.14	139	23	3	37	120	Medium	55	11	No
397	7.41	162	26	12	368	159	Medium	40	18	Yes
398	5.94	100	79	7	284	95	Bad	50	12	Yes
399	9.71	134	37	0	27	120	Good	49	16	Yes

400 rows × 11 columns

```
In [5]: data.loc[data['Sales'] >=7,'sales'] = 'High'
data.loc[data['Sales'] <7 ,'sales'] = 'Low'</pre>
```

```
In [6]: data.drop('Sales',axis = 1,inplace = True)
```

```
In [7]: data.shape
```

Out[7]: (400, 11)

```
In [8]: data.isna().sum()
 Out[8]: CompPrice
                         0
         Income
                         0
         Advertising
                         0
         Population
                         0
         Price
                         0
         ShelveLoc
                         0
         Age
                         0
         Education
                         0
         Urban
                         0
         US
                         0
         sales
                         0
         dtype: int64
 In [9]: data.dtypes
 Out[9]: CompPrice
                          int64
         Income
                          int64
         Advertising
                          int64
         Population
                          int64
         Price
                          int64
         ShelveLoc
                         object
         Age
                          int64
         Education
                          int64
         Urban
                         object
         US
                         object
                         object
         sales
         dtype: object
In [10]: le = LabelEncoder()
         data['ShelveLoc'] = le.fit_transform(data['ShelveLoc'])
         data['ShelveLoc'].unique()
Out[10]: array([0, 1, 2])
In [11]: data['Urban'] = le.fit transform(data['Urban'])
         data['Urban'].unique()
Out[11]: array([1, 0])
In [12]: | data['US'] = le.fit_transform(data['US'])
         data['US'].unique()
Out[12]: array([1, 0])
```

```
In [13]: | data.head()
Out[13]:
             CompPrice Income Advertising Population Price ShelveLoc Age Education Urban US
                                                                                             sa
          0
                   138
                            73
                                       11
                                                276
                                                      120
                                                                     42
                                                                               17
                                                                                       1
                                                                                           1
                                                                                              Н
          1
                                                260
                   111
                            48
                                       16
                                                      83
                                                                 1
                                                                     65
                                                                               10
                                                                                              Н
                                                                                           1
          2
                   113
                            35
                                       10
                                                269
                                                      80
                                                                 2
                                                                     59
                                                                               12
                                                                                          1
                                                                                              Н
                   117
                           100
                                       4
                                                466
                                                      97
                                                                 2
                                                                     55
           3
                                                                               14
                                                                                       1
                                                                                              Н
                                                                                          1
                   141
                            64
                                       3
                                                340
                                                      128
                                                                 0
                                                                     38
                                                                               13
                                                                                          0
In [14]: | x = data.drop('sales',axis=1)
          y = data[['sales']]
In [15]: x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.20,random_state=
In [16]: x_train.shape,y_train.shape
Out[16]: ((320, 10), (320, 1))
In [17]: x test.shape,y test.shape
Out[17]: ((80, 10), (80, 1))
In [18]: dt model = DecisionTreeClassifier()
          dt_model.fit(x_train,y_train)
Out[18]: DecisionTreeClassifier()
In [19]: y pred train = dt model.predict(x train)
         print('Accuracy score :',accuracy_score(y_train,y_pred_train))
In [20]:
          Accuracy score : 1.0
In [21]:
         print('Confusion Metric :\n',confusion_matrix(y_train,y_pred_train))
          Confusion Metric :
           [[174
           [ 0 146]]
In [22]: y_pred_test = dt_model.predict(x_test)
         print('Accuracy score :', accuracy_score(y_test,y_pred_test))
In [23]:
          Accuracy score: 0.7125
```

```
In [24]: print('Confusion matrix :\n ',confusion_matrix(y_test,y_pred_test))
         Confusion matrix :
           [[31 11]
          [12 26]]
         gbc = GradientBoostingClassifier()
In [25]:
         gbc.fit(x_train,y_train)
Out[25]: GradientBoostingClassifier()
In [27]: y_pred = gbc.predict(x_test)
In [28]: |print('Accuracy score :', accuracy_score(y_test,y_pred))
         Accuracy score : 0.8625
In [30]:
         print('Confusion matrix :\n ',confusion_matrix(y_test,y_pred))
         Confusion matrix :
           [[35 7]
          [ 4 34]]
In [31]: y_pred_tr = gbc.predict(x_train)
In [32]: print('Accuracy score :', accuracy_score(y_train,y_pred_tr))
         Accuracy score : 0.996875
In [33]: print('Confusion matrix :\n ',confusion_matrix(y_train,y_pred_tr))
         Confusion matrix :
           [[174
                   0]
          [ 1 145]]
 In [ ]:
```