Total Marks: /30

1. V	What are the full electron	configurations	of the following	atoms	(3	points)	
------	----------------------------	----------------	------------------	-------	----	---------	--

- a. Cu²⁺
- b. Ni
- c. O²⁻
- d. Ar
- e. Au
- f. Na¹⁺
- 2. A 100 lumen laser is directed at a 2L of water at 20° C. Let us say that it takes 4200 J to heat 1L of water 1 degree. If it takes 6 days for the water to heat up to 30° C, assuming perfect delivery and absorption of energy and no energy loss over this time, what is the wavelength of the laser that was used? Assume that 1 lumen = $4.09*10^{15}$ photons/s. (4 points)
- 3. The conductivity of an unknown intrinsic semiconductor was measured to increase by a factor of 10 between the two temperatures 25°C and 100°C. Recall that the relationship between conductivity and temperature should follow an Arrhenius-type relationship of the form $\sigma = \frac{-E_g}{\sigma_o e^{2K_b T}}$, assuming that electron and hole mobilities do not change over this temperature range. Determine the band gap of this unknown semiconductor. (6 points)
- 4. What is the conductivity of pure germanium at 26° C if n_1 at 300K is $4x10^{13}$ /Ohm-cm while the electron and hole mobilities are 3600 and 1700 cm²/Vs, respectively? (2 points)
- 5. Assume that Gd atoms in Gd metal act as isolated Gd atoms in terms of their magnetic moment. Calculate the saturation magnetization of Gd metal. Note: Gd has a density of 7.9 g/cm³ and a molar mass of 157.25 g/mol. (5 points)
- 6. Calculate the theoretical density of diamond. The molar mass of carbon is 12 g/mol and the atomic radius is 70pm. (7 points)
- 7. If we want to make an LED that is formed from $Ga_xAl_{(1-x)}As$ that emits at a wavelength of 450 nm, what is x? (3 pts)