Combinational Logic Design

Dept. of Electrical Engineering and Computer Science North South University

Combinational Logic

- Logic circuits for digital systems may be combinational
 sequential
- A combinational circuit consists of input variables, logic gates, and output variables.

Analysis procedure

- To obtain the output Boolean functions from a logic diagram, proceed as follows:
 - Label all gate outputs that are a function of input variables with arbitrary symbols. Determine the Boolean functions for each gate output.
 - Label the gates that are a function of input variables and previously labeled gates with other arbitrary symbols. Find the Boolean functions for these gates.
 - 3. Repeat the process outlined in step 2 until the outputs of the circuit are obtained.
 - 4. By repeated substitution of previously defined functions, obtain the output Boolean functions in terms of input variables.

Example

$$F_2 = AB + AC + BC; T_1 = A + B + C; T_2 = ABC; T_3 = F_2'T_1;$$
 $F_1 = T_3 + T_2$
 $F_1 = T_3 + T_2 = F_2'T_1 + ABC = A'BC' + A'B'C + AB'C' + ABC$

Combinational Logic Design

- A process with 5 steps
 - Specification
 - Formulation
 - Optimization
 - Technology mapping
 - Verification
- 1st three steps and last best illustrated by example

Specifications

- Write a specification for the circuits
- Specification includes
 - What are the inputs: how many, how many bits in a given output, how are they grouped,, are they control, are they active high?
 - What are the outputs: how many and how many bits in a each, active high, active low, tristate output?
 - The functional operation that takes place in the chip, i.e., for given inputs what will appear on the outputs.

Formulation step

- Convert the specifications into a variety forms for optimal implementation.
 - Possible forms
 - Truth Tables
 - Expressions
 - K-maps
 - Binary Decision Diagrams
- IF THE SPECIFCATION IS ERRONOUS OR INCOMPLETE (open for various interpretation) then the circuit will perform as specified but will not perform as desired.

Last 3 steps

- Best illustrated by example
 - A BCD to Excess-3 code converter
 - BCD-to-7-segment decoder

BCD-to-Excess-3 Code converter

- BCD is a code for the decimal digits 0-9
- Excess-3 is also a code for the decimal digits

Decimal Digit	Input BCD	Output Excess-3
0	0 0 0 0	0 0 1 1
1	0001	0 1 0 0
2	0 0 1 0	0 1 0 1
3	0 0 1 1	0 1 1 0
4	0 1 0 0	0 1 1 1
5	0 1 0 1	1 0 0 0
6	0 1 1 0	1 0 0 1
7	0 1 1 1	1 0 1 0
8	1 0 0 0	1 0 1 1
9	1 0 0 1	1 1 0 0

Design Procedure for BCD-to-Excess3

Specification:

- Inputs: a BCD input, A,B,C,D with A as the most significant bit and D as the least significant bit.
- Outputs: an Excess-3 output W,X,Y,Z that corresponds to the BCD input.
- Internal operation circuit to do the conversion in combinational logic.

Formulation

- Excess-3 code is easily formed by adding a binary 3 to the binary or BCD for the digit.
- There are 16 possible inputs for both BCD and Excess-3.
- It can be assumed that only valid BCD inputs will appear so the six combinations not used can be treated as don't cares.

Optimization – BCD-to-Excess-3

Lay out K-maps for each output, W X Y Z

Expressions for W X Y Z

• $W(A,B,C,D) = \Sigma m(5,6,7,8,9) + d(10,11,12,13,14,15)$

• $X(A,B,C,D) = \Sigma m(1,2,3,4,9) + d(10,11,12,13,14,15)$

• $Y(A,B,C,D) = \Sigma m(0,3,4,7,8) + d(10,11,12,13,14,15)$

• $Z(A,B,C,D) = \Sigma m(0,2,4,6,8) + d(10,11,12,13,14,15)$

Minimize K-Maps

K-map for Y

K-map for Z

• Y minimization

$$Y = CD + C'D'$$

Z minimization

$$Z = D'$$

Minimize K-Maps

K-map for W

W minimization

$$W = A + BC + BD$$

K-map for X

X minimization

$$X = BC'D' + B'C + B'D$$

Two level circuit implementation

Have equations

```
W = A + BC + BD = A + B(C+D)

X = B'C + B'D + BC'D' = B'(C+D) + BC'D'

Y = CD + C'D'

Z = D'
```

- Factoring out (C+D) and call it T
- Then T' = (C+D)' = C'D'
 W = A + BT
 X = B'T + BT'
 Y = CD + T'

Z = D'

Create the digital circuit

- Implementing the second set of equations where T=C+D results in a lower gate count.
- This gate has a fanout of 3

BCD-to-Seven-Segment Decoder

Specification

- Digital readouts on many digital products often use LED seven-segment displays.
- Each digit is created by lighting the appropriate segments. The segments are labeled a,b,c,d,e,f,g
- The decoder takes a BCD input and outputs the correct code for the seven-segment display.

Formulation

- Input: A 4-bit binary value that is a BCD coded input.
- Outputs: 7 bits, a through g for each of the segments of the display.
- Operation: Decode the input to activate the correct segments.

Formulation

Construct a truth table

Decim: Digit	al	Input Decoder Out BCD a b c d e f g						utp		į		
0	0	0	0	0		1	1	1	1	1	1	0
1	0	0	0	1		0	1	1	0	0	0	0
2	0	0	1	0		1	1	0	1	1	0	1
3	0	0	1	1		1	1	1	1	0	0	1
4	0	1	0	0		1	0	1	1	0	1	1
5	0	1	0	1		1	0	1	1	0	1	1
6	0	1	1	0		1	0	1	1	1	1	1
7	0	1	1	1		1	1	1	0	0	0	0
8	1	0	0	0		1	1	1	1	1	1	1
9	1	0	0	1		1	1	1	1	0	1	1
All	other	iı	ıρι	ıts		0	0	0	0	0	0	0

Optimization

Create a K-map for each output and get

$$a = A'C+A'BD+B'C'D'+AB'C'$$

$$b = A'B'+A'C'D'+A'CD+AB'C'$$

$$c = A'B+A'D+B'C'D'+AB'C'$$

$$d = A'CD'+A'B'C+B'C'D'+AB'C'+A'BC'D'$$

$$e = A'CD'+B'C'D'$$

$$f = A'BC'+A'C'D'+A'BD'+AB'C'$$

$$g = A'CD'+A'B'C+A'BC'+AB'C'$$

Note on implementation

 Direct implementation would require 27 AND gates and 7 OR gates

 By sharing terms, can actualize and implementation with 14 less gates.

• Normally decoder in a device name indicates that the number of outputs is less than the number of inputs.

Binary Adder-Subtractor

- A combinational circuit that performs the addition of two bits is called a half adder.
- The truth table for the half adder is listed below:

Truth Table – Half Adder

X	Y	С	S	
0	0	0	0	
0	1	0	1	
1	0	0	1	
1	1	1	0	

Full-Adder

Performs the addition of three bits (two significant bits and a previous carry)

X	Y	Z	С	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$C = XY + XY'Z + X'YZ$$

$$= XY + Z(XY' + X'Y)$$

$$= XY + Z(X \oplus Y)$$

Full adder Implementation

Using two half adders and one OR gate (Carry Look-Ahead adder)

23

Full Adder Symbol

For a multibit implementation need a symbol for the unit.
 And then can use that symbol in multi-bit or hierarchical representations.

Binary adder

- Ripple Carry Adder (RCA): full adders are connected in cascade.
- All inputs, As, Bs, and C_0 arrive -> C_1 becomes valid -> C_2 becomes valid -> C_4 becomes valid

Subscript i:	3	2	1	0	
Input carry	0	1	1	0	C_i
Augend	1	0	1	1	A_i
Addend	0	0	1	1	B_i
Sum	1	1	1	0	S_{i}
Output carry	0	0	1	1	C_{i+1}

Carry Propagation

- Causes a unstable factor on carry bit, and produces a longest propagation delay.
- The signal from C_i to the output carry C_{i+1}, propagates through an AND and OR gates, so, for an n-bit RCA, there are 2n gate levels for the carry to propagate from input to output.

Carry Propagation

- Because the propagation delay will affect the output signals on different time, so the signals are given enough time to get the precise and stable outputs.
- The most widely used technique employs the principle of carry look-ahead to improve the speed of the algorithm.

Boolean functions of CLA-Adder

 $P_i = A_i \oplus B_i$ steady state value

$$G_i = A_i B_i$$
 steady state value

Output sum and carry

$$S_{i} = P_{i} \bigoplus C_{i}$$

$$C_{i+1} = G_{i} + P_{i}C_{i}$$

G_i: carry generate P_i: carry propagate

 C_0 = input carry

$$C_1 = G_0 + P_0 C_0$$

$$C_2 = G_1 + P_1C_1 = G_1 + P_1G_0 + P_1P_0C_0$$

$$C_3 = G_2 + P_2C_2 = G_2 + P_2G_1 + P_2P_1G_0 + P_2P_1P_0C_0$$

C₃ does not have to wait for C₂ and C₁ to propagate.

Logic Diagram of CLA Generator

C₃ is propagated at the same time as C₂ and C₁.

4-bit CLA-Adder

Delay time of n-bit CLAA = XOR + (AND + OR) + XOR

Binary Adder-Subtractor

 $M = 1 \rightarrow subtractor$; $M = 0 \rightarrow adder$

Overflow on signed and unsigned

- Binary numbers in the signed-complement system are added and subtracted by the same basic addition and subtraction rules as unsigned numbers.
- Overflow is a problem in digital computers because the number of bits that hold the number is finite and a result that contains n+1 bits cannot be accommodated.
- When two unsigned numbers are added, an overflow is detected from the end carry out of the MSB position.
- When two signed numbers are added, the sign bit is treated as part of the number and the end carry does not indicate an overflow.
- An overflow cann't occur after an addition if one number is positive and the other is negative.
- An overflow may occur if the two numbers added are both positive or both negative.

Overflow indication.

- In 8-bit 2's complement notation the range that can be represented is -127 to +127.
- Then the operation to add +70 to +80 is

Also look at the addition of -70 and -80

The other addition

The addition of -70 and -80

 The rule – if the carry into the msb position differs from the carry out from the msb position then an overflow has occurred.

Decimal adder

BCD adder can't exceed 9 on each input digit. K is the carry.

Table 4-5
Derivation of BCD Adder

	Bir	nary Su	ım			Decimal				
K	Z ₈	Z_4	Z ₂	Z ₁	С	S ₈	54	S2	S ₁	
0	0	0	0	0	0	0	0	0	0	0
0	O	O	O	1	0	0	0	0	1	1
0	O	O	1	0	O	0	0	1	O	2
0	O	O	1	1	0	0	0	1	1	3
0	0	1	0	0	0	0	1	0	0	4
0	0	1	0	1	0	0	1	0	1	5
0	0	1	1	0	O	0	1	1	0	6
0	0	1	1	1	0	0	1	1	1	7
0	1	0	0	0	0	1	0	0	0	8
0	1	O	O	1	0	1	O	O	1	9
0	1	0	1	0	1	0	0	0	0	10
0	1	O	1	1	1	0	0	0	1	11
0	1	1	0	0	1	0	0	1	O	12
0	1	1	0	1	1	0	0	1	1	13
0	1	1	1	0	1	0	1	0	O	14
0	1	1	1	1	1	0	1	0	1	15
1	O	O	O	0	1	0	1	1	0	16
1	0	O	0	1	1	0	1	1	1	17
1	0	0	1	0	1	1	0	0	0	18
1	0	0	1	1	1	1	0	0	1	19

Rules of BCD adder

- When the binary sum is greater than 1001, we obtain a non-valid BCD representation.
- The addition of binary 6(0110) to the binary sum converts it to the correct BCD representation and also produces an output carry as required.
- To distinguish them from binary 1000 and 1001, which also have a 1 in position Z₈, we specify further that either Z₄ or Z₂ must have a 1.

$$C = K + Z_8 Z_4 + Z_8 Z_2$$

Implementation of BCD adder

- A decimal parallel adder that adds n decimal digits needs n BCD adder stages.
- The output carry from one stage must be connected to the input carry of the next higherorder stage.

Binary multiplier

 Usually there are more bits in the partial products and it is necessary to use full adders to produce the sum of the partial products.

4-bit by 3-bit binary multiplier

For J multiplier bits and K multiplicand bits we need $(J \times K)_{A_1}$ -AND gates and (J - 1) K-bit adders to produce a product of J+K bits.

 K=4 and J=3, we need 12 AND gates and two 4-bit adders.

Magnitude comparator

 The equality relation of each pair of bits can be expressed logically with an exclusive-NOR function as:

$$A = A_3 A_2 A_1 A_0$$
; $B = B_3 B_2 B_1 B_0$

$$x_i = A_i B_i + A_i' B_i'$$
 for $i = 0, 1, 2, 3$

$$(A = B) = x_3 x_2 x_1 x_0$$

Magnitude comparator

- We inspect the relative magnitudes of pairs of MSB. If equal, we compare the A_3 next lower significant pair of digits until a pair of unequal digits is reached.
- If the corresponding digit of A is 1 and that of B is 0, we conclude that A>B.

$$(A>B)=$$

$$A_3B_3'+x_3A_2B_2'+x_3x_2A_1B_1'+x_3x_2x_1A_0B_0'$$

$$(A

$$A_3'B_3+x_3A_2'B_2+x_3x_2A_1'B_1+x_3x_2x_1A_0'B_0$$$$

Decoders

- The decoder is called n-to-m-line decoder, where m≤2ⁿ.
- the decoder is also used in conjunction with other code converters such as a BCD-to-seven_segment decoder.
- 3-to-8 line decoder: For each possible input combination, there are seven outputs that are equal to 0 and only one that is equal to 1.

Inputs			Outputs							
X	y	Z	D ₀	D ₁	D ₂	D_3	D ₄	D_{s}	D ₆	D ₇
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

Implementation of 3-to-8 Decoder

Decoder with enable input

- Some decoders are constructed with NAND gates, it becomes more economical to generate the decoder minterms in their complemented form.
- As indicated by the truth table, only one output can be equal to 0
 at any given time, all other outputs are equal to 1.

E	A	B	D_0	D_1	D_2	D_3
1	X	X	1	1	1	1
O	O	O	О	1	1	1
O	O	1	1	0	1	1
O	1	O	1	1	O	1
O	1	1	1	1	1	O

(a) Logic diagram

(b) Truth table

Demultiplexer

- A decoder with an enable input is referred to as a decoder/demultiplexer.
- The truth table of demultiplexer is the same with decoder.

3-to-8 decoder with enable implement the 4-to-16 decoder

Full Adder using Decoder

• From the truth table, we obtain the functions for the combinational circuit in sum of minterms:

$$S(x, y, z) = \sum (1, 2, 4, 7)$$

$$C(x, y, z) = \sum (3, 5, 6, 7)$$

Encoders

- An encoder is the inverse operation of a decoder.
- We can derive the Boolean functions by table 4-7

$$z = D_1 + D_3 + D_5 + D_7$$

 $y = D_2 + D_3 + D_6 + D_7$
 $x = D_4 + D_5 + D_6 + D_7$

Inputs							Outputs			
D_0	D_1	D_2	D_3	D_4	D_5	D_6	D_7	x	у	z
1	0	0	0	0	0	0	0	0	O	0
0	1	0	0	0	0	0	O	O	O	1
0	O	1	O	O	0	0	0	0	1	0
0	O	0	1	0	0	0	0	0	1	1
0	0	0	0	1	0	0	0	1	0	0
0	0	0	0	0	1	0	0	1	O	1
0	O	O	0	O	O	1	0	1	1	0
0	0	0	0	0	0	0	1	1	1	1

Priority encoder

- If two inputs are active simultaneously, the output produces an undefined combination. We can establish an input priority to ensure that only one input is encoded.
- Another ambiguity in the octal-to-binary encoder is that an output with all 0's is generated when all the inputs are 0; the output is the same as when D_0 is equal to 1.
- The discrepancy tables can resolve aforesaid condition by providing one more output to indicate that at least one input is equal to 1.

Priority encoder

V=0→no valid inputs

V=1→valid inputs

X's in output columns represent don't-care conditions
X's in the input columns are useful for representing a truth table in condensed form.
Instead of listing all 16

minterms of four variables.

Table 4-8Truth Table of a Priority Encoder

Inputs				Outputs			
D ₀	D ₁	D ₂	D ₃	X	у	V	
0	0	0	0	X	X	0	
1	0	0	0	0	0	1	
X	1	0	0	0	1	1	
X	X	1	0	1	0	1	
X	X	X	1	1	1	1	

4-input priority encoder

Multiplexers

- •Select from one of many Inputs and directs it to a single Output
- N selectors \rightarrow 2^N Input lines

$$S = 0, Y = I_0$$

 $S = 1, Y = I_1$

$$\begin{array}{c|c} S & Y \\ \hline 0 & I_0 \\ 1 & I_1 \end{array}$$

$$Y = S'I_0 + SI_1$$

4-to-1 Line Multiplexer

s_1	s_0	Y
0	0	I_0
0	1	$I_0 I_1$
1	0	I_2 I_3
1	1	I_3

(b) Function table

(a) Logic diagram

Quadruple 2-to-1 Line Multiplexer

 Multiplexer circuits can be combined with common selection inputs to provide multiple-bit selection logic.

Boolean function implementation

• A more efficient method for implementing a Boolean function of n variables with a multiplexer that has n-1 selection inputs.

$$F(x, y, z) = \Sigma(1,2,6,7)$$

(a) Truth table

(b) Multiplexer implementation

4-input function with a multiplexer

 $F(A, B, C, D) = \Sigma(1, 3, 4, 11, 12, 13, 14, 15)$

A	В	C	D	F	
0	0	0	0	0	пр
0	0	0	1	1	F = D
0	0	1	0	0	F = D
0	0	1	1	1	$\Gamma - D$
0	1	0	0	1	E = D'
0	1	0	1	0	F = D'
0	1	1	0	0	F 0
0	1	1	1	0	F = 0
1	0	0	0	0	F = 0
1	0	0	1	0	I' = 0
1	0	1	0	0	E = D
1	0	1	1	1	F = D
1	1	0	0	1	F=1
1	1	0	1	1	F = 1
1	1	1	0	1	F = 1
1	1	1	1	1	$\Gamma - 1$

Multiplexer with Three-State Gates

A multiplexer can be constructed with three-state gates.

