What is claimed is:

1. A method of preventing or treating atherosclerosis or restenosis in a mammal, comprising administering to said mammal an effective amount of a compound selected from the group consisting of structure Formula VI, Formula VII, Formula VIII and Formula IX,

wherein Formula VI is:

or a pharmaceutically acceptable salt thereof wherein, \mathbf{A}^{VI} is

- a) Cl,
- b) Br,
- c) CN,
- d) NO_2 , or
- e) F;

 R^{VI-1} is

- a) R^{VI-5} , or
- b) SO_2R^{VI-9}

 $R^{\text{VI-2}},\ R^{\text{VI-3}}$ and $R^{\text{VI-4}}$ may be the same or different and are selected from the group consisting of:

- a) H,
- b) halo^{VI},
- c) aryl^{VI},
- d) $S(0)_m R^{VI-6}$,
- e) (C=O) R^{VI-6} ,
- f) (C=O) OR^{VI-9} ,
- g) cyano,

- h) het^{VI} , wherein said het^{VI} is bound via a carbon atom,
- i) OR^{VI-10} ,
- j) Ohet^{VI},
- k) $NR^{VI-7}R^{VI-8}$
- 1) SR^{VI-10} ,
- m) Shet^{VI},
- n) NHCOR^{VI-12},
- o) $NHSO_2R^{VI-12}$,
- p) C_{1-7} alkyl which may be partially unsaturated and optionally substituted by one or more substituents of the group R^{VI-11} , OR^{VI-13} , SR^{VI-10} , SR^{VI-13} , $NR^{VI-7}R^{VI-8}$, halo, $(C=0)C_{1-7}$ alkyl, or SO_mR^{VI-9} , and
- q) R^{VI-3} together with R^{VI-2} or R^{VI-4} form a carbocyclic or $^{VI-}$ het which may be optionally substituted by $NR^{VI-7}R^{VI-8}$, or C_{1-7} alkyl which may be optionally substituted by OR^{VI-14} ;

R^{VI-5} is

- a) $(CH_2CH_2O)_{i}R^{VI-10}$,
- b) C_{1-7} alkyl which may be partially unsaturated and is optionally substituted by one or more substituents selected from a group consisting of $NR^{VI-7}R^{VI-8}$, R^{VI-11} , SO_mR^{VI-9} , or OC_{2-4} alkyl which may be further substituted by het^{VI}, OR^{VI-10} , or $NR^{VI-7}R^{VI-8}$, or
- c) C_{3-8} cycloalkyl which may be partially unsaturated and optionally substituted by one or more substituents selected from a group consisting of R^{VI-11} , $NR^{VI-7}R^{VI-8}$, $SO_m^{VI}R^{VI-9}$, or C_{1-7} alkyl optionally substituted by R^{VI-11} , $NR^{VI-7}R^{VI-8}$, or $SO_m^{VI}R^{VI-9}$;

R^{VI-6} is

- a) C_{1-7} alkyl,
- b) $NR^{VI-7}R^{VI-8}$,

- c) aryl^{VI}, or
- d) het^{vI}, wherein said het^{VI} is bound via a carbon atom;

 R^{VI-7} and R^{VI-8} are independently

- a) H,
- b) aryl^{VI},
- c) C_{1-7} alkyl which may be partially unsaturated and is optionally substituted by one or more substituents selected from a group consisting of aryl^{VI}, $NR^{VI-10}R^{VI-10}$, R^{VI-11} , SO_mR^{VI-9} , $CONR^{VI-10}R^{VI-10}$, or halo, or;
- d) C_{3-8} cycloalkyl which may be partially unsaturated and optionally substituted by one or more substituents selected from a group consisting of R^{VI-11} , $NR^{VI-7}R^{VI-8}$, $SO_m^{VI}R^{VI-9}$, or C_{1-7} alkyl optionally substituted by R^{VI-11} , $NR^{VI-7}R^{VI-8}$, or $SO_m^{VI}R^{VI-9}$, or
- e) R^{VI-7} and R^{VI-8} together with the nitrogen to which they are attached form a het VI ;

 R^{VI-9} is

- a) aryl^{VI},
- b) het^{VI},
- c) C_{3-8} cycloalkyl,
- d) methyl, or
- e) C_{2-7} alkyl which may be partially unsaturated and is optionally substituted by one or more substituents selected from a group consisting of $NR^{VI-10}R^{VI-10}$, R^{VI-11} , SH, $CONR^{VI-10}R^{VI-10}$, or halo;

 R^{VI-10} is

- a) H,
- b) methyl, or
- c) C₂₋₇alkyl optionally substituted by OH;

 R^{VI-11} is

- a) OR^{VI-10} ,
- b) Ohet^{VI},

```
Oaryl<sup>VI</sup>,
       c)
             CO_2R^{VI--10},
       d)
             het<sup>VI</sup>,
       e)
             vi-arvl<sup>vi</sup>,
       f)
       g)
             CN, or
              C_{3-8}cycloalkyl which may be partially
       h)
              unsaturated and optionally substituted by one
              or more substituents selected from a group
              consisting of R^{VI-11}, NR^{VI-7}R^{VI-8}, SO_m^{IV}R^{VI-9}, or
              C_{1-7}alkyl optionally substituted by R^{VI-11}, NR^{VI-7}
              R^{VI-8}, or SO_mR^{VI-9};
R^{VI-12} is
       a)
              Η,
             het<sup>VI</sup>,
       b)
             aryl<sup>VI</sup>,
       C)
       d)
             C_{3-8}cycloalkyl,
             methyl, or
       e)
              C_{2-7}alkyl optionally substituted by NR^{VI-7}R^{VI-8}
       f)
              or R<sup>VI-11</sup>;
R^{VI-13} is
              (P=0) (OR^{VI-14})_{2}
       a)
              CO(CH_2)_n^{IV}CON(CH_3) - (CH_2)_nSO_3^{IV}M^{VI+}
       b)
              an amino<sup>VI</sup> acid,
       C)
              C(=0) aryl<sup>VI</sup>,
       d)
              C(=0)C_{1-7}alkyl optionally substituted by NR^{VI-7}
       e)
              R^{VI-8}, aryl<sup>VI</sup>, het<sup>VI</sup>, CO_2H, or O(CH_2)_nCO_2R^{VI-14}, or
              C (=0) NR^{VI-7} R^{VI-8}
       f)
R^{VI-14} is
       a)
            H, or
            C_{1-7}alkyl;
       b)
each i<sup>VI</sup> is independently 2, 3, or 4;
each n^{VI} is independently 1, 2, 3, 4 or 5;
each m<sup>VI</sup> is independently 0, 1, or 2;
M^{VI} is sodium, potassium, or lithium;
aryl is a phenyl radical or an ortho-fused bicyclic
```

carbocyclic radical wherein at least one ring is aromatic;

wherein any aryl^{VI} is optionally substituted with one or more substituents selected from the group consisting of halo, OH, cyano, CO_2R^{VI-14} , CF_3 , C_{1-6} alkoxy, and C_{1-6} alkyl which maybe further substituted by one to three SR^{VI-14} , $NR^{VI-14}R^{VI-14}$, OR^{VI-14} , or CO_2R^{VI-14} ;

het^{vI} is a four- (4), five- (5), six- (6), or seven- (7) membered saturated or unsaturated heterocyclic ring having 1, 2, or 3 heteroatoms selected from the group consisting of oxygen, sulfur, and nitrogen, which is optionally fused to a benzene ring, or any bicyclic heterocycle group;

wherein any het^{VI} is optionally substituted with one or more substituents selected from the group consisting of halo, OH, cyano, phenyl, CO_2R^{VI-14} , CF_3 , C_{1-6} alkoxy, oxo, oxime, and C_{1-6} alkyl which maybe further substituted by one to three SR^{VI-14} , $NR^{VI-14}R^{VI-14}$, OR^{VI-14} , or CO_2R^{VI-14} ;

wherein Formula VII is

VII

or a pharmaceutically acceptable salt thereof, wherein $% \left(1,...,n\right) =\left(1,...,n\right)$

A^{VII} is

- a) Cl,
- b) Br,
- c) CN,
- d) NO_2 , or
- e) F;

R^{VII-1} is

- a) aryl^{VII},
- b) $S(0)_{m}^{VII}R^{VII-6}$
- c) (C=O) R^{VII-6} , with the proviso that if R^{VII-6} is $NR^{VII-7}R^{VII-8}$, then R^{VII-7} and R^{VII-8} do not both equal H,
- d) (C=O) OR^{VII-9} ,
- e) cyano,
- f) het^{VII} , wherein said het^{VII} is bound via a carbon atom,
- g) Ohet VII,
- h) $NR^{VII-7}R^{VII-8}$ with the proviso that R^{VII-7} and R^{VII-8} do not both equal H,
- i) SR^{VII-10},
- j) Shet^{VII},
- k) NHCOR^{VII-12},
- 1) $NHSO_2R^{VII-12}$,
- m) C_{1-7} alkyl which is partially unsaturated and optionally substituted by one or more substituents of the group R^{VII-11} , OR^{VII-13} , SR^{VII-10} , SR^{VII-13} , $NR^{VII-7}R^{VII-8}$, halo, $(C=O)C_{1-7}$ alkyl, or SO_mR^{VII-9} , or
- n) C_{1-7} alkyl which is substituted by one or more substituents of the group R^{VII-11} , OR^{VII-13} , SR^{VII-10} , SR^{VII-13} , $NR^{VII-7}R^{VII-8}$, halo, (C=O) C_{1-7} alkyl, or $SO_m^{VII}R^{VII-9}$;

R^{VII-2} is

- a) H,
- b) halo,
- c) aryl^{VII},
- d) $S(0)_m^{VII}R^{VII-6}$,
- e) $(C=0) R^{VII-6}$,
- f) (C=O) OR^{VII-9} ,
- g) cyano,

- h) het^{VII}, wherein said het^{VII} is bound via a carbon atom,
- i) OR $^{VII-10}$,
- j) Ohet^{VII},
- k) $NR^{VII-7}R^{VII-8}$
- 1) SR^{VII-10} ,
- m) Shet^{VII},
- n) NHCOR^{VII-12},
- o) NHSO₂R^{VII-12}, or
- p) C_{1-7} alkyl which may be partially unsaturated and optionally substituted by one or more substituents of the group R^{VII-11} , OR^{VII-13} , SR^{VII-10} , SR^{VII-13} , $NR^{VII-7}R^{VII-8}$, halo, $(C=0)C_{1-7}$ alkyl, or $SO_m^{VII}R^{VII-9}$, or
- q) R^{VII-1} together with R^{VII-2} form a carbocyclic or het^{VII} which may be optionally substituted by $NR^{VII-7}R^{VII-8}$, or C_{1-7} alkyl which may be optionally substituted by OR^{VII-14} ;

R^{VII-6} is

- a) C_{1-7} alkyl,
- b) NR^{VII-7}R^{VII-8}
- c) aryl^{VII}, or
- d) het VII , wherein said het VII is bound via a carbon atom;

R^{VII-7} and R^{VII-8} are independently

- a) H,
- b) aryl^{VII},
- c) C_{1-7} alkyl which may be partially unsaturated and is optionally substituted by one or more substituents selected from $NR^{VII-10}R^{VII-10}$, R^{VII-11} , SO_mR^{VII-9} , $CONR^{VII-10}R^{VII-10}$, or halo, or,
- d) R^{VII-7} and R^{VII-8} together with the nitrogen to which they are attached form a het^{VII};

R^{VII-9} is

a) aryl^{VII},

- b) het^{VII},
- c) C_{3-8} cycloalkyl,
- d) methyl, or
- e) C_{2-7} alkyl which may be partially unsaturated and is optionally substituted by one or more substituents selected from $NR^{VII-10}R^{VII-10}$, R^{VII-11} , SH, $CONR^{VII-10}R^{VII-10}$, or halo;

R^{VII-10} is

- a) H,
- b) methyl, or
- c) C_{2-7} alkyl optionally substituted by OH;

R^{VII-11} is

- a) OR^{VII-10} ,
- b) Ohet VII,
- c) Oaryl^{VII},
- d) CO_2R^{VII-10}
- e) het^{VII},
- f) aryl^{VII},
- g) CN, or
- h) C_{3-8} cycloalkyl which may be partially unsaturated and optionally substituted by one or more substituents seleted from a group consisting of R^{VII-11} , $NR^{VII-7}R^{VII-8}$, $SO_m^{VII}R^{VII-9}$, or C_{1-7} alkyl optionally substituted by R^{VII-11} , $NR^{VII-7}R^{VII-8}$, or SO_mR^{VII-9} ;

R^{VII-12} is

- a) H,
- b) het^{VII},
- c) aryl^{VII},
- d) C₃₋₈cycloalkyl,
- e) methyl, or
- f) C_{2-7} alkyl optionally substituted by $NR^{VII-7}R^{VII-8}$ or R^{VII-11} ;

R^{VII-13} is

a) $(P=0) (OR^{VII-14})_2$,

- b) $CO(CH_2)_nCON(CH_3) (CH_2)_nSO_3^-M^+$,
- c) an amino acid,
- d) C(=0) aryl^{VII}, or
- e) $C(=0)C_{1-7}alkyl$ optionally substituted by $NR^{VII-7}R^{VII-8}$, $aryl^{VII}$, het^{VII} , CO_2H , or $O(CH_2)_n^{VII}CO_2R^{VII-14}$;

R^{VII-14} is

- a) H, or
- b) C_{1-7} alkyl;

each n^{VII} is independently 1, 2, 3, 4 or 5; each m^{VII} is independently 0, 1, or 2; M^{VII} is sodium, potassium, or lithium;

- aryl^{VII} is a phenyl radical or an ortho-fused bicyclic carbocyclic radical wherein at least one ring is aromatic;
- wherein any aryl^{VII} is optionally substituted with one or more substituents selected from the group consisting of halo, OH, cyano, CO_2R^{VII-14} , CF_3 , C_{1-6} alkoxy, and C_{1-6} alkyl which may be further substituted by one to three SR^{VII-14} , $NR^{VII-14}R^{VII-14}$, OR^{VII-14} , or CO_2R^{VII-14} groups;
- het^{VII} is a four- (4), five- (5), six- (6), or seven- (7) membered saturated or unsaturated heterocyclic ring having 1, 2, or 3 heteroatoms selected from the group consisting of oxygen, sulfur, and nitrogen, which is optionally fused to a benzene ring, or any bicyclic heterocycle group;
- wherein any het^{VII} is optionally substituted with one or more substituents selected from the group consisting of halo, OH, cyano, phenyl, CO_2R^{VII-14} , CF_3 , C_{1-6} alkoxy, oxo, oxime, and C_{1-6} alkyl which may be further substituted by one to three SR^{VII-14} , $NR^{VII-14}R^{VII-14}$, OR^{VII-14} , or CO_2R^{VII-14} groups;

wherein Formula VIII is

and pharmaceutically acceptable salts thereof, wherein

A^{VIII} is

- a) Cl,
- b) Br,
- c) CN,
- d) NO_2 , or
- e) F;

R^{VIII-1} is

- a) R^{VIII-5} ,
- b) $NR^{VIII-7}R^{VIII-8}$, or
- c) SO_2R^{VIII-9} ;

R^{VIII-2} is

- a) aryl^{VIII},
- b) het^{VIII},
- c) SOmR^{VIII-6},
- d) OC_{2-7} alkyl substituted by OH,
- e) SC_{2-7} alkyl substituted by OH, or
- f) C_{2-8} alkyl which is partially unsaturated and is optionally substituted by one or more substituents selected from $R^{VIII-11}$, $OR^{VIII-13}$, $SR^{VIII-13}$, $NR^{VIII-7}R^{VIII-8}$, halo, $(C=0)C_{1-7}$ alkyl or $SO_m^{VIII}R^{VIII-9}$;

with the proviso that when $R^{VIII-1}=R^{VIII-5}=$ (CH₂CH₂O)_i $^{VIII}R^{VIII-10}$, then R^{VIII-2} may additionally represent

- a) H,
- b) halo,
- $(C=0) R^{VIII-6}$

```
d)
                (C=O)OR^{VIII-9},
        e)
               cyano,
               OR<sup>VIII-10</sup>,
        f)
               het<sup>VIII</sup>,
        g)
               NR<sup>VIII-7</sup>R<sup>VIII-8</sup>,
        h)
               SR<sup>VIII-10</sup>,
        i)
               het<sup>VIII</sup>,
        j)
               NHCOR VIII-12,
        k)
               NHSO_2R^{VIII-12}, or
        1)
               R^{VIII-2} together with R^{VIII-3} or R^{VIII-4} form a
        m)
               carbocyclic or het VIII which may be optionally
               substituted by NR^{VIII-7}R^{VIII-8}, or C_{1-7}alkyl which
               may be optionally substituted by OR^{VIII-14};
R^{\text{VIII-3}} and R^{\text{VIII-4}} are independently:
        a)
               Η,
       b)
               halo,
               aryl^{VIII},
        C)
               S(0)_{m}^{viii}R^{viii-6},
        d)
               (C=O) R^{VIII-6},
        e)
               (C=O) OR<sup>VIII-9</sup>,
        f)
        g)
               cyano,
               het viii, wherein said het viii is bound via a
        h)
                carbon atom,
               OR<sup>VIII-10</sup>,
        i)
               Ohet VIII,
        j)
               NRVIII-7RVIII-8,
        k)
               SR<sup>VIII-10</sup>,
        1)
               Shet<sup>VIII</sup>,
        m)
               NHCOR VIII-12,
        n)
               NHSO<sub>2</sub>R<sup>VIII-12</sup>,
        0)
```

optionally substituted by one or more

 C_{1-7} alkyl which may be partially unsaturated and

p)

substituents of the group $R^{VIII-11}$, $OR^{VIII-13}$, $SR^{VIII-10}$, $SR^{VIII-13}$, $NR^{VIII-7}R^{VIII-8}$, halo, (C=O)C₁₋₇alkyl, or $SO_m^{VIII}RVIII^{-9}$, or

q) R^{VIII-4} together with R^{VIII-3} form a carbocyclic or het which may be optionally substituted by $NR^{VIII-7}R^{VIII-8}$, or C_{1-7} alkyl which may be optionally substituted by $OR^{VIII-14}$;

R^{VIII-5} is

- a) $(CH_2CH_2O)_iR^{VIII-10}$,
- b) het^{VIII}, wherein said het^{VIII} is bound via a carbon atom,
- c) aryl^{VIII},
- d) C_{1-7} alkyl which may be partially unsaturated and is optionally substituted by one or more substituents selected from $NR^{VIII-7}R^{VIII-8}$, $R^{VIII-11}$, SO_mR^{VIII-9} , or OC_{2-4} alkyl which may be further substituted by het V^{VIII} , $OR^{VIII-10}$, or $V^{VIII-7}R^{VIII-8}$, or
- e) C_{3-8} cycloalkyl which may be partially unsaturated and optionally substituted by one or more substituents selected from $R^{VIII-11}$, $NR^{VIII-7}R^{VIII-8}$, $SO_m^{VIII}R^{VIII-9}$, or C_{1-7} alkyl optionally substituted by $R^{VIII-11}$, $NR^{VIII-7}R^{VIII-8}$, or $SO_m^{VIII}R^{VIII-9}$;

R^{VIII-6} is

- a) C_{1-7} alkyl,
- b) $NR^{VIII-7}R^{VIII-8}$
- c) aryl^{VIII}, or
- d) het^{VIII}, wherein said het^{VIII} is bound via a carbon atom;

 $R^{\text{VIII-7}}$ and $R^{\text{VIII-8}}$ are independently

a) H,

- b) aryl^{VIII},
- c) C_{1-7} alkyl which may be partially unsaturated and is optionally substituted by one or more substituents selected from $NR^{VIII-10}R^{VIII-10}$, $R^{VIII-11}$, $SO_m^{VIII}R^{VIII-9}$, $CONR^{VIII-10}R^{VIII-10}$, or halo, or,
- d) R^{VIII-7} and R^{VIII-8} together with the nitrogen to which they are attached form a het^{VIII};

R^{VIII-9} is

- a) aryl^{VIII},
- b) het^{VIII},
- c) C_{3-8} cycloalkyl,
- d) methyl, or
- e) C_{2-7} alkyl which may be partially unsaturated and is optionally substituted by one or more substituents selected from $NR^{VIII-10}R^{VIII-10}$, $R^{VIII-11}$, SH, $CONR^{VIII-10}R^{VIII-10}$, or halo;

R^{VIII-10} is

- a) H,
- b) methyl, or
- c) C_{2-7} alkyl optionally substituted by OH;

$R^{VIII-11}$ is

- a) OR^{VIII-10},
- b) Ohet VIII,
- c) Oaryl^{VIII},
- d) $CO_2R^{VIII-10}$,
- e) het^{VIII},
- f) aryl^{VIII}, or
- g) CN;

$R^{VIII-12}$ is

a) H,

- b) het^{VIII},
- c) aryl^{VIII},
- d) C_{3-8} cycloalkyl,
- e) methyl, or
- f) C_{2-7} alkyl optionally substituted by $NR^{VIII-7}R^{VIII-8}$ or $R^{VIII-11}$:

$R^{VIII-13}$ is

- a) $(P=0) (OR^{14})_{2}$
- b) $CO(CH_2)_n^{VIII}CON(CH_3) (CH_2)_n^{VIII}SO_3^{-M^+}$,
- c) an amino acid,
- d) C(=0) aryl^{VIII}, or
- e) $C(=0) C_{1-7}alkyl$ optionally substituted by $NR^{VIII-7}R^{VIII-8}$, $aryl^{VIII}$, het^{VIII} , CO_2H , or $O(CH_2)_n^{VIII}CO_2R^{VIII-14}$;

R^{VIII-14} is

- a) H, or
- b) C_{1-7} alkyl;

each i^{VIII} is independently 2, 3, or 4;

each n^{VIII} is independently 1, 2, 3, 4 or 5;

each m^{VIII} is independently 0, 1, or 2;

M^{VIII} is sodium, potassium, or lithium;

- aryl viii is a phenyl radical or an ortho-fused bicyclic carbocyclic radical wherein at least one ring is aromatic;
- wherein any aryl^{VIII} is optionally substituted with one or more substituents selected from halo, OH, cyano, $CO_2R^{VIII-14}$, CF_3 , C_{1-6} alkoxy, and C_{1-6} alkyl which may be further substituted by one to three $SR^{VIII-14}$, $NR^{VIII-14}R^{VIII-14}$, $OR^{VIII-14}$, or $CO_2R^{VIII-14}$ groups;
- het^{VIII} is a four- (4), five- (5), six- (6), or seven- (7) membered saturated or unsaturated heterocyclic ring having 1, 2, or 3 heteroatoms selected from the

group consisting of oxygen, sulfur, and nitrogen, which is optionally fused to a benzene ring, or any bicyclic heterocycle group;

wherein any het^{VIII} is optionally substituted with one or more substituents selected from the group consisting of halo, OH, cyano, phenyl, $CO_2R^{VIII-14}$, CF_3 , C_{1-6} alkoxy, oxo, oxime, and C_{1-6} alkyl which may be further substituted by one to three $SR^{VIII-14}$, $NR^{VIII-14}R^{VIII-14}$, $OR^{VIII-14}$, or $CO_2R^{VIII-14}$ groups;

wherein Formula IX is

ΙX

and pharmaceutically acceptable salts thereof, wherein,

 R^{IX-1} is

- a) Cl,
- b) Br,
- c) CN,
- d) NO_2 , or
- e) F;

 $R^{\text{IX-2}}$, $R^{\text{IX-3}}$ and $R^{\text{IX-4}}$ are independently selected from:

- a) H,
- b) halo,
- c) aryl^{IX},
- d) $S(0)_{m}^{IX}R^{IX-6}$,
- e) (C=O) R^{IX-6} ,
- f) (C=O) OR^{IX-9} ,
- g) cyano,
- h) het^{IX} , wherein said IX-het is bound via a carbon atom,

- i) OR^{IX-10} ,
- j) Ohet^{IX},
- k) $NR^{IX-7}R^{IX-8}$
- 1) SR^{IX-10} ,
- m) Shet^{IX},
- n) NHCOR^{IX-12},
- o) $NHSO_2R^{IX-12}$, or
- p) C_{1-7} alkyl which may be partially unsaturated and optionally substituted by one or more substituents of the group R^{IX-11} , OR^{IX-13} , SR^{IX-10} , SR^{IX-13} , $NR^{IX-7}R^{IX-8}$, halo, $(C=0)C_{1-7}$ alkyl, or $SO_m^{IX}R^{IX-9}$;

R^{IX-6} is

- a) C_{1-7} alkyl,
- b) $NR^{IX-7}R^{IX-8}$,
- c) aryl^{IX}, or
- d) het^{IX}, wherein said het^{IX} is bound via a carbon atom;

R^{IX-7} and R^{IX-8} are independently

- a) H,
- b) aryl^{IX},
- c) C_{1-7} alkyl which may be partially unsaturated and is optionally substituted by one or more substituents selected from $NR^{IX-10}R^{IX-10}$, R^{IX-11} , SO_mR^{IX-9} , $CONR^{IX-10}R^{IX-10}$, or halo, or,
- d) R^{IX-7} and R^{IX-8} together with the nitrogen to which they are attached form a IX-het;

RIX-9 is

- a) aryl^{IX},
- b) het^{IX},
- c) C_{3-8} cycloalkyl,
- d) methyl, or

```
e)
               C_{2-7}alkyl which may be partially unsaturated and
                is optionally substituted by one or more
                substituents selected from NR^{IX-10}R^{IX-10}, R^{IX-11},
                SH, CONR<sup>IX-10</sup>R<sup>IX-10</sup>, or halo;
R^{IX-10} is
        a)
               Η,
               methyl, or
        b)
               C_{2-7}alkyl optionally substituted by OH;
R^{IX-11} is
               OR<sup>IX-10</sup>,
        a)
       b)
               Ohet IX,
               Oaryl<sup>IX</sup>,
        C)
               CO_2R^{IX-10},
        d)
               het<sup>IX</sup>,
        e)
               aryl<sup>IX</sup>, or
        f)
               CN;
R^{IX-12} is
        a)
               Η,
               het<sup>IX</sup>,
        b)
               aryl<sup>IX</sup>,
        C)
        d)
               C_{3-8}cycloalkyl,
               methyl, or
        e)
               \text{C}_{\text{2-7}}\text{alkyl} optionally substituted by \text{NR}^{\text{IX-7}}\text{R}^{\text{IX-8}} or
        f)
                R<sup>IX-11</sup>;
R^{IX-13} is
                (P=0) (OR^{IX-14})_{2}
        a)
               CO(CH_2)_n^{IX}CON(CH_3) - (CH_2)_n^{IX}SO_3^{-M}^{IX+},
        b)
        C)
                an amino acid,
               C(=0)aryl<sup>IX</sup>, or
        d)
                C(=0)C_{1-7}alkyl optionally substituted by
               NR^{IX-7}R^{IX-8}, aryl<sup>IX</sup>, het<sup>IX</sup>, CO_2H, or O(CH_2)_nCO_2R^{IX-14};
R^{IX-14} is
```

- a) H, or
- b) C_{1-7} alkyl;

each n^{IX} is independently 1, 2, 3, 4 or 5; each m^{IX} is independently 0, 1, or 2;

M^{IX} is sodium, potassium, or lithium;

- aryl is a phenyl radical or an ortho-fused bicyclic carbocyclic radical wherein at least one ring is aromatic;
- wherein any $\operatorname{aryl}^{\operatorname{IX}}$ is optionally substituted with one or more substituents selected from the group consisting of halo, OH, cyano, $\operatorname{CO}_2\operatorname{R}^{\operatorname{IX}-14}$, CF_3 , $\operatorname{C}_{1-6}\operatorname{alkoxy}$, and C_{1-6} alkyl which may be further substituted by one to three $\operatorname{SR}^{\operatorname{IX}-14}$, $\operatorname{NR}^{\operatorname{IX}-14}\operatorname{R}^{\operatorname{IX}-14}$, $\operatorname{OR}^{\operatorname{IX}-14}$, or $\operatorname{CO}_2\operatorname{R}^{\operatorname{IX}-14}$ groups;
- het^{IX} is a four- (4), five- (5), six- (6), or seven- (7) membered saturated or unsaturated heterocyclic ring having 1, 2, or 3 heteroatoms selected from the group consisting of oxygen, sulfur, and nitrogen, which is optionally fused to a benzene ring, or any bicyclic heterocycle group;
- wherein any het^{IX} is optionally substituted with one or more substituents selected from the group consisting of halo, OH, cyano, phenyl, CO_2R^{IX-14} , CF_3 , C_{1-6} alkoxy, oxo, oxime, and C_{1-6} alkyl which may be further substituted by one to three SR^{IX-14} , $NR^{IX-14}R^{IX-14}$, OR^{IX-14} , or CO_2R^{IX-14} groups.

2. The method of claim 1, wherein the compound administered has the Formula

or a pharmaceutically acceptable salt thereof, wherein,

 A^{VI} is

- a) Cl,
- b) Br,
- c) CN,
- d) NO_2 , or
- e) F;

 R^{VI-1} is

- a) R^{VI-5} , or
- b) SO_2R^{VI-9}

 R^{VI-2} , R^{VI-3} and R^{VI-4} may be the same or different and are selected from the group consisting of:

- a) H,
- b) halo,
- c) aryl^{vi},
- d) $S(0)_{m}^{VI}R^{VI-6}$,
- e) (C=O) R^{VI-6} ,
- f) (C=O) OR^{VI-9}
- g) cyano,
- h) het $^{\text{VI}}$, wherein said het $^{\text{VI}}$ is bound via a carbon atom,
- i) OR $^{VI-10}$,
- j) Ohet^{VI},
- k) $NR^{VI-7}R^{VI-8}$
- 1) SR^{VI-10} ,

- m) Shet^{VI},
- n) NHCOR^{VI-12},
- o) $NHSO_2R^{VI-12}$,
- p) C_{1-7} alkyl which may be partially unsaturated and optionally substituted by one or more substituents of the group R^{VI-11} , OR^{VI-13} , SR^{VI-10} , SR^{VI-13} , $NR^{VI-7}R^{VI-8}$, halo, $(C=0)C_{1-7}$ alkyl, or $SO_m^{VI}RVI^{-9}$, and
- q) R^{VI-3} together with R^{VI-2} or R^{VI-4} form a carbocyclic or het which may be optionally substituted by $NR^{VI-7}R^{VI-8}$, or C_{1-7} alkyl which may be optionally substituted by OR^{VI-14} ;

R^{VI-5} is

- a) $(CH_2CH_2O)_{i}^{VI}R^{VI-10}$,
- b) C_{1-7} alkyl which may be partially unsaturated and is optionally substituted by one or more substituents selected from a group consisting of $NR^{VI-7}R^{VI-8}$, R^{VI-11} , $SO_m^{VI}R^{VI-9}$, or OC_{2-4} alkyl which may be further substituted by het^{VI}, OR^{VI-10} , or $NR^{VI-7}R^{VI-8}$, or
- C) C_{3-8} cycloalkyl which may be partially unsaturated and optionally substituted by one or more substituents selected from a group consisting of R^{VI-11} , $NR^{VI-7}R^{VI-8}$, $SO_m^{VI}R^{VI-9}$, or C_{1-7} alkyl optionally substituted by R^{VI-11} , $NR^{VI-7}R^{VI-8}$, or $SO_m^{VI}R^9$;

R^{VI-6} is

- a) C_{1-7} alkyl,
- b) $NR^{VI-7}R^{VI-8}$,
- c) aryl^{VI}, or
- d) het^{VI} , wherein said het^{VI} is bound via a carbon atom;

R^{VI-7} and R^{VI-8} are independently

- a) H,
- b) aryl^{VI},

- c) C_{1-7} alkyl which may be partially unsaturated and is optionally substituted by one or more substituents selected from a group consisting of aryl^{VI}, $NR^{VI-10}R^{VI-10}$, R^{VI-11} , $SO_m^{VI}R^{VI-9}$, $CONR^{VI-10}R^{VI-10}$, or halo, or;
- d) C_{3-8} cycloalkyl which may be partially unsaturated and optionally substituted by one or more substituents selected from a group consisting of R^{VI-11} , $NR^{VI-7}R^{VI-8}$, $SO_m^{VI}R^{VI-9}$, or C_{1-7} alkyl optionally substituted by R^{VI-11} , $NR^{VI-7}R^{VI-8}$, or $SO_m^{VI}R^{VI-9}$, or
- e) R^{VI-7} and R^{VI-8} together with the nitrogen to which they are attached form a het^{VI};

R^{VI-9} is

- a) aryl^{VI},
- b) het^{VI},
- c) C_{3-8} cycloalkyl,
- d) methyl, or
- e) C_{2-7} alkyl which may be partially unsaturated and is optionally substituted by one or more substituents selected from a group consisting of $NR^{VI-10}R^{VI-10}$, R^{VI-11} , SH, $CONR^{VI-10}R^{VI-10}$, or halo;

R^{VI-10} is

- a) H,
- b) methyl, or
- c) C₂₋₇alkyl optionally substituted by OH;

R^{VI-11} is

- a) OR^{10} ,
- b) Ohet^{VI},
- c) Oaryl^{VI},
- d) CO_2R^{10} ,
- e) het^{VI},
- f) aryl^{VI},
- g) CN, or

h) C₃₋₈cycloalkyl which may be partially unsaturated and optionally substituted by one or more substituents selected from a group consisting of R^{VI-11} , $NR^{VI-7}R^{VI-8}$, $SO_m^{VI}R^{VI-9}$, or C_{1-7} alkyl optionally substituted by R^{VI-11} , $NR^{VI-7}R^{VI-8}$, or $SO_m^{VI}R^{VI-9}$; R^{VI-12} is Η, a) het^{VI}, b) C) aryl^{VI}, d) C_{3-8} cycloalkyl, methyl, or e) C₂₋₇alkyl optionally substituted by NR^{VI-7}R^{VI-8} f) or R^{VI-11}; R^{VI-13} is $(P=0) (OR^{VI-14})_{2}$ a) $CO(CH_2)_n^{VI}CON(CH_3) - (CH_2)_nSO_3^{-M^{VI+}}$, b) C) an amino acid, C(=0) ary l^{VI} , d) $C(=0)C_{1-7}alkyl$ optionally substituted by e) NR^{VI-7} R^{VI-8}, aryl^{VI}, het^{VI}, CO₂H, or $O(CH_2)_n^{VI}CO_2R^{VI-14}$, or $C (=0) NR^{VI-7} R^{VI-8}$ f) R^{VI-14} is a) H, or C_{1-7} alkyl; each i^{VI} is independently 2, 3, or 4; each n^{VI} is independently 1, 2, 3, 4 or 5; each m^{VI} is independently 0, 1, or 2; M^{VI} is sodium, potassium, or lithium; aryl VI is a phenyl radical or an ortho-fused bicyclic carbocyclic radical wherein at least one ring is aromatic;

wherein any $\operatorname{aryl}^{\operatorname{vi}}$ is optionally substituted with one or

more substituents selected from the group consisting of halo, OH, cyano, CO_2R^{VI-14} , CF_3 , C_{1-6} alkoxy, and C_{1-6} alkyl which maybe further substituted by one to three SR^{VI-14} , $NR^{VI-14}R^{VI-14}$, OR^{VI-14} , or CO_2R^{VI-14} ;

- het^{VI} is a four- (4), five- (5), six- (6), or seven- (7) membered saturated or unsaturated heterocyclic ring having 1, 2, or 3 heteroatoms selected from the group consisting of oxygen, sulfur, and nitrogen, which is optionally fused to a benzene ring, or any bicyclic heterocycle group;
- wherein any het^{VI} is optionally substituted with one or more substituents selected from the group consisting of halo, OH, cyano, phenyl, CO_2R^{VI-14} , CF_3 , C_{1-6} alkoxy, oxo, oxime, and C_{1-6} alkyl which maybe further substituted by one to three SR^{VI-14} , $NR^{VI-14}R^{VI-14}$, OR^{VI-14} , or CO_2R^{VI-14} .
 - 3. The method of Claim 2, wherein A^{VI} is Cl.
- 4. The method of Claim 2, wherein the compound administered is selected from the group consisting of

N-(4-chlorobenzyl)-6-iodo-1-methyl-4-oxo-1,4-dihydro-3-cinnolinecarboxamide; N-(4-chlorobenzyl)-6-(3-hydroxy-1-propynyl)-1-methyl-4-oxo-1,4-dihydro-3-cinnolinecarboxamide;

N-(4-chlorobenzyl)-6-(hydroxymethyl)-1-methyl-4-oxo-1,4-dihydro-3-cinnolinecarboxamide;

N-(4-chlorobenzyl)-6-(4-hydroxy-1-butynyl)-1-methyl-4-oxo-1,4-dihydro-3-cinnolinecarboxamide;

N-(4-chlorobenzyl)-1-methyl-6-(4-morpholinylmethyl)-4- oxo-1,4-dihydro-3-cinnolinecarboxamide; N-(4-

```
chlorobenzyl) -8-\{[(1R,2R)-1-hydroxy-2-
methylcyclohexyl]ethynyl}-1-methyl-4-oxo-6-(tetrahydro-
2H-pyran-4-ylmethyl)-1,4-dihydro-3-cinnolinecarboxamide;
N-(4-chlorobenzyl)-8-(cyclopropylethynyl)-1-methyl-6-(4-
morpholinylmethyl) -4-oxo-1, 4-dihydro-3-
cinnolinecarboxamide:
N-(4-chlorobenzyl)-8-[3-(dimethylamino)-1-propynyl]-1-
methyl-6-(4-morpholinylmethyl)-4-oxo-1,4-dihydro-3-
cinnolinecarboxamide;
N-(4-chlorobenzyl)-1-methyl-4-oxo-8-{4-[(4R)-2-oxo-1,3-
oxazolidin-4-yl]-1-butynyl}-6-(tetrahydro-2H-pyran-4-
ylmethyl) -1, 4-dihydro-3-cinnolinecarboxamide;
N-(4-chlorobenzyl)-8-(4-hydroxy-1-butynyl)-1-methyl-6-(4-hydroxy-1-butynyl)
morpholinylmethyl) -4-oxo-1, 4-dihydro-3-
cinnolinecarboxamide;
N-(4-chlorobenzyl)-8-[(1-hydroxycyclohexyl)ethynyl]-1-
methyl-6-(4-morpholinylmethyl)-4-oxo-1,4-dihydro-3-
cinnolinecarboxamide;
N-(4-chlorobenzyl)-8-(3,3-dicyclopropyl-3-hydroxy-1-
propynyl)-1-methyl-6-(4-morpholinylmethyl)-4-oxo-1,4-
dihydro-3-cinnolinecarboxamide;
N-(4-chlorobenzy1)-8-[(3S)-3-hydroxy-1-butyny1]-1-methyl-
6-(4-morpholinylmethyl)-4-oxo-1,4-dihydro-3-
cinnolinecarboxamide;
8-\{3-\{(aminocarbonyl)amino]-3-methyl-1-butynyl\}-N-(4-
chlorobenzyl)-1-methyl-6-(4-morpholinylmethyl)-4-oxo-1,4-
dihydro-3-cinnolinecarboxamide;
```

```
N-(4-\text{chlorobenzyl})-1-\text{methyl}-8-[3-\text{methyl}-3-(4-\text{thioxo-})]
1,3,5-triazinan-1-y1)-1-butyny1]-6-(4-morpholinylmethyl)-
4-oxo-1, 4-dihydro-3-cinnolinecarboxamide;
N-(4-\text{chlorobenzyl})-8-[(3R)-3-\text{hydroxy}-1-\text{butynyl}]-1-\text{methyl}-
6-(4-morpholinylmethyl)-4-oxo-1,4-dihydro-3-
cinnolinecarboxamide:
N-(4-chlorobenzyl)-1-methyl-6-(4-morpholinylmethyl)-4-
oxo-8-{4-[(4R)-2-oxo-1,3-oxazolidin-4-yl]-1-butynyl}-1,4-
dihydro-3-cinnolinecarboxamide;
N-(4-\text{chlorobenzyl})-8-[3-(1,1-\text{dioxido}-4-\text{thiomorpholinyl})-
1-propynyl]-1-methyl-6-(4-morpholinylmethyl)-4-oxo-1,4-
dihydro-3-cinnolinecarboxamide;
N-(4-chlorobenzyl)-8-(5-hydroxy-1-pentynyl)-1-methyl-6-
(4-morpholinylmethyl)-4-oxo-1,4-dihydro-3-
cinnolinecarboxamide;
N-(4-chlorobenzyl)-8-\{[(1R,2S)-2-
hydroxycyclopentyl]ethynyl}-1-methyl-6-(4-
morpholinylmethyl) -4-oxo-1, 4-dihydro-3-
cinnolinecarboxamide;
N-(4-chlorobenzyl)-8-(3-hydroxy-3-methyl-1-butynyl)-1-
methyl-6-(4-morpholinylmethyl)-4-oxo-1,4-dihydro-3-
cinnolinecarboxamide:
N-(4-chlorobenzyl)-8-[3-(4,5-dichloro-1H-imidazol-1-yl)-
1-propynyl]-1-methyl-6-(4-morpholinylmethyl)-4-oxo-1,4-
dihydro-3-cinnolinecarboxamide;
```

```
N-(4-chlorobenzyl)-8-(3-hydroxy-1-propynyl)-1-methyl-6-
(4-morpholinylmethyl)-4-oxo-1,4-dihydro-3-
cinnolinecarboxamide;
N-(4-chlorobenzyl)-1-methyl-4-oxo-8-(phenylethynyl)-6-
(tetrahydro-2H-pyran-4-ylmethyl)-1,4-dihydro-3-
cinnolinecarboxamide;
N-(4-chlorobenzyl)-8-(3-hydroxy-3-phenyl-1-propynyl)-1-
methyl-4-oxo-6-(tetrahydro-2H-pyran-4-ylmethyl)-1,4-
dihydro-3-cinnolinecarboxamide;
N-(4-chlorobenzyl)-8-(3-hydroxy-1-propynyl)-1-methyl-4-
oxo-1,4-dihydro-3-cinnolinecarboxamide;
N-(4-chlorobenzyl)-8-(4-hydroxy-1-butynyl)-1-methyl-4-
oxo-1,4-dihydro-3-cinnolinecarboxamide;
N-(4-chlorobenzyl)-8-(3-hydroxy-1-propynyl)-1-methyl-4-
oxo-6-(tetrahydro-2H-pyran-4-ylmethyl)-1,4-dihydro-3-
cinnolinecarboxamide;
N-(4-chlorobenzyl)-8-(4-hydroxy-1-butynyl)-1-methyl-4-
oxo-6-(tetrahydro-2H-pyran-4-ylmethyl)-1,4-dihydro-3-
cinnolinecarboxamide;
N-(4-chlorobenzyl)-8-[3-(dimethylamino)-1-propynyl]-1-
methyl-4-oxo-6-(tetrahydro-2H-pyran-4-ylmethyl)-1,4-
dihydro-3-cinnolinecarboxamide;
N-(4-chlorobenzyl)-1-[3-(methylsulfonyl)propyl]-6-(4-
morpholinylmethyl) -4-oxo-1, 4-dihydro-3-
cinnolinecarboxamide;
```

```
N-(4-chlorobenzyl)-1-[3-(methylsulfanyl)propyl]-6-(4-
morpholinylmethyl)-4-oxo-1,4-dihydro-3-
cinnolinecarboxamide;
N-(4-\text{chlorobenzyl})-1-[(2-\text{hydroxyethoxy})\text{methyl}]-6-(4-\text{methyl})
morpholinylmethyl)-4-oxo-1,4-dihydro-3-
cinnolinecarboxamide;
N-(4-chlorobenzyl)-6-(4-morpholinylmethyl)-4-oxo-1-
tetrahydro-3-furanyl-1,4-dihydro-3-cinnolinecarboxamide;
N-(4-chlorobenzyl)-1-(1,2-diethyl-4-pyrazolidinyl)-6-(4-
morpholinylmethyl) -4-oxo-1, 4-dihydro-3-
cinnolinecarboxamide;
N-(4-chlorobenzyl)-6-(4-morpholinylmethyl)-1-(3-
oxetanyl) -4-oxo-1, 4-dihydro-3-cinnolinecarboxamide;
N-(4-chlorobenzyl)-1-{3-[(3-
hydroxypropyl)sulfonyl]propyl}-6-(4-morpholinylmethyl)-4-
oxo-1, 4-dihydro-3-cinnolinecarboxamide;
N-(4-chlorobenzyl)-1-[2-(2-ethoxyethoxy)ethyl]-6-(4-ethoxyethoxy)
morpholinylmethyl) -4-oxo-1, 4-dihydro-3-
cinnolinecarboxamide;
N-(4-chlorobenzyl)-6-(4-morpholinylmethyl)-4-oxo-1-
[(phenylsulfinyl)methyl]-1,4-dihydro-3-
cinnolinecarboxamide;
N-(4-\text{chlorobenzyl})-6-(4-\text{morpholinylmethyl})-4-\text{oxo}-1-
[(phenylsulfonyl)methyl]-1,4-dihydro-3-
cinnolinecarboxamide:
```

```
N-(4-chlorobenzyl)-6-(4-morpholinylmethyl)-4-oxo-1-
[(phenylsulfanyl)methyl]-1,4-dihydro-3-
cinnolinecarboxamide;
N-(4-chlorobenzyl)-6-(4-morpholinylmethyl)-4-oxo-1-
tetrahydro-2H-pyran-3-yl-1,4-dihydro-3-
cinnolinecarboxamide:
N-(4-chlorobenzyl)-1-[(methylsulfanyl)methyl]-6-(4-
morpholinylmethyl)-4-oxo-1,4-dihydro-3-
cinnolinecarboxamide:
6-(4-morpholinylmethyl)-4-oxo-1,4-dihydro-3-
cinnolinecarboxamide;
N-(4-chlorobenzyl)-6-(4-morpholinylmethyl)-4-oxo-1-
tetrahydro-2H-pyran-4-yl-1,4-dihydro-3-
cinnolinecarboxamide;
N-(4-chlorobenzyl)-1-methyl-6-(4-morpholinylmethyl)-4-
oxo-8-(4-thiomorpholinylmethyl)-1,4-dihydro-3-
cinnolinecarboxamide:
N-(4-chlorobenzyl)-8-[(4-hydroxy-1-piperidinyl)methyl]-1-
methyl-6-(4-morpholinylmethyl)-4-oxo-1,4-dihydro-3-
cinnolinecarboxamide:
N-(4-chlorobenzyl)-8-\{[(3R)-3-
hydroxypyrrolidinyl]methyl}-1-methyl-6-(4-
morpholinylmethyl)-4-oxo-1,4-dihydro-3-
cinnolinecarboxamide:
```

```
N-(4-chlorobenzyl)-8-[(3-hydroxy-1-piperidinyl)methyl]-1-
methyl-6-(4-morpholinylmethyl)-4-oxo-1,4-dihydro-3-
cinnolinecarboxamide;
[3-{[(4-chlorobenzyl)amino]carbonyl}-1-methyl-6-(4-
morpholinylmethyl)-4-oxo-1,4-dihydro-8-cinnolinyl]methyl
4-morpholinecarboxylate;
N-(4-chlorobenzyl)-8-(hydroxymethyl)-1-methyl-6-(4-
morpholinylmethyl) -4-oxo-1, 4-dihydro-3-
cinnolinecarboxamide:
N-(4-chlorobenzyl)-8-[(3-cyanobenzyl)amino]-1-methyl-6-
(4-morpholinylmethyl)-4-oxo-1,4-dihydro-3-
cinnolinecarboxamide;
N-(4-chlorobenzyl)-1-methyl-6,8-bis(4-morpholinylmethyl)-
4-oxo-1, 4-dihydro-3-cinnolinecarboxamide;
8-[(1-acetyl-4-piperidinyl)amino]-N-(4-chlorobenzyl)-1-
methyl-6-(4-morpholinylmethyl)-4-oxo-1,4-dihydro-3-
cinnolinecarboxamide;
N-(4-chlorobenzyl)-1-methyl-8-{[1-methyl-2-
(phenylsulfonyl)ethyl]amino}-6-(4-morpholinylmethyl)-4-
oxo-1,4-dihydro-3-cinnolinecarboxamide;
N-(4-chlorobenzyl)-8-\{[3-(4-methoxyphenyl)-1-
methylpropyl]amino}-1-methyl-6-(4-morpholinylmethyl)-4-
oxo-1, 4-dihydro-3-cinnolinecarboxamide;
8-amino-N-(4-chlorobenzyl)-1-methyl-6-(4-
morpholinylmethyl)-4-oxo-1,4-dihydro-3-
cinnolinecarboxamide;
```

```
N-(4-chlorobenzyl)-1-methyl-6-(4-morpholinylmethyl)-8-
[(3-nitrobenzyl)amino]-4-oxo-1,4-dihydro-3-
cinnolinecarboxamide;
N-(4-chlorobenzyl)-1-methyl-6-(4-morpholinylmethyl)-4-
oxo-8-(tetrahydro-2H-pyran-4-ylamino)-1,4-dihydro-3-
cinnolinecarboxamide:
N-(4-chlorobenzyl)-6-(3-hydroxy-1-propyl)-1-methyl-4-oxo-
1,4-dihydro-3-cinnolinecarboxamide;
N-(4-chlorobenzyl)-6-(4-hydroxy-1-butyl)-1-methyl-4-oxo-
1,4-dihydro-3-cinnolinecarboxamide;
N-(4-\text{chlorobenzyl})-8-\{[(1R,2R)-1-\text{hydroxy}-2-
methylcyclohexyl]ethyl}-1-methyl-4-oxo-6-(tetrahydro-2H-
pyran-4-ylmethyl)-1,4-dihydro-3-cinnolinecarboxamide;
N-(4-chlorobenzyl)-8-(cyclopropylethyl)-1-methyl-6-(4-
morpholinylmethyl)-4-oxo-1,4-dihydro-3-
cinnolinecarboxamide:
N-(4-chlorobenzyl)-8-[3-(dimethylamino)-1-propyl]-1-
methyl-6-(4-morpholinylmethyl)-4-oxo-1,4-dihydro-3-
cinnolinecarboxamide;
N-(4-chlorobenzyl)-1-methyl-4-oxo-8-{4-[(4R)-2-oxo-1,3-
oxazolidin-4-yl]-1-butyl}-6-(tetrahydro-2H-pyran-4-
ylmethyl)-1,4-dihydro-3-cinnolinecarboxamide;
N-(4-\text{chlorobenzyl})-8-(4-\text{hydroxy-}1-\text{butyl})-1-\text{methyl-}6-(4-\text{methyl-}6)
morpholinylmethyl)-4-oxo-1,4-dihydro-3-
cinnolinecarboxamide;
```

```
N-(4-chlorobenzyl)-8-[(1-hydroxycyclohexyl)ethyl]-1-
methyl-6-(4-morpholinylmethyl)-4-oxo-1,4-dihydro-3-
cinnolinecarboxamide;
N-(4-chlorobenzyl)-8-(3,3-dicyclopropyl-3-hydroxy-1-
propyl)-1-methyl-6-(4-morpholinylmethyl)-4-oxo-1,4-
dihydro-3-cinnolinecarboxamide;
N-(4-chlorobenzyl)-8-[(3S)-3-hydroxy-1-butyl]-1-methyl-6-
(4-morpholinylmethyl)-4-oxo-1,4-dihydro-3-
cinnolinecarboxamide;
8-{3-[(aminocarbonyl)amino]-3-methyl-1-butyl}-N-(4-
chlorobenzyl)-1-methyl-6-(4-morpholinylmethyl)-4-oxo-1,4-
dihydro-3-cinnolinecarboxamide;
N-(4-chlorobenzyl)-1-methyl-8-[3-methyl-3-(4-thioxo-
1,3,5-triazinan-1-yl)-1-butyl]-6-(4-morpholinylmethyl)-4-
oxo-1,4-dihydro-3-cinnolinecarboxamide;
N-(4-\text{chlorobenzyl})-8-[(3R)-3-\text{hydroxy}-1-\text{butyl}]-1-\text{methyl}-6-
(4-morpholinylmethyl)-4-oxo-1,4-dihydro-3-
cinnolinecarboxamide;
N-(4-chlorobenzyl)-1-methyl-6-(4-morpholinylmethyl)-4-
0x0-8-\{4-[(4R)-2-0x0-1,3-0xazolidin-4-yl]-1-butyl\}-1,4-
dihydro-3-cinnolinecarboxamide;
N-(4-chlorobenzyl)-8-[3-(1,1-dioxido-4-thiomorpholinyl)-
1-propyl]-1-methyl-6-(4-morpholinylmethyl)-4-oxo-1,4-
dihydro-3-cinnolinecarboxamide;
N-(4-chlorobenzyl)-8-(5-hydroxy-1-pentyl)-1-methyl-6-(4-
morpholinylmethyl)-4-oxo-1,4-dihydro-3-
cinnolinecarboxamide;
```

```
N-(4-chlorobenzyl)-8-\{[(1R,2S)-2-
hydroxycyclopentyl]ethyl}-1-methyl-6-(4-
morpholinylmethyl) -4-oxo-1, 4-dihydro-3-
cinnolinecarboxamide;
N-(4-chlorobenzyl)-8-(3-hydroxy-3-methyl-1-butyl)-1-
methyl-6-(4-morpholinylmethyl)-4-oxo-1,4-dihydro-3-
cinnolinecarboxamide;
N-(4-\text{chlorobenzyl})-8-[3-(4,5-\text{dichloro-1H-imidazol-1-yl})-
1-\text{propyl}] -1-\text{methyl} -6-(4-\text{morpholinylmethyl}) -4-\text{oxo} -1, 4-\text{oxo}
dihydro-3-cinnolinecarboxamide;
N-(4-chlorobenzyl)-8-[3-(1H-imidazol-1-yl)-1-propyl]-1-
methyl-6-(4-morpholinylmethyl)-4-oxo-1,4-dihydro-3-
cinnolinecarboxamide;
N-(4-\text{chlorobenzyl})-8-[3-(1H-\text{imidazol}-1-\text{yl})-1-\text{propynyl}]-1-
methyl-6-(4-morpholinylmethyl)-4-oxo-1,4-dihydro-3-
cinnolinecarboxamide;
N-(4-chlorobenzyl)-8-(3-hydroxy-1-propyl)-1-methyl-6-(4-
morpholinylmethyl) -4-oxo-1, 4-dihydro-3-
cinnolinecarboxamide:
N-(4-chlorobenzyl)-1-methyl-4-oxo-8-(phenylethyl)-6-
(tetrahydro-2H-pyran-4-ylmethyl)-1,4-dihydro-3-
cinnolinecarboxamide;
N-(4-chlorobenzyl)-8-(3-hydroxy-3-phenyl-1-propyl)-1-
methyl-4-oxo-6-(tetrahydro-2H-pyran-4-ylmethyl)-1,4-
dihydro-3-cinnolinecarboxamide;
```

N-(4-chlorobenzyl)-8-(3-hydroxy-1-propyl)-1-methyl-4-oxo-1,4-dihydro-3-cinnolinecarboxamide;

N-(4-chlorobenzyl)-8-(4-hydroxy-1-butyl)-1-methyl-4-oxo-1,4-dihydro-3-cinnolinecarboxamide;

N-(4-chlorobenzyl)-8-(3-hydroxy-1-propyl)-1-methyl-4-oxo-6-(tetrahydro-2H-pyran-4-ylmethyl)-1,4-dihydro-3-cinnolinecarboxamide;

N-(4-chlorobenzyl)-8-(4-hydroxy-1-butyl)-1-methyl-4-oxo-6-(tetrahydro-2H-pyran-4-ylmethyl)-1,4-dihydro-3-cinnolinecarboxamide;

N-(4-chlorobenzyl)-8-[3-(dimethylamino)-1-propyl]-1-methyl-4-oxo-6-(tetrahydro-2H-pyran-4-ylmethyl)-1,4-dihydro-3-cinnolinecarboxamide;

N-(4-chlorobenzyl)-1-methyl-8-{[methyl(tetrahydro-2-furanylmethyl)amino]methyl}-6-(4-morpholinylmethyl)-4-oxo-1,4-dihydro-3-cinnolinecarboxamide;

and pharmaceutically acceptable salts thereof.

5. The method of Claim 1, wherein the compound administered has the Formula VII

VII

or a pharmaceutically acceptable salt thereof, wherein,

 A^{VII} is

- a) Cl,
- b) Br,
- c) CN,
- d) NO_2 , or
- e) F;

R^{VII-1} is

- a) aryl^{VII},
- b) $S(0)_{m}^{VII}R^{VII-6}$,
- c) (C=0) R^{VII-6} , with the proviso that if R^{VII-6} is $NR^{VII-7}R^{VII-8}$, then R^{VII-7} and R^{VII-8} do not both equal H
- d) (C=O) OR^{VII-9} ,
- e) cyano,
- f) het^{VII} , wherein said het^{VII} is bound via a carbon atom,
- g) Ohet^{VII},
- h) $NR^{VII-7}R^{VII-8}$ with the proviso that R^{VII-7} and R^{VII-8} do not both equal H
- i) SR^{VII-10} ,
- j) Shet^{VII},
- k) NHCOR^{VII-12},
- 1) $NHSO_2R^{VII-12}$,
- m) C_{1-7} alkyl which is partially unsaturated and optionally substituted by one or more substituents of the group R^{VII-11} , OR^{VII-13} , SR^{VII-10} , SR^{VII-13} , $NR^{VII-7}R^{VII-8}$, halo, $(C=0)C_{1-7}$ alkyl, or SO_mR^{VII-9} , or
- n) C_{1-7} alkyl which is substituted by one or more substituents of the group $R^{\text{VII-11}}$, $OR^{\text{VII-13}}$, $SR^{\text{VII-10}}$, $SR^{\text{VII-13}}$, $NR^{\text{VII-7}}R^{\text{VII-8}}$, halo, $(C=O)C_{1-7}$ alkyl, or $SO_m^{\text{VII}}R^{\text{VII-9}}$;

R^{VII-2} is

- a) H,
- b) halo,
- c) aryl^{VII},

- d) $S(0)_{m}^{VII}R^{VII-6}$,
- e) (C=O) R^{VII-6} ,
- f) (C=O) OR^{VII-9} ,
- g) cyano,
- h) het^{VII} , wherein said het^{VII} is bound via a carbon atom,
- i) OR $^{VII-10}$,
- j) Ohet^{VII},
- k) $NR^{VII-7}R^{VII-8}$.
- 1) SR^{VII-10} ,
- m) Shet^{VII},
- n) NHCOR^{VII-12},
- o) $NHSO_2R^{VII-12}$, or
- p) C_{1-7} alkyl which may be partially unsaturated and optionally substituted by one or more substituents of the group R^{VII-11} , OR^{VII-13} , SR^{VII-10} , SR^{VII-13} , $NR^{VII-7}R^{VII-8}$, halo, $(C=0)C_{1-7}$ alkyl, or $SO_m^{VII}R^{VII-9}$, or
- q) $R^{\text{VII-1}}$ together with $R^{\text{VII-2}}$ form a carbocyclic or het which may be optionally substituted by $NR^{\text{VII-7}}R^{\text{VII-8}}$, or C_{1-7} alkyl which may be optionally substituted by $OR^{\text{VII-14}}$;

R^{VII-6} is

- a) C_{1-7} alkyl,
- b) $NR^{VII-7}R^{VII-8}$
- c) aryl^{VII}, or
- d) het^{VII}, wherein said het^{VII} is bound via a carbon atom;

$\textbf{R}^{\text{VII--7}}$ and $\textbf{R}^{\text{VII--8}}$ are independently

- a) H,
- b) aryl^{VII},
- c) C_{1-7} alkyl which may be partially unsaturated and is optionally substituted by one or more substituents selected from $NR^{VII-10}R^{VII-10}$, R^{VII-11} , SO_mR^{VII-9} , $CONR^{VII-10}R^{VII-10}$, or halo, or,

d) R^{VII-7} and R^{VII-8} together with the nitrogen to which they are attached form a het VII ;

R^{VII-9} is

- a) aryl^{VII},
- b) het^{VII},
- c) C_{3-8} cycloalkyl,
- d) methyl, or
- e) C_{2-7} alkyl which may be partially unsaturated and is optionally substituted by one or more substituents selected from $NR^{VII-10}R^{VII-10}$, R^{VII-11} , SH, $CONR^{VII-10}R^{VII-10}$, or halo;

R^{VII-10} is

- a) H,
- b) methyl, or
- c) C₂₋₇alkyl optionally substituted by OH;

R^{VII-11} is

- a) OR^{VII-10} ,
- b) Ohet VII,
- c) Oaryl^{VII},
- d) CO_2R^{VII-10} ,
- e) het^{VII},
- f) aryl^{VII},
- g) CN, or
- h) C_{3-8} cycloalkyl which may be partially unsaturated and optionally substituted by one or more substituents seleted from a group consisting of $R^{\text{VII-11}}$, $NR^{\text{VII-7}}R^{\text{VII-8}}$, $SO_m^{\text{VII}}R^{\text{VII-9}}$, or C_{1-7} alkyl optionally substituted by $R^{\text{VII-11}}$, $NR^{\text{VII-7}}R^{\text{VII-8}}$, or $SO_m^{\text{VII}}R^{\text{VII-9}}$;

R^{VII-12} is

- a) H,
- b) het^{VII},
- c) aryl^{VII},
- d) C_{3-8} cycloalkyl,
- e) methyl, or

f) C_{2-7} alkyl optionally substituted by $NR^{VII-7}R^{VII-8}$ or R^{VII-11} ;

R^{VII-13} is

- a) $(P=0) (OR^{VII-14})_{2}$
- b) $CO(CH_2)_n^{VII}CON(CH_3) (CH_2)_nSO_3^{-M^{VII+}}$,
- c) an amino acid,
- d) $C(=0) \operatorname{aryl}^{VII}$, or
- e) $C(=O)C_{1-7}alkyl$ optionally substituted by $NR^{VII-7}R^{VII-8}$, $aryl^{VII}$, het^{VII} , CO_2H , or $O(CH_2)_n^{VII}CO_2R^{VII-14}$;

R^{VII-14} is

- a) H, or
- b) C_{1-7} alkyl;

each n^{VII} is independently 1, 2, 3, 4 or 5; each m^{VII} is independently 0, 1, or 2; M^{VII} is sodium, potassium, or lithium;

- aryl is a phenyl radical or an ortho-fused bicyclic carbocyclic radical wherein at least one ring is aromatic;
- wherein any aryl^{VII} is optionally substituted with one or more substituents selected from the group consisting of halo, OH, cyano, CO_2R^{VII-14} , CF_3 , C_{1-6} alkoxy, and C_{1-6} alkyl which may be further substituted by one to three SR^{VII-14} , $NR^{VII-14}R^{VII-14}$, OR^{VII-14} , or CO_2R^{VII-14} groups;
- het^{VII} is a four- (4), five- (5), six- (6), or seven- (7) membered saturated or unsaturated heterocyclic ring having 1, 2, or 3 heteroatoms selected from the group consisting of oxygen, sulfur, and nitrogen, which is optionally fused to a benzene ring, or any bicyclic heterocycle group;
- wherein any het^{VII} is optionally substituted with one or more substituents selected from the group consisting of halo, OH, cyano, phenyl, CO_2R^{VII-14} , CF_3 , C_{1-6} alkoxy, oxo, oxime, and C_{1-6} alkyl which may be further

substituted by one to three SR^{VII-14} , $NR^{VII-14}R^{VII-14}$, OR^{VII-14} , or CO_2R^{VII-14} groups.

- 6. The method of Claim 5, wherein A^{VII} is Cl.
- 7. The method of Claim 6, wherein R^{VII-1} is selected from the group consisting of CH_2 -morpholine, alkynl- CH_2OH , CH_2 -(tetrahydro-2H-pyran-4-yl) and $(CH_2)_3OH$.
- 8. The compound of Claim 6, wherein the compound administered is selected from the group consisting of

N-(4-chlorobenzyl)-4-hydroxy-6-(tetrahydro-2H-pyran-4-ylmethyl)-3-cinnolinecarboxamide;

N-(4-chlorobenzyl)-4-hydroxy-6-(4-morpholinylmethyl)-3-cinnolinecarboxamide;

Methyl 3-{[(4-chlorobenzyl)amino]carbonyl}-4-hydroxy-6-cinnolinecarboxylate;

N-(4-chlorobenzyl)-4-hydroxy-6-(hydroxymethyl)-3-cinnolinecarboxamide <math>N-(4-chlorobenzyl)-8-(cyclopropylethynyl)-4-hydroxy-6-

(4-morpholinylmethyl)-3-cinnolinecarboxamide;

N-(4-chlorobenzyl)-8-[3-(dimethylamino)-1-propynyl]-4-hydroxy-6-(4-morpholinylmethyl)-3-cinnolinecarboxamide;

N-(4-chlorobenzyl)-4-hydroxy-8-(4-hydroxy-1-butynyl)-6-(4-morpholinylmethyl)-3-cinnolinecarboxamide;

```
N-(4-chlorobenzyl)-4-hydroxy-8-[(1-
hydroxycyclohexyl)ethynyl]-6-(4-morpholinylmethyl)-3-
cinnolinecarboxamide;
N-(4-chlorobenzyl)-8-(3,3-dicyclopropyl-3-hydroxy-1-
propynyl) -4-hydroxy-6-(4-morpholinylmethyl) -3-
cinnolinecarboxamide;
N-(4-chlorobenzyl)-4-hydroxy-8-[(3S)-3-hydroxy-1-
butynyl]-6-(4-morpholinylmethyl)-3-cinnolinecarboxamide;
8-{3-[(aminocarbonyl)amino]-3-methyl-1-butynyl}-N-(4-
chlorobenzyl) -4-hydroxy-6-(4-morpholinylmethyl) -3-
cinnolinecarboxamide:
N-(4-chlorobenzyl)-4-hydroxy-8-[3-methyl-3-(4-thioxo-
1,3,5-triazinan-1-yl)-1-butynyl]-6-(4-morpholinylmethyl)
-3-cinnolinecarboxamide;
N-(4-chlorobenzyl)-4-hydroxy-8-[(3R)-3-hydroxy-1-
butynyl]-6-(4-morpholinylmethyl)-3-cinnolinecarboxamide;
N-(4-chlorobenzyl)-4-hydroxy-6-(4-morpholinylmethyl)-8-
\{4-[(4R)-2-oxo-1,3-oxazolidin-4-yl]-1-butynyl\}-3-
cinnolinecarboxamide;
N-(4-chlorobenzyl)-8-[3-(1,1-dioxido-4-thiomorpholinyl)-
1-propynyl]-4-hydroxy-6-(4-morpholinylmethyl)-3-
cinnolinecarboxamide;
N-(4-chlorobenzyl)-4-hydroxy-8-(5-hydroxy-1-pentynyl)-6-
(4-morpholinylmethyl)-3-cinnolinecarboxamide;
```

```
N-(4-chlorobenzyl)-4-hydroxy-8-{(1R,2S)-2-}
hydroxycyclopentyl]ethynyl}-6-(4-morpholinylmethyl)-3-
cinnolinecarboxamide;
N-(4-chlorobenzyl)-4-hydroxy-8-(3-hydroxy-3-methyl-1-
butynyl)-6-(4-morpholinylmethyl)-3-cinnolinecarboxamide;
N-(4-\text{chlorobenzyl})-8-[3-(4,5-\text{dichloro-1H-imidazol-1-yl})-
1-propynyl]-4-hydroxy-6-(4-morpholinylmethyl)-3-
cinnolinecarboxamide:
N-(4-chlorobenzyl)-4-hydroxy-8-(3-hydroxy-1-propynyl)-6-
(4-morpholinylmethyl)-3-cinnolinecarboxamide;
N-(4-chlorobenzyl)-8-(cyclopropylethyl)-4-hydroxy-6-(4-
morpholinylmethyl) -3-cinnolinecarboxamide;
N-(4-chlorobenzyl)-8-[3-(dimethylamino)-1-propyl]-4-
hydroxy-6-(4-morpholinylmethyl)-3-cinnolinecarboxamide;
N-(4-\text{chlorobenzyl})-4-\text{hydroxy}-8-(4-\text{hydroxy}-1-\text{butyl})-6-(4-\text{hydroxy}-1-\text{hydroxy})
morpholinylmethyl) -3-cinnolinecarboxamide;
N-(4-chlorobenzyl)-4-hydroxy-8-[(1-
hydroxycyclohexyl)ethyl]-6-(4-morpholinylmethyl)-3-
cinnolinecarboxamide;
N-(4-chlorobenzyl)-8-(3,3-dicyclopropyl-3-hydroxy-1-
propyl)-4-hydroxy-6-(4-morpholinylmethyl)-3-
cinnolinecarboxamide;
N-(4-chlorobenzy1)-4-hydroxy-8-[(3S)-3-hydroxy-1-buty1]-
6-(4-morpholinylmethyl)-3-cinnolinecarboxamide;
```

```
chlorobenzyl)-4-hydroxy-6-(4-morpholinylmethyl)-3-
cinnolinecarboxamide;
N-(4-\text{chlorobenzyl})-4-\text{hydroxy-8-}[3-\text{methyl-3-}(4-\text{thioxo-})]
1,3,5-triazinan-1-y1)-1-butyl]-6-(4-morpholinylmethyl)-3-
cinnolinecarboxamide:
N-(4-chlorobenzyl)-4-hydroxy-8-[(3R)-3-hydroxy-1-butyl]-
6-(4-morpholinylmethyl)-3-cinnolinecarboxamide;
N-(4-chlorobenzyl)-4-hydroxy-6-(4-morpholinylmethyl)-8-
\{4-[(4R)-2-oxo-1,3-oxazolidin-4-yl]-1-butyl\}-3-
cinnolinecarboxamide:
N-(4-chlorobenzyl)-8-[3-(1,1-dioxido-4-thiomorpholinyl)-
1-propyl]-4-hydroxy-6-(4-morpholinylmethyl)-3-
cinnolinecarboxamide:
N-(4-chlorobenzyl)-4-hydroxy-8-(5-hydroxy-1-pentyl)-6-(4-
morpholinylmethyl) -3-cinnolinecarboxamide;
N-(4-chlorobenzyl)-4-hydroxy-8-{[(1R,2S)-2-
hydroxycyclopentyl]ethyl}-6-(4-morpholinylmethyl)-3-
cinnolinecarboxamide;
N-(4-\text{chlorobenzyl})-4-\text{hydroxy-8}-(3-\text{hydroxy-3-methyl-1}-
butyl)-6-(4-morpholinylmethyl)-3-cinnolinecarboxamide;
N-(4-\text{chlorobenzyl})-8-[3-(4,5-\text{dichloro-1H-imidazol-1-yl})-
1-propyl]-4-hydroxy-6-(4-morpholinylmethyl)-3-
cinnolinecarboxamide;
N-(4-\text{chlorobenzyl})-4-\text{hydroxy-8}-(3-\text{hydroxy-1-propyl})-6-(4-\text{chlorobenzyl})
morpholinylmethyl)-3-cinnolinecarboxamide;
```

 $8-\{3-[(aminocarbonyl)amino]-3-methyl-1-butyl\}-N-(4-$

```
N-(4-chlorobenzyl)-4-hydroxy-8-(3-hydroxy-1-propynyl)-3-
cinnolinecarboxamide;
N-(4-chlorobenzyl)-4-hydroxy-8-(4-hydroxy-1-butynyl)-3-
cinnolinecarboxamide;
N-(4-chlorobenzyl)-4-hydroxy-8-(3-hydroxy-1-propynyl)-6-
(tetrahydro-2H-pyran-4-ylmethyl)-3-cinnolinecarboxamide;
N-(4-chlorobenzyl)-4-hydroxy-8-(phenylethynyl)-6-
(tetrahydro-2H-pyran-4-ylmethyl)-3-cinnolinecarboxamide;
N-(4-chlorobenzyl)-4-hydroxy-8-(3-hydroxy-3-phenyl-1-
propynyl)-6-(tetrahydro-2H-pyran-4-ylmethyl)-3-
cinnolinecarboxamide:
N-(4-chlorobenzyl)-4-hydroxy-8-(4-hydroxy-1-butynyl)-6-
(tetrahydro-2H-pyran-4-ylmethyl)-3-cinnolinecarboxamide;
N-(4-chlorobenzyl)-8-[3-(dimethylamino)-1-propynyl]-4-
hydroxy-6-(tetrahydro-2H-pyran-4-ylmethyl)-3-
cinnolinecarboxamide:
N-(4-chlorobenzyl)-4-hydroxy-8-{[(1R,2R)-1-hydroxy-2-
methylcyclohexyl]ethynyl}-6-(tetrahydro-2H-pyran-4-
ylmethyl)-3-cinnolinecarboxamide;
N-(4-chlorobenzyl)-4-hydroxy-8-{4-(4R)-2-oxo-1,3-}
oxazolidin-4-yl]-1-butynyl}-6-(tetrahydro-2H-pyran-4-
ylmethyl) -3-cinnolinecarboxamide;
N-(4-chlorobenzyl)-4-hydroxy-8-(3-hydroxy-1-propyl)-6-
(tetrahydro-2H-pyran-4-ylmethyl)-3-cinnolinecarboxamide;
```

N-(4-chlorobenzyl)-4-hydroxy-8-(phenylethyl)-6-(tetrahydro-2H-pyran-4-ylmethyl)-3-cinnolinecarboxamide;

N-(4-chlorobenzyl)-4-hydroxy-8-(3-hydroxy-3-phenyl-1-propyl)-6-(tetrahydro-2H-pyran-4-ylmethyl)-3-cinnolinecarboxamide;

N-(4-chlorobenzyl)-4-hydroxy-8-(4-hydroxy-1-butyl)-6-(tetrahydro-2H-pyran-4-ylmethyl)-3-cinnolinecarboxamide;

N-(4-chlorobenzyl)-8-[3-(dimethylamino)-1-propyl]-4-hydroxy-6-(tetrahydro-2H-pyran-4-ylmethyl)-3-cinnolinecarboxamide;

N-(4-chlorobenzyl)-4-hydroxy-8-{[(1R,2R)-1-hydroxy-2-methylcyclohexyl]ethyl}-6-(tetrahydro-2H-pyran-4-ylmethyl)-3-cinnolinecarboxamide;

N-(4-chlorobenzyl)-4-hydroxy-8-{4-[(4R)-2-oxo-1,3-oxazolidin-4-yl]-1-butyl}-6-(tetrahydro-2H-pyran-4-ylmethyl)-3-cinnolinecarboxamide;

and pharmaceutically acceptable salts thereof.

9. A method of Claim 1, wherein the compound administered is Formula VIII

and pharmaceutically acceptable salts thereof, wherein \mathbf{A}^{VIII} is

- Cl, a) b) Br, CN, C) d) NO_2 , or F; e) R^{VIII-1} is R^{VIII-5}, a) NR^{VIII-7}R^{VIII-8}, or b) SO₂R^{VIII-9}; C) R^{VIII-2} is aryl^{VIII}, a) het^{VIII}, b) SOm VIIIR VIII-6, C) d)
 - OC_{2-7} alkyl substituted by OH,
 - SC_{2-7} alkyl substituted by OH, or e)
 - f) C_{2-8} alkyl which is partially unsaturated and is optionally substituted by one or more substituents selected from R^{VIII-11}, OR^{VIII-13}, $\text{SR}^{\text{VIII-13}},~\text{NR}^{\text{VIII-7}}\text{R}^{\text{VIII-8}},~\text{halo,}~\text{(C=O)C}_{\text{1-7}}~\text{alkyl}~\text{or}$ SOm VIII R VIII-9;

with the proviso that when $R^{\text{VIII-1}} = R^{\text{VIII-5}} =$ (CH2CH2O) $_{i}R^{\text{VIII-10}}$, then $R^{\text{VIII-2}}$ may additionally represent

- Η, a)
- b) halo,
- (C=O) R^{VIII-6}, C)
- (C=O) OR^{VIII-9}, d)
- e) cyano,
- OR^{VIII-10}, f)
- Ohet VIII, g)
- NR^{VIII-7}R^{VIII-8}, h)
- SR^{VIII-10}, i)
- Shet^{VIII}, j)
- NHCOR VIII-12, k)

- 1) $NHSO_2R^{VIII-12}$, or
- m) R^{VIII-2} together with R^{VIII-3} or R^{VIII-4} form a carbocyclic or het which may be optionally substituted by $NR^{VIII-7}R^{VIII-8}$, or C_{1-7} alkyl which may be optionally substituted by $OR^{VIII-14}$;

 R^{VIII-3} and R^{VIII-4} are independently:

- a) H,
- b) halo,
- c) aryl^{VIII},
- d) $S(0)_{m}^{VIII}R^{VIII-6}$,
- e) $(C=0) R^{VIII-6}$,
- f) (C=O) OR^{VIII-9} ,
- g) cyano,
- h) het^{VIII}, wherein said het^{VIII} is bound via a carbon atom,
- i) OR^{VIII-10},
- j) Ohet^{VIII},
- k) $R^{VIII-7}R^{VIII-8}$
- 1) SR^{VIII-10},
- m) Shet^{VIII},
- n) NHCOR VIII-12,
- o) NHSO₂R^{VIII-12},
- p) C_{1-7} alkyl which may be partially unsaturated and optionally substituted by one or more substituents of the group $R^{VIII-11}$, $OR^{VIII-13}$, $SR^{VIII-10}$, $SR^{VIII-13}$, $NR^{VIII-7}R^{VIII-8}$, halo, $(C=0)C_{1-7}$ alkyl, or $SO_m^{VIII}R^{VIII-9}$, or
- q) R^{VIII-4} together with R^{VIII-3} form a carbocyclic or het which may be optionally substituted by $NR^{VIII-7}R^{VIII-8}$, or C_{1-7} alkyl which may be optionally substituted by $OR^{VIII-14}$;

 R^{VIII-5} is

- a) $(CH_2CH_2O)_i^{VIII}R^{VIII-10}$,
- b) het^{VIII}, wherein said het^{VIII} is bound via a carbon atom,
- c) aryl^{VIII},
- d) C_{1-7} alkyl which may be partially unsaturated and is optionally substituted by one or more substituents selected from $NR^{VIII-7}R^{VIII-8}$, $R^{VIII-11}$, $SO_m^{VIII}R^{VIII-9}$, or OC_{2-4} alkyl which may be further substituted by het VIII , $OR^{VIII-10}$, or $NR^{VIII-7}R^{VIII-8}$, or
- e) C_{3-8} cycloalkyl which may be partially unsaturated and optionally substituted by one or more substituents selected from $R^{VIII-11}$, $NR^{VIII-7}R^{VIII-8}$, $SO_m^{VIII}R^{VIII-9}$, or C_{1-7} alkyl optionally substituted by $R^{VIII-11}$, $NR^{VIII-7}R^{VIII-8}$, or SO_mR^{VIII-9} ;

R^{VIII-6} is

- a) C_{1-7} alkyl,
- b) NR^{VIII-7}R^{VIII-8},
- c) aryl^{VIII}, or
- d) het^{VIII}, wherein said het^{VIII} is bound via a carbon atom;

R^{VIII-7} and R^{VIII-8} are independently

- a) H,
- b) aryl^{VIII},
- C) C_{1-7} alkyl which may be partially unsaturated and is optionally substituted by one or more substituents selected from $NR^{VIII-10}R^{VIII-10}$, $R^{VIII-11}$, SO_mR^{VIII-9} , $CONR^{VIII-10}R^{VIII-10}$, or halo, or,
- d) R^{VIII-7} and R^{VIII-8} together with the nitrogen to which they are attached form a het VIII ;

R^{VIII-9} is

a) aryl^{VIII},

```
het<sup>VIII</sup>,
       b)
       C)
              C_{3-8}cycloalkyl,
              methyl, or
       d)
              C_{2-7}alkyl which may be partially unsaturated and
       e)
               is optionally substituted by one or more
               substituents selected from NR^{VIII-10}R^{VIII-10},
               R^{VIII-11}, SH, CONR^{VIII-10}R^{VIII-10}, or halo;
R<sup>VIII-10</sup> is
               Η,
       a)
               methyl, or
       b)
               C_{2-7}alkyl optionally substituted by OH;
       C)
R^{VIII-11} is
               OR<sup>VIII-10</sup>,
       a)
               Ohet^{\text{VIII}},
       b)
               Oaryl<sup>VIII</sup>,
       C)
               CO_2R^{VIII-10},
       d)
              het<sup>VIII</sup>,
        e)
               aryl^{VIII}, or
        f)
        g)
               CN;
R^{VIII-12} is
        a)
               Η,
              het<sup>VIII</sup>,
        b)
               aryl<sup>VIII</sup>,
        C)
              C_{3-8}cycloalkyl,
        d)
              methyl, or
        e)
               \text{C}_{\text{2-7}}alkyl optionally substituted by \text{NR}^{\text{VIII-7}}R^{\text{VIII-8}}
        f)
               or R<sup>VIII-11</sup>;
R^{VIII-13} is
                (P=0) (OR^{14})_2,
        a)
               CO(CH_2)_n^{VIII}CON(CH_3) - (CH_2)_nSO_3^-M^{VIII+},
        b)
              an amino acid,
        C)
              C(=0)aryl<sup>VIII</sup>, or
        d)
```

e) $C(=O)C_{1-7}alkyl$ optionally substituted by $NR^{VIII-7}R^{VIII-8}$, $aryl^{VIII}$, het^{VIII} , CO_2H , or $O(CH_2)_n^{VIII}CO_2R^{VIII-14}$;

R^{VIII-14} is

- a) H, or
- b) C_{1-7} alkyl;

each i^{VIII} is independently 2, 3, or 4; each n^{VIII} is independently 1, 2, 3, 4 or 5; each m^{VIII} is independently 0, 1, or 2; M^{VIII} is sodium, potassium, or lithium; aryl^{VIII} is a phenyl radical or an ortho-fused bicyclic carbocyclic radical wherein at least one ring is aromatic;

- wherein any aryl^{VIII} is optionally substituted with one or more substituents selected from halo, OH, cyano, $CO_2R^{VIII-14}$, CF_3 , C_{1-6} alkoxy, and C_{1-6} alkyl which may be further substituted by one to three $SR^{VIII-14}$, $NR^{VIII-14}R^{VIII-14}$, $OR^{VIII-14}$, or $CO_2R^{VIII-14}$ groups;
- het^{VIII} is a four- (4), five- (5), six- (6), or seven- (7) membered saturated or unsaturated heterocyclic ring having 1, 2, or 3 heteroatoms selected from the group consisting of oxygen, sulfur, and nitrogen, which is optionally fused to a benzene ring, or any bicyclic heterocycle group;
- wherein any het^{VIII} is optionally substituted with one or more substituents selected from the group consisting of halo, OH, cyano, phenyl, $CO_2R^{VIII-14}$, CF_3 , C_{1-6} alkoxy, oxo, oxime, and C_{1-6} alkyl which may be further substituted by one to three $SR^{VIII-14}$, $NR^{VIII-14}R^{VIII-14}$, $OR^{VIII-14}$, or $CO_2R^{VIII-14}$ groups.

- 10. The method of Claim 9, wherein A^{VIII} is Cl.
- 11. The method of Claim 9, wherein $R^{\text{VIII-2}}$ is alkynl-CH₂OH.
- 12. The method of Claim 9, wherein the compound administered is N-(4-chlorobenzyl)-6-(3-hydroxy-1-propynyl)-1,7-dimethyl-4-oxo-1,4-dihydro[1,8]naphthyridine-3-carboxamide, or N-(4-chlorobenzyl)-6-(3-hydroxy-1-propynyl)-7-methoxy-1-methyl-4-oxo-1,4-dihydro[1,8]naphthyridine-3-carboxamide; or a pharmaceutically acceptable salt thereof.
- 13. The method of Claim 9, wherein the compound administered is:

N-(4-chlorobenzyl)-6-(3-hydroxy-1-propynyl)-1,7-dimethyl-4-oxo-1,4-dihydro[1,8]naphthyridine-3-carboxamide;

N-(4-chlorobenzyl)-6-(3-hydroxypropyl)-1,7-dimethyl-4-oxo-1,4-dihydro[1,8]naphthyridine-3-carboxamide;

N-(4-Chlorobenzyl)-6-iodo-7-methoxy-1-methyl-4-oxo-1,4-dihydro[1,8]naphthyridine-3-carboxamide;

N-(4-chlorobenzyl)-1,7-dimethyl-6-(4-morpholinylmethyl)-4-oxo-1,4-dihydro[1,8]naphthyridine-3-carboxamide;

N-(4-chlorobenzyl)-1-methyl-4,7-dioxo-1,4,7,8-tetrahydro[1,8]naphthyridine-3-carboxamide;

N-(4-chlorobenzyl)-6-(3-hydroxy-1-propynyl)-7-methoxy-1- methyl-4-oxo-1,4-dihydro[1,8]naphthyridine-3-carboxamide;

N-(4-chlorobenzyl)-6-(3-hydroxypropyl)-7-methoxy-1-methyl-4-oxo-1,4-dihydro[1,8]naphthyridine-3-carboxamide;

ethyl 6-{[(4-chlorobenzyl)amino]carbonyl}-2-methoxy-8-methyl-5-oxo-5,8-dihydro[1,8]naphthyridine-3-carboxylate;

and pharmaceutically acceptable salts thereof.

ίX

and pharmaceutically acceptable salts thereof, wherein, $\mathbf{R}^{\mathrm{IX-1}}$ is

- a) Cl,
- b) Br,
- c) CN,
- d) NO_2 , or
- e) F;

 $\textbf{R}^{\text{IX-2}},~\textbf{R}^{\text{IX-3}}$ and $\textbf{R}^{\text{IX-4}}$ are independently selected from:

- a) H,
- b) halo,
- c) aryl^{IX},
- d) $S(0)_{m}^{IX}R^{IX-6}$,
- e) $(C=0) R^{IX-6}$,
- f) (C=O) OR^{IX-9} ,

- g) cyano,
- h) het^{IX} , wherein said het^{IX} is bound via a carbon atom,
- i) OR^{IX-10},
- j) Ohet^{IX},
- k) $NR^{IX-7}R^{IX-8}$
- 1) SR^{IX-10} ,
- m) S^{IX-}het,
- n) NHCOR^{IX-12},
- o) $NHSO_2R^{IX-12}$, or
- p) C_{1-7} alkyl which may be partially unsaturated and optionally substituted by one or more substituents of the group R^{IX-11} , OR^{IX-13} , SR^{IX-10} , SR^{IX-13} , $NR^{IX-7}R^{IX-8}$, halo, $(C=0)C_{1-7}$ alkyl, or SO_mR^{IX-9} ;

R^{IX-6} is

- a) C_{1-7} alkyl,
- b) $NR^{IX-7}R^{IX-8}$,
- c) aryl^{IX}, or
- d) het^{IX} , wherein said het^{IX} is bound via a carbon atom;

$R^{\text{IX-7}}$ and $R^{\text{IX-8}}$ are independently

- a) H,
- b) aryl^{IX},
- C) C_{1-7} alkyl which may be partially unsaturated and is optionally substituted by one or more substituents selected from $NR^{IX-10}R^{IX-10}$, R^{IX-11} , SO_mR^{IX-9} , $CONR^{IX-10}R^{IX-10}$, or halo, or,
- d) R^{IX-7} and R^{IX-8} together with the nitrogen to which they are attached form a het^{IX};

R^{IX-9} is

a) aryl^{IX},

```
C)
               C_{3-8}cycloalkyl,
       d)
               methyl, or
               C_{2-7}alkyl which may be partially unsaturated and
       e)
               is optionally substituted by one or more
               substituents selected from NR^{IX-10}R^{IX-10}, R^{IX-11},
               SH, CONR<sup>IX-10</sup>R<sup>IX-10</sup>, or halo;
R^{IX-10} is
               Η,
       a)
       b)
               methyl, or
               C_{2-7}alkyl optionally substituted by OH;
R^{\text{IX-11}} is
               ORIX-10,
       a)
       b)
               Ohet<sup>IX</sup>,
               Oaryl<sup>IX</sup>,
       C)
               CO_2R^{IX-10},
       d)
              het<sup>IX</sup>,
       e)
               aryl<sup>IX</sup>, or
       f)
               CN;
       g)
R^{\text{IX-12}} is
       a)
               Η,
               het<sup>IX</sup>,
       b)
               aryl<sup>IX</sup>,
       C)
       d)
               C_{3-8}cycloalkyl,
               methyl, or
       e)
               C_{2\text{--7}}alkyl optionally substituted by NR^{\text{IX--7}}R^{\text{IX--8}} or
       f)
               R<sup>IX-11</sup>;
R^{\text{IX-13}} is
               (P=0) (OR^{IX-14})_{2}
       a)
               CO(CH_2)_n^{IX}CON(CH_3) - (CH_2)_n^{IX}SO_3^{-M}^{IX+},
       b)
       C)
               an amino acid,
       d)
             C(=0) aryl, or
```

het^{IX},

b)

- e) $C(=0)C_{1-7}alkyl$ optionally substituted by $NR^{IX-7}R^{IX-8}, \ aryl^{IX}, \ het^{IX}, \ CO_2H, \ or \ O(CH_2)_nCO_2R^{IX-14};$ R^{IX-14} is
 - a) H, or
 - b) C_{1-7} alkyl;

each n^{IX} is independently 1, 2, 3, 4 or 5; each m^{IX} is independently 0, 1, or 2; M^{IX} is sodium, potassium, or lithium;

- aryl is a phenyl radical or an ortho-fused bicyclic carbocyclic radical wherein at least one ring is aromatic;
- wherein any aryl^{IX} is optionally substituted with one or more substituents selected from the group consisting of halo, OH, cyano, CO_2R^{IX-14} , CF_3 , C_{1-6} alkoxy, and C_{1-6} alkyl which may be further substituted by one to three SR^{IX-14} , $NR^{IX-14}R^{IX-14}$, OR^{IX-14} , or CO_2R^{IX-14} groups;
- het^{IX} is a four- (4), five- (5), six- (6), or seven- (7) membered saturated or unsaturated heterocyclic ring having 1, 2, or 3 heteroatoms selected from the group consisting of oxygen, sulfur, and nitrogen, which is optionally fused to a benzene ring, or any bicyclic heterocycle group;
- wherein any het^{IX} is optionally substituted with one or more substituents selected from the group consisting of halo, OH, cyano, phenyl, CO_2R^{IX-14} , CF_3 , C_{1-6} alkoxy, oxo, oxime, and C_{1-6} alkyl which may be further substituted by one to three SR^{IX-14} , $NR^{IX-14}R^{IX-14}$, OR^{IX-14} , or CO_2R^{IX-14} groups.

- 15. The method of Claim 14, wherein R^{IX-1} is Cl.
- 16. The method of Claim 14, wherein the compound administered is selected from a group consisting of

N-(4-chlorobenzyl)-4-hydroxy-7-methyl[1,8]naphthyridine-3-carboxamide;

N-(4-chlorobenzyl)-4-hydroxy-7-methyl-6-(tetrahydro-2H-pyran-4-ylmethyl)[1,8]naphthyridine-3-carboxamide;

N-(4-chlorobenzyl)-4-hydroxy-7-methyl-6-(4-morpholinylmethyl)[1,8]naphthyridine-3-carboxamide;

6-bromo-N-(4-chlorobenzyl)-4-hydroxy-7-methyl[1,8]naphthyridine-3-carboxamide;

N-(4-chlorobenzyl)-4-hydroxy-6-(3-hydroxy-1-propynyl)-7-methyl[1,8]naphthyridine-3-carboxamide;

N-(4-chlorobenzyl)-4-hydroxy-6-iodo-7-methyl[1,8]naphthyridine-3-carboxamide; and

Methyl 6-{[(4-chlorobenzyl)amino]carbonyl}-5-hydroxy-2-methyl[1,8]naphthyridine-3-carboxylate.

- 17. The method according to Claim 1, wherein said mammal is a human.
- 18. The method according to Claim 1, wherein said mammal is a livestock or companion animal.
- 19. The method according to Claim 1, wherein the amount administered is from about 0.1 to about 300 mg/kg of mammal body weight.

- 20. The method according to Claim 1, wherein the amount administered is from about 1 to about 30 mg/kg of mammal body weight.
- 21. The method according to Claim 2, wherein the compound is administered parenterally, intravaginally, intranasally, topically, orally, or rectally.