2024 SCSC 프로그래밍 경시대회 풀이

Official Solution

9 2024 SCPC 출제진 및 검수진

문제		의도한 난이도	출제자
2A	정육면체의 네 꼭짓점	Easy	sjhi00
2B/1A	로그프레소 마에스트로	Easy	sungjae0506
2C	죽음의 등굣길	Easy	ksi4495
2D	사다리 게임 만들기	Medium	sjh1224
2E	문자열 지우기	Medium	ksi4495
2F/1B	현대모비스 트럭 군집주행	Medium	sungjae0506
2G/1E	1D 게임	Hard	ohwphil
2H/1G	삼진논리 OR과 쿼리	Hard	sjhi00
1C	멀티버스를 여행하는 성재를 위한 안내서	Challenging	sungjae0506
1D	농지 나누어 갖기	Hard	sjhi00
1F	멋진 연결 요소와 쿼리	Hard	sungjae0506
1H	스시스시 아일랜드	Hard	mujigae

2A. 정육면체의 네 꼭짓점

implementation 출제진 의도 - **Easy**

✓ 제출 172번, 정답 94명 (정답률 55.233%)

✓ 처음 푼 사람: 양창석, 1분

✓ 출제자: sjhi00

2A. 정육면체의 네 꼭짓점

- ✓ 풀이 1: 입력으로 주어진 네 정수를 오름차순으로 정렬하고 순서대로 이어 붙인 문자열이 Ø123, 4567, Ø246, 1357, Ø145, 2367 중 하나이면 답이 YES 이고, 그렇지 않으면 답이 NO 입니다.
- \checkmark 풀이 2: 입력으로 주어진 네 정수 a,b,c,d에 대하여, a,b,c,d를 bitwise AND한 값이 0이 아니거나 a,b,c,d를 bitwise OR한 값이 7이 아니면 답이 YES 이고, 그렇지 않으면 답이 NO입니다.
 - a,b,c,d를 bitwise AND한 값이 0 이 아닐 필요충분조건은, 네 꼭짓점이 모두 평면 x=1위에 있거나 모두 평면 y=1위에 있거나 모두 평면 z=1위에 있다는 것입니다.
 - a,b,c,d를 bitwise OR한 값이 7이 아닐 필요충분조건은, 네 꼭짓점이 모두 평면 x=0위에 있거나 모두 평면 y=0위에 있거나 모두 평면 z=0위에 있다는 것입니다.
- \checkmark 시간복잡도는 O(T) 입니다. (T: 테스트 케이스의 개수)

2B/1A. 로그프레소 마에스트로

bruteforcing, simulation 출제진 의도 **– Easy**

- ✓ 제출 441번, 정답 56명 (정답률 12.698%) (Div.2)
- ✓ 제출 54번, 정답 30명 (정답률 55.556%) (Div.1)
- ✓ 처음 푼 사람: 양창석, 3분 (Div.2) / 김동현, 2분 (Div.1)
- ✓ 출제자: sungjae0506

- \checkmark N, M 의 제한이 각각 1000, 10000 이므로, 1 번부터 N 번 컴퓨터가 감염된 경우를 각각 시뮬레이션 해볼 수 있습니다.
- ✓ 먼저 모든 로그를 시간 순으로 정렬합니다.
- 정렬된 로그를 시뮬레이션 한 결과가 입력으로 받은 감염된 컴퓨터 목록과 같게 만드는 컴퓨터 번호를 찾습니다.
- \checkmark 시간복잡도는 정렬에서 $O(M \log M)$, 시뮬레이션에서 O(NM) 입니다.

2C. 죽음의 등굣길

bfs, implementation 출제진 의도 **- Easy**

- ✓ 제출 238번, 정답 82명 (정답률 34.454%)
- ✓ 처음 푼 사람: **박종경**, 11분
- ✓ 출제자: ksi4495

2C. 죽음의 등굣길

- \checkmark 각 보도블록을 노드로 하는 그래프에서 맨해튼 거리가 X 이하이고 색이 동일한 보드블럭들을 간선으로 연결합니다.
- \checkmark (1,1) 에서 출발하여 (N,M) 으로 이동할 수 있는지 판별하면 됩니다.
- \checkmark BFS로 구현했을 때 시간복잡도는 $O(NMX^2)$ 입니다.

2C. 죽음의 등굣길

- ✓ 별해: 출발 지점과 색이 동일한 노드를 모두 저장한 뒤, 노드 사이의 가능한 모든 간선을 연결합니다.
- ✓ 출발 지점과 도착 지점이 간선으로 연결되는지 판별하면 됩니다.
- \checkmark 시간복잡도는 $O(N^2M^2)$ 입니다.
- ✓ 별해도 통과할 수 있도록 제한을 설정했습니다.
- \checkmark 보너스: 원래 제한 조건은 $2 \le N, M \le 2\,000\,$ 이었습니다.

2D. 사다리 게임 만들기

dynamic programming 출제진 의도 – **Medium**

✓ 제출 193번, 정답 41명 (정답률 22.798%)

✓ 처음 푼 사람: 양창석, 22분

✓ 출제자: sjh1224

2D. 사다리 게임 만들기

- \checkmark (WLOG) 시작점에 가까운 가로선부터 순서대로 $1, \ldots, M$ 번째 가로선이라고 합시다.
- \checkmark i 개의 가로선이 추가된 후에 x 번째 세로선이 1등일 될 확률을 f(x,i) 라고 합시다.
- \checkmark i 번째 가로선이 x-1, x 번째 세로선 사이에 생길 경우 $f(x,i) \leftarrow f(x-1,i-1)$
- \checkmark i 번째 가로선이 x, x+1 번째 세로선 사이에 생길 경우 $f(x,i) \leftarrow f(x+1,i-1)$
- \checkmark 그 외의 경우 $f(x,i) \leftarrow f(x,i-1)$

2D. 사다리 게임 만들기

- ✓ 가로선이 어느 세로선 사이에 생길지 확률을 고려하여 점화식을 세우면 다음과 같습니다.
- $f(x,i)=rac{1}{N-1}f(x-1,i-1)+rac{1}{N-1}f(x+1,i-1)+rac{N-3}{N-1}f(x,i-1)$ (양쪽 끝의 세로선의 경우 점화식이 달라지는 것에 주의합시다.)
- ✓ 점화식을 통해 지환이가 1등이 될 확률을 동적 계획법으로 구할 수 있습니다.
- \checkmark 시간복잡도는 O(NM) 입니다.

game, dynamic programming 출제진 의도 – **Medium**

제출 168번, 정답 11명 (정답률 6.548%)

✓ 처음 푼 사람: 김준원, 43분

✓ 출제자: ksi4495

- ✓ 문자열을 노드로 하는 그래프를 생각해봅시다.
- ✓ 플레이어가 행동을 할 때마다 문자열의 길이가 줄어들거나 문자열에 존재하는 ?의 개수가 줄어드므로 그래프는 DAG가 됩니다.
- ✓ 그래프가 DAG이므로 동적 계획법을 적용할 수 있습니다.

 \checkmark 노드 g와 게임의 결과를 대응하는 함수를 f 라고 합시다.

 $\checkmark f(g) = max_{g'}(1 - f(g')) \, (g': 행동 후 가능한 다음 노드) 인 것을 알 수 있습니다.$

- ✓ 문자열을 지울 때 앞이나 뒤에서부터만 지워나가기 때문에 행동 후의 문자열을 원래 문자열의 부분 문자열입니다.
- ✓ 따라서 현재 노드를 주어진 문자열에서의 시작점과 끝점, 그리고 ?의 형태로 표현 할 수 있습니다.
- \checkmark 각 노드를 dp[l][r][?의 형태]로 나타내면 이를 동적 계획법으로 구할 수 있습니다.
- \checkmark 시간복잡도는 $O(N^2)$ 입니다.

2F/1B. 현대모비스 트럭 군집주행

dijkstra 출제진 의도 – <mark>Medium</mark>

- ✓ 제출 219번, 정답 23명 (정답률 10.959%) (Div.2)
- ✓ 제출 61번, 정답 25명 (정답률 40.984%) (Div.1)
- ✓ 처음 푼 사람: 김준원, 56분 (Div.2) / 박신욱, 10분 (Div.1)
- ✓ 출제자: sungjae0506

- ✓ 문제에서 다른 트럭을 뒤따르는 트럭들은 10%의 운송비 절감이 된다고 했는데 이를 다시 생각하면 가장 선두의 트럭이 더 많은 비용을 내는 것으로 볼 수 있습니다.
- 또한 모든 트럭은 최단 거리로 이동하기 때문에 최단 거리 합의 90%는 경로와 상관없이 공통적으로 지불해야 하는 비용입니다.

2F/1B. 현대모비스 트럭 군집주행

- \checkmark (WLOG) 트럭이 목적지에 도착하는 순서대로 $1, \cdots, N$ 번 트럭이라고 합시다. (1번 트럭은 출발하자 마자 도착하는 것으로 가정합니다.)
- 또한 간선을 이동할 때 어느 트럭이 가장 선두에 서는지는 비용에 영향을 미치지 않으므로 이동한 후에 도착하는 트럭이 가장 선두에 있는 것으로 가정해도 무방합니다.
- $\checkmark x$ 번 트럭이 도착했을 때 x 번 트럭의 최단 경로상에서 도착 직전 노드를 목적지로 하는 트럭을 y 번 트럭이라고 합시다.
- \checkmark 가정으로부터 y 번 트럭이 x 번 트럭보다 먼저 목적지에 도착하기 때문에 x 번 트럭은 y 트럭이 도착할 때까지 뒤따라 가다가 y 에서 x로 움직일 때만 가장 선두에 있게 됩니다.
- \checkmark 따라서 x 번 트럭은 최단 경로 상의 마지막 간선의 비용의 10% 만큼 추가 비용을 지불하게 됩니다.

2F/1B. 현대모비스 트럭 군집주행

- 따라서 최소 비용 경로는 각 트럭이 추가적으로 지불하는 간선의 비용의 합을 최소화하는 경로이므로 다익스트라 알고리즘을 통해 구할 수 있습니다.
- \checkmark 시간복잡도는 $O((N+M)\log N)$ 입니다.

greedy, data structures, binary search 출제진 의도 – Hard

- ✓ 제출 44번, 정답 3명 (정답률 6.818%) (Div.2)
- ✓ 제출 43번, 정답 13명 (정답률 30.233%) (Div.1)
- ✓ 처음 푼 사람: 김준원, 124분 (Div.2) / 이진혁, 58분 (Div.1)
- ✓ 출제자: ohwphil

- 이 문제에 대한 논의를 하기 전에 용어들을 정의하고 가겠습니다.
- \checkmark 만약 p,q 번 칸에 모두 영구 발판이 놓여 있고, 이 둘 사이에 다른 영구 발판이 존재하지 않는다면, 이 둘을 "인접하다"고 표현하겠습니다.
- 어떤 영구 발판의 오른쪽에 있으면서 인접한 영구 발판을 "다음 영구 발판"이라고 표현하겠습니다.
- $\checkmark p < q$ 라고 한다면 $q p \equiv p, q$ 번 칸에 놓인 "두 영구 발판 사이의 간격"(혹은 "발판 간격") 이라고 표현하겠습니다.

- \checkmark 마찬가지로, u, v 번 턴이 모두 위험한 턴이며, 이 둘 사이에 다른 위험한 턴이 없으면, 이 둘을 "인접하다"고 표현하겠습니다.
- 또한 어떤 위험한 턴보다 턴 번호가 높으면서 인접한 위험한 턴을 "다음 위험한 턴"이라고 표현하겠습니다.
- v = u < v 라고 한다면 v = u를 턴 번호가 u, v 번인 "두 위험한 턴 사이의 간격"(혹은 "턴 간격") 이라고 표현하겠습니다.

- ✓ 본격적으로 풀이를 설명하기에 앞서, 가능한 관찰들을 살펴봅시다.
- ✓ 우선 캐릭터는 위험한 턴에는 반드시 영구 발판에 있어야 합니다.
- 따라서 게임에서 승리하기 위해서는 위험한 턴이 오기 전에 캐릭터가 다음 영구 발판에 도달하는
 과정이 반복되어야 합니다.
- 그렇기 때문에 최대한 빠르게 다음 영구 발판으로 그리디하게 이동하는 것이 유리하다는 것을 알수 있습니다.
- ✓ 이로부터 왼쪽으로 이동하는 것은 필요없다는 것도 관찰할 수 있습니다.

- 앞에서의 논의를 수식으로 나타내 봅시다.
- \checkmark 현재 턴의 번호를 t, 다음 위험한 턴의 번호를 t_i , 현재 칸의 번호를 l, 다음 영구 발판의 번호를 l_j 로 나타낸다면 다음 영구 발판으로 이동할 수 있는 필요충분조건은 $t_i-t\geq l_j-l$ 인 것입니다.
- \checkmark 캐릭터는 승리하기 위해서 중간에 영구 발판을 거치지 않고 $l_2-l_1, l_3-l_2, \cdots, l_K-l_{K-1}$ 칸을 이동할 수 있어야 합니다.

- ✓ 이제 승리하는 것이 가능할 필요충분조건을 도출해 봅시다.
- ✓ 캐릭터는 게임 시작 직후 t_1 턴 동안 다음 영구 발판으로 이동할 기회가 있습니다.
- \checkmark 그 후 t_1 번 턴부터 t_1+T 번 턴까지 $t_2-t_1,t_3-t_2,\cdots,t_N-t_{N-1},t_1+T-t_N$ 턴 동안 다음 영구 발판으로 이동할 기회가 있으며, 이러한 턴 간격이 반복됩니다.
- ✓ 만약 어떤 인접한 두 영구 발판 사이의 간격이 모든 인접한 두 위험한 턴 사이의 간격보다 크다면, 캐릭터는 승리할 수 없습니다.
- ✓ 그렇지 않다면, 캐릭터는 승리할 수 있습니다.
- \checkmark 노트: $t_1 < t_1 + T t_N$ 이 무조건 성립하기 때문에 위에서 t_1 에 대한 언급을 하지 않아도 되는 것입니다.

- ✓ O(NK) 풀이: 시뮬레이션
- \checkmark 그렇다면 처음 t_1 은 예외처리해 주고, 턴 간격인 $t_2-t_1,t_3-t_2,\cdots,t_N-t_{N-1},t_1+T-t_N$ 를 순환하면서 각 턴 간격마다 도달할 수 있는 가장 오른쪽의 영구 발판으로 이동하는 시뮬레이션 풀이를 생각해볼 수 있습니다.
- 하지만, 이 풀이는 문제를 해결하기에는 너무 느립니다.
- \checkmark 만약 $t_2-t_1,t_3-t_2,\cdots,t_N-t_{N-1},t_1+T-t_N$ 중 하나만 매우 크고 나머지가 매우 작으며, $l_2-l_1,l_3-l_2,\cdots,l_N-l_{N-1}$ 이 모두 크다면, 하나의 발판 간격을 이동하는 동안 N 번의 턴 간격을 순회하게 되어 총 시간복잡도가 O(NK)가 되기 때문입니다.

- 이제 시간복잡도를 줄이기 위한 아이디어를 생각해 봅시다.
- ✓ 턴 간격을 순회하는 것이 아니라, 현재 지나가야 하는 두 영구 발판 사이의 간격보다 크거나 같으면서, 가장 가까운 미래에 오는 턴 간격을 찾는 것으로 방식을 바꾸어 봅시다.
- 즉, 어떤 배열에서 특정 값보다 크거나 같으면서 탐색하는 범위에서 가장 왼쪽에 있는 원소의 인덱스를 구하면 됩니다.
- \checkmark 이러한 쿼리당 시간복잡도가 $O(\log N)$ 만큼 걸리는 적절한 자료구조를 이용하면 총 시간복잡도를 $O(K\log N)$ 로 줄일 수 있습니다.
- ✓ 여기에서는 세그먼트 트리와, 스파스 테이블(희소 배열)을 이용한 풀이를 소개합니다.

- ✓ O(K log N) 풀이 1: 세그먼트 트리
- \checkmark 세그먼트 트리에서 $t_2-t_1,t_3-t_2,\cdots,t_N-t_{N-1},t_1+T-t_N$ 가 담겨 있는 배열의 구간 최댓값을 저장하고, 세그먼트 트리 상에서의 이분 탐색을 이용하면 됩니다.
- ✓ O(K log N) 풀이 2: 스파스 테이블
- ✓ 스파스 테이블을 이용해서 문제를 풀 수도 있습니다.
- \checkmark 현재 턴 간격을 기준으로 최대 2^i 번 이내에 찾아오는 턴 간격들 중 최댓값을 스파스 테이블에 저장해 놓는다면 역시 이분 탐색을 이용하여 문제를 해결할 수 있습니다.

- ✓ 구현 시 유의사항
- 어떤 턴 간격이 매우 크다면 다음 영구 발판을 지나쳐 그 다음 영구 발판까지 갈 수 있는 가능성이 있기 때문에 이에 유의해야 합니다.
- \checkmark 턴 간격이 다 지나가기 전에 L 번 칸에 도달하는 경우 경과한 턴 수를 실제보다 크게 계산하지 않도록 유의해야 합니다.

dynamic programming 출제진 의도 – **Hard**

- ✓ 제출 48번, 정답 0명 (정답률 0.000%) (Div.2)
- ✓ 제출 20번, 정답 2명 (정답률 10.000%) (Div.1)
- 처음 푼 사람: (Div.2) / 조승현, 106분 (Div.1)
- ✓ 출제자: sjhi00

- $\checkmark 2$ 번 쿼리를 선형 시간으로 처리하면 총 $O(M^2)$ 의 시간복잡도로 시간 초과를 받게 됩니다.
- ✓ 따라서 2번 쿼리를 선형 시간보다 빠르게 처리해주어야 합니다.
- \checkmark 이제 OR_3 연산의 성질에 대해 살펴봅시다.
- \checkmark OR_3 연산의 결과는 비트 단위로 생각했을 때 상위 비트의 결과가 더 크면 하위 비트 값에 상관없이 최종 결과 값이 더 큽니다.

- \checkmark OR_3 의 연산 결과는 상위 비트에 의해 우선적으로 결정되므로 2 번 쿼리에서 주어진 x 를 삼진법으로 변환하여 최상위 비트부터 고려해봅시다.
- $\checkmark x$ 의 최상위 비트가 2일 경우 어떤 원소와 OR_3 를 하든지 해당 비트는 영향을 받지 않습니다.
- $\checkmark x$ 의 최상위 비트가 1일 경우 해당 비트가 2인 원소가 최댓값의 후보이고, 그런 원소가 없을 경우 해당 비트는 영향을 받지 않습니다.
- $\checkmark x$ 의 한 비트가 0일 경우 해당 비트가 가장 큰 원소가 최댓값의 후보입니다.

- K = 15(즉, $0 \le x < 3^K$)라고 하면, 앞에서의 관찰로부터 해당 비트가 0, 1, 2인 원소가 집합 S에 존재하는지 O(1)에 찾을 수 있다면 2번 쿼리를 O(K)에 처리할 수 있게 됩니다.
- $\checkmark x < 3^K$ 이므로 해당 원소가 존재하는지 배열에 저장해두는 것으로 O(M) 개의 2 번 쿼리를 시간복잡도 O(KM) 안에 처리할 수 있습니다.
- ✓ 이제 1 번 쿼리를 처리하는 일이 필요합니다.
- \checkmark 1 번 쿼리에서 x의 비트필드의 모든 부분 집합을 배열에 업데이트하면 $O(3^K)$ 또는 $O(2^K)$ 만큼 업데이트 해야 하지만, 이미 배열에 들어있는 원소는 업데이트를 할 필요가 없으므로, DFS(깊이 우선 탐색) 또는 BFS(너비 우선 탐색)의 원리를 이용하면 O(M) 개의 1 번 쿼리를 총 $O(K\cdot 3^K)$ 만큼의 시간으로 처리할 수 있습니다.

- \checkmark 각각의 정점이 0 부터 3^K-1 까지의 서로 다른 정수로 번호가 붙여진, 정점이 3^K 개인 그래프를 생각합시다.
- $\checkmark 0 \le x < 3^K$ 인 x 에 대하여, x 의 3 진법 표기가 $x = \overline{x_m x_{m-1} \cdots x_0}_{(3)}$ 일 때, $x_i > 0$ 을 만족하는 모든 $0 \le i \le m$ 에 대하여 x 에서 $\overline{x_m \cdots x_{i+1} 0 x_{i-1} \cdots x_0}_{(3)}$ 으로 향하는 유향 간선 (directed edge)을 만듭니다.
- \checkmark 이렇게 하면 정점의 개수가 3^K 이고 간선의 개수가 $O(K \cdot 3^K)$ 인 DAG(유향 비순환 그래프, Directed Acyclic Graph)가 만들어집니다.
- \checkmark 정점 x 를 방문할 때, 정점 x 에서 출발하여 방문할 수 있는 모든 정점을 DFS 또는 BFS로 탐색합니다. 이때, 각 정점마다 방문 여부를 0으로 초기화된 배열 b에 기록합니다. x 번 정점을 방문했을 때 b[x] 를 1로 갱신합시다.
- ✓ 이미 방문한 정점은 더 이상 탐색할 필요가 없습니다.

- \checkmark 1 번 쿼리가 주어질 때마다 정점 x 에서 출발하면서 탐색하면, 총 정점의 개수가 3^K 이고 간선의 개수가 $O(K \cdot 3^K)$ 이므로, O(M) 개의 1 번 쿼리를 $O\left(K \cdot 3^K\right)$ 로 처리할 수 있습니다.
- ✓ 이제 2번 쿼리의 처리 과정을 다시 살펴봅시다.
- $\checkmark x = \overline{x_{K-1}\cdots x_1x_0}_{(3)}$ 이라고 합시다. (leading zero가 존재할 수 있습니다.)
- ✓ 0번 정점에서 출발하여 이동해봅시다.
- \checkmark $i=K-1,K-2,\cdots,1,0$ 에 대하여 x의 i 번째 비트 x_i 를 확인해봅시다. 이때 현재 머물러 있는 정점을 y_{i+1} 라고 합시다. 즉, $y_K=0$ 입니다.

- $\checkmark x_i = 2$ 인 경우, 현재 y_{i+1} 번 정점 그대로 머무릅니다. $(y_i = y_{i+1})$
- $m{x}_i=1$ 이고 $b[y_{i+1}+2\cdot 3^i]=1$ 이면, $y_{i+1}+2\cdot 3^i$ 번 정점으로 이동합니다. $(y_i=y_{i+1}+2\cdot 3^i)$
- $\checkmark x_i = 1$ 이고 $b[y_{i+1} + 2 \cdot 3^i] = 0$ 이면, 현재 정점 그대로 머무릅니다. $(y_{i+1} = y_i)$
- $x_i=0$ 이고 $b[y_{i+1}+2\cdot 3^i]=1$ 이면, $y_{i+1}+2\cdot 3^i$ 번 정점으로 이동합니다. $(y_i=y_{i+1}+2\cdot 3^i)$
- $x_i=0$ 이고 $b[y_{i+1}+2\cdot 3^i]=0$, $b[y_{i+1}+3^i]=1$ 이면, $y_{i+1}+3^i$ 번 정점으로 이동합니다. $(y_i=y_{i+1}+3^i)$
- $x_i=0$ 이고 $b[y_{i+1}+2\cdot 3^i]=b[y_{i+1}+3^i]=0$ 이면, 현재 정점 그대로 머무릅니다. $(y_i=y_{i+1})$

- \checkmark 앞에서의 과정을 거친 후, $OR_3(x, y_0)$ 가 구하려고 하는 답이 됩니다.
- $\checkmark~2$ 번 쿼리는 쿼리 하나 당 O(K)에 처리할 수 있으므로, 최종 시간복잡도는 $O(K\cdot 3^K+KM)$ 입니다.

- \checkmark 별해: 15 자리의 3 진수 x를 앞 9 자리 x_1 과 뒤 6 자리 x_2 로 끊어서 생각할 수 있습니다.
- 앞 9자리는 상위 비트부터 탐색하는 용도로 사용하고, 뒤 6자리는 브루트포스로 탐색하기 위한 용도로 사용합니다.
- $\checkmark 3^6 \times 3^9$ 크기의 2차원 배열 b와 3^9 크기의 1 차원 배열 c가 0으로 초기화되어 있다고 하겠습니다.
- \checkmark 1 번 쿼리에 의하여 업데이트를 할 때, OR_3 $(x_1,i)=x_1$ 을 만족하는 모든 $0\leq i<3^9$ 에 대하여, $b[x_2][i]$ 와 c[i] 의 값을 1 로 갱신합니다.
- \checkmark 2 번 쿼리를 처리할 때, 최상위 비트부터 차례대로 상위 9 개의 비트를 확인하여 배열 c 를 이용해서 OR_3 의 최댓값의 상위 9 개의 비트를 구할 수 있습니다.
- \checkmark 하위 6 개의 비트는 2차원 배열 b를 이용하여 시간복잡도가 $O(3^6)$ 인 브루트포스 알고리즘으로 계산할 수 있습니다.

- \checkmark OR_3 값을 O(1) 에 구할 수 있다고 가정할 때, 이 과정을 종합하면 1 번 쿼리는 시간복잡도가 쿼리 당 $O(3^9)$ 이고, 2 번 쿼리는 시간복잡도가 쿼리 당 $O(3^6)$ 입니다.
- \checkmark 하지만 $M \le 500~000$ 이므로 시간복잡도의 개선이 필요합니다.
- ✓ 1 번 쿼리에 대한 연산을 bitset으로 처리하거나, 앞 9자리를 상위 6자리와 하위 3자리로 다시 분리해서 이진수의 bitwise 연산을 사용하면 1 번 쿼리의 시간복잡도를 쿼리 당 $O(3^6)$ 이하로 줄일 수 있습니다.
- $\checkmark~3^6$ 미만의 음이 아닌 두 정수에 대한 OR_3 값은 전처리 및 배열 저장을 통해서 O(1) 에 계산할 수 있습니다.
- \checkmark 전체 시간복잡도는 $O(3^6 \cdot M)$ 입니다.

math, calculus, fft 출제진 의도 – **Challenging**

- ✓ 제출 9번, 정답 0명 (정답률 0.000%)
- ✓ 처음 푼 사람: -
- ✓ 출제자: sungjae0506

 \checkmark k 번째 천체의 좌표 (x,y)를 복소평면 상에 $p_k=x+yi$ 로 표현하고, 기댓값을 구하는 식을 쓰면 다음과 같습니다.

$$\sqrt{\frac{1}{\pi R^2}} \int_0^R \int_0^{2\pi} \prod_{k=1}^N |re^{i\theta} - p_k|^2 r d\theta dr$$

$$\checkmark = \frac{1}{\pi R^2} \int_0^R \int_0^{2\pi} \prod_{k=1}^N \{ (re^{i\theta} - p_k) \overline{(re^{i\theta} - p_k)} \} r d\theta dr$$

$$\checkmark = \frac{1}{\pi R^2} \int_0^R \int_0^{2\pi} \prod_{k=1}^N (re^{i\theta} - p_k) \prod_{k=1}^N \overline{(re^{i\theta} - p_k)} \, rd\theta dr$$

$$\checkmark\prod_{i=1}^N(x-p_k)=\sum_{k=0}^Na_kx^k$$
라고 하면 식은 다음과 같이 정리됩니다.

$$\checkmark \frac{1}{\pi R^2} \int_0^R \int_0^{2\pi} \sum_{k=0}^N a_k r^k e^{ik\theta} \sum_{k=0}^N \overline{a_k r^k e^{ik\theta}} r d\theta dr$$

$$\checkmark = \frac{1}{\pi R^2} \int_0^R \int_0^{2\pi} \sum_{k=0}^N a_k r^k e^{ik\theta} \sum_{k=0}^N \overline{a_k} r^k e^{-ik\theta} r d\theta dr$$

$$\checkmark = \frac{1}{\pi R^2} \int_0^R \int_0^{2\pi} \sum_{k=0}^N \sum_{l=0}^N a_k \overline{a_l} r^{k+l} e^{i(k-l)\theta} r d\theta dr$$

$$\checkmark \int_0^{2\pi} e^{ik\theta} d\theta = egin{cases} 2\pi, & k=0 \\ 0, & \text{Otherwise} \end{cases}$$
이므로 식은 다음과 같이 정리됩니다.

$$\checkmark \frac{1}{\pi R^2} \int_0^R 2\pi \sum_{k=0}^N a_k \overline{a_k} r^{2k} r dr$$

$$\checkmark = \frac{2}{R^2} \int_0^R \sum_{k=0}^N a_k \overline{a_k} r^{2k+1} dr$$

$$\checkmark = \sum_{k=0}^{N} \frac{|a_k|^2 R^{2k}}{k+1}$$

- \checkmark NTT를 이용해 a_k 를 $O(N \log^2 N)$ 시간 안에 구할 수 있습니다.
- \checkmark 최종 시간복잡도는 $O(N \log^2 N)$ 입니다.

segtree, sweeping, coordinate compression 출제진 의도 – **Hard**

✓ 제출 48번, 정답 15명 (정답률 31.250%)

처음 푼 사람: 이종영, 29분

✓ 출제자: sjhi00

- \checkmark 회장과 부회장이 나누어 갖는 땅의 경계선이 x축에 수직인 경우를 먼저 살펴봅시다.
- \checkmark 좌표 압축 후에, 직사각형의 각 변의 가능한 경우의 수는 O(N) 이므로, 브루트 포스 알고리즘으로 $O(N^5)$ 또는 $O(N^4)$ 으로 문제를 풀 수 있습니다.
- \checkmark 윗변과 아랫변을 $O(N^2)$ 가지의 방법으로 고정하고 x 축 방향으로 스위핑을 하면 $O(N^3)$ 으로 시간복잡도를 줄일 수 있습니다.
- ✓ 하지만 이렇게 하더라도 아직도 느립니다 :(

- ✓ 세그먼트 트리(segment tree)를 편의상 세그라고 하겠습니다.
- ✓ "잘 알려진" 금광 세그(최대 구간 합 세그)를 응용하여 시간복잡도를 줄일 수 있습니다.
- \checkmark 구조체 및 연산을 잘 정의해서 구조체 세그를 만들어서 풀면 $O(N^2 \log N)$ 의 시간복잡도로 문제를 해결할 수 있습니다.

- \checkmark 길이가 N 인 배열에 해당하는 세그를 다음과 같이 구성합니다.
- \checkmark 세그의 각 노드에 14개의 변수 sum_1 , sum_2 , $lmax_1$, $lmax_2$, $rmax_1$, $rmax_2$, $lrmax_{21}$, $lmax_{21}$, $lmax_{21}$
- $\checkmark sum_1$ 은 해당 구간 안에 속해 있는 a_i 의 합입니다. 마찬가지로, sum_2 는 해당 구간 안에 속해 있는 b_i 의 합입니다.
- $\sqrt{lmax_1}$ 은 해당 구간의 (left) prefix subarray(접두사 부분배열)의 a_i 의 합의 최댓값입니다. (앞으로 언급하는 모든 부분배열은 길이가 0인 부분배열도 허용합니다.)
- $\checkmark rmax_1$ 은 해당 구간의 (right) suffix subarray(접미사 부분배열)의 a_i 의 합의 최댓값입니다.
- $\checkmark lrmax_{12}$ 은 해당 구간의 중간에 칸막이를 놓았을 때, 칸막이의 왼쪽의 a_i 의 합과 칸막이의 오른쪽의 b_i 의 합의 최댓값입니다. (칸막이의 왼쪽 또는 오른쪽에 아무 것도 없어도 됩니다.)

- $\checkmark lmax_{12}$ 는 해당 구간의 (left) prefix subarray에 대한 $lrmax_{12}$ 의 최댓값입니다.
- $\checkmark rmax_{12}$ 는 해당 구간의 (right) suffix subarray에 대한 $lrmax_{12}$ 의 최댓값입니다.
- \checkmark max_{12} 는 해당 구간의 continuous subarray에 대한 $lrmax_{12}$ 의 최댓값입니다.
- 나머지 변수도 비슷한 방식으로 정의할 수 있습니다.
- \checkmark 리프 노드가 아닌 어떤 노드 C의 자식 노드가 순서대로 A, B 라고 하면, A 과 B의 변수 값을 통해서 C의 변수 값을 구할 수 있습니다. 이 과정을 병합(merge)이라고 하겠습니다.
- ✓ 병합을 하는 과정은 금광 세그(최대 부분 합 세그)와 유사하지만, 노드에 있는 변수가 많은 만큼 식의 개수도 많고 다소 복잡합니다.

- \checkmark $C.sum_1 = A.sum_1 + B.sum_1$ 으로 구할 수 있습니다.
- \checkmark $C.lmax_1 = \max(A.lmax_1, A.sum_1 + B.lmax_1)$ 으로 구할 수 있습니다.
- \checkmark $C.lrmax_{12} = \max (A.lrmax_{12} + B.sum_2, A.sum_1 + B.lrmax_{12})$ 입니다.
- \checkmark $C.lmax_{12} = \max(A.lmax_{12}, A.lrmax_{12} + B.lmax_2, A.sum_1 + B.lmax_{12})$ 입니다.
- \checkmark $C.max_{12} = max (A.max_{12}, B.max_{12}, A.rmax_{12} + B.lmax_{2}, A.rmax_{1} + B.lmax_{12})$ 입니다.
- 나머지 변수도 비슷한 방법으로 계산할 수 있습니다.
- \checkmark 이 과정을 통해서 병합 과정을 $O(\log N)$ 으로 구현할 수 있습니다.

- \checkmark 회장과 부회장의 영역을 공유하는 변이 x 축에 수직인 경우부터 고려합시다.
- \checkmark 윗변과 아랫변을 고정하는 $O(N^2)$ 가지의 방법 각각에 대하여, 각 x 좌표에 대해 a_i 의 합과 b_i 의 합을 구한 뒤, 이 배열의 전체에 해당하는 구간 노드에 대해서 max_{12} 와 max_{21} 값을 계산하면 됩니다.
- \checkmark 아랫변을 고정시킨 후 윗변을 위로 이동시키는 방법을 사용하면, 아랫변을 고정시키는 O(N) 가지의 방법 각각에 대하여 O(N) 번의 업데이트를 함으로써 금광과 마찬가지로 $O(N^2 \log N)$ 에 구현할 수 있습니다.
- \checkmark 회장과 부회장의 영역을 공유하는 변이 y축에 수직인 경우도 비슷한 방법으로 계산하면, 전체 시간복잡도는 $O(N^2\log N)$ 이 됩니다.

disjoint set, tree map 출제진 의도 **– Hard**

- ✓ 제출 130번, 정답 19명 (정답률 14.615%)
- 처음 푼 사람: **김동현**, 30분
- ✓ 출제자: sungjae0506

- \checkmark N, Q 제한이 각각 10^5 이므로, O(NQ) 시간복잡도를 가지는 풀이는 통과할 수 없습니다.
- $\checkmark 1, 2, 3$ 번 쿼리를 각각 적어도 선형시간보다 작은 시간에 처리해야 합니다.

- ✓ 먼저 1 번 쿼리에서 고른 두 정점을 연결하는 것은 두 연결요소를 하나로 합치는 과정이기에 union-find로 해결 가능합니다.
- 만약 고른 두 정점이 각각 서로 다른 "멋진 연결 요소"에 속했다면, 합친 연결 요소도 "멋진 연결 요소"로 바꿀 수 있습니다. 또는 두 정점이 같은 연결 요소에 속했지만 다른 색깔인 경우에는 이미 "멋진 연결 요소"를 만족합니다.
- ✓ 이외의 경우에는 "멋진 연결 요소"로 만들 수 없습니다.

- 두 정점이 서로 다른 "멋진 연결 요소"에 속하고 같은 색깔인 경우에 "멋진 연결 요소"로 바꾸기 위해서는 더 작은 연결 요소의 색깔을 모두 변경해야 합니다.
- ✓ 색깔을 0 또는 1 로 기록하고 union-find에서 merge 함수를 구현할 때 루트부터 자신까지의 경로에 있는 모든 정점을 xor 하면 자신의 색깔이 나오도록 합니다.
- 이렇게 하면 루트의 색깔을 변경할 때 나머지 정점의 색깔도 모두 변경됩니다.
- ✓ 2번 쿼리의 경우도 위와 같이 루트의 색깔을 바꾸는 방법으로 수행할 수 있습니다.

- ✓ 1, 2 번 쿼리를 수행할 때마다 빨간색, 파란색 정점의 개수를 기준으로 "멋진 연결 요소"들을 정렬하는 RB tree를 구성합니다.
- 3 번 쿼리를 수행할 때마다 빨간색 또는 파란색이 가장 많은 연결요소를 RB tree에서 찾고 최소 정점 번호를 출력합니다.

- \checkmark 시간복잡도는 O(QlogN) 입니다.
- ✓ 이외에도 small to large trick을 이용하거나 segment tree를 이용하는 풀이도 있습니다.

ad-hoc, implementation 출제진 의도 - **Hard**

- ✓ 제출 17번, 정답 1명 (정답률 5.882%)
- 처음 푼 사람: **김동현**, 147분
- ✓ 출제자:mujigae,sungjae0506

59

1H. 스시스시 아일랜드

- \checkmark 문제를 해결하기에 앞서 S와 C를 이용해 어떻게 항상 돌을 원하는 대로 뒤집을 수 있을지 생각해 봅시다.
- \checkmark 1×1 크기의 단 한 칸만을 S와 C로 뒤집을 수 있다면 가능하지 않을까요?
- ✓ 다음과 같은 과정을 통해 정확히 하나의 돌만 뒤집힌 모양을 9번만에 만들 수 있습니다.

- \checkmark 석판에 놓인 돌의 개수는 N^2 이고 돌을 뒤집는 횟수의 제한도 N^2 입니다. 돌 하나를 원하는 상태로 만들기 위해 9 번씩 돌을 뒤집는다면, 제한 횟수를 아득히 뛰어 넘게 됩니다.
- ✓ 돌 하나당 돌을 최대 한 번 뒤집어서 원하는 상태로 만드는 방법을 생각해볼 수 있습니다.

✓ 이를 더 효율적으로 해결하기 위해서, 적은 횟수를 통해 여러 칸을 원하는 상태로 만드는 방법을 생각해볼 수 있습니다. 정해에서 사용하는 방법은 돌 2개를 최대 한 번에 원하는 상태로 만드는 것입니다.

✓ 이외에도 복잡하지만 돌 3개를 평균적으로 한 번에 원하는 상태로 만들기, 돌 5개를 최대 2번에 원하는 상태로 만들기 등 더욱 효율적인 다양한 방법이 존재합니다.

- 이렇게 돌을 한쪽 꼭짓점부터 원하는 상태로 만들어 나간다면 더이상 이 방법으로는 해결할 수 없는 영역이 생기게 됩니다.
- 이러한 영역이 정사각형의 가장자리에 생긴다면 돌을 뒤집을 때 상당히 큰 제약이 생기게 됩니다.

✓ 모든 꼭짓점에서 돌을 뒤집어 나감으로써 이러한 영역이 정사각형의 중심부에 오도록 만들 수 있습니다. 이 영역의 크기는 위치와 관계없이 항상 일정하게 만들 수 있으므로, 꼭 정확히 중심이 아니더라도 돌을 뒤집는 데 제약이 없는 위치에만 오도록 하면 됩니다.

 \checkmark 비어 있는 십자가 모양 영역의 폭은 2입니다. 다음과 같은 모양을 이용해 1×2 크기의 영역을 최대 4번만에 원하는 대로 뒤집어 나갈 수 있습니다.

یرن_{- ک}اک

✓ 다음과 같은 순서로 돌을 뒤집어 줍니다.

- \checkmark 남은 2×2 영역은 가장 먼저 찾았던 1×1 만을 뒤집는 방법을 4 번 적용하여 총 36 번만에 만들어 낼 수 있습니다.
- \checkmark 36 번 뒤집어도 횟수 제한에 문제는 없지만, 여러 방법을 찾아본다면 다음과 같이 최대 11 번만에 원하는 2×2 영역을 만들 수 있습니다. 더 적은 횟수도 있는데 여러분도 한 번 찾아보세요.

- \checkmark 폭이 2인 십자가 모양 영역과 2×2 크기의 정사각형 영역을 제외한 영역은 최대 $\frac{(\lceil \frac{N-2}{2} \rceil^2 1)\times 4}{2}$ 번 돌을 뒤집어 해결할 수 있습니다.
- \checkmark 폭이 2인 십자가 모양 영역은 최대 $(4N-4) \times 2$ 번 돌을 뒤집어 해결할 수 있습니다.
- $\checkmark 2 \times 2$ 크기의 정사각형 영역은 최대 36 번 돌을 뒤집어 해결할 수 있습니다.
- \checkmark N 이 4의 배수인 경우 최대 $\frac{1}{2}N^2+6N+28$ 번 돌을 뒤집어 전체 영역을 원하는 모양으로 만들수 있습니다. $N^2\geq \frac{1}{2}N^2+6N+28$ 을 만족하는 자연수 N의 범위는 $N\geq 16$ 입니다. N 이 4의 배수가 아닌 경우도 같은 방식으로 증명할 수 있으며 16 이상의 N에 대해서는 지금까지 소개한 방법으로 N^2 번 이내에 석판을 원하는 모양으로 만들 수 있습니다.

- \checkmark $\lfloor \frac{N^2}{2} \rfloor$ 번만에도 문제를 해결할 수 있을까요?
- ✓ 가능하다면 조건은 어떻게 될까요?