Message Passing Simplicial Network on SRG

Amadou Keita

African Master in Machine Intelligence (AMMI), AIMS-Senegal

Bootcamp_2

August 27, 2021

Contents

- Introduction
- 2 Background
- Simplicial WL Test
- 4 Message Passing Simplicial Network
- 5 Experiments

Problem and Approach

Graphs are a common abstraction for complex systems of relations and interactions. A family of SRG: $srg(v, k, \lambda, \mu)$.

Problem and Approach

Graphs are a common abstraction for complex systems of relations and interactions. A family of SRG: $srg(v, k, \lambda, \mu)$.

Problem Statement

Message-passing type GNNs cannot detect triangles or cliques in graphs and k-WL tests suffer from high computational and memory complexity, and lack the locality property of GNNs.

Problem and Approach

Graphs are a common abstraction for complex systems of relations and interactions. A family of SRG: $srg(v, k, \lambda, \mu)$.

Problem Statement

Message-passing type GNNs cannot detect triangles or cliques in graphs and *k*-WL tests suffer from high computational and memory complexity, and lack the locality property of GNNs.

Approach

Consider local higher-order interactions - simplicial complexes.

Problem and Approach

Graphs are a common abstraction for complex systems of relations and interactions. A family of SRG: $srg(v, k, \lambda, \mu)$.

Problem Statement

Message-passing type GNNs cannot detect triangles or cliques in graphs and *k*-WL tests suffer from high computational and memory complexity, and lack the locality property of GNNs.

Approach

Consider local higher-order interactions - simplicial complexes.

Background Simplex, WL

- Informally, a simplex is a topological structure on graphs.
 - A zero-simplex is a vertex;
 - A one-simplex is an edge;
 - A two-simplex is a triangle.

Background Simplex, WL

- Informally, a simplex is a topological structure on graphs.
 - A zero-simplex is a vertex;
 - A one-simplex is an edge;
 - A two-simplex is a triangle.
- Formally, a simplicial complex is a collection of nonempty subsets of a vertex set V that contain all the singleton subsets of V and is closed under the operation of taking subsets.

Background Simplex, WL

- Informally, a simplex is a topological structure on graphs.
 - A zero-simplex is a vertex;
 - A one-simplex is an edge;
 - A two-simplex is a triangle.
- Formally, a simplicial complex is a collection of nonempty subsets of a vertex set V that contain all the singleton subsets of V and is closed under the operation of taking subsets.
- A simplex can have an orientation but not for SRG.

Simplicial WL Test

This test is built from the WL test to derive a message-passing procedure that can retain the expressive power of the test[1].

Simplicial WL Test Simplex, WL

This test is built from the WL test to derive a message-passing procedure that can retain the expressive power of the test[1].

- **1** Given a simplicial complex \mathbb{K} , all the simplices $\sigma \in \mathbb{K}$ are initialised with the same colour.
- ② Given the colour c_{σ}^{t} of simplex σ at iteration t, compute c_{σ}^{t+1} by perfectly hashing the multi-set of colours belonging to the adjacent simplices of σ .
- The algorithm stops once a stable colouring is reached. If the colour histogram is not the same, the there's no isomorphism.

Message Passing Simplicial Network MPSN

 Depending on the availability of orientation, MPSN can be complicated.

Message Passing Simplicial Network MPSN

- Depending on the availability of orientation, MPSN can be complicated.
- The model does message aggregation on the different boundary adjacency conditions of simplices in K.

Message Passing Simplicial Network MPSN

- Depending on the availability of orientation, MPSN can be complicated.
- The model does message aggregation on the different boundary adjacency conditions of simplices in K.
- Just as in k-WL tests, the update operation takes into account the different types of incoming messages and the previous colour of the simplex and then hash the multi-set of colours.

Data and Implementation

- Strongly regular graphs of at most 35 vertices were studied.
- Implementation incomplete...

References

Bodnar, Cristian and Frasca, Fabrizio and Wang, Yu Guang and Otter, Nina and Montúfar, Guido and Lio, Pietro and Bronstein, Michael

Weisfeiler and lehman go topological: Message passing simplicial networks.

arXiv preprint arXiv:2103.03212, 2021

Acknowledgements

Thanks for your attention!

