Rayleigh Scattering by Molecules V1.3

1 General Rayleigh scattering

The general equation to compute Rayleigh scattering cross sections for molecules is given by:

$$\sigma_{\text{rayleigh}} = \frac{24\pi^3 \nu^4}{n_{\text{ref}}^2} \cdot \left(\frac{n(\nu)^2 - 1}{n(\nu)^2 + 2}\right)^2 \cdot K(\nu) , \qquad (1)$$

where ν is the wavenumber, n the refractive index, $n_{\rm ref}$ a reference particle number density, and K the King factor. The King factor describes the non-sphericity of the molecules (Rayleigh scattering is only exact for spherical scatterers). It can be also written as a function of the depolarisation factor D

$$K(\nu) = \frac{6 + 3D(\nu)}{6 - 7D(\nu)} \tag{2}$$

Note that even though the cross section appears to depend on a particle number density, the product of

$$n_{\text{ref}}^{-1} \cdot \left(\frac{n(\nu)^2 - 1}{n(\nu)^2 + 2} \right)$$
 (3)

itself is independent of the particle density. The refractive index actually implicitly depends on the number of particles present. The reference density is a particle density at a given standard reference pressure and temperature. In many cases this is the Avogadro constant.

2 Data for molecules in planetary atmospheres

2.1 H₂

- King factor: 1.0
- refractive index:

$$n = 13.58 \cdot 10^{-5} \cdot \left(1. + 7.52 \cdot 10^{-3} \cdot \lambda^{-2}\right) + 1$$

with
$$[\lambda] = \mu m$$

- reference density: $n_{\rm ref} = 2.65163 \cdot 10^{19}~{\rm cm}^{-3}$
- reference: Cox (2000)

alternative cross section:

• cross section in cm^{-2} :

$$\sigma_{\text{rayleigh}} = 8.4909 \cdot 10^{-45} \cdot \lambda^{-4}$$

with $[\lambda] = cm$

• reference: Vardya (1962)

2.2 H₂O

• depolarisation factor:

$$D = 3 \cdot 10^{-4}$$

• refractive index:

$$n = \left(\frac{2A+1}{1-A}\right)^{0.5}$$

with

$$A = \delta \left(a_0 + a_1 \delta + a_2 \theta + a_3 \Lambda^2 \theta + a_4 \Lambda^{-2} + \frac{a_5}{\Lambda^2 - \Lambda_{\text{UV}}^2} + \frac{a_6}{\Lambda^2 - \Lambda_{\text{IR}}^2} + a_7 \delta^2 \right)$$

• dimensionless ratios are given by:

$$\delta = \rho/\rho^*, \ \rho^* = 1000 \ \mathrm{kg \, m^{-3}}$$

 $\Lambda = \lambda/\lambda^*, \ \lambda^* = 0.589 \ \mathrm{\mu m}$
 $\theta = T/T^*, \ T^* = 273.15 \ \mathrm{K}$

• effective infrared and ultraviolet resonances:

$$\Lambda_{\rm IR} = 5.432937$$
 $\Lambda_{\rm UV} = 0.229202$

- values of a_i given in Table 1
- reference density: actual number density $n(\rho, T)$
- note: the refractive index depends on temperature and density and is valid for both, liquid and gaseous water

• suggested validity range:

261.15 K
$$\leq T \leq$$
 773.15 K
0 kg m⁻³ $\leq \rho \leq$ 1060 kg m⁻³
0.2 µm $\leq \lambda \leq$ 2.5 µm

- note: has singularities at 0.135 μm and 3.2 μm
- reference: Murphy (1977), Schiebener et al. (1990), Wagner & Kretzschmar (2008),

Table 1: Coefficients for refractive index of water

\overline{i}	a_i	i	a_i
0	0.244257733	4	$0.158920570 \cdot 10^{-2}$
1	$0.974634476 \cdot 10^{-2}$	5	$0.245934259 \cdot 10^{-2}$
2	$-0.373234996 \cdot 10^{-2}$	6	0.900704920
3	$0.268678472 \cdot 10^{-3}$	7	$-0.166626219 \cdot 10^{-1}$

2.3 CO

• King factor: 1.0

• refractive index:

$$n = \left(22851 + \frac{0.456 \cdot 10^{14}}{71427^2 - \nu^2}\right) \cdot 10^{-8} + 1$$

with $[\nu] = \text{cm}^{-1}$

• reference density: $n_{\mathrm{ref}} = 2.546899 \cdot 10^{19} \ \mathrm{cm^{-3}}$

- reference: Sneep & Ubachs (2005)

- note: fixed a typo from Sneep & Ubachs (2005)

2.4 CH₄

• King factor: 1.0

• refractive index:

$$n = \left(46662. + 4.02 \cdot 10^{-6} \cdot \nu^2\right) \cdot 10^{-8} + 1$$

with $[\nu] = \mathrm{cm}^{-1}$

• reference density: $n_{\rm ref}=2.546899\cdot 10^{19}~{\rm cm}^{-3}$

• reference: Sneep & Ubachs (2005), Thalman et al. (2014)

2.5 CO₂

• King factor:

$$K = 1.1364 + 25.3 \cdot 10^{-12} \nu^2$$

• refractive index:

$$n = \left(\frac{5799.25}{128908.9^2 - \nu^2} + \frac{120.05}{89223.8^2 - \nu^2} + \frac{5.3334}{75037.5^2 - \nu^2}\right) + \frac{4.3244}{67837.7^2 - \nu^2} + \frac{0.1218145 \cdot 10^{-6}}{2418.136^2 - \nu^2}\right) \cdot 1.1427 \cdot 10^3 + 1$$

with $[\nu] = \mathrm{cm}^{-1}$

• reference density: $n_{\rm ref}=2.546899\cdot 10^{19}~{\rm cm^{-3}}$

• reference: Sneep & Ubachs (2005), Thalman et al. (2014)

• note: fixed a typo from Sneep & Ubachs (2005)

2.6 He

• King factor: 1.0

• refractive index:

$$n = \left(2283.0 + \frac{1.8102 \cdot 10^{13}}{1.5342 \cdot 10^{10} - \nu^2}\right) \cdot 10^{-8} + 1$$

with $[\nu] = \text{cm}^{-1}$

• reference density: $n_{\rm ref} = 2.546899 \cdot 10^{19} \ {\rm cm^{-3}}$

- reference: Sneep & Ubachs (2005), Thalman et al. (2014)

2.7 Ar

• King factor: 1.0

• refractive index:

$$n = \left(6432.135 + \frac{286.06021 \cdot 10^{12}}{14.4 \cdot 10^9 - \nu^2}\right) \cdot 10^{-8} + 1$$

with $[\nu] = \mathrm{cm}^{-1}$

• reference density: $n_{\rm ref} = 2.546899 \cdot 10^{19} \ {\rm cm^{-3}}$

• reference: Sneep & Ubachs (2005), Thalman et al. (2014)

$2.8 O_2$

• King factor:

$$K = 1.09 + 1.385 \cdot 10^{-11} \cdot \nu^2 + 1.448 \cdot 10^{-20} \cdot \nu^4$$

• refractive index:

$$n = \left(20564.8 + \frac{2.480899 \cdot 10^{13}}{4.09 \cdot 10^9 - \nu^2}\right) \cdot 10^{-8} + 1$$

with $[\nu] = \text{cm}^{-1}$

- reference density: $n_{\rm ref}=2.68678\cdot 10^{19}~{\rm cm}^{-3}$
- reference: Sneep & Ubachs (2005), Thalman et al. (2014)

2.9 N₂

• King factor:

$$K = 1.034 + 3.17 \cdot 10^{-12} \cdot \nu$$

• refractive index ($\nu < 21360~{\rm cm}^{-1}$):

$$n = \left(6498.2 + \frac{307.4335 \cdot 10^{12}}{14.4 \cdot 10^9 - \nu^2}\right) \cdot 10^{-8} + 1$$

• refractive index ($\nu > 21360 \text{ cm}^{-1}$):

$$n = \left(5677.465 + \frac{318.81874 \cdot 10^{12}}{14.4 \cdot 10^9 - \nu^2}\right) \cdot 10^{-8} + 1$$

with $[\nu] = cm$

- reference density: $n_{\rm ref} = 2.546899 \cdot 10^{19}~{\rm cm}^{-3}$
- reference: Sneep & Ubachs (2005), Thalman et al. (2014)

References

Cox, A. N. 2000, Allen's astrophysical quantities

Murphy, W. F. 1977, The Journal of Chemical Physics, 67, 5877

Schiebener, P., Straub, J., Sengers, J. M. H. L., & Gallagher, J. S. 1990, J. Phys. Ch. R., 19, 677

Sneep, M. & Ubachs, W. 2005, J. Quant. Spec. Radiat. Transf., 92, 293

Thalman, R., Zarzana, K. J., Tolbert, M. A., & Volkamer, R. 2014, J. Quant. Spec. Radiat. Transf., 147, 171

Vardya, M. S. 1962, ApJ, 135, 303

Wagner, W. & Kretzschmar, H.-J. 2008, International Steam Tables: Properties of Water and Steam Based on the Industrial Formulation IAPWS-IF97 (Springer-Verlag Berlin Heidelberg)