2019年重点中学分班考试数学试卷

满分: 120 分 时间: 90 分钟

2019.5

一、选择题(本题有 10个小题,每小题 3分,共 30分)

(1) 如果一元一次不等式组 x>3 的解集为 x>3,则 a 的取值范围是

D.a 3

A . a > 3 B . a 3 C . a < 3 (2) 若实数 x 满足 $x^3 + 2x^2 + 2x = -1$, 则 $x + x^2 + x^3 + \cdots + x^{99} =$

D.99

(3)如果从一卷粗细均匀的电线上截取 1米长的电线 , 称得它的质量为 a 克 , 再称得剩余电 线的质量为 b 克,那么原来这卷电线的总长度是

(4) 若实数 n 满足 $(n-46)^2 + (45-n)^2 = 2$, 则代数式 (n-46)(45-n) 的值是

A . -1

B. $-\frac{1}{2}$ C. $\frac{1}{2}$

(5)已知方程 $x^2 + (2k + 1)x + k - 1 = 0$ 的两个实数根 x_1, x_2 满足 $x_1 - x_2 = 4k - 1$,则实数 k的值为

A. -3, 0 B. 1, $-\frac{4}{3}$ C. 1, $-\frac{1}{3}$ D. 1, 0

(6) 如图,矩形 AOBC 的面积为 16,反比例函数 $y = \frac{k}{k}$ 的图象经过矩形的对角线的交点

则反比例函数的解析式是

A. $y = \frac{1}{x}$ B. $y = \frac{2}{x}$

C. $y = \frac{4}{3}$ D. $y = \frac{8}{3}$

(7)设 $a^2 + 1 = 3a$, $b^2 + 1 = 3b$, 且 $a \ne b$, 则代数式 $\frac{1}{a^3} + \frac{1}{b^3}$ 的值为

A. -24

B. -18

C. 18

D. 24

(8) 当 x 分别取值 $\frac{1}{20}$, $\frac{1}{19}$, $\frac{1}{18}$, ... $\frac{1}{3}$, $\frac{1}{2}$, 1 , 2 , 3 , ... , 18 , 19 , 20 时 , 计算代数

式 $\frac{1-x^2}{1+x^2}$ 的值,将所得的结果相加,其和等于

A . - 20

B . 0

C . 1

D . 20

(9)如图, ACB = 60, 半径为 2的 O切 BC 于点 C, 若将 O在 CB 上向右滚动,则当 滚动到 O与 CA 也相切时, 圆心 O移动的水平距离为

A . 2√3

B.4

С.

D.2

(10) 方程 $x^2 + 2xy + 3y^2 = 81$ 的整数解 (x, y) 的组数为

B. 6 C. 5

二、填空(本题有 7个小题,其中 11题6分,其余每小题 4分,共 30分)

(11)直接写出下列关于 x 的方程的根:

$$2x^{2} + 7x - 15 = 0$$
; $x(x + 1)(x + 2)(x + 3) = 24$; $x^{2} + \frac{1}{x^{2}} + x + \frac{1}{x} = 4$; $x^{2} + (2 - a)x - a + 1 = 0$;

(12)已知三个数 a, b, c 的积为负数 , 和为正数 , 且 $x = \frac{a}{|a|} + \frac{b}{|b|} + \frac{c}{|d|} + \frac{ab}{|ab|} + \frac{ac}{|ad|} + \frac{bc}{|bd|}$,

则 $ax^3 + bx^2 + cx + 1 = _____$.

(13) 若化简 1-x $-\sqrt{x^2-8x+16}$ 的结果为 2x-5,则 x 的取值范围是 _______

(14) 如图, DE 是 ABC 的中位线,点 P是 DE 的中点, CP 的延长 线交 AB 于点 Q,那么 S_{APQ}:S_{ABC} =______.

(15) 若实数 a、b 满足 b > a > 0,且 $a^2 + b^2 = 4ab$,

则
$$\frac{a-b}{a+b} =$$
______.

(17)桌面上有三颗球,相互靠在一起。已知其中两个大球的半径均为 1cm,则这三颗球分别与桌面相接触的三点构成三角形的面积为

3cm,一个小球半径 ____cm².

三、解答题(本题有 6小题,共 60分)

(18) 本题满分 8分

() 先化简 , 再求值 :
$$(1 + \frac{x}{x+1}) \div (1 - \frac{3x^2}{1-x^2}) \times \frac{1}{x-1}$$
 , 其中 x=sin 60°.

(19) 本题满分 8分

如图,在 ABC中, ACB=90°, $sinB=\frac{3}{5}$, D 是 BC上一点,DE AB 于 E, CD=DE, AC + CD = 9.

() 求 BC 的长;

()求 CE 的长.

(20)本题满分 8分

已知直线 $I_n: y = -\frac{n+1}{n} x + \frac{1}{n}$ (n 是正整数) . 当 n=1 时,直线 $I_1: y = -2x + 1$ 与 x 轴 和 y 轴分别交于点 A_1 和 B_1 ,设 A_1 OB A_2 (O 是平面直角坐标系的原点) 的面积为 A_3 ; 当 A_4 n=2 时,直线 $I_2: y = -\frac{3}{2}x + \frac{1}{2}$ 与 x 轴和 y 轴分别交于点 A_2 和 B_2 ,设 A_2 OB $_2$ 的面积为 S_2 ,..., 依此类推 ,直线 I_n 与 x 轴和 y 轴分别交于点 A_n 和 B_n , 设 ΔA_n OB_n 的面积为 S_n .

()求 A_1OB_1 的面积 S_1 ; ()求 $S_1 + S_2 + S_3 + \cdots + S_{2013}$ 的值.

(21)本题满分 12分

如图,已知抛物线 $y = \frac{1}{2}x^2 + bx + c$ 与 y 轴相交于 C , 与 x 轴相交于 A、B , 点 A 的坐 标为(2,0),点 C 的坐标为(0,−1).

- () 求抛物线的解析式;
-)点 E 是线段 AC 上一动点 , 过点 E 作 DE x 轴于点 D , 连结 DC , 当 DCE 的面 积最大时, 求点 D 的坐标;
- () 若 ABC 的外接圆 P与 y轴的另一个交点为 F,请直接写出点 F的坐标和 P 的 面积.

(22) 本题满分 12分

阅读下面的情景对话,然后解答问题:

老师:我们新定义一种三角形, 两边的平方和等于第三边平方的 2倍的三角形叫做奇异 三角形 .

小华:等腰三角形一定是奇异三角形!

小明:那直角三角形中是否存在奇异三角形呢?

- ()根据 '奇异三角形 '的定义 ,请你判断小华提出的猜想 : '等腰三角形一定是奇异三角 形"是否正确?说明理由
- ()在 Rt ABC中, ACB=90°, AB=c, AC=b, BC=a,且b>a,若 Rt ABC是 奇异三角形,求 a:b:c;
- ()如图,以 AB为斜边分别在 AB的两侧作直角三角形,且 AD=BD,若四边形 ADBC 内存在点 E,使得 AE=AD, CB=CE.

求证: ACE 是奇异三角形;

当 ACE 是直角三角形时,求 ABC 的度数.

(第 22 题)

(23) 本小题满分 12分

已知矩形 ABCD (字母顺序如图)的边长 AB=3, AD=2,将此矩形放在平面直角坐标 ,且直线 $y = \frac{3}{2} x - 1$ 系 xOy 中,使 AB 在 x 轴正半轴上,而矩形的其它两个顶点在第一象限 经过这两个顶点中的一个 .

- () 求出矩形的顶点 A、B、C、D 的坐标;
- ()以 AB 为直径作 M,经过 A、B 两点的抛物线 $y = ax^2 + bx + c$ 的顶点是 P点. 若点 P 位于 M 外侧且在矩形 ABCD 内部, 求 a 的取值范围; 过点 C 作 M 的切线交 AD 于 F 点,当 PF AB 时,试判断抛物线与 y 轴的

交点 Q 是位于直线 $y = \frac{3}{x} \times 1$ 的上方?还是下

方?还是正好落在此直线上?并说明理由

自主招生数学答案

1-10 . DADBB, CCBAB

11. (1)
$$-5, \frac{3}{2}$$
; (2)1,-4 (3) 1, $\frac{-3 \pm \sqrt{5}}{2}$; (4) $-1, a -1$

12. 1 13.
$$1 \le x \le 4$$
 14. 1:24 15. $-\frac{\sqrt{3}}{3}$ 16. $\pm \sqrt{5}$ 17. $3\sqrt{3}$

连结 AD 交 CE 于 F 点,证明 AD 垂直平分 CE,可求出 AD= 3√5 ,再证 CFD ACD CD

: AD=CF : AC
$$\frac{3}{3\sqrt{5}} = \frac{CF}{6}$$
 CF=6 $\sqrt{5}$ CE=12 $\sqrt{5}$.

20.解: (1)当 n=1 时,直线 I_1 : y = -2x + 1与 x 轴和 y 轴的交点是

$$A_1 \left(\frac{1}{2}, 0 \right)$$
 和 $B_1 \left(0, 1 \right)$ 所以 $OA_1 = \frac{1}{2}, OB_1 = 1,$ $S_1 = \frac{1}{4}$

(2) 当 n=2 时,直线 I_2 : $y = -\frac{3}{2}x + \frac{1}{2}$ 与 x 轴和 y 轴的交点是

$$A_2$$
 ($\frac{1}{3}$, 0) 和 B_2 (0, $\frac{1}{2}$)

所以
$$OA_2 = \frac{1}{3}$$
, $OB_2 = \frac{1}{2}$, $S_2 = \frac{1}{2} \times \frac{1}{3} \times \frac{1}{2} = \frac{1}{2} \times (\frac{1}{2} - \frac{1}{3})$

当 n=3 时,直线 $I_3: y_3 = -\frac{4}{3}x + \frac{1}{3}$ 与 x 轴和 y 轴的交点是

$$A_3 \left(\frac{1}{4}, 0 \right) \text{ } A_3 \left(0, \frac{1}{3} \right)$$

所以
$$OA_3 = \frac{1}{4}$$
, $OB_3 = \frac{1}{3}$, $S_3 = \frac{1}{2} \times \frac{1}{4} \times \frac{1}{3} = \frac{1}{2} (\frac{1}{3} - \frac{1}{4})$

依次类推。

$$s_n == \frac{1}{2} \left(\frac{1}{n} - \frac{1}{n+1} \right)$$

$$s_{1} + s_{2} + s_{3} + \dots + s_{2013} = \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{1}{2013} - \frac{1}{2014} \right)$$

$$s_{1} + s_{2} + s_{3} + \dots + s_{2013} = \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} - \frac{1}{2014} \right) = \frac{1}{2} \times \frac{2013}{2014} = \frac{2013}{4018}$$

21. 解:(1) 二次函数 $y = \frac{1}{2}x^2 + bx + c$ 的图像经过点 A(2,0)C(0,-1)

$$\begin{cases} 2 + 2b + c = 0 \\ c = -1 \end{cases}$$
解得: $b = -\frac{1}{2}$ $c = -1$ 二次函数的解析式为 $y = \frac{1}{2} x^2 - \frac{1}{2} x - 1$

(2)设点 D 的坐标为(m,0) (0<m<2)

$$OD=m$$
 $AD=2-m$

由 ADE AOC 得,
$$\frac{AD}{AO} = \frac{DE}{OC}$$
 $\frac{2-m}{2} = \frac{DE}{1}$ $DE = \frac{2-m}{2}$

CDE 的面积 =
$$\frac{1}{2} \times \frac{2-m}{2} \times m = -\frac{m^2}{4} + \frac{m}{2} = -\frac{1}{4} (m-1)^2 + \frac{1}{4}$$

当 m=1 时 , CDE 的面积最大

点 D 的坐标为(1,0)

(3) F(0,2),
$$S = \frac{5}{2}\pi$$

22.在Rt ABC中,
$$a^2 + b^2 = c^2$$

$$c > b > a > 0$$

 $2c^2 > a^2 + b^2$, $2a^2 < b^2 + c^2$

若 Rt ABC 为奇异三角形 ,一定有 $2b^2 = a^2 + c^2$

$$2b^2 = a^2 + (a^2 + b^2)$$

$$b^2 = 2a^2$$
 $4b = \sqrt{2}a$

$$c^2 = b^2 + a^2 = 3a^2$$

$$c = \sqrt{3}a$$

a:b:c = 1:
$$\sqrt{2}$$
: $\sqrt{3}$

在 Rt ACB 中 , AC
2
 +BC 2 = AB 2

在 Rt ADB 中 ,
$$AD^2 + BD^2 = AB^2$$

AD=BD

$$AB^{2} = AD^{2} + BD^{2} = 2AD^{2}$$

$$AC^{2} + CB^{2} = 2AD^{2}$$

$$\nabla$$
 CB = CE, AE = AD

$$AC^{2} + CE^{2} = 2AE^{2}$$

ACE 是奇异三角形

由 可得 ACE 是奇异三角形

$$AC^{2} + CE^{2} = 2AE^{2}$$

当 ACE 是直角三角形时

由(2)可得 AC: AE: CE =1:
$$\sqrt{2}$$
: $\sqrt{3}$ 或 AC: AE: CE = $\sqrt{3}$: $\sqrt{2}$: 1

$$\angle ACB = 90^{\circ}$$
 $\angle ABC = 30^{\circ}$

() 当 AC: AE: CE =
$$\sqrt{3}$$
: $\sqrt{2}$: 1时,

$$\angle ACB = 90^{\circ} \angle ABC = 60^{\circ}$$

23 解: (1)如图,建立平面直有坐标系,

矩形 ABCD 中, AB= 3, AD =2,

设 A(m 0) (m > 0), 则有 B(m + 3 0); C(m + 3 2), D(m 2);

若 C 点过
$$y = \frac{3}{2}x - 1$$
; 则 $2 = \frac{3}{2}(m + 3) - 1$,

m = -1与 m > 0 不合;

C 点不过
$$y = \frac{3}{2}x - 1$$
;

若点 D 过 y=
$$\frac{3}{2}$$
 x - 1 , 则 2= $\frac{3}{2}$ m - 1, m=2,

A (2, 0), B(5,0), C(5,2), D(2,2);

(2) M以AB为直径, M(3.50),

由于 $y = ax^2 + bx + c$ 过 A(2, 0) 和 B(5,0) 两点,

$$\begin{cases} 0 = 4a + 2b + c & b = -7a \\ 0 = 25a + 5b + c & c = 10a \end{cases}$$

 $y = ax^2 - 7ax + 10a$

(也可得: $y=a(x-2)(x-5)=a(x^2-7x+10)=ax^2-7ax+10a$)

$$y = a(x - \frac{7}{2})^2 - \frac{9}{4}a;$$

抛物线顶点 $P(\frac{7}{2}, -\frac{9}{4}a)$

顶点同时在 M 内和在矩形 ABCD 内部,

$$\frac{3}{2} < -\frac{9}{4}a < 2$$
, $-\frac{8}{9} < a < -\frac{2}{3}$.

设切线 CF 与 M 相切于 Q , 交 AD 于 F , 设 AF = n, n > 0;

AD、BC、CF 均为 M 切线, CF=n+2, DF=2-n; 在 Rt△DCF 中, DF²+DC²=CF²;

$$3^2 + (2 - n)^2 = (n + 2)^2$$
, $n = \frac{9}{8}$, $F(2, \frac{9}{8})$

当 PF AB 时,P 点纵坐标为 $\frac{9}{8}$; $-\frac{9}{4}a = \frac{9}{8}$, $a = -\frac{1}{2}$;

抛物线的解析式为: $y=-\frac{1}{2}x^2+\frac{7}{2}x-5$

抛物线与 y轴的交点为 Q(0,-5),

又直线
$$y = \frac{3}{2}x - 1$$
 与 y 轴交点(0, -1);

Q 在直线
$$y = \frac{3}{2}x - 1$$
下方.

