2025 Vill. Mat A2 - 2. gyakorlat

(Belső szorzat, lineáris leképezés mátrixa, mátrixok)

1. Ha I = [a, b] korlátos és zárt intervallum és $f, g : I \to \mathbf{R}$ integrálható valós függvények, akkor az f és q belső szorzatán vagy skaláris szorzatán az

$$\langle f | g \rangle \stackrel{\text{def.}}{=} \int_{a}^{b} f(x) g(x) dx$$

műveletet értjük. Számítsuk ki az alábbi szorzatokat!

a) $\langle x \mid \sin(2x) \rangle$ $I = [0, \pi]$

b) $\langle \cos(x^3) | x^2 \rangle I = [0, 1]$

- a) $\langle x \mid \sin(2x) \rangle$ $I = [0, \pi]$ b) $\langle \cos(x^*) \mid x^* \rangle$ $I = [0, \pi]$ c) $\langle \cos x \mid \sin x \rangle$ $I = [0, \pi]$ d) $\langle \cos 3x \mid \cos 3x \rangle$ $I = [0, \pi]$ e) $\langle \cos x \mid \cos 3x \rangle$ $I = [0, \pi]$ HFf) $\langle \cos 4x \mid \cos 3x \rangle$ $I = [0, \pi]$

$$\mathbf{HF}g$$
) $\langle \cos 5x \mid \cos 5x \rangle$ $I = [0, \pi]$ $\mathbf{HF}h$) $\langle x^4 \mid \sin(x^5) \rangle$ $I = [0, 1]$

HFh)
$$\langle x^4 | \sin(x^5) \rangle$$
 $I = [0, 1]$

Használjuk fel a

$$\sin(2x) = 2\sin x \cos x, \cos^2 x = \frac{1}{2}(1 + \cos 2x), \cos x \cos y = \frac{1}{2}(\cos(x - y) + \cos(x + y))$$

trigonometrikus azonosságokat!

Tanultuk, hogy egy $A: \mathbb{R}^n \to \mathbb{R}^n$ lineáris leképezés mátrixa az $\mathbf{e}_1 = (1, 0, 0, ...), \mathbf{e}_2 =$ $(0,1,0,\ldots),\ldots$ sztenderd bázisban

$$\begin{bmatrix} | & | & \dots & | \\ [A(\mathbf{e}_1)] & [A(\mathbf{e}_2)] & \dots & [A(\mathbf{e}_n)] \\ | & | & \dots & | \end{bmatrix}$$

ahol $[A(\mathbf{e}_i)]$ szintén a sztenderd bázisban az i-edik bázisvektor A általi képének oszlopmátrixa. Határozza meg az alábbi leképezések mátrixát a sztenderd bázisban!

- a) $A = 60^{\circ}$ -os forgatás a síkon
- b) $B = t \ddot{u} k r \ddot{o}z \acute{e}s$ síkbeli x tengelyre
- C = merőleges vetítés a síkbeli y tengelyre
- d) AB, CA, AC, BC, ABC, BCA

ahol AB a leképezések egymásutánja, mint a $v \mapsto A(B(v))$ függvénykompozíció.

3. Legyen
$$\mathbf{A} = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}$$
, $\mathbf{B} = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$, $\mathbf{C} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$. Melyik igaz?

a)
$$(A+B)^2 = A^2 + 2AB + B^2$$

a)
$$(A+B)^2 = A^2 + 2AB + B^2$$
, b) $(B+C)(B-C) = B^2 - C^2$, hf.:) $(A+I)^2 = A^2 + 2A + I$

hf.:)
$$(A+I)^2 = A^2 + 2A + I$$

iMSc. Igazoljuk, hogy a $\{\cos x, \cos 2x, \cos 3x, ...\}$ függvényrendszer ortogonális a $[0,2\pi]$ intervallumon, abban az értelmeben, hogy minden $m,n\in \mathbb{Z}^+$ -ra $\langle \cos mx \mid \cos nx \rangle = c \cdot \delta_{mn}$, ahol c egy nem nulla konstans, a belső (skaláris) szorzást a $[0,2\pi]$ intervallumon vesszük és $\delta_{mm}=1$, és $\delta_{mn}=0$, ha $n\neq m$ (a Kronecker-féle delta függvény). Igazoljuk, hogy lineárisan független is!