可測基数ノート

でぃぐ

2023年2月4日

概要

本稿は可測基数についてのノートである.

目次

- 1 可測基数の初歩および Ulam の定理の証明 1
 2 正規フィルター 5
 3 可測基数の存在と実数値可測基数の存在の無矛盾等価性 5
 4 ジェネリック超冪 5
- 1 可測基数の初歩および Ulam の定理の証明
- **定義 1.1.** (1) 基数 κ が**可測基数**であるとは、 κ 上の κ -完備な非単項超フィルターが存在することを言う.
 - (2) 基数 κ が**実数値可測基数**であるとは、 κ 上の非自明な κ 完備測度が存在することを言う.

定義より、可測基数は実数値可測基数である。

補題 1.2. κ を次を満たす最小の基数とする:非単項 σ -完備な超フィルターが存在する.U をそのような超フィルターの一つとする.このとき,U は κ -完備である.

証明. U が κ -完備でないと仮定する. すると κ の分割 $\{X_\alpha: \alpha<\gamma\}$ があって, $\gamma<\kappa$ かつ各 X_α は U の意味で小さい. 関数 $f:\kappa\to\gamma$ を次で定める:

$$f(x) = \alpha \iff x \in X_{\alpha}.$$

つまり,各入力 $x<\kappa$ について,x が何番目のピースに属しているかを返す関数である. γ 上の超フィルター D を

$$D = \{ Z \subseteq \gamma : f^{-1}(Z) \in U \}$$

で定める. U が σ 完備なので,D も σ 完備である.D は非単項でもある:なぜなら,各 $\alpha<\gamma$ について $f^{-1}\{\alpha\}=X_{\alpha}\not\in U$ より $\alpha\not\in D$ だからである.したがって,D は γ 上の単項 σ -完備な超フィルターだが, $\gamma<\kappa$ より,これは κ の最小性に矛盾.

補題 1.3. 可測基数は到達不能基数である.

証明. κ を可測基数とする.

 κ の正則性を示す. κ 上の κ -完備な非単項超フィルター U を取る. κ が特異だとすると, κ の共終列 $\langle \lambda_i : i < \operatorname{cf}(\kappa) \rangle$ でおのおのの λ_i は κ 未満なものが取れる. 今, $\kappa = \bigcup_{i < \operatorname{cf}(\kappa)} \lambda_i$ である. 左辺 κ は U に属するが,右辺はおのおのの λ_i が U の意味で小さく,その $\operatorname{cf}(\kappa) < \kappa$ 個の和集合だから U の意味で小さい.矛盾した.なお,ここで,おのおのの λ_i が小さいのは各 1 点集合が小さく, λ_i はその $\lambda_i < \kappa$ 個の和集合として書けるからである.

 κ の強極限性を示す.背理法で,ある $\lambda<\kappa$ について, $2^{\lambda}\geq\kappa$ だと仮定する.集合 $S\subseteq\{0,1\}^{\lambda}$ で $|S|=\kappa$ となるものを取る.集合 S 上の κ -完備な非単項超フィルター U を取る.各 $\alpha\in\lambda$ について集合 $X_{\alpha}\subseteq S$ を

$$\{f\in S: f(\alpha)=0\}$$
 もしくは $\{f\in S: f(\alpha)=1\}$

でUに属する方とする. 集合Xを

$$X = \bigcap_{\alpha \le \lambda} X_{\alpha}$$

で定めると $X \in U$ であるが、明らかに X は 1 点集合である.これは U の非単項性に矛盾. \square

- **補題 1.4.** (1) κ を次を満たす最小の基数とする: κ 上の非自明かつ σ 加法的な測度が存在する. μ をそのような測度とする. このとき測度 0 集合のイデアル I_{μ} は κ 完備である.
 - (2) κ を次を満たす最小の基数とする: κ 上の σ 完備かつ σ 飽和的イデアルが存在する. I をそのようなイデアルとする. このとき I は κ 完備である.

証明. (1). I_{μ} が κ 完備ではないと仮定する.すると測度 0 集合の族 $\{X_{\alpha}: \alpha<\gamma\}$ で, $\gamma<\kappa$ かつ,それらの和集合 $X=\bigcup_{\alpha<\gamma}X_{\alpha}$ は測度正なものがとれる. X_{α} たちは互いに素であると仮定しても良い. $f:X\to\gamma$ を

$$f(x) = \alpha \iff x \in X_{\alpha}$$

と定め、 γ 上の測度 ν を

$$\nu(Z) = \frac{\mu(f^{-1}(Z))}{\mu(X)}$$

と定める. ν は σ 加法的である. また, ν は非自明である, なぜなら, 各 $\alpha<\gamma$ について $\nu(\{\alpha\})=\frac{\mu(X_\alpha)}{\mu(X)}=0$ だからである. これは κ の最小性に反する.

補題 1.5. μ を集合 S 上の測度とし, I_{μ} を測度 0 集合のイデアルとする.このとき,もし I_{μ} が κ 完備 なら, μ は κ 完備である.

証明. $\gamma < \kappa$ とし、 $\langle X_\alpha : \alpha < \gamma \rangle$ を互いに素な S の部分集合の族とする. X_α たちが互いに素なので、 そのうちたかだか可算個が正の測度を持つ. よって、

$$\{X_{\alpha} : \alpha < \gamma\} = \{Y_n : n \in \omega\} \cup \{Z_{\alpha} : \alpha < \gamma\}$$

と書くことができる.ここに各 Z_{α} は測度0集合.よって,

$$\mu(\bigcup_{\alpha < \gamma} X_{\alpha}) = \mu(\bigcup_{n \in \omega} Y_n) + \mu(\bigcup_{\alpha < \gamma} Z_{\alpha})$$

を得る. μ が σ 加法的なので,

$$\mu(\bigcup_{n\in\omega}Y_n)=\sum_{n\in\omega}\mu(Y_n)$$

である. また, I_{μ} が κ 完備なので,

$$\mu(\bigcup_{\alpha<\gamma} Z_{\alpha}) = 0$$

である. 以上より,

$$\mu(\bigcup_{\alpha<\gamma}X_\alpha)=\sum_{\alpha<\gamma}\mu(X_\alpha)$$

を得る.

- **補題 1.6.** (1) ある集合上の原子なしで非自明な σ 加法的な測度が存在するとき,ある基数 $\kappa \leq 2^{\aleph_0}$ 上に非自明な σ 加法的な測度が存在する.
 - (2) I を集合 S 上の σ 完備 σ 飽和的イデアルとする.このとき,ある $Z\subseteq S$ に対して $I\upharpoonright Z=\{X\subseteq Z:X\in I\}$ が極大イデアルであるか,または, σ 完備 σ 飽和的イデアルがある $\kappa\leq 2^{\aleph_0}$ 上に存在するかのどちらかが成り立つ.

証明. (1). μ をそのような測度とする. S の測度正な部分集合からなり,逆向きの包含関係で順序付けられた木 T を構成する. T の根は S である. 各 $X \in T$ について,X の測度正な集合への分割 $X = Y \cup Z, Y \cap Z = \emptyset$ を取り,この 2 つを X の直後の元とする. α が極限順序数のとき T の第 α レベルにはすべての共通部分 $X = \bigcap_{\xi < \alpha} X_{\xi}$ であって, $\langle X_{\xi} : \xi < \alpha \rangle$ は $T \upharpoonright \alpha$ の増大鎖で X_{ξ} は第 ξ レベルの元,X は測度正なものたちを置く.

T のどの枝も可算である:なぜなら、 $\langle X_{\xi}: \xi < \alpha \rangle$ が枝ならば、 $\langle X_{\xi} \setminus X_{\xi+1}: \xi < \alpha \rangle$ は測度正な集合の互いに素な族となるからである.

同様に、T のどのレベルも可算であることも分かる. よって、T はたかだか 2^{\aleph_0} 個の極大枝を持つ (各 $\alpha < \omega_1$ について高さ α の極大枝の個数はたかだか 2^{\aleph_0} . よってそれらの ω_1 個の和集合でたかだか 2^{\aleph_0} 個となる).

 $\{b_{\alpha}: \alpha < \kappa\}, \kappa \leq 2^{\aleph_0}$ をすべての極大枝 $b = \{X_{\xi}: \xi < \gamma\}$ であって、 $\bigcap_{\xi < \gamma} X_{\xi}$ が非空なものの枚挙とする。各 $\alpha < \kappa$ について $Z_{\alpha} = \bigcap b_{\alpha}$ とおく。 $\{Z_{\alpha}: \alpha < \kappa\}$ は S の測度 0 集合への分割となる(Z_{α} が測度 0 でないとすると、一個高さを上げることができ枝の極大性に反する;また、互いの異なる極大枝 b_{α} と b_{β} はどこかで枝分かれしているはずだから,後続ステップでの構成の仕方より, $X_{\alpha} \cap X_{\beta} = \emptyset$ を得る。; $s \in S$ を任意に取るとき,s が入っている集合を根から追跡することにより,ある X_{α} に s が入っていることがわかる)。あとは $f: S \to \kappa$ を $f(x) = \alpha \iff x \in Z_{\alpha}$ とおき, κ 上の測度 ν を $\nu(Z) = \mu(f^{-1}(Z))$ とおけば, ν は非自明な σ 加法的測度である.

系 1.7. κ が実数値可測基数ならば、 κ は可測基数か、 $\kappa \leq 2^{\aleph_0}$ である.より一般に、 κ が κ 完備 σ 飽和的イデアルを持つと、 κ は可測基数であるか、 $\kappa \leq 2^{\aleph_0}$ である.

証明. 補題 1 の証明より, μ が S 上の原子なしの測度なら,S のたかだか 2^{\aleph_0} 個への測度 0 個の分割が存在することがわかる.つまり, μ は $(2^{\aleph_0})^+$ 加法的ではない.したがって,原子なしの κ 加法的測度を κ が持つとき, $\kappa \leq 2^{\aleph_0}$ である (結論の否定を取ると, $\kappa \geq (2^{\aleph_0})^+$ だが,これと κ 加法性より $(2^{\aleph_0})^+$ 加法性が出るから).後半の主張も同様.

補題の(1)の主張の結論には「原子なし」が含まれていなかったが、これは実際には「原子なし」と

結論付けられる. なぜなら,原子があると κ は可測基数となるが,補題 1.3 より,それは $\kappa \leq 2^{\aleph_0}$ と相容れないからだ.

定義 1.8. (\aleph_1, \aleph_0) -Ulam 行列とは、 ω_1 の部分集合の族 $\langle A_{\alpha,n}: \alpha \in \omega_1, n \in \omega \rangle$ であって、次次の 2 条件を満たすものである。

- (1) 各 $n \in \omega$ と異なる $\alpha, \beta \in \omega_1$ について $A_{\alpha,n} \cap A_{\beta,n} = \emptyset$ である。
- (2) 各 $\alpha \in \omega_1$ について、集合 $\omega_1 \setminus \bigcup_{n \in \omega} A_{\alpha,n}$ はたかだか可算集合である。

補題 1.9. (\aleph_1,\aleph_0) -Ulam 行列は存在する。

証明. 各 $\xi \in \omega_1$ に対して $f_{\xi}: \omega \to \omega_1$ を $\xi \subseteq \operatorname{ran}(f_{\xi})$ なるものとする。集合 $A_{\alpha,n}$ を

$$\xi \in A_{\alpha,n} \iff f_{\xi}(n) = \alpha$$

と定める。

 $\xi \in A_{\alpha,n} \cap A_{\beta,n}$ なら $\alpha = f_{\xi}(n) = \beta$ となるので、Ulam 行列の条件 (1) が成り立っていることがわかる。

 $\alpha \in \omega_1$ とする。 $\xi > \alpha$ に対して、 f_ξ の取り方より、 $f_\xi(n) = \alpha$ となる $n \in \omega$ が存在する。よって、

$$[\alpha+1,\omega_1)\subseteq\bigcup_{n\in\omega}A_{\alpha,n}$$

なので条件(2)も成り立っている。

演習問題 1.10. (\aleph_1, \aleph_0) -Ulam 行列の定義において、「各行は可算集合を除いてほとんど ω_1 を覆っている」という条件を「各行は ω_1 を (完全に) 覆っている」と変更したバージョンは存在しないことを示せ。

補題 1.11. ω_1 上の σ 完備 σ 飽和的イデアルは存在しない。特に ω_1 上の非自明 σ 加法的測度は存在しない。

証明. そのようなイデアル I が存在したと仮定する。また、 $\langle A_{\alpha,n}:\alpha\in\omega_1,n\in\omega\rangle$ を (\aleph_1,\aleph_0) -Ulam 行列とする。I の σ 完備性と Ulam 行列の条件 (2) より、各 α について自然数 n_α があって、 $A_{\alpha,n}$ は

I-正である。したがって、鳩の巣原理より、 $W\subseteq \omega_1,\,|W|=leph_1,\,n\in\omega$ があって、すべての $\alpha\in W$ について $n_\alpha=n$ である。すると $\{A_{\alpha,n}:\alpha\in W\}$ は互いに素 (by Ulam 行列の条件(1)な非可算な I-正集合の族となる。これは I の σ 飽和性に矛盾する。

以上の ω_1 を一般の後続基数に一般化できる。証明は同様なので省略する。

定義と補題 1.12. λ を基数とする。

- (1) (λ^+, λ) -Ulam 行列とは、 λ^+ の部分集合の族 $\langle A_{\alpha,\eta} : \alpha \in \lambda^+, \eta \in \lambda \rangle$ であって、次次の 2 条件を満たすものである。
 - (a) 各 $\eta \in \lambda$ と異なる $\alpha, \beta \in \lambda^+$ について $A_{\alpha,\eta} \cap A_{\beta,\eta} = \emptyset$ である。
 - (b) 各 $\alpha \in \lambda^+$ について、集合 $\lambda^+ \setminus \bigcup_{\eta \in \lambda} A_{\alpha,\eta}$ は λ 以下の濃度を持つ。
- (2) (λ^+, λ) -Ulam 行列は存在する。
- (3) λ^+ 上の λ^+ 完備 σ 飽和的イデアルは存在しない。

系 1.13. 任意の実数値可測基数は、弱到達不能基数である。

証明. κ を実数値可測基数とする。正則なことは補題 1.3 と同様の証明でよい。後続基数なことは、定義と補題 1.12 から分かる。

- 2 正規フィルター
- 3 可測基数の存在と実数値可測基数の存在の無矛盾等価性
- 4 ジェネリック超冪