第二章 变压器

- 2.1 变压器的结构和额定值
- 2.2 变压器空载运行
- 2.3 变压器的负载运行
- 2.4 变压器的基本方程和等效电路
- 2.5 等效电路参数的测定
- 2.6 三相变压器
- 2.7 标幺值
- 2.8 变压器运行性能

2.1 变压器的基本结构和额定值

一、变压器的基本结构

变压器的基本结构

铁心 绕组 其他部件

心式变压器

结构 心柱被绕组所包围

特点 心式结构的绕组和绝缘装配 比较容易, 所以电力变压器 常常采用这种结构。

特点 铁心包围绕组的顶面、底面和侧

结构 壳式变压器的机械强度较好,常 用于低压、大电流的变压器或小 容量电讯变压器。

S9系列10kV配电变压器

SG(H)B10型H级绝缘干式变压器

绕组

定义 变压器的电路部分,用纸包或纱包的绝缘扁线或圆线绕成。

一次绕组 输入电能的绕组

二次绕组 输出电能的绕组

同异点 一次和二次绕组具有不同的匝数、电压和电流,其中电压较高的绕组称为高压绕组,电压较低的称为低压绕组。

强调一次和二次绕组的划分并不是根据电压等级

同心式

结构 同心式绕组的高、低压绕组同心地套装在心柱上

特点 同心式绕组结构简单、制造方便,国产电力变压器 均采用这种结构。

结构

交迭式

交迭式绕组的高、低压绕组沿心柱高度方向互相交迭地放置,交迭式绕组用于特种变压器中。

交迭式可以有效的减少漏磁。

其他部件

典型的油浸电力变压器

器身 油箱 变压器 散热器 绝缘套管 分接开关 继电保护装置等部件

二、额定值

额定容量 在铭牌规定的额定状态下变压器输出视在功率的保证值

额定电压 铭牌规定的各个绕组在空载、指定分接开关位置下的端电压。

额定电流 根据额定容量和额定电压算出的电流称为额定电流。

额定频率 我国的标准工频规定为50赫(Hz)。

强调 额定电压是空载电压

2.2 变压器的空载运行

• 定义:变压器一次绕组接交流电源,二次绕组开路,负载电流为0时的运行。

• 正方向的规定

正方向的规定

- 在变压器和交流电机中,电压、电流、电动势和磁通等物理量之间的大小及方位都随时间改变, 为了正确地表达它们之间的数量和相位的关系, 必须首先规定正方向。
- 正方向原则上可以任意规定,正方向规定的不同,并不 影响各物理量之间的性质。
- 正方向规定不同,列出的方程和向量图不同。
- 通常采用习惯的方式规定正方向, 称为惯例。

正方向的规定原则

- 在负载支路电流的正方向和电压降的正方向一致,而在电源支路, 电流的正方向与电源电动势的正方向一致
- 磁通的正方向和产生它的电流的正方向符合右手螺旋法则,就是说正电流产生正磁通。
- 在电磁感应中,磁通的正方向和由它感应的电动势的正方向符号右手螺旋法则。

特别强调

- 电压降 и1,и2 的正方向表示电位由高到低
- 电动势 e_1,e_2 的正方向表示电位由低到高
- · 因此 -e₁就表示电压降的含义

规定电压的正方向A到B 规定电流的正方向是B到A那么正方向是表明电流从B到A为正,而不是指电流从B到A还是电流从A到B

如果加上直流电压 U_{AB} =10V, 电阻为1 Ω 则此时的电流是 - 10A。 表明此时电流是从A到B

2.2 变压器的空载运行

单相变压器空载运行的示意图

2.2 变压器的空载运行

1.物理情况

$$e_1 = -N_1 \frac{d\phi}{dt}$$

$$\boldsymbol{e}_2 = -\boldsymbol{N}_2 \frac{\boldsymbol{d\phi}}{\boldsymbol{dt}}$$

$$\frac{\boldsymbol{e}_1}{\boldsymbol{e}_2} = \frac{\boldsymbol{N}_1}{\boldsymbol{N}_2}$$

2.电压方程

$$|u_1 = i_{10}R_1 + (-e_1) = i_{10}R_1 + N_1 \frac{d\phi}{dt}|$$

$$u_{20} = e_2 = -N_2 \frac{d\phi}{dt}$$

忽略了漏磁!

3. 各量之间的电磁关系:

$$\dot{m U}_1 \longrightarrow \dot{m I}_0 \longrightarrow \dot{m F}_0 = N_1 \dot{m I}_0 \longrightarrow \dot{m E}_1$$
 $\dot{m E}_2$
 $\dot{m E}_{1\sigma} \longrightarrow \dot{m E}_{1\sigma}$
考虑漏磁

4.变压器的电压比及变压原理

$$\left|\frac{\boldsymbol{u}_1}{\boldsymbol{u}_{20}}\right| \approx \frac{\boldsymbol{e}_1}{\boldsymbol{e}_2} = \frac{\boldsymbol{N}_1}{\boldsymbol{N}_2} = \boldsymbol{k}$$

变压原理: k就称为变压器的电压比。空载运行时,变压器一次绕组与二次绕组的电压比就等于一次、二次绕组的匝数比。因此要使一次和二次绕组具有不同的电压,只要使它们具有不同的匝数即可。

二、主磁通和激磁电流

1. 主磁通

通过铁心并与一次、二次绕组相交链的磁通

设:
$$\phi = \Phi_{\rm m} \sin \omega t$$

$$|\mathcal{D}| : e = -N \frac{d\phi}{dt} = 2\pi f N \Phi_{\text{m}} \sin(\omega t - 90^{\circ})$$

$$= E_{\text{m}} \sin(\omega t - 90^{\circ}) = \sqrt{2} E \sin(\omega t - 90^{\circ})$$

$$E = \frac{2\pi fN}{\sqrt{2}}\Phi_{\rm m} = \frac{4.44 \, fN}{\Phi_{\rm m}}\Phi_{\rm m}$$
 $\dot{E} = -j4.44 \, fN\dot{\Phi}_{\rm m}$

磁通与感应电势之间的幅值和相位关系!

二、主磁通和激磁电流

1. 主磁通

$$U_1 \approx E_1 = 4.44 f N_1 \Phi_{\rm m}$$

(2-8)

问题: 1台50Hz的变压器接到60Hz的电源上空载运行时,若额定电压不变,问激磁电流、铁耗会怎么变化

2. 激磁电流

产生主磁通所需要的电流

$$ar{I}_{10} = ar{I}_{
m m}$$
 。 $ar{I}_{
m m}$ 。 $ar{E}_{
m m}$

变压器的空载相量图

空载电流

磁化电流

激磁电流 = 空载电流

2. 激磁电流 当磁通为正弦波,激磁电流的波形

(1) 磁路不饱和, 磁化曲线处于膝点以下, 磁化曲线 是直线段

(2) 磁路饱和

铁心的磁化曲线

磁路饱和时当磁通为正弦波时 磁化电流成为尖顶波

采用傅氏级数分解,将激磁电流的尖顶波分解成基波及3、5、7等 次谐波,除基波外,以3次谐波的幅值最大,也就是说为了建立正弦 波的主磁通,由于导磁材料磁化曲线的非线性关系,空载电流中必 然含有3次谐波成分。

三、激磁阻抗

$$egin{aligned} oldsymbol{\phi} &= N_1 i_{\mu} \cdot ec{\Lambda}_{\mathrm{m}} \ e_1 &= -N_1 rac{d \phi}{dt} = -N_1 rac{d (N_1 i_{\mu} \cdot ec{\Lambda}_{\mathrm{m}})}{dt} \ &= -N_1^2 ec{\Lambda}_{\mathrm{m}} rac{d i_{\mu}}{dt} = -L_{1\mu} rac{d i_{\mu}}{dt} \end{aligned}$$

$$\dot{E}_{1} = -j\omega L_{1\mu}\dot{I}_{\mu} = -j\dot{I}_{\mu}X_{\mu}$$

$$\dot{I}_{\mu} = -\frac{\dot{E}_{1}}{jX_{\mu}}$$

电抗正比于频率、 匝数的平方和磁导

分析饱和程度增加磁化电抗的变化

称为变压器的磁化电抗,它是表征铁心磁化性能的一个参数

三、激磁阻抗

另外铁耗电流 \dot{I}_{Fe} 它是一个有功电流,与 电动势 $-\dot{E}_1$ 同相

$$\dot{E}_1 = -\dot{I}_{\rm Fe} R_{\rm Fe}$$

$$\dot{I}_{\mathrm{Fe}} = -\frac{\dot{E}_{1}}{R_{\mathrm{Fe}}}$$

 R_{Fe} 称为铁耗电阻,它是表 征铁心损耗的一个参数

$$\dot{E}_1 = -j\dot{I}_{\rm m}Z_{\rm m}$$

式中, $Z_m=R_m+jX_m$ 称为变 压器的激磁阻抗,它是表 征铁心磁化性能和铁心损 耗的一个综合参数;

强调 Z_m不是常数,而是随着工作点的饱和程度的增加而减小

变压器的空载运行-总结

空载电流:

1)作用和组成

一方面: 用来励磁, 建立磁场-----无功分量

二方面: 供变压器空载损耗-----有功分量

2) 性质和大小

性质: 主要是感性无功性质----也称励磁电流;

大小:与电源电压和频率、线圈匝数、磁路材质及几何尺寸有关。

2.3变压器的负载运行

变压器的一次绕组接到交流电源,二次绕组接到负载阻抗时,二次绕组中便有电流流过,这种情况称为变压器的负载运行。

- (1)空载时电磁关系;
- (2)从空载到负载的变化;
- (3)前后磁通的变化。

讨论

 i_1 =10A, i_2 =0, N_1 =10匝, N_2 为5匝时磁路中的磁通为10WB。 当 i_2 =-5A的时候,要保持磁通不变, i_1 应为多少安培?

2.3变压器的负载运行

一、磁动势平衡和能量传递

1. 磁动势平衡关系

$$i_{10}=i_{\mathrm{m}}$$
 $i_{1}=i_{\mathrm{m}}+i_{1\mathrm{L}}$

前后磁通不变

$$N_1 i_{1L} + N_2 i_2 = 0$$

$$U_1 \approx E_1 = 4.44 \, f N_1 \Phi_{\rm m}$$

$$\boldsymbol{i}_{1L} = -\frac{\boldsymbol{N}_2}{\boldsymbol{N}_1} \boldsymbol{i}_2$$

2. 能量传递

表示二次绕组向负载输出的电功率

$$\frac{e_1}{e_2} = \frac{N_1}{N_2}$$

$$oldsymbol{i}_{ ext{1L}} = -rac{oldsymbol{N}_2}{oldsymbol{N}_1}oldsymbol{i}_2$$

上式说明,通过一次、二次绕组的磁动势平衡和电磁感应关系,一次绕组从电源吸收的电功率,通过耦合磁场为媒介,就传递到二次绕组,并输出给负载.这就是变压器进行能量传递的原理。

2. 能量传递

表示二次绕组向负载输出的电功率

变压器负载运行,通过电磁感应关系,一次、二次绕组电流紧密的联系在一起。 i2的增加或减小,必然同时引起i1的增加或减小。相应地,二次侧向负载输出的功率增加或者减小时,一次侧从电网吸收的功率必然同时增加或者减小。

二、磁动势方程

$$N_1 i_1 + N_2 i_2 = N_1 i_{\rm m}$$
 (2-18)

正常负载时, i₁和i₂都随时间正弦变化, 此时磁动势方程可用复数表示为:

$$N_1 \dot{I}_1 + N_2 \dot{I}_2 = N_1 \dot{I}_{\rm m}$$
(2-19)

$$\dot{F}_1 + \dot{F}_2 = \dot{F}_{\rm m}$$

三、漏磁通和漏磁电抗

漏磁通

在实际变压器中,除了通过铁心、并与一次和二次绕组相交链的主磁通 ϕ 之外,还有少量仅与一个绕组交链且主要通过空气或油而闭合的漏磁通。

$$e_{1\sigma} = -N_1 \frac{d\phi_{1\sigma}}{dt} = -L_{1\sigma} \frac{di_1}{dt}$$

$$e_{2\sigma} = -N_2 \frac{d\phi_{2\sigma}}{dt} = -L_{2\sigma} \frac{di_2}{dt}$$

(2-20)

漏磁电感

$$L_{1\sigma} = \frac{N_{1}\phi_{1\sigma}}{i_{1}} = \frac{N_{1}(N_{1}i_{1} \cdot \Lambda_{1\sigma})}{i_{1}} = N_{1}^{2}\Lambda_{1\sigma}$$

$$L_{2\sigma} = \frac{N_{2}\phi_{2\sigma}}{i_{2}} = \frac{N_{2}(N_{2}i_{2} \cdot \Lambda_{2\sigma})}{i_{2}} = N_{2}^{2}\Lambda_{2\sigma}$$

$$(2-21)$$

漏磁电抗

$$\dot{E}_{1\sigma} = -j\omega L_{1\sigma}\dot{I}_{1} = -jX_{1\sigma}\dot{I}_{1}
\dot{E}_{2\sigma} = -j\omega L_{2\sigma}\dot{I}_{2} = -jX_{2\sigma}\dot{I}_{2}$$
(2-22)

 $X_{1\sigma}$ 和 $X_{2\sigma}$ 分别称为一次和二次绕组的漏磁电抗 $X_{1\sigma} = \omega L_{1\sigma}$, $X_{2\sigma} = \omega L_{2\sigma}$ 漏抗是表征绕组漏磁效应的一个参数

问题:一次侧漏感与磁化电感数值上如何比较?

主磁通和漏磁通比较

项目	主磁通	漏磁通
路径	经过铁心闭合,同时交链一 次和二次绕组	只交链一侧绕组, 经一侧绕组周 围的空间闭合
数量	99.8%	0.1-0.2%
性质	非线性	线性
作用	起着传递能量的作用	起电压降的作用,不传递能量
铁耗	产生铁耗	主要是非导磁材料构成磁路,近 似认为不产生铁耗

按照磁路性质的不同,把磁通分成主磁通和漏磁通两部分,这是分析变压器和旋转电机的重要方法之一

2.4 变压器的基本方程和等效电路

一、变压器的基本方程

根据基尔霍夫第二定律,即可写出一次和二次侧的瞬时值电压方程为

$$u_1 = i_1 R_1 + L_{l\sigma} \frac{di_1}{dt} - e_1$$

$$e_2 = i_2 R_2 + L_{2\sigma} \frac{di_2}{dt} + u_2$$

相应的相量形式

$$\dot{U}_{1} = \dot{I}_{1}(R_{1} + jX_{1\sigma}) - \dot{E}_{1} = \dot{I}_{1}Z_{1\sigma} - \dot{E}_{1}$$
(2-24)

$$\dot{\boldsymbol{E}}_{2} = \dot{\boldsymbol{I}}_{2}(\boldsymbol{R}_{2} + j\boldsymbol{X}_{2\sigma}) + \dot{\boldsymbol{U}}_{2} = \dot{\boldsymbol{I}}_{2}\boldsymbol{Z}_{2\sigma} + \dot{\boldsymbol{U}}_{2}$$

(2-23)

变压器的基本方程为:

$$\dot{\boldsymbol{U}}_1 = \dot{\boldsymbol{I}}_1 \boldsymbol{Z}_{1\sigma} - \dot{\boldsymbol{E}}_1$$

$$\dot{\boldsymbol{E}}_{2} = \dot{\boldsymbol{I}}_{2}\boldsymbol{Z}_{2\sigma} + \dot{\boldsymbol{U}}_{2}$$

$$\frac{\dot{\boldsymbol{E}}_1}{\dot{\boldsymbol{E}}_2} = \boldsymbol{k}$$

$$N_1 \dot{I}_1 + N_2 \dot{I}_2 = N_1 \dot{I}_{\rm m}$$

$$\dot{\boldsymbol{E}}_{1} = -\dot{\boldsymbol{I}}_{\mathrm{m}}\boldsymbol{Z}_{\mathrm{m}}$$

(2-25)

二、变压器的等效电路

变压器参数的归算(折算)

由于一次和二次绕组的匝数不等,则一次、二次绕组的感应电动势和电流幅值相差很大 , 这就给分析变压器工作特性增加了困难。

为了克服这些困难,常用一假设的绕组来代替其中一个绕组,使之成为变比为1的变压器,这样就可以把一次、二次绕组联成一个等效电路,从而大大简化变压器的分析计算。。

(A) 方法

通常是把二次绕组归算到一次绕组,也就是假想把二次 绕组的匝数变换成一次绕组的匝数,而不改变一次和二次绕 组原有的电磁关系。

二次绕组原匝数:

二次绕组归算匝数:

 N_2

 N_1

(B) 原则

归算前后二次绕组的磁动势保持不变,则一次绕组将从电网吸收同样大小的功率和电流,并有同样大小的功率传递给二次绕组。

(1) 电流的归算: 磁动势不变

$$N_1\dot{I}_2' = N_2\dot{I}_2$$

归算后磁动势 归算前磁动势

$$\dot{\boldsymbol{I}}_{2}' = \frac{N_{2}}{N_{1}} \dot{\boldsymbol{I}}_{2} = \frac{1}{k} \dot{\boldsymbol{I}}_{2}$$
 (2-26)

从全电流定律来看,在归算后二次绕组的磁动势和归算前完全相同,则变压器的主磁通和漏磁通和归算之前是一样的,因此就不会改变变压器中的电磁本质。

(2) 电势的归算: 磁通不变

$$\dot{E}_{2}' = -N_{1} \frac{d\phi}{dt} = \dot{E}_{1} = k\dot{E}_{2}$$
(2-27)

二次绕组归算后匝数

(3) 阻抗折算, 前后功率不变

$$|I_{2}^{'2}X_{2\sigma}^{'} = I_{2}^{2}X_{2\sigma}| \qquad |X_{2\sigma}^{'} = \left(\frac{I_{2}}{I_{2}/k}\right)^{2}X_{2\sigma} = k^{2}X_{2\sigma}|$$

将二次侧的各个物理量折算到一次侧时的方法: 电流除以k倍; 电压(电势)乘以k倍; 电阻、电抗、阻抗乘以k²倍。

归算前

$$\dot{\boldsymbol{U}}_1 = \dot{\boldsymbol{I}}_1 \boldsymbol{Z}_{1\sigma} - \dot{\boldsymbol{E}}_1$$

$$\dot{\boldsymbol{E}}_{2} = \dot{\boldsymbol{I}}_{2}\boldsymbol{Z}_{2\sigma} + \dot{\boldsymbol{U}}_{2}$$

$$\frac{\dot{E}_1}{\dot{E}_2} = k$$

$$N_1 \dot{I}_1 + N_2 \dot{I}_2 = N_1 \dot{I}_{\rm m}$$

$$\dot{E}_1 = -\dot{I}_{\rm m} Z_{\rm m}$$

归算后

$$\left|\dot{\boldsymbol{U}}_{1}=\dot{\boldsymbol{I}}_{1}\boldsymbol{Z}_{1\sigma}-\dot{\boldsymbol{E}}_{1}\right|$$

$$\dot{\boldsymbol{E}}_{2}^{\prime}=\dot{\boldsymbol{I}}_{2}^{\prime}\boldsymbol{Z}_{2\sigma}^{\prime}+\dot{\boldsymbol{U}}_{2}^{\prime}$$

$$|\dot{I}_1 + \dot{I}_2' = \dot{I}_{\rm m}|$$
 (2-32)

$$\dot{\boldsymbol{E}}_{1}=\dot{\boldsymbol{E}}_{2}^{\prime}=-\dot{\boldsymbol{I}}_{\mathrm{m}}\boldsymbol{Z}_{\mathrm{m}}$$

二、变压器的等效电路

在研究变压器的运行问题时,希望有一个既能正确反映变压器内部电磁关系,又便于工程计算的等效电路,来代替具有电路、磁路,并通过电磁感应联系的实际变压器。

根据第一式和第二式可画出一次和二次绕组的等效电路;根据第四式可画出激磁部分的等效电路

$$\dot{I}_1 + \dot{I}_2' = \dot{I}_{\rm m}$$

根据第三式把这三个电路连接在一起,即可得到变压器的T形等效电路

变压器的T形等效电路

若进一步忽略激磁电流(即把激磁分支断开). 则等效电路 将简化成一串联电路, 此电路就称为简化等效电路。在简 化等效电路中, 变压器的等效阻抗表现为一串联阻抗.

变压器的简化等效电路

- (1)这种等效电路把变压器基本方程式组所表示的电磁关系,用纯电路的方式表示出来,即把"磁场化路"。磁场化路是电机理论基本方法之一。
- (2)从变压器一次侧所接的电网来看,变压器只不过是整个电力系统中的一个元件,有了等效电路,就很容易用一个等效阻抗挂接在电网上来代替整个变压器及其负载,这对于研究和计算电力系统的运行情况带来了方便。
- (3)变压器的等效电路就是变压器的数学模型,在后面主要 采用该模型进行分析。
 - (4) T型等效电路是准确的等效电路

已知: U_2 、 I_2 、 φ_2 求变压器等效电路的相 量图

(1)首先选定一个参考相量 (\dot{U}_2') ,根据负载功率因数角 φ_2 ,由此画出 \dot{I}_2'

(2)根据
$$\dot{E}'_2 = \dot{U}'_2 + \dot{I}'_2(R'_2 + jX'_{2\sigma})$$

得出 \dot{E}'_2 。由于 $\dot{E}_1 = \dot{E}'_2$,得出 \dot{E}_1

(3) $\dot{\Phi}_{\mathrm{m}}$ 超前 \dot{E}_{1} 90°,激磁电流 \dot{I}_{m} 又

超前 $\dot{\Phi}_{\rm m}$ 一铁耗角 $a=\arctan\frac{R_{\rm m}}{X_{\rm m}}$,于

是可画出 $\dot{\sigma}_{m}$ 和 \dot{I}_{m}

$$(4)\dot{I}_{1} = \dot{I}_{m} + (-\dot{I}'_{2})$$

$$(5)\dot{I}_{1} = \dot{I}_{m} + (-\dot{I}'_{2})$$

$$(5)\dot{U}_{1} = -\dot{E}_{1} + \dot{I}_{1}(R_{1} + jX_{1\sigma})$$

2.5 等效电路参数的测定

一、开路试验

开路试验亦称空载试验。试验时,二次绕组开路,一次绕组加以额定电压,测量此时的输入功率、电压和电流,由此即可算出激磁阻抗。

图2-13 开路试验的接线图

空载试验内容

- 测量变比
- 测量磁化曲线
- 测量激磁参数

空载试验注意事项

- 由于X_m与磁路的饱和程度有关,故在不同电压下测量后计算出的值不同,应该在额定电压下测量来计算激磁阻抗。
- 空载试验通常是在低压侧进行,如果一次绕组是高压侧的时候,需要进行归算。

二、短路试验

短路试验亦称为负载试验。试验时,把二次绕组短路, 一次绕组上加一可调的低电压。调节外加的低电压,使短路 电流达到额定电流,测量此时的一次电压输入功率和电流, 由此即可确定等效漏阻抗。

图2-14 短路试验的接线图

阻抗电压用额定电压的百分值表示时有

$$u_{k} = \frac{U_{1k}}{U_{1N}} \times 100\% = \frac{I_{1N}|Z_{k}|}{U_{1N}} \times 100\%$$
专用符号

阻抗电压的意义:

- (1) 反映变压器在额定负载运行时,漏阻抗压降的大小;
- (2) 从运行角度希望阻抗压降小些,使变压器输出电压随负载变化的波动小些;
- (3)从安全角度,阻抗电压太小,变压器一旦短路时电流 太大,可能损坏变压器

漏抗的划分

$$X_{1\sigma} = X_{2\sigma}' = \frac{X_{k}}{2}$$

例题2.1

(1) 绕组电阻与激磁电阻之比

$$\frac{R_1}{R_{\rm m}} = \frac{3.9}{3028} = 0.128\%$$
 $\frac{R_2'}{R_{\rm m}} = \frac{2.55}{3028} = 0.084\%$

(2) 漏电抗与激磁电抗之比

$$\frac{X_{1\sigma}}{X_{\rm m}} = \frac{X_{2\sigma}'}{X_{\rm m}} = \frac{29.25}{32257} = 0.091\%$$

(3) 激磁电流和额定电流之比

$$\frac{I_{\rm m}}{I_{\rm 1N}} = \frac{45.5/11.55}{157.7} = 2.5\%$$

2.6 三相变压器

磁路系统 电路系统(重点) 电压波形(难点)

三相变压器的磁路系统: 组式

- 结构: 由三台单相变压器组成
- 特点:
 - 三相磁路彼此独立
 - 三相磁通、电流对称
 - 便于运输

三相变压器的磁路系统: 心式

• 三相磁路彼此关联

$$\dot{\boldsymbol{\Phi}}_0 = \dot{\boldsymbol{\Phi}}_A + \dot{\boldsymbol{\Phi}}_B + \dot{\boldsymbol{\Phi}}_C = 0$$

- 三相磁路长度不等
- 三相空载电流略不相同
- 省材料、效率高、占地少、成本低、运行维护简单

三相变压器的磁路系统: 心式

三相变压器的电路系统

低压

三相变压器的电路系统

线电压 = $\sqrt{3}$ 相电压 线电流= 相电流 y星形联结

相电压 线电压= 线电流 = $\sqrt{3}$ 相电流

三相变压器绕组

国产电力变压器常用:

N(或n)表示有中点引出的情况

两台单相变压器的并联运行

(1)同名端取决于绕组的绕制方向

左图两个上端(或下端)是同名端

(2)正方向统一规定为从绕组的首端指向尾端

首端和尾端是可以任意命名的

向量 $\dot{U}_{
m A}$ 在向量图中是X指向A

关键词:

绕制方向 同极性 同名端

高、低压绕组线电压的相位关系

三相绕组采用不同的联结时,高压侧的线电压与低压侧对应的线电压之间可以形成不同的相位。

相位差不仅与绕组的绕法和首、尾端的标法有关,还与三相绕组的连接法有关。

高、低压绕组线电压的相位关系

为了表明高、低压线电压之间的相位关系,通常采用"时钟表示法",即把高、低压绕组两个线电压三角形的重心重合,把高压侧线电压三角形的一条中线作为时钟的长针,指向钟面的12,再把低压侧线电压三角形中对应的中线作为短针.它所指的钟点就是该联结组的组号。

联结组绘制过程

- 首先绘制高压绕组的电压三角形
- 低压绕组的三角形是参照高压绕组绘制的:同一铁心柱上的绕组(在连接图上为上下对应的绕组),首端为同极性时,相电压相位相同,首端为异极性时,相电压相位相反;等电位点必须重合。

若 \dot{U}_A , \dot{U}_B , \dot{U}_C 按顺时针排列,则 \dot{U}_a , \dot{U}_b , \dot{U}_c 也按顺时针的顺序排列,反之亦然。因为一次、二次绕组的相序是一致的。

习题:2-17(a) b_kZ **(4)** (3) $\dot{m{U}}_{
m c}$ **(2)** $\dot{m{U}}_{
m a}$ A **(5) (1)** þΖ XYZ XYZ

B

 \mathbf{C}

第二种问题, 已知联结组别, 绘制绕组接线图

- (1)根据联结组别绘制向量图
- (2)根据相电压的向量平行关系来确定是否在同一个铁心柱上
- (3)各个铁心柱:根据相位关系,如果同相位同名端都标在上端,反之则高压标在上端低压标在下端。
- (4)根据绕组的联接,星形连接末端相连,三角形连接把等位点 相连

联结组的小结

- 联结组不同, 高压绕组和低压绕组的相位差不同;
- · Yy联结其组号是偶数,Yd连接其组号是奇数;

(高低压绕组的连接法不同时,其联结组号为奇数; 高低压绕组的连接法相同时,其联结组号为偶数)

2.7 标幺值 Per-Unit Value

内容提要:

- 1. 标幺值的定义
- 2. 基值的选取
- 3. 标幺值的优点
- 4. 标幺值的缺点
- 5. 基值之间的关系

基本概念

定义: 标幺值 = 实际值 基值

相对值

基值的选取: 取各物理量的额定值。

基值选取注意:

- 一次侧的量,选择一次侧的额定作为基值,二次侧的量选择二次侧的额定作为基值;
- 对于三相系统,相值选择相的额定作为基值,线值选择线的额定作为基值。

基值的选取

基值	一次测	二次侧
电压	$U_{1b} = U_{1N}$	$U_{2b} = U_{2N}$
电流	$I_{1b}=I_{1N}$	$I_{2b}=I_{2N}$

$$U_{1}^{*} = \frac{U_{1}}{U_{1N}}, I_{1}^{*} = \frac{I_{1}}{I_{1N}}$$
 $U_{2}^{*} = \frac{U_{2}}{U_{2N}}, I_{2}^{*} = \frac{I_{2}}{I_{2N}}$

阻抗的基值

一次例:
$$Z_{1b} = \frac{U_{1N}}{I_{1N}}$$

二次例:
$$Z_{2b} = \frac{U_{2N}}{I_{2N}}$$

$$Z_{1}^{*} = \frac{Z_{1}}{Z_{1b}} = \frac{Z_{1}I_{1N}}{U_{1N}}$$
 $Z_{2}^{*} = \frac{Z_{2}}{Z_{2b}} = \frac{Z_{2}I_{2N}}{U_{2N}}$

$$R_{1}^{*} = \frac{R_{1}}{Z_{1b}} = \frac{R_{1}I_{1N}}{U_{1N}}$$
 $R_{2}^{*} = \frac{R_{2}I_{2N}}{Z_{2b}} = \frac{R_{2}I_{2N}}{U_{2N}}$

$$X_{1\sigma}^* = \frac{X_{1\sigma}}{Z_{1b}} = \frac{X_{1\sigma}I_{1N}}{U_{1N}}$$
 $X_{2\sigma}^* = \frac{X_{2\sigma}}{Z_{2b}} = \frac{X_{2\sigma}I_{2N}}{U_{2N}}$

都是相值

功率的基值
$$S_b = S_N$$

$$S_{1}^{*} = \frac{S_{1}}{S_{N}}, P_{1}^{*} = \frac{P_{1}}{S_{N}}, Q_{1}^{*} = \frac{Q_{1}}{S_{N}}$$

$$S_{2}^{*} = \frac{S_{2}}{S_{N}}, P_{2}^{*} = \frac{P_{2}}{S_{N}}, Q_{2}^{*} = \frac{Q_{2}}{S_{N}}$$

$$S_{1}^{*} = \sqrt{P_{1}^{*2} + Q_{1}^{*2}}, S_{2}^{*} = \sqrt{P_{2}^{*2} + Q_{2}^{*2}}$$

标幺值的优点1

便于分析与比较

$$Z_{k}^{*} \approx 0.03 \sim 0.1$$
 $I_{0}^{*} \approx 0.02 \sim 0.05$

用标么值表示时,各个参数和典型的性能数据通常在一定的范围之内,与变压器容量大小无关,便于比较分析。

$$I_{1N}^* = U_{1N}^* = I_{2N}^* = U_{2N}^* = 1$$

各物理量额定值的标么值为1

标幺值的优点2

简化计算

$$P_{N}^{*} = \frac{P_{N}}{S_{N}} = \frac{S_{N} \cos \varphi}{S_{N}} = \cos \varphi$$

$$Q_{N}^{*} = \frac{Q_{N}}{S_{N}} = \frac{S_{N} \sin \varphi}{S_{N}} = \sin \varphi$$

$$Z_{k}^{*} = \frac{Z_{k}}{Z_{1b}} = \frac{(I_{1N}Z_{k})}{U_{1N}} = u_{k}$$

短路实验时,

如果加额定电流:

$$I_{\rm k}^* = I_{\rm 1N}^* = 1$$

$$\left| \boldsymbol{Z}_{k}^{*} \right| = \frac{\boldsymbol{U}_{k}}{\boldsymbol{I}_{k}^{*}} = \boldsymbol{U}_{k}^{*}$$

$$\boldsymbol{R}_{\mathrm{k}}^{*} = \frac{\boldsymbol{P}_{\mathrm{k}}^{*}}{\boldsymbol{I}_{\mathrm{k}}^{2*}} = \boldsymbol{P}_{\mathrm{k}}^{*}$$

见46页式(2-41)

标幺值的优点3 无需归算

例1:
$$U_2' \neq U_2$$

$$U_2'^* = \frac{U_2'}{U_{1b}} = \frac{kU_2}{U_{1N}} = \frac{U_2}{U_{1N}/k} = \frac{U_2}{U_{2N}} = \frac{U_2}{U_{2b}} = U_2^*$$

例2:
$$R_2' \neq R_2$$

$$R_2'^* = \frac{R_2'}{Z_{1b}} = k^2 R_2 \frac{I_{1N}}{U_{1N}} = R_2 \frac{U_{1N} I_{1N}}{(U_{1N}/k)^2}$$

$$= R_2 \frac{U_{2N} I_{2N}}{U_{2N}^2} = R_2 \frac{I_{2N}}{U_{2N}} = \frac{R_2}{Z_{2b}} = R_2^*$$

同一物理量, 归算前后标幺值相等。

标幺值的优点4 三相系统的线、相标幺值相等

例1: Y接, $U_1 \neq U_{\alpha}$

$$U_{l}^{*} = \frac{U_{l}}{U_{N}} = \frac{\sqrt{3}U_{\phi}}{\sqrt{3}U_{N\phi}} = \frac{U_{\phi}}{U_{1N\phi}} = U_{\phi}^{*}$$

例2: Δ 接, $I_1 \neq I_{\phi}$

$$I_{l}^{*} = \frac{I_{l}}{I_{N}} = \frac{\sqrt{3}I_{\phi}}{\sqrt{3}I_{N\phi}} = \frac{I_{\phi}}{I_{N\phi}} = I_{\phi}^{*}$$

例3: 三相对称系统, $P=3P_a$

$$P^* = \frac{P}{S_{N}} = \frac{3U_{\phi}I_{\phi}\cos\varphi}{3U_{N\phi}I_{N\phi}} = \frac{U_{\phi}I_{\phi}\cos\varphi}{U_{N\phi}I_{N\phi}} = \frac{P_{\phi}}{S_{N\phi}} = P_{\phi}^*$$

标幺值的优点5 运行状态一目了然

 I_2^* = 0: 空载运行 (No Load)

 I_2^* = 1: 满载运行 (Full Load)

 I_2^* = 0.5: 半载运行 (Half Load)

 I_2^* = 0.7: 轻载运行 (Under Load)

 I_2^* = 1.2: 过载运行 (Over Load)

标幺值的缺点

- 1.没有量纲,物理概念模糊;
- 2. 物理意义完全不同的量,标幺值可能相等。

2.8 变压器的运行性能

一、电压调整率

通常用电压调整来反应二次侧电压随负载变化的程度

电压调整率反应了供电电压的稳定性

定义: 当一次侧电压保持额定、负载功率因数为常数,从空载到负载时二次侧电压变化的百分值。

$$\Delta u = \frac{U_{20} - U_2}{U_{2N\phi}} \times 100\% = \frac{U_{1N\phi} - U_2'}{U_{1N\phi}} \times 100\%$$

$$U_{1} - U'_{2} = \overline{AB'} \approx \overline{AB} = \overline{AD} + \overline{DB} = a + b$$

$$\dot{U}_{1} - C$$

$$j\dot{I}'_{2}X_{k} \qquad \varphi_{2}$$

$$\dot{U}'_{2} \qquad \dot{I}'_{2}R_{k} \qquad B$$

$$a = I_2' R_k \cos \varphi_2$$
 $b = I_2' X_k \sin \varphi_2$

$$\Delta u = \frac{U_{1\text{N}\phi} - U_2'}{U_{1\text{N}\phi}} \times 100\% \approx \frac{I_2' R_{\text{k}} \cos \varphi_2 + I_2' X_{\text{k}} \sin \varphi_2}{U_{1\text{N}\phi}} \times 100\%$$

$$= \frac{I_2' R_k \cos \varphi_2 + I_2' X_k \sin \varphi_2}{I_{1N\phi}(U_{1N\phi}/I_{1N\phi})} \times 100\%$$

$$\Delta u = I^* (R_k^* \cos \varphi_2 + X_k^* \sin \varphi_2) \times 100\%$$

$$\Delta u = I^* (R_k^* \cos \varphi_2 + X_k^* \sin \varphi_2) \times 100\%$$

注意: 电压调整率与负载大小和负载性质都有关

注意: 电压调整率是正比于负载电流的变化

当负载为感性或者纯电阻, 电压调整率恒为正值

当电压调整率为负值或者为0,表明负载为容性

应对变压器电压调整率的措施

- 1. 上述分析表明,变压器负载运行时,二次侧电压将随负载变化而变化,若电压变化率太大则对用户带来不利影响。
- 2. 为保证二次侧电压在一定范围内变化,必须根据负载的大小进行电压调整。

3. 通常在变压器高压绕组上设抽头,通过分接开关调节高压绕组的匝数,调节变压器的匝数比实现调节二次侧电压。

变压器的效率

用间接法求变压器效率做以下三个假设

- (1)由于空载电流 I_0 很小,可忽略变压器空载运行时的铜耗 $mI_0^2R_1$,用额定电压下的空载损耗 p_0 来代替铁耗 p_{Fe} ,即 p_0 = p_{Fe} ,它不随负载的性质和大小而变化,是不变损耗
- (2)由于短路试验时外加电压较低,铁心中磁通密度很小,因此可忽略短路试验时的铁耗,用额定电流时的短路损耗 p_{kN} 来代替额定电流时的铜耗,其他负载电流时的铜耗可以按下式计算:

$$\boldsymbol{p}_{k} = \boldsymbol{m} \boldsymbol{I}_{2}^{\prime 2} \boldsymbol{R}_{k} = \left(\frac{\boldsymbol{I}_{2}^{\prime}}{\boldsymbol{I}_{1N}}\right)^{2} \boldsymbol{m} \boldsymbol{I}_{1N}^{2} \boldsymbol{R}_{k} = (\boldsymbol{I}_{2}^{*})^{2} \boldsymbol{p}_{kN}$$

(3)不考虑变压器二次侧电压随负载的变化,即认为 $U_2=U_{2N}$ 。

$$P_2 = mU_2I_2\cos\varphi_2 \approx mU_{2N}I_2\cos\varphi_2$$

$$= mU_{2N}I_{2N}\frac{I_2}{I_{2N}}\cos\varphi_2 = S_NI_2^*\cos\varphi_2$$

$$\eta = 1 - \frac{\sum p}{P_2 + \sum p} = 1 - \frac{p_0 + p_k}{P_2 + p_0 + p_k}$$

$$\eta = 1 - \frac{p_0 + I_2^{*2} p_{kN}}{S_N I_2^* \cos \varphi_2 + p_0 + I_2^{*2} p_{kN}}$$
(2-54)

求最大效率,最大效率出现在 $\frac{d\eta}{dI_2^*}=0$ 的地方

此时:
$$oldsymbol{I}_2^* = \sqrt{rac{oldsymbol{p}_0}{oldsymbol{p}_{kN}}}$$
 $oldsymbol{p}_k = oldsymbol{I}_2^{*2} oldsymbol{p}_{kN} = \left(\sqrt{rac{oldsymbol{p}_0}{oldsymbol{p}_{kN}}}
ight)^2 oldsymbol{p}_{kN} = oldsymbol{p}_0$

即当不变损耗(铁耗)等于可变损耗(铜耗)时效率最大

并联运行

定义:几台变压器的一次侧和二次侧分别接到各 自公共母线上,共同向负载供电的运行方式。

(2) 经济性

优点: (1) 可靠性 → 并联运行时,如果某台变压 器发生故障,可以把它从中 间切除检修,而电网能够继 续供电

可以根据负载大小调整投入并联运行的台数,以 提高效率。可以减少总的备用容量,并可随着 用电量的增加分批增加新的变压器。

并联运行的理想情况

- (1) 空载时并联的变压器之间没有环流;
- (2)负载时能够按照各台变压器的容量合理地分担负载。

(3)各变压器的电流应为同相。

并联运行理想条件

- (1)各变压器的原、副边的额定电压分别相等,即变比相等;
 - (2) 各变压器的联接组号相同
- (3)各变压器的短路阻抗标么值相等,且短路阻抗角也相同。

变比不等时的并联运行 空载时有环流:

$$\dot{\boldsymbol{I}}_{c} = \frac{\frac{\dot{\boldsymbol{U}}_{1}}{\boldsymbol{k}_{I}} - \frac{\dot{\boldsymbol{U}}_{1}}{\boldsymbol{k}_{II}}}{Z''_{kI} + Z''_{kII}}$$

用归算到二次侧的等效电路进行分析

负载运行:

 $\dot{\boldsymbol{I}}_{2\mathrm{I}} = \dot{\boldsymbol{I}}_{\mathrm{LI}} + \dot{\boldsymbol{I}}_{\mathrm{c}}$

$$\begin{cases}
\dot{I}_{LI} = \frac{Z''_{kII}}{Z''_{kI} + Z''_{kII}} \dot{I}_{2} \\
\dot{I}_{LII} = \frac{Z''_{kI}}{Z''_{kI} + Z''_{kII}} \dot{I}_{2}
\end{cases}$$

$$\frac{\dot{I}_{\text{LI}}^*}{\dot{I}_{\text{LII}}^*} = \frac{Z_{\text{kII}}^*}{Z_{\text{kI}}^*}$$

**结论:各变压器所分担的负载大小与其短路阻抗标么值成反比,短路阻抗标么值大的变压器分担的负载小

并联运行实际条件

- (1) 各变压器的联接组号相同
- (2) 电压比偏差要严格控制 (<±0.5%);
- (3)短路阻抗标么值不要相差太大(<10%),阻抗角可以有一定差别。

联结组别不同时并联运行

组别不同时,二次侧线 电动势最少差30°,由 于短路阻抗很小,产生 的环流很大。

例题2-5(2)

**结论: 联结组别不同,绝对不允许并联。

并联运行的计算

例2-6和习题2-23是重点

设变压器负载运行二次侧电压保持不变,即:

单相
$$S = I_2 U_2 = I_2 U_{2N} = \frac{I_2}{I_{2N}} (I_{2N} U_{2N}) = I_2^* S_N$$

三相
$$S = \sqrt{3}I_2U_2 = \sqrt{3}I_2U_{2N} = \frac{I_2}{I_{2N}}(\sqrt{3}I_{2N}U_{2N}) = I_2^*S_N$$

例2-6:

$$S_{\text{max}} = I_{2\text{I}}^* S_{\text{NI}} + I_{2\text{II}}^* S_{\text{NII}} = 1 \times 5000 + 0.934 \times 6300$$

= 10884(kVA)

并联运行的计算

习题2-23:

变比相同、联结组别相同时无环流

$$\frac{I_{2I}^*}{I_{2II}^*} = \frac{I_{LI}^*}{I_{LII}^*} = \left| \frac{Z_{kII}^*}{Z_{kI}^*} \right|$$

$$I_{2I}^* S_{NI} + I_{2II}^* S_{NII} = S_{Total}$$

自耦变压器

定义:变压器的一次和二次绕组中有一部分绕组是公共绕组的变压器。

<u>注意</u>: 串联绕组是一次侧, 公 共绕组是二次侧。

自耦变压器

特点: 一次和二次绕组间不 仅有磁的耦合, 而且还有电 的直接联系。

$$k_{\rm a} = \frac{N_1 + N_2}{N_2} = 1 + k$$

$$S_{\text{aN}} = (U_{1N} + U_{2N})I_{1N} = S_{N} + \frac{S_{N}}{k} = S_{N} + \frac{S_{N}}{k_{a} - 1}$$

电压互感器

定义:一次绕组接高压线路,二次绕组接到电压表

$$\frac{U_1}{U_2} = \frac{N_1}{N_2} \qquad N_1 > N_2$$

相当于变压器的空载运行,把高电压降低为低电压来测量。变压比误差的大小,电压互感器的精度可分为0.5,1,3

<u>注意</u>: 在使用电压互感器时,二次侧不能短路!!! 否则将产生很大的短路电流

电流互感器

定义:一次绕组串联在被测线路,二次绕组接到电流表

$$\frac{I_1}{I_2} = \frac{N_2}{N_1} \qquad N_1 < N_2 \qquad I_2 = \frac{N_1}{N_2} I_1$$

相当于变压器的短路运行,把大电流降低为低电流来测量。

<u>注意</u>:在使用电流互感器时,二次侧不能开路!!!

如果二次侧开路,一次侧的线路电流 将全部变成激磁电流,使铁心内的磁 密急剧增加,二次侧出现过电压。

变压器小结

变压器分析的步骤:

- 1. 建立物理模型,说明变压器"变压"和"功率传递"的原理;
- 2. 建立数学模型,即变压器的基本方程;
- 3. 从基本方程出发,通过绕组归算,建立等效电路;
- 4. 利用等效电路研究各种运行问题。

作业:

2-2

2-14

2-15(1)(2)

2-16 ~ 2-23

2-25