

Prüfbericht-Nr.: Test Report No.:	50049186 (004	Auftrags-Nr.: Order No.:		Seite 1 von 23 Page 1 of 23	
Kunden-Referenz-Nr.: Client Reference No.:	466337		Auftragsdatum: Order date.:	28.04.2016		
Auftraggeber: Client:	RM 1808 18			NOS. 26-28 AU PL HONG KONG	II WAN	
Prüfgegenstand: Test item:	7 Inch Quad	d Core Tablet				
Bezeichnung / Typ-Nr.: Identification / Type No.:	MID721-RB (DIGILAND		?1-** (** means diffe	rent color)		
Auftrags-Inhalt: Order content:	FCC approv	/al				
Prüfgrundlage: Test specification:		7 Part 2 Subpart J C95.1-1992	h h	(DB 865664 D01 v((DB 447498 D01 v((DB 248227 D01 v((DB 941225 D07 v(06 02r02	
Wareneingangsdatum: Date of receipt:	01.06.2016					
Prüfmuster-Nr.: Test sample No.:	A00036854	9-007				
Prüfzeitraum: Testing period:						
Ort der Prüfung: Place of testing:	Emtek (She	nzhen) Co., Ltd.	Refer to photo documents			
Prüflaboratorium: Testing laboratory:	TÜV Rheink (Shenzhen)					
Prüfergebnis*: Test result*:	Pass	·				
geprüft von / tested by:			kontrolliert von	I reviewed by:		
	M	M.		Jole .	2	
07.07.2016 A	ndy Yan / Projec	ct Manager	07.07.2016	Sam Lin / Techni	cal Certifier	
Datum Name/St Date Name/Po	-	Unterschrift Signature	Datum Date	Name/Stellung Name/Position	Unterschrift Signature	
Sonstiges / Other:				- weidelf	Jighaluro	
FCC ID: XMF-MID721RB						
Zustand des Prüfgegens Condition of the test item		nlieferung:		ständig und unbesc lete and undamage		
egende: 1 = sehr gut P(ass) = entspricht o.g. I egend: 1 = very good	2 = gut Prüfgrundlage(n) 2 = good st specifications(s)	3 = befriedigend F(all) = entspricht nicht 3 = satisfactory	o.g. Prüfgrundlage(n)	4 = ausreichend N/A = nicht anwendbar 4 = sufficient	5 = mangelhalt N/T = nicht getes 5 = poor	

This test report only relates to the a.m. test sample. Without permission of the test center this test report is not permitted to be duplicated in extracts. This test report does not entitle to carry any test mark.

 Prüfbericht - Nr.:
 50049186 004
 Seite 2 von 23

 Test Report No.
 Page 2 of 23

STATEMENT OF COMPLIANCE

TEST ITEM	SPECIFICATION	RESULT
Specific Absorption Rate – Wi-Fi 802.11 b/g/n - 2.4GHz Band	Refer to Specification as below	PASS

The Specific Absorption Rate (SAR) testing specification, method, and procedure for this device is in accordance with the following standards:

KDB 865664 D01 SAR measurement 100 MHz to 6 GHz v01r04: SAR Measurement Requirements for 100 MHz to 6 GHz

◯KDB 447498 D01 General RF Exposure Guidance v06: RF Exposure Procedures and Equipment Authorization Policies For Mobile and Portable Table Device

KDB 248227 D01 802.11 Wi-Fi SAR v02r02: SAR Guidance for IEEE 802.11 (Wi-Fi) Transmitters

KDB 941225 D07 941225 D07 UMPC Mini Tablet v01r02

This device complies with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6W/kg) specified in CFR Title 47 Part 2 Subpart J Section 2.1093 and ANSI/IEEE C95.1-1992.

The maximum results of Specific Absorption Rate (SAR) durning testing as below.

FREQUENCY BAND	EXPOSURE POSITION	EQUIPMENT CLASS	HIGHEST REPORTED SAR VALUE (W/KG)	
802.11 b/g/n - 2.4GHz Band	Body	DTS	0.972	

Prüfbericht - Nr.: 50049186 004

Seite 3 von 23 Page 3 of 23

Test Report No.

Contents

1	GENERAL REMARKS4
1.1	COMPLEMENTARY MATERIALS4
2	TEST SITES4
2.1	TEST FACILITIES4
2.2	LIST OF TEST AND MEASUREMENT INSTRUMENTS5
3	GENERAL PRODUCT INFORMATION6
3.1	PRODUCT FUNCTION AND INTENDED USE6
3.2	RATINGS AND SYSTEM DETAILS6
3.3	INDEPENDENT OPERATION MODES9
3.4	NOISE GENERATING AND NOISE SUPPRESSING PARTS10
3.5	SUBMITTED DOCUMENTS
4	TEST SET-UP AND OPERATION MODES
4.1	PRINCIPLE OF CONFIGURATION SELECTION11
5	TISSUE SIMULATING LIQUID INGREDIENTS
5 5.1	TISSUE SIMULATING LIQUID INGREDIENTS
•	
5.1	SPECIFIC ABSORPTION RATE (SAR) SYSTEM CHECK12
5.1 5.2	SPECIFIC ABSORPTION RATE (SAR) SYSTEM CHECK
5.1 5.2 5.3	SPECIFIC ABSORPTION RATE (SAR) SYSTEM CHECK
5.1 5.2 5.3 5.4	SPECIFIC ABSORPTION RATE (SAR) SYSTEM CHECK
5.1 5.2 5.3 5.4 5.5	SPECIFIC ABSORPTION RATE (SAR) SYSTEM CHECK
5.1 5.2 5.3 5.4 5.5 5.6	SPECIFIC ABSORPTION RATE (SAR) SYSTEM CHECK
5.1 5.2 5.3 5.4 5.5 5.6 5.7	SPECIFIC ABSORPTION RATE (SAR) SYSTEM CHECK
5.1 5.2 5.3 5.4 5.5 5.6 5.7	SPECIFIC ABSORPTION RATE (SAR) SYSTEM CHECK
5.1 5.2 5.3 5.4 5.5 5.6 5.7 6 6.1 6.2	SPECIFIC ABSORPTION RATE (SAR) SYSTEM CHECK

 Prüfbericht - Nr.:
 50049186 004
 Seite 4 von 23

 Test Report No.
 Page 4 of 23

1 General Remarks

1.1 Complementary Materials

All attachments are integral parts of this test report. This applies especially to the following appendix:

Appendix A: System Performance Check and Test Plots of SAR Measurement

Appendix B: Calibration Certificate

2 Test Sites

2.1 Test Facilities

EMTEK (Shenzhen) Co., Ltd.

Bldg. 69, Majialong Industry Zone, Nanshan District, Shenzhen Guangdong, China

The tests at the test sites have been conducted under the supervision of a TÜV engineer.

Test Report No.

Prüfbericht - Nr.: 50049186 004

19186 004 Seite 5 von 23 Page 5 of 23

2.2 List of Test and Measurement Instruments

Table 1: List of Test and Measurement Equipment

EMTEK (Shenzhen) Co., Ltd.

Equipment	Manufacturer	Model No.	Serial No.	Cal. Until
SAR Test System	SPEAG	DASY52 SAR TX60XL	F13/5R4XA1/A/01	15.05.2017
Wideband Radio Communication Tester	R&S	CMW500	1201.0002K50- 140822zk	28.05.2017
Power Meter	BOONTON	4232A	10539	28.05.2017
Power Sensor	BOONTON	51011EMC	34236/34238	28.05.2017
Signal Generator	Agilent	N5181A	MY50145187	28.05.2017
Validation Kit 2450MHz	SPEAG	D2450V2	927	13.01.2017
10dB Attenuator	Mini-Circuits	15542	31344	28.05.2017
10dB Attenuator	Mini-Circuits	15542	31415	28.05.2017
13	30dB Attenuator	Mini-Circuits	15542	28.05.2017
Dual Directional Coupler	Agilent	EE393	TW5451008	28.05.2017
DAE	SPEAG	DAE4	1418	23.06.2016
E-Field Probe	SPEAG	EX3DV4	3970	10.07.2016
Network Analyzer	Agilent	E5071C	MY46316645	28.05.2017
Signal Analyzer	Agilent	N9010A	My53470879	28.05.2017
Power Amplifier	MILMEGA	80RF1000-175	1059345	28.05.2017
Power Amplifier	MILMEGA	AS0102-55	1018770	28.05.2017
Power Amplifier	MILMEGA	AS1860-50	1059346	28.05.2017
Power Meter	Agilent	N1918A	MY54180006	28.05.2017
ELI V5.0	SPEAG	QD 0VA 022 AA	1231	N/A
Device Holder	SPEAG	N/A	N/A	N/A

 Prüfbericht - Nr.:
 50049186 004
 Seite 6 von 23

 Test Report No.
 Page 6 of 23

3 General Product Information

3.1 Product Function and Intended Use

The EUTs are tablet with Wi-Fi and Bluetooth function.

Refer to User Manual and Circuit Diagram for further details.

3.2 Ratings and System Details

Table 2: Technical Specification of EUT

Technical Specification	Value
Product Name	7 Inch Quad Core Tablet
Model Number	MID721-RB, DL721-RB, DL721-**(** means different color)
FCC ID	XMF-MID721RB
Operating Voltage	DC 3.7V 2700mAh via internal rechargeable Li-Poly battery DC 5.0V 1.5A via AC/DC adapter for charging
Adapter	Model: TEKA006-0501500UKU Input: AC 100-240V ~ 50/60Hz 0.3A Max. Output: DC 5.0V ~ 1.5A
Hardware Version	EM-SK8170-MB-v1.1
Software Version	3.14.0+ dzr@dzr-OptiPlex- 9020 #85 Mon Jun 27 18:04:24 CST 2016

Table 3: Technical Specification of Bluetooth

Technical Specification	Value					
Operating Frequency	2402-2480 MHz	2402-2480 MHz				
Extreme Temperature Range	0°C ~ +40°C					
Operation Voltage	DC 3.7V via Internal re	chargeable	e lithium battery			
	DC 5.0V 1.5A via AC/DC adapter for charging					
Modulation	BDR mode	GFSK				
	EDR mode	π/4DQP	SK, 8DPSK			
	Low Energy mode	GFSK				
Number of Channel	BDR & EDR mode:79 of	channels;	Low Energy mode:40 channels			
Channel Spacing	BDR & EDR mode: 1MHz;		Low Energy mode: 2MHz;			
Bluetooth Version	Bluetooth 4.0 (dual mode)					
Antenna Type and Gain	PIFA, 1.14 dBi					

 Prüfbericht - Nr.:
 50049186 004
 Seite 7 von 23

 Test Report No.
 Page 7 of 23

Table 4: Technical Specification of Wi-Fi

Technical Specification	Value
Operating Frequency	802.11b/g/n(HT20): 2412 MHz to 2462 MHz
Extreme Temperature Range	0°C ~ +40°C
Operation Voltage	DC 3.7V via Internal rechargeable lithium battery DC 5.0V 1.5A via AC/DC adapter for charging
Modulation	802.11b: DSSS(DQPSK/ DBPSK/ CCK) 802.11g: OFDM(BPSK/QPSK/16QAM/64QAM) 802.11n: OFDM(BPSK/QPSK/16QAM/64QAM)
Data Rate	802.11b :1/2/5.5/11 Mbps 802.11g :6/9/12/18/24/36/48/54 Mbps 802.11n(HT20): MCS0 ~ MCS7 Mbps
Number of Channel	802.11b/g/n(HT20): 11 Channels
Channel Spacing	5 MHz
Antenna Type and Gain	PIFA, 1.14 dBi

Prüfbericht - Nr.: 50049186 004

Test Report No.

Seite 8 von 23 Page 8 of 23

Table 5: RF Channel and Frequency of Bluetooth

RF Channel	Frequency (MHz)						
00	2402.00	20	2422.00	40	2442.00	60	2462.00
01	2403.00	21	2423.00	41	2443.00	61	2463.00
02	2404.00	22	2424.00	42	2444.00	62	2464.00
03	2405.00	23	2425.00	43	2445.00	63	2465.00
04	2406.00	24	2426.00	44	2446.00	64	2466.00
05	2407.00	25	2427.00	45	2447.00	65	2467.00
06	2408.00	26	2428.00	46	2448.00	66	2468.00
07	2409.00	27	2429.00	47	2449.00	67	2469.00
08	2410.00	28	2430.00	48	2450.00	68	2470.00
09	2411.00	29	2431.00	49	2451.00	69	2471.00
10	2412.00	30	2432.00	50	2452.00	70	2472.00
11	2413.00	31	2433.00	51	2453.00	71	2473.00
12	2414.00	32	2434.00	52	2454.00	72	2474.00
13	2415.00	33	2435.00	53	2455.00	73	2475.00
14	2416.00	34	2436.00	54	2456.00	74	2476.00
15	2417.00	35	2437.00	55	2457.00	75	2477.00
16	2418.00	36	2438.00	56	2458.00	76	2478.00
17	2419.00	37	2439.00	57	2459.00	77	2479.00
18	2420.00	38	2440.00	58	2460.00	78	2480.00
19	2421.00	39	2441.00	59	2461.00	/	/

Table 6: RF Channel and Frequency of Bluetooth Low Energy

RF Channel	Frequency (MHz)	RF Channel	Frequency (MHz)	RF Channel	Frequency (MHz)	RF Channel	Frequency (MHz)
00	2402.00	10	2422.00	20	2442.00	30	2462.00
01	2404.00	11	2424.00	21	2444.00	31	2464.00
02	2406.00	12	2426.00	22	2446.00	32	2466.00
03	2408.00	13	2428.00	23	2448.00	33	2468.00
04	2410.00	14	2430.00	24	2450.00	34	2470.00
05	2412.00	15	2432.00	25	2452.00	35	2472.00
06	2414.00	16	2434.00	26	2454.00	36	2474.00
07	2416.00	17	2436.00	27	2456.00	37	2476.00
08	2418.00	18	2438.00	28	2458.00	38	2478.00
09	2420.00	19	2440.00	29	2460.00	39	2480.00

Products

 Prüfbericht - Nr.:
 50049186 004
 Seite 9 von 23

 Test Report No.
 Page 9 of 23

Table 7: RF Channel and Frequency of Wi-Fi

RF Channel	Frequency (MHz)	RF Channel	Frequency (MHz)
01	01 2412 07		2442
02	2417	08	2447
03	2422	09	2452
04	2427	10	2457
05	2432	11	2462
06	2437	/	/

3.3 Independent Operation Modes

The basic operation modes are:

- A. On, Bluetooth transmitting mode
 - 1. Bluetooth BDR & EDR
 - a. Channel 00
 - b. Channel 39
 - c. Channel 78
 - 2. Bluetooth Low Energy
 - a. Channel 00
 - b. Channel 19
 - c. Channel 39
- B. On, Wi-Fi transmitting mode
 - 1. 802.11b/g/n(HT20)
 - a. Channel 01
 - b. Channel 06
 - c. Channel 11
- C. Off

 Prüfbericht - Nr.:
 50049186 004
 Seite 10 von 23

 Test Report No.
 Page 10 of 23

3.4 Noise Generating and Noise Suppressing Parts

Refer to Circuit Diagram for further details.

3.5 Submitted Documents

- Application Form

- Block Diagram

- FCC Label and Location

- Photo Document

- Bill of Material

- Circuit Diagram

- Operation Description

- User Manual

Products

 Prüfbericht - Nr.:
 50049186 004
 Seite 11 von 23

 Test Report No.
 Page 11 of 23

4 Test Set-up and Operation Modes

4.1 Principle of Configuration Selection

The EUT is commanded to operate at maximum transmitting power.

The EUT shall use its internal transmitter. The antenna, battery and accessories shall be those specified by the manufacturer. The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power output.

Table 8: Configuration of EUT

Operation mode	Frequency	ency Modulation		t Test C	Power Control	
Operation mode	Range (MHz)	Wiodulation	Low Mid I		High	Level
Bluetooth (BDR & EDR)	2402-2480	FHSS	CH00	CH39	CH78	Test software was used to configure
Bluetooth (Low Energy)	2402-2480	GFSK	CH00	CH19	CH39	the EUT to
802.11b/g/n(HT20)	2412-2462	DSSS, OFDM	CH01	CH06	CH11	maximum output power

 Prüfbericht - Nr.:
 50049186 004
 Seite 12 von 23

 Test Report No.
 Page 12 of 23

5 Tissue Simulating Liquid Ingredients

The liquid is consisted of Water, Salt, Glycol, Sugar, Preventol and Cellulose. The liquid has previously been proven to be suited for worst-case. The following table shows the detail solution.

Table 9: Composition of Tissue Simulating Liquid

Ingredients			Frequency (MHz)								
(% by weight)	4:	50	8.	835 915 1900		000	2450				
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body	
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2	
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04	
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0	
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0	
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0	
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0	
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7	
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5	
Conductivity (S/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78	

Salt: 99 $^{+}$ % Pure Sodium Chloride Sugar: 98 $^{+}$ % Pure Sucrose Water: De-ionized, 16 M Ω^{+} resistivity HEC: Hydroxyethyl Cellulose DGBE: 99 $^{+}$ % Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]

Triton X-100 (ultra pure): Polyethylene glycol mono [4-(1,1, 3, 3-tetramethylbutyl)phenyl]ether

5.1 Specific Absorption Rate (SAR) System Check

Dielectric parameters of the tissue simulating liquid were verified prior to the SAR evaluation using the dielectric proble kit and the network analyzer.

A system check measurement was made following the determination of the dielectric parameters of the tissue simulating liquid, using the dipole validation kit. A power level of 250 mW for 2.4GHz band was supplied to the dipole antenna, which was placed under the flat section of the twin SAM phantom. The system check results (dielectric parameters and SAR values) are given in the following table.

Table 10: System Check Results of for Body of Tissue Simulating Liquid

Frequency	Description	SAR(W	//kg)		ectric neters	Temp
(MHz)	, , , , , , , , , , , , , , , , , , ,	1g	10g	ε _r	σ(s/m)	°C
0.450	Recommended value ±10% window	12.8 11.52 - 14.08	5.86 5.27 - 6.45	52.7	1.95	
2450	Measurement value (2016-06-12)	12.4	5.76	52.83	2.01	20.6

Prüfbericht - Nr.: 50049186 004
Test Report No.

Seite 13 von 23 *Page 13 of 23*

5.2 Exposure Positions Consideration

Distance of the Antenna to the EUT surface/edge								
Edge 1 Edge 2 Edge 3 Edge 4 Bottom Front Face Face								
Distance	170mm	44mm	≤5mm	≤5mm	≤5mm	≤5mm		

Positions for SAR test									
Edge 1 Edge 2 Edge 3 Edge 4 Bottom Face Face									
Exemption Limit (mW)	1259.6	84.1	9.6	9.6	9.6	9.6			
802.11b	N/A	N/A	Yes	Yes	Yes	Yes			

Note: SAR testing exemption according to KDB 447498 D01 Clause 4.3.1 with the following fomula.

1) For 100 MHz to 6 GHz and test separation distances ≤ 50 mm, the 1-g SAR test exclusion thresholds are determined by the following:

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR,

2) For 100 MHz to 6 GHz and test separation distances > 50 mm, the 1-g SAR test exclusion thresholds are determined by the following

{[Power allowed at *numeric threshold* for 50 mm in step a)] + [(test separation distance – 50 mm) \cdot 10]} mW, for > 1500 MHz and \leq 6 GHz

^{*}where f(GHz) is the RF channel transmit frequency in GHz

^{*}When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

 Prüfbericht - Nr.:
 50049186 004
 Seite 14 von 23

 Test Report No.
 Page 14 of 23

5.3 Phantom Description

The used SAM Phantom meets the requirements specified in FCC KDB 865664 for Specific Absorption Rate (SAR) measurements.

The SAM Twin Phantom ELI is constructed of a fiberglass shell integrated in a table. The shape of the shell is based on data from an anatomical study designed to Represent the 90th percentile of the population. The phantom enables the dissymmetric evaluation of SAR for both left and right handed handset usage, as well as body-worn usage using the flat phantom region. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot.

Material	Vinylester, glass fiber reinforced (VE-GF)
Liquid compatibility	Compatible with all SPEAG tissue simulating liquids (incl. DGBE type)
Shell thickness	2.0 ± 0.2 mm (bottom plate)
Dimensions	Major axis: 650 mm, Minor axis: 400 mm
Filling volume	approx. 30 liters
Wooden support	SPEAG standard phantom table

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters.

On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

 Prüfbericht - Nr.:
 50049186 004
 Seite 15 von 23

 Test Report No.
 Page 15 of 23

5.4 Scanning Procedure

The DASY5 installation includes predefined files with recommended procedures for measurements and validation. All test positions (body-worn) are tested with the same configuration of test steps differing only in the grid definition for the different test positions.

The "area scan" measures the SAR above the DUT or verification dipole on a parallel plane to the surface. It is used to locate the approximate location of the peak SAR with 2D spline interpolation. The robot performs a stepped movement along one grid axis while the local electrical field strenth is measured by the probe. The probe is touching the surface of the SAM during acquisition of measurement values. The standard scan uses large grid spacing for faster measurement. Standard grid spacing for head measurements is 15 mm in x- and y- dimension. If a finer resolution is needed, the grid spacing can be reduced. Grid spacing and orientation have no influence on the SAR result. For special applications where the standard scan method does not find the peak SAR within the grid, e.g. mobile phones with flip cover, the grid can be adapted in orientation.

A "7x7x7 zoom scan" measures the field in a volume around the 2D peak SAR value acquired in the previous "coarse" scan. This is a fine 7x7 grid where the robot additionally moves the probe in 7 steps along the z-axis away from the bottom of the Phantom. Grid spacing for the cube measurement is 5 mm in x and y-direction and 5 mm in z-direction. DASY5 is also able to perform repeated zoom scans if more than 1 peak is found during area scan.

Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01

Frequency	Maximum Area Scan Resolution (mm) (Δxarea, Δyarea)	Maximum Zoom Scan Resolution (mm) (Δxzoom, Δyzoom)	Maximum Zoom Scan Spatial Resolution (mm) Δzzoom(n)	Minimum Zoom Scan Volume (mm) (x,y,z)
≤2 GHz	≤15	≤8	≤5	≥ 30
2-3 GHz	≤12	≤5	≤5	≥30
3-4 GHz	≤12	≤5	≤4	≥28
4-5 GHz	≤10	≤4	≤3	≥25
5-6 GHz	≤10	≤4	≤2	≥22

 Prüfbericht - Nr.:
 50049186 004
 Seite 16 von 23

 Test Report No.
 Page 16 of 23

5.5 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine. The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- Extraction of the measured data (grid and values) from the Zoom Scan
- Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- Generation of a high-resolution mesh within the measured volume
- Interpolation of all measured values form the measurement grid to the high-resolution grid
- Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to Surface
- Calculation of the averaged SAR within masses of 1g and 10g

Extrapolation

The extrapolation is based on a least square algorithm. Through the points in the first 3 cm along the z-axis, polynomials of order four are calculated. These polynomials are then used to evaluate the points between the surface and the probe tip. The points, calculated from the surface, have a distance of 1 mm from each other.

Interpolation

The interpolation of the points is done with a 3d-Spline. The 3d-Spline is composed of three one-dimensional splines with the "Not a knot"-condition (x, y and z -direction).

 Prüfbericht - Nr.:
 50049186 004
 Seite 17 von 23

 Test Report No.
 Page 17 of 23

5.6 Test Operation and Test Software

Test operation refers to test setup in chapter 5.

A communication link is set up with the test mode software for WiFi mode test. During the test, at the each test frequency channel, the EUT is operated at the RF continuous emission mode.

802.11 b/g/n operating modes are tested independently according to the service requirements in each frquency band.802.11b/g/n modes are tested on channel 1, 6, 11. However, if output power reduction is necessary for channels 1 and/or 11 to meet restricted band requirements the highest output channel closest to each of these channels must be tested instead.

SAR is not required for 802.11g/n when

- a) KDB Publication 447498 D01 SAR test exclusion applies to the OFDM configuration.
- b) The highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is $\leq 1.2 \text{ W/kg}$.

Each channel should be tested at the lowest data rate, and repeated SAR measurement is required only when the measured SAR is \geq 0.8 W/kg.

When the reported SAR is > 0.8 W/kg, SAR is required for that exposure configuration using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.

5.7 Special Accessories and Auxiliary Equipment

None.

Products

 Prüfbericht - Nr.:
 50049186 004
 Seite 18 von 23

 Test Report No.
 Page 18 of 23

6 Test Results

6.1 Huaman Exposure to Radiofrequency Electromagnetic Fields

RESULT: Pass

Test Specification

Test standard : CFR Title 47 Part 2 Subpart J Section 2.1093

ANSI/IEEE C95.1-1992

FCC KDB Publication : KDB 447498 D01 v06

KDB 248227 D01 v02r02

941225 D07 v01r02 865664 D01 v01r04 865664 D02 v01r02

Limits : 1.6W/kg

Test Setup

Date of testing : 12.06.2016

Operation mode : A, B

Ambient temperature : 21.0°C

Relative humidity : 56%

Atmospheric pressure : 101kPa

Table 11: Conducted Power of Bluetooth (BDR & EDR)

Bluetooth	Conducted Power (dBm)					
Biuetootii	CH00 / 2402	CH39 / 2441	CH78 / 2480			
Basic Date Rate	2.38	2.65	2.70			
Enhanced Data Rate	2.40	2.57	2.86			
Rated Average Power	3.0					

Table 12: Conducted Power of Bluetooth (Low Energy)

Bluetooth	Conducted Power (dBm)					
Biuetootii	CH00 / 2402	CH13 / 2440	CH39 / 2480			
Low Energy	-4.36	-4.51	-5.02			
Rated Average Power	-4.0					

Products

Test Report No.

Prüfbericht - Nr.: 50049186 004

Seite 19 von 23 *Page 19 of 23*

Table 13: Conducted Power of 802.11b/g/n (HT20)

			Conducted	Power (dBm)			
	CH1 / 2412		CH6	/ 2437	CH11 / 2462		
802.11b/g/n (HT20)	Rated Average Power	Measured Average Power	Rated Average Power	Measured Average Power	Rated Average Power	Measured Average Power	
802.11b (1Mbps)		17.13		18.02		17.50	
802.11b (5.5Mbps)	18.5	17.32	18.5	18.01	18.5	17.64	
802.11b (11Mbps)		17.36		18.01		17.74	
802.11g (6Mbps)		14.03		13.68		14.06	
802.11g (24Mbps)	15.0	14.05	15.0	13.63	15.0	14.28	
802.11g (54Mbps)		14.35		14.21		14.25	
802.11n (HT20)(MSC0)		13.96		13.70		13.97	
802.11n (HT20)(MSC4)	15.0	13.12	15.0	13.75	15.0	13.86	
802.11n (HT20)(MSC7)		13.42		13.59		14.03	

Note:

According to KDB 447498 D01, the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min.test separation distance, mm)]×[$\sqrt{f(GHz)}$] ≤ 3.0 for 1-g SAR.

The maximum output power of Bluetooth is 3.0 (2.0mW), and the minimum separation distance is 5mm, hence the exclusion thresholds is 0.63 < 3.0, therefore the SAR testing is not required for Bluetooth function.

Products

Prüfbericht - Nr.: 50049186 004

Seite 20 von 23 Page 20 of 23

Test Report No.

Table 14: Test Result of SAR Values

WiFi-802.11b original SAR Value

	Test	Gap		Max. Allowed	Conducted	Drift ±0.21dB	Limit SAR1g : 1.6W/kg			
MODA	Position	(mm)		Power (dBm)	Power (dBm)	Drift(dB)	Measured SAR1g (W/kg)	Scaling Factor	Reported SAR1g (W/kg)	Figure No.
	Front Face		CH06/2437		18.02	-0.01	0.629	1.117	0.703	1
	Bottom Face		CH06/2437	18.02	0.02	0.717	1.117	0.801	2	
	Edge 3		CH06/2437		18.02	-0.03	0.803	1.117	0.897	3
DSSS	Edge 4		CH06/2437		18.02	-0.05	0.045	1.117	0.050	5
Dooo	Bottom Face	0	CH01/2412	18.5	17.13	-0.04	0.709	1.371	0.972	6
	Bottom Face		CH11/2462		17.50	-0.04	0.767	1.259	0.966	7
	Edge 3		CH01/2412		17.13	-0.04	0.578	1.371	0.792	8
	Edge 3		CH11/2462		17.50	-0.02	0.603	1.259	0.759	9

Note:

- 1. The value with blue color is the maximum SAR Value of each test band.
- 2 When the reported SAR of the highest measured maximum output power channel for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- When the reported SAR is > 0.8 W/kg, SAR is required for that exposure configuration using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.

WiFi-802.11b Repeated SAR Values

	Test	Gap	Channel/ Frequency	Max. Allowed	Conducted ±0.21d			Limit SAR1g : 1.6W/kg			
Mode	Position	(mm)	(MHz)	Power (dBm)	Power (dBm)	Drift(dB)	Measured SAR1g (W/kg)	Scaling Factor	Reported SAR1g (W/kg)	Figure No.	
DSSS	Edge 3	0	CH06/2437	18.5	18.02	-0.03	0.794	1.117	0.887	4	

Note:

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg;
- 2) When the original highest measured SAR is \geq 0.80 W/kg, repeat that measurement once.
- Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

802.11g/n SAR Test Exclusion Requirements

	Channel/	802.11b Max.	802.11g/n Max.		Limit SAR1g : 1.6W/kg			
Mode	Frequency (MHz)	Allowed Power (dBm)	Allowed Power (dBm)	Reported SAR1g (W/kg)	Scaling Factor	Adjusted SAR1g (W/kg)	Figure No.	
OFDM	CH06/2437	18.5	15.0	0.972	0.447	0.434	N/A	

Note: SAR is not required for the 2.4 GHz OFDM conditions if When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is \leq 1.2 W/kg.

Refer to attached Appendix B for details of test results.

 Prüfbericht - Nr.:
 50049186 004
 Seite 21 von 23

 Test Report No.
 Page 21 of 23

6.2 Measurement Uncertainty

6.2.1 Measurement Uncertainty Evaluation

The measured SAR were <1.5 W/kg for all frequency bands, therefore per KDB Publication 865664 D01v01r04, the extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports.

Products

Prüfbericht - Nr.: 50049186 004 Seite 23 von 23 Page 23 of 23 Test Report No. 8 Lists of Tables Table 1: List of Test and Measurement Equipment......5 Table 6: RF Channel and Frequency of Bluetooth Low Energy8 Table 7: RF Channel and Frequency of Wi-Fi......9 **List of Photographs**

Produkte Products

Page 1 of 12

Appendix A

System Performance Check

Page 2 of 12

Test Laboratory: EMTEK (Shenzhen) Co.,Ltd. Date/Time: 12.06.2016

SystemPerformanceCheck-D2450V2-MSL-160611

Communication System: UID 0, CW (0); Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: MSL_2450_160612

Medium parameters used: f = 2450 MHz; $\sigma = 2.005 \text{ S/m}$; $\varepsilon_f = 52.826$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.3 °C; Liquid Temperature: 22.6 °C

DASY Configuration:

Probe: EX3DV4 - SN3970; ConvF(7.66, 7.66, 7.66); Calibrated: 10.07.2015;

· Sensor-Surface: 2mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1418; Calibrated: 23.06.2015

• Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1231

• DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

System Performance Check at Frequency at 2450MHz/d=10mm, Pin=250mW, dist=2.0mm (EX-Probe)/Area Scan (41x61x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 17.2 W/kg

System Performance Check at Frequency at 2450MHz/d=10mm, Pin=250mW, dist=2.0mm (EX-Probe)/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 99.505 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 26.3 W/kg

SAR(1 g) = 12.4 W/kg; SAR(10 g) = 5.76 W/kg Maximum value of SAR (measured) = 17.2 W/kg

0 dB = 17.2 W/kg = 12.36 dBW/kg

Produkte Products

Page 3 of 12

Appendix A

Test Plots of SAR Measurement

Page 4 of 12

Test Laboratory: EMTEK (Shenzhen) Co.,Ltd. Date/Time: 12.06.2016

03-WLAN2.4G-802.11b-1Mbps-Edge3-0cm-Ch6

Communication System: UID 0, WIFI (0); Frequency: 2437 MHz; Duty Cycle: 1:1

Medium: MSL_2450_160612

Medium parameters used: f = 2437 MHz; $\sigma = 1.986$ S/m; $\varepsilon_r = 52.871$; $\rho = 1000$ kg/m³

Ambient Temperature: 23.3 °C; Liquid Temperature: 22.6 °C

DASY Configuration:

• Probe: EX3DV4 - SN3970; ConvF(7.66, 7.66, 7.66); Calibrated: 10.07.2015;

- · Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1418; Calibrated: 23.06.2015
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1231
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Configuration/Ch6/Area Scan (111x181x1): Interpolated grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 1.41 W/kg

Configuration/Ch6/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.719 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 1.91 W/kg

SAR(1 g) = 0.803 W/kg; SAR(10 g) = 0.333 W/kg Maximum value of SAR (measured) = 1.34 W/kg

0 dB = 1.34 W/kg = 1.27 dBW/kg

Page 5 of 12

Test Laboratory: EMTEK (Shenzhen) Co.,Ltd. Date/Time: 12.06.2016

09-WLAN2.4G-802.11b-1Mbps-Edge3-0cm-Ch6-repeat

Communication System: UID 0, WIFI (0); Frequency: 2437 MHz; Duty Cycle: 1:1

Medium: MSL_2450_160612

Medium parameters used: f = 2437 MHz; $\sigma = 1.986$ S/m; $\varepsilon_r = 52.871$; $\rho = 1000$ kg/m³

Ambient Temperature: 23.3 °C; Liquid Temperature: 22.6 °C

DASY Configuration:

- Probe: EX3DV4 SN3970; ConvF(7.66, 7.66, 7.66); Calibrated: 10.07.2015;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1418; Calibrated: 23.06.2015
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1231
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Configuration/Ch6/Area Scan (51x141x1): Interpolated grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 1.39 W/kg

Configuration/Ch6/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.749 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 1.91 W/kg

SAR(1 g) = 0.794 W/kg; SAR(10 g) = 0.329 W/kg

Maximum value of SAR (measured) = 1.32 W/kg

Page 6 of 12

Test Laboratory: EMTEK (Shenzhen) Co.,Ltd. Date/Time: 12.06.2016

04-WLAN2.4G-802.11b-1Mbps-Edge4-0cm-Ch6

Communication System: UID 0, WIFI (0); Frequency: 2437 MHz; Duty Cycle: 1:1

Medium: MSL_2450_160612

Medium parameters used: f = 2437 MHz; $\sigma = 1.986$ S/m; $\varepsilon_r = 52.871$; $\rho = 1000$ kg/m³

Ambient Temperature: 23.3 °C; Liquid Temperature: 22.6 °C

DASY Configuration:

- Probe: EX3DV4 SN3970; ConvF(7.66, 7.66, 7.66); Calibrated: 10.07.2015;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1418; Calibrated: 23.06.2015
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1231
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Configuration/Ch6/Area Scan (41x181x1): Interpolated grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 0.0729 W/kg

Configuration/Ch6/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.286 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 0.0990 W/kg

SAR(1 g) = 0.045 W/kg; SAR(10 g) = 0.022 W/kg Maximum value of SAR (measured) = 0.0708 W/kg

0 dB = 0.0708 W/kg = -11.50 dBW/kg

Page 7 of 12

Test Laboratory: EMTEK (Shenzhen) Co.,Ltd. Date/Time: 12.06.2016

05-WLAN2.4G-802.11b-1Mbps-Bottom Face-0cm-Ch1

Communication System: UID 0, WIFI (0); Frequency: 2412 MHz; Duty Cycle: 1:1

Medium: MSL_2450_160612

Medium parameters used: f = 2412 MHz; $\sigma = 1.951$ S/m; $\varepsilon_r = 52.915$; $\rho = 1000$ kg/m³

Ambient Temperature: 23.3 °C; Liquid Temperature: 22.6 °C

DASY Configuration:

- Probe: EX3DV4 SN3970; ConvF(7.66, 7.66, 7.66); Calibrated: 10.07.2015;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1418; Calibrated: 23.06.2015
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1231
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Configuration/Ch1/Area Scan (111x181x1): Interpolated grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 1.09 W/kg

Configuration/Ch1/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.453 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 1.55 W/kg

SAR(1 g) = 0.709 W/kg; SAR(10 g) = 0.317 W/kg

Maximum value of SAR (measured) = 1.13 W/kg

0 dB = 1.13 W/kg = 0.53 dBW/kg

Page 8 of 12

Test Laboratory: EMTEK (Shenzhen) Co.,Ltd. Date/Time: 12.06.2016

06-WLAN2.4G-802.11b-1Mbps-Bottom Face-0cm-Ch11

Communication System: UID 0, WIFI (0); Frequency: 2462 MHz; Duty Cycle: 1:1

Medium: MSL_2450_160612

Medium parameters used: f = 2462 MHz; $\sigma = 2.023$ S/m; $\varepsilon_r = 52.782$; $\rho = 1000$ kg/m³

Ambient Temperature: 23.3 °C; Liquid Temperature: 22.6 °C

DASY Configuration:

- Probe: EX3DV4 SN3970; ConvF(7.66, 7.66, 7.66); Calibrated: 10.07.2015;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1418; Calibrated: 23.06.2015
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1231
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Configuration/Ch11/Area Scan (111x181x1): Interpolated grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 1.14 W/kg

Configuration/Ch11/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 1.563 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 1.72 W/kg

SAR(1 g) = 0.767 W/kg; SAR(10 g) = 0.342 W/kg Maximum value of SAR (measured) = 1.17 W/kg

0 dB = 1.17 W/kg = 0.68 dBW/kg

Page 9 of 12

Test Laboratory: EMTEK (Shenzhen) Co.,Ltd. Date/Time: 12.06.2016

07-WLAN2.4G-802.11b-1Mbps-Edge3-0cm-Ch1

Communication System: UID 0, WIFI (0); Frequency: 2412 MHz; Duty Cycle: 1:1

Medium: MSL_2450_160612

Medium parameters used: f = 2412 MHz; $\sigma = 1.951$ S/m; $\varepsilon_r = 52.915$; $\rho = 1000$ kg/m³

Ambient Temperature: 23.3 °C; Liquid Temperature: 22.6 °C

DASY Configuration:

- Probe: EX3DV4 SN3970; ConvF(7.66, 7.66, 7.66); Calibrated: 10.07.2015;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1418; Calibrated: 23.06.2015
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1231
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Configuration/Ch1/Area Scan (41x121x1): Interpolated grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 1.02 W/kg

Configuration/Ch1/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.877 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 1.37 W/kg

SAR(1 g) = 0.578 W/kg; SAR(10 g) = 0.241 W/kg

Maximum value of SAR (measured) = 0.952 W/kg

0 dB = 0.952 W/kg = -0.21 dBW/kg

Page 10 of 12

Test Laboratory: EMTEK (Shenzhen) Co.,Ltd. Date/Time: 12.06.2016

08-WLAN2.4G-802.11b-1Mbps-Edge3-0cm-Ch11

Communication System: UID 0, WIFI (0); Frequency: 2462 MHz; Duty Cycle: 1:1

Medium: MSL_2450_160612

Medium parameters used: f = 2462 MHz; $\sigma = 2.023$ S/m; $\varepsilon_r = 52.782$; $\rho = 1000$ kg/m³

Ambient Temperature: 23.3 °C; Liquid Temperature: 22.6 °C

DASY Configuration:

- Probe: EX3DV4 SN3970; ConvF(7.66, 7.66, 7.66); Calibrated: 10.07.2015;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1418; Calibrated: 23.06.2015
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1231
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Configuration/Ch11/Area Scan (41x121x1): Interpolated grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 1.08 W/kg

Configuration/Ch11/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.063 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 1.46 W/kg

SAR(1 g) = 0.603 W/kg; SAR(10 g) = 0.247 W/kg

Maximum value of SAR (measured) = 1.01 W/kg

0 dB = 1.01 W/kg = 0.04 dBW/kg

Page 11 of 12

Test Laboratory: EMTEK (Shenzhen) Co.,Ltd. Date/Time: 12.06.2016

01-WLAN2.4G-802.11b-1Mbps-Front Face-0cm-Ch6

Communication System: UID 0, WIFI (0); Frequency: 2437 MHz; Duty Cycle: 1:1

Medium: MSL_2450_160612

Medium parameters used: f = 2437 MHz; $\sigma = 1.986$ S/m; $\varepsilon_r = 52.871$; $\rho = 1000$ kg/m³

Ambient Temperature: 23.3 °C; Liquid Temperature: 22.6 °C

DASY Configuration:

- Probe: EX3DV4 SN3970; ConvF(7.66, 7.66, 7.66); Calibrated: 10.07.2015;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1418; Calibrated: 23.06.2015
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1231
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Configuration/Ch6/Area Scan (111x181x1): Interpolated grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 0.88 W/kg

Configuration/Ch6/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.434 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 1.41 W/kg

SAR(1 g) = 0.629 W/kg; SAR(10 g) = 0.315 W/kg

Maximum value of SAR (measured) = 0.85 W/kg

0 dB = 0.850 W/kg = -0.71 dBW/kg

Page 12 of 12

Test Laboratory: EMTEK (Shenzhen) Co.,Ltd. Date/Time: 12.06.2016

02-WLAN2.4G-802.11b-1Mbps-Bottom Face-0cm-Ch6

Communication System: UID 0, WIFI (0); Frequency: 2437 MHz; Duty Cycle: 1:1

Medium: MSL_2450_160612

Medium parameters used: f = 2437 MHz; $\sigma = 1.986$ S/m; $\varepsilon_r = 52.871$; $\rho = 1000$ kg/m³

Ambient Temperature: 23.3 °C; Liquid Temperature: 22.6 °C

DASY Configuration:

- Probe: EX3DV4 SN3970; ConvF(7.66, 7.66, 7.66); Calibrated: 10.07.2015;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1418; Calibrated: 23.06.2015
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1231
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Configuration/Ch6/Area Scan (111x181x1): Interpolated grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 1.17 W/kg

Configuration/Ch6/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.661 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 1.52 W/kg

SAR(1 g) = 0.717 W/kg; SAR(10 g) = 0.356 W/kg

Maximum value of SAR (measured) = 1.08 W/kg

0 dB = 1.08 W/kg = 0.33 dBW/kg

Produkte Products

Page 1 of 27

Appendix B

Calibration Certificate

Products

Page 2 of 27

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client EMTEK (Auden)

Certificate No: D2450V2-927_Jan14

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE

Object D2450V2 - SN: 927

Calibration procedure(s) QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

Calibration date: January 13, 2014

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration	
Power meter EPM-442A	GB37480704	09-Oct-13 (No. 217-01827)	Oct-14	
Power sensor HP 8481A	US37292783	09-Oct-13 (No. 217-01827)	Oct-14	
Power sensor HP 8481A	MY41092317	09-Oct-13 (No. 217-01828)	Oct-14	
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-13 (No. 217-01736)	Apr-14	
Type-N mismatch combination	SN: 5047.3 / 06327	04-Apr-13 (No. 217-01739)	Apr-14	
Reference Probe ES3DV3	SN: 3205	30-Dec-13 (No. ES3-3205_Dec13)	Dec-14	
DAE4	SN: 601	25-Apr-13 (No. DAE4-601_Apr13)	Apr-14	
Secondary Standards	ID#	Check Date (in house)	Scheduled Check	
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-13)	In house check: Oct-16	
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-13)	In house check: Oct-14	

Name Function
Calibrated by: Israe El-Naouq Laboratory Technician

Approved by: Katja Pokovic Technical Manager

Lex ag

Issued: January 13, 2014

This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Certificate No: D2450V2-927_Jan14

Page 1 of 8

Products

Page 3 of 27

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

Certificate No: D2450V2-927_Jan14

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Produkte Products

Page 4 of 27

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.3 ± 6 %	1.83 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.4 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	53.2 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.22 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.8 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.8 ± 6 %	2.00 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.8 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	50.4 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	100 (100 (100 (100 (100 (100 (100 (100
SAR measured	250 mW input power	5.89 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.3 W/kg ± 16.5 % (k=2)

Certificate No: D2450V2-927_Jan14

Products

Page 5 of 27

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$55.2 \Omega + 2.9 j\Omega$	- 15
Return Loss	- 24.9 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	51.4 Ω + 4.7 jΩ	
Return Loss	- 26.3 dB	

General Antenna Parameters and Design

	The state of the s
Electrical Delay (one direction)	1.158 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	September 26, 2013

TÜVRheinland®

Page 6 of 27

DASY5 Validation Report for Head TSL

Date: 13.01.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 927

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.83 \text{ S/m}$; $\varepsilon_r = 39.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.53, 4.53, 4.53); Calibrated: 30.12.2013;

Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 25.04.2013

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 100.3 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 27.9 W/kg SAR(1 g) = 13.4 W/kg; SAR(10 g) = 6.22 W/kg

Maximum value of SAR (measured) = 17.1 W/kg

0 dB = 17.1 W/kg = 12.33 dBW/kg