Chapter 5: One-way ANOVA and Randomized Experiments - Part 1

Harsha Perera

Key Topics

- Overview of ANOVA
- ► The One-Way Randomized Experiment
- ► Fitting One-Way ANOVA Model

Overview of ANOVA

- ► Simple Linear Regression and Multiple Linear Regression:
 - Response variable: continuous
 - Predictor variable(s): at least one continuous variable
- In this chapter we will look into models with
 - Continuous response
 - Categorical predictor(s)
- Examples:
 - Weight gain among rats vs. source of protein in diet (beef, cereal or pork)
 - ► An experiment
 - Difference in average commute time among four cities (Boston, Houston, Minneapolis and Washington)
 - Observational study
- ► From an overall context we will be investigating whether there is a mean difference in response for each category

Example 5.1 - Fat Rats: A Randomized Experiment

- Objective: to study the effect of three different high-protein diets on weight gain in baby rats
- Response: weight gain (continuous / quantitative)
- ▶ Predictor: sources of protein in high-protein diets
 - beef
 - cereal
 - pork
- ightharpoonup n = 30: 10 on each type of protein diet

Fat rats: a randomized experiment...

▶ Is there a difference in weight gain depending on the different sources of diet?

- If different, how big is the difference?
- Are all groups different or subset of groups different?
- We can answer all theses question by performing an ANOVA

Example 5.2 - Teen Pregnancy and the Civil War

- ▶ Response: Pregnancy rate (number of pregnancies per 1000 teenage girls) for each of 50 U.S. states in 2010
- Predictor: role of the state in the U.S. civil war
 - C: confederate state
 - B: border state
 - U: union state
 - O: other state

 Objective: investigate whether teen pregnancy differ depending on the role of the state during civil war (1860)

One-way Randomized Experiment

- Simplest experimental structure for an ANOVA model
- Has a single categorical predictor, and we create the data for this choice of model by randomly assigning units to the categories of that variable
- One-way ANOVA is a regression model when we have one categorical predictor and continuous response

One-way Randomized Experiment - Terminology

- Some terminology in Experimental Designs (example: Fat rats)
 - ► EXPERIMENTAL UNIT: each rat who get randomly assigned to one of the protein sources
 - ► EXPLANATORY FACTOR(S): one factor source of protein
 - LEVELS/TREATMENTS: different levels of the factor (beef, cereal, pork)
 - ▶ BALANCED DESIGN: when each level/treatment gets assigned to same number of experimental units (10 rats per level)
 - ► RESPONSE VARIABLE: measurement of each experimental unit after the treatment applied (weight gain of rats)
- One-way ANOVA can also be used with observation studies as long as the observations are gathered randomly

Fitting One-Way ANOVA model

ightharpoonup For quantitative response Y and single categorical predictor,

$$Y = \mu_i + \in$$

or

$$Y = \mu + \alpha_i + \epsilon$$

- $\blacktriangleright \mu$: Grand mean
- $ightharpoonup \alpha_i$: treatment effect for i^{th} group mean
- ▶ Random error: $\in \sim N(0, \sigma_{\in})$
- ▶ Mean for the i^{th} group: $\mu_i = \mu + \alpha_i$

Fitting One-Way ANOVA Model

▶ The goal of ANOVA is to compare the averages of each category

Response = Grand Average + Treatment effect + Residual

- Objective is to answer following questions
- 1. What is the overall average: Grand mean $(\hat{\mu} = \bar{y})$
- 2. How far is each average from overall average: treatment effect $(\hat{\alpha}_i = \bar{y}_i \bar{y})$
- 3. How far is each response from its group average: residual $(y_i \bar{y}_i)$

ANOVA Table

► For *k* groups

Source	df	SS	MS	F
Groups	k-1	SSGroups	$MSGroups = \frac{SSGroups}{k-1}$	$F = rac{MSGroups}{MSF}$
Residual	n-k	SSE	$MSE = \frac{SSE}{n-k}$	52
Total	n-1	SSTotal		

Source	df	SS	MS	F
Groups	k-1	$\sum (\bar{y_i} - \bar{y})^2$	$MSGroups = \frac{SSGroups}{k-1}$	$F = rac{\mathit{MSGroups}}{\mathit{MSE}}$
Residual	n-k	$\sum (y_i - \bar{y}_i)^2$	$MSE = \frac{SSE}{n-k}$	
Total	n-1	$\sum (y_i - \bar{y})^2$		