

Machine Learning

Linear Regression with multiple variables

Multiple features

Multiple features (variables).

Size (feet²)	Price (\$1000)		
$\rightarrow x$	y ~		
2104	460		
1416	232		
1534	315		
852	178		

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Multiple features (variables).

<i>_</i>	Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)	
	* 1	*2	×3	ナイ	<u> </u>	
	2104	5	1	45	460	
	7 1416	3	2	40	232 + M = 47	
	1534	3	2	30	315	
	852	2	1	36	178	
		 	 ^		J L T14167	
No	otation:		•	•	$\sqrt{(2)} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$	
$\rightarrow n$ = number of features $n = 4$					$\frac{\times^{(2)}}{2} = \begin{bmatrix} 3 \\ 2 \\ 4 \end{bmatrix} \in$	
$\rightarrow x^{(i)}$ = input (features) of i^{th} training example.						
$\Rightarrow x_j^{(i)}$ = value of feature j in i^{th} training example. $x_j = 2$						

Hypothesis:

Previously:
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

For convenience of notation, define
$$x_0 = 1$$
. $(x_0) = 1$

$$x = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_n \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$0 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$0 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$0 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$(n+1) \times (n+1) \times (n+1)$$

Multivariate linear regression.

Machine Learning

Linear Regression with multiple variables

Gradient descent for multiple variables

Hypothesis:
$$h_{\theta}(x) = \theta^T x = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

Parameters:
$$\theta_0, \theta_1, \dots, \theta_n$$

$$J(\theta_0, \theta_1, \dots, \theta_n) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Gradient descent:

Repeat
$$\{$$
 $\Rightarrow \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \dots, \theta_n)$ **(simultaneously update for every** $j = 0, \dots, n$)

Gradient Descent

Previously (n=1):

$$\theta_0 := \theta_0 - o \underbrace{\frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})}_{}$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) \underline{x^{(i)}}$$

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) \underline{x^{(i)}}$$

(simultaneously update $\hat{\theta}_0, \theta_1$)

New algorithm $(n \ge 1)$:

Repeat
$$\{$$

$$\theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

(simultaneously update $heta_i$ for $j=0,\ldots,n$

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^{n} \theta_i$$

$$\theta_1$$
 :

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum (h_{\theta}(x^{(i)}) - y^{(i)}) x_1^{(i)}$$

$$\frac{1}{n} \sum_{i=1}^{n} ($$

$$\theta_2 := \theta_2 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_2^{(i)}$$

Machine Learning

Linear Regression with multiple variables

Gradient descent in practice I: Feature Scaling

Feature Scaling

Idea: Make sure features are on a similar scale.

Feature Scaling

Get every feature into approximately a

Mean normalization

Replace $\underline{x_i}$ with $\underline{x_i - \mu_i}$ to make features have approximately zero mean (Do not apply to $\underline{x_0 = 1}$).

E.g.
$$\Rightarrow x_1 = \frac{size - 1000}{2000}$$

$$x_2 = \frac{\#bedrooms - 2}{5} \quad \text{l-S} \quad \text{hedou}$$

$$\Rightarrow -0.5 \le x_1 \le 0.5, -0.5 \le x_2 \le 0.5$$

$$x_1 = \frac{x_1 - y_1}{2000}$$

$$x_2 = \frac{x_1 - y_2}{5} \quad \text{hedou}$$

$$x_3 = \frac{x_1 - y_2}{5} \quad \text{hedou}$$

$$x_4 = \frac{x_1 - y_2}{5} \quad \text{hedou}$$

$$x_5 = \frac{x_1 - y_2}{5} \quad \text{hedou}$$

$$x_6 = \frac{x_1 - y_2}{5} \quad \text{hedou}$$

Machine Learning

Linear Regression with multiple variables

Gradient descent in practice II: Learning rate

Gradient descent

$$\rightarrow \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

- "Debugging": How to make sure gradient descent is working correctly.
- How to choose learning rate α .

Making sure gradient descent is working correctly.

Making sure gradient descent is working correctly.

- For sufficiently small α , $J(\theta)$ should decrease on every iteration.
- But if lpha is too small, gradient descent can be slow to converge.

Summary:

- If α is too small: slow convergence.
- If α is too large: $J(\theta)$ may not decrease on every iteration; may not converge. (Slow converge where α)

To choose α , try

$$\dots, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, \dots$$

Machine Learning

Linear Regression with multiple variables

Features and polynomial regression

Housing prices prediction

$$h_{\theta}(x) = \theta_0 + \theta_1 \times frontage + \theta_2 \times depth$$

Area

 $\times = frontage \times depth$
 $h_{\theta}(x) = \Theta_0 + \Theta_1 \times depth$

Polynomial regression

Choice of features

Machine Learning

Linear Regression with multiple variables

Normal equation

Gradient Descent

Normal equation: Method to solve for θ analytically.

Intuition: If 1D $(\theta \in \mathbb{R})$

$$J(\theta) = a\theta^2 + b\theta + c$$

$$\frac{\partial}{\partial \phi} J(\phi) = \frac{\sec^2 \phi}{\cos^2 \phi}$$
Solve, for ϕ

$$\underline{\theta \in \mathbb{R}^{n+1}} \qquad \underline{J(\theta_0, \theta_1, \dots, \theta_m)} = \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$\underline{\frac{\partial}{\partial \theta_i} J(\theta)} = \cdots \stackrel{\boldsymbol{\leq}}{=} 0 \qquad \text{(for every } j\text{)}$$

Solve for $\theta_0, \theta_1, \ldots, \theta_n$

Examples: m = 4.

	J	Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000))
<u> </u>	x_0	x_1	x_2	x_3	x_4	y	
(1	2104	5	1	45	460	
	1	1416	3	2	40	232	
	1	1534	3	2	30	315	
	1	852	2	_1	, 36	178	7
	>	$X = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$	$2104 5 1$ $1416 3 2$ $1534 3 2$ $852 2 1$ $M \times (M+1)$	2 40 2 30 1 36	$y = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$	460 232 315 178	1est or
		$\theta = (X^T X$	$(1)^{-1}X^{T}y$	~			

\underline{m} examples $(x^{(1)}, y^{(1)}), \ldots, (\underline{x^{(m)}, y^{(m)}})$; \underline{n} features.

$$\underline{x^{(i)}} = \begin{bmatrix} x_0^{(i)} \\ x_1^{(i)} \\ x_2^{(i)} \\ \vdots \\ x_n^{(i)} \end{bmatrix} \in \mathbb{R}^{n+1}$$

$$(\operatorname{des}_{\mathsf{syn}} \\ \operatorname{nock}_{\mathsf{n}})$$

$$(\operatorname{h}_{\mathsf{x}}(\mathsf{n}))^{\mathsf{T}}$$

Andrew Ng

$$\theta = (X^T X)^{-1} X^T y$$

$$(X^T X)^{-1} \text{ is inverse of matrix } \underline{X}^T X.$$

$$Set \quad A: \quad X^T \times \\ (X^T \times)^{-1} = A^{-1} \text{ No Need to feature scaling}$$

$$Octave: \quad pinv (X' * X) * X' * y \qquad \times \\ pinv (X^T * X) * X^T * y \qquad O \le x_1 \le 1$$

$$O = \omega \quad (X^T \times)^{-1} X^T y \qquad \min \quad I(\Theta) \qquad O \le x_1 \le 10^{-5} \text{ operators}$$

Andrew Ng

m training examples, \underline{n} features.

Gradient Descent

- \rightarrow Need to choose α .
- → Needs many iterations.
 - Works well even when n is large.

Normal Equation

- \rightarrow No need to choose α .
- Don't need to iterate.
 - Need to compute
- $\longrightarrow (X^T X)^{-1} \quad \underset{\mathsf{n} \times \mathsf{n}}{\overset{\mathsf{n} \times \mathsf{n}}{\longrightarrow}} \quad O(\mathsf{n}^3)$
 - Slow if n is very large.

Machine Learning

Linear Regression with multiple variables

Normal equation and non-invertibility (optional)

Normal equation

$$\theta = (X^T X)^{-1} X^T y$$

- What if X^TX is non-invertible? (singular/degenerate)
- Octave: pinv(X'*X) *X'*y

What if X^TX s non-invertible?

Redundant features (linearly dependent).

E.g.
$$x_1 = \text{size in feet}^2$$

$$x_2 = \text{size in m}^2$$

$$x_1 = (3.18)^2 \times 1$$

$$x_2 = (3.18)^2 \times 1$$

$$x_3 = (3.18)^2 \times 1$$

$$x_4 = (3.18)^2 \times 1$$

$$x_5 = (3.18)^2 \times 1$$

$$x_6 = (3.18)^2 \times 1$$

$$x_7 = (3.18)^2 \times 1$$

$$x_8 = (3.18)^2 \times 1$$

$$x_1 = (3.18)^2 \times 1$$

$$x_2 = (3.18)^2 \times 1$$

$$x_3 = (3.18)^2 \times 1$$

$$x_4 = (3.18)^2 \times 1$$

$$x_5 = (3.18)^2 \times 1$$

$$x_6 = (3.18)^2 \times 1$$

- Delete some features, or use regularization.

