Engineering Computation

Semester 2, 2021

Dr Michael Dallaston

TARANG JANAWALKAR

Contents

C	ontents	1
1	MATLAB Functions 1.1 Plotting	3 3
2	Operations in MATLAB	4
	2.1 Conditional Operations	4
	2.2 Iterative Operations	4
3	Differential Equations	4
	3.1 Electrical Systems	4
4	First-Order Ordinary Differential Equations	4
	4.1 Separable ODEs	4
	4.2 Linear ODEs	5
	4.3 Solution using Linearisation	6
5	Second-Order Ordinary Differential Equations	7
	5.1 Constant Coefficient Linear ODEs	7
	5.2 Linearity of Solutions	7
	5.3 Homogeneous ODEs	
	5.4 Characteristic Equation	7
	5.4.1 Real Distinct Roots	8
	5.4.2 Real Repeated Roots	8
	5.4.3 Complex Conjugate Roots	8
	5.5 Nonhomogeneous ODE	8
	5.6 General Solution of a Nonhomogeneous ODE	8
	5.7 Undetermined Coefficients	9
	5.8 Special Forms	9
	5.8.1 Product of Forms	9
	5.8.2 Sum of Forms	9
	5.8.3 Linearly Dependent Case	9
	5.9 Solving the Particular Solution	9
6	Systems of Ordinary Differential Equations	10
	6.1 Higher-Order ODEs	10
	6.2 Solution Form	11
	6.2.1 Characteristic Equation	11
	6.3 Solving a System of ODEs	11
7	Probability	11
	7.1 Events	12
	7.2 Dependent Events	

8	\mathbf{Pro}	bability Distributions	12
	8.1	Binomial Distribution	13
	8.2	Bernouilli Distribution	13
	8.3	Poisson Distribution	13
	8.4	Uniform Distribution	13
	8.5	Exponential Distribution	13
	8.6	Normal Distribution	13

1 MATLAB Functions

Function Syntax	Function Output
y = sin(x)	Sine with x in radians.
y = sind(x)	Sine with x in degrees.
y = asin(x)	Arcsine with y in radians.
y = exp(x)	e^x .
y = log(x)	$\ln\left(x\right)$.

Table 1: Common Mathematical Functions in MATLAB.

All the above functions are element-wise.

Function Syntax	Function Output(s)
A = zeros(m, n)	Creates an $m \times n$ matrix containing zeros.
A = ones(m, n)	Creates an $m \times n$ matrix containing ones.
I = eye(m)	Creates an $m \times m$ identity matrix.
a = linspace(a, b, x)	Creates an evenly spaced vector with bounds $[a, b]$.
y = length(A)	The largest dimension of A .
[m, n] = size(A)	The dimensions of A .
y = min(a)	The minimum value in the vector a .
y = max(a)	The maximum value in the vector a .

Table 2: Matrices and Arrays in MATLAB.

When manipulating matrices, *, $\hat{}$, perform matrix operations, while prepending an operator with a dot (.) performs an element-wise operation.

1.1 Plotting

Function Syntax	Function Output(s)
plot(x, y)	Plots given x and y coordinate vectors.
<pre>fplot(@f, [a, b])</pre>	Plots the anonymous function over the domain $[a, b]$.
<pre>title('string')</pre>	Adds title to current plot.
<pre>xlabel('string')</pre>	Adds x -axis label to current plot.
<pre>ylabel('string')</pre>	Adds y -axis label to current plot.
<pre>legend('string1',)</pre>	Adds legend to plot.
figure	Creates a new figure.

Table 3: Plotting in MATLAB.

2 Operations in MATLAB

2.1 Conditional Operations

if expression
 statements
else if expression
 statements
else
 statements
end

Code inside an **if** statement only executes if the expression is true. Note that only one branch will execute depending on which expression is true.

2.2 Iterative Operations

while expression statements end Statements inside a while loop execute repeatedly until the expression is false.

for index = values
 statements
end

Statements inside a for loop execute a specific number of times, based on the length of values.

3 Differential Equations

Definition 3.0.1. A differential equation is an equation that involves the derivatives of a function as well as the function itself. An ordinary differential equation (ODE) is a differential equation of a function with only one independent variable.

3.1 Electrical Systems

4 First-Order Ordinary Differential Equations

4.1 Separable ODEs

$$\frac{\mathrm{d}y}{\mathrm{d}t} = F(y, t)$$

- 1. Rewrite the equation in the form: f(y) dy = g(t) dt.
- 2. Integrate both sides: $\int f(y) dy = \int g(t) dt$.
- 3. Rearrange for the explicit form of y(t).

4.2 Linear ODEs

Let
$$P=P(t),\,Q=Q(t)$$
 and $\mu=\mu(t)$
$$\frac{\mathrm{d}y}{\mathrm{d}t}+Py=Q$$

- 1. Determine the integrating factor: $\mu = \exp\left(\int P dt\right)$.
- 2. Solve:

$$y = \frac{1}{\mu} \left(\int Q \mu \, \mathrm{d}t + C \right)$$

Proof. To solve a first-order linear differential equation, determine an integrating factor $\mu = \mu(t)$ such that

$$P\mu = \frac{\mathrm{d}\mu}{\mathrm{d}t} \tag{1}$$

Multiplying the equation by μ gives

$$\mu \frac{\mathrm{d}y}{\mathrm{d}t} + P\mu y = Q\mu$$

$$\mu \frac{\mathrm{d}y}{\mathrm{d}t} + \frac{\mathrm{d}\mu}{\mathrm{d}t}y = Q\mu$$

$$\frac{\mathrm{d}}{\mathrm{d}t}(\mu y) = Q\mu$$

$$\int \frac{\mathrm{d}}{\mathrm{d}t}(\mu y) \,\mathrm{d}t = \int Q\mu \,\mathrm{d}t$$

$$\mu y = \int Q\mu \,\mathrm{d}t$$

$$y = \frac{1}{\mu} \left(\int Q\mu \,\mathrm{d}t + C \right)$$

To determine μ we can rearrange Equation 1 into

$$P = \frac{1}{\mu} \frac{\mathrm{d}\mu}{\mathrm{d}t}$$

By recognition, this is the derivative of the natural logarithm of μ with respect to t.

$$P = \frac{\mathrm{d}}{\mathrm{d}t}(\ln(\mu))$$

$$\int P \, \mathrm{d}t = \int \frac{\mathrm{d}}{\mathrm{d}t}(\ln(\mu)) \, \mathrm{d}t$$

$$\int P \, \mathrm{d}t = \ln(\mu)$$

$$\mu = \exp\left(\int P \, \mathrm{d}t\right)$$

4.3 Solution using Linearisation

A function can be linearised by using its 1st degree Taylor polynomial near a.

$$f(x) \approx f(a) + f'(a)(x-a) + \mathcal{O}(x^2)$$

This new polynomial can be substituted to form a linear ODE, which can be solved using an integrating factor.

5 Second-Order Ordinary Differential Equations

5.1 Constant Coefficient Linear ODEs

$$a\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} + b\frac{\mathrm{d}y}{\mathrm{d}t} + cy = Q(t)$$

where a, b, c are constants.

5.2 Linearity of Solutions

Theorem 5.2.1 (Principle of Superposition). As the given ODE is linear, if $y_1(t)$ is a solution to the equation

$$a\frac{\mathrm{d}^2y_1}{\mathrm{d}t^2} + b\frac{\mathrm{d}y_1}{\mathrm{d}t} + cy_1 = Q_1(t)$$

and $y_2(t)$ is a solution to

$$a\frac{\mathrm{d}^2y_2}{\mathrm{d}t^2} + b\frac{\mathrm{d}y_2}{\mathrm{d}t} + cy_2 = Q_2(t)$$

then for the function $y = c_1y_1 + c_2y_2$

$$a\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} + b\frac{\mathrm{d}y}{\mathrm{d}t} + cy = c_1 Q_1(t) + c_2 Q_2(t)$$

where c_1 and c_2 are constants.

5.3 Homogeneous ODEs

Definition 5.3.1. A homogeneous ODE has Q(t) = 0, which gives

$$a\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} + b\frac{\mathrm{d}y}{\mathrm{d}t} + cy = 0$$

This differential equation has a solution of the form:

$$y_h = e^{rt}$$

5.4 Characteristic Equation

By making the substitution $y = e^{rt}$, we get

$$a\frac{\mathrm{d}^2 y_h}{\mathrm{d}t^2} + b\frac{\mathrm{d}y_h}{\mathrm{d}t} + cy_h = 0$$
$$ar^2 e^{rt} + bre^{rt} + ce^{rt} = 0$$
$$(ar^2 + br + c)e^{rt} = 0$$
$$ar^2 + br + c = 0$$

This is known as the characteristic or *auxiliary* equation. The next step is to calculate the roots of the equation.

Real Distinct Roots. If $b^2 > 4ac$.

Real Repeated Roots. If $b^2 = 4ac$.

Complex Conjugate Roots. If $b^2 < 4ac$.

5.4.1 Real Distinct Roots

Given r_1 and r_2 are real and distinct:

$$y_1(t) = e^{r_1 t}$$
 $y_2(t) = e^{r_2 t}$

Hence the solution to the homogeneous equation is given by:

$$y_h(t) = c_1 e^{r_1 t} + c_2 e^{r_2 t}$$

5.4.2 Real Repeated Roots

Given r is a repeated root:

$$y_1(t) = e^{rt} y_2(t) = te^{rt}$$

Hence the solution to the homogeneous equation is given by:

$$y_h(t) = c_1 e^{rt} + c_2 t e^{rt}$$

5.4.3 Complex Conjugate Roots

Given $r_1 = \alpha + \beta i$ and $r_2 = \alpha - \beta i$ are complex conjugates:

$$y_1(t) = e^{r_1 t}$$
 $y_2(t) = e^{r_2 t}$

Hence the solution to the homogeneous equation is given by:

$$y_h(t) = c_1 e^{\alpha t} \cos(\beta t) + c_2 e^{\alpha t} \sin(\beta t)$$

5.5 Nonhomogeneous ODE

A nonhomogeneous differential equation is of the form

$$a\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} + b\frac{\mathrm{d}y}{\mathrm{d}t} + cy = Q(t)$$

where $Q(t) \neq 0$.

5.6 General Solution of a Nonhomogeneous ODE

Recall that the solutions to any linear ODE are additive, so that if a solution y_p satisfies the nonhomogeneous ODE, and y_h satisfies the homogeneous ODE,

$$y = y_h + y_p$$

must also satisfy the ODE.

5.7 Undetermined Coefficients

To solve for y_p , we substitute a guess like the homogeneous case, and the coefficients in this guess will be determined from the ODE itself.

The particular solution will depend on what Q(t) looks like.

Q(t)	y_p
a constant	A
nth degree polynomial	$A_0 + A_1 t + \dots + A_{n-1} t^{n-1} + A_n t^n$
$\mathrm{e}^{lpha t}$	$A\mathrm{e}^{lpha t}$
$\cos{(\alpha t)}$	$A\cos\left(\alpha t\right) + B\sin\left(\alpha t\right)$
$\sin{(\alpha t)}$	$A\cos\left(\alpha t\right) + B\sin\left(\alpha t\right)$
$\cos\left(\alpha t\right) + \sin\left(\alpha t\right)$	$A\cos\left(\alpha t\right) + B\sin\left(\alpha t\right)$

Table 4: Particular Solutions for Undetermined Coefficients

5.8 Special Forms

5.8.1 Product of Forms

If Q(t) is a product of the functions shown above, then we write the particular solution for both functions separately and multiply the results together.

For example, with $Q(t) = te^{4t}$, we have

$$y_p = (At + B) (Ce^{4t})$$

the next step is to expand the function simplify any constants.

$$y_p = (ACt + BC) e^{4t} y_p \\ = (A_1 t + B_1) e^{4t}$$

5.8.2 Sum of Forms

If Q(t) is a sum of the functions shown above, then we can use Theorem 5.2.1 and add the particular solutions together.

5.8.3 Linearly Dependent Case

If Q(t) is similar to any homogeneous solution, then by definition of a homogeneous solution, the solution will be 0. Hence, y_p must be multiplied by t to ensure that the particular solution is linearly independent to the homogeneous solutions, in order to form a fundamental set of solutions.

5.9 Solving the Particular Solution

- 1. Solve y_h
- 2. Find an appropriate form for y_p
- 3. Ensure that y_p is linearly independent to the homogeneous solutions

- 4. Substitute y_p into the nonhomogeneous ODE and solve for the undetermined coefficients
- 5. Find the general solution $y = y_h + y_p$
- 6. Apply initial conditions to solve for any constants

6 Systems of Ordinary Differential Equations

A first-order system of differential equations has the form

$$\begin{cases} x_1' = a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \\ x_2' = a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \\ \vdots & \vdots & \vdots \\ x_n' = a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n \end{cases}$$

where $x_1=x_1\left(t\right),\,x_2=x_2\left(t\right),\,\dots,\,x_n=x_n\left(t\right)$ are the functions to be determined. In matrix form, the system can be written as

$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$
$$\mathbf{x}' = \mathbf{A}\mathbf{x}$$

6.1 Higher-Order ODEs

A higher-order linear differential equation can be solved by first converting it to a first-order linear system. Consider the nth-order homogeneous differential equation

$$y^{(n)} + a_1 y^{(n-1)} + \dots + a_{n-1} y' + a_n y = 0$$

Let

$$\begin{aligned} x_1 &= y \\ x_2 &= y' \\ &\vdots \\ x_n &= y^{(n-1)} \end{aligned}$$

so that $\mathbf{x} = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix}^{\mathsf{T}}$. Then the differential equation can be expressed as the following first-order linear system of differential equations

$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ -a_n & -a_{n-1} & -a_{n-2} & \cdots & -a_1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

6.2 Solution Form

Like the homogeneous case, we will guess a solution of the form

$$\mathbf{x} = \mathbf{q} e^{\lambda t}$$

which allows for the following substitution

$$egin{aligned} \lambda \mathbf{q} \mathrm{e}^{\lambda t} &= A \mathbf{q} \mathrm{e}^{\lambda t} \ A \mathbf{q} \mathrm{e}^{\lambda t} - \lambda \mathbf{q} \mathrm{e}^{\lambda t} &= \mathbf{0} \ (A - \lambda I) \, \mathbf{q} \mathrm{e}^{\lambda t} &= \mathbf{0} \ (A - \lambda I) \, \mathbf{q} &= \mathbf{0} \end{aligned}$$

This equation has the trivial solution $\mathbf{q} = \mathbf{0}$, however for a fundamental set of solutions, we must let $\mathbf{A} - \lambda \mathbf{I}$ be singular.

6.2.1 Characteristic Equation

To determine the eigenvalues λ of the matrix **A**, we must solve the characteristic equation associated with the system of ODEs. Namely,

$$\det\left(\boldsymbol{A} - \lambda \boldsymbol{I}\right) = 0$$

These eigenvalues can then be used to solve the eigenvectors of A

6.3 Solving a System of ODEs

- 1. Model the system of ODEs in the form $\mathbf{x}' = A\mathbf{x}$
- 2. Solve the characteristic equation for the eigenvalues of A
- 3. Solve the corresponding eigenvectors of \mathbf{A} by solving $(\mathbf{A} \lambda \mathbf{I}) \mathbf{q} = \mathbf{0}$
- 4. Write the general solution: $\mathbf{x} = c_1 \mathbf{q}_1 e^{\lambda_1 t} + c_2 \mathbf{q}_2 e^{\lambda_2 t}$
- 5. Apply initial conditions to solve c_1 and c_2

7 Probability

Definition 7.0.1 (Random Variables). A random variable X is a measurable variable that doesn't hold a definitive value.

Definition 7.0.2 (Discrete Random Variables). A discrete random variable X has a countable number of possible values.

Definition 7.0.3 (Continuous Random Variables). A continuous random variable X can take all values in a given interval.

Definition 7.0.4 (Probability). Probability is used to mean the chance that a particular event (or set of events) will occur, expressed on a linear scale from 0 to 1. The probability of the random variable X taking the value x is denoted

$$\Pr\left(X=x\right)$$

Definition 7.0.5 (Sample Space). Let the set of all possible outcomes of a random variables be called the sample space, denoted Ω , of that random variable.

Let X be a random variable that can take on values $x \in \Omega$. Then for all $x \in \Omega$ there is an associated probability p(x), such that

$$\forall x \in \Omega: 0 < p(x) \le 1$$

$$\sum p(x) = 1.$$

7.1 Events

Definition 7.1.1 (Events). An event A is a set of individual outcomes within Ω . Then for some event $A \subset \Omega$, the probability is given by

$$\Pr\left(A\right) = \sum_{x \in A} p(x).$$

The complementary event, denoted A^C (also \overline{A}) is the set of all outcomes within the sample space that are not within A.

$$\Pr\left(A^{C}\right) = 1 - \Pr\left(A\right).$$

Theorem 7.1.1 (Combination of Events). Events can be combined with the two logical connectors AND and OR, which are equivalent to the intersection (\cap) and union (\cup) of set.

Theorem 7.1.2 (Mutually Exclusive Events). If two events have no possible outcomes in common, they are mutually exclusive or disjoint events.

$$A \cap B = \emptyset$$
.

It follows that

$$\Pr\left(A\cap B\right)=0.$$

Theorem 7.1.3 (Probability of Union).

$$\Pr(A \cup B) = \Pr(A) + \Pr(B) - \Pr(A \cap B)$$

Theorem 7.1.4 (AND Statements).

7.2 Dependent Events

Definition 7.2.1 (Conditional Probability).

Theorem 7.2.1 (Total Probability).

Theorem 7.2.2 (Bayes' Rule).

8 Probability Distributions

Definition 8.0.1 (Expectation).

Definition 8.0.2 (Variance).

- 8.1 Binomial Distribution
- 8.2 Bernouilli Distribution
- 8.3 Poisson Distribution
- 8.4 Uniform Distribution
- 8.5 Exponential Distribution
- 8.6 Normal Distribution