It is clear that I do not deny that the psychologies of individual persons play a role in political decisions. Instead, I deny that psychologists offer generalizations of an abstract nature which are useful for political analysis. Even though some particular events may be determined to a considerable extent by the psychological variable, it would be difficult to find a serious student of politics who believes that this variable is central to the study of politics. Good interdisciplinary work is to be desired but will require considerably greater sophistication and greater empirical knowledge on the part of psychologists than that profession has, in general, so far demonstrated when it has turned its attention to problems of politics.

Where I referred to the propagandistic use of psychology, I did so in the context of a dis-

cussion of the use psychologists make of the various psychological mechanisms in interpreting political behavior. Serious people know that it is impossible to make any kind of statement about such mechanisms in the absence of detailed knowledge of the context and that simple-minded interpretations of reality which employ such mechanisms have no scientific value. They are at best propagandistic and they represent misuses of social science by people who should know better. Dr. Frank's discussion of the arms race is a case in instance. That his objectives may be worthy unfortunately does not compensate for the fact that he has ventured well beyond his depth and that he has caricatured the positions and motivation of those whose views he opposes.

Morton A. Kaplan
University of Chicago

MALAPPORTIONMENT REMEASURED

TO THE EDITOR:

In their article, "Measuring Malapportionment" (in the June issue, p. 302), Glendon Schubert and Charles Press have provided a scale for ranking the apportionment of American legislatures, accompanied by the results of their calculations of the mean, standard deviation, etc., for each legislative body. In pursuit of my research into the political effects of reapportionment, I acquired their raw data from the Inter-University Consortium for Political Research. A closer examination of the materials discloses that the "apportionment ideal" to which they compare each representational unit has been improperly calculated for a number of states. As a result, the rankings of all the states, and the individual results for those states that were incorrectly computed are called into question.

Schubert and Press lay down the correct procedure on p. 312, where they describe the calculation of the mean, M, elsewhere referred to as the "apportionment ideal":

X = the population of any representational unit; N = the total number of representational units = the size of the chamber; and M equals the mean, of $M = \sum X/N$

Representational units are created from multimember districts by dividing the district population by the number of district representatives.

In Table II (pp. 320-22) the results of the calculation of the means by this procedure appear to be presented. But an attempt to repeat the calculations revealed that instead of the population means for representational units, we have the means for districts.

Where states have multi-member districts represented by a varying number of legislators, the district mean is an inaccurate measure of an "apportionment ideal"... Unless the authors clarify their results, in light of their own theoretical premises, their statistical rankings and patterns cannot be accepted.

JOHN T. ELLIFF

Harvard University

TO THE EDITOR:

We wish to thank John T. Elliff of Harvard University for having called to our attention, and also to express to the Editor our appreciation for this opportunity to correct, a systematic coding error which affected the empirical findings of our article in the June issue of this Review (pp. 302–327). The corrected data are summarized below in revised Tables II and IV and Figure 2.

GLENDON SCHUBERT CHARLES PRESS

Michigan State University

CORRECTED TABLE II. SCORES FOR AMERICAN LEGISLATIVE CHAMBERS ON APPORTIONMENT INDICES OF CENTRAL TENDENCY, DISPERSION, VARIATION, SKEWNESS, AND KURTOSIS

State	Chamber	Mean	Standard Deviation	ICV	Skewness	Kurtosis
ALAB	S	93335	106513	.46	3.95	16.66
ALAB	H	30809	24608	. 55	1.60	1.84
ALAS	S	9674	8744	.52	2.46	6.18
ALAS	H	4837	2362	.67	0.40	-1.20
ARIZ	S	46506	85034	.35	2.72	6.14
ARIZ	H	16272	8427	. 65	0.64	-0.37
ARK	S	51045	11429	.81	1.44	1.46
ARK	Н	17863	7500	.70	0.01	-1.06
CAL	S	392780	938308	.29	5.43	29.78
CAL	H	195478	79322	.71	0.88	0.19
COLO	S	50113	28359	.63	1.12	0.90
COLO	\mathbf{H}	26984	13959	. 65	1.07	0.75
CONN	S	70423	41320	. 63	1.32	0.69
CONN	\mathbf{H}	8622	13447	.39	3.47	13.73
DEL	S	26252	21308	.55	0.89	-0.84
\mathbf{DEL}	H	12751	13497	.48	1.88	2.78
FLA	\mathbf{s}	130302	176029	.42	2.79	9.15
FLA	H	52226	65222	.44	2.26	5.55
GA	\mathbf{s}	73022	85985	.45	3.78	16.81
GA	H	19235	24673	.43	4.87	28.16
HAW	S	25306	21937	. 53	0.83	-0.93
HAW	\mathbf{H}	12407	5027	.71	1.15	-0.01
IDA	\mathbf{s}	15163	17925	.45	2.46	6.72
IDA	H	11308	6389	. 63	0.28	-0.79
$_{ m ILL}$	S	173810	108724	.61	1.45	2.42
$_{ m ILL}$	${f H}$	56872	18127	.75	1.74	3.09
IND	S	93250	34087	. 73	0.57	-0.37
IND	\mathbf{H}	46625	20214	. 6 9	1.41	3.07
IOWA	S	55149	39820	.58	3.27	13.62
IOWA	\mathbf{H}	25530	20624	. 55	2.99	11.61
KAN	S	54446	57735	.48	3.54	13.61
KAN	\mathbf{H}	17421	16710	.51	1.92	3.73
KY	S	80077	38727	. 67	4.16	19.35
KY	H	30373	21456	.58	4.76	29.08
LA	\mathbf{s}	83513	48447	.63	1.66	3.08
LA	H	32248	22903	. 58	2.15	4.91
ME	S	29371	9706	.75	0.28	-1.11
ME	\mathbf{H}	6373	2110	.75	1.06	1.74
MD	S	107030	119919	. 47	1.71	2.12
MD	\mathbf{H}	25234	20152	. 55	1.40	1.00
MASS	S	127405	19780	.86	0.71	0.51
MASS	H	21339	6681	.76	1.16	2.14
MICH	S	230118	148635	.60	1.61	2.22
MICH	н	71127	31882	.69	1.42	2.25
MINN	S	51026	45355	.52	5.01	29.92
MINN	H	26097	26036	.50	5.14	35.55
MISS	s	44452	22468	.66	1.23	1.67
MISS	H	15558	12005	.56	2.45	6.11
MO	s	126559	45004	.73	1.85	3.31
MO	H	27400	22615	.54	2.01	6.21

TABLE II. (Continued)

State	Chamber	Mean	Standard Deviation	ICV	Skewness	Kurtosi
MONT	S	12049	15652	.43	2.81	8.09
MONT	H	7178	2842	.71	-0.47	-0.65
NEB	S	32822	15364	.68	2.38	6.94
NEV	s	16781	33489	.33	2.54	4.92
NEV	Н	6070	5365	.53	1.20	0.18
N.H.	S	25285	7947	.76	0.53	0.17
N.H.	Н	1450	599	.70	0.26	1.48
N.J.	s	288893	243806	.54	1.11	0.40
N.J.	H	101112	35058	.74	0.81	0.70
N.M.	s	29719	45502	.39	4.13	18.34
N.M.	H	14394	7762	.64	0.52	-0.65
N.Y.	s	280013	87676	.76	1.87	4.80
N.Y.	H	108272	49110	.68	0.78	1.74
N.C.	s	91131	44402	.67	2.34	6.19
N.C.	H	37969	20534	.64	0.04	-1.22
N.D.	s	12877	8016	.61	2.05	$\frac{-1.22}{4.03}$
N.D.	H	5584	2905	.65	$\frac{2.03}{2.66}$	9.09
OHIO	S					$\frac{9.09}{1.12}$
	H	$255443 \\ 69830$	67749	.79	0.83	
OHIO			33978	.67	-0.18	-1.34
OKLA	S	52912	62707	.45	3.33	10.91
OKLA	H	19242	15040	.56	1.81	2.27
ORE	s	58949	17314	.77	-0.13	-1.07
ORE	H	29467	6664	.81	-0.32	-0.03
PENN	S	226380	119542	.65	1.24	0.84
PENN	H	53861	18548	.74	0.40	1.76
R.I.	S	19501	18234	.51	1.06	0.12
R.I.	H	8505	4958	. 63	1.12	1.98
S.C.	S	51796	49646	.51	2.18	4.13
S.C.	H	19206	3560	.84	0.00	-0.22
S.D.	S	19443	9643	.66	2.60	6.68
S.D.	H	9073	2783	.76	0.26	-0.35
TENN	S	108094	66058	.62	0.75	-0.98
TENN	H	36031	22556	.61	0.73	-0.81
TEX	S	308725	241371	.56	2.51	5.88
TEX	H	63955	33339	.65	1.41	1.34
\mathbf{UTAH}	S	35629	22965	. 60	0.14	-1 ,.78
UTAH	H	13900	6756	. 67	-0.04	0, 15
VT	S	12996	3452	.79	-0.57	0.99
VT	H	1585	3130	.33	6.55	58.,73
VA	S	99162	44454	. 69	2.19	5.82
VA	H	39675	20622	. 65	2.90	10.63
WASH	S	57636	26563	.68	1.39	2.32
WASH	\mathbf{H}	28527	10169	.73	0.88	0.15
W VA	\mathbf{s}	58138	19536	.74	2.58	6.49
W VA	${f H}$	18600	5938	.75	0.10	0.87
WIS	S	119690	28859	.80	1.19	1.43
WIS	H	39528	12913	.75	1.68	3.16
WYO	s	12206	8217	.59	1.01	-0.33
WYO	Ĥ	5886	2407	.70	0.43	-1.34
U.S.	s	1780193	1845698	.48	1.90	3.43
~.	H	1.00100	101000		2.00	0.10

TABLE IV. A SCALE OF THE APPORTIONMENT OF AMERICAN LEGISLATURES, WITH SUMMARY EVALUATION OF THE SKEWNESS, KURTOSIS, AND VARIABILITY IN THE CURVES FOR THEIR DISTRIBUTION ACCORDING TO THE POPULATION OF THEIR REPRESENTATIONAL UNITS

Rank	State	Senate:		House:		Joint	Appor-
		Skewness	Kurtosis	Skewness	Kurtosis	Vari- ability*	tionment Score
1	Ohio	Normal	Considerable	Normal	Normal	A	90.3
2	Ore.	Normal	Normal	Normal	Normal	${f A}$	89.0
3	N.H.	Normal	Normal	Normal	Considerable	A	88.0
4	Neb.	Considerable	Considerable		NE	A †	80.9
5	Mass.	Normal	Normal	Considerable	Considerable	A	80.4
6	Utah	Normal	Normal	Normal	Normal	\mathbf{C}	73.4
7	Maine	Normal	Normal	Considerable	Considerable	${f A}$	73.2
8	Tenn.	Normal	Normal	Normal	Normal	В	71.8
9	Pa.	Considerable	Normal	Normal	Considerable	\mathbf{A}	71.0
10	$\mathbf{Ind.}$	Normal	Normal	Considerable	Considerable	A	69.8
11	N.Y.	Considerable	Considerable	Normal	Considerable	A	69.2
12	Ark.	Considerable	Considerable	Normal	Normal	\mathbf{A}	69.2
13	W.Va.	Considerable	Considerable	Normal	Normal	\mathbf{A}	67.2
14	S.D.	Considerable	Considerable	Normal	Normal	A	62.7
15	Haw.	Normal	Normal	Considerable	Normal	\mathbf{C}	62.6
16	Wash,	Considerable	Considerable	Normal	Normal	${f A}$	62.6
17	Wyo.	Considerable	Normal	Normal	Normal	\mathbf{C}	62.3
18	N.J.	Considerable	Normal	Normal	Normal	\mathbf{C}	60.2
19	Wisc.	Considerable	Considerable	Considerable	Considerable	A	58.5
20	N.C.	Considerable	Considerable	Normal	Normal	В	58.3
21	S.C.	Considerable	Considerable	Normal	Normal	\mathbf{C}	56.4
22	Colo.	Considerable	Normal	Considerable	Normal	\mathbf{B}/\mathbf{A}	54.7
23	Del	Normal	Normal	Considerable	Considerable	Ď	50.6
24	Alas.	Considerable	Considerable	Normal	Normal	$\overline{\mathbf{c}}$	50.4
25	Ill.	Considerable	Considerable	Considerable	Considerable	A/C	47.2
26	Vt.	Normal	Normal	Extreme	Extreme	В	46.9
27	Mont.	Considerable	Considerable	Normal	Normal	$\bar{\mathbf{c}}$	46.8
28	Mo.	Considerable	Considerable	Considerable	Considerable	B	46.2
29	Idaho	Considerable	Considerable	Normal	Normal	$\bar{ m D}$	45.1
30	Mich.	Considerable	Considerable	Considerable	Considerable	$\overline{\mathbf{c}}$	44.1
31	Va.	Considerable	Considerable	Considerable	Extreme	В	43.8
32	Miss.	Considerable	Considerable	Considerable	Considerable	B	42.4
33	R.I.	Considerable	Normal	Considerable	Considerable	D	42.3
34	La.	Considerable	Considerable	Considerable	Considerable	В	40.4
35	Tex.	Considerable	Considerable	Considerable	Considerable	Ď	40.0
36	Ariz.	Considerable	Considerable	Normal	Normal	Ď	39.6
37	U.S.	Considerable	Considerable	Considerable	Considerable	Č	39.4
38	N.D.	Considerable	Considerable	Considerable	Extreme	В	39.3
39	Md.	Considerable	Considerable	Considerable	Considerable	D	30.5
40	Conn.	Considerable	Normal	Extreme	Extreme	В	27.4
41	Nev.	Considerable	Considerable	Considerable	Normal	Ď	$\frac{27.4}{25.3}$
42	N.M.	Extreme	Extreme	Normal	Normal	D	$\frac{23.3}{23.7}$

^{*} The letters correspond to the quadrant designations in Figure 2.

 $[\]dagger$ A maximal ICV score of +1.0 and a maximally positive G score of +0.3 were assigned to Nebraska's non-existent lower chamber.

Summary Indices for the Apportionment Score Distribution: Median = 46.9, Mean = 47.9, σ = 23.3, ICV = .67, $g_1 = -.24$ and $g_2 = -.64$.

TABLE IV. (Continued)

Rank	04-4-	Senate:		House:		Joint	Appor-
	Rank S	State	Skewness	Kurtosis	Skewness	Kurtosis	Vari- ability*
43	Cal.	Extreme	Extreme	Normal	Normal	C	20.2
44	Fla.	Considerable	Extreme	Considerable	Considerable	D	17.3
45	Iowa	Extreme	Extreme	Considerable	Extreme	D	15.0
46	Ky.	Extreme	Extreme	Extreme	Extreme	${f B}$	13.9
47	Alab.	Extreme	Extreme	Considerable	Considerable	D	12.3
48	Okla.	Extreme	Extreme	Considerable	Extreme	\mathbf{D}	11.9
49	Kans.	Extreme	Extreme	Considerable	Considerable	\mathbf{D}	11.5
50	Minn.	Extreme	Extreme	Extreme	Extreme	D	1.8
51	Ga.	Extreme	Extreme	Extreme	Extreme	\mathbf{D}	-4.9

Fig. 2. The Apportionment of American Legislatures, as measured by variance in the population of representational units (as of March 26, 1962).