Discrete Structures

Lecture # 06

Dr. Muhammad Ahmad

Department of Computer Science

FAST -- National University of Computer and Emerging Sciences. CFD Campus

"The Consequences of an Act Affect the Probability of its Occurring Again!" - B. F. Skinner -

A well defined collection of distinct objects is called a set.

The objects are called the elements or members of the set.

Sets are denoted by capital letters A,B,C ... X,Y,Z.

SET

The elements of a set are represented by lower case letters a, b, c, ..., x, y, z.

If an object x is a member of a set A we write $x \in A$, which reads "x belongs to A" or "x is in A" or "x is an element of A"

Otherwise we write $x \notin A$, which reads "x does not belong to A" or "x is not in A" or "x is not an element of A".

TABULAR FORM

Listing all the elements of a set, separated by commas and enclosed within braces or curly brackets {}.

EXAMPLES:

$$A = \{1,2,3,4,5\}$$

$$B = \{2,4,6,8,...,50\}$$

$$C = \{1,3,5,7,9,...\}$$

DISCRIPTIVE FORM

Stating in words the elements of the set.

EXAMPLES:

A = set of a first five Natural Numbers.

B = set of positive even integers less or equal to fifty.

C = set of positive odd integers.

SET BUILDER FORM

Writing in symbolic form the common characteristics shared by all the elements of the set.

EXAMPLES

$$A = \{x \in N \mid x \le 5\}$$
 N=Natural Number

$$B = \{y \in E \mid 0 < y \le 50\}$$
 E=Even Number

$$C = \{x \in O \mid x > 0\}$$
 O=Odd Number

SET OF NUMBERS

1. Set of Natural Numbers

$$N = \{1, 2, 3, \dots\}$$

2. Set of Whole Numbers

$$W = \{0, 1, 2, 3, \dots\}$$

3. Set of Integers

$$Z = \{..., -3, -2, -1, 0, +1, +2, +3, ...\}$$

= $\{0, \pm 1, \pm 2, \pm 3, ...\}$

SET OF NUMBERS

- 4. Set of Even Integers $E = \{0, \pm 2, \pm 4, \pm 6, ...\}$
- 5. Set of Odd Integers $O = \{\pm 1, \pm 3, \pm 5, ...\}$
- 6. Set of Prime Numbers
 P = {2, 3, 5, 7, 11, 13, 17, 19, ...}
- 7. Set of Rational Numbers $Q = \{x \mid x = p/q ; p, q \in Z, q \neq 0\}$

SUBSET

If A and B are two sets, A is called a subset of B, written $A \subseteq B$, if, and only if, every element of A is also an element of B.

Symbolically:

$$A \subseteq B \leftrightarrow \text{if } x \in A \text{ then } x \in B$$

- 1. So, if A has n elements, the maximum number of subsets of A is 2ⁿ
- 2. On the other hand, the maximum number of nonempty sets is equal to $2^n - 1$.

SUBSET

REMARKS:

- 1. When $A \subseteq B$, then B is called a superset of A.
- 2. When $A \not\subseteq B$, then there exist at least one $x \in A$ such that $x \notin B$.
- 3. Every set is a subset of itself.

EXAMPLE

Let
$$A = \{1, 3, 5\}$$
 $B = \{1, 2, 3, 4, 5\}$ $C = \{1, 2, 3, 4\}$ $D = \{3, 1, 5\}$ Then $A \subseteq B$ $A = \{1, 1, 3, 1, 5\}$ $A \subseteq D$ $D = \{3, 1, 5\}$ $A \not\subseteq C$ $S \in A \text{ but } S \notin C$

PROPER SUBSET

Let A and B be sets. A is a proper subset of B, if, and only if, every element of A is in B but there is at least one element of B that is not in A.

Symbolically:

 $A \subset B$

EQUAL SETS

Two sets A and B are equal if, and only if, every element of A is in B and every element of B is in A and is denoted A = B.

Symbolically:

 $A = B \text{ iff } A \subseteq B \text{ and } B \subseteq A$

EQUAL SETS

EXAMPLE:

```
Let A = {1,2,3,6}
B = the set of positive divisors of 6
C = {3,1,6,2}
D = {1,2,2,3,6,6,6}
```

Then A,B,C, and D are all equal sets.

Point to ponder!!

- 1. Is n(A) = n(D)?
- 2. Are equal sets equivalent and vice versa?

NULL SET

A set which contains no element is called a null set, or an empty set or a void set.

Symbolically:

It is denoted by the Greek letter \emptyset (phi) or { }.

NULL SET

EXAMPLE

 $A = \{x \mid x \text{ is a person taller than } 10 \text{ feet}\}$

$$A = \emptyset$$

$$B = \{x \mid x^2 = 4, x \text{ is odd}\}\$$

$$B = \emptyset$$

EXERCISE

(a)	x ∈ {x}	TRUE
(b)	$\{x\} \subseteq \{x\}$	TRUE
(c)	{x} ∈ {x}	FALSE
(d)	$\{x\} \in \{\{x\}\}$	TRUE
(e)	$\emptyset \subseteq \{x\}$	TRUE
(f)	$\emptyset \in \{x\}$	FALSE

UNIVERSAL SET

The set of all elements under consideration is called the Universal Set.

The Universal Set is denoted by U.

VENN DIAGRAM

A Venn diagram is a graphical representation of sets by

regions in the plane.

FINITE AND INFINITE SETS

A set S is said to be finite if it contains exactly m distinct elements where m denotes some non negative integer.

In such case we write

$$|S| = m \text{ or } n(S) = m$$

A set is said to be infinite if it is not finite.

FINITE AND INFINITE SETS

EXAMPLES

- 1. The set S of letters of English alphabets is finite and |S| = 26
- 2. The null set \emptyset has no elements, is finite and $|\emptyset| = 0$
- 3. The set of positive integers {1, 2, 3,...} is infinite.

EXERCISE

1.
$$A = \{month in the year\}$$
 FINITE

2.
$$B = \{even integers\}$$
 INFINITE

3. C = {positive integers less than 1}
FINITE

MEMBERSHIP TABLE

A table displaying the membership of elements in sets. To indicate that an element is in a set, a 1 is used; to indicate that an element is not in a set, a 0 is used.

UNION

Let A and B be subsets of a universal set U. The union of sets A and B is the set of all elements in U that belong to A or to B or to both, and is denoted $A \cup B$.

Symbolically:

 $A \cup B = \{x \in U \mid x \in A \text{ or } x \in B\}$

UNION

EXAMPLE:

Let $U = \{a, b, c, d, e, f, g\}$ $A = \{a, c, e, g\}$ $B = \{d, e, f, g\}$

Then

$$A \cup B = \{a, c, e, g\} \cup \{d, e, f, g\}$$

= \{a, c, d, e, f, g\}

VENN DIAGRAM FOR

MEMBERSHIP TABLE FOR

 $A \cup B$

Α	В	A∪B
1	1	1
1	0	1
О	1	1
О	О	О

INTERSECTION

Let A and B subsets of a universal set U. The intersection of sets A and B is the set of all elements in U that belong to both A and B and is denoted $A \cap B$.

Symbolically:

 $A \cap B = \{x \in U \mid x \in A \text{ and } x \in B\}$

INTERSECTION

EXMAPLE

Let
$$U = \{a, b, c, d, e, f, g\}$$

 $A = \{a, c, e, g\}$
 $B = \{d, e, f, g\}$

Then

$$A \cap B = \{a, c, e, g\} \cap \{d, e, f, g\}$$

= $\{e, g\}$

VENN DIAGRAM

REMARK

1.
$$A \cap B = B \cap A$$

2.
$$A \cap B \subseteq A$$
 and $A \cap B \subseteq B$

3. If
$$A \cap B = \emptyset$$

then A & B are called disjoint sets.

MEMBERSHIP TABLE FOR

 $A \cap B$

А	В	$A \cap B$
1	1	1
1	О	О
О	1	О
О	О	О

SET DIFFERENCE

Let A and B be subsets of a universal set U. The difference of "A and B" (or relative complement of B in A) is the set of all element in U that belong to A but not to B, and is denoted by A-B or A/B.

Symbolically:

$$A - B = \{x \in U \mid x \in A \text{ and } x \notin B\}$$

SET DIFFERENCE

EXAMPLE:

Let
$$U = \{a, b, c, d, e, f, g\}$$

 $A = \{a, c, e, g\}$
 $B = \{d, e, f, g\}$

Then:

A-B =
$$\{a, c, e, g\} - \{d, e, f, g\}$$

= $\{a, c\}$

VENN DIAGRAM

REMARKS:

- A B is shaded
- 1. $A B \neq B A$
- 2. $A B \subseteq A$
- 3. A B, $A \cap B$ and B A are mutually disjoint sets.

MEMBERSHIP TABLE FOR

A - B

А	В	A - B
1	1	О
1	О	1
О	1	О
О	О	О

COMPLEMENT

Let A be a subset of universal set U. The complement of A is the set of all element in U that do not belong to A, and is denoted A^c, A or A'

Symbolically:

$$A' = \{ x \in U \mid x \notin A \}$$

COMPLEMENT

EXMAPLE

Let
$$U = \{a, b, c, d, e, f, g\}$$

 $A = \{a, c, e, g\}$

Then

$$A' = \{a, b, c, d, e, f, g\} - \{a, c, e, g\}$$

= $\{b, d, f\}$

VENN DIAGRAM

MEMBERSHIP TABLE FOR

A'

A	Α'
1	0
О	1

EXERCISE

Let
$$U = \{1, 2, 3, ..., 10\}$$

 $X = \{1, 2, 3, 4, 5\}$
 $Y = \{y \mid y = 2 \text{ x}, \text{ x} \in X\}$
 $Z = \{z \mid z^2 - 9 \text{ z} + 14 = 0\}$
Enumerate:
(i) $X \cap Y$ (ii) $Y \cup Z$
(iii) $X - Z$ (iv) Y'
(v) $X' - Z'$ (vi) $(X - Z)'$

Note that "y" and "z" both belongs to Universal set "U".

Given

$$U = \{1, 2, 3, ..., 10\}$$

 $X = \{1, 2, 3, 4, 5\}$

$$Y = \{y \in U \mid y = 2 \text{ x, x } \in X\}$$

= \{2, 4, 6, 8, 10\}

$$Z = \{z \in U \mid z^2 - 9z + 14 = 0\}$$
$$= \{2, 7\}$$

(i)
$$X \cap Y = \{1, 2, 3, 4, 5\} \cap \{2, 4, 6, 8, 10\}$$

= $\{2, 4\}$

(ii)
$$Y \cup Z = \{2, 4, 6, 8, 10\} \cup \{2, 7\}$$

= $\{2, 4, 6, 7, 8, 10\}$

(iii)
$$X - Z = \{1, 2, 3, 4, 5\} - \{2, 7\}$$

= $\{1, 3, 4, 5\}$

```
(iv)Y'=U-Y
      = \{1, 2, 3, ..., 10\} - \{2, 4, 6, 8, 10\}
      = \{1, 3, 5, 7, 9\}
(v)X'-Z'
      = {6, 7, 8, 9, 10} - {1, 3, 4, 5, 6, 8, 9, 10}
      = \{7\}
(vi)(X-Z)'
      = U - (X - Z)
      = \{1, 2, 3, ..., 10\} - \{1, 3, 4, 5\}
      = \{2, 6, 7, 8, 9, 10\}
```

EXERCISE

$$U = \{ x \in Z, 0 \le x \le 10 \}$$

$$P = \{x \in U \mid x \text{ is a prime number}\}\$$

$$Q = \{x \in U \mid x^2 < 70\}$$

- (i) Draw a Venn diagram for the above
- (ii) List the elements in $P^c \cap Q$

$$U = \{ x \in \mathbb{Z}, 0 \le x \le 10 \}$$

$$= \{0, 1, 2, 3, ..., 10 \}$$

$$P = \{x \in U \mid x \text{ is a prime number} \}$$

$$= \{2, 3, 5, 7 \}$$

$$Q = \{x \in U \mid x^2 < 70 \}$$

$$= \{0, 1, 2, 3, 4, 5, 6, 7, 8 \}$$

VENN DIAGRAM

The yellow shaded region is the desired result.

ELEMENTS OF

(ii)
$$P' \cap Q$$

$$P' = U - P$$

$$= \{0, 1, 2, 3, ..., 10\} - \{2, 3, 5, 7\}$$

$$= \{0, 1, 4, 6, 8, 9, 10\}$$
and
$$P' \cap Q$$

$$= \{0, 1, 4, 6, 8, 9, 10\} \cap \{0, 1, 2, 3, 4, 5, 6, 7, 8\}$$

$$= \{0, 1, 4, 6, 8\}$$

EXERCISE

Let
$$U = \{1, 2, 3, 4, 5\}$$
 $C = \{1, 3\}$

Where A and B are non empty sets. Find A in each of the following:

(i)
$$A \cup B = U$$
 $A \cap B = \emptyset$ and $B = \{1\}$

EXERCISE

(ii)
$$A \subset B$$
 and $A \cup B = \{4, 5\}$

(iii)
$$A \cap B = \{3\}$$
 $A \cup B = \{2, 3, 4\}$
and $B \cup C = \{1,2,3\}$

(iv) A and B are disjoint, B and C are disjoint, and the union of A and B is the set {1, 2}.

(i)
$$A \cup B = U \ A \cap B = \emptyset \ and \ B = \{1\}$$

SOLUTION:

Since $A \cup B = U$
 $= \{1, 2, 3, 4, 5\}$

and $A \cap B = \emptyset$

Therefore

 $A = B'$
 $= \{1\}'$
 $= \{2, 3, 4, 5\}$

(ii)
$$A \subset B$$
 and $A \cup B = \{4, 5\}$ also $C = \{1, 3\}$

SOLUTION:

When
$$A \subset B$$

then $A \cup B = B$
 $= \{4, 5\}$

Also A being a proper subset of B implies

$$A = \{4\}$$

or

$$A = \{5\}$$

Solution contd...

(iii)
$$A \cap B = \{3\}$$
 $A \cup B = \{2, 3, 4\}$ and $B \cup C = \{1,2,3\}$ Also $C = \{1,3\}$

$$A = \{3,4\} \quad B = \{2,3\}$$

Solution contd...

(iv)
$$A \cap B = \emptyset$$
 $B \cap C = \emptyset$
 $A \cup B = \{1, 2\}$ Also $C = \{1, 3\}$

$$A \bigcup_{C \subseteq A} B \bigcup_{A \in A} U$$

$$A \bigcup_{A \in A} B \bigcup_{A \in A} U$$

$$A \bigcup_{A \in A} B \bigcup_{A \in A} U$$

$$A \bigcup_{A \in A} B \bigcup_{A \in A} U$$

EXERCISE

(i) $(A \cap B) \cap C'$ (ii) $A' \cup (B \cup C)$

(iii) $(A-B) \cap C$ (iv) $(A \cap B') \cup C'$

PROOFS USING VENN DIAGRAM

(i)
$$A - (A - B) = A \cap B$$

(ii)
$$(A \cap B)' = A' \cup B'$$

(iii)
$$A - B = A \cap B'$$

(ii)
$$(A \cap B)' = A' \cup B'$$

$$A \cap B \cap B \cap A' \cup B'$$

$$A' \cup B' \cap B \cap A' \cup B'$$

RESULT: $(A \cap B)' = A' \cup B'$

Let A, B, C be subsets of a universal set U.

1. Idempotent Laws

a.
$$A \cup A = A$$

b. $A \cap A = A$

2. Commutative Laws

a.
$$A \cup B = B \cup A$$
 b. $A \cap B = B \cap A$

3. Associative Laws

a.
$$A \cup (B \cup C) = (A \cup B) \cup C$$

b.
$$A \cap (B \cap C) = (A \cap B) \cap C$$

4. Distributive Laws

a.
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

b.
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

5. Identity Laws

a.
$$A \cup \emptyset = A$$

b.
$$A \cap U = A$$

6. Complement Laws

a.
$$A \cup A' = U$$

b.
$$A \cap A' = \emptyset$$

c.
$$U' = \emptyset$$

$$d. \varnothing' = U$$

Domination Laws

a.
$$A \cup U = U$$

b.
$$A \cap \emptyset = \emptyset$$

7. Double Complement Law

a.
$$(A')' = A$$

8. DeMorgan's Laws

a.
$$(A \cup B)' = A' \cap B'$$

b.
$$(A \cap B)' = A' \cup B'$$

 Alternative Representation for Set Difference

a.
$$A - B = A \cap B'$$

10. Subset Laws

- a. $A \cup B \subseteq C$ iff $A \subseteq C$ and $B \subseteq C$
- b. $C \subseteq A \cap B$ iff $C \subseteq A$ and $C \subseteq B$

11. Absorption Laws

- a. $A \cup (A \cap B) = A$
- b. $A \cap (A \cup B) = A$

EXERCISE

Let A, B and C be subsets of a universal set U. Show that

- 1. $A \subseteq A \cup B$
- 2. $A B \subset A$
- 3. If $A \subseteq B$ and $B \subseteq C$ then $A \subseteq C$

1. $A \subset A \cup B$

SOLUTION:

Let x be an arbitrary element of A, that is $x \in A$.

 $\Rightarrow x \in A \text{ or } x \in B$

 $\Rightarrow x \in A \cup B$

But x is an arbitrary element of A.

 $\therefore A \subseteq A \cup B$

Solution contd...

2.
$$A - B \subseteq A$$

SOLUTION:

Let $x \in A - B$
 $\Rightarrow x \in A \text{ and } x \notin B$ (by definition of $A - B$)

 $\Rightarrow x \in A$ (in particular)

But x is an arbitrary element of $A - B$
 $\therefore A - B \subseteq A$

3. If
$$A \subseteq B$$
 and $B \subseteq C$ then $A \subseteq C$

SOLUTION:

Suppose that $A \subseteq B$ and $B \subseteq C$

Consider $x \in A$
 $\Rightarrow x \in B$ (because $A \subseteq B$)

 $\Rightarrow x \in C$ (because $B \subseteq C$)

But x is an arbitrary element of A

 $\therefore A \subseteq C$

EQUALITY OF SETS

Two sets are equal if first is subset of second and second is subset of first.

Now

$$A - B = A \cap B'$$

$$\Leftrightarrow A - B \subseteq A \cap B'$$
 and $A \cap B' \subseteq A - B$

EXERCISE

Let A and B be subsets of a universal set U. Prove that

$$A - B = A \cap B'$$

SOLUTION

Let

$$x \in A - B$$

 $\Rightarrow x \in A \text{ and } x \notin B$

(definition of set difference)

```
\Rightarrow x \in A \text{ and } x \in B'
                         (definition of complement)
\Rightarrow x \in A \cap B'
                        (definition of intersection)
But x is an arbitrary element of A-B
               A-B \subseteq A \cap B'....(1)
```

```
Conversely,
      Let y \in A \cap B'
\Rightarrow y \in A and y \in B'
                      (definition of intersection)
\Rightarrow y \in A and y \notin B
                     (definition of complement)
```

$$\Rightarrow y \in A - B$$
(definition of set difference)

But y is an arbitrary element of A ∩ B'
$$\therefore A \cap B' \subseteq A - B.....(2)$$

From (1) and (2) it follows that
$$A - B = A \cap B'$$
(as required)

DEMORGAN'S LAW

$$(A \cup B)' = A' \cap B'$$

PROOF

First we show that $(A \cup B)' \subseteq A' \cap B'$

Let $x \in (A \cup B)'$
 $\Rightarrow x \notin A \cup B$

(definition of complement)

 $\Rightarrow x \notin A \text{ and } x \notin B$

(DeMorgan's Law of Logic)

```
\Rightarrow x \in A' and x \in B'
                 (definition of complement)
\Rightarrow x \in A' \cap B'
                  (definition of intersection)
But x is an arbitrary element of (A \cup B)'
            (A \cup B)' \subset A' \cap B' \dots \dots \dots (1)
```

```
Conversely,
    Let y \in A' \cap B'
\Rightarrow y \in A' and y \in B'
                      (definition of intersection)
\Rightarrow y \notin A and y \notin B
                      (definition of complement)
\Rightarrow y \notin A \cup B
                      (DeMorgan's Law of Logic)
```

```
\Rightarrow y \in (A \cup B)
                 (definition of complement)
    But y is an arbitrary element of A' \cap B'
    \therefore A' \cap B' \subseteq (A \cup B)' \dots (2)
    From (1) and (2) we have
        (A \cup B)' = A' \cap B'
                                            (proved)
```

ASSOCIATIVE LAW

$$A \cap (B \cap C) = (A \cap B) \cap C$$

PROOF

First we show that $A \cap (B \cap C) \subseteq (A \cap B) \cap C$ Consider $x \in A \cap (B \cap C)$

 $\Rightarrow x \in A \text{ and } x \in B \cap C$ (definition of intersection)

 $\Rightarrow x \in A \text{ and } x \in B \text{ and } x \in C$ (definition of intersection)

$$\Rightarrow x \in A \cap B \text{ and } x \in C$$

$$(\text{definition of intersection})$$

$$\Rightarrow x \in (A \cap B) \cap C$$

$$(\text{definition of intersection})$$
But x is an arbitrary element of A \cap (B \cap C)
$$\therefore A \cap (B \cap C) \subseteq (A \cap B) \cap C.....(1)$$

```
Conversely,
    Let y \in A \cap (B \cap C)
\Rightarrow y \in A \cap B and y \in C
                     (definition of intersection)
\Rightarrow y \in A and y \in B and y \in C
                     (definition of intersection)
\Rightarrow y \in A and y \in B \cap C
                     (definition of intersection)
```

⇒
$$y \in A \cap (B \cap C)$$

(definition of intersection)

But y is an arbitrary element of $(A \cap B) \cap C$
∴ $(A \cap B) \cap C \subseteq A \cap (B \cap C)$ (2)

From (1) and (2) we conclude that
$$A \cap (B \cap C) = (A \cap B) \cap C \quad \text{(proved)}$$

EXERCISE

For all subset A and B of a universal set U, prove that

$$(A - B) \cup (A \cap B) = A$$

PROOF:
L.H.S = $(A - B) \cup (A \cap B)$

= $(A \cap B') \cup (A \cap B)$

(Alternative representation for set difference)

$$= A \cap (B' \cup B)$$
Distributive Law
$$= A \cap U$$
Complement Law
$$= A$$

$$= A$$
Identity Law
$$= R.H.S$$

VENN DIAGRAM

$$(A - B) \cup (A \cap B) = A$$

EXERCISE

$$A - (A - B) = A \cap B$$

SOLUTION

L.H.S = $A - (A - B)$

= $A - (A \cap B')$

Alternative representation for set difference

= $A \cap (A \cap B')'$

Alternative representation for set difference

L.H.S=
$$A \cap (A' \cup (B')')$$

DeMorgan's Law

$$= A \cap (A' \cup B)$$
Double Complement Law

$$= (A \cap A') \cup (A \cap B)$$
Distributive Law

$$= \emptyset \cup (A \cap B)$$
Complement Law

$$= A \cap B$$
Identity Law
$$= R.H.S$$

EXERCISE

$$(A - B) - C = (A - C) - B$$
SOLUTION

L.H.S = $(A - B) - C$
= $(A \cap B') - C$
Alternative representation of set difference

= $(A \cap B') \cap C'$
Alternative representation of set difference

= $A \cap (B' \cap C')$ Associative Law

LHS=
$$A \cap (C' \cap B')$$
 Commutative Law

= $(A \cap C') \cap B'$ Associative Law

= $(A - C) \cap B'$ Alternative representation of set difference

= $(A - C) - B$ Alternative representation of set difference

= RHS (proved)

PROVING SET IDENTITIES BY MEMBERSHIP TABLE

1.
$$A - (A - B) = A \cap B$$

2.
$$(A \cap B)' = A' \cup B'$$

3.
$$A - B = A \cap B'$$

$$A - (A - B) = A \cap B$$

А	В	A - B	A - (A - B)	A∩B
1	1	0	1	1
1	0	1	0	0
0	1	0	0	0
0	0	0	0	0

$$A - (A - B) = A \cap B$$

А	В	A – B	A - (A - B)	A∩B
1	1	0		
1	0	1		
0	1	0		
0	0	0		

$$A - (A - B) = A \cap B$$

А	В	A - B	A - (A - B)	A∩B
1	1	0	1	
1	0	1	0	
0	1	0	0	
0	0	0	0	

$$A - (A - B) = A \cap B$$

А	В	A - B	A - (A - B)	A∩B
1	1			1
1	0			0
0	1			0
0	0			0

$$(A \cap B)' = A' \cup B'$$

А	В	A∩B	$(A \cap B)'$	A [']	B	$A^{'} \cup B^{'}$
1	1	1	О	0	0	О
1	0	0	1	0	1	1
0	1	0	1	1	0	1
0	0	0	1	1	1	1

$$A - B = A \cap B'$$

А	В	A - B	B [']	$A \cap B'$
1	1	0	0	0
1	0	1	1	1
0	1	0	0	0
0	0	0	1	0