Enumerations

- Datentyp f
 ür Variablen mit endlicher Wertemenge.
 - Alle zulässigen Werte werden bei der Deklaration des Datentyps mit konstanten Namen definiert.

public enum Tribool {WAHR, FALSCH, VIELLEICHT}

Zugriff auf Werte über den Punkt-Operator

Tribool myVar = Tribool.VIELLEICHT;

- Jeder Enum-Typ erbt von Java folgende statische Methoden:
 - •public static Tribool[] values()
 - Gibt alle Werte als Array zurück
 - public Tribool valueOf(String s)
 - Gibt den Wert zurück, der s entspricht

Probleme ohne Enum

 In den USA gibt es für gewisse Cent-Beträge eigene Namen (z.B. Penny, Nickle, Dime, Quarter). Wir wollen diese Beträge modellieren:

- Nicht Typ-Sicher: Man kann jedwedgen Wert zur Variable currency hinzufügen (z.B. 78), obwohl es dafür keine Münze gibt
- Keine sinnvolle Ausgabe: Wenn man den Namen von z.B. Nickle ausgeben will (es kommt 5 raus, statt "Nickle")
- Kein eigener Namensraum (man muss immer CurrencyDenom vor der eigentlichen Konstante schreiben

Besser mit Enums

Typsicherheit durch festgelegte Werte

Ein einzelner, eigener Namensraum

Aufgabe Enum

•Erstellen sie eine Aufzählung, die die Planeten des Sonnensystems beinhaltet.

- Gespeichert werden sollen die **Masse** und der **Radius** des Planeten
- MERCURY (3.303e+23, 2.4397e6), VENUS (4.869e+24, 6.0518e6), EARTH (5.976e+24, 6.37814e6), MARS (6.421e+23, 3.3972e6), JUPITER (1.9e+27, 7.1492e7), SATURN (5.688e+26, 6.0268e7), URANUS (8.686e+25, 2.5559e7), NEPTUNE (1.024e+26, 2.4746e7);

·Zusätzlich soll die Aufzählung folgende Methoden besitzen:

- public double getMass(), public double getRadius(): Gibt vom jeweiligen Planeten die Masse und den Radius aus.
- public double surfaceGravity(): Gibt die Gravitation des jeweiligen Planeten aus.
- public double surfaceWeight(double otherMass): Gibt das Gewicht auf den jeweiligen Planeten aus

·Hinweise:

- Universelle Gravitationskonstante: double G = 6.67300E-11;
- Formel Gravitation: G * MassePlanet / radiusPlanet^2
- Gewicht auf Planet: Masse * Gravitation

Lösung Enum

```
public enum Planet {
   MERCURY (3.303e+23, 2.4397e6),
   VENUS (4.869e+24, 6.0518e6),
   EARTH (5.976e+24, 6.37814e6),
                                                 Alle gültigen Werte
   MARS (6.421e+23, 3.3972e6),
                                                  allerdings mit
   JUPITER (1.9e+27, 7.1492e7),
                                                  Konstruktoraufruf
   SATURN (5.688e+26, 6.0268e7),
   URANUS (8.686e+25, 2.5559e7),
   NEPTUNE (1.024e+26, 2.4746e7);
                                                   Speichern der Masse
   private final double mass; // in kilograms
                                                    und des Radius als
   private final double radius; // in meters
                                                    Member. Konstruktor
   Planet(double mass, double radius) {
                                                   zur Initialisierung
       this.mass = mass;
                                                    eines Planeten.
       this.radius = radius;
   private double mass() { return mass; }
   private double radius() { return radius; }
   // universal gravitational constant (m3 kg-1 s-2)
                                                     Gravitationskonstante
   public static final double G = 6.67300E-11; ←
```

Lösung Enum

```
double surfaceGravity() {
                                                  Methoden zur
    return G * mass / (radius * radius);
                                                  Berechnung der
                                                  Gravitation und des
double surfaceWeight(double otherMass) {
                                                  Gewichts
    return otherMass * surfaceGravity();
public static void main(String[] args) {
    if (args.length != 1) {
        System.err.println("Usage: java Planet <earth_weight>");
       System.exit(-1);
   double earthWeight = Double.parseDouble(args[0]);
                                                            Testklasse:
    double mass = earthWeight/EARTH.surfaceGravity();
                                                            Alle Planeten
    for (Planet p : Planet.values())
       System.out.printf("Your weight on %s is %f%n",
                                                            durchgehen
                         p, p.surfaceWeight(mass));

    mit foreach-

                                                            Schleife
```

Aufgabe Enum II

- •Erstellen sie eine Aufzählung, die verschiedene Währungen enthält
 - Gespeichert werden soll der der Wechselkurs zum Euro.
 EURO(1.00), DOLLAR(1.07), GBP(0.84), AUD(1.44), CNY(7.38);
- •Zusätzlich soll die Aufzählung folgende Methode besitzen:

Die Möglichkeit, einen Wert in Euro per Switch-Case in die jeweilige Währung umzurechnen.

·Hinweise:

- Universelle Gravitationskonstante: double G = 6.67300E-11;
- Formel Gravitation: G * MassePlanet / radiusPlanet^2
- Gewicht auf Planet: Masse * Gravitation