Best Available Copy

BIAS TIRE FOR CONSTRUCTION VEHICLE

Patent number:

JP6087304

Publication date:

1994-03-29

Inventor:

MITSUSAKA KOICHI

Applicant:

SUMITOMO RUBBER IND

Classification:

- international:

B60C11/04; B60C11/04; (IPC1-7): B60C11/08;

B60C11/04

- european:

Application number: JP19920263060 19920903 Priority number(s): JP19920263060 19920903

Report a data error here

Abstract of JP6087304

PURPOSE: To lighten a bias tire for a construction vehicle without impairing abrasion resistance by changing the land/sea ratio of lug pattern in a tread center section and tread shoulder section in a specified range. CONSTITUTION: A right and left tread face 9R and 9L comprising a tread face 9 divided by the tire equator C are divided by pitch elements, and the distance A between the internal end E2 of the lug groove G provided in each area and the tire equator C is set in a range from 0.025 times of tread width WT. When the ground contact areas L1 and L2 of the in/out side rectangular areas Yi and Yo comprising each of the right and left tread faces 9R and 9L imaginarily divided by an intermediate line K and in/out side areas on the tread face are taken as S1 and S2, L1/S1=3.34 to 4.00 and L2/S2=1.00 to 1.14. In addition, the ratio of the peripheral length WG of the lug groove G at a tread edge (e) and the peripheral length of the ground contact face is set as 1.0 to 1.1, and the angle of a groove wall in a cross section orthogonal to the center line of the lug Groove G including a normal line to the normal line stood on the tread face 9 in the rectangular area Yo is set in a range of 28 deg. to 35 deg.. Therefore, a bias tire can be lightened without impairing abrasion resistance.

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁 (JP)

(12)公開特許公報 (A)

(11)特許出願公開番号

特開平6-87304

(43)公開日 平成6年(1994)3月29日

(51) Int. Cl. 5

識別記号 庁内整理番号

FΙ

技術表示箇所

B60C 11/08

B 8408-3D

Z 8408-3D

11/04

H 8408-3D

審査請求 未請求 請求項の数1

(全6百)

(21)出願番号

特願平4-263060

(22)出願日

平成4年(1992)9月3日

(71)出願人 000183233

住友ゴム工業株式会社

兵庫県神戸市中央区筒井町1丁目1番1号

(72)発明者 三坂 光一

神戸市灘区五毛通1-4-6

(74)代理人 弁理士 苗村 正

(54) 【発明の名称】建設車両用バイアスタイヤ

(57) 【要約】

【目的】摩耗寿命を損ねることなくタイヤの軽量化を達成する。

【構成】タイヤ赤道C両側の周方向のピッチPごとに、 トレッド緑eからのびタイヤ赤道C両側の周方向のピッ チPごとに、トレッド縁eからのびタイヤ赤道C近傍で 途切れるラグ溝Gを設ける。前記ピッチPの長さAの矩 形領域Yを外の矩形領域Yを外の矩形領域Yoと内の矩 形領域 Yi とに仮想区分した時、内の矩形領域 Yi にお ける接地面積 L1 とラグ溝面積 S1 との比L1/S1を 3.34~4.00、外の矩形領域Yoにおける接地面 積 L 2 とラグ溝面積 S 2 との比 L 2 / S 2 を 1. 0 0 ~ 1. 13とする。1ピッチPにおいて、トレッド緑eに おけるラグ溝Gの長さWGと接地面の長さWBとの比W G/WBを1.0~1.1。ラグ溝Gの内端E2とタイ ヤ赤道Cとの距離Aとトレッド巾WTとの比A/WTを 0.025~0.05。外の矩形領域Yoにおけるラグ 溝Gの中心線Cgの角度αを5~10度、ラグ溝Gの溝 壁ga、gbの角度βを28~35度。

2

【特許請求の範囲】

【請求項1】トレッド面にトレッド緑からのびタイヤ赤 道近傍で途切れるラグ溝をタイヤ赤道両側の周方向のピ ッチごとに設けることによりトレッド面を、前記ラグ溝 と、路面に接地する接地面とに区分したラグパターンの タイヤであって、トレッド面の前記ピッチ長さがタイヤ 軸方向にのびる矩形領域Yを、トレッド緑とタイヤ赤道 との間を2等分する中間線からトレッド緑に至る外の矩 形領域Yoと、中間線からタイヤ赤道に至る内の矩形領 iにおける接地面の面積L1とラグ溝のトレッド面での 面積S1との比L1/S1を3.34~4.00、外の 矩形領域 Yo における接地面の面積 L2 とラグ溝のトレ ッド面での面積 S 2 との比し 2 / S 2 を 1. 0 0 ~ 1. 13とし、かつ1ピッチにおいて、前記トレッド縁にお けるラグ溝の周方向長さWGと接地面の周方向長さWB との比WG/WBを1.0~1.1、前記ラグ溝のタイヤ軸方向内端とタイヤ赤道との間の距離Aとトレッド巾 WTとの比A/WTを0.025~0.05、しかも、 前記外の矩形領域Yoにおけるトレッド面に立てた法線 20 と、この法線を含みラグ溝の中心線と直角な断面におけ るラグ溝の溝壁がなす角度βを28~35度とした建設 車両用パイアスタイヤ。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、摩耗寿命を損ねること なく軽量化を達成しうる建設車両用バイアスタイヤに関 する。

[0002]

【従来の技術】例えば、タイヤ軸方向にのびるラグ溝か 30 らなるラグパターンを設けることにより悪路でのトラク ション性を高めた建設車両用のバイアスタイヤにおいて も、近年、積載能力及び燃費性能の向上等のために軽量 化を計ることが強く望まれている。従って、近年、この ような要望に応じるべく、タイヤの溝面積を増大しトレ ッドゴム重量を低減させることが提案されている。

[0003]

【発明が解決しようとする課題】しかしながら溝面積の 増大は、一般に偏摩耗を招く他、接地圧力の増加によっ て摩耗速度を早めタイヤの使用寿命を低下させるという 解決すべき問題がある。

【0004】そこで本発明者はバイアスタイヤの摩耗に ついて研究を行った。その結果、パイアスタイヤは、ラ ジアルタイヤのごときベルトによるタガ効果を有しない ため、図6に一点鎖線で示すようにタイヤ転動による遠 心力に起因して、トレッド中央部がトレッドショルダ部 に比して不均一に外径成長する。しかも夕ガ効果がない ことにより、トレッドでのカーカス曲率半径は、ラジア ルタイヤの曲率半径に比して小、すなわちトレッド中央 部でのゴムゲージ厚t1がトレッドショルダ部でのゴム 50 る。

ゲージ厚t2に比して過小となるなど摩牦代が少ない。 そしてこれらの結果、パイアスタイヤでは、トレッド中 央部が早期に摩耗限界に到達し、トレッドショルダ部で の摩耗代を残してその使用寿命が終了することが判明し

【0005】すなわち本発明は、トレッド中央部におけ るラグパターンの陸/海比とトレッドショルダ部におけ る陸/海比とを所定の範囲で変化させることを基本とし て、トレッド中央部及びショルダ部の摩耗速度の均一化 域Yiとに仮想区分するとともに、前記内の矩形領域Y 10 を計りつつ溝面積を増加でき、摩耗寿命を損ねることな く軽量化を達成しうる建設車両用パイアスタイヤの提供 を目的としている。

[0006]

【課題を解決するための手段】前記目的を達成するため に本発明の建設車両用パイアスタイヤは、トレッド面に トレッド縁からのびタイヤ赤道近傍で途切れるラグ溝を タイヤ赤道両側の周方向のピッチごとに設けることによ りトレッド面を、前記ラグ溝と、路面に接地する接地面 とに区分したラグパターンのタイヤであって、トレッド 面の前記ピッチ長さがタイヤ軸方向にのびる矩形領域Y を、トレッド縁とタイヤ赤道との間を2等分する中間線 からトレッド縁に至る外の矩形領域Yoと、中間線から タイヤ赤道に至る内の矩形領域Yiとに仮想区分すると ともに、前記内の矩形領域Yiにおける接地面の面積L 1とラグ溝のトレッド面での面積 S 1 との比し 1 / S 1 を3. 34~4. 00、外の矩形領域Yoにおける接地 面の面積L2とラグ溝のトレッド面での面積S2との比 L 2 / S 2 を 1. 0 0 ~ 1. 1 3 とし、かつ 1 ピッチに おいて、前記トレッド縁におけるラグ溝の周方向長さW Gと接地面の周方向長さWBとの比WG/WBを1.0 ~1.1、前記ラグ溝のタイヤ軸方向内端とタイヤ赤道 との間の距離Aとトレッド巾WTとの比A/WTを 0. 025~0.05、しかも、前記外の矩形領域Yoにお けるトレッド面に立てた法線と、この法線を含みラグ溝 の中心線と直角な断面におけるラグ溝の溝壁がなす角度 βを28~35度としている。

[0007]

【作用】比L1/S1を3.34~4.00に、又比L 2 / S 2 を 1. 0 0 ~ 1. 1 3 とし、内の矩形領域 Y i 40 における接地面の割合を外の矩形領域Yoにおける接地 面の割合に比して高めている。その結果、内の矩形領域 Yiの接地圧力が減じるなどトレッド中央部での摩耗速 度が低減し、摩滅の進行をトレッドショルダ部に近づけ うる。このことにより総合的に摩耗寿命を向上させる。 他方、外の矩形領域Yoにあっては、ラグ溝面積が増大 するため、ゴム重量が減じる。特にバイアスタイヤにお ける外の矩形領域Yoは、前述したごとくゴムゲージ厚 さが高いため、このような外の矩形領域Yoにおけるラ グ溝面積の増大は、より効果的にタイヤを軽量化しう

3

[0008]

【実施例】以下本発明の一実施例を図面に基づき説明す る。図において建設車両用パイアスタイヤ1は、トレッ ド部2と、その両端からタイヤ半径方向内方にのびるサ イドウォール部3と、各サイドウォール部3の半径方向 内方端に位置するビード部4とを具え、本例では、タイ ヤサイズが12.00-20 18PRのダンプ車用タ イヤとして形成される。

【0009】なお前記ピード部4には、補強用のピード コア5が埋設され、該ビードコア5、5間にはカーカス 10 6が架け渡されるとともに、該カーカス6の半径方向外 方かつトレッド部2内方にはプレーカ7が巻装される。 【0010】前記カーカス6は、本例では、トレッド部 2からサイドウォール部3をへて前記ビードコア5の廻 りを内側から外側に折返される例えば8枚のカーカスプ ライ6aからなる内層6Aと、該内層6Aの外側に重置 されかつ前記内層6Aの折返し部を覆って両端が外側か ら両側に折返される例えば2枚のカーカスプライ6 bか らなる外層Bとを具える。カーカスプライ6 a、6 b は、夫々例えばナイロン等の有機のカーカスコードをタ 20 イヤ赤道 C に対して 30~45度の角度で配列してな り、各カーカスプライ6a、6bはカーカスコードがプ ライ間相互で交差するように向きを違えたクロスプライ 構造として配置される。なおカーカス6のプライ数、カ ーカスコードの材質及びその打込み数等は、要求するタ イヤ性能に応じて適宜設定される。

【0011】又カーカス6外側のプレーカ7は、本例で は、内外2枚のプレーカプライからなり、各プライは、 例えばナイロン等の有機のプレーカコードをタイヤ赤道 に対して30~45度の角度で配列することにより、ト レッド部2を補強し、路面からの衝撃を緩和するととも に耐カット性を向上する。

【0012】そしてトレッド部2のトレッド面9には、 ラグパターンが形成される。ラグパターンは、図2に示 すように、タイヤ赤道Cによってトレッド面9が2分さ れる左右のトレッド片面域9L、9Rを、夫々円周方向 のピッチエレメントPで区画するとともに、区画した各 ピッチエレメントP内に夫々1つのラグ溝Gを形成して いる。従ってラグパターンは、トレッド面9を、前記ラ 分する。なお図2に示すごとく、各ピッチエレメントの 円周方向のピッチ長さMが一定、すなわち1種類のピッ チエレメントP0で区画した等ピッチ配列、及び図4に 示すごとく、ピッチ長さMが異なる複数種類、例えば3 種類のピッチエレメントP1、P2、P3を用いて区画 したバリアブルピッチ配列等も採用しうる。なお各トレ ッド片面域9 L、9 Rに設けるピッチエレメントPは、 夫々25~36個とすることが好ましい。

【0013】前記ラグ溝Gは、外端E1がトレッド縁e で開口しかつタイヤ軸方向内方にのびる内端E2がタイ 50 ヤ赤道C近傍で途切れる有端の横溝であって、ラグ溝G は、その外端E1を、前記ピッチエレメントPの円周方 向の中間位置に位置させて形成する。

【0014】又ラグ溝Gは、本例では、ジグザグ状に折 れ曲がりつつタイヤ赤道Cに向かって略直角にのび、し かも円周方向の溝の長さである溝巾Wを外端E1から内 端E2に至り漸減している。このように本例ではラグ溝 Gがタイヤ赤道Cに向かって略直角にのびることにより 前記ピッチエレメントPは矩形をなし、この時該ピッチ エレメントPは、ピッチ長さAがタイヤ軸方向にのびる 矩形領域Yと一致している。なおラグ溝Gがタイヤ軸方 向に大きく傾斜する場合には、例えば図5に示すように ピッチエレメントPは矩形領域Yと異なる四辺形をな す.

【0015】又ラグ溝Gはその内端E2とタイヤ赤道C との間の距離Aをトレッド巾WTの0.025倍以上か つ0.05倍以下としている。なお距離Aが0.025 WTより小の時及びラグ滯Gがタイヤ赤道Cを横切る 時、トレッド中央部のパターン剛性が低下するなど該中 央部のトレッド面が動きやすくなり、路面とのすべりを 誘発し摩耗寿命を低下する。逆にO.05WTより大の 時、排水性に劣りウエットグリップ性を低下する。

【0016】又このようなラグパターンにおいて前記矩 形領域Yを、トレッド縁eとタイヤ赤道Cとの間を2等 分する中間線Kからトレッド線eに至る外の矩形領域Y o を、中間線 K からタイヤ赤道 C に至る内の矩形領域 Y iに仮想区分した時、前記内の矩形領域Yiにおける接 地面の面積 L 1 とラグ溝 G のトレッド面上での面積 S 1 との比L1/S1を3.34~4.00、しかも前記外 の矩形領域Yoにおける接地面の面積L2とラグ溝Gの トレッド面上での面積S2との比し2/S2を1.00 1.13としている。すなわち内の矩形領域Yiにお ける陸/海比を外の矩形領域Yoにおける陸/海比に較 べて増大し、内の矩形領域Yiにおける接地圧を外の矩 形領域Yoに比して減じている。このことにより内の矩 形領域Yi、すなわちトレッド中央部側の摩耗速度を減 じ、摩滅の進行をトレッドショルダ部側の摩滅の進行に 近づけることにより、総合的な摩耗寿命を向上しうる。 又外の矩形領域Yoにあっては、ラグ溝面積が逆に増大 グ溝Gと、その残部となり路面に接地する接地面とに区 40 するため、ゴム重量が減じタイヤを軽量化しうる。従っ て比L1/S1及び比L2/S2のいずれか一方又は双 方が前記範囲からはずれた時には、トレッドショルダ部 とトレッド中央部との摩滅の双方が促進されるか、もし くは摩滅進行がアンバランスとなり総合的は摩耗寿命を 低下するか、又はタイヤの軽量化が十分に達成されな

> 【0017】又前記ラグパターンは、必要なパターン強 度を得るために、比WG/WBを1.0~1.1及び角 度βを28~35度としている。

> 【0018】ここで前記記号WGは、1ピッチエレメン

トP内での、トレッド縁におけるラグ溝Gの周方向長さ であり、記号WBは、その残部となる接地面のトレッド 緑eにおける周方向長さWG(=WG1+WG2) であ る。なお比WG/WBが1. 0より小の時滯巾が過小と なり排水性を損ねるとともに軽量化の達成を困難とす る。逆に1.1より大の時肩落ち摩耗等の偏摩耗を招く 他、ブロック欠けを誘発する。

【0019】又角度βは図3に示すように、外の矩形領 域Yoにおいてトレッド面9に立てた法線Nと、この法 線Nを含みラグ溝Gの中心線Cgと直角な断面における 10 【0022】(具体例)図1に示す構造をなしかつ図2 ラグ溝Gの溝壁ga、gbがなす角度である。前記角度 βが28度より小の時、パターン剛性が過度に低下し良 路での操縦安定性を損ねるとともに、路面とのすべりに よって摩滅速度を早める。逆に角度βが35度より大の 時、悪路でのトラクション性が低下する。

【0020】なお前記パターンの剛性をさらに高めるた めには、前記ラグ溝Gの中心線Cgがタイヤ軸方向に対

してなす角度αを、前記外の矩形領域Υοのうち少なく とも外側半分の領域において5~10度とすることが好 ましい。

【0021】なお前記ラグ溝Gは、前記外側半分領域に おいてジグザグ状に屈曲してもよく、かかる場合には、 タイヤ軸方向に対するジグザグの角度が夫々5~10度 の範囲とする。又滯壁ga、gbの異なる角度β1、β 2で傾斜させてもよく、かかる場合にも、各角度β1、 β2は28~35度の範囲としている。

にラグパターンを有するタイヤサイズが12.00~2 0 18 P R のタイヤを表 1 の仕様に基づき試作すると ともに、該試作タイヤの耐摩耗性、タイヤ重量及びトラ クション性を比較品タイヤと比較した。

[0023]

【表1】

	HATECONIC 1	CHAPTER O	LANSONID 1	LAMOID O	LLANGUEL O	Labelor a	U.Abbara c
	YOUR DID I	2-4/400 Value	T HEROMENT	Lexounn 2	Manager 3	Legentin 4	C singapara
ム インシン (本学) (本学) (本学) (本学) (本学) (本学) (本学) (本学)	2 8 4 1 F@TO 01 F I	7 80 47 7 80 27 1 7 80 27 1	2 8 4 7 80 27 1 7 80 27 1	2 80 4) 1 80 10 10 10 1 10 10 10 10 10 10 10 10 10 10 10 10 10	X 80 87 1	γ 8 4 7 γ 8 7 5 1 γ 8 7 5 1 γ 8 7 5 1	88 85 177 177
	1890d/2	18904/2	2	18904/2	\§	Z/P0681	18904/2
((500) 2 - F	2 2 8 + 4 = 2 8404/2	2 8 ナイロン 840d/2	2 8 ナイロン 840d/2	2 2 4 4 ロン サイロン 84042	ナ2 8 ナ4 8 8位次 8位次	ナイロン 84042	2 8 7 4 0 7 8404/2
1 2 8			2000 000 000 000 000 000 000	4.26 1.17 1.27 0.05 8	20000000000000000000000000000000000000		80-1-0 0 0 0 0 0 0 0
子数 (個)	3.0	3 6	2.8	8 8	3 6	3 6	8 8
(MA)	110	105	100	105	8 8	105	105
指数 (*1)	9 6	88	100	102	8 8	9 6	9 6
性能 (指数)	105	105	100	9.5	105	8 2	9 5
*	タイヤ軍動は指数が小なほど座いる	BEDVIVER ?	1000				

なお耐摩耗性、トラクション性は、以下のテストによって測定し、夫々比較例タイヤを100とした指数で比較 している。指数が大なほど優れている。

[0024]

【発明の効果】叙上のごとく本発明の建設車両用バイア スタイヤは構成しているため、摩耗寿命を損ねることな くタイヤの軽量化を達成しうる。

【図面の簡単な説明】

【図1】 本発明の一実施例を示すタイヤの断面図である

【図2】それに用いるトレッドパターンの一例を示す平 面図である。

- 【図3】ラグ溝を示す部分断面図である。
- 【図4】ピッチ配列の他の例を説明する略線図である。
- 40 【図5】矩形領域を説明する略線図である。
 - 【図6】従来技術を説明する略線図である。

【符号の説明】

- 9 トレッド面
- Α ピッチ長さ
- C タイヤ赤道
- e トレッド緑
- G ラグ薄
- K 中間線
- Ρ ピッチ

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

fects in the images include but are not limited to the items checked:
□ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
2 REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.