Convolutional Neural Network - Deep Learning

What is a Convolutional Neural Network (CNN)?

(Reference: link text (https://www.youtube.com/watch?v=QzY57FaENXg))

CNN is a specialised kind of neural network for processing data that has a known, grid-like topology. The most common example of grid-structured data is a 2D image. An important characteristic of CNN is its operation, which is referred to as convolution. Convolution is a special kind of linear operation.

In general CNN consists of one or more convolutional layers and then followed by one or more fully connected layers as in a standard multilayer neural network. The architecture of CNN is designed in such a way that it takes advantage of the 2D structure of an input image. Another benefit of CNN is that they are easier to train and have many fewer parameters than a fully connected network with the same number of hidden layers.

Concept of Convolution Operator

(Reference: link text (https://www.youtube.com/watch?v=Etksi-F5ug8))

Convolution is a type of linear operator. It operates on two functions of real-valued arguments.

Let consider an example for better understanding, suppose we are using a laser sensor to track the location of a spaceship. where the laser sensor provides a single output x(t) w.r.t. position at time t. Since both these variables are real-valued, we can get different output as the time changes. In order to get a less noisy estimate of the spaceship, we take the average of several measurements (or output). Assigning the weighted average to the recent measurements since it is more relevant. Using the weighting function w(a), a is the time of a measurement.

Applying this function everytime will get a new function b resulting in the most accurate estimation of the position of the spaceship

$$b(t) = \int x(a)w(t-a)da$$

This operator is called convolution. The operator is generally denoted with an asterisk

$$s(w) = (x * w)(t)$$

In the above example, w needs to be 0 for all negative arguments. In CNN terminology, the first argument to the convolution is often referred to as the *input* and the second argument as the *kernel*. And the output is the *featuremap*.

An example of convolution without kernel-flip is shown above. In the above fig. the output is restricted to only one position where the kernel lies entirely within the image, called *valid* convolution. The boxes were drawn with arrows to indicate how the upper-left element of the output tensor is formed by applying the kernel to the upper-left region of the input tensor respectively.

- 1. Sparse Weight: In general every output unit interacts with every input unit. Convolutional networks typically have sparse weight i.e., making the kernel smaller than the input.
 - For example, while processing an image, it consists of thousands to millions of pixels in the output image, but we can detect small features such as edges with kernels that occupy only tens or hundreds of pixels. This Results in fewer parameters, which reduces both the memory requirement and improves the statistical efficiency.
- 2. Equivariant representation: It means that if the input changes, the output changes in the same way. In the image, convolution creates a 2D map of where certain features appear in the input. If we move the object in the input, its representation will move the same amount in the output.
- 3. Parameter sharing: It refers to the same parameter for more than one function in a model. That is, each member of the kernel is used at every position of the input. The parameter sharing used by the convolution operation means that rather than learning a separate set of parameters for every location, it learns only one set. Although it does not affect the runtime of forward propagation, it further reduces the storage requirement of the model to *k* parameters.

Pooling

(Reference: link text (https://www.youtube.com/watch?v=zg_AA3fZpE0))

A pooling function replaces the output of the net at a certain location with a summary statistic of the nearby outputs. In other words, pooling is a down-sampling operation which reduces the dimensionality of the feature map in order to introduce the translational invariance to small shifts and it reduces the number of learnable parameters.

Max Pooling: Max pooling extracts patches from the input feature maps, and provides the maximum output value in each patch, and discards all the other values. A max pooling with a filter of size 2 × 2 with a stride of 2 is commonly used in practice. This downsamples the in-plane dimension of feature maps by a factor of 2. Here the depth dimension of feature maps remains unchanged.

Consider an example of max pooling operation with a filter size of 2×2 , no padding, and a stride of 2, which extracts 2×2 patches from the input tensors, outputs the maximum value in each patch, and discards all the other values, resulting in downsampling the in-plane dimension of an input tensor by a factor of 2.

Image Classification using CNN

(Reference: link text (https://www.youtube.com/watch?v=7HPwo4wnJeA))

To implement a CNN model we will be using the CIFAR-10 dataset. It has 60,000 colour images in 10 different classes. The image size is 32x32 and the dataset has 50,000 training images and 10,000 test images.

In []:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import sklearn.metrics as sm
```

In []:

```
from tensorflow import keras
from keras.models import Sequential
from keras.optimizers import Adam
from keras.layers import Dense, Conv2D, Dropout, MaxPooling2D, Flatten
```

```
In [ ]:
from keras.datasets import cifar10
(x_train,y_train), (x_test,ytest) = cifar10.load_data()
Downloading data from https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz
In [ ]:
x_train,y_train
Out[]:
(array([[[ 59,
                62,
                      63],
          [ 43, 46,
                      45],
          [ 50,
                48,
                     43],
          [158, 132, 108],
          [152, 125, 102],
          [148, 124, 103]],
         [[ 16,
                20,
                      20],
          [ 0,
[ 18,
                 Θ,
                      0],
                  8,
                       0],
                 88,
          [123,
                      55],
          [119,
                 83,
                      50],
          [122,
                 87,
                      57]],
         [[ 25,
                 24,
                      21],
                 7,
          [ 16,
                       0],
          [ 49,
                 27,
                       8],
                      50],
                 84,
          [118,
          [120, 84,
                      50],
          [109, 73,
                      42]],
         . . . ,
         [[208, 170, [201, 153, [198, 161,
                      96],
                      34],
                      26],
          [160, 133,
[56, 31,
[53, 34,
                      70],
```

7], 20]],

96], 42],

30],

94],

87],

71],

62],

61]],

[186, 144,

[184, 148,

[97, 62, 34], [83, 53, 34]],

[[177, 144, 116], [168, 129, 94], [179, 142, 87],

[216, 184, 140], [151, 118, 84], [123, 92, 72]]]

[[[154, 177, 187], [126, 137, 136], [105, 104, 95],

95,

[87, 90, 71], [79, 81, 70]],

[[140, 160, 169], [145, 153, 154], [125, 125, 118], [96, 99, 78], [77, 80,

[71, 73,

[[140, 155, 164], [139, 146, 149], [115, 115, 112],

[91,

```
[ 79,
           82,
                  64],
  [ 68, 70, 55],
  [ 67, 69, 55]],
 . . . ,
 [[175, 167, 166],
[156, 154, 160],
  [154, 160, 170],
  [ 42, 34,
                  36],
  [ 61, 53, 57],
  [ 93, 83, 91]],
 [[165, 154, 128],
[156, 152, 130],
  [159, 161, 142],
  [103, 93, 96],
[123, 114, 120],
  [131, 121, 131]],
 [[163, 148, 120],
  [158, 148, 122],
  [163, 156, 133],
  [143, 133, 139],
  [143, 134, 142],
  [143, 133, 144]]],
[[[255, 255, 255],
  [253, 253, 253],
[253, 253, 253],
  [253, 253, 253],
  [253, 253, 253],
[253, 253, 253]]
 [[255, 255, 255],
  [255, 255, 255],
[255, 255, 255],
  [255, 255, 255],
[255, 255, 255],
[255, 255, 255]],
 [[255, 255, 255],
  [254, 254, 254],
[254, 254, 254],
  [254, 254, 254],
  [254, 254, 254],
[254, 254, 254]],
 [[113, 120, 112],
[111, 118, 111],
  [105, 112, 106],
  [ 72, 81, 80],
[ 72, 80, 79],
  [ 72, 80,
                  79]],
 [[111, 118, 110], [104, 111, 104],
  [ 99, 106, 98],
  [ 68, 75, 73],
[ 70, 76, 75],
  [ 78, 84,
                 82]],
 [[106, 113, 105],
                 98],
  [ 99, 106,
  [ 95, 102,
                  94],
  [ 78, 85,
                  83],
  [ 79, 85, 83],
  [80, 86, 84]]],
```

..,

```
[[[ 35, 178, 235],
 [ 40, 176, 239],
   [ 42, 176, 241],
  [ 99, 177, 219],
[ 79, 147, 197],
[ 89, 148, 189]],
 [[ 57, 182, 234],
[ 44, 184, 250],
   [ 50, 183, 240],
   [156, 182, 200],
[141, 177, 206],
   [116, 149, 175]],
 [[ 98, 197, 237],
[ 64, 189, 252],
   [ 69, 192, 245],
   [188, 195, 206],
[119, 135, 147],
   [ 61, 79, 90]],
 . . . ,
  [[ 73,
            79,
                    77],
                    68],
   [ 53,
            63,
   [ 54,
             68,
                    80],
   [ 17,
             40,
                    64],
             36,
                    51],
   [ 21,
   [ 33,
             48,
                    49]],
  [[ 61,
             68,
                   75],
             70,
   [ 55,
                   86],
   [ 57,
             79, 103],
   [ 24, 48,
                    72],
  [ 17, [ 7,
             35,
                    53],
             23,
                    32]],
                    73],
  [[ 44,
             56,
   [ 46,
            66, 88],
77, 105],
   [ 49,
   [ 27,
             52,
                   77],
             43,
   [ 21,
                    66],
            31,
   [ 12,
                    50]]],
[[[189, 211, 240],
[186, 208, 236],
[185, 207, 235],
   [175, 195, 224],
[172, 194, 222],
   [169, 194, 220]],
 [[194, 210, 239],
[191, 207, 236],
   [190, 206, 235],
   [173, 192, 220],
[171, 191, 218],
   [167, 190, 216]],
 [[208, 219, 244], [205, 216, 240],
   [204, 215, 239],
   [175, 191, 217], [172, 190, 216],
   [169, 191, 215]],
 . . . ,
  [[207, 199, 181],
  [203, 195, 175],
[203, 196, 173],
```

```
[135, 132, 127],
   [162, 158, 150],
[168, 163, 151]],
  [[198, 190, 170],
   [189, 181, 159],
[180, 172, 147],
   [178, 171, 160],
   [175, 169, 156],
[175, 169, 154]],
  [[198, 189, 173],
   [189, 181, 162],
[178, 170, 149],
   [195, 184, 169],
   [196, 189, 171],
[195, 190, 171]]],
[[[229, 229, 239],
[236, 237, 247],
[234, 236, 247],
   [217, 219, 233],
[221, 223, 234],
[222, 223, 233]],
 [[222, 221, 229], [239, 239, 249],
   [233, 234, 246],
   [223, 223, 236],
[227, 228, 238],
[210, 211, 220]],
 [[213, 206, 211], [234, 232, 239],
   [231, 233, 244],
   [220, 220, 232],
[220, 219, 232],
   [202, 203, 215]],
  . . . ,
 [[150, 143, 135],
   [140, 135, 127],
   [132, 127, 120],
   [224, 222, 218],
   [230, 228, 225],
[241, 241, 238]],
 [[137, 132, 126],
   [130, 127, 120],
[125, 121, 115],
   [181, 180, 178],
   [202, 201, 198],
[212, 211, 207]],
  [[122, 119, 114],
   [118, 116, 110],
[120, 116, 111],
   [179, 177, 173],
   [164, 164, 162],
[163, 163, 161]]]], dtype=uint8), array([[6],
[9],
[9],
[9],
[1],
[1]], dtype=uint8))
```

In []:

```
plt.figure(figsize=(10,10))
for i in range(25):
    plt.subplot(5,5,i+1)
    classNames = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
    plt.xticks([])
    plt.yticks([])
    plt.imshow(x_test[i])
    plt.xlabel(classNames[ytest[i][0]])
plt.show()
```

```
cat ship ship airplane frog

frog automobile frog cat automobile

airplane truck dog horse truck

ship dog horse ship frog.
```

In []:

```
# Converting input image data into float
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
```

In []:

```
x_train = (x_train-x_train.mean())/x_train.max()
x_test = (x_test-x_test.mean())/x_test.max()
y_train = keras.utils.to_categorical(y_train,10)
y_test = keras.utils.to_categorical(ytest,10)
```

In []:

[7]]

```
# Difference between ytest and y_test
print(ytest)
print(y_test)

[[3]
[8]
[8]
[...
[5]
[1]
```

```
 \begin{bmatrix} 0 & 0 & 0 & 0 & \dots & 0 & 1 & 0 & 1 \\ [0 & 0 & 0 & 0 & \dots & 0 & 1 & 0 & 0 \\ \vdots & \vdots \\ [0 & 0 & 0 & 0 & \dots & 0 & 0 & 0 & 0 & 0 \\ [0 & 1 & 0 & \dots & 0 & 0 & 0 & 0 & 0 & 0 \\ [0 & 0 & 0 & \dots & 1 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}
```

[[0. 0. 0. ... 0. 0. 0.]

```
In [ ]:
List = [x_train.shape,x_test.shape,y_train.shape,y_test.shape]
print(List)
[(50000, 32, 32, 3), (10000, 32, 32, 3), (50000, 10), (10000, 10)]
In [ ]:
model = Sequential()
model.add(Conv2D(32, (3, 3), padding='same',activation='relu', input shape=(32,32,3)))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(64, (3, 3), padding='same',activation='relu', input_shape=(32,32,3)))
model.add(MaxPooling2D(pool size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(256, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(10, activation='softmax'))
model.summary()
Model: "sequential"
Layer (type)
                              Output Shape
                                                        Param #
                              (None, 32, 32, 32)
conv2d (Conv2D)
                                                        896
max_pooling2d (MaxPooling2D) (None, 16, 16, 32)
                                                        0
conv2d 1 (Conv2D)
                              (None, 16, 16, 64)
                                                        18496
max pooling2d 1 (MaxPooling2 (None, 8, 8, 64)
                                                        0
dropout (Dropout)
                              (None, 8, 8, 64)
                                                        0
flatten (Flatten)
                              (None, 4096)
                                                        0
dense (Dense)
                              (None, 256)
                                                        1048832
```

Total params: 1,070,794
Trainable params: 1,070,794
Non-trainable params: 0

dropout 1 (Dropout)

dense 1 (Dense)

In []:

model.compile(loss='categorical crossentropy', optimizer=Adam(lr=1.0e-4), metrics = ['accuracy'])

0

2570

In []:

```
model.fit(x train, y train, batch size=256, epochs=200)
Epoch 1/200
196/196 [=
                                  ==] - 1s 7ms/step - loss: 1.9800 - accuracy: 0.2885
Epoch 2/200
                                  ==] - 1s 7ms/step - loss: 1.6653 - accuracy: 0.4065
196/196 [=
Epoch 3/200
196/196 [=
                                 ==] - 1s 7ms/step - loss: 1.5309 - accuracy: 0.4519
Epoch 4/200
196/196 [==
                               ====] - 1s 7ms/step - loss: 1.4519 - accuracy: 0.4814
Epoch 5/200
Epoch 6/200
                        =======] - 1s 7ms/step - loss: 1.3508 - accuracy: 0.5172
196/196 [===
Epoch 7/200
196/196 [===
                        ========] - 1s 7ms/step - loss: 1.3082 - accuracy: 0.5336
Epoch 8/200
196/196 [====
                      =========] - 1s 7ms/step - loss: 1.2788 - accuracy: 0.5455
Epoch 9/200
196/196 [===
                           =======] - 1s 7ms/step - loss: 1.2482 - accuracy: 0.5577
Epoch 10/200
196/196 [===
                           ======] - 1s 7ms/step - loss: 1.2171 - accuracy: 0.5682
Epoch 11/200
```

(None, 256)

(None, 10)

196/196	[======]	-	1s	7ms/step -	loss:	1.1952	- accuracy:	0.5785
Epoch 12, 196/196	/200 [========]	_	1s	7ms/step -	loss:	1.1681	- accuracy:	0.5863
Epoch 13,				·			_	
Epoch 14,	/200						_	
196/196 Epoch 15,	[=====================================	-	1s	/ms/step -	loss:	1.1289	- accuracy:	0.6011
196/196 Epoch 16	[======] /200	-	1s	7ms/step -	loss:	1.1091	- accuracy:	0.6087
196/196	[=======]	-	1s	7ms/step -	loss:	1.0918	- accuracy:	0.6159
	[======]	-	1s	7ms/step -	loss:	1.0738	- accuracy:	0.6211
Epoch 18, 196/196	/200 [========]	_	1s	7ms/step -	loss:	1.0574	- accuracy:	0.6290
Epoch 19,							_	
Epoch 20,	/200						_	
Epoch 21,				·			•	
196/196 Epoch 22,	[======] /200	-	1s	7ms/step -	loss:	1.0147	- accuracy:	0.6422
	[======]	-	1s	7ms/step -	loss:	1.0004	- accuracy:	0.6458
196/196	[======]	-	1s	7ms/step -	loss:	0.9913	- accuracy:	0.6528
Epoch 24, 196/196	/200 [=======]	-	1s	7ms/step -	loss:	0.9746	- accuracy:	0.6582
Epoch 25,	/200 [=======]	_	1s	7ms/sten -	loss:	0.9627	- accuracy:	0.6613
Epoch 26,								
Epoch 27,	/200							
196/196 Epoch 28,	[=====================================	-	1s	7ms/step -	loss:	0.9392	- accuracy:	0.6709
196/196 Epoch 29	[=======] /200	-	1s	7ms/step -	loss:	0.9315	- accuracy:	0.6741
196/196	[]	Ę	1s	7ms/step -	loss:	0.9193	- accuracy:	0.6783
	[=========]	4	1s	7ms/step -	loss:	0.9095	- accuracy:	0.6805
Epoch 31, 196/196	/200 [=======]	-	1s	7ms/step -	loss:	0.8996	- accuracy:	0.6858
Epoch 32,	/200 [=======]	_	15	7ms/sten -	loss:	0.8883	- accuracy:	0.6892
Epoch 33,							-	
Epoch 34,	/200							
Epoch 35,								
196/196 Epoch 36,	[=====================================	-	1s	7ms/step -	loss:	0.8616	- accuracy:	0.6977
	[======================================	-	1s	7ms/step -	loss:	0.8540	- accuracy:	0.7026
196/196	[========]	-	1s	7ms/step -	loss:	0.8460	- accuracy:	0.7057
Epoch 38, 196/196	/200 [======]	-	1s	7ms/step -	loss:	0.8390	- accuracy:	0.7058
Epoch 39, 196/196	/200 [=======]	_	1s	7ms/step -	loss:	0.8306	- accuracy:	0.7098
Epoch 40,	/200 [=======]	_	1ς	7ms/sten -	lossi	0 8209	- accuracy:	0. 7150
Epoch 41,	/200						_	
Epoch 42,				·			_	
196/196 Epoch 43,	[========] /200	-	1s	7ms/step -	loss:	0.8019	- accuracy:	0.7195
196/196 Epoch 44,	[========] /200	-	1s	7ms/step -	loss:	0.7984	- accuracy:	0.7210
196/196	[=======]	-	1s	7ms/step -	loss:	0.7901	- accuracy:	0.7230
	[=======]	-	1s	7ms/step -	loss:	0.7859	- accuracy:	0.7248
Epoch 46, 196/196	/200 [=======]	-	1s	7ms/step -	loss:	0.7760	- accuracy:	0.7295
Epoch 47,	/200 [========]	_	1s	7ms/sten -	loss:	0.7713	- accuracy:	0.7304
Epoch 48,							_	
Epoch 49,	/200						_	
Epoch 50,							_	
196/196 Epoch 51,	[========] /200	-	1s	7ms/step -	loss:	0.7520	- accuracy:	0.7396
	[======]	-	1s	7ms/step -	loss:	0.7465	- accuracy:	0.7396
	[=======]	-	1s	7ms/step -	loss:	0.7364	- accuracy:	0.7422

F F2	/200							
Epoch 53, 196/196	/ 200 [==========]	_	1s	7ms/step -	loss:	0.7330	- accuracv:	0.7445
Epoch 54	/200			·			,	
196/196 Epoch 55/	[======] /200	-	ls	/ms/step -	loss:	0.7248	- accuracy:	0.7470
196/196	[=======]	-	1s	7ms/step -	loss:	0.7200	- accuracy:	0.7494
Epoch 56,	/200 [=========]	_	1ς	7ms/sten -	lossi	0 7106	- accuracy:	A 7528
Epoch 57,	/200			•			•	
196/196 Epoch 58,	[=======] /288	-	1s	7ms/step -	loss:	0.7047	- accuracy:	0.7524
	[==========]	-	1s	7ms/step -	loss:	0.7046	- accuracy:	0.7546
Epoch 59,	/200 [========]	_	1 c	7mc/cton -	1000	A 6053	- accuracy:	0.7546
Epoch 60,	/200			•			•	
196/196 Epoch 61,	[=======] /200	-	1s	7ms/step -	loss:	0.6894	- accuracy:	0.7597
196/196	[=========]	-	1s	7ms/step -	loss:	0.6844	- accuracy:	0.7611
Epoch 62,	/200 [========]		1.0	7mc/ston	10001	0 6706	26611726141	0.7642
Epoch 63,	=	-	15	/IIIS/Step -	1055:	0.0790	- accuracy:	0.7642
	[========]	-	1s	7ms/step -	loss:	0.6718	- accuracy:	0.7648
Epoch 64, 196/196	/ 200 [==========]	-	1s	7ms/step -	loss:	0.6667	- accuracy:	0.7697
Epoch 65,	/200 [========]		1.0	7mc/ston	locci	0 6611	26611726141	0.7704
Epoch 66,		-	15	/ilis/step -	1055.	0.0011	- accuracy.	0.7704
	[=======]	-	1s	7ms/step -	loss:	0.6549	- accuracy:	0.7725
Epoch 67, 196/196	/ 200 [==========]	-	1s	7ms/step -	loss:	0.6516	- accuracy:	0.7722
Epoch 68,	/200 [=======]		1.	7mc/ston	locci	0 6500	2661123674	0.7725
Epoch 69,		Ā	13	/1115/5tep -	1055.	0.0300	- accuracy.	0.7723
196/196 Epoch 70/	[=======] /200	-	1s	7ms/step -	loss:	0.6400	- accuracy:	0.7778
	[======================================	-	1s	7ms/step -	loss:	0.6338	- accuracy:	0.7791
Epoch 71,	/200 [=======]	7	15	7ms/sten -	1055	0 6304	- accuracy:	n 7794
Epoch 72,	/200	1		•		<i>/</i> \		
196/196 Epoch 73,	[======] /200	-	1s	7ms/step -	loss:	0.6286	- accuracy:	0.7806
196/196	[==========]	-	1s	7ms/step -	loss:	0.6173	- accuracy:	0.7829
Epoch 74, 196/196	/200 [========]	-	1s	7ms/step -	loss:	0.6147	- accuracy:	0.7851
Epoch 75,	/200							
Epoch 76,	[=========] /200	-	15	/ilis/step -	1055:	0.0004	- accuracy:	0.7692
196/196 Epoch 77,	[========]	-	1s	7ms/step -	loss:	0.6016	- accuracy:	0.7913
	[=========]	_	1s	7ms/step -	loss:	0.5999	- accuracy:	0.7912
Epoch 78,	/200 [========]		10	7ms/sten -	1000	0 5972	- accuracy:	0.7929
Epoch 79	/200							
196/196 Epoch 80,	[=======] /200		1s	7ms/step -	loss:	0.5862	- accuracy:	0.7940
196/196	[=========]	-	1s	7ms/step -	loss:	0.5823	- accuracy:	0.7960
Epoch 81, 196/196	/200 [=======]	_	1s	7ms/step -	loss:	0.5798	- accuracy:	0.7975
Epoch 82	/200			·			•	
Epoch 83,	[=====================================	-	15	/IIIS/Step -	1055:	0.5760	- accuracy:	0.7909
196/196 Epoch 84,	[=======]	-	1s	7ms/step -	loss:	0.5734	- accuracy:	0.8001
	[=======]	-	1s	7ms/step -	loss:	0.5692	- accuracy:	0.8014
Epoch 85,	/200 [=======]	_	1 c	7mc/cton -	1000	A 5503	- accuracy:	0 8056
Epoch 86,	/200			•			•	
196/196 Epoch 87,	[======] /200	-	1s	7ms/step -	loss:	0.5586	- accuracy:	0.8035
196/196	[========]	-	1s	7ms/step -	loss:	0.5541	- accuracy:	0.8064
Epoch 88, 196/196	/200 [=========]	_	1s	7ms/step -	loss:	0.5494	- accuracv:	0.8076
Epoch 89	/200						-	
196/196 Epoch 90,	[=====================================	-	15	/ms/step -	LOSS:	ช.5423	- accuracy:	U. XUX/
196/196	[========]	-	1s	7ms/step -	loss:	0.5445	- accuracy:	0.8094
Epoch 91, 196/196	/ 200 [=======]	-	1s	7ms/step -	loss:	0.5382	- accuracy:	0.8134
Epoch 92,	/200 [=======]		1 -	7ms/ston	1000	A 5200	- accuracy:	A 815A
Epoch 93	/200			·			,	
196/196 Epoch 94/	[=======] /200	-	1s	7ms/step -	loss:	0.5309	- accuracy:	0.8137
Epocii 94/	200							

196/196	[=====]	-	1s	7ms/step -	loss:	0.5201	- accuracy:	0.8178
Epoch 95,	/200 [========]	_	1s	7ms/sten -	loss:	0.5170	- accuracy:	0.8195
Epoch 96	/200			·			•	
196/196 Epoch 97	[=====================================	-	IS	/ms/step -	loss:	0.5160	- accuracy:	0.8194
196/196 Epoch 98	[======] /200	-	1s	7ms/step -	loss:	0.5142	- accuracy:	0.8185
196/196	[========]	-	1s	7ms/step -	loss:	0.5088	- accuracy:	0.8223
Epoch 99, 196/196	/200 [=======]	-	1s	7ms/step -	loss:	0.5044	- accuracy:	0.8239
Epoch 100	9/200 [=======]	_	1 c	7ms/sten -	1000	0 4074	- accuracy:	0.8264
Epoch 10	1/200			·			_	
196/196 Epoch 10:	[=====================================	-	2s	8ms/step -	loss:	0.4931	- accuracy:	0.8277
196/196 Epoch 103	[========] 3/200	-	2s	8ms/step -	loss:	0.4934	- accuracy:	0.8268
196/196	[=======]	-	2s	8ms/step -	loss:	0.4863	- accuracy:	0.8310
Epoch 10 [,] 196/196	4/200 [=======]	-	2s	8ms/step -	loss:	0.4834	- accuracy:	0.8306
Epoch 10: 196/196	5/200 [========]	_	1s	8ms/step -	loss:	0.4788	- accuracv:	0.8330
Epoch 10				·			_	
Epoch 10	7/200						_	
196/196 Epoch 10	[=====================================	-	1s	7ms/step -	loss:	0.4742	- accuracy:	0.8349
196/196 Epoch 10	[========]	-	1s	7ms/step -	loss:	0.4678	- accuracy:	0.8378
196/196	[=========]	-	1s	7ms/step -	loss:	0.4677	- accuracy:	0.8353
Epoch 110 196/196	9/200 [========]	_	1s	7ms/step -	loss:	0.4576	- accuracy:	0.8401
Epoch 11:	1/200 [======]		1c	7ms/sten -	1000	A 4579	- accuracy:	A 8377
Epoch 11	2/200							
Epoch 11								
196/196 Epoch 11	[======] 4/200	7	1s	7ms/step -	loss:	0.4524	- accuracy:	0.8414
196/196	[=========]	-	1s	7ms/step -	loss:	0.4466	- accuracy:	0.8428
	[=========]	-	1s	7ms/step -	loss:	0.4445	- accuracy:	0.8444
Epoch 110 196/196	5/200 [========]	_	1s	7ms/step -	loss:	0.4423	- accuracy:	0.8451
Epoch 11								
Epoch 118	3/200							
Epoch 119							,	
196/196 Epoch 120	[=====================================	-	1s	7ms/step -	loss:	0.4325	- accuracy:	0.8484
	[==========]	(1s	7ms/step -	loss:	0.4277	- accuracy:	0.8489
196/196	[==========]	-	1s	7ms/step -	loss:	0.4232	- accuracy:	0.8498
Epoch 12: 196/196	[=======]	-	1s	7ms/step -	loss:	0.4217	- accuracy:	0.8525
Epoch 12: 196/196	3/200 [========]	_	1s	7ms/step -	loss:	0.4173	- accuracy:	0.8533
Epoch 12				·			_	
Epoch 12	5/200			·			•	
196/196 Epoch 12	[=====================================	-	1s	7ms/step -	loss:	0.4128	- accuracy:	0.8545
196/196 Epoch 12	[========]	-	1s	7ms/step -	loss:	0.4093	- accuracy:	0.8572
196/196	[=======]	-	1s	7ms/step -	loss:	0.4045	- accuracy:	0.8597
Epoch 128 196/196	3/200 [=======]	-	1s	7ms/step -	loss:	0.4034	- accuracy:	0.8589
Epoch 129 196/196	9/200 [========]	_	1s	7ms/step -	loss:	0.4017	- accuracv:	0.8598
Epoch 13				·			•	
Epoch 13	1/200			·			•	
196/196 Epoch 13	[=====================================	-	ls	/ms/step -	loss:	0.3988	- accuracy:	ษ.ช595
	[========]	-	1s	7ms/step -	loss:	0.3917	- accuracy:	0.8610
196/196	[========]	-	1s	7ms/step -	loss:	0.3855	- accuracy:	0.8652
	[=========]	-	1s	7ms/step -	loss:	0.3865	- accuracy:	0.8620
Epoch 13: 196/196	5/200 [========]	_	1s	7ms/step -	loss:	0.3860	- accuracv:	0.8643
-,	- •		-				 , ·	

Epoch 136/200			
196/196 [====================================] -	1s	7ms/step - loss: 0.3809 - accuracy: 0.8660
Epoch 137/200 196/196 [====================================] -	1s	s 7ms/step - loss: 0.3752 - accuracy: 0.8699
Epoch 138/200 196/196 [====================================	1 -	1s	5 7ms/step - loss: 0.3767 - accuracy: 0.8671
Epoch 139/200			
Epoch 140/200			s 7ms/step - loss: 0.3732 - accuracy: 0.8681
196/196 [====================================] -	1s	s 7ms/step - loss: 0.3682 - accuracy: 0.8713
] -	1s	7ms/step - loss: 0.3688 - accuracy: 0.8712
196/196 [====================================] -	1s	3 7ms/step - loss: 0.3643 - accuracy: 0.8737
Epoch 143/200 196/196 [====================================] -	1s	s 7ms/step - loss: 0.3616 - accuracy: 0.8724
Epoch 144/200 196/196 [====================================	1 -	1s	5 7ms/step - loss: 0.3626 - accuracy: 0.8716
Epoch 145/200	-		
Epoch 146/200	-		s 7ms/step - loss: 0.3555 - accuracy: 0.8746
196/196 [====================================] -	1s	s 7ms/step - loss: 0.3543 - accuracy: 0.8759
196/196 [====================================] -	1s	s 7ms/step - loss: 0.3475 - accuracy: 0.8758
196/196 [====================================] -	1s	s 7ms/step - loss: 0.3496 - accuracy: 0.8762
Epoch 149/200 196/196 [====================================] -	1s	s 7ms/step - loss: 0.3469 - accuracy: 0.8775
Epoch 150/200 196/196 [====================================	1 -	1s	s 7ms/step - loss: 0.3433 - accuracy: 0.8794
Epoch 151/200			7ms/step - loss: 0.3430 - accuracy: 0.8805
Epoch 152/200			
Epoch 153/200			s 7ms/step - loss: 0.3449 - accuracy: 0.8789
196/196 [====================================] -	1s	s 7ms/step - loss: 0.3379 - accuracy: 0.8807
196/196 [====================================] -	1s	7ms/step - loss: 0.3357 - accuracy: 0.8836
] -	1s	7ms/step - loss: 0.3303 - accuracy: 0.8855
Epoch 156/200 196/196 [====================================] -	1s	s 7ms/step - loss: 0.3319 - accuracy: 0.8819
Epoch 157/200 196/196 [====================================	1 -	1s	s 7ms/step - loss: 0.3291 - accuracy: 0.8852
Epoch 158/200			s 7ms/step - loss: 0.3273 - accuracy: 0.8839
Epoch 159/200			
Epoch 160/200			s 7ms/step - loss: 0.3240 - accuracy: 0.8865
196/196 [====================================] -	1s	5 7ms/step - loss: 0.3218 - accuracy: 0.8863
196/196 [====================================] -	1s	s 7ms/step - loss: 0.3208 - accuracy: 0.8853
196/196 [====================================] -	1s	s 7ms/step - loss: 0.3165 - accuracy: 0.8883
Epoch 163/200 196/196 [====================================] -	1s	s 7ms/step - loss: 0.3189 - accuracy: 0.8881
Epoch 164/200 196/196 [====================================] -	1s	s 7ms/step - loss: 0.3127 - accuracy: 0.8914
Epoch 165/200 196/196 [====================================	1 -	1s	5 7ms/step - loss: 0.3123 - accuracy: 0.8895
Epoch 166/200	-		5 7ms/step - loss: 0.3091 - accuracy: 0.8903
Epoch 167/200	-		, , , , , , , , , , , , , , , , , , ,
196/196 [====================================] -	Is	s 7ms/step - loss: 0.3110 - accuracy: 0.8897
196/196 [====================================] -	1s	s 7ms/step - loss: 0.3079 - accuracy: 0.8920
196/196 [====================================] -	1s	7ms/step - loss: 0.3043 - accuracy: 0.8916
] -	1s	7ms/step - loss: 0.3016 - accuracy: 0.8939
Epoch 171/200 196/196 [====================================] -	1s	s 7ms/step - loss: 0.2978 - accuracy: 0.8955
Epoch 172/200 196/196 [====================================	1 -	1s	5 7ms/step - loss: 0.2997 - accuracy: 0.8960
Epoch 173/200	-		5 7ms/step - loss: 0.2973 - accuracy: 0.8952
Epoch 174/200	-		, , , , , , , , , , , , , , , , , , ,
196/196 [====================================] -	1s	s 7ms/step - loss: 0.2924 - accuracy: 0.8950
196/196 [====================================] -	1s	s 7ms/step - loss: 0.2881 - accuracy: 0.8991
] -	1s	7ms/step - loss: 0.2896 - accuracy: 0.8974
Epocii 177/200			

```
196/196 [=====
                 =======] - 1s 7ms/step - loss: 0.2883 - accuracy: 0.8989
Epoch 178/200
196/196 [=====
                 =======] - 1s 7ms/step - loss: 0.2864 - accuracy: 0.8996
Epoch 179/200
196/196 [======
              ========] - 1s 7ms/step - loss: 0.2849 - accuracy: 0.8996
Epoch 180/200
Epoch 181/200
Epoch 182/200
Epoch 183/200
196/196 [=====
                =========] - 1s 7ms/step - loss: 0.2812 - accuracy: 0.9009
Epoch 184/200
196/196 [====
                 ========] - 1s 7ms/step - loss: 0.2713 - accuracy: 0.9054
Epoch 185/200
196/196 [=====
               =========] - 1s 7ms/step - loss: 0.2770 - accuracy: 0.9029
Epoch 186/200
196/196 [=====
                ========] - 1s 7ms/step - loss: 0.2761 - accuracy: 0.9030
Epoch 187/200
Epoch 188/200
          196/196 [======
Epoch 189/200
Epoch 190/200
Epoch 191/200
196/196 [=====
             ========] - 1s 7ms/step - loss: 0.2630 - accuracy: 0.9063
Epoch 192/200
196/196 [=====
                  =======] - 1s 7ms/step - loss: 0.2612 - accuracy: 0.9088
Epoch 193/200
196/196 [===
                       ==] - 1s 7ms/step - loss: 0.2570 - accuracy: 0.9109
Epoch 194/200
196/196 [======
              ========] - 1s 7ms/step - loss: 0.2598 - accuracy: 0.9090
Epoch 195/200
Epoch 196/200
Epoch 197/200
196/196 [======
               ========] - 1s 7ms/step - loss: 0.2554 - accuracy: 0.9107
Epoch 198/200
                       ===] - 1s 7ms/step - loss: 0.2563 - accuracy: 0.9100
196/196 [==
Epoch 199/200
196/196 [====
                    ======] - 1s 7ms/step - loss: 0.2524 - accuracy: 0.9111
Epoch 200/200
                  =======] - 1s 7ms/step - loss: 0.2525 - accuracy: 0.9114
196/196 [=====
```

Out[]:

<tensorflow.python.keras.callbacks.History at 0x7f9f202231d0>

In []:

```
yhat = model.predict_classes(x_test)
print(sm.classification_report(ytest,yhat))
print(f'Accuracy of test data: {sm.accuracy_score(ytest,yhat)*100}%')
```

WARNING:tensorflow:From <ipython-input-13-a1a7593971d8>:1: Sequential.predict_classes (from tensorfl ow.python.keras.engine.sequential) is deprecated and will be removed after 2021-01-01. Instructions for updating:

Please use instead:* `np.argmax(model.predict(x), axis=-1)`, if your model does multi-class classi fication (e.g. if it uses a `softmax` last-layer activation).* `(model.predict(x) > 0.5).astype("int32")`, if your model does binary classification (e.g. if it uses a `sigmoid` last-layer activation).

	precision	recall	f1-score	support
Θ	0.79	0.81	0.80	1000
1	0.83	0.89	0.86	1000
2	0.66	0.69	0.67	1000
3	0.60	0.60	0.60	1000
4	0.71	0.75	0.73	1000
5	0.69	0.62	0.65	1000
6	0.84	0.84	0.84	1000
7	0.84	0.80	0.82	1000
8	0.86	0.85	0.85	1000
9	0.84	0.81	0.82	1000
accuracy			0.77	10000
macro avg	0.77	0.77	0.76	10000
eighted avg	0.77	0.77	0.76	10000

Accuracy of test data: 76.53%

In []:

```
cm = sm.confusion_matrix(ytest,yhat)
plt.clf()
plt.imshow(cm,cmap=plt.cm.autumn_r)
plt.title('Confusion Matrix - Test Data')
plt.xlabel('Predicted Label')
plt.ylabel('True Label')
tick_marks = np.arange(len(classNames))
plt.xticks(tick_marks,classNames,rotation=90)
plt.yticks(tick_marks,classNames)
for i in range(len(classNames)):
    for j in range(len(classNames)):
        plt.text(i,j,cm[i][j])
plt.show()
```

