

RF TEST REPORT

Report No.: SET2016-00716

Product: Mobile Data Terminal

FCC ID: 2AC6AC4000-A

Model No.: C4000/C4050

Applicant: ShenZhen Chainway Information Technology Co.,Ltd.

9/F, Building 2, Phase 2, Dagian Industrial Park, Longchang Rd.,

Address:

District 67, Bao'an, Shenzhen

Dates of Testing: 12/28/2015 — 01/12/2016

Issued by: CCIC-SET

Lab Location: Electronic Testing Building, Shahe Road, Xili, Nanshan District,

Shenzh China

This test report consists of 90 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by CCIC-SET. The test results in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver. Any objections must be raised to CCIC-SET within 15 days since the date when the report is received. It will not be taken into consideration beyond this limit.

CCIC-SET/T (00) Page 1 of 90

Test Report

Product...... Mobile Data Terminal

Brand Name...... CHAINWAY

Trade Name.....: CHAINWAY

Applicant...... ShenZhen Chainway Information Technology Co.,Ltd.

Longchang Rd., District 67, Bao'an, Shenzhen

Manufacturer...... ShenZhen Chainway Information Technology Co.,Ltd.

Manufacturer Address....: 9/F, Building 2, Phase 2, Daqian Industrial Park,

Longchang Rd., District 67, Bao'an, Shenzhen

47 CFR FCC Part 22(H): 2013

47 CFR FCC Part 24(E): 2013

Test Result...... PASS

Tested by.....:

2016.01.13

Lu Lei, Test Engineer

Reviewed by....:

Zhu Qi

(ulei

2016.01.13

Zhu Qi, Senior Egineer

Wu Li'an, Manager

CCIC-SET/T (00) Page 2 of 90

	Table of Contents	
1.	GENERAL INFORMATION	4
1.1	EUT Description	4
1.2	Maximum ERP/EIRP Power, Frequency Tolerance, and Emission Designator	5
1.3	Test Standards and Results	6
1.4	Test Configuration of Equipment under Test	7
1.5	Measurement Results Explanation Example	7
1.6	Facilities and Accreditations	8
2.	47 CFR PART 2, PART 22H & 24E REQUIREMENTS	9
2.1	Conducted RF Output Power	9
2.2	Peak to Average Radio	12
2.3	99% Occupied Bandwidth and 26dB Bandwidth Measurement	19
2.4	Frequency Stability	39
2.5	Conducted Out of Band Emissions	43
2.6	Band Edge	63
2.7	Transmitter Radiated Power (EIRP/ERP)	71
2.8	Radiated Spurious Emissions	77
3.	LIST OF MEASURING EQUIPMENT	90
Г	Change History	

	Change History						
Issue	Date	Reason for change					
1.0	2016.01.13	First edition					

1. GENERAL INFORMATION

1.1 EUT Description

EUT Type	Mobile Data Terminal			
Hardware Version	N/A			
Software Version	N/A			
	GSM /GRPS/EDGE/WCDMA/HSPA			
EUT supports Radios application	WLAN2.4GHz 802.11b/g/n (HT20/HT40)			
	Bluetooth V3.0+EDR / Bluetooth V4.0LE			
Multi Slot Class	GPRS: Multi slot Class12, EGPRS: Multi slot Class12			
	GSM 850MHz:			
	Tx: 824.2 - 848.8MHz (at intervals of 200kHz);			
	Rx: 869.2 - 893.8MHz (at intervals of 200kHz)			
	GSM 1900MHz:			
	Tx: 1850.2 - 1909.8MHz (at intervals of 200kHz);			
г р	Rx: 1930.2 - 1989.8MHz (at intervals of 200kHz)			
Frequency Range	WCDMA 850MHz			
	Tx: 826.4 - 846.6MHz (at intervals of 200kHz);			
	Rx: 871.4 - 891.6MHz (at intervals of 200kHz)			
	WCDMA 1900MHz			
	Tx: 1852.4 - 1907.6MHz (at intervals of 200kHz);			
	Rx: 1932.4 - 1987.6MHz (at intervals of 200kHz)			
	GSM 850: 32.47dBm			
	GSM 1900: 28.86dBm			
Maximum Output Power to	EDGE 850: 31.97dBm			
Antenna	EDGE 1900: 28.34dBm			
	WCDMA 850: 22.72dBm			
	WCDMA 1900: 22.63dBm			
	GSM / GPRS:GMSK			
	EDGE:GMSK / 8PSK			
Type of Modulation	WCDMA: QPSK(Uplink)			
	HSDPA:QPSK(Downlink)			
	HSUPA:QPSK(Uplink)			
Antanna Tyna	Linearly Polarization Antenna(C4000)			
Antenna Type	PIFA Antenna(C4050)			
Antenna Gain	-2dBi			

CCIC-SET/T (00) Page 4 of 90

1.2 Maximum ERP/EIRP Power, Frequency Tolerance, and Emission Designator

Model No.	System	Type of Modulation	Emission Designator	Frequency Tolerance (ppm)	Maximum ERP/EIRP(W)
	GSM 850	GMSK	250KGXW	0.03	0.96
	GSM 1900	GMSK	248KGXW	0.02	0.43
	EDGE 850	8PSK	246KG7W	0.03	0.83
C4000	EDGE 1900	8PSK	248KG7W	0.02	0.39
	WCDMA 850 RMC 12.2Kbps	QPSK	4M20F9W	0.03	0.09
	WCDMA 1900 RMC 12.2Kbps	QPSK	4M18F9W	0.02	0.08

Model No.	System	Type of Modulation	Emission Designator	Frequency Tolerance (ppm)	Maximum ERP/EIRP(W)
	GSM 850	GMSK	250KGXW	0.03	0.95
	GSM 1900	GMSK	248KGXW	0.02	0.43
	EDGE 850	8PSK	246KG7W	0.03	0.81
C4050	EDGE 1900	8PSK	248KG7W	0.02	0.39
	WCDMA 850 RMC 12.2Kbps	QPSK	4M20F9W	0.03	0.09
	WCDMA 1900 RMC 12.2Kbps	QPSK	4M18F9W	0.02	0.08

CCIC-SET/T (00) Page 5 of 90

Report No.: SET2016-00716

1.3 Test Standards and Results

- 1. 47 CFR Part 2, 22(H), 24(E)
- 2. ANSI / TIA / EIA-603-D-2010
- 3. FCC KDB 971168 D01 Power Meas. License Digital Systems v02r02

Remark:

- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

Test detailed items/section required by FCC rules and results are as below:

NI.	Section	Description	Timit	D14	
No.	FCC	Description	Limit	Result	
1	2.1046	Conducted Output Power	Reporting Only	PASS	
2	24.232(d)	Peak to Average Radio	<13dBm	PASS	
	2.1049				
3	22.917(b)	Occupied Bandwidth	Reporting Only	PASS	
	24.238(b)				
	2.1055		≤±2.5ppm		
4	22.355	Frequency Stability		PASS	
	24.235				
	2.1051	Conducted Out of Band	< 43+10log10		
5	22.917	Emissions	(P[Watts])	PASS	
	24.238	Elilissions	(F[Walls])		
	2.1051		< 43+10log10		
6	22.917	Band Edge	(P[Watts])	PASS	
	24.238		(1 [Watts])		
	22.913	Effective Radiated Power	<7Watts	PASS	
7	24.232	Equivalent Isotropic Radiated Power	<2Watts	PASS	
	2.1053	Padiated Courieus	< 42 + 10log10		
8	22.917	Radiated Spurious Emissions	< 43+10log10	PASS	
	24.238	Emissions	(P[Watts])		

CCIC-SET/T (00) Page 6 of 90

Report No.: SET2016-00716

1.4 Test Configuration of Equipment under Test

Antenna port conducted and radiated test items were performed according to KDB 971168 D01 Power Meas. License Digital Systems v02r02 with maximum output power.

Radiated measurements were performed with rotating EUT in different three orthogonal test planes to find the maximum emission.

Radiated emissions were investigated as following frequency range:

- 1. 30 MHz to 9000 MHz for GSM850 and WCDMA Band V.
- 2. 30 MHz to 20000 MHz for GSM1900 and WCDMA Band II.

All modes and data rates and positions were investigated.

Test modes are chosen to be reported as the worst case configuration below:

	Test Modes						
Band	Radiated TCs	Conducted TCs					
GSM 850	GSM Link	GSM Link					
GSM 930	EDGE Link	EDGE Link					
CCM 1000	GSM Link	GSM Link					
GSM 1900	EDGE Link	EDGE Link					
WCDMA Band V	RMC 12.2Kbps Link	RMC 12.2Kbps Link					
WCDMA Band II	RMC 12.2Kbps Link	RMC 12.2Kbps Link					

Note: The maximum power levels are chosen to test as the worst case configuration as follows:

GSM mode for GMSK modulation,

EDGE multi-slot class 8 mode for 8PSK modulation,

RMC 12.2Kbps mode for WCDMA band V,

RMC 12.2Kbps mode for WCDMA band II, only these modes were used for all tests.

1.5 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 7dB and 10dB attenuator.

Example:

Offset (dB) = RF cable loss(dB) + attenuator factor(dB). = 7 + 10 = 17 (dB)

CCIC-SET/T (00) Page 7 of 90

Report No.: SET2016-00716

1.6 Facilities and Accreditations

1.6.1 Test Facilities

CNAS-Lab Code: L1659

CCIC Southern Electronic Product Testing (Shenzhen) Co., Ltd. CCIC is a third party testing organization accredited by China National Accreditation Service for Conformity Assessment (CNAS) according to ISO/IEC 17025. The accreditation certificate number is L1659. A 12.8*6.8*6.4 (m) fully anechoic chamber was used for the radiated spurious emissions test.

FCC-Registration No.: 406086

CCIC Southern Electronic Product Testing (Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 406086, Renewal date Nov. 19, 2011, valid time is until Nov. 18, 2014.

IC-Registration No.: 11185A-1

CCIC Southern Electronic Product Testing (Shenzhen) Co., Ltd. EMC Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 11185A-1 on July. 15, 2013, valid time is until July. 15, 2016.

1.6.2 Test Environment Conditions

During the measurement, the environmental conditions were within the listed ranges:

Temperature (°C):	15°C-35°C
Relative Humidity (%):	30% -60%
Atmospheric Pressure (kPa):	86KPa-106KPa

CCIC-SET/T (00) Page 8 of 90

2. 47 CFR PART 2, PART 22H & 24E REQUIREMENTS

2.1 Conducted RF Output Power

2.1.1 Definition

A system simulator was used to establish communication with the EUT. Its parameters were set to enforce EUT transmitting at the maximum power. The measured power in the radio frequency on the transmitter output terminals shall be reported.

2.1.2 Measuring Instruments

The measuring equipment is listed in the section 3 of this test report.

2.1.3 Test Procedures

- 1. The transmitter output port was connected to the system simulator.
- 2. Set EUT at maximum power through system simulator.
- 3. Select lowest, middle, and highest channels for each band and different modulation.
- 4. Measure and record the power level from the system simulator.

2.1.4 Test Setup

CCIC-SET/T (00) Page 9 of 90

2.1.5 Test Results of Conducted Output Power

1. GSM Model Test Verdict:

Band	Channel	Frequency (MHz)	Measured Output Power dBm	Verdict
CCM	128	824.2	32.38	PASS
GSM 950MHz	190	836.6	32.46	PASS
850MHz	251	848.8	32.47	PASS
GSM	512	1850.2	28.84	PASS
1900MHz	661	1880.0	28.83	PASS
1900MHZ	810	1909.8	28.86	PASS
CDDC	128	824.2	32.13	PASS
GPRS 850MHz	190	836.6	32.16	PASS
830141112	251	848.8	32.21	PASS
CDDC	512	1850.2	28.63	PASS
GPRS 1900MHz	661	1880.0	28.62	PASS
1900MHZ	810	1909.8	28.59	PASS
EDGE	128	824.2	31.86	PASS
850MHz	190	836.6	31.92	PASS
OSUMINZ	251	848.8	31.97	PASS
EDCE	512	1850.2	28.25	PASS
EDGE 1900MHz	661	1880.0	28.22	PASS
19001/11112	810	1909.8	28.34	PASS

Note 1: For the GPRS and EDGE model, all the slots were tested and just the worst data was record in this report.

CCIC-SET/T (00) Page 10 of 90

2. WCDMA Model Test Verdict:

	band	W	CDMA 8	50	W	CDMA 19	900
Item	Frequency	4132	4183	4233	9262	9400	9538
	Subtest		dBm			dBm	
WCDMA	RMC 12.2Kbps	22.72	22.68	22.56	22.58	22.48	22.63
	1	22.37	22.42	22.39	22.28	22.27	22.31
HCDDA	2	22.26	22.31	22.25	22.19	22.23	22.17
HSDPA	3	22.21	22.17	22.23	22.04	22.05	22.12
	4	21.91	21.87	21.95	21.81	21.79	21.76
	1	22.19	22.16	22.12	22.07	22.13	22.10
	2	22.51	22.47	22.54	22.24	22.31	22.18
HSUPA	3	21.81	21.75	21.83	21.85	21.87	21.91
	4	22.46	22.55	22.50	22.22	22.18	22.25
	5	22.31	22.28	22.34	22.21	22.14	22.18

CCIC-SET/T (00) Page 11 of 90

2.2 Peak to Average Radio

2.2.1 Definition

Power Complementary Cumulative Distribution Function (CCDF) curves provide a means for characterizing the power peaks of a digitally modulated signal on a statistical basis. A CCDF curve depicts the probability of the peak signal amplitude exceeding the average power level. Most contemporary measurement instrumentation include the capability to produce CCDF curves for an input signal provided that the instrument's resolution bandwidth can be set wide enough to accommodate the entire input signal bandwidth. In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

2.2.2 Measuring Instruments

The measuring equipment is listed in the section 3 of this test report.

2.2.3 Test Procedures

- 1. The testing follows FCC KDB 971168 v02r01 Section 5.7.1.
- 2. The EUT was connected to the spectrum analyzer and system simulator via a power divider.
 - 3. For GSM/EGPRS operating modes:
 - a. Set EUT in maximum power output.
 - b. Set the RBW = 1MHz, VBW = 3MHz, Peak detector on spectrum analyzer for first trace.
- c. Set the RBW = 1MHz, VBW = 3MHz, RMS detector on spectrum analyzer for second trace.
- d. The wanted burst signal is triggered by spectrum analyzer, and measured respectively the peak level and Mean level without burst-off time, after system simulator has synchronized with the spectrum analyzer.
 - 4. For UMTS operating modes:
- a. Set the CCDF (Complementary Cumulative Distribution Function) option on the spectrum analyzer.
- b. The highest RF powers were measured and recorded the maximum PAPR level associated with a probability of $0.1\,\%$.
 - 5. Record the deviation as Peak to Average Ratio.

CCIC-SET/T (00) Page 12 of 90

2.2.5 Test Results of Peak-to-Average Ratio

Band	Channel	Frequency	Frequency Peak to Average radio		Limit	Verdict	
Daliu	Chamie	(MHz)	dB	Refer to Plot	dB	verdict	
CSM	512	1850.2	0.08			PASS	
GSM 1900MHz	661	1880.0	0.07	Plot A1 to A3	13	PASS	
1900MHZ	810	1909.8	0.08			PASS	
EDGE	512	1850.2	0.07			PASS	
1900MHz	661	1880.0	0.11	Plot B1 to B3	13	PASS	
1900WI11Z	810	1909.8	0.08			PASS	
WCDMA	9262	1852.4	6.04			PASS	
1900MHz	9400	1880.0	5.96	Plot D1 to D3	13	PASS	
1900MHZ	9538	1907.6	5.92			PASS	

CCIC-SET/T (00) Page 13 of 90

CCIC-SET/T (00) Page 14 of 90

CCIC-SET/T (00) Page 15 of 90

CCIC-SET/T (00) Page 16 of 90

CCIC-SET/T (00) Page 17 of 90

CCIC-SET/T (00) Page 18 of 90

2.3 99% Occupied Bandwidth and 26dB Bandwidth Measurement

2.3.1 Definition

The 99% occupied bandwidth is the width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage 0.5% of the total mean transmitted power.

The emission bandwidth is defined as the width of the signal between two points, located at the 2 sides of the carrier frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

2.3.2 Measuring Instruments

The measuring equipment is listed in the section 3 of this test report.

2.3.3 Test Procedures

- 1. The testing follows FCC KDB 971168 v02r02 Section 4.2.
- 2. The EUT was connected to the spectrum analyzer and system simulator via a power divider.
- 3. The RF output of the EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

- 4. The 99% occupied bandwidth were measured, set RBW= 1% of span, VBW= 3*RBW, sample detector, trace maximum hold.
- 5. The 26dB bandwidth were measured, set RBW= 1% of EBW, VBW= 3*RBW, peak detector, trace maximum hold.

CCIC-SET/T (00) Page 19 of 90

2.3.5 Test Results of 99% Occupied Bandwidth and 26dB Bandwidth

Band	Channel	Frequency (MHz)	26dB bandwidth	99% Occupied Bandwidth	Refer to Plot
	128	824.2	314 kHz	246 kHz	Plot A1-A2
GSM 850MHz	190	836.6	316 kHz	244 kHz	Plot A3-A4
	251	848.8	310 kHz	250 kHz	Plot A5-A6
	512	1850.2	312 kHz	248 kHz	Plot B1-B2
GSM 1900MHz	661	1880.0	312 kHz	244 kHz	Plot B3-B4
	810	1909.8	312 kHz	246 kHz	Plot B5-B6
	128	824.2	314 kHz	246 kHz	Plot C1-C2
EDGE 850MHz	190	836.6	310 kHz	244 kHz	Plot C3-C4
	251	848.8	316 kHz	244 kHz	Plot C5-C6
	512	1850.2	312 kHz	248 kHz	Plot D1-D2
EDGE 1900MHz	661	1880.0	314 kHz	244 kHz	Plot D3-D4
	810	1909.8	312 kHz	246 kHz	Plot D5-D6
	4132	826.4	4.68 MHz	4.16 MHz	Plot E1-E2
WCDMA 850MHz	4183	836.6	4.70 MHz	4.18 MHz	Plot E3-E4
	4233	846.6	4.74 MHz	4.20 MHz	Plot E5-E6
	9262	1852.4	4.70 MHz	4.18 MHz	Plot F1-F2
WCDMA 1900MHz	9400	1880	4.72 MHz	4.18 MHz	Plot F3-F4
	9538	1907.6	4.72 MHz	4.18 MHz	Plot F5-F6

CCIC-SET/T (00) Page 20 of 90

CCIC-SET/T (00) Page 21 of 90

CCIC-SET/T (00) Page 22 of 90

CCIC-SET/T (00) Page 23 of 90

CCIC-SET/T (00) Page 24 of 90

CCIC-SET/T (00) Page 25 of 90

CCIC-SET/T (00) Page 26 of 90

CCIC-SET/T (00) Page 27 of 90

CCIC-SET/T (00) Page 28 of 90

(Plot C5: EDGE 850MHz Channel = 251 26dB bandwidth)

(Plot C6: EDGE 850MHz Channel = 251 99% Occupied Bandwidth)

CCIC-SET/T (00) Page 29 of 90

CCIC-SET/T (00) Page 30 of 90

CCIC-SET/T (00) Page 31 of 90

CCIC-SET/T (00) Page 32 of 90

CCIC-SET/T (00) Page 33 of 90

CCIC-SET/T (00) Page 34 of 90

CCIC-SET/T (00) Page 35 of 90

CCIC-SET/T (00) Page 36 of 90

CCIC-SET/T (00) Page 37 of 90

CCIC-SET/T (00) Page 38 of 90

2.4 Frequency Stability

2.4.1 Requirement

The frequency stability shall be measured by variation of ambient temperature and variation of primary supply voltage to ensure that the fundamental emission stays within the authorized frequency block. The frequency stability of the transmitter shall be maintained within $\pm 0.00025\%$ (± 2.5 ppm) of the center frequency.

2.4.2 Measuring Instruments

The measuring equipment is listed in the section 3 of this test report.

2.4.3 Test Procedures for Temperature Variation

- 1. The testing follows FCC KDB 971168 v02r02 Section 9.0.
- 2. The EUT was set up in the thermal chamber and connected with the system simulator.
- 3. With power OFF, the temperature was decreased to -30°C and the EUT was stabilized before testing. Power was applied and the maximum change in frequency was recorded within one minute.
- 4. With power OFF, the temperature was raised in 10°C steps up to 50°C. The EUT was stabilized at each step for at least half an hour. Power was applied and the maximum frequency change was recorded within one minute.

2.4.4 Test Procedures for Voltage Variation

- 1. The testing follows FCC KDB 971168 v02r02 Section 9.0.
- 2. The EUT was placed in a temperature chamber at 25±5° C and connected with the system simulator.
- 3. The power supply voltage to the EUT was varied from BEP to 115% of the nominal value measured at the input to the EUT.
- 4. The variation in frequency was measured for the worst case.

CCIC-SET/T (00) Page 39 of 90

2.4.5 Test Setup

2.4.6 Test Results of Frequency Stability

1. GSM 850MHz Band

Band:	GSM 850	Channel:	190
Limit(ppm):	2.5	Frequency:	836.6MHz

Power	Tomporeture	GSM		EDGE		
(VDC)	Temperature $(^{\circ}\mathbb{C})$	Freq. Dev.	Deviation	Freq. Dev.	Deviation	Result
(VDC)	(0)	(Hz)	(ppm)	(Hz)	(ppm)	
	-30	21	0.02	12	0.01	
	-20	10	0.01	21	0.02	
	-10	16	0.02	19	0.02	
	0	18	0.02	27	0.03	
3.8	+10	13	0.01	20	0.02	
	+20	26	0.03	18	0.02	PASS
	+30	18	0.02	20	0.02	
	+40	16	0.02	18	0.02	
	+50	23	0.02	19	0.02	
4.2	+25	11	0.01	26	0.03	
3.6	+25	26	0.03	21	0.02	

CCIC-SET/T (00) Page 40 of 90

2. GSM 1900MHz Band

Band:	GSM 1900	Channel:	661
Limit(ppm):	2.5	Frequency:	1880.0MHz

Power Temper	Tomanomotyma	GS	GSM		EDGE	
	Temperature	Freq. Dev.	Deviation	Freq. Dev.	Deviation	Result
(VDC) $(^{\circ}C)$	(0)	(Hz)	(ppm)	(Hz)	(ppm)	
	-30	37	0.02	20	0.01	
	-20	35	0.02	42	0.02	
	-10	20	0.01	45	0.02	
	0	38	0.02	43	0.02	
3.8	+10	21	0.01	41	0.02	
	+20	42	0.02	44	0.02	PASS
	+30	40	0.02	15	0.01	
	+40	39	0.02	42	0.02	
	+50	24	0.01	44	0.02	
4.2	+25	43	0.02	46	0.02	
3.6	+25	42	0.02	23	0.01	

3. WCDMA 850MHz Band

Band:	WCDMA Band V	Channel:	4183
Limit(ppm):	2.5	Frequency:	836.6MHz

Doyyon	Tomananatuma	RMC		
Power (VDC)	Temperature	Freq. Dev.	Deviation	Result
(VDC)	(℃)	(Hz)	(ppm)	
	-30	24	0.03	
	-20	18	0.02	
	-10	26	0.03	
	0	10	0.01	
3.8	+10	18	0.02	
	+20	16	0.02	PASS
	+30	15	0.02	
	+40	14	0.02	
	+50	17	0.02	
4.2	+25	23	0.03	
3.6	+25	9	0.01	

CCIC-SET/T (00) Page 41 of 90

4. WCDMA 1900MHz Band

Band:	WCDMA Band II	Channel:	9400
Limit(ppm):	2.5	Frequency:	1880.0MHz

Down	Tommomotymo	(
Power (VDC)	Temperature	Freq. Dev.	Deviation	Result
(VDC)	(℃)	(Hz)	(ppm)	
	-30	35	0.02	
	-20	13	0.01	
	-10	35	0.02	
	0	36	0.02	
3.8	+10	18	0.01	
	+20	34	0.02	PASS
	+30	37	0.02	
	+40	36	0.02	
Ì	+50	15	0.01	
4.2	+25	39	0.02	
3.6	+25	38	0.02	

CCIC-SET/T (00) Page 42 of 90

2.5 Conducted Out of Band Emissions

2.5.1 Requirement

The power of any emission outside of the authorized operating frequency ranges must be lower than the transmitter power (P) by a factor of at least $43 + 10 \log (P) dB$.

It is measured by means of a calibrated spectrum analyzer and scanned from 30 MHz up to a frequency including its 10th harmonic.

2.5.2 Measuring Instruments

The measuring equipment is listed in the section 3 of this test report.

2.5.3 Test Procedures

- 1. The testing follows FCC KDB 971168 v02r02 Section 6.0.
- 2. The EUT was connected to the spectrum analyzer and system simulator via a power divider.
- 3. The RF output of EUT was connected to the spectrum analyzer by an RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 4. The middle channel for the highest RF power within the transmitting frequency was measured.
- 5. The conducted spurious emission for the whole frequency range was taken.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
- 7. The limit line is derived from $43 + 10\log(P)$ dB below the transmitter power P(Watts)

```
= P(W) - [43 + 10log(P)] (dB)
```

 $= [30 + 10\log(P)] (dBm) - [43 + 10\log(P)] (dB)$

= -13dBm.

CCIC-SET/T (00) Page 43 of 90

CCIC-SET/T (00) Page 44 of 90

CCIC-SET/T (00) Page 45 of 90

CCIC-SET/T (00) Page 46 of 90

CCIC-SET/T (00) Page 47 of 90

CCIC-SET/T (00) Page 48 of 90

CCIC-SET/T (00) Page 49 of 90

CCIC-SET/T (00) Page 50 of 90

CCIC-SET/T (00) Page 51 of 90

CCIC-SET/T (00) Page 52 of 90

CCIC-SET/T (00) Page 53 of 90

CCIC-SET/T (00) Page 54 of 90

CCIC-SET/T (00) Page 55 of 90

CCIC-SET/T (00) Page 56 of 90

CCIC-SET/T (00) Page 57 of 90

CCIC-SET/T (00) Page 58 of 90

CCIC-SET/T (00) Page 59 of 90

CCIC-SET/T (00) Page 60 of 90

CCIC-SET/T (00) Page 61 of 90

CCIC-SET/T (00) Page 62 of 90

2.6 Band Edge

2.6.1 Requirement

The power of any emission outside of the authorized operating frequency ranges must be lower than the transmitter power (P) by a factor of at least $43 + 10 \log (P) dB$.

2.6.2 Measuring Instruments

The measuring equipment is listed in the section 3 of this test report.

2.6.3 Test Procedures

- 1. The testing follows FCC KDB 971168 v02r02 Section 6.0.
- 2. The EUT was connected to the spectrum analyzer and system simulator via a power divider.
- 3. The RF output of EUT was connected to the spectrum analyzer by an RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 4. The band edges of low and high channels for the highest RF powers were measured.
- 5. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
- 6. The limit line is derived from 43 + 10log(P) dB below the transmitter power P(Watts)
 - = P(W) [43 + 10log(P)] (dB)
 - $= [30 + 10\log(P)] (dBm) [43 + 10\log(P)] (dB)$
 - = -13dBm.

2.6.4 Test Setup

CCIC-SET/T (00) Page 63 of 90

2.6.5 Test Result of Conducted Band Edge

Band	Channel	Frequency (MHz)	Measured Max. Band Edge Emission (dBm)	Refer to Plot	Limit (dBm)	Verdict
GSM	128	824.2	-15.93	Plat A	-13	PASS
850MHz	251	848.8	-16.98	Plot B	-13	PASS
GSM	512	1850.2	-15.70	Plat C	-13	PASS
1900MHz	810	1909.8	-14.36	Plot D	-13	PASS
EDGE	128	824.2	-16.98	Plat E	12	PASS
850MHz	251	848.8	-17.13	Plot F	-13	PASS
EDGE	512	1850.2	-13.97	Plat G	-13	PASS
1900MHz	810	1909.8	-15.53	Plot H	-13	PASS
WCDMA	4132	826.4	-14.12	Plot I	-13	PASS
850MHz	4233	846.6	-14.37	Plot J	-13	PASS
WCDMA	9262	1852.4	-15.52	Plot K	-13	PASS
1900MHz	9538	1907.6	-13.93	Plot L	-13	PASS

CCIC-SET/T (00) Page 64 of 90

CCIC-SET/T (00) Page 65 of 90

CCIC-SET/T (00) Page 66 of 90

CCIC-SET/T (00) Page 67 of 90

CCIC-SET/T (00) Page 68 of 90

CCIC-SET/T (00) Page 69 of 90

CCIC-SET/T (00) Page 70 of 90

2.7 Transmitter Radiated Power (EIRP/ERP)

2.7.1 Requirement

The substitution method, in ANSI / TIA / EIA-603-D-2010, was used for ERP/EIRP measurement, and the spectrum analyzer configuration follows KDB 971168 D01 Power Meas. License Digital Systems v02r02. The ERP of mobile transmitters must not exceed 7 Watts (Cellular Band) and the EIRP of mobile transmitters are limited to 2 Watts (PCS Band) and 1 Watts (AWS Band).

2.7.2 Measuring Instruments

The measuring equipment is listed in the section 3 of this test report.

2.7.3 Test Procedures

- 1. The EUT was placed on a turntable with 1.5 meter height on a wooden turntable in a fully anechoic chamber.
- 2. The EUT was set at 3 meters from the receiving antenna, which was mounted on the antenna tower.
- 3. The radiated emission at the fundamental frequency was measured at 3 m with a test antenna and a spectrum analyzer which used a channel power option across EUT's signal bandwidth per section 4.0 of KDB 971168 D01v02r02.
- 4. The table was rotated 360 degrees and Both Horizontal & Vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.
- 5. The height of the receiving antenna is adjusted to look for the maximum value.
- 6. Taking the record of maximum value on spectrum analyzer.
- 7. Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.
- 8. A Broadband antenna (for below 1GHz) and horn antenna (for above 1GHz) was substituted in place of the EUT and was driven by a signal generator.
- 9. The conducted power at the terminal of the antenna is measured.
- 10. Repeat step 3 to step 9 to get the maximum ERP/EIRP of the substitution antenna.

CCIC-SET/T (00) Page 71 of 90

Report No.: SET2016-00716

11.
$$ERP/EIRP = Ps + Et - Es + Gs = Ps + Rt - Rs + Gs$$

Ps (dBm): Input power to substitution antenna.

Gs (dBi or dBd): Substitution antenna Gain.

$$Et = Rt + AF$$
 $Es = Rs + AF$

AF (dB/m): Receive antenna factor

Rt: The highest received signal in spectrum analyzer for EUT.

Rs: The highest received signal in spectrum analyzer for substitution antenna.

2.7.4 Test Setup

CCIC-SET/T (00) Page 72 of 90

2.7.5 Test Result of Transmitter Radiated Power

Test Notes:

- 1. This device employs GMSK technology with GSM and GPRS capabilities. All configurations were investigated and the worst case emissions were found in GSM mode.
- 2. This device employs UMTS technology with WCDMA (AMR/RMC), HSDPA, HSUPA capabilities. All configurations were investigated and the worst case UMTS emissions were found in RMC WCDMA mode at 12.2Kbps.
- 3. This unit was tested with its standard battery.
- 4. The worst case test configuration was found in the vertical positioning where the EUT is laying on its side. The data reported in the tables below were measured in this test setup.

Model No.	Band	Channel	Frequency (MHz)	PCL	Antenna Pol (H/V)	Measured ERP dBm	Limit dBm	Verdict
		120	, ,		V	29.71	-	DAGG
	128	824.20	5	Н	29.65		PASS	
C4000	C4000 GSM 850MHz	190	836.60	5	V	29.74	38.5	PASS
C4000				3	Н	29.74	36.3	rass
		251 848.80	848 80	5	V	29.81		PASS
			848.80	5	Н	29.76		PASS

Model	Band	Channel	Frequency	PCL	Antenna Pol	Measured EIRP	Limit	Verdict
No.	Danu	Chamie	(MHz)	PCL	(H/V)	dBm	dBm	verdict
		510	1850.2	0	V	26.33		PASS
	C4000 GSM 1900MHz	512	1630.2	0	Н	26.26		PASS
C4000		661	1880.0	0	V	26.35	33	PASS
C4000					Н	26.31	33	
		010 10	1909.8	0	V	26.26		PASS
		810	1909.8	0	Н	26.29		rass

CCIC-SET/T (00) Page 73 of 90

Model	Band	Channel	Frequency	PCL	Antenna Pol	Measured ERP	Limit	Verdict
No.	Danu	Chamie	(MHz)	TCL	(H/V)	dBm	dBm	vertict
		128	824.20	5	V	29.08		PASS
		120	624.20	3	Н	29.10	38.5	LASS
C4000	C4000 EDGE 850MHz	190	836.60	5	V	29.17		PASS
C4000				3	Н	29.12		
		251 848.	949 90	5	V	29.06		DA GG
			848.80	5	Н	29.12		PASS

Model No.	Band	Channel	Frequency (MHz)	PCL	Antenna Pol (H/V)	Measured EIRP dBm	Limit dBm	Verdict
		510	1850.2	0	V	25.82		PASS
	EDGE - 1900MH z -	512	1030.2	0	Н	25.88	33	PASS
C4000		00MH 661	1880.0	0	V	25.81		DAGG
C4000					Н	25.79		PASS
			1000.9	0	V	25.91		DACC
		810	1909.8	0	Н	25.93		PASS

Model No.	Band	Channel	Frequency (MHz)	Antenna Pol (H/V)	Measured ERP dBm	Limit dBm	Verdict
		4132	826.4	V	19.42		PASS
		4132	820.4	Н	19.48		PASS
C4000	WCDMA	4175	835	V	19.54	38.5	PASS
C4000	C4000 850MHz 4175 4233	41/3	633	Н	19.48	36.3	PASS
		846.6	V	19.42		PASS	
		4233	040.0	Н	19.46		IASS

Model	Band	Channel	Frequency	Antenna Pol	Measured EIRP	Limit	Verdict
No.			(MHz)	(H/V)	dBm	dBm	
		9262	1852.4	V	19.21		PASS
		9202	1832.4	Н	19.25		PASS
C4000	WCDMA	9400	1000	V	19.29	33	PASS
C4000	1900MHz	9400	1880	Н	19.21	33	rass
		9538	1907.6	V	19.25		DA GG
		9338	1907.0	Н	19.20		PASS

CCIC-SET/T (00) Page 74 of 90

Model No.	Band	Channel	Frequency (MHz)	PCL	Antenna Pol (H/V)	Measured ERP dBm	Limit dBm	Verdict
		120	924.20	E	V	29.68		DACC
	C4050 GSM 850MHz	128	824.20	5 H	Н	29.65		PASS
C4050		190	836.60	5	V	29.71	38.5	DAGG
C4030				3	Н	29.73		PASS
		251 848.80	040 00	5	V	29.79		PASS
			040.80	5	Н	29.72		rass

Model No.	Band	Channel	Frequency (MHz)	PCL	Antenna Pol (H/V)	Measured EIRP dBm	Limit dBm	Verdict
		512	1850.2	0	V	26.28		PASS
			1630.2	U	Н	26.30		
C4050	GSM	GSM 1900MHz 661	1880.0	0	V	26.31	33	DA GG
C4050	1900MHz			U	Н	26.23	33	PASS
		810 190	1000.9	0	V	26.25		DACC
			1909.8	0	Н	26.27		PASS

Model	Band	Channel	Frequency	PCL	Antenna Pol	Measured ERP	Limit	Verdict
No.	Dana	Chamici	(MHz)	1 OL	(H/V)	dBm	dBm	verturet
		128	824.20	5	V	29.10		PASS
		120	624.20	3	Н	29.09		rass
C4050	0 EDGE 850MHz	350MHz 190 83	836.60	5	V	29.06	38.5	PASS
C4030					Н	29.11		
			848.80	5	V	29.05		PASS
	251	040.00	5	Н	29.08		IASS	

Model No.	Band	Channel	Frequency (MHz)	PCL	Antenna Pol (H/V)	Measured EIRP dBm	Limit dBm	Verdict
		510	1850.2	0	V	25.78		PASS
	EDGE - 1900MH z -	512	1030.2	U	Н	25.71		rass
C4050		900MH 661 z	1880.0	0	V	25.85	33	DACC
C4050					Н	25.82	33	PASS
			1000.9	0	V	25.83		DACC
		810	1909.8	0	Н	25.87		PASS

CCIC-SET/T (00) Page 75 of 90

Model No.	Band	Channel	Frequency (MHz)	Antenna Pol (H/V)	Measured ERP dBm	Limit dBm	Verdict
		4132	826.4	V	19.38		PASS
		4132	820.4	Н	19.41		FASS
C4050	WCDMA	4175	835	V	19.41	38.5	PASS
C4030	850MHz	41/3	833	Н	19.40	36.3	PASS
	33377712	4233	916.6	V	19.39		PASS
		4233	846.6	Н	19.33		rass

Model No.	Band	Channel	Frequency (MHz)	Antenna Pol (H/V)	Measured EIRP dBm	Limit dBm	Verdict
		9262	1852.4	V	19.15		PASS
		9202	1632.4	Н	19.21		PASS
C4050	WCDMA	0400	1000	V	19.20	22	DACC
C4050	1900MHz	9400	1880	Н	19.18	33	PASS
		0529	1007.6	V	19.24		DACC
		9538	1907.6	Н	19.22		PASS

CCIC-SET/T (00) Page 76 of 90

2.8 Radiated Spurious Emissions

2.8.1 Requirement

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitter power (P) by a factor of at least $43 + 10 \log (P) dB$. The spectrum is scanned from 30 MHz up to a frequency including its 10th harmonic.

2.8.2 Measuring Instruments

The measuring equipment is listed in the section 3 of this test report.

2.8.3 Test Procedures

- 1. The EUT was placed on a rotatable wooden table with 1.5 meter above ground.
- 2. The EUT was set 3 meters from the receiving antenna, which was mounted on the antenna tower.
- 3. The table was rotated 360 degrees and 3-orthogonal axis to determine the position of the highest spurious emission.
- 4. The height of the receiving antenna is varied between one meter and four meters to search the maximum spurious emission for both horizontal and vertical polarizations.
- 5. Make the measurement with the spectrum analyzer's RBW = 1MHz, VBW = 3MHz, taking the record the maximum spurious emission.
- 6. Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.
- 7. A Broadband antenna (for below 1GHz) and horn antenna (for above 1GHz) was substituted in place of the EUT and was driven by a signal generator.
- 8. Tune the output power of signal generator to the same emission level with EUT maximum spurious emission.
- 9. Taking the record of output power at antenna port.
- 10. Repeat step 3 to step 9 for another polarization.
- 11. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

The limit line is derived from $43 + 10\log(P)$ dB below the transmitter power P(Watts)

CCIC-SET/T (00) Page 77 of 90


```
= P(W)- [43 + 10log(P)] (dB)
= [30 + 10log(P)] (dBm) - [43 + 10log(P)] (dB)
= -13dBm.
<For Band 7>
The limit line is derived from 55+ 10log(P)dB below the transmitter power P(Watts)
= P(W)- [55 + 10log(P)] (dB)
= [30 + 10log(P)] (dBm) - [55 + 10log(P)] (dB)
= -25dBm.
```

- 12. The spectrum is measured from 9 KHz to the 10th harmonic of the fundamental frequency of the transmitter using CISPR quasi peak detector below 1GHz. The worst case emissions are reported however emissions whose levels were not within 20dB of the respective limits were not reported.
- 13. For 9KHz to 30MHz: the amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.
- 14. The maximum RB configurations of the Radiated Spurious Emissions as RB Size 1, RB Offset 0
 - 15. All Spurious Emission tests were performed in X, Y, Z axis direction and low, middle, high channel. And only the worst axis test condition was recorded in this test report.

CCIC-SET/T (00) Page 78 of 90

2.8.4 Test Setup

For radiated emissions from 30MHz to 1GHz

For radiated emissions above 1GHz

CCIC-SET/T (00) Page 79 of 90

2.8.5 Test Results of Radiated Spurious Emissions

1. Test Verdict:

Model	Band	Channel	Frequency	Measured Max. Spurious Emission (dBm)		Limit	Verdict
No.	Dand	Sand Channel	(MHz)	Test Antenna Horizontal	Test Antenna Vertical	(dBm)	verdict
	GSM	128	824.2	< -25	< -25		PASS
	850MHz	190	836.6	< -25	< -25	-13	PASS
	OJUMITIZ	251	848.8	< -25	< -25		PASS
	CCM	512	1850.2	< -25	< -25		PASS
	GSM 1900MHz	661	1880.0	< -25	< -25	-13	PASS
		810	1909.8	< -25	< -25		PASS
	EDGE 850MHz	128	824.2	< -25	< -25		PASS
		190	836.6	< -25	< -25	-13	PASS
C4000		251	848.8	< -25	< -25		PASS
C4000	EDGE 1900MHz	512	1850.2	< -25	< -25	-13	PASS
		661	1880.0	< -25	< -25		PASS
		810	1909.8	< -25	< -25		PASS
	WCDMA	4132	826.4	< -25	< -25		PASS
	WCDMA 850MHz	4183	836.6	< -25	< -25	-13	PASS
	63UMHZ	4233	846.6	< -25	< -25		PASS
	WCDMA	9262	1852.4	< -25	< -25		PASS
	WCDMA	9400	1880	< -25	< -25	-13	PASS
	1900MHz	9538	1907.6	< -25	< -25		PASS

CCIC-SET/T (00) Page 80 of 90

Model No.	Band	Channel	Frequency (MHz)		Spurious Emission Bm) Test Antenna	Limit (dBm)	Verdict
				Horizontal	Vertical		
	GSM	128	824.2	< -25	< -25		PASS
	850MHz	190	836.6	< -25	< -25	-13	PASS
	830MITZ	251	848.8	< -25	< -25		PASS
	GSM	512	1850.2	< -25	< -25		PASS
	1900MHz	661	1880.0	< -25	< -25	-13	PASS
		810	1909.8	< -25	< -25		PASS
	EDGE 850MHz	128	824.2	< -25	< -25	-13	PASS
		190	836.6	< -25	< -25		PASS
C4050		251	848.8	< -25	< -25		PASS
C4030	EDGE 1900MHz	512	1850.2	< -25	< -25	-13	PASS
		661	1880.0	< -25	< -25		PASS
	1 9001VII IZ	810	1909.8	< -25	< -25		PASS
	WCDMA	4132	826.4	< -25	< -25		PASS
	850MHz	4183	836.6	< -25	< -25	-13	PASS
	OJUMINZ	4233	846.6	< -25	< -25		PASS
	WCDMA	9262	1852.4	< -25	< -25		PASS
	1900MHz	9400	1880	< -25	< -25	-13	PASS
	1 7001 VII11Z	9538	1907.6	< -25	< -25		PASS

Note:

- 1. This device employs GMSK technology with GSM and GPRS capabilities. All configurations were investigated and the worst case emissions were found in GSM mode, the worst case were recorded in the report.
- 2. This device employs UMTS technology with WCDMA (AMR/RMC), HSDPA, HSUPA capabilities. All configurations were investigated and the worst case UMTS emissions were found in RMC WCDMA mode at 12.2Kbps, the worst case were recorded in the report.
- 3. For 9KHz to 30MHz: the amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

CCIC-SET/T (00) Page 81 of 90

2.8.6 Test Results (Plots) of Radiated Spurious Emissions for Model No.C4000

Band	Band GSM 850		251	
Test Mode	GSM Link	Frequency	848.8MHz	

GSM 850MHz, Test Antenna Horizontal

GSM 850MHz, Test Antenna Vertical

CCIC-SET/T (00) Page 82 of 90

Band	GSM 1900	Channel	810
Test Mode	GSM Link	Frequency	1909.8MHz

GSM 1900MHz, Test Antenna Horizontal

GSM 1900MHz, Test Antenna Vertical

CCIC-SET/T (00) Page 83 of 90

D 1	WODMARK	G1 1	4122
Band	WCDMA850	Channel	4132
Test Mode	RMC 12.2Kbps Link	Frequency	826.4MHz

WCDMA 850MHz, Test Antenna Horizontal

WCDMA 850MHz, Test Antenna Vertical

CCIC-SET/T (00) Page 84 of 90

Band	WCDMA1900	Channel	9538
Test Mode	RMC 12.2Kbps Link	Frequency	1907.6MHz

WCDMA 1900MHz, Test Antenna Horizontal

WCDMA 1900MHz, Test Antenna Vertical

CCIC-SET/T (00) Page 85 of 90

2.8.7 Test Results (Plots) of Radiated Spurious Emissions for Model No.C4050

Band	GSM 850	Channel	251
Test Mode	GSM Link	Frequency	848.8MHz

GSM 850MHz, Test Antenna Horizontal

GSM 850MHz, Test Antenna Vertical

CCIC-SET/T (00) Page 86 of 90

Band	GSM 1900	Channel	810
Test Mode	GSM Link	Frequency	1909.8MHz

GSM 1900MHz, Test Antenna Horizontal

GSM 1900MHz, Test Antenna Vertical

CCIC-SET/T (00) Page 87 of 90

Band	WCDMA850	Channel	4132
Test Mode	RMC 12.2Kbps Link	Frequency	826.4MHz

WCDMA 850MHz, Test Antenna Horizontal

WCDMA 850MHz, Test Antenna Vertical

CCIC-SET/T (00) Page 88 of 90

Band	WCDMA1900	Channel	9538
Test Mode	RMC 12.2Kbps Link	Frequency	1907.6MHz

WCDMA 1900MHz, Test Antenna Horizontal

WCDMA 1900MHz, Test Antenna Vertical

CCIC-SET/T (00) Page 89 of 90

Report No.: SET2016-00716

3. LIST OF MEASURING EQUIPMENT

Description	Manufacturer	Model	Serial No.	Test Date	Due Date	Remark
EMI Test Receiver	R&S	ESIB26	A0304218	2015.06.02	2016.06.01	Radiation
Full-Anechoic Chamber	Albatross	12.8m*6.8m*6.4 m	A0412372	2015.06.02	2016.06.01	Radiation
Loop Antenna	Schwarz beck	HFH2-Z2	100047	2015.06.02	2016.06.01	Radiation
Bilog Antenna	Schwarzbeck	VULB 9163	9163-274	2015.06.02	2016.06.01	Radiation
Broadband antenna (30MHz~1GHz)	R&S	HL562	101341	2015.06.02	2016.06.01	Radiation
Broadband antenna (30MHz~1GHz)	R&S	HL562	101339	2015.06.02	2016.06.01	Radiation
Double ridge horn antenna (1GHz~18GHz)	R&S	HF906	100150	2015.06.02	2016.06.01	Radiation
Double ridge horn antenna (1GHz~18GHz)	R&S	HF906	100148	2015.06.02	2016.06.01	Radiation
Horn antenna (18GHz~26.5GHz)	R&S	HM118	101286	2015.06.02	2016.06.01	Radiation
Horn antenna (18GHz~26.5GHz)	R&S	HM118	101284	2015.06.02	2016.06.01	Radiation
Amplifier 20M~3GHz	R&S	PAP-0203H	22018	2015.06.02	2016.06.01	Radiation
Ampilier 1G~18GHz	R&S	MITEQ AFS42-00101800	25-S-42	2015.06.02	2016.06.01	Radiation
Ampilier 18G~40GHz	R&S	JS42-18002600-2 8-5A	12111.0980.00	2015.06.02	2016.06.01	Radiation
Spectrum Analyzer	R&S	FSP40	1164.4391.40	2015.07.07	2016.07.06	Conducted
Power Meter	R&S	NRP2	1020.1809.02	2015.06.02	2016.06.01	Conducted
Power Sensor	R&S	NRP-Z81	823.3618.03	2015.06.02	2016.06.01	Conducted
LISN	ROHDE&SCH WARZ	ESH2-Z5	A0304221	2015.06.02	2016.06.01	Conducted
Test Receiver	R&S	ESCS30	A0304260	2015.06.02	2016.06.01	Conducted
Cable	SUNHNER	SUCOFLEX 100	/	2015.06.02	2016.06.01	Radiation
Cable	SUNHNER	SUCOFLEX 104	/	2015.06.02	2016.06.01	Radiation

** END OF REPORT **

CCIC-SET/T (00) Page 90 of 90