SEMINARUL 1

Algebră vectorială

Problema 1.1. Se dă un tetraedru ABCD. Găsiți sumele vectorilor (vezi figura 1.1):

1)
$$\overrightarrow{AB} + \overrightarrow{BD} + \overrightarrow{DC}$$
;

2)
$$\overrightarrow{AD} + \overrightarrow{CB} + \overrightarrow{DC}$$
;

3)
$$\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{DA} + \overrightarrow{CD}$$
.

Figura 1.1

Soluție. 1) $\overrightarrow{AB} + \overrightarrow{BD} + \overrightarrow{DC} = \overrightarrow{AD} + \overrightarrow{DC} = \overrightarrow{AC}$;

2)
$$\overrightarrow{AD} + \overrightarrow{CB} + \overrightarrow{DC} = \overrightarrow{AD} + \overrightarrow{DC} + \overrightarrow{CB} = \overrightarrow{AC} + \overrightarrow{CB} = \overrightarrow{AB}$$
;

3)
$$\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{DA} + \overrightarrow{CD} = \overrightarrow{AC} + \overrightarrow{CD} + \overrightarrow{DA} = \overrightarrow{AD} + \overrightarrow{DA} = 0.$$

Problema 1.2. Se dă o piramidă cu vârful în S şi baza un paralelogram ABCD ale cărui diagonale se intersectează în punctul O. Să se demonstreze egalitatea vectorială:

$$\overrightarrow{SA} + \overrightarrow{SB} + \overrightarrow{SC} + \overrightarrow{SD} = 4\overrightarrow{SO}.$$

Problema 1.3. Fie \overrightarrow{ABCD} un tetraedru (vezi figura 1.1). Demonstrați că $\overrightarrow{AD} + \overrightarrow{BC} = \overrightarrow{BD} + \overrightarrow{AC}$. Este adevărată această afirmație pentru orice patru puncte din spațiu?

Soluție. Avem:

$$\overrightarrow{AD} + \overrightarrow{BC} = \overrightarrow{AD} + \overrightarrow{BD} + \overrightarrow{DC} = \underbrace{\overrightarrow{AD} + \overrightarrow{DC}}_{=\overrightarrow{AC}} + \overrightarrow{BD} = \overrightarrow{AC} + \overrightarrow{BD}.$$

Problema 1.4. Punctul O este centrul unui hexagon regulat ABCDEF (vezi figura 1.2). Determinați descompunerile vectorilor \overrightarrow{OA} , \overrightarrow{OB} , \overrightarrow{OC} , \overrightarrow{OD} , în funcție de vectorii $\mathbf{p} = \overrightarrow{OE}$ și $\mathbf{q} = \overrightarrow{OF}$.

Figura 1.2

 $\overrightarrow{OB} = -\mathbf{p} \ \text{$\vec{\mathbf{y}}$ $\overrightarrow{OC} = -\mathbf{q}$. Mai departe, $\overrightarrow{OA} + \overrightarrow{AF} = \overrightarrow{OF} = \mathbf{q}$, iar $\overrightarrow{AF} = \mathbf{p}$, de unde $\overrightarrow{OA} = -\mathbf{p} + \mathbf{q}$. $\hat{\mathbf{n}}$ sfârşit, $\overrightarrow{OD} = -\overrightarrow{OA} = \mathbf{p} - \mathbf{q}$.}$

Problema 1.5. Demonstrați că dacă M, N, P, Q sunt mijloacele laturilor unui patrulater ABCD, atunci $\overrightarrow{MN} + \overrightarrow{PQ} = 0$.

Figura 1.3

Soluție. Avem:

$$\overrightarrow{MN} = \overrightarrow{BN} - \overrightarrow{BM} = \frac{1}{2}(\overrightarrow{BC} - \overrightarrow{BA}) = \frac{1}{2}\overrightarrow{AC}.$$

Analog,

$$\overrightarrow{PQ} = \overrightarrow{DQ} - \overrightarrow{DP} = \frac{1}{2}(\overrightarrow{DA} - \overrightarrow{DC}) = \frac{1}{2}\overrightarrow{CA},$$

prin urmare,

$$\overrightarrow{MN} + \overrightarrow{PQ} = \frac{1}{2}\overrightarrow{AC} + \frac{1}{2}\overrightarrow{CA} = 0.$$

Problema 1.6. Punctele E și F sunt mijloacele diagonalelor unui patrulater ABCD. Demonstrați că

$$\overrightarrow{EF} = \frac{1}{2}(\overrightarrow{AB} + \overrightarrow{CD}) = \frac{1}{2}(\overrightarrow{AD} + \overrightarrow{CB}).$$

Figura 1.4

Soluție. Presupunem, pentru fixarea ideilor, că E este mijlocul diagonalei AC, în timp ce F este mijlocul diagonalei BD. Avem, în mod evident, $\overrightarrow{EF} = \overrightarrow{AF} - \overrightarrow{AE}$. Mai departe, $\overrightarrow{AE} = \frac{1}{2}\overrightarrow{AC}$, în timp ce $\overrightarrow{AF} = \overrightarrow{AB} + \overrightarrow{BF} = \overrightarrow{AB} + \frac{1}{2}\overrightarrow{BD}$. Avem, așadar, într-o primă fază, următoarea reprezentare a vectorului \overrightarrow{EF} :

$$\overrightarrow{EF} = \overrightarrow{AB} + \frac{1}{2}(\overrightarrow{BD} - \overrightarrow{AC}).$$

Diagonalele admit câte două reprezentări în funcție de laturi:

$$\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC}$$

$$\overrightarrow{AC} = \overrightarrow{AD} + \overrightarrow{DC}$$

respectiv

$$\overrightarrow{BD} = \overrightarrow{BA} + \overrightarrow{AD}$$

$$\overrightarrow{BD} = \overrightarrow{BC} + \overrightarrow{CD}$$

Dacă utilizăm prima reprezentare pentru ambele diagonale, obținem:

$$\overrightarrow{EF} = \overrightarrow{AB} + \frac{1}{2}(\overrightarrow{BA} + \overrightarrow{AD} - \overrightarrow{AB} - \overrightarrow{BC}) = \overrightarrow{AB} + \frac{1}{2}(-2\overrightarrow{AB} + \overrightarrow{AD} + \overrightarrow{CB}) = \frac{1}{2}(\overrightarrow{AD} + \overrightarrow{CB}),$$

în timp ce dacă utilizăm cea de-a doua reprezentare, obținem:

$$\overrightarrow{EF} = \overrightarrow{AB} + \frac{1}{2}(\overrightarrow{BC} + \overrightarrow{CD} - \overrightarrow{AD} - \overrightarrow{DC}) = \overrightarrow{AB} + \frac{1}{2}(\overrightarrow{CD} + \overrightarrow{BC} + \overrightarrow{CD} + \overrightarrow{DA}) =$$

$$= \overrightarrow{AB} + \frac{1}{2}(\overrightarrow{CD} + \overrightarrow{BD} + \overrightarrow{DA}) = \overrightarrow{AB} + \frac{1}{2}(\overrightarrow{CD} + \overrightarrow{BA}) = \frac{1}{2}(\overrightarrow{AB} + \overrightarrow{CD}).$$

Problema 1.7. Fie E și F mijloacele laturilor AB și CD ale unui patrulater ABCD. Demonstrați că

$$\overrightarrow{EF} = \frac{1}{2}(\overrightarrow{BC} + \overrightarrow{AD})$$

și utilizați această proprietate pentru a demonstra teorema liniei mijlocii într-un trapez.

Figura 1.5

Soluție. Avem:

$$\overrightarrow{EF} = \overrightarrow{ED} + \overrightarrow{DF} = \overrightarrow{ED} + \frac{1}{2}\overrightarrow{DC} = \overrightarrow{EA} + \overrightarrow{AD} + \frac{1}{2}\overrightarrow{DC} = \overrightarrow{AD} + \frac{1}{2}(\overrightarrow{BA} + \overrightarrow{DC}).$$

Pe de altă parte, în mod evident,

$$\overrightarrow{BA} + \overrightarrow{AD} + \overrightarrow{DC} + \overrightarrow{CB} = 0,$$

de unde

$$\overrightarrow{BA} + \overrightarrow{DC} = \overrightarrow{BC} - \overrightarrow{AD},$$

expresie care, înlocuită în relația găsită mai devreme pentru \overrightarrow{EF} , ne dă rezultatul dorit.

Problema 1.8. Se dă un hexagon regulat $C_1C_2C_3C_4C_5C_6$. Demonstrați că

$$\overrightarrow{C_1C_2} + \overrightarrow{C_1C_3} + \overrightarrow{C_1C_4} + \overrightarrow{C_1C_5} + \overrightarrow{C_1C_6} = 3\overrightarrow{C_1C_4}.$$

Soluție. Trebuie să demonstrăm, în fond, că

$$\overrightarrow{C_1C_2} + \overrightarrow{C_1C_3} + \overrightarrow{C_1C_5} + \overrightarrow{C_1C_6} = 2\overrightarrow{C_1C_4}.$$

Figura 1.6

Se constată cu uşurintă că $\overrightarrow{C_1C_2} + \overrightarrow{C_1C_6} = \frac{1}{2}\overrightarrow{C_1C_4}$. Fie acum P mijlocul segmentului C_1C_3 şi Q mijlocul segmentului C_1C_5 . Avem, în mod clar:

$$\overrightarrow{C_1P} + \overrightarrow{C_1Q} = \frac{1}{2} \left(\overrightarrow{C_1C_3} + \overrightarrow{C_1C_5} \right),$$

dar se vede imediat că

$$\overrightarrow{C_1P} + \overrightarrow{C_1Q} = \frac{3}{4}\overrightarrow{C_1C_4},$$

prin urmare

$$\overrightarrow{C_1C_3} + \overrightarrow{C_1C_5} = \frac{3}{2}\overrightarrow{C_1C_4},$$

de unde

$$\overrightarrow{C_1C_2} + \overrightarrow{C_1C_3} + \overrightarrow{C_1C_5} + \overrightarrow{C_1C_6} = \frac{1}{2}\overrightarrow{C_1C_4} + \frac{3}{2}\overrightarrow{C_1C_4} = 2\overrightarrow{C_1C_4}.$$

Problema 1.9. În triunghiul ABC se duce bisectoarea AD a unghiului A. Determinați descompunerea vectorului \overrightarrow{AD} în funcție de vectorii $\mathbf{c} = \overrightarrow{AB}$ și $\mathbf{b} = \overrightarrow{AC}$.

Figura 1.7

Soluție. Fie $\mathbf{a} = \overrightarrow{BC}$. Vom nota cu a,b,c lungimile celor trei vectori care corespund laturilor triunghiului. Avem, înainte de toate,

$$\overrightarrow{AD} = \overrightarrow{AB} + \overrightarrow{BD} = \mathbf{c} + \overrightarrow{BD}.$$

Pentru a determina \overrightarrow{BD} , determinăm mai întâi lungimea sa. Din teorema bisectoarei, se obține imediat că

$$BD = \frac{ac}{b+c},$$

de aceea,

$$\overrightarrow{BD} = \frac{BD}{a}\mathbf{a} = \frac{c}{b+c}\mathbf{a} = \frac{c}{b+c}(\mathbf{b} - \mathbf{c}).$$

Înlocuind în expresia pentru \overrightarrow{AD} , se obține

$$\overrightarrow{AD} = \frac{c}{b+c}\mathbf{b} + \frac{b}{b+c}\mathbf{c}.$$

Problema 1.10. Coardele AB și CD ale unui cerc de centru O se intersectează ortogonal în punctul P. Să se demonstreze relația

$$\overrightarrow{PA} + \overrightarrow{PB} + \overrightarrow{PC} + \overrightarrow{PD} = 2\overrightarrow{PO}.$$

Figura 1.8

Soluție. Unim punctul O cu punctele A, B, C și D. În triunghiurile APO, BPO, CPO și \overrightarrow{DPO} vectorii $\overrightarrow{PA}, \overrightarrow{PB}, \overrightarrow{PC}$ și \overrightarrow{PD} se pot scrie ca

$$\begin{cases}
\overrightarrow{PA} &= \overrightarrow{PO} + \overrightarrow{OA}, \\
\overrightarrow{PB} &= \overrightarrow{PO} + \overrightarrow{OB}, \\
\overrightarrow{PC} &= \overrightarrow{PO} + \overrightarrow{OC}, \\
\overrightarrow{PD} &= \overrightarrow{PO} + \overrightarrow{OD}
\end{cases} (1.0.1)$$

Adunând membru cu membru aceste egalități vectoriale, obținem

$$\overrightarrow{PA} + \overrightarrow{PB} + \overrightarrow{PC} + \overrightarrow{PD} = 4\overrightarrow{PO} + \left(\overrightarrow{OA} + \overrightarrow{OB}\right) + \left(\overrightarrow{OC} + \overrightarrow{OD}\right). \tag{1.0.2}$$

Fie M şi N mijloacele coardelor \overrightarrow{AB} şi CD. În triunghiurile AOB şi COD segmentele OM şi ON sunt mediane, deci vectorii \overrightarrow{OM} şi \overrightarrow{ON} se pot scrie

$$\begin{cases}
\overrightarrow{OM} = \frac{1}{2} \left(\overrightarrow{OA} + \overrightarrow{OB} \right), \\
\overrightarrow{ON} = \frac{1}{2} \left(\overrightarrow{OC} + \overrightarrow{OD} \right)
\end{cases}
\iff
\begin{cases}
2\overrightarrow{OM} = \overrightarrow{OA} + \overrightarrow{OB} \\
2\overrightarrow{ON} = \overrightarrow{OC} + \overrightarrow{OD}
\end{cases}$$
(1.0.3)

Înlocuind (1.0.3) în (1.0.2), obţinem

$$\overrightarrow{PA} + \overrightarrow{PB} + \overrightarrow{PC} + \overrightarrow{PD} = 4\overrightarrow{PO} + 2\left(\overrightarrow{OM} + \overrightarrow{ON}\right). \tag{1.0.4}$$

În dreptunghiul \overrightarrow{ONPM} , vectorul \overrightarrow{OP} este egal cu suma vectorilor \overrightarrow{OM} și \overrightarrow{ON} , prin urmare, relația (1.0.4) devine

 $\overrightarrow{PA} + \overrightarrow{PB} + \overrightarrow{PC} + \overrightarrow{PD} = 4\overrightarrow{PO} + 2\overrightarrow{OP} = 4\overrightarrow{PO} - 2\overrightarrow{PO} = 2\overrightarrow{PO}.$

Problema 1.11. Se dă un trapez ABCD în care baza AB este de k ori (k > 1) mai mare decât baza mică CD. Fie M şi N mijloacele bazelor. Găsiți descompunerile vectorilor \overrightarrow{AC} , \overrightarrow{MN} şi \overrightarrow{BC} în funcție de vectorii $\overrightarrow{AB} = \mathbf{a}$ si $\overrightarrow{AD} = \mathbf{b}$.

Figura 1.9

Soluție.

$$\overrightarrow{AC} = \overrightarrow{AD} + \overrightarrow{DC} = \mathbf{b} + \frac{1}{k}\mathbf{a},$$

$$\overrightarrow{MN} = \overrightarrow{MA} + \overrightarrow{AN} = \overrightarrow{MA} + \overrightarrow{AD} + \overrightarrow{DN} = -\frac{1}{2}\mathbf{a} + \mathbf{b} + \frac{1}{2k}\mathbf{a} = \frac{1-k}{2k}\mathbf{a} + \mathbf{b},$$

$$\overrightarrow{BC} = \overrightarrow{BA} + \overrightarrow{AC} = -\overrightarrow{AB} + \overrightarrow{AD} + \overrightarrow{DC} = -\mathbf{a} + \mathbf{b} + \frac{1}{k}\mathbf{a} = \frac{1-k}{k}\mathbf{a} + \mathbf{b}.$$

Problema 1.12. Fie A', B', C' mijloacele laturilor unui triunghi oarecare ABC și un punct oarecare O în planul triunghiului. Să se demonstreze relația

$$\overrightarrow{OA'} + \overrightarrow{OB'} + \overrightarrow{OC'} = \overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC}.$$

Soluție. Avem:

$$\begin{split} \overrightarrow{OA'} &= \frac{1}{2} \left(\overrightarrow{OB} + \overrightarrow{OC} \right), \\ \overrightarrow{OB'} &= \frac{1}{2} \left(\overrightarrow{OA} + \overrightarrow{OC} \right), \\ \overrightarrow{OC'} &= \frac{1}{2} \left(\overrightarrow{OA} + \overrightarrow{OB} \right). \end{split}$$

Însumând relațiile de mai sus, obținem formula din enunț.

Problema 1.13. În figura 1.11, punctele M, N, P sunt, respectiv, mijloacele laturilor AB, BC, CA ale triunghiului ABC. Să se determine vectorii $\overrightarrow{BP}, \overrightarrow{AN}, \overrightarrow{CM}$ în funcție de vectorii \overrightarrow{AB} și \overrightarrow{AC} .

Figura 1.10

Figura 1.11

Soluție. Avem

$$\overrightarrow{BP} = \overrightarrow{BA} + \overrightarrow{AP} = -\overrightarrow{AB} + \frac{1}{2}\overrightarrow{AC}.$$

Mai departe,

$$\overrightarrow{AN} = \overrightarrow{AB} + \overrightarrow{BN} = \overrightarrow{AB} + \frac{1}{2}\overrightarrow{BC} = \overrightarrow{AB} + \frac{1}{2}\left(\overrightarrow{AC} - \overrightarrow{AB}\right) = \frac{1}{2}\left(\overrightarrow{AB} + \overrightarrow{AC}\right).$$

În sfârșit,

$$\overrightarrow{CM} = \frac{1}{2} \left(\overrightarrow{CA} + \overrightarrow{CB} \right) = \frac{1}{2} \left(-\overrightarrow{AC} + \overrightarrow{AB} - \overrightarrow{AC} \right) = \frac{1}{2} \overrightarrow{AB} - \overrightarrow{AC}.$$

Problema 1.14. În figura 1.12 este reprezentat paralelipipedul ABCDEFGH. Fie $\mathbf{u} = \overrightarrow{AB}$, $\mathbf{v} = \overrightarrow{AD}$ şi $\mathbf{w} = \overrightarrow{AE}$. Să se exprime vectorii \overrightarrow{AG} , \overrightarrow{EC} , \overrightarrow{HB} şi \overrightarrow{DF} în funcție de vectorii \mathbf{u} , \mathbf{v} și \mathbf{w} .

Soluție. Avem

$$\overrightarrow{AG} = \overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CG} = \mathbf{u} + \mathbf{v} + \mathbf{w}.$$

(Altfel spus, "diagonala unui paralelogram este egală cu suma laturilor").

Mai departe,

$$\overrightarrow{EC} = \overrightarrow{EA} + \overrightarrow{AB} + \overrightarrow{BC} = -\mathbf{w} + \mathbf{u} + \mathbf{w} = \mathbf{u} + \mathbf{v} - \mathbf{w},$$

$$\overrightarrow{HB} = \overrightarrow{HD} + \overrightarrow{DC} + \overrightarrow{CB} = -\mathbf{w} + \mathbf{u} - \mathbf{v} = \mathbf{u} - \mathbf{v} - \mathbf{w},$$

$$\overrightarrow{DF} = \overrightarrow{DA} + \overrightarrow{AB} + \overrightarrow{BF} = -\mathbf{v} + \mathbf{u} + \mathbf{w} = \mathbf{u} - \mathbf{v} + \mathbf{w}.$$

Figura 1.12

Problema 1.15. Să se demonstreze că medianele unui triunghi sunt concurente şi că suma vectorilor care au originile în punctul de intersecție al medianelor şi extremitățile în vârfurile triunghiului este vectorul nul

Problema 1.16. Se cunosc coordonatele vârfurilor A, B, C ale paralelogramului ABCD, față de un reper oarecare. Să se determine coordonatele celui de-al patrulea vârf (D), în fiecare dintre situațiile următoare:

- 1) A(2,3), B(1,4), C(0,-2);
- 2) A(-2,-1), B(3,0), C(1,-2).

Problema 1.17. Se cunosc coordonatele vârfurilor A și B și coordonatele centrului de greutate G al triunghiului ABC. Determinați coordonatele vârfului C al triunghiului în fiecare dintre următoarele situații:

- 1) A(4,1), B(3,-2), G(0,2);
- 2) A(3,5), B(-1,-3), C(1,1).

Problema 1.18. Se dă trapezul ABCD, în care $\overrightarrow{DC} = k\overrightarrow{AB}$. Punctele M şi N sunt mijloacele bazelor AB şi DC, iar P este punctul de intersecție a diagonalelor, AC și BD, ale trapezului.

- 1) Luând vectorii \overrightarrow{AB} și \overrightarrow{AD} ca bază, determinați componentele vectorilor \overrightarrow{CB} , \overrightarrow{MN} , \overrightarrow{AP} , \overrightarrow{PB} .
- 2) Luând vectorii \overrightarrow{PA} și \overrightarrow{PB} ca bază, determinați componentele vectorilor $\overrightarrow{AB}, \overrightarrow{BC}, \overrightarrow{CD}, \overrightarrow{DA}$.

Problema 1.19. Se dau, în plan, trei vectori, prin componentele lor relativ la o bază oarecare: $\mathbf{a}(4, -2)$, $\mathbf{b}(3, 5)$, $\mathbf{c}(-2, -12)$. Exprimați vectorul \mathbf{c} ca o combinație liniară a vectorilor \mathbf{a} și \mathbf{b} .

Problema 1.20. Se dau vectorii necoliniari \mathbf{a} şi \mathbf{b} . Demonstrați că sistemul de vectorii $\mathbf{m} = 3\mathbf{a} - \mathbf{b}$, $\mathbf{n} = 2\mathbf{a} + \mathbf{b}$, $\mathbf{p} = \mathbf{a} + 3\mathbf{b}$ este liniar dependent, iar vectorii \mathbf{n} , \mathbf{p} sunt necoliniari. Exprimați vectorul \mathbf{m} în funcție de vectorii \mathbf{n} , \mathbf{p} .

Problema 1.21. Punctul M este centrul de greutate al triunghiului ABC. Exprimați:

- 1) vectorul \overrightarrow{MA} în funcție de vectorii \overrightarrow{BC} , \overrightarrow{CA} ;
- 2) vectorul \overrightarrow{AB} în funcție de vectorii \overrightarrow{MB} , \overrightarrow{MC} ;
- 3) vectorul \overrightarrow{OA} în funcție de vectorii \overrightarrow{OB} , \overrightarrow{OC} , \overrightarrow{OM} , unde O este un punct oarecare din spațiu.