

Singular stochastic integral operators

and their applications to SPDEs

Emiel Lorist

Joint work with M.C. Veraar

October 28, 2021

University of Helsinki
Department of Mathematics and Statistics

Polycrystalline materials

Polycrystalline materials

The Allen-Cahn equation is a prototype for the growth of grains:

t = 1

t = 2

t = 50

The Allen-Cahn equation

Given an initial state $u_0: \mathbb{T}^2 \to \mathbb{R}$, look for a $u: \mathbb{R}_+ \times \mathbb{T}^2 \to \mathbb{R}$ satisfying

$$\begin{cases} \frac{\mathrm{d} u}{\mathrm{d} t} - \Delta u = -\Psi'(u) & \text{in } \mathbb{R}_+ \times \mathbb{T}^2, \\ u(0,\cdot) = u_0, \end{cases}$$

Ψ is a double well potential:

The Allen-Cahn equation

Given an initial state
$$u_0 \colon \mathbb{T}^2 \to \mathbb{R}$$
, look for a $u \colon \Omega \times \mathbb{R}_+ \times \mathbb{T}^2 \to \mathbb{R}$ satisfying
$$\begin{cases} \operatorname{d}\! u - \Delta u \operatorname{d}\! t = -\Psi'(u) \operatorname{d}\! t + \mathcal{B}(u) \operatorname{d}\! W & \text{in } \mathbb{R}_+ \times \mathbb{T}^2, \\ u(0,\cdot) = u_0, \end{cases}$$

- Ψ is a double well potential:
- W is a Brownian motion.
- For example $B(u) = \varepsilon$.

Stochastic evolution equations

"Hide" the space-variable in a Banach space *X* to obtain an SDE:

Look for a function $u \colon \Omega \times \mathbb{R}_+ \to X$ satisfying

$$\begin{cases} du + Au dt = F(u) dt + G(u) dW & \text{in } \mathbb{R}_+, \\ u(0) = u_0. \end{cases}$$

Stochastic evolution equations

"Hide" the space-variable in a Banach space *X* to obtain an SDE:

Look for a function $u \colon \Omega \times \mathbb{R}_+ \to X$ satisfying

$$\begin{cases} du + Au dt = F(u) dt + G(u) dW & \text{in } \mathbb{R}_+, \\ u(0) = u_0. \end{cases}$$

For Allen-Cahn on \mathbb{T}^2 :

$$X = L^q(\mathbb{T}^2)$$

$$A = -\Delta$$

$$F(u) = -\Psi'(u)$$

$$G(u) = B(u)$$

$$u_0 \in W^{2,q}(\mathbb{T}^2)$$

Stochastic evolution equations

"Hide" the space-variable in a Banach space *X* to obtain an SDE:

Look for a function $u \colon \Omega \times \mathbb{R}_+ \to X$ satisfying

$$\begin{cases} du + Au dt = F(u) dt + G(u) dW & \text{in } \mathbb{R}_+, \\ u(0) = u_0. \end{cases}$$

For Allen-Cahn on \mathbb{T}^2 :

$$X = L^q(\mathbb{T}^2)$$

$$A = -\Delta$$

$$F(u) = -\Psi'(u)$$

$$G(u) = B(u)$$

$$u_0 \in W^{2,q}(\mathbb{T}^2)$$

Question

Under what conditions does a unique solution exist?

We first study the problem with F and G independent of u and $u_0 = 0$.

Take
$$f,g\colon \Omega \times \mathbb{R}_+ o X$$
. We look for a function $u\colon \Omega \times \mathbb{R}_+ o X$ satisfying
$$\left\{ \begin{array}{l} \mathrm{d} u + Au\,\mathrm{d} t = f\,\mathrm{d} t + g\,\mathrm{d} W, \\ u(0) = 0, \end{array} \right.$$

We first study the problem with F and G independent of u and $u_0 = 0$.

Take
$$f,g: \Omega \times \mathbb{R}_+ \to X$$
. We look for functions $u,v: \Omega \times \mathbb{R}_+ \to X$
$$\begin{cases} \frac{\mathrm{d} u}{\mathrm{d} t} + Au = f, & \text{if } u(0) = 0. \end{cases} \begin{cases} \mathrm{d} v + Av \, \mathrm{d} t = g \, \mathrm{d} W, \\ v(0) = 0. \end{cases}$$

We first study the problem with F and G independent of u and $u_0 = 0$.

Take
$$f,g: \Omega \times \mathbb{R}_+ \to X$$
. We look for functions $u,v: \Omega \times \mathbb{R}_+ \to X$
$$\begin{cases} \frac{\mathrm{d} u}{\mathrm{d} t} + Au = f, & \text{if } u(0) = 0. \end{cases} \begin{cases} \mathrm{d} v + Av \, \mathrm{d} t = g \, \mathrm{d} W, \\ v(0) = 0. \end{cases}$$

The solutions u and v are given by the variation of constants formulas:

$$u(t) = \int_0^t e^{-(t-s)A} f(s) ds, \qquad v(t) = \int_0^t e^{-(t-s)A} g(s) dW(s),$$

where $(e^{-tA})_{t\geq 0}$ is a semigroup of bounded operators on X.

We first study the problem with F and G independent of u and $u_0 = 0$.

Take
$$f,g: \Omega \times \mathbb{R}_+ \to X$$
. We look for functions $u,v: \Omega \times \mathbb{R}_+ \to X$
$$\begin{cases} \frac{\mathrm{d}u}{\mathrm{d}t} + Au = f, & \text{if } dv + Av \, \mathrm{d}t = g \, \mathrm{d}W, \\ u(0) = 0. & \text{if } v(0) = 0. \end{cases}$$

The solutions u and v are given by the variation of constants formulas:

$$u(t) = \int_0^t e^{-(t-s)A} f(s) ds,$$
 $v(t) = \int_0^t e^{-(t-s)A} g(s) dW(s),$

where $(e^{-tA})_{t>0}$ is a semigroup of bounded operators on X.

Deterministic question

lf

$$f \in L^p(\mathbb{R}_+; X)$$
,

do we have

$$Au \in L^p(\mathbb{R}_+; X)$$
?

$$f \in L^p(\mathbb{R}_+; X)$$

$$||f||_{L^p(\mathbb{R}_+;X)} = \left(\int_0^\infty ||f(t)||_X^p dt\right)^{\frac{1}{p}} < \infty$$

We first study the problem with F and G independent of u and $u_0 = 0$.

Take
$$f,g: \Omega \times \mathbb{R}_+ \to X$$
. We look for functions $u,v: \Omega \times \mathbb{R}_+ \to X$
$$\begin{cases} \frac{\mathrm{d}u}{\mathrm{d}t} + Au = f, & \text{if } dv + Av \, \mathrm{d}t = g \, \mathrm{d}W, \\ u(0) = 0. & \text{if } v(0) = 0. \end{cases}$$

The solutions u and v are given by the variation of constants formulas:

$$u(t) = \int_0^t e^{-(t-s)A} f(s) ds,$$
 $v(t) = \int_0^t e^{-(t-s)A} g(s) dW(s),$

where $(e^{-tA})_{t>0}$ is a semigroup of bounded operators on X.

Deterministic question

lf

$$f \in L^p(\mathbb{R}_+; X),$$

do we have

$$Au \in L^p(\mathbb{R}_+; X)$$
?

Stochastic question

lf

$$g \in L^p(\Omega \times \mathbb{R}_+; X),$$

do we have

$$A^{\frac{1}{2}}v\in L^p(\mathbb{R}_+;X)$$
?

From SPDEs to harmonic analysis

Note that

$$Au(t) = \int_0^t A e^{-(t-s)A} f(s) ds, \qquad A^{\frac{1}{2}} v(t) = \int_0^t A^{\frac{1}{2}} e^{-(t-s)A} g(s) dW(s).$$

From SPDEs to harmonic analysis

Note that

$$Au(t) = \int_0^t A e^{-(t-s)A} f(s) ds, \qquad A^{\frac{1}{2}}v(t) = \int_0^t A^{\frac{1}{2}} e^{-(t-s)A} g(s) dW(s).$$

So we can reformulate our questions as:

Deterministic question

Does

$$T_K f(t) = \int_0^\infty K(t-s)f(s) ds$$

for
$$K(t) = Ae^{-tA} \mathbf{1}_{t>0}$$

define a bounded operator on

$$L^p(\mathbb{R}_+;X)$$
?

Stochastic question

Does

$$S_K g(t) = \int_0^\infty K(t-s)g(s) dW(s)$$

for $K(t) = A^{\frac{1}{2}} e^{-tA} \mathbf{1}_{t>0}$

$$L^p(\Omega \times \mathbb{R}_+; X)$$
?

From SPDEs to harmonic analysis

Note that

$$Au(t) = \int_0^t A \mathrm{e}^{-(t-s)A} f(s) \, \mathrm{d} s, \qquad A^{\frac{1}{2}} v(t) = \int_0^t A^{\frac{1}{2}} \mathrm{e}^{-(t-s)A} g(s) \, \mathrm{d} W(s).$$

So we can reformulate our questions as:

Deterministic question

Does

$$T_K f(t) = \int_0^\infty K(t-s)f(s) ds$$

for
$$K(t) = Ae^{-tA} \mathbf{1}_{t>0}$$

define a bounded operator on

$$L^p(\mathbb{R}_+;X)$$
?

These kernels *K* are singular:

$$||K(t)|| \leq \frac{C}{t}$$

Stochastic question

Does

$$S_K g(t) = \int_0^\infty K(t-s)g(s) dW(s)$$

for $K(t) = A^{\frac{1}{2}} e^{-tA} \mathbf{1}_{t>0}$

define a bounded operator on

$$L^p(\Omega \times \mathbb{R}_+; X)$$
?

$$\|K(t)\| \leq \frac{C}{t^{\frac{1}{2}}}$$

(Stochastic) singular integral operators

The operator

$$T_K f(t) = \int_{\mathbb{R}^d} K(t-s) f(s) \, \mathrm{d}s$$

on L^p for a singular kernel K has been studied thoroughly:

- Hilbert transform $K(t) = \frac{1}{\pi} \frac{1}{t}$ ('28)
- Regularity theory for elliptic PDE ('40s)
- Calderón–Zygmund and Fourier multiplier theory ('50s)
- Regularity theory for parabolic PDE ('00s)

(Stochastic) singular integral operators

The operator

$$T_K f(t) = \int_{\mathbb{R}^d} K(t-s) f(s) \, \mathrm{d}s$$

on L^p for a singular kernel K has been studied thoroughly:

- Hilbert transform $K(t) = \frac{1}{\pi} \frac{1}{t}$ ('28)
- Regularity theory for elliptic PDE ('40s)
- Calderón–Zygmund and Fourier multiplier theory ('50s)
- Regularity theory for parabolic PDE ('00s)

The operator

$$S_K g(t) = \int_0^\infty K(t-s)g(s) dW(s)$$

on L^p for a singular kernel K has only been studied in a few special cases.

Stochastic Calderón–Zygmund theory

Theorem (L., Veraar, Analysis & PDE '21)

- Let *X* be a Banach space with certain geometric properties.
- Let $K : \mathbb{R}_+ \to \mathcal{L}(X)$ be a smooth singular kernel.

Suppose that S_K is bounded on $L^{p_0}(\mathbb{R}_+ \times \Omega; X)$ for **some** $p_0 \in [2, \infty)$.

Then S_K is bounded on $L^p(\mathbb{R}_+ \times \Omega; X)$ for **all** $p \in (2, \infty)$.

Stochastic Calderón-Zygmund theory

Theorem (L., Veraar, Analysis & PDE '21)

- Let *X* be a Banach space with certain geometric properties.
- Let $K : \mathbb{R}_+ \to \mathcal{L}(X)$ be a smooth singular kernel.

Suppose that S_K is bounded on $L^{p_0}(\mathbb{R}_+ \times \Omega; X)$ for **some** $p_0 \in [2, \infty)$.

Then S_K is bounded on $L^p(\mathbb{R}_+ \times \Omega; X)$ for **all** $p \in (2, \infty)$.

- L^q is allowed for $q \in [2, \infty)$.
- It suffices to have

$$\|K(t)\| \leq \frac{C}{t^{\frac{1}{2}}}, \qquad \|K'(t)\| \leq \frac{C}{t^{\frac{3}{2}}}.$$

Stochastic Calderón-Zygmund theory

Theorem (L., Veraar, Analysis & PDE '21)

- Let *X* be a Banach space with certain geometric properties.
- Let $K: \mathbb{R}_+ \to \mathcal{L}(X)$ be a smooth singular kernel.

Suppose that S_K is bounded on $L^{p_0}(\mathbb{R}_+ \times \Omega; X)$ for **some** $p_0 \in [2, \infty)$.

Then S_K is bounded on $L^p(\mathbb{R}_+ \times \Omega; X)$ for **all** $p \in (2, \infty)$.

- L^q is allowed for $q \in [2, \infty)$.
- It suffices to have

$$\|K(t)\| \leq \frac{C}{t^{\frac{1}{2}}}, \qquad \|K'(t)\| \leq \frac{C}{t^{\frac{3}{2}}}.$$

Corollary

If our stochastic question holds for **some** $p_0 \in [2, \infty)$, then it holds for **all** $p \in (2, \infty)$.

For our deterministic question this was shown in:

(Dore, Adv. Differential Equations, '00).

Given an initial state $u_0 \in L^q(\mathbb{T}^2)$, look for a $u \colon \Omega \times \mathbb{R}_+ \to L^q(\mathbb{T})$ satisfying

$$\left\{ \begin{array}{ll} \mathrm{d} u - \Delta u \, \mathrm{d} t = - \Psi'(u) \, \mathrm{d} t + B(u) \, \mathrm{d} W & \text{in } \mathbb{R}_+, \\ u(0,\cdot) = u_0. \end{array} \right.$$

Given an initial state $u_0 \in L^q(\mathbb{T}^2)$, look for a $u \colon \Omega \times \mathbb{R}_+ \to L^q(\mathbb{T})$ satisfying

$$\left\{ \begin{array}{ll} \mathrm{d} u - \Delta u \, \mathrm{d} t = - \Psi'(u) \, \mathrm{d} t + B(u) \, \mathrm{d} W & \text{in } \mathbb{R}_+, \\ u(0,\cdot) = u_0. \end{array} \right.$$

Positive answers to our det. and stoch. question

Banach fixed \Rightarrow Unique solution u in point theorem \Rightarrow $L^p(\Omega \times \mathbb{R}_+; L^q(\mathbb{T}))$

Given an initial state $u_0 \in L^q(\mathbb{T}^2)$, look for a $u \colon \Omega \times \mathbb{R}_+ \to L^q(\mathbb{T})$ satisfying

$$\left\{ \begin{array}{ll} \mathrm{d} u - \Delta u \, \mathrm{d} t = - \Psi'(u) \, \mathrm{d} t + B(u) \, \mathrm{d} W & \text{in } \mathbb{R}_+, \\ u(0,\cdot) = u_0. \end{array} \right.$$

Positive answers to our det. and stoch. question \Rightarrow Banach fixed point theorem \Rightarrow Unique solution u in $L^p(\Omega \times \mathbb{R}_+; L^q(\mathbb{T}))$

Our theorem allows one to study the stochastic question in

$$L^q(\Omega \times \mathbb{R}_+; L^q(\mathbb{T}^2)) = L^q(\Omega \times \mathbb{R}_+ \times \mathbb{T}^2),$$

which is significantly simpler than $p \neq q$.

Given an initial state $u_0 \in L^q(\mathbb{T}^2)$, look for a $u: \Omega \times \mathbb{R}_+ \to L^q(\mathbb{T})$ satisfying

$$\left\{ \begin{array}{ll} \mathrm{d} u - \Delta u \, \mathrm{d} t = - \Psi'(u) \, \mathrm{d} t + B(u) \, \mathrm{d} W & \text{in } \mathbb{R}_+, \\ u(0,\cdot) = u_0. \end{array} \right.$$

Positive answers to our \Rightarrow Banach fixed \Rightarrow Unique solution u in det. and stoch, question \Rightarrow Definite theorem \Rightarrow Unique solution u in $L^p(\Omega \times \mathbb{R}_+; L^q(\mathbb{T}))$

Unique solution
$$u$$
 i $L^p(\Omega \times \mathbb{R}_+; L^q(\mathbb{T}))$

Our theorem allows one to study the stochastic question in

$$L^q(\Omega \times \mathbb{R}_+; L^q(\mathbb{T}^2)) = L^q(\Omega \times \mathbb{R}_+ \times \mathbb{T}^2),$$

which is significantly simpler than $p \neq q$.

Why not just analyze p = q = 2?

- More classical smoothness through Sobolev embeddings with large p, q
- Scaling of the nonlinearities can dictate $p \neq q$.

Thank you for your attention!