Job Recommendations at XING

Data Science Portugal Meet-up, Porto, 14th May 2018

Katja Niemann

Outline

- Challenges and Algorithms
- Building Recommender Systems
- Deployment of RecSys Models
- Q&A

RecSys Challenges and Algorithms

My contacts

My messages

My Premium

My Projobs

Jobs Jobs

• Other services

Psychologie

Spread the word

Quality Assurance Manager

Share a link or post with your contacts

Members you may know

start page

≗+ Add

days

Also on XING:

ž°

2 Xing, AG

Melissa Lang

♣+ Add

My contacts

My Premium

My Projobs

• Other services

XING Jobs

jobs market

Overview Bookmarks (0) Search alerts (0) Jobs offering over €50,000

Jobs we think you'll like

Rate recommendations

Data Scientist/Machine Learning -Darmstadt - 75.000€

Senior Data Scientist Automotive & Manufacturing Industry (m/w)

T-Systems International GmbH, Berlin

Optimus Search, Darmstadt 13 days ago

00 68% match

Ţ..

11 days ago

① 71% match

SAP

Senior Developer / Development Expert for Machine Learning Platform Job

SAP, Berlin 13 days ago

74% match

Michael Page

Tech Lead Manager Machine Learning (m/w)

Michael Page, Berlin about 1 month ago

00 61% match

SCHWARZ

Senior Data Scientist (w/m)

Schwarz Dienstleistung KG, Neckarsulm 3 days ago

@ 68% match

Big Data Software Engineer (m/w)

OPITZ CONSULTING Deutschland GmbH, Berli... 12 days ago

76% match

→ 13 more job recommendations

email

Goals / Triangle of contradiction

- relevant recos
- no spam

- relevant candidates
- high reach

- high revenue (e.g. many clicks on paid content)
- happy customers

Key properties of a job posting

· Sehr gute Deutsch- und Englischkenntnisse in Wort und Schrift

Key sources for understanding user demands

Recommender strategies

- Content-based filtering
 - explicit user profile
 - implicitly given interest profile / inferred attributes
- Item-to-item recommendations (more like this)
- (Pseudo) collaborative filtering

Collaborative filtering

Theory: User-based and Item-based CF

User-Item-Rating Matrix

User-based CF:

- Compare users based on their ratings (e.g. cosine sim.)
- Use the n most similar users to predict a rating on an item

Item-based CF:

- Compare items based on their ratings (e.g. cosine sim.)
- Use the n most similar items to predict a rating from a user (simple weight average)

Collaborative filtering

Reality: Ultra sparse User-Item Matrix and primarily implicit feedback

	Java D. T	SAP Co	Data En	Data Sc XING X	BI Dev
Anna	-	-	1	-	-
Julia	-	-	-	-	-
Tim	-	-	-	-	-
John	1	-	-	-	-

High level of sparsity: classical collaborative fitering (incl. matrix factorization) does not work

Collaborative filtering

Reality: Ultra sparse User-Item Matrix and primarily implicit feedback

Pseudo CF:

- Cluster users based on...
 - jobrole
 - skills
 - field of study
- Recommend items that similar users (= clusters) interacted with

New item problem remains...

Content-based filtering

Example: semantic search

Skills: ML, j2ee

Interests: Hadoop

Education: Informatik

Content-based filtering

Example: More-like-this component

Bookmarked, rated and applied-to job postings

Recommending similar items

(Doc2Vec vs. LSTM)

Topic model vector representations

Filtering and Re-ranking

- career level filtering
- less-like-this
- same company filtering
- boosting jobs from cities where people have contacts
- boosting paid content
- outlier filtering
- **.**...

Outlier Filtering: Trade-off between killing bad recommendations and keeping good ones

Approach:

- 1. Predict a rating for each user and its top-x recommendations
- 2. Remove recos with a rating below the threshold

Example: with a threshold of 2.5 we kill 86% of the bad and 18% of the good recos

Bulding Recommender Systems

Scala

REST Service

Internal recommender structure

Mixture of Online & Batch Processing

Online data

- Lookup or computation takes milliseconds
- Often required when data must be up-to-date (e.g. contextual user info)
- Examples:
 - User profile data
 - Contacts of the user
 - Negative feedback (e.g. ratings)

Pre-computed data (batch)

- Takes minutes or hours to compute
- Often required when a "complete picture" (also about other users) is necessary
- Examples:
 - Interaction-based profiles
 - Association rules
 - Topic modeling (Doc2Vec, LSTM)

Example: Users in jobrole X typically click on

Deployment of RecSys Models

Examples of models used in production

Use Case	Type of model		
Categorizing job posting	Logistic regression (>100k features)		
Enrichment of job postings	Hierarchical Clustering (hierarchical K-Means)		
Identifying similar job postings	Doc2Vec-based topic modeling; LSTM		
Pseudo-CF	Association rule mining		
Outlier filtering	XGBoost (~100 features, optimizing RMSE)		
Core Ranking of job recos	XGBoost (~140 features, optimizing pairwise loss)		
Estimating willingness to change jobs	XGBoost (~90 features, optimizing cross entropy)		
Estimating user preferences	Naïve Bayes		

Degree of automation in ML

)(

high

Degree of automation

Models and features are automatically constructed, refined, optimized

Models and features are automatically (re-)learned, refined, optimized

Model-based algorithms are frequently relearned (semi-automated, re-prod.),

Model-based algorithms are manually learned once (not reproducable)

Algorithms based on data analysis

Hacking: hand-crafted algorithms

ML with human supervision

Involvment of

humans

low

Automated learning & deployment of ML models

Thank you

Contact: katja.niemann@xing.com

http://bit.ly/data-science-team

