



**INFO 251: Applied Machine Learning** 

### **Nearest Neighbors**

### **Announcements**

PS3 posted, due Feb 21

#### **Course Outline**

- Causal Inference and Research Design
  - Experimental methods
  - Non-experiment methods
- Machine Learning
  - Design of Machine Learning Experiments
  - Linear Models and Gradient Descent
  - Non-linear models
  - Neural models
  - Unsupervised Learning
  - Practicalities, Fairness, Bias
- Special topics

# Key Concepts (last lecture)

- Representation
- Evaluation
- Optimization
- Supervised Learning
- Unsupervised Learning
- The curse of dimensionality
- Feature engineering
- Overfitting
- Generalization

- Cross-validation
- Bootstrap
- Accuracy, ROC, AUC, F-scores
- Baselines
- Error analysis
- Ablative analysis

# Key Concepts (todays' lecture)

- Lazy learning
- Decision boundaries
- Voronoi diagrams
- (K-)Nearest Neighbors
- Similarity and Distance metrics
- Normalization and Standardization
- Feature weighting

## Outline

- Lazy learning
- K-nearest neighbors
- Similarity and Distance metrics
- Curse of Dimensionality
- Case Study: Digit classification

## Instance-Based Learning

- "Lazy Learning"
  - Learn as little up front, make real-time decisions
- Nearest Neighbor (invented in 1950's!)
  - Given new data  $x_i$ , find nearest neighbor z to  $x_i$ , predict  $f(x_i) = f(z)$



# Why this approach?

- Can learn complex decision boundaries
  - Including data that is not linearly separable



# Voronoi diagrams

- How does Nearest Neighbors divide hypothesis space?
  - A simple idea that induces a complex function
- Regions mark the space closest to each point



### Outline

- Lazy learning
- K-nearest neighbors
- Similarity and Distance metrics
- Curse of Dimensionality
- Case Study: Digit classification

# K-Nearest Neighbors (kNN)

- Nearest Neighbors is very unstable
  - Beware of overfitting!
- K-NN: Generalized version of NN
  - Given  $x_i$ , take vote among K nearest neighbors
- If output is discrete?
  - Predict majority prediction
- If continuous?
  - Take mean of K nearest neighbors

$$f(x_i) = \frac{1}{K} \sum_{j=1}^{K} f(x_j)$$

### **Decision boundaries**

- K-NN has complex boundaries
- larger K smoothes the boundary
- How to determine K?
  - Use cross-validation!



## K-NN example

Predicting Default

Training data →

- Test data:
  - Age=31
  - Loan=125,000
- Need to define distance
  - Closest by age?
  - Closest by loan amount?

| Age | Loan              | Default |
|-----|-------------------|---------|
| 25  | \$40,000          | N       |
| 35  | \$60,000          | N       |
| 45  | \$80 <b>,</b> 000 | N       |
| 20  | \$20 <b>,</b> 000 | N       |
| 35  | \$120,000         | N       |
| 40  | \$62 <b>,</b> 000 | Y       |
| 60  | \$100,000         | Y       |
| 48  | \$220,000         | Y       |
| 33  | \$150,000         | Y       |

#### **Distance metrics**

- For numeric features:
  - Euclidean and Manhattan Distance

• 
$$L^n$$
-Norm:  $D^n(x_i, x_j) = \sqrt[n]{\sum_{m=1}^M |x_{im} - x_{jm}|^n}$ 

- $L^{\infty}$ -Norm (Chebyshev)
- Cosine similarity:

$$\frac{A \cdot B}{\|A\| \|B\|} = \frac{\sum_{i=1}^{n} A_i \times B_i}{\sqrt{\sum_{i=1}^{n} (A_i)^2} \times \sqrt{\sum_{i=1}^{n} (B_i)^2}}$$



#### **Distance metrics**

- For symbolic features:
  - Hamming distance

Hamming distance = 3



Hamming distance = 6

GAGCCTACTAACGGGAT CATCGTAATGACGGCCT

- Value difference measure (VDM)
- Encoding of arbitrary knowledge

#### **K-NN: Pros and Cons**

- Advantages
  - Can learn complex functions
  - Training is very fast
  - No loss of information
- Disadvantages
  - Slow at query time
  - Storage requirements
  - Easy to fool

# Weighted K-NN

- Why weight neighbors evenly?
- Distance-weighted K-Nearest Neighbors

• 
$$f(x_i) = \frac{\sum_{j=1}^k w_{ij} f(x_j)}{\sum_{j=1}^k w_{ij}}$$

Where

• 
$$w_{ij} = \frac{1}{d(x_i, x_j)} = \frac{1}{\sqrt[n]{\sum_{m=1}^{M} |x_{im} - x_{jm}|^n}}$$

- In theory, can use all training examples
  - But in practice, we might not...



### Outline

- Lazy learning
- K-nearest neighbors
- Similarity and Distance metrics
- Curse of Dimensionality
- Case Study: Digit classification

# **Curse of dimensionality**

- Our brains get confused in high dimensions
  - Our intuitions are based on 2-D and 3-D spaces
  - "If we could see in high dimensions we wouldn't need ML"
- Adding dimensions increases space exponentially
  - 100 evenly spaced points on unit interval:  $ar{d}=0.01$
  - In 10 dimensions, to have the same average distance between points, we would need 10,000,000,000,000,000,000 points!
  - 10 features isn't that many!
- Data in many dimensions is tricky
  - Poor sampling of the space
  - All points are far apart
  - Relative feature weights matter



# **Curse of dimensionality**

- What can we do about it?
- Normalize numeric features
  - Standardized features: mean = o, variance = 1
- Feature selection
  - A priori filtering very "cheap" but sensitive
  - Forward selection progressively add features
  - Backward selection progressively remove features
- Dimensionality reduction
  - We'll come back to this

# Feature weighting

- Keep features, but scale back influence
  - Weighted nearest neighbors starts with

$$f(x_i) = \frac{\sum_{j=1}^{k} w_{ij} f(x_j)}{\sum_{j=1}^{k} w_{ij}}$$

Now, each feature has an assigned weight  $\delta_m$ 

$$w_{ij} = \frac{1}{D^{n}(x_{i}, x_{j})} = \frac{1}{\sqrt[n]{\sum_{m=1}^{M} \delta_{m} |x_{im} - x_{jm}|^{n}}}$$

- Setting  $\delta_m$  to zero eliminates that dimension
- How do we determine the  $\delta_m$ ?
  - Cross-validation + gradient descent!

### Outline

- Lazy learning
- K-nearest neighbors
- Similarity and Distance metrics
- Curse of Dimensionality
- Case Study: Digit classification

# Case study: digit classification

- MNIST data set
  - 70,000 labeled digits
  - 28 X 28 pixels each
  - Greyscale values (o-255)
  - Scaled and centered, but with plenty of variation

## Feature representation

- What is a feature? i.e., what does a single x<sub>i</sub> look like?
  - 28x28 grid of values
  - feature vector of length 784
  - Normalized to [0,1] scale
  - Note: pixel representation throws away locality permutations are identical!
- What does the digit "4" look like, in terms of our feature space?
  - Our feature space is large and inappropriate



# K-NN in practice

Digit Neighbors

200 training examples



1000 training examples



10000 training examples



# K-NN for digit classification

#### Results

#### k=1; Euclidean (L2) distance

| Training                                            | Error%                     | Time                         |
|-----------------------------------------------------|----------------------------|------------------------------|
| 100<br>1000<br>10000<br>60000                       | 30.0<br>12.1<br>5.3<br>2.7 | 0.38<br>2.34<br>28.7<br>2202 |
|                                                     |                            |                              |
| <pre>+ de-skewing + blurring + pixel-shifting</pre> | 2.3<br>1.8<br>1.2          |                              |

### Edited K-NN

- Outliers (noise) may exist in the training set
  - Mislabeled examples
  - Unlearnable examples
- An easy solution: Remove outliers
  - If all neighbors are a different class



# Instance-Based Learning

- Common forms of Instance-Based Learning
  - Lazy learning
  - K-Nearest Neighbors
  - Locally-weighted regression
  - Radial basis networks
  - Case-based reasoning
  - Collaborative filtering

#### For Next Class

- Read:
  - Daume, Chapter 7
  - Schutt & O'Neill, Chapter 5





#### CURVE-FITTING METHODS AND THE MESSAGES THEY SEND

