

CH02-COA10e Performance

Kiến trúc máy tính _ hợp ngữ (Trường Đại học Sư phạm Kỹ Thuật Thành phố Hồ Chí Minh)

Scan to open on Studocu

COMPUTER ORGANIZATION & ARCHITECTURE

Van-Khoa Pham (PhD.)

+ Performance

- Trying to choose among different computers, performance is an important attribute.
- Accurately measuring and comparing different computers is critical to purchasers and therefore to designers.

Performance Metrics

- Purchasing perspective: given a collection of machines, which has the
 - best performance?
 - best cost/performance?
- Design perspective: faced with design options, which has the
 - best performance improvement?
 - best cost/performance?

understand what factors in the architecture contribute to overall system performance

Metrics of Performance

Relative Performance

Performance = 1/Execution Time

o "A is n time faster than B"

Performance_A/Performance_B

= Execution time_B/Execution time_A = n

time taken to run a program

- 10s on A, 15s on B
- Execution Time_B / Execution Time_A
 = 15s / 10s = 1.5
- So A is 1.5 times faster than B

+ CPU Clocking

Figure 2.5 System Clock

Clock rate is inverse of clock cycle

CC = 1/CR

- Clock period (cycle time): duration of a clock cycle
 - e.g., $250ps = 250 \times 10^{-12}s$
- Clock frequency (rate): cycles per second
 - e.g., $4.0GHz = 4.0 \times 10^9 Hz$

10 nsec clock cycle => 100 MHz clock rate

200 psec clock cycle => 5 GHz clock rate

CPU Time

CPU Time =#CPU Clock Cycles × Clock Period

= #CPU Clock Cycles for a program
Clock Rate

Performance improved by

- Reducing number of clock cycles
- Increasing clock rate

Assume a program (e.g., sorting) is completed in 250 Clock Cycles.

What is the total CPU Time used?

CPU Time Example

- A sorting program runs in 10 seconds on computer A, having 4 GHz clock.
- We are trying to build a *computer B*, that will run this program in 6 seconds.
- If on Computer B, *require 1.2 times* as many clock cycles as computer A for this program.

What clock rate should we tell the designer to target?

- □ CPU time_A = CPU (clock cycles)_A / (Clock rate)_A
- □ 10 seconds = CPU (clock cycles)_A / 4 x 10⁹ cycles/second
- \Box CPU (clock cycles)_A = 10 seconds x 4 x 10⁹ cycles/sec = 40 x 10⁹ cycles
- □ CPU time_B = 1.2 x CPU clock cycles_A / (Clock rate)_B
- □ 6 seconds = 1.2 x 40 x 10⁹ (clock cycles)_A / (Clock rate)_B
- \Box (Clock rate)_B = 1.2 x 40 x 10⁹ cycles / 6 seconds = 8 GHz

Metrics of Performance

CPI is a useful design measure relating the Instruction Set Architecture with the Implementation of that architecture, and the program measured

I_c: Instruction Count

p: The number of processor cycles needed to decode and execute the instruction

m: The number of memory references needed

k: the ratio between memory cycle time and processor cycle time

 τ : cycle time (1/f)

CPI: Clock cycle per instruction

T: The time needed to execute a given programe

$$CPI = \frac{\sum_{i=1}^{n} (CPI_i \times I_i)}{I_c} \qquad T = I_c \times CPI \times \tau$$

Clock Cycles Per Instruction: CPI

- Multiplication takes more time than addition
- Floating point operations take longer than integer ones
- Accessing memory takes more time than accessing registers

Instruction Type	CPI
Arithmetic and logic	1
Load/store with cache hit	2
Branch	4
Memory reference with cache miss	8

average CPI

 If different instruction classes take different numbers of cycles (assuming n classes)

Clock Cycles =
$$\sum_{i=1}^{n} (CPI_i \times Instruction Count_i)$$

average CPI

$$CPI = \frac{Clock \ Cycles}{Instruction \ Count} = \sum_{i=1}^{n} \left(CPI_i \times \frac{Instruction \ Count_i}{Instruction \ Count} \right)$$

Relative frequency

Clock Cycles Per Instruction: CPI

CPU clock cycles # Instructions

for a program = for a program X

Average clock cycles per instruction

A benchmark program is run on a 40 MHz processor. The executed program consists of 100,000 instruction executions, with the following instruction mix and clock cycle count:

Instruction Type	Instruction Count	Cycles per Instruction
Integer arithmetic	45,000	1
Data transfer	32,000	2
Floating point	15,000	2
Control transfer	8000	2

Average clock cycles per instruction= 1.55

CPI Example

 Alternative compiled code sequences using instructions in classes A, B, C

<u>I</u>nstruction <u>C</u>ount

Class	Α	В	С
CPI for class	1	2	3
IC in sequence 1	2	1	2
IC in sequence 2	4	1	1

- Sequence 1: IC = 5
 - Clock Cycles = $2\times1 + 1\times2 + 2\times3$ = 10
 - Avg. CPI = 10/5 = 2.0

- Sequence 2: IC = 6
 - Clock Cycles

$$= 4 \times 1 + 1 \times 2 + 1 \times 3$$

I_c: Instruction Count

p: The number of processor cycles needed to decode and execute the instruction

m: The number of memory references needed

k: the ratio between memory cycle time and processor cycle time

 τ : cycle time (1/f)

CPI: Clock cycle per instruction

T: The time needed to execute a given programe

	I_c	p	m	k	τ
Instruction set architecture	х	X			
Compiler technology	X	X	X		
Processor implementation		X			X
Cache and memory hierarchy				X	X

Table 2.1 Performance Factors and System Attributes

Performance Equation

CPU Time =#CPU Clock Cycles × Clock Period

= #CPU Clock Cycles for a program

Clock Rate

```
CPU time = Instruction_count x CPI x clock_cycle

or

Instruction_count x CPI

CPU time = ------

clock_rate
```

Determinates of CPU Performance

CPU time = Instruction_count x CPI x clock_cycle

All the second s		and the second	
	Instruction_ count	CPI	clock_cycle
Algorithm	X	X	
Programming language	X	X	
Compiler	X	X	
ISA	X	X	X
Processor organization		X	X
Technology			X

CPI and Clock Rate

- o Computer A: Cycle Time = 250ps (4 GHz clock rate), CPI = 2.0
- o Computer B: Cycle Time = 500ps (2 GHz clock rate), CPI = 1.2
- Same ISA
- Which is faster, and by how much?

$$\begin{aligned} &\mathsf{CPUTime}_{A} = \mathsf{Instruction}\,\mathsf{Count} \times \mathsf{CPI}_{A} \times \mathsf{Cycle}\,\mathsf{Time}_{A} \\ &= \mathsf{I} \times 2.0 \times 250 \mathsf{ps} = \mathsf{I} \times 500 \mathsf{ps} & \qquad & \mathsf{A} \, \, \mathsf{is} \, \, \mathsf{faster} \dots \\ &\mathsf{CPUTime}_{B} = \mathsf{Instruction}\,\mathsf{Count} \times \mathsf{CPI}_{B} \times \mathsf{Cycle}\,\mathsf{Time}_{B} \\ &= \mathsf{I} \times 1.2 \times 500 \mathsf{ps} = \mathsf{I} \times 600 \mathsf{ps} \\ &\frac{\mathsf{CPUTime}_{B}}{\mathsf{CPUTime}_{A}} = \frac{\mathsf{I} \times 600 \mathsf{ps}}{\mathsf{I} \times 500 \mathsf{ps}} = 1.2 & \qquad & \dots \mathsf{by} \, \, \mathsf{this} \, \, \mathsf{much} \end{aligned}$$

A Simple Example

Ор	Freq	CPI _i	Freq x CPI _i	
ALU	50%	1	.5	.5 .5
Load	20%	5	1.0	4 1.0
Store	10%	3	.3	.3 .3
Branch	20%	2	.4	.4 (.2)
		3.04	$\Sigma = 2.2$	1.6 2.0

■ How much faster would the machine be if a better data cache reduced the average load time to 2 cycles?

Relative performance is 2.2/1.6 means 37.5% faster

■ How does this compare with using branch prediction to shave a cycle off the branch time?

Relative performance is 2.2/2.0 means 10% faster

MIPS as a Performance Metric

MIPS: Millions of Instructions Per Second

$$IPS = \frac{Clock\ rate}{CPI} => Million IPS = \frac{Clock\ rate}{CPI \times 10^6}$$
 (1)

Execution time =
$$\frac{\text{Instruction count * CPI}}{\text{Clock rate}}$$
 (2)

$$MIPS = \frac{Instruction count}{Execution time \times 10^6}$$
 (3)

MIPS is an instruction execution rate, MIPS specifies performance inversely to execution time

MIPS as a Performance Metric: Example

Consider the following performance measurement for a program:

Measurement	Computer A	Computer B
Instruction Count	10 billion	8 billion
Clock Rate	4 GHz	4 GHz
CPI	1.0	1.1

- 1. Which computer has the higher MIPS rating?
- 2. Which computer is faster?

$$MIPS = \frac{Instruction count}{Execution time \times 10^6} = \frac{Clock rate}{CPI \times 10^6}$$

- 1. Computer A has the higher MIPS rating.
- 2. Computer B is faster

Improvements in Chip Organization and Architecture

- Increase hardware speed of processor
 - Fundamentally due to shrinking logic gate size
 - More gates, packed more tightly, increasing clock rate
 - Propagation time for signals reduced
- Increase size and speed of caches
 - Dedicating part of processor chip
 - Cache access times drop significantly
- Change processor organization and architecture
 - Increase effective speed of instruction execution
 - Parallelism

Problems with Clock Speed and Login Density

■ Power

- Power density increases with density of logic and clock speed
- Dissipating heat

■ RC delay

- Speed at which electrons flow limited by resistance and capacitance of metal wires connecting them
- Delay increases as the RC product increases
- As components on the chip decrease in size, the wire interconnects become thinner, increasing resistance
- Also, the wires are closer together, increasing capacitance

Figure 2.2 Processor Trends

■ Memory latency

Memory speeds lag processor speeds (memory hierarchy)

