Unidad 4. Continuidad, límites y asíntotas

1. Funciones especiales

Explora

Copia y completa la siguiente tabla:

	х	0,3	-0,3	1,8	-1,8	2,4	-2,4	3,9	-3,9
Parte entera de x	Ent(x)								
Parte decimal de x	Dec(x)								
Valor absoluto de x	x								

Solución:

	х	0,3	-0,3	1,8	-1,8	2,4	-2,4	3,9	-3,9
Parte entera de x	Ent(x)	0	-1	I	-2	2	-3	3	-4
Parte decimal de x	Dec(x)	0,3	0,7	0,8	0,2	0,4	0,6	0,9	0,1
Valor absoluto de x	x	0,3	0,3	1,8	1,8	2,4	2,4	3,9	3,9

Elabora

Representa las funciones:

a)
$$y = \text{Ent}(2x)$$

b)
$$y = |x|$$

Solución:

a)

2 Representa las funciones:

a)
$$y = Signo(x^2 - 4)$$

b)
$$y = |-x^2 + 1|$$

Representa las funciones:

a)
$$y = \lfloor \log_2 x \rfloor$$

b)
$$y = |\sin x|$$

Solución:

a)

b)

4 Representa las funciones:

a)
$$y = \begin{cases} x & \text{si } x \le -1 \\ x^2 & \text{si } x \ge -1 \end{cases}$$

b)
$$y = \begin{cases} \frac{1}{x} & \text{si } x < 0 \\ \sqrt{x} & \text{si } x \ge 0 \end{cases}$$

Solución:

a)

5 Representa la función:

$$y = \begin{cases} 2^x & \text{si } x \le 1 \\ -x + 3 & \text{si } 1 < x \le 2 \\ \log_2 x & \text{si } x > 2 \end{cases}$$

2. Continuidad

Explora

Copia y completa las siguientes tablas:

X	1,9	1,99	1,999	1,9999
y = Ent(x)				
x	2,1	2,01	2,001	2,0001
y = Ent(x)				

х	1,9	1,99	1,999	1,9999
y = Ent(x)	I	I	I	I
X	2,1	2,01	2,001	2,0001
y = Ent(x)	2	2	2	2

Elabora

6 Representa las siguientes funciones y estudia la continuidad analizando su gráfica:

a)
$$y = -x^2 + 4x + 1$$

b)
$$y = \frac{2}{x}$$

c)
$$y = \sqrt{x}$$

Solución:

a)

Es una parábola y es continua en todo $\mathbb R$

b)

Es una hipérbola y es discontinua en x = 0

c)

Es una función irracional y es continua en todo su dominio, $Dom(f) = [0, +\infty)$

Representa la función $f(x) = \sqrt{x+3}$ y calcula los siguientes límites:

a)
$$\lim_{x \to 1} f(x)$$

b)
$$\lim_{x \to -2} f(x)$$

Solución:

a)
$$\lim_{x \to 1} \sqrt{x+3} = 2$$

8 Representa la siguiente función y calcula los límites laterales en x = 2

$$f(x) = \begin{cases} -x^2 + 5 & \text{si } x \le 2\\ -x & \text{si } x > 2 \end{cases}$$

Solución:

$$\lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} (-x) = -2$$

$$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{-}} (-x^2 + 5) = 1$$

9 Representa la siguiente función y estudia la continuidad en x = I

$$f(x) = \begin{cases} 2^x & \text{si } x \le 1 \\ \frac{2}{x} & \text{si } x > 1 \end{cases}$$

Solución:

$$f(1) = 2^1 = 2$$

$$\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} \frac{2}{x} = 2$$

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} 2^{x} = 2$$

La función es continua en x = 1

3. Discontinuidades

Explora

Copia y completa la siguiente sucesión:

2,9 2,99 → 3⁻ 3 3⁺ ← 3,01 3,1

Solución:

 $2,9 \quad 2,99 \quad 2,999 \quad 2,99999 \quad \rightarrow \quad 3^- \quad 3 \quad 3^+ \quad \leftarrow \quad 3,00001 \quad 3,0001 \quad 3,001 \quad 3,01 \quad 3,11 \quad 3,$

Elabora

Representa la siguiente función y estudia sus discontinuidades:

 $f(x) = \begin{cases} -x + 1 & \text{si } x \neq 3 \\ 2 & \text{si } x = 3 \end{cases}$

Solución:

Se estudia el punto x = 3

$$f(3) = 2$$

$$\lim_{x \to 3^{+}} f(x) = \lim_{x \to 3^{+}} (-x + 1) = -2$$

$$\lim_{x \to 3^{-}} f(x) = \lim_{x \to 3^{-}} (-x + 1) = -2$$

La función es discontinua en x = 3, donde tiene una discontinuidad evitable.

Se evita definiendo f(3) = -2

Representa la siguiente función y estudia sus discontinuidades: y = Dec(x)

Solución:

Es discontinua en los números enteros, donde tiene una discontinuidad de primera especie de salto uno.

12 Representa la siguiente función y estudia sus discontinuidades:

$$y = \sqrt{x + 1}$$

Solución:

Es discontinua en x = -1, donde tiene una discontinuidad de segunda especie, ya que no existe el límite lateral por la izquierda.

13 Representa la función y estudia sus discontinuidades:

$$y = \frac{3x - 1}{x - 1}$$

Solución:

$$y = 3 + \frac{2}{x - 1}$$

Es discontinua en x = 1, donde tiene una discontinuidad de primera especie de salto infinito.

14 Representa la función y estudia sus discontinuidades:

$$y = tg x$$

Solución:

Es discontinua en $x = \frac{k\pi}{2}$, $k \in \mathbb{Z}$, donde tiene una discontinuidad de primera especie de salto infinito.

15 Representa la función y estudia sus discontinuidades:

$$f(x) = \begin{cases} 3 - x^2 & \text{si } x \neq -2\\ 5 & \text{si } x = -2 \end{cases}$$

Solución:

Es discontinua en x = -2, donde tiene una discontinuidad evitable. Se evita definiendo f(-2) = -1

4. Límites de funciones polinómicas y racionales

Explora

Calcula mentalmente los siguientes cocientes y di cuál o cuáles no tienen solución, tienen una solución o tienen muchas soluciones.

a)
$$\frac{6}{2}$$

b)
$$\frac{0}{0}$$

c)
$$\frac{0}{5}$$

b)
$$\frac{0}{0}$$
 c) $\frac{0}{5}$ d) $\frac{5}{0}$

Solución:

a) 3

b) Muchas soluciones.

c) 0

d) No tiene solución.

Elabora

16 Calcula mentalmente los siguientes límites:

a) lím
$$(-5x^3 + 3x - 7)$$

a)
$$\lim_{x \to +\infty} (-5x^3 + 3x - 7)$$
 b) $\lim_{x \to -\infty} (x^4 - 5x^3 + 3)$

Solución:

a)
$$-\infty$$

17 Calcula los siguientes límites y representa la función correspondiente:

a)
$$\lim_{x \to -2} \frac{x^2 - 4}{x + 2}$$

b)
$$\lim_{x \to 1} \frac{-3x + 5}{x - 1}$$

a)
$$\lim_{x \to -2} \frac{x^2 - 4}{x + 2} = \left[\frac{0}{0} \right] = \lim_{x \to -2} \frac{(x + 2)(x - 2)}{x + 2} =$$

$$= \lim_{x \to -2} (x - 2) = -2 - 2 = -4$$

b)
$$\lim_{x \to 1^+} \frac{-3x + 5}{x - 1} = \frac{-3 \cdot 1^+ + 5}{1^+ - 1} = \frac{-3 + 5}{0^+} = \frac{2}{0^+} = +\infty$$

$$\lim_{x \to 1^+} \frac{-3x + 5}{x - 1} = \frac{-3 \cdot 1^- + 5}{1^+ - 1} = \frac{-3 + 5}{0^+} = \frac{2}{0^+} = -\infty$$

$$\lim_{x \to 1^{-}} \frac{-3x+5}{x-1} = \frac{-3 \cdot 1^{-} + 5}{1^{-} - 1} = \frac{-3+5}{0^{-}} = \frac{2}{0^{-}} = -\infty$$

a)
$$\lim_{x \to +\infty} \frac{3x^2 + 5x}{-2x^2 + 7}$$

Calcula mentalmente los siguientes límites:

a)
$$\lim_{x \to +\infty} \frac{3x^2 + 5x}{-2x^2 + 7}$$
b) $\lim_{x \to -\infty} \frac{3x^2 + 5x}{-2x^2 + 7}$
c) $\lim_{x \to +\infty} \frac{-x^5 + 3x^2}{7x^3 - 1}$
d) $\lim_{x \to -\infty} \frac{-x^5 + 3x^2}{7x^3 - 1}$
e) $\lim_{x \to +\infty} \frac{x^2 + 3}{4x^3 - 5}$
f) $\lim_{x \to -\infty} \frac{x^2 + 3}{4x^3 - 5}$

c)
$$\lim_{x \to +\infty} \frac{-x^5 + 3x^2}{7x^3 - 1}$$

d)
$$\lim_{x \to -\infty} \frac{-x^5 + 3x^2}{7x^3 - 1}$$

e)
$$\lim_{x \to +\infty} \frac{x^2 + 3}{4x^3 - 5}$$

f)
$$\lim_{x \to -\infty} \frac{x^2 + 3}{4x^3 - 5}$$

a)
$$-\frac{3}{2}$$
 b) $-\frac{3}{2}$ c) $-\infty$ d) $-\infty$ e) 0 f) 0

5. Límites de funciones irracionales y límites de operaciones

Explora

Halla el resultado de operar los siguientes símbolos; puede dar $+\infty$, $-\infty$ o indeterminado.

a) +
$$\infty$$
 + ∞

$$d) - \infty - \infty$$

Solución:

a)
$$+\infty$$

b) Indeterminado.

c) Indeterminado.

Elabora

19 Representa la función $f(x) = 3 + \sqrt{2 - x}$. Halla el límite de f(x) cuando $x \to 2^-$

20 Representa la función $f(x) = \sqrt{x+2}$. Halla el límite de f(x) cuando $x \to +\infty$

Solución: $\lim_{x \to +\infty} \sqrt{x+2} = +\infty$

21 Halla el siguiente límite:

$$\lim_{x \to +\infty} \left(\frac{5x^2 + x - 1}{x + 3} - 5x \right)$$

$$\lim_{x \to +\infty} \left(\frac{5x^2 + x - 1}{x + 3} - 5x \right) = [\infty - \infty] =$$

$$= \lim_{x \to +\infty} \frac{5x^2 + x - 1 - 5x(x + 3)}{x + 3} =$$

$$= \lim_{x \to +\infty} \frac{5x^2 + x - 1 - 5x^2 - 15x}{x + 3} =$$

$$= \lim_{x \to +\infty} \frac{-14x - 1}{x + 3} = \left[-\frac{\infty}{\infty} \right] = -14$$

Halla el siguiente límite: $\lim_{x \to -\infty} \left(7x^2 - \frac{7x^3 + 14x^2 - 5x}{x + 2} \right)$

Solución

$$\lim_{x \to -\infty} \left(7x^2 - \frac{7x^3 + 14x^2 - 5x}{x + 2} \right) = [\infty - \infty] =$$

$$= \lim_{x \to -\infty} \frac{7x^2 (x + 2) - (7x^3 + 14x^2 - 5x)}{x + 2} =$$

$$= \lim_{x \to -\infty} \frac{7x^3 + 14x^2 - 7x^3 - 14x^2 + 5x}{x + 2} =$$

$$= \lim_{x \to -\infty} \frac{5x}{x + 2} = \left[\frac{\infty}{\infty} \right] = 5$$

23 Halla el siguiente límite: $\lim_{x \to +\infty} (x - \sqrt{x^2 + 6x})$

Solución:

$$\lim_{x \to +\infty} \left(x - \sqrt{x^2 + 6x} \right) = \left[\infty - \infty \right] =$$

$$= \lim_{x \to +\infty} \frac{\left(x - \sqrt{x^2 + 6x} \right) \left(x + \sqrt{x^2 + 6x} \right)}{x + \sqrt{x^2 + 6x}} =$$

$$= \lim_{x \to +\infty} \frac{x^2 - (x^2 + 6x)}{x + \sqrt{x^2 + 6x}} = \lim_{x \to +\infty} \frac{-6x}{x + \sqrt{x^2 + 6x}} = \left[\frac{-\infty}{\infty} \right] =$$

$$= \lim_{x \to +\infty} \frac{-6x}{x + \sqrt{x^2}} = \frac{-6}{1 + 1} = -3$$

24 Halla el siguiente límite:

$$\lim \left(\sqrt{x^2 + 5x + 1} - \sqrt{x^2 - 4x} \right)$$

$$\lim_{x \to -\infty} \left(\sqrt{x^2 + 5x + 1} - \sqrt{x^2 - 4x} \right) = [\infty - \infty] =$$

$$= \lim_{x \to -\infty} \frac{\left(\sqrt{x^2 + 5x + 1} - \sqrt{x^2 - 4x} \right) \left(\sqrt{x^2 + 5x + 1} + \sqrt{x^2 - 4x} \right)}{\sqrt{x^2 + 5x + 1} + \sqrt{x^2 - 4x}} =$$

$$= \lim_{x \to -\infty} \frac{x^2 + 5x + 1 - (x^2 - 4x)}{\sqrt{x^2 + 5x + 1} + \sqrt{x^2 - 4x}} =$$

$$= \lim_{x \to -\infty} \frac{x^2 + 5x + 1 - x^2 + 4x}{\sqrt{x^2 + 5x + 1} + \sqrt{x^2 - 4x}} =$$

$$= \lim_{x \to -\infty} \frac{9x + 1}{\sqrt{x^2 + 5x + 1} + \sqrt{x^2 - 4x}} = \left[\frac{-\infty}{\infty} \right] =$$

$$= \lim_{x \to -\infty} \frac{9x}{\sqrt{x^2 + 5x + 1} + \sqrt{x^2 - 4x}} = \frac{-\infty}{\infty}$$

25 Halla el límite de la siguiente sucesión:

$$\lim_{n \to +\infty} \left(\sqrt{n^2 + 3n - 5} - \sqrt{n^2 + 1} \right)$$

Solución:

$$\lim_{n \to +\infty} \left(\sqrt{n^2 + 3n - 5} - \sqrt{n^2 + 1} \right) = [\infty - \infty] =$$

$$= \lim_{n \to +\infty} \frac{\left(\sqrt{n^2 + 3n - 5} - \sqrt{n^2 + 1} \right) \left(\sqrt{n^2 + 3n - 5} + \sqrt{n^2 + 1} \right)}{\sqrt{n^2 + 3n - 5} + \sqrt{n^2 + 1}} =$$

$$= \lim_{n \to +\infty} \frac{n^2 + 3n - 5 - (n^2 + 1)}{\sqrt{n^2 + 3n - 5} + \sqrt{n^2 + 1}} =$$

$$= \lim_{n \to +\infty} \frac{n^2 + 3n - 5 - n^2 - 1}{\sqrt{n^2 + 3n - 5} + \sqrt{n^2 + 1}} =$$

$$= \lim_{n \to +\infty} \frac{3n - 6}{\sqrt{n^2 + 3n - 5} + \sqrt{n^2 + 1}} = \left[\frac{\infty}{\infty} \right] =$$

$$= \lim_{n \to +\infty} \frac{3n}{\sqrt{n^2 + \sqrt{n^2 + 1}}} = \frac{3}{2}$$

26 Halla el límite de la siguiente sucesión:

$$\lim_{n \to +\infty} \left(3n - \sqrt{9n^2 + 5n} \right)$$

Solución:

Solution:

$$\lim_{n \to +\infty} \left(3n - \sqrt{9n^2 + 5n} \right) = [\infty - \infty] =$$

$$= \lim_{n \to +\infty} \frac{\left(3n - \sqrt{9n^2 + 5n} \right) \left(3n + \sqrt{9n^2 + 5n} \right)}{3n + \sqrt{9n^2 + 5n}} =$$

$$= \lim_{n \to +\infty} \frac{9n^2 - (9n^2 + 5n)}{3n + \sqrt{9n^2 + 5n}} =$$

$$= \lim_{n \to +\infty} \frac{9n^2 - 9n^2 - 5n}{3n + \sqrt{9n^2 + 5n}} =$$

$$= \lim_{n \to +\infty} \frac{-5n}{3n + \sqrt{9n^2 + 5n}} = \left[\frac{-\infty}{\infty} \right] =$$

$$= \lim_{n \to +\infty} \frac{-5n}{3n + \sqrt{9n^2 + 5n}} = \frac{-5}{3 + 3} = -\frac{5}{6}$$

6. Asíntotas de funciones racionales

Explora

Dibuja la siguiente hipérbola, halla sus asíntotas y represéntalas.

$$y = \frac{2}{x - 3} + 1$$

Solución:

Asíntotas:

Vertical: x = 3

Horizontal: y = I

Elabora

Halla las asíntotas de las siguientes funciones racionales y la posición de la curva respecto de cada una de ellas:

27
$$y = \frac{x^2 + 4}{2x}$$

Solución:

• Verticales: x = 0

$$\lim_{x \to 0^+} \frac{x^2 + 4}{2x} = \frac{4}{0^+} = +\infty$$

$$\lim_{x \to 0^{-}} \frac{x^2 + 4}{2x} = \frac{4}{0^{-}} = -\infty$$

· Horizontal: no tiene.

Oblicua:

$$y = \frac{x}{2}$$

$$\frac{x^2+4}{2x} = \frac{x}{2} + \frac{4}{2x} = \frac{x}{2} + \frac{2}{x}$$

 $\lim_{x \to +\infty} \frac{2}{x} = 0^+ \Rightarrow \text{La curva está encima de la asíntota.}$

 $\lim_{x \to -\infty} \frac{2}{x} = 0^- \Rightarrow \text{La curva está debajo de la asíntota.}$

28
$$y = \frac{x^2 - x - 2}{1 - x}$$

Solución:

• Verticales: $I - x = 0 \Rightarrow x = I$

$$\lim_{x \to 1^+} \frac{x^2 - x - 2}{1 - x} = \frac{1^+ - 1^+ - 2}{1 - 1^+} = \frac{-2}{0^-} = +\infty$$

$$\lim_{x \to 1^{-}} \frac{x^{2} - x - 2}{1 - x} = \frac{1^{-} - 1^{-} - 2}{1 - 1^{-}} = \frac{-2}{0^{+}} = -\infty$$

• Horizontal: no tiene.

• Oblicua:

$$\begin{array}{c|c}
x^2 - x - 2 & \underline{-x + 1} \\
-x^2 + x & -x
\end{array}$$

$$\frac{x^2 - x - 2}{1 - x} = -x - \frac{2}{-x + 1} = -x + \frac{2}{x - 1}$$

$$y = -x$$

$$\lim_{x \to +\infty} \frac{2}{x-1} = 0^+ \Rightarrow \text{La curva está encima de la}$$
 asíntota.

 $\lim_{x \to -\infty} \frac{2}{x - 1} = 0^- \Rightarrow \text{La curva está debajo de la asíntota.}$

29
$$y = \frac{6x}{x^2 + 3}$$

Solución:

· Verticales: no tiene.

• Horizontal: y = 0

$$\lim_{x \to +\infty} \frac{6x}{x^2 + 3} = 0^+ \Rightarrow \text{La curva está encima de la asíntota.}$$

$$\lim_{x \to -\infty} \frac{6x}{x^2 + 3} = 0^- \Rightarrow \text{La curva está debajo de la asíntota.}$$

• Oblicua: no tiene.

30
$$y = \frac{x^2}{x^2 - 1}$$

Solución:

• Verticales: $x^2 - 1 = 0 \Rightarrow x = 1, x = -1$

$$\lim_{x \to 1^+} \frac{x^2}{x^2 - 1} = \frac{1^+}{1^+ - 1} = \frac{1}{0^+} = +\infty$$

$$\lim_{x \to 1^{-}} \frac{x^{2}}{x^{2} - 1} = \frac{1^{-}}{1^{-} - 1} = \frac{1}{0^{-}} = -\infty$$

$$\lim_{x \to -1^+} \frac{x^2}{x^2 - 1} = \frac{1^-}{1^- - 1} = \frac{1}{0^-} = -\infty$$

$$\lim_{x \to -1^{-}} \frac{x^{2}}{x^{2} - 1} = \frac{1^{+}}{1^{+} - 1} = \frac{1}{0^{+}} = +\infty$$

$$\lim_{x \to \pm \infty} \frac{x^2}{x^2 - 1} = 1 \Rightarrow y = 1$$

$$\lim_{x \to +\infty} \frac{2}{x^2 - 1} = 0^+ \Rightarrow \text{La curva está encima de la asíntota.}$$

$$\lim_{x \to -\infty} \frac{2}{x^2 - 1} = 0^+ \Rightarrow \text{La curva está encima de la asíntota.}$$

$$\lim_{x \to -\infty} \frac{2}{x^2 - 1} = 0^+ \Rightarrow \text{La curva está encima de la}$$

• Oblicua: no tiene.

Actividades finales

Elabora actividades de las secciones

1. Funciones especiales

31 Representa las funciones:

a)
$$y = Dec(2x)$$

b)
$$y = Signo(sen x)$$

Solución:

a)

b)

32 Representa las funciones:

a)
$$y = |2x - 4|$$

b)
$$y = |x^2 - 2x - 3|$$

Solución:

a)

b)

33 Representa las funciones:

a)
$$y = \left| \frac{4}{x} \right|$$

b)
$$y = |\cos x|$$

Solución:

a)

b)

Representa la función:
$$y = \begin{cases} x^2 - 1 & \text{si } x \le 2 \\ 3 & \text{si } x > 2 \end{cases}$$

Solución:

35 Representa la función:

$$y = \begin{cases} 3^x & \text{si } x \le 1 \\ \frac{3}{x} & \text{si } x > 1 \end{cases}$$

Solución:

36 Representa la función:

$$y = \begin{cases} -3 & \text{si } x < -2 \\ -x & \text{si } -2 \le x \le \\ \sqrt{x - 1} & \text{si } x > 1 \end{cases}$$

Solución:

2. Continuidad

37 Representa las siguientes funciones y estudia la continuidad de forma gráfica:

a)
$$y = \frac{2x}{3} - 1$$

b)
$$y = \left| \frac{3}{x} \right|$$

Solución:

a)

Es una recta y es continua en todo ${\mathbb R}$

b)

Es el valor absoluto de una función racional, de una hipérbola y es discontinua en x = 0

Representa las siguientes funciones y estudia la continuidad de forma gráfica:

a)
$$y = |x|$$

b)
$$y = Dec(x)$$

Solución:

a)

Es el valor absoluto de una función polinómica y es continua en todo $\ensuremath{\mathbb{R}}$

b)

Es la función parte decimal y es discontinua en todos los puntos de abscisa entera.

39 Representa la función:

$$f(x) = \operatorname{sen} x$$

y calcula los siguientes límites:

a)
$$\lim_{x \to \pi/2} f(x)$$

b)
$$\lim_{x \to \pi} f(x)$$

Solución:

a) $\lim_{x \to \pi/2} \operatorname{sen} x = 1$

b) $\lim_{x \to \pi} \sin x = 0$

40 Representa la función:

$$f(x) = \begin{cases} \sqrt{x+4} & \text{si } x \le 0 \\ 2^x & \text{si } x > 0 \end{cases}$$

y calcula los límites laterales en x = 0

Solución:

a) $\lim_{x \to 0^+} f(x) = 1$

b) $\lim_{x \to 0^{-}} f(x) = 2$

41 Representa la función:

$$f(x) = \begin{cases} 4 & \text{si } x < -1 \\ \frac{3}{x+2} & \text{si } x \ge -1 \end{cases}$$

y estudia la continuidad en x = -1

Solución:

$$f(-1) = 3$$

 $\lim_{x \to -1^{+}} f(x) = 3$

 $\lim_{x \to -1^{-}} f(x) = 4$

La función es discontinua en x = -1, donde tiene una discontinuidad de salto finito de I

3. Discontinuidades

42 Representa la función y estudia sus discontinuidades:

$$f(x) = \begin{cases} x+2 & \text{si } x < 1 \\ 3 & \text{si } x \ge 1 \end{cases}$$

Solución:

Se estudia el punto x = I

$$f(1) = 3$$

$$\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} 3 = 3$$

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} (x + 2) = 3$$

La función es continua en x = 1; por tanto, es continua en todo \mathbb{R}

43 Representa la función y estudia sus discontinuidades: y = Signo(x)

Solución:

a)

Se estudia el punto x = 0

$$f(0) = \text{no existe}$$

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \operatorname{Signo}(x) = 1$$

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} \operatorname{Signo}(x) = -1$$

La función es discontinua en x = 0, donde tiene una discontinuidad de primera especie de salto finito de 2 unidades.

44 Representa la función y estudia sus discontinuidades: $y = \sqrt{2 - x}$

Solución:

Es discontinua en x = 2, donde tiene una discontinuidad de segunda especie, ya que no existe el límite lateral por la derecha.

45 Representa la función y estudia sus discontinuidades:

$$y = \frac{2x + 6}{x + 1}$$

Solución:

Es discontinua en x = -1, donde tiene una discontinuidad de primera especie de salto infinito.

46 Representa la función y estudia sus discontinuidades: $y = -\log_2 x$

Solución:

Es continua en todo su dominio, es discontinua en x = 0, donde tiene una discontinuidad de segunda especie, ya que no existe el límite lateral por la izquierda.

47 Representa la siguiente función y estudia sus discontinuidades:

$$f(x) = \begin{cases} 2^x & \text{si } x < I \\ -x + 3 & \text{si } x \ge I \end{cases}$$

Solución:

Se estudia el punto x = I

$$f(1) = -1 + 3 = 2$$

$$\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} (-x + 3) = 2$$

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} 2^{x} = 2$$

La función es continua en x = 1

4. Límites de funciones polinómicas y racionales

48 Calcula mentalmente los siguientes límites:

a)
$$\lim_{x \to +\infty} (-x^5 + 7x^2 - 3x + 1)$$

b) $\lim (-x^5 + 7x^2 - 3x + 1)$

Solución:

a)
$$\lim_{x \to +\infty} (-x^5 + 7x^2 - 3x + 1) = \lim_{x \to +\infty} (-x^5) = -\infty$$

- b) $\lim_{x \to -\infty} (-x^5 + 7x^2 3x + 1) = \lim_{x \to -\infty} (-x^5) = +\infty$
- 49 Calcula el siguiente límite:

$$\lim_{x \to -1} \frac{2x - 2}{x + 1}$$

Representa la función correspondiente.

Solución:

$$\lim_{x \to -1^{+}} \frac{2x - 2}{x + 1} = \frac{2 \cdot (-1^{+}) - 2}{(-1^{+}) + 1} = \frac{-2 - 2}{0^{+}} = \frac{-4}{0^{+}} = -\infty$$

$$\lim_{x \to -1^{-}} \frac{2x - 2}{x + 1} = \frac{2 \cdot (-1^{-}) - 2}{(-1^{-}) + 1} = \frac{-2 - 2}{0^{-}} = \frac{-4}{0^{-}} = +\infty$$

50 Calcula el siguiente límite:

$$\lim_{x \to 1} \frac{x^2 + 2x - 3}{x - 1}$$

Representa la función correspondiente.

Solución:

$$\lim_{x \to 1} \frac{x^2 + 2x - 3}{x - 1} = \left[\frac{0}{0} \right] = \lim_{x \to 1} \frac{(x - 1)(x + 3)}{x - 1} =$$

$$= \lim_{x \to 1} (x+3) = 1+3=4$$

51 Calcula mentalmente los siguientes límites:

a)
$$\lim_{x \to +\infty} \frac{-4x+1}{9x^2+5}$$
 b) $\lim_{x \to -\infty} \frac{-4x+1}{9x^2+5}$

b)
$$\lim_{x \to -\infty} \frac{-4x + 1}{9x^2 + 5}$$

Solución:

a)
$$\lim_{x \to +\infty} \frac{-4x+1}{9x^2+5} = \left[\frac{\infty}{\infty}\right] = 0$$

b)
$$\lim_{x \to -\infty} \frac{-4x + 1}{9x^2 + 5} = \left[\frac{\infty}{\infty}\right] = 0$$

52 Calcula mentalmente los siguientes límites:

a)
$$\lim_{x \to +\infty} \frac{3x^4 - 5}{-x^4 + 2x^3}$$
 b) $\lim_{x \to -\infty} \frac{3x^4 - 5}{-x^4 + 2x^3}$

b)
$$\lim_{x \to -\infty} \frac{3x^4 - 5}{x^4 + 2x^3}$$

a)
$$\lim_{x \to +\infty} \frac{3x^4 - 5}{-x^4 + 2x^3} = \left[\frac{\infty}{\infty}\right] = -3$$

b)
$$\lim_{x \to -\infty} \frac{3x^4 - 5}{-x^4 + 2x^3} = \left[\frac{\infty}{\infty}\right] = -3$$

53 Calcula mentalmente los siguientes límites:

a)
$$\lim_{x \to +\infty} \frac{-x^5 + 7x^3}{4x^2 - 3x}$$

b)
$$\lim_{x \to -\infty} \frac{-x^5 + 7x^3}{4x^2 - 3x}$$

Solución:

a)
$$\lim_{x \to +\infty} \frac{-x^5 + 7x^3}{4x^2 - 3x} = \left[\frac{\infty}{\infty}\right] = -\infty$$

b)
$$\lim_{x \to -\infty} \frac{-x^5 + 7x^3}{4x^2 - 3x} = \left[\frac{\infty}{\infty}\right] = +\infty$$

5. Límites de funciones irracionales y límites de operaciones

54 Representa la función:

$$f(x) = 2 + \sqrt{x+5}$$

Halla el límite de f(x) cuando $x \rightarrow -5^+$

Solución:

55 Representa la función:

$$f(x) = \sqrt{3-x}$$

Halla el límite de f(x) cuando $x \to -\infty$

Solución:

Figure 1. Halla el siguiente límite:
$$\lim_{x \to +\infty} \left(3x - \frac{6x^2 + 5x - 4}{2x + 1} \right)$$

Solución:

$$\lim_{x \to +\infty} \left(3x - \frac{6x^2 + 5x - 4}{2x + 1} \right) = [\infty - \infty] =$$

$$= \lim_{x \to +\infty} \frac{3x(2x + 1) - (6x^2 + 5x - 4)}{2x + 1} =$$

$$= \lim_{x \to +\infty} \frac{6x^2 + 3x - 6x^2 - 5x + 4}{2x + 1} =$$

$$= \lim_{x \to +\infty} \frac{6x^2 + 3x - 6x^2 - 5x + 4}{2x + 1} = \lim_{x \to +\infty} \frac{-2x + 4}{2x + 1} =$$

$$= \left[\frac{-\infty}{\infty} \right] = \frac{-2}{2} = -1$$

Figure 1. Halla el siguiente límite:
$$\lim_{x \to -\infty} \left(\frac{10x^3 + x^2 - 7}{2x^2 + 3} - 5x \right)$$

Solución

$$\lim_{x \to -\infty} \left(\frac{10x^3 + x^2 - 7}{2x^2 + 3} - 5x \right) = [-\infty + \infty] =$$

$$= \lim_{x \to -\infty} \frac{10x^3 + x^2 - 7 - 5x(2x^2 + 3)}{2x^2 + 3} =$$

$$= \lim_{x \to -\infty} \frac{10x^3 + x^2 - 7 - 10x^3 - 15x}{2x^2 + 3} =$$

$$= \lim_{x \to -\infty} \frac{x^2 - 15x - 7}{2x^3 + 3} = \left[\frac{\infty}{\infty} \right] = \frac{1}{2}$$

58 Halla el siguiente límite: $\lim_{x \to +\infty} \left(2x - \sqrt{4x^2 - 3x}\right)$

Solución:

$$\lim_{x \to +\infty} \left(2x - \sqrt{4x^2 - 3x} \right) = \left[\infty - \infty \right] =$$

$$= \lim_{x \to +\infty} \frac{\left(2x - \sqrt{4x^2 - 3x} \right) \left(2x + \sqrt{4x^2 - 3x} \right)}{2x + \sqrt{4x^2 - 3x}} =$$

$$= \lim_{x \to +\infty} \frac{4x^2 - 4x^2 + 3x}{2x + \sqrt{4x^2 - 3x}} = \lim_{x \to +\infty} \frac{3x}{2x + \sqrt{4x^2 - 3x}} = \left[\frac{\infty}{\infty} \right] =$$

$$\lim_{x \to +\infty} \frac{3x}{2x + 2x} = \lim_{x \to +\infty} \frac{3x}{4x} = \frac{3}{4}$$

Halla el siguiente límite: $\lim_{x \to +\infty} \left(\sqrt{x^3 + 2x - 1} - \sqrt{x^3 - 5x} \right)$

$$\lim_{x \to +\infty} \left(\sqrt{x^3 + 2x - 1} - \sqrt{x^3 - 5x} \right) = \left[\infty - \infty \right] =$$

$$= \lim_{x \to +\infty} \frac{\left(\sqrt{x^3 + 2x - 1} - \sqrt{x^3 - 5x} \right) \left(\sqrt{x^3 + 2x - 1} + \sqrt{x^3 - 5x} \right)}{\sqrt{x^3 + 2x - 1} + \sqrt{x^3 - 5x}} =$$

$$= \lim_{x \to +\infty} \frac{x^3 + 2x - 1 - x^3 + 5x}{\sqrt{x^3 + 2x - 1} + \sqrt{x^3 - 5x}} =$$

$$= \lim_{x \to +\infty} \frac{7x - 1}{\sqrt{x^3 + 2x - 1} + \sqrt{x^3 - 5x}} = \left[\frac{\infty}{\infty} \right] = \lim_{x \to +\infty} \frac{7x}{2\sqrt{x^3}} = 0$$

60 Halla el límite de la siguiente sucesión:

$$\lim_{n \to +\infty} \left(\sqrt{3n-5} - \sqrt{n+2} \right)$$

$$\lim_{n \to +\infty} \left(\sqrt{3n-5} - \sqrt{n+2} \right) = [\infty - \infty] = \\
= \lim_{n \to +\infty} \frac{\left(\sqrt{3n-5} - \sqrt{n+2} \right) \left(\sqrt{3n-5} + \sqrt{n+2} \right)}{\sqrt{3n-5} + \sqrt{n+2}} = \\
= \lim_{n \to +\infty} \frac{3n-5-n-2}{\sqrt{3n-5} + \sqrt{n+2}} = \\
= \lim_{n \to +\infty} \frac{2n-7}{\sqrt{3n-5} + \sqrt{n+2}} = \left[\frac{\infty}{\infty} \right] = \\
= \lim_{n \to +\infty} \frac{2}{\sqrt{3n} + \sqrt{n}} = +\infty$$

61 Halla el límite de la siguiente sucesión:

$$\lim_{n \to +\infty} \left(2n - 5 - \sqrt{4n^2 - 7n} \right)$$

Solución:

$$\lim_{n \to +\infty} \left(2n - 5 - \sqrt{4n^2 - 7n} \right) = [\infty - \infty] =$$

$$= \lim_{n \to +\infty} \frac{\left(2n - 5 - \sqrt{4n^2 - 7n} \right) \left(2n - 5 + \sqrt{4n^2 - 7n} \right)}{2n - 5 + \sqrt{4n^2 - 7n}} =$$

$$= \lim_{n \to +\infty} \frac{4n^2 - 20n + 25 - 4n^2 + 7n}{2n - 5 + \sqrt{4n^2 - 7n}} =$$

$$= \lim_{n \to +\infty} \frac{-13n + 25}{2n - 5 + \sqrt{4n^2 - 7n}} = \left[\frac{\infty}{\infty} \right] =$$

$$\lim_{n \to +\infty} \frac{-13n}{2n + 2n} = \lim_{n \to +\infty} \frac{-13n}{4n} = -\frac{13}{4}$$

6. Asíntotas de funciones racionales

62 Halla las asíntotas de las siguientes funciones racionales y la posición de la curva respecto de cada una de ellas:

a)
$$y = \frac{x^2 - 3x + 3}{x - 1}$$
 b) $y = \frac{x^2}{x^2 + 3}$

Solución:

a) • Verticales: $x - 1 = 0 \Rightarrow x = 1$ $\lim_{x \to 1^{+}} \frac{x^{2} - 3x + 3}{x - 1} = \frac{1^{+} - 3 \cdot 1^{+} + 3}{1^{+} - 1} = \frac{1}{0^{+}} = +\infty$ $\lim_{x \to 1^{-}} \frac{x^{2} - 3x + 3}{x - 1} = \frac{1^{-} - 3 \cdot 1^{-} + 3}{1^{-} - 1} = \frac{1}{0^{-}} = -\infty$

• Oblicua: $\begin{array}{ccc}
x^2 - 3x + 3 & \underline{x - 1} \\
-x^2 + x & x - 2
\end{array}$ $\begin{array}{ccc}
-2x + 3 & \underline{2x - 2} & \underline{1}
\end{array}$

$$\frac{x^2 - 3x + 3}{x - 1} = x - 2 + \frac{1}{x - 1}$$

La asíntota es: y = x - 2

 $\lim_{x \to +\infty} \frac{1}{x - 1} = 0^+ \Rightarrow \text{La curva está encima de la}$ asíntota.

 $\lim_{x \to -\infty} \frac{1}{x - 1} = 0^{-} \Rightarrow \text{La curva está debajo de la}$ asíntota.

- b) Verticales: no tiene.
 - Horizontal:

 $\lim_{x \to \pm \infty} \frac{x^2}{x^2 + 3} = 1 \implies \text{La asíntota es: } y = 1$

$$\frac{x^2}{x^2+3} - 1 = \frac{x^2 - x^2 - 3}{x^2+3} = \frac{-3}{x^2+3}$$

 $\lim_{x \to +\infty} \left(-\frac{3}{x^2 + 3} \right) = 0^- \Rightarrow \text{La curva está debajo de la asíntota.}$

 $\lim_{x \to -\infty} \left(-\frac{3}{x^2 + 3} \right) = 0^- \Rightarrow \text{La curva está debajo de la asíntota.}$

- · Oblicua: no tiene.
- 63 Halla las asíntotas de las siguientes funciones racionales y la posición de la curva respecto de cada una de ellas:

a)
$$y = \frac{x}{4 - x^2}$$

b)
$$y = \frac{2x - 1}{x^2}$$

Solución:

a) • Verticales: $4 - x^2 = 0 \Rightarrow x = 2, x = -2$

$$\lim_{x \to 2^+} \frac{x}{4 - x^2} = \frac{2^+}{4 - 4^+} = \frac{2}{0^-} = -\infty$$

$$\lim_{x \to 2^{-}} \frac{x}{4 - x^{2}} = \frac{2^{-}}{4 - 4^{-}} = \frac{2}{0^{+}} = +\infty$$

$$\lim_{x \to -2^+} \frac{x}{4 - x^2} = \frac{-2^+}{4 - 4^-} = \frac{-2}{0^+} = -\infty$$

$$\lim_{x \to -2^{-}} \frac{x}{4 - x^{2}} = \frac{-2^{-}}{4 - 4^{+}} = \frac{-2}{0^{-}} = +\infty$$

• Horizontal:

$$\lim_{x \to \pm \infty} \frac{x}{4 - x^2} = 0 \Rightarrow \text{La asíntota es: } y = 0$$

$$\lim_{x \to +\infty} \frac{x}{4 - x^2} = 0^- \Rightarrow \text{La curva está debajo de la asíntota.}$$

$$\lim_{x \to -\infty} \frac{x}{4 - x^2} = 0^+ \Rightarrow \text{La curva está encima de la asíntota.}$$

• Oblicua: no tiene.

• Horizontal: no tiene.

b) • Verticales: x = 0

$$\lim_{x \to 0^+} \frac{2x - 1}{x^2} = \frac{2 \cdot 0^+ - 1}{0^+} = \frac{-1}{0^+} = -\infty$$

$$\lim_{x \to 0^{-}} \frac{2x - 1}{x^{2}} = \frac{2 \cdot 0^{-} - 1}{0^{+}} = \frac{-1}{0^{+}} = -\infty$$

Horizontal:

$$\lim_{x \to \pm \infty} \frac{2x - 1}{x^2} = 0 \Rightarrow \text{La asíntota es: } y = 0$$

$$\lim_{x \to +\infty} \frac{2x - 1}{x^2} = 0^+ \Rightarrow \text{La curva está encima de la asíntota.}$$

$$\lim_{x \to -\infty} \frac{2x - 1}{x^2} = 0^- \Rightarrow \text{La curva está debajo de la asíntota.}$$

• Oblicua: no tiene.

64 Halla las asíntotas de las siguientes funciones racionales y la posición de la curva respecto de cada una de ellas:

a)
$$y = \frac{5}{x^2 + 1}$$

b)
$$y = \frac{x^2 + 2x - 1}{x}$$

Solución:

a) • Verticales: no tiene.

• Horizontal: y = 0

$$\lim_{x \to \pm \infty} \frac{5}{x^2 + 1} = 0 \Rightarrow \text{La asíntota es: } y = 0$$

$$\lim_{x \to +\infty} \frac{5}{x^2 + 1} = 0^+ \Rightarrow \text{La curva está encima de la asíntota.}$$

$$\lim_{x \to -\infty} \frac{5}{x^2 + 1} = 0^+ \Rightarrow \text{La curva está encima de la asíntota.}$$

· Oblicua: no tiene.

b) • Verticales: x = 0

$$\lim_{x \to 0^+} \frac{x^2 + 2x - 1}{x} = \frac{0^+ + 2 \cdot 0^+ - 1}{0^+} = \frac{-1}{0^+} = -\infty$$

$$\lim_{x \to 0^{-}} \frac{x^{2} + 2x - 1}{x} = \frac{0^{+} + 2 \cdot 0^{-} - 1}{0^{-}} = \frac{-1}{0^{-}} = +\infty$$

· Horizontal: no tiene.

• Oblicua:

$$\frac{x^2 + 2x - 1}{x} = x + 2 + \frac{-1}{x}$$

$$\lim_{x \to +\infty} \left(-\frac{1}{x} \right) = 0^{-} \Rightarrow \text{La curva está debajo de la}$$
 asíntota.
$$\lim_{x \to -\infty} \left(-\frac{1}{x} \right) = 0^{+} \Rightarrow \text{La curva está encima de la}$$
 asíntota.

$$\lim_{x \to -\infty} \left(-\frac{1}{x} \right) = 0^+ \Rightarrow \text{La curva está encima de la asíntota.}$$

Elabora actividades para reforzar

65 Representa las funciones:

a)
$$f(x) = \left| \frac{1}{x} \right|$$

b)
$$f(x) = |2^x|$$

Solución:

a)

b)

66 Representa la función: $f(x) = \frac{2}{x-1}$

Solución:

67 Representa la función: $y = \begin{cases} -x & \text{si } x < -2 \\ x^2 & \text{si } -2 \le x < 1 \\ \log_2 x & \text{si } x \ge 1 \end{cases}$

Halla el dominio y el campo de continuidad de cada una de las siguientes funciones, es decir, el conjunto donde es continua, y razona por qué son iguales o distintos.

a)
$$f(x) = 5x^3 - 3x^2 + x - 4$$

b)
$$f(x) = \frac{x+2}{x-1}$$

c)
$$f(x) = \frac{x-3}{x^2+4}$$

d)
$$f(x) = \sqrt{x-3}$$

Solución:

a) Dom $(f) = \mathbb{R} = (-\infty, +\infty)$

$$C(f) = \mathbb{R} = (-\infty, +\infty)$$

Las funciones polinómicas son continuas en todo $\ensuremath{\mathbb{R}}$

El dominio y el campo de continuidad son iguales por estar definida la función por una sola fórmula.

b) Dom $(f) = \mathbb{R} - \{1\} = (-\infty, 1) \cup (1, +\infty)$

$$C(f) = \mathbb{R} - \{1\} = (-\infty, 1) \cup (1, +\infty)$$

El punto x = 1 de discontinuidad no está en el dominio.

El dominio y el campo de continuidad son iguales por estar definida la función por una sola fórmula.

c) Dom $(f) = \mathbb{R} = (-\infty, +\infty)$

$$C(f) = \mathbb{R} = (-\infty, +\infty)$$

No hay ningún punto de discontinuidad.

El dominio y el campo de continuidad son iguales por estar definida la función por una sola fórmula.

d) Dom $(f) = [3, +\infty)$

$$C(f) = [3, +\infty)$$

El dominio y el campo de continuidad son iguales por estar definida la función por una sola fórmula.

- 69 Halla el dominio y el campo de continuidad de cada una de las siguientes funciones y razona por qué son iguales o distintos.
 - a) $f(x) = 2^x$
- b) $f(x) = \log_2 x$
- c) $f(x) = \operatorname{sen} x$
- d) $f(x) = \operatorname{tg} x$
- e) f(x) = Ent(x)
- f) f(x) = Signo(x)

Solución:

a) Dom $(f) = \mathbb{R} = (-\infty, +\infty)$

$$C(f) = \mathbb{R} = (-\infty, +\infty)$$

El dominio y el campo de continuidad son iguales por estar definida la función por una sola fórmula.

b) Dom $(f) = (0, +\infty)$

$$C(f) = (0, +\infty)$$

El dominio y el campo de continuidad son iguales por estar definida la función por una sola fórmula.

c) Dom $(f) = \mathbb{R} = (-\infty, +\infty)$

$$C(f) = \mathbb{R} = (-\infty, +\infty)$$

El dominio y el campo de continuidad son iguales por estar definida la función por una sola fórmula.

d) $Dom(f) = \mathbb{R} - \left\{ \frac{(2k+1)\pi}{2}, k \in \mathbb{Z} \right\}$

$$C(f) = \mathbb{R} - \left\{ \frac{(2k+1)\pi}{2}, k \in \mathbb{Z} \right\}$$

El dominio y el campo de continuidad son iguales por estar definida la función por una sola fórmula.

e) $Dom(f) = \mathbb{R}$

$$C(f) = \mathbb{R} - \mathbb{Z}$$

El dominio y el campo de continuidad no son iguales. Se observa que la función no está definida por una fórmula analítica.

f) Dom $(f) = \mathbb{R}$

$$C(f) = \mathbb{R} - \{0\}$$

El dominio y el campo de continuidad no son iguales. Se observa que la función no está definida por una fórmula analítica.

70 Halla y clasifica las discontinuidades de la siguiente función a partir de su gráfica:

Solución:

Es discontinua en x = -2 y en x = 2, donde tiene una discontinuidad de primera especie de salto infinito.

Halla y clasifica las discontinuidades de la siguiente función a partir de su gráfica:

Solución:

Es discontinua en x = 3, donde tiene una discontinuidad de segunda especie porque no existe el límite lateral por la derecha.

Actividades finales

72 Halla y clasifica las discontinuidades de la siguiente función a partir de su gráfica:

$$f(x) = \begin{cases} x^2 + 4x + 1 & \text{si } x \neq -4 \\ 4 & \text{si } x = -4 \end{cases}$$

Solución:

Es discontinua en x = -1, donde tiene una discontinuidad evitable. Se evita definiendo f(-1) = -2

73 Calcula mentalmente los siguientes límites:

a)
$$\lim_{x \to 0} (x^5 - 7x^2 - 4x + 23)$$

b)
$$\lim_{x \to 0} (-x^6 + 7x^5 - 2x + 1)$$

Solución:

a) 23

b) 5

74 Calcula mentalmente los siguientes límites:

a)
$$\lim_{x \to +\infty} \frac{-5x^3 + x}{2x^2 - 1}$$

a)
$$\lim_{x \to +\infty} \frac{-5x^3 + x}{2x^2 - 1}$$
 b) $\lim_{x \to -\infty} \frac{-5x^3 + x}{2x^2 - 1}$

Solución:

 $a) - \infty$

b) + ∞

75 Calcula mentalmente los siguientes límites:

a)
$$\lim_{x \to +\infty} (x^3 + 5x^2 - 2x + 7)$$

b)
$$\lim_{x \to -\infty} (-x^4 + 2x^2 - 4x + 5)$$

Solución:

a) $+\infty$

b) -∞

76 Calcula los siguientes límites:

a)
$$\lim_{x \to 5} \frac{3x - 1}{x + 2}$$

b)
$$\lim_{x \to 3} \frac{x-3}{x^2-4x+3}$$

Solución:

a)
$$\lim_{x \to 5} \frac{3x - 1}{x + 2} = \frac{3 \cdot 5 - 1}{5 + 2} = \frac{14}{7} = 2$$

b)
$$\lim_{x \to 3} \frac{x-3}{x^2 - 4x + 3} = \left[\frac{0}{0}\right] = \lim_{x \to 3} \frac{x-3}{(x-1)(x-3)} = \frac{1}{3-1} = \frac{1}{2}$$

77 Calcula mentalmente los siguientes límites:

a)
$$\lim_{x \to +\infty} \frac{-x^3 + 7}{2x^3 + 5}$$

b)
$$\lim_{x \to -\infty} \frac{-x^3 + 7}{2x^3 + 5}$$

Solución:

a) $-\frac{1}{2}$

b) $-\frac{1}{2}$

78 Calcula el siguiente límite: $\lim_{x \to 5} \frac{x+1}{x-5}$

Solución:

a)
$$\lim_{x \to 5^+} \frac{x+1}{x-5} = \frac{5^++1}{5^+-5} = \frac{6}{0^+} = +\infty$$

b)
$$\lim_{x \to 5^{-}} \frac{x+1}{x-5} = \frac{5^{-}+1}{5^{-}-5} = \frac{6}{0^{-}} = -\infty$$

Como los límites laterales son distintos, el límite cuando x tiende a 5 no existe.

79 Calcula mentalmente los siguientes límites:

a)
$$\lim_{x \to +\infty} \frac{5x - 1}{2x^3 + 5}$$

b)
$$\lim_{x \to -\infty} \frac{5x - 1}{2x^3 + 5}$$

Solución:

a) 0

b) 0

80 Calcula los siguientes límites:

a)
$$\lim_{x \to 2} \frac{x^2 - 2x}{x^2 - 4}$$
 b) $\lim_{x \to 0} \frac{1}{x^2}$

b)
$$\lim_{x \to 2} \frac{1}{x}$$

Solución:

a)
$$\lim_{x \to 2} \frac{x^2 - 2x}{x^2 - 4} = \left[\frac{0}{0}\right] = \lim_{x \to 2} \frac{x(x-2)}{(x+2)(x-2)} =$$

$$= \lim_{x \to 2} \frac{x}{x+2} = \frac{2}{2+2} = \frac{2}{4} = \frac{1}{2}$$

b)
$$\lim_{x\to 0} \frac{1}{x^2} = +\infty$$

81 Halla el siguiente límite:

$$\lim_{x \to \sqrt{3}} \frac{x - \sqrt{3}}{x^2 - 3}$$

$$\lim_{x \to \sqrt{3}} \frac{x - \sqrt{3}}{x^2 - 3} = \left[\frac{0}{0}\right] = \lim_{x \to \sqrt{3}} \frac{(x - \sqrt{3})(x + \sqrt{3})}{(x^2 - 3)(x + \sqrt{3})} =$$

$$= \lim_{x \to \sqrt{3}} \frac{x^2 - 3}{(x^2 - 3)(x + \sqrt{3})} = \lim_{x \to \sqrt{3}} \frac{1}{x + \sqrt{3}} =$$

$$= \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{\sqrt{3}}$$

82 Halla los siguientes límites:

a)
$$\lim_{x \to 1} \frac{\sqrt{x+8} - 3}{x-1}$$

b)
$$\lim_{x \to 2} \frac{x-2}{1-\sqrt{3x-5}}$$

Solución:

a)
$$\lim_{x \to 1} \frac{\sqrt{x+8} - 3}{x-1} = \left[\frac{0}{0}\right] =$$

$$= \lim_{x \to 1} \frac{\left(\sqrt{x+8} - 3\right)\left(\sqrt{x+8} - 3\right)}{\left(x-1\right)\left(\sqrt{x+8} + 3\right)} =$$

$$= \lim_{x \to 1} \frac{x+8-9}{\left(x-1\right)\left(\sqrt{x+8} + 3\right)} =$$

$$= \lim_{x \to 1} \frac{x}{\left(x-1\right)\left(\sqrt{x+8} + 3\right)} = \lim_{x \to 1} \frac{1}{\sqrt{x+8} + 3} =$$

$$= \lim_{x \to 1} \frac{1}{\sqrt{1+8} + 3} = \frac{1}{3+3} = \frac{1}{6}$$

b)
$$\lim_{x \to 2} \frac{x - 2}{1 - \sqrt{3x - 5}} = \left[\frac{0}{0}\right] =$$

$$= \lim_{x \to 2} \frac{(x - 2)(1 + \sqrt{3x - 5})}{(1 - \sqrt{3x - 5})(1 + \sqrt{3x - 5})} =$$

$$= \lim_{x \to 2} \frac{(x - 2)(1 + \sqrt{3x - 5})}{1 - 3x + 5} =$$

$$= \lim_{x \to 2} \frac{(x - 2)(1 + \sqrt{3x - 5})}{-3x + 6} =$$

$$= \lim_{x \to 2} \frac{(x - 2)(1 + \sqrt{3x - 5})}{-3x + 6} =$$

$$= \lim_{x \to 2} \frac{(x - 2)(1 + \sqrt{3x - 5})}{-3(x - 2)} =$$

$$= \lim_{x \to 2} \frac{(x - 2)(1 + \sqrt{3x - 5})}{-3(x - 2)} =$$

$$= \lim_{x \to 2} \frac{(x - 2)(1 + \sqrt{3x - 5})}{-3(x - 2)} = \frac{1 + \sqrt{6 - 5}}{-3} = -\frac{2}{3}$$

Halla una función racional que tenga como asíntota vertical la recta x = 2

Solución:

$$f(x) = \frac{1}{x-2}$$

84 Halla una función racional que tenga como asíntota horizontal la recta y = 3

Solución:

$$f(x) = \frac{3x}{x+5}$$

Halla una función racional que tenga como asíntota oblicua la recta y = 2x - 1

Solución:

$$f(x) = 2x - 1 + \frac{1}{x} = \frac{2x^2 - x + 1}{x}$$

86 Representa y halla mentalmente las asíntotas de las siguientes funciones exponenciales:

a)
$$y = 2^x$$

b)
$$y = -5 + 2^{x-1}$$

c)
$$y = -3 + 2^x$$

d)
$$y = 1 + 2^{x-1}$$

Solución:

a)

Horizontal: y = 0

b)

Horizontal: y = -5

c)

Horizontal: y = -3

d)

Horizontal: y = I

87 Representa y halla mentalmente las asíntotas de las siguientes funciones logarítmicas:

a)
$$y = \log_2 x$$

b)
$$y = 3 + \log_2 x$$

c)
$$y = \log_2 (x + 3)$$

d)
$$y = 1 + \log_2 (x - 3)$$

Solución:

a)

Vertical:
$$x = 0$$

b)

Vertical: x = 0

c)

Vertical: x = -3

d)

Vertical: x = 3

- 88 Dada la función: $f(x) = \frac{1}{x}$
 - a) Copia y completa mentalmente las siguientes tablas:

X	0,1	0,01	0,001	0,0001
f(x)				
х	-0, I	-0,01	-0,001	-0,0001
f(x)				

b) Observando las tablas, induce los siguientes límites:

$$\lim_{x \to 0^+} \frac{1}{x} \qquad \lim_{x \to 0^-} \frac{1}{x}$$

c) Calcula f(0), razona si la función f(x) es continua en x = 0 y, en caso negativo, clasifica la discontinuidad.

Solución:

a)	х	0,1	0,01	0,001	0,0001
	f(x)	10	100	1 000	10000
	x	-0, I	-0,0 I	-0,00 I	-0,000 I
	f(x)	-10	-100	−I 000	-10000

b)
$$\lim_{x \to 0^{+}} \frac{1}{x} = +\infty$$
 $\lim_{x \to 0^{-}} \frac{1}{x} = -\infty$

c) f(0) no existe y viendo los límites laterales obtenidos en el apartado b), la función es discontinua en x = 0, donde tiene una discontinuidad de primera especie de salto infinito.

Con calculadora

- 89 Dada la función: $f(x) = 2^x$
 - a) Copia y completa las siguientes tablas:

X	0,1	0,01	0,001	0,0001
f(x)				
х	-0, I	-0,01	-0,001	-0,0001

b) Observando las tablas, induce los siguientes límites:

$$\lim_{x \to 0^+} 2^x \qquad \lim_{x \to 0^-} 2$$

c) Calcula f(0) y razona si la función f(x) es continua en x = 0

Solución:

a)	х	0,1	0,01	0,001	0,0001
	f(x)	1,07	1,007	1,0007	1,00007
	X	-0,I	-0,01	-0,00 l	-0,000 l
	f(x)	0,9	0,99	0,999	0,9999

b)
$$\lim_{x \to 0^+} 2^x = 1$$
 $\lim_{x \to 0^-} 2^x =$

c) f(0) = 1 y, viendo los límites laterales obtenidos en el apartado b), la función es continua en x = 0

90 Dada la función:

$$f(x) = \sqrt{x}$$

a) Copia y completa las siguientes tablas:

х	0,1	0,01	0,001	0,0001
f(x)				
X	-0, I	-0,01	-0,00 l	-0,000 l
f(x)				

b) Observando las tablas, induce los siguientes límites:

$$\lim_{x \to 0^{+}} \sqrt{x}$$

$$\lim_{x \to 0^{-}} \sqrt{x}$$

c) Calcula f(0), razona si la función f(x) es continua en x = 0 y clasifica la discontinuidad.

Solución:

. \					
a)	X	0,1	0,01	0,001	0,0001
	f(x)	0,3	0,1	0,03	0,01
	х	-0,I	-0,01	-0,00I	-0,000 I
	f(x)		No e	xisten	

b)
$$\lim_{x \to 0^+} \sqrt{x} = 0$$
 $\lim_{x \to 0^-} \sqrt{x}$ no existe.

c) f(0) = 0 y, viendo los límites obtenidos en el apartado
 b), la función es discontinua en x = 0, donde tiene una discontinuidad de segunda especie.

91 Dada la función:

$$f(x) = x^2 + x + 9$$

a) Copia y completa las siguientes tablas:

X	-10	-100	– I 000	-10000
f(x)				
х	10	100	1 000	10000
f(x)				

b) Observando las tablas, induce los siguientes límites:

$$\lim_{x \to -\infty} (x^2 + x + 9) \qquad \lim_{x \to +\infty} (x^2 + x + 9)$$

Solución:

f(x) 99 9909 999009 99 x 10 100 1000	-10000
x 10 100 1000	99 990 009
10 100 1000	10000
f(x)	00010009

b)
$$\lim_{x \to -\infty} (x^2 + x + 9) = +\infty$$
 $\lim_{x \to +\infty} (x^2 + x + 9) = +\infty$

92 Dada la función:

$$f(x) = \frac{3x^2 + 2}{x^2 - 1}$$

 a) Copia y completa la siguiente tabla. En la cuarta fila está el valor de la función menos el valor de la asíntota horizontal

x	10	100	1 000	10 000
f(x)				
y = 3				
f(x) - 3				

b) Observando la tabla, razona si la curva está encima o debajo de la asíntota.

Solución:

a)					
,	x	10	100	1 000	10000
	f(x)	3,05	3,0005	3,000005	3,00000005
	y = 3	3	3	3	3

0.05 0.0005 0,000005

0.0000005

b) La curva está encima de la asíntota.

93 Dada la función:

f(x) - 3

$$f(x) = \frac{2x^2 + x + 1}{x}$$

 a) Copia y completa la siguiente tabla. En la cuarta fila está el valor de la función menos el valor de la asíntota horizontal.

x	10	100	1 000	10 000
f(x)				
y = 2x + 1				
f(x)-(2x+1)				

b) Observando la tabla, razona si la curva está encima o debajo de la asíntota.

Solución:

a)

х	10	100	1 000	10000
f(x)	21,1	201,01	2001,001	20 001,0001
y = 2x + 1	21	201	2001	20 00 1
f(x)-(2x+1)	0,1	0,01	0,001	0,0001

b) La curva está encima de la asíntota.

Elabora problemas

94 Representa la función:

$$f(x) = \frac{x}{|x|}$$

¿Qué función es?

Solución:

Es la función y = Signo(x)

95 Halla el valor de k para que la siguiente función sea continua en todo $\mathbb R$

$$f(x) = \begin{cases} 2x - 1 & \text{si } x \le 2\\ k & \text{si } x > 2 \end{cases}$$

Solución:

$$f(2) = 2 \cdot 2 - 1 = 4 - 1 = 3$$

$$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{-}} (2x - 1) = 4 - 1 = 3$$

$$\lim_{x \to 2^{+}} f(x) = \lim_{x \to 2^{+}} k = k$$

Por tanto, tiene que ser: k = 3

96 Halla el valor de n para que la siguiente función sea continua en todo $\mathbb R$

$$f(x) = \begin{cases} -x + n & \text{si } x < 2\\ x^2 - 1 & \text{si } x \ge 2 \end{cases}$$

Solución:

$$f(-2) = 2^2 - 1 = 4 - 1 = 3$$

$$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{-}} (-x + n) = -2 + n$$

$$\lim_{x \to 2^{+}} f(x) = \lim_{x \to 2^{+}} (x^{2} - 1) = 4 - 1 = 3$$

Por tanto, tiene que ser: $-2 + n = 3 \Rightarrow n = 5$

97 Halla el valor de k para que la siguiente función sea continua en todo $\mathbb R$

$$f(x) = \begin{cases} x+2 & \text{si } x < 1 \\ \frac{k}{x} & \text{si } x \ge 1 \end{cases}$$

Solución:

$$f(1) = \frac{k}{1} = k$$

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} (x+2) = 1+2=3$$

$$\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} \frac{k}{x} = k$$

Por tanto, tiene que ser: k = 3

98 Halla el valor de n para que la siguiente función sea continua en todo $\mathbb R$

$$f(x) = \begin{cases} 2^x & \text{si } x \le 1\\ 3x + n & \text{si } x > 1 \end{cases}$$

Solución:

$$f(1) = 2^1 = 2$$

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} 2^{x} = 2$$

$$\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} (3x + n) = 3 + n$$

Por tanto, tiene que ser: $3 + n = 2 \Rightarrow n = -1$

99 Los ingresos de una empresa, en función del número de años que lleva funcionando, vienen dados por la función:

$$f(x) = \begin{cases} \sqrt{x} & \text{si } 0 \le x \le 9\\ \frac{4x - 30}{x - 7} & \text{si } x > 9 \end{cases}$$

donde x viene expresado en años, y f(x), en millones de euros.

¿Es continua la función f(x)?

Solución:

Sí es continua, porque:

$$f(9) = 3$$

$$\lim_{x \to 9^-} f(x) = \lim_{x \to 9^-} \sqrt{x} = 3$$

$$\lim_{x \to 9^+} f(x) = \lim_{x \to 9^+} \frac{4x - 30}{x - 7} = \frac{6}{2} = 3$$

En un aparcamiento que permanece abierto 10 horas diarias, hay un cartel que dice: «cada hora, 1,5 €» y «más de 4 horas, 7 €»

a) Representa la función correspondiente.

b) ¿En qué puntos es discontinua, y qué tipo de discontinuidad tiene en cada uno de ellos?

Solución:

a)

b) Es discontinua en: x = 1, x = 2, x = 3, x = 4

En esos puntos tiene una discontinuidad de primera especie de salto finito. En los tres primeros puntos el salto es de 1,5 y en el último el salto es de 1

Observando la gráfica:

calcula:

a)
$$\lim_{x \to +\infty} \left(\frac{x^3}{3} - 4x \right)$$

a)
$$\lim_{x \to +\infty} \left(\frac{x^3}{3} - 4x \right)$$
 b) $\lim_{x \to -\infty} \left(\frac{x^3}{3} - 4x \right)$

Solución:

$$a) + \infty$$

102 Observando la gráfica:

calcula:

a)
$$\lim_{x \to +\infty} \frac{x^2 + 1}{x}$$

b)
$$\lim_{x \to -\infty} \frac{x^2 + 1}{x}$$

c)
$$\lim_{x \to 0^+} \frac{x^2 + 1}{x}$$

d)
$$\lim_{x \to 0^{-}} \frac{x^2 + 1}{x}$$

Solución:

a)
$$+\infty$$

103 Calcula el valor de a para que:

$$\lim_{x \to +\infty} \frac{ax^2 + 3x}{2x^2 - 5} = 3$$

Solución:

$$\frac{a}{2} = 3 \Rightarrow a = 6$$

104 Observando la gráfica:

$$f(x) = \sqrt{x+5} - \sqrt{x+3}$$

a) Calcula: $\lim_{x \to +\infty} (\sqrt{x+5} - \sqrt{x+3})$

b) Halla el límite analíticamente para comprobar el resultado.

Solución:

a) 0

b)
$$\lim_{x \to +\infty} \left(\sqrt{x+5} - \sqrt{x+3} \right) = [\infty - \infty] =$$

$$= \lim_{x \to +\infty} \frac{\left(\sqrt{x+5} - \sqrt{x+3} \right) \left(\sqrt{x+5} + \sqrt{x+3} \right)}{\sqrt{x+5} + \sqrt{x+3}} =$$

$$= \lim_{x \to +\infty} \frac{x+5 - (x+3)}{\sqrt{x+5} + \sqrt{x+3}} =$$

$$= \lim_{x \to +\infty} \frac{x+5 - x+3}{\sqrt{x+5} + \sqrt{x+3}} = \lim_{x \to +\infty} \frac{2}{\sqrt{x+5} + \sqrt{x+3}} = 0$$

105 Rocío comienza a trabajar en una empresa de informática. La función que calcula el número de ordenadores que monta, en función del tiempo, viene dada por:

$$f(t) = \frac{6t}{t+5}$$

donde t es el número de días que lleva trabajando, y f(t), el número de ordenadores que monta.

- a) ¿Cuántos ordenadores monta el primer día?
- b) ¿Cuántos ordenadores monta el quinto día?
- c) ¿Cuántos ordenadores monta el décimo día?
- d) ¿Qué día montará 5 ordenadores?
- e) ¿Puede llegar a montar algún día 7 ordenadores?
- f) ¿A qué número tenderá cuando lleve mucho tiempo trabajando?

Solución:

- a) I
- b) 3
- c) 4

d)
$$\frac{6t}{t+5}$$
 = 5 \Rightarrow t = 25

e) No, porque al resolver la ecuación $\frac{6t}{t+5}$ = 7, se obtiene un número negativo. f) $\lim_{t \to +\infty} \frac{6t}{t+5}$ = 6

f)
$$\lim_{t \to +\infty} \frac{6t}{t+5} = \epsilon$$

106 Los gastos mensuales en euros que una familia tiene en alimentación vienen dados por la función:

$$f(x) = \begin{cases} 0.4x + k & \text{si } 0 \le x \le 1000 \\ \frac{2000x}{x + 3000} & \text{si } x > 1000 \end{cases}$$

donde x son los ingresos de la familia en euros.

- a) Halla el valor de k para que los gastos sean continuos; es decir, no haya salto en $x = 1000 \in$
- b) ¿Hacia qué valor se estabilizan los gastos de alimentación de las familias con la renta más alta?

a)
$$k = 100$$

b)
$$\lim_{x \to +\infty} \frac{2000x}{x + 3000} = 2000 €$$

107 En una ciudad se hace un censo inicial y se sabe que el número de habitantes evoluciona según la función:

$$P(t) = \frac{t^2 + 500t + 2500}{(t + 50)^2}$$

donde t es el número de años transcurridos desde que se hace el censo, y P(t) es el número de habitantes en millones.

- a) ¿Cuántos habitantes hay cuando se realiza el censo inicial?
- b) ¿Cuántos habitantes habrá dentro de 50 años?
- c) Con el paso del tiempo, ¿hacia qué población se estabilizará? Halla la asíntota horizontal para comprobarlo.

Solución:

- a) $t = 0 \Rightarrow P(0) = 1$ millón
- b) $t = 50 \Rightarrow P(50) = 3$ millones

c)
$$\lim_{t \to \infty} \frac{t^2 + 500t + 2500}{(t + 50)^2} = 1$$
 millón

Asíntota horizontal: y =

Halla las asíntotas de la siguiente función racional y la posición de la curva respecto de cada una de ellas:

$$y = \frac{3x}{x^2 + 1}$$

Solución:

- Verticales: no tiene.
- Horizontal: y = 0

$$\lim_{x \to +\infty} \frac{3x}{x^2 + 1} = 0^+ \Rightarrow \text{La curva está encima de la asíntota}.$$

$$\lim_{x \to -\infty} \frac{3x}{x^2 + 1} = 0^- \Rightarrow \text{La curva está debajo de la asíntota.}$$

- · Oblicua: no tiene.
- Halla las asíntotas de la siguiente función racional y la posición de la curva respecto de cada una de ellas:

$$y = \frac{x^2 + 1}{x^2 - 1}$$

Solución:

• Verticales: $x^2 - 1 = 0 \Rightarrow x = 1, x = -1$

$$\lim_{x \to 1^+} \frac{x^2 + 1}{x^2 - 1} = \frac{1^+ + 1}{1^+ - 1} = \frac{2}{0^+} = +\infty$$

$$\lim_{x \to 1^{-}} \frac{x^{2} + 1}{x^{2} - 1} = \frac{1^{-} + 1}{1^{-} - 1} = \frac{2}{0^{-}} = -\infty$$

$$\lim_{x \to -1^{+}} \frac{x^{2} + 1}{x^{2} - 1} = \frac{1^{-} + 1}{1^{-} - 1} = \frac{2}{0^{-}} = -\infty$$

$$\lim_{x \to -1^{-}} \frac{x^2 + 1}{x^2 - 1} = \frac{1^+ + 1}{1^+ - 1} = \frac{2}{0^+} = +\infty$$

• Horizontal: y = I

 $\lim_{x \to +\infty} \frac{2}{x^2 - 1} = 0^+ \Rightarrow \text{La curva está encima de la asíntota.}$

 $\lim_{x \to -\infty} \frac{2}{x^2 - 1} = 0^+ \Rightarrow \text{La curva está encima de la asíntota.}$

· Oblicua: no tiene.

Elabora problemas de más nivel

110 Halla el valor de f(3) para que la siguiente función sea continua en todo \mathbb{R}

$$f(x) = \frac{x^2 - 3x}{x - 3}$$

Solución:

f(3) = 3

$$\lim_{x \to 3} \frac{x^2 - 3x}{x - 3} = \lim_{x \to 3} x = 3$$

Halla el valor de m y n para que la siguiente función sea continua en todo \mathbb{R}

$$f(x) = \begin{cases} x^2 & \text{si } x \le -1 \\ mx + n & \text{si } -1 < x < 2 \\ \frac{2}{x} & \text{si } x \ge 2 \end{cases}$$

Solución:

$$\begin{vmatrix}
-m+n=1\\2m+n=1
\end{vmatrix} \Rightarrow m=0, n=1$$

112 Halla el valor de m y n para que la siguiente función sea continua en todo \mathbb{R}

$$f(x) = \begin{cases} 2^x & \text{si } x \le 1\\ mx + n & \text{si } 1 \le x \le 2\\ \log_2 x & \text{si } x \ge 2 \end{cases}$$

Solución:

113 Una determinada especie evoluciona según la función:

$$f(t) = 5 + 2^{-t}$$

donde t es el número de años y f(t) son los millones de unidades existentes.

Representa la gráfica y, observándola, contesta a la siguiente pregunta: ¿la especie está en vías de extinción?

Solución:

La especie no está en vías de extinción, porque tiende a estabilizarse hacia 5 millones de unidades.

$$\lim_{t \to \infty} (5 + 2^{-t}) = 5$$

114 Una determinada especie evoluciona según la función:

$$f(t) = \frac{2}{t}, t > 0$$

donde t es el número de años y f(t) son los millones de unidades existentes.

Representa la gráfica y, observándola, contesta a la siguiente pregunta: ¿la especie está en vías de extinción?

Solución:

La especie sí está en vías de extinción, porque tiende hacia 0.

$$\lim_{t \to +\infty} \frac{2}{t} = 0$$

Una entidad financiera paga un tanto por ciento en función del dinero depositado, definido por:

$$R(x) = \frac{6x + 8000}{x + 10000}$$

donde x es la cantidad de dinero depositado en euros, y R(x), el valor del tanto por ciento.

¿Hacia qué valor se estabilizará el tanto por ciento cuando se deposite una cantidad muy grande?

Solución:

$$\lim_{x \to +\infty} \frac{6x + 8000}{x + 10000} = 6\%$$

116 Observando la gráfica de la sucesión:

a) Calcula:
$$\lim_{n \to +\infty} \frac{3n^2 - 2n + 4}{n^2 + 5}$$

b) Halla el límite analíticamente para comprobar el resultado.

Solución:

- a) 3
- b) 3

Los beneficios o las pérdidas de una empresa vienen dados por la función:

$$f(x) = \frac{5x^2 - 20}{x^2 + 4}$$

donde x es el número de años que lleva funcionando, y f(x) son millones de euros.

- a) Halla los beneficios o las pérdidas en el primer, segundo y tercer años.
- b) ¿Hacia qué valor se estabilizan las ganancias o pérdidas con el paso del tiempo?

Solución:

a) -3, 0, $\frac{25}{13}$ = 1,9 millones de euros, respectivamente.

b) $\lim_{x \to +\infty} \frac{5x^2 - 20}{x^2 + 4} = 5$ millones de euros de ganancias.

Halla una función racional que tenga como asíntotas verticales las rectas x = 3, x = -1

Solución:

$$f(x) = \frac{1}{(x-3)(x+1)} \Rightarrow f(x) = \frac{1}{x^2 - 2x - 3}$$

Calcula una función racional que tenga como asíntotas las rectas x = -2 e y = 3

Solución:

$$y = \frac{3x}{x+2}$$

Halla una función racional que tenga como asíntotas las rectas x = 1 e y = x - 2

$$y = x - 2 + \frac{1}{x - 1} \Rightarrow f(x) = \frac{x^2 - 3x + 3}{x - 1}$$