treecm: an introduction

Marco Bascietto

February 13, 2012

1 Examples

1.1 Plot centre of mass

We will make use of the data set bundled in the package to plot a basic view of masses of branches and logs of a stone pine sampled by the author:

- > library(treecm)
- > data(treeData)
- > print(treeData)

\$fieldData

	${\tt azimuth}$	${\tt dBase}$	dTip	length	tipD	height	tilt	${\tt toBePruned}$	biomass
L1	275	73	41	10.2	2.50	0.00	80	FALSE	1740.88372
L2	275	41	16	3.9	2.75	10.20	80	FALSE	183.92713
B1	190	15	0	NA	7.95	10.10	0	FALSE	119.69839
B2	200	22	0	NA	7.95	10.40	0	FALSE	246.69214
ВЗ	230	15	0	NA	7.95	10.40	0	FALSE	119.69839
B4	200	18	0	NA	7.95	11.15	0	FALSE	168.88783
B5	180	7	0	NA	7.95	11.30	0	FALSE	28.38618
B6	150	6	0	NA	7.95	11.30	0	FALSE	21.21769
B7	340	16	0	NA	3.95	11.30	0	FALSE	135.21104
B8	220	13	0	NA	7.95	11.80	0	FALSE	91.35675
В9	165	19	0	NA	7.95	11.80	0	FALSE	187.04037
B10	280	8	0	NA	3.95	11.90	0	FALSE	36.52644
B11	170	9	0	NA	7.95	11.90	0	FALSE	45.62402
B12	265	8	0	NA	7.95	12.20	0	FALSE	36.52644
B13	75	6	0	NA	3.95	12.20	0	FALSE	21.21769
B14	180	6	0	NA	7.95	12.20	0	FALSE	21.21769
B15	170	6	0	NA	7.95	12.60	0	FALSE	21.21769
B16	120	5	0	NA	7.95	12.60	0	FALSE	15.03793
B17	10	14	0	NA	3.95	13.00	0	FALSE	105.07799
B18	180	13	0	NA	7.95	13.00	0	FALSE	91.35675
B19	260	13	0	NA	7.95	13.20	0	FALSE	91.35675
B20	75	6	0	NA	3.95	13.20	0	FALSE	21.21769

```
B21
         75
                10
                             NA 3.95
                                      13.75
                                                0
                                                       FALSE
                                                                55.66636
B22
        215
                 7
                      0
                            NA 7.95
                                      13.75
                                                0
                                                       FALSE
                                                                28.38618
B23
        140
                 7
                      0
                            NA 7.95
                                      13.75
                                                0
                                                       FALSE
                                                                28.38618
        275
                            3.0 3.00
                16
                      0
                                      14.10
                                               80
                                                       FALSE
                                                               135.21104
$density
[1] 620
$allometryFUN
function (x, diameter)
{
    a <- 0.7201
    b <- 1.8882
    powerEquation(a, b, as.real(x[diameter]))
}
$branchesCM
[1] 1
```

This data set has been collected for a 17.1 metres tall stone pine whose stem was tilted approx. 20° from the vertical plane (or 80° from the horizonatal plane). The stem has been sectioned in two logs (L1 and L2), and a final branch (C). The crown was made up of 23 branches (B1-B23), all of them horizontal (ie tilted 0°). The package recognizes rows as branches because their diameter at tip is 0.

Please notice that some rules have to be followed in order to record sound data in the field:

- the diameter of the tip of L1 is equal to the diameter of the base of L2. L2 tip diameter is, in turn, equal to C base diameter. Height figures must match as well as diameter measures
- the distance of the tip of the branch (tipD) is not the length of the branch but the distance between tree base (the origin of the cartesian plot) and branch tip
- note that only the length of C branch has been recorded as it is the only branch not being horizontal. Non horizontal branches affect tree CM z-coordinate. When non-horizontal branches are present, and if one is interested in the z-coordinate of CM, than one should record branch length and its angle from the horizonatl plane (tilt). Otherwise branch length is not needed.

Let's get going and compute the centre of mass of this pine:

```
> vectors <- treeVectors(treeData)
> CM <- centreOfMass(vectors)
> summary(CM)
```

```
Coordinates of the centre of mass: Cartesian (x/m, y/m, z/m): -2.09 , -1.98 , 7.70 Polar (angle/degrees, distance/m, height/m): 226 , 2.88 , 7.70
```

The core of the package is the summary method for CM object. The centre of mass for this stone pine lies 2.88 metres South-West of tree base (226° from magnetic North), 7.70 metres above ground. Cartesian coordinates are provided as well, though not so usefull as polar ones.

A simple visualization of tree centre of mass and its logs and branches is achieved simply by:

```
> plot.vectors(vectors,
+ CM = CM,
+ main = "A stone pine centre of mass"
+ )
```