

An Introduction to *p*-adic Numbers

Geoff Vooys University of Calgary

November 3, 2017

The *p*-adic Valuation and some Properties

Definition

Let $\mathbb{Z}^{\times} := \{ n \in \mathbb{Z} \mid n \neq 0 \}$ and let $p \in \mathbb{Z}$ be a fixed prime. Then define the p-adic valuation on \mathbb{Z} to be the function $v_n : \mathbb{Z}^{\times} \to \mathbb{R}$ given by, for all $a \in \mathbb{Z}^{\times}$,

$$v_p(a) := \max\{n \in \mathbb{N} : p^n | a\}.$$

Properties of the *p*-adic Valuation

Properties of the p-adic Valuation

The mapping v_p satisfies the following:

- 1. For all $n \in \mathbb{Z}^{\times}$ we have $v_n(n) = v_n(-n)$;
 - 2. For all $n \in \mathbb{Z}^{\times}$ we have $v_p(n) \geq 0$;
 - 3. for all $m, n \in \mathbb{Z}^{\times}$ we have $v_p(mn) = v_p(m) + v_p(n)$;
 - 4. For all $m, n \in \mathbb{Z}^{\times}$ we have

$$\inf\{v_p(m), v_p(n)\} \le v_p(m+n) \le \sup\{v_p(m), v_p(n)\}.$$

Proof of Properties (1) and (3)

Proof.

(1): Begin by letting $a \in \mathbb{Z}$ be arbitrary. Then

$$v_p(a) = \max\{n \in \mathbb{N} : p^n | a\} = \max\{n \in \mathbb{N} : p^n | -a\} = v_p(-a).$$

(3): Let $m,n\in\mathbb{Z}^{\times}$ and assume that $v_p(m)=a$ and $v_p(n)=b$. Now write $m=kp^a$ and $n=\ell p^b$ for $\gcd(k,p)=1=\gcd(\ell,p)$. Then

$$mn = (kp^a)(\ell p^b) = k\ell p^{a+b}$$

so that $p^{a+b}|mn$. Since a and b are the maximum integers such that $p^a|m$ and $p^b|n$, a+b is the maximum integer such that $p^r|mn$. Thus

$$v_p(m) + v_p(n) = a + b = \max\{r \in \mathbb{N} : p^r | mn\} = v_p(mn).$$

Extending v_p and the p-adic Norm

Definition

Extend v_p from \mathbb{Z}^\times to $\mathbb{Q}^\times:=\{a\in\mathbb{Q}:a\neq 0\}$ via, for all $a=m/n\in\mathbb{Q}^\times$ written such that $m,n\in Z^\times$ and $\gcd(m,n)=1$,

$$v_p(a) = v_p\left(\frac{m}{n}\right) = v_p(m) - v_p(n).$$

Definition

Define the map $|\cdot|_p:\mathbb{Q}\to\mathbb{R}$ via the assignment

$$|a|_p := \begin{cases} 0 & \text{if } a = 0; \\ p^{-v_p(a)} & \text{if } a \in \mathbb{Q}^{\times}. \end{cases}$$

This defines the p-adic norm on \mathbb{Q} .

The *p*-adic Norm is Actually a Norm!

Theorem

Let $a, b \in \mathbb{Q}$. Then the following hold:

- 1. $|a|_p \ge 0$ and $|a|_p = 0$ if and only if a = 0;
- 2. $|ab|_p = |a|_p |b|_p$;
- 3. $|a+b|_p \le \max\{|a|_p, |b|_p\}.$

Proof (of Selected Facts)

Proof.

- (1): Begin by noting that for all real numbers $x, p^x > 0$. Thus $|x|_p > 0$ for all $x \in \mathbb{Q}$ and $|x|_p > 0$ for all $x \in \mathbb{Q}^\times$. Then $|x|_p = 0$ if and only if x = 0.
- (2): If x = 0 or y = 0 there is nothing to show, so take $x, y \neq 0$. Then

$$|xy|_p = p^{-v_p(xy)} = p^{-v_p(x)-v_p(y)} = p^{-v_p(x)}p^{-v_p(y)} = |x|_p|y|_p.$$

Making a Metric from the p-adic Norm

Definition

Define a function $d:\mathbb{Q}\times\mathbb{Q}\to\mathbb{R}$ via the assignment, for all $x,y\in\mathbb{Q}$,

$$d(x,y) := |x - y|_p.$$

Proving that this is a Metric

Proof

Symmetry: Let $x, y \in \mathbb{Q}$. Then since $v_p(a) = v_p(-a)$ for all $a \in \mathbb{Z}$, if $z \in \mathbb{Q}$ with z = m/n in lowest terms we have

$$v_p(z) = v_p(m/n) = v_p(m) - v_p(n) = v_p(-m) - v_p(n) = v_p(-m/n) = v_p(-z)$$

so it follows that

$$d(x,y) = |x - y|_p = p^{-v_p(x-y)} = p^{-v_p(y-x)} = |y - x|_p = d(y,x).$$

Nondegeneracy: Let $x, y \in \mathbb{Q}$. Then

$$d(x,y) = 0 \iff |x-y|_p = 0 \iff x-y = 0 \iff x = y.$$

Proof, cont.

Proof.

(Strong) Triangle Inequality: Let $x,y,z\in\mathbb{Q}$. Then set $\alpha=x-y$ and $\beta=y-z$ so that $x-z=x-y+y-z=\alpha+\beta$. It then follows that

$$\begin{split} d(x,z) &= |x-z|_p = |\alpha+\beta|_p \leq \max\{|\alpha|_p, |\beta|_p\} = \max\{|x-y|_p, |y-z|_p\} \\ &= \max\{d(x,y), d(y,z)\} \leq d(x,y) + d(y,z) \end{split}$$

Ultrametric Spaces

Definition

Let (M,∂) be a metric space. We then say that M is ultrametric if M satisfies the strong triangle inequality, i.e., for all $x,y,z\in M$ we have

$$\partial(x,y) \le \max\{\partial(x,z),\partial(y,z)\}.$$

Remark

Note that this above condition states that the distance between x and y is less than the maximum distance between x, y, and any "intermediate" point z. We can use this to show that in any ultrametric space M, if $\partial(x,y) < r$ for some r > 0, then $B_r(x) = B_r(y)$.

Facts About Ultrametric Spaces

Theorem

Let (M, ∂) be an ultrametric space. Then if (x_n) is a sequence in M such that $\partial(x_n, x_{n+1}) \to 0$ as $n \to \infty$, (x_n) is a Cauchy sequence in M.

Theorem

Let (M, ∂) be an ultrametric space. Then M is totally disconnected.

Is $(\mathbb{Q}, |\cdot|_p)$ Complete?

Theorem

The metric space $(\mathbb{Q}, |\cdot|_p)$ is not complete.

Sketch

Let $p \in \mathbb{N}$ be prime with and fix some $a \in \mathbb{Z}$ with $1 \le a \le p-1$ and consider the sequence

$$x_n := a^{p^n}.$$

Then (x_n) is Cauchy in the p-adic norm (use Fermat's Little Theorem to derive this) and set $x:=\lim x_n$. It can be shown that x is a nontrivial $(p-1)^{th}$ root of unity. Because $\mathbb Q$ contains only a first and second root of unity, we conclude that $x\notin \mathbb Q$ and hence $(\mathbb Q,|\cdot|_p)$ is not complete.

Finally, the *p*-adic Numbers

Definition

Define the space $(\mathbb{Q}_p,|\cdot|_p)$ of p-adic numbers to be the completion of \mathbb{Q} with respect to the p-adic norm.

Definition

Define the space $(\mathbb{Z}_p, |\cdot|_p)$ of *p*-adic integers to be the closed ball

$$\mathbb{Z}_p := B_1(0) = \{ x \in \mathbb{Q}_p : |x|_p \le 1 \}.$$

Theorem

The space $(\mathbb{Q}_p, |\cdot|_p)$ is a topological field and $(\mathbb{Z}_p, |\cdot|_p)$ is a topological ring.

Fun p-adic Facts!

Theorem

The space $(\mathbb{Z}_p,|\cdot|_p)$ is homeomorphic to the Cantor set $C\subset\mathbb{R}$ for all primes $p\in\mathbb{N}.$

Theorem

Every p-adic number $x \in \mathbb{Q}_p$ can be represented as a power series

$$\sum_{n=m}^{\infty} a_n p^n$$

for some $m\in\mathbb{Z}$ and $a_n\in\{0,\cdots,p-1\}$ for all n. Furthermore, $x\in\mathbb{Z}_p$ if and only if

$$x = \sum_{n=0}^{\infty} a_n p^n.$$

Thanks For Coming!

