Асимптотический анализ. Нотации $\mathcal{O}, \Omega, \Theta, o, \omega$ и связи между ними

Лесников Юрий, ceagest

1 \mathcal{O} -большое

Определение 1.1. Рассмотрим множество функций, которое задается так:

$$f(n) \in \mathcal{O}(g(n)) \iff \exists N_0 > 0, \exists C > 0 : \forall n \ge N_0 \quad \hookrightarrow \quad 0 \le f(n) \le Cg(n)$$

Говорят, что:

- ullet f асимптотически не больше, чем g
- \bullet f не больше g с точностью до константы
- f это \mathcal{O} -большое от g

$\mathbf{2}$ Ω

Определение 2.1. Рассмотрим множество функций, которое задается так:

$$f(n) \in \Omega(g(n)) \iff \exists N_0 > 0, \exists C > 0 : \forall n \ge N_0 \quad \hookrightarrow \quad 0 \le Cg(n) \le f(n)$$

Говорят, что:

- \bullet f не меньше, чем g
- q нижняя оценка для f
- f это Ω от g

$\mathbf{3} \quad \Theta$

Определение 3.1. Рассмотрим множество функций, которое задается так:

$$f(n) \in \Theta(g(n)) \iff \exists N_0 > 0, \exists C_1 > 0, \exists C_2 > 0 : \forall n \ge N_0 \quad \hookrightarrow \quad C_1 g(n) \le f(n) \le C_2 g(n)$$

Говорят, что:

- g асимптотически точная оценка f
- f это Θ от g

4 о-малое

Определение 4.1. Рассмотрим множество функций, которое задается так:

$$f(n) \in o(g(n)) \iff \forall C > 0 \quad \exists N_0 > 0 : \forall n \ge N_0 \quad \hookrightarrow \quad 0 \le f(n) \le Cg(n)$$

Говорят, что:

- ullet f асимптотически меньше, чем g
- \bullet f для сколь угодно малой константы не больше g
- \bullet f это o-малое от g

Определение 4.2 (альтернативное определение о-малого).

$$f(n) \in o(g(n)) \iff \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$

5 ω -малое

Определение 5.1. Рассмотрим множество функций, которое задается так:

$$f(n) \in \omega(g(n)) \iff \forall C > 0 \quad \exists N_0 > 0 : \forall n \ge N_0 \quad \hookrightarrow \quad 0 \le Cg(n) \le f(n)$$

Говорят, что:

- f асимптотически больше, чем g
- ullet f для сколь угодно большой константы больше g
- ullet f это ω -малое от g

Определение 5.2 (альтернативное определение ω -малого).

$$f(n) \in \omega(g(n)) \iff \lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$$

6 Эквивалентность

Определение 6.1. Эквивалентность:

$$f(n) \sim g(n) \iff \lim_{n \to \infty} \frac{f(n)}{g(n)} = 1$$

Отношение эквивалентности

Нетрудно убедиться, что это действительно отношение эквивалентности.

- Рефлексивность: $\forall f(n) \hookrightarrow f(n) \sim f(n)$
- Симметричность: $\forall f(n), g(n) \quad \hookrightarrow \quad f(n) \sim g(n) \implies g(n) \sim f(n)$
- Транзитивность: $\forall f(n), g(n), h(n) \hookrightarrow f(n) \sim g(n) \land g(n) \sim h(n) \Longrightarrow f(n) \sim h(n)$

7 Обозначения

Следует помнить, что $\mathcal{O}, \Omega, \Theta, \omega$ и o – множества. Но для удобства далее будем заменять знак принадлежности на знак равенства (естественно, что равенство в прямом смысле не подразумевается).

8 Свойства

- Транзитивность: $\forall \beta \in \{\mathcal{O}, \Omega, \Theta, \omega, o\} \quad \forall f, g, h \quad \hookrightarrow \quad f(n) = \beta(g(n)) \quad \land \quad g(n) = \beta(h(n)) \implies f(n) = \beta(h(n))$
- Рефлексивность: $\forall \beta \in \{\mathcal{O}, \Omega, \Theta\} \quad \forall f \quad \hookrightarrow \quad f(n) = \beta(f(n))$
- ullet Симметрия: $\forall f,g$ \hookrightarrow $f(n)=\Theta(g(n))$ \Longleftrightarrow $g(n)=\Theta(f(n))$
- Асимметрия:

$$\forall f, g \quad \hookrightarrow \quad f(n) = \mathcal{O}(g(n)) \iff g(n) = \Omega(f(n))$$

$$\forall f, g \quad \hookrightarrow \quad f(n) = \Omega(g(n)) \iff g(n) = \mathcal{O}(f(n))$$

$$\forall f, g \quad \hookrightarrow \quad f(n) = \omega(g(n)) \iff g(n) = o(f(n))$$

Теорема 8.1. $\forall f,g \quad \hookrightarrow \quad f(n) = \Theta(g(n)) \iff f(n) = \mathcal{O}(g(n)) \quad \land \quad f(n) = \Omega(g(n))$

Доказательство. Очевидно из определения.

Теорема 8.2. $g(n) = o(f(n)) \implies f(n) \pm g(n) = \Theta(f(n))$

Доказательство. $g(n) = o(f(n)) \iff \exists N : \forall n \geq N \quad \hookrightarrow \quad g(n) \leq \frac{1}{2}f(n).$ Тогда $\frac{1}{2}f(n) \leq f(n) \pm g(n) \leq \frac{3}{2}f(n)$

Теорема 8.3. $n^k = o(n^{k+1}), k \in \mathbb{N}$

Доказательство. $\lim_{n\to\infty}\frac{n^k}{n^{k+1}}=\lim_{n\to\infty}\frac{1}{n}=0$