

Test report No.: 10068267S-I Page: 1 of 107

Issued date

: February 19, 2014 : 2ABS4-WHD0070

Revised date

: February 28, 2014

RADIO TEST REPORT

Test Report No.: 10068267S-I

Applicant

Hitachi Maxell, Ltd.

Type of Equipment

Wireless Display Module

Model No.

WHD0070-D103

FCC ID

: 2ABS4-WHD0070

Test regulation

FCC Part15 Subpart E: 2013

Test result

Complied

- 1. This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- 2. The results in this report apply only to the sample tested.
- 3. This sample tested is in compliance with the limits of the above regulation.
- 4. The test results in this test report are traceable to the national or international standards.

:

:

- 5. This test report must not be used by the customer to claim product certification, approval, or endorsement by any agency of the Federal Government.
- 6. The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan has been accredited.

November 19, 2013 to January 31, 2014

Tested by:

Shinichi Takano
Engineer of WiSE Japan,
UL Verification Service

Approved by:

Toyokazu Imamura Leader of WiSE Japan, UL Verification Service

The testing in which "Non-accreditation" is displayed is outside the accreditation scopes in UL Japan.

There is no testing item of "Non-accreditation".

UL Japan, Inc.

Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Telephone

+81 463 50 6400

Facsimile : +81 463 50 6401

13-EM-F0429

Test report No. : 10068267S-I Page : 2 of 107

Issued date : February 19, 2014 FCC ID : 2ABS4-WHD0070 Revised date : February 28, 2014

REVISION HISTORY

Original Test Report No.: 10068267S-I

Revision	Test report No.	Date	Page revised	Contents
- (Original)	10068267S-I	February 19, 2014	-	-
1	10068267S-I	February 28, 2014	38,41,50	Addition of description (Duty factor)
		,		

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Page : 3 of 107

Issued date : February 19, 2014 FCC ID : 2ABS4-WHD0070

Contents

	Page
SECTION 1: Customer information	4
SECTION 2: Equipment under test (E.U.T.)	4
SECTION 3: Test specification, procedures & results	6
SECTION 4: Operation of E.U.T. during testing	9
SECTION 5: Conducted emission	11
SECTION 6: Radiated emission	12
SECTION 7: Antenna terminal conducted tests	14
Contents of APPENDIXES	15
APPENDIX 1: Data of Radio tests	16
APPENDIX 2: Test instruments	103
APPENDIX 3: Photographs of test setup	105

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No.: 10068267S-I Page: 4 of 107

Issued date : February 19, 2014 FCC ID : 2ABS4-WHD0070

SECTION 1: Customer information

Company Name : Hitachi Maxell, Ltd.

Address : 292 Yoshida-cho, Totsuka-ku, Yokohama-shi, Kanagawa, 244-0817 Japan

Telephone Number : +81 50 3152 1784 Facsimile Number : +81 45 866 5936 Contact Person : Hiroyuki Urata

SECTION 2: Equipment under test (E.U.T.)

2.1 Identification of E.U.T.

Type of Equipment : Wireless Display Module

Model Number : WHD0070-D103

Serial Number : Refer to 4.2 in this report.

Rating : DC5V Country of Mass-production : China

Condition of EUT : Engineering prototype

(Not for Sale: This sample is equivalent to mass-produced items.)

Receipt Date of Sample : November 5, 2013

Modification of EUT : No modification by the test lab.

2.2 Product description

Model: WHD0070-D103 (referred to as the EUT in this report) is a Wireless Display Module.

Clock frequency(ies) in the system : 19.2MHz, 20MHz

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No.: 10068267S-I Page: 5 of 107

Issued date : February 19, 2014 FCC ID : 2ABS4-WHD0070

Radio specification:

Equipment type : Transceiver

Frequency of operation *1) : 2.4GHz: 2412-2462MHz (IEEE 802.11b, 11g, 11n (HT20))

2422-2452MHz (IEEE 802.11n (HT40))

5GHz (W52): 5180-5240MHz (IEEE 802.11a, 11n (HT20))

5190-5230MHz (IEEE 802.11n (HT40))

5GHz (W58): 5745-5825MHz (IEEE 802.11a, 11n (HT20))

5755-5795MHz (IEEE 802.11n (HT40))

Bandwidth : 20MHz (IEEE 802.11a/b/g/n), 40MHz (IEEE 802.11n)

Channel spacing : 5MHz (2.4GHz),

20MHz (IEEE 802.11a, 11n (HT20, 5GHz)), 40MHz (IEEE 802.11n (HT40, 5GHz))

Type of modulation : DSSS, OFDM Antenna type *2) : PCB Antenna

Antenna connector type : U.FL ITU code : D1D, G1D Operation temperature range : 0 to +40 deg.C *1) Refer to the test report 10068267S-H for FCC 15.247.

*2) The EUT has 3-type of antenna. One of the antennas is connected to the product.

No.	Antenna	Antenna model	Antenna	2.4G gain	5G gain	Cable length	Remark
	Brand		type	(dBi)	(dBi)	(mm)	
1	Hitachi	WHD0070-A300	PIFA	0.49	1.77	300	-
2	Hitachi	WHD0070-A400	PIFA	0.34	1.09	400	-
3	Hitachi	WHD0070-A500	PIFA	-0.76	1.09	500	-

The testing has been performed using WHD0070-A300 which has the highest antenna gain.

FCC 15.31 (e) / 212

The RF Module has its own regulator. The RF Module is constantly provided voltage (DC3.3V, DC1.2V, DC1.8V) through the regulator regardless of input voltage. Therefore, this EUT complies with the requirement.

FCC 15.203 / 212

The EUT has a unique coupling/antenna connector (U.FL). Therefore the equipment complies with the requirement.

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

^{*} The EUT does not perform simultaneous transmission of 2.4GHz and 5GHz Wireless LAN.

Test report No. : 10068267S-I Page : 6 of 107

Issued date : February 19, 2014 FCC ID : 2ABS4-WHD0070

SECTION 3: Test specification, procedures & results

3.1 Test specification

Test specification : FCC Part 15 Subpart E: 2013,

final revised on September 30, 2013 and effective October 30, 2013

Title FCC 47CFR Part15 Radio Frequency Device Subpart E Unlicensed National Information

Infrastructure Devices

Section 15.207 Conducted limits

Section 15.209 Radiated emission limits, general requirements

Section 15.407 General technical requirements

3.2 Procedures & Results

Item	Test Procedure *1)	Specification	Remarks	Deviation	Worst Margin	Results
Conducted emission	ANSI C63.4:2009 7. AC powerline conducted emission measurements	FCC 15.407 (b)(6) & 15.207	-	N/A	28.0dB Freq.: 0.34671MHz Detection: QP Phase: N Mode: Tx 5180MHz, IEEE 802.11n (HT20), CDD	Complied
26dB & 20dB emission bandwidth	ANSI C63.4:2009 13. Measurement of intentional radiators	FCC 15.407 (a)(1)(2)(3) FCC 15.215 (c)	Conducted	N/A		-
Maximum conducted output power	ANSI C63.4:2009 13. Measurement of intentional radiators	FCC 15.407 (a)(1)(2)(3)	Conducted	N/A	See data	Complied
Peak power spectral density	ANSI C63.4:2009 13. Measurement of intentional radiators	FCC 15.407 (a)(1)(2)(3)	Conducted	N/A	See data	Complied
Peak excursion ratio	ANSI C63.4:2009 13. Measurement of intentional radiators	FCC 15.407 (a)(6)	Conducted	N/A		Complied
Spurious emission & Restricted band edges	ANSI C63.4:2009 13. Measurement of intentional radiators	FCC 15.109, 15.407 (b), 15.205 & 15.209	Radiated	N/A	1.3dB Freq.: 5150.000 MHz Detector: Average Polarization: Horizontal Mode: Tx 5190MHz, IEEE 802.11n (HT40), CDD	Complied
Dynamic frequency selection	FCC 06-96 APPENDIX	FCC 15.407 (h)	Conducted	N/A *2)	N/A	N/A

^{*1)} These tests were also referred to KDB 789033 (FCC), "Guidelines for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - Part 15, Subpart E".

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

^{*2)} The test is not applicable since the EUT does not operate in the 5.25-5.35 GHz and 5.47-5.725 GHz bands. Note: UL Japan's Work Procedures No. 13-EM-W0420 and 13-EM-W0422

Test report No.: 10068267S-I Page: 7 of 107

Issued date : February 19, 2014 FCC ID : 2ABS4-WHD0070

3.3 Addition to standard

Item	Test Procedure	Specification	Remarks	Worst Margin	Results
lhandwidth	ANSI C63.4:2009, RSS-Gen 4.6.1	-	Conducted	-	-
Note: UL Japan's Work Procedures No. 13-EM-W0420 and 13-EM-W0422					

^{*} Other than above, no addition, exclusion nor deviation has been made from the standard.

3.4 Uncertainty

The following uncertainties have been calculated to provide a confidence level of 95% using a coverage factor k=2.

Item	Frequency range	No.1 SAC*1/SR*2 (±)	No.2 SAC/SR (±)	No.3 SAC/SR (±)
Conducted emission (AC Mains) LISN	150kHz-30MHz	3.6 dB	3.6 dB	3.5 dB
Radiated emission	9kHz-30MHz	3.7 dB	3.7 dB	3.6 dB
(Measurement distance: 3m)	30MHz-300MHz	4.8 dB	5.0 dB	4.8 dB
	300MHz-1GHz	5.0 dB	5.0 dB	4.8 dB
	1GHz-15GHz	4.9 dB	4.9 dB	4.9 dB
Radiated emission	15GHz-18GHz	5.7 dB	5.6 dB	5.6 dB
(Measurement distance: 1m)	18GHz-40GHz	5.2 dB	4.3 dB	4.3 dB

^{*1:} SAC=Semi-Anechoic Chamber

Conducted emission test

The data listed in this test report has enough margin, more than the site margin.

Radiated emission test

The data listed in this report meets the limits unless the uncertainty is taken into consideration.

Antenna port conducted test

Power measurement uncertainty above 1GHz for this test was: (±) 1.5dB

Spurious emission (Conducted) measurement (below 1GHz) uncertainty for this test was: (±) 1.6dB Spurious emission (Conducted) measurement (1G-3GHz) uncertainty for this test was: (±) 1.4dB Spurious emission (Conducted) measurement (3G-18GHz) uncertainty for this test was: (±) 2.8dB Spurious emission (Conducted) measurement (18G-26.5GHz) uncertainty for this test was: (±) 2.5dB Spurious emission (Conducted) measurement (26.5-50GHz) uncertainty for this test was: (±) 2.7dB

Bandwidth measurement uncertainty for this test was: (±) 5.4%

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

^{*2:} SR= Shielded Room is applied besides radiated emission

Test report No.: 10068267S-I Page: 8 of 107

Issued date : February 19, 2014 FCC ID : 2ABS4-WHD0070

3.5 Test location

UL Japan, Inc. Shonan EMC Lab.

1-22-3, Megumigaoka, Hiratsuka-shi, Kanagawa-ken 259-1220 JAPAN

Telephone number : +81 463 50 6400 Facsimile number : +81 463 50 6401 JAB Accreditation No. : RTL02610

	FCC Registration No.	IC Registration No.	Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	Maximum measurement distance
☐ No.1 semi-anechoic chamber	697847	2973D-1	20.6 x 11.3 x 7.65	20.6 x 11.3	10m
☑ No.2 semi-anechoic chamber	697847	2973D-2	20.6 x 11.3 x 7.65	20.6 x 11.3	10m
☑ No.3 semi-anechoic chamber	697847	2973D-3	12.7 x 7.7 x 5.35	12.7 x 7.7	5m
☐ No.4 semi-anechoic chamber	-	-	8.1 x 5.1 x 3.55	8.1 x 5.1	-
☐ No.1 shielded room	-	-	6.8 x 4.1 x 2.7	6.8 x 4.1	-
☐ No.2 shielded room	-	-	6.8 x 4.1 x 2.7	6.8 x 4.1	-
☑ No.3 shielded room	-	-	6.3 x 4.7 x 2.7	6.3 x 4.7	-
☐ No.4 shielded room	-	-	4.4 x 4.7 x 2.7	4.4 x 4.7	-
☑ No.5 shielded room	-	-	7.8 x 6.4 x 2.7	7.8 x 6.4	-
☐ No.6 shielded room	-	-	7.8 x 6.4 x 2.7	7.8 x 6.4	-
☐ No.7 shielded room	-	-	2.76 x 3.76 x 2.4	2.76 x 3.76	-
☐ No.1 measurement room	-	-	2.55 x 4.1 x 2.5	-	-

3.6 Test setup, Test data & Test instruments

Refer to APPENDIX 1 to 3.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No.: 10068267S-I Page: 9 of 107

Issued date : February 19, 2014 FCC ID : 2ABS4-WHD0070

SECTION 4: Operation of E.U.T. during testing

4.1 Operating mode

Test item	Mode	Tested frequency	Worst data mode *1)
Conducted emission Radiated emission (below 1GHz) *2)	Transmitting IEEE 802.11 (HT20), CDD *4)	5180MHz	PN9, MCS0
Radiated emission	Transmitting IEEE 802.11a	5180MHz, 5220MHz, 5240MHz	PN9, 18Mbps
(above 1GHz) *5)	Transmitting IEEE 802.11n (HT20), CDD *4)	5180MHz, 5220MHz, 5240MHz	PN9, MCS0
	Transmitting IEEE 802.11n (HT40), CDD *4)	5190MHz, 5230MHz	PN9, MCS0
Other items	Transmitting IEEE 802.11a	5180MHz, 5220MHz, 5240MHz	PN9, 18Mbps
	Transmitting IEEE 802.11n (HT20), SISO	5180MHz, 5220MHz, 5240MHz	PN9, MCS0
	Transmitting IEEE 802.11n (HT20), CDD *4)	5180MHz, 5220MHz, 5240MHz	PN9, MCS0
	Transmitting IEEE 802.11n (HT20), SDM(MIMO) *3)	5180MHz, 5220MHz, 5240MHz	PN9, MCS8
	Transmitting IEEE 802.11n (HT40), SISO	5190MHz, 5230MHz	PN9, MCS0
	Transmitting IEEE 802.11n (HT40), CDD *4)	5190MHz, 5230MHz	PN9, MCS0
	Transmitting IEEE 802.11n (HT40), SDM(MIMO) *3)	5190MHz, 5230MHz	PN9, MCS8

^{*1)} The worst condition was determined based on the test result of Maximum Peak Output Power.

EUT has the power settings by the software as follows;

Test software: MTool.exe, ver. 1.0.0.9

Power settings:

5GHz: IEEE 802.11a: 50, IEEE 802.11n (HT20): 42, IEEE 802.11n (HT40): 32

Measured antenna port:

Medsarea antenna port.	Housard antonna port.						
	Single output	Multi output					
	(IEEE 802.11a, 11b, 11g, 11n SISO)	(IEEE 802.11n CDD, 11n SDM (MIMO))					
Maximum peak output	- Antenna 0	Antenna 0 + Antenna 1					
power	- Antenna 1						
Radiated emission	- Antenna 0 or Antenna 1 *1)	Antenna 0 + Antenna 1					
Other tests	- Antenna 0 or Antenna 1 *1)	Antenna 0 or Antenna 1 *1)					

^{*1)} The worse antenna port was determined based on the test result of Maximum Peak Output Power.

Justification: The system was configured in typical fashion (as customer would normally use it) for testing.

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

^{*2)} Test operating mode was determined as follows according to "Section 1 of 6 802.11 a/b/g/n testing- Managing Complex Regulatory Approvals - "of TCB Council Workshop October 2009.

^{*3)} As this transmitter has MIMO mode for only MCS8 to MCS15, we need not to consider array gains.

^{*4)} The EUT has CDD mode for MCS0 to MCS7. Directional gain is below 6dB, if correlation gain is considered.

^{*5)} CDD mode was selected in SISO / CDD / SDM (MIMO) for IEEE 802.11n (HT20) and IEEE 802.11n (HT40), based on the test result of Maximum Peak Output Power.

Test report No.: 10068267S-I Page: 10 of 107

Issued date : February 19, 2014 FCC ID : 2ABS4-WHD0070

4.2 Configuration and peripherals

^{*} Test data was taken under worse case conditions.

Description of EUT and support equipment

20001	Ston of 201 and support equipment						
No.	Item	Model number	Serial number	Manufacturer	Remarks		
A	Wireless Display Module	WHD0070-D103	*1)	Askey Computer Corp.	EUT		
В	Planar Inverted F Antenna	WHD0070-A300	1	Askey Computer Corp.	EUT		
C	Planar Inverted F Antenna	WHD0070-A300	2	Askey Computer Corp.	EUT		

^{*1)} Conducted / Radiated emission: C0:D9:62:FF:E6:F4, Other test: C0:D9:62:FF:E6:DA

List of cables used

No.	Cable Name	Length (m)	Shield		Remarks
			Cable	Connector	
1	USB	2.1	Shielded	Shielded	-
2	Antenna	0.3	Shielded	Shielded	-
3	Antenna	0.3	Shielded	Shielded	-

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No.: 10068267S-I Page: 11 of 107

Issued date : February 19, 2014 FCC ID : 2ABS4-WHD0070

SECTION 5: Conducted emission

5.1 Operating environment

Test place : See test data (APPENDIX 1)
Temperature : See test data (APPENDIX 1)
Humidity : See test data (APPENDIX 1)

5.2 Test configuration

EUT was placed on a platform of nominal size, 1m by 1.5m, raised 0.8m above the conducting ground plane.

The table is made of Styrofoam and covered with polyvinyl chloride. That has very low permittivity.

The rear of tabletop was located 40cm to the vertical conducting plane. The rear of EUT, including peripherals was aligned and was flushed with rear of tabletop. All other surfaces of tabletop were at least 80cm from any other grounded conducting surface. EUT was located 80cm from LISN.

Each EUT current-carrying power lead, except the ground (safety) lead, was individually connected through a LISN to the input power source.

Photographs of the set up are shown in APPENDIX 3.

5.3 Test conditions

Frequency range : 0.15 - 30MHz EUT position : Table top

5.4 Test procedure

The AC Mains Terminal Continuous disturbance Voltage had been measured with the EUT within a Shielded room. The EUT was connected to a Line Impedance Stabilization Network (LISN) via DC power supply.

An overview sweep with peak detection has been performed.

The measurements had been performed with a quasi-peak detector and if required, a CISPR average detector.

The conducted emission measurements were made with the following detection of the test receiver.

Detection Type : Quasi-Peak/ CISPR Average

IF Bandwidth : 9kHz

5.5 Results

Summary of the test results: Pass

Refer to APPENDIX 1.

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No.: 10068267S-I Page: 12 of 107

Issued date : February 19, 2014 FCC ID : 2ABS4-WHD0070

SECTION 6: Radiated emission

6.1 Operating environment

Test place : See test data (APPENDIX 1)
Temperature : See test data (APPENDIX 1)
Humidity : See test data (APPENDIX 1)

6.2 Test configuration

EUT was placed on a urethane platform of nominal size, 0.5m by 0.5m, raised 0.8m above the conducting ground plane. Photographs of the set up are shown in APPENDIX 3.

6.3 Test conditions

Frequency range : 30MHz to 40GHz

EUT position : Table top

6.4 Test procedure

The Radiated Electric Field Strength intensity has been measured on a semi-anechoic chamber with a ground plane and at a distance of 3m (below 15GHz) /1m (above 15GHz). Measurements were performed with quasi-peak, peak and average detector. The measuring antenna height was varied between 1 and 4m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field intensity. The measurements were performed for both vertical and horizontal antenna polarization. Drawing of the antenna direction is shown in Figure 1.

The radiated emission measurements were made with the following detection.

Frequency	30-1000MHz	1-40GHz		
Detection type	Quasi-Peak	Peak	Average *1)	
IF Bandwidth	120kHz	RBW: 1MHz	RBW: 1MHz	
		VBW: 3MHz	VBW: *2	

^{*1)} The test method was referred to Section H) 6) d) Method VB (Averaging using reduced video bandwidth) of FCC KDB 789033 D01 "Guidelines for Compliance Testing of unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E"

When duty cycle < 98 percent, VBW (Average) calculation sheet in APPENDIX 1.

Detector and averaging type set for linear voltage averaging.

Below 1GHz

The result also satisfied with the general limits specified in FCC 15.209 (a).

Above 1GHz

Inside of restricted bands (FCC 15.205): Limit in FCC 15.209 (a)

Outside of the restricted bands: Limit 68.2dBuV/m (-27dBm e.i.r.p.*) in FCC 15.407(b)(1)(2)(3)

Restricted band edge: Limit in FCC 15.209(a)

Since this limit is severer than the limit of the inside of restricted bands.

P [dBm] = E [dBuV/m] -95.2 [dB] or

 $P [dBm] = 10 \times LOG (({ 10 ^ (E [dBuV/m] / 20) * 10 ^ (-6) * (Distance = 3[m])) ^ 2 } / 30) \times 10^{3}) (uV/m)$:

P is the e.i.r.p. (Watts)

UL Japan, Inc.

Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

^{*2)} When duty cycle > 98 percent, VBW was set at 10Hz.

^{*}Electric Field Strength to e.i.r.p. conversion

^{*} Distance Factor for the measurement at 1m: $20 \times \log (3.0 \text{m}/1.0 \text{m}) = 9.5 \text{dB}$

Test report No.: 10068267S-I Page: 13 of 107

Issued date : February 19, 2014 FCC ID : 2ABS4-WHD0070

The carrier levels and noise levels were confirmed at each position of X, Y and Z axes to see the position of maximum noise, and the test was made at the position that has the maximum noise.

Worst case:

Subject	Antenna polarization	Carrier	Spurious		
			Below 1GHz	1-6.4GHz	6.4-40GHz
Module	Horizontal	Y	Y	Y	Y
Antenna		Y	X	Y	X
Module	Vertical	Y	Y	Y	Y
Antenna		Z	X	Z	X

Figure 1. Antenna angle

6.5 Band edge

Band edge level at 5150MHz and 5350MHz are below the limits of FCC 15.209.

6.6 Results

Summary of the test results: Pass

* No noise was detected other than listed points.

Refer to APPENDIX 1.

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No.: 10068267S-I Page: 14 of 107

Issued date : February 19, 2014 FCC ID : 2ABS4-WHD0070

SECTION 7: Antenna terminal conducted tests

Test Procedure

The tests were made with below setting connected to the antenna port with the test instrument.

Test	Span	RBW	VBW	Sweep time	Detector	Trace	Instrument used and Test method
26dB bandwidth	Enough width to display	Close to 1% of EBW	Greater than RBW	Auto	Peak	Max Hold	Spectrum Analyzer
99% occupied bandwidth	Enough width to display	Close to 1% of Span	Three times of RBW	Auto	Sample	Max Hold	Spectrum Analyzer
20dB bandwidth	Enough width to display	Close 1% to 5% of OBW	Three times of RBW	Auto	Peak	Max Hold	Spectrum Analyzer
Maximum conducted output power *1)	-	-	50MHz	-	-	-	Power Meter method PM
Peak power spectral density *2)	Enough width to display	1MHz	3MHz	Auto	RMS-Average Power Averaging (100 times)	Clear Write	Spectrum Analyzer method SA-2
Peak excursion ratio	Enough width to display	1MHz	3MHz	Auto	Peak RMS-Average Power Averaging (100 times)	Max Hold Clear Write	Spectrum Analyzer method SA-2

^{*}EBW: Emission Bandwidth

The test results and limit are rounded off to two decimals place, so some differences might be observed.

Summary of the test results: Pass

Refer to APPENDIX 1.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

^{*1)} Maximum Conducted Output Power was measured based on Method PM of "Guidance for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - Part 15, Subpart E".

^{*2)} PSD was measured based on Method SA-2 of "Guidance for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - Part 15, Subpart E".

Test report No. : 10068267S-I Page : 15 of 107

Issued date : February 19, 2014 FCC ID : 2ABS4-WHD0070

Contents of APPENDIXES

APPENDIX 1: Data of Radio tests

Conducted emission
26dB bandwidth
99% Occupied bandwidth
20dB bandwidth
Maximum conducted output power
Radiated emission
Peak power density
Peak excursion ratio

APPENDIX 2: Test instruments

Test instruments

APPENDIX 3: Photographs of test setup

Conducted emission Radiated emission Pre-check of worst position

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

DATA OF CONDUCTED EMISSION TEST

UL Japan, Inc. Shonan EMC Lab. No.3 Shielded Room

Test report No.: 10068267S-I

Date: 2013/11/27

Tx,11n (HT20) ,CDD,5180MHz 10068267S Company Kind of EUT : Hitachi Maxell, Ltd. Mode

Wireless Display Module Order No. Model No. WHD0070-D103 Power

: DC 5V : 25deg.C / 42%RH Temp./Humi. Serial No. C0:D9:62:FF:E6:F4 Remarks

 $\begin{array}{l} Limit1: FCC \ 15C \ (15.207) \ QP \\ Limit2: FCC \ 15C \ (15.207) \ AV \end{array}$

Engineer : Tatsuya Arai

	F	Rea	ding	0.5	Res	ults	Lin	nit	Mar	gin		
No.	Freq.	<qp></qp>	<av></av>	C.Fac	<qp></qp>	<av></av>	<qp></qp>	<av></av>	<qp></qp>	<av></av>	Phase	Comment
	[MHz]	[dBuV]	[dBuV]	[dB]	[d Bu V]	[dBuV]	[dBuV]	[d Bu V]	[dB]	[dB]		
1	0.17521	23.9		12.7	36.6		64.7	54.7	28.1		N	
2	0.34671	18.3		12.7	31.0		59.0	49.0	28.0		N	
3	22.41650	7.3		13.6	20.9		60.0	50.0	39.1		N	
4	25.61500	9.6		13.7	23.3		60.0	50.0	36.7		N	
5	28.80650	11.4		13.9	25.3		60.0	50.0	34.7		N	
6	29.37800	9.8		13.9	23.7		60.0	50.0	36.3		N	
7	0.17521	23.8		12.7	36.5		64.7	54.7	28.2		L1	
8	0.34671	18.2		12.7	30.9		59.0	49.0	28.1		L1	
9	22.44100	15.4		13.6	29.0		60.0	50.0	31.0		L1	
10	25.63950	15.2		13.7	28.9		60.0	50.0	31.1		L1	
11	28.83450	15.4		13.9	29.3		60.0	50.0	30.7		L1	
12	29.40400	12.3		13.9	26.2		60.0	50.0	33.8		L1	

-26dB Bandwidth

Test place UL Japan, Inc. Shonan EMC Lab. No.5 Shielded Room

Date December 9, 2013
Temperature / Humidity 23 deg.C , 32 %RH
Engineer Shinichi Takano

Mode Tx, IEEE802.11a, SISO, PN9, worst antenna port 1, worst data mode 18Mbps

Freq.	-26dB Bandwidth
[MHz]	[MHz]
5180.0000	18.885
5220.0000	18.922
5240.0000	18.750

UL Japan, Inc.

Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

-26dB Bandwidth

Test place UL Japan, Inc. Shonan EMC Lab. No.5 Shielded Room

Date December 9, 2013
Temperature / Humidity 23 deg.C , 32 % RH
Engineer Shinichi Takano

Mode Tx, IEEE802.11n-HT20, SISO, PN9, worst antenna port 1, worst data mode 0(MCS)

Freq.	-26dB Bandwidth
[MHz]	[MHz]
5180.0000	19.061
5220.0000	19.225
5240.0000	19.218

UL Japan, Inc.

Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

-26dB Bandwidth

Test place UL Japan, Inc. Shonan EMC Lab. No.5 Shielded Room

Date December 9, 2013
Temperature / Humidity 23 deg. C , 32 %RH
Engineer Shinichi Takano

Mode Tx, IEEE802.11n (HT20), CDD, PN9, Antenna port 1, worst data mode 0 (MCS)

Freq.	-26dB Bandwidth
[MHz]	[MHz]
5180.0000	19.276
5220.0000	19.125
5240.0000	19.279

UL Japan, Inc.

Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

-26dB Bandwidth

Test place UL Japan, Inc. Shonan EMC Lab. No.5 Shielded Room

Date December 9, 2013
Temperature / Humidity 23 deg. C , 32 %RH
Engineer Shinichi Takano

Mode Tx, IEEE802.11n (HT20), MIMO(SDM), PN9, Antenna port 1, worst data mode 8 (MCS)

Freq.	-26dB Bandwidth
[MHz]	[MHz]
5180.0000	19.243
5220.0000	19.302
5240.0000	19.483

UL Japan, Inc.

Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

-26dB Bandwidth

Test place UL Japan, Inc. Shonan EMC Lab. No.5 Shielded Room

Date January 31, 2014
Temperature / Humidity 26deg.C , 44% RH
Engineer Shinichi Takano

Mode Tx, IEEE802.11n-HT40, SISO, PN9, worst antenna port 1, worst data mode 0(MCS)

Freq.	-26dB Bandwidth
[MHz]	[MHz]
5190.0000	39.206
5230.0000	38.946

UL Japan, Inc.

Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

-26dB Bandwidth

Test place UL Japan, Inc. Shonan EMC Lab. No.5 Shielded Room

Date January 31, 2014
Temperature / Humidity 26deg.C , 44%RH
Engineer Shinichi Takano

Mode Tx, IEEE802.11n (HT40), CDD, PN9, Antenna port 1, worst data mode 0 (MCS)

Freq.	-26dB Bandwidth
[MHz]	[MHz]
5190.0000	38.913
5220 0000	29 665
5230.0000	38.665

UL Japan, Inc.

Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

-26dB Bandwidth

Test place UL Japan, Inc. Shonan EMC Lab. No.5 Shielded Room

Date January 31, 2014
Temperature / Humidity 26deg.C , 44%RH
Engineer Shinichi Takano

Mode Tx, IEEE802.11n (HT40), MIMO(SDM), PN9, Antenna port 1, worst data mode 8 (MCS)

Freq.	-26dB Bandwidth
[MHz]	[MHz]
5190.0000	38.949
5230.0000	38.655

UL Japan, Inc.

Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

99% Occupied Bandwidth

Test place UL Japan, Inc. Shonan EMC Lab. No.5 Shielded Room

Date December 9, 2013
Temperature / Humidity 23 deg.C , 32 %RH
Engineer Shinichi Takano

Mode Tx, IEEE802.11a, SISO, PN9, worst antenna port 1, worst data mode 18Mbps

Freq.	99% Occupied
[MHz]	Bandwidth [MHz]
5180.0000	16.748
5220.0000	16.756
5240.0000	16.690

UL Japan, Inc.

Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

99% Occupied Bandwidth

Test place UL Japan, Inc. Shonan EMC Lab. No.5 Shielded Room

Date December 9, 2013
Temperature / Humidity 23 deg.C , 32 %RH
Engineer Shinichi Takano

Mode Tx, IEEE802.11n-HT20, SISO, PN9, worst antenna port 1, worst data mode 0(MCS)

Freq.	99% Occupied
[MHz]	Bandwidth [MHz]
5180.0000	17.778
5220.0000	17.785
5240.0000	17.721

UL Japan, Inc.

Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

99% Occupied Bandwidth

Test place UL Japan, Inc. Shonan EMC Lab. No.5 Shielded Room

 $\begin{array}{ll} \text{Date} & \text{December 9, 2013} \\ \text{Temperature / Humidity} & 23 \text{ deg.C} & , 32 \, \% \text{RH} \\ \text{Engineer} & \text{Shinichi Takano} \end{array}$

Mode Tx, IEEE802.11n (HT20), CDD, PN9, Antenna port 1, worst data mode 0 (MCS)

Freq.	99% Occupied
[MHz]	Bandwidth [MHz]
5180.0000	17.706
5220.0000	17.717
5240.0000	17.681

UL Japan, Inc.

Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

99% Occupied Bandwidth

Test place UL Japan, Inc. Shonan EMC Lab. No.5 Shielded Room

 $\begin{array}{ll} \text{Date} & \text{December 9, 2013} \\ \text{Temperature / Humidity} & 23 \text{ deg.C} & , 32 \text{ \%RH} \\ \text{Engineer} & \text{Shinichi Takano} \end{array}$

Mode Tx, IEEE802.11n (HT20), MIMO(SDM), PN9, Antenna port 1, worst data mode 8 (MCS)

Freq.	99% Occupied
[MHz]	Bandwidth [MHz]
5180.0000	17.663
5220.0000	17.730
5240.0000	17.681

UL Japan, Inc.

Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

99% Occupied Bandwidth

Test place UL Japan, Inc. Shonan EMC Lab. No.5 Shielded Room

Date January 31, 2014
Temperature / Humidity 26deg.C , 44% RH
Engineer Shinichi Takano

Mode Tx, IEEE802.11n-HT40, SISO, PN9, worst antenna port 1, worst data mode 0(MCS)

Freq.	99% Occupied
[MHz]	Bandwidth [MHz]
5190.0000	36.447
5230.0000	36.513

UL Japan, Inc.

Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

99% Occupied Bandwidth

Test place UL Japan, Inc. Shonan EMC Lab. No.5 Shielded Room

Date January 31, 2014
Temperature / Humidity 26deg.C , 44%RH
Engineer Shinichi Takano

Mode Tx, IEEE802.11n (HT40), CDD, PN9, Antenna port 1, worst data mode 0 (MCS)

Freq.	99% Occupied
[MHz]	Bandwidth [MHz]
5190.0000	36.492
5230.0000	36.512

UL Japan, Inc.

Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

99% Occupied Bandwidth

Test place UL Japan, Inc. Shonan EMC Lab. No.5 Shielded Room

Date January 31, 2014
Temperature / Humidity 26deg.C , 44%RH
Engineer Shinichi Takano

Mode Tx, IEEE802.11n (HT40), MIMO(SDM), PN9, Antenna port 1, worst data mode 8 (MCS)

Freq.	99% Occupied
[MHz]	Bandwidth [MHz]
5190.0000	36.575
5230.0000	36.467

UL Japan, Inc.

Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

-20dB Bandwidth

Test place UL Japan, Inc. Shonan EMC Lab. No.5 Shielded Room

Date December 9, 2013
Temperature / Humidity 23 deg.C , 32 %RH
Engineer Shinichi Takano

Mode Tx, IEEE802.11a, SISO, PN9, worst antenna port 1, worst data mode 18Mbps

Freq.	-20dB Bandwidth
[MHz]	[MHz]
5180.0000	17.721
5220.0000	17.508
5240.0000	17.374

UL Japan, Inc.

Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

-20dB Bandwidth

Test place UL Japan, Inc. Shonan EMC Lab. No.5 Sielded Room

 $\begin{array}{ll} \text{Date} & \text{December 9, 2013} \\ \text{Temperature / Humidity} & 23 \text{ deg.C} & , 32 \text{ \%RH} \\ \text{Engineer} & \text{Shinichi Takano} \end{array}$

Mode Tx, IEEE802.11n-HT20, SISO, PN9, worst antenna port 1, worst data mode 0(MCS)

Freq.	-20dB Bandwidth
[MHz]	[MHz]
5180.0000	18.531
5220.0000	18.705
5240.0000	18.464

UL Japan, Inc.

Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

-20dB Bandwidth

Test place UL Japan, Inc. Shonan EMC Lab. No.5 Shielded Room

Date December 9, 2013
Temperature / Humidity 23 deg. C , 32 % RH
Engineer Shinichi Takano

Mode Tx, IEEE802.11n (HT20), CDD, PN9, Antenna port 1, worst data mode 0 (MCS)

Freq.	-20dB Bandwidth
[MHz]	[MHz]
5180.0000	18.776
5220.0000	18.625
5240.0000	18.665

UL Japan, Inc.

Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

-20dB Bandwidth

Test place UL Japan, Inc. Shonan EMC Lab. No.5 Shielded Room

Date December 9, 2013
Temperature / Humidity 23 deg. C , 32 %RH
Engineer Shinichi Takano

Mode Tx, IEEE802.11n (HT20), MIMO(SDM), PN9, Antenna port 1, worst data mode 8 (MCS)

Freq.	-20dB Bandwidth
[MHz]	[MHz]
5180.0000	18.655
5220.0000	18.708
5240.0000	18.518

UL Japan, Inc.

Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

-20dB Bandwidth

Test place UL Japan, Inc. Shonan EMC Lab. No.5 Shielded Room

Date January 31, 2014
Temperature / Humidity 26deg.C , 44% RH
Engineer Shinichi Takano

Mode Tx, IEEE802.11n-HT40, SISO, PN9, worst antenna port 1, worst data mode 0(MCS)

Freq.	-20dB Bandwidth
[MHz]	[MHz]
5190.0000	38.060
5230.0000	38.265

UL Japan, Inc.

Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

-20dB Bandwidth

Test place UL Japan, Inc. Shonan EMC Lab. No.5 Shielded Room

Date January 31, 2014
Temperature / Humidity 26deg.C , 44%RH
Engineer Shinichi Takano

Mode Tx, IEEE802.11n (HT40), CDD, PN9, Antenna port 1, worst data mode 0 (MCS)

Freq.	-20dB Bandwidth
[MHz]	[MHz]
5190.0000	38.052
5230.0000	37.741

UL Japan, Inc.

Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

-20dB Bandwidth

Test place UL Japan, Inc. Shonan EMC Lab. No.5 Shielded Room

Date January 31, 2014
Temperature / Humidity 26deg.C , 44%RH
Engineer Shinichi Takano

Mode Tx, IEEE802.11n (HT40), MIMO(SDM), PN9, Antenna port 1, worst data mode 8 (MCS)

Freq.	-20dB Bandwidth
[MHz]	[MHz]
5190.0000	37.958
5230.0000	37.733

UL Japan, Inc.

Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Test report No.: 10068267S-I Revised date: February 28, 2014

Maximum Conducted Output Power (Conducted)

(Method: PM)

Test place UL Japan, Inc. Shonan EMC Lab. No.5 Shielded Room

Date December 9, 2013 Temperature / Humidity 23 deg.C , 32 %RH Engineer Shinichi Takano

Mode Tx, IEEE802.11a, SISO, PN9, worst antenna: worst data mode: 18 Mbps

Antena te	rminal pow	er		(* P/M: Power Meter with power senser, AV: Average)							
Ch	Freq.	P/M (AV)	Cable	Atten.	Duty		Result		Li	mit	Margin
		Reading	Loss	Loss	factor			-			
	[MHz]	[dBm]	[dB]	[dB]	[dB]		[dBm]	[mW]	[dBm]	[mW]	[dB]
Low	5180.0	-10.39	1.74	20.10	0.24		11.69	14.76	16.73	47.10	5.04
Mid	5220.0	-10.58	1.74	20.09	0.24		11.49	14.09	16.73	47.10	5.24
High	5240.0	-11.15	1.93	20.09	0.24		11.11	12.91	16.73	47.10	5.62

Sample Calculation: Result = Reading + Cable Loss + Atten. Loss + Duty factor

EIRP Reference Data (* P/M: Power Meter with power senser, AV: Average) Ch Freq. P/M (AV) Cable Atten. Duty Antenna Result Limit Margin Reading Loss Loss factor Gain (e.i.r.p.) (e.i.r.p.) (e.i.r.p.) (e.i.r.p.) [MHz] [dB] [dB] [dB] [dBi] [dBm] [dBm] [mW] [dB] [dBm] [mW] Low 5180.0 -10.39 1.74 20.10 0.24 1.77 13.46 22.18 Mid 5220.0 -10.58 1.74 20.09 0.24 1.77 13.26 21.18 5240.0 -11.15 1.93 20.09 0.24 1.77 12.88 19.41 High

Result = Reading + Cable Loss + Atten. Loss + Duty factor + Antenna Gain Sample Calculation:

[Pre check] Antenna 0

	Data rate	Freq.	P/M (AV)	Cable	Atten.	Duty	Result
			Reading	Loss	Loss	factor	
	[Mbps]	[MHz]	[dBm]	[dB]	[dB]	[dB]	[dBm]
0	6	5180.0	-10.51	1.74	20.09	0.23	11.55
0	9	5180.0	-10.59	1.74	20.09	0.21	11.45
0	12	5180.0	-10.50	1.74	20.09	0.20	11.53
0	18	5180.0	-10.45	1.74	20.09	0.24	11.62
0	24	5180.0	-10.51	1.74	20.09	0.24	11.56
0	36	5180.0	-10.64	1.74	20.09	0.35	11.54
0	48	5180.0	-10.65	1.74	20.09	0.39	11.57
0	54	5180.0	-10.73	1.74	20.09	0.33	11.43

Antenna 1

	Data rate	Freq.	P/M (AV)	Cable	Atten.	Duty	Result
			Reading	Loss	Loss	factor	
	[Mbps]	[MHz]	[dBm]	[dB]	[dB]	[dB]	[dBm]
1	6	5180.0	-10.43	1.74	20.09	0.23	11.63
1	9	5180.0	-10.46	1.74	20.09	0.21	11.58
1	12	5180.0	-10.43	1.74	20.09	0.20	11.60
1	18	5180.0	-10.39	1.74	20.09	0.24	11.68
1	24	5180.0	-10.46	1.74	20.09	0.24	11.61
1	36	5180.0	-10.56	1.74	20.09	0.35	11.62
1	48	5180.0	-10.63	1.74	20.09	0.39	11.59
1	54	5180.0	-10.67	1.74	20.09	0.33	11.49
		•	· ·				

Worst

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

: +81 463 50 6400 Telephone : +81 463 50 6401 Facsimile

Test place UL Japan, Inc. Shonan EMC Lab. No.5 Shielded Room

Date December 9, 2013
Temperature / Humidity 23 deg.C , 32 %RH
Engineer Shinichi Takano

Maximum Conducted Output Power (Conducted)

(Reference) (duty chart)

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Test place UL Japan, Inc. Shonan EMC Lab. No.5 Shielded Room

Date December 9, 2013
Temperature / Humidity 23 deg.C , 32 %RH
Engineer Shinichi Takano

Maximum Conducted Output Power (Conducted)

(Reference) (duty chart)

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Test report No.: 10068267S-I Revised date: February 28, 2014

Maximum Conducted Output Power (Conducted)

(Method: PM)

Test place UL Japan, Inc. Shonan EMC Lab. No.5 Shielded Room

Date December 9, 2013 Temperature / Humidity 23 deg.C , 32 %RH Engineer Shinichi Takano

Mode Tx, IEEE802.11n-HT20, SISO, PN9, worst antenna: worst data mode: 0 (MCS)

Antena te	rminal pow	er		(* P/M: Power Meter with power senser, AV: Average)							
Ch	Freq.	P/M (AV)	Cable	Atten.	Duty		Result		Li	mit	Margin
		Reading	Loss	Loss	factor			-		-	
	[MHz]	[dBm]	[dB]	[dB]	[dB]		[dBm]	[mW]	[dBm]	[mW]	[dB]
Low	5180.0	-11.92	1.74	20.10	0.24		10.16	10.38	16.80	47.89	6.64
Mid	5220.0	-12.44	1.74	20.09	0.24		9.63	9.18	16.80	47.89	7.17
High	5240.0	-12.78	1.93	20.09	0.24		9.48	8.87	16.80	47.89	7.32

Sample Calculation: Result = Reading + Cable Loss + Atten. Loss + Duty factor

1.93

EIRP Reference Data (* P/M: Power Meter with power senser, AV: Average) Ch Freq. P/M (AV) Cable Atten. Duty Antenna Result Limit Margin Reading Loss Loss factor Gain (e.i.r.p.) (e.i.r.p.) (e.i.r.p.) (e.i.r.p.) [MHz] [dBm] [dB] [dB] [dB] [dBi] [dBm] [dBm] [mW] [dB] [mW] Low 5180.0 -11.92 1.74 20.10 0.24 1.77 11.93 15.60 Mid 5220.0 -12.44 1.74 20.09 0.24 1.77 11.40 13.80

1.77

11.25

13.34

0.24

20.09 Result = Reading + Cable Loss + Atten. Loss + Duty factor + Antenna Gain Sample Calculation:

[Pre check] Antenna 0

High

5240.0

-12.78

	Mode	Freq.	P/M (AV)	Cable	Atten.	Duty	Result
			Reading	Loss	Loss	factor	
	(MCS)	[MHz]	[dBm]	[dB]	[dB]	[dB]	[dBm]
(0	5180.0	-12.53	1.74	20.09	0.22	9.52
() 1	5180.0	-12.55	1.74	20.09	0.22	9.50
(2	5180.0	-12.60	1.74	20.09	0.26	9.49
(3	5180.0	-12.62	1.74	20.09	0.17	9.38
() 4	5180.0	-12.66	1.74	20.09	0.25	9.42
(5	5180.0	-12.91	1.74	20.09	0.32	9.24
(6	5180.0	-12.95	1.74	20.09	0.45	9.33
(7	5180.0	-13.01	1.74	20.09	0.38	9.20

Antenna 1

	Mode	Freq.	P/M (AV)	Cable	Atten.	Duty	Result	Ī
			Reading	Loss	Loss	factor		
	(MCS)	[MHz]	[dBm]	[dB]	[dB]	[dB]	[dBm]	
1	0	5180.0	-11.92	1.74	20.09	0.22	10.13	Worst
1	1	5180.0	-11.96	1.74	20.09	0.22	10.09	
1	2	5180.0	-12.01	1.74	20.09	0.26	10.08	
1	3	5180.0	-11.97	1.74	20.09	0.17	10.03	
1	4	5180.0	-12.08	1.74	20.09	0.25	10.00	
1	5	5180.0	-12.18	1.74	20.09	0.32	9.97	
1	6	5180.0	-12.22	1.74	20.09	0.45	10.06	
1	7	5180.0	-12.21	1.74	20.09	0.38	10.00	<u> </u>

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

: +81 463 50 6400 Telephone : +81 463 50 6401 Facsimile

Test place UL Japan, Inc. Shonan EMC Lab. No.5 Shielded Room

Date December 9, 2013
Temperature / Humidity 23 deg.C , 32 %RH
Engineer Shinichi Takano

Maximum Conducted Output Power (Conducted)

(Reference) (duty chart)

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Test place UL Japan, Inc. Shonan EMC Lab. No.5 Shielded Room

Date December 9, 2013
Temperature / Humidity 23 deg.C , 32 %RH
Engineer Shinichi Takano

Maximum Conducted Output Power (Conducted)

(Reference) (duty chart)

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Maximum Conducted Output Power (Conducted)

(Method: PM)

Test place UL Japan, Inc. Shonan EMC Lab. No.5 Shielded Room

Date December 9, 2013
Temperature / Humidity 23 deg.C , 32 %RH
Engineer Shinichi Takano

Mode Tx, IEEE802.11n (HT20), CDD, PN9, worst data mode: 0 (MCS)

Antenna 0 + 1

Ch	Freq.	Result		Result		Li	mit	Li	mit	Margin	
		(Cor	nd.)	(e.i.r.p.)		(Cond.)		(e.i.r.p.)		(Cond.)	(e.i.r.p.)
	[MHz]	[dBm]	[mW]	[dBm]	[mW]	[dBm]	[mW]	[dBm]	[mW]	[dBm]	[dBm]
Low	5180.0	13.06	20.24	14.83	30.42	16.82	48.04	-	-	3.75	-
Mid	5220.0	12.65	18.39	14.42	27.64	16.82	48.04	-	-	4.17	-
High	5240.0	12.73	18.74	14.50	28.17	16.82	48.04	-	-	4.09	-

Sample Calculation: Result [mW] = Antenna 0 Result [mW] + Antenna 1 Result [mW]

Antenna 0 (* P/M: Power Meter with power senser, AV: Average)

Ch	Freq.	P/M (AV)	Cable	Atten.	Duty	Result		Antenna	Res	sult
		Reading	Loss	Loss	factor	(Cond.)		Gain	Gain (e.i.i	
	[MHz]	[dBm]	[dB]	[dB]	[dB]	[dBm]	[mW]	[dBi]	[dBm]	[mW]
Low	5180.0	-12.13	1.74	20.10	0.22	9.93	9.84	1.77	11.70	14.79
Mid	5220.0	-12.39	1.74	20.09	0.22	9.66	9.25	1.77	11.43	13.90
High	5240.0	-12.36	1.93	20.09	0.22	9.88	9.73	1.77	11.65	14.62

Antenna 1 (* P/M: Power Meter with power senser, AV: Average)

Ch	Freq.	P/M (AV)	Cable	Atten.	Duty	Result		Antenna	Res	sult		
		Reading	Loss	Loss	factor	(Cond.)		(Cond.)		Gain	(e.i.	r.p.)
	[MHz]	[dBm]	[dB]	[dB]	[dB]	[dBm]	[mW]	[dBi]	[dBm]	[mW]		
Low	5180.0	-11.89	1.74	20.10	0.22	10.17	10.40	1.77	11.94	15.63		
Mid	5220.0	-12.44	1.74	20.09	0.22	9.61	9.14	1.77	11.38	13.74		
High	5240.0	-12.69	1.93	20.09	0.22	9.55	9.02	1.77	11.32	13.55		

Sample Calculation: (Cond.) Result = Reading + Cable Loss + Atten. Loss + Duty factor

(e.i.r.p) Result = Reading + Cable Loss + Atten. Loss + Duty factor + Antenna Gain

[Pre check]

_IIIC CII	icenj										_
Mode	e Freq.	Duty		Antenna 0			Antenna 1		Antenn	a 0 + 1	
		factor	Reading	Re	Result		Result		Result		
(MCS	S) [MHz]	[dB]	[dBm]	[dBm]	[mW]	[dBm]	[dBm]	[mW]	[dBm]	[mW]	
0	5180.0	0.22	-12.13	-11.91	0.06	-11.89	-11.67	0.07	-8.78	0.13	Worst
1	5180.0	0.21	-12.15	-11.94	0.06	-11.91	-11.70	0.07	-8.81	0.13	
2	5180.0	0.22	-12.21	-11.99	0.06	-11.96	-11.74	0.07	-8.85	0.13	
3	5180.0	0.20	-12.23	-12.03	0.06	-11.99	-11.79	0.07	-8.90	0.13	
4	5180.0	0.29	-12.27	-11.98	0.06	-12.06	-11.77	0.07	-8.86	0.13	
5	5180.0	0.38	-12.32	-11.94	0.06	-12.15	-11.77	0.07	-8.84	0.13	
6	5180.0	0.41	-12.47	-12.06	0.06	-12.19	-11.78	0.07	-8.91	0.13	
7	5180.0	0.45	-12.51	-12.06	0.06	-12.20	-11.75	0.07	-8.89	0.13	

Sample Calculation: Result = Duty factor + Reading

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Test place UL Japan, Inc. Shonan EMC Lab. No.5 Shielded Room

Date December 9, 2013
Temperature / Humidity 23 deg.C , 32 %RH
Engineer Shinichi Takano

Maximum Conducted Output Power (Conducted)

(Reference) (duty chart)

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Test place UL Japan, Inc. Shonan EMC Lab. No.5 Shielded Room

Date December 9, 2013
Temperature / Humidity 23 deg.C , 32 %RH
Engineer Shinichi Takano

Maximum Conducted Output Power (Conducted)

(Reference) (duty chart)

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Maximum Conducted Output Power (Conducted)

(Method: PM)

Test place UL Japan, Inc. Shonan EMC Lab. No.5 Shielded Room

Date December 9, 2013
Temperature / Humidity 23 deg.C , 32 %RH
Engineer Shinichi Takano

Mode Tx, IEEE802.11n (HT20), MIMO(SDM), PN9, worst data mode: 8 (MCS)

Antenna 0 + 1

Ch	Freq.	Result		Result		Li	mit	Li	mit	Margin	
		(Cor	nd.)	(e.i.r.p.)		(Cond.)		(e.i.r.p.)		(Cond.)	(e.i.r.p.)
	[MHz]	[dBm]	[mW]	[dBm]	[mW]	[dBm]	[mW]	[dBm]	[mW]	[dBm]	[dBm]
Low	5180.0	12.87	19.37	14.64	29.12	16.84	48.34	-	-	3.97	-
Mid	5220.0	12.56	18.03	14.33	27.10	16.84	48.34	-	-	4.28	-
High	5240.0	12.64	18.35	14.41	27.58	16.84	48.34	-	-	4.21	-

Sample Calculation: Result [mW] = Antenna 0 Result [mW] + Antenna 1 Result [mW]

Antenna 0 (* P/M: Power Meter with power senser, AV: Average)

Ch	Freq.	P/M (AV)	Cable	Atten.	Duty	Re	sult	Antenna	Res	sult
		Reading	Loss	Loss	factor	(Co	ond.)	Gain	(e.i.	r.p.)
	[MHz]	[dBm]	[dB]	[dB]	[dB]	[dBm]	[mW]	[dBi]	[dBm]	[mW]
Low	5180.0	-12.53	1.74	20.10	0.42	9.73	9.40	1.77	11.50	14.13
Mid	5220.0	-12.72	1.74	20.09	0.42	9.53	8.97	1.77	11.30	13.49
High	5240.0	-12.74	1.93	20.09	0.42	9.70	9.33	1.77	11.47	14.03

Antenna 1 (* P/M: Power Meter with power senser, AV: Average)

Ch	Freq.	P/M (AV)	Cable	Atten.	Duty	Re	sult	Antenna	Re	sult
		Reading	Loss	Loss	factor	(Co	ond.)	Gain	(e.i.	r.p.)
	[MHz]	[dBm]	[dB]	[dB]	[dB]	[dBm]	[mW]	[dBi]	[dBm]	[mW]
Low	5180.0	-12.27	1.74	20.10	0.42	9.99	9.98	1.77	11.76	15.00
Mid	5220.0	-12.68	1.74	20.09	0.42	9.57	9.06	1.77	11.34	13.61
High	5240.0	-12.89	1.93	20.09	0.42	9.55	9.02	1.77	11.32	13.55

Sample Calculation: (Cond.) Result = Reading + Cable Loss + Atten. Loss + Duty factor

(e.i.r.p) Result = Reading + Cable Loss + Atten. Loss + Duty factor + Antenna Gain

[Pre check]

Tre check	-)										_
Mode	Freq.	Duty		Antenna 0			Antenna 1		Antenn	na 0 + 1]
		factor	Reading	Re	sult	Reading	Re	sult	Re	sult	
(MCS)	[MHz]	[dB]	[dBm]	[dBm]	[mW]	[dBm]	[dBm]	[mW]	[dBm]	[mW]	
8	5180.0	0.42	-12.53	-12.11	0.06	-12.27	-11.85	0.07	-8.97	0.13	Worst
9	5180.0	0.40	-12.56	-12.16	0.06	-12.32	-11.92	0.06	-9.03	0.13	1
10	5180.0	0.40	-12.58	-12.18	0.06	-12.33	-11.93	0.06	-9.04	0.12	
11	5180.0	0.37	-12.55	-12.18	0.06	-12.37	-12.00	0.06	-9.08	0.12	
12	5180.0	0.50	-12.66	-12.16	0.06	-12.49	-11.99	0.06	-9.06	0.12	
13	5180.0	0.63	-12.80	-12.17	0.06	-12.63	-12.00	0.06	-9.07	0.12	
14	5180.0	0.68	-12.89	-12.21	0.06	-12.71	-12.03	0.06	-9.11	0.12	
15	5180.0	0.74	-12.90	-12.16	0.06	-12.76	-12.02	0.06	-9.08	0.12	

 $Sample \ Calculation: \quad Result = Duty \ factor + Reading$

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Test place UL Japan, Inc. Shonan EMC Lab. No.5 Shielded Room

Date December 9, 2013
Temperature / Humidity 23 deg.C , 32 %RH
Engineer Shinichi Takano

Maximum Conducted Output Power (Conducted)

(Reference) (duty chart)

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Test place UL Japan, Inc. Shonan EMC Lab. No.5 Shielded Room

Date December 9, 2013
Temperature / Humidity 23 deg.C , 32 %RH
Engineer Shinichi Takano

Maximum Conducted Output Power (Conducted)

(Reference) (duty chart)

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Test report No.: 10068267S-I Revised date: February 28, 2014

Maximum Conducted Output Power (Conducted)

(Method: PM)

Test place UL Japan, Inc. Shonan EMC Lab. No.5 Shielded Room

Date January 31, 2014 Temperature / Humidity 26deg.C , 44%RH Engineer Shinichi Takano

Mode Tx, IEEE802.11n-HT40, SISO, PN9, worst antenna: worst data mode: 0 (MCS)

Antena te	rminal pow	er		(* P/M: Pow	er Meter with	n power senser	, AV: Averag	e)			
Ch	Freq.	P/M (AV)	Cable	Atten.	Duty		Re	sult	Li	mit	Margin
		Reading	Loss	Loss	factor					_	
	[MHz]	[dBm]	[dB]	[dB]	[dB]		[dBm]	[mW]	[dBm]	[mW]	[dB]
Low	5190.0	-14.11	1.74	20.09	0.44		8.16	6.55	16.99	50.00	8.83
High	5230.0	-14 38	1 74	20.09	0.44		7.89	6.15	16 99	50.00	9 10

Sample Calculation: Result = Reading + Cable Loss + Atten. Loss + Duty factor

EIRP (* P/M: Power Meter with power senser, AV: Average) Reference Data Ch Freq. P/M (AV) Cable Atten. Duty Antenna Result Limit Margin Reading Loss Loss factor Gain (e.i.r.p.) (e.i.r.p.) (e.i.r.p.) (e.i.r.p.) [MHz] [dBm] [dB] [dB] [dB] [dBi] [dBm] [dBm] [mW] [dB] [mW] Low 5190.0 -14.11 1.74 20.09 0.44 1.77 9.93 9.84 5230.0 1.74 20.09 0.44 1.77 9.66 9.25

 $Result = Reading + Cable\ Loss + Atten.\ Loss + Duty\ factor + Antenna\ Gain$ Sample Calculation:

[Pre check] Antenna 0

	Mode	Freq.	P/M (AV)	Cable	Atten.	Duty	Result
			Reading	Loss	Loss	factor	
	(MCS)	[MHz]	[dBm]	[dB]	[dB]	[dB]	[dBm]
0	0	5190.0	-14.42	1.74	20.09	0.44	7.85
0	1	5190.0	-14.46	1.74	20.09	0.43	7.80
0	2	5190.0	-14.50	1.74	20.09	0.38	7.71
0	3	5190.0	-14.49	1.74	20.09	0.49	7.83
0	4	5190.0	-14.53	1.74	20.09	0.46	7.76
0	5	5190.0	-14.78	1.74	20.09	0.58	7.63
0	6	5190.0	-14.84	1.74	20.09	0.78	7.77
0	7	5190.0	-14.92	1.74	20.09	0.67	7.58

Antenna 1

	Mode	Freq.	P/M (AV)	Cable	Atten.	Duty	Result	
			Reading	Loss	Loss	factor		
	(MCS)	[MHz]	[dBm]	[dB]	[dB]	[dB]	[dBm]	
1	0	5190.0	-14.11	1.74	20.09	0.44	8.16	Worst
1	1	5190.0	-14.19	1.74	20.09	0.43	8.07	
1	2	5190.0	-14.33	1.74	20.09	0.38	7.88	
1	3	5190.0	-14.28	1.74	20.09	0.49	8.04	
1	4	5190.0	-14.27	1.74	20.09	0.46	8.02	
1	5	5190.0	-14.46	1.74	20.09	0.58	7.95	
1	6	5190.0	-14.57	1.74	20.09	0.78	8.04	
1	7	5190.0	-14.53	1.74	20.09	0.67	7.97	<u> </u>

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

: +81 463 50 6400 Telephone : +81 463 50 6401 **Facsimile**

Test place UL Japan, Inc. Shonan EMC Lab. No.5 Shielded Room

Date December 12, 2013
Temperature / Humidity 25 deg.C , 51 %RH
Engineer Shinichi Takano

Maximum Conducted Output Power (Conducted)

(Reference) (duty chart)

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Test place UL Japan, Inc. Shonan EMC Lab. No.5 Shielded Room

Date December 12, 2013
Temperature / Humidity 25 deg.C , 51 %RH
Engineer Shinichi Takano

Maximum Conducted Output Power (Conducted)

(Reference) (duty chart)

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Maximum Conducted Output Power (Conducted)

(Method: PM)

Test place UL Japan, Inc. Shonan EMC Lab. No.5 Shielded Room

Date December 12, 2013
Temperature / Humidity 25 deg.C , 51 %RH
Engineer Shinichi Takano

Mode Tx, IEEE802.11n (HT40), CDD, PN9, worst data mode: 0 (MCS)

Antenna 0 + 1

Ch	Freq.	Res	ult	Result		Limit		Limit		Margin	
		(Cor	nd.)	(e.i.	r.p.)	(Co	nd.)	(e.i.	r.p.)	(Cond.)	(e.i.r.p.)
	[MHz]	[dBm]	[mW]	[dBm]	[mW]	[dBm]	[mW]	[dBm]	[mW]	[dBm]	[dBm]
Low	5190.0	11.28	13.42	13.05	20.18	16.99	50.00	-	-	5.71	-
High	5230.0	10.99	12.55	12.76	18.86	16.99	50.00	-	-	6.00	-

Sample Calculation: Result [mW] = Antenna 0 Result [mW] + Antenna 1 Result [mW]

Antenna 0 (* P/M: Power Meter with power senser, AV: Average)

Ch	Freq.	P/M (AV)	Cable	Atten.	Duty	Re	sult	Antenna	Res	sult
		Reading	Loss	Loss	factor	(Co	ond.)	Gain	(e.i.	r.p.)
	[MHz]	[dBm]	[dB]	[dB]	[dB]	[dBm]	[mW]	[dBi]	[dBm]	[mW]
Low	5190.0	-14.18	1.74	20.09	0.44	8.09	6.44	1.77	9.86	9.68
High	5230.0	-14.32	1.74	20.09	0.44	7.95	6.24	1.77	9.72	9.38

Antenna 1 (* P/M: Power Meter with power senser, AV: Average)

Ch	Freq.	P/M (AV)	Cable	Atten.	Duty	Re	Result		Re	sult
		Reading	Loss	Loss	factor	(Co	ond.)	Gain	(e.i.	r.p.)
	[MHz]	[dBm]	[dB]	[dB]	[dB]	[dBm]	[mW]	[dBi]	[dBm]	[mW]
Low	5190.0	-13.83	1.74	20.09	0.44	8.44	6.98	1.77	10.21	10.50
High	5230.0	-14.27	1.74	20.09	0.44	8.00	6.31	1.77	9.77	9.48

Sample Calculation: (Cond.) Result = Reading + Cable Loss (including the cable(s) customer supplied) + Atten. Loss + Duty Factor

(e.i.r.p) Result = Reading + Cable Loss (including the cable(s) customer supplied) + Atten. Loss + Duty Factor + Antenna Gain

[Pre check]

	· -								1		1
Mode	Freq.	Duty		Antenna 0			Antenna 1		Antenn	100 + 1	
		factor	Reading	Re	sult	Reading	Re	sult	Res	sult	
(MCS)	[MHz]	[dB]	[dBm]	[dBm]	[mW]	[dBm]	[dBm]	[mW]	[dBm]	[mW]	
0	5190.0	0.44	-14.18	-13.74	0.04	-13.83	-13.39	0.05	-10.55	0.09	Worst
1	5190.0	0.41	-14.22	-13.81	0.04	-13.90	-13.49	0.04	-10.64	0.09	
2	5190.0	0.42	-14.29	-13.87	0.04	-13.88	-13.46	0.05	-10.65	0.09	
3	5190.0	0.38	-14.24	-13.86	0.04	-13.86	-13.48	0.04	-10.66	0.09	
4	5190.0	0.53	-14.33	-13.80	0.04	-13.98	-13.45	0.05	-10.61	0.09	
5	5190.0	0.66	-14.46	-13.80	0.04	-14.11	-13.45	0.05	-10.61	0.09	
6	5190.0	0.73	-14.54	-13.81	0.04	-14.22	-13.49	0.04	-10.64	0.09	
7	5190.0	0.78	-14.58	-13.80	0.04	-14.36	-13.58	0.04	-10.68	0.09	

Sample Calculation: Result = Duty factor + Reading

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Test place UL Japan, Inc. Shonan EMC Lab. No.5 Shielded Room

DateDecember 12, 2013Temperature / Humidity25 deg.C, 51 %RHEngineerShinichi Takano

Maximum Conducted Output Power (Conducted)

(Reference) (duty chart)

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Test place UL Japan, Inc. Shonan EMC Lab. No.5 Shielded Room

Date December 12, 2013
Temperature / Humidity 25 deg.C , 51 %RH
Engineer Shinichi Takano

Maximum Conducted Output Power (Conducted)

(Reference) (duty chart)

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Maximum Conducted Output Power (Conducted)

(Method: PM)

Test place UL Japan, Inc. Shonan EMC Lab. No.5 Shielded Room

Date December 12, 2013
Temperature / Humidity 25 deg.C , 51 %RH
Engineer Shinichi Takano

Mode Tx, IEEE802.11n (HT40), MIMO(SDM), PN9, worst data mode: 8 (MCS)

Antenna 0 + 1

Ch	Freq.	Res	ult	Result		Limit		Limit		Margin	
		(Cor	nd.)	(e.i.	r.p.)	(Co	ond.)	(e.i.	r.p.)	(Cond.)	(e.i.r.p.)
	[MHz]	[dBm]	[mW]	[dBm]	[mW]	[dBm]	[mW]	[dBm]	[mW]	[dBm]	[dBm]
Low	5190.0	11.22	13.25	12.99	19.92	16.99	50.00	-	-	5.77	-
High	5230.0	10.81	12.04	12.58	18.09	16.99	50.00	-	-	6.18	-

Sample Calculation: Result [mW] = Antenna 0 Result [mW] + Antenna 1 Result [mW]

Antenna 0 (* P/M: Power Meter with power senser, AV: Average)

Ch	Freq.	P/M (AV)	Cable	Atten.	Duty	Re	sult	Antenna	Res	sult
		Reading	Loss	Loss	factor	(Co	ond.)	Gain	(e.i.	r.p.)
	[MHz]	[dBm]	[dB]	[dB]	[dB]	[dBm]	[mW]	[dBi]	[dBm]	[mW]
Low	5190.0	-14.58	1.74	20.09	0.80	8.05	6.38	1.77	9.82	9.59
High	5230.0	-14.88	1.74	20.09	0.80	7.75	5.96	1.77	9.52	8.95

Antenna 1 (* P/M: Power Meter with power senser, AV: Average)

Ch	Freq.	P/M (AV)	Cable	Atten.	Duty	Re	sult	Antenna	Re	sult
		Reading	Loss	Loss	factor	(Co	ond.)	Gain	(e.i.	r.p.)
	[MHz]	[dBm]	[dB]	[dB]	[dB]	[dBm]	[mW]	[dBi]	[dBm]	[mW]
Low	5190.0	-14.26	1.74	20.09	0.80	8.37	6.87	1.77	10.14	10.33
High	5230.0	-14.79	1.74	20.09	0.80	7.84	6.08	1.77	9.61	9.14

Sample Calculation: (Cond.) Result = Reading + Cable Loss + Atten. Loss + Duty factor

(e.i.r.p) Result = Reading + Cable Loss + Atten. Loss + Duty factor + Antenna Gain

[Pre check]

Pre check	K]										_
Mode	Freq.	Duty		Antenna 0			Antenna 1		Antenn	a 0 + 1	
		factor	Reading	Re	sult	Reading	Re	sult	Res	sult	
(MCS)	[MHz]	[dB]	[dBm]	[dBm]	[mW]	[dBm]	[dBm]	[mW]	[dBm]	[mW]	
8	5190.0	0.80	-14.58	-13.78	0.04	-14.26	-13.46	0.05	-10.61	0.09	Worst
9	5190.0	0.75	-14.64	-13.89	0.04	-14.35	-13.60	0.04	-10.73	0.08	
10	5190.0	0.73	-14.68	-13.95	0.04	-14.38	-13.65	0.04	-10.79	0.08	
11	5190.0	0.64	-14.67	-14.03	0.04	-14.29	-13.65	0.04	-10.83	0.08	
12	5190.0	0.86	-14.79	-13.93	0.04	-14.52	-13.66	0.04	-10.78	0.08	
13	5190.0	1.00	-15.04	-14.04	0.04	-14.76	-13.76	0.04	-10.89	0.08	
14	5190.0	1.09	-15.12	-14.03	0.04	-14.81	-13.72	0.04	-10.86	0.08	
15	5190.0	1.14	-15.16	-14.02	0.04	-14.91	-13.77	0.04	-10.88	0.08	

Sample Calculation: Result = Duty factor + Reading

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Test place UL Japan, Inc. Shonan EMC Lab. No.5 Shielded Room

Date December 12, 2013
Temperature / Humidity 25 deg.C , 51 %RH
Engineer Shinichi Takano

Maximum Conducted Output Power (Conducted)

(Reference) (duty chart)

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Test place UL Japan, Inc. Shonan EMC Lab. No.5 Shielded Room

Date December 12, 2013
Temperature / Humidity 25 deg.C , 51 %RH
Engineer Shinichi Takano

Maximum Conducted Output Power (Conducted)

(Reference) (duty chart)

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Radiated Emission

No.3 Semi Anechoic Chamber No.3 Semi Anechoic Chamber Test place No.2 Semi Anechoic Chamber

November 19, 2013 November 25, 2013 December 11, 2013 Date Temperature / Humidity $24~\mathrm{deg.C}$, $40~\mathrm{\%\,RH}$ 26 deg.C , 35 %RH 26 deg.C , 31 %RH Engineer Akio Hayashi Tatsuya Arai Shinichi Takano

5180 MHz Mode

Tx, IEEE802.11a, SISO, PN9, worst antenna port 1, worst data mode 18Mbps

(above 1GHz Inside of the restricted band)

(* PK: Peak, AV: Average, QP: Quasi-Peak)

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg.]	
Hori.	5150.000	PK	57.0	32.1	17.2	37.0	69.3	73.9	4.6	100	94	
Hori.	15540.000	PK	46.7	37.7	2.3	38.7	48.0	73.9	25.9	116	255	
Hori.	5150.000	AV	38.7	32.1	17.2	37.0	51.0	53.9	2.9	100	94	
Hori.	15540.000	AV	34.0	37.7	2.3	38.7	35.3	53.9	18.6	116	255	
Vert.	5150.000	PK	55.6	32.1	17.2	37.0	67.9	73.9	6.0	100	95	
Vert.	15540.000	PK	48.2	37.7	2.3	38.7	49.5	73.9	24.4	114	105	
Vert.	5150.000	AV	38.2	32.1	17.2	37.0	50.5	53.9	3.4	100	95	
Vert.	15540.000	AV	35.4	37.7	2.3	38.7	36.7	53.9	17.2	114	105	

15GHz-40GHz 20log(3.0m/1.0m)= 9.5dB

(Calculation) (above 1GHz Outside of the restricted band)

(* PK: Peak, AV: Average, OP: Quasi-Peak)

		(. LK. Lcak	, Av. Average	, Qr. Quasi-re	ak)								
Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Result (EIRP)	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBm]	[dBm]	[dB]	[cm]	[deg.]	
Hori.	10360.000	PK	46.0	39.5	9.9	38.8	56.6	-38.63	-27.00	11.6	100	211	
Vert.	10360.000	PK	48.4	39.5	9.9	38.8	59.0	-36.23	-27.00	9.2	100	211	

 $Result = Reading + Ant. Fac. + Loss (Cable + (Attenuator \ or \ Filter) (below \ 18GHz) - Distance \ factor (above \ 15GHz)) - Gain (Amprifier) - Gain (Amprifier)$

 $Resrult(EIRP[dBm]) = 10*LOG~((\{\ 10\ ^{\circ}\ (Electric\ Field\ Strength\ [dBuV/m]\ /\ 20\)*\ 10\ ^{\circ}\ (-6)*\ Distance: 3[m]\)^{\ 2}\ /\ 30)*\ 10^{\circ}3)$ *Other frequency noises omitted in this report were not seen or have enough margin (more than 20dB).

Distance factor: 15GHz-40GHz 20log(3.0m/1.0m)= 9.5dB

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

: +81 463 50 6400 Telephone : +81 463 50 6401 Facsimile

^{*}Other frequency noises omitted in this report were not seen or have enough margin (more than 20dB).

Radiated Emission

Test place No.2 Semi Anechoic Chamber No.3 Semi Anechoic Chamber

DateNovember 19, 2013November 25, 2013Temperature / Humidity24 deg.C , 40 %RH26 deg.C , 35 %RHEngineerAkio HayashiTatsuya Arai

Mode Tx, 5220 MHz

Tx, IEEE802.11a, SISO, PN9, worst antenna port 1, worst data mode 18Mbps

(above 1GHz Inside of the restricted band)

(* PK: Peak, AV: Average, QP: Quasi-Peak)

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg.]	
Hori.	15660.000	PK	46.9	37.2	2.3	38.8	47.6	73.9	26.3	100	0	
Hori.	15660.000	AV	33.5	37.2	2.3	38.8	34.2	53.9	19.7	100	0	
Vert.	15660.000	PK	46.7	37.2	2.3	38.8	47.4	73.9	26.5	100	0	
Vert.	15660.000	AV	33.6	37.2	2.3	38.8	34.3	53.9	19.6	100	0	

Distance factor: 15GHz-40GHz 20log(3.0m/1.0m)= 9.5dB

(Calculation) (above 1GHz Outside of the restricted band)

(* PK: Peak, AV: Average, QP: Quasi-Peak)

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Result (EIRP)	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBm]	[dBm]	[dB]	[cm]	[deg.]	
Hori.	10440.000	PK	45.4	39.7	10.2	38.8	56.5	-38.73	-27.00	11.7	100	210	
Vert.	10440.000	PK	48.1	39.7	10.2	38.8	59.2	-36.03	-27.00	9.0	136	144	

 $Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator or Filter) (below 18GHz) - Distance factor(above 15GHz)) - Gain(Amprifier) \\ Resrult(EIRP[dBm]) = 10*LOG (({\{10^c (Electric Field Strength [dBuV/m] / 20)*10^c (-6)* Distance: 3[m])^2 }/30)*10^3) \\ In (\{10^c (Electric Field Strength [dBuV/m] / 20)*10^c (-6)* Distance: 3[m])^2 }/30)*10^3) \\ In (\{10^c (Electric Field Strength [dBuV/m] / 20)*10^c (-6)* Distance: 3[m])^2 }/30)*10^3) \\ In (\{10^c (Electric Field Strength [dBuV/m] / 20)*10^c (-6)* Distance: 3[m])^2 }/30)*10^3) \\ In (\{10^c (Electric Field Strength [dBuV/m] / 20)*10^c (-6)* Distance: 3[m])^2 }/30)*10^3) \\ In (\{10^c (Electric Field Strength [dBuV/m] / 20)*10^c (-6)* Distance: 3[m])^2 }/30)*10^3) \\ In (\{10^c (Electric Field Strength [dBuV/m] / 20)*10^c (-6)* Distance: 3[m])^2 }/30)*10^3) \\ In (\{10^c (Electric Field Strength [dBuV/m] / 20)*10^c (-6)* Distance: 3[m])^2 }/30)*10^3) \\ In (\{10^c (Electric Field Strength [dBuV/m] / 20)*10^c (-6)* Distance: 3[m])^2 }/30)*10^3) \\ In (\{10^c (Electric Field Strength [dBuV/m] / 20)*10^c (-6)* Distance: 3[m])^2 }/30)*10^3) \\ In (\{10^c (Electric Field Strength [dBuV/m] / 20)*10^c (-6)* Distance: 3[m])^2 }/30)*10^3) \\ In (\{10^c (Electric Field Strength [dBuV/m] / 20)*10^c (-6)* Distance: 3[m])^2 }/30)*10^3) \\ In (\{10^c (Electric Field Strength [dBuV/m] / 20)*10^c (-6)* Distance: 3[m])^2 }/30)*10^2 }/30) \\ In (\{10^c (Electric Field Strength [dBuV/m] / 20)*10^c (-6)* Distance: 3[m])^2 }/30) \\ In (\{10^c (Electric Field Strength [dBuV/m] / 20)*10^c (-6)* Distance: 3[m])^2 }/30) \\ In (\{10^c (Electric Field Strength [dBuV/m] / 20)*10^c (-6)* Distance: 3[m])^2 }/30) \\ In (\{10^c (Electric Field Strength [dBuV/m] / 20)*10^c (-6)* Distance: 3[m])^2 }/30) \\ In (\{10^c (Electric Field Strength [dBuV/m] / 20)*10^c (-6)* Distance: 3[m])^2 }/30) \\ In (\{10^c (Electric Field Strength [dBuV/m] / 20)*10^c (-6)* Distance: 3[m])^2 }/30) \\ In (\{10^c (Electric Field Strength [dBuV/m] / 20)*10^c (-6)* Distance: 3[m])^2 }/30) \\ In (\{10^c (Electric Fie$

*Other frequency noises omitted in this report were not seen or have enough margin (more than 20dB).

Distance factor: 15GHz-40GHz 20log(3.0m/1.0m)= 9.5dB

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

^{*}Other frequency noises omitted in this report were not seen or have enough margin (more than 20dB).

Radiated Emission

Test place No.2 Semi Anechoic Chamber No.3 Semi Anechoic Chamber

DateNovember 19, 2013November 25, 2013Temperature / Humidity24 deg.C , 40 %RH26 deg.C , 35 %RHEngineerAkio HayashiTatsuya Arai

Mode Tx, 5240 MHz

Tx, IEEE802.11a, SISO, PN9, worst antenna port 1, worst data mode 18Mbps

(above 1GHz Inside of the restricted band)

(* PK: Peak, AV: Average, QP: Quasi-Peak)

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg.]	
Hori.	5350.000	PK	47.0	32.3	16.7	40.8	55.2	73.9	18.7	100	123	
Hori.	15720.000	PK	45.3	37.0	2.3	38.9	45.7	73.9	28.2	100	269	
Hori.	5350.000	AV	34.6	32.3	16.7	40.8	42.8	53.9	11.1	100	123	
Hori.	15720.000	AV	32.9	37.0	2.3	38.9	33.3	53.9	20.6	100	269	
Vert.	5350.000	PK	46.9	32.3	16.7	40.8	55.1	73.9	18.8	100	219	
Vert.	15720.000	PK	45.7	37.0	2.3	38.9	46.1	73.9	27.8	100	98	
Vert.	5350.000	AV	34.7	32.3	16.7	40.8	42.9	53.9	11.0	100	219	
Vert.	15720.000	AV	33.1	37.0	2.3	38.9	33.5	53.9	20.4	100	98	

Distance factor: 15GHz-40GHz 20log(3.0m/1.0m)= 9.5dB

(Calculation) (above 1GHz Outside of the restricted band)

(* PK: Peak, AV: Average, QP: Quasi-Peak)

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Result (EIRP)	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBm]	[dBm]	[dB]	[cm]	[deg.]	
Hori.	10480.000	PK	45.0	39.7	10.2	38.8	56.1	-39.13	-27.00	12.1	100	200	
Vert.	10480.000	PK	48.4	39.7	10.2	38.8	59.5	-35.73	-27.00	8.7	146	141	

 $Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator or Filter) (below 18GHz) - Distance factor(above 15GHz)) - Gain(Amprifier) \\ Resrult(EIRP[dBm]) = 10*LOG (({\{10^c (Electric Field Strength [dBuV/m] / 20)*10^c (-6)* Distance: 3[m])^2 }/30)*10^3) \\ In (\{10^c (Electric Field Strength [dBuV/m] / 20)*10^c (-6)* Distance: 3[m])^2 }/30)*10^3) \\ In (\{10^c (Electric Field Strength [dBuV/m] / 20)*10^c (-6)* Distance: 3[m])^2 }/30)*10^3) \\ In (\{10^c (Electric Field Strength [dBuV/m] / 20)*10^c (-6)* Distance: 3[m])^2 }/30)*10^3) \\ In (\{10^c (Electric Field Strength [dBuV/m] / 20)*10^c (-6)* Distance: 3[m])^2 }/30)*10^3) \\ In (\{10^c (Electric Field Strength [dBuV/m] / 20)*10^c (-6)* Distance: 3[m])^2 }/30)*10^3) \\ In (\{10^c (Electric Field Strength [dBuV/m] / 20)*10^c (-6)* Distance: 3[m])^2 }/30)*10^3) \\ In (\{10^c (Electric Field Strength [dBuV/m] / 20)*10^c (-6)* Distance: 3[m])^2 }/30)*10^3) \\ In (\{10^c (Electric Field Strength [dBuV/m] / 20)*10^c (-6)* Distance: 3[m])^2 }/30)*10^3) \\ In (\{10^c (Electric Field Strength [dBuV/m] / 20)*10^c (-6)* Distance: 3[m])^2 }/30)*10^3) \\ In (\{10^c (Electric Field Strength [dBuV/m] / 20)*10^c (-6)* Distance: 3[m])^2 }/30)*10^3) \\ In (\{10^c (Electric Field Strength [dBuV/m] / 20)*10^c (-6)* Distance: 3[m])^2 }/30)*10^3) \\ In (\{10^c (Electric Field Strength [dBuV/m] / 20)*10^c (-6)* Distance: 3[m])^2 }/30)*10^2 }/30) \\ In (\{10^c (Electric Field Strength [dBuV/m] / 20)*10^c (-6)* Distance: 3[m])^2 }/30) \\ In (\{10^c (Electric Field Strength [dBuV/m] / 20)*10^c (-6)* Distance: 3[m])^2 }/30) \\ In (\{10^c (Electric Field Strength [dBuV/m] / 20)*10^c (-6)* Distance: 3[m])^2 }/30) \\ In (\{10^c (Electric Field Strength [dBuV/m] / 20)*10^c (-6)* Distance: 3[m])^2 }/30) \\ In (\{10^c (Electric Field Strength [dBuV/m] / 20)*10^c (-6)* Distance: 3[m])^2 }/30) \\ In (\{10^c (Electric Field Strength [dBuV/m] / 20)*10^c (-6)* Distance: 3[m])^2 }/30) \\ In (\{10^c (Electric Field Strength [dBuV/m] / 20)*10^c (-6)* Distance: 3[m])^2 }/30) \\ In (\{10^c (Electric Fie$

Distance factor: 15 GHz-40 GHz 20log(3.0m/1.0m)=9.5dB

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

^{*}Other frequency noises omitted in this report were not seen or have enough margin (more than 20dB).

^{*}Other frequency noises omitted in this report were not seen or have enough margin (more than 20dB).

Radiated Emission

Test place No.2 Semi Anechoic Chamber No.3 Semi Anechoic Chamber No.3 Semi Anechoic Chamber No.3 Semi Anechoic Chamber

DateNovember 19, 2013November 25, 2013November 26, 2013December 11, 2013Temperature / Humidity24 deg.C , 40 %RH26 deg.C , 35 %RH25 deg.C, 42 %RH26 deg.C , 31 %RHEngineerAkio HayashiTatsuya AraiTatsuya AraiShinichi Takano

Mode Tx, 5180 MHz

Tx, IEEE802.11n (HT20), CDD, PN9, worst data mode 0 (MCS)

(below 1GHz and above 1GHz Inside of the restricted band)

(* PK: Peak, AV: Average, QP: Quasi-Peak)

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg.]	
Hori.	400.011	QP	31.5	16.3	9.0	32.0	24.8	46.0	21.2	100	266	
Hori.	5150.000	PK	57.2	32.1	17.2	37.0	69.5	73.9	4.4	100	280	
Hori.	15540.000	PK	48.1	37.7	2.3	38.7	49.4	73.9	24.5	100	138	
Hori.	5150.000	AV	40.2	32.1	17.2	37.0	52.5	53.9	1.4	100	280	
Hori.	15540.000	AV	34.7	37.7	2.3	38.7	36.0	53.9	17.9	100	138	
Vert.	80.683	QP	56.1	6.4	7.5	32.1	37.9	40.0	2.1	100	10	
Vert.	122.373	QP	50.2	13.2	7.2	32.1	38.5	43.5	5.0	100	219	
Vert.	154.483	QP	40.9	14.7	7.7	32.1	31.2	43.5	12.3	100	178	
Vert.	400.011	QP	30.9	16.3	9.0	32.0	24.2	46.0	21.8	130	190	
Vert.	5150.000	PK	55.7	32.1	17.2	37.0	68.0	73.9	5.9	100	206	
Vert.	15540.000	PK	50.5	37.7	2.3	38.7	51.8	73.9	22.1	100	106	
Vert.	5150.000	AV	40.0	32.1	17.2	37.0	52.3	53.9	1.6	100	206	
Vert.	15540.000	AV	36.5	37.7	2.3	38.7	37.8	53.9	16.1	100	106	

Distance factor: 15GHz-40GHz 20log(3.0m/1.0m)= 9.5dB

(Calculation) (above 1GHz Outside of the restricted band)

(* PK: Peak, AV: Average, QP: Quasi-Peak)

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Result (EIRP)	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBm]	[dBm]	[dB]	[cm]	[deg.]	
Hori.	10360.000	PK	46.4	39.5	9.9	38.8	57.0	-38.23	-27.00	11.2	100	210	
Vert.	10360.000	PK	49.2	39.5	9.9	38.8	59.8	-35.43	-27.00	8.4	151	141	

 $Result = Reading + Ant.Fac. + Loss \ (Cable + (Attenuator \ or \ Filter) (below \ 18GHz) - Distance \ factor (above \ 15GHz)) - Gain (Amprifier) - Gain (Amprifier)$

 $Resrult(EIRP[dBm]) = 10*LOG \ ((\{\ 10 \ ^ \ (\ Electric \ Field \ Strength \ [dBuV/m] \ / \ 20\)*10 \ ^ (-6)*Distance: 3[m]\) \ ^ 2\ \} \ / \ 30)*10^3)$

*Other frequency noises omitted in this report were not seen or have enough margin (more than 20dB).

Distance factor: 15 GHz-40 GHz 20log(3.0m/1.0m)=9.5dB

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

^{*}Other frequency noises omitted in this report were not seen or have enough margin (more than 20dB).

Radiated Emission

Test place No.2 Semi Anechoic Chamber No.3 Semi Anechoic Chamber

DateNovember 19, 2013November 25, 2013Temperature / Humidity24 deg.C , 40 %RH26 deg.C , 35 %RHEngineerAkio HayashiTatsuya Arai

Mode Tx, 5220 MHz

Tx, IEEE802.11n (HT20), CDD, PN9, worst data mode 0 (MCS)

(above 1GHz Inside of the restricted band)

(* PK: Peak, AV: Average, QP: Quasi-Peak)

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg.]	
Hori.	15660.000	PK	47	37.2	2.3	38.8	47.7	73.9	26.2	100	0	
Hori.	15660.000	AV	32.2	37.2	2.3	38.8	32.9	53.9	21.0	100	0	
Vert.	15660.000	PK	50.2	37.2	2.3	38.8	50.9	73.9	23.0	100	103	
Vert.	15660.000	AV	35.7	37.2	2.3	38.8	36.4	53.9	17.5	100	103	

 $Result = Reading + Ant.Fac. + Loss \ (Cable + (Attenuator \ or \ Filter) (below \ 18GHz) - Distance \ factor (above \ 15GHz)) - Gain (Amprifier) - Gain (Amprifier)$

Distance factor: 15GHz-40GHz 20log(3.0m/1.0m)= 9.5dB

(Calculation) (above 1GHz Outside of the restricted band)

(* PK: Peak, AV: Average, QP: Quasi-Peak)

Result (EIRP)	Limit	Margin	TT-:-1-4		
[dD ₁₁ V/ _m] [dD _m]		ivitai 5iii	Height	Angle	Remark
[ubu v/III] [ubiII]	[dBm]	[dB]	[cm]	[deg.]	
56.1 -39.13	-27.00	12.1	100	212	
60.8 -34.43	-27.00	7.4	151	144	
dub		56.1 -39.13 -27.00	56.1 -39.13 -27.00 12.1	56.1 -39.13 -27.00 12.1 100	56.1 -39.13 -27.00 12.1 100 212

 $Result = Reading + Ant.Fac. + Loss \ (Cable + (Attenuator \ or \ Filter) (below \ 18GHz) - Distance \ factor (above \ 15GHz)) - Gain (Amprifier) - Gain (Amprifier)$

 $Resrult(EIRP[dBm]) = 10*LOG \ ((\{\ 10\ \land\ (\ Electric\ Field\ Strength\ [dBuV/m]\ /\ 20\)*\ 10\ \land (-6)*\ Distance: 3[m]\) \ \land\ 2\ \}\ /\ 30)*10^{\circ}3)$

*Other frequency noises omitted in this report were not seen or have enough margin (more than 20dB).

Distance factor: 15 GHz-40 GHz 20log(3.0m/1.0m)=9.5dB

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

^{*}Other frequency noises omitted in this report were not seen or have enough margin (more than 20dB).

Radiated Emission

Test place No.2 Semi Anechoic Chamber No.3 Semi Anechoic Chamber

DateNovember 19, 2013November 25, 2013Temperature / Humidity24 deg.C, 40 %RH26 deg.C, 35 %RHEngineerAkio HayashiTatsuya Arai

Mode Tx, 5240 MHz

Tx, IEEE802.11n (HT20), CDD, PN9, worst data mode 0 (MCS)

(above 1GHz Inside of the restricted band)

(* PK: Peak, AV: Average, QP: Quasi-Peak)

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg.]	
Hori.	15720.000	PK	47.2	37.0	2.3	38.9	47.6	73.9	26.3	100	126	
Hori.	15720.000	AV	33.3	37.0	2.3	38.9	33.7	53.9	20.2	100	126	
Vert.	15720.000	PK	49.8	37.0	2.3	38.9	50.2	73.9	23.7	100	105	
Vert.	15720.000	AV	35.2	37.0	2.3	38.9	35.6	53.9	18.3	100	105	

Distance factor: 15GHz-40GHz 20log(3.0m/1.0m)= 9.5dB

(Calculation) (above 1GHz Outside of the restricted band)

(* PK: Peak, AV: Average, QP: Quasi-Peak)

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Result (EIRP)	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBm]	[dBm]	[dB]	[cm]	[deg.]	
Hori.	10480.000	PK	47.2	39.7	10.2	38.8	58.3	-36.93	-27.00	9.9	130	90	
Vert.	10480.000	PK	50.3	39.7	10.2	38.8	61.4	-33.83	-27.00	6.8	140	146	

 $Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator or Filter) (below 18GHz) - Distance factor(above 15GHz)) - Gain(Amprifier) \\ Resrult(EIRP[dBm]) = 10*LOG (({\{10^c (Electric Field Strength [dBuV/m] / 20)*10^c (-6)* Distance: 3[m])^2 }/30)*10^3) \\ In (\{10^c (Electric Field Strength [dBuV/m] / 20)*10^c (-6)* Distance: 3[m])^2 }/30)*10^3) \\ In (\{10^c (Electric Field Strength [dBuV/m] / 20)*10^c (-6)* Distance: 3[m])^2 }/30)*10^3) \\ In (\{10^c (Electric Field Strength [dBuV/m] / 20)*10^c (-6)* Distance: 3[m])^2 }/30)*10^3) \\ In (\{10^c (Electric Field Strength [dBuV/m] / 20)*10^c (-6)* Distance: 3[m])^2 }/30)*10^3) \\ In (\{10^c (Electric Field Strength [dBuV/m] / 20)*10^c (-6)* Distance: 3[m])^2 }/30)*10^3) \\ In (\{10^c (Electric Field Strength [dBuV/m] / 20)*10^c (-6)* Distance: 3[m])^2 }/30)*10^3) \\ In (\{10^c (Electric Field Strength [dBuV/m] / 20)*10^c (-6)* Distance: 3[m])^2 }/30)*10^3) \\ In (\{10^c (Electric Field Strength [dBuV/m] / 20)*10^c (-6)* Distance: 3[m])^2 }/30)*10^3) \\ In (\{10^c (Electric Field Strength [dBuV/m] / 20)*10^c (-6)* Distance: 3[m])^2 }/30)*10^3) \\ In (\{10^c (Electric Field Strength [dBuV/m] / 20)*10^c (-6)* Distance: 3[m])^2 }/30)*10^3) \\ In (\{10^c (Electric Field Strength [dBuV/m] / 20)*10^c (-6)* Distance: 3[m])^2 }/30)*10^3) \\ In (\{10^c (Electric Field Strength [dBuV/m] / 20)*10^c (-6)* Distance: 3[m])^2 }/30)*10^2 }/30) \\ In (\{10^c (Electric Field Strength [dBuV/m] / 20)*10^c (-6)* Distance: 3[m])^2 }/30) \\ In (\{10^c (Electric Field Strength [dBuV/m] / 20)*10^c (-6)* Distance: 3[m])^2 }/30) \\ In (\{10^c (Electric Field Strength [dBuV/m] / 20)*10^c (-6)* Distance: 3[m])^2 }/30) \\ In (\{10^c (Electric Field Strength [dBuV/m] / 20)*10^c (-6)* Distance: 3[m])^2 }/30) \\ In (\{10^c (Electric Field Strength [dBuV/m] / 20)*10^c (-6)* Distance: 3[m])^2 }/30) \\ In (\{10^c (Electric Field Strength [dBuV/m] / 20)*10^c (-6)* Distance: 3[m])^2 }/30) \\ In (\{10^c (Electric Field Strength [dBuV/m] / 20)*10^c (-6)* Distance: 3[m])^2 }/30) \\ In (\{10^c (Electric Fie$

*Other frequency noises omitted in this report were not seen or have enough margin (more than 20dB).

Distance factor: 15GHz-40GHz 20log(3.0m/1.0m)= 9.5dB

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

^{*}Other frequency noises omitted in this report were not seen or have enough margin (more than 20dB).

Radiated Emission

Test place No.2 Semi Anechoic Chamber No.3 Semi Anechoic Chamber No.3 Semi Anechoic Chamber

 Date
 November 19, 2013
 November 25, 2013
 January 25, 2014

 Temperature / Humidity
 24 deg.C , 40 %RH
 26 deg.C , 35 %RH
 23 deg.C , 31 %RH

 Engineer
 Akio Hayashi
 Tatsuya Arai
 Shinichi Takano

Mode Tx, 5190 MHz

Tx, IEEE802.11n (HT40), CDD, PN9, worst data mode 0 (MCS)

(above 1GHz Inside of the restricted band)

(* PK: Peak, AV: Average, QP: Quasi-Peak)

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg.]	
Hori.	5150.000	PK	55.6	32.1	17.2	37.0	67.9	73.9	6.0	100	98	
Hori.	15570.000	PK	47.1	37.5	2.3	38.7	48.2	73.9	25.7	100	138	
Hori.	5150.000	AV	40.3	32.1	17.2	37.0	52.6	53.9	1.3	100	98	
Hori.	15570.000	AV	33.9	37.5	2.3	38.7	35.0	53.9	18.9	100	138	
Vert.	5150.000	PK	53.9	32.1	17.2	37.0	66.2	73.9	7.7	100	359	
Vert.	15570.000	PK	48.7	37.5	2.3	38.7	49.8	73.9	24.1	100	102	
Vert.	5150.000	AV	40.2	32.1	17.2	37.0	52.5	53.9	1.4	100	359	
Vert.	15570.000	AV	35.0	37.5	2.3	38.7	36.1	53.9	17.8	100	102	

Distance factor: 15GHz-40GHz 20log(3.0m/1.0m)= 9.5dB

(Calculation) (above 1GHz Outside of the restricted band)

(* PK: Peak, AV: Average, QP: Quasi-Peak)

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Result (EIRP)	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBm]	[dBm]	[dB]	[cm]	[deg.]	
Hori.	10380.000	PK	44.7	39.6	9.9	38.8	55.4	-39.83	-27.00	12.8	100	211	
Vert.	10380.000	PK	49.4	39.6	9.9	38.8	60.1	-35.13	-27.00	8.1	136	141	
								45077 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					

 $Result = Reading + Ant.Fac. + Loss \ (Cable + (Attenuator \ or \ Filter) (below \ 18GHz) - Distance \ factor (above \ 15GHz)) - Gain (Amprifier) - Gain (Amprifier)$

 $Resrult(EIRP[dBm]) = 10*LOG \ ((\{\ 10 \ ^ \ (\ Electric \ Field \ Strength \ [dBuV/m] \ / \ 20\)*10 \ ^ (-6)*Distance: 3[m]\) \ ^ 2\ \} \ / \ 30)*10^3)$

*Other frequency noises omitted in this report were not seen or have enough margin (more than 20dB).

Distance factor: 15 GHz-40 GHz 20log(3.0m/1.0m)=9.5dB

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

^{*}Other frequency noises omitted in this report were not seen or have enough margin (more than 20dB).

Radiated Emission

Test place No.2 Semi Anechoic Chamber No.3 Semi Anechoic Chamber

DateNovember 19, 2013November 25, 2013Temperature / Humidity24 deg.C , 40 %RH26 deg.C , 35 %RHEngineerAkio HayashiTatsuya Arai

Mode Tx, 5230 MHz

Tx, IEEE802.11n (HT40), CDD, PN9, worst data mode 0 (MCS)

(above 1GHz Inside of the restricted band)

(* PK: Peak, AV: Average, QP: Quasi-Peak)

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg.]	
Hori.	5350.000	PK	46.6	32.3	16.7	40.8	54.8	73.9	19.1	100	125	
Hori.	15690.000	PK	46.8	37.1	2.3	38.8	47.4	73.9	26.5	100	141	
Hori.	5350.000	AV	34.9	32.3	16.7	40.8	43.1	53.9	10.8	100	125	
Hori.	15690.000	AV	32.6	37.1	2.3	38.8	33.2	53.9	20.7	100	141	
Vert.	5350.000	PK	45.5	32.3	16.7	40.8	53.7	73.9	20.2	100	225	
Vert.	15690.000	PK	47.0	37.1	2.3	38.8	47.6	73.9	26.3	100	99	
Vert.	5350.000	AV	34.7	32.3	16.7	40.8	42.9	53.9	11.0	100	225	
Vert.	15690.000	AV	34.3	37.1	2.3	38.8	34.9	53.9	19.0	100	99	

 $Result = Reading + Ant.Fac. + Loss \ (Cable + (Attenuator \ or \ Filter) (below \ 18GHz) - Distance \ factor (above \ 15GHz)) - Gain (Amprifier) - Gain (Amprifier)$

Distance factor: 15GHz-40GHz 20log(3.0m/1.0m)= 9.5dB

(Calculation) (above 1GHz Outside of the restricted band)

(* PK: Peak, AV: Average, QP: Quasi-Peak)

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Result (EIRP)	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBm]	[dBm]	[dB]	[cm]	[deg.]	
Hori.	10460.000	PK	44.3	39.7	10.2	38.8	55.4	-39.83	-27.00	12.8	130	89	
Vert.	10460.000	PK	47.7	39.7	10.2	38.8	58.8	-36.43	-27.00	9.4	142	143	
								<u> </u>					

 $Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator or Filter) (below 18GHz) - Distance factor(above 15GHz)) - Gain(Amprifier) \\ Resrult(EIRP[dBm]) = 10*LOG (({\{10^c (Electric Field Strength [dBuV/m] / 20)*10^c (-6)* Distance: 3[m])^2 }/30)*10^3) \\ In (\{10^c (Electric Field Strength [dBuV/m] / 20)*10^c (-6)* Distance: 3[m])^2 }/30)*10^3) \\ In (\{10^c (Electric Field Strength [dBuV/m] / 20)*10^c (-6)* Distance: 3[m])^2 }/30)*10^3) \\ In (\{10^c (Electric Field Strength [dBuV/m] / 20)*10^c (-6)* Distance: 3[m])^2 }/30)*10^3) \\ In (\{10^c (Electric Field Strength [dBuV/m] / 20)*10^c (-6)* Distance: 3[m])^2 }/30)*10^3) \\ In (\{10^c (Electric Field Strength [dBuV/m] / 20)*10^c (-6)* Distance: 3[m])^2 }/30)*10^3) \\ In (\{10^c (Electric Field Strength [dBuV/m] / 20)*10^c (-6)* Distance: 3[m])^2 }/30)*10^3) \\ In (\{10^c (Electric Field Strength [dBuV/m] / 20)*10^c (-6)* Distance: 3[m])^2 }/30)*10^3) \\ In (\{10^c (Electric Field Strength [dBuV/m] / 20)*10^c (-6)* Distance: 3[m])^2 }/30)*10^3) \\ In (\{10^c (Electric Field Strength [dBuV/m] / 20)*10^c (-6)* Distance: 3[m])^2 }/30)*10^3) \\ In (\{10^c (Electric Field Strength [dBuV/m] / 20)*10^c (-6)* Distance: 3[m])^2 }/30)*10^3) \\ In (\{10^c (Electric Field Strength [dBuV/m] / 20)*10^c (-6)* Distance: 3[m])^2 }/30)*10^3) \\ In (\{10^c (Electric Field Strength [dBuV/m] / 20)*10^c (-6)* Distance: 3[m])^2 }/30)*10^2 }/30) \\ In (\{10^c (Electric Field Strength [dBuV/m] / 20)*10^c (-6)* Distance: 3[m])^2 }/30) \\ In (\{10^c (Electric Field Strength [dBuV/m] / 20)*10^c (-6)* Distance: 3[m])^2 }/30) \\ In (\{10^c (Electric Field Strength [dBuV/m] / 20)*10^c (-6)* Distance: 3[m])^2 }/30) \\ In (\{10^c (Electric Field Strength [dBuV/m] / 20)*10^c (-6)* Distance: 3[m])^2 }/30) \\ In (\{10^c (Electric Field Strength [dBuV/m] / 20)*10^c (-6)* Distance: 3[m])^2 }/30) \\ In (\{10^c (Electric Field Strength [dBuV/m] / 20)*10^c (-6)* Distance: 3[m])^2 }/30) \\ In (\{10^c (Electric Field Strength [dBuV/m] / 20)*10^c (-6)* Distance: 3[m])^2 }/30) \\ In (\{10^c (Electric Fie$

*Other frequency noises omitted in this report were not seen or have enough margin (more than 20dB).

Distance factor: 15 GHz-40 GHz 20log(3.0m/1.0m)=9.5dB

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

^{*}Other frequency noises omitted in this report were not seen or have enough margin (more than 20dB).

Test place UL Japan, Inc. Shonan EMC Lab. No.5 Shielded Room

Date December 9, 2013
Temperature / Humidity 23 deg.C , 32 %RH
Engineer Shinichi Takano

VBW (Average) Calculation & Duty chart

Tx, IEEE802.11a, SISO, PN9, worst antenna port 1, worst data mode 18Mbps

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Test place UL Japan, Inc. Shonan EMC Lab. No.5 Shielded Room

Date December 9, 2013
Temperature / Humidity 23 deg.C , 32 %RH
Engineer Shinichi Takano

VBW (Average) Calculation & Duty chart

Tx, IEEE802.11n (HT20), CDD, PN9, worst data mode 0 (MCS)

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Test place UL Japan, Inc. Shonan EMC Lab. No.5 Shielded Room

Date December 12, 2013
Temperature / Humidity 25 deg.C , 51 %RH
Engineer Shinichi Takano

VBW (Average) Calculation & Duty chart

Tx, IEEE802.11n (HT40), CDD, PN9, worst data mode 0 (MCS)

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Test place UL Japan, Inc. Shonan EMC Lab. No.5 Shielded Room

Date January 31, 2014
Temperature / Humidity 26deg.C , 44%RH
Engineer Shinichi Takano

Spurious emission (Conducted)

Tx, IEEE802.11n (HT20), CDD, PN9, Antenna port 1, worst data mode 0 (MCS)

FREQ	Regulation	Atten.	Directional		Offset
		Loss	Gain	(N _{ANT})	
[MHz]	[dBm]	[dB]	[dBi]	[dB]	[dB]
30.00	-27.00	20.14	4.78	3.01	27.93

Offset = Atten. Loss + Directional Gain + 10log(NANT)Directional Gain = Antenna Gain + Array Gain (10log2)

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Peak Power Spectral Density

(Method: SA-2)

Test place UL Japan, Inc. Shonan EMC Lab. No.5 Shielded Room

Date December 9, 2013
Temperature / Humidity 23 deg.C , 32 %RH
Engineer Shinichi Takano

Mode Tx, IEEE802.11a, SISO, PN9, worst antenna port 1, worst data mode 18Mbps

Ch. Freq.	Freq.	Reading	Cable	Atten.	Duty	Result	Limit	Margin
	Reading		Loss	Loss	factor			
[MHz]	[MHz]	[dBm/MHz]	[dB]	[dB]	[dB]	[dBm/MHz]	[dBm]	[dB]
5180.0000	5178.77	-20.54	1.74	20.10	0.24	1.54	4.00	2.46
5220.0000	5218.98	-21.08	1.74	20.09	0.24	0.99	4.00	3.01
5240.0000	5238.90	-21.39	1.93	20.09	0.24	0.87	4.00	3.13

Sample Calculation:

 $Result = Reading + Cable \ Loss \ (including \ the \ cable(s) \ customer \ supplied) + Atten. Loss + Duty \ factor$

UL Japan, Inc.

Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Peak Power Spectral Density

(Method: SA-2)

Test place UL Japan, Inc. Shonan EMC Lab. No.5 Shielded Room

Date December 9, 2013
Temperature / Humidity 23 deg.C , 32 %RH
Engineer Shinichi Takano

Mode Tx, IEEE802.11n-HT20, SISO, PN9, worst antenna port 1, worst data mode 0(MCS)

Ch. Freq.	Freq.	Reading	Cable	Atten.	Duty	Result	Limit	Margin
	Reading		Loss	Loss	factor			
[MHz]	[MHz]	[dBm/MHz]	[dB]	[dB]	[dB]	[dBm/MHz]	[dBm]	[dB]
5180.0000	5179.16	-23.38	1.74	20.10	0.24	-1.30	4.00	5.30
5220.0000	5218.92	-22.68	1.74	20.09	0.24	-0.61	4.00	4.61
5240.0000	5240.91	-22.63	1.93	20.09	0.24	-0.37	4.00	4.37

Sample Calculation:

 $Result = Reading + Cable \ Loss \ (including \ the \ cable(s) \ customer \ supplied) + Atten. Loss + Duty \ factor$

UL Japan, Inc.

Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Power Spectral Density

(Method: SA-2)

Test place UL Japan, Inc. Shonan EMC Lab. No.5 Shielded Room

Date December 9, 2013
Temperature / Humidity 23 deg.C , 32 %RH
Engineer Shinichi Takano

Mode Tx, IEEE802.11n (HT20), CDD, PN9, worst data mode 0 (MCS)

Antenna 0 + Antenna 1

Ch. Freq.	Antenna 0	Antenna 1	Antenna	Result	Limit	Margin
	Result	Result	0 + 1	(0 + 1)		
[MHz]	[mW]	[mW]	[mW]	[dBm]	[dBm]	[dB]
5180.0000	0.970	0.989	1.959	2.92	4.00	1.08
5220.0000	0.876	0.952	1.828	2.62	4.00	1.38
5240.0000	0.896	0.961	1.857	2.69	4.00	1.31

Sample Calculation:

each Antenna Result [mW] = 10 $^{\land}$ (each antenna's Result [dBm] / 10)

 $Antenna \ 0 + 1 \ [mW] = \ Antenna \ 0 \ Result \ [mW] + Antenna \ 1 \ Result \ [mW]$

Result [dBm] = $10 \times \log (Antenna \ 0 + 1 \ [mW])$

Antenna 0

Ch. Freq.	Freq.	Reading	Cable	Atten.	Duty	Result
	Reading		Loss		factor	
[MHz]	[MHz]	[dBm]	[dB]	[dB]	[dB]	[dBm]
5180.0000	5178.79	-22.19	1.74	20.10	0.22	-0.13
5220.0000	5219.24	-22.63	1.74	20.09	0.22	-0.58
5240.0000	5241.15	-22.72	1.93	20.09	0.22	-0.48

Sample Calculation:

Result = Reading + Cable Loss + Atten. Loss + Duty factor

Antenna 1

Ch. Freq.	Freq.	Reading	Cable	Atten.	Duty	Result
	Reading		Loss		factor	
[MHz]	[MHz]	[dBm]	[dB]	[dB]	[dB]	[dBm]
5180.0000	5178.94	-22.11	1.74	20.10	0.22	-0.05
5220.0000	5219.09	-22.27	1.74	20.09	0.22	-0.22
5240.0000	5239.22	-22.41	1.93	20.09	0.22	-0.17

Sample Calculation:

Result = Reading + Cable Loss + Atten. Loss + Duty factor

UL Japan, Inc.

Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

^{*)} This test was measured based on Method In-Band Power Spectral Density (PSD) Measurements E) 2) b) of

[&]quot;Guidance for Summing Emission Measurements from Multiple Outputs of a Transmitter of from Multiple Transmitters (KDB662911 D1)"

Test place UL Japan, Inc. Shonan EMC Lab. No.5 Shielded Room

Date December 9, 2013
Temperature / Humidity 23 deg.C , 32 %RH
Engineer Shinichi Takano

Power Spectral Density

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Power Spectral Density

(Method: SA-2)

Test place UL Japan, Inc. Shonan EMC Lab. No.5 Shielded Room

Date December 9, 2013
Temperature / Humidity 23 deg.C , 32 %RH
Engineer Shinichi Takano

Mode Tx, IEEE802.11n (HT20), MIMO(SDM), PN9, worst data mode 8 (MCS)

Antenna 0 + Antenna 1

Ch. Freq.	Antenna 0	Antenna 1	Antenna	Result	Limit	Margin
	Result	Result	0 + 1	(0 + 1)		
[MHz]	[mW]	[mW]	[mW]	[dBm]	[dBm]	[dB]
5180.0000	0.870	0.876	1.746	2.42	4.00	1.58
5220.0000	0.817	0.873	1.690	2.28	4.00	1.72
5240.0000	0.916	0.938	1.854	2.68	4.00	1.32

Sample Calculation:

each Antenna Result [mW] = 10 $^{\land}$ (each antenna's Result [dBm] / 10)

 $Antenna \ 0 + 1 \ [mW] = \ Antenna \ 0 \ Result \ [mW] + Antenna \ 1 \ Result \ [mW]$

Result [dBm] = $10 \times \log (Antenna \ 0 + 1 \ [mW])$

Antenna 0

Ch. Freq.	Freq.	Reading	Cable	Atten.	Duty	Result
	Reading		Loss		factor	
[MHz]	[MHz]	[dBm]	[dB]	[dB]	[dB]	[dBm]
5180.0000	5179.24	-22.87	1.74	20.10	0.42	-0.61
5220.0000	5220.89	-23.13	1.74	20.09	0.42	-0.88
5240.0000	5240.91	-22.82	1.93	20.09	0.42	-0.38

Sample Calculation:

Result = Reading + Cable Loss + Atten. Loss + Duty factor

Antenna 1

Ch. Freq.	Freq.	Reading	Cable	Atten.	Duty	Result
	Reading		Loss		factor	
[MHz]	[MHz]	[dBm]	[dB]	[dB]	[dB]	[dBm]
5180.0000	5180.69	-22.83	1.74	20.10	0.42	-0.57
5220.0000	5221.37	-22.84	1.74	20.09	0.42	-0.59
5240.0000	5240.69	-22.72	1.93	20.09	0.42	-0.28

Sample Calculation:

Result = Reading + Cable Loss + Atten. Loss + Duty factor

UL Japan, Inc.

Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

^{*)} This test was measured based on Method In-Band Power Spectral Density (PSD) Measurements E) 2) b) of

[&]quot;Guidance for Summing Emission Measurements from Multiple Outputs of a Transmitter of from Multiple Transmitters (KDB662911 D1)"

Test place UL Japan, Inc. Shonan EMC Lab. No.5 Shielded Room

Date December 9, 2013
Temperature / Humidity 23 deg.C , 32 %RH
Engineer Shinichi Takano

Power Spectral Density

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Peak Power Spectral Density

(Method: SA-2)

Test place UL Japan, Inc. Shonan EMC Lab. No.5 Shielded Room

Date January 31, 2014
Temperature / Humidity 26deg.C , 44%RH
Engineer Shinichi Takano

Mode Tx, IEEE802.11n-HT40, SISO, PN9, worst antenna port 1, worst data mode 0(MCS)

Ch. Freq.	Freq.	Reading	Cable	Atten.	Duty	Result	Limit	Margin
	Reading		Loss	Loss	factor			
[MHz]	[MHz]	[dBm/MHz]	[dB]	[dB]	[dB]	[dBm/MHz]	[dBm]	[dB]
5190.0000	5188.74	-27.63	1.74	20.09	0.44	-5.36	4.00	9.36
						-	4.00	-
5230.0000	5231.73	-28.38	1.74	20.09	0.44	-6.11	4.00	10.11

Sample Calculation:

 $Result = Reading + Cable\ Loss\ (including\ the\ cable(s)\ customer\ supplied) + Atten. Loss + Duty\ factor$

UL Japan, Inc.

Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Power Spectral Density

(Method: SA-2)

Test place UL Japan, Inc. Shonan EMC Lab. No.5 Shielded Room

Date January 31, 2014
Temperature / Humidity 26deg.C , 44%RH
Engineer Shinichi Takano

Mode Tx, IEEE802.11n (HT40), CDD, PN9, worst data mode 0 (MCS)

Antenna 0 + Antenna 1

Ch. Freq.	Antenna 0	Antenna 1	Antenna	Result	Limit	Margin
	Result	Result	0 + 1	(0 + 1)		
[MHz]	[mW]	[mW]	[mW]	[dBm]	[dBm]	[dB]
5190.0000	0.330	0.301	0.631	-2.00	4.00	6.00
5230.0000	0.324	0.312	0.636	-1.97	4.00	5.97

Sample Calculation:

each Antenna Result [mW] = 10 $^{\land}$ (each antenna's Result [dBm] / 10)

 $Antenna \ 0 + 1 \ [mW] = \ Antenna \ 0 \ Result \ [mW] + Antenna \ 1 \ Result \ [mW]$

Result [dBm] = $10 \times \log (Antenna \ 0 + 1 \ [mW])$

Antenna 0

Ch. Freq.	Freq.	Reading	Cable	Atten.	Duty	Result
	Reading		Loss		factor	
[MHz]	[MHz]	[dBm]	[dB]	[dB]	[dB]	[dBm]
5190.0000	5191.65	-27.08	1.74	20.09	0.44	-4.81
						-
5230.0000	5227.83	-27.16	1.74	20.09	0.44	-4.89

Sample Calculation:

Result = Reading + Cable Loss + Atten. Loss + Duty factor

Antenna 1

_	** **						
I	Ch. Freq.	Freq.	Reading	Cable	Atten.	Duty	Result
		Reading		Loss		factor	
L	[MHz]	[MHz]	[dBm]	[dB]	[dB]	[dB]	[dBm]
Ī	5190.0000	5191.34	-27.48	1.74	20.09	0.44	-5.21
I							-
ľ	5230.0000	5231.47	-27.33	1.74	20.09	0.44	-5.06

Sample Calculation:

Result = Reading + Cable Loss + Atten. Loss + Duty factor

UL Japan, Inc.

Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

^{*)} This test was measured based on Method In-Band Power Spectral Density (PSD) Measurements E) 2) b) of

[&]quot;Guidance for Summing Emission Measurements from Multiple Outputs of a Transmitter of from Multiple Transmitters (KDB662911 D1)"

Test place UL Japan, Inc. Shonan EMC Lab. No.5 Shielded Room

Date January 31, 2014
Temperature / Humidity 26deg.C , 44%RH
Engineer Shinichi Takano

Power Spectral Density

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Power Spectral Density

(Method: SA-2)

Test place UL Japan, Inc. Shonan EMC Lab. No.5 Shielded Room

Date January 31, 2014
Temperature / Humidity 26deg.C , 44%RH
Engineer Shinichi Takano

Mode Tx, IEEE802.11n (HT40), MIMO(SDM), PN9, worst data mode 8 (MCS)

Antenna 0 + Antenna 1

Ch. Freq.	Antenna 0	Antenna 1	Antenna	Result	Limit	Margin
	Result	Result	0 + 1	(0 + 1)		
[MHz]	[mW]	[mW]	[mW]	[dBm]	[dBm]	[dB]
5190.0000	0.316	0.299	0.615	-2.11	4.00	6.11
5230.0000	0.336	0.301	0.637	-1.96	4.00	5.96

Sample Calculation:

each Antenna Result [mW] = 10 $^{\land}$ (each antenna's Result [dBm] / 10)

 $Antenna \ 0 + 1 \ [mW] = \ Antenna \ 0 \ Result \ [mW] + Antenna \ 1 \ Result \ [mW]$

Result [dBm] = $10 \times \log (Antenna \ 0 + 1 \ [mW])$

Antenna 0

Ch. Freq.	Freq.	Reading	Cable	Atten.	Duty	Result
	Reading		Loss		factor	
[MHz]	[MHz]	[dBm]	[dB]	[dB]	[dB]	[dBm]
5190.0000	5187.96	-27.64	1.74	20.09	0.80	-5.01
						-
5230.0000	5228.09	-27.37	1.74	20.09	0.80	-4.74

Sample Calculation:

Result = Reading + Cable Loss + Atten. Loss + Duty factor

Antenna 1

Ch. Freq.	Freq.	Reading	Cable	Atten.	Duty	Result
	Reading		Loss		factor	
[MHz]	[MHz]	[dBm]	[dB]	[dB]	[dB]	[dBm]
5190.0000	5191.26	-27.88	1.74	20.09	0.80	-5.25
						-
5230.0000	5227.83	-27.84	1.74	20.09	0.80	-5.21

Sample Calculation:

Result = Reading + Cable Loss + Atten. Loss + Duty factor

UL Japan, Inc.

Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

^{*)} This test was measured based on Method In-Band Power Spectral Density (PSD) Measurements E) 2) b) of

[&]quot;Guidance for Summing Emission Measurements from Multiple Outputs of a Transmitter of from Multiple Transmitters (KDB662911 D1)"

Test place UL Japan, Inc. Shonan EMC Lab. No.5 Shielded Room

Date January 31, 2014
Temperature / Humidity 26deg.C , 44%RH
Engineer Shinichi Takano

Power Spectral Density

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Peak Excursion Ratio

Test place UL Japan, Inc. Shonan EMC Lab. No.5 Shielded Room

Date December 9, 2013
Temperature / Humidity 23 deg.C , 32 % RH
Engineer Shinichi Takano

Mode Tx, IEEE802.11a, SISO, PN9, worst antenna port 1

Ch. Freq.	Data rate	Peak	PPSD	Cable	Atten.	Duty	Peak	PPSD	Peak Power	Limit	Margin
		Reading	Reading	Loss	Loss	factor	Result	Result	Excursion		
[MHz]	[Mbps]	[dBm]	[dBm]	[dB]	[dB]	[dB]	[dBm]	[dBm]	[dB]	[dB]	[dB]
5180	6	-13.03	-20.84	1.74	20.09	0.23	8.80	1.22	7.58	=<13.0	5.42
	9	-12.26	-20.76	1.74	20.09	0.21	9.57	1.28	8.29	=<13.0	4.71
	12	-12.58	-20.73	1.74	20.09	0.20	9.25	1.30	7.95	=<13.0	5.05
	18	-12.65	-20.59	1.74	20.09	0.24	9.18	1.48	7.70	=<13.0	5.30
	24	-11.59	-20.75	1.74	20.09	0.24	10.24	1.32	8.92	=<13.0	4.08
	36	-10.82	-20.75	1.74	20.09	0.35	11.01	1.43	9.58	=<13.0	3.42
	48	-12.23	-21.30	1.74	20.09	0.39	9.60	0.92	8.68	=<13.0	4.32
	54	-11.22	-21.17	1.74	20.09	0.33	10.61	0.99	9.62	=<13.0	3.38

^{*}Peak Power Excursion = Peak Result - PPSD Result

^{*}Peak Result = Peak Reading + Cable Loss + Atten. Loss, PPSD Result = PPSD Reading + Cable Loss + Atten. Loss + Duty factor *PPSD Reading, Cable Loss, Atten.Loss and Duty factor refer to Power Density sheet.

UL Japan, Inc.

Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Test place UL Japan, Inc. Shonan EMC Lab.

Date December 9, 2013
Temperature / Humidity 23 deg. C , 32 %RH
Engineer Shinichi Takano

Peak Excursion Ratio

No.5 Shielded Room

UL Japan, Inc.

Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Test place UL Japan, Inc. Shonan EMC Lab.

Date December 9, 2013
Temperature / Humidity 23 deg. C , 32 %RH
Engineer Shinichi Takano

Peak Excursion Ratio

No.5 Shielded Room

UL Japan, Inc.

Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Peak Excursion Ratio

Test place UL Japan, Inc. Shonan EMC Lab. No.5 Shielded Room

Date December 9, 2013
Temperature / Humidity 23 deg.C , 32 %RH
Engineer Shinichi Takano

Mode Tx, IEEE802.11n-HT20, SISO, PN9, worst antenna port 1

Ch. Freq.	Mode	Peak	PPSD	Cable	Atten.	Duty	Peak	PPSD	Peak Power	Limit	Margin
		Reading	Reading	Loss	Loss	factor	Result	Result	Excursion		
[MHz]	(MCS)	[dBm]	[dBm]	[dB]	[dB]	[dB]	[dBm]	[dBm]	[dB]	[dB]	[dB]
5180	0	-13.69	-22.48	1.74	20.09	0.22	8.14	-0.43	8.57	=<13.0	4.43
	1	-13.88	-22.64	1.74	20.09	0.22	7.95	-0.59	8.54	=<13.0	4.46
	2	-13.92	-22.61	1.74	20.09	0.26	7.91	-0.52	8.43	=<13.0	4.57
	3	-14.39	-22.72	1.74	20.09	0.17	7.44	-0.72	8.16	=<13.0	4.84
	4	-14.62	-22.67	1.74	20.09	0.25	7.21	-0.59	7.80	=<13.0	5.20
	5	-14.37	-22.63	1.74	20.09	0.32	7.46	-0.48	7.94	=<13.0	5.06
	6	-14.20	-22.89	1.74	20.09	0.45	7.63	-0.61	8.24	=<13.0	4.76
	7	-13.61	-22.94	1.74	20.09	0.38	8.22	-0.73	8.95	=<13.0	4.05

^{*}Peak Power Excursion = Peak Result - PPSD Result

^{*}Peak Result = Peak Reading + Cable Loss + Atten. Loss, PPSD Result = PPSD Reading + Cable Loss + Atten. Loss + Duty factor *PPSD Reading, Cable Loss, Atten.Loss and Duty factor refer to Power Density sheet.

UL Japan, Inc.

Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Test place UL Japan, Inc. Shonan EMC Lab. No.5 Shielded Room

Date December 9, 2013
Temperature / Humidity 23 deg.C , 32 %RH
Engineer Shinichi Takano

Peak Excursion Ratio

UL Japan, Inc.

Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Test place UL Japan, Inc. Shonan EMC Lab. No.5 Shielded Room

Date December 9, 2013
Temperature / Humidity 23 deg. C , 32 % RH
Engineer Shinichi Takano

Peak Excursion Ratio

UL Japan, Inc.

Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Peak Excursion Ratio

Test place UL Japan, Inc. Shonan EMC Lab. No.5 Shielded Room

Date December 9, 2013
Temperature / Humidity 23 deg.C , 32 %RH
Engineer Shinichi Takano

Mode Tx, IEEE802.11n (HT20), CDD, PN9, worst antenna port 1

Ch. Freq.	Mode	Peak	PPSD	Cable	Atten.	Duty	Peak	PPSD	Peak Power	Limit	Margin
		Reading	Reading	Loss	Loss	factor	Result	Result	Excursion		
[MHz]	(MCS)	[dBm]	[dBm]	[dB]	[dB]	[dB]	[dBm]	[dBm]	[dB]	[dB]	[dB]
5180	0	-14.14	-22.30	1.74	20.09	0.22	7.69	-0.25	7.94	=<13.0	5.06
	1	-14.82	-22.42	1.74	20.09	0.21	7.01	-0.38	7.39	=<13.0	5.61
	2	-14.71	-22.38	1.74	20.09	0.22	7.12	-0.33	7.45	=<13.0	5.55
	3	-13.73	-22.60	1.74	20.09	0.20	8.10	-0.57	8.67	=<13.0	4.33
	4	-14.45	-22.66	1.74	20.09	0.29	7.38	-0.54	7.92	=<13.0	5.08
	5	-14.45	-22.53	1.74	20.09	0.38	7.38	-0.32	7.70	=<13.0	5.30
	6	-14.33	-22.61	1.74	20.09	0.41	7.50	-0.37	7.87	=<13.0	5.13
	7	-14.18	-22.63	1.74	20.09	0.45	7.65	-0.35	8.00	=<13.0	5.00

^{*}Peak Power Excursion = Peak Result - PPSD Result

^{*}Peak Result = Peak Reading + Cable Loss + Atten. Loss, PPSD Result = PPSD Reading + Cable Loss + Atten. Loss + Duty factor *PPSD Reading, Cable Loss, Atten.Loss and Duty factor refer to Power Density sheet.

UL Japan, Inc.

Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Test place UL Japan, Inc. Shonan EMC Lab.

Date December 9, 2013
Temperature / Humidity 23 deg.C , 32 %RH
Engineer Shinichi Takano

Peak Excursion Ratio

No.5 Shielded Room

UL Japan, Inc.

Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Test place UL Japan, Inc. Shonan EMC Lab.

Date December 9, 2013
Temperature / Humidity 23 deg. C , 32 %RH
Engineer Shinichi Takano

Peak Excursion Ratio

No.5 Shielded Room

UL Japan, Inc.

Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Peak Excursion Ratio

Test place UL Japan, Inc. Shonan EMC Lab. No.5 Shielded Room

Date December 9, 2013
Temperature / Humidity 23 deg.C , 32 % RH
Engineer Shinichi Takano

Mode Tx, IEEE802.11n (HT20), MIMO(SDM), PN9, worst antenna port 1

Ch. Freq.	Mode	Peak	PPSD	Cable	Atten.	Duty	Peak	PPSD	Peak Power	Limit	Margin
		Reading	Reading	Loss	Loss	factor	Result	Result	Excursion		
[MHz]	(MCS)	[dBm]	[dBm]	[dB]	[dB]	[dB]	[dBm]	[dBm]	[dB]	[dB]	[dB]
5180	8	-14.68	-22.61	1.74	20.09	0.42	7.15	-0.36	7.51	=<13.0	5.49
	9	-14.23	-22.66	1.74	20.09	0.40	7.60	-0.43	8.03	=<13.0	4.97
	10	-13.97	-22.81	1.74	20.09	0.40	7.86	-0.58	8.44	=<13.0	4.56
	11	-13.82	-22.80	1.74	20.09	0.37	8.01	-0.60	8.61	=<13.0	4.39
	12	-13.86	-22.88	1.74	20.09	0.50	7.97	-0.55	8.52	=<13.0	4.48
	13	-14.02	-22.97	1.74	20.09	0.63	7.81	-0.51	8.32	=<13.0	4.68
	14	-14.36	-23.04	1.74	20.09	0.68	7.47	-0.53	8.00	=<13.0	5.00
	15	-14.11	-23.20	1.74	20.09	0.74	7.72	-0.63	8.35	=<13.0	4.65

^{*}Peak Power Excursion = Peak Result - PPSD Result

^{*}Peak Result = Peak Reading + Cable Loss + Atten. Loss, PPSD Result = PPSD Reading + Cable Loss + Atten. Loss + Duty factor *PPSD Reading, Cable Loss, Atten.Loss and Duty factor refer to Power Density sheet.

UL Japan, Inc.

Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Test place UL Japan, Inc. Shonan EMC Lab. No.5 Shielded Room

Date December 9, 2013
Temperature / Humidity 23 deg.C , 32 %RH
Engineer Shinichi Takano

Peak Excursion Ratio

UL Japan, Inc.

Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Test place UL Japan, Inc. Shonan EMC Lab. No.5 Shielded Room

Date December 9, 2013
Temperature / Humidity 23 deg. C , 32 %RH
Engineer Shinichi Takano

Peak Excursion Ratio

UL Japan, Inc.

Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Peak Excursion Ratio

Test place UL Japan, Inc. Shonan EMC Lab. No.5 Shielded Room

 $\begin{array}{ll} \text{Date} & \text{January 31, 2014} \\ \text{Temperature / Humidity} & \text{26deg.C} \quad \text{, 44\%RH} \\ \text{Engineer} & \text{Shinichi Takano} \end{array}$

Mode Tx, IEEE802.11n-HT40, SISO, PN9, worst antenna port 1

Ch. Freq.	Mode	Peak	PPSD	Cable	Atten.	Duty	Peak	PPSD	Peak Power	Limit	Margin
		Reading	Reading	Loss	Loss	factor	Result	Result	Excursion		
[MHz]	(MCS)	[dBm]	[dBm]	[dB]	[dB]	[dB]	[dBm]	[dBm]	[dB]	[dB]	[dB]
5190	0	-20.04	-27.47	1.74	20.09	0.44	1.79	-5.20	6.99	=<13.0	6.01
	1	-19.37	-27.57	1.74	20.09	0.43	2.46	-5.31	7.77	=<13.0	5.23
	2	-19.25	-27.70	1.74	20.09	0.38	2.58	-5.49	8.07	=<13.0	4.93
	3	-19.35	-27.63	1.74	20.09	0.49	2.48	-5.31	7.79	=<13.0	5.21
	4	-18.82	-27.85	1.74	20.09	0.46	3.01	-5.56	8.57	=<13.0	4.43
	5	-18.41	-27.78	1.74	20.09	0.58	3.42	-5.37	8.79	=<13.0	4.21
	6	-18.80	-28.01	1.74	20.09	0.78	3.03	-5.40	8.43	=<13.0	4.57
	7	-18.67	-28.05	1.74	20.09	0.67	3.16	-5.55	8.71	=<13.0	4.29

^{*}Peak Power Excursion = Peak Result - PPSD Result

^{*}Peak Result = Peak Reading + Cable Loss + Atten. Loss, PPSD Result = PPSD Reading + Cable Loss + Atten. Loss + Duty factor *PPSD Reading, Cable Loss, Atten.Loss and Duty factor refer to Power Density sheet.

UL Japan, Inc.

Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Test place UL Japan, Inc. Shonan EMC Lab. No.5 Shielded Room

Date January 31, 2014
Temperature / Humidity 26deg.C , 44% RH
Engineer Shinichi Takano

Peak Excursion Ratio

UL Japan, Inc.

Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Test place UL Japan, Inc. Shonan EMC Lab. No.5 Shielded Room

Date January 31, 2014
Temperature / Humidity 26deg.C , 44% RH
Engineer Shinichi Takano

Peak Excursion Ratio

UL Japan, Inc.

Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Peak Excursion Ratio

Test place UL Japan, Inc. Shonan EMC Lab. No.5 Shielded Room

 $\begin{array}{ll} \text{Date} & \text{January 31, 2014} \\ \text{Temperature / Humidity} & \text{26deg.C} \quad \text{, 44\%RH} \\ \text{Engineer} & \text{Shinichi Takano} \end{array}$

Mode Tx, IEEE802.11n (HT40), CDD, PN9, worst antenna port 1

Ch. Freq.	Mode	Peak	PPSD	Cable	Atten.	Duty	Peak	PPSD	Peak Power	Limit	Margin
		Reading	Reading	Loss	Loss	factor	Result	Result	Excursion		
[MHz]	(MCS)	[dBm]	[dBm]	[dB]	[dB]	[dB]	[dBm]	[dBm]	[dB]	[dB]	[dB]
5190	0	-19.01	-27.32	1.74	20.09	0.44	2.82	-5.05	7.87	=<13.0	5.13
	1	-18.85	-27.36	1.74	20.09	0.41	2.98	-5.12	8.10	=<13.0	4.90
	2	-18.80	-27.37	1.74	20.09	0.42	3.03	-5.12	8.15	=<13.0	4.85
	3	-18.94	-27.37	1.74	20.09	0.38	2.89	-5.16	8.05	=<13.0	4.95
	4	-18.62	-27.45	1.74	20.09	0.53	3.21	-5.09	8.30	=<13.0	4.70
	5	-18.44	-27.91	1.74	20.09	0.66	3.39	-5.42	8.81	=<13.0	4.19
	6	-18.64	-27.82	1.74	20.09	0.73	3.19	-5.26	8.45	=<13.0	4.55
	7	-18.82	-27.99	1.74	20.09	0.78	3.01	-5.38	8.39	=<13.0	4.61

^{*}Peak Power Excursion = Peak Result - PPSD Result

^{*}Peak Result = Peak Reading + Cable Loss + Atten. Loss, PPSD Result = PPSD Reading + Cable Loss + Atten. Loss + Duty factor *PPSD Reading, Cable Loss, Atten.Loss and Duty factor refer to Power Density sheet.

UL Japan, Inc.

Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Test place UL Japan, Inc. Shonan EMC Lab. No.5 Shielded Room

Date January 31, 2014
Temperature / Humidity 26deg.C , 44% RH
Engineer Shinichi Takano

Peak Excursion Ratio

UL Japan, Inc.

Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Test place UL Japan, Inc. Shonan EMC Lab. No.5 Shielded Room

Date January 31, 2014
Temperature / Humidity 26deg.C , 44% RH
Engineer Shinichi Takano

Peak Excursion Ratio

UL Japan, Inc.

Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Peak Excursion Ratio

Test place UL Japan, Inc. Shonan EMC Lab. No.5 Shielded Room

 $\begin{array}{ll} \text{Date} & \text{January 31, 2014} \\ \text{Temperature / Humidity} & \text{26deg.C} \quad \text{, 44\%RH} \\ \text{Engineer} & \text{Shinichi Takano} \end{array}$

Mode Tx, IEEE802.11n (HT40), MIMO(SDM), PN9, worst antenna port 1

Ch. Freq.	Mode	Peak	PPSD	Cable	Atten.	Duty	Peak	PPSD	Peak Power	Limit	Margin
		Reading	Reading	Loss	Loss	factor	Result	Result	Excursion		
[MHz]	(MCS)	[dBm]	[dBm]	[dB]	[dB]	[dB]	[dBm]	[dBm]	[dB]	[dB]	[dB]
5190	8	-18.44	-27.75	1.74	20.09	0.80	3.39	-5.12	8.51	=<13.0	4.49
	9	-18.84	-27.78	1.74	20.09	0.75	2.99	-5.20	8.19	=<13.0	4.81
	10	-18.36	-27.69	1.74	20.09	0.73	3.47	-5.13	8.60	=<13.0	4.40
	11	-18.70	-27.84	1.74	20.09	0.64	3.13	-5.37	8.50	=<13.0	4.50
	12	-18.95	-27.85	1.74	20.09	0.86	2.88	-5.16	8.04	=<13.0	4.96
	13	-18.66	-28.00	1.74	20.09	1.00	3.17	-5.17	8.34	=<13.0	4.66
	14	-18.60	-28.45	1.74	20.09	1.09	3.23	-5.53	8.76	=<13.0	4.24
	15	-18.97	-28.46	1.74	20.09	1.14	2.86	-5.49	8.35	=<13.0	4.65

^{*}Peak Power Excursion = Peak Result - PPSD Result

^{*}Peak Result = Peak Reading + Cable Loss + Atten. Loss, PPSD Result = PPSD Reading + Cable Loss + Atten. Loss + Duty factor *PPSD Reading, Cable Loss, Atten.Loss and Duty factor refer to Power Density sheet.

UL Japan, Inc.

Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Test place UL Japan, Inc. Shonan EMC Lab. No.5 Shielded Room

Date January 31, 2014
Temperature / Humidity 26deg.C , 44%RH
Engineer Shinichi Takano

Peak Excursion Ratio

UL Japan, Inc.

Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Test place UL Japan, Inc. Shonan EMC Lab. No.5 Shielded Room

Date January 31, 2014
Temperature / Humidity 26deg.C , 44%RH
Engineer Shinichi Takano

Peak Excursion Ratio

UL Japan, Inc.

Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

APPENDIX 2 Test Instruments

EMI test equipment

Control No.	Instrument	Manufacturer	Model No	Serial No	Test Item	Calibration Date * Interval(month)
SSA-02	Spectrum Analyzer	Agilent	E4448A	MY48250106	AT,RE	2013/03/28 * 12
SCC-G11	Coaxial Cable	Suhner	SUCOFLEX 102	31595/2	AT	2013/03/16 * 12
SAT20-05	Attenuator	Weinschel Corp.	54A-20	Y5649	AT	2013/11/27 * 12
SPM-06	Power Meter	Anritsu	ML2495A	0850009	AT	2013/04/09 * 12
SPSS-03	Power sensor	Anritsu	MA2411B	0917063	AT	2013/04/09 * 12
SOS-10	Humidity Indicator	A&D	AD-5681	4064561	AT	2013/02/27 * 12
SOS-09	Humidity Indicator	A&D	AD-5681	4061484	AT	2013/03/07 * 12
SAEC-03(NSA)	Semi-Anechoic Chamber	TDK	SAEC-03(NSA)	3	RE	2013/07/09 * 12
SAF-06	Pre Amplifier	TOYO Corporation	TPA0118-36	1440491	RE	2013/07/22 * 12
SCC-G03	Coaxial Cable	Suhner	SUCOFLEX 104A	46499/4A	RE	2013/04/11 * 12
SCC-G23	Coaxial Cable	Suhner	SUCOFLEX 104	297342/4	RE	2013/05/22 * 12
SHA-03	Horn Antenna	Schwarzbeck	BBHA9120D	9120D-739	RE	2013/08/19 * 12
SOS-05	Humidity Indicator	A&D	AD-5681	4062518	RE	2013/02/27 * 12
SFL-02	Highpass Filter	MICRO-TRONICS	HPM50111	051	RE	2013/11/22 * 12
SAT10-06	Attenuator	Agilent	8493C-010	74865	RE,AT	2013/11/22 * 12
SJM-11	Measure	PROMART	SEN1935	-	RE,CE	_
COTS-SEMI-1	EMI Software	TSJ	TEPTO-DV(RE,CE, RFI,MF)	-	RE,CE	-
SAEC-02(NSA)	Semi-Anechoic Chamber	TDK	SAEC-02(NSA)	2	RE	2013/07/06 * 12
SCC-G02	Coaxial Cable	Suhner	SUCOFLEX 104A	46498/4A	RE	2013/04/09 * 12
SCC-G22	Coaxial Cable	Suhner	SUCOFLEX 104	296199/4	RE	2013/05/22 * 12
SHA-02	Horn Antenna	Schwarzbeck	BBHA9120D	9120D-726	RE	2013/08/12 * 12
SOS-03	Humidity Indicator	A&D	AD-5681	4063325	RE	2013/02/27 * 12
SJM-02	Measure	KOMELON	KMC-36	-	RE	-
SOS-02	Humidity Indicator	A&D	AD-5681	4063343	AT	2013/03/07 * 12
KSA-08	Spectrum Analyzer	Agilent	E4446A	MY46180525	AT,RE	2013/03/04 * 12
SSA-01	Spectrum Analyzer	Agilent	N9010A-526	MY48031482	RE	2013/04/09 * 12
SSA-03	Spectrum Analyzer	Agilent	E4448A	MY48250152	RE	2013/01/08 * 12
SFL-03	Highpass Filter	MICRO-TRONICS	HPM50112	028	RE	2013/11/22 * 12
SAF-04	Pre Amplifier	TOYO Corporation	TPA0118-36	1440489	RE	2013/03/19 * 12
SFL-18	Highpass Filter	MICRO-TRONICS	HPM50111	119	RE	2013/11/22 * 12
SAF-05	Pre Amplifier	TOYO Corporation	TPA0118-36	1440490	RE	2013/11/22 * 12

The expiration date of the calibration is the end of the expired month . As for some calibrations performed after the tested dates , those test equipment have been controlled by means of an unbroken chains of calibrations .

All equipment is calibrated with valid calibrations $\,$. Each measurement data is traceable to the national or international standards $\,$.

Test Item:

CE: Conducted emission , RE: Radiated emission ,

AT: Antenna terminal conducted tests

UL Japan, Inc. Page: 103 of 107

APPENDIX 2 Test Instruments

EMI test equipment

Control No.	Instrument	Manufacturer	Model No	Serial No	Test Item	Calibration Date * Interval(month)
SHA-04	Horn Antenna	ETS LINDGREN	3160-09	LM3640	RE	2013/03/14 * 12
SAF-08	Pre Amplifier	TOYO Corporation	HAP18-26W	00000019	RE	2013/03/19 * 12
SCC-G15	Coaxial Cable	Suhner	SUCOFLEX 102	32703/2	RE	2013/03/16 * 12
SHA-06	Horn Antenna	ETS LINDGREN	3160-10	LM3459	RE	2013/03/14 * 12
SAF-10	Pre Amplifier	TOYO Corporation	HAP26-40W	00000010	RE	2013/03/19 * 12
SCC-G19	Coaxial Cable	Suhner	SUCOFLEX 102A	1188/2A	RE	2013/03/16 * 12
SHA-05	Horn Antenna	ETS LINDGREN	3160-09	LM4210	RE	2013/03/14 * 12
SAF-09	Pre Amplifier	TOYO Corporation	HAP18-26W	00000018	RE	2013/03/19 * 12
SCC-G18	Coaxial Cable	Suhner	SUCOFLEX 104A	46292/4A	RE	2013/03/16 * 12
SAF-03	Pre Amplifier	SONOMA	310N	290213	RE	2013/02/12 * 12
SAT6-06	Attenuator	JFW	50HF-006N	-	RE	2013/02/12 * 12
SBA-03	Biconical Antenna	Schwarzbeck	BBA9106	91032666	RE	2013/10/26 * 12
SCC-C1/C2/C 3/C4/C5/C10/ SRSE-03	Coaxial Cable&RF Selector	Fujikura/Fujikura/Suhne r/Suhner/Suhner/Suhn er/TOYO	8D2W/12DSFA/14 1PE/141PE/141PE /141PE/NS4906		RE	2013/04/03 * 12
SLA-03	Logperiodic Antenna	Schwarzbeck	UHALP9108A	UHALP 9108-A 0901	RE	2013/10/26 * 12
STR-06	Test Receiver	Rohde & Schwarz	ESCI	101259	RE,CE	2013/02/27 * 12
SCC-C9/C10/ SRSE-03	Coaxial Cable&RF Selector	Suhner/Suhner/TOYO	RG223U/141PE/N S4906	-/0901-271(RF Selector)	CE	2013/04/03 * 12
SLS-05	LISN	Rohde & Schwarz	ENV216	100516	CE	2013/02/25 * 12
SAT3-05	Attenuator	JFW	50HF-003N	-	CE	2013/02/12 * 12
SOS-06	Humidity Indicator	A&D	AD-5681	4062118	CE	2013/03/07 * 12

The expiration date of the calibration is the end of the expired month . As for some calibrations performed after the tested dates —, those test equipment have been controlled by means of an unbroken chains of calibrations

All equipment is calibrated with valid calibrations . Each measurement data is traceable to the national or international standards .

Test Item:

CE: Conducted emission, RE: Radiated emission

UL Japan, Inc. Page: 104 of 107