§ 23. Тепловые процессы. Работа. Теплоемкость

Всякая система, находящаяся в состоянии термодинамического равновесия, может быть однозначно определена с помощью макроскопических (термодинамических) параметров: внутренней энергии U, температуры T, давления P, объёма V и т.д.

Любое изменение макроскопических параметров при переходе системы из одного равновесного состояния в другое, т.е. от одного набора параметров T_1 , P_1 , V_1 к другому T_2 , P_2 , V_2 называется *процессом*. Главным в этом определении является требование, чтобы и начальное и конечное состояния были равновесными.

1. Неравновесный процесс

Переход от начального равновесного состояния к конечному равновесному состоянию можно осуществлять через неравновесные состояния.

Например, разреженный газ в цилиндрическом сосуде под плотно пригнанным поршнем (см. §19). Вдвигаем поршень быстро, следовательно, равновесие в системе сразу нарушится.

Нельзя будет говорить о конкретном значении давления газа. Система между начальным и конечным состоянием будет неравновесной.

Неравновесный процесс – термодинамический процесс, представляющий собой последовательность состояний, среди которых не все являются равновесными состояниями.

2. Равновесный процесс

Теперь медленно вдвигаем поршень ($v \ll v_{\rm kb}$). Частицы газа вместо того, чтобы скапливаться под поршнем будут равномерно распределяться по всему объёму системы. Поскольку скорость молекул при комнатной температуре составляет сотни метров в секунду, вдвигание поршня со скоростью несколько метров в секунду будет равновесным процессом. Аналогично, если

пытаться проводить равновесный нагрев кастрюли (из §19), то скорость нагрева должна быть такой, чтобы температура воды успевала выравниваться.

Если в каждый момент времени система будет находиться в состоянии очень близком к равновесному (квазиравновесном), то и весь такой процесс будет равновесным.

Равновесные процессы можно изобразить на диаграммах процессов в виде непрерывных кривых. В уравнении состояния идеального газа: $PV = \nu RT$, когда переход системы из одного равновесного состояния в другое не связан с изменением количества вещества $\nu =$ const, любые из двух макропараметров могут считаться независимыми параметрами, однозначно описывающими процесс. Например, некоторый процесс перехода из

состояния (P_1, V_1) в состояние (P_2, V_2) приведён на графике.

Температура в этом процессе однозначно определяется с помощью уравнения состояния идеального газа: $T = f(P, V) = \frac{PV}{VR}$.

Для описания поведения макросистем также могут быть использованы диаграммы в (P, T), $(T,V), (T,\rho)$ и т.д. координатах.

Для всех равновесных процессов возможен переход из конечного состояния в начальное

через те же промежуточные состояния, что и в прямом процессе. Такие процессы называются обратимыми. Если процесс равновесный, то макропараметры для любого состояния известны, и переход из состояния 1 в состояние 2, или из состояния 2 в состояние 1, через одни и те же промежуточные состояния в принципе возможен. Это можно сравнить с

просмотром кинофильма в обратном направлении.

Необратимыми называют процессы, когда обратный переход из конечного состояния в начальное через те же промежуточные состояния, что и в прямом процессе невозможен. Неравновесные процессы всегда необратимы. Покажем это на примере всё того же разреженного газа под поршнем: если мы очень быстро поднимем поршень, то в первый момент все молекулы будут оставаться в нижней части сосуда – неравновесный процесс.

Чтобы такой процесс прошел в обратном направлении, все молекулы должны сначала собраться в нижней части сосуда, а затем на них должен упасть поршень.

медленно протекающие процессы необязательно обратимыми. Рассмотрим, например, термос с водой. Горячая вода, налитая в термос, медленно остывает, переходя из одного равновесного состояния в другое. Так же медленно нагревается воздух в комнате вокруг. По отдельности

оба эти процесса обратимы – мы можем поместить термос в печку и нагревать воду в нем, а в комнату принести лед из холодильника. Но невозможно представить процесс, в котором холодная вода в термосе нагревалась, охлаждая комнату. Дело в том, что хотя и термос, и комната по-отдельности находятся в каждый момент времени в равновесных состояниях (но каждый со своей температурой!), состояние системы термос-комната остается неравновесным до тех пор, пока температура не станет везде одинаковой. Пока для характеристики системы требуется более чем одно значение температуры, процессы в ней носят неравновесный, а, следовательно, и необратимый характер. Это утверждение можно отнести и к другим термодинамическим параметрам, например, к давлению: медленно сдувающийся воздушный шарик совершает равновесный процесс (его можно так же медленно надуть снова.) Но шансов, что воздух из комнаты вернется обратно в шарик, увы, нет.

Работа, совершаемая макросистемой

Рассмотрим газ в цилиндрическом сосуде под плотно пригнанным поршнем. Первоначально система занимает объём V, давление газа — P. Газ расширяясь, увеличивает свой объём на dV, в результате чего поршень поднимается на высоту dh. Сила, действующая со стороны газа на поршень площадью S, равна $F = P \cdot S$. Следовательно, работа, совершаемая при очень медленном (равновесном) расширении газа (поднятии поршня), может быть

найдена по формуле: $\delta A=\vec{F}d\vec{r}==Fdh=PSdh, \qquad dV=Sdh.$ $\delta A=PdV$ —

$$\delta A = PdV -$$

бесконечно малая работа, совершённая газом.

В случае расширения газа на конечный объём $\Delta V = V_2 - V_1$, давление системы под поршнем, вообще говоря, будет меняться P = P(V, T). Работа газа в этом случае может быть найдена как сумма бесконечно большого количества бесконечно малых слагаемых δA :

$$A = \int_{1}^{2} \delta A = \int_{V_{1}}^{V_{2}} P dV -$$

работа газа (макросистемы).

Как уже упоминалось в §7 и §22 работа, совершаемая системой, существенным образом зависит от того, по какому процессу («пути») система переводится из состояния 1 в состояние 2: работа есть функция процесса. Это легко показать, используя диаграмму состояний системы в координатах (P, V). Процесс на диаграмме – непрерывная кривая. Геометрически определённый интеграл выражает

площадь фигуры, ограниченной графиком функции, и значит, площадь зависит от вида кривой (т.е. процесса). Поскольку $S_{\text{фигуры}_{\text{I}}} < S_{\text{фигуры}_{\text{I}}} \implies A_{\text{I}} < A_{\text{II}}$.

Знак работы зависит от знака dV: если в процессе dV>0, то и работа, совершаемая системой в этом процессе, положительна A>0, если dV<0 (перемещаемся по кривой процесса справа на лево), то и A<0.

Теплоёмкость

При сообщении системе теплоты δQ её температура изменяется на dT. Величина, определяемая как отношение этих величин, называется *теплоёмкостью системы*:

$$C = \frac{\delta Q}{dT}.$$

Теплоемкость – это количество теплоты, которое надо подвести к системе, чтобы повысить ее температуру на один кельвин. Единицей измерения теплоёмкости является $[C] = \frac{Дж}{K}$.

Теплоёмкость, отнесённая к массе, называется удельной теплоёмкостью:

$$c_{\text{уд}} = \frac{C}{m} = \frac{1}{m} \frac{\delta Q}{dT}.$$

Её единица измерения $\left[c_{yд}\right] = \frac{D}{K\Gamma \cdot K}$ соответственно. Формула $c_{yд} = \frac{1}{m} \frac{\delta Q}{dT}$ имеет более широкое применение чем $c_{yd} = \frac{Q}{m\Delta T}$ (использовавшаяся в школьном курсе), так как теплоемкость очень часто зависит от температуры. В этом случае различие между двумя формулами для теплоемкости такое же, как и у формул для мгновенной и средней скоростей.

Чаще всего при описании макросистем используют теплоёмкость одного моля вещества – молярную теплоемкость $c = \frac{c}{v}$:

$$c = \frac{1}{\nu} \frac{\delta Q}{dT}$$
, $[c] = \frac{Дж}{моль \cdot K}$.

Молярная и удельная теплоёмкость веществ связаны соотношением $c = c_{\text{уд}} \cdot \mu$.

Теплоёмкость зависит от условий, в которых системе сообщается тепло и изменяется её температура, т.е. теплоёмкость, как и количество теплоты Q — функция процесса.

Если процесс передачи тепла происходит при постоянном объёме (V=const), то теплоёмкость обозначается c_V . Эта форма записи предполагает, что при дифференцировании по температуре объём следует считать постоянным.

$$c_V = \frac{1}{\nu} \left(\frac{\delta Q}{dT} \right)_V = \frac{1}{\nu} \left(\frac{dU + \delta A}{dT} \right)_V = \frac{1}{\nu} \left(\frac{dU}{dT} \right)_V$$

{Мы использовали первое начало термодинамики и вышеприведённое определение для работы

$$\delta Q = dU + \delta A = dU + PdV = dU$$
, $(V = const \implies dV = 0, \quad \delta A = 0)$

$$c_V = \frac{1}{\nu} \left(\frac{dU}{dT} \right)_V -$$

молярная теплоёмкость при постоянном объёме.

Если же процесс передачи тепла происходит при постоянном давлении (P = const), то теплоёмкость обозначается c_P .

$$c_P = \frac{1}{\nu} \left(\frac{\delta Q}{dT} \right)_P$$

молярная теплоёмкость при постоянном давлении.

Для произвольных систем соотношение между c_V и c_P имеет сложный характер, мы же найдём его для самой простой системы — идеального газа.

Внутренняя энергия идеального газа пропорциональна температуре идеального газа $U_{\rm M\Gamma} = \frac{i}{2} \nu RT$ и от объёма не зависит.

Бесконечно малого изменение внутренней энергии идеального газа также зависит только от бесконечно малого изменения температуры $dU=\frac{i}{2}\nu R dT$. Поэтому, для c_V справедливо следующее выражение:

$$c_V = \frac{1}{\nu} \left(\frac{dU}{dT} \right)_V = \frac{1}{\nu} \left(\frac{\frac{i}{2} \nu R dT}{dT} \right), \quad c_V = \frac{i}{2} R$$

молярная теплоёмкость идеального газа при постоянном объёме определяется через число степеней свободы частицы идеального газа, т.е. связана со строением частицы (см. §20).

Как уже упоминалось выше, в широком диапазоне температур ($100 \text{ K} \le T \le 1000 \text{ K}$) теплоёмкость остаётся неизменной, и для одноатомного идеального газа справедливо:

$$i=3 \implies c_V=\frac{3}{2}R$$
, для двухатомного газа: $i=5 \implies c_V=\frac{5}{2}R$.

В общем случае, теплоёмкость системы, как и число степеней свободы её частиц, зависят

от температуры i = i(T), $c_V = c_V(T)$. Качественный вид этой зависимости, построенный на основе экспериментальных данных, приведён на рисунке. Объяснить скачкообразное поведение данной зависимости можно только с позиции квантовой теории. Тем не менее, хорошо видно, что в широком диапазоне не очень высоких температур можно считать $c_V = const.$

Поскольку теплоемкость c_V выражается через внутреннюю энергию, возможен и обратный подход

$$c_V = \frac{1}{\nu} \left(\frac{dU}{dT} \right)_V = \frac{1}{\nu} \frac{dU}{dT} \implies dU = \nu c_V dT.$$

Считая теплоемкость c_V идеального газа постоянной, можем получить ещё одну форму записи внутренней энергии идеального газа $U_{\rm M\Gamma} = \nu c_V T$.

Теперь вычислим молярную теплоёмкость идеального газа при постоянном давлении. Воспользуемся первым началом термодинамики:

$$c_P = \frac{1}{v} \left(\frac{\delta Q}{dT} \right)_P = \frac{1}{v} \left(\frac{dU + \delta A}{dT} \right)_P = \frac{1}{v} \left(\frac{dU}{dT} \right) + \frac{1}{v} \left(\frac{\delta A}{dT} \right)_P =$$

Примем во внимание, полученные выше выражения для c_V и δA : $\frac{dU}{vdT} = \frac{i}{2}R = c_V$ и $\delta A = PdV$.

$$= \frac{i}{2}R + \frac{1}{\nu} \left(\frac{PdV}{dT}\right)_{P} = \frac{i}{2}R + \frac{P}{\nu} \left(\frac{dV}{dT}\right)_{P}.$$

Т.к. мы ищем теплоёмкость идеального газа, запишем его уравнение состояния: $PV = \nu RT$, чтобы найти необходимую производную. Возьмем дифференциал от левой и правой частей:

$$d(PV) = d(\nu RT)$$
 или $PdV = \nu RdT$.

P можно вынести из-под дифференциала, т.к. ищем теплоёмкость при постоянном давлении. Получается

$$\frac{P}{v}\frac{dV}{dT} = R.$$

$$c_P = \frac{i}{2}R + R = \frac{i+2}{2}R - \frac{i}{2}R$$

молярная теплоёмкость идеального газа при постоянном давлении, так же зависит от строения частицы идеального газа. Для одноатомного идеального газа справедливо: $i=3 \Rightarrow c_P = \frac{5}{2}R$, для двухатомного газа: $i=5 \Rightarrow c_P = \frac{7}{2}R$. Аналогично $c_P = const$ в широком диапазоне температур.

Если вернуться на полшага назад к выражению для c_P , то можно получить соотношение, связывающее c_P и c_V характеристики идеального газа: $c_P = \frac{i}{2}R + R = c_V + R$. Формула Майера для идеального газа: $c_P - c_V = R$.

Важной характеристикой газов является отношение c_P/c_V , обозначаемое γ , и называемое *показатель адиабаты* – величина постоянная, определяемая строением частиц газа, как и c_P , c_V :

$$\gamma = \frac{c_P}{c_V} = \frac{\frac{i+2}{2}R}{\frac{i}{2}R}.$$

$$\gamma = \frac{i+2}{i}$$

показатель адиабаты идеального газа.

Значения показателя адиабаты для реальных газов:

• одноатомные газы (гелий, аргон):

$$\gamma = \frac{5}{3} = 1,66;$$

• двухатомные газы (азот, кислород):

$$\gamma = \frac{7}{5} = 1.4.$$

Показатель адиабаты по определению есть величина всегда большая единицы.

Воспользуемся последней формулой, чтобы получить ещё одну форму записи внутренней энергии идеального газа.

$$\gamma=rac{i+2}{i}=1+rac{2}{i}$$
 или $rac{i}{2}=rac{1}{\gamma-1}.$

Тогда, внутренняя энергия идеального газа:

$$U_{\rm M\Gamma} = \frac{i}{2} \nu RT = \frac{\nu RT}{\gamma - 1} \,.$$