Završni ispit

5. veljače 2013.

Ime i Prezime:

Mationi broj:

Napomena: Zadatke obavezno predati s rješenjima nakon završetka testa.

1. zadatak (15 bodova)

Kaskadna struktura upravljanja brzinom istosmjernog motora prikasama je na sikš 1, pri čemu pojedini parametri iznose: $K_a = 4.5 \, A/V$, $T_a = 0.025 \, s$, $K = 1.33 \, Vs/rad$, $K_b = 44$, $T_{ini} = 1.88 \, ms$, $K_i = 0.1 \, V/A$, $T_{fi} = 2 \, ms$, $K_b = 0.0318$, $T_{fb} = 20 \, ms$, $J = 3.2 \, kg \, m^2$.

Slika 1: Blokovska shema kaskadnog upravljanja brzinom DC motora s nezavisnom uzbudom

Potrebno je:

- a) Projektirati PI regulator struje armature G_{R1}(s) prema tehničkom optimumu kao i prefiltar referenti vrijednosti struje armature G_{pf1}(s). (4 boda)
- b) Projektirati regulator brzine vrtuje motora $G_{R2}(s)$ prema simetričnom optimum uz a=2. Takođ je potrebno projektirati prefiltar u referentnoj grani brzine vrtuje $G_{R2}(s)$. (4 boda)
- c) Projektirati regulator brzine vrtnje motora $G_{R2}(s)$ prema simetričnom tako da fazno osiguranje izno $\gamma=42^\circ$ i odrediti maksimalnu dozvoljenu promjenu momenta tromosti, tako da minimalno faz osiguranje iznosi $\gamma=37^\circ$. Skicirati bodeov dijagram za nominalni moment tromesti i za maksimal dozvoljenu promjenu. (7 bodova)

2. sastatak (Ye boolesm)

Nadrodom perija upravijanja homore urinje mompetnog motoru s neravisnom i konstantnom urbasken prikarana je blokovskom shomore uz siku 2. Prikarana se $K_r = 0.5$, $T_{rr} = 5 \text{ms}$, K' = 1.33 Vs/rad i $J = 3 \text{ kgm}^2$, J = 6.5, $N_{\rm P}$

Silka & Pitokyvoka shossa spessijanja bezinces DC motora s nezavisnom uzbadom

Potrebeo je:

- a) (8 bordova) Chirolin parameter FC regulatora braine vrtuje prema modulnom optimumu.
- b) (2 broda) Ongressea i regularez ir a) dijela zadatka eliminaciju regulacijskog odstupanja u ustaljenom stanju u slučuje redicentra vedičine oblika funkcije linearnog porasta (rampe). Obrazložiti odgovor. Ako ne enigerava koliko imeni ospilacijelog odstupanje u ustaljenom stanju?
- c) (3 boda) Odvodni okvivakumu vezmensku konstantu i karakteristične odnose. Nacrtajte odniv sustava i označine mažvikogo i vojeme povog maksimuma.

3. andatak (15 bodova)

Za elektromehanički sustav s obsosobnim prijemosom zadani su sljedeći normirani parametri: $T_{MS}=1.0 s$ - motov; $T_{MS}=4.0 s$ - aceo; c=100.Nee/rad- konstanta krutosti; d=0.5.Nms/rad- konstanta prijemenja; $T_{R}=1.s$ - normirana vermemša konstanta.

Siska & Skica nadnog stroja s remenskim prijenosom

- a) (6 bodova) Posrebni je nacruni strukturnu blokovsku shemu nadomjesnog kontinuiranog regulacijskog kruga braine vrtuje s PV regulatorom braine vrtuje te odrediti parametre regulatora uz korištenje optinuma obvostrukog odnosa uz S₁ = 0.5, uz nadomjesnu vremensku konstantu podređenog regulacijskog kruga struje I_n = 0.00 s i vrejeme uzorkovanja T = 0.001 s.
- b) (6 bodova) Koliko iš imosti pozametri podoptimalnog (u smislu optimuma dvestrukog odnosa). Pl regularora kojim se postiže nadomjesna vremenska konstanta zatvorenog kruga $T_e = 0.4 s_e$ uz dvenimarini karakteristični odnos $D_b = 0.5$. Koliko u tom slučaju iznosi karakteristični odnos D_b ?
- e) (3 boda) levisti jednadibų na nadorojesne konstantu zatvorenog kruga uz $D_i = 0.5$.

Napanena. Nachomjesam vremensku konstantu zatvorenog kruga u a) dijelu zadatka odredite koristeči priblihm relacija.