Exam	no
------	----

Kadi Sarva Vishwavidyalaya, Gandhinagar MCA(Sem-I), ATKT Examination MC-04, Discrete Mathematics

Date: 12/04/11	Time: 3hrs	Total M	arks: 50
Q1(Compulsory question):			[10]
(a) Let G be a group and let $(a*b)^{-1} = b^{-1} * a^{-1}$	a,b€ G, then prov	ve the Rule of Reve	ersal given as
(b) Find the SOP, POS for the	e prepositional fo	orm of	
	$\wedge r)) \wedge ((p \vee r) \wedge r)$		
(c)Find the number of 'PRINCIPAL'	ways of selecti	ng 4 letters from	m the word
(d)Define a spanning and an (e)There are three sections in candidate has to solve in a each section. In how many	n a question pape all 5 questions, ch	er; each section has noosing atleast one	question from
Q2(Compulsory question):			[5]
(a)Show that the set G={ 1,v is a group wrt multiplication	v,w ² } where w is	an imaginary cube	
(b) Prove the set P of all perr wrt binary operation of comp			oup of order n [5]
(b)Define Isomorphism and of to each other	check whether (S.	4,D) and (S ₂₅ ,D) ar	e isomorphic [5]
Q3(a)Construct a FSM that output 1 if and only if the (b)Draw the Hasse diagram of	last three bits rec	eived are all 1's	[5]
	$S = \sum (0,3,4,5,7)$ $\sum (8,9,10,11,12,1)$ Let a fuzzy set A 1),(6,0.5),(7,0.8),	3,14,15) is given by (8,0.7)}	[5]
above	on or the complet	nents of the fuzzy s	[5]
Q4(a) Define the following to (i)Sub graph (ii) Degree of a (v) Bounded lattice		ian group (iv) Elem	[5] entary Path
(b)Find a non-empty set and it is Reflexive and symmetric	a relation on the but not transitiv	set that satisfy the e.	property that [5]
Q4 (a) If A and B are equivalence relations	ence relations on	the set X, prove the	at A∩B is an [5]
(b) Prove the following State well as using properties of lo	gical connectives	:	
$(\sim p \land q) \rightarrow (\sim (q \rightarrow p))$	$(2)(n \rightarrow a) \rightarrow (\infty$	$a \rightarrow \infty$ m)	

Q5(a) If (L, ≤) is a lattices then show that (1) a ⊕(b*c) ≤ (a⊕b)* (a⊕c)
(2) a*(b⊕c) ≥ (a*b) ⊕ (a*c)
(5]
(b) If every element of a group (G,*) is its own inverse, then G is abelian, or if G be a group with identity e and if a² = e for all a ∈ G, then G is abelian.
Or
Q5(a) Construct a FSM that output 1 when it sees 101 and thereafter, and outputs 0 otherwise.
(b) Obtain the simplified expression in Sum of Product F(A,B,C,D)=∑(7,13,14,15)
[5]