

Advancing Innovation and Convergence In Cancer Research

Jerry S.H. Lee, Ph.D.

Deputy Director
Center for Strategic Scientific Initiatives (CSSI)
Office of the Director, National Cancer Institute, NIH

Meeting Global Challenges: German-US Innovation Policy

National Academy of Science and DIW Berlin

THE NATIONAL ACADEMIES

Advisers to the Nation on Science, Engineering, and Medicine

Berlin, Germany May 25, 2011

What is It? Tumor, Cancer, and Metastasis

Site	All stages	Local	Regional	Distant
Breast (female)	86.6	97.0	78.7	23.3
Colon and rectum	62.3	90.1	65.5	9.2
Liver	6.9	16.3	6.0	1.9
Lung and bronchus	14.9	48.7	16.0	2.1
Melanoma	89.6	96.7	60.1	13.8
Ovary	53.0	94.7	72.0	30.7
Pancreas	4.4	16.6	6.8	1.6
Prostate	97.5	100.0		34.0
Testis	95.5	99.1	95.0	73.1

"...>90% of deaths is caused by disseminated disease or metastasis..."

Reality: In the U.S., Cancer Continues to Represent an Enormous Burden

- 569,490 Americans died of cancer in 2010
- 1,529,560 Americans will be diagnosed with cancer this year
- \$124.6 billion in 2010 for cancer healthcare costs

Reality: Global Burden- By 2020, Cancer Mortality 10 M/yr (Incidence 16 M/yr)

Unprecedented Amount of Scientific Knowledge: Omics(ssss)

Is More Knowledge Yielding More Solutions for Patients?

<u>Drugs</u>

Start to Finish

- 10 15 years (1,000 6,000 volunteers)
- ~ \$1 billion

Diagnostic Biomarkers

Year of FDA Approval

- Averaging 1.5 FDA approvals per year
- 1000's of samples

Maybe...but can it be more efficient?

Translation Pace: How To Break Out of Current Paradigm?

Key Needs (from community)

- Standards and protocols
- Real-time, public release of data
- Multi-disciplinary teams and environment
- Team members with multi-disciplinary training

Turning the Crank...

The potential to transform cancer drug discovery and diagnostics

National Cancer Program: Stakeholders

~\$18 B per year

NCI Center for Strategic Scientific Initiatives (CSSI): Concept Shop

Acting Director Douglas Lowy, MD

Deputy Director Jerry S.H. Lee, PhD

Mission

"...to create and uniquely implement exploratory programs focused on the development and integration of advanced technologies, trans-disciplinary approaches, infrastructures, and standards, to accelerate the creation and broad deployment of data, knowledge, and tools to empower the entire cancer research continuum in better understanding and leveraging knowledge of the cancer biology space for patient benefit..."

Innovation

First Step (-back): Cancer & Genes-Take a Page from Engineers?

Superheated steam

Disease of Genomic Alterations

- Copy number
- Expression (regulation of)
- Regulation of translation
- Mutations
- Epigenome

Pressure (kg/cm ¹⁾	Temp (°C)	Vapour enthalpy	Specific volume	Density (kg/mi)	Specific v (m://	
		(keal/kg)	(m ³ /kg)		at 250°C	at 300°C
1	99,1	638,8	1,725	0,580	2,454	2,691
2	119,6	646,2	0,902	1,109	1,223	1,342
3	132,9	650,6	0,617	1,621	0,812	0,893
4	142,9	653,7	0,471	2,123	0,607	0,668
5	151,1	656,0	0,382	2,618	0,484	0,533
6	158,1	657,0	0,321	3,115	0,402	0,443
7	164,2	659,5	0,278	3,597	0,343	0,379
8	169,6	660,8	0,245	4,082	0,299	0,331
9	174,5	661,9	0,219	4,566	0,265	0,293
10	179,1	662,9	0,198	5,051	0,238	0,263
12	187,1	664,5	0,166	6,024	0,196	0,218
14	194,1	665,7	0,143	6,993	0,167	0,186
16	200,4	666,7	0,126	7,937	0,145	0,162
18	206,1	667,4	0,112	8,929	0,128	0,143
20	211,4	668,0	0,101	9,901	0,114	0,128
22	216,2	668,4	0,092	10,870	0,103	0,116
24	220,7	668,7	0,085	11,765	0,093	0,106
26	225,0	669,0	0,078	12,821	0,085	0,097
28	229,0	669,1	0,073	13,699	0,078	0,089
30	232.7	669.2	0.068	14,706	0.072	0.083

- Systematic identification of all genomic chang
- Repeat for all cancers
- Make it publically available

TCGA: Connecting Multiple Sources, Experiments, and Data Types

Three Cancers- Pilot

glioblastoma multiforme (brain)

squamous carcinoma (lung)

serous cystadenocarcinoma (ovarian)

Biospecimen Core Resource with more than 13 Tissue Source Sites

7 Cancer Genomic Characterization Centers

3 Genome Sequencing Centers

Data Coordinating Center

Multiple data types

- Clinical diagnosisTreatment history
- Histologic diagnosis
- Pathologic status
- Tissue anatomic site
- Surgical history
- Gene expression
- Chromosomal copy number
- Loss of heterozygosity
- Methylation patterns
- miRNA expression
- **DNA** sequence

The Cancer Genome Atlas

470

51

57

159

180

84

260

525

198

74

Rectum carcinoma:

Unanticipated Innovations of TCGA: Human Interactions

Mid- 2008

- Reference cancer genome for GBM
- Single author paper (TCGA Network)
 - 300+ authors
- Unanticipated Scientific Discoveries
 - Hypothesis on a possible resistance mechanism to temozolomide (TMZ)

2009

- Gene expression-based classification of GBM
- Response to aggressive therapy differs by subtype- <u>exclude non-responders</u>

Comprehensive genomic characterization defines human glioblastoma genes and core pathways

The Cancer Genome Atlas Research Network*

2010

- Identification of new subset of GBM
- Occurs in younger patients
- Evidence of <u>better prediction of outcomes</u>

Launching Soon: Cancer Target Discovery and Development Network (CTD²)

- Accelerate the translation of patient genomic data into clinical application
 - Innovate integration of computational mining of large-scale genomic data analysis
 - Identify and confirm new therapeutic target candidates
 - Existing therapeutics and /or orphan drugs
 - Identify and confirm novel modulators
 - Small molecules
 - siRNAs
- Share models, reagents, analysis tools, and data with scientific community

CTD²: A Bridge from Genomics to Therapeutics

Could We Do the Same for Cancer Proteomics: Not Yet...

Technologies for Quantitative Analysis

Major Challenges

- Analytical variability in platforms
- Lack of standards, protocols, and reference data
- No consensus on data acquisition, analysis, and open access reporting of raw data

Unlike genomic technologies, proteomic technologies were not yet fully mature

Clinical Proteomic Technologies for Cancer (CPTAC) Pilot

nature biotechnology

Multi-site assessment of the precision and reproducibility of multiple reaction monitoring—based measurements of proteins in plasma

Accomplishments (Highlights)

- First demonstration that MRM is highly reproducible across multiple laboratories and technology platforms
- Development of public data portal of raw mass spec data

Unanticipated Innovations

- Joint development with FDA of mock 510(k) presubmission for proteomic platforms
 - Educate new generation of developers
- Established Antibody Characterization Laboratory
 - Provides high quality reagents at minimum cost to community
 - All characterization data posted on public database
 - Industry partners and collaborations

Full Steam Ahead: CPTC Phase 2 Pipeline (Summer '11)

Nanotechnology: Disruptive **Innovation for Clinical Oncology?**

- Combine power of innovation in nano-materials and cancer biology to develop new solutions in cancer
- Detect Disease Before Health Has Deteriorated
 - Sensors
 - **Imaging**
- **Deliver Therapeutics**
 - Local delivery
 - Improved efficacy
 - Post-therapy monitoring
- Develop Research Tools to Enhance Understanding of the Disease

Gold nanoshell Liposome

Dendrimer

Bringing Nanotechnology to Cancer Research & Oncology: ANC Network

Nanotechnology in Cancer

NCI Alliance for

Phase I (Pilot) Awarded

NCI **Alliance** for **Nanotechnology** in Cancer

Renewed

Program

Cancer Nanotechnology Plan Published

NCL Launches

Evaluation and Update

- Scientific Output
 - Over 600 pubs
- Clinical Translation
 - 50 companies
 - Over 200 patents
 - 8-10 clinical trials

RFA Released NCI **Alliance** for **Nanotechnology**

in Cancer

Phase II (Clinical) Kick-Off

2004

2005

2006

2007

2008

2009

2010

2011

Nano Imaging

A pilot toxicology study of single-walled carbon nanotubes in a small sample of mice

MERIC L. SCHEPER*, NOZORI NAKAYAMA-RATOHFORD*, CORRINE R. DINIS*, NADORE WORKS SER AND, PRILITE CHIP., PRILANG LIP., YADDININ SUPE, HONGJIE DAP AND SANUY S. GAMERIER**

**Mindel Barque Prijen in Blande Silv. Sperioral of Raintage and the X Proper, Pall Silv. Sperioral Chipseller, 14th Library School Control (1), 18th Library School (1), 18th Library School Control (1), 18th Library School Control (1), 18th Library School (1), 18th Library School (1), 18th Li

Nano Diagnostics

Vol 464 | 15 April 2010 | dek10.1038/nature08956

LETTERS

Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles

Mark E. Davis¹, Jonathan E. Zuckerman¹, Chung Hang J. Choi¹, David Seligson^{2,3}, Anthony Tolcher⁵, Christopher A. Alabi¹†, Yun Yen⁶, Jeremy D. Heidel⁷ & Antoni Ribas^{2,4}

Nano Therapy

Basic

Translational

Pre-Clinical

Clinical

Now What? How to Interpret It All? (Who?)

LOTS of Quantitative and Reproducible Data (Macro, Micro, and Nano!)

	Saturated steam			Superheated steam		
Pressure (kg/cm²)	Temp (°C)	Vapour enthalpy (kcal/kg)	Specific volume (m ³ /kg)	Density (kg/m _i)	Specific v (ms/l at 250°C	
1	99,1	638,8	1,725	0,580	2,454	2,691
2	119,6	646,2	0,902	1,109	1,223	1,342
3	132,9	650,6	0,617	1,621	0,812	0,893
4	142,9	653,7	0,471	2,123	0,607	0,668
5	151,1	656,0	0,382	2,618	0,484	0,533
6	158,1	657,0	0,321	3,115	0,402	0,443
7	164,2	659,5	0,278	3,597	0,343	0,379
8	169,6	660,8	0,245	4,082	0,299	0,331
9	174,5	661,9	0,219	4,566	0,265	0,293
10	179,1	662,9	0,198	5,051	0,238	0,263
12	187,1	664,5	0,166	6,024	0,196	0,218
14	194,1	665,7	0,143	6,993	0,167	0,186
16	200,4	666,7	0,126	7,937	0,145	0,162
18	206,1	667,4	0,112	8,929	0,128	0,143
20	211,4	668,0	0,101	9,901	0,114	0,128
22	216,2	668,4	0,092	10,870	0,103	0,116
24	220,7	668,7	0,085	11,765	0,093	0,106
26	225,0	669,0	0,078	12,821	0,085	0,097
28	229,0	669,1	0,073	13,699	0,078	0,089
30	232,7	669,2	0,068	14,706	0.072	0,083

Harness Understanding

"Simple"

"Complex"

Bringing In New Perspectives: Brainstorming with Experts

~300 extramural participants

Consensus Scientific Themes

- Understanding the Physics of Cancer
- Evolution and Evolutionary Theory in Cancer
- Coding, Decoding and Transfer of Information in Cancer
- "De-convoluting" the Complexity of Cancer

Consensus Needs

- Establish trans-disciplinary physical sciences-oncology centers
- Centers composed of integrated physical sciences-oncology teams
- Focus on theme(s) for center framework
- Centers led by physical scientists with co-investigator(s) from cancer biology/oncology

Critical to Think in Terms of Space and Time

Metastasis: Deleterious but also Rare and Random!

Well-known to be an inefficient process (0.01%)

Physical Sciences-Oncology Centers Program Goal and Vision

- To generate <u>new knowledge</u> and catalyze <u>new fields of</u> **study** in cancer research by utilizing physical sciences/engineering principles to enable a better understanding of cancer and its behavior at all scales.
- Not looking for new tools to do "better" science, but new perspectives and approaches to do paradigm-shifting science that will lead to exponential progress against cancer.
- Build **trans-disciplinary teams** and infrastructure to better understand and control cancer through the convergence of physical sciences and cancer biology.

A Future Where <u>Individualized</u> Medicine Becomes Reality

Learn More About CSSI...

