### Decomposition of Data Matrices by Factors

- $\bullet$  explore low dimensional structure in high dimensional space
- approximate the data matrix by a space of lower dimension
- solution(s) of optimization problem yields singular value decomposition of data
- the decomposition can be displayed graphically

### Two ways approximation

- Two different ways to look at data matrix:  $C(\mathbf{X})$  vs  $C(\mathbf{X}^T)$
- Duality (very close connection) between the two views
- Application: image analysis, face recognition, fMRI, call center data, internet traffic data, etc...

Rank 1 approximation

 $\bullet$  Obtain the best 1-dimensional subspace that approximates the rows of  ${\bf X}$ 

- Obtain the best 1-dimensional subspace that approximates the rows of X
- $\bullet$  Find the straight line through the origin that approximates the rows of X

- Obtain the best 1-dimensional subspace that approximates the rows of X
- Find the straight line through the origin that approximates the rows of X
- Find  $\mathbf{v} \in \mathbb{R}^p$  with  $\mathbf{v}^T \mathbf{v} = 1$  such that  $\sum_{i=1}^n ||\mathbf{x}_i P_{\mathbf{v}} \mathbf{x}_i||^2$  is minimized

- Obtain the best 1-dimensional subspace that approximates the rows of X
- Find the straight line through the origin that approximates the rows of X
- Find  $\mathbf{v} \in \mathbb{R}^p$  with  $\mathbf{v}^T \mathbf{v} = 1$  such that  $\sum_{i=1}^n ||\mathbf{x}_i P_{\mathbf{v}} \mathbf{x}_i||^2$  is minimized

Note that 
$$\sum_{i=1}^{n} ||\mathbf{x}_i - P_{\mathbf{v}}\mathbf{x}_i||^2 = \sum_{i=1}^{n} ||\mathbf{x}_i||^2 - ||P_{\mathbf{v}}\mathbf{x}_i||^2$$

#### Rank 1 approximation

- Obtain the best 1-dimensional subspace that approximates the rows of X
- ullet Find the straight line through the origin that approximates the rows of  ${f X}$
- Find  $\mathbf{v} \in \mathbb{R}^p$  with  $\mathbf{v}^T \mathbf{v} = 1$  such that  $\sum_{i=1}^n ||\mathbf{x}_i P_{\mathbf{v}} \mathbf{x}_i||^2$  is minimized

Note that 
$$\sum_{i=1}^{n} ||\mathbf{x}_i - P_{\mathbf{v}}\mathbf{x}_i||^2 = \sum_{i=1}^{n} ||\mathbf{x}_i||^2 - ||P_{\mathbf{v}}\mathbf{x}_i||^2$$

• Find  $\mathbf{v} \in \mathbb{R}^p$  with  $\mathbf{v}^T \mathbf{v} = 1$  such that  $\sum_{i=1}^n ||P_{\mathbf{v}} \mathbf{x}_i||^2$  is maximized.

#### Rank 1 approximation

- Obtain the best 1-dimensional subspace that approximates the rows of X
- ullet Find the straight line through the origin that approximates the rows of  ${f X}$
- Find  $\mathbf{v} \in \mathbb{R}^p$  with  $\mathbf{v}^T \mathbf{v} = 1$  such that  $\sum_{i=1}^n ||\mathbf{x}_i P_{\mathbf{v}} \mathbf{x}_i||^2$  is minimized

Note that 
$$\sum_{i=1}^{n} ||\mathbf{x}_i - P_{\mathbf{v}}\mathbf{x}_i||^2 = \sum_{i=1}^{n} ||\mathbf{x}_i||^2 - ||P_{\mathbf{v}}\mathbf{x}_i||^2$$

• Find  $\mathbf{v} \in \mathbb{R}^p$  with  $\mathbf{v}^T \mathbf{v} = 1$  such that  $\sum_{i=1}^n ||P_{\mathbf{v}} \mathbf{x}_i||^2$  is maximized.

$$\sum_{i=1}^{n} ||P_{\mathbf{v}} \mathbf{x}_i||^2 = \sum_{i=1}^{n} (\mathbf{x}_i^T \mathbf{v})^2$$

$$= \sum_{i=1}^{n} \mathbf{v}^T \mathbf{x}_i \mathbf{x}_i^T \mathbf{v}$$

$$= \mathbf{v}^T (\sum_{i=1}^{n} \mathbf{x}_i \mathbf{x}_i^T) \mathbf{v}$$

$$= \mathbf{v}^T \mathbf{X}^T \mathbf{X} \mathbf{v}$$

#### Rank 1 approximation

- Obtain the best 1-dimensional subspace that approximates the rows of X
- Find the straight line through the origin that approximates the rows of X
- Find  $\mathbf{v} \in \mathbb{R}^p$  with  $\mathbf{v}^T \mathbf{v} = 1$  such that  $\sum_{i=1}^n ||\mathbf{x}_i P_{\mathbf{v}} \mathbf{x}_i||^2$  is minimized

Note that 
$$\sum_{i=1}^{n} ||\mathbf{x}_i - P_{\mathbf{v}}\mathbf{x}_i||^2 = \sum_{i=1}^{n} ||\mathbf{x}_i||^2 - ||P_{\mathbf{v}}\mathbf{x}_i||^2$$

• Find  $\mathbf{v} \in \mathbb{R}^p$  with  $\mathbf{v}^T \mathbf{v} = 1$  such that  $\sum_{i=1}^n ||P_{\mathbf{v}} \mathbf{x}_i||^2$  is maximized.

$$\sum_{i=1}^{n} ||P_{\mathbf{v}} \mathbf{x}_i||^2 = \sum_{i=1}^{n} (\mathbf{x}_i^T \mathbf{v})^2$$

$$= \sum_{i=1}^{n} \mathbf{v}^T \mathbf{x}_i \mathbf{x}_i^T \mathbf{v}$$

$$= \mathbf{v}^T (\sum_{i=1}^{n} \mathbf{x}_i \mathbf{x}_i^T) \mathbf{v}$$

$$= \mathbf{v}^T \mathbf{X}^T \mathbf{X} \mathbf{v}$$

• Find  $\mathbf{v} \in \mathbb{R}^p$  with  $\mathbf{v}^T \mathbf{v} = 1$  such that  $\mathbf{v}^T \mathbf{X}^T \mathbf{X} \mathbf{v}$  is maximized

## Quadratic form maximization and the eigenvalues/vectors

Theorem: Let A be symmetric. Then,

$$\max_{\mathbf{v} \in \mathbb{R}^p} \frac{\mathbf{v}^T \mathbf{A} \mathbf{v}}{\mathbf{v}^T \mathbf{v}} = \max_{\mathbf{v} \in \mathbb{R}^p, \mathbf{v}^T \mathbf{v} = 1} \mathbf{v}^T \mathbf{A} \mathbf{v} 
= \mathbf{v}_1^T \mathbf{A} \mathbf{v}_1 
= \lambda_1,$$

where  $(\lambda_1, \mathbf{v}_1)$  is the largest eigenvalue and associated normalized eigenvector of  $\mathbf{A}$ .

proof: Note that

$$\max_{\mathbf{v} \in \mathbb{R}^p} \frac{\mathbf{v}^T \mathbf{A} \mathbf{v}}{\mathbf{v}^T \mathbf{v}} = \max_{\mathbf{v} \in \mathbb{R}^p, \mathbf{v}^T \mathbf{v} = 1} \mathbf{v}^T \mathbf{A} \mathbf{v}.$$

Let  $\mathbf{A} = \sum_{i=1}^{p} \lambda_i \mathbf{v}_i \mathbf{v}^T = \mathbf{V} \Lambda \mathbf{V}^T$  be the spectral decomposition of  $\mathbf{A}$ , where  $\lambda_1 \geq \cdots \geq \lambda_p$  are the eigenvalues of  $\mathbf{A}$ .

Then,

$$\mathbf{v}^T \mathbf{A} \mathbf{v} = \mathbf{v}^T \mathbf{V} \Lambda \mathbf{V}^T \mathbf{v}$$
  
=  $\mathbf{w}^T \Lambda \mathbf{w}$ , where  $\mathbf{w} = \mathbf{V}^T \mathbf{v}$ 

and

$$\mathbf{w}^T \mathbf{w} = (\mathbf{V}^T \mathbf{v})^T (\mathbf{V}^T \mathbf{v}) = \mathbf{v}^T \mathbf{V} \mathbf{V}^T \mathbf{v} = \mathbf{v}^T \mathbf{v} = 1.$$

## Quadratic form maximization and the eigenvalues/vectors

Thus,

$$\max_{\mathbf{v} \in \mathbb{R}^p, \mathbf{v}^T \mathbf{v} = 1} \mathbf{v}^T \mathbf{A} \mathbf{v} = \max_{\mathbf{w} \in \mathbb{R}^p, \mathbf{w}^T \mathbf{w} = 1} \mathbf{w}^T \Lambda \mathbf{w}.$$

Since  $\mathbf{w}^T \Lambda \mathbf{w} \leq \lambda_1(\mathbf{w}^T \mathbf{w}) = \lambda_1$  and the maximum value,  $\lambda_1$ , is attained when

$$\mathbf{w} = (1, 0, \cdots, 0)^T$$

or equivalently

$$\mathbf{v} = \mathbf{V}\mathbf{w} = \mathbf{v}_1.$$

Rank 1 approximation

• Find  $\mathbf{v} \in \mathbb{R}^p$  with  $\mathbf{v}^T \mathbf{v} = 1$  such that  $\mathbf{v}^T \mathbf{X}^T \mathbf{X} \mathbf{v}$  is maximized

#### Rank 1 approximation

- Find  $\mathbf{v} \in \mathbb{R}^p$  with  $\mathbf{v}^T \mathbf{v} = 1$  such that  $\mathbf{v}^T \mathbf{X}^T \mathbf{X} \mathbf{v}$  is maximized
- Solution of the maximization problem is

$$\mathbf{v} = \mathbf{v}_1,$$

the first normalized eigenvector of  $\mathbf{X}^T\mathbf{X}$  and the maximum value is given by  $\lambda_1$ , the largest eigenvalue.

• Representation of data on the 1-dimensional subspace:

$$\mathbf{x}_1^T \mathbf{v}_1, \ \mathbf{x}_2^T \mathbf{v}_1, \ \cdots, \ \mathbf{x}_n^T \mathbf{v}_1$$

- Find 2-dimensional subspace  $F = \{c_1\mathbf{v}_1 + c_2\mathbf{v}_2\}.$
- Find  $\mathbf{v} \in \mathbb{R}^p$  with  $\mathbf{v}^T \mathbf{v} = 1$  and  $\mathbf{v}^T \mathbf{v}_1 = 0$  such that  $\mathbf{v}^T \mathbf{X}^T \mathbf{X} \mathbf{v}$  is maximized.

### Quadratic form maximization and the eigenvalues/vectors

Theorem: Let **A** be symmetric. Then,

$$\max_{\mathbf{v} \in \mathbb{R}^p, \mathbf{v}^T \mathbf{v} = 1} \mathbf{v}^T \mathbf{A} \mathbf{v} = \mathbf{v}_k^T \mathbf{A} \mathbf{v}_k 
\mathbf{v}^T \mathbf{v}_1 = 0, \dots, \mathbf{v}^T \mathbf{v}_{k-1} = 0 
= \lambda_k,$$

where  $\lambda_1 \geq \cdots \geq \lambda_p$  are the eigenvalues of **A** and  $\mathbf{v}_1, \ldots, \mathbf{v}_p$  are the associated normalized eigenvectors.

#### Rank 2 approximation?

- Find 2-dimensional subspace  $F = \{c_1\mathbf{v}_1 + c_2\mathbf{v}_2\}.$
- Find  $\mathbf{v} \in \mathbb{R}^p$  with  $\mathbf{v}^T \mathbf{v} = 1$  and  $\mathbf{v}^T \mathbf{v}_1 = 0$  such that  $\mathbf{v}^T \mathbf{X}^T \mathbf{X} \mathbf{v}$  is maximized.
- Solution?  $\mathbf{v} = \mathbf{v}_2$  and the maximum value is  $\lambda_2$ .
- Representation of data on the 2-dimensional subspace:

$$(\mathbf{x}_1^T \mathbf{v}_1, \mathbf{x}_1^T \mathbf{v}_2), \ (\mathbf{x}_2^T \mathbf{v}_1, \mathbf{x}_2^T \mathbf{v}_2), \ (\mathbf{x}_n^T \mathbf{v}_1, \mathbf{x}_n^T \mathbf{v}_2)$$

- Sequential maximization with additional orthogonal constraint.
- Solutions?  $\mathbf{v}_1, \dots, \mathbf{v}_r$  with the maximum values  $\lambda_1, \dots, \lambda_r$ , where  $r = \operatorname{rank}(\mathbf{X})$ .

### Column vector space approximation

- ullet Obtain the best 1-dimensional subspace that approximates the columns of  ${f X}$
- Find the straight line through the origin that approximates the columns of X
- Find  $\mathbf{u} \in \mathbb{R}^n$  with  $\mathbf{u}^T \mathbf{u} = 1$  such that  $\sum_{i=1}^p ||\mathbf{x}_i P_{\mathbf{u}} \mathbf{x}_i||^2$  is minimized where  $\mathbf{x}_i$  denotes the *i*-th column of  $\mathbf{X}$
- Find  $\mathbf{u} \in \mathbb{R}^n$  with  $\mathbf{u}^T \mathbf{u} = 1$  such that  $\mathbf{u}^T \mathbf{X} \mathbf{X}^T \mathbf{u}$  is maximized.

## Column vector space approximation

#### Rank 1 approximation?

• From the (quadratic form maximization) Theorem,

$$\max_{\mathbf{u} \in \mathbb{R}^n, \mathbf{u}^T \mathbf{u} = 1} \mathbf{u}^T (\mathbf{X} \mathbf{X}^T) \mathbf{u} = \mathbf{u}_1^T (\mathbf{X} \mathbf{X}^T) \mathbf{u}_1 = \nu_1$$

where  $\nu_1$  is the largest eigenvalue of  $\mathbf{X}\mathbf{X}^T$  and  $\mathbf{u}_1$  is the corresponding unit length eigenvector.

### Column vector space approximation

#### Rank 1 approximation?

• From the (quadratic form maximization) Theorem,

$$\max_{\mathbf{u} \in \mathbb{R}^n, \mathbf{u}^T \mathbf{u} = 1} \mathbf{u}^T (\mathbf{X} \mathbf{X}^T) \mathbf{u} = \mathbf{u}_1^T (\mathbf{X} \mathbf{X}^T) \mathbf{u}_1 = \nu_1$$

where  $\nu_1$  is the largest eigenvalue of  $\mathbf{X}\mathbf{X}^T$  and  $\mathbf{u}_1$  is the corresponding unit length eigenvector.

- Sequential maximization with additional orthogonal constraint.
- Solutions?  $\mathbf{u}_1, \dots, \mathbf{u}_r$  with the maximum values  $\nu_1, \dots, \nu_r$ , where  $r = \operatorname{rank}(\mathbf{X})$ .

### Duality between two way approaches

Let  $\{(\lambda_i, \mathbf{v}_i)\}$  and  $\{(\nu_i, \mathbf{u}_i)\}$  be the eigenvalue-eigenvector pairs of  $\mathbf{X}^T\mathbf{X}$  and  $\mathbf{X}\mathbf{X}^T$ , respectively. Then,

$$\mathbf{X}^T \mathbf{X} \mathbf{v}_i = \lambda_i \mathbf{v}_i.$$

Pre-multiplying by X on both sides, we get

$$\mathbf{X}\mathbf{X}^T\mathbf{X}\mathbf{v}_i = \lambda_i(\mathbf{X}\mathbf{v}_i)$$

or equivalently

$$\mathbf{X}\mathbf{X}^T(\mathbf{X}\mathbf{v}_i) = \lambda_i(\mathbf{X}\mathbf{v}_i).$$

This means that  $\lambda_i$ s also also eigenvalues of  $\mathbf{X}\mathbf{X}^T$  and  $\mathbf{X}\mathbf{v}_i$  are eigenvectors of  $\mathbf{X}\mathbf{X}^T$ .

Since  $\mathbf{u}_i$  are length-one vectors,

$$\mathbf{u}_i = \frac{\mathbf{X}\mathbf{v}_i}{L(\mathbf{X}\mathbf{v}_i)} = \frac{\mathbf{X}\mathbf{v}_i}{\sqrt{\mathbf{v}_i^T\mathbf{X}^T\mathbf{X}\mathbf{v}_i}} = \frac{\mathbf{X}\mathbf{v}_i}{\sqrt{\lambda_i}}.$$

Similarly,

$$\mathbf{v}_i = \frac{\mathbf{X}^T \mathbf{u}_i}{\sqrt{\lambda}_i}.$$

Once  $\{(\lambda_i, \mathbf{v}_i)\}$  are computed, don't need to recompute  $\{(\nu_i, \mathbf{u}_i)\}$ .

### Duality between two way approaches: SVD

Write this relationship,

$$\mathbf{u}_i = \frac{\mathbf{X}\mathbf{v}_i}{\sqrt{\lambda_i}}, i = 1, \dots, r$$

in a matrix format:

$$[\mathbf{u}_1, \mathbf{u}_2 \dots, \mathbf{u}_r] = \mathbf{X}[\mathbf{v}_1, \mathbf{v}_2 \dots, \mathbf{v}_r] \begin{pmatrix} \frac{1}{\sqrt{\lambda_1}} & 0 & \dots & 0\\ 0 & \frac{1}{\sqrt{\lambda_2}} & \dots & 0\\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & \dots & \frac{1}{\sqrt{\lambda_r}} \end{pmatrix}$$
(1)

Define  $\mathbf{U}_{n\times r} = [\mathbf{u}_1, \mathbf{u}_2 \dots, \mathbf{u}_r], \ \mathbf{V}_{p\times r} = [\mathbf{v}_1, \mathbf{v}_2 \dots, \mathbf{v}_r], \ \text{and} \ \Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_r), \ \text{then} \ (1)$  can be written as

$$\mathbf{U} = \mathbf{X} \mathbf{V} \Lambda^{-1/2}$$

or by post-multiplying  $\Lambda^{1/2}\mathbf{V}^T$ 

$$\mathbf{X} = \mathbf{U}\Lambda^{1/2}\mathbf{V}^T.$$

The two-way low rank approximation provides Singular Value Decomposition (SVD) of data matrix.

### $\overline{\text{SVD}}$

Singular Value Decomposition (SVD) of data matrix

$$\mathbf{X}_{n\times p} = \mathbf{U}\Lambda^{1/2}\mathbf{V}^T$$

provides

- sequential
- solutions to the best approximation of data
- in the column and the row spaces
- simultaneously.

The two-way rank k approximation of the data is:

$$\mathbf{X}_{n \times p} \approx \mathbf{U}_k \Lambda_k^{1/2} \mathbf{V}_k^T,$$

where  $\mathbf{U}_k = [\mathbf{u}_1, \dots, \mathbf{u}_k], \mathbf{V}_k = [\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r], \text{ and } \Lambda_k = \operatorname{diag}(\lambda_1, \dots, \lambda_k) \text{ for } k = 1, \dots, r.$ 

# Example: Face Image

 $data:\ http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html$ 

### Example: Face Image



Take the last picture of size  $64 \times 64$ .

### Example: Face Image approximation



Rank k approximation using SVD.

# Example: Face Image approximation



Rank k = 5 approximation using SVD.

## Example: Face Image approximation





Data matrix of size  $30 \times 30$ .



Rank k = 1 approximation using SVD.



Rank k=2 approximation using SVD.



Rank k = 3 approximation using SVD.