let three fins be fig and h g * (1 * 1) (= g * (1 * 1) (= gx * / (x-4) h(4) dy = \ g (x-1) . [] (4'-4) w/w dy du = { (g(x-v) 1 (u'-u) My du du = [g(x-v-v) f(v) my du dv = [gk-v-v) (v)dv My) du = f gtx-u * (3 * 1) (x-4) h(y) du (3 × 1) × 1000 (50)

Let, f be an function that represents an intensity image and g be a gaussian kernel with f standard deviation 6. $g(x) = N(x; \mu, 6)$

Now, convolving of two times with g gives:

(fog) og = fo (gog) [distributive proporty]

if we can prove that gog = g' (say) and g' is a gaussian kennel with standard deriation 612, then that will imply the statement given.

Now, $g(z)=N(x;k,6)=\frac{1}{\sqrt{2\pi}6}e^{\frac{1}{2}(x-k)^2}$ $f(g)=e^{-i\omega k}e^{-6\frac{v_{\omega}}{2}}$ [Formier transform of g(x)]

$$g'(\mathbf{z}) = (g \circ g)(\mathbf{z})$$

$$= \mathcal{F}^{-1} \{ \mathcal{F}(g) \cdot \mathcal{F}(g) \}$$

$$= \mathcal{F}^{-1} \left(e^{-i\omega \mathcal{H}} e^{-6\frac{\gamma_{\omega}}{2}} \right)^{2}$$

$$= \mathcal{F}^{-1} \left(e^{-i\omega(2\mathcal{H})} e^{-(26\frac{\gamma_{\omega}}{2})} \right)^{2}$$

$$= \mathcal{F}^{-1} \left[e^{-i\omega(2\mathcal{H})} e^{-(26\frac{\gamma_{\omega}}{2})} \right]$$

Let, $\mu' = 2\mu$ and $6' = 26^2$

$$g'(2) = f'\left[e^{-i\omega\mu'}e^{-6\sqrt{2}}\right]$$

$$= \frac{1}{\sqrt{2\pi}6'}e^{-2(\omega\mu')}e^{-6\sqrt{2}}$$

By definition

2 N(2; h', 6')

g' is a gaussian kennel with standard deviation $6' = \sqrt{26^2} = 6\sqrt{2}$. [Proved]