Modern Symmetric Key Ciphers — AES

Part II: AES Key Expansion, AES operations in \mathbb{F}_{2^8} , Overcoming the Limitations of DES

Priyank Kalla
Professor
Electrical & Computer Engineering

AES

- NIST Standard ~2001
- Based on Rijndael Proposal: J. Daemen & V. Rijment
- 128-bit Block Cipher, and 128-bit internal round keys
- Number of round keys: $N_r + 1$
- Every operation is invertible: non-Feistel cipher

A Basic High-Level View

Data Units in AES

- Bits, Byte, Word (32 bits), Block (128 bit), and State
- State = Block, but inside the stages of AES, it is called a State; operations are performed as matrices

AES Transformations

- Substitutions, Permutations, Mixing, Key-Additions
- Substitution is performed on each "byte"
- One function to substitute each byte
- Substitution uses \mathbb{F}_{2^8} : $P(x) = x^8 + x^4 + x^3 + x + 1$ is used as the irreducible polynomial
- Computations done $\pmod{P(x)}$, $P(\alpha) = 0$

SubByte: Affine Transform

- Matrix X = given
- Matrix X^{-1} exists
- Vector y = given

•
$$d = Xb + y$$

SubByte: Affine Transform

- $0C = 0000 \ 1100 = x^3 + x^2$
- Compute multiplicate inverse of 0C $(\text{mod } x^8 + x^4 + x^3 + x + 1) = x^7 + x^5 + x^4 = 1011\ 0000$
- Multiply by matrix X = 10011101 = c
- XOR GF(2) addition operation to get d = 111111110 = FE
- Matrix X and vector y is fixed
- $s_{r,c} = X \cdot s_{r,c}^{-1} + y$: Affine cipher!! (Linear)
- But, the $s_{r,c}^{-1}$ operation makes it non-linear!

Shift-Row Transformation

- Cyclic Left Shift = permutation
- In decryption: do a cyclic right shift

Mixing Transform

- Substitution changes the value of the byte
- Permutation exchanges the bytes in the matrix
- We need an inter byte transformation: change bits inside a byte based on bits of neighbouring bytes: AES uses Mix Column Transformations

Mixing bytes using matrix multiplication

Multiplication done
$$(\text{mod } x^8 + x^4 + x^3 + x + 1)$$
 in \mathbb{F}_{2^8}

Constant matrices used by MixColumns and InvMixColumns

$$\begin{bmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{bmatrix} \leftarrow \begin{bmatrix} 0E & 0B & 0D & 09 \\ 09 & 0E & 0B & 0D \\ 0D & 09 & 0E & 0B \\ 0B & 0D & 09 & 0E \end{bmatrix}$$

$$C \qquad \qquad C^{-1}$$

See Corresponding Singular File

Mixing Transform

- Substitution changes the value of the byte
- Permutation exchanges the bytes in the matrix
- We need an inter byte transformation: change bits inside a byte based on bits of neighbouring bytes: AES uses MixColumn Transformations

Multiplication done $(\text{mod } x^8 + x^4 + x^3 + x + 1)$ in \mathbb{F}_{2^8}

Constant matrices used by MixColumns and InvMixColumns

$$\begin{bmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{bmatrix} \xrightarrow{\text{Inverse}} \begin{bmatrix} 0E & 0B & 0D & 09 \\ 09 & 0E & 0B & 0D \\ 0D & 09 & 0E & 0B \\ 0B & 0D & 09 & 0E \end{bmatrix}$$

$$C \qquad \qquad C^{-1}$$

Mixing Transform and Inv Mixing in \mathbb{F}_{2^8}

Constant matrices used by MixColumns and InvMixColumns

$$\begin{bmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{bmatrix} \xrightarrow{\text{Inverse}} \begin{bmatrix} 0E & 0B & 0D & 09 \\ 09 & 0E & 0B & 0D \\ 0D & 09 & 0E & 0B \\ 0B & 0D & 09 & 0E \end{bmatrix}$$

$$C \qquad \qquad C^{-1}$$

Operations done (mod $x^8 + x^4 + x^3 + x + 1$) in \mathbb{F}_{2^8}

• 02 Hexadecimal = 0000 0010 = α ; 03 Hex = 0000 0011 = α + 1

$$C = \begin{bmatrix} \alpha & \alpha + 1 & 1 & 1 \\ 1 & \alpha & \alpha + 1 & 1 \\ 1 & 1 & \alpha & \alpha + 1 \\ \alpha + 1 & 1 & 1 & \alpha \end{bmatrix}$$

$$C^{-1} = \begin{bmatrix} (\alpha^3 + \alpha^2 + \alpha) & (\alpha^3 + \alpha + 1) & (\alpha^3 + \alpha^2 + 1) & (\alpha^3 + 1) \\ (\alpha^3 + 1) & (\alpha^3 + \alpha^2 + \alpha) & (\alpha^3 + \alpha + 1) & (\alpha^3 + \alpha^2 + 1) \\ (\alpha^3 + \alpha^2 + 1) & (\alpha^3 + 1) & (\alpha^3 + \alpha^2 + \alpha) & (\alpha^3 + \alpha + 1) \\ (\alpha^3 + \alpha + 1) & (\alpha^3 + \alpha^2 + 1) & (\alpha^3 + 1) & (\alpha^3 + \alpha^2 + \alpha) \end{bmatrix}$$

• $\alpha^3 + \alpha^2 + \alpha = 0000 \ 1110 = 0E = 1st$ element of C^{-1}

Add Round Key

- Addition modulo 2 = XOR
- Inverse of each other

Key Expansion

Round	Words			
Pre-round	\mathbf{w}_0	\mathbf{w}_1	\mathbf{w}_2	\mathbf{w}_3
1	\mathbf{w}_4	\mathbf{w}_5	\mathbf{w}_6	\mathbf{w}_7
2	\mathbf{w}_8	W 9	\mathbf{w}_{10}	\mathbf{w}_{11}
N_r	\mathbf{w}_{4N_r}	\mathbf{w}_{4N_r+1}	\mathbf{w}_{4N_r+2}	\mathbf{w}_{4N_r+3}

- N_r rounds = $N_r + 1$ Keys
- Each round Key = 128bits = 4 words, 1 word= 4 bytes
- Words:

$$w_0, w_1, \dots, w_{4(N_r+1)-1}$$

• AES-128: $w_0, ..., w_{43}$

Key Expansion

Making of t_i (temporary) words $i = 4 N_r$

t4 = SubWord(RotWord(w3)) + RCon[1] /*corrected*/

Key Expansion

Making of t_i (temporary) words $i = 4 N_r$

- t4 = SubWord(RotWord(w3)) + RCon[1]
- t8 = SubWord(RotWord(w7)) + RCon[2]
- t40 = SubWord(RotWord(w39)) + RCon[10]
- RotWord = Rotate = Cyclic Shift 1 bit
- SubWord = Substitution, substitution for each byte in the word
- RCon = Round Constant = which are given = $\alpha^{i-1} \pmod{P(\alpha)}$, i= the round

Round Constants

Round	Constant (RCon)	Round	Constant (RCon)
1	(01 00 00 00) ₁₆	6	(20 00 00 00) ₁₆
2	(<u>02</u> 00 00 00) ₁₆	7	(<u>40</u> 00 00 00) ₁₆
3	(<u>04</u> 00 00 00) ₁₆	8	(<u>80</u> 00 00 00) ₁₆
4	(<u>08</u> 00 00 00) ₁₆	9	(<u>1B</u> 00 00 00) ₁₆
5	(<u>10</u> 00 00 00) ₁₆	10	(<u>36</u> 00 00 00) ₁₆

$$P(\alpha) = \alpha^8 + \alpha^4 + \alpha^3 + \alpha + 1$$

RC_1	$\rightarrow x^{1-1}$	$=x^0$	mod <i>prime</i>	= 1	$\rightarrow 00000001$	\rightarrow 01 ₁₆
RC_2	$\rightarrow x^{2-1}$	$=x^1$	mod prime	=x	$\rightarrow 00000010$	$\rightarrow 02_{16}$
RC_3	$\rightarrow x^{3-1}$	$=x^2$	mod prime	$=x^2$	$\rightarrow 00000100$	$\rightarrow 04_{16}$
RC_4	$\rightarrow x^{4-1}$	$= x^{3}$	mod <i>prime</i>	$=x^3$	$\rightarrow 00001000$	$\rightarrow 08_{16}$
RC_5	$\rightarrow x^{5-1}$	$= x^4$	mod prime	$=x^4$	$\rightarrow 00010000$	$\rightarrow 10_{16}$
RC_6	$\rightarrow x^{6-1}$	$=x^5$	mod prime	$=x^5$	$\rightarrow 00100000$	\rightarrow 20 ₁₆
RC_7	$\rightarrow x^{7-1}$	$= x^{6}$	mod prime	$=x^6$	$\rightarrow 01000000$	\rightarrow 40 ₁₆
RC_8	$\rightarrow x^{8-1}$	$=x^7$	mod prime	$=x^7$	$\rightarrow 10000000$	$\rightarrow 80_{16}$
RC_9	$\rightarrow x^{9-1}$	$=x^{8}$	mod prime	$=x^4+x^3+x+1$	$\rightarrow 00011011$	$\rightarrow 1B_{16}$
RC_{10}	$\rightarrow x^{10-1}$	$=x^{9}$	mod prime	$= x^5 + x^4 + x^2 + x$	$\rightarrow 00110110$	\rightarrow 36 ₁₆

AES-192 & AES-256: Key Expansion

- Block-size is still 128-bits = Four 32-bit words
- AES-192: Words are generated in groups of 6, but each round key is still 128-bits wide (4 32-bit words)
 - $w_0, ..., w_5$: created directly by Cipher key, for Round 0
 - If $i \pmod{6} \neq 0 : w_i \leftarrow w_{i-1} + w_{i-6}$
 - Else, $w_i \leftarrow t_i + w_{i-6}$
 - $t_i = SubWord(RotWord(w_{i-1})) + RCon[i/6], \forall i \ge 6$
- AES-256: Keys are generated as a group of 8 words

AES Keys & Security

- Large key size thwarts brute-force attacks
- No differential or linear cryptanalysis attacks yet known (I'm not aware of any Quantum attack yet!)
- No statistical attacks: SubByte + ShiftRow + MixColum removes frequency pattern
- Similar cipher keys create vastly different round keys after round 2
- Round Constants RCons[] removes any symmetry created by other transforms
- Each bit of cipher-key is diffused into several round-keys. Change of a bit in cipher key causes changes in several round-keys
- AES has lived on for ~25 years!

Key Generation: Security

- Consider two keys K1 and K2 that differ in just 1 bit
- They generate completely different round keys

Cipher Key 1: 12 45 A2 A1 23 31 A4 A3 B2 CC AA 34 C2 BB 77 23

Cipher Key 2: 12 45 A2 A1 23 31 A4 A3 B2 CC A**B** 34 C2 BB 77 23

R.	Round keys for set 1			Round keys for set 2				<i>B. D.</i>	
	1245A2A1	2331A4A3	B2CCA <u>A</u> 34	C2BB7723	1245A2A1	2331A4A3	B2CCA <u>B</u> 34	C2BB7723	01
1	F9B08484	DA812027	684D8 <u>A</u> 13	AAF6F <u>D</u> 30	F9B08484	DA812027	684D8 <u>B</u> 13	AAF6F <u>C</u> 30	02
2	B9E48028	6365A00F	0B282A1C	A1DED72C	B9008028	6381A00F	OBCC2B1C	A13AD72C	17
3	A0EAF11A	C38F5115	C8A77B09	6979AC25	3D0EF11A	5E8F5115	55437A09	F479AD25	30
4	1E7BCEE3	DDF49FF6	1553E4FF	7C2A48DA	839BCEA5	DD149FB0	8857E5B9	7C2E489C	31
5	EB2999F3	36DD0605	238EE2FA	5FA4AA20	A2C910B5	7FDD8F05	F78A6ABC	8BA42220	34
6	82852E3C	B4582839	97D6CAC3	C87260E3	CB5AA788	B487288D	430D4231	C8A96011	56
7	82553FD4	360D17ED	A1DBDD2E	69A9BDCD	588A2560	EC0D0DED	AF004FDC	67A92FCD	50
8	D12F822D	E72295C0	46F948EE	2F50F523	0B9F98E5	E7929508	4892DAD4	2F3BF519	44
9	99C9A438	7EEB31F8	38127916	17428C35	F2794CF0	15EBD9F8	5D79032C	7242F635	51
10	83AD32C8	FD460330	C5547A26	D216F613	E83BDAB0	FDD00348	A0A90064	D2EBF651	52

No AES Weak Keys

- When Cipher Key = ALL 0s:
- After Round 2, all keys are different

Pre-round:	0000000	0000000	0000000	0000000
Round 01:	62636363	62636363	62636363	62636363
Round 02:	9B9898C9	F9FBFBAA	9B9898C9	F9FBFBAA
Round 03:	90973450	696CCFFA	F2F45733	0B0FAC99
	• • •	• • •	• • •	• • •
Round 10:	B4EF5BCB	3E92E211	23E951CF	6F8F188E

Original Cipher Design

Alternate Design: Symmetrical Inverse

Alternate Design: Symmetrical Inverse

- Original AES: In decryption, "AddRoundKey" is used as is
- In the symmetrical Cipher, "InvAddRoundKey" is used
 - Multiply Key matrix with C^{-1} , where C is used in MixColumns

Cipher: $T = CS \oplus K$

Inverse Cipher: $C^{-1}T \oplus C^{-1}K = C^{-1}(CS \oplus K) \oplus C^{-1}K = C^{-1}CS \oplus C^{-1}K \oplus C^{-1}K = S$