# **Sentiment Booms Go Wrong**

Marco Brianti

Vito Cormun

March 2019

Dissertation Workshop, Boston College

#### Two long Traditions in Macroeconomics

- Changes in expectation as an important driver of economic fluctuations
  - Incentives to anticipate potential economic developments
    - ⇒ Pigou (1927); Keynes (1936)
    - ⇒ Beaudry and Portier (2004, 2006)

- 2 Endogenous cycle: expansions lead recessions
  - Economic fluctuations are driven by internal forces which favor recurrent periods of boom and bust.
    - ⇒ von Mises (1940); Beaudry, Galizia, and Portier (2018, 2019)
    - ⇒ Minsky (1977); Bordalo, Gennaioli, Shleifer (2018)

### This paper

- We empirically estimate sentiment shocks and evaluate their effects on aggregate U.S. variables
  - We define sentiment shocks as changes in expectations uncorrelated with fundamentals
  - Sentiment shocks trigger boom-and-bust dynamics on most macroeconomic variables
  - Sentiments explain up to 40% of output

- We write a general equilibrium model that rationalizes our empirical findings
  - •
  - •

#### **Contributions**

- We use Instrumental Variable Local Projection (IV-LP) to estimate sentiments shocks
  - Previous literature estimates DSGE models or employ SVAR
    - ⇒ Milani, 2011; Levchenko and Pandalai-Nayar, 2018
- Uncover new dynamics in response to sentiment shocks
  - Informative for the literature on sentiments
    - ⇒ Angeletos and La'O, 2013; Angeletos et al. (2018)
- New supportive evidence for the literature on credit cycles
  - We proposed **structural evidence** in favor of credit booms with negative macroeconomic consequences
    - ⇒ Lopez-Salido, Stein, and Zakrajsek (2017)
- (Ideally) Theory that displays boom-and-bust dynamics conditional on a specific type of shock
  - Hard to get shock specific boom and busts
    - ⇒ Beaudry, Galizia, and Portier (2019)

- 1. Empirical Strategy
- 2. Empirical Results
- 3. Test
- 4. Model
- 5. Conclusions

### **Econometric Strategy**

#### A 2-step procedure:

**9** Build an **instrument**  $Z_t$  correlated with changes in expectations and orthogonal to fundamentals.

Estimate dynamic responses of macroeconomic variables using IV-LP.

### **Data Treatment on Expectations**

Quarterly data from 1982 to 2018 of forecasts on macroeconomic variables,  $X_t^s$ , made by **Survey of Professional Forecasters** 

#### Define,

- $E_t^i(X_{t+k}^s)$  as the expectation on  $X_{t+k}^s$  given the information set at time t released by professional forecaster i
- $E_t(X_{t+k}^s)$  as the sample mean across i of  $E_t^i(X_{t+k}^s)$
- $E_t(\hat{x}_{t+k}^s) = E_t(X_{t+k}^s)/E_t(X_t^s) 1$  as the expectation of the growth rate of  $X^s$  from t to t+k given information set t
- $R_{t,k}^s = E_t(\hat{x}_{t+k}^s) E_{t-1}(\hat{x}_{t+k}^s)$  as the revision on expectations from t-1 to t of the growth rate of  $X^s$  from t to t+k
- $R_t^k$  is the first principal component of  $R_{t,k}^s$

#### **IV-LP Estimator**

Dynamic response of endogenous variable  $Y_{t+h}$  to  $R_t$  is

$$Y_{t+h} = \Theta_h^Y R_t + u_{h,t+h}^Y \tag{1}$$

Because  $R_t$  is endogenous, OLS estimation of 1 is not valid. Eq. 1 can be estimated by IV if  $Z_t$  satisfies the following conditions

- $E(\varepsilon_{2:N,t}Z_t)=0$  (contemporaneous exogeneity)
- $E(\varepsilon_{1:N,t+j}Z_t)=0$  for  $j\neq 0$  (lead-lag exogeneity)

Given the validity of previous conditions, a consistent estimator for  $\Theta_h^Y$  is defined as

$$\widehat{\Theta}_{h}^{Y} = \frac{\sum_{t=0}^{T-h} Y_{t+h} Z_{t}}{\sum_{t=0}^{T-h} R_{t} Z_{t}}$$

### Instrument $Z_t$

We estimate instrument  $Z_t$  as the unpredictable component of  $R_t$  orthogonal to fundamentals,

$$R_t = c + B(L)\Delta TFP_t + \delta W_t + Z_t$$

where,

- $\bullet$   $\Delta TFP$  is the first difference of utilization-adjusted TFP
- $\bullet$   $W_t$  represents a series of controls
  - Lagged principal components
  - Other structural shocks

Importantly, R-Squared are relatively small (30%-50%)

- ⇒ A large part of SPF expectations is unrelated to fundamentals
- $\Rightarrow Z_t$  is a relevant instrument

- 1. Empirical Strategy
- 2. Empirical Results
- 3. Test
- 4. Model
- 5. Conclusions

# Impulse Responses (I)



# Impulse Responses (I)



## **Variance Decomposition**

|                                | Impact | 1 Year | 2 Years | 5 Years |
|--------------------------------|--------|--------|---------|---------|
| Real GDP                       | 9.38%  | 19.81% | 16.50%  | 37.72%  |
| Real Investment<br>Total Hours | 4.95%  | 19.69% | 15.06%  | 35.96%  |
| Total Hours                    | 1.50%  | 23.38% | 14.87%  | 25.21%  |
| Real Consumption               | 4.51%  | 6.70%  | 5.50%   | 32.21%  |

#### **Takeaways**

- Sentiment shocks generate cycles of 6 to 7 years in both real and financial variables.
- Sentiments account for the bulk of fluctuations at Business Cycle frequency.
- Technology? Financial variables?

#### **Robustness Checks**

- Detrending techniques: first difference, linear, quadratic, Hodrick-Prescott and Band-pass.
- Bivariate VAR(10).
- Choice of lags and controls such as news shocks.
- Use data from Michigan Consumer Survey as a measure of expectations.

- 1. Empirical Strategy
- 2. Empirical Results
- 3. **Test**
- 4. Model
- 5. Conclusions

### Test

- 1. Empirical Strategy
- 2. Empirical Results
- 3. Test
- 4. Model
- 5. Conclusions

#### Model

- 1. Empirical Strategy
- 2. Empirical Results
- 3. Test
- 4. Model
- 5. Conclusions

#### **Conclusions**

- 1. Empirical Strategy
- 2. Empirical Results
- 3. Test
- 4. Model
- 5. Conclusions
- 6. Appendix

### Technical Details on Empirical Strategy

- Forecast horizon k from SPF data is either 2 or 3
- Forecasted variables X<sup>s</sup> are real GDP, nominal GDP, real consumption, real investment, and industrial production
- If Y<sub>t</sub> is non-stationary,
  - Detrend  $Y_t$  with low-frequency filters
  - Take the first difference of  $Y_t$  and  $\Gamma_h^Y = \sum_{i=0}^h \Theta_h^Y$  is the response of  $Y_{t+h}$
- Bootstrap method is from Kilian and Kim (2011)

## **Bootstrapping Technique**

- $\textbf{② Create $\Lambda_{h,t,1}^Y$ of the same length of $T$ of $\Lambda_{h,t}^Y$ where $\Lambda_{h,t,1}^Y$ is formed by randomly extracted blocks of length $I$ from $\Lambda_{h,t}^Y$ }$
- **Solution** Estimate  $\Theta_{h,1}^Y$  from  $\Lambda_{h,t,1}^Y$  using IV-LP estimator
- **1** Redo first 3 steps B=2000 times and get  $\Theta_{h,b}^{Y}$  where  $b=1,\ldots,B$
- **Select** confidence bands of  $\Theta_{h,b}^{Y}$  across b for all h

### Impulse Responses to a Surprise Productivity Shocks

