Projet 7: Résolvez des problèmes en utilisant des algorithmes en Python

Introduction:

Nous devons résoudre un problème knapsack classique en utilisant les deux approches suivantes :

- Un algorithme « Brute force » qui passe sur toutes les données
- Un algorithme optimisé basé sur la programmation dynamique

Détails du problème :

Objectif:

Choisir l'ensemble d'actions le plus rentable parmi une liste en respectant un montant de dépenses maximum défini

Contraintes:

- Chaque action ne peut être achetée qu'une seule fois
- Le portefeuille maximum est fixé à 500€
- Les actions ne sont pas divisibles

Solutions:

- Un algorithme 'Bruteforce' avec une approche naïve
- Un algorithme
 "optimisé" avec une approche en programmation dynamique

Algorithme Brute-Force

- La solution brute force consiste à essayer toutes les combinaisons d'actions possibles et de choisir la plus rentable.
- Cette solution est très gourmande en temps et extrêmement sensible à l'augmentation de N (nombre d'éléments passés à l'algorithme)

Pseudo-code Brute-Force

```
brute_force(actions, W):
 n = len(actions)
 for i in range (n):
     for combination in combinations(actions, i):
         compare combination rentability
```

Analyse Brute-Force

• Analyse temporelle:

L'algorithme Brute-Force itère **n** (nombre d'éléments passés dans l'algorithme) fois sur la fonctionne itertools.combinaison dont la complexité temporelle est **O(n!)**

La complexité temporelle est donc n*n! soit O(n!) selon la notation BigO

• Analyse de la mémoire :

L'algorithme crée n liste de complexité spatiale O(n), sa complexité spatiale est donc de $O(n^2)$.

Résultats Brute-Force

Actions boughts : ['Action-4', 'Action-5', 'Action-6', 'Action-8', 'Action-10', 'Action-11', 'Action-13', 'Action-18', 'Action-19', 'Action-20']

Total profits : €99.08€

Total cost : 498.0€

Solving time : 1.7706937789916992

- Le total des profits est de 99,08€ après deux ans
- Le prix total est de 498€
- L'algorithme met 1,77sec à trouver la solution pour ce premier dataset

Algorithme optimisé

- La solution optimisée s'appuie sur le principe de la programmation dynamique.
- L'algorithme va créer une table pour stocker la solution de chaque sous problème rencontré.
 Cette table lui permet de ne pas effectuer plusieurs fois les mêmes calculs (ou sous problèmes) et de gagner un temps considérable par rapport à une approche naïve.

Matrice de calcule

Pseudo-code Algorithme optimisé

Création d'une matrice pour recevoir le résultats des sous problèmes :

$$mat = [[0 \text{ for } x \text{ in range}(W + 1)] \text{ for } x \text{ in range}(n + 1)]$$

Peuplement de la matrice en résolvant les sous problèmes :

```
for i in range(n + 1):
 for j in range(W + 1):
     if i == 0 or j == 0:
         mat[i][j] = 0
     elif actions[i - 1].price < j:
         mat[i][j] = max(actions[i - 1].profitability + mat[i - 1][j - actions[i - 1].price], mat[i - 1][j])
     else:
     mat[i][j] = mat[i - 1][j]</pre>
```

Analyse algorithme optimisé

• Analyse temporelle:

L'algorithme optimisé crée une matrice (ou table) de $\bf n$ (nombre d'items passés en paramètres) par $\bf w$ (capacité, ici appelée portefeuille). Il itère ensuite sur toutes les cellules de cette matrice (soit $\bf n^* \bf w$ cellules).

La complexité temporelle est donc O(n*w) selon la notation BigO

• Analyse de la mémoire :

L'algorithme crée une matrice en deux dimensions de taille n^*w . Sa complexité spatiale est donc $O(n^*w)$.

Comparaison brute-force/optimisé

Sur le dataset 0, les deux algorithmes fournissent les valeurs suivantes :

Brute force:

Prix total : **498,0**€

Bénéfices après deux ans : 99,08€

Temps d'exécution ~ 1,9sec

Algorithme optimisé:

Prix total : **498,0**€

Bénéfices après deux ans : 99,08€

Temps d'exécution ≈ 0.7 sec

• On observe que les deux algorithmes trouvent les mêmes résultats mais le second est presque 3 fois plus rapide sur ce dataset.

Comparaison avec Sienna Dataset 1

Mes résultats

Actions achetées: (Share-KMTG), (Share-GHIZ), (Share-NHWA), (Share-UEZB), (Share-LPDM), (Share-MTLR), (Share-USSR), (Share-GTQK), (Share-FKJW), (Share-MLGM), (Share-QLMK), (Share-WPLI), (Share-LGWG), (Share-ZSDE), (Share-SKKC), (Share-QQTU), (Share-GIAJ), (Share-XJMO), (Share-LRBZ), (Share-KZBL), (Share-EMOV), (Share-IFCP)

<u>Prix total</u>: 499,95€

Bénéfices après deux ans : 198,54€

Résultats de Sienna

Actions achetées : Share-GRUT

<u>Prix total</u>: 498.76€

<u>Bénéfices après deux ans</u>: 196.61€

Cette comparaison n'est pas valable car les données fournies par Sienna ne sont pas cohérentes Et donc pas utilisables.

Comparaison avec Sienna Dataset 2

Mes résultats

Actions achetées: Share-ECAQ, Share-IXCI, Share-FWBE, Share-ZOFA, Share-PLLK, Share-YNGA, Share-ANFX, Share-PATS, Share-PUCI, Share-VCXT, Share-NDKR, Share-ALIY, Share-JWGF, Share-MPJI, Share-CDAN, Share-JGTW, Share-QCTW, Share-AMXX, Share-FAPS, Share-LFXB, Share-DWSK, Share-JVCL, Share-XQII, Share-PVHB, Share-ROOM

<u>Prix total</u>: 499.99€

Bénéfices après deux ans : 198.25€

Résultats de Sienna

Actions achetées: Share-ECAQ, Share-IXCI, Share-FWBE, Share-ZOFA, Share-PLLK, Share-YFVZ, Share-ANFX, Share-PATS, Share-NDKR, Share-ALIY, Share-JWGF, Share-JGTW, Share-FAPS, Share-VCAX, Share-LFXB, Share-DWSK, Share-XQII, Share-ROOM

<u>Prix total</u>: 489.24€

Bénéfices après deux ans : 193.78€

En jaune des deux côtés sont les actions que l'autre n'a pas achetées. En retraitant les données du Dataset 2 pour convertir les prix négatifs en positifs, mon algorithme a exploité plus d'actions que celui de Senna.