Московский Физико-Технический Институт

(ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ)

КАФЕДРА ОБЩЕЙ ФИЗИКИ Лабораторная работа, 4 семестр

Дифракция света на ультразвуковой волне в жидкости

Студент Георгий КОРЕПАНОВ 512 группа

Преподаватель Сергей Львович Клёнов

Цель работы

- 1. Изучение дифракции света на фазовой решётке, сформированной акустической волной:
 - (а) Наблюдение дифракции Фраунгофера
 - (b) Наблюдение методом тёмного поля

Основная теория

Параметры акустического транспаранта

Распределение показателя преломления:

$$n = n_0(1 + m\cos\Omega x).$$

Фазовое распределение на задней поверхности:

$$\varphi = knL = \varphi_0(1 + m\cos\Omega x).$$

Условие тонкого транспаранта:

$$m \ll \frac{\Lambda}{L} \sqrt{\frac{\lambda}{L}},$$

где

Λ − длина УЗ волны,

 λ – длина световой волны,

 Ω – волновое число УЗ волны,

L – толщина слоя жидкости в кювете.

Фурье-спектр фазово модулированной волны

Световое поле состоит из плоских волн, распространяющихся под углами

$$\Lambda \sin \theta_m = m\lambda, \quad m \in \mathbb{Z}.$$

Определение скорости рапространения ультразвуковых волн

Определяя углы θ_m по расстоянию между дифракционными полосами l_m

$$l_m = mf \frac{\lambda}{\Lambda},$$

определим длину УЗ волны Λ . При измерениях методом тёмного поля Λ измеряется непосредственно как удвоенное расстояние между тёмными полосами. Скорость УЗ волны v может быть вычислена, таким образом, при известной частоте генератора:

$$v = \Lambda \nu$$
.

Схемы установки

Дифракция на фазовой решётке

Рис. 1: Схема первой установки

Метод тёмного поля

Рис. 2: Схема второй установки