

Curso: Astronomía general

Semestre: 2022-2

Profesor: Christian Sarmiento Cano @socavon_

Escuela de Física, Universidad Industrial de Santander

Clasificación estelar

TABLE 10.2 Spectral Classes			
Spectral Class	Temperature (K)	Prominent Absorption Lines	Familiar Examples
0	30,000	Ionized helium strong; multiply ionized heavy elements; hydrogen faint	Mintaka (O9)
В	20,000	Neutral helium moderate; singly ionized heavy elements; hydrogen moderate	Rigel (B8)
Α	10,000	Neutral helium very faint; singly ionized heavy elements; hydrogen strong	Vega (A0), Sirius (A1)
F	7000	Singly ionized heavy elements; neutral metals; hydrogen moderate	Canopus (F0)
G	6000	Singly ionized heavy elements; neutral metals; hydrogen relatively faint	Sun (G2), Alpha Centauri (G2)
K	4000	Singly ionized heavy elements; neutral metals strong; hydrogen faint	Arcturus (K2), Aldebaran (K5)
M	3000	Neutral atoms strong; molecules moderate; hydrogen very faint	Betelgeuse (M2)
			Barnard's Star (M5)

Tamaño de las estrellas

Distribución de las estrellas

- Para determinar la temperatura y la composición química de las estrellas es necesario obtener su espectro.
- Las estrellas se clasifican en los siguientes tipos: O, B, A, F, G, K y M.
- Además se clasifican como estrellas gigantes, supergigantes y enanas.
 Con sus variedades rojas, azules y blancas.
- El diagrama HR relaciona la luminosidad en términos de la temperatura para establecer la evolución de las estrellas. Además muestra como el final usual de las estrellas son las gigantes rojas y azules.