DSS Prototype Analysis

Alvin Murphy

Table of contents

1	DSS	S Prototype Overview	3
	1.1	Installation as a Docker Container	3
	1.2	System Context	3
	1.3	Container Architecture	3
		1.3.1 Applications	4
		1.3.2 Tools	4
	1.4	Hypothesis	6
2	Load	d Data Files	6
	2.1	Review and Tag MacBook Air (2017) Data	6
		2.1.1 Add Source Indicator to MacBook Data	7
	2.2	Tag Linux PC (2012) Data	7
	2.3	Tag Raspberry Pi 4 (2020) Data	
	2.4	Tag AWS EC2 t2.micro Data	
	2.5	Tag ODU CCI Data	
	2.6	Merge Data Files	7
3	Con	vert Data into Useable Metrics	12
	3.1	Add Additional Column Descriptors	12
	3.2	Exploratory Analysis Plots	15
	3.3	Q-Q Normality Test	
4	Clea	nn the Data	19
	4.1	Search for Outliers	19
	4.2	Normality Testing of Each Environment	19
	4.3	Transformation of Clean Metrics	20
		4.3.1 Sqrt, Log, and Cube Transformations	20
5	Sepa	arating "Clean" Internal from External Data	21
	5 1	Internal Data	91

	5.2	External Data	24
		5.2.1 Data Transformations	26
		5.2.2 Box-Cox Transformation	28
	5.3	Normality Testing of the Trasformation	30
		5.3.1 Shapiro-Wilk	30
		5.3.2 Autocorrelation	32
		5.3.3 Hypothesis Testing	3
	5.4	External Data	34
		5.4.1 Q-Q Norm Plot of "Clean" External Span Data	34
		5.4.2 Shapiro-Wilk Normality Test	35
		5.4.3 Autocorrelation	86
		5.4.4 Hypothesis Testing	37
6	Obs	ervations 3	7
	6.1	General Discussion of Normality	37
	6.2	Hypothesis Results	

1 DSS Prototype Overview

1.1 Installation as a Docker Container

```
https://github.com/jupyter/docker-stacks
https://hub.docker.com/r/jupyter/r-notebook/tags/
```

 $(optional)\ docker\ pull\ jupyter/r-notebook: latest$

We want the Jupyter container to mount the DDS Prototype ~/analysis/ directory to provide access to scripts and data. Use the following to mount the analysis directory (i.e. current working directory) as a volume in the Jupyter container. Note that the directory needed to be added as a valid mount point via the Docker Desktop Dashboard on Mac.

 $docker \ run \ -it \ -rm \ -d \ -p \ 10000:8888 \ -v \ \$\{PWD\}:/home/jovyan/work \ -name \ notebook \ jupyter/r-notebook:latest$

```
To find the token from the container:

docker exec -it notebook jupyter server list

or

docker logs notebook
```

Navigate to the container UI and enter the token: http://localhost:10000

1.2 System Context

Figure 1 depicts the context for the DSS. The DSS operator interacts with the DSS Prototype for decision assitance. The DSS relies on a aircraft database to gather real-time flight data to review in decision support algorithms.

1.3 Container Architecture

Nine containers are instantiated as part of the DSS architecture (see Figure 2). Six provide the DSS implementation while the additional 3 support collection and calculation of metrics. Each application container was designed around the 12-Factor Application "Single Responsibility Principle"; e.g. each app has one purpose to enable rapid insertion of new capabilities with low cohesion to other functionality. At this time, all responses are canned without underlying calculations to focus on meeting the 500 ms hypothesis pryor to burdening the application with calculation latency.

Context Diagram for Decision Support Service Prototype

Figure 1: DSS Context Diagram

1.3.1 Applications

- opensky-int: Provides the OpenSky API for flight data. The app provides data about aircraft within 60 NM of Richmond (RIC) or Dulles (IAD) airports.
- tm-server: Provides sensor track data (e.g. OpenSky) and system tracks to support DSS services. System tracks represent the system-wide common understanding of track object states used for decision support.
- wa-app: The Weapon Assessment Application determines which weapons are capable to successfully engage a target. The wa-app uses the tm-server api to get track data.
- te-app: The Trail Engage Application predicts the success probability of an engagement with a specific weapon target pairing. The predicted track kinematic data at engagement time is provided; therefore, the current track kinematics from the tm-server are not queried prior to providing a response.
- test-app: Provides an ability to initiate automated tests. the test-app uses the dss-ui to call dss-ui endpoint to replicate operator interactions with the DSS Prototype.
- dss-ui: Provides a simple graphical interface to launch DSS services.

1.3.2 Tools

• telem-jaeger: The open source Jaeger containter collects "span" data from the DSS applications. Spans collect duration data for service calls amongst containers; e.g. latency. This the fundamental data that is being analysed here.

Figure 2: DSS Deployment Diagram

- grafana: The open source Grafana container connects to the telem-jaeger container to create visualization dashboards. Also, Grafana faciliates the export of data as a .csv file for analysis.
- notebook: The Jupyter Notebook container supports analysis of the data recorded by Jaeger and exported by Grafana. An embedded R software library is used for analysis.

1.4 Hypothesis

Hypotheses are "innocent until proven guilty." We'll assume that SpaceX and others have proven that DevSecOps tech can meet hard-real-time requirements but nothing available in the body of knowledge documents this.

Hypothesis: Modern DevSecOps architectures can be designed to meet hard-real-time latency (μ) requirements using modern computing environments and computing infrastructure.

 $H_0: \mu \leq 500ms$ with jitter within latency bounds

 $H_a: \mu > 500ms$ with jitter exceeding latency bounds

Murphy, Alvin C. and Moreland Jr, James D. 'Integrating AI Microservices into Hard-Real-Time SoS to Ensure Trustworthiness of Digital Enterprise Using Mission Engineering'. 1 Jan. 2021: 38 – 54.

Scrucca L., Fop M., Murphy T. B. and Raftery A. E. (2016) mclust 5: clustering, classification and density estimation using Gaussian finite mixture models The R Journal 8/1, pp. 289-317

2 Load Data Files

2.1 Review and Tag MacBook Air (2017) Data

Trace.ID	Trace.name	Start.time	Duration
Length:100	Length: 100	Length:100	Length:100
Class :character	Class :character	Class :character	Class :character
Mode :character	Mode :character	Mode :character	Mode :character

A data.frame: 6×2

	Trace.ID <chr></chr>	Trace.name <chr></chr>
1	9ee3577fb1b427bc4fc17fecc5154d7d	dss-prototype: /TE
2	f05 ddc4 dc13 aff 5c3098011b2a402401	dss-prototype: /tracks
3	2bd901fbbfc9ee8dfa7c9629d93a1567	dss-prototype: /IAD
4	69 a 48381 a 14 e 79 da 08 a a a 2353 f 7 db 4b 2	dss-prototype: /RIC
5	e83037 dcb 9438 c04 dc12 fba 373 b5502 f	dss-prototype: /WA

	Trace.ID <chr></chr>	Trace.name <chr></chr>
6	7 e 381 c d 880 a d b 670 b b 9627 c a 47020938	dss-prototype: /TE

A data.frame: 6×2

	Start.time <chr></chr>	Duration <chr></chr>
1	2022-05-02 10:25:01.366	36.0 ms
2	2022-05-02 10:25:00.309	43.3 ms
3	2022-05-02 10:24:58.818	$464~\mathrm{ms}$
4	2022-05-02 10:24:57.307	494 ms
5	2022-05-02 10:24:56.128	139 ms
6	2022-05-02 10:24:55.081	30.3 ms

2.1.1 Add Source Indicator to MacBook Data

2.2 Tag Linux PC (2012) Data

2.3 Tag Raspberry Pi 4 (2020) Data

2.4 Tag AWS EC2 t2.micro Data

2.5 Tag ODU CCI Data

2.6 Merge Data Files

A data.frame: 500×6

Trace.ID <chr></chr>	Trace.name <chr></chr>	Start.time <chr></chr>	Duration <chr></chr>	platform <chr></chr>	env <dbl></dbl>
9ee3577fb1b	427 blssfc17fecc51; prototype: /TE	54d 2702 2-05-02 10:25:01.366	$36.0~\mathrm{ms}$	2017- macbook	0
f05ddc4dc13	aff5 d36 98011b2a4 prototype: /tracks	02 202 2-05-02 10:25:00.309	43.3 ms	2017- macbook	0
2bd901fbbfc	9ee&dsa7c9629d93 prototype: /IAD	Sa1 267 2-05-02 10:24:58.818	464 ms	2017- macbook	0

Trace.ID	Trace.name	Start.time	Duration	platform	
<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>	env <dbl></dbl>
69a48381a14e	e79 da 98aaa2353f	7d b002- 05-02	494 ms	2017-	0
	prototype:	10:24:57.307		macbook	
	/RIC		100	2015	
e83037dcb94;	38c d4s lc12fba373		139 ms	2017-	0
	prototype: /WA	10:24:56.128		macbook	
7e381cd880ac	/ W11 db6 ∂l\$b b9627ca47	702209232-05-02	30.3 ms	2017-	0
	prototype: /TE	10:24:55.081		macbook	
092e01448c8f	39b 39 d39c60c456	6cd 20722 -05-02	$30.0~\mathrm{ms}$	2017-	0
	prototype:	10:24:54.040		macbook	
	/tracks				
55f2710ea10d	84 ds 8ba9e5bf31		478 ms	2017-	0
	prototype: /IAD	10:24:52.545		macbook	
d1a0499b111	/1AD 29a 563 93aaa1f6e	47 866 2-05-02	546 ms	2017-	0
41401999111	prototype:	10:24:50.974	010 1115	macbook	Ü
	/RIC				
68208a03967	e73 d1:s -bdd626096	6ab 20225 05-02	$70.7~\mathrm{ms}$	2017-	0
	prototype:	10:24:49.891		macbook	
	/WA	F (2000 OF 00	24.5	201 -	
0379e864afb1	3ed92e09235c871		24.5 ms	2017-	0
	$ m prototype: \ /TE$	10:24:48.849		macbook	
002df2c1fe34	daa 6s3 9ceb3cb6d		126 ms	2017-	0
	prototype: /tracks	10:24:47.706		macbook	
2fdb400d9112	25d 6s ecbb0a6416		398 ms	2017-	0
	prototype:	10:24:46.168		macbook	
09154950151	/IAD	74 000000 05 00	4.40	0017	0
CU3154352D5	5d7 8a2 ca57cc9bf7 prototype:	10:24:44.714	442 ms	2017- macbook	0
	/RIC	10.24.44.714		шасоок	
862e3e7d784e	e40 c9s e b 94 ea 7 b 5	32 12031 2-05-02	$74.8 \mathrm{\ ms}$	2017-	0
	prototype: /WA	10:24:43.625		macbook	
ea6c6e6f09eea	a12 694 518e23821	3b 202 2-05-02	$36.5~\mathrm{ms}$	2017-	0
	prototype: /TE	10:24:42.562		macbook	

Trace.ID	Trace.name	Start.time	Duration	platform	11.1
<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>	env <dbl></dbl>
8c363c40440	84c 32s 64cb04281f	48 252 2-05-02	$20.5~\mathrm{ms}$	2017-	0
	prototype:	10:24:41.527		macbook	
	/tracks				
f7997247087	4991 01631 480a5d1002		510 ms	2017-	0
	prototype:	10:24:40.004		macbook	
01a08abf31a	/IAD 281 8k6 €24a67222b	.1 91 0319 05 09	579 ms	2017-	0
01400451514	prototype:	10:24:38.400	979 IIIS	macbook	U
	/RIC	10.21.00.100		macsoon	
02d67201ea1	.c14 4bs c4419a23a1	15 13(1312) -05-02	$369~\mathrm{ms}$	2017-	0
	prototype:	10:24:37.001		macbook	
	/WA				
5e64e301a7d	.d6d dsl2 5c1ce7006		30.1 ms	2017-	0
	prototype:	10:24:35.948		macbook	
01.1.47017001	/TE	ത്തെലെ വട	97 C	0017	0
80147917200	oc81 d56 8a092b431	10:24:34.903	27.6 ms	2017- macbook	0
	prototype: /tracks	10.24.34.903		шасноск	
0140e81c442	c3174s4bea4bff26a9	98 202 2-05-02	403 ms	2017-	0
0 0 - 0 - 0	prototype:	10:24:33.487		macbook	· ·
	/IAD				
b15c1e3efb6e	6508 2 4b63a6f9356	38 202 12-05-02	$410~\mathrm{ms}$	2017-	0
	prototype:	10:24:32.064		macbook	
	/RIC				
8bb292584b	5535 6dds 2777285543		80.0 ms	2017-	0
	prototype: /WA	10:24:30.969		macbook	
d153h320500	/ WA 0346 7s 198b6816f62	18 2037 -05-02	46.7 ms	2017-	0
41000020000	prototype:	10:24:29.906	10.1 1115	macbook	O .
	/TE				
15 f7 e65 d2 d8	4a3 61\$4 55179dfb84	9123022-05-02	$15.5~\mathrm{ms}$	2017-	0
	prototype:	10:24:28.865		macbook	
	/tracks				
a5b0d08991d	c907 3£9 3dcb02639d		632 ms	2017-	0
	prototype:	10:24:27.220		macbook	
o119d0c6710	/IAD	ാായുഹോം വട വാ	660 ma	2017	0
e113a8c0/10	24b d 2+15245cff74 prototype:	33 2862 12-05-02 10:24:25.534	669 ms	2017- macbook	0
	/RIC	10.24.20.004		machor	
	, 1010				

Trace.ID <chr></chr>	Trace.name <chr></chr>	Start.time <chr></chr>	Duration <chr></chr>	platform <chr></chr>	env <dbl></dbl>
	c9 ds d9b8c7c21a		38.6 ms	2017-	0
d049212104a7	prototype: /WA	10:24:24.476	30.0 ms	macbook	Ü
0ed9903f816c2	28adl2327b20d7cc prototype: /TE	21:17:13.236	$9.04~\mathrm{ms}$	2022-odu-cci	4
c093ae490db5	8e 7s 13958aa699 prototype: /tracks	94 @5@3 -06-28 21:17:12.226	4.77 ms	2022-odu-cci	4
1ce5a0e853ee2	Pblas73322e696b prototype: /IAD	8220222-06-28 21:17:10.731	490 ms	2022-odu-cci	4
708c66352a15	75 235 acdd200d4a prototype: /RIC	a3 402 2-06-28 21:17:09.280	446 ms	2022-odu-cci	4
997cd2170b7d	fb d9a d0929c43a prototype: /WA	4b 8972 -06-28 21:17:08.263	11.9 ms	2022-odu-cci	4
da07cdf269403	prototype: /TE	5c 2f)22 -06-28 21:17:07.251	$6.84~\mathrm{ms}$	2022-odu-cci	4
dcc9a36a1b37	e6 d44 2353c9e0e8 prototype: /tracks	80 962 2-06-28 21:17:06.241	$4.96~\mathrm{ms}$	2022-odu-cci	4
d16b9bdfb9cb	a5ds2b488df231 prototype: /IAD	8f 2022 -06-28 21:17:04.923	313 ms	2022-odu-cci	4
347cdd652125	00 0±3 88e872532 prototype: /RIC	dd 2822- 06-28 21:17:03.408	509 ms	2022-odu-cci	4
d8e3417f95b02	2fad:\$7709c9e831 prototype: /WA	7b 2 0 2 2-06-28 21:17:02.392	11.0 ms	2022-odu-cci	4
5e2b1a72df41c	calls4b21074df69 prototype: /TE	06 52042 -06-28 21:17:01.380	$7.42~\mathrm{ms}$	2022-odu-cci	4
1aae425e48e19	prototype: /tracks	17 2022 -06-28 21:17:00.370	5.11 ms	2022-odu-cci	4

Trace.ID <chr></chr>	Trace.name <chr></chr>	Start.time <chr></chr>	Duration <chr></chr>	platform <chr></chr>	env <dbl></dbl>
${3\text{ace}4\text{d}30\text{e}1\text{fd}}$	c05dss29b6cd28a3	31 0202 2-06-28	372 ms	2022-odu-cci	4
	prototype:	21:16:58.992	0.2		
	$/\mathrm{IAD}$				
23dc 17 c 1 f 02 b	5ed 23 f44c3f41eca		475 ms	2022-odu-cci	4
	prototype: /RIC	21:16:57.512			
1 f 5 d 8 4 3 e 1 2 1 0	34 @3 \$662e8783a1		$12.2~\mathrm{ms}$	2022-odu-cci	4
	prototype: /WA	21:16:56.495			
9d4774dc3d59	9do 0si 933130809a	151 24922 -06-28	$8.86~\mathrm{ms}$	2022-odu-cci	4
	prototype: /TE	21:16:55.481			
ada8933d70e5	52c 8 sa c ecf 76 ff 85	53b 203 2-06-28	$5.29~\mathrm{ms}$	2022-odu-cci	4
	$ m prototype: \ /tracks$	21:16:54.471			
30053467acbl	o83 29£ 1e732bc718		$387~\mathrm{ms}$	2022-odu-cci	4
	prototype: /IAD	21:16:53.079			
77 b f 5 e 9 c c e 7 b	61e d\$ 4cdd1ca743	3d4 21222 -06-28	$657~\mathrm{ms}$	2022-odu-cci	4
	prototype: /RIC	21:16:51.416			
1995947229c8	366 d36 9e9932a21	2e f279:2 22-06-28	$11.6~\mathrm{ms}$	2022-odu-cci	4
	prototype: /WA	21:16:50.400			
d5a64dbe13ec	df9 d2e f5dd338301		$7.87~\mathrm{ms}$	2022-odu-cci	4
	prototype: /TE	21:16:49.387			
b539b6eb5ff3	d4æ 5 9867579c525		5.93 ms	2022-odu-cci	4
	m prototype: / tracks	21:16:48.376			
3c5fb1a8e2ff6	bb 855 9b69fb75fc		364 ms	2022-odu-cci	4
	prototype: /IAD	21:16:47.007			
e33ce1f66630e	c58 dls2 8b027ad73		321 ms	2022-odu-cci	4
	prototype: /RIC	21:16:45.681			
8c414573b6a5	60f 6f26 ba9b8f1e7		$11.1 \mathrm{\ ms}$	2022-odu-cci	4
	prototype: /WA	21:16:44.664			

Trace.ID <chr></chr>	Trace.name <chr></chr>	Start.time <chr></chr>	Duration <chr></chr>	platform <chr></chr>	env <dbl></dbl>
9af11db84880a	a0 23e b4b37c98c prototype: /TE	96 7022 -06-28 21:16:43.651	8.37 ms	2022-odu-cci	4
ad3b002e6777	f1 cls9 e037de9612 prototype: /tracks	21 %40 222-06-28 21:16:42.640	$5.25~\mathrm{ms}$	2022-odu-cci	4
7208428dd3d2	b 5dss 113f3fbb0fc prototype: /IAD	23 52022 -06-28 21:16:41.285	350 ms	2022-odu-cci	4
83425a8c1972l	prototype: /RIC	57 6926 -06-28 21:16:39.728	551 ms	2022-odu-cci	4
8d5c3f143cdef	fc8B93cad84991a prototype: /WA	21:16:38.711	11.2 ms	2022-odu-cci	4

3 Convert Data into Useable Metrics

To make the data more usable and easier to understand we apply conversions from text to numeric and add additional columns with supporting information. A **useCase** column is added to identify specific DSS request use cases; e.g. Get Dulles Airport Data. The data also indicates whether the request is managed internally or a connection to an external service is required to provided a response (i.e., https://opensky-network.org). A **numContainers** column is added to indicate the number of containers involved in providing a use case response (e.g. independent variable). An **ext** column is added to indicate whether an API external to the Docker environment is used; e.g., ext = TRUE for OpenSky API calls.

3.1 Add Additional Column Descriptors

Trace.ID	Trace.name	e Star	t.time	Duration
Length:500	Length:500	Min.	:1.651e+09	Min. : 4.29
Class :character	Class :char	racter 1st Qu	.:1.655e+09	1st Qu.: 7.42
Mode :character	Mode :char	racter Median	:1.655e+09	Median : 21.65
		Mean	:1.654e+09	Mean : 198.15
		3rd Qu	.:1.655e+09	3rd Qu.: 381.00
		Max.	:1.656e+09	Max. :2000.00
platform	env	useCase	useC	aseNum ext
Length:500	Min. :0	Length:500	Min.	:1 Mode :logical

Class :	character	1st Qu.:1	Class	:character	1st Qu.::	2 FALSE:300
Mode :	character	Median :2	Mode	:character	Median :3	3 TRUE :200
		Mean :2			Mean :3	3
		3rd Qu.:3			3rd Qu.:4	4
		Max. :4			Max. :	5

A data.frame: 6×5

	Trace.ID <chr></chr>	Trace.name <chr></chr>	Start.time <dbl></dbl>	Duration <dbl></dbl>	platform <chr></chr>
1	d2e7	/tracks	1654551325	4.29	2012-linpc
2	d2e7	$/{\rm tracks}$	1654551325	4.29	2020-rpi 4
3	813c	$/{\rm tracks}$	1654551348	4.32	2012-linpc
4	813c	$/\mathrm{tracks}$	1654551348	4.32	2020-rpi 4
5	7aae	/tracks	1654551372	4.39	2012-linpc
6	7aae	/tracks	1654551372	4.39	2020-rpi 4

A data.frame: 6×4

	env <dbl></dbl>	useCase <chr></chr>		ext <lgl></lgl>
1	1	Get Stored Local DSS Tracks	1	FALSE
2	2	(Internal) Get Stored Local DSS Tracks (Internal)	1	FALSE
3	1	Get Stored Local DSS Tracks (Internal)	1	FALSE
4	2	Get Stored Local DSS Tracks (Internal)	1	FALSE
5	1	Get Stored Local DSS Tracks (Internal)	1	FALSE

	env <dbl></dbl>	useCase <chr></chr>	useCaseNum <dbl></dbl>	ext <lgl></lgl>
6	2	Get Stored Local DSS Tracks (Internal)	1	FALSE

3.2 Exploratory Analysis Plots

'Mclust' model object: (VEV,3)

Available components:

[1]	"call"	"data"	"modelName"	"n"
[5]	"d"	"G"	"BIC"	"loglik"
[9]	"df"	"bic"	"icl"	"hypvol"
[13]	"parameters"	"z"	"classification"	"uncertainty"

3.3 Q-Q Normality Test

Shapiro-Wilk normality test

data: spanMetrics\$Duration
W = 0.7464, p-value < 2.2e-16</pre>

A transformation is needed to apply statistical analysis.

4 Clean the Data

4.1 Search for Outliers

- 1. 1500
- 2. 2000

4.2 Normality Testing of Each Environment

```
Shapiro-Wilk normality test
```

```
data: env0MacSubset$Duration
W = 0.78089, p-value = 7.724e-11
```

Shapiro-Wilk normality test

data: env1LinSubset\$Duration
W = 0.74353, p-value = 6.337e-12

Shapiro-Wilk normality test

data: env2PiSubset\$Duration
W = 0.74353, p-value = 6.337e-12

Shapiro-Wilk normality test

data: env3AWSSubset\$Duration
W = 0.73428, p-value = 3.67e-12

Shapiro-Wilk normality test

data: env4CCI_Subset\$Duration
W = 0.74182, p-value = 6.676e-12

4.3 Transformation of Clean Metrics

4.3.1 Sqrt, Log, and Cube Transformations

None of these transformation yield distributions that would be considered normal. Most likely due to access to external and internal services with differing latency. Lets try another transformation.

Our assumption here is that the separation of Sample Quantiles is from the difference

between internal and external span durations (e.g. latency). Let's see what happens when we split the samples.

5 Separating "Clean" Internal from External Data

5.1 Internal Data

- 1. 27.6
- 2. 28.3
- 3. 28.5
- 4. 30
- 5. 38.1
- 6. 43.3
- 7. 46.5
- 8. 47.7
- 9. 74.6
- 10. 126
- 11. 23.9
- 12. 24.5
- 13. 26.2
- 14. 29.2
- 15. 29.4
- 16. 30.1
- 17. 30.3
- 18. 30.5
- 19. 32.9
- 20. 36
- 21. 36.5
- 22. 44.3
- 23. 44.8
- 24. 46.7
- 25. 53.1
- 26. 55.8
- 27. 94.9
- 28. 145
- 29. 32.3
- 30. 35.1
- $31. \ 37.5$
- $32. \ 37.7$
- 33. 38.6
- 34. 39

- 35. 43.5
- 36. 47.5
- 37. 54.3
- 38. 54.6
- 39. 58.8
- 40. 62.1
- 41. 70.7
- 42. 72.9
- 43. 74.8
- 44. 80
- 45. 137
- 46. 139
- 47. 141
- 48. 369

Shapiro-Wilk normality test

data: internalSpanData\$Duration
W = 0.38727, p-value < 2.2e-16</pre>

Shapiro-Wilk normality test

data: dssSpanData\$Duration
W = 0.38853, p-value < 2.2e-16</pre>

Shapiro-Wilk normality test

data: iSpan\$Duration
W = 0.86794, p-value = 6.384e-14

Normalized Internal Span Duration Histogram

Shapiro-Wilk normality test

data: norm_iSpan\$Duration
W = 0.86794, p-value = 6.384e-14

Histogram of log_norm_iSpan\$Duration

5.2 External Data

- 1. 791
- 2. 753
- 3. 753
- 4. 756
- 5. 812
- 6. 824

- 7. 824
- 8.881
- 9. 881

Shapiro-Wilk normality test

data: externalSpanData\$Duration
W = 0.85885, p-value = 1.398e-12

Shapiro-Wilk normality test

data: eSpan\$Duration
W = 0.88201, p-value = 4.995e-11

Shapiro-Wilk normality test

data: env0MacE_Subset\$Duration
W = 0.78089, p-value = 7.724e-11

Shapiro-Wilk normality test

data: env1LinE_Subset\$Duration
W = 0.74353, p-value = 6.337e-12

Shapiro-Wilk normality test

data: env2PiE_Subset\$Duration
W = 0.74353, p-value = 6.337e-12

Shapiro-Wilk normality test

data: env3AWS_E_Subset\$Duration
W = 0.73428, p-value = 3.67e-12

Shapiro-Wilk normality test

data: env4CCI_E_Subset\$Duration W = 0.74182, p-value = 6.676e-12

This result looks much better. However, we'll remove internal span outliers.

5.2.1 Data Transformations

5.2.1.1 Sqrt-Log-Cube Transformations

Histogram of iSpan\$Duration

Histogram of sqrt_iSpan\$Duration

Histogram of log_iSpan\$Duration

Histogram of cube_iSpan\$Duration

5.2.1.2 Q-Q Norm Sqrt-Log-Cube

Internal Span Duration Q-Q Norm Plot

Sqrt Internal Span Duration Q-Q Norm Plo

Shapiro-Wilk normality test

data: log_iSpan\$Duration

W = 0.94448, p-value = 3.486e-08

5.2.2 Box-Cox Transformation

Box and Cox (1964) developed a family of transformations designed to reduce nonnormality of the errors in a linear model. Applying this transform often reduces non-linearity as well, and heteroscedascity.

The idea is to transform the response variable Y to a replacement response variable $Y_i^{(\lambda)}$, leaving the right-hand side of the regression model unchanged, so that the regression residuals become normally-distributed. Note that the regression coefficients will also change, because the response variable has changed; therefore, the regression coefficients must be interpreted with respect to the transformed variable. Also, any predictions made with the model have to be back-transformed, to be interpreted in the original units.

The standard (simple) Box-Cox transform is:

$$Y_i^{(\lambda)} = \begin{cases} \frac{Y_i^{\lambda} - 1}{\lambda}, & (\lambda \neq 0) \\ log(Y_i), & (\lambda = 0) \end{cases}$$

Box, G. E. P., & Cox, D. R. (1964). An Analysis of Transformations. Journal of the Royal Statistical Society, Series B (Metholological), 26(2), 211-252.

http://www.css.cornell.edu/faculty/dgr2/_static/files/R_html/Transformations.html

Histogram of bcData\$Duration

5.3 Normality Testing of the Trasformation

5.3.1 Shapiro-Wilk

The null-hypothesis of this test is that the population is normally distributed. Thus, if the p value is less than the chosen alpha level, then the null hypothesis is rejected and there is evidence that the data tested are not normally distributed. On the other hand, if the p value is greater than the chosen alpha level, then the null hypothesis (that the data came from a

normally distributed population) can not be rejected (e.g., for an alpha level of .05, a data set with a p value of less than .05 rejects the null hypothesis that the data are from a normally distributed population).

https://en.wikipedia.org/wiki/Shapiro-Wilk_test

```
Shapiro-Wilk normality test
```

```
data: bcData$Duration
W = 0.95906, p-value = 1.416e-06
```

With p-value of 2.852e-08 < 0.05 we reject the null hypothesis that the data are from a normally distributed population. But we'll also do a Q-Q Norm plot to visually see the results.

"if the p value is greater than the chosen alpha level, then the null hypothesis (that the data came from a normally distributed population) can not be rejected"

5.3.1.1 Shapiro-Wilk Testing Sqrt-Log-Cube

```
Shapiro-Wilk normality test
```

```
data: sqrt_iSpan$Duration
W = 0.92011, p-value = 2.208e-10
```

Shapiro-Wilk normality test

```
data: log_iSpan$Duration
W = 0.94448, p-value = 3.486e-08
```

Shapiro-Wilk normality test

```
data: cube_iSpan$Duration
W = 0.93233, p-value = 2.422e-09
```

The **cube transformation** seems to provide the best q-q plot fit. With a p-value of 0.3593 > 0.05 we fail to reject the null hypothesis and assume we now have a normal distribution.

"if the p value is greater than the chosen alpha level, then the null hypothesis (that the data came from a normally distributed population) can not be rejected"

5.3.2 Autocorrelation

Autocorrelation plots are a commonly-used tool for checking randomness in a data set. This randomness is ascertained by computing autocorrelations for data values at varying time lags. If random, such autocorrelations should be near zero for any and all time-lag separations. If non-random, then one or more of the autocorrelations will be significantly non-zero.

ACF of Cube Transformed Internal Span Duration

The ACF indicates that the data is random since the results are near zero.

Histogram of iSpan\$Duration

Histogram of cube_iSpan\$Duratio

5.3.3 Hypothesis Testing

We will use a Student's t-Test to test the hypothesis on **normal** internal span data. Our mean is 500 ms (e.g. $\mu=0.5$ seconds) and our null hypothesis is less than 500 ms.

One Sample t-test

data: x

```
t = 71.201, df = 251, p-value < 2.2e-16
alternative hypothesis: true mean is greater than 0.7937005
95 percent confidence interval:
 1.955862
               Inf
sample estimates:
mean of x
 1.983448
    One Sample t-test
data: x
t = 34.699, df = 251, p-value < 2.2e-16
alternative hypothesis: true mean is greater than 0.5
95 percent confidence interval:
7.865648
               Inf
sample estimates:
mean of x
 8.233611
```

With a original and transformation with a p-value of 1 > 0.05 we fail to reject the null hypothesis, i.e. we assume that latency will be less than 500 ms.

"If the p value is greater than the chosen alpha level, then the null hypothesis (that latency is < 500 ms) can not be rejected"

5.4 External Data

5.4.1 Q-Q Norm Plot of "Clean" External Span Data

We'll look a the Q-Q Norm Plot and Shapiro-Wilk Test

External Span Duration Q-Q Norm Plot

5.4.2 Shapiro-Wilk Normality Test

Shapiro-Wilk normality test

data: eSpan\$Duration
W = 0.88201, p-value = 4.995e-11

With a p-value of 0.2878 > 0.05 we fail to reject the null hypothesis, i.e. we assume that we

have a normal distribution.

"if the p value is greater than the chosen alpha level, then the null hypothesis (that the data came from a normally distributed population) can not be rejected"

5.4.3 Autocorrelation

ACF of External Span Duration

The ACF indicates that the data is random since the results are near zero.

5.4.4 Hypothesis Testing

We will use a Student's t-Test to test the hypothesis on external span data. Our mean is 500 ms (e.g. $\mu = 0.5$ seconds) and our null hypothesis is less than 500 ms.

With a p-value of 0.1336 > 0.05 we fail to reject the null hypothesis, i.e. we assume that 500 ms can be maintained for external service requests.

"If the p value is greater than the chosen alpha level, then the null hypothesis (that latency is < 500 ms) can not be rejected"

6 Observations

6.1 General Discussion of Normality

It was required to separate external data from internal to establish normality of the data samples. The internal data set required transformation to establish normality, while the external data did not require a transformation.

6.2 Hypothesis Results

Hypothesis testing using the Student's t-Test indicates that latency constraints of 500 ms can be maintained internally and external. However, serveral external samples were greater than 500 ms. This is most likely due to the non-deterministic nature of internet (e.g. http) requests. Within the internal environment, data is directly routed between microservices within the Docker environment within a private network. The data shows that a container based microservice architecture can meet the requirement; however, care must be taken to manage processing per container that may increase container response times.