

Mesterséges neurális hálók

 A mesterséges neurális hálózatok kutatásának, kifejlesztésének célja az emberi információfeldolgozás mechanizmusainak megértése és felhasználása az emberi mentális folyamatok gépi modellezésében.

Ezen tevékenység összetevői:

- A kognitív folyamatok alapvető figyelembevétele, beleértve ebbe az idegélettani kutatások és a pszichológia kapcsolatát is.
- Hatalmas számú erőteljes kapcsolatrendszerrel bíró párhuzamos számítási egységeket tartalmazó új formájú számítási modell, mely figyelembe veszi az idegrendszeri, pszichológiai ismeretek tanulmányozásából eredő követelményeket, valamint a számítási lehetőségek mélyen átgondolt adottságait.
- A megismerésre vonatkozó új koncepciók, melyek áthelyezik a hangsúlyt a szimbolikus feldolgozásról azon állapotokra, melyek tükrözik az ábrázolandó ismeretek és a megalkotott mûködési struktúrák lehetséges konfigurációi közötti egyezés minőségét.
- A tanulás a folyamatos alkalmazkodás és tanulás köré épített mechanizmusok – hangsúlyozása.

+0200+

Mesterséges neurális hálók ..

- A mesterséges neurális hálók (Artificial Neural Networks, ANN) a biológiai neurális hálók modellezésével létrehozott, eroteljes elosztott párhuzamos feldolgozást, kollektív számítást megvalósító rendszerek. Mivel a tudást olyan módon hordozzák és dolgozzák fel, hogy az az ember számára közvetlenül követhetetlen, a szimbolikus tudásszemléltetést alkalmazó modellektol való megkülönböztetést a szubszimbolikus elnevezéssel is hangsúlyozzák. A muködésben domináló kapcsolódásokat kiemelo "konnekcionista rendszerek" elnevezés, valamint a tanulóképességre utaló "adaptív hálók" elnevezés is használatos.
- A mai neurális hálók még messze állnak a teljes céltól, az emberi aggyal összemérhető szintű működéstől. A jelenlegi szinten a matematikai modellek besorolhatók az iteratív numerikus algoritmusok osztályába. Megfigyelhetők azonban jelentős eltérések is:
 - A párhuzamos feldolgozásra való alkalmasság
 - Zajos és hibás input kezelésének képessége
 - Nemlineáris numerikus számítási elemek alkalmazása
 - Elméleti analízisük hiányosságai ellenére sikeresek a gyakorlati alkalmazások.

A klasszikus MI módszerek és a mesterséges neurális hálók összevetése,

- A klasszikus rendszerek jellemzoi:
 - Korlátozott alkalmazhatósági terület
 - Nehézkes az ellentmondó és az idoben változó ismeretek kezelése
 - Hiányzó, vagy alacsony szintu tanulási képesség.
- A neurális hálók a Carl Hewitt által körvonalazott nyílt rendszerekhez tartoznak, melyek tulajdonságai:
 - Folytonos változás és fejlődés
 - Decentralizált döntéshozatal
 - Folytonos inkonzisztencia a tárolt ismeretek között
 - Kommunikációigény a rendszerkomponensek között
 - A zárt világ feltételezés lehetetlensége.

Megfeleltetések a biológiai rendszer, a neurális háló matematikai modellje és a gondolkodás tevékenységei között,

•	Biológiai rendszer	Matematikai modell	Gondolkodás
•	Idegsejtek	mest.neuron	hipotézis
•	Kisülés frekvenciája	aktiválás	bizonyosság szintje
•	Depolarizáció szétterjedése	aktiváltság szétterjedése	a bizonyosság tovább- terjesztése: következt.
•	Szinaptikus érintkezés	kapcsolat	gondolati-következtetési viszonylatok
•	Gerjesztés/ tiltás	pozitív/negatív súly	pozitív/negatív következ- tetési reláció
•	A depolarizáció közelítő összegeződé	inputok összegzése ése	a bizonyosság közelítő összegeződése
•	Kisülési küszöb	aktiválás továbbítási küszöbje	függetlenség az irrele- váns információtól
•	Korlátozott dinamika tartomány	szigmoid átviteli függvény	a feldolgozás erősségének korlátozott tartománya

A mesterséges neurális hálók által megoldható feladatok a feladatok matematikai modellje szerint,

- Statisztikai feladatok:
 - Mintázatfelismerés,
 - Regresszió- és sürüségfüggvény becslés
 - Kompresszióelemzés
 - Független komponensekre való szétválasztás
- Operációkutatás:
 - Kombinatorikus optimalizálás
- Analízis:
 - Függvény-approximáció
- Automatikus kontroll, tanulás közben is megbízható rendszer

A mesterséges neurális hálózatok kutatása, elemzése kapcsár alkalmazott matematikai elméletek,

- Számítástudomány: a kiszámíthatóság fogalmának bevezetése. Vizsgálható a zaj- és hibatûrés.
- Komplexitáselmélet: a tanulási feladatok nehézségi fokának meghatározására
- Numerikus analízis: erős összefonódás
- Matematikai statisztika: tanulhatóság elmélete és hibabecslő módszerek
- Statisztikus fizika: nagyméretű rendszerek viselkedése, tárolókapacitás
- Analízis és valószínûségszámítás:konvergenciakészség elemzése
- Ljapunov módszer: hálózati algoritmusok konstruálására
- Sztochasztikus approximáció elmélet: sztochasztikus modellekhez
- Monte-Carlo módszerek: tanításhoz
- Heurisztikák: a szükséges hálóméret megtalálására

A mesterséges neurális hálók fő mûködési jellemzői

A mesterséges neurális hálók muködési jellemzoi alapveto eltérést mutatnak a szimbolikus tudásszemléltetési modellek jellemzoitol.

A fo jellemvonások a következok:

- Tanulás
- Általánosítóképesség
- Zajos és hiányos adatok elfogadása
- Gyors muködés
- Szövevényes viszonylatok kezelése
- Önszervezés
- Hatalmas adatmennyiség elemzése
- Rugalmasság.

Példák mesterséges neurális hálók alkalmazására,

- A New York-i Gyógyászati Központban, muvégtagok mozgatásához szükséges számítások elvégzésére használtak ANN-t.
- A NASA neurális hálót alkalmazott robotoknál a véletlenszeruen elhelyezkedo tárgyak megfogásához szükséges mozgások vezérlésére.
- A General Dynamics egy vízalatti figyelorendszerben alkalmazott ANN-t. Ez képes volt a vízi jármuvek beazonosítására a vízben terjedo hangjuk alapján. Még a vízfelszínen hullámokat kavaró helikopter felismerése sem okozott gondot.
- A pennsylvaniai egyetemen kifejlesztett katonai repülogép-felismero rendszer képes volt megkülönböztetni 18 hüvelykes részleteket 50 mérföld távolságról, és repülogépeket beazonosítani a teljes minta 10%-ának birtokában.
- A Terry Sejnowski által kifejlesztett NetTalk rendszer írott szövegek hangos felolvasására volt képes. 300 neuront használt.

Példák mesterséges neurális hálók alkalmazására .. ,

- A Teuvo Kohonen által Finnországban kifejlesztett beszédfelismero rendszer folyamatos finn és japán nyelvu beszéd karaktersorozatokká alakítására volt képes.
- Az amerikai légiero egy ANN alapú repülésszimulátort készített pilóták kiképzéséhez.
- Az amerikai General Devices Space Systems Division ANN-t alkalmaz az Atlas rakéták szelepeinél a nyitás és zárás vezérlésére.
- A Ford autógyár ANN-t alkalmaz a motor szenzorjeleinek figyelésére és a fellépo problémák beazonosítására.
- New York repüloterén egy ANN-en alapuló bombadetektort használnak.
 Stb.

A/10.

ANN integrált áramkörök,

A mesterséges neurális hálók algoritmusai modellezhetok Neumann-elvu, szekvenciális feldolgozást megvalósító számítógépeken is, azonban igazi erosségük abban van, hogy könnyen megvalósíthatók párhuzamos feldolgozást végzo hardver formájában is. Ekkor a muködési ciklusidok elérik a 2 000 Milliárd kapcsolat/másodperc értéket is, amely lehetové teszi ezen Áramkörök alkalmazását real-time feladatok megoldására, pl. rakéták irányítására, vagy videojelek valósideju feldolgozására.

Carver Mead a Kaliforniai Technológiai Intézetben kidolgozott egy "szilícium szemet", mely az emberi szem képességének felét modellezi.

Az amerikai védelmi hivatal támogatta a kifejlesztését egy analóg neurális áramkörnek, melyet automata pilótaként, hajtómuvezérloként és vegyi reaktor vezérlojeként kívánt felhasználni.

A Motorola az Applied Intelligent Systems céggel együttmuködve eroteljes párhuzamos muködést megvalósító látó számítógépet fejlesztett az általa gyártott alkatrészek szerelésének automatizálására.

1. Jeanette Lawrence: Introduction to Neural Networks California Scientific Software, Grass Valley, 1991. p203.

ANN integrált áramkörök ...

A Syntonic Systems karakterfelismerésre fejlesztett ki mesterséges neurális hálón alapuló chip-et.

A legismertebb általános célú neurális chipet az Intel fejlesztette ki. Ez a 80170 ETANN jelu chip 1991-ben a leggyorsabb ANN chip volt. 2 milliárd kapcsolat/másodperces sebességével egy komplett hálót 1 microsecundumon belül lefuttatott. Analóg súlyokat és CMOS EEPROM technológiát használt. Mind analóg, mind digitális jelekkel képes volt kommunikálni. 3 réteget, rétegenként 64 neuront tartalmaz, összesen 10000 kapcsolatra képes. A chip off-line, azaz külso betanítást igényelt.

A Micro Devices cég chipje 8 neuront tartalmaz, mindegyik 15 inputot fogadhat. Párhuzamosan kapcsolhatók nagyobb rendszerekhez. 8 neuronnal 10 millió kapcsolat/másodperc sebességre képes.

A Hitachi chipjében 576 neuron muködik. Hopfield hálót modellez.

A Bell laboratórium mintafelismerésre dolgozott ki egy chipet. Analóg és digitális muködést ötvöz, 300 milliárd kapcsolat/másodperc sebességgel muködik.

1. Jeanette Lawrence: Introduction to Neural Networks California Scientific Software, Grass Valley, 1991. p203.

Események a mesterséges neurális hálók kifejlesztésében ,

Év	Kutatók	Fejlesztési eredmény	Jellemzo
1947	McCullock & Pitts	McCullock-Pitts neuron	elso neuron model
1949	Hebb	szinaptikus tanulás	biologiai alap
1958	Rosenblatt	Perceptron	logikai küszöb
1960	Widrow & Hoff	ADALINE	delta szabály
1969	Minsky & Papert	Perceptrons	bíráló könyv
1972	Anderson	lineáris asszociátor	változó output
1972	Kohonen	ineáris asszociátor	változó output
1973	Von der Malsburg	visual cortex model	fiziológiás elmélet bizonyítása
1976	Grossberg	adaptiv minták	pszichológia és matematika
1976	Marr és Poggio	látás	együttmuködés
1977	Amari	neuron medence	versengés
1980	Grossberg	adaptiv rezonancia	pszichológiai modell
1981	McClelland és t.	karakter felismerés	jellemzok érzékelése

Események a mesterséges neurális hálók kifejlesztésében

Év	Kutatók	Fejlesztési eredmény	Jellemzo
1982	Bienenstock és t.	vizuális cortex	neurofiziológia
1982	Kohonen	jellemzok térképe	önszervezés
1982	Hopfield	autoasszociáció	stabil állapotok
1982	Feldman és	t. Connectionist	párhuzamos elosztott feldolgozás
1983	Fukushima	Neocognitron	felismerés
1983	Grossberg és t.	ART	komplex visszacsatolt modell
1984	Hinton és t.	Boltzman gép	annealing
1985	Rumelhart, Parker	back propagation	delta szabály, rejtett réteg
1986	Rumelhart és t.	PDP	neurális háló könyvek
1986	Sejnowski és t.	NetTalk	backprop. alkalmazás
1987	Kosko	BAM	párok társítása
1990	Intel	i80170	kommersz neuron chip.

g n n

Biológiai alapok

- Az emberi agy egy komplex biológiai neurális hálózat, mely idegsejtek, neuronok sokaságát (~1012) tartalmazza. Jellemzoje a párhuzamos muködés.
- Az idegsejt (neuron) egy elemi információ-feldolgozó egység:

Egy neuron felépítése

Biológiai alapok ..

- Az idegi muködés a félvezetok kapcsolási sebességéhez képest lassú (10⁻²,10⁻³ sec). Az eroteljes párhuzamos muködés miatt mégis nagy teljesítményu.
- A misztikus az, hogy az a nagyszámú, eroteljes kapcsolódásban lévo elem (a neuronok) melyek látszólag nagyon egyszeru gerjeszto és tiltó jeleket küldenek egymásnak, hogyan hozzák létre ezt a bonyolult emberi gondolkodást.
- A párhuzamos muködésu neurális hálózatok Neumann-elvu soros muködésu számítógépen való modellezésének alapját az adja, hogy elvileg nincs különbség egy párhuzamos és egy soros számítógép között. Tulajdonképpen mindketto *Turing-gép*. Különbségek csak a számítás hatásfokában, vagy sebességében lehetnek.

(2002)

+0200+

Az emberi agy és a számítógép összevetése

Számítási egységek	1CPU, 10⁵ kapu	10 ¹¹ neuron
Tárolóegységek	10 ¹⁰ bit RAM, 10 ¹² bit HDD	10 ¹¹ neuron, 10 ¹⁴ szinapszis
Ciklusidõ	10 ⁻¹⁰ mp	10 ⁻³ mp
Sávszélesség	10 ¹⁰ bit/mp	10 ¹⁴ bit/mp
Neuronmódosítás/mp	10 ⁶	10 ¹⁴

 Megjegyzendő, hogy a számítógép adatai másfél évente megduplázódnak, míg az agy esetében a változás nem észlehető.

а

+0<0+

A mesterséges neuron

összege

neuron u i

Az u_i neuron

A mesterséges neuron részei

Egy mesterséges neurális háló egyszerű számítási egységekből, mesterséges neuronokból áll, melyek egymásnak küldött jelekkel kommunikálnak. A jelek nagyszámú súlyozott kapcsolaton áramlanak.

- u_i a háló i. mesterséges neuronja
- o_i a j. neurontól érkező jel az u_i neuron bemenetére
- w_{ij} a j. neurontól az i. neuronba érkező jel szorzója, a u_j-u_i kapcsolat súlya
- net_i az u_i neuron bemeneteinek súlyozott összege, $net_i = \sum w_{ii} * o_i \quad (j=1..n)$
- a_i az u_i neuron aktivációs potenciálja, melyet a bemenetek súlyozott összegébol az aktivációs függvény állít elo. Ez a függvény egyszeru esetben elmarad. Az ai aktivációs potenciál gerjeszto input híján idoben csökken, a gerjesztett, izgatott állapotból visszatér egy inaktív szintre: a_i = a_i(t)
- Az átviteli függvény generálja az aktivációs potenciálból az o_i kimeno jelet.
 Az átviteli függvény leggyakrabban küszöb _______, vagy szigmoid _______
 alakú. A függvénynek köszönhetoen a neuron egy bizonyos aktivációs potenciált elérve ad csak outputot, tüzel.

A/19. dr.Dudás László

+0<

 a_{i}

Az átviteli függvény típusai

• Lineáris oj = $f(ai) = \alpha^* ai$; α valós

Lineáris küszöb függvény

• Lépcsos függvény

• Szigmoid függvény (a leggyakrabban alkalmazott) $o_i = \frac{1}{1 + e^{-a_i}}$

 Egyéb, pl.: Gauss-féle (haranggörbe), tangens-hiperbolikus függvény.

+0<0+0+

Az átviteli függvény küszöbértékének megadása

A mesterséges neuron átviteli függvényének küszöbértéke is változik a betanítás folyamán. A változtathatóság egyszerűsítésére a küszöbértéket nem a neuronban adják meg, hanem egy plusz bemenet megadásával realizálják. A bemenet inputértékeként –1 értéket megadva, a bemenet súlya meg fog egyezni a szükséges küszöbértékkel. Ily módon a betanítás során végzett automatikus súlymódosítások a küszöböt is állítani fogják.

Egy n bemenetes neuron tüzel, ha $w_{i1}^*x_1 + w_{i2}^*x_2 + ... + w_{in}^*x_n > \Theta$ Ugyanígy, az n+egy bemenetes neuron tüzel, ha $w_{i1}^*x_1 + w_{i2}^*x_2 + ... + w_{in}^*x_n + \Theta^*(-1) > 0$

+020+

Hálózati topológiák

A neuronokat egymáshoz kapcsolják, és a rendszer általános viselkedését ezen kapcsolatok struktúrája és erossége (w_{ij}) adja meg. A neuronokat csoportokba, vagy rétegekbe rendezik el. Az egyetlen réteget alkotó, egymással kapcsolódó neuronok hálózatát gyakran *tartalom által címezheto memóriának* (CAM, Content Addressable Memory) nevezik.

Gyakoribb a többrétegu topológia:

+0220+

Hálózati topológiák ...

A neurális hálók eltérő mûködéséért elsősorban az eltérő topológia a felelős.

- Az előrecsatolt hálók működése nem időfüggő: a jelek áthaladnak a hálón a bemeneti réteg irányából a kimeneti réteg felé. A hálóban több rejtett réteg is lehet. A kimenet a bemenet, a neuronok átviteli jellemzőinek és a súlymátrixnak a függvénye.
- A hátracsatolt, vagy visszacsatolt hálók mûködése eltérő: a bemenet ráadása egy, általában konvergens folyamatot indít el, amelyben a jelek előrefelé és visszafelé is haladnak. A t. időpillanatban számított jelek megjelenhetnek a korábbi rétegek bemenetén a t+1. időpillanatban. A konvergencia végén a jelek értéke állandósul, ekkor leolvashatjuk a kimenő rétegen a kimenet értékét.

A hátracsatolt hálók néhány jellemzője:

- Lehetnek konvergensek egy stabil állapot felé, vagy instabilak, oszcillálóak.
- A konvergencia, a stabil állapot elérése hosszabb időt igényelhet.
- Nehezebben taníthatók és bonyolultabb matematikai apparátussal írhatók le.
- Rendelkezhetnek belső állapottal.

Hálózati topológiák ...

A hálózati struktúra változtatható paramétereinek kihatása a mûködésre:

- A hálók bemeneti és kimeneti neuronjainak a számát a neuronhálóval megoldani kívánt feladat egyértelműen meghatározza. A belső rétegek száma és a bennük lévő neuronok száma azonban szabadabban választható meg.
- Túl kevés neuron kevés minta tárolását teszi lehetővé és meghiúsíthatja a betanulást.
- Túl sok neuron esetén a háló betanul, de a korábban nem látott inputokra a háló rosszul válaszol, adatbázisszerűen működik.

Hálózati topológiák ...

- A hálózat neuronjai számának betanulás során való megállapítására két alapveto módszer létezik:
- Optimális agykárosítás modell: teljes kapcsolati hálóval indul és a betanítás egyes lépéseiben a közel nulla értéku súlyokat elhagyjuk. Ha az így lecsökkent kapcsolatrendszeru háló továbbra is jól szerepel, akkor az elhagyás véglegesítodik és a muveleteket ismétlik. A sok kapcsolat kiesése mellett neuronok is kiesnek.
- Hálónöveszto algoritmusok: a betanítási folyamat közben adnak hozzá újabb neuronokat és kapcsolataikat a hálóhoz. A hozzáadás függhet a hibaminimumra törekvo háló esetén a hibafüggvény csökkenésének meredekségétol, vagy a csempézo algoritmus esetében a beválasztott új neuronok teljesítményétol. Az algoritmus azzal a neuronnal indít, amelyre a legtöbb minta a legjobb kimenetet adja. A következo hozzáadandó neuront hasonlóan választja, és addig folytatja, míg az összes mintára kielégíto nem lesz a válasz.

Hálózati topológiák ...

- Egy rejtett réteggel rendelkezo hálók bármely folytonos függvény megtanulására képesek
- Két rejtett réteggel rendelkezo hálók minden függvényt képesek approximálni, bár ezt az elvi lehetoséget a bemenetek számától exponenciálisan függo belso rétegbeli elemszám rontja.
- Érdekes kísérlet az optimális hálótopológia keresése genetikus algoritmussal a szóbajöheto hálószerkezetek terében.

Tanulási módszerek

A tanulást úgy definiáljuk, mint a hálózat memóriájának, azaz a súlymátrixnak a változását.

Kategóriái:

- Felügyelt tanulás (supervised learning)
- Felügyelet nélküli tanulás (unsupervised learning)

Felügyelt tanulás: külso tanárt, ill. globális információt igényel, és olyan technikákat jelent, mint:

- hiba-javító tanulás (error correction)
- megerosíto tanulás (reinforcement learning)
- sztochasztikus tanulás (stochastic learning).

+0200+

Felügyelt tanulási módszerek

- hiba-javító tanulás (error correction): az output réteg egyes neuronjainál vizsgált - az elvárt és a valós értékek különbözeteként adódó - értékek alapján a súlymátrix kapcsolatait módosítja
- megerosíto tanulás (reinforcement learning): megfeleloen végrehajtott akcióknál a súlyok megerosödnek, egyébként gyöngülnek, az akció jóságát az outputvektorból képezett skalár mutatja
- sztochasztikus tanulás (stochastic learning): a súlymátrix random változtatása után meghatározza a hálózat ún. energiaértékét. Ha a változás hatására az energia csökkent, akkor a változást elfogadja, egyébként pedig csak akkor, ha a változás megfelel egy eloreválasztott valószínuségi eloszlásnak. Ez a véletlen elfogadása a változásnak, mely idoszakosan ronthatja a rendszer muködését, jóságát, lehetové teszi, hogy kikerüljon a lokális energiaminimum völgyekbol, miközben az optimális állapotot keresi. (Vesd össze: szimulált hutés elvu kereséssel.)

Felügyelt tanulási módszerek ...

<u>Példák</u> a felügyelt tanulásra:

- Perceptron (Minsky és Papert, 1969)
- Adaline
- Madaline (*Widrow* és *Lehr*, 1990)
- Back-propagation
- Boltzmann-gép (Ackley, 1985).

Felügyelet nélküli tanulás, vagy önszervezés

Nem igényel külso tanítót, lokális információn és belso kontrollstratégián alapszik. (Versengo háló.)

Példák a felügyelet nélküli tanulásra:

- Hopfield háló (Hopfield, 1982)
- Kétirányú asszociatív memória = BAM (Bidirectional Associative Memory, Kosko, 1987))
- Kohonen modell (Kohonen, 1988)
- Szembe terjesztés (counter propagation, Hecht-Nielsen, 1987).
- Adaptív rezonancia elmélet (ART, Adaptive Resonancia Theory, Carpenter és Grossberg, 1988)

+020+

Tanulási alapelvek

- Hebb-féle (1949): az egyidejuleg izgalomban lévo neuronok kapcsolata erosödik.
- **Delta-szabály** (Bernard Widrow és Ted Hoff, 1960): A tanítási folyamat során az output és a megkívánt output közötti eltérés esetén a súlyokat olyan irányba kell módosítani, hogy csökkenjen az eltérés. $\Delta w = \Delta o^*$ inputok * tanulási_együttható (Δo = error az outputnál).
- Back-propagation, visszafelé terjesztés: a delta szabály variációja. A többrétegû előrecsatolt háló súlyait oly módon állítja be, hogy a számított kimenet és az elvárt kimenet eltérését felhasználva a kapcsolati súlyokat olyan irányba módosítja kismértékben, hogy az input következő bemutatásakor az eltérés csökkenjen.

A/31. dr.Dudás László

A neurális háló - modellek jellemzoi ,

- Adaptivitás: változó feltételeknek megfelelo válaszok adásának képessége. Részei: tanulás, önszervezés, általánosítás és gyakorlás.
 - Tanulás: alapvetoen egyidoben jelentkezo dolgok társítása.
 - Önszervezés: amikor a háló módosítja a neuronjait egy tanulási szabálynak megfeleloen. Rendszerint az inputokra adott szinaptikus súlyváltozásokat jelenti.
 - Általánosítás: az a képesség, hogy korábban soha nem hallott kérdést is meg tud válaszolni a hasonló, vagy kapcsolódó információk alapján.
- Rugalmasság: egy neuroncsoport azon képessége, hogy idoben különféle igényekhez tudjon alkalmazkodni. Ha egyes neuronok sérülnek, mások átveszik a szerepüket.
- Gyakorlás: a tanultak elmélyítése.
- **Dinamikus stabilitás**: a hálózat azon képessége, hogy megmaradjon a muködési keretei között és elérjen egy stabil állapotot, extrém input mellett is.
- Konvergencia: stabil állapotba való jutás képessége.
- Hibaturés: az a képesség, hogy néhány neuron sérülése esetén is tovább tudjon muködni, habár csökkent pontossággal, vagy sebességgel.
- Normalizálás: a súlyoknak egy eloírt tartományon belül való tartása.

Cihan H. Dagli: Artificial Neural Networks for Intelligent Manufacturing Chapman & Hall, New York, 1994. p470.

+0<000

A neurális háló - modellek osztályozása

+0330+ +0230+

Egy mesterséges neurális hálót definiáló lényegi összetevok

- hálózati topológia
- a háló mérete (a rétegek száma, a rétegenkénti neuronok száma)
- a muködési jellemzok (a neuron input operátora, átviteli függvénye és a diszkrimináló függvénye)
- a tanulási eljárás (tanulási algoritmus, tanulási paraméterek, soros/batch aktualizálás, stb.)
- betanítás/érvényesítés (a betanítás mérete, minosége, adatformátuma, stb.)
- implementálás/realizálás (analóg, diszkrét, szoftveres, stb.)

Egy adott alkalmazás támogatása szempontjából elonyös lehet a háló sztochasztikus, determinisztikus, vagy hibrid tulajdonsága; alkalmazhat statikus, dinamikus, vagy ciklikus eljárásokat, a jeleket feldogozhatja bináris, analóg, folytonos, vagy diszkrét módon, tanulhat on-line, vagy off-line módon, stb.

Egy neurális háló, illetve hálóalkalmazás tervezésénél figyelembeveendo tényezok ,

- Biológiai rendszert akarunk emulálni? Szükséges-e utá-nozni a neuron kisülési függvényét (átviteli függvényét)?
- Milyenek a sebességgel kapcsolatos elvárások ? Végbe tud-e menni valósidoben a tanulás és a döntéshozatal ?
- Szükséges-e, hogy a neuron muködési jellemzoi invertálható, monoton, vagy folytonos tulajdonságúak legyenek?
- Milyen természetu kapcsolati súlyokat alkalmazunk ? Binárisak, folytonos, vagy diszkrét értékuek lesznek-e ?
- Milyen típusú kimenetre van szükségünk?

A neurális háló viselkedése két dologtól függ:

- az egyes neuronok információfeldolgozó tulajdonságától (a neuronmodelltol)
- attól a módtól, ahogyan ezek a neuronok szervezodnek (hálózati topológiától).

Back Propagation elvu neuronháló-alkalmazások készítésének lépései

 Az eredményes munkához nem szükséges a háló belso muködésének megértése. A legfontosabb olyan adatok gyujtése, melyeket az asszociáció útján való tanulásban fel tud használni. Rendszerint az adatmennyiséggel párhuzamosan no a betanítás eredményessége.

Előrecsatolt neurális hálók minősítésére alkalmas jellemzők

- Kifejezőképesség (expressiveness): függvények reprezentálására ideálisak, de az optimális neuronszám eltalálása művészet, nagy gyakorlatot kíván.
- Számítási hatékonyság (computational efficiency): valójában egy adott mintafájl betanulásának számításigénye. Kedvezőtlen esetben a bemenetek számának exponenciális függvénye lehet. Problémát jelentenek a hibafelület lokális minimumai, melyek ellen alkalmazható a szimulált hûtés módszere.
- Általánosító képesség (generalization): egyes függvénycsaládok megtanulására és interpolálására alkalmasabbak. Ezek azok, amelyeknél a bemenetek függetlenek egymástól, nincsenek összetett függőségek. Jó, ha a kimenet függvénye sima felület.
- Zajérzékenység (sensitivity to noise): zajtûrésük annak köszönhető, hogy nemlineáris regresszióval írják le az outputfüggvényt.
- Átláthatóság (transparency): nem képes magyarázatadásra, döntésindoklásra, ezért megnő a szerepe a tesztadatokkal való helyességellenőrzésnek. Gyakorlatilag azonban egy fekete doboz.
- Megelőző ismeret (prior knowledge): Kellő gyakorlat esetén a problémára vonatkozó előzetes ismeret segíthet a háló eredményes topológiájának kialakításában. Inkább heurisztikák ezek, mit matematikailag alátámasztott módszerek.

László

A mesterséges neurális hálók teljesítménye fejlesztésénél figyelembe veendő szempontok:

- Képesség. Milyen feladatot tud a háló elvégezni? Rendelkezésre áll-e elegendo adat a probléma megoldásának eloállításához? Rendelkezik-e a háló a szükséges számítási teljesítménnyel a feladat megoldásához?
- Kapacitás. Mennyi ismeret tárolható a hálóban?
- **Tanulékonyság**. Milyen típusú problémákat képes megtanulni? Újra lehete a hálót tervezni, vagy az ismeretszemléltetést megváltoztatni abból a célból, hogy a feladat megtanulható legyen?
- Ismeretszemléltetés. Hogyan tárolja a háló az isme-retet? Hogyan hat ki az ismeret szemléltetési módja a szerkezetre, kapacitásra, képességre, tanulékonyságra?
- **Ismeretkinyerés**. Hogyan használja az ismeretet a világ modelljének eloállítására? Megértheto módon van-e tárolva az ismeret? Hogyan hat a belso ismeretszemléltetés a tudáskinyerésre?
- A háló megtervezése. Hogyan kellene megtervezni a hálót, hogy specifikus muveleteket tudjon végrehajtani? Milyen topológia, neuronmuködés szükséges?
- Kredit hozzárendelés. Adott a változó súlyok egy létezo halmaza, valamint a betanító adatok, hogyan rendeljünk értéket minden egyes súlyhoz a betanítás idoszaka alatt a korrekt válasz elérése érdekében ?

+030+

A neurális hálók betanítása ,

 A neurális hálók betanítása szokás szerint nagymennyiségu adat formájában adott betanító minták alapján történik. A neurális hálók ereje a modell-mentes közelíto képességükben rejlik:

Megadva egy véges méretu, idofüggetlen determinisztikus rendszert, melybol az input-output mintapárok származtathatók, mindig létezik egy mesterséges neurális háló, mely be tudja állítani úgy a saját paramétereit, hogy utánozni képes a rendszert input-output szempontból.

(Rumelhart és McClelland, 1986)

A mesterséges neurális hálókban mûködő mechanizmusok fajtái:

- versenyzo (kompetetiv) mechanizmus: az azonos rétegben levo neuronok versenyeznek egymással lecsökkentve egymás aktivációs szintjét, hogy csak egy nyerjen
- együttmu ködési (kooperativ) mechanizmus: az azonos rétegben lévo neuronok erosítik egymás aktivációs szintjét, hogy együtt nyerjenek
- normalizációs mechanizmus, vagy skálázás: a háló az azonos csoportba tartozó neuronok súlyait úgy próbálja beállítani, hogy azok aktivációs szintje soha ne telítődjön, ill. soha ne tüzeljenek.

A/38. dr.Dudás László

A betanításnál figyelembe veendő szempontok,

- Hatékonyság. Mekkora betanító adattömeg szükséges a muködési teljesítmény egy adott szintjének eléréséhez ?
- A tanulás hatékonysága. Mennyi idot vesz igénybe a betanítás a kívánt súlyok eléréséhez?
- **Komplexitás**. Hogyan változik a betanítás idoszükség-lete, ha a feladat szintje növekszik?
- Általánosítás. Mikor végzi jól egy osztályozó háló az általánosítást ?
- Alakíthatóság. Lehet-e új elemeket, osztályokat, vagy viselkedést adni a hálóhoz anélkül, hogy lerontanánk az aktuális teljesítményt?
- Érzékenység. Érzéketlen-e a háló a lényeget nem érinto inputváltozásokra? Hogyan érheto el ez az érzéketlenség?
- **Alkalmazkodóképesség**. Hogyan befolyásolja a belso ismeretszemléltetési mód a betanítási idot ?

+0200+

Neurális hálók teljesítményének összetevoi ,

A különféle neurális háló elméletek kiértékelésére és összehasonlítására nem létezik tiszta méroszám. A következo összetevoket kell vizsgálni egy teljesítményösszevetésnél:

- Hullámszélesség. Mennyi idobe telik, amíg az output megnyugszik és eléri a kívánt megoldást?
- Pontosság. Milyen pontos a megoldás ?
- Méret. Hogyan függ a hálózat teljesítménye és kapacitása a háló méretétol ?
- Robosztusság. Mennyire érzékeny a megoldás a komponensek pontatlanságaira ?
- Hibaturés. Mennyire viseli el a háló az egyes komponensek meghibásodását?
- Hordozhatóság. Mennyire könnyen telepítheto a háló különféle hardverekre?
- Stabilitás. Stabil-e a háló muködése ?
- Szeparálhatóság. Mennyire befolyásolja a teljesítményt a belso ismeretszemléltetés?
- **Memóriakapacitás** (a tárolható minták száma)
- Zajos input turése
- Hamis memóriaállapotok elkerülése
- **Térbeli**, vagy idobeli **minták** alkalmazása.

Katonai célú neurális hálók teljesítményjellemzői

- Osztályozás. Az osztályozók felügyelt adatokkal vannak betanítva, olymódon, hogy azokat különbözo csoportokba rendezzék.
- Önszervezés/kategória alkotás. Az önszervezo hálók bizonyos kritériumoknak eleget tevo csoportokba osztják szét az input adatokat. A csoportokat maga a háló alakítja ki és lecsökkenti a magasabb szintu döntéshozáshoz az információt.
- Asszociatív memória. Az asszociativ memória, melyet tartalom által címezheto memóriának is szoktak nevezni, az információ egy részleges, vagy sérült alakjából is teljes memóriamintát állít elo.
- Szenzoradatok feldolgozása. Az érzékelok által szolgáltatott óriási mennyiségu adat feldolgozása szükséges a látás és a hallás feladatának megoldásához.
- **Számítási problémák**. Speciális számításokat használó alkalmazások kényelmes mesterséges neurális háló-architektúrákat igényelnek.
- Sokérzékelos automaták. Számos feladat egyesített szenzorok adatainak feldolgozását igényli.