Stochastic dual dynamic programming

Un algoritmo de programación dinámica aproximada

Andrés Ferragut

Universidad ORT Uruguay Proyecto UTE-FJR-UDELAR-ORT Optimización en la red eléctrica.

Julio 2017

Contenido

Preliminares

Stochastic dual dynamic programming

Implementación en software

Conclusiones

Contenido

Preliminares

Stochastic dual dynamic programming

Implementación en software

Conclusiones

Objetivos de la charla

Analizar el problema de "curse of dimensionality" en Stochastic Dynamic programming.

► Analizar un algoritmo de solución aproximada: Stochastic Dual Dynamic Programming (SDDP).

Discutir su implementación en software.

Modelo general

- ▶ Ventana de tiempo: $k \in \{0, ..., N\}$.
- ► En cada k:
 - ▶ El estado del sistema es $x_k \in X$.
 - ▶ El control es $u_k \in \mathcal{U}$.
 - ▶ Hay una perturbación w_k (aleatoria, independiente en cada k).
- Dinámica del sistema:

$$x_{k+1} = f_k(x_k, u_k, w_k)$$
 $k = 0, ..., N-1.$

- ► Costos:
 - ► En cada paso $g_k(x_k, u_k, w_k)$ (running costs).
 - ▶ En el estado terminal $g_N(x_N)$ (terminal cost para horizonte finito).

Problema: stochastic dynamic programming

Mínimo costo medio

Hallar una regla o política $\pi = {\mu_0, ..., \mu_{N-1}}$, tal que se logre:

$$\min_{\pi} E_{w} \left[\sum_{k=0}^{N-1} g_{k}(x_{k}, \mu_{k}(x_{k}), w_{k}) + g_{N}(x_{N}) \right]$$

sujeto a que $x_{k+1} = f_k(x_k, \mu_k(x_k), w_k)$.

Observación: El resultado del problema es una política y no una trayectoria de control. Esto permite reaccionar al estado del sistema y trabajar en "lazo cerrado". Debería ser mejor que una optimización a priori, pero también más costoso computacionalmente.

Ejemplo: control de stock

Empresa que provee productos a clientes, los cuales demandan una cantidad aleatoria.

- **Estado**: x_k , stock al comienzo del intervalo k ($x_k < 0 \Rightarrow$ demanda insatisfecha).
- ► Control: $u_k \ge 0$, pedido de reposición de stock en k (suponemos entrega inmediata).
- Perturbación: $w_k \ge 0$, demanda que llega en el intervalo k.

Dinámica:

$$x_{k+1} = x_k + u_k - w_k = f(x_k, u_k, w_k)$$

Problemas del DP tradicional

Curse of dimensionality

- \triangleright Para aplicar lo anterior, necesito en general discretizar el estado x.
- Esto lleva a que la cantidad (finita) de estados crezca exponencialmente.

Ejemplo [Pereira, 1991]

- Lagos de hydro, cada uno con 2 variables (cota y aportes).
- Discretizo en m = 20 niveles cada variable $\Rightarrow m^{2n}$ estados en cada etapa.
 - ▶ 1 lago $\rightarrow 20^2 = 400$ estados.
 - ▶ 2 lagos $\rightarrow 20^4 = 1.6 \times 10^5$ estados.
 - ▶ 3 lagos $\rightarrow 20^6 = 6.4 \times 10^7$ estados.
 - ▶ 4 lagos $\rightarrow 20^8 = 2.5 \times 10^{10}$ estados.
 - ► 5 lagos $\rightarrow 20^{10} = 1 \times 10^{13}$ estados.

Approximate dynamic programming

ldea: construir una aproximación manejable de la función de valor V(x).

▶ Por ejemplo, si *V* es convexa, aproximarla por una función lineal a tramos.

► Minimizar esta función en lugar de minimizar *V*, y mejorar la aproximación en cada paso generando nuevos tramos lineales.

Algoritmo de Kelley

Objetivo: Miniizar $V: \mathbb{R}^n \to \mathbb{R}$ convexa en un conjunto compacto \mathcal{U} .

Algoritmo:

- 1. Condición inicial u_0 . k = 0, $V_0 = -\infty$.
- 2. Calculo un subgradiente $\lambda_k \in \partial V(u_k)$.
- 3. Actualizo la aproximación:

$$V_{k+1}(u) = \max\{V_k(u), V(u_k) + \lambda_k^T(u - u_k)\}.$$

- 4. Minimizo V_{k+1} y elijo $u_{k+1} = \arg\min_{u} \{V_{k+1}(u)\}$
- 5. $k \rightarrow k + 1$ y vuelvo al paso 2.

Contenido

Preliminares

Stochastic dual dynamic programming

Implementación en software

Conclusiones

SDDP: marco de aplicación

Problema de optimización multi-etapa con horizonte finito.

Estado y control continuo, finito-dimensionales $(x \in \mathbb{R}^n, u \in \mathbb{R}^m)$.

Costos convexos, dinámica lineal.

Ruido independiente y discreto (escenarios).

Caso determinístico

Problema (control óptimo determinístico)

$$\min_{u} \sum_{k=0}^{N-1} g_k(x_k, u_k) + g_N(x_N)$$

sujeto a: $x_{k+1} = f_k(x_k, u_k)$

- \triangleright $x_n \in X$ es el estado.
- $\searrow u_n \in \mathcal{U}$ es el control al comienzo del intervalo.

Hipótesis:

- \blacktriangleright $(x,u) \rightarrow f_k(x,u)$ es afín.
- \triangleright \mathcal{U}, X compactos.
- Los costos $g_k(x, u)$ y $g_N(x)$ son convexos.

Caso determinístico: dynamic programming

Algoritmo de Bellman

$$\begin{aligned} V_N(x) &= g_N(x), \\ V_k(x) &= \min_{u_k} \{ g_k(x, u_k) + V_{k+1}(f_k(x, u_k)) \} = T_k(V_{k+1})(x). \end{aligned}$$

Aquí T_k es el operador de Bellman:

$$[T_k(V)](x) = \min_{u_k} \{g_k(x, u_k) + V(f_k(x, u_k))\}.$$

La política óptima es el u_k que alcanza el mínimo en cada paso del algoritmo.

Propiedades del operador de Bellman

► Monotonía:

$$V(x) \le \tilde{V}(x) \ \forall x \Rightarrow [T(V)](x) \le [T(\tilde{V})](x) \ \forall x.$$

► Convexidad:

Si g es convexa en (x, u), V es convexa y f es afín entonces:

$$x \mapsto [T(V)](x)$$
 es convexa.

► Funciones lineales a tramos:

Si V es lineal a tramos, g es lineal a tramos y f es afín entonces:

$$x \mapsto [T(V)](x)$$
 es lineal a tramos.

Propiedad de dualidad

► Sea $J: X \times \mathcal{U} \to \mathbb{R}$ convexa en (x, u) y sea:

$$\phi(x) = \min_{u} J(x, u)$$

Puedo obtener un subgradiente $\lambda \in \partial \phi(x_0)$ en $x = x_0$ como el multiplicador de Lagrange de:

$$\min_{x,u} J(x,u)$$

$$s.t.$$
 $x_0 - x = 0.$

► En particular:

$$\phi(x) \ge \phi(x_0) + \lambda^T (x - x_0).$$

Idea:

- Se construye recursivamente una aproximación de cada "cost-to-go" V_k como el máximo de funciones afines (función lineal a tramos).
- lacktriangle En el paso n, tenemos una aproximación $V_k^{(n)}$ de V_k y queremos mejorarla.
- Se sigue una trayectoria óptima $(x_k^{(n)})_{k=1,\dots,N}$ del problema aproximado usando $V_k^{(n)}$ y se agrega un corte para mejorar la aproximación, generando $V_k^{(n+1)}$.
- Ofrece garantías de error en cada paso (cotas del gap).

Algoritmo (forward in time):

- 1. Inicializamos t = 0 y $x_0^{(n)} = x_0$.
- 2. Para cada *k* resolvemos:

$$\min_{x,u} \{ g_k(x,u) + V_k^{(n)}(f_k(x,u)) \},$$
 s.t: $x = x_k^{(n)} [\lambda_k^{(n+1)}]$

y definimos:

$$\begin{split} \beta_k^{(n+1)} &:= \text{valor del \'optimo} \\ \lambda_k^{(n+1)} &:= \text{multiplicador de la restricci\'on } x = x_k^{(n)} \\ u_k^{(n)} &:= \text{control \'optimo aproximado} \end{split}$$

3. Por construcción se tiene que:

$$\begin{split} \beta_k^{(n+1)} &= [T_k(V_{k+1}^{(n)})](x_k^{(n)}), \\ \lambda_k^{(n+1)} &\in \partial [T_k(V_{k+1}^{(n)})](x_k^{(n)}). \end{split}$$

4. Se tiene entonces que:

$$\beta_k^{(n+1)} + (\lambda_k^{(n+1)})^T(x - x_k^{(n)}) \leq \big[T_k(V_{k+1}^{(n)})\big](x) \leq \big[T_k(V_{k+1})\big](x) \leq V_k(x)$$

5. Por lo tanto, la función afín $x \mapsto \beta_k^{(n+1)} + (\lambda_k^{(n+1)})^T (x - x_k^{(n)})$ es una cota inferior nueva de la función de valor. La agregamos como corte.

$$V_k^{(n+1)} = \max\{V_k^{(n)}(x), \beta_k^{(n+1)} + (\lambda_k^{(n+1)})^T (x - x_k^{(n)})\}.$$

Se mantiene la convexidad y el ser cota inferior.

6. Elijo $x_{k+1}^{(n)} = f_k(x_k^{(n)}, u_k^{(n)})$ hasta llegar a k = N donde se completa una iteración forward.

Inicialización:

Para inicializar el algoritmo, se requiere $V_k^{(0)}$, cota inferior de la función de valor para cada k. Se pueden computar en una pasada "backwards" a partir $g_N(x)$ usando una trayectoria cualquiera y calculando un corte en cada paso como antes.

Criterio de parada:

En cada paso se tiene un candidato de solución $u^{(n)}$ y una cota inferior de la función de valor, entonces:

$$\sum_{k=0}^{N-1}g(x_k^{(n)},u_k^{(n)})+g_N(x_N^{(n)}) \text{ es una cota superior del costo,}$$

$$V_0^{(n)}(x_0) \text{ es una cota inferior del costo.}$$

Comparando ambas tengo un criterio de parada con garantías de optimality gap.

El caso estocástico

Supongamos que ahora tenemos perturbaciones w_k en cada paso de tiempo. Complicaciones:

- ▶ Se requiere un modelo probabilítstico de las w_k : e.g. variables iid.
- Para cada iteración *n* hay que hacer dos pasados:
 - Una hacia adelante (forward) siguiendo una realización de las perturbaciones.
 - Una hacia atrás (backward) que genere nuevos "cortes".
 - No se tendrá una cota superior exacta sino que habrá que estimarla vía Monte Carlo.

Stochastic dynamic programming

Problema

$$\min_{\pi} E\left[\sum_{k=0}^{N-1} g_k(x_k, u_k, w_k) + g_N(x_N)\right],$$

sujeto a:
$$x_{k+1} = f_k(x_k, u_k, w_k)$$

$$u_k = \pi_k(x_k, w_k).$$

con la hipótesis de que w_k son v.a. iid.

Observaciones:

- ightharpoonup En esta formulación, estamos dejando que u_k dependa de la perturbación actual w_k .
- Puede llevarse a la formulación anterior tomando como estado $y_k = (x_k, w_k)$.
- Cambio importante: esto conmuta el mínimo con la esperanza.

Stochastic dynamic programming

Algoritmo de Bellman

$$V_N(x) = g_N(x),$$

$$\hat{V}_k(x, w) = \min_{u_k} \{ g_k(x, u_k, w) + V_{k+1}(f_k(x, u_k, w)) \},$$

$$V_k(x) = E \left[\hat{V}_k(x, w_k) \right]$$

Política óptima:

$$\pi_k(x, w) = \arg\min_{u_k} \{ g_k(x, u_k, w) + V_{k+1}(f_k(x, u_k, w)) \}.$$

Operador de Bellman

▶ Para cada k y una función $V: X \times W \rightarrow \mathbb{R}$ se define:

$$[\hat{T}_k(V)](x,w) := \min_u \{g_k(x,u,w) + V(f(x,u,w))\}.$$

Con esta notación la iteración de Bellman resulta:

$$V_N(x) = g_N(x),$$

 $V_k(x) = T_k(V_{k+1}(x)) := E\left[\hat{T}(V_{k+1})(x, w_k)\right]$

Este operador preserva las mismas propiedades del caso determinístico (monotonía, convexidad, etc.)

Paso de dualidad

Supongamos que tenemos una cota inferior $V_{k+1}^{(n+1)} \le V_{k+1}$ y un estado $x_k^{(n)}$. Resolvemos:

$$\begin{split} \hat{\beta}_k^{(n+1)}(w) &= \min_{x,u} \left\{ g_k(x,u,w) + V_{k+1}^{(n+1)}(f_k(x,u,w)) \right\}, \\ s.t. \quad x &= x_k^{(n)} \quad [\hat{\lambda}_k^{(n+1)}(w)]. \end{split}$$

Por lo tanto:

$$\begin{split} \hat{\beta}_k^{(n+1)}(w) &= \hat{T}_k(V_{k+1}^{(n+1)})(x_k^{(n)}, w), \\ \hat{\lambda}_k^{(n+1)}(w) &\in \partial_x \hat{T}_k(V_{k+1}^{(n+1)})(x_k^{(n)}, w). \end{split}$$

Para cada perturbación entonces:

$$\hat{\beta}_k^{(n+1)}(w) + (\hat{\lambda}_k^{(n+1)})^T(x - x_k^{(n)}) \leq \hat{T}_k(V_{k+1}^{(n+1)})(x, w) \leq \hat{V}_k(x, w).$$

Paso de dualidad

Promediando sobre los escenarios, tenemos una cota inferior para la función de valor:

$$\beta_k^{(n+1)} + (\lambda_k^{(n+1)})^T(x-x_k^{(n)}) \leq E(\hat{V}_k(x,w)) = V_k(x).$$

En cada paso definimos:

$$\begin{split} \beta_k^{(n+1)} &= E[\hat{\beta}_k^{(n+1)}(w)] = T_k(V_{k+1}^{(n+1)})(x), \\ \lambda_k^{(n+1)} &= E[\hat{\lambda}_k^{(n+1)}(w)] \in \partial_x T_k(V_{k+1}^{(n+1)})(x). \end{split}$$

Al comienzo de cada paso: disponemos de una aproximación $V_k^{(n)}$ de V_k tal que:

$$V_k^{(n)} \leq V_k$$
.

 $V_N^{(n)} = g_N$, el costo terminal.

 $ightharpoonup V_k^{(n)}$ es convexa (mejor aún, lineal a tramos...)

Forward iteration:

- ▶ Seleccionamos un escenario al azar $w_0, ..., w_{N-1}$.
- ► Construimos la trayectoria $x_k^{(n)}$ siguiendo la dinámica:

$$\begin{split} u_k^{(n)} &= \arg\min_{u} \left\{ g_k(x_k^{(n)}, u, w_k) + V_{k+1}^{(n)}(f(x_k^{(n)}, u, w_k)) \right\}, \\ x_{k+1}^{(n)} &= f_k(x_k^{(n)}, u_k^{(n)}, w_k). \end{split}$$

Esto da la trayectoria óptima si las funciones de cost-to-go se sustituyen por sus aproximaciones $V_k^{(n)}$.

Backward iteration:

- ▶ En cada k queremos mejorar la estimación de $V_k^{(n)}$.
- ► Resolvemos, en cada *k*, para todo posible *w*:

$$\begin{split} \hat{\beta}_k^{(n+1)}(w) &= \min_{x,u} \{g_k(x,u,w) + V_{k+1}^{(n+1)}(f_k(x,u,w))\}, \\ s.t. \quad x &= x_k^{(n)} \quad [\hat{\lambda}_k^{(n+1)}(w)]. \end{split}$$

Calculamos el subgradiente y óptimo promedio:

$$\beta_k^{(n+1)} = E[\hat{\beta}_k^{(n+1)}(w)], \qquad \lambda_k^{(n+1)} = E[\hat{\lambda}_k^{(n+1)}(w)].$$

Agregamos el corte a la estimación:

$$V_k^{(n+1)}(x) = \max\{V_k^{(n)}(x), \beta_k^{(n+1)} + (\lambda_k^{(n+1)})^T(x - x_k^{(n)})\}$$

Retrocedemos de k a k-1 y al llegar a 0 se completa la pasada.

Criterio de parada

- $V_0^{(n)}(x_0)$ sigue siendo una cota inferior exacta del costo.
- ► El valor observado sobre la trayectoria forward es solo una estimación del costo promedio alcanzable.
- Para tener una cota superior, simulación Monte Carlo:
 - Sorteo varias trayectorias forward.
 - Calculo el costo sobre cada una de ellas y promedio para estimar la esperanza.
 - Si el promedio más dos desvíos esta cerca de la cota inferior, termina la corrida.
 - Se puede hacer solo en algunos n para ahorrar cálculo.

Otros tipos de algoritmos SDDP

- ► SDDP es en realidad una familia de algoritmos.
- ► El presentado aquí es DOASA: Dynamic Outer Approximation Sampling Algorithm. Usa solo un escenario para el forward y backward.
- ightharpoonup El SDDP clásico ([Pereira, 1991]) elige N escenarios en paralelo, y agrega N cortes en la pasada backward.
- ► CUPPS (Cutting-Plane and Partial-Sampling) es otra variante.
- ► Hay otros trucos numéricos que pueden aplicarse. Gran literatura reciente sobre estos temas después de [Pereira, 1991].

Contenido

Preliminares

Stochastic dual dynamic programming

Implementación en software

Conclusiones

Julia

- Julia es un lenguaje de programación matemática de desarrollo reciente.
- Código abierto, impulsado por investigadores del MIT.
- Alta optimización en tiempos de cómputo y posibilidades de paralelismo.
- Comunidad internacional de desarrollo muy dedicada.

JuMP ∈ JuliaOpt

- JuliaOpt es el subgrupo encargado de paquetes de optimización.
- Generaron un módulo JuMP (Julia Mathematical Programming) que incorpora los solvers más modernos para resolver todo tipo de problemas de optimización.
- Mantienen otro módulo (Convex) que es el equivalente en Julia de CVX.
- Presentan interfaz con los solvers comerciales más destacados.

SDDP en Julia

- Dentro de la comunidad JuliaOpt existe un grupo trabajando en la implementación de SDDP.
- La biblioteca y doc se pueden ver en: https://github.com/JuliaOpt/StochDynamicProgramming.jl
- Comunidad muy activa. Uno de los desarrolladores es la fuente de esta presentación.
- Ejemplos de uso incluyen optimización de manejo de represas.

Contenido

Preliminares

Stochastic dual dynamic programming

Implementación en software

Conclusiones

Conclusiones

- Presentamos un algoritmo de la clase SDDP para resolver problemas de programación dinámica estocástica de forma aproximada.
- ► El algoritmo:
 - Explota la convexidad.
 - No requiere discretización del espacio de estados.
 - Construye aproximaciones a la función de valor "en los puntos correctos".
- Tiene garantías de optimalidad y convergencia.
- Se dispone de una implementación moderna con una comunidad de soporte creciente.