Handout 5: Conjugate Prior Distributions

STA 131B

Summary of Common Conjugate Priors:

$\begin{array}{c} \operatorname{Model} \\ f(x \theta) \end{array}$	Conjugate Prior $\xi(\theta)$	Posterior Distribution $\xi(\theta \mathbf{X})$
Bernoulli $(n, \theta), n$ known	$\mathrm{Beta}(lpha,eta)$	Beta $\left(\sum_{i=1}^{n} X_i + \alpha, n - \sum_{i=1}^{n} X_i + \beta\right)$
Negative Binomial $(r, \theta), r$ known	$\mathrm{Beta}(lpha,eta)$	Beta $(\alpha + nr, \beta + \sum_{i=1}^{n} X_i)$
$Poisson(\theta)$	$\operatorname{Gamma}(\alpha,\beta), \alpha = \operatorname{shape}$	$\operatorname{Gamma}(\alpha + \sum_{i=1}^{n} X_i, \beta + n)$
$Normal(\theta, \sigma^2), \sigma^2$ known	$Normal(\tau, \nu^2)$	$\operatorname{Normal}(\frac{\sigma^2 \tau + n\nu^2 \overline{X}}{\sigma^2 + n\nu^2}, \frac{\sigma^2 \nu^2}{\sigma^2 + n\nu^2})$
Exponential (θ)	$\operatorname{Gamma}(\alpha,\beta)$	$\operatorname{Gamma}(\alpha + n, \beta + \sum_{i=1}^{n} X_i)$
$\mathrm{Uniform}(0,\theta)$	$\operatorname{Pareto}(\lambda,r)$	$\operatorname{Pareto}(\max\{\lambda,X_{(n)}\},n+r)$

$$f(x|\lambda, r) = \frac{r\lambda^r}{x^{r+1}}$$
, for $x > \lambda$.

* Also, the negative binomial distribution with parameters r and θ describes the number of failures before the r^{th} success, where the probability of success is θ .

Example 1:

Suppose that in a given population the probability of catching a cold is p. A sample X_1, \ldots, X_n of the population is taken, with

$$X_i = \begin{cases} 1 \text{ if the } i^{th} \text{ person catches a cold} \\ 0 \text{ otherwise} \end{cases}$$

This implies that $X_1, \ldots, X_n | \theta \sim \text{Binomial}(n = 1, \theta = p) \equiv \text{Bernoulli}(\theta = p)$, and assume the parameter space is $\Theta = [0, 1]$. Then we have

$$f_{\mathbf{X}|\theta}(\mathbf{x}|\theta) = \theta^{\sum_{i=1}^{n} X_i} (1-\theta)^{n-\sum_{i=1}^{n} X_i}.$$

^{*} Note that the p.d.f. of the Pareto(λ, r) distribution is given by

If the prior distribution of θ is Beta(α, β), i.e.

$$\xi(\theta) = \frac{1}{B(\alpha, \beta)} \theta^{\alpha - 1} (1 - \theta)^{\beta - 1} \text{ for } \alpha, \beta > 0,$$

then

$$f_{\mathbf{X},\theta}(\mathbf{x},\theta) = \theta^{\sum_{i=1}^{n} X_i} (1-\theta)^{n-\sum_{i=1}^{n} X_i} \frac{1}{B(\alpha,\beta)} \theta^{\alpha-1} (1-\theta)^{\beta-1}$$

$$\propto \theta^{\sum_{i=1}^{n} X_i + \alpha - 1} (1-\theta)^{n-\sum_{i=1}^{n} X_i + \beta - 1}$$

$$\sim \text{Beta}(\sum_{i=1}^{n} X_i + \alpha, n - \sum_{i=1}^{n} X_i + \beta).$$

Therefore $\xi(\theta|\mathbf{X}) \sim \text{Beta}(\sum_{i=1}^{n} X_i + \alpha, n - \sum_{i=1}^{n} X_i + \beta).$

Notice here that the posterior distribution is also a Beta distribution. We say "the Beta distribution is a conjugate prior family of prior distributions for samples from a Bernoulli distribution." Another way to put this is that the family of Beta distributions is closed under sampling from a Bernoulli distribution (both prior and posterior distributions are from the Beta family).

In this scenario, α and β are called "prior hyperparameters", while $(\sum_{i=1}^{n} X_i + \alpha, n - \sum_{i=1}^{n} X_i + \beta)$ are called "posterior hyperparameters".