Festlegen von Drehzahl und Raddurchmesser:

1. Grenze: Spezifische Drehzahl.

Nach Tab. 10-1 gilt für Axialpumpen: $n_y = 0,3...1,5$ Damit aus Gl. (4-75): $n = n_y \cdot v^{-1/2} \cdot \Delta v^{3/4} = n_y \cdot 1,39^{-1/2} \cdot 41,2^{3/4}$ $(m^3/s)^{-1/2} \cdot (m^2/s^2)^{3/4}$ $n = 13,79 \cdot n_y [s^{-1}] = 13,79 \cdot (0,3...1,5) [s^{-1}]$ $n = 4,14...20,7 [s^{-1}] = 248...1241 [min^{-1}] ext{ Oder}$ $n_y = 0,0725 \cdot n [-] ext{ mit n in } [s^{-1}]$

2. Grenze: Kavitationsgefahr.

Nach Gl. (5-20) mit S
$$_{y}$$
 = 0,43 (Gl. 5-22) und λ_{L} = 0,92

$$Y_{H,M} = (n \cdot \sqrt{V_{La}} / S_y)^{4/3}$$

$$Y_{H,M} = n^{4/3} \cdot (\sqrt{1.39/0.92} / 0.43)^{4/3} [(m^3/s)^{1/2 \cdot 4/3}]$$

$$Y_{H,M} = 4.057 \cdot n^{4/3} [m^2/s^2] \text{ bein in } [s^{-1}]$$
 (16-11)

Da Tauchpumpe ($H_S = 0$) und kaltes Wasser ($p_{Da} \approx 0$), unterbleibt Kavitation, wenn $Y_{H,M} < p_b/s$, also bei $Y_{H,M} < 100 \text{ m}^2/\text{s}^2$.

Axiale Strömungsgeschwindigkeit c_{m} (Meridiangeschwindigkeit) in der Beschaufelung. Nach

G1. (3-116):
$$c_{0m} = 1.1.\sqrt[3]{\dot{v} \cdot n^2} = 1.1.\sqrt[3]{1.39} \cdot n^{2/3} \left[\frac{m}{s} \right]$$

$$c_{0m} = 1.23 \cdot n^{2/3} \left[\frac{m}{s} \right] \text{ bein in s}^{-1}$$
(16-12)

Oder aus

G1. (4-93):
$$c_{0m} = \mathcal{E} \cdot \sqrt{2 \cdot \Delta Y}$$
 Mit G1. (4-99)
 $\mathcal{E} = 1.64 \cdot (\mathcal{S}_{r,(a)} \cdot \tan \beta_{0,(a)} \cdot \sqrt{\lambda_L^{-1} \cdot k_N^{-1}} \cdot n_y)^{2/3}$ [1]

wobei $s_{r,(a)} = 1 \longrightarrow d_0 = 0$ (kein Eintrittsleitrad) $s_{0,(a)} = 15^{\circ}$ angen., da kein Eintrittsleitrad $s_{0,(a)} = 0.8$ angenommen (Gl.2-57).

Eingesetzt, ergibt:

$$\mathcal{E} = 1.64 \cdot (1 \cdot \tan 15^{\circ} \cdot \sqrt{0.92^{-1} \cdot 0.8^{-1}})^{2/3} \cdot n_y^{2/3}$$
 [1]
 $\mathcal{E} = 0.755 \cdot n_y^{2/3} \approx 0.76 \cdot n_y^{2/3}$

$$c_{0m} = 0.755 \cdot \sqrt{2 \cdot \Delta Y} \cdot n_y^{2/3} = 0.755 \cdot \sqrt{2 \cdot 41.2} \cdot n_y^{1/3} [m/s]$$
 $c_{0m} = 6.86 \cdot n_y^{2/3} [m/s]$ (16-13)

Raddurchmesser $D_{(a)}$ und $D_{(i)} = D_N$: Aus Gl. (3-115)

$$\mathsf{D}_{(a)} = \sqrt{\dot{\mathsf{V}}_{La} \cdot \frac{4}{\mathcal{R}} \cdot \frac{1}{\kappa_{N} \cdot c_{m}}} = \sqrt{\frac{4 \cdot \dot{\mathsf{V}}}{\mathcal{R} \cdot \lambda_{L} \cdot \kappa_{N}}} \cdot \sqrt{\frac{1}{c_{m}}}$$

$$D_{(a)} = \sqrt{\frac{4 \cdot 1.39}{9 \cdot 0.92 \cdot 0.8}} \left[\sqrt{\frac{m^3}{5}} \right] \cdot \sqrt{\frac{1}{c_m}}$$

$$D_{(a)} = 1.551 / \sqrt{c_m}$$
 [m] bei c_m in m/s (16-14)

$$k_N = 1 - v_N^2$$
 $v_N = \sqrt{1 - k_N} = \sqrt{1 - 0.8} = 0.447$
 $v_N = D_{(i)}/D_{(a)}$ $D_{(i)} = 0.447 \cdot D_{(a)}$ (16-15)

Gl. (16-14) bis Gl. (16-15) tabellarisch ausgewertet für verschiedene Elektromotoren-Drehzahlen.

Spalle			1	2	3
Elektro-Motor Pole			6-Poler	8-Poler	10-Poler
			16,17	12	9,60
ny	[1]	61.(16-10)	1,17	0,87	0,70
Y _{H,M}	$[m^2/s^2]$	Gl. (16-11)	166	111	84
	[m/s]	61. (16-12)	7,85	6,43	5,57
Com		G(. (16 -13)	7,62	6,25	5,41
	_	ausgeführt	7,7	6,3	5,5
D(a)	[m]	Gl. (16-14)	0,559	0,618	0,661
$D_{(i)}$	[m]	G1. (16-15)	0,250	0,276	0,295

Ausgeführt, da $Y_{H,M} < 100 \text{ m}^2/\text{s}^2$, gemäß Spalte 3 $n = 9,67 \text{ s}^{-1} = 580 \text{ min}^{-1}$, zugehörig

$$D(a) = 660 \text{ mm} \text{ und } D(i) = 300 \text{ mm}$$

Hierzu

 $Y_{Sch} = \Delta Y/\eta_{Sch}$

$$c_{0m} = \frac{\dot{V}_{La}}{(D_{(a)}^2 - D_{(i)}^2) \cdot \pi/4} = \frac{1,51}{(0,66^2 - 0,3^2) \cdot \pi/4} \left[\frac{m^3/s}{m^2} \right]$$

$$c_{0m} = 5,57 \ m/s = c_{3m} = c_{m}$$

Antriebsleistung: Mit geschätztem $\eta_e = 0.8$ $P_e = \frac{\text{$g$.$\dot{V}$} \cdot \text{$g$} \cdot \text{$H$}}{\eta_e} = \frac{10^3 \cdot 1.39 \cdot 9.81 \cdot 4.2}{0.8} \left[\frac{\text{kg}}{\text{m}^3} \cdot \frac{\text{m}^3}{\text{s}^2} \cdot \frac{\text{m}}{\text{s}^2} \cdot \text{m} \right]$ $P_e = 71.59 \cdot 10^3 \text{ W} = 72 \text{ kW}$

Festlegen der Laufschaufeln (profiliert):

Die Schaufelprofile sollen entlang der Zylinder-Schnitte (i), (m) und (a) mit Durchmessern D_(i) = D_N = 300 mm, D_(m) = 480 mm sowie D_(a) = 660 mm festglegt werden. Dabei soll über die gesamtem Schaufeln Y_{Sch} gleich groß sein.

Nach Gl. (8-131):
$$\eta_{Sch} = \sqrt{\eta_e} - (0,01...0,04)$$

= 0,88...0,85
oder Gl. (8-130): $\eta_{Sch} = \eta_e + (0,05...0,1)$
= 0,85...0,9
oder $\eta_{Sch} = \eta_e/(\lambda_L \cdot \eta_m)$ mit $\eta_m = 0,98$ (Gl.8-129)
 $\eta_{Sch} = 0,8/(0,92\cdot0,98) = 0,89$
angenommen $\eta_{Sch} = 0,89$ (Gl.3-110 und 6-121)

Damit $\underline{Y_{Sch}} = 41,2/0,89 \ [m^2/s^2] = \frac{46,3 \ m^2/s^2}{}$

Zum Berechnen notwendige Beziehungen:

Mit
$$c_{0u} = 0$$
 da $\delta_r = 1$, also $d_0 = 90^\circ$ nach

G1. (3-123)
$$\beta_0 = \arctan(c_m/u)$$
 (46-16)
G1. (3-123) $\beta_3 = \arctan[c_m/(u - c_{3u})]$ (16-17)
G1. (3-122) $\beta_{\infty} = \arctan[c_m/(u - c_{3u}/2)]$ (16-18)

G1. (3-125)
$$W_{\infty} = \sqrt{c_{m}^{2} + (u - c_{3u}/2)^{2}}$$
 (16-19)

G1. (3-109)
$$S_A \cdot \frac{L}{t} = \frac{2 \cdot Y_{Sch}}{u \cdot W_{oo}}$$
 (16-20)

Abschnitt 3.3.2
$$z_{La} = 3...7$$
 ausgeführt $z_{La} = 5$ Gl.(2-114) $\hat{\beta} = \beta_{\infty} + \delta$ (16-22)

Tafel 8 Profile 387 und 490
$$y_{max}/L = (\mathbf{5}_{A} - 0.092 \cdot \mathbf{5}^{\circ})/4.4$$
 Profil 623
$$y_{max}/L = (\mathbf{5}_{A} - 0.092 \cdot \mathbf{5}^{\circ})/4.0$$
 (16-23)

G1.(3-90) and G1. (3-95)

$$T = \arctan \mathcal{E} = \arctan(S_W/S_A)$$
 (16-24)

G1. (4-43):
$$r \approx 1 - c_{3u}/(2 \cdot u)$$
 (16-25)

G1.(3-125):
$$\beta_{St} = (\beta_0 + \beta_3)/2$$
 (16-26)

G1. (3-126):
$$\beta_{St}^* = \beta_{St} + \Delta \beta_{St}$$
 (16-27)

$$\Delta \beta_{\rm St} = 0.3...3$$
 angen. $\Delta \beta_{\rm St} = 1.5$
Für H₂0/20 °C $\vartheta = 1.004 \cdot 10^{-6} \, {\rm m}^2/{\rm s}$

Tafel 12: Für
$$H_2O/20$$
 °C $\vartheta = 1.004 \cdot 10^{-6}$ m²/s
Die Auswertung der Beziehungen erfolgt mit Hilfe von

Tab. 1. tabellarisch für die Zylinder-Schaufelschnitte(i), (m) und (a).

Festlegen der Leitschaufeln (nicht profiliert):

Leitrad mit Nabe ausgestattet und von gleichen Durchmessern wie Laufrad ausgeführt. Schaufeln als Kreisbogen ausgebildet und in gleichbleibender Dicke von \mathbf{s}_{Le} = 12 mm ausgeführt.

Schaufel-Anzahl: $z_{Le} = 7$ (> z_{La}) angenommen

Zum Vergleich zur Laufschaufelberechnung werden die Leitschaufeln nach der Stromfadentheorie (Unterabschnitt 7.2.2.3) ausgelegt.

Notwendige Beziehungen für die Berechnung:

G1. (7-113);
$$\tan d_5 = \mu \cdot T_5 \cdot \tan d_4$$

mit angen. $\mu = 1.05$ und $d_4 = d_3$
 $T_6 = t_6/(t_6 - O_6')$ wobei $t_6 = t_5$ und
 $da d_6 = 90^\circ$ ist $O_6' = s_6 = 12$ mm wird
 $T_6' = t_5/(t_5 - s_6)$

G1. (3-31):
$$p_{Le} = \gamma_{Le}' \cdot \frac{r^2}{z_{Le}' \cdot s}$$

G1. (3-36): $S = e_{Le}' \cdot r$

$$p_{Le} = \gamma_{Le}' \cdot \frac{r}{z_{Le}' \cdot e_{Le}}$$

Tab. 1. Laufschaufel-Werte für die Schnitte (i), (m) und (a). Tabellarische Auswertung.

Schaufelschnitt

Größe	GlNr.	Dim.	(i)	(m)	(a)
D		mm	300	480	660
u = D·π·n		m/s	9,11	14,58	20,05
cau=Ysch/u	9	m/s	5,08	3,18	2,31
β _o	16-16	۰	31,44	20,91	15,53
β_3	16-17	•	54,11	26,04	17,43
βοο	15-18	٥	40,29	23,21	16,42
w _∞	16-19	m/s	8,61	14,13	19,70
5 _A L/t	16-20	-	1,181	0,443	0,234
Llt (gewählt)	16-21	-	1,0	0,75	0,5
$S_A = \left(S_A + \frac{L}{t}\right) \left(\frac{L}{t}\right)$		-	1,181	0,533	0,468
Profil-Nr. n.Tafel	15-8	-	387	623	490
5 _W n. Tafel	15-8,e	-	0,023	0,014	0,009
	15-8,c	0	6,4	1,3	0,5
ĝ	16-22	۰	46,69	24,51	16,92
$t = D \cdot \pi / z_{La}$		mm	188,5	301,6	414,7
L= (L/t)·t		מחנח	222,6	226,2	207,4
3max/L	16-23	-	0,135	0,120	0,096
Утах		mm	30,5	27,1	19,9
۴	16-24	0	1,12	1,34	1,10
r	16-25	-	0,72	0,89	0,94
Re= Woo.L/V		-	1,9-106	3,2.106	4,1.10
β _{St}	16-26	۰	42,8	23,5	16,5
β'_{st}	16-27	0	44,5	25	18
$c_3 = \sqrt{c_{3m}^2 + c_{3u}^2}$		m s	7,54	6,41	6,03
$d_3 = arctan(\frac{c_{3m}}{c_{3u}})$		0	47,6	60,3	67,5

G1.(7-117):
$$\Psi'_{Le} = (1...1,2) \cdot (1 + A_6^0/60)$$

 $\alpha_6 = 95...100^{\circ}$, angen. $\alpha_6 = 97^{\circ}$
 $\alpha_{Le} = 1,1 \cdot (1 + 97/60) = 2,88$

Nach Überschlagsrechnung angenommen: $e_{Le} \approx 3 \cdot e_{La,(m)} = 3 \cdot L_{La,(m)} \cdot sin\beta_{St,(m)}$ $3 \cdot 226, 2 \cdot sin23,480$ [mm] = 270 mm

ausgeführt: e_{Le} = 300 mm

Damit

$$p_{Le} = 2.88/(7.0.3) \cdot r = 1.37 \cdot D/2$$

 $p_{Le} = 0.69 \cdot D [-]$ mit D in m

G1:(
$$\forall$$
-114): cota₆ = - ($p_{Le}/7_6$).cota₄

G1.(7-120):
$$g_{Le} = e_{Le}/(\cot a_5 - \cot a_6)$$

G1. (7-108):
$$a_{St}^1 = (a_5 + a_6)/2$$

 $\Delta a_{St} = 0.3...3^{\circ}$ angen. $\Delta a_{St} = 1.5^{\circ}$

Auch hier erfolgt das Auswerten der Beziehungen tabellarisch (Tab. 2).

Tab. 2. Leitschaufel-Werte für die Schnitte (i), (m) und (a). Tabellarische Auswertung.

_ v.		Schaufelschnitl		
Größe ————————————————————————————————————	Dim.	(i)	(m)	(a)
D	mm	300	480	660
d4=d3	0	47,6	60,3	67,5
$t_S = D_S \cdot \pi / z_{Le}$	mm	134,64	215,42	296,21
o's = ss/sinds = ss/sind+	mm	16,24	13,82	13
$\tau_5 = t_5/(t_5 - \sigma_5)$	-	1,14	1,07	1,05
$tands = tand_4 \cdot T_5 \cdot 1,05$	-	1,3123	1,9681	2,659
ds	0	52,7	63,1	69,4
75 - t5/(t5-55)	-	1,1	1,06	1,04
$P_{Le} = 1.37 \cdot 10^{-3} \cdot (D/2)$	-	0,21	0,33	0,45
d ₆	0	98,3	100,1	100,2
SLe	mm	400	478	567
d'st	۰	75,5	81,6	84,8
d _{St}	0	74	80,1	83,3

Mit den Tabellenwerten und Tafel 8 können die Beschauflungen von Laufrad (Tab. 1) und Leitrad (Tab. 2) gezeichnet werden.

In Bild 1 (Laufschaufel-Profile) und in Bild 2 (Leitschaufel-Profile) sind die Beschaufelungen gemäß den Rechenwerten prinzipiell dargestellt.

Bild 1. Laufschaufel-Profile für die Zylinderschnitte (i), (m) und (a).

Bild 2. Leitschaufel-Profil.