The Expressive Power of Pooling in Graph Neural Networks

Filippo Maria Bianchi

filippo.m.bianchi@uit.no @FilippoMBi1

Veronica Lachi

Motivation

- GNN expressiveness ↔ distinguish non-isomorphic graphs ↔ WL test.
- Expressivity studied only in flat GNNs.
- How to study expressiveness in hierarchical GNNs?

Conditions for Expressiveness

Let $\mathcal{G}_1 \neq_{WL} \mathcal{G}_2$, $X^L \in \mathbb{R}^{N \times F}$ and $Y^L \in \mathbb{R}^{M \times F}$ be the node features obtained after L MP layers and $\mathcal{G}_{1p} = POOL(\mathcal{G}_1^L)$ and $\mathcal{G}_{2p} = POOL(\mathcal{G}_2^L)$. If the following conditions hold:

- 1. $\sum_{i}^{N} x_{i}^{L} \neq \sum_{i}^{M} y_{i}^{L};$
- 2. For each node i, the memberships generated by SEL satisfy $\sum_{j=1}^K s_{ij} = \lambda$, $\lambda > 0$;
- 3. The function RED is of type RED: $(X^L, S) \mapsto X_P = S^T X^L$;

 \mathcal{G}_{1_p} and \mathcal{G}_{2_p} will have different nodes features.

Empirical Analysis

1. New dataset: EXPWL1

Contains pairs of non-isomorphic 1-WL distinguishable graphs.

Allows to empirically evaluate the expressive power of *any* GNN.

Pooling	s/epoch	GIN layers	Pool Ratio	Test Acc	Expressive
No-pool	0.33s	3	_	99.3 ± 0.3	√
DiffPool	0.69s	2+1	0.1	97.0 ± 2.4	\checkmark
DMoN	0.75s	2+1	0.1	99.0 ± 0.7	\checkmark
MinCut	0.72s	2+1	0.1	98.8 ± 0.4	\checkmark
ECPool	20.71s	2+1	0.2	100.0 ± 0.0	\checkmark
Graclus	1.00s	2+1	0.1	99.9 ± 0.1	\checkmark
k-MIS	1.17s	2+1	0.1	99.9 ± 0.1	
Top-k	0.47s	2+1	0.1	67.9 ± 13.9	X
PanPool	3.82s	2+1	0.1	$63.2 {\pm} 7.7$	X
ASAPool	1.11s	1+1	0.1	$83.5 {\pm} 2.5$	X
SAGPool	0.59s	1+1	0.1	79.5 ± 9.6	X
Rand-dense	0.41s	2+1	0.1	91.7 ± 1.3	✓
Cmp-Graclus	8.08s	2+1	0.1	91.9 ± 1.2	\checkmark
Rand-sparse	0.47s	2+1	0.1	62.8 ± 1.8	X

2. Expressiveness in practice

GNNs with expressive operators perform better on average on 13 benchmark datasets.

Dense operators are expressive and fast in modern deep learning pipelines.

Graph Pooling

Select Reduce Connect (SRC) framework [1]

Expressiveness of Existing Pooling Operators

[1] Grattarola et al. "Understanding Pooling in Graph Neural Networks", 2022.