Sol coso b:
$$\frac{1}{3} \le x \le \frac{1}{2}$$

Sol totale II: Unione tree a e b ms $\frac{1}{3} \le x \le 1$
 $\begin{vmatrix} x \ge \frac{1}{2} \\ \frac{1}{3} \le x \le 1 \end{vmatrix}$
 $\begin{vmatrix} x \ge \frac{1}{2} \\ \frac{1}{3} \le x \le 1 \end{vmatrix}$

b) Calcebrae $f(\frac{1}{2})$, $f(1)$
 $f(\frac{1}{2})$ = arcsin $\begin{vmatrix} 2(\frac{1}{2})^{-1} \\ \frac{1}{2} \end{vmatrix}$ + Varcton $(2, \frac{1}{2} - 1)$

= arcsin (0) + Varcton (0) =

e lample to $[\frac{1}{2}, \frac{1}{2}]$

if an seno $\in O$

Date isolare

 $f(1)$ = arcsin (1) + Varcton $(2 - 1)$

Sind=1 = arcsin (1) + Varcton $(2 - 1)$

if an seno $\in O$
 $f(1)$ = arcsin (1) + Varcton $(2 - 1)$

if an seno $\in O$
 $f(2)$ = arcsin (2) + arcsin $(2 - 1)$
 $f(2)$ = arcsin (2) + arcsin $(2 - 1)$
 $f(2)$ = arcsin (2) + arcsin $(2 - 1)$
 $f(2)$ = arcsin (2) + arcsin $(2 - 1)$
 $f(2)$ = arcsin (2) + arcsin $(2 - 1)$
 $f(2)$ = arcsin $(2 - 1)$ + arcsin $(2 - 1)$
 $f(2)$ = arcsin $(2 - 1)$ + arcsin $(2 - 1)$
 $f(3)$ = arcsin $(2 - 1)$ + arcsin $(2 - 1)$
 $f(3)$ = arcsin $(2 - 1)$ + arcsin $(2 - 1)$
 $f(3)$ = arcsin $(2 - 1)$ + arcsin $(2 - 1)$
 $f(3)$ = arcsin $(2 - 1)$ + arcsin $(2 - 1)$
 $f(3)$ = arcsin $(2 - 1)$ + arcsin $(2 - 1)$
 $f(3)$ = arcsin $(2 - 1)$ + arcsin $(2 - 1)$
 $f(3)$ = arcsin $(2 - 1)$ + arcsin $(2 - 1)$
 $f(3)$ = arcsin $(2 - 1)$ + arcsin $(2 - 1)$
 $f(3)$ = arcsin $(2 - 1)$ + arcsin $(2 - 1)$
 $f(3)$ = arcsin $(2 - 1)$ + arcsin $(2 - 1)$
 $f(3)$ = arcsin $(2 - 1)$ + arcsin $(2 - 1)$
 $f(3)$ = arcsin $(2 - 1)$ + arcsin $(2 - 1)$
 $f(3)$ = arcsin $(2 - 1)$ + arcsin $(2 - 1)$
 $f(3)$ = arcsin $(2 - 1)$ + arcsin $(2 - 1)$
 $f(3)$ = arcsin $(2 - 1)$ + arcsin $(3 - 1)$ = arcsin

$$\begin{cases} a+b & axccos(o) = \frac{a+\sqrt{a}}{2} \\ a+b & axccos(\frac{1}{2}) = 0 \end{cases}$$

$$\frac{\Omega_{RC} \cos \sqrt{\frac{1}{2}}}{\pi + \sqrt{\pi}} = \frac{\pi}{45}^{\circ} = \frac{\pi}{45}$$

$$QRCCOS \sqrt{\frac{1}{2}} = 45^{\circ} = \frac{\pi}{4}$$

$$\begin{cases} Q+b \cdot \frac{\pi}{2} = \frac{\pi+\sqrt{\pi}}{2} \\ Q+b \cdot \frac{\pi}{4} = 0 \end{cases}$$

$$\begin{cases} Q+b \cdot \frac{\pi}{4} = 0 \\ Q = -\frac{\pi}{4}b \end{cases}$$

$$\frac{1}{4} = \frac{1}{4}$$

$$\frac{1}{4} = \frac{1}{4}$$

$$\frac{1}{4} = \frac{1}{4}$$

$$0 = -\frac{\pi}{2} \left(1 + \frac{\pi}{\pi} \right) = -\frac{1}{2} \left(\pi + \pi \right)$$