On *p* vs *n* (# predictors vs # examples)

ML 4 Health, Supplementary

Suppose we have the following data

Patient	Predictor 1 (numeric)	Predictor 2 (numeric)	Outcome (numeric)
Α	.5	.75	1.5
В	1	.75	1.25

> Goal: find the linear equation that best predicts the outcome

Patient	x_1	\boldsymbol{x}_2	y
Α	.5	.75	1.5
В	1	.75	1.25

> Goal: find the linear equation that best predicts the outcome

$$b_1 \boldsymbol{x}_1 + b_2 \boldsymbol{x}_2 = \boldsymbol{y}$$

Goal: Predict y with x_1 , x_2

From a graphical perspective, our goal is to get as close as possible to y. We can now move in both the x_1 direction and the x_2 direction.

p = n

Can always* predict perfectly on training set

^{*}assuming linearly independent predictors

Goal: Predict y with x_1 , x_2

From a graphical perspective, our goal is to get as close as possible to y. We can now move in both the x_1 direction and the x_2 direction.

p = n

Can always* predict perfectly on training set

^{*}assuming linearly independent predictors