Chi-square Tests and Table Data

Dr Tom Ilvento

Department of Food and Resource Economics

We looked this data earlier as a proportion problem

Geneticists have identified E2F1 transcription factor as an important component of cell proliferation control. The researchers induced DNA synthesis in two batches of serum-starved cells. In one group of 92 cells (treatment), cells were micro-injected with the E2F1 gene. A control group of 158 cells was not exposed to E2F1. After 30 hours, researchers determined the number of altered growth cells in each batch. The data are given below.

	Altered	Not Altered	Row Total
E2FI	41	51	92
Control	15	143	158
Column Total	56	194	250

Overview

- Next we will look at approaches when we have two or more variables - a step further than difference of means or proportions
- We will start with contingency table data two variables that are cross-tabulated with each other
- The variables are usually categorical, although they could be ordinal
- We will introduce the chi-square goodness of fit test to our previous notion of a "model of independence"
- Along with some measures of association

2

What would our data look like if the two variables were independent?

- By now you might realize that one strategy in statistics is to propose a hypothesized value and then compare what we observe to what is expected under the Null hypothesis
- We could propose a model of independence.
 - If our variables were independent of each other, then the data would be based only on the marginal distributions
 - We have already done this in previous lectures a model of independence
- If there are substantial differences between what we observe and what we expect, it would cast doubt on the expectations under the Null Hypothesis

.

Observed versus Expected

Observed Frequencies from our Experiment					
	Altered Not Altered Row Total				
E2FI	41	51	92		
Control	15	143	158		
Column Total	56	194	250		

Expected Frequencies from Model of Independence					
	Altered Not Altered Row Total				
E2FI	20.608	71.392	92		
Control	35.392	122.608	158		
Column Total	56	194	250		

5

How do we solves for the Expected Frequencies?

- Remember, I wanted a model of independence, which means
 - $P(B|A) = P(A \cap B)/P(A) = P(B)$
 - $P(A|B) = P(A \cap B)/P(B) = P(A)$
- A simple way to make this happen is make the expected frequencies a function of the row and column marginals

6

Solving for Expected Frequencies

• Altered, E2F1 = (56*92)/250 = 5,152/250 = 20.608

• Altered, Control = (56*158)/250 = 8,848/250 = **35.392**

• Not Altered, E2F1 = (194*92)/250 = 17,848/250 = 71.392

• Not Altered, Contro = (194*158)/250 = 30,652/250 = 122.608

Expected Frequencies from Model of Independence						
	Altered Not Altered Row Total					
E2F1	20.608	71.392	92			
Control	35.392	122.608	158			
Column Total	56	194	250			

The value of our model

- Generating expected frequencies under a model can be very useful
- We can compare our model to the data to see how well the data fits the expected frequencies – how we do this will come later!
- Depending upon our model, we may or may not want to see a good fit.
 - With a Model of Independence, we often don't want a good fit!
 - Because a bad fit means there is a relationship between the two variables

If two variables are not independent, they are related to each other!

7

Chi-Square Test for Independence

- We are now ready to make an inference
- In order to do this we need:
 - Data from a random sample which gives us Observed Frequencies Oii
 - Expected frequencies based on a model of Independence Eii
 - Knowledge of the form of the Sampling Distribution: Chi-square. denoted as x2
 - A Hypothesis Test The test for a Model of Independence

i for row position j for column position For our data, i = 2 and j = 2It is a 2x2 Table

9

П

χ² Distribution

- The Chi-square distribution is a positive skewed distribution defined by degrees of freedom.
 - The mean of a chi square distribution is the d.f., and the variance is 2*d.f.
 - The Chi-square distribution is positively skewed (right skewed), but less so as the d.f. increase. As the d.f. increase the chi-square distribution approximates a normal distribution
- The degrees of freedom for the contingency table test is:
 - (Rows-1)*(Columns-1)
- For our data, the degrees of freedom is:
 - (2-1)*(2-1) = (1)*(1) = 1 d.f.
- The Chi-square distribution is involved in the t-distribution, the F-distribution, and also can be used to test hypotheses about variances and other, very general tests.

χ^2 Test for Independence

- The Chi-square test for independence seeks to determine if a relationship exists between two categorical variables
- This test is done by setting up a model of independence
- And seeing if the observed data depart from this model sufficiently to rule out independence
- The alternative hypothesis is that the variables are associated or related to each other
- This test is also known as the **Pearson Chi-square** Test or the Chi-square Goodness of Fit Test

10

Chi-Square Table

- When we look at the Probability Density Function (PDF) of the Chi-square distribution, we will look at probabilities of alpha, the probability of a Type I error.
- We focus on the probability in the right tail.
- Look at this partial table
 - The Chi-Square table is organized by degrees of freedom as the rows
 - And the level of alpha as the columns

For an α level of .05 and I d.f., the critical value of χ^2 is 3.841.

Our Tests Statistics needs to be larger than this to reject the Null Hypothesis

Chi Square Distribution Table

			F	Area to t	ne Rign	t of the	Critical	value		
DF	0.995	0.990	0.975	0.950	0.900	0.100	0.050	0.025	0.010	0.005
1	0.000	0.000	0.001	0.004	0.016	2.706	3.841	5.024	6.635	7.879
2	0.010	0.020	0.051	0.103	0.211	4.605	5.991	7.378	9.210	10.597
3	0.072	0.115	0.216	0.352	0.584	6.251	7.815	9.348	11.345	12.838
4	0.207	0.297	0.484	0.711	1.064	7.779	9.488	11.143	13.277	14.860
5	0.412	0.554	0.831	1.145	1.610	9.236	11.070	12.833	15.086	16.750
6	0.676	0.872	1.237	1.635	2.204	10.645	12.592	14.449	16.812	18.548
7	0.989	1.239	1.690	2.167	2.833	12.017	14.067	16.013	18.475	20.278
8	1.344	1.646	2.180	2.733	3.490	13.362	15.507	17.535	20.090	21.955
9	1.735	2.088	2.700	3.325	4.168	14.684	16.919	19.023	21.666	23.589

2.156 2.558 3.247 3.940 4.865 15.987 18.307 20.483 23.209 25.188

χ^2 Test for Independence

- We will use the following test statistic for the Chi-square test for independence, x2*
- Where:
 - Oii is the Observed frequency for row i and column j
 - Eij is the Expected frequency for row i and column i
 - d.f. for the test is (r-1)*(c-1)

$$\chi^{2*} = \sum_{ii} \frac{(O_{ij} - E_{ij})^2}{E_{ii}}$$

13

15

χ^2 Test for Independence

- Ho: Independence: the row and column variables are independent
- Ha: Association: There is a relationship between the two variables
- Assumptions:
 - Random samples
 - All expected frequencies are greater than or equal to one
 - No more than 20% of expected frequencies are less than 5
- Test Statistic: $\chi^{2*} = \sum \frac{O_{ij}^2}{E_{ij}} \sum O_{ij}$
- Rejection Region: χ²α, (r-1)(c-1) d.f
- Decision: If $\chi^2 * > \chi^2_{\alpha, (r-1)(c-1) d.f}$ then reject Ho

Computational Formula

$$\chi^{2*} = \sum_{ij} \frac{(O_{ij} - E_{ij})^{2}}{E_{ij}} =$$

$$\chi^{2*} = \sum \frac{(O_{ij} - E_{ij})^{2}}{F} = \sum \frac{O_{ij}^{2} - 2O_{ij}E_{ij} - E_{ij}^{2}}{F}$$

- There is a computational formula
- It results in the same test statistic
- $\chi^{2*} = \sum_{ij} \frac{(O_{ij} E_{ij})^{2}}{E_{ii}} = \sum_{ij} \frac{O_{ij}^{2} 2O_{ij}E_{ij} E_{ij}^{2}}{E_{ii}}$ But is more simple and has less rounding error. rounding error

$$\chi^{2*} = \sum_{y} \frac{(O_{iy} - E_{iy})^{2}}{E_{iy}} = \sum_{y} \frac{O_{iy}^{2} - 2O_{iy}E_{iy} - E_{iy}^{2}}{E_{iy}} = \sum_{y} \frac{O_{iy}^{2}}{E_{iy}} - \sum_{y} 2O_{iy} + \sum_{y} E_{iy}$$

$$\chi^{2*} = \sum_{ij} \frac{O_{ij}^2}{E_{ij}} - \sum_{ij} O_{ij}$$
 I. Take each observed cell frequency 2. Square it 3. Divide by the expected cell frequency

- 4. Add them all together
- 5. Subtract n

14

Calculating χ^2 *

$$\chi^{2*} = \sum_{ij} \frac{(O_{ij} - E_{ij})^{2}}{E_{ij}} = \chi^{2*} = \sum_{ij} \frac{O_{ij}^{2}}{E_{ij}} - \sum_{ij} O_{ij}$$

			ij L_{ij}	ij	ij ij
rc	Observed	Expected	$\begin{array}{c} \text{Cell} \\ \text{contribution} \\ \text{of } \chi^2 * \end{array}$	O ²	O ² /E
П	41	20.608	20.178	1,681	81.570
12	51	71.392	5.825	2,601	36.433
21	15	35.392	11.749	225	6.357
22	143	122.608	3.392	20,449	166.784
TOTAL	250	250	41.144		291.144

•
$$\chi^2 = 291.144 - 250 = 41.144$$

Hypothesis Test for Altered Cell data

Alternative Hypothesis

Ha: Association

Ho: Independence

Assumptions

• Null Hypothesis

 All expected cells > 1; few to none < 5

Test Statistic

 \bullet $\chi^2 = 41.144$

• Rejection Region

• χ^{2} .05, 1 d.f. = 3.841

Conclusion

χ²* > χ².05, 1 d.f.
41.144 > 3.841

• Reject Ho: Independence 17

Hypothesis Test for Altered Cell data

- We found there was a significant difference between the sample data that we observed and the expected data under a model of independence.
- The Chi-Square test results implies that there is a relationship in the data, and that it is not likely that the relationship happened by chance.
- Note: The x2 test should agree with the difference in proportion test for a 2x2 table.
- The Chi-square test is a very general test. Once we established a relationship, we should move to explore it more deeply
 - Look at conditional probabilities
 - A cell's contribution to chi-squared
 - Odds and odds ratios
 - Other Measures of Association

18

Measures of Association

- Measures of Association summary measures that tell us the presence, direction, and strength of a relationship between two or more variables
- Key criteria of a measure of association
 - What is the range?
 - Is it bounded or either or both ends?
 - Does it show direction?
 - Is it symmetrical?
 - What are the underlying assumptions?
 - How do I interpret it at the extremes and in the middle

Examples: test statistic; odds ratio, conditional probability, correlation coefficient, R2, chi-square

Measures of Association for Table Data

- For Table Data, what Measures of Association depends upon
 - the complexity of the table (how many rows and columns)
 - Whether the levels are ordered or not
 - and whether you are able to specify one variable at dependent (or the response) variable.
- Measures of Association we will discuss
 - χ^2 very weak measure of association
 - Kramer's V
 - Phi d
 - Contingency Coefficient P
 - Rho p
 - Odds Ratio
 - Yules Q

20

Entering the data into JMP

Subject

1

2

3

4

5

6

7

Tretatment

E2F1

E2F1

Control

Control

Control

Control

Cell Result

Not Altered

Altered

Not Altered

Not Altered

Not Altered

Altered

Altered

- The data can be in the classic form - each row is a subject and the columns represent each variable
- Or, most programs allow vou to enter in data in summary form. For example, for our 2x2 table:

	8		E2	2FI	Altered	
	250		Co	ntrol	Altered	
						1
eatmen	t	Cell	s	FREQ		
E2FI		Altere	ed		41	
E2FI		Not Altered		51		
Control		Altere	ed		15	

•	r1 c1	count

r1 c2 count

r2 c1 count

r2 c2 count

Treatment	Cells	FREQ
E2FI	Altered	41
E2F1	Not Altered	51
Control	Altered	15
Control	Not Altered	143

21

23

Likelihood Ratio Chi-Square

- Most programs will give the Likelihood Ratio Chi-Square, sometimes referred to as G
- The Likelihood Ratio Chi-Square is very similar to Pearson's Chi-square in its results and its interpretation
- It is also based on observed and expected frequencies
- It is believed to have better asymptotic properties, especially in more complex modeling
- It would be rare that this result would not agree with the Pearson Chi-square
 - G = 40.347, p < .0001
 - χ^2 = 41.144, p < .0001

 $G = 2\sum_{ij} O_{ij} * \ln \left(\frac{O_{ij}}{E_{ii}} \right)$

IMP Output

Contingency Analysis of Cell By Treatment • The chi-square test reveals there is a significant Freq: FREQ Contingency Table Cell Altered Not Alte Count Row % Expected Cell Chi^2 E2F1 51 44.57 55.43 20.608 71.392

20.1783 5.8247

15 143 9.49 90.51

35.392 122.608

Odds Ratio Odds Ratio Lower 95% Upper 95% 7.664052 3.91278 15.01175

- relationship between the treatment and the response, p-value < .0001.
- Looking at the row percentages, the cells that received E2F1 showed a much higher percentage that were altered (44.57% vs 9.49% for the control)
- The contributions to chi-square show that almost 78% of χ^{2} * is due to two cells where the expected frequencies are much different from the observed frequencies
- for cell 1,1 (20.178) where observed for Altered E2FI was higher than expected
- cell 2,1 (11.749) where observed for Altered Control was lower than expected
- The odds ratio for E2FI being altered vs the control being altered is 7.66 - E2F1 was nearly 7.7 times more likely to be altered.

22

Various ways to analyze the same data

- For a 2x2 table, we can:
 - A difference of proportion test
 - Conduct a χ^2 test of Independence
 - Conduct a test of the Odds Ratio

$$S.E_{\log odds} = \sqrt{\frac{1}{n_{11}} + \frac{1}{n_{12}} + \frac{1}{n_{21}} + \frac{1}{n_{22}}}$$

$$S.E_{\text{log} odds} = \sqrt{\frac{1}{41} + \frac{1}{51} + \frac{1}{15} + \frac{1}{143}} = .34301$$

- $z^* = 6.414$, p < .001
- χ^2 = 41.144, p < .001
- This test involves taking the natural log of the odds
 - Ho: In(Odds) = 0
 - Standard error is a function of cell n
- $z^* = [ln(7.664)-0]/.343$
- z* = 5.937, p < .001

All these tests agree in their result - there is a difference between the treatment (E2FI) and the control group

Summary

- We established a way to test for a relationship in categorical (or ordinal) data in tables
- It is based on the difference of observed frequencies compared to expected frequencies under a specific model
- The model we looked at in a model of independence as if there is no relationship between the two variables
- To test this, we used the chi-square distribution
- This is still based on the notion of a sampling distribution and that the relationship we observe could be by chance – we want to rule out the notion of chance
- Once we establish a relationship, we can move to explore the exact nature of that relationship with various measures of association

