This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

THIS PAGE BLANK (USPTO)

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

11-274982

(43)Date of publication of application: 08.10.1999

(51)Int.CI.

HO4B HO4B

(21)Application number: 10-079892

(71)Applicant:

SONY CORP

(22)Date of filing:

26.03.1998

(72)Inventor:

UNO MASAHIRO

(54) DEMODULATOR AND DEMODULATION METHOD

(57)Abstract:

PROBLEM TO BE SOLVED: To further reduce the power consumption of a demodulator in comparison to that of a conventional demodulator,

without deteriorating the reception quality.

SOLUTION: This demodulator is provided with a delay profile measurement means 41 that measures a delay profile of a base band signal, while changing a measurement time to measure a delay profile S41 of the base band signal S6 to minimize the measurement time and avoiding deterioration in reception power level to thereby further reduce power consumption in comparison to conventional demodulators, without deteriorating the reception quality.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2000 Japan Patent Office

THIS PAGE BLANK (USPTO)

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-274982

(43)公開日 平成11年(1999)10月8日

(51) Int.Cl. ⁶		識別記号	FΙ		
H04B	1/707		H 0 4 J	13/00	D
	1/16		H 0 4 B	1/16	Z
	7/26			7/26	X

		審查請求	未請求 請求項の数18 OL (全 13 頁)	
(21)出願番号	特顧平10-79892	(71)出願人	000002185 ソニー株式会社	
(22)出顧日	平成10年(1998) 3 月26日		東京都品川区北品川6丁目7番35号	
		(72)発明者	宇野 雅博	
		東京都品川区北品川6丁目7番35号ソニー 株式会社内		
		(74)代理人	弁理士 田辺 恵基	

(54) 【発明の名称】 復調装置及び復調方法

(57)【要約】

【課題】本発明は、復調装置に関し、受信品質を劣化させることなく従来に比して一段と消費電力を低減し得るようにする。

【解決手段】ベースバンド信号(S6)の遅延プロファイル(S41)を測定する測定時間を変化させながら、当該ベースバンド信号の遅延プロフアイルを測定する遅延プロフアイル測定手段(41)を設けることにより、受信電力レベルの劣化を回避しながら測定時間を必要最低限に抑えることができ、かくして受信品質を劣化させることなく従来に比して一段と消費電力を低減し得る。

1

【特許請求の範囲】

【請求項1】複数の逆拡散回路を有し、スペクトラム拡散変調されて伝送されてきたベースバンド信号を、上記複数の逆拡散回路によつてそれぞれ異なるタイミングの擬似雑音符号で逆拡散した後、上記複数の逆拡散回路からの出力を合成する復調装置において、

上記ベースバンド信号に含まれ、それぞれ異なる遅延時間で受信された複数の散乱波の電力レベルを示す遅延プロフアイルを測定するための測定時間を変化させながら、当該ベースバンド信号の上記遅延プロフアイルを測定する遅延プロフアイル測定手段と、

上記遅延プロフアイル測定手段によつて測定された上記遅延プロフアイルを基に、上記ベースバンド信号に含まれる複数の散乱波のうち所望の数の散乱波を選択して、これら選択した散乱波の各受信タイミングを、対応する上記複数の逆拡散回路にそれぞれ割り当てて上記各擬似雑音符号の発生タイミングを決定する割当手段とを具えることを特徴とする復調装置。

【請求項2】上記遅延プロフアイルから当該遅延プロフアイルの標準偏差でなる遅延スプレツドを算出し、当該遅延スプレツドを基に上記測定時間を決定する遅延スプレツド測定手段を具え、上記割当手段は、上記ベースバンド信号に含まれる複数の散乱波のうち、電力レベルが大きい散乱波から順に選択することを特徴とする請求項1に記載の復調装置。

【請求項3】上記複数の逆拡散回路からの出力を合成した合成結果を基に現在の受信品質を測定し、当該受信品質と最低限必要な受信品質とを比較する受信品質測定手段を具え、上記遅延スプレツト手段は、上記受信品質測定手段から出力される比較結果に基づいて、上記現在の受信品質が上記最低限必要な受信品質よりも劣る場合には、上記測定時間を長く設定し、上記現在の受信品質が上記最低限必要な受信品質よりも高い場合には、上記測定時間と同一か又は当該測定時間を短く設定することを特徴とする請求項2に記載の復調装置。

【請求項4】上記遅延プロフアイル測定手段は、 上記割当手段から供給される測定時間に基づいて当該ベースバンド信号の遅延プロフアイルを測定し、 上記割当手段は、

上記遅延プロフアイル測定手段によつて測定された上記 遅延プロフアイルを基に、上記ベースバンド信号に含ま れる複数の散乱波のうち、電力レベルが大きい散乱波か ら順に選択し、これら選択した散乱波を含む時間範囲を 測定時間に設定して上記遅延プロフアイル測定手段に与 えることを特徴とする請求項1に記載の復調装置。

【請求項5】上記複数の逆拡散回路からの出力を合成した合成結果を基に現在の受信品質を測定し、当該受信品質と最低限必要な受信品質とを比較する受信品質測定手段を具え、上記遅延プロフアイル測定手段は、上記受信品質測定手段から出力される比較結果に基づいて、上記

現在の受信品質が上記最低限必要な受信品質よりも劣る場合には、上記測定時間を長く設定し、上記現在の受信品質が上記最低限必要な受信品質よりも高い場合には、上記測定時間と同一か又は当該測定時間を短く設定することを特徴とする請求項4に記載の復調装置。

2

【請求項6】上記遅延プロフアイル測定手段は、 上記割当手段から供給される測定時間に基づいて当該ベースバンド信号の遅延プロフアイルを測定し、 上記割当手段は、

10 上記遅延プロフアイル測定手段によつて測定された上記 遅延プロフアイルを基に、上記ベースバンド信号に含ま れる複数の散乱波のうち、その電力レベルが必要最低限 の通話品質を確保し得るだけの電力レベルを越える散乱 波を選択し、これら選択した散乱波を含む時間範囲を測 定時間に設定して上記遅延プロフアイル測定手段に与え ることを特徴とする請求項1に記載の復調装置。

【請求項7】上記複数の逆拡散回路からの出力を合成した合成結果を基に現在の受信品質を測定し、当該受信品質と最低限必要な受信品質とを比較する受信品質測定手段を具え、上記遅延プロフアイル測定手段は、上記受信品質測定手段から出力される比較結果に基づいて、上記現在の受信品質が上記最低限必要な受信品質よりも劣る場合には、上記測定時間を長く設定し、上記現在の受信品質が上記最低限必要な受信品質よりも高い場合には、上記測定時間と同一か又は当該測定時間を短く設定することを特徴とする請求項6に記載の復調装置。

【請求項8】上記遅延プロフアイル測定手段は、 上記割当手段から供給される測定時間に基づいて当該ベースバンド信号の遅延プロフアイルを測定し、 上記割当手段は、

上記遅延プロフアイル測定手段によつて測定された上記遅延プロフアイルを基に、必要最低限の通話品質を確保し得るだけの電力レベルを越える散乱波のうち、電力レベルが大きいものから順に所望の数の散乱波を選択し、これら選択した散乱波を含む時間範囲を測定時間に設定して上記遅延プロフアイル測定手段に与えることを特徴とする請求項1に記載の復調装置。

【請求項9】上記複数の逆拡散回路からの出力を合成した合成結果を基に現在の受信品質を測定し、当該受信品質と最低限必要な受信品質とを比較する受信品質測定手段を具え、上記遅延プロフアイル測定手段は、上記受信品質測定手段から出力される比較結果に基づいて、上記現在の受信品質が上記最低限必要な受信品質よりも劣る場合には、上記測定時間を長く設定し、上記現在の受信品質が上記最低限必要な受信品質よりも高い場合には、上記測定時間と同一か又は当該測定時間を短く設定することを特徴とする請求項8に記載の復調装置。

【請求項10】複数の逆拡散回路を有し、スペクトラム 拡散変調されて伝送されてきたベースバンド信号を、上 記複数の逆拡散回路によつてそれぞれ異なるタイミング

の擬似雑音符号で逆拡散した後、上記複数の逆拡散回路 からの出力を合成する復調装置の復調方法であつて、 上記ベースバンド信号に含まれ、それぞれ異なる遅延時 間で受信された複数の散乱波の電力レベルを示す遅延プ ロフアイルを測定するための測定時間を変化させなが ら、当該ベースバンド信号の上記遅延プロフアイルを測 定し、

測定された上記遅延プロフアイルを基に、上記ベースバンド信号に含まれる複数の散乱波のうち所望の数の散乱波を選択して、これら選択した散乱波の各受信タイミングを、対応する上記複数の逆拡散回路にそれぞれ割り当てて上記各擬似雑音符号の発生タイミングを決定することを特徴とする復調方法。

【請求項11】上記遅延プロフアイルから当該遅延プロフアイルの標準偏差でなる遅延スプレツドを算出し、当該遅延スプレツドを基に上記測定時間を決定し、

当該測定時間に基づいて上記ベースバンド信号の上記遅延プロフアイルを測定し、

当該遅延プロフアイルを基に、上記ベースバンド信号に 含まれる複数の散乱波のうち、電力レベルが大きい散乱 波から順に選択することを特徴とする請求項10に記載 の復調方法。

【請求項12】上記複数の逆拡散回路からの出力を合成 した合成結果を基に現在の受信品質を測定し、当該受信 品質と最低限必要な受信品質とを比較し、

その比較結果に基づいて、上記現在の受信品質が上記最低限必要な受信品質よりも劣る場合には、上記測定時間を長く設定し、上記現在の受信品質が上記最低限必要な受信品質よりも高い場合には、上記測定時間と同一か又は当該測定時間を短く設定することを特徴とする請求項11に記載の復調方法。

【請求項13】測定された上記遅延プロフアイルを基に、上記ベースバンド信号に含まれる複数の散乱波のうち、電力レベルが大きい散乱波から順に選択し、これら選択した散乱波を含む時間範囲を測定時間に設定し、当該測定時間に基づいて上記ベースバンド信号の遅延プロフアイルを測定することを特徴とする請求項10に記載の復調方法。

【請求項14】上記複数の逆拡散回路からの出力を合成 した合成結果を基に現在の受信品質を測定し、当該受信 品質と最低限必要な受信品質とを比較し、

その比較結果に基づいて、上記現在の受信品質が上記最低限必要な受信品質よりも劣る場合には、上記測定時間を長く設定し、上記現在の受信品質が上記最低限必要な受信品質よりも高い場合には、上記測定時間と同一か又は当該測定時間を短く設定することを特徴とする請求項13に記載の復調方法。

【請求項15】測定された上記遅延プロフアイルを基 に、上記ベースバンド信号に含まれる複数の散乱波のう ち、その電力レベルが必要最低限の通話品質を確保し得 るだけの電力レベルを越える散乱波を選択し、これら選択した散乱波を含む時間範囲を測定時間に設定して、当該測定時間に基づいて当該ベースバンド信号の遅延プロ

フアイルを測定することを特徴とする請求項10に記載 の復調方法。

【請求項16】上記複数の逆拡散回路からの出力を合成 した合成結果を基に現在の受信品質を測定し、当該受信 品質と最低限必要な受信品質とを比較し、

その比較結果に基づいて、上記現在の受信品質が上記最 10 低限必要な受信品質よりも劣る場合には、上記測定時間 を長く設定し、上記現在の受信品質が上記最低限必要な 受信品質よりも高い場合には、上記測定時間と同一か又 は当該測定時間を短く設定することを特徴とする請求項 15に記載の復調方法。

【請求項17】測定された上記遅延プロフアイルを基に、必要最低限の通話品質を確保し得るだけの電力レベルを越える散乱波のうち、電力レベルが大きいものから順に所望の数の散乱波を選択し、これら選択した散乱波を含む時間範囲を測定時間に設定して、当該測定時間に基づいて当該ベースバンド信号の遅延プロフアイルを測定することを特徴とする請求項10に記載の復調方法。

【請求項18】上記複数の逆拡散回路からの出力を合成 した合成結果を基に現在の受信品質を測定し、当該受信 品質と最低限必要な受信品質とを比較し、

その比較結果に基づいて、上記現在の受信品質が上記最低限必要な受信品質よりも劣る場合には、上記測定時間を長く設定し、上記現在の受信品質が上記最低限必要な受信品質よりも高い場合には、上記測定時間と同一か又は当該測定時間を短く設定することを特徴とする請求項17に記載の復調方法。

【発明の詳細な説明】

[0001]

【目次】以下の順序で本発明を説明する。

【0002】発明の属する技術分野

従来の技術(図6~図11)

発明が解決しようとする課題

課題を解決するための手段

発明の実施の形態(図1~図5)

発明の効果

0 [0003]

【発明の属する技術分野】本発明は復調装置及び復調方法に関し、例えば携帯電話機に適用して好適なものである。

[0004]

【従来の技術】従来、普及の著しい移動体通信システムとして携帯電話機がある。この携帯電話機の通信方式としては種々の方式が提案されているが、その代表的なものとして符号分割多元接続(CDMA: Code Division Multiple Access)方式がある。CDMA方式は、例えば米国においてIS-95(Interim Standard-95)規

4

格として提案及び実用化され、また近年、国際電気通信連合(ITU:International Telecommunication Union)によつて行われている、IMT2000(International Telecommunication Union 2000)と呼ばれる次世代移動体通信方式の標準化プロジエクトにおいても、次世代の有力な通信方式の候補として注目されている。

【0005】CDMA方式は、送信側では、送るべき符号列とその符号速度に比して非常に高速度の拡散符号列とを乗算することにより当該符号列を拡散し、受信側では、送信時に用いられた拡散符号列と同一の拡散通信号の拡散する、いわゆるスペクトラム拡散通信方式である。この拡散符号列としては、一般に最大周期符号列が用いられる。最大周期符号列が用いられる。最大周期符号列が出た。最大周期符号列が相関が独立であるといううとと、その自己相関関数がインパルス状であるという性質を有する符号列である。これにより受信側では、送信側と同一であつて、かつ同一タイミングの拡散符号系のを、受信した符号列に乗算しないと復調し得ない。従つ

$$\sum_{j=0}^{J} c_{j} c_{(j+k)} *_{J_{MAX}} = \delta(k) = \begin{cases} A(k=0) \\ 0(k \neq 0) \end{cases} \dots \dots (1)$$

【0008】によつて求められる。ただし、c*は拡散符号cの複素共役を示し、%は剰余演算を示す。

【0009】また拡散符号cjと同一周期J_{MAX}の異な

$$\sum_{j=0}^{j=0} c_{j} c' * (j+k) *_{J_{MAX}} = 0$$

【0011】によつて示される。送信側において拡散符号 c_j を用いて行われる送信信号 s_i の拡散は、次式

$$x(iT_{sym} + jT_{chip}) = s_i c_j$$

【0013】によつて表される。この場合、図6に示すように、送信信号 s_i のシンボル長 T_{sym} (図6

- (A)) は、拡散符号 cj のチップ長 Tchip (図 6
- (B)) に比して非常に長いことから、拡散された送信信号 \mathbf{x}_j は、元の送信信号 \mathbf{s}_i より非常に広帯域に拡散されている(図 $\mathbf{6}$ (C))。

てCDMA方式は、伝送内容が第3者に漏洩しにくく、 秘匿性に優れている通信方式である。またCDMA方式 は、移動局毎に異なる拡散符号列を割り当てることによ り、同一周波数を用いても干渉問題が発生しないように なされている。

【0006】以下、スペクトラム拡散の原理について説明する。ここで送信信号を s_i とする。送信信号 s_i は、長さ T_{sym} のシンボル長でなる複素数の信号列であり、iは時系列のシンボル番号を示す。また拡散符号を c_j とする。この拡散符号 c_j は、長さ T_{chip} のチツプ長でなる複素数の信号列であり、jは時系列シンボル番号で、その最大値をJとする。拡散符号 c_j は、周期 J_{MAX} の最大周期符号列と呼ばれるものであり、その自己相関関数がインパルス状でなるものである。すなわち自己相関関数は、次式

【数1】

る拡散符号 c_j とは独立でありこれは、次式

[0010]

【数2】

····· (2)

[0012]

【数3】

····· (3)

【0014】これに対して受信側では、送信側と同一の符号列であつて、かつ同一タイミングの拡散符号を用いることにより、次式

[0015]

【数4】

$$y (i T_{sym}) = \sum_{j=1}^{J} x (i T_{sym} + j T_{chip}) c_{j}^{*}$$

$$= s_{i} \sum_{j=1}^{J} c_{j} c_{j}^{*} = A \theta_{i} \qquad (4)$$

【0016】によつて逆拡散され、送信信号 s_i が復調 される。仮に、受信側において発生される拡散符号のタ イミングがずれた場合には、受信側は、次式 [0017]

【数5】

:.

$$y(iT_{sym}) = \sum_{i=1}^{J} x(iT_{sym} + jT_{chip}) c_{i}^{*}$$

$$= s_{i} \sum_{j=1}^{i} c_{j} + k c_{j}^{*} = 0 \qquad \dots \dots (5)$$

【0018】によつて逆拡散を行い、送信信号 s_i を復調し得ない。このようにスペクトラム拡散通信においては、送信側で用いられた符号列と同一であつて、かつ同一タイミングの逆拡散符号を受信信号に畳み込むことによつて、当該受信信号を復調し得る。

【0019】ところで携帯電話機においては、その受信レベルが刻々と変動するマルチパスフエージングが発生する。以下、このマルチパスフエージングについて図7及び図8を用いて説明する。基地局からの電波は、建物などによつて反射及び回折等されて複数の散乱波なつて伝送されてくる。携帯電話機は、それぞれの伝搬路を介して伝送される複数の散乱波を受信することになる。例えば図7に示すように、複数の散乱波1は、携帯電話機を搭載した車両1のアンテナ3によつて受信される。従つて携帯電話機は、これら複数の散乱波を合成して復調

するようになされている。

【0020】これら散乱波の各伝搬路においては、その 伝搬時間がそれぞれ互いに異なることから、その伝搬特 10 性がそれぞれ所定の周波数応答を有し、これによつて受 信信号に符号間干渉と呼ばれる線形歪が発生する。この 符号間干渉とは、所定のシンボルの受信タイミングにおいて、伝搬路のインパルス応答に従つて前後のシンボルの影響が加算されることにより、符号判定誤りが増加する現象であり、一般には各散乱波の遅延時間 τが、拡散 符号のチップ長 T chip と同程度か又はそれ以上のときに 符号判定誤りが著しく増加する。このような散乱波による伝搬路は、次式

[0021]

20 【数6】

 $h(t) = a_1 \delta(t-\tau_1) + a_2 \delta(t-\tau_2) + a_3 \delta(t-\tau_3) \cdots$

$$=\sum_{n=1}^{N}a_{n} \delta(t-\tau_{n})$$

【0022】によつて表される。ただし、Nは散乱波の数、 a_n は各散乱波の減衰量と位相回転を示す複素ゲイン、 τ_n は各散乱波の遅延時間を示し、これらN、 a_n 、 τ_n の各値はランダムに変化するものである。従つて線形歪も時々刻々に変化することになる。

【0023】このようなマルチパスフエージングによつて発生する線形歪を補正する受信装置として、RAKE (レイク)受信機がある。レイク受信機は、マルチパスフエージングによる多重波を伝搬路毎に分離して複数の散乱波を生成し、当該各散乱波を逆拡散して合成することで、線形歪を低減し得るようになされている。以下、このレイク受信機について図8を用いて説明する。

【0024】レイク受信機10は、アンテナ11によつて受信した受信信号S1を高周波増幅器12に入力する。高周波増幅器12は、受信信号S1を増幅し、その結果得た高周波信号S2を周波数変換器13に出力する。周波数変換器13は、高周波信号S2の周波数変換を行い、その結果得た中間周波信号S3を中間周波増幅器14は、中間周波信号S3を増幅し、中間周波信号S4をフイルタ15に出力する。フイルタ15は、中間周波信号S4から帯域外の不要成分やノイズを除去し、その結果得られる中間周波信号S5を直交検波器16に出力する。

【0025】直交検波器16は、中間周波信号S5を直

..... (6)

交検波方式の復調方式に基づいて復調し、その結果得られるベースバンド信号S6を復調器17に出力する。復調器17は、ベースバンド信号S6を逆拡散するなどし30 て復調データ7を生成し、これを誤り訂正回路18に出力する。誤り訂正回路18は、復調データS7の誤り訂正を行い、その結果得られる復調データS8を音声復号器19に出力する。音声復号器19は、復調データS8に対して所定の復号化処理を施し、その結果得た音声信号S9をスピーカ20を介して外部に出力する。

【0026】ここで復調器17の構成について具体的に 説明する。復調器17は、直交検波器18から出力され るベースバンド信号S6をアナログデイジタル変換器3 0に入力する。アナログデイジタル変換器30は、ベー スバンド信号S6をアナログデイジタル変換し、その結 果得た受信データS20を遅延プロフアイル測定回路3 1及び逆拡散回路32A~32Cに出力する。

【0027】遅延プロフアイル測定回路31は、一般にマツチドフイルタと呼ばれるものであり、デイジタルフイルタであるFIRフイルタを用いている。図10に示すように、遅延プロフアイル測定回路31は、複数の遅延素子からなる遅延回路31Aと、当該複数の遅延素子に対応するように設けられた乗算器からなる乗算回路31Bと、当該乗算回路31Cとから構成され、ビツト列から

なる受信データS20を遅延回路31Aに入力する。遅 延回路31Aは、受信データS20のビツトを順にビツ トシフトして乗算回路31Bに出力するようになされて いる。

【0028】乗算回路31Bは、遅延回路31Aから出 力される各ビツトと、当該乗算回路31Bを形成する各 乗算器にそれぞれ設定された符号とを乗算し、その乗算 結果を合成回路31Cに出力する。合成回路31Cは、 乗算回路31Bの各乗算器から出力される乗算結果を合 成することにより相関値を求める。このようにして遅延 プロフアイル測定回路31は、受信データS20に含ま れる各散乱波を逐次逆拡散して、その電力レベルを測定 することにより、遅延時間に対する各散乱波の電力レベ ル分布を示す遅延プロフアイルS21を生成して、これ を割当回路32に出力するようになされている。

【0029】割当回路32は、測定した遅延プロフアイ ルS21を基に、複数の散乱波のうち、電力レベルが大 きいものから順に散乱波を選択し、これら選択した各散 乱波の受信タイミングを示すタイミング信号S22A~ S22Cをそれぞれ対応する逆拡散回路32A~32C に出力する。

【0030】例えば図11に示すように、遅延プロフア イル測定回路31は、遅延時間τ1~τ7 に対する各散 乱波の電力レベルの分布を示す遅延プロフアイルS21 を生成する。この遅延プロフアイルS 2 1 は、地形、町 並み等により決定されるので、数十〔ms〕~数〔s〕 の間では一定である。そして割当回路32は、この遅延 プロフアイルS21を基に、遅延時間 $\tau_1 \sim \tau_7$ の各散 乱波のうち、遅延時間 τ3 、 τ4 、 τ5 の散乱波を選択 し、これらの受信タイミングを示すタイミング信号S2 2A~S22Cを生成する。

$$y(t) = h(t) * x(t) = \sum_{n=1}^{N} a_n \delta(t - \tau_n) * x(t)$$
 (7)

【0036】から求められる。ただし*は畳み込み演算 を示す。しかしながら受信信号y(t)は、逆拡散系列 とタイミングが一致しないと逆拡散され得ないことか ら、復調器17によつて、遅延時間が異なる散乱波をそ れぞれ逆拡散し、さらに複素ゲインan の位相を補正

$$y'(t) = \sum_{n=1}^{M} a_n \frac{a_n}{|a_n|} x(t)$$

【0038】に示すように、線形歪を抑えるようになさ れている。因みに、復調器17では、設置し得る逆拡散 回路32A~32Cの数に限りがあるため、全ての散乱 波について逆拡散をすることはできない。

[0039]

【発明が解決しようとする課題】ところでかかる構成の 遅延プロフアイル測定回路31では、その測定時間の範 囲が、一般には通信システムや地形に基づく遅延プロフ: 50 時間の範囲は、地形、建物等によつて決定される。例え

【0031】逆拡散回路32Aは、タイミング信号S2 2 Aに基づくタイミングの擬似雑音符号を生成し、この 擬似雑音符号を用いて受信データS20を逆拡散する。 これにより逆拡散回路32Aは、複数の散乱波のうち、 割当回路32の指示に基づく散乱波のみを逆拡散し、そ の結果得られる逆拡散データS23Aを合成回路33に 出力する。

【0032】同様にして逆拡散回路32B及び32C は、タイミング信号S22B及びS22Cに基づくタイ ミングの擬似雑音符号をそれぞれ生成し、生成した擬似 雑音符号を用いて受信データS20をそれぞれ逆拡散す る。これにより逆拡散回路3232B及び32Cは、複 数の散乱波のうち、割当回路32の指示に基づく散乱波 のみをそれぞれ逆拡散し、その結果得られる逆拡散デー タS23B及びS23Cを合成回路33に出力する。

【0033】合成回路33は、逆拡散データS23A~ S23Cのタイミングを同期させた後、当該逆拡散デー タS23A~S23Cを最大比合成法によつて合成し、 その結果得た合成データS24を符号復調回路34に出 20 力する。符号復調回路34は、合成データS24を所定 の復調方式に基づいて復調し、その結果得られる復調デ ータS7を後段の誤り訂正回路18(図8)に出力す

【0034】以上、述べてきたように、復調器17は、 ベースバンド信号S6を遅延時間の異なる各散乱波に分 解して逆拡散した後、遅延時間及び位相を一致させて再 合成することにより、線形歪が発生することを抑えてい る。すなわち受信信号y(t)は、上述の(6)式によ り、次式

[0035]

【数7】

し、逆拡散出力のタイミングを合わせて合成される。そ の合成された信号y'(t)は、次式

[0037]

【数 8 】

..... (8)

アイルの観測値によって決定され、通常では数十 [μ s〕程度とすれば市街地から山岳地帯まで広く遅延プロ フアイルを測定し得ると思われる。従つてこの遅延プロ フアイル測定回路31では、どうような状況においても 遅延プロフアイルを測定し得るように、測定時間の範囲 を広く設定するようになされている。

【0040】しかしながら遅延プロフアイルが分布する

ば市街地における遅延プロフアイルは、その広がりが比較的小さいことが知られている。従つて遅延プロフアイル測定回路31のように、遅延プロフアイルの測定時間を広く設定した上で固定してしまうと、散乱波の遅延時間にかかわらず必要以上に広い時間範囲で測定することになり、測定時間が長くなつて、遅延プロフアイル測定回路31の消費電力が大きくなる。

【0041】このような電池で駆動する携帯電話機を長時間使用し得るようにするためには当該携帯電話機の消費電力を低減させる必要がある。遅延プロフアイル測定回路31は、待受時でも起動しているため、当該遅延プロフアイル測定回路31の消費電力を低減し得れば、携帯電話機全体の消費電力を低減することができる。このように遅延プロフアイル測定回路31では、できるだけ消費電力を低減することが望まれることから、必要以上にその測定時間を長くすると消費電力が増大するという問題が生じることになる。

【0042】本発明は以上の点を考慮してなされたもので、受信品質を劣化させることなく従来に比して一段と消費電力を低減し得る復調装置及び復調方法を提案しようとするものである。

[0043]

【課題を解決するための手段】かかる課題を解決するた め本発明においては、複数の逆拡散回路を有し、スペク トラム拡散変調されて伝送されてきたベースバンド信号 を、複数の逆拡散回路によつてそれぞれ異なるタイミン グの擬似雑音符号で逆拡散した後、複数の逆拡散回路か らの出力を合成する復調装置において、ベースバンド信 号に含まれ、それぞれ異なる遅延時間で受信された複数 の散乱波の電力レベルを示す遅延プロフアイルを測定す るための測定時間を変化させながら、当該ベースバンド 信号の遅延プロフアイルを測定する遅延プロフアイル測 定手段と、遅延プロフアイル測定手段によつて測定され た遅延プロフアイルを基に、ベースバンド信号に含まれ る複数の散乱波のうち所望の数の散乱波を選択して、こ れら選択した散乱波の各受信タイミングを、対応する複 数の逆拡散回路にそれぞれ割り当てて各擬似雑音符号の 発生タイミングを決定する割当手段とを設けるようにし

【0044】ベースバンド信号の遅延プロフアイルを測定する測定時間を変化させながら、当該ベースバンド信号の遅延プロフアイルを測定することにより、受信電力レベルの劣化を回避しながら測定時間を必要最低限に抑えることができる。

【0045】また本発明においては、複数の逆拡散回路を有し、スペクトラム拡散変調されて伝送されてきたベースバンド信号を、複数の逆拡散回路によつてそれぞれ異なるタイミングの擬似雑音符号で逆拡散した後、複数の逆拡散回路からの出力を合成する復調装置の復調方法であつて、ベースバンド信号に含まれ、それぞれ異なる

遅延時間で受信された複数の散乱波の電力レベルを示す 遅延プロフアイルを測定するための測定時間を変化させ ながら、当該ベースバンド信号の遅延プロフアイルを測 定し、当該遅延プロフアイルを基に、ベースバンド信号 に含まれる複数の散乱波のうち所望の数の散乱波を選択 して、これら選択した散乱波の各受信タイミングを、対 応する複数の逆拡散回路にそれぞれ割り当てて各擬似雑 音符号の発生タイミングを決定するようにした。

12

【0046】ベースバンド信号の遅延プロフアイルを測定する測定時間を変化させながら、当該ベースバンド信号の遅延プロフアイルを測定することにより、受信電力レベルの劣化を回避しながら測定時間を必要最低限に抑えることができる。

[0047]

【発明の実施の形態】以下図面について、本発明の一実 施の形態を詳述する。

【0048】図9との対応部分に同一符号を付して示す図1に示すように、復調器40は、ベースバンド信号S6を遅延時間の異なる複数の散乱波に分解して逆拡散した後、これらを合成するようになされている。復調器40は、直交検波器16(図8)から出力されるベースバンド信号S6をアナログデイジタル変換器30は、ベースバンド信号S6をアナログデイジタル変換し、その結果得た受信データS20を遅延プロフアイル測定回路41及び逆拡散回路32A~32Cに出力する。

【0049】遅延プロフアイル測定回路41は、遅延スプレツド測定回路42から供給される測定時間情報S40に基づいて、受信データS20に含まれる複数の散乱波のうち、当該測定時間情報S40が示す時間範囲に含まれる散乱波を逐次逆拡散し、その電力レベルを測定する。このようにして遅延プロフアイル測定回路41は、遅延時間に対する各散乱波の電力レベル分布を示す遅延プロフアイルS41を生成し、これを遅延スプレツド測定回路42及び割当回路43に出力するようになされている。

【0050】遅延スプレツド測定回路42は、信号対妨害波比(SIR:Signal Interference Ratio)測定回路44から供給される通話品質情報S42に応じて、遅延プロフアイル測定回路41における次回の測定時間を決定し、これを測定時間情報S40として遅延プロフアイル測定回路41に出力する。割当回路43は、遅延プロフアイル測定回路41に出力する。割当回路43は、遅延プロフアイル別定回路41から出力される遅延プロフアイルS41を基に、複数の散乱波のうち、電力レベルが大きい散乱波から順に選択し、これら選択した各散乱波の受信タイミングを示すタイミング信号S22A~S22Cをそれぞれ対応する逆拡散回路32A~32Cに出力する。

【0051】例えば図2に示すように、遅延プロフアイ 50 ル測定回路41は、初回の測定時には、デフオルト値と して設定されている測定時間T1の範囲において、遅延時間 $\tau_1 \sim \tau_7$ に対する各散乱波の電力レベルの分布を測定することにより遅延プロフアイルS 41 を生成し、これを遅延スプレツド測定回路 42 及び割当回路 43 に出力する。そして割当回路 43 は、この遅延プロフアイルS 41 を基に、遅延時間 $\tau_1 \sim \tau_7$ の各散乱波のうち、遅延時間 $\tau_3 \propto \tau_4 \propto \tau_5$ の散乱波を選択し、これらの受信タイミングを示すタイミング信号 $S22A\sim S22$ Cを生成する。

【0052】一方、遅延スプレツド回路42は、遅延プロフアイル測定回路41から出力される遅延プロフアイル測定回路41から出力される遅延プロフアイル測定時間情報S40として遅延プロフアイル測定回路41に出力する。遅延プロフアイル測定回路31は、測定時間情報S40に基づいて、初回の測定時に比して所定時間遅延させたタイミングで測定を開始して、測定時間である。3回目の測定時には、遅延スプレツド回路42は、SIR測定回路44から供給される通話品質情報S42に応じて、測定時間T1及びTsのうちいずれか一方を選択し、これを測定時間情報S40として遅延プロフアイル測定回路41に出力し、これ以降は、上述の動作を順次繰り返し行う。

【0053】図1に戻つて逆拡散回路32Aは、割当回路43から供給されるタイミング信号S22Aに基づくタイミングの擬似雑音符号を生成し、この擬似雑音符号を用いて受信データS20を逆拡散する。これにより逆拡散回路32Aは、複数の散乱波のうち、割当回路43の指示に基づく散乱波のみを逆拡散し、その結果得られる逆拡散データS23Aを合成回路33に出力する。

【0054】同様にして逆拡散回路32B及び32Cは、割当回路43から供給されるタイミング信号S22B及びS22Cに基づくタイミングの擬似雑音符号をそれぞれ生成し、生成した擬似雑音符号を用いて受信データS20をそれぞれ逆拡散する。これにより逆拡散回路32B及び32Cは、複数の散乱波のうち、割当回路43の指示に基づく散乱波のみをそれぞれ逆拡散し、その結果得られる逆拡散データS23B及びS23Cを合成回路33に出力する。

【0055】合成回路33は、逆拡散データS23A~ 40 【

【0056】因みに、遅延プロフアイル測定回路41では、間欠的にその測定時間を長くすれば、たとえ遅延プロフアイルが変化しても、その変化に追従し得る。一般にタイミング信号S22A~S22Cが逆拡散回路32A~32Cに割り当てられる周期は、数〔ms〕~数十〔ms〕程度である一方、遅延プロフアイルが変化する時間は、数百〔ms〕以上であつて、その変化速度がい。このように遅延プロフアイル測定回路41では、間欠的に測定時間を長くするだけで受信電力レベルの劣化を回避することができることから、受信電力レベルの劣化を回避しながら遅延プロフアイルの測定時間を必必要している。特にユーザが移動していない場合には、遅延プロフアイルが変化しないため、その効果を十分に引き出すことができる。

【0057】ここで図3を用いて受信データS20の復調方法について説明する。まずステツプSP1から入つたステツプSP2において、遅延プロフアイル測定回路30 41は、デフイルト値として設定されている測定時間T1の範囲内で、遅延時間に対する各散乱波の電力レベルの分布を測定することにより遅延プロフアイルS41を生成し、これを遅延スプレツド測定回路42及び割当回路43に出力する。

【0058】ステツプSP3において、遅延スプレツド回路42は、遅延プロフアイル測定回路41から出力される遅延プロフアイルS41から、その標準偏差である遅延スプレツド σ を、次式

[0059]

$$\sigma = \sqrt{\frac{1}{P}} \int_{0}^{\infty} (\tau - m_{\tau})^{2} p(\tau) d\tau \qquad \dots (9)$$

【0060】によつて求める。ただし、Pは受信信号電力、p(r)は遅延プロフアイルを示し、平均値m τ は、次式

 $m \tau = \frac{1}{P} \int_{0}^{\infty} \tau p (\tau) d\tau \qquad \dots \dots (10)$

[0061]

【数10】

【0062】によつて算出されたものである。

【0063】続いて遅延スプレツド回路42は、この遅延スプレツド σ を用いて、2回目の測定時間Tsを、次 $T_z = 2 \sigma \alpha$

【0065】によつて算出し、これを測定時間情報S40として遅延プロフアイル測定回路41に出力する。ただし α は予め決められた定数である。

【0066】ステツプSP4において、割当回路43は、この遅延プロフアイルS41を基に、複数の散乱波のうち電力レベルが大きいものから順に選択し、これら選択した各散乱波の受信タイミングを示すタイミング信号S22A~S22Cをそれぞれ対応する逆拡散回路32A~32Cに出力する。

【0067】ステツプSP5において、逆拡散回路32A~32Cは、タイミング信号S22A~S22Cに基づくタイミングの擬似雑音符号をそれぞれ生成し、これら擬似雑音符号を用いて受信データS20をそれぞれ逆拡散することにより、複数の散乱波のうち、割当回路43の指示に基づく散乱波のみをそれぞれ逆拡散し、その結果である逆拡散データS23~S23Cを合成回路33に出力する。合成回路33は、逆拡散データS23Cを最大比合成法によつて合成する。

【0068】ステツプSP6において、遅延プロフアイル測定回路41は、遅延スプレツド回路42から出力される測定時間情報S40に基づく測定時間Tsの範囲内で、遅延プロフアイルS41を生成し、これを遅延スプレツド測定回路42及び割当回路43に出力する。ステツプSP7において、割当回路43は、この遅延プロフアイルS41を基に、複数の散乱波のうち所望のものを選択し、これらの受信タイミングを示すタイミング信号S22A~S2Cに出力する。

【0069】ステツプSP8において、逆拡散回路32A~32Cは、タイミング信号S22A~S22Cに基づいて受信データS20を逆拡散することにより、複数の散乱波のうち所望の散乱波のみをそれぞれ逆拡散し、その結果である逆拡散データS23~S23Cを合成回路33に出力する。合成回路33は、逆拡散データS23A~S23Cを合成し、その結果得た合成データS24をSIR測定回路44に出力する。

【0070】ステツプSP9において、SIR測定回路 44は、合成データS24から現在の通話品質γを求め、この現在の通話品質γと受信機が目標とする通話品質Γとを比較し、その比較結果を通信品質情報S42として遅延スプレツト回路42に出力する。遅延スプレツト回路42は、通信品質情報S42に基づいて、現在の通話品質γが目標の通話品質Γよりも劣る場合には、ステツプSP2に移行して測定時間をT1に設定し、現在の通話品質γが目標の通話品質Γよりも高品質な場合には、ステツプSP6に移行して測定時間をT2に設定した。

式

[0064]

【数11】

······ (11)

る。

40

【0071】以上の構成において、遅延プロフアイル測定回路 41は、初回の測定時には、デフオルト値として設定されている測定時間 T1の範囲内で、遅延時間に対する各散乱波の電力レベルの分布を測定することにより遅延プロフアイル S41 を生成し、これを遅延スプレツド測定回路 42 に出力する。遅延スプレツド測定回路 42 は、この遅延プロフアイル S41 から遅延スプレツド σ を算出し、当該遅延スプレツド σ を用いることにより、初回の測定時間 T1 に比して短い必要最低限の測定時間 T1 を求める。

16

【0072】遅延プロフアイル測定回路41は、2回目の測定時には、初回の測定時に算出した測定時間Tsの範囲内で遅延プロフアイルS41を測定し、これを遅延スプレツド測定回路42に出力する。遅延スプレツド測定回路42は、SIR測定回路44から供給される通話品質情報S42を基に判断することにより、今回の測定時における通話品質が所望の通話品質よりも高い場合には、3回目も引き続き測定時間をTsに設定する一方、今回の通話品質が所望の通話品質よりも低い場合には、3回目には再び測定時間をデフオルト値T1に設定する。そして4回目以降は、上述の動作を順次繰り返していく。

【0073】このように、遅延プロフアイルS41から 遅延スプレツドのを算出し、当該遅延スプレツドのを用 30 いて測定時間を算出することにより、遅延プロフアイル 測定回路41による測定時間を、受信電力レベルに影響 を及ぼさない程度の必要最低限の値に抑えることがで き、従つて一定の通話品質を維持しながら、従来のよう に広い時間範囲で測定する場合に比して一段と遅延プロ フアイル測定回路41の消費電力を低減し得る。この遅 延プロフアイル測定回路41は、待受時でも起動してい ることから、当該遅延プロフアイル測定回路41の消費 電力を低減することで、携帯電話機全体の消費電力を低減することができる。

【0074】以上の構成によれば、遅延プロフアイルS41から遅延スプレツドσを算出し、当該遅延スプレツドσを用いて測定時間を算出することにより、受信電力レベルの劣化を回避しながら測定時間を必要最低限に抑えることができ、かくして通話品質(すなわち受信品質)を劣化させることなく従来に比して一段と消費電力を低減し得る。

通話品質 γ が目標の通話品質 Γ よりも劣る場合には、ステップ S P 2 に移行して測定時間を T 1 に設定し、現在の通話品質 γ が目標の通話品質 Γ よりも高品質な場合に 遅延スプレッド σ を σ を σ を σ を σ と σ と σ を σ と σ

すように、測定時間T1の範囲内で測定される複数の散乱波のうち、最大の電力レベルの散乱波を選択し、当該散乱波の前後のものを所望の数だけ選択した上で、これら選択した散乱波を含む時間範囲を測定時間TSPに設定しても上述の場合と同様の効果を得ることができる。

【0076】また上述の実施の形態においては、遅延プロフアイルS41から遅延スプレツド σ を算出し、当該遅延スプレツド σ を用いて測定時間を算出した場合について述べたが、本発明はこれに限らず、例えば図5に示すように、必要最低限の通話品質を確保するための電力レベルをしきい値 P_S とし、当該しきい値 P_S を越える電力レベルの散乱波を含む時間範囲を測定時間 T_{SS} に設定しても上述の場合と同様の効果を得ることができる。

【0077】また上述の実施の形態においては、遅延プロフアイルS41から遅延スプレツドのを算出し、当該遅延スプレツドのを用いて測定時間を算出した場合について述べたが、本発明はこれに限らず、例えば必要最低限の通話品質を確保するための電力レベルをしきい値とし、当該しきい値を越える電力レベルの散乱波のうち、電力レベルの大きい順に所望の数の散乱波を選択した上 20で、これら選択した散乱波を含む時間範囲を測定時間に設定しても上述の場合と同様の効果を得ることができる

【0078】また上述の実施の形態においては、遅延時間に対する各散乱波の電力分布を測定した場合について述べたが、本発明はこれに限らず、例えば遅延スプレツドσが所定の値(例えば拡散符号列の1チツプ以下の値)になる場合には、各散乱波の遅延がないものと判断し、各散乱波のうち最も電力レベルが大きい散乱波のみを逆拡散させても良い。

【0079】また上述の実施の形態においては、受信品質に応じて測定時間を短縮した場合について述べたが、本発明はこれに限らず、所望の受信品質を確保し得ない場合には測定時間を広く設定した上で、再び遅延プロフアイルを測定しても上述の場合と同様の効果を得ることができる。

【0080】また上述の実施の形態においては、遅延スプレツド回路42から供給される測定時間情報S40に基づく測定時間の範囲内で遅延プロフアイルS41を測定した場合について述べたが、本発明はこれに限らず、要は、測定時間を変化させながら、遅延プロフアイルを測定すれば良い。

【0081】さらに上述の実施の形態においては、現在の通話品質γと目標の通話品質Γとを比較し、その結果、現在の通話品質γが目標の通話品質Γよりも劣る場合には測定時間をデフオルト値であるT1に設定する一方、現在の通話品質γが目標の通話品質Γよりも高い場合には現在の測定時間Tsをそのまま用いた場合について述べたが、本発明はこれに限らず、要は、現在の受信品質が最低限必要な受信品質よりも劣る場合には測定時間を長く設定する一方、現在の受信品質が最低限必要な 受信品質よりも高い場合には測定時間を同一か又は短く設定すれば良い。

18

[0082]

【発明の効果】上述のように本発明によれば、ベースバンド信号の遅延プロフアイルを測定する測定時間を変化させながら、当該ベースバンド信号の遅延プロフアイルを測定することにより、受信電力レベルの劣化を回避しながら測定時間を必要最低限に抑えることができ、かくして受信品質を劣化させることなく従来に比して一段と消費電力を低減し得る。

20 【図面の簡単な説明】

【図1】本発明の一実施の形態による復調器の構成を示すブロツク図である。

【図2】遅延プロフアイルを示す図表である。

【図3】復調方法を示すフローチャートである。

【図4】他の実施の形態による遅延プロフアイルを示す 図表である。

【図5】他の実施の形態による遅延プロフアイルを示す 図表である。

【図6】拡散の原理の説明に供する略線図である。

0 【図7】マルチパスフェージングの説明に供する略線図である。

【図8】従来のレイク受信機を示すブロツク図である。

【図9】従来の復調器の構成を示すブロツク図である。

【図10】遅延プロフアイル測定回路の構成を示すブロック図である。

【図11】遅延プロフアイルを示す図表である。

【符号の説明】

17、40……復調器、31、41……遅延プロフアイル測定回路、32、43……割当回路、32……逆拡散 回路、33……合成回路、42……遅延スプレツド測定回路、44……SIR測定回路。

遊延時間

T3 T4 T5

図2 遅延プロフアイル

【図5】

図5 他の実施の形態による遅延プロフアイル(2)

図4 他の実施の形態による遅延プロフアイル(1)

図10 遅延プロフアイル測定回路の構成

図8 従来のレイク受信機

図9 従来の復調器の構成

【図11】

図11 遅延プロフアイル

THIS PAGE BLANK (USPTO)