

Year 12 Mathematics Methods Test 4 Logarithmic functions and Calculus of Log functions

40 minutes

Name:_			

39 marks

[1, 1, 1, 2 marks]1.

Section 1:

b)

Suppose that two variables x and y are related by $y = 6^x$.

Calculator Free

Use the *definition of a logarithm* to express x in terms of y. a)

b) Given that
$$\log_6 2 = q$$
, write the following in terms of q :

i) $\log_6 24$

ii)

iii)

- [2, 2, 2 marks]Solve the following, giving your answers in exact form involving logarithms where necessary. $3^{X-4} = 14$
- a)

 $11(3^x) = 5 + 3^{x+2}$

- $\log(x+4) \log(x-5) = 1$

- b)

[3, 3, 2 marks]On the sets of axes below, sketch the functions:

3.

-10

 $y = \log_3(x-2)$

c) Use the graph to solve $\log_{0.5} x = 0.5$

[3, 2 marks]Let $g(x) = \frac{\ln x}{x^2}$, for x > 0.

Use the quotient rule to show that

 $g'(x) = \frac{1 - 2\ln x}{x^3}$

The graph of g has a maximum point at A. Find the x-coordinate of A.

(a)

(b)

[2 marks]

Find the derivative with respect to x of $y = \ln(x^3 + x^2)$

5.

[2, 1, 2, 2, 2 marks] a) Given the function
$$g(x) = x \ln x - x + 1$$
, determine $g'(x)$

6.

 $\int \ln(x) dx$

$$\int_{1}^{2} \ln(x) dx$$
 c) Evaluate 1

$$\int_{1}^{2} \ln \sqrt{x} dx$$
 d) Evaluate 1

e) Determine an expression for ^a

 $\int_{0}^{b} \ln(x) dx$

in terms of a and b, such that b > a > 0

7. [2, 2 marks]

Consider the function
$$f(x) = 2 + \frac{1}{x-1}$$
; $x > 1$
The region enclosed by the graph of $f(x)$, the x-axis and the lines $x = 2$ and $x = 4$, is shaded below.

(a) Find
$$\int f(x) dx$$
.

(a)

Find
$$\int f(x) dx$$
.

(b) Find a simplified expression for the exact area of A.

Year 12 Mathematics Methods Test 4 Logarithmic functions and Calculus of Log functions

Name:			

Section 2: Calculator & Notes Allowed 13 marks 15 minutes 8. [1, 1, 3 marks]

0. [1, 1, 5 mark)

The faintest sound that can be heard by the human ear has intensity

$$I_0 = 10^{-16}$$
 watts per square centimetre.

Noise levels, $^{\beta}$, are measured in decibels and are related to intensity:

$$\beta = 10 \log \frac{I}{I_0}$$
 decibels Where I is the intensity of sound in watts per square centimetre.

- a) The maximum intensity which a human ear can tolerate is 10^{-4} watts per square centimetre. Determine the corresponding value of $^{\beta}$.
- b) Busy motor traffic has a noise level of 70 decibels. Determine the corresponding intensity.
- c) The graph (without scales) of $\log I$ against β is sketched below; it is linear. By expressing $\log I$ in terms of β , determine the gradient and the intercept on the vertical axis.

Find the initial velocity and acceleration

A particle P moves along a straight line. Its velocity, $v \text{ ms}^{-1}$ at time t seconds, is given by v = 10ln(t+3) + 2 for $t \ge 0$

(b) Find the acceleration of P when its velocity is 20 ms⁻¹

[3, 2 marks]

(a)

10.

[3 marks]