Welcome!

Al for Algorithmic Reasoning and Optimization

About me

Grew up in Lincoln, Vermont

BA: Columbia *Math*

PhD: Carnegie Mellon Computer Science

Faculty: Stanford Research:

- Machine learning
- Algorithm design and
- Interface between Econ and CS

Outline for today

1. High-level overview

- 2. Course outline
- 3. Course format
- 4. Policies
- 5. Project

Al for Algorithmic Reasoning & Opt

Core idea

- Models that **choose**, **design**, or **execute** algorithms
- Bridges LLMs, GNNs, optimization, and theory

Core capabilities (examples)

- Translate natural language into mathematical formulations
- Learn heuristics, policies, and solver configurations
- Simulate algorithmic primitives (search, DP, ...)
- Co-optimize models and solvers for performance gains

Al for Algorithmic Reasoning & Opt

In this class, we'll cover...

Evaluation principles

- Evaluate optimality, feasibility, generalization, efficiency
- Respect problem structure: graphs, constraints, objectives, ...

Applications and limits

- Power real-world systems: energy, logistics, markets, planning
- Recognize limits: NP-hardness, shifts, safety, reproducibility

Why now?

Advances in models

- Transformers enable in-context algorithm selection
- GNNs approximate local algorithms with growing theory
- Diffusion models generate structured, combinatorial solutions

Infrastructure

- Benchmarks and datasets across routing, scheduling, ...
- Hardware and libraries support large-scale experimentation

Why now?

Applications

Power systems, logistics, etc. need learned decision systems

Foundations

Guarantees with predictions connect ML and classical theory

Community momentum

Seminars, workshops, tutorials, ...

Key archetypes to organize the field

Select

Choose algorithms, heuristics, or configurations per instance

Simulate

Learn algorithmic primitives (e.g., BFS, DP, local search)

Co-optimize

Couple models and solvers in hybrid methods

Design

Discover new algorithms and heuristics

Outline for today

- 1. High-level overview
- 2. Course outline
- 3. Course format
- 4. Policies
- 5. Project

Course map

Foundations (9/23 – 10/2)

Core ideas: GNNs, discrete optimization, approximation algorithms

Transformers & LLMs (10/7 - 10/16)

Graph Neural Networks (10/21 - 10/30)

Mathematical Optimization (11/6 - 11/13)

Theoretical Guarantees (11/18 - 11/20)

Alg. reasoning with transformers & LLMs

Goal: uncover algorithmic behaviors inside large seq. models

Focus: regression ICL, algorithm selection, auto-design

- What algorithms emerge from in-context learning?
- How do transformers select among candidate algorithms?
- Can LLMs design new heuristics (beyond selection)?

Algorithmic reasoning with GNNs

Goal: analyze how GNNs generate solutions to graph problems

Focus: classical algorithms to graph diffusion models

- How powerful can GNNs be as approximation algorithms?
- Do GNNs benefit from learning related problems together?
- Can diffusion models be used to solve hard graph problems?

Mathematical optimization

Goal: connect ML/LLMs with optimization modeling & solving

Focus: NL→mathematical models, ML-guided search

- How can LLMs make optimization modeling more accessible?
- Can learning-guided search improve solver performance?
- What does it mean to make discrete opt. differentiable?

Theoretical guarantees

Goal: study when ML-guided optimization is provably reliable

Focus: landscapes of solution samplers, apx. w/ predictions

- What can gradient methods guarantee for solution samplers?
- When can learned guidance be both useful and robust?

Course map

Foundations (9/23 – 10/2)

Core ideas: GNNs, discrete optimization, approximation algorithms

Transformers & LLMs (10/7 – 10/16)

In-context learning, algorithm selection, auto-design

Graph Neural Networks (10/21 - 10/30)

Approximation algorithms, dual reasoning, graph diffusion solvers

Mathematical Optimization (11/6 - 11/13)

LLMs for modeling, ML-guided search, differentiable discrete opt.

Theoretical Guarantees (11/18 - 11/20)

Policy-gradient landscapes, approximation with predictions

Big questions across the course

How do we represent algorithms in ML models?

How should we evaluate learned algorithms?

What are the **limits** – and **guarantees** – we can prove?

Where do these ideas matter in practice?

Something for everyone!

If you like **theory**:

- Provable guarantees for ML-guided algorithms
- Explore limits of LLMs, GNNs, etc. under NP-hardness

If you like machine learning:

- Study how transformers, GNNs, etc. reason algorithmically
- See how ML extends beyond prediction into problem-solving

Something for everyone!

If you like **optimization**:

- LLM-based modeling, ML-guided search, differentiable opt.
- Understand when ML improves—or fails to improve—solvers

If you like applications:

- Apply ideas to energy, logistics, finance, and markets
- Gain a toolkit for structuring real-world decision problems

Outline for today

- 1. High-level overview
- 2. Course outline
- 3. Course format
- 4. Policies
- 5. Project

Two types of class sessions

Foundations lectures

Discussions

Foundations lectures

Cover the core background you'll need for the discussions

Topics include:

- Basics of graph neural networks
- Mathematical optimization
- Approximation algorithms
- Diffusion models

Format: Whiteboard

Research shows students retain concepts better this way

Discussions: the heart of the course

Most meetings will be student-led discussions

Each discussion covers one well-received paper from '23-'25

Some days you'll be a presenter, some days a non-presenter

The goal: spark conversations; analyze and build on ideas

Format of a discussion

Presenters:

- One of three roles (Archaeologist, Researcher, Reviewer)
- ~7 minutes presenting highlights + 3 minutes Q&A

Non-presenters:

- Post one discussion question on Ed by 1pm that day
- Join the class conversation

Professor:

- Closes each class with a 20-minute preview of the next paper
- Helps clarify what to focus on when reading

Archeologist

Situate the paper in context

Find one older paper it cites and explain the connection

Find one **newer paper** that cites it and explain the extension

Show how both relate to the paper's main idea

Researcher

Propose a follow-up project inspired by the paper

Ground it in the paper's ideas, results, data, or code

NeurlPS reviewer

Critique the paper as if you're writing a review

Provide ≥3 strengths and ≥3 weaknesses

Address: quality, clarity, significance, originality

Non-presenter Ed discussion question

Characteristics of a good question:

- Specific: anchored in the paper's setup
- Forward-looking: invites thinking beyond what's tested
- Open-ended: there's no "right" answer, good for conversation
- Accessible: everyone in class can weigh in

Why this format?

Build research skills

- Learn to read papers quickly but deeply
- Practice asking sharp, thought-provoking questions
- From course evaluations: "I'm a junior who had never done research before, but after this class, I feel equipped to do so."

Shape your own projects

- See how to frame problems and methods
- Spot open directions for your final project

Why this format?

Join the research community

• Discussions mirror what happens at conferences

Make the class fun

- Conversations are more memorable than lectures
- You'll learn from each other, not just from me

Why this format?

- Format developed by Alec Jacobson & Colin Raffel (U of T)
- Great feedback here at Stanford!
 - "Very helpful in developing my ability to read and digest research papers, in addition to engaging with them in an intellectually meaningful way."
 - "The course format [was] a great way to interact with the various papers we read."
 - "The seminar format led to some really cool conversations about potential extensions of the work, applications to other areas, etc. I wish more classes were structured like this."

Role logistics

Everyone will rotate through all three roles:

- Archaeologist
- Researcher
- Reviewer

Expect to be in each role once or twice during the quarter

• The exact count will depend on final enrollment

If the final enrollment is large, some roles may be done in teams

Outline for today

- 1. High-level overview
- 2. Course outline
- 3. Course format
- 4. Policies
- 5. Project

Attendance: Lectures

Attendance is optional but recommended

These are the "Foundations" sessions on the schedule

Attendance: Discussions

Attendance is required

We know life happens (e.g., illness), so here's the policy:

- If scheduled as a Presenter:
 - You may miss one session
 - Must submit a video of your presentation within one week
- If scheduled as a Non-presenter:
 - You may miss up to two sessions
 - Still required to post your question on Ed

Grading breakdown

60 points: Discussion

- E.g., if 6× Presenter and 6× Non-presenter:
 - Each presentation = 8 points → total 48 points
 - Each non-presenter assignment = 2 points \rightarrow total 12 points
- Subject to change depending on final enrollment

40 points: Project

Pass/fail option: Only discussion, no project

Outline for today

- 1. High-level overview
- 2. Course outline
- 3. Course format
- 4. Policies
- 5. Project

Project overview

- Write a mini-paper (empirical, theoretical, or both)
- Option to work in groups (max 3 students) or solo
 - If in group: include specific contributions paragraph
- Groups expected to produce more work than solo projects
- Paper length: 3 + n pages (n = number of authors)
 - Excluding references & contributions
- Projects should show novelty
 - New application, method, or perspective

Milestones/deadlines

- 10/10: Topic interests spreadsheet
 - Fill in topics you're excited about
 - If you want a project partner, reach out to like-minded students
- 10/31: Progress report
 - 1-2 pages describing project + partial results
- 12/4: Final presentation
 - Present your final project in class
- 12/12: Final writeup due

Grading breakdown

Project matching spreadsheet - 3 points

Progress report - 7 points

Writing - 10 points (readability, completeness, context)

Novelty - 10 points (new idea, method, or perspective)

Final presentation - 10 points (clarity, insight into what you did)

Course Assistant

TBA!

- They will have 5+ hours a week of bookable office hours
 - Take advantage of this for the course project!
 - Every year, at least one project turns into a NeurIPS/ICML paper
 - Meet with them (and me!) often to push project

Looking forward to a great quarter!