B):

$$\varphi ::= \psi \mid b(x) \mid \exists x. \varphi \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \exists x. \psi.$$

- (c) For B ⊆ A, the B-cocontinuous fragment of FOE₁(A), written FOE₁CON_B(A), is the set $\{\varphi \mid \varphi^{\delta} \in FOE_1^{\infty}CON_B(A)\}.$ It will be convenient to introduce some abbreviations
- (i) A type T is just a subset of A. It defines a FOE₁-formula $\tau_T^+(x) := \bigwedge_{a \in T} a(x)$. Given a one-step model (D,V), $s \in D$ witnesses a type T if (D,V), $g[x \mapsto s] \models \tau_T^+(x)$ for any g.
- (ii) We say that φ ∈ FOE₁(A) is in basic form if φ = √∇⁺_{FOE}(T, Π) where each disjunct is of the form

$$\nabla^+_{\mathrm{FOE}}(\overline{\mathbf{T}},\Pi) = \exists \overline{\mathbf{x}}. \left(\mathrm{diff}(\overline{\mathbf{x}}) \wedge \bigwedge_i \tau^+_{T_i}(x_i) \wedge \forall z. (\mathrm{diff}(\overline{\mathbf{x}},z) \rightarrow \bigvee_{S \in \Pi} \tau^+_S(z)) \right)$$

such that $\overline{\mathbf{T}} \in \wp(A)^k$ for some k and $\Pi \subseteq \overline{\mathbf{T}}$. The predicate $\operatorname{diff}(\overline{\mathbf{y}})$, stating that the elements \overline{y} are distinct, is defined as $diff(y_1, \dots, y_n) := \bigwedge_{1 \le m < m' \le n} (y_m \not\approx y_{m'})$.

Intuitively, the formula $\nabla^+_{\mathrm{FOE}}(\overline{\mathbf{T}},\Pi)$ says that each one-step model satisfying it admits a partition of its domain in two parts: distinct elements t_1,\ldots,t_n witnessing types T_1,\ldots,T_n , and all the remaining elements witnessing some type S of Π . The following result syntactically characterises the monotone fragment $FOE_1^+(A)$ of $FOE_1(A)$.

THEOREM 3.8 ([?]).

(i) φ ∈ FOE₁(A) is monotone if and only if it belongs to FOE₁⁺(A).

(iii) $\varphi \in \text{FOE}_1^+(A)$ is cocontinuous in $B \subseteq A$ if and only if it belongs to $\text{FOE}_1\text{CON}_B(A)$. \times iv) There is an effective translation (·)*: $\text{FOE}_1^+(A) \to \text{FOE}_1^+(A)$

equivalent sentence in basic form $\varphi^{\bullet} = \bigvee \nabla_{FOE}^{+}(\overline{\mathbf{T}}, \Pi)$ such that: (a) φ is functional in B if and only if each T_1, \dots, T_k and $S \in \Pi$ in φ^{\bullet} are either \emptyset of singletons $\{b\}$ for some $b \in B$.

(b) φ is continuous in B if and only if b ∉ ∪ Σ for all b ∈ B.

We now provide analogous characterisations for $FOE_1^{\infty}(A)$. The capacity of $FOE_1^{\infty}(A)$ to tear apart finite and infinite sets of elements requires extra care.

Definition 3.9.

 (a) The positive fragment of FOE₁[∞](A), written FOE₁^{∞+}(A), is the set of sentences generated by the grammar (8) without clauses $\neg a(x)$.

(b) For B ⊆ A, the B-continuous fragment of FOE₁^{∞+}(A), written FOE₁[∞]CON_B(A), is the set of sentences generated by the following grammar, where $b \in B$, $\psi \in FOE_1^{\infty+}(A \setminus$ B) and and $Wx.(\varphi, \psi) := \forall x.(\varphi(x) \lor \psi(x)) \land \forall^{\infty} x.\psi(x)$.

 $\varphi ::= \psi \mid b(x) \mid \exists x. \varphi \mid \varphi \land \varphi \mid \varphi \lor \varphi (\mathbf{W}x)(\varphi, \psi)$

(c) For B ⊆ A, the B-cocontinuous fragment of FOE₁^{∞+}(A), written FOE₁[∞]CON_B(A), is the set $\{\varphi \mid \varphi^{\delta} \in FOE_1^{\infty}CON_B(A)\}.$

ACM Transactions on Computational Logic, Vol. 0, No. 0, Article 0, Publication date: 2017.

explain/discuss W

X ... iff there is an