

Cordic Algorithms in FPGAs

Cordic Algorithm

- COrdinate Rotation Digital Computer
- An iterative method to perform Coordinate Rotations using only shifts and adds
- Hardware Efficient algorithms used for calculating trigonometric and transcendental functions

Vector rotation in Cartesian Coordinate System

Vector rotation in Cartesian Coordinate System

Vector rotation in Cartesian Coordinate System

Vector rotation in Cartesian Coordinate System

 $Px'=Px*cos(\phi)-Py*sin(\phi)$

 $Px' = \cos(\phi) * (Px - Py * \tan(\phi))$

 $Py'=Px*sin(\phi)+Py*cos(\phi)$

 $\mathbf{Py'} = \cos(\phi) * (\mathbf{Py} + \mathbf{Px} * \tan(\phi))$

CORDIC Equations

$$x_{i+1} = cos(\phi_i) * (x_i - y_i * tan(\phi_i))$$
 $y_{i+1} = cos(\phi_i) * (y_i + x_i * tan(\phi_i))$
 $z_{i+1} = z_i - \phi_i$

Assume $tan(\phi_i) = d_i * 2^{-i}$ where $d_i = +1$ or -1
 $\phi_i = d_i * tan^{-1}(2^{-i})$
 $K_i = cos(\phi_i) = cos(tan^{-1}(2^{-i})) = 1/\sqrt{1 + 2^{-2i}}$

CORDIC Equations

Factor Out the constant **K**_i from each iteration

$$x_{i+1} = x_i - y_i^* d_i^* 2^{-i}$$

 $y_{i+1} = y_i + x_i^* d_i^* 2^{-i}$
 $z_{i+1} = z_i - d_i^* tan^{-1}(2^{-i})$

Multiply by A_n after n iterations to account for constants K_i

$$A_n = \prod_{i=1}^n \sqrt{1+2^{-2i}}$$

CORDIC Equations

- Previous Equations are valid if initial angle $z_0 > -\pi/2$ and $z_0 < \pi/2$. For other angles, give an initial rotation of π .
- For initial rotation the equations are
 x' = d * x where d = -1 if x < 0 else d = 1
 y' = -d * y
 z' = z if d is equal to 1
 = z π if d is equal to -1
- An alternate solution is to rotate by π/2 or -π/2 initially.

XILINX

Modes of Operation

Hardware has three accumulators x, y and z

$$x_{i+1} = x_i - y_i^* d_i^* 2^{-i}$$

 $y_{i+1} = y_i + x_i^* d_i^* 2^{-i}$
 $z_{i+1} = z_i - d_i^* tan^{-1} (2^{-i})$

- Two modes of operation
 - Rotation Mode
 - Vector Mode

Rotation Mode of Operation

•Initialize three accumulators

by
$$\mathbf{x_0}$$
, $\mathbf{y_0}$ and $\mathbf{z_0}$

•Rotate to make the angle accumulator $\mathbf{z_0}$ equal to $\mathbf{0}$.

$$\cdot \mathbf{d_i} = -1 \text{ if } \mathbf{z_i} < 0$$

 $\cdot \mathbf{d_i} = \mathbf{1}$ otherwise

•Final accumulator values are x_n , y_n and z_n

$$x_{i+1} = x_i - y_i^* d_i^* 2^{-i}$$
 $y_{i+1} = y_i + x_i^* d_i^* 2^{-i}$
 $z_{i+1} = z_i - d_i^* tan^{-1} (2^{-i})$

$$x_n = A_n * (x_0 \cos(z_0) - y_0 \sin(z_0))$$

 $y_n = A_n * (y_0 \cos(z_0) + x_0 \sin(z_0))$
 $z_n = 0$

Rotation Mode

```
x_n = A_n^*(x_0\cos(z_0) - y_0\sin(z_0))

y_n = A_n^*(y_0\cos(z_0) + x_0\sin(z_0))

z_n = 0
```

- General Vector Rotator :
 - Rotates a vector $(\mathbf{x}_0, \mathbf{y}_0)$ by an angle \mathbf{z}_0 .
- Sine and Cosine Generator:
 - Initial Values $x_0=1/A_n$, $y_0=0$ and $z_0=\theta$
 - Final Values $x_n = \cos(\theta)$, $y_n = \sin(\theta)$ and $z_n = 0$
- Polar to Rectangular Coordinate Conversion :
 - Initial Values $x_0=r$, $y_0=0$ and $z_0=\theta$
 - Final Values $x_n = A_n r \cos(\theta)$, $y_n = A_n r \sin(\theta)$ and $z_n = 0$

Vectoring Mode of Operation

•Initialize three accumulators

by x_0 , y_0 and z_0

•Rotate to make the y accumulator y_0 equal to 0.

$$\cdot d_i = -1 \text{ if } y_i > 0$$

 $\cdot \mathbf{d_i} = \mathbf{1}$ otherwise

•Final accumulator values are x_n , y_n and z_n

$$x_{i+1} = x_i - y_i^* d_i^* 2^{-i}$$

 $y_{i+1} = y_i + x_i^* d_i^* 2^{-i}$
 $z_{i+1} = z_i - d_i^* tan^{-1} (2^{-i})$

$$x_n = A_n \sqrt{x_0^2 + y_0^2}$$
 $y_n = 0$
 $z_n = z_0 + tan^{-1}(y_0/x_0)$

Vectoring Mode

$$x_n = A_n \sqrt{x_0^2 + y_0^2}$$
 $y_n = 0$
 $z_n = z_0 + tan^{-1}(y_0/x_0)$

- Rectangular to Polar Coordinate Conversion
 x_n is scaled magnitude and z_n is the angle.
- z_n is $tan^{-1}(y)$ if $x_0=1$ and $z_0=0$

Convergence

 V_0 aligning with X axis. Y V_1 is incorrect.
Subsequent rotations to V_2, V_3, \dots must correct
the error

Condition $tan^{-1}(y_{i+1}/x_{i+1}) > 0.5*tan^{-1}(y_i/x_i)$ ensures convergence

Convergence

- Cordic Equations in the Rotation Mode and Vectoring Mode converge.
- Error reduces in each iteration.
- Each Rotation makes the accumulators more correct.
 Decide on the number of rotations from your application.

Functions covered

- Vector Rotation.
- Rectangular to Polar Coordinate Conversion
- Polar to Rectangular Coordinate Conversion
- Sine, Cosine and Arctan Generators

Arcsine using Inverse Cordic

Arcsine

Rotate the vector so that \mathbf{y}_n is equal to \mathbf{c} , a constant

$$x_{i+1} = x_i - y_i^* d_i^* 2^{-i}$$

 $y_{i+1} = y_i + x_i^* d_i^* 2^{-i}$
 $z_{i+1} = z_i - d_i^* tan^{-1} (2^{-i})$

where

$$d_i = +1$$
 if $y_i < c$, -1 otherwise

- Initial Values: $x_0=x_0$, $y_0=0$ and $z_0=0$
- Final Values : $x_n = \sqrt{(A_n x_0) c^2}$, $y_n = c$ and $z_n = sin^{-1}(c/A_n x_0)$

Arccosine using Inverse Cordic

Arccosine

Rotate the vector so that \mathbf{x}_n is equal to \mathbf{c} , a constant

$$x_{i+1} = x_i - y_i^* d_i^* 2^{-i}$$
 $y_{i+1} = y_i + x_i^* d_i^* 2^{-i}$
 $z_{i+1} = z_i - d_i^* tan^{-1} (2^{-i})$

where

$$d_i = -1$$
 if $x_i < c$, +1 otherwise

— Initial Values :
$$x_0 = x_0$$
, $y_0 = 0$ and $z_0 = 0$

— Final Values:
$$x_n = \sqrt{(A_n x_0)^2 - c^2}$$
, $y_n = c$ and $z_n = cos^{-1}(c/A_n x_0)$

Convergence of Arcsine and Arccosine

 $1/K_{i} = \sqrt{1 + 2^{-2i}}$

• Due to gain $1/K_i$, $(y_1-y_3)/(y_1-c) < 1/2$, which does not guarantee convergence

Convergence of Arcsine and Arccosine

- Double Iteration Algorithm
 - For each iteration, rotate the vector twice instead of once.
- Double Iteration Algorithm makes the results of arcsine and arccosine more accurate.

General Cordic Equation

- Circular Coordinate Transforms: What has been presented so far.
- Cordic Equations can be extended to calculate more functions
 - Linear Functions
 - Hyperbolic Functions

Linear Cordic Equations

$$x_{i+1} = x_i - 0 * y_i * d_i * 2^{-i} = x_i$$

 $y_{i+1} = y_i + x_i * d_i * 2^{-i}$
 $z_{i+1} = z_i - d_i * 2^{-i}$

- ◆ Rotation Mode (d_i = -1 if z_i < 0, +1 otherwise)</p>
 - A multiplier with shifts and adds
 - Final Values:

$$x_n = x_0$$

$$y_n = y_0 + x_0 z_0$$

$$z_n = 0$$

Linear Cordic Equations

$$x_{i+1} = x_i$$

 $y_{i+1} = y_i + x_i * d_i * 2^{-i}$
 $z_{i+1} = z_i - d_i * 2^{-i}$

- Vectoring Mode (d_i = +1 if y_i<0, -1 otherwise)
 - Calculates the ratio y_0/x_0 in z accumulator

$$x_n = x_0$$

$$y_n = 0$$

$$z_n = z_0 - y_0/x_0$$

Hyperbolic CORDIC Equations

$$x_{i+1} = \cosh(\phi_i) * (x_i + y_i * \tanh(\phi_i))$$

 $y_{i+1} = \cosh(\phi_i) * (y_i + x_i * \tanh(\phi_i))$
 $z_{i+1} = z_i - \phi_i$

Assume
$$tan(\phi_i) = d_i^* 2^{-i}$$
 where $d_i^* = +1$ or -1
 $\phi_i^* = d_i^* tanh^{-1}(2^{-i})$
 $K_i^* = cosh(\phi_i^*) = cosh(tanh^{-1}(2^{-i})) = 1/\sqrt{1-2^{-2i}}$

Hyperbolic CORDIC Equations

$$x_{i+1} = x_i + y_i * d_i * 2^{-i}$$
 $y_{i+1} = y_i + x_i * d_i * 2^{-i}$
 $z_{i+1} = z_i - d_i * \tanh^{-1}(2^{-i})$

Multiply by A_n after n iterations to account for constants K_i

$$A_n = \prod_{i=1}^n \sqrt{1-2^{-2i}}$$

Rotation Mode

Converge Angle Accumulatorz to 0.

$$x_{i+1} = x_i + y_i * d_i * 2^{-i}$$
 $y_{i+1} = y_i + x_i * d_i * 2^{-i}$
 $z_{i+1} = z_i - d_i * \tanh^{-1}(2^{-i})$

- $\cdot d_i = -1$ if $z_i < 0$, +1 otherwise
- Initialize with x_0 , y_0 and z_0 .
- The Hyperbolic Cordic Equations converge to

$$x_n = A_n * (x_0 \cosh(z_0) + y_0 \sinh(z_0))$$

 $y_n = A_n * (y_0 \cosh(z_0) + x_0 \sinh(z_0))$
 $z_n = 0$

Vectoring Mode

Converge Accumulator y to0.

$$x_{i+1} = x_i + y_i * d_i * 2^{-i}$$
 $y_{i+1} = y_i + x_i * d_i * 2^{-i}$
 $z_{i+1} = z_i - d_i * \tanh^{-1}(2^{-i})$

- $\cdot d_i = +1$ if $y_i < 0$, +1 otherwise
- Initialize with x_0 , y_0 and z_0 .
- The Hyperbolic Cordic Equations converge to

$$x_n = A_n \sqrt{x_0^2 - y_0^2}$$

 $y_n = 0$
 $z_n = z_0 + \tanh^{-1}(y_0/x_0)$

Hyperbolic Cordic Equations

- Hyperbolic Equations require double iteration for convergence
- Hyperbolic functions similar to Trigonometric functions described earlier can be calculated
- For more information
 - Walther, J.S., "A Unified algorithm for elementary functions", Spring Joint Computer Conf, 1971, proc, pp. 379-385.

Unified Cordic Equation

Unified Equations

$$x_{i+1} = x_i - m^* y_i^* d_i^* 2^{-i}$$

 $y_{i+1} = y_i + x_i^* d_i^* 2^{-i}$

$$z_{i+1} = z_i - d_i^* e_i$$

Hyperbolic Functions

$$m = 1$$
 and $e_i = tanh^{-1}(2^{-i})$

$$x_{i+1} = x_i + y_i * d_i * 2^{-i}$$

$$y_{i+1} = y_i + x_i * d_i * 2^{-i}$$

$$z_{i+1} = z_i - d_i^* \tanh^{-1}(2^{-i})$$

Linear Functions

$$m = 0$$
 and $e_i = 2^{-i}$

$$\chi_{i+1} = \chi_i$$

$$y_{i+1} = y_i + x_i * d_i * 2^{-i}$$

$$z_{i+1} = z_i - d_i * 2^{-i}$$

Trigonometric Functions

$$m = -1$$
 and $e_i = tan^{-1}(2^{-i})$

$$x_{i+1} = x_i - y_i^* d_i^* 2^{-i}$$

$$y_{i+1} = y_i + x_i^* d_i^* 2^{-i}$$

$$z_{i+1} = z_i - d_i^* tan^{-1}(2^{-i})$$

Bit Parallel Implementation

Unified Equations

$$x_{i+1} = x_i - m^* y_i^* d_i^* 2^{-i}$$

 $y_{i+1} = y_i + x_i^* d_i^* 2^{-i}$
 $z_{i+1} = z_i - d_i^* e_i$

Bit Parallel Implementation

Unrolled Bit Parallel

More Unrolled Cordic units

Bit Serial Implementation

Bit Serial Implementation in Virtex

Bit Serial Implementation in Virtex

Conclusion

- Good hardware algorithm
 - calculate various trigonometric and hyperbolic functions
 - Rotate Vectors appropriately
 - Convert from one coordinate system to another
- Pay attention to the convergence of the algorithm.

References

- Andraka, R.J., "A survey of CORDIC algorithms for FPGA based computers", FPGA '98, Proc. Of the 1998 ACM/SIGDA sixth international symposium on Field Programmable Gate Arrays, Feb 22-24, 1998, Monterey CA, pp 191-200.
- Volder, J., "The CORDIC Trigonometric Computing Technique", IRE Trans. Electronic Computing, Vol EC-8, pp330-334, Sept 1959.
- Walther, J.S., "A unified algorithm for elementary functions", Spring Joint Computer Conf., pp. 379-385, proc., 1971.
- Volder, J., "Binary Computation algorithms for coordinate rotation and function generation", Convair Report IAR-1 148 Aeroelectrics Group, June 1956.

