

ALGORYTMY PRZETWARZANIA OBRAZÓW

(Aplikacja Projektowa IO2_08)

Autor:

Kacper Kaleta

Prowadzący:

dr hab. Korzyńska Anna

Warszawa 2019/2020

Spis Treści:

1	Wprowadzenie	2
2	Wymagania Systemowe	2
3	Wykorzystane Narzędzia	2
4	Pierwsze Uruchomienie - Zarządzanie Oknami	3
	4.1 Otwarcie Nowego Okna	
	4.2 Przełączanie Między Oknami Wewnątrz OknaNawigacji	
	4.3 Zmiana Języka Oraz Motywu Kolorystycznego	
5	Czytanie Informacji O Obrazach	4
	5.1 Podgląd Informacji O Pliku	
	5.2 Podgląd Histogramu	
	5.3 Podgląd Historii Modyfikacji Obrazu	
6	Operacje Nakładania Zniekształceń Radiometrycznych	7
	6.1 Przyciemnianie i Rozjaśnianie	
	6.2 Stopniowe Przyciemnianie i Rozjaśnianie	
	6.3 Odwrócone Stopniowe Przyciemnianie i Rozjaśnianie	
	6.4 Zewnętrzne Przyciemnianie i Rozjaśnianie	
	6.5 Zewnętrzne Stopniowe Przyciemnianie i Rozjaśnianie	
7	Operacja Korekcji Zniekształceń Radiometrycznych	13

1 Wprowadzenie

Program przetwarzania obrazów, nakładania zniekształceń radiometrycznych oraz ich korekcji. Przygotowany w semestrze letnim 2020 r. w ramach ukończenia uczelnianych zajęć: Algorytmy Przetwarzania Obrazów.

Pełna nazwa projektu IO2 08:

Program prezentacji zasad przebiegu procesu wprowadzania i korekcji zniekształceń radiometrycznych z wykorzystaniem obrazów szaro-odcieniowych oraz ich fragmentów w postaci obrazowej a także tablic liczb.

2 Wymagania Systemowe

Uruchomienie programu wymaga dowolnego systemu operacyjnego Windows wspierającego framework .NET v4.7.2

3 Wykorzystane Narzędzia

- Visual Studio Community 2019 v16.5.4
- AutoMapper v9.0.0
- EmguCv v4.1.1.3497
- ZedGraph v5.1.7
- Kontrola wersji git w połączeniu z platformą github.com

4 Pierwsze Uruchomienie - Zarządzanie Oknami

Nawigacja między modyfikowanymi obrazami odbywa się w formie wielookienkowej. Po uruchomieniu programu jako pierwsze pojawi się **OknoNawigacji**.

OknoNawigacji pozwala zarządzać tworzeniem nowych i wyświetlaniem kolejnych okien do przetwarzania obrazów.

Odpowiada ono za przepływ informacji w programie. Zamknięcie go jest równoznaczne z zamknięciem programu.

4.1 Otwarcie Nowego Okna

Nowe okno zawsze można otworzyć na dwa sposoby, obydwa pozwalające na otwarcie wielu okien jednocześnie.

A]

Korzystając z przeglądania plików windows. Menu > Plik > Otwórz

B]

Przeciągając wybrane pliki na zaznaczony obszar.

4.2 Przełączanie Między Oknami Wewnątrz OknaNawigacji

Wszystkie okna programu są reprezentowane przez przyciski wewnątrz OknaNawigacji.

Każdy przycisk posiada nazwę pliku graficznego na podstawie którego powstało dane okno.

Kliknięcie w przycisk wyświetli na spód reprezentowane przez niego okno programu.

Kliknięcie czerwonego kwadratu obok nazwy pliku zamyka wybrane okno.

Dwukrotne kliknięcie w przycisk zminimalizuje wszystkie okna poza wybranym.

4.3 Zmiana Języka Oraz Motywu Kolorystycznego

Program działa w dwóch wersjach językowych - Polski, Angielski - oraz w pięciu wersjach kolorystycznych. Ustawienia można zmienić w dowolnym momencie działania programu poprzez **OknoNawigacji**. Menu > Ustawienia

5 Czytanie Informacji O Obrazach

Po przekazaniu wybranego pliku graficznego do **OknaNawigacji** utworzy się nowe okno do przetwarzania obrazów. W nim wykonywane są wszystkie operacje.

Nazwa nowego okna pokrywa się z ścieżką do przekazanego pliku graficznego.

5.1 Podgląd Informacji O Pliku

W celu wyświetlenia informacji o pliku należy wybrać ostatni przycisk po prawej stronie Menu.

W panelu informacji zawarte są informacje o rozmiarze i rozdzielczości pliku. A także format w jakim jest zapisany oraz flagi systemowe.

5.2 Podgląd Histogramu

Aby zobaczyć histogram obecnie wyświetlanego obrazu zalecane jest aby w pierwszej kolejności go obliczyć.

W tym celu należy wybrać w Menu > Operacje > Obliczenie Histogramu

Aby zobaczyć obliczony histogram wciśnij przycisk **Histogram** obok listy Operacje. Obliczanie histogramu na otwartym podglądzie jest możliwe, zabiera jednak więcej czasu. **Pamiętaj! Aby zobaczyć aktualny stan histogramu po modyfikacji obrazu należy obliczyć wartości histogramu ponownie.**

Panel histogramu daje podgląd na histogram ogólny oraz na 4 kanały z osobna. Alpha, Red, Green, Blue.

Każdy z histogramów posiada własne dodatkowe dane do podglądu, między innymi maksymalna wartość, minimalna wartość oraz ilość wystąpień.

5.3 Podgląd Historii Modyfikacji Obrazu

Panel zawierający historię operacji na obrazie jest ostatni, zaraz pod panelem histogramu oraz panelem informacji o pliku.

Są tutaj wyświetlane wszystkie modyfikacje przeprowadzone na danym obrazie, data i godzina zatwierdzenia modyfikacji oraz nazwa operacji.

6 Operacje Nakładania Zniekształceń Radiometrycznych

Program posiada dwie operacje nakładania zniekształceń, przyciemnianie oraz rozjaśnianie, przygotowane do użytku w postaci dziesięciu różnych konfiguracji.

Wszystkie z konfiguracji pozwalają na dopasowanie zmiennych operacji do oczekiwanych rezultatów. Modyfikacja zmiennych odbywa się poprzez zewnętrzne okno:

Nazwa okna odpowiada nazwie wykonywanej operacji.

Pierwsza zmienna określa promień nakładanego zniekształcenia.

Mieści się w zakresie od 1 do 3/2 większego wymiaru okna. Szerokości lub wysokości.

Tak dobrana górna granica pozwala na przesłoniecie

większości obszaru modyfikowanego obrazu.

Druga zmienna określa intensywność wprowadzanej modyfikacji. [0; 255].

Podgląd wprowadzanych zmian jest widoczny na

dynamicznie modyfikowanym oknie z plikiem graficznym.

6.1 Przyciemnianie i Rozjaśnianie

Są to dwie koncepcyjnie najprostsze operacje liniowo modyfikujące wybrany obszar. W momencie przekroczenia zakresu [0 ; 255] zostaje przypisana pikselowi wartość graniczna. Zero lub 255.

W wyniku przetworzeń obraz może bezpowrotnie stracić część informacji.

6.2 Stopniowe Przyciemnianie i Rozjaśnianie

Stopniowe przyciemnianie i rozjaśnianie jest konfiguracją wykorzystującą promień w dodatkowym celu jakim jest częściowe osłabienie wpływu wartości natężenia na przeliczany piksel. Wartość natężenia jest obliczana odwrotnie proporcjonalnie do odległości promienia od środka pliku graficznego.

6.3 Odwrócone Stopniowe Przyciemnianie i Rozjaśnianie

Bliźniacze operacje do poprzedniej - 6.2 Stopniowe Przyciemnianie i Rozjaśnianie. Przy tej modyfikacji wartość natężenia jest obliczana proporcjonalnie do odległości promienia od środka pliku graficznego.

6.4 Zewnętrzne Przyciemnianie i Rozjaśnianie

Zewnętrzne przyciemnianie i rozjaśnianie są operacjami liniowymi, w których obszar modyfikacji obrazu kończy się na wprowadzonej wartości promienia. Nakładane na pierwotny obraz modyfikacje są równomierne a ich wartość odpowiada sile wprowadzonej wartości natężenia.

6.5 Zewnętrzne Stopniowe Przyciemnianie i Rozjaśnianie

Jest to konfiguracją łącząca w sobie cechy dwóch poprzednich podrozdziałów:

- 6.3 Odwrócone Stopniowe Przyciemnianie i Rozjaśnianie
- 6.4 Zewnętrzne Przyciemnianie i Rozjaśnianie

Przy obliczaniu zakresu i siły modyfikacji brana jest pod uwagę odległość piksela od wprowadzonej wartości promienia.

7 Operacja Korekcji Zniekształceń Radiometrycznych

Opisywana w tym rozdziale operacja nie przyjmuje innych danych wejściowych niż plik graficzny. Przed wprowadzaniem zmian na obrazie, wykonywane są 2 inne algorytmy wyszukujące ewentualne zniekształcenia radiometryczne. Następnie wykonywany jest kolejny podprogram którego efektem jest lista modyfikacji do naniesienia na obraz w ostatecznym kroku operacji.

Przykład 1

Powyższe porównanie pokazuje efekty wywołania operacji autokorekty na obrazie nie posiadającym zniekształceń radiometrycznych.

Można tutaj zaobserwować niedoskonałość operacji w postaci ciemniejszych kręgów. Wynika ona z utraty precyzji przy przeliczaniu wartości promienia do liczb całkowitych.

Przykład 2

Każdy piksel zewnętrznego obszaru obrazu pierwotnego został przyciemniony o wartość 128 intensywności.

Obszar nietknięty posiada promień 192 pikseli.

Operacja w pierwszej kolejności określiła różnice między intensywnością pikseli zgrupowanych po planie okręgów. Następnie obliczyła średnią wartość dla każdej z grup.

Na koniec, algorytm porównał średnie wartości dla każdej z grup.

W ten sposób ostateczny algorytm dostaje listę modyfikacji do przeprowadzenia na obrazie.

Obraz wynikowy jest efektem nałożenia wszystkich obliczonych modyfikacji z listy na obraz pierwotny.

W tym przykładzie można zaobserwować jak obrazek wytraca część informacji poprzez nakładanie zniekształceń radiometrycznych.

Operacja autokorekcji nie jest w stanie odwrócić efektów zniekształceń w wyniku których przeliczane wartości przekroczyły zakres [0; 255].

Operacja autokorekcji wymaga kilkukrotnej iteracji przez wszystkie piksele wprowadzanego obrazu pierwotnego. Zalecam unikanie przeprowadzania operacji dla obrazów większych niż (512 x 512)px.