I rok, Fizyka Wtorek, 8:00-10:15 Data wykonania pomiarów: 27.05.2025

Prowadząca: dr Iwona Mróz

Ćwiczenie nr 38

Pomiar napięcia powierzchniowego

Spis treści

1	Wstęp teoretyczny	2
	1.1 Napięcie powierzchniowe	2
	1.2 Zjawiska związane z napięciem powierzchniowym	
	1.3 Metody pomiaru napięcia powierzchniowego	
2	Opis doświadczenia	3
	2.1 Metoda odrywania	3
	2.2 Metoda stalagmometru	3
3	Opracowanie wyników pomiarów	3
	3.1 Tabele pomiarowe	3
	3.2 Obliczenia	4
4	Ocena niepewności pomiaru	5
5	Wnioski	5
6	Wykresy	5

1 Wstęp teoretyczny

1.1 Napięcie powierzchniowe

Napięcie powierzchniowe jest zjawiskiem fizycznym występującym na granicy faz, najczęściej ciecz-gaz, i wynika z oddziaływań międzycząsteczkowych w cieczy. Cząsteczki znajdujące się wewnątrz cieczy oddziałują z sąsiednimi cząsteczkami we wszystkich kierunkach, natomiast cząsteczki na powierzchni oddziałują głównie z cząsteczkami znajdującymi się pod nimi. Ta nierównowaga sił powoduje, że powierzchnia cieczy zachowuje się jak napięta błona, dążąc do przyjęcia kształtu o minimalnej powierzchni.

Napięcie powierzchniowe (σ) definiuje się jako stosunek siły (F) działającej stycznie do powierzchni cieczy wzdłuż linii o długości (l):

$$\sigma = \frac{F}{l} \tag{1}$$

Jednostką napięcia powierzchniowego w układzie SI jest N/m (newton na metr).

1.2 Zjawiska związane z napięciem powierzchniowym

Na granicy ośrodków ciecz-ciało stałe-gaz obserwuje się zjawisko menisku (wklęsłego lub wypukłego), zależnie od oddziaływań między cieczą a ciałem stałym. Jeśli siły przyciągania między cząsteczkami cieczy a ciałem stałym są silniejsze niż między samymi cząsteczkami cieczy, powstaje menisk wklęsły (np. woda w szklanej rurce). W przeciwnym przypadku tworzy się menisk wypukły (np. rtęć w szklanej rurce).

Zjawisko włoskowatości (kapilarności) jest bezpośrednim skutkiem napięcia powierzchniowego i zwilżalności powierzchni. Polega ono na samorzutnym podnoszeniu się lub obniżaniu cieczy w wąskich kapilarach. Wysokość słupa cieczy w kapilarze zależy od napięcia powierzchniowego, gestości cieczy oraz promienia kapilary.

1.3 Metody pomiaru napięcia powierzchniowego

W niniejszym ćwiczeniu wykorzystano dwie metody pomiaru napięcia powierzchniowego:

• Metoda odrywania - polega na pomiarze siły F potrzebnej do oderwania płytki od powierzchni cieczy. Napięcie powierzchniowe σ jest zdefiniowane jako siła działająca na jednostkę długości krawędzi. Całkowita długość krawędzi styku płytki (o długości l i grubości d) z cieczą wynosi 2(l+d). Zatem siła napięcia powierzchniowego F (równa sile odrywania, po uwzględnieniu ciężaru płytki oraz przy założeniu kąta zwilżania $\gamma \approx 0$, czyli $\cos \gamma \approx 1$) wyraża się jako $F = \sigma \cdot 2(l+d)$. Przekształcając ten wzór, otrzymujemy:

$$\sigma = \frac{F}{2(l+d)} \tag{2}$$

gdzie F to mierzona siła odrywania (po skompensowaniu ciężaru płytki), l to długość płytki, a d to jej grubość.

• Metoda stalagmometru - opiera się na pomiarze masy kropel cieczy, które odrywają się od kapilary o znanym promieniu. Napięcie powierzchniowe wyznacza się, porównując masy kropel badanej cieczy i cieczy wzorcowej o znanym napięciu powierzchniowym.

Napięcie powierzchniowe zależy od temperatury (na ogół maleje liniowo wraz z jej wzrostem) oraz od obecności zanieczyszczeń i substancji powierzchniowo czynnych, które mogą znacząco obniżyć jego wartość.

Wstęp teoretyczny został opracowany na podstawie podręcznika [2] oraz materiałów dydaktycznych Politechniki Wrocławskiej [1].

2 Opis doświadczenia

Celem doświadczenia było wyznaczenie napięcia powierzchniowego dla wody destylowanej, alkoholu i acetonu przy użyciu dwóch metod: metody odrywania oraz metody stalagmometru.

2.1 Metoda odrywania

Pomiary wykonano przy użyciu wagi torsyjnej (Rys. 1 w instrukcji).

- 1. Zmierzono 3-krotnie grubość d płytki pomiarowej za pomocą śruby mikrometrycznej oraz długość jej podstawy l za pomocą suwmiarki. Płytkę następnie osuszono i zawieszono na haczyku wagi.
- 2. Odaretowano wagę i zważono płytkę, notując jej masę spoczynkową (wskazanie wagi bez dodatkowego obciążenia).
- 3. Pod płytkę podstawiono naczynko z badaną cieczą (wodą destylowaną) tak, aby dolna krawędź płytki niemal dotykała powierzchni cieczy. Waga była zaaretowana.
- 4. Odaretowano wagę, doprowadzając do zanurzenia dolnej części płytki w cieczy. Następnie powoli obracano pokrętłem wagi, zwiększając siłę, aż do momentu oderwania płytki od powierzchni cieczy. Odczytano maksymalną siłę F (wskazanie wagi w jednostkach masy [mg]) działającą w momencie odrywania.
- 5. Pomiar siły odrywającej F wykonano 10-krotnie dla wody destylowanej.
- 6. Kroki 3-5 powtórzono dla alkoholu i acetonu.

2.2 Metoda stalagmometru

- 1. Zważono czyste i osuszone naczynko pomiarowe.
- 2. Sprawdzono drożność kapilary stalagmometru i zmierzono jej zewnętrzny promień R.
- 3. Napełniono naczynko 30 kroplami wody destylowanej, które odrywały się od kapilary, a następnie zważono naczynko z cieczą.
- 4. Pomiar masy 30 kropel (krok 3) powtórzono 3-krotnie dla wody destylowanej.
- 5. Zanotowano temperaturę otoczenia.
- 6. Kroki 1, 3 i 4 powtórzono dla alkoholu i acetonu.

3 Opracowanie wyników pomiarów

3.1 Tabele pomiarowe

Dług	ość płytki l [mm]
	9,5

Tabela 1: Zmierzona długość płytki pomiarowej.

Grubość płytki [mm]					
Wskazanie	Błąd wskazania zerowego (Δd)	Wartość skorygowana			
0,92	0,46	0,46			

Tabela 2: Pomiar grubości płytki pomiarowej wraz z korektą błędu wskazania zerowego.

Masa spoczynkowa	[mg]
272	

Tabela 3: Masa spoczynkowa płytki pomiarowej.

Siła odrywająca [mg]					
Pomiar	Woda	Alkohol	Aceton		
1	398	308	312		
2	394	310	312		
3	392	310	310		
4	392	310	314		
5	396	312	312		
6	396	308	312		
7	398	308	314		
8	398	310	314		
9	398	312	314		
10	398	310	312		

Tabela 4: Siła odrywająca płytkę dla różnych cieczy.

3.2 Obliczenia

Obliczono średnią arytmetyczną wartości siły odrywającej płytkę \bar{F}_{mg} (wskazania wagi w jednostkach masy [mg]) dla każdej cieczy na podstawie 10 pomiarów.

$$\bar{F}_{\rm mg} = \frac{\sum_{i=1}^{n} F_i}{n}$$

gdzie F_i to kolejne pomiary siły, a n to liczba pomiarów (n = 10).

Przeliczono średnią siłę odrywania \bar{F}_N na niutony [N], wykorzystując zależność, że 1 [mg] odpowiada sile $9.807 \cdot 10^{-6}$ [N].

$$\bar{F}_{\rm N} = \bar{F}_{\rm mg} \cdot 9.807 \cdot 10^{-6} \, \text{N/mg}$$

Obliczono wartość napięcia powierzchniowego σ dla każdej cieczy, korzystając ze wzoru (2):

$$\sigma = \frac{\bar{F}_{\rm N}}{2(l+d)}$$

Wymiary płytki:

• Długość (l): 9.5 mm = 0.0095 m

• Grubość (d): 0.46 mm = 0.00046 m

• Obwód całkowity 2(l+d) = 2(0,0095+0,00046) = 0,0199 m

Przykładowe obliczenia dla wody destylowanej:

Średnia siła odrywająca (wskazanie wagi):

$$\begin{split} \bar{F}_{\rm mg,\ woda} &= \frac{398 + 394 + 392 + 392 + 396 + 396 + 398 + 398 + 398 + 398}{10} \\ &= \frac{3960}{10} = 396,00 \text{ mg} \\ &= 396,00 \cdot 9,807 \cdot 10^{-6} = 0,00388357 \text{ N} \end{split}$$

Napięcie powierzchniowe wody:

$$\sigma_{\rm woda} = \frac{0,00388357}{0,0199} = 0,1950 \frac{\rm N}{\rm m}$$

Wyniki obliczeń dla wszystkich cieczy:

Ciecz	\bar{F}_{mg} [mg]	$\bar{F}_{\mathbf{N}}$ [N]	σ [N/m]
Woda destylowana	396,00	0,00388357	0,1950
Alkohol	309,80	0,00303821	0,1525
Aceton	312,60	0,00306567	0,1539

Tabela 5: Zestawienie obliczonych wartości siły odrywającej i napięcia powierzchniowego.

4 Ocena niepewności pomiaru

- 5 Wnioski
- 6 Wykresy

Literatura

- [1] Zbigniew Gumienny. Napięcie powierzchniowe. https://lpf.wppt.pwr.edu.pl/opisy/cw033.pdf, 2023.
- [2] William Moebs, Samuel J. Ling, and Jeff Sanny. Fizyka dla szkół wyższych, Tom 2. Open-Stax, 2018. Dostęp: 14.04.2024.