1. Prove the following using proof by contradiction: Show $\exists x \in R_{\downarrow} \ni x^2 \le 1$ (Note: R_{\downarrow} is: x > 0)

Proof: Assume $\forall \times ER_{+}, \times^{2} > 1$ if $\times = 1$, then $1^{2} > 1$ 1 > 1 1 > 1 $1 \neq 1$ $1 \neq 1$

.. By TT. 3 x ER + > x = < 1 is true.

4. Prove the following using proof by contradiction: Show If x + 2 is an even Integer, then x = 2 is an even.

Proof: Assume $\exists x \in \mathbb{Z} \Rightarrow x + 2$ is an even $\exists x \in \mathbb{Z} \Rightarrow x$

BXEZ + x+2 is an even Z AND x+2=2p+1

- : A x EZ + x+2 is an even Integer AND x is odd is false.
- .. By TT. Ix x+2 is an even Integer, then x is even is true.

5. Prove the following using proof by contradiction: Show If $x \ne 0$, then $10^x \ne 1$ (Hint: This is a for all case)

Proof: Assume
$$\exists x \in \mathbb{R} \Rightarrow x \neq 0$$
 AND $10^{x} = 1$

$$\exists x \in \mathbb{R} \Rightarrow x \neq 0$$
 AND $10^{y} = 10^{y} (1)$

$$\exists x \in \mathbb{R} \Rightarrow x \neq 0$$
 AND $x = 0$

$$\exists x \in \mathbb{R} \Rightarrow x \neq 0$$
 AND $x = 0$

$$\exists x \in \mathbb{R} \Rightarrow x \neq 0$$
 AND $x = 0$

$$\exists x \in \mathbb{R} \Rightarrow x \neq 0$$
 AND $x = 0$

$$\exists x \in \mathbb{R} \Rightarrow x \neq 0$$
 AND $x = 0$

$$\exists x \in \mathbb{R} \Rightarrow x \neq 0$$
 AND $x = 0$

$$\exists x \in \mathbb{R} \Rightarrow x \neq 0$$
 AND $x = 0$

$$\exists x \in \mathbb{R} \Rightarrow x \neq 0$$
 AND $x = 0$

$$\exists x \in \mathbb{R} \Rightarrow x \neq 0$$
 AND $x = 0$

$$\exists x \in \mathbb{R} \Rightarrow x \neq 0$$
 AND $x = 0$

$$\exists x \in \mathbb{R} \Rightarrow x \neq 0$$
 AND $x = 0$

$$\exists x \in \mathbb{R} \Rightarrow x \neq 0$$
 AND $x = 0$

$$\exists x \in \mathbb{R} \Rightarrow x \neq 0$$
 AND $x = 0$

$$\exists x \in \mathbb{R} \Rightarrow x \neq 0$$

$$\exists x$$