# Complex analysis

Luka Horjak (luka1.horjak@gmail.com)

October 24, 2023

Contents Luka Horjak

## Contents

| Introduction |     |                                     | 3  |
|--------------|-----|-------------------------------------|----|
| 1            | Hol | omorphic functions                  | 4  |
|              | 1.1 | Properties of holomorphic functions | 4  |
|              | 1.2 | The $\overline{\partial}$ equation  | 9  |
|              | 1.3 | Meromorphic functions               | 11 |
|              | 1.4 | Sequences of holomorphic functions  | 14 |
| In           | dex |                                     | 16 |

Introduction Luka Horjak

## Introduction

These are my lecture notes on the course Complex analysis in the year 2023/24. The lecturer that year was viš. znan. sod. dr. Rafael Benedikt Andrist.

The notes are not perfect. I did not write down most of the examples that help with understanding the course material. I also did not formally prove every theorem and may have labeled some as trivial or only wrote down the main ideas.

I have most likely made some mistakes when writing these notes – feel free to correct them.

## 1 Holomorphic functions

#### 1.1 Properties of holomorphic functions

**Definition 1.1.1.** Let  $\Omega \subseteq \mathbb{C}$  be an open subset. A function  $f: \Omega \to \mathbb{C}$  is *complex differentiable* in a point  $a \in \Omega$  if the limit

$$\lim_{z \to a} \frac{f(z) - f(a)}{z - a}$$

exists.

**Remark 1.1.1.1** (Cauchy-Riemann equations). Denoting u = Re f and v = Im f where f is real differentiable in a, f is complex differentiable in a if and only if  $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$  and  $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$ 

**Definition 1.1.2.** Wirtinger derivatives are defined as

$$\frac{\partial}{\partial z} = \frac{1}{2} \cdot \left( \frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right) \quad \text{and} \quad \frac{\partial}{\partial \overline{z}} = \frac{1}{2} \cdot \left( \frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right).$$

**Remark 1.1.2.1.** A function f is complex differentiable in a if and only if

$$\frac{\partial f}{\partial \overline{z}} = 0.$$

In that case, we also have

$$\frac{\partial f}{\partial z}(a) = f'(a).$$

**Definition 1.1.3.** Let  $\Omega \subseteq \mathbb{C}$  be an open subset. A function  $f: \Omega \to \mathbb{C}$  is holomorphic in a if it is complex differentiable in an open neighbourhood of a. The function f is holomorphic if it is holomorphic in every point of  $\Omega$ . We denote the set of holomorphic functions in  $\Omega$  as  $\mathcal{O}(\Omega)$ .

**Theorem 1.1.4** (Inhomogeneous Cauchy integral formula). Let  $\Omega \subseteq \mathbb{C}$  be a bounded domain with  $\mathcal{C}^1$ -smooth boundary and  $f \in \mathcal{C}^1(\Omega) \cap \mathcal{C}(\overline{\Omega})$ . Then, for all  $z \in \Omega$ , we have

$$f(z) = \frac{1}{2\pi i} \oint_{\partial \Omega} \frac{f(w)}{w - z} dw + \frac{1}{2\pi i} \iint_{\Omega} \frac{\partial f}{\partial \overline{w}} \cdot \frac{1}{w - z} dw \wedge d\overline{w}$$

*Proof.* As  $\Omega$  is an open set, there exists an  $\varepsilon > 0$  such that  $\overline{\Delta(z,\varepsilon)} \subseteq \Omega$ . Define a new domain  $\Omega_{\varepsilon} = \Omega \setminus \overline{\Delta(z,\varepsilon)}$ .

We now apply Stokes' theorem to  $\omega = \frac{f(w)}{w-z} dw$  on  $\Omega_{\varepsilon}$ . As  $d\omega = \frac{\partial f}{\partial \overline{w}} \cdot \frac{1}{w-z} d\overline{w} \wedge dw$ , we have

$$\oint_{\partial\Omega_{\varepsilon}} \frac{f(w)}{w-z} dw = \iint_{\Omega_{\varepsilon}} \frac{\partial f}{\partial \overline{w}} \cdot \frac{1}{w-z} d\overline{w} \wedge dw.$$

Note that

In the limit, we have

$$\lim_{\varepsilon \to 0} \oint_{\partial \Delta(z,\varepsilon)} \frac{f(w)}{w-z} dw = \lim_{\varepsilon \to 0} \int_0^{2\pi} \frac{f(z+\varepsilon e^{it})}{\varepsilon e^{it}} \cdot \varepsilon i e^{it} dt = 2\pi i f(z)$$

by continuity. Also note that

$$\lim_{\varepsilon \to 0} \iint\limits_{\Omega_{\varepsilon}} \frac{\partial f}{\partial \overline{w}} \cdot \frac{1}{w-z} \, d\overline{w} \wedge dw = \iint\limits_{\Omega \backslash \{z\}} \frac{\partial f}{\partial \overline{w}} \cdot \frac{1}{w-z} \, d\overline{w} \wedge dw = \iint\limits_{\Omega} \frac{\partial f}{\partial \overline{w}} \cdot \frac{1}{w-z} \, d\overline{w} \wedge dw.$$

Applying the limit to the Stokes' theorem equation, it follows that

$$\frac{1}{2\pi i} \oint_{\partial \Omega} \frac{f(w)}{w - z} \, dw - f(z) = -\frac{1}{2\pi i} \iint_{\Omega} \frac{\partial f}{\partial \overline{w}} \cdot \frac{1}{w - z} \, dw \wedge d\overline{w}.$$

**Theorem 1.1.5** (Power series expansion). Let  $\Omega \subseteq \mathbb{C}$  be an open subset,  $f \in \mathcal{O}(\Omega)$  and  $a \in \Omega$ . The function f can be developed into a power series about a that converges absolutely and uniformly to f in compacts inside  $\Delta(a, r)$ , where r is the radius of convergence. For

$$c_k = \frac{f^{(k)}(a)}{k!} = \frac{1}{2\pi i} \oint_{\partial \Delta(a,\rho)} \frac{f(w)}{(w-z)^{k+1}} dw$$

we have

$$f(z) = \sum_{k=0}^{\infty} c_k \cdot (z - a)^k.$$

**Remark 1.1.5.1.** The converse is also true – any complex power series defines a holomorphic function inside its radius of convergence.

Remark 1.1.5.2. The radius of convergence is given by the formula

$$\frac{1}{r} = \limsup_{k \to \infty} \sqrt[k]{|c_k|}.$$

**Theorem 1.1.6** (Identity). Let  $\Omega \subseteq \mathbb{C}$  be a domain and  $f \in \mathcal{O}(\Omega)$  a holomorphic function. Let  $A \subseteq \Omega$  be a subset such that f(z) = 0 for all  $z \in A$ . If A has an accumulation point in  $\Omega$ , then f(z) = 0 for all  $z \in \Omega$ .

*Proof.* Let  $a \in \Omega$  be an accumulation point of A. By continuity, we have f(a) = 0. We can now write

$$f(z) = \sum_{k=k_0}^{\infty} c_k (z-a)^k,$$

where we assume  $c_{k_0} \neq 0$ . But now  $g(z) = \frac{f(z)}{(z-a)^{k_0}}$  is also holomorphic. Again, by continuity, we must have g(a) = 0, which is a contradiction. It follows that  $c_k = 0$  for all  $k \in \mathbb{N}_0$ . It follows that the set Int  $\{z \in \Omega \mid f(z) = 0\}$  is non-empty. By the same argument as above, it has an empty boundary and is therefore equal to  $\Omega$ .

**Theorem 1.1.7** (Open mapping). Let  $\Omega \subseteq \mathbb{C}$  be a domain and  $f \in \mathcal{O}(\Omega)$  a function. If f is not constant, it is an open map.

*Proof.* We first prove the following lemma:

**Lemma.** Let  $\Omega \subseteq \mathbb{C}$  be a domain and  $f \in \mathcal{O}(\Omega)$ . Suppose that for  $a \in \Omega$  and r > 0 we have  $\overline{\Delta(a,r)} \subseteq \Omega$ . If

$$|f(a)| < \min_{\partial \Delta(a,r)} |f|,$$

then f has a zero in  $\Delta(a, r)$ .

*Proof (lemma).* Assume otherwise. From the inequality it follows that f has no zeroes on the boundary either. By continuity, f has no zero on an open set V with  $\Delta(a, r) \subseteq V$ . We can therefore define  $g \in \mathcal{O}(V)$  with  $g(z) = \frac{1}{f(z)}$ . We now have

$$g(a) = \frac{1}{2\pi i} \oint_{\partial \Delta(a,r)} \frac{g(z)}{z - a} dz = \frac{1}{2\pi i} \int_0^{2\pi} \frac{g(a + r \cdot e^{it})}{e^{it}} \cdot rie^{it} dt = \frac{1}{2\pi} \int_0^{2\pi} g(a + re^{it}) dt.$$

We can therefore get a bound on |g(a)| as

$$|g(a)| \le \max_{\partial \Delta(a,r)} |g|,$$

but as the condition on f can be rewritten as

$$|g(a)| > \max_{\partial \Delta(a,r)} |g|,$$

we have reached a contradiction.

Let  $U \subseteq \Omega$  be an open set and  $w_0 \in f(U)$ . Choose a  $z_0 \in U$  such that  $f(z_0) = w_0$ . Choose a  $\rho > 0$  such that  $\Delta(z_0, \rho) \subseteq U$  and  $z_0$  is the only pre-image of  $w_0$  in  $\Delta(z_0, 2\rho)$ .

Since  $\partial \mathbb{\Delta}(z_0, \rho)$  is a compact set and

$$|f(z) - w_0| > 0$$

for all  $z \in \partial \Delta(z_0, \rho)$ , we can choose some  $\varepsilon > 0$  such that

$$|f(z) - w_0| > 2\varepsilon$$

holds on the boundary of the disk. Choose a  $w \in \Delta(w_0, \varepsilon)$ . As we have

$$|f(z) - w| > |f(z) - w_0| - |w_0 - w| \ge \varepsilon$$

on the boundary and

$$|f(z_0) - w| = |w_0 - w| < \varepsilon,$$

by the above lemma,  $f(z_0) - w$  has a root on  $\Delta(z, \rho)$ .

**Theorem 1.1.8** (Maximum principle). Let  $\Omega \subseteq \mathbb{C}$  be a domain. If the modulus |f| of a function  $f \in \mathcal{O}(\Omega)$  attains a local maximum, the function f is constant.

<sup>&</sup>lt;sup>1</sup> If such a disk does not exist, f is constant by the identity theorem.

*Proof.* Suppose that f is non-constant and that its modulus attains a local maximum at  $z \in \Omega$ . As f is an open map, it also attains the value  $(1+\varepsilon) \cdot f(z)$ , which is a contradiction as the modulus then equals  $(1+\varepsilon) \cdot |f(z)| > |f(z)|$ .

**Theorem 1.1.9** (Maximum principle). Let  $\Omega \subseteq \mathbb{C}$  be a bounded domain and assume that  $f \in \mathcal{O}(\Omega) \cap \mathcal{C}(\overline{\Omega})$ . Then, the maximum of |f| is attained in the boundary  $\partial\Omega$ .

*Proof.* As  $\overline{\Omega}$  is compact, f attains a global maximum on this set. If the maximum is attained in the interior, f is constant, therefore it is also attained on the boundary.  $\square$ 

**Definition 1.1.10.** A function  $f: \Omega \setminus \{a\} \to \mathbb{C}$  is *locally bounded* near a if there exists an open neighbourhood  $U \subseteq \Omega$  of a such that  $f|_{U \setminus \{a\}}$  is bounded.

**Theorem 1.1.11** (Riemann removable singularity theorem). Let  $\Omega \subseteq \mathbb{C}$  be an open subset,  $a \in \Omega$  and  $f \in \mathcal{O}(\Omega \setminus \{a\})$ . If f is locally bounded near a, then there exists a unique function  $F \in \mathcal{O}(\Omega)$  such that  $F|_{\Omega \setminus \{a\}} = f$ .

*Proof.* Define the function  $F: \Omega \to \mathbb{C}$  as

$$F(z) = \begin{cases} f(z) & z \in \Omega \setminus \{a\}, \\ \frac{1}{2\pi i} \oint_{\partial \Delta(a,\rho)} \frac{f(w)}{w-a} dw & z = a. \end{cases}$$

It remains to check that F is complex differentiable at a. Indeed, for  $z \in \Delta(a, \rho)$  we have

$$\lim_{z \to a} \frac{F(z) - F(a)}{z - a} = \lim_{z \to a} \frac{1}{z - a} \oint_{\partial \Delta(a, \rho)} \left( \frac{f(w)}{w - z} - \frac{f(w)}{w - a} \right) dw$$

$$= \lim_{z \to a} \frac{1}{2\pi i} \cdot \frac{1}{z - a} \cdot \oint_{\partial \Delta(a, \rho)} f(w) \cdot \frac{z - a}{(w - z)(w - a)} dw$$

$$= \frac{1}{2\pi i} \oint_{\partial \Delta(a, \rho)} \frac{f(w)}{(w - a)^2} dw,$$

which exists. Uniqueness follows from the identity theorem.

**Theorem 1.1.12** (Schwarz lemma). Let  $f: \Delta \to \Delta$  be a holomorphic function with f(0) = 0. Then,  $|f'(0)| \le 1$  and the inequality  $|f(z)| \le |z|$  holds for all  $z \in \Delta$ . If |f'(0)| = 1 or |f(z)| = |z| holds for any  $z \ne 0$ , then  $f(z) = \beta z$  for some  $\beta \in \partial \Delta$ .

*Proof.* We can write

$$f(z) = \sum_{k=1}^{\infty} c_k z^k.$$

We define

$$g(z) = \frac{f(z)}{z} = \sum_{k=1}^{\infty} c_k z^{k-1}.$$

The radius of convergence for both series is at least 1. Now apply the maximum principle for g on the domain  $\Delta(\rho)$ . We get

$$\sup_{z \in \Delta(\rho)} |g(z)| \le \max_{|z| = \rho} |g(z)| = \frac{1}{\rho} \max_{|z| = \rho} |f(z)| < \frac{1}{\rho}.$$

In the limit as  $\rho \to 1$ , it follows that

$$\sup_{z\in\mathbb{A}}|g(z)|\leq 1.$$

It immediately follows that  $|f'(0)| = |g(0)| \le 1$ . Also note that

$$\frac{|f(z)|}{|z|} \le \frac{1}{\rho},$$

which in the limit gives

$$|f(z)| \le |z|.$$

Suppose we have  $|f(z_0)| = |z_0|$  for some  $z_0 \neq 0$ . As then  $|g(z_0)| = 1$ , it follows that g is constant, therefore  $f(z) = \beta z$  for some  $\beta \in \partial \Delta$ . If we have |f'(0)| = 0, the same argument works for  $z_0 = 0$ .

#### 1.2 The $\overline{\partial}$ equation

**Lemma 1.2.1.** Let  $g \in \mathcal{C}^{\infty}(\mathbb{C})$  be a function with compact support. Then there exists a function  $f \in \mathcal{C}^{\infty}(\mathbb{C})$  such that  $\frac{\partial f}{\partial \overline{z}} = g$ .

Proof. Let

$$f(z) = \frac{1}{2\pi i} \iint_{\mathbb{C}} \frac{g(w)}{w - z} dw \wedge d\overline{w}.$$

As

$$dw \wedge d\overline{w} = -2ri\,dr \wedge d\varphi$$

holds for polar coordinates centered at z, we can express the integral as

$$f(z) = -\frac{1}{\pi} \iint_{\mathbb{C}} \frac{rg(z + re^{i\varphi})}{re^{i\varphi}} dr \wedge d\varphi.$$

We can further simplify the integral, as there exists some R such that  $g|_{\mathbb{C}\backslash \Delta(z,R)}=0$ . We get

$$f(z) = -\frac{1}{\pi} \iint_{\mathbb{A}(z,R)} g\left(z + re^{i\varphi}\right) e^{-i\varphi} dr \wedge d\varphi,$$

which obviously converges. The function f is therefore well defined. As we are integrating a smooth function on a compact set, the function f is smooth as well.

For  $u = re^{i\varphi}$ , we have

$$\begin{split} \frac{\partial f}{\partial \overline{z}}(z) &= -\frac{1}{\pi} \iint\limits_{\underline{\mathbb{A}}(z,R)} \frac{\partial}{\partial \overline{z}} g\left(z + r e^{i\varphi}\right) e^{-i\varphi} \, dr \wedge d\varphi \\ &= \frac{1}{2\pi i} \iint\limits_{\underline{\mathbb{A}}(0,R)} \frac{\partial}{\partial \overline{z}} g(u+z) \frac{1}{u} \, du \wedge d\overline{u} \\ &= \frac{1}{2\pi i} \iint\limits_{\underline{\mathbb{A}}(0,R)} \frac{\partial g}{\partial \overline{u}}(u+z) \frac{1}{u} \, du \wedge d\overline{u} \\ &= \frac{1}{2\pi i} \iint\limits_{\underline{\mathbb{A}}(z,R)} \frac{\partial g}{\partial \overline{w}}(w) \frac{1}{w-z} \, dw \wedge d\overline{w}. \end{split}$$

Now we can apply the inhomogeneous Cauchy integral formula. We get

$$g(z) = \frac{1}{2\pi i} \oint_{\partial \underline{\mathbb{A}}(z,R)} \frac{g(w)}{w - z} \, dw + \frac{1}{2\pi i} \iint_{\underline{\mathbb{A}}(z,R)} \frac{\partial g}{\partial \overline{w}}(w) \frac{1}{w - z} \, dw \wedge d\overline{w}.$$

by the choice of R, we get

$$\frac{\partial f}{\partial \overline{z}}(z) = g(z). \qquad \Box$$

**Lemma 1.2.2.** Given bounded domain  $U \subset V \subset \mathbb{R}^n$  such that  $\partial U \cap \partial V = \emptyset$ , there exists a smooth function  $\chi \colon \mathbb{R}^n \to [0,1]$  such that  $\chi|_U = 1$  and supp  $\chi \subseteq V$ .

*Proof.* There is a unit partition on the sets V and  $\mathbb{R}^n \setminus \overline{U}$ .

**Lemma 1.2.3.** Let  $\Omega \subseteq \mathbb{C}$  be an open subset. Let  $h_j : \Omega \to \mathbb{C}$  be holomorphic functions. If the sequence  $(h_j)_{j \in \mathbb{N}}$  converges uniformly on compact sets, the limit is also holomorphic on  $\Omega$ .

**Theorem 1.2.4** (Dolbeault lemma). Let  $g \in \mathcal{C}^{\infty}(\Delta(R))$  for some  $R \in (0, \infty]$ . Then there exists a function  $f \in \mathcal{C}^{\infty}(\Delta(R))$  such that  $\frac{\partial f}{\partial \overline{z}} = g$ .

*Proof.* Define discs  $X_i$  as follows:

- i) If  $R = \infty$ , set  $X_i = \Delta(j)$ .
- ii) If  $R < \infty$ , set  $X_j = \Delta \left( R \frac{1}{i} \right)$  (for large enough j).

Applying the above lemma, define functions  $\chi_j$  with  $\chi_j|_{X_j} = 1$  and supp  $\chi_j \subseteq X_{j+1}$  and set

$$g_j = \begin{cases} \chi_j \cdot g & z \in \mathbb{\Delta}(R), \\ 0 & z \notin \mathbb{\Delta}(R). \end{cases}$$

This is of course a smooth function, so by lemma 1.2.1 there exists a function  $f_j \in \mathcal{C}^{\infty}(\mathbb{C})$  with

$$\frac{\partial f_j}{\partial \overline{z}} = g_j.$$

We inductively construct a new sequence  $\tilde{f}_i \in \mathcal{C}^{\infty}(\mathbb{C})$  such that

$$\frac{\partial \widetilde{f}_j}{\partial \overline{z}} = g$$

on  $X_j$  and

$$\left\| \widetilde{f}_j - \widetilde{f}_{j-1} \right\|_{X_{j-2}} \le 2^{-j}.$$

Set  $\tilde{f}_1 = f_1$ . Observe the function  $F = f_{j+1} - \tilde{f}_j$  on  $X_j$ . By construction, we have  $\frac{\partial F}{\partial \bar{z}} = 0$  on  $X_j$ . It follows that F can be developed into a power series

$$F = \sum_{k=0}^{\infty} c_k z^k$$

on  $X_j$ . As power series converge uniformly on compact sets, there exists some polynomial  $p \in \mathbb{C}[z]$  such that

$$||F - p||_{X_{i-1}} \le 2^{-j}.$$

Now just set  $\tilde{f}_{j+1} = f_{j+1} - p$ .

Let  $z \in \Delta(R)$  be arbitrary. By construction, it is contained in some  $X_{j_0}$ , therefore,  $\tilde{f}_j$  is defined for  $j \geq j_0$ . As  $(\tilde{f}_j(z))_{j \geq j_0}$  is a Cauchy sequence, we can define

$$f(z) = \lim_{j \to \infty} \widetilde{f}_j(z).$$

But as

$$f - \widetilde{f}_j = \sum_{k=j}^{\infty} \left( \widetilde{f}_{j+1} - \widetilde{f}_j \right)$$

is a sum of holomorphic functions that converges uniformly, the function  $f - \tilde{f}_j$  is a holomorphic function. Therefore, f is smooth and satisfies  $\frac{\partial f}{\partial \bar{z}} = g$ .

#### 1.3 Meromorphic functions

**Definition 1.3.1.** Let  $\Omega \subset \mathbb{C}$  be an open subset. We call a function f meromorphic of  $\Omega$  if there exists  $A \subset \Omega$  such that  $f \in \mathcal{O}(\Omega \setminus A)$ , A has no accumulation points in  $\Omega$  and for all  $a \in A$  there exists some  $k \in \mathbb{N}$  such that

$$\lim_{z \to a} f(z) \cdot (z - a)^k \neq 0$$

exists. We call A the set of poles of the function f. We denote the set of meromorphic functions on  $\Omega$  with  $\mathcal{M}(\Omega)$ .

**Theorem 1.3.2.** Let  $0 \le r < r \le \infty$ . Suppose that  $f \in \mathcal{O}(D_{R,r}(a))$  is a holomorphic function, where

$$D_{R,r}(a) = \{ z \in \mathbb{C} \mid r < |z - a| < R \}.$$

Then there exists a uniquely determined Laurent series

$$\sum_{k\in\mathbb{Z}} c_k (z-a)^k$$

that converges to f uniformly and absolutely on compact subsets of  $D_{R,r}(a)$ . We have

$$c_k = \frac{1}{2\pi i} \oint_{\partial \Delta(a,\rho)} \frac{f(w)}{(w-a)^k} dw$$

for  $r < \rho < R$ .

**Definition 1.3.3.** Let

$$\sum_{k \in \mathbb{Z}} c_k (z - a)^k$$

be a Laurent series. The series

$$\sum_{k=-\infty}^{-1} c_k (z-a)^k$$

is called the *principle part*.

**Lemma 1.3.4.** Let  $f \in \mathcal{O}(\Omega \setminus \{a\})$  be a holomorphic function. Then f is meromorphic on  $\Omega$  if and only if f has a finite principle part in a.

*Proof.* Suppose that f is meromorphic on  $\Omega$ . If a is a removable singularity, f is holomorphic in a, therefore the principle part is trivial. Otherwise, set  $m \in \mathbb{N}$  such that

$$\lim_{z \to a} (z - a)^m f(z) \neq 0$$

exists and set  $g(z) = (z - a)^m f(z)$ . As g is bounded near a, we can extend it to  $\Omega$  by the Riemann removable singularity theorem. The power series of g corresponds to a finite Laurent series of f.

The converse is obvious.

**Theorem 1.3.5.** If  $f \in \mathcal{M}(\mathbb{C})$  is a meromorphic function, there exist entire functions g and h such that  $f = \frac{g}{h}$ .

October 18, 202

**Definition 1.3.6.** Let  $\Omega \subseteq \mathbb{C}$  be an open set. An additive Cousin problem on  $\Omega$  is an open cover  $\{U_j\}_{j\in J}$  of  $\Omega$  and functions  $f_j\in \mathcal{M}(U_j)$  such that  $f_j-f_k|_{U_j\cap U_k}$  is holomorphic for all  $j,k\in J$ . A function  $f\in \mathcal{M}(\Omega)$  is a solution to the additive Cousin problem if  $f|_{U_j}-f_j$  is holomorphic for all  $j\in J$ .

**Definition 1.3.7.** Let  $\Omega \subseteq \mathbb{C}$  be an open subset. A generalized additive Cousin problem is an open cover  $\{U_j\}_{j\in J}$  of  $\Omega$  and functions  $f_{j,k} \in \mathcal{O}(U_j \cap U_k)$  for each  $(j,k) \in J^2$ , such that

- i)  $f_{i,k} = -f_{k,j}$  on  $U_i \cap U_k$  for all  $(j,k) \in J^2$  and
- ii)  $f_{i,k} + f_{k,\ell} + f_{\ell,j} = 0$  on  $U_i \cap U_k \cap U_\ell$  for all  $(j, k, \ell) \in J^3$ .

A solution to the generalized additive Cousin problem is given by functions  $f_j \in \mathcal{O}(U_j)$  for each  $j \in J$  such that  $F_{j,k} = f_j - f_k$  for each  $(j,k) \in J^2$ .

**Lemma 1.3.8** (Partition of unity). Let  $\Omega \subseteq \mathbb{C}$  be an open set and  $\{U_j\}_{j\in J}$  be an open cover of  $\Omega$ . Then there exists a partition of unity subordinate to  $\{U_j\}_{j\in J}$ .

**Lemma 1.3.9.** Given a generalized additive Cousin problem on  $\Omega \subseteq \mathbb{C}$ , there exist functions  $g_j \in \mathcal{C}^{\infty}(U_j)$  such that  $f_{j,k} = g_j - g_k$  for all  $(j,k) \in J^2$ .

*Proof.* Let  $\{(V_a, \chi_a)\}_{a \in A}$  be a partition of unity, subordinate to  $\{U_j\}_{j \in J}$ . For all  $a \in A$  choose a  $j(a) \in J$  such that  $V_a \subseteq U_{j(a)}$ . For all  $k \in J$ , define

$$g_k = -\sum_{a \in A} \chi_a \cdot f_{j(a),k}.$$

This is of course a smooth function on  $U_k$ . Now note that

$$g_k - g_\ell = \sum_{a \in A} \chi_a \cdot \left( -f_{j(a),k} + f_{j(a),\ell} \right) = \sum_{a \in A} \chi_a \cdot f_{k,\ell} = f_{k,\ell}.$$

**Proposition 1.3.10.** The generalized additive Cousin problem is solvable for  $\Omega = \Delta(r)$  and  $\Omega = \mathbb{C}$ .

*Proof.* Let  $f_{j,k} = g_j - g_k$  for  $g_j \in \mathcal{C}^{\infty}(U_j)$ . Note that

$$\frac{\partial g_j}{\partial \overline{z}} = \frac{\partial g_k}{\partial \overline{z}},$$

therefore,

$$h|_{U_j} = \frac{\partial g_j}{\partial \overline{z}}$$

induces a smooth function  $h: \Omega \to \mathbb{C}$ . By the Dolbeault lemma, there exists a function  $g \in \mathcal{C}^{\infty}(\Omega)$  such that  $\frac{\partial g}{\partial \overline{z}} = h$ . It is clear that  $f_j = g_j - g$  solves the generalized additive Cousin problem.

**Proposition 1.3.11.** The additive Cousin problem is solvable for  $\Omega = \Delta(r)$  and  $\Omega = \mathbb{C}$ .

Proof. An additive Cousin problem induces a generalized additive Cousin problem for functions  $f_{j,k} = f_j - f_k$ . Let  $g_j$  be a solution to the generalized problem. As  $f_j - f_k = f_{j,k} = g_j - g_k$  on  $U_j \cap U_k$ , we can define a function  $f \in \mathcal{M}(\Omega)$  with  $f|_{U_j} = f_j - g_j$ . This function is of course well defined. As  $f|_{U_j} - f_j = g_j \in \mathcal{O}(U_j)$ , this function indeed solves the additive Cousin problem.

**Theorem 1.3.12** (Mittag-Leffler). Let  $(a_k)_{k\in\mathbb{N}}$  be a sequence without repetition and accumulation points. Let

$$f_k(z) = \sum_{\ell=-m_k}^{-1} c_{k,\ell} (z - a_k)^{\ell}$$

be finite principal parts. Then there exists a meromorphic function  $f \in \mathcal{M}(\mathbb{C})$  with poles in  $(a_k)_{k \in \mathbb{N}}$  such that f has principle part  $f_k$  in  $a_k$  for each  $k \in \mathbb{N}$ .

*Proof.* For each  $a_k$  choose a disk  $U_k$  containing no other  $a_k$ . Also set  $U_0 = \mathbb{C} \setminus \{a_k \mid k \in \mathbb{N}\}$  and  $f_0 = 0$ . As  $\{U_k \mid k \in \mathbb{N}_0\}$  is an open cover of  $\mathbb{C}$ , there exists a meromorphic function  $f \in \mathcal{M}(\mathbb{C})$  that solves the corresponding additive Cousin problem. It is easy to see that the principle parts of f at  $a_k$  are precisely  $f_k$ .

#### 1.4 Sequences of holomorphic functions

**Definition 1.4.1.** A family of functions  $\mathcal{F}$  from  $\Omega$  to  $\mathbb{C}$  is *locally bounded*, if for all  $p \in \Omega$  there exist a  $\rho > 0$  and M > 0 such that

$$\sup_{f \in \mathcal{F}} \sup_{z \in \Delta(p,\rho)} |f(z)| < M.$$

**Lemma 1.4.2.** Let  $\Omega \subseteq \mathbb{C}$  be an open subset and  $\mathcal{F} \subseteq \mathcal{O}(\Omega)$  a locally bounded family of functions. Then for all  $p \in \Omega$  there exists a  $\rho > 0$  such that  $\mathcal{F}$  is equi-continuous on  $\Omega \cap \Delta(p, \rho)$ .

*Proof.* Fix  $p \in \Omega$  and choose r > 0 such that  $D = \overline{\Delta(p, 2r)} \subseteq \Omega$ . For any  $z, w \in D$  and  $f \in \mathcal{F}$  we have

$$f((z) - f(w)) = \frac{1}{2\pi i} \oint_{\partial D} \frac{f(\xi)}{\xi - z} d\xi - \frac{1}{2\pi i} \oint_{\partial D} \frac{f(\xi)}{\xi - w} d\xi = \frac{z - w}{2\pi i} \oint_{\partial D} \frac{f(\xi)}{(\xi - z)(\xi - w)} d\xi.$$

Note that the family  $\mathcal{F}$  is bounded on every compact. Therefore, we can write

$$\sup_{f \in \mathcal{F}} \sup_{z \in \partial D} |f(z)| < M.$$

Now, for  $z, w \in \Delta(p, r)$  we have

$$|f((z) - f(w)| = \left| \frac{z - w}{2\pi i} \oint_{\partial D} \frac{f(\xi)}{(\xi - z)(\xi - w)} d\xi \right| \le |z - w| \cdot \frac{2M}{r}.$$

**Theorem 1.4.3** (Arzelà-Ascoli). Let  $\Omega \subseteq \mathbb{C}$  be an open subset and let  $\mathcal{F} \subseteq \mathcal{O}(\Omega)$  be an infinite family such that the following conditions hold:

- i)  $\mathcal{F}$  is point-wise bounded.
- ii)  $\mathcal{F}$  is locally equi-continuous.

Then there  $\mathcal{F}$  contains a sequence that converges uniformly on compacts of  $\Omega$ .

*Proof.* Choose a dense countable subset  $A \subseteq \Omega$  and enumerate it as a sequence  $(a_k)_{k \in \mathbb{N}}$ . Pick any sequence  $(f_n)_{n \in \mathbb{N}} \subseteq \mathcal{F}$  with pairwise distinct terms. As  $|f_n(a_1)| < M$  for all n, we can choose a subsequence  $(f_{1,n})_{n \in \mathbb{N}}$  such that  $f_{1,n}(a_1)$  converges by Bolzano-Weierstrass.

Similarly, for every  $k \in \mathbb{N}$  there exists a subsequence  $(f_{k,n})_n$  of  $(f_{k-1,n})_n$  such that  $(f_{k,n}(a_k))_n$  converges. Now define  $F_n = f_{n,n}$ . Observe that  $(F_n)$  converges at every point in A.

Fix a  $p \in \Omega$ . By local equi-continuity, there exists a  $\rho > 0$  such that for all  $\varepsilon > 0$  there exists a  $\delta > 0$  such that  $\delta < \rho$  and  $|F_n(z) - F_n(w)| < \frac{\varepsilon}{3}$  for all  $z, w \in \Delta(p, \rho)$  such that  $|z - w| < \delta$ . Choose an element  $a \in A \cap \Delta(z, \delta)$ . Then, we have

$$|F_n(z) - F_m(z)| \le |F_n(z) - F_n(a)| + |F_n(a) - F_m(a)| + |F_m(a) - F_m(z)| < 3 \cdot \frac{\varepsilon}{3}$$

It follows that  $(F_n)$  is locally uniformly convergent, therefore it converges uniformly on compact sets.

<sup>&</sup>lt;sup>2</sup> By compactness of  $\overline{\Delta(p,\rho)}$  we can choose a from a finite set.

**Theorem 1.4.4** (Montel). Let  $\Omega \subseteq \mathbb{C}$  be an open subset and  $f_n \colon \Omega \to \mathbb{C}$  be a locally bounded sequence of holomorphic functions. Then  $(f_n)_n$  contains a subsequence that converges uniformly on compacts.

*Proof.* As the sequence is locally bounded, it is locally equi-continuous by lemma 1.4.2. By Arzelà-Ascoli, there exists a convergent subsequence.

**Definition 1.4.5.** Let  $\Omega \subseteq \mathbb{C}$  be an open subset. A family of functions  $\mathcal{F} \subseteq \mathcal{O}(\Omega)$  is *normal* if every sequence in  $\mathcal{F}$  contains a subsequence that converges uniformly on compacts.

**Theorem 1.4.6** (Montel). Let  $\Omega \subseteq \mathbb{C}$  be an open subset. A family  $\mathcal{F} \subseteq \mathcal{O}(\Omega)$  is normal if and only if it is locally bounded.

*Proof.* The proof is obvious and need not be mentioned.

## Index

```
\mathbf{A}
additive Cousin problem, 12
    generalized, 12
Arzelà-Ascoli theorem, 14
\mathbf{C}
Cauchy integral formula, 4
Cauchy-Riemann equations, 4
D
Dolbeaut lemma, 10
\mathbf{F}
function
    complex differentiable, 4
    holomorphic, 4
identity theorem, 5
\mathbf{L}
Laurent series, 11
locally bounded, 7
locally bounded functions, 14
\mathbf{M}
maximum principle, 6
meromorphic function, 11
Mittag-Leffler theorem, 13
Montel's theorem, 15
N
normal family, 15
\mathbf{O}
open mapping theorem, 6
Ρ
pole, 11
principle part, 11
\mathbf{R}
Riemann
    removable singularity theorem, 7
\mathbf{S}
Schwarz
    lemma, 7
\mathbf{W}
Wirtinger derivatives, 4
```