1 Multivariate Normal Distribution

Recall that a d-dimensional random vector X is said to have a d-dimensional normal distribution if l'X has univariate normal distribution for all non-zero $l \in \mathbb{R}^d$. Let μ be the mean vector of X and Σ be the variance-covariance matrix of X. If Σ is non-singular matrix then d-dimensional normal distribution possesses a PDF and it is given by

$$\phi_{\boldsymbol{\mu},\Sigma}(\boldsymbol{x}) = \frac{1}{(2\pi)^{d/2}|\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})'\Sigma^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right) \quad ext{for} \quad \boldsymbol{x} \in \mathbb{R}^d,$$

where $|\Sigma|$ the determinant of Σ .

Note that a d-dimensional normal distribution is characterized by its mean vector $\boldsymbol{\mu}$ and variance-covariance matrix Σ . Therefore, we use the notation $\boldsymbol{X} \sim N_d(\boldsymbol{\mu}, \Sigma)$ to denote the fact that \boldsymbol{X} has a d-dimensional normal distribution with mean vector $\boldsymbol{\mu}$ and variance-covariance matrix Σ . A standard d-dimensional normal distribution is a spacial case where $\boldsymbol{\mu} = \mathbf{0}$ and $\Sigma = I_d$, where I_d the $d \times d$ identity matrix.

Let X_i denote the *i* th component of X. If $X \sim N_d(\mu, \Sigma)$ then $X_i \sim N(\mu_i, \sigma_i^2)$, where μ_i is the *i*th component of μ and $\sigma_i^2 = \sigma_{ii}$ is the *i*th diagonal of Σ . The covariance between X_i and X_j is

$$Cov[X_i, X_j] = E[(X_i - \mu_i)(X_j - \mu_j)] = \sigma_{ij},$$

where σ_{ij} is the (i, j)th element of Σ . The correlation between X_i and X_j is given by $\rho_{ij} = \frac{\sigma_{ij}}{\sigma_i \sigma_j}$. The covariance matrix may be specified implicitly through its diagonal entries σ_i^2 and correlation ρ_{ij} .

An alternative definition of d-dimensional normal distribution can be given as follows. A d-dimensional random vector \mathbf{X} is said to have a d-dimensional normal distribution if it can be expressed in the form $\mathbf{X} = \boldsymbol{\mu} + A\mathbf{Y}$, where A is a $d \times d$ matrix of real numbers, $\mathbf{Y} \sim N_d(\mathbf{0}, I_d)$. In this case $E(\mathbf{X}) = \boldsymbol{\mu}$ and $Var(\mathbf{X}) = AA'$.

1.1 Generating from Multivariate Normal Distribution

To generate from multivariate normal distribution, we can use the alternative definition. If $Z \sim N_d(0, I_d)$ and $X = \mu + A\mathbf{Z}$, then $X \sim N_d(\mu, AA')$. Using any of the standard methods, we can generate independent standard normal random variables Z_1, Z_2, \ldots, Z_d and assemble them into a vector $\mathbf{Z} = (Z_1, Z_2, \ldots, Z_d) \sim N_d(0, I_d)$. Thus, the problem of sampling from $N_d(\mu, \Sigma)$ reduces to finding a matrix A for which $AA' = \Sigma$. The Cholesky factorization which is described below can be used for the same.

1.1.1 Cholesky Factorization

Among all such A, a lower triangular one is particularly convenient because it reduces the calculation $\mu + AZ$ to the following:

$$X_1 = \mu_1 + a_{11}Z_1$$

$$X_2 = \mu_2 + a_{21}Z_1 + a_{22}Z_2$$

$$\dots = \dots$$

$$X_d = \mu_d + a_{d1}Z_1 + a_{d2}Z_2 + \dots + a_{dd}Z_d,$$

where $\boldsymbol{\mu} = (\mu_1, \, \mu_2, \, \dots, \, \mu_d)$ and $A = (a_{ij})_{i,j=1,2,\dots,d}$. In the 2 × 2 case, the covariance matrix Σ is represented as

$$\Sigma = \begin{pmatrix} \sigma_1^2 & \sigma_1 \sigma_2 \rho \\ \sigma_1 \sigma_2 \rho & \sigma_2^2 \end{pmatrix}.$$

Assuming $\sigma_1 > 0$ and $\sigma_2 > 0$, the Cholesky factorization is given by:

$$A = \begin{pmatrix} \sigma_1 & 0\\ \rho \sigma_2 & \sqrt{1 - \rho^2} \sigma_2 \end{pmatrix}.$$

Thus, we can sample from a bivariate normal distribution by setting:

$$\begin{array}{rcl} X_1 & = & \mu_1 + \sigma_1 Z_1, \\ X_2 & = & \mu_2 + \rho \sigma_2 Z_1 + \sqrt{1 - \rho^2} \sigma_2 Z_2. \end{array}$$

For the case of a $d \times d$ covariance matrix Σ we get:

$$a_{ij} = \frac{\left(\sigma_{ij} - \sum_{k=1}^{j-1} a_{ik} a_{jk}\right)}{a_{jj}}, \ j < i,$$

$$a_{ii} = \sqrt{\sigma_{ii} - \sum_{k=1}^{i-1} a_{ik}^{2}}.$$