Домашнее задание 10

Дедлайн: 2025-02-09, 23:59. Оцениваемые задачи:

- 1. Величины (X_i) независимы и одинаково распределены с ожиданием $\mathbb{E}(X_i) = \mu \neq 0$ и дисперсией $\mathbb{V}\mathrm{ar}(X_i) = \sigma^2$. Используя арифметику пределов и закон больших чисел, найдите пределы:
 - a) $plim(X_1^2 + X_2^2 + \cdots + X_n^2)/(X_1 + X_2 + \cdots + X_n + \cdots + X_{2n});$
 - б) plim $\sum_{i=1}^{n} (X_i \bar{X}_n)^2 / (n-1)$;
 - в) plim $\bar{X}_n/((\bar{X}_n)^2+1)$.
- 2. Величины (X_i) независимы и одинаково распределены с ожиданием $\mathbb{E}(X_i) = \mu$ и дисперсией $\mathbb{V}\mathrm{ar}(X_i) = \sigma^2$. Используя центральную предельную теорему и леммы Слуцкого, найдите пределы по распределению последовательностей
 - a) $(\sum_{i=1}^{n} X_i n\mu)/\sqrt{n};$
 - б) $(\bar{X}_n \mu) / \sqrt{\sigma^2/n};$
 - B) $(\bar{X}_n \mu) / \sqrt{\sum_{j=1}^n (X_j \bar{X}_n)^2 / (n^2 n)};$
- 3. Величины $(X_i), (Y_i), (Z_i)$ имеют стандартное нормальное распределение $\mathcal{N}(0;1)$ и независимы как внутри последовательностей, так и между последовательностями. Построим последовательности $R_i = X_i/\sqrt{Y_i^2}$ и $L_i = X_i/\sqrt{(Y_i^2 + Z_i^2)/2}$. Определим накопленные средние $\bar{R}_n = (R_1 + R_2 + \cdots + R_n)/n$ и, аналогично, \bar{L}_n .
 - а) Постройте на одном графике пять траекторий \bar{R}_n как функции от n для $n \in \{1, \dots, 100000\}$.
 - б) Постройте на одном графике пять тра
екторий \bar{L}_n как функции от n для $n \in \{1, \dots, 100000\}$.
 - в) Прокомментируйте словами разницу между траекториями \bar{L}_n и \bar{R}_n .
 - г) Вспомните закон больших чисел и предположите, чем может быть вызвана разница в характере траекторий.
 - д) Если возможно, найдите $\mathbb{E}(R_i)$ и $\mathbb{E}(L_i)$.

Примечание: здесь без доказательства можно пользоваться тем, что функция плотности R_i равна $f(r)=1/(\pi(1+r^2))$, а функция плотности L_i равна $f(l)=1/(2+l^2)^{3/2}$.

Бесценные задачи just for fun:

- 4. Величины (X_i) , (Y_i) , (Z_i) независимы и имеют стандартное нормальное распределение $\mathcal{N}(0;1)$, $R_i = X_i/\sqrt{Y_i^2}$ и $L_i = X_i/\sqrt{(Y_i^2 + Z_i^2)/2}$.
 - Докажите, что функция плотности R_i равна $f(r)=1/(\pi(1+r^2))$, а функция плотности L_i равна $f(l)=1/(2+l^2)^{3/2}$.
- 5. Рассмотрим последовательность независимых величин $X_n \sim \text{Beta}(2n+1,5n+10)$.
 - а) К чему сходится эта последовательность по вероятности?
 - б) К чему сходится эта последовательность по распределению?

6. Величины U_i независимы и равномерны на отрезке [0; 1]. К чему и в каких смыслах (почти наверное, по вероятности, по распределению, L^1 , L^2) сходится последовательность

$$X_n = \frac{\cos U_1 + \cos U_2 + \dots + \cos U_n}{2n+1}$$
?

- 7. У Стива Джобса в гараже завалялось три неслучайных последовательности: $a_n=1/n, b_n=3/(3+n)$ и $c_n=1/1^2+1/2^2+\cdots+1/n^2$. Стив равновероятно выбирает одну из этих последовательностей и получает случайную последовательность X_n .
 - а) В каких смыслах (почти наверное, по вероятности, по распределению, L^1 , L^2) и к чему сходится последовательность X_n ?
 - б) Запишите $\lim X_n$ в виде явной функции от X_3 .