Functional Analysis

Ikhan Choi

May 21, 2022

Contents

Ι	Topo	logical vector spaces	3
1	Locall	y convex spaces	4
	1.1 G	eneral vector topologies	4
	1.2 S	eminorms and convex sets	4
	1.3 C	ontinuous linear functionals	4
	1.4 H	Iahn-Banach theorem	4
2	Barrel	ed spaces	5
	2.1 U	Iniform boundedness principle	5
	2.2 B	aire category theorem	5
	2.3 O	pen mapping theorem	5
3	Fréche	et, Banach, and Hilbert spaces	7
	3.1 F	réchet spaces	7
	3.2 B	anach spaces	7
	3.3 H	Iilbert spaces	7
	3.4 B	ounded linear operators	7
	747		•
II	wea	k topologies	9
4		pace of Banach spaces	10
	4.1 W	Veak and weak* topologies	10
		Veak compactness	10
	4.3 W	Veak density	10
	4.4 K	rein-Milman theorem	11
5	Polar t	topologies	13
	5.1 D	ual pair	13
	5.2 S	trong topologies	13
6	Opera	tor topologies	14
II	I Spe	ectral theory	15
7	Compa	act operators	16
	_	inite-rank operators	16
		redholm operators	16
	7.3 N	fuclear operators	16

8	Normal operators		
	8.1 Spectral theorem for compact normal operators	18	
	8.2 Spectral theorem for bounded normal operators	18	
9	Unbounded operators	19	
IV	/ Operator algebras	20	
10	O Banach algebras	21	
	10.1 Spectral theory of unital Banach algebras	21	
	10.2 Ideals	22	
	10.3 Gelfand theory of commutative Banach algebras	23	
	10.4 Holomorphic functional calculus	23	
11	1 C*-algebras	24	
	11.1 C* identity	24	
	11.2 Continuous functional calculus		
	11.3 Positive linear functionals	25	
	11.4 Representation theory	26	
	11.5 Gelfand-Naimark-Siegel representation	26	
12	2 Von Neumann algebras	27	
	12.1 The double commutant theorem	27	
	12.2 The Kaplansky density theorem	27	
	12.3 Borel functional calculus	27	
	12.4 Traces	27	

Part I Topological vector spaces

Locally convex spaces

1.1 General vector topologies

canonical uniformity. canonical bornology. metrizability(Birkhoff-Kakutani). boundedness and continuity

1.2 Seminorms and convex sets

boundedness by seminorms, normability

1.3 Continuous linear functionals

- **1.1.** Let $\{x_i^*\}_{i=1}^n \subset X^*$. If $x^* \in X^*$ vanishes on $\bigcap_{i=1}^n \ker x_i^*$, then x^* is a linear combination of $\{x_i^*\}$.
- **1.2** (Dual space).
- 1.3 (Adjoint operator).

1.4 Hahn-Banach theorem

1.4 (Hahn-Banach theorem).

Barreled spaces

2.1 Uniform boundedness principle

- **2.1** (Barreled spaces). A *barrel* is an absorbing, balanced, convex, and closed subset of *X*. A *barreled space* is a topological space in which every barrel is a neighborhood of zero.
- **2.2** (Uniform boundedness principle). Let \mathcal{T} be a set of continuous linear operators from X to Y. Suppose $\bigcup_{T \in \mathcal{T}} Tx$ is bounded for each $x \in D$, where $D \subset X$.
 - (a) If *D* is dense in *X*, then $\bigcap_{T \in \mathcal{T}} T^{-1}\overline{U}$ is absorbing.
 - (b) If X is barreled, then \mathcal{T} is equicontinuous.

2.2 Baire category theorem

- **2.3** (Baire spaces). A topological space is called a *Baire space* if the intersection of countable open dense subsets is dense.
- **2.4** (Absorbing set). Let *X* be a topological vector space that is Baire.
 - (a) A closed and absorbing set has non-empty interior.
 - (b) A closed, convex, and absorbing set is a neighborhood of zero.
 - 2.5 (The Baire category theorem).

2.3 Open mapping theorem

- **2.6** (Open mapping theorem). Let X be a F-space and Y a barreled space. Suppose $T: X \to Y$ is continuous and surjective.
 - (a) \overline{TB} is a neighborhood of zero.
 - (b) *TB* is a neighborhood of zero.
- *Proof.* (a) Let $B = B_1$ be an open ball in X. There is an open neighborhood U of zero such that $U U \subset B$. The set \overline{TU} is clearly closed, and the surjectivity of T implies \overline{TU} is absorbing. Since Y is barreled, \overline{TU} has a non-empty interior in Y. Thus, \overline{TB} is a neighborhood of zero.
- (b) We claim $\overline{TB_{1/2}} \subset TB$. Take $y_1 \in \overline{TB_{1/2}}$. To construct $x \in B$ such that $Tx = y_1$, we use the metrizability and completeness of X. Since $\overline{TB_{1/2^{n+1}}}$ are neighborhoods of zero, we can inductively

construct sequences $x_n \in B_{1/2^n}$ and $y_n \in \overline{TB_{1/2^n}}$ such that $Tx_n \in y_n + \overline{TB_{1/2^{n+1}}}$ and $y_{n+1} := Tx_n - y_n$. Let $x := \sum_{n=1}^{\infty} x_n \in B$. Then,

$$Tx = \lim_{n \to \infty} \sum_{i=1}^{n} Tx_i = \lim_{n \to \infty} \sum_{i=1}^{n} y_{i+1} - y_i = y_1.$$

Exercises

- **2.7.** Let (T_n) be a sequence in B(X,Y). If T_n coverges strongly then $||T_n||$ is bounded by the uniform boundedness principle.
- **2.8.** There is a closed absorbing set in $\ell^2(\mathbb{Z}_{\geq 0})$ that is not a neighborhood of zero;

$$\overline{B}(0,1)\setminus\bigcup_{i=2}^{\infty}B(i^{-1}e_i,i^{-2})$$

is a counterexample.

Fréchet, Banach, and Hilbert spaces

3.1 Fréchet spaces

dual is not Fréchet.

3.2 Banach spaces

dual is Banach. Basis problem, Mazur' duck.

3.3 Hilbert spaces

Projections. Reducing subspaces. Hilbert space classification by cardinal. Riesz representation theorem.

- **3.1.** (a) A Banach space *X* is isometrically isomorphic to a Hilbert space if there is a bounded linear projection on every closed subspace of *X*.
- **3.2** (Riesz representation theorem). Let H be a Hilbert space over a field \mathbb{F} , which is either \mathbb{R} of \mathbb{C} . We use the bilinear form $\langle -, \rangle : X \times X^* \to \mathbb{F}$ of canonical duality. *Dirac* notation $\langle -|- \rangle$ for the inner product of a complex Hilbert spaces such that $\langle x, y \rangle = \langle y | x \rangle$. The Riesz representation theorem states that a continuous linear functional on a Hilbert space is represented by the inner product with a vector.
 - (a) For each $x^* \in H^*$, there is a unique $x \in H$ such that $\langle y, x^* \rangle = \langle y, x \rangle$ for every $y \in H$.
 - (b) $H \to H^* : x \mapsto \langle -, x \rangle$ is a natural linear and anti-linear isomorphism if $\mathbb{F} = \mathbb{R}$ and \mathbb{C} , respectively.

3.4 Bounded linear operators

- **3.3** (Bounded belowness in Banach spaces). Let $T \in B(X, Y)$ for Banach spaces X and Y. The following statements are equivalent:
 - (a) T is bounded below.
 - (b) *T* is injective and has closed range.
 - (c) *T* is a topological isomorphism onto its image.
- **3.4** (Bounded belowness in Hilbert spaces). Let $T \in B(H, K)$ for Hilbert spaces H and K. The following statements are equivalent:
 - (a) T is bounded below.

- (b) *T* is left invertible.
- (c) T^* is right invertible.
- (d) T^*T is invertible.
- **3.5** (Injectivity and surjectivity of adjoint). Let $T \in B(X, Y)$ for Banach spaces X and Y.
 - (a) T^* is injective if and only if T has dense range.
 - (b) T^* is surjective if and only if T is bounded below.
- **3.6** (Normal operators). For $T \in B(H)$, we have an obvious fact (im T) $^{\perp} = \ker T^*$. Suppose T is normal.
 - (a) $\ker T = \ker T^*$.
 - (b) *T* is bounded below if and only if *T* is invertible.
 - (c) If *T* is surjective, then *T* is invertible.
- **3.7** (Invariant and Reducing subsapces). Let *K* be a closed subspace of *H*.
 - (a) K is reducing for T if and only if K is invariant for T and T^* .
 - (b) K is reducing for T if and only if TP = PT, where P is the orthogonal projection on K.

Exercises

- **3.8.** There is no metric d on C([0,1]) such that $d(f_n,f) \to 0$ if and only if $f_n \to f$ pointwise as $n \to \infty$ for every sequence f_n . Note that this problem is slightly different to the non-metrizability of the topology of pointwise convergence.
- **3.9.** Let T be an invertible linear operator on a normed space. Then, $T^{-2} + ||T||^{-2}$ is injective if it is surjective.
- **3.10.** We show that there is no projection from ℓ^{∞} onto c_0 .
- **3.11** (Schur's property of ℓ^1).
- **3.12.** Let $\varphi: L^{\infty}([0,1]) \to \ell^{\infty}(\mathbb{N})$ be an isometric isomorphism. Suppose φ is realised as a sequence of bounded linear functionals on L^{∞} .
 - (a) Show that $\varphi^*(\ell^1) \subset L^1$ where ℓ^1 and L^1 are considered as closed linear subspaces of $(\ell^{\infty})^*$ and $(L^{\infty})^*$ respectively.
 - (b) Show that φ^* is indeed an isometric isomorphism, and deduce φ cannot be realised as bounded linear functionals on L^{∞} .

Part II Weak topologies

Dual space of Banach spaces

4.1 Weak and weak* topologies

boundedness, incompleteness

- **4.1** (Weak convergence by dense set). Let X be a Banach space, D a subset of X^* , and \overline{D} the norm closure of D. For example, if X has a predual $X_* \subset X^*$ and D is dense in X_* , then $\sigma(X, \overline{D})$ is the weak* topology.
 - (a) There is a squence $x_n \in X$ converges to zero in $\sigma(X, D)$ but not in $\sigma(X, \overline{D})$.
 - (b) A sequence $x_n \in X$ converges to zero in $\sigma(X, \overline{D})$ if in $\sigma(X, D)$, if $||x_n|| \le 1$.

Proof. (b) Let $x^* \in \overline{D}$ and choose $y^* \in D$ such that $||x^* - y^*|| < \varepsilon$ Then,

$$|\langle x_n, x^* \rangle| \le ||x_n|| ||x^* - y^*|| + |\langle x_n, y^* \rangle|.$$

4.2 Weak compactness

- 4.2 (Banach-Alaoglu theorem).
- **4.3** (Eberlein-Šmulian theorem).
- 4.4 (James' theorem).

4.3 Weak density

Bishop-Phelps theorem

- **4.5** (Goldstine's theorem). Let X be a Banach space and $J: X \to X^{**}$ the canonical embedding. Let $\{x_i^*\}_{i=1}^m \subset X^*$ and $x^{**} \in X^{**}$.
 - (a) There is $x \in X$ such that $\langle x_i^*, J(x) \rangle = \langle x_i^*, x^{**} \rangle$ for all i.
 - (b) If $||x^{**}|| \le 1$, then there is $x \in X$ such that $||x|| \le 1 + \varepsilon$ and $\langle x_i^*, J(x) \rangle = \langle x_i^*, x^{**} \rangle$ for all i, for any $\varepsilon > 0$.
 - (c) $J(\overline{B}_X)$ is weak*-dense in $\overline{B}_{X^{**}}$

Proof. (b) Let $z \in X$ such that $\langle x_i^*, J(x) \rangle = \langle x_i^*, x^{**} \rangle$ for all i. Let Y be the set of all $y \in X$ such that $\langle x_i^*, J(y) \rangle = 0$ for all i. Then, z + Y is the closed affine subsapce of X containing all $y \in X$ such that $\langle x_i^*, J(y) \rangle = \langle x_i^*, x^{**} \rangle$ for all i. If we assume z + Y does not contain any $x \in X$ such that $||x|| \le 1 + \varepsilon$, then $d(z, Y) = d(0, z + Y) > 1 + \varepsilon$. By the Hahn-Banach theorem, there is $y^* \in X^*$ such that $||y^*|| = 1$, $y^*|_Y = 0$, and $\langle z, y^* \rangle > 1 + \varepsilon$. Then, y^* is a linear combination of $\{x_i^*\}_{i=1}^m$, so

$$1 + \varepsilon < \langle z, y^* \rangle = \langle y^*, J(z) \rangle = \langle y^*, x^{**} \rangle \le ||x^{**}|| ||y^*|| \le 1.$$

(c) Fix $x^{**} \in X^{**}$ such that $||x^{**}|| \le 1$ and let

$$U = \bigcap_{i=1}^{m} \{ y^{**} \in X^{**} : |\langle x_i^*, y^{**} - x^{**} \rangle| < 1 \}$$

be an open weak*-neighborhood of x^{**} . Choose $\varepsilon > 0$ such that

$$\varepsilon \max_{1 \le i \le m} ||x_i^*|| < 1.$$

By the part (b), there is $x \in X$ such that $||x|| \le 1 + \varepsilon$ and $\langle x_i^*, x^{**} \rangle = \langle x_i^*, J(x) \rangle$. If we let $y := (1 + \varepsilon)^{-1} x$, then $||y|| \le 1$ so that

$$|\langle x_i^*, J(y) - x^{**} \rangle| = |\langle x_i^*, J(y) - J(x) \rangle| = |\langle x_i^*, \varepsilon J(y) \rangle| \le \varepsilon ||x_i^*|| ||y|| < 1$$

for all *i* implies $J(y) \in U$, hence we get $J(\overline{B}_X) \cap U \neq \emptyset$.

4.4 Krein-Milman theorem

Choquet theory

Exercises

- 4.6 (James' space). not reflexive but isometrically isomorphic to bidual
- **4.7** (Predual correspondence). Let X be a Banach space. Let

$$\{(Y, \varphi) \mid \varphi : X \to Y^* \text{ is an isometric isorphism}\}$$

and

$$\{Z \leq X^* \mid \overline{B_X} \text{ is compact Hausdorff in } (X, \sigma(X, Z))\}.$$

$$(Y, \varphi) \mapsto \operatorname{im} \varphi^*|_{J(Y)}$$

- (a) The map is well-defined.
- (b) The map is surjective. (by Goldstein)
- (c) The map is injective up to isomorphism for Y.
- **4.8.** Let X be a closed subspace of a Banach space Y and

$$i: X \to Y$$

the inclusion. Suppose X and Y have preduals X_* and Y_* respectively. Let

$$j:=i^*|_{Y_*}:Y_*\to Z\subset X^*,$$

where $Z := i^*(Y_*)^-$. Then we can show

$$j^*:Z^*\subset X^{**}\to Y$$

coincides with i on $X \cap Z^*$. From the existence of X_* we have $X^{**} \to X$, which is restricted to define a map $k: Z^* \to X$.

We can show k is an isomorphism so that we have

$$X_* \cong Y_*/Y_* \cap \ker(i^*).$$

- 4.9 (Mazur's lemma).
- **4.10** (Dunford-Pettis property).

Polar topologies

- 5.1 Dual pair
- 5.2 Strong topologies

Mackey-Arens

Operator topologies

6.1 (Compact left multiplications and SOT). Let T_n be a sequence of bounded linear operators on a Hilbert space that converges in SOT. For compact K, T_nK converges in norm, but KT_n generally does not unless T is self-adjoint.

6.2. Let f be a linear functional on B(H) for a Hilbert space H. Then, TFAE:

- (a) f is WOT-continuous,
- (b) f is sor-continuous,
- (c) $f(T) = \sum_{i=1}^{n} \langle Tx_i, y_i \rangle$ for some x_i, y_i .

Proof. (2) \Rightarrow (3) is the only nontrivial implication. By the definition of SOT, there exists $v \in \mathcal{H}^n$ such that

$$|f(T)| \le ||T^{\oplus n}v||.$$

The functional $f: A \to \mathbb{C}$ factors through \mathcal{H}^n such that

$$A \to \nu \mathcal{H}^n \to \mathbb{C}$$
.

Part III Spectral theory

Compact operators

K(X,Y) is closed in B(X,Y). K(X) is an ideal of B(X). adjoint is $K(X,Y) \to K(Y^*,X^*)$. integral operators are compact. riesz operator, quasi-nilpotent operator.

7.1 Finite-rank operators

7.2 Fredholm operators

- **7.1.** A bounded linear operator $T: X \to Y$ between Banach spaces is called a *Fredholm* operator if its kernel is finite dimensional and its range is finite codimensional.
 - (a) A Fredholm operator *T* has closed range.

Proof. (a) Let C be a finite dimensional subsapce of Y such that $\operatorname{im} T \oplus C = Y$. Let $\widetilde{T}: X/\ker T \to Y$ be the induced operator of T. Define $S: (X/\ker T) \oplus C \to Y$ such that $S(x + \ker T, c) := \widetilde{T}(x + \ker T) + c$. Then, S is an topological isomorphism between Banach spaces by the open mapping theorem, so $S(X/\ker T \oplus \{0\}) = \operatorname{im} \widetilde{T} = \operatorname{im} T$ is closed.

7.2 (Atkinson's theorem). An operator $T \in B(X, Y)$ is Fredholm if and only if there is $S \in B(Y, X)$ such that TS - I and ST - I is finite rank.

7.3 (Fredholm index). locally constant, in particular, continuous. composition makes the addition of indices.

7.3 Nuclear operators

tensor products

Exercises

7.4. If $T: L^2([0,1]) \to L^2([0,1])$ is a compact operator, then for any $\varepsilon > 0$ there is a constant $C_{\varepsilon} > 0$ such that

$$||Tf||_{L^2} \lesssim \varepsilon ||f||_{L^2} + C_{\varepsilon} ||f||_{L^1}.$$

Proof. Suppose there is $\varepsilon > 0$ such that we have sequence $f_n \in L^2$ satisfying $||f_n||_2 = 1$ and

$$||Tf_n||_2 > \varepsilon + n||f_n||_1.$$

By the compactness of T, there is a subsequence Tf_{n_k} converges to $g \neq 0$ in L^2 . Then, $||f_{n_k}||_1 \to 0$ implies $f_{n_k} \to 0$ weakly in L^2 , hence also for Tf_{n_k} . It means g = 0, which contradicts to the assumption. \square

Normal operators

8.1 Spectral theorem for compact normal operators

There is an orthonormal basis $E \subset H$ such that

$$T = \sum_{e \in E} \lambda_e |e\rangle \langle e|.$$

8.2 Spectral theorem for bounded normal operators

8.1 (Projection valued measure). Let (Ω, \mathcal{M}) be a measurable space and H a Hilbert space. A *projection* valued measure or a spectral measure on Ω for H is a map $E : \mathcal{M} \to B(H)$ such that E(A) is an orthogonal projection with $E(\emptyset) = 0$ and the set function $\mathcal{M} \to \mathbb{C} : A \mapsto \langle E(A)\xi, \eta \rangle$ is a complex measure on Ω for each ξ and $\eta \in H$. (regularity, it has also two definitions)

- (a) The last condition is equivalent to the countable additivity: $E(\bigsqcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} E(A_i)$ in the strong operator topology of B(H) for $\{A_i\}_{i=1}^{\infty} \subset \mathcal{M}$.
- (b) $E(A \cap B) = E(A)E(B)$ for $A, B \in \mathcal{M}$.

Let $T \in B(H)$ be a normal operator. Then, there exists a regular Borel spectral measure E on $\sigma(T)$ for H such that

$$T = \int_{\sigma(T)} \lambda \, dE(\lambda).$$

This spectral measure E

Unbounded operators

Kato-Rellich theorem

Part IV Operator algebras

Banach algebras

10.1 Spectral theory of unital Banach algebras

10.1 (Unital Banach algebras). (a) If ||a|| < 1, then 1 - a is invertible. So A^{\times} is open.

- (b) $A^{\times} \to A : a \mapsto a^{-1}$ is differentiable.
- (c) $\mathbb{C} \setminus \sigma(a) \to \mathcal{A} : \lambda \mapsto (\lambda a)^{-1}$ is differentiable.

10.2 (Vector-valued complex function theory). Let Ω be an open subset of \mathbb{C} and X a Banach space. For a vector-valued function $f: \Omega \to X$, we say f is differentiable if the limit

$$\lim_{\lambda \to \lambda_0} \mu^{-1}(f(\lambda) - f(\lambda_0))$$

exists in X, and weakly differentiable if the limit

$$\lim_{\lambda \to \lambda_0} \mu^{-1} \langle f(\lambda) - f(\lambda_0), x^* \rangle$$

exists in \mathbb{C} for each $x^* \in X^*$. Then, the followings are all equivalent.

- (a) f is differentiable.
- (b) *f* is weakly differentiable.
- (c) For each $\lambda_0 \in \Omega$, there is a sequence $(x_k)_{k=0}^{\infty}$ such that the power series

$$\sum_{k=0}^{\infty} (\lambda - \lambda_0)^k x_k$$

converges to $f(\lambda)$ absolutely and uniformly on any closed ball $\overline{B(\lambda_0, r)} \subset \Omega$.

10.3 (Gelfand-Mazur). $\sigma(a)$ is non-empty. In particular, if $\mathcal{A}^{\times} = \mathcal{A} \setminus \{0\}$, then $\mathcal{A} \cong \mathbb{C}$.

10.4 (Beurling).

$$r(a) = \inf_{n \ge 1} ||a^n||^{1/n} = \lim_{n \to \infty} ||a^n||^{1/n} \le ||a||.$$

Proof. Let $\lambda \in \mathbb{C}$ such that $|\lambda| < r(a)^{-1}$. Then we have $\lambda^{-1} \notin \sigma(a)$ so that $1 - \lambda a = \lambda(\lambda^{-1} - a)$ is invertible.

Then,
$$1 - \lambda a = \sum_{i=0}^{\infty} (\lambda a)^i$$
.

If $|\lambda| < ||a||^{-1} \le r(a)^{-1}$, then the inverse of $1 - \lambda a$ is given by the power series. If $|\lambda| < r(a)^{-1}$, then we can only deduce the invertibility of $1 - \lambda a$. Complex function theory let us to write the inverse even if we have only $|\lambda| < r(a)^{-1}$. Also, the radius of convergence is exactly $r(a)^{-1}$.

10.5 (Spectrum in closed subalgebras). For fixed element, smaller the ambient algebra, less "holes" in the spectrum. Let $\mathcal{B} \subset \mathcal{A}$ be a closed subalgebra containing $1_{\mathcal{A}}$. Note that \mathcal{B} may be unital even for $1_{\mathcal{A}} \notin \mathcal{B}$.

(a) \mathcal{B}^{\times} is clopen in $\mathcal{A}^{\times} \cap \mathcal{B}$.

10.2 Ideals

10.6 (Ideals). (a) If I is a left ideal, then A/I is a left A-module.

10.7 (Modular left ideals). A left ideal I is called *modular* if there is $e \in A$ such that $a - ae \in I$ for all $a \in A$. The element e is called a *right modular unit* for I.

- (a) I is modular if and only if A/I is unital(?).
- (b) A proper modular left ideal is contained in a maximal left ideal.
- (c) *I* is a maximal modular left ideal if and only if *I* is a modular maximal left ideal.
- (d) There is a non-modular maximal ideal in the disk algebra.
- **10.8** (Closed ideals). (a) closure of proper left ideal is proper left.
 - (b) maximal modular left ideal is closed.

10.9 (Unitization). Let \mathcal{A} be an algebra. Recall that we always assume algebras are associative. Consider an embedding $\mathcal{A} \to \mathcal{B}(\mathcal{A})$: $a \mapsto L_a$, where $L_a(b) = ab$. Define

$$\widetilde{\mathcal{A}} := \{ L_a + \lambda \operatorname{id}_{B(\mathcal{A})} : a \in \mathcal{A}, \lambda \in \mathbb{C} \}.$$

Note that this construction is available even for unital A.

- (a) If A is normed, then \widetilde{A} is a normed algebra such that there is an isometric embedding $A \to \widetilde{A}$.
- (b) If \mathcal{A} is Banach, then $\widetilde{\mathcal{A}}$ is a Banach algebra.
- (c) $A \oplus \mathbb{C}$ is topologically isomorphic to \widetilde{A} as normed spaces.

Proof. (a) The space of bounded operators B(A) is a normd algebra. Then, \widetilde{A} is a normed *-algebra with induced norm

$$||L_a + \lambda \operatorname{id}_{B(A)}|| = \sup_{b \in A} \frac{||ab + \lambda b||}{||b||}$$

Then, \mathcal{A} is a normed *-subalgebra of $\widetilde{\mathcal{A}}$ because the norm and involution of \mathcal{A} agree with $\widetilde{\mathcal{A}}$.

(b) Suppose (x_n, λ_n) is Cauchy in $\widetilde{\mathcal{A}}$. Since \mathcal{A} is complete so that it is closed in $\widetilde{\mathcal{A}}$, we can induce a norm on the quotient $\widetilde{\mathcal{A}}/\mathcal{A}$ so that the canonical projection is (uniformly) continuous so that λ_n is Cauchy. Also, the inequality $||x|| \leq ||(x,\lambda)|| + |\lambda||$ shows that x_n is Cauchy in \mathcal{A} .

Since a finite dimensional normed space is always Banach and A is Banach, λ_n and x_n converge. Finally, the inequality $||(x,\lambda)|| \le ||x|| + |\lambda|$ implies that (x_n,λ_n) converges.

(c) Check the topology on $\mathcal{A} \oplus \mathbb{C}$ in detail...

unitization, homomorphisms, category(direct sum, product, etc.) $B(\mathbb{C}^n)$ is simple, but B(X) is not simple.

10.3 Gelfand theory of commutative Banach algebras

also important spectrum for non-unital banach algebras Banach algebra of single generator semisimplicity and symmetricity

10.10 (Character space). Let \mathcal{A} be a commutative Banach algebra. A *character* of \mathcal{A} is a non-zero homomorphism $\varphi : \mathcal{A} \to \mathbb{C}$. Denote by $\sigma(\mathcal{A})$ the set of all characters of \mathcal{A} . We will show that all characters are bounded. Then, endow with the weak* topology on $\sigma(\mathcal{A})$ from the inclusion $\sigma(\mathcal{A}) \subset \mathcal{A}^*$. We call this space as the *character space* or the *spectrum* of \mathcal{A} . Let $\varphi \in \sigma(\mathcal{A})$.

- (a) $\|\varphi\| = 1$.
- (b) If A is unital, then $\sigma(A)$ is compact and Hausdorff.
- (c) Even if A is non-unital, $\sigma(A)$ is locally compact and Hausdorff.

10.11 (Gelfan-Naimark representation). Let \mathcal{A} be a commutative Banach algebra.

$$\Gamma: \mathcal{A} \to C_0(\sigma(\mathcal{A})).$$

- (a) $\Gamma(A)$ separates points.
- (b) Γ has closed range if
- (c) Γ is injective if
- (d) Γ is isometric if r(a) = ||a|| for all $a \in A$.

10.4 Holomorphic functional calculus

Dunford-Reisz functional calculus

Exercises

10.12. Let A be a unital algebra.

- (a) $\sigma(ab) \setminus \{0\} = \sigma(ba) \setminus \{0\}$.
- (b) If $\sigma(a)$ is non-empty, then $\sigma(p(a)) = p(\sigma(a))$.

Proof. (a) Intuitively, the inverse of 1-ab is $c=1+ab+abab+\cdots$. Then, $1+bca=1+ba+baba+\cdots$ is the inverse of 1-ba.

$$C_b(\Omega) \ell^{\infty}(S) L^{\infty}(\Omega) B_b(\Omega) A(\mathbb{D}) B(X)$$

- **10.13.** In $C(\mathbb{R})$, the modular ideals correspond to compact sets.
- **10.14** (Disk algebra). (a) Every continuous homomorphism is an evaluation.
- 10.15 (Polynomial convexity). (conway)
- **10.16** (Inclusion relation on spectra). (a) $\sigma(a+b) \subset \sigma(a) + \sigma(b)$ and $\sigma(ab) \subset \sigma(a)\sigma(b)$ for unital cases.
 - (b) $\sigma(a^{-1}) = \sigma(a)^{-1}$ for unital cases.
 - (c) $r(a)^n = r(a^n)$.

spectral radius is upper semi-continuous

C*-algebras

11.1 C* identity

- 11.1 (C* identity). A normed *-algebra A is called a C*-algebra if
 - (a) A is Banach,
 - (b) A satisfies the C*-identity: $||x^*x|| = ||x||^2$.
- 11.2 (Unitization of C*-algebras).

$$(L_a + \lambda \operatorname{id}_{B(A)})^* = L_{a^*} + \overline{\lambda} \operatorname{id}_{B(A)}.$$

Proof. The C*-identity easily follows from the following inequality:

$$||(x,\lambda)||^{2} = \sup_{\|y\|=1} ||xy + \lambda y||^{2}$$

$$= \sup_{\|y\|=1} ||(xy + \lambda y)^{*}(xy + \lambda y)||$$

$$= \sup_{\|y\|=1} ||y^{*}((x^{*}x + \lambda x^{*} + \overline{\lambda}x)y + |\lambda|^{2}y)||$$

$$\leq \sup_{\|y\|=1} ||(x^{*}x + \lambda x^{*} + \overline{\lambda}x)y + |\lambda|^{2}y||$$

$$= ||(x,\lambda)^{*}(x,\lambda)||.$$

11.3 (Spectra of normal elements). Let \mathcal{A} be a C*-algebra.

- (a) If $a \in A$ is unitary, then $\sigma(a) \subset \mathbb{T}$.
- (b) If $a \in \mathcal{A}$ is self-adjoint, then $\sigma(a) \subset \mathbb{R}$.

Proof. (a) (b) By the holomorphic functional calculus,

$$e^{itx} = \sum_{n=1}^{\infty} \frac{(itx)^n}{n!}.$$

Since the involution is continuous,

$$(e^{itx})^* = \sum_{n=1}^{\infty} \frac{(-itx)^n}{n!} = e^{-itx},$$

so we have $||e^{itx}||^2 = ||e^{itx}e^{-itx}|| = 1$. Then, the inequality

$$1 = ||e^{itx}|| \ge |h(e^{itx})| = |e^{ith(x)}| = e^{-t\operatorname{Im}h(x)}$$

proves $h(x) \in \mathbb{R}$.

11.2 Continuous functional calculus

- **11.4** (Gelfand-Naimark representation for C*-algebras). For a commutative unital C*-algebra \mathcal{A} , consider the Gelfand transform $\Gamma: \mathcal{A} \to C(\sigma(\mathcal{A}))$.
 - (a) Γ is a *-homomorphism.
 - (b) Γ is an isometry.
 - (c) Γ is a *-isomorphism.

Proof. (a)

(b) Note that we have

$$\|\widehat{x}\| = \sup_{h \in \sigma(\mathcal{A})} |\widehat{x}(h)| = \sup_{h \in \sigma(\mathcal{A})} |h(x)| = r(x).$$

For self adjoint $x \in \mathcal{A}$, since we have $||x||^2 = ||x^*x|| = ||x^2||$, the spectral radius coincides with the norm by the Gelfand formula for spectral radius in Banach algebras:

$$r(x) = \lim_{n \to \infty} ||x^{2^n}||^{1/2^n} = ||x||.$$

Hence

$$||x||^2 = ||x^*x|| = ||\widehat{x^*x}|| = ||\widehat{x}^*\widehat{x}|| = ||\widehat{x}||$$

for arbitrary $x \in A$.

- $\Gamma(\mathcal{A})$ is a unital *-subalgebra of $C(\sigma(\mathcal{A}))$, and it separates points by definition. By the Stone-Weierstrass theorem, $\Gamma(\mathcal{A})$ is dense in $C(\sigma(\mathcal{A}))$. The step 2 shows that $\Gamma(\mathcal{A})$ is complete and hence closed so that $\Gamma(\mathcal{A}) = C(\sigma(\mathcal{A})$.
- **11.5** (Finitely generated C*-algebras). joint spectrum.
- **11.6** (Continuous functional calculus). 1. id $\mapsto a$, 2. (f+g)(a) = f(a) + g(a), (fg)(a), 3. $(f \circ g)(a) = f(g(a))$.

We have shown unitary element has spectrum in the circle, and self-adjoint element has spectrum in real line. The converses of these two statements also hold if we assume a is normal.

11.3 Positive linear functionals

- **11.7.** (a) If $a, b \ge 0$, then $a + b \ge 0$.
 - (b) If $a^*a \le 0$, then $a^*a = 0$.
 - (c) $a^*a \ge 0$ for all $a \in A$.
- 11.8 (Operator monotone functions). (a) inverse
 - (b) conjugation
- **11.9** (Operator monotonicity of square and commitativity). Let \mathcal{A} be a C*-algebra in which the square function is operator monotone, that is, $0 \le a \le b$ implies $a^2 \le b^2$ for any positive elements a and b in \mathcal{A} . We are going to show that \mathcal{A} is necessarily commutative. Let a and b denote arbitrary positive elements of \mathcal{A} .
 - (a) Show that $ab + ba \ge 0$.
 - (b) Let ab = c + id where c and d are self adjoints. Show that $d^2 \le c^2$.
 - (c) Suppose $\lambda > 0$ satisfies $\lambda d^2 \le c^2$. Show that $c^2 d^2 + d^2 c^2 2\lambda d^4 \ge 0$.

- (d) Show that $\lambda(cd+dc)^2 \leq (c^2-d^2)^2$.
- (e) Show that $\sqrt{\lambda^2 + 2\lambda 1} \cdot d^2 \le c^2$ and deduce d = 0.
- (f) Extend the result for general exponent: \mathcal{A} is commitative if $f(x) = x^{\beta}$ is operator monotone for $\beta > 1$.
- 11.10 (Injective *-homomorphism is an isometry). SS

11.4 Representation theory

11.5 Gelfand-Naimark-Siegel representation

- **11.11.** Let A be a C*-algebra, and ρ be a state on A.
- **11.12.** Let A = C([0,1]) and μ be a state on A, a regular Borel probability measure on [0,1]. Then, the left kernel $L_{\mu} = \{f \in A : \mu(|f|^2) = 0\}$ is the set of $f \in A$ such that $\operatorname{supp} f \cap \operatorname{supp} \mu = \emptyset(\operatorname{Not} \operatorname{checked})$ Then, the quotient is $A/L_{\mu} \cong C(\operatorname{supp} \mu)$. Therefore, our Hilbert space is $L^2(\operatorname{supp} \mu, \mu)$, and the canonical cyclic vector is the unity function.
- **11.13** (States on unitization). Let \mathcal{A} and $\widetilde{\mathcal{A}} \cong \mathcal{A} \oplus \mathbb{C}$ be a C*-algebra and its unitization respectively. Let $\widetilde{\rho} = \rho \oplus \lambda$ be a bounded linear functional on $\widetilde{\mathcal{A}}$, where $\rho \in \mathcal{A}^*$ and $\lambda \in \mathbb{C}^* = \mathbb{C}$.
 - (a) $\tilde{\rho}$ is positive if and only if $\lambda \geq 0$ and $0 \leq \rho \leq \lambda$.
 - (b) $\tilde{\rho}$ is a state if and only if $\lambda = 1$ and ρ is positive with $\|\rho\| \le 1$.
 - (c) $\tilde{\rho}$ is a pure state if and only if $\lambda = 1$ and ρ is either a pure state or zero.

Exercises

11.14. A C*-algebra is commutative if and only if a function $f(x) = \frac{x}{1+x}$ is operator subadditive.

Von Neumann algebras

12.1 The double commutant theorem

Theorem 12.1.1 (Double commutant theorem). Let A be a non-degenerate C^* -subalgebra of B(H).

- (a) A' and A'' are weakly closed.
- (b) For $a \in \mathcal{A}''$ and $\xi \in H$, there is a sequence $a_n \in \mathcal{A}$ such that $a_n(\xi) \to a(\xi)$.
- (c) For $a \in A''$ and $\xi_1, \dots, \xi_m \in H$, there is a sequence $a_n \in A$ such that $a_n(\xi_i) \to a(\xi_i)$ for all i.
- (d) A is von Neumann algebra if and only if A = A''.

Proof. (b) Let $K := \overline{A\xi}$ be the cyclic subspace of ξ in H and p its orthogonal projection. We claim $a\xi \in K$. For every $b \in A$, we have $bK \subset K$ because the multiplication by b is continuous on H, and $b^*K \subset K$ because A is self-adjoint. It means that K reduces all $b \in A$, and then bp = pb implies ap = pa, so K also reduces a. Therefore, $aK \subset K$ proves $a\xi = \lim_{\alpha} e_{\alpha} a\xi \in K$, where e_{α} is an approximate identity of A

(e) Since
$$\overline{\mathcal{A}}^{\text{WOT}}$$
 is closed convex, $\overline{\mathcal{A}}^{\text{SOT}} = \overline{\mathcal{A}}^{\text{WOT}}$. Also, \mathcal{A}'' is weakly closed, $\overline{\mathcal{A}}^{\text{WOT}} \subset \mathcal{A}''$.

12.2 The Kaplansky density theorem

12.3 Borel functional calculus

resolution of identity

normal operator theories: multiplicity, invariant subspaces

12.4 Traces

Every trace of factor is faithful

12.1. Normal states is a state in which the monotone convergence theorem holds. Precisely, a state ρ is *normal* if a monotone net a_{α} strongly converges to a then $\rho(a_{\alpha}) \rightarrow \rho(\alpha)$.