Particle spectrograph

Wave operator and propagator

$\tau_{1^{-}\alpha}^{\#2}$	0	0	0	$\frac{2ik}{t_1 + 2k^2t_1}$	$\frac{i\sqrt{2} k(2k^2 r_1 + t_1)}{(t_1 + 2k^2 t_1)^2}$	0	$\frac{2 k^2 (2 k^2 r_1 + t_1)}{(t_1 + 2 k^2 t_1)^2}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1^-\alpha}^{\#2}$	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	$\frac{2k^2r_1+t_1}{(t_1+2k^2t_1)^2}$	0	$-\frac{i\sqrt{2}k(2k^2r_1+t_1)}{(t_1+2k^2t_1)^2}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	0	$\frac{\sqrt{2}}{t_1 + 2 k^2 t_1}$	0	$-\frac{2ik}{t_1+2k^2t_1}$
$\tau_{1}^{\#1}{}_{\!$	$\frac{i\sqrt{2}k(t_1-2t_2)}{3(1+k^2)t_1t_2}$	$\frac{i k (t_1 + 4 t_2)}{3 (1 + k^2)^2 t_1 t_2}$	$\frac{k^2 (t_1 + 4t_2)}{3 (1 + k^2)^2 t_1 t_2}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{+}\alpha\beta$	$\frac{\sqrt{2} (t_1 - 2t_2)}{3 (1 + k^2) t_1 t_2}$	$\frac{t_1+4t_2}{3(1+k^2)^2t_1t_2}$	$-\frac{ik(t_1+4t_2)}{3(1+k^2)^2t_1t_2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{+}\alpha\beta$	$\frac{2(t_1+t_2)}{3t_1t_2}$	$\frac{\sqrt{2} (t_1 - 2t_2)}{3(1 + k^2)t_1t_2}$	$\tau_{1}^{\#1} + \alpha \beta - \frac{i \sqrt{2} k(t_{1} - 2t_{2})}{3(1 + k^{2})t_{1}t_{2}}$	0	0	0	0
	$\sigma_1^{\#1} + ^{lphaeta}$	$\sigma_{1}^{#2} + \alpha \beta$	$\tau_{1}^{\#1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{lpha}$	$\sigma_1^{\#2} +^{lpha}$	$\tau_{1}^{\#1} + ^{lpha}$	$t_1^{\#2} + \alpha$

$f_{1^-}^{\#2}$	0	0	0	ikt_1	0	0	0
$f_{1^-}^{\#1} \alpha$	0	0	0	0	0	0	0
$\omega_{1}^{\#2}{}_{\alpha}f_{1}^{\#1}{}_{\alpha}f_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{t_1}{\sqrt{2}}$	0	0	0
$\omega_{1^{-}\alpha}^{\#1}$	0	0	0	$-k^2 r_1 - \frac{t_1}{2}$	$\frac{t_1}{\sqrt{2}}$	0	$-\bar{l} k t_1$
$f_{1}^{\#1}_{\alpha\beta}$	$-\frac{ik(t_1-2t_2)}{3\sqrt{2}}$	$\frac{1}{3}$ \vec{l} k $(t_1 + t_2)$	$\frac{1}{3} k^2 (t_1 + t_2)$	0	0	0	0
$\omega_{1}^{\#2}{}_{\alpha\beta}$	$-\frac{t_1-2t_2}{3\sqrt{2}}$	$\frac{t_1+t_2}{3}$	$-\frac{1}{3}ik(t_1+t_2)\left \frac{1}{3}k^2(t_1+t_2)\right $	0	0	0	0
$\omega_{1}^{\#1}{}_{\alpha\beta}$		$-\frac{t_1-2t_2}{3\sqrt{2}}$	$\frac{i k (t_1 - 2 t_2)}{3 \sqrt{2}}$	0	0	0	0
	$\omega_1^{#1} + \alpha \beta$	$\omega_1^{\#2} + \alpha \beta$	$f_{1}^{\#1} \dagger^{\alpha\beta}$	$\omega_{1}^{\#1} +^{\alpha}$	$\omega_1^{\#2} +^{lpha}$	$f_{1}^{\#1} \dagger^{lpha}$	$f_1^{\#2} + \alpha$

	$\omega_{2^{+}\alpha\beta}^{\#1} f_{2^{+}\alpha\beta}^{\#1} \omega_{2^{-}\alpha\beta\chi}^{\#1}$						
μ	$p_{2}^{\#1} + \alpha \beta$	<u>t</u> 1 2	$-\frac{ikt_1}{\sqrt{2}}$	0			
f	$r_{2}^{\#1} + \alpha \beta$	$\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	0			
ω_2^{\dagger}	$\frac{1}{2}$ † $\alpha\beta\chi$	0	0	$k^2 r_1 + \frac{t_1}{2}$			

	$\sigma_0^{\#1}$	$ au_{0}^{\#1}$	$ au_{0}^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0^{+}}^{\#1}$ †	$-\frac{1}{(1+2k^2)^2t_1}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$	0	0
$\tau_{0}^{\#1}$ †	$-\frac{i\sqrt{2} k}{(1+2k^2)^2 t_1}$	$-\frac{2k^2}{(1+2k^2)^2t_1}$	0	0
$\tau_{0}^{\#2}$ †	0	0	0	0
$\sigma_0^{\sharp 1}$ †	0	0	0	$\frac{1}{t_2}$

Source constraints/gauge generators

Multiplicities

SO(3) irreps

 $\overline{\tau_{0^{+}}^{\#1} - 2 \, \bar{\imath} \, k \, \sigma_{0^{+}}^{\#1} == 0}$

 $\tau_1^{\#2\alpha} + 2 i k \sigma_1^{\#2\alpha} == 0$

 $\tau_{1}^{\#1\alpha\beta} + i k \sigma_{1}^{\#2\alpha\beta} == 0$ 3

 $\tau_{2^{+}}^{\#1\,\alpha\beta} - 2\,i\,k\,\,\sigma_{2^{+}}^{\#1\,\alpha\beta} == 0$ 5

Total constraints:

 $\tau_{0^{+}}^{\#2} == 0$

	<u>"</u> –	1	
r :	$\omega_{0}^{*1} + f_{0}^{*1} + f_{$	$f_{0}^{#2}$	$\omega_{0}^{\#1}$ \dagger
	3 +	, +	3
~			1 4
$\frac{1}{\alpha eta }$	0	0	$\frac{2}{2k^2r_1+t_1}$
$\sigma_{2}^{\#1}$ $_{lphaeta\chi}$			2 k ²
	_	$\frac{1}{t_1}$	
$\tau_{2}^{\#1}_{\alpha\beta}$	$2 i \sqrt{2} k$ $(1+2 k^2)^2 t_1$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
7	- ² (1+	(1+)	
8	2 t1	$\frac{k}{t_1}$	
$\sigma_{2}^{\#1}$	$\frac{2}{(1+2k^2)^2t_1}$	$\frac{2 i \sqrt{2} k}{(1+2 k^2)^2 t_1}$	0
P	(1+2)	2 i	
	$\sigma_{2}^{\#1} + \alpha \beta$	$\tau_{2}^{\#1} + \alpha\beta \frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\sigma_{2}^{#1} +^{\alpha \beta \chi}$
	7#1 2+	#1 2+1	±1+(
	0		P,

 $-2k^2t_1$

 $\sqrt{2} kt_1$

Massive and massless spectra

Unitarity conditions