交换代数

G.Li

目录

第零章	从几何开始	5
0.1	习题	5
第一章		11
1.1	生成条件	11
1.2	分次环	11
1.3	有限性	12
第二章		15
2.1	应用	15
第三章	准素分解	17
第四章	完备性	19
4.1	反向极限	19
第五章	平坦性	21
第六章	Gröbner 基	23
第七章	Hilbert 多项式	29
7.1	Hilbert 函数和多项式	29
7.2	极小消解	33
7.3	分次 Betti 数和计算	35
第八章	维数理论	39
第九章	微分和光滑性	41
	Koszul 复形	49
10.1	动机和定义	49
10.2	新复形的构造	51
10.3	上同调与	52

4 目录

第零章 从几何开始

练习 0.1. 设 I 是交换环 R 的理想, M 是 R 模, 定义

$$\Gamma_I(M) = \{ x \in M \mid I^n x = 0, \exists n \in \mathbb{N} \}.$$

求证: R 的两个理想 I, J 满足对任意 R 模 M, $\Gamma_I(M) = \Gamma_J(M)$ 当且仅当 $\sqrt{I} = \sqrt{J}$.

$$\Gamma_I(M) = \lim_{\rightharpoonup} \operatorname{Hom}_R(R/I^t, M).$$

证明. 必要性: 令 M=R/I, 于是 $M=\Gamma_I(M)=\Gamma_J(M)$, 即对任意 $r\in R$, $J^nr\subseteq I$. 取 r=1 得到 $J^n\subseteq I$, 两边取根理想得到 $\sqrt{J}\subset \sqrt{I}$. 同理可得另一方向.

任取 $x \in \Gamma_I(M)$,可知存在自然数 n 满足 $I^n x = 0$. 又由于 $\sqrt{I} = \sqrt{J}$,存在自然数 m 满足 $J^m \subseteq I$,于 是 $J^{mn} x = 0$,即 $x \in \Gamma_J(M)$.

练习 0.2. 给定交换环 R 和 R 代数 A, B, I, J 分别是 A 和 B 的理想, 求证

$$A/I \otimes_R B/J \cong A \otimes_R B/(I+J),$$

其中 I + J 表示 $I \otimes_R B$ 与 $A \otimes_R J$ 在 $A \otimes_R B$ 中生成的理想.

练习 0.3. 1. 设 k 是代数闭域, A, B 是 k 代数且都是整环, 求证 $A \otimes_k B$ 也是整环;

2. 求证 $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C} = \mathbb{C} \times \mathbb{C}$, 因此当 k 是非代数闭时存在反例.

练习 0.4 (Bourbaki, Algebra, Chapter V, Section 15, Thm3). 设 k 是完全域, A,B 是约化 k 代数, 求证 $A \otimes_k B$ 也是约化的.

练习 0.5. 给定交换环 R, 设 S 是 R 中所有以零因子为元素的理想的全体,即

$$S := \{I \supseteq R \mid I$$
仅包含零因子 $\},$

求证 S 包含极大元并且每个极大元都是素理想.

0.1 习题

练习 0.6. 设 k 是域, $M_n(k)$ 是 $n \times n$ 以 k 为系数矩阵的全体, 作为仿射空间 $M_n(k) \cong \mathbb{A}_k^{n^2}$.

- 1. 证明 $GL_n(k) \subseteq M_n(k)$ 是 Zariski 开的.
- 2. 根据上面的结论证明 $GL_n(k)$ 不是 $M_n(k)$ 中的代数集.

第零章 从几何开始

- 3. 证明 $GL_n(k)$ 是 $\mathbb{A}_k^{n^2+1}$ 中的代数集.
- 4. 当 $k = \mathbb{C}$ 时,证明

$$U_n(\mathbb{C}) := \{ A \in M_n(\mathbb{C}) \mid AA^* = I \}$$

不是 $\mathbb{A}^{n^2}_{\mathbb{C}}$ 中的代数集,但它是 $\mathbb{A}^{4n^2}_{\mathbb{R}}$ 中的代数集.

练习 0.7. 求证 $M_n(k)$ 中所有秩不大于给定整数 $1 \le r \le n$ 的矩阵组成代数集,这个代数集称为行列式代数 簇 (determinantal variety).[考虑所有 $(k+1) \times (k+1)$ 子矩阵的行列式.]

练习 0.8. 证明若 k 是无限域, 那么 $I(\mathbb{A}^n_k) = 0$, 并给出有限域结论不成立的反例.

练习 0.9. 求证 \mathbb{A}^2 的 Zariski 拓扑不同于 $\mathbb{A} \times \mathbb{A}$ 的乘积拓扑.[考虑对角线.]

练习 0.10. 1. 证明 \mathbb{A}_{t}^{n} 中的代数集都是有限个超平面的交;

- 2. 证明 \mathbb{A}_k^n 中的超平面的定义方程是某个不可约多项式的方幂.
- 3. 证明代数集上的 Zariski 拓扑是紧的.

练习 0.11. 证明 \mathbb{A}_{k}^{n} 中的集合 $D(f) := \mathbb{A}_{k}^{n+1}$ 中的代数集.

练习 0.12. 给定 \mathbb{A}_k^n 中的不可约闭子集 C, 记

$$U_i := \{(a_1, \cdots, a_n) \in \mathbb{A}_k^n \mid a_i \neq 0\},\$$

求证 $C \cap U_i$ 的闭包是 C.

证明. 反设 $\overline{C \cap U_i} \subsetneq C$, 则 $C = \overline{C \cap U_i} \cup (C - U_i \cap C)$, 这与 C 是不可约的矛盾.

练习 0.13. 求证平面 \mathbb{A}^2_k 中的曲线具有余有限拓扑. 注意,这并不意味着平面曲线与 \mathbb{A}^1 同构.

证明. 设 $C:=V(p(x,y))\subseteq \mathbb{A}^2$ 是曲线,其中 p(x,y) 是不可约理想,那么只要证明 C 中的任意闭集都是有限的即可.

取 C 中的闭集 $C \cap V(f_1, \dots, f_n)$,其中 $f_1, \dots, f_n \in k[x, y]$. 注意到 $V(f_1, \dots, f_n) \subseteq V(f_i)$,因而只需要证明 $C \cap V(f_i) = V(p) \cap V(f_i) = V(p(x, y), f_i(x, y))$ 是有限集即可. 考虑

$$f_i(x,y) = f_{i,0}(x) + f_{i,1}(x)y + \dots + f_{i,d}(x)y^d,$$

作为 y 的多项式在 $\operatorname{Frac}(k[x])$ 中有全部的解 $g_1(x), \dots, g_d(x)$. 由于 $g_1(x), \dots, g_d(x)$ 在 $\operatorname{Frac}(k[x])$ 上是代数

练习 0.14. 证明仿射代数簇是 quasi-compact 的.

练习 0.15. 求证 k 代数 A 是 \mathbb{A}^n_k 中某个代数集的坐标环当且仅当 A 是有限生成的代数且对任意 A 的非零元素 a 都能找到 k 代数同态 $\varphi:A\to k$ 使得 $\varphi(a)\neq 0$.

练习 0.16. 证明仿射代数簇是有限维的.

练习 0.17. 设 $f:V\to W$ 是代数簇间的满态射,证明 $\dim V\geq \dim W$,进而证明维数是代数簇的同构不变量. 练习 0.18. 设 $f:V\to W$ 是代数簇间的态射,证明 f 是 Zariski 连续的.

练习 0.19. 设 V 是代数闭域 k 上的代数簇, 求证坐标环 k(V) 是有限生成的约化环.

0.1 习题 7

练习 0.20. 求证态射

$$\mathbb{A}_k^{n+m} \to \mathbb{A}_k^n$$

$$(a_1, \dots, a_n, b_1, \dots, b_m) \mapsto (a_1, \dots, a_n)$$

在定理?? 下对应的环同态是

$$k[x_1, \cdots, x_n] \hookrightarrow k[x_1, \cdots, x_n, y_1, \cdots, y_m].$$

练习 0.21. 证明 Spec R 是 quasi-compact 的.

练习 0.22. 证明 Spec R 中的点 p 是闭的当且仅当 p 是极大理想.

练习 0.23. 考虑 Spec ℤ 中的点 (0), 证明它的闭包是 Spec ℤ.

练习 0.24. 设 F 是无限域. 借助 Zariski 拓扑证明 Cayley-Hamilton 定理.

证明. 任取矩阵 $A \in M_n(F)$, 设 $\chi_A(x)$ 是 A 的特征矩阵, 那么

$$\chi_A:\mathbb{A}_F^{n^2}\to\mathbb{A}_F^{n^2}$$

是 Zariski 连续的. 如果我们能证明可对角化的矩阵是稠密的,那么注意到可对角化的矩阵一定是 $\chi_A(x)$ 的零点,那么 $\chi_A(x)$ 的零点就必然是全体 $\mathbb{A}_F^{n^2}$,即为要证.

于是只要证可对角化的矩阵是稠密的,而这个可由具有 n 个不同特征值的矩阵稠密导出. 我们将任意矩阵视为 $F[x_1,\cdots,x_{n^2}]$ 中的元素,因而 $\chi_B(x)\in F[x_1,\cdots,x_{n^2}][x]$,这个多项式是 n 次的且有 n 个不同根(特征值). 于是 $\chi_B(x)$ 的判别式

练习 0.25. 求证正文中的定义给出了 \mathbb{P}_k^n 的拓扑,并证明在该拓扑下 \mathbb{P}_k^n 的子集 Z 是闭集当且仅当对每个 $0 \le i \le n$, $Z \cap U_i$ 是 U_i 中的闭集.

练习 0.26. 设 R 是交换环,A 是 R 代数,那么 A 是有限展示的当且仅当对任意 R 代数的可滤 (filtered) 余 极限 $B = \operatorname{colim}_{i \in I} B_i$,都有同态

$$\operatorname{colim}_{i \in I} \operatorname{Hom}_{R}(A, B_{i}) \cong \operatorname{Hom}_{R}(A, B).$$

练习 0.27. 给定交换环 R 和有限展示 R 模 M,若 I 是内射 R 模则对任意 R 模 N

$$M \otimes_R \operatorname{Hom}_R(N, I) \cong \operatorname{Hom}_R(\operatorname{Hom}_R(M, N), I).$$

证明. 给定正合列

$$K \to F \to M \to 0$$
,

其中 K, F 都是自由模,由于 M 是有限展示的,因此可以假设 K, F 是有限生成的.于是我们得到了正合列

$$0 \to \operatorname{Hom}_R(M, N) \to \operatorname{Hom}_R(F, N) \to \operatorname{Hom}_R(K, N).$$

又由于 I 是内射模, 因而

$$\operatorname{Hom}_R(\operatorname{Hom}_R(K,N),I) \to \operatorname{Hom}_R(\operatorname{Hom}_R(F,N),I) \to \operatorname{Hom}_R(\operatorname{Hom}_R(M,N),I) \to 0$$

是正合列. 另一方面,根据 M 的生成序列存在正合列

$$K \otimes_R \operatorname{Hom}_R(N,I) \to F \otimes_R \operatorname{Hom}_R(N,I) \to M \otimes_R \operatorname{Hom}_R(N,I) \to 0$$

第零章 从几何开始

定义

8

$$\eta: \operatorname{Hom}_R(\operatorname{Hom}_R(-,N),I) \Rightarrow -\otimes_R \operatorname{Hom}_R(N,I)$$
$$\eta_T: \operatorname{Hom}_R(\operatorname{Hom}_R(T,N),I) \to T\otimes_R \operatorname{Hom}_R(N,I)$$
$$f \mapsto$$

是自然变换,于是有交换图

根据之前的习题, η_K, η_F 是同构,因而由五引理得到了所需的同构.

练习 0.28. 给定交换 Noether 环 R 和有限生成平坦 R 模 P, 求证 P 是投射模.

证明. 任意给定 R 模满态射 $f: M \to N$, 只要证明

$$\operatorname{Hom}_R(P,M) \to \operatorname{Hom}_R(P,N)$$

是满射即可. 任取内射模 I,于是存在正合列

$$0 \to \operatorname{Hom}_R(N, I) \to \operatorname{Hom}_R(M, I),$$

由于 P 平坦, 于是

$$0 \to P \otimes_R \operatorname{Hom}_R(N, I) \to P \otimes_R \operatorname{Hom}_R(M, I)$$

也正合. 由于 P 是有限生成的, 故 P 是有限展示的, 由习题0.27

$$0 \to \operatorname{Hom}_R(\operatorname{Hom}_R(P, N), I) \to \operatorname{Hom}_R(\operatorname{Hom}_R(P, M), I)$$

是正合的,根据I的内射性

$$\operatorname{Hom}_R(P,M) \to \operatorname{Hom}_R(P,N) \to 0$$

也是正合的.

练习 0.29. 给定交换环 R 和它的理想 I, J, 定义 I 关于 J 的理想商 (I:J) 是

$$(I:J) := \{ r \in R \mid rJ \subseteq I \}.$$

求证

- 1. (I:J) 是 R 中的理想,且理想 K 被 (I:J) 包含当且仅当 $KJ \subseteq I$,
- 2. 存在自然的 R 模同构

$$(I:J) = \operatorname{Ann}_R(I+J/I),$$

3.
$$(I:J+K)=(I:J)\cap (I:K)$$
,

4.
$$(I \cap J : K) = (I : K) \cap (J : K)$$
,

0.1 习题

5. 若 R 还是整环,

$$(I:(r)) = \frac{1}{r}(I\cap(r)).$$

9

称 $(I:J^{\infty}):=\bigcup_{n\geq 1}(I:J^n)$ 为 I 关于 J 的饱和理想 (saturation). 求证在 Spec R 中,

$$V((I:J^{\infty})) = \overline{V(I) - V(J)}.$$

10 第零章 从几何开始

第一章 链条件

1.1 生成条件

命题 1.1 (Nakayama).

1.2 分次环

设 S 是一个分次环,那么由齐次元素生成的理想 I 成为齐次理想 (homogeneous ideal). 分次环 S 中的理想 I 是齐次理想当且仅当

$$I = \bigoplus_{n \in \mathbb{N}} I \cap S_n.$$

练习 1.1. 设 M 是分次环 S 上的分次模, $m \in M$ 是齐次元素, 求证 Ann m 是 S 中的齐次理想.

练习 1.2. 交换环 R 是 Noether 环当且仅当任意内射 R 模的直和是内射的.

证明. 设 $\{I_{\lambda}\}_{\lambda\in\Lambda}$ 是一族给定的内射 R 模,只要验证对任意的理想 J 和 R 模态射 $f:J\to I:=\bigoplus_{\lambda\in\Lambda}I_{\lambda}$ 都可以提升为 $\tilde{f}:R\to I.R$ 是 Noether 环意味着 J 是有限生成的,记生成元为 a_1,\cdots,a_n ,同时 $f(a_i)$ 仅在有限多个 I_{λ} 中不为 0,于是存在 Λ 的有限子集 Λ_0 使得 f 沿 $\iota:\bigoplus_{\lambda\in\Lambda}I_{\lambda}\hookrightarrow I$ 有分解. 但是每个 I_{λ} 都是内射的,故 $J\to I_{\lambda}$ 有提升 $R\to I_{\lambda}$,这给出了 $R\to\bigoplus_{\lambda\in\Lambda}I_{\lambda}$,因而有提升 $\tilde{f}:R\to I$.

另一方面,假设 R 不是 Noether 环, 因此有严格的升链

$$J_1 \subsetneq J_2 \subsetneq \cdots J_n \subsetneq \cdots$$

令 $J:=\bigcup_{n\in\mathbb{N}^*}J_n$,取 I_n 是包含 J/J_n 的内射模, $I:=\bigoplus_{n\in\mathbb{N}^*}I_n$,那么存在自然的同态

$$f: J \to I = \bigoplus_{n \in \mathbb{N}^*} I_n.$$

若 I 是内射模,则 f 可以扩张为 $\tilde{f}:R\to I$,使得 $\forall a\in J,\ f(a)=\tilde{f}(a)=a\tilde{f}(1)$. 设 $\tilde{f}(1)=\{x_n\}_{n\in\mathbb{N}^*}$,并找一个整数 N 使得 $a\notin J_N$,注意到 $0\neq\bar{a}\in J/J_N$,

定理 1.2. 设 S 是分次环, I 是齐次理想且集合 $A = \{a_{\lambda}\}_{{\lambda} \in \Lambda}$ 是 I 的一组齐次生成元, $f \in S$ 齐次且 f 阶为 1, 那么

$$(I[f^{-1}]) \cap S[f^{-1}]_0$$

可以由

$$A_f = \left\{ \frac{a_{\lambda}}{f^{\deg a_{\lambda}}} \right\}_{\lambda \in \Lambda}$$

生成.

证明.

练习 1.3. 设 R 是交换环, 若它的理想 I 满足对任意理想 J_1, J_2 只要 $I = J_1 \cap J_2$ 那么要么 $I = J_1$ 要么 $I = J_2$, 则称 I 是不可约理想 (irreducible ideal). 求证若 I 是 R 的不可约理想,那么 IR[x] 是 R[x] 中的不可约理想.

证明. 假设 I=(0),那么只需要证明若理想 J_1,J_2 满足 $J_1\cap J_2=(0)$,取 $f\in J_1,g\in J_2$,这样 $(f)\cap (g)=0$. 记

$$f = x^d \left(\sum_{i=0}^n a_i x^i \right), g = x^e \left(\sum_{j=0}^m b_j x^j \right),$$

满足 $a_0, b_0 \neq 0$,且 f, g 取得使得 m + n 最小. 如果令 $h = \sum_{i=0}^n a_i x^i, k = \sum_{j=0}^m b_j x^j$,那么显然 $(f) \subseteq (h), (g) \subseteq (k)$,于是 $(h) \cap (k) = 0$ 意味着 $(f) \cap (g) = 0$. 反过来若 $(h) \cap (k) \neq 0$,那么 $0 \neq x^{d+e}((h) \cap (k)) = (x^{d+e}h) \cap (x^{d+e}k) = (x^ef) \cap (x^dg)$,注意到 $(x^ef) \subseteq (f)$ 且 $(x^dg) \subseteq (g)$,于是 $(f) \cap (g) \neq 0$,这意味着 $(f) \cap (g) = 0$ 当且仅当 $(h) \cap (k) = 0$. 这样可以直接假设

$$f = \sum_{i=0}^{n} a_i x^i, g = \sum_{j=0}^{m} b_j x^j.$$

若 m+n=0, 那么 $f,g\in R$, 于是直接由假设 (0) 是 R 中的不可约理想得证,因此 m+n>0,不妨设 $m\geq n$ 且 m>0. 这样, R 中的理想 $(a_0)\cap (b_0)\neq 0$, 否则与 (0) 在 R 中是不可约的矛盾. 取 $c\in (a_0)\cap (b_0)$, 那么存在 r,s 使得 $ra_0=c=sb_0$. 用 rf,sg 代替 f,g, 那么可以假设 f,g 有相同的非零常数项.

若 $t \in R$ 满足 $ta_0 = 0$,且 $tf \neq 0$,那么 $(tf) \cap (g) \subseteq (f) \cap (g) = 0$,但此时 $ta_0 = 0$ 意味着 $x \mid tf$,之 前的讨论说明存在多项式 $h(x) = \frac{f(x)}{x}$ 满足 $\deg h < \deg f$ 和 $(h) \cap (g) = 0$,这与 m + n 是最小的矛盾,于是 tf = 0. 同理,tg = 0. 用与刚才相同的方法可以证明若 $h(x) = \sum_{i=0}^{l} c_i x^i$ 使得 h(x)f(x) = 0,那么 $c_i f(x) = 0$. 于是多项式 h(x) 满足 hf = 0 当且仅当 hg = 0.

由于按假设 f,g 有相同的常数项故存在常数项非零的多项式 k(x) 使得 $g-f=x^lk$. 根据 m+n 的极小性, $(f)\cap(k)\neq 0$,于是存在多项式 u,v 使得 $uf=vk\neq 0$,这样 $x^luf=v(g-f)$. 同时 $vg=(v+x^lu)f\in (f)\cap (g)=0$,这由前一段说明 vf=0, $x^luf=v(g-f)=0$,这样 uf=0,矛盾.

练习 1.4 (Artin-Tate lemma).

1.3 有限性

定理 1.3 (Hilbert 基定理). 给定 Noether 环 R, 那么多项式环 R[x] 也是 Noether 的.

证明. 设 I 是 R[x] 的一个理想,L 是 I 的元素的首项系数全体组成的集合(即 $L := \{a_n \mid f(x) = \sum_{i=0}^n a_i x^i \in I\}$),首先 L 是 R 的一个理想

1.3 有限性 13

由于 R 是 Noether 的,L 是有限生成的,记 $L = \langle c_1, \cdots, c_m \rangle$,其中 $f_i(x) = \sum_{j=0}^{d_i} a_{i,j} x^j$ 是以 c_i 为首项系数的多项式, $N := \max\{d_1, \cdots, d_m\}$.

对任意的 $d \in \{0,\cdots,N-1\}$,令 L_d 是 I 中 d 阶多项式的首项系数的全体组成的集合,与前面讨论相同的证明, L_d 也是 R 中的一个理想,再次根据 R 是 Noether 的, L_d 是有限生成的,记 $L_d = \langle b_{1,d},\cdots,b_{m_d,d}\rangle$,其中 $f_{i,d}(x) = \sum_{j=0}^d a_{i,d,j} x^j$ 是以 $b_{i,d}$ 为首项系数的多项式.

接下来只要证明

$$I = \langle \{f_1, \dots, f_m\} \cup \{f_{i,d} \mid 0 \le d < N, 1 \le i \le m_d\} \rangle$$

即可.

练习 1.5. 设 R 是 Noether 环, 求证下列等价:

- 1. *R* 是 Artin 环;
- 2. R 中只有有限多个素理想, 且
- 3. R 中只有有限多个素理想.

练习 1.6. 设 k 是域且 R 是 Noether 的 k 代数,求证下列等价:

- 1. *R* 是 Artin 环;
- 2. R 是有限 k 代数.

练习 1.7. 设 $\varphi:R\to S$ 是有限型的环同态, \mathfrak{p} 是 R 的任意极小理想,且 S 中只有有限多个 \mathfrak{q} 使得 $\varphi^{-1}(\mathfrak{q})=\mathfrak{p}$. 求证存在 $f\in R-\mathfrak{p}$ 使得 S_f 是有限生成的 R_f 模.

练习 1.8. 设 k 是域且 I 是环 $k[x_1,\cdots,x_n]$ 中由集合 S (可能是无限的) 生成的理想,那么存在 S 中的有限 多个元素生成 I.

14 第一章 链条件

第二章 局部化

2.1 应用

定理 2.1 (0AFU, Nagata 分解判别法). 给定整环 R, U 是 R 中由素元素生成的乘法闭集, x 是不可约元, 那么

- 1. x 在 $R[U^{-1}]$ 中的像是不可约元或可逆元,
- 2. x 是素元素当且仅当 x 在 $R[U^{-1}]$ 中的像是素元素或可逆元,

此外,R 是唯一分解整环当且仅当 R 中的每个元素都有到不可约元的分解,且 $R[U^{-1}]$ 是唯一分解整环.

推论 2.1.1. 设 k 是域, 那么 k[a,b,c,d]/(ad-bc-1) 是唯一分解整环.

证明. 根据习题???, k[a,b,c,d]/(ad-bc-1) 是整环,并且 $k[a,b,c,d]/(ad-bc-1)/(a)\cong k[c,c^{-1}][d]$, $k[a,b,c,d]/(ad-bc-1)[a^{-1}]\cong k[a,a^{-1},c,d]$,这意味着 $k[a,b,c,d]/(ad-bc-1)[a^{-1}]$ 是唯一分解整环.

练习 2.1. 设交换环 R 的零理想是有限多个极小素理想的交,即 $(0) = \bigcap_{i=1}^n \mathfrak{p}_i$,设 U 是所有不被 \mathfrak{p}_i 包含的元素的全体,证明 $R[U^{-1}] = \prod_{i=1}^n \operatorname{Frac}(R/\mathfrak{p}_i)$.

证明. 由 \mathfrak{p}_i 的极小性, $\mathfrak{m}_i := R[U^{-1}]\mathfrak{p}_i, i = 1, \cdots, n$ 是 $R[U^{-1}]$ 中仅有的素理想,并且 $\mathfrak{m}_i \cap R = \mathfrak{p}_i$.

练习 2.2. 证明局部化和取幂零理想可交换.

练习 2.3. 设 M 是一个有限表现的 R 模,A 是一个平坦 R 代数,那么对任意 R 模 N,有 A 模的同构

 $\operatorname{Hom}_R(M,N) \otimes_R A \cong \operatorname{Hom}_A(M \otimes_R A, N \otimes_R A).$

练习 2.4. 设 \mathfrak{p} 是 R 的素理想, $\varphi: R \to S$ 是给定的环同态. 求证 $S_{\mathfrak{p}}/\mathfrak{p}S_{\mathfrak{p}}$ 中的素理想——对应于 S 中在 φ 的 拉回下是 \mathfrak{p} 的素理想.

证明. 设 \mathfrak{q} 满足 $\varphi^{-1}(\mathfrak{q}) = \mathfrak{p}$,于是首先 $\varphi(R - \mathfrak{p}) \cap \mathfrak{q} = \emptyset$,这是因为若存在 $a \in R - \mathfrak{p}$ 使得 $\varphi(a) \in \mathfrak{q}$,按定义 $\varphi^{-1}(\mathfrak{q}) = \{r \in R \mid \varphi(r) \in \mathfrak{q}\}$,于是 $a \in \mathfrak{p} = \varphi^{-1}(\mathfrak{q})$,矛盾. 这样根据局部化的一一理想对应, $S_{\mathfrak{p}}$ 中包含对应于 \mathfrak{q} 的理想,记为 $\mathfrak{q}S_{\mathfrak{p}}$.

16 第二章 局部化

其次若 $\varphi^{-1}(\mathfrak{q})=\mathfrak{p}$,那么 $\varphi(\mathfrak{p})\subseteq\mathfrak{q}$,于是 $\mathfrak{q}S_{\mathfrak{p}}\supseteq\mathfrak{p}S_{\mathfrak{p}}=\varphi(\mathfrak{p})S_{\mathfrak{p}}$,这意味着商环的理想一一对应给出了 \mathfrak{q} 在 $S_{\mathfrak{p}}/\mathfrak{p}S_{\mathfrak{p}}$ 的理想,这给出了单射

 ${S$ 中满足 $\varphi^{-1}(\mathfrak{q}) = \mathfrak{p}$ 的素理想 $} \rightarrow {S_{\mathfrak{p}}/\mathfrak{p}S_{\mathfrak{p}}}$ 中的素理想 $},$

于是只要证明 $S_{\mathfrak{p}}/\mathfrak{p}S_{\mathfrak{p}}$ 的素理想必然满足 $\varphi^{-1}(\mathfrak{q})=\mathfrak{p}$.

由于局部化和取商的素理想对应,我们只需要证明不满足 $\varphi^{-1}(\mathfrak{q})=\mathfrak{p}$ 的 S 中的理想 $\mathfrak{q}_{\mathfrak{p}}$ 要么被 $\mathfrak{p}S_{\mathfrak{p}}$ 包含,要么与 $\varphi(R-\mathfrak{p})$ 的交不空. 如果 $\varphi^{-1}(\mathfrak{q})\neq\mathfrak{p}$,要么存在 $a\in\varphi^{-1}(\mathfrak{q})-\mathfrak{p}$,此时 $\varphi(a)\in\mathfrak{q}\cap\varphi(R-\mathfrak{p})$;要么 $\varphi^{-1}(\mathfrak{q})\subseteq\mathfrak{p}$,于是 $\mathfrak{q}\subseteq\mathfrak{p}S$,进而 $\mathfrak{q}_{\mathfrak{p}}\subseteq\mathfrak{p}S_{\mathfrak{p}}$. 这样就完成了对应的证明.

练习 2.5. 设素理想 $\mathfrak p$ 是交换环 R 的任意极小理想,求证 $R_{\mathfrak p}$ 中极大理想的元素都是幂零的,由此证明 $\mathfrak p$ 中的非零元素都是零因子.

证明. 根据定理, $R_{\mathfrak{p}}$ 中的素理想一一对应于 R 中 \mathfrak{p} 包含的素理想,但是 \mathfrak{p} 的极小性说明 $\mathfrak{p}_{\mathfrak{p}}$ 是 $R_{\mathfrak{p}}$ 中的唯一素理想,因此 $\mathfrak{p}_{\mathfrak{p}}$ 既是 $R_{\mathfrak{p}}$ 中的极大素理想也是极小素理想,根据 $\mathfrak{p}_{\mathfrak{p}}$ 中仅包含幂零元素,这证明了前半部分. 对于任意的 $0 \neq a \in \mathfrak{p}$, $\frac{a}{l}$ 是 $R_{\mathfrak{p}}$ 中的幂零元素,于是存在 $u \in R - \mathfrak{p}$ 使得 $ua^n = 0$,这意味着 a 是零因子. \square

第三章 准素分解

在

18 第三章 准素分解

第四章 完备性

4.1 反向极限

定义. 设 R 是 Abel 群, $R=I_0\supseteq I_1\supseteq\cdots\supseteq I_n\cdots$ 是子群序列(递降滤子),称

$$\hat{R} = \lim_{\leftarrow} := \{ f = (f_1, f_2, \cdots) \in \prod_{n \in \mathbb{N}^*} R/I_n \mid f_m \cong f_n \pmod{I_n} \forall m > n \}$$

为 R 关于 I_n 的完备化 (completion). 若 R 还是一个环,且每个 I_n 是理想,那么 \hat{R} 也是一个环.

20 第四章 完备性

第五章 平坦性

定义. 给定交换环 R 和 R 模 M, 若函子

$$-\otimes_R M: R-\mathbf{Mod} \to R-\mathbf{Mod}$$

是正合函子,那么称M是平坦(flat)R模.

练习 5.1. 设 R 是约化环 (reduced ring), M 是局部有限展示的 R 模, 若函数

rank : Spec
$$R \to \mathbb{Z}$$

$$\mathfrak{p} \mapsto \dim_{\kappa(\mathfrak{p})} M \otimes_R \kappa(\mathfrak{p})$$

是局部常值函数,则 M 是平坦模.

证明. 任取 R 中的素理想 \mathfrak{p} , 且假设存在一个 R 的表现

$$R^n \xrightarrow{A} R^m \to M \to 0$$
.

满足 $A \in M_{m \times n}(R)$. 任取 R 中的素理想 \mathfrak{p} , 那么

$$\kappa(\mathfrak{p})^n \xrightarrow{A \otimes_R \kappa(\mathfrak{p})} \kappa(\mathfrak{p})^m \to M \otimes_R \kappa(\mathfrak{p}) \to 0$$

是正合的. 我们断言,可以取 $m = \dim_{\kappa(\mathfrak{p})} M \otimes_R \kappa(\mathfrak{p})$ 使得 $R^m \to M$ 是满射.

练习 5.2. 给定交换环 R 和 $f(x) \in R[x]$, 求证 $R \to R[x]/(f(x))$ 是平坦的当且仅当 f(x) 是首一的.

定义. 设 M 是平坦 R 模,若 M 满足 $M \otimes_R N = 0$ 意味着 N = 0,则称 M 是忠实平坦的 (faithfully flat).

练习 5.3. 设 M 是平坦 R 模,求证 M 是忠实平坦的当且仅当对任意 $\mathfrak{p} \in \operatorname{Spec} R$, $M \otimes_R \kappa(\mathfrak{p}) \neq 0$.

证明. 一方面这是显然的

另一方面这是向量空间

22 第五章 平坦性

练习 5.4. 设 $\varphi:R\to S$ 是环同态,S 是平坦 R 模,求证 S 是忠实平坦的当且仅当 $\varphi:R\to S$ 是平坦的,且诱导的 Spec $S\to \mathrm{Spec}\ R$ 是满射.

证明. 一方面,若 S 是忠实平坦的,那么对任意 $\mathfrak{p} \in \operatorname{Spec} R$,根据习题2.4作为集合 $f^{-1}(\mathfrak{p}) = \operatorname{Spec}(S_{\mathfrak{p}}/\mathfrak{p}S_{\mathfrak{p}})$,这样只要说明 $\operatorname{Spec}(S_{\mathfrak{p}}/\mathfrak{p}S_{\mathfrak{p}})$ 非空即可,这等价于 $S_{\mathfrak{p}}/\mathfrak{p}S_{\mathfrak{p}} \neq 0$. 由于 \mathfrak{p} 是给定的素理想, $R_{\mathfrak{p}}/\mathfrak{p}R_{\mathfrak{p}}$ 非 0,因此由忠实平坦性, $S_{\mathfrak{p}}/\mathfrak{p}S_{\mathfrak{p}} \cong (R_{\mathfrak{p}}/\mathfrak{p}R_{\mathfrak{p}}) \otimes_R S \neq 0$.

另一方面,假设 Spec $S \to \text{Spec } R$ 是满射,

练习 5.5. 证明如下下降性质:设 $R \to S$ 是满忠实的环同态,

- 1. 若 S 是 Noether 的, 那 R 也是 Noether 的;
- 2. 若 S 是约化的, 那 R 也是约化的;
- 3. 若 S 是正规的, 那 R 也是正规的;
- 4. 若 S 是正则的, 那 R 也是正则的.

证明.

第六章 Gröbner 基

首先我们回顾 Hilbert 基定理的证明. 证明中对首项系数的选取起到了很重要的作用,而事实上在这个过程中,我们按照多项式的阶数给定了一个排序. 一个多元多项式 $f \in R[x_1, \cdots, x_n]$ 可以看成系数在 $R[x_2, \cdots, x_n]$ 中的单元多项式,以此类推, $R[x_2, \cdots, x_n]$ 中的多项式可以视为系数在 $R[x_3, \cdots, x_n]$ 中的单元多项式等等,这实际上给了 $R[x_1, \cdots, x_n]$ 中所有单项式一个排序,我们称为字典序(lexicographic ordering),即单项式 $Ax_1^{a_1} \cdots x_n^{a_n}$ 大于单项式 $Bx_1^{b_1} \cdots x_n^{b_n}$ 当且仅当存在 $1 \le k \le n$,满足 $1 \le i \le k$ 时 $a_i = b_i$,且 $a_k > b_k$.

定义. 给定交换环 R, $R[x_1, \dots, x_n]$ 上的单项序 (monomial ordering) 是定义在 $R[x_1, \dots, x_n]$ 中所有单项式上的一个(全)序关系 \geq ,使得若单项式满足 $m_1 \geq m_2$,那么对任意单项式 m, $mm_1 \geq mm_2$.

定义. 给定交换环 R 和多项式环 $R[x_1, \dots, x_n]$ 上的单项序 \geq ,

1.

2. 给定 $R[x_1, \dots, x_n]$ 中的理想 I, I 的首项系数理想 (ideal of leading terms)LT(I) 是 I 的所有首项系数生成的 ($R[x_1, \dots, x_n]$ 中的) 理想,即

$$LT(I) := \langle LT(f) \mid f \in I \rangle.$$

例 6.1. 给定域 F, 考虑 F[x,y] 上的字典序 x > y, 取多项式 $f_1(x,y) = x^3y - xy^2 + 1$ 和 $f_2(x,y) = x^2y^2 - y^3 - 1$, 那么由定义 $LT(f_1) = x^3y$, $LT(f_2) = x^2y^2$. 根据之前的讨论, $(x^3y, x^2y^2) \subseteq LT((f_1, f_2))$; 但另一方面,

$$yf_1 - xf_2 = y(x^3y - xy^2 + 1) - x(x^2y^2 - y^3 - 1) = x + y,$$

此时 $yf_1 - xf_2 \in (f_1, f_2)$ 但 $LT(yf_1 - xf_2) = x \notin (LT(f_1), LT(f_2))$. 事实上, $LT((f_1, f_2)) = (x, y^4)$.

若考虑 F[x,y] 的字典序 x < y, 取同样的多项式多项式 $f_1(x,y) = x^3y - xy^2 + 1$ 和 $f_2(x,y) = x^2y^2 - y^3 - 1$, 那么由定义 $LT(f_1) = -y^2x$, $LT(f_2) = -y^3$,之后我们会证明 $LT(I) = (x^4,y)$,并且这也说明了不同的单项序给出不同的首项系数理想.

考虑只有一个变元的多项式环 R=F[x],多项式除法使得对任意 $f(x),g(x)\in F[x]$,算法给出 $q(x),r(x)\in F[x]$ 满足

$$f(x) = g(x)q(x) + r(x),$$

且 $\deg r(x) < \deg g(x)$,此时 $f(x) \in (g(x))$ 当且仅当 r(x) = 0. 但当多项式环有多于一个的变元时,命题便不再成立,即使单项序使得我们有多项式阶数的推广——如同上面例6.1的讨论,首项的计算说明 " $g = yf_1 - xf_2$ 不是 (f_1, f_2) 中的元素",但这显然不正确,究其原因是 $(LT(f_1), LT(f_2)) \subsetneq LT((f_1, f_2))$.

定义. 给定域 F 和多项式环 $F[x_1, \dots, x_n]$ 上的单项序 \geq , 理想 $I \subseteq F[x_1, \dots, x_n]$ 的 Gröbner 基 (Gröbner basis) 是 I 的一组生成元 $\{g_1, \dots, g_m\}$ 使得 I 的首项系数理想由这组生成元的首项系数生成,即

$$I = (g_1, \dots, g_m), LT(I) = (LT(g_1), \dots, LT(g_m)).$$

练习 6.1. 设 $\{g_1, \dots, g_r\}$ 是给定单项序 \geq_x 的多项式环 $F[x_1, \dots, x_n]$ 理想 I 的 Gröbner 基 $(\geq_x$ 中的下标 x 为了与后面的做区别),考虑多项式环 $F[x_1, \dots, x_n, y_1, \dots, y_m]$ 上的单项序 \geq ,满足以 x_1, \dots, x_n 为未定元的单项式

$$m_1(x_1,\cdots,x_n)\geq m_2(x_1,\cdots,x_n)$$

当且仅当在 $F[x_1, \dots, x_n]$ 中 $m_1(x_1, \dots, x_n) \geq_x m_2(x_1, \dots, x_n)$,并且任意以 y_1, \dots, y_m 为未定元的单项式 $m_y(y_1, \dots, y_m)$ 满足 $m_x \geq m_y$,其中 $m_x(x_1, \dots, x_n)$ 是仅关于 x_1, \dots, x_n 的多项式(这样 \geq 可以看作嵌入 $F[x_1, \dots, x_n] \hookrightarrow F[x_1, \dots, x_n, y_1, \dots, y_m]$ 之后的扩张). 求证 $\{g_1, \dots, g_r\}$ 是多项式环 $F[x_1, \dots, x_n, y_1, \dots, y_m]$ 理想多项式环 $I \cdot F[x_1, \dots, x_n, y_1, \dots, y_m]$ 的 Gröner 基.

证明. 按定义, $LT(g_1), \dots, LT(g_r)$ 生成了 LT(I), 那么

$$LT(I) \cdot F[x_1, \cdots, x_n, y_1, \cdots, y_m] \cong LT(I \cdot F[x_1, \cdots, x_n, y_1, \cdots, y_m])$$

需要注意一点,Gröbner 基并不是线性代数意义下向量空间的一组基,它是环 $F[x_1, \dots, x_n]$ 中理想 I 的一组(作为理想的)生成元,并且不具有线性表达的唯一性. 但是,事实上给定 Gröbner 基,有(在定理6.1中描述的)带余除法的唯一性,而这恰是对应到单变元多项式的我们希望的性质,也就说明了 Gröbner 基在这种意义下是 F[x] 主理想整环性质的推广.

模仿 F[x] 中带余除法,给定 $F[x_1,\dots,x_n]$ 上的一个单项序 \geq 和非零元素 $\{g_1,\dots,g_m\}$,任取 $f\in F[x_1,\dots,x_n]$,假定存在商 $g_1,\dots,g_m\in F[x_1,\dots,x_n]$ 和余数 $r\in F[x_1,\dots,x_n]$ 满足

$$f = q_1 q_1 + \dots + q_m q_m + r,$$

(初始值可以取 $q_1 = \cdots = q_m = 0, r = f$) 那么如下步骤可以递推地给出 f 关于 q_1, \cdots, q_m 的带余除法:

- 1. 若存在 i 使得 LT(f) 被 $LT(g_i)$ 整除,即 $LT(f) = a_i LT(g_i)$,那么做替代 $q_i := q_i + a_i$ 和 $f := f a_i g_i$,并重复该过程,
- 2. 若 LT(f) 不被任意 $LT(g_1), \dots, LT(g_m)$ 整除,那么做替代 r := r + LT(f), f := f LT(f).

当经过迭代后 f 成为 0,我们终止这个过程,如上所给的算法称为一般多项式除法 (general polynomial division),最终它给出

$$f = q_1 g_1 + \dots + q_m g_m + r,$$

满足 $q_i q_i \leq f$ 对任意 i 成立,且不存在 q_i 使得 $LT(q_i) \mid r$.

- 例 6.2. 给定 F[x,y] 并取上面的字典序 x > y,
 - 1. 令 $f(x,y) = x^3y^3 + 3x^2y^4$, $g(x,y) = xy^4$, 此时 f 的首项是 x^3y^3 , 它不能被 xy^4 整除,于是 x^3y^3 需要被加到余数 r 中并且 f 要被 $f LT(f) = 3x^2y^4$ 代替,再次做相同的计算得到 $\frac{3x^2y^4}{xy^4} = 3x$,此时将 3x加到商 q 当中,并且 $3x^2y^4 3xLT(g) = 0$,因此得到了

$$x^{3}y^{3} + 3x^{2}y^{4} = f(x,y) = q(x,y)g(x,y) + r(x+y) = (3x)(xy^{4}) + x^{3}y^{3}.$$

2. 若考虑 $f(x,y) = x^2 + x - y^2 + y$ 和 $g_1(x,y) = xy + 1$, $g_2(x,y) = x + y$, 在第一次取商和余数的时候, $LT(f) = x^2$ 因此不能被 $LT(g_1) = xy$ 整除但可以被 $LT(g_2) = x$ 整除,商是 x, 因此用 $f - xg_2 = -xy + x - y^2 + y$ 代替 f 后进行第二次循环;这时首项系数可以被 $LT(g_1) = xy$ 整除,商是 -1,再用 $(-xy + x - y^2 + y) - (-1)g_1 = x - y^2 + y + 1$ 代替 $f - xg_2$ 后进行第三次循环;这时首项系数不能 被 $LT(g_1) = xy$ 整除但可以被 $LT(g_2) = x$ 整除,商是 1,用 $x - y^2 + y + 1 - g_1 = -y^2 + 1$ 代替后进行第四次循环。但是, $-y^2 + 1$ 中每一项都不能被任意首项整除,循环结束,最终的结果是 $q_1(x,y) = -1$, $q_2(x,y) = x + 1$, $r = -y^2 + 1$,即

$$f(x,y) = x^2 + x - y^2 + y = (-1)(xy+1) + (x+1)(x+y) + (-y^2+1).$$

3. 同样考虑 $f(x,y) = x^2 + x - y^2 + y$ 和 $g_2(x,y) = xy + 1$, $g_1(x,y) = x + y$ (与前一部分相比交换了顺序), 那么计算可得 $g_1(x,y) = x - y + 1$, $g_2(x,y) = 0$, r = 0.

在一般除法的描述和例子中,商与余数的结果是与 $\{g_1, \dots, g_m\}$ 的选取顺序有关,但是,如下的定理说明当生成元选取得当时,所得到的结果是唯一的,这也是我们考虑 Gröbner 基的原因.

定理 6.1. 给定 $R = F[x_1, \dots, x_n]$ 上的一个单项序 \geq ,且 $\{g_1, \dots, g_m\}$ 是非零理想 I 的一组 $Gr\ddot{o}bner$ 基,那么

1. 任意多项式 $f(x) \in R$ 可以唯一地写成

$$f = f_I + r$$

的形式,其中 $f_I \in I$ 且余数 r 的任意单项都不可以被首项系数 $LT(g_1), \dots, LT(g_m)$ 整除.

- 2. f_1 和 r 都可以用多项式带余除法来计算,且与 $\{g_1, \dots, g_m\}$ 的选取顺序无关.
- 3. 余数 r 给出了 R/I 中的唯一代表元, 特别地 $f \in I$ 当且仅当 r = 0.

证明. 1. 设 $f_I = \sum_{i=1}^m q_i g_i$ 是 f 的多项式带余除法中 $\{g_1, \cdots, g_m\}$ 所给出的项,因此这给出了分解 $f = f_I + r$. 假设存在两个分解 $f = f_{I,1} + r_1 = f_{I,2} + r_2$,那么 $r_1 - r_2 = f_{I,2} - f_{I,1} \in I$,由于 $\{g_1, \cdots, g_m\}$ 是 I 的一组 Gröbner 基,因此 $LT(r_1 - r_2) = LT(f_{I,2} - f_{I,1})$ 是 $LT(I) = (LT(g_1), \cdots, LT(g_m))$ 中的元素,这意味着 $r_1 - r_2$ 是 $LT(g_1), \cdots, LT(g_m)$ 的线性组合,但按多项式带余除法的构造, r_1, r_2 中的任意单项式不能被 $LT(g_1), \cdots, LT(g_m)$ 整除(这只对多项式环成立),因此若 $r_1 - r_2$ 非零那么其中的任意单项式也不能被 $LT(g_1), \cdots, LT(g_m)$ 整除,这意味着 $r_1 - r_2 = 0$,即分解是唯一的.

2. 之前我们已经证明了多项式带余除法可以求得分解 $f = f_I + r$, 并且这样的分解是唯一的,因此与 $\{g_1, \dots, g_m\}$ 中的顺序无关.

3. 这是第一部分的直接推论.

命题 6.2. 给定多项式环 $R = F[x_1, \cdots, x_n]$ 上的单项序 \geq , $I \in R$ 的非零理想, 那么

- 1. 若 I 中的元素 g_1, \dots, g_m 满足 $LT(I) = (LT(g_1), \dots, LT(g_m))$, 那么 $\{g_1, \dots, g_m\}$ 是 I 的 $Gr\"{o}bner$ 基,
- 2. 理想 I 有 Gröbner 基.

证明. 1. 与定义相比我们只需要证明 $\{g_1, \dots, g_m\}$ 生成了 I 即可. 设 $f \in I$ 是多项式且有带余除法

$$f = q_1 g_1 + \dots + q_m g_m + r,$$

使得余数 r 的任意单项都不可以被首项系数 $LT(g_1), \dots, LT(g_m)$ 整除. 由于 $f \in I$,余数 $r \in I$,这意味着 $LT(r) \in LT(I)$,但这样必然存在 $LT(g_1), \dots, LT(g_m)$ 中的某个首项系数**整除** LT(r),在 $r \neq 0$ 时产生矛盾,因此 r = 0,即 $f = q_1g_1 + \dots + q_mg_m$. 由于 f 是任意取的,因此这说明了 $\{g_1, \dots, g_m\}$ 生成 I.

命题6.2说明了 $F[x_1, \dots, x_n]$ 上的 Gröbner 基一定是存在的,接下来我们考虑对于任意给定的 I 的一组 生成元,如何检验这是否是 Gröbner 基.

事实上,这样的想法是简单的,例如在例6.1中, yf_1-xf_2 是使得 $(LT(f_1),LT(f_2)) \subsetneq LT((f_1,f_2))$ 的(一个)原因,同时 LT(I) 中的其他元素都是 I 中生成元取线性组合后消掉首项系数得到的,那么这也应当是使得一组基不能成为 Gröbner 基的唯一障碍.

对任意的 $f_1, f_2 \in F[x_1, \dots, x_n]$, 取 $M = \text{l.c.m.}(LT(f_1), LT(f_2))$ 和

$$S(f_1, f_2) := \frac{M}{LT(f_1)} f_1 - \frac{M}{LT(f_2)} f_2.$$

引理 6.1. 设 $f_1, \dots, f_m \in F[x_1, \dots, x_n]$ 是给定的多项式,且它们的多项阶数都是 α ,线性组合

$$h = a_1 f_1 + \cdots + a_m f_m$$

满足 $a_i \in F$ 对所有 $1 \le i \le m$ 成立,且 h 的多项阶数严格小于 α ,那么存在 $b_i \in F$ 使得

$$h = \sum_{i=2}^{m} b_i S(f_{i-1}, f_i).$$

证明. 令 c_i 是 f_i 的首项系数,且令 $g_i := \frac{f_i}{c_i}$, $1 \le i \le m$.于是

$$h = \sum_{i=1}^{m} a_i c_i g_i$$

$$= a_1 c_1 (g_1 - g_2) + (a_1 c_1 + a_2 c_2) (g_2 - g_3) + \dots + (a_1 c_1 + \dots + a_{m-1} c_{m-1}) (g_{m-1} - g_m)$$

$$+ (a_1 c_1 + \dots + a_m c_m) g_m,$$

注意到 $g_{i-1}-g_i=S(f_{i-1},f_i)$,并且每个 $g_{i-1}-g_i$ 的多项式系数都严格小于 α ,h 的多项阶数严格小于 α 意味着只有 $a_1c_1+\cdots+a_mc_m$ 才可能,这样引理成立.

给定多项式环 $R = F[x_1, \dots, x_n]$ 中的子集 $G = \{g_1, \dots, g_m\}$,若 $f(x) \in F[x_1, \dots, x_n]$ 关于 G (在如上给定的顺序)的多项式带余除法的余数是 r(x),也记

$$f(x) \equiv r(x) \pmod{G}$$
.

命题 6.3 (Buchberger). 给定多项式环 $R = F[x_1, \dots, x_n]$ 上的单项序 \geq , $I = (g_1, \dots, g_m)$ 是 R 的理想,那么 $G = \{g_1, \dots, g_m\}$ 是 I 的 G 的证据,

$$S(g_i, g_j) \equiv 0 \pmod{G}$$
.

证明. 一方面,若 G 是 I 的 Gröbner 基,那么 $S(g_i,g_j)$ 是 I 中的元素,根据定理6.1, $S(g_i,g_j) \equiv 0 \pmod{G}$. 反过来,取任意 $f(x) \in I$,根据命题6.2只需要证明 $LT(f) \in (LT(g_1), \cdots, LT(g_m))$. 记

$$f(x) = \sum_{i=1}^{m} h_i(x)g_i(x),$$

注意到这样的表示并不唯一,因此选取所有这样的表示中使得 $h_i(x)g_i(x)$ 的多项式阶数 $(i=1,\cdots,m)$ 的最大值,即 $\max\{\deg h_i(x)g_i(x)\}_{i=1,\cdots,m}$ 最小的表示. 记 $\alpha=\deg h_i(x)g_i(x)$,那么 $\deg f(x)\leq \alpha$,于是

$$f(x) = \sum_{i=1}^{m} h_i(x)g_i(x) = \sum_{\deg(f_i(x)g_i(x))=\alpha} h_i(x)g_i(x) + \sum_{\deg(f_i(x)g_i(x))<\alpha} h_i(x)g_i(x)$$

$$= \sum_{\deg(f_i(x)g_i(x))=\alpha} LT(h_i(x))g_i(x)$$

$$+ \sum_{\deg(f_i(x)g_i(x))=\alpha} (h_i(x) - LT(h_i(x))g_i(x) + \sum_{\deg(f_i(x)g_i(x))<\alpha} h_i(x)g_i(x),$$

这其中第一项求和的阶数不大于 α , 剩余两项求和的阶数都严格小于 α .

假定 $\deg f < \alpha$,那么第一项求和 $\sum_{\deg(f_i(x)g_i(x))=\alpha} LT(h_i(x))g_i(x)$ 的阶数必然也严格小于 α ,取 $a_i \in F$ 满足 $h_i(x) = a_i k_i(x)$,使得 $k_i(x)$ 是首一的多项式($1 \le i \le m$),于是引理6.1说明

$$\sum_{\deg(f_i(x)g_i(x))=\alpha} a_i LT(k_i(x))g_i(x) = \sum_{\deg(k_{i_j}(x)g_{i_j}(x))=\alpha} b_{i_j} S(LT(k_{i_{j-1}}(x))g_{i_{j-1}}(x), LT(k_{i_j}(x))g_{i_j}(x)),$$
(6.1)

其中 $\deg k_{i_{j-1}}(x)g_{i_{j-1}}(x) = \deg k_{i_{j}}(x)g_{i_{j}}(x) = \alpha$. 令 $\beta_{i_{j-1},i_{j}}$ 是 $LT(g_{i_{j-1}}(x))$ 和 $LT(g_{i_{j}}(x))$ 最大公约数的单项式阶数,那么直接根据定义

$$\begin{split} S(LT(k_{i_{j-1}}(x))g_{i_{j-1}}(x),LT(k_{i_{j}}(x))g_{i_{j}}(x)) &= \frac{\text{l.c.m.}(LT(LT(k_{i_{j-1}}(x))g_{i_{j-1}}(x)),LT(LT(k_{i_{j}}(x))g_{i_{j}}(x)))}{LT(LT(k_{i_{j-1}}(x))g_{i_{j-1}}(x))} LT(k_{i_{j-1}}(x))g_{i_{j-1}}(x) \\ &- \frac{\text{l.c.m.}(LT(LT(k_{i_{j-1}}(x))g_{i_{j-1}}(x)),LT(LT(k_{i_{j}}(x))g_{i_{j}}(x)))}{LT(LT(k_{i_{j}}(x))g_{i_{j}}(x))} LT(k_{i_{j}}(x))g_{i_{j}}(x) \\ &= \frac{x^{\alpha}}{x^{\alpha}}LT(k_{i_{j-1}}(x))g_{i_{j-1}}(x) - \frac{x^{\alpha}}{x^{\alpha}}LT(k_{i_{j}}(x))g_{i_{j}}(x) \\ &= x^{\alpha-\beta_{i_{j-1},i_{j}}}S(g_{i_{j-1}}(x),g_{i_{j}}(x)). \end{split}$$

但是根据假设 $S(g_{i_{j-1}}(x), g_{i_j}(x)) \equiv 0 \pmod{G}$, 这意味着多项式带余除法给出

$$S(g_{i_{j-1}}(x), g_{i_j}(x)) = \sum_{t=1}^{m} q_t(x)g_t(x)$$

且 $\deg S(g_{i_{j-1}}(x), g_{i_j}(x)) < \beta_{i_{j-1}, i_j}$,由于 $q_t(x)$ 是由多项式除法给出的,因此 $\deg q_t(x)g_t(x) < \beta_{i_{j-1}, i_j}$ 对每个 $1 \leq t \leq m$ 都成立,故

$$S(LT(k_{i_{j-1}}(x))g_{i_{j-1}}(x), LT(k_{i_{j}}(x))g_{i_{j}}(x)) = \sum_{t=1}^{m} x^{\alpha - \beta_{i_{j-1}, i_{j}}} q_{t}(x)g_{t}(x)$$

满足每个求和项 $\deg x^{\alpha-\beta_{i_{j-1},i_{j}}}q_{t}(x)g_{t}(x)<\alpha$. 但是, 如上意味着等式6.1中的右侧每一项都是 $g_{1}(x),\cdots,g_{m}(x)$ 的多项式系数线性组合,且每一项的首项阶数都小于 α ,这同样在等式

$$f(x) = \sum_{i=1}^{m} h_i(x)g_i(x) = \sum_{\deg(f_i(x)g_i(x))=\alpha} LT(h_i(x))g_i(x) + \sum_{\deg(f_i(x)g_i(x))=\alpha} (h_i(x) - LT(h_i(x))g_i(x) + \sum_{\deg(f_i(x)g_i(x))<\alpha} h_i(x)g_i(x)$$

中成立,与所选取 α 的极小性矛盾,因此 $\deg f(x) = \alpha$.

于是, 在如上的选取中我们得到

$$LT(f(x)) = \sum_{i=1}^{m} LT(h_i(x))LT(g_i(x)),$$

因此 $LT(f) \in LT(I)$, 故 G 是一组 Gröbner 基.

Buchberger 判别法不仅给出了如何判断一组元素是否是 Gröbner 基,并且给出了计算得到 Gröbner 基的方法. 假设 $I=(g_1,\cdots,g_m)$ 是多项式环 $R=F[x_1,\cdots,x_n]$ 的理想,若 $S(g_i,g_j)$ 在求取相对于 $G=\{g_1,\cdots,g_m\}$ 的余数时有非零项,那么令 g_{m+1} 为该余数,取新的 $G=\{g_1,\cdots,g_m,g_{m+1}\}$,并再次计算 $S(g_i,g_j)$ (mod G). 习题??? 说明这样的步骤总会在有限多步后停止,那么得到的就是 Gröbner 基.

若 g_1, \dots, g_m 是理想 I 的一组 Gröbner 基,并且存在 i, j 使得 $i \neq j, LT(g_i) \mid LT(g_j)$,这样 LT(I) 的生成元就不需要 $LT(g_j)$,再根据命题6.2,集合 $\{g_1, \dots, g_m\}$ 中删去 g_j 依然是 I 的 Gröbner 基;同样地可以假设每个 g_i 都是首一的. 因此,可以定义理想 I 的一组 Gröbner 基 $\{g_1, \dots, g_m\}$ 若都是首一的且满足 $LT(g_i) \nmid LT(g_j)$ 对所有的 $i \neq j$ 都成立,则称这是一组极小 Gröbner 基 (minimal Gröbner basis). 尽管极小 Gröbner 基不是唯一的,但它所确定的首项的全体是唯一的(习题??).

定义. 给定多项式环 $F[x_1, \dots, x_n]$ 上的单项序 \leq , 若理想 I 的 Gröbner 基 $\{g_1, \dots, g_m\}$ 满足

- 1. 对于任意的 $1 \le i \le m$, g_i 是首一多项式,
- 2. 对 $j \neq i$, g_i 中的任意项(不仅仅是首项)不被 $LT(g_i)$ 整除,

则称 $\{g_1, \dots, g_m\}$ 是 I 的约化 Gröbner 基 (reduced Gröbner basis).

第七章 Hilbert 多项式

7.1 Hilbert 函数和多项式

在这一章中我们始终假定 k 是域,并且分次模总假定是 \mathbb{N} 分次的.

给定 $S=k[x_0,\cdots,x_n]$ 上的分次模 $M=\bigoplus_{i=0}^\infty M_n$,若 M 作为 S 模是有限生成的,则每个 M_n 作为 k 向量空间都是有限维的,因此映射

$$h_M: \mathbb{N} \to \mathbb{N}$$
$$n \mapsto \dim_k M_n$$

是良定义的函数, 称其为 M 的 Hilbert 函数 (Hilbert function), 对应的形式幂级数

$$\sum_{n=0}^{\infty} h_M(n)t^n = h_M(0) + h_M(1)t + h_M(2)t^2 + \cdots$$

称为 M 的 Hilbert 级数 (Hilbert series). 一般情况下,我们假定生成元是正阶数的,因此 $h_M(0) = 1$.

给定 S 模 M 和整数 l,记 M[l] 是满足如下条件的 S 模,使得 M[l] 作为 k 向量空间同于 M,分次结构满足

$$M[l]_d := M_{l+d}.$$

模 M[l] 称为 M 的 l 平移 (shifted by l) 或扭曲 (twisted).

例 7.1. 考虑 $S = k[x_0, \dots, x_n]$, 那么它所有阶数为 d 的单项式有

$$\binom{n+d}{n} = \binom{n+d}{d}$$

个, 因此 M = S 的阶数为 d 的部分的维数是

$$\binom{n+d}{n} = \frac{(n+d)(n+d-1)\cdots(d+1)}{n!},$$

将 d 看作变量的话,这是一个关于 d 的有理系数多项式,阶数为 n 且首项系数为 $\frac{1}{n!}$. 考虑模 S[l],按定义和之前的运算,

$$S[l]_d := S_{l+d}$$

的维数是 $\binom{n+d+l}{n}$, 将 d 看作变量这就是 Hilbert 函数.

例 7.2. 考虑 $S := k[x_0, \dots, x_3]/(x_1^3 - x_0^2 x_3, x_2^3 - x_0 x_3^2, x_1 x_2 - x_0 x_3)$,它作为 $k[x_0, \dots, x_3]$ 的商环是 $k[x_0, \dots, x_3]$ 模. 为求得它的 Hilbert 函数,考虑环同态

$$\varphi: k[s,t] \to k[x_0, \cdots, x_3]$$
$$(s,t) \mapsto (s^3, s^2t, st^2, t^3),$$

明显的 S 是

引理 7.1. Hilbert 函数、Hilbert 级数和 Hilbert 多项式都是关于模 M 的加性函数,即若存在 S 模的短正合序列

$$0 \to M \to N \to L \to 0$$
,

则 $h_N = h_M + h_L$, 其余同理.

注意到以上例子当中的多项式都满足特别的性质,即虽然多项式是有理系数多项式,但在比较大的整数处取值一定也是整数. 若多项式 $p(z) \in \mathbb{Q}[z]$ 满足对充分大的 $n \in \mathbb{Z}$, $p(n) \in \mathbb{Z}$, 则称 p(z) 是数值多项式 (numerical polynomial).

引理 7.2. 若 p(z) 是 d 阶数值多项式,那么存在整数 c_0, \dots, c_d 使得

$$p(z) = \sum_{i=0}^{d} c_i \binom{z}{i},$$

其中, $\binom{z}{i} = \frac{z(z-1)\cdots(z-i+1)}{i!}$.

证明. 首先证明对任意的单项式 z^n 是 $\left\{ \begin{pmatrix} z \\ i \end{pmatrix} \right\}_{i=1,\cdots,k-1}$ 的 $\mathbb Q$ 线性组合. 显然当 n=0 和 n=1 时成立. 归纳 假设当 $n=1,\cdots,k-1$ 时, z^n 是 $\left\{ \begin{pmatrix} z \\ i \end{pmatrix} \right\}_{i=1,\cdots,k-1}$ 的 $\mathbb Q$ 线性组合,同时注意到

$$\binom{z}{k} = \frac{z(z-1)\cdots(z-i+1)}{k!} = \frac{z^k}{k!} + 其他低阶项,$$

按照归纳假设 z^k 也是 $\left\{ \begin{pmatrix} z \\ i \end{pmatrix} \right\}_{i=1,\cdots,k-1} \cup \left\{ \begin{pmatrix} z \\ k \end{pmatrix} \right\}$ 的线性组合. 如上结果说明若 p(z) 是整系数多项式则 p(z) 是 $\left\{ \begin{pmatrix} z \\ i \end{pmatrix} \right\}_{i=1,\cdots,k-1}$ 的 $\mathbb Q$ 线性组合. 这个线性组合是唯一的,因为基变换矩阵是上三角矩阵.

回到引理,若 d=0,那么 p(z) 是整数,满足引理. 归纳假设当 $d=1,\cdots,n$ 时,引理成立. 现在假设 p(z) 是 n+1 阶数值多项式,由前面的结果

$$p(z) = \sum_{i=0}^{d} c_i \binom{z}{i},$$

其中 $c_i \in \mathbb{Q}$. 考虑

$$\Delta p(z) := p(z+1) - p(z) = \sum_{i=0}^{d} c_i {z \choose i},$$

这实际上来源于等式

$$\begin{pmatrix} z \\ i \end{pmatrix} + \begin{pmatrix} z \\ i-1 \end{pmatrix} = \begin{pmatrix} z+1 \\ i \end{pmatrix}.$$

此时 $\deg \Delta p(z) = n$,于是归纳假设说明 $c_i \in \mathbb{Z}$. 最后 $c_0 \in \mathbb{Z}$ 是显然的.

引理 7.3. 设函数 $f: \mathbb{Z} \to \mathbb{Z}$ 满足如下性质, 存在数值多项式 q(z) 使得 f 的差值函数满足

$$\Delta f(n) := f(n+1) - f(n) = q(n)$$

对于充分大n都成立,则存在数值多项式p(z)使得

$$f(n) = p(n)$$

对于充分大 n 都成立, 且 $\deg p(z) = \deg q(z) + 1$.

证明. 根据引理7.2

$$q(z) = \sum_{i=0}^{d} c_i \binom{z}{i},$$

其中 $c_i \in \mathbb{Z}$. 今

$$p(z) = \sum_{i=1}^{d+1} c_i \binom{z}{i},$$

于是 $\Delta p(z) = q(z)$, 因此

$$\Delta(f-p)(n) = 0$$

对于充分大 n 都成立. 这样对于充分大 n, (f-p)(z) 是常数, 设为 c_0 , 于是

$$f(n) = p(n) + c_0$$

对于充分大 n 都成立.

定理 7.1 (Hilbert). 设 k 是域, $S := k[x_0, \dots, x_n]$,M 是有限生成的分次 S 模, $h_M(n) := \dim_k M_n$ 是 M 的 Hilbert 函数,那么存在多项式 $p_M(z) \in \mathbb{Q}[z]$ 使得对充分大的正整数 d,

$$h_M(d) = p_M(d).$$

称 $p_M(z)$ 为 M 的 Hilbert 多项式 (Hilbert polynomial).

命题 7.2. 设 $S \in Noether$ 分次环, $M \in S$ 次有限生成 S 模, 那么存在 M 的分次子模滤子

$$0 = M_0 \subseteq M_1 \subseteq \cdots \subseteq M_d = M$$

使得

$$M_i/M_{i-1} \cong (S/\mathfrak{p}_i)[l_i]$$

对于任意 $1 \le i \le n$ 成立, 其中 \mathfrak{p}_i 是 S 的齐次素理想, $l_i \in \mathbb{Z}$.

证明. 我们将用 Zorn 引理来证明该命题. 令

$$\Sigma := \{ N \leq M \mid N$$
是分次子模且有满足条件的滤子 $\}$

是有满足条件的滤子的子模 N 的全体,显然 $0 \in \Sigma$ 意味着 Σ 非空;因为 M 是 Noether 环上的有限生成模,因此 M 是 Noether 的,因此 Σ 中有极大元,记为 M_0 .

若 $M_0 = M$,则已完成证明.否则,令

$$\mathcal{I} := \{I_m = \operatorname{Ann}(m) \mid m \neq M/M_0$$
中的非零元素且齐次}

是 S 中理想的非空偏序集,由于 S 是 Noether 的, \mathcal{I} 中有极大元,记为 I_{m_0} ,其中 m_0 是齐次元素意味着 I_{m_0} 是齐次理想,接下来证明 I_{m_0} 还是素理想. 根据 I_{m_0} 的齐次性,只需要证明任意的齐次元素 $a,b \in S$,若 $ab \in I_{m_0}$ 则 $a \in I_{m_0}$ 或 $b \in I_{m_0}$. 假设 $b \notin I_{m_0}$,那么 bm_0 也是其次元素因此 $I_{bm_0} \in \mathcal{I}$,显然 $I_{m_0} \subseteq I_{bm_0}$,再 根据极大性 $I_{m_0} = I_{bm_0}$. 但是 $ab \in I_{m_0}$,这意味着 abm = 0,于是 $a \in I_{bm_0} = I_{m_0}$,得证.

根据如上的证明,记 $\mathfrak{p} = I_{m_0}$,并且假定 $m_0 \in (M/M_0)_l$,那么存在齐次 S 模同态

$$\varphi: (S/\mathfrak{p})[-l] \to S \cdot m_0 \subseteq (M/M_0)$$

 $1 \mapsto m_0,$

其中齐次性由 m_0 的齐次性和阶数平移来保证, \mathfrak{p} 是零化子说明映射是单射且良定义,而它显然是满射. 令 N 是 M 中 $S \cdot m_0 \subseteq (M/M_0)$ 的原像,那么 $M_0 \subseteq N$,但是 $N/M_0 \cong (S/\mathfrak{p})[-l]$,这与 M_0 的极大性矛盾. \square

此时我们可以回到定理的证明了:

证明. 首先若

$$0 \to M \to N \to P \to 0$$

是分次 S 模的短正合序列,并且定理的论断对 M,P 都成立,那么根据加性性质 $h_N = h_M + h_P$,于是定理的论断对于 N 也成立,即 $h_N(d)$ 对充分大的 d 是一个多项式.

根据命题7.2,只需要证明形如 $(S/\mathfrak{p})[l]$ 的模满足定理的论述即可;同时,阶数的平移只意味着函数变量的变更 $z \mapsto z + l$,因此只需要考虑形如 S/\mathfrak{p} 的模.

 $\Xi \mathfrak{p} = (x_0, \cdots, x_n)$,只需要取 $p_M(z) \equiv 0$ 即可. 否则,存在 $x_i \notin \mathfrak{p}$,那么正合列

$$0 \to S/\mathfrak{p}[-1] \xrightarrow{\cdot x_i} S/\mathfrak{p} \to (S/\mathfrak{p})/(x_i S/\mathfrak{p}) \to 0$$

给出了 Hilbert 函数的关系式

$$h_{(S/\mathfrak{p})/(x_iS/\mathfrak{p})}(z) = h_{S/\mathfrak{p}}(z) - h_{S/\mathfrak{p}}(z-1) = \Delta h_{S/\mathfrak{p}}(z),$$

经过有限步之后总会得到 $\mathfrak{p}=(x_0,\cdots,x_n)$ 的情形,但这是已经说明的,因此 $\Delta h_{S/\mathfrak{p}}(z)$ 对充分大的 d 满足 $\Delta h_{S/\mathfrak{p}}(d)$ 是多项式,于是根据引理7.3, $h_{S/\mathfrak{p}}(z)$ 满足定理叙述,得证.

注意到在定理的证明中,短正合序列的第一项我们将所有元素的阶数作了左平移,这是因为如此链复形中的边缘映射都是阶数为 0 的. 我们始终假设本章中链复形的边缘映射阶数为 0 (即把 i 阶齐次元素映为 i 阶齐次元素).

例 7.3. $\diamondsuit v_d: \mathbb{P}^1_k \hookrightarrow \mathbb{P}^d_k$ 是射影曲线的 d 阶 Veronese 嵌入,即对应分次环的映射

7.2 极小消解

定理 7.3 (Hilbert Syzygy). 给定 $S = k[x_0, \dots, x_n]$ 上的有限生成分次模 $M = \bigoplus_{i=0}^{\infty} M_n$,则存在 M 的有限项的自由消解

$$0 \to F_m \xrightarrow{\partial_m} F_{m-1} \to \cdots \to F_1 \xrightarrow{\partial_1} F_0 \to 0,$$

并且我们可以取得 $m \le n + 1$.

证明.

在例7.1中, 我们讨论了多项式环的 Hilbert 函数, 于是根据它的加性性质引理7.1, 我们有

推论 7.3.1. 沿用定理 7.3的记号, 如果自由 S 模满足

$$F_i \cong \bigoplus_{j=1}^{N_i} S[-l_{i,j}],$$

其中 $l_{i,j}$ 是非负整数,则

$$h_M(d) = \sum_{i=0}^m h_{F_i}(d) = \sum_{i=0}^m (-1)^i \sum_{j=0}^{N_i} \binom{n+d-l_{i,j}}{n}.$$

推论 7.3.2. 沿用推论 7.3.1的记号,则当 $d \ge \max_{i,j} \{l_{i,j} - n\}$ 时,

$$p_M(d) = h_M(d).$$

证明. 当 $n+d-l \ge 0$ 时,

$$\binom{n+d-l}{n} = \frac{(n+d-l)(n+d-l-1)\cdots(d+1-l)}{n!},$$

这是一个关于 d 的 n 阶多项式,这即完成了证明.

记 $S := k[x_0, \dots, x_n]$ 中的理想 (x_0, \dots, x_n) 为 m.

定义. 给定 $S = k[x_0, \cdots, x_n]$ 上的链复形

$$\cdots \to C_i \xrightarrow{\varphi_i} C_{i-1} \to \cdots$$

若对任意 i, φ_i 的像在 $\mathfrak{m}C_{i-1}$ 中,则称该链复形是极小的 (minimal).

我们需要 Nakayama 引理的如下表述

定理 7.4. 给定有限生成的分次 S 模 M, 且元素 $m_1, \dots, m_n \in M$ 生成了 $M/\mathfrak{m}M$, 那么 m_1, \dots, m_n 生成了 M.

证明. 记 $N \neq m_1, \dots, m_n$ 生成的子模, $\bar{M} := M/N$. 由于 m_1, \dots, m_n 生成了 $M/\mathfrak{m}M$, $\bar{M}/\mathfrak{m}\bar{M} = 0$,因此 $\bar{M} = \mathfrak{m}\bar{M}$. 若 $\bar{M} \neq 0$,则其中存在阶数最小的非零元素,该元素显然不在 $\mathfrak{m}\bar{M}$ 中,得证.

推论 7.4.1. S 上的分次自由消解

$$\cdots \to F_m \xrightarrow{\partial_m} F_{m-1} \to \cdots \to F_1 \xrightarrow{\partial_1} F_0 \to 0,$$

是极小的当且仅当对任意 i, ∂_i 将 F_i 的的一组基映到 $\operatorname{Im} \partial_i$ 的一组极小生成元.

证明. F_{\bullet} 是极小的当且仅当对任意 i,边缘映射诱导的

$$\bar{\partial}_{i+1}: F_{i+1}/\mathfrak{m}F_{i+1} \to F_i/\mathfrak{m}F_i$$

是 0 映射. 考虑正合列

$$F_{i+1} \xrightarrow{\partial_{i+1}} F_i \to \operatorname{Im} \partial_i \to 0,$$

与 S/\mathfrak{m} 张量积后还是正合的,于是 $\bar{\partial}_{i+1}=0$ 当且仅当 $F_i/\mathfrak{m}F_i\to \operatorname{Im} \partial_i/\mathfrak{m}\operatorname{Im} \partial_i$ 是同构. 根据 Nakayama 引理,得证.

定理 7.5. 给定 S 模的有限生成分次模 M,若 F_{\bullet} , G_{\bullet} 都是 M 的极小自由消解,则存在分次模复形的同构 $F_{\bullet} \to G_{\bullet}$. 任意 M 的自由消解都包含了极小自由消解.

证明. 证明在 Eisenbud 20.2

任意给定自由预解 $F_{\bullet} \to M$,若 F_{\bullet} 不是极小的,则一定存在 F_i 中的元素,它在边缘映射下的像不在 $\mathfrak{m}F_{i-1}$ 中,根据 Nakayama 引理,像中的该元素可取作基中的元素,这样我们得到了 F_{\bullet} 的一个子复形

$$G_{\bullet} := 0 \to S(-l) \xrightarrow{c} S(-l) \to 0,$$

其中 c 是 S 中的非零数值,于是 G_{\bullet} 的同调都为 0. 这样复形的短正合序列 $0 \to G_{\bullet} \to F_{\bullet} \to F_{\bullet}/G_{\bullet} \to 0$,诱导了长正合序列说明 F_{\bullet}/G_{\bullet} 与 F_{\bullet} 有相同的同调,且 F_{\bullet}/G_{\bullet} 也是自由的. 有限生成说明按此步骤进行下去即可找到极小自由消解.

极小自由预解 $F_{\bullet} \to M$ 唯一性说明的更重要的事情是, F_i 中给定阶数的生成元的个数只取决于 M 本身. 这件事情更简单的描述要借用 Tor,因而我们把这部分作为习题.

- 练习 7.1. 1. 设 $F_{\bullet} \to M$ 是有限生成分次 S 模 M 的极小自由预解,则 F_i 的极小齐次生成集恰好包含了 dim $\operatorname{Tor}_i^S(k=S/\mathfrak{m},M)_i$ 个元素,其中 $\operatorname{Tor}_i^S(k,M)_i$ 是 $\operatorname{Tor}_i^S(k,M)$ 阶数为 j 的齐次子空间.
 - 2. 由前一部分证明 M 的投射维数恰好是 F_{\bullet} 的长度.

证明. 1. 按同调代数的构造,

$$\operatorname{Tor}_{i}^{S}(k, M) := H_{i}(k \otimes_{S} F_{\bullet}),$$

但 F_{\bullet} 是极小的说明 $k \otimes_S F_{\bullet}$ 中的映射都为 0, 因此

$$\operatorname{Tor}_{i}^{S}(k,M) = k \otimes_{S} F_{i}.$$

再由 Nakayama 引理, F_i 中阶数为 j 的生成元的个数等于 $\dim \operatorname{Tor}_i^S(k=S/\mathfrak{m},M)_j$.

2. 由定义,投射维数必然不大于 F_{\bullet} 的长度. 反过来,若 i 大于投射维数则 $\mathrm{Tor}_i^S(k=S/\mathfrak{m},M)=0$,前一部分说明 $F_i=0$.

7.3 分次 Betti 数和计算

一般地, 给定分次自由消解 $F_{\bullet} \to M$, 满足

$$F_{\bullet} = 0 \to F_s \to \cdots \to F_m \xrightarrow{\partial_m} F_{m-1} \to \cdots \to F_1 \xrightarrow{\partial_1} F_0 \to 0,$$

其中 $F_i = \bigoplus_j S(-j)^{\beta_{i,j}}$, 那么如下的表格

被称为 F_{\bullet} 的 Betti 图 (Betti diagram);若 F_{\bullet} 还是极小的,则称表格为 M 的 Betti 图,其中的数值 $\beta_{m,d}$ 被称为 M 的分次 Betti 数.

命题 7.6. 给定有限生成 S 模 M 的分次 Betti 数 $\{\beta_{i,j}\}$,若给定 i,存在阶数 d 使得对任意 j < d, $\beta_{i,j} = 0$,则对任意 j < d, $\beta_{i+1,j+1} = 0$.

证明. 假定 M 的分次自由消解

$$F_{\bullet} = 0 \to F_s \to \cdots \to F_m \xrightarrow{\partial_m} F_{m-1} \to \cdots \to F_1 \xrightarrow{\partial_1} F_0$$

是极小的. 根据定理7.1证明后面的讨论, ∂_i 的阶数为 0, F_{i+1} 中的生成元被映为 $\mathfrak{m}F_i$ 中的等阶数元素. 此时, $\beta_{i,j}=0$ 意味着 F_i 非零元素的阶数都不小于 d,因而 $\mathfrak{m}F_i$ (进而 $\operatorname{Im}\,\partial_i$) 中的元素的阶数都不小于 d+1,即 $\beta_{i+1,j+1}=0$.

引理 7.4. 若有限生成 S 模 M 的分次 Betti 数是 $\{\beta_{i,j}\}$, 记 $B_j:=\sum_{i\geq 0}(-1)^i\beta_{i,j}$, 则 M 的 Hilbert 函数是

$$h_M(d) = \sum_j B_j \binom{n+d-j}{n}.$$

反过来, 若已知 Hilbert 函数, 则可以由公式

$$B_j = h_M(j) - \sum_{k=0}^{j-1} B_k \binom{n+j-k}{n}$$

递归地得到所有 B_i .

证明. 根据推论7.3.1,第一部分是明显的.

反过来,由于 M 是有限生成的,存在 j_0 (可能为 0) 使得 $h_M(d) = 0$ 对所有的 $d \le j_0$ 都成立. 此时,对任意 $j \le j_0$ 都有 $\beta_{0,j} = 0$,于是命题7.6说明 $\beta_{i,j} = 0$ 对所有的 i 都成立,于是 $B_j = 0$.

假设对所有 k < j,我们已知了 B_k 的值,由于当 j < k 时, $\binom{n+j-k}{n} = 0$,因而只有 $k \ge j$ 时 $h_M(j)$ 中才有 B_k 项出现;特别地, B_j 项的系数为 $\binom{n}{n} = 1$. 这即得到了所想的公式.

练习 7.2. 我们考虑一种推广的情况, 今

$$T:=k[z_1,\cdots,z_n],$$

其中 $\deg z_i = \alpha_i \in \mathbb{N}_*$, 即多项式环中的每个生成元可能有不同的阶数.

1. 证明在 T 有两个生成元,阶数分别为 2,3 时 $h_T(d)$ 不使得对充分大的 d 成为一个多项式. 证明当 $k = \mathbb{C}$ 时,这个环是 $\mathbb{Z}/6\mathbb{Z}$ 作用在 $\mathbb{C}[x_0,x_1]$ 的不动点子环,其中作用为

$$x_0 \mapsto e^{2\pi i/2} x_0, \ x_1 \mapsto e^{2\pi i/3} x_1.$$

2. 给定分次 T 模 M, 记形式幂级数

$$\psi_M(t) := \sum_{n=0}^{\infty} h_M(n)t^n = h_M(0) + h_M(1)t + h_M(2)t^2 + \cdots$$

为 M 的 Hilbert 级数. 求证任意 Laurent 级数都可以写为某个有限生成模 M 的 Hilbert 级数.

3. 求证

$$\psi_T(t) = \sum_{c=0}^{\infty} t^{c\alpha_n} \psi_{T'}(t) = \frac{1}{1 - t^{\alpha_n}} \psi_{T'}(t) = \prod_{i=1}^{n} \frac{1}{1 - t^{\alpha_i}},$$

其中 $T'=k[z_1,\cdots,z_{n-1}]$. 由此证明若 $M=\sum_{i=-N}^N T[-i]^{\phi_i}$,

$$\psi_M(t) = \sum_{i=-N}^{N} \phi_i \psi_{T[-i]}(t) = \frac{\sum_{i=-N}^{N} \phi_i t^i}{\prod_{i=1}^{n} (1 - t^{\alpha_i})}.$$

4. 证明如下 Hilbert 定理: 若有限生成模 M 有消解

$$\cdots \to \sum_{j} T[-j]^{\beta_{m,j}} \xrightarrow{\partial_{m}} \sum_{j} T[-j]^{\beta_{m-1,j}} \to \cdots \to \sum_{j} T[-j]^{\beta_{1,j}} \xrightarrow{\partial_{1}} \sum_{j} T[-j]^{\beta_{0,j}} \to 0,$$

记 $\phi_j=\sum_i (-1)^i \beta_{i,j}$,且 $\phi_M(t):=\phi_{-N}t^{-N}+\cdots+\phi_Nt^N$,则 Hilbert 级数为

$$\psi_M(t) = \frac{\phi_M(t)}{\prod_{i=1}^n (1 - t^{\alpha_i})}.$$

5. 借用短正合序列

$$0 \to T[-\alpha_n] \xrightarrow{\cdot z_n} T \to T' \to 0,$$

归纳地证明对充分大的 d, Hilbert 函数 $h_T(d)$ 是具有周期性系数的多项式,即

$$h_T(d) = f_0(d)d^0 + \dots + f_n(d)d^n,$$

其中对 $0 \leq i \leq n$, f_i 是取值于 $\mathbb Q$ 的周期函数,周期整除 l.c.m. $\{\alpha_j\}_{j=1,\cdots,n}$.

第八章 维数理论

定义. 给定环 R 和素理想 \mathfrak{p} , \mathfrak{p} 的高度 (height) 是使得 $\mathfrak{p}_0 \subsetneq \mathfrak{p}_1 \subsetneq \cdots \subsetneq \mathfrak{p}_h = \mathfrak{p}$ 是 R 中素理想递增列的最大的正整数 h, 记为 $\operatorname{ht}_R \mathfrak{p}$, 当环 R 明确时也记为 $\operatorname{ht} \mathfrak{p}$. 若不存在这样的最大的正整数则称 \mathfrak{p} 的高度为 ∞ . 对于 R 中的任意理想 I, 定义 I 的高度为

$$\mathrm{ht}\ I := \min_{\mathfrak{p} \supseteq I} \{ \mathrm{ht}\ \mathfrak{p} \}.$$

练习 8.1. 给定 Noether 环 R 和素理想 \mathfrak{p} , 那么

- 1. $\dim R/\mathfrak{p} = \operatorname{ht}_R \mathfrak{p}$,
- 2. $\dim R \operatorname{ht}_R \mathfrak{p} = \dim R_{\mathfrak{p}}$.

定理 8.1 (Krull 主理想定理). 给定 Noether 环 R 和元素 $f \in R$, 若 \mathfrak{p} 是包含 (f) 的极小理想,那么 ht $\mathfrak{p} \leq 1$.

证明. 若存在一个反例

$$\mathfrak{p}_0 \subsetneq \mathfrak{p}_1 \subsetneq \mathfrak{p}_2 = \mathfrak{p},$$

那么在 $R_{\mathfrak{p}}$ 中也是一个反例,因此不妨假设 (R,\mathfrak{p}) 是局部环.

推论 8.1.1. 给定 Noether 环 R, \mathfrak{p} 是 R 中的素理想, f 是 R 中的非零因子且 $f \in \mathfrak{p}$, 那么

$$\operatorname{ht}_R \mathfrak{p} = \operatorname{ht}_{R/(f)} \mathfrak{p}/(f) + 1.$$

证明. 假定 ht I = h,根据练习2.5, $f \notin \mathfrak{p}_0$,于是根据定理8.1,包含非零因子的极小素理想的高度为 1,记为 \mathfrak{p}_1 . 根据练习8.1,存在 R 中素理想的递增列

$$\mathfrak{p}_0 \subsetneq \mathfrak{p}_1 \subsetneq \cdots \subsetneq \mathfrak{p}_h = \mathfrak{p},$$

其中 $f \notin \mathfrak{p}_0$ 且 $f \in \mathfrak{p}_1$,于是

$$\mathfrak{p}_1/(f) \subsetneq \cdots \subsetneq \mathfrak{p}_h/(f) = \mathfrak{p}/(f)$$

是 R/(f) 中素理想的递增列且是长度最长的(否则对应到 R 中与 I=h 矛盾),因此得证.

40

设 (R, \mathfrak{m}) 是 Noether 局部环, 证明 $\dim R$ 是使得

Rad
$$(f_1, \dots, f_d) = \mathfrak{m}, f_1, \dots, f_d \in \mathfrak{m}$$

成立的最小的自然数 d.

命题 8.2. 若交換整环 R 是正规的且 $\mathfrak p$ 是余维数为 1 的素理想,那么 $R_{\mathfrak p}$ 是 DVR.

第九章 微分和光滑性

定义. 设 R 是交换环, $A \neq R$ 代数且 $M \neq A$ 模. 若 Abel 群同态 $d: A \to M$ 满足如下 Leibnitz 法则

$$d(fg) = fd(g) + d(f)g$$

对任意 $f,g \in A$ 都成立,则称 d 为一个微分 (derivation). 若 $d:A \to M$ 还是 R 模同态,则称 d 是R 线性的 (R-linear). 我们将所有的 R 线性微分 $A \to M$ 记为 $Der_R(A,M)$.

对于任意 R-线性微分 $d \in Der_R(A, M)$, Leibnitz 法则说明

$$d(1) = d(1 \cdot 1) = 1d(1) + d(1)1,$$

于是 d(1) = 0. 再根据 R 线性性,对任意 R 中的元素 r, d(r) = rd(1) = 0. 这也符合"常值函数的微分为零"的直觉. 很容易看出, $Der_R(A, M)$ 有自然的 A 模结构,于是也有 R 模结构.

虽然 R-线性微分是值得研究的,但我们希望完全用 A 模同态来描述所有的微分. 之前有过相同的处理方式: 对于所有的 R 双线性映射,我们构造了具有一定泛性质的 R 模——张量积,在这里我们同样可以构造 A 模使得所有的 R-线性微分被 A 模同态对应.

定义. 设 R 是交换环, A 是 R 代数, 那么由 $\{d(f) \mid f \in A\}$ 生成的 A 模, 模去对任意 $f,g \in A, r,s \in R$

$$d(fg) - fd(g) - d(f)g \quad \text{(Leibnitz)}$$

$$d(rf + sg) - rd(f) - sd(g) \quad \text{(R-linearity)}$$

生成的理想,得到的 A 模称为 R 线性的 A-Kähler 微分模 (the module of Kähler differentials of A over R),记为 $\Omega_{A/R}$.R 线性映射

$$d: A \to \Omega_{A/R}$$

 $f \mapsto d(f)$

称为泛 R 微分 (universal R-linear derivation). 通常,我们记 df = d(f).

类似于张量积, $\Omega_{A/R}$ 满足如下泛性质:

引理 9.1. 设 R 是交换环,A 是 R 代数,微分模 $\Omega_{A/R}$ 使得对任意微分 $D:A\to M$,都存在唯一的 A 线性映射 $\varphi:\Omega_{A/R}\to M$ 使得

$$A \xrightarrow{d} \Omega_{A/R}$$

$$\downarrow^{\varphi}$$

$$M$$

交换.

证明. 首先证明唯一性. 对任意 $\Omega_{A/R}$ 中的元素 $\sum_{i=1}^n a_i df_i$,根据 φ 的线性性

$$\varphi\left(\sum_{i=1}^{n} a_i df_i\right) = \sum_{i=1}^{n} a_i \varphi(df_i).$$

但图的交换性说明 $df_i = D(f_i)$, 故

$$\varphi\left(\sum_{i=1}^{n} a_i df_i\right) = \sum_{i=1}^{n} a_i D(f_i).$$

这意味着 φ 的取值是固定的.

再证明存在性. 我们定义

$$\varphi\left(\sum_{i=1}^n a_i df_i\right) = \sum_{i=1}^n a_i D(f_i),$$

于是需要验证 $(i)\varphi$ 是良定义的; $(ii)\varphi$ 关于图是交换的. 后一条根据定义是显然的,前一条因为使得 D 是 R 线性微分的关系恰好由 Leibnitz 等式和 R 线性性生成,故良定义.

 $\Omega_{A/R}$ 的泛性质等价于存在自然的同构

$$\operatorname{Der}_R(A, M) \cong \operatorname{Hom}_A(\Omega_{A/R}, M),$$

自然的意义是通过态射替换 A = M 诱导了相应的交换图,具体来说,对任意 R 代数映射 $\varphi: B \to A$,下图

$$\operatorname{Der}_{R}(A, M) \longrightarrow \operatorname{Hom}_{A}(\Omega_{A/R}, M)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\operatorname{Der}_{R}(B, M) \longrightarrow \operatorname{Hom}_{B}(\Omega_{B/R}, M)$$

交換且对任意 A 模同态 $\psi: M \to N$, 下图

$$\operatorname{Der}_R(A, M) \longrightarrow \operatorname{Hom}_A(\Omega_{A/R}, M)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\operatorname{Der}_R(A, N) \longrightarrow \operatorname{Hom}_A(\Omega_{A/R}, N)$$

交换.

命题 9.1. 若 R 是交换环且 $A:=R[x_1,\cdots,x_n]$, 那么 $\Omega_{A/R}=\bigoplus_{i=1}^n Adx_i$.

证明. 我们构造两个互逆的 A 模同态,来说明二者同构. 首先,我们有显然的映射

$$\varphi: \bigoplus_{i=1}^{n} Adx_{i} \to \Omega_{A/R}$$
$$\sum_{i=1}^{n} a_{i}dx_{i} \mapsto \sum_{i=1}^{n} a_{i}dx_{i}.$$

另一方面,由 dx_i 的对偶基底诱导的线性函数给出了 A 的 R 线性微分 $\frac{\partial}{\partial x_i}$,令

$$\psi: \Omega_{A/R} \to \bigoplus_{i=1}^{n} A dx_{i}$$
$$h \mapsto \begin{bmatrix} \frac{\partial h}{\partial x_{1}} \\ \vdots \\ \frac{\partial h}{\partial x_{r}} \end{bmatrix},$$

容易验证 φ 与 ψ 互为逆映射, 故命题成立.

此外, $\Omega_{A/R}$ 本身关于 A 和 R 都是函子: 给定 R 代数态射 $\varphi: A \to B$,那么我们有诱导的 R 模态射

$$\Omega_{\varphi/R}: \Omega_{A/R} \to \Omega_{B/R}$$

$$df \mapsto d\varphi(f),$$

事实上,由于 B 是 A 模,这个态射也是 A 模态射. 另一方面,若 $R \xrightarrow{\varphi} S \xrightarrow{\psi} T$ 是环态射,那么也有态射

$$\Omega_{T/\varphi}: \Omega_{T/R} \to \Omega_{T/S}$$

$$dh \mapsto dh.$$

这是一个 T 模态射. 考虑到 $\Omega_{T/R}$ 和 $\Omega_{T/S}$ 的定义,它们的生成元是相同的,且 $\Omega_{T/\varphi}$ 把生成元映到生成元,于是这是一个满态射,但一般而言这不是一个单态射,于是我们自然地希望知道这个映射的核. 我们考虑这个态射不是单态射的原因: 两个模拥有相同的生成元,Leibnitz 法则也是一样的,但 $\Omega_{T/R}$ 需要模掉 R 线性关系, $\Omega_{T/S}$ 需要模掉 S 线性关系,因此出现了差别. 模同态 $\Omega_{T/\varphi}$ 把 R 线性关系映为 S 线性关系,但是存在一些 S 线性关系不能成为 R 线性关系,于是这些关系就生成了 $\Omega_{T/\varphi}$ 的核.

任取 $\sum_{i=1}^{n} t_i df_i \in \Omega_{T/R}$,若它不为 0 但被映为 $\Omega_{T/S}$ 中的 0,那么存在

命题 9.2 (相对余切序列 (Relative Cotangent Sequence)). 若 $R \to S \to T$ 是交换环态射, 那么有 T 模正合序列

$$T \otimes_S \Omega_{S/R} \to \Omega_{T/R} \to \Omega_{T/S} \to 0$$

其中映射 $\Omega_{T/R} \to \Omega_{T/S}$ 将 dh 映到 dh, 映射 $T \otimes_S \Omega_{S/R} \to \Omega_{T/R}$ 是系数变换, 即将 $t \otimes dg$ 映到 $td\psi(g)$.

在上同调理论中, 我们

命题 9.3 (余法序列 (Conormal Sequence)). 若 $\varphi:A\to B$ 是 R 模满态射,且具有核 I,那么有 B 模正合序列

$$I/I^2 \xrightarrow{d} B \otimes_A \Omega_{A/R} \xrightarrow{D\varphi} \Omega_{B/R} \to 0$$

其中映射 $I/I^2 \xrightarrow{d} B \otimes_A \Omega_{A/R}$ 将 f 的等价类映到 df, 映射 $B \otimes_A \Omega_{A/R} \xrightarrow{D\varphi} \Omega_{B/R}$ 将 $g \otimes df$ 映到 gdf.

证明.

设 $A = R[x_1, \cdots, x_n]/(f_1, \cdots, f_r)$ 是给定的 R 代数,那么余法序列告诉我们

$$\Omega_{A/R} = \operatorname{coker}(d: I/I^2 \to A \otimes_R \Omega_{R[x_1, \cdots, x_n]/R} = \bigoplus_{i=1}^n Adx_i).$$

命题 9.4. 微分模的构造与基变换交换,即给定交换环 R 和 R 代数 S,A,存在同构 $\varphi:S\otimes_R\Omega_{A/R}\cong\Omega_{S\otimes_RA/R}$ 使得下图交换:

$$S \otimes_R A$$

$$\downarrow \text{id} \otimes d \downarrow \qquad \qquad \downarrow$$

$$S \otimes_R \Omega_{A/R} \xrightarrow{\varphi} \Omega_{S \otimes_R A/R}.$$

命题 9.5. 微分模的构造与基变换交换,即给定交换环 R 和 R 代数 S,A,存在同构 $\varphi:S\otimes_R\Omega_{A/R}\cong\Omega_{S\otimes_RA/R}$ 使得下图交换:

$$S \otimes_R A$$
 $\operatorname{id} \otimes d \downarrow \qquad \qquad d$
 $S \otimes_R \Omega_{A/R} \xrightarrow{\varphi} \Omega_{S \otimes_R A/R}.$

定理 9.6 (Jacobi 判别法). 设 k 是给定的域, $I=(f_1,\cdots,f_r)$ 是 $k[x_1,\cdots,x_n]$ 中的理想, $R:=k[x_1,\cdots,x_n]/I$. 若 \mathfrak{p} 是 $k[x_1,\cdots,x_n]$ 中包含 I 的素理想, c 是 $I_{\mathfrak{p}}$ 在 $R_{\mathfrak{p}}$ 中的余维数, 那么

1. Jacobi 矩阵在模 p 的意义下秩小于 c.

2. ...

在微分几何当中,我们有自然引入的光滑性概念. 但是在代数几何当中,光滑性的概念并不是自然存在的——我们所研究的几何空间可能存在奇点,因而需要重新引入光滑性的概念. 一个问题在于同于微分几何的定义, 在有足够的工具之前我们只能定义局部的光滑性, 而微分模给出了光滑性本质的刻画.

定义. 设 R,S 是交换环, $f:R\to S$ 是环同态. 如果对任意的交换环 T 和 T 的满足 $I^2=0$ 的理想 I,只要下图

$$R \xrightarrow{f} S$$

$$\downarrow \qquad \qquad \downarrow$$

$$T \xrightarrow{k} T/I.$$

交换,就有至少一个 (对应的,最多一个,恰有一个) 环同态 $S \to T$ 使得整个图是交换的,则称 f 是形式 光滑的 (formally smooth) (对应的,形式不分叉的 (formally unramified) 和形式平展的 (formally étale))

引理 9.2. 环同态 $f: R \to S$ 是形式不分叉的当且仅当 $\Omega_{S/R} = 0$.

引理 9.3. 设环 $B := R[x_1, \cdots, x_n]/(f_1, \cdots, f_r)$, 记 $A := R[x_1, \cdots, x_n]$, $I := (f_1, \cdots, f_r)$. 于是 $f : R \to T$ 是光滑的当且仅当

$$0 \to I/I^2 \xrightarrow{d} B \otimes_A \Omega_{A/R} \xrightarrow{D\pi} \Omega_{B/R} \to 0$$

是分裂正合的.

练习 9.1. 设 k 是域,R 是有限生成的 k 代数,证明若 $\Omega_{R/k}=0$,那么 R 中无幂零元.

证明. 设 $R = k[x_1, \cdots, x_n]/(f_1, \cdots, f_r)$, 对 r 用归纳法证明命题.

当 r=1 时,根据 conormal sequence

$$(f_1)/(f_1)^2 \xrightarrow{d} \Omega_{k[x_1,\dots,x_n]/k} \otimes_{k[x_1,\dots,x_n]} R \to \Omega_{R/k} \to 0$$

是正合列. 注意到

$$\Omega_{k[x_1,\cdots,x_n]/k} \otimes_{k[x_1,\cdots,x_n]} R \cong \bigoplus_{i=1}^n Rdx_i,$$

于是

$$d: (f_1)/(f_1)^2 \to \Omega_{k[x_1, \dots, x_n]/k} \otimes_{k[x_1, \dots, x_n]} R$$
$$f \mapsto df,$$

 $\Omega_{R/k}=0$ 意味着 d 是满射. 若 R 中存在非平凡幂零元 g,那么存在 $h\in k[x_1,\cdots,x_n]$ 使得 $f_1=g^2h$,那么 $df_1=2ghdg+g^2dh$,即 $g\mid df_1$,于是 d 是满射意味着 $\deg g=0$,矛盾.

假设完成了对r 的证明,考虑r+1. 依旧记 $R=k[x_1,\cdots,x_n]/(f_1,\cdots,f_r)$, $S=k[x_1,\cdots,x_n]/(f_1,\cdots,f_r,f_{r+1})=R/(f_{r+1})$,因而有自然的映射 $R\to S$. 再次用 conormal sequence

$$(f_{r+1})/(f_{r+1})^2 \xrightarrow{d} \Omega_{R/k} \otimes_R S \to \Omega_{S/k} \to 0$$
$$I/I^2 \xrightarrow{d} \Omega_{F/k} \otimes_F R \to \Omega_{R/k} \to 0$$
$$I/I^2 \xrightarrow{d} \Omega_{F/(f_{r+1})/k} \otimes_{F/(f_{r+1})} S \to \Omega_{S/k} \to 0$$

练习 9.2. 1. 设 k 是特征为 0 的域, $R := k[x_1, \dots, x_n]$, 那么 R 模序列

$$0 \to k \to R \to \Omega^1_{R/k} \to \cdots \to \Omega^n_{R/k} \to 0$$

是正合的.

2. 说明 $\mathbb{F}_p[x]$ 模序列

$$0 \to \mathbb{F}_n \to \mathbb{F}_n[x] \to \mathbb{F}_n[x]dx \to 0$$

不是正合的.

证明. 1. 对 n 用归纳法.

练习 9.3. 设 $R := k[x,y]/(y^2 - x^3 - ax - b)$, 满足 $4a^3 + 27b^2 \neq 0$.

- 1. 证明 $x^3 + ax + b = (x^3 + ax + b)' = 3x^2 + a = 5x$.
- 2. 证明 $\Omega_{R/k}$ 作为 R 模同构于 R.[提示:由前一部分,存在 u(x), v(x) 使得 $u(x)(x^3 + ax + b) + v(x)(x^3 + ax + b)' = 1$,考虑 $\omega = \frac{1}{2}u(x)ydx + v(x)dy$.]
- 3. 求 Spec R 的 de Rham 上同调.

证明. 根据定义, $\Omega_{R/k}=Rdx\oplus Rdy/(2ydy-(3x^2+a)dx)$,同时 $4a^3+27b^2\neq 0$ 说明曲线是光滑的,因此局部地 $\Omega_{R/k}^2=0$. 因此 de Rham 复形是

$$0 \to R \xrightarrow{d} \Omega_{R/k} \to 0.$$

显然 $H^0 = k$. 由于曲线光滑, $x^3 + ax + b$ 和 $3x^2 + a$ 没有公共根, $(x^3 + ax + b, 3x^2 + a) = 1$, 因此存在 u(x), v(x) 使得

$$u(x)(x^{3} + ax + b) + v(x)(3x^{2} + a) = 1.$$

 \diamondsuit $\omega = \frac{1}{2}u(x)ydx + v(x)dy$,那么

$$dx = (u(x)(x^3 + ax + b) + v(x)(3x^2 + a))dx = u(x)y^2dx + v(x)(2y)dy = 2y\omega$$

且

$$dy = (u(x)(x^3 + ax + b) + v(x)(3x^2 + a))dy = u(x)y^2dy + v(x)(3x^2 + a)dy = \frac{1}{2}u(x)y(3x^2 + a)dx + v(x)(3x^2 + a)dy = (3x^2 + a)dy = \frac{1}{2}u(x)y(3x^2 + a)dx + v(x)(3x^2 + a)dx + v(x)(3x$$

这意味着 $\Omega_{R/k} = R\omega$. 考虑

$$\begin{split} d:R &\to \Omega_{R/k} = R\omega \\ f(x,y) &\mapsto \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy = \frac{\partial f}{\partial x} (2y)\omega + \frac{\partial f}{\partial y} (3x^2 + a)\omega. \end{split}$$

对任意 $g(x,y)\omega\in R\omega$,存在 (唯一的) k(x),l(x) 使得 $g(x,y)=yk(x)+l(x)\in R$,且 $l(x)=q(x)(3x^2+a)+sx+t$. 那么取

$$f(x,y) = q(x)y + \int k(x) - q'(x)(x^3 + ax + b)dx$$

则有 $df = (g(x,y) - sx - t)\omega$. 因此

Coker $d = k\omega \oplus kx\omega$.

练习 9.4. 设 I 是交换环 R 的幂零理想,R — $\mathbf{Algebra}^{\mathrm{et}}$ 是所有的平展 R 环组成的满子范畴,求证存在范畴的同构

$$R - \mathbf{Algebra}^{\mathrm{et}} \simeq R/I - \mathbf{Algebra}^{\mathrm{et}}$$
.

第十章 Koszul 复形

10.1 动机和定义

正则序列是非零因子的推广.

定义. 设 R 是交换环且 M 是 R 模, 若元素 $x_1, \dots, x_n \in M$ 满足

- 1. $(x_1, \dots, x_n)M \neq M$, \exists .
- 2. 对任意 $1 \le i \le n$, x_i 都是 $M/(x_1, \dots, x_i)M$ 的非零因子,

则称 x_1, \dots, x_n 是正则序列 (regular sequence) 或 M 序列 (M-sequence).

命题 10.1. 给定 Noether 环和理想 $I = (f_1, \dots, f_n)$,若 f_1, \dots, f_n 是正则序列,那么

ht
$$I = r$$
.

证明. 对 r 用归纳法. 当 r=1 时,推论8.1.1中的证明已经说明了正确性.

考虑上链序列

$$K(x): 0 \to R \xrightarrow{x} R \to 0$$
.

其中第一个 R 设定为 0 阶项,并且微分映射是使得阶数增加的. 注意到 $H^0(K(x)) = (0:x) := \{r \in R \mid xr = 0\}$,于是对 $H^0(K(x))$ 的计算可以告诉我们 x 是否是零因子.

考虑另一个 R 中的元素 y, 它给出了链映射

这样我们可以构造一个更大的链

$$K(x,y): 0 \longrightarrow R \xrightarrow{-x} R \longrightarrow 0$$

$$0 \longrightarrow R \xrightarrow{y} \oplus y$$

$$0 \longrightarrow R \xrightarrow{x} R \longrightarrow 0.$$

$$(10.1)$$

或者更简洁地写为

$$K(x,y):0\to R\xrightarrow{\begin{bmatrix}-x\\y\end{bmatrix}} R\oplus R\xrightarrow{\begin{bmatrix}y&x\end{bmatrix}} R\to 0.$$

如同对前一个例子的分析, 我们尝试计算该上链的上同调. 由定义,

$$H^0(K(x,y)) = \{r \in R \mid -xr = yr = 0\} = (0:(x,y)),$$

于是 x 是非零因子当且仅当 $H^0(K(x,y)) = 0$.

对于 $H^1(K(x,y))$,首先 $\begin{bmatrix} r \\ s \end{bmatrix} \in R \oplus R$ 满足 $\begin{bmatrix} y & x \end{bmatrix} \begin{bmatrix} r \\ s \end{bmatrix} = 0$ 当且仅当 xs + yr = 0,于是这意味着 $r \in (x:y)$,反过来,若 $r \in (x:y)$,那么一定存在一个 $s \in R$ 使得 xs + yr = 0——但可能存在不同的 s 使得 条件成立;如果还假设 x 是非零因子,那么 s 就唯一地由 r 确定,此时 $Z^1(K(x,y)) \cong (x:y)$. (这里包括下一段讨论我们只在第一个直和项中考虑,另一个直和项的已经被证明完全依赖于第一个直和项.)

另一方面,
$$\begin{bmatrix} a \\ b \end{bmatrix} \in R \oplus R$$
 若是 $B^1(K(x,y))$ 中的元素,则存在 $r \in R$ 使得 $\begin{bmatrix} a \\ b \end{bmatrix} = r \begin{bmatrix} -x \\ y \end{bmatrix} = \begin{bmatrix} -rx \\ ry \end{bmatrix}$,如

果继续假设 x 是非零因子,那么给定 $\begin{bmatrix} a \\ b \end{bmatrix}$ 就唯一确定了 r 使得 -rx=a,此时 $B^1(K(x,y))=(x)$. 于是 $H^1(K(x,y))=(x:y)/(x)$. 这样,当 $H^0(K(x,y))=0$ 时, $H^1(K(x,y))=0$ 当且仅当所有满足 $ry\in(x)$ 的元素 r 都是 (x) 中的元素,即 y 是 R/(x) 的非零元素. 简言之,复形 K(x,y) 的上同调刻画了序列 (x,y) 的正则性.

在定义一般的 Koszul 复形之前,我们再对复形 K(x,y) 进行进一步的分析. 图10.1说明存在如下正合列

$$0 \to K(x)[1] \hookrightarrow K(x,y) \to K(x) \to 0$$

于是这诱导了长正合序列

$$H^0(K(x)[1]) = H^{-1}(K(x)) \longrightarrow H^0(K(x,y)) \longrightarrow H^0(K(x)) \longrightarrow K^0(K(x)[1]) = H^0(K(x)) \longrightarrow H^1(K(x,y)) \longrightarrow H^1(K(x)),$$

其中 δ 是连接同态. 可以证明态射 δ 是左乘 y, 这因为

例 10.1. 考虑环 R = k[x, y, z]/(x-1)z 和其中的序列 $\{x, (x-1)y\}$

对于一般的 Koszul 复形的定义,我们需要外代数的概念,具体在附录中.

定义. 给定交换环 R 和 R 模 M, $x \in M$ 是元素,那么如下复形

$$K(x): 0 \to R \to M \to \wedge^2 M \to \cdots \to \wedge^d M \xrightarrow{d_x} \wedge^{d+1} M \to \cdots$$

被称为 Koszul 复形 (Koszul complex),其中 $d_x: \wedge^d M \to \wedge^{d+1} M, m \mapsto x \wedge m$. 特别地,如果 $M = R^n$ 且 $x = (x_1, \dots, x_n) \in M$,我们用记号 $K(x_1, \dots, x_n)$.

10.2 新复形的构造 51

事实上, $K(x_1, \dots, x_n)$ 的结构是比较容易描述的, 它是 R 的半自由的微分分次代数 (semi-free differential graded algebra), 其中所有的生成元都是阶数为 1 的,且这些生成元在微分下的像恰好是 x_1, \dots, x_n .

作为一个例子, 首先我们验证定义前给出的复形 K(x,y) 是 Koszul 复形.

引理 10.1. 依定义中的记号,

$$H^n(K(x_1,\cdots,x_n))=R/(x_1,\cdots,x_n).$$

证明. 记 $M = R^n$, 那么存在 R 模同构 $\bigwedge_{i=1}^n M \cong R$ 和 $\bigwedge_{i=1}^{n-1} M \cong M$, 其中第一个映射是

$$\bigwedge_{i=1}^{n} M \to R$$

$$e_1 \wedge \dots \wedge e_n \mapsto 1,$$

第二个映射是

$$\bigwedge_{i=1}^{n-1} M \to M$$

$$e_1 \wedge \dots \wedge \hat{e}_i \wedge \dots \wedge e_n \mapsto e_i,$$

微分映射满足

$$d: \bigwedge_{i=1}^{n-1} M \to \bigwedge_{i=1}^{n} M$$

$$e_1 \wedge \dots \wedge \hat{e}_i \wedge \dots \wedge e_n \mapsto \left(\sum_{i=1}^{n} x_i e_i\right) \wedge e_1 \wedge \dots \wedge \hat{e}_i \wedge \dots \wedge e_n = (-1)^{i+1} x_i e_1 \wedge \dots \wedge e_n,$$

结合之前的两个同构, $H^n(K(x_1,\dots,x_n))\cong R/(x_1,\dots,x_n)$.

关于阶数:事实上存在两种不同的 Koszul 复形的构造,一种如我们所述,另一种是从

10.2 新复形的构造

定义. 给定 R 模复形 M^{\bullet} 和 N^{\bullet} , 那么它们的张量积 (tensor product) $(M \otimes N)^{\bullet}$ 满足

$$(M\otimes N)^n:=\bigoplus_{i+j=n}M^i\otimes_R N^j,$$

微分映射由

$$d^{n}: (M \otimes N)^{n} \to (M \otimes N)^{n+1}$$
$$x \otimes y \mapsto d_{M}^{n}(x) \otimes y + (-1)^{\deg x} x \otimes d_{N}^{n}(y)$$

扩张给出.

容易验证如上定义给出了一个上链复形.

命题 10.2. 若 R 模满足 $M=N\oplus P$,那么 $\bigwedge M=\bigwedge N\otimes \bigwedge P$,进一步地若 $y\in N,z\in P$,记 $x=(y,z)\in M$,那么存在 R 模复形的同构

$$K(x) \cong K(y) \otimes K(z)$$
.

证明.

推论 10.2.1. 若 R 中的元素 y_1, \dots, y_r 是其中的理想 (x_1, \dots, x_n) 中的元素,那么对任意 R 模 M,存在分次 R 模的同构

$$H^*(M \otimes K(x_1, \cdots, x_n, y_1, \cdots, y_r)) \cong H^*(M \otimes K(x_1, \cdots, x_n)) \otimes \bigwedge R^r$$

于是

$$H^i(M \otimes K(x_1, \cdots, x_n, y_1, \cdots, y_r)) = 0$$

当且仅当 $H^k(M \otimes K(x_1, \dots, x_n)) = 0$ 对任意 $i - r \le k \le i$ 都成立.

10.3 上同调与

如同之前的讨论,Koszul 复形是与序列的正则性相关,并且它实际上描述了理想 (x_1, \dots, x_n) 中极大正则序列的长度. 下面的定理说明了这个长度是不变的:

定理 10.3. 设 M 是环 R 上的有限生成模, 若存在正整数 r 使得

$$H^j(M \otimes_R K(x_1, \cdots, x_n)) = 0$$

对任意 $0 \le j < r$ 成立,且 $H^r(M \otimes_R K(x_1, \dots, x_n)) \ne 0$,那么理想 $I = (x_1, \dots, x_n)$ 中极大正则序列的长度都为 r.

索引

Betti 图, 35

Hilbert 函数, 29

Hilbert 级数, 29