S57-24586

1. Title of the Invention: INSPECTION DEVICE OF STEP MOTOR DRIVEN TYPE WATCH

2. Claims

[Claim 1] An inspection device of a step motor driven type watch to drive a gear wheel train by a step motor and indicate the time by the movement of each gear of the gear wheel train, wherein the operational inspection of said step motor and said gear wheel train is carried out by analyzing the step motor drive current waveform.

[Claim 2] An inspection device of a step motor driven type watch according to Claim 1, wherein the operational inspection of a step motor and a gear wheel train is carried out by the magnitude of the initial maximum value of the step motor drive current waveform.

[Claim 3] An inspection device of a step motor driven type watch according to Claim 1, wherein the operational inspection of a step motor and a gear wheel train is carried out by the magnitude of the middle minimum value of the step motor drive current waveform.

[Claim 4] An inspection device of a step motor driven type watch according to Claim 1, wherein the operational inspection of a step motor and a gear wheel train is carried

out by the magnitude of the final maximum value of the step motor drive current waveform.

[Claim 5] An inspection device of a step motor driven type watch according to one of Claims 1 and 2, wherein the operational inspection of a step motor and a gear wheel train is carried out by the magnitude of the difference between the initial maximum value and the middle minimum value of the step motor drive current waveform.

4. Brief Description of the Drawings

Fig. 1 is a step motor drive voltage waveform of a step motor driven type watch, and a drive current waveform generated thereby.

Fig. 2 is a block diagram of an embodiment of the present invention.

[Reference Numerals]

- 1 : rectangular wave drive voltage
- 2 : drive current waveform
- 3 : initial maximum value
- 4 : middle minimum value
- 5 : final maximum value
- 6 : difference between initial maximum value 3 and middle minimum value 4
 - 7 : step motor drive device

- 8 : step motor
- 9 : current detection amplifier
- 10 : AD converter
- 11 : maximum value timing detection circuit
- 12 : minimum value timing detection circuit
- 13 : sequence control device
- 14 : initial maximum value register
- 15 : middle minimum value register
- 16 : final maximum register
- 17 : subtraction device

実用新案登録願

4.700 P

昭和 56年 7 月6

特許。庁長官殿

1. 考案の名称

2. 原特許出願の表示

旧和 5 2 年 特許願第

昭和 年 月 日出願

, , 25 3.

スワーオワ 長野県諏訪市大和3丁白3番5号 株式会社 森 筋 精 工 舎 内

4. 実用新案意録出顯人

東京都中央区鉄座4丁目3番 (234) 株式会社 孰 訪 積 代表取締役

5. 代 理 人

〒150 東京都渋谷区神宮前2丁目6番8号

(4664) 并理上 鼓。 f :

連絡先 563-2111 内線 223-6 担当 長谷川

小魔者属

#:

(3) 図面。委用状は変遷角関しない汽音部する

・(4) 出版書流熱家

- 9 18 - 81 4, 10 CYY

56 100397

通

- 1. 考案の名称 ステップモータ駆動式時計の 検査装備
- 2. 実用新案登録請求の範囲

÷

- (1) ステップモータによつて輪列を駆動し、その輪列の各歯車の動きによつて時刻を表示する時計において前記ステップモータ及び輪列の作動検査をステップモータ駆動形流波形を分析する事によつて行う事を特徴とするステップモータ駆動式時計の検査装置。
- (2) ステップモータ駆動電価液形の初期極大値の大きさによつてステップモータ及び輪列の作動検査を行う事を特徴とする実用新案登録請求の範囲第1項記載のステップモータ駆削式時計の極査装置。
- (3) ステップモータ駆動電流波形の中期極小値の大きさによつてステップモータ及び輪列の作動検査を行う事を特徴とする実用新案登録請求範囲

- (4) ステップモータ駆動電流波形の終期極大値の大きさによつてステップモータ及び輪列の作動 検査を行う事を特徴とする実用新案登録請求範囲 第1項記載のステップモータ駆動式時計の検査装 質。
- (5) ステップモータ駆動電流波形の初期極大値と中期極小値の差の大きさによつて、ステップモータ及び輪列の作動検査を行う事を特徴とする採用新業金録請求範囲第1項又は第2項記載のステップモータ駆動式時計の樹産装置。

3. 考案の詳細な説明・

本考案は、基準振動子の信号あるいは基準振動子の信号を分問した信号によつてステップモータを動かし、前記ステップモータによつて輪列を駆動し、その輪列の各関車の脚をによつて時刻を表示する時間の前記ステップモータ及び輪列の作動検査を行う装置に関する。

本考案の目的はステップモータ及び輪列の作動検査を自動的に行う事である。

本考案の他の目的はステップモータ及び輪列の 作動検査の精度をあげる學である。

従来ステップモータによつて輪列を駆動する時 計においては、ステップモータが非常に小さく, またそのトルクも非常に小さいため、輪列を構成 する歯車間の少しの欠陥によつて作動が悪くなり またステップモータのロータとステータの間の位 脱ずれ等の種々の要因によつて作動が悪くなつて しまり。似つてステップモータ及び輪列の状況を 精密に絵査する事は重大である。この極査を行う ためには、輪列の厳後においてトルク側定をする 事が考えられるが非常にトルクが小さいため機械 的な接触を伴う測定方法では精密を検査は困難で あつたため本考案を成すに至つた。 ステップモー タ駅動式時計のステップモータ彫動電流液形の図 である第1図と本考家の一実施例である第2図に よつて本考案を静明する。ステップモータに第1 図の矩形被駆動質圧1を印加すると駆動電流被形

2 が流れる。まず矩形皮電圧 1 の初期においてはステップモータコイルのインダクタンスのために電流の電流の電池ので、ステップモータが動が出る。とステップモータの動インピーダンスが動が出る。そのほステップモータの動インピーダンスの動きが、動きに近辺になる。そのほステップモータのかでは、10 日標点に近づくに従つて動インヒーダンスが減少して電流は増加し、駆動電圧の最終点で電流は極大値を示す。

 する事によつてもステップモータ及び輪列の検査 を行う事ができる。前記3つの値は電池電圧、電 他インピーダンス、スイツチング素子のインピー ダンス、磁気回路の効率によつても影響を受ける 事と、一般的化ステップモータ及び輪列の摩擦低 抗が大きくて初期極大値3の値が大きすぎる場合 は、それ以上に中期極小照4の値が大きくなる事 の2つの理由により、初期極大億3と中期極小億 4の値の差6を分析する事により、より精密にス テップモータ及び輪列の検査を行う事ができる。 従つて前期4つの値を1つあるいはそれを組み合 わせて分析する事によつて、ステップモータ及び それに駆動される輪列の作動特性を精密に検託す る事ができる。第2回は前期理論に基づく本発明 の一実施例であり、ステップモータ駆動装御7化 よつて駆動されるステップモータ8の電流を電流 極出増襲器9化よつて地幅する。前記増齢器の出 力をアナロクーティジタル変換器 1 G (以下 A D 変雑器と略称する。)でディジタル信号に发掘す る。さらに前記電流検出増転能?の出力は極大衡

時期検出回路11、極小値時期検出回路12に導 き各々、係大値、極小値が発生した時期に、シー ケンス制御装置13に信号を送る。シーケンス制 御装置13はステツビングモータ駆動装置7を制 御するほかに極大値、極小値が発生した時期に A D 変像器 1 0 の出力を初期極大値レジスタ 1 4、 中期極小値レジスタ15、終期極大値レジスタ16 の各々に、各々の発生した時期に記憶せしめる。 被算装置17は初期極大値と中期極小値の差をと るための装置である。前配3種類のレジスタ14, 15、16及び減算装置17の出力を分析する事 により、ステップモータとステップモータによつ て駆動される輪列の作動検査が精密に行われる。 またとの検査方法において、発振回路,分周回路 等を含んだ時計体完成品(ムープメント)の電流 を検出する事によつても発振回路、分周回路によ つて将費される電流はステップモータ駆動時の電 流に比較して格段に小さいために、ほとんど他の 電流を無視して検査できる。

本考案によりステップモータとステップモータ

によつて駆動される輪列の検査が精密に検査でき さらに検査方法が納電気式であり、検査を自動化 する事が容易である等の便位点を有し、その技術 的、経済的効果は顕著である。

4. 図面の簡単な説明

第1図はステンプモータ駆動式時計のステンプ モータ駆動電圧放形とそれによつて生ずる駆動電 流波形の図。

第2図は本考案の一実施例である。

1 は矩形放駆動電圧、 2 は駆動電流波形、 3 は初期極大領、 4 は中期極小領、 5 は終期極大値、 6 は初期極大億 5 と中期極小値 4 の差、 7 はステップモータ駆動装置、 8 はステップモータ、 9 は電機出回路、 1 0 は A D 変換器、 1 1 は 医 財 機出回路、 1 2 は 極小時期 機出回路、 1 3 はシーケンス制御装置、 1 4 は初期極大額レジスタ、 1 5 は中期極小額レジスタ、 1 6 は終期極大額レジスタ、 1 5 は中期極小額レジスタ、 1 6 は終期極大額レジスタ、 1 7 は減算装置である。

24586

才2四

49 日本国特許庁 (JP)

①実用新案出顧公開

◎ 公開実用新案公報 (U)

昭57—24586

Mini. Cl.3 G 04 D 7/00 G 04 C 3/14

識別記号 庁内整理番号

7809-2F 7408-2F ❸公開 昭和57年(1982)2月8日

審査請求 有

(全 2 頁)

⊗ステツブモータ駆動式時計の検査装置

实例 昭56-100397

20出 願 昭52(1977)7月5日 (前特許出願日援用)

⑦考 来 者 鈴木連雄

匈実用新案登録請求の範囲

- (1) ステップモータによつて輪列を駆動し、その 輪列の各歯車の動きによつて時刻を表示する時 計において、前記ステップモータ及び輪列の作 動検査をステップモータ駆動電流皮形を分析す る事によつて行う事を特徴とするステップモー 夕駆動式時計の検査装置。
- (2) ステップモータ駆動電流波形の初期極大値の 大きさによつてステップモータ及び輪列の作動 検査を行う事を特徴とする実用新案登録請求の 範囲第1項記載のステップモーク駆動式時計の 検査装置。
- (3) ステップモータ駆動電流波形の中期極小値の 大きさによつてステップモータ及び輪列の作動 検査を行う事を特徴とする実用新案登録請求範 囲第1項記載のステツブモータ駆動式時計の検 查装置。
- (4) ステップモータ駆動電流波形の終期極大値の 大きさによつてステップモータ及び輪列の作動 検査を行う事を特徴とする実用新案登録請求範

諏訪市大和3丁目3番5号株式 会社諏訪精工舎内

人 株式会社諏訪精工舎 東京都中央区銀座4丁目3番4 뮥

砂代 理 人 弁理士 最上務

囲第1項記載のステツブモータ駆動式時計の検 查装置。

(5) ステップモータ駆動電流波形の初期極大値と 中期極小値の差の大きさによつて、ステップモ ータ及び輪列の作動検査を行う事を特徴とする 実用新案登録請求範囲第1項又は第2項記載の ステップモータ駆動式時計の検査装置。

図面の簡単な説明

第十図はステップモータ駆動式時計のステップ モータ駆動電圧波形とそれによつて生ずる駆動電 **流枝形の図。第2図は本考案の一実施例である。**

1 は矩形波駆動電圧、2 は駆動電流波形、3 は 初期極大値、4は中期極小値、5は終期極大値、 6は初期極大値3と中期極小値4の差、7はステ ツブモータ駆動装置、8はステツブモータ、8は 電流検出増幅器、10はAD変換器、11は極大 値時期検出回路、12は極小時期検出回路、13 はシーケンス制御装置、14は初期極大値レジス タ、15は中期極小値レジスタ、16は終期極大 値レジスタ、17は減算装置である。

実開 昭57-24586(2)

才2团