





# Spectral properties of large dimensional random matrices

Varvara Petrova

P3TMA, Aix-Marseille University Hamiltonian chaos, transport and plasma physics

February 28, 2017

#### Introduction

 Random matrices turn out to be accurate models for a large number of mathematical and physical problems.

#### Example (Quantum many-body problem and highly correlated systems)

 $\psi=U\psi_0$ , U is the evolution (unitary) operator. Large number of degrees of freedom, interactions  $\to$  hopless to find analytical expression for U. Idea: replace U (or the Hamiltonian) by a random matrix of finite, but large, dimension. What are the matrix space and probability distribution that best model our system?

In physics, the symmetries of a problem are often known a priori, even if the details
of the dynamics remain obscure. → The corresponding symmetries are the only
constraints we can impose to these random matrices.

#### Classical ensembles

- Gaussian orthogonal ensemble (GOE(n),  $\beta=1$ ) is a space of  $n \times n$  real symmetric matrices equipped with a measure invariant under orthogonal conjugation  $M \to OMO^T \ \forall O \in O(\mathbb{R}, n)$ . Models Hamiltonians with time-reversal and/or rotational symmetry.
- Gaussian unitary ensemble (GUE(n),  $\beta=2$ ) is a space of  $n\times n$  hermitian matrices equipped with a measure invariant under unitary conjugation  $M\to U^{-1}MU\ \forall U\in U(\mathbb{C})$ . Models Hamiltonians lacking time-reversal symmetry.
- Gaussian symplectic ensemble (GSE(n),  $\beta=4$ ) is a space of  $n\times n$  symetric quaternionic matrices equipped with a measure invariant under unitary conjugation  $M\to W^\dagger MW\ \forall W\in Sp(n)$ . Models Hamiltonians with time-reversal symmetry but no rotational symmetry.

#### Classical ensembles

- Gaussian orthogonal ensemble (GOE(n),  $\beta=1$ ) is a space of  $n \times n$  real symmetric matrices equipped with a measure invariant under orthogonal conjugation  $M \to OMO^T \ \forall O \in O(\mathbb{R}, n)$ . Models Hamiltonians with time-reversal and/or rotational symmetry.
- Gaussian unitary ensemble (GUE(n),  $\beta=2$ ) is a space of  $n\times n$  hermitian matrices equipped with a measure invariant under unitary conjugation  $M\to U^{-1}MU\ \forall U\in U(\mathbb{C})$ . Models Hamiltonians lacking time-reversal symmetry.
- Gaussian symplectic ensemble (GSE(n),  $\beta=4$ ) is a space of  $n\times n$  symetric quaternionic matrices equipped with a measure invariant under unitary conjugation  $M\to W^\dagger MW\ \forall W\in Sp(n)$ . Models Hamiltonians with time-reversal symmetry but no rotational symmetry.

#### Classical ensembles

- Gaussian orthogonal ensemble (GOE(n),  $\beta=1$ ) is a space of  $n \times n$  real symmetric matrices equipped with a measure invariant under orthogonal conjugation  $M \to OMO^T \ \forall O \in O(\mathbb{R}, n)$ . Models Hamiltonians with time-reversal and/or rotational symmetry.
- Gaussian unitary ensemble (GUE(n),  $\beta=2$ ) is a space of  $n\times n$  hermitian matrices equipped with a measure invariant under unitary conjugation  $M\to U^{-1}MU\ \forall U\in U(\mathbb{C})$ . Models Hamiltonians lacking time-reversal symmetry.
- Gaussian symplectic ensemble (GSE(n),  $\beta=4$ ) is a space of  $n\times n$  symetric quaternionic matrices equipped with a measure invariant under unitary conjugation  $M\to W^\dagger MW\ \forall W\in Sp(n)$ . Models Hamiltonians with time-reversal symmetry but no rotational symmetry.

# Fundamental belief of universality of random matrices

- We study statistical properties of the eigenvalue spectrum of such random matrices, typically in the limit of large matrix dimension.
- To compare different systems in the same symmetry class, the eigenvalues of the system need to be rescaled ("unfolded").
- Spectral properties can be studied at different scales (local/global limit). Is the obtained limit universal (independent on the chosen potential)?

#### General phenomenon:

The macroscopic statistics (spectral density) depend on the models. Microscopic statistics (spectral fluctuations) are universal i.e. independent on the details of the systems except the symmetries.

#### Level spacing

- Let P(s) be the probability density to find two adjacent eigenvalues at a distance s. P(s) probes the strength of the eigenvalues repulsion due to interactions.
- Can be computed analytically for the classical ensembles. Rather complicated expressions (prolate spheroidal functions). For most practical purpose it is sufficient to use Wigner surmise (1956):

Idea: guess the probability law P(s) from the eigenvalues of 2x2 matrices in the same symmetry class. It is given by

$$P_{\beta}(s) = a_{\beta}s^{\beta}e^{-b_{\beta}s^{2}}$$

with  $\beta=1,2,4$  (GOE, GUE, GSE). The quantities  $a_{\beta}$  and  $b_{\beta}$  are chosen such that

$$\int_0^{+\infty} ds P_{eta}(s) = 1 \quad ext{and} \quad \langle s 
angle = \int_0^{+\infty} ds P_{eta}(s) s = 1$$

• In contrast, P(s) of a quantum system whose classical counterpart is integrable is given by a Poisson process,  $P_0(s) = e^{-s}$ , corresponding to uncorrelated eigenvalues.

#### Level spacing

Explicit formulas:

$$P_{1}(s) = \frac{\pi}{2} s \exp\left(-\frac{\pi}{4} s^{2}\right)$$

$$P_{2}(s) = \frac{32}{\pi^{2}} s^{2} \exp\left(-\frac{4}{\pi} s^{2}\right)$$

$$P_{4}(s) = \frac{2^{18}}{3^{6} \pi^{3}} s^{4} \exp\left(-\frac{64}{9\pi} s^{2}\right)$$

• Numerical test, with rescaling  $s \leftarrow \frac{s}{\langle s \rangle}$ :







#### Wigner Semi-cercle Law

#### Theorem

Let  $X\in {\sf GUE}({\sf n})$  such that  $\mathbb{E}(X_{ij})=0$  and  $\mathbb{E}(X_{ij}^2)=\sigma^2$ . For  $k\in\mathbb{N}^*$ , we assume that  $\sup_{i,j}\mathbb{E}\left(|X_{ij}|^k\right)<\infty$ . Then the empirical distribution of eigenvalues of the matrix  $\frac{X_{i,j}}{\sqrt{n}}$  converges almost surely to the semi-circle law:

$$\lim_{n\to\infty} \frac{1}{n} \operatorname{tr} \mathbb{E} \left( \frac{X}{\sqrt{n}} \right)^k = \frac{1}{2\pi\sigma^2} \int_{-2\sigma}^{2\sigma} x^k \sqrt{4\sigma^2 - x^2} dx$$

In particular, upon a suitable normalization  $(E \leftarrow \frac{E}{\sqrt{n}})$ , the spectral density  $\rho(E)$  converges to  $\frac{1}{2\pi}\sqrt{4-E^2}$  in the interval [-2,2] as  $n \to +\infty$ .

Result is true as well for GOE and GSE.



# Extremal eigenvalues and Tracy-Widom Law

- Let X be a random nxn matrix from the Gaussian ensemble of index  $\beta=1,2,4$ ,  $F_{\beta,n}(s)=\mathbb{P}(\lambda_{max}\leq s)$ , the partition function of its largest eigenvalue  $\lambda_{max}(\sim 2\sigma\sqrt{n})$  and  $\sigma$ , the standard deviation of the Gaussian distribution of its off-diagonal elements.
- Eigenvalues rescaling (for GUE):  $\lambda \leftarrow (\lambda 2\sqrt{n}) n^{1/6}$
- Tracy and Widom: the limit

$$F_{eta}(s) := \lim_{n o +\infty} F_{eta,n} \left( 2\sigma \sqrt{n} + rac{\sigma s}{n^{1/6}} 
ight) \quad ext{exists.}$$

 $f_{eta}(s) := rac{dF_{eta}(s)}{ds}$  is called Tracy-Widom distribution.

# Extremal eigenvalues and Tracy-Widom Law

• For  $\beta=2$ ,  $\sigma=1/\sqrt{2}$  and

$$F_2(s) = \exp\left(-\int_s^{+\infty} (x-s)q^2(x)dx\right)$$

where q(x) is a solution of the Painlevé II differential equation:

$$q'' = xq + 2q^3$$

with the asymptotic condition:

$$\lim_{x \to +\infty} q(x) = \operatorname{Ai}(x) = \frac{1}{\pi} \int_0^{+\infty} \cos\left(\frac{t^3}{3} + xt\right) dt \quad \text{(Airy function)}$$

For other Gaussian ensembles

$$F_1(s) = \exp\left(-\frac{1}{2}\int_s^{+\infty}q(x)dx\right)\sqrt{F_2(s)}$$

$$F_4(s) = \cosh\left(\frac{1}{2}\int_s^{+\infty}q(x)dx\right)\sqrt{F_2(s)}$$

# Conclusion and perspectives

- Random matrix theory describes universal quantities determined by global symmetries that are shared by all systems in a given symmetry class.
- The study of their spectral properties finds a lot of applications: Mathematics (gap distribution of zeros of Riemann  $\zeta$ -function is given by GUE, graph theory, analytic number theory, combinatorics), quantum gravity, string theory, quantum chaos, quantum information, nuclear physics, statistical mechanics, wireless telecommunications, biology, finance, traffic, etc.
- Often physical systems consist of parts with different symmetries, or of a classically integrable and a chaotic part. Changing a parameter of the system may then result in transitions between different symmetry classes. The symmetry transition in a given physical system can be described by a transition between ensembles (or Poisson).
  - Example: transition between GOE and GUE behavior takes place in the spectrum of a kicked rotor when time-reversal symmetry is gradually broken.