MSC-BDT5002, Spring 2020

Knowledge Discovery and Data Mining

Assignment 2 Report

HUANG XIN XIAN 20630198

1. Comparison of Classifier

Decision Tree

The performance of decision trees with different parameters are shown in the following table. The metrics including precision, recall and F1 use the **macro** average.

Classifier	Accuracy	Precision	Recall	F1	Training Time
gini,	0.3694	0.392422	0.368504	0.327031	0.0965425
depth = 5					
gini,	0.7142	0.764549	0.717519	0.727371	0.0881393
depth = 10					
gini,	0.8322	0.842009	0.832842	0.83492	0.102693
depth = 15					
gini,	0.8656	0.867507	0.865704	0.865984	0.100667
depth = 20					
gini,	0.874	0.874684	0.874163	0.874173	0.10457
depth = 25					
entropy,	0.5014	0.560991	0.501367	0.498582	0.0697527
depth = 5					
entropy,	0.7976	0.802208	0.797646	0.798261	0.0919123
depth = 10					
entropy,	0.8686	0.868946	0.869505	0.868792	0.105164
depth = 15					
entropy,	0.8718	0.872123	0.872152	0.87189	0.10348
depth = 20					
entropy,	0.8718	0.872123	0.872152	0.87189	0.102728
depth = 25					

From the table above, we can know that:

1. The performance of Decision Tree classifiers gets better for both gini and entropy criterions as the trees grow deeper. The reason may be that there are 26 classes in the dataset and deeper trees can fit the complicated data better. The performance of decision trees with entropy criterion are the same for depth 20 and 25. Actually the depth is the "max_depth" attribute in sklearn Decision Tree, and by using "get_depth()", we can find that the real depths are both 20. Therefore, they have the same performance. Generally, for the same depth, classifier with entropy criterion perform better than that with gini criterion, especially when the depth is small.

Intuitively, the training time also increase with deeper trees, and the training time for trees with the same depth under different criterion are roughly close.

2. For each classifier, accuracy, precision, recall and f1 are close. This is a multi-class classification problem and the distribution of training dataset and testing dataset is balanced, so the metrics will have close values.

<pre># the distribution of the training data train_y.value_counts()</pre>		<pre># the distribution of the test data test_y.value_counts()</pre>			
13	607	7	226		
21	606	6	210		
14	605	4	207		
25	602	21	207		
20	599	16	206		
4	598	24	204		
16	597	5	203		
1	594	12	201		
17	594	2	199		
24	583	20	197		
22	581	8	196		
23	576	1	195		
10	575	26	191		
15	574	18	190		
11	572	17	189		
18	568	9	188		
2	567	19	185		
9	567	13	185		
5	565	25	184		
6	565	22	183		
19	563	3	182		
12	560	15	179		
3	554	14	178		
7	547	23	176		
26	543	10	172		
8	538	11	167		
Name:	0, dtype: int64	Name:	0, dtype: int64		

KNN, Random Forest

Classifier	Accuracy	Precision	Recall	F1	Training Time
KNN,	0.957	0.956873	0.957202	0.956972	0.0973889
n_neighbors=1					
KNN,	0.9516	0.951401	0.952159	0.951601	0.0912945
n_neighbors=3					
KNN,	0.9524	0.952433	0.952713	0.952311	0.0923076
n_neighbors=5					
Random Forest,	0.8178	0.832969	0.818894	0.822028	0.174276
max_depth=10					
Random Forest,	0.9112	0.914094	0.911998	0.912351	0.180936
max_depth=15					
Random Forest,	0.9306	0.931697	0.931407	0.931154	0.187442
max_depth=20					

From the table above, we can know that:

1. KNN classifiers take much less training time than Random Forest classifier. It is because KNN classifiers just store the dataset during training without calculation, and Random Forest classifiers have to do a lot calculation in the training phrase.

- 2. KNN classifiers outperform the Random Forest on this dataset, and KNN is usually suitable for multi-class classification problems. When n_neighbors=1, the KNN model has the best performance among the three ones because the closest point is very likely to share the same class label. But KNN classifier for 5 neighbors perform better slightly than classifier with 3 neighbors. It may because when we consider more neighbors in a reasonable range, we can consider more points and do better estimation.
- 3. For Random Forest, classifiers with larger max_depth can have better performance, because deeper trees can fit the complicated dataset better. Intuitively, classifier with larger max_depth also takes more time to train.
- 4. For each classifier, the metrics have similar values because of the balance of the dataset.

2. Implementation of Adaboost

accuracy = 0.8

Using five weak classifiers, the final expression and details of each weak classifier given by my program are shown as below.

final classifier: C*(x) = sign[1.738C1(x) + 1.5906C2(x) + 1.4904C3(x) + 1.5938C4(x) + 1.5963C5(x)]----- basic classifiers details ----classifier 1: x < 2.5, 1x > = 2.5. -1 _____ classifier 2: x < 7.5, 1x > = 7.5, -1_____ classifier 3: x > 4.0, 1 $x \le 4.0, -1$ classifier 4: x < 1.5, 1x > = 1.5, -1classifier 5: x > 5.0, 1 $x \le 5.0, -1$ ______ predict: [1. 1. -1. -1. -1. -1. 1. 1. -1. -1.]