Group-Blind Detection with Very Large Antenna Arrays in the Presence of Pilot Contamination

Guido C. Ferrante*°, Giovanni Geraci[‡], Tony Q. S. Quek*, and Moe Z. Win° *SUTD, Singapore, [‡]Bell Labs Nokia, Ireland, and °MIT, MA, USA

Introduction

Motivation

- Massive MIMO: key enabling technology to achieve 5G requirements
- Detector as simple as matched-filter is asymptotically optimal with perfect CSI
- Channel estimation based on pilots is standard practice in cellular networks
- Channel coherence time limits the maximum number of orthogonal pilots
- Pilots are reused in different cells: contamination arises

Problem statement: Pilot contamination limits the asymptotic rate achievable by massive MIMO. How to increase the asymptotic achievable rate while sticking to traditional channel estimation based on pilots reused in each cell?

System Model

Signals

System parameters and signals

Parameters

per cell

- *n* antennas at the BS
- L cells K single-antenna users
- $oldsymbol{y} = \sum_{l=1}^{L} \sum_{k=1}^{K} oldsymbol{h}_{lk} \sqrt{eta_{lk}} \, x_{lk} + oldsymbol{n} = \sum_{l=1}^{L} oldsymbol{G}_{l} oldsymbol{x}_{l} + oldsymbol{n}$

 $\boldsymbol{h}_{/k} \sim \mathcal{CN}(\boldsymbol{0}, \boldsymbol{I})$, $Var[x_{/k}] = P$, $\boldsymbol{n} \sim \mathcal{CN}(\boldsymbol{0}, \boldsymbol{I})$

Channel estimation

Estimation of channel between reference BS (cell 1) and user k (within the cell)

$$\hat{oldsymbol{g}}_{1k} = \left(\sum_{l \geq 1} oldsymbol{g}_{lk} + \sqrt{\epsilon} oldsymbol{
u}_{1k}
ight) oldsymbol{arphi}_{1k} eta_{1k}^{-1},$$

where $1/\epsilon$ is equal to the effective training SNR, $\nu_{1k} \sim \mathcal{CN}(\mathbf{0}, \mathbf{I})$, and

$$\varphi_{1k} = \frac{\beta_{1k}^2}{\epsilon + \sum_{l \geq 1} \beta_{lk}}.$$

In matrix form: channel estimations $\hat{m G}_l = [\hat{m g}_{l1}, \dots, \hat{m g}_{lK}]$ and errors $ilde{m G}_l = m G_l - \hat{m G}_l$.

Achievable rate

$$R_{1k} = \mathbb{E}[\log(1+\gamma_{1k})]$$

where expectation is with respect to estimated channels, and SINR γ_{1k} is [3]

$$oldsymbol{\gamma_{1k}} = rac{|oldsymbol{w}_{1k}^{\dagger} \hat{oldsymbol{g}}_{1k}|^2}{\mathbb{E}\left[oldsymbol{w}_{1k}^{\dagger} \left(rac{1}{P}oldsymbol{I} + ilde{oldsymbol{g}}_{1k} ilde{oldsymbol{g}}_{1k}^{\dagger} + \sum_{j
eq k} oldsymbol{g}_{1j} oldsymbol{g}_{1j}^{\dagger} + \sum_{l>1} \sum_{j \geqslant 1} oldsymbol{g}_{lj} oldsymbol{g}_{lj}^{\dagger} oldsymbol{w}_{1k} \mid \hat{oldsymbol{G}}_{1}
ight]},$$

having denoted w_{1k} the linear receiver for user k. SINR γ_{1k} is equal to SINR of

$$m{y}' = \hat{m{G}}_1 m{x}_1 + ilde{m{G}}_1 ilde{m{x}}_1 + \sum_{l>1} m{G}_l m{x}_l + m{n}$$
 ,

where $ilde{m{x}}_1$ is independent of $m{x}_1$ and has same covariance.

Proposed Group-Blind Detector

Originally developed for CDMA [1], Group-Blind detection is adapted here to MIMO

$$oldsymbol{w}_{1k} = oldsymbol{\dot{w}}_{1k} + oldsymbol{oldsymbol{\ddot{w}}}_{1k}$$

 $\dot{m{w}}_{1k}\in {\sf range}\,\hat{m{G}}_1$

 $m{reve{w}}_{1k} \in \operatorname{range} \hat{m{G}}_1^\perp \cap \operatorname{range} \left[m{G}_1 \cdots m{G}_L
ight]$

ullet $\dot{m w}_{1k}$ is derived on the basis of $m y_{ ext{in}} = \hat{m G}_1 m x_1 + m n$ according to MMSE

$$\dot{\boldsymbol{w}}_{1k} = \operatorname{argmin}_{\boldsymbol{w}} \mathbb{E}[|x_{1k} - \boldsymbol{w}^{\dagger} \boldsymbol{y}_{\text{in}}|^2] = (\hat{\boldsymbol{G}}_1 \hat{\boldsymbol{G}}_1^{\dagger} + \frac{1}{P} \boldsymbol{I})^{-1} \hat{\boldsymbol{g}}_{1k}$$

 $\bullet \ \breve{w}_{1k}$ is derived on the basis of the whole received signal according to MMSE [1]

$$m{m{w}}_{1k} = \operatorname{argmin}_{m{w}} \mathbb{E}[\,|\mathbf{x}_{1k} - (\dot{m{w}}_{1k} + m{w})^\dagger m{y}|^2\,] = -\,m{reve{U}}_{\hat{m{G}}_1} \!\!\left(m{reve{U}}_{\hat{m{G}}_1}^\dagger m{C}_{m{y}'} m{reve{U}}_{\hat{m{G}}_1}^\dagger m{C}_{m{y}'} \dot{m{W}}_{1k}^\dagger \,.$$

where $reve{U}_{\hat{G}_1}$ spans range $\hat{G}_1^\perp\cap$ range $[G_1\cdots G_L]$ and $C_{y'}$ is the covariance of y'.

Asymptotic Performance Analysis

Asymptotics (massive regime): $n \to \infty$, $K, L < \infty$.

Signal space properties in the massive regime [2,3]:

(i) $n^{-1} \boldsymbol{g}_{kl}^{\dagger} \boldsymbol{g}_{k'l'} \xrightarrow{\text{a.s.}} \beta_{kl} \delta_{kk'} \delta_{ll'}$, *i.e.*, channels are asymptotically almost surely orthogonal;

(ii) $\hat{g}_{1k} \in \mathcal{S}_k = \text{range}\{g_{lk}\}_{l\geqslant 1}$ in high-SNR regime.

Results for L=2 (one dominant interfering cell)

Theorem

SINR γ_{1k} achieved by the proposed group-blind detector with L=2 satisfies

$$\gamma_{1k} \stackrel{ ext{a.s.}}{\longrightarrow} ar{\gamma}_{1k} = \left[1 + rac{1}{(1+\epsilon/eta_{2k})^2}
ight]ar{\gamma}_{1k}'$$

where $\bar{\gamma}'_{1k} = \beta_{1k}^2 \beta_{2k}^{-2}$ is the SINR achieved with non-group-blind detection.

Define asymptotic SINR gain: $\bar{\eta}_{1k} = \bar{\gamma}_{1k}/\bar{\gamma}'_{1k}$.

Corollary. Asymptotic SINR γ_{1k} and gain $\bar{\eta}_{1k}$ with L=2 satisfy:

$$ar{\gamma}_{1k}
ightarrow 2ar{\gamma}_{1k}', \quad ar{\eta}_{1k}
ightarrow 2, \qquad \text{as } \epsilon
ightarrow 0.$$

In brief: In the high-SNR regime, the asymptotic SINR achieved with group-blind detection is doubled compared to traditional detection.

Numerical Results

Fig. 1 Rate (b/s/Hz) vs. no. of antennas *n* with and without group-blind detection. **Scenario parameters:** L = 2, K = 1, SNR = 20

dB and $\beta_{11}/\beta_{21} = 0$ dB (strong interference).

Fig. 2. Rate (b/s/Hz) vs. no. of antennas *n* with and without group-blind detection. Scenario parameters: L = 2, K = 1, SNR = 10 dB, and $\beta_{11}/\beta_{21} = 10$ dB (weak interference).

Fig. 3. Rate (b/s/Hz) vs. no. of antennas *n* with and without group-blind detection. **Scenario parameters:** L = 4, K = 1 or K = 10, SNR = 10 dB, $\beta_{1k}/\beta_{2k} = 10$ dB (weak interference).

Asymptotic results in the general case and implementation in [4].

References

- [1] X. Wang and A. Host-Madsen, "Group-blind multiuser detection for uplink CDMA," IEEE J. Sel. Areas Commun., vol. 17, no. 11, pp. 1971–1984, 1999.
- [2] T. Marzetta, "Noncooperative cellular wireless with unlimited numbers of base station antennas," IEEE Trans. Wireless Commun., vol. 9, no. 11, pp. 3590–3600, 2010.
- [3] J. Hoydis, S. ten Brink, and M. Debbah, "Massive MIMO in the UL/DL of cellular networks: How many antennas do we need?" IEEE J. Sel. Areas Commun., vol. 31, no. 2, pp. 160–171, 2013.
- [4] G. C. Ferrante, G. Geraci, T. Q. S. Quek, and M. Z. Win, "Group-blind detection for uplink of massive MIMO systems," IEEE Trans. on Signal Process., 2015, submitted for publication.