

SECOND SEMESTER 2022 - 2023

Course Handout Part II

16.01.2023

In addition to Part I (general Handout for all courses appended to the Time Table), this portion gives further specific details regarding the course.

Course No. : PHY F379

Course Title : Thin film technology

Instructors : **Prof. Harihara Venkataraman** & Prof. V. Satya Narayan

Murthy

Course Description: This course gives an overview of thin film technology - Basics of vacuum science and technology, Thin film deposition techniques; Kinetics and diffusion mechanisms, Surface nucleation and film growth, Structure and morphology of thin films, Electrical and magnetic properties, Special topics on thin film application.

Scope & Objective:

- ➤ The course introduces the concepts in vacuum deposition techniques, nucleation and growth of thin films.
- > Techniques to characterize the thin films and some of the physical properties of films and their applications.

Text Book: No single textbook exists. Lecture notes will be distributed.

Reference Books:

- ➤ Materials Science of Thin Films Milton Ohring, 2nd Edition (Elsevier)
- A User's Guide to Vacuum Technology J.F. O' Hanlan
- > Thin film deposition principles and practice Smith Donald
- > Thin Film Phenomena Kasturi L Chopra (McGraw Hill)

Course Plan:

Lectur e No.	Learning Objectives	Topics to be covered	Reference (Chap/Sec)
1 - 6	Vacuum technology	Mean free path; gas flow regimes; conductance; pumping speed; vacuum levels; working principles of different vacuum pumps; vacuum gauges; vacuum leak detection; vacuum seals.	notes and relevant portions

7 - 10	Thin film deposition	Differences between CVD and PVD; PVD techniques – thermal and electron beam evaporation, sputtering, PLD, MBE; CVD techniques – APCVD, LPCVD, MOCVD, PECVD; evaporation rate; evaporation of multi element materials and alloys.	reference books.
11 - 14	Film thickness uniformity and purity	Thickness measurement techniques; deposition geometry; thickness uniformity	
15 - 20	Nucleation and growth of thin film	Thermodynamic aspects of nucleation and growth - capillarity theory of heterogeneous nucleation; atomistic theory; growth modes	
21 - 28	Characterization techniques	Review of Materials Science, Structural techniques (XRD), Imaging techniques (SEM / TEM) & optical techniques	
29 - 34	Properties of thin films	Electrical, dielectric, ferroelectric and magnetic properties	
35 - 40	Applications	Sensors, solar cells, giant magnetoresistance, ferroelectric & multiferroics devices	

Evaluation Scheme:

EC No	Evaluation Scheme	Duratio n	Weightag e (%)	Date & Time	Nature of Componen
					t
1.	Mid Semester	90 min	35	18/03 4.00 - 5.30PM	Closed
	Examination				Book
2.	Quizzes	30 min	25	To be announced in	Open Book
				the class	
3.	Comprehensive	180 min	40	20/05 AN	Closed
	Examination				Book

^{*}Two quizzes will be conducted, and the best performance will be considered. No makeup for the quizzes for any reason.

Notices: Notices concerning the course will be put on **CMS**.

Makeup Policy: Makeup requests may be considered only in case of severe medical illness leading to hospitalization with proper medical proof, and also, prior permission is required for MID - SEM and Comprehensive Examination.

Academic Honesty and Integrity Policy: Academic honesty and integrity are to be maintained by all the students throughout the semester, and no type of academic dishonesty is acceptable.

Instructor-in-Charge

PHY F379