Ant Colony Optimization

Pablo Felipe Leonhart

Universidade Federal do Rio Grande do Sul

26 de Maio, 2017

Introdução

- ► Formulada nos anos 1990 por Marco Dorigo
- Metaheurística baseada em população e inspirada no comportamento forrageiro das formigas

Inspiração Biológica

- Muitas espécies de formigas são quase cegas
- ► A comunicação entre as formigas é realizada através de uma substância química denominada de feromônio
- Em algumas espécies, o feromônio é usado para criar caminhos (trilhas de formigas)

Inspiração Biológica

- ► Ao caminhar, as formigas depositam no chão o feromônio, formando, deste modo, uma trilha de feromônios
- As formigas sentem o cheiro do feromônio, e quando elas têm que escolher um caminho, escolhem, com maior probabilidade, o caminho com maior quantidade de feromônio (cheiro mais forte)
- A trilha ajuda a formiga a achar o caminho de volta e as outras formigas a encontrar a fonte de alimentos

O Experimento da Ponte Binária

Experimento realizado por Deneubourg et al., 1990, para estudar o comportamento forrageiro das formigas

As formigas convergem para um dos caminhos com igual probabilidade.

O Experimento da Ponte Binária

Usando pontes de tamanhos diferentes, as formigas convergem para a ponte mais curta.

Logo, será depositado mais feromônio na ponte curta do que na longa. Isto atrairá formigas para ponte curta.

Formigas Artificiais

Constroem soluções de forma probabilística utilizando duas informações:

- A trilha de feromônio (artificial) que muda dinamicamente durante a execução do programa de modo a refletir a experiência já adquirida durante a busca
- A informação heurística específica do problema a ser resolvido

Formigas Artificiais

A probabilidade da formiga k que está ponto i de escolher o ponto j é dada pela regra:

$$ho_{ij}^k = rac{(au_{ij})^lpha (\eta_{ij})^eta}{\sum_{I \in \mathcal{N}_i^k} (au_{il})^lpha (\eta_{il})^eta}, \quad ext{se } j \in \mathcal{N}_i^k,$$

onde:

- ► Tij é o feromônio associado a aresta (i, j)
- Alfa e Beta são parâmetros para determinar a influência do feromônio e da informação heurística
- N ki é a vizinhança factível da formiga k (i.e., o conjunto das cidades ainda não visitadas pela formiga k)

Algoritmo

13: return Best

1: $C \leftarrow \{C_1, ..., C_n\}$ components

```
    popsize ← number of trails to build at once ▷ "ant trails" is ACOspeak for "candidate solutions"
    p ← ⟨p<sub>1</sub>,..., p<sub>n</sub>⟩ pheromones of the components, initially zero
    Best ← □
    repeat
    P ← popsize trails built by iteratively selecting components based on pheromones and costs or values
    for P<sub>i</sub> ∈ P do
    P<sub>i</sub> ← Optionally Hill-Climb P<sub>i</sub>
    if Best = □ or Fitness(P<sub>i</sub>) > Fitness(Best) then
    Best ← P<sub>i</sub>
    Update p for components based on the fitness results for each P<sub>i</sub> ∈ P in which they participated
    until Best is the ideal solution or we have run out of time
```

Aplicações

- Originalmente desenvolvido para resolver o problema do caixeiro viajante
- ▶ Problemas de agendamento
- Processamento de imagens
- Roteamento de veículos
- Enovelamento de proteínas
- Mineração de dados

- ACOR ACO for Continuous Domains
- Proposta por Socha em 2004
- Aplicado em problemas onde as variáveis podem assumir qualquer valor real dentro de um determinado intervalo
- ▶ Objetivo é maximizar ou minimizar a função do problema

- ▶ Vetor de soluções chamado de *arquivo população*
- Contém k soluções
- Inicialmente os valores s\u00e3o gerados e de acordo com as itera\u00f3\u00f3es o vetor \u00e9 atualizado
- Sempre ordenado pela melhor solução

A construção de novas soluções ocorre nestas etapas:

- Cada formiga escolhe uma solução que servirá como base para gerar uma nova solução
- A probabilidade de escolha é dada pela equação:

$$p_l = \frac{\omega_l}{\sum_{j=1}^k \omega_j}$$

 WI e Wj representam os feromônios contidos no vetor de soluções

$$\omega_j = \frac{1}{qk\sqrt{2\pi}} e^{-\frac{(j-1)^2}{2q^2k^2}}$$

- q é um parâmetro cujo baixo valor implica que as melhores soluções serão preferencialmente escolhidas
- Para cada solução escolhida obtém-se um valor de média e outro de desvio padrão para cada dimensão do problema
- e se definido com um alto valor, representará uma baixa velocidade de convergência da população no algoritmo

$$\sigma_l^i = \xi \sum_{j=1}^k \frac{\left| s_j^i - s_l^i \right|}{k - 1}$$

- Para cada variável do problema é utilizada uma função de densidade probabilística (probabilistic density function - PDF)
- Essa função Gaussiana mais o valor obtido da equação do desvio padrão permitem amostrar o valor da variável
- Quando se tem todos os valores, a solução é então avaliada e salva num arquivo temporário
- Ao final da iteração, as melhores soluções entre as que estão no arquivo população e as novas serão salvas

Implementação

Parâmetros utilizados:

- Dimensões do problema = (tX, tY, tZ, rX, rY, rZ)
- ▶ Intervalo para valores de translação = [-100:100]
- ▶ Intervalo para valores de rotação = [0:2*Pi]
- ▶ k = 100
- Número de formigas = 50
- p q = 0.02
- e = 0.8
- ▶ Máximo de iterações = 1500

Resultados

O algoritmo foi executado 30 vezes para as 3 variações do problema, considerando todos os átomos polypeptídeo, somente os átomos da cadeia principal e somente os átomos Carbono alpha

	Todos átomos	Backbone	Carbono alpha
REFERENCE	293,9378	148,5989	76,3832
1ACW-01	328,8585	176,2705	90,2794
1ACW-02	367,7014	194,1239	102,0172
1ACW-03	345,3291	189,5606	91,5221
1ACW-04	339,6217	175,4285	84,7712
1ACW-05	348,6635	162,4117	84,4569
1ACW-06	351,9899	198,5183	90,8946

Referências

Cassio Rodrigo Conti, Mauro Roisenberg (2011)

A Importância da Informação Heurística Visibilidade para Algoritmos Baseados em Otimização por Colônia de Formigas Aplicados a Domínios Contínuos

Departamento de Informática e Estatística – Universidade Federal de Santa Catarina (UFSC), 12.

Estéfane G. M. de Lacerda (2008)

A Otimização Colônia de Formigas

Departamento de Engenharia da Computação e Automação - UFRN, 45.

Rubem Matimoto Koide (2010)

Algoritmo de Colônia de Formigas aplicado à otimização de materiais compostos laminados

Universidade Tecnológica Federal do Paraná, 136.

Sean Luke (2015)

Essentials of Metaheuristics

Department of Computer Science George Mason University, 2ed, 263.