形式问题

- 1. 需要展示及介绍测试平台。
- 2. 对于自己假设的参数,如V_{TH} 需要提前说明。
- 3. 没有给出推算过程或逻辑,直接给出结果的一律无效。
- 4. 尽量使用工程单位um, nm, fF等, 而不是数学单位e-6
- 5. 请将作业整理到一个PDF, 题号回答清晰, 建议全电子版书写; 手写作业请确保字迹清晰, 字迹模糊无法辨认的直接判错。
- 6. 作业迟交最高按60%分值计算,请确保按时提交作业。

Homework 1

- 2. 估算 V_{GS} =0.5V, 0.8V和1.1V且 V_{DS} =1.8V时, W/L=1um/0.18um 的VMOS的 g_m 和 r_0 。
- V_{GS}=0.8V, 强反转区的gm推导:

$$\begin{cases} L_{\text{min}} = 0.35 \ \mu\text{m} \\ \text{KP}_{n} \approx 300 \ \mu\text{A/V}^{2} \end{cases}$$

$$I_D = \frac{1}{2}KP_n \frac{W}{L} (V_{GS} - VTH)^2$$

$$I_D = 200uA$$
, $\Big|_{V_{TH}=0.46V}$ $g_m = 1.2mA/V$, $\Big|_{V_{TH}=0.46V}$

- 2. 估算 V_{GS} =0.5V, 0.8V和1.1V且 V_{DS} =1.8V时, W/L=1um/0.18um 的VMOS的vgm和v0.
- **V**_{GS}=**0.8V**, 强反转区的r₀推导:

$$r_0 pprox rac{1}{\lambda I_{DS}} = rac{V_E \cdot L}{I_{DS}}$$
 $V_{En} = 4 \text{ V/}\mu\text{mL}$

$$r_0 \approx \frac{4 \cdot 0.18}{200u} = 3.6K\Omega$$

• V_{GS}=0.8V, 强反转区的gm和r₀检验:

	估算 仿真	
Id	200u 100u	
gm	1.2m	0.42m
r0	3.6K 100K	

×估算与仿真有较大差距

• 估算参数矫正

```
GENERAL PARAMETERS
+CALCACM
+LMIN
                                 LMAX
          = 1.5E-7
                                          = 1.0E-5
                                 TNOM
                                          = 25.0
          = '3.87E-09+DTOX N18'
                                 TOXM
                                          = 3.87E-09
                                 LLN
                                          = 1.1205959
          = 3.8094000E+17
+WLN
          = 1.0599999
                                 WWN
                                          = 0.8768474
+LL
          = 2.6352781E-16
                                 LW
                                          = -2.2625584E-16
+WINT
          = -1.4450482E-09
                                          = -2.3664573E-16
+WWL
          = -4.0000000E-21
                                 MOBMOD
          = '1.8E-8+DXL N18'
                                 XW
                                          = '0.00+DXW N18'
  MOBILITY PARAMETERS
+VSAT
          = 8.2500000E+04
                                 PVSAT
                                          = -8.3000000E-10
+LUA
          = 7.7349790E-19
                                 PUA
                                          = -1.0000000E-24
+UC
          = 1.2000000E-10
                                 PUC
                                          = 1.5000000E-24
                                          4000000
+U0
          = '(3.4000000E-02)*(1+0.05*Sigma)'
                                          = -3.0000000E-03
          = 0.8300000
                                 KETA
+A⊍
+A1
          = 0.00
                                 A2
                                          = 0.9900000
+B0
          = 6.000000E-08
                                          = 0.00
                                 B1
```

✓栅极厚度预估正确

```
\mu_p \approx 250 \text{ cm}^2/\text{Vs}
\mu_p \approx 600 \text{ cm}^2/\text{Vs}
```

×载流子流速高估近一倍

•参数矫正

	调整后估算	仿真
Id	113u	100u
gm	0.68m	0.42m
r0	6.4K	89K

```
ROUT PARAMETERS
+PCLM
          = 1.2000000
                                PPCLM
                                         = 2.9999999E-15
+PDIBLC2
         = 3.8000000E-03
                                PPDIBLC2 = 2.7000001E-16
+DROUT
         = 0.5600000
                                PSCBE1
                                         = 3.4500000E+08
+PVAG
         = 0.00
                                DELTA
                                         = 1.000000E-02
+ALPHA1
         = 0.1764000
                                LALPHA1 = 7.6250000E-09
```

$$V_{En} = 4 V/\mu mL$$

·V_{En}在此工艺中调整为40V/um

- 2. 估算 V_{GS} =0.5V, 0.8V和1.1V且 V_{DS} =1.8V时, W/L=1um/0.18um 的VMOS的 g_m 和 r_0 。
- V_{GS}=0.5V,弱反转区的gm推导:

$$I_{D,wi} = I_{D0} \frac{W}{L} e^{\frac{V_{GS}}{nkT/q}}$$

$$g_{m,wi} = \frac{I_{D,wi}}{nkT/q}$$

×n作为一个跟反转程度有关的量,随V_{GS}变化,无法预估

×I_{DO}未知

- 2. 估算V_{GS}=0.5V,0.8V和1.1V且V_{DS}=1.8V时,W/L=1um/0.18um 的NMOS的g_m和r₀。
- $V_{GS}=0.5V$,弱反转区的gm推导: (利用已有强反型区结果)

$$I_{DS} = K' \frac{W}{L} V_{GSTt}^2 \cdot ln^2 (1 + e^v), \quad v = \frac{V_{GST}}{V_{GSTt}} \qquad V_{GSTt} = 2n \frac{kT}{q} \approx 70mV$$

已有
$$I_D=113uA, \Big|_{V_{GST}=0.34V}$$
 $\Rightarrow ln^2(1+e^v) \approx 5^2=25$ $v=0.7, \Big|_{V_{GST}=0.04V}$ $I_D=5.5uA, \Big|_{V_{GST}=0.04V}$ $\Rightarrow ln^2(1+e^v) \approx 1.1^2=1.2$

 $ln^2(1+e^v) \approx 1.1^2 = 1.2$

- 2. 估算 V_{GS} =0.5V, 0.8V和1.1V且 V_{DS} =1.8V时, W/L=1um/0.18um 的VMOS的vgm和v0.
- V_{GS}=0.5V, 弱反转区的gm推导:

$$I_D = 5.5uA$$
, $\Big|_{V_{GST}=0.04V}$

$$ln^2(1+e^v)\approx 1.2$$

反型系数i:
$$i = \frac{I_{DS}}{I_{DSt}} = ln^2(1 + e^v)$$

$$g_m = 82.5u/V, \Big|_{V_{TH}=0.46V}$$

- 2. 估算 V_{GS} =0.5V, 0.8V和1.1V且 V_{DS} =1.8V时, W/L=1um/0.18um 的VMOS的vgm和v0.
- **V**_{GS}=**0.5V**,弱反转区的**r**₀推导:

$$r_0 pprox rac{1}{\lambda I_{DS}} = rac{V_E \cdot L}{I_{DS}}$$
 V_{en}=40V/um

$$r_0 \approx \frac{40 \cdot 0.18}{5.5u} = 1.3M\Omega$$

• $V_{GS}=0.5V$,弱反转区的gm和 r_0 检验:

	估算 仿真	
Id	5.5u	2u
gm	82.5u	28u
r0	1.3M	11M

✓估算基本正确

• V_{GS}=1.1V,速度饱和区的gm推导:

- 2. 估算V_{GS}=0.5V,0.8V和1.1V且V_{DS}=1.8V时,W/L=1um/0.18um 的NMOS的gm和ro。
- V_{GS}=1.1V, 速度饱和区的gm推导:

$$\frac{1}{g_m} = \frac{1}{g_{m,si}} + \frac{1}{g_{m,sat}}$$

$$g_{m,si} = 2KP_n \frac{W}{L}V_{GST} = 2.67m$$
 $g_{m,sat} = WC_{OX}v_{sat} = 1m$

$$g_{m,sat} = WC_{OX}v_{sat} = 1m$$

$$g_m = 0.73m$$

- 2. 估算 V_{GS} =0.5V, 0.8V和1.1V且 V_{DS} =1.8V时, W/L=1um/0.18um 的VMOS的 g_m 和 r_0 。
- V_{GS}=1.1V, 速度饱和区的r0推导:

$$\frac{g_{m,si}}{I_D} = \frac{2}{V_{GST}}$$

$$\frac{g_{m,sat}}{I_D} = \frac{1}{V_{GST}}$$

$$I_D \approx \frac{1}{1.8} \cdot g_m \cdot V_{GST} = 260uA$$

$$r_0pprox rac{1}{\lambda I_{DS}}=rac{V_E\cdot L}{I_{DS}}$$
 $r_0pprox rac{40\cdot 0.18}{0.26m}=28K\Omega$
 $V_{en}=40V/um$

• $V_{GS}=1.1V$, 速度饱和区的gm和 r_0 检验:

	估算	仿真
Id	260u	240u
gm	730u	500u
r0	28K	62.5K

✓估算基本正确

3. 估算 V_{GS} =0.5V, 0.8V和1.1V且 V_{DS} =1.8V时, W/L=1um/0.18um 的VMOS的特征频率 f_T ,并通过AC仿真得到所求的特征频率。

$$f_T = \frac{g_m}{2\pi C_{GS}}$$

$$C_{GS} \approx \frac{2}{3} WLC_{ox}$$

≈ 2W fF/um for Lmin

$$L_{min}C_{ox} \approx L_{min} \frac{\epsilon_{ox}}{t_{ox}} \approx 50 \epsilon_{ox} \approx 2 \text{ fF/}\mu\text{m}$$

$$f_T = \frac{g_m}{4\pi \cdot 1u \cdot fF/um}$$

3. 估算 V_{GS} =0.5V, 0.8V和1.1V且 V_{DS} =1.8V时, W/L=1um/0.18um 的VMOS的特征频率 V_T ,并通过AC仿真得到所求的特征频率。

$$f_T = \frac{g_m}{4\pi \cdot 1u \cdot fF/um}$$

V _{GS}	仿真gm	算术fT	仿真fT
0.5V	28u	1.1G	12G
0.8V	420u	16.7G	36G
1.1V	500u	19.9G	41G

- ·真实的Cgs=1.3fF,比我们预估的2fF略小
- · 弱反型区中的Cgs不能用Cox类推

Homework 2

•利用仿真结果,找到我们所使用工艺的u_{0p,n}, C_{ox}, V_{THn}, V_{THp}

region = Saturati id = 12.9769uibs = -2.1864e-21ibd = -2.8580nvgs = 700.0000mvds = 1.8000vbs = 0.0000vth = 404.6616mvdsat = 261.9176mvod = 295.3384mqm = 78.3552uqds = 298.4982namb = 22.6287ucdtot = 976.9014acgtot = 7.3556fcstot = 7.8072fcbtot = 4.5240fcqs = 5.6599f

$$C_{OXn} = 8.55m$$
 \leftarrow $C_{GS} \approx \frac{2}{3}WLC_{OX}$ \rightarrow $C_{OXp} = 9.12m$

$$u_{0n} = \frac{26u}{8.55m \cdot 0.09} = 33m \iff I_D = \frac{1}{2}u_0C_{GS}\frac{W}{L}(V_{GS} - VTH)^2 \implies u_{0p} = \frac{4.94u}{9.12m \cdot 0.073} = 7.4 m$$

•利用仿真结果,找到我们所使用工艺的u_{0p,n}, C_{ox}, V_{THn}, V_{THp}

NMOS

GENERAL PARAMETERS +CALCACM = 1+LMIN = 1.5E-7+WMAX = 1.0E-4+T0X = '3.87E-09+DTOX N18' = 3.8694000E+17

```
KP_n \approx 280uA/V^2
```

```
MOBILITY PARAMETERS
+VSAT
                                 PVSAT
          = 8.2500000E+04
+LUA
          = 7.7349790E-19
                                 PUA
+UC
          = 1.2000000E-10
                                 PUC
+PRWB
                                 PRWG
          = -0.2400000
             (3.4000000E-02)*(1+0.05*Sigma)'
+U0
+A0
          = 0.8300000
                                 KETA
```

PMOS

```
GENERAL PARAMETERS
+CALCACM = 1
                               |KP_n| \approx 70uA/V^2
+LMIN
         = 1.5E-7
+WMAX
         = 1.0E-4
         = '3.74E-09+DTOX P18'
+T0X
+NCH
         = 5.5000000E+17
```

```
MOBILITY PARAMETERS
+VSAT
          = 1.0000000E+05
+PUA
                                UB
          = -2.0000000E-24
+WUC
          = 3.1668000E-17
                                PUC
+PRWB
          = -0.4000000
                                PRWG
+U0
          = (8.6610000E-03)*(1+0.05*Sigma)
          = 1.00000000
                                KETA
```

$$C_{OXn} = 8.55m$$

$$C_{GS} \approx \frac{2}{3} WLC_{OX}$$

$$C_{OXp}=9.12m$$

$$u_{0n} = \frac{26u}{8.55m \cdot 0.09} = 33m$$

$$u_{0n} = \frac{26u}{8.55m \cdot 0.09} = 33m \qquad I_D = \frac{1}{2}u_0C_{GS}\frac{W}{L}(V_{GS} - VTH)^2 \qquad u_{0p} = \frac{4.94u}{9.12m \cdot 0.073} = 7.4 m$$

$$u_{0p} = \frac{4.94u}{9.12m \cdot 0.073} = 7.4 m$$

• 通过公式描述V_B的取值范围(提示:晶体管M1-M4均需要工作 在饱和区)

$$\begin{cases} V_{DS1} > V_{GS1} - V_{TH1} \\ V_{DS3} > V_{GS3} - V_{TH3} \end{cases}$$

$$V_{GS3} + V_{GS1} - V_{TH1} < V_B < V_{GS1} + V_{TH3}$$
 $V_{GS3} - V_{TH1} < V_B - V_{GS1} < V_{TH3}$

减小VGS3以增加VB的取值范围

改变V_{GS1}以改变V_B的电势偏移

$$\P$$
 0.6 < V_B < 1

• 通过公式描述 V_B 的取值范围(提示:晶体管M1-M4均需要工作在饱和区)

• 在Cascode电流镜中,假设有寄生电容C_{par},利用公式估算并用 仿真验证该电流镜的频率特性。 (可以自由设置偏置、晶体管的

尺寸以及寄生电容)

$$f_c = \frac{g_{m4}}{2\pi \cdot (1+B) \cdot C_{par}} = 0.14GHz$$

• 在Cascode电流镜中,假设有寄生电容C_{par},利用公式估算并用 仿真验证该电流镜的频率特性。 (可以自由设置偏置、晶体管的

尺寸以及寄生电容)

$$f_c = \frac{g_{o2}}{2\pi \cdot (1+B) \cdot C_{par}} = 796kHz$$

- 假设差分对偏置电流为200uA,W/L=20um/1um,根据理论分 析和仿真验证。
 - 1. 计算g_m>99%*g_{m,max}的区间。
 - 2. 计算差分输出电流为198uA时的差分输入电压。
 - 3. 如果需要把问题2中求得的电压扩大一倍,差分对的W需要如何修改?

$$\frac{i_{Od}}{I_B} = \frac{v_{Id}}{(V_{GS}-V_T)} \sqrt{1 - \frac{1}{4} (\frac{v_{Id}}{v_{GS}-V_T})^2}$$

$$\sqrt{1 - \frac{1}{4} \left(\frac{V_{ID}}{V_{GST}}\right)^2} = 99\%$$

$$V_{ID} = 0.28 \cdot V_{GST} \qquad \qquad V_{ID} = 53m$$

$$V_{ID} = 53m$$

- 假设差分对偏置电流为200uA, W/L=20um/1um, 根据理论分析和仿真验证。
 - 1. 计算g_m>99%*g_{m,max}的区间。
 - 2. 计算差分输出电流为198uA时的差分输入电压。
 - 3. 如果需要把问题2中求得的电压扩大一倍,差分对的W需要如何修改?

$$\frac{i_{Od}}{I_{B}} = \frac{v_{Id}}{(V_{GS}-V_{T})} \sqrt{1 - \frac{1}{4} \left(\frac{v_{Id}}{v_{GS}-V_{T}}\right)^{2}}$$

$$V_{ID} = \sqrt{2} \cdot V_{GST} \quad \Longrightarrow \quad V_{ID} = 380m$$

V_{GST}扩大一倍 = 》晶体管宽长减小到原来的1/4

