

Center for Automotive Research and Sustainable Mobility

Lab Module #2

ECMS

Course schedule

Mon	Tue	Wed	Thu	Fri	Sat	Sun	
24	25	26	27	28	I	2	
3	4	5	6	7	8	9	٠
10	11	12	13	14	15	16	March
17	18	19	20	21	22	23	
24	25	26	27	28	29	30	
31	I	2	3	4	5	6	
7	8	9	10	11	12	13	April
14	15	16	17	18	19	20	A
21	22	23	24	25	26	27	
28	29	30	I	2	3	4	
5	6	7	8	9	10	11	Мау
12	13	14	15	16	17	18	Σ
19	20		22	23	24	25	
26	27	28	29	30	31	I	
2	3	4	5	6	7	8	June
9	10	11	12		14	15	

Class hours

Monday

11:30 - 14:30, Room 04AM

Thursday

Class A: 10:00 - 11:30, Room 02AM

Class B: 11:30 - 13:00, Room 02AM

Tuesday, April 29th

To be confirmed

Contacts

Lectures & lead instructor

Ezio Spessa ezio.spessa@polito.it

Lab Class A

Teacher: Federico Miretti federico.miretti@polito.it

Lab Class B

Teacher: Trentalessandro Costantino trentalessandro.costantino@polito.it

Goal

Given a function F(x), find x for which F(x) = 0. In our implementation,

- Our variable will be the equivalence factor s.
- Our function F(s) will be the final SOC deviation $\sigma(t_f) \sigma(t_0)$.

Algorithm outline

Given a function F(x), find x for which F(x) = 0.

1. Guess an interval $[a_1, b_1]$ for which $F(a_1)$ and $F(b_1)$ have opposite signs.

Algorithm outline

- 1. Guess an interval [a,b] for which F(a) and $F(b_1)$ have opposite signs.
- 2. Evaluate F at the interval midpoint c (i.e. F(c)).
- 3. If $F(c) \approx 0$, terminate; else,

Algorithm outline

- 1. Guess an interval [a,b] for which F(a) and F(b) have opposite signs.
- 2. Evaluate F at the interval midpoint c (i.e. F(c)).
- 3. If $F(c) \approx 0$, terminate; else,
- 4. Examine the sign of F(c). Replace either a or b with c.
- 5. Go to 2.

Algorithm outline

- 1. Guess an interval [a,b] for which F(a) and F(b) have opposite signs.
- 2. Evaluate F at the interval midpoint c (i.e. F(c)).
- 3. If $F(c) \approx 0$, terminate; else,
- 4. Examine the sign of F(c). Replace either a or b with c.
- 5. Go to 2.

Algorithm outline

- 1. Guess an interval [a, b] for which F(a) and F(b) have opposite signs.
- 2. Evaluate F at the interval midpoint c (i.e. F(c)).
- 3. If $F(c) \approx 0$, terminate; else,
- 4. Examine the sign of F(c). Replace either a or b with c.
- 5. Go to 2.

Algorithm outline

- 1. Guess an interval [a,b] for which F(a) and F(b) have opposite signs.
- 2. Evaluate F at the interval midpoint c (i.e. F(c)).
- 3. If $F(c) \approx 0$, terminate; else,
- 4. Examine the sign of F(c). Replace either a or b with c.
- 5. Go to 2.

Algorithm outline

- 1. Guess an interval [a,b] for which F(a) and F(b) have opposite signs.
- 2. Evaluate F at the interval midpoint c (i.e. F(c)).
- 3. If $F(c) \approx 0$, terminate; else,
- 4. Examine the sign of F(c). Replace either a or b with c.
- 5. Go to 2.

Calibrating the ECMS

- Our variable is the equivalence factor s
- Our function F(s) is the final SOC deviation: $\Psi(s) = \sigma(t_{\rm f}) \sigma(t_{\rm 0})$.
- Evaluating a $\Psi(s)$ means to run a whole simulation with the ECMS with a certain s.

• Wrap a simulation loop in a function which takes s as input and returns $\sigma_f - \sigma_0$. This is your $\Psi(s)$.

