# Finding Dense Subgraphs via Low-Rank Bilinear Optimization

**Ioannis Mitliagkas** 

**UT Austin** 

with: Dimitris Papailiopoulos

Alex Dimakis

Constantine Caramanis



Given graph and a parameter k

Find k vertices containing most edges



Given graph and a parameter k

Find

k vertices containing most edges

**Applications** 

**Community Mining** 

communities = large dense components

**Link Spam Detection** 

dense parts of web: spam

**Computational biology** 

complex patterns in gene annotation graphs



There is a **5-subgraph with 10 edges** 

Q: Can you find it?



Given graph and a parameter k

Find k vertices containing most edges

NP-hard
Hard to approximate



Given graph and a parameter k

Find k vertices containing most edges

NP-hard
Hard to approximate

[Khot, 2004]

\*Except in specific cases: [Arora et al 95]  $(1+\epsilon)$  approx. for linear subgraphs of dense graphs

# Worst-Case Analysis

### Worst-Case Analysis

$$\text{density} = \frac{2 \cdot \# \text{ edges in subgraph}}{k} \qquad \text{(av.degree)}$$
 
$$\text{Approx} \geq \frac{\text{OPT}}{\rho}$$

### Worst-Case Analysis

$$\label{eq:density} \begin{split} \text{density} &= \frac{2 \cdot \# \text{ edges in subgraph}}{k} & \quad \text{(av.degree)} \\ & \quad \text{Approx} \geq \frac{\text{OPT}}{\rho} \end{split}$$

After long effort, [Feige, 2001], [Bhaskara et al., STOC '10]

Best known ratio

$$Approx \ge \frac{OPI}{n^{0.25}}$$

10-factor approx. for graphs with 10K nodes100-factor approx. for graphs with 100 Million nodes



# Known DkS guarantees are not useful in practice... under worst case analysis

Known DkS guarantees are not useful in practice...

under worst case analysis

Q1: Provable, graph-dependent bounds?

Q2: DkS on billion-scale graphs?

### Beyond the Worst Case

#### New DkS algorithm:

Graph-dependent bounds

In practice: Approx  $\geq 0.7 \cdot OPT$ 

#### Scalable

nearly-linear times for many real-world graphs

#### **Parallelizable**

implementation in MapReduce+Python up to billion-edge graphs on 800 cores on Amazon EC2

#### Our Low-Rank Framework



DkS on a graph

- Hard to solve
- Hard to approximate

#### Our Low-Rank Framework



DkS on a graph

- Hard to solve
- Hard to approximate

DkS on constant rank graph

- Nearly-linear time solvable (!)

#### Our Low-Rank Framework



DkS on a graph

- Hard to solve
- Hard to approximate

DkS on constant rank graph

Nearly-linear time solvable (!)

Low-rank DkS is related to original DkS

# Results: Theory

## Graph-dependent Guarantees

$$\text{density} = \frac{2 \cdot \# \text{ edges in subgraph}}{k} \qquad \text{(av.degree)}$$

#### Theorems:

Algorithm computes in time  $O(n^{d+2}/\delta)$  a k-subgraph with density

$$OPT_d \ge OPT \cdot 0.5 \cdot (1 - \delta) - 2|\lambda_{d+1}|$$

## Graph-dependent Guarantees

$$\text{density} = \frac{2 \cdot \# \text{ edges in subgraph}}{k} \qquad \text{(av.degree)}$$

#### Theorems:

Algorithm computes in time  $O(n^{d+2}/\delta)$  a k-subgraph with density

$$OPT_d \ge OPT \cdot 0.5 \cdot (1 - \delta) - 2|\lambda_{d+1}|$$

#### If the largest d eigenvalues of the adjacency are positive

Our algorithm computes in time 
$$O(|E| \cdot \log n + \frac{n}{\epsilon^d})$$
 a  $k$ -subgraph with **density**

a k-subgraph with **density** 

$$OPT_d \ge OPT \cdot (1 - \epsilon) - 2|\lambda_{d+1}|$$

# Graph-dependent Guarantees

$$\text{density} = \frac{2 \cdot \# \text{ edges in subgraph}}{k} \qquad \text{(av.degree)}$$

#### Theorems:

Algorithm computes in time  $O(n^{d+2}/\delta)$  a k-subgraph with density

$$OPT_d \ge OPT \cdot 0.5 \cdot (1 - \delta) - 2|\lambda_{d+1}|$$

#### If the largest d eigenvalues of the adjacency are positive

Our algorithm computes in time 
$$O(|E| \cdot \log n + \frac{n}{\epsilon^d})$$
 a  $k$ -subgraph with **density**

a *k*-subgraph with **density** 

$$OPT_d \ge OPT \cdot (1 - \epsilon) - 2|\lambda_{d+1}|$$

larger d => better approximation, slower computation

# Performance in Practice



4M nodes, 35M edges



Blue: TPower JMLR'13 Green: GreedyFeige Algorithmica '01 Yellow: GreedyRavi OR'94

4M nodes, 35M edges



Blue: TPower JMLR'13 Green: GreedyFeige Algorithmica '01 Yellow: GreedyRavi OR'94









4M nodes, 35M edges



Blue: TPower JMLR'13 Green: GreedyFeige Algorithmica '01 Yellow: GreedyRavi OR'94

# How we do it











DkS: OPT = 
$$\max_{\mathbf{x} \in \{0, 1/\sqrt{k}\}^n} \mathbf{x}^T \mathbf{A} \mathbf{x}$$
  $\|\mathbf{x}\|_0 = k$ 

### DkS via Bilinear Optimization

DkS: OPT = 
$$\max_{\mathbf{x} \in \{0, 1/\sqrt{k}\}^n} \mathbf{x}^T \mathbf{A} \mathbf{x}$$
  $\|\mathbf{x}\|_0 = k$ 

DBkS: OPT = 
$$\max_{\mathbf{x}, \mathbf{y} \in \{0, 1/\sqrt{k}\}^n} \mathbf{x}^T \mathbf{A} \mathbf{y}$$
$$\|\mathbf{x}\|_0 = \|\mathbf{y}\|_0 = k$$

DkS: OPT = 
$$\max_{\mathbf{x} \in \{0, 1/\sqrt{k}\}^n} \mathbf{x}^T \mathbf{A} \mathbf{x}$$
  $\|\mathbf{x}\|_0 = k$ 

DBkS: OPT = 
$$\max_{\mathbf{x}, \mathbf{y} \in \{0, 1/\sqrt{k}\}^n} \mathbf{x}^T \mathbf{A} \mathbf{y}$$
  $\|\mathbf{x}\|_0 = \|\mathbf{y}\|_0 = k$ 

DkS: OPT = 
$$\max_{\mathbf{x} \in \{0, 1/\sqrt{k}\}^n} \mathbf{x}^T \mathbf{A} \mathbf{x}$$
  $\|\mathbf{x}\|_0 = k$ 

DBkS: OPT = 
$$\max_{\mathbf{x}, \mathbf{y} \in \{0, 1/\sqrt{k}\}^n} \mathbf{x}^T \mathbf{A} \mathbf{y}$$
  
 $\|\mathbf{x}\|_0 = \|\mathbf{y}\|_0 = k$ 

#### Lemma:

 $\rho$ -approximation for DBkS =  $\frac{1}{2}\rho$ -approximation for DkS

DkS: OPT = 
$$\max_{\mathbf{x} \in \{0, 1/\sqrt{k}\}^n} \mathbf{x}^T \mathbf{A} \mathbf{x}$$
  $\|\mathbf{x}\|_0 = k$ 

DBkS: OPT = 
$$\max_{\mathbf{x}, \mathbf{y} \in \{0, 1/\sqrt{k}\}^n} \mathbf{x}^T \mathbf{A} \mathbf{y}$$
$$\|\mathbf{x}\|_0 = \|\mathbf{y}\|_0 = k$$



DBkS: 
$$\mathsf{OPT}_d = \max_{\substack{\mathbf{x}, \mathbf{y} \in \{0, 1/\sqrt{k}\}^n \\ \|\mathbf{x}\|_0 = \|\mathbf{y}\|_0 = k}} \mathbf{x}^T \mathbf{A}_d \mathbf{y}$$

DBkS: 
$$\mathsf{OPT}_d = \max_{\substack{\mathbf{x}, \mathbf{y} \in \{0, 1/\sqrt{k}\}^n \\ \|\mathbf{x}\|_0 = \|\mathbf{y}\|_0 = k}} \mathbf{x}^T \mathbf{A}_d \mathbf{y}$$



DBkS: 
$$\mathsf{OPT}_d = \max_{\substack{\mathbf{x}, \mathbf{y} \in \{0, 1/\sqrt{k}\}^n \\ \|\mathbf{x}\|_0 = \|\mathbf{y}\|_0 = k}} \mathbf{x}^T \mathbf{A}_d \mathbf{y}$$



DBkS: 
$$\mathsf{OPT}_d = \max_{\substack{\mathbf{x}, \mathbf{y} \in \{0, 1/\sqrt{k}\}^n \\ \|\mathbf{x}\|_0 = \|\mathbf{y}\|_0 = k}} \mathbf{x}^T \mathbf{A}_d \mathbf{y}$$



Efficiently solvable

#### How the Low-Rank Solver Works

Naïvely:

Check all  $\binom{n}{k}$  subgraphs

Rank-1 case:

$$\mathbf{A}_1 = \mathbf{v}\mathbf{v}^T$$

• Maximize the product of two numbers

$$\max_{\mathbf{x},\mathbf{y}\in\{0,1\}^n} (\mathbf{x}^T\mathbf{v}) \cdot (\mathbf{v}^T\mathbf{y})$$
$$\|\mathbf{x}\|_0 = \|\mathbf{y}\|_0 = k$$

A: Maximize each number individually

#### How the Rank-1 Solver Works

$$\max_{\substack{\mathbf{x},\mathbf{y}\in\{0,1\}^n\\\|\mathbf{x}\|_0=\|\mathbf{y}\|_0=k}} (\mathbf{x}^T)^{\frac{1}{2}}) \cdot (^{\frac{1}{2}}_{\mathbf{y}}^T\mathbf{y})$$

**top-k set**: the k-largest coordinates of a vector, e.g., if k = 2, then top-2 set =  $\{3,4\}$ 

**Intuition**: *x, y* pick the top-k set of *v*.

#### How the Rank-2 Solver Works

**Intuition**: x, y pick the top-k set of a vector from a 2-dimensional span.

Q: How many top-k sets are there in a 2-dimensional span?

Based on Spannogram [Asteris, Papail., Karystinos, ISIT2011]

Theorem: # top-k sets in a d-dimensional span:  $\binom{d}{\frac{d}{n}}\binom{n}{d} = O(n^d)$ 

$$\binom{d}{\frac{d}{2}} \binom{n}{d} = O(n^d)$$

Spannogram: Traverses all of them efficiently

#### How the Rank-2 Solver Works



**Intuition**: x, y pick the top-k set of a vector from a 2-dimensional span.

#### Randomized algorithm

Take random points:  $s_1,\ldots,s_{1/\epsilon^d}\in\operatorname{span}(v_1,\ldots,v_d)$ 

#### How the Rank-2 Solver Works



**Intuition**: x, y pick the top-k set of a vector from a 2-dimensional span.

#### Randomized algorithm

Take random points:  $s_1,\ldots,s_{1/\epsilon^d}\in \operatorname{span}(v_1,\ldots,v_d)$ 

Practically linear time

# Implementation

## MapReduce Implementation

```
def spannogram_mapper(self, coordinate, values):
    i = coordinate
    for j in range(int(self.options.rowcount)):
        vield i, values
def spannogram reducer(self, coordinate, values):
    k = 5
    V = list(values)
    i = coordinate
    Vc = []
    opt_support = [];
    opt metric = 0;
    for j in range(i+1, int(self.options.rowcount)):
        Vc = []
        Vtemp = []
        # compute c_ij intersection vector
        x = [V[i][l]-V[j][l] for l in range(2)]
        # cumpute v_ij = Vc_ij
        Vc = [V[l][0] *x[1] - V[1][1] *x[0]  for l in range(int(self.options.rowcount))]
        # find top and bottom support
        top_support_pos = zip(*heapq.nlargest(k, enumerate(Vc), key=operator.itemgetter(1)))[0]
        top support neg = zip(*heapq.nsmallest(k, enumerate(Vc), key=operator.itemgetter(1)))[0]
        # compute support metric
        Vtemp = [V[s] for s in top_support_pos]
        metric_pos = sum([x**2 for x in [sum(a) for a in zip(*Vtemp)]])
        Vtemp = []
        Vtemp = [V[s] for s in top_support_neg]
        metric_neg = sum([x**2 for x in [sum(a) for a in zip(*Vtemp)]])
        # find locally optimal support
        metric_list = [opt_metric, metric_pos, metric_neg]
        metric index = metric list.index(max(metric list))
        opt_support = [opt_support, top_support_pos, top_support_neg][metric_index]
        opt_metric = max(metric_list)
        vield i, [opt metric, opt support]
```

## MapReduce Implementation

```
def spannogram_mapper(self, coordinate, values):
   i = coordinate
   for j in range(int(self.options.rowcount)):
      yield j, values
def spannogram reducer(self, coordinate, values):
   k = 5
   V = list(values)
   i = coordinate
   opt support = [];
        # cumpute v ii = Vc ii
      Vc = [V[l][0]*x[1]-V[l][1]*x[0]  for l in range(int(self.options.rowcount))]
      # find top and bottom support
       top_support_pos = zip(*heapq.nlargest(k, enumerate(Vc), key=operator.itemgetter(1)))[0]
       top_support_neg = zip(*heapq.nsmallest(k, enumerate(Vc), key=operator.itemgetter(1)))[0]
      # compute support metric
```

```
Vc = [V[l][0]*x[1]-V[l][1]*x[0] for l in range(int(self.options.rowcount))]
# find top and bottom support
top_support_pos = zip(*heapq.nlargest(k, enumerate(Vc), key=operator.itemgetter(1)))[0]
top_support_neg = zip(*heapq.nsmallest(k, enumerate(Vc), key=operator.itemgetter(1)))[0]
# compute support metric
Vtemp = [V[s] for s in top_support_pos]
metric_pos = sum([x**2 for x in [sum(a) for a in zip(*Vtemp)]])
Vtemp = []
Vtemp = [V[s] for s in top_support_neg]
metric_neg = sum([x**2 for x in [sum(a) for a in zip(*Vtemp)]])
# find locally optimal support
metric_list = [opt_metric, metric_pos, metric_neg]
metric_index = metric_list.index(max(metric_list))
opt_support = [opt_support, top_support_pos, top_support_neg][metric_index]
opt_metric = max(metric_list)

yield i, [opt_metric, opt_support]
```

### Billion-scale Graphs



New combinatorial approx. algorithm for DkS.

New combinatorial approx. algorithm for DkS.

Graph-dependent spectral bounds:
 OPT within 70% in most experiments.

New combinatorial approx. algorithm for DkS.

Graph-dependent spectral bounds:
 OPT within 70% in most experiments.

Bound could be trivial in the worst case.

- New combinatorial approx. algorithm for DkS.
- Graph-dependent spectral bounds:
   OPT within 70% in most experiments.
- Bound could be trivial in the worst case.
- Empirically outperforms previous state of the art

- New combinatorial approx. algorithm for DkS.
- Graph-dependent spectral bounds:
   OPT within 70% in most experiments.
- Bound could be trivial in the worst case.
- Empirically outperforms previous state of the art

- New combinatorial approx. algorithm for DkS.
- Graph-dependent spectral bounds:
   OPT within 70% in most experiments.
- Bound could be trivial in the worst case.
- Empirically outperforms previous state of the art
- Highly scalable implementation

# Thank you

#### References

- Amazon Web Services, Elastic Map Reduce. URL http://aws.amazon.com/elasticmapreduce/.
- MRJob. URL http://pythonhosted.org/mrjob/.
- Ames, Brendan PW. Convex relaxation for the planted clique, biclique, and clustering problems. PhD thesis, University of Waterloo, 2011.
- Arora, Sanjeev, Karger, David, and Karpinski, Marek. Polynomial time approximation schemes for dense instances of np-hard problems. In STOC, 1995.
- Asahiro, Yuichi, Iwama, Kazuo, Tamaki, Hisao, and Tokuyama, Takeshi. Greedily finding a dense subgraph. Journal of Algorithms, 34(2):203–221, 2000.
- Asteris, Megasthenis, Papailiopoulos, Dimitris S, and Karystinos, George N. Sparse principal component of a rank-deficient matrix. In *IEEE ISIT 2011*.
- Bahmani, Bahman, Kumar, Ravi, and Vassilvitskii, Sergei. Densest subgraph in streaming and mapreduce. Proceedings of the VLDB Endowment, 5(5):454-465, 2012.
- Bhaskara, Aditya, Charikar, Moses, Chlamtac, Eden, Feige, Uriel, and Vijayaraghavan, Aravindan. Detecting high log-densities: an O(n<sup>1/4</sup>) approximation for densest k-subgraph. In STOC, 2010.
- Boutsidis, Christos, Mahoney, Michael W, and Drineas, Petros. An improved approximation algorithm for the column subset selection problem. In Proceedings of the twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 968–977. Society for Industrial and Applied Mathematics, 2009.
- Cormen, Thomas H, Leiserson, Charles E, Rivest, Ronald L, and Stein, Clifford. Introduction to algorithms. MIT press, 2001.
- d'Aspremont, Alexandre et al. Weak recovery conditions using graph partitioning bounds. 2010.
- Dourisboure, Yon, Geraci, Filippo, and Pellegrini, Marco. Extraction and classification of dense communities in the web. In WWW, 2007.
- Feige, Uriel and Langberg, Michael. Approximation algorithms for maximization problems arising in graph partitioning. *Journal of Algorithms*, 41(2):174–211, 2001.
- Feige, Uriel, Peleg, David, and Kortsarz, Guy. The dense k-subgraph problem. Algorithmica, 29(3):410–421, 2001.
- Gibson, David, Kumar, Ravi, and Tomkins, Andrew. Discovering large dense subgraphs in massive graphs. In PVLDB, 2005.
- Gittens, Alex, Kambadur, Prabhanjan, and Boutsidis, Christos. Approximate spectral clustering via randomized sketching. arXiv preprint arXiv:1311.2854, 2013.
- Halko, Nathan, Martinsson, Per-Gunnar, and Tropp, Joel A. Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions. SIAM review, 53(2):217–288, 2011.

- Hu, Haiyan, Yan, Xifeng, Huang, Yu, Han, Jiawei, and Zhou, Xianghong Jasmine. Mining coherent dense subgraphs across massive biological networks for functional discovery. *Bioinformatics*, 21(suppl 1):i213-i221, 2005.
- Jethava, Vinay, Martinsson, Anders, Bhattacharyya, Chiranjib, and Dubhashi, Devdatt. The lovasz theta function, svms and finding large dense subgraphs. In NIPS, 2012.
- Karystinos, George N and Liavas, Athanasios P. Efficient computation of the binary vector that maximizes a rankdeficient quadratic form. IEEE Trans. IT, 56(7):3581– 3593, 2010.
- Khot, Subhash. Ruling out ptas for graph min-bisection, densest subgraph and bipartite clique. In FOCS, 2004.
- Lin, Jimmy and Schatz, Michael. Design patterns for efficient graph algorithms in mapreduce. In Proceedings of the Eighth Workshop on Mining and Learning with Graphs, pp. 78–85. ACM, 2010.
- Mahoney, Michael W and Drineas, Petros. Cur matrix decompositions for improved data analysis. Proceedings of the National Academy of Sciences, 106(3):697–702, 2009.
- Meng, Xiangrui and Mahoney, Michael W. Robust regression on mapreduce. ICML 2013, (to appear).
- Miller, B, Bliss, N, and Wolfe, P. Subgraph detection using eigenvector 11 norms. In NIPS, 2010.
- Papailiopoulos, Dimitris S, Dimakis, Alexandros G, and Korokythakis, Stavros. Sparse pca through low-rank approximations. arXiv preprint arXiv:1303.0551, 2013.
- Ravi, Sekharipuram S, Rosenkrantz, Daniel J, and Tayi, Giri K. Heuristic and special case algorithms for dispersion problems. *Operations Research*, 42(2):299–310, 1994.
- Rokhlin, Vladimir, Szlam, Arthur, and Tygert, Mark. A randomized algorithm for principal component analysis. SIAM Journal on Matrix Analysis and Applications, 31 (3):1100–1124, 2009.
- Saha, Barna, Hoch, Allison, Khuller, Samir, Raschid, Louiqa, and Zhang, Xiao-Ning. Dense subgraphs with restrictions and applications to gene annotation graphs. In Research in Computational Molecular Biology, pp. 456–472. Springer, 2010.
- Srivastav, Anand and Wolf, Katja. Finding dense subgraphs with semidefinite programming. Springer, 1998.
- Suzuki, Akiko and Tokuyama, Takeshi. Dense subgraph problems with output-density conditions. In Algorithms and Computation, pp. 266–276. Springer, 2005.
- Wyner, Aaron D. Random packings and coverings of the unit n-sphere. Bell System Technical Journal, 46(9): 2111–2118, 1967.
- Yuan, Xiao-Tong and Zhang, Tong. Truncated power method for sparse eigenvalue problems. arXiv preprint arXiv:1112.2679, 2011.

# Backup slides

## Other experiments



## Randomized Algorithm

Step 1

Take random points:  $s_1,\ldots,s_{1/\epsilon^d}\in \operatorname{span}(v_1,\ldots,v_d)$ 

Step 2

Find largest k entries:

 $\mathrm{top}_k(\mathbf{s}_i)$ 

Step 3

Compute density of corresponding subgraph

## Randomized Algorithm

Step 1

Take random points:  $s_1,\ldots,s_{1/\epsilon^d}\in \operatorname{span}(v_1,\ldots,v_d)$ 

Step 2

Find largest k entries:

 $\mathrm{top}_k(\mathbf{s}_i)$ 

Step 3

Compute density of corresponding subgraph

Practically linear time