1 Group 3

1 Task 1

1.1

1.1.1

Finding the first order price sensitivity of Lower Bound of Arithmetic and Geometric Asian options using likelihood ratio method. The LR formulation is given as

$$\mu_{C,\theta} = \mathbb{E}_{\theta} (C)$$

$$= \mathbb{E}_{\theta} (f (S))$$

$$= \int_{R^n} f(s) ds$$

$$\mu'_{C,\theta} = \int_{R^n} f(s) \frac{d g_{\theta} (s)}{d\theta} ds$$

by multiplying and dividing $g_{\theta}(s)$ the expectation expression is obtained

$$\int_{R^{n}} f(s) \frac{d g_{\theta}(s)}{d \theta} \frac{1}{g_{\theta}(s)} g_{\theta}(s) ds = \mathbb{E}_{\theta} \left(f(S) \frac{d g_{\theta}(S)}{d \theta} \frac{1}{g_{\theta}(S)} \right)$$
$$= \mathbb{E}_{\theta} \left(f(S) \frac{d \ln g_{\theta}(S)}{d \theta} \right)$$

using the above expression, we take the expected value of the product of the discounted payoff function and the score as the LR first order sensitivity respected to S_0 . We have the discounted payoff functions for the arithmetic Asian option Lower Bound and for the geometric Asian option in below.

$$LB_{n} = e^{-rT} \left(\frac{1}{n} \sum_{k=1}^{n} S_{k} - K \right) \mathbb{1}_{\left(\prod_{k=1}^{n} S_{k}\right)^{\frac{1}{n}} > K}$$

$$G_{n} = e^{-rT} \max \left(\left(\prod_{k=1}^{n} S_{k}\right)^{\frac{1}{n}} - K, 0 \right)$$

the score for computing an Asian option delta is given as

$$\frac{d \ln g_{S_0}(S_1,....,S_n)}{dS_0} = \frac{\xi (S_1|S_0)}{S_0 \sigma \sqrt{t_1}}$$

$$\mu'_{LB,S_0} = \mathbb{E}_{S_0} \left(e^{-rT} \left(\frac{1}{n} \sum_{k=1}^n S_k - K \right) \mathbb{1}_{\left(\prod_{k=1}^n S_k\right)^{\frac{1}{n}} > K} \cdot \frac{\xi \left(S_1 | S_0 \right)}{S_0 \sigma \sqrt{t_1}} \right)$$

$$= \mathbb{E}_{S_0} \left(e^{-rT} \left(\frac{1}{n} \sum_{k=1}^n S_k - K \right) \mathbb{1}_{\left(\prod_{k=1}^n S_k\right)^{\frac{1}{n}} > K} \cdot \frac{\ln \frac{S_1}{S_0} - \left(r - \frac{1}{2}\sigma^2\right) (t_1 - t_0)}{\sigma \sqrt{t_1 - t_0} S_0 \sigma \sqrt{t_1}} \right)$$

$$\mu'_{G,S_0} = \mathbb{E}_{S_0} \left(e^{-rT} \left(\left(\prod_{k=1}^n S_k \right)^{\frac{1}{n}} - K \right)^{+} \cdot \frac{\xi \left(S_i | S_{i-1} \right)}{S_0 \sigma \sqrt{t_1}} \right)$$

2 Group 3

1.1.2

No, as shown above, the lower bound payoff is discontinuous at $(\prod_{k=1}^n S_k)^{\frac{1}{n}} = K$. Such that it is not possible to obtain the PW estimator. LR first order sensitivity estimator should be used instead.

1.2

The exact closed formed solutions for the expected Lower Bound and the Geometric payoff are given

$$\mathbb{E}(LB_n) = \frac{S_0 e^{-rT}}{n} \sum_{k=1}^n e^{\mu_k + \sigma_k^2} \cdot \mathcal{N}(b + a_k) - K e^{-rT} \cdot \mathcal{N}(b)$$

$$\mathbb{E}(G_n) = S_0 e^{\left(r - \frac{\sigma^2}{2} + \frac{\hat{\sigma}^2}{2}\right)\hat{T} - rT} \cdot \mathcal{N}(d) - K e^{-rT} \cdot \mathcal{N}\left(d - \hat{\sigma}\sqrt{\hat{T}}\right)$$

by taking the derivative respected to S_0

$$\begin{split} \frac{d\mathbb{E}\left(LB_{n}\right)}{dS_{0}} &= \frac{e^{-rT}}{n} \sum_{k=1}^{n} e^{\mu_{k} + \sigma_{k}^{2}} \cdot \mathcal{N}\left(b + a_{k}\right) + \frac{S_{0}e^{-rT}}{n} \sum_{k=1}^{n} e^{\mu_{k} + \sigma_{k}^{2}} \cdot \phi\left(b + a_{k}\right) \cdot \frac{1}{S_{0}} \frac{1}{\hat{\sigma}\sqrt{\hat{T}}} \\ &- Ke^{-rT} \cdot \phi\left(b\right) \cdot \frac{1}{S_{0}} \frac{1}{\hat{\sigma}\sqrt{\hat{T}}} \\ &= \frac{e^{-rT}}{n} \sum_{k=1}^{n} e^{\mu_{k} + \sigma_{k}^{2}} \cdot \mathcal{N}\left(b + a_{k}\right) + \frac{e^{-rT}}{n} \sum_{k=1}^{n} e^{\mu_{k} + \sigma_{k}^{2}} \cdot \phi\left(b + a_{k}\right) \cdot \frac{1}{\hat{\sigma}\sqrt{\hat{T}}} \\ &- Ke^{-rT} \cdot \phi\left(b\right) \cdot \frac{1}{S_{0}} \frac{1}{\hat{\sigma}\sqrt{\hat{T}}} \end{split}$$

$$\begin{split} \frac{dG_n}{dS_0} &= e^{\left(r - \frac{\sigma^2}{2} + \frac{\hat{\sigma}^2}{2}\right)\hat{T} - rT} \cdot \mathcal{N}\left(d\right) + S_0 e^{\left(r - \frac{\sigma^2}{2} + \frac{\hat{\sigma}^2}{2}\right)\hat{T} - rT} \phi\left(d\right) \frac{1}{S_0} \frac{1}{\hat{\sigma}\sqrt{\hat{T}}} \\ &- K e^{-rT} \cdot \phi\left(d - \hat{\sigma}\sqrt{\hat{T}}\right) \cdot \frac{1}{S_0} \frac{1}{\hat{\sigma}\sqrt{\hat{T}}} \\ &= e^{\left(r - \frac{\sigma^2}{2} + \frac{\hat{\sigma}^2}{2}\right)\hat{T} - rT} \cdot \mathcal{N}\left(d\right) + e^{\left(r - \frac{\sigma^2}{2} + \frac{\hat{\sigma}^2}{2}\right)\hat{T} - rT} \phi\left(d\right) \frac{1}{\hat{\sigma}\sqrt{\hat{T}}} \\ &- K e^{-rT} \cdot \phi\left(d - \hat{\sigma}\sqrt{\hat{T}}\right) \cdot \frac{1}{S_0} \frac{1}{\hat{\sigma}\sqrt{\hat{T}}} \end{split}$$

where \mathcal{N} is the normal cdf and ϕ is the normal pdf.