VE 320 Fall 2021

Introduction to Semiconductor Devices

Instructor: Rui Yang (杨睿)

Office: JI Building 434

rui.yang@sjtu.edu.cn

Lecture 12

MOSFET (Chapter 10 & 11)

MOS capacitor and MOSFET

Metal-Oxide-Semiconductor field effect transistor: MOSFET

MOS capacitor and MOSFET

Metal-Oxide-Semiconductor field effect transistor: MOSFET

- First MOSFET patents: Julius Lilienfeld (early 1930s)
- This invalidated most of Bardeen, Brattain and Shockley's transistor patent claims in the late 1940s!
- But the MOSFET did not work in practice until the 1960s. Why?

MOSFET

Different types of MOSFETs:

n-channel enhancement mode MOSFET

n-channel depletion mode MOSFET

MOSFET

Different types of MOSFETs:

p-channel enhancement mode MOSFET

p-channel depletion mode MOSFET

Metal-Oxide-Semiconductor field effect transistor: MOSFET

Metal-oxide-semiconductor (MOS)

Metal-Oxide-Semiconductor field effect transistor: MOSFET

$$V_{\rm GS} < V_{\rm T}$$

Nearly zero current

Like a resistor: ideally (good contact)

$$I_D = g_d V_{DS}$$

$$g_d = rac{W}{L} \cdot \mu_n \left| Q_n' \right|$$

 $\mu_{\rm n}$: mobility of the electrons in the inversion layer $|Q_{\rm n}|$: magnitude of the inversion layer charge per unit area

 $V_{GS2} > V_{GS1}$ $V_{GS1} > V_{T}$ $V_{GS} < V_{T}$

 V_{DS}

 $V_{\rm GS} > V_{\rm T}$, small $V_{\rm DS}$

Like a resistor: ideally (good contact)

$$I_D = g_d V_{DS}$$

$$g_d = \frac{W}{L} \cdot \mu_n |Q'_n|$$

Metal-Oxide-Semiconductor field effect transistor: p-type MOSFET

P-type MOSFET

Metal-Oxide-Semiconductor field effect transistor: P MOSFET

P-type MOSFET

Metal-Oxide-Semiconductor field effect transistor: MOSFET

Complementary Metal-oxide-semiconductor (CMOS) field effect transistors

The MOSFET as a Controlled Resistor

- The MOSFET behaves as a resistor when V_{DS} is low:
 - \square Drain current I_D increases linearly with V_{DS}
 - \square Resistance R_{DS} between SOURCE & DRAIN depends on V_{GS}

■ R_{DS} is lowered as V_{GS} increases above V_T oxide thickness = t_{ox} NMOSFET Example: $V_{GS} = 2 \text{ V}$ $V_{GS} = 1 \text{ V} > V_T$ $V_{GS} = 1 \text{ V} > V_T$

 $I_{DS} = 0$ if $V_{GS} < V_T$

Inversion charge density $Q_{l}(x) = -C_{ox}[V_{GS}-V_{T}-V(x)]$ where $C_{ox} \equiv \varepsilon_{ox} / t_{ox}$

Sheet Resistance Revisited

Consider a sample of n-type semiconductor:

where Q_n is the charge per unit area

NMOSFET I_D vs. V_{DS} Characteristics

Next consider I_D (flowing into \overline{D}) versus V_{DS} , as V_{GS} is varied:

Above threshold ($V_{GS} > V_T$): "inversion layer" of electrons

appears, so conduction between **S** and **D** is possible

Below "threshold" ($V_{GS} < V_T$): no charge \rightarrow no conduction

$$V_{DS}(\text{sat}) = V_{GS} - V_T$$

$$V_{\rm DS} > V_{\rm DS}({\rm sat})$$

The region of the I_D versus V_{DS} characteristic is referred to as the *saturation region*

n-channel enhancement mode

n-channel depletion mode

Before saturation

MOSFET as a Controlled Resistor (cont'd)

$$I_D = \frac{V_{DS}}{R_{DS}}$$

$$R_{DS} = R_s(L/W) = \frac{L/W}{\mu_n Q_i} = \frac{L/W}{\mu_n C_{ox} (V_{GS} - V_T - \frac{V_{DS}}{2})}$$

$$I_{D} = \mu_{n} C_{ox} \frac{W}{L} (V_{GS} - V_{T} - \frac{V_{DS}}{2}) V_{DS}$$

average value of V(x)

We can make R_{DS} low by

- applying a large "gate drive" $(V_{GS} V_T)$
- making W large and/or L small

Before saturation

$$I_D = \frac{k'_n}{2} \cdot \frac{W}{L} \cdot \left[2(V_{GS} - V_T)V_{DS} - V_{DS}^2 \right]$$

$$k'_n = \mu_n C_{ox}$$

is called the process conduction parameter for the n-channel MOSFET, unit: A /V²

$$I_D = K_n \left[2(V_{GS} - V_T)V_{DS} - V_{DS}^2 \right]$$

$$K_n = (W\mu_n C_{ox})/2L = (k'_n/2) \cdot (W/L)$$

is called the conduction parameter for the n-channel MOSFET, unit: A /V2

What Happens at Larger V_{DS} ?

Inversion-layer is "pinched-off" at the drain end

As V_{DS} increases above $V_{GS} - V_T \equiv V_{DSAT}$

the length of the "pinch-off" region ΔL increases:

- "extra" voltage $(V_{DS} V_{Dsat})$ is dropped across the distance ΔL
- the voltage dropped across the inversion-layer "resistor" remains $V_{\scriptscriptstyle Dsat}$

 \Rightarrow the drain current I_D saturates

Note: Electrons are swept into the drain by the E-field when they enter the pinch-off region.

What Happens at Larger V_{DS} ?

Inversion-layer is "pinched-off" at the drain end

As V_{DS} increases above $V_{GS} - V_T \equiv V_{DSAT}$

$$I_D = \mu_n C_{ox} \frac{W}{L} \left(V_{GS} - V_T - \frac{1}{2} V_{DS} \right) V_{DS}$$
 I_D will not increase after $V_{ds} \ge V_{gs} - V_T$

$$I_D = \mu_n C_{ox} \frac{W}{L} \left(V_{GS} - V_T - \frac{1}{2} V_{DS} \right) V_{DS} = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_T) (V_{GS} - V_T)$$

- When V_{DS} > V_{GS} V_T the un-inverted (drain depletion) region increases, as does the pinch-off region
- Any increase in V_{DS}:
 - Reduces the amount of inversion charge, but...
 - Increases the lateral field (charge velocity)
- The two effects cancel each other out, so at high V_{DS} the drain current is no longer a function of V_{DS}! The current <u>saturates</u> to a value only dependent on V_{GS} (i.e. charge).
- Putting in $V_{DS} = V_{GS} V_{T}$ (the pinch-off, i.e. saturation condition) in the previous equation:

$$I_D = \frac{W\mu_n C_{\text{ox}}}{2L} (V_{GS} - V_T)^2$$

Why is this desirable?

- When $V_{DS} > V_{GS} V_{T}$ the un-inverted (drain depletion) region increases, as does the pinch-off region
- Any increase in V_{DS}:
 - Reduces the amount of inversion charge, but...
 - Increases the lateral field (charge velocity)
- The two effects cancel each other out, so at high V_{DS} the drain current is no longer a function of V_{DS}! The current <u>saturates</u> to a value only dependent on V_{GS} (i.e. charge).
- Putting in $V_{DS} = V_{GS} V_{T}$ (the pinch-off, i.e. saturation condition) in the previous equation:

$$I_D = \frac{W\mu_n C_{\text{ox}}}{2L} (V_{GS} - V_T)^2$$

Why is this desirable? Voltage gain, dV_{DS}/dI_{D} , because small changes in I_{D} cause large swings in V_{DS}

Why electrons can pass through the "pinch-off" region

Summary of I_D vs. V_{DS}

- As V_{DS} increases, the inversion-layer charge density at the drain end of the channel is reduced; therefore, I_D does not increase linearly with V_{DS}.
- When V_{DS} reaches V_{GS} V_T, the channel is "pinched off" at the drain end, and I_D saturates (i.e. it does not increase with further increases in V_{DS}).

$$\int_{D} I_{DSAT} = \mu_n C_{ox} \frac{W}{2L} (V_{GS} - V_T)^2$$

I_D vs. V_{DS} Characteristics

The MOSFET I_D - V_{DS} curve consists of two regions:

1) Resistive or "Triode" Region: $0 < V_{DS} < V_{GS} - V_{T}$

$$I_D = k_n' \frac{W}{L} \left[V_{GS} - V_T - \frac{V_{DS}}{2} \right] V_{DS}$$
 where $k_n' = \mu_n C_{ox}$

process transconductance parameter

2) Saturation Region:

$$V_{DS} > V_{GS} - V_{T}$$

$$I_{DSAT} = \frac{k'_n}{2} \frac{W}{L} (V_{GS} - V_T)^2$$
 where $k'_n = \mu_n C_{ox}$

$$I_D = K_n (V_{GS} - V_T)^2$$

Transconductance (transistor gain): the change in drain current with respect to the corresponding change in gate voltage

$$g_m = \frac{\partial I_D}{\partial V_{GS}}$$

n-channel MOSFET operating in the nonsaturation region

$$g_{mL} = \frac{\partial I_D}{\partial V_{GS}} = \frac{W \mu_n C_{\text{ox}}}{L} \cdot V_{DS}$$

The transconductance increases linearly with $V_{\rm DS}$ but is independent of $V_{\rm GS}$ in the nonsaturation region

n-channel MOSFET operating in the saturation region

$$g_{ms} = \frac{\partial I_D(\text{sat})}{\partial V_{GS}} = \frac{W\mu_n C_{\text{ox}}}{L} (V_{GS} - V_T)$$

The transconductance increases linearly with $V_{\rm GS}$ but is independent of $V_{\rm DS}$ in the saturation region

The transconductance is a function of the geometry of the device as well as of carrier mobility and threshold voltage

- What is the "effective mobility" µ_{eff} in the MOSFET channel?
- Can we look it up in the bulk-silicon charts?
- Scattering mechanisms affecting mobility in channel:
 - Charged impurity (Coulomb) scattering
 - Lattice vibration (phonon) scattering
 - Surface roughness scattering

At small V_{DS} :

$$I_D = \frac{W\mu_n C_{\text{ox}}}{L} (V_{GS} - V_T) V_{DS}$$

What is the "effective mobility" μ_{eff} in the MOSFET channel?

At small V_{DS} :

$$I_D = \frac{W\mu_n C_{\text{ox}}}{L} (V_{GS} - V_T) V_{DS}$$

Mobility changes with gate voltage, here, mobility decreases at large V_{GS}

Extrapolation to zero current: threshold

voltage

Slope: proportional to mobility

P- channel device:

Enhancement mode

At small V_{DS} : (nonsaturation region)

$$I_D = \frac{W\mu_p C_{\text{ox}}}{2L} [2(V_{SG} + V_T)V_{SD} - V_{SD}^2]$$

At large V_{DS} : (saturation region)

$$I_D(\text{sat}) = \frac{W\mu_p C_{\text{ox}}}{2L} (V_{SG} + V_T)^2$$

Substrate bias:

Substrate bias:

 $V_{\rm SB}$ can not be negative

 $V_{\rm SB}$ =0, at inversion point

Substrate bias:

 $V_{\rm SB}$ >0, at inversion point

Substrate bias:

$V_{SB} > 0$:

The newly created electrons have higher potential energy than the electrons in the source, so will move laterally and flow out of the source terminal.

Inversion condition
$$\phi_s = 2\phi_{fp} + V_{SB}$$

Space charge width increase Threshold voltage increases

$$Q_{SD}'\left(\max\right) = -eN_{a}x_{dT} = -\sqrt{2e\epsilon_{s}N_{a}(2\phi_{fp})} \qquad \text{For } V_{\text{SB}} = 0$$

$$Q_{SD}' = -eN_{a}x_{d} = -\sqrt{2e\epsilon_{s}N_{a}(2\phi_{fp} + V_{SB})} \qquad \text{For } V_{\text{SB}} > 0$$

The change in the space charge density

$$\Delta Q_{SD}' = -\sqrt{2e\epsilon_s}\,\overline{N_a}\big[\sqrt{2\phi_{fp}+V_{SB}}-\sqrt{2\phi_{fp}}\big]$$

The change in threshold voltage $\Delta V_T = -\frac{\Delta Q_{SD}'}{C_{\mathrm{ox}}} = \frac{\sqrt{2e\epsilon_s N_a}}{C_{\mathrm{ox}}} \left[\sqrt{2\phi_{\mathit{fp}} + V_{\mathit{SB}}} - \sqrt{2\phi_{\mathit{fp}}} \right]$

Substrate bias:

The increase in threshold voltage

$$\Delta V_T = V_T (V_{SB} > 0) - V_T (V_{SB} = 0)$$

$$\Delta V_T = -\frac{\Delta Q_{SD}'}{C_{\text{ox}}} = \frac{\sqrt{2e\epsilon_s N_a}}{C_{\text{ox}}} \left[\sqrt{2\phi_{fp} + V_{SB}} - \sqrt{2\phi_{fp}} \right]$$

Define body-effect coefficient

$$\gamma = \frac{\sqrt{2e\epsilon_s N_a}}{C_{ox}}$$

$$\Delta V_T = \gamma \left[\sqrt{2\phi_{fp} + V_{SB}} - \sqrt{2\phi_{fp}} \right]$$

Body-effect coefficient
$$\gamma = \frac{\sqrt{2e\epsilon_s N_a}}{C_{ox}}$$

$$\Delta V_T = \gamma \left[\sqrt{2\phi_{fp} + V_{SB}} - \sqrt{2\phi_{fp}} \right]$$

