## **Record of Revision**

|         | 1              |      |                  |
|---------|----------------|------|------------------|
| Version | Revise<br>Date | Page | Content          |
| V01     | 2014/09/12     | ALL  | Initial Release. |
|         |                |      |                  |
|         |                |      |                  |
|         |                |      |                  |
|         |                |      |                  |
|         |                |      |                  |
|         |                |      |                  |
|         |                |      |                  |
|         |                |      |                  |
|         |                |      |                  |
|         |                |      |                  |
|         |                |      |                  |
|         |                |      |                  |
|         |                |      |                  |
|         |                |      |                  |
|         |                |      |                  |
|         |                |      |                  |
|         |                |      |                  |
|         |                |      |                  |
|         |                |      |                  |
|         |                |      |                  |
|         |                |      |                  |
|         |                |      |                  |
|         |                |      |                  |
| L       | l .            | 1    | 1                |

## **Contents**

| 1. | General Specifications                                     | 4  |
|----|------------------------------------------------------------|----|
| 2. |                                                            |    |
| 3. | Operation Specifications                                   |    |
|    | 3.1. Absolute Maximum Ratings                              | 7  |
|    | 3.2. Typical Operation Conditions                          | 7  |
|    | 3.3. Current Consumption                                   | 8  |
|    | 3.4. Power Sequence                                        | 8  |
|    | 3.5. MIPI interface (Mobile Industry Processing Interface) | 11 |
|    | 3.5.1. MIPI Lane Configuration                             | 12 |
|    | 3.6. MIPI Signal Timing Characteristics                    |    |
|    | 3.6.1. AC Electrical Characteristics                       | 13 |
|    | 3.6.2. DC Electrical Characteristics                       | 18 |
|    | Optical Specifications.                                    |    |
|    | Reliability Test ItemsGeneral Precautions                  |    |
| Ο. | 6.1. Safety                                                |    |
|    | 6.2. Handling                                              | 25 |
|    | 6.3. Static Electricity                                    | 25 |
|    | 6.4. Storage                                               | 25 |
|    | 6.5. Cleaning                                              | 25 |
| 7. | Mechanical Drawing                                         | 26 |
|    | Package Drawing                                            |    |
|    | 8.1. Package Material Table                                |    |
|    | 8.2. Package Quantity                                      | 27 |
|    | 8.3 Package Drawing                                        | 27 |

# 1. General Specifications

| No. | Item                           | Specification                | Remark |
|-----|--------------------------------|------------------------------|--------|
| 1   | LCD size                       | 7.0 inch diagonal            |        |
| 2   | Driver element                 | a-Si TFT active matrix       |        |
| 3   | Resolution                     | 800 × 3(RGB) × 1280          |        |
| 4   | Display mode                   | Normally Black, Transmissive |        |
| 5   | Dot pitch                      | 0.03925(W) × 0.11775(H)mm    |        |
| 6   | Active area                    | 94.20(W) × 150.72(H)mm       |        |
| 7   | Module size                    | 103.46 × 162.03 × 2.3 (D) mm | Note 1 |
| 8   | Surface treatment              | Hard Coating                 |        |
| 9   | Color arrangement              | RGB-stripe                   |        |
| 10  | View direction(Gray Inversion) | Free                         |        |
| 11  | Interface                      | MIPI                         |        |
| 12  | Panel power consumption        | 0.4W(typ)                    |        |
| 13  | Weight                         | TBD                          |        |

Note 1: Refer to Mechanical Drawing.

# 2. Pin Assignment

A 40pin connector is used for the module electronics interface. In this model used "FH33J-40S-0.5SH(10)" manufactured by Hirose or the same package connector.

| Pin No. | Symbol   | Description                                                                               | Remark |
|---------|----------|-------------------------------------------------------------------------------------------|--------|
| 1       | VCOM     | Common Voltage(-1.756 ± 0.3 V)                                                            | Note 1 |
| 2       | VDDIN    | Power supply for interface system except MIPI                                             |        |
| 3       | VDDIN    | interface pin,VDDIN=3.3V                                                                  |        |
| 4       | GND      | GROUND                                                                                    |        |
| 5       | RST      | Device reset signal                                                                       | Note 2 |
| 6       | NC       | No connection                                                                             |        |
| 7       | GND      | GROUND                                                                                    |        |
| 8       | MIPI_0N  | MIPI Negative data signal (-)                                                             |        |
| 9       | MIPI_0P  | MIPI Positive data signal (+)                                                             |        |
| 10      | GND      | GROUND                                                                                    |        |
| 11      | MIPI_1N  | MIPI Negative data signal (-)                                                             |        |
| 12      | MIPI_1P  | MIPI Positive data signal (+)                                                             |        |
| 13      | GND      | GROUND                                                                                    |        |
| 14      | MIPI_CKN | MIPI Negative clock signal (-)                                                            |        |
| 15      | MIPI_CKP | MIPI Positive clock signal (+)                                                            |        |
| 16      | GND      | GROUND                                                                                    |        |
| 17      | MIPI_2N  | MIPI Negative data signal (-)                                                             |        |
| 18      | MIPI_2P  | MIPI Positive data signal (+)                                                             |        |
| 19      | GND      | GROUND                                                                                    |        |
| 20      | MIPI_3N  | MIPI Negative data signal (-)                                                             |        |
| 21      | MIPI_3P  | MIPI Positive data signal (+)                                                             |        |
| 22      | GND      | GROUND                                                                                    |        |
| 23      | NC       | No connection                                                                             |        |
| 24      | NC       | No connection                                                                             |        |
| 25      | GND      | GROUND                                                                                    |        |
| 26      | NC       | No connection                                                                             |        |
| 27      | PWMO     | PWM control signal for LED driver (CABC)                                                  |        |
| 28      | NC       | No connection                                                                             |        |
| 29      | VCL      | Output voltage pin,use it to generate Vcom voltage by a VR circuit (output voltage -2.5V) |        |
| 30      | GND      | GROUND                                                                                    |        |
| 31      | LED-     | I ED cathodo                                                                              |        |
| 32      | LED-     | -LED cathode                                                                              |        |
| 33      | NC       | No connection                                                                             |        |
| 34      | NC       | No connection                                                                             |        |
| 35      | AVEE     | Analog supply negative voltage                                                            |        |

| 36 | NC   | No connection                  |
|----|------|--------------------------------|
| 37 | NC   | No connection                  |
| 38 | AVDD | Analog supply positive voltage |
| 39 | LED+ | LED anode                      |
| 40 | LED+ | LED alloue                     |

I: input, O: output, P: Power

Note1:Typical VCOM is only a reference value, it must be optimized according to each LCM, Be sure to use VR



Note 2: Global reset pin.Active Low to enter Reset State.Normally pull high.suggest to connecting withan RC reset circuit for stability.

## 3. Operation Specifications

## 3.1. Absolute Maximum Ratings

(Note 1)

| Item          | Symbol     | Val  | ues  | Unit | Remark |
|---------------|------------|------|------|------|--------|
| Kom           | - Cyllidol | Min. | Max. | Onic | Romark |
| Power voltage | VDDIN      | -0.3 | 5.5  | V    |        |
|               | AVDD       | -0.3 | 6.6  | V    |        |
|               | AVEE       | +0.3 | -6.6 | V    |        |

Note 1: The absolute maximum rating values of this product are not allowed to be exceeded at any times. Should a module be used with any of the absolute maximum ratings exceeded, the characteristics of the module may not be recovered, or in an extreme case, the module may be permanently destroyed.

### 3.2. Typical Operation Conditions

(GND=0V)

| (8148-04)                |                 |          |        |              |                |                 |  |
|--------------------------|-----------------|----------|--------|--------------|----------------|-----------------|--|
| ltom                     | Cumbal          |          | l lnit | Remar        |                |                 |  |
| Item                     | Symbol          | Min.     | Тур.   | Max.         | Unit           | k               |  |
|                          | VDDIN           | 3.0      | 3.3    | 3.6          | Power voltag   | VDDIN           |  |
| Power voltage            | AVDD            | 5.2      | (5.8)  | 6.0          |                | AVDD            |  |
|                          | AVEE            | -6.0     | (-5.8) | -5.2         |                | AVEE            |  |
| Input logic high voltage | V <sub>IH</sub> | 0.7VDDIN | -      | VDDIN        | Input<br>logic | V <sub>IH</sub> |  |
| Input logic low voltage  | $V_{IL}$        | 0        | 1      | 0.3VDDI<br>N | Input<br>logic | $V_{IL}$        |  |

## 3.3. Current Consumption

(GND=AV<sub>SS</sub>=0V)

| Item               | Symbol             |      | Values | Unit | Remark |        |
|--------------------|--------------------|------|--------|------|--------|--------|
| item               | Symbol             | Min. | Тур.   | Max. | Oill   | Remark |
|                    | I <sub>VDDIN</sub> | ı    | (35)   | ı    | mA     |        |
| Current for Driver | I <sub>AVDD</sub>  | -    | (35)   | -    | mA     |        |
|                    | I <sub>AVEE</sub>  | ı    | (30)   | ı    | mA     |        |

### **Backlight Driving Conditions**

| ltem                      | Symbol         |        | Values | Unit   | Remark |        |  |
|---------------------------|----------------|--------|--------|--------|--------|--------|--|
| itein                     | Syllibol       | Min.   | Тур.   | Max.   | Offic  | Remark |  |
| Voltage for LED backlight | V <sub>L</sub> | 14     | 15.5   | 17.5   | V      | Note 1 |  |
| Current for LED backlight | Ι <sub>L</sub> | -      | 80     | -      | mA     |        |  |
| LED life time             | -              | 15,000 | 20.000 | 25.000 | Hr     | Note 2 |  |

Note 2: The "LED life time" is defined as the module brightness decrease to 50% original brightness at Ta=25 $^{\circ}$ C and I<sub>L</sub> =80mA. The LED lifetime could be decreased if operating I<sub>L</sub> is lager than 80mA.

## 3.4. Power Sequence

a. Power on:



Note 1: Unless otherwise specified, timings herein show cross point at 50% of signal/power level.

Note 2: This power-on sequence is based on adding schottky diode on VGLX pin to ground.

Note 3: Reset signal H to L to H (#1) is better than only L to H (#2).

| Symbol |      | Value    |      | <b>T</b> I •4 | D. I   |
|--------|------|----------|------|---------------|--------|
| Cymbol | Min. | Тур.     | Max. | Unit          | Remark |
| ton1   |      | No limit |      | ms            |        |
| ton2   |      | 0(Note)  |      | ms            |        |
| ton3   |      | No limit | -    | ms            |        |
| ton4   |      | No limit | -    | ms            |        |
| t2     |      |          | 150  | μs            |        |
| tru1   |      |          | 150  | μs            |        |
| tru2   |      |          | 150  | μs            |        |
| tru3   |      |          | 150  | μs            |        |
| tru4   |      |          | 150  | μs            |        |
| t4     | 40   | -        | -    | ms            |        |

| t5 | 120 |  | ms |                                   |
|----|-----|--|----|-----------------------------------|
| t6 | 0   |  | ms |                                   |
| t7 | 10  |  | μs |                                   |
| t8 | 8   |  | VS | Keep data more than 8 frames (VS) |

#### b. Power off:



| Symbol |                | Value    |        | <b>T</b> T •4 | D. I |
|--------|----------------|----------|--------|---------------|------|
| Symbol | Min. Typ. Max. | Unit     | Remark |               |      |
| t9     | 150            |          |        | μs            |      |
| tof1   |                | No limit |        | ms            |      |
| tof2   |                | 0(Note)  | -      | ms            |      |
| tof3   |                | No limit | -      | ms            |      |
| tof4   |                | No limit |        | ms            |      |
| trd1   | 150            |          |        | μs            |      |
| trd2   | 150            |          |        | μs            |      |
| trd3   | 150            |          |        | μs            |      |
| trd4   | 150            |          |        | μs            |      |
| t12    | 0              |          | -      | ms            |      |
| t13    | 0              |          |        | ms            |      |
| T14    | 0              |          |        | ms            |      |
| T15    | 10             |          |        | ms            |      |

### 3.5. MIPI interface (Mobile Industry Processing Interface)

The Display Serial Interface standard defines protocols between a host processor and peripheral devices that adhere to MIPI Alliance standards for mobile device interfaces. The DSI standard builds on existing standards by adopting pixel formats and command set defined in MIPI Alliance standards.

DSI-compliant peripherals support either of two basic modes of operation: Command Mode and Video Mode.

Note: The product only supports Video Mode operation.

Video Mode refers to operation in which transfers from the host processor to the peripheral take the form of a real-time pixel stream. In normal operation, the display module relies on the host processor to provide image data at sufficient bandwidth to avoid flicker or other visible artifacts in the displayed image. Video information should only be transmitted using High Speed Mode. To reduce complexity and cost, systems that only operate in Video Mode may use a unidirectional data path.

Page:12/27

### 3.5.1. MIPI Lane Configuration

|                | MCU (Master) Display Module (Slave) |  |  |  |  |
|----------------|-------------------------------------|--|--|--|--|
|                | Unidirectional Lane                 |  |  |  |  |
| Clock Lane+/-  | ■ Clock Only                        |  |  |  |  |
|                | ■ Escape Mode(ULPS Only)            |  |  |  |  |
|                | Bi-directional Lane                 |  |  |  |  |
| Data Lane0+/-  | ■ Forward High-Speed                |  |  |  |  |
|                | ■ Bi-directional Escape Mode        |  |  |  |  |
|                | ■ Bi-directional LPDT               |  |  |  |  |
| Data Lane1+/-  | Unidirectional                      |  |  |  |  |
| Dala Lane 1+/- | ■ Forward High speed                |  |  |  |  |
| Data Lane2+/-  | Unidirectional                      |  |  |  |  |
| Dala Lanez+/-  | ■ Forward High speed                |  |  |  |  |
| Data Lane3+/-  | Unidirectional                      |  |  |  |  |
| Dala Lalles+/- | ■ Forward High speed                |  |  |  |  |

The connection between host device and display module is as reference.



### 3.6. MIPI Signal Timing Characteristics

#### 3.6.1.AC Electrical Characteristics

#### 3.6.1.1 High Speed Mode

| Signal             | Symbol          | Parameter                        | MIN         | TYP | MAX    | Unit            | Description     |
|--------------------|-----------------|----------------------------------|-------------|-----|--------|-----------------|-----------------|
|                    | -               |                                  | 4           | -   | 8      | ns              | 4 Lane (Note 2) |
| DSI-CLK+/-         | 2xUIINST        | Double UI instantaneous          | 3           | -   | 8      | ns              | 3 Lane (Note 2) |
|                    |                 |                                  | 2.352       | -   | 8      | ns              | 2 Lane (Note 3) |
|                    | UIINSTA         | UI instantaneous halfs           | 2           | -   | 4      | ns              | 4 Lane (Note 2) |
| DSI-CLK+/- UIINSTB | (UI = UIINSTA = | 1.5                              | -           | 4   | ns     | 3 Lane (Note 2) |                 |
|                    | OIIIVOTD        | UIINSTB)                         | 1.176       | -   | 4      | ns              | 2 Lane (Note 3) |
| DSI-Dn+/-          | tDS             | Data to clock setup time         | 0.15x<br>UI | -   | -      | ps              |                 |
| DSI-Dn+/-          | tDH             | Data to clock hold time          | 0.15x<br>UI | -   | -      | ps              |                 |
| DSI-CLK+/-         | tDRTCLK         | Differential rise time for clock | 150         | ı   | 0.3xUI | ps              |                 |
| DSI-Dn+/-          | tDRTDATA        | Differential rise time for data  | 150         | ı   | 0.3xUI | ps              |                 |
| DSI-CLK+/-         | tDFTCLK         | Differential fall time for clock | 150         | ı   | 0.3xUI | ps              |                 |
| DSI-Dn+/-          | tDFTDATA        | Differential fall time for data  | 150         | -   | 0.3xUI | ps              |                 |

Note 1) Dn = D0, D1, D2 and D3.

- Note 2) Maximum total bit rate is 2Gbps for 24-bit data format, 1.5Gbps for 18-bit data format and 1.33Gbps for 16-bit data format in 3 lanes or 4 lanes application which support to 800RGBx 1280 resolution.
- Note 3) Maximum total bit rate is 1.7Gbps for 24-bit data format, 1.275Gbps for 18-bit data format and 1.13Gbps for 16-bit data format in 2 lanes application which support to 720RGBx1280 resolution.



3.6.1.2 LP Transmission

| Parameter                                | Symbol                              | Symbol Values |      |      | Unit  | Remark |
|------------------------------------------|-------------------------------------|---------------|------|------|-------|--------|
| Parameter                                | Syllibol                            | Min.          | Тур. | Max. | Oilit | Remark |
| DSI CLK frequency(LP)                    | F <sub>DSICLK_LP</sub>              |               |      | 10   | MHz   |        |
| DSI CLK Cycle Time(LP)                   | t <sub>CLKC_LP</sub>                | 100           |      |      | ns    |        |
| DSI Data Transfer Rate(LP)               | t <sub>DSIR_LP</sub>                |               |      | 10   | Mbps  |        |
| 15%-85% rise time and fall time          | T <sub>RLP</sub> / T <sub>FLP</sub> | -             | -    | 35   | ns    |        |
| 30%-85% rise time(from HS to LP)         | T <sub>REOT</sub>                   | -             | -    | 35   | ns    |        |
| Pulse width of the LP exclusive-OR clock | t <sub>LP-PULSE-TX</sub>            | 50            | 65   | -    | ns    |        |
| Period of the LP exclusive-OR clock      | t <sub>LP-PRE-TX</sub>              | 100           | 130  | -    | ns    |        |



3.6.1.3 Low Power Mode

| Signal        | Symbol        | Parameter                                                                    | MIN         | TYP | MAX         | Unit | Description |
|---------------|---------------|------------------------------------------------------------------------------|-------------|-----|-------------|------|-------------|
| DSI-D0+<br>/- | TLPXM         | Length of LP-00,<br>LP-01, LP-10 or<br>LP-11 periods<br>MPU ( Display Module | 50          | 1   | 75          | ns   | Input       |
| DSI-D0+<br>/- | TLPXD         | Length of LP-00,<br>LP-01, LP-10 or<br>LP-11 periods<br>Display Module ( MPU | 50          | 1   | 75          | ns   | Output      |
| DSI-D0+<br>/- | TTA-SU<br>RED | Time-out before the MPU start driving                                        | TLPX<br>D   | ı   | 2xTL<br>PXD | ns   | Output      |
| DSI-D0+<br>/- | TTA-GE<br>TD  | Time to drive LP-00 by display module                                        | 5xTL<br>PXD | ı   | 1           | ns   | Input       |
| DSI-D0+<br>/- | TTA-GO<br>D   | Time to drive LP-00<br>after turnaround<br>request - MPU                     | 4xTL<br>PXD | -   | -           | ns   | Output      |

#### Bus Turnaround (BAT) from MPU to display module Timing



Bus Turnaround (BAT) from display module to MPU Timing

#### 3.6.1.4 DSI Bursts

| 0:         | Or week at      | Davianistan                                                                                     | - BAILLI                             | TVD      | MAY     | Har!4 | Descripti |  |  |  |
|------------|-----------------|-------------------------------------------------------------------------------------------------|--------------------------------------|----------|---------|-------|-----------|--|--|--|
| Signal     | Symbol          | Parameter                                                                                       | MIN                                  | TYP      | MAX     | Unit  | on .      |  |  |  |
|            |                 | Low Power Mode to Hig                                                                           | Power Mode to High Speed Mode Timing |          |         |       |           |  |  |  |
| DSI-Dn+/-  | TLPX            | Length of any low power state period                                                            | 50                                   | -        | -       | ns    | Input     |  |  |  |
| DSI-Dn+/-  | THS-PRE<br>PARE | Time to drive LP-00 to prepare for HS transmission                                              | 40+4xUI                              | -        | 85+6xUI | ns    | Input     |  |  |  |
| DSI-Dn+/-  | THS-TER<br>M-EN | Time to enable data receiver line termination measured from when Dn crosses VILMAX              | 1                                    | ı        | 35+4xUI | ns    | Input     |  |  |  |
|            |                 | High Speed Mode to Lo                                                                           | w Power Mo                           | de Timir | ng      |       |           |  |  |  |
| DSI-Dn+/-  | THS-SKIP        | Time-out at display module to ignore transition period of EoT                                   | 40                                   | ı        | 55+4xUI | ns    | Input     |  |  |  |
| DSI-Dn+/-  | THS-EXIT        | Time to drive LP-11 after HS burst                                                              | 100                                  | ı        | ı       | ns    | Input     |  |  |  |
| DSI-Dn+/-  | THS-TRAI<br>L   | Time to drive flipped differential state after last payload data bit of a HS transmission burst | 60+4xUI                              | 1        | -       | ns    | Input     |  |  |  |
|            |                 | High Speed Mode to/from                                                                         |                                      | Mode Tir | ming    |       |           |  |  |  |
| DSI-CLK+/- | TCLK-PO         | Time that the MPU shall                                                                         | 60+52xUI                             | -        | -       | ns    | Input     |  |  |  |

|            | S                                  | continue sending HS clock<br>after the last associated<br>data lane has transition to<br>LP mode                     |      |       |    |    |       |
|------------|------------------------------------|----------------------------------------------------------------------------------------------------------------------|------|-------|----|----|-------|
| DSI-CLK+/- | TCLK-TR<br>AIL                     | Time to drive HS<br>differential state after last<br>payload clock bit of a HS<br>transmission burst                 | 60   | ı     | ı  | ns | Input |
| DSI-CLK+/- | THS-EXIT                           | Time to drive LP-11 after HS burst                                                                                   | 100  | -     | -  | ns | Input |
| DSI-CLK+/- | TCLK-PR<br>EPARE                   | Time to drive LP-00 to prepare for HS transmission                                                                   | 38   | ı     | 95 | ns | Input |
| DSI-CLK+/- | TCLK-TE<br>RM-EN                   | Fime-out at clock lane                                                                                               |      | Input |    |    |       |
| DSI-CLK+/- | TCLK-PR<br>EPARE+<br>TCLK-ZE<br>RO | Minimum lead HS-0 drive period before starting clock                                                                 | 300  | ı     | 1  | ns | Input |
| DSI-CLK+/- | TCLK-PR<br>E                       | Time that the HS clock shall be driven prior to any associated data lane beginning the transition from LP to HS mode | 8xUI | 1     | -  | ns | Input |

Note 1) Dn = D0, D1, D2 and D3.

Note 2) Two HS transmission can be sent with a break as short as THS-EXIT from each other in continuous clock mode. In discontinuous mode, the break is longer which account TCLK-POS, TCLK-TRAIL and THS-EXIT, before activity in clock and data lanes again.





Clock lanes- High Speed Mode to/from Low Power Mode Timing

#### 3.6.1.5 Reset Input Timing



Reset input timing (VDDI=1.7~1.9V. VCI=3.0 to 3.6V, GND=0V,Ta = -30 to 70°C)

|        |        | (1881 1                        | (VDD1-1.7 1.5 V, VO1-3.0 to 3.6 V, |     |     |      |                                                     |
|--------|--------|--------------------------------|------------------------------------|-----|-----|------|-----------------------------------------------------|
| Signal | Symbol | Parameter                      | MIN                                | TYP | MAX | Unit | Description                                         |
|        | tresw  | Reset "L" pulse width (Note 1) | 10                                 | -   | -   | μs   |                                                     |
| RESX   |        |                                | -                                  | -   | 5   | ms   | When reset<br>applied during<br>Sleep In Mode       |
| NEOX   | trest  | Reset complete time (Note 2)   | -                                  | -   | 120 | ms   | When reset applied during Sleep Out Mode and Note 5 |

Note 1) Spike due to an electrostatic discharge on RESX line does not cause irregular system reset according to the table below.

| RESX Pulse           | Action         |
|----------------------|----------------|
| Shorter than 5µs     | Reset Rejected |
| Longer than 10µs     | Reset          |
| Between 5µs and 10µs | Reset Start    |

- Note 2) During the resetting period, the display will be blanked (The display is entering blanking sequence, which maximum time is 120 ms, when Reset Starts in Sleep Out –mode. The display remains the blank state in Sleep In–mode) and then return to Default condition for H/W reset.
- Note 3) During Reset Complete Time, values in OTP memory will be latched to internal

Page:18/27

register during this period. This loading is done every time when there is H/W reset complete time ( $t_{REST}$ ) within 5ms after a rising edge of RESX.

Note 4) Spike Rejection also applies during a valid reset pulse as shown below:



Note 5) It is necessary to wait 5msec after releasing RESX before sending commands. Also Sleep Out command cannot be sent for 120msec

#### 3.6.1.6 Deep Standby Mode Timing



(VDDI=1.7~1.9V, VCI=3.0 to 3.6V, GND=0V, Ta = -30 to 70°C)

| Signal | Symbol             | Parameter                                | MIN | TYP | MAX | Unit | Description |
|--------|--------------------|------------------------------------------|-----|-----|-----|------|-------------|
|        | <b>t</b> discharge | Sleep in into DSTB delay time            | ı   | ı   | 100 | ms   |             |
| RESX   | trstlow            | Reset low pulse                          | 3   | -   | 1   | ms   |             |
|        | tinitial           | Reset high to initial setting delay time | -   | -   | 120 | ms   |             |

Note 1) t\_discharge suggested delay time over 100ms.

Note 2) t initial suggested delay time over 120ms..

#### 3.6.2. DC Electrical Characteristics

#### 3.6.2.1 DC Characteristics for DSI LP Mode

| Parameter                       | Symbol     | Conditions           | Spe | cificati | on   | UNIT  |  |
|---------------------------------|------------|----------------------|-----|----------|------|-------|--|
| 1 drainotoi                     | Cymbol     | Gondinono            | MIN | TYP      | MAX  | Oitii |  |
| Logic high level input voltage  | VIHLPCD    | LP-CD                | 450 | ı        | 1350 | mV    |  |
| Logic low level input voltage   | VILLPCD    | LP-CD                | 0   | ı        | 200  | mV    |  |
| Logic high level input voltage  | VIHLPRX    | LP-RX (CLK, D0, D1)  | 880 | ı        | 1350 | mV    |  |
| Logic low level input voltage   | VILLPRX    | LP-RX (CLK, D0, D1)  | 0   | ı        | 550  | mV    |  |
| Logic low level input voltage   | VILLPRXULP | LP-RX (CLK ULP mode) | 0   | -        | 300  | mV    |  |
| Logic high level output voltage | VOHLPTX    | LP-TX (D0)           | 1.1 | -        | 1.3  | V     |  |

| Logic low level output voltage | VOLLPTX | LP-TX (D0)                     | -50 | - | 50  | mV  |
|--------------------------------|---------|--------------------------------|-----|---|-----|-----|
| Logic high level input current | Ін      | LP-CD, LP-RX                   | ı   | ı | 10  | μΑ  |
| Logic low level input current  | lıL     | LP-CD, LP-RX                   | -10 | ı | ı   | μΑ  |
| Input pulse rejection          | SGD     | DSI-CLK+/-, DSI-Dn+/- (Note 3) | ı   | - | 300 | Vps |

Note 1) VDDI=1.7~1.9V, VCI=3.0 to 3.6V, GND=0V, Ta=-30 to 70 °C (to +85 °C no damage) Note 2) DSI high speed is off.

Note 3) Peak interference amplitude max. 200mV and interference frequency min. 450MHz.



3.6.2.2 DC Characteristics for DSI HS Mode

| Parameter                                             | Symbol                    | Conditions                          | Sp  | ecificati | on  | UNI |
|-------------------------------------------------------|---------------------------|-------------------------------------|-----|-----------|-----|-----|
| Parameter                                             | Syllibol                  | Conditions                          | MIN | TYP       | MAX | T   |
| Input voltage common mode range                       | VCMCLK<br>VCMDATA         | DSI-CLK+/-, DSI-Dn+/-<br>(Note2, 3) | 70  | -         | 330 | mV  |
| Input voltage common mode variation (≤ 450MHz)        | VCMRCLKL<br>VCMRDATA<br>L | DSI-CLK+/-, DSI-Dn+/- (Note 4)      | -50 | -         | 50  | mV  |
| Input voltage common<br>mode variation (≥<br>450MHz)  | VCMRCLKM<br>VCMRDATA<br>M | DSI-CLK+/-, DSI-Dn+/-               | -   | -         | 100 | mV  |
| Low-level differential input voltage threshold        | VTHLCLK<br>VTHLDATA       | DSI-CLK+/-, DSI-Dn+/-               | -70 | -         | -   | mV  |
| High-level differential input voltage threshold       | VTHHCLK<br>VTHHDATA       | DSI-CLK+/-, DSI-Dn+/-               | -   | -         | 70  | mV  |
| Single-ended input low voltage                        | VILHS                     | DSI-CLK+/-, DSI-Dn+/- (Note 3)      | -40 | -         | -   | mV  |
| Single-ended input high voltage                       | VIHHS                     | DSI-CLK+/-, DSI-Dn+/- (Note 3)      | -   | -         | 460 | mV  |
| Differential input termination resistor               | RTERM                     | DSI-CLK+/-, DSI-Dn+/-               | 80  | 100       | 125 | Ω   |
| Single-ended threshold voltage for termination enable | VTERM-EN                  | DSI-CLK+/-, DSI-Dn+/-               | -   | -         | 450 | mV  |
| Termination capacitor                                 | CTERM                     | DSI-CLK+/-, DSI-Dn+/-               | -   | -         | 14  | pF  |

Note 1) VDDI=1.7~1.9V, VCI=3.0 to 3.6V, GND=0V, Ta=-30 to 70 °C (to +85 °C no damage).

Note 2) Includes 50mV (-50mV to 50mV) ground difference.

Note 3) Without VCMRCLKM / VCMRDATAM.

Note 4) Without 50mV (-50mV to 50mV) ground difference.

Note 5) Dn=D0, D1, D2 and D3.



Differential voltage range, termination resistor and Common mode voltage

# 4. Optical Specifications.

Note: The optical specifications are measured base on INNOLUX LCM

|                           |                  | are measured base ( | Values |      |      |        | Remar            |
|---------------------------|------------------|---------------------|--------|------|------|--------|------------------|
| Item                      | Symbol           | Condition           | Min.   | Тур. | Max. | Unit   | k                |
| Viewing angle<br>(CR≥ 10) | $\theta_{L}$     | Ф=180°(9 o'clock)   | -      | 89   | -    | degree | Note 1f          |
|                           | $\theta_{R}$     | Φ=0°(3 o'clock)     | -      | 89   | -    |        |                  |
|                           | $\theta_{T}$     | Φ=90°(12 o'clock)   | -      | 89   | -    |        |                  |
|                           | $\theta_{B}$     | Φ=270°(6 o'clock)   | _      | 89   | -    |        |                  |
| Response time             | T <sub>ON</sub>  |                     | -      | 11   | 14   | msec   | Note 3           |
|                           | T <sub>OFF</sub> |                     | -      | 9    | 11   | msec   | Note 3           |
| Contrast ratio            | CR               | Normal<br>θ=Φ=0°    | 600    | 800  | -    | -      | Note 4           |
| Color chromaticity        | $W_X$            |                     | 0.28   | 0.31 | 0.34 |        | Note 2<br>Note 5 |
|                           | $W_{Y}$          |                     | 0.28   | 0.33 | 0.36 |        | Note 6           |
| NTSC                      |                  |                     | 45     | 60   |      | %      |                  |
| Luminance                 | L                |                     | 300    | 350  | -    | cd/m2  |                  |
| Transmittance             | Т                |                     | 3.8    | 4.13 |      | %      |                  |

**Test Conditions:** 

The test systems refer to Note 2.

#### Note 1: Definition of viewing angle range



Fig. 4-1 Definition of viewing angle

#### Note 2: Definition of optical measurement system.

The optical characteristics should be measured in dark room. After 30 minutes operation, the optical properties are measured at the center point of the LCD screen. (Viewing angle is measured by ELDIM-EZ contrast/Height :1.2mm, Response time is measured by Photo detector TOPCON BM-7, other items are measured by BM-5A/ Field of view: 1° /Height: 500mm.)



#### Note 3: Definition of Response time

The response time is defined as the LCD optical switching time interval between "White" state and "Black" state. Rise time  $(T_{ON})$  is the time between photo detector output intensity changed from 90% to 10%. And fall time  $(T_{OFF})$  is the time between photo detector output intensity changed from 10% to 90%.



Fig. 4-3 Definition of response time

Note 4: Definition of contrast ratio

Contrast ratio (CR) =  $\frac{\text{Luminance measured when LCD on the "White" state}}{\text{Luminance measured when LCD on the "Black" state}}$ 

Note 5: Definition of color chromaticity (CIE1931)

Color coordinates measured at center point of LCD.

Note 6: All input terminals LCD panel must be ground while measuring the center area of the panel.

Note 7: Definition of Luminance Uniformity

Active area is divided into 9 measuring areas (Refer to Fig. 4-4). Every measuring point is placed at the center of each measuring area.

asuring point is placed at the center of 
$$\epsilon$$

Luminance Uniformity (Yu) =  $\frac{B_{min}}{B_{max}}$ 

L-----Active area length W----- Active area width



Fig. 4-4 Definition of measuring points

**B**<sub>max</sub>: The measured maximum luminance of all measurement position.

**B**<sub>min</sub>: The measured minimum luminance of all measurement position.

## 5. Reliability Test Items

(Note3)

| Item                                     | Test C                                                                 | Remark   |                |
|------------------------------------------|------------------------------------------------------------------------|----------|----------------|
| High Temperature Storage                 | Ta = 60°C                                                              | 120hrs   | Note 1, Note 4 |
| Low Temperature Storage                  | Ta = -20°C                                                             | 120hrs   | Note 1, Note 4 |
| High Temperature Operation               | Ts = 50°C                                                              | 120hrs   | Note 2, Note 4 |
| Low Temperature Operation                | Ta = -10°C                                                             | 120hrs   | Note 1, Note 4 |
| Operate at High Temperature and Humidity | +40℃, 90%RH                                                            | 120hrs   | Note 4         |
| Thermal Shock                            | -10°C/30 min ~ +50°(<br>cycles, Start with col<br>with high temperatur | Note 4   |                |
| Package Vibration Test                   | Random Vibration :<br>ISTA-3A 1Hz~200Hz<br>Half hours for direction    |          |                |
| Package Drop Test                        | Height:60 cm<br>1 corner, 3 edges, 6                                   | surfaces |                |

- Note 1: Ta is the ambient temperature of samples.
- Note 2: Ts is the temperature of panel's surface.
- Note 3: In the standard condition, there shall be no practical problem that may affect the display function. After the reliability test, the product only guarantees operation, but don't guarantee all of the cosmetic specification.
- Note 4: Before cosmetic and function test, the product must have enough recovery time, at least 2 hours at room temperature.

### 6. General Precautions

### 6.1. Safety

Liquid crystal is poisonous. Do not put it in your mouth. If liquid crystal touches your skin or clothes, wash it off immediately by using soap and water.

### 6.2. Handling

- 1. The LCD panel is plate glass. Do not subject the panel to mechanical shock or to excessive force on its surface.
- 2. The polarizer attached to the display is easily damaged. Please handle it carefully to avoid scratch or other damages.
- 3. To avoid contamination on the display surface, do not touch the module surface with bare hands.
  - 4. Keep a space so that the LCD panels do not touch other components.
- 5. Put cover board such as acrylic board on the surface of LCD panel to protect panel from damages.
- 6. Transparent electrodes may be disconnected if you use the LCD panel under environmental conditions where the condensation of dew occurs.
  - 7. Do not leave module in direct sunlight to avoid malfunction of the ICs.

### 6.3. Static Electricity

- 1. Be sure to ground module before turning on power or operating module.
- 2. Do not apply voltage which exceeds the absolute maximum rating value.

### 6.4. Storage

- 1. Store the module in a dark room where must keep at 25±10° and 65%RH or less.
- 2. Do not store the module in surroundings containing organic solvent or corrosive gas.
  - 3. Store the module in an anti-electrostatic container or bag.

### 6.5. Cleaning

- 1. Do not wipe the polarizer with dry cloth. It might cause scratch.
- 2. Only use a soft sloth with IPA to wipe the polarizer, other chemicals might permanent damage to the polarizer.

## 7. Mechanical Drawing



# 8. Package Drawing

## 8.1. Package Material Table

| No. | Item          | Model<br>(Material) | Dimensions(mm)       | Unit<br>Weight<br>(kg) | Quantity | Remark |  |
|-----|---------------|---------------------|----------------------|------------------------|----------|--------|--|
| 1   | LCM<br>Module | HC070IY35023-16     | 103.46 × 162.03 ×2.3 | 0.150                  | 40pcs    |        |  |
| 8   | Total weight  | TBD ± 5%            |                      |                        |          |        |  |

## 8.2. Packaging Quantity

Total LCM quantity in Carton: 20Rows × quantity per Row 2 = 40 Pcs