BlueGene/L Failure Analysis and Prediction Models

Liang, Y.; Zhang, Y.; Jette, M.; Anand Sivasubramaniam; Sahoo, R.;

The International Conference on Dependable Systems and Networks, 2006 (DSN 2006)

Presented by:
Ignacio Laguna
Dependable Computing Systems Lab (DCSL)

Slide 1/17

The Complexity of Today's Supercomputers

IBM BlueGene/L at Lawrence Livermore National Laboratory (LLNL)

The fastest supercomputer (The Top500 Supercomputers list by Ago, 05)

- 64 racks of 128K PowerPC 440 700MHz processors
- Each rack consists of 2 midplanes
- Each midplane has
 - * 1024 processors
 - * 16 node cards
 - * 4 I/O cards
 - * 24 midplane switches
- Huge amount of event logs collected at a centralized point (1,318,137 entries)
- Challenge: How to analyze and (possibly anticipate) failures in such a complex environment?

Key Contributions of the Paper

- Presented a careful study of collected event logs from BlueGene/L over > 100 days
- Developed three prediction algorithms based on:
 - * Failure characteristics
 - * Correlation between fatal events and non-fatal events
- Evaluated the effectiveness of the algorithms to anticipate failures

Slide 3/17

Outline

- Motivation for Failure Prediction
- Description of Event Logs
- Data Processing mechanisms
- Failure Prediction Algorithms
 - * Based on failure characteristics
 - * Based on the occurrence of non-fatal events
- Summary

Motivation for Failure Prediction in BlueGene/L

- Different applications may span several thousand processors
 - * Hydrodynamics, quantum chemistry, climate modeling
- Failures are becoming a norm rather than an exception
 - * Transient hardware failure increasing (from memory to combinational circuits)
 - * Permanent hardware device failures leading to immense heat dissipation
 - * In addition, software bugs may increase application crashes
- Applications running for a long time may be aborted because of failures → waste of effort

Slide 5/17

Motivation for Failure Prediction in BlueGene/L

- Low availability impacts response time
 - * A real example:
 - LLNL has found frequent L1 cache failures for long running jobs
 - To finish these jobs, L1 cache has been disable for jobs > 4 hours
 - Results → much prolonged execution times for jobs
- Checkpointing techniques are not effective
 - * Much overhead compared to the gain
 - * Checkpointing a job of tens of thousands tasks may take at least ½ hour
- Failure prediction is considered challenging
 - * One reason is the lack of suitable data from real systems

Event Logs Description

- Event logs have been collected for more than 100 days (~1,3 millions of entries)
- Attributes in each record of the logs:
 - * RECID sequence number of an entry
 - * EVENT_TYPE mechanism through which the event is recorded
 - * FACILITY The component where the event is flagged:
 - LINKCARD, APP, KERNEL, HARDWARE, DISCOVERY, CMCS, BGLMASTER, SERV_NET
 - * SEVERITY denotes increasing order of severity:
 - INFO, WARNING, SEVERE, ERROR, FATAL, or FAILURE (these two ones usually lead to application crashes)
 - * EVENT TIME timestamp
 - * JOB_ID the job that detect this event
 - * LOCATION a combination of job ID, processor, node, and block (or a separate field)
 - * ENTRY_DATA gives a short description of the event

Slide 7/17

Data Processing Schemes

- Log entries may be repeated or redundant
 - * Filtering tools have been developed in previous work (DSN 2005)
- Steps on filtering data:
 - 1. Extracting and Categorizing Failure Events
 - * Extract all the events with severity levels of FATAL or FAILURE (called failures).
 - * These events will lead to application crashes
 - 2. Temporal Compression at a Single Location
 - * Clusters—failure events from the same location that often occur in bursts
 - 3. Spatial Compression Across Multiple Locations
 - * A failure can be detected or reported by multiple locations.
 - * For example, a network failure is likely detected by multiple locations
 - * It removes failures that are close to each other (from the same job) but from different locations
- * After these steps, unique failures can be identified

Filtering Thresholds for Clustering

Log size with $T_{th} =$	Memory	Network	APP-IO	Midplane Switch	Node Cards
0	8,206	10,554	178,292	166	96
30 sec	267	9,418	178,015	83	6
1 min	251	9,418	173,491	52	6
5 min	246	9,415	102,442	30	4
30 min	241	9,219	89,333	22	4
1 hour	237	8,705	81,834	17	4

(a) Number of failure events after temporal filtering using different T_{th}

Log size with $S_{th} =$	Memory	Network	APP-IO	Midplane Switch	Node Cards
0	246	9,415	101,196	30	4
30 sec	217	139	331	30	4
1 min	217	139	318	30	4
5 min	215	139	299	30	4
30 min	208	114	237	22	4
1 hour	199	105	225	17	4

(b) Number of failure events after spatial filtering using different S_{th}

Table 1. Filtering thresholds

Slide 9/17

Failure Prediction Based on TBF

- Failure Prediction Strategy for network and application I/O failures:
 - * When a failure is reported, the system is monitored closely for a period of time, since more failures are likely to occur
- Predicting too close failure is not very useful

- This prediction algorithm was run for application I/O and network failures
 - * A failure can be predicted by another failure in a window of 5 min ~ 2 hours
 - Rationale: < 5 min is not useful, and > 2 hours incurs in high overhead
 - * 52 network failures predicted out of 139 (37%)
 - * 143 application I/O failure predicted out of 299 (48%)

Slide 11/17

PURDUE

Spatial Characteristics of Failures

- Memory failures are evenly distributed across all the midplanes
 - * 104 out 128 midplanes have reported failures
- All the midplanes have similar probabilities of having memory failures
 - * It is hard to predictic memory failures based on spatial characteristics
- Network failures show more pronounced skewness
 - * 61 out of 128 midplanes have network failures
 - * Midplane 103 alone experiences 35 failures (26% of the total)

PURDUE

Failure Prediction Based on Spatial Skewness

• For network failures, the focus is for midplanes that has reported more failures than others

Figure 5. The time series of failure occurrence on midplane 103

- Most of the failures on midplane 103 are close to each other
 - * A simple prediction strategy is very promising (most of the failures are clustered together)

Slide 13/17

Predicting Failures Using the Occurrence of Non-Fatal Events

- Correlation between fatal events and non-fatal events is studied
- Conducted a quick experiment to evaluate the likelihood of such correlation
 - * Filter all fatal events (by JOB_ID), and see whether the same job has reported non-fatal events before
 - * Results of the experiment:

Type of Fatal Failure	Number of Jobs Terminated by the Fatal Failure	Number of Jobs that Reported One or More Non-Fatal Events Before
Memory	134	82
Network	34	15

• It is promising to predict fatal failures by the use of the occurrence of non-fatal failures!

Predicting Failures Using the Occurrence of Non-Fatal Events (Cont'd)

Figure 6. The number of non-fatal and fatal events for each job. On the x-axis, we obtain the job sequence number by subtracting the minimum JOB_ID from the original JOB_ID field of the raw log.

- Counted the number of events each job has encountered (a job has at most one fatal event)
- Large burst of non-fatal events are likely to occur followed by fatal failures

Slide 15/17

Exploring the Correlation Between Non-Fatal Events and Fatal Events

	n	no. of jobs with n non-fatal events (x)	no. of failures within a window of 5 jobs after these jobs (y)	y/x (%)
=	$[40,\infty)$	4	1	25
	[20, 40)	9	<u>†</u> 2	22.22
	[10, 20)	30	8	26.67
	[2, 10)	257	53	20.62
	1	1543	74	4.70

(a) The correlation between non-fatal events and fatal events

If a job reports more than 40 non-fatal events, there is a chance of 25% that a fatal failure will occur (in a windows of 5 jobs after it)

- On average, if a job experiences 2 or more non-fatal events, there is a change of 21.33% that a fatal failure will follow
- Prediction Strategy:
 - * If a job has observed two non-fatal events, a fatal failure may occur to this job or the following four jobs
 - * Results: predicted 65 out of 168 fatal failures

Summary

- This paper has tackled the challenges of predicting failures at the level of very complex supercomputing systems such as the IBM BlueGene/L
- It has been collected event logs from BlueGene/L over a period of 100 days
- The paper finds strong correlations between the occurrence of a failure and factors such as:
 - * Timestamps of other failures
 - * Location of other failures
 - * The occurrence of non-fatal events
- Three simple predictions schemmes has been proposed for failure prediction
 - * Because of their simplicity, this schemes can be implemented a at low runtime cost

