МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Университет ИТМО

Факультет систем управления и робототехники

ОТЧЁТ по дисциплине "Частотные методы"

по теме: ЖЁСТКАЯ ФИЛЬТРАЦИЯ

Студент:

Группа R3236 Поляков A.A.

Предподаватель:

к.т.н., доцент Перегудин А.А.

Санкт-Петербург 2024

СОДЕРЖАНИЕ

1	ВСГ	IOMOL	АТЕЛЬНЫЕ ФУНКЦИИ И БИБЛИОТЕКИ	3
2	ЗАДАНИЕ 1. ЖЁСТКИЕ ФИЛЬТРЫ			4
	2.1	Убираем высокие частоты		4
		2.1.1	Фурье-образ сигнала и	5
		2.1.2	Применяем фильтр	6
		2.1.3	Возвращаемся к очищенному сигналу	7
		2.1.4	Выводы	7
	2.2	Убираем специфические частоты		12
		2.2.1	Фурье-образ сигнала и	12
		2.2.2	Применяем фильтр	12
		2.2.3	Возвращаемся к очищенному сигналу	12
		2.2.4	Выводы	12
	2.3	Убира	ем низкие частоты?	12
3	ЗАДАНИЕ 2. ФИЛЬТРАЦИЯ ЗВУКА			13
	3.1 Графики звуковых сигналов			13

1 ВСПОМОГАТЕЛЬНЫЕ ФУНКЦИИ И БИБЛИОТЕКИ

Онлайн версию кода здесь нет, потому что делал основные вычисления в live-script матлабовских, в репозитории можно найти исходники. Так как в большинстве своём выполнение лабораторной работы сводилось к применению встроенных функций и построению красивых графиков, то не вижу смысла приводить отдельные фрагменты кода, потому что проще увидеть всю картину целиком - заглянуть в исходники, над их оформлением я тоже немного постарался.

2 ЗАДАНИЕ 1. ЖЁСТКИЕ ФИЛЬТРЫ

Для начала задаём константы $a,b,c,d,t_1,t_2,$ что $t_1 < t_2,$ После составляем функцию:

$$g(t) = \begin{cases} a, t \in [t_1; t_2] \\ 0, t \in [else] \end{cases}$$

Также задаём большой интервал времени T и маленький шаг дискретизации dt. На основе всего зашумлённая версия сигнала будет выглядеть так:

$$u = g + b*(rand(size(t))-0.5) + c*sin(d*t);$$

2.1 Убираем высокие частоты

Берём d=c=0. Тогда в этом пункте мы будем работать со следующей версией шумного сигнала:

$$u = g + b*(rand(size(t))-0.5)$$

...из чего сразу следует, что у нас добавляется только "случайный" шум.

2.1.1 Фурье-образ сигнала и

Рисунок 1 — Фурье-образ зашумлённого сигнала

Рисунок 2 — Фурье-образ зашумлённого сигнала

Рисунок 3 — Фурье-образ зашумлённого сигнала

2.1.2 Применяем фильтр

В нашем случае ступенька фильтра будет около середины, потому что мы сохраняем нижние частоты, а они сосредоточены около начала графика. Будем применять разные диапазоны фильтра:

Рисунок 4 — Фурье-образ зашумлённого сигнала

2.1.3 Возвращаемся к очищенному сигналу

2.1.4 Выводы

Оставьте его неизменным для некоторого диапазона частот $[-\nu_0, \nu_0]$, но обнулите его значения на всех остальных частотах, после чего выполните обратное преобразование Фурье. Постройте сравнительные графики исходного и фильтрованного сигналов (для большей наглядности имеет смысл выводить на график лишь некоторую окрестность интервала [t1, t2]). Постройте сравнительные графики модуля Фурье-образа исходного и фильтрованного сигналов. Исследуйте влияние частоты среза v0 и значения параметра b на эффективность фильтрации.

Рисунок 5 — Применили фильтр нижних частот

Рисунок 6 — Применили фильтр нижних частот

Рисунок 7 — Применили фильтр нижних частот

Рисунок 8 — Применили фильтр нижних частот

Рисунок 9 — Применили обратное преобразование Фурье

Рисунок 10 — Применили обратное преобразование Фурье

Рисунок 11 — Применили обратное преобразование Фурье

Рисунок 12 — Применили обратное преобразование Фурье

2.2 Убираем специфические частоты

Выберем все параметры b, c, d ненулевыми. Теперь мы уже имеем дело с двумя компонентами шума - случайным и гармоническим. Соответственно, чтобы убрать обе компоненты, надо применить два фильтра, один из них мы уже нашли в пункте до.

2.2.1 Фурье-образ сигнала и

2.2.2 Применяем фильтр

Постараемся обнулить Фурье-образ на некоторых диапазонах частот, чтобы максимально убрать влияние обеих компонент помехи...

2.2.3 Возвращаемся к очищенному сигналу

Постройте сравнительные графики исходного и фильтрованного сигналов, а также графики модулей их Фурье образов. Исследуйте влияние частот среза, а также значений параметров b, c, d на вид помехи и эффективность фильтрации (отдельно рассмотрите случай b=0).

2.2.4 Выводы

2.3 Убираем низкие частоты?

Рассмотрите фильтр, который обнуляет Фурье-образ на всех частотах в некоторой окрестности точки $\nu=0$. Пропустите сигнал через такой фильтр и оцените результат. Сделайте выводы.

3 ЗАДАНИЕ 2. ФИЛЬТРАЦИЯ ЗВУКА

Скачаем файл с гугл-диска, а после немного погуглим и выясним, что "Голос человека лежит в диапазоне 85-3000Гц поэтому стараться чистить будем всё, кроме этого промежутка. Очевидно, что нам понадобится два последовательно применённых фильтра, так и сделаем...

3.1 Графики звуковых сигналов

Графики исходного и фильтрованного звукового сигнала, а также графики модулей их Фурье-образов

Не забывайте, что с помощью функции матлаба sound(y,f) - можно нативно проиграть звук после преобразований, чтобы сравнить "до"и "после".