Compte rendu – Séance 6

Optimisation linéaire et raffinement du maillage pour l'équation ADRS

Mouhamet TOURE - M2 MANU

17 octobre 2025

1 Introduction

Cette séance a pour but d'implémenter une méthode d'optimisation linéaire appliquée à l'équation d'Advection-Diffusion-Réaction-Source (ADRS), et d'étudier l'influence du raffinement du maillage sur la convergence vers le contrôle optimal. On cherche à identifier un vecteur de contrôles $X = (x_1, x_2, ..., x_N)$ minimisant la fonctionnelle de coût

$$J(X) = \frac{1}{2} \|u(X) - u_{\text{des}}\|_{L^2(\Omega)}^2,$$

où u(X) est la solution de l'équation ADRS associée aux contrôles X, et u_{des} la solution cible.

2 Rappels sur le modèle ADRS

L'équation ADRS en une dimension s'écrit :

$$\frac{\partial u}{\partial t} = -V \frac{\partial u}{\partial x} + \nu \frac{\partial^2 u}{\partial x^2} - \lambda u + f(x, t),$$

avec V la vitesse de transport, ν le coefficient de diffusion, λ le terme de réaction et f une source dépendant des contrôles.

On suppose que la source f est une combinaison linéaire de fonctions de base $\varphi_i(x)$:

$$f(x) = \sum_{i=1}^{N_c} x_i \, \varphi_i(x),$$

où x_i représente l'intensité du contrôle associé à φ_i .

3 Principe de l'optimisation linéaire

Grâce à la linéarité de l'équation ADRS par rapport à f, la solution u(X) peut s'écrire :

$$u(X) = u_0 + \sum_{i=1}^{N_c} x_i u_i,$$

où:

- u_0 est la solution du problème sans source (f=0),
- u_i est la solution associée au contrôle unitaire $f = \varphi_i$.

La fonctionnelle de coût devient :

$$J(X) = \frac{1}{2} \int_{\Omega} \left(u_0 + \sum_i x_i u_i - u_{\text{des}} \right)^2 dx.$$

En dérivant par rapport à x_k , on obtient le gradient :

$$\nabla_X J = AX - B = 0,$$

avec:

$$A_{ij} = \langle u_i, u_j \rangle_{L^2}, \quad B_i = \langle u_i, u_{\text{des}} - u_0 \rangle_{L^2}.$$

Ainsi, le contrôle optimal X^* est obtenu en résolvant le système linéaire :

$$AX^* = B$$
.

4 Algorithme de calcul

L'algorithme complet implémenté dans le code optim_adrs.py suit les étapes suivantes :

- 1. Définir un vecteur de référence $X_{\text{opt}} = (1, 2, 3, 4)$.
- 2. Calculer $u_{\text{des}} = u(X_{\text{opt}})$.
- 3. Calculer u_0 et les u_i pour les contrôles unitaires e_i .
- 4. Interpoler toutes les solutions sur un maillage de fond commun pour les intégrations.
- 5. Assembler A et B à l'aide d'une intégration numérique (méthode des trapèzes).
- 6. Résoudre $AX^* = B$ pour obtenir le contrôle optimal X^* .
- 7. Comparer X^* et X_{opt} , et calculer la fonctionnelle $J(X^*)$.
- 8. Répéter pour différentes tailles de maillage h (boucle de raffinement).

5 Prise en compte du raffinement de maillage

Lorsque l'on utilise un maillage adaptatif, les solutions u_i et u_j ne sont pas définies sur les mêmes points. Les intégrales A_{ij} et B_i sont alors évaluées sur un maillage de fond uniforme x_{bg} en interpolant les solutions sur ce maillage commun :

$$A_{ij} = \int u_i(x_{\text{bg}}) u_j(x_{\text{bg}}) dx_{\text{bg}}, \quad B_i = \int u_i(x_{\text{bg}}) (u_{\text{des}} - u_0)(x_{\text{bg}}) dx_{\text{bg}}.$$

La précision de cette intégration doit être au moins supérieure à la précision du schéma spatial utilisé dans l'équation ADRS, afin de ne pas introduire d'erreur numérique supplémentaire.

6 Résultats et observations

Les figures suivantes illustrent les principaux résultats obtenus lors des simulations.

FIGURE 1 – Évolution des composantes de $X^*(h)$ en fonction du pas $h=1/(N_X-1)$. Les lignes pointillées représentent les composantes exactes X_{opt} .

1. Convergence du contrôle optimal

2. Évolution de la fonctionnelle de coût et de l'erreur

FIGURE 2 – À gauche : évolution de $J(X^*(h))$ selon le raffinement. À droite : erreur $\|X^*(h) - X_{\text{opt}}\|$.

FIGURE 3 – Évolution de chaque composante $X^*(h)$ lorsque la cible est $u_{\text{des}} = 1$.

Surface de la fonctionnelle J(x1, x2)

FIGURE 4 – Surface de la fonctionnelle $J(x_1, x_2)$ pour x_3 et x_4 fixés. Le minimum correspond à la solution X^* .

3. Cas sans solution connue $(u_{des} = 1)$

4. Surface du coût en fonction des deux premiers contrôles

7 Analyse

— Lorsque le maillage est raffiné, le contrôle X^* converge rapidement vers X_{opt} .

- L'erreur $||X^*(h) X_{\text{opt}}||$ décroît environ linéairement avec h.
- Dans le cas $u_{\text{des}} = 1$, la solution obtenue dépend de la base choisie pour la source; la convergence montre la capacité du modèle à approcher une cible inconnue.
- La précision des intégrales A_{ij} et B_i (trapèze sur un maillage fin) est suffisante pour garantir une convergence stable.

8 Solution admissible et solution non admissible

FIGURE 5 – Solution admissible (Dirichlet) et non admissible (Neumann sortie)

FIGURE 6 – Solution admissible (Dirichlet) et non admissible (Neumann sortie) avec NX variable

Conclusion

Cette séance a permis d'introduire la formulation linéarisée du problème inverse ADRS et de vérifier numériquement la validité du calcul du gradient $\nabla_X J = AX - B$. Les expérimentations montrent que le contrôle optimal X^* converge vers X_{opt} avec le raffinement spatial, confirmant la cohérence du schéma et la justesse de la méthode d'optimisation linéaire.