SU Inventor's certificate No. 602586

(22) Filing date

December 16, 1975

(21) Application number

2300384/02

(43) Published on

April 15, 1978, Bulletin No.14

(45) Description publication date

March 24, 1978

Claim

A sintered material comprising titanium carbide, chromium, nickel, molybdenum, silicon, carbon and iron, c h a r a c t e r l z e d in that, in order to use the sintered material as a binder for a diamond instrument, to provide strong fastening of diamonds into the binder and to increase a wear-resistance of a diamond instrument, it further comprises cupper with following content of ingredients, weight %:

titanium carbide 15 - 30

chromium

3,6 - 23,4

nickel

3,5 - 32

molybdenum

0,1 - 2

silicon

2,1 - 8

carbon

0,17 - 1,2

cupper

20 - 50

iron

the rest

Государстванный комитку CORSTA MARKETPOS CEEP по делам изобратавий M OTEPHTHE

житека МБА ОПИСА **ИЗОБРЕТЕНИ**

К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

(61) Дополнительное к авт. свид-ву -

(22) Заявлено 16.12.75 (21) 2300384/02

с присоединением заявки №

(23) Приоритет -

(43) Опубликовано 15.04.78.Бюллетень № 14

(45) Дата опубликования описания 2403.78

(51) М. Кл. С 22 С 30/02 C 22 C 32/00 C 22 C 33/02 B 24 3/06

(11) 602586

тып «ты стано**ския**

(53) УДК 669.018.95: :669.35'24'26'782' 1281784 (088.8)

(72) Авторы изобретения

В.В. Авакян, Ю.И. Андропов, В.И. Теумин, Н.Д. Руднев, А.А. Гоов и А.С. Дышеков

(71) Заявитель

Всесоюзный научно-исследовательский и конструкторскотехнологический институт природных алмазов и инструмента

(54)СПЕЧЕННЫЙ МАТЕРИАЛ

Изобретение относится к порошковой металлургии, в частности к изготовлению алмазного инструмента, предназначенного для обработки износостойких материалов.

Известен материал для изготовления. алмазного инструмента, содержащий,

Твердый сплав ВК15

80 Кобальт

8 12 [1].

Непостатком известного материала является то, что он не обеспечивает прочного закрепления алмазных зерен в инструменте.

Кроме того, использование вольфрама, являющегося дефицитным материалом, увеличивает стоимость инструмента.

Наиболее близким к описываемому изобретению по технической сущности является спеченный материал, содержащий карбид титана и стальную матрицу следующего состава, вес.%:

Хром 8-12 Углерод 0,6-1,2 0,5-5 Молиблен Вольфрам Ванадия 0 - 3Никель

Кобальт Кремний 0 - 50-1,5

Марганец **железо**

Остальное [2].

Недостатком известного материала является то, что применение его в качестве связки для алмазного инструмента не обеспечивает прочного закрепления алмазов.

Цель изобретения - использование спеченного материала в качестве связки для алмазного инструмента, обеспечение прочного закрепления алмазов в связке и повышение износостойкости алмаз-15 ного инструмента.

Для этого предложенных спеченных материал дополнительно содержит медь при следующем соотношении компонентов, Bec.%:

25

10

Карбид титана Хром

15-30 3,6-23,4

Никель Молибден 3,5-320,1-2

Кремний Углерод 2,1-8 0,17-1,2

медь

20-50

Железо

Остальное.

При этом спеченный материал содер-

жит хром, никель, молибден, кремний, углерод, железо в виде порошка стали

состава, вес. %: хром 12-32, никель 0,5-18, молибден 0,1-3, хремния 0,1-2, углерод 0,3-1,5, железо остальное.

Спеченный материал содержит никель и кремний в виде порошка сплава Ni+ 30-40 вес. \$ Si, либо смеси порошков указанного состава в количестве 5-20% от общего веса связки.

Медь в спеченный материал вводят в виде жидкого металла при пропитке других компонентов либо в виде порошка.

Инструмент с применением предлагаемой связки изготавливают следующим образом.

Готовят смесь порошков (крупностью 2-20 мкм) карбида титана, нержавеющей стали, нихеля и кремния при следующем соотношении компонентов, вес. 8: карбид титана (содержание свободного углерода 20 0,47 вес. 8) 15-30; стали (состава, вес. 8: хром 12-30, никель 0,5-18, молибден 0,1-3, кремний 0,1-2, углерод 0,3-1,5, железо - остальное) 30-70; никель 3-14, кремний 1,0-6. Никель и кремний вводят в виде порошка сплава N: + 30-40 вес. 8 5:

Полученную смесь формуют совместно с алмазами (конструкция формы и расположение алмазов зависят от типа инструмента), прессуют при давлении 800-1200 кг/см² и затем пропитывают медью (или сплавом на основе меди) в количестве 20-50% от веса твердых компонентов связки в вакууме ~1·10мм рт.ст. при 1000-1130°С. Часть меди (до 50% от общего содержания ее в связке) может быть введена также в виде порошка совместно с порошками других составляющих связки.

Примеры изготовления алмазных правящих карандашей типа C2-C3.

Пример 1. Приготавливают смесь порошков следующего состава, вес.%: карбид титана 25, сталь X17H2 (состава, вес.%: Сп 15-19, Ni 1,5-2,5, С 0,1-0,2, Fe остальное) 65, никель 6, кремний 4.

Порошки смешивают в смесителе в течение 2 ч.Отбирают навеску смеси в количестве, необходимом на 1 карандаш. Формуют смесь совместно с алмазами в прессформе (вид алмазов и порядок укладки их определяется маркой карандаша). Прессуют алмазонссную

вставку под давлением. Руд = 800-1000 кг/см² Спрессованную алмазоносную вставку пропытывают медью в количестве 40% от общего веса других составляющих связки.

Режимы пропитки: среда — вакуум $1\cdot 10^{-4}$ мм рт.ст.; температура 1120 ± 20 С; выдержка при 10^{-4} пропитке 10мин; твердость связки НКС 19-23.

Алмазоносную вставку укрепляют в державке инструмента.

Пример 2. Приготавливают смесь порошков следующего состава, вес. %: карбид титана 29; сталь X13M2C2 (состава, вес. %: Ст 12-14, мо 2,5-3,5,5і 1,7-2,3, С 0,3-0,6,Ростальное) 44; никель 7,2; кремний 4,8; медь 15.

Порошки смешивают в смесителе в те-

о Формование и прессование алмазоносной вставки также как в примере 1.

Спрессованную вставку пропитывают медью в количестве 30% от общего веса связки.

25 Режим пропитки такой же как и в примере 1.

Алмазоносную вставку укрепляют в державке инструмента.

Пример 3. Приготавливают смесь порошков следующего состава, вес. %: карбид титана 35, сталь (состава, вес. %: Ст 28-32, С 0,6-Геостальное) 35, никель 12, кремния 8 медь 10.

Порошки смешивают в смесителе в течение 2 ч.

Формование и прессование алмазоносной вставки также как в примере 1. Спрессованную вставку пропитывают медью в количестве 20% от общего веса

связки. О Режим пропитки такой же как в примере 1.

Алмазоносную вставку укрепляют в державке инструмента.

45 В таблице приведены результаты испытания правящих карандашей (C2-2), изготовленных на различных связках при следующих режимах испытаний:

50 Абразивный круг Э94ОСТ2К6, 600х305х63,

Поперечная подача, мм/ход 0,1 Продольная подача, мм/ход 0,8 Правка с охлаждением,л/мин 15-20

	Износостойкость, см ³ /мкм		
Карандаш	до выпадения алмазных зерен	при полном износе рабо- чего слоя	чистота повер- хности шлифуе- мой детали (ст. 20%)
На предлагаемой связке ТіС — сталь- Ni-Si-Cu	6,8	4,1-4,7	7а-7в
На известной связке Ті́С — сталь	6,2	3,0-3,6	·

5

Как видно из таблицы 1, износостоякость правящих карандашей, изготовленных на предлагаемой связке, значительно выше по сравнению с аналогичным инструментом, изготовленным спеканием в вакууме с применением в качестве связки металлокерамического сплава Тi C — сталь.

Формула изобретения

Спеченный материал, содержащий карбид титана, хром, никель, молибден, кремний, углерод и железо, о т л и - ч а ю щ и й с я тем, что, с целью использования спеченного материала в качестве связки для алмазного инструмента, обеспечения прочного закрепления алмазов в связке и повышения

износостойкости алмазного инструмента, он дополнительно содержит медь при 'следующем соотношении компонентов, вес. %:

5	Карбид титана	15-30
_	хром	3,6-23,4
•	Никель	3,5-32
	Молиоден	0,1-2
10	Кремний	2,1-8
	Углерод	0,17-1,2
	Медь	20-50
	Железо	Остальное,

Источники информации, принятые во 15 внимание при экспертизе: -

1. Вязников Н.Ф., Ермаков С.С. Металлокерамические материалы и изделия, Ленинград, 1967, с. 182-184.
2. Патент США № 3653982,

20 кл. 148-31, 1972.

Составитель, Л. Родина
Редактор Г. Мозжечкова Техред М.Борисова Корректор А.Лакида

Заказ 1795/25 Тираж 772 Подписное ЩНИИПИ Государственного комитета Совета Министров СССР по делам изобретений и открытий 113035, Москва, Ж-35, Раушская наб., д. 4/5

Филиал ППП ''Патент'', г. Ужгород, ул. Проектная, 4