

# Classification of CIFAR-100 Database

Shilpashree Rao, shilpasr@usc.edu, USC ID: 5636765972 CS561-Foundations of Artificial Intelligence University of Southern California

#### Introduction

CIFAR-100 Dataset: This dataset consists of 60000 32x32 color images in 100 classes, with 600 images per class. There are 50000 training images and 10000 test images.

## **Problem statement and Implementation:**

- Three inductive algorithms are used classify the 50,000 images into 100 possible categories
- Holdout cross validation is implemented where in the CIFAR-100 dataset is partitioned as the training and testing
- The learning system is implemented using Feed Forward Neural Network, Random Forest Decision tree and k-Nearest Neighbors algorithms here

## **Data Pre-Processing:**

- The images from the dataset are pre-processed using 'Image Adjust' function
- This function adjusts the pixel levels in image, rescaling them to cover the range 0 to 1, i.e., contrast of the image is stretched over the range 0 to 255 pixels and rescaled to fall between 0 and 1





## **Image** Adjust





# function

## **Classification Algorithms**

## Convolutional Neural Network: Multilayer Feed Forward Network

The experiments were performed on *LENET* and *Multilayer* Feed-Forward Network. The performance of latter was better, and thus has been chosen for implementation.

• The hidden nodes in the network, expands the scope of the possible functions the network can utilize to classify the data







## **Decision Tree Algorithm: Random Forest**

- This algorithm was chosen as the depth of the tree can be optimized to avoid over-fitting or fit noise in the data
- Decision Trees are *matrices of random features* collectively creating a forest



## **Machine Learning Algorithm: k – Nearest Neighbors**

- This algorithm was chosen as there is freedom to play around with the Number of Neighbors parameter for performance optimization
- The Euclidean distance between points p and q is the length of the line segment connecting them given by the distance formula



## **Experimental Results and Visualizations**

| Pre-processing | Classification type                               | Accuracy | Training, testing samples |  |
|----------------|---------------------------------------------------|----------|---------------------------|--|
| Image Adjust   | Multilayer Feed<br>Forward Neural<br>Network      | 62.3%    | 50000, 10000              |  |
| Image Adjust   | Multilayer Feed<br>Forward Neural<br>Network      | 56.38%   | 25000, 5000               |  |
| Image Adjust   | Random Forest<br>with Variable<br>Sample size = 5 | 46.69%   | 50000, 10000              |  |
| Image Adjust   | Random Forest<br>with Variable<br>sample size = 5 | 44.5%    | 25000, 5000               |  |
| Image Adjust   | Nearest<br>Neighbors                              | 61.27%   | 50000, 10000              |  |
| Image Adjust   | 10 - Nearest<br>Neighbors                         | 54.98%   | 25000, 5000               |  |

| Classification<br>type (training and<br>testing sample<br>size: 25,000, | Recall                       | Precision                    | Naïve Bayes  | Nearest<br>Neighbors | Support Vector<br>Machine | Logistic<br>Regression |
|-------------------------------------------------------------------------|------------------------------|------------------------------|--------------|----------------------|---------------------------|------------------------|
| 10,000)                                                                 |                              | -                            | 57.25%       | 61.27%               | 68.15%                    | 68.97%                 |
| Multilayer<br>Feed Forward<br>Neural                                    | aquarium<br>fish->0.795918   | aquarium<br>fish->0.619048   | 80 ———       |                      |                           |                        |
| Network                                                                 | beaver -> 0.25               | beaver -><br>0.393939        | 70 ————      |                      |                           |                        |
|                                                                         |                              |                              | 60           |                      |                           |                        |
| Random<br>Forest with<br>Variable                                       | aquarium fish<br>-> 0.894737 | aquarium fish<br>-> 0.383459 | 50 ——        |                      |                           |                        |
| Sample size =                                                           | beaver-><br>0.0384615        | beaver -><br>0.285714        | 40 ——        |                      |                           |                        |
|                                                                         |                              |                              | 30 ——        |                      |                           |                        |
|                                                                         |                              |                              | 20 ——        |                      |                           |                        |
| 10 - Nearest<br>Neighbors                                               | aquarium fish<br>-> 0.877193 | aquarium fish<br>-> 0.793651 | 10 ——        |                      |                           |                        |
|                                                                         | beaver -><br>0.269231        | beaver -><br>0.304348        | 0 Naïve Baye | es Nearest Neighl    | pors SVM                  | Logistic Regression    |
|                                                                         |                              |                              | ■ Accuracy   |                      |                           |                        |
| 1.0                                                                     |                              |                              | 1.0          | , , , , , ,          |                           |                        |

