VE281 Data Structures and Algorithms

Topological Sorting

Learning Objectives:

- Know what a topological sorting is and why it is useful
- Know the topological sorting algorithm and its runtime complexity

Topological Sorting

- **Topological sorting**: an ordering on nodes of a **directed graph** so that **for each** edge (v_i, v_j) (means: an edge **from** v_i to v_j) in the graph, v_i is before v_j in the ordering.
 - Also known as topological ordering.

A topological sorting is: A, G, D, B, E, C, F

Which Graph Has Topological Sorting?

- ♦ Is there any "topological sorting" for directed graph with cycles?
 - \diamond In other words, can we order the nodes so that for each edge (v_i, v_j) , v_i is before v_j in the ordering?
 - **♦ Answer**: **No!** (Why?)
- ♦ How about directed acyclic graph (DAG)?
 - ♦ Yes! Guarantee to have a topological ordering.
 - \diamond Why? There is always a **source node** *S* in a DAG. Put *S* first. For the graph without *S*, again, there is a source node. Put it next ...
- Next, we will focus on topological sorting on DAG.

Topological Sorting

♦Topological sorting is not necessarily unique:

♦A, G, D, B, E, C, F and A, B, G, D, E, F, C are both topological sorting.

*Are the following orderings topological sorting?

♦A, B, E, G, D, C, F

♦A, G, B, D, E, F, C

Topological Sorting Applications

Scheduling tasks when some tasks depend on other tasks being completed.

Serialization
Parallel → Serial
Sort out complex
dependencies

Topological Sorting

Applications

*Evaluating a combination logic circuit given a set of inputs.

Topological Sorting: Algorithm

- ♦Based on a queue.
- ♦Algorithm:
 - 1. Compute the in-degrees of all nodes. (in-degree: number of incoming edges of a node.)
 - 2. **Enqueue** all in-degree 0 nodes into a queue.
 - 3. While queue is not empty
 - 1. Dequeue a node v from the queue and visit it.
 - 2. Decrement in-degrees of node *v*'s neighbors.
 - 3. If any neighbor's in-degree becomes 0, **enqueue** it into the queue.

In-degrees

A	В	C	D	E	F	G
0	1	2	2	2	1	0

		V = 10 10 10 10 10	

in-degrees of A's neighbors.

In-degrees

A	В	C	D	E	F	G
0	1	2	2	2	1	0

In-degrees

A	В	C	D	E	F	G
0	10	2	21	2	1	0

<u> </u>			

Dequeue G, visit G, and decrement in-degrees of G's neighbors.

In-degrees

A	В	C	D	E	F	G
0	0	2	1	2	1	0

1 A			
\mathbf{A}			
7 7			

In-degrees

A	В	С	D	Е	F	G
0	0	2	10	2	1	0

Α	G	BOYM'S		地區的是
$oldsymbol{arGamma}$	u			

In-degrees

A	В	С	D	E	F	G
0	0	2	0	2	1	0

А	G		是其法的	N. E

In-degrees

A	В	С	D	E	F	G
0	0	2 1	0	2 1	1	0

|--|

In-degrees

A	В	С	D	E	F	G
0	0	1	0	10	1	0

|--|

In-degrees

A	В	C	D	E	F	G
0	0	1	0	0	1	0

	A	G	В	D	福建基本		REE .
--	---	---	---	---	------	--	-------

In-degrees

A	В	C	D	E	F	G
0	0	10	0	0	10	0

A G B	D	E		
-------	---	---	--	--

In-degrees

A	В	C	D	E	F	G
0	0	0	0	0	0	0

A G B	D	E
-------	---	---

In-degrees

A	В	С	D	E	F	G
0	0	0	0	0	0	0

A	G	В	D	Е	C	MESS
			Annual Control of the Park Street, Land			

Queue

Queue is now empty. Done!

In-degrees

A	В	C	D	E	F	G
0	0	0	0	0	0	0

A	G	В	D	Е	С	\mathbf{F}

Topological Sorting Algorithm Time Complexity

Assume adjacency list representation

- 1. Compute the in-degrees of all not O(|V| + |E|) in total
- 2. Enqueue all in-degree 0 nodes into a que O(|V|) in total
- 3. While queue is not empty
 - 1. Dequeue a node v from the queue and O(|V|) in total
 - 2. Decrement in-degrees of node v's neigh O(|E|) in total
 - 3. If any neighbor's in-degree becomes 0
 - ... place it in the queue.

O(|V|) in total

Total running time is O(|V| + |E|).