

ICS3213 – Gestión de Operaciones

Sección 3 Primer Semestre 2025

Profesor: Rodrigo A. Carrasco

Avisos

• La lectura complementaria de esta parte es el Capítulo 4 del libro "Administración de Operaciones" por R. Chase, F. Jacobs y N. Aquilano.

¿Por qué estudiar "diseño" en este curso?

• ¿En qué afecta el diseño de productos el sistema productivo?

- Hay dos facetas del diseño de un producto:
 - Uno orientado al éxito del producto en su mercado.
 - Otra orientada a que la fabricación del producto sea eficiente y garantizar su calidad.
- Veamos un caso: Jonathan Ive y el MacBook Pro

El diseño del MacBook Pro (2011)

La taza TROFE de IKEA

- ¿Por qué dedicarle tiempo al diseño de una taza?
- Taza TROFE de USD \$0.50.
- Antes tenía la BANG, pero la rediseñó.
- Con la BANG, sólo podían meter a la plataforma de carga, 864 tazas.
- Agregaron un reborde que permitía 1,280.
- Luego cambiaron el asa y la altura para que cupieran 2,024.
- Incluso agregaron una muesca para mejorar la experiencia del usuario.

Algunos de los conceptos modernos

- Simplificación del diseño en vista a su fabricación.
- Adecuación del diseño para su "servicio".
- Adecuación del diseño a los requerimientos del cliente.
- Adecuación del diseño para disminuir costos y cumplir con otros requerimientos, manteniendo todas las anteriores.
- Mejorar la calidad y reducir posibilidad de fallas por simplificación del sistema.

Integración: el tema central

- Se busca que las perspectivas e impactos del diseño sean compartidos por todos los "involucrados":
 - Los clientes.
 - Los que lo conceptualizaron.
 - Los que lo van a vender.
 - Los que lo van a fabricar.
 - Los que lo van a proveer.
 - Los que lo van a "financiar".
 - Los que lo van a mantener.
- Aprovechamiento de los recursos "pensantes".
- Puede llevar a una ventaja competitiva.

La conexión diseño-procesos

- Uno de los eslabones relevantes es la consideración simultánea del diseño del producto y sus procesos.
- Concepto del tema anterior: procesos flexibles.
- Contraparte en el producto:
 - Diseño flexible: modular.

Ingeniería Concurrente:

- Metodologías que apunta a integrar a todos los actores del proceso de diseño en tiempo real...
- A veces son apoyadas fuertemente por tecnologías...
 - Sistemas integrados de diseño CAD.
 - Sistemas de simulación también pueden usarse en esto.
- La ingeniería concurrente (y métodos relacionados) han probado ser fundamental para:
 - Evitar errores de diseño.
 - Controlar costos de los procesos.
 - Reducir el tiempo de desarrollo.

Diseño "a prueba de fallas"

• Esto se ha usado con el nombre japonés de "Poka-Yoke" (a prueba de fallas)

• "sólo entra de una forma..."

- Proceso "Chaku-Chaku" (carga-carga): opuesto al fordismo (Batch-and-queue).
- Esto evita que los ensamblajes sean mal efectuados.
- O que el cliente cometa errores en la operación del producto.

Poka-Yoke y Chaku-Chaku

Diseño "a prueba de fallas"

- Esto se ha usado con el nombre japonés de "Poka-Yoke" (a prueba de fallas)
- "sólo entra de una forma..."

- Proceso "Chaku-Chaku" (carga-carga): opuesto al fordismo (Batch-and-queue).
- Esto evita que los ensamblajes sean mal efectuados.
- O que el cliente cometa errores en la operación del producto.
- Conexión Diseño seguridad

El Diseño mirando al cliente

- Esto es abordado por diseñadores, ingenieros e investigadores de mercado.
- ¿Cómo potenciar la interacción entre los requerimientos de los clientes y las aptitudes de ingeniería?
- Un problema común: diferentes lenguajes y diferentes formas de ver las cosas...
- Un método que ha ganado gran reputación: QFD.
- QFD: Quality Function Deployment
- Fue desarrollado en los astilleros Mitsubishi en los 70.

El Diseño mirando al cliente

- Por un lado: los requerimientos de los clientes, adecuadamente priorizados
- Por otro: los atributos de diseño, en términos de ingeniería.
- Preguntas:
 - ¿Qué impacto tienen los atributos de diseño en los requerimientos de los clientes?
 - ¿Cuáles son las interacciones entre los atributos?
 - ¿Cuál es la "posición óptima" de esos atributos de modo que se satisfagan los requerimientos?
- Una forma de representar todo esto es mediante un "diagrama de correlaciones que se conoce como "La Casa de la Calidad."

Ejemplo:

- Cámara fotográfica
- (tomado de Render y Heizer)

Casa de la calidad para el despliegue de la función de calidad (DFC)

QFD: aplicado en forma iterativa

- El ejemplo ilustra sólo una relación.
- La metodología se aplica nuevamente con los siguientes eslabones del proceso de diseño:

Ejemplos

- La metodología ha alcanzado amplias aplicaciones:
 - Manufactura
 - Servicios
 - Sistemas educacionales (currículos)

Diseño en servicios

- Todo lo anterior es válido en servicios
- Pero hay algunas consideraciones adicionales:
 - Intangibilidad dificulta la percepción de requerimientos de los clientes
 - Procesos y producto se confunden
 - Deben ser flexibles para adaptarse a clientes "únicos"
- Procesos son muchas veces más "aleatorios" que en manufactura.
- Algunas metodologías son particularmente útiles
 - Teoría de colas, ejemplo: Disney.

La perspectiva moderna del diseño integrado

- ¿Pueden demostrarse las ventajas del diseño integrado?
- Diversas investigaciones muestran que el costo acumulado de un proyecto de diseño y el tiempo de entrada al mercado es menor cuando la integración se hace desde el comienzo.
- Evitar el desperdicio.

